

Test i tabeller Statistisk Dataanalyse 1, Kursusuge 7, ondag Dias 3/51

DET NATURVIDENSKABELIGE FAKULTET

KØBENHAVNS UNIVERSITET

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

I dag og næste uge

I dag: lærebogen kap. 12 (dog ikke 12.2.3, 12.2.4)

- Intro til test i tabeller
- Test for specifikke sandsynligheder
- Test for ens sandsynligheder (homogenitetstest)
- Test for uafhængighed
- Quiz 7

Næste uge:

- Mandag, forelæsning: repetition vha. nogle opgaver
- Mandag, øvelser: opgaveregning
- Onsdag: Ingen undervisning

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Eksempel 12.1: Mendels ærteforsøg

Class	Number
Round, yellow	315
Round, green	108
Wrinkled, yellow	101
Wrinkled, green	32
Total	556

- 566 ærter fra generation F2 undersøgt for farve og form
- Mendels arvelighedslære: Uafhængighed + dominans \rightarrow kombinationen af fænotyper skal være forholdet 9:3:3:1.
- Stemmer data overens med Mendels påstand?

Eksempel fra i mandags:

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

- 50 kastrerede og 50 ikke-kastrerede mus undersøgt for diabetes.
- Er sandsynlighederne for diabetes ens i to to grupper? Altså: Er proportionerne ens i de to rækker, på nær tilfældighed?
- Bemærk: Rækkesummerne kendt på forhånd (begge 50)

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Ligheder og forskelle mellem dataeksemplerne

Data:

- I alle tre eksempler kunne vi beskrive data vha. en **antalstabel** (eng.: contingency table)
- Interesseret i specifikke cellesandsynligheder (Mendel) eller sammenhænge mellem cellesandsynligheder (de andre eks.)
- I tovejstabellerne: Rækkesummer kendte (diabetes) eller kun totalsummen kendt (politik)

Hypotese afhænger af dataindsamlingen:

- Test for specifikke sandsynligheder (goodness-of-fit)
- Test for **ens sandsynligheder/proportioner** (homogenitetstest)
- Test for uafhængighed

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Eksempel: Politik og økonomi

	Demokrat	Republikaner	Uafhængig
Begrænse udgifter	101	282	61
Øge skatter	38	67	25
Øge offentlige invest.	131	88	31
Lade underskuddet vokse	61	90	25

- 1000 tilfældige amerikanske vælgere adspurgt om to ting: politisk tilhørsforhold og foretrukne finanspolitisk instument
- Er de to ting uafhængige?
- Bemærk: De 1000 personer er udtrukket tilfældigt. Hverken rækkeeller søjlesummer, kun totalsummen, kendt på forhånd.

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hypotesetest i antalstabeller

I alle tilfælde:

- Beregn forventet antal obs. i hver celle under hypotesen
- Beregn teststørrelse

$$X_{\mathrm{obs}}^2 = \sum_{\mathsf{alle\ celler}} \frac{(\mathsf{observeret} - \mathsf{forventet})^2}{\mathsf{forventet}}$$

 $X_{
m obs}^2$ måler forskellen mellem tabel med observerede værdier og tabel med forventede værdier.

• Bestem *p*-værdi ved at sammenligne $X_{\rm obs}^2$ med en (den rigtige) χ^2 -fordeling. Detaljer kommer senere.

Er tabellerne med obs. hhv. forventede antal så forskellige at det må skyldes at hypotesen er falsk, eller kan det skyldes tilfældigheder?

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Mendels ærteforsøg: Forventede værdier

Hvis hypotesen er sand, hvor mange observationer ville vi så **forvente** i hver gruppe?

$$E_i = \text{expected}_i = n \cdot p_{i0}$$

For Mendels data:

Class	Observed	Expected
Round, yellow	315	312.75
Round, green	108	104.25
Wrinkled, yellow	101	104.25
Wrinkled, green	32	34.75
Total	556	556

Mendels ærteforsøg: Model og hypotese

CI	
Class	Number
Round, yellow	315
Round, green	108
Wrinkled, yellow	101
Wrinkled, green	32
Total	556

Stat. model: n = 556 uafhængige obs. der hver især kan havne i k = 4 grupper; alle med (ukendte) sandsynligheder p_1, \ldots, p_k .

