Alternating Direction Method of Multipliers

Prof S. Boyd

EE364b, Stanford University

source:

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers (Boyd, Parikh, Chu, Peleato, Eckstein)

Goals

robust methods for

- ► arbitrary-scale optimization
 - machine learning/statistics with huge data-sets
 - dynamic optimization on large-scale network
- decentralized optimization
 - devices/processors/agents coordinate to solve large problem, by passing relatively small messages

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Dual problem

convex equality constrained optimization problem

minimize
$$f(x)$$
 subject to $Ax = b$

Lagrangian:
$$L(x,y) = f(x) + y^T(Ax - b)$$

dual function: $q(y) = \inf_x L(x,y)$

- ▶ dual function: $g(y) = \inf_x L(x, y)$

minimize
$$f(x)$$
 Dual ascent
gradient method: $\chi^{h+1} = \chi^{k} - J^{k} \partial f(\chi^{h})$

- ▶ gradient method for dual problem: $y^{k+1} = y^k + \alpha^k \nabla g(y^k)$
- ▶ $\nabla g(y^k) = A\tilde{x} b$, where $\tilde{x} = \operatorname{argmin}_x L(x, y^k)$
- ► dual ascent method is

$$\begin{cases} x^{k+1} &:= \operatorname{argmin}_x L(x,y^k) & // x\text{-minimization} \\ y^{k+1} &:= y^k + \alpha^k (Ax^{k+1} - b) & // \text{dual update} \end{cases}$$

► works, with lots of strong assumptions

Dual decomposition

Lagrandian:
$$L(X,Y) = f(X) + YAX - Y^b$$

• suppose f is separable:

$$f(x) = f_1(x_1) + \dots + f_N(x_N), \quad x = (x_1, \dots, x_N)$$

▶ then L is separable in x: $L(x,y) = L_1(x_1,y) + \cdots + L_N(x_N,y) - y^T b$,

$$L_i(x_i, y) = f_i(x_i) + y^T A_i x_i$$

x-minimization in dual ascent splits into N separate minimizations

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} L_i(x_i, y^k)$$

which can be carried out in parallel

Dual decomposition

▶ dual decomposition (Everett, Dantzig, Wolfe, Benders 1960–65)

$$x_i^{k+1} := \operatorname{argmin}_{x_i} L_i(x_i, y^k), \quad i = 1, \dots, N$$

$$y^{k+1} := y^k + \alpha^k (\sum_{i=1}^N A_i x_i^{k+1} - b)$$

- \blacktriangleright scatter y^k ; update x_i in parallel; gather $A_i x_i^{k+1}$
- ► solve a large problem
 - by iteratively solving subproblems (in parallel)
 - dual variable update provides coordination
- works, with lots of assumptions; often slow

(AF) X2

XX

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Method of multipliers

- a method to robustify dual ascent
- ▶ use **augmented Lagrangian** (Hestenes, Powell 1969), $\rho > 0$

$$L_{\rho}(x,y) = f(x) + y^{T}(Ax - b) + (\rho/2)||Ax - b||_{2}^{2}$$

method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

$$x^{k+1} := \underset{x}{\operatorname{argmin}} L_{\rho}(x, y^{k})$$
$$y^{k+1} := y^{k} + \rho(Ax^{k+1} - b)$$

(note specific dual update step length ρ)

Method of multipliers dual update step

$$\nabla f(x^{\star}) + A^T y^{\star} = 0$$

(primal and dual feasibility)

 \blacktriangleright since x^{k+1} minimizes $L_{\rho}(x,y^k)$

- - primal feasibility achieved in limit: $Ax^{k+1} b \rightarrow 0$

Method of multipliers

(compared to dual decomposition)

• good news: converges under much more relaxed conditions (f can be nondifferentiable, take on value $+\infty$, ...)

