Combinatorics I

Kon Yi

September 5, 2025

Contents

1	Chatting	4
	1.1 Prime Numbers	
2	Elementary Counting Principles	_
	2.1 Sum Rule	4
	2.2 Product Rule	(
	2.3 Double-Counting argument	,
	2.4 Permutations	

Chapter 1

Chatting

Lecture 1

1.1 Prime Numbers

2 Sep. 15:30

Theorem 1.1.1 (Euclid ≈ 300 BCE). There are infinitely many primes.

proof. (Saidak, 2006).

- Every natural number has at least one prime factor.
- No prime divides n and n+1, for any $n \in \mathbb{N}$.

Consider a sequence of pronic number

$$p_1 = 2, \ p_{n+1} = p_n(p_n + 1).$$

Then the number of prime factors of p_n is strictly increasing in n: p_{n+1} has all the factors of p_n together with the (disstinct) ones of $p_n + 1$.

Example. $p_1=2, p_2=6, p_3=42, p_4=1806$, where the prime factors of them are $\{2\}$, $\{2,3\}$, $\{2,3,7\}$, $\{2,3,7,43\}$.

1.1.1 How many prime numbers are there?

Definition 1.1.1. We define

$$\pi(n) = |\{p : 1 \le p \le n : p \text{ is prime}\}|.$$

Note. By Saidak's proof, we know $\pi(p_n) \ge n$. In fact, $\pi(p_n) \ge \log_2 n$.

Theorem 1.1.2 (Legendre, $\approx 1800 \text{ LE}$).

$$\pi(n) \approx \frac{n}{\ln n} \Leftrightarrow \lim_{n \to \infty} \frac{\pi(n) \ln n}{n} = 1$$

Note. Proven by Hadamard and independently de la Vallée Poussin(1896).

Theorem 1.1.3 (Better Approximation). Dirichlet: $\pi(x) \approx Li(x) = \int_2^x \frac{1}{\ln t} dt$. Known: $\pi(n) = Li(n) + O\left(ne^{-a\sqrt{\ln n}}\right)$ Believed: $\pi(n) = Li(n) + O\left(\sqrt{n}\ln n\right)$

Chapter 2

Elementary Counting Principles

Fundemental problem: Given a set S, and we want to determine |S|.

2.1 Sum Rule

Theorem 2.1.1 (Sum Rule). If $S = \bigcup_{i=1}^k S_i$, then $|S| = \sum_{i=1}^k |S_i|$.

Note. [.] means disjoint union.

Example. A drawer contains 8 pairs of yellow socks, 5 pairs of blue socks, and 3 pairs of red socks. How many socks are there in total.

Informal proof. $2 \times (8 + 5 + 3) = 32$.

Proof. Let S be the set of socks in the drawer, then $S = \bigcup_{p \in P} S_p$, where P is the set of pairs of socks, and S_p is the set of two socks in the pair where $p \in P$. By the sum rule,

$$|S| = \sum_{p \in P} |S_p| = \sum_{p \in P} 2 = 2|P| = 32.$$

 $P = P_{\mathrm{yellow}} \cup P_{\mathrm{blue}} \cup P_{\mathrm{red}}$. By the sum rule,

$$|P| = |P_{\text{yellow}}| + |P_{\text{blue}}| + |P_{\text{red}}| = 8 + 5 + 3 = 16.$$

Note. Sum rule is the basis for case analysis arguments. It needs two requirements:

- Cover each case.
- Cover each case exactly once.

Example. Counting subset of a general set.

Notation. If X is a set, and $k \in \mathbb{N} \cup \{0\}$, then

$$\begin{pmatrix} X \\ k \end{pmatrix} = \{T: \ T \subseteq X, \ |T| = k\}.$$

We define the binomial coefficient as

$$\binom{|X|}{k} = \left| \binom{X}{k} \right|.$$

i.e. Given $n \ge k \ge 0$, $\binom{n}{k}$ is the number of k-element subsets of a set of size n.