Hypotese,

$$H_0: p_1 = \frac{9}{16}, \quad p_2 = \frac{3}{16}, \quad p_3 = \frac{3}{16}, \quad p_4 = \frac{1}{16}$$

Generelt: $H_0: p_1 = p_{01}, \dots, p_k = p_{0,k}$ for **kendte ssh,** p_{01}, \dots, p_{0k} .

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Mendels ærteforsøg: Teststørrelse og p-værdi

Teststørrelse:

$$X_{\text{obs}}^{2} = \sum_{i=1}^{4} \frac{(\text{observed}_{i} - \text{expected}_{i})^{2}}{\text{expected}_{i}}$$

$$= \frac{(315 - 312.75)^{2}}{312.75} + \dots + \frac{(32 - 34.75)^{2}}{34.75} = 0.470$$

 X^2 er altid \geq 0, og store værdier passer dårligt med H_0 (er kritiske), små værdier passer godt med H_0 .

p-værdi:

- ullet Sandsynlighed for at få værdi af X^2 der er $\geq X_{
 m obs}^2$
- Viser sig at *p*-værdien skal bestemmes i χ^2 -fordelingen (chi-i-anden) med k-1=4-1=3 frihedsgrader.

χ^2 -fordelinger, beregning af *p*-værdi

- p-værdien er arealet **til højre for** $X_{\rm obs}^2$
- Her fås p-værdien 0.93, så vi accepterer hypotesen

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Mendels ærteforsøg: Opsummering

- Stat. model: 556 uafhængige obs. der hver især kan havne i 4 grupper; alle med (ukendte) sandsynligheder p_1, \ldots, p_4 .
- Hypotese, svarende til Mendels love:

$$p_1 = \frac{9}{16}, \ p_2 = \frac{3}{16}, \ p_3 = \frac{3}{16}, \ p_4 = \frac{1}{16}$$

- χ^2 -test gav p = 0.93 ($X_{\rm obs}^2 = 0.47$, df = 3)
- Hypotesen accepteres, så data er i fin overensstemmelse med Mendels teorier

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

R: chisq.test

```
### Testet
chisq.test(c(315,108,101,32), p=c(9,3,3,1)/16)

##
## Chi-squared test for given probabilities
##
## data: c(315, 108, 101, 32)
## X-squared = 0.47002, df = 3, p-value = 0.9254

### De forventede vaerdier
chisq.test(c(315,108,101,32), p=c(9,3,3,1)/16)$expected

## [1] 312.75 104.25 104.25 34.75
```

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Test for ens sandsynligheder/proportioner: Homogenitetstest

Eksempel: Kastrering og diabetes

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

- Rækkesummer kendt på forhånd. Kunne have organiseret data det i stedet var søjlesummerne der var kendt på forhånd.
- I hver række har vi sandsynligheder for at havne i hver søjle. For hver række summerer sandsynlighederne til 1.
- Vi er interesseret i om sandsynligheden for diabetes er ens for kastrerede og ikke-kastrerede mus
- Der kunne være flere rækker og/eller søjler

Statistisk Dataanalyse 1, Kursusuge 7, onsdag Dias 17/51

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Homogenitetestest: Sandsynligheder og hypotese

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	p_{11}	p_{12}		p_{1k}	1
række 2	p_{21}	p_{22}		p_{2k}	1
:	:	:	٠.	:	:
række <i>r</i>	p_{r1}	p_{r2}		p_{rk}	1

Hypotesen er at sandsynlighederne/proportionerne er ens i alle populationer:

$$p_{1j} = p_{2j} = \cdots = p_{rj}$$
 for alle søjler j

Altså at fordelingen henover søjlerne er den samme for alle rækker.

Hvis der kun er to søjler: Sammenligning af r binomialfordelinger

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Homogenitetstest: Generel notation

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	<i>y</i> ₁₁	<i>y</i> ₁₂		<i>y</i> 1 <i>k</i>	n_1
række 2	<i>y</i> ₂₁	<i>y</i> ₂₂	• • •	<i>y</i> 2 <i>k</i>	n_2
:	:	:	٠	÷	:
række <i>r</i>	y _{r1}	Уr2	• • •	y_{rk}	n _r
Total	s_1	s ₂		Sk	n

Dataindsamling:

- r populationer (rækker), n_i observationer fra population i
- I hver population er observationerne klassificeret efter et kriterium med *k* muligheder.
- Rækkesummer (men ikke søjlesummer) kendt på forhånd.

