CIS 580, Machine Perception, Spring 2021 Homework 2

Due: Friday Feb 12 2021, 11:59pm

Instructions

- This is an individual homework and worth 100 points
- You must submit your solutions on Gradescope, the entry code is 96JGNN. We recommend that you use LATEX, but we will accept scanned solutions as well.
- Start early! If you get stuck, please post your questions on Piazza or come to office hours!

Homework

1. (15 pts) For each of the following pairs of points, write down an equation for the line that passes through them (points are in P^2 and $a \neq b \neq c \neq d$):

2. (15 pts) For each of the following pairs of lines in \mathbb{P}^2 , write down the point of their intersection.

(a)
$$x - y + w = 0$$
 and $w = 0$
(b) $3x - w = 0$ and $4y - w = 0$
(c) $x - y + 5w = 0$ and $x - y + 2w = 0$

- 3. (10 pts) Find λ such that the three lines of \mathbb{P}^2 , w = 0, $x + \lambda y + \lambda w = 0$, and $\lambda x + y + \lambda w = 0$ have a common intersection. Which point is the intersection?
- 4. (20 pts) Find a projective transformation A that preserves the points $p_1 = (1, 0, 0)$, $p_2 = (0, 1, 0)$, and the origin of the coordinate system O and will map the point $p_3 = (1, 1, 1)$ to the points $p'_3 = (3, 2, 1)$? Does the image of line at infinity still lie at infinity? Why?
- 5. (20 pts) Please find a projection transformation P such that $A' \sim PA$, $B' \sim PB$, $C' \sim PC$, $D' \sim PD$ as shown in the following figure. [**Hint**: it's a little tedious to calculate transformation using only A, B, C and D, try to use the intersection of parallel lines.]

6. (20 pts) A projective transformation A maps point (-a,0,1) to point (1,0,0), and maps point (0,b,1) to point (0,1,0). However, it keeps the origin of system (0,0,1) and (1,1,1) fixed. Please find the transformation A.