import necessary libraries

```
In [5]: import pandas as pd
import os
```

merging 12 month sale data into single file

```
In [6]: df= pd.read_csv("./Sales_Data/Sales_April_2019.csv")
    files=[file for file in os.listdir('./Sales_Data')]
    all_month_data=pd.DataFrame()
    for file in files:
        df= pd.read_csv("./Sales_Data/"+file)
        all_month_data=pd.concat([all_month_data, df])

all_month_data.to_csv("all_data.csv", index=False)
In []:
```

Task1:read in update dataframe

```
In [7]: all_data=pd.read_csv("all_data.csv")
    all_data.head()
```

Out[7]:

Order ID		Product	Quantity Ordered	Price Each	Order Date	Purchase Address	
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	
1	NaN	NaN	NaN	NaN	NaN	NaN	
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	
3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	

clean up the data!

while performing the operation we find the error .Based on that error , we can clean up the data (from my point of view)

drop rows of NAN

```
In [9]: nan_df=all_data[all_data.isna().any(axis=1)]
    nan_df.head()
    all_data=all_data.dropna(how='all')
    all_data.head()
```

/ N:			
υı	a Li	l フ	Ι.
	_	L	1.

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001

find 'or 'and delete it

```
In [15]: all_data=all_data[all_data['Order Date'].str[0:2] !='Or']
```

#convert column to the correct type

```
In [19]: all_data['Quantity Ordered']=pd.to_numeric(all_data['Quantity Ordered']) #make
all_data['Price Each']=pd.to_numeric(all_data['Price Each']) #make float
```

Augment data with additional column

Task2- add month column

Out[20]:

Order ID		Product	Product Quantity Ordered		Order Date	Purchase Address	Month
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4
3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4
5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4

In []:

In []:

add sales column

In [21]: all_data['Sales']=all_data['Quantity Ordered']*all_data['Price Each']
 all_data.head()

Out[21]:

:	Order ID		Product	Quantity Ordered	Price Order Each Date		Purchase Address	Month	Sales
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	23.90
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	99.99
	3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	600.00
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	11.99
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	11.99

add a city column

```
In [39]: #let's use .apply()
def get_city(address):
    return address.split(',')[1]
def get_state(address):
    return address.split(',')[2].split(' ')[1]

all_data['City']=all_data['Purchase Address'].apply(lambda x: f"{get_city(x)}
all_data.head()
```

Out[39]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	23.90	Dallas (TX)
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	99.99	Boston (MA)
3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	600.00	Los Angeles (CA)
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)
5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)

Q-1. what was the best month for sale? How much was earned that month?

```
In [23]: results=all_data.groupby('Month').sum()
```

C:\Users\Pradeep Ahir\AppData\Local\Temp\ipykernel_3664\3809692125.py:1: Futu
reWarning: The default value of numeric_only in DataFrameGroupBy.sum is depre
cated. In a future version, numeric_only will default to False. Either specif
y numeric_only or select only columns which should be valid for the function.
 results=all_data.groupby('Month').sum()

```
In [26]: import matplotlib.pyplot as plt
    months= range(1, 13)
    plt.bar(months, results['Sales'])
    plt.xticks(months)
    plt.ylabel('Sales in USD ($)')
    plt.xlabel('Month number')
    plt.show()
```


what city has the highest number of sale?

In [41]: results=all_data.groupby('City').sum()
results

C:\Users\Pradeep Ahir\AppData\Local\Temp\ipykernel_3664\3338049859.py:1: Futu
reWarning: The default value of numeric_only in DataFrameGroupBy.sum is depre
cated. In a future version, numeric_only will default to False. Either specif
y numeric_only or select only columns which should be valid for the function.
 results=all_data.groupby('City').sum()

Out[41]	:
---------	---

	Quantity Ordered	Price Each	Month	Sales
City				
Atlanta (GA)	16602	2779908.20	104794	2795498.58
Austin (TX)	11153	1809873.61	69829	1819581.75
Boston (MA)	22528	3637409.77	141112	3661642.01
Dallas (TX)	16730	2752627.82	104620	2767975.40
Los Angeles (CA)	33289	5421435.23	208325	5452570.80
New York City (NY)	27932	4635370.83	175741	4664317.43
Portland (ME)	2750	447189.25	17144	449758.27
Portland (OR)	11303	1860558.22	70621	1870732.34
San Francisco (CA)	50239	8211461.74	315520	8262203.91
Seattle (WA)	16553	2733296.01	104941	2747755.48

what time should we display advertisement to maximize likelihood of customer's buying product?

