Transmissão de informação através do teletransporte quântico

Icaro Souza Fonzar

Introdução

Ciência da computação

A ciência da computação ganha grande foco nos anos 40, com os conflitos

mundiais que ocorrem pelo mundo inteiro.

Investimentos pesados para tentar obter vantagem estratégica.

Alan Turing e o computador Pilot ACE Fonte:

https://www.mathworks.com/company/newsletters/articles/alan-turing-and-his-connections-to-matlab.html, acesso em 24 jan 2017

Teoria da informação

Ao mesmo tempo, a teoria da informação surge com as publicações de Claude Shannon e Warren Weaver em 1948 e 1949.

Conhecidas como "Teoria matemática da comunicação"

Introduziram pela primeira vez o **bit**.

Questionamentos:

- Como transmitir informação?
- Como proteger a informação sendo transmitida?

Representação visual de uma sequência de bits Fonte: http://s.hswstatic.com/gif/bytes-ch.jpg, acesso em 24 jan 2017

Mecânica quântica

Subdivisão da física que surge para tentar explorar o comportamento de sistemas pequenos, onde a física newtoniana não se aplicava mais.

Em 1982, Richard P. Feynman apresenta ao mundo a possibilidade de se aplicar esta área à computação.

Átomo de hidrogênio

Fonte:

http://www.sciencekids.co.nz/images/pictures/chemistry/hydrogenatom.jpg, acesso em 24 jan 2016

Computação quântica

Ganhou destaque de verdade em 1994, quando Peter Shor apresentou um algoritmo que, se utilizando de um computador quântico, poderia fatorar números grandes **com facilidade**. Tarefa, na qual, o tempo de execução cresce exponencialmente em um computador clássico.

quântica?

Por que estudar computação

Moore previu em 1965 que os computadores dobrariam sua capacidade de processamento (transistores) a cada ano.

Fonte: http://www.codeodor.com/images/moores_law_technological_evolution.jpg

Acesso em 25 jan. 2017

Pesquisadores indicam que a lei de Moore está chegando ao seu fim.
Os processadores não conseguem mais crescer como fizeram nos últimos 50 anos.

Economist.com/graphicdetail

Fonte: http://www.economist.com/blogs/economist-explains/2015/04/economist-explains-17, acesso em 25 jan. 2016

Apesar dos sistemas computacionais estarem chegando em seu limite, os problemas a serem resolvidos não estão.

É fundamental que o poder computacional continue seu crescimento.

Solução?

A computação quântica é a alternativa mais cotada para substituir a computação clássica.

Objetivos

Objetivo geral

Estudar como sistemas quânticos podem se comunicar e meios para que a transmissão de informação.

Implementar uma simulação de transmissão de informação quântica através do teletransporte quântico e analisar como o processo é influenciado por ruídos.

Objetivos específicos

- Estudar e aprender sobre computação quântica, um campo ainda não amplamente explorado;
- Estudar e aprender sobre como ocorre a transmissão de informação quântica;
- Implementar no ambiente Matlab o processo de teletransporte quântico;
- Implementar ruídos no processo;
- Executar rodadas de testes para estudar a influência do ruído na transmissão;
- Apresentar os resultados obtidos;
- Disponibilizar os códigos-fonte ao público interessado para que este possa contribuir com pesquisas futuras.

Ferramentas

Matlab

- Software proprietário;
- Ambiente de execução otimizado para manipular e realizar operações com matrizes (abundantes na computação quântica);
- Linguagem simples de desenvolvimento;
- Vasta biblioteca de operações;
- Uma das melhores soluções no mercado.

QLib

- Biblioteca disponível para Matlab;
- Disponibiliza as funções e primitivas mais utilizadas na computação quântica;
- Apoio para o pesquisador e desenvolvedor.

Github

- Repositório de versão de controle;
- Disponibiliza código-fonte ao público, pesquisadores e cientistas;
- Histórico de modificações;
- Possibilidade de cooperação.

Quantum Teleportation Language Matlab License MIT Status Released

Quantum Teleportation of a single quantum bit over a full-entangled channel.

Fundamentação teórica

Unidade básica de informação

Para estudar o processo de transmissão de informação quântica, é preciso primeiro estudar a unidade básica de informação.

