ИТМО

М.В. Никитина

основы электротехники

Варианты домашних заданий

Содержание

ДОМАШНЕЕ ЗАДАНИЕ 1. Анализ цепей постоянного тока	3
Требования к оформлению домашних заданий	3
Критерии оценивания домашних заданий	3
Пример титульного листа к домашнему заданию 1	4
Таблица 1	5
Распределение вариантов к домашнему заданию 1	9

ДОМАШНЕЕ ЗАДАНИЕ 1. Анализ цепей постоянного тока

На рисунке 1 показаны три варианта структур схем электрической цепи. Для выполнения задания необходимо заменить условные элементы (1...6) схем резистивными элементами и источниками энергии согласно таблице 1 в соответствии с заданным преподавателем вариантом. Индексы значений токов и ЭДС источников в таблицах соответствуют номерам элементов структурных схем, а направление их действия – направлению стрелок.

Рисунок 1

Рассчитать значения всех неизвестных токов, используя: а) законы Кирхгофа, б) метод контурных токов <u>или</u> метод узловых напряжений. в) Рассчитать ток любой ветви, **содержащей источник** ЭДС, методом эквивалентных преобразований <u>или</u> методом эквивалентного генератора. г) Определить напряжение, приложенное к источнику тока. Определить мощность всех источников энергии, всех резистивных элементов, суммарную мощность источников цепи и суммарную мощность потребителей цепи.

Требования к оформлению домашних заданий:

- работа должна содержать титульный лист (пример на стр. 4);
- работа должна содержать пункты «Дано:», «Найти:», «Решение:», «Ответ:»;
- округление численных значений должно быть с точностью до тысячных долей;
- работы могут быть оформлены как в рукописном формате, так и с использованием любого редактора;
- работы предоставляются в электронном виде (<u>mvnikitina@itmo.ru</u>) в формате *.pdf.

Критерии оценивания домашних заданий

Правильно выполненное и сданное до контрольного срока (включительно) домашнее задание оценивается в **макс** баллов. Контрольный срок объявляется преподавателем на первом занятии.

Основания для снижения количества баллов в пределах от **макс** до **мин**: небрежное оформление, нарушение требований к оформлению домашнего задания, низкое качество графического материала, несвоевременность сдачи домашнего задания, многократная сдача домашнего задания.

Правильно выполненное и сданное после контрольного срока домашнее задание оценивается в мин баллов.

Домашнее задание не может быть принято и подлежит доработке в случае: отсутствия необходимых разделов и/или графического материала, неверного решения, выполнения задания не своего варианта.

Пример титульного листа к домашнему заданию 1

ИІТМО

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Домашнее задание №1 Расчет цепей постоянного тока

Группа *Р333X* Вариант *XXX*

Выполнил: Иванов Иван Иванович

Дата сдачи: xx.xx.2025

Контрольный срок сдачи: 27.10.2025

Количество баллов:

СПб - 2025

Таблица 1 (начало)

Вари-	Схема	Параметры источников энер-			Параметры резисторов [Ом]						
ант		ГИ	гии: <i>J</i> [A], <i>E</i> [B]				3	4	5	6	
001	1	$\uparrow J_1 = 0,1$	$\rightarrow E_3=11$	↑ E ₄ =29	-	8	5	6	2	9	
002	1	$\Psi J_6 = 0,15$	$\rightarrow E_3=12$	← <i>E</i> ₂ =28	6	8	7	4	1	-	
003	2	$\psi J_3 = 0,2$	$\rightarrow E_1=13$	$\Psi E_4 = 27$	4	9	-	4	3		
004	2	← J ₁ =0,25	$\Psi E_3 = 14$	← E ₂ =26	-	5	3	1	2		
005	1	← J ₃ =0,3	<i>←E</i> ₅ =15	↓E1=25	5	1	-	3	3	9	
006	1	↑ <i>J</i> ₆ =0,35	↑ E_1 =16	← E ₃ =24	3	4	7	5	7	_	
007	2	$\rightarrow J_2 = 0,4$	← E_1 =17	$\Psi E_4 = 23$	1	-	1	4	2		
008	2	$\rightarrow J_1 = 0,45$	$\triangle E_3 = 18$	↑ E ₅ =22	-	5	7	1	8		
009	1	↑ J ₆ =0,5	← E ₅ =19	↑ E_1 =21	5	4	7	2	9	_	
010	1	$\rightarrow J_3 = 0,55$	$↑E_1=20$	$\uparrow E_4 = 20$	9	5	-	5	4	1	
011	2	← J ₁ =0,6	$\Psi E_3 = 21$	↓E4=19	-	2	9	3	9		
012	1	$\Psi J_6 = 0,65$	$\Psi E_4 = 22$	$\rightarrow E_3=18$	6	9	3	8	2	-	
013	2	← J ₁ =0,7	$\Psi E_3 = 23$	↓ E_4 =17	-	6	8	5	9		
014	1	$4J_6=0,75$	← E ₃ =24	↑ E_1 =16	2	6	7	5	9	-	
015	3	↑ J ₆ =0,8	$\triangle E_2 = 25$	$\rightarrow E_4=15$	5	7	1	2	4	-	
016	1	$\rightarrow J_3 = 0.85$	$\Psi E_1 = 26$	← E ₅ =14	8	6	-	9	5	4	
017	1	↑ J₁=0,9	$\rightarrow E_3=27$	↑ E_4 =13	-	3	4	8	5	6	
018	2	$\rightarrow J_2 = 0.95$	$\uparrow E_3 = 28$	↑ E_5 =12	7	-	5	4	3		
019	2	$\uparrow J_5=1$	$\rightarrow E_2=29$	↓ E_3 =11	8	4	8	5	-		
020	1	$\uparrow J_6 = 1,1$	↓E4=30	← E_3 =10	6	7	4	6	1	-	
021	1	$\uparrow J_1 = 1,2$	$\triangle E_4 = 31$	→ E_3 =10,5	-	5	1	4	8	3	
022	2	↑ <i>J</i> ₅ =1,3	← <i>E</i> ₂ =32	$\Psi E_4 = 11,5$	8	9	8	5	-		
023	2	$\uparrow J_5=1,4$	$\rightarrow E_2=33$	$\triangle E_3 = 12,5$	4	3	4	9	-		
024	1	$\Psi J_1 = 1,5$	$\rightarrow E_3=34$	<i>←E</i> ₅ =13,5	-	8	4	7	4	6	
025	1	↑ <i>J</i> ₆ =1,6	← <i>E</i> ₂ =35	→ E_3 =14,5	6	5	8	3	2	_	
026	2	← J ₂ =1,7	← <i>E</i> ₁ =36	$\Psi E_5 = 15,5$	3	-	1	3	9		
027	1	$\Psi J_1 = 1,8$	← E ₂ =37	← <i>E</i> ₃ =16,5	-	2	8	6	5	7	
028	2	$\psi J_5 = 1,9$	$\Psi E_3 = 38$	→ E_2 =17,5	5	3	6	2	-		
029	1	$\uparrow J_1 = 2$	← E ₃ =39	→ E_5 =18,5	-	5	4	1	3	7	
030	3	$\Psi J_1 = 2,1$	← <i>E</i> ₄ =40	$↑E_6 = 19$	-	2	6	7	4	8	

Таблица 1 (продолжение 1)

Вари-	Схема	Параметры источников энергии: J [A], E [B]			Параметры резисторов [Ом]							
ант		ГИИ				2	3	4	5	6		
031	1	← <i>J</i> ₃ =0,1	$\rightarrow E_2=40$	↓E6=10	2	9	-	9	6	1		
032	1	<i>←J</i> ₃ =0,15	$\rightarrow E_2=39$	↑ E_4 =11	7	1	-	8	2	7		
033	2	→ J_1 =0,2	↑ E_5 =38	$\rightarrow E_2=12$	-	2	7	5	4			
034	2	↑ <i>J</i> ₃ =0,25	↑ E ₅ =37	$\leftarrow E_2=13$	9	6	-	7	3			
035	1	← J ₃ =0,3	$\rightarrow E_2=36$	$\Psi E_6 = 14$	3	9	-	2	7	9		
036	1	← <i>J</i> ₃ =0,35	← <i>E</i> ₅ =35	↑ E_1 =15	7	4	-	4	5	1		
037	2	↑ <i>J</i> ₅ =0,4	$\Psi E_4 = 34$	← <i>E</i> ₂ =16	9	3	9	5	-			
038	2	← J ₁ =0,45	$\rightarrow E_2=33$	$\Psi E_5 = 17$	-	4	6	3	5			
039	1	$\rightarrow J_3 = 0,5$	$\rightarrow E_5=32$	$\Psi E_4 = 18$	7	2	-	3	9	3		
040	1	<i>←J</i> ₃ =0,55	← <i>E</i> ₂ =31	↑ E_1 =19	4	3	-	9	8	4		
041	2	$4J_4=0,6$	$\Psi E_3 = 30$	$\rightarrow E_1=20$	9	8	1	-	9			
042	1	← J ₃ =0,65	↑ E ₄ =29	↑ E_1 =21	2	9	-	8	6	6		
043	2	↑ J ₄ =0,7	$\triangle E_3 = 28$	$\leftarrow E_2 = 22$	9	5	4	-	6			
044	1	$\rightarrow J_3 = 0,75$	↑ E ₄ =27	↑ E ₆ =23	6	4	-	5	7	3		
045	3	$\psi J_1 = 0.8$	$\rightarrow E_3=26$	$\uparrow E_5 = 24$	-	6	9	6	8	3		
046	1	$\rightarrow J_2 = 0.85$	$\rightarrow E_3=25$	$\Psi E_1 = 25$	5	-	8	8	5	3		
047	1	← J ₂ =0,9	← <i>E</i> ₃ =24	$\Psi E_6 = 26$	5	-	1	6	9	1		
048	2	$4J_4=0,95$	← <i>E</i> ₁ =23	← <i>E</i> ₂ =27	3	5	2	-	5			
049	2	$\Psi J_4 = 1$	$\Psi E_3 = 22$	$\rightarrow E_1=28$	6	2	4	-	8			
050	1	$\rightarrow J_2 = 0.95$	← <i>E</i> ₃ =21	$\rightarrow E_5=29$	1	-	8	8	6	6		
051	1	$\rightarrow J_2 = 0,9$	$\rightarrow E_3=20$	$\uparrow E_6 = 30$	8	-	1	3	6	6		
052	2	$\rightarrow J_1 = 0.85$	↓E3=19	$\Psi E_4 = 31$	-	7	3	4	8			
053	2	$\uparrow J_5 = 0.8$	↑ E_3 =18	← <i>E</i> ₁ =32	8	6	5	9	-			
054	1	<i>←J</i> ₂ =0,75	← <i>E</i> ₅ =17	↓E1=33	4	-	3	9	7	6		
055	1	← J ₅ =0,7	← E_2 =16	$\triangle E_4 = 34$	2	3	4	9	-	7		
056	2	$\Psi J_5 = 0,65$	$\rightarrow E_2=15$	$\triangle E_4=35$	9	2	7	8	ı			
057	1	← J ₂ =0,6	$\rightarrow E_5=14$	↑ E ₆ =36	5	_	8	7	1	4		
058	2	<i>←J</i> ₁ =0,55	← E_2 =13	$\Psi E_5 = 37$	-	2	7	2	8			
059	1	← J ₂ =0,5	$\Psi E_6 = 12$	$\Psi E_4 = 38$	3	-	3	5	7	9		
060	3	$\Psi J_6 = 0,45$	$\Psi E_1 = 11$	← <i>E</i> ₃ =39	4	8	1	9	5	-		

Таблица 1 (продолжение 2)

Вари-	Схема	Параметры источников энер-			Параметры резисторов [Ом]						
ант		ГИ	и: <i>J</i> [A], <i>E</i>	[B]	1	2	3	4	5	6	
061	1	↑ J ₆ =2	← E ₅ =6	↑ E_1 =35	8	9	1	6	9	_	
062	1	↑ <i>J</i> ₆ =1,95	← E ₅ =7	← <i>E</i> ₂ =34,5	8	6	7	2	7	_	
063	2	$\psi J_5 = 1,9$	$\rightarrow E_1=8$	$\leftarrow E_2$ =34	9	4	3	4	-		
064	2	↑ <i>J</i> ₅ =1,85	↓E3=9	→ E_1 =33,5	7	3	6	3	-		
065	1	↑ <i>J</i> ₆ =1,8	← E ₅ =10	← E ₃ =33	2	5	9	7	4	_	
066	1	$\Psi J_6 = 1,75$	↓ E_4 =11	← <i>E</i> ₃ =32,5	2	1	3	5	4	-	
067	2	$\psi J_4 = 1,7$	$\Psi E_5 = 12$	← <i>E</i> ₂ =32	2	1	3	-	5		
068	2	<i>←J</i> ₂ =1,65	$\rightarrow E_1=13$	↑ <i>E</i> ₅ =31,5	5	-	2	5	3		
069	1	↑ <i>J</i> ₆ =1,6	$\Psi E_4 = 14$	← <i>E</i> ₂ =31	4	5	9	7	3	_	
070	1	$\Psi J_1 = 0,55$	$\Psi E_4 = 15$	$\Psi E_6 = 30,5$	-	9	5	8	9	4	
071	2	↑ J ₄ =1,5	← E_1 =16	↑ E ₅ =30	2	6	9	-	6		
072	1	↑ <i>J</i> ₆ =1,45	$\rightarrow E_2=17$	→ E_3 =29,5	8	6	7	6	8	_	
073	2	↑ J ₄ =1,4	← E_2 =18	↓E5=29	6	8	5	-	9		
074	1	$\Psi J_6 = 1,35$	→ E_2 =19	$\Psi E_1 = 28,5$	6	2	3	7	5	_	
075	3	$\uparrow J_1 = 1,3$	$\rightarrow E_4=20$	↓E5=28	-	5	3	8	6	9	
076	1	$\Psi J_1 = 1,25$	← E_3 =21	← <i>E</i> ₂ =27,5	-	8	3	5	8	4	
077	1	$\uparrow J_1 = 1,2$	← E ₃ =22	$\rightarrow E_5=27$	-	6	1	9	6	3	
078	2	$\uparrow J_3 = 1,15$	← <i>E</i> ₂ =23	$\Psi E_4 = 26,5$	7	9	-	5	5		
079	2	$\rightarrow J_1=1,1$	$\rightarrow E_2=24$	↑ E ₅ =26	-	8	1	8	3		
080	1	$\uparrow J_1 = 1$	← E ₃ =25	$\Psi E_4 = 25,5$	-	5	6	7	8	7	
081	1	↑ J₁=0,95	← E ₃ =26	↑ E ₆ =25	-	1	6	6	9	1	
082	2	$\psi J_3 = 0,9$	$\Psi E_5 = 27$	$\rightarrow E_2 = 24,5$	4	8	-	8	6		
083	2	$\psi J_3 = 0.85$	← <i>E</i> ₁ =28	↓E5=24	3	4	-	5	9		
084	1	$\psi J_1 = 0.8$	← <i>E</i> ₂ =29	<i>←E</i> ₅ =23,5	-	6	6	7	3	8	
085	1	↑ <i>J</i> ₆ =0,75	$\rightarrow E_5=30$	$\Psi E_4 = 23$	5	6	7	4	9	-	
086	2	$\rightarrow J_1 = 0,7$	$\triangle E_3 = 31$	↑ E ₄ =22,5	-	3	1	4	8		
087	1	↑ <i>J</i> ₁ =0,65	$\Psi E_6 = 32$	$\rightarrow E_3=22$	-	3	4	1	3	8	
088	2	$\rightarrow J_1 = 0,6$	$\uparrow E_3 = 33$	↑ E ₅ =21,5	-	5	3	8	2		
089	1	$\Psi J_1 = 0,55$	→ E_5 =34	$\Psi E_4 = 21$	-	4	5	7	5	3	
090	3	↑ J ₅ =0,5	↑ E ₂ =35	→ E_4 =20,5	2	3	7	5	-	1	

