POWERED BY Dialog

Porous film or sheet useful for clothes - prepd. by inflation-moulding of polyolefin resin and drawing uniaxially.

Patent Assignee: MITSUBISHI CHEM CORP

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
JP 7214685	A	19950815	JP 9410398	A	19940201	199541	В
JP 3507114	B2	20040315	JP 9410398	A	19940201	200419	

Priority Applications (Number Kind Date): JP 9410398 A (19940201)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
JP 7214685	A		8	B29D-007/01	
JP 3507114	B2		8	B29C-055/28	Previous Publ. patent JP 7214685

Abstract:

JP 7214685 A

A porous sheet or film is prepd. by inflation-moulding a compsn., and drawing uniaxially in the take-up direction. The compsn. comprises 100 pts. wt. of a polyolefin resin (A) with a density of 0.930 g/cub.cm or lower and a melt index of 2 g/10 min. or lower, 100-400 pts. wt. of a filler (B), 0.1-100 pts. wt. of a plasticiser (C) of formula (1), and 0.00021-0.1 pts. wt. of a radical generator (D). Formula (1)-P Ar = carboxylic acid residue or alcohol residue contg. aromatic gp.; B = multi-valent carboxylic acid residue or multi-valent alcohol residue which are at least two valent; R = aliphatic carboxylic acid residue or aliphatic alcohol residue; n = 1-8 number; m = 0-7 number. The bond between Ar and B and that between B and R are ester bonds. That is, in the case of Ar is a carboxylic acid residue, B is a multi-valent alcohol residue, and R is an aliphatic carboxylic acid residue. In the case of Ar is an alcohol residue, B is a multi-valent carboxylic acid residue, and R is an aliphatic alcohol residue. Also claimed is prodn. of the sheet or film. The compsn., after or while it is subjected to the conditions in which the radical generator is decomposed, is inflation moulded at a blow up ratio of 2-8. The resultant sheet or film is uni-axially drawn at a draw ratio of 1.2-8 in the take-up direction.

USE - The sheet or film is useful for one-use diapers, rain coats, and one-use sheets.

ADVANTAGE - The sheet or film has a high tearing resistance, a high tensile strength at breaking, and less irregularities in drawing.

Dwg.0/0

Derwent World Patents Index

© 2005 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 10415362

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-214685

(43)公開日 平成7年(1995)8月15日

(51) Int.Cl.⁶

識別記号 庁内整理番号

2126-4F

FΙ

技術表示箇所

B 2 9 D 7/01 # B 2 9 K 23:00

審査請求 未請求 請求項の数5 OL (全 8 頁)

(21)出願番号

(22)出顧日

特願平6-10398

平成6年(1994)2月1日

(71)出願人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72) 発明者 藤井 敏雄

岡山県倉敷市潮通三丁目10番地 三菱化成

株式会社水島工場内

(72)発明者 川合 豊

岡山県倉敷市潮通三丁目10番地 三菱化成

株式会社水島工場内

(72)発明者 山寺 誠

岡山県倉敷市潮通三丁目10番地 三菱化成

株式会社水島工場内

(74)代理人 弁理士 長谷川 嗅司

(54) 【発明の名称】 多孔性フィルム又はシート及びその製造方法

(57)【要約】

【目的】 通気性はあるが水滴を通さない微細孔を有す るフィルムであって引裂強度に優れ、厚さムラのないフ ィルムを提供することを目的とする。

【構成】 特定のポリオレフィンに充填剤と特定の可塑 剤とラジカル発生剤を配合し、特定の条件下に成形する もの。

【特許請求の範囲】

【請求項1】 密度0.930g/cm³以下、メルト インデックス2g/10分以下のポリオレフィン樹脂 (A) 100重盘部、充填剤(B) 100~400重量 $(Ar)_n - B - (R)_m$

