

Jeu de Go et Exploration d'Arbre par Bandit

CentraleSupélec – Gif

IA et Jeu de Go

L'IA et le Jeu de Go Avant l'Exploration d'Arbre par Bandit Exploration d'Arbre par Bandit Aller plus loin Pourquoi une IA pour le Jeu de Go? Le Jeu de Go

Plan

- L'IA et le Jeu de Go
 - Pourquoi une IA pour le Jeu de Go?
 - Le Jeu de Go

Pourquoi une IA pour un jeu?

- Avoir une IA pour un jeu...
- Représentation des problèmes de décision
- Environnement bien défini : règles du jeu
- Évaluation facile : score
- Challenge de battre les humains

L'IA et le Jeu de Go Avant l'Exploration d'Arbre par Bandit Exploration d'Arbre par Bandit Aller plus loin Pourquoi une IA pour le Jeu de Go? Le Jeu de Go

Pourquoi le jeu de Go?

- un jeu de plateau qui a longtemps résisté aux IA
- règles **simples**
- méthodes classiques (alphabeta) inefficaces

Histoire

- aurait été inventé en chine en 2000 BC
- premiers écrits : 500 BC
- fait parti des 4 arts majeurs chinois : peinture, calligraphie, gugin, go
- se répand en Asie dès 800 dans la noblesse
- aujourd'hui, environ 20 millions de joueurs

Matériel

- plateau de jeu : Goban
- deux tailles 9x9 ou 19x19
- pierres noires et blanches

Règles : placement

Chaque joueur pose une pierre à tour de rôle Pierres posées sur les intersections Blanc commence

Règles : chaînes et capture

pierres reliées horizontalement ou verticalement forment une chaine emplacement libre autour d'une chaine : liberté enlever la dernière liberté d'une chaine : capture

Règles : fin de partie

les deux joueurs passent score

Règles : le ko

illustration histoire règle humain/ordinateur

L'IA et le Jeu de Go Avant l'Exploration d'Arbre par Bandit Exploration d'Arbre par Bandit Aller plus loin

Echelle de niveau

Plan

- L'IA et le Jeu de Go
- Avant l'Exploration d'Arbre par Bandit
- Exploration d'Arbre par Bandit
- 4 Aller plus loin

Présentation

Alpha beta

Découpage du plateau

Échelle de niveau

Plan

- 1 L'IA et le Jeu de Go
- 2 Avant l'Exploration d'Arbre par Bandit
- Exploration d'Arbre par Bandit
 - Construction de l'Arbre
 - Problème de Bandit
 - Amélioration de l'Algorithme
- 4 Aller plus loin

Introduction du problème

Dans un casino, il y a plusieurs machines à sous différentes en terme de récompense.

Comment répartir mes pièces entre les machines?

Autres problèmes similaires

- Essais cliniques : trouver le traitement qui fonctionne le mieux.
- Sélection d'un serveur dans un réseau : trouver le serveur avec le temps de réponse le plus faible.
- Publicité ciblée : trouver le type de pub qui intéressera le plus un utilisateur.
- ...

Ce sont des problèmes où on a plusieurs fois le même choix à effectuer. Le choix conduit à une récompense aléatoire.

Définition formelle

- un ensemble de bras $A = \{1, ..., K\}$.
- chaque bras est associé à une distribution de probabilité X_k d'espérance μ_k .
- l'algorithme choisit un bras a à chaque pas de temps.
- le bandit retourne une récompense r : une réalisation de X_a .
- les tirages successifs sur un même bras sont indépendant et identiquement distribués.

Notations supplémentaires

- $T_i(n)$: le nombre de fois que le bras i a été sélectionné au pas de temps n.
- $\bullet \ \mu^* = \max_{1 \le i \le K} \mu_i$
- $\bullet \ \Delta_i = \mu^* \mu_i$

Le but est d'optimiser le regret R_n défini comme suit :

$$R_n = \mu^* n - \mathbb{E} \sum_{j=1}^K T_j(n) \mu_j$$

$$R_n = \sum_{j=1}^K \Delta_j \mathbb{E}[T_j(n)]$$

Borne inférieure

Pour toute stratégie d'allocation et pour tout bras non optimal :

$$\mathbb{E}[T_j(n)] \geq \frac{\log n}{D(p_j||p^*)}$$

où
$$D(p_j||p^*) = \int p_j \log \frac{p_j}{p^*}$$

On en déduit que le meilleur regret atteignable est en log(n). [Lai and Robbins, 1985]

UCB

Principe de l'algorithme :

- A partir des informations disponibles au temps t, on calcule la borne de confiance supérieur (UCB) correspondant à chaque bras.
- On choisit le bras qui a la valeur UCB la plus grande.

[Auer and all, 2002]

Calcul de la valeur UCB pour le bras i au pas de temps t:

$$\hat{\mu}_{i,t-1} + \sqrt{\frac{3\log(t)}{2T_i(t-1)}}$$

où $\hat{\mu}_{i,t-1}$ correspond à la moyenne empirique du bras i.

Borne sur le regret :

$$R_n \leq 6 * \sum_{i \neq i^*} \frac{\log(n)}{\Delta_i} + K(\frac{\pi^2}{3} + 1)$$

Descente dans l'arbre

La descente dans l'arbre se fait en considérant que chaque choix d'une branche est un problème de bandit.

Ajout d'un paramètre p de contrôle de l'exploration :

$$\hat{\mu}_{i,t-1} + p\sqrt{\frac{\log(t)}{T_i(t-1)}}$$

• Ajout de connaissances a priori $C_i(t)$:

$$\hat{\mu}_{i,t-1} + \rho \sqrt{\frac{\log(t)}{T_i(t-1)}} + C_i(t)$$

L'IA et le Jeu de Go Avant l'Exploration d'Arbre par Bandit Exploration d'Arbre par Bandit Aller plus loin

AMAF

L'IA et le Jeu de Go Avant l'Exploration d'Arbre par Bandit Exploration d'Arbre par Bandit Aller plus loin

Ajout de Connaissances Expertes

Plan

- L'IA et le Jeu de Go
- ② Avant l'Exploration d'Arbre par Bandit
- Exploration d'Arbre par Bandit
- 4 Aller plus loin

Deep Learning

Autres applications

Conclusion

Exemple borne

Calcul de la borne

trajet déjà effectué
$$=\emptyset$$

$$(\underbrace{3+4}_{a} + \underbrace{3+3}_{b} + \underbrace{3+7}_{c} + \underbrace{3+4}_{d} + \underbrace{3+5}_{e})/2 = 19$$