NGeneAnalySys®

(주)엔젠바이오

서울특별시 구로구 디지털로 242, 1104호 Tel: +82-2-867-9798 Fax: +82-2-883-9784 Homepage: www.ngenebio.com

본 소프트웨어는 연구 목적으로만 사용하실 수 있습니다. 사용 전, 제품 설명서에 있는 모든 내용을 숙지하시기 바랍니다.

1. GUI 프로그램 설치

1.1. Windows

1.1.1. "NGeneAnalySys-1.3.exe" 설치파일 더블 클릭

X Notice

Windows 10 운영체제일 경우, 아래와 같은 메시지 확인 가능하다. 이 때, "**추가 정보**", "실행" 버튼을 클릭하여 NGeneAnalySys를 설치

1.1.2. 바탕화면에 바로가기 아이콘을 생성하려면 체크박스에 체크 한 뒤 "**Next**" 버튼 클릭

1.1.3. "Install" 버튼 클릭

1.1.4. "Finish" 버튼을 클릭하여 설치를 종료하고 프로그램 실행

1.2. macOS

- 1.2.1. "NGeneAnalySys-1.3.dmg" 패키지 파일 더블 클릭
- 1.2.2. NGeneAnalySys 아이콘 🥏 을 드래그 하여 "Applications" 디렉토리에 놓는다.

1.2.3. 소프트웨어 설치 완료 후 "Launchpad"에서 실행 아이콘 확인

2. 로그인

2.1. 서버 URL 설정 화면

- 1. 분석 서버의 URL 입력
- 2. "Confirm" 버튼을 클릭하여 URL 확인 후, "Save" 버튼을 클릭하여 URL 저장

2.2. 로그인 화면

- 1. 아이디, 비밀번호 입력
- 2. 로그인 버튼 클릭
 - ※ 사용자 등록은 전체 매뉴얼 참고

3. 분석 요청

3.1. 대시보드 화면

- 1. "DASHBOARD" 버튼을 클릭하여 대시보드 화면으로 이동
- 2. 현재 분석 서버의 데이터 사용량과 예상되는 분석 가능 검체 수 확인
- 3. NGeneAnalySys 의 분석 팁 또는 업데이트 사항 확인
- 4. 각 패널에서 사용하는 분석 프로그램과 데이터베이스 확인
- 5. "New Analysis" 버튼을 클릭하여 분석 요청 창으로 이동

3.2.1. 분석 요청 창 - 클라이언트 PC의 Fastq 파일 업로드

- 1. RUN 이름 입력 (default: [요청날짜]-[요청시간])
- 2. 사용한 Sequencer 중 Illumina MiSeq 또는 MiSeqDX 선택
- 3. 파일 업로드 방법으로 "Local Fastq Files" 선택
- 4. 파일 탐색기 창에서 Fastq 파일이 있는 폴더를 클릭하고 "**폴더 선택**" 버튼 클릭
 - ※ Fastq 파일 리스트는 파일 탐색기 창에 출력되지는 않음.
- 5. 검체에 대한 분석 패널, 타입, 질병 선택
- 6. "SUBMIT" 버튼을 클릭하여 분석 시작

3.2.2. 분석 요청 창 - 서버의 Fastq 파일 업로드

- 1. RUN 이름 입력 (default: [요청날짜]-[요청시간])
- 2. 사용한 Sequencer 중 Illumina MiSeq 또는 MiSeqDX 선택
- 3. 파일 업로드 방법으로 "Server Fastq Files" 선택
- 4. 서버의 폴더 목록에서 Fastq 파일이 있는 폴더를 클릭하고, "OPEN" 버튼 클릭
 - ※ Fastq 파일 리스트는 파일 탐색기 창에 출력되지는 않음.
- 5. 검체에 대한 분석 패널, 타입, 질병 선택
- 6. "SUBMIT" 버튼을 클릭하여 분석 시작

3.2.3. 분석 요청 창 - 서버의 Run Folder 선택

※ 해당 업로드 방법은 "TruSight Tumor 170" 분석 패널로 분석할 경우에만 사용

- 1. RUN 이름 입력 (default: [요청날짜]-[요청시간])
- 2. 사용한 Sequencer 중 Illumina NextSeq 550Dx 선택
- 3. 파일 업로드 방법으로 "Server Run Folder" 선택
- 4. 서버의 폴더 목록에서 Fastq 파일이 있는 폴더를 클릭하고, "OPEN" 버튼 클릭
 - ※ Fastq 파일 리스트는 파일 탐색기 창에 출력되지는 않음.
- 5. 검체에 대한 분석 패널, 타입, 질병 선택
- 6. "SUBMIT" 버튼을 클릭하여 분석 시작

