Part 2: (a) State Diagram for the System

(Draw a state diagram as in page 5)

A Four-State Design

Notation: L1L2, so GR = Light 1 is Green and Light 2 is Red

Part 2: (b) Define the State Table

(Complete a state table as in page 6)

Present State		Next State		
Number	Alias	Number	Alias	
0	GR	1	RR	
1	RR	2	RG	
2	RG	3	RR	
3	RR	0	GR	

Part 2: (c) Derive the Output Equations.

(Derive output equations (for the lights) as in page 10)

	Alias	Q ₁ Q ₀	G1	R1	G2	R2
0	GR	0 0	1	0	0	1
1	RR	0 1	0	1	0	1
2	RG	1 0	0	1	1	0
3	RR	1 1	0	1	0	1

Output equations

$$G1 = Q_1' \bullet Q_0' \qquad G2 = Q_1 \bullet Q_0'$$

$$G2 = Q_1 \bullet Q_0$$

$$R1 = G1'$$
 $R2 = G2'$

$$R2 = G2$$

Part 2: (d) Derived the State Transition Table.

(Complete a state transition table as in page 12)

Prese	ent State		Next State	
	Q_1	Q_0	Q ₁	Q_0
0	0	0	0	1
1	0	1	1	0
2	1	0	1	1
3	1	1	0	0

Part 2: (e) Derive the Input Equations

(Derive the input equations (J-K inputs) as in page 16)

Separating the Table into Two Tables

Q ₁		Q_0		
PS	NS	PS	NS	
Q_1 Q_0	Q ₁	Q_1 Q_0	Q_0	
0 0	0	0 0	1	
0 1	1	0 1	0	
1 0	1	1 0	1	
1 1	0	1 1	0	

Deriving the Input Tables

Flip-Fl	op 1]	Flip-Fl	op 0	
PS	NS	Input	PS	NS	Input	
Q_1 Q_0	Q_1	$J_1 K_1$	Q_1 Q_0	Q_0	J ₀	$ K_0 $
0 0	0	0 d	0 0	1	1	d
0 1	1	1 d	0 1	0	d	1
1 0	1	d 0	1 0	1	1	d
1 1	0	0 d	1 1	0	d	1

Karnaugh Maps for deriving the Input Equations

(1) Karnaugh Map: J_1

Q_1 Q_0	0		1	
0	0	1	1	
1	d		d	

$$J_1 = Q_0$$

(2) Karnaugh Map: K_1

Q_1 Q_0	0	1	
0	d	d	
1	0	1	

$$\kappa_1 = \varrho_0$$

(3) Karnaugh Map: $\ ^{\ J}0$

Q_1 Q_0	0	1
0	1	d
1	1	d

$$J_0 = 1$$

Q_1 Q_0	0	1
0	d	1
1	d	1

$$K_0 = 1$$

The Input Equations Are:

$$J_1 = Q_0$$
 $J_0 = 1$

$$K_1 = Q_0$$
 $K_0 = 1$

Part 2: (f) Draw the Circuit

(Draw the circuit without the D-flipflops as in page 17)

