Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 26. Juli 2021

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	3	15.5	MODELLE REGULÄRER SPRACHEN
2	4	16	Untermengen-Konstruktion
3	5	22	MINIMIERUNG EINES DFA
4	6	10	CYK-ALGORITHMUS
5	7	11	Modelle Kontextfreier Sprachen I
6	8	5	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	15.5	16	22	10	11	5	79
ERREICHT							
Korrektor							
EINSICHT							

.5

3/10

Aufgabe 1: Modelle Regulärer Sprachen

(15.5 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die reguläre Sprache $A_1 \triangleq \{b^n x b a^m \mid m, n \in \mathbb{N} \land x \in \{\varepsilon, a\}\}$, die reguläre Grammatik $G_2 \triangleq (\{S, T, U, W\}, \Sigma, P_2, S)$ und der NFA $M_3 \triangleq (\{q_0, q_1, q_2\}, \Sigma, \Delta_3, \{q_0\}, \{q_2\})$ mit:

a. (6 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1)=A_1$ an.

$$G_{n} = (\{5, T, U\}, \{2, P_{n}, S\}) \text{ mit } P_{n}$$
.
 $P_{n} : S \rightarrow bS \mid bT \mid aU$
 $T \rightarrow \{1, aT\}$
 $U \rightarrow bT$
 $b \neq aba$

c. (3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

d. (2.5 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

$$L(M_3) = L(b^4 b \alpha^4 (\alpha + b) b^4)$$

$$= \{b^n \alpha^m \alpha b^x, b^n \alpha^n b b^4 \mid n \in \mathbb{N}^4, m, x \in \mathbb{N}\}$$

$$= \{b^n \alpha^m \alpha b^x, b^n \alpha^n b b^4 \mid n \in \mathbb{N}^4, m, x \in \mathbb{N}\}$$

Matrikelnummer:	Name:
-----------------	-------

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma, \Delta, \{q_0, q_2\}, \{q_3\})$ mit $\Sigma \triangleq \{0, 1\}$ und Δ :

a. (13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M' zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (z.B. graphisch) anzugeben.

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

b. (3 Punkte) $\mathit{Gib}\ \mathrm{L}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

$$L(M)^{2} = L((01^{*}0+10)0^{*}+(01^{*}0+10)0^{*}11^{*})$$

$$= L((01^{*}0+10)0^{*}1^{*})$$

$$= L((01^{*}+1)00^{*}1^{*})$$

4/10

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_0, \{q_6\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{ 0, 1 \}$ und δ :

a. (1 Punkt) Gib an: Welche Zustände sind nicht erreichbar? 9,

b. (9 Punkte) Gib an: Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt.

c. (4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen *an,* die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{ \dots \}$, angegeben werden.

$$[92] = \{92, 93, 94\} \}$$

$$[95] = \{92, 93, 94\} \}$$

$$[96] = \{96\} \}$$

d. (5 Punkte) Gib den minimierten DFA M' an.

e. (3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: CYK-Algorithmus

(10 Punkte)

Gegeben sei eine Menge Nicht-Terminale $V \triangleq \{\ S,\ T,\ U,\ V,\ W\ \}$, ein Alphabet $\Sigma \triangleq \{\ a,\ b\ \}$, sowie eine CNF-Grammatik $G \triangleq (V,\ \Sigma,\ P,\ S)$ mit

$$\begin{array}{cccc} P: & S & \rightarrow & WT \mid TW \mid VU \\ & T & \rightarrow & SV \mid a \\ & U & \rightarrow & WT \mid TW \\ & V & \rightarrow & VS \mid a \\ & W & \rightarrow & WS \mid b \end{array}$$

a. (2 Punkte) Begründe: Warum ist G eine CNF-Grammatik?

Für jeder Produktionsreyel g'ilt deuss auf reehle Seife geneur nur mei Wicht-Terminande oder einzelnes Terminalsymbol seehen

b. (8 Punkte) Berechne: Gegeben sei ein Wort $w \triangleq baaba$. Löse mit dem CYK-Algorithmus das Wortproblem: $w \in L(G)$ oder $w \notin L(G)$?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CVK(i,j)					5	
1: b	$\frac{CIR_w(\iota,J)}{}$	1					
2: a {\(\cdot \cd	1: b	7W}	£5,0}	{T}	(0,2,w)	£5,0,7}	
3: a {ていろ {らいろ そらいて) 4: b {いろ すらいと) - オナリろ	2: a	{T,v}	Ø	{ v.s}	{V17}		
4: b	3· a	37,03	$\{0,0\}$	FSIVIT)		
4: b	5. a						
- 17. U3	4: b	sw3	is, v)				
	_	37.113					
				<i>کا ۱۷۷</i>	[(D)	Ju SEC	1 Fw

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und die kontextfreie Sprache:

$$A \triangleq \{ wc^n \mid n \in \mathbb{N} \land w \in \{ a, b \}^* \land |w|_b = 1 \land |w|_a = n \}$$

a. (5 Punkte) Gib eine Typ-2 Grammatik G mit L(G) = A an.

b. (6 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(5 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{0, 1, 2\}$ und der PDA

a. (2 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

b. (3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

<i>Matrikelnummer:</i> —	Name:
Auf dieser Seite löse	ich einen Teil der Aufgabe:
Teilaufgabe:	8

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe <u> </u> :	
	se ich enten der Aufgabe	
Teilaufgabe:		

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe <u> </u> :	
	se ich enten der Aufgabe	
Teilaufgabe:		