数值计算方法内容总结*

0 总述

计算方法是设计求数学问题的数值近似解方法的一门学科. 在总述中, 约定: 设 x^* 为准确值, x 为 x^* 的一个近似值.

0.1 误差

称 $e = x^* - x$ 为 x 的绝对误差. 若 $|e| < \varepsilon$, 称 ε 为 x 的一个绝对误差限. 称如下定义的 e_r 为相对误差. 若 $|e_r| < \varepsilon_r$, 称 ε_r 为 x 的一个相对误差限

$$e_r = \frac{e}{x^*} = \frac{x^* - x}{x^*} \approx \frac{x^* - x}{x}$$

0.2 有效位数

如果 |e| 不超过 x 的某一位的**半个单位**, 从这一位起直到前面**第一位非零数字为止**所有的数字的个数为 n , 称 x (作为 x^* 的近似值) 有 n 位有效数字.

0.3 计算中应注意的几点

- 1. 防止两个相近的数字相减 否则相对误差较大.
- 2. 避免很小的数做分母 否则绝对误差较大.
- 3. 防止大数'吃'小数——改进算法,提高精度.
- 4. 尽量减少总的运算次数.
- 5. 设计稳定的收敛算法.

1 插值

1.1 定义

f 为 [a,b] 上的函数, x_0,x_1,\cdots,x_n 为该区间上互不相同的点. 给定函数类 Φ , 若有 $\phi \in \Phi$, 满足:

$$\phi(x_i) = f(x_i) \ (0 \le i \le n)$$

则称 $\phi(x)$ 为 f(x) 关于节点 x_0, x_1, \dots, x_n 在 Φ 上的**插值函数**.

1.2 多项式插值的基本原理

取 Φ 的一个 n+1 维子空间, 基为: $\phi_1, \phi_2, \cdots, \phi_{n+1}$. 则 2.1 中 ϕ 存在唯一的充要条件是:

$$\begin{vmatrix} \phi_{1}(x_{0}) & \phi_{2}(x_{0}) & \cdots & \phi_{n+1}(x_{0}) \\ \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{n+1}(x_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{1}(x_{n}) & \phi_{2}(x_{n}) & \cdots & \phi_{n+1}(x_{n}) \end{vmatrix} \neq 0$$

^{*2012} 级近代物理系 罗弋涵, <mark>如有错误请联系我</mark>, E-mail: lyh2012@mail.ustc.edu.cn

1.3 Lagrange 插值

寻找满足 $l_i(x_j) = \delta_{ij}$ 的基如下形式:

$$l_i(x) = \prod_{0 < k < n, k \neq i} \frac{x - x_k}{x_i - x_k}$$

则

$$\phi(x) = L_n(x) = \sum_{0 \le i \le n} f(x_i)l_i(x)$$

 l_i 与 x^i 之间的转换矩阵的求法: 对 $f(x) = x^k$ 进行 Lagrange 插值即可. 即:

$$\begin{pmatrix} 1 \\ x \\ \vdots \\ x^n \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} l_0 \\ l_1 \\ \vdots \\ l_n \end{pmatrix}$$

注意: l_i 仅与 x_i 的选取有关.

误差: 定义为 $R_n(x) = f(x) - L_n(x)$, 若 $f \in C^{n+1}[a, b]$, 则

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

其中: $\xi \in [\min\{x, x_i\}, \max\{x, x_i\}]$, 这是因为当 x 不同时, R_n 中的 ξ 取值亦不同.

事后估计: 当 $|f^{n+1}(x)|$ 较大且缓变时,分别以 $\{x_i\}_{0\leq i\leq n}, \{x_i\}_{1\leq i\leq n+1}$ 做插值节点,得到 $L_n^{(1)}, L_n^{(2)}$,由 R_1/R_2 知:

$$f(x) - L_n^{(1)} \approx \frac{x - x_0}{x - x_{n+1}} (L_n^{(1)} - L_n^{(2)})$$

1.4 Newton 插值

1.4.1 插值形式的构造

构造插值多项式如下形式:

$$N_n = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) + \dots + a_n(x - x_n)$$

系数为

$$a_i = f[x_0.x_1, \cdots, x_i]$$

差商: 定义一阶差商为

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

归纳定义:

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_1, \cdots, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_0}$$

可利用下表来进行计算

误差: Newton 插值的误差公式和 Lagrange 插值等价, 但是有另一种表达形式:

$$R_n(x) = f[x_0, x_1, \cdots, x_n, x](x - x_0)(x - x_1) \cdots (x - x_n)$$

由两种插值的余项完全一致,可得差商性质

$$f[x, x_0, x_1, \cdots, x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

其中: $\xi \in [\min\{x, x_i\}, \max\{x, x_i\}].$

x_i	$f(x_1)$	一阶差商	二阶差商	三阶差商	 n 阶差商
x_0	$f(x_0)$				
x_1	$f(x_1)$	$f[x_0, x_1]$			
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
:	:	:	i:	·	
x_n	$f(x_n)$	$f[x_{x-1}, x_n]$	$f[x_{n-2}, x_{n-1}, x_n]$	$f[x_{n-3}, x_{n-2}, x_{n-1}, x_n]$	 $f[x_0,x_1,\cdots,x_n]$

1.4.2 差商的性质

 $1, f[x_0, x_1, \cdots, x_n]$ 可表示为 $f(x_i)$ 的线性组合, 可由对比 n 阶 Newton 插值和 Lagrange 插值的最高次项系数得到.

$$f[x_0, x_1, \cdots, x_n] = \sum_{0 \le i \le n} \frac{f(x_i)}{\prod_{i \ne i} (x_i - x_j)}$$

- 2, 差商值与中括号中项的顺序无关.
- 3, 若 f 为 n 次多项式, 则 $f[x, x_0, x_1, \cdots, x_{k-1}]$ 为 $n k(k \le n)$ 次多项式. 若 k > n, 此式为 0.

