

Faktor-IPS

Schulung

Inhalt

- 1. Motivation
- 2. UML Refresh
- 3. Modellierung & Produktdefinition mit Faktor-IPS
- 4. Modellgetriebene Softwareentwicklung

Inhalt

- 1. Motivation
- 2. UML Refresh
- 3. Modellierung & Produktdefinition mit Faktor-IPS
- 4. Modellgetriebene Softwareentwicklung

Demo Faktor-IPS

Webanwendung zur Erstellung eines Hausratangebots

Inhalt

- 1. Motivation
- 2. UML Refresh
- 3. Modellierung & Produktdefinition
- 4. Modellgetriebene Softwareentwicklung

UML Refresh

- Basics
 - Klassen
 - Attribute
 - Beziehungen
 - Instanzen
- Fortgeschrittene Modellierungskonzepte
 - Stereotypes
 - derived Attributes
 - derived Associations
 - Aggregation und Composition, AggregateRoot
 - Qualified Associations

Inhalt

- 1. Motivation
- 2. UML Refresh
- 3. Modellierung & Produktdefinition
- 4. Modellgetriebene Softwareentwicklung

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Schulungsbeispiel: Hausratmodell

Demo: Projekt einrichten, erste Klasse anlegen

- Java-Projekt "Hausratmodell" anlegen
- Faktor-IPS Nature hinzufügen
- IPS-Package "hausrat" anlegen
- Klasse "HausratVertrag" anlegen
- Generierten Sourcecode erläutern
- Faktor-IPS Modellexplorer erläutern

Übungen zu Kapitel 1:

analog zur Demo

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
 - 1. Attribute
 - 2. Beziehungen
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Demo: Modellierung von Attributen

Übung zu Kapitel 2-1

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
 - 1. Attribute
 - 2. Beziehungen
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Demo: Modellierung von Beziehungen

Übungen zu Kapitel 2-2

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
 - 1. Grundlagen & inkl. Produktattribute
 - 2. Produktänderungen im Zeitablauf
 - 3. Konfigurierbare Vertragsattribute
 - 4. Beziehungen
 - 5. Zugriff auf Produktdaten zur Laufzeit
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Vor der Modellierung ...

• Projekt "Hausratprodukte" für die Produktdaten anlegen

Motivation

- Es gibt zwei Hausratprodukte:
 - HR-Kompakt: Günstiger Basisschutz
 - HR-Optimal: Optimaler Schutz
- Jeder HausratVertrag wird entweder auf Basis von HR-Kompakt oder HR-Optimal abgeschlossen.

Abbildung der Hausratprodukte im Modell

Demo: Anlegen der Hausratprodukte

- Produktklasse "HausratProdukt" anlegen
- Attribut "produktname" definieren.
- Produkte HR-Kompakt & HR-Optimal anlegen

Übungen zu Kapitel 3-1

analog zur Demo

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
 - 1. Grundlagen inkl. Produktattribute
 - 2. Produktänderungen im Zeitablauf
 - 3. Konfigurierbare Vertragsattribute
 - 4. Beziehungen
 - 5. Zugriff auf Produktdaten zur Laufzeit
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Aspekte der Produktänderungen im Zeitablauf

- Änderungen, die nur für das Neugeschäft relevant sind.
 - Einführung neuer Risikomerkmale
- Änderungen, die für bestehende Verträge relevant sind.
 - z. B. Zinspassungen, Festlegung der Überschüsse, Beitragsanpassung
- Nachvollziehbarkeit von Änderungen Wer hat wann, was geändert?

Generationen

- Generationen werden aufgelegt, um für das <u>Neugeschäft</u> geänderte Bedingungen anbieten zu können. Verträge können während des Verkaufszeitraums einer Generation zu den in der Generation definierten Bedingung abgeschlossen werden.
- Bestehende Verträge bleiben von der Einführung einer neuen Generation unberührt, es sei denn, es findet ein expliziter Produkt(generations)wechsel statt. Die Generation bleibt solange "aktiv" wie noch "lebende" Verträge zu ihr existieren.
- I.d.R. gibt es zu einem Zeitpunkt eine für das Neugeschäft gültige Generation. Das ist die, in deren Verkaufszeitraum der Zeitpunkt fällt.

