An Investigation into Trust and Reputation Frameworks for Autonomous Underwater Vehicles

Author: Andrew Bolster

Supervisors: Prof. Alan Marshall, Prof. Simon Maskell (UoL)

Prof. Jean-Guy Fontaine (UPMC)

University of Liverpool

Thursday 6th October 2016

Meta

Chapter Summaries

Structure of this presentation

Structure

- As short a summary of the work as can be managed
- Fundamental Errata (hint: there haven't been any)
- Discussion of new research that has entered the field since submission
- Quick walk through of the main findings of each chapter for review
- Straight into Defence of Work Discussion
- Wealth of supporting slides for discussion

Summary of Contributions

Primary

- 1st comparative application of Trust in UAN
- 1st application of direct Physical/Mobility based Trust Metrics in any context
- 1st automatic, behaviour based optimisation of MTFM weighting

Secondary

- Reactive agent based Simulation system
- Review of Trust in the marine defence context

Publications

- Single and Multi-metric Trust Management Frameworks for Use in Underwater Autonomous Networks. IEEE TrustCom 2015
- Analytical Metric Weight Generation for Multi-Domain Trust in Autonomous Underwater MANETs. IEEE UComms 2016
- Analysis of Trust Interfaces in Autonomous and Semi-Autonomous Collaborative MHPC Operations, The Technical Cooperation Program, Portsmouth, UK 2014.
- A Multi-Vector Trust Framework for Autonomous Systems, AAAI 2014.

Erratta

Erratta

- Many small typographic issues corrected
- Out-of-order paras in 4.2.5 (Top should be bottom)

State-of-the-field

Trust

- Interesting general move towards decentralised trust[Korzun2015]
- Ditto cohort based relative trust assessment [Singh2016]
- Increasing use of ML techniques to assess contextual trust dynamically [Rishwaraj2017]
- Human Factors emerging as a increasingly vital area of research [Saeidi2009, Matthews2016, Lahijanian2016]
- Novel/Updated techniques for generalised TMF assessment emerging [Janiszewski2016]

State-of-the-field

Acomms

- Assumptions of Gaussian noise naive for real applications [Mahmood2016, Deane2016]
- The Beaufort Sea has fundamentally changed it's characteristics in 20 years and highlights fundamental flaws in channel modelling assumptions [Schmidt2016]
- Higher-Stack level functionality problems remain open(i.e. MAC+Route+ID+Interop) [Diamant2016, Petroccia2016a, Petroccia2016b, Anjangi2016]
- Assumptions on increasing passive localisation proving accurate [Vio2016, Ferreira2016, Das2016]

Chapter 1: Introduction

Expression of terms and context

Focus On

- Trust
- Autonomy
- Decentralised networks
- Harsh Environments

Stated deficiencies in

- Single Metric Trust
- Systemic Trust
- Lack of modelling of Trust in Harsh environments

Chapter 2: MANETs and Trust

Deep background

Focus On

- Network/Graph concepts
- Routing
- Trust Perspectives and Models
- Trust Relationships
- Multi-Party Trust
- Trusted Threats
- Autonomy and Design constraints of Autonomous Systems
- Current Trust Management Frameworks

Key Outcomes

- Definition of Trust
- Constraints of Autonomy
- Threats to Trust
- Threats to MANETs
- Need for Trust in Autonomous Systems

Chapter 3: Maritime Communications and Operations

Deep background

Focus On

- Marine Acoustics
- AComms Modelling
- AUV Operations
- Need for Trust in AUV AComms

Key Outcomes

- Channel Emulation Models
- Selection of characteristic constraints
- Operational Threat Surface
- Operational / Mechanical constraints

Chapter 4: Assessment of TMF Performance in Marine Environments

Original Work

Focus On

- Comparative factors between UAN/WLAN
- Application of TMF to each environment (terre/aqua)
- Relevant Metric Selection re AComms
- MTFM weight variation assessment and regression

Key Findings

- Modelled optimal performance range @ ≈ 0.015 -0.025pps/100-300m node separations
- MTFM outperforms single metric TMFs for selected misbehaviours
- MTFM dimensional weighting further improves performance and tolerance
- Long collection times due to sparsity can impact trust assessment relevance

Chapter 5: Use of Physical Behaviours for Trust Assessment

Original Work

Focus On

- Physical Misbehaviours and Metrics
- "Failure" vs "Misbehaviour" vs "Malice"
- AUV Kinematics
- Metric variability in collaborative collision avoidance (flocking)
- Metric based classifier (Q-test based, not "Trust")

Key Findings

- First physical misbehaviour detection system
- Identified clear differentiating observations in different composite metrics
- Highly accurate blind behaviour classifier (\approx 0% FP, \gtrsim 90 % TP)

Chapter 6: Multi-Domain Trust Assessment in Collaborative Marine MANETs

Original Work

Focus On

- Combination of Comms. & Phys. Metrics
- Domain Specific Behaviour in Cross Domain Metric Space
- Random Forest based metric significance correlation to build H weighting vector for MTFM
- Relative significance between behaviour domain and metric domain grouping $(\Delta T, \Delta T^{-})$
- Generation and Appraisal of alternate/targeted "domains"

