日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 4月15日

出 願 番 号 Application Number:

特願2003-109882

[ST. 10/C]:

[JP2003-109882]

出 願 人

株式会社ニコン技術工房

Applicant(s): 株式会社ニコン

2004年 1月30日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 03-00457

【提出日】 平成15年 4月15日

【あて先】 特許庁長官殿

【国際特許分類】 H04N 5/225

【発明者】

【住所又は居所】 東京都千代田区丸の内3丁目2番3号 株式会社ニコン

内

【氏名】 野崎 弘剛

【発明者】

【住所又は居所】 東京都千代田区丸の内3丁目2番3号 株式会社ニコン

内

【氏名】 日比野 秀臣

【発明者】

【住所又は居所】 東京都千代田区丸の内3丁目2番3号 株式会社ニコン

内

【氏名】 小林 稔明

【発明者】

【住所又は居所】 東京都千代田区丸の内3丁目2番3号 株式会社ニコン

内

【氏名】 江島 聡

【発明者】

【住所又は居所】 東京都品川区二葉1丁目3番25号 株式会社ニコン技

術工房内

【氏名】 太田 雅

【特許出願人】

【識別番号】 596075462

【氏名又は名称】 株式会社ニコン技術工房

【特許出願人】

【識別番号】 000004112

【氏名又は名称】 株式会社ニコン

【代理人】

【識別番号】 100078189

【弁理士】

【氏名又は名称】 渡辺 隆男

【手数料の表示】

【予納台帳番号】 005223

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9901926

【包括委任状番号】 9705788

【プルーフの要否】 要

【鲁類名】 明細書

【発明の名称】 デジタルカメラ

【特許請求の範囲】

【請求項1】被写体を撮像する撮像手段と、前記撮像手段が撮像した画像データから特徴部位を抽出する抽出手段と、前記抽出手段が人物の特徴部位を抽出したならば前記抽出した人物の赤目を軽減するよう処理する処理手段とを備えたことを特徴とするデジタルカメラ。

【請求項2】請求項1記載のデジタルカメラにおいて、前記人物の特徴部位とは、前記人物の顔の輪郭、瞳、眼の少なくとも一つであることを特徴とするデジタルカメラ。

【請求項3】請求項1記載のデジタルカメラにおいて、更に、人物の瞳が赤目 状態で撮影されることを軽減するための補助光を照射する照射手段を備え、前記 処理手段は前記抽出手段が前記人物の特徴部位を抽出したならば前記照射手段に 補助光を照射するよう指示することを特徴とするデジタルカメラ。

【請求項4】被写体を撮影する際に被写体を照射する照射手段と、画像データから特徴部位を抽出する抽出手段と、前記抽出手段が抽出した特徴部位に基づいて前記特徴部位までの距離を演算する距離演算手段と、前記距離演算手段が演算した距離に基づいて前記照射手段の照射光量を設定する照射光量設定手段とを備えたことを特徴とするデジタルカメラ。

【請求項5】請求項4記載のデジタルカメラにおいて、更に、被写体輝度を測定する複数の測光エリアと、前記複数の測光エリアのうちの所定の測光エリアからの出力に基づいて撮影時の露出条件を設定する露出条件設定手段とを備えたことを特徴とするデジタルカメラ。

【請求項6】請求項4記載のデジタルカメラにおいて、更に、前記抽出手段が抽出した特徴部位から顔の大きさあるいは眼幅を検出する検出手段と、ズームレンズの焦点位置を検出するレンズ位置検出手段とを備え、前記距離演算手段は、前記検出手段が検出した顔の大きさあるいは眼幅とレンズ位置検出手段が検出したズームレンズの焦点位置とから前記特徴部位までの距離を演算することを特徴とするデジタルカメラ。

【請求項7】請求項4記載のデジタルカメラにおいて、更に、前記距離演算手段が演算した被写体までの距離に基づいて前記照射手段が被写体を適正に照射することが可能な調光範囲内であるかどうか判別する判別手段と、前記判別手段が前記調光範囲外であると判別した場合に警告する警告手段とを備えたことを特徴とするデジタルカメラ。

【請求項8】被写体を撮影する際に被写体を照射する主照射手段と、予め被写体に補助光を照射する補助光照射手段と、画像データから特徴部位を抽出する抽出手段と、前記補助光照射手段が照射した補助光の前記特徴部位からの反射光に基づいて前記主照射手段の照射光量を設定する設定手段とを備えたことを特徴とするデジタルカメラ。

【請求項9】請求項8記載のデジタルカメラにおいて、前記特徴部位とは人物 の顔部分であることを特徴とするデジタルカメラ。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、人物の特徴点を識別し、その識別結果に応じて動作するデジタルカメラに関する。

[0002]

【従来の技術】

従来から、指紋あるいは虹彩の特徴点を予め登録しておいてこれと照合することで本人を認証するシステムを初めとして画像データから人物を識別する技術はこれまで多く知られている。特開平9-251534号公報には目、鼻、口等を抽出して特徴点として登録しこれと入力した画像から抽出した特徴点とを比較して当人として識別する方法が詳細に記述されており、特開平10-232934号公報にはこの様にして抽出した特徴点を登録する場合の辞書画像の精度を上げる方法が開示されている。

[0003]

一方、マルチ測光可能なカメラで逆光時に主要被写体と背景光のバランスを考慮してストロボを発光させる方式は従来の銀塩フィルムカメラにおいては既に採

用されている。電子カメラにおいても、例えば特開平7-222049号公報では露光量情報および被写体距離情報を検出するセンサ部を備え、このセンサにより露光不足と判断したときにアンプゲインをノーマルに設定し、ストロボ発光を行う第1ストロボ撮影制御と、アンプゲインをノーマルより大きくし、アンプ下オンの増加分だけ撮像素子の受光量を下げるようにストロボ発光を行う第2ストロボ撮影制御する電子スチルカメラが開示されている。また、ストロボ撮影時に人物の瞳が赤目状態で撮影されるのを防止するストロボプリ発光機能を備えたカメラが知られている。特開2001-309225号公報には赤目検出アルゴリズム80で赤目を検出し、表示装置34上へ警告するとともに、赤目補正ステップS270で自動赤目補正アルゴリズムを呼び出すデジタルカメラが開示されている。

[0004]

【発明が解決しようとする課題】

上述したこれまでの逆光補正においては測光用に専用のセンサを使用しているとともに、そのセンサにおいても人物を抽出しているわけではない。赤目補正のためのプリ発光についても一旦プリ発光するよう設定したならば人物がいない場合にも設定を変更しない限り常にプリ発光してしまい不要の電力を消費してしまう。

[0005]

そのため本発明においては、撮影画面内の人物を抽出することによりストロボ の発光光量を最適にするとともに自動的に赤目防止のためにプリ発光するデジタ ルカメラを提供することを目的とする。

[0006]

【問題点を解決する為の手段】

上記問題点の解決のために、請求項1の発明は、被写体を撮像する撮像手段と、前記撮像手段が撮像した画像データから特徴部位を抽出する抽出手段と、前記抽出手段が人物の特徴部位を抽出したならば前記抽出した人物の赤目を軽減するよう処理する処理手段とを備えたことを特徴としている。すなわち、撮影画面内に人物がいると判断した場合に赤目軽減処理をする。請求項2の発明で、前記人

4/

物の特徴部位とは、前記人物の顔の輪郭、瞳、眼の少なくとも一つであることを特徴としている。請求項3の発明は、更に、人物の瞳が赤目状態で撮影されることを軽減するための補助光を照射する照射手段を備え、前記処理手段は前記抽出手段が前記人物の特徴部位を抽出したならば前記照射手段に補助光を照射するよう指示することを特徴としている。

[0007]