Parallele Generationen

Für einen Übergangszeitraum sind auch parallele Generationen möglich.

Anpassungsstufen

- Änderungen, die für alle auf Basis einer Generation abgeschlossenen Verträge gelten sollen, werden in Anpassungsstufen durchgeführt.
- Innerhalb des Gültigkeitszeitraums einer Anpassungsstufe gibt es keine Änderungen am Verkaufsprodukt.
- Zu einem Zeitpunkt ist genau eine Anpassungsstufe einer Generation gültig.

Generationen & Anpassungsstufen

Die Anpassungsstufen unterschiedlicher Generationen sind völlig unabhängig voneinander.

Nachvollziehbarkeit von Änderungen

- Änderungen an Produkten müssen nachvollziehbar sein.
- Dies ist durch die Verwendung der Teamfunktionalität von Eclipse und CVS als KM-Werkzeug gewährleistet.
- Der Punkt braucht deswegen nicht weiter betrachtet zu werden.

Berücksichtigung in Faktor-IPS

- Modell (inkl. Struktur der Tariftabellen)
 - Es existiert immer ein Modell, mit dem alle Produktgenerationen und Verträge verwaltet werden können. Zur Modellweiterentwicklung werden entsprechende Designtechniken angewendet.
- Produktbausteine
 - Produktgenerationen werden als unterschiedliche Verkaufsprodukte (also Produktbausteine für die Klasse Police) abgebildet. Verkaufsbeginn und Nachfolgebeziehung werden im Modell definiert.
 - Die Anpassungsstufen eines Produktbausteins werden mit Faktor-IPS verwaltet.
- Tariftabellen
 - Zeitliche Änderungen werden (wie bisher) über entsprechen Spalten abgebildet.
 - Alternativ wäre eine Verwaltung der Generationen mit Faktor-IPS möglich.

Mechanismen zur Modellweiterentwicklung bei Produktänderungen

Attributierung

- Beispiel: Es soll ein neues Attribut "Jährliche Laufleistung" am versicherten Fahrzeug eingeführt werden.
- Zusätzlich zu dem eigentlichen Attribut wird noch ein weiteres produktrelevanten Attributes "Laufleistung relevant" eingeführt. In bestehenden Produktbaustein-Generationen wird dieses auf <false> gesetzt, in neuen auf <true>.

Vererbung

 Einführung einer neuen Klasse die von einer bestehenden ableitet, also zum Beispiel VersichertesFahrzeug2006 leitet von VersichertesFahrzeug ab.

Unabhängige Modellklassen

 Z. B. Einführung einer neuen Klasse VersichertesFahrzeug2006, die allerdings nicht von einer bestehenden ableitet.

Modell unter Berücksichtigung zeitl. Änderungen

Abbildung zeitlicher Änderungen im Sourcecode

• Analyse generierter Sourcecode

Beispiel: Berechnung VorschlagVersSumme

- Bisher:
 - vorschlagVersSumme = wohnflaeche * 650 Euro.
- Soll:
 - HR-Kompakt: vorschlagVersSumme = wohnflaeche * 600
 - HR-Optimal: vorschlagVersSumme = wohnflaeche * 900

Beispiel: Berechnung VorschlagVersSumme

Demo: Produktänderungen im Zeitablauf

- Hinzufügen des Attributes wirksamAb im Vertrag. Implementierung der Methode getEffectiveFromAsCalendar().
- Definition des Attributes "vorschlagVersSummeProQm" und Implementierung der Berechnung des Vorschlags für die Versicherungssumme.

