ACKNOWLEDGEMENT

This is great pleasure and immense satisfaction to express our deepest sense of gratitude and thanks to everyone who has helped us in completing our work successfully. We are presenting this Project report on "A FRAMEWORK TO MAKE VOTING SYSTEM TRANSPARENT USING BLOCK CHAIN TECHNOLOGY" as part of the curriculum of B.E. Computer Engineering. Inspiration and guidance are invaluable in every aspect of life especially in the field of academics, which we have received from our respected **Project Guide:** Dr. Shital Agrawal and **Head of Computer Department:** Prof. Vishal R. Shinde. Besides, we take this opportunity to express our sincere gratitude to the **Principal:** Dr. Mrs. Geetha K. Jayaraj, SSJCET, for providing a good environment and facilities to complete this project. We would also like to thank all our staff and friends who have directly or indirectly guided andhelped us in the preparation of this report and also for giving us unending support rightfrom the stage this idea was conceived.

GAURAVVIJAY JADHAV AAKASH LAXMAN DESALE NITESH NAMDEV SAWARDEKAR

LIST OF PUBLICATIONS

Paper Published in International Journal for Research in Engineering Application & Management		
(IJREAM) With Paper-ID:	_ in Special Issue I Create on "A FRAMEWORK	
TO MAKE VOTING SYSTEM TRANSPARE	NT USING BLOCK CHAIN TECHNOLOGY"	
In April 2024.		

ABSTRACT

The Indian voting system is now inefficient and open to outside interference. Voter ID cards are the only thing that are subject to security checks, and these days, many people can fake them. It is sluggish and can take time to hand count the votes. Polling booths are taken and most ballots are frequently destroyed in certain remote regions with no security. The main goal is to address issues with both conventional and digital elections, including any form of error or unfairness that may have occurred during the election process. To make sure a fair election and mitigate unfairness, the voting process can employ blockchain technology. To cut down on repetition and inconsistency, electronic voting has gradually replaced paper-based voting. It is possible to introduce a new voting system that acquires login and requires both the candidate's name and a face verification. It's a web application that works with each kind of browser. The name, photo, and other information of eligible voters will be stored in the state or district government database, if deemed appropriate. Thus, only eligible voters will be capable to cast ballots thanks to trained data. Additionally, this program makes sure that voting is anonymous. Each user is assigned a random block chain address after logging in, which is unrelated to their personal information. As a result, it is impossible to determine which user voted for which candidate. Even voters without literacy will benefit from the straightforward, user*friendly interface that is in use* [1].

Keywords - e-voting, Blockchain technology, KNN, Face-detection, Transparency, Cryptographic Identity.

CONTENTS

Cer	tificate	
Ack	knowledgement	i
Lis	t of Publications	ii
Abs	stract	iii
Coı	ntents	iv
Lis	t of Figures	vi
Lis	t of Tables	vii
Abl	breviations	viii
1.	INTRODUCTION AND MOTIVATION	
1.1	Introduction	1
1.2	Aims and objectives.	2
1.3	Existing system.	3
1.4	Limitations on Existing System.	4
1.5	Proposed System	5
2.	PROJECT REVIEW	
2.1	Literature Survey.	6
	2.1.1 Comparative Analysis	9
	2.1.2 Mathematical Model	10
2.2	Problem Statement	14
2.3	System Overview.	15
2.4	Project Timeline Chart.	16
2.5	Task Distribution.	17
	2.5.1 Design Phase.	17
	2.5.2 Implementation Phase	17
3.	SOFTWARE REQUIREMENT SPECIFICATION	
3.1	Hardware Specification.	18
3.2	Software Specification.	18

4.	SYSTEM DESIGN	
4.1	Design Specification.	19
4.2	System Architecture	22
4.3	Data Flow Diagram (DFD)	23
4.4	Flow Chart Diagram	27
4.5	UML Diagrams.	28
	4.5.1 Class Diagram	28
	4.5.2 Sequence Diagram.	29
	4.5.3 Use Case Diagram	30
	4.5.4 Activity Diagram	31
	4.5.5 Collaboration Diagram	32
5. P	ROJECT IMPLEMENTATION	
5.1	Technology Overview	33
5.2	Coding	35
6. T	ESTING	
6.1	System Testing	40
	6.1.1 Manual test	40
7. R	ESULTS AND DISCUSSIONS	
7.1	Result sets	41
7.2	Screenshots	44
8. A	DVANTAGES	46
CO	NCLUSION	47
FU'	ΓURE WORK	48
RE	FERENCES	49
ΔPI	PENDIX	

LIST OF FIGURES

Fig No.	Name of Figure	Page No.
2.4	Project Timeline Chart	16
4.2	System Architecture for e-Voting System	22
4.3.1	DFD Level 0 for e-Voting System	23
4.3.2	DFD Level 1 for e-Voting System	24
4.3.3	DFD Level 2 for e-Voting System	25
4.3.4	DFD Level 3 for e-Voting System	26
4.4	Flow Chart	27
4.5.1	Class Diagram	28
4.5.2	Sequence Diagram	29
4.5.3	Use Case Diagram	30
4.5.4	Activity Diagram	31
4.5.5	Collaboration Diagram	32
7.2.1	Home Page	44
7.2.2	Face Verification	44
7.2.3	Casting Vote	45

LIST OF TABLES

Table No.	Table Name	Page No
2.1.1	Comparative Analysis of Existing System	9
2.5.1	Design Phase	16
2.5.2	Implementation Phase	16
6.1	Test Cases	39
7.1.1	Testing Performance on Train Set 1	40
7.1.2	Testing Performance on Train Set 2	42
7.1.2	Testing Performance on Train Set 2	43

LIST OF ABBREVATIONS

Abbrevation	Description
PCA	Principal Component Analysis
CNN	Convolutional Neural Networks
ANN	Artificial Neural Network
DS-DSA	Deep Stacked Denoising Sparse Autoencoders
DFD	Data Flow Diagram
AI	Artificial Intelligence
DL	Deep Learning
KNN	K- Nearest Neighbors