請求項4の発明は、被写体を撮影する際に被写体を照射する照射手段と、画像 データから特徴部位を抽出する抽出手段と、前記抽出手段が抽出した特徴部位に 基づいて前記特徴部位までの距離を演算する距離演算手段と、前記距離演算手段 が演算した距離に基づいて前記照射手段の照射光量を設定する照射光量設定手段 とを備えたことを特徴としている。これにより抽出した特徴部位までの距離に応 じてストロボの発光光量を設定することが出来る。請求項5の発明は、更に、被 写体輝度を測定する複数の測光エリアと、前記複数の測光エリアのうちの所定の 測光エリアからの出力に基づいて撮影時の露出条件を設定する露出条件設定手段 とを備えたことを特徴とする。すなわち、逆光撮影時等においても被写体の背景 と抽出した特徴部位の両方に対して適正露光とすることが出来る。請求項6の発 明は、更に、前記抽出手段が抽出した特徴部位から顔の大きさあるいは眼幅を検 出する検出手段と、ズームレンズの焦点位置を検出するレンズ位置検出手段とを 備え、前記距離演算手段は、前記検出手段が検出した顔の大きさあるいは眼幅と レンズ位置検出手段が検出したズームレンズの焦点位置とから前記特徴部位まで の距離を演算することを特徴とする。請求項7の発明は、更に、前記距離演算手 段が演算した被写体までの距離に基づいて前記照射手段が被写体を適正に照射す ることが可能な調光範囲内であるかどうか判別する判別手段と、前記判別手段が 前記調光範囲外であると判別した場合に警告する警告手段とを備えたことを特徴 としている。

[0008]

請求項8の発明は、被写体を撮影する際に被写体を照射する主照射手段と、 予め被写体に補助光を照射する補助光照射手段と、画像データから特徴部位を抽 出する抽出手段と、前記補助光照射手段が照射した補助光の前記特徴部位からの 反射光に基づいて前記主照射手段の照射光量を設定する設定手段とを備えたことを特徴としている。すなわち抽出部位からの反射光に応じて撮影時の発光光量を 決めているので抽出部位の最適な露光が可能となる。請求項9の発明は、前記特 徴部位とは人物の顔部分であることを特徴としている。

[0009]

【発明の実施の形態】

以下、図面を参照して本発明の実施の形態を説明する。

図1は、本発明のデジタルカメラについてその主要な機能を説明したブロック 図である。

[0010]

撮影レンズ101はその焦点距離を連続的に変えるためのズームレンズ、ピントを調整するフォーカシングレンズ、撮影時の手ブレを補正するVR(Vibration Reduction)レンズから構成されている。これらのレンズはドライバ113により駆動される。ここでドライバ113はズームレンズのズーム駆動機構及びその駆動回路と、フォーカシングレンズのフォーカス駆動機構及びその駆動回路と、VRレンズ駆動機構及びその駆動回路とを備えていて、それぞれCPU112により制御される。検出器121はフォーカシングレンズの位置およびズームレンズ位置を検出しCPU112にそれぞれのレンズ位置を伝える。

$[0\ 0\ 1\ 1]$

撮影レンズ101は撮像素子103の撮像面上に被写体像を結像する。撮像素子103は撮像面上に結像された被写体像の光強度に応じた電気信号を出力する光電変換撮像素子であり、CCD型やMOS型の固体撮像素子が用いられる。撮像素子103は信号取り出しのタイミングをコントロールするドライバ115により駆動される。撮影レンズ101と撮像素子103との間には絞り102が設けられている。絞り102は、絞り機構とその駆動回路を備えたドライバ114により駆動される。固体撮像素子103からの撮像信号はアナログ信号処理回路104に入力され、アナログ信号処理回路104において相関二重サンプリング処理(CDS)等の処理が行われる。アナログ信号処理回路104で処理された

6/

撮像信号は、A/D変換器135によりアナログ信号からデジタル信号に変換される。

[0012]

A/D変換された信号はデジタル信号処理回路106において輪郭強調やガン マ補正などの種々の画像処理が施される。輪郭強調用のパラメータは予め複数用 意されていて画像データに応じて最適のパラメータが選択される。このデジタル 信号処理回路106には記録のための処理を施す輝度/色差信号生成回路等も含 まれていて、これらを生成するためのパラメータも予め複数用意されている。こ れらの複数の色変換用パラメータから撮影された画像の応じて最良の色再現を得 るために最適のパラメータが選択される。これら輪郭強調や色再現のための複数 のパラメータは後述する記憶部1127に記憶されていて、ここから最適のパラ メータをCPU112が選択する。バッファメモリ105は撮像素子103で撮 像された複数フレーム分のデータを記憶することが出来るフレームメモリであり 、A/D変換された信号は一旦このバッファメモリ105に記憶される。デジタ ル信号処理回路106ではバッファメモリ105に記憶されたデータを読み込ん で上述した各処理を行い、処理後のデータは再びバッファメモリ105に記憶さ れる。CPU112はデジタル信号処理回路106およびドライバ113~11 5等と接続され、カメラ撮影動作のシーケンス制御を行う。CPU112のAE 演算部1121では撮像素子からの画像信号に基づいて自動露出演算を行い、A WB演算部1122ではホワイトバランス用パラメータを設定するための演算が 行われる。特徴点抽出演算部1123では所定のアルゴリズムに則って画像デー タの中から人物の形状、位置、サイズ等の特徴点を記憶部1127に記憶すると ともに検出した顔や眼幅等の大きさとそのときの検出器121によって検出した ズームレンズの焦点距離とから抽出したそれぞれの人物までのおよその距離も演 算し抽出日時とともに記憶部1127に記憶する。ここで、図22を用いてこの 距離演算方法を説明する。図22は抽出した眼幅を基に人物までの距離を演算す る場合を示している。Aは一般成人の実際の眼幅の平均値、aは抽出された撮像 素子上に結像した眼幅、Lは撮像レンズから人物までの距離、 f はレンズの焦点 距離である。この図から次の比例式が容易に導かれる。

[0013]

A/L = a/f

ここから、人物までの距離Lは、L=(A/a)・fとなる。記憶部1127にはこの様にして抽出された特徴点やそれに基づいて演算した特徴点迄の距離が一旦記憶される。それら記憶された特徴点の中からユーザは残しておきたい特徴点を選択して登録する。この登録する内容や登録方法については図13を基に後で詳細に説明する。

[0014]

バンドパスフィルタ(BPF)1124は、撮像領域に設けられた焦点検出エリア内の撮像信号に基づいて、所定帯域の高周波成分を抽出する。BPF1124の出力は次の評価値演算部1125に入力され、ここで高周波成分の絶対値を積分し焦点評価値として算出される。AF演算部1126はこれらの焦点評価値に基づいてコントラスト法によりAF演算を行う。CPU112はAF演算部1126の演算結果を用いて撮影レンズ101のフォーカシングレンズを調整し、合焦動作を行わせる。

$[0\ 0\ 1\ 5]$

CPU112に接続された操作部116には、カメラの電源をオンオフする電源スイッチ1161、レリーズ釦に連動してオンオフする半押しスイッチ1162及び全押しスイッチ1163、撮影モードの各種の内容を選択するための設定釦1164、再生画像等を更新するアップダウン(U/D)釦1165等が設けられている。設定釦1164では抽出した特徴点に対して名称を付けるためにU/D釦1165を併用してアルファベットやひらがな、カタカナ、簡単な漢字等を選択して設定することもできる。U/D釦1165はこれ以外にも、複数抽出された人物から所望の人物を選択したり、撮影時には手動でズームレンズをテレあるいはワイド側に駆動するためにも使用される。

$[0\ 0\ 1\ 6]$

被写体輝度が低い場合にはストロボ122を発光させる。このストロボにはストロボ使用時に撮影した人物の瞳が赤く撮影されるのを防止あるいは軽減する赤目防止のためや低輝度時に被写体輝度を予め測定するために撮影前に予め補助光

