BUNDESREPUBLIK DEUTSCHLAND

REC'D 1 2 NOV 2004

WIPO PCT

EP04 /11869

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 54 468.2

Anmeldetag:

21. November 2003

Anmelder/Inhaber:

Rohde & Schwarz GmbH & Co KG,

81671 München/DE

Bezeichnung:

Verfahren und Vorrichtung zur Überwachung der

Trägerfrequenzstabilität von Sendern in einem

Gleichwellennetz

IPC:

H 04 H, H 04 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 4. Oktober 2004 **Deutsches Patent- und Markenamt**

Der Präsident

Im Auftrag

BEST AVAILABLE COPY

Remus

PRIORITY SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

A 9161 06/00 EDV-L

Verfahren und Vorrichtung zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz

Die Erfindung betrifft ein Verfahren zur Überwachung der Stabilität der Trägerfrequenz von mehreren Sendern in einem Gleichwellennetz.

Der terrestrische digitale Hör- und TV-Rundfunk (DAB und 10 DVB-T) wird mittels digitalen Mehrträgerverfahren (z. B. OFDM = orthogonal frequency division multiplexing) über ein Netz von Sendern übertragen, die phasen- und frequenzsynchron über ein Gleichwellennetz im Sendegebiet ausstrahlen.

Zur effizienten Nutzung der vorhandenen Frequenzressourcen strahlen alle Sender eines Gleichwellennetzes zeitgleich ein identisches Sendesignal aus. Neben der Phasensynchronität muß in einem Gleichwellennetz deshalb auch die Identität der auszustrahlenden Trägerfrequenz bei den einzelnen Sendern gewährleistet sein.

20

25

30

35

In der DE 199 37 457 Al wird ein Verfahren zur Überwachung der Phasensynchronität der einzelnen Sender eines Gleichwellennetzes vorgestellt. Eine auftretende Phasenasynchronität zweier Sender wird über eine Laufzeitdifferenzmessung durch Ermittlung der Kanalimpulsantworten der beiden Sender erfasst. Liegt eine Abweichung zwischen der gemessenen Laufzeitdifferenz der beiden Sender und einer Referenzlaufzeitdifferenz für den synchronen Betriebsfall der beiden Sender in größerem Umfang vor, so strahlen die beiden Sender asynchron aus. Diese Abweichung der Laufzeitdifferenz wird von einer Empfangsstation im Sendegebiet des Gleichwellennetzes durch Auswertung Kanalimpulsantworten ermittelt und den beiden phasenasynchronen Sendern für eine nachträgliche Synchronisierung übermittelt. Ein Verfahren Überwachung zur identischer Trägerfrequenzen bei zwei Sendern in einem

V.

10

15

20

25

30

Gleichwellennetz kann der DE 199 37 457 Al nicht entnommen werden.

Die Synchronisierung von Sendern in einem Gleichwellennetz hinsichtlich identischer Trägerfrequenz ist in der DE 43 41 211 Cl beschrieben. Hierbei überträgt eine Zentrale den einzelnen Sendern des Gleichwellennetzes neben den Übertragungsdaten auch ein Frequenzreferenzsymbol. Dieses Frequenzreferenzsymbol wird von jedem Sender des Gleichwellennetzes ausgewertet und für eine Synchronisierung der Trägerfrequenz an die Frequenzreferenz herangezogen.

Nachteilig an diesem Verfahren ist die Tatsache, dass die Auswertung der Synchronität der Trägerfrequenz von jedem Sender einzeln durchgeführt wird. Diese senderspezifische Auswertung der Frequenzsynchronität der Trägerfrequenz kann mit einem gewissen senderspezifischen folglich Vermessungs- und Auswertungsfehler behaftet sein, der zu einer uneinheitlichen Überwachung der Trägerfrequenz aller Gleichwellennetz beteiligten im Sender führen kann. Hinzukommt, dass die Überwachung der Trägerfrequenz bei jedem einzelnen Sender eine Synchronisierung der einzelnen Sender mittels einer Zeit-Referenz erforderlich macht, die vom einzelnen Sender beispielsweise über GPS empfangen wird. Schließlich findet die Frequenzsynchronisierung in der Schaltungsanordnung der DE 43 41 211 C1 vor der Modulation statt, so dass eine nachträgliche Frequenzverschiebung der Trägerfrequenz durch nachfolgende Funktionseinheiten des Senders nicht ausgeschlossen ist. Alle diese Schwachpunkte können zu einem unerwünschten Empfang unterschiedlicher Trägerfrequenzen der einzelnen Sender in einem an einem beliebigen Ort im Sendegebiet des Gleichwellennetzes positionierten Empfänger führen.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz anzugeben, bei dem die Synchronität der Trägerfrequenzen der einzelnen Sender einheitlich durch

eine einzige Meßanordnung, die an einer beliebigen Stelle im Sendegebiet des Gleichwellennetzes positioniert sein kann, ohne Synchronisierung der Meßanordnung mittels einer Zeit-Referenz überwacht wird.

5

10

Die Aufgabe der Erfindung wird durch ein Verfahren zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz mit den Merkmalen des Anspruchs 1 und eine Vorrichtung mit den Merkmalen des Anspruchs 12 oder 13 gelöst. Vorteilhafte Ausgestaltungen der Erfindungen sind in den abhängigen Ansprüchen angegeben.

20

25

30

35

Die Überwachung der Trägerfrequenzstabilität der zu einem Gleichwellennetz gehörigen Sender erfolgt über einzige Empfangseinrichtung, die im Sendegebiet Gleichwellennetzes an einem beliebigen Ort positioniert ist. Die Empfangseinrichtung ermittelt aus der Übertragungsfunktion des Übertragungskanals vorzugsweise mittels der inversen komplexen Fourier-Transformation den Verlauf der Summenimpulsantwort sämtlicher Sender zu zwei verschiedenen Zeitpunkten. Die zum jeweiligen gehörigen Impulsantworten werden aus den beiden Summenimpulsantworten ausgeblendet, nachdem deren Phasen-Phasenlage der beiden Impulsantworten lage zur Bezugssenders des Gleichwellennetzes in Relation gesetzt wurden. Anschließend werden die Phasenverläufe der beiden zum jeweiligen Sender gehörigen Impulsantworten ermittelt, aus denen wiederum für jeden Sender die Phasenverschiebungsdifferenz der Impulsantwort des jeweiligen Senders zur Phasenlage der Impulsantwort des Bezugssenders zwischen zwei Beobachtungszeitpunkten abgeleitet wird. Aus dem Verlauf der Phasenverschiebungsdifferenz kann, weiter unten noch im Detail gezeigt wird, die Trägerfrequenzverschiebung jedes Senders zur frequenz eines Bezugssenders des Gleichwellennetzes berechnet werden.

Zur eindeutigen Identifizierung einer dauerhaften Trägerfrequenzverschiebung bei einem Sender des Gleichwellennetzes werden die Summenimpulsantworten sämtlicher Sender aus der Übertragungsfunktion des Übertragungskanals durch Anwendung der inversen komplexen Fourier-Transformation zu mehreren verschiedenen Zeitpunkten wiederholt durchgeführt und darauf aufbauend die Trägerfrequenzverschiebung jedes Senders zur Trägerfrequenz eines Bezugssenders des Gleichwellennetzes wiederholt berechnet und einer anschließenden Mittelung zugeführt.

5

10 Sinkt die Phasenverschiebungsdifferenz eines Senders zwischen zwei Zeitpunkten auf einen Wert kleiner übersteigt die Phasenverschiebungsdifferenz eines Senders zwischen zwei Zeitpunkten auf einen Wert größer $+\pi$, wird der der Phasenverschiebungsdifferenz Wert jeweiligen Senders zwischen zwei Zeitpunkten in diesem 15 Zeitabschnitt um den Wert $+2*\pi$ erhöht bzw. $2*\pi$ um diese reduziert. Auf Weise wird die Phasenverschiebungsdifferenz auf Werte zwischen $-\pi$ und $+\pi$ begrenzt.

