

Séries numériques et intégrales généralisées

FICHE 3 : SÉRIES NUMÉRIQUES

I. Calculs de sommes de séries

Exercice 1. Calculer les sommes des séries suivantes :

- a) $\sum_{n\geqslant 1} \left(\frac{-1}{2}\right)^n$.
- b) $\sum_{n\geqslant 0} (n+1)3^{-n}$. (On pourra d'abord calculer $(1-3^{-1})\sum_{n=0}^{N} (n+1)3^{-n}$).
- c) $\sum_{n\geqslant 0} \frac{n}{n^4+n^2+1}$. (On pourra écrire $\frac{n}{n^4+n^2+1}=\frac{1}{2}\left(\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}\right)$, puis $n^2+n+1=(n+1)^2-(n+1)+1)$.

Exercice 2.

- a) Montrer la convergence des deux séries $\sum_{k\geqslant 1}\left(\frac{1}{2k-1}-\frac{1}{2k}\right)$ et $\sum_{k\geqslant 1}\left(\frac{1}{2k+1}-\frac{1}{2k}\right)$ et calculer leur somme.
- b) Décomposer en éléments simples la fraction rationnelle $1/(4x^3 x)$.
- c) Montrer la convergence de la série $\sum_{k\geqslant 1}1/(4k^3-k)$ et calculer sa somme.

Exercice 3.

a) Appliquer la formule de Taylor-Lagrange à la fonction exponentielle entre 0 et 1, et en déduire que

$$e = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

b) Calculer les sommes des séries :

(i)
$$\sum_{n\geq 0} \frac{n^2}{n!}$$
 (ii)
$$\sum_{n\geq 0} \frac{n^3}{n!}$$

c) Montrer que le reste d'ordre n de la série exponentielle, $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$, est majoré par $\frac{1}{nn!}$. En déduire que e est un nombre irrationnel.

Exercice 4. En appliquant la formule de Taylor-Lagrange à la fonction logarithme, montrer que la série harmonique alternée

$$\sum_{n \ge 1} \frac{(-1)^{n-1}}{n}$$

est convergente de somme ln 2.

Exercice 5. Pour $x \in [0,1]$ et $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k}$.

- a) Donner une expression simple de $S'_n(x)$.
- b) En déduire que

$$S_n(x) = \ln(1+x) - \int_0^x \frac{(-t)^n}{1+t} dt.$$

c) Conclure que, pour tout $x \in [0, 1]$, on a

$$\sum_{k=1}^{+\infty} (-1)^{k-1} \frac{x^k}{k} = \ln(1+x).$$

d) Retrouver le résultat de l'exercice 3.

Exercice 6. Soit $(v_n)_{n\geqslant 0}$ une suite de réels convergent vers 0, et a,b,c trois réels tels que a+b+c=0. On considère la suite $(u_n)_{n\geqslant 0}$ définie par

$$u_n = av_{n+2} + bv_{n+1} + cv_n, \ (n \geqslant 0).$$

Démontrer que la série de terme général u_n converge et calculer sa somme.

Exercice 7. Montrer que la série $\sum_{k\geqslant 1} \frac{1}{1+2^2+\cdots+k^2}$ est convergente et calculer sa somme. *Indication :* On rappelle que $1^2 + \ldots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ et que la série $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n}$ a été étudiée dans l'exercice 3.

II. Séries numériques à termes positifs

Exercice 8. Etudier la nature des séries de terme général suivant :

a)
$$\frac{1}{n(n+1)} (n \ge 1)$$
, c) $\frac{2n-1}{n(n^2-4)} (n \ge 3)$,

b)
$$\frac{1}{n(n+1)(n+2)} (n \ge 1)$$
, d) $-\ln\left(1 - \frac{1}{(n+2)^2}\right) (n \ge 1)$

Exercice 9. En utilisant les différents critères de convergence, préciser la nature des séries de terme général suivant:

1)
$$\left(1 - \frac{1}{n^3}\right)^{n^2}$$
, $n \ge 1$, 12) $\frac{\sin n}{n(n+1)}$, 23) $\left(\frac{n^2 - 5n + 1}{n^2 - 4n + 2}\right)^{n^2}$, 13) $\int_0^{\frac{1}{2}} \frac{t^n}{1 + \sqrt{t}} dt$ 24) $\sqrt{2n + 1} = \sqrt{2n}$

