

What is claimed is:

1. A system for detecting an analyte in a fluid comprising:

5 a light source;

a sensor array, the sensor array comprising a supporting member comprising at least one cavity formed within the supporting member;

a particle, the particle positioned within the cavity, wherein the particle is configured to produce a signal when the particle interacts with the analyte during use; and

a detector, the detector being configured to detect the signal produced by the interaction of the analyte with the particle during use;

wherein the light source and detector are positioned such that light passes from the light source, to the particle, and onto the detector during use.

2. The system of claim 1, wherein the system comprises a plurality of particles positioned within a plurality of cavities, and wherein the system is configured to substantially simultaneously detect a plurality of analytes in the fluid.

3. The system of claim 1, wherein the system comprises a plurality of particles positioned within the cavity.

- 25
4. The system of claim 1, wherein the light source comprises a light emitting diode.
 5. The system of claim 1, wherein the light source comprises a white light source.

6. The system of claim 1, wherein the sensor array further comprises a bottom layer and a top cover layer, wherein the bottom layer is coupled to a bottom surface of the supporting member, and wherein the top cover layer is coupled to a top surface of the supporting member; and wherein both the bottom layer and the top cover layer are coupled to the supporting member
5 such that the particle is substantially contained within the cavity by bottom layer and the top cover layer.

7. The system of claim 1, wherein the sensor array further comprises a bottom layer and a top cover layer, wherein the bottom layer is coupled to a bottom surface of the supporting member, and wherein the top cover layer is coupled to a top surface of the supporting member; and wherein both the bottom layer and the top cover layer are coupled to the supporting member such that the particle is substantially contained within the cavity by bottom layer and the top cover layer, and wherein the bottom layer and the top cover layer are substantially transparent to light produced by the light source.

8. The system of claim 1, wherein the sensor array further comprises a bottom layer coupled to the supporting member, and wherein the supporting member comprises silicon, and wherein the bottom layer comprises silicon nitride.

20 9. The system of claim 1, wherein the sensor array further comprises a sensing cavity formed on a bottom surface of the sensor array.

10. The system of claim 1, wherein the supporting member is formed from a plastic material, and wherein the sensor array further comprises a top cover layer, the top cover layer being
25 coupled to the supporting member such that the particle is substantially contained within the cavity, and wherein the top cover layer is configured to allow the fluid to pass through the top cover layer to the particle, and wherein both the supporting member and the top cover layer are substantially transparent to light produced by the light source.

11. The system of claim 1, further comprising a fluid delivery system coupled to the supporting member.

12. The system of claim 1, wherein the detector comprises a charge-coupled device.

5

13. The system of claim 1, wherein the detector comprises an ultraviolet detector.

14. The system of claim 1, wherein the detector comprises a fluorescence detector.

15. The system of claim 1, wherein the detector comprises a semiconductor based photodetector, and wherein the detector is coupled to the sensor array.

16. The system of claim 1, wherein the particle ranges from about 0.05 micron to about 500 microns.

17. The system of claim 1, wherein a volume of the particle changes when contacted with the fluid.

18. The system of claim 1, wherein the particle comprises a metal oxide particle.

20

19. The system of claim 1, wherein the particle comprises a metal quantum particle.

20. The system of claim 1, wherein the particle comprises a semiconductor quantum particle.

25

21. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin.

22. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the polymeric resin comprises polystyrene-polyethylene glycol-

divinyl benzene.

23. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the receptor molecule produces the signal in response to the pH of
5 the fluid.

24. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the analyte comprises a metal ion, and wherein the receptor produces the signal in response to the presence of the metal ion.

25. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the analyte comprises a carbohydrate, and wherein the receptor produces a signal in response to the presence of a carbohydrate.

26. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the particles further comprises a first indicator and a second indicator, the first and second indicators being coupled to the receptor, wherein the interaction of the receptor with the analyte causes the first and second indicators to interact such that the signal is produced.

20
27. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the particles further comprises an indicator, wherein the indicator is associated with the receptor such that in the presence of the analyte the indicator is displaced from the receptor to produce the signal.

25
28. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the receptor comprises a polynucleotide.

29. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a
Atty. Dkt. No 5119-00543

Conley, Rose, & Tayon, P.C

polymeric resin, and wherein the receptor comprises a peptide.

30. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the receptor comprises an enzyme.

5

31. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the receptor comprises a synthetic receptor.

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

32. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the receptor comprises an unnatural biopolymer.

33. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the receptor comprises an antibody.

34. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the receptor comprises an antigen.

20

35. The system of claim 1, wherein the analyte comprises phosphate functional groups, and wherein the particle is configured to produce the signal in the presence of the phosphate functional groups.

36. The system of claim 1, wherein the analyte comprises bacteria, and wherein the particle is configured to produce the signal in the presence of the bacteria.

25

37. The system of claim 1, wherein the system comprises a plurality of particles positioned within a plurality of cavities, and wherein the plurality of particles produce a detectable pattern in the presence of the analyte.

38. The system of claim 1, wherein the supporting member comprises silicon.

39. The system of claim 1, wherein the sensor array further comprises a top cover layer, wherein the top cover layer is coupled to a top surface of the supporting member such that the particle is substantially contained within the cavity by the top cover layer.

5

40. The system of claim 1, wherein the sensor array further comprises a bottom layer coupled to the supporting member, and wherein the bottom layer comprises silicon nitride.

41. The system of claim 1, wherein the particles produce a detectable pattern in the presence of the analyte.

42. The system of claim 1, wherein the cavity is configured such that the fluid entering the cavity passes through the supporting member during use.

43. The system of claim 1, wherein the light source comprises a red light emitting diode, a blue light emitting diode, and a green light emitting diode.

44. The system of claim 1, wherein the sensor array further comprises a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein the cover layer and the bottom layer are removable.

20
45. The system of claim 1, wherein the sensor array further comprises a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein the cover layer and the bottom layer are removable, and wherein the cover layer and the bottom layer include openings that are substantially aligned with the cavities during use.

25
46. The system of claim 1, wherein the sensor array further comprises a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein the bottom layer is coupled to a bottom surface of the supporting member and wherein the cover

layer is removable, and wherein the cover layer and the bottom layer include openings that are substantially aligned with the cavities during use.

47. The system of claim 1, wherein the sensor array further comprises a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein an opening is formed in the cover layer substantially aligned with the cavity, and wherein an opening is formed in the bottom layer substantially aligned with the cavity.
- 5
48. The system of claim 1, wherein the cavity is substantially tapered such that the width of the cavity narrows in a direction from a top surface of the supporting member toward a bottom surface of the supporting member, and wherein a minimum width of the cavity is substantially less than a width of the particle.
49. The system of claim 1, wherein a width of a bottom portion of the cavity is substantially less than a width of a top portion of the cavity, and wherein the width of the bottom portion of the cavity is substantially less than a width of the particle.
50. The system of claim 1, wherein the sensor array further comprises a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein the bottom layer is configured to support the particle, and wherein an opening is formed in the cover layer substantially aligned with the cavity.
- 20
51. The system of claim 1, further comprising a removable cover layer.
52. The system of claim 1, wherein the supporting member comprises a plastic material.
- 25
53. The system of claim 1, wherein the supporting member comprises a silicon wafer.
54. The system of claim 1, wherein the supporting member comprises a dry film photoresist

material.

55. The system of claim 1, wherein the supporting member comprises a plurality of layers of a dry film photoresist material.

5

56. The system of claim 1, wherein an inner surface of the cavity is coated with a reflective material.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

57. The system of claim 1, further comprising channels in the supporting member, wherein the channels are configured to allow the fluid to flow through the channels into and away from the cavity.

58. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use.

20
59. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a diaphragm pump.

60. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a diaphragm pump, and wherein the pump comprises an electrode pump.

61. The system of claim 1 wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the
5 pump comprises a diaphragm pump, and wherein the pump comprises a piezoelectric pump.

62. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the
10 pump comprises a diaphragm pump, and wherein the pump comprises a pneumatic activated pump.
15

63. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the
20 pump comprises a diaphragm pump, and wherein the pump comprises a heat activated pump.

64. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the
25 pump comprises a diaphragm pump, and wherein the pump comprises a peristaltic pump.

65. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the
Atty. Dkt. No.: 5119-00543

pump comprises a diaphragm pump, and wherein the pump comprises an electroosmosis pump.

66. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and
5 wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a diaphragm pump, and wherein the pump comprises an electrohydrodynamic pump.

67. The system of claim 1, wherein the sensor array further comprises a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity, and wherein a channel is formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a diaphragm pump, and wherein the pump comprises an electroosmosis pump and an electrohydrodynamic pump.

68. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the particle further comprises a first indicator and a second indicator, the first and second indicators being coupled to the receptor, wherein the interaction of
20 the receptor with the analyte causes the first and second indicators to interact such that the signal is produced.

69. The system of claim 1, wherein the particle comprises a receptor molecule coupled to a polymeric resin, and wherein the particle further comprises an indicator, wherein the indicator is associated with the receptor such that in the presence of the analyte the indicator is displaced
25 from the receptor to produce the signal.

70. The system of claim 1, wherein a portion of the supporting member is substantially transparent to a portion of light produced by the light source.

71. The system of claim 1, wherein the particle is coupled to the supporting member with via an adhesive material.

5 72. The system of claim 1, wherein the particle are coupled to the supporting member via a gel material.

73. The system of claim 1, wherein the particle is suspended in a gel material, the gel material covering a portion of the supporting member, and wherein a portion of the particle extends from the upper surface of the gel.

74. The system of claim 1, wherein the sensor array further comprises a cover coupled to the supporting member, positioned above the particle, wherein a force exerted by the cover on the particle inhibits the displacement of the particle from the supporting member.

75. The system of claim 1, wherein the supporting member comprises glass.

76. The system of claim 1, wherein the supporting member is composed of a material substantially transparent to ultraviolet light.

20 77. The system of claim 1, further comprising a conduit coupled to the sensor array, wherein the conduit is configured to conduct the fluid sample to and away from the sensor array; and a vacuum chamber coupled to the conduit, wherein the vacuum chamber comprises a breakable barrier positioned between the chamber and the conduit, and wherein the chamber is configured 25 to pull the fluid through the conduit when the breakable barrier is punctured.

78. The system of claim 1, further comprising a conduit coupled to the sensor array, wherein the conduit is configured to conduct the fluid sample to and away from the sensor array; and a vacuum chamber coupled to the conduit, wherein the vacuum chamber comprises a breakable

barrier positioned between the chamber and the conduit, and wherein the chamber is configured to pull the fluid through the conduit when the breakable barrier is punctured, and further comprising a filter coupled to the conduit and the sensor array, wherein the fluid passes through the filter before reaching the sensor array.