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Homogenitetstest: Statistisk model og hypotese

Statistisk model:

- Uafhængige obs. fra r populationer med n_i obs. i population i. Hver obs. kan havde i k grupper/celler
- I population i er sandsynligheden for at havne i gruppe j lig p_{ij} . Summen af p_{ij} 'erne er 1 for hvert i for sig
- Hvis der kun er to søjler: r binomialfordelinger

Hypotesen om homogenitet er at søjlesandsynlighederne er ens for alle rækker:

$$p_{1j} = p_{2j} = \cdots = p_{rj}$$
 for alle søjler j .

To søjler: Sammenligning af binomialsandsynligheder!

DET NATURVIDENSKABELIGE FAKULTET

Homogenitetstest: Forventede værdier

Under hypotesen **estimeres søjlesandsynlighederne** — fælles for alle rækker — naturligt som

$$\hat{q}_j = \frac{s_j}{n} = \frac{\mathsf{søjlesum}_j}{n}$$

Forventet antal i celle (i,j) hvis hypotesen er sand:

$$E_{ij} = n_i \cdot \hat{q}_j = \frac{\text{rækkesum}_i \cdot \text{søjlesum}_j}{\text{totalsum}}$$

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Kastrering og diabetes: Teststørrelse og p-værdi

Teststørrelse:

$$X_{\text{obs}}^{2} = \sum_{\text{alle celler}} \frac{(y_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$= \sum_{\text{alle celler}} \frac{(\text{observed}_{ij} - \text{expected}_{ij})^{2}}{\text{expected}_{ij}}$$

$$= \frac{(26 - 19)^{2}}{19} + \frac{(24 - 31)^{2}}{31} + \frac{(12 - 19)^{2}}{19} + \frac{(38 - 31)^{2}}{31}$$

$$= 8.32$$

Store værdier passer dårligt med H_0 , små værdier passer godt.

p-værdi: Viser sig at $X_{\rm obs}^2$ skal vurderes i χ^2 -fordelingen med ${
m df}=(r-1)(k-1)=1$

Statistisk Dataanalyse 1, Kursusuge 7, onsdag Dias 23/51

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Kastrering og diabetes: Forventede værdier

Data:

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

Forventede værdier:

	Diabetes	Ikke diabetes	Total
Katrerede mus	19	31	50
Ikke-kastrerede mus	19	31	50

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Kastrering og diabetes: χ^2 -fordelingen og p-værdien

- p-værdien er arealet **til højre for** den $X_{\rm obs}^2$
- Her fås p-værdien 0.0039, så hypotesen forkastes klart


```
KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET
```

R: chisq.test

```
diabetes <- matrix(c(26,12,24,38), 2,2)
diabetes

## [,1] [,2]
## [1,] 26 24
## [2,] 12 38

chisq.test(diabetes, correct=FALSE)

## Pearson's Chi-squared test
##
## Pearson's Chi-squared test
##
## Atat: diabetes
## X-squared = 8.3192, df = 1, p-value = 0.003923

chisq.test(diabetes, correct=FALSE)$expected

## [,1] [,2]
## [1,] 19 31
## [2,] 19 31</pre>
```

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Kastrering og diabetes: Opsummering

- Statistisk model: Data fra to binomialfordelinger med successandsynligheder p₁₁ og p₂₁
- Hypotese om homogenitet, H_0 : $p_{11} = p_{21}$. Vi fik p = 0.0039, så hypotesen afvises.
 - Der er forskel på risikoen for at udvikle diabetes.
- Kastrering øger risikoen for diabetes: Forskellen mellem ssh. estimeres til 0.280 med 95% KI (0.098, 0.462)

R: prop.test prop.test(c(26,12), c(50,50), correct=FALSE) ## ## 2-sample test for equality of proportions without continuity ## correction ## ## data: c(26, 12) out of c(50, 50) ## X-squared = 8.3192, df = 1, p-value = 0.003923 ## alternative hypothesis: two.sided ## 95 percent confidence interval: ## 0.09781821 0.46218179 ## sample estimates: ## prop 1 prop 2 ## 0.52 0.24

