```
In [1]:
```

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.max_columns', None)
```

In [2]:

data = pd.read_csv('/kaggle/input/crime-cast-forecasting-crime-categories/train.csv')

In [3]:

data.head()

Out[3]:

	Location	Cross_Street	Latitude	Longitude	Date_Reported	Date_Occurred	Time_Occurred	Area_ID	Area_Name	Rep
0	4500 CARPENTER AV	NaN	34.1522	-118.3910	03/09/2020 12:00:00 AM	03/06/2020 12:00:00 AM	1800.0	15.0	N Hollywood	
1	45TH ST	ALAMEDA ST	34.0028	-118.2391	02/27/2020 12:00:00 AM	02/27/2020 12:00:00 AM	1345.0	13.0	Newton	
2	600 E MARTIN LUTHER KING JR BL	NaN	34.0111	-118.2653	08/21/2020 12:00:00 AM	08/21/2020 12:00:00 AM	605.0	13.0	Newton	
3	14900 ORO GRANDE ST	NaN	34.2953	-118.4590	11/08/2020 12:00:00 AM	11/06/2020 12:00:00 AM	1800.0	19.0	Mission	
4	7100 S VERMONT AV	NaN	33.9787	-118.2918	02/25/2020 12:00:00 AM	02/25/2020 12:00:00 AM	1130.0	12.0	77th Street	
4										Þ

In [4]:

```
print(data['Weapon Used Code'].value counts())
```

```
Weapon Used Code
400.0
       3990
500.0
         789
         546
511.0
102.0
         388
200.0
         160
         154
109.0
106.0
          131
207.0
          125
307.0
          84
512.0
          80
306.0
          63
212.0
           55
312.0
           52
304.0
           51
308.0
           49
205.0
           45
201.0
           43
114.0
           41
204.0
           37
302.0
           37
           35
113.0
101.0
           34
3N1 N
           26
```

310.0 26 215.0 25 223.0 24 311.0 23 219.0 23 506.0 22 107.0 18 515.0 18 218.0 17 305.0 16 221.0 14 216.0 13 103.0 12 309.0 11 112.0 8 104.0 7 514.0 7 211.0 6 513.0 4 303.0 4 510.0 3 206.0 3 508.0 2 214.0 2 105.0 2 214.0 2 503.0 1 501.0 1 202.0 1 111.0 1 210.0 1 212.0 1 115.0 1 213.0 1 Name: count, dtype: int
.64

Weapon_Description

In [5]:

data['Weapon_Description'].value_counts()

Out[5]:

STRONG-ARM (HANDS, FIST, FEET OR BODILY FORCE)	3990
UNKNOWN WEAPON/OTHER WEAPON	789
VERBAL THREAT	546
HAND GUN	388
KNIFE WITH BLADE 6INCHES OR LESS	160
SEMI-AUTOMATIC PISTOL	154
UNKNOWN FIREARM	131
OTHER KNIFE	125
VEHICLE	84
MACE/PEPPER SPRAY	80
ROCK/THROWN OBJECT	63
BOTTLE	55
PIPE/METAL PIPE	52
CLUB/BAT	51
STICK	49
KITCHEN KNIFE	45
KNIFE WITH BLADE OVER 6 INCHES IN LENGTH	43
AIR PISTOL/REVOLVER/RIFLE/BB GUN	41
FOLDING KNIFE	37
BLUNT INSTRUMENT	37
SIMULATED GUN	35
REVOLVER	34
BELT FLAILING INSTRUMENT/CHAIN	26
CONCRETE BLOCK/BRICK	26
MACHETE	25
UNKNOWN TYPE CUTTING INSTRUMENT	24
HAMMER	23
SCREWDRIVER	23
FIRE	22

OTHER FIREARM PHYSICAL PRESENCE OTHER CUTTING INSTRUMENT	18 18 17
FIXED OBJECT	16
GLASS	14
SCISSORS	13
RIFLE	12
BOARD	11
TOY GUN	8
SHOTGUN	7
TIRE IRON	7
AXE	6
STUN GUN	4
BRASS KNUCKLES	4
SCALDING LIQUID	3
SWITCH BLADE	3
MARTIAL ARTS WEAPONS	2
DEMAND NOTE	2
SAWED OFF RIFLE/SHOTGUN	2
ICE PICK	2
CAUSTIC CHEMICAL/POISON	1
BOMB THREAT	1 1
BOWIE KNIFE	1
STARTER PISTOL/REVOLVER RAZOR BLADE	1
HECKLER & KOCH 93 SEMIAUTOMATIC ASSAULT RIFLE	1
ASSAULT WEAPON/UZI/AK47/ETC	1
CLEAVER	1
Name: count, dtype: int64	Τ.
manie. Cours, acype. Incor	

In [6]:

data[['Weapon_Used_Code', 'Weapon_Description']].value_counts()

Out[6]:

Weapon_Used_Code	Weapon_Description	
400.0	STRONG-ARM (HANDS, FIST, FEET OR BODILY FORCE)	
500.0	UNKNOWN WEAPON/OTHER WEAPON	789
511.0	VERBAL THREAT	546
102.0	HAND GUN	388
200.0	KNIFE WITH BLADE 6INCHES OR LESS	160
109.0	SEMI-AUTOMATIC PISTOL	154
106.0	UNKNOWN FIREARM	131
207.0	OTHER KNIFE	125
307.0	VEHICLE	84
512.0	MACE/PEPPER SPRAY	80
306.0	ROCK/THROWN OBJECT	63
212.0	BOTTLE	55
312.0	PIPE/METAL PIPE	52
304.0	CLUB/BAT	51
308.0	STICK	49
205.0	KITCHEN KNIFE	45
201.0	KNIFE WITH BLADE OVER 6 INCHES IN LENGTH	43
114.0	AIR PISTOL/REVOLVER/RIFLE/BB GUN	41
302.0	BLUNT INSTRUMENT	37
204.0	FOLDING KNIFE	37
113.0	SIMULATED GUN	35
101.0	REVOLVER	34
310.0	CONCRETE BLOCK/BRICK	26
301.0	BELT FLAILING INSTRUMENT/CHAIN	26
215.0	MACHETE	25
223.0	UNKNOWN TYPE CUTTING INSTRUMENT	24
219.0	SCREWDRIVER	23
311.0	HAMMER	23
506.0	FIRE	22
515.0	PHYSICAL PRESENCE	18
107.0	OTHER FIREARM	18
218.0	OTHER CUTTING INSTRUMENT	17
305.0	FIXED OBJECT	16
221.0	GLASS	14
216.0	SCISSORS	13
4000		1 ^

