Basic Results

Definition 0.0.1. *The arithmetic derivative, D, is defined recursively in the following manner for all natural numbers* $n \in \mathbb{N}$

- 1. D(1) = D(0) = 0
- 2. D(p) = 1 for any prime p
- 3. For every pair of natural numbers n & m, D(mn) = mD(n) + nD(m)

The arithmetic derivative is much like the normal derivative operator if one sees the numbers 0 & 1 as the "constant" functions, prime numbers as "lines" with slope 1 and if one required the arithmetic derivative to satisfy the Lebiniz rule.

Since this definition doesn't allow one to directly compute the derivative of a number quickly, the following lemma shall help us greatly.

Lemma 1. If

 $x = \prod_{i=1}^{n} m_i$

then

$$D(x) = x \sum_{i=1}^{n} \frac{D(m_i)}{m_i}$$

Proof:

We shall proceed by induction on the amount of elements in the product expansion of x. If n = 1 then $x = m_1$ and thus

$$x\sum_{i=1}^{n} \frac{D(m_i)}{m_i} = (m_1) \frac{D(m_1)}{m_1} = D(m_1) = D(x)$$

Now let's assume that for any x with n factors in its product expansion the formula

$$D(x) = x \sum_{i=1}^{n} \frac{D(m_i)}{m_i}$$

applies. Let x' be equal to xm_{n+1} and thus $D(x') = D(x)m_{n+1} + xD(m_{n+1})$. We can rewrite $D(x)m_{n+1} + xD(m_{n+1})$ as

$$xm_{n+1}\sum_{i=1}^{n}\frac{D(m_i)}{m_i}+\frac{x'D(m_{n+1})}{m_{n+1}}=x'\sum_{i=1}^{n}\frac{D(m_i)}{m_i}+x'\frac{D(m_{n+1})}{m_{n+1}}$$

We can then factor out the x' and our final expression for D(x') is $x' \sum_{i=1}^{n+1} \frac{D(m_i)}{m_i}$ which is exactly what we wanted to show \blacksquare

With lemma 1 in hand we can easily write down an expression for D(x) in terms of its prime factors.

Let
$$x = \prod_{i=1}^{n} p_i^{k_i}$$

be x's prime factorization.

$$D(x) = x \sum_{i=1}^{n} \frac{D(p_i^{k_i})}{p_i^{k_i}}$$

Obviously, $D(p^k)$ is kp^{k-1} , since due to lemma 1 we have

$$D(p^k) = p^k \sum_{i=1}^n \frac{D(p)}{p} = p^k \sum_{i=1}^n \frac{1}{p}$$

and thus

$$D(p^k) = \sum_{i=1}^{n} p^{k-1} = kp^{k-1}$$

Finally, we have a fully simplified expression for the arithmetic derivative of x.

$$D(x) = x \sum_{i=1}^{n} \frac{D(p_i^{k_i})}{p_i^{k_i}} = x \sum_{i=1}^{n} \frac{k_i p_i^{k_i - 1}}{p_i^{k_i}} = x \sum_{i=1}^{n} \frac{k_i}{p_i}$$

By using the notation $v_p(x)$ to denote the exponent of a prime p in the prime factorization of x the above formula can be rewritten as the following.

$$D(x) = x \sum_{p|x} \frac{v_p(x)}{p}$$

Upper & Lower Bounds