

Fig. 1A

Fig. 1B

WO 2004/045599 PCT/GB2003/005061

2/15

ortho PAL : $R_1 = N_3$ $R_2 = H$ $R_3 = H$ meta PAL : $R_1 = H$ $R_1 = N_3$ $R_3 = H$ para PAL : $R_1 = H$ $R_2 = H$ $R_3 = N_3$

Fig. 2

			8	Release	CO Release (20 µmoles)	oles)	00	CO Release (40 µmoles)	(40 µто	les)	NOTES
Compound	Structure	¥ Ψ	0	នុ	70	30	0	10	20	30	
CO-RM-1	00 11. 10 10 00 00 00 00 00 00 00 00 00 00 00	512	12.0	16.3 ±4.0	18.1 ±4.3	18.5 ±4.8	28.5 ±0.4	32.0 ±0.2	34.5 ±0.5	35.6 ±0.4	Soluble In DMSO
CO-RM-1a	OC, Mario DMSO OC, Mario DMSO DMSO	384	7.2 ±0.6	8.6 ±0.3	 8.0 ±0.4	7.5 ±0.4	16.9 ±0.6	18.4 ±0.3	17.3 ±0.3	16.7 ±0.2	Soluble in DMSO
Negative control	CI, Puromso DMSO DMSO DMSO DMSO	484	N.D.	N.D.	N.D.	Ä.Ö.	N.O.	N.O.	z. O.	z. O.	Soluble in H ₂ O
CO-RM-1b	OC, CO	334	6.4 ±1.2	7.3 ±0.6	8.2 ±0.1	8.7 ±0.3	11.7 ±0.8	13.7 ±0.9	14.0	14.4 ±0.6	Soluble in DMSO
CO-RM-10	[Ru(CO) ₂ Cl ₂] _n	(228)	2.6 ±0.6	9.8 ±0.3	12.7 ±0.1	13.8 ±0.9	8.6 ±0.7	21.0 ±1.1	24.4 ±1.0	26.3 ±1.2	Soluble in DMSO

Fig. 3A

Soluble in	Soluble In	Soluble in
DMSO	H ₂ O	H ₂ O
13.7	9,8 €.0.9	16.2 ±0.3
13.3	8.4	15.6
±0.4	4.0.8	±0.4
12.3	5.5	15.0
±0.4	±0.4	±0.4
10.9 ±0.2	0.8 +0.4	11.5 ±0,4
6.2	2.8	8.6
±1.2	±0.4	±0.4
6.2	2.1	8.5
±1.1	±0.1	±0.3
5.9	1,4	8.2
±0.6	±0.4	±0.4
5.6	Ö.	5.9 ±0.1
328	742	539
OC. I. Puring	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Z
CO-RM-11 Ligand: THF	CO-RM-16 Ligand: Cytidine	CO-RM-17 Llgand: Guanosine

Fig. 3B

Soluble in H2O	Soluble in H ₂ O PPT	Soluble in H ₂ O PPT	Soluble in H ₂ O
28.7	2.4	2.3	5.2
±1.3	±0.1	±0.2	±0.1
29.5	2.3	2.7	5.1
±1.4		±0.4	±0.1
29.5	1.9	2.7	3.7
±1.5	±0.1	±0.3	±0.1
25.4	0.7	2.7	1.9
±1.0	±0.1	±0.3	±0.2
13.5	2.3	1.0	2.4
40.4	±0.1	±0.2	±0.2
14.1	1.0	1.3	2.3
±0.5		±0.1	±0.2
14.3	0.8	1.3	1.9
±0.4	±0.3	±0.2	±0.1
10.1	0.1	1.2	0.6
±0.9	±0.1	±0.1	±0.1
822	407	558	340.5
OC O	OC, Guanine HN HAM HAM HAM	OC,,,,,Ru,,,Suanine CI HA	OC, II, IN
CO-RM-18	CO-RM-22	CO-RM-23	CO-RM-26
Ligand:	Ligand:	Ligand:	Ligand:
Guanosine	Guanine	Guanine	Cysteine

