CSP-S2022 模拟赛

gyh20

题目名称	机器人与宝藏	机器人与电	机器人填数	多头机器人
题目类型	传统型	传统型	传统型	传统型
输入文件名	treasure.in	power.in	tree.in	dottlebot.in
输出文件名	treasure.out	power.out	tree.out	dottlebot.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	5.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
测试点数目	10	10	25	20
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言 game.cpp	city.cpp	number.cpp	operation.cpp
--------------------	----------	------------	---------------

编译选项

对于 C++ 语言	-lm -02 -std=c++14
-----------	--------------------

注意事项

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 3. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 4. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 原则上,每个测试点时限应为标准程序在该测试点上的运行时间的 2 倍及以上。
- 6. 每道题的时间限制、编译命令、是否开启文件输入输出等信息,在赛时均有可能变动,请各位选手以赛时通知为准。
- 7. AK 了不要声张, 闷声发大财。

机器人与宝藏(treasure)

【题目描述】

dottle 发现了一个宝箱,不过打开这个宝箱需要解决谜题。 定义 f(B,n) 为 B 进制下 n 的各数位之和,例如 f(7,11)=5, f(5,25)=1。 多次给出 n,k,求 $\min_{B < k} f(B,n)$ 。

【输入格式】

从文件 treasure.in 中读入数据。

第一行一个正整数 t。

接下来 t 行,每行两个正整数 n,k,表示询问。

【输出格式】

输出到文件 treasure.out 中。

输出 t 行,每行一个数,表示答案。

【样例输入 1】

6

15 4

25 2

25 3

25 4

25 5

25 6

【样例输出 1】

3

3

3

3

1

1

【样例解释 1】

f(3,15) = 3, f(2,25) = 3, f(5,25) = 1.

【样例 2】

见下发文件中 treasure2.in/out 该样例满足测试点 1 的性质。

【样例 3】

见下发文件中 treasure3.in/out 该样例满足测试点 $9 \sim 10$ 的性质。

【数据范围与提示】

对于所有测试点,满足 $1 \le t \le 10^4, 2 \le n \le 10^9, 2 \le k \le n$ 。 每个测试点的具体限制见下表:

测试点编号	t	n	k
1	$\leq 10^4$	$\leq 10^{2}$	
$2\sim 3$	≤ 10	$\leq 10^{5}$	$\leq n$
4	$\leq 10^4$	10	
5			= n
$6 \sim 7$	≤ 10	$\leq 10^9$	= n $= n - 1$
$8 \sim 9$		≤ 10	$\leq n$
10	$\leq 10^4$		

机器人与电(power)

【题目描述】

dottle 所在的城市由机器人组成,所有机器人都需要电。

城市可以看成一个 n 个点 n-1 条边的连通图,有 m 条线路,第 i 条线路沿最短路连接 S_i 和 T_i ,这条路径上的所有点可以相互传递能源。

然后城市会修建最少数量的电厂,使得所有城市都可以收到从电厂传来的能源。

然而由于年老失修,每条线路有 p_i 的概率被损坏,你需要求出期望需要修建的电厂数量,对 998244353 取模。

【输入格式】

从文件 power.in 中读入数据。

第一行两个整数 n, m。

之后 n-1 行,每行两个整数 u,v,代表城市的一条边。

之后 m 行,每行四个整数 u,v,w,表示该边连接 u,v,损坏的概率为 w。

【输出格式】

输出到文件 power.out 中。

输出一行一个整数,表示答案。

【样例输入1】

5 2

1 2

1 3

1 4

1 5

2 3 0

4 5 499122177

【样例输出 1】

2

【样例解释 1】

若第二条线路存在,修建一个电厂已足够。

若不存在, 需要在 4,5 以及 1,2,3 中的一个修建电厂, 总共需要 3 个。

【样例 2】

见下发文件中的 power2.in/out。 该样例满足测试点 $2 \sim 3$ 的限制。

【样例 3】

见下发文件中的 power3.in/out。 该样例满足测试点 $4 \sim 5$ 的限制。

【样例 4】

见下发文件中的 power4.in/out。 该样例满足测试点 $9 \sim 10$ 的限制。

【数据范围与提示】

对于所有数据,满足 $1 \le n, m \le 2 \times 10^5$ 每个测试点的具体限制见下表:

测试点编号	n	m	特殊性质	
1	≤ 10	= 1	无	
2	$\leq 10^{3}$	$\leq 10^{3}$	$m_{i} = 0$	
$3 \sim 4$			$p_i = 0$	
$5\sim 6$	$< 2 \times 10^5$	$< 2 \times 10^5$	第 i 条边连接 i 与 $i+1$	
$7 \sim 8$	$ \leq 2 \times 10^{\circ}$	$\geq 2 \times 10$	第 <i>i</i> 条边连接 1 与 <i>i</i> + 1	
$9 \sim 10$			无	

