

Computational Physics (PHYS6350)

Review and concluding remarks

April 27, 2023

Instructor: Volodymyr Vovchenko (<u>vvovchenko@uh.edu</u>)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics

Reminders

The **Final Project** is due today(!)

- So far about 50% have been received
- Late submissions: allowed but with an increasing penalty (try to get it in this week)

You are encouraged to submit feedback through Faculty/Course evaluation https://uh.edu/measurement-evaluation-center/faculty-course-evaluation/student_info/

Grading

- Homework (40%) (completed)
- Final project (20%)
- Mid-term (15%) (completed) and Final (25%)
 - Multiple choice, short and long answer questions

Overview: What we covered

Tentative Schedule (Last update 4/24/2023)

1/17	Introduction, Syllabus, Technical Details
1/19	Visualization of Data, Machine Precision
1/24	Function Interpolation
1/26, 1/31	Nonlinear Equations
2/2, 2/7, 2/9	Numerical Calculus
2/14, 2/16	Numerical Differential Equations
2/21, 2/23	Problems in Classical Mechanics
2/28	Molecular Dynamics
3/2, 3/7	Linear Algebra and Matrices
3/9	Midterm Exam
3/14, 3/16	Spring Break – no classes
3/21, 3/23	Partial Differential Equations
3/28, 3/30	Random Numbers and Monte Carlo Methods
4/4, 4/6	Problems in Statistical Physics
4/11, 4/13	Problems in Quantum Mechanics
4/18	Fourier Transform
4/20	Introduction to Machine Learning
4/25	Introduction to Parallel Computing
4/27	Review
5/9	Final Exam

Overview

The course has been focused on concepts used in computational physics, hence

- Jupyter notebooks and python
- (Re)implementation of many standard routines
- Little focus on performance

Overview: Numerical integration and differentiation

Numerical integration:

- For quick and dirty calculations
 - Rectangle or trapezoidal rules
- For a single and precise calculation
 - Methods with control over error estimate
 - E.g. Romberg method
- For repeated calculations of the same kind of integral
 - Gaussian quadratures

Numerical derivatives:

- Use central difference schemes
 - Lower order o.k. in many cases
- Beware of round-off error for small h and/or high-order derivatives

$$\int_{a}^{b} f(x) dx \approx \sum_{k} w_{k} f(x_{k})$$

Overview: Non-linear equations

The main methods are

- Bisection method
 - If root is bracketed, guaranteed to converge
- Newton-Raphson method (or secant method if cannot compute f')
 - Converges fast when the root is nearby
 - Good to use for refining the root

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Systems of non-linear equations

- Newton's method
 - Fast convergence but requires Jacobian matrix calculation and inversion
- Broyden's method
 - No need for matrix inversion

Overview: Ordinary differential equations

Lots of physics problems formulated as systems of ODEs

- Good starting point: fourth-order Runge-Kutta (RK4)
 - If not, use adaptive time step
- Time-reversal symmetry and energy conservation
 - Leap-frog method (e.g. Molecular dynamics)
 - Bulirsch-Stoer method (control over error)
- Systems of ODEs
 - Same a single ODE component-by-component
- 2nd or high-order ODE
 - Convert to a system of first-order ODEs
- Stiff/unstable systems
 - Use implicit methods

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t).$$

$$\frac{d^2\mathbf{x}}{dt^2} = \mathbf{f}(\mathbf{x}, d\mathbf{x}/dt, t),$$

$$\frac{d\mathbf{x}}{dt} = \mathbf{v},$$

$$\frac{d\mathbf{v}}{dt} = \mathbf{f}(\mathbf{x}, \mathbf{v}, t),$$

Overview: Linear algebra

- Use standard/library routines whenever possible
- LU-decomposition
 - Solve systems of linear eqs. with the same matrix A but varied v
- Tri- and band-diagonal systems
 - Appear often, in particular when discretizing PDEs
 - Use specific algorithms since they have linear complexity in
- Eigenvalues and eigenvectors
 - QR algorithm and diagonalization
 - Eigenvalues only is easier than eigenvalues + eigenvectors
 - Use standard/library routines

Ax = v

Overview: Partial differential equations

Lots of physics problems formulated as systems of PDEs

 $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$

- Discretization of spatial derivatives
 - Central difference typically o.k.

 $\frac{\partial^2 \phi}{\partial t^2} = v^2 \frac{\partial^2 \phi}{\partial x^2}$

- Time propagation
 - Explicit scheme (FTCS)
 - Often has stability issues
 - More easily generalized to multiple dimensions
 - Crank-Nicolson scheme
 - More stable and conserves the wave amplitude
 - Implicit, but only involves a tridiagonal system solution
 - Multiple dimensions are more challenging
- Further reading
 - Finite element method (irregular spatial shapes)
 - Finite volume method (conservation laws and fluxes)

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} = i\hbar \frac{\partial \psi}{\partial t}$$

Overview: Random numbers (Monte Carlo method)

Powerful method where other approaches fail (typically when there is a large amount of degrees of freedom involved)

- The base generator (uniform numbers in [0,1] range) must be good
 - Mersenne Twister is o.k., linear congruential (old compilers) is not
 - Use different seed when doing parallel calculations

- Numerical integration in multiple dimensions
- Statistical physics
- Intrinsically random processes (quantum mechanics)
- The answer is always approximate
 - The error typically scales as $1/\sqrt{N}$

$$I = \int_{a}^{b} f(x)dx$$

$$\delta I = (b - a)\sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}}$$