High-Dimensional Probability

Lectured by Hao Ge

LATEXed by Chengxin Gong

October 27, 2023

Contents

U	Appetizer	4
1	Preliminaries on random variables	2
2	Concentration of sums of independent random variables	2
3	Random vectors in high dimensions	4
4	Random matrices	Ę

0 Appetizer

- Convex combination: For $z_1, z_2, \dots, z_m \in \mathbb{R}^n$, the form of $\sum_{i=1}^m \lambda_i z_i$ with $\lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1$. Convex hull of $T \subset \mathbb{R}^n$: conv $(T) = \{\text{convex combinations of } z_1, \dots, z_m \in T, m \in \mathbb{N}\}.$
- Caratheodory's theorem: Every point in the convex hull of a set $T \subset \mathbb{R}^n$ can be expressed as a convex combination of at most n+1 points from T.
- Approximate Caratheodory's theorem: Consider $T \subset \mathbb{R}^n$, diam $(T) = \sup\{||s-t||_2, s, t \in T\} < 1$. Then for any $x \in \text{conv}(T)$ and any k, one can find points $x_1, x_2, \dots, x_k \in T$ such that $||x \frac{1}{k} \sum_{i=1}^k x_i||_2 \leq \frac{1}{\sqrt{k}}$ (repetition is allowed).

Proof WLOG assume
$$||t||_2 \le 1, \forall t \in T$$
. Fix $x \in \text{conv}(T), x = \sum_{i=1}^m \lambda_i z_i, z_i \in T$. Define $Z, \mathbb{P}(Z = z_i) = \lambda_i, \mathbb{E}Z = x$. Consider i.i.d. Z_1, Z_2, \dots of $Z, \frac{1}{n} \sum_{j=1}^n Z_j \to x$ a.s. $n \to +\infty$. $\mathbb{E}||x - \frac{1}{k} \sum_{j=1}^k Z_j||_2^2 = \frac{1}{k^2} \sum_{j=1}^k \mathbb{E}||Z_j - x||_2^2 = \frac{1}{k^2} \sum_{j=1}^k (\mathbb{E}||Z_j||^2 - ||\mathbb{E}Z_j||_2^2) \le \frac{1}{k} \Rightarrow \exists$ a realization of Z_1, \dots, Z_k such that $||x - \frac{1}{k} \sum_{j=1}^k Z_j||_2 \le \frac{1}{\sqrt{k}}$. □

• Corollary (Covering polytopes by balls): P is a polytope in \mathbb{R}^n with N vertices, diam $(P) \leq 1$. Then P can be covered by at most $N^{\lfloor 1/\epsilon^2 \rfloor}$ Euclidean balls of radii $\epsilon > 0$.

1 Preliminaries on random variables

- Jensen's inequality: convex ϕ , $\phi(\mathbb{E}X) \leq \mathbb{E}\phi(X)$. $\Rightarrow ||X||_{L^p} \leq ||X||_{L^q}$ for $p \leq q$.
- Minkowski inequality: $p \ge 1, ||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p}$.
- Cauchy-Schwarz inequality: $\mathbb{E}|XY| \leq ||X||_{L^2}||Y||_{L^2}$.
- Holder inequality: $p, q \in (1, +\infty), \frac{1}{p} + \frac{1}{q} = 1 \text{ or } p = 1, q = \infty, \mathbb{E}||XY|| \le ||X||_{L^p}||Y||_{L^q}.$
- $X \ge 0$, then $\mathbb{E}X = \int_0^{+\infty} \mathbb{P}(X > t) dt$.
- Markov inequality: $X \ge 0, t > 0, \mathbb{P}(X \ge t) \le \frac{\mathbb{E}X}{t}$.
- LLN: X_1, \dots, X_n, \dots i.i.d., $\mathbb{E}X_i = \mu, \operatorname{Var}(X_i) = \sigma^2, S_N = X_1 + X_2 + \dots + X_N$. Then: (WLLN) $\mathbb{P}(|\frac{S_N}{N} \mu| > \epsilon) \to 0, \forall \epsilon > 0$; (SLLN) $\mathbb{P}(\frac{S_N}{N} \to \mu, N \to +\infty) = 1$.
- CLT: $Z_N = \frac{S_N \mathbb{E}S_N}{\sqrt{\operatorname{Var}(S_N)}} \xrightarrow{d} \mathcal{N}(0, 1).$
- $X_{N,i}, 1 \leq i \leq N$ independent $\operatorname{Ber}(p_{N,i}), \max_{i \leq N} p_{N,i} \to 0, S_N = \sum_{i=1}^N X_{N,i}, \mathbb{E}S_N \to \lambda < +\infty$. Then $S_N \xrightarrow{d} \operatorname{Poisson}(\lambda)$.