4. 분석 결과 확인

4.1. 분석 결과 화면

- 1. "RESULTS" 버튼을 클릭하여 분석 결과 화면으로 이동
- 2. RUN 또는 검체의 분석 진행 상황과 간략한 분석 결과 확인

- 3. 분석 결과 중에서 원하는 조건에 맞는 분석 결과 검색 (검색 조건: RUN 이름, 패널 이름, 샘플 이름, 분석 날짜)
- 4. 분석 완료된 검체를 클릭하여 검체 결과 화면으로 이동

5. 검체 결과 확인

5.1. 검체 결과 화면

- 1. "SAMPLES" 버튼을 클릭하여 출력된 리스트의 검체를 클릭하여 해당 검체 결과 화면으로 이동
- 2. "OVERVIEW": 검체의 변이 개요 확인 (5.2 절 참고)
- 3. "VARIANTS": 검체의 변이 리스트 확인 (6.1 절 참고)
- 4. "REPORT": 검체의 분석 리포트 출력 (7.1 절 참고)
- 5. 🖶 버튼을 클릭하여 분석 결과 파일 다운로드 창 띄우기

5.2. 변이 개요 화면

- 1. "OVERVIEW" 버튼을 클릭하여 검체의 변이 개요 화면으로 이동
- 2. Tier 등급별 검출된 변이 및 유전자 개수 확인
- 3. "Tier I", "Tier II"인 변이는 표에서 변이 정보 확인
- 4. 검체의 QC 정보 확인

6. 검출된 변이 확인

6.1. 변이 리스트 화면

- 1. "VARIANTS" 버튼을 클릭하여 검체의 변이 리스트 화면으로 이동
- 2. 검체에서 발견된 변이 리스트 확인
- 3. 버튼을 클릭하여 검색 조건 입력 화면 펼치기 (6.2절 참고)
- 4. 버튼을 클릭하여 선택된 변이의 상세 정보 화면 펼치기 (6.3절 참고)
- 5. 변이를 더블 클릭하여 선택된 변이의 상세 정보 화면 펼치기 (6.3절 참고)

6.2. 특정 조건에 맞는 변이 검색

- 1. 콤보 박스의 기존 또는 신규 필터 이름을 클릭하여 필터에 맞는 변이 검색
- 2. "Variant Filter" 버튼을 클릭하여 신규 필터 조건 설정
 - "Variant": 변이 정보에 관하여 조건 설정 (6.2.1 절 참고)
 - "Consequence": 변이의 Consequence 에 관하여 조건 설정 (6.2.2 절 참고)
 - "Population Frequency": Population 데이터베이스의 Frequency 에 관하여 조건 설정 (6.2.3 절 참고)
- 3. "View applied filter" 버튼을 클릭하여 현재 필터 조건 확인

6.2.1. 사용자 맞춤 필터 설정 - Variant

- 1. 신규 필터 생성 시, 텍스트 필드에 필터 이름 입력
- 2. 기존 필터 수정 시, 콤보 박스에서 이전에 설정된 필터 선택
- 3. "Remove Filter" 버튼을 클릭하여 선택된 필터 제거
- 4. 탭 버튼을 클릭하여 다른 필터 조건 창으로 이동
- 5. 변이 정보에 관하여 조건 설정
- 6. 현재까지 입력된 필터 조건 취소
- 7. 현재까지 입력된 필터 조건 저장

6.2.2. 사용자 맞춤 필터 설정 - Consequence

- 1. 신규 필터 생성 시, 텍스트 필드에 필터 이름 입력
- 2. 기존 필터 수정 시, 콤보 박스에서 이전에 설정된 필터 선택
- 3. "Remove Filter" 버튼을 클릭하여 선택된 필터 제거
- 4. 탭 버튼을 클릭하여 다른 필터 조건 창으로 이동
- 5. 변이의 Consequence 에 관하여 조건 설정
- 6. 현재까지 입력된 필터 조건 취소
- 7. 현재까지 입력된 필터 조건 저장

6.2.3. 사용자 맞춤 필터 설정 - Population Frequency

- 1. 신규 필터 생성 시, 텍스트 필드에 필터 이름 입력
- 2. 기존 필터 수정 시, 콤보 박스에서 이전에 설정된 필터 선택
- 3. "Remove Filter" 버튼을 클릭하여 선택된 필터 제거
- 4. 탭 버튼을 클릭하여 다른 필터 조건 창으로 이동
- 5. Population 데이터베이스의 Frequency 에 관하여 조건 설정
- 6. 현재까지 입력된 필터 조건 취소
- 7. 현재까지 입력된 필터 조건 저장

