EE101: Basics KCL, KVL, power, Thevenin's theorem

M. B. Patil mbpatil@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

* Kirchhoff's current law (KCL): $\sum i_k = 0$ at each node.

* Kirchhoff's current law (KCL): $\sum i_k = 0$ at each node. e.g., at node B, $-i_3 + i_6 + i_4 = 0$.

* Kirchhoff's current law (KCL): $\sum i_k = 0 \text{ at each node.}$ e.g., at node B, $-i_3 + i_6 + i_4 = 0$. (We have followed the convention that current *leaving* a node is positive.)

- * Kirchhoff's current law (KCL): $\sum i_k = 0 \text{ at each node.}$ e.g., at node B, $-i_3 + i_6 + i_4 = 0$. (We have followed the convention that current *leaving* a node is positive.)
- * Kirchhoff's voltage law (KVL): $\sum v_k = 0$ for each loop.

- * Kirchhoff's current law (KCL): $\sum i_k = 0 \text{ at each node.}$ e.g., at node B, $-i_3 + i_6 + i_4 = 0$. (We have followed the convention that current *leaving* a node is positive.)
- * Kirchhoff's voltage law (KVL): $\sum v_k = 0$ for each loop. e.g., $v_3 + v_6 - v_1 - v_2 = 0$.

- * Kirchhoff's current law (KCL): $\sum_i i_k = 0 \text{ at each node.}$ e.g., at node B, $-i_3 + i_6 + i_4 = 0$. (We have followed the convention that current *leaving* a node is positive.)
- * Kirchhoff's voltage law (KVL):
 ∑ v_k = 0 for each loop.
 e.g., v₃ + v₆ v₁ v₂ = 0.
 (We have followed the convention that voltage *drop* across a branch is positive.)

Circuit elements

Element	Symbol	Equation	
Resistor	+ v -	v = Ri	
Inductor	+ v -	$v = L \frac{di}{dt}$	
Capacitor	+ v -	$i = C \frac{dv}{dt}$	
Diode	+ v -	to be discussed	
ВЈТ	B C	to be discussed	

	Element	Symbol	Equation
Independent	Voltage source	+ v -	$v(t)=v_s(t)$
	Current source	+ v -	$i(t)=i_s(t)$
Dependent	VCVS	+ v -	$v(t) = \alpha v_c(t)$
	VCCS	+ v -	$i(t) = g v_c(t)$
	CCVS	+ v -	$v(t) = r i_c(t)$
	CCCS	+ v -	$i(t) = \beta i_c(t)$

- * α , β : dimensionless, r: Ω , g: Ω^{-1} or \mho ("mho")
- * The subscript 'c' denotes the controlling voltage or current.

Instantaneous power absorbed by an element

$$P(t) = V_1(t) i_1(t) + V_2(t) i_2(t) + \cdots + V_N(t) i_N(t),$$

where $V_1,\ V_2,$ etc. are "node voltages" (measured with respect to a reference node).

Instantaneous power absorbed by an element

$$P(t) = V_1(t) i_1(t) + V_2(t) i_2(t) + \cdots + V_N(t) i_N(t),$$

where V_1 , V_2 , etc. are "node voltages" (measured with respect to a reference node).

* two-terminal element:

$$V_1 \stackrel{+}{\overset{\vee}{\longrightarrow}} V_2$$

$$P = V_1 i_1 + V_2 i_2$$

= $V_1 i_1 + V_2 (-i_1)$
= $[V_1 - V_2] i_1 = v i_1$

Instantaneous power absorbed by an element

$$P(t) = V_1(t) i_1(t) + V_2(t) i_2(t) + \cdots + V_N(t) i_N(t),$$

where V_1 , V_2 , etc. are "node voltages" (measured with respect to a reference node).

* two-terminal element:

* three-terminal element:

$$P = V_1 i_1 + V_2 i_2$$

= $V_1 i_1 + V_2 (-i_1)$
= $[V_1 - V_2] i_1 = v i_1$

$$P = V_B i_B + V_C i_C + V_E (-i_E)$$

$$= V_B i_B + V_C i_C - V_E (i_B + i_C)$$

$$= (V_B - V_E) i_B + (V_C - V_E) i_C$$

$$= V_{BE} i_B + V_{CE} i_E$$

* A resistor can only absorb power (from the circuit) since v and i have the same sign, making P>0. The energy "absorbed" by a resistor goes in heating the resistor and the rest of the world.

