IML세미나

2021-12-28 문구영

> 고려대학교 KOREA UNIVERSIT

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin^{1,2}, Piotr Dollár¹, Ross Girshick¹, Kaiming He¹, Bharath Hariharan¹, and Serge Belongie²

> ¹Facebook AI Research (FAIR) ²Cornell University and Cornell Tech

- 컴퓨팅 자원을 적게 차지하면서 다양한 크기
 의 객체를 인식할 수 있도록
- 단일 입력에 대한 **multi scale feature map** 출력 (bottom-up)
- 상위 layer에서 부터 feature map을 결합 (Top-down with lateral connection)

MOTIVATION 1 - CNN의 특징

1. Convolutional layers

하위 층의 feature map 출력

상위 층의 feature map 출력

- 고양이 귀, 눈 등 추상화된 특징, 이미지 클래스에 특화된 정보
- Low resolution & high level features (high semantic)

→ 최상위층의 feature map만 사용함으로써 해상도를 포기하게 됨 (작은 객체 인식의 어려움)

MOTIVATION 2 – 이미지 피라미드의 유용성

2. Image Pyramid

• 하나의 동일한 이미지에 대해 다양한 해상도, 스케일의 이미지 세트를 구성

MOTIVATION 2 – 이미지 피라미드 예시

Featurized Image Pyramid

- 다양한 해상도, 스케일의 이미지들을 CNN의 입력으로 받아 feature map 획득
- → **다양한 크기의** feature map을 통해 크고 작은 객체들의 검출이 가능

연산량, 시간 소모 큼 (현실적으로 적용하기 어려움)

입력 이미지의 resize된 복사본들

PROPOSAL

- 1. Feature pyramid를 사용하여 작은 객체에 대한 정보를 소실하지 않음으로써 (고해상도의 feature map 활용), 객체 인식의 성능과 정확도를 높이고
- 2. 작업 수행에 필요한 추가적인 시간 비용은 최소한으로 하는 아키텍쳐 제안

비용 문제를 최소화 하면서 다양한 크기의, 피라미드 계층 구조를 갖는 딥러닝 convolutional 네트워크 제안

→ 다양한 컴퓨터 비전 영역에서 사용되는 feature extractor로써 유의미한 성능 향상을 유도 ex) multi scale object detection, Fast R CNN

NOVELTY – 기존의 피라미드 구조와 비교

SSD style Pyramid – Pyramidal feature hierarchy

(c) Pyramidal feature hierarchy

- 순전파로 계산된 여러 계층의 multi scale feature map을 재사용 (비용 문제 해결)
- 중간 과정에서 생성되는 feature map 각각에 독립적으로 객체 인식 수행

- ▶ VGG net의 conv4_3 (10층) 이후의 feature map만 사용
 - → 고해상도의 feature map이 갖는 정보를 사용하지 못함
- 각 계층의 feature map들 간의 semantic gap이 큼

NOVELTY - FPN

Feature Pyramid Network

- CNN feature map들의 pyramidal hierarchy를 유지
 - → 저해상도, 고수준 feature map과 고해상도, 저수준 feature map 결합 (고해상도 feature map 미사용 문제 해결)
 - → 피라미드를 구성하는 모든 feature map들은 스케일, 단계에 상관없이 semantically strong (semantic gap 해결)
- Feature fusion을 통해 forward 과정에서 손실된 지역 정보들을 보충
 - → 스케일 변화에 강인

Speed, memory, power 측면에서 효율적

FPN - ARCHITECTURE

1. Bottom-up pathway

- Backbone CNN의 순전파 연산 결과 저장 (ResNet 활용)
- 다양한 scale의 feature map들로 구성된 feature hierarchy 구축
- 동일한 크기의 출력을 갖는 CNN 연산들을 하나의 stage로 묶고, 각 stage 마지막 layer의 출력 추출

ResNet

- 개별 conv layer의 feature map을 재사용
- Feature map 결합 (skip-connection)

Bottom-Up

Pathway

layer name	output size	18-layer
conv1	112×112	
conv2_x	56×56	\[\begin{align*} 3 \times 3, 64 \ 3 \times 3, 64 \end{align*} \times 2 \]
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$
	1×1	
FLO	OPs	1.8×10 ⁹

FPN - ARCHITECTURE

2. Top-down pathway

각 계층마다 다른 크기를 갖는 feature map들을 결합하기 위한 처리 과정

- ① 상위 feature map을 nearest neighbor upsampling 기법으로 해상도를 2배씩 증가
- ② 1x1 conv 연산으로 채널수를 감소 시킴
 - → 차원 축소 (중요한 특징에 대한 weight 값을 어느 정도 보존하면서)

* 1x1 conv

- 1x1x원하는 채널 수
- 차원 축소: 입력 받는 것에 비해 적은 수의 채널 -> 차원 축소된 정보로 연산량을 감소 (보다 깊은 네트워크 설계 가능)
- Bottleneck (> < 모양) : 1x1 conv로 채널을 감소시킨 후, 3x3 conv 연산을 수행하고, 다시 1x1 conv로 차원을 깊게 만듬

