

SI 670: Applied Machine Learning Linear Regression Overfitting

Grant Schoenebeck

Last time

- Work flow: features, estimator, evaluation, repeat
- k-NN classifiers
- Feature normalization

Class plan

- Supervises Learning Assumptions
- k-NN regression
- Linear Regression
- Cross-validation
- Feature Expansion
- Overfitting and underfitting

Supervised Learning

Supervised Learning

Goal:

- 1) take data with labels and train a classifier / regressor
- 2) Using classifier on data with no labels.

Type of Supervised Learning

Three Types (for this class):

- 1) Classification: output is predicted class
- 2) Soft Classification: output is distribution over classes
 - A combination of the other two
- 3) Regression: Output is a real number
- 4) More general types possible:
 - 1) sentence diagram,
 - 2) list of search results
 - *3) Etc.*

Supervised Learning

Goal:

- 1) take data with labels and train a classifier / regressor
- 2) Using classifier on data with no labels.

BIG ASSUMPTION: the training data looks like the testing data.

BIG ASSUMPTION training data testing data

When does this hold?

When does this not hold?

Big (Assumption) Failures

- Financial Crisis
 - Assumed housing prices would always go up.
 - Assumed independence in CDOs.
- Google Flu Trends
- Adversarial Settings:
 - Flash Crashes on Stock Market
- Feedback Loop:
 - Facebook Engagement

Think, Pair, Share

- You are interested machine learning to grade student's problem sets (a dubious proposition to begin with). You grade a random 50% of the submissions. You train a learner on 50% of the graded assignments. Its mean squared error is X on the remaining 50% of graded assignments. You expect the error on the 50% ungraded assignments to be:
- A) More than X
- B) Equal to X
- C) Less than X

Follow-Up

• Now say you train your ML grader on the first 5 problem sets. It only had error X on the held out data. You then would like to run it on future problem sets. You expect the error to be:

- A) More than X
- B) Equal to X
- C) Less than X

Supervised Learning Justifications

Empirical Risk Minimization:

- Fix loss function
- Chose the predictor from a set the minimizes error on training data (actual).
- Hope that it generalizes to test data (ideal).

Maximum Likelihood Estimator:

- In Bayesian Environment, chose the predictor that is most likely given the training data.

Regularization:

- Explicitly prefer "simpler" classifiers.

Maximum Likelihood Estimation

- Given p(y|w,x)
- Compute p(w | x, y) via Bayes rule
 - p(w|x,y) = p(w|x)p(y|w,x)/p(y|x)
 - p(w|x,y) p(y|w,x) p(w|x)
- Gives distribution for w
- Take mode = MLE
 - p(w|x,y) p(y|w,x) assuming all w equally likely

K-NN for Regression

K-NN for Regression

- What if we wanted to predict a continuous quantity given a fruit representation?
 - Say the height given the width.
- Could we somehow apply k-nearest neighbors to regression instead of classification?
- Yes! How?

k-Nearest Neighbors Regression

Linear Regression

Linear Models

- <u>Linear model</u>: predicts target with weighted sum of features
- Example: predicting housing prices
 - House features: taxes per year (), age in years ()

=

- A house with feature values (,) of (10 000, 75) would have a predicted selling price of:

= 1,152,000

Linear Regression is an Example of a Linear Model

Input instance – feature vector: =

Predicted output:

Parameters to estimate:

: feature weights/
model coefficients
/ intercept

A Linear Regression Model with one Variable (Feature)

Mean Squared Error

 residual sum of squares: the sum of squared differences between predicted target and actual target values.

- Goal: Minimize RSS
- Side note: Residuals are helpful in evaluation!

Pair of pairs

- Two justifications:
 - Empirical Risk Minimization
 - Maximum Likelihood Estimator
- Two ways to compute

Maximum Likelihood Estimation

- Given p(y|w,x)
 - Example: $p(y|w,x) = Normal \ (mean \ wx, \ var \ \sigma^2)$
- Compute p(w | x, y) via Bayes rule
 - p(w|x,y) = p(w|x)p(y|w,x)/p(y|x)
 - p(w|x,y) p(y|w,x)
- Gives distribution for w
- Take mode = MLE
- MLE minimizes RSS on above example (regardless of σ^2).

Computation

- $W = (X^TX)^{-1}(X^TY)$
 - X, Y are inputs and outputs
 - "Min" Xw-Y
 - No constant term, just use input 1
- Can do matrix multiplication
- Can just use stochastic gradient descent
 - More on this later in the course
 - Typically faster

Least-Squares Linear Regression in Scikit-Learn

from sklearn.linear_model import LinearRegression
linreg = LinearRegression().fit(X_train, y_train)

Linear Regression

- Intuition
 - Linear!
- Parameters
 - Fit bias term (if so, then can normalize)
- Evaluation
 - What are ways you can see what happening?

Least-Squares Linear Regression in Scikit-Learn

The R² ('r-squared') Regression Score

- Measures how well a prediction model for regression fits the given data.
- The score is between 0 and 1:
 - A value of 0 corresponds to a constant model that predicts the mean value of all training target values.
 - A value of 1 corresponds to perfect prediction
- Also known as 'coefficient of determination"
 - Fraction of variance explained

Regression metrics

• Typically r2_score is enough

- Reminder: computes how well future instances will be predicted
- Best possible score is 1.0
- Constant prediction score is 0.0

Alternative metrics include:

- mean_absolute_error (absolute difference of target & predicted values)
- mean_squared_error (squared difference of target & predicted values)
- median_absolute_error (robust to outliers)

Residuals

Look at Xw-Y

- Distribution
- Outliers
- Is there a pattern? Is your prediction systematically off?

Cross-validation

Interlude

Cross-validation

- Uses multiple train-test splits, not just a single one
- Each split used to train & evaluate a separate model
- Why is this better?

random_state	Test set		
	accuracy		
0	1.00		
1	0.93		
5	0.93		
7	0.67		
10	0.87		

Accuracy of k-NN classifier (k=5) on fruit data test set for different random_state values in train_test_split.

Cross-validation Example (5-fold)

Original dataset		Model 1	Model 2	Model 3	Model 4	Model 5
	Fold 1	Test	Train	Train	Train	Train
	Fold 2	Train	Test	Train	Train	Train
	Fold 3	Train	Train	Test	Train	Train
	Fold 4	Train	Train	Train	Test	Train
	Fold 5	Train	Train	Train	Train	Test

Stratified Cross-validation

fruit_label	fruit_name		
1	Apple		
2	Mandarin		
3	0range		
4	Lemon		

(Folds and dataset shortened for illustration purposes.)

Example has 20 data samples

= 4 classes with 5 samples each.

5-fold CV: 5 folds of 4 samples each.

Fold 1 uses the first 20% of the dataset as the test set, which only contains samples from class 1.

Classes 2, 3, 4 are missing entirely from test set and so will be missing from the evaluation.

Stratified Cross-validation

Leave-one-out cross-validation (with *N* **samples in dataset)**

k-fold Cross Validation

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

Graphic courtesy of Andrew W. Moore: https://www.autonlab.org/tutorials

k-fold Cross Validation

Quadratic Regression MSE_{3FOLD}=1.11

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

K-fold Cross Validation

Code to run

Think, Pair, Share

- In 10 fold cross validation, how many different predictors are learned?
 - A) One, all the changes is the test set
 - B) Nine, you learn one for each fold not in the test set.
 - C) Ten, you a different predictor to test each of the ten folds

Linear versus k-NN Regression

k-Nearest Neighbors Regression

K-NN Regression vs Least-Squares Linear

k-NN (k=7)

Regression

LS linear

R-squared score (training): 0.720

R-squared score (training): 0.679 R-squared score (test): 0.492

Linear versus k-NN Regression

Linear Regression

- Few parameters
- Can learn from few points
- Generalizes beyond points

K-NN regression

- Non-parametric
- Requires many point
 - especially in high dimensions
- Limited generalization

Datasets

Scikit-Learn Data Sets

- Two types of internal data sets:
 - Empirical
 - Synthetic
- Can also load external data from file.

