Un repaso seneral a La conpetición de Velocistas

Rubén Espino San José

- La competición
- Tecnologías
- Referencias

La conperición

- Objetivo de la competición
- El circuito
- Los robots

OBJETIVO DE LA COMPETICIÓN

- Objetivo: ser el robot más rápido recorriendo el circuito
- Dos robots compiten en modo persecución hasta que uno alcanza al otro
- Clasificación previa a X vueltas para determinar cruces eliminatorios

EL CIRCUTO

- Lona de PVC simple con el circuito impreso
- Circuito cerrado de 2 líneas negras sobre fondo blanco
- Curvas amplias (mínimo 40 cm de radio) y rectas largas
- Posibilidad de cambiar de carril durante la competición

LOS ROBOTS

- Robots autónomos capaces de seguir la línea
- Sin comunicación inalámbrica durante la competición
- Indivisibles durante la competición
- 5 segundos de espera al arrancar
- Dimensiones máximas:
 - Largo: 30 cm
 - Ancho: 20 cm
 - Alto: 13 cm (no es relevante)
- Peso máximo: 2 Kg

TECNOLOGÍAS

- Tecnologías de los robots
 - Hardware
 - Mecánica
 - Firmware básico
- Proyectos de apoyo a realización

HARDUARE DE LOS ROBOTS

- Microcontrolador
- Motores
- Drivers de motores
- Sensores de línea
- Encoders
- Comunicación inalámbrica
- Baterías

MICROCONTROLABOR

- Arduino (ATMEL)
- ARM
- Cortex-ARM
 - STM32F0 F4
- PIC
- dsPIC
- •

MOTORES

- Tracción diferencial: cada motor es independiente y mueve una rueda
- Tipos:
 - Motores CC
 - Fácil funcionamiento
 - Problemas de escobillas
 - Consumo razonable
 - Motores brushless
 - Funcionamiento complejo
 - Sin escobillas y con mayor eficiencia
 - Consumo alto

DRIVERS DE MOTORES

- Para motores CC
 - Control con PWM
 - Aconsejable tecnología con MOSFET
 - Ejemplo: TB6612FNG
- Para motores brushless: ESC
 - Control con protocolos DSHOT y similares

sensores de Linea/Suelo

• CNY70

• QRE1113

• QRE1114

CODERS

Ópticos

A B leads A

A leads B

• De efecto Hall

conuncación inalámerica

- Muy útil e imprescindible para testear parámetros en tiempo real con el robot en movimiento
- Ejemplos:
 - Bluetooth HC-05
 - Módulo Wifi ESP8266

<u> Earerías de Livo-polímero</u>

- Alta capacidad de descarga
- Son peligrosas. No cortocircuitar ni golpear
- Celdas de 3,7V (llegan a 4,2V), no deben bajar de 3V
- Carga balanceada
- Cálculos de descarga y duración:
 - 2200 mAh * 25 C = 55 A (en continua)
 - 2200 mAh * 50 C = 110 A (en pico)
 - 60 min / 25 C = 2 min 24 s (a corriente máxima en continua)
 - Ejemplo a 5 A: (2 min 24 s) * 55 A / 5 A = 26 min 24 s

mecánica de los robots

- Dimensiones
- Peso y centro de masas
- Relación motriz
- Separación de sensores de línea
- Ruedas y adherencia
- Sistemas para aumentar la adherencia

DINENSIONES DEL ROBOT

- Distancia entre ruedas
 - Relación de compromiso entre velocidad de respuesta y agarre en curva
- Distancia entre el eje motriz y los sensores de línea
 - Relación de compromiso entre capacidad de respuesta y anticipación a las curvas

PESO Y CENTRO DE MASAS DEL ROBOT

Peso

- Demasiado pesado: mayor consumo, más lento, mayor inercia y peor respuesta
- Demasiado ligero: poco agarre en curvas

Centro de masas

- Demasiado adelantado: efecto péndulo en curvas
- Demasiado atrasado: caballito en aceleraciones

RELACIÓN MOTRIZ

- Reductora de motores y diámetro de las ruedas
 - Mayor diámetro de rueda o menor reductora -> Menos fuerza y más velocidad
 - Menor diámetro de rueda o mayor reductora -> Más fuerza y menos velocidad