5

79. The system of claim 1, further comprising a conduit coupled to the sensor array, wherein the conduit is configured to conduct the fluid sample to and away from the sensor array; and a vacuum chamber coupled to the conduit, wherein the vacuum chamber comprises a breakable barrier positioned between the chamber and the conduit, and wherein the chamber is configured to pull the fluid through the conduit when the breakable barrier is punctured, and further comprising a filter coupled to the conduit and the sensor array, wherein the fluid passes through the filter before reaching the sensor array, and wherein the fluid is a blood sample, and wherein the filter comprises a membrane for the removal of particulates.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

80. The system of claim 1, further comprising a conduit coupled to the sensor array, wherein the conduit is configured to conduct the fluid sample to and away from the sensor array; and a vacuum chamber coupled to the conduit, wherein the vacuum chamber comprises a breakable barrier positioned between the chamber and the conduit, and wherein the chamber is configured to pull the fluid through the conduit when the breakable barrier is punctured, and further comprising a filter coupled to the conduit and the sensor array, wherein the fluid passes through the filter before reaching the sensor array, and wherein the fluid is a blood sample, and wherein the filter comprises a membrane for removal of white and red blood cells from the blood.

20

81. The system of claim 1, wherein the particle comprises a biopolymer coupled to a polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal.

25

82. The system of claim 1, wherein the particle comprises a biopolymer coupled to a polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of

Atty. Dkt No 5119-00543

Conley, Rose, & Tayon, P C

the analyte to produce a signal, and wherein the chemical reaction comprises cleavage of the biopolymer by the analyte.

83. The system of claim 1, wherein the particle comprises a biopolymer coupled to a
5 polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of
the analyte to produce a signal, and wherein the biopolymer comprises a peptide, and wherein the
analyte comprises a protease, and wherein the chemical reaction comprises cleavage of the
peptide by the protease.

84. The system of claim 1, wherein the particle comprises a biopolymer coupled to a
polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of
the analyte to produce a signal, and wherein the biopolymer comprises a polynucleotide, and
wherein the analyte comprises a nuclease, and wherein the chemical reaction comprises cleavage
of the polynucleotide by the nuclease.

85. The system of claim 1, wherein the particle comprises a biopolymer coupled to a
polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of
the analyte to produce a signal, and wherein the biopolymer comprises an oligosaccharide, and
wherein the analyte comprises an oligosaccharide cleaving agent, and wherein the chemical
20 reaction comprises cleavage of the oligosaccharide by the oligosaccharide cleaving agent.

86. The system of claim 1, wherein the particle comprises a biopolymer coupled to a
polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of
the analyte to produce a signal, and wherein the particle further comprises a first indicator and a
25 second indicator, the first and second indicators being coupled to the biopolymer, and wherein
the chemical reaction of the biopolymer in the presence of the analyte causes a distance between
the first and second indicators to become altered such that the signal is produced.

87. The system of claim 1, wherein the particle comprises a biopolymer coupled to a

polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the particle further comprises a first indicator and a second indicator, the first and second indicators being coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes a distance between
5 the first and second indicators to become altered such that the signal is produced, and wherein the first indicator is a fluorescent dye and wherein the second indicator is a fluorescent quencher, and wherein the first indicator and the second indicator are within the Föster energy transfer radius, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the first and second indicators to move outside the Föster energy transfer radius.

SEARCHED
INDEXED
SERIALIZED
FILED

88. The system of claim 1, wherein the particle comprises a biopolymer coupled to a polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the particle further comprises a first indicator and a second indicator, the first and second indicators being coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes a distance between the first and second indicators to become altered such that the signal is produced. wherein the first indicator is a fluorescent dye and wherein the second indicator is a different fluorescent dye, and wherein the first indicator and the second indicator produce a fluorescence resonance energy transfer signal, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the positions of the first and second indicators to change such that the
20 fluorescence resonance energy transfer signal is altered.

89. The system of claim 1, wherein the particle comprises a biopolymer coupled to a polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and further comprising an indicator coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the biopolymer to be cleaved such that a portion of the biopolymer coupled to the indicator is
25 cleaved from a portion of the biopolymer coupled to the polymeric resin.

90. The system of claim 1 wherein the particle comprises a biopolymer coupled to a polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the particle further comprises an indicator coupled to the particle, and wherein the chemical reaction causes a change to a biopolymer such that the interaction of the indicator with the biopolymer is altered to produce the signal.

91. The system of claim 1, wherein the particle comprises a biopolymer coupled to a polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the particle further comprises an indicator coupled to the particle, and wherein the chemical reaction causes a change to the biopolymer and the indicator to produce the signal.

92. The system of claim 1, wherein the particle comprises a receptor coupled to a polymeric resin, and a probe molecule coupled to the polymeric resin, and wherein the probe molecule is configured to produce a signal when the receptor interacts with the analyte during use.

93. The system of claim 1, wherein the particle comprises a receptor coupled to a polymeric resin, and a probe molecule coupled to the polymeric resin, and wherein the probe molecule is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the particles further comprises an additional probe molecule coupled to the polymeric resin, wherein the interaction of the receptor with the analyte causes the probe molecules to interact such that the signal is produced.

94. A system for detecting an analyte in a fluid comprising:

a light source;

a sensor array, the sensor array comprising:

a supporting member; wherein a first cavity and a second cavity are formed within the supporting member;

a first particle positioned within the first cavity;

5

a second particle positioned within the second cavity, wherein the second particle comprises a reagent, wherein a portion of the reagent is removable from the second particle when contacted with a decoupling solution, and wherein the reagent is configured to modify the first particle, when the reagent is contacted with the first particle, such that the first particle will produce a signal when the first particle interacts with the analyte during use;

a first pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the first cavity;

a second pump coupled to the supporting member, wherein the second pump is configured to direct the decoupling solution towards the second cavity;

wherein a first channel is formed in the supporting member, the first channel coupling the first pump to the first cavity such that the fluid flows through the first channel to the first cavity during use, and wherein a second channel is formed in the supporting member, the second channel coupling the second cavity to the first cavity such that the decoupling solution flows from the second cavity through the second channel to the first cavity during use; and

25

a detector, the detector being configured to detect the signal produced by the interaction of the analyte with the particle during use;

wherein the light source and detector are positioned such that light passes from the light

source, to the particle, and onto the detector during use.

95. The system of claim 94, wherein the sensor array further comprises a plurality of additional particles positioned within a plurality of additional cavities, and wherein the system is 5 configured to substantially simultaneously detect a plurality of analytes in the fluid, and wherein the second cavity is coupled to the additional cavities such that the reagent may be transferred from the second particle to the additional cavities during use.

96. The system of claim 94, wherein the first particle comprises an indicator molecule coupled to a first polymeric resin, and the second particle comprises a receptor molecule coupled to a second polymeric resin.

97. The system of claim 94, wherein the first particle comprises a first polymeric resin configured to bind to the receptor molecule, and wherein the second particle comprises the receptor molecule coupled to a second polymeric resin.

98. The system of claim 94, wherein the sensor array further comprises a reservoir coupled to the second pump, the reservoir configured to hold the decoupling solution.

20 99. A system for detecting an analyte in a fluid comprising:

a light source;

25 a sensor array, the sensor array comprising at least one particle coupled to the sensor array, wherein the particle is configured to produce a signal when the particle interacts with the analyte; and

a detector configured to detect the signal produced by the interaction of the analyte with the particle;

wherein the light source and detector are positioned such that light passes from the light source, to the particle, and onto the detector during use.

5 100. A sensor array for detecting an analyte in a fluid comprising:

a supporting member; wherein at least one cavity is formed within the supporting member;

a particle positioned within the cavity, wherein the particle is configured to produce a signal when the particle interacts with the analyte.

101. The sensor array of claim 100, further comprising a plurality of particles positioned within the cavity.

102. The sensor array of claim 100, wherein the particle comprises a receptor molecule coupled to a polymeric resin.

103. The sensor array of claim 100, wherein the particle has a size ranging from about 0.05
20 micron to about 500 microns in diameter.

104. The sensor array of claim 100, wherein the particle has a size ranging from about 0.05
micron to about 500 microns in diameter, and wherein the cavity is configured to substantially
contain the particle.

25
105. The sensor array of claim 100, wherein the supporting member comprises a plastic
material.

106. The sensor array of claim 100, wherein the supporting member comprises a silicon wafer.

107. The sensor array of claim 100, wherein the cavity extends through the supporting member.

5 108. The sensor array of claim 100, wherein the supporting member comprises a silicon wafer, and wherein the cavity is substantially pyramidal in shape and wherein the sidewalls of the cavity are substantially tapered at an angle of between about 50 to about 60 degrees.

109. The sensor array of claim 100, wherein the supporting member comprises a silicon wafer, and further comprising a substantially transparent layer positioned on a bottom surface of the silicon wafer.

110. The sensor array of claim 100, wherein the supporting member comprises a silicon wafer, and further comprising a substantially transparent layer positioned on a bottom surface of the silicon wafer, wherein the substantially transparent layer comprises silicon dioxide, silicon nitride, or silicon oxide/silicon nitride multilayer stacks.

20 111. The sensor array of claim 100, wherein the supporting member comprises a silicon wafer, and further comprising a substantially transparent layer positioned on a bottom surface of the silicon wafer, wherein the substantially transparent layer comprises silicon nitride.

112. The sensor array of claim 100, wherein the supporting member comprises a silicon wafer, and wherein the silicon wafer has an area of about 1 cm² to about 100 cm².

25 113. The sensor array of claim 100, further comprising a plurality of cavities formed in the silicon wafer, and wherein from about 10 to about 10⁶ cavities are formed in the silicon wafer.

114. The sensor array of claim 100, further comprising channels in the supporting member, wherein the channels are configured to allow the fluid to flow through the channels into and

away from the cavity.

115. The sensor array of claim 100, further comprising an inner surface coating, wherein the inner surface coating is configured to inhibit dislodgment of the particle.

5

116. The sensor array of claim 100, further comprising a detector coupled to the bottom surface of the supporting member, wherein the detector is positioned below the cavity.

117. The sensor array of claim 100, further comprising a detector coupled to the bottom surface of the supporting member, wherein the detector is positioned below the cavity, and wherein the detector is a semiconductor based photodetector.

118. The sensor array of claim 100, further comprising a detector coupled to the bottom surface of the supporting member, wherein the detector is positioned below the cavity, and wherein the detector is a Fabry-Perot type detector.

119. The sensor array of claim 100, further comprising a detector coupled to the bottom surface of the supporting member, wherein the detector is positioned below the cavity, and further comprising an optical fiber coupled to the detector, wherein the optical fiber is configured to transmit optical data to a microprocessor.

20

120. The sensor array of claim 100, further comprising an optical filters coupled to a bottom surface of the sensor array.

25

121. The sensor array of claim 100, further comprising a barrier layer positioned over the cavity, the barrier layer being configured to inhibit dislodgment of the particle during use.

122. The sensor array of claim 100, further comprising a barrier layer positioned over the cavity, the barrier layer being configured to inhibit dislodgment of the particle during use, and

wherein the barrier layer comprises a substantially transparent cover plate positioned over the cavity, and wherein the cover plate is positioned a fixed distance over the cavity such that the fluid can enter the cavity.