を発光するプリ発光機能も備わっている。123はカメラの何らかの異常時に音声で警告するためのブザー等の発音体である。記憶部1127には前述した特徴点情報以外にAF演算の結果から検出される評価値のピーク値や対応するレンズ位置等も記憶される。デジタル信号処理回路106で各種処理が施された画像データは、一旦バッファメモリ105に記憶された後に、記録・再生信号処理回路110を介してメモリカード等の外部記憶媒体111に記録される。画像データを記憶媒体111に記録する際には、一般的に所定の圧縮形式、例えば、JPEG方式でデータ圧縮が行われる。記録・再生信号処理回路110では、画像データを外部記憶媒体111に記録する際のデータ圧縮及び外部記憶媒体111や他のカメラから転送されてきた圧縮された画像データの伸長処理を行う。121はそれぞれデジタルカメラ等の他の外部機器と無線あるいは有線で接続してデータ通信を行うインタフェース回路である。これら各インタフェースは同時に複数個備わっていても良い。

[0017]

モニタ109は撮像された被写体画像を表示したり撮影や再生させる際に各種の設定メニューを表示するための液晶(LCD)表示装置である。ここでは記憶媒体111に記録されている画像データや他のカメラから転送されてきた画像データを再生表示する際にも用いられる。モニタ109に画像を表示する場合には、バッファメモリ105に記憶された画像データを読み出し、D/A変換器108によりデジタル画像データをアナログ映像信号に変換する。そして、そのアナログ映像信号を用いてモニタ109に画像を表示する。

[0018]

このカメラで採用しているAF制御方式のコントラスト法について説明する。この方式では、像のボケの程度とコントラストの間には相関があり、焦点があったときに像のコントラストは最大になることを利用して焦点あわせを行う。コントラストの大小は撮像信号の高周波成分の大小により評価することが出来る。すなわち、BPF1124により撮像信号の高周波成分を抽出し、評価値演算部1125で高周波成分の絶対値を積分した物を焦点評価値とする。前述したように、AF演算部1126はこの焦点評価値に基づいてAF演算を行う。CPU11

9/

2はAF演算部1126の演算結果を用いて撮影レンズ101のフォーカシングレンズ位置を調整し、合焦動作を行わせる。

[0019]

図2、図3に顔認識機能を備えたデジタルカメラの全体の動作フローを示す。 図2においてまずステップS101でデジタルカメラの電源が電源SW1161 によりオンされたことを検出するとステップS102でデジタルカメラの動作モ ードを確認する。ここでは設定釦S1164によって被写体を撮影する撮影モー ドに設定されているかメモリカードに記録されている画像データを再生表示する 再生モードに設定されているかを判別する。再生モードに設定されていたならば 図3ステップS117に進み、撮影モードに設定されていたならばステップS1 03に進む。ステップS103ではLCDモニタ109に撮影する被写体画像を 動画で表示する。ステップS104では表示されている画像に対して所定のアル ゴリズムに従って特徴点を抽出する特徴点抽出処理を行うよう設定されているか どうか判別する。この設定には設定釦1164を使用する。特徴点抽出処理をす るように設定されていなかったならばステップS113に進み通常の撮影動作を する。特徴点抽出処理をするよう設定されていたならばステップS105に進ん でLCDモニタ109に表示している動画像データの1コマあるいは2~3コマ 毎に表示画像から特徴点とその位置情報を抽出する。この抽出される特徴点とし ては人物の顔、眼、瞳、眉、鼻、口、耳、手、足、眼鏡等の輪郭やその向き、位 置、大きさがある。さらに、髪型、骨格、着衣の種類も抽出することによって、 男女の性別や人種を判別したり、年齢についても判断することが出来る。また、 人間だけでなく、犬、猫、鳥等の動物や家屋、自動車等一般の被写体に対しても 抽出することが出来る。以下の説明では主として人間に対して特徴点を抽出する

[0020]

ステップS106では抽出した複数の特徴点に対して、予めデジタルカメラの記憶部1127に登録されている特徴点と一致するものがあるかどうか判別する。一致する特徴点がなかったならばステップS107でLCDモニタ109に表示している画像に対して特徴点が検出されたことを示すマーカを重畳して表示す

る。もし登録してある特徴点と一致する特徴点が検出された場合にはステップS 108で登録済みであることを区別出来るように他の特徴点と異なるマーカで重 畳表示する。図15に表示結果の1例を示す。ここでは画面内の5名の人物のう ち1名は遠くにいて小さすぎるため顔としての特徴点が検出されず、残り4名に 対して顔の特徴点が検出され、さらにそのうち1名が登録済みであることが判別 されたことを示している。単に特徴点が検出されただけの3名に対してはそれぞ れの顔を波線で囲っていて、既に登録済みの1名に対しては実線で囲っている。 さらに、特徴点に対応した人名等の個人名情報も特徴点情報として同時に登録さ れていた場合には図15に示すようにそれも同時に表示する。これにより被写体 の確認をより一層確実にすることが出来る。また、本実施例では、後述するAE エリアやAFエリアを選択する際の優先順位も特徴点情報として登録している。 図13に記憶部1127における特徴点に関する記録状態の一例を示す。図13 において特徴点としてA氏、B子、Cちゃんというようにそれぞれ名前が付けら れた特徴点と、名前が付けられていない特徴点が名称無しとして順に登録されて いる。A氏の登録内容は更に前述したAEエリアやAFエリアを選択する際の優 **先順位が1に設定されている。**

[0021]

これにより例えばA氏とCちゃんが同時に撮影画面内に抽出されたとしたらA 氏を含むエリアが優先してAEエリアあるいはAFエリアに設定される。この優 先順位は任意に変更することが出来る。A氏の特徴点情報としてA氏の特徴点を 登録した日にちが登録日として次に記録されている。ここで(1)で示される登 録日は最初にA氏を登録した日にちで(2)、(3)は(1)と異なった状態た とえば横向き、後ろ向き、眼鏡着用等の状態で撮影されたA氏の他の特徴点を追 加して登録した日にちを示している。このように、眼鏡や髭の有無等によって同 一人物としての特徴点を複数登録することで抽出した特徴点に対して人物を識別 する確度が向上する。この特徴点についてもその内容をLCDモニタ109に表 示するとともに任意に追加あるいは削除することが出来る。優先度、登録日以外 に簡単なコメントやこの特徴点が検出された場合に有効な記録時あるいは再生時 の処理方法(ホワイトバランス設定や輪郭補償処理設定等)、特徴点までの距離 等についても記録するようにしても良い。このようにして登録するよう設定された特徴点の実際のデータは下の特徴点データエリアに順に記録される。

[0022]

ステップS109〜ステップS114では抽出した特徴点に応じた特有の処理 をするときのステップを示している。もちろん特徴点が検出された場合であって もこれらの各ステップのうちからどのステップを採用するかは設定釦1164を 使って任意に選択可能となっている。以降ではこれら全てのステップを選択する よう設定された場合について説明する。ステップS109では表示されている抽 出結果を登録する。このステップS109の登録については図4で詳細に説明す る。登録が終了したならばステップS110の撮影画角設定のステップに進む。 このステップS110の設定をすることにより、撮影画面の中に複数の人物がい た場合でも自動的に目的の被写体を判別してその人物をズームアップして画面中 央に捉えることが出来る。この機能は、自分の子供の運動会や発表会での撮影の 際に効果的である。このステップS110の詳細については図5で説明する。ス テップS111では撮影条件の設定を行う。ここでは撮影画面中に複数の人物が いた場合、希望する人物を含む所定エリアをAFエリアやAEエリアに設定した り、人物の大きさや数に応じた絞り設定を行う。このステップS111の詳細に ついては図6~図8で説明する。ステップS112ではストロボの設定を行う。 ステップS112の詳細については図9で説明する。ここまでのステップS10 9からステップS 1 1 2 迄は撮影前の設定であり、撮影画面に応じて任意に設定 順を変えることが出来るとともに各ステップにおいて一旦設定した内容を再設定 することも可能である。