- * A resistor can only *absorb* power (from the circuit) since *v* and *i* have the same sign, making *P* > 0. The energy "absorbed" by a resistor goes in heating the resistor and the rest of the world.
- * Often, a "heat sink" is provided to dissipate the thermal energy effectively so that the device temperature does not become too high.

- * A resistor can only absorb power (from the circuit) since v and i have the same sign, making P > 0. The energy "absorbed" by a resistor goes in heating the resistor and the rest of the world.
- * Often, a "heat sink" is provided to dissipate the thermal energy effectively so that the device temperature does not become too high.
- * A source (e.g., a DC voltage source) can absorb *or* deliver power since the signs of *v* and *i* are independent. For example, when a battery is charged, it absorbs energy which gets stored within.

- * A resistor can only absorb power (from the circuit) since v and i have the same sign, making P > 0. The energy "absorbed" by a resistor goes in heating the resistor and the rest of the world.
- * Often, a "heat sink" is provided to dissipate the thermal energy effectively so that the device temperature does not become too high.
- * A source (e.g., a DC voltage source) can absorb *or* deliver power since the signs of *v* and *i* are independent. For example, when a battery is charged, it absorbs energy which gets stored within.
- A capacitor can absorb or deliver power. When it is absorbing power, its charge builds up. Similarly, an inductor can store energy (in the form of magnetic flux).

$$v_1 = i R_1, \ v_2 = i R_2, \ v_3 = i R_3, \ \Rightarrow \ v = v_1 + v_2 + v_3 = i (R_1 + R_2 + R_3)$$

$$v_1 = i R_1, \ v_2 = i R_2, \ v_3 = i R_3, \Rightarrow v = v_1 + v_2 + v_3 = i (R_1 + R_2 + R_3)$$

* The equivalent resistance is $R_{eq} = R_1 + R_2 + R_3$.

$$v_1 = i R_1, v_2 = i R_2, v_3 = i R_3, \Rightarrow v = v_1 + v_2 + v_3 = i (R_1 + R_2 + R_3)$$

- * The equivalent resistance is $R_{eq} = R_1 + R_2 + R_3$.
- * The voltage drop across R_k is $v \times \frac{R_k}{R_{eq}}$.

$$\begin{split} &i_1 = \textit{G}_1 \, \textit{v}, \ i_2 = \textit{G}_2 \, \textit{v}, \ i_3 = \textit{G}_3 \, \textit{v}, \ \text{where} \ \textit{G}_1 = 1/\textit{R}_1, \ \text{etc.} \\ &\Rightarrow i = i_1 + i_2 + i_3 = \left(\textit{G}_1 + \textit{G}_2 + \textit{G}_3\right) \textit{v} \,. \end{split}$$

$$\begin{array}{l} i_1 = \textit{G}_1 \, \textit{v}, \; i_2 = \textit{G}_2 \, \textit{v}, \; i_3 = \textit{G}_3 \, \textit{v}, \; \text{where} \; \textit{G}_1 = 1/\textit{R}_1, \; \text{etc.} \\ \Rightarrow i = i_1 + i_2 + i_3 = \left(\textit{G}_1 + \textit{G}_2 + \textit{G}_3 \right) \textit{v} \; . \end{array}$$

* The equivalent conductance is $G_{eq} = G_1 + G_2 + G_3$, and the equivalent resistance is $R_{eq} = 1/G_{eq}$.

$$\begin{split} i_1 &= G_1 \, v, \; i_2 = G_2 \, v, \; i_3 = G_3 \, v, \; \text{where} \; G_1 = 1/R_1, \; \text{etc.} \\ \Rightarrow i &= i_1 + i_2 + i_3 = \left(G_1 + G_2 + G_3 \right) v \, . \end{split}$$

- * The equivalent conductance is $G_{eq}=G_1+G_2+G_3$, and the equivalent resistance is $R_{eq}=1/G_{eq}$.
- * The current through R_k is $i imes rac{G_k}{G_{eq}}$.

