COM S 6810 Theory of Computing

February 10, 2009

Lecture 7: Circuit Lower Bounds I

Instructor: Rafael Pass Scribe: J. Aaron Lenfestey

We defined circuits in the last class and will spend the next two classes studying them. Circuits are an attractive area of study because they provide a level of structure which might be useful for proving that P and NP are separated. Recall the following definitions.

Definition 1 size (T(n)) is the class of languages deciable by circuit familes of size O(T(n)).

Definition 2 P/poly = $\bigcup_{c \in \mathbb{N}} \operatorname{size}(n^c)$

There are two interesting alternative definitions of P/poly, as specified by the kinds of Turing machines that decide languages in the class:

Definition 3 A nonuniform polynomial time Turing machine is a sequence $\{M_n\}_{n\in\mathbb{N}}$ of Turning machines for which there exist a polynomial p such that $|M_n| \leq p(n)$ and M_n runs in time p(n) on an input of length n.

Definition 4 A polynomial time Turing machine with advice is a Turing machine M and advice sequence $\{a_n\}_{n\in\mathbb{N}}$ for which there exists a polynomial p such that $M(x, a_n)$ runs in time p(n) on inputs x of length n.

We are interested in P/poly because it is known that $P \subseteq P/poly$ and believed that $P/poly \subseteq NP$, and thus could potentially be used to find a separation between P and NP. We leave the former claim as an exercise and will provide evidence for the latter claim. Namely, if $NP \subseteq P/poly$, then the polynomial hierarchy collapses, which would indeed by a surprising turn of events.

Theorem 1 If $NP \subseteq P/poly$, then $PH = \Sigma_2$.

Proof. In particular, we will show that $NP \subseteq P/poly \implies \Pi_2 \subseteq \Sigma_2$, which we know implies $\Pi_2 = \Sigma_2$ and in turn that $PH = \Sigma_2$. Consider a polynomial time relation R and a Π_2 language L defined as:

$$x \in L$$
 iff $\forall y_1 \exists y_2 . R(x, y_1, y_2).$

We want to show that L is in Σ_2 . Since we are assuming NP \subseteq P/poly, we can construct a polynomial size circuit that decides SAT problems. Since finding SAT assignments can be done in polynomial time given a SAT oracle, there exists a polynomial q and q(n)-sized circuit family $\{C_n\}_{n\in\mathbb{N}}$ that finds satisfying assignments to SAT problems. The trick is then to replace the inner existential quantification with the use of this circuit. Consider the following language L':

$$x \in L'$$
 iff $\exists C \ \forall y_1 \ . \ |C| \le q(x) \ \land R(x, y_1, C(x, y_1)).$

Since the inner predicate checks that the circuit C is of polynomial size in x, it can be decided in polynomial time, so that the language L' is in Σ_2 . Now we show L = L'.

Suppose $x \in L$. Since R can be decided in time polynomial in x, it can be encoded into a polynomial size SAT problem (as in Carp's theorem). Then choose C to be a circuit as above that computes a satisfying assignment y_2 for $R(x, y_1, y_2)$ given x and y_1 . C is size polynomial in x, so that the predicate in the expression defining L' is satisfied.

Conversely, suppose $x \in L'$. The inner existential quantification in the definition of L would be satisfied by choosing $y_2 = C(x, y_1)$, so that $x \in L$.

Thus, we have shown that every language $L \in \Pi_2$ is in Σ_2 , so the polynomial hierarchy collapses.

This proof provides strong evidence that P/poly is a class that can distinguish P from NP. To do this, we would need to, for example, demonstrate that SAT \notin P/poly, which means that we are interested in establishing lower bounds on the size of circuits necessary for solving various problems.

Theorem 2 Consider the class of functions $\{T_n^k\}$ on binary tuples x defined by $T_n^k(x_1,...,x_n)=1$ iff $\sum x_i \geq k$. For $2\leq k\leq n-1$, a boolean circuit of fan-in at most 2 that computes T_n^k must be of size at least 2n-4.

Proof. We will in all cases consider, without loss of generality, the smallest circuit that computes this function. This implies that there would be no circuit elements of fan-in 1 (e.g., unary negation) because one could create a smaller circuit by embedding this gate's functionality into downstream gates.

