Set Theory Cheatsheet 1

1.1 Терминология и обозначения

* Множество — неупорядоченный набор уникальных элементов.

Set

* Множество может быть задано с помощью:

- Set-builder notation
- \circ перечисления элементов: $\{a_1, a_2, \dots, a_n\}$ множество, состоящее из n элементов a_1, a_2, \dots, a_n . Urelement 42
- Например, {□, 🖈, 42} множество, содержащее квадрат, кошку (или кота) и число 42. \circ характеристического свойства: $\{x \mid P(x)\}$ — множество элементов, обладающих **свойством** P.
 - Predicate

• Например, $\{x \in \mathbb{N} \mid x - \text{простое}\}$ — множество простых чисел.

Prime number

* \mathfrak{U} — универсальное множество (универсум).

Empty set Universal set

* $x \in A$ — элемент x **принадлежит** множеству A.

Element

- $0.1 \in \{1, 2, 3\}$
- $\square \in \{\triangle, \square, \bigcirc\}$
- $1.25 \in \mathbb{O}$
- $2 \in \{x \in \mathbb{N} \mid x \text{простое}\}\$
- * $x \notin A$ элемент x **не принадлежит** множеству A.
 - o 9 ∉ {1, 2, 3}
- $\not \in \{\Box, 42, \{\not \in \}\}$
- $\pi \notin \mathbb{Q}$
- $42 \notin \{x \in \mathbb{N} \mid x \text{простое}\}\$
- * $A \subseteq B$ множество A является **подмножеством** множества B, т.е. $\forall x: x \in A \rightarrow x \in B$. $\circ \{a,b\} \subseteq \{a,b,c\}$ $\{\{42\}\}\subseteq \{\{42\}\}$ $\{\bigcirc, \square\} \nsubseteq \{a, \bigcirc, 9\}$ $\{5\} \not\subseteq \{7, \{5\}\}$
- Subset
- * $A \subset B$ множество A является **строгим подмножеством** множества B, т.е. $A \subseteq B$ и $A \ne B$. \circ {*c*} \subset {*a*, *b*, *c*}
 - {42} ⊄ {42}
- $\{9, A\} \not\subset \{a, 0, 9\}$
- {5} ⊄ {7, {5}}
- Strict subset
- *~A=B— множества A и B содержат одинаковые элементы, т.е. $\forall x:x\in A \leftrightarrow x\in B.$ $\circ \{\triangle, a, \{5\}\} = \{a, \{5\}, \triangle\}$

* $\emptyset = \{\}$ — **пустое** множество.

- $\{2,\{\Box,\Box,\Box\},2\}=\{2,\{\Box\}\}$
- $\{6,\emptyset\} \neq \{6\}$

1.2 Операции над множествами

* |A| — **мощность** множества A (число элементов).

Cardinality

Extensionality

- $\circ |\{4, \Box, d\}| = 3$
- - $|\{1, 9, 9, 9, 1\}| = 2$ $|\{\{a, b, c\}, \{3, 5, 9\}\}| = 2$ $|\{1, \{2, 3, 4, \{5\}\}\}| = 2$
- * $2^A = \mathcal{P}(A) = \{X \mid X \subseteq A\}$ булеан множества A (множество всех подмножеств). $\circ \ \mathcal{P}(\{1,\Box,\varnothing\}) = \{\varnothing,\ \{1\},\{\Box\},\{\varnothing\},\ \{1,\Box\},\{1,\varnothing\},\{\Box,\varnothing\},\ \{1,\Box,\varnothing\}\}\}$
- **Powerset**

 $*A \cap B = \{x \mid x \in A \land x \in B\}$ — пересечение множеств A и B.

Intersection

* $A \cup B = \{x \mid x \in A \lor x \in B\}$ — объединение множеств A и B.

- Union Set difference
- * $A \setminus B = A \cap \overline{B} = \{x \mid x \in A \land x \notin B\}$ разность множеств A и B (дополнение A до B).

* $\overline{A} = \mathfrak{U} \setminus A = \{x \in \mathfrak{U} \mid x \notin A\}$ — дополнение (до универсума) множества A.

