Discrete Mathematics

Long question 1

Define Euler's totient function $\varphi(n)$.

[2 marks]

Prove the Fermat-Euler Theorem that $a^{\varphi(n)} \equiv 1 \pmod{n}$ for appropriate a.

[8 marks]

Deduce a theorem of Fermat about $a^{p-1} - 1$ for a prime number p.

[2 marks]

Given a prime, p, with $p \ne 2$ and $p \ne 5$, show that there are infinitely many natural numbers, each of which has 9s as all its digits and which is divisible by p. [8 marks]

Answer

 $\varphi(n) = \{ x \in \mathbb{N} \mid 1 \le x < n \text{ and } (x, n) = 1 \} \}$ where (x, n) denotes the highest common factor of x and n.

Suppose n > 1 and (n, a) = 1. Let $U_n = \{ x \in N \mid 1 \le x < n \text{ and } (x, n) = 1 \}$ be the set of units modulo n. Say $U_n = \{u_1, u_2, ..., u_f\}$ where $f = \phi(n)$. Observe $a \in U_n$ so $a.u_1, a.u_2, ..., a.u_f$ are all in U_n . Moreover, they are distinct because $a.u_i = a.u_j \Rightarrow n \mid a.(u_i - u_j)$, so $u_i = u_j$. Hence $\{a.u_1, a.u_2, ..., a.u_f\} = U_n = \{u_1, u_2, ..., u_f\}$. Consider the products of the elements in the two sets: $a^f u_1 u_2 ... u_f = u_1 u_2 ... u_f$. Units have multiplicative inverses modulo n and so can be divided away leaving $a^f \equiv 1 \pmod{n}$

Given a prime p, $\varphi(p) = p-1$, and a (p, a) = 1. Hence p divides $a^{p-1}-1$.

Let a = 10 so (p, a) = 1 and $p \mid 10^p - 1$. Consider $10^{kp} - 1$ for k = 1, 2, ... Each has 9s as all its digits and is divisible by $10^p - 1$, and so is divisible by p.