

## IIIT-H Web Mining

# Lecture 16: Introduction to Computational Advertising (Part 2): Contextual Advertising

Manish Gupta 21<sup>st</sup> Sep 2013

Slides borrowed (and modified) from <a href="http://www.stanford.edu/class/msande239/">http://www.stanford.edu/class/msande239/</a>

## Recap of Lecture 15: Introduction to Computational Advertising (Part 1)

- Introduction to Computational Advertising
- Display Ads
- Textual Ads
- Auctions

#### **Announcements**

• Assignment 3 will be up soon.

#### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

#### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

#### **Contextual Advertising (Content Match)**

- Textual advertising on third party web pages
- Complement the content of the web page with paid content
- Ubiquitous on the web
- Supports the diversity of the web
- Sites small and big rely on CM revenue to cover for the cost of existence
- Players
  - Google: Adsense
  - Microsoft: ContentAds

#### How does it all Work: The Front End

- Two main approaches
  - Page fully built by publisher using ads supplied by the ad network.
    - E.g.: XML feed (Usually done with large partners.)
  - Dynamic loading of ads



#### Relationship to Sponsored Search

- Main goal is to increase volume for textual campaigns in sponsored search
- Same type of ads
- Some differences with Sponsored Search
  - Lesser role of the ad network, increased role of the publisher
  - Ad Network: which ads
  - Publisher: how many/where/how
  - Ad selection using the content of a web page
  - Much more text
  - Less focused
  - Less intentional

#### **Content Match: The Challenges**

- Very thin margin business
- CTR very low orders of magnitude, ranges in ranges 0.001-0.1%.
- Higher CTR variance
- Lower conversions less of a clear intent
- High volume many page views per day
- More difficult ad placement not as intentional as search and more difficult for the advertisers to help
- Lower earnings: 1) lower bids 2) share revenue with the publisher
- Other benefits
  - User tracking

#### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

## Ad Selection Methods: What Information is Provided from the Page

- Publisher can supply a variety of information to the ad network
- Page Content
  - Process the content of the page
  - Cannot be done on-line: crawl
  - Most flexible from the ad selection perspective
- Page Snippet
  - Part of the page
  - How much can we process online?
  - How much is enough?
- Custom Keywords
  - Sponsored Search like mechanism
  - Least flexibility in ad selection
  - More control for the publisher

#### **Two Main Implementation Strategies**

- Phrase extraction (from the publisher page)
  - Map Content Match to Sponsored Search
  - Extract phrases from the page
  - Use these phrases to select ads (exact match or advanced match in Sponsored Search)
  - Ads selected on a single feature (phrase) from the page and the ad
- IR approach
  - Treat Content Match as a document similarity problem
  - Pages are compared to the ads in corpus in a common feature space
  - Bid phrase one of the features used in matching
  - Ads selected based on multiple (overlapping) features of the page and threads

#### **Contextual Advertising Ad Selection: Case Studies**

|    | Paper                                                                                                        | Method                         |
|----|--------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1. | Finding Advertising Keywords on Web Pages. Wen-tau Yih et al. In Proc. of WWW 2006                           | phrase extraction ad selection |
| 2. | Impedance coupling in content-targeted advertising. Ribero-Neto et al. In Proc of SIGIR 2005                 | IR ad selection                |
| 3. | A Semantic Approach to Contextual AdvertisingBroder et al, In Proc. of<br>SIGIR 2007                         | IR ad selection                |
| 4. | Contextual Advertising by Combining Relevance with Click Feedback. D. Chakrabarti et al. In Proc of WWW 2008 | IR ad selection using clicks   |
| 5. | To Swing or not to Swing: Predicting when (not) to Advertise. Broder et al, CIKM 2008                        | various                        |

#### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

#### **Finding Phrases for Contextual Ads**

- Finding Advertising Keywords on Web Pages. Wen-tau
   Yih et al. In Proc. of WWW 2006
- Goal: Given a page find phrases that are good for placing ads
- Reverse search problem: Given a page, find the queries that would match (summarize) the content of this page
- Select ads based on a single selected keyword:
- Contextual Advertising translated into database approach of Sponsored Search
- Reuse of the Sponsored Search infrastructure lower cost