- Complement
- $*A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ декартово произведение множеств A и B.
- * $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ симметрическая разность множеств A и B. Symmetric difference
- * $A_1 \times ... \times A_n = \{(a_1, ..., a_n) \mid a_i \in A_i, i \in [1; n]\}$ n-арное декартово произведение множеств $A_1, ..., A_n$.
- Cartesian product

- n sets
- * $A^n = \underbrace{A \times \ldots \times A}_{n \text{ раз}} = \{\underbrace{(a_1, \ldots, a_n)}_{n \text{-кортеж}} \mid a_i \in A, \ i \in [1; n]\}$ декартова степень множества A.
- **Tuple**

De Morgan's laws

Absorption law

1.3 Некоторые свойства и законы

* Свойства операций над множествами ($\forall A$):

 $2^{\emptyset} = {\emptyset}$

- $A \cup \emptyset = A$ $A\cap\varnothing=\varnothing$ $A \cup \mathfrak{U} = \mathfrak{U}$ $A \cap \mathfrak{U} = A$
- $A \triangle \emptyset = A$
- $A \triangle \mathfrak{U} = \overline{A}$
- $A \triangle A = \emptyset$

- $A \cup A = A$ $A \cap A = A$ $A \cup \overline{A} = \mathfrak{U}$ $A \cap \overline{A} = \emptyset$
- $A \triangle \overline{A} = \mathfrak{U}$
- $\overline{\mathfrak{U}} = \emptyset$
- $\overline{A} = A$ $\overline{\varnothing} = \mathfrak{U}$ $|2^A| = 2^{|A|}$ $|\emptyset| = 0$

 $|\mathbb{N}| = |\mathbb{Q}| = \aleph_0$

 $\emptyset \subseteq A$

- $|A^n| = |A|^n$
- $|\mathbb{R}| = \mathfrak{c} = |2^{\mathbb{N}}| = \beth_1 \quad |A \times B| = |A| \cdot |B|$ $A^0 = \{()\}$
- $\circ \ \overline{A \cap B} = \overline{A} \cup \overline{B}$ * Законы поглошения:

 $\circ \ \overline{A \cup B} = \overline{A} \cap \overline{B}$

* Законы де Моргана:

- $\circ A \cup (A \cap B) = A$
- $\circ A \cap (A \cup B) = A$
- * Мистические законы: $\circ A \cup (A \cap B) = A \cup B$
 - $\circ A \cap (\overline{A} \cup B) = A \cap B$

Build time: 2024-03-05 16:29:55Z

Диаграммы Венна

Venn diagram

На предоставленной слева диаграмме Венна для трёх множеств A, B, C и универсума $\mathfrak U$ области отмечены номерами. Для заданного списка областей нарисуйте диаграмму Венна и составьте соответствующую формулу, используя термы $A, B, C, \overline{A}, \overline{B}, \overline{C}$ и операторы \cup , \cap .

1.
$$S(1, 4, 6, 8) = S(1, 4, 6) + S(8) = \text{// Wolfram //}$$

= // $S(1, 4, 6) = A$ without ABC ,

$$= (A - ABC) + \overline{A + B + C} =$$

$$= A\overline{ABC} + \overline{A + B + C} =$$

$$= A \cdot (\overline{A} + \overline{B} + \overline{C}) + \overline{A} \cdot \overline{B} \cdot \overline{C} =$$

$$= A\overline{A} + A\overline{B} + A\overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C} =$$

$$= \overline{B} \cdot (A + \overline{A} \cdot \overline{C}) + A\overline{C} =$$

$$= \overline{B} \cdot (A + \overline{C}) + A\overline{C} =$$

$$= A \cdot \overline{B} + \overline{B} \cdot \overline{C} + A \cdot \overline{C}$$

$$S(8)=$$
 outside of $(A+B+C)$ // = $A-ABC$) + $\overline{A+B+C}=$ $A-ABC$) + $\overline{A+B+C}=$ $A-ABC$ $A+B+C=$ $A+B+C=$ $A+B+C=$ $A+B+C=$ $A+B+C=$ $A+B+C=$ $A+AB+AC+A+B+C=$ $A+AB+AC+A+B+C=$ $A+AB+AC+A+C=$ $A+AB+AC+A+C=$ $A+AB+AC+A+C=$ $A+AB+AC=$ $A+AB+AC=$ $A+AB+AC=$ $A+AB+AC=$ $A+AB+AC=$ $A+AB+AC=$ $A+AB=$ $A+AB$

$$= \|S(1,6) = A \text{ without } AB,$$

$$S(5) = BC \text{ without } ABC \| =$$

$$= (A - AB) + (BC - ABC) =$$

$$= A\overline{AB} + BC\overline{ABC} =$$

$$= A \cdot (\overline{A} + \overline{B}) + BC \cdot (\overline{A} + \overline{B} + \overline{C}) =$$

$$= A\overline{A} + A\overline{B} + \overline{ABC} + BC\overline{B} + BC\overline{C} =$$

$$= A\overline{B} + \overline{ABC}$$

$$= AB + \overline{ABC}$$

Декартово произведение множеств на плоскости \mathbb{R}^2

\mathbb{R}^2 coordinate space

Декартово произведение двух множеств – множество пар. Если представить, что такие пары – элементы пространства \mathbb{R}^2 (точки на плоскости), то возможна следующая геометрическая интерпретация:

