CLUSTAL 2.1 multiple sequence Alignment

MF288709.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288708.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288710.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288711.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288712.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288713.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288714.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288715.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288716.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288717.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288718.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288719.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288720.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288721.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288722.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288723.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288724.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288725.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288726.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
MF288727.1	ATGCATGGACCTAAGGCAACAGTGCAAGACATTGTATTGCATTTAGAGCC

MF288709.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288708.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288710.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288711.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288712.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288713.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288714.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288715.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288716.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288717.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288718.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288719.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288720.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288721.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288722.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288723.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288724.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288725.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288726.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
MF288727.1	CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT

CLUSTAL 2.1 multiple sequence Alignment

Chobina 2.1 marcipic bequence miigin	
MF288708.1	${\tt CAGAGGAAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA}$
MF288710.1	CAGAGGAAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288711.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288712.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288713.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288714.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288715.1	
	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288716.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288717.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288718.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288719.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288720.1	${\tt CAGAGGAAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA}$
MF288721.1	CAGAGGAAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288722.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288723.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288724.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288725.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288726.1	
	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
MF288727.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA

MF288709.1	$\tt GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTTTGTAA$
MF288708.1	${\tt GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA}$
MF288710.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288711.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288712.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288713.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288714.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288715.1	GCCCGACGAGCCGAACCACAACGTCACAATGTTGTGTATGTGTTGTAA
MF288716.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288717.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288718.1	$\tt GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTTGTAA$
MF288719.1	$\tt GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTTGTAA$
MF288720.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288721.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288722.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288723.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
MF288724.1	GCCCGACGAGCCGAACCACAACGTCACAATGTTGTGTATGTGTTGTAA
MF288725.1	GCCCGACGAGCCGAACCACAACGTCACAATGTTGTGTATGTGTTGTAA
MF288726.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTTGTAA
MF288727.1	GCCCGACGAGCCGAACCACACGTCACACACTGTTGTGTATGTGTTGTAA

MF288709.1	$\tt GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC$
MF288708.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
MF288710.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
MF288711.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC

CLUSTAL	2.1	${\tt multiple}$	sequence	Alignment

MF288712.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288713.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288714.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
MF288715.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288716.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288717.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288718.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
MF288719.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
MF288720.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
MF288721.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
MF288722.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288723.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288724.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288725.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288726.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC
MF288727.1	GTGTGAAGCCAGAATTGAGCTAGTAGAAAGCTCAGCAGACGACCTTC

MF288709.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
MF288708.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288710.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288711.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288712.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288713.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288714.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288715.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288716.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288717.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288718.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288719.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288720.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288721.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCCGTGG
MF288722.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288723.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
MF288724.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
MF288725.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288726.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
MF288727.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTCCGTGG
111 200 / 27 . 1	*****************
MF288709.1	TGTGCATCCCAGCAGTAA
MF288708.1	TGTGCATCCCAGCAGTAA
MF288710.1	TGTGCATCCCAGCAGTAA
MF288711.1	TGTGCATCCCAGCAGTAA
MF288712.1	TGTGCATCCCAGCAGTAA
MF288713.1	TGTGCATCCCAGCAGTAA
MF288714.1	TGTGCATCCCAGCAGTAA

CLUSTAL 2.1 multiple sequence Alignment

MF288715.1	TGTGCATCCCAGCAGTAA
MF288716.1	TGTGCATCCCAGCAGTAA
MF288717.1	TGTGCATCCCAGCAGTAA
MF288718.1	TGTGCATCCCAGCAGTAA
MF288719.1	TGTGCATCCCAGCAGTAA
MF288720.1	TGTGCATCCCAGCAGTAA
MF288721.1	TGTGCATCCCAGCAGTAA
MF288722.1	TGTGCATCCCAGCAGTAA
MF288723.1	TGTGCATCCCAGCAGTAA
MF288724.1	TGTGCATCCCAGCAGTAA
MF288725.1	TGTGCATCCCAGCAGTAA
MF288726.1	TGTGCATCCCAGCAGTAA
MF288727.1	TGTGCATCCCAGCAGTAA

Consensus sequence

>/chido/chido_E7 Consensus threshold=0.7
ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCCCCAAAATGAA
ATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACTCAGAGGAAGAAAACGATGAA
ATAGATGGAGTTAATCATCAACATTTACCAGCCCGACGAGCCGAACCACAACGTCACACA
ATGTTGTGTATGTGTTGTAAGTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCA
GACGACCTTCGAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
TGTGCATCCCAGCAGTAA

Primers data

ACCEPTABLE LEFT PRIMERS

0	-based #	self se	lf h	aiı	r- qua	al-			
#	sequence	start	ln	N	GC%	Tm	any_th	end_th pi	n lity
0	TGCATGGACCTAAGGCAACA	1	20	0	50.00	59.596	0.34	0.00 41.41	2.404
1	TGCATGGACCTAAGGCAACAT	1	21	0	47.62	59.994	0.34	0.00 41.41	3.006
2	ATGCATGGACCTAAGGCAACA	0	21	0	47.62	59.994	1.29	0.00 41.41	3.006
3	GCATGGACCTAAGGCAACA	2	19	0	52.63	57.735	0.00	0.00 41.41	3.265
4	TGCATGGACCTAAGGCAAC	1	19	0	52.63	57.735	0.34	0.00 0.00	3.265
5	GCATGGACCTAAGGCAACAT	2	20	0	50.00	58.232	0.00	0.00 41.41	3.768
6	ATGCATGGACCTAAGGCAAC	0	20	0	50.00	58.232	1.29	0.00 0.00	3.768
7	GCATGGACCTAAGGCAACATT	2	21	0	47.62	58.897	0.00	0.00 41.41	4.103
8	CATGGACCTAAGGCAACATTG	3	21	0	47.62	57.212	0.00	0.00 41.41	5.788

ACCEPTABLE RIGHT PRIMERS

0-based #	self self hair- qual-	
# sequence	start ln N GC% ${ m Tm}$ any_th	end_th pin lity
0 GGATGCACACCACGGACA	308 18 0 61.11 59.968 6.86	0.00 0.00 0.032
1 CTGCTGGGATGCACACCA	314 18 0 61.11 59.965 6.10	4.92 38.12 0.035
2 ACTGCTGGGATGCACACC	315 18 0 61.11 59.965 0.00	0.00 38.12 0.035
3 TGCTCGAAGGTCGTCTGC	254 18 0 61.11 59.741 6.26	6.26 43.45 0.259
4 GCTCGTCGGGCTGGTAAA	160 18 0 61.11 59.736 10.59	0.00 0.00 0.264
5 TGCTGGGATGCACCAC	313 18 0 61.11 60.282 3.46	0.78 38.12 0.282
6 TTGTGGTTCGGCTCGTCG	170 18 0 61.11 60.355 0.00	0.00 0.00 0.355
7 TGACGTTGTGGTTCGGCT	175 18 0 55.56 59.498 0.00	0.00 35.95 0.502
8 ATGCACACCACGGACACA	306 18 0 55.56 59.492 0.00	0.00 0.00 0.508
9 TGCACACCACGGACACAC	305 18 0 61.11 60.513 0.00	0.00 0.00 0.513
10 GCACACCACGGACACACA	304 18 0 61.11 60.513 0.00	0.00 0.00 0.513
11 GCTCGAAGGTCGTCTGCT	253 18 0 61.11 59.431 6.06	0.00 43.45 0.569
12 GTGACGTTGTGGTTCGGC	176 18 0 61.11 59.370 0.00	0.00 35.47 0.630
13 ACGTTGTGGTTCGGCTCG	173 18 0 61.11 60.661 0.00	0.00 0.00 0.661
14 CGTTGTGGTTCGGCTCGT	172 18 0 61.11 60.661 0.00	0.00 0.00 0.661
15 GGGATGCACACCACGGAC	309 18 0 66.67 60.746 12.79	0.00 0.00 0.746
16 CTGGGATGCACACCACGG	311 18 0 66.67 60.747 2.08	0.00 0.00 0.747
17 AGCTGCTGGAATGCTCGA	265 18 0 55.56 59.015 0.00	0.00 30.41 0.985
18 CAGCTGCTGGAATGCTCG	266 18 0 61.11 58.901 21.71	0.00 34.51 1.099
19 GCTCGTCGGGCTGGTAAAT	160 19 0 57.89 60.153 10.59	0.00 0.00 1.153
20 ATGCTCGAAGGTCGTCTGC	255 19 0 57.89 60.154 6.26	6.26 43.45 1.154
21 GACGTTGTGGTTCGGCTC	174 18 0 61.11 58.759 0.00	0.00 31.86 1.241
22 GTTGTGGTTCGGCTCGTC	171 18 0 61.11 58.759 0.00	0.00 0.00 1.241
23 TGGGATGCACACCACGGA	310 18 0 61.11 61.245 6.10	0.00 0.00 1.245
24 GATGCACACCACGGACAC	307 18 0 61.11 58.746 0.00	0.00 0.00 1.254
25 AGCTGCTGGAATGCTCGAA	265 19 0 52.63 59.702 0.00	0.00 30.41 1.298
26 TACTGCTGGGATGCACACC	316 19 0 57.89 59.700 0.00	0.00 38.12 1.300
27 TGTGGTTCGGCTCGTCG	169 17 0 64.71 59.693 0.00	0.00 0.00 1.307
28 TGGGATGCACACCACGG	310 17 0 64.71 59.592 6.10	0.00 0.00 1.408
29 GCTGGGATGCACACCACG	312 18 0 66.67 61.434 3.27	0.42 0.00 1.434

