Билет

ВАРИАНТ №2

№1. Построить таблицу функции, которая представлена формулой

$$\mathcal{U} = ((x|y) \oplus (y|\tilde{z})) \cdot (x \to (y \to z)).$$

№2. Для функции в задаче №1 построить СДНФ, СКНФ.

№3. Доказать эквивалентность формул с использованием эквивалентных преобразований

$$\mathcal{U} = (x \oplus y) \cdot (x \vee (y \to z)), \quad \mathcal{B} = (x|y) \cdot (z \vee (y \to x)) \cdot (\bar{y} \to x).$$

M4. Найти сокращенную ДНФ с помощью карты Карно для функции $f(\bar{x}^4)=(1111\ 0101\ 1010\ 1110).$

Ход решения

Задача 1. Построить таблицу функции, которая представлена формулой

$$U = ((x \mid y) \oplus (y \mid \overline{z})) \cdot (x \to (y \to z)).$$

Решение. Строим таблицу, вычисляя согласно скобкам подформулы, получим:

X	y	Z	$x \mid y$	\overline{z}	$y \mid \overline{z}$	$(x y)\oplus(y \overline{z})$
0	0	0	1	1	1	0
0	0	1	1	0	1	0
0	1	0	1	1	0	1
0	1	1	1	0	1	0
1	0	0	1	1	1	0
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	1	0	0	1	1

X	у	Z	$y \rightarrow z$	$x \to (y \to z)$
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	1
1	0	0	1	1

Работа выполнена авторами www.MatBuro.ru Помощь онлайн на экзамене по дискретной математике

Помощь онлаин на экзамене по дискретной математике ©МатБюро - Решение задач по математике, экономике, статистике

1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Окончательно получаем таблицу функции:

OROH	IGI CIID	110 1105	ту тасы тасынду функции.
X	y	Z	$U = ((x \mid y) \oplus (y \mid \overline{z})) \cdot (x \to (y \to z)).$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Задача 2. Для функции в задаче №1 построить СДНФ и СКНФ.

Решение. Приведем таблицу истинности этой функции (найдена в примере N = 1).

X	y	Z	U
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

У этой функции два единичных набора: (0,1,0) и (1,1,1). Для каждого из этих наборов составляем конъюнкцию переменных:

$$(0,1,0) \rightarrow x y z$$

$$(1,1,1) \rightarrow xyz$$

Тогда СДНФ равна дизъюнкции этих конъюнкций $U = x y z \lor xyz$.

Аналогично найдем СКНФ. Выпишем все нулевые наборы функции и соответствующие им дизъюнкции:

Работа выполнена авторами www.MatBuro.ru

Помощь онлайн на экзамене по дискретной математике ©МатБюро - Решение задач по математике, экономике, статистике

$$(0,0,0) \to (x \lor y \lor z); (0,0,1) \to (x \lor y \lor \overline{z});$$

$$(0,1,1) \to (x \lor \overline{y} \lor \overline{z}); (1,0,0) \to (\overline{x} \lor y \lor z);$$

$$(1,0,1) \to (\overline{x} \lor y \lor \overline{z}); (1,1,0) \to (\overline{x} \lor \overline{y} \lor z).$$

Тогда СКНФ есть конъюнкция всех этих дизьюнкций:

$$U = (x \lor y \lor z) \& (x \lor y \lor \overline{z}) \& (x \lor \overline{y} \lor \overline{z}) \& (\overline{x} \lor y \lor z) \& (\overline{x} \lor y \lor \overline{z}) \& (\overline{x} \lor \overline{y} \lor z).$$

Задача 3. Доказать эквивалентность формул с использованием эквивалентных преобразований

$$U = (x \oplus y) \cdot (x \vee (y \to z)), B = (x \mid y) \cdot (z \vee (y \to x)) \cdot (\overline{y} \to x).$$

Решение.

Преобразуем первую функцию. Используем формулы: $x \oplus y = x\overline{y} \vee x\overline{y}$, $x \to y = x \vee y$. Получим:

$$U = (x \oplus y) \cdot (x \vee (y \to z)) = (x\overline{y} \vee x\overline{y}) \cdot (x \vee (\overline{y} \vee z)) = (x\overline{y} \vee x\overline{y}) \cdot (x \vee \overline{y} \vee z) =$$

Раскрываем скобки и упрощаем:

$$= (x\overline{y} \cdot (x \vee y \vee z) \vee x\overline{y} \cdot (x \vee y \vee z)) =$$

$$= (x\overline{y}x \vee x\overline{y}y \vee x\overline{y}z) \vee (x\overline{y}x \vee x\overline{y}y \vee x\overline{y}z) = (x\overline{y} \vee x\overline{y} \vee x\overline{y}z) \vee (0 \vee 0 \vee x\overline{y}z) =$$

$$= x\overline{y} \vee x\overline{y} \vee x\overline{y}z \vee x\overline{y}z \vee x\overline{y}z = x\overline{y}(1 \vee 1 \vee z) \vee x\overline{y}z = x\overline{y} \vee x\overline{y}z.$$

Аналогично преобразуем вторую функцию. Используем формулы:

$$x \mid y = \overline{xy} = \overline{x} \vee \overline{y}, \ x \to y = \overline{x} \vee y$$
. Получим:

$$B = (x \mid y) \cdot (z \lor (y \to x)) \cdot (\overline{y} \to x) = (\overline{x} \lor \overline{y}) \cdot (z \lor (\overline{y} \lor x)) \cdot (\overline{y} \lor x) =$$

$$= (\overline{x} \lor \overline{y}) \cdot (z \lor \overline{y} \lor x) \cdot (y \lor x) = (\overline{x} \cdot (y \lor x) \lor \overline{y} \cdot (y \lor x)) \cdot (z \lor \overline{y} \lor x) =$$

$$= ((\overline{x}y \lor \overline{x}x) \lor (\overline{y}y \lor \overline{y}x)) \cdot (z \lor \overline{y} \lor x) = (\overline{x}y \lor 0 \lor 0 \lor \overline{y}x) \cdot (z \lor \overline{y} \lor x) =$$

$$= (\overline{x}y \lor \overline{y}x) \cdot (x \lor \overline{y} \lor z) = \begin{vmatrix} nony + unu & 6 \lor pa \Rightarrow cehue & kak & dns \\ py + k \lor uu & U, no 6 mop sem & 6 \lor kna dku \end{vmatrix} = x\overline{y} \lor \overline{x}yz$$

Формулы эквивалентны.

Задача 4. Найти сокращенную ДНФ с помощью карты Карно для функции

Работа выполнена авторами www.MatBuro.ru Помощь онлайн на экзамене по дискретной математике ©МатБюро - Решение задач по математике, экономике, статистике

$f(\tilde{x}^4) = (1111 \quad 0101 \quad 1010 \quad 1110).$

Решение. Составим для наглядности сначала таблицу истинности:

x_1	x_2	x_3	\mathcal{X}_4	f
0	0	0	0	1
				1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Теперь по единичным наборам заполняем карту Карно:

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1	1	1
01		1	1	
11	1	1		1
10	1			1

Выделяем максимальные прямоугольники из единиц, пока не покроем все единицы.

Первое покрытие: $\overline{x_1} x_4$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1	1	1
01		1	1	
11	1	1		1
10	1			1

Второе покрытие: $x_1 \overline{x_4}$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1	1	1
01		1	1	

Работа выполнена авторами www.MatBuro.ru Помощь онлайн на экзамене по дискретной математике ©МатБюро - Решение задач по математике, экономике, статистике

11	1	1	1
10	1		1

Третье покрытие: $\overline{x_1} \overline{x_2}$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1	1	1
01		1	1	
11	1	1		1
10	1			1

Четвертое покрытие (осталась одна единица непокрытая к этому моменту): $x_2\overline{x_3}x_4$ или $x_1x_2\overline{x_3}$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	<i>_</i>	1	1
01		1	1	
11	1	1		1
10	1			1

Получаем сокращенную ДНФ: $\overline{x_1} x_4 \vee x_1 \overline{x_4} \vee \overline{x_1} \overline{x_2} \vee x_2 \overline{x_3} x_4 \vee x_1 x_2 \overline{x_3}$.