1	2	3	4	Calificación

APELLIDO Y NOMBRE: LIBRETA:

Cálculo Avanzado - 1° Cuatrimestre 2020 1° Parcial (12/06/2020)

1. Consideremos en \mathbb{R}^2 la distancia usual. Calcular el cardinal del conjunto

$$\mathcal{A} = \{D \subseteq \mathbb{R}^2 : \overline{D} = \mathbb{R}^2 \text{ y existe una isometría } f : \mathbb{Q}^2 \to D\}.$$

Sugerencia: Pensar primero un ejemplo de un subconjunto de \mathbb{R}^2 isométrico a \mathbb{Q}^2 .

- 2. Sea X un espacio métrico tal que existe un conjunto $D \subseteq X$ con $\overline{D} = X$ y $\overline{D^c} = X$. Sea F un cerrado de X. Probar que existe $A \subseteq X$ tal que $\partial A = F$.
- 3. Sean X, Y dos espacios métricos y $f: X \to Y$ una función que cumple que para toda sucesión $(x_n)_{n \in \mathbb{N}} \subset X$ de Cauchy, $f(x_n) \subset Y$ es de Cauchy.
 - a) Probar que f es continua.
 - b) Probar que f podría no ser uniformemente continua.
- 4. Definimos en $\ell_{\infty}:=\{(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}: (a_n)_{n\in\mathbb{N}} \text{ está acotada}\}$ la distancia

$$d(a,b) = \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{n^2}.$$

Probar que (ℓ_{∞}, d) es separable y no es completo.

Puede usar cómo ciertos los resultados de las guías prácticas y vistos en la teórica.