MSO202A COMPLEX ANALYSIS Assignment 6

Exercise Problems:

1. If 0 < |z| < 4, show that $\frac{1}{4z - z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$.

Proof: We have $0 < |z| < 4 \Rightarrow \frac{|z|}{4} < 1$.

$$\frac{1}{4z-z^2} = \frac{1}{z(4-z)} = \frac{1}{4z(1-\frac{z}{4})} = \frac{1}{4z} \sum_{n=0}^{\infty} (\frac{z}{4})^n = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$$

2. Write the two Laurent series in powers of z that represent the function $f(z) = \frac{1}{z(1+z^2)}$ in different domains.

Proof: Let 0 < |z| < 1. Then $\frac{1}{z(1+z^2)} = \frac{1}{z(1-(-z^2))} = \frac{1}{z} + \sum_{n=0}^{\infty} (-1)^{n+1} z^{2n+1}$.

Let
$$|z| > 1$$
. Then $\frac{1}{z(1+z^2)} = \frac{1}{z^3(1-(-\frac{1}{z^2}))} = \sum_{n=1}^{\infty} (-1)^{n+1} z^{-2n-1}$.

3. Which of the following singularities are removable/pole:

(a)
$$\frac{\sin z}{z^2 - \pi^2}$$
 at $z = \pi$, (b) $\frac{\sin z}{(z - \pi)^2}$ at $z = \pi$ (c) $\frac{z \cos z}{1 - \sin z}$ at $z = \pi/2$.

Proof: (a) Since $z = \pi$ is a simple zero of $\sin z$, and $z^2 - \pi^2$, so $z = \pi$ is a removable singularity.

(b) Since $z = \pi$ is a simple zero of $\sin z$, and a double zero of $(z - \pi)^2$ so $z = \pi$ is a simple pole of $\frac{\sin z}{(z - \pi)^2}$.

(c) $z = \pi/2$ is a simple zero of $z \cos z$ and a double zero of $1 - \sin z$, so $z = \pi/2$ is a simple pole.

4. Find the residue at z=0 of the following functions and indicate the type of singularity they have at 0. (a) $\frac{1}{z+z^2}$ (b) $z\cos\frac{1}{z}$ (c) $\frac{z-\sin z}{z}$ (d) $\frac{\cot z}{z^4}$.

Proof: (a) 0 is a simple zero of $z + z^2$ so it is a simple pole of $\frac{1}{z + z^2}$.

(b) The Laurent series of $z \cos \frac{1}{z}$ is $z \sum_{n=0}^{\infty} \frac{(-1)^{2n}}{n!} (1/z)^{2n}$ for |z| > 0. Hence f has an essential signilarity at z = 0.

(c) Since z=0 is a simple zero of z and a double 0 of $z-\sin z$, so z=0 is a removable

1

singularity.

- (d) $\frac{\cot z}{z^4}$ has pole of order 5 at z=0 since $z^4 \sin z$ has a zero of order 5 at z=0 and $\cos 0=1$.
- 5. Use Cauchy's residue theorem to evaluate the integral of each of the following functions around the circle |z|=3. (a) $\frac{e^{-z}}{z^2}$, (b) $\frac{e^{-z}}{(z-1)^2}$, (c) $z^2e^{\frac{1}{z}}$ and $(d)\frac{z+1}{z^2-2z}$.

Proof: (a) $2\pi i \text{Res}(f;0) = -2\pi i$; (b) $-2\pi i \text{Res}(f;1) = 2\pi i e^{-1}$ (c) $2\pi i \text{Res}(f;0) = \pi i/3$; (d) $2\pi i (\text{Res}(f;0) + \text{Res}(f;2)) = 2\pi i$.

Problem for Tutorial:

6. Prove Jordan's inequality: Given any R > 0, $\int_0^{\pi} e^{-R\sin\theta} d\theta < \frac{\pi}{R}$.

Proof: First of all, observe that we have the inequality: $\frac{2}{\pi} \leq \frac{\sin \theta}{\theta} \leq 1$ for $0 \leq \theta \leq \frac{\pi}{2}$. This can be immediately seen by noting that $\frac{\sin \theta}{\theta}$ is decreasing in $(0, \frac{\pi}{2}]$ (See footnote for a short proof*). Hence $\sin \theta \geq \frac{2\theta}{\pi}$. We thus get $e^{-R\sin \theta} \leq e^{-\frac{2R\theta}{\pi}} \Rightarrow \int_0^{\pi/2} e^{-R\sin \theta} d\theta \leq \int_0^{\pi/2} e^{-\frac{2R\theta}{\pi}} d\theta = \frac{\pi}{2R} (1 - e^{-R}) < \frac{\pi}{2R}$. Therefore, $\int_0^{\pi} e^{-R\sin \theta} d\theta = 2 \int_0^{\pi/2} e^{-R\sin \theta} d\theta < \frac{\pi}{R}$.

