O co chodzi z tymi drzewami?

Jasiek Marcinkowski 30 grudnia 2010

Streszczenie

Na ćwiczeniach z logiki (1 XII 2010) opowiadałem dowód twierdzenia, że świat drzew skończonych uporządkowanych przez homeomorfizm jest wqo. Mam wrażenie, iż większość słuchaczy (jeśli nie wszyscy) spała. Gdy czytałem pracę, z której ten dowód pochodzi, robiłem sobie notatki. Myślę, że jeśli ktoś chce rozumieć, mogą być one użyteczne.

1. Drzewa

Graf **G** to skończony zbiór V(G) wierzchołków i $E(G) \subseteq V(G) \times V(G)$ - zbiór krawędzi (skierowanych). Mówimy, że b jest dzieckiem a, jeśli E(G) zawiera parę $\langle a,b \rangle$, czyli istnieje krawędź z a do b. Nazywamy b przodkiem a, gdy da się dojść wzdłuż krawędzi z a do b. W szczególności każdy wierzchołek jest swoim własnym przodkiem. Graf T będziemy nazywać drzewem, gdy istnieje taki wierzchołek $\rho(T)$ zwany korzeniem, że dla każdego $\xi \in V(T)$ istnieje jedyna ścieżka z $\rho(T)$ do ξ (czyli, w szczególności ξ jest przodkiem $\rho(T)$).

Homeomorfizm z T w T' (T i T' są drzewami) to funkcja różnowartościowa $\phi:V(T)\to V(T')$, że dla każdego $\xi\in V(T)$ obrazy dzieci ξ przez ϕ są przodkami parami różnych dzieci $\phi(\xi)$. Zbiór drzew quasi-porządkujemy podle zasady, że $T\leqslant_T T'$, gdy istnieje homeomorfizm z T w T'.

2. Trochę przydatnych definicji

Będziemy rozumieć, że Q ze wszystkimi możliwymi primami, dingsami, itd. oznacza zawsze zbiór quasi-uporządkowany przez relację \leqslant_Q z tymi samymi znaczkami.

- 1. Jeśli $A,B\subseteq Q,$ to $f:A\to B$ jest funkcją niemalejącą, jeśli $\forall_{a\in A}\ a\leqslant_Q f(a)$
- 2. Zbiór SQ będzie zbiorem skończonych podzbiorów Q. Jest on quasi-uporządkowany wedle zasady, że jeśli $A, B \in SQ$, czyli A i B są skończonymi podzbiorami Q, to $A \leqslant_{SQ} B \Leftrightarrow \exists_{f:A} \xrightarrow{1-1} B$, że f jest niemalejąca.
- 3. Iloczyn kartezjański $Q \times Q'$ jest quasi-uporządkowany na zasadzie, że $\langle q_1, q_1' \rangle \leqslant_{Q \times Q'} \langle q_2, q_2' \rangle \Leftrightarrow q_1 \leqslant_{Q} q_2 \wedge q_1' \leqslant_{Q'} q_2'$.
- 4. Gałąź (branch) z korzeniem v, to poddrzewo drzewa, w którym v jest wierzchołkiem. Zawiera ono wierzchołek v jako korzeń i wszystko pod nim.

3. **Lematy**

Lemat 1 Jeśli Q i Q' są well-quasi-uporządkowane, to ich iloczyn kartezjański $Q \times Q'$ jest również well-quasi.

Dowód: Dostajemy ciąg $\langle a_1,b_1\rangle,\langle a_2,b_2\rangle,\langle a_3,b_3\rangle,\ldots$ Chcemy pokazać, że na pewno jest on good, czyli istnieją i i j, takie że $i\geqslant j$ oraz $\langle a_i,b_i\rangle\geqslant_{Q\times Q'}\langle a_j,b_j\rangle$. Patrzymy sobie na ciąg a_i . Łatwo pokazać, że jest w nim nieskończony podciąg niemalejący. Na przykład tak: Element a_m ciągu a_i nazwiemy ostatecznym, gdy $\forall_{l\in\mathbb{N}}\ l>m\Rightarrow a_l\not\geqslant_Q a_m$. Zauwazmy, że jest skończenie wiele elementów ostatecznych. W przeciwnym wypadku możnaby je ustawić w bad sequence, co przeczyłoby temu, że Q jest \mathbf{wqo} . W takim razie jest jakaś pozycja w, że żaden z dalszych elementów ciągu nie jest ostateczny. To znaczy, że dla każdego istnieje po prawej nie mniejszy. W takim razie potrafimy ułożyć nieskończony podciąg niemalejący. Nazwijmy go a_{p_k} .