Таблица 1 (продолжение 3)

Вари-	CXEMA		Параметры резисторов [Ом]							
ант		ГИЛ	Thin. 5 [11], L [15]			2	3	4	5	6
091	1	$\Psi J_1 = 0,25$	$\uparrow E_4 = 6$	↑ E ₆ =25	-	2	6	5	4	8
092	1	$\Psi J_1 = 0,3$	↑ E ₄ =7	→ E_5 =24,5	-	9	4	7	3	1
093	2	↑ <i>J</i> ₄ =0,35	$\leftarrow E_1 = 8$	$\rightarrow E_2=24$	2	3	4	-	7	
094	2	$4J_4=0,4$	↑ E_3 =9	<i>←E</i> ₁ =23,5	6	2	1	-	4	
095	1	$\Psi J_1 = 0,45$	↑ E_4 =10	← E_3 =23	-	3	7	3	7	9
096	1	$\Psi J_1 = 0,5$	$\rightarrow E_2=11$	$\Psi E_6 = 22,5$	-	7	5	7	5	1
097	2	$\rightarrow J_2 = 0,55$	↑ E_3 =12	↑ E ₅ =22	3	-	4	1	9	
098	2	$4J_4=0,6$	$\Psi E_3 = 13$	→ E_2 =21,5	4	8	1	-	3	
099	1	↑ <i>J</i> ₁ =0,65	$\rightarrow E_2=14$	← E ₅ =21	-	9	5	7	8	2
100	1	↑ J ₆ =0,7	$\rightarrow E_5=15$	→ E_3 =20,5	9	4	5	6	5	-
101	2	↑ <i>J</i> ₅ =0,75	$\triangle E_3 = 16$	← E ₂ =20	8	9	3	9	-	
102	1	$\Psi J_1 = 0.8$	← E ₅ =17	$\Psi E_6 = 19,5$	-	2	8	3	2	3
103	2	↑ <i>J</i> ₅ =0,85	$\triangle E_3 = 18$	$\rightarrow E_1=19$	5	9	5	8	-	
104	1	$\psi J_1 = 0,9$	→ E_5 =19	→ E_3 =18,5	-	9	4	7	5	4
105	3	$4J_2=0,95$	↑ E ₅ =20	↑ E_6 =18	6	-	2	1	2	3
106	1	$\Psi J_4 = 1$	$\rightarrow E_3=21$	<i>←E</i> ₂ =17,5	4	5	9	-	8	9
107	1	↑ <i>J</i> ₄ =1,05	← E ₃ =22	← E ₅ =17	1	5	8	-	8	6
108	2	$\rightarrow J_1=1,1$	$\Psi E_4 = 23$	<i>←E</i> ₂ =16,5	-	3	5	5	9	
109	2	$\Psi J_5 = 1,15$	$\Psi E_4 = 24$	$\rightarrow E_2=16$	2	6	9	8	-	
110	1	$\Psi J_4 = 1,2$	← <i>E</i> ₃ =25	$\Psi E_1 = 15,5$	6	1	4	-	1	5
111	1	↑ <i>J</i> ₄ =1,25	$\rightarrow E_3=26$	↑ E_6 =15	3	8	1	-	2	3
112	2	$\Psi J_4 = 1,3$	$\Psi E_3 = 27$	← <i>E</i> ₂ =14,5	7	8	5	-	2	
113	2	$\Psi J_4 = 1,35$	← <i>E</i> ₁ =28	↓E5=14	6	8	9	-	5	
114	1	↑ J ₄ =1,4	→ E_2 =29	↑ <i>E</i> ₆ =13,5	9	4	7	-	4	5
115	1	$\uparrow J_1 = 1,45$	$\rightarrow E_5=30$	↑ E ₆ =13	-	2	3	8	5	9
116	2	$\psi J_5 = 1,5$	$\Psi E_4 = 31$	← <i>E</i> ₂ =12,5	2	9	3	7	-	
117	1	↑ J ₄ =1,55	$\rightarrow E_2=32$	← E ₅ =12	7	5	8	-	8	6
118	2	↑ <i>J</i> ₅ =1,6	↑ E ₄ =33	→ E_1 =11,5	2	7	2	6	-	
119	1	$\rightarrow J_3=1,65$	$\rightarrow E_5=34$	↑ E_1 =11	1	3	-	7	6	2
120	3	$\Psi J_5 = 1,7$	$\Psi E_1 = 35$	← <i>E</i> ₃ =10,5	8	4	7	6	_	5