$$i_1 = G_1 \, v, \; i_2 = G_2 \, v, \; i_3 = G_3 \, v, \; \text{where} \; G_1 = 1/R_1, \; \text{etc.} \ \Rightarrow i = i_1 + i_2 + i_3 = \left(G_1 + G_2 + G_3\right) v \, .$$

- * The equivalent conductance is $G_{eq} = G_1 + G_2 + G_3$, and the equivalent resistance is $R_{eq} = 1/G_{eq}$.
- * The current through R_k is $i imes rac{G_k}{G_{eq}}$.
- * If N=2, we have $R_{eq}=\frac{R_1\,R_2}{R_1+R_2},\ i_1=i\times\frac{R_2}{R_1+R_2},\ i_2=i\times\frac{R_1}{R_1+R_2}.$

$$i_1 = G_1 \, v, \; i_2 = G_2 \, v, \; i_3 = G_3 \, v, \; \text{where} \; G_1 = 1/R_1, \; \text{etc.} \ \Rightarrow i = i_1 + i_2 + i_3 = \left(G_1 + G_2 + G_3\right) v \, .$$

- * The equivalent conductance is $G_{eq} = G_1 + G_2 + G_3$, and the equivalent resistance is $R_{eq} = 1/G_{eq}$.
- * The current through R_k is $i imes rac{G_k}{G_{eq}}$.
- * If N=2, we have $R_{eq}=\frac{R_1\,R_2}{R_1+R_2},\ i_1=i\times\frac{R_2}{R_1+R_2},\ i_2=i\times\frac{R_1}{R_1+R_2}.$
- * If $R_k = 0$, all of the current will go through R_k .

$$i_1 = \frac{6 \text{ V}}{4 \Omega + 2 \Omega} = 1 \text{ A}.$$

$$i_1 = \frac{6 \text{ V}}{4 \Omega + 2 \Omega} = 1 \text{ A}.$$

$$i_2 = i_1 \times \frac{6\Omega}{6\Omega + 3\Omega} = \frac{2}{3}A.$$

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

Home work:

- * Verify that KCL and KVL are satisfied for each node/loop.
- Verify that the total power absorbed by the resistors is equal to the power supplied by the source.

* Take some node as the "reference node" and denote the node voltages of the remaining nodes by $V_1,\ V_2,$ etc.

- * Take some node as the "reference node" and denote the node voltages of the remaining nodes by $V_1,\ V_2,$ etc.
- * Write KCL at each node in terms of the node voltages. Follow a fixed convention, e.g., current *leaving* a node is *positive*.

- * Take some node as the "reference node" and denote the node voltages of the remaining nodes by V_1 , V_2 , etc.
- * Write KCL at each node in terms of the node voltages. Follow a fixed convention, e.g., current leaving a node is positive.

$$\frac{1}{R_1}(V_1 - V_2) - I_0 - k(V_2 - V_3) = 0,$$

$$\frac{1}{R_1}(V_2 - V_1) + \frac{1}{R_3}(V_2 - V_3) + \frac{1}{R_2}(V_2) = 0,$$

$$k(V_2 - V_3) + \frac{1}{R_3}(V_3 - V_2) + \frac{1}{R_4}(V_3) = 0.$$

- * Take some node as the "reference node" and denote the node voltages of the remaining nodes by V_1 , V_2 , etc.
- * Write KCL at each node in terms of the node voltages. Follow a fixed convention, e.g., current leaving a node is positive.

$$\begin{split} \frac{1}{R_1}(V_1-V_2)-I_0-k\left(V_2-V_3\right)&=0\,,\\ \frac{1}{R_1}(V_2-V_1)+\frac{1}{R_3}(V_2-V_3)+\frac{1}{R_2}(V_2)&=0\,,\\ k\left(V_2-V_3\right)+\frac{1}{R_3}(V_3-V_2)+\frac{1}{R_4}(V_3)&=0\,. \end{split}$$

 Solve for the node voltages → branch voltages and currents.

