Appendix: Contract Design for Adaptive Federated Learning

Ni YANG, Yue CUI, Man Hon Cheung

April 11, 2024

Proof to Lemma 1 1

Proof. For a contract $\phi_{i,j}$, if the server chooses a smaller payment $p_{i,j} < p_i^*$, the IR constraint is not satisfied. If the server chooses a larger payment $\overline{p_{i,j}} > p_{i,j}^*$, the cost will be higher as $\frac{\partial C(r,p)}{\partial p_{i,j}} > 0$. Thus, $p_{i,j}^* = \theta_i r_{i,j}$. \square

$\mathbf{2}$ Proof to Lemma 2

- 1. The non-negative weighted sum of convex (concave) functions is convex (concave). [1] $g_1(r) =$ $\sum_{i=1}^{I} \sum_{j=1}^{J} N_{i,j} r_{i,j} \gamma_j$ and $g_2(\mathbf{r}) = \sum_{i=1}^{I} \sum_{j=1}^{J} N_{i,j} \theta_i r_{i,j}$ are weighted sum of variables $r_{i,j}$, where $N_{i,j}$, γ_j and θ_i are weights. Thus, $g_1(\mathbf{r})$ and $g_2(\mathbf{r})$ are both convex and concave.
 - 2. The scalar composition f(x) = h(g(x)) is convex if $g(\cdot)$ is concave, $h(\cdot)$ is convex and \hat{h} is non-increasing, where h is the extended-value extension of function h, which assigns the value ∞ to points not in **dom** h. Suppose $h(x) = \frac{1}{\sqrt{x}}$, which is a convex and \hat{h} is non-increasing. Thus, $f(r) = h(g_1(r))$ is convex.
 - 3. $C_{com}(\mathbf{r})$ is non-negative weighted sum of convex functions $f(\mathbf{r})$ and $g_2(\mathbf{r})$. Thus, $C_{com}(\mathbf{r})$ is convex.

3 Proof to Lemma 3

- 1. Condition 1 is derived from IR constraints. As $\theta_I > \theta_i$, $p_{I,j} \theta_i r_{I,j} > p_{I,j} \theta_I r_{I,j} \geq 0$ for $i \in \mathcal{I}\setminus\{I\}$. This condition ensures type- $\{i,j\}, \forall i \in \mathcal{I}$ clients at least receive a non-negative payoff by accepting contract $\phi_{I,j}$.
 - 2. Condition 2 is derived from IC constraints. It reveals the order of required resources and payment. The proof consists of three steps:
 - (a) First, we prove that $r_{i,j} \geq r_{i',j}$ if and only if $p_{i,j} \geq p_{i',j}$, $i, i' \in \mathcal{I}$ and $i \neq i'$.
 - i. Forward direction: $r_{i,j} \geq r_{i',j} \Rightarrow p_{i,j} \geq p_{i',j}$. IC constraints for type- $\{i,j\}$ clients: $p_{i,j} - \theta_i r_{i,j} \ge p_{i',j} - \theta_i r_{i',j}$ $\Leftrightarrow \theta_i(r_{i',j} - r_{i,j}) \ge p_{i',j} - p_{i,j}.$

Thus, if we have $r_{i,j} \ge r_{i',j}$, then $0 \ge \theta_i(r_{i,j} \ge r_{i',j}) \ge p_{i',j} - p_{i,j}$, which means that $p_{i,j} \ge p_{i',j}$.

ii. Backward direction: $p_{i,j} \geq p_{i',j} \Rightarrow r_{i,j} \geq r_{i',j}$. IC constraints for type- $\{i',j\}$ clients: $p_{i',j} - \theta_{i'} r_{i',j} \ge p_{i,j} - \theta_{i'} r_{i,j}$

 $\Leftrightarrow \theta_{i'}(r_{i,j}-r_{i',j}) \geq p_{i,j}-p_{i',j}.$ Thus, if we have $p_{i,j} \geq p_{i',j}$, then $\theta_{i'}(r_{i,j}-r_{i',j}) \geq p_{i,j}-p_{i',j} \geq 0$, which tells that $r_{i,j} \geq r_{i',j}$.

(b) Then, for type- $\{i',j\}$ and type- $\{i,j\}$, we will prove that when $\theta_i < \theta_{i'}, r_{i,j} \ge r_{i',j}$. We prove it through contradiction. Suppose that there exists the case where $\theta_i < \theta_{i'}$ and $r_{i,j} < r_{i',j}$. Then $(\theta_{i'} - \theta_i)(r_{i',j} - r_{i,j}) > 0$ holds. According to the IC constraints, we have

$$\begin{cases} p_{i,j} - \theta_i r_{i,j} \ge p_{i',j} - \theta_i r_{i',j}, \\ p_{i',j} - \theta_{i'} r_{i',j} \ge p_{i,j} - \theta_{i'} r_{i,j}. \end{cases}$$

After adding them up, we have $(\theta_{i'} - \theta_i)(r_{i',j} - r_{i,j}) \leq 0$, which is in contradiction with the previous assumption. Thus, when $\theta_i < \theta_{i'}, r_{i,j} \ge r_{i',j}$