Skoro Q' jest **wqo**, to w ciągu b_{p_k} (będącym podciągiem b_i zawierającym tylko elementy odpowiadające tym z nieskończonego rosnącego a_{p_k}) jest para i < j, taka że $b_{p_i} \leqslant_{Q'} b_{p_j}$, czyli $\langle a_{p_i}, b_{p_i} \rangle \leqslant_{Q \times Q'} \langle a_{p_j}, b_{p_j} \rangle$.

Lemat 2 Jeśli $\langle Q, \leqslant_Q \rangle$ jest wqo, to $\langle SQ, \leqslant_{SQ} \rangle$ też jest wqo.

Dowód: Zakładamy nie-wprost, że istnieje *bad sequence* w SQ. Wybieramy zbiory A_i będące elementami *bad sequence*. Robimy to w następujący sposób:

- Najpierw wybieramy jakiś A_1 o możliwie najmniejszej mocy spośród wszystkich pierwszych wyrazów bad sequences.
- Wybieramy A_2 o możliwie najmniejszej mocy spośród wszystkich drugich wyrazów ciągów zaczynających się od wybranego wcześniej A_1 .

• ...

Mamy w ten sposób bad sequence A_1, A_2, A_3, \ldots Oczywiście, żadne A_i nie jest puste, bo istniałaby z niego funkcja różnowartościowa w każde inne i ciąg nie byłby zły (patrz: definicja porządku). W takim razie w każdym A_i możemy wybrać jakiś element a_i . Niech ciąg $B_i = A_i \setminus \{a_i\}^1$.

I teraz będzie zabawne ...

Dowód: (ciąg dalszy) Niech ciąg liczb naturalnych p_k (różnowartościowy, niekoniecznie rosnący ale p_1 musi być jego najmniejszym elementem) będzie taki, że $B_{p_1}, B_{p_2}, B_{p_3}, \ldots$ jest bad sequence. W takim razie również ciąg $A_1, A_2, \ldots, A_{p_1-1}, B_{p_1}, B_{p_2}, \ldots$ też jest bad sequence, bo jeśli jakieś $A_i \leq_{SQ} B_{p_j}$ (czyli istnieje różnowartościowa funkcja niemalejąca z $A_i \le B_{p_j}$) to $A_i \leq_{SQ} A_{p_j}$ (ta sama funkcja). Doszliśmy w ten sposób do sprzeczności z założeniem powziętym przy budowaniu ciągu A_i , ponieważ $|B_{p_1}| < |A_{p_1}|$. Wniosek z tego taki, że nie istnieje nasz ciąg p_k .

Przechodzimy nad tym do porządku dziennego i kroczymy dalej ku szczęśliwemu rozwiązaniu.

Dowód: (niestrudzenie) Niech $\mathfrak{B} = \{B_i \mid i \in \mathbb{N}_+\}$ będzie rodziną zbiorów B_i . Jest ona wqo, co pokażemy szybkim rozumowaniem nie-wprost. Wyobraźmy sobie, że w rodzinie \mathfrak{B} znajdziemy bad sequence. Oczywiście, możemy wybrać z niego podciąg, taki że pierwszy element ma najmniejszy indeks (i ten podciąg naturalnie też jest bad)².

