

# Machine Learning

Prof. Adil Khan

#### Objectives

- 1. A quick recap of last week
- 2. Revisiting classification problems
- 3. How can we solve a classification problem using a "Separating Hyperplane"?
- 4. What are Support Vector Machines? What is their objective function? How is it motivated?
  - What is "Margin"? Why do we need it? How can we use it to find the optimum separating hyperplane?
  - How to derive an expression for Margin? How to formulate the SVM's objective function using the obtained expression?
  - How do we solve the objective function?
- 5. What are the two main Issues with SVMs?

# Recap (1)

#### High Dimensional Data is

- Difficult to visualize
- Difficult to analyze
- Difficult to understand to get insight from the data (correlation and predictions)

#### **Data Projection**





#### **Principal Component Analysis**

- PCA reduces dimensionality by projecting data from a high dimensional space to a lower dimensional space
- It does so by using a set of vectors
- Vectors will be chosen such that they maximize the variance in the project space
- Furthermore, the vectors
  - Should be orthogonal
  - Have unit length
- Finally, data should have zero mean

# Recap (2)

# Given $X = \{(x_i) | x_i \in \mathbb{R}^p \}_{i=1}^n$ , PCA Works as Follows

- 1. Transform the data to have zero mean by subtracting  $\mu_x$  from each point
- Compute the sample covariance matrix C
- Find p (eigenvector, eigenvalue) pairs of C
- 4. Find the eigenvectors corresponding to d highest eigenvalues  $w_1, w_2, \dots, w_d$
- 5. Compute X' as X' = XW, where  $W = [w_1, w_2, \dots, w_d]$

# Hyperplane

### Hyperplane

$$\vec{w}.\vec{x} + w_0 = 0$$

• A hyperplane in  $\mathbb{R}^p$  dimensions is a set of points  $\{x_1, x_2, \dots, x_n\}$  that satisfy the following equation

$$w_o + w_1 x_1 + \cdots w_d x_p = 0$$

- If p = 2, a hyperplane is a line
- If  $w_0 = 0$ , the hyperplane goes through the origin
- The vector  $\mathbf{w} = (w_1, w_2, ..., w_p)$  is called the normal vector it points in direction orthogonal to the surface of the hyperplane.



#### Normal Vector



$$\overrightarrow{w}.(x_1-x_2)=0$$

$$\overrightarrow{w} \cdot x_1 - \overrightarrow{w} \cdot x_2 = 0$$

$$\overrightarrow{w}.\,x_1+w_0=0$$

$$\overrightarrow{w}.\,x_2+w_0=0$$

# Separating Hyperplane

# Binary Classification Problem

- Given a training dataset  $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^p \times \{-1, 1\}$
- We want to find a classifier  $h(x): \mathbb{R}^p \to \{-1,1\}$

#### Two Cases

#### **Linearly Separable**



#### **Non-Linearly Separable**



For now, we will focus only on the linear cases

# Separating Hyperplane



# Separating Hyperplane (2)

$$w_o + w_1 x_1 + \cdots w_p x_p = 0$$

• Any point  $x = (x_1, x_2, ..., x_p)$  that satisfies the above equation lies on the plane

# Separating Hyperplane (3)

$$w_o + w_1 x_1 + \cdots w_p x_p = 0$$

1. However, x lies on positive side of the plane if

$$w_o + w_1 x_1 + \cdots w_p x_p > 0$$

2. Or the other if

$$w_o + w_1 x_1 + \cdots w_p x_p < 0$$

# Separating Hyperplane (4)

Thus a separating hyperplane has a property that

$$w_o + w_1 x_1 + \cdots w_p x_p > 0$$
 if  $y_i = 1$ 

And

$$w_o + w_1 x_1 + \dots + w_p x_p < 0$$
 if  $y_i = -1$ 

• And our decision function for  $x_{new}$  is,

$$y_{new} = sign(w_o + w_1x_1 + \cdots w_px_p)$$

# Separating Hyperplane (5)

But there is one problem!

# Infinite Many Separating Hyperplanes

### Choosing the Separating Hyperplane



#### Should We Choose This One?



#### What About This One?



#### What About This One?



Infact, We have Infinite Many Such Hyperplanes!