5 123. The sensor array of claim 100, further comprising a barrier layer positioned over the cavity, the barrier layer being configured to inhibit dislodgment of the particle during use, and wherein the barrier layer comprises a substantially transparent cover plate positioned over the cavity, and wherein the cover plate is positioned a fixed distance over the cavity such that the fluid can enter the cavity, and wherein the barrier layer comprises plastic, glass, quartz, silicon oxide, or silicon nitride.

124. The sensor array of claim 100, further comprising a plurality of particles positioned within a plurality of cavities formed in the supporting member.

125. The sensor array of claim 100, wherein the system comprises a plurality of particles positioned within a plurality of cavities, and wherein the plurality of particles produce a detectable pattern in the presence of the analyte.

126. The sensor array of claim 100, further comprising channels in the supporting member,
20 wherein the channels are configured to allow the fluid to flow through the channels into and away from the cavities, and wherein the barrier layer comprises a cover plate positioned upon an upper surface of the supporting member, and wherein the cover plate inhibits passage of the fluid into the cavities such that the fluid enters the cavities via the channels.

25 127. The sensor array of claim 100, further comprising a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein the bottom layer is coupled to a bottom surface of the supporting member and wherein the cover layer is removable, and wherein the cover layer and the bottom layer include openings that are substantially aligned with the cavities during use.

128. The sensor array of claim 100, further comprising a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein an opening is formed in the cover layer substantially aligned with the cavity, and wherein an opening is formed in the
5 bottom layer substantially aligned with the cavity.

129. The sensor array of claim 100, wherein the cavity is substantially tapered such that the width of the cavity narrows in a direction from a top surface of the supporting member toward a bottom surface of the supporting member, and wherein a minimum width of the cavity is substantially less than a width of the particle.

130. The sensor array of claim 100, wherein a width of a bottom portion of the cavity is substantially less than a width of a top portion of the cavity, and wherein the width of the bottom portion of the cavity is substantially less than a width of the particle.

131. The sensor array of claim 100, further comprising a cover layer coupled to the supporting member and a bottom layer coupled to the supporting member, wherein the bottom layer is configured to support the particle, and wherein an opening is formed in the cover layer substantially aligned with the cavity.

132. The sensor array of claim 100, further comprising a removable cover layer coupled to the supporting member.

133. The sensor array of claim 100, wherein the supporting member comprises a dry film
25 photoresist material.

134. The sensor array of claim 100, wherein the supporting member comprises a plurality of layers of a dry film photoresist material.

135. The sensor array of claim 100, wherein an inner surface of the cavity is coated with a reflective material.

136. The sensor array of claim 100, further comprising channels in the supporting member,
5 wherein the channels are configured to allow the fluid to flow through the channels into and away from the cavity.

137. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use.

138. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a diaphragm pump.

139. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises an electrode pump.

25 140. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a piezoelectric pump.

141. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a pneumatic activated pump.

142. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a heat activated pump.

143. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises a peristaltic pump.

20 144. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises an electroosmosis pump.

25 145. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid

flows through the channel to the cavity during use, and wherein the pump comprises an electrohydrodynamic pump.

146. The sensor array of claim 100, further comprising a pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the cavity; and a channel formed in the supporting member, the channel coupling the pump to the cavity such that the fluid flows through the channel to the cavity during use, and wherein the pump comprises an electroosmosis pump and an electrohydrodynamic pump.

147. The sensor array of claim 100, wherein a width of a bottom portion of the cavity is substantially less than a width of a top portion of the cavity, and wherein the width of the bottom portion of the cavity is substantially less than a width of the particle.

148. A sensor array for detecting an analyte in a fluid comprising:

a supporting member; wherein a first cavity and a second cavity are formed within the supporting member;

a first particle positioned within the first cavity;

20 a second particle positioned within the second cavity, wherein the second particle comprises a reagent, wherein a portion of the reagent is removable from the second particle when contacted with a decoupling solution, and wherein the reagent is configured to modify the first particle, when the reagent is contacted with the first particle, such that the first particle will produce a signal when the first particle interacts with the analyte during use;

25 a first pump coupled to the supporting member, wherein the pump is configured to direct the fluid towards the first cavity;

a second pump coupled to the supporting member, wherein the second pump is configured to direct the decoupling solution towards the second cavity;

5 wherein a first channel is formed in the supporting member, the first channel coupling the first pump to the first cavity such that the fluid flows through the first channel to the first cavity during use, and wherein a second channel is formed in the supporting member, the second channel coupling the second cavity to the first cavity such that the decoupling solution flows from the second cavity through the second channel to the first cavity during use.

149. The sensor array of claim 148, wherein the first particle comprises a receptor molecule coupled to a first polymeric resin, and wherein the second particle comprises an indicator molecule coupled to a second polymeric resin.

150. The sensor array of claim 148, wherein the first particle comprises an indicator molecule coupled to a first polymeric resin, and the second particle comprises a receptor molecule coupled to a second polymeric resin.

20 151. The sensor array of claim 148, wherein the first particle comprises a first polymeric resin configured to bind to the receptor molecule, and wherein the second particle comprises the receptor molecule coupled to a second polymeric resin.

25 152. The sensor array of claim 148, further comprising a reservoir coupled to the second pump, the reservoir configured to hold the decoupling solution.

153. A sensor array for detecting an analyte in a fluid comprising:

at least one particle coupled to a supporting member, wherein the particle is configured to

produce a signal when the particle interacts with the analyte.

154. The sensor array of claim 153, wherein the particle is coupled to the supporting member with via an adhesive material.

5

155. The sensor array of claim 153, wherein the particle are coupled to the supporting member via a gel material.

156. The sensor array of claim 153, wherein the particle is suspended in a gel material, the gel material covering a portion of the supporting member, and wherein a portion of the particle extends from the upper surface of the gel.

157. The sensor array of claim 153, further comprising a cover positioned above the particle.

158. The sensor array of claim 153, further comprising a cover coupled to the supporting member, positioned above the particle, wherein a force exerted by the cover on the particle inhibits the displacement of the particle from the supporting member.

159. The sensor array of claim 153, wherein the particle comprises a receptor molecule
coupled to a polymeric resin.

20

160. The sensor array of claim 153, wherein the supporting member comprises glass.

25

161. A method for forming a sensor array configured to detect an analyte in a fluid,
comprising:

forming a cavity in a supporting member, wherein the supporting member comprises a silicon wafer;

placing a particle in the cavity, wherein the particle is configured to produce a signal when the particle interacts with the analyte; and

5 forming a cover upon a portion of the supporting member, wherein the cover is configured to inhibit dislodgment of the particle from the cavity.

162. The method of claim 161, wherein forming the cavity comprises anisotropically etching the silicon wafer.

163. The method of claim 161, wherein forming the cavity comprises anisotropically etching the silicon wafer with a wet hydroxide etch.

164. The method of claim 161, wherein forming the cavity comprises anisotropically etching the silicon wafer such that sidewalls of the cavity are tapered at an angle from about 50 degrees to about 60 degrees.

165. The method of claim 161, wherein the silicon wafer has an area of about 1 cm² to about 100 cm².

20 166. The method of claim 161, further comprising forming a substantially transparent layer upon a bottom surface of the silicon wafer below the cavity.

167. The method of claim 161, further comprising forming a substantially transparent layer upon a bottom surface of the silicon wafer, wherein the cavity extends through the silicon wafer
25 and wherein the substantially transparent layer is positioned to support the particle.

168. The method of claim 161, wherein the substantially transparent layer comprises silicon nitride.

169. The method of claim 161, wherein the cover comprises plastic, glass, quartz, silicon nitride, or silicon oxide.

170. The method of claim 161, wherein forming the cover comprises coupling the cover to the
5 silicon wafer at a distance above the silicon wafer substantially less than a width of the particle.

171. The method of claim 161, further comprising etching channels in the silicon wafer prior to forming the cover on the silicon wafer, wherein forming the cover comprises placing the cover against the upper surface of the silicon wafer, and wherein the channels are configured to allow the fluid to pass through the silicon wafer to and from the cavities.

172. The method of claim 161, further comprising coating an inner surface of the cavity with a material to increase adhesion of the particle to the inner surface of the cavity.

173. The method of claim 161, further comprising coating an inner surface of the cavity with a material to increase reflectivity of the inner surface of the cavity.

174. The method of claim 161, further comprising forming an optical detector upon a bottom surface of the supporting member below the cavity.

20

175. The method of claim 161, further comprising forming a sensing cavity upon a bottom surface of the supporting member below the cavity.

176. The method of claim 161, further comprising forming a sensing cavity upon a bottom
25 surface of the supporting member below the cavity, and wherein forming the sensing cavity comprises:

forming a barrier layer upon a bottom surface of the silicon wafer;

forming a bottom diaphragm layer upon the barrier layer;

5 forming etch windows extending through the bottom diaphragm layer;

removing a portion of the spacer layer;

removing a remaining portion of the spacer layer.

177. The method of claim 161, further comprising forming an optical filter upon the bottom surface of the supporting member.

178. The method of claim 161, further comprising forming a plurality of cavities in the silicon wafer.

179. The method of claim 161, wherein from about 10 to about 10^6 cavities are formed in the
20 silicon wafer.

180. The method of claim 161, wherein the formed cavity is configured to allow the fluid to pass through the supporting member.

25 181. The method of claim 161, further comprising forming a substantially transparent layer upon a bottom surface of the supporting member below the cavity, wherein the bottom layer is configured to inhibit the displacement of the particle from the cavity while allowing the fluid to pass through the supporting member.

182. The system of claim 161, wherein a width of a bottom portion of the cavity is substantially less than a width of a top portion of the cavity, and wherein the width of the bottom portion of the cavity is substantially less than a width of the particle.

5 183. The method of claim 161, further comprising forming channels in the supporting member wherein the channels are configured to allow the fluid to pass through the supporting member to and from the cavity.

184. The method of claim 161, further comprising forming a pump on the supporting member, the pump being configured to pump the fluid to the cavity.

185. The method of claim 161, further comprising forming a cover, wherein forming the cover comprises:

forming a removable layer upon the upper surface of the supporting member;

forming a cover upon the removable layer;

20 forming support structures upon the supporting member, the support structures covering a portion of the cover; and

dissolving the removable layer.

186. The method of claim 161, wherein forming the cover further comprises forming openings 25 in the cover, wherein the openings are substantially aligned with the cavity.

187. The method of claim 161, wherein the particles are placed in the cavities using a micromanipulator.

188. The method of claim 161, further comprising forming additional cavities within the supporting member, and further comprising placing additional particles in the additional cavities, wherein placing the additional particles in the additional cavities comprises:

5 placing a first masking layer on the supporting member, wherein the first masking layer covers a first portion of the additional cavities such that passage of a particle into the first portion of the additional cavities is inhibited, and wherein the first masking layer a second portion of the cavities substantially unmasked,;

placing the additional particles on the supporting member;

moving the additional particles across the supporting member such that the particles fall into the second portion of the cavities;

removing the first masking layer;

placing a second masking layer upon the supporting member, wherein the second masking layer covers the second portion of the cavities and a portion of the first portion of the cavities while leaving a third portion of the cavities unmasked;

20 placing additional particles on the supporting member; and

moving the additional particles across the supporting member such that the particles fall into the third portion of the cavities.

