```
In [1]:
          import pandas as pd
          import numpy as np
In [2]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
          df train=pd.read csv('testing.csv')
In [3]:
          df train.head()
In [4]:
Out[4]:
              class GLCM_pan
                               Mean_Green
                                           Mean_Red
                                                       Mean_NIR
                                                                  SD_pan
           0
                 n 109.828571
                                183.700000
                                            82.950000
                                                     251.750000
                                                                16.079412
           1
                 n 130.284483
                                212.637931
                                            96.896552
                                                     482.396552 21.210295
           2
                 n 131.386555
                                185.466667
                                            85.466667
                                                     419.666667
                                                                13.339998
           3
                 n 141.345098
                                180.875000
                                            81.500000
                                                     348.062500 18.213577
                 w 121.383408
                                218.357143 112.017857 426.607143 19.083196
          df train.describe()
In [5]:
Out[5]:
                 GLCM_pan Mean_Green
                                          Mean_Red
                                                      Mean_NIR
                                                                   SD_pan
           count 500.000000
                              500.000000
                                          500.000000
                                                     500.000000
                                                                500.000000
                 127.065977
                              209.767564
                                          107.739215
                                                     453.734870
                                                                 20.641288
           mean
                  10.667542
             std
                              78.677763
                                          71.773037
                                                     156.198323
                                                                  6.757322
                  81.125000
                              117.210526
                                          50.578947
                                                     144.875817
                                                                  5.772400
            min
                119.978475
                              188.892662
                                           85.511304
                                                     341.588922
                                                                 15.853416
```

```
GLCM_pan Mean_Green
                                     Mean_Red
                                                Mean_NIR
                                                           SD_pan
           50% 127.532191
                           203.626923
                                      99.828421
                                               443.719444
                                                          20.028992
           75% 133.799711
                           218.965116
                                     118.054555
                                               542.959928
                                                          24.121108
           max 167.944444 1848.916667 1594.583333 1597.333333
                                                          62.396581
In [6]: df train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 500 entries, 0 to 499
         Data columns (total 6 columns):
         class
                        500 non-null object
         GLCM pan
                        500 non-null float64
                        500 non-null float64
         Mean Green
         Mean Red
                        500 non-null float64
                        500 non-null float64
         Mean NIR
                        500 non-null float64
         SD pan
         dtypes: float64(5), object(1)
         memory usage: 23.5+ KB
In [8]: clas={'n':1,'w':0}
In [9]: df train['class']=[clas[item] for item in df train['class']]
In [11]: df train.columns
Out[11]: Index(['class', 'GLCM pan', 'Mean Green', 'Mean Red', 'Mean NIR', 'SD p
         an'], dtype='object')
In [12]: X train=df train[[ 'GLCM pan', 'Mean Green', 'Mean Red', 'Mean NIR', 'S
         D pan']]
         y train=df_train['class']
In [21]: from sklearn.linear model import LogisticRegression
```

```
In [22]: lr=LogisticRegression()
In [23]: lr.fit(X train,y train)
Out[23]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=
          True,
                     intercept scaling=1, max iter=100, multi class='ovr', n jobs=
          1,
                     penalty='l2', random state=None, solver='liblinear', tol=0.00
          01,
                     verbose=0, warm start=False)
In [13]: #now its testing time :-)
In [14]: df tes=pd.read csv('testing.csv')
In [15]: df_tes.head()
Out[15]:
             class GLCM_pan Mean_Green
                                        Mean_Red
                                                  Mean_NIR
                                                             SD pan
                n 109.828571
           0
                              183.700000
                                         82.950000 251.750000 16.079412
           1
                n 130.284483
                              212.637931
                                         96.896552 482.396552 21.210295
           2
                n 131.386555
                              185.466667
                                         85.466667 419.666667 13.339998
           3
                n 141.345098
                              180.875000
                                         81.500000 348.062500 18.213577
                w 121.383408
                              218.357143 112.017857 426.607143 19.083196
In [16]:
          df tes['class']=[clas[x] for x in df tes['class']]
In [17]:
          df tes
Out[17]:
               class GLCM_pan Mean_Green
                                           Mean_Red
                                                      Mean_NIR
                                                                 SD_pan
             0
                  1 109.828571
                                183.700000
                                            82.950000
                                                     251.750000 16.079412
```

