CÁLCULO 1: CUESTIONES VERDADERO O FALSO

AUTOR RESPUESTAS: 1°DGIIM 17-18. REDACCIÓN: DANIEL PÉREZ RUIZ

1. Toda función definida en un intervalo cuya imagen es un intervalo es continua.

RESPUESTA: ¡FALSA! Contraejemplo:

$$f(x) = \begin{cases} 1 & si & x = 0 \\ x & si & 0 < x < 1 \end{cases}$$

f está definida en el intervalo [0,1[y su imagen es el intervalo]0,1[. Sin embargo, es discontinua en el punto x=0.

2. Si f es una función estrictamente monótona y definida en un intervalo entonces su función inversa f^{-1} es continua.

RESPUESTA: ¡VERDADERA!

Por una proposición, una función monótona cuya imagen es un intervalo es continua.

Por ser f estrictamente monótona, f^{-1} también será monótona y su imagen será el intervalo en que está definida f. Así, por la proposición, f^{-1} es continua.

3. Si $f: I \to \mathbb{R}$ es una función inyectiva, I es un intervalo y J = f(I) es un intervalo entonces su función inversa f^{-1} es continua en J.

RESPUESTA: ¡FALSA! Contraejemplo:

$$f(x) = \begin{cases} 1 & si & x = 0 \\ x & si & 0 < x < 1 \end{cases}$$

 \boldsymbol{f} es inyectiva, definida en un intervalo y su imagen es un intervalo.

$$f^{-1}(x) = \begin{cases} x & si & 0 < x < 1 \\ 0 & si & x = 1 \end{cases}$$

 f^{-1} es discontinua en el punto x=1.

4. Hay una función $f:[0,1]\to\mathbb{R}$ que es continua y verifica que f([0,1])=[2,3]

RESPUESTA: ¡FALSA!

Por el *Teorema de Weierstrass*, una función definida y continua en un intervalo cerrado y acotado alcanza en dicho intervalo un mínimo y máximo absolutos, de modo que la imagen debería ser un intervalo cerrado.

5. Toda función polinómica o se anula en algún punto o alcanza un máximo o un mínimo absolutos en \mathbb{R} .

RESPUESTA: ¡VERDADERA!

Los polinomios de grado impar, al ser funciones continuas que toman valores positivos y negativos se anulan por el *Teorema de Bolzano*.

Por otro lado, apoyándose del *Teorema de Weierstrass* se demuestra que los polinomios de grado par alcanzar un mínimo absoluto si el coeficiente líder es positivo o un máximo absoluto si el coeficiente líder es negativo.

6. Si f es continua en a y g es discontinua en a entonces f+g puede ser continua o discontinua en a.

RESPUESTA: ¡FALSA!

Por una proposición, si la suma de dos funciones es continua y una de ellas es continua, entonces la otra debe ser continua. Si f + g fuera continua, al ser f continua, g debería ser continua, llegándose a una contradicción.

7. Si fy gson discontinuas en aentonces fges discontinua en $a\boldsymbol{.}$

RESPUESTA: ¡FALSA! Contraejemplo:

$$f(x) = g(x) = \begin{cases} 1 & si & x \in \mathbb{Q} \\ -1 & si & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Se tiene que f y g son discontinuas en todos los puntos. Sin embargo, fg es la función constante 1, continua en todo punto.

8. Una función f es continua en a si, y sólo si, |f| es continua en a.

RESPUESTA: ¡FALSA! Contraejemplo:

$$f(x) = \begin{cases} 1 & si & x \in \mathbb{Q} \\ -1 & si & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

|f| es la función constante 1, continua en todo punto. Sin embargo f es discontinua en todo punto.

9. Si una función f está definida en un intervalo [a,b] y toma todos los valores comprendidos entre f(a) y f(b), entonces es continua en [a,b].

RESPUESTA: ¡FALSA! Contraejemplo:

$$f(x) = \begin{cases} 1 & si & x = 0 \\ x & si & 0 < x < 1 \\ 0 & si & x = 1 \end{cases}$$

f está definida en [0,1] y toma todos los valores entre f(0) y f(1). Sin embargo, es discontinua en x=0 y x=1.

10. Si una sucesión monótona $\{x_n\}$ tiene una sucesión parcial convergente entonces $\{x_n\}$ es convergente.

RESPUESTA: ¡VERDADERA!