Na teoria da informação clássica, a unidade fundamental é o bit.

O bit pode assumir um de dois valores e é comumente representado por 0 e 1.

Toda informação de qualquer sistemas computacional tradicional é representada por uma cadeia de bits.

Unidade básica de informação - Bit quântico

Na teoria da informação quântica, é usado um análogo do bit clássico conhecido como bit quântico.

Assim como o bit clássico, o bit quântico pode armazenar informação representada por dois estados, porém diferentemente do bit tradicional, ele também pode armazenar qualquer superposição destes estados.

Bit x Qubit

Fonte: http://qoqms.phys.strath.ac.uk/research_qc.html, Acesso em 27 jan. 2017

Qubit

O bit quântico pode, portanto, ser representado como uma combinação linear dos estados $|0\rangle$ e $|1\rangle$, da seguinte forma:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
,

onde α e β pertencem ao conjunto dos números complexos estando relacionado as amplitudes probabilísticas e os estados $|0\rangle$ e $|1\rangle$ são bases ortonormais de um espaço vetorial.

$$|\alpha|^2 + |\beta|^2 = 1$$

Vantagem dos qubits

Devido a superposição de valores, qubits podem armazenar infinitas combinações de estados em apenas 1 qubit, ou seja, muito mais informação que um bit clássico.

Desvantagem dos qubits

Obter a informação nestes qubits é um processo difícil.

Múltiplos qubits

Quando trabalhamos com um sistema de 1 ou mais qubits, possuímos um estado quântico, representação da distribuição probabilística de cada observável, ou de cada resultado para cada processo de medida possível.

Estado quântico puro

Definido por um vetor de estado $|\psi\rangle$, combinação linear de estados base.

Estado quântico misto

São compostos por distribuições probabilísticas dos estados puros que os constituem.

São representados pelo operador densidade.

Operador densidade

Operador densidade ou matriz densidade é a representação de um estado quântico.

Todo estado, puro ou misto, pode ser descrito por um operador densidade. Estados puros: $\rho = \sum | | \psi \rangle \langle \psi |$.

Estados mistos: Distribuição probabilística dos estados puros.

Ao realizar a operação de traço, da álgebra linear, podemos determinar o estado de um operador densidade.

Emaranhamento

- Fenômeno da mecânica quântica.
- Partículas emaranhadas não podem mais serem descritas individualmente.
- Não-localidade
- Fundamental no teletransporte quântico

Portas lógicas

Análogas às portas lógicas dos circuitos computacionais clássicos, as portas lógicas quânticas realizam operações em um pequeno grupo de qubits.

Portas lógicas - CNOT

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

controlled-NOT

Portas lógicas - Hadamard

Atua em apenas 1 qubit.

Realiza uma rotação para que suasbases mudem de $|0\rangle$ e $|1\rangle$ para $(|0\rangle+|1\rangle)/2$ e $(|0\rangle-|1\rangle)/2$, o que faz com que agora este qubit possua chances iguais de, quando for medido, se tornar 0 ou 1.

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Bit flip

Operação de flip, ou inversão. Análoga a porta NOT da computação clássica.

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Phase flip

A porta lógica phase flip também atua em apenas um qubit e faz com que a base |1⟩ seja mapeada para -|1⟩, o que corresponde a uma rotação no eixo z da esfera de Bloch.

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Circuitos quânticos

- Representação de um algoritmo quântico.
- Linear

Exemplo de um circuito quântico aonde o qubit $|\psi\rangle$ sofre um processo de medida Fonte: Nielsen e Chuang (2000, p. 24)

Teletransporte quântico

Teletransporte quântico

Fonte: Nielsen e Chuang (2000, p. 27)

Informação recebida	Operação a ser realizada
00	Nada precisa ser feito
01	σ_x
10	σ_z
11	$\sigma_z\sigma_x$

Observações

- O processo não viola o teorema da não-clonagem.
- Não transmite informação mais rápido do que a velocidade da luz.

(Implementação)

Ruído

Assim como na transmissão de informação clássica, sistemas quânticos estão sujeitos a sofrer interferências de ruídos externos. Ruídos são interferências de diversos tipos provenientes da interação do sistema de interesse com o meio ambiente que o circunda.

