Lecture 14: Discrete -Time Filters

Foundations of Digital Signal Processing

Outline

- Circular Convolution Review
- The DTFT and the DFT: The Relationship
- The Fast Fourier Transform
- Designing the magnitude response
- Designing the phase response

News

■ Homework #6

- Due <u>Thursday</u>
- Submit via canvas
- Coding Problem #4
 - Due <u>next week</u>
 - Submit via canvas

Lecture 14: Discrete -Time Filters

Foundations of Digital Signal Processing

Outline

- Circular Convolution Review
- The DTFT and the DFT: The Relationship
- The Fast Fourier Transform
- Designing the magnitude response
- Designing the phase response

Building Connections

A sliding window

Machine learning project – find red cars

Building Connections

A sliding window

Machine learning project – find red cars

Deriving Transforms

- Consider the Inverse Discrete-Time Fourier Transform....
 - What happens if we sample $X(\omega)$?

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{+j\omega n} d\omega$$

The Discrete Fourier Transform

Circular Convolution

Multiplication property (DFT)

$$x[n]y[n] \leftrightarrow \frac{1}{N}X[k] \circledast Y[k]$$

Convolution property (DFT)

$$x[n] \circledast y[n] \leftrightarrow X[k]Y[k]$$

The Discrete Fourier Transform

Circular Convolution

Multiplication property (DTFT)

$$x[n]y[n] \leftrightarrow \frac{1}{2\pi}X(\omega) \circledast Y(\omega)$$

Convolution property (DTFT)

$$x[n] * y[n] \leftrightarrow X(\omega)Y(\omega)$$

What is Circular Convolution?

Convolution for periodic signals

- Convolution for periodic signals
- Convolve
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - OR Perform convolution between two periods
 - But assume periodic boundary conditions

- Convolution for periodic signals
 - OR Perform convolution between two periods
 - But assume periodic boundary conditions

- Convolution for periodic signals
 - OR Perform convolution between two periods
 - But assume periodic boundary conditions

- Convolution for periodic signals
 - OR Perform convolution between two periods
 - But assume periodic boundary conditions

Example: Compute the Circular Convolution:

Example: Compute the Circular Convolution:

What is Circular Convolution?

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

$$h[n] = \delta[n - 6]$$

What is Circular Convolution?

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

$$h[n] = \delta[n - 6]$$

What is Circular Convolution?

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

What is Circular Convolution?

- Convolution for periodic signals
 - One period of one signal
 - With the entire second signal

What is Circular Convolution?

- Convolution for periodic signals
 - OR Perform convolution between two periods
 - But assume periodic boundary conditions

$$h[n] = \delta[n - 6]$$

What is Circular Convolution?

- Convolution for periodic signals
 - OR Perform convolution between two periods
 - But assume periodic boundary conditions

Example: Compute the circular convolution

Lecture 14: Discrete -Time Filters

Foundations of Digital Signal Processing

Outline

- Circular Convolution Review
- The DTFT and the DFT: The Relationship
- The Fast Fourier Transform
- Designing the magnitude response
- Designing the phase response

The Fast Fourier Transform

■ Z-Transform

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

$$z = |r|e^{j\omega}$$

■ Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$z=|r|e^{j\omega}$$

imag

■ Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$z=|r|e^{j\omega}$$

■ Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$z=|r|e^{j\omega}$$

imag

■ Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$z = |r|e^{j\omega}$$

imag

■ Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$z=|r|e^{j\omega}$$

imag

■ Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$z=|r|e^{j\omega}$$

imag

■ Z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$z=|r|e^{j\omega}$$

imag

DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Effectively:

$$z = |1|e^{j\omega}$$

DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Effectively:

$$z = |1|e^{j\omega}$$

DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Effectively:

$$z = |1|e^{j\omega}$$

DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

imag

Effectively:

$$z = |1|e^{j\omega}$$

DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Effectively:

$$z = |1|e^{j\omega}$$

imag

DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Effectively:

$$z = |1|e^{j\omega}$$

imag

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

Effectively:

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

imag

real

n

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

Effectively:

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

imag

real

n

DTFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}nk}$$

Effectively:

$$z = |1|e^{j\omega}$$
$$\omega = \frac{2\pi}{N}k$$

imag

x[n]

real

n

Lecture 14: Discrete -Time Filters

Foundations of Digital Signal Processing

Outline

- Circular Convolution Review
- The DTFT and the DFT: The Relationship
- The Fast Fourier Transform
- Designing the magnitude response
- Designing the phase response

- Question: How many multiplications are used in convolution?
 - $\sim N(2N-1)$
- Convolution with two length-N signals

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

- Question: How many multiplications are used in convolution?
 - $\sim N(2N-1)$ (Computational complexity is $\mathcal{O}(N^2)$)
- Convolution with two length-N signals

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

Question: How many multiplications are used in the DFT?

- **■** The Discrete Fourier Transform (DFT)
 - Analysis Equations

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j\frac{2\pi}{N}kn}$$

- Question: How many multiplications are used in the DFT?
 - *N*²
- **■** The Discrete Fourier Transform (DFT)
 - Analysis Equations

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j\frac{2\pi}{N}kn}$$

- Question: How many multiplications are used in the DFT?
 - N^2 (Computational complexity is $\mathcal{O}(N^2)$)
- The Discrete Fourier Transform (DFT)
 - Analysis Equations

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j\frac{2\pi}{N}kn}$$

- Question: How many multiplications are used in the DFT?
 - No clear speed gain from using the DFT ⊗
- The Discrete Fourier Transform (DFT)
 - Analysis Equations

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j\frac{2\pi}{N}kn}$$

■ The Discrete Fourier Transform (DFT)

■ The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT)

■ The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT)

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

x[n]

X[k]

But wait!!

$$e^{-j\frac{2\pi}{N}n(k+N/2)} = e^{-j\frac{2\pi}{N}nk}e^{-j\pi n} = \begin{cases} e^{-j\frac{2\pi}{N}nk} & \text{for } n \text{ is even} \\ -e^{-j\frac{2\pi}{N}nk} & \text{for } n \text{ is odd} \end{cases}$$

■ The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT)
$$X[k] = \sum_{n=0}^{N/2-1} x[2n]e^{-j\frac{2\pi}{N}k(2n)} + e^{-j\frac{2\pi}{N}k} \sum_{n=0}^{N/2-1} x[2n+1]e^{-j\frac{2\pi}{N}k(2n)}$$

$$X\left[k+\frac{N}{2}\right] = \sum_{n=0}^{N/2-1} x[2n]e^{-j\frac{2\pi}{N}k(2n)} - e^{-j\frac{2\pi}{N}k} \sum_{n=0}^{N/2-1} x[2n+1]e^{-j\frac{2\pi}{N}k(2n)}$$

$$e^{-j\frac{2\pi}{N}\left(k+\frac{N}{2}\right)(2n)} = e^{-j\frac{2\pi}{N}k(2n)}e^{-j2\pi}$$

$$= e^{-j\frac{2\pi}{N}k(2n)}$$

The Discrete Fourier Transform (DFT)

$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k]$$

$$X\left[k+\frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

The Discrete Fourier Transform (DFT)

The discrete Fourier Transform (DFT)
$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k] \qquad X\left[k + \frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

$$x[n] \qquad \qquad X[k]$$

$$x[0] \qquad \qquad X[0]$$

$$x[1] \qquad \qquad X[1]$$

x[3]

X[2]

The Discrete Fourier Transform (DFT)

$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k] X\left[k + \frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

x[n] $x[0] \longrightarrow E[0]$

x[3]

The Discrete Fourier Transform (DFT)

$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k] X\left[k + \frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

x[n] X[k]

The Discrete Fourier Transform (DFT)

$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k] \qquad X\left[k + \frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

$$x[0] \qquad X[k]$$

$$x[0] \qquad X[0] \qquad X[0]$$

$$x[1] \qquad E[1] \qquad X[1]$$

$$x[2] \qquad O[0] \qquad X[2]$$

$$x[3] \qquad O[1] \qquad X[3]$$

The Discrete Fourier Transform (DFT)

$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k] \qquad X\left[k + \frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

$$x[0] \qquad X[k]$$

$$x[0] \qquad E[0] \qquad X[0]$$

$$x[1] \qquad E[1] \qquad X[1]$$

$$x[2] \qquad O[0] - e^{-j\frac{2\pi}{N}(0)} \qquad X[2]$$

$$x[3] \qquad O[1] - e^{-j\frac{2\pi}{N}(1)} \qquad X[3]$$

The Discrete Fourier Transform (DFT)

$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k] \qquad X\left[k + \frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

$$x[0] \qquad X[k]$$

$$x[1] \qquad E[0] \qquad X[0]$$

$$x[1] \qquad X[1]$$

$$x[2] \qquad O[0]$$

x[3]

X[3]

The Discrete Fourier Transform (DFT)

$$X[k] = E[k] + e^{-j\frac{2\pi}{N}k}O[k] \qquad X\left[k + \frac{N}{2}\right] = E[k] - e^{-j\frac{2\pi}{N}k}O[k]$$

$$x[0] \qquad X[k]$$

$$x[0] \qquad X[0] \qquad X[0]$$

$$x[1] \qquad O[0] \qquad X[2]$$

- Number of Multiplications (including multiplication by 1)?
 - For DFT

Number of Multiplications (including multiplication by 1)?

$$N^2 = 4^2 = 16$$

Number of Multiplications (including multiplication by 1)?

- Number of Multiplications (including multiplication by 1)?
 - For DFT

Number of Multiplications (including multiplication by 1)?

$$N^2 = 8^2 = 64$$

- Number of Multiplications (including multiplication by 1)?
 - For FFT

x[n]	X[k]
x[0]	X[0]
x[1]	X[1]
x[2]	X[2]
x[3]	X[3]
x[4]	X[4]
x[5]	X[1] X[5]
x[6]	X[6]
x[7]	X[7]

- Number of Multiplications (including multiplication by 1)?
 - For FFT

x[n]	X[k]
x[0]	X[0] X[1]
x[2] x[4]	X[2]
x[6] x[1]	X[3] X[4]
x[3] x[5]	X[5] X[6]
x[7]	X[7]

- Number of Multiplications (including multiplication by 1)?
 - For FFT

- Number of Multiplications (including multiplication by 1)?
 - For FFT

- Number of Multiplications (including multiplication by 1)?
 - For FFT

- Number of Multiplications (including multiplication by 1)?
 - For FFT

Number of Multiplications (including multiplication by 1)?

Number of Multiplications (including multiplication by 1)?

- DFT
 - \wedge N = 4, Multiplications: 16
 - \wedge N = 8, Multiplications: 64
 - \wedge N = 16, Multiplications: 256
 - \wedge N = 32, Multiplications: 1024
- FFT
 - \wedge N = 4, Multiplications: 16
 - \wedge N = 8, Multiplications: 48
 - \wedge N = 16, Multiplications: 128
 - N = 32, Multiplications: 320

- Number of Multiplications (including multiplication by 1)?
 - DFT
 - \diamond Grows at rate: N^2
 - FFT
 - Grows at rate: $N\log_2(N)$

Lecture 14: Discrete -Time Filters

Foundations of Digital Signal Processing

Outline

- Circular Convolution Review
- The DTFT and the DFT: The Relationship
- The Fast Fourier Transform
- Designing the magnitude response
- Designing the phase response

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{\prod_{k=1}^{M} (1 - z_k z^{-1})}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{\prod_{k=1}^{M} (1 - z_k z^{-1})}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{1}{(1 - e^{+j\phi}z^{-1})(1 - e^{-j\phi}z^{-1})}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{1}{1 - 2\cos(\phi)z^{-1} + z^{-2}}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{1}{1 - 2\cos(\phi)z^{-1} + z^{-2}}$$

