Eco 4306 Economic and Business Forecasting

Lecture 11 Chapter 7: Seasonal Cycles

Motivation

- production, consumption, and other economic activities are generally organized according to the calendar (quarters, months, days, hours, and special holidays)
- these actions appear in the data as a seasonal cycle at the quarterly, monthly, daily, or hourly frequency
- examples
 - retail sales: high in November and December
 - travel industry: people travel more in the summer, number of passengers traveling by air, train, car, and boat substantially increases, expenditures for gas are highest in summer
 - construction: start of residential units occurs in the beginning of spring
 - food industry: sales of liquor and alcohol tend to increase in the winter months, sales of ice cream in the summer months
 - entertainment industry: sales of tickets are higher on weekends than on weekdays
 - stock market: the volume of trading is larger at the beginning and at the end of the trading day
- ▶ seasonal cycle: periodic fluctuation in the data associated with the calendar

Motivation

- in many economic databases, we find seasonally adjusted time series for which the seasonal cycle has been removed
- macrolevel: policy makers, institutions, and economic forecasters in general are more concerned with the analysis of trends
- microlevel: businesses generally are very much interested in forecasting sales every month or every quarter; thus, they need the joint analysis of the seasonal and nonseasonal components in sales

- we will distinguish deterministic seasonality and stochastic seasonality
- deterministic seasonality: captured in a regression model by assigning specific constant effects to each month or quarter
- stochastic seasonality: MA and AR specifications have natural extensions to model the seasonal component of a series, size of the seasonal effect is no longer constant

deterministic seasonality

- \blacktriangleright suppose that we collect a quarterly time series $\{y_t\},$ e.g. retail sales, and wish to analyze the seasonal component
- ightharpoonup construct four time series dummy variables Q1,Q2,Q3,Q4 so that Qi will assign a value 1 to the quarter i and 0 otherwise

obs	SALES (\$)	Q1	Q2	Q3	Q4
1999Q4	768726.0	0.000000	0.000000	0.000000	1.000000
2000Q1	696048.0	1.000000	0.000000	0.000000	0.000000
2000Q2	753211.0	0.000000	1.000000	0.000000	0.000000
2000Q3	746875.0	0.000000	0.000000	1.000000	0.000000
2000Q4	792622.0	0.000000	0.000000	0.000000	1.000000
2001Q1	704757.0	1.000000	0.000000	0.000000	0.000000
2001Q2	779011.0	0.000000	1.000000	0.000000	0.000000
2001Q3	756128.0	0.000000	0.000000	1.000000	0.000000
2001Q4	827829.0	0.000000	0.000000	0.000000	1.000000
2002Q1	717302.0	1.000000	0.000000	0.000000	0.000000
2002Q2	790486.0	0.000000	1.000000	0.000000	0.000000
2002Q3	792657.0	0.000000	0.000000	1.000000	0.000000
2002Q4	833877.0	0.000000	0.000000	0.000000	1.000000
2003Q1	741233.0	1.000000	0.000000	0.000000	0.000000
2003Q2	819940.0	0.000000	1.000000	0.000000	0.000000

estimate regression

$$Y_t = \beta_1 Q 1_t + \beta_2 Q 2_t + \beta_3 Q 3_t + \beta_4 Q 4_t + \varepsilon_t$$

- ▶ note that we are *not including constant* in the regression, that would lead to multicolinearity since $Q1_t + Q2_t + Q3_t + Q4_t = 1$
- lackbox eta_i is interpreted as expected (average) sales in quarter i

deterministic seasonality

stochastic seasonality

- seasonal component is driven by random variables
- ▶ for example: consider quarterly seasonal AR(1) model

$$Y_t = c + \Phi Y_{t-4} + \varepsilon_t$$

or equivalently using lag operator

$$(1 - \Phi L^4)Y_t = c + \varepsilon_t$$

stochastic seasonality

 \blacktriangleright seasonal AR of order P, so an S-AR(P), is defined as

$$Y_t = c + \Phi_s Y_{t-s} + \Phi_{2s} Y_{t-2s} + \ldots + \Phi_{Ps} Y_{t-Ps} + \varepsilon_t$$

where s refers to the frequency of the data

ightharpoonup using lag operator we can equivalently write S-AR(P) as

$$(1 - \Phi_s L^s - \Phi_{2s} L^{2s} - \dots - \Phi_{Ps} L_{Ps}) Y_t = c + \varepsilon_t$$

- \blacktriangleright if we have quarterly data s=4, for monthly data s=12, for daily data, with five working days s=5
- ▶ for example, an S-AR(1) for quarterly data is written as

$$Y_t = c + \Phi_4 Y_{t-4} + \varepsilon_t$$

and an S-AR(2) for monthly data as

$$Y_t = c + \Phi_{12}Y_{t-12} + \Phi_{24}Y_{t-24} + \varepsilon_t$$

▶ S-AR(1) and S-AR(2) for quarterly data and their AC and PAC functions

- stochastic seasonality can also be specified within MA models
- a seasonal MA of order Q, S-MA(q) is defined as

$$Y_t = \mu + \varepsilon_t + \Theta_s \varepsilon_{t-s} + \Theta_{2s} \varepsilon_{t-2s} + \ldots + \Theta_{Qs} \varepsilon_{t-Qs}$$

lacktriangle using lag operator we can equivalently write S-AR(P) as

$$Y_t = \mu + (1 - \Theta_s L^s - \Theta_{2s} L^{2s} - \dots - \Theta_{Qs} L_{Qs}) \varepsilon_t$$