Key Findings

- Metric Domains and Behaviour Responses not "naturally" coupled
- Inherent redundancy (eg INDD/RSSI) allows differential behaviour to be detected
- Application level selfishness (STS) very difficult to identify
- Extended C4 behaviour based optimisation of MTFM to dynamically select relevant metrics inclusion

Done

Σ

- UWA Multi Metric/Domain Trust
- Detection of non-comms misbehaviours/fouling even just using comms metrics
- Methodology for exploring / training / metric relevance
- Minimal performance specification
- UWA Trust is Hard & it's mostly the channels' fault
- Single-Metric Trust is unstable in such an environments
- Multi-Metric Trust works & can discriminate behaviours
- Not all metrics are equally useful
- Simple classifiers can be V good in some behaviours (MPC)
- can be not so good for others (STS)

Left/Next

- Smarter Detection Classifier
- Cooperative / Periodic / Variable attack profiles
- Commonality of detection filters across Multiple-base scenarios
- Heterogenous Node capabilities
- Real experiments and Cross sim-implementations

References I

Thank You / QnA?

Say Hello!

- bolster@liv.ac.uk
- **y** @bolster
- ♣ bolster.online
- andrewbolster
- in "Andrew Bolster"
- bolster

Fig 1.1 Multi-Domain Threat Surface

Fig. 1: Multi-Domain Threat Surface

Tab 2.3 Definitions of Trust

Table 1: Selected Definitions of Trust

Definition	Source
Assured reliance on the character, ability, strength, or truth of someone or something.	Merriam-Webster
Firm belief in the reliability, truth, or ability of someone or something	OED
The willingness of a party to be vulnerable to the actions of another party based on the expectation that the other will perform a articular action important to the trustor, irrespective of the ability to monitor or control that other party	Mayer1995
An expectancy held by and individual or a group that the word, promise, verbal or written statement of another individual or group can be relied upon	Rotter1967 VALUERPOOL VERSITY OF LIVERPOOL

Fig 2.5 Model of Trust

Fig 2.6 Trust Construct Relationships

Fig. 3: Trust Construct Relationships (from Liu2010)

Fig 2.10 Trust Topologies

(a) Sample topology showing logical connections between nodes (Range of *A* shown in red dashed line)

(b) Direct Relationships, the two possible trust assessments from A to its connected neighbours, B, C

(c) Indirect
Relationships,
showing the four
possible trust
assessments from A
or the three
disconnected leaf
nodes, D, E, F

(d) Recommender Relationship, showing the two discrete paths trust assessments travel to A; $T_{A,B}^R = T_{A,C} \cdot T_{C,B}$ and $T_{A,C}^R = T_{A,B} \cdot T_{B,C}$

Fig 3.3: Bellhop Model

(a) Linear Increasing

(b) Linear Decreasing

(d) Isovelocity

(c) Quadratic

Communications Channel Considerations

Key Characteristics of the Marine Acoustic Channel: Urick1983a, Partan2006, Stojanovic2007, Stefanov2011

- Slow propagation ($1400 ms^{-1}$) incurring long delays
- Inter-symbol interference
- Doppler Spreading
- Non-Linear propagation due to refraction
- Fast & Slow fades from environmental factors (flora/fauna/surface and seabed conditions)
- Freq. dependant attenuation
- Significant destructive multipath effects

Attenuation in the Marine Acoustic Channel

The attenuation that occurs in an underwater acoustic channel over distance d about frequency f is given as $A_{aco}(d, f) = A_0 d^k a(f)^d$ or

$$10 \log A_{aco}(d, f)/A_0 = k \cdot 10 \log d + d \cdot 10 \log a(f)$$
 (1)

where A_0 is a normalising constant, k is a spreading factor, and a(f) is the absorption coefficient; Stefanov2011

$$10\log a(f) = \frac{0.11 \cdot f^2}{1 + f^2} + \frac{44 \cdot f^2}{4100 + f^2} + 2.75 \times 10^{-4} f^2 + 0.003 \tag{2}$$

Attenuation in the Marine Acoustic Channel

The attenuation that occurs in an underwater acoustic channel over distance d about frequency f is given as $A_{aco}(d, f) = A_0 d^k a(f)^d$ or

$$10 \log A_{aco}(d, f)/A_0 = k \cdot 10 \log d + d \cdot 10 \log a(f)$$
 (1)

where A_0 is a normalising constant, k is a spreading factor, and a(f) is the absorption coefficient; Stefanov2011

$$10\log a(f) = \frac{0.11 \cdot f^2}{1 + f^2} + \frac{44 \cdot f^2}{4100 + f^2} + 2.75 \times 10^{-4} f^2 + 0.003 \tag{2}$$

Compared to RF Free space PL: $(A_{RF}(d, f) \approx (\frac{4\pi df}{c})^2)$

- Exponential in d: $A_{\rm aco} \propto f^d$ vs $A_{\rm RF} \propto (df)^2$
- f factor four orders higher in $f \propto A_{\text{aco}}$ vs $f \propto A_{\text{RF}}$