```
103.0
                 RIFLE
                                                                     12
309.0
                                                                     11
                 BOARD
112.0
                 TOY GUN
                                                                      8
                 TIRE IRON
                                                                      7
514.0
                                                                      7
104.0
                 SHOTGUN
211.0
                 AXE
                                                                      6
513.0
                 STUN GUN
                                                                      4
303.0
                 BRASS KNUCKLES
                                                                      4
510.0
                 SCALDING LIQUID
                                                                      3
206.0
                 SWITCH BLADE
                                                                      3
                                                                      2
504.0
                 DEMAND NOTE
                                                                      2
105.0
                 SAWED OFF RIFLE/SHOTGUN
508.0
                                                                      2
                 MARTIAL ARTS WEAPONS
                                                                      2
214.0
                 ICE PICK
                                                                      1
115.0
                 ASSAULT WEAPON/UZI/AK47/ETC
111.0
                 STARTER PISTOL/REVOLVER
                                                                      1
122.0
                HECKLER & KOCH 93 SEMIAUTOMATIC ASSAULT RIFLE
                                                                      1
501.0
                BOMB THREAT
                                                                      1
503.0
                 CAUSTIC CHEMICAL/POISON
                                                                      1
202.0
                 BOWIE KNIFE
                                                                      1
210.0
                 RAZOR BLADE
                                                                      1
213.0
                 CLEAVER
                                                                      1
Name: count, dtype: int64
In [7]:
data[['Status Description', 'Status']].value counts()
Status Description Status
Invest Cont IC
                             15236
                              2597
Adult Other
                  AO
Adult Arrest
                  AA
                              2054
Juv Arrest
                   JA
                               70
                   JO
                                43
Juv Other
Name: count, dtype: int64
In [8]:
data['Status'].value counts()
Out[8]:
Status
IC 15236
ΑO
     2597
     2054
AA
        70
JA
        43
JO
Name: count, dtype: int64
In [9]:
data['Status Description'].value counts()
Out[9]:
Status Description
Invest Cont 15236
Adult Other
               2597
               2054
Adult Arrest
Juv Arrest
                 70
Juv Other
                  43
Name: count, dtype: int64
In [10]:
data[['Premise Description', 'Premise Code']].value counts()
Out[10]:
Premise Description
                                             Premise Code
                                                             5033
STREET
                                             101 0
```

```
SINGLE FAMILY DWELLING
                                              501.0
                                                              3379
MULTI-UNIT DWELLING (APARTMENT, DUPLEX, ETC)
                                             502.0
                                                              2491
PARKING LOT
                                              108.0
                                                              1437
SIDEWALK
                                              102.0
                                                              978
                                                              . . .
FRAT HOUSE/SORORITY/DORMITORY
                                              508.0
                                                                1
FACTORY
                                              302.0
                                                                1
                                                                1
SKATEBOARD FACILITY/SKATEBOARD PARK*
                                             736.0
MTA - PURPLE LINE - PERSHING SQUARE
                                             917.0
                                                                1
                                                                1
RECORD-CD MUSIC/COMPUTER GAME STORE
                                             225.0
Name: count, Length: 216, dtype: int64
In [11]:
data['Premise Code'].value_counts()
Out[11]:
Premise Code
101.0 5033
501.0
        3379
502.0
       2491
108.0 1437
102.0
        978
        . . .
214.0
909.0
           1
896.0
           1
744.0
           1
           1
250.0
Name: count, Length: 217, dtype: int64
In [12]:
data['Premise Description'].value counts()
Out[12]:
Premise Description
STREET
                                                5033
SINGLE FAMILY DWELLING
                                                3379
MULTI-UNIT DWELLING (APARTMENT, DUPLEX, ETC)
                                                2491
PARKING LOT
                                                1437
SIDEWALK
                                                 978
                                                . . .
BUS DEPOT/TERMINAL, OTHER THAN MTA
                                                  1
MTA - RED LINE - HOLLYWOOD/WESTERN
                                                  1
MTA - SILVER LINE - ROSECRANS
                                                  1
HIGH-RISE BUILDING
                                                  1
COMPUTER SERVICES/REPAIRS/SALES
                                                  1
Name: count, Length: 216, dtype: int64
In [13]:
data[['Area Name', 'Area ID']].value counts()
Out[13]:
Area Name Area ID
77th Street 12.0
                       1345
Pacific 14.0
                       1157
           1.0
Central
                       1156
Southwest 3.0
Southeast 18.0
                       1130
                       1067
N Hollywood 15.0
                       1065
Hollywood 6.0
                       1014
Newton
           13.0
                        999
           20.0
                        960
Olympic
Wilshire
           7.0
                        943
           2.0
                        931
Rampart
           8.0
                        910
West LA
Van Nuys
           9.0
                        902
```

5 0

Harbor

872

```
Mission
             19.0
                         870
Northeast
             11.0
                         839
Topanga
             21.0
                         792
West Valley 10.0
                         790
Devonshire
             17.0
                         769
                         755
Hollenbeck
            4.0
            16.0
                         734
Foothill
Name: count, dtype: int64
In [14]:
data['Area_Name'].value_counts()
Out[14]:
Area Name
77th Street
               1345
Pacific
               1157
Central
               1156
Southwest
               1130
Southeast
               1067
N Hollywood
              1065
Hollywood
               1014
Newton
                999
Olympic
                960
Wilshire
                943
Rampart
                931
West LA
                910
Van Nuys
                902
                872
Harbor
                870
Mission
Northeast
                839
Topanga
                792
West Valley
                790
Devonshire
                769
Hollenbeck
                755
Foothill
                734
Name: count, dtype: int64
In [15]:
data['Area ID'].value counts()
Out[15]:
Area_ID
12.0
        1345
14.0
        1157
1.0
        1156
3.0
        1130
18.0
        1067
15.0
        1065
6.0
        1014
        999
13.0
20.0
         960
7.0
         943
2.0
         931
8.0
         910
9.0
         902
5.0
         872
19.0
         870
11.0
         839
21.0
         792
10.0
         790
17.0
         769
4.0
         755
16.0
         734
Name: count, dtype: int64
In [16]:
test data = pd.read csv('/kaggle/input/crime-cast-forecasting-crime-categories/test.csv')
```

1141201

J . U

In [17]:

```
print(test_data[['Weapon_Used_Code', 'Weapon_Description']].value_counts())
print(test_data['Weapon_Description'].value_counts())
print(test_data['Weapon_Used_Code'].value_counts())
```

Weapon Used Code	Weapon Description	
400.0	STRONG-ARM (HANDS, FIST, FEET OR BODILY FORCE)	1003
500.0	UNKNOWN WEAPON/OTHER WEAPON	208
511.0	VERBAL THREAT	110
102.0	HAND GUN	98
200.0	KNIFE WITH BLADE 6INCHES OR LESS	50
106.0	UNKNOWN FIREARM	38
109.0	SEMI-AUTOMATIC PISTOL	34
207.0	OTHER KNIFE	32
307.0	VEHICLE	28
212.0	BOTTLE	18
512.0	MACE/PEPPER SPRAY	17
308.0	STICK	16
306.0	ROCK/THROWN OBJECT	16
304.0	CLUB/BAT	15
114.0	AIR PISTOL/REVOLVER/RIFLE/BB GUN	14
312.0	PIPE/METAL PIPE	14
204.0	FOLDING KNIFE	10
311.0	HAMMER	10
302.0	BLUNT INSTRUMENT	9
223.0	UNKNOWN TYPE CUTTING INSTRUMENT	9
205.0	KITCHEN KNIFE	8
219.0	SCREWDRIVER	7
101.0	REVOLVER	7
201.0	KNIFE WITH BLADE OVER 6 INCHES IN LENGTH	7
218.0	OTHER CUTTING INSTRUMENT	6
215.0	MACHETE BELT FLAILING INSTRUMENT/CHAIN	6 5
301.0	·	4
309.0 515.0	BOARD PHYSICAL PRESENCE	4
113.0	SIMULATED GUN	4
310.0	CONCRETE BLOCK/BRICK	3
505.0	EXPLOXIVE DEVICE	3
506.0	FIRE	3
221.0	GLASS	3
216.0	SCISSORS	3
107.0	OTHER FIREARM	3
303.0	BRASS KNUCKLES	3
513.0	STUN GUN	2
104.0	SHOTGUN	2
112.0	TOY GUN	2
305.0	FIXED OBJECT	1
507.0	LIQUOR/DRUGS	1
103.0	RIFLE	1
514.0	TIRE IRON	1
510.0	SCALDING LIQUID	1
115.0	ASSAULT WEAPON/UZI/AK47/ETC	1
503.0	CAUSTIC CHEMICAL/POISON	1
206.0	SWITCH BLADE	1
208.0	RAZOR	1
213.0	CLEAVER	1
214.0	ICE PICK	1
217.0	SWORD	1 1
516.0 Name: count, dtyr	DOG/ANIMAL (SIC ANIMAL ON)	Τ
Weapon Description		
	S, FIST, FEET OR BODILY FORCE) 1003	
UNKNOWN WEAPON/OT		
VERBAL THREAT	110	
HAND GUN	98	
KNIFE WITH BLADE		
UNKNOWN FIREARM	38	
SEMI-AUTOMATIC PI		
OTHER KNIFE	32	
VEHICLE	28	

DOMMIT D	1.0
BOTTLE MACE/PEPPER SPRAY	18 17
STICK	16
ROCK/THROWN OBJECT	16
CLUB/BAT	15
PIPE/METAL PIPE	14
AIR PISTOL/REVOLVER/RIFLE/BB GUN	14
FOLDING KNIFE	10
HAMMER	10
BLUNT INSTRUMENT	9
UNKNOWN TYPE CUTTING INSTRUMENT	9
KITCHEN KNIFE	8
SCREWDRIVER	7 7
REVOLVER KNIFE WITH BLADE OVER 6 INCHES IN LENGTH	7
MACHETE	6
OTHER CUTTING INSTRUMENT	6
BELT FLAILING INSTRUMENT/CHAIN	5
SIMULATED GUN	4
PHYSICAL PRESENCE	4
BOARD	4
CONCRETE BLOCK/BRICK	3
EXPLOXIVE DEVICE	3
OTHER FIREARM	3
BRASS KNUCKLES	3
GLASS	3
FIRE SCISSORS	3 3
TOY GUN	2
SHOTGUN	2
STUN GUN	2
CAUSTIC CHEMICAL/POISON	1
SWITCH BLADE	1
ASSAULT WEAPON/UZI/AK47/ETC	1
CLEAVER	1
SWORD	1
TIRE IRON	1
FIXED OBJECT	1
DOG/ANIMAL (SIC ANIMAL ON)	1
LIQUOR/DRUGS	1 1
RAZOR ICE PICK	1
SCALDING LIQUID	1
RIFLE	1
Name: count, dtype: int64	_
Weapon Used Code	
400.0 1003	
500.0 208	
511.0 110	
102.0 98	
200.0 50	
106.0 38	
109.0 34	
207.0 32	
307.0 28	
212.0 18 512.0 17	
308.0 16	
306.0 16	
304.0 15	
312.0 14	
114.0 14	
204.0 10	
311.0 10	
302.0 9	
223.0 9	
205.0 8	
219.0 7	
101.0 7	
201.0 7	
215.0 6	
218.0 6	

301.0	į	5	
113.0	4	4	
515.0	4	4	
309.0		4	
310.0		3	
505.0		3	
107.0		3	
303.0	,	3	
221.0		3	
506.0		3 3 3 3	
216.0			
112.0	4	2	
104.0	2	2 2	
513.0			
503.0		1	
206.0		<u>1</u> 1	
115.0 213.0		1	
217.0		1	
514.0		1	
305.0		1	
516.0		1	
507.0		1	
208.0		1	
214.0		1	
510.0		1	
103.0		1	
Name:	count,	dtype:	int64

Data Cleaning: Dropping Redundant Columns

In the initial dataset, I identified four columns that contained redundant information. These columns were:

- 1. Weapon_Used_Code
- 2. Status_Description
- 3. Premise_Description
- 4. Area_Name

Each of these columns had a corresponding column that provided the same information in a different format:

- Weapon Description and Weapon Used Code
- Status Description and Status
- Premise Description and Premise Code
- Area Name **and** Area ID

To streamline our dataset and ensure that I focus on the most relevant information for our analysis, I decided to drop the columns Weapon Description, Status Description, Premise Description, and Area Name.

This decision was made based on the following reasons:

- 1. **Redundancy**: Each dropped column had a corresponding column that conveyed the same information. By maintaining only one version of the information, we ensure the integrity and clarity of our dataset.
- 2. **Efficiency**: Reducing the number of columns simplifies the dataset, making it easier to handle and analyze. This can improve the performance of data processing tasks and the interpretability of analysis results.

The resulting cleaned dataset retains the most relevant columns, which are:

- Weapon_Used_Code
- Status
- Premise_Code
- Area_ID

This cleaned dataset is now more concise and focused, setting a solid foundation for accurate and efficient analysis.

Data Cleaning: Dropping Columns with Missing Values

• .. •

I identified that the <code>Cross_Street</code> column had 16,000 null values. Due to the high proportion of missing data and its limited relevance to my analysis, I decided to drop this column to maintain the dataset's integrity and quality.

```
In [18]:
data['Cross Street'].isnull().sum()
Out[18]:
16552
In [19]:
data = data.drop('Weapon Description', axis=1)
data = data.drop('Status Description', axis=1)
data = data.drop('Premise Description', axis=1)
data = data.drop('Area Name', axis=1)
data = data.drop('Cross Street', axis=1)
In [20]:
data['Victim Age'].value counts()
Out[20]:
Victim Age
 0.0
         4828
 30.0
         448
 31.0
          446
 26.0
          442
 29.0
          425
 98.0
          2
-2.0
           2
 92.0
           2
           2
 96.0
 94.0
           2
Name: count, Length: 100, dtype: int64
In [21]:
data['Victim Age'].unique()
Out[21]:
array([75., 41., 67., 61., 0., 50., 68., 22., 31., 46., 72., 26., 38.,
       37., 42., 40., 53., 60., 29., 13., 33., 27., 15., 23., 74., 63.,
       78., 51., 44., 34., 69., 36., 52., 25., 49., 48., 32., 18., 35.,
       24., 39., 16., 28., 47., 30., 64., 76., 5., 58., 45., 57., 19.,
       55., 54., 21., 65., 17., 20., 77., 82., 56., -2., 84., 59., 43.,
       7., 70., 66., 62., 14., 80., 71., 81., 96., 12., 11., 4., 83.,
       10., 8., 6., 88., 86., 73., 9., 87., 85., 93., 95., 99., 79.,
            2., 91., 92., 90., 89., 98., -1., 94.])
```

Data Cleaning: Handling Invalid Values in Victim Age

I identified that the Victim_Age column contained invalid values such as -1 and -2. These values are not plausible for representing ages, so I replaced them with 0 to ensure data consistency and accuracy.

```
In [22]:
data['Victim_Age'].replace([-1, -2], 0, inplace=True)

In [23]:
data['Victim_Age'].value_counts()
Out[23]:
```

```
Victim Age
0.0
        4834
30.0
         448
31.0
         446
26.0
         442
29.0
         425
93.0
          5
           2
92.0
96.0
           2
98.0
           2
94.0
           2
Name: count, Length: 98, dtype: int64
```

Data Cleaning: Handling Missing Values in Weapon_Used_Code

I found that the <code>Weapon_Used_Code</code> column contained some missing values. To address this, I replaced the missing values with 0 to maintain data consistency and avoid potential issues during analysis.

```
In [24]:
data['Weapon_Used_Code'] = data[['Weapon_Used_Code']].fillna(0)
```

Data Cleaning: Handling Missing Values in Victim_Sex and Victim_Descent

I identified missing values in the Victim_Sex and Victim_Descent columns. To address this, I replaced the missing values with 'Unknown' to maintain data integrity and ensure completeness for subsequent analysis.

```
In [25]:

data['Victim_Sex'].unique()

Out[25]:
    array(['M', 'X', 'F', nan, 'H'], dtype=object)

In [26]:

data['Victim_Descent'].unique()

Out[26]:
    array(['W', 'H', 'B', 'X', nan, 'O', 'A', 'K', 'C', 'F', 'I', 'J', 'Z', 'V', 'P', 'D', 'U', 'G'], dtype=object)

In [27]:

data['Victim_Sex'] = data[['Victim_Sex']].fillna('Unknown')
    data['Victim_Descent'] = data['Victim_Descent'].fillna('Unknown')
```

```
1 = []
for i in range(20000):
    l.append((str(data['Modus_Operandi'][i]).split()))

s = set()
for i in 1:
    for j in i:
        s.add(j)
print(len(list(s))) # including np.nan
482
```

There are 482 unique Modus Operandi, or Modes of Operation, but this is including the null values as well. So the Actual Number is 482-1 = 481. I made one hot encoded vectors of each row consisting of Modus_Operandi sequence. Then dropped the original Modus_Operandi Column and concatenated the

```
In [29]:
modus_operandi_encoded = data['Modus_Operandi'].str.get_dummies(sep=' ')
In [30]:
data = pd.concat([data, modus_operandi_encoded], axis=1)
data = data.drop('Modus_Operandi', axis=1)
```

Data Cleaning: Processing Date Columns

modus operandi encoded to our data.

I processed the <code>Date_Reported</code> and <code>Date_Occurred</code> columns to remove unnecessary time information and convert them into a proper datetime format. This ensures the dates are correctly interpreted and simplifies date-based analysis.

- 1. Remove Time Information: The 12:00:00 AM time was removed from both date columns to clean up the data.
- 2. Convert to Datetime: Both columns were converted to datetime objects for better handling and analysis.

```
In [31]:
```

```
data['Date_Reported'] = (data['Date_Reported'].str.replace(' 12:00:00 AM', ''))
data['Date_Occurred'] = (data['Date_Occurred'].str.replace(' 12:00:00 AM', ''))
data['Date_Reported'] = pd.to_datetime(data['Date_Reported'], format='%m/%d/%Y')
data['Date_Occurred'] = pd.to_datetime(data['Date_Occurred'], format='%m/%d/%Y')
```

```
In [32]:
```

```
data['Date_Reported'][0] - data['Date_Occurred'][0]
Out[32]:
Timedelta('3 days 00:00:00')
```

Data Cleaning: Additional Transformations and Calculations

I performed additional transformations and calculations on the date columns to extract meaningful features and drop unnecessary columns.

- 1. Calculate Reporting Delay: I calculated the delay between the date the incident occurred and the date it was reported. This new feature, Reported_Delay, is measured in days. The average reporting delay was also computed.
- 2. Extract Month and Day: I extracted the month and day from the Date_Occurred column to create new features Month Occurred and Day Occurred.
- 3. Drop Date Columns: After extracting the necessary information, I dropped the Date_Occurred and Date Reported columns as they were no longer needed.

These steps helped in creating useful features for analysis and ensured that the dataset remains clean and focused on relevant information.

```
In [33]:

data['Reported_Delay'] = (data['Date_Reported'] - data['Date_Occurred']).dt.days
print("Average Reporting Delay:", data['Reported_Delay'].mean())

Average Reporting Delay: 22.12

In [34]:
```

```
data['Month_Occurred'] = data['Date_Occurred'].dt.month
data['Day_Occurred'] = data['Date_Occurred'].dt.day
```

In [35]:

data.drop(['Date Occurred', 'Date Reported'], axis=1, inplace=True)

Data Cleaning: Encoding Categorical Columns

To prepare the dataset for machine learning algorithms, I encoded the categorical columns using <code>LabelEncoder</code>. This transformation converts categorical values into numerical values, making them suitable for model training.

The columns encoded were:

- Location
- Victim Sex
- Victim Descent
- Status

These columns were selected because they contain categorical data that need to be converted into a numeric format for the algorithms to process effectively.

