STA257 - Term Test - October 22, 2012

Last Name:	First Name(s):	Student #:				
TA's Name:	_ Tutorial Room: _					
		Solutions				
Time allowed: 100 minutes.	Total marks = 30.	Marks shown in brackets.				
Check that you have all the c	onsecutively number	red pages of this test.				
Aids allowed: one-sided hand	dwritten aid sheet + 1	non-programmable calculator				
As a general rule, best marks						
Show your work and answer may be used, but then rema	in the space provid	led (or indicate clearly where to look), in ink. Pencil wed. Use backs of pages for rough work.				
Proportion your time cany single question, par		he questions and limit your time spent on h very few marks.				

Good luck!

1. Given that A and B are independent with P(A) = 2P(B) and $P(A \cap B) = 0.08$, find $P(A^c \cap B^c)$. [4]

$$P(A \cap B) = P(A)P(B) = 2P(B)^{2} = 0.08$$

$$P(B)^{2} = 0.04 \Rightarrow P(B) = 0.2 \Rightarrow P(A) = 0.4$$

$$P(A^{c} \cap B^{c}) = P(A^{c})P(B^{c}) = (1-P(A))(1-P(B))$$

$$= (1-0.4)(1-0.2) = 0.6.0.8 = 0.48$$

2. Toss a fair coin. If we observe H, we select a ball from box # 1. If we observe T, we select a ball from box # 2. Box # 1 contains three red balls and four blue balls. Box # 2 contains five red balls and two blue balls. Let A = {a red ball is selected}. Calculate P(H|A). [3]

$$P(A|H)P(H) = \frac{P(A|H)P(H)}{P(A|H)P(H)} + P(A|T)P(T)$$

$$= \frac{\frac{3}{7} \cdot \frac{1}{2}}{\frac{3}{7} \cdot \frac{1}{2} + \frac{5}{7} \cdot \frac{1}{2}} = \frac{\frac{3}{7}}{\frac{3}{7}} = \frac{3}{8}$$

3. A particular sale involves four items randomly selected from a large lot that is known to contain 10% defectives. Let Y denote the number of defectives among the four sold. The purchaser of the items will return the defectives for repair, and the repair cost is given by $C=3Y^2+Y+2$. Find the expected repair cost. [4]

$$E(C) = 3 E(Y^{2}) + E(Y) + 2$$

$$Y \sim Bih(4, 0.1)$$

$$E(Y) = np = 0.4, Var(Y) = npq = 4.0.1.0.9 = 0.36$$

$$E(Y) = Var(Y) + E(Y)^{2} = 0.36 + 0.16 = 0.52$$

$$E(C) = 3.0.52 + 0.4 + 2 = 3.96$$

4. Let
$$P(A) = P(B) = 1$$
. Show that $P(A \cap B) = 1$. [2]

$$P(AUB) = P(A) = 1 = 0$$
 $P(AUB) = 1$
 $P(ADB) = P(A) + P(B) - P(AUB) = 1 + 1 - 1 = 1$

5. Let
$$Y \sim Poisson(\lambda)$$
. Find $Var(Y)$. Show your complete work. [5]

$$E(Y) = \lambda$$

$$E(Y(Y-1)) = \begin{cases} \frac{2}{3} \frac{y(y-1)}{y!} & \frac{3}{4} = \lambda^{2} = \lambda$$

$$=\lambda^{2} \underbrace{\sum_{k=0}^{2} \frac{2^{k}}{2!}}_{=1} = 1$$

$$E(Y^2) = E(Y(Y-1)) + E(Y) = \lambda^2 + \lambda$$

$$Var(Y) = E(Y^2) - E(Y)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

6. Let $X \sim \text{Unif}(0,1)$, $Y = -\log X$ (natural logarithm). Find the pdf of Y, $f_Y(y)$. [4]

$$f_{\chi}(x) = \begin{cases} 1, & \chi \in (0,1) \\ 0, & \chi \in (0,1) \end{cases}$$

$$h(x) = -\log x$$
 , $h'(y) = e^{-y}$, $\frac{dy}{dy}h'(y) = -e^{-y}$

$$f_{Y}(y) = -1 \cdot (-e^{-y}) = \begin{cases} e^{-y}, & 0 < y < \infty \\ 0, & 0 \end{cases}$$

7. Let Y have the density function given by
$$f(y) = \int_{0}^{\infty} cy^2 + y$$
, $0 \le y \le 1$.

0, otherwise

(a) Find c [2]

(b) Find $\operatorname{cdf} F(y)$ [2]

(c) Find $P(0 \le Y \le 0.5)$ [1]

(c) Find
$$P(0 \le Y \le 0.5)$$
 [1]
(a) $1 = \int_{0}^{1} (cy^{2} + y) dy = (cy^{3} + y^{2})|_{0}^{1} = \frac{1}{3} + \frac{1}{2} = \frac{1}{3} = \frac{1}{2} = \frac{1}{3} = \frac{1}{2} = \frac{1}{3} =$

(c)
$$P(0 \le Y \le 0.5) = F(0.5) - F(0) = \frac{1}{16} + \frac{3}{8} = \frac{3}{16}$$

8. Let
$$Z \sim N(2, 4)$$
, $X = -Z + 2$, and $Y = X^2$. Find $E(Y)$. [3] $X \sim N(0, 4)$, $E(Y) = E(X^2) = Van(X) + E(X)^2 = 4 + 0 = 4$

or

$$E(Y) = E(2^{2} - 42 + 4) = E(2^{2}) - 4E(2) + 4$$

$$E(2^{2}) = Vow(2) + E(2)^{2} = 4 + 4 = 8$$

$$E(Y) = 8 - 4 \cdot 2 + 4 = 4$$

Problem	1	2	3	4	5	6	7	8	
Max	4	3	4	2	5	4	5	3	Total = 30
Mark									