Structural Equation Models

Structural Equations: Intuition

- In depth coverage of structural equation modeling is beyond the scope of this class, but we discuss a few issues here
- When some variable are highly correlated but business rationale suggests that they belong in a model, the relationship among variables in the model is probably "structural"
- This simply means rather than having a single predictor model, we have a group of inter-related models in which the outcome variable in some models are predictors of other models, e.g.:

(1)
$$C = \beta_{0C} + \beta_A A + \beta_B B + \varepsilon$$

(2) $Y = \beta_{0Y} + \beta_C C + \beta_D D + \beta_E E + \varepsilon$

- A, B \rightarrow "direct" effect on C (β_A , β_B)
- C, D, E \rightarrow "direct" effect on $Y(\beta_C, \beta_D, \beta_E)$
- A, B \rightarrow "indirect" effect on $Y(\beta_A * \beta_C, \beta_B * \beta_C)$

Structural Equations Models (SEM)

- SEM is a complex topic; It is discussed here as an FYI
- In some cases, you can use OLS to model SEM, only if:
 - ➤ The model is "non-recursive" i.e., all arrows in the model go in 1 direction → posterior variables are not predictors of anterior variables
 - ➤ The model is estimated "hierarchically" i.e., all predictors in the prior models are included in posterior models, to test all possible paths. The example above would be modeled:

(1)
$$C = \beta_{0C} + \beta_A A + \beta_B B + \varepsilon$$
 (same)
(2) $Y = \beta_{0Y} + \beta_A A + \beta_B B + \beta_C C + \beta_D D + \beta_E E + \varepsilon$
If β_A , β_B are significant in (2), the structural model is wrong
If β_A , β_B are significant in (1) but not in (2) the model is right

 There are various SEM methods (e.g., Lisrel, PLS) which estimate the multiple model equations jointly

KOGOD SCHOOL of BUSINESS