2 Concentration of sums of independent random variables

- Question: N times, $\mathbb{P}(\text{head} \geq \frac{3}{4}N) = ?$ Let S_N be the number of heads, $\mathbb{E}S_N = \frac{N}{2}$, $\text{Var}(S_N) = \frac{N}{4}$. (1) Chebyshev's inequality: $\mathbb{P}(S_N \geq \frac{3}{4}N) \leq \mathbb{P}(|S_N \frac{N}{2}| \geq \frac{N}{4}) \leq \frac{4}{N}$; (2) $Z_N = \frac{S_N \frac{N}{2}}{\sqrt{N/4}}$, expect: $\mathbb{P}(Z_N \geq \sqrt{N/4}) \approx \mathbb{P}(g \geq \sqrt{N/4}) \leq \frac{1}{\sqrt{2\pi}}e^{-N/8}$ where $g \sim \mathcal{N}(0, 1)$.
- For all t > 0, $(\frac{1}{t} \frac{1}{t^3}) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le \mathbb{P}(g \sim \mathcal{N}(0, 1) \ge t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$.
- Berry-Esseen bound: $|\mathbb{P}(Z_N \geq t) \mathbb{P}(g \geq t)| \leq \frac{\rho}{\sqrt{N}}$ where $\rho = \mathbb{E}|X_1 \mu|^3/\sigma^3$. And in general, no improvement since $\mathbb{P}(S_N = \frac{N}{2}) \sim \frac{1}{\sqrt{N}} \Rightarrow \mathbb{P}(Z_N = 0) \sim \frac{1}{\sqrt{N}}$ but $\mathbb{P}(g = 0) = 0$.
- Hoeffding's inequality: X_1, \dots, X_N i.i.d. symmetric Bernoulli $(\mathbb{P}(X=1) = \mathbb{P}(X=-1) = \frac{1}{2}), a = (a_1, \dots, a_N) \in \mathbb{R}^N$. Then $\forall t \geq 0, \mathbb{P}(\sum_{i=1}^N a_i X_i \geq t) \leq e^{-t^2/2||a||_2^2}, \mathbb{P}(|\sum_{i=1}^N a_i X_i \geq t|) \leq 2e^{-t^2/2||a||_2^2}$.

Proof WLOG,
$$||a||_{2}^{2} = 1$$
. For $\lambda > 0$, $\mathbb{P}(\sum_{i=1}^{N} a_{i}X_{i} \geq t) = \mathbb{P}(e^{\lambda \sum a_{i}X_{i}} \geq e^{\lambda t}) \leq e^{-\lambda t}\mathbb{E}e^{\lambda \sum_{i=1}^{N} a_{i}X_{i}} = e^{-\lambda t}\prod_{i=1}^{N}\mathbb{E}e^{\lambda a_{i}X_{i}} = e^{-\lambda t}\prod_{i=1}^{N}e^{\lambda^{2}a_{i}^{2}/2} = e^{-\lambda t + \frac{\lambda^{2}}{2}} \Rightarrow \mathbb{P}(\sum_{i=1}^{N} a_{i}X_{i} \geq t) \leq \inf_{\lambda \geq 0}e^{-\lambda t + \frac{\lambda^{2}}{2}} = e^{-\frac{t^{2}}{2}}(\lambda = t)$.

CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES

- Bounded r.v.s: X_1, \dots, X_N independent, $X_i \in [m_i, M_i]$. Then $\forall t \geq 0, \mathbb{P}(\sum_{i=1}^N (X_i \mathbb{E}X_i) \geq t) \leq e^{-\frac{2t^2}{\sum_{i=1}^N (M_i m_i)^2}}$.
- Chernoff's inequality: $X_i \sim \text{Ber}(p_i)$ independent, $S_N = \sum_{i=1}^N X_i, \mu = \mathbb{E}S_N \Rightarrow \forall t > \mu, \mathbb{P}(S_N \geq t) \leq e^{-\mu} (\frac{e\mu}{t})^t$. $Proof \ \mathbb{P}(S_N \geq t) \leq e^{-\lambda t} \prod_{i=1}^N \mathbb{E}e^{\lambda X_i}. \ \mathbb{E}e^{\lambda X_i} = e^{\lambda}p_i + (1-p_i) = 1 + (e^{\lambda}-1)p_i \leq e^{(e^{\lambda}-1)p_i} \Rightarrow \mathbb{P}(S_N \geq t) \leq e^{-\lambda t}e^{(e^{\lambda}-1)\mu}.$ Take $\lambda^* = \log(t/\mu)$.
- d = (n-1)p is the expected degree. There is an absolute constant C s.t. for G(n,p), $d \ge C \log n$. Then with high prob (for example 0.9), all vertices of G have degrees between 0.9d and 1.1d.

Proof Ex 2.3.5 $\Rightarrow \mathbb{P}(|d_i - d| \ge \delta d) \le 2e^{-c\delta^2 d}$. Union bound: $\mathbb{P}(\exists i, |d_i - d| \ge \delta d) \le n \cdot 2e^{-c\delta^2 d} \le n \cdot 2 \cdots n^{-Cc\delta^2} = 2n^{1-Cc\delta^2} \le 1-p^*$ (let $Cc\delta^2 > 1$).

• Sub-gaussian properties: The following are equivalent: (i) $\mathbb{P}(|X| \geq t) \leq 2e^{-t^2/k_1^2}$ for all $t \geq 0$; (ii) $|X||_{L^p} = (\mathbb{E}|X|^p)^{1/p} \leq k_2\sqrt{p}$ for all $p \geq 1$; (iii) $\mathbb{E}e^{\lambda^2X^2} \leq e^{k_3^2\lambda^2}$ for all λ s.t. $|\lambda| \leq \frac{1}{k_3}$; (iv) $\mathbb{E}e^{X^2/k_4^2} \leq 2$; (v) $\mathbb{E}e^{\lambda X} \leq e^{k_5^2\lambda^2}$, for all $\lambda \in \mathbb{R}$ (if $\mathbb{E}X = 0$).