[0023]

ステップS113では被写体の撮影を行う。ここでは人物を検出して撮影枚数を自動的に設定したり、人物の撮影時の動作に応じて実際の露光を行う。この撮影ステップについては図10、図11で詳細に説明する。撮影終了後はステップS114で記録処理を行う。ここでは被写体の顔を検出してホワイトバランスを変えたり顔のシミやほくろ等を自動的に軽減する処理を行う。このステップS114の詳細は図12で行う。ステップS115では処理済みの画像データと特徴

点情報とを一つのファイルとしてメモリカードに記録する。ステップS116では電源がオフされているかどうか判別する。オフされていなかったならばステップS102に戻ってデジタルカメラの動作モードを判別する。電源スイッチがオフされていたならば本シーケンスを終了する。

[0024]

ステップS102で再生モードに設定されていたならば図3ステップS117でメモリカード111に記録されていた画像データを再生してLCDモニタ109に表示する。この再生画像は静止画であっても動画であっても良い。ステップS118では再生画像に対してステップS104と同様に特徴点抽出処理を行うよう設定されているかどうか判別する。設定されていなかったならばステップS126に進み通常の再生動作を行う。特徴点抽出処理をするように設定されていたならばステップS119に進んで再生画像データに既に何らかの特徴点情報が付加されているかどうか判別する。特徴点情報が付加されていなかった場合にはステップS120でステップS105と同様に画像データから特徴点を抽出する。特徴点情報が付加されていた場合にはステップS121に進み、画像データに付加されている特徴点情報を読み出す。ステップS121に進み、画像データに付加されている特徴点情報を読み出す。ステップS121では再生画像に抽出した特徴点あるいは読み出した特徴点や特徴点情報を重畳表示する。特徴点に代わって前述したマーカ表示やアイコン表示するようにしても良い。

[0025]

ステップS123では抽出した特徴点あるいは付加されていた特徴点が記録部1127に登録されている特徴点と一致するものがあるかどうか判別する。ここでも前述したステップS106の場合と同様、一致する特徴点がなかったならばステップS124でLCDモニタ109に表示している画像に対して特徴点が検出されたことを示すマーカやアイコンを重畳して表示する。もし登録してある特徴点と一致する特徴点が検出された場合にはステップS125で登録済みであることを区別して他の特徴点と異なるマーカで重畳表示する。ステップS126では表示されている抽出結果を登録する。この登録についても図4で説明する。ステップS126での登録が終了したらステップS127で次の画像データを再生するかどうか判別し、U/D釦1165で次の画像を選択されたならばステップ

S117に戻る。次画像が選択されなかったならばステップS128に進み、電源スイッチ1161がオフされたかどうか判別する。もしオフされていなかったならば図2ステップS102に戻り、オフされていたならば本シーケンスを終了する。

[0026]

《特徴点情報の登録》

図4を使って特徴点情報を登録するステップについて説明する。この図4の登 録のステップは前述した図2ステップ109と図3ステップS126とで共通し ている。画像データが撮影した画像データの場合にはステップS151において は特徴点抽出演算部1123によって抽出した特徴点と同一の特徴点が記憶部1 127に登録されているかどうか判別する。画像データが再生画像データの場合 には、ステップS151ではその再生画像データに付加されている特徴点と特徴 点情報とを読み出し、この読み出した特徴点あるいは特徴点情報と同一の特徴点 や特徴点情報が図13で説明した記録形態で記憶部1127に記憶されているか どうか判別する。再生画像データにその特徴点や特徴点情報が付加されていない 場合には撮影画像データの場合と同様に再生画像から特徴点を抽出する。ここで 画像データに付加されている特徴点情報について図14を基に説明する。図14 に示すようにDSC002という画像データのファイルには実際の画像データ以 外に特徴点情報と特徴点データが付加して記録される。図14の場合には特徴点 情報として、A氏とCちゃんの2名について登録されている。登録内容としては 、優先度とこの画像データにおいてA氏あるいはCちゃんを抽出した日にちとそ の特徴点の重心位置、A氏については更にこのDSC002という画像データ以 外の画像データから抽出したA氏の他の特徴点が二つあるのでそれについても追 加して登録している。ここでも図13と同様に簡単なコメントや記録時あるいは 再生時の処理方法について記録しておいても良い。更に特徴点抽出演算部112 3で演算した特徴点までの距離を記録しておいても良い。特徴点情報のデータ内 容の変更、追加、削除は任意である。これらA氏あるいはCちゃんの実際の特徴 点データはその下の特徴点データエリアに順に記録される。

[0027]

ステップS151で撮影画像データの特徴点あるいは再生画像データに付加されていた特徴点と特徴点情報が記憶部1127に登録済みであったならばステップS152に進む。ここでは登録済み特徴点あるいは特徴点情報を追加あるいは変更するかどうか判別する。具体的には抽出した人物名や優先順位を入力したり変更したりする。ステップS152で追加あるいは変更しなかったならばステップS156に進み、追加あるいは変更入力されたならばステップS153に進む

[0028]

ステップS151で特徴点とその特徴点情報とを登録していなかったならば、ステップS153に進む。ここでは抽出した特徴点や登録する特徴点情報をLCDモニタ109に表示する。ステップS154では表示されている特徴点や特徴点情報を登録するよう指示されたかどうか判断する。原則として、新たに検出された特徴点が既に登録されている特徴点と全く同一でない限り新規に抽出した特徴点はステップS155で特徴点と特徴点情報を記憶部1127に追加して記憶する。この記憶指示は例えば設定釦1164でLCDモニタ109の画面に表示されている登録実行表示を選択することで行うことが出来る(不図示)。これにより次第に人物の識別の精度が高くなる。抽出された特徴点が既に登録されていたり、ユーザにとって全く無関係の特徴点が抽出されていた場合などは新規に登録指示をしないのでステップS156に進む。ステップS156では同一画面内の他の特徴点についても登録を行うかどうか判別する。もしも他の特徴点が選択されたならばステップS151に戻ってこれまでと同様の手順で登録する。

[0029]

他の特徴点が選択されなかった場合にはステップS157に進んでデジタルカメラの動作モードを判別する。もし撮影モードに設定されていたならばこの登録のステップを終了する。被写体を変更したりして表示画面が変わった場合にはその都度この登録動作を行う。カメラの動作モードが再生モードだった場合にはステップS158に進む。ここでは今度は設定釦1164でカード記録実行表示が選択された(不図示)かどうか判別する。記録指示が選択された場合には変更あるいは新規に追加された特徴点あるいは特徴点情報を原画像に付加してメモリカ

ードに記録する。もし選択されなかった場合には付加情報の更新は行わずに本登録のステップを終了する。

[0030]

《撮影画角設定》

図2ステップS110の撮影画角の設定について図5を使って説明する。これ は例えば自分の子供のCちゃんをその運動会で撮影したいというような場合に好 適な設定シーケンスである。まずステップS171では撮影したい人物(例えば C ちゃん)を記憶部1127に記憶されている特徴点情報の中から人物の固有名 情報に基づいて設定釦1164を使って選択し優先撮影人物として予め登録する 。この優先撮影人物として登録された人物に対しては前述した特徴点に付加され ている優先順位より優先する。ステップS172では撮影画面中に人物(主とし て顔)が抽出されたかどうか判別する。もし抽出されなかった場合にはステップ S173に進んでCPU112はドライバ113を駆動してズームレンズを長焦 点方向にズーミングアップしていく。このズーミングアップは手動であっても自 動であっても良い。ステップS174ではズームレンズが最大ズーム位置に達し たかどうか判別して達していなかったならばステップS172に戻って人物が抽 出されるまでこれを繰り返す。ステップS174でズームレンズが最大焦点位置 に達したならばステップS175に進みLCDモニタ109上に人物が検出され ない旨の警告表示(不図示)して本画角設定のステップを終了する。撮影者が撮 影方向を変えて撮影画面が変わったらステップS172からのステップを繰り返 す。

