

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 July 2001 (05.07.2001)

PCT

(10) International Publication Number
WO 01/48183 A3

(51) International Patent Classification⁷: C12N 15/10. 9/22, C07K 14/435, C12N 15/66, 15/70, 1/00

(74) Agent: BAYLISS, Geoffrey, Cyril; Boult Wade Tennant, Verulam Gardens, 70 Gray's Inn Road, London WC1X 8BT (GB).

(21) International Application Number: PCT/EP00/13149

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date:
22 December 2000 (22.12.2000)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

Published:

— with international search report

(26) Publication Language: English

(88) Date of publication of the international search report:
6 December 2001

(30) Priority Data:
9930691.2 24 December 1999 (24.12.1999) GB

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (for all designated States except US): DEV-GEN NV [BE/BE]; Technologiepark 9, B-9052 Zwijnaarde (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PLAETINCK, Geert [BE/BE]; Pontstraat 16, B-9820 Merelbeke (BE). MORTIER, Katherine [BE/BE]; Paddenhoek 20, B-9830 St.-Martens Latem (BE). LISSENS, Ann [BE/BE]; Tiensesteenweg 137, B-3010 Kessel-Lo (BE). BOGAERT, Thierry [BE/BE]; Wolvendreef 26g, B-8500 Kortrijk (BE).

WO 01/48183 A3

(54) Title: IMPROVEMENTS RELATING TO DOUBLE-STRANDED RNA INHIBITION

(57) Abstract: There are described ways of improving the efficiency of double stranded RNA inhibition as a method of inhibiting gene expression in nematode worms such as *C. elegans*. In particular, the invention relates to the finding that changes in the genetic background of *C. elegans* result in increased sensitivity to double-stranded RNA inhibition.

IMPROVEMENTS RELATING TO DOUBLE-STRANDED RNA
INHIBITION

The present invention is concerned with ways of
5 improving the efficiency of double stranded RNA
inhibition as a method of inhibiting gene expression
in nematode worms such as *C. elegans*. In particular,
the invention relates to the finding that the
susceptibility of nematode worms such as *C. elegans* to
10 double stranded RNA inhibition is affected by changes
in the genetic background of the worms.

It has recently been described in Nature Vol 391,
pp.806-811, February 98, that introducing double
stranded RNA into a cell results in potent and
15 specific interference with expression of endogenous
genes in the cell, which interference is substantially
more effective than providing either RNA strand
individually as proposed in antisense technology. This
specific reduction of the activity
20 of the gene was also found to occur in the nematode
worm *Caenorhabditis elegans* (*C. elegans*) when the RNA
was introduced into the genome or body cavity of the
worm.

The present inventors have utilized the double
stranded RNA inhibition technique and applied it
further to devise novel and inventive methods of (i)
30 assigning functions to genes or DNA fragments which
have been sequenced in various projects, such as, for
example, the human genome project and which have yet
to be accorded a particular function, and (ii)
identifying DNA responsible for conferring a
particular phenotype. Such methods are described in
the applicant's co-pending application number WO
00/01846. Processes for introducing RNA into a living
35 cell, either *in vivo* or *ex vivo*, in order to inhibit
expression of a target gene in that cell are

additionally described in WO 99/32619.

Several different experimental approaches can be used to introduce double-stranded RNA into nematode worms in order to achieve RNA interference *in vivo*.

5 One of the most straightforward approaches is simple injection of double-stranded RNA into a body cavity. A more elegant solution is to feed the nematodes on food organisms, generally bacteria, which express a double stranded RNA of the appropriate sequence,

10 corresponding to a region of the target gene.

The present inventors have now determined that the phenomenon of RNA interference in nematodes following ingestion of food organisms capable of expressing double-stranded RNA is dependent both on 15 the nature of the food organism and on the genetic background of the nematodes themselves. These findings may be exploited to provided improved methods of double-stranded RNA inhibition.

Therefore, according to a first aspect of the 20 present invention there is provided a method of inhibiting expression of a target gene in a nematode worm comprising feeding to said nematode worm a food organism which is capable of producing a double-stranded RNA structure having a nucleotide sequence 25 substantially identical to a portion of said target gene following ingestion of the food organism by the nematode, wherein the nematode has a non wild-type genetic background selected to provide increased sensitivity to RNA interference as compared to wild 30 type.

Caenorhabditis elegans is the preferred nematode worm for use in the method of the invention although the method could be carried out with other nematodes and in particular with other microscopic nematodes, 35 preferably microscopic nematodes belonging to the genus *Caenorhabditis*. As used herein the term "microscopic" nematode encompasses nematodes of

approximately the same size as *C. elegans*, being of the order 1mm long in the adult stage. Microscopic nematodes of this approximate size can easily be grown in the wells of a multi-well plate of the type 5 generally used in the art to perform mid- to high-throughput screening.

It is an essential feature of this aspect of the invention that the nematode has a non wild-type genetic background which confers greater sensitivity 10 to RNA interference phenomena (abbreviated herein to RNAi) as compared to the equivalent wild type nematodes. As illustrated in the accompanying examples, introduction of double-stranded RNA (abbreviated herein to dsRNA) into a non wild-type 15 strain according to the invention results in greater inhibition of expression of the target gene. Depending on the nature of the target gene, this greater level of inhibition may be detectable at the phenotypic level as a more pronounced phenotype.

20 The nematode having non wild-type genetic background may, advantageously, be a mutant strain. Mutations which have the effect of increasing susceptibility of the nematode to RNAi may, for example, affect the stability of dsRNA or the kinetics 25 of dsRNA turnover within cells of the worm or the rate of uptake of dsRNA synthesised by a food organism. Suitable mutant strains include mutant strains exhibiting knock-out or loss-of-function mutations in one or more genes encoding proteins involved in RNA 30 synthesis, RNA degradation or the regulation of these processes.

In one preferred embodiment, the nematode is a 35 mutant strain, more preferably a mutant *C. elegans*, which exhibits reduced activity of one or more nucleases compared to wild-type. Suitable strains include mutant strains exhibiting knock-out or loss-of-function mutations in one or more genes encoding

nucleases, such as RNases. A particularly preferred example is the *nuc-1* strain. This mutant *C. elegans* strain is known *per se* in the art.

In a second preferred embodiment, the nematode is 5 a mutant strain, more preferably a mutant *C. elegans*, which exhibits increased gut uptake compared to wild-type. Particularly preferred examples of such strains are the so-called *C. elegans* gun mutants described herein. In a still further embodiment, the nematode 10 may be a transgenic worm comprising one or more transgenes which increase gut uptake relative to wild-type.

The term "increased gut uptake" as used herein is taken to mean increased uptake of foreign particles 15 from the gut lumen and may encompass both increased gut permeability and increased gut molecular transport compared to wild-type *C. elegans*.

C. elegans feeds by taking in liquid containing its food (e.g. bacteria). It then spits out the 20 liquid, crushes the food particles and internalises them into the gut lumen. This process is performed by the muscles of the pharynx. The process of taking up liquid and subsequently spitting it out is called pharyngeal pumping. Once the food particles have been 25 internalised via pharyngeal pumping their contents must cross the gut itself in order to reach target sites in the worm. There are multiple factors which effect the uptake of compounds from the gut lumen to the surrounding tissues. These include the action of multi-drug resistance proteins, multi-drug resistance 30 related proteins and the P450 cytochromes as well as other enzymes and mechanisms available for transport of molecules through the gut wall.

C. elegans mutants which exhibit increased uptake 35 of foreign molecules through the gut may be obtained from the *C. elegans* mutant collection at the *C.*

elegans Genetic Center, University of Minnesota, St Paul, Minnesota, or may be generated by standard methods. Such methods are described by Anderson in Methods in Cell Biology, Vol 48, "C. elegans: Modern 5 biological analysis of an organism" Pages 31 to 58. Several selection rounds of the PCR technique can be performed to select a mutant worm with a deletion in a desired gene. Alternatively, a population of worms could be subjected to random mutagenesis and worms 10 exhibiting the desired characteristic of increased gut uptake selected using a phenotypic screen, such as the dye uptake method described herein.

As an alternative to mutation, transgenic worms 15 may be generated with the appropriate characteristics. Methods of preparing transgenic worms are well known in the art and are particularly described by Craig Mello and Andrew Fire, Methods in Cell Biology, Vol 48, Ed. H.F. Epstein and D.C. Shakes, Academic Press, pages 452-480.

Worms exhibiting the desired characteristics of increased gut uptake can be identified using a test devised by the inventors based on uptake of a marker precursor molecule which is cleaved by the action of enzymes present in the gut lumen to generate a marker 20 molecule which produces a detectable signal, such as fluorescence. A suitable marker precursor molecule is the fluorescent dye precursor BCECF-AM available from Molecular Probes (Europe BV), Netherlands. This dye only becomes fluorescent when cleaved by esterases and 25 maintained at a pH above 6. The pH of the gut lumen is usually 5 or below. Thus, any BCECF-AM taken up through the pharynx into the gut lumen is not 30 fluorescent until cleaved and the cleaved portion has entered the cells surrounding the lumen which are at a higher pH. Thus, this dye is able to quickly identify 35 mutant or otherwise modified worms which have increased gut transport or permeability. There is a

gradual increase in fluorescence in the tissues surrounding the gut while the gut lumen remains dark. The fluorescence can be detected at an excitation wavelength of 485 nm and an emission wavelength of 530
5 nm.

Specific examples of gun mutant strains isolated using this procedure which may be used in the method of the invention are strains bg77, bg84, bg85 and bg86, although it is to be understood that the
10 invention is in no way limited to the use of these specific strains. The *C. elegans* gun mutant strain bg85 was deposited on 23 December 1999 at the BCCM/LMG culture collection, Laboratorium Voor Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium under accession number LMBP 5334CB. The
15 phrase "the bg85 mutation" as used herein refers to the specific mutation(s) present in the bg85 strain which is/are responsible for conferring the gun phenotype.

It is also within the scope of the invention to use a non wild-type nematode strain, preferable a *C. elegans* strain, having multiple mutations which affect sensitivity to RNAi. A preferred type of multiple mutant is one having at least one mutation which results in reduced nuclease activity compared to wild type and at least one mutation which results in increased gut uptake compared to wild type. An example of such a mutant is a *C. elegans* strain having the *nuc-1* mutation and at least one further gun mutation. As exemplified herein, double mutants having the *nuc-1* mutation and a gun mutation exhibit enhanced sensitivity to RNAi as compared to either *nuc-1* or gun single mutants.
25
30

For the avoidance of doubt, where particular characteristics or properties of nematode worms are described herein by relative terms such as "enhanced"
35

or "increased" or "decreased" this should be taken to mean enhanced, increased or decreased relative to wild-type nematodes. In the case of *C. elegans*, wild-type is defined as the N2 Bristol strain which is well known to workers in the *C. elegans* field and has been extremely well characterised (see Methods in Cell Biology, Volume 48, *Caenorhabditis elegans: Modern biological analysis of an organism*, ed. by Henry F. Epstein and Diane C. Shakes, 1995 Academic Press; The nematode *Caenorhabditis elegans*, ed. by William Wood and the community of *C. elegans* researchers., 1988, Cold Spring Harbor Laboratory Press; *C. elegans II*, ed. by Donald L. Riddle, Thomas Blumenthal, Barbara J. Meyer and James R. Priess, 1997, Cold Spring Harbor Laboratory Press). The N2 strain can be obtained from the *C. elegans* Genetic Center, University of Minnesota, St Paul, Minnesota, USA.

The food organism for use in the above aspect of the invention is preferably a bacterium such as, for example, a strain of *E.coli*. It will, however, be appreciated that any other type of food organism on which nematodes feed and which is capable of producing dsRNA could be used. The food organism may be genetically modified to express a double-stranded RNA of the appropriate sequence, as will be understood with reference to the examples included herein. One convenient way in which this may be achieved in a bacterial food organism is by transforming the bacterium with a vector comprising a promoter or promoters positioned to drive transcription of a DNA sequence to RNA capable of forming a double-stranded structure. Examples of such vectors will be further described below.

The actual step of feeding the food organism to the nematode may be carried out according to procedures known in the art, see WO 00/01846.

Typically the feeding of the food organisms to the nematodes is performed on standard agar plates commonly used for culturing *C. elegans* in the laboratory. However, the step of feeding the food 5 organism to the nematodes may also be carried out in liquid culture, for example in the wells of 96-well microtitre assay plates.

The inventors have further observed that variations in the food organism can result in enhanced 10 *in vivo* RNAi when the food organism is ingested by a nematode worm.

Accordingly, in a further aspect the invention provides a method of inhibiting expression of a target gene in a nematode worm comprising feeding to said 15 nematode worm a food organism capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a portion of said target gene following ingestion of the food organism by the nematode, wherein the food organism carries a 20 modification selected to provide increased expression or persistence of the doubled-stranded RNA compared to a food organism which does not carry the modification.

The modification present in the food organism can be any modification which results in increased 25 expression of the dsRNA or in increased persistence of the dsRNA. Suitable modifications might include mutations within the bacterial chromosome which affect RNA stability and/or degradation or mutations which have a direct effect on the rate of transcription. In 30 a preferred embodiment, the food organism is an RNase III minus *E. coli* strain, or any other RNase negative strain.

According to a still further aspect of the invention there is provided a method of inhibiting 35 expression of a target gene in a nematode worm comprising introduction of a DNA capable of producing a double-stranded RNA structure having a nucleotide

sequence substantially identical to a portion of said target gene in said nematode, wherein the nematode is one which exhibits increased gut uptake compared to wild type.

5 In addition to exhibiting increased sensitivity to RNAi following feeding with food organisms capable of expressing a dsRNA, nematodes which exhibit increase gut uptake as described herein also show increased uptake of DNA molecules capable of producing
10 double-stranded RNA structures following ingestion into a nematode.

In a preferred embodiment, the DNA is in the form of a vector comprising a promoter or promoters orientated to relative to a sequence of DNA such that they are capable of driving transcription of the said DNA to make RNA capable of forming a double-stranded structure upon binding of an appropriate RNA polymerase to the promoter or promoters.
15

Several different arrangements of promoters may be used in such a vector. In a first arrangement a DNA fragment corresponding to a region of the target gene is flanked by two opposable polymerase-specific promoters which are preferably identical.
20

Transcription from the opposable promoters produces two complementary RNA strands which can anneal to form an RNA duplex. The plasmid pGN1 described herein is an example of a vector comprising two opposable T7 promoters flanking a multiple cloning site for insertion of a DNA fragment of the appropriate sequence, corresponding to a region of a target gene.
25 pGN8 is an example of a vector derived from pGN1 containing a fragment of the *C. elegans unc-22* gene. In an alternative arrangement, DNA fragments corresponding to a region of the target gene may be placed both in the sense and the antisense orientation downstream of a single promoter. In this case, the sense/antisense fragments are co-transcribed to
30
35

generate a single RNA strand which is self-complementary and can therefore form an RNA duplex.

In both of the above arrangements, the polymerase-specific T3, T7 and SP6 promoters, all of 5 which are well known in the art, are useful for driving transcription of the RNA. Expression from these promoters is dependent on expression of the cognate polymerase. Advantageously, the nematode itself may be adapted to express the appropriate 10 polymerase. Expression of the polymerase may be general and constitutive, but could also be regulated under a tissue-specific promoter, an inducible promoter, a temporally regulated promoter or a promoter having a combination of such characteristics. 15 Transgenic *C. elegans* strains harboring a transgene encoding the desired polymerase under the control of an appropriately-regulated promoter can be constructed according to methods known *per se* in the art and described, for example, by Craig Mello and Andrew Fire 20 in Methods in Cell Biology, Vol 48, Ed. H. F. Epstein and D. C. Shakes, Academic Press, pp 452-480.

The advantage of adapting the nematode to express the required polymerase is that it is possible to control inhibition of expression of the target gene in 25 a tissue-specific and/or temporally specific manner by placing expression of the polymerase under the control of an appropriately regulated promoter.

Introduction of DNA into nematodes in accordance 30 with the method of the invention can be achieved using a variety of techniques, for example by direct injection into a body cavity or by soaking the worms in a solution containing the DNA. If the DNA is in the form of a vector as described herein, e.g. a plasmid harboring a cloned DNA fragment between two flanking 35 T7 promoters, then dsRNA corresponding to this DNA fragment will be formed in the nematode resulting in down regulation of the corresponding gene. The

introduced DNA can form an extrachromosomal array, which array might result in a more catalytic knock-out or reduction of function phenotype. The DNA might also become integrated into the genome of the nematode,
5 resulting in the same catalytic knock out or reduction of function phenotype, but which is stably transmittable.

In each aspect of the invention, the double-stranded RNA structure may be formed by two separate
10 complementary RNA strands or a single self-complementary strand, as described above. Inhibition of target gene expression is sequence-specific in that only nucleotide sequences corresponding to the duplex region of the dsRNA structure are targeted for
15 inhibition.

It is preferred to use dsRNA comprising a nucleotide sequence identical to a portion of the target gene, although RNA sequences with minor variations such as insertions, deletions and single
20 base substitutions may also be used and are effective for inhibition. It will be readily apparent that 100% sequence identity between the dsRNA and a portion of the target gene is not absolutely required for inhibition and the phrase "substantially identical" as
25 used herein is to be interpreted accordingly. Generally sequences which are substantially identical will share at least 90%, preferably at least 95% and more preferably at least 98% nucleic acid sequence identity. Sequence identity may be conveniently calculated based on an optimal alignment, for example using the BLAST program accessible at
WWW.ncbi.nlm.nih.gov.

The invention will be further understood with reference to the following non-limiting Examples,
35 together with the accompanying Figures in which:

Figure 1 is a plasmid map of the vector pGN1

containing opposable T7 promoters flanking a multiple cloning site and an ampicillin resistance marker.

5 Figure 2 is a plasmid map of the vector pGN8 (a genomic fragment of the *C. elegans* unc-22 gene cloned in pGN1).

10 Figure 3 is a plasmid map of the vector pGN29 containing two T7 promoters and two T7 terminators flanking *Bst*XI sites. This vector permits cloning of DNA fragments linked to *Bst*XI adaptors.

15 Figure 4 is a plasmid map of the vector pGN39 containing two T7 promoters and two T7 terminators flanking attR recombination sites (based on the Gateway™ cloning system of Life Technologies, Inc).

20 Figure 5 is a plasmid map of the vector PGX22 (a fragment of the *C. elegans* gene C04H5.6 cloned in pGN29).

25 Figure 6 is a plasmid map of the vector PGX52 (a fragment of the *C. elegans* gene K11D9.2b cloned in pGN29).

Figure 7 is a plasmid map of the vector PGX104 (a fragment of the *C. elegans* gene Y57G11C.15 cloned in pGN29).

30 Figure 8 is a plasmid map of the vector PGZ8 (a fragment of the *C. elegans* gene T25G3.2 cloned in pGN39).

35 Figure 9 shows the results of an RNAi experiment in which wild-type (N2) or nuc-1 strain *C. elegans* in liquid culture were fed with *E. coli* containing the

- 13 -

plasmid pGX22.

Figure 10 shows the results of an RNAi experiment in which wild-type (N2) or *nuc-1* strain *C. elegans* in 5 liquid culture were fed with *E. coli* containing the plasmid pGX52.

Figure 11 shows the results of an RNAi experiment in which wild-type (N2) or *nuc-1* strain *C. elegans* in 10 liquid culture were fed with *E. coli* containing the plasmid pGXGZ8.

Figure 12 shows the results of an RNAi experiment in which wild-type (N2) or *nuc-1* strain *C. elegans* in 15 liquid culture were fed with *E. coli* containing the plasmid pGX104

Example 1

Influence of genetic background on the efficiency of RNAi in *C. elegans*.

5 **Introduction**

Various different *C. elegans* strains were fed with different bacteria, to test the possibility of RNAi by feeding *C. elegans* with bacteria that produce dsRNA. The possibility of DNA delivery and dsRNA delivery has previously been envisaged by using different bacterial strains. In this experiment the importance of the *C. elegans* strain as receptor of the dsRNA is also shown.

10 For this experiment the following *E. coli* strains were used:

1. MC1061: F-*araD139* Δ(*ara-leu*)7696 *galE15* *galK16* Δ(*lac*)X74 *rpsL* (*Str^r*) *hsdR2* (*r_k⁻ m_k⁺*) *mcrA* *mcrB1*
 - regular host for various plasmids,
 - Wertman et al., (1986) Gene 49:253-262,
 - Raleigh et al., (1989) in Current Protocols in Molecular Biology eds. Ausubel et al, Publishing associates and Wiley Interscience; New York. Unit 1.4.
- 20 2. B21(DE3): F- *ompT(lon)* *hsdS_B* (*r_B⁻,m_B⁻*; an *E. coli* B strain) with DE3, a λ prophage carrying the T7 RNA polymerase gene.
 - regular host for IPTG inducible T7 polymerase expression,
 - Studier et al. (1990) Meth. Enzymol. 185:60-89
- 30 3. HT115 (DE3): F- *mcrA* *mcrB* IN(*rrnD-rrnE*) 1 λ-*rnc14::tr10* (DE3 lysogen: *lacUV5* promoter-T7polymerase)
 - host for IPTG inducible T7 polymerase

- 15 -

expression,
- RNaseIII-,
- Fire A, Carnegie Institution, Baltimore, MD,
Pers. Comm.

5

For this experiment the following *C. elegans* strains were used:

1. *C. elegans* N2: regular WT laboratory strain
- 10 2. *C. elegans* *nuc-1*(e1393): *C. elegans* strain with a reduced endonuclease activity (>95%); condensed chromatin persists after programmed cell death; ingested (bacterial) DNA in the intestinal lumen is not degraded. Several alleles are described:
15 e1392 (strong allele: has been used for the experiments described below); n887 (resembles e1392) and n334 (weaker allele)
- Stanfield et al. (1998) East Coast Worm meeting abstract 171,
- Anonymous, Worm Breeder's Gazette 1(1):17b Hevelone et al. (1988) Biochem. Genet. 26:447-461
- Ellis et al., Worm breeder's Gazette 7(2):44
- Babu, Worm Breeder's gazette 1(2):10
20 - Driscoll, (1996) Brain Pathol. 6:411-425
- Ellis et al., (1991) Genetics 129:79-94

For this experiment the following plasmids were used:

- 30 pGN1: A vector encoding for ampicillin resistance, harbouring a multiple cloning site between two convergent T7 promoters.
- 35 pGN8: pGN1 containing a genomic fragment of *unc-22*. Decreased *unc-22* expression via RNAi results in a "twitching" phenotype in *C. elegans*.

Experimental conditions

12-well micro-titer plates were filled with approximately 2 ml of NGM agar per well (1 litre of NGM agar: 15g Agar, 1g peptone, 3g NaCl, 1ml 5 cholesterol solution (5 mg/ml in EtOH), with sterile addition after autoclaving of 9.5 ml 0.1M CaCl₂, 9.5 ml 0.1 ml MgSO₄, 25 ml 1M KH₂PO₄/K₂HPO₄ buffer pH 6 and 5 ml nystatin solution (dissolved 10 mg/ml in 1:1 EtOH:CH₃COONH₄ 7.5 M).

10 The dried plates were spotted with approximately 50 µl of an overnight culture of bacteria. When IPTG induction was required, 50 µl of a 10 mM stock solution of IPTG was dropped on top of the bacteria 15 lawn, and incubated at 37°C for approximately 4 hours. Individual nematodes at the L4 growth stage were then placed in single wells. In each well 4 nematodes, and the plates were further incubated at 20°C for 6 days to allow offspring to be formed. The F1 offspring of 20 the seeded nematodes were tested for the twitching phenotype.

Results

Table 1: Percentage of the offspring that show the twitching phenotype

	MC1061	N2	<i>nuc-1</i>
5	pGN1	0%	0%
	pGN1 + IPTG	0%	0%
	pGN8	0%	0%
	pGN8 + IPTG	0%	0%
10	BL21 (DE3)		
	pGN1	0%	0%
	pGN1 + IPTG	0%	0%
	pGN8	20% (+)	>90% (++)
	pGN8 + IPTG	20% (+)	>90% (++±)
15	HT115 (DE3)		
	pGN1	0%	0%
	pGN1 + IPTG	0%	0%
	pGN8	50% (+±)	>90% (++)
	pGN8 + IPTG	80% (++)	>90% (+++)

20

%: percentage twitchers

+: weak twitching

++: twitching

+++: strong twitching

25

Conclusions

The experiment with *E. coli* MC1061 shows that no twitching could be observed in this experiment.

30

Neither the N2 nematodes nor the *nuc-1* nematodes showed any twitchers. This is to be expected as *E. coli* MC1061 does not produce any T7 RNA polymerase, and hence the unc-22 fragment cloned in pGN8 is not

expressed as dsRNA.

The experiment with *E. coli* strain BL21(DE3) and
nematode strain N2 shows expected results. BL21(DE3)
5 harbouring plasmid pGN1 does not result in any
twitching as the pGN1 vector is an empty vector. BL21
(DE3) harbouring PGN8 results in the expression of
unc-22 dsRNA. When this dsRNA is fed to the N2
10 nematode (indirectly by feeding with the bacteria that
produce the dsRNA), this results in a twitching
phenotype, indicating that the dsRNA is able to pass
the gut barrier and is able to perform its interfering
activity.

15 Surprisingly the RNAi effect of the unc-22 dsRNA was
even more pronounced in *C. elegans* strain *nuc-1* than
in the wild type N2 strain. Although one may expect
that the *nuc-1* mutation results in the non-degradation
or at least in a slower degradation of DNA, as the
20 NUC-1 protein is known to be involved in DNase
activity, we clearly observe an enhancement of the
RNAi induced phenotype in *C. elegans* with a *nuc-1*
background. The *nuc-1* mutation has not been cloned
yet, but it has been described that the gene is
25 involved in nuclease activity, and more particularly
DNase activity. If the NUC-1 protein is a nuclease, it
may also have activity on nuclease activity on dsRNA,
which would explain the enhanced RNAi phenotype. The
nuc-1 gene product may be a nuclease, or a regulator
30 of nuclease activity. As the mode of action of RNAi is
still not understood, it is also possible that the
NUC-1 protein is interfering in the mode of action of
RNAi. This would explain why a *nuc-1* mutant is more
sensitive to RNAi.

35

The experiment with the *E.coli* strain HT115 (DE3)

confirms the experiments with the BL21(DE3) strain. The RNA interference observed with the unc-22 dsRNA is even higher. In comparison with strain BL21(DE3) this could be expected, as HT115(DE3) is a RNase III minus 5 strain, and hence is expected to produce larger amounts of dsRNA, resulting in more prominent RNAi. This indicates further that the RNAi observed in this experiment is the result of the dsRNA produced by the bacteria fed to the *C. elegans*. Feeding *C. elegans* 10 *nuc-1* with HT115(DE3) harbouring pGN8 also results in higher RNA interference phenotype than feeding the same bacteria to *C. elegans* wild-type strain N2. Once again this indicates that improved RNAi can be realised using a nuclease negative *C. elegans* and more 15 particularly with a with the *C. elegans nuc-1* (e1392) strain.

Summary

RNA interference can be achieved in *C. elegans* by 20 feeding the worms with bacteria that produce dsRNA. The efficiency of this RNA interference is dependent both on the *E. coli* strain and on the genetic background of the *C. elegans* strain. The higher the level of dsRNA production in the *E. coli*, the more 25 RNAi is observed. This can be realised by using efficient RNA expression systems such as T7 RNA polymerase and RNAase negative strains, such as RNaseIII minus stains. In this example the level of dsRNA production varied: HT115(DE3)>BL21(DE3)>MC1061.

30 RNA interference is high in *C. elegans* strains that are nuclease negative, or that are influenced in their nuclease activity. This can be realised by using a mutant strain such as *C. elegans nuc-1*.
35 In this example the sensitivity to RNAi varied:
C. elegans nuc-1 >> *C. elegans N2*

Example 2

Improved RNAi by feeding dsRNA producing bacteria in selected *C. elegans* strains-Comparison of the *nuc-1* strain with several mutants which show improved gut uptake (designated herein 'gun' mutants). Strains bg77, bg78, bg83, bg84, bg85, bg86, bg87, bg88 and bg89 are typical gun mutant *C. elegans* strains isolated using selection for increased gut uptake (gun phenotype) with the marker dye BCECF-AM.

10

Experimental conditions:

- 12-well micro-titer plates were filled with approximately 2ml of NGM agar (containing 1ml/l of ampicillin (100 μ g/ml) and 5 ml of 100mM stock IPTG) per well
- the dried plates were spotted with 25 μ l of an overnight culture of bacteria (BL21DE3/HT115DE3) containing the plasmids pGN1 (T7prom-T7prom) or pGN8 (T7prom-unc-22-T7prom)
- individual nematodes at the L4 growth stage were then placed in single wells, one nematode per well
- the plates were incubated at 20°C for 6 days to allow offspring to be formed
- the adult F1 offspring of the seeded nematodes were tested for the twitching phenotype

Results:

Table 2:

	20°C/6d	pGN1 HT115DE3	pGN8 BL2DE3	pGN8 HT115DE3	
5	N2	0	1	1	
	<i>nuc-1</i>	0	1-2	3	
	bg77	0	1-2	3	
10	bg78	0	1	1-2	
	bg83	0	1	1	
	bg84	0	1-2	3	
	bg85	0	1	2-3	
	bg86	0	1	2	
	bg87	0	1	1	
	bg88	0	1	1	
15	bg89	0	1	1	

figure legend:

0 = no twitching
20 1 = no to weak phenotype
 2 = clear phenotype
 3 = strong phenotype

25 **Conclusions**

- bacterial strain HT115(DE3) shows a better RNAi sensitivity than bacterial strain BL21(DE3)
- the *nuc-1* *C. elegans* strain is a better strain than the Wild-type N2 strain for RNAi sensitivity
- 30 - various gun mutants (improved gut uptake mutants) and more particularly the gun mutant strains bg77, bg84, bg85, bg86 show improved sensitivity to RNAi compared to Wild-type.

A double mutant *C. elegans* strain (nuc-1/gun) shows even greater sensitivity to RNAi compared to wild-type:

5 Double mutants were constructed to test the prediction that gun/nuc mutants would even show more enhanced RNAi sensitivity. As an example, the crossing strategy with gun strain bg85 is shown, similar crosses can be conducted with other gun strains, such
10 as bg77, bg84 and bg86.

P0 cross: gun(bg85) x WT males

F1 cross: nuc-1 x gun(bg85) /+ males

15 F2 cross: nuc-1 x gun(bg85) /+; nuc-1/0 males (50%)
nuc-1 x +/++; nuc-1/0 males (50%)

F3 single: gun(bg85) /+; nuc-1 hermaphrodites (25%)
20 +/++; nuc-1 hermaphrodites (75%)

F4 single: gun(bg85); nuc-1 (1/4 of every 4th plate high staining with BCECF)

25 F5 retest: gun(bg85); nuc-1 (100% progeny of F4 singled high staining with BCECF)

To select for the gun phenotype, the fluorescence precursor BCECF-AM is used (obtainable from Molecular probes). The precursor BCECF-AM is cleaved by esterases present in the gut of the worm to generate the dye BCECF which is fluorescent at pH values above 6. This allows selection for worms that have a gun phenotype. BCECF-AM is taken up through the pharynx into the gut lumen and is not fluorescent until it has been cleaved, and the BCECF portion has entered the

cells surrounding the lumen. Wild-type worms will show slower or no increase in BCECF fluorescence.

5 **Example 3**

Improved RNAi feeding in liquid culture using *nuc-1*(e1393) *C. elegans*.

Introduction

10 N2 and *nuc-1* *C.elegans* strains were fed with bacteria producing dsRNAs that give lethal phenotypes via RNAi. For this example RNAi was performed in liquid culture instead of on agar plates. We show here for a number of genes that the RNAi effect is more penetrant using 15 the *nuc-1* strain than the N2 strain, and that RNAi can be performed in liquid.

For this experiment the following *E.coli* strains were used:

20

1. HT115 (DE3): F- *mcrA mcrB IN(rrnD-rrnE)* 1 λ-
rnc14::tr10 (DE3 lysogen: lacUV5 promoter -T7 polymerase)
 - host for IPTG inducible T7 polymerase expression
 - RNaseIII-
 - Fire A, Carnegie Institution, Baltimore, MD,
Pers. Comm.

25 For this experiment, following *C. elegans* strains were used:

1. *C. elegans* N2: regular WT laboratory strain
2. *C. elegans nuc-1(e1393)*: *C. elegans* strain with a reduced endonuclease activity (>95%); condensed chromatin persists after programmed cell death;

ingested (bacterial) DNA in the intestinal lumen
is not degraded. Several alleles are described:
e1392 (strong allele: has been used for the
experiments described below); n887 (resembles
e1392) and n334 (weaker allele)

5 - Stanfield et al. (1998) East Coast Worm meeting
 abstract 171
 - Anonymous, Worm Breeder's Gazette 1(1):17b
10 - Hevelone et al. (1988) Biochem. Genet. 26:447-461
 - Ellis et al., Worm breeder's Gazette 7(2):44
 - Babu, Worm Breeder's gazette 1(2):10
 - Driscoll, (1996) Brain Pathol. 6:411-425
 - Ellis et al., (1991) Genetics 129:79-94

15

For this experiment, the following plasmids that all
give lethal phenotypes in *C. elegans* via RNAi were
used:

20 pGX22: a vector encoding ampicillin resistance,
containing a genomic fragment of cosmid C04H5.6
corresponding to a member of the RNA helicase family.

25 pGX52: a vector encoding ampicillin resistance,
containing a genomic fragment of cosmid K11D9.2b
corresponding to sarco/endoplasmic Ca²⁺ ATPase also
known as SERCA.

30 pGZ18: a vector encoding ampicillin resistance,
containing a genomic fragment of cosmid T25G3.2
corresponding to a chitin like synthase gene.

35 pGX104: a vector encoding ampicillin resistance,
containing a genomic fragment of cosmid Y57G11C.15
corresponding to sec-61, a transport protein.

Experimental conditions

- 1 ml overnight cultures of HT115 (DE3) bacteria containing the plasmids pGX22, pGX52, pGZ18 or pGX104 respectively were pelleted and resuspended
5 in S-complete medium, containing 1ml/l of ampicillin (100 µg/ml) and 1ml/l of 1000mM IPTG.
- 10 µl of this bacterial solution was transferred to a 96-well microtiter plate already filled with
10 100 µl S-complete containing 1ml/l of ampicillin (100 µg/ml) and 1ml/l of 1000mM IPTG.
- 3 nematodes at the L1 growth stage of N2 and
15 nuc-1 strain were then placed in single wells, 3 L1's per well. Per experimental set up, 16 wells were used (n=16).
- the plates were incubated at 25°C for 5 days to allow offspring to be formed.
20
- the plates were visually checked and the following phenotypes could be scored per individual well:
25 **no effect:** L1's developed to adults and gave normal offspring.

 no F1 offspring: L1's developed to adults and gave no offspring.
30 **acute lethal:** original L1 did not mature and died.

Results

35 The results of this experiment are illustrated graphically in Figures 9 to 12. Data are expressed as

a percentage of the total (n=16) on the y-axis for both N2 and *nuc-1* strains.

Conclusions

5 The following genes were tested in this liquid RNAi assay:

- C04H5.6: an RNA helicase. RNAi of this gene interferes with the generation of offspring.
- 10 - SERCA: a sarco/endoplasmic Ca²⁺ ATPase. A strong RNAi phenotype causes an acute lethal phenotype. A less penetrant RNAi effect results in loss of offspring.
- 15 - T25G3.2: a chitin like synthase gene. RNAi of this gene causes dead eggs.
- sec-61: a transport protein. A strong RNAi phenotype causes an acute lethal phenotype. A less penetrant RNAi effect results in loss of offspring.
- 20 - RNAi can be performed under liquid conditions.

As in the previous examples this set of experiments shows that the *nuc-1* *C. elegans* strain is more sensitive to RNAi than the wild-type N2 strain. This is most clear for less penetrant phenotypes such as SERCA and chitin synthase. For strong RNAi phenotypes like the helicase and Sec-61 the difference between the N2 wild-type strain and the *nuc-1* stain is less pronounced.

Example 4**Cloning of pGX22, pGX52, pGZ18 and pGX104 for RNAi**

A set of primers for each gene was designed on the basis of sequence data available in the publicly accessible *C. elegans* sequence database (Acedb).

5

The cosmid names relate to:

10

1. **C04H5.6**=member of RNA helicase
2. **K11D9.2b**=SERCA
3. **Y57G11C.15**=transport protein sec-61
4. **T25G3.2**=chitin synthase like

15

The following primer sequences were designed:

15

1. **C04H5.6F** 5'-TGCTCAGAGAGTTCTAACGAACC-3'
C04H5.6R 5'-CAATGTTAGTTGCTAGGACCACCTG-3'

20

2. **K11D9.2bF** 5'-CAGCCGATCTCCGTCTTGTG-3'
K11D9.2bR 5'-CCGAGGGCAAGACAACGAAG-3'

3. **Y57G11C.15F** 5'-ACCGTGGTACTCTTATGGAGCTCG-3'
Y57G11C.15R 5'-TGCAGTGGATTGGGTCTTCG-3'

25

4. **T25G3.2F**
5'-GGGGACAAGTTGTACAAAAAAGCAGGCTATGCCAAGTACATGTCGATTGCG-3'

T25G3.2R

30

5'-GGGGACCCTTGTACAAGAAAGCTGGGTTGGAGAAGCATTCCGAGAGTTG-3'

PCR was performed on genomic DNA of N2 strain *C. elegans* to give PCR products of the following sizes:

35

1326bp for C04H5.6
1213bp for K11D9.2b

1024bp for Y57G11C.15

1115bp for T25G3.2

The PCR fragments of C04H5.6, K11D9.2b and Y57G11C.15
5 were linked to *Bst*XI adaptors (Invitrogen) and then
cloned into the pGN29 vector cut with *Bst*XI. pGN29
contains two T7 promoters and two T7 terminators
flanking a cloning site which is adapted for
facilitated cloning of PCR fragments, comprising a
10 stuffer DNA flanked by two *Bst*XI sites (see schematic
Figure 3). The resulting plasmids were designated
pGX22 (C04H5.6), pGX52 (K11D9.2b) and pGX104
(Y57G11C.15).