1.5 Hermite 插值

给定 $f \in C^1[a,b]$,定义 f 关于节点 $\{x_i\}_{0 \le i \le n}$ 的 (二重密切)Hermite 插值为 H(x),它是一个 2n+1 次多项式,满足

$$\begin{cases} H(x_i) = f(x_i) \\ H'(x_i) = f'(x_i) \end{cases}$$

基函数法:

构造基 $\{g_i, h_i\}_{0 \le i \le n}$ 满足:

$$\begin{cases} g_i(x_j) = \delta_{ij} \\ g'_i(x_j) = 0 \end{cases} \begin{cases} h_i(x_j) = 0 \\ h'_i(x_j) = \delta_{ij} \end{cases}$$

则:

$$H(x) = \sum_{0 \le i \le n} f(x_i)g_i(x) + \sum_{0 \le i \le n} f'(x_i)h_i(x)$$

差商法:

将有直到 k 阶导数信息的节点当作 k+1 重节点 (离的非常近的 k+1 个不同节点).

误差: 其余项为

$$R_{2n+1} = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} (x-x_0)^2 (x-x_1)^2 \cdots (x-x_n)^2$$

1.6 分段低阶插值

增加节点数目不一定能够提高插值函数的近似程度, 当插值函数阶数较高时, 插值函数震荡严重 (Runge 现象). 将区间分割后在每个小区间上分别插值是一个好的解决方法.

1.6.1 分段线性插值

将区间 [a,b] 做分割: $a=x_0 < x_1 < \cdots < x_n = b$, 在 $[x_i,x_{i+1}]$ 上线性插值得

$$p_i(x) = f(x_i) \frac{x - x_{i+1}}{x_i - x_{i+1}} + f(x_{i+1}) \frac{x - x_i}{x_{i+1} - x_i}$$

则 $P(x) = p_i(x)$ $(x_i \le x \le x_{i+1})$ 称作 f 关于上述节点的**分段线性插值**.

误差: 每段上的误差即为一阶线性插值的误差, 设 M_2 为 f''(x) 在 [a,b] 上的上界, 则分段线性插值的误差限为:

$$|f(x) - P(x)| \le \frac{M_2}{2} (\frac{x_{i+1} - x_i}{2})^2$$

1.6.2 三次样条插值

利用不超过三次的多项式,满足全局二阶光滑的一种分段插值.

注意到, 端点能提供 2n 个约束条件, 段间连接点一二阶导数连续提供了 2(n-1) 个约束条件, 但是决定三次样条插值共需要 4n 个参数, 所以需要更多的两个约束, 可加入端点处的一阶或二阶导数值来限制.

设区间 [a,b] 的分割为 $a = x_0 < x_1 < \cdots < x_n = b$, $S_i(x)$ 为区间 $[x_i, x_{i+1}]$ 上的样条插值函数.

M 关系式:

将样条函数连接处二阶导数值记为 $M_i(1 \le i \le n-1)$, 端点处样条函数二阶导数值设为 $S''(a) = M_0, S''(b) = M_n$

 $M_0 = M_n = 0$ 称作自然边界条件; $S''(a) = f''(x_0), S''(b) = f''(x_n)$ 称为固支边界条件.

对 S''(x) 做分段线性插值, 两次积分产生 2n 个系数, 利用 2n 个端点取值约束得到用 M_i 表示的 S(x) . 此 S(x) 中含有 n-1 个未知参数, 即 $M_i(1 \le i \le n-1)$, 利用 n-1 个连接处一阶导数连续的约束可解出.

样条函数如下:

$$S_i(x) = \frac{(x_{i+1} - x)^3}{6h_i} M_i + \frac{(x - x_i)^3}{6h_i} M_{i+1} + \frac{f(x_i)(x_{i+1} - x) + f(x_{i+1})(x - x_i)}{h_i} - \frac{h_i}{6} ((x_{i+1} - x)M_i + (x - x_i)M_{i+1})$$

称下式为 M 关系式:

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = d_i$$

其中

$$h_i = x_{i+1} - x_i, \ \lambda_i = \frac{h_i}{h_i + h_{i-1}}, \ \mu_i = 1 - \lambda_i, d_i = 6f[x_{i-1}, x_i, x_{i+1}]$$

m 关系式:

将样条函数连接处一阶导数值记为 $m_i(1 \le i \le n-1)$, 端点处样条函数一阶导数值设为 $S''(a) = m_0, S''(b) = m_n$.

与 M 关系式类似地, 利用 Hermite 插值, 得到用 m 表示的样条函数, 利用二阶导数连续定出 $m(1 \le i \le n-1)$ 的值.

样条函数如下:

$$S_{i}(x) = (1 - 2(x - x_{i}) \frac{1}{x_{i} - x_{i+1}}) (\frac{x - x_{i+1}}{x_{i} - x_{i+1}})^{2} f(x_{i})$$

$$+ (1 - 2(x - x_{i+1}) \frac{1}{x_{i+1} - x_{i}}) (\frac{x - x_{i}}{x_{i+1} - x_{i}})^{2} f(x_{i+1})$$

$$+ (x - x_{i}) (\frac{x - x_{i+1}}{x_{i} - x_{i+1}})^{2} m_{i} + (x - x_{i+1}) (\frac{x - x_{i}}{x_{i+1} - x_{i}})^{2} m_{i+1}$$

称下式为 m 关系式:

$$\lambda_i m_{i-1} + 2m_i + \mu_i m_{i+1} = c_i$$

其中

$$h_i = x_{i+1} - x_i, \ \lambda_i = \frac{h_i}{h_i + h_{i-1}}, \ \mu_i = 1 - \lambda_i, c_i = 3(\lambda_i f[x_{i-1}, x_i] + \mu_i f[x_i, x_{i+1}])$$

2 数值微分与数值积分

2.1 数值微分

2.1.1 差商

向前差商:
$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$
, 其误差为 $R(x) = -\frac{h}{2}f''(\xi) \sim O(h)$.