Multi-Metric TMF - Grey Grading

$$\theta_{k,j}^{t} = \frac{\min_{k} |a_{k,j}^{t} - g_{j}^{t}| + \rho \max_{k} |a_{k,j}^{t} - g_{j}^{t}|}{|a_{k,j}^{t} - g_{j}^{t}| + \rho \max_{k} |a_{k,j}^{t} - g_{j}^{t}|}$$
(3)

$$\phi_{k,j}^{t} = \frac{\min_{k} |a_{k,j}^{t} - b_{j}^{t}| + \rho \max_{k} |a_{k,j}^{t} - b_{j}^{t}|}{|a_{k,j}^{t} - b_{j}^{t}| + \rho \max_{k} |a_{k,j}^{t} - b_{j}^{t}|}$$
(4)

$$[\theta_k^t, \phi_k^t] = \left[\sum_{j=0}^M h_j \theta_{k,j}^t, \sum_{j=0}^M h_j \phi_{k,j}^t \right]$$
 (5)

$$T_k^t = (1 + (\phi_k^t)^2 / (\theta_k^t)^2)^{-1}$$
(6)

Where $a_{k,j}^t$ is the value of an observed metric x_j for a given node k at time t, g and b are respectively the "good" and "bad" reference metric sequences from $\{a_{k,j}^t k = 1, 2 \dots K\}$, $H = [h_0 \dots h_M]$ is a metric weighting vector such that $\sum h_j = 1$

Multi-Metric TMF - Topological Relationships

Includes shared assessments from other nodes weighted based on their relative topology to provide a final value 1

Grey Trust Equs I

$$T_{i,j}^{MTFM} = \frac{1}{2} \cdot \max_{s} \{f_{s}(T_{i,j})\} T_{i,j}$$

$$+ \frac{1}{2} \frac{2|N_{R}|}{2|N_{R}| + |N_{I}|} \sum_{n \in N_{R}} \max_{s} \{f_{s}(T_{i,n})\} T_{i,n}$$

$$+ \frac{1}{2} \frac{|N_{I}|}{2|N_{R}| + |N_{I}|} \sum_{n \in N_{I}} \max_{s} \{f_{s}(T_{i,n})\} T_{i,n}$$
(7)

Where $T_{i,n}$ is the subjective trust assessment of n_i by n_n , and $f_s = [f_1, f_2, f_3]$ given as...

Grey Trust Equs II

$$f_1(x) = -x + 1$$

$$f_2(x) = \begin{cases} 2x & \text{if } x \le 0.5 \\ -2x + 2 & \text{if } x > 0.5 \end{cases}$$

$$f_3(x) = x$$
(8)

▶ Back

System Model Constraints

Table 2: Comparison of system model constraints as applied between Terrestrial and Marine communications • Back

Parameter	Unit	Terrestrial	Marine
Simulated Duration	s	300	18000
Trust Sampling Period	s	1	600
Simulated Area	km^2	0.7	0.7-4
Transmission Range	km	0.25	1.5
Physical Layer		RF(802.11)	Acoustic
Propagation Speed	m/s	$3 imes 10^8$	1490
Center Frequency	Hz	2.6×10^{9}	2×10^4
Bandwidth	Hz	22×10^6	1×10^4
MAC Type		CSMA/DCF	CSMA/CA
Routing Protocol		DSDV	FBR
Max Speed	ms^{-1}	5	1.5
Max Data Rate	bps	5×10^6	≈ 240
Packet Size	bits	4096	9600
Single Transmission Duration	s	10	32
Single Transmission Size	bits	10 ⁷	9600

Metric Selection/Weighting

Table 3: ΔT_{ix} behaviour detection performance across meta-domains, including selected metrics

		Behaviour ΔT_{ix}				Metrics in Domain									
Domain		MPC	STS	Shadow	SlowCoach	Mean	Delay	P _{RX}	P _{TX}	S	9	PLR	INDD	INHD	Speed
Basic	Full	0.81	-0.03	0.42	0.60	0.45	1	1	1	1	1	1	1	1	1
	Comms	0.85	0.04	0.19	0.26	0.34	1	1	1	1	1	1			
	Phys	0.04	0.00	0.39	0.69	0.28							1	1	1
Alternate	Comms alt.	0.85	0.03	0.38	0.45	0.43				/	/	/	1		
	Phys alt.	0.48	0.03	0.42	0.63	0.39	1	1					1	1	1
Synthetic	MPC	0.89	0.01	0.35	0.54	0.45	1	1	1					1	
	STS	0.86	0.06	0.37	0.49	0.45	1		1	1		1	1		
	Shadow	0.49	-0.00	0.44	0.66	0.40		1					1	1	1
	SlowCoach	0.47	0.00	0.37	0.72	0.39	1	1		1					1
	Mean	0.88	0.03	0.42	0.69	0.50		1	1		1		1		1