20 Die Gewinnung der Impulsantwort jedes Senders des Gleichwellennetzes erfolgt durch Ermittlung der Koeffizienten der Übertragungsfunktion des Übertragungskanals aus Koeffizienten des an den Übertragungskanal angepaßten Entzerrers in der Empfangseinrichtung und anschließende inversen Fourier-Transformation. Berechnung der 25 digitalen terrestrischen TV-Rundfunk (DVB-T) kann die Impulsantwort für jeden Sender alternativ aus der inversen Fourier-Transformation der Übertragungsfunktion des Übertragungskanals durch Auswertung der zu den verstreuten Pilotträgern gehörigen OFDM-modulierten Übertragungssig-30 nale abgeleitet werden.

Zwei Ausführungsformen der Erfindung sind in der Zeichnung dargestellt und werden nachfolgend näher beschrieben. Es 35 zeigen:

Fig. 1 eine funktionale Darstellung einer erfindungsgemäßen Vorrichtung zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz;

- Fig. 2 ein Beispiel für eine grafische Darstellung der zeitdiskreten Summenimpulsantwort;
 - Fig. 3 ein Beispiel für eine grafische Darstellung für eine Verlaufsänderung der Übertragungsfunktion des Übertragungskanals;

Fig. 4A ein Flußdiagramm zur Erläuterung der ersten Ausführungsform des erfindungsgemäßen Verfahrens zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz;

10

15

20

- Fig. 4B ein Flußdiagramm zur Erläuterung der zweiten Ausführungsform des erfindungsgemäßen Verfahrens zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz;
- Fig. 5A eine beispielhafte Ergebnisdarstellung der ersten Ausführungsform des erfindungsgemäßen Verfahrens zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz;
- Fig. 5B eine beispielhafte Ergebnisdarstellung der zweiten Ausführungsform des erfindungsgemäßen Verfahrens zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz;
- Fig. 6A eine beispielhafte dreidimensionale grafische Darstellung der Amplituden- und Trägerfrequenz- abweichung und
 - Fig. 6B eine beispielhafte zweidimensionale grafische Darstellung der Amplituden- und Trägerfrequenzabweichung.

Das erfindungsgemäße Verfahren zur Überwachung Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz wird in seinen beiden Ausführungsformen nachfolgend unter Bezugnahme auf Fig. 1 bis Fig. 5 beschrieben.

in einem Gleichwellennetz positionierten Die Sender $\textbf{S}_0, \dots, \textbf{S}_i, \dots, \textbf{S}_n,$ beispielsweise gemäß Fig. 1 die Sender S_1 , S_2 , S_3 , S_4 und S_5 , strahlen z.B. im Rahmen des 10 digitalen Hör- und TV-Rundfunks jeweils ein identisches phasen- und frequenzsynchrones Signal s(t) aus. Eine Empfangseinrichtung E, die im Sendegebiet des Gleichwellennetzes positioniert ist, empfängt ein Empfangssignal e(t) als Überlagerung sämtlicher zu den einzelnen Sendern $S_0, \ldots, S_i, \ldots, S_n$ gehörigen Empfangssignale e_i(t). Dieses überlagerte Empfangssignal e(t) weist gemäß Gleichung (1) folgenden Zeitverlauf auf:

15

25

30

Im Rahmen der folgenden Betrachtungen wird beispielsweise Sender So zum Bezugssender des Gleichwellennetzes definiert. Die Dämpfungs- und Phasenverzerrungen sowie die Laufzeiten, die die Sendesignale s(t) der einzelnen Sender $S_0, \ldots, S_i, \ldots, S_n$ im Übertragungskanal zur Empfangseinrichtung E erfahren, werden jeweils in Relation Dämpfungs- und Phasenverzerrung sowie zur Laufzeit des Bezugssenders S_0 gesetzt. Das in der Empfangseinrichtung E empfangene Signal $e_0(t)$ des Bezugssenders S_0 in Gleichung (1) entspricht deshalb seinem Sendesignal s(t).

Die Amplitude v_i des Empfangssignals e_i(t) der übrigen Sender S_1 bis S_n ergibt sich gemäß Gleichung (2) aus der 35 Dämpfungsnormierung als Quotient zwischen der Amplitude des Empfangssignals e_i(t) des jeweiligen Senders S_i zur Amplitude des Empfangssignals $e_0(t)$ des Bezugssenders S_0 :

$$v_i = |e_i / e_0|$$

15

20

25

30

35

(2)

Die Laufzeitdifferenz τ_i der Sender S_1 bis S_n läßt sich gemäß Gleichung (3) aus der Differenz zwischen der Laufzeit t_i des Senders S_i und der Laufzeit t_0 des Bezugssenders S_0 ermitteln:

$$\tau_{i} = t_{i} - t_{0} \tag{3}$$

- 10 Die Laufzeitdifferenzen τ_i der einzelnen Sender S_0 bis S_n beruhen auf folgenden Effekten:
 - unterschiedliche Laufzeiten aufgrund unterschiedlicher Wegstrecken zwischen den jeweiligen Sendern Si und der Empfangseinrichtung E und
 - unterschiedliche Phasenverzerrungen der Sendesignale s(t) der jeweiligen Sender S_i in den unterschiedlichen Übertragungsstrecken zur Empfangseinrichtung E.

Eine zusätzliche Phasenverschiebung $\Delta\Theta_i$ zwischen einem Sender S_i und dem Bezugssender S_0 kann bei der Phasennormierung des Empfangssignals e(t) auftreten, wenn gemäß Gleichung (4) ein Unterschied in der Trägerfrequenz ω_i des jeweiligen Senders S_i zur Trägerfrequenz ω_0 des Bezugssenders S_0 auftritt:

$$\Delta\Theta_{i} = \Theta_{i} - \Theta_{0} = \omega_{i}*t - \omega_{0}*t = (\Delta\omega_{i} + \omega_{0})*t - \omega_{0}*t$$

$$= \Delta\omega_{i} *t \qquad (4)$$

Die Trägerfrequenzabweichung $\Delta\omega_i$ des jeweiligen Senders S_i zur Trägerfrequenz ω_0 des Bezugssenders S_0 führt gemäß Gleichung (4) zu einer Phasenverschiebung $\Delta\Theta_i$ (t) des zum jeweiligen Sender S_i gehörigen Empfangssignals e_i (t)

Unter Berücksichtigung der Beziehung in Gleichung (4) wird Gleichung (1) für den Zeitverlauf des Empfangssignals e(t) nach Gleichung (5) übergeführt.

$$e(t) = s(t) + \sum_{i=1}^{n} v_i * e^{j\Delta\Theta_i(t)} * s(t-\tau_i)$$
 (5)

Setzt man gemäß Gleichung (6) voraus, daß die Zeitdauer Δt_B für die Beobachtung des Empfangssignals $e_i(t)$ wesentlich kleiner ist als die Periodendauern aller Phasenrotationen $\Delta \Theta_i(t)$ der Empfangssignale $e_i(t)$ aufgrund einer Trägerfrequenzverschiebung $\Delta \omega_i$ des jeweiligen Senders S_i , so kann davon ausgegangen werden, dass die Phasenverschiebung $\Delta \Theta_i$ des Empfangssignals $e_i(t)$ innerhalb dieses Zeitschlitzes Δt_B näherungsweise konstant ist.

$$\Delta t_{B} \ll 2*\pi / \max\{\Delta \omega_{i}\}$$
 (6)

Gleichung (5) für den Zeitverlauf des Empfangssignals e(t) geht für den Zeitbereich des Zeitschlitzes Δt_B in Gleichung (7) über.

$$e(t) = s(t) + \sum_{i=1}^{n} v_i * e^{j\Delta\Theta_i} * s(t-\tau_i)$$
 (7)

In Fig. 2 ist der Zusammenhang der Normierung des Empfangssignals $e_1(t)$ eines Senders S_1 zum Empfangssignal $e_0(t)$ eines Bezugssenders S_0 hinsichtlich der Dämpfung und der Laufzeit dargestellt.