(式中、Arは芳香族基を有するカルボン酸残基又はア ルコール残基を示し、Bは二価以上の多価カルボン酸残 基又は多価アルコール残基を示し、Rは脂肪族カルボン 酸残基又は脂肪族アルコール残基を示し、nは1~8及 びmは0~7の数字を示す。但し、ArとB及びBとR の間の結合は、エステル結合を示す。すなわち、Arが カルボン酸残基の場合、Bは多価アルコール残基であ り、且つRは脂肪族カルボン酸残基である。また、Ar がアルコール残基の場合、Bは多価カルボン酸残基であ り、且つRは脂肪族アルコール残基である。)

引張破断点強度〔g/cm〕≧5500×フィルム厚み〔mm〕 … (2)

を満足し、且つ、引裂強度が下記(3)式

引裂強度〔g/枚〕≥1500×フィルム厚み〔mm〕

を満足することを特徴とする請求項1記載の多孔性フィ

【請求項3】 ラジカル発生剤 (D) の半減期1分とな る分解温度が130~300℃であることを特徴とする 請求項1又は2に記載の多孔性フィルム又はシート。

【請求項4】 ラジカル発生剤 (D) が、2, 5ージメ チルー2, 5ービス (tーブチルペルオキシ) -3-へ キシンであることを特徴とする請求項1乃至3のいずれ かに記載の多孔性フィルム又はシート。

【請求項5】 密度0.930g/cm³以下、メルト インデックス2g/10分以下のポリオレフィン樹脂 (A) 100重量部、充填剤(B) 100~400重量 部、請求項1の一般式(1)で示される可塑剤(C) 0.1~100重量部、及びラジカル発生剤(D)0. 0001-0.1重量部、からなる組成物を、ラジカル 発生剤が分解する条件を経過させた後、またはさせなが らブローアップ比2~8でインフレーション成形し、得 られたフィルム又はシートをその引き取り方向に延伸倍 率1.2~8倍として一軸延伸することを特徴とする多 孔性フィルム又はシートの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、多孔性フィルム又はシ ート及びその製造方法に関する。詳しくは、ラジカル発 生剤による変性と可塑剤との相乗作用により、面強度及 び引裂き度が高く、しかもフィルムの延伸むらも無い、 多孔性フィルム又はシート及びそれを製造する方法に関 するものである。

[0002]

【従来の技術】近年、水滴は通さないが、水蒸気等の気 体を通過させる程度の微細孔を形成した多孔性の合成樹 脂フィルムが衣料分野や医療分野等で用いられるように 部、下記一般式(1)で示される可塑剤(C)0.1~ 100重量部、

【数1】

(1)

及びラジカル発生剤(D)0.0001-0.1重量 部、からなる組成物をインフレーション成形し、得られ たフィルム又はシートをその引き取り方向に一軸延伸し て得られることを特徴とする多孔性フィルム又はシー ト。

【請求項2】 厚さが90 μ以下の多孔性フィルムであ って、その縦方向及び横方向の剛軟度が共に50mm以 下で、透湿度が1500g/m²・24hr以上で、引 張破断点強度が下記(2)式

【数2】

【数3】 ... (3)

なってきている。これは、ムレを防止し、かつ液体を外 に漏らさないと云う作用を有し、具体的には、使いすて オムツ、レインコート、使いすてシーツ等に用いられる ことが多い。

【0003】この通気性を有する多孔性フィルム又はシ ートを製造する代表的方法は、合成樹脂に無機充填剤、 例えば炭酸カルシウム、タルク、クレー等を混入し、フ ィルム化した後延伸し、フィルムに細かい亀裂を生ぜし める方法が挙げられる。このようにして得られる多孔性 フィルムやシートは、異方性、特に縦方向 (延伸方向) と横方向の引っ張り強度のバランス及び面強度などの物 性に問題があった。

【0004】本発明者らの一部は、先に、特定量の線状 ポリエチレン、分岐状低密度ポリエチレン、ラジカル発 生剤及び充填剤から成る組成物を成形、延伸することに よって上記問題の解決された多孔性フィルム又はシート を製造する方法を提案した(USP5, 015, 52 1)。

[0005]