7. Find the Laurent series of the function $f(z) = \frac{6z+8}{(2z+3)(4z+5)}$ in the regions $\{z: \frac{5}{4} < |z| < \frac{3}{2}\}, \{z \in \mathbb{C}: |z| > \frac{3}{2}\}, \{z: |z| < \frac{5}{4}\}.$

Proof: For $\frac{5}{4} < |z| < \frac{3}{2}$, $f(z) = \frac{6z + 8}{(2z + 3)(4z + 5)} = \frac{1}{2z + 3} + \frac{1}{4z + 5} = \frac{1}{3(1 + \frac{2z}{3})} + \frac{1}{4z(1 + \frac{5}{4z})} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{3^{n+1}} z^n + \sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{4^{n+1}} \frac{1}{z^{n+1}}.$ For $|z| < \frac{5}{4}$, $f(z) = \sum_{n=0}^{\infty} (-1)^n \left(\frac{2^n}{3^{n+1}} + \frac{5^n}{4^{n+1}}\right) z^n$.
For $|z| > \frac{3}{2}$, $f(z) = \sum_{n=0}^{\infty} (-1)^n \left(\frac{3^n}{2^{n+1}} + \frac{5^n}{4^{n+1}}\right) z^{-(n+1)}$.

8. Find the isolated singularities and compute the residue of f: (a) $\frac{e^z}{z^2-1}$ (b) $\frac{3z}{z^2+iz+2}$ (c) $\cot \pi z$.

Proof: (a) Singularities are $z=\pm 1$. As both are simple poles, $\operatorname{Res}(f;1)=\lim_{z\to 1}(z-1)\frac{e^z}{z^2-1}=\frac{e}{2};$ $\operatorname{Res}(f;-1)=\lim_{z\to -1}(z+1)\frac{e^z}{z^2-1}=\frac{-1}{2e}$ (b) Since $z^2+iz+z=(z-i)(z+2i),$ the singularities are i,-2i. Both the singularities are simple poles so $\operatorname{Res}(f;i)=\lim_{z\to i}(z-i)\frac{3z}{z^2+iz+z}=1;$ $\operatorname{Res}(f;-2i)=2.$

^{*} $\frac{d}{d\theta}(\frac{\sin\theta}{\theta}) = \frac{\theta\cos\theta - \sin\theta}{\theta^2}$ which takes value 0 at $\theta = 0$; further, the derivative of $\frac{\theta\cos\theta - \sin\theta}{\theta^2}$ is $-\theta\sin\theta$ which is < 0 for $\theta \in [0, \pi/2]$

- (c) Poles are at $z=\pm n, n\in\mathbb{N}$ each being simple. $\operatorname{Res}(\cot\pi z;n)=\lim_{z\to n}(z-n)\frac{\cos\pi z}{\sin\pi z}=\lim_{z\to n}(z-n)\frac{(-1)^n\cos\pi z}{\sin\pi(z-n)}=\frac{1}{\pi}.$
- 9. Let $f(z) = \frac{\pi \cot \pi z}{(z + \frac{1}{2})^2}$. Compute the residue of f at the isolated singularities.

Proof: As computed above, we get $\lim_{z\to n}(z-n)\frac{\pi\cot\pi z}{(z+1/2)^2}=\frac{1}{(n+\frac{1}{2})^2}$. For $z=\frac{-1}{2}$, note that $\frac{-1}{2}$ is a simple zero of $\cos\pi z$ and a double zero of $(z+1/2)^2$ so its a simple pole of $\frac{\pi\cot\pi z}{(z+1/2)^2}$. Hence $\operatorname{Res}(\frac{\pi\cot\pi z}{(z+\frac{1}{2})^2};\frac{-1}{2})=\lim_{z\to\frac{-1}{2}}\frac{\pi\cot\pi z-0}{z+\frac{1}{2}}=-\pi^2\csc^2\pi z|_{z=\frac{-1}{2}}=-\pi^2$.