Package 'measures'

October 13, 2022

Version 0.3																		
Description	Provides	the	bigg	est	amo	unt	of	statisti	cal	mea	asure	s in	the	who	le R	world.	Include	s mea

Description Provides the biggest amount of statistical measures in the whole R world. Includes measures of regression, (multiclass) classification and multilabel classification. The measures come mainly from the 'mlr' package and were programed by several 'mlr' developers.

Depends R (>= 3.0), stats

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Suggests testthat

NeedsCompilation no

Author Philipp Probst [aut, cre]

Maintainer Philipp Probst <philipp_probst@gmx.de>

Repository CRAN

Date/Publication 2021-01-19 15:10:06 UTC

Title Performance Measures for Statistical Learning

R topics documented:

ACC	3
ARSQ	3
AUC	4
AC	5
ER	5
Brier	
BrierScaled	
XPVAR	7
1	8
DR	
N	9
NR	10

Index

FP	 									 			10
FPR	 									 			11
GMEAN	 									 			12
GPR	 									 			12
KAPPA	 									 			13
KendallTau	 									 			13
listAllMeasures	 									 			14
Logloss	 									 			14
LSR	 									 			15
MAE	 									 			16
MAPE	 									 			16
MCC	 									 			17
MEDAE	 									 			17
MEDSE	 									 			18
MMCE	 									 			18
MSE	 									 			19
MSLE	 									 			19
multiclass.AU1P .	 									 			20
multiclass.AU1U .	 									 			21
multiclass.AUNP .	 									 			21
multiclass.AUNU .	 									 			22
multiclass.Brier	 									 			23
MultilabelACC	 									 			23
MultilabelF1	 									 			24
MultilabelHamloss	 									 			24
MultilabelPPV	 									 			25
MultilabelSubset01	 									 			25
MultilabelTPR	 									 			26
NPV	 									 			26
PPV	 									 			27
QSR	 									 			27
RAE	 									 			28
RMSE	 									 			28
RMSLE	 									 			29
RRSE	 									 			30
RSQ	 									 			30
SAE	 									 			31
SpearmanRho	 									 			31
SSE	 									 			32
SSR	 									 			32
TN	 									 			33
TNR	 									 			33
TP	 									 			34
TPR	 									 			35
WKAPPA	 									 			35
													36

ACC 3

ACC Accuracy

Description

Defined as: mean(response == truth)

Usage

```
ACC(truth, response)
```

Arguments

truth vector of true values
response vector of predicted values

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
response = as.factor(sample(c(1,2,3), n, replace = TRUE))
ACC(truth, response)
```

ARSQ

Adjusted coefficient of determination

Description

Defined as: 1 - (1 - rsq) * (p / (n - p - 1L)). Adjusted R-squared is only defined for normal linear regression.

Usage

```
ARSQ(truth, response, n, p)
```

Arguments

truth [numeric] vector of true values
response [numeric] vector of predicted values
n [numeric] number of observations
p [numeric] number of predictors

4 AUC

Examples

```
n = 20
p = 5
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
ARSQ(truth, response, n, p)
```

AUC

Area under the curve

Description

Integral over the graph that results from computing fpr and tpr for many different thresholds.

Usage

```
AUC(probabilities, truth, negative, positive)
```

Arguments

```
probabilities [numeric] vector of predicted probabilities
truth vector of true values
negative negative class
positive positive class
```

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
AUC(probabilities, truth, negative, positive)
```

BAC 5

BAC Balanced accuracy

Description

Mean of true positive rate and true negative rate.

Usage

```
BAC(truth, response, negative, positive)
```

Arguments

truth vector of true values
response vector of predicted values

negative negative class positive positive class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
BAC(truth, response, negative, positive)
```

BER

Balanced error rate

Description

Mean of misclassification error rates on all individual classes.

Usage

```
BER(truth, response)
```

Arguments

truth vector of true values
response vector of predicted values

6 Brier

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
response = as.factor(sample(c(1,2,3), n, replace = TRUE))
BER(truth, response)
```

Brier

Brier score

Description

The Brier score is defined as the quadratic difference between the probability and the value (1,0) for the class. That means we use the numeric representation 1 and 0 for our target classes. It is similar to the mean squared error in regression. multiclass.brier is the sum over all one vs. all comparisons and for a binary classification 2 * brier.

Usage

```
Brier(probabilities, truth, negative, positive)
```

Arguments

```
probabilities [numeric] vector of predicted probabilities
truth vector of true values
negative negative class
positive positive class
```

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
Brier(probabilities, truth, negative, positive)
```

BrierScaled 7

BrierScaled Brier scaled

Description

Brier score scaled to [0,1], see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575184/.

Usage

```
BrierScaled(probabilities, truth, negative, positive)
```

Arguments

```
probabilities [numeric] vector of predicted probabilities
truth vector of true values
negative negative class
positive positive class
```

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
BrierScaled(probabilities, truth, negative, positive)
```

EXPVAR

Explained variance

Description

Similar to RSQ (R-squared). Defined as explained_sum_of_squares / total_sum_of_squares.

