

| Exp No.   | Title                                          | Date         |
|-----------|------------------------------------------------|--------------|
| <b>S2</b> | Verification of Maximum Power transfer theorem | 11 Sept 2019 |

# **Objective:**

• To prove Maximum Power Transfer theorem using PSPICE software.

## Apparatus/Tool required:

ORCAD / Capture CIS 
$$\ \square$$
 Analog Library – R,  
Source Library – Vdc, Idc  
Ground (GND) – 0 (zero)

## **Simulation Settings:**

Analysis Type – Bias Point

## **Theory:**



Maximum Power Transfer Theorem states that "maximum power is transferred from the source to the load when the load resistance is equal to the Thevenin's equivalent resistance."

In short,  $R_L = R_{Th}$ 

## **Circuit Diagram:**





#### **Procedure:**

- 1. Create the given circuit diagram in new project file using the general procedure.
- 2. Replace the default component value and source value as per given circuit diagram.
- 3. Create the New simulation profile and set analysis type as Bias point.
- 4. Run the simulation and note down the readings in tabulation.
- 5. Compare the simulated results with solved values.

#### **Calculations:**



Here, 
$$i_2 = -4 \text{ A}$$

In loop (1)

$$2 - i_1 - (10) * (i_1) + (10) * (i_2) = 0$$

$$2 - (11) * (i_1) + (10) * (-4) = 0$$

$$2 - (11) * (i_1) - 40 = 0$$

$$(11) * (i_1) = -38$$

$$(i_1) = -3.455 A$$

$$\begin{split} V_{Th} &= (10) * (i_1 - i_2) - (5) * (i_2) \\ &= (10) * (-3.455 + 4) - (-20) \\ &= 25.45 \text{ V} \end{split}$$





$$R_{Th} = 1||10 + 5|$$
  
=  $(1 * 10) / (11) + 5$   
=  $((65) / (11)) \Omega$   
=  $5.9 \Omega$ 

3)



For Maximum Power,

$$\begin{split} R_L &= R_{Th} \\ I_L &= (V_L) \, / \, (R_{Th} + R_L) \\ &= (25.45) \, / \, (5.9 + 5.9) \\ &= 2.156 \; A \end{split}$$

$$P_{\text{Max}} = I_L^2 * R_L$$
  
=  $(2.156)^2 * (5.9)$   
= 27.42 W

## **Simulation Results:**





Case (1) Case (2)





Case (3)

(1) Table 1: Finding Resistance 'R'

| V   | I      | R = V / I    |
|-----|--------|--------------|
| (V) | (mA)   | $(\Omega)$   |
|     | 1.10.0 | <b>7</b> 0.4 |
| 1   | 169.2  | 5.91         |
| 2   | 338.5  | 5.90         |
| 3   | 507.7  | 5.91         |
| 4   | 676.9  | 5.90         |
| 5   | 846.2  | 5.90         |

Mean  $R = 5.9 \Omega$ 

(2) Table 2: Finding Maximum Power 'P<sub>Max</sub>'





#### **Conclusion & Inference:**

Thus, the Maximum Power Transfer theorem for the given circuit is proved in P-SPICE simulation software.

| Reg. No.  | Name             | Marks |
|-----------|------------------|-------|
| 19BCE0811 | AKSHAT SRIVASTAV |       |