2)
$$\tan^{n} \left(\frac{\pi}{4} + \frac{\pi}{n} \right)$$
, 13) $\int_{0}^{2} \frac{t^{n}}{1 + \sqrt{t}} dt$ 24) $\sqrt{2n+1} - \sqrt{2n}$, 14) $\sin \left(\frac{\pi}{n} \right)$

3)
$$\frac{1}{n^{2}+3}$$
, 14) $\sin\left(\frac{\pi}{2^{n}}\right)$, 25) $e - \left(1 + \frac{1}{n}\right)^{n}$, 25) $\frac{1}{\ln n}$, 26) $\frac{2^{n}+3^{n}}{n^{2}+\ln n+5^{n}}$, 26) $3\sqrt{n^{3}+2n} - \sqrt{n^{2}-1}$, 27) $\frac{\ln 2 + \ln 3 + \ln n}{n^{2}+\ln 3 + \ln n}$

5)
$$\frac{1}{\ln n}$$
, 16) $\left(\frac{n+3}{2n+1}\right)^{2n\ln n}$, 27) $\frac{\ln 2 + \ln 3 + \ln n}{n^{\alpha}}$, 27) $\frac{\ln 2 + \ln 3 + \ln n}{n^{\alpha}}$,

6)
$$n^2 e^{-n}$$
, 17) $\frac{n!}{e^n}$, 28) $(\cos \frac{1}{n})^{n^3}$, 28) $(\cos \frac{1}{n})^{n^3}$,

7)
$$\frac{\ln n}{n^2}$$
, 18) $\frac{n!}{n^n}$, 28) $\left(\cos \frac{1}{n}\right)^n$, 8) $\frac{n^2}{n^3+1}$, 19) $\frac{(\ln n)^n}{n}$

$$8) \frac{n^{2}}{n^{3}+1}, \qquad 19) \frac{(\ln n)^{n}}{n!}, \qquad 29) \left(\frac{1}{\cosh(\frac{1}{n})}\right)^{n^{5/2}}, \qquad 20) \frac{1}{n^{2-\frac{1}{2}\cos\frac{1}{n}}}, \qquad 20) \frac{(n+1)!}{1.4...(3n+1)}a^{n} \quad (a>0), \qquad 30) \quad n\left(2^{\frac{1}{n^{2}}}-1\right) - \ln n^{n}$$

Exercice 10. Etudier la convergence de la série de terme général

$$u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}, \quad (n \geqslant 2),$$

où α, β sont des paramètres réels.

Exercice 11. Soit (a_n) une suite de réels strictement positifs telle que $\sum_n a_n$ converge. Etudier la nature des séries suivantes

a)
$$\sum_{n} a_n^2$$
, b) $\sum_{n} \frac{a_n}{1+a_n}$, c) $\sum_{n} a_n a_{2n}$, d) $\sum_{n} \frac{\sqrt{a_n}}{n}$.

Exercice 12. Soit $(u_n)_{n\geqslant 0}$ une suite à valeurs dans \mathbb{R}^* telle que $\lim_{n\to\infty}u_n=\ell\neq 0$. Montrer que les séries $\sum |u_n|_{n\to\infty}u_n=\ell\neq 0$.

$$\sum_{n\geq 0} |u_{n+1} - u_n| \text{ et } \sum_{n\geq 0} \left| \frac{1}{u_{n+1}} - \frac{1}{u_n} \right| \text{ sont de même nature.}$$

Exercice 13. Soit $(a_n)_n$ une suite décroissante à termes positifs. On suppose que $\sum_n a_n$ converge. Montrer que

$$\lim_{n \to +\infty} n a_n = 0.$$

Indication: on pourra minorer $\sum_{k=p+1}^{n} a_k$ pour n > p...

Exercice 14.

a) En comparant la somme partielle d'ordre n de la série harmonique

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

à une intégrale, montrer que H_n vérifie l'encadrement

$$\ln(n+1) \leqslant H_n \leqslant 1 + \ln(n).$$

- b) En déduire que la série harmonique est divergente et que H_n est équivalent lorsque n tend vers l'infini à $\ln n$.
- c) Pour n entier naturel non nul, on pose $u_n = H_n \ln(n)$ et $v_n = H_n \ln(n+1)$. Montrer que les deux suites (u_n) et (v_n) convergent vers un réel $\gamma \in [1/4, 1]$ (γ est appelée la constante d'Euler).
- d) Donner une valeur approchée de γ à 10^{-2} près.