_								-			
μ	r	1	m	Р	r	æ	- 1	П	а	t	а

Pr	imers data										
30	CAGCTGCTGGAATGCTCGA	266	19	0	57.	89	60.449	21.71	0.00 3	34.51	1.449
31	GTGGTTCGGCTCGTCGG	168	17	0	70.	59	60.495	0.00	0.00	0.00	1.495
32	GAAGGTCGTCTGCTGAGCT	249	19	0	57.	89	59.411	5.83	0.00	0.00	1.589
33	TGACGTTGTGGTTCGGCTC	175	19	0	57.	89	60.593	0.00	0.00 3	35.95	1.593
34	GATGCACACCACGGACACA	307	19	0	57.	89	60.597	0.00	0.00	0.00	1.597
35	GTGTGACGTTGTGGTTCGG	178	19	0	57.	89	59.360	0.00	0.00	0.00	1.640
36	TGCTGGAATGCTCGAAGGT	262	19	0	52.	63	59.321	0.00	0.00	0.00	1.679
37	GCTGCTGGAATGCTCGAAG	264	19	0	57.	89	59.280	0.00	0.00	0.00	1.720
38	GGGATGCACACCACGGA	309	17	0	64.	71	59.258	12.79	0.00	0.00	1.742
39	ACAGCTGCTGGAATGCTCG	267	19	0	57.	89	60.744	31.00	5.48 3	35.51	1.744
40	GGCTCGTCGGGCTGGTAA	161	18	0	66.	67	61.767	8.47	0.00	0.00	1.767
41	AAGGTCGTCTGCTGAGCT	248	18	0	55.	56	58.215	5.83	0.00	0.00	1.785
42	AGGTCGTCTGCTGAGCTT	247	18	0	55.	56	58.215	5.83	0.00	0.00	1.785
43	GCTCGAAGGTCGTCTGCTG	253	19	0	63.	16	60.804	6.06	0.00 4	13.45	1.804
44	CGAAGGTCGTCTGCTGAGC	250	19	0	63.	16	60.804	0.00	0.00 3	37.02	1.804
45	CTCGAAGGTCGTCTGCTGA	252	19	0	57.	89	59.123	0.00	0.00 4	13.45	1.877
46	TCGAAGGTCGTCTGCTGAG	251	19	0	57.	89	59.123	0.00	0.00 4	13.45	1.877
47	GTGACGTTGTGGTTCGGCT	176	19	0	57.	89	60.886	0.00	0.00 3	35.95	1.886
48	ATGCACACCACGGACACAC	306	19	0	57.	89	60.892	0.00	0.00	0.00	1.892
49	GCTGCTGGAATGCTCGAA	264	18	0	55.	56	58.105	0.00	0.00	0.00	1.895
50	ACCACGGACACAAAGGA	300	19	0	52.	63	59.091	0.00	0.00	0.00	1.909
51	TGGAATGCTCGAAGGTCGT	259	19	0	52.	63	59.028	0.00	0.00 4	13.45	1.972
52	GCTCGTCGGGCTGGTAA	160	17	0	64.	71	59.026	10.59	0.00	0.00	1.974
53	TCGTCGGGCTGGTAAATGT	158	19	0	52.	63	59.023	0.00	0.00	0.00	1.977
54	TGCACACCACGGACACA	305	17	0	58.	82	59.010	0.00	0.00	0.00	1.990
55	CACCACGGACACAAAGG	301	19				58.978	0.00	0.00	0.00	2.022
56	GAAGGTCGTCTGCTGAGCTT	249					60.038	7.47	7.47	38.04	2.038
57	AGGTCGTCTGCTGAGCTTTC	247					60.038	0.00	0.00	0.00	2.038
58	GGTCGTCTGCTGAGCTTTCT	246					60.038	0.00	0.00	0.00	2.038
59	AAGGTCGTCTGCTGAGCTT	248					58.946		4.25		2.054
	AGGTCGTCTGAGCTTT	247					58.946	5.83	0.00	0.00	2.054
	TCGAAGGTCGTCTGCTGA	251					57.925	0.00	0.00 4		2.075
	CTCGTCGGGCTGGTAAATGT	159					60.108	0.00	0.00	0.00	2.108
	CTGGAATGCTCGAAGGTCGT	260					60.109	0.00	0.00 4		2.109
	TGGAATGCTCGAAGGTCGTC	259					60.109	0.00	0.00 4		2.109
	GCACACCACGGACACAA	304					61.110	0.00	0.00	0.00	2.110
66		177					57.888	0.00	0.00	0.00	2.112
	GGCTCGTCGGGCTGGTA	161					61.167	8.47	0.00	0.00	2.167
	GGAATGCTCGAAGGTCGTCT	258					59.826	0.00	0.00 4		2.174
	TGTGACGTTGTGGTTCGGC	177					61.175	0.00	0.00 3		2.175
	GAAGGTCGTCTGCTGAGC	249					57.823	0.00	0.00	0.00	2.177
	ACGGACACAAAGGACAGG	297					60.179	0.00	0.00	0.00	2.179
	CTCGAAGGTCGTCTGCTGAG	252					60.179	0.00	0.00 4		2.179
	GGACACAAAGGACAGGGT	295					59.817	0.00	0.00	0.00	2.183
	GGTTCGGCTCGTCGG	166					59.806	0.00	0.00	0.00	2.194
	CACACCACGGACACACAA	303					57.790	0.00	0.00	0.00	2.210
76	CGTTGTGGTTCGGCTCG	172	Τ./	U	64.	/ 1	58.750	0.00	0.00	0.00	2.250

Primers dat	a
-------------	---

Primers data			
77 TGCTCGAAGGTCGTCTGCT	254 19	0 57.89 61.269 1	1.58 0.00 43.45 2.269
78 TGCTGGGATGCACACCA	313 17	0 58.82 58.729	6.10 4.92 38.12 2.271
79 ACAGCTGCTGGAATGCTC	267 18	0 55.56 57.684 3	1.00 0.00 35.51 2.316
80 CCACGGACACAAAGGAC	299 19	0 57.89 58.683	0.00 0.00 0.00 2.317
81 TCGTCGGGCTGGTAAATGTT	158 20	0 50.00 59.678	0.00 0.00 0.00 2.322
82 TTACTGCTGGGATGCACACC	317 20	0 55.00 60.322	0.00 0.00 38.12 2.322
83 GGATGCACACCACGGACAC	308 19	0 63.16 61.325	6.86 0.00 0.00 2.325
84 CTGCTGGGATGCACACCAC	314 19	0 63.16 61.338	3.46 0.78 38.12 2.338
85 TGTGGTTCGGCTCGTCGG	169 18	0 66.67 62.352	0.00 0.00 0.00 2.352
86 TGTGTGACGTTGTGGTTCG	179 19	0 52.63 58.625	0.00 0.00 0.00 2.375
87 CACACCACGGACACAAAG	303 20	0 55.00 59.623	0.00 0.00 0.00 2.377
88 GCTGGAATGCTCGAAGGTC	261 19	0 57.89 58.612	0.00 0.00 0.00 2.388
89 CTGCTGGAATGCTCGAAGG	263 19	0 57.89 58.609	0.00 0.00 0.00 2.391
90 TGCTGGAATGCTCGAAGGTC	262 20	0 55.00 60.392	0.00 0.00 0.00 2.392
91 CTGCTGGAATGCTCGAAGGT	263 20		0.00 0.00 0.00 2.392
92 AAGGTCGTCTGCTGAGCTTT	248 20	0 50.00 59.605	4.25 0.00 34.76 2.395
93 GCACACCACGGACACAC	304 17	0 64.71 58.565	0.00 0.00 0.00 2.435
94 CGTCGGGCTGGTAAATGTTG	157 20	0 55.00 59.554	0.00 0.00 0.00 2.446
95 GGTCGTCTGCTGAGCTTTC	246 19	0 57.89 58.549	0.00 0.00 0.00 2.451
96 CACCACGGACACAAAGGA	301 20	0 55.00 60.463	0.00 0.00 0.00 2.463
97 CCACGGACACACAAAGGACA	299 20	0 55.00 60.463	0.00 0.00 0.00 2.463
98 ACCACGGACACACAAAGGAC	300 20	0 55.00 60.463	0.00 0.00 0.00 2.463
99 CTCGAAGGTCGTCTGCTG	252 18		0.00 0.00 0.00 2.467
100 CGAAGGTCGTCTGCTGAG	250 18		0.00 0.00 43.43 2.467
101 CACACCACGGACACAAA	303 19		0.00 0.00 37.02 2.407
102 ACCACGGACACAAAGG	300 18		0.00 0.00 0.00 2.472
103 AACAGCTGCTGGAATGCTC	268 19		
104 GTTCGGCTCGTCGGGC	165 16		
105 CGTCGGGCTGGTAAATGT	157 18	0 55.56 57.390 0 57.89 58.383	0.00 0.00 0.00 2.610 0.00 0.00 0.00 2.617
106 CGGACACAAAGGACAGG			
107 ACACACAAAGGACAGGGTGT	293 20		0.00 0.00 44.69 2.624
108 TGCTGGAATGCTCGAAGG	262 18		0.00 0.00 0.00 2.624
109 GCTGGAATGCTCGAAGGT	261 18		0.00 0.00 0.00 2.626
110 GACGTTGTGGTTCGGCTCG	174 19		0.00 0.00 31.86 2.655
111 CGTTGTGGTTCGGCTCGTC	172 19		0.00 0.00 0.00 2.655
112 GTTGTGGTTCGGCTCGTCG	171 19		0.00 0.00 0.00 2.655
113 GGAATGCTCGAAGGTCGTC	258 19		0.00 0.00 43.45 2.667
114 CTGGAATGCTCGAAGGTCG	260 19		0.00 0.00 44.56 2.671
115 CTCGTCGGGCTGGTAAATG	159 19		0.00 0.00 0.00 2.678
116 GGTCGTCTGCTGAGCTTT	246 18		5.83 0.00 0.00 2.683
117 GCTGGGATGCACACCAC	312 17		0.36 0.00 0.00 2.716
118 TTGTGTGACGTTGTGGTTCG	180 20		0.00 0.00 0.00 2.722
119 AATGCTCGAAGGTCGTCTGC	256 20		6.26 6.26 43.45 2.738
120 AGCTGCTGGAATGCTCGAAG	265 20		0.00 0.00 30.41 2.744
121 ACACCACGGACACAAAGG	302 20		0.00 0.00 0.00 2.747
122 TTCGGCTCGTCGGGCT	164 16		
123 ACACCACGGACACAAAG	302 19	0 52.63 58.225	0.00 0.00 0.00 2.775

