AMENDMENTS TO THE SPECIFICATION

Please amend the specification as indicated below without prejudice or disclaimer.

Please amend lines 12-16 on page 2 as shown below:

- Figure 1. BFA4 cDNA sequence (SEQ ID NO.:1).
 - Figure 2. BFA4 amino acid sequence (SEQ ID NO.:2).
 - Figure 3. BCY1 nucleotide (A: SEQ ID NO.:3) and amino acid (B: SEQ ID NO.:4) sequences.
 - Figure 4. BFA5 cDNA sequence (SEQ ID NO.:5).
 - Figure 5. BFA5 amino acid sequence (SEQ ID NO.:6).

10

15

Please amend the paragraph at page 14, lines 14-18 as shown below:

A fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum. These sequences, referred to as tranduction or transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), *Drosophila* antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPER1; in particular, SRRHHCRSKAKRSRHH (SEQ ID NO: 105).

Please amend Table III found on pages 30-31 as shown below:

TABLE III

BFA5 Peptide Pools

							0.70.15
Peptide Group	CLP number	Sequence	SEQ ID	Peptide Group	CLP number	Sequence	SEQ ID
BFA5	2983	LMDMQTFKA	7	BFA5	3033	FESSAKIQV	<u>53</u>
Group 1	2984	KVSIPTKAL	<u>8</u>	Group 6	3034	GVTAEHYAV	<u>54</u>
	2985	SIPTKALEL	9		3035	RVTSNKTKV	<u>55</u>
	2986	LELKNEQTL	<u>10</u>		3036	TVSQKDVCV	<u>56</u>
	2987	TVSQKDVCL	<u>11</u>		3037	KSQEPAFHI	<u>57</u>
	2988	SVPNKALEL	<u>12</u>		3038	KVLIAENTM	<u>58</u>
	2989	CETVSQKDV	13		3039	MLKLEIATL	<u>59</u>
	2990	KINGKLEES	14		3040	EILSVVAKL	<u>60</u>
	2991	SLVEKTPDE	<u>15</u>		3041	MLKKEIAML	<u>61</u>
	2992	SLCETVSQK	<u>16</u>		3042	LLKEKNEEI	<u>62</u>
BFA5	2993	EIDKINGKL	<u>17</u>	BFA5 Group 7	3043	ALRIQDIEL	<u>63</u>
Group 2	2994	MLLQQNVDV	<u>18</u>		3044	KIREELGRI	<u>64</u>
	2995	NMWLQQQLV	<u>19</u>		3045	TLKLKEESL	<u>65</u>
	2996	FLVDRKCQL	<u>20</u>		3046	ILNEKIREE	<u>66</u>
	2997	YLLHENCML	<u>21</u>		3047	VLKKKLSEA	<u>67</u>
	2998	SLFESSAKI	<u>22</u>		3048	GTSDKIQCL	<u>68</u>
	2999	KITIDIHFL	<u>23</u>		3049	GADINLVDV	<u>69</u>
	3000	QLQSKNMWL	<u>24</u>		3050	ELCSVRLTL	<u>70</u>
	3001	SLDQKLFQL	<u>25</u>		3051	SVESNLNQV	<u>71</u>
	3002	FLLIKNANA	26		3052	SLKINLNYA	<u>72</u>

