Introdução à Teoria dos Conjuntos - Prova 2

Ariel Serranoni Soares da Silva - Número USP: 7658024
Pedro Felizatto - Número USP:9794531
Pietro Mesquita Piccione - Número USP: 4630640
Mateus Schmidt Mattos Lopes Pereira - Número USP: 10262892
Luís Cardoso - Número USP: 4552403
Ariel Campêlo Viana Morais - Número USP: 9302177

5 de Agosto de 2020

Observações iniciais

As notas de aula a seguir foram produzidas com base na Seção 3 do Capítulo 12 de [1]. A ideia do nosso trabalho é seguir fielmente o conteúdo abordado no livro, inclusive mantendo a notação e numeração que são usados pelo autor. Além disso, vamos incluir observações, soluções para os exercícios, e justificar passos que ficaram em segundo plano no tratamento feito na obra mencionada.

3 Árvores

Assim como fizemos anteriormente com partições, vamos agora dedicar uma seção do nosso trabalho para generalizar mais um objeto originário do contexto de combinatória finita: Árvores.

Definição 3.1. Uma árvore é um conjunto ordenado (T, \leq) tal que:

- (i) T possui um menor elemento;
- (ii) para cada $x \in T$, o conjunto $\{y \in T : y < x\}$ é bem ordenado sob \leq .

Os elementos de T são chamados de nós. Em particular, o menor elemento de T é chamado de raiz. Se $x,y \in T$ são nós tais que y < x, dizemos que y é um antecessor de x e que x é um sucessor de y.

Seja $x \in T$ um nó. A altura h(x) de x é o único ordinal isomorfo ao conjunto bem ordenado $\{y \in T : y < x\}$, composto por todos os antecessores de x. Observe que o Teorema 3.1 do Capítulo 6 garante que a altura está bem-definida como função em T. Além disso, se h(x) é um ordinal sucessor, dizemos que x é um nó sucessor. Caso contrário x é denominado nó limite. O α -ésimo nível de T é o conjunto $T_{\alpha} = \{x \in T : h(x) = \alpha\}$. A altura h(T) da árvore T é o menor ordinal α tal que $T_{\alpha} = \varnothing$.

Um $ramo\ b$ de T é uma cadeia maximal em T. O $comprimento\ \ell(b)$ de um $ramo\ b$ é o tipo da ordem de b. Note que para todo $ramo\ b$ de T temos $\ell(b) \le h(T)$. Um $ramo\ cujo\ comprimento\ é\ igual\ a\ h(T)$ é chamado de cofinal. Uma $sub\'{a}rvore\ T'$ de T é um subconjunto $T' \subseteq T$ tal que, para quaisquer $x \in T'$ e $y \in T$, temos que y < x implica $y \in T'$. Sendo assim, T' também é uma árvore quando ordenada por \le . Ademais, para cada $\alpha < h(T')$ temos que o α -ésimo nível de T' é dado por $T'_{\alpha} = T_{\alpha} \cap T'$.

cada $\alpha < h(T')$ temos que o α -ésimo nível de T' é dado por $T'_{\alpha} = T_{\alpha} \cap T'$.

Para cada $\alpha \le h(T)$, o conjunto $T^{(\alpha)} = \bigcup_{\beta < \alpha} T_{\beta}$ é uma subárvore de T com $h(T^{(\alpha)}) = \alpha$. Se $x \in T_{\alpha}$ então $\{y \in T : y < x\}$ é um ramo de $T^{(\alpha)}$ de comprimento α ; entretanto, se α é um ordinal limite então $T^{(\alpha)}$ pode ter outros ramos de comprimento α .

Finalmente, um conjunto $A \subseteq T$ é uma anticadeia em T se quaisquer elementos de A são incomparáveis. Isto é, se $x, y \in A$ são tais que $x \neq y$, então $x \not\leq y$ e $y \not\leq x$.

