Урок 76 Рух тіла під дією кількох сил

Мета уроку: сформувати знання про основні етапи розв'язування задач із динаміки.

Очікувані результати: учні повинні вміти розв'язувати задачі з динаміки на рух тіл під дією кількох сил, використовуючи наданий алгоритм розв'язування таких задач.

Тип уроку: урок засвоєння нових знань.

Наочність і обладнання: навчальна презентація, комп'ютер, підручник.

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Чи всі рухи відбуваються тільки під дією сили тяжіння? (Рухів, які відбуваються під дією лише однієї сили, у земних умовах практично немає)

Які сили розглядаємо в динаміці? (Розглядаючи механічний рух, ми в першу чергу маємо справу із силами тяжіння, пружності й тертя)

Як на практиці розв'язувати механічні задачі розділу «Динаміка»?

ІІІ. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Сили

Пригадаємо загальні ознаки сил, що діють у механічних процесах.

Сила тяжіння $ec{F}_{ ext{\tiny TЯЖ}}$	Сила тертя ковзання $ec{F}_{ m repts}$	Сила пружності $ec{F}_{ m npym}$	Сила Архімеда $ec{F}_{ m apx}$
сила, з якою Земля притягує до себе тіла, що перебувають на її поверхні або поблизу неї	сила, яка виникає внаслідок ковзання одного тіла по поверхні іншого	сила, яка виникає під час деформації тіла	виштовхувальна сила, яка діє на тіло, занурене в рідину або газ
$F_{\scriptscriptstyle ext{TSK}} = mg$	$F_{\text{тертя}} = \mu N$	$F_{\text{пруж}} = kx$	$F_{ m apx} = ho_{ m pig(rasy)} g V_{ m 3aH}$
F _{YKH}	$ec{F}_{ ext{repts}}$		$ec{F}_{ m apx}$
напрямлена вертикально вниз і прикладена до центра тяжіння тіла	напрямлена проти руху тіла і діє вздовж поверхні дотику тіл	напрямлена протилежно видовженню і діє вздовж шнура або пружини	напрямлена вертикально вгору і прикладена до центра зануреної частини тіла

2. Учимося розв'язувати задачі

Алгоритм розв'язування задач із динаміки

- 1. Уважно прочитайте умову задачі. З'ясуйте, які сили діють на тіло, яким ϵ характер його руху (рухається це тіло з прискоренням чи рівномірно прямолінійно).
- 2. Запишіть коротку умову задачі. У разі необхідності переведіть значення фізичних величин в одиниці СІ.
- 3. Виконайте пояснювальний рисунок, на якому зазначте сили, що діють на тіло, і напрямок прискорення руху тіла.
- 4. Виберіть інерціальну систему відліку. Осі координат бажано спрямувати так, щоб якнайбільше сил було напрямлено вздовж цих осей (це не змінить результату розв'язання, але значно його спростить).
- 5. Запишіть рівняння другого закону Ньютона у векторному вигляді та в проекціях на осі координат. Запишіть формули для обчислення сил. Одержавши систему рівнянь, розв'яжіть її відносно невідомої величини. Якщо в задачі є додаткові умови, використайте їх.
- 6. Перевірте одиницю та знайдіть числове значення шуканої величини. Проаналізуйте результат, запишіть відповідь.

Під час розв'язування задач систему відліку будемо пов'язувати з точкою, нерухомою відносно поверхні Землі (тобто тіло рухається, а осі координат залишаються нерухомими); тіло вважатимемо матеріальною точкою, тому всі сили будемо зображати прикладеними до однієї точки.

IV. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ І ВМІНЬ

1. Щоб пересунути по підлозі скриню масою 15 кг, до неї потрібно прикласти горизонтальну силу 60 Н. Знайдіть коефіцієнт тертя між скринею та підлогою.

На тіло діють 4 сили: сила тяжіння, сила реакції опори, горизонтальна сила, сила тертя.

Зобразимо ці сили та напрямки осей координат.

Запишемо другий закон Ньютона у векторному вигляді:

$$m\vec{g} + \vec{F}_{\text{Tents}} + \vec{N} + \vec{F} = 0$$

Знайдемо проекції сил і прискорення на осі OX і OY, запишемо формулу для обчислення сили тертя ковзання:

Запишемо формулу для обчислення сили тертя ковзання.
$$\begin{cases} OX: -F_{\text{тертя}} + F = 0 \\ OY: -mg + N = 0 \\ F_{\text{тертя}} = \mu N \end{cases}$$
 $N = mg;$ $F = F_{\text{тертя}} = \mu mg = > \mu = \frac{F}{mg}$
$$[\mu] = \frac{H}{K\Gamma \cdot \frac{M}{C^2}} = \frac{H}{H} = 1 \qquad \mu = \frac{60}{10 \cdot 15} = 0.4$$

Відповідь: $\mu = 0,4$.

2. Автобус, маса якого з повним навантаженням дорівнює 15 т, вирушає з місця з прискоренням 0.7 м/c^2 . Знайдіть силу тяги, якщо коефіцієнт опору руху дорівнює 0.03.

Розв'язання

На тіло діють 4 сили: сила тяжіння, сила реакції опори, сила тяги, сила тертя.

Зобразимо ці сили та напрямки осей координат.

