Συναρτήσεις

Εφαρμογές Κυρτότητας

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

5 Ιουλίου 2025 — Έκδοση: 2.6

- **1.** Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - Να δείξετε ότι η f είναι κοίλη.

- **1.** Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - Να δείξετε ότι η f είναι κοίλη.
 - Nα λύσετε την ανίσωση $f'(x^2+1) < 2$

- **1.** Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - Να δείξετε ότι η f είναι κοίλη.
 - Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
 - Να αποδείξετε ότι για κάθε $x_0 > 0$, η C_f και η εφαπτομένη της στο $\mathbf{M}(x_0,f(x_0))$ έχουν ένα μόνο κοινό σημείο

- **1.** Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - ① Να δείξετε ότι η f είναι κοίλη.
 - $oldsymbol{2}$ Να λύσετε την ανίσωση $f'(x^2+1) < 2$
 - Nα αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $\mathrm{M}(x_0,f(x_0))$ έχουν ένα μόνο κοινό σημείο
 - $oldsymbol{4}$ Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 2/13

- **1.** Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - ① Να δείξετε ότι η f είναι κοίλη.
 - $m extbf{Q}$ Να λύσετε την ανίσωση $f'(x^2+1) < 2$
 - f 3 Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο ${
 m M}(x_0,f(x_0))$ έχουν ένα μόνο κοινό σημείο
 - $oldsymbol{\Phi}$ Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
 - - $oldsymbol{\mathfrak{D}}$ Να λύσετε την εξίσωση $\dfrac{3+f(x)}{x}=2$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 2/13

- 1. Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - Να δείξετε ότι η f είναι κοίλη.
 - Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
 - Να αποδείξετε ότι για κάθε $x_0 > 0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
 - Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
 - 5 f 0 Να δείξετε ότι $f(x)-2x\leq -3$, για κάθε x>0

- 1. Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - ① Να δείξετε ότι η f είναι κοίλη.
 - $oldsymbol{2}$ Να λύσετε την ανίσωση $f'(x^2+1) < 2$
 - ${f 3}$ Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο ${f M}(x_0,f(x_0))$ έχουν ένα μόνο κοινό σημείο
 - $oldsymbol{\Phi}$ Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
 - - $2 \ \, \text{Nα λύσετε την εξίσωση} \, \, \frac{3+f(x)}{x} = 2$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 2/13

- 1. Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - Nα δείξετε ότι η f είναι κοίλη.
 - Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
 - Να αποδείξετε ότι για κάθε $x_0 > 0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
 - Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
 - 5 Να δείξετε ότι $f(x) - 2x \le -3$, για κάθε x > 0
 - Να λύσετε την εξίσωση $\frac{3+f(x)}{x}=2$
 - 6

- 1. Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - Nα δείξετε ότι η f είναι κοίλη.
 - Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
 - Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
 - Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
 - 5 Να δείξετε ότι $f(x) - 2x \le -3$, για κάθε x > 0
 - Να λύσετε την εξίσωση $\frac{3+f(x)}{x}=2$
 - **1** Να δείξετε ότι $f(x^2+1)+1 < 2x^2$, για κάθε $x \in \mathbb{R}$ 6

- 1. Δίνεται η συνάρτηση $f(x) = \ln x \frac{1}{x}$
 - Nα δείξετε ότι η f είναι κοίλη.
 - Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
 - Να αποδείξετε ότι για κάθε $x_0 > 0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
 - Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
 - 5 Να δείξετε ότι $f(x) - 2x \le -3$, για κάθε x > 0
 - Να λύσετε την εξίσωση $\frac{3+f(x)}{x}=2$
 - 1 Να δείξετε ότι $f(x^2+1)+1 < 2x^2$, για κάθε $x \in \mathbb{R}$ 6
 - Να λύσετε την εξίσωση $f(e^x) 2e^x = -3$

- **2.** Δίνεται η συνάρτηση $f(x) = e^x + x^2$.
 - Να δείξετε ότι η f είναι κυρτή.

