

HKSYCIA WONG TAI SHAN MEMORIAL COLLEGE

MATHEMATICS Compulsory Part 2nd TERM EXAMINATION 2019-2020 PAPER II

Time allowed: 1 hour 15 minutes

SETTER: YPK

Instructions

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last questions.
- 3. This paper contains 14 pages
- 4. All questions carry equal marks.
- 5. **ANSWER ALL QUESTIONS.** You should mark all the answers on the Answer Sheet.
- 6. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 7. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

- 1. Simplify $\frac{(5a^{-4}b^2)^{-1}}{(-ab^{-1})^{-3}}$ and express your answer with positive indices.
 - $A. -\frac{b^2}{5a^2}$
 - $B. \quad \frac{5b^2}{a^2}$
 - C. $-\frac{a^7}{5b^5}$
 - D. $\frac{5a^7}{b^5}$
- 2. A hamburger shop promotes a new hamburger. Customers who buy the new hamburger can buy a second hamburger at half price. What is the overall discount per cent if Clara buys 2 such hamburgers?
 - A. 20%
 - B. 25%
 - C. 50%
 - D. 75%
- 3. The figure shows a quadrilateral *ABCD* on a polar coordinate plane. Find the area of *ABCD*.
 - A. 20 sq. units
 - B. 24 sq. units
 - C. 36 sq. units
 - D. 48 sq. units

- 4. If *N* is a positive integer, which of the following must be an odd number?
 - I. 2^N
 - II. $2^{3N-1} + 1$
 - III. $2^N (2^{3N-1} + 1)$
 - A. II only
 - B. I and II only
 - C. I and III only
 - D. II and III only
- 5. Solve the equation x+2=(x-3)(x+2).
 - A. x = 3
 - B. x = 4
 - C. x = -2 or x = 3
 - D. x = -2 or x = 4
- 6. Solve the equation $3x^2 + 6x 5 = 0$.
 - A. $x = \frac{-5 \pm \sqrt{129}}{10}$
 - B. $x = \frac{5 \pm \sqrt{129}}{10}$
 - C. $x = \frac{-3 \pm 2\sqrt{6}}{3}$
 - D. $x = \frac{3 \pm 2\sqrt{6}}{3}$
- 7. Which of the following is the largest domain of real numbers for the function $y = \frac{1}{3x-7}$?
 - A. The set of all real numbers
 - B. $x \le \frac{7}{3}$, where x is a real number
 - C. $x \ge 0$, where x is a real number
 - D. $x \neq \frac{7}{3}$, where x is a real number

- 8. If $f(x) = 4x^2 + 3kx + 1$ and f(x) = f(-x) where k is a constant, then f(7) =
 - A. 176.
 - B. 190.
 - C. 197.
 - D. 205.
- 9. If $\begin{cases} \beta = \alpha^2 + 2 \\ \beta = 5\alpha 2 \end{cases}$, then $\alpha =$
 - A. 0 or 5.
 - B. 0 or -5.
 - C. 1 or 4.
 - D. -1 or -4.
- 10. Solve the equation 2ax(2 ax) + ax = 2, where $a \ne 0$.
 - A. x = 0
 - B. $x = \frac{1}{2a}$
 - C. $x = \frac{1}{2a}$ or $\frac{2}{a}$
 - D. x = 2a or a
- 11. If β is a root of the equation $3x^2 + 2x 3 = 0$, then $6\beta^2 + 4\beta 7 =$
 - A. 0.
 - B. -1.
 - C. 4.
 - D. -4.
- 12. Find the equation of the perpendicular bisector of the line segment joining A (-6, 4) and B (3, 9).
 - A. 5x 9y 46 = 0
 - B. 5x 9y + 66 = 0
 - C. 9x + 5y 19 = 0
 - D. 9x-5y-51=0