► bad news: quadratic penalty destroys splitting of the x-update, so can't do decomposition

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Alternating direction method of multipliers

- ► a method **0**
 - with good robustness of method of multipliers
 - which can support decomposition
- "robust dual decomposition" or "decomposable method of multipliers"
- proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

Alternating direction method of multipliers

 \blacktriangleright ADMM problem form (with f, g convex)

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

- two sets of variables, with separable objective

Alternating direction method of multipliers

- lacktriangleright if we minimized over x and z jointly, reduces to method of multipliers
- ▶ instead, we do one pass of a Gauss-Seidel method
- lacktriangleright we get splitting since we minimize over x with z fixed, and vice versa

ADMM and optimality conditions

$$L(X,2,4)=f(x)+g(2)+y'(AX+B2-C)$$
optimality conditions (for differentiable case): [kk1 conditions]

- primal feasibility: Ax + Bz c = 0- dual feasibility: $\nabla f(x) + A^T y = 0$, $\nabla g(z) + B^T y = 0$ > since z^{k+1} minimizes $L_{\rho}(x^{k+1}, z, y^k)$ we have

- dual feasibility condition
- primal and first dual feasibility are achieved as $k \to \infty$

ADMM with scaled dual variables

combine linear and quadratic terms in augmented Lagrangian

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_{2}^{2}$$

$$= f(x) + g(z) + (\rho/2) ||Ax + Bz - c + u||_{2}^{2} + \text{const.}$$
with $u^{k} = (1/\rho)y^{k}$ ||AX+B2-C+U||_{2}^{2} = /|AX+B2-C||_{2}^{2}
$$= 2U^{T}(AX+B2-C) + (|u||_{2}^{2})$$
ADMM (scaled dual form):

$$\begin{cases} x^{k+1} & := & \underset{x}{\operatorname{argmin}} \left(f(x) + (\rho/2) \| Ax + Bz^k - c + u^k \|_2^2 \right) \\ z^{k+1} & := & \underset{z}{\operatorname{argmin}} \left(g(z) + (\rho/2) \| Ax^{k+1} + Bz - c + u^k \|_2^2 \right) \\ u^{k+1} & := & u^k + (Ax^{k+1} + Bz^{k+1} - c) \end{cases}$$

Convergence

- ► assume (very little!)
 - f, g convex, closed, proper
 - L_0 has a saddle point
- ► then ADMM converges:

 - Iterates approach feasibility: $Ax^k + Bz^k c \to 0$ objective approaches optimal value: $f(x^k) + g(z^k) \to p^\star$

Related algorithms

- operator splitting methods
 (Douglas, Peaceman, Rachford, Lions, Mercier, ... 1950s, 1979)
 - proximal point algorithm (Rockafellar 1976)
 - ▶ Dykstra's alternating projections algorithm (1983)
 - ► Spingarn's method of partial inverses (1985)
 - ► Rockafellar-Wets progressive hedging (1991)
 - proximal methods (Rockafellar, many others, 1976-present)
 - ► Bregman iterative methods (2008–present)
 - most of these are special cases of the proximal point algorithm

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Common patterns

- x-update step requires minimizing $f(x)+(\rho/2)\|Ax-v\|_2^2$ (with $v=Bz^k-c+u^k$, which is constant during x-update)
 - ▶ similar for z-update
 - several special cases come up often
 - can simplify update by exploit structure in these cases

reproximal algorithms", by N. Parikh and S. Boyd

Foundations and Trands in optimizations

Decomposition

 \triangleright suppose f is block-separable,

$$f(x) = f_1(x_1) + \dots + f_N(x_N), \qquad x = (x_1, \dots, x_N)$$

- $f(x) = f_1(x_1) + \dots + f_N(x_N), \qquad x = (x_1, \dots, x_N)$ A is conformably block separable: A^TA is block diagonal
- \blacktriangleright then x-update splits into N parallel updates of x_i

Proximal operator

ightharpoonup consider x-update when A=I

$$x^{+} = \underset{x}{\operatorname{argmin}} \left(f(x) + (\rho/2) \|x - v\|_{2}^{2} \right) = \underset{x}{\operatorname{prox}}_{f,\rho}(v)$$

