Supervised Learning

Chapter II: Data and Preprocessing

Johannes Jurgovsky

Outline

Data and Preprocessing

- 1. Objects and Attributes
- 2. Types of Data Sets
- 3. Preprocessing

- \Box An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- □ An attribute *A* is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- □ A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

- \Box An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- □ An attribute *A* is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- □ A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

- \Box An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- □ An attribute *A* is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- □ A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

- □ Attribute values may vary from one object to another or one time to another.
- The same attribute can be mapped to different attribute values.
 - Example: height can be measured in feet or meters.
- □ Different attributes can be mapped to the same set of values.

Example: attribute values for ID and age are integers.

The way an attribute is measured may not preserve all of the attribute's properties:

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
		= ≠		

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
	ordinal	enough information to order objects $<$ $>$ \leq \geq	median, percentiles, rank correlation	hardness of minerals, grades, street numbers, quality: {good, better, best}

Type		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
		= #		
	ordinal	enough information to order objects	median, percentiles, rank correlation	hardness of minerals, grades, street numbers,
		< > < ≥		quality: {good, better, best}
numerical	interval	differences are	mean,	calendar dates,
(quantitative)		meaningful, a unit of measurement exists	standard deviation, Pearson's correlation,	temperature in Celsius, temperature in
		+ -	t-test, F -test	Fahrenheit

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
	ordinal	·	median, percentiles, rank correlation	hardness of minerals, grades, street numbers, quality: {good, better, best}
numerical (quantitative)	interval	differences are meaningful, a unit of measurement exists + -	mean, standard deviation, Pearson's correlation, t -test, F -test	calendar dates, temperature in Celsius, temperature in Fahrenheit
	ratio	differences and ratios are meaningful; Zero ≈ None * /	percent variation, geometric mean, harmonic mean	temperature in Kelvin, monetary quantities, counts, age, length, electrical current

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \to f(x)$, where f is monotonic	An attribute encompassing the notion of " $\{good, better, best\}$ " can be represented equally well by the values $\{1,2,3\}$.

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \to f(x)$, where f is monotonic	An attribute encompassing the notion of " $\{good, better, best\}$ " can be represented equally well by the values $\{1,2,3\}$.
numerical (quantitative)	interval	$x \rightarrow a \cdot x + b$, where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \to f(x)$, where f is monotonic	An attribute encompassing the notion of " $\{good, better, best\}$ " can be represented equally well by the values $\{1,2,3\}$.
numerical (quantitative)	interval	$x \rightarrow a \cdot x + b$, where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
	ratio	$x \to a \cdot x$, where a is a constant	Length can be measured in meters or feet.

Remarks: \Box Identifying, considering, and measuring an attribute A of an object O is the heart of model formation and always goes along with a sort of abstraction. Formally, this abstraction is operationalized by a model formation function $\alpha: O \to X$. (\Rightarrow Chapter ML Introduction) The terms "attribute" and "feature" can be used synonymously. However, a slight distinction is the following: attributes are often associated with objects, O, while features usually designate the dimensions of the feature space, X. The type of an attribute is also referred to as the type of a *measurement scale* or *level of* measurement. □ We call a transformation of an attribute *permissible* if its meaning is unchanged after the transformation. Distinguish between *discrete* attributes and *continuous* attributes. The former can only take a finite or countably infinite set of values, the latter can be measured in infinitely small units. Be careful when deriving from this distinction an attribute's type. □ We will encode attributes of interval type or ratio type by real numbers. Note that attributes of nominal type and ordinal type can also be encoded by real numbers. □ Particular learning methods require particular attribute types.

Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

- 1. Inhomogeneity of attributes:
- 2. Inhomogeneity of objects:
- 3. Curse of dimensionality:
- 4. Resolution:

Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

1. Inhomogeneity of attributes:

Consider the combination of different attribute types within a single object.

2. Inhomogeneity of objects:

Consider the combination of different objects in a single data set.

3. Curse of dimensionality:

Attribute number and object density stand in exponential relation.

4. Resolution:

The number of objects or attributes may be given at different resolutions.

Types of Data Sets: Record Data

Collection of records, each of which consists of a fixed set of attributes:

ID	Check	Status	Income	Risk
1	+	single	125 000	No
2	-	married	100 000	No
3	-	single	70 000	No
4	+	married	120 000	No
5	-	divorced	95 000	Yes
6	-	married	60 000	No
7	+	divorced	220 000	No
8	-	single	85 000	Yes
9	-	married	75 000	No
10	-	single	90 000	Yes

- □ If all elements in a data set have the same fixed set of numeric attributes, they can be thought of as points in a multi-dimensional space.
- □ Such data can be represented by a matrix, where each row stores an object and each column stores an attribute.