In [47]: all_data['Order Date']=pd.to_datetime(all_data['Order Date'])
 all_data['Hour']= all_data['Order Date'].dt.hour
 all_data['Minute']=all_data['Order Date'].dt.minute
 all_data.head()

Out[47]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	Hour	Min
0	176558	USB-C Charging Cable	2	11.95	2019- 04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	Dallas (TX)	8	
2	176559	Bose SoundSport Headphones	1	99.99	2019- 04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	Boston (MA)	22	
3	176560	Google Phone	1	600.00	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	600.00	Los Angeles (CA)	14	
4	176560	Wired Headphones	1	11.99	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)	14	
5	176561	Wired Headphones	1	11.99	2019- 04-30 09:27:00	333 8th St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)	9	
4											•

```
In [53]: hours=[hour for hour ,df in all_data.groupby('Hour')]
    plt.plot(hours, all_data.groupby(['Hour']).count())
    plt.xticks(hours)
    plt.xlabel('Hours')
    plt.ylabel('Number of Orders')
    plt.grid()
    plt.show()

#my recommendation to display advertizement around(11am) or 7pm(19) to maximize
```


what products are most often sold together?

```
df=all_data[all_data['Order ID'].duplicated(keep=False)]
In [58]:
         df['Grouped']=df.groupby('Order ID')['Product'].transform(lambda x: ','.join(x')
         df=df[['Order ID', 'Grouped']].drop_duplicates()
                                                                #to remove duplicate
         df.head()
         C:\Users\Pradeep Ahir\AppData\Local\Temp\ipykernel_3664\1093302264.py:2: Sett
         ingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
          s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
          sus-a-copy)
           df['Grouped']=df.groupby('Order ID')['Product'].transform(lambda x: ','.joi
Out[58]:
              Order ID
                                                        Grouped
                176560
                                      Google Phone, Wired Headphones
           18
               176574
                                    Google Phone, USB-C Charging Cable
           30
               176585 Bose SoundSport Headphones, Bose SoundSport Hea...
                176586
                                    AAA Batteries (4-pack), Google Phone
          119
               176672
                           Lightning Charging Cable, USB-C Charging Cable
         from itertools import combinations
In [60]:
         from collections import Counter
         count=Counter()
         for row in df['Grouped']:
             row_list=row.split(',')
             count.update(Counter(combinations(row_list, 2)))
                                                                     #here 2 is the item an
         for key, value in count.most_common(10):
             print(key, value)
          ('iPhone', 'Lightning Charging Cable') 1005
          ('Google Phone', 'USB-C Charging Cable') 987
          ('iPhone', 'Wired Headphones') 447
          ('Google Phone', 'Wired Headphones') 414
          ('Vareebadd Phone', 'USB-C Charging Cable') 361
          ('iPhone', 'Apple Airpods Headphones') 360
          ('Google Phone', 'Bose SoundSport Headphones') 220
          ('USB-C Charging Cable', 'Wired Headphones') 160
          ('Vareebadd Phone', 'Wired Headphones') 143
          ('Lightning Charging Cable', 'Wired Headphones') 92
```

Q-5 what product sold the most? why do you think it sold the most?

In [61]: all_data.head()

Out[61]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	Hour	Min
0	176558	USB-C Charging Cable	2	11.95	2019- 04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	Dallas (TX)	8	
2	176559	Bose SoundSport Headphones	1	99.99	2019- 04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	Boston (MA)	22	
3	176560	Google Phone	1	600.00	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	600.00	Los Angeles (CA)	14	
4	176560	Wired Headphones	1	11.99	2019- 04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)	14	
5	176561	Wired Headphones	1	11.99	2019- 04-30 09:27:00	333 8th St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)	9	
4											•

```
In [65]: product_group= all_data.groupby('Product')
    quantity_ordered=product_group.sum()['Quantity Ordered']
    products=[product for product, df in product_group]
    plt.bar(products, quantity_ordered)
    plt.ylabel('Quantity Ordered')
    plt.xlabel('Ordered')
    plt.xticks(products, rotation='vertical', size=8)
    plt.show()
```

C:\Users\Pradeep Ahir\AppData\Local\Temp\ipykernel_3664\1983284032.py:2: Futu
reWarning: The default value of numeric_only in DataFrameGroupBy.sum is depre
cated. In a future version, numeric_only will default to False. Either specif
y numeric_only or select only columns which should be valid for the function.
 quantity_ordered=product_group.sum()['Quantity Ordered']


```
In [70]: prices=all_data.groupby('Product').mean()['Price Each'] # just google how to post
fig, ax1=plt.subplots()

ax2=ax1.twinx()
ax1.bar(products, quantity_ordered, color='g')
ax2.plot(products, prices,'b-')

ax1.set_xlabel('Product Name')
ax1.set_ylabel('Quantity Ordered', color='g')
ax2.set_ylabel('Price ($)', color='b')
ax1.set_xticklabels(products, rotation='vertical', size=8)
plt.show()
```

C:\Users\Pradeep Ahir\AppData\Local\Temp\ipykernel_3664\1175560429.py:1: Futu reWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

prices=all_data.groupby('Product').mean()['Price Each'] # just google how t
o plot second y axis

C:\Users\Pradeep Ahir\AppData\Local\Temp\ipykernel_3664\1175560429.py:12: Use
rWarning: FixedFormatter should only be used together with FixedLocator
ax1.set_xticklabels(products, rotation='vertical', size=8)

In []: