One construction

We consider two fibre bundles $E_1 = \Pi T^*M \to M$ and $E_2 = \Pi TM \to M$.

Coordinates on E_1 are (x^a, θ_b) , coordinates on E_2 are (y^a, ξ^b) .

We consider also $T^*E_1 = T^*(\Pi T^*M)$ with coordinates

$$(x^a, \theta_b; p_a, \eta^b)$$

and $T^*E_2 = T^*(\Pi TM)$ with coordinates

$$(y^a, \xi^b; q_a, \pi_b)$$

We consider canonical Hamiltonian

$$h = \xi^a q_a$$
 on $\Pi T^* M$

This is linear Hamiltonian, and (h,h)=0 where $(\,,\,)$ is canonical Poisson bracket in $T^*(\Pi TM)$.

The image of this linear Hamiltonian under MX symplectomorphism $\kappa: T^*(\Pi T^*M) \to T^*(\Pi TM)$ is quadratic Hamiltonian

$$H = k^* h = p_a \eta^a$$

Hamiltonian h generates degenerate homotopy Schouten bracket on ΠT^*M —de Rham differential and Hamiltonian H generates canonical Schoutten bracket on ΠT^*M :

for arbitrary function
$$F$$
 on ΠT^*M , $(h, F) = dF$
for arbitrary functions G, H on ΠTM , $((H, G), H) = [G, H]$

all other brackets vanish.

Let as usual P be a function on ΠT^*M such that

$$[P, P] = ((H, P), P) = 0.$$

This master-function defines on ΠT^*M Lichnerowicz differential

$$d_P F = [P, F] = ((H, P), F)$$

Consider on ΠT^*M linear Hamiltonian H_P such that the Lichneroitch differential is just its homotopy Schouten bracket, i.e.

$$(H_P, F) = d_P F$$

Hence

$$H_P = (P, H) = (P, H) = (P, p_a \eta^a) = p_a \frac{\partial P(x, \theta)}{\partial \theta_a} + \eta^a \frac{\partial P(x, \theta)}{\partial x^a}.$$

Now consider the Hamiltonian h_P in ΠTM , which is image of H_P under MX symplectomorphism:

$$h_p = (\kappa^{-1})^* H_p = q_a \frac{\partial P(x,\pi)}{\partial x_a} + \xi^a \frac{\partial P(x,\pi)}{\partial x_a}$$

(znaki ne proverial)

We just come to Hamiltonian which generates homotopy Schoutem nracket on ΠTM —higher Koszul bracket.

We have pair of Hamiltonians (H, H_P) on $T^*(\Pi T^*M)$, $H_P = (H, P)$ and pair of Hamiltonians (h, h_P) on $T^*(\Pi TM)$ which are their MX image.

The quadratic Hamiltonian H (linear Hamiltonian h) generates canonical odd Poisson bracket on ΠT^*M (de Rham differential on ΠTM).

The linear Hamiltonian H_P (Hamiltonian h_P) generates Lichnerowicz differential on ΠT^*M (Higher Koszul bracket on ΠTM)

Now go to the map $\varphi_P: \Pi T^*M \to \Pi TM$

$$\phi_P$$
: $x^a = y^a, \xi^a = \frac{\partial P(x, \theta)}{\partial x^a}$.

We know that

$$d_P(\varphi^*\omega) = (H_P, \varphi^*\omega) = \varphi^*(d\omega) = \varphi^*(h, \omega)$$

in other words morphism $\varphi_P: \Pi T^*M \to \Pi TM$ (more precisely, lifting of this morphism, canonical transformation of $T^*(\Pi TM)$ $\hat{\varphi_P}$) interwins Hamiltonians H_P and h:

Conjugate thick morphism $\Phi_P^{(thick)}$ interwins Hamiltonians H and h_P :

We see that we have **three symplectomorphisms** One MX symp,ectomrophism and two symoplectomorphisms thick and usual related with the map P. The later both are conjugate with each other via MX symplectomorphism.