Topology of the O(3) non-linear sigma model under the gradient flow

Stuart Thomas

Christopher Monahan

May 3, 2021

Quantum Field Theory

$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \hat{O}[\phi] \, e^{iS[\phi]}$$
 ()

$$S_E[\phi] = \int d^2x_E \left[\frac{1}{2} (\partial_t \phi)^2 + \frac{1}{2} (\partial_x \phi)^2 + \frac{1}{2} m_0^2 \phi^2 + \frac{\lambda}{4} \phi^4 \right].$$
 ()

Non-Linear σ Model

$$S_E = \frac{\beta}{2} \int d^2x \, \left[(\partial_t \vec{e})^2 + (\partial_x \vec{e})^2 \right] \tag{}$$

- ▶ a nonperturbative model in Quantum Field Theory which provides a good toy model for Quantum Chromodynamics
- characterized by the action

$$S = \frac{1}{2g} \int d^2x \, \partial_{\mu} \vec{\phi}(x) \cdot \partial^{\mu} \vec{\phi}(x)$$

where the $\vec{\phi}(x)$ is a 3-component vector with norm 1 and g is a coupling constant.

- ► Merits
 - mass gap
 - asymptotic freedom
 - \triangleright O(2) renormalizability
 - ▶ in condensed matter, models Heisenberg ferromagnets

Monte Carlo and the Markov Chain

Topological Charge

Figure: Homotopy group

Topological Action

$$S[\vec{e}] \to S[\vec{e}] - i\theta Q[\vec{e}]. \tag{)}$$

Topology Visualization

Figure: some plots

Wolff Cluster Algorithm

(b) after cluster flip

Figure: An example of the Wolff cluster algorithm in the ϕ^4 model. White represents positive values of ϕ while black represents negative. $\lambda=0.5,\ m_0^2=-0.9.$

Lattice Quantum Chromodynamics

- ▶ Method to solve non-perturbative theories
- ▶ Discretizes spacetime to numerically calculate fields.
- ▶ Uses path integral formulation of Quantum Field Theory to solve for correlation functions.

Problem

As lattice spacing approaches zero, some operators do not remain finite.

The Gradient Flow

- ► A form of smearing
- Introduces a new dimension, τ , called the "flow time," through which the field evolves as follows:

$$\frac{\partial \rho(\tau, x)}{\partial \tau} = \partial^2 \rho(\tau, x) \tag{}$$

with the boundary condition $\rho(0, x) = \phi(x)$.

Suppresses infinities while keeping observables constant.

Goals

- ► Computationally implement the simpler ϕ^4 theory to verify code.
- ▶ Transition to O(3) nonlinear σ model.
- ► Calculate twist-2 operators and vacuum expectation value with gradient flow applied.
- ▶ Other future paths:
 - ► Consider topological charge
 - ► Explore Wilson coefficients

Broad Motivation

To understand Deep Inelastic Scattering (DIS)

➤ Twist-2 operators → Mellin moments → Parton Distribution Functions → DIS Cross Sections

Computational Methods

- ▶ Use a Markov Chain Monte Carlo method to simulate lattice in 2D and 3D
 - ▶ Metropolis algorithm to generate random changes
 - ▶ Wolff cluster algorithm to remove metastable states
 - ▶ Implement checkerboard algorithm to parallelize Metropolis algorithm
- ▶ By sampling the lattice at set intervals, we can calculate statical estimates of arbitrary operators.

Markov Chain Monte Carlo

- 1. Start with random lattice (known as "hot start")
- 2. Repeatedly transition from old configuration μ to new configuration ν with probability $P(\mu \to \nu)$.
- 3. After a thermalization period, record observables at certain intervals.
- 4. Take the statistical mean

Metropolis Algorithm

For each site, propose a new value and accept change with probability

$$P(\mu \to \nu) = \begin{cases} e^{-(S_{\nu} - S_{\mu})} & S_{\nu} > S_{\mu} \\ 1 & S_{\nu} \le S_{\mu} \end{cases}$$

A **sweep** consists of perfoming this on every site.

Wolff Cluster Algorithm

Problem: Markov Chain gets "stuck" in metastable states, i.e. local minima of the action.

Solution: Identify cluster of similar-values points and flip the sign.

1. Recursively grow a cluster with the probability of adding a new site

$$P_{add} = 1 - e^{-2\phi_a \cdot \phi_b}.$$

2. Flip sign of sites

ϕ^4 model

▶ Given by the Euclidean action

$$S_E = \int d^D x \left[\partial^\mu \phi \partial_\mu \phi + \frac{1}{2} m_0^2 \phi^2 + \frac{\lambda}{4} \phi^4 \right] \tag{)}$$

- ► Simplest interacting field
- ▶ In 1+1 dimensions, exhibits spontaneous symmetry breaking at critical m_0^2 .

We measure...

- ightharpoonup Magnetization: $\langle |\bar{\phi}| \rangle$
- Susceptibility: $\chi = \langle \bar{\phi}^2 \rangle \langle \bar{\phi} \rangle^2$
- ▶ Binder cumulant: $U = 1 \frac{\langle \bar{\phi}^4 \rangle}{3 \langle \bar{\phi}^2 \rangle^2}$

Computational Implementation

- 1. Begin with simple Python ϕ^4 model with Cython for efficiency
- 2. Transition to C++ code, generalized to nonlinear σ model
- 3. Compare results of Python and C++ code.

Parallelization

Message Passing Interface: shared RAM between processes.

Spontaneous Symmetry Breaking in ϕ^4 model

Figure: Average $\bar{\phi}$, Binder cumulant and susceptibility for various m_0^2 values. $\lambda = 0.5$, L = 64, 1000 measurements, 1000 sweep thermalization with measurements taken every 100 sweeps.

Effect of θ -term on $\langle Q \rangle$

Future Work

- ▶ Fully implement nonlinear σ model.
- ► Calculate twist-2 operators and vacuum expectation value
- ► Expand to 3 dimensions
- ▶ Profile and optimize C++ code
- ► Mathematical analysis of results