Peptide Group	CLP number	Sequence	SEQ ID	Peptide Group	CLP number	Sequence	SEQ ID
BFA5 Group 3	3003	KILDTVHSC	27	BFA5	3053	KTPDEAASL	<u>73</u>
	3004	SLSKILDTV	28	Group 8	3054	ATCGMKVSI	<u>74</u>
	3005	ILIDSGADI	<u>29</u>		3055	LSHGAVIEV	<u>75</u>
	3006	KVMEINREV	<u>30</u>	:	3056	EIAMLKLEI	<u>76</u>
	3007	KLLSHGAVI	<u>31</u>	•	3057	AELQMTLKL	<u>77</u>
	3009	AVYSEILSV	<u>32</u>		3058	VFAADICGV	<u>78</u>
	3010	KMNVDVSST	<u>33</u>		3060	PAIEMQNSV	<u>79</u>
	3011	ILSVVAKLL	<u>34</u>		3061	EIFNYNNHL	<u>80</u>
	3012	VLIAENTML	<u>35</u>		3062	ILKEKNAEL	<u>81</u>
BFA5	3013	KLSKNHQNT	36	BFA5	3063	QLVHAHKKA	<u>82</u>
Group 4	3014	SLTPLLLSI	37	Group 9	3065	NIQDAQKRT	<u>83</u>
•	3015	SQYSGQLKV	38		3066	NLVDVYGNM	<u>84</u>
•	3016	KELEVKQQL	<u>39</u>		3067	KCTALMLAV	<u>85</u>
	3017	QIMEYIRKL	40		3068	KIQCLEKAT	<u>86</u>
	3018	AMLKLEIAT	41		3069	KIAWEKKET	<u>87</u>
	3019	VLHQPLSEA	42		3070	IAWEKKEDT	<u>88</u>
•	3020	GLLKATCGM	43		3071	VGMLLQQNV	<u>89</u>
	3021	GLLKANCGM	44		3072	VKTGCVARV	<u>90</u>
	3022	QQLEQALRI	<u>45</u>	BFA5	3074	ALHYAVYSE	<u>91</u>
BFA5	3023	CMLKKEIAM	46	Group 10			
Group 5	3024	EQMKKKFCV	47		3075	QMKKKFCVL	<u>92</u>
	3025	IQDIELKSV	48		3076	ALQCHQEAC	<u>93</u>
	3026	SVPNKAFEL	49		3077	SEQIVEFLL	<u>94</u>
	3027	SIYQKVMEI	<u>50</u>		3078	AVIEVHNKA	<u>95</u>
	3028	NLNYAGDAL	<u>51</u>		3079	AVTCGFHHI	<u>96</u>
	3029	AVQDHDQIV	<u>52</u>		3080	ACLQRKMNV	97
					3081	SLVEGTSDK	98

Please amend the paragraph on page 32, lines 16-32 as shown below:

In addition to ELISPOT analysis, human T cells activated by BFA5 peptides were assayed to determine their ability to function as CTL. The cells were activated using peptide-pulsed dendritic cells followed by CD40 ligand-activated B cells (5 rounds of stimulation). The experiment shown was performed with isolated PBMC from HLA-A*0201⁺ donor AP31. Isolated T cells were tested in ⁵¹Cr-release assays using peptideloaded T2 cells. The % specific lysis at a 10:1, 5:1, and 1:1 T-cell to target ratio is shown for T2 cells pulsed with either pools of BFA5/NYBR-1 peptides or with individual peptides. The graph shows CTL activity induced against targets loaded with a c nonspecific HLA-A*0201-binding HIV peptide (control) followed by the CTL activity against the peptide pool (Pool 1 etc.) and then the activity induced by individual peptides from the respective pool to the right. A high level of cytotoxicity was observed for some peptides at a 1:1 E:T ratio. CTL activity (percent specific lysis) induced by the control HIV peptide was generally <10%. Similar results were obtained with another PBMC donor expressing HLA-A*0201 (AP10). A large number of BFA5 peptides trigger T cell-mediated cytotoxicity of BFA5 peptide-loaded target cells. Table IV lists those peptides having immunogenic properties. Five peptides (LMDMQTFKA (SEQ ID NO.:7), ILIDSGADI (SEQ ID NO.:29), ILSVVAKLL (SEQ ID NO.:34), SQYSGQLKV (SEQ ID NO.:38), and ELCSVRLTL (SEQ ID NO.:70)) were found to induce both IFN-y secretion and CTL activity in T cells from both donors.