A respeito dos conceitos introduzidos acima, é importante observar que todo ramo ou subárvore de T contém a raiz. Também notamos que se $x,y\in T$ são nós tais que y< x, então h(y)< h(x). Além disso, a prórpia definição de h(T) nos dá que $T_{\alpha}\neq\varnothing$ para todo ordinal $\alpha< h(T)$. A seguir, vamos resolver os exercícios sugeridos pelo autor neste ponto do texto em [1]. Tais problemas exploram algumas das propriedades que surgem imediatamente das definições que apresentamos:

Exercício 3.1. Seja (T, \leq) uma árvore. Mostre que:

(i) O único elemento $r \in T$ tal que h(r) = 0 é a raiz. Em particular, $T_0 \neq \emptyset$;

- (ii) Se α, β são ordinais tais que $\alpha \neq \beta$, então $T_{\alpha} \cap T_{\beta} = \emptyset$;
- (iii) $T = T^{(h(T))} = \bigcup_{\alpha \leq h(T)} T_{\alpha};$
- (iv) Um nó $x \in T$ é um nó sucessor se, e somente se existe um único nó $y \in T$ tal que

$$y < x$$
 e não existe z tal que $y < z < x$. (1)

Se x é um nó sucessor então o nó y que satisfaz (1) é chamado de antecessor imediato de x, e dizemos que x é sucessor imediato de y. Note que cada nó sucessor possui um único antecessor imediato, mas pode possuir múltiplos sucessores imediatos;

- (v) Se $x, y \in T$ são nós tais que y < x, então existe um único $z \in T$ tal que $y < z \le x$ e z é um sucessor imediato de y;
- (vi) $h(T) = \sup\{\alpha + 1 : T_{\alpha} \neq \emptyset\} = \sup\{h(x) + 1 : x \in T\}.$

Solução.

- (i) Por definição, T possui um menor elemento, o que implica que T possui uma raiz r. Para verificar a unicidade de r, suponha que T possui duas raízes r_1 e r_2 distintas. Neste caso, para todo $x \in T$ temos que $r_1 \le x$. Em particular temos que $r_1 \le r_2$. Analogamente, obtemos que $r_2 \le r_1$. Como \le é uma ordem, segue que $r_1 = r_2$, contradição. Finalmente notamos que, como r é o menor elemento de T, segue que $\{x \in T : x < r\} = \emptyset$. Como este último fato implica que h(r) = 0, concluímos que $r \in T_0$. Logo, $T_0 \ne \emptyset$.
- (ii) Suponha que existe $x \in T_{\alpha} \cap T_{\beta}$. Neste caso, temos que $\alpha = h(x) = \beta$, o que contradiz a unicidade de h(x).
- (iii) Para a primeira igualdade, note que $T^{(h(T))} \subseteq T$ uma vez que $T^{(h(T))}$ é definido como uma união de subconjuntos de T. Por outro lado, seja $x \in T$ e suponha que $x \notin T^{(h(T))}$. Daí, segue da definição de $T^{(h(T))}$ que não existe $\alpha < h(T)$ tal que $h(x) = \alpha$. Isso implica que $h(x) \ge h(T)$. Absurdo. Como a segunda igualdade segue diretamente da definição de $T^{(h(T))}$, a prova está completa.
- (iv) Suponha que x é um nó sucessor. Neste caso, temos por definição que $h(x) = S(\alpha)$ para algum ordinal α . Vamos mostrar que T_{α} é não vazio. Assumindo o contrário, teremos que $h(x) > \alpha \ge h(T)$, que é um absurdo. Além disso, se existe z tal que y < z < x, então

$$h(y) = \alpha < h(z) < S(\alpha) = h(x),$$

absurdo. Finalmente, suponha que existem y_1 e y_2 distintos satisfazendo (1). Neste caso, o conjunto $S = \{w \in T : w < x\}$ não é bem ordenado pois o subconjunto $\{y_1, y_2\} \neq \emptyset$ de S não possui um menor elemento

Para verificar a implicação reversa, observamos que se existe y satisfazendo (1), então h(x) = S(h(y)). Do contrário, existe $z \in T$ tal que h(y) < h(z) < h(x), implicando que y < z < x. Absurdo.

