Algèbre 3 TD 3

Familles de vecteurs

Licence 2 MAE 2020-2021 Université Paris Descartes Marc Briant

Dans tout ce TD, $(\mathbb{K}, +, .)$ désigne un corps commutatif.

Des familles libres et des sous-espaces engendrés

Exercice 1

Soient A et B des parties d'un \mathbb{K} -ev E.

- 1) Montrer que si $A \subset B \subset E$ et que A engendre E alors B engendre E.
- 2) Comparer $Vect(A \cap B)$ avec $Vect(A) \cap Vect(B)$.

Exercice 2

Soit un réel λ . Dans chacun des cas suivants, donner une condition nécessaire et suffisante pour que la famille (u_1, u_2, u_3) soit une famille libre de \mathbb{R}^4 .

- 1) $u_1 = (\lambda, 1, 1, 0), u_2 = (1, \lambda, 1, 0)$ et $u_3 = (1, 1, \lambda, 0)$.
- 2) $E = \mathbb{R}^4$ et $u_1 = (1, 2, 3, \lambda)$, $u_2 = (\sin(\lambda), 1, 0, 1)$ et $u_3 = (0, 0, 0, 1 + \lambda)$.

Exercice 3: Des familles libres en pagaille

Dans chacun des cas suivants, établir si la famille \mathcal{A} est libre dans le \mathbb{R} -ev E.

- 1) $E = \mathbb{R}^3$ et $\mathcal{A} = \{(1,0,1), (1,2,1)\}.$
- 2) $E = \mathbb{R}^3$ et $\mathcal{A} = \{(1,2,1), (2,-1,1), (1,-1,-2)\}.$
- 3) $E = C^0([0, 2\pi], \mathbb{R})$ et $\mathcal{A} = \{\cos x, x \cos x, \sin x, x \sin x\}$.
- 4) $E = C^0(\mathbb{R}, \mathbb{R})$ et $\mathcal{A} = \{x, x^2, x^3, x^4\}$.
- 5) $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $\mathcal{A} = \{|x a_1|, \dots, |a a_p|\}$ où a_1, \dots, a_p sont des réels distincts.
- 6) $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $\mathcal{A} = \{e^{a_1 x}, e^{a_2 x}, \dots, e^{a_3 x}\}$ où a_1, \dots, a_p sont des réels distincts.

Exercice 4

Nous définissons e_1 , e_2 , e_3 et e_4 des vecteurs de E puis nous appelons $F = \text{Vect}(\{e_1, e_2\})$ et $G = \text{Vect}(e_3, e_4)$ dans chacun des cas suivants

- 1) $E = \mathbb{R}^3$ et $e_1 = (-1, 1, 0)$, $e_2 = (1, 1, 1)$, $e_3 = (0, 1, 1)$ et $e_4 = (0, 0, 0)$.
- 2) $E = \mathbb{R}^4$ et $e_1 = (1, 1, 1, 1)$, $e_2 = (1, -3, -1, 1)$, $e_3 = (6, 12, 1, 14)$ et $e_4 = (-3, 9, -3, 3)$.

Pour chacun des cas ci-dessus répondre aux questions suivantes

- a) Montrer que (e_1, e_2) est libre
- b) Donner une équation cartésienne vérifiée par les vecteurs de F.
- c) Déterminer $F \cap G$ et F + G. A-t-on $E = F \oplus G$?

Des bases tout simplement

Exercice 5 : Construire des bases

Dans chacun des cas suivant montrer que F est un sous-ev de \mathbb{R}^3 , déterminer une base \mathcal{B} de F et exprimer le vecteur s sur \mathcal{B} .

- 1) $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\} \text{ et } s = (1, 1, -3).$
- 2) $F = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 11z = 0\} \text{ et } s = (23, 1, -2).$

Exercice 6 : Changeons de corps

Dans cet exercice nous changeons un peu de corps pour travailler avec $\mathbb{K}=\mathbb{Q}$ ou $\mathbb{K}=\mathbb{C}$.

- 1) Montrer que $E = \{a + b\sqrt{2} + c\sqrt{3}, (a, b, c) \in \mathbb{Q}^3\}$ est un \mathbb{Q} -ev et en déterminer une base.
- 2) Montrer que $e_1 = (1, 2i, -i)$, $e_2 = (2, 1+i, 1)$ et $e_3 = (-1, 1, -i)$ est une base du \mathbb{C} -ev \mathbb{C}^3 . Calculer dans cette base le vecteur s = (1, 2, 0).

Exercice 7

Soient λ , α et β trois réels. Définissons alors

$$F_{\alpha,\beta} = \{(x, y, z) \in \mathbb{R}^3 \mid x + \alpha y + \beta z = 0\}.$$

Montrer que $F_{\alpha,\beta}$ est un sous-ev de \mathbb{R}^3 et donner une condition nécessaire et suffisante sur α , β et γ pour que (1,2,3) et $(\lambda,2,3)$ forme une base de $F_{\alpha,\beta}$.

Exercice 8 : Mélangeons les genres

Dans \mathbb{R}^3 nous définissons l'application

$$\forall (x_1, x_2, x_3) \in \mathbb{R}^3, \quad u(x_1, x_2, x_3) = (x_3 - x_1\sqrt{2}, x_3 + x_2\sqrt{2}, x_1 + x_2).$$

- a) Vérifier que $u \in L(\mathbb{R}^3)$.
- b) Donner une base de chacun des sous-ev Ker(u), $Ker(u 2Id_E)$ et $Ker(u + 2Id_E)$.
- c) Montrer que $\operatorname{Im}(u) = \operatorname{Ker}(u 2\operatorname{Id}_E) \oplus \operatorname{Ker}(u 2\operatorname{Id}_E)$.
- d) Monter que $E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$. u est-il un projecteur?