第1章a:函数

数学系 梁卓滨

2019-2020 学年 I

Outline

自然数 №: 1, 2, 3, 4, 5, …

整数 ℤ: ···- 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ···

有理数 \mathbb{Q} ,整数之比值 $\frac{p}{q}$: $-\frac{5}{3}$, $\frac{1}{2}$, $\frac{7}{4}$, …

自然数 №: 1, 2, 3, 4, 5, …

整数 ℤ: ···- 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ···

有理数 \mathbb{Q} ,整数之比值 $\frac{p}{q}$: $-\frac{5}{3}$, $\frac{1}{2}$, $\frac{7}{4}$, …

● 有理数不足以处理几何,如:

自然数 №: 1, 2, 3, 4, 5, …

整数 ℤ: ···- 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ···

有理数 \mathbb{Q} ,整数之比值 $\frac{p}{q}$: $-\frac{5}{3}$, $\frac{1}{2}$, $\frac{7}{4}$, …

● 有理数不足以处理几何,如:

中的 $\sqrt{2}$ 和 π 都不是有理数

自然数 №: 1, 2, 3, 4, 5, …

整数 ℤ: ···- 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ···

有理数 \mathbb{Q} ,整数之比值 $\frac{p}{a}$: $-\frac{5}{3}$, $\frac{1}{2}$, $\frac{7}{4}$, …

● 有理数不足以处理几何,如:

中的 $\sqrt{2}$ 和 π 都不是有理数 (而是所谓 $\frac{\mathbf{LTW}}{\mathbf{LTW}}$,小数位无限不循环)

自然数 №: 1, 2, 3, 4, 5, …

整数 ℤ: ・・・ー 5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, ・・・

有理数 \mathbb{Q} ,整数之比值 $\frac{p}{q}$: $-\frac{5}{3}$, $\frac{1}{2}$, $\frac{7}{4}$, …

● 有理数不足以处理几何,如:

中的 $\sqrt{2}$ 和 π 都不是有理数 (而是所谓 $\overline{\mathbf{Lub}}$,小数位无限不循环)

● 需要从"离散"的有理数,拓展到"连续"的实数

实数 ℝ (real number):(简单地视为)全体有理数和无理数

自然数 №: 1, 2, 3, 4, 5, …

整数 ℤ: ···- 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ···

有理数 \mathbb{Q} ,整数之比值 $\frac{p}{q}$: $-\frac{5}{3}$, $\frac{1}{2}$, $\frac{7}{4}$, …

● 有理数不足以处理几何,如:

中的 $\sqrt{2}$ 和 π 都不是有理数 (而是所谓 π 无理数 ,小数位无限不循环)

- 需要从"离散"的有理数,拓展到"连续"的实数
- 微积分 与几何紧密关联(切线 → 微分;面积 → 积分),也需要实数
- 实数的严格定义在 19 世纪才建立(作为对比,微积分起于 17 世纪)

实数 ℝ (real number):(简单地视为)全体有理数和无理数

数轴

历史注记 Richard Dedekind (1831-1916,中译名: 戴德金) 被认为是第一个给出实数严格定义的人。该定义现在称为"戴德金分割法"。这是他在 1858 年 11 月 24 日想到。当时他正在第一次教微积分。

- (a, b)
- [a, b]
- [a, b)
- (a, b]

→ X

X

- $(a, b) = \{x \in \mathbb{R} | a < x < b\}$:
 [a, b]:
- [a,b] [a,b] [a,b]
 - (a, b]

•
$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$:

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\} :$$

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\} :$$

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\} :$$

•
$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$:

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\} :$$

$$[a,b] = \{x \in \mathbb{R} | a \le x < b\} :$$

•
$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$:

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\} :$$

$$[a,b] = \{x \in \mathbb{R} | a \le x < b\} :$$

•
$$(a, b] = \{x \in \mathbb{R} | a < x \le b\}$$
:

•
$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$:

•
$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$
.
• $[a,b) = \{x \in \mathbb{R} | a \le x < b\}$:

•
$$[a,b] = \{x \in \mathbb{R} | a \le x < b\}$$
:
• $(a,b] = \{x \in \mathbb{R} | a < x \le b\}$:

$$\bullet (a, +\infty)$$

$$\bullet$$
 $[a, +\infty)$

$$\bullet$$
 $(-\infty,b)$

$$(-\infty, b)$$

$$(-\infty, b]$$

$$(-\infty, +\infty)$$

$$\bullet$$
 $(-\infty, +\infty)$

$$\xrightarrow{} x$$

•
$$(a, b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$:

$$\bullet [a,b) = \{x \in \mathbb{R} | a \le x < b\}:$$

$$\bullet (a,b] = \{x \in \mathbb{R} | a < x \le b\} :$$

$$\bullet (a, +\infty) = \{x \in \mathbb{R} | a < x\}:$$

•
$$[a, +\infty)$$

•
$$(-\infty, b)$$

$$(-\infty + \infty)$$

$$\bullet$$
 $(-\infty, +\infty)$

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}:$$

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}:$$

$$\bullet [a,b] = \{x \in \mathbb{R} | a \le x \le b\}:$$

•
$$[a, b) = \{x \in \mathbb{R} | a \le x < b\}$$
:

•
$$(a, b] = \{x \in \mathbb{R} | a < x \le b\}$$
:

$$(a, +\infty) = \{x \in \mathbb{R} | a < x\} :$$

$$\bullet$$
 $(-\infty,b)$

•
$$(-\infty, b]$$

$$\bullet$$
 $(-\infty, +\infty)$

•
$$(a, b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$:

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}.$$

$$[a,b] = \{x \in \mathbb{R} | a \le x < b\}:$$

•
$$(a, b] = \{x \in \mathbb{R} | a < x \le b\}$$
:

$$(a,b) = \{x \in \mathbb{R} | a < x \le b\}.$$

$$(a,+\infty) = \{x \in \mathbb{R} | a < x\}.$$

$$\bullet [a, +\infty) = \{x \in \mathbb{R} | a \le x\}:$$

$$\bullet (-\infty, b) = \{x \in \mathbb{R} | x < b\}:$$

$$\bullet$$
 $(-\infty, b]$

$$\bullet$$
 $(-\infty, +\infty)$

•
$$(a, b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$:

•
$$(a, b] = \{x \in \mathbb{R} | a < x \le b\}$$
:

$$(a, +\infty) = \{x \in \mathbb{R} | a < x\}:$$

$$(-\infty h) - \{x \in \mathbb{P}|x < h\}$$

$$\bullet (-\infty, b) = \{x \in \mathbb{R} | x < b\}:$$

$$\bullet (-\infty, b] = \{x \in \mathbb{R} | x \le b\} :$$

$$\bullet$$
 $(-\infty, +\infty)$

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}:$$

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}:$$

$$\bullet [a,b] = \{x \in \mathbb{R} | a \le x \le b\}:$$

$$\bullet (a,b] = \{x \in \mathbb{R} | a < x \le b\} :$$

$$\bullet (a, +\infty) = \{x \in \mathbb{R} | a < x\}:$$

$$\bullet [a, +\infty) = \{x \in \mathbb{R} | a \le x\}:$$

$$\bullet (-\infty, b) = \{x \in \mathbb{R} | x < b\}:$$

$$(-\infty, b] = \{x \in \mathbb{R} | x \le b\} :$$

•
$$(-\infty, +\infty) = \mathbb{R}$$
:

•
$$(a, b) = \{x \in \mathbb{R} | a < x < b\}$$
:
• $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$:

有限

$$\bullet (a, +\infty) = \{x \in \mathbb{R} | a < x\} : \qquad \frac{a}{a}$$

$$\bullet [a, +\infty) = \{x \in \mathbb{R} | a \le x\}:$$

无限

$$\bullet (-\infty, b) = \{x \in \mathbb{R} | x < b\}:$$

$$(-\infty, b) = \{x \in \mathbb{R} | x \leq b\} :$$

$$(-\infty, +\infty) = \mathbb{R}$$

•
$$(-\infty, +\infty) = \mathbb{R}$$
:

$$(-\infty, +\infty) = \mathbb{R}$$
:

用区间 **(**
$$a,b$$
) = { $x \in \mathbb{R} | a < x < b$ }:

| 対区间 **(** a,b **)** = { $x \in \mathbb{R} | a \le x \le b$ }:

| **(** a,b **)** = { $x \in \mathbb{R} | a \le x \le b$ }:

| **(** a,b **)** = { $x \in \mathbb{R} | a \le x \le b$ }:

| **(** a,b **)** = { $x \in \mathbb{R} | a < x \le b$ }:
| **(** a,b **)** = { $x \in \mathbb{R} | a < x \le b$ }:
| **(** a,b **)** = { $x \in \mathbb{R} | a < x \le b$ }:

 $\bullet [a, +\infty) = \{x \in \mathbb{R} | a \le x\}:$

无限·

有限

•
$$(-\infty, b) = \{x \in \mathbb{R} | x < b\}$$
:
• $(-\infty, b] = \{x \in \mathbb{R} | x \le b\}$:
• $(-\infty, +\infty) = \mathbb{R}$:

動 暨南大学

有限
$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$
:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \le x \le b\}$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 $\exists a \in \mathbb{R} | a \ge x \le b$:

 \exists

例 区间表示 $\{x \in \mathbb{R} | x \geq \pi\}$ 和 $\{x \in \mathbb{R} | x < -1\}$

用区间 **(**
$$a$$
, b **)** = { $x \in \mathbb{R} | a < x < b$ }:

| 河区间 **(** a , b **)** = { $x \in \mathbb{R} | a \le x \le b$ }:
| 回 **(** a , b **)** = { $x \in \mathbb{R} | a \le x \le b$ }:
| 回 **(** a , b **)** = { $x \in \mathbb{R} | a \le x \le b$ }:
| 回 **(** a , b **)** = { $x \in \mathbb{R} | a \le x \le b$ }:
| 用区间 **(** a , a) = { a | a |

例 区间表示 $\{x \in \mathbb{R} | x \ge \pi\}$ 和 $\{x \in \mathbb{R} | x < -1\}$

 $\mathbf{H}[\pi, +\infty),$

例 区间表示
$$\{x \in \mathbb{R} | x \ge \pi\}$$
 和 $\{x \in \mathbb{R} | x < -1\}$

$$\mathbf{H}$$
 $[\pi, +\infty), (-\infty, -1)$

有限

定义 设 $x_0 \in \mathbb{R}$, $\delta > 0$.

x₀ 的 δ-邻域

定义 设 $x_0 \in \mathbb{R}$, $\delta > 0$.

• x_0 的 δ-邻域 为开区间

$$(x_0-\delta,x_0+\delta)$$

定义 设 $x_0 \in \mathbb{R}$, $\delta > 0$.

• x_0 的 δ-邻域 为开区间

$$(x_0 - \delta, x_0 + \delta)$$

x₀ 的 去心 δ-邻域 为

$$(x_0 - \delta, x_0 + \delta) - \{x_0\}$$

定义 设 $x_0 \in \mathbb{R}$, $\delta > 0$.

x₀ 的 δ-邻域 为开区间

$$(x_0 - \delta, x_0 + \delta)$$

x₀ 的 去心 δ-邻域 为

$$(x_0 - \delta, x_0 + \delta) - \{x_0\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$$

定义 设 $x_0 \in \mathbb{R}$, $\delta > 0$.

$$|x - x_0| < \delta$$

$$(x_0 - \delta, x_0 + \delta)$$

$$0 < |x - x_0| < \delta$$

$$(x_0 - \delta, x_0 + \delta) - \{x_0\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$$

函数:输入输出

函数:输入输出

 $f:D\to\mathbb{R},y=f(x)$

函数记号:

$$f: D \to \mathbb{R}, y = f(x)$$

因变量:y

值域:{全体函数值} = $\{f(x): x \in D\} = f(D)$

函数记号:

$$f: D \to \mathbb{R}, y = f(x)$$

因变量:y

值域:{全体函数值} = $\{f(x): x \in D\} = f(D)$

注1 函数符号除了f,也会用g,F,G,φ...

函数记号:

$$f: D \to \mathbb{R}, y = f(x)$$

因变量:y

值域:{全体函数值} = $\{f(x): x \in D\} = f(D)$

注1 函数符号除了f,也会用g, F, G, φ...

注 2 当没有明确 *f* 的定义域时,理解为 **自然定义域**: 使 *f* 有意义的全体实数

函数记号:

$$f: D \to \mathbb{R}, y = f(x)$$

因变量:y

值域:{全体函数值} = $\{f(x): x \in D\} = f(D)$

注1 函数符号除了f,也会用g, F, G, φ...