[0031]

ステップS172で顔が検出されたならばステップS176で図15に示したように抽出した人物の顔にマーカを重畳表示する。この表示画面を見てユーザは予め設定した人物の顔が撮影画面内に入っているかどうかを確認する。もし入っていなかったならば画面を移動させて所望の人物を容易に画面内に捉えることが出来る。ステップS177では画面内の設定した人物が所定の大きさ以上かどうか判別する。もし所定の大きさ以上だった場合には本ステップを終了し、所定の大きさ以下だった場合にはステップS178ではCP

U112はズームレンズを自動的にズーミングアップしていく。このとき前述したVRレンズも同時にドライバ113で駆動して抽出した被写体の重心が画面中央近傍から外れないようにする。

[0032]

ステップS179では設定した人物の顔の大きさが所定の大きさ以上になった かどうか判別する。もし所定の大きさ以上でなかったならばステップS177に 戻りズームレンズとVRレンズの駆動を継続する。ステップS180で最大ズー ム位置に達したならばステップS181に進んで警告する。この警告はLCDモ ニタ109上に警告表示する(不図示)とともにブザー123でも音声で警告し て本シーケンスを終了する。ステップS179で所望の人物の顔の大きさが所定 の大きさ以上になった場合には本シーケンスを終了する。ここで所定の大きさに ついては例えば全画面の約10%というように予めその大きさを設定釦1164 を用いて設定しておく。また、ステップS178でズーミングアップすることは せずに単に所望の人物の顔をVRレンズで画面中央部に移動させるだけに止めて おいても良い。こうすることでユーザは中心にある所望の被写体を手動で自分の 好みの大きさに手動でズーミングアップすることが出来る。この様にして、運動 会、演奏会、発表会等の大勢の子供がいる中から自分の子供を確実に見つけて記 録することが出来る。また、ここまでの説明では顔が小さかった場合について自 動的にズーミングアップするようにしていたがこの逆に顔が大きすぎた場合に所 定の顔の大きさになるように自動的にズームダウンするようにしても良い。同様 に、ステップS174で最大ズーム位置になった後ユーザによって画面が変えら れたならば顔が抽出されるまで今度は逆にズームダウンするようにしても良い。 これらの場合のシーケンスもズームアップする場合とほぼ同様であるので説明は 省略する。

[0033]

《撮影条件の設定》

図2ステップS111の撮影条件の設定について図6~図8を使って説明する。図6は複数被写体が抽出されたときにそれぞれの被写体までの距離に応じて絞り値を変えて最適な焦点深度を設定するフローである。ステップS201で人物

の顔の輪郭あるいは眼が検出されたかどうか判別する。どちらも検出されなかった場合にはステップS208に進み、風景等の遠景撮影であると判断してステップS208に進んで絞り値を大きく設定して焦点深度を深くする。ステップS201で顔の輪郭あるいは眼が検出された場合にはステップS202に進む。ステップS202ではそのときのズームレンズ位置(焦点距離)を検出器121で検出し、記憶部1127に記憶する。ステップS203では前述したように抽出された顔の輪郭の大きさあるいは眼幅と記憶部1127に記憶されたズームレンズ位置とから被写体までの距離を演算して記憶部1127に記憶する。ステップS204では撮影画面内の全ての人物に対して距離演算が終了したか判別する。もし終了していなかったならばステップS203に戻ってそれぞれの人物に対して距離演算して記憶部1127に記憶する。

[0034]

抽出した全ての人物に対して距離演算が終了したならばステップS205に進み抽出した人物の数を判別する。ステップS205で人物の数が所定値以上であると判別されたならば集合写真と判断してステップS208に進んで焦点深度を深くして全ての人物に対して焦点が合うように絞り値を大きく設定する。具体的には、ステップS203で検出された各人物までの距離に基づいて全ての人物に対して焦点が合うための最適の焦点深度を求め、それに相当する絞り値を設定する。ステップS205で人物の数が所定値以下であると判別されたならば、ステップS206に進んでここでそれぞれの顔の大きさを判別する。もし顔の大きさが所定の大きさ以上であると判別されたならばステップS207に進み、ポートレート撮影と判断して絞り値を小さくすることで焦点深度を浅く設定する。ステップS206で顔の大きさが所定の大きさ以下であると判断されたならば風景を含めた記念写真と判断してステップS208に進み絞り値を大きくして焦点深度を深くする。ここで所定の人数とは3ないし4名程度に予め設定する。

[0035]

この様にすることにより、ユーザが撮影モードを予め風景撮影用のモードに設 定していた場合に撮影画面内に人物が検出されたならば自動的に人物撮影に適し た深度の浅いポートレート撮影用のモードで撮影することが出来る。逆にポート レート撮影用のモードに設定していたときに人物が検出されなかったならば自動的に深度の深い風景撮影用のモードに変更して撮影することが出来る。なお、ここで説明した被写体までの距離の演算方法において、顔の大きさや眼幅は大人や子供で異なり大人同士、子供同士であっても個人差がある。それ故、あくまでも大人あるいは子供の平均の顔の大きさ、眼幅から求めたおおよその距離である。正確な合焦位置は前述したコントラスト法によるピーク位置に基づいて決定される。

[0036]

次に図7、図16、図17、図18を使用してAFエリアあるいはAEエリアの設定について説明する。図7においてはAFエリアの設定ということで説明しているがAEエリアの設定についても全く同様である。図7ステップS221においてまず撮影画面内の所定の範囲内に人物がいるかどうか判別する。人物の有無の判別方法としてはここでは顔の輪郭が抽出されたかどうかで判別するものとする。もし人物がいなかったならばステップS222に進んで予め設定された中央部等の固定のエリアをAFエリアとする。これは、もしも人物が抽出されたとしてもその人物が画面の隅の方にいた場合には撮影者は人物に重点を置いて撮影しようとしてはいないと判断し、これを排除するためである。図16にこの場合の撮影画面例を示す。図において太い波線でマーカ表示されている人物は画面内の細い波線で示す範囲外にいるのでその場合には予め設定された画面中央の太い実線枠内をAFエリアに設定する。多点測距可能な場合にはこのAFエリアは画面中央以外にも設定可能である。

[0037]

ステップS221で画面所定範囲内に人物が抽出された場合にはステップS223に進み、抽出された人物の顔の数が複数かどうか判別する。複数でなかった場合にはステップS224に進む。ステップS224では抽出された顔のうち最大の顔を選択してそこをAFエリアとして設定しAFエリアであるという表示をする。図17にこの場合の撮影画面の表示例を示す。ここでは抽出された実線で表示されている最大顔部分がAFエリアとして設定されていることを示している。ステップS225では自動的に

設定されたAFエリア以外の人物位置をAFエリアに設定するかどうか判別する。もし撮影者が設定釦1164を操作して波線で表示されている他の人物のいずれかを選択したならばその操作に従ってAFエリアを順に移動させる。この場合の選択の順番としては、もし前述した優先順が記憶されている人物であったならばその優先順に従って選択されるがそれ以外に抽出された顔の大きさの順に選択されるようにしても良い。ステップS227で選択が終了したならばステップS228に進み抽出された顔の面積の大きさが第1の所定値以上かどうか判別する。もし第1の所定値以下だった場合にはステップS229に進んで抽出した顔を内側に含む所定の大きさ(例えば第1の所定値)にAFエリアを設定する。これは抽出された顔の面積が小さすぎる場合には前述したAF演算の際の精度が悪くなるからである。図18にこの場合の表示例を示す。