6.3. 변이 상세 정보 화면

- 1. 각 카테고리를 클릭하여 변이에 대한 상세 정보 확인
 - (선택 사항) "Interpretation": 변이에 대한 Tier 등급 변경 및 기록 확인 (6.4 절 참고)
 - "Variant Detail": 변이에 대한 정보 및 Population Frequency 확인 (6.5 절 참고)
 - "Statistics": RUN, 패널, 사용자 그룹 내에서의 해당 변이의 통계적 수치 확인 (6.6절 참고)
 - "Interpretation Log": 변이에 대한 설정 변경에 대한 기록 확인

6.4.1. Interpretation - Tier 변경

- 1. "Add" 버튼을 클릭하여 새로운 변경 사항을 추가
- 2. Tier 등급 변경에 관련된 정보 입력

Туре	Tier 등급이 적용된 상황 설정
Evidence	Tier 등급 설정 (Tier 1: A, B / Tier 2: C, D / Tier 3: T3 / Tier 4: T4)
Evidence Comment	Tier 등급 변경에 대한 근거 자료 입력
Primary	여러 개의 변경 사항 중 적용되는 변경 사항 선택
Delete	변경 사항 제거

- 3. "Save" 버튼을 클릭하여 작성한 변경 사항 저장
- 4. "Add to Report" 체크 버튼을 클릭하여 해당 변이를 리포트의 변이 목록에 포함 여부 결정

6.4.2. Interpretation – Interpretation History

Туре	Evidence	Evidence Comment	Status	Date	
N/A	T4	Test	Active	2018-04-24 21:54:05	
diagnosis	С	Test	Active	2018-04-24 21:54:05	
therapeutic	Α	Test	Active	2018-04-24 21:54:05	

1. 현재 분석에서 사용자의 현재 또는 이전의 변경 사항 표시

Туре	Tier 등급이 적용된 상황
Evidence	Tier 등급 (Tier 1: A, B / Tier 2: C, D / Tier 3: T3 / Tier 4: T4)
Evidence Comment	Tier 등급 변경에 대한 근거 자료
Status	변경 사항 적용 상태 (활성: Activate / 보관: Archived)
Date	변경 사항 입력날짜

6.4.3. Interpretation - Past Cases

1. 사용자의 이전 분석에서 해당 변이에 적용한 Tier 등급 변경 사항 표시

Sample	이전 분석의 개체 이름
Туре	이전 분석에 적용된 Tier 등급이 적용된 상황
Evidence	이전 분석에 적용된 Evidence 타입
Interpretation	이전 분석에 적용된 Tier 등급
Evidence Comment	이전 분석에 적용된 Tier 등급에 대한 근거 자료
Date	이전 분석의 변경 사항 입력날짜

6.5. Variant Detail

- 1. "Read Depth", "Variant Fraction" 등의 시퀀싱 정보 확인
- 2. 유전자 이름, Consequence, 아미노산 서열 변경 등의 변이 정보 확인
 - 2-1. 콤보 박스의 Transcript 를 선택하여 Transcript 별로 변이 정보 확인
- 3. Population 데이터베이스에서의 변이 Frequency 정보 확인
 - 3-1. 콤보 박스의 사이트 명을 선택하여 변이 또는 유전자에 대한 정보 확인
 - 3-2. "View In IGV" 버튼을 클릭하여 IGV 프로그램에서 변이의 Alignment 정보 확인

6.6. Statistics

1. RUN, 패널, 사용자의 그룹 내의 분석 결과 중에서 해당 변이를 가진 검체의 비율

7. 분석 리포트 출력

7.1. 분석 리포트 화면

- 1. "REPORT" 버튼을 클릭하여 검체의 분석 리포트 화면으로 이동
- 2. 리포트에 출력되는 정보 입력 및 확인

DETECTED VARIANT	검체에서 발견된 변이 정보 확인
CONCLUSION	담당 의사의 소견
REPORT EXTRA FIELDS	검체에 대한 정보 입력
TARGET GENES	사용한 패널에서의 타겟 유전자 리스트 확인
	붉은색 유전자 명: 변이가 발견된 유전자
	흰색 유전자 명: 변이가 발견되지 않은 유전자

- ※ NGeneBio 와 협의하여 고객의 요청사항에 따라 리포트 형식을 수정할 수 있으며, 수정된 리포트 형식의 적용 방법은 전체 매뉴얼 참고
- 3. 콤보 박스의 세팅 된 타겟 유전자 리스트 선택
- 4. 입력 정보 저장
- 5. 리포트 초안 출력 (7.2 절 참고)
- 6. 최종 리포트 출력 (7.3 절 참고)

7.2. 리포트 초안 형식

Test information

Report Dat Disease	te			ient ID ecimen Type		
Panel:						
ADAMTS2	AKT1	AKT2	AKT3	ALK	ALOX5AP	APC
AR	ARID1A	ATM	ATR	BAP1	BCL2	BCL6
BDAE	RDC A1	BDC A2	RDID1	CAPD11	CCND1	CCND3