Skoro $\langle \mathfrak{B}, \leq_{SQ} \rangle$ i $\langle Q, \leq_Q \rangle$ są **wqo**, to na mocy Lematu 1, ich iloczyn kartezjański $\langle \mathfrak{B} \times Q, \leq_{SQ \times Q} \rangle$ też jest **wqo**. W takim razie każdy ciąg nieskończony elementów tego iloczynu kartezjańskiego jest dobry, a w szczególności dobry jest ciąg $\langle a_1, B_1 \rangle, \langle a_2, B_2 \rangle, \langle a_3, B_3 \rangle, \ldots$ Oznacza to, że $\exists_{i,j \in \mathbb{N}} i > j \wedge B_i \geqslant_{SQ} B_j \wedge a_i \geqslant_Q a_j$. Nierówność między B_i i B_j oznacza istnienie niemalejącej funkcji $f: B_j \xrightarrow[1-1]{} B_i$. Ustalając $f(a_j) = a_i$ uzyskamy niemalejącą funkcję $A_j \xrightarrow[1-1]{} A_i$, czyli $A_i \geqslant_{SQ} A_j$, co przeczy założeniu, że ciąg A_k był bad.

4. Właściwe twierdzenie

Twierdzenie 4.1 Zbiór drzew skończonych quasi-uporządkowany wedle zasady opisanej w sekcji 1. jest wqo.

Strategia dowodzenia będzie bardzo podobna, jak przy **Lemacie 2**. Założymy nie-wprost istnienie *bad sequence*, weźmiemy sobie jakiś taki szczególny ciąg (najmniejszy w jakimś sensie) i pokażemy, że *nie*, *nie*, *nie*...! Potrafimy pokazać w nim dwa elementy, że ten bardziej na lewo jest mniejszy od tego na prawo, czyli ciąg nie jest *bad*. No to...

¹Pojawia się tu pewien konflikt skrótów notacyjnych, bo B_i oznacza jednocześnie ciąg i i-ty element ciągu $\{B_i\}_{i=1}^{\infty}$. To chyba nie jest wielki problem?

 $^{^2}$ W gruncie rzeczy, z tw. Ramsey'a wiemy, że umiemy z niego wybrać nawet podciąg o rosnących numerach indeksów.

Dowód: Zakładamy nie-wprost, że istnieje bad sequence drzew skończonych. Niech T_1 będzie dowolnym spośród tych drzew zaczynających bad sequences, które mają najmniej wierzchołków. Niech T_2 będzie dowolnym mającym najmniej wierzchołków spośród drzew będących drugimi elementami bad sequences zaczynających się od T_1 i tak dalej, otrzymujemy ciąg $T_1, T_2, T_3, T_4, \ldots$ Niech B_i będzie zbiorem gałęzi, których korzenie to dzieci korzenia T_i .

Podobnie, jak w lemacie drugim stworzyliśmy ciąg zbiorów $\{B_i\}_{i=1}^{\infty}$. Tutaj B_i jest zbiorem drzew, które powstaną z drzewa T_i w wyniku urwania korzenia.

Dowód: (kontynuacja) Niech $p_k \in \mathbb{N}$ będzie ciągiem (niekoniecznie rosnącym, ale pierwszy element ma być minimalny), że możemy sobie wybrać z każdego zbioru B_{p_k} (z podciągu ciągu B_i) takie drzewo R_k , że zbudowany ciąg $\{R_i\}_{i=1}^{\infty}$ jest bad sequence. Wtedy również ciąg $T_1, T_2, T_3, T_4, \ldots, T_{p_1-1}, R_1, R_2, R_3, \ldots$ też jest bad. Wynika to z faktu, że oczywiście nie ma żadnej niechcianej relacji między elementami $\{T_i\}_{i=1}^{p_1-1}$, bo ciąg $\{T_i\}_{i\in\mathbb{N}_+}$ jest z założenia bad sequence. Podobnie rzecz się ma w odniesieniu do elementów ciągu R_k . Istnieje więc tylko ewentualne niebezpieczeństwo, że któryś T_a (przy $1 \le a \le p_1 - 1$) jest mniejszy (mówimy o relacji $\le T$ oczywiście) od jakiegoś R_b ($b \in \mathbb{N}_+$). Zauważmy jednak, że R_b jest gałęzią T_{p_b} , jeśli więc (odnosząc się do definicji porządku $\le T$) istnieje homeomorfizm z $V(T_a)$ w $V(R_b)$ to ten sam homeomorfizm powoduje nierówność $T_a \le T$ T_{p_b} sprzeczną z naszym założeniem o ciągu $\{T_i\}$.

