

I.

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA

SYLLABUS

PROYECTO CURRICULAR: INGENIERIA ELECTRONICA

E Comment		
NOMBRE DEL DOCENTE:		
ESPACIO ACADÉMICO (Asign	natura): NANOTECNOLOGIA II	
Obligatorio (): Básico () Con Electivo (X): Intrínsecas (X	nplementario ()) Extrínsecas ()	CÓDIGO: 70
NUMERO DE ESTUDIANTES:		GRUPO:
	NÚMERO DE CREDITOS: 3	
TIPO DE CURSO:	TEÓRICO (X) PRACTIC	O TEO-PRAC:
Alternativas metodológicas: Clase Magistral (X), Seminario (X Proyectos tutoriados (), Otro: HORARIO:	X), Seminario – Taller (), Taller	(), Prácticas (),
		1
DIA	HORAS	SALON
I. JUSTIFICACIÓ	ÓN DEL ESPACIO ACADÉMIC	O (¿El Por Qué?)
La nanotecnología (NT) es una disc	ciplina bastante joven, que surgio	ó en los años noventa. Sin embargo, la
nanotecnología ha ganado tanta imp	ortancia en los últimos años que	las universidades de todos los rankings
han introducido o van a introducir	programas de enseñanza de la r	anotecnología. Las predicciones dicen
que la nanotecnología cambiará nuc	estras vidas y la sociedad más d	e lo que la tecnología informática y la
electricidad han hecho juntas.		
El curso proporcionará una visión	general sobre la nanotecnología	Mostrará que el nano régimen es tan
diferente de otros regímenes porque	e tanto los efectos clásicos como	los cuánticos pueden estar activos, lo
que lleva a propiedades únicas de	e los nano dispositivos. La nar	otecnología es una ciencia altamente
interdisciplinaria, lo que se reflejar	á en el curso al hacer referencia	a la química, la física, la biología, la
farmacia y la ingeniería. Se discuti	irán las aplicaciones de la nano	ecnología, ya que están en uso hoy o
como están planificadas para el futu	ro.	

Establecer los prerrequisitos para cursar el espacio académico. Física de Semiconductores, Nanotecnología

II. PROGRAMACION DEL CONTENIDO (¿El Qué? Enseñar) **OBJETIVO GENERAL** Proporcionar una introducción y una descripción general de la nanotecnología (NT). **OBJETIVOS ESPECÍFICOS** 1. Ilustrar al estudiante sobre la amplitud de la definición de nanotecnología, dando énfasis a su carácter multidisciplinario, y a la necesidad de establecer una comunidad de jóvenes científicos e ingenieros dedicados a la apropiación de tecnologías, mediante la creación y fortalecimiento de grupos de investigación básica y aplicada. 2. Proporcionar herramientas teóricas basadas en la física del estado sólido para la comprensión de propiedades, técnicas de fabricación y caracterización de nanoestructuras y dispositivos basados en materiales nanoestructurados. 3. Aplicar el conocimiento de leyes y fenómenos físicos para comprender los métodos modernos usados para la exploración de las propiedades de la materia. 4. Comprender la forma en que se fabrican las nanoestructuras y las novedosas propiedades exhibidas por materiales nanoestructurados. 5. Estudiar fenómenos emergentes de la mecánica cuántica y sus aplicaciones. 6. Estudiar los nuevos patrones de medida con el triángulo metrológico. 7. Demostrará cómo las aplicaciones de la Nanotecnología influirán en la ciencia del mañana y cambiarán muchos aspectos de nuestra vida. Se discutirá el impacto de la Nanotecnología en nuestra sociedad. RESULTADOS DE APRENDIZAJE

Explicar el funcionamiento de nuevos nanodispositivos y materiales como: cristales fotónicos, dispositivos electrónicos de baja dimensionalidad, moléculas magnéticas, corrales cuánticos, nanoarcillas y monocapas autoensambladas.

Argumentar sobre las aplicaciones de nuevos nanodispositivos y materiales.

Explicar fenómenos cuánticos emergentes sobre los cuales se conciben nuevas aplicaciones como los patrones cuánticos metrológicos: Efecto Hall cuántico, efecto Josephson, bloqueo de Coulomb, etc.

PROGRAMA SINTÉTICO

- 1. Nuevos nanodispositivos y materiales
- 1.1. Cristales fotónicos y Nanofotónica

