Variational Autoencoder

References:

- · 变分推断之傻瓜式推导ELBO
- Auto-Encoding Variational Bayes
- 从极大似然估计到变分自编码器 VAE 公式推导

Evidence Lower Bound

Suppose we have observation X and latent variable Z. We are interested in the posterior distribution $p(\mathbf{z}|\mathbf{x})$. It is often intractable to compute $p(\mathbf{z}|\mathbf{x})$ due to the dimensionality. Hence, we introduce another distribution $q(\mathbf{z})$ to approximate the true posterior. To minimize the difference between $p(\mathbf{z}|\mathbf{x})$ and $q(\mathbf{z})$, we use the KL divergence:

$$\begin{split} D_{\mathrm{KL}}\Big(q(\mathbf{z}) \| p(\mathbf{z}|\mathbf{x})\Big) &= \int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \int q(\mathbf{z}) \log q(\mathbf{z}) d\mathbf{z} - \int q(\mathbf{z}) \log p(\mathbf{z}|\mathbf{x}) d\mathbf{z} \\ &= \int q(\mathbf{z}) \log q(\mathbf{z}) d\mathbf{z} - \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})} d\mathbf{z} \\ &= \int q(\mathbf{z}) \log q(\mathbf{z}) d\mathbf{z} - \int q(\mathbf{z}) \log p(\mathbf{x}, \mathbf{z}) d\mathbf{z} + \int q(\mathbf{z}) \log p(\mathbf{x}) d\mathbf{z} \\ &= \underbrace{\int q(\mathbf{z}) \log q(\mathbf{z}) d\mathbf{z} - \int q(\mathbf{z}) \log p(\mathbf{x}, \mathbf{z}) d\mathbf{z} + \log p(\mathbf{x})}_{\text{negative ELBO}} \\ &= -\text{ELBO} + \log p(\mathbf{x}) \end{split}$$

Since the KL divergence is always non-negative, we have

$$D_{ ext{KL}}\Big(q(\mathbf{z})\|p(\mathbf{z}|\mathbf{x})\Big) = - ext{ELBO} + \log p(\mathbf{x}) \geq 0$$

$$\log p(\mathbf{x}) \geq ext{ELBO}$$

 $\log p(\mathbf{x})$ is called the evidence, so ELBO gets its name (evidence lower bound). ELBO has different forms:

$$egin{aligned} ext{ELBO} &= -\int q(\mathbf{z}) \log q(\mathbf{z}) d\mathbf{z} + \int q(\mathbf{z}) \log p(\mathbf{x}, \mathbf{z}) d\mathbf{z} \ &= \int q(\mathbf{z}) \log rac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} d\mathbf{z} \ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \log rac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \end{aligned}$$

$$ext{ELBO} = \log p(\mathbf{x}) - D_{ ext{KL}} \Big(q(\mathbf{z}) \| p(\mathbf{z}|\mathbf{x}) \Big)$$

For given observations, $\log p(\mathbf{x})$ is fixed. So to minimize $D_{\mathrm{KL}}\Big(q(\mathbf{z})\|p(\mathbf{z}|\mathbf{x})\Big)$ is to maximize the ELBO.

KL Divergence

Kullback-Leibler divergence (KL divergence) is a measure of the distance between two probability distributions. It is defined as:

$$D_{ ext{KL}}\Big(q(\mathbf{x}\|p(\mathbf{x}))\Big) = \int q(\mathbf{x}) \log rac{q(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x} = \mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \log rac{q(\mathbf{x})}{p(\mathbf{x})}$$

The KL divergence is always non-negative, because

$$egin{aligned} 0 &= \log \left[\int p(\mathbf{x}) d\mathbf{x}
ight] \ &= \log \left[\int q(\mathbf{x}) rac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x}
ight] \ &\geq \int q(\mathbf{x}) \log rac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} \end{aligned} \qquad ext{(Jensen's Inequality)}$$

Specifically, given $p = \mathcal{N}(\mu_1, \sigma_1^2)$, $q = \mathcal{N}(\mu_2, \sigma_2^2)$, we have:

$$D_{ ext{KL}}(p\|q) = \ln rac{\sigma_2}{\sigma_1} + rac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - rac{1}{2}$$

Generally, in multivariate case, given $p = \mathcal{N}(\mu_1, \Sigma_1)$, $q = \mathcal{N}(\mu_2, \Sigma_2)$, we have:

$$D_{ ext{KL}}(p\|q) = rac{1}{2} \left[(oldsymbol{\mu}_1 - oldsymbol{\mu}_2)^T oldsymbol{\Sigma}_2^{-1} (oldsymbol{\mu}_1 - oldsymbol{\mu}_2) - \log \det(oldsymbol{\Sigma}_2^{-1} oldsymbol{\Sigma}_1) + ext{Tr} \left(oldsymbol{\Sigma}_2^{-1} oldsymbol{\Sigma}_1
ight) - n
ight]$$