25
189. The method of claim 161, wherein forming the cover comprises coupling the cover to the supporting member at a distance above the supporting member substantially less than a width of the particle.

190. The method of claim 161, wherein the supporting member comprises a dry film photoresist material.
191. The method of claim 161, wherein the supporting member comprises a plurality of layers
5 of a dry film photoresist material.

192. The method of claim 161, wherein forming the cavity comprises:

etching a first opening through a first dry film photoresist layer, the first opening having a width substantially less than a width of the particle;

placing a second dry film photoresist layer upon the first dry film photoresist layer;

etching a second opening through the second dry film photoresist layer, the second opening being substantially aligned with the first opening, wherein a width of the second opening is substantially greater than the width of the first opening;

wherein the second dry film photoresist layer comprises a thickness substantially greater than a width of the particle;

20

and further comprising forming a reflective layer upon the inner surface of the cavity.

193. The method of claim 161, wherein the supporting material comprises a plastic material.

25 194. The method of claim 161, wherein the supporting material comprises a plastic material, and wherein the cavity is formed by drilling the supporting material.

195. The method of claim 161, wherein the supporting material comprises a plastic material, and wherein the cavity is formed by transfer molding the supporting member.

196. The method of claim 161, wherein the supporting material comprises a plastic material, and wherein the cavity is formed by a punching device.

5 197. A method of sensing an analyte in a fluid comprising:

passing a fluid over a sensor array, the sensor array comprising at least one particle positioned within a cavity of a supporting member;

monitoring a spectroscopic change of the particle as the fluid is passed over the sensor array, wherein the spectroscopic change is caused by the interaction of the analyte with the particle.

198. The method of claim 197, wherein the spectroscopic change comprises a change in absorbance of the particle.

199. The method of claim 197, wherein the spectroscopic change comprises a change in fluorescence of the particle.

20 200. The method of claim 197, wherein the spectroscopic change comprises a change in phosphorescence of the particle.

201. The method of claim 197, wherein the analyte is a proton atom, and wherein the spectroscopic change is produced when the pH of the fluid is varied, and wherein monitoring the 25 spectroscopic change of the particle allows the pH of the fluid to be determined.

202. The method of claim 197, wherein the analyte is a metal cation, and wherein the spectroscopic change is produced in response to the presence of the metal cation in the fluid.

203. The method of claim 197, wherein the analyte is an anion, and wherein the spectroscopic change is produced in response to the presence of the anion in the fluid.

204. The method of claim 197, wherein the analyte is a DNA molecule, and wherein the
5 spectroscopic change is produced in response to the presence of the DNA molecule in the fluid.

205. The method of claim 197, wherein the analyte is a protein, and wherein the spectroscopic change is produced in response to the presence of the protein in the fluid.

206. The method of claim 197, wherein the analyte is a metabolite, and wherein the spectroscopic change is produced in response to the presence of the metabolite in the fluid.

207. The method of claim 197, wherein the analyte is a sugar, and wherein the spectroscopic change is produced in response to the presence of the sugar in the fluid.

208. The method of claim 197, wherein the analyte is a bacteria, and wherein the spectroscopic change is produced in response to the presence of the bacteria in the fluid.

209. The method of claim 197, wherein the particle comprises a receptor coupled to a
polymeric resin, and further comprising exposing the particle to an indicator prior to passing the
fluid over the sensor array.

210. The method of claim 197, wherein the particle comprises a receptor coupled to a
polymeric resin, and further comprising exposing the particle to an indicator prior to passing the
25 fluid over the sensor array, and wherein a binding strength of the indicator to the receptor is less
than a binding strength of the analyte to the receptor.

211. The method of claim 197, wherein the particle comprises a receptor coupled to a
polymeric resin, and further comprising exposing the particle to an indicator prior to passing the

fluid over the sensor array, and wherein the indicator is a fluorescent indicator.

212. The method of claim 197, further comprising treating the fluid with an indicator prior to passing the fluid over the sensor array, wherein the indicator is configured to couple with the analyte.

213. The method of claim 197, wherein the analyte is bacteria and further comprising breaking down the bacteria prior to passing the fluid over the sensor array.

214. The method of claim 197, wherein monitoring the spectroscopic change is performed with a CCD device.

215. The method of claim 197, further comprising measuring the intensity of the spectroscopic change, and further comprising calculating the concentration of the analyte based on the intensity of the spectroscopic change.

216. The method of claim 197, wherein the supporting member comprises silicon.

217. The method of claim 197, wherein the spectroscopic change comprises a change in reflectance of the particle.

218. The method of claim 197, wherein the cavity is configured such that the fluid entering the cavity passes through the supporting member.

219. The method of claim 197, wherein monitoring the spectroscopic change comprises:

directing a red light source at the particle;

detecting the absorbance of red light by the particle;

directing a green light source at the particle;

detecting the absorbance of green light by the particle;

5

directing a blue light source at the particle; and

detecting the absorbance of blue light by the particle.

SEARCHED
INDEXED
COPYED
FILED

220. The method of claim 197, wherein the sensor array further comprises a vacuum chamber coupled to a conduit and the sensor array , and wherein the chamber is configured to provide a pulling force on the fluid in the sensor array.
221. The method of claim 197, wherein the fluid is blood.
222. The method of claim 197, further comprising passing the fluid through a filter prior to passing the fluid over the sensor array.
223. The method of claim 197, further comprising passing the fluid through a reagent reservoir prior to passing the fluid over the sensor array.
224. The method of claim 197, wherein the particles are initially stored in a buffer, and further comprising removing the buffer prior to passing the fluid over the sensor array.
225. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal.

226. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer

Atty. Dkt. No.: 5119-00543

Conley, Rose, & Tayon, P C

coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the signal comprises an absorbance of the particle.

5 227. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the signal comprises a fluorescence of the particle.

10 11 12 13 14 15 16 17 18 19 20 21

228. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the signal comprises a phosphorescence of the particle.

229. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the chemical reaction comprises cleavage of the biopolymer induced by the analyte.

20 230. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the biopolymer comprises a peptide, and wherein the analyte comprises a protease, and wherein the chemical reaction comprises cleavage of the peptide by the protease.

25

231. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the biopolymer comprises a polynucleotide, and wherein the analyte comprises a nuclease, and wherein the chemical reaction

comprises cleavage of the polynucleotide by the nuclease.

232. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the biopolymer comprises an oligosaccharide, and wherein the analyte comprises an oligosaccharide cleaving agent, and wherein the chemical reaction comprises cleavage of the oligosaccharide by the oligosaccharide cleaving agent.

PCT/US2012/042152

233. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the particle further comprises a first indicator and a second indicator, the first and second indicators being coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes a distance between the first and second indicators to become altered such that the alteration of the signal is produced.

234. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the particle further comprises a first indicator and a second indicator, the first and second indicators being coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes a distance between the first and second indicators to become altered such that the alteration of the signal is produced, and wherein the first indicator is a fluorescent dye and wherein the second indicator is a fluorescent quencher, and wherein the first indicator and the second indicator are within the Föster energy transfer radius, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the first and second indicators to move outside the Föster energy transfer radius such that the alteration of the signal is produced.

235. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the particle further comprises a first indicator and a second indicator, the first and second indicators being coupled to the biopolymer,
5 and wherein the chemical reaction of the biopolymer in the presence of the analyte causes a distance between the first and second indicators to become altered such that the alteration of the signal is produced, and wherein the first indicator is a fluorescent dye and wherein the second indicator is a different fluorescent dye, and wherein the first indicator and the second indicator produce a fluorescence resonance energy transfer signal, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the positions of the first and second indicators to change such that the fluorescence resonance energy transfer signal is altered producing the alteration in the signal.

236. The method of claim 197, wherein the particle comprises a polymeric resin, a biopolymer coupled to the polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and further comprising an indicator coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the biopolymer to be cleaved such that a portion of the biopolymer coupled to the indicator is cleaved from a portion of the biopolymer coupled to the polymeric resin.

20

237. The method of claim 197, wherein the particle comprises a receptor coupled to a polymeric resin, and a probe molecule coupled to the polymeric resin, and wherein the probe molecule is configured to produce a signal when the receptor interacts with the analyte during use.

25

238. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use.

239. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker and wherein the indicator is coupled to the polymeric resin by a second linker.

240. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker and wherein the indicator is coupled to the polymeric resin by a second linker, and wherein the particle further comprises an additional indicator coupled to the polymeric resin by a third linker, wherein the interaction of the receptor with the analyte causes the indicator and the additional indicator to interact such that the signal is produced.

241. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker and wherein the indicator is coupled to the receptor.

242. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker and wherein the indicator is coupled to the receptor, and wherein the particle further comprises an additional indicator coupled to the receptor, wherein the interaction of the receptor with the analyte causes the indicator and the additional indicator to interact such that the signal is produced.

243. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the

receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker and wherein the indicator is coupled to the receptor by a second linker.

5 244. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker and wherein the indicator is coupled to the receptor by a second linker, and wherein the particle further comprises an additional indicator coupled to the receptor, wherein the interaction of the receptor with the analyte causes the indicator and the additional indicator to interact such that the signal is produced.

10 245. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker and wherein the indicator is coupled to the first linker.

15 246. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker, and wherein the indicator is coupled to the first linker by a second linker.

20 247. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker, and wherein the indicator is coupled to the first linker by a second linker, and wherein the particle further comprises an additional indicator coupled to the receptor, wherein the interaction of the receptor with the analyte causes the indicator and the

additional indicator to interact such that the signal is produced.

248. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the receptor is coupled to the polymeric resin by a first linker, and wherein the indicator is coupled to the first linker by a second linker, and wherein the particle further comprises an additional indicator coupled to the first linker by a third linker, wherein the interaction of the receptor with the analyte causes the indicator and the additional indicator to interact such that the signal is produced.

249. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the indicator interacts with the receptor in the absence of an analyte.

250. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the particle further comprises an additional indicator coupled to the polymeric resin, and wherein the indicator is a first fluorescent dye and wherein the additional indicator is a second fluorescent dye, and wherein the indicator and the additional indicator produce a fluorescence resonance energy transfer signal, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the fluorescence resonance energy transfer signal is altered.

251. The method of claim 197, wherein the particle comprises a receptor and an indicator coupled to a polymeric resin, wherein the indicator is configured to produce a signal when the receptor interacts with the analyte during use, and wherein the particle further comprises an additional indicator coupled to the polymeric resin, wherein the indicator is a fluorescent dye and

wherein the additional indicator is a fluorescence quencher, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the indicator is at least partially quenched by the additional indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that
5 the quenching of the fluorescence of the indicator by the additional indicator is altered.