Loading from scikit-learn: Bunch objects

```
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()

The resulting object from scikit-learn is a Bunch object, similar to a dictionary.
dict_keys(['DESCR', 'data', 'target_names', 'target',
'feature_names'])
You can also request the dataset be split for you into X and y:

(X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)
```

Some datasets have a key 'DESCR' that contains a more detailed description.

scikit-learn.datasets (Toy problems)

data.
ısin

scikit-learn can easily create randomized synthetic datasets for you

Regression problems

```
- make_regression(...)
```


Simple Regression Dataset using make_regression

Synthetic classification problems with make_classification

```
from sklearn.datasets import make_classification
plt.figure()
plt.title('Sample binary classification problem with two informative
features')
X_C2, y_C2 = make_classification(n_samples = 100, n_features=2,
                                 n redundant=0, n informative=2,
                                 n clusters per class=1, flip y = 0.1,
                                 class sep = 0.5, random state=0)
plt.scatter(X_{C2}[:, 0], X_{C2}[:, 1], c=y_{C2},
           marker= 'o', s=50, cmap=cmap_bold)
plt.show()
```


Simple Binary Classification Dataset

More complex classification problems with make_blobs

Complex Binary Classification Dataset

Real World Data Sets

6.3. Real world datasets

scikit-learn provides tools to load larger datasets, downloading them if necessary.

They can be loaded using the following functions:

·····y ·······························	
<pre>fetch_olivetti_faces ([data_home, shuffle,])</pre>	Load the Olivetti faces data-set from AT&T (classification).
fetch_20newsgroups ([data_home, subset,])	Load the filenames and data from the 20 newsgroups dataset (classification).
fetch_20newsgroups_vectorized ([subset,])	Load the 20 newsgroups dataset and vectorize it into token counts (classification).
fetch_lfw_people ([data_home, funneled,])	Load the Labeled Faces in the Wild (LFW) people dataset (classification).
<pre>fetch_lfw_pairs ([subset, data_home,])</pre>	Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
fetch_covtype ([data_home,])	Load the covertype dataset (classification).
fetch_rcv1 ([data_home, subset,])	Load the RCV1 multilabel dataset (classification).
fetch_kddcup99 ([subset, data_home, shuffle,])	Load the kddcup99 dataset (classification).
<pre>fetch_california_housing ([data_home,])</pre>	Load the California housing dataset (regression).

Communities and Crime Dataset

	population	householdsize	agePct12t21	agePct12t29	agePct16t24	agePct65up	numbUrban	pctUrban	medIncome	pctWWage	 MedRentF
0	11980	3.10	12.47	21.44	10.93	11.33	11980	100.0	75122	89.24	 23.8
1	23123	2.82	11.01	21.30	10.48	17.18	23123	100.0	47917	78.99	 27.6
2	29344	2.43	11.36	25.88	11.01	10.28	29344	100.0	35669	82.00	 24.1
3	16656	2.40	12.55	25.20	12.19	17.57	0	0.0	20580	68.15	 28.7
5	140494	2.45	18.09	32.89	20.04	13.26	140494	100.0	21577	75.78	 26.4
6	28700	2.60	11.17	27.41	12.76	14.42	28700	100.0	42805	79.47	 24.4
7	59459	2.45	15.31	27.93	14.78	14.60	59449	100.0	23221	71.60	 26.3
8	74111	2.46	16.64	35.16	20.33	8.58	74115	100.0	25326	83.69	 25.2
9	103590	2.62	19.88	34.55	21.62	13.12	103590	100.0	17852	74.20	 29.6
10	31601	2.54	15.73	28.57	15.16	14.26	31596	100.0	24763	73.92	 23.8

Input features: socio-economic data by location from U.S. Census

Target variable:
Per capita violent crimes

Derived from the original UCI dataset at:

https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

from adspy_shared_utilities import load_crime_dataset
crime = load_crime_dataset()

Loading from external data files

```
• Use pandas read table to create a data frame from a local file
 fruits = pd.read_table('fruit_data_with_colors.txt')
• Use Python urllib, plus NumPy loadtxt to read files on the Web
 # Load the Pima Indians diabetes dataset from CSV URL
 import numpy as np
 import urllib
 # URL for the Pima Indians Diabetes dataset (UCI Machine Learning Repository)
 url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
 # download the file
 raw data = urllib.urlopen(url)
 # load the CSV file as a numpy matrix
 dataset = np.loadtxt(raw_data, delimiter=",")
 # separate the data from the target attributes
 X = dataset[:,0:7]
 y = dataset[:,8]
See UCI Machine Learning Repository for more "classic" datasets
https://archive.ics.uci.edu/ml/index.php
```


Feature Expansion

Polynomial Features with Linear Regression

$$\mathbf{x} =$$
 $\mathbf{x}' =$

- Generate new features consisting of all polynomial combinations of the original two features .
- The *degree* of the polynomial specifies how many variables participate at a time in each new feature (above example: degree 2)
- This is still a weighted linear combination of features, so it's <u>still a linear model</u>, and can use same least-squares estimation method for w and b.