- (v) Em primeiro lugar, suponha por absurdo que não existe tal elemento z. Seja $\alpha = h(x)$ e considere a subárvore $T^{(\alpha)}$ de T. Seja $b = \{w \in T : w < x\}$ e recorde que b é um ramo de $T^{(\alpha)}$. Note que $y \in b$ e que b tem comprimento α . Se não existe z, então b não é maximal. Ariel S: Quase certeza que esse item não tá certo! Alguém sabe arrumar?
- (vi) Por definição, h(T) é o menor ordinal α tal que $T_{\alpha} = \emptyset$. Sendo assim, podemos ver que

$$h(T) \ge \alpha + 1$$
 para cada α tal que $T_{\alpha} \ne \emptyset$,

e que

$$h(T) \ge h(x) + 1$$
 para cada $x \in T$.

Daí segue que

$$h(T) \ge \sup\{\alpha + 1 : T_\alpha \ne \emptyset\}$$
 e que $h(T) \ge \sup\{h(x) + 1 : x \in T\}$.

Por fim, suponha que

$$h(T) > \sup\{\alpha + 1 : T_{\alpha} \neq \varnothing\}$$
 ou $h(T) > \sup\{h(x) + 1 : x \in T\}$

e note que em ambos os casos, segue que $T_{\beta} = \emptyset$ para algum $\beta < h(T)$. Absurdo.

Exercício 3.2. Mostre que:

- (i) Cada cadeia em T é bem-ordenada;
- (ii) Se b é um ramo de T e $x \in b$, e y < x, então $y \in b$;
- (iii) Se b é um ramo em T, então $|b \cap T_{\alpha}| = 1$ para $\alpha < \ell(b)$ e $|b \cap T_{\alpha}| = 0$ para $\alpha > \ell(b)$. Conclua que $\ell(b) \le h(T)$;
- (iv) $h(T) = \sup\{\ell(b) : b \text{ \'e um ramo de } T\};$
- (v) T_{α} é uma anticadeia para cada $\alpha < h(T)$.

Solução.

- (i) Seja $C \subseteq T$ uma cadeia e seja $\varnothing \neq S \subseteq C$. Vamos provar que S possui um menor elemento.
 - Seja $y \in S$. Se y é o menor elemento de S então a prova está completa. Caso contrário, temos que existe $x \in S$ tal que x < y. Assim, o conjunto $S_y = \{z \in S : z < y\}$ é não vazio. Além disso, como S_y está contido em $\{z \in T : z < y\}$, que é bem ordenado por definição, obtemos que S_y possui um menor elemento m.
 - Por fim, vamos mostrar que m é o menor elemento de S. De fato, se $s \in S$ então ou $y \le s$ ou s < y, pois $S \subseteq C$, que é uma cadeia. Se $y \le s$ então $m < y \le s$. Por outro lado se s < y então $s \in S_y$, e assim $m \le s$. De toda forma, temos que $m \le s$. Logo, m é o menor elemento de S.
- (ii) Suponha que $y \notin b$. Vamos mostrar que y é comparável a todos os elementos de b. Se $z \in b$ e z < x, temos que y e z são comparáveis pois ambos pertencem ao conjunto $\{w \in T : w < x\}$, que é bem ordenado, e em particular, linearmente ordenado. Caso x < z, obtemos que y < z por transitividade. Assim, concluímos que $b \cup \{y\}$ é uma cadeia e portanto b não é maximal. Absurdo.
- (iii) Ariel S: Aqui o item (ii) estava duplicado e está faltando o (iii) !!!
- (iv) Como observamos anteriormente, temos que $\ell(b) \leq h(T)$ para todo ramo b de T. Este fato nos permite concluir que

$$h(T) \ge \sup\{\ell(b) : b \in \text{um ramo de} T\}$$

. Assim nos resta verificar que h(T) é de fato o menor dos majorantes de $\{\ell(b): b$ é um ramo de $T\}$. Isto é, vamos provar que se $\alpha \geq \ell(b)$ para todo ramo b de T, então $\alpha \geq h(T)$.

