STAT 431 — Applied Bayesian Analysis — Spring 2019 HW1 Solutions

February 2019

Contents

1		1
2	Cowles, Problem 2.4 2.1	
3	GRADUATE SECTION ONLY	2
	3.1	
	3.2 Marginal density of Y	
	3.3	3

1

Let P denote the event that a randomly chosen student owns a pet.

Model	Prior	Likelihood for P	$Prior \times Likelihood$	Posterior
Apartment	0.86	0.18	0.1548	0.72
Not Apartment	0.14	0.43	0.0602	0.28

If a randomly selected student owns a pet, there is a 72% chance they live in an apartment.

2 Cowles, Problem 2.4

P(Stat) = 0.35	(1)
P(Biostat) = 0.25	(2)
P(Other) = 0.40	(3)
$P(\text{Woman} \mid \text{Stat}) = 0.60$	(4)
$P(\text{Woman} \mid \text{Biostat}) = 0.75$	(5)
$P(\text{Woman} \mid \text{Other}) = 0.40$	(6)

2.1

Let W denote the event that a randomly drawn student is a woman.

$$P(\mathbf{W}) = P(\mathbf{W} \mid \mathbf{Stat})P(\mathbf{Stat}) + P(\mathbf{W} \mid \mathbf{Biostat})P(\mathbf{Biostat}) + P(\mathbf{W} \mid \mathbf{Other})P(\mathbf{Other})$$
(7)

$$= 0.60 * 0.35 + 0.75 * 0.25 + 0.40 * 0.40$$
(8)

$$=0.5575$$
 (9)

2.2

$$P(\text{Other } | W) = \frac{P(\text{Other } \& W)}{P(W)}$$

$$= \frac{0.40 * 0.40}{0.5575}$$
(10)

$$=\frac{0.40*0.40}{0.5575}\tag{11}$$

$$=0.2869$$
 (12)

GRADUATE SECTION ONLY 3

$$X \sim \text{Exp}(1) \tag{13}$$

$$Y \mid X = x \sim \text{Poisson}(x)$$
 (14)

3.1

$$f(x) = e^{-x}, \quad x \ge 0 \tag{15}$$

$$P(Y = y \mid X = x) = \frac{x^y e^{-x}}{y!}, \quad y = 0, 1, 2, \dots$$
 (16)

Marginal density of Y3.2

$$P(Y = y) = \int_0^\infty P(Y = y \mid X)P(X)dX \tag{17}$$

$$= \int_0^\infty \frac{X^y e^{-X}}{y!} e^{-X} dX \tag{18}$$

$$= \int_0^\infty \frac{X^y e^{-2X}}{y!} dX \tag{19}$$

$$= \left(\frac{1}{2}\right)^{y+1} \int_0^\infty \frac{2^{y+1} X^y e^{-2X}}{y!} dX$$

$$= \left(\frac{1}{2}\right)^{y+1}, \qquad y = 0, 1, 2, \dots$$
(20)

$$= \left(\frac{1}{2}\right)^{y+1}, \qquad y = 0, 1, 2, \dots \tag{21}$$

The integral in equation 20 is the integral over the pdf of a $\operatorname{Gamma}(y+1,2)$ distribution (following the parameterization of Cowles), which integrates to 1. From the parameter bounds for the Gamma distribution, this expression holds for y>-1.

3.3

The marginal distribution for Y is the Geometric $(p = \frac{1}{2})$ distribution, where Y represents the number of trials up to, but *not* including, the first success.