IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Smola et al.

Appl. No.:

10/596,159

Filed:

June 1, 2006

Conf. No.:

2943

Title:

Art Unit:

NUTRITIONAL COMPOSITION FOR WOUND HEALING Unknown

Examiner:

Unknown

Docket No.:

112701-731

Mail Stop

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

SUBMISSION OF CERTIFIED COPY OF PRIORITY DOCUMENT

Applicants are respectfully enclosing the certified copy of the priority document for which priority is claimed for the above-identified application under 35 U.S.C. §119. Specifically, the document enclosed is:

Document No.	Country	Date
03029505.9	Europe	December 20, 2003

The Commissioner is hereby authorized to charge deposit account 02-1818 for any fees which are due and owing.

Respectfully submitted,

BELL, BOYD & LLOYD LLC

BY

Robert M. Barrett Reg. No. 30,142

Customer No.: 29157

Dated: December 11, 2006

DEC 13 2006

Approved for use through 03/31/2007. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE ENT & FRADE perwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. **Application Number** 10/596,159 TRANSMITTAL Filing Date June 1, 2006 First Named Inventor **FORM** Smola et al. Art Unit Unknown **Examiner Name** Unknown (to be used for all correspondence after initial filing) Attorney Docket Number 112701-731 Total Number of Pages in This Submission **ENCLOSURES** (Check all that apply) After Allowance Communication to TC Fee Transmittal Form Drawing(s) Appeal Communication to Board Licensing-related Papers Fee Attached of Appeals and Interferences Appeal Communication to TC Petition Amendment/Reply (Appeal Notice, Brief, Reply Brief) Petition to Convert to a Proprietary Information After Final Provisional Application Power of Attorney, Revocation Status Letter Affidavits/declaration(s) Change of Correspondence Address Other Enclosure(s) (please Identify Terminal Disclaimer Extension of Time Request Request for Refund **Express Abandonment Request** CD, Number of CD(s) Information Disclosure Statement Landscape Table on CD Certified Copy of Priority Remarks Document(s) Certified Copy of EP 03029505.9 Return Receipt Postcard Reply to Missing Parts/ Incomplete Application Reply to Missing Parts under 37 CFR 1.52 or 1.53 SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT Firm Name Bell, Boyd & Lloyd LLC Signature Printed name Robert M. Barrett Date Reg. No. December 11, 2006 30.142 CERTIFICATE OF TRANSMISSION/MAILING I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below: Signature Date December 11, 2006 Heather Foster Typed or printed name

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Europäisches Patentamt

European **Patent Office** Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

03029505.9

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Anmeldung Nr:

Application no.: 03029505.9

Demande no:

Anmeldetag:

Date of filing: 20.12.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

NESTEC S.A. Avenue Nestlé 55 1800 Vevey SUISSE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Nutritional composition for wound healing

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

A61K38/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

FINAL DRAFT

Patent Application
In the name of Nestec S.A.

Title:

Nutritional Composition for Wound Healing

Inventors:

Hans Smola

20

25

Enteral Composition for Wound Healing

Field of the invention

This invention relates to a nutritional composition for promoting wound healing, particularly the healing of chronic wounds such as pressure ulcers (decubitus).

Background of the invention

In normal wound healing, there are three phases which overlap to some extent. Briefly, the first phase is inflammation in which the clot forms and stops the bleeding from blood vessels followed by extravasation of mononuclear blood cells which clean the wound and remove debris. The next phase is the granulation phase in which fibroblasts proliferate and accumulate in the wound and produce collagen to assist in wound closure. This phase is characterised by high metabolic activity. Finally, epithelial cells begin to cover the wound.

Delayed or impaired wound healing is a problem for health care professionals and patients as it results in increased treatment times and stays in healthcare facilities and distress to patients. The process of wound healing can be interrupted in any of the phases described above as a result of factors such as infection or malnutrition. The pressure ulcers which frequently afflict elderly and bed-ridden patients are a particular concern and these categories of patients are often found to be suffering from malnutrition. Indeed, all patients with acute or chronic wounds exhibit increased nutritional requirements, displaying a need for increased nutrients and energy as compared with individuals not challenged by such metabolic stresses. If these patients are malnourished before suffering wounds, the wounds may simply fail to heal.