Prin	mers data									
124	TGGTTCGGCTCGTCGGG	167	17	0	70.59	61.808	0.00	0.00	0.00	2.808
125	ACTGCTGGGATGCACACCA	315	19	0	57.89	61.833	6.10	4.92	38.12	2.833
126	AACAGCTGCTGGAATGCT	268	18	0	50.00	57.163	31.00	8.45	35.51	2.837
127	CGTCGGGCTGGTAAATGTT	157	19	0	52.63	58.151	0.00	0.00	0.00	2.849
128	CCACGGACACAAAGGA	299	18	0	55.56	57.132	0.00	0.00	0.00	2.868
129	CGGACACAAAGGACAGGG	296	20	0	60.00	60.885	0.00	0.00	0.00	2.885
130	AGAAACAGCTGCTGGAATGC	271	20	0	50.00	59.113	11.85	0.18	35.51	2.887
131	GAAACAGCTGCTGGAATGCT	270	20	0	50.00	59.113	12.08	0.00	35.51	2.887
132	AAACAGCTGCTGGAATGCTC	269	20	0	50.00	59.113	31.00	0.00	35.51	2.887
133	TGGAATGCTCGAAGGTCG	259	18	0	55.56	57.089	0.00	0.00	44.56	2.911
134	GGAATGCTCGAAGGTCGT	258	18	0	55.56	57.087	0.00	0.00	43.45	2.913
135	TCGTCGGGCTGGTAAATG	158	18	0	55.56	57.076	0.00	0.00	0.00	2.924
136	CACGGACACAAAGGACAG	298	20	0	55.00	59.063	0.00	0.00	0.00	2.937
137	GTGTTCAGAAACAGCTGCTGG	277	21	0	52.38	60.002	31.00	14.58	45.78	3.002
138	ACACACAAAGGACAGGGTGTT	293	21	0	47.62	59.995	0.00	0.00	42.16	3.005
139	TCGGCTCGTCGGGCT	163				60.018		0.00	0.00	3.018
140	GGACACAAAGGACAGGG	295				57.979	0.00	0.00	0.00	3.021
141		266				61.023			34.51	3.023
142	GGATGCACACCACGGAC	308				57.975	6.86	0.00	0.00	3.025
143	CTGGGATGCACACCACG	311				57.970	0.00	0.00	0.00	3.030
	AAACAGCTGCTGGAATGCT	269				57.953			35.51	3.047
145	CTGCTGGGATGCACACC	314				57.947	0.00		38.12	3.053
146	TGGTTCGGCTCGTCGG	167				58.943	0.00	0.00	0.00	3.057
147	CACGGACACAAAGGACA	298				57.927	0.00	0.00	0.00	3.073
148	TGTGTGACGTTGTGGTTCGG	179				61.085	0.00	0.00	0.00	3.085
149	TGTTCAGAAACAGCTGCTGGA	276	21			60.134				3.134
150	GAAACAGCTGCTGGAATGCTC	270	21			60.135			35.51	3.135
151	CGGCTCGTCGGGCTG	162				59.845		8.50	0.00	3.155
152	TGACGTTGTGGTTCGGC	175		0	58.82	57.822	0.00	0.00	35.47	3.178
153	TTCGGCTCGTCGGGCTG	164	17			62.201	6.26			3.201
	GTTCGGCTCGTCGGGCT	165				62.203			0.00	3.203
155	GGTCGTCTGCTGAGCTTTCTA	246	21	0	52.38	59.797	0.00	0.00	0.00	3.203
156	GCTCGAAGGTCGTCTGC	253	17	0	64.71	57.778	0.00	0.00	43.45	3.222
157	TTACTGCTGGGATGCACAC	317	19	0	52.63	57.752	0.00	0.00	38.12	3.248
158	CTGGGATGCACACCACGGA	311	19	0	63.16	62.253	2.08	0.00	0.00	3.253
159	GAATGCTCGAAGGTCGTCTG	257	20	0	55.00	58.727	0.00	0.00	43.45	3.273
160	ACACAAAGGACAGGGTGTTCA	291	21	0	47.62	59.716	0.00	0.00	41.36	3.284
161	AACAGCTGCTGGAATGCTCG	268	20	0	55.00	61.304	31.00	5.48	35.51	3.304
162	GGCTCGTCGGGCTGGTAAA	161	19	0	63.16	62.305	8.47	0.00	0.00	3.305
163	GACACAAAGGACAGGGTG	294	20	0	55.00	58.691	0.00	0.00	37.29	3.309
164	TGTTCAGAAACAGCTGCTGG	276	20	0	50.00	58.688	31.00	14.58	40.45	3.312
165	TGCACACCACGGACACA	305	19	0	57.89	62.317	0.00	0.00	0.00	3.317
166	ATTGTGTGACGTTGTGGTTCG	181		0	47.62	59.671	0.00	0.00	0.00	3.329
167	ACGGACACAAAGGACAG	297	19	0	52.63	57.620	0.00	0.00	0.00	3.380
168	CAGAAACAGCTGCTGGAATGC	272	21	0	52.38	60.402	12.65	0.18	35.51	3.402
169	GACACAAAGGACAGGGTGT	294	21	0	52.38	60.408	0.00	0.00	44.69	3.408
170	GAAACAGCTGCTGGAATGC	270	19	0	52.63	57.586	9.13	0.00	35.51	3.414

