Etapa Ensino Fundamental Anos Finais

Matemática

Volume de prismas e cilindros III

9º ANO Aula 22 – 4º Bimestre

 Volume de prismas e cilindros.

- Calcular o volume de prismas e cilindros;
- Resolver situações-problema envolvendo volume de prismas e cilindros.

Sabe essa?

Um aquário de vidro apresenta as seguintes dimensões: 30 cm x 26 cm x 50 cm. Determine, em litros, a capacidade desse aquário. Considere (1 dm 3 = 1 litro)

Sabe essa?

Um aquário de vidro apresenta as seguintes dimensões: 30 cm x 26 cm x 50 cm. Determine, em litros, a capacidade desse aquário. Considere (1 dm 3 = 1 litro)

Com base nas dimensões apresentadas, trata-se de um prisma retangular, cujo volume será: $30 \cdot 26 \cdot 50 = 39\,000\,\text{cm}^3$ ou **39 litros**.

Unidades de Medida de Volume							
Nome	Quilômetro cúbico	Hectômetro cúbico	Decâmetro cúbico	Metro cúbico	Decímetro cúbico	Centímetro cúbico	Milímetro cúbico
Símbolo	km³	hm³	dam³	m³	dm³	cm³	mm³
	1000 000 000 m ³	1000 000 m ³	1000 m³	1	0,001 m ³	0,000 001 m ³	0,000 000 001 m ³

Para calcular o volume de prismas e cilindros retos, utilizam-se fórmulas específicas, que variam de acordo com a forma do sólido. Vou apresentar as fórmulas para ambos:

 Volume do Prisma: Um prisma é um sólido tridimensional que possui duas bases poligonais paralelas idênticas e faces laterais retangulares (ou quadradas).

Volume do Prisma = Área da Base x Altura

 Volume do Cilindro: Um cilindro é um sólido tridimensional que possui duas bases circulares paralelas e uma superfície lateral curva.

Volume do Cilindro = Área da Base x Altura

Volume de prisma: $V_p = A_b \cdot h$

Volume de cilindro: $V_c = \pi r^2 h$

Todo mundo escreve

ATIVIDADE 1

Pretende-se construir uma piscina em formato de prisma retangular de 15 000 litros, com profundidade de aproximadamente 1,50 m. Dê uma sugestão de dimensões para esta piscina. 1 m³ = 1000 litros.

Na prática Correção

ATIVIDADE 1

Pretende-se construir uma piscina em formato de prisma retangular de 15 000 litros, com profundidade de aproximadamente 1,50 m. Dê uma sugestão de dimensões para esta piscina. 1 m³ = 1000 litros.

Resposta pessoal, mas segue uma sugestão:

Trata-se de um prisma retangular, no qual o produto do comprimento pela largura e pela profundidade deve ser 15 000 dm^3 ou 15 m^3 .

 $V = 1.5 \text{ m} \cdot 2 \text{ m} \cdot 5 \text{ m}$ $V = 15 \text{ m}^3$ V = 15 000 litros.

ATIVIDADE 2

Observe as três possibilidades de embalagem de uma marca de extrato de tomate.

Desprezando a espessura da embalagem, qual dessas embalagens permite embalar o maior volume de extrato de tomate? Justifique.

|≡||I Na prática *Correção*

ATIVIDADE 2

Observe as três possibilidades de embalagem de uma marca de extrato de tomate.

Desprezando a espessura da embalagem, qual dessas embalagens permite embalar o maior volume de extrato de tomate? Justifique.

Cilindro 1: r = 4 cm e h = 8 cm

$$V_{c1} = \pi \cdot 4^2 \cdot 8 = \pi \cdot 16 \cdot 8 = 128 \pi \ cm^3$$

Cilindro 2:
$$r = 2 cm$$
 e $h = 10 cm$

$$V_{c2} = \pi \cdot 2^2 \cdot 10 = \pi \cdot 4 \cdot 10 = 40\pi \ cm^3$$

Cilindro 3:
$$r = 1.5 cm e h = 9 cm$$

$$V_{c3} = \pi \cdot (1.5)^2 \cdot 9 = \pi \cdot 2.25 \cdot 9 = 20.25\pi \ cm^3$$

Aplicando

Elabore uma situação-problema envolvendo o volume de prismas e/ou cilindros e resolva-a. Troque com um colega, para resolverem a situação-problema um do outro. Ao final, as resoluções serão compartilhadas com seus colegas.

O que aprendemos hoje?

- Calcular o volume de prismas e cilindros;
- Resolver situações-problema envolvendo volume de prismas e cilindros.

Tarefa SP

Localizador: 101929

- 1. Professor, para visualizar a tarefa da aula, acesse com seu login: tarefas.cmsp.educacao.sp.gov.br
- 2. Clique em "Atividades" e, em seguida, em "Modelos".
- 3. Em "Buscar por", selecione a opção "Localizador".
- 4. Copie o localizador acima e cole no campo de busca.
- 5. Clique em "Procurar".

Videotutorial: http://tarefasp.educacao.sp.gov.br/

Referências

LEMOV, Doug. **Aula Nota 10 2.0**: 62 técnicas para melhorar a gestão da sala de aula. Porto Alegre: Penso, 2018.

PARANÁ (ESTADO). Secretaria da Educação. **Material de Apoio ao Professor**. Paraná, 2022.

SÃO PAULO (ESTADO). Secretaria da Educação. **Currículo Paulista do Ensino Fundamental**. São Paulo, 2019.

Referências

Lista de imagens e vídeos

Slides 3 e 4 – https://pixabay.com/pt/vectors/aqu%C3%A1rio-peixe-tanque-7469521/

Slides 5 e 6 – https://pixabay.com/pt/vectors/homem-professor-professor-wc3%b3culos-6719392/

Slides 9 e 10 – https://pixabay.com/pt/vectors/piscina-nata%C3%A7%C3%A3o-escada-ver%C3%A3o-149632/

Slides 11 e 12 -

https://drive.google.com/file/d/1e0dc1e4Y6jlHquvHCkOnRidoVYq2
fOFa/view

Demais imagens produzidas pelo autor.