向后差商:
$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$$
, 其误差为 $R(x) = -\frac{h}{2}f''(\xi) \sim O(h)$.

中心差商:
$$f'(x_0) \approx \frac{f(x_0+h)-f(x_0-h)}{2h}$$
, 其误差为 $R(x) = -\frac{h^2}{6}f'''(\xi) \sim O(h^2)$.

实际计算时应注意步长的选取, 采用**事后估计**, 即: 给定精度 ε , 分别取 h,h/2 步长计算差商, 若 $|D(h)-D(h/2)|<\varepsilon$, 则 h/2 为合适步长.

2.1.2 插值型数值微分

以 Lagrange 插值为例, 插值型数值微分即用 $L_n^{(k)}(x)$ 近似 $f^{(k)}(x)$. 其插值点处一阶导数的误差为:

$$R'_n(x_i) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j \neq i} (x_i - x_j)$$

2.2 数值积分

2.2.1 基本概念

数值积分, 即用一些**离散点**上函数值的**线性组合**近似求解积分的方法, 如下式, 其中 $lpha_i$ 成为**积分系数**.

$$I_n(f) \triangleq \sum_{i=0}^n \alpha_i f(x_i) \approx \int_a^b f(x) dx \triangleq I(f)$$

若对于 $f = x^k$, k 当且仅当满足 $0 \le k \le m$ 时都有 $I_n(f) = I(f)$ (存在 $f \in \mathbb{P}^{(m+1)}$ 使此式不成立), 则称积分公式 I_n 有 m 阶代数精度. n+1 个积分节点的数值积分公式, 通过选取适当的积分系数 $\{\alpha_i\}$ 可达到 n 阶代数精度, 积分系数由积分节点 $\{x_i\}$ 的选取唯一确定.

2.2.2 插值型数值积分

利用 f 关于节点 $\{x_i\}$ 的 n 阶插值函数 L_n 所求得的积分近似. 积分系数可选为

$$\alpha = \int_{a}^{b} l_{i}(x) \mathrm{d}x$$

此积分公式拥有至少 n 阶代数精度.

2.2.3 Newton-Cote's 积分

选取积分区间上等距点作为积分节点的插值型数值积分称为 Newton-Cote's 积分, 其积分系数为

$$\alpha_i = (b-a) \frac{(-1)^{n-i}}{i!(n-i)!n} \int_0^n t(t-1) \cdots (t-i+1)(t-i-1) \cdots (t-n) dt$$

其误差为:

$$\begin{cases} E_n(f) = \frac{K_n}{(n+2)!} f^{(n+2)}(\xi), & K_n = \int_a^b x \omega_n(x) dx < 0, & n = 2k \\ E_n(f) = \frac{K_n}{(n+1)!} f^{(n+1)}(\xi), & K_n = \int_a^b \omega_n(x) dx < 0, & n = 2k - 1 \end{cases}$$

可见奇偶性的差别.

梯形积分公式:

Newton-Cote's 积分中取 n=1 即可, 它有一阶代数精度.

$$T(f) = \frac{b-a}{2}(f(a) - f(b))$$

误差:
$$E_1(f) = -\frac{(b-a)^3}{12}f''(\eta) \eta \in [a,b].$$

Simpson 积分公式:

Newton-Cote's 积分中取 n=2 即可, 它有三阶代数精度.

$$S(f) = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b))$$

误差:
$$E_1(f) = -\frac{(b-a)^5}{2880} f^{(4)}(\eta) \eta \in [a,b].$$

2.3 复化数值积分

复化数值积分即分段插值函数的积分.

2.3.1 复化梯形积分

令 $h = (b-a)/n, x_i = a + ih (i = 0, 1, \dots, n)$, 其数值积分公式为:

$$T_n(f) = \frac{h}{2}(f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b))$$

误差:
$$E_n(f) = -\frac{(b-a)^3}{12n^2}f''(\xi).$$

2.3.2 复化 Simpson 积分

令 $h = (b-a)/2n, x_i = a + ih (i = 0, 1, \dots, 2n)$, 其数值积分公式为:

$$S_n(f) = \frac{h}{3}(f(a) + 4\sum_{i=0}^{n-1} f(x_{2i+1}) + 2\sum_{i=1}^{n-1} f(x_{2i}) + f(b))$$

误差:
$$E_n(f) = -\frac{(b-a)^5}{2880n^4} f^{(4)}(\xi).$$

2.3.3 Romberg 积分

为了进一步地提高积分精度、考察复化梯形积分公式和复化 Simpson 积分公式的误差项:

$$I(f) - T_{2n} \approx \frac{1}{3} (T_{2n}(f) - T_n(f))$$

$$I(f) - S_{2n} \approx \frac{1}{15} (S_{2n}(f) - S_n(f))$$

复化梯形积分公式加其误差项作为新的近似值得到复化 Simpson 积分公式:

$$I(f) \approx T_{2n}(f) + \frac{1}{3}(T_{2n}(f) - T_n(f)) = S_n(f)$$

同理, 复化 Simpson 积分公式加其误差项作为新的近似值得到复化 Cotes 积分公式.

$$I(f) \approx S_{2n}(f) + \frac{1}{15}(S_{2n}(f) - S_n(f)) = \frac{16}{15}S_{2n}(f) - \frac{1}{15}S_n f = C_n(f)$$

更一般地, 若将数值积分结果记为 $R_{i,j}$, 其中 j 为插值函数**每个分段**包含的**等分积分区间个数** (插值点数 为 j+1), i 表征积分区间的个数 (2^{i-1}), 则:

$$R_{k,j} = R_{k,j-1} + \frac{R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1}, k = 2, 3, \dots$$

可利用下表计算

复化梯形积分	复化 Simpson 积分	复化 Cotes 积分	Romberg 算法		
$R_{11} = T_n$					
$R_{21} = T_{2n}$	$R_{22} = S_n$				
$R_{31} = T_{4n}$	$R_{32} = S_{2n}$	$R_{33} = C_n$			
$R_{41} = T_{8n}$	$R_{42} = S_{4n}$	$R_{43} = C_{2n}$	$R_{44} = R_n$		
$R_{51} = T_{16n}$	$R_{52} = S_{8n}$	$R_{53} = C_{4n}$	$R_{54} = R_{2n}$		
<u>:</u>	<u>:</u>	i :	: :	٠	:
$R_{m1} = T_{2^{m-1}n}$	$R_{m2} = S_{2^{m-2}n}$	$R_{m3} = C_{2^{m-3}n}$	$R_{m4} = R_{2^{m-4}n}$		R_{mm}

2.3.4 复化积分公式的收敛阶数

定义: 若一个积分公式的误差满足 $\lim_{h\to 0} \frac{R[f]}{h^p} = C < \infty$, 且 $C \neq 0$, 则称此积分公式 p 阶收敛.

由复化数值积分的区间分割方法, 可知 $\frac{R[f]}{h^p} \sim R[f]n^p$. 故可得: $T_n \sim O(h^2)$, $S_n \sim O(h^4)$.

2.3.5 复化积分的精度自动控制

给定精度 ε , 对于 n, 若 $|I_{(2n)}(f) - I_n(f)| < k\varepsilon$, 则 $I_{(2n)}(f)$ 为满足要求的结果. 对于复化梯形积分, k = 3; 对于 复化 Simpson 积分, k = 15. 更一般的, 若数值积分公式 p 阶收敛, 则 $k = 2^n - 1$.

为了提高积分精度,可再加入自适应算法,即在函数值变化剧烈处加密节点,变化缓慢处取相对稀疏的节点.

2.4 重积分

讨论矩形积分区域 D 上的二重积分, 设 a,b,c,d 为常数, f 在 $D = [a,b] \times [c,d]$ 上连续.

2.4.1 复化梯形积分公式

$$\int_{a}^{b} \int_{a}^{b} f(x, y) dx dy \approx hk \sum_{i=0}^{n} \sum_{i=0}^{m} c_{i,j} f(x_i, y_i)$$

其中 $c_{i,j}$ 在角点处为 1/4, 边点处为 1/2, 内点处为 1.

误差:
$$E(f) = -\frac{(d-c)(b-a)}{12}(h^2\frac{\partial^2}{\partial x^2}f(\eta,\mu) + k^2\frac{\partial^2}{\partial y^2}f(\eta',\mu'))$$

2.4.2 复化 Simpson 积分公式

m, n 均为偶数

$$\int_a^b \int_a^b f(x,y) \mathrm{d}x \mathrm{d}y \approx hk \sum_{i=0}^n \sum_{i=0}^m \omega_{i,j} f(x_i,y_i)$$

 $\omega_{i,j} = u_i v_i$, 其中

$$\{u_0, u_1, \dots, u_m\} = \left\{\frac{1}{3}, \frac{4}{3}, \frac{2}{3}, \frac{4}{3}, \dots, \frac{2}{3}, \frac{4}{3}, \frac{1}{3}\right\}$$
$$\{v_0, v_1, \dots, v_n\} = \left\{\frac{1}{3}, \frac{4}{3}, \frac{2}{3}, \frac{4}{3}, \dots, \frac{2}{3}, \frac{4}{3}, \frac{1}{3}\right\}$$

误差:
$$E(f) = -\frac{(d-c)(b-a)}{180}(h^4\frac{\partial^4}{\partial x^4}f(\eta,\mu) + k^4\frac{\partial^4}{\partial y^4}f(\eta',\mu'))$$

2.5 Gauss 积分

2.5.1 基础知识

带权的积分: $I(f) = \int_a^b W(x)f(x)dx$, 其中权函数 $W(x) \ge 0$ 在 [a,b] 上成立.

内积: 在多项式函数构成的线性空间上可定义关于权 W(x) 的内积: $(f,g) = \int_a^b W(x)f(x)g(x)dx$. 可先取基 $\{1,x,x^2,\cdots,x^n\}$, 通过 Schmidt 正交化获得正交基.

定理 1: [a,b] 上权为 W(x), 具有 n 个积分节点的数值积分公式, 代数精度不会超过 2n-1.

2.5.2 Gauss 型积分

定义: [a,b] 上权为W(x) 的正交多项式 $p_n \perp \mathbb{P}_{n-1}$ 的n 个零点为积分节点,积分系数取 $\alpha_i = \int_a^b W(x)l_i(x)\mathrm{d}x$ 的数值积分公式 $G_n = \sum_{i=1}^n \alpha_i f(x_i)$ 称为 Gauss 型积分.

Gauss 型积分的积分系数大于 0; 当 $n \to \infty$ 时, 数值积分收敛于原积分.

误差:
$$E_n(f) = \frac{f^{(2n)}(\xi)}{(2n)!} \int_a^b W(x)(x-x_1)^2 (x-x_2)^2 \cdots (x-x_n)^2 dx$$

3 曲线拟合的最小二乘法

拟合是一种逼近原函数的方法.

3.1 向量范数

定义: 映射 $||\cdot||: \mathbb{R}^n \to \mathbb{R}^+ \cup \{0\}$, 若满足如下条件, 则称该映射为向量的范数.

- 1. 非负性: $||X|| \ge 0$, $||X|| = 0 \Leftrightarrow X = 0$.
- 2. 其次性: $\forall a \in \mathbb{R}, ||aX|| = |a| \cdot ||X||$.
- 3. 三角不等式: $||X + Y|| \le ||X|| + ||Y||$.

向量的
$$p = 范数: ||X||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}.$$

几种常见的范数: 1-范数
$$||X||_1 = \sum_{i=1}^n |x_i|$$
 ; 2-范数 $||X||_2 = \sqrt{\sum_{i=1}^n x_i^2}$; ∞ 范数 $||X||_\infty = \max\{|x_i|\}$.

