Statistics: Tutorial sheet 5

Mandatory Exercises

Exercise 1. Suppose we have a random sample X_1, \ldots, X_n from Normal $(0, \theta)$.

- a. Calculate the MME $\hat{\theta}_{MM}$ of θ . Is this an unbiased estimator?
- b. Calculate the MLE $\hat{\theta}_{ML}$ of θ . Is this an unbiased estimator?
- c. Are $\hat{\theta}_{MM}$ and $\hat{\theta}_{ML}$ UMVU estimators of θ ? Hint: $\mathbb{E}(X_1^4) = 3\theta^2$.
- d. Find the MME and MLE of $\eta = \sqrt{\theta}$. Are these unbiased estimators of η ?

Exercise 2. Let X_1, \ldots, X_n be a random sample from a population with pdf

$$g(x \mid \theta) = \frac{1}{2\theta\sqrt{x}}e^{-\sqrt{x}/\theta}$$
 where $x > 0, \theta > 0$.

It is known that

$$\mathbb{E}(X_1^k) = \theta^{2k} \Gamma(1+2k),$$

where $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$.

- a. Find sufficient statistics for θ .
- b. Derive the method of moment estimator $\hat{\theta}_{MM}$ based on the lowest (integer) moment possible. Is this estimator unbiased? Is it based on a sufficient statistic?
- c. Derive the maximum likelihood estimator $\hat{\theta}_{ML}$. Is this estimator unbiased? Is it based on a sufficient statistic?
- d. Based on the information derived thus far, can you already rule out one of the estimators as being a UMVUE?
- e. Argue whether any of the above estimators is a UMVUE based on the Cramer-Rao lower bound.

Practice Exercises

Exercise 1. We are given the statistical model {Bernoulli(p) | $p \in [0,1]$ }, that is

$$g(x \mid p) = p^x (1-p)^{1-x}.$$

Both the moment and maximum likelihood estimator are given by \overline{X} .

- a. Show that the Bernoulli statistical model is an exponential family.
- b. Show that \overline{X} is the UMVU estimator for p_0 .

Exercise 2. In this exercise we study an iid random sample X_1, \ldots, X_n from a population in the statistical model $\{g(x \mid \theta) \mid \theta \in \Theta\}$.

- a. Prove that the set of order statistics $T=(X_{(1)},\ldots,X_{(n)})$ is sufficient for θ_0 .
- b. We are interested in finding an unbiased estimator for $\tau(\theta) = \mathbb{P}_{\theta}(X_1 \leq 2)$. Show that $W(\mathbf{X}) = \mathbb{1}_{\{X_1 \leq 2\}}$ is unbiased.
- c. Use Rao-Blackwellisation to find a better unbiased estimator for $\tau(\theta)$.
- d. Show that the obtained estimator converges to $\tau(\theta_0)$ as $n \to \infty$.