I dont know yet

Faustmann Christian

Faculty of Physics
Technical University of Vienna

This thesis is submitted for the degree of *Bachelor of Science*

TU Vienna July 2017

Introduction

One of Prof. Rauschenbeutel projects uses a novel type of whispering-gallery-mode (WGM) resonator interfaced via nanowaveguides and coupled to single Rubidium atoms to carry out experiments in the realm of Cavity Quantum Electrodynamics. The WGM resonator is a so-called bottle-microresonator (BMR) manufactured from a standard optical glass fiber in a heat and pull process. The light is radially confined inside the resonator by total internal reflection and propagates along the circumference of the resonator. In such a structure, a signicant fraction of the light field propagates in the evanescent field. By overlapping this field with the evanescent field of an optical nanofiber, light can be coupled into and out of the resonator very efficiently. Due to the extremely low absorption of silica (and low surface roughness) we can produce bottle-resonators with ultra-high optical Q-factor exceeding 10⁸. Rubidium atoms are delivered to the resonator using an atomic fountain. For the moment the atoms are only flying by the resonator and when they enter the evanescent field of the BMR, they are coupled to the cavity light field. But only for ~2 µs and moreover the distance between the resonator and the atom is not controlled. This prevents the realization from more complicated experiments. For that reason one needs to trap the atom.

Table of contents

Li	st of f	figures	vii
Li	st of 1	eables	ix
1	The	ory of laser trapping of atoms	1
2	The	ory	3
	2.1	Rubidium	4
	2.2	D2 line	5
	2.3	Two-level atom	6
	2.4	Laser absorbtion	7
	2.5	Doppler shifts	8
	2.6	Behavior of absorbtion coefficient	9
	2.7	Non-linear differential equation	10
3	Exp	eriment	11
	3.1	Setup & Tools	11
	3.2	Laser diameter measurement	11
	3.3	Power / intensity measurement	11
	3.4	Doppler-free measurement	11
4	Eva	luation	13
	4.1	Data processing	13
	4.2	Temperature & saturation intensity	13
	4.3	Comparison with theory	13
	4.4	Compare Doppler-free measurement with theoretical values	13
Re	eferen	nces	15

<u>vi</u>		Table of contents
Appendix A The	eory	17
Appendix B Exp	periment	19
Appendix C Eva	lluation	21

List of figures

2.1	Rubidium Atom	4
2.2	$5^2S_{1/2} \rightarrow 6^2P_{3/2}$ transition of ⁸⁵ Rb and ⁸⁷ Rb with corresponding hyperfine	
	structure	5
2.3	Doppler spectrum of D2 line	5
2.4	Relative energy gaps of the groundstates between both isotopes	6
2.5	Two-level atom model	6

List of tables

2.1 Properties of rubidium isotopes	1	
/ L. Properties of rupidium isotopes	4	
	, 	

Chapter 1

Theory of laser trapping of atoms

The strategy pursued to trap is a optical dipole trap. For that the laser light needs to be detuned from a resonance of the atom. Thereafter the atoms are trapped to the maxima of intensity for a red detuned laser. The beam will be reflected from the resonator surface and creates thereby a standing wave. The 1^{st} maxima is at $\lambda_{trap}/4$.

So how to choose λ_{trap} ?

Because of the interaction with the BMR evanescent field the atoms need to be trapped really close: $\frac{\lambda}{2\pi} \approx 130\,\text{nm}$

Most common resonance of rubidium is $5S_{1/2} \rightarrow 5P_{3/2}$ @ 780.24 nm. If we use a laser red-detuned from $\lambda = 780.24$ nm then our first maxima would be at 195 nm \Rightarrow Not close enough!

But rubidium has another transition from $5S_{1/2} \rightarrow 6P_{3/2}$ @ 420.29 nm, which leads to a distance of 105 nm from the BMR to the 1st maxima. But in the formlula [1] of the trap potenial (U_{dip}) arises the transition strength (Γ) of this specific transition:

$$U_{dip}(\mathbf{r}) = -rac{\pi c^2}{\hbar \omega_0^3} \left(rac{\Gamma}{\Delta}
ight) I(\mathbf{r})$$