				-	_	
P۳	11	nei	ra	a	аt	а

Pri	ners data								
	GCTGGAATGCTCGAAGGTCG	261 20	0	60.00	61.424	0.00	0.00	44.56	3.424
	AATGCTCGAAGGTCGTCTG	256 19			57.574	0.00		43.45	3.426
	GCTCGTCGGGCTGGTAAATG	160 20			61.429		0.00	0.00	3.429
	ACGTTGTGGTTCGGCTCGT	173 19			62.435	0.00	0.00	0.00	3.435
	TACTGCTGGGATGCACACA	316 20			61.488	6.10		38.12	3.488
	ACACAAAGGACAGGGTG	293 19			57.505	0.00		37.29	3.495
177		292 19			57.505	0.00		44.69	3.495
178	GTCGTCTGCTGAGCTTTCT	245 19			57.494	0.00	0.00	0.00	3.506
179	GACGTTGTGGTTCGGCT	174 17			57.486	0.00		31.86	3.514
180	ACGTTGTGGTTCGGCTC	173 17			57.486	0.00	0.00	0.00	3.514
	GTTGTGGTTCGGCTCGT	171 17			57.486	0.00	0.00	0.00	3.514
	ATGCACACCACGGACAC	306 17			57.460	0.00	0.00	0.00	3.540
	GGCTCGTCGGGCTGGT	161 16			61.543	8.47	0.00	0.00	3.543
184	TGGGATGCACACCACGGAC	310 19			62.545	6.10	0.00	0.00	3.545
185	GGGATGCACACCACGGACA	309 19			62.545		0.00	0.00	3.545
	AGAAACAGCTGCTGGAATGCT	271 21			60.547			35.51	3.547
187		275 20			58.402				3.598
_	ATGCTCGAAGGTCGTCTGCT	255 20			61.600			43.45	3.600
	AGGTCGTCTGCTGAGCT	247 17			57.400	5.83	0.00	0.00	3.600
190	TCGGCTCGTCGGGCTG	163 16			61.604	6.26	6.26	0.00	3.604
	GAAGGTCGTCTGCTGAGCTTT	249 21			60.607	8.40		36.71	3.607
	AAGGTCGTCTGCTGAGCTTTC	248 21			60.607	4.25		34.76	3.607
193	GGCTCGTCGGGCTGG	161 15	0	80.00	59.383	8.47	0.00	0.00	3.617
194	GCACACCACGGACACAAA	304 20			61.649	0.00	0.00	0.00	3.649
195	CTCGTCGGGCTGGTAAATGTT	159 21	0	52.38	60.675	0.00	0.00	0.00	3.675
196	CACACAAAGGACAGGGTGTTC	292 21	0	52.38	59.324	0.00	0.00	42.16	3.676
197	GCTGCTGGAATGCTCGA	264 17	0	58.82	57.303	0.00	0.00	0.00	3.697
198	AGCTGCTGGAATGCTCG	265 17	0	58.82	57.295	0.00	0.00	30.41	3.705
199	GCTGCTGGAATGCTCGAAGG	264 20	0	60.00	61.713	0.00	0.00	0.00	3.713
200	CGTTTTCTTCCTCTGAGTCGC	114 21	0	52.38	59.278	0.00	0.00	0.00	3.722
201	GAATGCTCGAAGGTCGTCT	257 19	0	52.63	57.276	0.00	0.00	43.45	3.724
202	GTCGCTTAATTGCTCGTGACA	98 21	0	47.62	59.275	6.82	0.00	0.00	3.725
203	ACATTGTGTGACGTTGTGGT	183 20	0	45.00	58.255	0.00	0.00	0.00	3.745
204	CACACAAAGGACAGGGTGTT	292 20	0	50.00	58.237	0.00	0.00	42.16	3.763
205	GCTCGTCGGGCTGGTA	160 16	0	68.75	58.231	10.59	0.00	0.00	3.769
206	GACACAAAGGACAGGGT	294 19	0	52.63	57.199	0.00	0.00	0.00	3.801
207	GTCGGGCTGGTAAATGTTGA	156 20	0	50.00	58.184	0.00	0.00	0.00	3.816
208	GTGACGTTGTGGTTCGGCTC	176 20	0	60.00	61.828	0.00	0.00	35.95	3.828
209	GATGCACACCACGGACACAC	307 20	0	60.00	61.842	0.00	0.00	0.00	3.842
210	TTGTGGTTCGGCTCGTC	170 17	0	58.82	57.158	0.00	0.00	0.00	3.842
211	ACAAAGGACAGGGTGTTCAGA	289 21	0	47.62	59.156	0.00	0.00	0.00	3.844
212	AGGACAGGGTGTTCAGAAACA	285 21	0	47.62	59.156	0.01	0.00	43.06	3.844
213	TTGTGGTTCGGCTCGTCGG	170 19	0	63.16	62.852	0.00	0.00	0.00	3.852
214	GATGCACACCACGGACA	307 17	0	58.82	57.129	0.00	0.00	0.00	3.871
215	ACTGCTGGGATGCACAC	315 17	0	58.82	57.088	0.00	0.00	38.12	3.912
216	TCGTCGGGCTGGTAAATGTTG	158 21	0	52.38	60.942	0.00	0.00	0.00	3.942
217	CGTCGGGCTGGTAAATGTTGA	157 21	0	52.38	60.942	0.00	0.00	0.00	3.942

_								-			
μ	r	Т.	m	Р	r	æ	- 1	П	а	t	а

Pri	mers data								
218	CACAAAGGACAGGGTGTTCAG	290 2	21 0	52.38	59.050	0.00	0.00	0.00	3.950
219	GTTCAGAAACAGCTGCTGGAA	275 2	21 0	47.62	59.050	20.26	11.82	35.51	3.950
220	TGAGTCGCTTAATTGCTCGTG	101 2	21 0	47.62	59.007	0.00	0.00	0.00	3.993
221	AGTCGCTTAATTGCTCGTGAC	99 2	21 0	47.62	59.007	4.62	4.62	0.00	3.993
222	CACAAAGGACAGGGTGTTCA	290 2	20 0	50.00	57.949	0.00	0.00	0.00	4.051
223	ACACAAAGGACAGGGTGTTC	291 2	20 0	50.00	57.947	0.00	0.00	41.36	4.053
224	CTGGAATGCTCGAAGGTCGTC	260 2	21 0	57.14	61.064	0.00	0.00	43.45	4.064
225	GGAATGCTCGAAGGTCGTCTG	258 2	21 0	57.14	61.064	0.00	0.00	43.45	4.064
226	TTCGGCTCGTCGGGC	164 1	15 0	73.33	58.930	2.73	2.73	0.00	4.070
227	TCGCTTAATTGCTCGTGACA	97 2	20 0	45.00	57.927	0.00	0.00	0.00	4.073
228	GGACACAAAGGACAGGGTG	295 2	21 0	57.14	61.085	0.00	0.00	37.29	4.085
229	AACATTGTGTGACGTTGTGGT		21 0	42.86	58.912	0.00	0.00	0.00	4.088
230	ACATTGTGTGACGTTGTGGTT				58.912	0.00	0.00	0.00	4.088
231					58.843	22.36		35.51	4.157
232					58.842	0.00	0.00	0.00	4.158
233	GCTCAATTCTGGCTTCACACT				58.842	0.00	0.00	0.00	4.158
234	TCGTCTGCTGAGCTTTCTACT				58.836	0.18	0.00	0.00	4.164
235	TGCTCGTGACATAGAAGGTCA				58.832	0.00		42.62	4.168
236	ACAGCTGCTGGAATGCTCGA				62.176	31.00		35.51	4.176
237	GCTCGAAGGTCGTCTGCTGA				62.201	6.06		43.45	4.201
238	TCGAAGGTCGTCTGCTGAGC				62.201	0.00		43.45	4.201
239	CGAAGGTCGTCTGCTGAGCT				62.201	5.83		37.02	4.201
240	GGACAGGGTGTTCAGAAACAG				58.778	0.00		45.78	4.222
241	GTCGTCTGCTGAGCTTTCTAC				58.745	0.00	0.00	0.00	4.255
241									4.260
243	GAGTCGCTTAATTGCTCGTGA CGTGACATAGAAGGTCAACCG				58.740 58.740	0.00	0.00	0.00	
						0.00			4.260
244	CTGAGTCGCTTAATTGCTCGT				58.737	0.00	0.00	0.00	4.263
245	CTGCTGGAATGCTCGAAGGTC				61.338	0.00	0.00	0.00	4.338
246	GGACAGGGTGTTCAGAAACA				57.658	0.01		43.06	4.342
24 /	TTCAGAAACAGCTGCTGGAA	274 2			57.653			35.51	4.347
	ACAAAGGACAGGGTGTTCAG	289 2			57.652	0.00	0.00	0.00	4.348
	TGAGTCGCTTAATTGCTCGT	101 2			57.636	0.00	0.00	0.00	4.364
	AGTCGCTTAATTGCTCGTGA				57.636	0.00	0.00	0.00	4.364
	TCGGGCTGGTAAATGTTGATG	155 2			58.635	0.00	0.00	0.00	4.365
	CGGGCTGGTAAATGTTGATGA	154 2			58.635	0.00	0.00	0.00	4.365
	GTCGGGCTGGTAAATGTTGAT	156 2			58.634	0.00	0.00	0.00	4.366
	GTGTGACGTTGTGGTTCGGC				62.369	0.00		35.47	4.369
	GTGGTTCGGCTCGTCG	168 1			57.630	0.00	0.00	0.00	4.370
	GTGTTCAGAAACAGCTGCTG	277 2			57.604				4.396
	CCACGGACACAAAGGACAG	299 2			61.406	0.00	0.00	0.00	4.406
258	CACGGACACAAAGGACAGG				61.406	0.00	0.00	0.00	4.406
	GTCGCTTAATTGCTCGTGAC	98 2			57.579	0.00	0.00	0.00	4.421
260	AGGTCGTCTGCTGAGCTTTCT	247 2	21 0	52.38	61.436	0.00	0.00	0.00	4.436
261	CAACATTGTGTGACGTTGTGG	185 2	21 0	47.62	58.551	0.00	0.00	0.00	4.449
262	TGCTCGAAGGTCGTCTGCTG	254 2	20 0	60.00	62.478		0.00	43.45	4.478
263	TGGAATGCTCGAAGGTCGTCT	259 2	21 0	52.38	61.498	0.00	0.00	43.45	4.498
264	TCTGAGTCGCTTAATTGCTCG	103 2	21 0	47.62	58.470	0.00	0.00	0.00	4.530