- 13. Two straight lines L_1 : ax by + 5 = 0 and L_2 : 6x 3y + 7 = 0 do not intersect. If another straight line L_3 : 5x + 4y 10 = 0 has the same y-intercept as L_1 , find the values of a and b.
 - A. a = -1, b = 2
 - B. a = 2, b = -1
 - C. a = 2, b = 4
 - D. a = 4, b = 2
- 14. Find the remainder when $19x 14x^2 + 3x^3 6$ is divided by $3 4x + x^2$.
 - A. 2x + 12
 - B. 2x 6
 - C. 2*x*
 - D. 3x 2
- 15. When (kx + 2)(x + 1) is divided by x 2, the remainder is 12. Find the value of k.
 - A. -5
 - B. –2
 - C. 2
 - D. 1
- 16. When $2x^3 + mx^2 8x + n$ is divided by 2x + 1 where m and n are constants, the quotient is $x^2 4$ and the remainder is 9. Find the values of m and n.
 - A. m = -1, n = 5
 - B. m = -1, n = -13
 - C. m = 1, n = 5
 - D. m = 1, n = -13
- 17. Let $h(x) = x^2 + mx + n$. When h(x) is divided by x 1, the remainder is 1. If h(x) is divisible by x 2, find the value of m.
 - A. 4
 - B. -4
 - C. 2
 - D. –2

- 18. When a polynomial f(x) is divided by 2x + 1, the remainder is R. Find the remainder when f(2x + 1) is divided by 4x + 3.
 - A. *R*
 - B. $\frac{2}{3}R$
 - C. 4*R*
 - D. 4R + 3
- 19. If $x^2 + 5x 6$ is a factor of a polynomial f(x), which of the following must be true?
 - A. f(-2) = f(-3) = 0
 - B. f(2) = f(3) = 0
 - C. f(-1) = f(6) = 0
 - D. f(1) = f(-6) = 0
- 20. Factorize $3x^3 + 8x^2 15x + 4$.
 - A. (x+1)(x-2)(3x+2)
 - B. $(x-1)^2(3x+4)$
 - C. (x-1)(x+4)(3x-1)
 - D. (x-1)(x-4)(3x+1)
- 21. If $8^{3x} = 32^{2y}$ and x, y are non-zero integers, then x : y =
 - A. 2:3.
 - B. 3:2.
 - C. 9:10.
 - D. 10:9.
- 22. Solve the equation $4^{x+1} 3(2^{2x}) = 64$.
 - A. 8
 - B. 6
 - C. 4
 - D. 3
- 23. If $y \propto \sqrt{x}$, and y = 10 when x = 4, find the value of x when y = 5.
 - A. -1
 - B. 1
 - C. –2
 - D. 2

- 24. It is given that (y+1) varies inversely as the square of x, where x > 0. When x = 2, y = 224. Find the value of x when y = 35.
 - A. 5
 - B. 6
 - C. 25
 - D. 36
- 25. It is given that y varies inversely as x^2 . Which of the following graphs shows this relation?
 - A.

B.

C.

D.

- 26. If x : y = 1 : 2 and y : z = 3 : 2, which of the following must be true?
 - I. x varies inversely as y.
 - II. y varies directly as z.
 - III. z varies directly as x.
 - A. I only
 - B. III only
 - C. I and II only
 - D. II and III only

- 27. If a varies directly as \sqrt{b} and inversely as c^2 , then which of the following must be a constant?
 - A. $\frac{a\sqrt{b}}{c^2}$
 - B. $\frac{\sqrt{b}c^2}{a}$
 - C. $\frac{\sqrt{b}}{ac^2}$
 - D. $a\sqrt{b}c^2$
- 28. The monthly operating cost (\$C) of a company is partly constant and partly varies directly as the number of employees (n) in the company. The monthly operating cost is \$60 000 when there are 4 employees and the monthly operating cost is \$75 000 when there are 6 employees. Find the percentage change in the monthly operating cost if the number of employees in the company is increased from 8 to 10.
 - A. $+16\frac{2}{3}\%$
 - B. $-16\frac{2}{3}\%$
 - C. +20%
 - D. -20%
- 29. It is given that y varies inversely as x^2 where $x \ne 0$. If x increases by 50%, then y
 - A. decreases by 25%.
 - B. decreases by 50%.
 - C. decreases by $55\frac{5}{9}$ %.
 - D. increases by 50%.

30. Which of the following graphs shows that $y \propto (2x+1)$?

A.

В.

C.

D.

Section B

- 31. If $\alpha \neq \beta$ and $\begin{cases} \alpha^2 5\alpha 4 = 0 \\ \beta^2 5\beta 4 = 0 \end{cases}$, find the value of $(\alpha 1)(\beta 1)$.
 - A. -8
 - B. 0
 - C. 2
 - D. 10

- 32. Which of the following about the algebraic expressions $b^2(a+b)$ and $b(a+b)^2$ is/are true?
 - I. b is a common factor of the two given expressions.
 - II. The H.C.F. of the two expressions is $b(a + b)^2$.
 - III. The L.C.M. of the two expressions is $b^2(a + b)^2$.
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only
- 33. $\frac{x}{x^2 6x + 5} \times \frac{x^2 2x + 1}{2x + 10} \div \frac{3x}{x^2 25} =$
 - A. $\frac{x}{6}$
 - B. $\frac{1}{6}$
 - $C. \quad \frac{x-1}{6}$
 - D. $\frac{x(x-1)}{6}$
- 34. If $3^x 3^{-x} = m$ where x is an integer and m is a constant, then $9^x + 9^{-x} =$
 - A. $m^2 + 2$.
 - B. $m^2 2$.
 - C. $2m^2 + 1$.
 - D. $2m^2 1$.

35. It is given that a is a positive constant. Which of the following is / are not the graph(s)

of
$$y = a^x$$
?

I.

II.

III.

- A. II only
- B. III only
- C. I and III only
- D. II and III only
- 36. If $\log 4 = a$ and $\log 9 = b$, then $\log \frac{15}{2} =$
 - A. $\frac{b+2}{2a}$.
 - B. $\sqrt{b}-1-a$.
 - C. $\frac{b}{2} + 1 a$.
 - D. $\frac{b}{2} 1 a$.

- 37. If $0.49^m = 49^n = 10\ 000$, then $\frac{1}{m} \frac{1}{n} =$
 - A. 100.
 - B. $-\frac{1}{2}$.
 - C. $\frac{1}{2}$.
 - D. $\frac{1}{100}$.
- 38. Which of the following has the greatest value?
 - A. 600^{4500}
 - B. $2\,400^{3\,600}$
 - C. 3600^{2400}
 - D. 4 500⁶⁰⁰
- 39. Simplify $\frac{3\log\sqrt{x} + \frac{1}{3}\log x}{\log\sqrt{x} \log x^2}$, where x > 0 and $x \ne 1$.
 - A. $-\frac{11}{4}$
 - B. $-\frac{11}{9}$
 - C. $\frac{11}{4}$
 - D. $\frac{11}{9}$
- 40. If $\frac{1}{2} \log x^3 = 1 + \log 4y$, express x in terms of y.
 - A. $x = [2(1+4y)]^{\frac{1}{3}}$
 - B. $x = (1 + 8y)^{\frac{1}{3}}$
 - C. $x = (1+4y)^{\frac{2}{3}}$
 - D. $x = (40y)^{\frac{2}{3}}$

41. Which of the following can be the graph of the function $y = -\log_{\frac{1}{2}} x$?

A.

В.

C.

D.

42. Referring to the given figure, which of the following are

the solutions of $\begin{cases} y = x^2 + 2x - 1 \\ x - y + 1 = 0 \end{cases}$?

II.
$$(-2, -1)$$

III.
$$(-1, 0)$$

IV.
$$(0, -1)$$

- A. II only
- B. III only
- C. I and IV only
- D. II and V only

43. Find the minimum value of k such that the simultaneous equations $\begin{cases} y^2 - 5x^2 = k \\ y = 3x - 2 \end{cases}$ have real

44. Solve $\frac{1}{(x-2)^2} + \frac{2}{x-2} - 24 = 0$.

A.
$$x = 2 \text{ or } 24$$

B.
$$x = -6 \text{ or } 4$$

C.
$$x = \frac{9}{4}$$
 or 24

D.
$$x = \frac{11}{6} \text{ or } \frac{9}{4}$$

45. Solve $9^x = 3^{x+2} - 8$.

A.
$$x = 1, 2 \text{ or } 3$$

B.
$$x = 0 \text{ or } 1$$

C.
$$x = 0$$
 or $\frac{3 \log 2}{\log 3}$

D.
$$x = \log 3$$
 or $3 \log 2$

END OF PAPER