#### **System Architecture**



#### **Candidate Selection**

- All phrases of length up to 5 (including single words)
  - Within a single page block (sentence)
- Two dimensions of candidate selection:
  - Individual occurrences extracted separately vs. combining all occurrences into entry per page (separate vs. combined)
  - Consider the phrase as a whole
  - Label individual words with their relationship with a phrase
    - Beginning of a phrase
    - Inside a phrase
    - Last word of a phrase

#### Classifier

- Given a phrase predict if it is "keyword" (usable for selecting ads)
- Binary classifier
  - Logistic regression model

$$P(Y = 1|x = \bar{x}) = \frac{1}{1 + e^{-xw}}$$

- x is vector of features of a given phrase
- w is a vector of importance weights learned from the training set

#### **Features**

- Linguistic features: is a noun; is a proper name; is a noun phrase; are all words in the phrase of the same type
- Capitalization: any/all/first word capitalization
- Section based features:
  - Hypertext is the feature extracted from anchor text
  - Title
  - Meta tags
  - URI
- IR features: tf, idf, log(tf), log(idf), sentence length, phrase length, relative location in the document
- Query log features: log(phrase frequency), log(first/second/interior word frequency)

#### **Measuring the Extraction Quality**

- Editorial judgments
- Precision-recall might be too difficult
  - Too long for the judges to find all the relevant phrases
  - Given a phrase influence the judges
- A proxy for P-R
  - top-1 = top-1 results is in the list selected by the editor, count across the set of pages
  - top-10 = % of top-10 results in the editor set, averaged over the set of pages

#### **Results**

| system                            | top-1              | top-10             |
|-----------------------------------|--------------------|--------------------|
| MoC (Monolithic, Combined), -Lin  | $30.06^{b}$        | $46.97^{b}$        |
| MoC (Monolithic, Combined), All   | 29.94              | 46.45              |
| MoS (Monolithic, Separate), All   | 27.95              | $44.13^{\ddagger}$ |
| DeS (Decomposed, Separate), All   | $24.25^{\ddagger}$ | $39.11^{\ddagger}$ |
| KEA [7]                           | $23.57^{\ddagger}$ | $38.21^{\ddagger}$ |
| MoC (Monolithic, Combined), IR    | $13.63^{\ddagger}$ | $25.67^{\ddagger}$ |
| MoC (Monolithic, Combined), TFIDF | 13.01 <sup>‡</sup> | $19.03^{\ddagger}$ |

|               | features       | top-1              | top-10             |
|---------------|----------------|--------------------|--------------------|
| A             | all            | $29.94^{b}$        | $46.45^{b}$        |
| $-\mathbf{C}$ | capitalization | 30.11              | 46.27              |
| -H            | hypertext      | 30.79              | $45.85^{\dagger}$  |
| -IR           | IR             | $25.42^{\ddagger}$ | $42.26^{\ddagger}$ |
| -Len          | length         | 30.49              | $44.74^{\dagger}$  |
| -Lin          | linguistic     | 30.06              | 46.97              |
| -Loc          | location       | 29.52              | $44.63^{\dagger}$  |
| $-\mathbf{M}$ | meta           | 30.10              | 46.78              |
| -Ms           | meta section   | 29.33              | 46.33              |
| $-\mathbf{Q}$ | query log      | $24.82^{\dagger}$  | $42.30^{\ddagger}$ |
| $-\mathbf{T}$ | title          | 28.83              | 46.94              |
| -U            | URL            | 30.53              | 46.39              |

#### **Summary of Phrase Extraction**

- Mapping Contextual Advertising to Sponsored Search
- Extract phrases from the publisher's web page
- Select ads using exact or advanced match on this phrase
- Ad selection using a single feature
- Approach based on logistic regression trained on editorial judgments
- Editors extracting salient terms from pages
- Combining the information from multiple occurrences and treating the phrases as single units yields best results
- IR and query log features account for almost all of the signal
- Low precision difficult problem

#### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

#### **Using More Than One Feature in Ad Matching**

- Impedance coupling in content-targeted advertising. Ribeiro-Neto et al. SIGIR 2005
- The phrase extraction approach uses one feature of the page (phrase) to select the ads
- Risk with ambiguous phrases: 'Tahoe' is a destination as well as a truck model
- Can we select ads based on multiple features from the page?
  - What are the features of the ad?
  - How to weight the features?
  - What metrics to use to relate the ads to the pages?

