# Layer initialization and transfer learning

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf Senior Data Science Content Developer, DataCamp





#### Layer initialization

```
import torch.nn as nn

layer = nn.Linear(64, 128)
print(layer.weight.min(), layer.weight.max())
```

```
(tensor(-0.1250, grad_fn=<MinBackward1>), tensor(0.1250, grad_fn=<MaxBackward1>))
```

- A layer weights are initialized to small values
- Keeping both the input data and layer weights small ensures stable outputs

#### Layer initialization

```
import torch.nn as nn

layer = nn.Linear(64, 128)
nn.init.uniform_(layer.weight)

print(custom_layer.fc.weight.min(), custom_layer.fc.weight.max())
```

```
(tensor(0.0002, grad_fn=<MinBackward1>), tensor(1.0000, grad_fn=<MaxBackward1>))
```

#### Transfer learning

- Reusing a model trained on a first task for a second similar task
  - Trained a model on US data scientist salaries
  - Use weights to train on European salaries

```
import torch

layer = nn.Linear(64, 128)
torch.save(layer, 'layer.pth')

new_layer = torch.load('layer.pth')
```

#### Fine-tuning

- A type of transfer learning
  - Smaller learning rate
  - Train part of the network (we freeze some of them)
  - o Rule of thumb: freeze early layers of network and fine-tune layers closer to output layer

# Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



# Evaluating model performance

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



Jasmin Ludolf

Senior Data Science Content Developer, DataCamp



#### Training, validation and testing

• A dataset is typically split into three subsets:

|            | Percent of data | Role                              |
|------------|-----------------|-----------------------------------|
| Training   | 80-90%          | Adjusts model parameters          |
| Validation | 10-20%          | Tunes hyperparameters             |
| Test       | 5-10%           | Evaluates final model performance |

• Track loss and accuracy during training and validation

#### Calculating training loss

#### For each epoch:

- Sum the loss across all batches in the dataloader
- Compute the mean training loss at the end of the epoch

```
training_loss = 0.0
for inputs, labels in trainloader:
   # Run the forward pass
    outputs = model(inputs)
   # Compute the loss
    loss = criterion(outputs, labels)
   # Backpropagation
    loss.backward() # Compute gradients
    optimizer.step() # Update weights
    optimizer.zero_grad() # Reset gradients
   # Calculate and sum the loss
   training_loss += loss.item()
epoch_loss = training_loss / len(trainloader)
```

#### Calculating validation loss

```
validation loss = 0.0
model.eval() # Put model in evaluation mode
with torch.no_grad(): # Disable gradients for efficiency
 for inputs, labels in validationloader:
    # Run the forward pass
     outputs = model(inputs)
    # Calculate the loss
     loss = criterion(outputs, labels)
     validation loss += loss.item()
epoch_loss = validation_loss / len(validationloader) # Compute mean loss
model.train() # Switch back to training mode
```

#### Overfitting





#### Calculating accuracy with torchmetrics

```
import torchmetrics
# Create accuracy metric
metric = torchmetrics.Accuracy(task="multiclass", num_classes=3)
for features, labels in dataloader:
    outputs = model(features) # Forward pass
    # Compute batch accuracy (keeping argmax for one-hot labels)
    metric.update(outputs, labels.argmax(dim=-1))
# Compute accuracy over the whole epoch
accuracy = metric.compute()
# Reset metric for the next epoch
metric.reset()
```

# Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



# Fighting overfitting

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



#### **Jasmin Ludolf**

Senior Data Science Content Developer, DataCamp



#### Reasons for overfitting

- Overfitting: the model does not generalize to unseen data
  - Model memorizes training data
  - Performs well on training data but poorly on validation data
- Possible causes:

| Problem                     | Solutions                             |
|-----------------------------|---------------------------------------|
| Dataset is not large enough | Get more data / use data augmentation |
| Model has too much capacity | Reduce model size / add dropout       |
| Weights are too large       | Weight decay                          |

#### Fighting overfitting

#### Strategies:

- Reducing model size or adding dropout layer
- Using weight decay to force parameters to remain small
- Obtaining new data or augmenting data

#### "Regularization" using a dropout layer

Randomly zeroes out elements of the input tensor during training

```
tensor([[1.4655, 0.0000, 0.0000, 0.8456]], grad_fn=<MulBackward0>)
```

- Dropout is added **after** the activation function
- Behaves differently in training vs. evaluation use model.train() for training and model.eval() to disable dropout during evaluation

#### Regularization with weight decay

```
optimizer = optim.SGD(model.parameters(), lr=0.001, weight_decay=0.0001)
```

- Controlled by the **weight\_decay** parameter in the optimizer, typically set to a small value (e.g., **0.0001**)
- Weight decay encourages smaller weights by adding a penalty during optimization
- Helps reduce overfitting, keeping weights smaller and improving generalization

#### Data augmentation



# Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



# Improving model performance

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



Jasmin Ludolf
Senior Data Science Cont

Senior Data Science Content Developer, DataCamp



#### Steps to maximize performance

- Can we solve the problem?
- Set a performance baseline

Increase performance on the validation set

Achieve the best possible performance

Step 1:

Overfit the training set

Step 2:

Reduce overfitting

Step 3:

Fine-tune the hyperparameters



#### Step 1: overfit the training set

Modify the training loop to overfit a single data point

```
features, labels = next(iter(dataloader))
for i in range(1000):
   outputs = model(features)
   loss = criterion(outputs, labels)
   optimizer.zero_grad()
   loss.backward()
   optimizer.step()
```

- Should reach 1.0 accuracy and 0 loss
- Then scale up to the entire training set
  - Keep default hyperparameters

#### Step 2: reduce overfitting

- Goal: maximize the validation accuracy
- Experiment with:
  - Dropout
  - Data augmentation
  - Weight decay
  - Reducing model capacity

Keep track of each hyperparameter and validation accuracy



#### Step 2: reduce overfitting

#### Original model overfitting training data



#### Updated model with too much regularization





#### Step 3: fine-tune hyperparameters

Grid search

```
for factor in range(2, 6):
    lr = 10 ** -factor
```



Random search

```
factor = np.random.uniform(2, 6)
lr = 10 ** -factor
```



# Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



### Wrap-up video

INTRODUCTION TO DEEP LEARNING WITH PYTORCH



#### Jasmin Ludolf

Senior Data Science Content Developer, DataCamp



#### Summary

- Chapter 1
  - Discovered deep learning
  - Created small neural networks
  - Discovered linear layers
- Chapter 2
  - Used loss and activation functions
  - Calculated derivatives
  - Use backpropagation

#### Chapter 3

- Trained a neural network
- Played with learning rate and momentum
- And learned about their impact
- Chapter 4
  - Strategies to improve your model
  - Reduced overfitting
  - Evaluated model performance

#### Next steps

- Course
  - Intermediate Deep Learning with PyTorch
  - Explainable Al in Python
- Learn
  - Probability and statistics
  - Linear algebra
  - Calculus

- Practice
  - Pick a dataset on Kaggle
  - Detecting Cybersecurity Threats using
     Deep Learning
  - Train a neural network
- Create
  - Use deep learning to make an app

# Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