De fato, como $\alpha \geq \ell(b)$ para todo ramo b de T, segue do item anterior que $b \cap T_{\alpha} = \emptyset$ para todo b ramo de T.

Como para todo nó $x \in T$ existe um ramo b_x tal que $x \in b_x$ e $T_\alpha \cap b = \emptyset$ para todo ramo $b \subseteq T$, concluímos que $T_\alpha = \emptyset$. Este último fato implica que $h(T) \le \alpha$, pois h(T) é o menor ordinal β que satisfaz $T_\beta = \emptyset$.

(v) Seja $\alpha < h(T)$ e assuma que existem $x, y \in T_{\alpha}$ distintos tal que x e y são comparáveis. Suponha sem perda de generalidade que x < y. Neste caso, temos que x < y mas h(x) = h(y). Absurdo, pois x < y implica que h(x) < h(y).

Agora vamos olhar para alguns exemplos de árvores:

Exemplo 3.2.

- (a) Todo conjunto bem-ordenado (W, \leq) é uma árvore. Sendo assim, podemos pensar em árvores como generalizações de boas ordens. A altura h(W) é o tipo de ordem de W, e o único ramo de W é o próprio W, que é cofinal.
- (b) Seja λ um número ordinal e seja A um conjunto não-vazio. Defina $A^{<\lambda} = \bigcup_{\alpha<\lambda} A^{\alpha}$ como o conjunto de todas as sequências transfinitas de elementos de A com comprimento menor que λ . Considere $T=A^{<\lambda}$ e o ordene segundo \subseteq . Assim, para quaisquer $f,g\in T$, temos $f\leq g$ se, e somente se $f\subseteq g$, o que significa que $f=g_{\lceil \text{dom}(f) \rceil}$. É fácil verificar que (T,\subseteq) é uma árvore: Primeiro, note que a sequência vazia é o menor elemento de T. Além disso, para cada $f\in T$, o conjunto $\{x\in T: x< f\}$ é bem-ordenado pois, para qualquer um de seus subconjuntos, a sequência de menor comprimento é o menor elemento.

Também é imediato que para cada $f \in T$, temos que $h(f) = \alpha$ se, e somente se $f \in A^{\alpha}$. Isto é, $T_{\alpha} = A^{\alpha}$. Ademais, se α e β são ordinais tais que $\alpha = \beta + 1$ e $f \in A^{\alpha}$, a sequência $f_{\uparrow\beta}$ é o antecessor imediato de f e os elementos de $f \cup \{\langle \beta, \alpha \rangle\}$ são sucessores imediatos de f.

Por fim, observemos que existe uma correspondência biunívoca entre os ramos de T e as funções de λ em A: se $f \in A^{\lambda}$ então $\{f_{\upharpoonright \alpha} : \alpha < \lambda\}$ é um ramo em T. Por outro lado, se b é um ramo em T então b é um sistema compatível de funções e $f = \bigcup_{g \in b} g \in A^{\lambda}$. Vale notar que todos os ramos de T são cofinais, uma vez que possuem comprimento $\lambda = h(T)$.

- (c) Generalizando o exemplo anterior, se $T\subseteq A^{<\lambda}$ é uma subárvore de $(A^{<\lambda},\subseteq)$ com altura $h(T)=\alpha$, então existe uma correspondência biunívoca entre os ramos de T e as funções $f\in A^{<\lambda}\cup A^{\lambda}$ satisfazendo cada uma das seguintes propriedades:
 - (i) $f_{\upharpoonright \alpha} \in T$ para todo $\alpha \in \text{dom}(f)$;
 - (ii) $f \notin T$ ou $f \in T$ e f não possui sucessores em T.