# Infinite Many Hyperplanes

- Are all of them good?
- Or is one better than all others?

To figure this out, let's learn about the margin

#### Margin

 Margin is the perpendicular distance from the decision boundary to the closest point on either side of the decision boundary



A First Course in Machine Learning, Chapter 5, Figure 5.12

#### Optimal Decision Bounday (or Separating Plane)

One that miximizes the margin



A First Course in Machine Learning, Chapter 5, Figure 5.12

# Separating Hyperplane

Thus when finding a separating hyperplane we should seek one that maximizes the margin!

#### Mathematical Expression of Margin (1)



#### Mathematical Expression of Margin (2)

- Thus
- $2\gamma$  is equal to the component of the vector  $(x_1-x_2)$  in the direction perpendicular to the boundary



#### Recall Scalar Projection



• This quantity is also called "the component of  $\vec{b}$  in the direction of  $\vec{a}$ "

#### Mathematical Expression of Margin (3)

- 1. To get this expression, we just need to compute the "the component of vector  $(x_1-x_2)$  which is perpendicular to the boundary"
- 2. We know that  $\vec{w}$  is perpendicular to the boundary
- 3. Thus, we can simply compute the scalar projection of vector  $(x_1-x_2)$  onto  $\vec{w}$





#### Mathematical Expression of Margin (4)

Thus

$$2\gamma = \frac{1}{\|\mathbf{w}\|} \mathbf{w}^T (x_1 - x_2)$$

$$= \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^T \mathbf{x_1} - \mathbf{w}^T \mathbf{x_2})$$

$$= \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^T \mathbf{x_1} + w_0 - \mathbf{w}^T \mathbf{x_2} - w_0)$$

#### Mathematical Expression of Margin (5)

Thus

$$2\gamma = \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^T \mathbf{x_1} + \mathbf{w_0} - (\mathbf{w}^T \mathbf{x_2} + \mathbf{w_0}))$$

Now, recall our decision function

$$y_{new} = sign(w_o + w_1x_1 + \cdots w_px_p)$$

- It only cares about sign and does not care about the value
- Thus we can decide to fix the scaling of  $\mathbf{w}$  and  $w_o$  such that

$$\mathbf{w}^{T}\mathbf{x} + w_{0} = \pm 1$$

#### Mathematical Expression of Margin (6)

$$2\gamma = \frac{1}{\|\mathbf{w}\|}(\mathbf{1} - (-\mathbf{1}))$$

$$=\frac{1}{\|\boldsymbol{w}\|}(\mathbf{1}+\mathbf{1})$$

$$=\frac{2}{\|\mathbf{w}\|}$$



# Maximizing the Margin

- Thus to maximize the margin, we must maximize  $\frac{1}{\|w\|}$
- However, there are some constraints

$$y_i(w_o + w_1 x_1 + \cdots w_p x_p) \ge 1$$

### Maximizing the Margin (2)

Thus our learning objective becomes

$$\underset{w}{\operatorname{argmax}} \frac{1}{\|w\|}$$

subject to 
$$y_i(w_o + w_1x_1 + \cdots w_px_p) \ge 1$$
 for all  $i$ 

# Recall Dual Optimization Problems



weak duality holds



strong duality holds

# Maximizing the Margin (3)

Practically, it is easier to solve the following (equivalent) optimization problem

$$\underset{w}{\operatorname{argmin}} \ \frac{1}{2} \|w\|^2$$

subject to 
$$y_i(w_o + w_1x_1 + \cdots w_px_p) \ge 1$$
 for all  $i$ 

#### Thus

- In Support Vector Machines
- Given a data set  $\mathbb{D} = \{(x_i, y_i) | x_i \in \mathbb{R}^p, y_i \in \{-1,1\}\}_{i=1}^n$ , we solve the following

$$\underset{w}{\operatorname{argmin}} \ \frac{1}{2} \|w\|^2$$

subject to 
$$y_i(w_o + w_1x_1 + \cdots w_px_p) \ge 1$$
 for all  $i$ 

# Remember Lagrange Multipliers!!

## Thus (2)

- In Support Vector Machines
- Given a data set  $\mathbb{D} = \{(x_i, y_i) | x_i \in \mathbb{R}^p, y_i \in \{-1,1\}\}_{i=1}^n$ , we solve the following