Exercice 15. Pour tout entier $n \ge 3$, on pose $u_n = \frac{\ln n}{n}$.

- 1. Quelle est la nature de la série de terme général u_n ?
- 2. Étudier les variations de la fonction f définie sur $[3, +\infty[$ par $f(t) = \frac{\ln t}{t}]$.

Pour $N \geqslant 3$, on pose $S_N = \sum_{n=3}^N u_n$ et $I_N = \int_3^N \frac{\ln t}{t} dt$.

- 3. Montrer l'encadrement $I_N \leqslant S_N \leqslant \frac{\ln 3}{3} + I_N$?
- 4. Montrer que l'on a $S_N \sim_{N\to+\infty} \frac{1}{2} (\ln N)^2$.
- 5. Quelle est la nature de la série de terme général $\frac{S_n}{n^2}$?

Exercice 16.

- 1. Pour $n \ge 1$, on pose $u_n = \frac{e^{-\sqrt{n}}}{n}$. Montrer que la série $\sum_{n \ge 1} u_n$ converge.
- 2. Soit un entier $N \geqslant 1$. On pose $I_N = \int_N^{+\infty} \frac{e^{-\sqrt{t}}}{t} dt$. Montrer que l'intégrale généralisée I_N converge et donner sa valeur.
- 3. Pour tout entier $N \geqslant 1$, on considère $R_N = \sum_{n=N}^{+\infty} u_n$. Établir l'encadrement

$$2e^{-\sqrt{N}} \leqslant R_N \leqslant \frac{e^{-\sqrt{N}}}{\sqrt{N}} + 2e^{-\sqrt{N}}.$$

4. En déduire un équivalent de R_N quand N tend vers l'infini.

Exercice 17. Par comparaison à une intégrale, donner un équivalent de

- a) $u_n = \sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}}$.
- b) $v_n = \sum_{k=2}^n \frac{1}{k \ln k}$.
- c) $w_n = \sum_{k=1}^n \ln^2 k$. La série de terme général $1/w_n$ est-elle convergente?

Exercice 18. Soit $(a_n)_{n\geqslant 1}$ une suite réelle positive. On pose $u_n=\frac{a_n}{(1+a_1)(1+a_2)\dots(1+a_n)},\ n\geqslant 1.$

a) Vérifier que, pour tout $n \ge 1$, on a

$$u_1 + u_2 + \dots + u_n = 1 - \frac{1}{(1 + a_1) \dots (1 + a_n)}.$$

- b) En déduire que la série de terme général u_n est convergente.
- c) On suppose dans cette question que $a_n = 1/\sqrt{n}$.
 - (i) Montrer que $\ln((1+a_1)\dots(1+a_n))\to +\infty$, lorsque $n\to +\infty$.
 - (ii) En déduire la valeur de $\sum_{n\geqslant 1} u_n$.

Exercice 19. Soient $\sum_{n\geqslant 0}u_n$ une série divergente à termes strictement positifs et $(S_n)_{n\geqslant 0}$ la suite de ses sommes partielles. Le but de l'exercice est de montrer qu'il existe une suite $(v_n)_n$ négligeable devant $(u_n)_n$ telle que la série $\sum_{n\geqslant 0}v_n$ diverge encore. Pour cela, on définit la suite $(v_n)_{n\geqslant 1}$ en posant $v_n=\frac{u_n}{\sqrt{S_n}+\sqrt{S_{n-1}}}$, pour tout $n\in\mathbb{N}^*$.

- 1. Montrer que la suite $(v_n)_n$ est négligeable devant $(u_n)_n$, i.e. $\lim_{n\to+\infty} v_n/u_n=0$.
- 2. Montrer que la série $\sum_{n\geq 1} v_n$ est divergente.

Exercice 20. Soit $f:[1,\infty[\to]0,\infty[$ une fonction de classe C^1 telle que $\lim_{x\to+\infty}\frac{f'(x)}{f(x)}=-\infty$.

- **1.** Montrer qu'il existe un nombre réel $a \ge 1$ tel que pour tout $x \ge a$, on ait $\frac{f'(x)}{f(x)} \le -1$.
- 2. En déduire que la série $\sum_{n\geqslant 1} f(n)$ est convergente.