Übung: Produktänderungen im Zeitablauf

Analog zur Demo

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
 - 1. Grundlagen inkl. Produktattribute
 - 2. Produktänderungen im Zeitablauf
 - 3. Konfigurierbare Vertragsattribute
 - 4. Beziehungen
 - 5. Zugriff auf Produktdaten zur Laufzeit
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Konfigurationsmöglichkeiten des Hausratvertrags

Änderbare Eigenschaft des Hausratvertrags	Konfigurationsmöglichkeiten
zahlweise	Die im Vertrag erlaubten Zahlweisen. Der Defaultwert für die Zahlweise bei Erzeugung eines neuen Vertrags.
wohnflaeche	Bereich (min, max), in dem die Wohnfläche liegen muss. Der Defaultwert für die Wohnfläche bei Erzeugung eines neuen Vertrags.
versSumme	Bereich, in dem die Versicherungssumme liegen muss. Der Defaultwert für die Versicherungssumme bei Erzeugung eines neuen Vertrags.

Beispielprodukte: HR-Kompakt & HR-Optimal

Konfigurationsmöglichkeit	HR-Kompakt	HR-Optimal
Defaultwert Zahlweise	jährlich	jährlich
Erlaubte Zahlweisen	halbjährlich, jährlich	monatlich, vierteljährlich, halbjährlich, jährlich
Defaultwert Wohnfläche	<null></null>	<null></null>
Erlaubter Bereich Wohnfläche	0-1000 qm	0-2000 qm
Defaultwert VersSumme	<null></null>	<null></null>
Erlaubter Bereich VersSumme	10Tsd – 2Mio Euro	10Tsd – 5Mio Euro

Abbildung im Modell (ohne zeitliche Änderungen)

Abbildung im Modell

Demo: Modellerweiterung in Faktor-IPS

- Markieren des Attributes "zahlweise" als konfigurierbar.
- Hinzufügen der Defaultzahlweise und der möglichen Zahlweisen für die beiden Produkte
- Analyse des Sourcecodes
- Markieren des Attributes "wohnflaeche" als konfigurierbar.
- Definition des erlaubten Bereichs für die Wohnfläche in den beiden Produkten
- Analyse des Sourcecodes

Übungen zu Kapitel 3-3

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
 - 1. Grundlagen inkl. Produktattribute
 - 2. Produktänderungen im Zeitablauf
 - 3. Konfigurierbare Vertragsattribute
 - 4. Beziehungen
 - 5. Zugriff auf Produktdaten zur Laufzeit
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Beziehungen auf Produktseite

Übung: Beziehungen auf Produktseite

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
 - 1. Grundlagen inkl. Produktattribute
 - 2. Produktänderungen im Zeitablauf
 - 3. Konfigurierbare Vertragsattribute
 - 4. Beziehungen
 - 5. Zugriff auf Produktdaten zur Laufzeit
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Demo: Zugriff auf Informationen zur Laufzeit

- XML-Files im "derived" Verzeichnis
- Definition des toc-files im "ipsproject" ansehen
- Code im Testfall erläutern
- Testfall ausführen

Übung: Zugriff auf Informationen zur Laufzeit

analog zur Demo

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
 - 1. Grundlagen
 - 2. Beziehungen zwischen Produktbausteinen und Tabellen
 - 3. Aufzählungen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Beispiel Tarifzonentabelle

Plz-Von	Plz-bis	Tarifzone
17235	17237	II
45525	45549	111
59174	59199	IV
47051	47279	V
63065	63075	VI

Demo: Einführung Tarifzonentabelle

Übung: Einführung Tarifzonentabelle

Analog zur Demo

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
 - 1. Grundlagen
 - 2. Beziehungen zwischen Produktbausteinen und Tabellen
 - 3. Aufzählungen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Beispiel:Tariftabelle für die Grundeckungen der Hausratprodukte

Produkt	Tarifzone	Beitragssatz
HR-Optimal	I	8.0
HR-Optimal	П	1.0
HR-Optimal	III	1.44
HR-Optimal	IV	1.70
HR-Optimal	V	2.00
HR-Optimal	VI	2.20
HR-Kompakt	I	0.6
HR-Kompakt	11	8.0
HR-Kompakt	Ш	1.21
HR-Kompakt	IV	1.50
HR-Kompakt	V	1.80
HR-Kompakt	VI	2.00

