COMPUTER ENGINEERING DEPARTMENT

BDA Assignment 2

COURSE: **B.E.** YEAR: **2020-2021** SEMESTER: **VII**

DEPT: Computer Engineering

SUBJECT CODE: CSDLO7032 DATE OF ASSIGNMENT: 08-10-2021

NAME: AMEY MAHENDRA THAKUR ROLL NO.: 50

CLASS: COMPS BE B DATE OF SUBMISSION: 08-10-2021

Sr. No.	Questions					
1	What is a Data Stream Management System? Explain with Block Diagram.					
2	Why is finding similar items important in Big Data? Illustrate using two example applications.					
3	Explain the Girvan-Newman algorithm to mine Social Graphs.					

Signature of Student

AMEY THAKUR	B - 50	Amey					
Q1. What is Data s	Stream Manag	ement systems					
Explain with Blo							
,							
Anu! - A Deme is a co	morter softw	are system	to manage				
continuous data st	TA	of relies si	DBMs, which				
is however design	and for st	atic data in	conventiona)				
	ned tol 22	5010					
- A DSMS also of	the flexible	QUEXY STO CES	ssing so that				
the information n	anded con	be expressed	using queries.				
It executes a conti	711274 QUEST	that is per	manently installed				
- Since most Dams	and data	- griven a	2404011000				
- Since most Dsing	s secules	so long as	new data				
duend beognier sen		(512)					
atrive at the system							
Streaming entering							
1507 100 5		Standing	> Output				
1,5,2,7,4,0,3,5		querica	> streams				
9, w.e, r, 2, y w.i, 0							
0,1,1,0,1,0,0,0 -	Strea						
	Proces						
time	1						
	Limited	Archival					
	Motking						
		storage					
	Storage						

	Any number of streams can enter the system
-	Each stream can provide elements at its own schedule:
	they need not have the same data rates or data types
**	and the time between elements of one stream need not
	be uniform.
_	The fact that the rate of arrival of stream elements
	is not under the combrol of the system distinguisher -
	stream processing from the processing of the data -
	that goes on within a database management system,
-	The latter system controls the rate at which data is
	read from the disk and therefore never has to
	worry about data getting lost as it attempts to
	execute queries.
	Streams may be archieved in a large archival store,
	but we assume it is not possible to answer
	queries from the archival store.
-	It could be examined only under special circumstance -
	Using time- consuming retrieval processes
_	There is also a working store into which summaries -
	or barte of streams may be blaced and which can pe
	used for answering queries
-	The working store might be disk . or it might be
	the main memory, depending on how fast we need to
11	
_	But either way, it is of sufficiently limited capacity
	11
	that is cannot store all the data from all the streams.

								0'.	Data ?	
<u> </u>	Why	is	finding	similar.	Items	imbarga	ant in	_Big		
	Illus	strate	using	two	example	applica	itions.			
FUR										
0	Plagio	arium	<u>.</u>							,
-	Findin	79	plagiaris	ed doc	uments	tests	our a	PILI FA	to fin	<u>c)</u>
	textu	a) s	ytiaplimi							
-	The	place	jiarizer	may	extract	0217	80me	barts	of a	1
	gocum	rent	for hi	1000 S						
-	He +	may	alter	a fei	. ه دوس در	s and	may	alter	The c	order
	127	which	sentene	er of	the or	<u>iginal</u>	appear.			
_	Yet	the	resylling	docum	ent mo	y still	conto	in 5	0 %	02
			the c							
_	No	simple	proce	rs of	Compa	ring d	ocument	s cho	iracter	ЬУ
	Charge	ter	will de	teer m	Sophisi	icated	plagian	ism.		
					1					
2	Artic	ilex	from	the san	aroz sa	res:				
_	T+ i	· c	00000	for	one 701	sorter	how of	te on	a no	وسع
	artic)	40	that a	eta di	stoibuted	Say	thro	ugh t	he ass	ociated
	Drece	to	2000	new	cpapers,	which	then	publish	the	article
			website		1			1		
_					the	article	somer	phat.		
	Each	ne	v chaber	change	es the	The a	e 0,40.	2 23	d -ma'	terial
				014	baradea	5.14) 64	31 1100	
			own.			1 11 0	N 1 - 2 -	- 11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a
	They	nost	likely	((((((((((((((((((((syrrou	id the	article	, 65171	n These	000
	1000	ag	2 009	links	to ot	her a	Heles	at the	SIT 211	<u>e.</u>
	Ho wo en	er,	the co	26 03	each	ne most	saper's	page	سااا	be
		7	artic							
_	News	9	gregator	s try	to fir	10 011	versio	0 20	f such	o an
	erHde.	in	order	to she	الده صرا	one	and	that	tas	12
					+000	•				
			not ide			'	7			J

AMEY THAKOR B-50 Amey The second step of GN algo is to label each node by the number of shortest paths that reach it from the root. Start by labeling the root 1, then, from the top down label each node y by the sum of the labels of its The labeling of nodes is shown in above figure. The final step is to calculate for each edge e the sum over nodes 4 of the fraction of shown paths from the root x to Y then go through e. Each node other than the root & given a credit 1. This credit may be divided among nodes and edges apone The rules for calculation are as follows: - Each node in DAG gets a coedit. - Each non-leaf node gets a credit equal to 1 plus the sum of the credits of the DAG edges from that node to the level A DAG edge e entering node & from the level above is given a share of the credit of 2 proportionals to the fraction of shortest paths from the root to Z that go through e. - After performing the credit calculate with each node as the root, we sum the credits for each edge. edge. - As each shortest path will have been discovered twice we must divide the result (credit for each edge by 2