Exercice 21. On considère la série de terme général $u_n = \frac{1}{\sqrt{n} + \frac{1}{\sqrt{n}}}, n \geqslant 1$.

1. Préciser la nature de cette série.

Dans la suite, on se propose de donner un développement asymptotique à deux termes pour les sommes partielles $U_n = \sum_{k=1}^n u_k$. On considère d'abord la série de terme général $v_n = \frac{1}{\sqrt{n}}$, $n \ge 1$, et ses sommes partielles $V_n = \sum_{k=1}^n v_k$ pour $n \ge 1$. On convient de poser $V_0 = 0$.

2. Montrer que pour tout entier $n \ge 1$, on a

$$v_{n+1} \leqslant 2(\sqrt{n+1} - \sqrt{n}) \leqslant v_n.$$

3. Pour tout $n \ge 1$ on pose

$$a_n = V_{n-1} - 2\sqrt{n}$$
 et $b_n = V_n - 2\sqrt{n}$.

- 4. Montrer que les suite $(a_n)_n$ et $(b_n)_n$ convergent dans \mathbb{R} vers une même limite.
- 5. Pour tout $n \ge 1$, on pose $w_n = v_n u_n$. Déterminer la nature de la série $\sum_{n \ge 1} w_n$.
- 6. Pour tout $n \geqslant 1$, soit $W_n = \sum_{k=1}^n w_k$. Vérifier que l'on a

$$U_n = 2\sqrt{n} + b_n - W_n.$$

En déduire qu'il existe un réle λ tel qu'on ait le développement asymptotique

$$U_n = 2\sqrt{n} + \lambda + \varepsilon_n$$
, avec $\lim_{n \to +\infty} \varepsilon_n = 0$.

III. Séries numériques de signe quelconque

Exercice 22.

- a) Justifier que $\sum_{n\geqslant 1}\frac{(-1)^{n-1}}{n}$ converge. On note S la somme de la série.
- b) Donner une valeur approchée de S en garantissant une erreur inférieure ou égale à 10^{-1} .

Exercice 23. Etudier la convergence simple et absolue des séries de terme général suivant :

1)
$$\frac{(-1)^n}{n+(-1)^n\sqrt{n^3+1}}$$
 5*) $(-1)^n \sin\left(\frac{1}{\sqrt{n}}\right)$ 9) $\frac{(-1)^n}{n+(-1)^n\sqrt{n}}$ 2*) $\frac{(-1)^n \ln n}{n}$ 6) $\sqrt{1+\frac{(-1)^n}{\sqrt{n}}}-1$ 10) $\left(\frac{2n(1+i)+3}{3n-i}\right)^n$. 7*) $(-1)^n(\sqrt{1+n}-\sqrt{n})$ 4) $\frac{n^2}{(1+i)^n}$ 8) $n \ln\left(1+\frac{1}{n}\right)-\cos\frac{1}{\sqrt{n}}$ 11) $(-1)^n \ln\frac{n+1}{n-1}$, $(n \ge 2)$

Dans chaque cas *, donner une majoration simple du reste d'ordre n, $|R_n|$, de la série.

Exercice 24. Etudier la convergence de la série de terme général

$$u_n = \frac{(-1)^n \sqrt{n} + 1}{n}.$$

En déduire que deux séries de termes généraux équivalents ne sont pas forcément de même nature.

Exercice 25. Discuter selon les valeurs de $\alpha > 0$, la convergence simple et absolue de la série de terme général

$$u_n = \frac{(-1)^n}{n^{\alpha} + (-1)^n}.$$

Exercice 26. Etudier la nature des trois séries :

$$u_n = \frac{\cos n}{n + \cos n}, \quad v_n = \frac{\cos n}{n^{3/4} + \cos n}, \quad w_n = \frac{\cos n}{n^{1/2} + \cos n}.$$

On pourra utiliser la règle d'Abel et utiliser des développements limités.

Exercice 27. Soit $\sum_{n\geqslant 1} u_n$ une série convergente à termes réels. On pose

$$v_n = \ln(1 + u_n).$$

- 1. Montrer que le terme v_n est bien défini à partir d'un certain rang n_0 .
- 2. Montrer que si les $(u_n)_n$ sont tous positifs, alors la série $\sum_{n\geqslant n_0} v_n$ est convergente.
- 3. Déterminer la nature de la série $\sum_{n\geqslant n_0}v_n$ lorsque $u_n=\frac{(-1)^n}{\sqrt{n}}$.
- 4. La conclusion du (2) reste-t-elle vraie sans l'hypothèse de signe?