Запишемо другий закон Ньютона у векторному вигляді:

$$m\vec{g} + \vec{F}_{\text{тертя}} + \vec{N} + \vec{F}_{\text{тяги}} = m\vec{a}$$

Знайдемо проекції сил і прискорення на осі OX і OY, запишемо формулу для обчислення сили тертя ковзання:

$$\begin{cases} OX: -F_{\text{тертя}} + F_{\text{тяги}} = ma \\ OY: -mg + N = 0 \\ F_{\text{тертя}} = \mu N \\ N = mg \\ F_{\text{тертя}} = \mu mg \\ F_{\text{тертя}} = ma + \mu mg = m(a + \mu g) \\ [F_{\text{тяги}}] = \kappa \Gamma \cdot \left(\frac{M}{c^2} + 1 \cdot \frac{M}{c^2}\right) = \kappa \Gamma \cdot \frac{M}{c^2} = H \end{cases}$$

$$F_{\text{тяги}} = 15000 \cdot (0.7 + 0.03 \cdot 10) = 15000 \text{ (H)}$$

Відповідь: $F_{\text{тяги}} = 15 \text{ кH}.$

3. Дерев'яний брусок масою 200 г рівномірно тягнуть горизонтальною поверхнею за допомогою пружини жорсткістю 40 Н/м. Визначте видовження пружини, якщо коефіцієнт тертя ковзання 0,25.

Дано:

$$m = 200 \text{ г} = 0.2 \text{ кг}$$

 $k = 40 \frac{\text{H}}{\text{M}}$
 $\mu = 0.25$
 $g = 10 \frac{\text{M}}{\text{c}^2}$
 $\Delta x - ?$

Запишемо другий закон Ньютона у векторному вигляді:

$$m\vec{g} + \vec{F}_{\text{тертя}} + \vec{N} + \vec{F}_{\text{пруж}} = 0$$

Знайдемо проекції сил і прискорення на осі OX і OY, запишемо формулу для

обчислення сили пружності та сили тертя ковзання:

$$\begin{cases} OX: -F_{\text{тертя}} + F_{\text{пруж}} = 0 \\ OY: -mg + N = 0 \end{cases}$$

$$F_{\text{тертя}} = \mu N$$

$$F_{\text{пруж}} = k\Delta x$$

$$N = mg$$

$$F_{\text{тертя}} = \mu mg$$

$$F_{\text{тертя}} = \mu mg$$

$$\Delta x = \frac{\mu mg}{k}$$

$$\Delta x = \frac{\mu mg}{k}$$

$$\Delta x = \frac{H}{M} = \frac{H \cdot M}{H} = M$$

$$\Delta x = \frac{0.25 \cdot 0.2 \cdot 10}{40} = 0.0125 \text{ (M)}$$

$$\Delta x = \frac{0,25 \cdot 0,2 \cdot 10}{40} = 0,0125 \text{ (M)}$$

Biдповідь: $\Delta x = 12,5$ мм.

4. Обчисліть гальмівний шлях і час гальмування автомобіля, якщо він рухався прямою горизонтальною ділянкою дороги й перед початком гальмування мав швидкість 54 км/год. Коефіцієнт тертя ковзання гуми по бетону -0.75.

$$v_0 = 54 \frac{\mathrm{KM}}{\mathrm{год}}$$

$$= 15 \frac{\mathrm{M}}{\mathrm{c}}$$

$$\mu = 0.75$$

$$v = 0$$

$$g = 10 \frac{\mathrm{M}}{\mathrm{c}^2}$$

$$s - ?$$

Запишемо другий закон Ньютона у векторному вигляді:

$$m\vec{g} + \vec{F}_{\text{тертя}} + \vec{N} = m\vec{a}$$

прискорення на осі OX і OY, запишемо формулу для обчислення сили тертя ковзання:

$$\begin{cases} OX: -F_{\text{тертя}} = -ma \\ OY: -mg + N = 0 \\ F_{\text{тертя}} = \mu N \\ N = mg \\ F_{\text{тертя}} = \mu mg \end{cases}$$

$$\mu mg = ma => a = \mu g$$

Гальмівний шлях і час руху визначимо, скориставшись формулами:

$$s_x = \frac{{v_x}^2 - {v_{0x}}^2}{2a_x}; \qquad v_x = v_{0x} + a_x t$$

$$s_{x} = s; \quad v_{0x} = v_{0}; \quad v_{x} = 0; \quad a_{x} = -a$$

$$s = \frac{{v_{0}}^{2}}{2a}; \quad 0 = v_{0} - at \quad \Rightarrow \quad t = \frac{v_{0}}{a}$$

$$s = \frac{{v_{0}}^{2}}{2\mu g}; \quad t = \frac{v_{0}}{\mu g}$$

$$[s] = \frac{\frac{M^{2}}{c^{2}}}{\frac{M}{c^{2}}} = \frac{M^{2} \cdot c^{2}}{c^{2} \cdot M} = M; \quad s = \frac{15^{2}}{2 \cdot 0,75 \cdot 10} = \frac{15^{2}}{15} = 15 \text{ (M)}$$

$$[t] = \frac{\frac{M}{c}}{\frac{M}{c^{2}}} = \frac{M \cdot c^{2}}{c \cdot M} = c; \quad t = \frac{15}{0,75 \cdot 10} = 2 \text{ (c)}$$

$$Bidnoside: s = 15 \text{ M}; \quad t = 2 \text{ c}.$$

V. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VI. ДОМАШНЄ ЗАВДАННЯ

Опрацювати § 35 (пункт 2: задачі 1, 2), Вправа № 35 (2, 5)