	class	GLCM_pan	Mean_Green	Mean_Red	Mean_NIR	SD_pan
1	1	130.284483	212.637931	96.896552	482.396552	21.210295
2	1	131.386555	185.466667	85.466667	419.666667	13.339998
3	1	141.345098	180.875000	81.500000	348.062500	18.213577
4	0	121.383408	218.357143	112.017857	426.607143	19.083196
5	1	122.757576	205.960000	86.760000	407.680000	17.823580
6	0	124.010204	215.594595	117.027027	477.297297	24.574628
7	0	125.608407	209.649123	121.228070	443.280702	25.757314
8	1	107.745833	204.133333	83.466667	479.866667	22.956965
9	1	140.203922	188.593750	84.437500	457.250000	30.193759
10	1	122.792453	199.740741	108.481482	384.740741	23.018906
11	1	117.427907	191.185185	86.55556	429.703704	24.765567
12	1	130.966357	256.352113	166.683099	506.964789	18.462242
13	1	132.678821	259.126984	170.341270	519.912698	23.550458
14	1	132.678821	259.126984	170.341270	519.912698	23.550458
15	1	133.752976	179.714286	85.238095	387.809524	19.732221
16	0	116.948953	214.562500	127.750000	390.208333	23.070506
17	0	116.948953	214.562500	127.750000	390.208333	23.070506
18	1	136.441799	214.041667	115.250000	579.416667	17.010413
19	0	125.074803	254.812500	147.500000	388.250000	20.224424
20	1	144.107807	186.941176	77.352941	468.411765	20.468391
21	0	121.094203	219.423077	122.423077	536.000000	30.714471
22	1	136.566667	196.388889	86.666667	364.666667	24.784379
23	1	115.891228	220.333333	103.472222	588.361111	25.091484
24	0	132.506944	206.370370	109.259259	532.962963	28.781424
25	1	121.064669	189.125000	92.575000	289.975000	14.142047

	class	GLCM_pan	Mean_Green	Mean_Red	Mean_NIR	SD_pan
26	0	138.392265	200.235294	103.294118	431.411765	22.165312
27	1	124.080000	219.159091	98.250000	638.068182	22.000223
28	1	139.506749	231.156863	105.823529	780.784314	27.496055
29	1	99.159722	241.222222	116.777778	644.222222	34.628184
470	1	149.716216	253.071429	135.428571	319.142857	26.842796
471	1	135.904943	222.393939	98.818182	635.151515	32.129301
472	1	126.933472	193.540984	96.229508	270.557377	17.728733
473	1	134.956962	305.000000	176.320000	289.360000	9.795182
474	1	122.770206	184.750000	90.550000	218.000000	12.226610
475	1	138.525000	208.450000	90.750000	607.150000	43.524131
476	1	123.525630	234.780822	109.397260	767.397260	16.739334
477	1	122.798595	262.777778	129.407407	737.296296	26.681991
478	1	129.784114	261.290323	161.645161	405.161290	12.148406
479	1	117.109948	1848.916667	1594.583333	1597.333333	16.612412
480	1	141.306011	190.260870	92.043478	576.304348	20.342158
481	1	139.050810	210.017699	109.150443	248.309735	14.804609
482	1	127.230618	430.281250	293.645833	341.635417	12.076363
483	1	127.029581	180.714286	79.194805	171.935065	12.660559
484	1	115.222432	225.701492	106.567164	472.641791	13.556200
485	1	131.787703	237.703704	110.333333	722.166667	23.797298
486	1	127.531250	200.250000	82.750000	374.500000	20.197463
487	1	128.181522	244.680412	140.237113	414.608247	23.704575
488	1	125.428651	279.070175	189.166667	334.254386	8.140318
489	1	125.101695	245.066667	116.933333	681.800000	17.283775

	class	GLCM_pan	Mean_Green	Mean_Red	Mean_NIR	SD_pan
490	1	129.424000	180.750000	86.000000	218.500000	12.036241
491	1	128.040752	237.850000	185.350000	275.200000	20.480723
492	1	119.971591	204.818182	98.000000	482.454545	41.877231
493	1	133.545346	234.811321	133.471698	548.716981	22.544683
494	1	129.763716	217.977012	129.793103	228.850575	19.944003
495	1	123.554348	202.826087	106.391304	364.565217	17.314068
496	1	121.549028	276.220000	175.593333	402.620000	13.394574
497	1	119.076687	247.951219	113.365854	808.024390	24.830059
498	1	107.944444	197.000000	90.000000	451.000000	8.214887
499	1	119.731928	182.238095	74.285714	301.690476	22.944278

500 rows × 6 columns

```
In [18]: df tes.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 500 entries, 0 to 499
         Data columns (total 6 columns):
         class
                      500 non-null int64
         GLCM_pan 500 non-null float64
         Mean Green 500 non-null float64
                      500 non-null float64
         Mean Red
         Mean NIR
                      500 non-null float64
                      500 non-null float64
         SD pan
         dtypes: float64(5), int64(1)
         memory usage: 23.5 KB
In [19]: X_test=df_tes[['GLCM_pan', 'Mean_Green', 'Mean_Red', 'Mean_NIR', 'SD_pa
         n'11
         y_test=df_tes['class']
```

```
In [24]: | predict=lr.predict(X_test)
In [27]: from sklearn.metrics import classification report, confusion matrix
In [28]: print(classification_report(y_test,predict))
                      precision
                                   recall f1-score
                                                      support
                           0.82
                                               0.81
                   0
                                     0.80
                                                           187
                           0.88
                                     0.89
                                               0.89
                                                           313
         avg / total
                           0.86
                                     0.86
                                               0.86
                                                           500
In [29]: from sklearn.metrics import confusion matrix
In [30]: print(confusion_matrix(y_test,predict))
         [[150 37]
          [ 34 279]]
In [ ]:
```