 $Proof \text{ (i)} \Rightarrow \text{ (ii): WLOG } k_1 = 1. \ \mathbb{E}|X|^p = \int_0^{+\infty} \mathbb{P}(|X| \ge t) pt^{p-1} \mathrm{d}t \le \int_0^{+\infty} 2e^{-t^2} pt^{p-1} \mathrm{d}t = p\Gamma(\frac{p}{2}) \overset{\Gamma(x) \le 3x^x \text{ for } x \ge \frac{1}{2}}{\le} 3p(\frac{p}{2})^{p/2} \Rightarrow \|X\|_p \le \frac{1}{\sqrt{2}} (3p)^{1/p} p^{1/2} \le 3\sqrt{p}.$

(ii) \Rightarrow (iii): WLOG $k_2 = 1$. $\mathbb{E}e^{\lambda^2 X^2} = \mathbb{E}\left[1 + \sum_{p=1}^{+\infty} \frac{(\lambda^2 X^2)^p}{p!}\right]$. $\mathbb{E}|X|^{2p} \leq (2p)^p, p! \geq (\frac{p}{e})^p \Rightarrow \mathbb{E}e^{\lambda^2 X^2} \leq 1 + \sum_{p=1}^{+\infty} \frac{(2\lambda^2 p)^p}{(\frac{p}{e})^p} = \frac{1}{1-2e\lambda^2}$ (if $2e\lambda^2 < 1$) $\leq e^{4e\lambda^2}$ (if $2e\lambda^2 \leq 1/2 \Leftrightarrow \lambda \leq \frac{1}{2\sqrt{e}}$).

(iii) \Rightarrow (iv): trivial.

- (iv) \Rightarrow (i): $\mathbb{P}(|X| \ge t) = \mathbb{P}(e^{X^2} \le e^{t^2}) \le e^{-t^2} \mathbb{E}e^{X^2} \le 2e^{-t^2}$.
- (iii) \Rightarrow (v): WLOG $k_3 = 1$. If $|\lambda| \le 1$, then $\mathbb{E}e^{\lambda X} \le \mathbb{E}(\lambda X + e^{\lambda^2 X^2}) = \mathbb{E}e^{\lambda^2 X^2} \le e^{\lambda^2}$. If $|\lambda| \ge 1$, then $\mathbb{E}e^{\lambda X} \le e^{\frac{\lambda^2}{2}} \mathbb{E}e^{\frac{X^2}{2}} e^{\frac{\lambda^2}{2}} e^{\frac{\lambda^2}{2}$
- $(v) \Rightarrow (i)$: mimic the proof of $(iv) \Rightarrow (i)$.
- Sub-gaussian r.v.: satisfy the above sub-gaussian properties. $||X||_{\psi_2} = \inf\{t > 0 : \mathbb{E}e^{X^2/t^2} \le 2\}$. Thus $\mathbb{P}(|X| \ge t) \le 2e^{-ct^2/||X||^2_{\psi_2}}; ||X||_{L^p} \le C||X||_{\psi_2}\sqrt{p}$; if $\mathbb{E}X = 0$ then $\mathbb{E}e^{\lambda X} \le e^{C\lambda^2||X||^2_{\psi_2}}$.
- Let X_1, \dots, X_N be i.i.d. and mean zero sub-gaussian, then $||\sum_{i=1}^N X_i||_{\psi_2}^2 \leq C \cdot \sum_{i=1}^N ||X_i||_{\psi_2}^2$. Proof $\forall \lambda \in \mathbb{R}, \mathbb{E}e^{\lambda \sum_{i=1}^N X_i} = \prod_{i=1}^N \mathbb{E}e^{\lambda X_i} \leq \prod_{i=1}^N e^{c\lambda^2 ||X_i||_{\psi_2}^2} = e^{c\lambda^2 \sum_{i=1}^n ||X_i||_{\psi_2}^2}$
- Centering: X is sub-gaussian $\Rightarrow X \mathbb{E}X$ is sub-gaussian and $||X \mathbb{E}X||_{\psi_2} \le C||X||_{\psi_2}$.

 $Proof ||\mathbb{E}X||_{\psi_2} \le C_1 |\mathbb{E}X| \le C_1 \mathbb{E}|X| = C_1 ||X||_{L^1} \le C_1 C_2 ||X||_{\psi_2}.$

• Sub-exponential properties: The following are equivalent: (1) $\mathbb{P}(|X| \geq t) \leq 2e^{-t/k_1}, \forall t \geq 0$; (2) $||X||_{L^p} \leq k_2 p, p \geq 1$; (3) $\mathbb{E}e^{\lambda|X|} \leq e^{k_3\lambda}$ for all $0 \leq \lambda \leq \frac{1}{k_3}$; (4) $\mathbb{E}e^{|X|/k_4} \leq 2$; (5) if $\mathbb{E}X = 0, \mathbb{E}e^{\lambda X} \leq e^{k_5^2\lambda^2}$ for $|\lambda| \leq \frac{1}{k_5}$.

Proof (2) \Rightarrow (5): $k_2 = 1$, $\mathbb{E}e^{\lambda X} = 1 + \sum_{p=2}^{+\infty} \frac{\lambda^p \mathbb{E}X^p}{p!} \le 1 + \sum_{p=2}^{+\infty} \frac{\lambda^p p^p}{(p/e)^p} = 1 + \frac{(e\lambda)^2}{1-e\lambda} (|e\lambda| < 1)$. If $|e\lambda| \le \frac{1}{2}$, $1 + \frac{(e\lambda)^2}{1-e\lambda} \le 1 + 2e^2\lambda^2 \le e^{2e^2\lambda^2}$, i.e. $k_5 = 2e$.

- $(5) \Rightarrow (1): k_5 = 1, |x|^p \le p^p(e^x + e^{-x}) \Rightarrow \mathbb{E}|X|^p \le p^p(\mathbb{E}e^X + \mathbb{E}e^{-X}) \le 2ep^p.$
- $||X||_{\psi_1}=\inf\{t>0:\mathbb{E}e^{|X|/t}\leq 2\}$. X is sub-gaussian $\Leftrightarrow X^2$ is sub-exponential. $||X^2||_{\psi_1}=||X||_{\psi_2}^2$.
- X, Y are sub-gaussian $\Rightarrow XY$ is sub-exponential and $||XY||_{\psi_1} \leq ||X||_{\psi_2} ||Y||_{\psi_2}$.