【発明が解決しようとする課題】本発明者らは、更に引 裂強度、延伸ムラ、フィルム厚みの不均一性が改善され たフィルムやシートを提供すべく鋭意検討した。

[0006]

【課題を解決するための手段】本発明者等は、上記の課 題を解決するため、組成、成形方法等につき種々検討を 行なった結果、特殊の可塑剤を添加すること及びラジカ ル発生剤を用いることにより課題を解決し得ることを見 出し、本発明を完成した。すなわち、本発明の要旨は、 密度0.930g/cm³以下、メルトインデックス2 g/10分以下のポリオレフィン樹脂(A)100重量 部、充填剤(B)100~400重量部、下記一般式

(1) で示される可塑剤 (C) 0. 1~100重量部、

 $(Ar)_n - B - (R)_m$

【0008】(式中、Arは芳香族基を有するカルボン酸残基又はアルコール残基を示し、Bは二価以上の多価カルボン酸残基又は多価アルコール残基を示し、Rは脂肪族カルボン酸残基又は脂肪族アルコール残基を示し、Rは脂肪族カルボン酸残基では1~8及び配は0~7の数字を示す。但し、ArとB及びBとRの間の結合は、エステル結合を示す。即ち、Arがカルボン酸残基の場合、Bは多価アルコール残基であり、且つRは脂肪族カルボン酸残基である。また、Arがアルコール残基の場合、Bは多価カルボン酸残基であり、且つRは脂肪族アルコール残基である。)及びラジカル発生剤(D)0.0001-0.1重量部、からなる組成物をインフレーション成形し、得られたフィルム又はシートをその引き取り方向に一軸延伸して得られることを特徴とする多孔性フィルム又はシート及びその製造方法に存する。

【0009】以下に本発明を更に詳細に説明する。ポリ オレフィン樹脂(A)はエチレンもしくはプロピレンの ホモポリマー又はエチレンもしくはプロピレンと他のコ モノマー (炭素数4以上の二重結合を分子内に1個以上 有する化合物)とのコポリマーからなる密度 (ρ) 0. 930g/cm³以下、メルトインデックス (MI) 2 g/10分以下のポリオレフィン系熱可塑性樹脂、たと えば低密度ポリエチレン、線状低密度ポリエチレン、エ チレン-酢酸ビニル共重合体、密度0.910以下の超 低密度ポリエチレン、ポリプロピレン、エチレンープロ ピレン共重合体、エチレンープロピレンージエン共重合 体、エチレンーメタアクリル酸エステルもしくはこれら の混合物等いずれでも良いが、好ましくは密度 0.91 -0. 95g/cm³ の線状低密度ポリエチレン50-100重量部と密度0.91g/cm³ 未満のエチレン -α-オレフィン共重合体50-0重量部とからなる密 度0.930g/cm³以下、特に、0.900~0. 925g/cm³、MI2以下、特に、0.1~1.5 のポリオレフィン系熱可塑性樹脂である。

【0010】線状低密度ポリエチレンは、エチレンと他のαーオレフィンとの共重合物であり、例えばエチレンと、その4~17重量%程度、好ましくは5~15重量%程度の1ープテン、1ーヘキセン、1ーオクテン、1ーデセン、4ーメチルー1ーペンテン等の他のαーオレフィンとを、中低圧法高密度ポリエチレン製造に用いられるチーグラー型触媒又はフィリップス型触媒を用いて共重合することにより製造される。

【0011】上記エチレンー α -オレフィン共重合体としては、通常、エチレンと炭素数3以上の α -オレフィンとの共重合体であって、その密度が0.91g/cm 3 未満のものが好ましく、より好ましくは0.85 \sim 0.90g/cm 3 のものである。エチレンと共重合させる炭素数3以上の α -オレフィンとしてはプロピレ

【数4】

(1)