注 2 当没有明确 *f* 的定义域时,理解为 **自然定义域**: 使 *f* 有意义的全体实数

例 指出 $g(x) = \sqrt{1-x^2}$ 的自然定义域,并计算 $x = \frac{1}{2}$ 的函数值。

函数记号:

$$f: D \to \mathbb{R}, y = f(x)$$

因变量:y

值域:{全体函数值} = $\{f(x) : x \in D\} = f(D)$

 $\mathbf{\dot{z}}$ **1** 函数符号除了 f ,也会用 g , F , G , φ ...

 \mathbf{i} **2** 当没有明确 f 的定义域时,理解为 **自然定义域**: 使 f 有意义的全体实数

例 指出 $g(x) = \sqrt{1-x^2}$ 的自然定义域,并计算 $x = \frac{1}{2}$ 的函数值。

解 定义域 [-1,1],

函数记号:

$$f: D \to \mathbb{R}, y = f(x)$$

因变量:y

值域:{全体函数值} = $\{f(x) : x \in D\} = f(D)$

 $\mathbf{1}$ 函数符号除了 f ,也会用 g , F , G , φ ...

注 2 当没有明确 f 的定义域时,理解为 **自然定义域**: 使 f 有意义的全体实数

例 指出
$$g(x) = \sqrt{1-x^2}$$
 的自然定义域,并计算 $x = \frac{1}{2}$ 的函数值。

解 定义域 [-1,1],
$$g(\frac{1}{2}) = \sqrt{1 - (\frac{1}{2})^2}$$

函数 记号:

$$f: D \to \mathbb{R}, y = f(x)$$

因变量:y

值域:{全体函数值} = $\{f(x) : x \in D\} = f(D)$

注 1 函数符号除了 f ,也会用 g , F , G , φ ...

注 2 当没有明确 *f* 的定义域时,理解为 **自然定义域**: 使 *f* 有意义的全体实数

例 指出
$$g(x) = \sqrt{1-x^2}$$
 的自然定义域,并计算 $x = \frac{1}{2}$ 的函数值。

解 定义域 [-1,1],
$$g(\frac{1}{2}) = \sqrt{1 - (\frac{1}{2})^2} = \frac{\sqrt{3}}{2}$$

注1 函数 <math>f 的图形可视为平面上的点集:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

注1 函数 <math>f 的图形可视为平面上的点集:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

注1 函数 <math>f 的图形可视为平面上的点集:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

绘制函数 y = f(x), $x \in D$ 的图形:

注1 函数 <math>f 的图形可视为平面上的点集:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

注 2 切线 \rightarrow 微分,面积 \rightarrow 积分

并分析奇偶性、单调性。

1a 函数

1a 函数

1a 函数

•
$$a \in (1, +\infty)$$

•
$$a \in (0, 1)$$

• $a \in (1, +\infty)$

• $a \in (0, 1)$

• $a \in (1, +\infty)$

例 3 三角函数
$$y = \sin x$$
, $y = \cos x$, $y = \tan x$ 的自然定义域、图形。

•
$$\sin x, x \in (-\infty, +\infty)$$

•
$$\cos x, x \in (-\infty, +\infty)$$

•
$$\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$$

• $\sin x, x \in (-\infty, +\infty)$ 周期 2π

•
$$\cos x, x \in (-\infty, +\infty)$$

•
$$\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$$

sin x, x ∈ (-∞, +∞)
 周期 2π

• $\cos x, x \in (-\infty, +\infty)$

•
$$\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$$

● sin x, x ∈ (−∞, +∞) 周期 2π 有界函数: |sin x| ≤ 1

 $\cos x, x \in (-\infty, +\infty)$

•
$$\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$$

● sin x, x ∈ (-∞, +∞) 周期 2π 有界函数: |sin x| ≤ 1

• $\cos x, x \in (-\infty, +\infty)$ 周期 2π

• $\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$

 \bullet $\sin x, x \in (-\infty, +\infty)$ 周期 2π

有界函数: $|\sin x| \le 1$ $\cos x, x \in (-\infty, +\infty)$ 周期 2π

• $\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$

 $y = \sin x$

● sin x, x ∈ (-∞, +∞) 周期 2π 有界函数: |sin x| ≤ 1 $y = \sin x$ -3π -2π -1 π 2π 3π

cos x, x ∈ (-∞, +∞)
 周期 2π
 有界函数: |cos x| ≤ 1

• $\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$

● sin x, x ∈ (−∞, +∞) 周期 2π 有界函数: |sin x| ≤ 1

cos x, x ∈ (-∞, +∞)
 周期 2π
 有界函数: |cos x| ≤ 1

• $tan x, x \neq \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$ 周期 π

 \bullet $\sin x, x \in (-\infty, +\infty)$ 周期 2π 有界函数: $|\sin x| \leq 1$

 $y = \sin x$

 $\cos x, x \in (-\infty, +\infty)$ 周期 2π 有界函数: $|\cos x| \le 1$

• $\tan x, x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$ 周期π

1a 函数

 \bullet $\sin x, x \in (-\infty, +\infty)$ 周期 2π

有界函数: $|\sin x| \leq 1$

 $\cos x, x \in (-\infty, +\infty)$ 周期 2π 有界函数: $|\cos x| \le 1$

> 周期π 无界函数

设 y = g(u), $u \in D_2$ 和 u = f(x), $x \in D_1$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y = g(u)$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y = g(u) = g(u = f(x))$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y = g(u) = g(u = f(x)) = g(f(x)), x \in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

若
$$f(D_1) \subset D_2$$
,

$$y=g(u)=g(u=f(x))=g(f(x)),\quad x\in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

若
$$f(D_1) \subset D_2$$
,则可构造 复合函数:

$$y=g(u)=g(u=f(x))=g(f(x)),\quad x\in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y = g(u) = g(u = f(x)) = g(f(x)), x \in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y=g(u)=g(u=f(x))=g(f(x)),\quad x\in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y=g(u)=g(u=f(x))=g(f(x)),\quad x\in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y = g(u) = g(u = f(x)) = g(f(x)), x \in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

$$y=g(u)=g(u=f(x))=g(f(x)),\quad x\in D_1$$

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

若 $f(D_1) \subset D_2$,则可构造 复合函数:

$$y=g(u)=g(u=f(x))=g(f(x)),\quad x\in D_1$$

例 写出 $u = 1 - x^2$ 和 $y = \sqrt{u}$ 的复合函数,并注意定义域.

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

若 $f(D_1) \subset D_2$,则可构造 复合函数:

$$y=g(u)=g(u=f(x))=g(f(x)),\quad x\in D_1$$

例 写出 $u = 1 - x^2$ 和 $y = \sqrt{u}$ 的复合函数,并注意定义域.

 \mathbf{H} 复合函数是 $y = \sqrt{1 - x^2}$,

1a 函数

设
$$y = g(u)$$
, $u \in D_2$ 和 $u = f(x)$, $x \in D_1$

若 $f(D_1) \subset D_2$,则可构造 复合函数:

$$y = g(u) = g(u = f(x)) = g(f(x)), x \in D_1$$

例 写出 $u = 1 - x^2$ 和 $y = \sqrt{u}$ 的复合函数,并注意定义域.

解 复合函数是 $y = \sqrt{1 - x^2}$,定义域 [-1, 1]

$$x = f^{-1}(y), \quad y \in f(D)$$

$$x = f^{-1}(y), \quad y \in f(D)$$

设函数 y = f(x), $x \in D$, 是单射,则以 f(D) 为定义域构造 反函数:

$$x = f^{-1}(y), \quad y \in f(D)$$

注 1 $f^{-1}(f(x)) = x, \forall x \in D;$

$$x = f^{-1}(y), \quad y \in f(D)$$

注1
$$f^{-1}(f(x)) = x, \forall x \in D; f(f^{-1}(y)) = y, \forall y \in f(D)$$

设函数 y = f(x), $x \in D$, 是单射,则以 f(D) 为定义域构造 反函数:

$$x = f^{-1}(y), \quad y \in f(D)$$

注2 常把反函数 $x = f^{-1}(y)$ 表示成 $y = f^{-1}(x)$

1a 函数

设 $y = f(x), x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x), x \in f(D)$