Nessa situação, costuma-se identificar um ramo utilizando sua função correspondente.

- (d) Seja $A=\mathbb{N}$. Consideremos $T\subseteq\mathbb{N}^{<\omega}$ o conjunto das sequências de números naturais que são finitas e decrescentes, ou seja, $f\in T$ se, e somente se f(i)>f(j) para todo $i< j<\mathrm{dom}(f)\in\mathbb{N}$. Então (T,\subseteq) é uma subárvore de $(\mathbb{N}^{<\omega},\subseteq)$. Note que a altura de T é ω . Além disso, temos pelo Exercício 2.8 do Capítulo 3 que não existe uma sequência de números naturais que seja infinita e decrescente. Assim conseguimos concluir que todos os ramos de T são finitos, o que implica que T não possui ramos cofinais.
- (e) Seja (R, \leq) um conjunto linearmente ordenado. Uma representação de uma árvore (T, \preceq) por intervalos em (R, \leq) é uma função Φ tal que para quaisquer $x, y \in T$, suas imagens $\Phi(x)$ e $\Phi(y)$ são intervalos em (R, \leq) satisfazendo:
 - (i) $x \leq y$ se, e somente se $\Phi(x) \supseteq \Phi(y)$;
 - (ii) x e y são incomparáveis se, e somente se $\Phi(x) \cap \Phi(y) = \emptyset$.

Em particular, as propriedades acima implicam que $(\Phi[T],\supseteq)$ é uma árvore isomorfa a (T,\preceq) . Por exemplo, se considerarmos a árvore $S = Seq(\{0,1\}) = \{0,1\}^{<\omega}$ ordenado por \subseteq , então o sistema $\langle D_s : s \in S \rangle$ construído no Exemplo 3.18 do Capítulo 10 é uma representação de (S,\subseteq) por intervalos fechados na reta real.

O estudo de árvores finitas é um dos principais conceitos que aparecem em combinatória. Entretanto, não vamos nos aprofundar muito no tema. Ao invés disso, vamos investigar algumas propriedades árvores infinitas, nos preocupando especialmente com condições suficientes para que uma árvore possua um ramo cofinal. Para árvores cuja altura é um ordinal sucessor a resposta é óbvia: se $h(T)=\alpha+1$, então $T_{\alpha}\neq\emptyset$ e para qualquer $x\in T_{\alpha}$ temos que $y\in T:y\leq x$ é ramo cofinal de T. Assim, focaremos em árvores cuja altura é um limite. O Exemplo 3.2(d) nos diz que existem árvores de altura ω que possuem apenas ramos finitos. O próximo teorema, que é a observação mais básica com alguma relevância para nossos estudos, mostra que isso não pode acontecer se a árvore é suficientemente "esguia".

Teorema 3.3 (Lema de König). Se T é uma árvore de altura ω , com todos os níveis finitos, então T admite um ramo de altura ω .

Demonstração. Equivalentemente, temos que provar que, toda árvore de altura ω , tal que cada nó tem um número finito de sucessores imediatos, tem um ramo infinito. De fato vamos construir, com recursão, uma sequência(infinita) $\langle c_n \rangle_{n=0}^{\infty}$ de nós de T tal que, para todo n, $\{a \in T : c_n \leq a\}$ é infinito. Seja c_0 a raiz de T, note que $\{a \in T : | c_0 \leq a\} = T$ é finito. Como

$${a \in T : c_n \le a} = {c_n} \cup \bigcup_{b \in S} {a \in T : b \le a}$$

onde S é o conjunto dos sucessores imediatos de c_n . Logo, para pelo menos um $b \in S$, $\{a \in T : b \le a\}$ é infinito, assim defina c_{n+1} um tal b. Falta verificar que $\{a \in T : c_n \ge a \text{ para algum } n\}$ é um ramo de T com altura ω .