- (c) Combining the two steps together, we can derive condition 2.
- 3. Condition 3 is derived by the IC constraint of type- $\{i,j\}$ and $\{i',j\}$ client, which ensures that the adjacent type of clients in group- γ_j will not choose another's contract. This property can be applied to all types in group- γ_j

$$\left\{\begin{array}{l} p_{i,j} - \theta_i r_{i,j} \geq p_{i',j} - \theta_i r_{i',j} \\ p_{i',j} - \theta_{i'} r_{i',j} \geq p_{i,j} - \theta_{i'} r_{i,j} \end{array}\right. \Leftrightarrow \text{Condition } 3$$

4 Proof to Lemma 4

Proof. As $\frac{\partial C(\mathbf{r},\mathbf{p})}{\partial p_{i,j}} > 0$, the server will make the payment as small as possible.

- 1. For type- $\{I,j\}$ clients, to satisfy condition 1 in Lemma 3, it is optimal to make $p_{I,j}^* = \theta_I r_{I,j}$.
- 2. For type- $\{i, j\}$ clients, $i \in \{1, \dots, I-1\}$
 - (a) Condition 3 in Lemma 3 gives the bounds of $p_{i,j}$. Given $p_{I,j}^*$, the server will choose the lower bound as $p_{I-1,j}^* = \theta_{I-1}r_{I-1} + r_I(\theta_I \theta_{I-1})$.
 - (b) Applying the same operation to type- $\{i,j\}$, $i \in \{1,\ldots,I-2\}$ we can conclude that $p_{i,j}^* = \theta_i r_{i,j} + \sum_{l=i+1}^{I} r_{l,j} (\theta_l \theta_{l-1})$ for $i \in \{1,\ldots,I-1\}$.

5 Proof to Lemma 5

Proof. The proof is similar to the proof to Lemma 2. The only difference is that the second dominating term is $g_3(\mathbf{r}) = \sum_{i=1}^{I} \sum_{j=1}^{J} N_{i,j} (\theta_i r_{i,j} + \sum_{l=i+1}^{I} r_{l,j} (\theta_l - \theta_{l-1}))$, rather than $g_2(\mathbf{r})$. However, $g_3(\mathbf{r})$ is still a non-negative weighted sum of variables $r_{i,j}$. Thus, $C_{in}(\mathbf{r})$ is convex in \mathbf{r} .

6 Proof to Theorem 2

Proof. The KKT conditions under the incomplete information and the complete information only differ in the stationarity condition, while the other three conditions are the same.

The stationarity condition for Problem 2 is $\lambda_{i,j}^* = \alpha_2[N_{i,j}\theta_i + \sum_{l=1}^{i-1} N_{l,j}(\theta_i - \theta_{i-1})] - \frac{\alpha_1 N_{i,j} \gamma_j}{2(\sum_{i=1}^{I} \sum_{j=1}^{J} \gamma_j N_{i,j} r_{i,j}^*)^{\frac{3}{2}}}$.

Suppose

$$A_{i,j} = \left\{ \begin{array}{ll} \frac{\gamma_j}{\theta_i}, & \text{when } i = 1; \\ \frac{N_{i,j}\gamma_j}{N_{i,j}\theta_i + \sum_{l=1}^{i-1} N_{l,j}(\theta_i - \theta_{i-1})}, & \text{when } i \in \{2, \dots, I\}. \end{array} \right.$$

 $\Rightarrow \text{DF: } (\sum_{i=1}^{I} \sum_{j=1}^{J} \gamma_{j} N_{i,j} r_{i,j}^{*})^{\frac{3}{2}} \geq \frac{\alpha_{1}}{2\alpha_{2}} \cdot A_{i,j}$ We will prove that $A_{1,1} = \arg\max_{i \in \mathcal{I}, j \in \mathcal{J}} \{A_{i,j}\}.$

- 1. For any specific $j \in \mathcal{J}$ and $i \in \{2, ..., I\}$, as $\theta_1 < \theta_i$, $\sum_{l=1}^{i-1} N_{l,j}(\theta_i \theta_{i-1}) > 0$. Thus $A_{1,j} = \frac{\gamma_j}{\theta_1} = \frac{N_{i,j}\gamma_j}{N_{i,j}\theta_1} > A_{i,j} = \frac{N_{i,j}\gamma_j}{N_{i,j}\theta_i + \sum_{l=1}^{i-1} N_{l,j}(\theta_i \theta_{i-1})}$.
- 2. For any $j \in \{2, \dots, J\}$, as $\gamma_1 > \gamma_j$, $A_{1,1} = \frac{\gamma_1}{\theta_1} > A_{1,j} = \frac{\gamma_j}{\theta_1}$
- 3. Thus, $A_{1,1} = \arg \max_{i \in \mathcal{I}, j \in \mathcal{J}} \{A_{i,j}\}$

Then, following the same deduction in proof of Theorem 1, we can get the same result.

References

[1] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.