Reference: 两个多元正态分布的KL散度、巴氏距离和W距离

Jensen's Inequality

If $\phi: \mathbb{R} \to \mathbb{R}$ is a real-valued convex function on $\Omega \subset \mathbb{R}^n$, then for any $f, g: \Omega \to \mathbb{R}$, we have:

$$\phi \Big[\int_{\Omega} f(\mathbf{x}) g(\mathbf{x}) d\mathbf{x} \Big] \geq \int_{\Omega} \phi ig[f(\mathbf{x}) ig] g(\mathbf{x}) d\mathbf{x}$$

For instance, assume $\phi(x) = \log(x)$, f, g are probability density functions on \mathbb{R}^n , we have

$$\log \Big[\int_{\Omega} f(\mathbf{x}) g(\mathbf{x}) d\mathbf{x} \Big] \geq \int_{\Omega} \log ig[f(\mathbf{x}) ig] g(\mathbf{x}) d\mathbf{x}$$

VAE Model Architecture

Let us consider some dataset $\mathbf{X} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ consisting of N i.i.d. samples of some continuous or discrete variable $\mathbf{x} \in \mathbb{R}^{d_1}$. We assume that the data are generated by some random process, involving an unobserved continuous random variable $\mathbf{z} \in \mathbb{R}^{d_2}$.

The generative model is given by the joint distribution of \mathbf{x} and \mathbf{z} :

$$p_{ heta}(\mathbf{x},\mathbf{z}) = p_{ heta}(\mathbf{x}|\mathbf{z})p_{ heta}(\mathbf{z})$$

- 1. A value **z** is generated from some prior distribution $p_{\theta}(\mathbf{z})$;
- 2. A value **x** is generated from some conditional distribution $p_{\theta}(\mathbf{x}|\mathbf{z})$.

To build the generative model, an idea is to introduce the posterior distribution of \mathbf{z} given \mathbf{x} : $p_{\theta}(\mathbf{z}|\mathbf{x})$. The training process becomes:

- 1. Sample an observation x;
- 2. Generate the latent variable **z** from the posterior distribution $p_{\theta}(\mathbf{z}|\mathbf{x})$;
- 3. Decode the latent variable **z** with $p_{\theta}(\mathbf{x}|\mathbf{z})$ get the reconstructed data \mathbf{x}' .
- 4. Update the parameters θ using some loss with \mathbf{x} and \mathbf{x}' .

In practice, $p_{\theta}(\mathbf{z}|\mathbf{x})$ is intractable to compute, so we introduce $q_{\phi}(\mathbf{z}|\mathbf{x})$ to approximate it. The model can be viewed as an encoder-decoder architecture:

• Encoder: $q_{\phi}(\mathbf{z}|\mathbf{x})$

• Decoder: $p_{\theta}(\mathbf{x}|\mathbf{z})$

With maximum likelihood estimation, we write the objective as:

$$egin{aligned} p_{ heta}(\mathbf{x}) &= \int p_{ heta}(\mathbf{z}) p_{ heta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &= \int q_{\phi}(\mathbf{z}|\mathbf{x}) rac{p_{ heta}(\mathbf{z}) p_{ heta}(\mathbf{x}|\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \Big[rac{p_{ heta}(\mathbf{z}) p_{ heta}(\mathbf{x}|\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \Big], \end{aligned}$$

Maximizing the log likelihood is equivalet to maximizing the ELBO:

$$\begin{split} \log p_{\theta}(\mathbf{x}) &= \log \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \bigg[\frac{p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \\ &\geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \overset{\text{def}}{=} \text{ELBO}. \end{split}$$

Now we change the form of the ELBO:

$$\begin{split} \text{ELBO} &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{p_{\theta}(\mathbf{x}) p_{\theta}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{p_{\theta}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \\ &= \log p_{\theta}(\mathbf{x}) - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z}|\mathbf{x})} \bigg] \\ &= \log p_{\theta}(\mathbf{x}) - D_{\text{KL}} \bigg(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \bigg), \end{split}$$

So when we maximize the ELBO, we are maximizing the evidence $\log p_{\theta}(\mathbf{x})$, as well as minimizing the KL divergence $D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$.