Proof WLOG $||X||_{\psi_2} = ||Y||_{\psi_2} = 1$. $\mathbb{E}e^{XY} \le \mathbb{E}e^{\frac{X^2 + Y^2}{2}} = \mathbb{E}[e^{\frac{X^2}{2} + \frac{Y^2}{2}}] \le \frac{1}{2}(\mathbb{E}e^{X^2} + \mathbb{E}e^{Y^2}) = 2$.

- Orlicz function/space: $\psi: [0, +\infty) \to [0, +\infty)$, convex, increasing, $\psi(0) = 0$, $\psi(x) \to +\infty$, $x \to +\infty$. $||X||_{\psi} := \inf\{t > 0 : \mathbb{E}\psi(|X|/t) \le 1\}$. $L_{\psi} := \{X : ||X||_{\psi} < +\infty\}$ is Banach space. Examples: (1) $L_p : \psi(x) = x^p, p \ge 1$; (2) $L_{\psi_2} : \psi_2(x) = e^{x^2} 1, L_{\infty} \subset L_{\psi_2} \subset L_p$.
- Bernstein's inequality: X_1, \dots, X_N i.i.d., mean zero and sub-exponential. Then for $t \geq 0, \mathbb{P}(|\sum_{i=1}^N X_i| \geq t) \leq 2e^{-c\min(\frac{t^2}{\sum_{i=1}^N ||X_i||_{\psi_1}^2}, \frac{t}{\max_i ||X_i||_{\psi_1}})}$.

RANDOM VECTORS IN HIGH DIMENSIONS

 $Proof \ \ S = \sum_{i=1}^N X_i. \ \ \mathbb{P}(S \geq t) \leq e^{-\lambda t} \prod_{i=1}^N \mathbb{E} e^{\lambda X_i}. \ \ \mathbb{E} e^{\lambda X_i} \leq e^{c\lambda^2 ||X_i||^2_{\psi_1}} \ \ \text{if} \ |\lambda| \leq \frac{c}{\max ||X_i||_{\psi_1}}. \ \ \text{Then} \ \ \mathbb{P}(S \geq t) \leq e^{-\lambda t + c\lambda^2 \sigma^2} \ \ \text{where}$ $\sigma^2 := \sum_{i=1}^N ||X_i||^2_{\psi_1}. \ \ \text{The following is to find the minimum of a quadratic function with the restriction} \ |\lambda| \leq \frac{c}{\max ||X_i||_{\psi_1}}.$

- Corollary 1: $\mathbb{P}(|\sum_{i=1}^{N} a_i X_i| \ge t) \le 2e^{-c\min(\frac{t^2}{K^2||a||_2^2}, \frac{t}{K||a||_{\infty}})}$ where $K = \max_i ||X_i||_{\psi}$.
- Corollary 2: $|X_i| \leq K$, then $\mathbb{P}(|\sum_{i=1}^N X_i| \geq t) \leq 2\exp(-\frac{t^2/2}{\sigma^2 + Kt/3})$ where $\sigma^2 = \sum_{i=1}^N \mathbb{E} X_i^2$.

3 Random vectors in high dimensions

- $X \in \mathbb{R}^n$, independent sub-gaussian coordinate X_i , $\mathbb{E}X_i^2 = 1$. Then $\|\|X\|_2 \sqrt{n}\|_{\psi_2} \le CK^2$, $K = \max_i \|X_i\|_{\psi_2}$. $Proof \ \mathbb{E}X_i^2 = 1 \Rightarrow K \ge 1$. $\|X_i^2 - 1\|_{\psi_1} \le C\|X_i^2\|_{\psi_1} = C\|X_i\|_{\psi_2}^2 \le CK^2$. Bernstein's inequality: $\mathbb{P}(|\frac{1}{n}||X||_2^2 - 1| \ge u) = \mathbb{P}(|\frac{1}{n}\sum_{i=1}^n (X_i^2 - 1)| \ge u) \le 2e^{-cn\min(\frac{u^2}{K^4}, \frac{u}{K^2})} \le 2e^{-\frac{cn}{K^4}\min(u^2, u)}$. For any $\delta > 0$, $\mathbb{P}(|\frac{1}{\sqrt{n}}||X||_2 - 1| \ge \delta) \le \mathbb{P}(|\frac{1}{n}||X||_2^2 - 1| \ge \max(\delta, \delta^2)) \le 2e^{-\frac{cn}{K^4}\delta^2} \Rightarrow \mathbb{P}(|\|X\|_2 - \sqrt{n}| \ge t) \le 2e^{-ct^2/K^4}$.
- Isotropy: $\Sigma(X) = \mathbb{E}XX^T = I$. If $\Sigma \neq I_n$, then let $Z = \Sigma^{-1/2}X$. X is isotropic $\Leftrightarrow \mathbb{E}\langle X, x \rangle^2 = ||x||_2^2$ for any $x \in \mathbb{R}^n$.

Proof
$$\mathbb{E}\langle X, x \rangle^2 = \mathbb{E}(x^T X X^T x) = x^T (\mathbb{E}X X^T) x$$
. $||x||_2^2 = x^T I_n x$. $\Rightarrow \mathbb{E}X X^T = I_n$.

• X is isotropic $\Rightarrow \mathbb{E}||X||_2^2 = n$. If X, Y are independent and isotropic $\Rightarrow \mathbb{E}\langle X, Y \rangle^2 = n$.

Proof
$$\mathbb{E}||X||_2^2 = \mathbb{E}(X^T X) = \mathbb{E}(\operatorname{tr}(X^T X)) = \operatorname{tr}(\mathbb{E}XX^T) = n$$
.
 $\mathbb{E}\langle X, Y \rangle^2 = \mathbb{E}(X^T Y Y^T X) = \mathbb{E}(\operatorname{tr}(X^T Y Y^T X)) = \mathbb{E}(\operatorname{tr}(X X^T Y Y^T)) = \operatorname{tr}((\mathbb{E}XX^T)(\mathbb{E}YY^T)) = n$.

