		DPP 1 (function)						
1.	If $f(x) = \cos(\log x)$, then	$f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] =$						
	(a) -1	(b) $\frac{1}{2}$						
	(c) -2	(d) None of these						
2.	If $f(x) = \frac{1-x}{1+x}$, the n f[f							
	$ \begin{array}{c} 1+x\\ \text{(a) tan } 2\theta \end{array} $	(b) $\sec 2\theta$						
	(c) $\cos 2\theta$	(d) $\cot 2\theta$						
3.	If $f(x) = \sin \log x$, then the	e value of $f(xy) + f\left(\frac{x}{y}\right) - 2f(x) \cdot \cos \log y$ is equal to						
4.	(a) 1	(b) 0						
	(c) -1	(d) $\sin \log x . \cos \log y$						
5.	The value of b and $f(x) = bx^2 + cx + d$, are	for which the identity $f(x+1) - f(x) = 8x + 3$ is satisfied, when	re					
	(a) $b = 2, c = 1$	(b) $b = 4, c = -1$						
	(c) $b = -1, c = 4$	(d) $b = -1, c = 1$						
6.	Given the function $f(x) = \frac{a^x + a^{-x}}{2}$, $(a > 2)$. Then $f(x + y) + f(x - y) =$							
	(a) $2f(x).f(y)$	(b) $f(x).f(y)$						
	(c) $\frac{f(x)}{f(y)}$	(d) None of these						
7.	If $f(x) = \frac{x}{x-1}$, then $\frac{f(a)}{f(a+1)}$							
	(c) $f(a^2)$	(d) $f\left(\frac{-a}{a-1}\right)$						
8.	If $f(x) = \cos(\log x)$, then	$(x^2)f(y^2) - \frac{1}{2} \left[f\left(\frac{x^2}{2}\right) + f\left(\frac{x^2}{y^2}\right) \right] $ has the value (a)	i)					
	-2	(b) -1						
	(c) 1/2	(d) None of these						
9.	The equivalent function							
	(a) $2 \log x$	(b) 2log x						
	(c) $ \log x^2 $							
10.	If $f(x) = \log\left[\frac{1+x}{1-x}\right]$, then							
		(b) $[f(x)]^3$						
11	(c) $2f(x)$ If $4(x) = x^x$ then $(4(x))^3$	(d) $3f(x)$						
11.	If $\phi(x) = a^x$, then $\{\phi(p)\}^3$ (c) $6\phi(p)$	is equal to (a) $\phi(3p)$ (b) $3\phi(p)$ (d) $2\phi(p)$						
12.	If $f(x) = \frac{x-3}{x+1}$, then $f[f(x)]$							
	(c) $\frac{x}{2}$	(d) $-\frac{1}{x}$						

13. If
$$f(x) = \cos(\log x)$$
, then the value of $f(x).f(4) - \frac{1}{2} \left[f\left(\frac{x}{4}\right) + f(4x) \right]$

(a)

1

(b)

-1

(c) 0

(d) ±1

14. If $f(x) = \frac{x - |x|}{|x|}$, then f(-1) =

(a)

1

(b) -2

(c) (

(d) + 2

15. If $f(x) = 4x^3 + 3x^2 + 3x + 4$, then $x^3 f\left(\frac{1}{x}\right)$ is

(a) f(-x)

(b) $\frac{1}{f(x)}$

(c) $\left(f\left(\frac{1}{x}\right)\right)^2$

(d) f(x)

16Domain of the function $f(x) = \sqrt{2 - 2x - x^2}$ is

(a)
$$-\sqrt{3} \le x \le \sqrt{3}$$

(b)
$$-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$$

(c)
$$-2 \le x \le 2$$

(d)
$$-2 + \sqrt{3} \le x \le -2 - \sqrt{3}$$

17Domain of the function $f(x) = \frac{x-3}{(x-1)\sqrt{x^2-4}}$ is

(b)
$$(-\infty, -2) \cup (2, \infty)$$

(c)
$$(-\infty, -2) \cup (1, \infty)$$

(d)
$$(-\infty, \infty) - \{1, \pm 2\}$$

18Domain of the function $\sqrt{2-x} - \frac{1}{\sqrt{9-x^2}}$ is

(a)
$$(-3, 1)$$

$$(c) (-3, 2]$$

$$(d) [-3, 1)$$

19Domain of the function $\frac{\sqrt{1+x} - \sqrt{1-x}}{x}$ is

(a)
$$(-1, 1)$$

(b)
$$(-1, 1)$$
– $\{0\}$

$$(c)$$
 $[-1, 1]$

(d)
$$[-1, 1]$$
- $\{0\}$

1	d	2	С	3	b	4	b	5	а
6	С	7	d	8	b	9	С	10	а
11	а	12	С	13	b	14	d	15	b
16	b	17	b	18	С	19	d		