Observe que, no lema anterior, usamos o Teorema da Recursão sem explicitamente especificar uma função g, que o enunciado prevê para calcular c_{n+1} a partir de c_n , e de fato para fazer isso precisamos de alguma forma do axioma da escolha. Por exemplo, seja k uma função escolha para $\mathcal{P}(T)$. Se S_c é o conjunto de todos os sucessores imediatos de c então definindo $g(c,n) \doteq k(\{b \in S_c : \{a \in T : b \leq a\} \text{ é infinita}\})$ temos que $c_{n+1} = g(c_n,n)$ e portanto estamos conforme o Teorema da Recursão que vimos. O próximo exercício será uma generalização do Lema de König.

Exercício 3.3. Seja (T, \leq) uma árvore de altura κ (κ um cardinal infinito), com todos os níveis finitos. Prove que T possui um ramo de tamanho κ .

Solução. Para demonstrar tal resultado, iremos visualizar os ramos dessa árvore como um compacto contido num espaço topológico produto. De fato, temos que se $X = \prod_{\alpha < \kappa} (T_{\alpha} \cup \{0\})$, munido do produto das topologias discretas, então o conjunto C dos ramos da árvore é identificado como $C = \{(x_{\alpha})_{\alpha < \kappa} \in X : x_{\beta} < x_{\beta+1} \text{ pra todo } \beta\}$, onde definimos 0 > x pra todo $x \in T$.

Não é difícil ver que C é fechado, portanto como X é compacto pelo Teorema de Tychonoff, C é compacto. Agora queremos construir $F_{\lambda} \subset C$ fechados encaixantes, então teremos que $\bigcap F_{\lambda} \neq \emptyset$, e assim $x \in \bigcap F_{\lambda}$ será o ramo que desejamos.

Defina $F_0 \doteq C$. Indutivamente suponhamos F_α bem definido para $\alpha < \lambda$, de maneira tal que sup $\{\ell(b) : b \in F_\alpha\} = \kappa$ (Como visto no exercício 3.2(iv)). Como todo nó possui somente finitos sucessores imediatos, temos que $A_\lambda = (\bigcap_{\alpha < \lambda} F_\alpha) \cap T_\lambda$ é finito. Agora existe $a_\lambda \in A_\lambda$ de modo que quando definimos

$$F_{\lambda} \doteq \{(x_{\beta}) \in C : x_{\lambda} = a_{\lambda}\} \bigcap_{\alpha < \lambda} F_{\alpha}$$

temos que $\sup\{\ell(b):b\in F_{\lambda}\}=\kappa$, e não é difícil ver que F_{λ} é fechado. Então temos que existe $x\in\bigcap F_{\lambda}$, que será claramente o ramo de comprimento κ .

Então podemos considerar o seguinte problema: Se T é uma árvore de altura ω_1 , onde cada nível é contável, é verdade que T tem um ramo de comprimento ω_1 ? NÃO!

Definição 3.4. Uma árvore de altura ω_1 é chamada de uma árvore de Aronszajn se todos os os seus níveis são no máximo contáveis e se não possui ramos de comprimento ω_1 .

Teorema 3.5. Existem árvores de Aronszajn de altura ω_1 .

Demonstração. Construímos os níveis T_{α} , $\alpha < \omega_1$ de uma árvore de Aronszajn por recursão transfinita de tal modo que

- 1. $T_{\alpha} \subseteq \omega^{\alpha}$; $|T_{\alpha}| \leq \aleph_0$;
- 2. Se $f \in T_{\alpha}$, então f é um-pra-um e $(\omega ranf)$ é infinito;
- 3. Se $f \in T_{\alpha}$ e $\beta < \alpha$ então $f|_{\beta} \in T_{\beta}$;
- 4. Para qualquer $\beta < \alpha$, qualquer $g \in T_{\beta}$, e qualquer $X \subseteq \omega rang$ finito, existe uma $f \in T_{\alpha}$ tall que $f \supseteq g$ e $ranf \cap X = \emptyset$.