Question: What happens when we move poles and zeros around for a filter?

$$|H(z)| = \left| \frac{1}{1 - 2\cos(\phi)z^{-1} + z^{-2}} \right|$$
$$= \left| \frac{1}{z^{+1} - 2\cos(\phi) + z^{-1}} \right|$$

Question: What happens when we move poles and zeros around for a filter?

$$|H(\omega)| = \left| \frac{1}{e^{+j\omega} - 2\cos(\phi) + e^{-j\omega}} \right|$$

$$= \left| \frac{1}{e^{+j\omega} + e^{-j\omega} - 2\cos(\phi)} \right|$$

$$= \left| \frac{1}{2\cos(\omega) - 2\cos(\phi)} \right|$$

$$= \left| \frac{1/2}{\cos(\omega) - \cos(\phi)} \right|$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{\prod_{k=1}^{M} (1 - z_k z^{-1})}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{1}{(1 - az^{-1})}$$

Question: What happens when we move poles and zeros around for a filter?

$$|H(\omega)| = \left| \frac{1}{(1 - ae^{-j\omega})} \right|$$

Question: What happens when we move poles and zeros around for a filter?

$$|H(\omega)| = \left| \frac{1}{(1 - ae^{-j\omega})} \right|$$

$$= \frac{1}{|1 - ae^{-j\omega}|}$$

$$= \frac{1}{\sqrt{(1 - a\cos(\omega))^2 + a^2\sin^2(\omega)}}$$

$$= \frac{1}{\sqrt{1 - 2\cos(\omega) + a^2\cos^2(\omega) + a^2\sin^2(\omega)}}$$

$$= \frac{1}{\sqrt{(1 + a^2) - 2\cos(\omega)}}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = \frac{\prod_{k=1}^{M} (1 - z_k z^{-1})}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = (1 - e^{+j\phi}z^{-1})(1 - e^{-j\phi}z^{-1})$$

Question: What happens when we move poles and zeros around for a filter?

What is the H(z) corresponding to this?

$$H(z) = 1 - 2\cos(\phi)z^{-1} + z^{-2}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = 1 - 2\cos(\phi)z^{-1} + z^{-2}$$

Question: What happens when we move poles and zeros around for a filter?

$$|H(\omega)| = 2|\cos(\omega) - \cos(\phi)|$$

Question: What happens when we move poles and zeros around for a filter?

What is the H(z) corresponding to this?

$$H(z) = \frac{\prod_{k=1}^{M} (1 - z_k z^{-1})}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

Question: What happens when we move poles and zeros around for a filter?

What is the H(z) corresponding to this?

$$H(z) = 1 - ae^{-j\omega}$$

Question: What happens when we move poles and zeros around for a filter?

$$H(z) = 1 - ae^{-j\omega}$$

Question: What happens when we move poles and zeros around for a filter?

$$|H(\omega)| = \sqrt{(1+a^2) - 2\cos(\omega)}$$

$$H(z) = \frac{1}{(1 - (1/2)z^{-1})}$$

Question: How can I make the high frequencies closer to zero?

Option: Add poles

$$H(z) = \frac{1/2}{(1 - (1/2)z^{-1})^2}$$

Question: How can I make the high frequencies closer to zero?

Option: Add poles

$$H(z) = \frac{1/8}{(1 - (1/2)z^{-1})^4}$$

$$H(z) = \frac{1}{(1 - (1/2)z^{-1})}$$

Option: Add zeros
$$H(z) = \frac{(1 - jz^{-1})(1 + jz^{-1})}{2(1 - (1/2)z^{-1})}$$

Option: Add zeros
$$H(z) = \frac{(1-jz^{-1})(1+jz^{-1})(1+z^{-1})}{8(1-(1/2)z^{-1})}$$

Option: Add zeros
$$H(z) = \frac{(1-jz^{-1})(1+jz^{-1})(1+z^{-1})}{8(1-(1/2)z^{-1})}$$

