Redes de Computadores: Internetworking, Roteamento e Transmissão

UNIVERSIDADE DO VALE DO RIO DOS SINOS

Plataformas de Roteamento - BIRD

Apresentado por:

Vítor Pires

Roteiro:

- Objetivo do Trabalho
- Ambiente e Topologia da Rede
- Protocolo 1: Análise do RIP
- Protocolo 2: Análise do OSPF
- Análise Comparativa e Resultados
- Conclusão

Objetivo do Trabalho

Configurar e avaliar o desempenho de dois protocolos de roteamento dinâmico, RIP e OSPF, em uma rede virtual com três roteadores utilizando a plataforma BIRD, focando em métricas da Camada 3 do modelo OSI.

Ambiente e Ferramentas Utilizadas

Topologia da Rede

Topologia da Rede - Configuração

Roteador 1

```
GNU nano 7.2 /etc/netplan/00-installer-con network:

version: 2
renderer: networkd
ethernets:
enp0s3:
dhcp4: true
enp0s8:
addresses: [192.168.12.1/24]
```

Roteador 2

```
GNU nano 7.2 /etc/netplan/00-installer-conf
network:
version: 2
renderer: networkd
ethernets:
enp0s3:
dhcp4: true
enp0s8:
addresses: [192.168.12.2/24]
enp0s9:
addresses: [192.168.23.2/24]
```

Protocolo RIP - Configuração

```
GNU nano 7.2
#Router1 - RIP Configuration
router id 1.1.1.1;
# Sincroniza as interfaces de rede do sistema (enp0s3, enp0s8) com o BIRD
protocol device {
 scan time 10;
# Gera rotas para as sub-redes que estão diretamente conectadas às interfaces
protocol direct {
  ipv4;
# Faz a ponte entre as rotas do BIRD e a tabela de roteamento principal do Linux
protocol kernel {
  ipv4 {
    export all;
    import all;
scan time 20;
# Bloco de configuração para o protocolo de roteamento RIPv2
protocol rip {
  ipv4 {
    export all;
    import all;
interface "enp0s8" {
   update time 30;
   timeout time 180;
    garbage time 60;
```

```
GNU nano 7.2
#Router 2 - RIP Configuration
router id 2.2.2.2;
protocol device {
 scan time 10;
protocol direct {
  ipv4;
protocol kernel {
  ipv4 {
    export all;
    import all;
 scan time 20;
protocol rip {
 ipv4 {
     export all;
    import all;
};
interface "enp0s8" {
   update time 30;
   timeout time 180;
    garbage time 60;
interface "enp0s9" {
   update time 30;
   timeout time 180;
   garbage time 60;
};
```

Análise de Desempenho - Tamanho tabela de roteamento

- As rotas marcadas com [direct1 ...] são as diretamente conectadas.
- As rotas marcadas com [rip1 ...] são as dinâmicas, aprendidas via RIP.

```
bird> show route
Table master4:
                    unicast [rip1 16:31:41.863] * (120/2)
192.168.23.0/24
        via 192.168.12.2 on enp0s8
                     unicast [direct1 16:31:41.862] * (240)
192.168.12.0/24
        dev enp0s8
                     unicast [rip1 16:31:41.863] (120/2)
        via 192.168.12.2 on enp0s8
10.0.2.0/24 sudo nano /unicastn/[direct1-16:31:41.862] * (240)
        dev enp0s3
                     unicast [rip1 16:31:41.863] (120/2)
        via 192.168.12.2 on enp0s8
bird> show route count
5 of 5 routes for 3 networks in table master4
0 of 0 routes for 0 networks in table master6
Total: 5 of 5 routes for 3 networks in 2 tables
```