Bei bekannter Übertragungsfunktion des Übertragungskanals des aus den Sendern S_0 bis S_n bestehenden Gleichwellennetzes (single frequency network) kann das Empfangssignal e(t) durch die jeweiligen Impulsantworten $h_{SFNi}(t)$ der Sender $S_0, \ldots, S_i, \ldots, S_n$ zusammengesetzte Summenimpulsantwort $h_{SFN}(t)$ des Übertragungskanals des Gleichwellennetzes (single frequency network) gemäß der Gleichung

$$h_{SFN}(t) = \sum_{i=0}^{n} h_{SFN_i}(t) = \delta(t) + \sum_{i=1}^{n} v_i * e^{j\Delta\Theta_i} * \delta(t - \tau_i)$$
 (8)

35 aufgefaßt werden.

10

Das Frequenzspektrum $E(\omega)$ des Empfangssignals e(t) in Gleichung (9) ergibt sich aus der Fourier-Transformation des Empfangssignals $h_{SFN}(t)$ gemäß Gleichung (8) multipliziert mit der Übertragungsfunktion $S(\omega)$ des Übertragungskanals des Gleichwellenetzes:

5

10

15

20

25

30

35

$$E(\omega) = S(\omega) * (1 + \sum_{i=1}^{n} v_i * e^{j\Delta\Theta_i} * e^{-j\omega\tau_i}) = S(\omega) * H_{SFN}(\omega)$$
 (9)

Der Klammerterm des Frequenzspektrums $E(\omega)$ des Empfangssignals e(t) in Gleichung (9) entspricht der Übertragungsfunktion $H_{SFN}(\omega)$ des Übertragungskanals des Gleichwellennetzes. Er besteht aus einer Summe von Zeigern, deren Phase sich mit dem Term -j ωt_i ändern und für einen bestimmten Zeitpunkt t eine konstante Phasenverschiebung $\Delta \Theta_i = \Delta \omega_i * t$ aufweisen.

Der Betrag der Übertragungsfunktion $|H_{SFN}(f)|$ für ein Gleichwellennetz mit einem Bezugssender S_0 und einem zweiten Sender S₁ ist über der Frequenz f in Fig. 3 dargestellt. Der Betrag der Übertragungsfunktion | HSFN (f) | periodischen Kurvenverlauf weist einen mit Periodendauer von $1/\tau_1$ auf. Der Verlauf des Betrags der Übertragungsfunktion $|H_{SFN}(f)|$ verschiebt sich von einem periodischen Kurvenverlauf zum Zeitpunkt t=t1 (durchgezogene Linie) zu einem ebenfalls periodischen Kurvenverlauf gleicher Periodendauer zum späteren Zeitpunkt t=t2>t1 (gestrichelte Linie) aufgrund des Einflusses der Phasenverschiebung $\Delta\Theta_1$ des Empfangssignals $e_1(t)$ des Senders S_1 zum Empfangssignal $e_0(t)$ des Bezugssenders S_0 aufgrund einer Trägerfrequenzverschiebung $\Delta \omega_1$ des Senders S₁ zur Trägerfrequenz ω_0 des Senders S₀.

Die Geschwindigkeit der Verschiebung des Verlaufs des Betrags der Übertragungsfunktion $|H_{SFN}(f)|$ wird bestimmt durch die Trägerfrequenzverschiebung $\Delta\omega_1$ des Senders S_1 zur Trägerfrequenz ω_0 des Bezugsenders S_0 . Die benötigte Zeit t_{Per} zur Verschiebung des Verlaufs des Betrags der Übertragungsfunktion $|H_{SFN}(f)|$ um genau eine Periode des

Betragsverlaufs der Übertragungsfunktion $|H_{SFN}(f)|$ ergibt sich gemäß Gleichung (10) mit Hilfe von Gleichung (4) unter der Annahme einer Phasenverschiebung $\Delta\Theta_1$ von $2*\pi$ bei einer vollen Rotation der Phasenverschiebung $\Delta\Theta_1$:

10

15

$$t_{Per} = 2*\pi / \Delta\omega_1 = 1 / \Delta f_1$$
 (10)

Wird die Übertragungsfunktion $H_{SFN}(f)$ zu zwei verschiedenen Zeitschlitzen Δt_{B1} und Δt_{B2} betrachtet, so ändert sich gemäß Gleichung (4) die aus einer Trägerfrequenzverschiebung $\Delta \omega_i$ des Senders S_i zur Trägerfrequenz ω_0 des Bezugssenders S_0 resultierende Phasenverschiebung $\Delta \Theta_i$ in der Übertragungsfunktion $H_{SFN}(f)$ über der Zeit t zwischen dem Zeitschlitz Δt_{B1} und dem Zeitschlitz Δt_{B2} und damit auch sein Verlauf über der Frequenz f. Analog ändert sich auch der Verlauf der zur Übertragungsfunktion $H_{SFN}(f)$ korrespondierenden Summenimpulsantwort $h_{SFN}(t)$ gemäß Gleichung (8).

Mit der Änderung des Verlaufs der Summenimpulsantwort 20 $h_{SFN}(t)$ bei rotierender Phasenverschiebung $\Delta\Theta_{i}$ (t) Senders S_i vom Zeitschlitz Δt_{B1} zum Zeitschlitz Δt_{B2} ändert sich auch der Verlauf der Impulsantwort hseni(t) des Senders Si, deren Trägerfrequenz Oi sich zur Trägerfrequenz ω_0 des Bezugssenders S_0 verschoben hat. Die 25 Phasenwinkelverschiebung $\Delta\Theta_{i}(t)$ der zum Sender $\mathtt{S_{i}}$ gehörigen Impulsantwort h_{SFNi}(t) vom Zeitpunkt t_{B1} Zeitschlitzes Δt_{B1} zum Zeitpunkt t_{B2} des Zeitschlitzes Δt_{B2} ist folglich gemäß Gleichung (11) proportional zum Verlauf 30 der Trägerfrequenzverschiebung $\Delta \omega_i$ (t) des Senders S_i zur Trägerfrequenz ω_0 des Bezugssenders S₀.

$$\Delta\Theta_{i}(t_{B2}) - \Delta\Theta_{i}(t_{B1}) = \Delta\omega_{i}(t) * (t_{B2} - t_{B1})$$
 (11)

35 Aus Vereinfachungsgründen wird davon ausgegangen, daß sich die Trägerfrequenzverschiebung $\Delta\omega_{i}(t)$ zwischen den beiden Beobachtungszeitpunkten t_{B1} und t_{B2} nicht ändert. Gleichung (11) geht unter dieser sinnvollen Voraussetzung über in Gleichung (12).

$$\Delta\Theta_{i}(t_{B2}) - \Delta\Theta_{i}(t_{B1}) = \Delta\omega_{i} * (t_{B2} - t_{B1}) \qquad (12)$$

Die erste Ausführungsform des erfindungsgemäßen Verfahrens zur Überwachung der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz ergibt sich folglich gemäß Fig. 4A aus den nachfolgenden dargestellten Verfahrensschritten:

In Verfahrensschritt S10 wird die Übertragungsfunktion $H_{SFN}(f)$ des Übertragungskanals von den einzelnen Sendern $S_0, \ldots, S_i, \ldots, S_n$ des Gleichwellennetzes zur Empfangseinrichtung E ermittelt. Hierzu können der Verlauf der Übertragungsfunktion $H_{SFN}(f)$ aus den Koeffizienten des in der Empfangseinrichtung E integrierten Entzerrers, die bei an den Übertragungskanal angepaßtem Entzerrer den Koeffizienten der Übertragungsfunktion $H_{SFN}(f)$ entsprechen, ermittelt werden.