► some special cases:

$$f = I_C \text{ (indicator fct. of set } C) \qquad x^+ := \Pi_C(v) \text{ (projection onto } C)$$

$$\sum_i f = \lambda \|\cdot\|_1 \text{ (ℓ_1 norm) (Sub-glashed)} \qquad x^+_i := S_{\lambda/\rho}(v_i) \text{ (soft thresholding)}$$

$$(S_a(v) = (v-a)_+ - (-v-a)_+)$$

subgradients: We say g is a subgradient of that the point x f(2)2+(x)+91(2-x), b2 a linear global under-estimate of t - the set of all subgradients of t at X is called the subdifferential of + at X, denoted by 2+1x)

example:
$$f(x) = |x|$$

example:
$$|| - novm|$$

$$+(x) = ||x||_{L^{2}} = \frac{y}{||x||} = \frac{y}{||x||} ||x||_{L^{2}} = \frac{y}{||x||} = \frac{y}{||x||} ||x||_{L^{2}} = \frac{y}{||x||} = \frac{y}{||x||}$$

 X^{\dagger} = and min $\{+|X|+\frac{1}{2}||X-V||_{2}^{2}\}$ = proxy (V) is the proximal operator + any convex + unition +In this case, $+|+(X)|=|X||X||_{1}$, (-norm)to minimize $|X||=|X||X||_{1}$ $+|X||=|X||X||_{2}^{2}=|X||_{2}^{2}=|X||_{2}^$

Proof: => YY, g(y) 7, g(x*) => g(y) 2, g(x*) +0 (y- x*) =) of 29(x*) Eit ot ag(x*), g(y) / g(x*) to. (/- x*) =) g(y) 2g(x*), by Based on O, and 28(x)=P(X-V) + 3 (x11X11/1) =) Of ((x*-v) + 2 [x ||x*||1) A gt x* >0, x/x* => 2(xi)=> 2(xi)=> => X* = V: - = > V: > = > pla it @X*=0, \1Xi]=-AXi=> DIXIXi)=-A Xi=Vi+20=) V: <- 2

Place
$$X_{i}^{*}=0, \ \partial[\lambda]X_{i}^{*}]) \in [-\lambda, \lambda]=)$$

$$V_{i} \in [-\frac{\lambda}{e}, \frac{\lambda}{e}]$$

equivalent form:

$$S_{4}(V_{i}) = (V_{i} - d)_{4} - (-V_{i} - d)_{4}$$

Quadratic objective

$$f(x) = (1/2)x^T P x + q^T x + r$$

▶ use matrix inversion lemma when computationally advantageous

$$(P + \rho A^{T} A)^{-1} = P^{-1} - \rho P^{-1} A^{T} (I + \rho A P^{-1} A^{T})^{-1} A P^{-1}$$

- (direct method) cache factorization of $P + \rho A^T A$ (or $I + \rho A P^{-1} A^T$)
- (iterative method) warm start, early stopping, reducing tolerances

Smooth objective

- ightharpoonup f smooth
- can use standard methods for smooth minimization
 - gradient, Newton, or quasi-Newton
 - preconditionned CG, limited-memory BFGS (scale to very large problems)
- ► can exploit
 - warm start
 - early stopping, with tolerances decreasing as ADMM proceeds

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Constrained convex optimization

consider ADMM for generic problem

► algorithm:

$$\begin{array}{lll} x^{k+1} & := & \displaystyle \mathop{\rm argmin}_x \left(f(x) + (\rho/2) \| x - z^k + u^k \|_2^2 \right) \\ z^{k+1} & := & \displaystyle \Pi_{\mathcal{C}} \underbrace{\left(x^{k+1} + u^k \right)}_{x} \\ u^{k+1} & := & \displaystyle u^k + x^{k+1} - z^{k+1} \end{array}$$

Examples

Lasso

► lasso problem:

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$

► ADMM form:

minimize
$$(1/2)\|Ax-b\|_2^2 + \lambda \|z\|_1$$
 subject to
$$x-z=0$$

► ADMM:

$$\begin{array}{ll} x^{k+1} & := & (A^TA + \rho I)^{-1}(A^Tb + \rho z^k - y^k) \\ z^{k+1} & := & S_{\lambda/\rho}(x^{k+1} + y^k/\rho) \quad \text{and} \quad \text{the shalling} \\ y^{k+1} & := & y^k + \rho(x^{k+1} - z^{k+1}) \end{array}$$

Homogeous self-dual embedding system: $\frac{1}{1} \cdot \text{ind} \quad (u, v)$ Subject to v = Qu $(u, v) \in C \times C^*$ YDWW form: minimise Icxc* (U.v) + Iqu=v (Ü, J)
abject to Iu. .11 - 127 ~1 Subject to $(u, v) = (\widetilde{u}, \widetilde{v})$ J APMM algorithm $\begin{cases}
\widetilde{U}^{(+)} = (2 + Q)^{-1} \left(U^{k} + U^{k} \right) - \text{subspace projection} \\
U^{(+)} = I_{C} \left(\widetilde{u}^{(+)} - U^{k} \right) - \text{parallel cone projection} \\
U^{(+)} = U^{k} - \widetilde{u}^{(+)} + U^{(+)} \left(U = G \times G \times \cdots \times G n \right)
\end{cases}$ " sonic optimization via operator splitting and homogenous self-duck embedding" by grendan.

Lasso example

▶ example with dense $A \in \mathbf{R}^{1500 \times 5000}$ (1500 measurements; 5000 regressors)

► computation times

factorization (same as ridge regression)	1.3s
subsequent ADMM iterations	0.03s
lasso solve (about 50 ADMM iterations)	2.9s
full regularization path (30 λ 's)	4.4s

▶ not bad for a *very short* Matlab script

Sparse inverse covariance selection

- ▶ S: empirical covariance of samples from $\mathcal{N}(0,\Sigma)$, with Σ^{-1} sparse (i.e., Gaussian Markov random field)
- lacksquare estimate Σ^{-1} via ℓ_1 regularized maximum likelihood

minimize
$$\mathbf{Tr}(SX) - \log \det X + \lambda ||X||_1$$

▶ methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)

Sparse inverse covariance selection via ADMM

► ADMM form:

minimize
$$\mathbf{Tr}(SX) - \log \det X + \lambda ||Z||_1$$
 subject to $X - Z = 0$

► ADMM:

$$X^{k+1} := \underset{X}{\operatorname{argmin}} \left(\mathbf{Tr}(SX) - \log \det X + (\rho/2) \|X - Z^k + U^k\|_F^2 \right)$$

$$Z^{k+1} := \underbrace{S_{\lambda/\rho}(X^{k+1} + U^k)}_{X} \quad \Delta$$

$$U^{k+1} := U^k + (X^{k+1} - Z^{k+1})$$

Analytical solution for X-update

- lacktriangle compute eigendecomposition $ho(Z^k-U^k)-S=Q\Lambda Q^T$
- Form diagonal matrix \tilde{X} with

$$\tilde{X}_{ii} = \frac{\lambda_i + \sqrt{\lambda_i^2 + 4\rho}}{2\rho}$$

- $\blacktriangleright \text{ let } X^{k+1} := Q\tilde{X}Q^T$
- ightharpoonup cost of X-update is an eigendecomposition

Sparse inverse covariance selection example

 Σ^{-1} is 1000×1000 with 10^4 nonzeros

- graphical lasso (Fortran): 20 seconds 3 minutes
- ADMM (Matlab): 3 10 minutes
- (depends on choice of λ)
- very rough experiment, but with no special tuning, ADMM is in ballpark of recent specialized methods
- (for comparison, COVSEL takes 25+ min when Σ^{-1} is a 400×400 tridiagonal matrix)

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Consensus optimization

 \blacktriangleright want to solve problem with N objective terms

minimize
$$\sum_{i=1}^{N} f_i(x)$$

- e.g., f_i is the loss function for ith block of training data
- ► ADMM form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$
 subject to $x_i - z = 0$ if, ..., N