ADAM 152	ANII	ANIZ	AN13	ALK	ALUXSAP	APC
AR	ARID1A	ATM	ATR	BAP1	BCL2	BCL6
BRAF	BRCA1	BRCA2	BRIP1	CARD11	CCND1	CCND2
CCND3	CCNE1	CD3EAP	CD79A	CD79B	CDH1	CDK12
CDK4	CDK6	CDKN2A	CEBPA	CHEK1	CHEK2	CREBBP
CSF1R	DDR2	DNMT3A	EGFR	EP300	ERBB2	ERBB3
ERBB4	ERCC1	ERCC2	ERG	ESR1	EZH2	FAM227B
FANCI	FBXW7	FECH	FGF1	FGF10	FGF14	FGF19
FGF2	FGF23	FGF3	FGF4	FGF5	FGF6	FGF8
FGF9	FGFR1	FGFR2	FGFR3	FGFR4	FLT1	FLT3
FOXL2	GNA11	GNAS	HNF1A	HRAS	HSPA12A	IDH1
IDH2	INPP4B	JAK2	JAK3	KDM5D	KDR	KIT
KMT2A	KRAS	LAMP1	LOC100507346	LOC101927151	MACROD2	MAP2K1
MAP2K2	MCL1	MDM2	MDM4	MLH1	MLLT3	MPL
MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL
MYCN	MYCNOS	MYD88	NF1	NOTCH1	NOTCH2	NOTCH3
NRAS	NRG1	PALB2	PDGFRA	PDGFRB	PIK3CB	PIK3CD
PIK3CG	PIK3R1	PMS2	POLG	PTCH1	PTEN	PTPN11
RAB31	RAD51	RAD51B	RAD51C	RAD51D	RAD54L	RAF1
RB1	RET	ROS1	RPS6KB1	SLX4	SMAD4	SMARCB1
SMO	SRC	SSBP3	STK11	TBL1Y	TET2	TFRC
TP53	TSC1	TST	TTTY14	ZFY		

Number of variants

	Tier I	Tier II	Tier III	Tier IV	
--	--------	---------	----------	---------	--

NGeneBio Co.,Ltd

Head-Office:220-626, 1, Gwanak-ro, Gwanak-gu, Seoul, Korea | Branch-Office: 1104, Hanhwa Bizmetro, 242, Digital-ro, Guro-gu, Seoul, Korea Tel +82 2 867 9798 | FAX +82 2 883 9784 | Fmail + business@ngenehin.com

1 of 11

7.3. 최종 리포트 형식

Test information

Report Date Disease				ent ID cimen Type		
anel:						
ADAMTS2	AKT1	AKT2	AKT3	ALK	ALOX5AP	APC
AR	ARID1A	ATM	ATR	BAP1	BCL2	BCL6
BRAF	BRCA1	BRCA2	BRIP1	CARD11	CCND1	CCND2
CCND3	CCNE1	CD3EAP	CD79A	CD79B	CDH1	CDK12
CDK4	CDK6	CDKN2A	CEBPA	CHEK1	CHEK2	CREBBP
CSF1R	DDR2	DNMT3A	EGFR	EP300	ERBB2	ERBB3
ERBB4	ERCC1	ERCC2	ERG	ESR1	EZH2	FAM227B
FANCI	FBXW7	FECH	FGF1	FGF10	FGF14	FGF19
FGF2	FGF23	FGF3	FGF4	FGF5	FGF6	FGF8
FGF9	FGFR1	FGFR2	FGFR3	FGFR4	FLT1	FLT3
FOXL2	GNA11	GNAS	HNF1A	HRAS	HSPA12A	IDH1
IDH2	INPP4B	JAK2	JAK3	KDM5D	KDR	KIT
KMT2A	KRAS	LAMP1	LOC100507346	LOC101927151	MACROD2	MAP2K1
MAP2K2	MCL1	MDM2	MDM4	MLH1	MLLT3	MPL
MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL
MYCN	MYCNOS	MYD88	NF1	NOTCH1	NOTCH2	NОТСН3
NRAS	NRG1	PALB2	PDGFRA	PDGFRB	PIK3CB	PIK3CD
PIK3CG	PIK3R1	PMS2	POLG	PTCH1	PTEN	PTPN11
RAB31	RAD51	RAD51B	RAD51C	RAD51D	RAD54L	RAF1
RB1	RET	ROS1	RPS6KB1	SLX4	SMAD4	SMARCB1
SMO	SRC	SSBP3	STK11	TBL1Y	TET2	TFRC
TP53	TSC1	TST	TTTY14	ZFY		

Tier I

Tier III

Tier II

Tier IV