Ruído - Amplitude Damping

Este tipo de operação de ruído descreve de uma maneira geral o comportamento de um sistema quântico quando há dissipação de energia para o ambiente.

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix},$$

$$M_2 = \begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix},$$

Ruído - Phase damping

Phase damping é um tipo de ruído que descreve a perda de informação quântica sem a perda de energia. É um processo que resulta na perda de coerência entre estados da base, causada por mudanças de fase aleatórias no sistema devido a interferência com o ambiente.

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\lambda} \end{bmatrix},$$

$$M_2 = \begin{bmatrix} 0 & \sqrt{\lambda} \\ 0 & 0 \end{bmatrix},$$

Medida de distância

Avaliar o quão próximo estão dois estados quânticos.

Usaremos a medida de fidelidade.

Fidelidade quântica

O cálculo da fidelidade permite quantificar o quão próximos, ou similares, são dois estados quânticos através da análise do traço da multiplicação dos operadores densidades.

$$F = tr(\rho_0 * \rho_f)$$

Resultados

Após a implementação do algoritmo de teletransporte quântico no ambiente Matlab é possível criar e analisar facilmente ruídos para interferirem no processo e analisar como o teletransporte se comporta nestes casos.

Resultados

Os ruídos são aplicados considerando uma progressão de tempo e uma progressão de intensidade. E os resultados são comparados através da fidelidade quântica.

Resultados - Bit flip

Resultados - Phase damping

Resultados - Bit-phase flip

Resultados - Ferramenta construída

- A ferramenta disponibilizada na plataforma Github já possui mais de 20.000 acessos.
- Auxiliará na pesquisa da computação quântica.

Conclusão

- Ferramentas otimizadas para o estudo da computação quântica (operações difíceis);
- Foi possível desenvolver uma ferramenta que poderá ajudar o estudo da computação quântica no futuro;
- Também foi possível analisar o processo de transmissão de informação quântica sob efeito de ruídos.

Trabalhos futuros

- Manter o projeto atualizado;
- Avaliar e adicionar possíveis colaborações;
- Implementar gama maior de ruídos para análise;
- Possibilitar a aplicação de mais de um tipo de ruído;
- Adicionar outras medidas de distância;
- Implementar mecanismos de correções de ruídos.

Código-fonte disponível em: https://github.com/iiiicaro/quantum-teleportation

Referências

DIRAC, P. A. M. A new notation for quantum mechanics. 1939. Disponível em: http://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/div-classtitlea-new-notation-for-quantum-mechanicsdiv/4631DB9213D680D6332BA11 799D76AFB. Acesso em: 04 abr. 2016.

GERSHENFELD, N.; CHUANG, I. L. Quantum Computing with Molecules. 1988. Disponível em: http://cba.mit.edu/docs/papers/98.06.sciqc.pdf. Acesso em: 18 nov. 2016.

GOERING, R. Matlab edges closer to electronic design automation world. 2004. Disponível em: http://www.eetimes.com/document.asp?doc id=1151422. Acesso em: 27 ago. 2016.

LEUNG, D. et al. Experimental realization of a two-bit phase damping quantum code. Physical Review A, APS, v. 60, n. 3, p. 1924, 1999.

Referências

MOLER, C. The Origins of MATLAB. 2009. Disponível em: http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html. Acesso em: 27 ago. 2016.

MOORE, G. E. Cramming more components onto integrated circuits. Eletro-nics, n. 8, p. 114–117, 1965. Disponível em: http://drive.google.com/file/d-/0By83v5TWkGjvQkpBcXJKT1I1TTA/view. Acesso em: 12 ago. 2016.

NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

SHANNON, C. E. A mathematical theory of communication. Bell System Technical Journal, n. 27, 1948.

Referências

SHANNON, C. E.; WEAVER, W. The Mathematical Theory of Communication. Univ of Illinois Press, 1949.

SIMONITE, T. Moore's Law Is Dead. Now What? 2016. Disponível em: http://www-.technologyreview.com/s/601441/moores-law-is-dead-now-what/. Acesso em: 12 ago. 2016

WILLIAMS, C. P. Explorations in Quantum Computing. 2. ed. Springer-Verlag London, 2011.

WOOTTERS, W. K.; ZUREK, W. H. A single quantum cannot be cloned. Nature, n. 299, p. 802–803, 1982.