Hypothesis Testing

INST 808: Jordan Boyd-Graber

University of Maryland

Fall 2020

Observ	⁄ed		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84

Expect	ed		
	Favor	Indifferent	Oppose
Dem			
Rep			

Observ	ed		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84

Expect	ed		
	Favor	Indifferent	Oppose
Dem	115.14		
Rep			

Obser	ved		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84

Expect	ed		
	Favor	Indifferent	Oppose
Dem	115.14	85.50	
Rep			

0	bserv	red		
		Favor	Indifferent	Oppose
	Dem	138	83	64
	Rep	64	67	84

Expect	ed		
	Favor	Indifferent	Oppose
Dem	115.14	85.50	84.36
Rep			

Observ	⁄ed		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84

	Expect	ea			
		Favor	Indifferent	Oppose	
Ī	Dem	115.14	85.50	84.36	
	Rep	86.86			

Type a steed

Observ	red		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84

Expect	eu		
	Favor	Indifferent	Oppose
Dem	115.14	85.50	84.36
Rep	86.86	64.50	

Evpected

Observed						
	Favor	Indifferent	Oppose			
Dem	138	83	64			
Rep	64	67	84			

LAPCOICG					
Favor	Indifferent	Oppose			
115.14	85.50	84.36			
86.86	64.50	63.64			
	Favor 115.14	Favor Indifferent 115.14 85.50			

Observed						
	Favor	Indifferent	Oppose			
Dem	138	83	64			
Rep	64	67	84			

Expected						
	Favor	Indifferent	Oppose			
Dem	115.14	85.50	84.36			
Rep	86.86	64.50	63.64			

$$4.539 + 0.073 + 4.914 + 6.016 + 0.097 + 6.514 = 22.152$$
 (1)

Running test: df, p-Value

• Degrees of Freedom?

Running test: df, p-Value

- Degrees of Freedom? $(r-1)(c-1) = 1 \cdot 2 = 2$
- p-value

Running test: df, *p*-Value

- Degrees of Freedom? $(r-1)(c-1) = 1 \cdot 2 = 2$
- p-value

```
>>> from scipy.stats.distributions import chi2
>>> 1 - chi2.cdf(22.15, 2)
1.5494894118783797e-05
>>> from scipy.stats import chisquare
>>> chisquare([138, 83, 64, 64, 67, 84],
... [115.14, 85.5, 84.36, 86.86, 64.5, 63.64],
... 3)
Power_divergenceResult(statistic=22.152468645918482,
```

pvalue=1.5475780213

US vs. Japanese Mileage

Read in Data

```
>>> import pandas as pd
>>> mpg = pd.read_csv("jp-us-mpg.dat", delim_whitespace=Tr
>>> mpg.head()
    US    Japan
0    18    24.0
1    15    27.0
2    18    27.0
3    16    25.0
4    17    31.0
```

Is the average car in the US as efficient as the average car in Japan?

Two-Tailed Two-Sample *t*-test

• Compute means

Two-Tailed Two-Sample *t*-test

Compute means

```
>>> from numpy import mean
>>> mean(mpg["Japan"].dropna())
30.481012658227847
>>> mean(mpg["US"].dropna())
20.14457831325301
```

• Compute sample variances

Two-Tailed Two-Sample *t*-test

Compute means

```
>>> from numpy import mean
>>> mean(mpg["Japan"].dropna())
30.481012658227847
>>> mean(mpg["US"].dropna())
20.14457831325301
```

Compute sample variances

```
>>> from numpy import var
>>> us = mpg["US"].dropna()
>>> jp = mpg["Japan"].dropna()
>>> jp_var = var(jp) * len(jp) / float(len(jp) - 1)
>>> us_var = var(us) * len(us) / float(len(us) - 1)
```

Degrees of Freedom

$$v = \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{\left(\frac{s_1^2}{N_1}\right)^2}{N_1 - 1} + \frac{\left(\frac{s_2^2}{N_2}\right)^2}{N_2 - 1}} \tag{2}$$

Degrees of Freedom

$$v = \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{\left(\frac{s_1^2}{N_1}\right)^2}{N_1 - 1} + \frac{\left(\frac{s_2^2}{N_2}\right)^2}{N_2 - 1}} \tag{2}$$

v = 136.8750

t-Statistic

$$T = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$
 (3)

t-Statistic

$$T = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$
 (3)

T = 12.94

p-value

p-value

```
>>> 2*(1.0 - t.cdf(abs(12.946), 136.8750)) 0.0
```