- * Take some node as the "reference node" and denote the node voltages of the remaining nodes by V_1 , V_2 , etc.
- * Write KCL at each node in terms of the node voltages. Follow a fixed convention, e.g., current *leaving* a node is *positive*.

$$\begin{split} \frac{1}{R_1}(V_1-V_2)-I_0-k\left(V_2-V_3\right)&=0\,,\\ \frac{1}{R_1}(V_2-V_1)+\frac{1}{R_3}(V_2-V_3)+\frac{1}{R_2}(V_2)&=0\,,\\ k\left(V_2-V_3\right)+\frac{1}{R_3}(V_3-V_2)+\frac{1}{R_4}(V_3)&=0\,. \end{split}$$

- Solve for the node voltages → branch voltages and currents.
- Remark: Nodal analysis needs to be modified if there are voltage sources.

Mesh analysis

Mesh analysis

* Write KVL for each loop in terms of the "mesh currents" i_1 and i_2 . Use a fixed convention, e.g., voltage drop is positive. (Note that $i_5=i_1-i_2$.)

* Write KVL for each loop in terms of the "mesh currents" i_1 and i_2 . Use a fixed convention, e.g., voltage drop is positive. (Note that $i_5 = i_1 - i_2$.)

$$\begin{split} -V_s + i_1 \, R_1 + \left(i_1 - i_2\right) R_3 &= 0 \,, \\ R_2 \, i_2 + r_1 \left(i_1 - i_2\right) + \left(i_2 - i_1\right) R_3 &= 0 \,. \end{split}$$

* Write KVL for each loop in terms of the "mesh currents" i_1 and i_2 . Use a fixed convention, e.g., voltage drop is positive. (Note that $i_s = i_1 - i_2$.)

$$\begin{split} -V_s + i_1 \, R_1 + (i_1 - i_2) \, R_3 &= 0 \, , \\ R_2 \, i_2 + r_1 \, (i_1 - i_2) + (i_2 - i_1) \, R_3 &= 0 \, . \end{split}$$

* Solve for i_1 and $i_2 \rightarrow$ compute other quantities of interest (branch currents and branch voltages).

* A circuit containing independent sources, dependent sources, and resistors is *linear*, i.e., the system of equations describing the circuit is linear.

- * A circuit containing independent sources, dependent sources, and resistors is *linear*, i.e., the system of equations describing the circuit is linear.
- * The dependent sources are assumed to be linear, e.g., if we have a CCVS with $v=a\,i_c^2+b$, the resulting system will be no longer linear.

- * A circuit containing independent sources, dependent sources, and resistors is *linear*, i.e., the system of equations describing the circuit is linear.
- * The dependent sources are assumed to be linear, e.g., if we have a CCVS with $v = a\,i_c^2 + b$, the resulting system will be no longer linear.
- * For a linear system, we can apply the principle of superposition.

- * A circuit containing independent sources, dependent sources, and resistors is *linear*, i.e., the system of equations describing the circuit is linear.
- * The dependent sources are assumed to be linear, e.g., if we have a CCVS with $v=a\,i_c^2+b$, the resulting system will be no longer linear.
- * For a linear system, we can apply the principle of superposition.
- * In the context of circuits, superposition enables us to consider the *independent* sources one at a time, compute the desired quantity of interest in each case, and get the net result by adding the individual contributions.

- * A circuit containing independent sources, dependent sources, and resistors is *linear*, i.e., the system of equations describing the circuit is linear.
- * The dependent sources are assumed to be linear, e.g., if we have a CCVS with $v=a\,i_c^2+b$, the resulting system will be no longer linear.
- * For a linear system, we can apply the principle of superposition.
- * In the context of circuits, superposition enables us to consider the independent sources one at a time, compute the desired quantity of interest in each case, and get the net result by adding the individual contributions.
- * Caution: Superposition cannot be applied to dependent sources.

st Superposition refers to superposition of response due to independent sources.

- * Superposition refers to superposition of response due to *independent* sources.
- We can consider one independent source at a time, deactivate all other independent sources.

- * Superposition refers to superposition of response due to *independent* sources.
- We can consider one independent source at a time, deactivate all other independent sources.
- * Deactivating a current source $\Rightarrow i_s = 0$, i.e., replace the current source with an open circuit.

- * Superposition refers to superposition of response due to *independent* sources.
- We can consider one independent source at a time, deactivate all other independent sources.
- * Deactivating a current source $\Rightarrow i_s = 0$, i.e., replace the current source with an open circuit.
- * Deactivating a voltage source $\Rightarrow v_s = 0$, i.e., replace the voltage source with a short circuit.

