Date: Mar 13 Made by Eric

1.

Proof. Let x, y be the length of two sides of the rectangle with perimeter p. The area of the rectangle A is a function of x, y given by A = xy, and we know x, y must satisfy the constraint $x + y = \frac{p}{2}$

Let g = x + y. We have

$$\nabla A = (y, x) \tag{1}$$

$$\nabla g = (1, 1) \tag{2}$$

The method require us to solve

$$\begin{cases} \nabla A = \lambda \nabla g \\ g = \frac{p}{2} \end{cases} \tag{3}$$

By equation (3), we see y = x, so the rectangle is a square.

2.

2.(a)

Let $g = x^4 - x^3 + y^2$, so the constraint is given by g = 0

Proof.

$$\nabla f = (1,0) \tag{4}$$

$$\nabla g = (4x^3 - 3x^2, 2y) \tag{5}$$

Solving

$$\begin{cases} \nabla f = \lambda \nabla g \\ g = 0 \end{cases} \tag{6}$$

We have
$$y = 0, x = 1, \lambda = 1$$

2.(b)

Define $h(x) := x^4 - x^3$

Because we are under the constraint g=0, we see $h(x)=-y^2\leq 0$

Because $h=x^3(x-1)$, we deduce $h \le 0 \iff 0 \le x \le 1$. We see the minimum value for x is 0, for which we can take y=0 to satisfy the constraint.

Notice f(x, y) = x, so it immediately follows that the minimum value for f is 0, and it happens at f(0, 0) = 0.

Observe $\nabla g(0,0)=(0,0)$ and $\nabla f(0,0)=(1,0)$, we see no real number λ satisfy $(1,0)=\lambda(0,0)$.

2.(c)

Proof. The Lagrange multiplier theorem states that if $f(x_0, y_0)$ is a maximum or minimum of f(x, y) under the constraint g(x, y) = c and $\nabla g(x_0, y_0) \neq 0$, then there exists a Lagrange multiplier satisfy $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$. Although f(0, 0) is a minimum of f, we see $\nabla g(0, 0) = (0, 0)$, which does not satisfy the assumption of the Lagrange multiplier theorem.

3.

3.(a)

Proof. Let $g = \sum_{i=1}^{n} x_i$

$$\nabla f = \frac{1}{n} \left(x_1^{\frac{1-n}{n}} (x_2 \cdots x_n)^{\frac{1}{n}}, \dots, (x_1 \cdots x_{n-1})^{\frac{1}{n}} x_n^{\frac{1-n}{n}} \right) \tag{7}$$

$$\nabla g = (1, \dots, 1) \tag{8}$$

Solving $\nabla f = \lambda \nabla g$, we see

$$x_1^{\frac{1-n}{n}}(x_2\cdots x_n)^{\frac{1}{n}} = (x_1\cdots x_{n-1})^{\frac{1}{n}}x_n^{\frac{1-n}{n}}$$
(9)

Which give us

$$x_1^{-1} = x_n^{-1} \tag{10}$$

This tell us $x_1 = x_n$

Equation (9) is only an ordinary result of the symmetry of f. We see $x_1 = x_2 = \cdots = x_n$

Solving g = c, we see $\frac{c}{n} = x_i, \forall 1 \leq i \leq n$

So the maximum values for f is $f(\frac{c}{n}, \dots, \frac{c}{n}) = \frac{c}{n}$

3.(b)

Proof. Let $x_1 + \cdots + x_n = d$

RHS of the inequality is $\frac{d}{n}$. The desired result follows immediately from the fact that the LHS of the inequality have the maximum values $\frac{d}{n}$, by part (a).

The equality hold only when $x_1 = x_2 = \cdots = x_n$ also follows immediately from the discussion in part (a).

4.