Least-Squares Polynomial Regression

Polynomial Features with Linear Regression

- Why would we want to transform our data this way?
 - To capture interactions between the original features by adding them as features to the linear model.
 - To make a classification problem easier (we'll see this later).
- Beware of polynomial feature expansion with high as this can lead to complex models that overfit
 - Thus, polynomial feature expansion is often combined with a regularized learning method like ridge regression.
- Later: other transformations to create new features.

Think, Pair, Share

- If you have 6 features and augment them to degree 2 polynomial features, how many features will you have?
- A) 6
- B) 28
- C) 36
- D) 6!

Overfitting/Underfitting

Nearest Neighbors Classification (k=1)

Nearest Neighbors Classification (k=11)

Generalization, Overfitting, and Underfitting

- <u>Generalization ability</u> refers to an algorithm's ability to give accurate predictions for new, previously unseen data.
- Assumptions:
 - Future unseen data (test set) will have the same properties as the current training sets.
 - Thus, models that are accurate on the training set are expected to be accurate on the test set.
 - But that may not happen if the trained model is tuned too specifically to the training set.
- Models that are too complex for the amount of training data available are said to <u>overfit</u> and are not likely to generalize well to new examples.
- Models that are too simple, that don't even do well on the training data, are said to <u>underfit</u> and also not likely to generalize well.

Overfitting in regression

```
In [123]: | from sklearn.linear model import LinearRegression
              from sklearn.preprocessing import PolynomialFeatures
              num points = 10
              W = np.arange(0, 1, .001)
              X = np.random.rand(num points)
              noise = np.random.rand(num points)
              Y = X*X*X*X - 1*X*X*X + 1*X*X - 1*X - 10 + noise/10
              reg = LinearRegression()
              poly = PolynomialFeatures(9)
              X poly = poly.fit transform(X.reshape(-1, 1))
              W poly = poly.transform(W.reshape(-1, 1))
              reg.fit(X poly, Y.reshape(-1, 1))
              Z = reg.predict(W poly)
              plt.figure()
              plt.title('some points')
              plt.scatter(X, Y, color = 'b', marker= 'o', s=50)
              plt.scatter(W, Z, c= 'r', marker= 'o', s=2)
   Out[123]: <matplotlib.collections.PathCollection at 0x1a4dc332b3
                                     some points
                -20
                -40
                -60
                -80
               -100
                             0.2
                                                            10
```

```
In [128]: | from sklearn.linear model import LinearRegression
              from sklearn.preprocessing import PolynomialFeatures
              num points = 10
              W = np.arange(0, 1, .001)
              X = np.random.rand(num points)
              noise = np.random.rand(num points)
             Y = X*X*X*X - 1*X*X*X + 1*X*X - 1*X - 10 + noise/10
              reg = LinearRegression()
              poly = PolynomialFeatures(4)
              X poly = poly.fit transform(X.reshape(-1, 1))
              W poly = poly.transform(W.reshape(-1, 1))
              reg.fit(X poly, Y.reshape(-1, 1))
              Z = reg.predict(W poly)
              plt.figure()
              plt.title('some points')
              plt.scatter(X, Y, color = 'b', marker= 'o', s=50)
             plt.scatter(W, Z, c= 'r', marker= 'o', s=2)
```

Out[128]: <matplotlib.collections.PathCollection at 0x1a4dc57fd68>

Overfitting in classification

Feature 2

Feature 1

Overfitting with k-NN classifiers

Where is the best model? (x-axis, model complexity)

The relationship between model complexity and training/test performance

Detecting overfitting and underfitting

Detecting overfitting and underfitting

Dangerous overfitting situations

- Your estimator has lots of parameters to be estimated, but you have a small dataset.
 - Linear regression: have at least 2 samples per "feature" (independent variable)
 - Logistic regression: have at least 5-10 samples per "feature"

Ways to reduce (but not eliminate!) likelihood of overfitting

- Use <u>cross-validation</u> to get better estimates of training and test set error.
- Use <u>regularization</u> to restrict the complexity of the model (coming up).
- Check for <u>data leakage</u> of label info into training set (coming up).

Stats vs ML

• (If time)