Fotones y electrones: similitudes y diferencias

Interacciones ópticas a nanoescala

Confinamiento a nanoescala de las interacciones electrónicas

Cristales Fotónicos

Propiedades de los cristales fotónicos

Generación de Cristales Fotónicos

Aplicación de cristales fotónicos

1.2. Dispositivos electrónicos de baja dimensionalidad: Puntos, hilos y pozos cuánticos.

Confinamiento cuántico

Estructura

Historia

Propiedades

Síntesis

Propiedades ópticas

Propiedades de transporte eléctrico de los pozos, hilos y puntos cuánticos

Excitones en dispositivos de baja dimensionalidad

PQ Bioconjugados

Toxicidad de los puntos cuánticos

1.3. Moléculas magnéticas

Ferromagnetismo y Antiferromagnetismo

Ejemplos de moléculas magnéticas

Túneles de magnetización y relajación magnética

Propiedades de las moléculas magnéticas

Posibilidades de aplicación de moléculas magnéticas

1.4. Corrales Cuánticos

Propiedades

Efecto Kondo

Espejismo cuántico

1.5. Nanoarcillas

Estructura

Propiedades

Generación

Aplicación

1.6. Monocapas Autoensambladas

Estructura

Preparación de Monocapas Autoensambladas

Tipos de Monocapas Autoensambladas

Propiedades de las Monocapas Autoensambladas

Aplicación de las Monocapas Autoensambladas

2. Fenómenos cuánticos emergentes y aplicaciones

Efecto Hall cuántico

Efecto Josephson

Bloqueo de Coulomb y transistor de un solo electrón

Metrología cuántica y triángulo metrológico

Otras aplicaciones

III. ESTRATEGIAS (¿El Cómo?)

Metodología Pedagógica y Didáctica:

Clases magistrales para proporcionar fundamentos teóricos

Seminario para estimular la investigación sobre aplicaciones y tópicos de interés del estudiante relacionados con el uso de nanotecnologías.

	Horas			Horas	Horas	Total Horas	Créditos
				profesor/semana	Estudiante/semana	Estudiante/semestre	
Tipo de Curso	TD	T C	T A	(TD + TC)	(TD + TC + TA)	16 semanas	
Asignatura	4	2	3	6	9	144	3

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado Cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo con distintas instancias: en abajo del estudiante sin presencia del docente, que se puede r s de trabajo o en forma individual, en casa o en biblioteca.

IV. RECURSOS (¿Con Qué?)

Medios y Ayudas:

Videobeam, PC.

Acceso a internet para ejecución de applets, programas, animaciones y artículos científicos disponibles en la red.

Idealmente, y como propuesta futura, la asignatura debería ser de carácter teórico- experimental. Para ello se requiere invertir en conjunto con el departamento de física, para la dotación de un laboratorio de física moderna que contenga como mínimo un difractómetro de rayos x, microscopios de fuerza atómica y efecto túnel, celdas fotovoltaicas para experimento fotoeléctrico, experimento de difracción de electrones, láseres de helio-neón y cámara de vacío.

BIBLIOGRAFÍA

TEXTO GUÍA

Nanophysics and nanotechnology. Edward L. Wolf. Wiley-VCH Verlag GmbH. Weinheim (Germany) 2006.

TEXTOS COMPLEMENTARIOS

Introducción a la Nanotecnología. Charles P. Poole y Frank J. Owens. Editorial Reverté. Barcelona (España) 2007. ISBN: 978-84-291-7971-2.

Revistas

Materials Research Society Bulletin.

Organic electronics.

Applied physics letters

Journal of applied Physics.

Nature.

Science.

AULA VIRTUAL EN MOODLE

DIRECCIONES DE INTERNET

IBM research Almaden. http://www.almaden.ibm.com/

Nanohub. http://nanohub.org/

Applets sobre Física y matemáticas. http://www.falstad.com/mathphysics.html

Crystal viewer. http://jas.eng.buffalo.edu/education/solid/unitCell/home.html

La esfera de Ewald. http://www.chembio.uoguelph.ca/educmat/chm729/recip/9surew.htm

Applets sobre física y matemáticas. http://www.falstad.com/mathphysics.html

V. ORGANIZACIÓN / TIEMPOS (¿De Qué Forma?)

Espacios, Tiempos, Agrupamientos:

Se recomienda trabajar una unidad cada cuatro semanas, trabajar en pequeños grupos de estudiantes, utilizar Internet para comunicarse con los estudiantes para revisiones de avances y solución de preguntas (esto considerarlo entre las horas de trabajo cooperativo).

VI. EVALUACIÓN (Qué, ¿Cuándo, Cómo?)

Es importante tener en cuenta las diferencias entre evaluar y calificar. El primero es un proceso cualitativo y el segundo un estado terminal cuantitativo que se obtiene producto de la evaluación. Para la obtención de la información necesaria para los procesos de evaluación se requiere diseñar distintos formatos específicos de autoevaluación, coevaluación y heteroevaluación.

	TIPO DE EVALUACIÓN	FECHA	PORCENTAJE
PRIMERA NOTA	Evaluación escrita		25%
SEGUNDA NOTA	Exposición oral		25%
NOTA	Talleres de ejercicios		20%
EXAMEN FINAL	Evaluación escrita		30%

ASPECTOS PARA EVALUAR DEL CURSO

- 1. Evaluación del desempeño docente
- Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita.
 Autoevaluación:
 Coevaluación del curso: de forma oral entre estudiantes y docente.

DATOS DEL DOCENTE					
NOMBRE:					
PREGRADO:					
POSTGRADO:					
ASESORIAS: FIRMA DI	E ESTUDIANTES				
NOMBRE	FIRMA	CÓDIGO	FECHA		
1.					
2.					
3.					
FIRMA DEL DOCENTE					
FECHA DE ENTRE	GA:				