# Fehler 1. und 2. Art Vertrauensintervalle

Peter Büchel

HSLU I

Stat: Block 07

Peter Büchel (HSLU I)

Stat: Block 07

1/17

Stat: Block 07

## Fehler Hypothesentest

Schema:

| Entscheidung<br>Wahrheit | $H_0$         | $H_A$         |
|--------------------------|---------------|---------------|
| $H_0$                    | ✓             | Fehler 1. Art |
| $H_A$                    | Fehler 2. Art | ✓             |

- Entscheidung für  $H_0$ , aber  $H_A$  wäre richtig  $\longrightarrow$  Fehler 2. Art
- Entscheidung für  $H_A$ , aber  $H_0$  wäre richtig  $\longrightarrow$  Fehler 1. Art

#### Fehler Hypothesentest

- Nullhypothese bei Hypothesentest ist richtig (was aber nicht bekannt)
- Machen *n* Messungen um Hypothesentest zu überprüfen
- Messungen ergeben extreme Werte
- Durchschnitt  $x_n$  liegt im Verwerfungsbereich: Nullhypothese wird verworfen
- Es wurde ein Fehler gemacht: Nullhypothese wird verworfen, obwohl Nullhypothese richtig ist
- Hypothesentest macht keine absolute Aussage, sondern sagt nur das Aussage sehr wahrscheinlich stimmt (p-Wert nahe bei 0)
- Unsicherheit bleibt

#### Fehler 1. Art

- Entscheidung für  $H_A$ , aber  $H_0$  wäre richtig  $\longrightarrow$  Fehler 1. Art
- Entspricht gerade Signifikanzniveau
- Skizze;



#### Macht

- $H_A$  wird angenommen und  $H_A$  richtig  $\rightarrow$  das was wir wollen
- ullet Der wahre Parameter für  $H_A$  muss bekannt sein ullet hier  $\mu_A=180$
- Skizze;



Peter Büchel (HSLU I

Fehler 1. und 2. Art Vertrauensintervall

Stat: Block 07 5 / 17

# Fehler 2. Art

- Entscheidung für  $H_0$ , aber  $H_A$  wäre richtig  $\longrightarrow$  Fehler 2. Art
- Der wahre Parameter für  $H_A$  muss bekannt sein  $\rightarrow$  hier  $\mu_A=180$
- Fehler 2. Art = 1 Macht
- Skizze



Peter Büchel (HSLU I)

Fehler 1. und 2. Art Vertrauensintervall

Ctate Diagle 0

*c* /

# Welche Fehlerart ist wichtiger?

- Fehler 1. Art hat traditionell mehr Gewicht als Fehler 2. Art
- Wissenschaftler arbeiten genau und haben Angst, einen Humbug zu publizieren, der sich dann als falsch herausstellt
- Denn wenn Wissenschaftler einen Effekt (signifikante Abweichung von Nullhypothese) beobachten, möchten sie sicher sein, dass es sich nicht bloss um Zufall handelt
- Fehler 1. Art soll vermieden werden
- Nimmt in Kauf, dass man manchmal wichtigen Effekt verpasst
- Fehler 2. Art ist also zweitrangig

- ullet Fehler 1. Art wird direkt kontrolliert durch Konstruktion eines Tests, indem Signifikanzniveau lpha möglichst klein gehalten wird
- Über die W'keit eines Fehlers 2. Art keine solche Kontrolle
- Die beiden Fehlerarten konkurrenzieren sich gegenseitig: P(Fehler 2. Art) wird grösser falls  $\alpha$  kleiner gewählt wird
- ullet Wahl von lpha steuert Kompromiss zwischen Fehler 1. und 2. Art
- ullet Je kleiner  $\alpha$ , desto kleiner der Verwerfungsbereich
- ullet Vertikale Linie wandert nach rechts ullet Fehler 2. Art wird umso grösser

# Wahl von Signifikanzniveau $\alpha$

• Graphik:  $\alpha = 0.0001$  (nahe bei 0)



• Graphik:  $\alpha = 0.8$  (gross)



• Graphik:  $\alpha = 0.05$ 



Peter Büchel (HSLU I)

Fehler 1. und 2. Art Vertrauensintervall

at: Block 07 9 /

Peter Büchel (HSLU I)

Fehler 1. und 2. Art Vertrauensinterv

Stat: Block 07

10 / 1

# Vertrauensintervalle für Normalverteilungen: Einleitung

- ullet Betrachten nochmals Verwerfungsbereich einer normalverteilten Zufallsvariable X mit bekannten  $\sigma_X$
- Beschränkung vorläufig auf Signifikanzniveau 5 % und zweiseitigem Verwerfungsbereich
- Siehe Jupyter Notebook: vertrauensintervall\_py (durchmachen)

