Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Modulo web per la gestione di tickets in un contesto bancario - fintech

Tesi di laurea

Relate	ore	
Prof.	Paolo	Baldan

Laureando Fabio Pantaleo

Anno Accademico 2022-2023

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Paolo Baldan, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Ringrazio il mio tutor aziendale Roberto per avermi trasmesso con tenacia e passione le conoscenze del settore.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute. In particolar modo, ringrazio una ragazza speciale che mi è stata vicina durante questi anni.

Padova, Settembre 2023

Fabio Pantaleo

Sommario

L'obiettivo del presente documento è mostrare il lavoro svolto durante il periodo di stage, dal laureando Fabio Pantaleo, presso l'azienda CWBI.

Lo scopo principale del progetto è analizzare uno dei rami del CRM^[g]: il ticketing^[g]. Il primo passo per lo sviluppo del modulo web relativo al ticketing l'analisi del problema con la conseguente raccolta dei requisiti primari in modo tale da elaborare i casi d'uso della nostra applicazione. Questa prima fase è molto importante per il ciclo di vita del nostro prodotto in quanto rappresenta la base di partenza per la costruzione del nostro modello di dati. Le prime funzionalità individuate sono la creazione, modifica ed eliminazione di un ticket da parte di un utente.

In prossimo passo è andare a definire in che modo l'utente si interfaccia con le funzioni del modulo e quindi con quali componenti, anche visive, deve interagire per raggiungere lo scopo che si è prefissato.

Durante questo periodo è iniziata un ulteriore fase di analisi per introdurre nuove funzionalità, come il commento in tempi asincroni di un ticket da diverse utenti, che arricchiscono il modulo. L'ultimo obiettivo è gestire il tipo di utente che utilizza il modulo per offrire diverse feature in base al livello di autorizzazione che un utente possiede.

L'IDE^[g] utilizzato è Eclipse e il linguaggio per lo sviluppo del Model^[g] è java, supportato da vari framework (struts2, maven, hibernate, Spring, JEE/ Spring, ecc...). Per il front-end sono utilizzati invece: HTML5, css3, Bootstrap, jsp.

Indice

1	Intr	roduzione	1
	1.1	L'azienda	1
	1.2	Tecnologie utilizzate	1
	1.3	Organizzazione del testo	2
2	Des	crizione del sistema attuale	3
3	Des	scrizione dello stage	4
	3.1	Introduzione al progetto	4
	3.2	Analisi preventiva dei rischi	4
	3.3	Requisiti e obiettivi	4
	3.4	Pianificazione	4
4	Ana	alisi dei requisiti	5
	4.1	Casi d'uso	5
	4.2	Tracciamento dei requisiti	6
5	Pro	gettazione e codifica	8
	5.1	Tecnologie e strumenti	8
	5.2	Ciclo di vita del software	8
	5.3	Progettazione	8
	5.4	Design Pattern utilizzati	8
	5.5	Codifica	8
6	Ver	ifica e validazione	9
7	Cor	nclusioni	10
	7.1	Consuntivo finale	10
	7.2	Raggiungimento degli obiettivi	10
	7.3	Conoscenze acquisite	10
	7.4	Valutazione personale	10
A	App	pendice A	11
Bi	blios	grafia	13

Elenco delle figure

1.1	CWBI
4.1	Use Case - UC0: Scenario principale

Elenco delle tabelle

4.1	Tabella del tracciamento dei requisti funzionali	7
4.2	Tabella del tracciamento dei requisiti qualitativi	7
4.3	Tabella del tracciamento dei requisiti di vincolo	7

Introduzione

1.1 L'azienda

CWBI una società italiana di sviluppo software specializzata nella fornitura di soluzioni internet e mobile per banche, assicurazioni e industria. Opera nel mercato dell' **Information Communication Technology** e fornisce ai propri clienti un supporto nello studio dei *modelli business* e nella progettazione e realizzazione di software orientati alle ultime tecnologie in questo campo.

CWBI offre una vasta gamma di servizi quali:

- Sviluppo applicazioni e portali web-based
- Sviluppo applicazioni mobile
- Analisi e definizione dei processi organizzativi
- Studi di navigabilità e usabilità

Figura 1.1: CWBI

1.2 Tecnologie utilizzate

Nello sviluppo dei propri prodotti, CWBI si occupa sia della parte di $back-end^{[g]}$ sia della parte di $front-end^{[g]}$. Per la prima, è utilizzato Java^[g]come linguaggio di programmazione, supportato dai vari $framework^{[g]}$; mentre per la parte destinata alla vista del cliente, sono utilizzati:

- HTML5^[g];
- $Css^{[g]}$;
- Boostrap3/5^[g];

• JSP^[g].

Affiancata anche questa da framework come:

- JSTL^[g];
- Struts2^[g];
- Taconite^[g].

Per tracciare gli interventi relativi al codice, l'azienda si avvale di un sistema di $versionamento^{[g]}$ con una $repository^{[g]}$ in remoto, accessibile grazie a un toolkit di Java: SVNKit^[g].

1.3 Organizzazione del testo

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- \bullet per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[\mathrm{g}]};$
- i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere *corsivo*.

Descrizione del sistema attuale

CWBI ha sviluppato CWGEST $^{[g]}$, un'applicazione usata internamente all'azienda per la gestione, l'organizzazione e il tracciamento delle interazioni con utenti esterni, clienti e non, che supporta il personale offrendo una way of working. L'applicazione è divisa in due menu:

- •
- •

Ogni sezione ha all'interno diversi moduli, rispettivamente: pincopallino

- Administration Module;
- User Registration Module;
- User Menu Module;
- Tracking Module.

I moduli presenti in questo menu servono per la gestione di CWGEST e offrono funzionalità come la registrazione di nuovi utenti per accedere all'applicazione. Tutti questi moduli sono riservati all'utente amministratore e quindi non visibili all' utente generico.

pincopallino

•

Alcuni dei moduli di quest' ultimo menu non sono attivi oppure c'è il bisogno, da parte dell'azienda, di eseguire un'operazione di $refactoring^{[g]}$ su quelli attualmente in funzione, con l'obiettivo di estendere l'utilizzo dell'applicazione ad agenti esterni come, ad esempio, un cliente.

Descrizione dello stage

3.1 Introduzione al progetto

Visto i bisogni dell'azienda, l'obiettivo del modulo **Ticket** è quello di offrire un portale su cui gli utenti registrati, possono aprire, prendere in carico, assegnare ed eliminare dei ticket.

Il modulo è stato pensato sì per i dipendenti interni di CWBI, ma vuole offrire anche ai clienti un modo di segnalare in modo facile e veloce un qualsiasi tipo di problema sulle applicazioni utilizzate. Così anche per CWBI è semplice vedere chi e quando ha inviato una segnalazione, in modo da assegnare un dipendente per trovare una soluzione. Inoltre per rendere più interattivo il gestionale ed avere un riscontro su quali operazioni sono state effettuate sul ticket, ogni utente potrà lasciare dei commenti in modo da far capire a chi prenderà in carico il ticket, a quale fase della soluzioni è arrivato.

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UCO: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'IDE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = funzionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia 2

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Bibliografia