

Visualization of Information

MSDS 6390

Live Session 1

World Changers Shaped Here

Contents

- Presentation
 - Who am I?
 - Where am I?
 - What I do?
 - Who are you?

- Information Visualization
 - What is InfoVis?
 - Why is important?
 - How to create InfoVis?
 - Visualizations that make no sense
 - Live Coding

Who am I?

- Juan Camilo Ibarra Lopez M.Sc.
 - Systems and Computing Engineer (2007)
 - M.Sc. In Systems and Computing Engineering (2009)
 - Major: Computer Graphics

Where am I?

Bogotá, Colombia, South-America

It's Colombia, not Columbia!!

- Coffee
- Singers
 - Shakira
 - Juanes
- Sports
 - James Rodriguez
 - Falcao
 - Nairo Quintana
- Writers
 - Gabriel García Marquez

What I do?

- I love Programming!!
- Software Engineering and Design
- Information Visualization
- Computer Graphics (2D and 3D)
- Geographic Visualization
- 3D Animation
- Teaching experience (8 years)

Who are you?

What do you love to do?
What do you expect of this course?

Before we begin...

Visualization of Information

- 14 Live Sessions
- 10 assignments
 - 1 per week (8.125% each)
 - 1 mid-term (2 weeks) (15%)
 - 1 final (3 weeks) (20%)
- Communication
 - 2DS platform
 - Email: jibarralopez@mail.smu.edu.
 - Slack: smu-infovis
- Repo: juanibarral/smu_vis_of_info

Information Visualization (InfoVis)

What is InfoVis?

 The study of interactive representation of abstract data to improve the cognitive processing of information

Information Visualization (InfoVis)

Detect the expected, discover the unexpected

Data + models + analysis tools

Knowledge and good decisions

Why is important?

- A picture is worth a thousands words
- Preattentive processing
- InfoVis vs Statistics
- Visualizations that make no sense

A picture is worth a thousands words

State	College Degree %	Per Capita Income
Alabama	20.6%	11486
Alaska	30.3%	17610
Arizona	27.1%	13461
Arkansas	17.0%	10520
California	31.3%	16409
Colorado	33.9%	14821
Connecticut	33.8%	20189
Delaware	27.9%	15854
District of Columbia	36.4%	18881
Florida	24.9%	14698
Georgia	24.3%	13631
Hawaii	31.2%	15770
Idaho	25.2%	11457
Illinois	26.8%	15201
Indiana	20.9%	13149
lowa	24.5%	12422
Kansas	26.5%	13300
Kentucky	17.7%	11153
Louisiana	19.4%	10635
Maine	25.7%	12957

Visualization Of Napoleon's 1812 March (Charles Minard)

1854 London Cholera Outbreak (Dr. John Snow)

Preattentive processing:

THE HUMAN BRAIN IS ABLE TO SPOT THE SALIENT INFORMATION IN A FRACTION OF A SECOND

Preattentive processing:

THE HUMAN BRAIN IS ABLE TO SPOT THE SALIENT INFORMATION IN A FRACTION OF A SECOND

5647902894728624092406037070**5555**927**5**

Which images have a red circle?

InfoVis vs Statistics

Anscombe's Quartet and Robust Fitting

I		II		III		IV	
X	y	X	y	X	y	X	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

- •mean of the x values = 9.0
- •mean of the y values = 7.5
- •equation of the least-squared regression line is: y = 3 + 0.5x
- •sums of squared errors (about the mean) = 110.0
- •regression sums of squared errors (variance accounted for by x) = 27.5
- •residual sums of squared errors (about the regression line) = 13.75
- •correlation coefficient = 0.82
- •coefficient of determination = 0.67

Anscombe's Quartet

I		II		III		IV	
X	y	X	y	X	y	X	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

The best stats you've ever seen

https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen#t-475803

Visualizations that make no sense

How to create InfoVis?

- Tools
 - Tableau
 - MS PowerBI
 - Sisense
- Visualization Libraries
 - Processing
 - D3.js
 - OpenFrameworks

How to use Processing?

Processing coordinates system

https://processing.org/tutorials/drawing/

Basic shapes

Arc

Live Coding

Using Processing

Basic use

- Canvas, pixels
- Size of canvas
- Background
- Style: stroke weight, stroke color, fill color

Shape	Processing drawing function
Line	line(x1, y1, x2, y2)
Rectangle	rect(x, y, width, height)
Circle	ellipse(x, y, width, height)
Triangle	triangle(x1, y1, x2, y2, x3, y3)

Assignment 1

 Using Processing's 2D primitive functions, re-create a painting by an artist connected to the Bauhaus, Suprematist, or Modernist movements. Please select a painting that you find engaging, and be prepared to discuss what you find engaging. Also discuss the recreation process, including your honest assessment of the experience

Kazimir Malevich

Piet Mondrain

Questions?

jibarralopez@mail.smu.edu