KØBENHAVNS UNIVERSITET

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

DET NATURVIDENSKABELIGE FAKULTET

Test for uafhængighed

Studerende på StatData1 i 2019

Ved forelæsningen i StatData1 d. 2/9-2019 svarede 110 studerede bl.a. på følgende spørgsmål

- Har du glædet dig til StatData1? (ja/nej)
- Hvor tit drikker du alkohol?
 (A: aldrig, B: 0-1 gang/uge, C: 2- gange/uge)

	A (aldrig)	B (0-1)	C (2+)
ja	6	43	27
nej	5	23	6

- Hverken række- eller søjlesummer kendt på forhånd.
- Er svarene på de to spørgsmål uafhængige? ... Hvad skal det egentlig betyde?

Data kan nu hentes på hjemmesiden.

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Uafhængighedstest: Generel notation

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	<i>y</i> ₁₁	<i>y</i> ₁₂		<i>y</i> 1 <i>k</i>	n_1
række 2	<i>y</i> ₂₁	<i>y</i> 22		y 2k	n_2
÷	:	:	٠	:	:
række <i>r</i>	y _{r1}	y_{r2}		y_{rk}	n _r
Total	<i>s</i> ₁	s ₂		Sk	n

- Alle observationer klassificeret efter to kriterier. Organiseret i r rækker og k søjler
- Kun totalsumen n er kendt på forhånd
- Rækkesummer og søjlesummer ikke kendt på forhånd, men kan selvfølgelig beregnes når vi har data

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Alkohol og forventing til SD1: Hypotese

Hypotese: Ingen sammenhæng mellem alkoholforbrug og forventing til Statistisk Dataanalyse 1.

For eksempel:

 $P(\text{aldrig alkohol } \mathbf{og} \text{ glæder sig}) = P(\text{aldrig alkohol}) \cdot P(\text{glæder sig})$

Altså at sandsynligheden for at begge dele er opfyldt fås ved at **gange** de to sandsynligheder. Skal gælde for **alle celler** i tabellen.

Hvis p_{ij} er cellesandsynligheder, p_i er rækkesandsynligheder og q_j er søjlesandsynligheder er hypotesen at

$$p_{ij} = p_i \cdot q_j$$
 for alle i, j

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Uafhængighedstest: Statistisk model

Statistisk model:

- n uafhængige obs. der hver især kan havne i $r \cdot k$ celler
- Ssh. for celle (i,j) kaldes p_{ij} . Sum af **alle** p_{ij} 'er er 1

Rækkesandsynligheder p_i og søjlesandsynligheder q_j . Sum af de relevante cellesandsynligheder.

	søjle 1	søjle 2		søjle <i>k</i>	Total
række 1	p_{11}	p_{12}	• • •	p_{1k}	p_1
række 2	p_{21}	p_{22}	• • •	p_{2k}	p_2
:	:	:	٠	:	:
række <i>r</i>	p_{r1}	p_{r2}	• • •	p_{rk}	p_r
Total	q_1	q_2		q_k	1

Hypotese om uafhængighed:

 p_{ii} = Sandsynlighed for række i og søjle j

= Sandsynlighed for række i · Sandsynlighed for søjle j

 $= p_i \cdot q_i$

Hypotesen er at dette gælder for alle i og j, dvs. alle celler.

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Alkohol og forventing til SD1: Forventede værdier

Data:

	A (aldrig)	B (0-1)	C (2+)	I alt
ja	6	43	27	76
nej	5	23	6	34
l alt	11	66	33	110

Forventede værdier:

	A (aldrig)	B (0-1)	C (2+)	l alt
ja	7.6	45.6	22.8	76
nej	3.4	20.4	10.2	34
I alt	11	66	33	110

DET NATURVIDENSKABELIGE FAKULTET

Forventede værdier

Estimater for række- og søjlesandsynligheder:

$$\hat{p}_i = \frac{\text{rækkesum}_i}{\text{totalsum}} = \frac{n_i}{n}, \quad \hat{q}_j = \frac{\text{søjlesum}_j}{\text{totalsum}} = \frac{s_j}{n}$$

Under hypotesen har vi derfor følgende estimater for cellessh.:

$$\hat{p}_{ij} = \hat{p}_i \cdot \hat{q}_j = \frac{\text{rækkesum}_i \cdot \text{søjlesum}_j}{n^2}$$

Forventet antal i celle (i, j) hvis H_0 er sand:

$$E_{ij} = n \cdot \hat{p}_{ij} = \frac{\text{rækkesum}_i \cdot \text{søjlesum}_j}{\text{totalsum}}$$

Præcis det samme som for homogenitetstestet!

