Insper

Robótica Computacional

Detecção de Retas e Circunferências e Visão de Alto Nível

Convolução e Filtragem

Convolução em 2D

Convolução em Imagem

kernel

Exemplo de realização de convolução:

https://www.youtube.com/watch?v= iZ3Q7VXiGI

0							
	186	167	150	154	152	182	
	210	190	186	162	150	145	
	222	201	186	179	140	133	
	215	199	190	188	186	150	

Imagem de entrada

0	0			
0	4			
		•••		

Aplicações – Efeitos especiais

Aplicações - Recuperação da imagem

Realce de Padrões Específicos

Transformada de Hough

Transformada de Hough

Detecta formas em uma imagem

Muito usada para círculos e retas

Exige pós-processamento dos dados obtidos

Problemas: Encontra muitas retas/círculos parecidos (posição e dimensões)

Desafio: Filtragem - eliminar retas/círculos "parecidos".

Exemplo de Detecção de Circunferências

Exemplo de Aplicação da Detecção de Retas

Visão de Alto Nível

Problemas em Visão Computacional

Classificação Binária

Cachorro P(cachorro) >= P(pessoa) P(cachorro) < P(pessoa)

Não cachorro

Classificação multi-classe (categórica)

P(Cachorro) = 0.7 P(Pessoa) = 0P(Cavalo) = 0

P(Cachorro) = 0 P(Pessoa) = 0.9P(Cavalo) = 0

P(Cachorro) = 0 P(Pessoa) = 0P(Cavalo) = 0.6

Redes Neurais

Modelo em camadas:

- Cada camada processa a saída da anterior
- Camadas são compostas por nós (ou neurônios) que combinam a saída da camada anterior usando uma função não linear.
- A camada final retorna probabilidade de cada classe

Redes Convolucionais (imagens)

Transformações de imagens:

- 1. Convoluções
- 2. Redimensionamentos

Redes Convolucionais

Redes Neurais - Problemas (Tamanho)

VGG19

- Ano: 2014
- 143 milhões de parâmetros
- Cerca de 93% de acurácia top-5 na ImageNet

ResNet-152

- Ano: 2015
- 60 milhões de parâmetros
- Cerca de 96% de acurácia top-5 na ImageNet

EfficientNet-B7

- Ano 2019
- 66 milhões de parâmetros
- Cerca de 97% de acurácia top-5 na ImageNet

MobileNetV2

- 2017
- 4.2 milhões de parâmetros
- Cerca de 95% de acurácia top-5 na ImageNet

Redes Neurais - Problemas (Dataset)

14 milhões de imagens, 22.000 classes

Aplicações

Mask RCNN - Segmentação de objetos - COCO <u>Video</u> - <u>artigo</u>

Atividades Modulo 3

- Atividade 01 Convolução e Filtragem de Imagens no OpenCV
- Atividade 02 Detecção de Retas e Círculos com a Transformada de Hough
- Atividade 03 Detecção de Objetos Complexos com Redes Neurais
- Atividade 04 Pose e
 Transformação Coordenada
 Usando Marcadores Aruco

Formulário de Avaliação do Modulo 2

