7. [Maximum mark: 7]

A particle moves in a straight line. Its velocity $v \, \mathrm{m \, s}^{-1}$ after t seconds is given by

$$v = 6t - 6$$
, for $0 \le t \le 2$.

After p seconds, the particle is $2 \, \mathrm{m}$ from its initial position. Find the possible values of p.

•	٠	•	٠		•		•			٠	*	•	 •	٠	•	•		٠	•	٠	•	 	•		•	•			•		•		•	٠	•		٠	٠		٠	•	* 1		•	*			•				
		•				2		•						٠	×			٠		e		 . ,								٠						 			 	·	•			٠						¥1 1		
			•						 ٠					•				•				 														 	٠		 				 •			 						
														•	•				•			 														 			 		٠											
				 ٠.																		 														 	•		 		•					 						
				 			•															 							٠							 			 													
													•																																							
•	•	•																																												 •	•	•	•		•	
×	٠	•	•		٠	•		•	 ٠	•	•		 •	•	•			•	•	•	٠	 •	•	٠	•	•		٠	٠	٠	•		٠	•	•	 	•	٠		٠	•		 ٠	٠	•		٠	٠	•			
٠	•				•				 •	•				٠	٠	• •	•	٠	•	•	٠		•	•	•	•	•	•	•		•		•		•	 				•	٠	•	 ٠	٠	٠			•	•			٠
٠	•				٠	•	٠		 ٠	٠	•	•	 ٠					٠	•		•		•				•		•	٠			٠			 			 	•	٠			٠	•			٠	•			
•				 		•	•		 ٠	٠								•							•				٠							 				٠		•		٠		 						
٠						•	•		 •						•			٠	•		•											•	•			 	•									 				*	٠.	

Turn over

6.	[Махітит	mark:	87

Ramiro and Lautaro are travelling from Buenos Aires to El Moro.

Ramiro travels in a vehicle whose velocity in ms^{-1} is given by $V_R = 40 - t^2$, where t is in seconds.

Lautaro travels in a vehicle whose displacement from Buenos Aires in metres is given by $S_L = 2t^2 + 60$.

When t = 0, both vehicles are at the same point.

Find Ramiro's displacement from Buenos Aires when t = 10.

																																																			_							
																																																									•	
																																																									•	
																																																									•	
																																																									•	
																																																									•	
																																																									•	
																																																									٠	
																																																									•	
																																																									•	
•																																																										
•		•		٠		 		•	•	٠	٠	•	٠	•	٠	٠	٠	•	٠	٠	٠	•	•	•	٠	٠	٠	•	 •	•	٠	•	•	•	• •	٠.	•	•	•	• •	•	٠	•	•	• •	٠	٠	•	•	 •	•	٠	•	• •	•	•	•	•

Do not write solutions on this page.

9. [Maximum mark: 14]

A particle P moves along a straight line so that its velocity, ν ms⁻¹, after t seconds, is given by $\nu = \cos 3t - 2\sin t - 0.5$, for $0 \le t \le 5$. The initial displacement of P from a fixed point O is 4 metres.

(a) Find the displacement of P from O after 5 seconds.

[5]

[2]

The following sketch shows the graph of v.

- (b) Find when P is first at rest.
- (c) Write down the number of times P changes direction. [2]
- (d) Find the acceleration of P after 3 seconds. [2]
- (e) Find the maximum speed of P. [3]

7. [Maximum mark: 6]

A particle starts from point A and moves along a straight line. Its velocity, $v \, \text{m s}^{-1}$, after t seconds is given by $v(t) = e^{\frac{1}{2}\cos t} - 1$, for $0 \le t \le 4$. The particle is at rest when $t = \frac{\pi}{2}$. The following diagram shows the graph of v.

- (a) Find the distance travelled by the particle for $0 \le t \le \frac{\pi}{2}$. [2]
- (b) Explain why the particle passes through A again. [4]

Do **NOT** write solutions on this page.

9. [Maximum mark: 15]

A particle moves in a straight line. Its velocity, $v \, \text{ms}^{-1}$, at time t seconds, is given by

$$v = (t^2 - 4)^3$$
, for $0 \le t \le 3$.

- (a) Find the velocity of the particle when t = 1. [2]
- (b) Find the value of t for which the particle is at rest. [3]
- (c) Find the total distance the particle travels during the first three seconds. [3]
- (d) Show that the acceleration of the particle is given by $a = 6t(t^2 4)^2$. [3]
- (e) Find all possible values of t for which the velocity and acceleration are both positive or both negative. [4]

Turn over

7. [Maximum mark: 7]

Let $f(x) = \frac{g(x)}{h(x)}$, where g(2) = 18, h(2) = 6, g'(2) = 5, and h'(2) = 2. Find the equation of the normal to the graph of f at x = 2.

																																						•	•	٠
 •	 	•	 •	•	 •	•	 •	•		•	•	 •	•	 •	•	•	 	•	 •		•	•	 •	•	 ٠		•	•	 •	•	• •	•	•	•	 ٠	•	• •	•	•	•

Do not write solutions on this page.

9. [Maximum mark: 14]

Let
$$f(x) = \frac{1}{x-1} + 2$$
, for $1 < x < 4$.