Análise de Desempenho - Quantidade e Taxa de Pacotes

- O tcpdump mostrou pacotes de "RIPv2, Response" sendo enviados e recebidos.
- Frequência: As atualizações ocorrem em intervalos regulares de aproximadamente 30 segundos.
- Cada pacote de atualização do RIP teve um tamanho fixo de 92 bytes.

```
vp ~ sudo tcpdump -i any udp port 520 -v
tcpdump: data link type LINUX_SLL2
tcpdump: listening on any, link-type LINUX_SLL2 (Linux cooked v2), snapshot length 262144 bytes
17:09:51.263574 enp0s8 Out IP (tos 0xc0, ttl 1, id 55493, offset 0, flags [none], proto UDP (17), length 92)
    vp.route > 224.0.0.9.route:
        RIPv2, Response, length: 64, routes: 3 or less
                      192.168.23.0/24, tag 0x0000, metric: 16, next-hop: self
          AFI IPv4,
                       192.168.12.0/24, tag 0x0000, metric: 1, next-hop: self
          AFI IPv4,
          AFI IPv4,
                           10.0.2.0/24, tag 0x0000, metric: 1, next-hop: self
17:10:14.738624 enp0s8 M IP (tos 0xc0, ttl 1, id 1061, offset 0, flags [none], proto UDP (17), length 92)
    192.168.12.2.route > 224.0.0.9.route:
        RIPv2, Response, length: 64, routes: 3 or less
                       192.168.23.0/24, tag 0x0000, metric: 1, next-hop: self
                       192.168.12.0/24, tag 0x0000, metric: 1, next-hop: self
          AFI IPv4,
          AFI IPv4,
                           10.0.2.0/24, tag 0x0000, metric: 1, next-hop: self
17:10:21.259798 enp0s8 Out IP (tos 0xc0, ttl 1, id 57505, offset 0, flags [none], proto UDP (17), length 92)
   vp.route > 224.0.0.9.route:
        RIPv2, Response, length: 64, routes: 3 or less
                      192.168.23.0/24, tag 0x0000, metric: 16, next-hop: self
          AFI IPv4,
                       192.168.12.0/24, tag 0x0000, metric: 1, next-hop: self
                           10.0.2.0/24, tag 0x0000, metric: 1, next-hop: self
          AFI IPv4,
17:10:44.732384 enp0s8 M IP (tos 0xc0, ttl 1, id 4727, offset 0, flags [none], proto UDP (17), length 92)
   192.168.12.2.route > 224.0.0.9.route:
       RIPv2, Response, length: 64, routes: 3 or less
                      192.168.23.0/24, tag 0x0000, metric: 1, next-hop: self
                      192.168.12.0/24, tag 0x0000, metric: 1, next-hop: self
          AFI IPv4,
          AFI IPv4,
                           10.0.2.0/24, tag 0x0000, metric: 1, next-hop: self
17:10:51.281130 enp0s8 Out IP (tos 0xc0, ttl 1, id 18737, offset 0, flags [none], proto UDP (17), length 92)
    vp.route > 224.0.0.9.route:
        RIPv2, Response, length: 64, routes: 3 or less
          AFI IPv4,
                       192.168.23.0/24, tag 0x0000, metric: 16, next-hop: self
                       192.168.12.0/24, tag 0x0000, metric: 1, next-hop: self
          AFI IPv4.
          AFI IPv4,
                           10.0.2.0/24, tag 0x0000, metric: 1, next-hop: self
```

Análise de Desempenho - Delay (Latência)

- O teste de ping para um host remoto foi bem-sucedido com 0% de perda de pacotes.
- O tempo de ida e volta (rtt) apresentou uma média de 0.337 ms.
- Valor de delay é extremamente baixo, o que é esperado em uma rede local virtualizada. Este valor serve como uma linha de base (baseline) para o desempenho da rede.

```
vp ~ ping 192.168.23.3
PING 192.168.23.3 (192.168.23.3) 56(84) bytes of data.
64 bytes from 192.168.23.3: icmp_seq=1 ttl=63 time=0.343 ms
64 bytes from 192.168.23.3: icmp_seq=2 ttl=63 time=0.421 ms
64 bytes from 192.168.23.3: icmp_seq=3 ttl=63 time=0.368 ms
64 bytes from 192.168.23.3: icmp_seq=4 ttl=63 time=0.307 ms
64 bytes from 192.168.23.3: icmp_seq=5 ttl=63 time=0.330 ms
64 bytes from 192.168.23.3: icmp_seq=6 ttl=63 time=0.363 ms
64 bytes from 192.168.23.3: icmp_seq=7 ttl=63 time=0.291 ms
64 bytes from 192.168.23.3: icmp_seq=8 ttl=63 time=0.391 ms
64 bytes from 192.168.23.3: icmp_seq=9 ttl=63 time=0.497 ms
64 bytes from 192.168.23.3: icmp_seq=10 ttl=63 time=0.266 ms
64 bytes from 192.168.23.3: icmp_seq=11 ttl=63 time=0.389 ms
64 bytes from 192.168.23.3: icmp_seq=12 ttl=63 time=0.278 ms
64 bytes from 192.168.23.3: icmp_seq=13 ttl=63 time=0.232 ms
64 bytes from 192.168.23.3: icmp_seq=14 ttl=63 time=0.294 ms
64 bytes from 192.168.23.3: icmp_seq=15 ttl=63 time=0.300 ms
64 bytes from 192.168.23.3: icmp_seq=16 ttl=63 time=0.313 ms
64 bytes from 192.168.23.3: icmp_seq=17 ttl=63 time=0.357 ms
--- 192.168.23.3 ping statistics ---
17 packets transmitted, 17 received, 0% packet loss, time 16759ms
rtt min/avg/max/mdev = 0.232/0.337/0.497/0.062 ms
```

Comparação e Conclusão

_			
Métrica / Característica	Protocolo RIP	Protocolo OSPF	Vantagem
Tipo de Protocolo	Vetor à Distância	Estado de Enlace	-
Métrica de Rota	Contagem de Saltos (Hops)	Custo (baseado em banda)	OSPF (Mais inteligente)
Tráfego de Controle	Tabela inteira a cada 30s	Pequenos "Hellos" + LSAs sob demanda	OSPF (Mais eficiente)
Tempo de Convergência	Lento (depende do timer de 30s)	Rápido (baseado em eventos)	OSPF
Complexidade de Config.	Muito Baixa	Moderada	RIP (Mais simples)
Escalabilidade	Baixa (limite de 15 saltos)	Muito Alta (uso de áreas)	OSPF