Proposition 2.1.1 (Pascal's relation). If $n \ge k \ge 1$, then

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

Proof. Let X be an n-element set (e.g. $X = [n] = \{1, 2, ..., n\}$), and let $S = {n \choose k} = \{T \subseteq X : |T| = k\}$. Then, by definition, ${n \choose k} = |S|$. For each k-element subset, we can ask: "Do you contain n?" Let

$$S_0 = \{T : T \subseteq X, n \notin T, |T| = k\},\$$

and

$$S_1 = \{T : T \subseteq X, n \in T, |T| = k\}.$$

Then, $S = S_0 \cup S_1$. By the sum rule, $|S| = |S_0| + |S_1|$. Observe that

$$S_0 = \{T \subseteq [n], n \notin T, |T| = k\}$$

= $\{T \subseteq [n-1], |T| = k\},$

so by definition,

$$|S_0| = \binom{|[n-1]|}{k} = \binom{n-1}{k}.$$

$$S_1 = \{ T \subseteq [n], n \in T, |T| = k \}.$$

Let

$$S_1' = \{T' \subseteq [n-1], |T'| = k-1\},\$$

then we know a bijection from S_1 to S'_1 :

$$T \in S_1 \longleftrightarrow T \setminus \{n\} \in S'_1.$$

Theorem 2.1.2 (bijection rule). Given two sets S and S', if there is a bijection $f: S \to S'$, then |S| = |S'|.

By this rule, we know

$$|S_1| = |S_1'| = {\binom{|[n-1]|}{k-1}} = {\binom{n-1}{k-1}}.$$

Hence,

$$\binom{n}{k} = |S| = |S_0| + |S_1| = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

2.1.1 Pascal's Triangle

We can use Pascal's relation to compute $\binom{n}{k}$.

Note. Boundary case: $\binom{n}{0} = 1$, $\binom{n}{n} = 1$. Also, $\binom{n}{k} = 0$ for k = -1, n + 1.

2.2 Product Rule

Theorem 2.2.1. If $S = S_1 \times S_2 \times \cdots \times S_k = \{(x_1, x_2, x_k), x_i \in S_i\}$, then $|S| = \prod_{i=1}^k |S_i|$.

Proof. Induction on k:

Base case: k = 1, trivial.

Induction step: separate into cases bases on choice of $x_{k+1} \in S_{k+1}$. Let

$$S(x) = \{(x_1, \dots, x_{k+1}) \in S, x_{k+1} = x \in S_{k+1}\},\$$

then

$$S = \bigcup_{x \in S_{k+1}} S(x) \to |S| = \sum_{x \in S_{k+1}} |S(x)|.$$

But $S(x) = S_1 \times S_2 \times \cdots \times \{x\}$, which is in bijection with $S_1 \times S_2 \times \cdots \times S_k$. By induction rule,

$$|S(x)| = |S_1 \times S_2 \times \dots \times S_k| \quad \forall x$$

Hence,

$$|S| = \sum_{x \in S_{k+1}} |S(x)| = \sum_{x \in S_{k+1}} |S_1 \times S_2 \times \dots S_k|$$

= $|S_1 \times S_2 \times \dots \times S_k| \times |S_{k+1}| = |S_1| \times |S_2| \times \dots \times |S_{k+1}|.$

Example. Consider binary strings of length n.

Proof.

$$S = \{0, 1\}^n \Rightarrow |S| = |\{0, 1\}^n| = |\{0, 1\}|^n = 2^n.$$

Definition 2.2.1 (Power Set). Given a finite set X, let 2^X denote the set of all subsets of X (also denoted $\mathcal{P}(x)$), which is called the power set.

Corollary 2.2.1. $|2^X| = 2^{|X|}$.

Proof. Without lose of generality, X = [n]. We build a bijection between $2^{[n]}$ and the set of binary string of length n. Suppose for every $T \in 2^{[n]}$, we have $\chi_T = (x_1, x_2, \dots, x_n)$, where

$$x_i = \begin{cases} 1, & \text{if } i \in T; \\ 0, & \text{if } i \notin T. \end{cases}$$

Then,

$$|2^{[n]}| = |\{0,1\}^n| = 2^n.$$

2.3 Double-Counting argument

If we count a set in two different ways, the answer should be equal.

Example. Count $2^{[n]}$.

Proof.

- 1. Product rule $\rightarrow 2^n$.
- 2. Use the sum rule, split the subsets by size.

$$2^{[n]} = \binom{[n]}{0} \cup \binom{[n]}{1} \cup \ldots \cup \binom{[n]}{n}$$

Hence, we have the following proposition:

Proposition 2.3.1. For all $n \geq 0$,

$$2^n = \sum_{k=0}^n \binom{n}{k}.$$

*

2.4 Permutations

Lecture 2

As previously seen. Instead of choosing the subsets all at once, we could pick one element at a time, then we can try to use product rule.