- Examples: $X \sim U(\sqrt{n}\mathbb{S}^{n-1}), X \sim U(\{-1,1\}^n), X = (X_1, \dots, X_n) \text{ i.i.d.}, \mathbb{E}X_i = 0, \text{Var}(X_i) = 1 \text{ are all isotropic.}$
- $g \sim \mathcal{N}(0, I_n)$, then $\mathbb{P}(|\|g\|_2 \sqrt{n}| \ge t) \le 2e^{-ct^2}$.
- Frame: $\{u_i\}_{i=1}^N \subset \mathbb{R}^n$, Approximate Parseval's identity: $A||x||_2^2 \leq \sum_{i=1}^N \langle u_i, x \rangle^2 \leq B||x||_2^2$. A, B: frame bounds. A = B: tight frame $(\Leftrightarrow \sum_{i=1}^N u_i u_i^T = AI_n)$ and in this case, $\sum_{i=1}^N \langle u_i, x \rangle u_i = Ax$.
- (a) Tight frame $\{u_i\}_{i=1}^N$, $A = B, X = \text{Unif}\{u_i, i = 1, 2, \dots, N\}$, then $(\frac{N}{A})^{1/2}X$ is isotropic. (b) X is isotropic, $\mathbb{P}(X = x_i) = p_i, i = 1, 2, \dots, N$. Then $u_i = \sqrt{p_i}x_i$ form a tight frame with A = B = 1.
- Isotropic convex sets: $X \sim \mathrm{Unif}(K), K \subset \mathbb{R}^n$ convex, bounded, non-empty interior (convex body). Assume $\mathbb{E}X = 0, \Sigma = \mathrm{Cov}(X)$. Then $Z = \Sigma^{-1/2}X$ is isotropic and $Z \sim \mathrm{Unif}(\Sigma^{-1/2}K)$.
- $X \in \mathbb{R}^n$ is sub-gaussian $\Leftrightarrow \forall X \in \mathbb{R}^n, \langle X, x \rangle$ are sub-gaussian. $||X||_{\psi_2} = \sup_{x \in \mathbb{S}^{n-1}} ||\langle X, x \rangle||_{\psi_2}$.
- $X = (X_1, \dots, X_n)$ independent, mean zero, sub-gaussian coordinate. Then X is sub-gaussian with $||X||_{\psi_2} \le C \max_{i \le n} ||X_i||_{\psi_2}$.

Proof
$$||\langle X, x \rangle||_{\psi_2}^2 = ||\sum X_i x_i||_{\psi_2}^2 \le C \sum_{i=1}^n x_i^2 ||X_i||_{\psi_2}^2 \le C \max_{i \le n} ||X_i||_{\psi_2}^2.$$

- Gaussian dist: $X \sim \mathcal{N}(0, I_n), ||X||_{\psi_2} \leq C$.
- Discrete dist: $X \sim \text{Unif}\{\sqrt{n}e_i, i = 1, 2, \cdots, n\}, ||X||_{\psi_2} \simeq \sqrt{\frac{n}{\log n}}$.
- Uniform dist: $X \sim \text{Unif}\{\sqrt{n}\mathbb{S}^{n-1}\}, ||X||_{\psi_2} \leq C.$ $Proof \ g \sim \mathcal{N}(0, I_n), X \stackrel{d}{=} \frac{\sqrt{n}g}{||g||_2}. \ p(t) := \mathbb{P}(|X_1| \geq t) = \mathbb{P}(\frac{|g|}{||g||_2} \geq \frac{t}{\sqrt{n}}). \ ||\|g\|_2 \sqrt{n}\|_{\psi_2} \leq C \Rightarrow \mathbb{P}(\|g\|_2 \leq \frac{\sqrt{n}}{2}) \leq 2e^{-cn}. \ \text{Need to show that all one-dimensional marginals } \langle X, x \rangle \text{ are sub-gaussian. By rotation invariance, we may assume that } x = (1, 0, \cdots, 0).$ Let $\mathcal{E} = \{\|g\|_2 \geq \frac{\sqrt{n}}{2}\} \Rightarrow p(t) \leq \mathbb{P}(\frac{|g|}{\|g\|_2} \geq \frac{t}{\sqrt{n}}, \mathcal{E}) + \mathbb{P}(\mathcal{E}) \leq \mathbb{P}(|g_1| \geq \frac{t}{2}, \mathcal{E}) + 2e^{-cn} \leq 2e^{-t^2/8} + 2e^{-cn} \stackrel{t \leq \sqrt{n}}{\leq} 4e^{-ct^2}.$
- Grothendieck's inequality: $A = \{a_{ij}\}_{m \times n}$ of real numbers. Assume $\forall x_i, y_i \in \{-1, 1\}$, we have $|\sum_{i,j} a_{ij} x_i y_j| \leq 1$. Then for any Hilbert space \mathscr{H} , any $u_i, v_j \in \mathscr{H}$ satisfying $||u_i|| = ||v_j|| = 1$, we have $|\sum_{i,j} a_{ij} \langle u_i, v_j \rangle| \leq K$ with $K \leq 1.783$.