In Verfahrensschritt S20 werden aus der Übertragungsfunktion $H_{SFN}(f)$ des Übertragungskanals mittels diskreter inverser Fourier-Transformation die Verläufe der zugehörigen komplexen Summenimpulsantworten $h_{SFN1}(t)$ und $h_{SFN2}(t)$ zu den beiden Zeitpunkten t_{B1} des Zeitschlitzes Δt_{B1} und t_{B2} des Zeitschlitzes Δt_{B2} berechnet. Hierbei handelt es sich um zeitdiskrete komplexe Summenimpulsantworten $h_{SFN1}(t)$ und $h_{SFN2}(t)$ zu einzelnen Abtastzeitpunkten t.

Aus den beiden zeitdiskreten Verläufen der komplexen Summenimpulsantworten $h_{SFN1}(t)$ und $h_{SFN2}(t)$ werden im Verfahrenschritt S30 die zu den im Gleichwellennetz beteiligten Sendern S_i jeweils gehörigen Verläufe der komplexen Impulsantworten $h_{SFN1i}(t)$ und $h_{SFN2i}(t)$ zu den Zeitpunkten t_{B1} und t_{B2} herausgefiltert.

35

Alternativ zur obig dargestellten Ermittlung der Übertragungsfunktion $H_{SFN}(f)$ des Übertragungskanals aus den Koeffizienten des in der Empfangseinrichtung integrierten Entzerrers ist beim digitalen terrestrischen TV-Rundfunk

eine Ermittlung der Übertragungsfunktion $H_{SFN}(f)$ des Übertragungskanals aus den DVB-T-Symbolen der verstreuten Trägerpiloten möglich.

5 Diese zeitdiskreten Verläufe der Impulsantworten h_{SFN1i}(t) und h_{SFN2i}(t) des jeweiligen Senders S_i zu den Zeitpunkten $t_{\rm B1}$ und $t_{\rm B2}$ sind jeweils komplexe Zahlenfolgen. Aus diesen komplexen Verläufen der Impulsantworten h_{SFN1i}(t) h_{SFN2i}(t) werden im Verfahrensschritt S40 die zugehörigen zeitdiskreten 10 Phasenverläufe arg(h_{SFN1i}(t)) und arg(h_{SFN2i}(t)) des jeweiligen Senders S_i zu den Zeitpunkten t_{B1} und t_{B2} ermittelt. Alternativ kann zu diesem Zeitpunkt auch noch keine Zuordnung der Impulsantwort zu den Sendern erfolgen und vorerst können nur Gesamt-Impulsantworten h_{SFN1}(t) und h_{SFN2}(t) verrechnet werden.

Subtraktion der Durch zeitdiskreten Phasenverläufe arg(h_{SFN1i}(t)) und arg(h_{SFN2i}(t)) der Impulsantworten h_{SFNli}(t) und h_{SFN2i}(t) des jeweiligen Senders S_i zu den Zeitpunkten t_{B1} und t_{B2} erhält man eine Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B2}-t_{B1})$ der Phasenverschiebung des jeweiligen Senders Si zum Bezugssender So zwischen den Zeitpunkten t_{B2} und t_{B1} , die über der Zeit konstant ist und der Differenz der Phasenverschiebung $\Delta\Theta_{i}(t_{B2})$ zum Zeitpunkt t_{B2} und der Phasenverschiebung $\Delta\Theta_{i}(t_{B1})$ zum Zeitpunkt t_{B1} des Senders S_i zum Bezugssender So entspricht. Diese wird im Verfahrensschritt S50 gemäß Gleichung (13) resultierend aus Gleichung (8) berechnet:

20

25

35

30
$$\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) = arg(h_{SFN2i}(t)) - arg(h_{SFN1i}(t))$$
$$= \Delta\Theta_{i}(t_{B2}) - \Delta\Theta_{i}(t_{B1})$$
(13)

Die Phasenverschiebungsdifferenz $\Delta\Delta\Theta_i\,(t_{B2}-t_{B1})$ der Phasenverschiebung des Senders S_i zum Bezugssender S_0 zwischen den Zeitpunkten t_{B1} und t_{B2} kann u.U. Werte kleiner $-\pi$ annehmen, die außerhalb des zulässigen Wertebereiches liegen. Von daher wird im Verfahrensschritt S60 in Zeitbereichen, in denen die Phasenverschiebungsdifferenz $\Delta\Delta\Theta_i\,(t_{B2}-t_{B1})$ der Phasenverschiebung des Senders

 S_i zum Bezugssender S_0 zwischen den Zeitpunkten t_{B1} und t_{B2} Werte kleiner $-\pi$ annimmt, die Phasenverschiebungsdifferenz $\Delta\Delta\Theta_i$ (t_{B2} - t_{B1}) der Phasenverschiebung gemäß Gleichung (14) um den Wert $2*\pi$ erhöht.

5

$$\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) = \Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) + 2*\pi$$

$$f\ddot{u}r \Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) <= -\pi$$
(14)

Nimmt die Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}$ (t_{B2} - t_{B1}) der Phasenverschiebung des Senders S_{i} zum Bezugssender S_{0} zwischen den Zeitpunkten t_{B1} und t_{B2} Werte größer $+\pi$ an, die außerhalb des zulässigen Wertebereiches liegen, so wird die Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}$ (t_{B2} - t_{B1}) der Phasenverschiebung in Verfahrensschritt S65 gemäß Gleichung (15) um den Wert $2*\pi$ reduziert.

$$\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) = \Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) - 2*\pi$$

$$f\ddot{u}r \Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) > \pi$$
(15)

Die in den Verfahrensschritten S60 und S65 durchgeführten Begrenzungen der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}$ ($t_{B2}-t_{B1}$) der Phasenverschiebung des Senders S_{i} zum Bezugssender S_{0} zwischen den Zeitpunkten t_{B1} und t_{B2} gemäß der Gleichungen (13) und (14) gewährleisten einen eindeutigen Phasenwert im Bereich von $-\pi$ bis $+\pi$.

In Verfahrensschritt S70 wird gemäß Gleichung (16) der Verlauf der Trägerfrequenzverschiebung $\Delta\omega_i$ des Senders S_i zur Trägerfrequenz ω_0 des Bezugssenders S_0 zwischen den 30 Zeitpunkten t_{B1} und t_{B2} resultierend aus Gleichung (12) und (13) aus der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_i$ (t_{B2} - t_{B1}) der Phasenverschiebung des Senders S_i zum Bezugssender S_0 zwischen den Zeitpunkten t_{B1} und t_{B2} berechnet.

35
$$\Delta\omega_{i} = [\Delta\Theta_{i}(t_{B2}) - \Delta\Theta_{i}(t_{B1})] / (t_{B2} - t_{B1})$$
$$= \Delta\Delta\Theta_{i}(t_{B2} - t_{B1}) / (t_{B2} - t_{B1})$$
(16)

Da sich über der Zeit t zur Phasenverschiebung $\Delta\Theta_i$ (t) des Empfangssignals e_i (t) des Senders S_i aufgrund einer

Trägerfrequenzverschiebung $\Delta \omega_{ ext{i}}$ des Senders S_{i} zum Bezugssender So zusätzliche Phasenänderungen, beispielsweise aufgrund von Phasenrauschen, überlagern können, wie dies in Fig. 5A dargestellt ist, ist eine entsprechende Bereinigung der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B2}-t_{B1})$ der Phasenverschiebung des Senders Si zum Bezugssender So zwischen zwei Beobachtungszeitpunkten t_{B1} und t_{B2} von derartigen Phasenstörungen durchzuführen. Diese Bereinigung erfolgt in der zweiten Ausführungsform des erfindungsgemäßen Verfahrens Überwachung zur der Trägerfrequenzstabilität von Sendern in einem Gleichwellennetz gemäß Fig. 4B.

