目录

1	多数	表决器					
	1.1	分析需求					
	1.2	Logisim, 启动!					
	1.3	测试					
	1.4	总结与心得					
2	利用 CMOS 晶体管构建两输入或门						
	2.1	分析需求					
	2.2	Logisim, 启动!					
	2.3	测试					
	2.4	总结与心得					
3	多路选择器及静态冒险检测						
	3.1	需求分析 6					
	3.2	Logisim, 启动!					
	3.3	冒险测试 ?					
	3.4	总结与心得					
4	利用传输门实现 2 路选择器						
	4.1	什么是传输门.jpg					
	4.2	Logisim, 启动!					
	4.3	使用组合电路分析功能					
5	4选1多路选择器						
	5.1	需求分析					
	5.2	Logisim, 启动!					
6	思考题						
	6.1	将实验中设计的或门作为子电路应用到 2-1MUX-hazard 电路中 10					
	6.2	修改现有电路设计实现 4 位 4 选 1 多路选择器					
	63	设计并实现 4 位一进制数的杏偶检验位生成由路 17					

1. 多数表决器

1.1 分析需求

3 输入多数表决器,即输入中含两个或两个以上为真时,输出值为真,否则为假

X Y \mathbf{z} OUTPUT

表 1:3 输入多数表决器真值表

然后我们根据卡诺图可以写出最终化简后的表达式

$$OUTPUT = X \cdot Y + X \cdot Z + Y \cdot Z \tag{1}$$

可知, 电路第一级为与门, 第二级为或门

1.2 Logisim, 启动!

先选出需要的各组件,注意或门设置为三输入

连接电路

1.3 测试

通过对 X, Y, Z 设置不同的输入值, 观察输出, 发现均满足真值表

1.4 总结与心得

这是 DLCO 这门课的第一个实验。花在入门和看说明文档的时间比完成实验本身的时间要久很多。也许这就是"学习成本"?

2. 利用 CMOS 晶体管构建两输入或门

2.1 分析需求

本题要求我们用晶体管构建两输入或门,容易联想到或门可用或非门和非门级联成或门。参考原理图:

2.2 Logisim, 启动!

准备好所需要的两个输入端,一个输出端,以及所需要的晶体管

连接电路

这里有一点小插曲,因为一开始没注意 NMOS 的方向导致电路总是报错,发现这个问题并修改之后电路可正常运行。

2.3 测试

表 2: 或门真值表

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

图 1: 测试结果

将仿真结果与真值表对照,符合预期。

2.4 总结与心得

注意细节!! (比如 CMOS 的方向)

3. 多路选择器及静态冒险检测

3.1 需求分析

实验要求给出的逻辑公式为:

$$Y = D0 \cdot \neg S + D1 \cdot S \tag{2}$$

根据逻辑公式给出真值表:

表 3: 多路选择器真值表

D0	D1	S	OUTPUT
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3.2 Logisim, 启动!

可知,我们需要三个输入引脚 D0,D1,S,需要两个与门,一个非门和一个或门。准备 好的基础部件如图:

连接好电路

3.3 冒险测试

由实验指南有,我们应该在非门两端设置探针,并设置 D0=1,D1=1,S=1,观察结果:

进行单步仿真:

图 2: 测试结果

3.4 总结与心得

单步仿真类似 C++ 的断点调试逐步执行,探针可观察变量当前的值

4. 利用传输门实现 2 路选择器

4.1 什么是传输门.jpg

4.2 Logisim, 启动!

根据实验要求连接好电路图:

经测试, 所实现的电路满足要求

4.3 使用组合电路分析功能

• 设置输入输出

图 3: 设置输入输出

• 设置真值表

• 输入逻辑表达式

• 设置最小项列表

5. 4选1多路选择器

5.1 需求分析

要求我们用 3 中实现的 2 选 1 多路选择器级联来实现 4 选 1 多路选择器。可知,输入端我们需要 4 个 Di 引脚,两个 Si 引脚用于发挥选择作用。

5.2 Logisim, 启动!

在 4-1MUX 中引入已经成功实现的 2-1MUX, 并且对电路进行连接

6. 思考题

6.1 将实验中设计的或门作为子电路应用到 2-1MUX-hazard 电路中

将或门引入 2-1MUX-hazard 电路

利用自己实现的或门代替提供的或门,并测试,电路工作正常

6.2 修改现有电路设计实现 4位 4选 1多路选择器

• 思考: 通过已经实现的四路选择器来实现,每个选择器输出四位中的一位

• 试错: 一开始试图直接通过修改位宽来实现,但是遇到了位宽不匹配的问题。于是转而采用这种使用四个选择器,每个选择器控制一位的输出的做法。

6.3 设计并实现 4 位二进制数的奇偶校验位生成电路

奇校验器 思考:有四位输入,当输入四位中含奇数个1时输出1,含偶数个1时输出0,于是我们可以画出真值表

XYZW	F
0000	0
0001	1
0010	1
0011	0
0100	1
0101	0
0110	0
0111	1
1000	1
1001	0
1010	0
1011	1
1100	0
1101	1
1110	1
1111	0

电路图如图

经过仿真测试,满足要求

• 偶校验器同理,此处不再赘述。