- **2.** Δίνεται η συνάρτηση $f(x) = e^x + x^2$.
 - Να δείξετε ότι η f είναι κυρτή.
 - Να λύσετε τις εξισώσεις:

- **2.** Δίνεται η συνάρτηση $f(x) = e^x + x^2$.
 - Να δείξετε ότι η f είναι κυρτή.
 - Να λύσετε τις εξισώσεις:
 - **1** f'(f(x)-x)=2+e

- **2.** Δίνεται η συνάρτηση $f(x) = e^x + x^2$.
 - Να δείξετε ότι η f είναι κυρτή.
 - Να λύσετε τις εξισώσεις:
 - **1** f'(f(x)-x)=2+e
 - $e^{\eta\mu x} = \eta\mu x + \sigma v \nu^2 x$

- **2.** Δίνεται η συνάρτηση $f(x) = e^x + x^2$.
 - Nα δείξετε ότι η f είναι κυρτή.
 - Να λύσετε τις εξισώσεις:

$$f'(f(x) - x) = 2 + e$$

$$e^{\eta\mu x} = \eta\mu x + \sigma v \nu^2 x$$

Να λύσετε τις ανισώσεις:

$$e^x(x^2+x-1) > -1$$

$$e^{x-1} - 3x + 1 > 0$$

- **2.** Δίνεται η συνάρτηση $f(x) = e^x + x^2$.
 - Nα δείξετε ότι η f είναι κυρτή.
 - Να λύσετε τις εξισώσεις:

$$f'(f(x) - x) = 2 + e$$

$$e^{\eta \mu x} = \eta \mu x + \sigma v \nu^2 x$$

Να λύσετε τις ανισώσεις:

$$e^x(x^2+x-1) > -1$$

$$e^{x-1} - 3x + 1 > 0$$

- **2.** Δίνεται η συνάρτηση $f(x) = e^x + x^2$.
 - Nα δείξετε ότι η f είναι κυρτή.
 - Να λύσετε τις εξισώσεις:
 - **1** f'(f(x) x) = 2 + e
 - $e^{\eta\mu x} = \eta\mu x + \sigma v \nu^2 x$
 - Να λύσετε τις ανισώσεις:
 - $e^x(x^2+x-1) > -1$
 - $e^{x-1} 3x + 1 > 0$

- **3.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, γνησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.
 - Nα λύσετε την εξίσωση $f(x) = 2 + x x^2$

- **3.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, γνησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.
 - Να λύσετε την εξίσωση $f(x) = 2 + x x^2$
 - Να υπολογίσετε το $\lim_{x \to 0} \frac{1}{f(x) (x+2)}$

- **3.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, γνησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.
 - Να λύσετε την εξίσωση $f(x) = 2 + x x^2$
 - Να υπολογίσετε το $\lim_{x\to 0} \frac{1}{f(x)-(x+2)}$
 - Να λύσετε την εξίσωση $f\left(f(x-2)-x\right)=2$

- **3.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, γνησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.
 - Να λύσετε την εξίσωση $f(x) = 2 + x x^2$
 - Να υπολογίσετε το $\lim_{x\to 0} \frac{1}{f(x)-(x+2)}$
 - Να λύσετε την εξίσωση $f\left(f(x-2)-x\right)=2$
 - Να δείξετε ότι η f αντιστρέφεται και $f^{-1}(x) \leq x 2$, για κάθε $x \in \mathbb{R}$

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
 - Να λύσετε την ανίσωση $f'(x^2+2)>f'(2x^2+1)$

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
 - Να λύσετε την ανίσωση $f'(x^2+2)>f'(2x^2+1)$
 - Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
 - Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
 - Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1
 - Να λύσετε:

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
 - Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
 - Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1
 - Να λύσετε:
 - **1** την εξίσωση f(x) = 3 5x

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
 - Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
 - Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1
 - Να λύσετε:
 - **1** την εξίσωση f(x) = 3 5x
 - **2** την ανίσωση 3 f(x) < 5x

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
 - Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
 - Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1
 - Να λύσετε:
 - **1** την εξίσωση f(x) = 3 5x
 - **2** την ανίσωση 3 f(x) < 5x
 - Nα δείξετε ότι η $f(e^x x) + 5e^x \ge 5x + 3$