```
In [36]:
```

data

Out[36]:

	Location	Latitude	Longitude	Time_Occurred	Area_ID	Reporting_District_no	Part 1-2	Victim_Age	Victim_Sex	Vic
0	4500 CARPENTER AV	34.1522	-118.3910	1800.0	15.0	1563.0	1.0	75.0	М	
1	45TH ST	34.0028	-118.2391	1345.0	13.0	1367.0	1.0	41.0	М	
2	600 E MARTIN LUTHER KING JR BL	34.0111	-118.2653	605.0	13.0	1343.0	2.0	67.0	М	
3	14900 ORO GRANDE ST	34.2953	-118.4590	1800.0	19.0	1924.0	1.0	61.0	М	
4	7100 S VERMONT AV	33.9787	-118.2918	1130.0	12.0	1245.0	1.0	0.0	x	
19995	5100 W ADAMS BL	34.0334	-118.3523	700.0	3.0	303.0	2.0	51.0	М	
19996	16900 ROSCOE BL	34.2212	-118.5011	259.0	10.0	1008.0	1.0	0.0	М	
19997	1000 S SHENANDOAH ST	34.0571	-118.3815	1400.0	8.0	849.0	1.0	42.0	М	
19998	300 W SEPULVEDA ST	33.7451	-118.2835	600.0	5.0	558.0	2.0	76.0	F	
19999	DALTON AV	34.0037	-118.3034	1800.0	3.0	397.0	1.0	0.0	Unknown	

20000 rows × 498 columns

In [37]:

```
lb = LabelEncoder()
columns_to_encode = ['Location', 'Victim_Sex', 'Victim_Descent', 'Status', 'Area_ID', 'P
remise_Code', 'Reporting_District_no', 'Weapon_Used_Code']
for col in columns_to_encode:
    data[col] = lb.fit_transform(data[col])
```

```
In [38]:
```

data

Out[38]:

	Location	Latitude	Longitude	Time_Occurred	Area_ID	Reporting_District_no	Part 1-2	Victim_Age	Victim_Sex	Victim_D€
0	7238	34.1522	-118.3910	1800.0	14	775	1.0	75.0	2	
1	7300	34.0028	-118.2391	1345.0	12	647	1.0	41.0	2	
2	8525	34.0111	-118.2653	605.0	12	633	2.0	67.0	2	
3	2879	34.2953	-118.4590	1800.0	18	972	1.0	61.0	2	
4	9584	33.9787	-118.2918	1130.0	11	596	1.0	0.0	4	
•••					•••					
19995	7868	34.0334	-118.3523	700.0	2	96	2.0	51.0	2	
19996	3555	34.2212	-118.5011	259.0	9	471	1.0	0.0	2	
19997	441	34.0571	-118.3815	1400.0	7	395	1.0	42.0	2	
19998	5975	33.7451	-118.2835	600.0	4	246	2.0	76.0	0	
19999	11453	34.0037	-118.3034	1800.0	2	149	1.0	0.0	3	

20000 rows × 498 columns

In [39]:

```
data['Time_Occurred'] = data['Time_Occurred'].astype(int)
data['Part 1-2'] = data['Part 1-2'].astype(int)
data['Victim_Age'] = data['Victim_Age'].astype(int)
```

In [40]:

data

Out[40]:

	Location	Latitude	Longitude	Time_Occurred	Area_ID	Reporting_District_no	Part 1-2	Victim_Age	Victim_Sex	Victim_D€
0	7238	34.1522	-118.3910	1800	14	775	1	75	2	
1	7300	34.0028	-118.2391	1345	12	647	1	41	2	
2	8525	34.0111	-118.2653	605	12	633	2	67	2	
3	2879	34.2953	-118.4590	1800	18	972	1	61	2	
4	9584	33.9787	-118.2918	1130	11	596	1	0	4	
•••		•••								
19995	7868	34.0334	-118.3523	700	2	96	2	51	2	
19996	3555	34.2212	-118.5011	259	9	471	1	0	2	
19997	441	34.0571	-118.3815	1400	7	395	1	42	2	
19998	5975	33.7451	-118.2835	600	4	246	2	76	0	
19999	11453	34.0037	-118.3034	1800	2	149	1	0	3	

20000 rows × 498 columns

In [41]:

. ▶

```
data['Location'].value counts()
Out[41]:
Location
        33
9255
9947
        32
        31
12261
        31
9257
9950
        30
5575
        1
10982
        1
11872
         1
12316
         1
11453
         1
Name: count, Length: 12399, dtype: int64
In [42]:
for i in range(20000):
    if data['Location'][i] == 9255:
       print(data.loc[i, ['Location', 'Latitude', 'Longitude']])
Location
Latitude
             34.0412
Longitude -118.2436
Name: 569, dtype: object
Location
               9255
Latitude
            34.0636
Longitude -118.2979
Name: 785, dtype: object
Location
               9255
Latitude
             33.7613
Longitude -118.2819
Name: 2638, dtype: object
Location
               9255
            34.0672
Latitude
Longitude -118.2985
Name: 4054, dtype: object
Location
               9255
Latitude
             34.0423
Longitude -118.2452
Name: 4170, dtype: object
Location
                9255
             34.0657
Latitude
Longitude -118.2825
Name: 5232, dtype: object
Location
                9255
Latitude
              34.046
Longitude -118.2509
Name: 5406, dtype: object
                9255
Location
             34.0421
Latitude
Longitude -118.2469
Name: 6071, dtype: object
               9255
Location
             34.0601
Latitude
Longitude -118.2761
Name: 6781, dtype: object
Location
               9255
Latitude
            34.0446
Longitude -118.249
Name: 6893, dtype: object
Location
               9255
Latitude
           34.0466
Longitude -118.252
Name: 7069, dtype: object
Location
               9255
Latitude
            34.0343
Longitude -118.2054
Name: 9705, dtype: object
Location
                9255
```

______ 34.0394 Latitude Longitude -118.2405 Name: 9826, dtype: object Location 9255 34.0446 Latitude Longitude -118.249 Name: 10872, dtype: object Location 9255 Latitude 34.062 Longitude -118.2804 Name: 11570, dtype: object Location 9255 Latitude 34.0435 Longitude -118.2471 Name: 11756, dtype: object Name. _ Location 5255 34.0593 Longitude -118.2749 Name: 11769, dtype: object 9255 34.0453 Location Latitude Longitude -118.2499 Name: 12176, dtype: object Location 9255 34.039 Latitude Longitude -118.24 Name: 12810, dtype: object Location 9255 Latitude 34.0382 Longitude -118.2384 Name: 10.
Location 9255
34.0428 Name: 13686, dtype: object Longitude -118.2461 Name: 15124, dtype: object Location 9255 34.0446 Latitude Longitude -118.249 Name: 15283, dtype: object Location 9255 34.0428 Latitude Longitude -118.2461 Name: 15819, dtype: object Location 9255 34.0429 Latitude Longitude -118.2462 Name: 16558, dtype: object Location 9255 Latitude 34.0474 Longitude -118.2531 Name: 16675, dtype: object Location 9255 34.0453 Latitude Longitude -118.2499 Name: 17156, dtype: object Location 34.0435 Longitude -118.2471 Name: 17689, dtype: object Location 9255 Latitude 34.0585 Longitude -118.2724 Name: 17832, dtype: object Location 9255 Latitude 34.0403 Longitude -118.2421 Name: 18127, dtype: object Location 9255 34.0435 9255 Latitude Longitude -118.2471 Name: 18298, dtype: object Location

