Qualitative analysis: Making sense of coded data

CS798H Semester-II (2023-24)

Last time: Qualitative coding

Unstructured, qualitative data

(High variance, same thing said in variety of ways)

Structured, coded (quantifiable) data (Low variance, we have all codes)

Results, insights, answers to questions

Analyzing coded data: Raw codes

- Example-1: What do users use pencils for?
- Codes: Writing, sketching, colouring, poking, reaching far off objects, marking, contraptions
- Answer to question is: simply, the list of codes.
- This itself is useful, but is less informative!

Analyzing coded data: Classification

- Simply list of codes are often boring!
- Try: classification

Pancil Use

Intended use

Wintended use

Wintended use

Stratzhing

Weithing thoring marking Poling reaching Contraptions

Patterns / orders

Flow of events

Others:

- Code co-occurrences
- Sequence of actions

Tead with audinte audiote wite eval o cad

White own ware than seplats more than seplats more than send - write - conf

Chain of evidence

- Data + analysis = facts / results
 (e.g., 80% of codes are A, A happens together with B and C, etc.)
- Facts + interpretation (happens in head!) = claims / hypotheses / beliefs
- E.g., One reason 80% of codes are A is because A is most frequent; another possibility is that B happened, but manifested as Ajbecause...

Alternative interpretations

- Claims + evidence = proposition / conclusions
- Claims without evidence = unsubstantiated claims

Every conclusion should be grounded in evidence, and evidence should be easily traceable. This is called the "chain of evidence"

Evidence vs. proof

- Proofs definitive, conclusive, "proves", "confirms" a statement (as in math)
- Evidence not conclusive but "supports", "substantiates", or "shows" a statement or an assertion (as in law, history)
 - You can always find more evidence that shows this incorrect, at a later time!
 - In some fields, you can have a lot of evidence for something, and no evidence contradicting, and so you can call it proven (e.g., proven guilty!)
- In empirical work (as in HCI), we never say "prove", we always use "suggest/ show/indicate".

What counts as evidence in HCI?

- Literature (other prior studies)
- Facts from current study (figures, codes, results of statistical comparisons)
- Facts + logical reasoning
- Participant utterances (e.g., P01 said "Pingala is frustrating!")
- Occasionally, theory that has been proven correct (through various sources of evidences, hasn't been falsified, etc).

Good hygiene when drawing conclusions

- Look for multiple evidences indicating the same thing
 - "A said so" vs. "70% of participants mentioned so".
 - "70% of participants said so" vs. "70% of participants said so, as did 80% of participants in X's study".
 - "60% of participants said so in interviews", and was confirmed by another 40% of participants in survey.
 - Participant said so, and on prodding further provided further reasoning for why he said so.

Good hygiene when drawing conclusions

Look for alternative interpretations / hypotheses

- This could happen due to one of three reasons, A, B and C; we are yet to find why!
- This could happen due to one of three reasons, A, B and C; but we only found
 evidence of A in the survey. This suggests A is perhaps the most common reason
 for something.
- This could happen due to one of three reasons, A, B and C; but we only found
 evidence of A in the survey. One possibility is that our participants haven't been
 exposed to B and C, as some participants mentioned "what is that, never heard
 before".
- One reason for X is A and another reason is B. To test which of this is correct, we conducted PCA, and found that A was a moderator whereas B had no effect. This suggests that A influences X in Y way.
- Seek further data / evidence in favor of each alternative hypothesis

Chain of evidence: Good habits

- Never make a statement, without grounding in evidence
- Never make a statement with "adjectives", use concrete values (most participants → 80% of participants)
- Do not over-generalize
 - Say "participants in our studies", not "users of X". (Remember, we didn't do all users!)

Threats to validity

 We draw a conclusion from studies: what are potential reasons we draw an incorrect conclusion?

Four broad kinds:

- Construct validity: Is our measure of a "construct" right?
- Statistical validity: Are the statistical tests right for the data we have?
- Internal validity: Are there confounds? (Is any cause and effect relationship potentially influenced by other factors?)
- External validity (or generalizability): Will the results generalize to other tasks/situations/populations outside the study sample?

Example: threats to construct validity

- Question: How usable is system A?
 - Usability can be operationalized in a variety of ways
 - Usability = score on a scale of 1-10 as rated by participants.
 - Usability = score on all scales of system usability survey
 - Usability = no. of errors and frustrations verbalized by participant
- Effectiveness of tool = clock-time to complete a task
 - Effectiveness is operationalized as clock time (end time start time)
 - Problem 1: With talk aloud; could be slower
 - Problem 2: What about interruptions?
 - Problem 3: What about correctness of task?
- Others: biases in questions
- What to do?
 - Look for standard tests
 - · Look for alternative measures, and see they confirm
 - Never make leaps (look for all dimensions, and be specific). E.g., instead of using clock-time as a measure of effectiveness, simply say task times. Or, say, effectiveness is a measure of task time, correctness and no. of tasks attempted=and use all three.

Examples: threats to internal validity (Includes all bias / confounds)

- Question: How usable is system A?
 - Unusually low internet stability on the day of study?
 - Think aloud increases distraction and therefore affects usability
- Task completion faster with New version compared to old version.
 - What if learning for first time, so slow?
 - What if participants were stressed because of time constraint?
 - What if participants were nervous because of recording?
 - · What if task for old was easier than task for New.
 - What if all participants given New were more experienced than those who were given Old.
- What to do?
 - Additional checks to ensure factors like experience, task difficulty are comparable
 - Where control not possible, use the same = give 10 min in both new and old, so pressure effect cancels out.
 - Balance: some people do task 1 with new, some do task 1 with old and likewise for task 2.
 - Randomize: Assign participants randomly / deliberately to balance (as needed!)
 - Add dimensions: use 3 tasks instead of 1, to reduce effects of chance

Examples: threats to external validity (Includes all sampling-related issues)

- Consider if results are generalizable to:
 - Other tasks
 - Other participants in same population
 - Other populations
 - Other tools in category
- Self-selection bias
- How?
 - Triangulate with other methods (e.g., survey, diaries, etc.)
 - Replication (same study with other population / task / etc.)
 - Use multiple tasks (e.g., instead of one task, use 3 tasks!)
 - Report demographics!

Examples: threats to statistical validity (Includes all data-related issues)

- Later, but...
 - Sample size suitable for conclusions
 - Some tests make assumptions on data distribution (e.g., normality)
 - Some tests want pure random data, but recruitment not entirely so!

Pick right tests, triangulate, report everything!!!