Definition 1. A mapping, φ , defined on set D, is a rule that assign each element in D a value. The set D is called the domain of the mapping, and the set of values we get (let's give it a name, R) after applying the mapping is called the range of the mapping. We denote this by

$$\varphi:D\to R$$

Definition 2. A function $f: D \to R$ is a special mapping in which $\forall x \in D$, there is only one $y \in R$ such that y = f(x).

Example 1.

$$y=3x-1,\ D=\mathbb{R}$$
 is a function $y=x^2+2x-1,\ D=\mathbb{R}$ is a function $x^2+y^2=1,\ D=[-1,1]$ is not a function $y^2=x\ D=\mathbb{R}^+$ is not a function

Definition 3. A function $f: D \to R$ is said to be 1-1 if $\forall y \in R$, there is only one $x \in D$ such that y = f(x).

Example 2.

$$y=3x-1,\ D=\mathbb{R}$$
 is a 1-1 function $y=x^2+2x-1,\ D=\mathbb{R}$ is not a 1-1 function $y=x^2+2x-1,\ D=\mathbb{R}^+$ is a 1-1 function

Definition 4. An inverse function of a function $f: D \to R$ is a mapping from R to D, and we denote it as $f^{-1}: R \to D$. Its action is defined by

$$f^{-1}(f(x)) = x$$

Example 3. Let f(x) = 3x + 1, then its inverse function f^{-1} can be calculated as follow:

$$y=3x+1$$
 change the $f(x)$ symbol to y

$$x=\frac{y-1}{3}$$
 express x in terms of y

$$y=\frac{x-1}{3}$$
 switch the symbol of x and y

$$f^{-1}(x)=\frac{x-1}{3}$$
 change the symbol y to $f^{-1}(x)$

What inverse function does is the inverse action of the original function. For example:

$$f(1) = 4$$
 (f maps 1 to 4) $f^{-1}(4) = 1$ (f⁻¹ maps 4 back to 1)
 $f(2) = 7$ (f maps 2 to 7) $f^{-1}(7) = 2$ (f⁻¹ maps 7 back to 2)

Proposition 1. The graph of the function and its inverse are symmetric about the y = x line.

Proof. It is not hard to see that if the graph of the function consists of points of the form (x, y), where $x \in D$ and $y \in R$, then the inverse function takes the values in R and maps them back to D, thus the graph of the inverse function is consisted of points of the form (y, x).

Example 4. The following is the graph of f(x) = 3x + 1 and its inverse.