Example: term-document matrices in information retrieval.

Types of Data Sets: Graph Data

Graph Data: objects contain special nominal attribute representing links

Example: Internet network visualised as graph:

Types of Data Sets: Fields / Grids

Fields / Grids: Data arranged in spatial (e.g. space) relationships to each others. Objects have attributes representing a position / spatial information.

Example:

Climate Visualisation

Source Wikipedia

Material properties of a plane

Source Wikipedia

Types of Data Sets: Spatio-temporal data

Spatio-temporal data sets: Attributes representing spatial information (e.g. longitude/latitude) and temporal information (e.g. time)

Example: Average monthly temperature of land and ocean (= spatio-temporal data):

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, the mean deviation from the true value is called *bias*, and the (overall) closeness to the true value is called *accuracy*.

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 2 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, the mean deviation from the true value is called *bias*, and the (overall) closeness to the true value is called *accuracy*.

Examples for data quality problems:

- □ noise, artifacts, outliers
- □ missing values, duplicate data

Data Quality: Noise

Noise refers to random modifications of attributes that often have a spatial or temporal characteristics:

Artifacts refer to more deterministic distortions of a measurement process.

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different (rare) than most of the other elements:

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different (rare) than most of the other elements:

Data Quality: Missing Values

Main reasons for missing values:

1. Information is not collected.

Example: people decline to give their age or weight.

2. Attributes may not be applicable to all elements in *O*.

Example: annual income is not applicable to children.

Strategies for handling missing values:

- eliminate members of the data
- estimate missing values (expected value, mode)
- □ ignore the missing value during analysis

3. Preprocessing

Preprocessing adapts objects and/or features to prepare the data for subsequent processing. The following adaptations can be distinguished on a conceptual level:

- aggregation of objects in O
- sampling of object set O
- \Box sampling of feature space X
- □ selection of attributes (features) [attributes versus features]
- transformation of attributes (features)
- discretization and binarization of attributes (features)
- \Box dimensionality reduction of feature space X

Aggregation

Example: Customer purchase information over different department stores.

Transaction ID	Item	Store Location	Date	Price
i i	:	:	:	:
101123	Watch	Berlin	13/10/21	EUR 100
101123	Shoes	Rosenheim	13/11/21	EUR 20
101123	Book	Passau	13/11/21	EUR 10
÷	:	:	:	:

- Possible Aggregations on Store Location, Date, Price Range etc. by using some aggregation function like sum or average
- □ Reduction in processing resources
- Reduces variation which might lead to more stable estimates
- Loss in details
- Typical operation for Data Warehouse systems

Sampling of object set O

Example: Sampling of data in a sine wave

- Different kinds of sampling (random sampling with/without replacement, stratified sampling, progressive sampling etc.)
- □ Sampling means loss of information
- Sampling a proper amount of object retains their overall structure
- Useful for very large data sets

Dimensionality Reduction

Data sets may contain a large number of attributes (features) as for example words as features for documents

Problems of high dimensional data sets:

- Many irrelevant or noisy or correlated features
- Curse of Dimensionality
- □ Higher demand on computing resources
- Low understandability

Dimensionality Reduction

Data sets may contain a large number of attributes (features) as for example words as features for documents

Problems of high dimensional data sets:

- Many irrelevant or noisy or correlated features
- Curse of Dimensionality
- Higher demand on computing resources
- Low understandability

Techniques for reducing the dimensionality

- ullet Dimensionality Reduction Techniques: Create new attributes through a transformation: $X_{low} = T(X)$
- □ Feature (Subset) Selection: Select a subset of attributes (features)
- Feature Transformation/Creation Domain specific creation of attributes (e.g. image processing)

Dimensionality Reduction

Curse of Dimensionality

- □ As dimensionality increases, data is becoming increasingly sparse.
- More data points are needed to learn from data (i.e. separating relevant from irrelevant patterns)
- □ High dimensionality is problematic for a large number of learning algorithms

Dimensionality Reduction

Curse of Dimensionality: More formally, consider n objects with d binary attributes. We aim to label the objects as positive or negative. How many possible labelings exists?

Dimensionality Reduction

Curse of Dimensionality: More formally, consider n objects with d binary attributes. We aim to label the objects as positive or negative. How many possible labelings exists?

Every object can be either positive or negative. Hence we have 2^n different labelings.

But how many objects do we have?

Dimensionality Reduction

Curse of Dimensionality: More formally, consider n objects with d binary attributes. We aim to label the objects as positive or negative. How many possible labelings exists?

Every object can be either positive or negative. Hence we have 2^n different labelings.

