3.2. Grupy, pierścienie, ciała - definicje i podstawowe przykłady

Zbiór G wraz z działaniem dwuargumentowym

*:
$$G \times G \quad [(x,y) - > *(x,y) = x * y = x \cdot y]$$

nazywamy grupa o ile są spełnione następujące własności:

- I. $\forall_{x,y,z \in G}$ (x * y) * z = x* (y * z) (łączność)
- II. $\exists_{e \in G} \forall_{x \in G} x^*e = x = e^*x$ (istnienie elementu neutralnego)
- III. $\forall_{x \in G} \exists_{y \in G} x^*y = e = y *x$ (istnienie elementu odwrotnego dla każdego elementu grupy)

G=(G,*) jest grupą przemienną(abelową) o ile dodatkowo:

IV.
$$\forall_{x,y \in G} \ x^*y = y^*x$$

Niech G będzie grupą zaś $H\neq\emptyset$ podzbiorem G. Wówczas H nazywamy podgrupą G o ile:

- I. $\forall_{a,b\in H} \ a*b \in H$
- II. $\forall_{a \in H} \ a^{-1} \in H$

Przykłady:

- I. Grupy macierzowe są podgrupami abstrakcyjnymi (podgrupy grupy $Gl_n(k)$)
- II. $\mathbb{R}^+ = (\mathbb{R}, +: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R})$ jest grupą przemienną
 - + jest poprawnie określoną funkcja
 - funkcja + jest łaczna
 - 0 jest elementem neutralnym dla +
 - $\forall_{a \in R}$ -a jest elementem odwrotnym (przeciwnym gdy dzialanie oznaczymy +)
 - + jest dzialaniem przemiennym
- III. $\mathbb{Z}^+=(\mathbb{Z},+:\mathbb{Z}\times\mathbb{Z}\longrightarrow\mathbb{Z})$ jest grupą addytywną przemienną liczb całkowitych
 - Z+Z⊂Z
 - łączność i przemienność jest dziedziczona z R
 - 0 jest elementem neutralnym
 - $\forall_{a \in Z}$ -a jest elementem odwrotnym
- IV. $X = \text{zbi\'or } S_x = (\sigma: X \longrightarrow X \text{bijekcja})$ $S_x = (S_x, \circ)$ S_x jest grupą nieprzemienną o ile $|X| \ge 3$ (złożenie bijekcji jest bijekcją)
- V. Grupa \mathbb{Z}_n reszt modulo n. Na zbiorze \mathbb{Z}_n zadajemy działanie

$$\bigcirc = \bigcirc_n : \mathbb{Z}_n \times \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$$

 $a \bigcirc b = r_n(a \cdot b), \quad a,b \in \mathbb{Z}_n$

 r_n – reszta z dzielenia x przez n

- VI. Uwaga ($\mathbb{Z}\setminus\{0\}$,) NIE jest grupa
- VII. $\mathbb{R}^+ = (\mathbb{R} \setminus \{0\}, \cdot : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R})$ jest grupa multiplikatywną
 - $\mathbb{R} \ni a, b \neq 0 \implies 0 \neq a \cdot b \in \mathbb{R}$
 - $1 \in \mathbb{R}$ element neutralny
 - $\mathbb{R} \ni a \neq 0 \Longrightarrow 0 \neq \frac{1}{a} \in \mathbb{R}$ element odwrotny w sensie działania ·

Układ $R=(R,+,\cdot)$ gdzie $+,\cdot: R\times R \longrightarrow R$ są działaniami dwuargumentowymi (+ - dodawanie, \cdot - mnozenie) nazywamy **pie rście nie m** o ile:

- I. $R^+ = (R,+)$ jest grupą przemienną
- II. $\forall_{a,b,c \in R} (a \cdot b) \cdot c = a \cdot (b \cdot c)$ mnożenie jest łączne
- III. $\forall_{a \in R} \exists_{e \in R} \text{ a·e=e·a=a}$ element neutralny (oznaczony przez 1)
- IV. $\forall_{a,b,c \in R} \ a \cdot (b+c) = a \cdot b + a \cdot c$

(b+c) ·a=b·a+c·a - mnozenie jest rozdzielne względem dodawania

Pierścień *R* nazywamy przemiennym o ile mnożenie jest przemienne:

$$\forall_{a \ b \in R}$$
 a·b=b·a

Układ $R=(R,+,\cdot)$ nazywamy **ciałe m** o ile spełniony jest pierścieniem przemiennym i spełniony jest dodatkowy warunek :

$$\forall_{0 \neq a \in R} \exists_{0 \neq b \in R} \ a \cdot b = 1$$

Niech $R=(R,+,\cdot)$ będzie pierścieniem (przemiennym). Podzbiór $S \subset R$ nazywamy **podpierścieniem** (ewentualnie **podciałem**) o ile:

- I. $\forall_{a,b,c \in S} \ a+b \in S \ a \cdot b \in S$
- II. $1,0 \in S$
- III. (dla pode ia ła) $\forall_{0 \neq a \in S} \exists_{x \in S} x \cdot s = s \cdot x = 1$
- IV. (równoważne) $\forall_{0 \neq a \in S} \ a^{-1} \in S$

Przykłady:

- I. $\mathbb{Z} = (\mathbb{Z}, +, \cdot)$ pierścień liczb całkowitych
 - Działania sa, ła czne i przemienne
 - 0 jest elementem neutralnym dla +
 - 1 jest elementem neutralnym dla ·
 - rozdzielno's'c jest spełniona
 - to nie jest ciało bowiem $2 \cdot x = 1$ nie ma rozwia, zania w Z
- II. $\mathbb{Q} = (\mathbb{Q}, +, \cdot)$ ciało liczb wymiernych
 - posiada te same własno'sci jak pier'scie 'n liczb całkowitych
 - $\mathbb{Q} \ni q \neq 0 = \frac{a}{b} \implies q^{-1} = \frac{b}{a} \in \mathbb{Q}$
- III. $\mathbb{R} = (\mathbb{R}, +, \cdot)$ ciało liczb rzeczywistych
- IV. $M_n(\mathbb{R}) = (M_n, +, \cdot)$ pierścień naprzemienny(n ≥ 2)
- V. Pierścień reszt modulo n
- VI. Ciałami są elementy łańcucha: liczby wymierne ← liczby rzeczywiste ← liczby zespolone.