We proceed by induction on n. Consider the base case $n = 3 \implies k = 2$. Since every input must be examined to compute the function and each gate can examine only 2 inputs, there must be at least 2 gates in the network, which exactly meets the bound.

As our induction hypothesis, suppose that the theorem holds for

$$\{(n,k) \mid 3 \le i < n \text{ and } 2 \le k \le i-1\}.$$

Consider a circuit C for computing T_n^k . Let G be a gate that takes two variables x_i and x_j as inputs for $i \neq j$ (recall that we have excluded unary gates). After fixing values for x_i and x_j , the function T_n^k restricted to the remaining n-2 variables will take on at least 3 different forms.

x_i	$ x_j $	restricted form of T_n^k
0	0	T_{n-2}^k
0	1	T_{n-2}^{k-1}
1	0	
1	1	T_{n-2}^{k-2}

Note that this is where the restriction k < n becomes important. If k = n, then the restricted function takes only two forms, namely identically 0 or 1 if all its inputs are 1.

Since the restricted circuit assumes three different behaviors, however G only outputs a single boolean value, there must be a connection from either x_i or x_j to another gate G' in the circuit. Assume, without loss of generality, that the connection is from x_i . Now let C_{α} denote the circuit obtained by setting $x_i = \alpha$. Clearly, C_{α} computes $T_{n-1}^{k-\alpha}$. When constructing C_{α} we observe that G and G' are now unary gates, and so can be removed, so that $|C_{\alpha}| + 2 \le |C|$. If k = 2, set $\alpha = 0$, other $\alpha = 1$ (so that $2 \le k - \alpha \le n - 2$). By the induction hypothesis, $|C_{\alpha}| \ge 2(n-1) - 4 \implies |C| \ge 2n - 4$.

Recall that a formula is a circuit where the fan-out of every node is 1. The circuit of a boolean formula is then just a binary tree.

Theorem 3 Consider the following function f_n defined on tuples \vec{x} of bit-strings of length 2log(n):

$$f_n(x_1, ..., x_n) = 1$$
 iff $\exists i \neq j \text{ s.t. } x_i = x_j.$

Any formula computing f_n must be $\Omega(n^2)$.

Proof.

Since the circuits for formulas are trees, some input variables must be read in multiple times if their values must be processed by multiple gates. Let k be the total number of leaves (i.e., inputs) carrying bits from x_i , for some i, in a formula computing f_n . For some assignment $\vec{\alpha} = (\alpha_1, ..., \alpha_n)$ to all the bits in \vec{x} , consider $f_n^{\vec{\alpha}_{-i}}(x_i) = f_n(\alpha_1, ..., x_i, ..., \alpha_n)$.

After doing this restriction, the formula computing f_n can be reduced to a formula with k leaves that computes $f_n^{\vec{\alpha}_{-i}}$ by eliminating unary gates. Thus the number of functions that $f_n^{\vec{\alpha}_{-i}}$ can identically equal as α ranges over all possible values is bounded by the number of formulas of with k leaves. We count these.

formulas on
$$k$$
 leaves \leq # formulas of size $2k$ (1)

 $\leq \ \ (\# \ {\rm binary \ trees \ of \ size} \ 2k) \cdot (\# \ {\rm ways \ to \ assign \ gates}) \, (2)$

$$\leq 4^{2k} \cdot g^{2k} \tag{3}$$

$$= 2^{O(k)} \tag{4}$$

(5)

Each x_i takes on $2^{2log(n)} = n^2$ values. This means that, for various choices of α , the restricted function $f_n^{\vec{\alpha}_{-i}}$ assumes at least $\binom{n^2}{n-1}$ functional forms (it is also sometimes identically 1). Therefore, it is necessary that

$$\binom{n^2}{n-1} \le 2^{O(k)} \implies 2^n \le 2^{O(k)} \implies k = \Omega(n).$$

Since the inputs in x_i need to be replicated $\Omega(n)$ times and this holds for each i, any circuit computing f_n must be of size $\Omega(n^2)$.