第1章 覆叠空间

1.1 基本定义

定义 1.1

令 $p:\overline{X}\to X$ 是满射. 称 X 的一个开子集 V 是由 p 均匀覆叠的, 若 $\pi^{-1}(V)$ 写作 \overline{X} 开子集的无交并:

$$p^{-1}\left(V\right) = \coprod_{i} U_{i}$$

其中 U_i 在 p 下同胚地映到 V. 此时, 称每个 U_i 为 p 在 V 上的一个层. 若 X 被由 p 均匀覆叠的开子集所覆盖, 则称 p 为一个覆叠投影, \overline{X} 为 X 的覆叠空间.

Remark

- 1. 简称 \overline{X} 是 X 的复叠空间. 称 \overline{X} 覆叠投影 p 的全空间, X 是 p 基空间.
- 2. 每个复叠投影都是局部同胚映射. 因此 \overline{X} 和 X 有相同的局部拓扑性质.
- 3. 每个局部同胚都是开映射, 故复叠投影亦然.
- 4. 一般而言, 给定映射 $f: X \to Y$ 和 $y \in Y$, 和 $f^{-1}(y)$ 为 f 在 y 上的纤维, 若 f 是局部同胚, 则 f 的每个纤维都是离散的. 特别的, 复叠投影的每个纤维也都是离散的.
- 5. 当 x 在一个被均匀复叠的开集上移动时, $p^{-1}(x)$ 的基数不变. 若 X 是连通的, 则任意两个被均匀复叠的开集相交, 从而 $p^{-1}(x)$ 的基数与 $x \in X$ 的选取无关, 成为 p 的层数 . 若 p 的层数有限, 则称 p 是一个有限复叠. 例如 $z \mapsto z^n$ 是 S^1 到 S^1 的有限复叠.

Example 1.1 覆叠空间

- 1. 每个同胚都是一个覆叠投影;
- 2. 考虑 $\exp: \mathbb{R} \to \mathbb{S}^1$, 任意固定 $\theta: 0 \le \theta < 2\pi$, 考虑 $U = \mathbb{S}^1 \setminus \{e^{i\theta}\}$, $(\exp)^{-1}(U)$ 是一些区间 $\theta + 2n\pi < t < \theta + (2n+2)\pi$ 的无交并. 每个区间都在 \exp 下与 U 同胚.
- 3. 映射 $z\mapsto z^n$ 给出 \mathbb{C}^* 到自身的一个覆叠投影, 其中 n 是正整数, \mathbb{C}^* 是非零复数集. 映射在 \mathbb{S}^1 上的限制给出 \mathbb{S}^1 到自身的覆叠投影.
- 4. 设 $Y \in X$ 的子空间, $p \in X$ 的覆叠投影, 则 $p \in p^{-1}(Y)$ 上的限制给出到 Y 的覆叠投影.
- 5. 容易构造不是覆叠投影的局部同胚: 对于覆叠投影 $\overline{X} o X$, 和 \overline{X} 上的开集 U, 限

制映射仍是局部同胚,但是若取 $U=\overline{X}\setminus \bar{x}$,则限制映射不再是一个覆叠投影.

定理 1.1

令 $p: \overline{X} \to X$ 是连续映射, 其中 X 是局部道路连通的.

- 1. 映射 p 是覆叠投影, 当且仅当对于每个 X 的分支 $^{\mathbf{a}}$ C, 限制映射 $p:p^{-1}(C)\to C$ 是覆叠投影.
- 2. 若 p 是一个覆叠投影, 则对于每个 \overline{X} 的分支 \overline{C} , 映射 $p:\overline{C}\to p\left(\overline{C}\right)$ 是一个 覆叠投影°, 且 $p\left(\overline{C}\right)$ 是 X 的一个分支.
- ^a局部道路连通空间中, 道路分支和连通分支等价, 故我们统称分支
- $^{ extbf{b}}$ 局部道路连通性给出道路的分拆形成的对 \overline{X} 的分拆也是合适的.
- c主要是因为对 \overline{X} 的连通分拆不会破坏层的完整性. 由此, 我们可以单独考虑一个分支上的层.

Remark

1. 定理指出, 我们可以一次性只研究全空间的一个分支上的覆叠投影. 进而可以合理 地做以下约定: 若无特別指出, 我们以下总不妨设基空间和全空间都是局部道路连 通且连通的

Proof

- 1. 1.1已经指出 $p^{-1}(C) \to C$ 是覆叠投影; 对于反方向, 最关键的点在于局部道路连通性给出每个 C 也是开集. 因此, 对于任意的 $x \in X$, 考虑包含了 x 的道路分支 C, $p|_{p^{-1}(C)}$ 的均匀覆叠性给出 x 的被 $p:p^{-1}(C) \to C$ 均匀覆盖了的开邻域 $U \subseteq C$. 从而 U 也是 x 在 X 中的被 $p:\overline{X} \to C$ 均匀覆盖了的开邻域.
- 2. 首先 $p(\overline{C})=:C$ 是开集. 给定 $x\in C$, 令 V 是被 p 均匀覆叠的连通开邻域. 令 $p^{-1}(V)=\coprod U_i$, 则由于覆叠的性质, 每个 U_i 也是连通的. 于是要么 $U_i \subseteq C$,要么 $U_i \cap \overline{C}=\varnothing$. 由此可知 V 是被 $p|_{\overline{C}}$ 均匀覆叠的.

最后说明 C 是分支,令 x 是 C 的闭包上的一点,V 是同上面一样的 x 的开邻域. 则至少其中一个 U_i 与 \overline{C} 相交,进而完全地落在 \overline{C} 上,因此 $V\subseteq C$, $x\in C$. 这表明 C 是既开又闭的.