Распределение вариантов к домашнему заданию "Расчет цепей постоянного тока"

Табельный номер	ФИО	Д31
408094	Абакаров Расул Тигранович	073
336358	Амельченко Дмитрий Сергеевич	090
470407	Антипин Григорий Викторович	069
367822	Арабян Армен Арсенович	109
408190	Багманов Владимир Алексеевич	030
410774	Барашко Арсений Александрович	052
335189	Батаргин Егор Александрович	093
367097	Березовский Артемий Сергеевич	068
408308	Борисова Дарья Александровна	089
336423	Вавилина Екатерина Андреевна	090
412904	Ваганова Мария Александровна	064
408349	Валеева Карина Тимуровна	107
408409	Гаврилин Олег Сергеевич	041
408413	Гаврилович Вероника Вячеславовна	038
408481	Горюнов Семён Олегович	078
368069	Гуренков Максим Сергеевич	007
408549	Долинный Михаил Владимирович	026
368136	Дьяков Тимофей Александрович	072
408574	Евстигнеев Никита Артёмович	105
412944	Забиров Шахбоз Махмадкосирович	015
408648	Захарченко Роман Владимирович	043
408665	Зорин Георгий Юрьевич	056
377912	Иевлев Ринат Андреевич	019
374215	Ике Холи Дестини	009
408708	Исупов Никита Александрович	096
367259	Кадилов Михаил Владимирович	031
470150	Казакова Кристина Дмитриевна	084
368273	Карандашева Анастасия Денисовна	119
489408	Киселев Михаил Васильевич	004
408933	Кузнецов Кирилл Андреевич	045
408965	Кучерук Родион Олегович	079
367355	Лихачев Владлен Артемович	049
336799	Логинова Ольга Олеговна	042
367363	Лучинкин Константин Сергеевич	022
336208	Май Тхи Ле Куен	029
409100	Матевосян Артур Русланович	018
409109	Машкин Григорий Андреевич	047
413006	Медведева Даниэла Михайловна	059

Табельный номер	ФИО	Д31
413012	Мироненко Артём Дмитриевич	017
409146	Миронов Иван Николаевич	114
379673	Муравенко Григорий Павлович	083
338996	Мустафин Родион Андреевич	081
368598	Носов Георгий Иванович	046
470401	Пасечник Иван Андреевич	012
409319	Пашов Илья Александрович	032
409324	Перминов Юрий Константинович	033
409359	Пожарский Семён Андреевич	070
409463	Рублёв Валерий Георгиевич	112
336774	Рыжова Евгения Романовна	094
409513	Самойлова Артемия Александровна	074
410770	Слепцов Кирилл Андреевич	101
409577	Слонимская Ксения Григорьевна	025
374755	Теребов Святослав Дмитриевич	092
409682	Тимошкин Роман Вячеславович	021
471572	Тоскуев Егор Денисович	098
373763	Хомич Екатерина Игоревна	011
409832	Чермантиев Илья Маратович	091
409856	Чураков Александр Алексеевич	002
367652	Шубин Илья Васильевич	103
336210	Ястребов-Амирханов Алекси	115

ИТМО

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Домашнее задание №1 Расчет цепей постоянного тока

Группа *Р3330* Вариант *013*

Выполнил: Сидоров Сидор Сидорович

Дата сдачи: 15.09.2025

Контрольный срок сдачи: 27.10.2025

Количество баллов:

ИСХОДНЫЕ ДАННЫЕ

Вари-	Схема	Параметры источников энер-				Параметры резисторов [Ом]						
		гии: <i>J</i> [A], <i>E</i> [B]			1	2	3	4	5	6		
013	2	$\leftarrow J_1 = 0,7$	$\Psi E_3 = 23$	↓E4=17	-	6	8	5	9			

ЗАДАНИЕ

ДАНО:
$$J_1 = 0.7$$
 [A], $E_3 = 23$ [B], $E_4 = 17$ [B], $R_2 = 6$ [Ом], $R_3 = 8$ [Ом], $R_4 = 5$ [Ом], $R_5 = 9$ [Ом].

НАЙТИ: значения всех неизвестных токов, используя: I) законы Кирхгофа, II) метод контурных токов <u>или</u> метод узловых напряжений; III) значение тока любой ветви, содержащей источник ЭДС, методом эквивалентных преобразований <u>или</u> методом эквивалентных преобразований <u>или</u> методом эквивалентного генератора; IV) значение напряжения, приложенного к источнику тока; значения мощностей всех источников энергии, всех резистивных элементов, суммарной мощности источников цепи и суммарной мощности потребителей цепи.

