OIL:

UUP & NP

AVLC ENP

e CVH ENP

011.3

a) Yes,
$$(xV-yVz)\Lambda(xVyV-z)\Lambda(-xV-yV-z)$$
 is satisfiable when $(x=T)$, $(y=T)$ and $(z=F)$
 $(TVFVF)\Lambda(TVTVT)\Lambda(FVFVT) \equiv T$

Q11.10:-	
a)	A proported answer for the SPEP can be verified in polanomial time along
	in polynomial time (1(151)). Hence, SPEPENP
6)	SSE SOCO CON CONTRACTOR
	SSE $\leq \rho$ SPE $\rho \iff$ SSE(M, m) = log(SPE ρ (A', 2m)) where, $\forall i \in \{1,, n\}, o'_i = 2^{\alpha_i}$
	SPEP < SSE (A) SPEP(A, m) = 2 SCE(A', logm)
	Hence, SCE = SPEp.
	Since SPEP ENP and SPEPE NP-hard by SSE < PSPEP, SPEPE NP-complete.
	$SPEp \leq p SPMp \iff SPEp(A,m) = \begin{cases} S = SPMp(A,m) & \text{if } II \times m \end{cases}$
1.00	no otherwise
<u>e)</u>	Input: - Ast S of a positive numbers, a target m and a lower bound!
	Output: True and for S' if $\exists S' \subseteq S$ such that $l \leq \prod s' \leq m$ [False otherwise
t)	SPMpdv ENP
	SPEp <p (a,="" m)="SPMpdv" m)<="" m,="" spmpdv="" th=""></p>
	Since, SPMpdv ENP and SPMpdv ENP-hard, SPMpdv ENP-
g)	SPEP SPMinp SPEP(A,m) = S=SPminp(A,m) if IT x=m (no otherwise,
	LIC BYVENWAU,

Q11.16: a) Input: - A set P of K positive numbers & n E R+ Output - IT pixi such that minimize Ti Pixi subject to \$ pixi ≥m where 0 \le x; integer. b) USPmin & NP-based : USPE < p USPmin c) USSmin(A,m) = log USPmin(A', 2m) USPmin(A,m) = QUSSmin(A; logm) d) Input: - a set P of n tre nos, a target number mit an upper bound! Output: I'm pix: if IX such that m & Tipixi & where O & xi integer False otherwise e) USP minds ENP & NP-hard ... USP minds ENP-complete f) USSmind (A, m) = USPmind (A', 2m) (mgol, 'A) vanim 22 U = (m, A) vanim 22 U a) USPM & PUSPmin & USPmin & USPM VbM92U = Vbmin92U & Vbmin92U q = VbM92U (A Q11-17: a) UKP ENP-hard : USSM = PUKP & USSM ENP-hard USSM & PUKP.

d) $USSE(\hat{H},m) = \begin{cases} T & \text{if } UKEmin(IA,A), n,m) = m \\ F & \text{otherwise} \end{cases}$ $\hookrightarrow USSE \leq pUKEmin$ e) Inpit: a list A of n items. Output: True if IX such that \(\sum_{\text{ini}} \text{xini} = m \) \(\sum_{\text{ini}} \sum_{\text{ False otherwise f) UKEmind ENP & NP-hard, ... UKEmind ENP-complete 9) UKE UKE min > UKEmin h) UKE dv & UKEmin dv & UKEmin dv & UKE dv