252. The method of claim 197, wherein the particle comprises a biopolymer coupled to a polymeric resin, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte to produce a signal, and wherein the biopolymer undergoes a chemical reaction in the presence of the analyte such that the signal is altered.

253. A particle for detecting an analyte in a fluid comprising:

a polymeric resin;

a biopolymer coupled to the polymeric resin; and

an indicator system coupled to the biopolymer, the indicator system producing a signal, and wherein the biopolymer undergoes a chemical reaction in the presence of
20 the analyte such that the signal is altered.

254. The particle of claim 253, wherein the particle ranges from about 0.05 micron to about 500 microns.

255. The particle of claim 253, wherein a volume of the particle changes when contacted with the fluid.

256. The particle of claim 253, wherein the chemical reaction comprises cleavage of the biopolymer by the analyte.

257. The particle of claim 253, wherein the biopolymer comprises a peptide, and wherein the analyte comprises a protease, and wherein the chemical reaction comprises cleavage of the peptide by the protease.

5

258. The particle of claim 253, wherein the biopolymer comprises a polynucleotide, and wherein the analyte comprises a nuclease, and wherein the chemical reaction comprises cleavage of the polynucleotide by the nuclease.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
336100
336101
336102
336103
336104
336105
336106
336107
336108
336109
336110
336111
336112
336113
336114
336115
336116
336117
336118
336119
336120
336121
336122
336123
336124
336125
336126
336127
336128
336129
336130
336131
336132
336133
336134
336135
336136
336137
336138
336139
336140
336141
336142
336143
336144
336145
336146
336147
336148
336149
336150
336151
336152
336153
336154
336155
336156
336157
336158
336159
336160
336161
336162
336163
336164
336165
336166
336167
336168
336169
336170
336171
336172
336173
336174
336175
336176
336177
336178
336179
336180
336181
336182
336183
336184
336185
336186
336187
336188
336189
336190
336191
336192
336193
336194
336195
336196
336197
336198
336199
336200
336201
336202
336203
336204
336205
336206
336207
336208
336209
336210
336211
336212
336213
336214
336215
336216
336217
336218
336219
336220
336221
336222
336223
336224
336225
336226
336227
336228
336229
3362200
3362201
3362202
3362203
3362204
3362205
3362206
3362207
3362208
3362209
33622010
33622011
33622012
33622013
33622014
33622015
33622016
33622017
33622018
33622019
336220100
336220101
336220102
336220103
336220104
336220105
336220106
336220107
336220108
336220109
336220110
336220111
336220112
336220113
336220114
336220115
336220116
336220117
336220118
336220119
3362201100
3362201101
3362201102
3362201103
3362201104
3362201105
3362201106
3362201107
3362201108
3362201109
3362201110
3362201111
3362201112
3362201113
3362201114
3362201115
3362201116
3362201117
3362201118
3362201119
33622011100
33622011101
33622011102
33622011103
33622011104
33622011105
33622011106
33622011107
33622011108
33622011109
33622011110
33622011111
33622011112
33622011113
33622011114
33622011115
33622011116
33622011117
33622011118
33622011119
336220111100
336220111101
336220111102
336220111103
336220111104
336220111105
336220111106
336220111107
336220111108
336220111109
336220111110
336220111111
336220111112
336220111113
336220111114
336220111115
336220111116
336220111117
336220111118
336220111119
3362201111100
3362201111101
3362201111102
3362201111103
3362201111104
3362201111105
3362201111106
3362201111107
3362201111108
3362201111109
3362201111110
3362201111111
3362201111112
3362201111113
3362201111114
3362201111115
3362201111116
3362201111117
3362201111118
3362201111119
33622011111100
33622011111101
33622011111102
33622011111103
33622011111104
33622011111105
33622011111106
33622011111107
33622011111108
33622011111109
33622011111110
33622011111111
33622011111112
33622011111113
33622011111114
33622011111115
33622011111116
33622011111117
33622011111118
33622011111119
336220111111100
336220111111101
336220111111102
336220111111103
336220111111104
336220111111105
336220111111106
336220111111107
336220111111108
336220111111109
336220111111110
336220111111111
336220111111112
336220111111113
336220111111114
336220111111115
336220111111116
336220111111117
336220111111118
336220111111119
3362201111111100
3362201111111101
3362201111111102
3362201111111103
3362201111111104
3362201111111105
3362201111111106
3362201111111107
3362201111111108
3362201111111109
3362201111111110
3362201111111111
3362201111111112
3362201111111113
3362201111111114
3362201111111115
3362201111111116
3362201111111117
3362201111111118
3362201111111119
33622011111111100
33622011111111101
33622011111111102
33622011111111103
33622011111111104
33622011111111105
33622011111111106
33622011111111107
33622011111111108
33622011111111109
33622011111111110
33622011111111111
33622011111111112
33622011111111113
33622011111111114
33622011111111115
33622011111111116
33622011111111117
33622011111111118
33622011111111119
336220111111111100
336220111111111101
336220111111111102
336220111111111103
336220111111111104
336220111111111105
336220111111111106
336220111111111107
336220111111111108
336220111111111109
336220111111111110
336220111111111111
336220111111111112
336220111111111113
336220111111111114
336220111111111115
336220111111111116
336220111111111117
336220111111111118
336220111111111119
3362201111111111100
3362201111111111101
3362201111111111102
3362201111111111103
3362201111111111104
3362201111111111105
3362201111111111106
3362201111111111107
3362201111111111108
3362201111111111109
3362201111111111110
3362201111111111111
3362201111111111112
3362201111111111113
3362201111111111114
3362201111111111115
3362201111111111116
3362201111111111117
3362201111111111118
3362201111111111119
33622011111111111100
33622011111111111101
33622011111111111102
33622011111111111103
33622011111111111104
33622011111111111105
33622011111111111106
33622011111111111107
33622011111111111108
33622011111111111109
33622011111111111110
33622011111111111111
33622011111111111112
33622011111111111113
33622011111111111114
33622011111111111115
33622011111111111116
33622011111111111117
33622011111111111118
33622011111111111119
336220111111111111100
336220111111111111101
336220111111111111102
336220111111111111103
336220111111111111104
336220111111111111105
336220111111111111106
336220111111111111107
336220111111111111108
336220111111111111109
336220111111111111110
336220111111111111111
336220111111111111112
336220111111111111113
336220111111111111114
336220111111111111115
336220111111111111116
336220111111111111117
336220111111111111118
336220111111111111119
3362201111111111111100
3362201111111111111101
3362201111111111111102
3362201111111111111103
3362201111111111111104
3362201111111111111105
3362201111111111111106
3362201111111111111107
3362201111111111111108
3362201111111111111109
3362201111111111111110
3362201111111111111111
3362201111111111111112
3362201111111111111113
3362201111111111111114
3362201111111111111115
3362201111111111111116
3362201111111111111117
3362201111111111111118
3362201111111111111119
33622011111111111111100
33622011111111111111101
33622011111111111111102
33622011111111111111103
33622011111111111111104
33622011111111111111105
33622011111111111111106
33622011111111111111107
33622011111111111111108
33622011111111111111109
33622011111111111111110
33622011111111111111111
33622011111111111111112
33622011111111111111113
33622011111111111111114
33622011111111111111115
33622011111111111111116
33622011111111111111117
33622011111111111111118
33622011111111111111119
336220111111111111111100
336220111111111111111101
336220111111111111111102
336220111111111111111103
336220111111111111111104
336220111111111111111105
336220111111111111111106
336220111111111111111107
336220111111111111111108
336220111111111111111109
336220111111111111111110
336220111111111111111111
336220111111111111111112
336220111111111111111113
336220111111111111111114
336220111111111111111115
336220111111111111111116
336220111111111111111117
336220111111111111111118
336220111111111111111119
3362201111111111111111100
3362201111111111111111101
3362201111111111111111102
3362201111111111111111103
3362201111111111111111104
3362201111111111111111105
3362201111111111111111106
3362201111111111111111107
3362201111111111111111108
3362201111111111111111109
3362201111111111111111110
3362201111111111111111111
3362201111111111111111112
3362201111111111111111113
3362201111111111111111114
3362201111111111111111115
3362201111111111111111116
3362201111111111111111117
3362201111111111111111118
3362201111111111111111119
33622011111111111111111100
33622011111111111111111101
33622011111111111111111102
33622011111111111111111103
33622011111111111111111104
33622011111111111111111105
33622011111111111111111106
33622011111111111111111107
33622011111111111111111108
33622011111111111111111109
33622011111111111111111110
33622011111111111111111111
33622011111111111111111112
33622011111111111111111113
33622011111111111111111114
33622011111111111111111115
33622011111111111111111116
33622011111111111111111117
33622011111111111111111118
33622011111111111111111119
336220111111111111111111100
336220111111111111111111101
336220111111111111111111102
336220111111111111111111103
336220111111111111111111104
336220111111111111111111105
336220111111111111111111106
336220111111111111111111107
336220111111111111111111108
336220111111111111111111109
336220111111111111111111110
336220111111111111111111111
33622011

263. The particle of claim 253, wherein the indicator system comprises at least one indicator coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the biopolymer to be cleaved such that a portion of the biopolymer coupled 5 to the indicator is cleaved from a portion of the biopolymer coupled to the polymeric resin.

264. A particle for detecting an analyte in a fluid comprising:

a polymeric resin;

a receptor coupled to the polymeric resin; and

a probe molecule coupled to the biopolymer, the probe molecule configured to produce a signal when the receptor interacts with the analyte during use.

265. The particle of claim 264, wherein the analyte comprises a metal ion, and wherein the probe molecule produces the signal in response to the interaction of the metal ion with the receptor.

20 266. The particle of claim 264, wherein the particles further comprises an additional probe molecule coupled to the polymeric resin, wherein the interaction of the receptor with the analyte causes the probe molecules to interact such that the signal is produced.

267. The particle of claim 264, wherein the receptor comprises a polynucleotide.

25

268. The particle of claim 264, wherein the receptor comprises a peptide.

269. The particle of claim 264, wherein the receptor comprises an enzyme.

270. The particle of claim 264, wherein the receptor comprises a synthetic receptor.
271. The particle of claim 264, wherein the receptor comprises an unnatural biopolymer.
- 5 272. The particle of claim 264, wherein the receptor comprises an antibody.
273. The particle of claim 264, wherein the receptor comprises an antigen.
274. The particle of claim 264, wherein the analyte comprises phosphate functional groups, and wherein the particle is configured to produce the signal in the presence of the phosphate functional groups.
275. The particle of claim 264, wherein the analyte comprises bacteria, and wherein the particle is configured to produce the signal in the presence of the bacteria.
276. The particle of claim 264, wherein the receptor comprises an antibody, an aptamer, an organic receptor, or an enzyme.
- 20 277. The particle of claim 264, wherein the probe molecule comprises an indicator, a dye, a quantum particle, or a semi-conductor particle.
278. A particle for detecting an analyte in a fluid comprising:
- 25 a polymeric resin;
- a receptor coupled to the polymeric resin by a first linker; and
- an indicator coupled to the first linker, the indicator configured to produce a signal when the receptor interacts with the analyte during use.