3.2 最小二乘问题

设 f(x) 为定义在 [a,b] 上的函数, $\{x_i\}_{i=1}^m$ 为区间上 m 个互不相同的点。寻找这样一个函数 Φ ,使得矢量 $(\Phi(x_1),\Phi(x_2),\cdots,\Phi(x_m))$ 与 $(f(x_1),f(x_2),\cdots,f(x_m))$ 二范数意义下距离最短,构造方法称为**最小二乘法**. 取函数类为多项式函数空间 \mathbb{P}_n ,此时得到的拟合函数 ϕ 称为**多项式拟合函数**.

定理:

- 1. 设 $m > n, A \in \mathbb{R}_{m \times n}, b \in \mathbb{R}_{m \times 1}, \text{rank}(A) = n.$ 称 $A^T A x = A^T b$ 为矛盾方程组 A x = b 的法方程, 法方程有唯一解.
- 2. 法方程的解 x 使得 $||Ax b||_2$ 最小.

实际拟合时, 取 x=a, a 为多项式的系数, A 为 x^i 于各拟合样本点的取值构成的变换矩阵, 显然 Ax 即为矢量 $(\Phi(x_1), \Phi(x_2), \cdots, \Phi(x_m))$, 按照定理 2 便可求得 $||Aa-y||_2$ 最小时的系数矩阵 a.

若给定的 Φ 不是线性空间,可采用变量代换将其转化为多项式拟合问题;此时结果已不是最小二乘意义下的最小,但也有直观拟合意义.

4 非线性方程求解

4.1 对分法

即二分法, 设要求的求解精度为 ε , 其终止条件为 $|f(x) < \varepsilon|$. 可估计所需的对分次数 k:

$$\frac{b-a}{2^k} < \varepsilon \Rightarrow k > \frac{\ln(b-a) - \ln \varepsilon}{\ln 2}$$

另一种终止条件, 当 $|a-b| < 2\varepsilon$ 时终止, 取**区间中点**为方程的根.

4.2 迭代法

4.2.1 基本理论

基本步骤:

- 给出方程的等价形式 $f(x) = 0 \Leftrightarrow x = \phi(x)$
- 取**合适的**初值 x_0 , 构造迭代序列 $x_{k+1} = \phi(x_k)$.
- 若 $k \to \infty$ 时 $x_k \to x^*$, x^* 为方程的解; 若不存在极限, 则迭代失败, 需重选 x_0 或重新构造插值格式 ϕ .

定理:

若 $\phi \in C^1[a,b]$ 满足:

- 1. $x \in [a, b], a \le \phi(x) \le b$.
- 2. $\exists 0 < L < 1$, 使得 $\forall x \in [a, b]$ 有 $|\phi'(x)| \le L$ (ϕ 为压缩映射).

则有:

- 存在唯一的 x^* 使得 $x^* = \phi(x^*)$.
- $\forall x_0 \in [a, b]$, 迭代序列 $\{x_k\}$ 收敛, 且误差为

$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

4.2.2 收敛的阶数

定义: $\{x_k\} \to x^*, \varepsilon_k = |x^* - x_k|$. 若 $\exists p \leq 1$ 和正常数 c, 使得

$$\lim_{k\to\infty}\frac{\varepsilon_{k+1}}{\varepsilon_{L}^{p}}=c$$

则称 $\{x_k\}$ p 阶收敛, 相应的迭代格式亦为 p 阶收敛.

定理:

 x^* 为 $x = \phi(x)$ 的根, ϕ 在 x^* 处有连续 p 阶导数, 且从 $1 \sim p - 1$ 阶导数值均为 0, $\phi_{(p)} \neq 0$, 则迭代 $x_{k+1} = \phi(x_k)$ 为 p 阶收敛.

4.2.3 Newton 迭代

$$x_{k+1} = \phi(x_k) = x_k - \frac{f(x_k)}{f'(x_k)}$$

该迭代方法当所求根为单根时为二阶收敛: 若不是单根,则为一阶收敛. 当知道所求根的重数 p 时,可采取改进的迭代公式使迭代重新成为二阶:

$$x_{k+1} = \phi(x_k) = x_k - p \frac{f(x_k)}{f'(x_k)}$$

4.2.4 弦截法

将 Newton 迭代公式中的导数用差商代替, 得到

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

4.2.5 非线性方程组的 Newton 迭代法

设方程组 $f_i(x_1, x_2, \dots, x_n) = 0$. 记 $F = (f_1, f_2, \dots, f_n)^T, X = (x_1, x_2, \dots, x_n)^T$,则方程组表示为 F(X) = 0. 取初值 $X_0 = (x_{01}, x_{02}, \dots, x_{0n})^T$,则将 f_i 在 X_0 处 Taylor 展开后去线性部分得:

$$\begin{cases} f_1(X_0) + \frac{\partial f_1}{\partial x_1}(x_1 - x_{01}) + \dots + \frac{\partial f_1}{\partial x_n}(x_n - x_{0n}) = 0 \\ f_2(X_0) + \frac{\partial f_2}{\partial x_1}(x_1 - x_{01}) + \dots + \frac{\partial f_2}{\partial x_n}(x_n - x_{0n}) = 0 \\ \vdots \\ f_n(X_0) + \frac{\partial f_n}{\partial x_1}(x_1 - x_{01}) + \dots + \frac{\partial f_n}{\partial x_n}(x_n - x_{0n}) = 0 \end{cases}$$

该方程写成矩阵形式:

$$F(X_0) + J_F(X_0)(X - X_0) = 0$$

则取迭代为:

$$X_{k+1} = X_k - J_F^{-1}(X_k)F(X_k)$$

5 解线性方程组的直接法

5.1 消元法

5.1.1 特殊形式

设方程为 Ax = b, 其中:

$$A = \begin{pmatrix} I_{11} & I_{12} & \cdots & I_{1n} \\ I_{21} & I_{22} & \cdots & I_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & \cdots & I_{nn} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