Case 1: Keep V_S , deactivate I_S .

Case 1: Keep V_S, deactivate I_S.

Case 1: Keep V_S, deactivate I_S.

Case 2: Keep I_S , deactivate V_S .

Case 1: Keep V_S, deactivate I_S.

Case 2: Keep I_S , deactivate V_S .

$$i_1^{\text{net}} = i_1^{(1)} + i_1^{(2)} = 3 + 1 = 4 \text{ A}$$

Case 1: Keep V_S, deactivate I_S.

Case 2: Keep I_S , deactivate V_S .

Case 1: Keep V_S , deactivate I_S .

Case 1: Keep V_S, deactivate I_S.

$$\begin{aligned} & \mathsf{KVL:} \ -12 + 3\,\mathsf{i} + 2\,\mathsf{i} + \mathsf{i} = 0 \\ & \Rightarrow \mathsf{i} = 2\,\mathsf{A}\,, \mathsf{v}^{(1)} = 6\,\mathsf{V}\,. \end{aligned}$$

Case 1: Keep V_S, deactivate I_S.

KVL:
$$-12 + 3i + 2i + i = 0$$

 $\Rightarrow i = 2 \text{ A}, \mathbf{v}^{(1)} = 6 \text{ V}.$

Case 2: Keep I_S, deactivate V_S.

Case 1: Keep V_S, deactivate I_S.

$$\begin{aligned} \mathsf{KVL} \colon & -12 + 3\,\mathsf{i} + 2\,\mathsf{i} + \mathsf{i} = 0 \\ \Rightarrow & \mathsf{i} = 2\,\mathsf{A}\,, \mathsf{v}^{(1)} = 6\,\mathsf{V}\,. \end{aligned}$$

Case 2: Keep I_S , deactivate V_S .

$$\mathsf{v}^{\text{net}} = \mathsf{v}^{\left(1\right)} + \mathsf{v}^{\left(2\right)} = 6 + 9 = 15\,\mathsf{V}$$

Case 1: Keep V_S, deactivate I_S.

KVL:
$$-12 + 3i + 2i + i = 0$$

 $\Rightarrow i = 2 \text{ A}, v^{(1)} = 6 \text{ V}.$

Case 2: Keep I_S, deactivate V_S.

$$\begin{split} \text{KVL: } & i + (6+i) \, 3 + 2 \, i = 0 \\ \Rightarrow & i = -3 \, \text{A} \,, \text{v}^{(2)} = (-3+6) \times 3 = 9 \, \text{V} \,. \end{split}$$

Superposition: Why does it work?

KCL at nodes A and B:

$$\begin{split} \frac{1}{R_1}(V_1 - V_s) + \frac{1}{R_2}V_1 + \frac{1}{R_3}(V_1 - V_2) &= 0, \\ -I_s + \frac{1}{R_3}(V_2 - V_1) &= 0. \end{split}$$

Superposition: Why does it work?

KCL at nodes A and B:

$$\begin{split} \frac{1}{R_1}(V_1 - V_s) + \frac{1}{R_2}V_1 + \frac{1}{R_3}(V_1 - V_2) &= 0, \\ -I_s + \frac{1}{R_3}(V_2 - V_1) &= 0. \end{split}$$

Writing in a matrix form, we get (using $G_1 = 1/R_1$, etc.),

$$\left[\begin{array}{cc} G_1+G_2+G_3 & -G_3 \\ -G_3 & G_3 \end{array}\right] \left[\begin{array}{c} V_1 \\ V_2 \end{array}\right] = \left[\begin{array}{c} G_1V_s \\ I_s \end{array}\right]$$

KCL at nodes A and B:

$$\begin{split} \frac{1}{R_1}(V_1 - V_s) + \frac{1}{R_2}V_1 + \frac{1}{R_3}(V_1 - V_2) &= 0, \\ -I_s + \frac{1}{R_3}(V_2 - V_1) &= 0. \end{split}$$