279. The particle of claim 278, wherein the receptor comprises a polynucleotide.
280. The particle of claim 278, wherein the receptor comprises a peptide.
- 5
281. The particle of claim 278, wherein the receptor comprises a compound of the general formula:
- $(R^1)_n - X - (R^2)_m$
- wherein X comprises carbocyclic systems or C₁-C₁₀ alkanes, n is an integer of at least 1, m is an integer of at least 1; and
- wherein each of R¹ independently represents -(CH₂)_y-NR³-C(NR⁴)-NR⁵, -(CH₂)_y-NR⁶R⁷, -(CH₂)_y-NH-Y, -(CH₂)_y-O-Z;
- where y is an integer of at least 1;
- where R³, R⁴, and R⁵ independently represent hydrogen, alkyl, aryl, alkyl carbonyl of 1 to 10 carbon atoms, or alkoxy carbonyl of 1 to 10 carbon atoms, or R⁴ and R⁵ together represent a cycloalkyl group;
- where R⁶ represents hydrogen, alkyl, aryl, alkyl carbonyl of 1 to 10 carbon atoms, or alkoxy carbonyl of 1 to 10 carbon atoms;
- where R⁷ represents alkyl, aryl, alkyl carbonyl of 1 to 10 carbon atoms, or alkoxy carbonyl of 1 to 10 carbon atoms;
- where R⁶ and R⁷ together represent a cycloalkyl group;
- where Y is a peptide, or hydrogen
- 20
- 25
- and where Z is a polynucleotide, an oligosaccharide or hydrogen; and
- wherein each of R² independently represents hydrogen, alkyl, alkenyl, alkynyl, phenyl, phenylalkyl, arylalkyl, aryl, or together with another R² group represent a carbocyclic

ring.

282. The particle of claim 278, wherein the receptor comprises an enzyme.
- 5 283. The particle of claim 278, wherein the receptor is coupled to the first linker by a second linker and wherein the indicator is coupled to the first linker by a third linker.
- 10 284. The particle of claim 278, wherein the receptor is coupled to the first linker by a second linker and wherein the indicator is coupled to the first linker by a third linker, and wherein the indicator interacts with the receptor in the absence of an analyte.
- 15 285. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the first linker, wherein the interaction of the receptor with the analyte causes the indicator and the additional indicator to interact such that the signal is produced.
- 20 286. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the receptor, wherein the interaction of the receptor with the analyte causes the indicator and the additional indicator to interact such that the signal is produced.
- 25 287. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the first linker, and wherein the indicator is a first fluorescent dye and wherein the additional indicator is a second fluorescent dye, and wherein the indicator and the additional indicator produce a fluorescence resonance energy transfer signal, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the fluorescence resonance energy transfer signal is altered.
288. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the first linker, wherein the indicator is a fluorescent dye and wherein the additional indicator is a fluorescence quencher, and wherein the indicator and the additional indicator are

positioned such that the fluorescence of the indicator is at least partially quenched by the additional indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the indicator by the additional indicator is altered.

5

289. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the first linker, wherein the indicator is a fluorescence quencher and wherein the additional indicator is a fluorescent dye, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the additional indicator is at least partially quenched by the indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the additional indicator by the indicator is altered.

卷之三

290. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the receptor, and wherein the indicator is a first fluorescent dye and wherein the additional indicator is a second fluorescent dye, and wherein the indicator and the additional indicator produce a fluorescence resonance energy transfer signal, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the fluorescence resonance energy transfer signal is altered.

20

291. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the receptor, wherein the indicator is a fluorescent dye and wherein the additional indicator is a fluorescence quencher, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the indicator is at least partially quenched by the additional indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the indicator by the additional indicator is altered.

25

292. The particle of claim 278, wherein the particle further comprises an additional indicator

coupled to the receptor, wherein the indicator is a fluorescence quencher and wherein the additional indicator is a fluorescent dye, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the additional indicator is at least partially quenched by the indicator, and wherein the interaction of the analyte with the receptor causes the distance
5 between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the additional indicator by the indicator is altered.

293. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the first linker, wherein the receptor is coupled to the first linker by a second linker,
10 the indicator is coupled to the first linker by a third linker and the additional indicator is coupled to the first linker by a fourth linker, and wherein the indicator is a first fluorescent dye and wherein the additional indicator is a second fluorescent dye, and wherein the indicator and the additional indicator produce a fluorescence resonance energy transfer signal, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the fluorescence resonance energy transfer signal
15 is altered.

294. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the first linker, wherein the receptor is coupled to the first linker by a second linker,
20 the indicator is coupled to the first linker by a third linker and the additional indicator is coupled to the first linker by a fourth linker, wherein the indicator is a fluorescent dye and wherein the additional indicator is a fluorescence quencher, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the indicator is at least partially quenched by the additional indicator, and wherein the interaction of the analyte with the receptor causes the
25 distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the indicator by the additional indicator is altered.

295. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the first linker, wherein the receptor is coupled to the first linker by a second linker,

the indicator is coupled to the first linker by a third linker and the additional indicator is coupled to the first linker by a fourth linker, wherein the indicator is a fluorescence quencher and wherein the additional indicator is a fluorescent dye, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the additional indicator is at least partially quenched by the indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the additional indicator by the indicator is altered.

5

296. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the receptor, wherein the receptor is coupled to the first linker by a second linker, the indicator is coupled to the first linker by a third linker and the additional indicator is coupled to the receptor by a fourth linker, and wherein the indicator is a first fluorescent dye and wherein the additional indicator is a second fluorescent dye, and wherein the indicator and the additional indicator produce a fluorescence resonance energy transfer signal, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the fluorescence resonance energy transfer signal is altered.

20

297. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the receptor, wherein the receptor is coupled to the first linker by a second linker, the indicator is coupled to the first linker by a third linker and the additional indicator is coupled to the receptor by a fourth linker, wherein the indicator is a fluorescent dye and wherein the additional indicator is a fluorescence quencher, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the indicator is at least partially quenched by the additional indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the indicator by the additional indicator is altered.

25

298. The particle of claim 278, wherein the particle further comprises an additional indicator coupled to the receptor, wherein the receptor is coupled to the first linker by a second linker, the

indicator is coupled to the first linker by a third linker and the additional indicator is coupled to the receptor by a fourth linker, wherein the indicator is a fluorescent dye and wherein the additional indicator is a fluorescence quencher, and wherein the indicator and the additional indicator are positioned such that the fluorescence of the indicator is at least partially quenched
5 by the additional indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the indicator by the additional indicator is altered.

299. The particle of claim 278, wherein the particle further comprises an additional indicator
10 coupled to the receptor, wherein the receptor is coupled to the first linker by a second linker, the indicator is coupled to the first linker by a third linker and the additional indicator is coupled to the receptor by a fourth linker, wherein the indicator is a fluorescence quencher and wherein the additional indicator is a fluorescent dye, and wherein the indicator and the additional indicator
15 are positioned such that the fluorescence of the additional indicator is at least partially quenched by the indicator, and wherein the interaction of the analyte with the receptor causes the distance between the indicator and the additional indicator to become altered such that the quenching of the fluorescence of the additional indicator by the indicator is altered.

300. The particle of claim 278, wherein the polymeric resin comprises polystyrene-
20 polyethylene glycol-divinyl benzene.

301. A particle for detecting an analyte in a fluid comprising:

25 a polymeric resin;

a biopolymer coupled to the polymeric resin; and

an indicator system coupled to the biopolymer, the indicator system producing a signal during use, and wherein the biopolymer undergoes a chemical reaction in the

presence of the analyte such that the signal is altered during use.

302. The particle of claim 301, wherein the chemical reaction comprises cleavage of at least a portion of the biopolymer by the analyte.

5

303. The particle of claim 301, wherein the biopolymer comprises a polynucleotide, and wherein the analyte comprises a nuclease, and wherein the chemical reaction comprises cleavage of at least a portion of the polynucleotide by the nuclease.

10 20 30 40 50 60 70 80 90 100
* DRAFT

304. The particle of claim 301, wherein the biopolymer comprises an oligosaccharide, and wherein the analyte comprises an oligosaccharide cleaving agent, and wherein the chemical reaction comprises cleavage of at least a portion of the oligosaccharide by the oligosaccharide cleaving agent.

305. The particle of claim 301, wherein the particle indicator system comprises a first indicator and a second indicator, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes a distance between the first and second indicators to become altered such that the signal is produced.

20 306. The particle of claim 689, wherein the first indicator is a fluorescent dye and wherein the second indicator is a fluorescence quencher, and wherein the first indicator and the second indicator are positioned such that the fluorescence of the first indicator is at least partially quenched by the second indicator, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the first and second indicators to move such that the quenching of 25 the fluorescence of the first indicator by the second indicator is altered.

307. The particle of claim 689, wherein the first indicator is a fluorescent dye and wherein the second indicator is a different fluorescent dye, and wherein the first indicator and the second indicator produce a fluorescence resonance energy transfer signal, and wherein the chemical

reaction of the biopolymer in the presence of the analyte causes the positions of the first and second indicators to change such that the fluorescence resonance energy transfer signal is altered.

308. The particle of claim 301, wherein the indicator system comprises at least one indicator coupled to the biopolymer, and wherein the chemical reaction of the biopolymer in the presence of the analyte causes the biopolymer to be cleaved such that at least a portion of the biopolymer coupled to the indicator is cleaved from at least a portion of the biopolymer coupled to the polymeric resin.

309. A method of forming a sensor array for detecting an analyte in a fluid, comprising:
depositing a mask on a substrate;
forming an opening in the mask to expose a portion of the substrate;

etching the exposed portion of the substrate to form a cavity in the substrate,
wherein a portion of the substrate under the mask is etched to form flexible projections
positioned over a portion of the cavity; and

inserting a particle into the cavity, wherein the flexible projections substantially inhibit
removal of the particle from the cavity, and wherein a particle, the particle positioned within the
cavity, wherein the particle is configured to produce a signal when the particle interacts with the
analyte during use.

310. The method of claim 0, wherein the mask comprises silicon nitride.

311. The method of claim 0, wherein the substrate comprises a bulk crystalline (100) silicon
substrate.

312. The method of claim 0, wherein an area of the opening formed in the mask is smaller than
an area of a top opening of the cavity in the substrate.

313. The method of claim 0, wherein the opening formed in the mask comprises a square.

314. The method of claim 0, wherein the opening formed in the mask comprises a circle.

315. The method of claim 0, wherein the opening formed in the mask comprises a cross.

5

316. The method of claim 0, wherein the opening formed in the mask comprises a star.

317. The method of claim 0, wherein the opening formed in the mask comprises slits.

10
11
12
13
14
15
16
17
18
19
20

318. The method of claim 0, wherein the mask comprises a plastic.

319. The method of claim 0, wherein the cavity comprises a bottom opening.

320. The method of claim 0, wherein the substrate allows fluid flow through the cavity.

321. The method of claim 0, wherein the cavity comprises a bottom opening configured to allow passage of a particle smaller than the bottom opening through the cavity.

