Assignment 1

I have read and I understand the plagiarism provisions in the General Regulations of the University Calendar for the current year, found at here. I have also completed the Online Tutorial on avoiding plagiarism 'Ready Steady Write', located here.

Exercise 1

Please carry out the following proof in propositional logic following the proof format in tutorial 1.

Hypotheses: $P \Rightarrow (Q \Leftrightarrow \neg R), \ P \vee \neg S, \ R \Rightarrow S, \ \neg Q \Rightarrow \neg R$

Conclusion: $\neg R$

Solution

These are the provided hypotheses:

•
$$P \Rightarrow (Q \Leftrightarrow \neg R)$$
 (a)

•
$$P \vee \neg S$$

•
$$R \Rightarrow S$$
 (c)

•
$$\neg Q \Rightarrow \neg R$$

First, let's used tautology #21 to construct some implications:

$$P \vee \neg S$$

$$\rightarrow \neg S \vee P$$

$$\rightarrow S \Rightarrow P$$

$$\rightarrow \neg P \Rightarrow \neg S$$

$$R \Rightarrow S$$

$$\rightarrow \neg S \Rightarrow \neg R$$

$$P \Rightarrow (Q \Leftrightarrow \neg R)$$

$$\Rightarrow \neg (Q \Leftrightarrow \neg R) \Rightarrow \neg P$$

$$\Rightarrow (Wsing \textcircled{b})$$

$$(\#32: Law of commutativity)$$

$$(\#24: Law of contraposition)$$

Now we use tautology #14 to prune the unnecessary variables:

$$\neg P \Leftrightarrow \neg R \qquad \text{(Using Biconditional Rule with } \textcircled{1} \text{ and } \textcircled{2})$$

$$\rightarrow \neg (Q \Leftrightarrow \neg R) \Rightarrow \neg R \qquad \text{(Substituting into } \textcircled{3})$$

$$\bullet \neg (Q \Leftrightarrow \neg R) \Rightarrow \neg R \qquad \qquad \textcircled{4}$$

Next, we are going to reorganise 4:

$$\neg(Q \Leftrightarrow \neg R) \Rightarrow \neg R \qquad \qquad \text{(Using 4)}$$

$$\rightarrow \neg((Q \land \neg R) \lor (\neg Q \land \neg \neg R)) \Rightarrow \neg R \qquad (\#23)$$

$$\rightarrow \neg(Q \land \neg R) \land \neg(\neg Q \land \neg \neg R) \Rightarrow \neg R \qquad (\#19: \text{ De Morgan's Law})$$

$$\rightarrow (\neg Q \lor \neg \neg R) \land (\neg \neg Q \lor \neg \neg \neg R) \Rightarrow \neg R \qquad (\#18: \text{ De Morgan's Law})$$

$$\rightarrow (\neg Q \lor R) \land (Q \lor \neg R) \Rightarrow \neg R \qquad (\#3: \text{ Law of Double Negation})$$

$$\rightarrow \neg Q \lor R \Rightarrow Q \lor \neg R \Rightarrow \neg R \qquad (\#27)$$

$$\bullet \neg Q \lor R \Rightarrow Q \lor \neg R \Rightarrow \neg R \qquad (\#27)$$

Finally, we assert $\neg R$ by using *Modus Ponens*:

$$\neg Q \Rightarrow \neg R \qquad (Using \textcircled{d})
 \rightarrow Q \vee \neg R \qquad (\#21)
 \rightarrow Q \vee \neg R \Rightarrow \neg R \qquad (\#10: Modus Ponens with \textcircled{5})
 \rightarrow \neg R \qquad (\#10: Modus Ponens with \textcircled{5})
 \neg R$$

Exercise 2

Prove the following statement: If n is any integer, then $n^2 - 3n$ must be even.

Solution

For $n^2 - 3n$ to be even, the expression must take the form 2k for any integer n. Here, we will prove this is true if n is either even or odd.