Writing in a matrix form, we get (using $G_1 = 1/R_1$, etc.),

$$\begin{bmatrix} G_1 + G_2 + G_3 & -G_3 \\ -G_3 & G_3 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} G_1 V_s \\ I_s \end{bmatrix}$$
i.e., $\mathbf{A} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} G_1 V_s \\ I_s \end{bmatrix} \rightarrow \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} G_1 V_s \\ I_s \end{bmatrix}$.

$$\left[\begin{array}{c} V_1 \\ V_2 \end{array}\right] = \mathbf{A}^{-1} \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \equiv \left[\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right] \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \,.$$

$$\left[\begin{array}{c} V_1 \\ V_2 \end{array}\right] = \mathbf{A}^{-1} \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \equiv \left[\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right] \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \,.$$

We are now in a position to see why superposition works.

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} m_{11}G_1 & m_{12} \\ m_{21}G_1 & m_{22} \end{bmatrix} \begin{bmatrix} V_s \\ 0 \end{bmatrix} + \begin{bmatrix} m_{11}G_1 & m_{12} \\ m_{21}G_1 & m_{22} \end{bmatrix} \begin{bmatrix} 0 \\ I_s \end{bmatrix} \equiv \begin{bmatrix} V_1^{(1)} \\ V_2^{(1)} \end{bmatrix} + \begin{bmatrix} V_1^{(2)} \\ V_2^{(2)} \end{bmatrix}.$$

$$\left[\begin{array}{c} V_1 \\ V_2 \end{array}\right] = \mathbf{A}^{-1} \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \equiv \left[\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right] \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \,.$$

We are now in a position to see why superposition works.

$$\left[\begin{array}{c} V_1 \\ V_2 \end{array} \right] = \left[\begin{array}{cc} m_{11}G_1 & m_{12} \\ m_{21}G_1 & m_{22} \end{array} \right] \left[\begin{array}{c} V_s \\ 0 \end{array} \right] + \left[\begin{array}{cc} m_{11}G_1 & m_{12} \\ m_{21}G_1 & m_{22} \end{array} \right] \left[\begin{array}{c} 0 \\ I_s \end{array} \right] \equiv \left[\begin{array}{c} V_1^{(1)} \\ V_2^{(1)} \end{array} \right] + \left[\begin{array}{c} V_1^{(2)} \\ V_2^{(2)} \end{array} \right] .$$

The first vector is the response due to V_s alone (and I_s deactivated).

The second vector is the response due to I_s alone (and V_s deactivated).

$$\left[\begin{array}{c} V_1 \\ V_2 \end{array}\right] = \mathbf{A}^{-1} \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \equiv \left[\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right] \left[\begin{array}{c} G_1 V_s \\ I_s \end{array}\right] \,.$$

We are now in a position to see why superposition works.

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} m_{11}G_1 & m_{12} \\ m_{21}G_1 & m_{22} \end{bmatrix} \begin{bmatrix} V_s \\ 0 \end{bmatrix} + \begin{bmatrix} m_{11}G_1 & m_{12} \\ m_{21}G_1 & m_{22} \end{bmatrix} \begin{bmatrix} 0 \\ I_s \end{bmatrix} \equiv \begin{bmatrix} V_1^{(1)} \\ V_2^{(1)} \end{bmatrix} + \begin{bmatrix} V_1^{(2)} \\ V_2^{(2)} \end{bmatrix}.$$

The first vector is the response due to V_s alone (and I_s deactivated).

The second vector is the response due to I_s alone (and V_s deactivated).

All other currents and voltages are linearly related to V_1 and V_2

 \Rightarrow Any voltage (node voltage or branch voltage) or current can also be computed using superposition.

* V_{Th} is simply V_{AB} when nothing is connected on the other side, i.e., $V_{Th} = V_{oc}$.

- * V_{Th} is simply V_{AB} when nothing is connected on the other side, i.e., $V_{Th} = V_{oc}$.
- * R_{Th} can be found by different methods.

Method 1:

* Deactivate all independent sources.

Method 1:

* Deactivate all independent sources.

- * Deactivate all independent sources.
- * R_{Th} can often be found by inspection.

- * Deactivate all independent sources.
- * R_{Th} can often be found by inspection.
- * R_{Th} may be found by connecting a *test* source.

- * Deactivate all independent sources.
- * R_{Th} can often be found by inspection.
- * R_{Th} may be found by connecting a *test* source.

- * Deactivate all independent sources.
- * R_{Th} can often be found by inspection.
- * R_{Th} may be found by connecting a *test* source.

Method 2:

* Find Voc.

Method 2:

- * Find Voc.
- * Find I_{SC} .

Method 2:

- * Find Voc.
- * Find I_{sc}.
- $* R_{Th} = \frac{V_{oc}}{I_{sc}}.$

Method 2:

- * Find Voc.
- * Find Isc.
- * $R_{Th} = \frac{V_{oc}}{I_{sc}}$.
- * Note: Sources are not deactivated.

$$V_{Th}: \begin{array}{c} 6\Omega \\ \\ V_{Th}: \\ \\ V_{OC} = 9V \times \frac{3\Omega}{6\Omega + 3\Omega} \\ \\ = 9V \times \frac{1}{3} = 3V \end{array}$$

* Power "transferred" to load is, $P_L = i_L^2 R_L$.

- * Power "transferred" to load is, $P_L = i_L^2 R_L$.
- * For a given black box, what is the value of R_L for which P_L is maximum?

- * Power "transferred" to load is, $P_L = i_L^2 R_L$.
- * For a given black box, what is the value of R_L for which P_L is maximum?
- * Replace the black box with its Thevenin equivalent.

- * Power "transferred" to load is, $P_L = i_L^2 R_L$.
- * For a given black box, what is the value of R_L for which P_L is maximum?
- * Replace the black box with its Thevenin equivalent.

- * Power "transferred" to load is, $P_L = i_L^2 R_L$.
- * For a given black box, what is the value of R_L for which P_L is maximum?
- * Replace the black box with its Thevenin equivalent.

*
$$i_L = \frac{V_{Th}}{R_{Th} + R_L},$$

$$P_L = V_{Th}^2 \times \frac{R_L}{(R_{Th} + R_L)^2}.$$

- * Power "transferred" to load is, $P_I = i_I^2 R_I$.
- * For a given black box, what is the value of R_L for which P_L is maximum?
- * Replace the black box with its Thevenin equivalent.

*
$$i_L = \frac{V_{Th}}{R_{Th} + R_L}$$
,
 $P_L = V_{Th}^2 \times \frac{R_L}{(R_{Th} + R_L)^2}$.

* For $\frac{dP_L}{dR_L} = 0$, we need

$$\frac{(R_{Th}+R_L)^2-R_L\times 2\,(R_{Th}+R_L)}{(R_{Th}+R_L)^4}=0\,,$$

i.e.,
$$R_{Th} + R_L = 2 R_L \Rightarrow R_L = R_{Th}$$
.

- * Power "transferred" to load is, $P_L = i_L^2 R_L$.
- * For a given black box, what is the value of R_L for which P_L is maximum?
- * Replace the black box with its Thevenin equivalent.

*
$$i_L = \frac{V_{Th}}{R_{Th} + R_L}$$
, $P_L = V_{Th}^2 \times \frac{R_L}{(R_{Th} + R_L)^2}$.

* For $\frac{dP_L}{dR_L} = 0$, we need

$$\frac{(R_{Th} + R_L)^2 - R_L \times 2(R_{Th} + R_L)}{(R_{Th} + R_L)^4} = 0,$$

i.e.,
$$R_{Th} + R_L = 2 R_L \Rightarrow R_L = R_{Th}$$
.

Maximum power transfer: example

Find R_L for which P_L is maximum.

Maximum power transfer: example

Find ${\rm R}_{\rm L}$ for which ${\rm P}_{\rm L}$ is maximum.

$$\begin{array}{c|c} \mathsf{R}_{\mathsf{Th}} \colon & 3\Omega & 2\Omega \\ \hline \mathsf{R}_1 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Find R_L for which P_L is maximum.

$$\begin{aligned} \mathsf{R}_{\mathsf{Th}} &= (\mathsf{R}_1 \parallel \mathsf{R}_2) + \mathsf{R}_3 = (3 \parallel 6) + 2 \\ &= 3 \times \left(\frac{1 \times 2}{1 + 2}\right) + 2 = 4 \,\Omega \end{aligned}$$

 $= 3 \times \left(\frac{1 \times 2}{1+2}\right) + 2 = 4 \Omega$

$$= 3 \times \left(\frac{1 \times 2}{1 + 2}\right) + 2 = 4\Omega$$

 3Ω

 2Ω

Find R_L for which P_L is maximum.