_								-			
μ	r	Т.	m	Р	r	æ	- 1	П	а	t	а

Pri	ners data									
265	TGACATAGAAGGTCAACCGGA	82	21	0	47.62	58.468	9.46	0.00	41.96	4.532
266	GGGATGCACCACGG	309	16	0	68.75	57.451	12.79	0.00	0.00	4.549
267	GCTCGTCGGGCTGGT	160	15	0	73.33	58.449	10.59	0.00	0.00	4.551
268	TCAGAAACAGCTGCTGGAAT	273	20	0	45.00	57.426	31.00	17.58	35.51	4.574
269	AGCTCAATTCTGGCTTCACA	220	20	0	45.00	57.426	0.00	0.00	0.00	4.574
270	TGTGACGTTGTGGTTCGGCT	177	20	0	55.00	62.581	0.00	0.00	35.95	4.581
271	GGCTCGTCGGGCTGGTAAAT	161	20	0	60.00	62.589	8.47	0.00	0.00	4.589
272	TTGTGTGACGTTGTGGTTCGG	180	21	0	52.38	61.599	0.00	0.00	0.00	4.599
273	ATGCACACCACGGACACACA	306	20	0	55.00	62.601	0.00	0.00	0.00	4.601
274	TCGCTTAATTGCTCGTGACAT	97	21	0	42.86	58.383	0.00	0.00	0.00	4.617
275	GTGACATAGAAGGTCAACCGG	83	21	0	52.38	58.382	0.00	0.00	45.96	4.618
276	GCTCAATTCTGGCTTCACAC	219	20	0	50.00	57.374	0.00	0.00	0.00	4.626
277	CAGAAACAGCTGCTGGAATG	272	20		50.00	57.369	19.76	10.50	35.51	4.631
278	CAAAGGACAGGGTGTTCAGA	288	20			57.362	0.00	0.00	0.00	4.638
279	GTCGTCTGCTGAGCTTTCTA	245	20			57.361	0.00	0.00	0.00	4.639
280	TCGTCTGCTGAGCTTTCTAC	244				57.361	0.00	0.00	0.00	4.639
	AGGACAGGGTGTTCAGAAAC	285	20			57.360	0.00	0.00	35.85	4.640
	CGTCTGCTGAGCTTTCTACT	243	20			57.354	0.18	0.00	0.00	4.646
283	GAATGCTCGAAGGTCGTCTGC	257	21			61.648	6.26	6.26	43.45	4.648
	CACCACGGACACAAAGGAC	301				61.670	0.00	0.00	0.00	4.670
285	GAGTCGCTTAATTGCTCGTG	100	20			57.297	0.00	0.00	0.00	4.703
286	CATTGTGTGACGTTGTGGTTC	182	21			58.285	0.00	0.00	0.00	4.715
		155								
287	TCGGGCTGGTAAATGTTGAT		20			57.201	0.00	0.00	0.00	4.799
288	TGCACACCACGGACACACAA	305	20			62.805	0.00	0.00	0.00	4.805
289	AAACAGCTGCTGGAATGCTCG	269	21			61.812	31.00	5.48	35.51	4.812
290		184				57.158	0.00	0.00	0.00	4.842
291	CATTGTGTGACGTTGTGGTT	182	20			57.158	0.00	0.00	0.00	4.842
	CGGGCTGGTAAATGTTGATG	154				57.150	0.00	0.00	0.00	4.850
	TTCAGAAACAGCTGCTGGAAT	274				58.132			35.51	4.868
	TCCTCTGAGTCGCTTAATTGC	106				58.106	3.66	0.00	0.00	4.894
	CCTCTGAGTCGCTTAATTGCT	105				58.101	3.66	0.00	0.00	4.899
	CAGCTGCTGGAATGCTCGAAG	266				61.927			34.51	4.927
	CAAAGGACAGGGTGTTCAGAA	288				58.069	0.00	0.00	0.00	4.931
	AAGGACAGGGTGTTCAGAAAC	286				58.068	0.00		35.85	4.932
	CACACCACGGACACAAAGG	303				61.935	0.00	0.00	0.00	4.935
	TGCTCGTGACATAGAAGGTC	88				57.059	0.00		35.83	4.941
301	GCTCGTGACATAGAAGGTCA	87	20			57.059	0.00	0.00	42.62	4.941
302	CTGAGTCGCTTAATTGCTCG	102	20			57.013	0.00	0.00	0.00	4.987
303	TGGCTTCACACTTACAACACA	210	21	0	42.86	58.007	0.00	0.00	0.00	4.993
304	TTACTGCTGGGATGCACACCA	317	21	0	52.38	62.004	6.10	4.92	38.12	5.004
305	GTTTTCTTCCTCTGAGTCGCT	113	21	0	47.62	57.967	0.00	0.00	0.00	5.033
306	AATGCTCGAAGGTCGTCTGCT	256	21	0	52.38	62.099	11.58	0.55	43.45	5.099
307	ACACCACGGACACAAAGGA	302	21	0	52.38	62.124	0.00	0.00	0.00	5.124
308	ACCACGGACACAAAGGACA	300	21	0	52.38	62.124	0.00	0.00	0.00	5.124
309	ACAACATTGTGTGACGTTGTG	186	21	0	42.86	57.870	5.36	0.00	41.89	5.130
310	TTGCTCGTGACATAGAAGGTC	89	21	0	47.62	57.768	0.00	0.00	35.83	5.232
311	GCTCGTGACATAGAAGGTCAA	87	21	0	47.62	57.768	0.00	0.00	45.96	5.232

312	TCGTTTTCTTCCTCTGAGTCG	115	21	0	47.62	57.716	0.00	0.00	0.00	5.284
313	GCACACCACGGACACAAAG	304	21	0	57.14	62.514	0.00	0.00	0.00	5.514
314	ACGGACACAAAGGACAGGG	297	21	0	57.14	62.522	0.00	0.00	0.00	5.522
315	CGGACACAAAGGACAGGGT	296	21	0	57.14	62.522	0.00	0.00	0.00	5.522
316	TCTGGCTTCACACTTACAACA	212	21	0	42.86	57.448	0.00	0.00	0.00	5.552
317	TCGTGACATAGAAGGTCAACC	85	21	0	47.62	57.412	0.00	0.00	45.96	5.588
318	GACATAGAAGGTCAACCGGAA	81	21	0	47.62	57.395	0.00	0.00	42.08	5.605
319	CTGGCTTCACACTTACAACAC	211	21	0	47.62	57.391	0.00	0.00	0.00	5.609
320	AACAGCTGCTGGAATGCTCGA	268	21	0	52.38	62.651	31.00	0.00	35.51	5.651
321	ACAGCTGCTGGAATGCTCGAA	267	21	0	52.38	62.651	31.00	0.00	35.51	5.651
322	TACTGCTGGGATGCACACCAC	316	21	0	57.14	62.660	3.46	0.78	38.12	5.660
323	AAAGGACAGGGTGTTCAGAAA	287	21	0	42.86	57.337	0.00	0.00	0.00	5.663
324	CGAAGGTCGTCTGCTGAGCTT	250	21	0	57.14	62.671	7.47	7.47	38.04	5.671
325	TAGCTCAATTCTGGCTTCACA	221	21	0	42.86	57.299	2.49	0.00	33.07	5.701
326	ATGCTCGAAGGTCGTCTGCTG	255	21	0	57.14	62.738	11.58	0.00	43.45	5.738
327	TTTTCTTCCTCTGAGTCGCTT	112	21	0	42.86	57.247	0.00	0.00	0.00	5.753
328	CGTCTGCTGAGCTTTCTACTA	243	21	0	47.62	57.233	0.18	0.00	0.00	5.767
329	ATTGCTCGTGACATAGAAGGT	90	21	0	42.86	57.105	0.00	0.00	0.00	5.895
330	ACTAGCTCAATTCTGGCTTCA	223	21	0	42.86	57.011	0.00	0.00	33.07	5.989

._____

BLASTN 2.7.1+

Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: 20DX59DB015

Database: Nucleotide collection (nt)