In the case that n is an even number, 2k can be substituted for n:

$$n^{2} - 3n$$

$$\rightarrow (2k)^{2} - 3(2k)$$

$$\rightarrow 4k^{2} - 6k$$

$$\rightarrow 2(2k^{2} - 3k)$$

We have proven $n^2 - 3n$ is even when n is even, as the expression $2(2k^2 - 3k)$ takes the form 2k.

In the case that n is an odd number, 2k + 1 can be substituted for n:

$$n^{2} - 3n$$

$$\rightarrow (2k+1)^{2} - 3(k+1)$$

$$\rightarrow 4k^{2} + 1 - 6k - 3$$

$$\rightarrow 4k^{2} - 6k - 2$$

$$\rightarrow 2(2k^{2} - 3k - 1)$$

We have proven n^2-3n is even when n is odd, as the expression $2(2k^2-3k-1)$ takes the form 2k.

 $\therefore n^2 - 3n$ is even for any integer n.

Exercise 3

Prove via inclusion in both directions that for any three sets A, B and C:

$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$

Solution

To prove via double inclusion, we must prove both $A \cap (B \setminus C)$ contains $(A \cap B) \setminus (A \cap C)$ and $(A \cap B) \setminus (A \cap C)$ contains $A \cap (B \setminus C)$, or, more formally, prove both of these:

$$(A \cap B) \setminus (A \cap C) \subseteq A \cap (B \setminus C)$$

$$A \cap (B \setminus C) \subseteq (A \cap B) \setminus (A \cap C)$$
(a)

To prove (a), take $\forall x \in (A \cap B) \setminus (A \cap C)$:

$$x \in (A \cap B) \setminus (A \cap C)$$

$$\to x \in A \cap B \cap (A^c \cup C^c) \qquad \text{(De Morgan's law)}$$

$$\to x \in ((A \cap B) \cap A^c) \cup ((A \cap B) \cap C^c) \qquad \text{(Law of distributivity)}$$

$$\to x \in (A \cap A^c \cap B) \cup (A \cap B \cap C^c) \qquad \text{(Law of associativity)}$$

As $A \cap A^c \cap B$ is always false, we can exclude the left-hand side:

To prove b, take $\forall x \in A \cap (B \setminus C)$:

```
x \in A \cap (B \setminus C)
\to x \in A \cap B \cap C^c \qquad \text{(Definition of set subtraction)}
\to x \in A \cap B \cap (A^c \cup C^c) \qquad (A \cup A^c \text{ is an empty set)}
\to x \in A \cap B \cap (A \cap C)^c \qquad \text{(De Morgan's law)}
\to x \in (A \cap B) \setminus (A \cap C) \qquad \text{(Applying definition of set subtraction)}
x \in (A \cap B) \setminus (A \cap C) \qquad \text{Here (b) is proven}
```

With both (a) and (b) proven, it holds that the equivalence is true.

Exercise 4

Let $\mathbb{N} \times \mathbb{N}$ be the Cartesian product of the set of natural numbers with itself consisting of all ordered pairs (x1, x2), such that $x1 \in \mathbb{N}$ and $x2 \in \mathbb{N}$. We define a relation on its power set $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ as follows:

$$\forall A, B \in \mathcal{P}(\mathbb{N} \times \mathbb{N}), A \sim B \text{ iff } (A \setminus B) \cup (B \setminus A) = C \text{ and } C \text{ is a finite set.}$$

Determine whether or not \sim is an equivalence relation and justify your answer by checking each of the three properties in the definition of an equivalence relation.

Solution

To determine if \sim is an equivalence relation, we must check the three properties of an equivalence relation: Reflexivity, symmetry and transitivity.

To check reflexivity, we must verify $\forall A \in \mathcal{P}(\mathbb{N} \times \mathbb{N}), \ A \sim A = C$, where C is a finite set:

$$(A \setminus A) \cup (A \setminus A) = C$$

$$\rightarrow \emptyset \cup \emptyset = C$$

$$\rightarrow \emptyset = C$$

An empty set contains 0 elements, thus C is finite. So the relation is reflexive.