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

DET NATURVIDENSKABELIGE FAKULTET

Alkohol og forventing til SD1: Teststørrelse og *p*-værdi

Teststørrelse

$$X_{\text{obs}}^{2} = \sum_{\text{alle celler}} \frac{(y_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$= \sum_{\text{alle celler}} \frac{(\text{observed}_{ij} - \text{expected}_{ij})^{2}}{\text{expected}_{ij}}$$

$$= \frac{(6 - 7.6)^{2}}{7.6} + \dots + \frac{(6 - 10.2)^{2}}{10.2}$$

$$= 4.0725$$

Store værdier passer dårligt med H_0 , små værdier passer godt.

p-værdi: Viser sig at $X_{\rm obs}^2$ skal vurderes i χ^2 -fordelingen med ${\rm df}=(r-1)(k-1)=(2-1)\cdot(3-1)=2$. **Ligesom homogenitetstestet!**

DET NATURVIDENSKABELIGE FAKULTET

Alkohol og forventing til SD1: χ^2 -fordelingen og p-værdien

- p-værdien er arealet **til højre for** X_{obs}^2
- Her fås p-værdien 0.1305, så hypotesen forkastes ikke (på niveau 5 %)

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R: chisq.test

```
### De forventede vaerdier
chisq.test(sd1data)$expected

## Warning in chisq.test(sd1data): Chi-squared approximation may
be incorrect

## [,1] [,2] [,3]

## [1,] 7.6 45.6 22.8

## [2,] 3.4 20.4 10.2
```

Statistisk Dataanalyse 1, Kursusuge 7, onsdag Dias 39/51

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

R: chisq.test

```
sd1data <- matrix(c(6, 5, 43, 23, 27, 6), 2, 3)
sd1data

## [,1] [,2] [,3]
## [1,] 6 43 27
## [2,] 5 23 6

chisq.test(sd1data, correct = FALSE)

## Warning in chisq.test(sd1data, correct = FALSE): Chi-squared
approximation may be incorrect

##
## Pearson's Chi-squared test
##
## data: sd1data
## X-squared = 4.0725, df = 2, p-value = 0.1305</pre>
Statistisk Dataanabyse I, Kursusuge 7, onsdag
```

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Alkohol og forventing til SD1: Opsummering

- Stat. model: 110 uafhængige obs. der hver især kan havne i 6 grupper; alle med (ukendte) sandsynligheder p_{ii}
- Hypotese om uafhængighed: $p_{ij} = p_i \cdot q_j$ for alle i, j
- χ^2 -test gav p = 0.1305 ($X_{\rm obs}^2 = 4.0725$, df = 2)
- Hypotesen forkastes ikke, så alkoholforbrug og forvetning til SD1 er uafhængige

DET NATURVIDENSKABELIGE FAKULTET

Uafhængighedstest vs. homogenitetstest

Uafhængighedstest:

- Når **to kategoriske variable** med hhv. *r* og *k* kategorier er observeret for **en enkelt population**
- Hverken række- eller søjlesummer er kendt på forhånd
- Hypotese om **uafhængighed** mellem de to variable

Homogenitet stest:

- Når en enkelt kategorisk variabel med k kategorier er observeret i r forskellige populationer
- Rækkesummer (eller søjlesummer) kendt på forhånd
- Hypotese om ens proportioner/sandsynligheder for de r populationer

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Uafhængighedstest vs. homogenitetstest

Beregningerne er helt identiske:

- Forventede værdier beregnes som $E_{ij} = \frac{\text{rækkesum}_i \cdot \text{søjlesum}_j}{\text{totalsum}}$
- ullet Teststørrelse beregnes som $X_{
 m obs}^2 = \sum rac{({
 m observeret-forventet})^2}{{
 m forventet}}$
- Teststørrelsen vurderes i χ^2 -ford. med $\mathrm{df} = (r-1)(k-1)$: p-værdien beregnes som sandsynlighed til højre for X_obs^2
- Hypotesen forkastes/afvises på baggrund af p-værdien som sædvanlig
- Testet kan udføres med chisq.test i R

Men: **Hypotesen og derfor fortolkningen er forskellig** afhængig af datastrukturen/-indsamlingen.