- **4.** Δίνεται η συνάρτηση $f(x) = 3x^5 5x^4$.
 - Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
 - Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
 - Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1
 - Να λύσετε:
 - **1** την εξίσωση f(x) = 3 5x
 - **2** την ανίσωση 3 f(x) < 5x
 - Nα δείξετε ότι η $f(e^x x) + 5e^x > 5x + 3$
 - Για κάθε $x \geq 1$, να δείξετε ότι $xf\left(\frac{1}{x}\right) \leq 3x 5$

- **5.** Δίνεται η συνάρτηση $f(x)=arepsilon \varphi x$, $x\in A=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
 - Να μελετήσετε τη συνάρτηση f ως προς την κυρτότητα και τα σημεία καμπής

- **5.** Δίνεται η συνάρτηση $f(x)=arepsilon \varphi x$, $x\in A=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
 - Να μελετήσετε τη συνάρτηση f ως προς την κυρτότητα και τα σημεία καμπής
 - Να δείξετε ότι $\eta \mu x < x < \varepsilon \varphi x$, για κάθε $x \in \left(0, \frac{\pi}{2}\right)$

- **5.** Δίνεται η συνάρτηση $f(x)=arepsilon \varphi x$, $x\in A=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
 - Να μελετήσετε τη συνάρτηση f ως προς την κυρτότητα και τα σημεία καμπής
 - Να δείξετε ότι $\eta \mu x < x < \varepsilon \varphi x$, για κάθε $x \in \left(0, \frac{\pi}{2}\right)$
 - 3 Να βρείτε το $\lim_{x\to 0} \frac{\ln x}{\varepsilon \varphi x x}$

- **6.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1)=1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.
 - Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:

- **6.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1)=1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.
 - Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:
 - Να υπολογίσετε τα όρια

- **6.** Εστω $f:\mathbb{R}\to\mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1)=1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x)\neq 0$, για κάθε $x\in\mathbb{R}$.
 - Φ Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Αν f(1) = 1 και f'(1) = 1, τότε:
 - ② Να υπολογίσετε τα όρια
 - $\lim_{x \to 1} \frac{\ln(x-1)}{f'(x) f'(x^2)}$
 - $\lim_{x \to +\infty} f(x)$
 - 3 Να λύσετε την εξίσωση $f(x) + f'(x-1) = f'(\ln x) + x$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 7/13

- **6.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1) = 1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.
 - ① Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Αν f(1) = 1 και f'(1) = 1, τότε:
 - ② Να υπολογίσετε τα όρια

 - $\lim_{x \to +\infty} f(x)$
 - 3 Να λύσετε την εξίσωση $f(x) + f'(x 1) = f'(\ln x) + x$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 7/13

- **6.** Εστω $f:\mathbb{R}\to\mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1)=1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x)\neq 0$, για κάθε $x\in\mathbb{R}$.
 - **1** Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:
 - ② Να υπολογίσετε τα όρια
 - $\lim_{x \to 1} \frac{\ln(x-1)}{f'(x) f'(x^2)}$
 - $\lim_{x \to +\infty} f(x)$
 - 3 Να λύσετε την εξίσωση $f(x) + f'(x-1) = f'(\ln x) + x$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 7/13

- **7.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 1, η οποία είναι παραγωγίσιμη, κυρτή και ισχύει $f(x) \ge 1$, για κάθε $x \in \mathbb{R}$.
 - Να μελετήσετε την f ως προς την μονοτονία Αν επιπλέον f(1) = f'(1) = 2, τότε:

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 8/13

- **7.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 1, η οποία είναι παραγωγίσιμη, κυρτή και ισχύει $f(x) \ge 1$, για κάθε $x \in \mathbb{R}$.
 - ① Να μελετήσετε την f ως προς την μονοτονία Αν επιπλέον f(1) = f'(1) = 2, τότε:
 - ② Να λύσετε την εξίσωση f(x) + f(x+1) = 2x + 3
 - ③ Να βρείτε το $\lim_{x\to 1} \frac{1}{f(f(x)) f(2x)}$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 8/13