CSP-S 模拟 机器人填数(tree)

机器人填数(tree)

【题目描述】

dottle 得到了一棵 n 个点的以 1 为根的有根树,他想在树上每一个点中填一个 $1 \sim m$ 的颜色。同时给定序列 f,其中 f_i 表示限制以 i 为根的子树中恰好有 f_i 种不同的颜色,若 $f_i = -1$,则表示没有任何限制。

求填颜色的方案数,对 $10^9 + 7$ 取模,保证答案在取模之前不为 0。

【输入格式】

从文件 tree.in 中读入数据。

第一行两个正整数 n, m。

接下来 n-1 行,每行两个数 x,y,表示树中的一条边。

接下来一行 n 个数,表示 $f_1 \sim f_n$ 。

【输出格式】

输出到文件 tree.out 中。

输出一行一个数,表示你的答案,对 109+7 取模。

【样例输入1】

5 5

1 1 3 4

4 1 2 2 1

【样例输出 1】

48

【样例 2】

见下发文件中的 tree2.in/out。 该样例满足测试点 $3 \sim 5$ 的限制。

【样例 3】

见下发文件中的 tree3.in/out。 该样例满足测试点 $10 \sim 11$ 的限制。 CSP-S 模拟 机器人填数(tree)

【样例 4】

见选手目录下的 tree4.in/out。 该样例满足测试点 $15\sim18$ 的限制。

【数据范围与提示】

对于所有测试点: $2 \le n \le 10^5, 1 \le m \le 10^5, -1 \le f_i \le m$,保证答案在取模之前不为 0。每个测试点的具体限制见下表:

测试点编号	n	m	特殊性质
$1 \sim 2$	≤ 5	≤ 5	无
$3 \sim 5$	≤ 15	≤ 15	
$6 \sim 7$	≤ 50	≤ 50	A
$8 \sim 9$	$< 2 \times 10^{3}$	< 100	
$10 \sim 11$	<u> </u>	100	无
$12 \sim 13$		≤ 10	A
14			无
$15 \sim 18$	$< 10^5$	≤ 100	A
19	<u> </u>		无
$20 \sim 24$		$\leq 10^5$	A
25			无

多头机器人(dottlebot)

【题目描述】

你有两个长度为 n 的序列,a 和 r。 你需要维护下式的值:

 $\max_{i \neq j, |i-j| \le \max(r_i, r_j)} a_i + a_j$

并支持动态修改序列 a 和序列 r,部分测试点要求强制在线。

【输入格式】

从文件 dottlebot.in 中读入数据。

第一行两个整数 n,q,typ。

之后一行 n 个整数, 第 i 个数为 a_i 。

之后一行 n 个整数, 第 i 个数为 r_i 。

接下来 q 行,每行三个整数 x,y,z,若 typ=1 则 x,y,z 均要异或上上一次输出的值,表示修改 a_x 为 y, r_x 为 z。

【输出格式】

输出到文件 dottlebot.out 中。

在所有修改之前和每一次修改之后,输出上述式子的值。

【样例输入1】

6 5 0

5 1 4 1 1 4

1 1 1 1 1 1

3 3 2

5 5 0

6 2 6

1 10 1

3 5 1

【样例输出 1】

6

8

9

8

13

12

【样例 2】

见下发文件中的 dottlebot2.in/out。 该样例满足测试点 $7 \sim 8$ 的限制。

【样例 3】

见下发文件中的 dottlebot3.in/ans。 该样例满足测试点 $10 \sim 12$ 的限制。

【数据范围与提示】

对于所有数据,满足 $1 \le n, q \le 5 \times 10^4, 1 \le a_i \le 10^7, 1 \le r_i \le n, 0 \le typ \le 1$ 。 每个测试点的具体限制见下表:

测试点编号	n	q	typ	特殊性质
$1 \sim 2$	≤ 50	≤ 50	= 1	无
$3 \sim 4$			=0	A
5	$\leq 10^{3}$	$\leq 10^3$	= 1	А
6	<u> </u>	<u> </u>	=0	无
$7 \sim 8$			= 1	儿
9		=0	=0	
$10 \sim 12$			_ 0	A
$13 \sim 14$	$\leq 5 \times 10^4$	$\leq 5 \times 10^4$	= 1	
$15 \sim 16$		$ $ \geq 3 \times 10	=0	无
$17 \sim 20$			= 1	<i>)</i> L

特殊性质 A: 保证 n > 1, 且任意时刻所有位置的 r_i 相同。