Recite 2: A Brief Review of Basic Statistics

Introduction to Econometrics, Fall 2021

Mingxin Zhao

Business School, NJU

9/8/2021

- Basic Concepts
- 2 Large-Sample Approximations to Sampling Distributions
- 3 Statistical Inference: Estimation, Confident Intervals and Testing
- 4 Confidence Interval and Interval Estimation
- 5 Hypothesis Testing

Section 1

Basic Concepts

Population(总体) and Sample(样本)

Definition

- A population is a collection of people, items, or events about which you want to make inferences.
 - Population always have a probability distribution.
- A sample is a subset of population, which draw from population in a certain way.
- The sample could also follow a probability distribution.
- To represent the population well, a sample should be randomly collected and adequately large.

Random sample(随机样本) and i.i.d(独立同分布)

Definition

- The r.v.s are called a **random sample** of size n from the population f(x) if $X_1,...,X_n$ are mutually independent and have the same p.d.f/p.m.f f(x).
- Alternatively, $X_1,...,X_n$ are called independent,and identically distributed random variable with p.d.f/p.m.f ,commonly abbreviated to **i.i.d.** r.v.s.
 - e.g.Random sample of n respondents in a survey.
- \bullet And the joint p.d.f/p.m.f of $X_1,...,X_n$ is given by $f(x_1,...,x_n)=f(x_1)...f(x_n)=\prod_{i=1}^n f(x_i)$

5/63

Statistic(统计量) and Sampling Distribution(抽样分布)

Definition

- ullet $X_1,...,X_n$ is a random sample of size n from the population f(x).
- A statistic(T) is a real-valued or vector-valued function fully depended on $X_1, ..., X_n$, thus $T = T(X_1, ..., X_n)$
 - The expectation of sample is a statistic.
 - A statistic is only a function of the sample(统计量是样本的函数).
 - The probability distribution of a statistic T is called the **sampling** distribution(抽样分布) of T.

Sample Mean(样本均值) and Sample Variance(样本方差)

Definition –Two common and important estimators

 \bullet The sample average or sample mean, X of the n observations $X_1,...,X_n$ is

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \ldots + X_n) = \frac{1}{n}\sum_{i=1}^n X_i$$

Accordingly, the **sample variance** is defined by

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})$$

Deduction

- As we know that if X_i is a random variable(r.v.), then $f(X_i)$, which is a function of X_i , is also a r.v. (随机变量的函数还是随机变量)
- So if X_i is a r.v., then $\sum X_i$ is also a r.v..
 - The sample mean and the sample variance are also functions of sums, therefore they are r.v.s, too.
 - Assume that there are some certain probability functions which can describe distributions of the sample mean and the sample variance.
 - Then, naturally, what is the expectation, variance or p.d.f./c.d.f of these distributions?

A simple case of sample mean

 \bullet Let $X_n \in [1,100]\text{, assume n} = \text{2, thus only } X_1 \text{ and } X_2$

Section 2

Large-Sample Approximations to Sampling **Distributions**

Sampling Distributions

- There are two approaches to characterizing sampling distributions:
 - exact/finite sample distribution: The sampling distribution that exactly describes the distribution of X for any n is called the exact/finite sample distribution of X.
 - approximate/asymptotic distribution: When the sample size n is large, the sample distribution approximates to a certain distribution function.

Two Key Tools: L.L.N and C.L.T

- ② Two key tools used to approximate sampling distributions when the sample size is large, assume that $n \to \infty$
- The Law of Large Numbers(L.L.N.): when the sample size is large, X will be close to μ_Y the population mean with very high probability.
- The Central Limit Theorem(C.L.T.): when the sample size is large, the sampling distribution of the standardized sample average,

$$\frac{(\bar{Y} - \mu_Y)}{\sigma_Y}$$

is approximately normal.

Convergence in probability(依概率收敛)

Definition

• Let $X_1, ..., X_n$ be an random variables or sequence, is said to converge in probability to a value b if for every $\varepsilon > 0$,

$$P(\|X_n - b\| > \varepsilon) \to 0$$

as $n \to \infty$. We denote this as $X_n \stackrel{p}{\longrightarrow} b$ or $plim(X_n) = b$.

• It is similar to the concept of a limitation in a probability way.

Mingxin Zhao (Business School, NJU)

The Law of Large Numbers(大数定律)

Theorem

• Let $X_1,...,X_n$ be an **i.i.d** draws from a distribution with mean μ and finite variance σ^2 (a population) and $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is the **sample** mean then

$$\bar{X} \to \mu$$

- Intuition: the distribution of $\bar{X_n}$ "collapses" on μ
- 直观解释:抽样的样本量越大,样本平均值越接近总体平均值,即抽样分布更紧凑

A simple case

Example

• Suppose X has a **Bernoulli** distribution if it have a binary values $X \in 0, 1$ and its probability mass function is

$$P(X = x) = \begin{cases} 0.78, & \text{if } x = 1\\ 0.22, & \text{if } x = 0 \end{cases}$$

• Then E(X) = p = 0.78 and Var(X) = p(1-p) = 0.1716

A simple case

Convergence in Distribution(分布收敛)

Definition

Let $X_1,...,X_n$ be a sequence of r.v.s, and for ${\bf n}=1,\!2,\!...$ let $F_n(x)$ be the c.d.f of X_n . Then it is said that $X_1,X_2,...$ converges in distribution to r.v. W with c.d.f, F_W if

$$\lim_{n \to \infty} F_n(x) = F_W(x)$$

which we write as

$$X_n \stackrel{p}{\longrightarrow} W$$

- Basically: when n is big, the distribution of X_n is **very similar** to the distribution of W.
- Standardize: by subtracting its expectation and dividing by its standard deviation

$$Z = \frac{X - E[X]}{Var[X]}$$

The Central Limit Theorem(中心极限定理)

Theorem

Let $X_1,...,Xn$ be an i.i.d draws from a distribution with sample size n with mean μ and $0<\sigma^2<\infty$, then

$$\frac{\bar{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} \stackrel{d}{\sim} N(0, 1)$$

- Because we don't have to make any specific assumption about the distribution of X_i , so whatever the distribution of X_i , when n is big,
 - the standardized

$$\bar{X}_n \sim N(\mu, \frac{\sigma^2}{n})$$

or

$$\bar{X}_n \sim N(0,1)$$

直观理解:选取的样本量越大,样本均值的分布越趋于正态分布

Example

Standardized value of sample average

(a) n = 2

(c) n = 25

Standardized value of sample average

Standardized value of sample average

Standardized value of sample average (d) n = 100

Mingxin Zhao (Business School, NJU)

Recite 2: A Brief Review of Basic Statistics

(b) n = 5

Example

How large is "large enough"?

- How large is large enough?
 - \bullet how large must n be for the distribution of \bar{Y} to be approximately normal?
- The answer: it depends.
 - $\, \bullet \,$ if Y_i are themselves normally distributed, then \bar{Y} is exactly normally distributed for all n.
 - $\, \bullet \,$ if Y_i themselves have a distribution that is far from normal, then this approximation can require n=30 or even more.

Section 3

Statistical Inference: Estimation, Confident Intervals and Testing

Statistical Inference: From Samples to Population

Inference

- What is our best guess about some quantity of interest?
- What are a set of plausible values of the quantity of interest?
- \bullet Our focus: $\{Y_1,Y_2,...,Y_n\}$ are i.i.d. draws from f(y) or F(Y) , thus population distribution.
- Statistical inference or learning is using samples to infer f(y).
 - Two ways: parametric and Non-parametric
 - Normally, we don't need to know everything of the population, just some measures (the moment) enough to describe the characteristics of the population.

Statistical Inference: Point estimation

Point estimation: providing a single "best guess" as to the value of some fixed, unknown quantity of interest, θ which is a feature of the population distribution, f(y).

Example

- **1** $\mu = E[Y]$

Three Characteristics of an Estimator

Let $\hat{\mu}_Y$ denote some estimation value of the population moment, μ_Y and $E(\hat{\mu}_Y)$ is the mean of the sampling distribution of $\hat{\mu}_Y$

 ${f 0}$ **Unbiasedness**: the estimator of μ_Y is unbiased if

$$E(\hat{\mu}_Y) = \hat{\mu}_Y$$

2 Consistency: the estimator of μ_Y is consistent if

$$E(\hat{\mu}_Y) \to \hat{\mu}_Y$$

Three Characteristics of an Estimator

3 Efficiency: Let $\tilde{\mu}_Y$ be another estimator of μ_Y and suppose that both $\tilde{\mu}_Y$ and $\hat{\mu}_Y$ are unbiaesd. Then $\hat{\mu}_Y$ is said to be more **efficient** than $\tilde{\mu}_Y$

$$var(\hat{\mu}_Y) < var(\tilde{\mu}_Y)$$

 Comparing variances is difficult if we don't restrict our attention to unbiased estimators because we could always use a trivial estimator with variance zero that is biased.

Unbiased

An unbiased estimator is on target on average.

A biased estimator is off target on average.

Consistency

Efficiency

An **efficient** estimator is, on average, closer to the parameter being estimated...

An **inefficient** estimator is, on average, farther from the parameter being estimated.

Properties of the sample mean

- ullet Let μ_Y and σ_Y^2 denote the mean and variance of Y (总体的均值和方差)
- Let $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ of Y_i (样本均值)
- Then the expectation of the sample mean(样本均值的期望) is

$$E(\bar{Y}) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \mu_Y$$

so Y is an **unbiased** estimator of μ_Y

• Based on the L.L.N., $\bar{Y} \to \mu_Y$ so \bar{Y} is also **consistent**.

Properties of the sample mean

The variance of sample mean (样本均值的方差)

$$Var(\bar{Y}) = var(\frac{1}{n}\sum_{i=1}^{N}Y_i) = \frac{1}{n^2}\sum_{i=1}^{N}Var(Y_i) = \frac{\sigma_Y^2}{n}$$

Then the standard deviation of the sample mean is

$$\sigma_{\bar{Y}} = \frac{\sigma_Y}{\sqrt{n}}$$

Properties of the sample mean

- \bullet Follow the C.L.T, the $\bar{Y} \overset{d}{\sim} N(\mu_Y, \frac{\sigma_Y^2}{n})$
- \bullet And let Z be the standardized \bar{Y} ,then $Z=\frac{\bar{Y}-\mu_Y}{\frac{\sigma}{\sqrt{n}}}\stackrel{d}{\sim} N(0,1)$
- Let μ_Y and σ_Y^2 denote the mean and variance of Y_i , then the **sample** variance:

$$S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

- Then it is easy to prove that
 - ① $E(S_Y^2) = \sigma_Y^2$, thus S^2 is an **unbiased** estimator of σ_Y^2 which is also the reason why the average uses the divisor n-1 instead of n.
 - 2 $S_Y^2 \xrightarrow{P} \sigma_Y^2$, thus the sample variance is a **consistent estimator** of the **population variance**.

The Standard Error

ullet Recall: the standardized sample mean will be approximately follow a standard normal distribution when n is large.

$$Z = \frac{\bar{Y} - \mu_Y}{\frac{\sigma}{\sqrt{n}}} \stackrel{d}{\sim} N(0, 1)$$

- But in general σ_Y , the standard deviation of population is **unknown**, so we have to use sample to estimate it.
- Let $\sigma_{\bar{Y}} = \frac{\sigma_Y}{\sqrt{n}}$, because S_Y^2 is an unbiased and consistent estimator of the σ_Y^2 , then we can use $\frac{S_Y}{\sqrt{n}}$ as an estimator of the standard deviation of the sample mean.

The Standard Error

It is called the standard error(标准误) of the sample mean

$$SE[\bar{Y}] = \hat{\sigma}_{\bar{Y}} = \frac{S_Y}{\sqrt{n}}$$

• Equivalence to the **standard deviation(标准差)** of the sample distribution which measures the **deviations** of the sample mean.

Application: Sample Size and Standard Error(Population)

• Population $\sim N(0,SD)$

Sample Size and Standard Error(sample n=250)

Sample Size and Standard Error(n=500)

Sample Size and Standard Error(sample n=1000)

Recall: The Chi-Square Distribution

• Let $Z_i (i=1,2,...,m)$ be independent random variables, each distributed as standard normal. Then a new random variable can be defined as the sum of the squares of Z_i :

$$X = \sum_{i=1}^{m} Z_i^2$$

Then X has a **chi-squared distribution** with m degrees of freedom.

 Then, it can be prove that a variation of the sample variance will follow a Chi-Square distribution:

$$\frac{(n-1)S_Y^2}{\sigma_2} \sim \chi_{n-1}^2$$

The Student-t Distribution

- The Student t distribution can be obtained from a **standard normal** and a **chi-square** random variable.
- ullet Let Z have a standard normal distribution, let X have a chi-square distribution with n degrees of freedom and assume that Z and X are independent. Then the random variable

$$T = \frac{Z}{\sqrt{\frac{X}{n}}}$$

has a **t-distribution** with n degrees of freedom, denoted as $T \sim t_n$

• Then, the \bar{Z} will follow a student t distribution.

$$\bar{Z} = \frac{\bar{Y} - \mu_Y}{\frac{S_Y}{\sqrt{n}}} \stackrel{d}{\sim} t(n-1)$$

The Student-t Distribution

- It does not matter a lot in the large sample.
- As the degrees of freedom get large which is highly correlated with the sample size n, the t-distribution actually approaches the standard normal distribution.

Section 4

Confidence Interval and Interval Estimation

Interval Estimation

- A point estimate provides no information about how close the estimate is likely to be to the population parameter.
- We cannot know how close an estimate for a particular sample is to the population parameter because the population is never known.
- A different (complementary) approach to estimation is to produce a range of values that will contain the truth with some fixed probability.

What is a Confidence Interval?

Definition

• A $100(1-\alpha)\%$ confidence interval for a population parameter θ is an interval $C_n = (a, b)$, where $a = a(Y_1, Y_2, ..., Y_n)$ and $b = b(Y_1, Y_2, ..., Y_n)$ are functions of the data such that

$$P(a < \theta < b) = 1 - \alpha$$

- In general, this **confidence level** is $1-\alpha$ (置信水平); where α is called significance level(显著性水平).
- The key is how to obtain or construct the values of a and b

- Suppose the population has a normal distribution $N(\mu,\sigma^2)$ and let $Y_1,Y_2,...,Y_n$ be a random sample from the population.
 - Then the sample mean \bar{Y} has a normal distribution: $\bar{Y} \sim N(\mu, \frac{\sigma^2}{n})$
 - ullet The standardized sample mean $ar{Z}$ is given by:

$$\bar{Z} = \frac{Y - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

• Then let $\theta = Z$, then $P(a < \theta < b) = 1 - \alpha$ turns into

$$a < \frac{Y - \mu}{\frac{\sigma}{\sqrt{n}}} < b$$

then it follows that

$$P(\bar{Y} - a\frac{\sigma}{\sqrt{n}} < \mu < \bar{Y} + b\frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

ullet Thus the **random interval** contains the population mean with a probability 1-lpha

Two cases: σ is known and unknown

- When σ is known, for example, $\sigma=1$,thus $Y\sim N(\mu,1), \bar{Y}\sim N(\mu,\frac{\sigma^2}{r}=\frac{1}{r})$
- From this we can standardize Y, and because the standardized version of \bar{Y} has a standard normal distribution, and we let $\alpha=0.05$,then we have

$$P(-1.96 < \frac{\bar{Y} - \mu}{\frac{1}{\sqrt{n}}} < 1.96) = 1 - 0.05$$

- The event in parentheses is identical to $\bar{Y} \frac{1.96}{\sqrt{n}} < \mu < \bar{Y} + \frac{1.96}{\sqrt{n}}$
- So $P(\bar{Y} \frac{1.96}{\sqrt{n}} < \mu < \bar{Y} + \frac{1.96}{\sqrt{n}}) = 0.95$
- The interval estimate of μ may be written as $[\bar{Y}-\frac{1.96}{\sqrt{n}},\bar{Y}+\frac{1.96}{\sqrt{n}}]$

46 / 63

• When σ is unknown, we could use an estimate of σ , thus $SE[\bar{Y}] = \hat{\sigma}_{\bar{Y}} = \frac{S_Y}{\sqrt{n}}$, the sample **standard error**, replacing unknown σ thus

$$\bar{Z}_t = \frac{\bar{Y} - \mu_Y}{\frac{S_Y}{\sqrt{n}}} = \frac{\bar{Y} - \mu_Y}{SE[\bar{Y}]}$$

We just suggested that it follows a student t distribution.

Definition

The **t-statistic** or **t-ratio**:

$$\frac{\bar{Y} - \mu}{SE(\bar{Y})} \sim t_{n-1}$$

• To construct a 95% confidence interval, let c denote the 97.5^th percentile in the t_{n-1} distribution.

$$P(-c < t \le c) = 0.95$$

where $c_{\frac{\alpha}{2}}$ is the critical value of the t distribution.

• The confidence interval may be written as $[Y \pm c_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}]$

A simple rule of thumb for a 95% confidence interval

- Because as the degrees of freedom get large which is highly correlated with the sample size n, the t-distribution approaches the standard normal distribution.
- And $\Phi(1.96) = 0.975$, so a rule of thumb for an approximate 95% confidence interval is

$$[\bar{Y}\pm 1.96\times SE(\bar{Y})]$$

Or

$$[\bar{Y}\pm 2\times SE(\bar{Y})]$$

Section 5

Hypothesis Testing

Hypothesis Testing(假设检验)

Definition

A hypothesis is a **statement** about a population parameter, thus θ . Formally, we want to test whether is **significantly** different from a certain value μ_0

$$H_0:\theta=\mu_0$$

which is called **null hypothesis**. The alternative hypothesis is

$$H_0: \theta \neq \mu_0$$

- If the value μ_0 does not lie within the calculated confidence interval, then we reject the null hypothesis.
- If the value μ_0 lie within the calculated confidence interval, then we fail to reject the null hypothesis.

Hypothesis Testing(假设检验)

- In criminal law, institutions in most countries follow the rule:
 - "innocent until proven guilty" (疑罪从无)
 - The prosecutor wants to prove their hypothesis that the accused person is guilty.
 - However, the burden is on the prosecutor to show guilt.
 - The jury or judge starts with the "null hypothesis" that the accused person is innocent.

Hypothesis Testing(假设检验)

- In program evaluations, instead of "presumption of innocence", the rule is: "presumption of insignificance".
- Policymaker's hypothesis: the program improves learning.
- Evaluators approach experiments using the hypothesis:
 - There is zero impact of the program
 - Then we test this "null hypothesis"
- The burden of proof is on the program
 - it should show a statistically significant impact.

Two Type Errors

In both cases, there is a certain risk that our conclusion is wrong.

Definition

- A Type I error is when we reject the null hypothesis when it is in fact true.
- A Type II error is when we fail to reject the null hypothesis when it is false.
 - In criminal trial -The Type I: the judge reject the null hypothesis when the suspect is actually no guilty. "宁可错杀一千,不能放过一个."-The Type II: the judge fail to reject the null hypothesis when the suspect is actually guilty. "宁可放过一千,不能错杀一个."

The Significance level(显著性水平)

Definition

• The **significance level** or size of a test is the maximum probability for the Type I Error

$$P(Type\ I\ error) = P(reject\ H_0|H_0\ is\ true) = \alpha$$

- Usually, we has to carry the "burden of proof,"
- We would like to prove that the assertion of H1 is true by showing that the data rejects H_0 .

Testing Procedure

- The following are the steps of the hypothesis testing:
- ① Specify H_0 and H_1 .
- **2** Choose the significance level α .
- 3 Define a decision rule (critical value).
- 4 Given the data compute the test statistic and see if it falls into the critical region.

Decision Rule

ullet The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, Y_2, ..., Y_n)$$

• Usually, one rejects H_0 if the test statistic falls into a critical region(rejection region). A critical region is constructed by taking into account the probability of making wrong decisions,thus α . By convention, α is chosen to be a small number, for example, $\alpha=0.01$, 0.05, or 0.10

P-value

 To provide additional information, we could ask the question: What is the largest significance level at which we could carry out the test and still fail to reject the null hypothesis?

We can consider the **p-value** of a test

- Calculate the t-statistic
- The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value.

$$p-value = 1 - \Phi(t)$$

where denotes the standard normal c.d.f. (we assume that n is large enough)

P-Value

 \bullet Suppose that t=1.52, then we can find the largest significance level at which we would fail to reject H_0

$$p-value = P(T>1.52|H_0) = 1-\Phi(1.52) = 0.065$$

Hypothesis Test of of Y

• Specify H_0 and H_1

$$H_0: E[Y] = \mu_{Y,0}; H_1: E[Y] \neq \mu_{Y,0}.$$

- Choose the significance level α and define a decision rule (critical region or critical value)
 - e.g. if we choose $\alpha = 0.05$, then the critical value is 1.96, then the region is $(-\infty, 1.96]$ and $[1.96, +\infty)$

Hypothesis Test of of \bar{Y}

Hypothesis Test of of \bar{Y}

- Given the data, compute the test statistic:
 - $\, \bullet \,$ Step1: Compute the sample average \bar{Y}
 - ${\bf \bullet}$ Step2: Compute the **standard error** of \bar{Y}

$$SE[\bar{Y}] = \frac{S_Y}{\sqrt{n}}$$

• Step3: Compute the **t-statistic**

$$t^a ct = \frac{\bar{Y} - \mu_{Y,0}}{SE[\bar{Y}]}$$

Step4: Reject the null hypothesis if

$$|t^{act}| > critical\ value$$

or if

 $p-value < significance\ level$

63/63