PROIECT BAZE DE DATE

1. Descrierea modelului real, a utilității acestuia și a regulilor de funcționare.

O companie își propune să administreze mai multe rețele sociale. Fiecare rețea socială va beneficia, în urma parteneriatului cu această companie, de un administrator, de suport tehnic oferit de programatori și de moderarea interacțiunii dintre utilizatori.

Fiecare utilizator își poate deschide conturi pe mai multe rețele sociale, unde poate scrie postări și comenta postările altor utilizatori. Sarcina unui moderator este de a se asigura că postările și comentariile respectă regulile de etichetă ale rețelei sociale. Pentru a simplifica sarcina moderatorului, se va reține locația acestuia și, când este posibil, a utilizatorilor, astfel încât moderatorul să poată interacționa cu utilizatori din aceeași zonă geografică.

De asemenea, utilizatorii pot oferi feedback unei rețele sociale, pentru a ajuta la îmbunătățirea serviciilor oferite.

2. Prezentarea constrângerilor (restricții, reguli) impuse asupra modelului.

Informațiile de contact ale persoanelor trebuie să fie unice.

Un programator poate avea următoarele tipuri de job: frontend, backend.

Un utilizator poate fi asociat cu mai mulți utilizatori.

Pentru postări si comentarii, se va reține data la care au fost scrise.

3. Descrierea entităților, incluzând precizarea cheii primare.

ENTITATE	CHEIE PRIMARĂ	OBSERVAŢII	
Administrator	ID_Admin	Persoana ce ia deciziile principale cu privire la administrarea și	
		dezvoltarea unei rețele sociale	
Rețea	ID_Network	Date despre fiecare rețea socială aflată în colaborare cu firma	
Feedback	ID_Feedback	Părerea oferită opțional de fiecare utilizator	
Utilizator	ID_User	Date despre utilizatorii rețelor sociale	
Programator	ID_Programmer	Specialist care asigură suport tehnic	
Postare	ID_Post	Date despre postările utilizatorilor	
Comentariu	ID_Comment	Date despre comentariile utilizatorilor	
Locație	ID_Location	Informații ce determină o zonă geografică	
Moderator	ID_Modea	Persoană ce asigură un mediu ideal pentru comunicarea	
		decentă dintre utilizatorii	

4. Descrierea relațiilor, incluzând precizarea cardinalității acestora.

RELAȚIE	CARDINALITATE	OBSERVAŢII
Administrator – Rețea	one-to-many	Un admin poate manageria mai multe rețele.
		O rețea este manageriată de un administrator.
Rețea – Utilizator	many-to-many	O rețea are mai mulți utilizatori.
		Un utilizator este prezent pe mai multe rețele.
Rețea – Feedback	one-to-many	O rețea poate primi mai multe feedback-uri.
		Un feedback aparține unei rețele.
Feedback – Utilizator	one-to-many	Un utilizator poate scrie mai multe feedback-uri.
		Un feedback este scris de un utilizator.
Utilizator – Utilizator	one-to-many	Un utilizator poate fi asociat cu mai mulți utilizatori.
		Un utilizator este asociat cu un utilizator.
Rețea – Programator	many-to-many	O rețea are mai mulți programatori.
		Un programator poate lucra la mai multe rețele.
Utilizator – Postare	one-to-many	Un utilizator scrie mai multe postări.
		O postare este scrisă de un utilizator.
Utilizator – Comentariu	one-to-many	Un utilizator poate scrie un comentariu.
		Un comentariu este scris de un utilizator.
Utilizator – Locație	one-to-many	O locație poate avea mai mulți utilizatori.
		Un utilizator poate avea asociată o locație.
Locație – Moderator	one-to-many	O locație poate avea mai mulți moderatori.
		Un moderator are asociată o locație.
Moderator – Postare	many-to-many	Un moderator poate analiza mai multe postări.
		O postare poate fi analizată de mai mulți mods.
Moderator – Comentariu	many-to-many	Un moderator poate analiza mai multe comentarii.
		Un comentariu poate fi analizat de mai mulți mods.