 $V_{oc} = V_{oc}^{(1)} + V_{oc}^{(2)} = 8 + 8 = 16 \text{ V}$

 $V_{oc}^{(1)} = 12 \times \frac{6}{9} = 8 \text{ V}$

 $V_{oc}^{(2)} = 4 \,\Omega \times 2 \,A = 8 \,V$

Find R_L for which P_L is maximum.

$$= 3 \times \left(\frac{1 \times 2}{1 + 2}\right) + 2 = 4\,\Omega$$

R_{Th A}

 2Ω

 3Ω

Voc:

$$P_L$$
 is maximum when $R_L=R_{Th}=4\,\Omega$
$$\Rightarrow i_L=V_{Th}/(2\,R_{Th})=2\,A$$

Note: i = 0 (since there is no return path).

$$\begin{aligned} v_{AB} &= v_A - v_B \\ &= (v_A - v_C) + (v_C - v_B) \\ &= v_{AC} + v_{CB} \\ &= 24 \, V + 36 \, V = 60 \, V \end{aligned}$$

Note: i = 0 (since there is no return path).

$$\begin{aligned} v_{AB} &= v_A - v_B \\ &= (v_A - v_C) + (v_C - v_B) \\ &= v_{AC} + v_{CB} \\ &= 24 \, v + 36 \, v = 60 \, v \end{aligned}$$

$$V_{Th} = 60 V$$

 $R_{Th} = 7 \Omega$

60 V

Connect a voltage source between A and B.

Plot i versus v.

 $V_{\text{OC}} = \text{intercept}$ on the v-axis.

 $I_{\text{SC}} = \text{intercept}$ on the i-axis.

Connect a voltage source between A and B.

Plot i versus v.

 $V_{\text{OC}} = \text{intercept on the v-axis.}$

 $I_{\text{SC}}\!=\!\text{intercept}$ on the i-axis.

Connect a voltage source between A and B.

Plot i versus v.

 $V_{\text{OC}} = \text{intercept on the v-axis.}$

 $I_{\text{SC}}\!=\!\text{intercept}$ on the i-axis.

$$V_{OC} = 60 \ V, \ I_{SC} = 8.5714 \ A$$

$$R_{\mbox{Th}} = \mbox{V}_{\mbox{sc}} / \mbox{I}_{\mbox{sc}} = 7~\Omega$$

Connect a voltage source between A and B.

Plot i versus v.

 $V_{\text{OC}} = \text{intercept on the v-axis.}$

 $I_{SC} = intercept$ on the i-axis.

$$v \text{ (Volt)}$$

$$V_{OC} = 60 \text{ V}, \text{ } I_{SC} = 8.5714 \text{ A}$$

$$R_{Th} = V_{SC}/I_{SC} = 7 \Omega$$

$$V_{Th} = 60 \text{ V}$$

$$R_{Th} = 7 \Omega$$

$$7 \Omega$$

$$R_{Th} = 7 \Omega$$

* Consider the open circuit case.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$.

* Consider the open circuit case.

The venin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the open circuit case.

Thevenin circuit:
$$V_{AB} = V_{Th}$$
. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

* Consider the open circuit case.

The venin circuit:
$$V_{AB} = V_{Th}$$
. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

Thevenin circuit: $I_{sc} = V_{Th}/R_{Th}$.

* Consider the open circuit case.

The venin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

Thevenin circuit: $I_{sc} = V_{Th}/R_{Th}$. Norton circuit: $I_{sc} = I_N$.

* Consider the open circuit case.

The venin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

Thevenin circuit: $I_{sc} = V_{Th}/R_{Th}$. Norton circuit: $I_{sc} = I_N$. $\Rightarrow R_{Th} = R_N$.

$$i = 3 A \times \frac{5}{5+10}$$
$$= 1 A$$

Home work:

* Find i by superposition and compare.

Home work:

- * Find i by superposition and compare.
- * Compute the power absorbed by each element and verify that $\sum P_i = 0$.