Please amend Table IV beginning on page 32, line 33 as shown below:

TABLE IV Immunoreactive peptides from BFA5

	BFA5 peptides el	iciting high IFN-γ	BFA5 peptides inducing CTL lysis		
	release (>200 spo		of pulsed cells		
SEQ	Donor AP10	Donor AP31	Donor AP10	Donor AP31	
ĪD					
NO.					
7	LMDMQTFKA	LMDMQTFKA	LMDMQTFKA	LMDMQTFKA	
8	KVSIPTKAL			<u>KVSIPTKAL</u>	
9	SIPTKALEL			<u>SIPTKALEL</u>	
11	TVSQKDVCL				
12	SVPNKALEL				
21	YLLHENCML	YLLHENCML	YLLHENCML		
24	QLQSKNMWL	QLQSKNMWL		QLQSKNMWL	
28	SLSKILDTV	SLSKILDTV		SLSKILDTV	
<u>29</u>	ILIDSGADI	ILIDSGADI	ILIDSGADI	ILIDSGADI	
30	KVMEINREV				
32	AVYSEILSV				
34	ILSVVAKLL	ILSVVAKLL	ILSVVAKLL	ILSVVAKLL	
37	SLTPLLLSI	SLTPLLLSI		SLTPLLLSI	
<u>38</u>	SQYSGQLKV	SQYSGQLKV	SQYSGQLKV	SQYSGQLKV	
40	QIMEYIRKL	QIMEYIRKL		QIMEYIRKL	
49	SVPNKAFEL				
<u>51</u>	NLNYAGDAL	NLNYAGDAL			
<u>54</u>		GVTAEHYAV			
<u>57</u>		KSQEPAFHI			
59	MLKLEIATL	MLKLEIATL		MLKLEIATL	
<u>61</u>		MLKKEIAML			
<u>63</u>	ALRIQDIEL				
<u>67</u>		VLKKKLSEA			
<u>70</u>	ELCSVRLTL	ELCSVRLTL	ELCSVRLTL	ELCSVRLTL	
<u>72</u>	SLKINLNYA	SLKINLNYA		SLKINLNYA	
<u>74</u>	ATCGMKVSI		ATCGMKVSI		
<u>77</u>	AELQMTLKL		AELQMTLKL	<u>AELQMTLKL</u>	
<u>78</u>		VFAADICGV			
81	ILKEKNAEL	ILKEKNAEL			
<u>84</u>	NLVDVYGNM		NLVDVYGNM		
<u>85</u>	KCTALMLAV				

Please amend lines 5-10 on page 34 as shown below:

BFA5(1-23) KLH-MTKRKKTINLNIQDAQKRTALHW (CLP-2977; SEQ ID NO:99) BFA5(312-334) KLH-TSEKFTWPAKGRPRKIAWEKKED (CLP-2978; SEQ ID NO:100)

BFA5(612-634) KLH-DEILPSESKQKDYEENSWDTESL (CLP-2979: SEQ ID NO: 101)

BFA5(972-994) KLH-RLTLNQEEEKRRNADILNEKIRE (CLP-2980; SEQ ID NO: 102) BFA5(1117-1139) KLH-AENTMLTSKLKEKQDKEILEAEI (CLP-2981; SEQ ID NO: 103)

BFA5(1319-1341) KLH-NYNNHLKNRIYQYEKEKAETENS (CLP-2982<u>; SEQ ID NO: 104)</u>

Please amend line 26 on page 34 as shown below:

To assess the quality of the polyclonal antisera, western blots were performed using sera against BFA5. Sera were separately screened against cell extracts obtained from the BT474, MDMB453, MCF-7, Calu-6, and CosA2 cells. The approximate expected MWr of BFA5 protein is 153 kDa. A 220 kDA band was observed in the BT474 extract with CLP2980 antibody but not in the MDMB453 cell extracts however a ~130kD band was present in the MDMB453 extract. Both bands were found to be consistent with the polyclonal antibosera tested in this analysis. Neither of these bands is present in the negative control. Thus, it can be concluded that the polyclonal antisera are specific for BFA5.