20 322. The method of claim 0, wherein the cavity comprises a bottom opening configured to

inhibit a particle larger than the bottom opening from passing through the cavity.

323. The method of claim 0, wherein a top opening and a bottom opening of the cavity provide selection of the particle substantially contained in the cavity.

25 324. The method of claim 0, wherein the cavity comprises a top opening configured to inhibit a particle larger than the top opening from passing into the cavity through the flexible projections.

325. The method of claim 0, wherein the cavity comprises a top opening configured to allow a particle smaller than the top opening into the cavity through the flexible projections.

326. The method of claim 0, wherein the particle is smaller than a top opening and larger than
5 a bottom opening of the cavity.

327. The method of claim 0, further comprising forming a plurality of cavities in the substrate.

328. The method of claim 0, wherein from about 10 to about 10^6 cavities are formed in the substrate.

329. The method of claim 0, further comprising providing a plurality of particles to the substrate.

330. The method of claim 0, further comprising inserting a plurality of particles in a plurality of cavities in the substrate.

331. The method of claim 0, further comprising directing a solution of particles towards a top opening of the cavity, wherein the particle of desired size is transferred into the cavity.
20

332. The method of claim 0, further comprising exposing the particle to a medium to shrink the particle for insertion into the cavity, wherein swelling of the particle after insertion into the cavity substantially contains the particle within the cavity.

25 333. The method of claim 0, wherein the flexible projections exhibit an elastic behavior, and wherein the flexible projections bend downward to allow insertion of the particle into the cavity, and wherein the flexible projections return upward to substantially contain the particle in the cavity.

334. The method of claim 0, wherein anisotropically etching the substrate comprises etching a bulk crystalline (100) silicon substrate to the (111) planes in the substrate.

335. The method of claim 0, wherein the mask comprises silicon dioxide.

5

336. The method of claim 0, wherein the mask comprises a dry film photoresist material.

337. The method of claim 0, further comprising illuminating the particle with a light source, wherein the flexible projections are transparent to light generated by the light source.

338. The method of claim 0, wherein the flexible projections are configured to elastically bend into the cavity in the substrate.

339. The method of claim 0, further comprising depositing a second mask, the second mask configured to inhibit the flexible projections bending from an initial position to a position away from the cavity.

340. The method of claim 0, wherein inserting the particle into the cavity comprises using airflow to pull the particle through the flexible projections.

20

341. The method of claim 0, wherein inserting the particle into the cavity comprises electrically actuating the flexible projections to allow insertion of the particle into the cavity.

342. A sensor array for detecting an analyte in a fluid, comprising:

25

a substrate, wherein the substrate comprises at least one cavity;

a particle positioned within the cavity, wherein the particle is configured to produce a signal upon interaction with the analyte; and

a flexible projection positioned over a portion of the cavity, wherein the flexible projection is configured to substantially inhibit displacement of the particle during use.

343. The sensor array of claim 342, wherein the particle comprises a receptor molecule coupled to a polymeric resin.

5 344. The sensor array of claim 342, wherein the particle has a size ranging from about 0.05 microns to about 500 microns in diameter.

345. The sensor array of claim 342, wherein the cavity is configured to substantially contain the particle.

10 346. The sensor array of claim 342, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the cover layer and the bottom layer are removable.

15 347. The sensor array of claim 342, wherein an opening is formed in the bottom of the cavity, wherein the opening is configured such that the fluid flows through the cavity and out of the cavity through the opening during use.

20 348. The sensor array of claim 342, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the bottom layer is coupled to a bottom surface of the substrate and wherein the cover layer is removable, and wherein the cover layer and the bottom layer include openings that are substantially aligned with the cavities during use.

25 349. The sensor array of claim 342, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein an opening is formed in the cover layer substantially aligned with the cavity, and wherein an opening is formed in the bottom layer substantially aligned with the cavity.

350. The sensor array of claim 342, wherein the cavity is tapered such that the width of the

cavity narrows in a direction from a top surface of the substrate toward a bottom surface of the substrate, and wherein a minimum width of the cavity is substantially less than a width of the particle.

5 351. The sensor array of claim 342, wherein a width of a bottom portion of the cavity is substantially less than a width of a top portion of the cavity, and wherein the width of the bottom portion of the cavity is substantially less than a width of the particle.

10 352. The sensor array of claim 342, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the bottom layer is configured to support the particle, and wherein an opening is formed in the cover layer substantially aligned with the cavity.

15 353. The sensor array of claim 342, further comprising a removable cover layer coupled to the substrate.

20 354. The sensor array of claim 342, wherein the substrate comprises a plastic material.

25 355. The sensor array of claim 342, wherein the substrate comprises a silicon wafer.

356. The sensor array of claim 342, wherein the substrate comprises a dry film photoresist material.

357. The sensor array of claim 342, wherein the substrate comprises a plurality of layers of a dry film photoresist material.

358. The sensor array of claim 342, wherein an inner surface of the cavity is coated with a reflective material.

卷之三

359. The sensor array of claim 342, further comprising channels in the substrate, wherein the channels are configured to allow the fluid to flow through the channels into and away from the cavity.

5 360. The sensor array of claim 342, further comprising a plurality of additional particles positioned within a plurality of additional cavities in the substrate.

361. The sensor array of claim 342, further comprising a plurality of additional flexible projections positioned over a plurality of additional cavities in the substrate.

362. The sensor array of claim 342, further comprising a cover layer coupled to the substrate, wherein the flexible projection is formed in the cover layer.

363. The sensor array of claim 342, wherein the flexible projection comprises silicon nitride.

364. The sensor array of claim 342, wherein the flexible projection comprises a plastic.

365. The sensor array of claim 342, wherein the flexible projection is configured to retain the particle in the cavity.

20

366. The sensor array of claim 342, wherein a top opening and a bottom opening of the cavity provides selection of the particle substantially contained in the cavity.

367. The sensor array of claim 342, wherein a size of the particle is smaller than a top opening
25 of the cavity and larger than a bottom opening of the cavity such that the particle will be
substantially contained in the cavity.

368. The sensor array of claim 342, wherein the particle is positioned within the cavity by using airflow to pull the particle through the flexible projection.

369. The sensor array of claim 342, wherein the flexible projection comprises silicon dioxide.

370. The sensory array of claim 342, further comprising a light source, wherein the flexible
5 projection is transparent to light generated by the light source.

371. The sensor array of claim 342, further comprising a cover layer coupled to the substrate
and a bottom layer coupled to the substrate, wherein the cover layer and the bottom layer are
transparent to light generated by a light source.

372. The sensor array of claim 342, wherein the flexible projection is configured to elastically
bend into the cavity in the substrate.

373. The sensor array of claim 342, further comprising a mask, the mask configured to inhibit
the flexible projection bending from an initial position to a position away from the cavity.

374. The sensor array of claim 342, wherein the flexible projection is electrically actuated to
allow insertion of the particle into the cavity.

20 375. A method for forming a sensor array for selecting a particle, comprising:
depositing a mask on a substrate;
forming an opening in the mask to expose a portion of the substrate;
anisotropically etching the exposed portion of the substrate to form a cavity in the
substrate, wherein the cavity comprises a top opening and a bottom opening; and
25 inserting a particle into the cavity, wherein a diameter of the particle is smaller than the
top opening of the cavity, and wherein the diameter of the particle is larger than the bottom
opening of the cavity, wherein the particle is configured to produce a signal when the particle
interacts with the analyte during use.

376. The method of claim 375, wherein the mask comprises silicon nitride.
377. The method of claim 375, wherein the mask comprises a plastic.
- 5 378. The method of claim 375, wherein the mask comprises a dry film photoresist material.
379. The method of claim 375, wherein the mask comprises a plurality of dry film photoresist materials.
- 10 380. The method of claim 375, wherein the substrate comprises silicon.
381. The method of claim 375, wherein the substrate comprises plastic.
- 15 382. The method of claim 375, wherein the substrate comprises a plurality of layers of dry film photoresist material.
- 20 383. The method of claim 375, wherein forming the opening in the mask comprises etching the mask.
- 25 384. The method of claim 375, wherein forming the opening in the mask comprises cutting the mask.
385. The method of claim 375, wherein anisotropically etching the substrate comprises etching a bulk crystalline (100) silicon substrate to the (111) planes in the substrate with a Group 1A metal hydroxide solution.
386. The method of claim 375, further comprising forming a plurality of additional openings in the mask.

387. The method of claim 375, further comprising forming a plurality of additional cavities in the substrate.

388. The method of claim 375, further comprising a plurality of additional openings in the
5 mask positioned over a plurality of additional cavities formed in the substrate.

389. The method of claim 375, wherein a size of the top opening of the cavity is controlled independently of a size of bottom opening of the cavity.

390. The method of claim 375, wherein the bottom opening of the cavity provides retention of a particle with a diameter larger than the bottom opening and allows passage of a particle with a diameter smaller than the bottom opening through the bottom opening.

391. The method of claim 375, wherein inserting a particle into the cavity comprises placement of the particle by micromanipulators.

392. The method of claim 375, further comprising flowing a solution of particles over the substrate.

20 393. The method of claim 375, further comprising flowing a solution of particles over the cavity formed in the substrate.

394. The method of claim 375, further comprising flowing a solution of particles over a plurality of additional cavities in the substrate.

25 395. The method of claim 375, further comprising flowing a solution of particles over the substrate by applying a vacuum to the solution of particles.

396. The method of claim 375, wherein inserting a particle into the cavity comprises inserting a plurality of particles into a plurality of cavities.

397. The method of claim 375, wherein inserting the particle into the cavity comprises using 5 airflow to pull the particle into the cavity.

398. The method of claim 375, further comprising illuminating the particle with a light source, wherein the mask is transparent to light generated by the light source.

399. A sensor array for selecting a particle comprising:
a substrate, wherein the substrate comprises at least one cavity, the cavity comprising;
a top opening; and
a bottom opening;
wherein the cavity is configured to allow fluid to pass through the substrate
through the top opening and the bottom opening of the cavity; and
a particle positioned within the cavity, wherein the particle is configured to produce a
signal when the particle interacts with the analyte during use; and wherein a diameter of
the particle is smaller than the top opening of the cavity, and wherein the diameter of the
particle is larger than the bottom opening of the cavity.

20

400. The sensor array of claim 399, wherein the substrate comprises a silicon wafer.

401. The sensor array of claim 399, wherein the substrate comprises a plastic.

25 402. The sensor array of claim 399, wherein the substrate comprises a dry film photoresist
material.

