

CS211 Digital Logic (H)

Assignment 1 Due on 23:55, Jul. 13, 2022

Write down your answer to the questions in the given box with **detailed** procedures. For design questions, only drawing the circuit will lead to zero point.

lame:	Student ID:										
	Question:	1	2	3	4	5	6	7	8	Total	
	Points:	10	3	9	18	18	10	12	20	100	
	Score:										
1. (10 pc	oints) Conver	t the d	ecimal	numbe	er 196.3	to base	e 3, bas	e 4, bas	se 5, ba	ise 11, ai	nd base 10
2. (3 poi	nts) Find the	10's co	omplen	nent of	$(902)_{11}$						
0 (0 :		· ,.		A DI CI	. 45.0				I		1111
	nts) For the find $A=1$, $B=1$, α		n F = I	AB^*C^* -	+ <i>AB</i> , I	ina tne	logic v	alue oi	F una	er the co	onaltions
	A = 0, B = 1, 0		and								
(c) A	A = 0, $B = 0$, C	C=1.									

4.	(18 points) Simplify the following three-variable Boolean functions algebraically
	(a) $F = \sum (1, 2, 6, 7)$,
	(b) $F = \sum (0, 1, 2, 3, 6)$, and
	(c) $F = \sum_{1}^{1} (3, 4, 6, 7)$.
5.	(18 points) Using a Karnaugh map, simplify the following functions
5.	(18 points) Using a Karnaugh map, simplify the following functions (a) $F(A,B,C,D) = \sum_{i=0}^{\infty} (0,2,3,6,7,10,11,12,15)$.
5.	(a) $F(A,B,C,D) = \sum (0,2,3,6,7,10,11,12,15)$,
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D) = \sum (0,2,3,6,7,10,11,12,15)$,
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and
5.	(a) $F(A,B,C,D)=\sum (0,2,3,6,7,10,11,12,15)$, (b) $F(A,B,C,D)=\sum (1,7,9,10,12,13,14)+d(4,5,8)$, and

5.	(10 points) With the us fg , where $f=abc'+c'c$	e of maps, find the $d+a'cd'+b'cd'$ and	simplest sum-of- d $g = (a + b + c' +$	products form of a	the function $F'+c+d'$).
·. ((12 points) Simplify the (a) $A'B'C'D + AB'D$ (b) $A'B'C'D' + BC'D$	+A'BC'+ABCD	$+AB^{\prime}C$, and	ng four-variable m	naps:

8.	(20 and	points) Obtain the sum of the products expression for $F=\sum (1,2,4,7,8,9,11)+d(0,3,5)$ implement it with
		NAND gates only, and
		NOR gates only.
	1	