RANDOM MATRICES

- *Proof* (1) Reduction. For any $u_i, v_j \in \mathbb{R}^N$ s.t. $||u_i||_2 = ||v_j||_2 = 1, K_{u,v} := \sum_{i,j} a_{ij} \langle u_i, v_j \rangle, K = \sup_{||u||_2 = ||v||_2 = 1} K_{u,v}$.
- (2) Introduce randomness. $g \sim \mathcal{N}(0, I_N), U_i = \langle g, u_i \rangle, V_j = \langle g, v_j \rangle, \mathbb{E}U_i V_j = \langle u_i, v_j \rangle.$ $K_{u,v} = \mathbb{E}(\sum_{i,j} a_{ij} U_i V_j) \Rightarrow K_{u,v} \leq R^2$ if $|U_i| \leq R, |V_j| \leq R$.
- (3) Truncation. Given $R \ge 1, U_i = U_i^- + U_i^+, U_i^- = U_i \mathbb{1}_{\{|U_i| \le R\}}, V_j = V_j^- + V_j^+, |U_i^-| \le R, |V_j^-| \le R.$ $||U_i^+||_{L^2}^2 \le 2(R + \frac{1}{R}) \frac{1}{\sqrt{2\pi}} e^{-R^2/2} < \frac{4}{R^2} (R > 1).$
- (4) Breaking up the sum. $\mathbb{E} \sum a_{ij} U_i V_j = \mathbb{E} \sum a_{ij} U_i^- V_j^- + \mathbb{E} \sum a_{ij} U_i^+ V_j^- + \mathbb{E} \sum a_{ij} U_i^- V_j^+ + \mathbb{E} \sum a_{ij} U_i^+ V_j^+ := S_1 + S_2 + S_3 + S_4.$ $S_1 \leq R^2, S_2 \leq K \max ||U_i^+||_2 \max ||V_j^-||_2 \leq K \frac{2}{R}, S_3 \leq K \frac{2}{R}, S_4 \leq K \frac{4}{R^2}.$
- (5) Putting everything together. $K_{u,v} \leq R^2 + \frac{4K}{R} + \frac{4K}{R^2} \Rightarrow K \leq R^2 + \frac{4K}{R} + \frac{4K}{R^2} \Rightarrow K \leq \frac{R^2}{1 \frac{4}{R} \frac{4}{R^2}}$.
- Remark: The assumption can be equivalently stated as $|\sum_{i,j} a_{ij} x_i y_j| \le \max_i |x_i| \max_j |y_j|$. The conclusion can be equivalently stated as $|\sum_{i,j} a_{ij} \langle u_i, v_j \rangle| \le K \max_i ||u_i|| \max_j ||v_j||$.
- Semidefinite programming: $\max \langle A, X \rangle$ s.t. $X \succeq 0, \langle B_i, X \rangle = b_i, A, B_i \, n \times n, b_i$ real number, $\langle A, X \rangle = \operatorname{tr}(A^T X) = \sum_{i,j=1}^n A_{ij} X_{ij}$.
- Semidefinite relaxation: $\max \sum_{i,j=1}^n A_{ij} x_i x_j, x_i = \pm 1, A n \times n$ symmetric matrix. Relax to $\max \sum_{i,j=1}^n A_{ij} \langle X_i, X_j \rangle, ||X_i||_2 = 1, X_i \in \mathbb{R}^n.$
- A positive semidefinite, $INT(A) := \max \sum_{i,j=1}^n A_{ij} x_i x_j, x_i = \pm 1, SDP(A) := \max \sum_{i,j=1}^n A_{ij} \langle X_i, X_j \rangle, ||X_i||_2 = 1.$ Then $INT(A) \leq SDP(A) \leq 2K \cdot INT(A)$.
- Maximum cut: G = (V, E) finite simple, $V \to V_1 + V_2$, cut number of edges crossing between V_1 and V_2 . MAX-CUT(G): NP-hard. Adjacency matrix $A = \{A_{ij}\}_{n \times n}, A_{ij} = \begin{cases} 1, & i \leftrightarrow j \\ 0, \text{ otherwise} \end{cases}$. Partition: $X = (x_i)_{n \times 1}, x_i = \pm 1$. CUT $(G, X) = \frac{1}{4} \sum_{i,j=1}^{n} A_{ij} (1 x_i x_j)$. MAX-CUT $(G) = \frac{1}{4} \max\{\sum_{i,j} A_{ij} (1 x_i x_j) : x_i = \pm 1\}$.
- 0.5-approximation algorithm: Partition at random, $\mathbb{E}CUT(G, X) = 0.5|E| \ge 0.5MAX-CUT(G)$.
- 0.878-approximation algorithm: SDP(G) = $\frac{1}{4}$ max{ $\sum_{i,j=1}^{n} A_{ij}(1 \langle X_i, X_j \rangle), x_i \in \mathbb{R}^n, ||X_i||_2 = 1$ }. $X_1, \dots, X_n \to x_1, \dots, x_n : g \sim \mathcal{N}(0, I_n), x_i := \operatorname{sgn}(\langle X_i, g \rangle)$. $\mathbb{E}\operatorname{CUT}(G, X) \geq 0.878\operatorname{SDP}(G) \geq 0.878\operatorname{MAX-CUT}(G)$. Proof $\mathbb{E}\operatorname{CUT}(G, X) = \frac{1}{4}\sum_{i,j=1}^{n} A_{ij}(1 - \mathbb{E}x_i x_j)$ and $1 - \mathbb{E}x_i x_j = 1 - \mathbb{E}\operatorname{sgn}\langle g, X_i \rangle \operatorname{sgn}\langle g, X_j \rangle = 1 - \frac{2}{\pi} \operatorname{arcsin}\langle X_i, X_j \rangle \geq 0.878(1 - \langle X_i, X_j \rangle)$.
- $\bullet \ \ u,v \in \mathbb{S}^{n-1}, \mathbb{E} \mathrm{sgn}(\langle g,u \rangle) \mathrm{sgn}(\langle g,v \rangle) = \tfrac{2}{\pi} \arcsin \langle u,v \rangle.$
- There exists a Hilbert space \mathcal{H} and $\phi, \psi : \mathbb{S}^{n-1} \to \mathbb{S}(\mathcal{H})$ s.t. $\frac{2}{\pi} \arcsin\langle \phi(u), \psi(v) \rangle = \beta \langle u, v \rangle$ for all $u, v \in \mathbb{S}^{n-1}$ and $\beta = \frac{2}{\pi} \log(1 + \sqrt{2})$.