[0038]

ステップS 2 2 8 で抽出された顔の面積が第1の所定値以上だった場合にはステップS 2 3 0 に進んでここで更に第2の所定値以上かどうか判別する。もし第2の所定値以上だった場合にはポートレート撮影であると判断してステップS 2 3 1 に進んで顔全体をAFエリアに設定するのでなく更に抽出した目の位置をAFエリアに設定する。図1 9 にこの場合の表示例を示す。第2の所定値以下だった場合にはステップS 2 3 2 に進み、先に抽出された顔の面積をAFエリアに設定する。ここで第1 および第2 の所定値とは各種被写体を撮影した上で予め最適の値が設定されている。

[0039]

ここまでの説明においてステップS224では最大の顔を初めに選択するようにしたがこれを前述した登録の優先順位の最も高い人物あるいは撮影画角設定の項で説明した優先撮影人物を初めに表示するようにしても良い。あるいは顔の抽出と同時にその人物までの距離を計算して最短距離にいる人物から順に選択するようにしても良い。また、前述した優先撮影人物に対してはその演算された距離に基づいてフォーカスレンズの移動範囲を演算距離の前後の所定範囲のみ移動可能なように制限してやることで、人物に対するAF動作を背景の影響を受けにくくすることが可能となる。更にこの優先撮影人物に対してAF追従動作が確実か

つ高速になる。そのほか、スポーツ撮影等で連写撮影モードに設定されている場合には、一コマ目の撮影はコントラスト法による評価値ピークに基づいて撮影距離を決定し、2コマ目以降の撮影の場合には前回撮影したときとの人物や顔の輪郭あるいは眼幅の前のコマとの差(変化量)を検出してそのときのズームレンズ位置とあわせて被写体までの距離を演算することも容易に可能である。こうすることで高速に被写体変動に追従することが可能なAF制御を実現することが出来る。

[0040]

ここまでのAFエリアの設定のシーケンスは前述したようにAEエリアの設定においても全く同様に適用することが出来る。もちろんこの場合においても前述した第1の所定値および第2の所定値はAFエリアの時と同様に実験で予め最適値が決定される。

[0041]

次に図8に基づいて撮影モードの変更について説明する。ステップS241で 撮影モードが人物を撮影するに適した人物撮影モードに設定されているかどうか 判別する。この人物撮影モードにおいては1例として背景をほかすために絞りは 開放に近い値に設定し、ホワイトバランスは肌色を重視した設定にし、測距モー ドはAFモードに設定される。もし人物撮影モードに設定されていたならばステ ップS242に進み、ここでは人物が抽出されたかどうか判別する。もし抽出さ れなかったならばステップS243に進み、ブザーやモニタ等で警告するととも にステップS244で遠景撮影に適した風景撮影用モードに変更して本シーケン スを終了する。この風景撮影用のモードの場合には焦点深度を深くするために絞 りは大きな値に設定され、測距モードは焦点深度に応じて無限位置まで合焦する 固定位置にフォーカスレンズを駆動する。ホワイトバランスは通常撮影時に使用 される設定にするかあるいは昼間の撮影であったならば木の緑や青空を重視した 設定にする。ステップS242で人物が検出された場合には本ステップは終了す る。ステップS241で人物撮影モードに設定されていなかった場合にはステッ プS245に進んでここで人物が検出されたかどうか判別する。もし検出されな かった場合には本シーケンスを終了し、検出されたならばステップS246に進

んでブザーやモニタで警告するとともに、ステップS247で人物撮影用のモードに変更し本シーケンスを終了する。

[0042]

《ストロボの設定》

図9を用いてストロボの発光量を設定する方法について説明する。ステップS251では所定のAEエリア内の被写体に対してAE演算回路1121で測定した被写体輝度が所定値より大きいかどうか判別する。ここで被写体とは人物に限定されない。もし被写体輝度が所定値より小さい暗い被写体だった場合にはステップS261に進み、所定値より大きくて被写体が明るかった場合にはステップS252に進む。ステップS252では撮影画面中に人物が抽出されたかどうか判別する。ここでも人物としては顔の輪郭が抽出されたかどうかで判別する。もし顔の輪郭が抽出されなかった場合にはステップS253に進んでストロボを非発光に設定する。この非発光設定に基づいて撮影時にはCPU112はストロボを非発光にするよう制御する。これにより実際の撮影時にはAE演算部1121の演算結果に基づいたシャッタスピードと絞り値とで被写体が露光される。

[0043]

ステップS 2 5 2 で顔の輪郭が抽出された場合にはステップS 2 5 4 に進んで抽出された人物の顔部分の明るさを測定する。ステップS 2 5 5 では測定された顔部分の明るさが所定値より明るかったならばステップS 2 5 3 に進み、暗かったならばステップS 2 5 6 では前述した図 6 ステップS 2 0 3 の場合と同様に検出した顔の大きさあるいは眼幅とそのときのズームレンズ位置に基づいて抽出した人物までの距離を演算する。ステップS 2 5 7 では人物までの距離がストロボの適正露光可能範囲内であるかどうか判別する。もし適正露光可能範囲内であったならばステップS 2 5 8 に進み撮影前に赤目軽減のためのプリ発光をするように設定し、ステップS 2 5 9 で抽出した人物の顔が適正露光となるように演算した距離を基にストロボの発光量を設定する。これにより、CPU112は実際の撮影時に、A E 演算部1121によって演算されたシャッタスピードと絞り値とに設定するよう制御する。これにより人物を除いた画面全体が適正露光状態で撮影される。一方、周辺より暗い状態になっている人物

に対しては距離に基づいて設定された発光光量でストロボを発光するよう制御する。これにより人物に対しても適正な露光状態で撮影することが出来る。この機能は逆光撮影時に特に効果的である。ストロボ本発光の前にはステップS258の設定に基づいて赤目軽減用のプリ発光をするようCPU112が制御する。このプリ発光は複数回行うようにしても良い。ステップS257で適正露光可能範囲外であった場合にはステップS259に進んで人物が適正露光しない旨警告表示する(不図示)。

[0044]

ステップS251で被写体が暗かった場合にはステップS261に進んでここ でも撮影画面中に人物としての顔の輪郭が抽出されたかどうか判別する。もし顔 の輪郭が抽出された場合にはステップS262に進んでステップS256の場合 と同様に抽出された人物までの距離を演算する。ステップS263では人物まで の距離がストロボの適正露光可能範囲内であるかどうか判別する。もし適正露光 可能範囲外だった場合にはステップS260に進み人物が適正露光外である旨の 警告表示する。適正露光可能範囲内だった場合にはステップS264に進み撮影 前にストロボをプリ発光するように設定する。このプリ発光の役割はここではス テップS258で述べた赤目軽減用以外に更に、プリ発光による人物からの反射 光に基づいて実際の撮影時のストロボ発光量を決定するためのものである。ステ ップS265ではプリ発光の際の顔部分からの反射光に基づいて撮影時のストロ ボの発光量を決定するように設定する。ここでも前と場合と同様、プリ発光は複 数回行っても良く、更に赤目軽減用プリ発光と反射光測定用プリ発光とで分けて も良い。ステップS260で人物が抽出されなかった場合にはステップS266 に進んで被写体輝度をAE演算した結果に基づいてストロボの発光光量を設定す る。ステップS258やステップS264で赤目軽減用にストロボをプリ発光す るよう設定する代わりに撮影後に撮影した瞳を検出して赤目部分をソフト的に補 正する設定にしても良い。

[0045]

《撮影》

図10、図11、図20、図21を使用して通常とは異なる2種類の撮影方法

のシーケンスについて説明する。図10は全押しSW1163を1回押すと自動 的にAFエリアから得られる焦点評価値の複数のピーク位置でそれぞれ撮影する 様に構成されたシーケンスである。これにより各ピーク位置に対応した被写体毎 に合焦した複数の画像データを得ることができる。ステップS301で半押しS W1162がオンされたことを検出するとステップS302でCPU112はフ ォーカスレンズを至近から無限まで移動させ評価値を演算し評価値のピークを検 出する。ステップS303ではピークが複数あるかどうか判別する。もしピーク が一つしかない場合にはステップS306に進み、ピークが複数検出された場合 にはステップS304に進む。ステップS304では特徴点抽出演算部1123 によって人物が抽出されたかどうか判別する。ここで人物が抽出された場合には これまでと同様に抽出した眼幅とズームレンズ位置から抽出された人物迄の距離 を演算してその演算して得られた人物までの距離が複数のピークのどれに対応す るか判別する。ステップS305では最至近にいる人物位置を最初の撮影位置と して選択しCPU112はフォーカスレンズを最至近人物位置を示しているピー ク位置に駆動する。ステップS303でピーク位置が一つしかなかった場合には ステップS306で検出したピーク位置(この場合この位置が最至近ピーク位置 となる)を選択する。ステップS304でピークが複数検出されて且つ人物が検 出されなかった場合にもステップS306に進んで最至近位置を撮影位置として 選択する。

$[0\ 0\ 4\ 6]$

ステップS307では全押しSW1163がオンされたかどうか判別する。もしオンされていなかったならばステップS313に進み、オンされたならばステップS308に進む。ステップS308では前述したステップS305あるいはステップS306で選択されたピーク位置で露光し、露光終了後蓄積した画像データを読み出す。ステップS309では他の人物位置に相当するピーク位置の有無を判別する。もし他の人物位置に相当するピーク位置が有ったならばステップS308に戻ってその位置で2度目の露光をした後に蓄積した画像データを読み出す。他に人物位置に相当するピーク位置がなかったならばステップS311に進み最至近ピーク位置での露光が終了しているかどうか判別する。もし最至近ピ

一ク位置での露光が終了していなかったならばステップS312に進み、最至近位置で引き続き露光する。最至近位置での露光が終了していたならば本シーケンスを終了する。ステップS307で全押しSW1163が押されていなかったならばステップS313に進む。ステップS313では半押しSW1162が押されているかどうか判別する。もし半押しSW1162が押されていたならばステップS307に戻り全押しSW1163が押されるまでフォーカスをロックする。ステップS313で半押しSW1162が押されていなかったなら本シーケンスを終了する。

[0047]

図20、21を使って実際の撮影例を説明する。図20は撮影画面内に人物と それより手前に花が配置されていた場合である。通常のAF撮影では最至近優先 で合焦するのでこの場合には手前の花に対してピントのあった画像が1枚だけ撮 影される。図21はこの場合のフォーカスレンズ位置に対応した評価値変化を示 している。ここでは画面全体をAFエリアとした場合の評価値変化を示している 。この場合は焦点評価値に二つのピーク(P1、P2)が検出される。通常のA FではP1とP2の大きさには関係なく或る程度以上の大きさであったならば最 至近のピークであるP2が選択される。この様に単に被写体のコントラストを検 出しているだけではP1に相当する位置x1と、P2に相当する位置x2のどち らに人物がいるのか判定することが出来ない。これに対して人物の顔の大きさあ るいは眼幅から人物までの距離を演算することによって位置x1が人物によるピ ークであると判断することが出来る。それ故、最至近位置 x 2 と人物位置 x 1 と の都合2回撮影することでそれぞれにピントのあった画像データを得ることが出 来る。あるいは人物ピーク位置でのみ撮影するようにして最至近ピークが人物以 外のピークであった場合には撮影しないようにしても良い。この時、前述した撮 影画角の設定の場合と同様、優先撮影人物を予めカメラに設定しておいてその人 物に対応するピークで1回だけ撮影するようにしても良い。

[0048]

これによりたとえ複数の人物がAEエリア内にいたとしても確実に所望の人物に対してピントが合った画像を得ることが出来る。人物が複数いた場合には全て

の人物について撮影するのでなく、一定の評価値以上のピークに対応する人物位置で撮影するようにしても良い。あるいは最大連続撮影枚数を設定できるようにしても良い。前述したように特徴点を基に演算した特徴点までの距離は正確な距離ではないのでこのようにコントラスト法において複数ピークがあった場合などに補助的に人物位置ピークを判定するのに使用することで正確に合焦させることが出来る。

[0049]

次に図11を基に目を閉じた状態で撮影されることを防ぐ方法について説明す る。ステップS321で全押しSW1163が押されたならばステップS322 で全押しスイッチが押される前の画像データから特徴点抽出演算部1123によ り被写体の瞳を検出する。ここで被写体が目を閉じていて瞳が検出されないと判 断されたならばステップS323で被写体の瞳が検出されるまで実際の露光を遅 延させステップS322に戻る。瞳が検出されたならばステップS324で実際 に露光を行い、ステップS325で露光した画像データを読み出す。ステップS 3 2 6 では読み出した画像データから直ちに特徴点抽出演算部 1 1 2 3 で瞳を再 度検出する。この時瞳が検出されなかったならばステップS327でブザー12 3でもって警告しステップS322に戻って瞳が検出されたことを確認して直ち に再露光する。ステップS326で瞳が検出されたならば本シーケンスを終了す る。このように撮影前に被写体が目を開けていることを確認するとともに、撮影 後も目を閉じて撮影されてしまったかどうかを直ちに確認している。これにより もし目を閉じて撮影された場合には直ちに再度撮影することが出来る。あるいは 再度撮影する変わりに目を閉じて撮影された場合には撮影後にその部分のみソフ ト的に補正してやっても良い。補正方法としては撮影後にモニタで被写体の動画 を撮影していた際の被写体の開いている目を抽出してこれを閉じている目と置き 換えてやればよい。

[0050]

この図11の説明では撮影後に目を閉じていたことを検出して再撮影するようにしていたが、ほかにも撮影した被写体の不具合を検出して再度撮影することで 最良の画像を得るようにすることが出来る。例えば、撮影時に被写体が動いてし まった場合には再生画像からブレを検出することで判別することが出来る。あるいは、集合写真で顔が隠れてしまったりした場合には撮影前の顔の数と撮影後の顔の数とを比較したり、あるいは顔の輪郭の抽出が不充分であるような場合にも再度撮影するように設定することも可能である。さらにステップS327の警告においてもブザーでもって警告するだけでなく音声で例えば"目を閉じて撮影されました。"、"ブレて撮影されました。"、"顔が隠れている人がいます。"等具体的に不具合を警告するようにしても良い。

[0051]

《記録処理》

図12を基に特徴点抽出に伴う記録時の処理について説明する。ステップS4 01ではまず特徴点抽出演算部1123によって人物の顔の輪郭が抽出されたか どうか判別する。もし抽出されなかったならば予め設定されている色再現用ある いは輪郭強調用パラメータを使用した記録処理を行う。抽出されたならばステッ プS402に進んで抽出された顔の数を判別する。顔の数が所定値以下だったな らばステップS406に進み、所定値以上だったならばステップS403に進む 。ここで所定値とは3~4程度の値が適している。顔の数が3~4個よりも多く 抽出された場合には集合写真を撮影していると判断してステップS403でデジ タル信号処理回路106において色再現用のパラメータを肌色を重視したパラメ ータを使用するようにする。ステップS404では更に、顔の特定部位を検出し ステップS405で特定部位近傍以外の顔の部分の輪郭強調を弱めるように処理 する。特定部位とは例えば眼、鼻、口、耳、髪、眉毛等である。これによりこれ ら特定部位近傍以外の部分では周波数特性にローパスフィルタがかけられるので 頬や額等にあるしわ、ほくろ、シミ等を目立たなくすることが出来る。ステップ S402で顔の数が所定値以下だった場合にはステップS406に進んで顔の大 きさを判別する。もし顔が複数検出されていたなら最大の大きさの顔で判別する 。顔の面積が所定値より大きかった場合にはポートレート撮影と判断して肌色を 重視した処理を行うステップS403に進む。顔の面積が所定値より小さかった ならば風景を含めた記念撮影と判断し、通常の記録処理を行う。