			6000 RPM	2 oz-in	5:1 HP 6V	5:1 HP 6V dual-shaft
6 V	high-power (HP) (same specs as 6V HPCB above)	1600 mA	3000 RPM	4 oz-in	10:1 HP 6V	10:1 HP 6V dual-shaft
			1000 RPM	9 oz-in	30:1 HP 6V	30:1 HP 6V dual-shaft
			625 RPM	15 oz-in	50:1 HP 6V	50:1 HP 6V dual-shaft
			400 RPM	22 oz-in	75:1 HP 6V	75:1 HP 6V dual-shaft
			320 RPM	30 oz-in	100:1 HP 6V	100:1 HP 6V dual-shaft
			200 RPM	40 oz-in	150:1 HP 6V	150:1 HP 6V dual-shaft
			140 RPM	50 oz-in	210:1 HP 6V	210:1 HP 6V dual-shaft
			120 RPM	60 oz-in	250:1 HP 6V	250:1 HP 6V dual-shaft
			100 RPM	70 oz-in	298:1 HP 6V	298:1 HP 6V dual-shaft
			32 RPM	125 oz-in	1000:1 HP 6V	1000:1 HP 6V dual-shaft

separación de sensores de Línea

- La incertidumbre en el cálculo de posición es función de:
 - La función de transferencia del sensor
 - La separación entre sensores
 - La altura de los sensores
 - La amplitud del haz del led

RUEDAS Y ADHERENCIA

- Tipos de rueda que suelen utilizarse:
 - Goma o silicona: se ensucian rápido
 - Espuma: no agarran suficiente

SISTEMAS PARA AUMENTAR LA ADHERENCIA

- Se utilizan para ganar velocidad en curva
- Se emplea:
 - Motor/es brushless
 - Turbina/hélices
 - Driver ESC

FIRMURE BÁSICO DE LOS ROBOTS

- Calibración de los sensores
- Seguimiento de línea con PID
- Calibración del PID

CALIBRACIÓN DE LOS SENSORES

- Detectar las diferentes líneas
 - Lectura analógica de sensores (0-1023 para ADC de 10 bits)
 - Calibrado inicial en estático para calcular umbrales de cada sensor
 - Al correr, digitalizar según umbrales

SEGUINIENTO DE LÍNEA CON PID

- Algoritmo que se emplea para <u>contrarrestar los</u> <u>efectos de las perturbaciones</u> en un sistema lineal
- Compuesto de las siguientes partes:
 - Proporcional
 - Detecta el error proporcional
 - Corrección de posición
 - Integral
 - Detecta el error acumulado
 - Oposición a las perturbaciones
 - Derivativo
 - Detecta la variación del error proporcional
 - Corrección de velocidad
- Desarrollo detallado del PID para el seguimiento de línea

CALIBRACIÓN DEL PID

- Pasos para calibrar un PID manualmente:
 - 1. Poner todas las K's a cero
 - 2. Ir aumentando poco a poco Kp
 - 3. Cuando el robot empiece a cabecear, bajar un poco el valor de Kp y dejarlo fijo
 - 4. Realizar los pasos 2 y 3 para calibrar Kd
- La respuesta varía si se modifica la velocidad lineal del robot, por lo que habrá que realizar el cálculo de las K's para cada velocidad
- Posibles respuestas:
 - <u>Subamortiguado</u>
 - Sobreamortiguado
 - Amortiguamiento crítico

PROYECTOS DE APOYO A REALIZACIÓN

- Generador de circuitos en Octave
- Cronómetro:
 - Toma de tiempos de vueltas y parciales
 - Contador de vueltas
 - Enlace entre módulos
 - Enlace vía Wifi con PC y overlay
- Overlay desarrollado por Bricolabs

REFERENCIAS

- Normativa y algunos kits open source:
 Open RoboSports
- Proyectos relacionados
 - Cyclops-Project
 - Basic circuit maker
 - <u>time2time</u>
- Charlas relacionadas
 - Charla Malakabot 2017 sobre control PID
 - Charla de Javier Baliñas en Granabot 2018 sobre elección de motores
 - <u>Mis presentaciones</u> (diapositivas y enlaces a vídeos)

REFERENCIAS

- GitHub
 - Rubén Espino: Resaj
- Facebook
 - <a>@pumaprideteam

- Twitter
 - Rubén Espino: oRugidoDePuma
 - Javier Baliñas: <a>®supernudo
 - Javier Isabel: @JavierIH
 - Alejandra Guardo: <a>@AlejandraSaku

GRACIAS POR VUESTRA ATENCIÓN ©