Sea $\{x_{\sigma(n)}\} \to x$ una parcial convergente de $\{x_n\}$. Para cada $\epsilon > 0, \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow |x_{\sigma(n)} - x| < \epsilon$. Si $\{x_n\}$ no converge a x, entonces $\exists p \in \mathbb{N}, p > \sigma(n_0) : |x_p - x| \ge \epsilon$.

Si $\{x_n\}$ es creciente debe existir $q \in \mathbb{N} : x_{\sigma(q)} \ge x_p > x_{\sigma(n_0)}$.

Como $|x_p - x| \ge \epsilon$, se tendría que $|x_{\sigma(q)} - x| \ge \epsilon$, lo cual es una contradicción. Si $\{x_n\}$ fuera decreciente bastaría tomar $q \in \mathbb{N}$ tal que $x_{\sigma(q)} \le x_p < x_{\sigma(n_0)}$, llegándose a la misma contradicción.

11. Una sucesión no está mayorada si, y sólo si, tiene alguna sucesión parcial positivamente divergente.

RESPUESTA: ¡VERDADERA!

 \Leftarrow | Sea $\{x_n\}$ una sucesión y $\{x_{\sigma(n)}\} \to +\infty$ una parcial positivamente divergente. Para cada $n \in \mathbb{N}$ debe existir $k \in \mathbb{N}$ tal que $x_{\sigma(k)} > n$. Así, $\{x_n\}$ no puede estar mayorada.

 \Rightarrow | Sea $\{x_n\}$ una sucesión no mayorada y definamos $\sigma: \mathbb{N} \to \mathbb{N}$ de la siguiente manera: $\sigma(1) = \min\{n \in \mathbb{N}: x_n \geq 1\} \dots \sigma(n+1) = \min\{p \in \mathbb{N}: x_{n+1} \geq n+1, p > \sigma(n)\}$ Se tiene que σ es estrictamente creciente y $\{x_{\sigma(n)}\} \to +\infty$

12. Si $\{x_n\}$ es una sucesión estrictamente creciente tal que $\{x_{n+1}-x_n\}\to 0$, entonces $\{x_n\}$ es convergente.

RESPUESTA: ¡FALSA! Contraejemplo:

$$\left\{\sqrt{n+1} - \sqrt{n}\right\} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Así, se tiene $\{\sqrt{n+1} - \sqrt{n}\} \to 0$ y $\{\sqrt{n}\}$ estrictamente creciente. Sin embargo, $\{\sqrt{n}\} \to +\infty$.

13. Supongamos que $\{x_{3n}\}$, $\{x_{3n+1}\}$, $\{x_{3n+2}\}$ convergen a un mismo número α . Entonces $\{x_n\}$ converge a α .

RESPUESTA: ¡VERDADERA!

Dado $\epsilon > 0$ $n_1 \in \mathbb{N} : n > n_1 \Rightarrow$

 $\exists n_1 \in \mathbb{N} : n \ge n_1 \Rightarrow |x_{3n} - \alpha| < \epsilon$

 $\exists n_1 \in \mathbb{N} : n \ge n_2 \Rightarrow |x_{3n+1} - \alpha| < \epsilon$ $\exists n_1 \in \mathbb{N} : n \ge n_3 \Rightarrow |x_{3n+2} - \alpha| < \epsilon$

Sea $m = \max\{3n_1, 3n_2 + 1, 3n_3 + 2\}$. Tomando $n \ge m, x_n$ pertenecerá a alguna de las tres sucesiones parciales al ser las parciales exhaustivas (la unión de sus términos cubre toda la sucesión). Así, se tendrá $|x_n - \alpha| < \epsilon$ y, por tanto, $\{x_n\} \to \alpha$.

14. Si la serie $\sum_{n>1} |a_{n+1}-a_n|$ es convergente, entonces $\{a_n\}$ es convergente.

RESPUESTA: ¡VERDADERA!

Si $\sum_{n\geq 1} |a_{n+1}-a_n|$ es convergente, lo será la serie $\sum_{n\geq 1} \{a_{n+1}-a_n\}$ (por ser absolutamente convergente. Se tiene que $\sum_{n\geq 1} \{a_{n+1}-a_n\} = \{a_{n+1}-a_n\}$, que al ser convergente, implica que $\{a_{n+1}\}$ es convergente y por tanto, $\{a_n\}$ también.

