Exos AN2 - Séries numériques

Exercice 1

Etudier la nature des séries $\sum_{n\geq 1} u_n$ dans les cas suivants :

$$\mathbf{1.}\,u_n=\frac{n^2}{2^n}$$

2.
$$u_n = \left(\frac{1}{2} + \frac{1}{2n}\right)^n$$
 3. $u_n = \frac{(2n)!}{(n!)^2}$

3.
$$u_n = \frac{(2n)!}{(n!)^2}$$

$$4. u_n = \frac{\sin n}{n^{\frac{3}{2}} + \cos n}$$

5.
$$u_n = \frac{n!}{n^n}$$

$$6.u_n = 2\ln(n^3 + 1) - 3\ln(n^2 + 2)$$

7.
$$u_n = \ln(n+\pi) - \ln(n+e)$$
 8. $u_n = \int_0^1 \frac{t^n}{1+t} dt$ 9. $\left(\frac{n-1}{2n+1}\right)^n$

$$\mathbf{8.} \ u_n = \int_0^1 \frac{t^n}{1+t} \mathrm{d}t$$

9.
$$\left(\frac{n-1}{2n+1}\right)^n$$

10.
$$u_n = \frac{3 \cdot 6 \cdot 9...(3n)}{n^n}$$

11.
$$u_n = \frac{a^n}{1 + a^{2n}} (a \in \mathbb{R}^*)$$

11.
$$u_n = \frac{a^n}{1 + a^{2n}} (a \in \mathbb{R}^*)$$
 12. $u_n = \frac{1}{n \ln n \left(\ln(\ln(n)) \right)^{\alpha}}, (\alpha \in \mathbb{R}_+^*)$

Exercice 2

Montrer que les séries suivantes convergent, et calculer leurs sommes :

1.
$$\sum_{n>0} e^{-2n} chn$$

2.
$$\sum_{n>1} \frac{2}{n(n+2)}$$

1.
$$\sum_{n>0} e^{-2n} chn$$
 2. $\sum_{n>1} \frac{2}{n(n+2)}$ 3. $\sum_{n>1} ln \left(1 + \frac{2}{n(n+3)}\right)$

4.
$$\sum_{n>0} \frac{1}{n^3 + 6n^2 + 11n + 6}$$

4.
$$\sum_{n>0} \frac{1}{n^3 + 6n^2 + 11n + 6}$$
 5. $\sum_{n>1} \ln\left(\cos\frac{a}{2^n}\right)$ où $a \in]0; \pi[$

Exercice 3

Soit $\sum a_n$ une série positive convergente. Donner la nature des séries suivantes :

1.
$$\sum a_n^2$$

2.
$$\sum \sqrt{a_n a_{n+1}}$$
 3. $\sum \frac{a_n}{1+a_n}$

$$3. \sum \frac{a_n}{1+a_n}$$

Exercice 4

1. Soit (a_n) une suite de réels positifs décroissante, de limite nulle. Montrer que la série de terme général $(-1)^n a_n$ est convergente.

Indication: Montrer que les suites des sommes partielles (S_{2n}) et (S_{2n+1}) sont adjacentes.

- 2. Déterminer la nature de la série $\sum \frac{(-1)^n}{\ln n}$
- **3.** On considère la série de terme général $u_n = \frac{(-1)^n}{n + (-1)^{n+1}}$.
 - **a.** (u_n) vérifie-t-elle les hypothèses de la question 1?
- **b.** Déterminer $v_n = u_n \frac{(-1)^n}{n}$, pour $n \in \mathbb{N}^*$.
- **c.** Etablir la convergence de $\sum u_n$.

Exercice 5

En utilisant une comparaison série-intégrale, déterminer un équivalent de ln(n!).

Exercice 6

- 1. En utilisant le théorème de Taylor avec reste intégral, montrer que $\sum_{k=0}^{+\infty} \frac{1}{k!} = e$.
- **2.** Montrer que $\forall n \in \mathbb{N}^*, R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!} \le \frac{1}{n \cdot n!}$.

Exercice 7

Montrer que les séries $\sum u_n$ suivantes convergent, et déterminer leur somme, à l'aide d'un produit de Cauchy :

1.
$$u_n = \sum_{k=0}^n \frac{(-1)^k}{3^k (n-k)!}$$

2.
$$u_n = \frac{n+1}{3^n}$$

Exercice 8

On considère la suite $(u_n)_{n\geq 1}$ définie par :

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n.$$

En considérant la série de terme général $v_n = u_{n+1} - u_n$, montrer que la suite (u_n) converge. La limite de cette suite se note γ , appelée constante d'Euler.

Exercice 9

- 1. Montrer que : $\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \underset{+\infty}{\sim} \frac{1}{n}.$
- **2.** On note $\forall n \in \mathbb{N}^*, d_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \frac{1}{n}$.
 - **a.** Montrer que $d_n = \sum_{k=n+1}^{+\infty} \frac{-1}{k^2(k-1)}$
 - **b.** En déduire que $d_n \sim \frac{-1}{2n^2}$

Remarque: On a montré que $\sum_{k=n+1}^{+\infty} \frac{1}{k^2} = \frac{1}{n} - \frac{1}{2n^2} + o_{+\infty} \left(\frac{1}{n^2}\right).$