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

设 $y = f(x), x \in D$,为单射. 考虑反函数 $y = f^{-1}(x), x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

证明 $y = f^{-1}(x)$ 的图形是: $\Gamma(f^{-1}) = \{(x, f^{-1}(x)) | x \in f(D)\}$

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

证明 $y = f^{-1}(x)$ 的图形是:

$$\Gamma(f^{-1}) = \{(x, f^{-1}(x)) | x \in f(D)\}$$

而 y = f(x) 的图形是:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

证明
$$y = f^{-1}(x)$$
 的图形是:

$$\Gamma(f^{-1}) = \{(x, f^{-1}(x)) | x \in f(D)\}$$

而
$$y = f(x)$$
 的图形是:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

$$x=f^{-1}(y)$$

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

证明 $y = f^{-1}(x)$ 的图形是:

$$\Gamma(f^{-1}) = \{(x, f^{-1}(x)) | x \in f(D)\}$$

而 y = f(x) 的图形是:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

$$= \underbrace{=f^{-1}(y)}_{} \{(f^{-1}(y), f(f^{-1}(y)) | y \in f(D)\}$$

反函数的图形

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

证明 $y = f^{-1}(x)$ 的图形是:

$$\Gamma(f^{-1}) = \{(x, f^{-1}(x)) | x \in f(D)\}$$

而
$$y = f(x)$$
 的图形是:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

$$\stackrel{x=f^{-1}(y)}{=} \{ (f^{-1}(y), f(f^{-1}(y)) | y \in f(D) \}$$

$$= \{ (f^{-1}(y), y) | y \in f(D) \}$$

反函数的图形

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

证明
$$y = f^{-1}(x)$$
 的图形是:

$$\Gamma(f^{-1}) = \{(x, f^{-1}(x)) | x \in f(D)\}$$

而
$$y = f(x)$$
 的图形是:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

$$= \underbrace{(f^{-1}(y))}_{=} \{(f^{-1}(y), f(f^{-1}(y)) | y \in f(D)\}$$

$$= \{ (f^{-1}(y), y) | y \in f(D) \}$$

$$= \{ (f^{-1}(x), x) | x \in f(D) \}$$

反函数的图形

设 y = f(x), $x \in D$, 为单射. 考虑反函数 $y = f^{-1}(x)$, $x \in f(D)$

性质 y = f(x) 的图形与 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

证明
$$y = f^{-1}(x)$$
 的图形是:

$$\Gamma(f^{-1}) = \{(x, f^{-1}(x)) | x \in f(D)\}$$

而
$$y = f(x)$$
 的图形是:

$$\Gamma(f) = \{(x, f(x)) | x \in D\}$$

$$\frac{x=f^{-1}(y)}{y} \{ (f^{-1}(y), f(f^{-1}(y)) | y \in f(D) \}$$

$$= \{ (f^{-1}(y), y) | y \in f(D) \}$$

$$= \{ (f^{-1}(x), x) | x \in f(D) \}$$

可见两者关于直线 y = x 对称.

注

•
$$a^{\log_a x} = x$$
, $\log_a a^x = x$

• $a^{\log_a x} = x$, $\log_a a^x = x$ (这是: $f(f^{-1}(x)) = x \, D f^{-1}(f(x)) = x$)

注

- $a^{\log_a x} = x$, $\log_a a^x = x$ (这是: $f(f^{-1}(x)) = x \ D_a f^{-1}(f(x)) = x$)

 $y = a^{X}$

正弦与反正弦; 余弦与反余弦

正弦与反正弦;余弦与反余弦

正切与反正切

● 基本初等函数:

常值函数

幂函数

指数函数

对数函数 三角函数

● 基本初等函数:

常值函数 y=c

幂函数

指数函数

对数函数 三角函数

● 基本初等函数:

常值函数 y = c

幂函数 $y = x^{\mu}$ ($\mu \in \mathbb{R}$ 是常数)

指数函数

对数函数

三角函数

常值函数
$$y = c$$

幂函数 $y = x^{\mu}$ ($\mu \in \mathbb{R}$ 是常数)
指数函数 $y = a^{x}$ ($a > 0$ 且 $a \ne 1$)
对数函数
三角函数
反三角函数

• 基本初等函数:

常值函数 y = c

幂函数 $y = x^{\mu}$ ($\mu \in \mathbb{R}$ 是常数)

