Lab01-Algorithm Analysis

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

- * If there is any problem, please contact TA Haolin Zhou. Also please use English in homework.

 * Name: Zilong Li Student ID: 518070910095 Email: logcreative-lzl@sjtu.edu.cn
- 1. Complexity Analysis. Please analyze the time and space complexity of Alg. 1 and Alg. 2.

```
Algorithm 1: QuickSort

Input: An array A[1, \dots, n]
Output: A[1, \dots, n] sorted
nondecreasingly

1 pivot \leftarrow A[n]; i \leftarrow 1;
2 for j \leftarrow 1 to n-1 do

3 | if A[j] < pivot then
4 | swap A[i] and A[j];
5 | i \leftarrow i+1;
6 swap A[i] and A[n];
7 if i > 1 then
QuickSort(A[1, \dots, i-1]);
8 if i < n then
QuickSort(A[i+1, \dots, n]);
```

```
Algorithm 2: CocktailSort
   Input: An array A[1, \dots, n]
   Output: A[1, \dots, n] sorted
               nonincreasingly
i \leftarrow 1; j \leftarrow n; sorted \leftarrow false;
2 while not sorted do
       sorted \leftarrow true;
       for k \leftarrow i to j-1 do
4
           if A[k] < A[k+1] then
5
               swap A[k] and A[k+1];
 6
               sorted \leftarrow false;
 7
       j \leftarrow j - 1;
8
       for k \leftarrow j downto i + 1 do
9
           if A[k-1] < A[k] then
10
               swap A[k-1] and A[k];
11
               sorted \leftarrow false;
12
       i \leftarrow i + 1;
13
```

(a) Fill in the blanks and **explain** your answers. You need to answer when the best case and the worst case happen.

Algorithm	\mid Time Complexity ¹	Space Complexity
QuickSort		
CocktailSort		

¹ The response order can be given in *best*, average, and worst.

- (b) For Alg. 1, how to modify the algorithm to achieve the same expected performance as the **average** case when the **worst** case happens?
- 2. Growth Analysis. Rank the following functions by order of growth with brief explanations: that is, find an arrangement g_1, g_2, \ldots, g_{15} of the functions $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{14} = \Omega(g_{15})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$. Use symbols "=" and " \prec " to order these functions appropriately. Here $\log n$ stands for $\ln n$.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.