Serial Transmissions

René Beuchat LAP/EPFL

rene.beuchat@epfl.ch

LSN/hepia/HESSO

rene.beuchat@hesge.ch

Outline

- General view of cable transmission
- Bit coding
- Bit/Byte/Message synchronization
- Examples of transmission systems:
 - ➤ Asynchronous RS-232
 - ➤ Synchronous packet oriented
- Some Communication protocols:
 - > 12c, spi, one-wire
 - **>**...

Computer architecture (general and simplified)

Computer serial communications

- ➤ Keyboard, mouse (PS2, USB)
- ➤ Modem (RS232, V24)
- ➤ Phone lines (analog, digital)

ÉDÉRALE DE LAUSANNE

Computer serial communications

- ➤ Multipoint links (i.e. Ethernet 10 base2)
- ➤ Same cable for multiple devices

Computer serial communications

➤ Point to point links (Ethernet 10/100 Twisted pair)

7 levels OSI of ISO

- ➤ Open System Interconnection
- ➤ International Standard Organization

Bits encoding

Bit coding examples

Bits encoding

Name	'0'	'1'	Synchro		
NRZ	Low Voltage/courant	High Voltage/courant	No		
NRZI	Transition at begin of bit	NO transition	No		
FM0	Transition at center of bit	NO transition At center of bit	Transition between bits		
FM1	NO transition At center of bit	Transition at center of bit	Transition between bits		
Manchester Bi-phase	0→1 At center	1→0 At center	Transition at center of bits		
Pseudo-ternary	Alternatively Pos / Neg level	Gnd	No		

Synchronizations

Problems of synchronizations:

- At the bit level
- At the word level (bits assembly)
- At the message level (word assembly)

Transmission speed

Asynchronous Transmission

- Word Synchronization :
 - start bit
 - data (5..8 bits)
 - parity (optional, even/odd)
 - stop bit (1, 1.5, 2 at minimum)
- Transmission speed by EXTERNAL choice

Asynchronous Transmission, RS-232

Example, RS-232

Transmission of code "C", even parity:

- ASCII C $\to 0x43 \to b' 0100 0011$
- LSb (bit 0) first generally)
- '0' \rightarrow > +3V
- '1' \rightarrow < -3V

Example, RS-232

- 3 signaux sont indispensables pour la communication:
 - Gnd: Terre de transmission (pin 7)
 - TxD: transmission de données
 - RxD: réception de données
- Viennent ensuite 2 signaux de gestion du contrôle de flux de transmision entre l'émetteur et le récepteur:
 - RTS: Requets To Send, l'émetteur désire émettre
 - CTS: Clear To Send, le récepteur autorise l'émetteur à émettre
- Un signal est utilisé pour indiquer que la communication est établie:
 - DCD: Data Carrier Detect, la porteuse est valide
- 2 signaux indiquent que les équipements sont prêts pour communiquer:
 - DTR: Data Terminal Ready, le terminal est prêt
 - DSR: Data Set Ready, le modem est prêt
- Un dernier signal utilisé avec certains modems:
 - RI: Ring Indicator, sonnerie

Connector RS-232, 25 pins

Description	Abréviation	direction DCE DTE		CCITT V24					ı		CCITT V24		direction DTE DCE	Abréviation	Description
Transmission données(cs)	**************************************		SBA	118	EDS	CTVD		•1			101	AΑ			Terre de protection
						STxD ??			TxD	ED	103	BA	>	Transmit Data	Transmission de données
	Tr signal element liming:	\rightarrow	DB	114	HE		150		RxD	RD	104	BB	←	Receive Data	Réception de données
' '	Sec Received Data	\rightarrow	SBB	119	RDS	SRxD	160		RTS	DPE	105	CA		Request To Send	Demande pour émettre
Horloge de réception	Rec. signal element timing	>	DD	115	HR	??		•5	CTS	PAE	106	СВ	←	Clear To Send	Prêt à émettre
Daniéla da Janes (as)	BUL BULLET TO BLUE		SCA	120	DPES	СВТС	180	•6	DSR	PDP	107	CC	←—	Data Set Ready	Poste de données prêt
	Sec Request To Send				DEES	DID	190	•7	Gnd		102	AB		Signal Ground	Terre de signalisation
Terminal de données prêt		<u> </u>	CE-CD		CPD-TDP	DIR	200		DCD	DP	109	DP	←	Data Carrier Detect	Détection de porteuse
	Signal Quality Detector		CG			l			I- I					000000000000000000000000000000000000000	·
	Ring Indicator	\rightarrow	-	125	IΑ	RI	220	•9	I- I						
Sélection de débit binaire	Data Signal Rate Selector	\Longrightarrow	CH-CI	111/112	SDB	DSRS	230	10	STF	SFE	126	ск		Salasi Transmil Eranianes	Sélection de fréq.d'émiss.
Horloge émission externe	Tr signal element timing	←	DA	113	HEE	TSET		• 111			122	SCF	/ (Détection de porteuse (cs)
							250	● 12 ● 13	SCTS	DPS DSS PAES		SCB	\downarrow	Secondary Clear To Sand	1 ' ' '
		cs :	canal s	econda	aire										

Connector RS-232, 9 pins

DB-9 mâle

RS-232 data & control flow

RS422- RS485, physical connection

Differential Transmission, point to point

Differential Transmission, multipoints

Packet Transmission (1), BISYNC

Packet Transmission (2), HDLC

Data payload:

- HDLC : bit granularity
- SDLC: byte granularity (multiple of 8 bit)