РЕШЕНИЕ:

I Расчет по законам Кирхгофа

Дано:
$$J_1 = 0.7$$
 [A], $E_3 = 23$ [B], $E_4 = 17$ [B], $R_2 = 6$ [Ом], $R_3 = 8$ [Ом], $R_4 = 5$ [Ом], $R_5 = 9$ [Ом].

Найти: значения всех неизвестных токов, используя законы Кирхгофа.

Решение:

3

1) Определение топологии цепи

- общее количество ветвей в цепи $p^* = 5$
- количество ветвей с источниками тока $p_{\text{ит}} = 1$
- количество ветвей с неизвестными токами $p = p^* p_{\text{ит}} = 5 1 = 4$
- количество узлов q = 3
- количество независимых контуров n = p (q 1) = 4 (3 1) = 2
- количество уравнений по ЗКІ $m_{\rm I} = q 1 = 3 1 = 2$
- количество уравнений по ЗКІІ $m_{\rm II}=n=2$

2) Система уравнений по законам Кирхгофа

ЗКІ-1
$$\begin{array}{l} {\rm 3KI\text{--}1} \\ {\rm 3KI\text{--3}} \\ {\rm 3KII\text{--I}} \\ {\rm 3KII\text{--II}} \end{array} \left\{ \begin{array}{l} I_2-I_3+J_1=0 \text{ или } I_2-I_3=-J_1 \\ -I_1+I_3-I_4=0 \\ -R_2I_2-R_3I_3-R_4I_4=-E_3+E_4 \\ -R_5I_1+R_4I_4=-E_4 \end{array} \right.$$

$$\begin{pmatrix} 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & -R_2 & -R_3 & -R_4 \\ -R_5 & 0 & 0 & R_4 \end{pmatrix} \times \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{pmatrix} = \begin{pmatrix} -J_1 \\ 0 \\ -E_3 + E_4 \\ -E_4 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & -6 & -8 & -5 \\ -9 & 0 & 0 & 5 \end{pmatrix} \mathbf{x} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{pmatrix} = \begin{pmatrix} -0.7 \\ 0 \\ -6 \\ -17 \end{pmatrix}$$

3) Решение системы уравнений

$$\begin{pmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4
\end{pmatrix} = \begin{pmatrix}
0 & 1 & -1 & 0 \\
-1 & 0 & 1 & -1 \\
0 & -6 & -8 & -5 \\
-9 & 0 & 0 & 5
\end{pmatrix} \mathbf{x} \begin{pmatrix}
-0.7 \\
0 \\
-6 \\
-17
\end{pmatrix} = \begin{pmatrix}
374 / 241 \\
591 / 2410 \\
1139 / 1205 \\
-731 / 1205
\end{pmatrix} \approx \begin{pmatrix}
1,552 \\
0,245 \\
0,945 \\
-0,607
\end{pmatrix}, [A]$$

Па Расчет методом контурных токов

Дано:
$$J_1 = 0.7$$
 [A], $E_3 = 23$ [B], $E_4 = 17$ [B], $R_2 = 6$ [Ом], $R_3 = 8$ [Ом], $R_4 = 5$ [Ом], $R_5 = 9$ [Ом].

Найти: значения всех неизвестных токов, используя МКТ.

Решение:

1) Определение топологии цепи

- общее количество ветвей в цепи $p^* = 5$
- количество ветвей с источниками тока $p_{\text{ит}} = 1$
- количество ветвей с неизвестными токами $p = p^* p_{\text{ит}} = 5 1 = 4$
- количество узлов q=3
- количество неизвестных контурных токов n = p (q 1) = 4 (3 1) = 2
- количество известных контурных токов $m=p_{\rm ut}=1,\ J_{33}=J_1=0,7$ [A]
- общее количество контурных токов s = n + m = 2 + 1 = 3

2) Решение системы уравнений

$$\begin{cases} R_{11}I_{11} + R_{12}I_{22} + R_{13}I_{33} = E_{11} \\ R_{12}I_{11} + R_{22}I_{22} + R_{23}I_{33} = E_{22} \end{cases}$$

$$\begin{cases} (R_2 + R_3 + R_4)I_{11} - R_4I_{22} - R_2I_{33} = E_3 - E_4 \\ -R_4I_{11} + (R_4 + R_5)I_{22} = E_4 \end{cases}$$

$$\begin{cases} 19I_{11} - 5I_{22} - 4, 2 = 6 \\ -5I_{11} + 14I_{22} = 17 \end{cases}$$

$$\begin{cases} I_{11} = 1139 / 1205 \approx 0,945 \text{ [A]} \\ I_{22} = 374 / 241 \approx 1,552 \text{ [A]} \end{cases}$$

3) Определение искомых токов

$$I_1 = I_{22} = 374 / 241 \approx 1,552 \text{ [A]}$$

 $I_2 = I_{11} - I_{33} = 1139 / 1205 - 0,7 = 591 / 2410 \approx 0,245 \text{ [A]}$
 $I_3 = I_{11} = 1139 / 1205 \approx 0,945 \text{ [A]}$
 $I_4 = I_{11} - I_{22} = 1139 / 1205 - 374 / 241 = -731 / 1205 \approx -0,607 \text{ [A]}$

Пб Расчет методом узловых напряжений

Дано:
$$J_1 = 0.7$$
 [A], $E_3 = 23$ [B], $E_4 = 17$ [B], $R_2 = 6$ [Ом], $R_3 = 8$ [Ом], $R_4 = 5$ [Ом], $R_5 = 9$ [Ом].

