Param Rathour - 190070049 Autumn Semester 2021-22

1 Wien-bridge Oscillator

1.1 Circuit & Plots

1.2 Code

Param Rathour (190070049), Wien-bridge oscillator .include IN914.txt : Includes Diode Model .include ua741.txt : Includes Op-amp Model VCCp VCCp gnd 12 : Supply Voltage VCCn VCCn gnd -12 : Supply Voltage x1 Vp Vn VCCp VCCn Vo ua741 Operational Amplifier R1 gnd Vn 4.7k : Resistor R2 Vn Vo 10k : Resistor RF1 Vo Vmid 4.7k : Resistor CF1 Vmid Vp 0.1u : Capacitor RF2 Vp gnd 4.7k : Resistor CF2 Vp gnd 0.1u : Capacitor .tran 0.01m 525m 500m : Transient Analysis .control : Control Functions run meas trans Vpeak max V(Vo) plot V(Vo) .endc .end

Remove R_2 and add the following lines to simulate Basic Wien-bridge oscillator with amplitude stabilization

R2A Vn Vd 6.8k	: Resistor
R2B Vd Vo 3.3k	: Resistor
D1 Vo Vd 1N914	: Diode
D2 Vd Vo 1N914	: Diode

1.3 Learnings

 $V_{\rm out}$ gets saturated in Basic Wien-bridge. By adding signal diodes, we introduce non-linearity and prevent saturation. This reduces the gain as $V_{\rm out}$ increases resulting in pure sine of amplitude $\approx 2.688185V$ (well below saturation (12V)).

2 Phase-shift Oscillator

2.1 Circuit & Plots

(b) V_{out} vs time

2.2 Code

Param Rathour (190070049), Phase-shift Oscillator .include IN914.txt : Includes Diode Model .include ua741.txt : Includes Op-amp Model VCCp VCCp gnd 12 : Supply Voltage VCCn VCCn gnd -12 : Supply Voltage x1 gnd Vn VCCp VCCn Vo ua741 : Operational Amplifier C1 Vn Vm1 0.022u : Capacitor R1 Vm1 gnd 10k : Resistor C2 Vm1 Vm2 0.022u : Capacitor R2 Vm2 gnd 10k : Resistor C3 Vm2 Vo 0.022u : Capacitor RF Vn Vo 200k : Resistor .tran 0.01m 525m 500m : Transient Analysis .control : Control Functions run meas trans Vpeak max V(Vo) plot V(Vo) .endc .end

2.3 Learnings

Here too, we get clipping and amplitude stabilization is necessary.

3 Astable Multivibrator

3.1 Circuit & Plots

3.2 Values

Slew Rate in case c) is $\approx 0.452132 V/\mu s$ $\left(=\frac{4.78261-(-0.815217)}{0.500047-0.50006}\right)$. This is very close to value in datasheet $0.5V/\mu s$.

3.3 Code

Param Rathour (190070049), Astable Multivibrator	
.include zener_B.txt	
.include ua741.txt	: Includes Op-amp Model
VCCp VCCp gnd 12	: Supply Voltage
VCCn VCCn gnd -12	: Supply Voltage
x1 Vp Vn VCCp VCCn Vo1 ua741	: Operational Amplifier
x2 Vo Vm zener_B	
x3 gnd Vm zener_B	
RG Vn Vo 10k	: Resistor
CG Vn gnd 0.1u	: Capacitor
R3 Vo1 Vo 100	: Resistor
R1 Vp Vo 10k	: Resistor
R2 Vp gnd 10k	: Resistor
.tran 0.01m 525m 500m	: Transient Analysis
control	: Control Functions
run	
meas trans VIH max V(Vn)	
meas trans VIL min V(Vn)	
meas trans VOH max V(Vo)	
meas trans VOL min V(Vo)	
plot V(Vn) V(Vo)	
print VIH VIL VOH VOL	
. endc	
. end	

 R_3 was taken as 100Ω .

3.4 Learnings

Input and output level voltages are reasonable.

But as the capacitance decreases, the performance worsens due to slew rate limitations.