403. The sensor array of claim 399, wherein the substrate comprises a plurality of dry film
photoresist material.

404. The sensor array of claim 399, wherein the at least one cavity comprises a plurality of cavities in the substrate.
- 5 405. The sensor array of claim 399, wherein the particle comprises a diameter from about 0.05 micron to about 500 microns.
406. The sensor array of claim 399, wherein a too small particle will pass out of the bottom opening of the cavity.
407. The sensor array of claim 399, wherein a too large particle will be rejected from entering the top opening of the cavity.
408. The sensor array of claim 399, wherein the substrate comprises a (100) silicon substrate, and wherein walls of the cavity of the substrate comprise (111) planes of the silicon substrate.
409. The sensor array of claim 399, wherein the cavity comprises a width from about 0.05 microns to about 500 microns.
- 20 410. The sensor array of claim 399, wherein the cavity is tapered such that a width of the cavity narrows in a direction from a top surface of the substrate toward a bottom surface of the substrate, and wherein a minimum width of the cavity is substantially less than a width of the particle.
- 25 411. The sensor array of claim 399, wherein the cavity is tapered such that a minimum width of the top opening is substantially greater than a maximum width of the particle.

412. The sensor array of claim 399, further comprising channels in the substrate, wherein the channels are configured to allow the fluid to flow through the channels into and away from the cavity.

5 413. The sensor array of claim 399, further comprising a plurality of additional particles positioned within a plurality of additional cavities formed in the substrate.

414. The sensor array of claim 399, wherein the particle is positioned within the cavity using airflow to pull the particle into the cavity.

415. The sensor array of claim 399, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the cover layer and the bottom layer are removable.

416. The sensor array of claim 399, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the cover layer and the bottom layer are removable, and wherein the cover layer and the bottom layer include openings that are substantially aligned with the cavities during use.

20 417. The sensor array of claim 399, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the bottom layer is coupled to a bottom surface of the substrate and wherein the cover layer is removable, and wherein the cover layer and the bottom layer include openings that are substantially aligned with the cavities during use.

25 418. The sensor array of claim 399, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein an opening is formed in the cover layer substantially aligned with the cavity, and wherein an opening is formed in the bottom layer substantially aligned with the cavity.

419. The sensor array of claim 399, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the bottom layer is configured to support the particle, and wherein an opening is formed in the cover layer substantially aligned with the cavity.

5

420. The sensor array of claim 399, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the cover layer and the bottom layer are transparent to light generated by a light source.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000

421. The sensor array of claim 399, further comprising a cover layer, wherein the cover layer is transparent to light generated by a light source.

422. A sensor array for detecting analytes in a fluid, comprising:

a substrate;

a first cavity formed in the substrate, the first cavity having a first top opening and a first bottom opening;

a second cavity formed in the substrate, the second cavity having a second top opening and a second bottom opening;

20 a first particle positioned in the first cavity having a first particle size, wherein the first particle is configured to produce a signal when the first particle interacts with an analyte during use;

a second particle positioned in the second cavity having a second particle size, wherein the second particle is configured to produce a signal when the second particle interacts with an analyte during use;

25 wherein the second particle size is greater than the first top opening and wherein the first particle size is less than the second bottom opening.

423. The sensor array of claim 422, wherein the first particle is configured to produce a first signal in the presence of a first analyte, and wherein the second particle is configured to produce a signal in the presence of a second analyte, wherein the first and second analytes are different.

5 424. The sensor array of claim 422, wherein the first and second particles comprise a receptor molecules coupled to a polymeric resin.

425. The sensor array of claim 422, wherein the size of the first and second particles ranges from about 0.05 microns to about 500 microns in diameter.

10 426. The sensor array of claim 422, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the cover layer and the bottom layer are removable.

15 427. The sensor array of claim 422, further comprising a substantially flexible projection positioned over a portion of the cavity, wherein the flexible projection is configured to substantially inhibit displacement of the particle during use.

20 428. The sensor array of claim 422, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the bottom layer is coupled to a bottom surface of the substrate and wherein the cover layer is removable, and wherein the cover layer and the bottom layer include openings that are substantially aligned with the cavities during use.

25 429. The sensor array of claim 422, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein openings formed in the cover layer are substantially aligned with the cavities, and wherein openings formed in the bottom layer are substantially aligned with the cavities.

430. The sensor array of claim 422, wherein the cavities are tapered such that the width of

Atty. Dkt. No : 5119-00543

Conley, Rose, & Tayon, P C

each cavity narrows in a direction from a top surface of the substrate toward a bottom surface of the substrate.

431. The sensor array of claim 422, wherein a width of the bottom opening of the cavities is
5 substantially less than a width of a top opening of the cavities.

432. The sensor array of claim 422, further comprising a removable cover layer coupled to the substrate.

433. The sensor array of claim 422, wherein the substrate comprises a plastic material.

434. The sensor array of claim 422, wherein the substrate comprises a silicon wafer.

435. The sensor array of claim 422, wherein the substrate comprises a dry film photoresist material.

436. The sensor array of claim 422, wherein the substrate comprises a plurality of layers of a dry film photoresist material.

20 437. The sensor array of claim 422, wherein an inner surface of the cavity is coated with a reflective material.

25 438. The sensor array of claim 422, further comprising channels in the substrate, wherein the channels are configured to allow the fluid to flow through the channels into and away from the cavities.

439. The sensor array of claim 422, further comprising a mask coupled to the upper surface of the substrate, and further comprising a flexible projection positioned over a portion of the cavity,

wherein the flexible projection is configured to substantially inhibit displacement of the particle during use, and wherein the flexible projections are formed in the mask.

440. The sensor array of claim 422, further comprising a flexible projection positioned over a portion of the cavity, wherein the flexible projection is configured to substantially inhibit displacement of the particle during use, and wherein the flexible projections comprise silicon nitride.

441. The sensor array of claim 422, further comprising a flexible projection positioned over a portion of the cavity, wherein the flexible projection is configured to substantially inhibit displacement of the particle during use, and wherein the flexible projections comprise a polymer.

442. The sensor array of claim 422, further comprising a flexible projection positioned over a portion of the cavity, wherein the flexible projection is configured to substantially inhibit displacement of the particle during use, and wherein the flexible projections comprise silicon dioxide.

443. The sensor array of claim 422, further comprising a flexible projection positioned over a portion of the cavity, wherein the flexible projection is configured to substantially inhibit displacement of the particle during use, and further comprising a light source, wherein the flexible projections are transparent to light generated by the light source.

444. The sensor array of claim 422, further comprising a cover layer coupled to the substrate and a bottom layer coupled to the substrate, wherein the cover layer and the bottom layer are transparent to light generated by a light source.

445. A method of forming a sensor array for detecting an analyte in a fluid, comprising:

forming a first and second cavity in a substrate, the first cavity has a first top opening and a first bottom opening, and wherein the second cavity has a second top opening and a second bottom opening; and

5 placing a mixture of a first and a second particle on the substrate, wherein the first particle has a first particle size, and wherein the first particle is configured to produce a signal when the first particle interacts with an analyte during use, and wherein the second particle has a second particle size, wherein the second particle is configured to produce a signal when the second particle interacts with an analyte during use, and wherein the second particle size is greater than the first top opening and wherein the first particle size is less than the second bottom opening;

10 inserting the particles into the cavities.

446. The method of claim 445, wherein placing a mixture of the particles on the substrate comprises directing a suspension of the particles toward the top openings of the cavities.

15 447. The method of claim 445, further comprising exposing the particles to a medium to shrink the particles for insertion into the plurality of cavities, and swelling the particles after insertion into the cavities by exposure to a different medium.

20 448. The method of claim 445, wherein forming the cavities in the substrate comprises anisotropically etching a silicon substrate.

449. The method of claim 445, further comprising depositing a mask on the substrate, and forming openings in the mask, wherein forming the cavities in the substrate comprises etching 25 the substrate through the opening of the mask.

450. The method of claim 445, wherein inserting the particles into the cavities \ comprises pulling the particles through into the cavities using a vacuum.

- 10
Docket No. 5
20
451. A method of forming a sensor array, comprising:
- depositing a mask on a substrate;
- forming an opening in the mask to expose a portion of the substrate;
- anisotropically etching the exposed portion of the substrate to form a cavity in the
- substrate, wherein the cavity comprises a top opening and a bottom opening;
- undercutting the mask during etching of the substrate to form flexible projections positioned over the cavity such that the opening in the mask is smaller than the top opening of the cavity; and
- inserting a particle into the cavity, wherein a diameter of the particle is smaller than the top opening of the cavity and larger than the bottom opening of the cavity, and wherein the flexible projections substantially contain the particle in the cavity.
452. A sensor array, comprising:
- a substrate having at least one cavity, the cavity comprising:
- a top opening; and
- a bottom opening;
- wherein the cavity is configured to allow fluid to pass through the substrate through the top opening and the bottom opening of the cavity;
- a particle positioned within the cavity; and
- a flexible projection positioned over the cavity;
- wherein the flexible projection is configured to contain the particle in the cavity during use.

- 25
453. A method of sorting various sized particles, comprising:
- depositing a mask on a substrate;
- forming an opening in the mask to expose a portion of the substrate;
- anisotropically etching the exposed portion of the substrate to form a cavity in the substrate, the cavity having a top opening larger than a bottom opening; and

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921<br

undercutting the first mask during etching of the substrate to form flexible projections positioned over the cavity;

forming a second opening in a second mask, wherein the second opening is positioned over the first opening in the first mask; and

- 5 inserting a particle into the cavity in the substrate through the flexible projections, wherein a diameter of the particle is larger than the second opening in the second mask and larger than a length of a bottom opening of the cavity, and wherein the diameter of the particle is smaller than a width of the bottom opening of the cavity.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

457. A check valve assembly, comprising:

a substrate, wherein the substrate comprises a cavity;

a particle positioned in the cavity, wherein a diameter of the particle is larger than a top opening into the cavity and larger than a length of a bottom opening of the cavity, and wherein the diameter of the particle is smaller than a width of the bottom opening of the cavity; and

a flexible projection positioned over the cavity, wherein the flexible projection is configured to allow insertion of the particle in the cavity;

wherein fluid flow is allowed in a direction from the top opening through the bottom opening of the cavity, and wherein fluid flow is substantially inhibited in a reverse direction during use.

20

458. A method of forming a check valve assembly, comprising:

depositing a mask on a substrate;

forming slits in the mask;

25 anisotropically etching the substrate through the slits in the mask to form a cavity in the substrate, wherein the cavity comprises a top opening and a bottom opening; and

undercutting the mask during etching of the substrate to form flexible projections positioned over the cavity, wherein the flexible projections allow fluid flow in a direction from the top opening through the bottom opening of the cavity, and wherein the flexible projections substantially inhibit fluid flow in a reverse direction.

459. A check valve assembly, comprising:

a substrate, wherein the substrate comprises a cavity; and

a flexible projection positioned over a top opening of the cavity;

5 wherein the flexible projection allows fluid flow through the substrate in a direction from the top opening through a bottom opening of the cavity, and wherein the flexible projections substantially inhibit fluid flow in a reverse direction during use.

16 Page 2 of 2