5

10

20

25

30

35

Im Unterschied zur ersten Ausführungsform in Fig. 4A werden in der zweiten Ausführungsform in Fig. 4B in Verfahrensschritt S50 die Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}\left(\Delta t_{B}\right)$ der Phasenverschiebung des Senders S_{i} zum Bezugssender S_{0} innerhalb eines Zeitintervalls Δt_{B} nicht nur zwischen den Beobachtungszeitpunkten t_{B1} und t_{B2} ermittelt, sondern zu mehreren anderen Beobachtungszeitpunkten t_{Bj} und $t_{B(j+1)}$, die gemäß Gleichung (17) durch ein Zeitintervall Δt_{B} voneinander getrennt sind.

$$\Delta t_B = t_{B(j+1)} - t_{Bj}$$
 für $j = 1, 2, 3, ...$ (17)

Hierzu wird in Verfahrensschritt S20 der zeitdiskrete Verlauf der komplexen Summenimpulsantwort $h_{SFNj}(t)$ und $h_{SFN(j+1)}(t)$ jeweils zu den Beobachtungszeitpunkten t_j und t_{j+1} ermittelt.

Analog wird in Verfahrenschritt S30 aus den zeitdiskreten Verläufen der komplexen Summenimpulsantworten $h_{SFNj}(t)$ und $h_{SFn(j+1)}(t)$ die zeitdiskreten Verläufe der komplexen Impulsantworten $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ des jeweiligen Senders S_i zu den Zeitpunkten t_j und t_{j+1} ausgeblendet.

Schließlich werden in Verfahrensschritt S40 aus den zeitdiskreten Verläufen der komplexen Impulsantworten $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ die Phasenverläufe arg $(h_{SFNji}(t))$

und $arg(h_{SFN(j+1)i}(t))$ des Senders S_i zu den Zeitpunkten t_j und t_{j+1} ermittelt.

Subtraktion des Phasenverlaufs Die arg(h_{SFNji}(t)) MOV 5 Phasenverlauf arg(h_{SFN(j+1)i}(t)) in Verfahrensschritt führt zur Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ der Phasenverschiebung des jeweiligen Senders Bezugssender S_0 zwischen den Zeitpunkten $t_{B(j+1)}$ und t_{Bj} die der Differenz der Phasenverschiebung $\Delta\Theta_{i}(t_{B(j+1)})$ zum 10 Zeitpunkt $t_{B(j+1)}$ und der Phasenverschiebung $\Delta\Theta_{i}(t_{Bj})$ zum Zeitpunkt t_{Bj} des Senders s_i zum Bezugssender S_0 entspricht.

Die Begrenzung der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_i$ ($t_{B(j+1)}$ - t_{Bj}) der Phasenverschiebung des jeweiligen Senders S_i zum Bezugssender S_0 zwischen den Zeitpunkten $t_{B(j+1)}$ und t_{Bj} auf den zulässigen Wertebereich zwischen - π und + π erfolgt in den Verfahrensschritten S60 und S65.

Im Verfahrensschritt S70 wird aus der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ der Phasenverschiebung des jeweiligen Senders S_{i} zum Bezugssender S_{0} zwischen den Zeitpunkten $t_{B(j+1)}$ und t_{B} die Trägerfrequenzverschiebung $\Delta\omega_{ij}$ des Senders S_{i} basierend auf der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ der Phasenverschiebung zu den Beobachtungszeitpunkten t_{j} und t_{j+1} berechnet.

Die Trägerfrequenzverschiebung $\Delta\omega_{ij}$ des Senders S_i zum Bezugssender S_0 auf der Basis der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_i$ $(t_{B(j+1)}-t_{Bj})$ der Phasenverschiebung zu den Beobachtungszeitpunkten t_j und t_{j+1} wird zu unterschiedlichen Beobachtungszeitpunkten t_j und t_{j+1} insgesamt j_{max} -mal wiederholt ermittelt und berechnet.

Die insgesamt j $_{\text{max}}$ berechneten Trägerfrequenzverschiebungen $\Delta\omega_{ij}$ des Senders S_i zum Bezugssender S_0 werden anschließend im Verfahrensschritt S80 einer Mittelung zugeführt, um den Einfluß der obengenannten Phasenstörungen, beispielsweise aufgrund von Phasenrauschen, auf

die Trägerfrequenzverschiebung $\Delta\omega_{i}$ zu beseitigen bzw. zu minimieren.

Die Mittelung kann auch in Form einer Pipeline-Struktur erfolgen, bei der der jeweils älteste Wert verworfen wird. Eine Speicher-sparende Variante ist eine rekursive Mittelung.

Ein beispielhafter Verlauf einer derart von 10 Phasenstörungen bereinigten Trägerfrequenzverschiebung $\Delta\omega_{\bf i}$ eines Senders $S_{\bf i}$ zu einem Bezugssender S_0 ist in Fig. 5B dargestellt.

Eine Vorrichtung zur Überwachung der Trägerfrequenzstabilität von mehreren Sendern in einem Gleichwellennetz ist in Fig. 1 dargestellt.

Das Gleichwellennetz in Fig. 1 besteht beispielsweise aus den fünf Sendern S_1 , S_2 , S_3 , S_4 und S_5 . Die Sendesignale der Sender S₁ bis S₅ werden von einer Empfangseinrichtung empfangen. Die Empfangseinrichtung E ist mit einer elektronischen Datenverarbeitungseinheit 1 verbunden. einer Einheit 11 zur Ermittlung der Übertragungsfunktion des Übertragungskanals wird auf der Basis der von der Empfangseinrichtung E empfangenen Sendesignale der Sender S_1 bis S_5 die Übertragungsfunktion $H_{SFN}(f)$ des Übertragungskanals von den Sendern S₁ bis S₅ zur Empfangseinrichtung E ermittelt. Hierbei bedient man sich der Koeffizienten des in der Empfangseinrichtung E integrierten Entzerrers, die bei einem an den Übertragungskanal abgeglichenen Entzerrer den Koeffizienten der Übertragungsfunktion des Übertragungskanals entsprechen.

20

25

30

Alternativ kann die Übertragungsfunktion $H_{SFN}(f)$ des Übertragungskanals von den Sendern S_1 bis S_5 zur Empfangseinrichtung E aus den verstreuten Pilotenträgern eines DVB-T-Signals beim digitalen terrestrischen TV-Rundfunks unter Umgehung der Einheit 11 ermittelt werden.

In einer sich anschließenden Einheit 12 zur Durchführung der inversen Fourier-Transformation werden aus der Übertragungsfunktion $H_{SFN}(f)$ des Übertragungskanals die zeitdiskreten Verläufe der komplexen Summenimpulsantworten $h_{SFNj}(t)$ und $h_{SFN(j+1)}(t)$ zu den Beobachtungszeitpunkten t_{Bj} und $t_{B(j+1)}$ berechnet.

In einer sich anschließenden Einheit 13 zur Ausblendung der Impulsantwort für jeden Sender aus der Summenimpuls- antwort werden aus den zeitdiskreten Verläufen der komplexen Summenimpulsantworten $h_{SFNj}(t)$ und $h_{SFN(j+1)}(t)$ die zeitdiskreten Verläufe der komplexen Impulsantworten $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ für jeden Sender S_i des Gleichwellennetzes zu den Zeitpunkten t_{Bj} und $t_{B(j+1)}$ ausgeblendet.

