Number of PCs ->	0N	1N	2N	3N	4N	0c	1c	2c	3c	4c
Dataset I	4.5425	0.384	0.1759	0.1421	0.1608	4.5431	0.3846	0.1778	0.1444	0.1608
Dataset II	4.5425	0.6452	0.716	0.9085	1.1157	4.5495	0.6486	0.7506	0.942	1.1157
Dataset III	4.5425	1.3054	1.9798	2.651	3.6533	4.5575	1.3235	2.1197	3.0274	3.6533
Dataset IV	4.5425	0.8043	0.8299	0.9862	1.194	4.5662	0.8406	1.2071	1.2712	1.194
Dataset V	4.5425	2.1202	3.3572	4.5562	5.1393	4.9199	2.8357	4.6514	4.9712	5.1393

```
Eile Edit Selection Find View Goto Tools Project Preferences Help
```

```
import pandas as pd
      def read_file (filename):
            mat = []
              int - []
ith open(filename, newline = '') as file:
    csv_reader = csv.reader(file, delimiter=',', quotechar='|')
                  next(csv_reader)
                  for line in csv_reader:
    row = []
                        for entry in line:
                              row.append(float(entry))
                       mat.append(row)
            return np.matrix(mat)
17
18 iris_0 = read_file('iris.csv')
19 iris_1 = read_file('dataI.csv')
20 iris_2 = read_file('dataII.csv')
21 iris_3 = read_file('dataIII.csv')
22 iris_4 = read_file('dataIV.csv')
23 iris_5 = read_file('dataV.csv')
24 irises = [iris_1, iris_2, iris_3, iris_4, iris_5]
25
            mean = np.mean(data, axis = 0)
data_cntr = data - mean
            cov = np.cov(data_cntr.T)
            eig_val, eig_vec = la.eig(cov)
idx = eig_val.argsort()[::-1]
            eig_val = eig_val[idx]
eig_vec = eig_vec[:,idx]
            pc = eig_vec[:, 0:n_comp]
result = (pc@(pc.T@data_cntr.T)).T + mean
             return result
            mean_0 = np.mean(data_0, axis =
            data_0_cntr = data_0 - mean_0
            mean_1 = np.mean(data_1, axis = 0)
            data_1_cntr = data_1 - mean_1
            cov_0 = np.cov(data_0_cntr.T)
            eig_val_0, eig_vec_0 = la.eig(cov_0)
            idx = eig_val_0.argsort()[::-1]
            eig_val_0 = eig_val_0[idx]
eig_vec_0 = eig_vec_0[:,idx]
            pc = eig_vec_0[:, 0:n_comp]
            result = (pc@(pc.T@data_1_cntr.T)).T + mean_1
             return result
      mse_table = np.zeros(shape = (5, 10))
      for n in range(5):
            data = irises[n]
            mse = np.square(np.subtract(np.mean(iris_0, axis = 0), iris_0)).mean()*4
           mse_table[n][0] = mse
for i in range(1, 5):
    rec = reconstruct_orig(iris_0, data, i)
                  mse = np.square(np.subtract(rec, iris_0)).mean()*4
                  mse_table[n][i] = mse
            rec = reconstruct_self(data, 4)
            mse = np.square(np.subtract(np.mean(data, axis = 0), iris_0)).mean()*4
            mse_table[n][5] = mse
for i in range(1, 5):
                 rec = reconstruct_self(data, i)
                  mse = np.square(np.subtract(rec, iris_0)).mean()*4
                  mse\_table[n][i + 5] = mse
     iris_2_recon = np.array(reconstruct_self(iris_2, 2))
numbers = pd.DataFrame(mse_table, columns = ['0N', '1N', '2N', '3N', '4N', '0c', '1c', '2 numbers.to_csv('jpan22-numbers.csv', float_format = '%.4f', index = False)
numbers = pd.DataFrame(iris_2_recon, columns = ['X1', 'X2', 'X3', 'X4'])
numbers.to_csv('jpan22-recon.csv', float_format = '%.4f', index = False)
```

□ Line 78, Column 1
 □ UTF-8
 □ Spaces: 4
 □ Python