Fig. 3C

Soluble in H ₂ O	Soluble in H ₂ O	Soluble in H ₂ O	Soluble in H ₂ O	Soluble in H ₂ O
10.6	23.2	7.3	21.9	19.6
±0.4	±0.3	±1.1	±1.2	±.09
12.4	23.8	7.5	22.0	19.9
±0.1	±0.6		±1.0	±.09
11.7	24.4	8.3	24.6	21.3
±0.3	±1.0	±1.2	±1.4	±.09
8.3	25.2	7.6	24.2	20.2
±0.6	±1.5	±1.3	±1.5	±.06
3.2	12.9	3.0	10.8	11.0
±0.1	±0.7		±.07	±0.2
5.0 ±0.1	14.3	4.0 ±0.2	11.4 ±1.1	11.1 ±.03
4.5	17.8	4.4	12.8	11.9
±0.1	±0.7	±0.1	±.09	±0.4
1.4	14.2	3.2	11.0	9,1
	±0.6	±0.2	±.03	±1.1
665	294.5	350.5	324.5	308.5
OCC,,,,,C OCC,,,,,Ru,,,C OCC,,,,Ru,,,C CH,OAC, N H H H H H H H H CH,OAC, N CH,OAC, N C	000, NH2, NH2, NH2, NH2, NH2, NH2, NH2, NH2	00 11 11 11 11 11 11 11 11 11 11 11 11 1	OC. THINH CHACH	OC, , , , , , , , , , , , , , , , , , ,
CO-RM-29 Ligand: Triacetyle: guanosine	CO-RM-3 Ligand: Glyche	CO-RM-38 Llgand: Isoleucine	CO-RM-39 Ligand: Serine	CO-RM-40 Ligand: Alanine

Fig. 3D

CO-RM-42 Ligand: Glutamine	OC, Ruinny CH2CH2CONH2	365.5	8.9 ±0.4	11.1 ±0.4	12.1 ±1.4	10.1	21.4 ±2.1	21.8	20.6 ±2.0	20.0 ±1.8	Soluble In H ₂ O
CO-RM-43 Llgand: Arginine	OC. C. N.H. N.H. OC. C. C	393.5	9,4 ±1.4	11.9 ±0.5	12.3 ±0.7	11.0	18.3 ±.03	20.0 ±0.6	19.0 ±1.2	17.8	Soluble in H ₂ O
CO-RM-46 Ligand: Lysine	OC,, Rui, NH42	365.5	6.0 . ±0.4	7.5 ±0.8	7.2 ±1.2	6.4 ±0.8	: 12.6 ±0.9	13.4 ±1.2	13.2	11.9 ±1.0	Soluble in H ₂ O
CO-RM-67 Ligand: L-valine	DC,,,,,NH2, CH(CH ₃)2	336.5	11.1 ±2.9	18.2 ±1.7	17.6 ±1.6	17.0 ±1.6	29.3 ±1.5	34.6 ±2.2	33.7 ±2.2	32.8 ±2.2	Soluble in H ₂ O
CO-RM-70	- 3 3 3 3	240	0.5 ±0.2	0.9 ±0.1	2.2 ±0.2	2.7 ±0.3	- 0.9 ±0.1	2.0 ±0.2	4.9 ±0.2	6.3 ±0.3	Soluble in DMSO PPT
CO-RM-71	, S	350	1.5 ±0.2	2.3 ±0.3	3.1 ±0.4	3.7 ±0.4	3.4 ±0.1	5.4 ±0.3	6.9 ±0.3	7.6 ±0.4	Soluble in DMSO PPT

Fig. 3E

CO-RM-74 Ligand: L-Threonine	OC, WH2 CH(OH)CH3	338.5	15.7 ±1.2	17.5 ±2.0	16.5 ±2.3	14.8 ±2.2	33.3 ±0.2	33.4 ±0.1	32.7 ±0.2	31.4 ±0.1	Soluble in H ₂ O
CO-RM-97	000,1,1,1,000 000,1,1,1,000 000,1,1,1,000	316	2.8 ± 0.6	7.0 ± 0.7	7.2 ± 0.9	6.6 0.9	7.1 ± 0.5	14.3 ± 0.7	14.7 ± 0.8	13.6 ± 0.7	Soluble in H ₂ O
CO-RM-99	00 00 00 00 00 00 00 00 00 00 00 00 00	317	4.6 ± 0.6	8.1 ± 0.2	7.3 ± 0.3	5.5 ± 0.3	11.5 ±0.2	16.6 ± 0.2	16.0 ± 0.9	14.0 ± 0.2	Soluble in H ₂ O
CO-RM-H Ligand: L-proline	OC. PRINHT-	335	. 4.4 0.3	4.7 ± 0.6	6.2 ± 0.8	6.3 ± 0.7	4.2 ±0.4	9.9 ± 0.2	12.5 ± 0.1	13.0 ± 0.1	Soluble in H ₂ O

Fig. 3F

WO 2004/045599 PCT/GB2003/005061

9/15

PCT/GB2003/005061

Fig. 6A

Fig. 6B

WO 2004/045599 PCT/GB2003/005061

14/15

Fig. 8A

Fig. 8B

15/15