RECEIVED CENTRAL FAX CENTER

SEP 2 7 2007

IN THE CLAIMS:

1. (currently amended) A method for securing network-connected resources, the method comprising:

at a first network-connected node, receiving an unencrypted electronically formatted job;

receiving CK, a symmetrical encryption key (K) encrypted using an asymmetrical encryption public key (pubK);

receiving CH, a hash (H) of the job, further encrypted using K;

receiving a selection command for a particular one of a plurality of encrypted resources;

decrypting CK using an asymmetrical encryption private key (privK), corresponding to pubK, to recover K;

hashing the job, generating H';

using K to validate CH;

in response to validating CH, decrypting an encrypted resource using K; [[and,]]

using the decrypted resource to process the job;

wherein receiving a selection command for a particular one of a plurality of encrypted resources includes receiving CKi, where $1 \le i \le m$; and,

wherein decrypting the selected resource in response to the encrypted resource selection command includes decrypting CK: to recover one of symmetrical encryption keys K_I through Km, where K_I through Km correspond to encrypted resources CR_I through CR_m.

- 2. (currently amended) The method of claim 1 wherein using K_i to validate CH_i as follows includes: encrypting H' using K_i , obtaining CH_i' ; and, matching CH_i to CH_i' .
- 3. (currently amended) The method of claim 1 wherein using K_i to validate CH_i as follows includes: decrypting CH_i using K_i, generating H; and, comparing H to H'.
- 4. (currently amended) The method of claim 1 further comprising:

prior to receiving the job, CKi, and CHi, receiving the encrypted resource; and,

storing the encrypted resource.

- 5. (currently amended) The method of claim 4 further comprising:
 - installing pubK [[,]] and privK upon initialization.
- 6. (previously presented) The method of claim 1 wherein receiving the unencrypted electronically formatted job includes receiving a print job in a format selected from the group including text and image formats.
- 7. (original) The method of claim 4 wherein storing the encrypted resource includes storing an encrypted font resource; and,

wherein using the decrypted resource to process the job includes printing a print job using the decrypted fonts.

- 8. (original) The method of claim 7 wherein storing the encrypted font resource includes storing resources selected from the group including a logo, personal signature image, and glyph.
- 9. (original) The method of claim 4 wherein receiving the encrypted resource includes receiving the encrypted resource in a format selected from the group including hypertext transport protocol (http) and file transport protocol (FTP).
- 10. (original) The method of claim 1 further comprising:

at a second network-connected node, generating the job; encrypting K_i with pubK, generating CK_i ; hashing the job, generating H; encrypting H using K_i , generating CH_i ; and, sending the job, CK_i , and CH_i to the first node for job processing.

11-12, canceled

13. (currently amended) The method of claim 1 wherein receiving the unencrypted electronically formatted job includes receiving the job at network-connected node $N[[i]]\underline{k}$, where $1 \le [[i]]\underline{k} \le n$;

wherein receiving CK_i includes N_i receiving CK_{ik}, where CK_{ik} is generated by encrypting K_i using corresponding asymmetrical encryption public key pubK[[i]]_k; and,

wherein decrypting CK includes N_i decrypting $CK_{i\underline{k}}$ using corresponding asymmetrical encryption private key $privK[[i]]\underline{k}$, to recover $K_{\underline{i}}$.

14. (currently amended) The method of claim 1 wherein receiving the unencrypted electronically formatted job includes receiving the job at network-connected node $N[[i]]_k$, where $1 \le [[i]]_k \le n$;

wherein receiving CK includes N_i receiving CK_{ik}, corresponding to symmetrical encryption key K_{ik} , encrypted using pubK[[i]]_k;

wherein receiving CH includes N_i receiving CH_{ik}, a bash of the job encrypted using corresponding symmetrical encryption key K_{ik} ; and,

wherein decrypting CK includes N_i decrypting $CK_{i\underline{k}}$ using asymmetrical encryption private key $privK[[i]]_{\underline{k}}$, to recover corresponding symmetrical encryption key $K_{i\underline{k}}$.

15. (currently amended) The method of claim 14 wherein using K to validate CH includes:

N[[i]]& encrypting H' using symmetrical encryption key Ki&, obtaining CHi&;

N[[i]] matching CHik to corresponding CHik; and,

wherein decrypting an encrypted resource using K includes N[[i]] decrypting the encrypted resource using symmetrical encryption key $K_{i\underline{k}}$.

16. (currently amended) The method of claim 14 wherein using K to validate CH includes:

N[[i]] decrypting CHik using symmetrical encryption key Kik, obtaining H;

Ni comparing H to H'; and,

wherein decrypting an encrypted resource using K includes N_i decrypting the encrypted resource using symmetrical encryption key K_{ik} .

17. (currently amended) A method for accessing network-connected processing resources, the method comprising:

at a second node, generating an unencrypted electronically formatted job;

encrypting a symmetrical encryption key K with an asymmetrical encryption key (pubK), generating CK;

hashing the job generating H;

encrypting H using K, generating CH;

sending the job, CK, [[and]] CH and a selection command for a particular one of a plurality of encrypted resources to a first network-connected node; and,

processing the job at the first node using a K encrypted resource;

wherein encrypting the symmetrical encryption key K with an asymmetrical encryption key (pubK), generating CK, includes encrypting Ki, where Ki through Km correspond to encrypted resources CRi through CRm, with pubK to generate CKi; and,

wherein sending the selection command for a particular one of a plurality of encrypted resources includes sending CK.