Ethernet/IEEE 802.3

- Packet Transmission
- Clock include/coded with the data →
 - Manchester Coding

Ethernet/IEEE 802.3

• TCP/IP

Paquet avec TCP/IP

Serial Interfaces

Bus I²C
Bus SPI
Bus 1-Wire

Synchronous Transmission

Clock and data transmission, ex:

- I²C, packet transmission, start/stop bits
- SPI, word transmission (8 bits, QSPI 16 bits),
 - Sel signal for synchronization

Serial Interfaces

- Components examples :
 - ➤ Asynchronous Interface
 - ➤ UART/SCI Interface of microcontrollers
 - Circuit i-Wire, uLAN Memories Dallas/maxim uLAN
 - ➤ Serial Memories DS2224
 - Circuit I²C 12C, example PCF8574 port //
 - ➤ Parallel Port extension PCF8574 (old components)

Serial Interfaces

Bus I²C SMBus

(System Management Bus)
Philips semiconductor

I²C

- Inter devices Bus
- Short distance (~1 m)
- Multi-masters
- Multi-slaves
- Clock provided by the Master
- Open Collector/drain Bus
- Transmission at
 - > 100 kbits/s (normal), 400 kbits/s (fast)

I²C, example in a system

- Port I/O extension by simple serial bus: port //, converter A/D, D/A, serial memories, tuning, etc...
- Ex. of utilization : hi-fi, TV, etc...

I²C, definitions

Master:

- ➤ Unit which send Clock, start and stop the transfer
- Provide the slave address and direction of cycle (read/write)

Slave:

- Selected unit by a master
- > Receive the Address and direction of transfer
- Acknowledge the address if it's selected

• Multimaster system:

System where multi master can start a transfer. One master is able to finish

Arbitration :

Process to take the bus if multiple masters want to do at the same time

I²C, definitions

• Emitter:

- > It's the unit which send a data on the bus
- > Writing: the emitter is the master
- > Reading: the emitter is the slave

Receptor:

- > It's the unit which receive a data on the bus
- ➤ Writing : the emitter is the **slave**
- > Reading : the emitter is the master
- Synchronization
 - Method to synchronize the clock between many circuits

I²C, devices interconnection

2 lines for everyone:

- SCL : Serial CLk
- SDA :Serial Data

Transmission:

- multipoint
- synchronous
- by packet

I²C, interface on the bus

- SCL: CLk
 - always send by the master
 - can be maintain at '0' by a slave to slow down the transmission speed
- •SDA: Data
- bidirectional lines, open collector

I²C, packet transmission START/STOP

- Idle: lines at 'H'
- Start : SDA 'H' \rightarrow '0', then SCL 'H' \rightarrow '0'
- Stop : SCL '0' \rightarrow 'H', then SDA '0' \rightarrow 'H'
- Data changes when SCL at '0'

I²C reading

- 1er byte (master):
 - destination address 7 bits
 - direction of transfer 1 bits ('H')
- Acknowledge (slave): '0'

I²C writing

- 1er byte (master):
 - destination address 7 bits
 - direction of transfer 1 bits ('0')
- Acknowledge (slave): '0'

I²C other accesses

I²C multi-master arbitration

- Open collector and read back of transmitted state:
 - SCL activated by all masters → '0'
 - Destination address on SDA (msb → lsb)
 - When they send à '1', the line ('1'→ 'H') → 'H'
 - While the master see the same state as they send, they continue. '0' wins on 'H'.

I²C Clock speed down

Maintaining the line at '0', a slave can slow down the transmission speed.

Not always supported by all masters!

- 8 bits parallel port extension P7..P0
- 8 selectable addresses by 3 input A2..A0
- 4 fixed address bits '0100'

• Writing I²C

Reading I²C

Transmission Timing

NO data direction, pseudo open collector

Serial Interfaces

Bus SPI

Synchronous Peripheral Interface

Motorola

- Synchronous Bus
- Clock line
- Full-duplex Transmission (in, out)
- Multi-master possible
- Slave selection by separated physical lines

About 1-4 Mbits/s

MOSI Master Out, Slave In,

MISO Master In, Slave Out,

SCK Serial ClocK

Provided by the master unit

SS_n Slave Select,

1 by slave, generally active low

Example:

- 1 master
- 4 slaves

Example: - 3 masters/slaves - 2 slaves

Implementation example on a 68HC11 uC

2 simples registers who exchange their data

Serial Interfaces

Bus 1-Wire, uLAN

Dallas-Maxim

1-Wire, Dallas/Maxim

- Serial link with width modulation for reset, '0' and '1' transmission
- Open collector output
- Start bit for each bit activated by the master either for read or write
- ~15 kbit/s
- 50-600m

1-Wire, Dallas/Maxim

Circuit example, EconoRAM (old circuit)

DS2224 1 2 3 Gnd DQ Vec

Master

1-wire device

Signal connection

1-Wire, Dallas

- Width modulation
- Open collector
- Start bit for each bit activated by the master either for read or write

Write access

1-Wire, Dallas

- Width modulation
- Open collector
- Start bit for each bit activated by the master either for read or write

Read access

Mémoire Dallas 1-Wire

Mémoire Dallas 1-Wire

Communication:

- Pulse width modulation
- Open collector
- Communication start by master

Serial Interfaces

How to do open collector equivalence with a programmable parallel port?

Open collector on // port

Open collector model

Open collector on // port

- Open collector model on a programmable // port
- Programmable Bit direction use :
 - \triangleright Input \rightarrow 'Z'
 - > Output '0' → '0'

Open collector on // port (ex. 68331)

PFPax : bit x du registre PFPAR (Port F Pin Assignment Register)

DDRx: Data Direction Register

Portx: Port Data

Serial Interfaces

Others serial bus:

USB

GigaEthernet

LVDS serial transmitters

SATA

. . .