#### Formalism for Comparing Ads and Pages: Vector Space Model

- Represent each ad a as a vector: a ={w<sub>1a</sub>, w<sub>2a</sub>,..., w<sub>na</sub>}
- In this study: a is the visible part of the ad (title and abstract)
- Represent the page p as a vector in the same space p ={ $w_{1p}$ ,  $w_{2p}$ ,...,  $w_{np}$ }
- Weights using tf-idf method
- Use cosine of the angle between the vectors to rank the ads for a given page – denoted by sim()

#### **Basic Set of Measures**

- AD(p, a) = sim(p,a) based on the visible parts of the ad
- KW(p,a) = sim(p, kw(a)) based on the keyword of a
- AD\_KW(p, a) = sim(p, a U kw(a)) using both the visible parts and the keyword
- Assuming that kw(a) summarizes well the essence of a, assure the presence of kw(a) in p

$$ANDKW(p,a) = \begin{cases} sim(p,a) & if \ kw(a) \subseteq p \\ 0 & otherwise \end{cases}$$

$$AAK(p,a) = \begin{cases} sim(p,a \cup kw(a)) & if \ kw(a) \subseteq p \\ 0 & otherwise \end{cases}$$

#### The Vocabulary Impedance Problem

- Language and the topic of the page and the ad can differ substantially
  - Publisher page belongs to a broader/narrower contextual scope
  - Ads concise in nature
  - 'Hidden topic' not mentioned in the ad and/or the page
  - Intersection of the vocabularies of related pages and ads can be low: vocabulary impedance problem
- Solution
  - Expand vocabularies
    - Expand the page text using similar webpages
    - Expand the ad text using the text from the landing page

#### **Summary of Context Match Ad Retrieval**

- Using IR techniques to match ads and pages
- Both the ad and the page are mapped to a common vector space
- Cosine of the angle between the ad and the page as the basic similarity measure
- Bid phrase as a required feature projection of the space
- Expanding pages using terms from similar pages improves results
- Landing page contains useful data for ad selection

#### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

#### **Motivation**

- Semantic-Syntactic Approach to Contextual Advertising. AB, M. Fontoura, L. Riedel, VJ. SIGIR 2007
- Even with using multiple features there is still a risk that the subset used in matching does not represent the semantics of the page
- Can we somehow summarize the content of the whole page into a small number of features?
  - This work: supervised approach based on classification
- Use external knowledge: taxonomies
  - This work: a topical taxonomy
- What is a better signal: page class or page words? Or both?
- Both. Topical (semantic) similarity is a major component of the relevance score (~80%)

#### **Semantic-Syntactic Match**

- Figure out the topic of the page
  - Classification of the page into a commercial oriented taxonomy
- Pre-classify all the ads into the same taxonomy
- Restrict the matching to ads that are in related categories
- Use word similarity to improve the match

#### Page and Ad Classification

- Use a large scale classification to relate pages and ads
  - Need a taxonomy with sufficient resolution
- We used a taxonomy of 6,000+ nodes, primarily built for classifying commercial interest queries
  - Each node is a collection of query terms
- Rocchio-style nearest neighbor classifier
  - Meta-document produced of the queries at each taxonomy node
  - Classification is based on the cosine of the angle between the document and the centroid meta-documents
    - Each page or the ad document is assigned to the nearest matching taxonomy node

#### **Taxonomy Requirements**

- Enough resolution to be useful
- Not too specific to make maintenance too costly
  - Electronics too broad
  - Electronics/Digital Camera/Canon feasible
  - Electronics/Digital Camera/Canon/XT10i hard to maintain

#### **Scoring**

- For a given page score every ad, select the top-k ads
- Linear combination of 2 scores
  - Taxonomy score (semantic distance)
  - Word and phrase score (syntactic distance)
- Allow generalization in the taxonomy
- $Score(p_i, a_i) =$  $\alpha TaxScore(Tax(p_i), Tax(a_i)) + (1 - \alpha). KeywordScore(p_i, a_i)$

#### **Semantic and Syntactic Scores**

$$\begin{split} tWeight(kw^{si}) &= weightSection(S_i) \cdot tf\_idf(kw) \\ Tax(p_i) &= \{pc_{i1}, \dots pc_{iu}\} \\ Tax(a_j) &= \{ac_{j1} \dots ac_{jv}\} \\ Score(p_i, a_i) &= \alpha \cdot TaxScore(Tax(p_i), Tax(a_i)) \\ &+ (1-\alpha) \cdot KeywordScore(p_i, a_i) \\ &= \frac{\sum_{i \in |K|} tWeight(pw_i) \cdot tWeight(aw_i)}{\sqrt{\sum_{i \in |K|} (tWeight(pw_i))^2}} \text{ where } K \text{ is the set of all the keywords.} \\ &= \frac{\sum_{pc \in PC} \sum_{ac \in AC} idist(LCA(pc, ac), ac) \cdot cWeight(pc) \cdot cWeight(ac)}{tidist(c, p) &= \frac{n_c}{n_p} \\ &\text{ where } c \text{ represents the child node and } p \text{ is the parent node.} \end{split}$$

#### **Searching the Ad Space**

- Ad search done in real time how to make it fast enough?
- Index the ads using a inverted index
  - Use the page features as the query
- Find top-k ads with the highest score
- Monotonic scoring function that has the two sub-scores
- Evaluate the query using a variant of the WAND doc-at-a-time algorithm

### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

## Is Showing Ads "Good" in this Case?

- To Swing or not to Swing: Predicting when (not) to Advertise. Broder et al, CIKM 2008
- Repeatedly showing non-relevant ads can have detrimental long-term effects
- Want to be able to predict when (not) to show individual ads or a set of ads.
- Modeling actual short and long term costs of showing non-relevant ads is very difficult

#### **Two Approaches**

- Thresholding Approach
  - Rank the ads by score; cut-off at certain rank or score
  - Decision made on individual ads
  - Only based on ad scores
- Ad Set Machine Learning Approach
  - Decision made on sets of ads
  - Based on a variety of features
- Applies to both Sponsored Search and Contextual Advertising

#### **Thresholding Approach**

- Set a global score threshold
- Only retrieve ads with scores above threshold
- If none of the ad scores are above the threshold, then no ads are retrieved

#### **Ad Set Approach**

- Learn a binary prediction model for an entire set of ads
- If we decide to show ads, then all ads are retrieved
- If we decide not to show ads, then no ads are retrieved
- Must extract features defined over sets of ads, rather than individual ads
- Use support vector machines (SVMs)

#### **Features**

- Relevance features
  - Word overlap
  - Cosine similarity
- Vocabulary mismatch features
- Ad-based features
  - Bid price
  - Coefficient of variation of ad scores
- Result set cohesiveness features
  - Result set clarity: How much is the distribution of words different from noise (aggregate over all ads)
  - Entropy with respect to the Ad set language model
    - Language model: relative frequency of words in the ad conditioned on a given query

### **Summary: When (not) to Advertise**

- Two approaches to determine when to show ads
  - Thresholding approach
    - Only shows ads above some global score threshold
    - Most effective for sponsored search
  - Machine learning approach
    - Predicts over entire set of ads
    - Semantic class features important for prediction
    - Effective for both sponsored search and content match
    - In practice we can combine both approaches

### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

#### **An Alternative View of Search Advertising**

- Search Advertising Using Web Relevance Feedback: AB, P. Ciccolo, M. Fontoura, E. Gabrilovich, VJ, L. Riedel. ACM CIKM 2008
- View Search Advertising as CA on the web search result page
- More general: use the web search results as a basis for ad selection
- What are the benefits?
  - Uniform look of the result page improved user experience
  - Re-use of the web search technology
  - Circumstantial evidence for Search Advertising
- The approach
  - Web search results as (pseudo) feedback for the web search query
  - Expanded web search query used as a long ad query
  - Evaluate the ad query to select the ads

#### Features?

- Derive features from snippets or full pages?
- Number of search results to obtain?
- Number of features per search result?
- How to aggregate the signals across multiple search results?