For interpretability, we can also rewrite the ELBO as:

$$\begin{split} \text{ELBO} &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) + \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{p_{\theta}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z})} \bigg] \\ &= \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z})}_{\text{Reconstruction Error}} - \underbrace{D_{\text{KL}} \bigg(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}) \bigg)}_{\text{KL Loss}} \end{split}$$

So our objective only involves three distributions:

- $q_{\phi}(\mathbf{z}|\mathbf{x})$: Encoder, which is usually modeled as a neural network;
- $p_{\theta}(\mathbf{x}|\mathbf{z})$: Decoder, which is usually modeled as a neural network;
- $p_{\theta}(\mathbf{z})$: The prior distribution of the latent variable. We usually use some simple distribution with good properties, e.g., standard normal distribution.

By maximizing ELBO, we can learn the optimal parameters θ and ϕ of the encoder and decoder.

VAE with Gaussian Prior

Now the problem becomes how to parameterize $q_{\phi}(\mathbf{z}|\mathbf{x})$, $p_{\theta}(\mathbf{z})$, and $p_{\theta}(\mathbf{z})$.

KL Loss

For the prior distribution of z, we assume a standard normal distribution:

$$p_{ heta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$

For the posterior distribution of \mathbf{z} , we assume a normal distribution

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; oldsymbol{\mu}_{\phi}(\mathbf{x}), oldsymbol{\sigma}_{\phi}^2(\mathbf{x})\mathbf{I})$$

where $\mu_{\phi}(\mathbf{x})$ and $\sigma_{\phi}^{2}(\mathbf{x})$ are neural networks parameterized by ϕ .

Thanks to the good properties of normal distribution, we can compute $D_{\mathrm{KL}}\Big(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{\theta}(\mathbf{z})\Big)$ analytically. Since $p_{\theta}(\mathbf{z})$ and $q_{\phi}(\mathbf{z}|\mathbf{x})$ are both independent across dimensions, the KL divergence is simply the sum of the KL divergences of each dimension. For each dimension, we have:

$$\begin{split} &D_{\mathrm{KL}} \Big[\mathcal{N}(z;\mu,\sigma^2) \| \mathcal{N}(z;0,1) \Big] \\ &= \int \mathcal{N}(z;\mu,\sigma^2) \log \frac{\mathcal{N}(z;\mu,\sigma^2)}{N(z;0,1)} \mathrm{d}z \\ &= \int \mathcal{N}(z;\mu,\sigma^2) \log \frac{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)} \mathrm{d}z \\ &= \int \mathcal{N}(z;\mu,\sigma^2) \left(-\log \sigma - \frac{(z-\mu)^2}{2\sigma^2} + \frac{z^2}{2}\right) \mathrm{d}z \\ &= \frac{1}{2} \int \mathcal{N}(z;\mu,\sigma^2) \left(-2\log \sigma - \frac{(z-\mu)^2}{\sigma^2} + z^2\right) \mathrm{d}z \\ &= \frac{1}{2} \left[-\log \sigma^2 \underbrace{\int \mathcal{N}(z;\mu,\sigma^2) \mathrm{d}z - \frac{1}{\sigma^2} \underbrace{\int (z-\mu)^2 \mathcal{N}(z;\mu,\sigma^2) \mathrm{d}z}_{\mathrm{variance},\,\sigma^2} + \underbrace{\int z^2 \mathcal{N}(z;\mu,\sigma^2) \mathrm{d}z}_{\mathrm{second\;moment},\,\mu^2 + \sigma^2} \right] \\ &= \frac{1}{2} \left(-\log \sigma^2 - \frac{1}{\sigma^2} \sigma^2 + \mu^2 + \sigma^2\right) \\ &= \frac{1}{2} \left(-1 - \log \sigma^2 + \mu^2 + \sigma^2\right) \end{split}$$

Denote the dimension of \mathbf{z} as d_2 , the KL loss term can be expresses as:

$$D_{ ext{KL}}\Big(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{ heta}(\mathbf{z})\Big) = \sum_{i=1}^{d_2} rac{1}{2}\Big(-1 - \log \sigma_i^2 + \mu_i^2 + \sigma_i^2\Big)$$

Reconstruction Error

We model the likelihood of \mathbf{x} given \mathbf{z} as a normal distribution:

$$egin{aligned} p_{ heta}(\mathbf{x}|\mathbf{z}) &= N(\mathbf{x}; oldsymbol{\mu}, oldsymbol{\sigma}^2 \mathbf{I}) \ &= \prod_{i=1}^{d_1} \mathcal{N}(x_i; \mu_i, \sigma_i^2) \ &= \Big(\prod_{i=1}^{d_1} rac{1}{\sqrt{2\pi}\sigma_i}\Big) \expigg(-\sum_{i=1}^{d_1} rac{(x_i - \mu_i)^2}{2\sigma_i^2}\Big) \end{aligned}$$