In recent years, much attention has focused on the role of arginine in wound healing. This is discussed for example in USP 5,053,387 which discloses an enteral nutritional formulation in which 1 to 3% of the total energy intake is preferably provided by arginine. Similarly, EP 960 572 A discloses a nutritional composition suitable for the treatment and prevention of pressure ulcers which includes arginine as well as large amounts of vitamins C and E. The role of arginine is also discussed in USP 5,733,884 which discloses a method of providing nutrition to a patient with an acute or chronic wound using a composition in which at least 2% of the energy is provided

by arginine and the same amount by proline. This patent hypothesises that arginine and proline have a synergistic effect in enhancing wound healing. Commercially, there are a number of products marketed as suitable for promoting wound healing on the basis that they contain high levels of arginine including CUBITAN® and ARGINAID®.

An adequate supply of arginine is clearly relevant to the wound healing process. However, arginine is also a precursor for the formation of nitric oxide which acts as a vasodilator and enhances growth hormone secretion. It is not desirable for critically ill individuals to be exposed to high amounts of nitric oxide and yet this will inevitably happen if such individuals receive nutritional supplements containing high levels of arginine - see, for example L. Cynober, Curr Opin Clin Nutr Metab Care. 6:189-93 2003. Moreover, it is quite likely that a high proportion of elderly, bedridden or critically ill patients at risk of developing pressure sores will also suffer from conditions for which high levels of nitric oxide are contra-indicated (J. Takala et al., N Engl J Med 341:785-792 1999).

Summary of the Invention

20 In a first aspect, the present invention provides a nutritional composition for promoting wound healing comprising a protein source, a lipid source and a carbohydrate source wherein no more than 1.8% of the total calories of the composition derive from arginine and wherein the protein source includes proline in an amount of at least 3% of the total calories of the composition.

25

30

5

10

15

In a second aspect, the present invention provides a method of providing nutritional support to a patient with an acute or chronic wound comprising the step of administering a therapeutically effective amount of a nutritional composition comprising a protein source, a lipid source and a carbohydrate source wherein no more than 1.8% of the total calories of the composition derive from arginine and wherein the protein source includes proline in an amount of at least 3% of the total calories of the composition.

35

In a third aspect, the present invention provides the use of a protein source, a lipid source and a carbohydrate source for the manufacture of a therapeutic formulation for promoting wound healing wherein no more than 1.8% of the total calories of the formulation derive from arginine and wherein the protein source includes proline in an amount of at least 3% of the total calories of the formulation.

Detailed Description of the Invention

5

10

Although the inflammatory phase of the wound healing process described above is critical, the present inventor believes that from a therapeutic/nutritional approach, attempts to modulate this phase carry high risks and that the granulation phase offers better potential for nutritional intervention. In this phase, new connective tissue is synthesised and more than 80% of this tissue is composed of collagen. Collagen is rich in the amino acids proline (about 22%) and glycine (about 33%) and the presence of these amino acids is rate limiting for collagen formation, that is to say, collagen cannot be efficiently formed if they are not available in sufficient quantity. However, the normal diet contains only about 3% in total of these amino acids and it will be appreciated that individuals who have suffered wounds may ingest even less of them, particularly as proline is not generally regarded as an essential dietary amino acid. In the case of individuals suffering from malnutrition for whatever reason, these shortages may be particularly pronounced The composition of the present invention is therefore supplemented with proline in a quantity sufficient to facilitate collagen synthesis. It is particularly suitable for the amelioration of pressure ulcers but may also be used in the management of acute wounds including before and after surgery.

20

25

15

The composition of the present invention does not need to be supplemented with arginine - of course some arginine is likely to be present as part of the protein source. However, it is widely believed that arginine also has a role in the inflammatory phase of wound healing and, for this reason, the composition of the present invention is preferably supplemented with small amounts of arginine subject always to the requirement that arginine must account for no more than 1.8% of the total calories of the composition.

30

The composition of the present invention contains sources of protein, lipids and carbohydrate and may be administered orally or enterally. The composition preferably provides about 1.25 kcal/ml.

35

Protein is essential to healing as tissue damage results in a catabolic response that includes a requirement for a larger proportion of total calories as protein than is

required by the general population. Research suggests that enteral fortification employing large quantities of protein can accelerate the synthesis of visceral proteins and so the protein source of the present invention preferably constitutes at least 25% of the total energy content of the composition, more preferably at least 28%.

