QCM 3

lundi 11 septembre

Question 11

Voilà la courbe d'une fonction P polynomiale de degré 2 dont on sait qu'elle s'écrit, pour tout réel x:

 $P(x) = x^2 + bx + c$ avec b et c réels

On a:

a. Pour tout réel x, $P(x) = x^2 + x - 2$ /

c. P est positif sur $[0, +\infty[$

d. P est négatif sur [0,1]

e. Aucune des autres réponses

b. Pour tout réel x, $P(x) = x^2 - x - 2$ \rightarrow remfacer avec les incommes on remplacer la formule a (x - ms) (x - x2)

Question 12

L'ensemble des solutions de l'équation $\frac{x^2 + 3x + 2}{(x+1)^2} \le 0$ est

a.
$$S =]-\infty, -2] \cup [-1+\infty[$$

b.
$$S = [-2, -1]$$

c.
$$S =]-\infty, 1] \cup [2 + \infty[$$

d.
$$S = [1, 2]$$

e. Aucune des autres réponses

Question 13

Soit $P(x) = \frac{1}{3}x^2 - 3x + 6$. Une forme factorisée de P est

a.
$$P(x) = (x - 6)(x - 3)$$

b.
$$P(x) = \frac{1}{3}(x+6)(x+3)$$

c.
$$P(x) = \left(\frac{x}{3} - 2\right)(x - 3)$$

d. Aucune des autres réponses

Soit
$$P(x) = \frac{1}{3}x^2 - 3x + 6$$
. Une forme factorisée de P est

a. $P(x) = (x - 6)(x - 3)$

$$P(x) = \frac{1}{3}x^2 - 3x + 6$$
. Une forme factorisée de P est

$$P(x) = \frac{1}{3}x^2 - 3x + 6$$
. Une forme factorisée de P est

$$P(x) = \frac{1}{3}x^2 - 3x + 6$$
. Une forme factorisée de P est

is méthode: dévelopes jour vérifier

+1

Question 14

On considère la fonction $f:x\longmapsto x^2.$ On note \mathcal{C}_f sa courbe représentative. On a

- a. f est définie sur \mathbb{R} . / /
- b. f est croissante sur son domaine de définition.

- c. L'axe des ordonnées est une axe de symétrie pour \mathcal{C}_f //
- d. L'axe des abscisses est une axe de symétrie pour C_f
- e. Aucune des autres réponses

Question 15

On considère la fonction « racine » : $x \longmapsto \sqrt{x}$ ainsi que le dessin suivant représentant l'allure de deux

a. La courbe représentative de la fonction « racine » est Cf. /

+1

- b. La courbe représentative de la fonction « racine » est Cg.
- c. Aucune des deux courbes ne représente la fonction « racine »

Question 16

Là où elles sont définies, on a

b. $(e^x)' = e^x$ /

- c. $\left(\frac{1}{x}\right)' = \frac{1}{x^2}$
- d. $(3x^2 + 1)' = 6x + 1$
- e. Aucune des autres réponses

Question 17

Cochez la(les) bonne(s) réponse(s)

a.
$$e^2 + e^3 = e^5$$

b.
$$e^2 \times e^3 = e^5 / 1$$

c.
$$e^0 = 0$$

d.
$$e^1 = 1$$

e. Aucune des autres réponses

Question 18

Soit f une fonction définie sur [0,4] dont les variations sont données par le tableau suivant :

x	0		$\frac{1}{2}$		4
f'(x)		+	Ó	- 1	
f(x)	0 -		1 -		→ ₀

On a

a.
$$f(0) = 4$$

Question 19

La fraction $\frac{2^3\times 3}{2\times 3\times 5}\times \left(\frac{1}{2}\right)^3$ est égale à

a.
$$\frac{2^5}{5}$$

b.
$$\frac{1}{5}$$

c.
$$\frac{1}{10}$$
 / /

d. Aucune des autres réponses

Question 20

Cochez la(les) bonne(s) réponse(s)

a.
$$\sum_{k=1}^{50} \frac{1}{2\sqrt{k}} = \frac{1}{2} \sum_{k=1}^{50} \frac{1}{\sqrt{k}}. / /$$

b. Pour un réel
$$a$$
 donné, $\sum_{k=1}^{50} a = 50a$

c.
$$\left(\sum_{k=1}^{50} \frac{1}{k}\right)^2 = \sum_{k=1}^{50} \frac{1}{k^2}$$

d.
$$\sum_{k=1}^{50} \frac{1}{k} \times \sum_{k=1}^{50} \frac{1}{k^2} = \sum_{k=1}^{50} \frac{1}{k^3}$$

e. Aucune des autres réponses