In einer sich anschließenden Einheit 14 zur Ermittlung des Phasenverlaufs der Impulsantwort werden aus den zeitdiskreten Verläufen der komplexen Impulsantworten $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ die zeitdiskreten Phasenverläufe $arg(h_{SFNji}(t))$ und $arg(h_{SFN(j+1)i}(t))$ der Impulsantworten $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ zu den Zeitpunkten t_{Bj} und $t_{B(j+1)}$ berechnet.

25 In einer sich anschließenden Einheit 15 zur Berechnung der Differenz der Phasenverschiebungen und der Trägerfrequenzverschiebung jedes Senders zur Trägerfrequenz Bezugssenders werden aus den zeitdiskreten Phasenverläufen arg(h_{SFNji}(t)) und arg(h_{SFN(j+1)i}(t)) der Impulsantworten 30 $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ zu den Zeitpunkten t_j und t_{j+1} Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ der die Phasenverschiebungen eines Senders S_{i} einem zu Bezugssender S_0 zu den Beobachtungszeitpunkten t_{Bj} und t_{B(j+1)} berechnet, die der Differenz der Phasenverschiebung 35 $\Delta\Theta_{i}(t_{Bj})$ und $\Delta\Theta_{i}(t_{B(j+1)})$ des Senders S_{i} zum Bezugssender S_0 zu den Zeitpunkten t_{Bj} und $t_{B(j+1)}$ entspricht, und darauf aufbauend die Trägefrequenzverschiebung $\Delta \omega_{ii}$ für jeden Sender Si zu einem Bezugssender So auf der Basis einer ermittelten Phasenverschiebungsdifferenz

-7

10

15

20

25

30

35

 $\Delta\Delta\Theta_i\,(t_{B(j+1)}-t_{Bj})$ der Phasenverschiebungen zu Beobachtungszeitpunkten t_{Bi} und $t_{B(j+1)}$ abgeleitet.

In einer Einheit 2 der tabellarischen und/oder grafischen Darstellung der Trägerfrequenzverschiebung $\Delta\omega_i$ aller Sender S_i , die an die elektronische Datenverarbeitungseinheit 1 angeschlossen ist, werden die Trägerfrequenzverschiebungen $\Delta\omega_i$ jedes Senders S_i zu einem Bezugssender S_0 des Gleichwellennetzes entweder tabellarisch oder grafisch dargestellt.

Hinsichtlich der gleichzeitigen Darstellung der Amplitudenabweichung und der Trägerfrequenzabweichung eines Senders Si zu einem Bezugssender So zu einem bestimmten Beobachtungszeitpunkt t_{Bi} in einer Grafik bietet sich einerseits eine dreidimensionale Darstellung mit der Zeit t als erste Dimension, der Frequenzabweichng jeweiligen Senders $\mathtt{S_{i}}$ zur Trägerfrequenz des ω_0 Bezugssenders So als zweite Dimension und schließlich der Amplitudenabweichung ΔA_i des jeweiligen Senders S_i zur Amplitude A_0 des Bezugssenders S_0 als dritte Dimension an. Wird der Bezugssender SO normiert auf seine Amplitude Ao zum Zeitpunkt t=0 in die dreidimensionale Grafik gesetzt, so wird entsprechend Fig. 6A jeder Sender Si entsprechend der jeweiligen Amplituden- und Trägerfrequenzabweichung ΔA_i und $\Delta \omega_i$ durch einen Punkt in der Grafik repräsentiert. Andererseits wird bei einer zweidimensionalen Darstellung gemäß Fig. 6B die Zeit t in der Abszisse und die Amplitudenabweichung ΔA_i des jeweiligen Senders S_i zur Amplitude A_0 des Bezugssenders S_0 auf der Ordinate aufgetragen, während die Trägerfrequenzabweichung $\Delta\omega_{i}$ des jeweiligen Senders S_{i} zur Trägerfrequenz des ω_0 Bezugssenders So durch einen zur Trägerfrequenzabweichnung $\Delta\omega_i$ korrespondierendes Symbol des zum jeweiligen Sender Si gehörigen Punktes charakterisiert wird. Wiederum wird die Amplitude A_0 des Bezugssenders S_0 zum Zeitpunkt t=0 in die Grafik eingetragen.

Die Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Insbesondere sind alle beschriebenen Merkmale beliebig miteinander kombinierbar. Auch eignet sich das beschriebene Verfahren nicht nur für Signale des DAB- oder DVB-T-Standards, sondern für alle Standards, die SFN ermöglichen, insbesondere auch für Signale des amerikanischen ATSC-Standards.

Ansprüche

- Verfahren zur Überwachung der Stabilität der Trägerfrequenz (ω_i) von identischen Sendesignalen $(s_i(t))$ 5 mehrerer Sender $(S_1, ..., S_i, ..., S_n)$ eines Gleichwellennetzes durch Auswerten der Phasenlage eines zu einem Sendesignal $(s_i(t))$ eines Senders (S_i) gehörigen Empfangssignals $(e_i(t))$ in Bezug zu einem Empfangssignal $(e_0(t))$ eines Bezugssenders (S₀), die beide von einer im Sendegebiet des 10 Gleichwellennetzes positionierten Empfangseinrichtung (E) empfangen werden.
 - 2. Verfahren nach Anspruch 1, gekennzeichnet durch
- 15 Berechnung (S70) einer Trägerfrequenzverschiebung einer Trägerfrequenz (ω_i) eines Senders (S_i) bezüglich einer Referenz-Trägerfrequenz (ω_0) des Bezugssenders (S_0) einer durch die Trägerfrequenzverschiebung ($\Delta\omega_i$) aus Senders dieses hervorgerufenen Phasenverschiebungs-20 differenz $(\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}))$ zwischen einer Phasenverschiebung $(\Delta\Theta_{\mathtt{i}}\,(\mathtt{t_{B2}})\,)$ zumindest zu einem zweiten Beobachtungszeitpunkt (t_{B2}) und einer Phasenverschiebung $(\Delta\Theta_{i}(t_{B1}))$ zu einem ersten Beobachtungszeitpunkt (t_{B1}) eines zum Sendesignal (si(t)) gehörigen Empfangssignals $(e_i(t))$ dieses Senders (S_i) 25 in Bezug zu einem zum Sendesignal $(s_0(t))$ gehörigen Empfangssignal $(e_0(t))$ des Bezugssenders (S_0) .
- 3. Verfahren zur Überwachung der Stabilität der Trägerfrequenz nach Anspruch 2, dadurch gekennzeichnet, daß der Berechnung (S70) der Trägerfrequenzverschiebung ($\Delta\omega_{i}$) der Trägerfrequenz (ω_{i}) des Senders (S_{i}) zur Trägerfrequenz (ω_{0}) des Bezugssenders (S_{0}) aus der Phasenverschiebungsdifferenz ($\Delta\Delta\Theta_{i}$ (t_{B2} - t_{B1})) die folgenden Verfahrensschritte vorausgehen:
 - Ermittlung (S10) einer Übertragungsfunktion $(H_{SFN}(f))$ des Übertragungskanals von den Sendern $(S_1, \ldots, S_i, \ldots, S_n)$ zur Empfangseinrichtung (E),