45,448,023 sequences; 163,513,399,372 total letters

Query= Length=20

Score E

Sequences p	roducing significant alignments:	(Bits)	Value
MF288727.1	Human papillomavirus type 18 isolate 1494573_N-P,	37.4	2.8
MF288726.1	Human papillomavirus type 18 isolate 1314304_N-P,	37.4	2.8
MF288725.1	Human papillomavirus type 18 isolate C451606_R3_19	37.4	2.8
MF288724.1	Human papillomavirus type 18 isolate C451606_R2_15	37.4	2.8
MF288723.1	Human papillomavirus type 18 isolate C451606_R1_12	37.4	2.8
MF288722.1	Human papillomavirus type 18 isolate C387957_R1_11	37.4	2.8
MF288721.1	Human papillomavirus type 18 isolate 1209155_R1_P	37.4	2.8
MF288720.1	Human papillomavirus type 18 isolate 1174820_N-P,	37.4	2.8
MF288719.1	Human papillomavirus type 18 isolate C487627_R2_15	37.4	2.8
MF288718.1	Human papillomavirus type 18 isolate C487627_R1_11	37.4	2.8
MF288717.1	Human papillomavirus type 18 isolate 1533526_N-P,	37.4	2.8
MF288716.1	Human papillomavirus type 18 isolate C458963_R2_15	37.4	2.8
MF288715.1	Human papillomavirus type 18 isolate C458963_R1_12	37.4	2.8
MF288714.1	Human papillomavirus type 18 isolate C533713_R3_17	37.4	2.8
MF288713.1	Human papillomavirus type 18 isolate C533713_R2_14	37.4	2.8
MF288712.1	Human papillomavirus type 18 isolate C578032_R3_17	37.4	2.8
MF288711.1	Human papillomavirus type 18 isolate C578032_R2_14	37.4	2.8
MF288710.1	Human papillomavirus type 18 isolate C335048_R3_19	37.4	2.8
MF288709.1	Human papillomavirus type 18 isolate C412607_R2_15	37.4	2.8
MF288708.1	Human papillomavirus type 18 isolate C412607_R1_12	37.4	2.8
MF288707.1	Human papillomavirus type 18 isolate C440384_R1_13	37.4	2.8
MF288706.1	Human papillomavirus type 18 isolate C425046_R2_16	37.4	2.8
MF288705.1	Human papillomavirus type 18 isolate C425046_R1_13	37.4	2.8
MF288704.1	Human papillomavirus type 18 isolate C627893_R2_16	37.4	2.8
MF288703.1	Human papillomavirus type 18 isolate C627893_R1_13	37.4	2.8
MF288702.1	Human papillomavirus type 18 isolate C644657_R4_21	37.4	2.8
MF288701.1	Human papillomavirus type 18 isolate C644657_R3_18	37.4	2.8

```
MF288700.1
           Human papillomavirus type 18 isolate C644657_R2_14... 37.4
                                                                          2.8
           Human papillomavirus type 18 isolate C644657_R1_11... 37.4
MF288699.1
                                                                          2.8
MF288698.1 Human papillomavirus type 18 isolate C335048 R2 15... 37.4
                                                                          2.8
MF288697.1 Human papillomavirus type 18 isolate 1445230_R2_P_... 37.4
                                                                          2.8
MF288696.1 Human papillomavirus type 18 isolate 1581449_N-P, ... 37.4
                                                                         2.8
MF288695.1 Human papillomavirus type 18 isolate C440737 R1 11... 37.4
                                                                          2.8
MF288694.1 Human papillomavirus type 18 isolate C439921_R1_11... 37.4
                                                                          2.8
MF288693.1 Human papillomavirus type 18 isolate C430899_R1_11... 37.4
                                                                         2.8
MF288692.1 Human papillomavirus type 18 isolate C353934 R1 11... 37.4
                                                                          2.8
MF288691.1 Human papillomavirus type 18 isolate 1390622_R1_P_... 37.4
                                                                          2.8
MF288690.1 Human papillomavirus type 18 isolate C532476_R1_11... 37.4
                                                                         2.8
MF288689.1 Human papillomavirus type 18 isolate 1508690_N-P, ... 37.4
                                                                          2.8
MF288688.1 Human papillomavirus type 18 isolate 1115002_N-P, ... 37.4
                                                                          2.8
MF288687.1 Human papillomavirus type 18 isolate C406921_R1_11... 37.4
                                                                          2.8
MF288686.1 Human papillomavirus type 18 isolate C575918_R2_14... 37.4
                                                                          2.8
MF288685.1 Human papillomavirus type 18 isolate C575918_R1_10... 37.4
                                                                          2.8
MF288684.1 Human papillomavirus type 18 isolate 1389481_N-P, ... 37.4
                                                                          2.8
MF288683.1 Human papillomavirus type 18 isolate 1310091_R1_P_... 37.4
                                                                          2.8
MF288682.1 Human papillomavirus type 18 isolate C385149_R2_15... 37.4
                                                                          2.8
MF288681.1 Human papillomavirus type 18 isolate C385149_R1_11... 37.4
                                                                          2.8
MF288680.1 Human papillomavirus type 18 isolate C340709_R1_12... 37.4
                                                                          2.8
MF288679.1 Human papillomavirus type 18 isolate C310065_R1_13... 37.4
                                                                          2.8
MF288678.1 Human papillomavirus type 18 isolate C498643_R2_15... 37.4
                                                                          2.8
```

ALIGNMENTS

>MF288727.1 Human papillomavirus type 18 isolate 1494573_N-P, complete genome Length=7844

```
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
```

>MF288726.1 Human papillomavirus type 18 isolate 1314304_N-P, complete genome Length=7857

```
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
```

```
>MF288725.1 Human papillomavirus type 18 isolate C451606_R3_1915584_(100w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288724.1 Human papillomavirus type 18 isolate C451606_R2_1584906_(52w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288723.1 Human papillomavirus type 18 isolate C451606_R1_1201181_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288722.1 Human papillomavirus type 18 isolate C387957_R1_1124102_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
```

Strand=Plus/Plus

```
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288721.1 Human papillomavirus type 18 isolate 1209155_R1_P_R2_FAIL, complete
genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288720.1 Human papillomavirus type 18 isolate 1174820_N-P, complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288719.1 Human papillomavirus type 18 isolate C487627_R2_1553725_(52w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
         TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288718.1 Human papillomavirus type 18 isolate C487627_R1_1178751_(0w),
complete genome
```

```
Length=7857

Score = 37.
```

```
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288717.1 Human papillomavirus type 18 isolate 1533526_N-P, complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
111111111111111111111
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288716.1 Human papillomavirus type 18 isolate C458963_R2_1584969_(48w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288715.1 Human papillomavirus type 18 isolate C458963_R1_1201270_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
```

Sbjct 591 TGCATGGACCTAAGGCAACA 610

```
>MF288714.1 Human papillomavirus type 18 isolate C533713_R3_1794175_(52w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288713.1 Human papillomavirus type 18 isolate C533713_R2_1453915_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288712.1 Human papillomavirus type 18 isolate C578032_R3_1777990_(53w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288711.1 Human papillomavirus type 18 isolate C578032_R2_1441689_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
```

```
Strand=Plus/Plus
```

```
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288710.1 Human papillomavirus type 18 isolate C335048_R3_1978895_(63w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288709.1 Human papillomavirus type 18 isolate C412607_R2_1595957_(56w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
         TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288708.1 Human papillomavirus type 18 isolate C412607_R1_1241497_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
```

>MF288707.1 Human papillomavirus type 18 isolate C440384_R1_1310123_N-P,

BLAST INFORMATION complete genome Length=7842 Score = 37.4 bits (40), Expect = 2.8 Identities = 20/20 (100%), Gaps = 0/20 (0%) Strand=Plus/Plus Query 1 TGCATGGACCTAAGGCAACA 20 Sbjct 591 TGCATGGACCTAAGGCAACA 610 >MF288706.1 Human papillomavirus type 18 isolate C425046_R2_1678154_(54w), complete genome Length=7857 Score = 37.4 bits (40), Expect = 2.8 Identities = 20/20 (100%), Gaps = 0/20 (0%) Strand=Plus/Plus Query 1 TGCATGGACCTAAGGCAACA 20 Sbjct 591 TGCATGGACCTAAGGCAACA 610 >MF288705.1 Human papillomavirus type 18 isolate C425046_R1_1388626_(0w), complete genome Length=7857 Score = 37.4 bits (40), Expect = 2.8 Identities = 20/20 (100%), Gaps = 0/20 (0%) Strand=Plus/Plus Query 1 TGCATGGACCTAAGGCAACA 20 Sbjct 591 TGCATGGACCTAAGGCAACA 610 >MF288704.1 Human papillomavirus type 18 isolate C627893_R2_1657900_(46w), complete genome

Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus

Query 1 TGCATGGACCTAAGGCAACA 20

Length=7857

```
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288703.1 Human papillomavirus type 18 isolate C627893_R1_1382535_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288702.1 Human papillomavirus type 18 isolate C644657_R4_2179348_(154w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288701.1 Human papillomavirus type 18 isolate C644657_R3_1822640_(103w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288700.1 Human papillomavirus type 18 isolate C644657_R2_1488163_(55w),
complete genome
```