4.(a)

Proof. Let
$$f(x_1, \ldots, x_n, y_1, \ldots, y_n) = \sum_{i=1}^n x_i y_i$$
 and $g(x_1, \ldots, x_n, y_1, \ldots, y_n) = \sum_{i=1}^n x_i^2$ and $h(x_1, \ldots, x_n, y_1, \ldots, y_n) = \sum_{i=1}^n y_i^2$

We are required to find the maximum of f subject to the constraint g = h = 1.

$$\nabla f = (y_1, \dots, y_n, x_1, \dots, x_n) \tag{11}$$

$$\nabla g = (2x_1, \dots, 2x_n, 0, \dots, 0)$$
 (12)

$$\nabla h = (0, \dots, 0, 2y_1, \dots, 2y_n) \tag{13}$$

Solving $\nabla f = \lambda \nabla g + \mu \nabla h$, we have

$$(x_1,\ldots,x_n)\parallel(y_1,\ldots,y_n) \tag{14}$$

Further for g = h = 1, we have $(y_1, \ldots, y_n) = \pm(x_1, \ldots, x_n)$.

Then $f = \pm \sum_{i=1}^{n} x_i^2 = \pm 1$, since g = 1.

So the maximum of f is 1.

4.(b)

Proof. Notice if $\sum a_j^2=0$, then the statement trivially hold true, so we only consider the case that $\sum a_j^2\neq 0\neq \sum b_j^2$

Notice $\sum x_i^2 = \frac{1}{\sum a_i^2} \sum a_i^2 = 1$ and $\sum y_i^2 = 1$, so by part (a), we see

$$\sum a_i b_i = \sqrt{\sum a_j^2 \sum b_j^2} \sum x_i y_i \le \sqrt{\sum a_j^2 \sum b_j^2}$$
 (15)

5.

Given $a,b \in D$, by MVT, we can only guarantee that there exists a point c' between the line segment \overline{ab} such that $\nabla f(c) \cdot (a-b) = f(a) - f(b)$.

We can choose $f=mx^3-ny^3$ where m,n>0 such that the hyperbola **(notice** $\nabla f(c)\cdot(a-b)=3m(a-b)_1x^2-2n(a-b)_2y^2$) consisting of points c that satisfy $\nabla f(c)\cdot(a-b)=f(a)-f(b)$ does not intersect with D

6.

6.(a)

Let
$$D = \{(x, y) | 0 \le x \le 4, |y| \le \sqrt{x} \}$$

We are required to find $\int_D (1+x^2y^2)dA$.

$$\int_{-2}^{2} \int_{y^2}^{4} 1 + x^2 y^2 dx dy = \int_{-2}^{2} (x + \frac{1}{3} x^3 y^2) |_{x=y^2}^{4} dy$$
 (16)

Further compute above to the following

$$\int_{-2}^{2} (4 + \frac{64}{3}y^2) - (y^2 + \frac{1}{3}y^8) dy \tag{17}$$

Then we have answer

$$\frac{-1}{27}y^9 + \frac{61}{9}y^3 + 4y|_{y=-2}^2 \tag{18}$$

6.(b)

We set up the triple integral

$$\int_{0}^{2} \int_{0}^{\sqrt{4-z^2}} \int_{0}^{2y} 1 dx dy dz \tag{19}$$

And compute

$$\int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} \int_{0}^{2y} 1 dx dy dz = \int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} 2y dy dz = \int_{0}^{2} y^{2} \Big|_{0}^{y=\sqrt{4-z^{2}}} dz \quad (20)$$

Further compute to have answer

$$\int_0^2 y^2 \Big|_0^{y = \sqrt{4 - z^2}} dz = \int_0^2 4 - z^2 dz = \frac{-1}{3} z^3 + 4z \Big|_0^{z = 2} = \frac{16}{3}$$
 (21)

7.

7.**(a)**

Let

$$I(a) = \int_{-a}^{a} e^{-x^2} dx$$

Notice

$$0 < \int_{-\infty}^{\infty} e^{-x^2} < \int_{-\infty}^{-1} -xe^{-x^2} dx + \int_{-1}^{1} e^{-x^2} dx + \int_{1}^{\infty} xe^{-x^2} dx < \infty$$
 (22)

So $\lim_{a\to\infty} I(a)$ exists.

Notice

$$I(a)^{2} = \left(\int_{-a}^{a} e^{-x^{2}} dx\right) \left(\int_{-a}^{a} e^{-y^{2}} dy\right) = \int_{-a}^{a} \int_{-a}^{a} e^{-(x^{2}+y^{2})} dx dy \tag{23}$$

We now switch to polar coordinates $x=r\cos\theta$ and $y=r\sin\theta$, and compute the Jacobian matrix and its determinant.

$$\mathbf{J}(r,\theta) = \begin{bmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{bmatrix} |\mathbf{J}(r,\theta)| = r \tag{24}$$

Notice that $I(a)^2$ is an integral over a square and that a square is bigger than its incircle and smaller than its circumcircle, and notice that $e^{-(x^2+y^2)}>0$ for all x,y. We have the following inequality

$$\int_0^a \int_0^{2\pi} r e^{-r^2} d\theta dr < I(a)^2 < \int_0^{\sqrt{2}a} \int_0^{2\pi} r e^{-r^2} d\theta dr$$
 (25)

Notice that re^{-r^2} is easy to integrate with substitution $u=r^2, du=2rdr$.

So we compute the inegral in the above inequality

$$\pi(1 - e^{-a^2}) < I(a)^2 < \pi(1 - e^{-2a^2})$$
 (26)

Then by squeeze theroem we have

$$I(a)^2 = \pi$$
, as $a \to \infty$ (27)

That is

$$\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{I(a)^2} = \sqrt{\pi}$$
 (28)

7.**(b)**

Rewrite the orginial integral as

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-(x_1^2 + \dots + x_n^2)} dx_1 \cdots dx_n \tag{29}$$

Compute the above to the below

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-(x_2^2 + \dots + x_n^2)} \left(\int_{-\infty}^{\infty} e^{-x_1^2} dx_1 \right) dx_2 \cdots dx_n \tag{30}$$

From part a we know $(\int_{-\infty}^{\infty} e^{-x_1^2} dx_1) = \sqrt{\pi}$. So we can write further compute the above to below

$$\sqrt{\pi} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-(x_2^2 + \dots + x_n^2)} dx_2 \cdots dx_n \tag{31}$$

Using the same method of simply separating the variable, we have the answer $\pi^{\frac{n}{2}}$

7.(c)

Rewrite the integral as

$$\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-(x_{i+1}^2 + \dots + x_n^2)} \left(\int_{\mathbb{R}} x_i \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-(x_1^2 + \dots + x_i^2)} dx_1 \cdots dx_{i-1} dx_i \right) dx_{i+1} \cdots dx_n$$
(32)

Compute the above to below

$$\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-(x_{i+1}^2 + \dots + x_n^2)} \int_{\mathbb{R}} \pi^{\frac{i-1}{2}} x_i e^{-x_i^2} dx_i dx_{i+1} \cdots dx_n$$
 (33)

Notice $x_i e^{-x_i^2}$ is an odd function and we immediately have answer 0

8.

Notice the surface consists of four surfaces congruent to each other, so we only have to compute the area of one of them and multiply 4 with it to obtain the answer.

We compute the one that have positive y-axis through its center.

Let
$$f(x, z) = y = \sqrt{1 - z^2}$$

$$A = \int_{x^2 + z^2 \le 1} \sqrt{f_x(x, z)^2 + f_z(x, z)^2 + 1} d(x, z)$$
 (34)

Substituting $f_x = 0, f_z = \frac{-z}{\sqrt{1-z^2}}$, and notice this integral is over a circle where

$$A = \int_{-1}^{1} \int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \frac{1}{\sqrt{1-z^2}} dx dz \tag{35}$$

Notice that this is in fact an improper integral with respect to z where $\frac{1}{\sqrt{1-z^2}}$ approaches to infinity as z approaches to 0.

notice that $\int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \frac{1}{\sqrt{1-z^2}} dz$ is an even function of z, so we know

$$A = 2\lim_{t \to 1} \int_0^t \int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \frac{1}{\sqrt{1-z^2}} dx dz = 2\lim_{t \to 1} \int_0^t 2dz = 4$$
 (36)

So the answer is 16 = 4 * 4

9.

9.(a)

$$\int_{0}^{2} \int_{0}^{2-z} \int_{0}^{x^{2}} (x+y)dydxdz = \frac{8}{3}$$
 (37)

Notice f is an even function of y when x, z are fixed, so we can evaluate the triple integral as follows

$$I = \int \int \int_{E} f(x, y, z) dV = \frac{1}{2} \left(\int_{0}^{1} \int_{x^{2} + y^{2} \le 1} f(x, y, z) dA dz + \int_{1}^{2} \int_{x^{2} + y^{2} \le 2 - z} f(x, y, z) dA dx \right)$$
(38)