Найти: значения всех неизвестных токов, используя МУН.

Решение:

1) Определение топологии цепи

- общее количество ветвей в цепи $p^* = 5$
- количество ветвей с источниками тока $p_{\text{ит}} = 1$
- количество ветвей с неизвестными токами $p = p^* p_{\text{ит}} = 5 1 = 4$
- количество узлов q = 3
- количество узловых напряжений l=q-1=3-1=2

2) Решение системы уравнений

$$\begin{cases} g_{11}U_{10} - g_{12}U_{20} = J_{11} \\ -g_{21}U_{10} + g_{22}U_{20} = J_{22} \end{cases} \begin{cases} (1/R_2 + 1/R_3)U_{10} - (1/R_3)U_{20} = J_1 - E_3/R_3 \\ -(1/R_3)U_{10} + (1/R_3 + 1/R_4 + 1/R_5)U_{20} = E_3/R_3 + E_4/R_4 \end{cases}$$

$$\begin{cases} (7/24)U_{10} - (1/8)U_{20} = -87/40 \\ -(1/8)U_{10} + (157/360)U_{20} = 251/40 \end{cases} \begin{cases} U_{10} = -1773 / 1205 \approx -1,471 \text{ [B]} \\ U_{20} = 3366 / 241 \approx 13,967 \text{ [B]} \end{cases}$$

3) Определение искомых токов

$$I_1 = U_{20} / R_5 = (3366 / 241) / 9 = 374 / 241 \approx 1,552 \text{ [A]}$$

 $I_2 = -U_{10} / R_2 = -(-1773 / 1205) / 6 = 591 / 2410 \approx 0,245 \text{ [A]}$
 $I_3 = (U_{10} + E_3 - U_{20}) / R_3 = (-1773/1205 + 23 - 3366 / 241) / 8 = 1139 / 1205 \approx 0,945 \text{ [A]}$
 $I_4 = (U_{20} - E_4) / R_4 = (3366 / 241 - 17) / 5 = -731 / 1205 \approx -0,607 \text{ [A]}$

Ша Расчет методом эквивалентных преобразований

Дано:
$$J_1 = 0.7$$
 [A], $E_3 = 23$ [B], $E_4 = 17$ [B], $R_2 = 6$ [Ом], $R_3 = 8$ [Ом], $R_4 = 5$ [Ом], $R_5 = 9$ [Ом].

Найти: значение тока I_3 , используя МЭП.

Решение:

- 1) J_1 парал. $R_2 \to E_2$ посл. R_2
- $E_2 = R_2 \cdot J_1 = 6 \cdot 0,7 = 4,2$ [B]

2) (R_4 посл. E_4) парал. $R_5 \rightarrow R_9$ посл. E_9

$$R_9 = R_4 \cdot R_5 / (R_4 + R_5) = 5 \cdot 9 / (5 + 9) =$$

= 45 / 14 \approx 3,214 [O_M]

$$E_9 = R_9 \cdot (E_4 / R_4) = (45 / 14) \cdot (17 / 5) =$$

= 153 / 14 \approx 10,929 [B]

3) Схема сведена к одноконтурной относительно ветви с искомым током

По ЗК II:
$$(R_2 + R_3 + R_9) \cdot I_3 = E_2 + E_3 - E_9$$
, тогда

$$I_3 = (E_2 + E_3 - E_9) / (R_2 + R_3 + R_9) = (4,2 + 23 - 153/14) / (6 + 8 + 45/14) = 1139 / 1205 \approx 0,945 [A].$$

Шб Расчет методом эквивалентного генератора

Дано:
$$J_1 = 0.7$$
 [A], $E_3 = 23$ [B], $E_4 = 17$ [B], $R_2 = 6$ [Ом], $R_3 = 8$ [Ом], $R_4 = 5$ [Ом], $R_5 = 9$ [Ом].

Найти: значение тока I_3 , используя МЭГ.

