Text-to-Speech Synthesis (TTS)

TAL-IDMC-OS-UL-2021-22

1

Acoustic: Text → Speech

Audiovisual: Text → Speech + Face

TAL-IDMC-OS-UL-2021-22

What for?

- Communication/Messaging
- Multimedia
- Dialog (TTS+ASR)
- Human-Machine Interface
- Speech impairment, sight and hearing impairments

TAL-IDMC-OS-UL-2021-22

5

Used Technologies

- Rule-based synthesis
- Diphone-based synthesis
- Unit selection-based synthesis
- DNN

Challenges

- Intelligibility
 - Speech is not a raw concatenation of speech chunks
 - We are **very** sensitive to **naturalness**

TAL-IDMC-OS-UL-2021-22

Formant synthesis technology

- The synthesized speech output is created using additive synthesis and an acoustic model (physical modelling synthesis).
- Parameters such as fundamental frequency, voicing, and noise levels are varied over time to create a waveform of artificial speech.
- This method is sometimes called rule-based synthesis.
- Formant synthesis generates artificial, robotic-sounding speech that would never be mistaken for human speech.

Output from the first computer-based phonemic synthesis-by-rule program, created by John Kelly and Louis Gerstman, 1961.

10

Domain-specific synthesis

- Domain-specific synthesis concatenates prerecorded words and phrases to create complete utterances.
- It is used in applications where the variety of texts the system will output is limited to a particular domain:
 - transit schedule announcements
 - weather reports.
 - Etc.

Text processing

- Text processing breaks the original input text into units suitable for further processing:
 - expanding abbreviations
 - part-of-speech (POS) tagging
 - letter-to-sound rules
 - prosody prediction
- We end up with a 'linguistic specification', all the information required to generate a speech waveform, such as
 - phone sequence
 - phone durations
 - pitch contour

TAL-IDMC-OS-UL-2021-22

12

From text... **NLP: Natural Language Processing** pitch accent phrase final phrase initial sil dh(a aets aetsil "the cat sat" phoneme: ax DET NN VB left context: sil dh right context: k ae ((the cat) sat) position in phrase: initial syllable stress: unstressed etc.... Extracted from Simon King, University of Edinburgh TAL-IDMC-OS-UL-2021-22

From text...

NLP: Natural Language Processing

«Le grand président est arrivé à 8h10.»

Pre-processing: Le [MOT] Grand [MOT] Président [MOT]

Est [MOT] Arrivé [MOT] [MOT]

8h10 → huit heure dix. [TIME]

TAL-IDMC-OS-UL-2021-22

14

From text...

NLP: Natural Language Processing

«Le grand président est arrivé à 8h10.»

2. Lemmatization:

[ARTICLE | PRONOUN] Le Grand [ADJECTIVE| NOUN] Président [NOUN | VERB]

Est [NOUN | AUXILIARY | VERB] Arrivé [PAST PARTICIPLE | ADJECTIVE]

[PREPOSITION] 8h10 → huit heure dix. [TIME] [NUM] [NOUN] [NUM]

TAL-IDMC-OS-LL Lemmatization is the algorithmic process of determining the lemma of a word based on its intended meaning.

From text... NLP: Natural Language Processing

«Le grand président est arrivé à 8h10.»

2. Lemmatization:

Le [ARTICLE]
Grand [ADJECTIVE]
Président [NOUN]

Est [AUXILIARY]

Arrivé [PAST PARTICIPLE]
À [PREPOSITION]
8h10 → huit heure dix. [TIME]

[NUM] [NOUN] [NUM]

TAL-IDMC-OS-UL-2021-22

16

From text... NLP: Natural Language Processing

«Le grand président est arrivé à 8h10.»

3. Phonetization:

Est [AUXILIARY] e

Arrivé [PAST PARTICIPLE] a Rive

À [PREPOSITION] a

8h10 → huit heure dix. [TIME] Hit 9 R dis

[NUM] [NOUN] [NUM]

TAL-IDMC-OS-UL-2021-22

Phonetization is the process of encoding language sounds using phonetic symbols.

From text...

NLP: Natural Language Processing

«Le grand président est arrivé à 8h10.»

Post-phonetization:

[ARTICLE] Le I @ [ADJECTIVE] gRa~ Grand Président [NOUN] pRezida~

[AUXILIARY] Est Arrivé [PAST PARTICIPLE] a Rive [PREPOSITION]

8h10 → huit heure dix. [TIME] Hit9Rdis

[NUM] [NOUN] [NUM]

TAL-IDMC-OS-UL-2021-22

18

From text...

NLP: Natural Language Processing

- · Access to an exception dictionary:
 - Some Acronyms
 - Foreign words
 - Proper names
- Post-phonetization
 - By rules

TAL-IDMC-OS-UL-2021-22

From text...

NLP: Natural Language Processing

- Prosody model
 - Model giving acoustic values:
 - Duration
 - F0 (pitch)
 - Learning
 - Model giving tones:
 - And duration
 - · Pre-labelling
 - Learning

TAL-IDMC-OS-UL-2021-22

From text...

NLP: Natural Language Processing

Exeample: MBROLA.pho

58 0 116 36 116 74 118

[Phoneme] [Duration] [FO_values_per_segment]

```
51 14 119 57 118
@
      69 0 118 70 113
g
R
      84 33 113 90 115
a~
      90 46 120
     72
p
R
     66 0 130 42 125 86 120
     78 26 120 63 115
е
     74 0 114 39 115 78 116
Z
     71 18 115 59 111
     84 0 108 40 106 82 106
    90 22 102 61 97
a~
```

TAL-IDMC-OS-UL-2021-22

22

From text... to speech «Le grand président est arrivé à 8h10.» [ARTICLE | QRa~ | QRa~ | PRezida~ | PREZIDA~

Problems with diphone synthesis

Signal processing is required to manipulate:

- F0 & duration: fairly easy, within a limited range
- Spectrum: not so easy, can do simple smoothing at the joins but otherwise it's not obvious what aspects to modify

But, this extensive signal processing

- introduces artefacts and degrades the signal
- cannot faithfully replicate every detail of natural variation in speech
 - · what to replicate
 - No powerful enough techniques to manipulate every aspect of speech

26

Solutions?

- Reduce the need for manipulation by increasing the number of unit types?
- Cannot record and store versions of every speech sound in every possible context:
 - there are far too many
 - some will sound almost identical, so recording all of them is not necessary
- But we can have each speech sound in a sufficient variety of different contexts

TAL-IDMC-OS-UL-2021-22

Unit-selection synthesis

- The key concept of unit selection speech synthesis:
 - record naturally-varying units, occurring in complete utterances
 - synthesis involves careful **selection** of appropriate units

TAL-IDMC-OS-UL-2021-22

30

Unit-selection synthesis From text .. Linguistic information (NLP) | phrase initial | pitch accent | phrase final | phoneme: ax | left context: sil dh | right context: sil dh | right context: k ae | position in phrase: initial | syllable stress: unstressed | etc.... The target unit sequence | sil | dh | ax | k | ae | t | s | ae | t | sil | | A sequence of target units: each unit is annotated with linguistic | features for each target unit

Unit-selection synthesis

Retrieve candidate units from the pre-recorded database

Several **candidates** (incl. waveforms) : each candidate is annotated with linguistic features

32

Find the best-sounding sequence of candidates

- measuring similarity using the target cost function
- measuring concatenation quality using the join cost function

Similarity

- · assume that units from similar linguistic contexts will sound similar
 - target cost function measures linguistic feature **mismatch**
 - target cost function measures acoustic distance between candidates and targets

Concatenation

- · The join cost measures the acoustic mismatch between two candidate units
- A typical join cost quantifies the acoustic mismatch across the concatenation point

TAL-IDMC-OS-UL-2021-22

$$C = w_{tc} \ TC + w_{ajc} \ JC$$

 • TC = target cost*

- JC = join cost
- Dynamic programming search

TAL-IDMC-OS-UL-2021-22

34

feature	weight	target	candidate I	candidate 2
stress	10	primary	primary	none
syllable position	5	coda	onset	coda
word position	5	fınal	final	final
POS	6	noun	noun	verb
phrase position	7	initial	initial	initial
left context	4	[b]	[b]	[v]
right context	3	[s]	[w]	[s]
target cost =				

TAL-IDMC-OS-UL-2021-22

Concatenative TTS

Advantages: intelligible

Limitations:

- require huge databases
- emotionless, not natural
- difficult to modify the voice (e.g., switching to a different speaker, or altering the emphasis or emotion) without recording a whole new database

TAL-IDMC-OS-UL-2021-22

Parametric TTS

How does it work?

- using learning based parametric models, e.g., HMM
- all the information required to generate speech is stored in the parameters of the model

Advantages: lower data cost and more flexible Limitations: less intelligible than concatenative TTS

TAL-IDMC-OS-UL-2021-22

43

Neural TTS

How does it work?

- a special kind of parametric models
- text to waveform mapping is modeled by (deep) neural networks

Advantages

- huge quality improvement, in terms of both intelligibility and naturalness
- less human preprocessing and feature engineering

TAL-IDMC-OS-UL-2021-22

Components of parametric/neural TTS

- Text analysis: text→linguistic features (identical to what we have seen before)
- Acoustic model: linguistic features
 →acoustic features
- Vocoder: acoustic features→speech

TAL-IDMC-OS-UL-2021-22

45

Acoustic model

Generate acoustic features from linguistic features

- F0, V/UV, energy
- Mel-scale Frequency Cepstral Coefficients (MFCC), Bark-Frequency Cepstral Coefficients (BFCC)
- · Mel-generalized coefficients (MGC), band aperiodicity (BAP),
- · Linear prediction coefficients (LPC),
- Mel-spectrograms
 - Pre-emphasis, Framing, Windowing, Short-Time Fourier Transform (STFT), Mel filter

 TAL-IDMC-0S-UL-2021-22
 - →Better intelligibility when converting to speech

Audiovisual speech

• Is it important?

TAL-IDMC-OS-UL-2021-22

62

Audiovisual Intelligibility

- Importance of the *visual* channel when *auditory* channel is deteriorated. Sumby & Pollack (1954)
- Influence of visual on perception:
 Mc Gurk (1976) effect: audio ba + visual ga = audio-visual da

Audiovisual speech synthesis

PARAMATERIC TALKING HEAD

TAL-IDMC-OS-UL-2021-22

66

Coarticulation

- Coarticulation expresses the fact that a speech sound is influenced by a preceding or following speech sound.
- There are two types of coarticulation:
 - anticipatory coarticulation, when a feature or characteristic of a speech sound is anticipated (assumed) during the production of a preceding speech sound;
 - carryover or perseverative coarticulation, when the effects of a sound are seen during the production of sound(s) that follow.

TAL-IDMC-OS-UL-2021-22

68

3 bilabial coarticulation models i-2 i+1 geste i-1 1. Look-ahead temps i-2 i-1 i+1 2. Time-locked i-2 i-1 i+1 3. Hybrid TAL-IDMC-OS-UL-2021-22

Modeling coarticulation

TAL-IDMC-OS-UL-2021-22

70

Coarticulation Dominance functions

- A good example of coarticulation is the word "stew". Initial consonants take on the lip protrusion of the upcoming vowel.
- A speech segment is a gesture with a certain dominance which increases and then decreases over time.
- **Dominance functions** of nearby segments overlap, and control parameters are calculated as a combination of segment target values, weighted by segment dominance functions.
- Different dominance functions exist for different articulators, such as jaw rotation, tongue tip height, and lip rounding.

TAL-IDMC-OS-UL-2021-22

Multimodal acquisition system

TAL-IDMC-OS-UL-2021-22

75

TAL-IDMC-OS-UL-2021-22

Selection

- Dynamic programming
 - Minimize target and join cost
- Acoustic-visual units

$$C = w_{tc} TC + (w_{ajc} AJC + w_{jvc} JVC)$$

- TC = target cost*
- AJC = acoustic join cost
- VJC = visual join cost

^{*}without visual information in the target cost (until now)

Selection (2)

- Target Cost
 - Weights for each feature and phoneme
 - Automatic learning : clustering, entropy (information gain)
 - Duration w.r.t. the position (intra-corpus)
- Acoustic join cost
 - F0, spectral distance, energy, dF0,...
- Visual join cost

$$VJC = \sum_{i=1}^{12} w_i (P_{i,1} - P_{i,2})^2$$

i+1

87

Audiovisual speech synthesis using DNN

Figure 1: Bidirectional RNN processing a sequence x, where A is the forward layer and A^\prime the backward layer.

text → linguistic specification

linguistic specification → acoustic features
linguistic specification → visual features
TAL-IDMC-OS-UL-2021-22
acoustic features → waveform
visual features → animation

Expressive Corpus acquisition

Technique exercise in style

- The same set of sentences uttered in different emotions (joy, sadness, anger, fear, disgust, surprise) + neutral.
 - →The linguistic content of the sentences does not help to identify the expressed emotion (dissociation between semantics and syntax).