- **7.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 1, η οποία είναι παραγωγίσιμη, κυρτή και ισχύει $f(x) \ge 1$, για κάθε $x \in \mathbb{R}$.
 - ① Να μελετήσετε την f ως προς την μονοτονία Αν επιπλέον f(1) = f'(1) = 2, τότε:
 - $\mathbf{2}$ Να λύσετε την εξίσωση f(x)+f(x+1)=2x+3
 - Na breite to $\lim_{x \to 1} \frac{1}{f\left(f(x)\right) - f(2x)}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 8/13

8. Εστω $f:\mathbb{R}\to\mathbb{R}$ μια συνάρτηση η οποία είναι κυρτή. Να δείξετε ότι

$$f(e^x)-f(x)>(e^x-x)f'(x)$$
, για κάθε $x\in\mathbb{R}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 9/13

- **9.** Εστω $f:[0,1]\to\mathbb{R}$ μια παραγωγίσιμη συνάρτηση με f(0)=f(1)=0 η οποία είναι κυρτή. Να δείξετε ότι:
 - Υπάρχει μοναδικό $\xi \in (0,1)$ τέτοιο ώστε $f'(\xi) = 0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 10/13

- **9.** Εστω $f:[0,1]\to\mathbb{R}$ μια παραγωγίσιμη συνάρτηση με f(0)=f(1)=0 η οποία είναι κυρτή. Να δείξετε ότι:
 - Υπάρχει μοναδικό $\xi \in (0,1)$ τέτοιο ώστε $f'(\xi) = 0$
 - ② f(x) < 0, για κάθε $x \in (0,1)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 10/13 **10.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 0 η οποία είναι παραγωγίσιμη με f'(0) = 1 και κυρτή. Αν $\alpha > 1$, να δείξετε ότι η εξίσωση

$$\frac{f'(\alpha) - 1}{x} + \frac{f(2\alpha) - \alpha}{x - 1} + \frac{f(\alpha^2) - \alpha}{x - 2} = 0$$

έχει ακριβώς δύο ρίζες στο διάστημα (0,2).

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 11/13 **11.** Εστω $f:(0,+\infty)\to\mathbb{R}$ μια συνάρτηση η οποία είναι παραγωγίσιμη, γνησίως αύξουσα και κοίλη

$$-1 < f(1) < 1 + \sigma v \nu 1 - \sigma v \nu 2$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 12/13 **11.** Εστω $f:(0,+\infty)\to\mathbb{R}$ μια συνάρτηση η οποία είναι παραγωγίσιμη, γνησίως αύξουσα και κοίλη

 \mathbf{Q} Αν f(2)=1 και f'(1)=2, να δείξετε ότι

$$-1 < f(1) < 1 + \sigma v \nu 1 - \sigma v \nu 2$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 12/13 **12.** Εστω $f:[0,+\infty]\to\mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- ① f(x+1) f(x) > f'(x), για κάθε x > 0

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2+\alpha}$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 13/13 **12.** Εστω $f:[0,+\infty]\to\mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- ① f(x+1) f(x) > f'(x), για κάθε x > 0
- Η συνάρτηση g(x) = (x+1)f(x) xf(x+1) x + 2, $x \ge 0$ είναι ννησίως φθίνουσα

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2+\alpha}$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 13/13

- **12.** Εστω $f:[0,+\infty]\to\mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:

 - ② Η συνάρτηση g(x)=(x+1)f(x)-xf(x+1)-x+2, $x\geq 0$ είναι γνησίως φθίνουσα

 - 4 Υπάρχει μοναδικό $\alpha \in (0,2)$ τέτοιο ώστε

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2+\alpha}$$

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 13/13

- **12.** Εστω $f:[0,+\infty] \to \mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:
 - ① f(x+1) f(x) > f'(x), για κάθε x > 0
 - ② Η συνάρτηση q(x) = (x+1)f(x) xf(x+1) x + 2, x > 0 είναι ννησίως φθίνουσα

 - Υπάρχει μοναδικό $\alpha \in (0,2)$ τέτοιο ώστε

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2+\alpha}$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 13/13