

Unriased Estimators

Why

1

Definition

Consider a random variable $x: \Omega \to \mathbb{R}^n$. The error of the estimate $\xi \in \mathbb{R}^n$ is the random variable $e: \Omega \to \mathbb{R}^n$ which is defined by $e(\omega) = x(\omega) - \xi$. The *bias* of an estimate is the expected value of the error. An estimate is *unbiased* if it has zero bias.

Likewise, if we have another random variable $y: \Omega \to \mathbb{R}^m$, then the error of the estimator $f: \mathbb{R}^m \to \mathbb{R}^n$ is the random variable $e: \Omega \to \mathbb{R}^n$ defined by $e(\omega) = f(x(\omega)) - y(\omega)$.

¹Future editions will include an account.