Wiemy w takim razie, że nasz nowy ciąg, złożony z p_1-1 elementów ciągu T_i a po nich już z R-ów, jest bad.

Dowód: (jedziemy dalej) Ciąg $T_1, T_2, T_3, \ldots, T_{p_1-1}, R_1, R_2, R_3, \ldots$ nie może być bad sequence, bo jego element R_1 ma mniej wierzchołków niż T_{p_1} , a ten ostatni został przez nas wybrany jako mający wierzchołków możliwie najmniej spośród będących na tej pozycji i poprzedzanych przez $T_1, T_2, \ldots, T_{p_1-1}$. Niech $\mathfrak{B} = \bigcup_{i=1}^{\infty} B_i$. Z zaobserwowanej przed chwilą sprzeczności wynika, że nie da się wybrać spośród elementów \mathfrak{B} ciągu drzew R_i , że R_1 pochodzi ze zbioru B o minimalnym indeksie i będącego bad sequence. Krótkim rozumowaniem nie-wprost pokażemy teraz, iż $\langle \mathfrak{B}, \leqslant_T \rangle$ jest well-quasi-uporządkowany.

Załóżmy, że spośrod elementów \mathfrak{B} da się wybrać bad sequence W_i . Nad każdym elementem tego ciągu zapiszmy z którego B się wywodzi. Niech liczba znad pierwszego elementu nazywa się p. Każdy element ciągu B_i był skończonym zbiorem, więc usuwając z ciągu $\{W_i\}_{i=2}^{\infty}$ elementy wypisane pod liczbami mniejszymi niż p, usuniemy ich tylko skończoną liczbę, więc zostanie nam nieskończony podciąg, a pierwszy element będzie miał w nim minimalny indeks. Znowu sprzeczność. Wynika z niej, że $\langle \mathfrak{B}, \leqslant_T \rangle$ jest wqo.

Z lematu drugiego wiemy, że $\langle S\mathfrak{B}, \leqslant_{S\mathfrak{B}} \rangle$ też jest wqo.

I teraz już będzie samo odwoływanie się do definicji.

Dowód: (już końcówka) Skoro $\langle S\mathfrak{B}, \leqslant_{S\mathfrak{B}} \rangle$, to jakikolwiek weźmiemy ciąg skończonych podzbiorów \mathfrak{B} , to jest on good sequence. Weźmy w takim razie, dobrze nam znany, B_1, B_2, B_3, \ldots Skoro jest on good, to istnieją $l, r \in \mathbb{N}_+$, że $B_l \leqslant_{S\mathfrak{B}} B_r$. Z **definicji 2.** istnieje niemalejąca funkcja różnowartościowa $f: B_l \to B_r$. Z **definicji 1.** $\forall_{R \in B_l} R \leqslant_T f(R)$. Z **definicji quasi-porządku na drzewach** dla każdego $R \in B_l$ istnieje **homeomorfizm** ψ_R z V(R) w V(f(R)). Przypomnijmy sobie, że zbiór B_i to zbiór gałęzi "z pierwszego piętra" drzewa T_i . W takim razie z każdej takiej gałęzi drzewa T_l istnieje homeomorfizm w osobną gałąź "z pierwszego piętra" drzewa T_r . Możemy te homeomorfizmy połączyć w jeden homeomorfizm ϕ , poprzez doczepienie z powrotem korzenia $\rho(T_l)$

³Czyli gałęzi drzewa D, której korzeń jest synem $\rho(T)$.

do drzewa T_l , korzenia $\rho(T_r)$ do drzewa T_r i ustalenie $\phi\left(\rho(T_l)\right) = \rho(T_r)$ (dla pozostałych wierzchołków funkcja ϕ ma się zachowywać tak, jak opisane wyżej homeomorfizmy ψ_R). Pokazaliśmy więc, że $T_l \leqslant_T T_r$, co przeczy założeniu, że ciąg $\{T_i\}$ jest bad sequence i dowodzi twierdzenia.