We have to compare this potential to the kinetic energy of our rubidium atoms. The atoms

fall approximately 60 ms and the corresponding kinetic engergy would be $E_{kin} = \frac{1}{2} m_{Rb} v^2$. In terms of temperature we would get: $\frac{E_{kin}}{k_B} = 1.77 \, \text{mK}$. This is quite huge for a dipole trap. For that reason one needs to know $\Gamma_{420nm-Line}$ and one also needs to have a trap with a small detuning. This requires to see the transitions to have a reference to lock the laser afterwards. To determine $\Gamma_{420nm-Line}$ we can use the relation with the intensity saturation:

$$I_{sat,420} = \frac{\Gamma_{tot,420} \times \omega_{420}^3 \times I_{sat,780}}{\Gamma_{420} \times \Gamma_{780} \times \omega_{780}^3}$$

with
$$\Gamma_{tot,420} = \frac{1}{total\ lifetime\ of\ 6P_{3/2}\ state}$$

 \Rightarrow We want to measure I_{sat} for the blue 420.29 nm-line.

Chapter 2

Theory

4 Theory

2.1 Rubidium

Fig. 2.1 Schematical representation of ⁸⁵Rb

Rubidium is a chemical element with symbol Rb and atomic number 37. It is a soft, silvery-white metallic element of the alkali metal group, with an atomic mass of 85.4678. Elemental rubidium is highly reactive, with properties similar to those of other alkali metals.

German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. Because of the bright red lines in its emission spectrum, they chose a name derived from the Latin word rubidus, meaning "deep red". [2]

Although rubidium is monoisotopic, rubidium in the Earth's crust is composed of two isotopes: the stable ⁸⁵Rb and the radioactive ⁸⁷Rb. [3]

	Rubidium			
Isotope	85	87		
Atomic mass	84.911794	86.909187		
in 10^{-25} kg	1.40999	1.44316		
Abundance	72.17%	27.83%		
Spin I	5/2	3/2		

 Table 2.1 Properties of rubidium isotopes

2.2 D2 line 5

2.2 **D2** line

Fig. 2.2 $5^2S_{1/2} \rightarrow 6^2P_{3/2}$ transition of ⁸⁵Rb and ⁸⁷Rb with corresponding hyperfine structure

As we can see both isotopes have the same transition energy, but due to the different spin I (see table: 2.1) we get different energy levels for the groundstate [4]. This is the reason why we wittness four doppler peaks in our spectrum.

Caution: Both figures below show the correct correlation between energy and isotopes. The explanation of this is that higher energy levels need lesser transition energy to reach the same excited state.

Fig. 2.3 Doppler spectrum of D2 line

6 Theory

Fig. 2.4 Relative energy gaps of the groundstates between both isotopes

2.3 Two-level atom

In the upcomming sections we will derive an expression for the absorbtion or to be precise the intensity of the laser beam, but first we have to discuss the model on which basis we will do this.

The simplest model is the two-level atom with a groundstate $|g\rangle$ and one excited state $|e\rangle$. There are three possible transitions:

Fig. 2.5 Two-level atom model

In our case we will only consider the photon absorbtion.

2.4 Laser absorbtion 7

2.4 Laser absorbtion

8 Theory

2.5 Doppler shifts

2.6 Behavior of absorbtion coefficient

10 Theory

2.7 Non-linear differential equation

Chapter 3

Experiment

- 3.1 Setup & Tools
- 3.2 Laser diameter measurement
- 3.3 Power / intensity measurement
- 3.4 Doppler-free measurement

Chapter 4

Evaluation

- 4.1 Data processing
- **4.2** Temperature & saturation intensity
- 4.3 Comparison with theory
- 4.4 Compare Doppler-free measurement with theoretical values

References

- [1] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical Dipole Traps for Neutral Atoms. *Advances in Atomic Molecular and Optical Physics*, 42:95–170, 2000.
- [2] G. Kirchhoff and R. Bunsen. Chemische Analyse durch Spectralbeobachtungen. *Annalen der Physik*, 189:337–381, 1861.
- [3] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra. The NUBASE evaluation of nuclear and decay properties. *Nuclear Physics A*, 729:3–128, December 2003.
- [4] J. Reader A. Kramida, Yu. Ralchenko and NIST ASD Team (2015). NIST atomic spectra database (ver. 5.3). *National Institute of Standards and Technology*, 2015.

Appendix A

Theory

Appendix B

Experiment

Appendix C

Evaluation