$$\underset{w}{\operatorname{argmin}} \ \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i (y_i (w^T x_i + w_0) - 1)$$

subject to  $\alpha_i \geq 0$  for all i

#### What Have We Learned So Far?

- 1. How a hyperplane can be used to separate linearly separable data?
- 2. But there are inifite many such hyperplanes
- 3. The best among them is the one that has the maximum margin
- 4. Support Vector Machines find that hyperplane by solving the following objective

$$\underset{w}{\operatorname{argmin}} \ \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i (y_i (w^T x_i + w_0) - 1)$$

subject to  $\alpha_i \geq 0$  for all i

#### Issues with SVM

## Issue (1): Sensitivity to Noise



An additional blue observation has been added, leading to a dramatic shift in the maximal margin hyperplane. This is kind of overfitting.

## Issue (2): Non-linear Data



# Soft Margin SVM

## Why Does SVM Overfit?

 To understand that, we will look at the constraints of the original optimisation problem

$$y_i(w_o + w_1x_1 + \cdots w_px_p) \ge 1$$
 for all  $i$ 

2. This means all training data must sit on the right side of the decision boundary

## Soft Margin SVM

- 1. To reduce overfitting, we must allow points to lie on the wrong side of the (margin or boundary)
- 2. Thus we need to realx the constraints

$$y_i(w_o + w_1x_1 + \cdots w_px_p) \ge 1 - \xi_i$$
 for all  $i$ 

where 
$$\xi_i \geq 0$$

#### Slack Variables

- The slack variable  $\xi_i$  tells us where the i-th observation is located, relative to the hyperplane and relative to the margin.
- If  $\xi_i = 0$  then the sample is on the correct side of the margin
- If  $\xi_i > 0$  then the sample is on the wrong side of the margin
- If  $\xi_i > 1$  then the sample is on the wrong side of the hyperplane



## Soft Margin SVM Objective

$$\underset{w}{\operatorname{argmin}} \ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i$$

subject to 
$$\xi_i \ge 0$$
,  $y_i(w_o + w_1x_1 + \cdots w_px_p) \ge 1 - \xi_i$  for all  $i$ 

#### Kernel SVM

### A Non-linear Classification Example



A First Course in Machine Learning, Chapter 5, Figure 5.17

#### Recall: Extending Linear Regression

- What did we do to get better results where the underlying relationship between the response variable and the predictors was linear?
- Introduced polynomial features
- To apply SVM for non-linear problems, we do a similar thing:
  - Project our data to a high-dimensional space
  - Apply linear SVM there

## Example

- Data lies along a single dimension
- Not linearly separable



# Example (2)

Let's apply the following transformation to our data



# Example (3)

The data after the transformation



# Example (4)

• Which can now be solved using a linear hyperplane



#### Summary

- 1. Take the non-linearly separable data and transform the data such that it becomes linearly separable
- 2. Invoke the SVM to find the best (linear) decision boundary
- 3. Project all of it back to the original space to get the non-linear decision boundary

But how do we determine what transformation to apply?

#### Kernel Trick

- The good news is that we do not need to implement our own transformations
- We have a list of special functions available for that called Kernel Functions
- We simply try multiple of them and select the one that gives us the best results kind of hyper-parameter tuning

#### Kernel Trick



#### Most Commonly Used Kernel Functions

• Linear Kernel

- Polynomial Kernel
- RBF Kernel
- Sigmoid
- Etc

#### Recommended Reading

1. Section 5.3.2, A First Course in Machine Learning, by Simon Rogers and Mark Girolami

#### Summary

- 1. Solving a classification problem using a "Separating Hyperplane"
- 2. Finding the optimum separating hyperplane by maximizing the margin
- 3. Formulating SVM's objective function a constrained optimization problem
- 4. Solving the objective function using Lagrange Multipliers
- 5. Issues with SVMs
- 6. Using SVM to solve non-linear classification problem by means of Kernel functions