 $Proof \ \langle \phi(u), \psi(v) \rangle = \sin(\frac{\beta \pi}{2} \langle u, v \rangle). \ \text{Ex } 3.7.6 \Rightarrow \exists \mathcal{H}, \phi, \psi. \ \sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots, \sinh t = t + \frac{t^3}{3!} + \frac{t^5}{5!}, ||\phi(u)||_2^2 = ||\psi(u)||_2^2 = \sinh(\frac{\beta \pi}{2}) = 1 \ \text{for all} \ u \in \mathbb{S}^{n-1} \Rightarrow \beta = \frac{2}{\pi} \log(1 + \sqrt{2}).$

Proof of Grothendieck's inequality with $K \leq \frac{1}{\beta} \approx 1.783$ WLOG $u_i, v_j \in \mathbb{S}^{N-1}$, then $\frac{2}{\pi} \arcsin\langle u_i', v_j' \rangle = \beta \langle u_i, v_j \rangle$, $\mathcal{H} = \mathbb{R}^M$, $g \sim \mathcal{N}(0, I_M)$. $\beta \sum a_{ij} \langle u_i, v_j \rangle = \sum_{i,j} a_{ij} \frac{2}{\pi} \arcsin\langle u_i', v_j' \rangle = \sum_{i,j} a_{ij} \mathbb{E} \operatorname{sgn} \langle g, u_i' \rangle \operatorname{sgn} \langle g, v_j' \rangle \leq 1$.

4 Random matrices

- Singular vector decomposition: $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T = \sum_{i=1}^n s_i U_i V_i^T, \Sigma = \text{diag}(s_1, s_2, \dots, s_r), s_i \ge 0$ sigular values. $s_i = \sqrt{\lambda_i(AA^T)} = \sqrt{\lambda_i(A^TA)}$. If A is symmetric, $s_i = |\lambda_i(A)|$.
- Courant-Fisher's min-max theorem: $\lambda_i(A) = \max_{\dim E = i} \min_{x \in \mathbb{S}(E)} \langle Ax, x \rangle, s_i(A) = \max_{\dim E = i} \min_{x \in \mathbb{S}(E)} ||Ax||_2.$
- Operator norm/spectral norm: $||A|| = \max_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_2}{||x||_2} = \max_{x \in \mathbb{S}^{n-1}} ||Ax||_2 = s_1(A)$. Or equivalently, $||A|| = \max_{x \in \mathbb{S}^{n-1}, y \in \mathbb{S}^{m-1}} \langle Ax, y \rangle$.
- $s_n(A) > 0 \Leftrightarrow m \ge n = \text{rank}(A), s_n(A) = \frac{1}{||A^+||}$ where A^+ is pseudo-inverse (the norm of A^{-1} restriction to the image of A).

RANDOM MATRICES

- Frobenius norm: $||A||_F = (\sum_{i=1}^n \sum_{j=1}^n A_{ij}^2)^{\frac{1}{2}} = (\sum_{i=1}^n s_i^2(A))^{\frac{1}{2}}.$
- Low-rank approximation: $\operatorname{rank}(A) = r, k < r, A_k := \sum_{i=1}^k s_i u_i v_i^T, ||A A_k|| = \min_{\operatorname{rank}(A') \le k} ||A A'|| \text{ (holds for } ||\cdot||, ||\cdot||_F).$
- Approximate isometries: $m||x||_2 \le ||Ax||_2 \le n||x||_2$ where $m = s_n(A)$, $n = s_1(A)$, or $s_n||x y||_2 \le ||Ax Ay||_2 \le s_1||x y||_2$.
- $A_{m \times n}, \delta > 0$. If $||A^T A I_n|| \le \max(\delta, \delta^2)$, then $(1 \delta)||x||_2 \le ||Ax||_2 \le (1 + \delta)||x||_2$ for all x. Proof WLOG $||x||_2 = 1$. $|||Ax||_2^2 - 1| = |\langle (A^T A - I_n)x, x \rangle| \le \max(\delta, \delta^2) \Rightarrow \max(||Ax||_2 - 1, (||Ax||_2 - 1)^2) \le \max(\delta, \delta^2) \Rightarrow |||Ax||_2 - 1| \le \delta$.
- $Q_{n \times m}, QQ^T = I_n \Leftrightarrow P = Q^TQ$ is an orthogonal proj in \mathbb{R}^m onto a subspace with dim n.
- ϵ -net: (T, d) a metric space, $K \subset T$, $\epsilon > 0$. $\mathcal{N} \subset K$ is an ϵ -net of K if $\forall x \in K$, $\exists x_0 \in \mathcal{N}$ s.t. $d(x, x_0) \leq \epsilon$. Covering number: smallest $|\mathcal{N}| = |\mathcal{N}(K, d, \epsilon)|$.
- Compactness: $\mathcal{N}(K, d, \epsilon) < +\infty$ for all $\epsilon > 0$.
- ϵ -separated: $\mathcal{P} \subset T$ is ϵ -separated if $d(x,y) > \epsilon$ for all $x,y \in \mathcal{P}$. Packing number: largest $|\mathcal{P}| = |\mathcal{P}(K,d,\epsilon)|$.
- \mathcal{P} is a maximal ϵ -separated subset $\Rightarrow \mathcal{P}$ is a ϵ -net of K.
- $\mathcal{P}(K, d, 2\epsilon) \leq \mathcal{N}(K, d, \epsilon) \leq \mathcal{P}(K, d, \epsilon)$.