15. Si $f,g:\mathbb{R}\to\mathbb{R}$ son funciones continuas tales que f(x)=g(x) para todo $x\in\mathbb{Q}$, entonces f(x)=g(x) para todo $x\in\mathbb{R}$.

RESPUESTA: ¡VERDADERA!

Tomemos $y \in \mathbb{R} \setminus \mathbb{Q}$ fijo pero arbitrario. Por la densidad de \mathbb{Q} en \mathbb{R} podemos construir una sucesión de racionales $x_n \in \mathbb{Q}$ tal que $\{x_n\} \to y$.

Por continuidad, $\{f(x_n)\} \to f(y)$, $\{g(x_n)\} \to g(y)$. Al ser $x_n \in \mathbb{Q}, \forall n \in \mathbb{N} \ y \ f(x) = g(x), \forall x \in \mathbb{Q}, \text{ set tiene que } \{f(x_n)\} = \{g(x_n)\}.$

3

Por la unicidad del límite, f(y) = g(y). Así, teníamos que sus imágenes también coinciden en $\mathbb{R} \setminus \mathbb{Q}$ y se tendrá $f(x) = g(x), \forall x \in \mathbb{R}$.

16. Si $f:[0,1]\to\mathbb{R}$ es continua y f(x)>0 para todo $x\in[0,1]$ entonces existe $\alpha>0$ tal que $f(x)>\alpha$ para todo $x\in[0,1]$.

RESPUESTA: ¡VERDADERA!

Al ser f continua en el intervalo cerrado y acotado [0,1], entonces f([0,1]) debe ser un intervalo cerrado y acotado [a,b] con a>0. Tomando $\alpha=\frac{a}{2}$, se tendrá que $0<\alpha< f(x)$ para todo $x\in[0,1]$.

17. Toda sucesión estrictamente creciente verifica la condición de Cauchy.

RESPUESTA: ¡FALSA!

Por una proposición, una sucesión verifica la condición de Cauchy si, y sólo si converge. Tenemos $\{n\}$ estrictamente creciente, pero $\{n\} \to +\infty$.

18. Toda serie mayorada es convergente.

RESPUESTA: ¡FALSA!

 $\sum_{n\geq 1} \{-n\}$ está mayorada por -1, pero diverge. (NOTA: Sí es cierta para series de términos positivos, que al ser sucesiones crecientes y mayoradas convergen).

19. Si un conjunto no vacío de números reales no tiene supremo tampoco tiene máximo.

RESPUESTA: ¡VERDADERA! Si tuviera máximo ese sería el supremo.

20. Hay un conjunto $A\subseteq\mathbb{R}$ que no es vacío y cuyo conjunto de minorantes es un intervalo del tipo $]-\infty,a[.$

RESPUESTA: ¡FALSA! Por el principio del ínfimo, el conjunto de minorantes de un conjunto no vacío de números reales tiene máximo, por lo que a debería estar incluido.

21. Toda función continua en un intervalo alcanza en algún punto de dicho intervalo un valor mínimo.

RESPUESTA: ¡FALSA! Contraejemplo: Definamos $f:]0,1[\to \mathbb{R}, f(x) = x.$ f es continua en]0,1[pero no alcanza un mínimo en dicho intervalo.

22. Toda función $f: A \to \mathbb{R}$, inyectiva en A y cuya imagen es un intervalo, es continua.

RESPUESTA: ¡FALSA! Contraejemplo:

$$f(x) = \begin{cases} 1 & si & x = 0 \\ x & si & 0 < x < 1 \end{cases}$$

23. Si un conjunto de números reales no tiene máximo entonces tiene supremo.

RESPUESTA: ¡FALSA! Contraejemplo: Sea A = [0, 1[. A no tiene máximo, pero sup A = 1.

24. Existe una sucesión acotada de números reales $\{x_n\}$ que verifica que $|x_n - x_m| \ge 10^{-10}$ siempre que $n \ne m$.

RESPUESTA: ¡FALSA! Sea $\{x_n\}$ acotada. Por el *Teorema de Bolzano-Weierstrass* tiene una parcial $\{x_{\sigma(n)}\} \to x$ que cumple la condición de Cauchy. Dado $\epsilon = 10^{-10}, \exists n_0 \in \mathbb{N} : n \geq n_0 \Rightarrow |x_n - x_{n_0}| < 10^{-10}$. Se llega así a una contradicción.