15 The PCR fragment of T25G3.2 was cloned into pGN39 via
recombination sites based on the GATEWAY™ cloning
system (Life Technologies, Inc). pGN39 contains two
T7 promoters and two T7 terminators flanking a cloning
site which facilitates "High Throughput" cloning based
20 on homologous recombination rather than restriction
enzyme digestion and ligation. As shown schematically
in Figure 4, the cloning site comprises *att*R1 and
*att*R2 recombination sites from bacteriophage lambda
flanking a gene which is lethal to *E. coli*, in this
25 case the *ccdB* gene. This cloning site is derived from
the Gateway™ cloning system commercially available
from Life Technologies, Inc. The Gateway™ cloning
system has been extensively described by Hartley et
al. in WO 96/40724 (PCT/US96/10082).

Example 5

Selecting *C. elegans* mutations for increased gut uptake (*gun*) using marker dye BCECF-AM and *unc-31* as background.

5

The screen was performed in *unc-31*(e928) mutant background, to ensure high amounts of dye in the gut lumen, since *unc-31* mutations show constitutive pharyngeal pumping. The dye (BCECF-AM: 2',7' bis (2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyleneester), obtained from Molecular Probes, is cleaved by intracellular esterases. Fluorescence accumulates in the gut cells upon passage through the apical gut membrane.

10
15**Mutagenesis**

Day 1: *unc-31* L4 staged worms were mutagenised with EMS (final concentration 50 mM) for 4 hours

Day 2: P0 was divided over several large agar plates

Day 6: F1's were collected and dropped on large plates. The number of eggs the F1's layed were checked every hour and de F1's were removed when 10-20 eggs per F1 were counted

25 Day 10: F2 adults were collected and screened with BCECF-AM. Mutations with increased staining of the gut cells after 15-30 minutes exposure to the dye were selected and singled on small agar plates.

30

About 50 initial positives gave progeny which was retested with BCECF-AM (2x) and leucine CMB (1x)
9 of the 50 strains were kept (2 strains : 3 times positive, 7 other strains : twice positive)

35

Table 3: Isolation of mutations for increased staining with BCECF-AM

	Total P0	Total F1	Total F2	screened chromosomes	number of strains isolated
5	(counted)	(estimated)	(calculated)	(estimated)	(counted)
	2251	55618	222472	100000	9

Outcrossing, backcrossing and double construction

- 10 1. backcrossing *unc-31; gun* --> *unc-31; gun*
 - *unc-31; gun* x WT males
 - singled 2x5 WT hermaphrodites F1s (*unc-31/+; gun/+*)
 - singled 50 WT hermaphrodites F2s (1/4 homozygous)
 - select strains segregating 1/4 unc
 - 15 - stain unc strains with BCECF-AM
 - from positive strains pick unc homozygous
 - retest 100 % unc strains with BCECF-AM
 - kept 1 strain (backcrossed)
- 20 2. *unc-31* background was crossed out-->+; *gun*
 - *unc-31; gun* x WT males
 - singled 2x5 WT hermaphrodites F1s (*unc-31/+; gun/+*)
 - singled 50 WT hermaphrodites F2s (1/4 homozygous)
 - select strains which did not segregate unc F3s
 - 25 anymore
 - stain non unc strains with BCECF-AM
 - 7 positive strains were retested with BCECF-AM and finally 1 was selected and kept (outcrossed)
- 30 3. +; *gun* (1x outcrossed) were 2 times backcrossed-->+; *gun* (3x backcrossed)
 - *gun* x WT males
 - WT hermaphrodites x F1 males (*gun/+*)
 - singled 10 WT hermaphrodites F2s (1/2 heterozygous)
 - 35 - singled 50 WT hermaphrodites F3s (1/8 homozygous)

- 31 -

- stain strains with BCECF-AM- retested positives with BCECF-AM and finally 1 was selected and kept

4. *gun* (3x backcrossed) were crossed with *nuc-1(X)*

5 mutant--> *gun; nuc-1*

- *gun* x WT males
- *nuc-1* x *gun/+* males
- *nuc-1* x *gun/+; nuc-1/0* or *+/+; nuc-1/0* males
- singled 10 WT hermaphrodite progeny (*nuc-1* homozygous, $\frac{1}{2}$ heterozygous *gun*)
- singled 40 WT hermaphrodite progeny (1/8 homozygous *gun*)
- stain strains with BCECF-AM
- retested positives with BCECF-AM and finally 1 was selected and kept

Table 6: Strains derived from *gun* mutations

	<i>gun</i>	<i>unc-31; gun</i>		<i>unc-31; gun</i>		<i>+; gun</i>				<i>gun; nuc-1</i>
		original isolate		backcrossed (1x)		outcrossed (1x)		3x b.c.	from 3x b.c.	
		allele number	isolation number	strain number	isolation number	strain number	isolation number	strain number	strain number	strain number
	bg77	31.4	UG 510	31.4.46.1	UG 556	31.4.34	UG 563	UG 674	UG 777	
25	bg78	37.5	UG 511	37.5.46.4	UG 557	37.5.15	UG 564	UG 675		-
	bg83	10.2	UG 543	10.2.11	UG 600	10.2.21	UG 586	UG 676		-
	bg84	7.2	UG 544	7.2.10	UG 601	7.2.15	UG 589	UG 677	UG 774	
	bg85	11.5	UG 545	11.5.29.2	UG 602	2x b.c.	UG 717		UG 775	
	bg86	42.1	UG 546	42.1.4.5	UG 603	42.1.18	UG 587	UG 678	UG 776	
30	bg87	7.1	UG 547	7.1.8.3	UG 604	7.1.22	UG 585	UG 679		-
	bg88	5.3	UG 548	5.3.9	UG 605	5.3.18	UG 584	UG 680		-
	bg89	23.4	UG 549	23.4.13.5	UG 606	23.4.3	UG 588	UG 671		-

SEQUENCE LISTING:

SEQ ID NO: 1 complete sequence of pGN1

5 SEQ ID NO: 2 complete sequence of pGN8

SEQ ID NO: 3 complete sequence of pGN29

10 SEQ ID NO: 4 complete sequence of pGN39

SEQ ID NO: 5 complete sequence of pGX22

SEQ ID NO: 6 complete sequence of pGX52

15 SEQ ID NO: 7 complete sequence of pGX104

SEQ ID NO: 8 complete sequence of pGZ8

20 SEQ ID NO: 9 primer C04H5.6F

SEQ ID NO: 10 primer C04H5.6R

SEQ ID NO: 11 primer K11D9.2bF

25 SEQ ID NO: 12 primer K11D9.2bR

SEQ ID NO: 13 primer Y57G11C.15F

30 SEQ ID NO: 14 primer Y57G11C.15R

SEQ ID NO: 15 primer T25G3.2F

SEQ ID NO: 16 primer T25G3.2R

Claims:

1. A method of inhibiting expression of a target gene in a nematode worm comprising feeding to
5 said nematode worm a food organism which is capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a portion of said target gene following ingestion of the food organism by the nematode, wherein the nematode
10 has a non wild-type genetic background selected to provide increased sensitivity to RNA interference as compared to wild type.

2. A method as claimed in claim 1 wherein the
15 nematode is a microscopic nematode.

3. A method as claimed in claim 2 wherein the nematode is from the genus *Caenorhabditis*.

20 4. A method as claimed in claim 3 wherein the nematode is *C. elegans*.

25 5. A method as claimed in any one of claims 1 to 4 wherein the nematode has a mutant genetic background.

30 6. A method as claimed in claim 5 wherein the nematode is a mutant strain which exhibits reduced activity of one or more nucleases compared to wild type.

7. A method as claimed in claim 6 wherein the nematode is *C. elegans* strain *nuc-1*.

35 8. A method as claimed in claim 5 wherein the nematode is a mutant strain which exhibits increased

gut uptake compared to wild type.

9. A method as claimed in claim 8 wherein the nematode is mutant *C. elegans* strain bg85.

5

10. A method as claimed in claim 5 wherein the nematode is a mutant strain having at least one mutation which results in reduced nuclease activity compared to wild type and at least one mutation which results in increased gut uptake compared to wild type.

10

11. A method as claimed in claim 10 wherein the nematode is a mutant *C. elegans* strain having the *nuc-1* mutation and the bg85 mutation.

15

12. A method as claimed in any one of the preceding claims wherein the food organism has been engineered to express a double-stranded RNA.

20

13. A method as claimed in any one of the preceding claims wherein the food organism is a bacterium.

25

14. A method as claimed in claim 13 wherein the food organism is *E. coli*.

30

15. A method as claimed in any one of the preceding claims wherein the food organism has been genetically modified to express a double-stranded RNA having a nucleotide sequence substantially identical to a portion of said target gene.

35

16. A method as claimed in claim 15 wherein the food organism contains a DNA vector, the vector comprising a promoter or promoters orientated relative to a DNA sequence such that they are capable of

initiating transcription of said DNA sequence to RNA capable of forming a double-stranded structure upon binding of an appropriate RNA polymerase to said promoter or promoters.

5

17. A method as claimed in claim 25 wherein the vector comprises two promoters flanking the DNA sequence.

10

18. A method as claimed in claim 26 wherein the two promoters are identical.

15

19. A method as claimed in claim 25 wherein the vector comprises a single promoter and further comprises said DNA sequence in a sense and an antisense orientation relative to said promoter.

20

20. A method as claimed in any one of claims 16 to 20 wherein the nematode or the food organism is adapted to express an RNA polymerase capable of initiating transcription from said promoter or promoters.

25

21. A method as claimed in any one of claims 16 to 20 wherein the RNA polymerase is T7, T3 or SP6 polymerase.

30

22. A method as claimed in any one of claims 1 to 21 wherein the step of feeding said food organism to said nematode worm is carried out in liquid culture.

35

23. A method of inhibiting expression of a target gene in a nematode worm comprising feeding to said nematode worm a food organism capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a

portion of said target gene following ingestion of the food organism by the nematode, wherein the food organism carries a modification selected to provide increased expression or persistence of the doubled-stranded RNA compared to a food organism which does not carry the modification.

24. A method as claimed in claim 23 wherein the food organism is a bacterium.

10

25. A method as claimed in claim 24 wherein the bacterium is an *E. coli* strain.

15

26. A method as claimed in claim 25 wherein the *E. coli* strain is an RNase III minus strain or any other RNase negative strain.

20

27. A method as claimed in any one of claims 23 to 26 wherein the step of feeding said food organism to said nematode worm is carried out in liquid culture.

25

28. A method of inhibiting expression of a target gene in a nematode worm comprising introduction of a DNA capable of producing a double-stranded RNA structure having a nucleotide sequence substantially identical to a portion of said target gene in said nematode, wherein the nematode is one which exhibits increased gut uptake compared to wild type.

30

29. A method as claimed in claim 28 wherein the nematode is a microscopic nematode.

35

30. A method as claimed in claim 29 wherein the nematode is from the genus *Caenorhabditis*.

31. A method as claimed in claim 30 wherein the

nematode is *C. elegans*.

32. A method as claimed in any one of claims 28 to 31 wherein the nematode has a mutant genetic
5 background.

33. A method as claimed in claim 32 wherein the nematode is mutant *C. elegans* strain bg85.

10 34. A method as claimed in any one of claims 28 to 33 wherein the DNA capable of producing a double-stranded RNA structure is a vector comprising a promoter or promoters orientated relative to a DNA sequence such that they are capable of initiating
15 transcription of said DNA sequence to RNA capable of forming a double-stranded structure upon binding of an appropriate RNA polymerase to said promoter or promoters.

20 35. A method as claimed in claim 34 wherein the vector comprises two promoters flanking the DNA sequence.

25 36. A method as claimed in claim 35 wherein the two promoters are identical.

30 37. A method as claimed in claim 34 wherein the vector comprises a single promoter and further comprises said DNA sequence in a sense and an antisense orientation relative to said promoter.

35 38. A method as claimed in any one of claims 34 to 37 wherein the nematode is adapted to express an RNA polymerase capable of initiating transcription from said promoter or promoters.

39. A method as claimed in any one of claims 34

- 38 -

to 38 wherein the RNA polymerase is T7, T3 or SP6 polymerase.

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.

FIG. 7.

FIG. 8.

FIG. 9.

FIG. 10.

FIG. 11.

FIG. 12.

