Testing Techniques 2019 - 2020Tentamen

January 15, 2020 – 8:30–11:30/12:00 h. – HG00.071 / HG00.622

1 Testing with ioco

Consider the labelled transition systems q_1 , q_2 , q_3 , and q_4 in Fig. 1. These systems model queues with input ?in and output !out.

Figure 1: Four models of queues.

System q_1 represents an unbounded queue; the dotted lines at the bottom of q_1 are meant to indicate that there are infinitely many states, and that there is no bound on the number of ?in actions that can be performed after each other. System q_2 is also an unbounded queue, but it is

a lossy queue: the third input can get lost. Queues q_3 and q_4 are bounded queues with capacity three, the difference being that q_4 explicitly neglects additional inputs.

a. Which states of q_2 are quiescent? Why?

Answer

The initial state of q_2, q_{2_0} , is quiescent: $\forall x \in L_U \cup \{\tau\} : q_{2_0} \xrightarrow{x}$.

b. Which of the systems q_1, q_2, q_3, q_4 are input-enabled? Why?

Answer

For q_1, q_2 , and q_4 all inputs, i.e., ?in, are enabled in all states: $\forall q \in Q_i, \forall a \in \{?in\} : q \stackrel{a}{\Longrightarrow}$. For q_3 this is not the case: in the lowest state input ?in is not enabled.

c. Consider q_3 as specification, q_4 as implementation, and **ioco** as implementation relation. Is q_4 an **ioco**-correct implementation of q_3 , i.e., does q_4 **ioco** q_3 hold? Explain.

Answer

Using i ioco $s \iff_{\text{def}} \forall \sigma \in Straces(s) : out(i \text{ after } \sigma) \subseteq out(s \text{ after } \sigma)$, we have that q_4 ioco q_3 holds. The only difference between q_4 and q_3 is that input ?in is not specified in the lowest state of q_3 whereas it is enabled in the lowest state of q_4 . This is allowed according to ioco.

d. Can an unbounded queue correctly implement a bounded queue specification, i.e., does q_1 ioco q_3 hold? And the lossy queue q_2 : does q_2 ioco q_3 hold?

Answer

 q_1 ioco q_3 holds, because, like above, q_1 allows input ?in where it is under-specified in q_3 , which is ioco-conforming.

 q_2 io¢o q_3 : take $\sigma = ?in \cdot ?in \cdot ?in \cdot !out \cdot !out \in Straces(q_3)$, then $out(q_2 \text{ after } \sigma) = \{!out, \delta\} \not\subseteq \{!out\} = out(q_3 \text{ after } \sigma)$.

e. What can you say about the inverse: can a bounded queue correctly implement an unbounded (lossy) queue specification, i.e., q_4 ioco q_1 or q_4 ioco q_2 ? Explain.

Answer

 q_4 io¢o q_1 : take $\sigma = ?in \cdot ?in \cdot ?in \cdot ?in \cdot !out \cdot !out \cdot !out \in Straces(q_1)$, then $out(q_4 \text{ after } \sigma) = \{\delta\} \nsubseteq \{!out\} = out(q_1 \text{ after } \sigma)$.

 q_4 ioco q_2 : any ouput of q_4 can be simulated by q_2 by going sufficiently often through the τ -transition; in particular, after n inputs $(n \ge 2)$, q_2 can produce any number of outputs between 2 and n, followed by δ .

Consequently, $\forall \sigma \in Straces(q_2) : out(q_4 \text{ after } \sigma) \subseteq out(q_2 \text{ after } \sigma).$

f. We have that $q_3 \stackrel{\sigma}{\Longrightarrow}$ with $\sigma = ?in \cdot ?in \cdot ?in$. Moreover, $out(q_3 \text{ after } \sigma) = \emptyset$ for this σ . Argue that this holds in general for any system $p \in \mathcal{LTS}(L)$ and any $\sigma \in (L \cup \{\delta\})^*$, i.e.,

$$p \stackrel{\sigma}{\Longrightarrow} \quad \text{iff} \quad out(p \text{ after } \sigma) = \emptyset$$

Answer

```
o only if:
                      p \Longrightarrow
                      (* \ \mathrm{Def.} \not \Rightarrow \ *)
      iff
                       not \exists p': p \xrightarrow{\sigma} p'
                      (* Def. after *)
      iff
                      p after \sigma = \emptyset
                      (* Def. out *)
      implies
                      out(p \text{ after } \sigma) = out(\emptyset) = \bigcup \{out(p) \mid p \in \emptyset\} = \emptyset
\circ if: By contraposition.
                      p \stackrel{\sigma}{\Longrightarrow}
                      (* Def. \Rightarrow *)
      iff
                      \exists p': p \xrightarrow{\sigma} p'
                      (* Def. quiescence *)
      implies
                      either there is some output x \in L_U such that p' \stackrel{x}{\Longrightarrow},
                      or there is no output at all, in which case p' is quiescent: \delta(p')
      implies
                      (* Def. out *)
                      (\exists x \in L_U : x \in out(p')) \text{ or } (\delta \in out(p'))
      implies
                      out(p') \neq \emptyset
      implies
                      (* Def. out(p after \sigma); p' \in p after \sigma *)
                      out(p \mathbf{after} \sigma) \neq \emptyset
```

The complete proof is not necessary; yet, the main argument, i.e., that any stable state has either an output, or quiescence, must be given.

Note: For a completely formal proof the non-divergence of p is required. (2 bonus points!)

g. Fig. 2 gives a test case t_1 . Give the test runs and determine the verdicts of executing the test case t_1 on q_2 .

The first three test runs pass; the last one fails. So, q_2 fails t_1 .

h. For which of the specifications q_1 , q_2 , q_3 , or q_4 , is test case t_1 sound with respect to implementation relation **ioco**? Explain.

Answer

Soundness: $\forall i \in \mathcal{IOTS}(L_I, L_U)$: i ioco s implies i passes t or: $\forall i \in \mathcal{IOTS}(L_I, L_U)$: i fails t implies i ioco s

Test case t_1 is sound for q_1 , q_3 , and q_4 : t_1 can be generated from these specifications using the **ioco**-test generation algorithm, which generates only sound test cases (Theorem 2.1 of the MBT with LTS paper).

Test case t_1 is not sound for q_2 : q_2 is input-enabled (see b.), so q_2 ioco q_2 (lecture notes prop. 2.2 and 1.4), but q_2 fails t_1 (ee g.), so t_1 is not sound for q_2 .

Figure 2: Test case t_1 for queue systems.