• 系数矩阵为对角阵, 即 $I_{ij} = \delta_{ij}$, 方程的解为 $x_i = \frac{b_i}{I_{ii}}$

• 系数矩阵为下三角矩阵, 即
$$I_{ij}=0, (i< j)$$
 , 方程的解为 $x_i=\frac{b_i-\sum\limits_{j=1}^{i-1}I_{ij}x_j}{I_{ii}}$

• 系数矩阵为上三角矩阵, 即 $I_{ij}=0, (i>j)$, 方程的解为 $x_i=\dfrac{b_i-\sum\limits_{j=i+1}^nI_{ij}x_j}{I_{ii}}$

5.1.2 Gauss 消元

将系数矩阵转换为上三角阵, 方法为: 依次地, 第 k ($k=1,2,\cdots,n-1$) 行 × $\frac{-a_{jk}^{(k)}}{a_{kk}}$ + 第 j ($j=k+1,k+2,\cdots,n$) 行. 此过程总运算量为 n^3 量级.

上述过程存在问题: 对于 $a_{kk}^{(k)}=0$ 的情形无能为力; 当某个 $a_{kk}^{(k)}$ 很小时, 计算结果误差较大. 后者是因为, 未知数序列中先被解出的量误差累积, 会导致在 $a_{kk}^{(k)}$ 产生与这个系数接近的误差.

可做如下算法改进: 当第 k 步消元前, 交换第 k 行与后 k 行中第 k 个系数 (即 a_{*k}) 绝对值最大的一行. 这种方法称为**列主元消元法**.

结果更稳定的做法: 第 k 步消元前, 找出系数矩阵 $a_{ij}^{(k)}$ $(i,j\in[k,n])$ 中最大的一项 $a_{mn}^{(k)}$, 交换第 k 行与第 m 行, 交换第 k 列与第 n 列. 这种方法称为**全主元消元法**

5.1.3 Gauss-Jordan 消元法

依次地, 第 k ($k=1,2,\cdots,n-1$) 行 × $\frac{-a_{jk}^{(k)}}{a_{kk}}$ + 第 j ($j=1,2,\cdots,k-1,k+1,\cdots,n$) 行. 与 Gauss 消元法复杂 度量级一致.

5.2 直接分解法

将系数矩阵分解, 例如 A = LU, 则

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b & (1) \\ Ux = y & (2) \end{cases}$$

5.2.1 Doolittle 分解与 Courant 分解

- L 为单位下三角阵, U 为上三角阵, 称为 Doolittle 分解.
- L为下三角阵, U为单位上三角阵, 称为 Doolittle 分解.

分解方法:

- Doolittle \mathcal{G} $\mathcal{$
- Courant \mathcal{G} \mathcal{G}

P.S. 该方法与 Gauss 消元法复杂度相同.

三对角阵的追赶法: 将 Courant 方法用于如下三对角阵即可, 计算复杂度 5n-4.

$$\begin{pmatrix} a_1 & b_1 & & & \\ c_2 & a_2 & \ddots & & \\ & \ddots & \ddots & b_{n-1} \\ & & c_n & a_n \end{pmatrix} = \begin{pmatrix} \alpha_1 & & & \\ \gamma_2 & \alpha_2 & & & \\ & \ddots & \ddots & & \\ & & \gamma_n & \alpha_n \end{pmatrix} \begin{pmatrix} 1 & \beta_1 & & & \\ & 1 & \ddots & & \\ & & \ddots & \beta_{n-1} \\ & & & 1 \end{pmatrix}$$

对称正定阵的 LDL^T 分解: 对正定阵 $A=(a_{ij})$

$$A = \begin{pmatrix} 1 & & & \\ l_{21} & 1 & & \\ \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{pmatrix} \begin{pmatrix} 1 & l_{21} & \cdots & l_{n1} \\ & 1 & \cdots & l_{n2} \\ & & & \ddots & \vdots \\ & & & 1 \end{pmatrix}$$

5.3 矩阵的条件数

5.3.1 矩阵范数

定义: 设 $||\cdot||$ 是以 n 阶方阵为变量的实值函数, 且满足下面条件, 则称 ||A|| 为矩阵 A 的范数.

- 1. 非负性: $||X|| \ge 0$, $||X|| = 0 \Leftrightarrow X = 0$.
- 2. 其次性: $\forall a \in \mathbb{R}, ||aX|| = |a| \cdot ||X||$.
- 3. 三角不等式: $||X + Y|| \le ||X|| + ||Y||$.
- 4. 相容性 ||*AB*|| ≤ ||*A*|| ||*B*||

诱导的矩阵范数: 设 ||·|| 是一种向量范数, 可定义矩阵范数为:

$$||A|| = \sup_{x \in R^n, x \neq 0} \frac{||Ax||}{||x||} = \sup_{x \in R^n, ||x|| = 1} ||Ax||$$

定义: 设 λ_i 为 A 所有的特征值, 则 $\rho(A) = \max_{1 < i < n} |\lambda_i|$ 表示 A 的模最大特征值, 称为 A 的**谱半径**.

则对应于 3 中最常见的向量 p- 范数, 有 3 种常见的诱导范数:

•
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

•
$$||A||_{\infty} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ji}|$$

•
$$||A||_2 = \sqrt{\rho(A^T A)}$$

•
$$||A||_E = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$$

定理: λ 为 A 的特征值, $||\cdot||$ 为任一诱导的矩阵范数, 则 $\lambda \leq ||A||$.

故 $\rho(A) \leq ||A||$, A 对称时等号成立.

