Exam

(Time 24 hours)

For the following reaction scheme

X₁
$$\xrightarrow{K_{\alpha}S}$$
 \times_{2} $\downarrow \alpha_{1}$ $\downarrow \alpha_{1}$ $\downarrow \beta_{1}$

$$X_1 + X_2 = X_T$$

1. Write down the differential equation and calculate the steady state.

2. Write down the power spectrum of ΔX_1 , ΔX_2 and ΔY .

3. Calculate the variance $\sigma^2 = \langle \Delta \gamma^2 \rangle$.

4. Write down the expression for fisher information.

$$\left\langle \frac{\partial}{\partial S} [\log(Y:S)]^2 \right\rangle \simeq 1/\sigma^2 (\frac{\partial}{\partial S} \left\langle Y \right\rangle)^2$$

5. Write down the expression for entropy production rate.

6. Perform the Gillespie simulation with k_a =1, k_d =1, α_1 = 0.5, α_0 = 0.05, β_1 = 0.05, β_0 = 0.01 $X_1 + X_2 = X_T$, by vary S from 1 to 10.