adj/brasao.png

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática Sistemas de Comunicações Digitais - TI0069

Trabalho 01: Modulação Digital

Aluno:

Lucas de Souza Abdalah 385472

Professor: André Almeida

Data de Entrega do Relatório: 28/03/2021

Fortaleza 2021

Sumário

2	Simulações					
	2.1	Proble	ema 1 - M -QAM			
		2.1.1	Energia da Constelação			
		2.1.2	Distância Mínima entre Símbolos			
		2.1.3	Modulador			
		2.1.4	Demodulador			

Exemplos

Para referenciar imagens 1, tabelas 1 e equações 1.

Figura 1: Exemplo de como adicionar uma imagem.

Frequência (Hz)	Tensão Máxima (V)
0,558	12,11
2,132	11,15
4,822	8,62

Tabela 1: Frequência da onda de entrada e a tensão máxima da saída do circuito integrador.

$$f_{qu} = A_{VD} \times f_c \tag{1}$$

E quando tirar informação de alguma fonte, deve adicionar no formato de bibtex no arquivo refs.bib e por fim citá-los assim: [1], de modo que a seção de referência é criada e indexada diretamente com estes chamados da função.

1 Introdução

2 Simulações

2.1 Problema 1 - M-QAM

Considere a modulação M-QAM, em que o sinal em banda base é dado por:

$$s_m(t) = (A_m^{\text{(real)}} + jA_m^{\text{(imag)}})g(t),$$

em que g(t) é um pulso transmitido, $A_m^{\text{(real)}}$ e $A_m^{\text{(imag)}}$ são amplitudes da parte real e imaginária da forma de onda transmitida, respectivamente.

Considere $\int_{-\inf}^{\inf} |g(t)|^2 dt = \mathcal{E}_g = 1$, isto é, o pulto g(t) possui energia unitária. Suponha a transmissão de uma sequência de símbolo $\{s_m\}$ de tamanho L=26400bits

- 1. Para $M=\{4,16,64\}$, determine a energia média \mathcal{E}_m de cada constelação;
- 2. Para $M = \{4, 16, 64\}$, determine a distância mínima d_{min} entre dois símbolos;
- 3. Para $M = \{4, 16, 64\}$, implemente o modulador (mapeamento bitsímbolo) usando a codificação de Gray;
- 4. Para $M = \{4, 16, 64\}$, implemente o demodulador (mapeamento símbolobit).

2.1.1 Energia da Constelação

O desenvolvimento é citado em [2], [3].

E_{media}	$E_{media(bit)}$	d_{min}
$\frac{M-1}{3}\mathcal{E}_g$	$rac{M-1}{3\log_2 M}\mathcal{E}_g$	$\sqrt{rac{6\log_2 M}{M-1}}\mathcal{E}_{media(bit)}$

Tabela 2: Frequência da onda de entrada e a tensão máxima da saída do circuito integrador.

2.1.2 Distância Mínima entre Símbolos

A distância eucliadiana entre os sinais na modulação QAM é

$$d_{mn} = \sqrt{||s_m - s_n||^2}$$

$$= \sqrt{\frac{\mathcal{E}_g}{2}[(A_{mi} - A_{ni})^2 + (A_{mq} - A_{nq})^2]}$$

2.1.3 Modulador

2.1.4 Demodulador

Considerando $\mathcal{E}_g=\int_{-\infty}^\infty |g(t)|^2\,dt=1$, a energia média da constelação pode ser calculada por ϵ

3 Conclusão e Resultados

Referências

- [1] P. Fonseca e R. Carreira, AmpOp Ideal, http://intranet.deei.fct.ualg.pt/AC/Sebenta_Online/www.isr.uc.pt/~paulino/cse/Sebenta_Online/cap_15/ampopid.htm, Accessed: 2021-02-16.
- [2] J. G. Proakis e M. Salehi, *Digital Communications*, 5^a ed. 1995.
- [3] C. Pimentel, Comunicação Digital, 1ª ed. 2007.