A Simulation Surrogacy Method For The Study Of Molten Salt Reactor Lifecycle Chemistry

Braden Clayton¹, Loc Duong², Erika Moss³, Ondrej Chvala¹, Kevin Clarno¹, Derek Haas¹

bkc959@my.utexas.edu

Background

Understanding the chemical behavior of fuel salt throughout a Molten Salt Reactor's (MSR) lifecycle is key to determining:

- Optimal Fuel Cycling
- Radiological Risk
- Fouling of Heat Exchangers

With limited thermochemical data for impurities in irradiated fuel salt, this work proposes a framework to model MSR chemistry, using simulation surrogates for elements lacking data.

Methodology

Suitable surrogates will have similar chemical behavior. The first surrogate mapping makes use of similarities between half reactions and valence states.

Surrogate: An element for which data is readily available in MSTDB-tc v3.1

Candidate: An element for which no data is available in MSTDB-tc v3.1

Some have no suitable surrogate.

Framework

- SCALE Runs Depletion Calculations
- Thermochimica Gibs Energy Minimizer (using MSTDB)
- Molten Salt Thermochemical
 Database (MSTDB)

Findings

• Chemistry Control needed to keep salt healthy ($\sim 0.0001 - 0.01 \, \text{UF}_3/\text{UF}_4$)

SCALE_2_Thermochimica Framework

- Uncontrolled salt produces volatile species such as F₂ and PuF₆
- ThEIRENE Fuel Cycle: 0.002 moles of additional gas per mole salt

Conclusions

- MSTDB offers many important capabilities, but has no data for key species: O, H, Te
- Introducing I with other impurities creates numerical instabilities and non-physical results
- Chemical control is needed to mitigate fluorine volatility.
- It is vital that adaptable frameworks be built so that new data can be easily incorporated

Future Work

- Improved Surrogate Mapping
- Iodine Sensitivity Studies
- Physics Based Separation Schemes
- Investigation of Redox Controls
- Improve Framework Efficiency
- Complete Timestep Integration

Acknowledgments

Thank you to the state of Texas for funding the Molten Salt Reactor Digital Twin Initiative, and to the developers of SCALE, Thermochimica and MSTDB.

Institutions:

- Walker Department of Mechanical Engineering, University of Texas at Austin,
 Department of Nuclear Engineering and Radiological Sciences, University of Michigan
- 3) Department of Nuclear Engineering, University of Tennessee, Knoxville