NTT Data

Predicting costumer complaints in an energy company

Laura Giuliano

Thesis Advisor Anagnostopoulos Aristidis

External Advisor Olivieri Antonio

Agenda

Business challenge

Even if you have a good business, customers complaints are unavoidable

Laura Giuliano 23/01/2020

Business challenge

Even if you have a good business, customers complaints are unavoidable

Business challenge

Even if you have a good business, customers complaints are unavoidable

Understanding customers needs in order to prevent complaints

Reducing by 12k customers complaints in a year

Satisfaction

Interactions between customers and company

Socio-Demographic information

January 2019 - June 2019

Data: target

Time window constraint

Data: target

Customer base evolution

Data: target

Costumer base evolution

2146

June

Machine learning process

Preprocessing

Cleaning data

Undersampling

Feature selection

Feature selection

Reducing number of fields in the dataset

April

Models	LASSO	RF	GBT
Lift	21.8	32.53	24.2%
service5k	7.8%	15.9%	13.26%
customer5k	22.6%	33.9%	20.3%

May

Models	LASSO	RF	GBT
Lift	30.16	38.6	24.4
service5k	9.3%	14.2%	8.7%
customer5k	19.4%	22.8%	10%

Laura Giuliano 23/01/2020 10

April

Models	LASSO	RF	GBT
Lift	21.8	32.53	24.2%
service5k	7.8%	15.9%	13.26%
customer5k	22.6%	33.9%	20.3%

May

Models	LASSO	RF	GBT
Lift	30.16	38.6	24.4
service5k	9.3%	14.2%	8.7%
customer5k	19.4%	22.8%	10%

Laura Giuliano 23/01/2020 10

April

Models	LASSO	RF	GBT
Lift	21.8	32.53	24.2%
service5k	7.8%	15.9%	13.26%
customer5k	22.6%	33.9%	20.3%

May

Models	LASSO	RF	GBT
Lift	30.16	38.6	24.4
service5k	9.3%	14.2%	8.7%
customer5k	19.4%	22.8%	10%

Random Forest model

April

Models	LASSO	RF	GBT
Lift	21.8	32.53	24.2%
service5k	7.8%	15.9%	13.26%
customer5k	22.6%	33.9%	20.3%

May

Models	LASSO	RF	GBT
Lift	30.16	38.6	24.4
service5k	9.3%	14.2%	8.7%
customer5k	19.4%	22.8%	10%

Random Forest model

Propensity of complain

April

Models	LASSO	RF	GBT
Lift	21.8	32.53	24.2%
service5k	7.8%	15.9%	13.26%
customer5k	22.6%	33.9%	20.3%

May

Models	LASSO	RF	GBT
Lift	30.16	38.6	24.4
service5k	9.3%	14.2%	8.7%
customer5k	19.4%	22.8%	10%

Random Forest model

Propensity of complain

Understanding reasons

Laura Giuliano 23/01/2020 10

Example of May validation's result

Example of June validation's result

Results: Combined May

Results: Combined June

Results: strategy to combine results

Process to find best Threshold for B2C & B2B applied to April

Results: strategy to combine results

Definition of combined list applied to May and June

The model was deployed in September and gained 12% of precision

The model was deployed in September and gained 12% of precision

• 11% of benefits in term of costs

The model was deployed in September and gained 12% of precision

• 11% of benefits in term of costs

Developing of a model to predict reasons of claims

Thank you for your attention

Predicting costumer coplaints in an energy company

Laura Giuliano