Exercice 28. Soit $\sum_{n\geqslant 0}u_n$ une série réelle convergente. Que pensez-vous de la nature de la série $\sum_{n\geqslant 0}u_n^2$?

Exercice 29. On considère la série de terme général $u_n = \frac{(-1)^{E(\sqrt{n})}}{\sqrt{n}}$, où $E(\cdot)$ désigne la partie entière.

- 1. Le critère des séries alternée peut-il s'appliquer à la série $\sum_{n\geqslant 1}u_n$?
- 2. Soit un entier $N \ge 1$. Montrer que pour tout entier n vérifiant $N^2 + 1 \le n \le N^2 + 2N$, on a $E(\sqrt{n}) = N$.
- 3. Montrer que pour tout entier $N \ge 1$, on a

$$|u_{N^2+1} + \ldots + u_{N^2+2N}| > 1.$$

4. En déduire la nature de la série $\sum_{n\geqslant 1} u_n$.

Exercice 30. Montrer que la série $\sum_{n\geq 1} \frac{\cos \ln n}{n}$ diverge.

Indication : on montrera que la série ne vérifie pas le critère de Cauchy en déterminant les intervalles sur lesquels $\cos \ln n \geqslant 1/2$.

Exercice 31.

1. Soit $f:]0;+\infty[\to\mathbb{C}$ de classe \mathcal{C}^1 , telle que l'intégrale $\int_1^{+\infty}f'(t)\mathrm{d}t$ soit absolument convergente. Pour $n\in\mathbb{N}^*$, on pose

$$u_n = -f(n) + \int_n^{n+1} f(t) dt$$

- (a) En appliquant la formule de Taylor-Laplace, montrer l'égalité $\int_n^{n+1} f(t) dt = f(n) + \int_n^{n+1} (n+1)f'(t) dt$.
- (b) Quelle est la nature de la série $\sum u_n$?
- (c) En déduire que la série $\sum f(n)$ est convergente si et seulement si la suite $\left(\int_1^n f(t) dt\right)_n$ est convergente.
- 2. Soit f la fonction définie par $f(t) = \frac{e^{i\sqrt{t}}}{t^{\alpha}}$ $(\alpha > 1/2)$.
 - (a) Vérifier que f satisfait les hypothèses de la question 1.
 - (b) Montrer que l'intégrale généralisée $\int_1^{+\infty} f(t) dt$ est convergente (on pourra commencer par étudier $\int_1^{+\infty} \frac{e^{iu}}{u^{2\alpha-1}} du$ à l'aide du critère d'Abel).
 - (c) En déduire que la série $\sum \frac{e^{i\sqrt{n}}}{n^{\alpha}}$ est convergente.

Exercice 32. On se propose d'établir la relation

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \int_1^{+\infty} \frac{\ln t}{t^2 - 1} dt.$$
 (1)

- 1. Soit un entier $n \geqslant 0$. À l'aide d'une intégration par partie, montrer que l'intégrale généralisée u_n donnée par $u_n = \int_1^{+\infty} \frac{\ln t}{t^{2n+2}} dt$ est convergente et calculer sa valeur. On considère maintenant la fonction f définie sur $]1, +\infty[$ par $f(t) = \frac{\ln t}{t^2-1}$.
- 2. Montrer que f se prolonge par continuité en 1.
- 3. Montrer que pour tout réel $t \ge 4$, on a $\ln t \le \sqrt{t}$.
- 4. En déduire que l'intégrale généralisée I définie par $I = \int_1^{+\infty} f(t)dt$ converge.
- 5. Montrer que pour tout réel $t \ge 1$, on a $\ln t \le \frac{1}{2}(t^2 1)$.
- 6. En déduire que pour tout $N \ge 0$, l'intégrale généralisée I_N définie par $I_N = \int_1^{+\infty} \frac{f(t)}{t^{2N+2}} dt$ est convergente et que l'on a $0 \le I_N \le \frac{1}{4N+2}$.
- 7. Montrer que pour tout entier $N \ge 0$, on a $\sum_{n=0}^{N} u_n = I I_N$.
- 8. Établir la relation (1).