To check *symmetry*, we now verify $\forall A, B \in \mathcal{P}(\mathbb{N} \times \mathbb{N}), \ A \sim B \Rightarrow (A \setminus B) \cup (B \setminus A) = C$, where C is a finite set:

$$(A \setminus B) \cup (B \setminus A) = C$$

$$\to (A \setminus B) \vee (B \setminus A) = C$$

$$\to (B \setminus A) \vee (A \setminus B) = C$$

$$\to (B \setminus A) \cup (A \setminus B) = C$$

$$(B \setminus A) \cup (A \setminus B) = C$$

$$(B \setminus A) \cup (A \setminus B) = C$$

$$(Applying definition of a union)$$

Here $B \Rightarrow A$ and C is still finite. Therefore the relation is *symmetric*.

To check transitivity, we finally verify $\forall A, B, C \in \mathcal{P}(\mathbb{N} \times \mathbb{N}), A \sim B$ and $B \sim C$ such that:

$$A \sim B \Rightarrow (A \setminus B) \cup (B \setminus A) = D$$
 where D is a finite set, $B \sim C \Rightarrow (B \setminus C) \cup (C \setminus B) = E$ where E is a finite set, To show $A \sim C$, which is $(A \setminus C) \cup (C \setminus A) = F$ where F is a finite set:

$$(A \setminus B) \cup (B \setminus A)$$

$$\to (A \cap B^c) \cup (B \cap A^c)$$

$$\to (A \Rightarrow B)^c \cup (B \Rightarrow A)^c$$

$$\to ((A \Rightarrow B) \cap (B \Rightarrow A))^c$$

$$\to (A \Leftrightarrow B)^c$$

$$\bullet (A \Leftrightarrow B)^c$$

$$\bullet (A \Leftrightarrow B)^c$$

$$\bullet (A \Leftrightarrow B)^c$$

$$(#20)$$

$$(#19: De Morgan's Law)$$

$$(#22)$$

$$(B \setminus C) \cup (C \setminus B)$$

$$\to (B \cap C^c) \cup (C \cap B^c)$$

$$\to (B \Rightarrow C)^c \cup (C \Rightarrow B)^c$$

$$\to ((B \Rightarrow C) \cap (C \Rightarrow B))^c$$

$$\to (B \Leftrightarrow C)^c$$

$$\bullet (B \Leftrightarrow C)^c$$

$$\bullet (B \Leftrightarrow C)^c$$

$$\bullet (B \Leftrightarrow C)^c$$

$$(Definition of set subtraction)$$

$$(#20)$$

$$(#19: De Morgan's Law)$$

$$(#22)$$

$$(A \Leftrightarrow B)^{c} \cup (B \Leftrightarrow C)^{c} \qquad (\#6: Addition with ① and ②)$$

$$\rightarrow ((A \Leftrightarrow B) \cap (B \Leftrightarrow C))^{c} \qquad (\#18: De Morgan's Law)$$

$$\rightarrow (A \Leftrightarrow C)^{c} \qquad (\#17)$$

$$\rightarrow ((A \Rightarrow C) \cap (C \Rightarrow A))^{c} \qquad (\#22)$$

$$\rightarrow (A \Rightarrow C)^{c} \cup (C \Rightarrow A)^{c} \qquad (\#19: De Morgan's Law)$$

$$\rightarrow (A \cap C^{c}) \cup (C \cap A^{c}) \qquad (\#20)$$

$$\rightarrow (A \setminus C) \cup (C \setminus A) \qquad (Definition of set subtraction)$$

Here we have proven F is a subset of finite sets D and E. Thus F is a finite set and transitivity of \sim is proven.

As the three properties of equivalence have been validated, we can conclude that relation \sim is an equivalence relation.