50-layer	101-layer
7×7, 64, stride	e 2
3×3 max pool, st	ride 2
1×1, 64 3×3, 64 1×1, 256	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$
1×1, 256 3×3, 256 1×1, 1024	6 \[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23
1×1, 512 3×3, 512 1×1, 2048	3

FPN - ARCHITECTURE

3. Lateral connections (Feature fusion)

- Bottom-up pathway와 top-down pathway에서 같은 크기의 feature map을 결합 (Element wise addition, Top down enrichment)
- 상위 layer의 feature map의 크기를 증가시키고 (up-sampling), 채널은 감소시켜서 (1x1 conv) 결합

 결합된 feature map에 3x3 conv를 적용시켜 최종 feature map 출력 (모두 동일한 256 채널)

APPLICATIONS IN RPN

Fast R CNN w/o FPN

Classification Result

단일 feature map에 RPN을 통해 얻은 ROI를 mapping

- ① 마지막 conv layer의 feature map에 3x3x256 conv 연산을 적용시켜 intermediate layer 생성
- ② Intermediate layer에 두 갈래의 1x1 conv를 적용시켜 이진 분류, bounding box regression 수행

APPLICATIONS IN RPN

Fast R CNN with FPN

• Region Proposal Network 부분에 FPN을 적용

다양한 크기의 feature map 존재 ROI 크기에 따라 mapping할 feature map을 결정하는 수식 제안

$$k = \lfloor k_0 + \log_2(\sqrt{wh}/224) \rfloor.$$

- 각 단계 별 feature map에 3x3 conv, 두 갈래의 1x1 conv 적용
 - 다양한 크기의 feature map이 존재하기 때문에 anchor 사용 x (P2...P5가 각각 특정한 크기의 anchor box를 의미)

APPLICATIONS IN RPN

• 다양한 스케일의 객체를 검출하기 위해 비율, 스케일이 서로 다른 9개의 anchor box 이용

Output features of FPN

- 상위 feature map P5은 크기가 큰 객체에 대한 정보 보유 (큰 anchor box 역할)
- 하위 feature map P2는 작은 객체에 대한 정보 보유 (작은 anchor box 역할)
 - → FPN에서는 multi scale feature map이 anchor 역할 대체

APPLICATIONS – FAST R CNN

EXPERIMENTAL RESULTS

RPN	feature	# anchors	lateral?	top-down?	AR ¹⁰⁰	AR^{1k}	AR^{1k}_s	AR^{1k}_m	AR^{1k}_l
(a) baseline on conv4	C_4	47k			36.1	48.3	32.0	58.7	62.2
(b) baseline on conv5	C_5	12k			36.3	44.9	25.3	55.5	64.2
(c) FPN	$\{P_k\}$	200k	✓	✓	√ 44.0		44.9	63.4	66.2
Ablation experiments follow:									
(d) bottom-up pyramid	$\{P_k\}$	200k	✓		37.4	49.5	30.5	59.9	68.0
(-) (1	(D)	2001-		/	34.5	46.1	26.5	57.4	64.7
(e) top-down pyramid, w/o lateral	$\{P_k\}$	200k		∨	34.3	40.1	20.5	37.4	04.7

Fast R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP_s	AP_m	AP_l
(a) baseline on conv4	RPN, $\{P_k\}$	C_4	conv5			54.7	31.9	15.7	36.5	45.5
(b) baseline on conv5	RPN, $\{P_k\}$	C_5	2fc			52.9	28.8	11.9	32.4	43.4
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	✓	✓	56.9	33.9	17.8	37.7	45.8
Ablation experiments follow:										
(d) bottom-up pyramid	RPN, $\{P_k\}$	$\{P_k\}$	2fc	✓		44.9	24.9	10.9	24.4	38.5
(e) top-down pyramid, w/o lateral	RPN, $\{P_k\}$	$\{P_k\}$	2fc		✓	54.0	31.3	13.3	35.2	45.3
(f) only finest level	RPN, $\{P_k\}$	P_2	2fc	✓	✓	56.3	33.4	17.3	37.3	45.6

Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP_s	AP_m	AP_l
(*) baseline from He <i>et al</i> . $[16]^{\dagger}$	RPN, C_4	C_4	conv5			47.3	26.3	-	-	-
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.1
(b) baseline on conv5	RPN, C_5	C_5	2fc			51.7	28.0	9.6	31.9	43.1
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	✓	✓	56.9	33.9	17.8	37.7	45.8

SUMMARY

Overview

- 접근 방식 : 순전파의 중간 단계 feature map 결과들을 활용하여 pyramidal hierarchy 구축
- 목표: 다양한 크기의 객체를 보다 정확히 인식할 수 있도록 (시간 비용을 최소화 하면서)

Key insight

- 1. Top down enrichment : 상위 layer의 feature map을 결합하는 방식을 통한 feature fusion & enrichment
- 2. RPN: 객체 검출 모델의 RPN 단계에서 유용하게 활용
- 3. Anchor box 대체 : 재사용되는 다양한 크기의 feature map들이 anchor box 대체

Contributions

- 1. 직관적이면서도 범용적으로 적용 가능한 기법
- 2. 이후 많은 모델들에게 채택 받아 사용 ex) YOLO v3, U-Net, PVT

SUMMARY

YOLO v3

Pyramidal Vision Transformer

U-Net