- $-x_i$ are local variables -z is the global variable
- $-x_i z = 0$ are consistency or consensus constraints
 - can add regularization using a g(z) term

Consensus optimization via ADMM

$$L_{\rho}(x,z,y) = \sum_{i=1}^{N} \left(f_i(x_i) + y_i^T(x_i - z) + (\rho/2) ||x_i - z||_2^2 \right)$$

► ADMM:

$$\mathcal{O} \quad x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT}(x_i - z^k) + (\rho/2) \|x_i - z^k\|_2^2 \right)
\mathcal{O} \quad z^{k+1} := \frac{1}{N} \sum_{i=1}^{N} \left(x_i^{k+1} + (1/\rho) y_i^k \right)
y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - z^{k+1})$$

lacktriangle with regularization, averaging in z update is followed by $\mathbf{prox}_{g,
ho}$

Consensus optimization via ADMM

$$\text{ using } \sum_{i=1}^N y_i^k = 0, \text{ algorithm simplifies to }$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT}(x_i - \overline{x}^k) + (\rho/2) \|x_i - \overline{x}^k\|_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1})$$

where
$$\overline{x}^k = (1/N) \sum_{i=1}^N x_i^k$$

- in each iteration
 - gather x_i^k and average to get \overline{x}^k
 - scatter the average \overline{x}^k to processors
 - update y_i^k locally (in each processor, in parallel)
 - update x_i locally

Statistical interpretation

- \blacktriangleright f_i is negative log-likelihood for parameter x given ith data block
- $ightharpoonup x_i^{k+1}$ is MAP estimate under prior $\mathcal{N}(\overline{x}^k + (1/\rho)y_i^k, \rho I)$
- ightharpoonup prior mean is previous iteration's consensus shifted by 'price' of processor i disagreeing with previous consensus
- processors only need to support a Gaussian MAP method
 - type or number of data in each block not relevant
 - consensus protocol yields global maximum-likelihood estimate

Consensus classification

- ▶ data (examples) (a_i, b_i) , i = 1, ..., N, $a_i \in \mathbb{R}^n$, $b_i \in \{-1, +1\}$
- ▶ linear classifier $sign(a^Tw + v)$, with weight w, offset v
- \blacktriangleright margin for ith example is $b_i(a_i^Tw+v)$; want margin to be positive
- ▶ loss for *i*th example is $l(b_i(a_i^Tw + v))$
 - -l is loss function (hinge, logistic, probit, exponential, ...)
- ► choose w, v to minimize $\frac{1}{N} \sum_{i=1}^{N} l(b_i(a_i^T w + v)) + r(w)$
 - r(w) is regularization term (ℓ_2, ℓ_1, \dots)
- split data and use ADMM consensus to solve

Consensus SVM example

- ▶ hinge loss $l(u) = (1 u)_+$ with ℓ_2 regularization
- ▶ baby problem with n = 2, N = 400 to illustrate
- ► examples split into 20 groups, in worst possible way: each group contains only positive or negative examples

Iteration 1

Iteration 5

Iteration 40

Distributed lasso example

- ▶ example with **dense** $A \in \mathbf{R}^{400000 \times 8000}$ (roughly 30 GB of data)
 - distributed solver written in C using MPI and GSL
 - no optimization or tuned libraries (like ATLAS, MKL)
 - split into 80 subsystems across 10 (8-core) machines on Amazon EC2
- ► computation times

loading data 30s

factorization 5m

subsequent ADMM iterations 0.5–2s

lasso solve (about 15 ADMM iterations) 5–6m

Exchange problem

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$
 subject to
$$\sum_{i=1}^{N} x_i = 0$$

- ► another canonical problem, like consensus
- ▶ in fact, it's the dual of consensus
- lacktriangledown can interpret as N agents exchanging n goods to minimize a total cost
- \blacktriangleright $(x_i)_j \ge 0$ means agent i receives $(x_i)_j$ of good j from exchange
- ▶ $(x_i)_j < 0$ means agent i contributes $|(x_i)_j|$ of good j to exchange
- \blacktriangleright constraint $\sum_{i=1}^{N} x_i = 0$ is equilibrium or market clearing constraint
- \blacktriangleright optimal dual variable y^* is a set of valid prices for the goods
- ightharpoonup suggests real or virtual cash payment $(y^{\star})^T x_i$ by agent i