5

10

15

20

25

30

A variety of different protein sources may be used including intact protein sources such as casein or whey as well as hydrolysed proteins, free amino acids and even mixtures of intact and hydrolysed proteins and/or free amino acids, in each case supplemented with free proline and, optionally, free arginine. Preferably, the protein source of the present invention is selected to yield the highest amount of proline in the proteins so as to minimise the amount that needs to be added as the free amino acid.

Preferably, proline constitutes at least 3.5% of the calories of the composition of the present invention. At this level of contribution to total calories, the composition will need to be supplemented by about 3.0% (by weight of the protein source) proline.

The total calories/gram of nitrogen of the composition of the invention is preferably about 160:1. The total non-protein calories/ gram of nitrogen is preferably about 110:1.

The composition of the present invention also includes a lipid source. Lipids or fats are the primary source of stored energy in the body and energy from fat metabolism is used in all normal cell functions. As far as wound healing is concerned, fat metabolism results in the formation of prostaglandins and other regulators of the inflammatory process. The lipid source used in the present invention preferably constitutes about 20% of the total energy content of the composition. Of this 20%, preferably about 8% is constituted by mono- and di-glycerides of fatty acids. The ratio of n-6 to n-3 fatty acids is preferably between 4:1 and 10:1, more preferably about 7:1.

35

The composition of the present invention also includes a carbohydrate source. Glucose is the primary fuel for cellular metabolism of many tissues including leucocytes, macrophages and fibroblasts all of which are involved in the wound healing process. Glucose is needed to meet the specific metabolic demands of wound healing. The carbohydrate source used in the present invention preferably constitutes

about 50% of the total energy content of the composition. Suitable sources of carbohydrate are maltodextrin and sucrose. Preferably, the carbohydrate source is substantially free of lactose.

Vitamins, minerals and trace elements are also important in the wound healing process. Preferably, the composition of the present invention at least complies with the compositional criteria set out in Directive 1999/21/EC on Dietary Foods for Special Medical Purposes as regards these micronutrients. However, certain micronutrients are particularly important for wound healing and therefore the composition of the present invention preferably contains more than the recommended minimum levels of vitamins C and E, manganese, zinc and selenium.

A liquid, ready to use composition according to the present invention will now be given by way of example:-

Example 1

15

	Caloric	density	1.25g/ml		
	Protein	Ĺ	30% of kcal		
20	of which (by weight):		:-sodium caseinate		50%
			milk protein concentrate		45%
			free L-proline		3%
			free L-arginine		2%
		total L-proline	proline 12.4% of pro		е
25		total L-arginine	ginine 5.0% of protein source		;
	Caloric contribution of total proline			3.7%	
	Caloric contribution of total arginine			1.5%	
	Lipids		20% of kcal		
30		of which	rapeseed oil		35%
			corn oil		34%
			soya oil		20%
			mono and di-glycerides of fatty a	icids	8%
			milk fat		3%
35		n-6:n-3	7.2:1		

25

	Carbohydrate	50% of kcal	
	of which	corn syrup	52%
		sucrose	43%
		starch	3%
5		lactose	2%
	Vitamin C	125mg/100ml	
	Vitamin E	7.5mg α-tocopherol equivalents/100ml	
	Manganese	1.9mg/100ml	
	Zinc	3.7mg/100ml	
10	Selenium	19μg/100ml	
	Osmolarity	470 mosm/Kg water	
	Water	80.3%	
	Density	1.087g/ml	
15	Total cal/g nitrogen	160:1	
	Non-protein cal/g nitrogen	110:1	

As will be appreciated from the foregoing description, the composition may also contain other micronutrients of the type conventionally found in enteral compositions in accordance with EC Directive 1999/21/EC as well as flavourings such as coffee or vanilla, emulsifiers, thickeners and stabilizers of the type conventionally found in enteral compositions.

The nutritional composition may be produced by conventional methods. For example, the protein source and the lipid source are dissolved in water, preferably water which has been subjected to reverse osmosis, to form a liquid mixture. Emulsifiers may be dissolved in the lipid source prior to blending if desired. Preferably, a food grade emulsifier from a vegetable source is used.

The temperature of the water is conveniently about 50°C to about 80°C to aid dispersal of the ingredients. Commercially available liquefiers may be used to form the liquid mixture. Preferably, pH of the liquid mixture is adjusted to about 6.3 to 7 with food grade hydroxides.

