Exercici 3

Sigui F(u,v) un *height field*. Si volem aplicar la tècnica de *bump mapping*, indica clarament què podem emmagatzemar per cada texel del bump map:

- (a) Si només disposem d'una textura amb un canal
- (b) Si disposem d'una textura amb dos canals

Exercici 4

Amb la imatge de l'esquerra, volem texturar el quad del mig, per obtenir la imatge de la dreta:

Completa el següent VS per obtenir el resultat desitjat:

```
void main() {
  vtexCoord =

  glPosition = vec4(vertex, 1.0);
}
```

Exercici 5

Tenim un FS que aplica una textura a l'objecte. Indica clarament quin efecte té incrementar el valor del uniform offset en la imatge resultant (suposa mode GL_REPEAT):

```
uniform int offset = 0;
...
gl_FragColor = texture(sampler, vtexcoord + vec2(float(offset))
```

Exercicis 6, 7, 8 i 9

Indica quina és la matriu (o **producte de matrius**) que aconsegueix la conversió demanada, **usant la notació següent** (vigileu amb l'ordre en que multipliqueu les matrius):

M = modelMatrix	M ⁻¹ = modelMatrixInverse
V = viewingMatrix	V ⁻¹ = viewingMatrixInverse
P = projectionMatrix	P ⁻¹ = projectionMatrixInverse
N = normalMatrix	I = Identitat
a) Pas de la normal de object space a	eye space
b) Pas d'un vèrtex de eye space a clip	space
c) Pas d'un vèrtex de eye space a woi	ild space
d) Pas d'un vèrtex de clip space a wo	rld space
e) Pas d'un vèrtex de object space a d	clip space
f) Pas d'un vèrtex de object space a n	nodel space
g) Pas d'un vèrtex de object space a v	vorld space
h) Pas d'un vèrtex de world space a e	ye space
Exercici 10	
Indica, en la notació estudiada a class	se, L(D S)*E, quins light paths són suportats per:
(a) Raytracing classic	
(b) Path tracing	

Exercicis 11 i 12

Amb la notació de la figura, indica, en el cas de Ray-tracing

- (a) Quin vector és paral·lel al raig primari
- (b) Quin vector té la direcció del shadow ray?
- (c) Quin vector és paral·lel al raig reflectit?
- (d) Què dos vectors determinen la contribució de Phong?

Exercici 13

Escriu l'equació general del rendering, amb la formulació vista a classe, indicant clarament el tipus de radiància als diferents termes.

Exercici 14

Considerant la figura:

- (a) Amb quin algorisme s'ha generat?
- (b) Quin problema té clarament la imatge?

Exercici 15

Quina unitat de radiometria, mesurada en W/m² o en lux, es defineix com flux per unitat d'àrea?

Exercici 16

Amb la notació de la figura:

(a) Quin vector cal usar per indexar un cube map, en el cas de cube mapping?

(b) Quin dos vectors permeten calcular el terme de Lambert?

Exercici 17

Indica com poder evitar aquest problema de la simulació d'ombres amb projecció:

Exercici 18

Explica en quines condicions la tècnica de mip mapping produeix una millora substancial de la qualitat de la imatge resultant.

Exercici 19

Què fa aquesta matriu?

- (a) Projecta un punt sobre el pla (a,b,c,d) respecte una llum a l'origen.
- (b) Projecció respecte una font direccional situada al punt homogeni (a,b,c,d)
- (c) Reflexió respecte un pla (a,b,c,d)
- (d) Projecció ortogonal sobre el pla (a,b,c,d)

Exercici 20

Indica quina és la diferència més important entre els models d'il·luminació local i els models d'il·luminació global.