So

$$egin{aligned} \log p_{ heta}(\mathbf{x}|\mathbf{z}) &= \sum_{i=1}^{d_1} \log \left(rac{1}{\sqrt{2\pi}\sigma_i}
ight) - \sum_{i=1}^{d_1} rac{(x_i - \mu_i)^2}{2\sigma_i^2} \ &= -d_1 \log \sqrt{2\pi} - rac{1}{2} \sum_{i=1}^{d_1} \log \sigma_i^2 - rac{1}{2} \sum_{i=1}^{d_1} rac{(x_i - \mu_i)^2}{\sigma_i^2} \end{aligned}$$

We usually assume σ_i^2 are a same constant for all dimensions. So to maximize $\log p_{\theta}(\mathbf{x}|\mathbf{z})$ is to minimize $\sum_{i=1}^{d_1}(x_i-\mu_i)^2$.

The decoder network can learn to predict the mean of the distribution, i.e., $\mu = (\mu_1, \mu_2, \dots, \mu_{d_1})$, which is used as the reconstructed sample $\hat{\mathbf{x}}$. The reconstruction error becomes MSE loss between the original sample \mathbf{x} and the reconstructed sample $\hat{\mathbf{x}}$.

Reparameterization Trick

The encoder of VAE doesn't give \mathbf{z} directly. Instead, it gives $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}^2$ of \mathbf{z} 's distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$. \mathbf{z} is sampled from the distribution.

To use gradient descent to optimize the encoder network $q_{\phi}(\mathbf{z}|\mathbf{x})$, we need the gradient of \mathbf{z} to ϕ :

$$rac{\partial \mathbf{z}}{\partial oldsymbol{\phi}} = rac{\partial \mathbf{z}}{\partial oldsymbol{\mu}} rac{\partial oldsymbol{\mu}}{\partial oldsymbol{\phi}} + rac{\partial \mathbf{z}}{\partial oldsymbol{\sigma}^2} rac{\partial oldsymbol{\sigma}^2}{\partial oldsymbol{\phi}}$$

Previously, we have parameterized $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}^2$ as neural networks: $\boldsymbol{\mu} = \boldsymbol{\mu}_{\phi}(\mathbf{x}), \ \boldsymbol{\sigma}^2 = \boldsymbol{\sigma}_{\phi}^2(\mathbf{x})$. So $\frac{\partial \boldsymbol{\mu}}{\partial \phi}$ and $\frac{\partial \boldsymbol{\sigma}^2}{\partial \phi}$ can be computed. But $\frac{\partial \mathbf{z}}{\partial \mu}$ and $\frac{\partial \mathbf{z}}{\partial \sigma^2}$ cannot be directly computed, because \mathbf{z} is sampled from $\mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2 \mathbf{I})$, and sampling isn't a differentiable operation.

To solve the problem, we can use the reparameterization trick. Sample a noise $\epsilon \in \mathbb{R}^{d_2}$ from a standard normal distribution, $\mathcal{N}(\epsilon; \mathbf{0}, \mathbf{I})$, and we have

$$\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon} \stackrel{ ext{def}}{=} f(\boldsymbol{\epsilon}, \boldsymbol{\mu}, \boldsymbol{\sigma}^2) \stackrel{ ext{def}}{=} q_{\boldsymbol{\epsilon}}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$

 ϵ introduces randomness in generating \mathbf{z} from $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}^2$, but after it is sampled, the rule to generate \mathbf{z} from $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}^2$ is fixed to a deterministic function $g_{\epsilon}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$. So now we can compute $\frac{\partial \mathbf{z}}{\partial \boldsymbol{\mu}}$ and $\frac{\partial \mathbf{z}}{\partial \sigma^2}$ using the chain rule as

$$rac{\partial \mathbf{z}}{\partial oldsymbol{\mu}} = rac{\partial g_{oldsymbol{\epsilon}}(oldsymbol{\mu}, oldsymbol{\sigma})}{\partial oldsymbol{\mu}}, \quad rac{\partial \mathbf{z}}{\partial oldsymbol{\sigma}^2} = rac{\partial g_{oldsymbol{\epsilon}}(oldsymbol{\mu}, oldsymbol{\sigma})}{\partial oldsymbol{\sigma}^2}$$

To summarize, we randomly sample ϵ from $\mathcal{N}(\mathbf{0}, \mathbf{I})$ every time to determine a map g_{ϵ} , and generate $\mathbf{z} = g_{\epsilon}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$, which is differentiable to $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}^2$.