- Berechnung (S20) eines Verlaufs einer komplexen zeitdiskreten Summenimpulsantwort ($h_{SFN1}(t)$) zum ersten Beobachtungszeitpunkt (t_{B1}) und eines Verlaufs einer komplexen zeitdiskreten Summenimpulsantwort ($h_{SFN2}(t)$) zum zweiten Beobachtungszeitpunkt (t_{B2}) des Übertragungskanals jeweils aus der Übertragungsfunktion ($H_{SFN}(f)$) des Übertragungskanals,
- Ausblendung (S30) eines Verlaufs einer komplexen Impulsantwort ($h_{SFN1i}(t)$) zum ersten Beobachtungszeitpunkt (t_{B1}) und eines Verlaufs einer komplexen Impulsantwort ($h_{SFN2i}(t)$) zum zweiten Beobachtungszeitpunkt (t_{B2}) für jeden Sender (S_i) des Gleichwellennetzes jeweils aus dem Verlauf der komplexen Summenimpulsantwort ($h_{SFN1}(t)$) zum ersten Beobachtungszeitpunkt (t_{B1}) und aus dem Verlauf der komplexen Summenimpulsantwort ($h_{SFN2}(t)$) zum zweiten Beobachtungszeitpunkt (t_{B2}),
- Ermittlung (S40) eines Phasenverlaufs (arg($h_{SFN1i}(t)$)) der komplexen Impulsantwort ($h_{SFN1i}(t)$) zum ersten Beobachtungszeitpunkt (t_{B1}) und eines Phasenverlaufs (arg($h_{SFN2i}(t)$)) der komplexen Impulsantwort ($h_{SFN2}(t)$) zum zweiten Beobachtungszeitpunkt (t_{B2}) für jeden Sender (S_i) des Gleichwellennetzes,
- Berechnung der Phasenverschiebungsdifferenz (S50) $(\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}))$ zwischen einer Phasenverschiebung 25 $(\Delta\Theta_{i}(t_{B2}))$ zum zweiten Beobachtungszeitpunkt (t_{B2}) und Phasenverschiebung $(\Delta\Theta_{ exttt{i}}$ (t $_{ exttt{B1}})$) zum Beobachtungszeitpunkt Subtraktion (t_{B1}) durch eines Phasenverlaufs (arg(h_{SFN1i}(t))) der komplexen Impulsantwort zum ersten Beobachtungszeitpunkt (t_{B1}) von $(h_{SFNli}(t))$ 30 einem Phasenverlauf (arg(h_{SFN2i}(t))) der komplexen Impulsantwort (h_{SFN2i}(t)) zum zweiten Beobachtungszeitpunkt (t_{B2}) des jeweiligen Senders (S_i).
- 4. Verfahren zur Überwachung der Stabilität der 35 Trägerfrequenz nach Anspruch 3, gekennzeichnet durch
 - Erhöhen (S60) der Phasenverschiebungsdifferenz ($\Delta\Delta\Theta_i$ (t_{B2}-t_{B1})) um den Faktor 2* π im Falle eines Absinkens

der Phasenverschiebungsdifferenz $(\Delta\Delta\Theta_{\textrm{i}}\,(t_{\textrm{B2}}-t_{\textrm{B1}}))$ auf oder unter den Wert $-\pi$ und

- Reduzieren (S65) der Phasenverschiebungsdifferenz $(\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}))$ um den Faktor $-2*\pi$ im Falle einer Erhöhung der Phasenverschiebungsdifferenz $(\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}))$ über den Wert π .
 - 5. Verfahren zur Überwachung der Stabilität der Trägerfrequenz nach Anspruch 3 oder 4,
 - daß beim digitalen terrestrischen TV-Rundfunk die Übertragungsfunktion des Übertragungskanals von den Sendern $(S_1, ..., S_i, ..., S_n)$ zur Empfangseinrichtung (E)aus den DVB-T-Symbolen von verstreuten Pilotträgern der nach dem orthogonal-frequency-division-multiplexing-(OFDM)-Vermodulierten Empfangssignale (ei(t)) der fahren $(S_1, ..., S_i, ..., S_n)$ ermittelt wird.
- 6. Verfahren zur Überwachung der Stabilität der Träger20 frequenz nach Anspruch 3,
 dadurch gekennzeichnet,

daß sich die Berechnung (S20) eines Verlaufs einer komplexen zeitdiskreten Summenimpulsantwort h_{SFN1/2}(t) diskreten Beobachtungszeitpunkt ersten t_{B1} des Übertragungskanals aus der Übertragungsfunktion H_{SFN}(f) des Übertragungskanals mit Hilfe der Fourier-Transformation entsprechend der Formel

$$h_{SFN1/2}(t) = \sum_{k=0}^{N_F-1} H_{SFN}(k) * e^{j2\pi kt/N_F}$$

dadurch gekennzeichnet,

ergibt, wobei

10

25

30

H_{SFN}(f) die Übertragungsfunktion bzw. der Frequenzgang des Übertragungskanals,

N_F die Anzahl der Abtastwerte für die diskrete Fourier-Transformation,

k die diskreten Frequenzwerte,

die Abtastzeitpunkte der zeitdiskreten Summenimpulsantwort des Übertragungskanals und

1/2 der Index für den Beobachtungszeit- punkt t_{B1} bzw. t_{B2}

bedeuten.

5

- 7. Verfahren zur Überwachung der Stabilität der Trägerfrequenz nach Anspruch 6,
- 10 dadurch gekennzeichnet,

daß sich die Berechnung (S50) der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_i$ (t_{B2} - t_{B1}) für jeden Sender S_i des Gleichwellennetzes entsprechend der Formel

 $\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) = arg(h_{SFN2i}(t)) - arg(h_{SFN1i}(t))$

15 ergibt, wobei

20

25

i der Index für den Sender $S_{i,j}$ arg $(h_{SFN2i}(t))$ der Phasenverlauf der komplexen Impulsantwort $h_{SFN2i}(t)$ zum Beobachtungszeitpunkt t_{B2} des Senders $S_{i,j}$ und

arg($h_{SFN1i}(t)$) der Phasenverlauf der komplexen Impulsantwort $h_{SFN1i}(t)$ zum Be obachtungszeitpunkt t_{B1} des Senders S_i

bedeuten.

- 8. Verfahren zur Überwachung der Stabilität der Trägerfrequenz nach Anspruch 7,
- 30 dadurch gekennzeichnet,

daß sich die Berechnung (S70) der Trägerfrequenzverschiebung $\Delta\omega_i$ des Senders S_i zur Trägerfrequenz ω_0 des Bezugssenders des Gleichwellennetzes entsprechend der Formel

35 $\Delta\omega_{i} = \Delta\Delta\Theta_{i}(t_{B2}-t_{B1})/(t_{B2}-t_{B1})$ ergibt, wobei

i der Index für den Sender Si,

 $\Delta\Delta\Theta_{i}$ (t_{B2}-t_{B1}) die Phasenlagendifferenz $\Delta\Delta\Theta_{i}$ (t_{B2}-t_{B1}) für den Sender S_i des Gleichwellen-netzes und

t_{B1}, t_{B2} die Beobachtungszeitpunkte

5 bedeuten.

20

25

- 9. Verfahren zur Überwachung der Stabilität der Trägerfrequenz nach Anspruch 8, dadurch gekennzeichnet,
- 10 daß zur eindeutigen Identifizierung der dauerhaften Trägerfrequenzverschiebung $\Delta\omega_i$ des Senders S_i im Gleichwellennetz zu der Trägerfrequenz ω_0 des Bezugssenders S_0 zu mehreren Beobachtungszeitpunkten t_{Bj} die Verfahrensschritte
- Berechnung (S20) des Verlaufs der komplexen zeitdiskreten Summenimpulsantwort $h_{SFNj}(t)$ und $h_{SFN(j+1)}(t)$ zu den Beobachtungszeitpunkten t_{Bj} und $t_{B(j+1)}$,
 - Ausblendung (S30) des Verlaufs der komplexen Impulsantwort $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ zu den Beobachtungszeitpunkten t_{Bj} und $t_{B(j+1)}$ für jeden Sender S_i des Gleichwellennetzes,
 - Ermittlung (S40) der Phasenverläufe arg($h_{SFNji}(t)$) und arg($h_{SFN(j+1)i}$)) der komplexen Impulsantworten $h_{SFNji}(t)$ und $h_{SFN(j+1)i}(t)$ zu den Beobachtungszeitpunkten t_{Bj} und $t_{B(j+1)}$,
 - Berechnung (S50) des Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ zwischen der Phasenverschiebung $\Delta\Theta_{i}(t_{B(j+1)})$ zum Beobachtungszeitpunkt $t_{B(j+1)}$ und der Phasenverschiebung $\Delta\Theta_{i}(t_{Bj})$ zum Beobachtungszeitpunkt t_{Bj} für jeden Sender S_{i} des Gleichwellennetzes,
- Erhöhung (S60) der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ um den Faktor $2*\pi$ im Falle eines Absinkens der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ auf oder unter den Wert $-\pi$,
- Reduzierung (S65) der Phasenverschiebungsdifferenz
 35 $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$ um den Faktor $-2*\pi$ im Falle einer
 Erhöhung der Phasenverschiebungsdifferenz $\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$
 über den Wert π und
 - Berechnung (S70) der Trägerfrequenzverschiebung $\Delta\omega_{\text{ij}}$ des Senders S_{i} zur Trägerfrequenz ω_{0} des Bezugssenders des

