Power of a Statistical Test (8.5)

Type I Error: Review

Type I Error: Reject H₀ when H₀ is true

Hypothesis testing:

Set maximum acceptable rate of Type I error:

 α <- significance level

Choose a test with the most power to detect H_A .

Power

The power of a statistical test is the probability that the test correctly rejects H_0 (when H_A is true).

The **power** of a statistical test is related to Type II error.

 $^{\Box}$ β is the probability of Type II error

Power =
$$1 - P[Type | I | Error]$$

= $1 - \beta$

Type I and Type II Errors

Type I and Type II Errors

Example:

 $H_0: \mu = 100$ $H_A: \mu > 100$

$$\sigma$$
 = 10, n = 100

Define a rejection region at α = 0.01.

Power Function

The power function shows the probability of rejecting H_0 at different values of θ .

Note: The power function is sometimes denoted differently by different people. E.g.: $\beta(\theta)$, $B(\theta)$, or $K(\theta)$.

- The β in this power function above is **not** the same as the β for type II error.
 - β is the name (letter) of the power function.
 - Need to look at context
- Textbook sometimes calls $\beta(\theta)$ as "K(μ)" when dealing with the mean.

7

Example 8.5-2

Let X_1, X_2, \ldots, X_n be a random sample $\sim N(\mu, 100)$. Let n = 25.

Suppose we want to test whether the true mean is 60 (H_0) versus if it is greater than 60 (H_A).

$$H_0$$
: $\mu = 60$

$$H_{\rm A}$$
: $\mu > 60$

Test statistic:

Suppose we choose a test that reject H_0 if and only if $\bar{x} \ge 62$.

What are the consequences of this test (what does the power curve look like)?

Power Function

If the true mean under H_A is μ , and $X \sim N(\mu, 100)$, then $\overline{X} \sim N(\mu, 100/n) = N(\mu, 4)$

 9° The probability of rejecting H_0 is given by

$$\rightarrow$$
 K(μ) = P[$\overline{X} \ge 62$; μ]

$$= P\left[\frac{\bar{X} - \mu}{2} \ge \frac{62 - \mu}{2}; \mu\right] = P\left[Z \ge \frac{62 - \mu}{2}; \mu\right]$$

Table 8.5-1	Values of the power function
μ	$K(\mu)$
60	0.1587
61	0.3085
62	0.5000
63	0.6915
64	0.8413
65	0.9332
66	0.9772

Ideal power function?

In the previous example, what would an ideal		
power function look like?		

Assume that the number of grams of caffeine that Albert ingests every day follows an approximately normal distribution with unknown mean and standard deviation 16.

Let n = 16, $\alpha = 0.01$

Test H_0 : $\mu = 100$ vs H_A : $\mu > 100$.

Define a rejection region for H₀.

What is the power at μ = 108?

Power =
$$P[\overline{X} \ge 109.304 \mid \mu = 108]$$

= $P[Z \ge \frac{109.304 - 108}{16/\sqrt{16}}] = P[Z \ge 0.326]$
= 0.3722

What if we used $\alpha = 0.05$?

Cutoff = 106.58, Power = $P[\bar{X} \ge 106.58] = 0.6404$

Suppose we have a normally distributed random sample with n = 16, s = 8.

We wish to test H_0 : $\mu = 50$ vs H_A : $\mu \neq 50$.

What is the power of a level $\alpha = 0.05$ test?

Suppose we have a normally distributed random sample with n = 36.

We wish to test H_0 : $\mu = 50$ vs H_A : $\mu \neq 50$.

What is the power of a level $\alpha = 0.05$ test?