1
SEQUENCE LISTING

<110> DEVGEM NV

<120> IMPROVEMENTS RELATING TO DOUBLE-STRANDED RNA INHIBITION

<130> SCB/53711/001

<140>

<141>

<160> 14

<170> PatentIn Ver. 2.0

<210> 1

<211> 3216

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGN1

<400> 1

gagtgcacca tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcata 60
ggcggaaattt gtaaacgttaa tattttgtta aaattcgctg taaaatattt ttaaatcagc 120
tcattttttt accaataggc cgaaatccgc aaaatccctt ataaatcaaa agaatagacc 180
gagatagggt tgagtgttgt tccagttgg aacaagagtc cactattaaa gaacgtggac 240
tccaaacgtca aaggggcgaaa aaccgtctat caggggcgatg gcccaactacg tgaaccatca 300
cccaaatcaa gtttttgcg gtcgagggtgc cgtaaagctc taaatcgaa ccctaaaggg 360
agccccccgat tttagagctt acggggaaag ccggcgaacg tggcgagaaa ggaagggaaag 420
aaagcggaaag gagcggggcgc tagggcgctg gcaagtgtag cggtcacgct gcgcgttaacc 480
accacaccccg ccgcgtttaa tgcgcgccta cagggcgctg ccattcgcca ttcaaggctgc 540
gcaactgtt ggaagggcga tcggtgccgg cctcttcgct attacgccag ctggcgaaag 600
ggggatgtgc tgcaaggcga ttaagtggg taacgccagg gtttcccag tcacgacgtt 660
gtaaaacgac ggccagtgaa ttgttaatacg actcactata gggcgaattc gagctcggt 720
cccggggatc ctctagagtc gaaagcttct cgccctatacg ttagtctgtat tacagcttga 780
gtattctata gtgtcaccta aatagcttgg cgtaatcatg gtcatagctg tttcctgtgt 840
gaaattgtta tccgctcaca attccacaca acatacgagc cggaaacgata aagtgtaaag 900
cctgggtgc ctaatgagtg agctaactca catattaattgc gttgcgtca ctgcccgcct 960
tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 1020
gcgggttgcg tattggcgcg tcttccgcctt cctcgctcac tgactcgctg cgctcggtcg 1080
ttcggctgcg gcgagcggta tcagctcaact caaaggcggt aatacggta tccacagaat 1140
caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgt 1200
aaaaggccgc gttgtggcg ttttcgata ggctccgccc ccctgacgag catcacaaaa 1260
atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgttc 1320
cccctggaaag ctcctcgtg cgctctcctg ttccogaccct gcccgttacc ggatacctgt 1380
ccgcctttct cccttcggga agcgtggcgc tttctcatag ctacacgctgt aggtatctca 1440
gttcgggtgta ggtcggtcgc tccaaagctgg gctgtgtgca cgaacccccc gttcagcccg 1500
accgctgcgc cttatccgtt aactatcgtc ttgagtc当地 cccggttaaga cacgacttat 1560
cgccactggc agcagccact ggttaacagga ttagcagagc gaggtatgtt ggcggtgcta 1620
cagagttctt gaagtgggtgg cctaactacg gctacactag aaggacagta ttgggtatct 1680
gcgcgtctgtc gaagccagtt accttcggaa aaagagttgg tagctcttgc tccggcaaac 1740
aaaccaccgc tggtagcggg ggttttttgg ttgcaagca gcagattacg cgccggaaaa 1800
aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag tggaaacgaaa 1860
actcacgtta agggattttgc gtcgtatgat tatcaaaaaag gatcttcacc tagatcctt 1920
taaattaaaa atgaagttt aaatcaatct aaagtatata tggtaact tggcttgaca 1980

gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 2040
tagttgcctg actccccgtc gtgttagataa ctacgataacg ggagggctta ccatctggcc 2100
ccagtgcgtc aatgataaccg cgagaccac gtcaccggc tccagattt tcagaataa 2160
accagccagc cggaagggcc gagcgcagaa gtggcctgc aactttatcc gcctccatcc 2220
agtctattaa ttgttgcgg gaagctagag taagtagttc gccagttaat agtttgcga 2280
acgttgttgg cattgctaca ggcacgttgg tgtcacgctc gtcgtttggat atggcttcat 2340
tcagctccgg ttcccaaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 2400
cggttagctc cttcggtcct ccgatcggt tcagaagtaa gttggccgca gtgttatcac 2460
tcatggttat ggcagactg cataattctc ttactgtcat gccatccgta agatgcttt 2520
ctgtgactgg tgagtactca accaagtcat tctgagaata ccgcgcggg cgaccgagtt 2580
gctcttgcgg ggcgtcaata cgggataata gtgtatgaca tagcagaact taaaagtgc 2640
tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 2700
ccagttcgat gtaaccact cgtgcaccca actgatctc agcatcttt actttcacca 2760
gcgttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataaggcgaa 2820
cacggaaatg ttgaataactc atactcttcc ttttcaata ttattgaagc atttatcagg 2880
gttattgtct catgagcgga tacatattt aatgtattt gaaaaataaaa caaatagggg 2940
ttccgcgcac atttccccga aaagtgcac ctcgtcata agaaaccatt attatcatga 3000
cattaaccta taaaaatagg cgtatcacga ggccctttcg tctcgccgt ttcggtgatg 3060
acggtgaaaa cctctgacac atgcagctcc cggagacggt cacagcttgt ctgtaagcgg 3120
atgccgggag cagacaagcc cgtcaggcg cgtcagcggg tggcggcggg tgcggggct 3180
ggcttaacta tgcggcatca ggcgcattt tactga . 3216

<210> 2

<211> 4620

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGN8

<400> 2

gatccgaatc tccatgtctg ttaacagcct tgacacggaa tttatattca tgcccattgag 60
tcaaatacgta aacgttggaaat ttggtatcct tgctctctcc gcaagcagtc catctgc当地 120
tggcagcatc ttgcattttca atgacatagt gactgatttc agtcctccca tcattttctg 180
gttccttcca tgcaagatca catccatcct tgacaatatt agtacatcg agaggccac 240
gtgggcttga tggatgtca agaacatgtaa ctttcacttc agcagtgtca gttccattct 300
cgatctctgc cttgtatgata taggttctg tatccgaacg caaagctctc ttccacatgg 360
atttagtctt gccgtttca ttgttcaact tcatacgatc atcagattcg actgggttgc 420
cttcgaaatgt ccaagtaatt gttggagttt gttcaccact gactggatg ttcaatgaga 480
agtcttgccttcc agccttgcctt ttgatttctt gaatcgagtt acgatcgatg actgggtggaa 540
ctataattta attcaatgtat tatttagtaat tgatttagac tcttaccatt tctagcctt 600
gcaacagctg atgctgaatc agatggatct cccaaatccctg ccttggcttgc ggcacggatt 660
ctgaattcgt actttgatcc ttcccttgcata ttccaaacag tagcattcg ttgtccagct 720
ggAACATGAG caacgtcatt ccagaatggc gagaactcgat ccttcatttc aacaacgtat 780
tcctcgattt gggcaccacc gtcgtttgc ggtggcttcc attcaaggatc aacatgatcc 840
ttatcccaat cagaatttc aggagcattt gtcttccctg gctgtcaaa tggatcttgc 900
gcaagtgtgg ttccaaatggc tcggacttc cttcagcat gacggcagcg 960
acacggaaact gaaaatcaaa atgtttagg caattgagtt caagattaaa aaattctc 1020
tttatattca tgcgttggaa taagaccgtc aacaacagct gtatcttat ctccagcgcac 1080
cttgcagct ggaaccatc ttccacttgc agtacgtac tttcgtatca catagttttc 1140
aatttggaaata cctccatcat catctgtgc acgccaattc aaagtgcacat gatcaccatg 1200
aacatcgaa acatctaattt gaccatttgg agaagttggc ttgtctgaaa attttaaaata 1260
taaccaaattt aatttggaaata aactaatgtt cacaataac attgatcttac acagttgtt 1320
catcttctcc atttgcattt acagcttgc tagtggaaatg tccactgtct ccacgttcca 1380
tttgcatttc aaccagctt gattggatt ctgggttatac aagttctcg ccctatagtg 1440
agtcgttattt cagcttgcgtt attctatagt gtcacctaaa tagttggcg taatcatgtt 1500
catagctgtt tcctgtgtga aattgttatac cgctcacaat tccacacaac atacgagccg 1560
gaagcataaaa gtgttaagcc tgggtgcct aatgagtttgcg ctaactcaca ttaatttgcgt 1620

tgcgctca	ccccgtttc	cagtcggaa	acctgtcg	ccagctgc	aatgaatcg	1680
gccaacgcgc	ggggagagggc	ggtttgcgta	ttggcgctc	ttccgcttc	tcgctca	1740
actcgctcg	ctcggtcg	cggctgcgc	gagcggtac	agctcactc	aaggcggtaa	1800
tacggttatc	cacagaatca	ggggataacg	caggaaagaa	catgtgagc	aaaggccagc	1860
aaaaggccag	gaaccgtaaa	aaggccggt	tgctggcg	tttcgatagg	ctccgcccc	1920
ctgacgagc	tcacaaaaat	cgacgctaa	gtcagagg	gcaaacc	acaggactat	1980
aaagatacca	ggcgttccc	cctggaaag	ccctcg	ctctcctgtt	ccgaccctgc	2040
cgcttaccgg	atacctgtcc	gccttctcc	cttcggaa	cgtggcg	tctcatagct	2100
cacgctgttag	gtatctcagt	tcgggttag	tcgttcg	caagctgg	tgtgtgcacg	2160
aaccccccgt	tcagccccac	cgctgcgc	tatccggtaa	ctatcgtt	gagtccaa	2220
cggtaagaca	cgacttatcg	ccactggc	cagccactgg	taacaggatt	agcagagcga	2280
ggtatgttag	cggtgtaca	gagttctga	agtgggtgg	taactacggc	tacactagaa	2340
ggacagtatt	tggtatctgc	gctctgtga	agccagttac	cttcggaaa	agagttggta	2400
gctcttgc	cggcaaaaca	accaccgt	gtagcggt	ttttttgtt	tgcaagcagc	2460
agattacgcg	cagaaaaaaa	ggatctcaag	aagatcctt	gatctttct	acggggctg	2520
acgctcagtg	gaacgaaaac	tcacgttaag	ggatttgg	catagagatta	tcaaaaagga	2580
tcttcaccta	gatccttta	aattaaaaat	gaagttttaa	atcaatctaa	agtatatatg	2640
agtaaacttgc	gtctgacagt	taccaatgt	taatcagt	ggcacctatc	tcagcgatct	2700
gtcttattcg	ttcatccata	gttgcctg	tcccg	gtagataact	acgatacgg	2760
agggcttacc	atctggcccc	agtgtc	tgatacc	agacccacgc	tcaccggctc	2820
cagatttatac	agcaataaaac	cagccagcc	gaagg	gcgcaga	ggtcctgca	2880
ctttagccgc	ctccatccag	tctattaatt	gttgcggg	agctagag	agtagttcg	2940
cagttatag	tttgcgcaac	gttggggc	ttgctac	catcggt	tcacgctcg	3000
cgttggtat	ggcttcattc	agctccgg	cccaacgatc	aaggcag	acatgatccc	3060
ccatgttgg	caaaaaagcg	gttagctc	tcgg	gatcg	agaagta	3120
tggccgc	gttatac	atgggtatgg	cagcact	taattctt	actgtcatgc	3180
catccgtaa	atgctttct	gtgactgg	agtact	caagtcat	tgagaata	3240
gcgcggcg	accgagttgc	tctgccc	cgtcaata	ggataat	gtatgacata	3300
gcagaactt	aaaagtgtc	atcattgg	aacgttctt	gggcg	ctctcaag	3360
tcttaccgc	gttggagatcc	agttcgat	aacc	tgcaccc	tgatctt	3420
catctttac	tttacc	gttctgg	gagcaaa	aggagg	aatgccc	3480
aaaagggaa	aaggcgaca	cgaaatgtt	gaatact	actt	tttcaat	3540
atogaagcat	ttatcagg	tattgtct	tgagcg	catatt	tgtatt	3600
aaaataaaaca	aataggg	ccgcgcac	ttccc	agtgc	gacgtct	3660
aaaccattat	tatcatgaca	ttaacctata	aaaatagg	tatc	cccttc	3720
tcgcgcgtt	cggtgatgac	ggtaaaacc	tctgac	gca	gctcc	3780
cagttgtct	gtaagcg	gccgggag	gaca	tcagg	tcagcg	3840
ttggcggt	tcgggct	cttaactat	ccg	cgat	tgagag	3900
accatatgc	gtgtgaa	ccgcac	gct	ttt	atcagg	3960
attgtaaac	ttaatattt	gttaaaattc	gctt	ttt	cattt	4020
ttaaccat	aggccaa	cgcaaaatc	c	caaa	gacc	4080
gggttgagt	ttgttcc	ttgaaaca	gt	aaa	ggact	4140
gtcaaagg	aaaaaccgt	ctatcagg	gat	agg	ccac	4200
tcaagt	ttcggtcg	gtgccc	gt	atc	cccc	4260
cgat	tttagag	aaagccgg	aa	acc	ggag	4320
aaaggag	cttgacgg	gctgg	ac	ggaa	aaaag	4380
cccggcgc	ttaatgc	gtcacagg	g	cg	ccaca	4440
gttgg	gctgatcg	cgggc	cc	ct	ctgc	4500
gtgtcg	gctgat	cgctt	cc	cc	caact	4560
cga	cgatcg	cgctt	cc	cg	cgtaaaaa	4620