Gleichwellennetzes zu mehreren Beobachtungszeitpunkten $t_{\rm Bj}$,

wiederholt durchgeführt werden und anschließend eine Mittelung (S80) aller im Verfahrensschritt (S70) jeweils berechneten Trägerfrequenzverschiebungen $\Delta\omega_{ij}$ jedes Senders S_i zur Trägerfrequenz ω_0 des Bezugssenders S_0 des Gleichwellennetzes zu den Beobachtungszeitpunkten t_{Bj} erfolgt.

10 10. Verfahren zur Überwachung der Stabilität der Trägerfrequenz nach Anspruch 9, dadurch gekennzeichnet,

daß die Mittelung (S80) aller im Verfahrensschritt (S70) berechneten Trägerfrequenzverschiebungen $\Delta\omega_{ij}$ jedes Senders S_i zur Trägerfrequenz ω_0 eines Bezugssenders S_0 des Gleichwellennetzes mit Hilfe eines rekursiven Verfahrens erfolgt.

- 11. Vorrichtung zur Überwachung der Stabilität der 20 Trägerfrequenz (ω_i) von identischen Sendesignalen $s_i(t)$ mehrerer Sender $(S_1, \ldots, S_i, \ldots, S_n)$ eines Gleichwellennetzes mit:
 - einer Empfangseinrichtung (E),
- einer Einheit (11) zur Ermittlung einer Übertragungs funktion (H_{SFN}(f)) eines Übertragungskanals von mehreren Sendern (S1,..,Si,..,Sn) des Gleichwellennetzes zu der innerhalb des Sendegebietes des Gleichwellennetzes befindlichen Empfangseinrichtung (E),
- einer Einheit (12) zur Durchführung einer inversen 30 Fourier-Transformation,
 - einer Einheit (13) zur Ausblendung einer Impulsantwort ($h_{SFNi}(t)$) für jeden Sender (S_i) aus der Summenimpulsantwort ($h_{SFN}(t)$),
- einer Einheit (14) zur Ermittlung des Phasenverlaufs (arg($h_{SFNi}(t)$)) der Impulsantwort ($h_{SFNi}(t)$) für jeden Sender (S_i),
 - einer Einheit (15) zur Berechnung der Phasenverschiebung bungsdifferenz ($\Delta\Delta\Theta_i$ ($t_{B(j+1)}$ - t_{Bj})) der Phasenverschiebung ($\Delta\Theta_i$) eines Senders (S_i) zu einem Bezugssender (S_0) zu

zumindest zwei verschiedenen Zeitpunkten ($(t_{Bj}, t_{B(j+1)})$) und der Trägerfrequenzverschiebung ($\Delta\omega_i$) jedes Senders (S_i) zur Trägerfrequenz (ω_0) des Bezugssenders (S_0) und

- einer Einheit (2) zur Darstellung der berechneten 5 Trägerfrequenzverschiebung ($\Delta\omega_i$) jedes Senders (S_i) zur Trägerfrequenz (ω_0) des Bezugssenders (S_0) des Gleichwellennetzes.
- 12. Vorrichtung zur Überwachung der Stabilität der 10 Trägerfrequenz (ω_i) von identischen Sendesignalen $s_i(t)$ mehrerer Sender $(S_1, \ldots, S_i, \ldots, S_n)$ eines Gleichwellennetzes mit:
 - einer Empfangseinrichtung (E),

25

- einer Einheit (16) zur Ermittlung einer Übertragungs- 15 funktion $(H_{SFN}(f))$ aus Pilotträgern der Empfangssignale $(e_i(t))$,
 - einer Einheit (13) zur Ausblendung einer Impulsantwort ($h_{SFNi}(t)$) für jeden Sender (S_i) aus der Summenimpulsantwort ($h_{SFN}(t)$),
- einer Einheit (14) zur Ermittlung des Phasenverlaufs $(arg(h_{SFNi}(t)))$ der Impulsantwort $(h_{SFNi}(t))$ für jeden Sender (S_i) ,
 - einer Einheit (15) zur Berechnung der Phasenverschiebungsdifferenz ($\Delta\Delta\Theta_{i}(t_{B(j+1)}-t_{Bj})$) der Phasenverschiebung ($\Delta\Theta_{i}$) eines Senders (S_{i}) zu einem Bezugssender (S_{0}) zu zumindest zwei verschiedenen Zeitpunkten (S_{0}) ind der Trägerfrequenzverschiebung (S_{0}) jedes Senders (S_{0}) zur Trägerfrequenz (S_{0}) des Bezugssenders (S_{0}) und
- einer Einheit (2) zur Darstellung der berechneten 30 Trägerfrequenzverschiebung ($\Delta\omega_i$) jedes Senders (S_i) zur Trägerfrequenz (ω_0) des Bezugssenders (S_0) des Gleichwellennetzes.
- 13. Vorrichtung zur Überwachung der Stabilität der 35 Trägerfrequenz nach Anspruch 11 oder 12, dadurch gekennzeichnet,
 - daß die Einheit (2) zur Darstellung der berechneten Trägerfrequenzverschiebung ($\Delta\omega_i$) jedes Senders (S_i) zur Trägerfrequenz (ω_0) des Bezugssenders (S_0) eine

tabellarische und/oder grafische Darstellungseinrichtung aufweist.

Zusammenfassung

Verfahren Überwachung der Das zur Stabilität Trägerfrequenz (ω_i) von identischen Sendesignalen $(s_i(t))$ 5 mehrerer Sender Si eines Gleichwellennetzes beruht auf einer Berechnung einer Trägerfrequenzverschiebung einer Trägerfrequenz ω_i eines Senders Si in Bezug zu einer Trägerfrequenz ω_0 eines Bezugssenders S_0 . Hierzu wird die durch die Trägerfrequenzverschiebung $\Delta\omega_{\mathbf{i}}$ hervorgerufene Phasenverschiebungsdifferenz $(\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}))$ 10 zwischen einer Phasenverschiebung $(\Delta\Theta_{i}(\mathsf{t_{B1}}))$ zu einem ersten Beobachtungszeitpunkt t_{B1} und einer Phasenverschiebung $(\Delta\Theta_{i}(t_{B2}))$ zu einem zweiten Beobachtungszeitpunkt t_{B2} eines jeweiligen Sendesignal (s_i(t)) gehörigen zum 15 Empfangssignals (e_i(t)) des Senders S_i zu einem Bezugs-Sendesignal $s_0(t)$ gehörigen Empfangssignal $e_0(t)$ des Bezugssenders So ermittelt.

20 (Fig. 1)

P28 672

Berechnung der Trägerfregusser verschiebung swieines Senelers Sizur Träger frequenz übeines Bezugssenders So aus der Phasenverschiebungs differenz AAO; (tz-Ez)

Ende

570

Fin UD.

Fig.5A

F19.5B

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHED.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.