5.3.2 条件数和病态矩阵

定义: $Cond_p(A) = ||A||_p \cdot ||A^{-1}||_p$ 称为 p— 范数意义下的条件数.

p=2 时, $Cond_2(A) = |\lambda|_{min}/|\lambda|_{max}$. 引入条件数用来讨论解随误差的变化, 解的稳定性等. 一般来说, 条件数大的方阵对应着病态的线性方程组, 另外若 det(A) 很小, 则此矩阵也一般是病态的. 以下二式可表明这样一种关系:

$$b$$
 受到扰动 δx 后, $\frac{||\delta x||}{||x||} \leq \operatorname{Cond}(A) \frac{||\delta b||}{||b||}$

对于第二式的证明:

对 A 施加一个微扰 δA , 则方程变为 $(A + \delta A)(x + \delta x) = b$, 考虑到 Ax = b, 则:

$$A\delta x + \delta A x + \delta A \delta x = 0$$

等式两边同乘 A^{-1} , 移项得

$$\delta x = -(A^{-1}\delta A x + A^{-1}\delta A\delta x)$$

两边取范数,

$$\begin{split} ||\delta x|| &= ||A^{-1}\delta A \, x + A^{-1}\delta A \delta x|| \leq ||A^{-1}\delta A \, x|| + ||A^{-1}\delta A \delta x|| \\ &\leq ||A^{-1}|| \, ||\delta A|| \, ||x|| + ||A^{-1}|| \, ||\delta A|| \, ||\delta x|| \end{split}$$

再次移项, 左面只保留 x 相关项

$$\frac{\frac{||\delta x||}{||x||} \le \frac{||A^{-1}|| \ ||\delta A||}{1 - ||A^{-1}|| \ ||\delta A||}}{1 - ||A^{-1}|| \ ||\delta A||} = \frac{\frac{||A^{-1}|| \ ||A||}{||A^{-1}|| \ ||A||}}{1 - ||A^{-1}|| \ ||A||} \frac{\frac{||\delta A||}{||A||}}{||A||}}{1 - \operatorname{Cond}(A) \frac{||\delta A||}{||A||}}$$

6 解线性方程组的迭代法

6.1 普遍理论

6.1.1 迭代方程的构造

欲写出 Ax = b 等价方程 x = Gx + q,将 A 写成这样的形式: A = N - P,其中 N 人为地取成可逆矩阵,则:

$$Ax = b \Leftrightarrow (N - P)x = b \Leftrightarrow x = N^{-1}Px + N_{-1}b$$

令 $G = N^{-1}P$ 称作迭代矩阵, $g = N^{-1}b$, 于是我们得到了与原方程等价的有迭代意义的方程, 此方程的不动点即原方程的根.

6.1.2 能够迭代求根的条件

6.2 Jacobi 迭代

方法为: 将第 i 个方程做这样的变形

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i$$

$$\to x_i = -\frac{1}{a_{ii}}(a_{i1}x_1 + \dots + a_{i,i-1}x_{i-1} + a_{i,i+1}x_{i+1} + \dots + a_{in}x_n)$$

依次取如下迭代 (k 为迭代次数):

$$x_i^{(k+1)} = -\frac{1}{a_{ii}} (a_{i1}x_1^{(k)} + \dots + a_{i,i-1}x_{i-1}^{(k)} + a_{i,i+1}x_{i+1}^{(k)} + \dots + a_{in}x_n^{(k)})$$

迭代矩阵 $B = -D^{-1}(L+U) = I_n - D^{-1}A$, 其中

$$L = \begin{pmatrix} 0 & & & 0 \\ a_{21} & 0 & & \\ \vdots & \ddots & \ddots & \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}, \ U = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ & 0 & \ddots & \vdots \\ & & \ddots & \vdots \\ & & \ddots & a_{n-1,n} \\ 0 & & & 0 \end{pmatrix}, \ D = \operatorname{diag}(a_{11}, a_{22}, a_{nn})$$

则迭代格式收敛的充要条件为 B 的谱半径 $\rho(B) < 1$. 对于 Jacobi 迭代, 有如下保证迭代收敛的**充分条件**

定理:

若 A 满足下列条件之一, 则 Jacobi 迭代收敛.

- A 为行对角占优阵, 即 $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$
- A 为列对角占优阵, $\mathbb{P}||a_{jj}|>\sum_{i
 eq j}|a_{ij}|$

6.3 Gauss-Seidel 迭代

在 Jacobi 迭代基础上做一点改动, 取如下迭代形式:

$$x_i^{(k+1)} = -\frac{1}{a_{ii}} \left(a_{i1} x_1^{(k+1)} t + \dots + a_{i,i-1} x_{i-1}^{(k+1)} + a_{i,i+1} x_{i+1}^{(k)} + \dots + a_{in} x_n^{(k)} \right)$$

其迭代矩阵为: $S = -(D+L)^{-1}U$ 迭代格式收敛的充要条件为 S 的谱半径 $\rho(S) < 1$. 对于 Jacobi 迭代, 有如下保证 迭代收敛的**充分条件**.

定理:

若 A 满足下列条件之一, 则 Gauss-Seidel 迭代收敛.

- A 为行或列对角占优阵.
- A 为对称正定阵.

6.4 松弛迭代

进一步地改动,将下式第一项,加入修正因子 ω :

$$x_i^{(k+1)} = x_i^{(k)} - \frac{\omega}{a_{ii}} (a_{i1} x_1^{(k+1)} t + \dots + a_{i,i-1} x_{i-1}^{(k+1)} + a_{ii} x_i^{(k)} + a_{i,i+1} x_{i+1}^{(k)} + \dots + a_{in} x_n^{(k)})$$

其迭代矩阵为: $S_{\omega} = (D + \omega L)^{-1}((1 - \omega)D - \omega U)$.

定理:

- 松弛迭代收敛 $\Rightarrow 0 < \omega < 2$.
- 若 A 正定, 则 $0 < \omega < 2$ 时松弛迭代收敛.