<210> 3

<211> 4756

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGX22

<400> 3

tgctcagaga	gtttctcaac	gaacccgatt	tggctagtta	taggttaattt	ttagaacatt	60
tacaaaaaaca	gcaaaaaaac	caaacattca	ggatTTTGT	ttttaattaa	aaaaaaaatc	120
gatcgctctt	aaattttaat	caatacttcg	aataaaccga	aaaaaaaaacg	aaaaaaaaatc	180
ctgtttccag	tgtaatgatg	attgacgagg	ctcacgaacg	tactctacac	acggatattc	240
tattcgggtt	agtcaaagat	attgcaagat	tccgaaaggaa	tttgaagctt	ctcatctctt	300
ctgcaacact	tgacgctgaa	aagttctcca	gtttcttcga	cgacgctccg	atttccgaa	360
ttccgggacg	cagattcccg	gtggacattt	actatacaca	ggctcccga	gcggactacg	420
tcgacgcggc	tatcgtcaca	attatgcaga	ttcaatttgc	ccagccactt	cccggcgata	480
tttgggtatt	tctgacttgt	caggaagaaa	tcgaaactgt	acaggaagca	cttatggAAC	540
ggtcgaaagc	actgggatcg	aagattaagg	agcttattcc	gctGCCGTT	tatgcgaatt	600
tgcccagtga	tttgcaggcg	aagattttcg	agccaacgcc	gaaagatgcg	agaaaggtag	660
attttctta	caaattttt	ccaaaaaaaa	atccgagaaa	aatctacaaa	atttcaggca	720
aaaactgttt	cattttattc	ctaactagtt	ttttagcaaa	cgtttagatt	taacaaaact	780
gaacaaattt	gaagtttcc	aatttaaaaa	ataaatgttt	cggaaagttt	attgaaaaat	840
ctgaaattgc	tatcctctcg	tatctgcaaa	aaaaacactt	taaaaaatgc	tctgttctt	900
gaaaatttct	aaactgaaaa	atttgcattt	tctgaaaatt	gtgataattt	tataaaattt	960
tatagaaaat	gtaagcattc	cagaaaaata	tcaaaaattt	cgagaaaatt	ctgaaaaaat	1020
ccagaaatat	taacagaaaa	aaaatctttt	gaaacatctg	aaaattaaaa	taaattgaat	1080
ttacatTTT	ttttttggga	tttcctttaaa	atcactatga	atttaccact	aaattttttg	1140
caaaaaatttta	tttttttaat	ttcaaaagaaa	aagcaaagaa	ttttaaaata	tcaaaaagtc	1200
caaattttgg	tcggtaatt	tttaaaataa	cattttcaag	ataattttaa	gttaatcaaa	1260
acattccacg	catttctagt	ttccccaaatt	tctctaaatt	tcaggtggtc	ctagcaacta	1320
acattgccag	cacaatggat	ctcgagggt	cttccatacc	taccagttct	gcgcctgcag	1380
gtcgcggccg	cgactctcta	gacgcgttaag	cttactagca	taaccccttg	gggcctctaa	1440
acgggtcttg	aggggttttt	tgagctctc	gccctatagt	gagtcgtatt	acagctttag	1500
tattctatag	tgtcacctaa	atagctggc	gtaatcatgg	tcatagctgt	ttcctgtgt	1560
aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	ggaagcataa	agtgtaaagc	1620
ctggggtgcc	taatgagtga	gctaactcac	attaatttgcg	ttgcgctcac	tgcccgctt	1680
ccagtcggga	aacctgtcg	gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	1740
cgttttgcgt	attggcgct	cttccgcttc	ctcgctca	gactcgctgc	gctcggtcg	1800
tcgctgcgg	cgagcggtat	cagctca	aaaggcggt	atacggttat	ccacagaatc	1860
agggataaac	gcagggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	1920
aaaggcccg	ttgctggcg	ttttcgatag	gctccgcccc	cctgacgagc	atcacaaaaa	1980
tcgacgctca	agtcaagaggt	ggcgaaaaccc	gacaggacta	taaagataacc	aggcgttcc	2040
cccttggaa	tcctctgtc	gctctcctgt	ttcgaccctg	ccgcttacccg	gataacctgc	2100
cgcctttctc	ccttcgggaa	gcgtggcgct	ttctcatagc	tcacgctgt	gttatctcg	2160
ttcgggtgt	gtcgttcgt	ccaagctggg	ctgtgtgcac	gaacccccc	ttcagcccga	2220
ccgctgcgcc	ttatccggta	actatctgt	tgagtccaa	ccggtaagac	acgacttac	2280
gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	gcggtgctac	2340
agagttcttg	aagtgggtgc	ctaactacgg	ctacactaga	aggacagttt	ttggatctg	2400
cgcctgtctg	aagccagtt	cttcggaaa	aagagttgg	agcttttgat	ccggcaaaca	2460
aaccaccgct	ggtagcggt	gtttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	2520
aggatctcaa	gaagatcc	tgatctttc	tacggggct	gacgctcagt	ggaacgaaaa	2580
ctcacgtta	gggattttgg	tcatgagatt	atcaaaaaagg	atcttcac	agatccctt	2640
aaattaaaaa	tgaagtttta	aatcaatcta	aagtataat	gagtaaactt	gtctgacag	2700
ttaccaatgc	ttaatcagt	aggcacat	ctcagcgatc	tgtcttattt	gttcatccat	2760
agttgcctga	ctccccgtcg	tgtagataac	tacgatacgg	gagggcttac	catctggccc	2820
cagtgcgtca	atgataccgc	gagaccacg	ctcacccgct	ccagatttt	cagaataaaa	2880
ccagccagcc	ggaaggggccg	agcgcagaag	ttgtcctgca	actttatccg	cctccatcca	2940
gtcttattaa	tgttgccggg	aagcttagagt	aagttagttcg	ccagttataa	gtttgcgcaa	3000
cgttgttggc	attgctacag	gcatcggt	gtcacgctcg	tcgtttggta	tggcttcatt	3060
cagctccgg	tcccaacgt	caaggcgagt	tacatgatcc	cccatgtt	gcaaaaaaagc	3120
ggttagctcc	ttcggtcctc	cgatcggt	cagaagtaag	ttggccgcag	tgttatcact	3180
catgggtatg	gcagcactgc	ataattctct	tactgtcat	ccatccgtaa	gatgttttc	3240
tgtgacttgt	gagtactcaa	ccaagtcatt	ctgagaatac	cgccccggc	gaccgagttg	3300
ctcttgcgg	gcgtcaatac	gggataatag	tgtatgacat	agcagaactt	taaaagtgt	3360

catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgttgagatc	3420
cagttcgatg	taaccactc	gtgcacccaa	ctgatcttca	gcacatcttta	ctttcaccag	3480
cgtttctggg	tgagcaaaaa	caggaaggca	aaatgccgca	aaaaagggaa	taagggcgac	3540
acggaaatgt	tgaatactca	tactcttcct	tttcaatat	tattgaagca	tttatcaggg	3600
ttattgtctc	atgagcgat	acatattga	atgtatTTAG	aaaaataaac	aaataggggt	3660
tccgcgcaca	tttccccgaa	aagtgcacc	tgacgtctaa	gaaaccatta	ttatcatgac	3720
attaacctat	aaaaataggc	gtatcacgag	gcccttcgt	ctcgccggtt	tcgggtatga	3780
cggtaaaaac	ctctgacaca	tgcagctccc	ggagacggtc	acagcttgc	tgtaagcgga	3840
tgccgggagc	agacaagccc	gtcagggcgc	gtcagcgggt	gttggcgggt	gtcggggctg	3900
gcttaactat	gccccatcag	agcagattgt	actgagagtg	caccatatgc	ggtgtgaaat	3960
accgcacaga	tgcgttaagga	aaaaataccg	catcaggcga	aattgtaaac	gttaatattt	4020
tgttaaaatt	cgcgttaaat	atttgttaaa	tcagctcatt	tttaaccua	taggcccggaa	4080
tcggcaaaat	cccttataaaa	tcaaaaagaat	agaccgagat	agggtttagt	gttgttccag	4140
tttggAACAA	gagtccacta	ttaaaaacg	tggactccaa	cgtcaaagg	cgaaaaaccg	4200
tctatcaggg	cgatggccc	ctacgtgaac	catcacccaa	atcaagttt	ttgcgggtcga	4260
ggtgccgtaa	agctctaaat	cggAACCTA	aagggagccc	ccgattttaga	gcttgacggg	4320
gaaagccggc	gaacgtggcg	agaaaggaaag	ggaagaaaagc	gaaaggagcg	ggcgctaggg	4380
cgctggcaag	tgtagcggc	acgctgcgc	taaccaccac	accgcgcgc	cttaatgcgc	4440
cgctacaggc	cgcgtccatt	cgccattcag	gctgcgcac	tgttgggaaag	ggcgatcggt	4500
gcgggcctct	tcgctattac	gccagctggc	gaaagggggg	tgtgctgca	ggcgattaaag	4560
ttgggttaacg	ccagggtttt	cccagtacg	acgtttagaa	acgacggcca	gtgaattgta	4620
atacgactca	ctataaggcg	aattcaaaaa	accctcaag	accggtttag	aggccccaaag	4680
gggttatgct	agtgaattct	gcagggtacc	cgggatcct	ctagagatcc	ctcgacctcg	4740
agatccattg	tgctgg					4756

<210> 4

<211> 4643

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGX52

<400> 4

gagtgcacca	tatgcggtgt	gaaataccgc	acagatgcgt	aaggagaaaa	taccgcata	60
ggcgaaattg	taaacgttaa	tatTTGTTA	aaattcgcgt	taaatatttg	ttaaatcagc	120
tcattttta	accaataggc	cgaaatccgc	aaaatccctt	ataaaatcaaa	agaatagacc	180
gagatagggt	tgagtgttgt	tccagttgg	aacaagagtc	cactattaaa	gaacgtggac	240
tccaaacgtca	aaggcgaaa	aaccgtctat	cagggcgatg	gcccaactacg	tgaaccatca	300
cccaaataaa	gtttttgcg	gtcgagggtc	cgtaaagctc	taaatcgaa	ccctaaagg	360
agccccccat	tttagagctt	acggggaaag	ccggcgaac	tggcgagaaa	ggaagggaaag	420
aaagcgtaaag	gagcggggcgc	tagggcgctg	gcaagtgtag	cggtcacgct	gcgcgttaacc	480
accacacccg	ccgcgtttaa	tgcggcccta	cagggcgctg	ccattcgcca	ttcaggctgc	540
gcaactgttg	ggaagggcga	tcggtgcg	cctttcgct	attacgcca	ctggcgaaag	600
ggggatgtgc	tgcaaggcga	ttaagtggg	taacgccagg	gttttcccag	tcacgacgtt	660
gtaaaacgtac	ggccagtgaa	ttgtataacg	actcactata	ggcgaattc	aaaaaacc	720
tcaagacccg	tttagaggcc	ccaagggggtt	atgcttagtga	attctgcagg	gtacccgggg	780
atcctctaga	gatccctoga	cctcgagatc	cattgtgtc	gcagccgatc	tccgtcttgc	840
gaagatctac	tccaccacca	tccgtatcga	tcagtccatc	ctcacccggag	aatctgtgtc	900
tgttatcaag	cacaccgact	ctgtgcaga	tccacgcgt	gttaaccagg	acaagaagaa	960
ttgtctgttc	tcgggaacca	atgtcgatc	tggaaaggct	cgttggatcg	tcttcggaaac	1020
cggattgacc	actgaaaatcg	gaaagatccg	taccgaaatg	gctgagaccg	agaatgagaa	1080
gacaccactt	caacagaagt	tggacgaaatt	cgagagacaa	cttccaagg	ttatctctgt	1140
tatttgcgtt	gctgtttggg	ctatcaacat	tggacatttc	aacgatccag	ctcacgggtgg	1200
atcatgggtt	aaggagcaa	tctactactt	caaaatcgcc	gttgccttgc	ccgtcgctgc	1260
tattccagaa	ggacttccag	ctgtcatcac	cacgtgcctt	gccctcgaa	ctcgccgtat	1320
ggccaagaag	aacgttattg	taagatccct	tccatccgtc	gaaacttgc	gatgcacatc	1380
tgttatctgc	tctgacaaga	ctggaaactct	caccaccaac	cagatgtctg	tgtcaaagat	1440

gttcatcgct	ggacaagctt	ctggagacaa	catcaacttc	accgagttcg	ccatctccgg	1500
atccacctac	gagccagtgc	gaaagggttc	caccaatgga	cgtaaaatca	acccagctgc	1560
tggagaattc	gaatcactca	ccgagttggc	catgatctgc	gctatgtca	atgattcatc	1620
tgttgattac	aatgagacca	agaagatcta	cgagaaaagtc	ggagaagcca	ctgaaactgc	1680
tcttatcggt	cttgctgaga	agatgaatgt	tttcggAAC	tcgaaAGCCG	gactttcacc	1740
aaaggagctc	ggaggagttt	gcaaccgtgt	catccaacaa	aaatggaaaga	aggagttcac	1800
actcgagttc	tcccgtgatc	gtaaatccat	gtccgcctac	tgcttcccag	cttccggagg	1860
atctggagcc	aagatgtcg	tgaagggagc	cccagaagga	gttctcgaa	gatgcaccca	1920
cgtcagagtt	aacggacaaa	aggttccact	cacctctgcc	atgactcaga	agatttgta	1980
ccaatgcgtg	caatacgaa	ccggaagaga	taccctcgt	tgcttgc	tcggccagca	2040
caatggatct	cgagggatct	tccataccta	ccagttctgc	gcctgcaggt	cgcggccgcg	2100
actctctaga	cgcgttaagct	tactagcata	acccttggg	gcctctaaac	gggtcttgag	2160
gggttttttgc	agcttctcg	cctatagtga	gtcgtattac	agctttagta	ttctatagt	2220
tcacctaata	agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	2280
gctcacaatt	ccacacaca	tacgagccgg	aagcataaaag	tgtaaagcct	gggggtgccta	2340
atagtgagc	taactcacat	taattgcgtt	gcgctca	cccgtttcc	agtcgggaaa	2400
cctgtcgtgc	cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	2460
tggcgctct	tccgcttc	cgctca	ctcgctgc	tcg	ggctgcggcg	2520
agcgttatca	gctca	aggcgtaat	acggttatcc	acagaatcag	gggataacgc	2580
aggaaagaac	atgtgagca	aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	2640
gctggcg	ttcgataggc	tccgcccccc	tgacgagcat	cacaaaaatc	gacgctcaag	2700
tcagagg	cgaaaccga	caggactata	aaagataccag	gcgttcccc	ctggaagctc	2760
cctcg	tcc	cgaccctg	gcttaccgg	tac	c	2820
ttcgg	gtggcg	ctcatag	acgctgt	tatctcag	cggtgt	2880
cgtc	ctcc	gtgtgc	ac	gat	gt	2940
cg	at	gtgtgc	ac	gt	at	3000
atccgg	tatcgt	gttcaac	ggtaagac	acttac	gg	3060
agccact	gtt	gcagagcg	gtatgt	gt	at	3120
gtgg	act	acact	gac	gt	ct	3180
ggc	act	gat	gtt	at	ct	3240
act	ttt	gat	gtt	ttt	cc	3300
ttt	ttt	gg	ttt	ttt	cc	3360
ttt	ttt	gg	ttt	ttt	cc	3420
ttt	ttt	gg	ttt	ttt	cc	3480
ttt	ttt	gg	ttt	ttt	cc	3540
ttt	ttt	gg	ttt	ttt	cc	3600
ttt	ttt	gg	ttt	ttt	cc	3660
ttt	ttt	gg	ttt	ttt	cc	3720
ttt	ttt	gg	ttt	ttt	cc	3780
ttt	ttt	gg	ttt	ttt	cc	3840
ttt	ttt	gg	ttt	ttt	cc	3900
ttt	ttt	gg	ttt	ttt	cc	3960
ttt	ttt	gg	ttt	ttt	cc	4020
ttt	ttt	gg	ttt	ttt	cc	4080
ttt	ttt	gg	ttt	ttt	cc	4140
ttt	ttt	gg	ttt	ttt	cc	4200
ttt	ttt	gg	ttt	ttt	cc	4260
ttt	ttt	gg	ttt	ttt	cc	4320
ttt	ttt	gg	ttt	ttt	cc	4380
ttt	ttt	gg	ttt	ttt	cc	4440
ttt	ttt	gg	ttt	ttt	cc	4500
ttt	ttt	gg	ttt	ttt	cc	4560
ttt	ttt	gg	ttt	ttt	cc	4620
ttt	ttt	gg	ttt	ttt	cc	4680

<210> 5

<211> 4454

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGX104

<400> 5

gagtgccatca tatgcgttgt gaaataccgc acagatcggt aaggagaaaa taccgcac	60
ggcgaaattt taaacgttaa tattttgtta aaattcgcgt taaaatattt taaaatcagc	120
tcattttta accaataggc cgaatccgc aaaatccctt ataaatcaaa agaatacgacc	180
gagatagggt tgagtgttgt tccagttgg aacaagagtc cactattaaa gaacgtggac	240
tccaacgtca aaggcgaaa aaccgtctat cagggcgatg gcccactacg tgaaccatca	300
cccaaatcaa gtttttgcg gtcgaggtgc cgtaaagctc taaatcgaa ccctaaagg	360
agcccccgat tttagagctt acggggaaag cccgcgaacg tggcgagaaa ggaagggaag	420
aaagcgaaag gagcgggcgc tagggcgctg gcaagtgtag cggtcacgct gcgcgttaacc	480
accacacccg ccgcgttaa tgcgcgccta cagggcgctg ccattcgcca ttcaggctgc	540
gcaactgtt ggaaggcgaa tcggtgccgg cctcttcgct attacgcccag ctggcgaaag	600
ggggatgtgc tgcaaggcga ttaagtggg taacgccagg gtttcccag tcacgacgtt	660
gtaaaacgac ggccagtgaa ttgttaatacg actcactata gggcgaattc aaaaaacccc	720
tcaagacccg ttttagaggcc ccaagggtt atgctagtga attctgcagg gtacccgggg	780
atcctctaga gatccctcgat cctcgagatc cattgtgctg gaccgtggta ctcttatgga	840
gctcggaatc tcgccaatcg tcacttctgg acttatcatg caacttctcg ccggagccaa	900
gatcatcgaa gtcggagaca caccaaaagga ccgtgctttt ttcaacggag cccagaaatg	960
taagccgaaa agtgtgtgtt ttcaatctct aatttttggaa ctttcagtg ttcggtatgg	1020
tcatcactgt tggacaagct attgtctacg tcatgtccgg actctacgga gagccatcg	1080
aaatcggagc tggaatctgt ctccttatacg tcgttcaact cgttattgccc ggtctcatcg	1140
tcctccttct cgacgagctt ctccaaaagg gatatggctt cggatccggaa atttctct	1200
tcattgccac caacatctgt gaaaccattt tctggaaaggc atttccccc gcaacaatga	1260
acaccggacg tggAACCGAG ttcgaaggag ccgttattgc tctttccat ttcttgcca	1320
cccgctccga caagggtccgt gcccctcggt aggctttta ccgtcaaaac ttccaaact	1380
tgatgaactt gatggctact ttccctcggtt ttgcgggttgt tatctacttc caaggattcc	1440
gtgtcgacct cccaaatcaag tctgcccgc accgtggaca atacagcagc taccatca	1500
agctcttcta cacccatcaatc attccaaatca tccttcaatc tgctctcgat tccaacctct	1560
acgttatctc tcagggtttgt tgcacatctcg tagtaccgtt agatgtttat ctttctctag	1620
aggtcaagt tggccgagaa attttttgag ttcattctca agtctgtatgg aaaatgttta	1680
tttttcagat gtcgcccggaa aagttcgag gaaacttctt catcaacctt ctcggtacct	1740
ggtccgataa caccggatac agaagctacc caactggagg actctgtac tatcttac	1800
caccagagtc tcttggacac atcttcaag acccaatcca ctgcaccagc acaatggatc	1860
tcgagggatc ttccatatactt accagttctg cgcctgcagg tcgcggccgc gactctctag	1920
acgcgttaagc ttactagcat aacccttgg ggcctctaaa cgggtcttga ggggttttt	1980
gagttctcg ccctatagtg agtctgtatc cagtttgagt attctatagt gtcaccaat	2040
tagttggcg taatcatggt catagctgtt tcctgtgtga aattgtttatc cgctcacaat	2100
tccacacaac atacgagccg gaagcataaa gtgtaaagcc tgggggtgcct aatgagttag	2160
ctaactcaca ttaattcgat tgcgtctact gcccgccttc cagtcggaa acctgtcg	2220
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggttgcgtt ttggcgctc	2280
ttccgcttcc tcgctactg agtcactca aaggcggtaa tacggttatc cacagaatca ggggataa	2340
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcg	2400
tttcgatagg ctccggccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagagg	2460
gcgaaaccccg acaggactat aaagatacc ggcgtttccc cctggaaagct ccctcg	2520
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc ttccggaa	2580
cgtggcgctt tctcatagct cagctgttagt gtatctcagt tcgggtgtagg tcgttcg	2640
caagctggc tgtgtgcacg aaccccccgt tcaagccgcac cgctgcgcct tatccggta	2700
ctatcgctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg	2760
taacaggatt agcagagcga ggtatgtagg cgggtctaca gagttcttga agtgtggcc	2820
taactacggc tacactagaa ggacagttt tggtatctgc gctctgtca agccagttac	2880
cttcggaaaa agagttggta gcttttgcgacc accaccgcgtg gtagcgggtgg	3000
ttttttgtt tgcaagcgc agattacgcg cagaaaaaaaa ggatctcaag aagatccctt	3060
gatctttct acggggctcg acgctcagt gaaacgaaaa tcacgttaag ggatttgg	3120

catgagatta	tcaaaaagga	tcttcaccta	gatcctttta	aattaaaaat	gaagttttaa	3180
atcaatctaa	agtatatatg	agtaaacttg	gtctgacagt	taccaatgct	taatcagtga	3240
ggcacctata	tcagcgatct	gtcttattcg	ttcatccata	gttgcctgac	tccccgtcgt	3300
gtagataact	acgatacggg	agggcttacc	atctggcccc	agtgtcgaa	tgataccgca	3360
agacccacgc	tcacccggctc	cagatttac	agcaataaac	cagccagccg	gaagggccga	3420
gcmcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	gttgcggga	3480
agctagagta	agtagttcgc	cagttaatag	tttgcgcaac	gttgttggca	ttgctacagg	3540
catcgtggtg	tcacgctcg	cgtttggtat	ggcttcattc	agctccgggt	cccaacgatc	3600
aaggcgagtt	acatgatccc	ccatgttgc	caaaaaagcg	gttagctcct	tcgggtcctcc	3660
gatcggtgtc	agaagtaagt	tggccgcagt	gttatcactc	atgtttatgg	cagcaactgca	3720
taattctctt	actgtcatgc	catccgtaag	atgctttct	gtgactgggt	agtactcaac	3780
caagtcattc	tgagaatacc	gcccggcg	accgagttgc	tctgcccgg	cgtcaatacg	3840
ggataatagt	gtatgacata	gcagaacttt	aaaagtgc	atcatggaa	aacgttcttc	3900
ggggcgaaaa	ctctcaagga	tcttaccgct	gtttagatcc	agttcgatgt	aaccactcg	3960
tgcacccaac	tgtatccag	catctttac	tttcaccagc	gttctgggt	gagcaaaaac	4020
aggaaggcaa	aatgcccgc	aaaagggaaat	aagggcgaca	cggaaatgtt	gaatactcat	4080
actttccctt	tttcaatatt	attgaagcat	ttatcaggg	tattgtctca	tgagcggata	4140
catatttgc	tgtatttgc	aaaataaaca	aataggggtt	ccgcccacat	ttccccgaaa	4200
agtgccacct	gacgtctaag	aaaccattat	tatcatgaca	ttaacctata	aaaataggcg	4260
tatcacgagg	cccttcgtc	tcgcgcgtt	cggtgtatgac	gttggaaaacc	tctgacacat	4320
gcagctcccg	gagacggta	cagttgtct	gtaagcggat	gccccggagca	gacaagcccg	4380
tcagggcg	tcagcgggt	ttggcgggt	tcggggctgg	cttaactatg	cggcatcaga	4440
gcagattgt	ctga					4454