[0052]

この様にステップS403では顔部分に対してのみ肌色重視処理をしているのでなく、画像データ全体に対して通常の色パラメータの代わりに肌色を重視したパラメータを選択して処理を施している。これは肌色以外の部分においてはこの様に肌色を重視したパラメータを採用した処理を施したとしても、元もと肌色成分が少ないので肌色重視処置をした際の影響が少ないからである。これによりわざわざ顔部分を抜き出してそこに対してのみ肌色重視処理するといった複雑な処理が不要となる。

[0053]

ここまでの説明において、ステップS405で施した処理とは逆に抽出された 眼、鼻、口、耳、髪、眉毛およびその近傍部分に対して輪郭強調を強めに施すこ とによりくっきりとした顔を表現することもできる。また、あまり小さな顔に対 して輪郭強調を施しても効果は小さいので或る程度大きな顔に対してのみ輪郭強 調を施すようにしても良い。またこれらステップS403の肌色処理とステップ S405の輪郭強調処理は何れかのみを選択可能としても良い。この肌色処理あ るいは輪郭強調処理のパラメータをそれぞれ複数備えていて、これらから適宜選 択をして肌色の程度あるいは輪郭強調の程度を最良の状態とすることも容易であ る。これ以外にも、年齢や男女の性別を判断して老人や女性の場合には色相以外 に彩度や輝度を上げるためのパラメータを選択するようにしてもよい。あるいは 、特定の人種に最適な色バランスをそのまま他の人種に適用すると不自然な肌色 が再生されてしまうので人種に応じて肌の色を緩和するような色パラメータを選 択するのも効果的である。このためには、顔や手足、耳、鼻等の骨格形状、瞳や 顔の色、唇形状、着衣、髪型等から判断して人種を判別すれば良い。更に、ここ までの説明においてはこれらの処理を記録前に行うようにしていたが、これを再 生時に行っても良い。すなわち、図14で説明した画像ファイルに、前述した特 徴点情報と特徴点データ以外に各個人毎の特有の情報やホワイトバランス処理情 報や輪郭強調処理情報も同時に記録しておくことで再生時に最適な処理を施すこ とが出来る。

【図面の簡単な説明】

【図1】本発明によるデジタルカメラの構成を示すブロック図である。

- 【図2】本発明によるデジタルカメラの動作シーケンスを説明するフローチャートである。
- 【図3】本発明によるデジタルカメラの動作シーケンスを説明するフローチャートである。
- 【図4】特徴点情報を登録する時のシーケンスを説明するフローチャートである。
- 【図 5】撮影画角を設定する時のシーケンスを説明するフローチャートである。
 - 【図6】撮影条件を設定する時のシーケンスを説明するフローチャートである
- 【図7】他の撮影条件を設定する時のシーケンスを説明するフローチャートである。
- 【図8】他の撮影条件を設定する時のシーケンスを説明するフローチャートである。
- 【図9】ストロボの発光量を設定する時のシーケンスを説明するフローチャートである。
 - 【図10】撮影シーケンスを説明するフローチャートである。
 - 【図11】他の撮影シーケンスを説明するフローチャートである。
 - 【図12】記録処理シーケンスを説明するフローチャートである。
 - 【図13】特徴点と特徴点情報の記録状態を説明する図である。
- 【図14】画像データとそこに付加されている特徴点情報の記録状態を説明する図である。
- 【図15】抽出した特徴点に対してそれぞれ区別してマーカ表示している表示 例である。
 - 【図16】AFエリアあるいはAEエリアの設定を示す表示例である。
 - 【図17】AFエリアあるいはAEエリアの他の設定を示す表示例である。
 - 【図18】AFエリアあるいはAEエリアの他の設定を示す表示例である。
 - 【図19】AFエリアあるいはAEエリアの他の設定を示す表示例である。
 - 【図20】AFエリアの設定を示す表示例である。

- 【図21】図20の被写体の位置関係を説明する図である。
- 【図22】レンズの焦点距離と眼幅から人物までの距離を求める説明図である

【符号の説明】

- 101 撮影レンズ
- 102 絞り
- 103 撮像素子
- 104 アナログ信号処理部
- 105 バッファメモリ
- 106 デジタル信号処理部
- 108 D/Aコンバータ
- 109 LCDモニタ
- 110 記録・再生信号処理部
- 111 外部記憶媒体
- 112 CPU
- 113 レンズ駆動部
- 114 絞り駆動部
- 115 撮像素子駆動部
- 116 操作部材
- 120 インタフェース
- 121 レンズ位置検出部
- 122 ストロボ
- 123 発音体
- 135 A/Dコンバータ
- 1121 AE演算部
- 1 1 2 2 AWB演算部
- 1124 バンドパスフィルタ
- 1125 加算部
- 1126 AF演算部

- 1127 記憶部
- 1161 電源スイッチ
- 1162 半押しスイッチ
- 1163 全押しスイッチ
- 1164 設定釦
- 1165 アップ/ダウン釦

【書類名】

図面

[図1]

[図2]

【図3】

【図4】

【図5】

【図6】

【図7】

[図8]

【図9】

【図10】

【図11】

【図12】

【図13】

特徴点情報エリア		
•	(1) 2000/2/10 (2) 2001/10/5 (3) 2001/7/12	
·B子 ·優先度∶3 ·登録日 ·	(1) 2002/1/10	
・Cちゃん ・優先度 : : ・登録日・	2 (1) 2000/2/10	
·名称無し1 ・優先度:無し ・登録日・(1) 2002/1/26		
	•	
特徴点データエリ	ア	
	A(1)	
	A(2)	
	A(3)	
	B(1) C(1)	
	·	
	•	
	•	

【図14】

ファイル名	DSC002	
特徴点情報エリア		
	2000/2/10 (x, y)=(123, 456) (2) 2001/10/5 (3) 2001/7/12	
・名称:C5や/ ・優先度:2 ・抽出日: ・抽出位置:	2000/2/10 (x, y)=(987, 654)	
特徴点データエリア		
	A(1)	
	A(2)	
	A(3)	
	C(1)	
画像データ	タエリア	
·		

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【書類名】 要約書

【要約】

【課題】本発明においては、撮影画面内の人物を抽出することによりストロボの 発光光量を最適にするとともに自動的に赤目防止のためにプリ発光するデジタル カメラを提供することを目的とする。

【解決手段】被写体を撮像する撮像手段と、前記撮像手段が撮像した画像データから特徴部位を抽出する抽出手段と、前記抽出手段が人物の特徴部位を抽出したならば前記抽出した人物の赤目を軽減するよう処理する処理手段とを備える。

【選択図】 図1

出願人履歴情報

識別番号

[596075462]

1. 変更年月日

1997年 6月18日

[変更理由]

住所変更

住 所

東京都品川区二葉一丁目3番25号

氏 名

株式会社ニコン技術工房

特願2003-109882

出願人履歴情報

識別番号

[000004112]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

東京都千代田区丸の内3丁目2番3号

氏 名 株式会社ニコン