Proof The upper bound follows from the previous lemma. For the lower bound, choose an 2ϵ -separated subset $\mathcal{P} = \{x_i\}$ in K and an ϵ -net $\mathcal{N} = \{y_j\}$ of K. $\forall x_i, \exists y_j \in \mathcal{N}$, s.t. $|x_i - y_j| < \epsilon$. $\forall y_j$, there exists at most a $x_j \in \mathcal{P}$ s.t. $|x_i - y_j| < \epsilon$.

- Minkowski sum: $A, B \in \mathbb{R}^n, A + B := \{a + b, a \in A, b \in B\}.$
- $K \subset \mathbb{R}^n$, $\epsilon > 0$, $\frac{|K|}{|\epsilon B_2^n|} \le \mathcal{N}(K, \epsilon) \le \mathcal{P}(K, \epsilon) \le \frac{|K + \frac{\epsilon}{2} B_2^n|}{|\frac{\epsilon}{2} B_2^n|}$ where $|\cdot|$ denotes the volume in \mathbb{R}^n , B_2^n denotes the unit Euclidean ball in \mathbb{R}^n .
- Corollary: Let $K = B_2^n$. $|\epsilon B_2^n| = \epsilon^n |K|, |K + \frac{\epsilon}{2} B_2^n| = (1 + \frac{\epsilon}{2})^n |K| \Rightarrow (\frac{1}{\epsilon})^n \leq \mathcal{N}(B_2^n, \epsilon) \leq (1 + \frac{2}{\epsilon})^n$. $\epsilon \in (0, 1] \Rightarrow (\frac{1}{\epsilon})^n \leq \mathcal{N}(B_2^n, \epsilon) \leq (\frac{3}{\epsilon})^n$.
- Hamming cubde: $x, y \in \{0, 1\}^n, d_H(x, y) := \#\{i : x(i) \neq y(i)\}.$
- (T,d) a metric space, $K \subset T$, $\mathcal{C}(K,d,\epsilon)$ the smallest number of bits sufficient specify every points $x \in K$ with accuracy ϵ in the metric d. Then $\log_2 \mathcal{N}(K,d,\epsilon) \leq \mathcal{C}(K,d,\epsilon) \leq \log_2 \mathcal{N}(K,d,\frac{\epsilon}{2})$. $\log_2 \mathcal{N}(K,\epsilon)$ is often called the metric entropy of K.

Proof Lower bound. Assume $C(K, d, \epsilon) \leq N$. There exists a transformation of $x \in K$ into bit strings of length N. A partition of K into at most 2^N subsets.

Upper bound. Assume $\log_2 \mathcal{N}(K, d, \frac{\epsilon}{2}) \leq N$. There exists an $\frac{\epsilon}{2}$ -net \mathcal{N} with $|\mathcal{N}| \leq 2^N$. To every point $x \in K$, assign a point $x_0 \in \mathcal{N}$ that is closest to x. The encoding $x \mapsto x_0$ represents points in K with accuracy ϵ .

- Error correcting code: Fix integers k, n and r. Encoder $\{0, 1\}^k \to \{0, 1\}^n$, Decoder $\{0, 1\}^n \to \{0, 1\}^k$, D(y) = x if $x \in \{0, 1\}^k$, $y \in \{0, 1\}^n$ and $d_H(E(x), y) \le r$.
- If $\log_2 \mathcal{P}(\{0,1\}^n, d_H, 2r) \geq k$, then there exists an error correcting code, k bits $\to n$ bits, correct r error. $Proof \ \exists \mathcal{P} \in \{0,1\}^n, |\mathcal{P}| = 2^k \text{ s.t closed balls centered at } \mathcal{P} \text{ with radii } r \text{ are disjoint. } E: \{0,1\}^k \to \mathcal{N} \text{ one to one; } D: \{0,1\}^n \to \{0,1\}^k \text{ nearest-neighbor decodes.}$
- If $n \ge k + 2r \log_2(\frac{en}{2r})$, then there exists an error correcting code that encodes k-bit strings into n-bit strings and can correct r errors.

Proof
$$\mathcal{P}(\{0,1\}^n, d_H, 2r) \ge \mathcal{N}(\{0,1\}^n, d_H, 2r) \ge \frac{2^n}{\sum_{k=0}^{2r} C_n^k} \ge 2^n (\frac{2r}{en})^{2r} \ge 2^k$$
.

RANDOM MATRICES

- $A_{m \times n}, \epsilon \in [0, 1)$. Then for any ϵ -set \mathcal{N} of \mathbb{S}^{n-1} , $\sup_{x \in \mathcal{N}} ||Ax||_2 \le ||A|| \le \frac{1}{1-\epsilon} \sup_{x \in \mathcal{N}} ||Ax||_2$. Proof Fix $x \in \mathbb{S}^{n-1}$, $||A|| = ||Ax||_2$. $\exists x_0 \in \mathcal{N}, ||x - x_0||_2 \le \epsilon, ||Ax - Ax_0||_2 \le ||A|| ||x - x_0||_2 \le \epsilon ||A|| \Rightarrow ||Ax_0||_2 \ge ||Ax||_2 - ||A(x - x_0)||_2 \ge ||A|| - \epsilon ||A||$.
- $A_{m\times n}=\{A_{ij}\},\ A_{ij}$ independent mean zero sub-gaussian, $K=\max_{i,j}||A_{ij}||_{\psi_2}$. Then for any $t>0,\ \mathbb{P}(||A||\leq CK(\sqrt{m}+\sqrt{n}+t))\geq 1-2e^{-t^2}$.