```
34.0417
Latitude
Longitude -118.2444
Name: 18594, dtype: object
Location
            34.0439
Latitude
Longitude -118.2479
Name: 18627, dtype: object
Location
               9255
            34.0466
Latitude
Longitude -118.252
Name: 19971, dtype: object
In [43]:
data = data.drop(['Latitude', 'Longitude'], axis=1)
Applying Same Preprocessing steps to test.csv as well
In [44]:
test data = test data.drop('Weapon Description', axis=1)
test_data = test_data.drop('Status_Description', axis=1)
test_data = test_data.drop('Premise_Description', axis=1)
test data = test data.drop('Area Name', axis=1)
test data = test data.drop('Cross Street', axis=1)
In [45]:
test data['Victim Age'].replace([-1, -2], 0, inplace=True)
test data['Weapon Used Code'] = test data[['Weapon Used Code']].fillna(0)
test data['Victim Sex'] = test data[['Victim Sex']].fillna('Unknown')
test_data['Victim_Descent'] = test_data['Victim_Descent'].fillna('Unknown')
In [46]:
train data = pd.read csv('/kaggle/input/crime-cast-forecasting-crime-categories/train.csv
In [47]:
def get unique modus operandi(column):
    split values = column.dropna().str.split()
    flattened list = [item for sublist in split values for item in sublist]
    unique modus operandi = list(set(flattened list))
    return unique modus operandi
unique modus train = get unique modus operandi(train data['Modus Operandi'])
train modus encoded = train data['Modus Operandi'].str.get dummies(sep=' ')
for modus in unique modus train:
    if modus not in train modus encoded.columns:
        train modus encoded[modus] = 0
test_modus_encoded = pd.DataFrame(columns=train modus encoded.columns)
test modus encoded = test modus encoded.reindex(test data.index, fill value=0)
for index, row in test data.iterrows():
    if isinstance(row['Modus_Operandi'], str):
        test_modus_list = row['Modus_Operandi'].split()
        for modus in test modus list:
            if modus in test modus encoded.columns:
                test modus encoded.at[index, modus] = 1
test data = pd.concat([test data, test modus encoded], axis=1)
```

```
test_data = test_data.drop('Modus_Operandi', axis=1)
```

In [48]:

```
test data['Date Reported'] = (test data['Date Reported'].str.replace(' 12:00:00 AM', '')
test data['Date Occurred'] = (test data['Date Occurred'].str.replace(' 12:00:00 AM', '')
test data['Date Reported'] = pd.to datetime(test data['Date Reported'], format='%m/%d/%Y
test data['Date Occurred'] = pd.to datetime(test data['Date Occurred'], format='%m/%d/%Y
test data['Reported Delay'] = (test data['Date Reported'] - test data['Date Occurred']).
dt.days
print("Average Reporting Delay:", test data['Reported Delay'].mean())
Average Reporting Delay: 20.8666
In [50]:
test data['Month Occurred'] = test data['Date Occurred'].dt.month
test data['Day Occurred'] = test data['Date Occurred'].dt.day
In [51]:
test data.drop(['Date Occurred', 'Date Reported'], axis=1, inplace=True)
In [52]:
lb = LabelEncoder()
columns to encode = ['Location', 'Victim Sex', 'Victim Descent', 'Status', 'Area ID', 'P
remise_Code', 'Reporting_District_no', 'Weapon_Used_Code']
for col in columns to encode:
    test data[col] = lb.fit transform(test data[col])
In [53]:
test data['Time Occurred'] = test data['Time Occurred'].astype(int)
test_data['Part 1-2'] = test_data['Part 1-2'].astype(int)
test_data['Victim_Age'] = test_data['Victim_Age'].astype(int)
In [54]:
test data = test data.drop(['Latitude', 'Longitude'], axis=1)
In [55]:
test data.shape, data.shape
Out [55]:
((5000, 495), (20000, 496))
In [56]:
X = data.drop('Crime Category', axis=1)
y = data['Crime Category']
Dataset appears to be imbalanced
In [57]:
data['Crime Category'].value counts()
Out [57]:
Crime Category
                                 11666
Property Crimes
Violent Crimes
                                  4767
Crimes against Public Order
                                  1808
Fraud and White-Collar Crimes
                                  1355
```

225

179

Crimes against Persons

Other Crimes

ın [49]:

```
Name: count, dtype: int64
```

In [58]:

```
import matplotlib.pyplot as plt

crime_categories = ['Property Crimes', 'Violent Crimes', 'Crimes against Public Order', 'Fraud and White-Collar Crimes', 'Crimes against Persons', 'Other Crimes']

crime_counts = [11666, 4767, 1808, 1355, 225, 179]

plt.figure(figsize=(7, 3))

plt.bar(crime_categories, crime_counts, color='skyblue')

plt.xlabel('Crime Category')

plt.ylabel('Count')

plt.title('Crime Category Distribution')

plt.xticks(rotation=45)

plt.show()
```



```
In [59]:
```

```
X.shape, y.shape
Out[59]:
((20000, 495), (20000,))
In [60]:
from sklearn.model selection import train_test_split
```

SPLITTING

In [61]:

```
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.25, random_state=40, stratify=y)
```

In [62]:

```
X_train.shape, X_val.shape, y_train.shape, y_val.shape
```

Out[62]:

```
((15000, 495), (5000, 495), (15000,), (5000,))
In [63]:
from sklearn.dummy import DummyClassifier
from sklearn.metrics import accuracy_score, recall_score, precision_score, confusion_matr
ix, ConfusionMatrixDisplay
```

In [64]:

```
def eval_model(X_train, X_val, y_train, y_val, estimator):
   estimator.fit(X_train, y_train)
   y train pred = estimator.predict(X train)
   y val pred = estimator.predict(X val)
   print(estimator, "'s Performance:")
   print("Training Accuracy: ", accuracy score(y train, y train pred))
   print("Validation Accuracy: ", accuracy score(y val, y val pred))
   print()
   print("Training Recall: ", recall score(y train, y train pred, average='weighted'))
   print("Validation Recall: ", recall score(y val, y val pred, average='weighted'))
   print("Training Precision: ", precision score(y train, y train pred, average='weight
ed', zero_division=0))
   print("Validation Precision: ", precision score(y val, y val pred, average='weighted
', zero division=0))
   print()
   cm = confusion_matrix(y_val, y_val_pred)
   disp = ConfusionMatrixDisplay(cm)
    disp.plot()
```

BASELINE MODEL

In [65]:

```
dummy_clf = DummyClassifier(random_state=42)
eval_model(X_train, X_val, y_train, y_val, dummy_clf)
```

DummyClassifier(random_state=42) 's Performance:

Training Accuracy: 0.5833333333333334

Validation Accuracy: 0.5832

Training Recall: 0.58333333333333334

Validation Recall: 0.5832

Training Precision: 0.34027777777778

Validation Precision: 0.34012224

LOGISTIC REGRESSION

In [66]:

```
'''from sklearn.linear model import LogisticRegression
lr clf = LogisticRegression(max iter=100000, random state=42)
eval model (X train, X val, y train, y val, lr clf)
/opt/conda/lib/python3.10/site-packages/sklearn/linear model/ logistic.py:458: Convergenc
eWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
 n iter i = check optimize result(
LogisticRegression(max iter=100000, random state=42) 's Performance:
Training Accuracy: 0.86553333333333334
Validation Accuracy: 0.8646
Training Recall: 0.86553333333333334
Validation Recall: 0.8646
Training Precision: 0.8468340093141288
Validation Precision: 0.8415426977473839'''
```

Out[66]:

In [67]:

```
'''from sklearn.linear_model import LogisticRegression
lr_clf = LogisticRegression(max_iter=1000, random_state=42)
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
lr_pipe = Pipeline([('scaling', StandardScaler()), ('lr_clf', lr_clf)])
eval_model(X_train, X_val, y_train, y_val, lr_pipe)'''
```

Out[67]:

"from sklearn.linear_model import LogisticRegression\nlr_clf = LogisticRegression(max_ite r=1000, random_state=42)\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.pipeline import Pipeline\nlr_pipe = Pipeline([('scaling', StandardScaler()), ('lr_clf', l r clf)])\neval model(X train, X val, y train, y val, lr pipe)"

Logistic Regression Cross Validation

In [68]:

```
'''from sklearn.model_selection import cross_val_score lr_cv_acc = cross_val_score(lr_pipe, X, y, cv=10, scoring='accuracy')
```

```
lr_cv_recall = cross_val_score(lr_pipe, X, y, cv=10, scoring='recall_weighted')
lr_cv_precision = cross_val_score(lr_pipe, X, y, cv=10, scoring='precision_weighted')

print(f'Logistic Regression Cross Val Scores: {round(lr_cv_acc.mean(), 2)} +/- {round(lr_cv_acc.std(), 2)}')

print(f'Logistic Regression Cross Val Scores: {round(lr_cv_recall.mean(), 2)} +/- {round(lr_cv_recall.std(), 2)}')

print(f'Logistic Regression Cross Val Scores: {round(lr_cv_precision.mean(), 2)} +/- {round(lr_cv_precision.std(), 2)}')'''
```

Out[68]:

"from sklearn.model_selection import cross_val_score\nlr_cv_acc = cross_val_score(lr_pipe, X, y, cv=10, scoring='accuracy')\nlr_cv_recall = cross_val_score(lr_pipe, X, y, cv=10, scoring='recall_weighted')\nlr_cv_precision = cross_val_score(lr_pipe, X, y, cv=10, scoring='precision_weighted')\n\nprint(f'Logistic Regression Cross Val Scores: {round(lr_cv_acc.mean(), 2)} +/- {round(lr_cv_acc.std(), 2)}')\nprint(f'Logistic Regression Cross Val Scores: {round(lr_cv_recall.mean(), 2)} +/- {round(lr_cv_recall.std(), 2)}')\nprint(f'Logistic Regression Cross Val Scores: {round(lr_cv_precision.mean(), 2)} +/- {round(lr_cv_precision.std(), 2)}')"

Decision Tree

In [69]:

```
'''from sklearn.tree import DecisionTreeClassifier
dt_clf = DecisionTreeClassifier(criterion='entropy')
dt_pipe = Pipeline([('scaling', StandardScaler()), ('dt_clf', dt_clf)])
eval_model(X_train, X_val, y_train, y_val, dt_pipe)'''
```

Out[69]:

"from sklearn.tree import DecisionTreeClassifier\ndt_clf = DecisionTreeClassifier(criteri on='entropy')\ndt_pipe = Pipeline([('scaling', StandardScaler()), ('dt_clf', dt_clf)])\ne val model(X train, X val, y train, y val, dt pipe)"

Decision Tree Grid Search

In [70]:

```
'''from sklearn.model selection import GridSearchCV
param_grid = {
    'max depth': [None, 10, 20, 30, 40, 50],
    'min_samples_split': [2, 10, 20],
'min_samples_leaf': [1, 5, 10],
    'max_features': [None, 'sqrt', 'log2'],
    'ccp alpha': [0.0, 0.01, 0.1]
dt_grid_search = GridSearchCV(estimator=dt_clf, param_grid=param_grid, cv=5, scoring='acc
uracy')
dt_grid_search.fit(X_train, y_train)'''
'''best params = dt grid search.best params
best model = dt grid search.best estimator
print("Best parameters found: ", best params)
eval model(X train, X val, y train, y val, best model)
Output:
Best parameters found: {'ccp alpha': 0.0, 'max depth': 20, 'max features': None, 'min sa
mples leaf': 1, 'min samples split': 20}
DecisionTreeClassifier(criterion='entropy', max depth=20, min samples split=20) 's Perfor
mance:
Training Accuracy: 0.97
Validation Accuracy: 0.94
Training Recall: 0.97
Validation Recall: 0.94
```