But how many objects do we have?

We have $n = 2^d$ different objects.

So in total we have 2^{2^d} different labelings. The number of possible labelings grows exponentially with the number of attributes!

Dimensionality Reduction

Dimensionality Reduction Methods

- □ Linear Methods (Projections known from Linear Algebra, e.g. Principal Component Analysis, Singular Value Decomposition, Random Projections)
- Nonlinear Methods (e.g., Locally-linear embedding, Multidimensional Scaling, Self-Organizing Maps)

Dimensionality Reduction

Dimensionality Reduction Methods

- □ Linear Methods (Projections known from Linear Algebra, e.g. Principal Component Analysis, Singular Value Decomposition, Random Projections)
- Nonlinear Methods (e.g., Locally-linear embedding, Multidimensional Scaling, Self-Organizing Maps)

Example PCA - Principal Component Analysis: Select direction with the largest variance.

Dimensionality Reduction

Dimensionality Reduction Methods

- □ Linear Methods (Projections known from Linear Algebra, e.g. Principal Component Analysis, Singular Value Decomposition, Random Projections)
- Nonlinear Methods (e.g., Locally-linear embedding, Multidimensional Scaling, Self-Organizing Maps)

Example PCA - Principal Component Analysis: Select direction with the largest variance.

Dimensionality Reduction

Dimensionality Reduction Methods

- □ Linear Methods (Projections known from Linear Algebra, e.g. Principal Component Analysis, Singular Value Decomposition, Random Projections)
- Nonlinear Methods (e.g., Locally-linear embedding, Multidimensional Scaling, Self-Organizing Maps)

Example PCA - Principal Component Analysis: Select direction with the largest variance.

Feature Subset Selection

Use only a subset of the features to overcome

- Redundant features: Duplicate or correlated features (e.g. birthdate and age)
- □ Irrelevant features: Features that do not contain information (e.g. student ID for predicting average grade)

Approach:

- □ domain knowledge: use of specific knowledge on the task/domain
- automatic approach: try different combinations of features

Feature Subset Selection

Given n features yields 2^n possible features subsets

Three standard approaches for testing

- □ **Embedded approach:** Feature selection is part of the learning algorithm (e.g. Decision Trees)
- □ **Filter approaches:** Features are selected before the learning algorithm is run using some statistical measure (e.g. correlation with dependent variable). Mostly assesses features individually (no subsets).
- □ **Wrapper approaches:** Consider feature selection as an outer loop around the learning algorithm. Choose a set of features, run the learning algorithm and record its performance.

Feature Subset Selection

Flow-chart for filter and wrapper approaches ([Tan et. al. 2005]):

- □ Search over all possible feature subsets
- Tradeoff between computational complexity and optimal subsets
- Search strategy and evaluation procedure most critical parts

Feature Creation

Creation of new attributes from the original ones.

Examples:

- Creating color histograms for face detection from pixel attributes
- Transforming an audio signal to its frequency spectrum (e.g. Fourier Transformation)
- Calculating the density of an object out of the mass and volume attributes

Feature creation is a highly domain specific process and reflects the properties of the model formulation function α

Discretization and Binarization

- Discretization: Transform numeric values of an attribute into categorical values
- Binarization: Transform numeric and categorical values of an attribute into binary values (i.e. nominal one)

Note that we do not change the attributes, but their values

Discretization and Binarization

- Discretization: Transform numeric values of an attribute into categorical values
 - Unsupervised Discretization
 Divide the continuous attribute based on statistical properties (e.g. histogram, cluster analysis)
 - Supervised Discretization Additional information like class labels c(x) are used to find suitable intervalls (e.g. create bins that maximize class purity).
- □ **Binarization:** Transform numeric and categorical values of an attribute into binary values (i.e. nominal one)
 - Symmetric binary features
 Assign integer values to categorical values and convert the into a binary representation
 - Asymmetric binary features
 Introduce one feature per categorical value

Value Transformation

Value Transformation adapts the value range of an attribute for every object.

Two transformation could be distinguished:

- $extbf{ iny}$ Simple functions like \sqrt{x}
- Normalization or standardization
 - Addresses the problem of having different scales/units between attributes
 - Gaussian Normlization (z-score):

$$x_i' = \frac{x_i - \overline{x}}{s}$$

with \overline{x} being the mean of some attribute and s_k being the standard deviation of the attribute

– Min-Max Normalization:

$$x_i' = \frac{x_i - min(x_i)}{max(x_i) - min(x_i)}$$

Value Transformation

Example Gaussian Normalization:

Value Transformation

Example Min-Max Normalization and its sensitivity to outliers:

