CS3700 Introduction to Database Systems

Prof P Sreenivasa Kumar Department of CSE, I I T Madras

Introduction to Database Systems CS3700

Objectives:

Introduce the learner to the fundamental ideas/ principles of relational databases and relational database management systems.

Next few slides:

A perspective of the "data" space

Prof P Sreenivasa Kumar, Department of CS&E, IITM.

Kinds of Data

- Various kinds of Data we encounter everyday:
 - Enterprise (business) data
 - Structured data
 - Documents / webpages Text data
 - Objects JSON; XML (label, value) pairs data
 - Semi-structured data
 - Voice / music / image / video data
 - Unstructured data
- This course focuses on structured data

Prof P Sreenivasa Kumar, Department of CS&E, IITM.

Data at Large Enterprises

- Large Enterprises (Businesses)
 - Need to deal with multiple types of data
 - E-commerce company
 - Product specs, images, demo videos, customer profiles ...
 - Transactions data
 - Multiples sources of data
 - Each division its own data
 - External data stock prices, media reports etc
 - Data Integration a necessity
- Need multiple DBs and a Data Warehouse

Prof P Sreenivasa Kumar, Department of CS&E, IITM. 4

Data Mining vs Querying

- Data Mining Knowledge Discovery in Databases
 - Discover hither-to unknown 'knowledge' in data
 - $\ Knowledge-associations \ / \ clusters \ / \ classifications \ ...$
 - Custom-designed algorithms
- · DB Querying
 - Ask for details present in data or can be derived
 - Use logic-based expression languages SQL/OQL etc
 - Ask for aggregated information
 - How many 'fiction' books got issued to 'CS' students in the last quarter?

Prof P Sreenivasa Kumar, Department of CS&E, IITM.

OLAP - OLTP

- OLAP (Online analytical processing) queries:
 - Ask for aggregated information from data
 - Needs summarization of large amount of data
 - How many 'cosmetics' products were sold in all the stores located in the 'southern' region of the country in the last 2 quarters (Big Basket or Amazon)
 - Specialized architecting of data is needed
 - Done on warehouse data using "Data Cubes"
- OLTP(Online transaction processing)
 - Process a transaction (sale / credit card charge / reservation) quickly – concurrency needs attention
 - An important functionality of DB servers

Prof P Sreenivasa Kumar, Department of CS&E, IITM. 7

Text data - IR Systems

- IR Information Retrieval Systems
 - Typified by Search Engines Web/Enterprise
 - Query list of keywords (avg: 2.4 words/query)
 - Intention is imprecise
 - Relational queries are very precise (to see later)
 - Results a ranked list(s) of documents
 - Ordered by relevance to the Query
 - Hugely successful
 - Modern IR systems not just a repository of docs!
 - Needs a separate course

Prof P Sreenivasa Kumar, Department of CS&E, IITM. 8

OO Languages and Databases

- Object-Oriented (OO) programming
 - Deeply structured objects nesting is common
 - Rectangle set of 4 point objects; Point a pair
 - Objects are not 'persistent'!
- Data persistence is one of the strength of DBs
- · Two approaches
 - Take persistence to OO Languages
 - Object Database Systems OQL
 - Take 'rich structures' to databases
 - Object-Relational Databases (ORDBMSs)

Prof P Sreenivasa Kumar, Department of CS&E, IITM.

Knowledge Bases

- · Knowledge Bases
 - Founded on mathematical logic based languages
 - Inferences / reasoning incorporated
 - Every surgeon is a doctor; John is a surgeon and hence a doctor
 - Data: modeled as collection of 'statements'
 - Metadata: Terms/Vocabulary of the domain
 - Names of entity types of interest, properties of interest for these entities; binary relationships among entities
 - Modeled as Ontologies to capture domain knowledge
 - Can be viewed as graphs 'Knowledge Graphs'
 - More in the TAO course....

Prof P Sreenivasa Kumar, Department of CS&E, IITM. 10

NoSQL Databases

- Non-relational databases / Not only SQL
 - Offer flexibility no rigid row/col structure
 - Semi-structured + other simpler data models
 - Need: faster response to certain queries, quick data model updates, quick app development, horizontal scale-out...
 - System 'availability' over 'consistency' of reads
 - (-ve) No standard query language to access data
 - Multiple types of DBs
 - $-\,JSON\,/\,XML,$ key-value, columnar, graph etc

Prof P Sreenivasa Kumar, Department of CS&E, IITM. 11

Types of NoSQL DBs

- JSON / XML DBs
 - aka 'Document-oriented' / 'document' DBs
 - Semi-structured / non-homogenous data model
- · Key-value Stores
 - Value single or a collection of values (opaque)
 - ${\sf -}$ Like hash-tables ${\sf -}$ give key, get value ${\sf -}$ simple
- Graph DBs Nodes and labeled edges
 - Query language support SPARQL etc
- Column-oriented DBs fast access of col data

Prof P Sreenivasa Kumar, Departmen

Course Organization

- Tutorials Problem sessions 5 or 6
 - Problem sheet start of the class or a day before
 - Students to solve discussion, questions Ok
 - No marks no judging; answers posted later
- Moodle based assessment tests TBD
- Design and Dev assignment group/individual
 - Running assignment with 3 or 4 stages
- End-Sem exam at the campus or KVs (?)
- Attendance Google Meet tool

Prof P	Sreenivasa	Kumar,	Departmen