- ullet Ist lpha sehr nahe bei null, so Bereich wo *nicht* verworfen wird (grüner Bereich) sehr gross
- D.h.: Es braucht ein sehr Ereignis bis verworfen wird
- Es wird viel zu wenig verworfen
- Im Extremfall  $\alpha = 0$ : Es wird gar nicht verworfen
- ullet Für lpha gross: Grüner Bereich sehr klein
- D.h.: Es braucht ein sehr Ereignis bis verworfen wird
- Es wird viel zu wenig verworfen
- Im Extremfall  $\alpha = 1$ : Es wird immer verworfen
- ullet  $\alpha = 0.05$ : Kompromiss zwischen den beiden Extremen

#### Vertrauensintervall allgemein

- ullet Das sogenannte *Vertrauensintervall* bei Messdaten besteht aus denjenigen Werten  $\mu$ , bei denen der entsprechende Test nicht verwirft
- Das sind also alle Parameterwerte des Zufallsmodells, bei denen die Daten recht wahrscheinlich oder plausibel sind
- $\bullet$  Dieses Intervall enthält dann das wahre, aber meist unbekannte  $\mu$  mit einer gegebenen Wahrscheinlichkeit
- ullet Z.B. ist das 95 %-Vertrauensintervall für  $\mu$  das Intervall, das  $\mu$  mit einer Wahrscheinlichkeit von 0.95 enthält
- $\bullet$  D.h. wenn wir sehr viele Testreihen machen und jeweils das Vertrauensintervall bestimmen, so wird  $\mu$  in 95 % dieser Intervalle enthalten sein
- Ist das Signifikanzniveau  $\alpha$ , so ist nennen wir das Intervall  $(1-\alpha)\cdot 100$  %-Vertrauensintervall.

### Vertrauensintervalle für $\mu$ einer Messreihe

- Gehen nun wieder von Messreihen aus
- Annahme: Daten Realisierungen von

$$X_1,\ldots,X_n$$
 i.i.d.  $\sim \mathcal{N}(\mu,\sigma_X^2)$ 

ullet Müssen wieder unterscheiden, ob  $\sigma_X$  bekannt oder unbekannt ist

### Vertrauensintervalle, falls $\sigma_X$ bekannt

- Diesen Fall schon in Einleitung betrachtet
- Der Mittelwert  $\overline{X}_n$  folgt der Verteilung

$$\overline{X}_n \sim \mathcal{N}\left(\mu, \sigma_{\overline{X}_n}^2\right) = \mathcal{N}\left(\mu, \frac{\sigma_X^2}{n}\right)$$

Peter Büchel (HSLU I)

Fehler 1. und 2. Art Vertrauensintervalle

Stat: Block 07

13 / 17

Peter Büchel (HSLU

ehler 1 und 2 Art Vertrauensintervalle

Stat: Block 07

14 /

### Beispiel

- Schmelzwärme von früher: Normalverteilt mit  $\mu=80$  und  $\sigma_X=0.02$
- Standardabweichung wird hier also als bekannt angenommen
- Mittelwert:  $\overline{x}_{13} = 80.02$
- Zweiseitige Vertrauensintervall für Methode A:

$$I = [80.009, 80.031]$$

from scipy.stats import norm, t
import numpy as np

norm.interval(alpha=0.95, loc=80.02, scale=0.02/np.sqrt(13))
## (80.00912807593181, 80.03087192406818)

- Insbesondere liegt 80.00 nicht im Intervall /
- Wert  $\mu = 80.00$  ist folglich nicht mit den Daten kompatibel

Vertrauensintervalle, falls  $\sigma_X$  unbekannt

- Ist  $\sigma_X$  unbekannt, so verwenden wir t-Verteilungen und die geschätzte Standardabweichung  $\widehat{\sigma}_X$
- Normalverteilung durch t-Verteilung mit Freiheitsgrad n-1 ersetzen.

#### Schmelzwärme Methode A

Die Standardabweichung lautet

$$\hat{\sigma}_X = 0.024$$

• Zweiseitige Konfidenzintervall für die mit Methode *A* gemessene Schmelzwärme:

```
import scipy.stats as st
from scipy.stats import norm, t
import numpy as np

t.interval(alpha=0.95, df=12, loc=80.02, scale=0.024/np.sqrt(13))
## (80.00549694515017, 80.03450305484982)
```

$$I = [80.01, 80.03]$$

- Insbesondere liegt 80.00 nicht im Intervall /
- Der Wert  $\mu=80.00$  ist folglich nicht mit den Daten kompatibel, was wir bereits mit Hilfe des t-Tests ermittelt hatten.

Peter Büchel (HSLU I)

Fehler 1. und 2. Art Vertrauensintervalle

Stat: Block 07

