

FORO 1 BRANDON DENILSON AZAHAR ROJAS

Indice;

Tabla de contenido

Introduccion :	3
2. ¿Cuál es la definición de Cloud Firestore?	4
Características clave:	4
Consultas y Flexibilidad de Búsqueda:	5
Las principales diferencias entre las bases de datos SQL y NoSQL:	5
Consistencia y Transacciones:	5
Conclusión:	6
Capturas:	6
	7

Introduccion:

Muchas aplicaciones modernas requieren un manejo eficiente de datos en tiempo real, y Firebase de Google ofrece dos soluciones principales para este problema: Cloud Firestore y Database Realtime. Ambos servicios tienen características, ventajas y usos distintos. Este trabajo examinará en detalle Cloud Firestore y Realtime Database, discutiendo sus diferencias fundamentales, comparando bases de datos SQL y NoSQL y decidiendo cuál sería la mejor opción para implementar en una aplicación desarrollada en React Native.

2. ¿Cuál es la definición de Cloud Firestore?

Definición y funcionamiento: Cloud Firestore es una base de datos NoSQL en tiempo real que almacena datos en documentos JSON dentro de colecciones. Permite consultas avanzadas y utiliza una estructura de datos flexible.

Características destacadas:

Flexible estructura de datos
Preguntas Avanzadas
Autoescalabilidad
Sync en tiempo real
Sistema de seguridad integrado
¿Qué es una base de datos en tiempo real?
Definición y aplicación:

Los datos se sincronizan instantáneamente entre los clientes y los servidores a través de una base de datos en tiempo real. sincroniza y almacena los datos en una estructura JSON en tiempo real.

Características clave:

Formato de datos JSON en tiempo real sincronizado

Escalabilidad reducida

Las reglas de seguridad que se pueden personalizar

Las diferencias entre Cloud Firestore y la base de datos en tiempo real:

Estructura de datos y modelado: Cloud Firestore ofrece una estructura de datos más adaptable que admite tipos de datos complejos y objetos anidados. La base de datos realtime utiliza una estructura JSON plana.

Escalabilidad y rendimiento: Cloud Firestore proporciona escalabilidad automática y mejora la gestión de cargas de trabajo cambiantes. La escalabilidad de Realtime Database es limitada, especialmente para aplicaciones que requieren mucha escritura.

Consultas y Flexibilidad de Búsqueda:

Cloud Firestore ofrece consultas de búsqueda avanzadas y flexibilidad. Las capacidades de consulta de la base de datos en tiempo real son más limitadas.

Sincronización en tiempo real y Seguridad: Aunque ambos servicios ofrecen sincronización en tiempo real, Cloud Firestore ofrece una seguridad más avanzada a través de reglas de seguridad más avanzadas.

Las principales diferencias entre las bases de datos SQL y NoSQL: Modelado de Datos y Flexibilidad:

El modelo de datos de las bases de datos SQL es estructurado y rígido, mientras que las bases de datos NoSQL ofrecen una mayor flexibilidad.

Escalabilidad y Rendimiento: Las bases de datos NoSQL generalmente son más escalables y funcionan mejor en entornos distribuidos que las bases de datos SQL.

Consistencia y Transacciones: Las bases de datos SQL tienen una mayor consistencia y soportan transacciones ACID, mientras que las bases de datos NoSQL pueden tener modelos de consistencia más antiguos y no soportan transacciones ACID.

¿Cuál es el método más efectivo para aplicar en una aplicación hecha con React Native? Exigencias y casos de uso:

La elección entre Realtime Database y Cloud Firestore dependerá de las necesidades y casos de uso de cada aplicación.

Consideraciones relacionadas con el desarrollo y el mantenimiento: La estructura de

datos flexible de Cloud Firestore y la capacidad de consulta avanzada facilitan la expansión y el mantenimiento.

Conclusión:

Dependiendo de la necidad se puede usar uno u otro lo cierto es que el servicio de Google tanto de firebase realtime database como el fire estore ofrece una salida para los programadores facilitando mucho el Back end

A diferencia de una base de datos relacional como SQL que requiere mas trabajo pero a la vez es mas solida y a parte de soportar mayor volumen de información también se pueden hacer varias cosas como "gatillos" "procedimientos almacenado" "vistas" entre otros

Capturas:


```
(3, 'Carlos', 'García'),
(4, 'Ana', 'Nartinet'),
(5, 'Pedro', 'Buit');

-- Insertar relaciones entre notas y profesores
(Notal), Profesores
(Notal
```

dbo. Alumnos. Nombre, dbo. Alumnos. Apellido, dbo. Alumnos. FechaNacimiento, dbo. Alumnos. Carrera, dbo. Alumnos_Becas. BecaID, dbo. Becas. NombreBeca, dbo. Becas. Desi
dbo. Alumnos_INNER_JOIN
dbo. Alumnos_Becas ON dbo. Alumnos. AlumnoID = dbo. Alumnos_Becas. AlumnoID INNER_JOIN
dbo. Notas ON dbo. Alumnos. Becas. BecaID = dbo. Becas. BecaID INNER_JOIN
dbo. Notas ON dbo. Alumnos. AlumnoID = dbo. Notas. AlumnoID INNER_JOIN
dbo. Notas_Profesores. ON dbo. Notas. NotaID = dbo. Notas. Profesores. NotaID INNER_JOIN
dbo. Profesores. ON dbo. Notas_Profesores. ProfesorID

00 % - 4

## Hesuits @ Messages												
	Nombre	Apellido	FechaNacimiento	Carrera	BecaID	NombreBeca	Descripcion	Monto	Materia	Nota		
1	Juan	Pérez	2000-05-15	Ingeniería Informática	1	Beca de Excelencia	Para alumnos con promedio superior a 9.0	500	Matemáticas	9.5		
2	María	González	1999-09-23	Matemáticas	3	Beca Socioeconómica	Para alumnos en situación económica vulnerable	200	Historia	8		
3	Carlos	López	2001-02-10	Administración de Empresas	2	Beca Deportiva	Para alumnos destacados en deportes	300	Programación	9.2		
4	Ana	Martinez	2000-11-30	Derecho	4	Beca de Investigación	Para alumnos participantes en proyectos de inves	400	Derecho Penal	7.8		
5	Pedro	Ruiz	1998-07-08	Medicina	5	Beca Cultural	Para alumnos destacados en actividades culturales	250	Anatomía	9.7		