ン、1-プテン、1-ペンテン、1-ヘキセン、4-メ チルー1ーペンテン等が挙げられ、これらと共に1.4 ーヘキサジエン、ジシクロペンタジエン、エチリデンノ ルボルネン等の非共役ジエンを使用することもできる。 【0012】上記エチレン-α-オレフィン共重合体 は、チーグラー型触媒、中でもオキシ三塩化バナジウ ム、四塩化バナジウム等のバナジウム化合物と有機アル ミニウム化合物とからなる触媒を用いて、エチレンとα ーオレフィンとを共重合させることにより製造すること ができ、共重合体中のエチレン含有量が40~90モル %の範囲であり、αーオレフィンの含有量が10~60 モル%の範囲であるのが望ましい。上記エチレンーαー オレフィン共重合体の市販品としては例えば、CdF Chimie E. P. 社のNORSOFLEX (FW 1600, FW1900, MW1920, SMW244 0, LW2220, LW2500, LW2550);日 本ユニカー社のフレックスレジン (DFDA1137, DFDA1138, DEFD1210, DEFD904 2) ; 三井石油化学社のタフマー (A4085, A40 90, P0180, P0480)、日本合成ゴム社のJ SR-EP (EP02P, EP07P, EP57P) & どが挙げられる。

【0013】単独もしくは混合物であるポリオレフィン 樹脂 (A) の密度 (ρ) は0.930 g/c m³ より大きいと、可塑剤とラジカル発生剤の相乗効果が小さく引裂強度が向上しない。またMIは2g/10分より大きいと、フィルムの引裂強度が低下し、また成形安定性が低下する。

【0014】本発明方法においてメルトインデックス (M1)とはJIS K 6760の引用規格であるJIS K 7210の表1の条件4に準拠して測定した値である。なお、ポリオレフィン樹脂には、常法に従い、熱安定剤、紫外線安定剤、顔料、帯電防止剤、蛍光剤等を添加しても差支えない。

【0015】次に成分(B)の充填剤としては、無機及び有機の充填剤が用いられる。無機充填剤としては、炭酸カルシウム、タルク、クレー、カオリン、シリカ、珪藻土、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸パリウム、硫酸カルシウム、水酸化アルミニウム、酸化亜鉛、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、アスベスト粉、ガラス粉、シラスバルーン、ゼオライト、珪酸白土等が使用され、特に炭酸カルシウム、タルク、クレー、シリカ、珪藻土、硫酸バリウム等が好適である。

【0016】有機充填剤としては、木粉、パルブ粉等の セルロース系粉末等が使用される。これらは単独で又は 混合して用いられる。充填剤の平均粒径としては、30 μ m以下のものが好ましく、 10μ m以下のものが更に好ましく、 $0.7\sim5\mu$ mのものが最も好ましい。粒径が大きすぎると延伸物の気孔の緻密性が悪くなり、又粒径が小さすぎると、樹脂への分散性が悪く、成形性も劣る。

【0017】充填剤の表面処理は、樹脂への分散性、更 (Ar)_n-B-(R)_m

【0019】(式中、Arは芳香族基を有するカルボン酸残基又はアルコール残基を示し、Bは二価以上の多価カルボン酸残基又は多価アルコール残基を示し、Rは脂肪族カルボン酸残基又は脂肪族アルコール残基を示し、nは1~8及びmは0~7の数字を示す。但し、ArとB及びBとRの間の結合は、エステル結合である。即ち、Arがカルボン酸残基の場合、Bは多価アルコール残基であり、且つRは脂肪族カルボン酸残基である。また、Arがアルコール残基の場合、Bは多価カルボン酸残基であり、且つRは脂肪族アルコール残基である。)で示されるエステル化合物が用いられる。

【0020】上記一般式(1)中のArはフェニル基、トリル基、キシリル基、ピフェニル基及びベンジル基等の芳香族基を持つ。該芳香族基を有するカルボン酸残基単位又はアルコール残基単位を導入するための原料化合物としては、具体的にはフェノール、エチルフェノール、ノニルフェノール、クレゾール(o, m, p)、キシレノール、ベンジルアルコール、安息香酸等が挙げられる。