Vamos assumir que isso foi feito, e vamos mostrar que $T = \bigcup_{\alpha < \omega_1} T_\alpha$ é uma árvore de Aronszajn. Claramente T é uma árvore por (3), cada nível é no máximo contável por (1), e sua altura é ω_1 (por (4), cada $T_\alpha \neq \emptyset$). Se B fosse um ramo de comprimento ω_1 em T, então $F = \bigcup B$ seria uma função um-pra-um de ω_1 para ω (por (2)), uma contradição.

Falta construir T_{α} para α limite. Para qualquer $g \in T_{\beta}, \ \beta < \alpha$, e qualquer $X \subseteq \omega - rang$ finito, construímos uma f = f(g, X) recursivamente da seguinte maneira. Fixe uma sequência crescente $\langle \alpha_n \rangle_{n=0}^{\infty}$ tal que $\alpha_0 = \beta$ e $\sup\{\alpha_n | n \in \mathbb{N}\} = \alpha$. Seja $f_0 = g \in T_{\alpha_0}$ e $X_0 = X \subseteq \omega - ranf_0$. Tendo definido $f_n \in T_{\alpha_n}$ e $X_n = X \subseteq \omega - ranf_n$ finitos, nós primeiro tomamos um $X_{n+1} \supset X_n$ finito, $X_{n+1} = X \subseteq \omega - ranf_n$ (isto é possível porque o último conjunto é infinito, por (2)) e então selecionamos algumas $f_{n+1} \in T_{\alpha_{n+1}}$ tais que $f_{n+1} \supseteq f_n$ e $X_{n+1} \cap ranf_{n+1} = \emptyset$ (possível por (4)). Seja $f = \bigcup_{n=0}^{\infty} f_n$. Claramente $f : \alpha \to \omega$, f é um-pra-um (pois todas as f_n são), $ranf \cap (\bigcup_{n=0}^{\infty} X_n) = \emptyset$, portanto $\omega - ranf$ é infinito, e $ranf \cap X = \emptyset$. Então f satisfaz (2). Para $\beta < \alpha$, $f|_{\beta} = f_n|_{\beta}$ quando $\beta < \alpha_n$, e portanto (3) também é satisfeito.

Colocamos esta f = f(g, X) em T_{α} para cada $g \in \bigcup_{\beta < \alpha} T_{\beta}$ e cada $X \subseteq \omega - rang$. Portanto (4) também é satisfeito. Como $|\bigcup_{\beta < \alpha} T_{\beta}| \le \sum_{\beta < \alpha} |T_{\beta}| \le \aleph_0$ (pela suposição indutiva (1)) e o número de subconjuntos finitos de ω é contável, o conjunto T_{α} é no máximo contável, e (1) também é satisfeito. \square

Mais geralmente, uma árvore de altura κ (κ um cardinal não-contável) é chamada de uma árvore de Aronszajn se todos os seus níveis têm cardinalidade menor que κ e não existem ramos de comprimento κ . A questão da existência de tais árvores é muito complicada e ainda não foi totalmente resolvida. É fácil mostrar que elas sempre existem quando κ é singular (exercício). São de interesse particular os cardinais não-contáveis para os quais vale um análogo do Lema de Kőnig, i.e., não existem árvores de Aronszajn de altura κ ; dizemos que tais cardinais possuem a propriedade da árvore. Acontece que cardinais fortemente inacessíveis com a propriedade da árvore são precisamente os cardinais fracamente compactos definidos na seção 2.

Referências

 $[1] \ \ {\rm Karel\ Hrbacek\ and\ Thomas\ Jech.}\ \ {\it Introduction\ to\ Set\ Theory}.\ \ {\rm Marcel\ Dekker},\ 1999.$