- (a) Write down the equation of the horizontal asymptote of the graph of f. [2]
- (b) Find f'(x). [2]

Let $g(x) = ae^{-x} + b$, for $x \ge 1$. The graphs of f and g have the same horizontal asymptote.

- (c) Write down the value of b. [2]
- (d) Given that g'(1) = -e, find the value of a. [4]
- (e) There is a value of x for which the graphs of f and g have the same gradient. [4]

5. (a)
$$t = 5$$
 (A1)

correct substitution into formula (A1)
$$eg = 210\sin(0.5 \times 5 - 2.6) + 990$$
, $P(5)$

969.034982...

969 (deer) (must be an integer) A1*N3*

[3 marks]

(b) (i) evidence of considering derivative (M1)
$$\frac{\partial G}{\partial x} = \frac{P'}{P'}$$

104.475

104 (deer per month) A1N2

A1(the deer population size is) increasing *N1* (ii)

[3 marks]

Total [6 marks]

6. **METHOD 1**

$$S_L(0) = 60$$
 (seen anywhere) (A1)

recognizing need to integrate V_R (M1)

$$eg S_{R}(t) = \int V_{R} dt$$

correct expression

$$eg 40t - \frac{1}{3}t^3 + C$$
 A1A1

Note: Award AI for 40t, and AI for $-\frac{1}{2}t^3$.

equate displacements to find C (R1)

$$eg 40(0) - \frac{1}{3}(0)^3 + C = 60, S_L(0) = S_R(0)$$

$$C = 60$$

attempt to find displacement (M1)

eg
$$S_R(10)$$
, $40(10) - \frac{1}{3}(10)^3 + 60$

126.666

$$126\frac{2}{3}$$
 (exact), 127 (m) A1 N5

continued ...

Total [15 marks]

9. (a) substituting
$$t = 1$$
 into v
 $eg = v(1), \left(1^2 - 4\right)^3$

velocity $= -27 \text{ (ms}^{-1})$
 $velocity = -27 \text{ (ms}^{-1$

9. (a) **METHOD 1**

recognizing
$$s = \int v$$
 (M1)

recognizing displacement of P in first S seconds (seen anywhere) **A1** (accept missing dt)

eg
$$\int_0^5 v dt$$
, -3.71591

valid approach to find total displacement (M1)

eg
$$4 + (-3.7159)$$
, $s = 4 + \int_0^5 v$

0.284086

METHOD 2

recognizing
$$s = \int v$$
 (M1)

correct integration A1

eg
$$\frac{1}{3}\sin 3t + 2\cos t - \frac{t}{2} + c$$
 (do not penalize missing "c")

attempt to find c (M1)

eg
$$4 = \frac{1}{3}\sin(0) + 2\cos(0) - \frac{0}{2} + c$$
, $4 = \frac{1}{3}\sin 3t + 2\cos t - \frac{t}{2} + c$, $2 + c = 4$

attempt to substitute t = 5 into their expression with c (M1)

eg
$$s(5), \frac{1}{3}\sin(15) + 2\cos(5) - \frac{5}{2} + 2$$

0.284086

(b) recognizing that at rest, v = 0 (M1)

t = 0.179900

$$t = 0.180 \text{ (secs)}$$
 A1 N2 [2 marks]

(c) recognizing when change of direction occurs (M1)

eg v crosses t axis

continued...

Question 9 continued

(d) acceleration is
$$v'$$
 (seen anywhere) (M1)

eg
$$v'(3)$$

0.743631

$$0.744 \text{ (ms}^{-2})$$
 A1 N2 [2 marks]

(e) valid approach involving max or min of v (M1)

eg
$$v' = 0$$
, $a = 0$, graph

one correct co-ordinate for min (A1)

Total [14 marks]

[2 marks]

eg
$$AO + OB$$
, $B - A$

$$\overrightarrow{AB} = \begin{pmatrix} 9 \\ 6 \\ -3 \end{pmatrix}$$
 A1 N2

(b) METHOD 1

valid approach using
$$\overrightarrow{OC} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 (M1)

valid approach using
$$\overrightarrow{OC} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

eg $\overrightarrow{AC} = \begin{pmatrix} x+3 \\ y+2 \\ z-2 \end{pmatrix}$, $\overrightarrow{CB} = \begin{pmatrix} 6-x \\ 4-y \\ -1-z \end{pmatrix}$

correct working A1

$$eg \qquad \begin{pmatrix} x+3\\y+2\\z-2 \end{pmatrix} = \begin{pmatrix} 12-2x\\8-2y\\-2-2z \end{pmatrix}$$

all three equations A1

eg
$$x+3=12-2x$$
, $y+2=8-2y$, $z-2=-2-2z$,

$$\overrightarrow{OC} = \begin{pmatrix} 3\\2\\0 \end{pmatrix}$$
 AG NO

continued...

$$f(2) = \frac{18}{6}$$
 (seen anywhere)

correct substitution into the quotient rule

$$eg \qquad \frac{6(5)-18(2)}{6^2}$$

$$f'(2) = -\frac{6}{36}$$

A1

gradient of normal is 6

attempt to use the point and gradient to find equation of straight line

-13-

(M1)

$$eg y-f(2) = -\frac{1}{f'(2)}(x-2)$$

eg
$$y-3=6(x-2), y=6x-9$$

[7 marks]