<210> 6

<211> 4701

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Plasmid pGZ18

<400> 6

acccagctt	cttgcataaaa	gtggtgatct	ttccagcaca	atggatctcg	aggatcttc	60
catacctacc	agttctgcgc	ctgcaggctg	cgccgcgcac	tctctagacg	cgtaagctta	120
ctagcataac	cccttggggc	ctctaaacgg	gtcttgggg	gttttttgag	tttctcgccc	180
tatagtgagt	cgtattacag	cttgagttt	ctatagtgtc	acctaaatag	tttgcgtaa	240
tcatggtcat	agctgttcc	tgtgtgaaat	tgttatccgc	tcacaattcc	acacaacata	300
cgagccggaa	gcataaaagt	taaagcctgg	ggtgccta	gagtgagcta	actcacatta	360
attgcgttgc	gctca	cgctttccag	tcgggaaacc	tgtcg	gctgcattaa	420
tgaatcg	ggcc	gagaggcggt	ttgcgtatt	ggcgc	cttc	480
ctca	ctgcgtc	gtcg	ctgcggcgag	cggtatc	tcactcaa	540
gcgtat	at	gat	gataacgcag	gaaagaacat	gtgagcaaa	600
ggcc	ca	ccgt	ggccgcgttgc	tggcgtt	cgatagg	660
cccc	cc	caaa	cgctcaagtc	agaggtggcg	aaaccgaca	720
cc	cc	aaaa	gaaagctccc	tcgtgc	tcctgttcc	780
cc	cc	aaaa	cctgtccg	tttctcc	cggaagcgt	840
cc	cc	aaaa	tctcagttc	ttcgc	gctggctgt	900
cc	cc	aaaa	gtgttaggt	ccgt	tcgtcttgc	960
cc	cc	aaaa	gcccgc	ccgt	tcgtcttgc	1020
cc	cc	aaaa	tccatgc	ctggc	tcgtcttgc	1080
cc	cc	aaaa	ctggc	ccact	tcgtcttgc	1140
cc	cc	aaaa	tgct	tgta	tcgtcttgc	1200
cc	cc	aaaa	act	tttgc	tcgtcttgc	1260
cc	cc	aaaa	gggt	tttgc	tcgtcttgc	1320
cc	cc	aaaa	ctc	tttgc	tcgtcttgc	1380
cc	cc	aaaa	aaat	tttgc	tcgtcttgc	1440
cc	cc	aaaa	gca	tttgc	tcgtcttgc	1500

atacgggagg	gcttaccatc	tggccccagt	gctgcaatga	tacccgcgaga	cccacgctca	1560
ccggctccag	atttatcagc	aataaaccag	ccagccggaa	gggccgagcg	cagaagtgg	1620
cctgcaactt	tatccgcctc	catccagtc	attaattgtt	gcccggaaagc	tagagtaat	1680
agttcgccag	ttaatagttt	gcgcaacgtt	gttggcatgt	ctacaggcat	cgtggtgtca	1740
cgctcgctgt	tttgttatggc	ttcattcagc	tccggttccc	aacgatcaag	gcgagttaca	1800
tgatccccca	tgttgtgcaa	aaaagcggtt	agctccttcg	gtcctccgat	cgttgtcaga	1860
agtaagttgg	ccgcagtgtt	atcactcatg	gttatggcag	cactgcataa	ttctcttact	1920
gtcatgccat	ccgtaagatg	cttttctgtg	actgggtgagt	actcaaccaa	gtcattctga	1980
gaataccgcg	cccgccgacc	gagttgtct	tgcccggcgt	caatacggga	taatagtgt	2040
tgacatagca	gaacttaaa	agtgtctcatc	atggaaaac	gttcttcggg	gcgaaaaactc	2100
tcaaggatct	taccgctgtt	gagatccagt	tegtgttaac	ccactcgtgc	acccaactga	2160
tcttcagcat	cttttacttt	caccagcggt	tctgggtgag	caaaaacagg	aaggcaaaat	2220
gccgcaaaaaa	agggaataag	ggcgacacgg	aaatgttga	tactcatact	cttccctttt	2280
caatattatt	gaagcattta	tcagggttat	tgtctcatga	gcggatacat	atttgaatgt	2340
attttagaaaa	ataaaacaaat	aggggttccg	cgcacatttc	cccgaaaaagt	gccacactgac	2400
gtctaagaaa	ccattattat	catgacattt	acctataaaa	ataggcgat	cacgaggccc	2460
tttcgtctcg	cgcgttccgg	tgtgacggt	gaaaacctct	gacacatgca	gtccccggag	2520
acggtcacag	cttgtctgtt	agcgatgcc	gggagcagac	aagccgtca	gggcgcgtca	2580
gccccgtttg	gccccgttcg	gggctggctt	aactatgcgg	catcagagca	gattgtactg	2640
agagtgcacc	atatgcgtt	tgaaataccg	cacagatgcg	taaggagaaa	ataccgcac	2700
aggcgaaatt	gtaaacgtt	atattttgtt	aaaattcgcg	ttaaatattt	gttaaatcag	2760
ctcattttt	aaccaatagg	ccgaaatcgg	caaaaatccct	tataaatcaa	aagaatagac	2820
cgagataggg	ttgagtttt	ttccagttt	gaacaagagt	ccactattaa	agaacgtgga	2880
ctccaacgtc	aaaggcgaa	aaaccgtcta	tcagggcgt	ggcccactac	gtgaaccatc	2940
acccaaatca	agtttttgc	ggtcgaggtt	ccgtaaagct	ctaaatcgga	accctaaagg	3000
gagcccccg	tttagagctt	gacggggaaa	gccggcgaaac	gtggcgagaa	aggaagggaa	3060
gaaagcgaaa	ggagcgggcg	ctagggcgct	ggcaagtgt	gcggtcacgc	tgcgcgtaac	3120
caccacaccc	gccgcgctt	atgcgcgct	acagggcgcg	tccattcgcc	attcaggctg	3180
cgcaactgtt	gggaagggcg	atcggtgcgg	gcctcttcgc	tattacgcca	gctggcgaaa	3240
gggggatgtg	ctgcaaggcg	attaagttgg	gtaacgcccag	ggttttccca	gtcacgacgt	3300
tgtaaaacga	cggccagtga	attgtataac	gactcactat	aggcgaatt	caaaaaccc	3360
ctcaagaccc	gttttagaggc	cccaaggggt	tatgtctgt	aattctgcag	ggtacccggg	3420
gatcctctag	agatccctcg	acctcgagat	ccattgtgt	ggaaagcctt	tgcaggcgt	3480
gcaagccacg	tttgggttg	gcgaccatcc	tccaaaatca	acaagttgt	acaaaaaaagc	3540
aggctatgcc	aagtacatgt	cgattgcgt	cgcgttcgt	atgttggctg	tgtagtcgc	3600
taccagcagt	caaattgtt	tcgagagtgc	gtttttacat	tatcccttca	tcctgattac	3660
gacaattttc	agctgttctc	gctcctacat	ctctcttcat	tgtcacaatg	gtcgaaatct	3720
tcttcttgc	tgcatgtctt	catccaaaag	aattcacgaa	tattatccat	gtgtcgat	3780
tcttcctcat	gattccatct	acatatgtgt	tcctcacttt	atattcgctc	atcaatctca	3840
acgttatcac	gtggggact	cgtgaagctg	tcgctaaggc	aacgggacaa	aagacgaaaa	3900
aagcgcttat	ggaacaattt	atagacagag	tgattgat	tgtaaaaaag	ggattcagat	3960
taatcagtt	tcgggagaag	aaggaacatg	aagagagacg	agagaaaaatg	gaaaagaaaa	4020
tgcagagaat	ggagctagcc	ttgagaagta	ttgaggattt	ctttaacttt	agaaatgtga	4080
aattaataat	ttattttcag	agtggtgccg	acgtgaagaa	aattctcgat	gcaacagagg	4140
agaaggagaa	acgtgaagaa	gaaactcaa	ctgcagat	tccgattgaa	gagaacgtag	4200
agaagactca	aaaagagatt	cagaaggcaa	accgttatgt	gtgatgac	agtcatagct	4260
tgaaaagttt	tgaacgagga	aaactgaaaa	gtgcggaaaa	gttttctgg	aacgagctca	4320
tcaatgcata	tctgaaaccg	atcaagacga	cgcagctga	aatgaaagc	gtcgccgaag	4380
gattggcttc	tctacgaat	cagattgtt	tcactattct	tctcgtaat	tctttcttg	4440
ctcttgcct	cttttgatt	cagaaacaca	aaaatgtgt	cagcatcaag	ttctcgccaa	4500
tcaagtaagca	atattacctt	tatgttcaat	tcaaaaaatt	tgtttttttt	ttctagaaaa	4560
cttccgatgg	acgaaaatga	atgagatgac	tggacaatac	gaggaaaccg	atgaaccatt	4620
aaaaatagat	ccacttgaa	tggaaattgt	tgttttccctt	ctaattatttc	tttttgttca	4680
aactctcgga	atgcttctcc	a				4701

<210> 7

<211> 25

<212> DNA

10

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotide primer C04H5.6F

<400> 7

tgctcagaga gtttctcaac gaacc

25

<210> 8

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Oligonucleotide
primer C04H5.6R

<400> 8

caatgttagt tgctaggacc acctg

25

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Oligonucleotide
primer K11D9.2bF

<400> 9

cagccgatct ccgtcttgtg

20

<210> 10

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Oligonucleotide
primer K11D9.2bR

<400> 10

ccgagggcaa gacaacgaag

20

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Oligonucleotide
primer Y57G11C.15F

<400> 11

accgtggtagt tcttatggag ctcg

24

<210> 12

11

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Oligonucleotide
primer Y57G11C.15R

<400> 12
tgcaagtggat tgggtttcg

20

<210> 13
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Oligonucleotide
primer T25G3.2F

<400> 13
ggggacaagt ttgtacaaaa aaggcaggcta tgccaaagtac atgtcgattg cg

52

<210> 14
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Oligonucleotide
primer T25G3.2R

<400> 14
ggggaccact ttgtacaaga aagctgggtt ggagaagcat tccgagagtt tg

52

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/10 C12N9/22 C07K14/435 C12N15/66 C12N15/70
C12N1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>TIMMONS L ET AL: "Specific interference by ingested dsRNA" NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 395, no. 6705, 29 October 1998 (1998-10-29), page 854 XP002103601 ISSN: 0028-0836 the whole document</p> <p>---</p>	1-4, 12-21, 23-25, 28-31, 34-39
A	<p>FIRE A ET AL: "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans" NATURE, GB, MACMILLAN JOURNALS LTD. LONDON, vol. 391, 19 February 1998 (1998-02-19), pages 806-811, XP002095876 ISSN: 0028-0836 cited in the application the whole document</p> <p>---</p> <p>-/-</p>	1-4

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

5 July 2001

Date of mailing of the international search report

20/07/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Mateo Rosell, A.M.

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SHARP PHILLIP A: "RNAi and double-strand RNA." GENES & DEVELOPMENT, vol. 13, no. 2, 15 January 1999 (1999-01-15), pages 139-141, XP002171268 ISSN: 0890-9369 the whole document ---	1-4
A	RAY C ET AL: "GUT-SPECIFIC AND DEVELOPMENTAL EXPRESSION OF A CAENORHABDITIS ELEGANS CYSTEINE PROTEASE GENE" MOLECULAR AND BIOCHEMICAL PARASITOLOGY, NL, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, vol. 51, 1992, pages 239-249, XP000572340 ISSN: 0166-6851 abstract ---	2-4,8
A	RAND J B ET AL: "GENETIC PHARMACOLOGY: INTERACTIONS BETWEEN DRUGS AND GENE PRODUCTS IN CAENORHABDITIS ELEGANS" METHODS IN CELL BIOLOGY, LONDON, GB, vol. 84, 1995, pages 187-204, XP000956211 page 190, paragraph 1 -page 194, paragraph 4 ---	1-4,8
A	AVERY LEON ET AL: "The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions." GENETICS, vol. 134, no. 2, 1993, pages 455-464, XP001011453 ISSN: 0016-6731 the whole document ---	2-4,8
A	TAGESSON C ET AL: "INFLUENCE OF SURFACE-ACTIVE FOOD ADDITIVES ON THE INTEGRITY AND PERMEABILITY OF RAT INTESTINAL MUCOSA" FOOD AND CHEMICAL TOXICOLOGY, vol. 22, no. 11, 1984, pages 861-864, XP001009621 ISSN: 0278-6915 the whole document ---	8
		-/-

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,A	LYON CHRISTOPHER J ET AL: "The <i>C. elegans</i> apoptotic nuclease NUC-1 is related in sequence and activity to mammalian DNase II." GENE (AMSTERDAM), vol. 252, no. 1-2, 11 July 2000 (2000-07-11), pages 147-154, XP001009494 ISSN: 0378-1119 abstract; figure 3 page 151, right-hand column, paragraph 2 -page 153, right-hand column, paragraph 2 ----	6,7
P,X	WO 00 01846 A (MORTIER KATHERINE ;DEVGEN NV (BE); BOGAERT THIERRY (BE); PLAETINCK) 13 January 2000 (2000-01-13) cited in the application page 8, line 9 -page 10, line 22 page 12, line 14 -page 23, line 2 figures 5,9; examples 1-4 ----	1-4, 12-21, 23-25, 28-31, 34-39
P,X	WO 00 63425 A (FEICHTINGER RICHARD ;BEGHYN MYRIAM (BE); DEVGEN NV (BE); BOGAERT T) 26 October 2000 (2000-10-26) abstract page 2, line 14-30 page 6, line 18-33 page 7, line 12 -page 9, line 28 page 12, line 20 -page 13, line 25; example 3 ----	2-5,8,9, 29-33
T	TIMMONS LISA ET AL: "Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in <i>Caenorhabditis elegans</i> ." GENE (AMSTERDAM), vol. 263, no. 1-2, 2001, pages 103-112, XP001009512 ISSN: 0378-1119 the whole document ----	1-4, 12-21, 23-26, 28-31, 34-39

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/13149

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 0001846	A 13-01-2000	AU 4907999 A	EP 1093526 A	GB 2349885 A	24-01-2000 25-04-2001 15-11-2000
		NO 20010019 A			05-03-2001

WO 0063425	A 26-10-2000	AU 3984600 A	GB 2351152 A	02-11-2000 20-12-2000
------------	--------------	--------------	--------------	--------------------------