Length=7857

```
BLAST INFORMATION
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288699.1 Human papillomavirus type 18 isolate C644657_R1_1107720_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288698.1 Human papillomavirus type 18 isolate C335048_R2_1591561_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288697.1 Human papillomavirus type 18 isolate 1445230_R2_P_R1_FAIL, complete
genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
         TGCATGGACCTAAGGCAACA 20
Query 1
```

Sbjct 591 TGCATGGACCTAAGGCAACA 610

```
>MF288696.1 Human papillomavirus type 18 isolate 1581449_N-P, complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288695.1 Human papillomavirus type 18 isolate C440737_R1_1103988_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288694.1 Human papillomavirus type 18 isolate C439921_R1_1139309_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288693.1 Human papillomavirus type 18 isolate C430899_R1_1153841_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
```

```
BLAST INFORMATION
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288692.1 Human papillomavirus type 18 isolate C353934_R1_1193001_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288691.1 Human papillomavirus type 18 isolate 1390622_R1_P_R2_FAIL, complete
genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288690.1 Human papillomavirus type 18 isolate C532476_R1_1127082_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
```

>MF288689.1 Human papillomavirus type 18 isolate 1508690_N-P, complete genome Length=7857

Sbjct 591 TGCATGGACCTAAGGCAACA 610

```
BLAST INFORMATION
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288688.1 Human papillomavirus type 18 isolate 1115002_N-P, complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
         TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288687.1 Human papillomavirus type 18 isolate C406921_R1_1177005_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288686.1 Human papillomavirus type 18 isolate C575918_R2_1429982_(50w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
```

Sbjct 591 TGCATGGACCTAAGGCAACA 610

```
BLAST INFORMATION
>MF288685.1 Human papillomavirus type 18 isolate C575918_R1_1071512_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288684.1 Human papillomavirus type 18 isolate 1389481_N-P, complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288683.1 Human papillomavirus type 18 isolate 1310091_R1_P_R2_FAIL, complete
genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288682.1 Human papillomavirus type 18 isolate C385149_R2_1569977_(54w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
```

Query 1

TGCATGGACCTAAGGCAACA 20

```
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288681.1 Human papillomavirus type 18 isolate C385149_R1_1186655_(0w),
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288680.1 Human papillomavirus type 18 isolate C340709_R1_1279365_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACA 20
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288679.1 Human papillomavirus type 18 isolate C310065_R1_1389573_N-P,
complete genome
Length=7857
Score = 37.4 bits (40), Expect = 2.8
Identities = 20/20 (100%), Gaps = 0/20 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACA 20
Sbjct 591 TGCATGGACCTAAGGCAACA 610
>MF288678.1 Human papillomavirus type 18 isolate C498643_R2_1564219_(54w),
complete genome
```

Length=7857

BLAST INFORMATION Score = 37.4 bits (40), Expect = 2.8Identities = 20/20 (100%), Gaps = 0/20 (0%) Strand=Plus/Plus TGCATGGACCTAAGGCAACA 20 Query 1 Sbjct 591 TGCATGGACCTAAGGCAACA 610 Database: Nucleotide collection (nt) Posted date: Nov 28, 2017 10:38 AM Number of letters in database: 163,513,399,372 Number of sequences in database: 45,448,023 Lambda K 0.634 0.408 0.912 Gapped Lambda K 0.625 0.410 0.780 Matrix: blastn matrix:2 -3 Gap Penalties: Existence: 5, Extension: 2 Number of Sequences: 45448023 Number of Hits to DB: 241145 Number of extensions: 82 Number of successful extensions: 82 Number of sequences better than 10: 10 Number of HSP's better than 10 without gapping: 0 Number of HSP's gapped: 82 Number of HSP's successfully gapped: 10 Length of query: 20 Length of database: 163513399372 Length adjustment: 17 Effective length of query: 3 Effective length of database: 162740782981 Effective search space: 488222348943 Effective search space used: 488222348943 X1: 22 (20.1 bits) X2: 33 (29.8 bits) X3: 110 (99.2 bits) S1: 28 (26.5 bits) S2: 38 (35.6 bits)

BLASTN 2.7.1+

Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: 20DXPAR6014

Database: Nucleotide collection (nt)

45,448,023 sequences; 163,513,399,372 total letters

Query= Length=21

Score E

Sequences p	producing significant alignments:	(Bits)	Value
MF288726.1	Human papillomavirus type 18 isolate 1314304_N-P,		0.80
MF288725.1	Human papillomavirus type 18 isolate C451606_R3_19	39.2	0.80
MF288724.1	Human papillomavirus type 18 isolate C451606_R2_15	39.2	0.80
MF288723.1	Human papillomavirus type 18 isolate C451606_R1_12	39.2	0.80
MF288722.1	Human papillomavirus type 18 isolate C387957_R1_11	39.2	0.80
MF288721.1	Human papillomavirus type 18 isolate 1209155_R1_P	39.2	0.80
MF288720.1	Human papillomavirus type 18 isolate 1174820_N-P,	39.2	0.80
MF288719.1	Human papillomavirus type 18 isolate C487627_R2_15	39.2	0.80
MF288718.1	Human papillomavirus type 18 isolate C487627_R1_11	39.2	0.80
MF288717.1	Human papillomavirus type 18 isolate 1533526_N-P,	39.2	0.80
MF288716.1	Human papillomavirus type 18 isolate C458963_R2_15	39.2	0.80
MF288715.1	Human papillomavirus type 18 isolate C458963_R1_12	39.2	0.80
MF288714.1	Human papillomavirus type 18 isolate C533713_R3_17	39.2	0.80
MF288713.1	Human papillomavirus type 18 isolate C533713_R2_14	39.2	0.80
MF288712.1	Human papillomavirus type 18 isolate C578032_R3_17	39.2	0.80
MF288711.1	Human papillomavirus type 18 isolate C578032_R2_14	39.2	0.80
MF288710.1	Human papillomavirus type 18 isolate C335048_R3_19	39.2	0.80
MF288709.1	Human papillomavirus type 18 isolate C412607_R2_15	39.2	0.80
MF288708.1	Human papillomavirus type 18 isolate C412607_R1_12	39.2	0.80
MF288707.1	Human papillomavirus type 18 isolate C440384_R1_13	39.2	0.80
MF288706.1	Human papillomavirus type 18 isolate C425046_R2_16	39.2	0.80
MF288705.1	Human papillomavirus type 18 isolate C425046_R1_13	39.2	0.80
MF288704.1	Human papillomavirus type 18 isolate C627893_R2_16	39.2	0.80
MF288703.1	Human papillomavirus type 18 isolate C627893_R1_13	39.2	0.80
MF288702.1	Human papillomavirus type 18 isolate C644657_R4_21	39.2	0.80
MF288701.1	Human papillomavirus type 18 isolate C644657_R3_18	39.2	0.80
MF288700.1	Human papillomavirus type 18 isolate C644657_R2_14	39.2	0.80

```
MF288699.1 Human papillomavirus type 18 isolate C644657_R1_11... 39.2
                                                                         0.80
MF288698.1 Human papillomavirus type 18 isolate C335048_R2_15... 39.2
                                                                         0.80
MF288697.1 Human papillomavirus type 18 isolate 1445230 R2 P ... 39.2
                                                                         0.80
MF288696.1 Human papillomavirus type 18 isolate 1581449_N-P, ... 39.2
                                                                         0.80
MF288695.1 Human papillomavirus type 18 isolate C440737_R1_11... 39.2
                                                                        0.80
MF288694.1 Human papillomavirus type 18 isolate C439921 R1 11... 39.2
                                                                         0.80
MF288693.1 Human papillomavirus type 18 isolate C430899_R1_11... 39.2
                                                                         0.80
MF288692.1 Human papillomavirus type 18 isolate C353934_R1_11... 39.2
                                                                         0.80
MF288691.1 Human papillomavirus type 18 isolate 1390622_R1_P_... 39.2
                                                                         0.80
MF288690.1 Human papillomavirus type 18 isolate C532476_R1_11... 39.2
                                                                         0.80
MF288689.1 Human papillomavirus type 18 isolate 1508690_N-P, ... 39.2
                                                                         0.80
MF288688.1 Human papillomavirus type 18 isolate 1115002_N-P, ... 39.2
                                                                         0.80
MF288687.1 Human papillomavirus type 18 isolate C406921_R1_11... 39.2
                                                                         0.80
MF288686.1 Human papillomavirus type 18 isolate C575918_R2_14... 39.2
                                                                         0.80
MF288685.1 Human papillomavirus type 18 isolate C575918_R1_10... 39.2
                                                                         0.80
MF288684.1 Human papillomavirus type 18 isolate 1389481_N-P, ... 39.2
                                                                         0.80
MF288683.1 Human papillomavirus type 18 isolate 1310091_R1_P_... 39.2
                                                                        0.80
MF288682.1 Human papillomavirus type 18 isolate C385149_R2_15... 39.2
                                                                         0.80
MF288681.1 Human papillomavirus type 18 isolate C385149_R1_11... 39.2
                                                                         0.80
MF288680.1 Human papillomavirus type 18 isolate C340709_R1_12... 39.2
                                                                        0.80
MF288679.1 Human papillomavirus type 18 isolate C310065_R1_13... 39.2
                                                                         0.80
MF288678.1 Human papillomavirus type 18 isolate C498643_R2_15... 39.2
                                                                         0.80
MF288677.1 Human papillomavirus type 18 isolate C498643_R1_11... 39.2
                                                                         0.80
ALIGNMENTS
>MF288726.1 Human papillomavirus type 18 isolate 1314304_N-P, complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288725.1 Human papillomavirus type 18 isolate C451606 R3 1915584 (100w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
```

