

Figure 5.5 (a) Exact posteriors $p(\theta_i|\mathcal{D}_i)$. (b) Monte Carlo approximation to $p(\delta|\mathcal{D})$. We use kernel density estimation to get a smooth plot. The vertical lines enclose the 95% central interval. Figure generated by amazonSellerDemo,

On the face of it, you should pick seller 2, but we cannot be very confident that seller 2 is better since it has had so few reviews. In this section, we sketch a Bayesian analysis of this problem. Similar methodology can be used to compare rates or proportions across groups for a variety of other settings.

Let θ_1 and θ_2 be the unknown reliabilities of the two sellers. Since we don't know much about them, we'll endow them both with uniform priors, $\theta_i \sim \text{Beta}(1,1)$. The posteriors are $p(\theta_1|\mathcal{D}_1) = \text{Beta}(91,11)$ and $p(\theta_2|\mathcal{D}_2) = \text{Beta}(3,1)$.

We want to compute $p(\theta_1 > \theta_2 | \mathcal{D})$. For convenience, let us define $\delta = \theta_1 - \theta_2$ as the difference in the rates. (Alternatively we might want to work in terms of the log-odds ratio.) We can compute the desired quantity using numerical integration:

$$p(\delta > 0|\mathcal{D}) = \int_{0}^{1} \int_{0}^{1} \mathbb{I}(\theta_{1} > \theta_{2}) \operatorname{Beta}(\theta_{1}|y_{1} + 1, N_{1} - y_{1} + 1)$$

$$\operatorname{Beta}(\theta_{2}|y_{2} + 1, N_{2} - y_{2} + 1) d\theta_{1} d\theta_{2}$$
(5.11)

We find $p(\delta > 0|\mathcal{D}) = 0.710$, which means you are better off buying from seller !! See amazonSellerDemo for the code. (It is also possible to solve the integral analytically (Cook 2005).)

A simpler way to solve the problem is to approximate the posterior $p(\delta|\mathcal{D})$ by Monte Carlo sampling. This is easy, since θ_1 and θ_2 are independent in the posterior, and both have beta distributions, which can be sampled from using standard methods. The distributions $p(\theta_i|\mathcal{D}_i)$ are shown in Figure 5.5(a), and a MC approximation to $p(\delta|\mathcal{D})$, together with a 95% HPD, is shown Figure 5.5(b). An MC approximation to $p(\delta>0|\mathcal{D})$ is obtained by counting the fraction of samples where $\theta_1>\theta_2$; this turns out to be 0.718, which is very close to the exact value. (See amazonSellerDemo for the code.)

5.3 Bayesian model selection

In Figure 1.18, we saw that using too high a degree polynomial results in overfitting, and using too low a degree results in underfitting. Similarly, in Figure 7.8(a), we saw that using too small