We use polar coordinates $x = r \cos \theta$, $y = r \sin \theta$, and notice $dxdy = rdrd\theta$, so we have

$$I = \frac{1}{2} \left(\int_0^1 \int_0^{2\pi} \int_0^1 r^3 dr d\theta dz + \int_1^2 \int_0^{2\pi} \int_0^{\sqrt{2-z}} r^3 dr d\theta dz \right)$$
 (39)

Further compute

$$I = \frac{1}{2} \left(\frac{\pi}{2} + \frac{\pi}{2} \int_{1}^{2} (2-z)^{2} dz\right) = \frac{\pi}{4} \left(1 + \frac{7}{3} - 6 + 4\right) \tag{40}$$

9.(c)

Notice f is an even function for x, y, z when the other variables are fixed, so we can evaluate the triple integral as follows

$$I = \frac{1}{4} \int_{\{4 \le x^2 + y^2 + z^2 \le 9\}} \sqrt{x^2 + y^2 + z^2} dV \tag{41}$$

Use spherical coordinates $x=\rho\sin\phi\cos\theta, y=\rho\sin\phi\sin\theta, z=\rho\cos\phi$, and we have

$$I = \frac{1}{4} \int_0^{\pi} \int_0^{2\pi} \int_2^{3} \rho^3 \sin \phi d\rho d\theta d\phi = \frac{65}{4} \pi$$
 (42)

10.

10.(a)

First we observe

$$\int_0^1 \int_0^1 \frac{1}{1 - xy} dy dx = \int_0^1 \frac{\ln 1 - x}{-x} dx \tag{43}$$

Notice the Taylor series $\ln 1 - x = -\sum_{n=1}^{\infty} \frac{x^n}{n}$, so we have

$$\int_0^1 \frac{\ln 1 - x}{-x} dx = \int_0^1 \sum_{n=1}^\infty \frac{x^{n-1}}{n} dx = \sum_{n=1}^\infty \int_0^1 \frac{x^{n-1}}{n} dx = \sum_{n=1}^\infty \frac{1}{n^2}$$
 (44)

10.(b)

$$\begin{cases} x = \frac{\sqrt{2}}{2}(u - v) \\ y = \frac{\sqrt{2}}{2}(u + v) \end{cases} \implies \mathbf{J} = 1 \text{ and } \frac{1}{1 - xy} = \frac{2}{2 - u^2 + v^2}$$
 (45)

Let $I = \int_0^1 \int_0^1 \frac{1}{1 - xy} dx dy$

$$I = 2\int_0^{\frac{\sqrt{2}}{2}} \int_0^u \frac{2}{2 - u^2 + v^2} dv du + 2\int_{\frac{\sqrt{2}}{2}}^{\sqrt{2}} \int_0^{\sqrt{2} - u} \frac{2}{2 - u^2 + v^2} dv du$$
 (46)

$$I = 4 \int_0^{\frac{\sqrt{2}}{2}} \int_0^u \frac{1}{(2-u^2) + v^2} dv du + 4 \int_{\frac{\sqrt{2}}{2}}^{\sqrt{2}} \int_0^{\sqrt{2}-u} \frac{1}{(2-u^2) + v^2} dv du$$
 (47)

$$I = 4 \int_0^{\frac{\sqrt{2}}{2}} \frac{1}{\sqrt{2 - u^2}} \arctan \frac{u}{\sqrt{2 - u^2}} du + 4 \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{1}{\sqrt{2 - u^2}} \arctan \frac{\sqrt{2} - u}{\sqrt{2 - u^2}} du$$
(48)

Do substitution $u = \sqrt{2} \sin t$ in first term and substitution $u = \sqrt{2} \cos x$ in second term, and we have

$$I = 4 \int_0^{\frac{\pi}{6}} \arctan\left(\tan t\right) dt + 4 \int_0^{\frac{\pi}{3}} \arctan\left(\frac{1 - \cos x}{\sin x}\right) dx \tag{49}$$

Notice the identity $\tan \frac{x}{2} = \frac{1-\cos x}{\sin x}$, so we have

$$I = 4 \int_0^{\frac{\pi}{6}} t dt + 4 \int_0^{\frac{\pi}{3}} \frac{x}{2} dx = \frac{\pi^2}{18} + \frac{\pi^2}{9} = \frac{\pi^2}{6}$$
 (50)