25. Toda serie convergente es una sucesión acotada.

RESPUESTA: ¡VERDADERA!

Se verifica si la serie es de términos positivos, ya que al ser una sucesión creciente, si converge lo hará al supremo. Asimismo estará minorada por el 0.

26. Si $\{x_n\}$ es una sucesión acotada de números reales, entonces $\{x_n\}$ tiene la siguiente propiedad: para cada $\delta > 0$, pueden encontrarse $m, n \in \mathbb{N}$, con $n \neq m$, tales que $|x_n - x_m| < \delta$.

RESPUESTA: ¡VERDADERA!

Sea $\{x_n\}$ acotada. Si dado $\delta = 1, m, n \in \mathbb{N}$ tal que $m \neq n$ y $|x_n - x_m| < \delta = 1$, significaría que todos los términos de la sucesión están separados del resto por una unidad. Al haber infinitos términos, la sucesión no podría estar acotada. Esto sería válido para cualquier $\delta > 0$.

27. Una sucesión que no tiene ninguna sucesión parcial convergente tampoco tiene ninguna sucesión parcial acotada.

RESPUESTA: ¡VERDADERA!

Sea $\{x_n\}$ una sucesión que no tiene ninguna parcial convergente. Si tuviera una parcial acotada, dicha parcial tendría una parcial convergente por el *Teorema de Bolzano-Weierstrass*, que sería también parcial de $\{x_n\}$, lo cual es una contradicción.

28. Sea A un conjunto de números reales no vacío y mayorado y $\beta = \sup A$. Dado $\epsilon > 0$ existe algún $a \in A$ tal que $\beta - \epsilon < a < \beta$.

RESPUESTA: ¡FALSA! Contraejemplo:

Sea el conjunto $A = \{0, 2\}$. Tenemos que sup A = 2. Dado $\epsilon = 1$, no existe $a \in A$ tal que 2 - 1 < a < 2.

29. Toda sucesión tiene una sucesión parcial convergente o alguna sucesión parcial divergente.

RESPUESTA: ¡VERDADERA! Si la sucesión está acotada, por el *Teorema de Bolzano-Weierstrass*, tendrá una parcial convergente. Si no está acotada podrá construirse una sucesión parcial divergente.

30. Una sucesión no acotada no puede tener una sucesión parcial convergente.

RESPUESTA: ¡FALSA! Contraejemplo: Definamos x_n :

$$\{x_{2n}\} = \{1\} \to 1$$

 $\{x_{2n-1}\} = \{n\} \to +\infty$

31. Si $f: \mathbb{R} \to \mathbb{R}$ es continua y verifica que $f(\mathbb{R}) \subset \mathbb{Q}$, entonces f es constante.

RESPUESTA: ¡VERDADERA!

Sea $f: \mathbb{R} \to \mathbb{R}$ continua. Por el *Teorema del Valor Intermedio*, por ser R un intervalo, $f(\mathbb{R})$ debe ser un intervalo, es decir, si f no se es constante y toma valores $x,y\in\mathbb{Q}$, deberá también tomar todos los valores del intervalo]x,y[, en cuál habrá números irracionales por la densidad de $\mathbb{R}\setminus\mathbb{Q}$ en \mathbb{R} . En este caso no se tendría $f(\mathbb{R})\subset\mathbb{Q}$. La única alternativa es que f tome el valor de un sólo racional, es decir, que f sea constante.

32. Si $x_n \leq y_n$ para todo $n \in \mathbb{N}$ y $\sum_{n \geq 1} y_n$ es convergente, entonces $\sum_{n \geq 1} x_n$ también es convergente.

RESPUESTA: ¡FALSA!

Sean $\sum_{n\geq 1} x_n$ y $\sum_{n\geq 1} y_n$ series de términos positivos. Tenemos que una serie de términos positivos converge sí y sólo si está mayorada. Así, si $\sum_{n\geq 1} y_n$ converge, estará mayorada, y por ser $x_n\leq y_n, \forall n\in\mathbb{N}, \sum_{n\geq 1} x_n$ estará mayorada y convergerá.