【0021】また、一般式(1)中のBは二価以上の多 価カルボン酸残基又は多価アルコール残基を示す。二価 以上の多価カルボン酸残基単位を導入するための原料化 合物としては、フタル酸(その無水物も含む)、イソフ タル酸、テレフタル酸、トリメリット酸(その無水物も 含む)、ピロメリット酸(その無水物も含む)等の芳香 族カルボン酸、コハク酸(その無水物も含む)、グルタ ル酸、アジピン酸、アゼライン酸、セバシン酸等の脂肪 族カルボン酸、クエン酸、リンゴ酸等の混合カルボン酸 等が挙げられる。また、二価以上の多価アルコール残基 単位を導入するための原料化合物としては、例えば、エ チレングリコール、ジエチレングリコール、プロピレン グリコール (1, 2-, 1, 3-)、ジプロピレングリ コール、ブチレングリコール(1, 2-, 1, 3-, 1, 4-)、ペンタンジオール(1, 5-, 3-メチル キサンジオール、ネオペンチルグリコール、トリメチロ ールエタン、トリメチロールプロパン、ペンタエリスリ

【0022】さらに、上記一般式(1)中のRは脂肪族 カルボン酸残基、又は脂肪族アルコール残基を示す。該 脂肪族カルボン酸残基としては1価のものが好適に用い られ、該カルボン酸残基単位を導入するための原料化合

トール、ジペンタエリスリトール、トリペンタエリスリ

トール、グリセリン、ジグリセリン等が挙げられる。

には延伸性の点で、実施されている事が好ましく、脂肪 酸又はその金属塩での処理が好ましい結果を与える。さ らに本発明で用いられる特定の構造を有する成分(C) の可塑剤としては、一般式(1)

[0018]

【数5】

... (1)

物としては、例えば、酢酸、プロピオン酸、酪酸、吉草 酸、カプリル酸、エナント酸、カプロン酸、カプリン 酸、ウンデシル酸、ラウリル酸、トリデシル酸、ミリス チン酸、ペンタデシル酸、ステアリン酸等が挙げられ る。また、脂肪族アルコール残基としては1価のものが 好適に用いられ、該アルコール残基単位を導入するため の原料化合物としては、例えば、メチルアルコール、エ チルアルコール、プロピルアルコール、ブチルアルコー ル、イソブチルアルコール、アミルアルコール、ヘキシ ルアルコール、ヘプチルアルコール、オクチルアルコー ル、ノニルアルコール、デシルアルコール、ウンデシル アルコール、ラウリルアルコール、ミニスチルアルコー ル、セチルアルコール、ステアリルアルコール等があげ られる。さらに、2, 2, 4-トリメチルー1, 3-ペ ンタンジオールモノイソプチレート等の、二価以上のア ルコールであってもフリーな水酸基が1個で他はカルボ ン酸のエステル体となっているものも用いることができ

【0023】上記一般式(1)で示される化合物は単独でまたは二種以上を混合して使用することができる。次に、本発明に使用される成分(D)のラジカル発生剤としては、半減期1分となる分解温度が130~300℃、好ましくは、160~260℃の範囲のものが好ましく、例えばジクミルペルオキシド、2、5ージメチルー2、5ージ(tーブチルペルオキシ)へキサン、2、5ージメチルー2、5ービス(tーブチルペルオキシ)・3ーヘキシン、α、α′ービス(tーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド、ジーtーブチルペルオキシド・ジーtーブチルペルオキシト・コース、5ージスチルー2、5ービス(tーブチルペルオキシ)・3ーヘキシンが挙げられる。

【0024】本発明においては、ポリオレフィン樹脂 (A) 100重量部に対して充填剤(B) 100~40 0重量部、好ましくは、120~300重量部、特に、 130~250重量部、可塑剤(C) 1~100重量 部、好ましくは、2~50重量部、特に、2~30重量 部、及びラジカル発生剤(D) 0.0001~0.1重 量部、好ましくは、0.0005~0.07重量部、特に、0.005~0.05重量部の範囲で用いる。

【0025】充填剤(B)の割合が100重量部に満たないと、延伸したフィルムに気孔が充分形成されず、多

孔化度合が低くなる。また、充填剤の割合が400重量 部を超えると混練性、分散性、フィルム又はシート成形 性が劣り、更に延伸物の表面強度が低下する。可塑剤

(C) は0. 1重量部よりも少ないと、引裂強度向上の効果が無く、100重量部より多いと、混練性、分散性が悪化し、フィルム成形性の低下、延伸性を確保できない。

【0026】ラジカル発生剤(D)は0.0001~0.1重量部の範囲から選ばれ、この範囲よりも少ない場合は可塑剤との相乗効果による引裂強度の向上は得られず、またこの範囲よりも多い場合はメルトインデックスが低くなり過ぎて、フィルム成形時に膜切れが起りやすく、かつフィルム表面に肌荒れが生起するので好ましくない。

【0027】本発明においては、ポリオレフィン樹脂

(A)、充填剤(B)、可塑剤(C)、及びラジカル発 生剤(D)を、通常は、例えば次の1又は2の方法によ り前記の量比で混合し、次いで混練してペレット化した 後、インフレーション成形して未延伸フィルムとする。 方法1:ポリオレフィン樹脂、充填剤、可塑剤及び、ラ ジカル発生剤を混合し、押出機、バンバリーミキサー等 の混練機を用いて混練した後、ペレット化し、このペレ ットを用いてインフレーション成形する。方法2:ポリ オレフィン樹脂に、多量のラジカル発生剤0.3~2% (3000~2000ppm) 程度を配合し、ラジカ ル発生剤がポリオレフィンと殆ど反応しない温度で、し かもポリオレフィンの融点以上の温度において溶融混練 してペレット状としたマスターバッチを予め調製し、こ のマスターバッチを、ポリオレフィン樹脂、充填剤及び 可塑剤と混合し、混練した後ペレット化し、このペレッ トを用いてインフレーション成形する。

【0028】上記1又は2に示す方法に従って、ポリオレフィン樹脂をラジカル発生剤と共に加熱下(好ましくはラジカル発生剤の半減期が10分となる温度以上の温度で)混練処理すると、ラジカル発生剤による架橋反応が生起しポリオレフィンが分子間カップリングして高分子量成分が増加し、かつメルトインデックスの低下した変性ポリマーが得られる。この変性ポリマーは、変性前のポリマーに比べてインフレーション成形時に横方向の配向がかかり易く、このようにして得られたフィルムは、これを延伸処理した場合に、引張り強度及び衝撃強度が著しく向上する。

【0029】ポリオレフィン樹脂、可塑剤、ラジカル発生剤及び充填剤を混合するには、ドラム、タンプラー型混合機、リボンブレンダー、ヘンシェルミキサー、スーパーミキサー等が使用されるが、ヘンシェルミキサーのような高速撹拌型の混合機が望ましく、ポリエチレンは通常10~150メッシュ、特に20~60メッシュのパウダーの形態で供給するのが好ましい。得られた混合

物の混練は、例えばスクリュー押出機、二軸スクリュー 押出機、ミキシングロール、バンバリーミキサー、二軸 型混練機等の周知の混練装置を用いて実施される。

【0030】本発明においては、上記で得た配合物からインフレーション法により通常、厚さ10~200μの未延伸フィルム或いは厚さ200~400μの未延伸シートを成形し、次いでこの未延伸フィルム又はシートを延伸処理する。インフレーション成形は、通常、ブローアップ比(BUR)を2~8で成形する。

【0031】好ましくは、ブローアップ比3~6、フロストラインの高さをダイの環状スリットの直径の2~50倍にする。さらに好ましくはフロストラインの高さをダイの環状スリットの直径の5~20倍の範囲の条件下で行なわれる。ブローアップ比が上記範囲よりも低いとフィルムの引張り強度及び衝撃強度が低下し、上記範囲よりも高いとバブルの成形安定性が低下するので上記範囲で行うのがよい。また、フロストラインの高さが上記範囲よりも低いとフィルムの引張り強度が低下し、上記範囲よりも高いとバブルの成形安定性が低下するので上記範囲で行うのがよい。

【0032】インフレーション法により成形された未延伸フィルム又はシートは、次いで縦方向(フィルムの引き取り方向)に一軸延伸される。一軸延伸には通常ロール延伸法が採用されるが、チューブラー延伸法で一軸方向(引き取り方向)を強調させた形であってもよい。また、延伸処理は一段でも二段以上の多段でも差支えない。

【0033】延伸処理は樹脂組成物の融点より100℃低い温度から融点より20℃低い温度の範囲、特に樹脂組成物の融点より90℃低い温度から融点より50℃低い温度の範囲で実施するのが好ましく、この範囲より低い温度ではフィルムに延伸斑が発生し、またこの範囲より高い温度ではフィルムの多孔性が低下する傾向がある。

【0034】延伸倍率は1.2~8倍であることが好ましい。なお、一軸延伸後に熱処理すればフィルムの寸法精度を安定化することができ、また公知のコロナ処理、フレーム処理等の表面処理を施すこともできる。かくして得られる本発明の多孔性フィルム又はシートは、面強度及び引裂強度が高く、しかも、延伸ムラがないので好適に使用できる。特に、厚さが100μ以下、好ましくは、15~50μの多孔性フィルムの場合、縦方向及び横方向の剛軟度が共に50mm以下、好ましくは、10~35mmで、透湿度が1500g/m²・24hr以上、好ましくは、2500~5000g/m²・24hrで、引張破断点強度が下記(2)式

[0035]

【数6】

引張破断点強度〔g / c m〕≧5500×フィルム厚み〔m m〕…(2)

【0036】好ましくは(2')式、

[0037]

引張破断点強度 [g/cm] ≥ 6700×フィルム厚み [mm] … (2′)

【0038】を満足し、且つ、引裂強度が下記(3)式 【数8】

[0039]

引裂強度 [g/枚] ≥ 1500×フィルム厚み [mm] ... (3)

【0040】好ましくは(3')式

【数9】

【数7】

[0041]

引裂強度〔g/枚〕≥1800×フィルム厚み〔mm〕 ··· (3′)

【0042】を満足するようなフィルムが得られるので 好ましい。

[0043]

【実施例】以下本発明を実施例について更に詳細に説明 するが、本発明はその要旨を超えない限りこれ等の実施 例に限定されるものではない。実施例1

(1) 線状低密度ポリエチレン (メルトインデックス(MI): 1.0g/10分、流動比:19、密度

(ρ):0.921g/cm³、共重合成分:1-ブテン、共重合量:10重量%、融点:120℃)を40メッシュのパウダーに粉砕したものを80重量部とエチレンープロピレン共重合体(EPR、日本合成ゴム社製EP07P,M1:0.4g/10分、ρ:0.86g/cm³)を同じく40メッシュのパウダーに粉砕したものを20重量部とをヘンシェルミキサー中で撹拌混合した。得られた重合体組成物のM1は0.8g/10分密度は0.909g/cm³であった。次いでこれに下記表2に示す可塑剤Aを4重量部とラジカル発生剤2.5ージメチル-2,5ービス(tーブチルペルオキシ)ー3ーヘキシンを0.02重量部撹拌しながら添加混合した。

【0044】更に炭酸カルシウム(平均粒径1.2 μ m、脂肪酸処理)を200重量部添加し、撹拌混合した。かくして得られた混合物を、二軸混練機DSM-65(Double Screw Mixer、日本製鋼所(株)製)を用いて混練し、造粒した。これを40mm ϕ 押出機によりインフレーション成形し、厚さ70 μ mのフィルムに製膜した。押出条件は下記のとおり。

[0045]

【表1】

シリンダー温度:170−190−210−230℃

ヘッド、ダイス温度:200℃

ダイス直径:100mm 引取速度:8m/min ブローアップ比:3

フロストライン高さ:700mm

折り径: 471mm

【0046】かくして得られたフィルムを引取方向にスリットしたものをロール延伸機により一軸延伸を行った。延伸条件は下記のとおりとした。

[0047]

【表2】延伸温度:60℃

延伸倍率: 2. 0倍

延伸後速度:11.0m/min 延伸後のフィルム厚み:30μm

【0048】物性評価は下記によって行ない結果を表1 に示した。

1) 透湿度: ASTM E26-66 (E) に準ずる。

2) 引製強度: JIS P 8116に準じ、フィルムの引取方向を測定し、1枚当りの強度をgで求める。

3) 引張破断点強度: JIS L1085-1977に 準じ、10mm(幅)×100mm(長さ)の試験片を 用い、引張速度300mm/minで測定した。

[0049]

4) 成形性:目視により次の基準により判定した。

◎ : バブル安定、ダイライン無し

〇 : バブル安定、ダイライン有

△ : フィルム幅変動

× : 成形不可

【0050】5) 柔軟性: 手の感触で、次の基準により 判定した。

◎ : 極めて柔らかい

○ : 柔らかい△ : 少し硬い

× : 硬い

【0051】6)延伸性

◎ : 切断なし、均一延伸、延伸ムラなし○ : 切断なし、延伸ムラ、殆どなし△ : 切断なし、延伸ムラ、ややあり

× : 切断又は延伸ムラ大

【0052】実施例2

実施例1で用いた線状低密度ポリエチレン80重量部、エチレンープテンーラバー(三井石油化学社製、タファーA4085、MI:3.6g/10分、ρ:0.88g/cm³)(タフマーは商品名)を20重量部(これらを混合したときの組成物の密度は0.913g/cm³で、MIは1.3g/10分である。)、下記に示す可塑剤Aを6重量部、ラジカル発生剤として2、5ージメチルー2、5ービス(tーブチルペルオキシ)-3ーへキシンを0.03重量部、炭酸カルシウムを200重量部用いた。成形条件のうち、フロストライン高さを800mmとしたほかは実施例1と同様にしてフィルムを

得た。評価結果を表1に示す。

【0053】実施例3

実施例1で用いた線状低密度ポリエチレンを100重量部、可塑剤Aを4重量部、実施例1で用いたと同じラジカル発生剤0.03重量部、炭酸カルシウムを200重量部用いた。成形条件のうち、フロストライン高さを600mmとしたほかは実施例1と同様にしてフィルムを得た。評価結果を表1に示す。

【0054】実施例4

ラジカル発生剤の種類を2,5ージメチルー2,5ジ (tープチルペルオキシ)へキサンとしたほかは実施例 1と同様にしてフィルムを得た。評価結果を表1に示す。

[0055]

【表3】

		1788.83	ラジカル発生剤	7021	透 湿 度 引製強度 引張破断	引裂強度	引張城斯	\$ }}	***	CC/HH
	重)	(重量部)	(重量的)	Ê	(g/m²/24hr) (g/14x)	(\$/1\$)	(8/cm)	#OFF	ACIDITE SERVICE	±
実施例1	٧	(4)	2、5-ジメチルー2、5-ヒス 実施例1 A (4) (t-ブチルベルオキシ) -3-ヘキシン (0.02)	700	3 8 0 0	0 9	300	0	0	0
実施例2	V	A (6)	2, 5-ジメチル-2, 5-ビス (1-ブチルベルオキシ) -3-ヘキシン (0.03)	800	3100	9 9	310	0	0	0
実施例3	<	(4)	実施例3 A (4) (tープチルペルオキシ) - 3 - ヘキシン (0.03)	0 0 9	3200	5 6	318	0	0	0
芝加州 4	4	(4)	2, 5-ジメチル-2, 5-ジ 実施例4 A (4) (t-ブチルベルオキシ) ヘキサン (0.02)	8 0 0	3650	8 8	295	0	0	0

[0056]

【表 4】

[0057]

【発明の効果】本発明の多孔性フィルムは、特に引裂強度及び引張破断点強度に優れ、しかも延伸ムラが少な

の用途に有利に使用できる。