

Semantic Label Reconstruction

How to Breach Privacy in Federated Learning

Rafał Malcewicz^{1,2}, Ignacy Stępka¹, Abby Turner¹, Artur Dubrawski¹

¹Auton Lab, Carnegie Mellon University ²Aalto University

Why This Matters

Why This Matters

Why This Matters

Plan for Today

Background

- What are Gradient Inversion Attacks (GIA's)?
- How do we evaluate the success of the reconstruction?

Semantic Label Reconstruction

- Label recovery with CLIP (Contrastive Language-Image Pre-training), Radford et al., 2021 [2]
- CLIP guided reconstruction

From Pixels to Meaning

 ∇W

reconstructed images

Labeling images

Label_0: dog Label 1: horse

- Start with eavesdropped gradient
- Reconstruct images
- Label the the reconstructed image to retrieve semantic labels of the training data

From Pixels to Meaning

Data reconstruction

reconstructed images

Labeling images

Label_0: dog Label_1: horse

How Gradient Inversion Attack Work

Approach	Paper	Method / Key Idea			
Cyceliant Matchine Lago	Zhu et al., 2019 [1]	Used L2 distance			
Gradient Matching Loss	Geiping et al., 2020 [2]	Used cosine similarity			
	Zhu et al., 2019 [1]	None			
Additional Loss Terms	Geiping et al., 2020 [2]	Added Total Variation (TV) loss			
	Jeon et al., 2021 [3]	Added Batch Normalization statistics			
Label Distribution	Zhao et al., 2020 [4]	Worked only for batch size = 1			
Recovery	Ma et al., 2023 [5]	Solved system of linear equations			
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space			

Approach	Paper	Method / Key Idea			
Cyceliant Matchine Lago	Zhu et al., 2019 [1]	Used L2 distance			
Gradient Matching Loss	Geiping et al., 2020 [2]	Used cosine similarity			
	Zhu et al., 2019 [1]	None			
Additional Loss Terms	Geiping et al., 2020 [2]	Added Total Variation (TV) loss			
	Jeon et al., 2021 [3]	Added Batch Normalization statistics			
Label Distribution	Zhao et al., 2020 [4]	Worked only for batch size = 1			
Recovery	Ma et al., 2023 [5]	Solved system of linear equations			
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space			

Approach	Paper	Method / Key Idea			
Overdient Metabinar Leas	Zhu et al., 2019 [1]	Used L2 distance			
Gradient Matching Loss	Geiping et al., 2020 [2]	Used cosine similarity			
	Zhu et al., 2019 [1]	None			
Additional Loss Terms	Geiping et al., 2020 [2]	Added Total Variation (TV) loss			
	Jeon et al., 2021 [3]	Added Batch Normalization statistics			
Label Distribution	Zhao et al., 2020 [4]	Worked only for batch size = 1			
Recovery	Ma et al., 2023 [5]	Solved system of linear equations			
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space			

Approach	Paper	Method / Key Idea			
Cyceliant Matching Lago	Zhu et al., 2019 [1]	Used L2 distance			
Gradient Matching Loss	Geiping et al., 2020 [2]	Used cosine similarity			
	Zhu et al., 2019 [1]	None			
Additional Loss Terms	Geiping et al., 2020 [2]	Added Total Variation (TV) loss			
	Jeon et al., 2021 [3]	Added Batch Normalization statistics			
Label Distribution	Zhao et al., 2020 [4]	Worked only for batch size = 1			
Recovery	Ma et al., 2023 [5]	Solved system of linear equations			
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space			

Results of the Reconstruction

SSIM (Structural Similarity Index Measure)

SSIM (Structural Similarity Index Measure)

Permutation Agnostic SSIM

1st assignment

$$\frac{\text{SSIM}_{1}}{\text{SSIM}_{1}} = \frac{\text{SSIM}(2) + \text{SSIM}(2)}{2}$$

2nd assignment

$$SSIM_2 = \frac{SSIM(\), \) + SSIM(\), \)}{2}$$

$$SSIM_{SMART} = max(SSIM_1, SSIM_2)$$

Permutation Agnostic SSIM

From Pixels to Meaning

Data reconstruction

Labeling images

Label_0: dog Label_1: horse

CLIP for Label Recovery

Similarity Matrix

						Image	Dog	Frog	Cat	Truck	
Label	Dog	Frog	Cat	Truck		Α	0.7	0.1	0.05	0.05	
0	0.675	0.11	0.05	0.05		В	0.65	0.12	0.05	0.05	
1	0.09	0.725	0.085	0.02	 1	С	0.08	0.75	0.1	0.02	
						D	0.1	0.7	0.07	0.02	

label 0

label_1

Setup & Evaluation

Setup & Evaluation

Labeling images

Label_0: dog Label_1: horse

Setup & Evaluation

Leakage Drops as Batch Size Increases

- Original almost perfect
- Aggregation improves quality
- Batch Size 4 still 2x better then random

CLIP Guided Reconstruction

Oracle Guidance Improves Quality

Recovering Semantic Labels from CLIP Guidance

Guidance: {label_0: dog, label_1: cat} **CLIP Guided Reconstruction** Final Gradient Matching loss: L_{doq-cat}

Repeat for each possible guidance and report one that leads to lowest loss

Thank you!

Semantic Label Reconstruction

How to Breach Privacy in Federated Learning

Summary

- Gradients leak semantic information
- Increasing batch size is an effective defensive tool
- Aggregation across multiple batches improves label recovery

References

- [1] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep Leakage from Gradients." arXiv, December 19, 2019.
- [2] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020
- [3] Geiping, Jonas, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. "Inverting Gradients -- How Easy Is It to Break Privacy in Federated Learning?" arXiv, September 11, 2020.
- [4] Jeon, Jinwoo, jaechang Kim, Kangwook Lee, Sewoong Oh, and Jungseul Ok. "Gradient Inversion with Generative Image Prior." In Advances in Neural Information Processing Systems, 34:29898–908. Curran Associates, Inc., 2021.
- [5] Zhao, Bo, Konda Reddy Mopuri, and Hakan Bilen. "iDLG: Improved Deep Leakage from Gradients." arXiv, January 8, 2020.
- [6] Ma, K., Sun, Y., Cui, J., Li, D., Guan, Z., & Liu, J. (2023). Instance-wise batch label restoration via gradients in federated learning. In Proceedings of the International Conference on Learning Representations (ICLR 2023).
- [7] Fang, Hao, Bin Chen, Xuan Wang, Zhi Wang, and Shu-Tao Xia. "GIFD: A Generative Gradient Inversion Method with Feature Domain Optimization." In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4967–76, 2023.