Решение:

- 1) Определение ЭДС генератора E_{Γ}
 - а) по ЗКІІ для контура U_{xx} , R_2 , E_4 , R_4

$$-U_{xx}+R_2J_1+R_4I^*=E_4$$
, тогда

$$U_{xx} = R_2 J_1 + R_4 J^* - E_4$$

б) определение /*

По ЗКІІ для контура R_4 , R_5 , E_4

$$(R_4 + R_5)$$
 $I^* = E_4$, тогда

$$I^* = E_4 / (R_4 + R_5) = 17 / (5 + 9) = 17 / 14 \approx 1,214 [A]$$

B)
$$E_r = U_{xx} = 6.0,7 + 5.17/14 - 17 = -471 / 70 \approx -6,729$$
 [B]

- 2) Определение сопротивления генератора $\mathbf{R}_{\mathbf{r}}$
- а) R_4 парал. $R_5 \rightarrow R_9$

$$R_9 = R_4 \cdot R_5 / (R_4 + R_5) = 5.9 / (5 + 9) =$$

= 45 / 14 \approx 3,214 [OM]

б) R_2 посл. $R_3 \rightarrow R_{3KB}$

$$R_{\Gamma} = R_{3KB} = R_3 + R_2 = 45/14 + 6 = 129/14 \approx 9,214 \text{ [OM]}$$

= 45 / 14 \approx 3,214 [OM]

3) Определение искомого тока I_3

По ЗКІІ
$$(R_{\Gamma} + R_3) \cdot I_3 = E_{\Gamma} + E_3$$
, тогда

$$I_3 = (E_{\Gamma} + E_3) / (R_{\Gamma} + R_3) =$$

$$= 1139 / 1205 \approx 0,945 [A]$$

IV Баланс мощностей

Дано:
$$J_1 = 0.7$$
 [A], $E_3 = 23$ [B],
 $E_4 = 17$ [B], $R_2 = 6$ [Ом], $R_3 = 8$ [Ом],
 $R_4 = 5$ [Ом], $R_5 = 9$ [Ом],
 $I_1 = 374/241$ [A], $I_2 = 591/2410$ [A],
 $I_3 = 1139/1205$ [A],
 $I_4 = -731/1205$ [A]

Найти: значение напряжения, приложенного к источнику тока; значения мощностей всех источников энергии, всех резистивных элементов, суммарной мощности источников цепи и суммарной мощности потребителей цепи.

Решение:

1) Определение U_J

По ЗКІІ для контура R_2 , U_J

$$R_2 \cdot I_2 + U_J = 0$$
, тогда $U_J = -R_2 \cdot I_2 = -6.591/2410 = -1773/1205 \approx -1,471$ [B]

2) Определение мощностей элементов

$$P_{J1} = U_{J} \cdot J_1 = (-1773 / 1205) \cdot 0,7 = -12411 / 12050 \approx -1,03 \text{ [BT]}$$
 $P_{E3} = E_3 \cdot I_3 = 23 \cdot (1139 / 1205) = 26197 / 1205 \approx 21,74 \text{ [BT]}$
 $P_{E4} = -E_4 \cdot I_4 = -17 \cdot (-731 / 1205) = 12427 / 1205 \approx 10,313 \text{ [BT]}$
 $P_{R2} = R_2 \cdot I_2^2 = 6 \cdot (591 / 2410)^2 = 914053 / 2533257 \approx 0,361 \text{ [BT]}$
 $P_{R3} = R_3 \cdot I_3^2 = 8 \cdot (1139 / 1205)^2 = 10378568 / 1452025 \approx 7,148 \text{ [BT]}$
 $P_{R4} = R_4 \cdot I_4^2 = 5 \cdot (-731 / 1205)^2 = 534361 / 290405 \approx 1,84 \text{ [BT]}$
 $P_{R5} = R_5 \cdot I_1^2 = 9 \cdot (374 / 241)^2 = 1258884 / 58081 \approx 21,675 \text{ [BT]}$

3) Баланс мощностей

$$P_{\text{\tiny H}} = P_{J1} + P_{E3} + P_{E4} = -12411 / 12050 + 26197 / 1205 + 12427 / 1205 = 373829 / 12050 \approx 31,023 \text{ [BT]}$$

$$P_{\pi} = P_{R2} + P_{R3} + P_{R4} + P_{R5} = 914053/2533257 + 10378568/1452025 + 534361/290405 + 1258884/58081 = 373829 / 12050 \approx 31,023 [B_T]$$

 $P_{\scriptscriptstyle \mathrm{H}}$ = $P_{\scriptscriptstyle \mathrm{H}}$ = 373829 / 12050 pprox 31,023 [Вт], баланс мощностей имеет место.

OTBET:
$$I_1 = 374/241 \approx 1,552 \text{ [A]},$$
 $I_2 = 591/2410 \approx 0,245 \text{ [A]},$
 $I_3 = 1139/1205 \approx 0,945 \text{ [A]},$
 $I_4 = -731/1205 \approx -0,607 \text{ [A]},$
 $P_{J1} = -12411/12050 \approx -1,03 \text{ [BT]},$
 $P_{E3} = 26197/1205 \approx 21,74 \text{ [BT]},$
 $P_{E4} = 12427/1205 \approx 10,313 \text{ [BT]},$
 $P_{R2} = 914053/2533257 \approx 0,361 \text{ [BT]},$
 $P_{R3} = 10378568/1452025 \approx 7,148 \text{ [BT]},$
 $P_{R4} = 534361/290405 \approx 1,84 \text{ [BT]},$
 $P_{R5} = 1258884/58081 \approx 21,675 \text{ [BT]},$
 $P_{H} = P_{H} = 373829/12050 \approx 31,023 \text{ [BT]}.$