Beispiel: Trennung der Tabelle nach Produkt

Tabelle für Grunddeckung von HR-Optimal

Tarifzone	Beitragssatz
I	8.0
II	1.0
III	1.44
IV	1.70
V	2.00
VI	2.20

Tabelle für Grunddeckung HR-Kompakt

Tarifzone	Beitragssatz
I	0.6
П	0.8
111	1.21
IV	1.50
V	1.80
VI	2.00

Abbildung im Modell

Abbildung im Modell inklusive Instanzen

Beitragsberechnung für die Grunddeckungen

- Berechnungsvorschrift
 - Ermittlung des Beitragsatzes pro 1000 Euro Versicherungssumme aus der Tariftabelle
 - Division der Versicherungssumme durch 1000 Euro und Multiplikation mit dem Beitragssatz
- Implementierung in der Übung

Demo: Tariftabellen für die Hausratprodukte

- Anlegen des derived (cached) Attributes jahresbasisbeitrag in der Modellklasse Hausratgrunddeckung
- Definition der Methode berechneJahresbasisbeitrag() in der Modellklasse Hausratgrunddeckung
- Implementierung der Methode berechneJahresbasisbeitrag() in der Java Klasse Hausratgrunddeckung
- Testfall f
 ür die Methode implementieren

Übung: Tariftabellen für die Hausratprodukte

Analog Demo

Inhalt: Modellierung & Produktdefinition

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
 - 1. Grundlagen
 - 2. Beziehungen zwischen Produktbausteinen und Tabellen
 - 3. Aufzählungen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Beispiel:Aufzählung für Zahlweise

id	name	anzahlZahlungenProJahr
J	Jährlich	1
Н	Halbjährlich	2
Q	Quartalsweise	4
M	Monatlich	12
Е	Einmalzahlung	<null></null>

Demo: Aufzählungen

- Anlegen des Aufzählungstypen mit Inhalt
- Exportieren der Daten
- Separate Definition der Aufzählungswerte
- Definition des bei Aufruf berechneten Attributs Beitrag am Hausratvertrag
- Implementierung der Methode getBeitrag() in der Java Klasse Hausratvertrag
- Testfall für die Methode implementieren mit Zugriff auf Aufzählungswerte über das RuntimeRepository

Übung: Aufzählungen

Analog Demo

Inhalt

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabelle
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Fachliche Anforderungen

- Erweiterung des Modells, so dass Zusatzdeckungen durch die Fachabteilung hinzugefügt werden können, ohne dass das Modell geändert werden muss.
- Jede Zusatzdeckung verfügt über eine eigene Versicherungssumme und einen eigenen Jahresbasisbeitrag. Die Versicherungssumme ergibt sich aus der im Vertrag vereinbarten Summe.
- Beispiele:

	Fahrraddiebstahl	Überspannung
Versicherungssumme der Zusatzdeckung	1% der im Vertrag vereinbarten Summe, maximal 5000 Euro.	5% der im Vertrag vereinbarten Summe. Keine Deckelung.
Jahresbasisbeitrag	10% der Versicherungssumme der Fahrraddiebstahldeckung	10Euro + 3% der Versicherungssumme der Überspannungsdeckung

Modell der Zusatzdeckungen

Modell der Zusatzdeckungen mit Instanzen

Modell der Zusatzdeckungen mit Qualifier

Demo: Anlegen der Zusatzdeckungen

	HRD-Fahrraddiebstahl 2008-04	HRD-Überspannung 2008-04
Bezeichnung	Fahrraddiebstahl	Überspannungsschutz
VersSummenFaktor	0.01	0.05
MaximaleVersSumme	3000EUR	<null></null>

Demo: Beitragsberechnung für die Zusatzdeckungen

- Basisbeiträge
 - Fahrraddiebstahl 10% der Versicherungssumme
 - Überspannung 10EUR + 3% der Versicherungssumme

Übungen

Inhalt

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabelle
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Plausibilisierungen