### Today's Agenda

- Contextual advertising basics
- Ad selection in contextual advertising
- Phrase Extraction for Contextual Advertising
- IR methods for content match ad retrieval
- Holistic view at the page in Contextual Advertising
- When to advertise
- Search-based ad selection for sponsored search
- Predicting clicks

## **Interpreting Clicks: Positional Bias**

- Ads shown on position 1 are more likely to get clicks even if they are less relevant
- How does this impact the training in our clickbased weighting system?
- If the clicks of an ad are all at position 1
- Are those clicks because the ad was relevant?
- Or are those clicks caused by the inherent bias of the user to click the top ad?
- A study has shown that even if you swap the ads on position 1 and 2, position 1 still gets more clicks

### **De-biasing Click Data - Click Models**

- To deal with this bias we need a model of user behavior
- Model #1: p(click)=p(seen)p(relevant)
  - Ads at position 1 are more likely to be seen than other positions
  - Ads at position 1 are more likely to be relevant: ranked retrieval
- We need to separate the positional and relevancy effect
- Use normalized CTR by the expected CTR at a position:
  - "The ad a is twice more likely to be clicked than an average ad at the same position"
- Count an impression only if the ad has been seen if there is a click on a lower position "Cascade model"
  - [Craswell et al, WSDM 2008]

### **Predicting CTR**

- Predicting Clicks: Estimating the Clickthrough Rate for New Ads: M. Richardson, E. Dominowska, R. Ragno, WWW2008
- Features
  - Predict CTR considering ad bid phrase as query and using query CTR
  - Predict using ad features
    - Ads with same bid phrase
    - Ads with similar bid phrases
  - Ad quality features
    - Appearance: number of words in each part; word length, capitals, punctuation
    - Attention capture: action words ("buy", "join",...), numbers, prices, discounts
    - Landing page: complexity of the HTML
    - **Relevance**: bid term in the title, body; subset of the term
    - Reputation of the advertiser domain
  - Ad group specificity
    - Entropy of the results of the bid phrase classification
    - Number of bid phrases in the ad group
  - Web search features
    - Query frequency
    - Web page frequency

## **Take-away Messages**

- Basic Working of Contextual Advertising Systems
- Two Ad Selection Mechanisms: Phrase extraction (from the publisher page) and the IR approach
- Using topic information for matching content and ads
- Factors to consider when deciding whether to advertise or not
- Using content match for sponsored search
- Predicting CTR

#### **Further Reading**

- Finding Advertising Keywords on Web Pages. Wen-tau Yih et al. In Proc. of WWW 2006
- Impedance coupling in content-targeted advertising.
   Ribeiro-Neto et al. SIGIR 2005
- Semantic-Syntactic Approach to Contextual Advertising. A. Broder, M. Fontoura, L. Riedel, VJ. SIGIR 2007
- To Swing or not to Swing: Predicting when (not) to Advertise. Broder et al, CIKM 2008
- Search Advertising Using Web Relevance Feedback: A. Broder, P. Ciccolo, M. Fontoura, E. Gabrilovich, VJ, L. Riedel. ACM CIKM 2008
- Predicting Clicks: Estimating the Clickthrough Rate for New Ads: M. Richardson, E. Dominowska, R. Ragno, WWW2008

# Preview of Lecture 17: Mining Structured Information from the Web (Part 1)

- Extracting lists from web pages
- Annotating and searching web tables
- Answering table augmentation queries from unstructured lists on the Web

#### **Disclaimers**

- This course represents opinions of the instructor only. It does not reflect views of Microsoft or any other entity (except of authors from whom the slides have been borrowed).
- Algorithms, techniques, features, etc mentioned here might or might not be in use by Microsoft or any other company.
- Lot of material covered in this course is borrowed from slides across many universities and conference tutorials. These are gratefully acknowledged.

# Thanks!