```
Training Precision: 0.97
Validation Precision: 0.94'''
```

Out[70]:

'best_params = dt_grid_search.best_params_\nbest_model = dt_grid_search.best_estimator_\n print("Best parameters found: ", best_params)\neval_model(X_train, X_val, y_train, y_val, best_model)\n\nOutput:\nBest parameters found: {\'ccp_alpha\': 0.0, \'max_depth\': 20, \ 'max_features\': None, \'min_samples_leaf\': 1, \'min_samples_split\': 20}\nDecisionTreeC lassifier(criterion=\'entropy\', max_depth=20, min_samples_split=20) \'s Performance:\n\n Training Accuracy: 0.97\nValidation Accuracy: 0.94\n\nTraining Recall: 0.97\nValidation n Recall: 0.94\n\nTraining Precision: 0.97\nValidation Precision: 0.94'

In [71]:

```
'''dt_clf_gini = DecisionTreeClassifier(max_depth=30, max_features=None, min_samples_leaf
=5, min_samples_split=20)
eval_model(X_train, X_val, y_train, y_val, dt_clf_gini)'''
```

Out[71]:

'dt_clf_gini = DecisionTreeClassifier(max_depth=30, max_features=None, min_samples_leaf=5
, min_samples_split=20)\neval_model(X_train, X_val, y_train, y_val, dt_clf_gini)'

In [72]:

```
'''from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier()
knn_pipe = Pipeline([('scaling', StandardScaler()), ('knn_clf', knn_clf)])
eval_model(X_train, X_val, y_train, y_val, knn_pipe)'''
```

Out[72]:

"from sklearn.neighbors import KNeighborsClassifier\nknn_clf = KNeighborsClassifier()\nkn
n_pipe = Pipeline([('scaling', StandardScaler()), ('knn_clf', knn_clf)])\neval_model(X_tr
ain, X_val, y_train, y_val, knn_pipe)"

In [73]:

```
'''param grid = {
    'n_neighbors': [5, 7, 9,],
    'weights': ['uniform', 'distance'],
'algorithm': ['auto', 'ball_tree', 'kd_tree'],
    'leaf size': [10, 30, 50],
    'metric': ['euclidean', 'minkowski']
knn grid search = GridSearchCV(estimator=knn clf, param grid=param grid, scoring='accurac
v')
knn grid search.fit(X train, y train)
best params = knn grid search.best params
best model = knn grid search.best estimator
print("Best parameters found: ", best params)
eval_model(X_train, X_val, y_train, y_val, best_model)
Output:
Best parameters found: {'algorithm': 'auto', 'leaf_size': 10, 'metric': 'euclidean', 'n_
neighbors': 9, 'weights': 'distance'}
KNeighborsClassifier(leaf size=10, metric='euclidean', n neighbors=9,
                      weights='distance') 's Performance:
Training Accuracy: 1.0
Validation Accuracy: 0.58025
```

Out[73]:

'param_grid = {\n \'n_neighbors\': [5, 7, 9,],\n \'weights\': [\'uniform\', \'dista nce\'],\n \'algorithm\': [\'auto\', \'ball_tree\', \'kd_tree\'],\n \'leaf_size\': [
10, 30, 50],\n \'metric\': [\'euclidean\', \'minkowski\']\n}\n\nknn_grid_search = Grid
SearchCV(estimator=knn_clf, param_grid=param_grid, scoring=\'accuracy\')\nknn_grid_search
.fit(X_train, y_train)\n\nbest_params = knn_grid_search.best_params_\nbest_model = knn_grid_search.best_estimator_\nprint("Best_parameters_found: ", best_params)\neval_model(X_train_y_train_y_val__best_model)\n\nOutput: \nBest_parameters_found: \(\)\'algorithm

In [74]:

```
'''from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=300, random_state=42)

eval_model(X_train, X_val, y_train, y_val, rf_clf)'''
```

Out[74]:

'from sklearn.ensemble import RandomForestClassifier\nrf_clf = RandomForestClassifier(n_e stimators=300, random state=42)\neval model(X train, X val, y train, y val, rf clf)'

In [75]:

```
'''param_grid = {
    'max_depth': [10, 20, 30, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
}

grid_search_rf = GridSearchCV(estimator=rf_clf, param_grid=param_grid, n_jobs=-1, verbose
=2, scoring='accuracy')
grid_search_rf.fit(X_train, y_train)

print(f"Best parameters found: {grid_search_rf.best_params_}")
print(f"Best cross-validation score: {grid_search_rf.best_score_:.2f}")
Output:
Fitting 5 folds for each of 36 candidates, totalling 180 fits
Best parameters found: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 5}
Best cross-validation score: 0.95'''
```

Out[75]:

'param_grid = {\n \'max_depth\': [10, 20, 30, None],\n \'min_samples_split\': [2, 5, 10],\n \'min_samples_leaf\': [1, 2, 4],\n}\n\ngrid_search_rf = GridSearchCV(estimato r=rf_clf, param_grid=param_grid, n_jobs=-1, verbose=2, scoring=\'accuracy\')\ngrid_search_rf.fit(X_train, y_train)\n\nprint(f"Best parameters found: {grid_search_rf.best_params_}")\nprint(f"Best cross-validation score: {grid_search_rf.best_score_:.2f}")\nOutput:\nFit ting 5 folds for each of 36 candidates, totalling 180 fits\nBest parameters found: {\'max_depth\': None, \'min_samples_leaf\': 1, \'min_samples_split\': 5}\nBest cross-validation score: 0.95'

In [76]:

```
from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=300, max_depth=None, min_samples_leaf=1, mi
n_samples_split=5, random_state=42)
eval_model(X_train, X_val, y_train, y_val, rf_clf)
```

RandomForestClassifier(min_samples_split=5, n_estimators=300, random_state=42) 's Perform
ance:

Training Accuracy: 0.9950666666666667

Validation Accuracy: 0.9518

Training Recall: 0.9950666666666667

Validation Recall: 0.9518

Training Precision: 0.995092767059309
Validation Precision: 0.952553493368948

In [77]:

from sklearn.ensemble import GradientBoostingClassifier
gb_clf = GradientBoostingClassifier(n_estimators=300, min_samples_split=5, random_state=
42)
eval_model(X_train, X_val, y_train, y_val, gb_clf)

Training Accuracy: 0.9860666666666666

Validation Accuracy: 0.9566

Training Recall: 0.9860666666666666

Validation Recall: 0.9566

Training Precision: 0.9861691888768132 Validation Precision: 0.9550274419843306

In [78]:

prediction = gb clf.predict(test data)

Tm [701.

final_prediction = pd.DataFrame({'ID': range(1, len(prediction) + 1), 'Crime_Category':
 prediction})
 final_prediction.to_csv('gb_sixth_submission.csv', index=False)