Computer Organization and Architecture

Branch Prediction

Jeongseob Ahn

Department of Software & Computer Engineering
Ajou University

Branch Prediction

- Longer pipelines can't readily determine branch outcome early
 - Stall penalty becomes unacceptable
- Predict outcome of branch
 - Only stall if prediction is wrong
- In MIPS pipeline
 - Can statically predict branches not taken
 - Fetch instruction after branch, with no delay

Security Issue

MIPS with Predict Not Taken

Prediction incorrect

Dynamic Branch Prediction

- Hardware measures actual branch behavior
 - Record recent history of each branch
- Assume future behavior will continue the trend
 - When wrong, stall while re-fetching, and update history

Branch Prediction Steps

Branch Direction Prediction

- Direction predictor (DIRP)
 - Map conditional-branch PC to taken/not-taken (T/N) decision
- Branch history table (BHT): simplest predictor
 - PC indexes table of bits (0 = N, 1 = T), no tags
 - Essentially: branch will go same way it went last time

Branch History Table (BHT)

- Branch history table (BHT): simplest direction predictor
 - PC indexes table of bits (0 = N, 1 = T), no tags
 - Essentially: branch will go same way it went last time
 - Problem: inner loop branch below
 for (i=0;i<100;i++)
 for (j=0;j<3;j++)
 // loop body</pre>
 - Two "built-in" mis-predictions per inner loop iteration
 - Branch predictor "changes its mind too quickly"

Two-Bit Saturating Counters (2bc)

Two-bit saturating counters

- Replace each single-bit prediction
 - (0,1,2,3) = (N,n,t,T)
- Adds "hysteresis"
 - Force predictor to mis-predict twice before "changing its mind"
- One misprediction each loop execution (rather than two)

Branch Target Address Prediction

Branch target buffer (BTB):

- A small hardware table
- is-a-branch = (BTB[hash(PC)].tag == PC) ? 1 : 0
- predicted-target = (BTB[hash(PC)].tag == PC) ? BTB[PC].target : 0

index	tag	target
0	0	0
1	0x4e3745	0x4738da
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0

Compiler Approach: Delayed Branching

 Reordering data independent instructions does not change program semantics

Precise Exception with Pipeline

- Traps (invoked by instruction)
 - Squash all subsequent instructions
 - Set PC to exception handling routine
- External interrupts
 - Processor states updated in MEM and WB
 - Must finish the instructions in the middle of MEM and WB

Advanced Topics

- Superscalar
 - Fetching two instructions at the same time (2-way Superscalar)
- Out-of-order Execution
 - Processors dynamically change the order of instruction to maximize ILPs (Instruction Level Parallelism)
- Hardware Multithreading (a.k.a Intel's Hyper Threading)
 - Sharing the hardware resources except for PC and Register File to maximize TLPs (Thread Level Parallelism)
 - Processor is responsible for scheduling the hardware threads
 - It is not software multithreading technique