▶ for example, an S-MA(1) for quarterly data is written as

$$Y_t = \mu + \varepsilon_t + \Theta_4 \varepsilon_{t-4}$$

and an S-MA(2) for monthly data as

$$Y_t = \mu + \varepsilon_t + \Theta_{12}\varepsilon_{t-12} + \Theta_{24}\varepsilon_{t-24}$$

► S-MA(1) and S-MA(2) for quarterly data and their AC and PAC functions

- ightharpoonup AC and PAC functions of seasonal AR and MA models have similar characteristics as those of the non-seasonal AR and MA models, just occurring at multiples of s
- point forecast, forecast error, forecast uncertainty, and density forecast, can be also obtained in a similar way

 Monthly Clothing Sales in the United States, January 2003-January 2011, Figure07_17_clothingsales.xls

 \blacktriangleright seasonal component may also be a mixture of AR and MA dynamics - we define a general S-ARMA($\!P,Q\!$) as

$$Y_t = c + \Phi_s Y_{t-s} + \Phi_{2s} Y_{t-2s} + \ldots + \Phi_{Ps} Y_{t-Ps} + \varepsilon_t + \Theta_s \varepsilon_{t-s} + \Theta_{2s} \varepsilon_{t-2s} + \ldots + \Theta_{Qs} \varepsilon_{t-Qs}$$

ightharpoonup equivalently, using lag operator, we can write S-ARMA(P,Q) as

$$(1 - \Phi_s L^s - \Phi_{2s} L^{2s} - \dots - \Phi_{Ps} L^{Ps}) Y_t = c + (1 - \Theta_s L^s - \Theta_{2s} L^{2s} - \dots - \Theta_{Qs} L^{Qs}) \varepsilon_t$$

- ▶ in practice, time series combine seasonal and nonseasonal components
- a very common modeling practice is to assume that both cycles interact with each other in a multiplicative fashion
- example: suppose that we have a quarterly time series and there are a seasonal cycle S-AR(2) and a nonseasonal cycle AR(1), the multiplicative model is written using lag operator as

$$(1 - \Phi_4 L^4 - \Phi_8 L^8)(1 - \phi_1 L)Y_t = c + \varepsilon_t$$

▶ example: suppose that we have a quarterly time series and there are a seasonal cycle S-ARMA(1,2) and a nonseasonal cycle ARMA(2,1), the multiplicative model is written using lag operator as

$$(1 - \Phi_4 L^4)(1 - \phi_1 L - \phi_2 L^2)Y_t = c + (1 - \Theta_4 L^4 - \Theta_8 L^8)(1 - \theta_1 L)\varepsilon_t$$

 in the multiplicative models the seasonal polynomials multiply the nonseasonal polynomials

 Monthly Changes in U.S. Residential Construction, January 2002-January 2011, Figure07_19_constructionchanges.xls

- ▶ Monthly Changes in U.S. Residential Construction, January 2002-January 2011
- lacktriangle based on AC and PAC we choose to estimate AR(1) + S-AR(1) Model

$$(1 - \Phi_{12}L^{12})(1 - \phi_1 L)Y_t = c + \varepsilon_t$$

▶ note that this is equivalent to an AR(13) specification

$$(1 - \phi_1 L - \Phi_{12} L^{12} - \phi_1 \Phi_{12} L^{13}) Y_t = c + \varepsilon_t$$

▶ in EViews in specification box enter const c ar(1) sar(12)

TABLE 7.3 Monthly Changes in Residential Construction, Estimation Results of AR(1) and S-AR(1) Model

Dependent Variable: change CONST Method: Least Squares Sample (adjusted): 2003M03 2011M01 Included observations: 95 after adjustments Convergence achieved after 6 iterations Variable Coefficient Std. Error t-Statistic Prob. C -593.2408 2399.622 -0.247223 0.8053 AR(1) 0.439971 0.093551 4.703012 0.0000 SAR(12) 0.923569 0.038771 23.82102 0.0000 R-squared 0.894790 Mean dependent var -128.3158 Adjusted R-squared 0.892502 S.D. dependent var 3036,076 S.E. of regression 995.4326 Akaike info criterion 16.67530 Sum squared resid 91161518 Schwarz criterion 16.75595 Log likelihood -789.0768 F-statistic 391.2194 Durbin-Watson stat 2.115719 Prob(F-statistic) 0.000000

- ▶ Monthly Changes in U.S. Residential Construction, January 2002-January 2011
- \blacktriangleright multistep forecast from February 2011 to January 2012 with 95% confidence bands