- Aspekte einer Plausibilisierung
 - Auskunft
 - Prüfung
- Arten von Plausibilisierung
 - Wertebereich von Attributen
 - Struktur (Menge der erlaubten Links einer Beziehung)

Framework für Plausibilisierung in Faktor-IPS

- executeRule...() Methoden
- validate(), validateSelf(), validateDependents Methoden
- MessageList, Message
 - ObjectProperty
 - Message Code
 - MsgReplacementParameters
- getAllowedValuesFor...() Methoden
- getRangeFor...() Methoden
- getCardinalityFor...() Methoden

Übung

Plausibilisierungen – weiterführende Themen

- Abbildung komplexer Wertebereichsregeln
 - Verwendung von Tabellen
- Abbildung komplexer Strukturregeln
 - Verwendung von Beziehungen
 - Verwendung von Tabellen

Inhalt

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
 - 1. Grundlagen
 - 2. Beziehungen zwischen Produktbausteinen und Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung

Aktuelles Modell

Modell mit spartenübergreifenden Basisklassen

Demo: Einführung der Basisklassen

Erwartete Semantik des Modells

Abbildung der Semantik durch derived unions

Demo: derived union

Inhalt

- 1. Projekt einrichten, erste Klasse anlegen
- 2. Modellierung der Vertragsseite
- 3. Modellierung der Produktseite
- 4. Verwendung von Tabellen
- 5. Flexible Modelle / Verwendung von Formeln
- 6. Plausibilisierung
- 7. Vererbung / Derived union Beziehungen
- 8. Testunterstützung
 - 1. Grundlagen
 - 2. Unit Testing ohne produktive Produktdaten
 - 3. Fachliche Tests mit dem Faktor-IPS Testwerkzeug

Testen

- Unit Testing ohne produktive Produktdaten
 - Verwendung von JUnit f
 ür Modultests / einzelne Funktionen
 - Testfälle können unabhängig von produktiven Produktdaten sein
 - Isoliertes Testen möglich, Testfälle verwenden nicht die gleichen Testdaten
 - Testen von Spezialfällen möglich (die möglicherweise durch produktive Produktdaten nicht abgebildet werden)
- Fachliche Tests mit dem Faktor-IPS Testwerkzeug
 - Integrationstest von Produktdaten & Modell/Sourcecode
 - Fachliche Tests können vom Fachbereich erstellt werden
- Testfälle und die benötigten Testdaten bilden ein Einheit, werden zusammen mit dem Sourcecode im KM-Tool verwaltet.

Demo: Unit Testing ohne produktive Produktdaten

- Aufbauen des Inhalts des InMemoryRepositories
- Ableitung der Klasse HausratGrunddeckungstypAnpStufe
 - Zugriff auf das protected Attribut tariftabelleName
- Ableitung der Tabellen
 - Initialisierung des rows Attribut
 - Aufruf der initKeyMaps() Method
- Testmethode für die Berechnung des Grunddeckungsbeitrags auf den Inhalt des InMemoryRepositories erstellen

Übung: Unit Testing ohne produktive Produktdaten

Demo: Fachliche Tests mit dem Faktor-IPS Testwerkzeug

- Im Modellprojekt ein Testfalltyp BerechnungsTest erstellen
 - Eingabe und Erwartete Attribute anlegen
- Testfalltyp Klasse implementieren
 - Methode: executeBusinessFunction()
 - Methode: executeAsserts()
 - Zugriff auf zusätzlich angelegte Attribute für direkt berechnete Werte
- Im Produktdatenprojekt Testfall erstellen

Übung: Fachliche Tests mit dem Faktor-IPS Testwerkzeug

Weitere Informationen

- www.faktorzehn.org
- Völter, Stahl: Modellgetriebene Softwareentwicklung
- Evans: Domain Driven Design
- Martin Fowler: Patterns of Enterprise Application Architecture
 - ValueObjects, SpecialCase, Money
- Joshua Bloch: Effective Java
 - Kapitel 8: Exceptions