6.5 总结

- 1. Jacobi 迭代和 Gauss-Seidel 迭代均存在收敛性问题, 二者的收敛范围存在交集.
- 2. 一般情形下 Gauss-Seidel 速度大于 Jacobi 迭代, 但不绝对.
- 3. 对于松弛迭代, 通常称 $0<\omega<1$ 的迭代称为**亚松弛迭代**, $1<\omega<2$ 称为**超松弛迭代**, $\omega=1$ 即为 Gauss-Seidel 迭代.
- 4. 松弛迭代方法收敛的快慢与松弛因子 omega 的选择有密切关系, 如何选取 ω 使得 $\rho(S_{\omega})$ 无很好的解决方法, 经验上可取 $1.4 < \omega < 1.6$.

7 矩阵的特征值与特征向量

7.1 幂法

矩阵的按模最大特征值往往具有特殊重要性, 例如**谱半径**. 幂法是一种经典求矩阵**按模最大特征值**和**相应特征向量**的方法. 其它模较小的特征值由 Wielandt 压缩法和幂法依次再求. **幂法要求** A 有 n 个线性无关的特征向量 设 A 的特征值为 $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$, 对应的特征向量为 v_1, v_2, \cdots, v_n .

算法:

- 1. 选取初值 $x^{(0)}$, 构造向量 $x^{(k)} = Ax^{(k-1)} = A^k x^{(0)}$
- 2. 若序列表现为相邻两个向量各分量之比趋于一个常数,则:

$$\begin{cases} \lambda_1 \approx x_i^{(k+1)} / x_i^{(k)} \\ v_1 \approx x^{(k)} \end{cases}$$

3. 若序列表现为奇偶序列各个分量比分别趋向于常数,则:

$$\begin{cases} \lambda_1 \approx \sqrt{x_i^{(k+2)}/x_i^{(k)}} p \\ v_1 \approx x^{(k+1)} + \lambda_1 x^{(k)} \\ v_2 \approx x^{(k+1)} - \lambda_1 x^{(k)} \end{cases}$$

4. 若表现为其它, 退出, 需采用其它方法.

为了避免 $k \to \infty$ 迭代所得结果中产生无穷大或无穷小,将算法做一些改进,称为规范化幂法.

算法:

1. 选取初值 $x^{(0)}$, 记 $y^{(0)} = x^{(0)}/||x^{(0)}||_{\infty}$, 构造向量序列

$$\begin{cases} x^{(k+1)} = Ay^{(k)} \\ y^{(k+1)} = x^{(k+1)} / ||x^{(k+1)}||_{\infty} \end{cases}$$

2. 若序列收敛, 则:

$$\begin{cases} \lambda_1 \approx ||x^{(k+1)}||_{\infty} \\ v_1 \approx y^{(k)} \end{cases}$$

3. 若序列表现为奇偶子列分别收敛于两个反号向量,则:

$$\begin{cases} \lambda_1 \approx -||x^{(k+1)}||_{\infty} \\ v_1 \approx y^{(k)} \end{cases}$$

4. 若序列的奇偶子列分别收敛, 但不收敛于相反的向量, 记 $\tilde{x}^{(k+2)} = A^2 y^{(k)}$, 则:

$$\begin{cases} \lambda_1 \approx \sqrt{\widetilde{x}_i^{(k+2)}/y_i^{(k)}} \\ v_1 \approx x^{(k+1)} + \lambda_1 y^{(k)} \\ v_2 \approx x^{(k+1)} - \lambda_1 y^{(k)} \end{cases}$$

5. 其他状况另行考虑.

幂法的总结

- 实用的是规范化的幂法.
- 方法不需考虑最大特征值是否为重根.
- 收敛速度由 $|\lambda_2/\lambda_1|$ 决定, 其值越小收敛速度越快.
- 由于 $A p\mathbb{I}_n$ 的所有特征值为 $\{\lambda_i p\}$, 当收敛很慢时可尝试计算 $A p\mathbb{I}_n$.
- 当 $|\lambda_1| = |\lambda_2|$ 且二者共轭时, 也可求出它们的特征向量.

7.2 反幂法

用于计算 A 的模最小特征值与其相应的特征向量.

由 $Av=\lambda v$ 知 $A^{-1}v=v/\lambda$,即 A 与 A^{-1} 的特征值互为倒数. 对 A^{-1} 运用幂法求得模最大特征值 μ ,则 $1/\mu$ 即为 A 的模最小特征值, 称为反幂法.

实际计算时, 通常为了避免求逆的运算, 将算法中利用 $x^{(k+1)}=A^{-1}y^{(k)}$ 求得 $x^{(k+1)}$ 的过程改为通过利用解线性方程组 $Ax^{(k+1)}=y^{(k)}$ 实现.

7.3 对称阵的 Jacobi 方法

Jacobi 方法通过构造 Givens 正交阵 Q 作用于 A 上得到 Q^TAQ 来减少非对角元的比重, 当此比重足够小的时候 便可认为对角元就是 A 的全部特征值. Givens 矩阵为具有如下形式的正交阵:

$$Q(p,q,\theta) = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & \cos\theta & \cdots & \sin\theta & \\ & & \vdots & \ddots & \vdots & \\ & -\sin\theta & \cdots & \cos\theta & & \\ & & & \ddots & \\ & & & 1 \end{pmatrix}$$

算法:

- 1. 选取非对角元中绝对值最大的项 $a_{pq} = a_{qp}$.
- 2. $s=\frac{a_{qq}-a_{pp}}{2a_{pq}}$,解方程 $t^2+2st-1=0$,令 t 为该方程**模较小的根**. 3. 利用下式算出 c,s

$$\begin{cases} c = \frac{1}{\sqrt{1+t^2}} \\ s = \frac{t}{\sqrt{1+t^2}} \end{cases}$$

4. 构造矩阵 Q, 计算 Q^TAQ , 返回 1.

$$Q(p,q) = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & c & \cdots & s & & \\ & & \vdots & \ddots & \vdots & & \\ & & -s & \cdots & c & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$