Interaktive Computergrafik

Prof. Dr. Frank Steinicke
Human-Computer Interaction
Department of Computer Science
University of Hamburg

Interaktive Computergrafik Lektion 14

Prof. Dr. Frank Steinicke

Human-Computer Interaction, Universität Hamburg

Interaktive Computergrafik Lektion 14

Environment-Mapping

Environment-Mapping Ziel

Reflexionen der Umgebung in Objekt ohne wiederholtes Raytracing bestimmen

Environment-Mapping

- Texturkoordinaten einer Environment-Map bestimmt über Reflexionsvektor (vgl. Beleuchtungsberechnung)
- spekulare Reflexion:

Environment-Maps

Unterschiedliche Typen

Sphärisch (1 Textur, Sphere-Map) Kubisch (6 Texturen, *Cube-Map*)

Cube-Map Erstellung - Beispiel

- Jede Seite ist Textur mit 4x4 Pixeln
- Schieße Strahl durch Pixel in Umgebung und speichere Farbwert des getroffenen Umgebungspunktes in Pixel

Cube-Map Ergebnis - Beispiel

6 Texturen, angeordnet nach Hauptachsenrichtung

→ hohe Auflösung

Cube-Map Ergebnis - Beispiel

Cube-Map Texturkoordinaten

- Texturkoordinaten (s,t) in kubischer Textur ergeben sich aus Reflexionsvektor $R = (r_x, r_y, r_z)$
- folge Vektor R, um Seite der Cube-Map auszuwählen

Cube-Map Texturkoordinaten - Beispiel

- $R = (-0.24, 0, 0.97)^T$
- Hauptachsenrichtung: $+r_z$

Hauptachsen- richtung	s_c	t_c	m_a
$+r_x$	$-r_z$	$-r_y$	r_x
$-r_x$	$+r_z$	$-r_y$	r_x
$+r_y$	$+r_x$	$+r_z$	r_y
$-r_y$	$+r_x$	- r_z	r_y
$+r_z$	$+r_x$	- r_y	r_z
$-r_z$	$-r_x$	$-r_y$	r_z

Cube-Map Texturkoordinaten - Beispiel

• $R = (-0.24, 0, 0.97)^T$, $s_c = +r_x$, $t_c = -r_y$, $m_a = r_z$

$$\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} \frac{\frac{s_c}{|m_a|} + 1}{2} \\ \frac{\frac{t_c}{|m_a|} + 1}{2} \end{pmatrix}$$

- $s = (-0.24 / |0.97| + 1) / 2 \approx 0.38$
- t = (0 / |0.97| + 1) / 2 = 0.5

Cube-Map

Texturkoordinaten - Beispiel

-y

Resultierender Farbwert abhängig von Texturfilterung

Sphere-Map

Erstellung - Beispiel Reflektierende Kugel Sphere-Map

- Einzelne Textur mit 9x9 Pixeln
- Schieße Strahl durch Pixel auf (unendlich kleine) Kugel & speichere Farbwert des durch Reflexionsvektor getroffenen Umgebungspunktes in Pixel

Sphere-Map Ergebnis - Beispiel

- Eine einzelne Textur
- Ergebnis abhängig von Aufnahmerichtung
- In praktischer Anwendung:
 - → hohe Auflösung

Sphere-Map Ergebnis - Beispiel

- Eine einzelne Textur
- Ergebnis abhängig von Aufnahmerichtung
- Bei unserem Beispiel:
 - → niedrige Auflösung

•
$$R_1 = (-0.24, 0, 0.97)^T$$

$$\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} \frac{r_x}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \\ \frac{r_y}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \end{pmatrix}$$

•
$$t = 0.5$$

•
$$R_1 = (-0.24, 0, 0.97)^T$$

$$\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} \frac{r_x}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \\ \frac{r_y}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \end{pmatrix}$$

•
$$s \approx 0.44$$

•
$$t = 0.5$$

•
$$R_2 = (-0.24, 0, -0.97)^T$$

$$\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} \frac{r_x}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \\ \frac{r_y}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \end{pmatrix}$$

•
$$s \approx 0.004$$

•
$$t = 0.5$$

•
$$R_2 = (-0.24, 0, -0.97)^T$$

$$\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} \frac{r_x}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \\ \frac{r_y}{2 \cdot \sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}} + \frac{1}{2} \end{pmatrix}$$

- $s \approx 0.004$
- t = 0.5

