Using the Transformer

BERT – Architecture

Learning goals

- Understand the use of the transformer encoder in this model
- Understand the architectural components

2013 - word2vec

Tomas Mikolov et al. publish four papers on vector representations of words constituting the word2vec framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

2013

2013 - word2vec

Tomas Mikolov et al. publish four papers on vector representations of words constituting the word2vec framework.

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

2013

01/2018

lanuary 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A Unidirectional contextual model

2013 - word2vec

Tomas Mikolov et al. publish four papers on vector representations of words constituting the word2vec framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

February 2018 - ELMo

Guys from AllenNLP developed a bidirectionally contextual framework by proposing ELMo (Embeddings from Language Models; Peters et al., 2018).

Embeddings from this architecture are the (weighted) combination of the intermediate-layer representations produced by the biLSTM layers.

2013

01/2018 > 02/2018

lanuary 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A Unidirectional contextual model

2013 - word2vec

Tomas Mikolov et al. publish four papers on vector representations of words constituting the word2vec framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

February 2018 - ELMo

Guys from AllenNLP developed a bidirectionally contextual framework by proposing ELMo (Embeddings from Language Models; Peters et al., 2018).

Embeddings from this architecture are the (weighted) combination of the intermediate-layer representations produced by the biLSTM layers.

2013

01/2018 22/2018

06/2018

January 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A Unidirectional contextual model

June 2018 - OpenAl GPT

Radford et al., 2018 abandon the use of LSTMs. The combine multiple Transformer decoder block with a standard language modelling objective for pre-training.

Compared to ELMo it is just unidirectionally contextual, since it uses only the decoder side of the Transformer. On the other hand it is end-to-end trainable (cf. ULMFIT) and embeddings do not have to be extracted like in the case of ELMo.

2013 - word2vec

Tomas Mikolov et al. publish four papers on vector representations of words constituting the word2vec framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

February 2018 - ELMo

Guys from AllenNLP developed a bidirectionally contextual framework by proposing ELMo (Embeddings from Language Models; Peters et al., 2018).

Embeddings from this architecture are the (weighted) combination of the intermediate-layer representations produced by the biLSTM layers.

October 2018 - BERT

BERT (Devlin et al., 2018) is a bidirectional contextual embedding model purely relying on Self-Attention by using multiple Transformer encoder blocks.

BERT (and its successors) rely on the Masked Language Modelling objective during pre-training on huge unlabelled corpora of text.

2013

01/2018

02/2018 06/2018

10/2018

January 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A Unidirectional contextual model

June 2018 - OpenAI GPT

Radford et al., 2018 abandon the use of LSTMs. The combine multiple Transformer decoder block with a standard language modelling objective for pre-training.

Compared to ELMo it is just unidirectionally contextual, since it uses only the decoder side of the Transformer. On the other hand it is end-to-end trainable (cf. ULMFiT) and embeddings do not have to be extracted like in the case of FLMo.

CONTEXT: ULMFIT AND GPT

Shortcomings of ELMo:

- No adaption of the Embeddings to target domain/task
- Sequential nature of LSTMs: Not fully parallelizable

Alleviations/Alternatives:

- ULMFiT Howard and Ruder, 2018 is a uni-directional LSTM which is fine-tuned as a whole model on data from the target domain/task.
- GPT Radford et al., 2018 is a Transformer decoder which is fine-tuned as a whole model on data from the target domain/task.

BERT: KEY FACTS

Bidirectional Encoder Representations from Transformers:

- Bidirectionally contextual model
 - \rightarrow The embeddings of a single token depend on its left- and on its right-side context (similar to ELMo, but better)
- Introduces new self-supervised objective(s)
 - → MLM as necessity for the architecture to work
 - → Next-Sentence-Prediction as complementary objective (cf. next section)
- Completely replaces recurrent architectures by Self-Attention
 - + simultaneously includes bidirectionality into the embeddings
 - + fine-tuned as a whole

BERT: KEY FACTS

- Transformer encoder as backbone of the architecture
- 110M (340M) parameters in total for BERT_{Base} (BERT_{Large})
 - 12 (24) Transformer encoder blocks
 - Embedding size of E = 768 (1024)
 - Hidden layer size H = E
 - A = H/64 = 12 (16) attention heads
 - Feed-forward size is set to 4H

CORE OF BERT – THE TRANSFORMER ENCODER

Source: Vaswani et al. (2017)

A REMARK ON "CAUSALITY"

Causality is an issue!

- Goal: Learn contextual representations for words/tokens
- Self-Supervision: Input and target sequence are the same
 - ightarrow We modify the input to create a meaningful task
- Question: Why is this the case?

A REMARK ON "CAUSALITY"

Causality is an issue!

- Goal: Learn contextual representations for words/tokens
- Self-Supervision: Input and target sequence are the same
 - ightarrow We modify the input to create a meaningful task
- M Unconstrained Self-Attention makes using the LM objective infeasible
- Question: Why is this the case?
 - Bidirectionality at a lower layer would allow a word to see itself at later hidden layers
 - → The model would be allowed to cheat!
 - → This would not lead to meaningful internal representations

ELMO VS. GPT VS. BERT

Source: Devlin et al. (2018)

Major architectural differences:

- ELMo uses two separate unidirectional models to achieve bidirectionality → Only "shallow" bidirectionality
- GPT is not bidirectional, thus no issues concerning causality
- BERT combines the best of both worlds:

Self-Attention + (Deep) Bidirectionality

INPUT EMBEDDINGS

Source: Devlin et al. (2018)

- Two concatenated sentences as input
- WordPiece tokenization (Wu et al., 2016) for the inputs
 → Vocabulary of 30.000 tokens
- Learned segment + position embeddings
- Special [CLS] and [SEP] tokens