- 18. (currently amended) A system for using secure network-connected resources, the system comprising:
 - a first device including:
- a network-connected port for receiving an unencrypted electronically formatted job, for receiving CK, a symmetrical encryption key (K) encrypted using an asymmetrical encryption public key (pubK), and for receiving CH, a hash (H) of the job, further encrypted using K;
- a hash unit having an interface to accept the job and to supply a hash of the job (H');
- a memory having an interface to supply an asymmetrical encryption private key (privK_i), corresponding to pubK_i, and an encrypted resource;
- a security unit having an interface to authorize access to the encrypted resource in memory, in response to validating CH_{ij} [[and,]]
- a processing unit having an interface to accept the job and a decrypted resource, and to supply a job processed using the decrypted resource:

wherein the first device network-connected port receives a encrypted resource selection command; and

wherein the decryption unit decrypts CK_i , where $1 \le i \le m$, to recover one of symmetrical encryption keys K_i through K_m , where K_i through K_m correspond to encrypted resources CR_i through CR_m .

19. (currently amended) The system of claim 18 further comprising:

a decrypting unit having an interface to accept CK and privK, to generate K in response to decrypting CK using privK, to decrypt the encrypted resource from memory using K, and supply the decrypted resource;

an encryption unit having an interface to accept H' and K_i , and supply CH_i in response to using K_i to encrypt H'; and,

wherein the security unit accepts CH_i and CH_i' and validates CH_i by matching CH_i to CH_i' .

20. (currently amended) The system of claim 18 further comprising:

a decrypting unit having an interface to accept CH, CK, and privK, to generate K in response to decrypting CK using privK, to supply H in response to decrypting CH using K, and supply the decrypted resource; and,

wherein the security unit accepts H and H' and validates CH_i by matching H to H'.

21. (original) The system of claim 18 wherein the network-connected port receives the encrypted resource for storage in the memory.

- 22. (original) The system of claim 18 wherein the memory is a read only memory (ROM) for accepting and storing privK upon device initialization.
- 23. (original) The system of claim 18 wherein the first device is a printer; and,

wherein the network-connected port receives a print job in a format selected from the group including text and image formats.

24. (original) The system of claim 23 wherein the memory stores encrypted font resources; and,

wherein the processing unit is a print engine that supplies a job printed using the decrypted fonts.

- 25. (original) The system of claim 24 wherein the memory stores encrypted font resources selected from the group including a logo, personal signature image, and glyph.
- 26. (original) The system of claim 21 wherein the network-connected port receives an encrypted resource for storage in a format selected from the group including hypertext transport protocol (http) and file transport protocol (FTP).
- 27. (currently amended) The system of claim 18 further comprising:

a second device including:

a processor to supply a job;

a hash unit having an interface to accept the job and to supply a hash of the job (H);

an encryption unit having an interface to accept H, to supply CK_i , the encryption of symmetrical encryption key K_i using pub K_i , and CH_i , the encryption of H using K_i ; and,

a network-connected port for transmitting the job, CK_i, and CH_i to the first device for job processing.

28-29. canceled

30. (currently amended) The system of claim 18 further comprising:

a plurality of devices N_i , where $1 \le i \le n$, each receiving the unencrypted electronically formatted job at a network-connected port, along with CK_i , where CK_i is generated by encrypting K_i using an corresponding asymmetrical encryption public key pubK[[i]] uniquely associated with each device; and,

wherein each device decryption unit decrypts CK; using corresponding asymmetrical encryption private key privK;, to recover K;.

31. (currently amended) The method of claim 18 further comprising:

a plurality of devices N_i , where $1 \le i \le n$, each receiving the unencrypted electronically formatted job at a network-connected port, along with CK_i , where CK_i is generated by encrypting K_i , uniquely associated with each device, using an corresponding asymmetrical

encryption public key pubK[[i]], uniquely associated with each device, and CH $_i$, a hash of the job encrypted using corresponding symmetrical encryption key K $_i$; and,

wherein each device includes a decryption unit for decrypting CK; using asymmetrical encryption private key privK;, to recover corresponding symmetrical encryption key K;, for the decryption of the encrypted resource.

32-33. canceled

34. (currently amended) A system for accessing network-connected processing resources, the system comprising: a second device including:

a processor to supply an unencrypted job;

a hash unit having an interface to accept the job
and to supply a hash of the job (H);

an encryption unit having an interface to accept H_i , to supply CK_i , the encryption of symmetrical encryption key K_i , where $1 \le i \le n$, using pubK, [[and]] CH_i , where K_i through K_m correspond to encrypted resources CR_i through CR_m , the encryption of H using K_i and an encrypted resource selection command; and, a network-connected port for transmitting the job, CK_i , and CH_i to a first device for job processing.