指数函数 $y = a^x$ $(a > 0 且 a \neq 1)$;特别地, $y = e^x$

对数函数

三角函数

常值函数
$$y = c$$
 幂函数 $y = x^{\mu}$ ($\mu \in \mathbb{R}$ 是常数) 指数函数 $y = a^{x}$ ($a > 0$ 且 $a \ne 1$);特别地, $y = e^{x}$ 对数函数 $y = \log_{a} x$ ($a > 0$ 且 $a \ne 1$) 三角函数 反三角函数

常值函数
$$y = c$$
 幂函数 $y = x^{\mu}$ ($\mu \in \mathbb{R}$ 是常数) 指数函数 $y = a^{x}$ ($a > 0$ 且 $a \ne 1$);特别地, $y = e^{x}$ 对数函数 $y = \log_{a} x$ ($a > 0$ 且 $a \ne 1$);特别地, $y = \ln x$ 三角函数 反三角函数

```
常值函数 y = c 幂函数 y = x^{\mu} (\mu \in \mathbb{R} 是常数) 指数函数 y = a^{x} (a > 0 且 a \ne 1);特别地,y = e^{x} 对数函数 y = \log_{a} x (a > 0 且 a \ne 1);特别地,y = \ln x 三角函数 y = \sin x, y = \cos x, y = \tan x 等等 反三角函数
```

常值函数
$$y = c$$
 幂函数 $y = x^{\mu}$ ($\mu \in \mathbb{R}$ 是常数) 指数函数 $y = a^{x}$ ($a > 0$ 且 $a \ne 1$);特别地, $y = e^{x}$ 对数函数 $y = \log_{a} x$ ($a > 0$ 且 $a \ne 1$);特别地, $y = \ln x$ 三角函数 $y = \sin x$, $y = \cos x$, $y = \tan x$ 等等 反三角函数 $y = \arcsin x$, $\arcsin x$, $\arcsin x$, $\arcsin x$

● 基本初等函数:

```
常值函数 y = c 幂函数 y = x^{\mu} (\mu \in \mathbb{R} 是常数) 指数函数 y = a^{x} (a > 0 且 a \ne 1); 特别地, y = e^{x} 对数函数 y = \log_{a} x (a > 0 且 a \ne 1); 特别地, y = \ln x 三角函数 y = \sin x, y = \cos x, y = \tan x 等等 反三角函数 y = \arcsin x, \operatorname{arccos} x, \operatorname{arctan} x 等等
```

● **初等函数**:由基本初等函数经过有限次的四则运算和函数复合,所构成的函数。

● 基本初等函数:

```
常值函数 y = c 幂函数 y = x^{\mu} (\mu \in \mathbb{R} 是常数) 指数函数 y = a^{x} (a > 0 且 a \ne 1); 特别地, y = e^{x} 对数函数 y = \log_{a} x (a > 0 且 a \ne 1); 特别地, y = \ln x 三角函数 y = \sin x, y = \cos x, y = \tan x 等等 反三角函数 y = \arcsin x, \operatorname{arccos} x, \operatorname{arctan} x 等等
```

初等函数:由基本初等函数经过有限次的四则运算和函数复合,所构成的函数。

例 判断是否初等函数: $1. f(x) = \sin(e^{2x} - 1)$; 2. f(x) = |x|

● 基本初等函数:

常值函数
$$y = c$$
 幂函数 $y = x^{\mu}$ ($\mu \in \mathbb{R}$ 是常数) 指数函数 $y = a^{x}$ ($a > 0$ 且 $a \ne 1$); 特别地, $y = e^{x}$ 对数函数 $y = \log_{a} x$ ($a > 0$ 且 $a \ne 1$); 特别地, $y = \ln x$ 三角函数 $y = \sin x$, $y = \cos x$, $y = \tan x$ 等等 反三角函数 $y = \arcsin x$, $\operatorname{arccos} x$, $\operatorname{arctan} x$ 等等

初等函数:由基本初等函数经过有限次的四则运算和函数复合,所构成的函数。

例 判断是否初等函数:
$$1. f(x) = \sin(e^{2x} - 1)$$
; $2. f(x) = |x|$

提示
$$|x| = \sqrt{x^2}$$