Query 1 TGCATGGACCTAAGGCAACAT 21

```
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
```

```
>MF288724.1 Human papillomavirus type 18 isolate C451606_R2_1584906_(52w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288723.1 Human papillomavirus type 18 isolate C451606_R1_1201181_(0w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288722.1 Human papillomavirus type 18 isolate C387957_R1_1124102_N-P,
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288721.1 Human papillomavirus type 18 isolate 1209155_R1_P_R2_FAIL, complete
genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
```

```
BLAST INFORMATION
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288720.1 Human papillomavirus type 18 isolate 1174820_N-P, complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288719.1 Human papillomavirus type 18 isolate C487627_R2_1553725_(52w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288718.1 Human papillomavirus type 18 isolate C487627_R1_1178751_(0w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
```

>MF288717.1 Human papillomavirus type 18 isolate 1533526_N-P, complete genome

Query 1

TGCATGGACCTAAGGCAACAT 21

```
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
           TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288716.1 Human papillomavirus type 18 isolate C458963_R2_1584969_(48w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
           TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288715.1 Human papillomavirus type 18 isolate C458963_R1_1201270_(0w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288714.1 Human papillomavirus type 18 isolate C533713_R3_1794175_(52w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
```

```
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
```

```
>MF288713.1 Human papillomavirus type 18 isolate C533713_R2_1453915_(0w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288712.1 Human papillomavirus type 18 isolate C578032_R3_1777990_(53w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288711.1 Human papillomavirus type 18 isolate C578032_R2_1441689_(0w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288710.1 Human papillomavirus type 18 isolate C335048_R3_1978895_(63w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
```

```
BLAST INFORMATION
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288709.1 Human papillomavirus type 18 isolate C412607_R2_1595957_(56w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288708.1 Human papillomavirus type 18 isolate C412607_R1_1241497_(0w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288707.1 Human papillomavirus type 18 isolate C440384_R1_1310123_N-P,
complete genome
Length=7842
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
```

Sbjct 591 TGCATGGACCTAAGGCAACAT 611

BLAST INFORMATION >MF288706.1 Human papillomavirus type 18 isolate C425046_R2_1678154_(54w), complete genome Length=7857 Score = 39.2 bits (42), Expect = 0.80Identities = 21/21 (100%), Gaps = 0/21 (0%) Strand=Plus/Plus Query 1 TGCATGGACCTAAGGCAACAT 21 Sbjct 591 TGCATGGACCTAAGGCAACAT 611 >MF288705.1 Human papillomavirus type 18 isolate C425046_R1_1388626_(0w), complete genome Length=7857 Score = 39.2 bits (42), Expect = 0.80Identities = 21/21 (100%), Gaps = 0/21 (0%) Strand=Plus/Plus TGCATGGACCTAAGGCAACAT 21 Query 1 Sbjct 591 TGCATGGACCTAAGGCAACAT 611 >MF288704.1 Human papillomavirus type 18 isolate C627893_R2_1657900_(46w), complete genome Length=7857 Score = 39.2 bits (42), Expect = 0.80 Identities = 21/21 (100%), Gaps = 0/21 (0%) Strand=Plus/Plus Query 1 TGCATGGACCTAAGGCAACAT 21 Sbjct 591 TGCATGGACCTAAGGCAACAT 611 >MF288703.1 Human papillomavirus type 18 isolate C627893_R1_1382535_(0w), complete genome

Length=7857

Strand=Plus/Plus

Score = 39.2 bits (42), Expect = 0.80

Identities = 21/21 (100%), Gaps = 0/21 (0%)

```
BLAST INFORMATION
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288702.1 Human papillomavirus type 18 isolate C644657_R4_2179348_(154w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288701.1 Human papillomavirus type 18 isolate C644657_R3_1822640_(103w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288700.1 Human papillomavirus type 18 isolate C644657_R2_1488163_(55w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288699.1 Human papillomavirus type 18 isolate C644657_R1_1107720_(0w),
```

complete genome Length=7857

Score = 39.2 bits (42), Expect = 0.80

```
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288698.1 Human papillomavirus type 18 isolate C335048_R2_1591561_(0w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288697.1 Human papillomavirus type 18 isolate 1445230_R2_P_R1_FAIL, complete
genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
         TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288696.1 Human papillomavirus type 18 isolate 1581449_N-P, complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
         TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
```

```
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
           TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288694.1 Human papillomavirus type 18 isolate C439921_R1_1139309_N-P,
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
           TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288693.1 Human papillomavirus type 18 isolate C430899_R1_1153841_N-P,
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288692.1 Human papillomavirus type 18 isolate C353934_R1_1193001_N-P,
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
```

>MF288695.1 Human papillomavirus type 18 isolate C440737_R1_1103988_N-P,

Length=7857

```
TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288691.1 Human papillomavirus type 18 isolate 1390622_R1_P_R2_FAIL, complete
genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288690.1 Human papillomavirus type 18 isolate C532476_R1_1127082_N-P,
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288689.1 Human papillomavirus type 18 isolate 1508690_N-P, complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288688.1 Human papillomavirus type 18 isolate 1115002_N-P, complete genome
```

```
BLAST INFORMATION
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288687.1 Human papillomavirus type 18 isolate C406921_R1_1177005_N-P,
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288686.1 Human papillomavirus type 18 isolate C575918_R2_1429982_(50w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288685.1 Human papillomavirus type 18 isolate C575918_R1_1071512_(0w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
```

Sbjct 591 TGCATGGACCTAAGGCAACAT 611

```
>MF288684.1 Human papillomavirus type 18 isolate 1389481_N-P, complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288683.1 Human papillomavirus type 18 isolate 1310091_R1_P_R2_FAIL, complete
genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288682.1 Human papillomavirus type 18 isolate C385149_R2_1569977_(54w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288681.1 Human papillomavirus type 18 isolate C385149_R1_1186655_(0w),
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
```

```
BLAST INFORMATION
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288680.1 Human papillomavirus type 18 isolate C340709_R1_1279365_N-P,
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1
          TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288679.1 Human papillomavirus type 18 isolate C310065_R1_1389573_N-P,
complete genome
Length=7857
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
>MF288678.1 Human papillomavirus type 18 isolate C498643_R2_1564219_(54w),
complete genome
Length=7857
Score = 39.2 bits (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
          TGCATGGACCTAAGGCAACAT 21
Query 1
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
```

>MF288677.1 Human papillomavirus type 18 isolate C498643_R1_1192121_(0w), complete genome Length=7857

```
Score = 39.2 \text{ bits } (42), Expect = 0.80
Identities = 21/21 (100%), Gaps = 0/21 (0%)
Strand=Plus/Plus
Query 1 TGCATGGACCTAAGGCAACAT 21
Sbjct 591 TGCATGGACCTAAGGCAACAT 611
Database: Nucleotide collection (nt)
Posted date: Nov 28, 2017 10:38 AM
Number of letters in database: 163,513,399,372
Number of sequences in database: 45,448,023
Lambda
          K
                   Η
       0.408 0.912
0.634
Gapped
Lambda
          K
                    Η
0.625
       0.410
                0.780
Matrix: blastn matrix:2 -3
Gap Penalties: Existence: 5, Extension: 2
Number of Sequences: 45448023
Number of Hits to DB: 248852
Number of extensions: 70
Number of successful extensions: 70
Number of sequences better than 10: 4
Number of HSP's better than 10 without gapping: 0
Number of HSP's gapped: 70
Number of HSP's successfully gapped: 4
Length of query: 21
Length of database: 163513399372
Length adjustment: 18
Effective length of query: 3
Effective length of database: 162695334958
Effective search space: 488086004874
Effective search space used: 488086004874
A: 0
X1: 22 (20.1 bits)
X2: 33 (29.8 bits)
X3: 110 (99.2 bits)
S1: 28 (26.5 bits)
S2: 38 (35.6 bits)
```