5 Sep. 13:10

Example. Consider

$$\binom{[10]}{3}$$
.

Proof. At the choice of the first element, we have 10 choices, the second one has 9 choice, while the third one has 8 choice, but we didn't consider the order of each picked elements.

Definition 2.4.1. Given a set X and $k \in \mathbb{N} \cup \{0\}$, a k-permutation of X is

- an ordered choice of k distinct elements from X.
- a k-tuple (x_1, x_2, \dots, x_k) with $x_i \in X$ and $x_i \neq x_j$ for each $i \neq j$.
- an injection $f:[k] \to X$.

where these 3 statements are equivalent.

Notation. $X^{\underline{k}} = \{k\text{-permutation of }X\} \subseteq X^k \text{ where } X^k = X \times X \times \cdots \times X \text{ allows repitition of the elements but }X^{\underline{k}} \text{ don't allow repitition.}$

Note. If |X| = n, then

$$n^{\underline{k}} = \left| X^{\underline{k}} \right|.$$

Definition 2.4.2.

- a n-permutation is a n-permutation of [n].
- a X-permutation is a |X|-permutation of X.

Theorem 2.4.1 (Generalized Product Rule). Suppose we are enumerating S, and can uniquely determine an element $s \in S$ through a series of k questions, if i-th problem always has n_i possible outcomes, independently to the permutation, then

$$|S| = n_1 \times n_2 \times \cdots \times n_k = \prod_{i=1}^k n_i$$

Proof. Can make a bijection from S to

$$[n_1] \times [n_2] \times \cdots \times [n_k].$$

Map each element in S to the index of its answer in the series of answer.

Our moral is when counting we don't care about what the options are but only how many options.

Proposition 2.4.1.

$$n^{\underline{k}} = n(n-1)\dots(n-(k-1))$$
$$= \prod_{i=0}^{k-1} (n-i) = \frac{n!}{(n-k)!}.$$

Proof. Use the generalized product rule.

Question i: What is the i-th element in the k-permutation of [n]?

We can choose anything except what we're alreafy chosen, so there are i-1 forbidden choices and thus there are n-(i-1) possible choices.

Proposition 2.4.2. For all $0 \le k \le n$,

$$\binom{n}{k} = \frac{n^{\underline{k}}}{k^{\underline{k}}} = \frac{\binom{n!}{(n-k)!}}{k!} = \frac{n!}{k!(n-k)!}.$$

Proof. Double-count $[n]^{\underline{k}}$ i.e. k-permutation of [n].

- Direct counting $|[n]^{\underline{k}}| = n^{\underline{k}}$.
- First choose the k elements to appear in the k-permutation, $\binom{n}{k}$ options, then choose the order in which they appear, $k^{\underline{k}}$ options.

Then, by the generalized product rule, the number of k-permutation of [n] is $\binom{n}{k} \cdot k^{\underline{k}}$.

Hence,

$$n^{\underline{k}} = \left| [n]^{\underline{k}} \right| = \binom{n}{k} \cdot k^{\underline{k}}.$$

Corollary 2.4.1. We can then use this result to reprove Pascal's Property again.

Proof.

Exercise. 6 players at the tennis club want to have three matches involving all the players? How many ways can we arrange the games.

Figure 2.1: Tennis Games

Proof. We only care about who plays against whom, not about which court or who versus first, e.t.c.

The arrangement of games is a set of three disjoint pairs of players.

$$\{\{1,2\},\{3,4\},\{5,6\}\} \neq \{\{1,3\},\{2,4\},\{5,6\}\}.$$

Double-count the arrangements of games where counts do matter.

- Choose a pair of players for Court A: $\binom{6}{2}$
- Choose a pair of players for Court B: $\binom{4}{2}$
- Choose a pair of players for Court C: $\binom{2}{2}$

Generalized product rule tells

number of choices
$$= \binom{6}{2} \binom{4}{2} \binom{2}{2} = 90.$$

Second count: First gets a set of 3 pairs, say there are x possibilities , and assign the three pairs to 3 courts, so there are 3! , so $x \cdot 3! = 90$, and thus $x = \frac{90}{3!} = 15$.

Appendix