5. Descrierea atributelor, incluzând tipul de date și eventualele constrângeri, valori implicite, valori posibile ale atributelor.

ENTITATE: ADMINISTRATOR

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Admin	Int	Auto_increment	True	-
Nume	Varchar	-	True	-
Prenume	Varchar	-	True	-
Contact	Varchar	-	True	Valoare unică

ENTITATE: REȚEA

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Network	Int	Auto_increment	True	-
ID_Admin	Int	-	True	Cheie străină către administrator
Denumire	Varchar	-	True	-
Contact	Varchar	-	True	Valoare unică

ENTITATE: FEEDBACK

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Feedback	Int	Auto_increment	True	-
ID_Network	Int	-	True	Cheie străină către rețea
ID_User	Int	-	True	Cheie străină către utilizator
Text	Varchar	-	True	Conținutul feedback-ului

ENTITATE: UTILIZATOR

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_User	Int	Auto_increment	True	-
ID_Friend	Int	-	False	Relație recursivă
ID_Location	Int	-	False	Cheie străină către locație
Nume	Varchar	-	True	-
Prenume	Varchar	-	True	-

ENTITATE: CONT

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Account	Int	Auto_increment	True	-
ID_Network	Int	-	True	Cheie străină către rețea
ID_User	Int	-	False	Cheie străină către utilizator
Username	Varchar	-	True	Nume ales de utilizator pentru cont
Email	Varchar	-	True	Valoare unică

ENTITATE: PROGRAMATOR

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Programmer	Int	Auto_increment	True	-
Nume	Varchar	-	True	-
Prenume	Varchar	-	True	-
Titlu_job	Varchar	frontend	True	Valori: frontend, backend

ENTITATE: ACTUALIZARE

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Update	Int	Auto_increment	True	-
ID_Network	Int	1	True	Cheie străină către rețea
ID_Programmer	Int	ı	True	Cheie străină către programator
Details	Varchar	-	True	Ce aduce nou actualizarea

ENTITATE: COMENTARIU

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Comment	Int	Auto_increment	True	ı
ID_Account	Int	•	True	Cheie străină către cont
Text	Varchar	-	True	Conținutul text
Data	Date	sysdate	True	Data la care a fost scris

ENTITATE: POSTARE

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Post	Int	Auto_increment	True	-
ID_Account	Int	-	True	Cheie străină către cont
Titlu	Varchar	-	False	Titlul postării
Text	Varchar	-	True	Conținutul text
Data	Date	sysdate	True	Data la care a fost scrisă

ENTITATE: LOCAȚIE

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Locație	Int	Auto_increment	True	-
Stat	Varchar	-	True	-
Oraș	Varchar	-	False	-

ENTITATE: INTERVENȚIE

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Intervention	Int	Auto_increment	True	-
ID_Moderator	Int	-	True	Cheie străină către moderator
ID_Post	Int	-	False	Cheie străină către postare
ID_Comment	Int	-	False	Cheie străină către comentariu
Detalii	Varchar	-	True	Informații despre intervenție
Rezultat	Varchar	-	False	Consecințele intervenției

ENTITATE: MODERATOR

ATRIBUT	TIP	DEFAULT	NOT NULL	OBSERVAŢII
ID_Moderator	Int	Auto_increment	True	-
ID_Location	Int	-	True	Cheie străină către locație
Nume	Varchar	-	True	-
Prenume	Varchar	-	True	-

6. Realizarea diagramei entitate-relație corespunzătoare descrierii de la punctele 3-5.

7. Realizarea diagramei conceptuale corespunzătoare diagramei entitate-relație

8. Enumerarea schemelor relaționale corespunzătoare diagramei conceptuale de la punctul 7.

ADMINISTRATOR (#ID_Admin, Nume, Prenume, Contact)

REȚEA (#ID Network, ID Admin, Denumire, Contact)

FEEDBACK (#ID_Feedback, ID_Network, ID_User, Text)

UTILIZATOR (#ID_User, ID_Friend, ID_Location, Nume, Prenume)

CONT (#ID_Account, ID_Network, ID_User, Username, Email)

PROGRAMATOR (#ID Programmer, Nume, Prenume, Titlu job)

ACTUALIZARE (#ID_Update, ID_Network, ID_Programmer, Details)

POSTARE (#ID Post, ID Account, Titlu, Text, Data)

COMENTARIU (#ID Comentariu, ID Account, Text, Data)

LOCAȚIE (#ID_Location, Stat, Oraș)

INTERVENȚIE (#ID Intervention, ID Moderator, ID Post, ID Comentariu, Detalii, Rezultat)

MODERATOR (#ID_Moderator, ID_Location, Nume, Prenume)

9. Realizarea normalizării până la forma normală 3 (FN1-FN3).

Presupunem că în tabelul UTILIZATOR există un atribut care reține toți prietenii unui utilizator. Acesta nu se află în FN1, deoarece valoarea atributului anterior menționat nu este indivizibilă. Pentru a evita o astfel de valoare, alegem să adăugam o relație recursivă la tabelul UTILIZATOR.

Presupunem că tabelul POSTARE este de forma POSTARE (ID_Postare#, ID_Comentariu#, ID_Account, Titlu, Text_Postare, Text_Comentariu, Data_postare, Data_comentariu). Acesta nu se află in FN2, deoarece Text_comentariu și Data_comentariu depind doar de ID_Comentariu. O solutie este împărțirea în 2 tabele POSTARE si COMENTARIU.

Presupunem că tabelul UTILIZATOR este de forma UTILIZATOR (#ID_User, ID_Friend, ID_Location, Nume, Prenume, State, City). Acesta nu se află in FN3, deoarece atributele State si City, care nu sunt chei, depind de ID_Location, care nu este cheie primară. O soluție este crearea unui nou tabel LOCAȚIE (#ID_Location, State, City).

10. Crearea tabelelor în SQL și inserarea de date coerente în fiecare dintre acestea (minimum 5 înregistrări în fiecare tabel neasociativ; minimum 10 înregistrări în tabelele asociative).

11. Formulați în limbaj natural și implementați 5 cereri SQL complexe.

12. Implementarea a 3 operații de actualizare sau suprimare a datelor utilizând subcereri.

```
③ Nastase_Antonio-exemple.sql × ③ Nastase_Antonio-creare_inserare.sql × ⑥ lab7_8_144_Nastase_Antonio.sql
SOL Worksheet History
55 update administrator ana
      set (last_name, first_name) = (select last_name, first_name from programmer_ana where id_programmer = 6)
where lower(last_name) = 'popescu';
 61 set (i.details) = (select 'Utilizatorul' | | u.last name | | ' a produs o neregula' from user ana u join account ana a on a.id user = u.id user
                                                                                                                     join comment_ana c on a.id_account = c.id_account
join intervention_ana i2 on i2.id_comment = c.id_post
                                                                                                                      where i2.id_intervention = i.id_intervention)
  65 where i.id_intervention = 17;
 68 update intervention_ana i
      set (i.results) = (select '5e recomanda stergerea elementului ' || p.id post from post ana p where i.id post = p.id post)
      where i.results is null;
 73 delete from administrator_ana
74 where last_name in (select la
     where last_name in (select last_name from programmer_ana);
 75 rollback:
 78 delete from post_ana
79 where id_account in (select id_account from account_ana where id_user = 2);
      rollback;
 83 delete from post_ana
     where id_post in (select id_post from intervention_ana);
rollback;
```

13. Crearea unei secvente ce va fi utilizată în inserarea înregistrărilor în tabele (punctul 10).

```
■ Nastase_Antonio-exemple.sql ×
SQL Worksheet History
Worksheet
        Query Builder
114
115
    create sequence feedback ana seq start with 1 increment by 1 nocache nocycle;
116
117
    insert into feedback_ana
118 values (feedback_ana_seq.nextval, 'O retea sociala perfecta', 6, 5);
119
120
    insert into feedback ana
    'values (feedback_ana_seq.nextval, 'Needs more updates', 4, 2);
121
122
123
    insert into feedback ana
124
    values (feedback_ana_seq.nextval, 'Up for the challenge', 7, 2);
125
126
    insert into feedback ana
    values (feedback_ana_seq.nextval, 'Great stuff!', 7, 3);
127
128
129
    insert into feedback ana
130
    values (feedback ana seq.nextval, 'Extrem de multumit', 6, 6);
```

14. Crearea unei vizualizări compuse. Dați un exemplu de operație LMD permisă pe vizualizarea respectivă și un exemplu de operație LMD nepermisă.

15. Crearea unui index care să optimizeze o cerere de tip căutare cu 2 criterii. Specificați cererea.

16. Formulați în limbaj natural și implementați în SQL: o cerere ce utilizează operația outerjoin pe minimum 4 tabele și două cereri ce utilizează operația division.

- 17. Optimizarea unei cereri, aplicând regulile de optimizare ce derivă din proprietățile operatorilor algebrei relaționale. Cererea va fi exprimată prin expresie algebrică, arbore algebric și limbaj (SQL), atât anterior cât și ulterior optimizării.
- --Sa se afiseze date despre toate retelele care au primit un update pe partea de frontend, detaliile actualizarii si numele programatorului.

Cod SQL:

```
select n.network_name, n.contact, u.details, p.last_name from network_ana n join update_ana u using (id_network) join programmer_ana p using (id_programmer)
```

where lower(p.job_title) = 'frontend';

Cererea optima exprimata prin expresii algebrice:

R1 = SELECT(PROGRAMMER_ANA, lower(job_title) = 'frontend')

R2 = PROJECT(R1, id_programmer, last_name)

R3 = PROJECT(UPDATE_ANA, id_update, id_programmer, id_network, details)

R4 = PROJECT(NETWORK_ANA, id_network, network_name, contact)

R5 = JOIN(R2, R3, id_programmer)

R6 = JOIN(R4, R5, id_network)

R7 = PROJECT(R6, network_name, contact, details, last_name)

<u>Justificare:</u>

Cererea este optima, fiindca operatiile de select se executa cat mai rapid si operatiile de project se executa printre primele, asigurandu-ne in acest fel ca inlaturam atributele care nu ne sunt utile. De asemenea, inainte de operatiile de join folosim proiectia, pentru a nu se aplica operatia de join pe toate coloanele din table.

Arborele algebric pentru cererea optimizata:

18. a. Realizarea normalizării BCNF, FN4, FN5.

Presupunem că în tabelul ADMINISTRATOR, atributul contact determină funcțional cheia primară id_admin. Acesta nu se mai află in BNFC, deoarece atributul contact este unic si determină cheia primară. Pentru a rezolva problema, vom impune ca id_admin să fie ales aleator.

Presupunem că în tabelul UPDATE, cheia primară id_update este determinată de id_programator și id_network, anume fiecare programator ar putea face un singur update într-o rețea. Acest fapt încalcă restricțiile din FN5, deoarece se creează dependențe multiple (id_update – id_programator și id_update – id_network). Vom alege id_update aleator.

Presupunem că între tabelele ADMINISTRATOR și PROGRAMATOR ar exista o relație de coordonare (one-to-many obligatorie). Acest fapt ar rezulta intr-o dependență ciclică (administrator - programator – update – rețea -administrator), ceea ce ar încălca regulile specifice FN5. Eliminăm această relație, deoarece o putem obține folosind operația de join.

b. Aplicarea denormalizării, justificând necesitatea acesteia.

Adaug o relație one-to-many între INTERVENȚIE și UTILIZATOR. Aceasta creează o dependență ciclică și anulează apartenența la FN5. Denormalizarea este utilă în acest caz, deoarece erau necesare 3 operații de join pentru a afla care este utilizatorul afectat de o anumită intervenție.