10

15

20

25

30

After preparation of the liquid mixture, the carbohydrate source is added together with other easily dissolvable ingredients including, for example, vitamins, minerals, flavourings and colorants.

The liquid mixture may then be thermally treated to reduce bacterial loads (pasteurized). This may be carried out by steam injection or by heat exchanger; for example a plate heat exchanger.

If a shelf-stable liquid composition is required, an ultra heat treatment (UHT) is preferably conducted after pre-heating to 50-85°C. For example, an indirect UHT treatment may be conducted at 140-155°C for 5-8s, in a tube heat exchanger. The liquid mixture may then be cooled to about 60°C to about 85°C; for example by flash cooling. The liquid mixture is then homogenized and the resulting homogenised milky liquid may be aseptically filled into suitable containers such as 200 ml cups for oral feeding. Aseptic filling of the containers may be carried out by cooling the liquid mixture.

If a powdered, reconstitutable formula is required, the homogenised mixture can be evaporated and dried to powder; for example by spray drying. Conventional procedures may be used.

Experimental Example

Normal human fibroblasts were trypsinised and seeded in 12 well plates at a density of 10,000 cells/cm³. When confluent, the cells were transferred to a culture medium with an amino acid distribution and concentrations designed to mimic those in human serum as closely as possible. The cell cultures were divided into two categories, a control culture in which the culture medium contained 0.201 mM proline and an experimental sample in which the culture medium contained 0.592 mM proline. After 24 hours fibroblast-conditioned medium containing 100 microgram/ml beta-aminoproprionitrile to prevent cross-linking of collagen molecules in the cultures was collected. The conditioned medium was dotblotted to a nitrocellulose membrane and probed for collagen type I content with a polyclonal immune-absorbed antibody. The

value shown for the proline-supplemented samples is relative to the controls set at 100%.

Sample

% of control value

5

Control (0.201 mM Proline)

100%

Proline-supplemented (0.502 mM Proline)

150% ± 21.9%

This experimental example shows that human fibroblasts respond to proline supplementation with a 50% increase in collagen synthesis. In this proline-supplemented medium, increased collagen synthesis is independent of the addition of growth factors or other mediators stimulating collagen transcription. It indicates an increased substrate requirement for efficient collagen synthesis.

Claims

5

20

25

- 1. A nutritional composition for promoting wound healing comprising a protein source, a lipid source and a carbohydrate source wherein no more than 1.8% of the total calories of the composition derive from arginine and wherein the protein source includes proline in an amount of at least 3% of the total calories of the composition..
- 2. A nutritional composition according to Claim 1 wherein at least 3.5% of the total calories of the composition derive from proline.
 - 3. A nutritional composition according to claim 1 or 2 wherein 1.5% of the total calories of the composition derive from arginine.
- 4. A nutritional composition according to any preceding claim wherein the protein source constitutes at least 28% of the total calories of the composition.
 - 5. A nutritional composition according to any preceding claim which composition has an energy density of about 1.25kcal/ml.
 - 6. A method of providing nutritional support to a patient with an acute or chronic wound comprising the step of administering a therapeutically effective amount of a nutritional composition comprising a protein source, a lipid source and a carbohydrate source wherein no more than 1.8% of the total calories of the composition derive from arginine and wherein the protein source includes proline in an amount of at least 3% of the total calories of the composition.
- 7. A method according to claim 6 wherein at least 3.5% of the total calories of the composition derive from proline.
 - 8. A method according to claim 6 or 7 wherein 1.5% of the total calories of the composition derive from arginine.
- 35 9. The use of a protein source a lipid source and a carbohydrate source for the manufacture of a therapeutic formulation for promoting wound healing,

wherein no more than 1.8% of the total calories of the composition derive from arginine and wherein the protein source includes proline in an amount of at least 3% of the total calories of the formulation.

- 5 10. The use according to claim 9 wherein at least 3.5% of the total calories of the formulation derive from proline.
 - 11. The use according to claim 9 or 10 wherein 1.5% of the total calories of the formulation derive from arginine

10

Abstract

5

A nutritional composition for promoting wound healing comprises a protein source, a lipid source and a carbohydrate source wherein no more than 1.8% of the total calories of the composition derive from arginine and wherein the protein source includes proline in an amount of at least 3% of the total calories of the composition. The composition may be administered orally and is particularly suitable for the amelioration of pressure ulcers although it may also be used with advantage in the nutritional management of acute wounds including pre and post surgery.