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Kontinuitetskorrektion

For 2×2 tabeller (men ikke større tabeller) laver chisq.test som default en **kontinuitetskorrektion**, når X^2 beregnes.

- chisq.test(..., correct=FALSE): Giver det vi netop har beregnet
- chisq.test(..., correct=TRUE): Giver lidt andre resultater faktisk forbedret.

Begge dele er OK til eksamen, medmindre der står noget specifikt.

R: Med og uden kontinuitetskorrektion

```
## [,1] [,2]
## [1,] 26 24
## [2,] 12 38

chisq.test(diabetes, correct=TRUE)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## Ata: diabetes
## X-squared = 7.1732, df = 1, p-value = 0.0074

chisq.test(diabetes, correct=FALSE)

##
## Pearson's Chi-squared test
##
## Pearson's Chi-squared test
##
## Ata: diabetes
## X-squared = 8.3192, df = 1, p-value = 0.003923
```

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Approksimation

Vi har hele tiden sagt at X^2 kommer fra χ^2 -fordeling når hypotesen er sand, men faktisk er det kun en approksimation.

Tommelfingerregel: Approksimationen er kun god hvis de forventede værdier i alle celler er ≥ 5 .

```
chisq.test(sd1data)$expected

## Warning in chisq.test(sd1data): Chi-squared approximation may
be incorrect

## [,1] [,2] [,3]
## [1,] 7.6 45.6 22.8
## [2,] 3.4 20.4 10.2
```

Statistisk Dataanalyse 1, Kursusuge 7, onsdag Dias 47/51

Alkohol og forventning til SD1: R warning

I forbindelse med analysen giver chisq.test en advarsel!

```
chisq.test(sd1data, correct = FALSE)

## Warning in chisq.test(sd1data, correct = FALSE): Chi-squared
approximation may be incorrect

##

## Pearson's Chi-squared test
##

## data: sd1data
## X-squared = 4.0725, df = 2, p-value = 0.1305
```

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvad gør man hvis forventede antal er for små?

• Slå rækker og/eller søjler sammen så tommelfingerreglen om forventede værdier er OK.

Sammenlægningen skal selvfølgelig give mening, typisk for ordinale data. (Kunne godt gøres her!)

• Beregn *p*-værdien ved **simulation**.

Laver mange datasæt som de ville se ud hvis hypotesen var sand og beregner X^2 . Hvor ofte er den større end $X^2_{\rm obs}$?

DET NATURVIDENSKABELIGE FAKULTET

R: Simuleret p-værdi

```
set.seed(2019)
chisq.test(sd1data, simulate.p.value = TRUE, B=10000)

##

## Pearson's Chi-squared test with simulated p-value (based on 10000
## replicates)
##

## data: sd1data
## X-squared = 4.0725, df = NA, p-value = 0.122
```

Statistisk Dataanalyse 1, Kursusuge 7, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Opsummering vedr. R

Test i tabeller:

- chisq.test: Giver $X_{\rm obs}^2$ og p-værdi samt forventede værdier. Kan også beregne simulerede p-værdier. Ingen konfidensint.
- prop.test: Kan bruges hvis der kun er to søjler (evt. flere rækker). Giver ikke de forventede værdier.
 - Også KI for forskel mellem rækkessh. for 2×2 tabeller.
- For 2 × 2 tabeller: chisq.test og prop.test fås med/uden kontinuitetskorrektion.
- Data skal indtastes forskelligt når man bruger chisq.test og prop.test.

Vælg selv metoden medmindre du bliver spurgt om noget eksplicit.

Statistisk Dataanalyse 1, Kursusuge 7, onsdag Dias 51/51

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Alkohol og forventning til SD1: Konklusion

- Simulerede *p*-værdierne lidt forskellige fra gang til gang (medmindre man som her vælger fast seed)
- De simulerede p-værdier tæt på p-værdien baseret på χ^2 -approksimationen (0.1305)
- Ikke tegn på sammenhæng ml. alkoholforbrug og forventning til SD1