Exchange ADMM

solve as a generic constrained convex problem with constraint set

$$\mathcal{C} = \{ x \in \mathbf{R}^{nN} \mid x_1 + x_2 + \dots + x_N = 0 \}$$

► scaled form:

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - x_i^k + \overline{x}^k + u^k\|_2^2 \right)$$

 $u^{k+1} := u^k + \overline{x}^{k+1}$

▶ unscaled form:

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y^{kT} x_i + (\rho/2) \|x_i - (x_i^k - \overline{x}^k)\|_2^2 \right)$$
$$y^{k+1} := y^k + \rho \overline{x}^{k+1}$$

Interpretation as tâtonnement process

- ► tâtonnement process: iteratively update prices to clear market
- work towards equilibrium by increasing/decreasing prices of goods based on excess demand/supply
- dual decomposition is the simplest tâtonnement algorithm
- ► ADMM adds proximal regularization
 - incorporate agents' prior commitment to help clear market
 - convergence far more robust convergence than dual decomposition

Distributed dynamic energy management

- ▶ N devices exchange power in time periods t = 1, ..., T
- $ightharpoonup x_i \in \mathbf{R}^T$ is power flow *profile* for device i
- $ightharpoonup f_i(x_i)$ is cost of profile x_i (and encodes constraints)
- \blacktriangleright $x_1 + \cdots + x_N = 0$ is energy balance (in each time period)
- dynamic energy management problem is exchange problem
- exchange ADMM gives distributed method for dynamic energy management
- ► each device optimizes its own profile, with quadratic regularization for coordination
- residual (energy imbalance) is driven to zero

Generators

- ► 3 example generators
- ▶ left: generator costs/limits; right: ramp constraints
- ► can add cost for power changes

Fixed loads

- ► 2 example fixed loads
- ightharpoonup cost is $+\infty$ for not supplying load; zero otherwise

Shiftable load

- ▶ total energy consumed over an interval must exceed given minimum level
- limits on energy consumed in each period
- \blacktriangleright cost is $+\infty$ for violating constraints; zero otherwise

Battery energy storage system

- ► energy store with maximum capacity, charge/discharge limits
- ► black: battery charge, red: charge/discharge profile
- ightharpoonup cost is $+\infty$ for violating constraints; zero otherwise

Electric vehicle charging system

- black: desired charge profile; blue: charge profile
- shortfall cost for not meeting desired charge

HVAC

- ▶ thermal load (e.g., room, refrigerator) with temperature limits
- magenta: ambient temperature; blue: load temperature
- ► red: cooling energy profile
- ightharpoonup cost is $+\infty$ for violating constraints; zero otherwise

External tie

- ▶ buy/sell energy from/to external grid at price $p^{\text{ext}}(t) \pm \gamma(t)$
- ▶ solid: $p^{\text{ext}}(t)$; dashed: $p^{\text{ext}}(t) \pm \gamma(t)$

Smart grid example

10 devices (already described above)

- ► 3 generators
- ▶ 2 fixed loads
- ▶ 1 shiftable load
- ▶ 1 EV charging systems
- ► 1 battery
- ▶ 1 HVAC system
- ▶ 1 external tie

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

- \blacktriangleright left: solid: optimal generator profile, dashed: profile at kth iteration
- ightharpoonup right: residual vector \bar{x}^k

Outline

Dual decomposition

Method of multipliers

Alternating direction method of multipliers

Common patterns

Examples

Consensus and exchange

Conclusions

Summary and conclusions

ADMM

- ▶ is the same as, or closely related to, many methods with other names
- ▶ has been around since the 1970s
- gives simple single-processor algorithms that can be competitive with state-of-the-art
- can be used to coordinate many processors, each solving a substantial problem, to solve a very large problem