Usage

```
EXPVAR(truth, response)
```

Arguments

```
truth [numeric] vector of true values
response [numeric] vector of predicted values
```

8 FDR

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
EXPVAR(truth, response)
```

F1

F1 measure

Description

```
Defined as: 2 * tp/ (sum(truth == positive) + sum(response == positive))
```

Usage

```
F1(truth, response, positive)
```

Arguments

truth vector of true values
response vector of predicted values

positive positive class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
F1(truth, response, positive)
```

FDR

False discovery rate

Description

```
Defined as: fp / (tp + fp)
```

```
FDR(truth, response, positive)
```

FN 9

Arguments

truth vector of true values
response vector of predicted values
positive positive class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
FDR(truth, response, positive)
```

FΝ

False negatives

Description

Sum of misclassified observations in the negative class. Also called misses.

Usage

```
FN(truth, response, negative)
```

Arguments

truth vector of true values
response vector of predicted values

negative negative class

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
negative = 0
FN(truth, response, negative)
```

10 FP

FNR False negative rate

Description

Percentage of misclassified observations in the negative class.

Usage

```
FNR(truth, response, negative, positive)
```

Arguments

truth vector of true values
response vector of predicted values
negative negative class
positive positive class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
FNR(truth, response, negative, positive)
```

FΡ

False positives

Description

Sum of misclassified observations in the positive class. Also called false alarms.

Usage

```
FP(truth, response, positive)
```

Arguments

truth vector of true values
response vector of predicted values

positive positive class

FPR 11

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
FP(truth, response, positive)
```

FPR

False positive rate

Description

Percentage of misclassified observations in the positive class. Also called false alarm rate or fall-out.

Usage

```
FPR(truth, response, negative, positive)
```

Arguments

```
truth vector of true values
response vector of predicted values
negative negative class
positive positive class
```

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
FPR(truth, response, negative, positive)
```

12 GPR

GMEAN G-mean

Description

Geometric mean of recall and specificity.

Usage

```
GMEAN(truth, response, negative, positive)
```

Arguments

truth vector of true values
response vector of predicted values
negative negative class
positive positive class

References

He, H. & Garcia, E. A. (2009) *Learning from Imbalanced Data.* IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9. pp. 1263-1284.

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
GMEAN(truth, response, negative, positive)
```

GPR

Geometric mean of precision and recall.

Description

```
Defined as: sqrt(ppv * tpr)
```

```
GPR(truth, response, positive)
```

KAPPA 13

Arguments

truth vector of true values
response vector of predicted values
positive positive class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
GPR(truth, response, positive)
```

KAPPA

Cohen's kappa

Description

Defined as: 1 - (1 - p0) / (1 - pe). With: p0 = 'observed frequency of agreement' and pe = 'expected agreement frequency under independence

Usage

```
KAPPA(truth, response)
```

Arguments

truth vector of true values

response vector of predicted values n = 20 set.seed(122) truth = as.factor(sample(c(1,2,3),

 $n, replace = TRUE)) \ response = as. factor(sample(c(1,2,3), n, repla \ KAPPA(truth, n, replace))) \ response = as. factor(sample(c(1,2,3), n, replace))) \ response = as. fac$

response)

KendallTau

Kendall's tau

Description

Defined as: Kendall's tau correlation between truth and response. Only looks at the order. See Rosset et al.: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.1398&rep=rep1&type=pdf.

```
KendallTau(truth, response)
```

14 Logloss

Arguments

truth [numeric] vector of true values
response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
KendallTau(truth, response)
```

listAllMeasures

List all measures

Description

Lists all measures that are available in the package with their corresponding task.

Usage

```
listAllMeasures()
```

Value

Dataframe with all available measures and the correspoding task

Examples

```
listAllMeasures()
```

Logloss

Logarithmic loss

Description

Defined as: -mean(log(p_i)), where p_i is the predicted probability of the true class of observation i. Inspired by https://www.kaggle.com/wiki/MultiClassLogLoss.

```
Logloss(probabilities, truth)
```

LSR 15

Arguments

probabilities [numeric] vector (or matrix with column names of the classes) of predicted prob-

abilities

truth vector of true values

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
probabilities = matrix(runif(60), 20, 3)
probabilities = probabilities/rowSums(probabilities)
colnames(probabilities) = c(1,2,3)
Logloss(probabilities, truth)
```

LSR

Logarithmic Scoring Rule

Description

Defined as: mean(log(p_i)), where p_i is the predicted probability of the true class of observation i. This scoring rule is the same as the negative logloss, self-information or surprisal. See: Bickel, J. E. (2007). Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2), 49-65.

Usage

```
LSR(probabilities, truth)
```

Arguments

probabilities [numeric] vector (or matrix with column names of the classes) of predicted prob-

abilities

truth vector of true values n = 20 set.seed(122) truth = as.factor(sample(c(1,2,3), n, re-

 $place = TRUE))\ probabilities = matrix(runif(60), 20, 3)\ probabilities = probabilities/rowSums(probabilities)\ colnames(probabilities) = c(1,2,3)\ LSR(probabilities,$

truth)

16 MAPE

MAE

Mean of absolute errors

Description

```
Defined as: mean(abs(response - truth))
```

Usage

```
MAE(truth, response)
```

Arguments

truth [numeric] vector of true values response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
MAE(truth, response)
```

MAPE

Mean absolute percentage error

Description

Defined as the abs(truth_i - response_i) / truth_i. Won't work if any truth value is equal to zero. In this case the output will be NA.

Usage

```
MAPE(truth, response)
```

Arguments

truth [numeric] vector of true values response [numeric] vector of predicted values

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
MAPE(truth, response)
```

MCC 17

MCC

Matthews correlation coefficient

Description

```
Defined as (tp * tn - fp * fn) / sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)), denominator set to 1 if 0.
```

Usage

```
MCC(truth, response, negative, positive)
```

Arguments

truth vector of true values
response vector of predicted values

negative negative class positive positive class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
negative = 0
MCC(truth, response, negative, positive)
```

MEDAE

Median of absolute errors

Description

```
Defined as: median(abs(response - truth)).
```

Usage

```
MEDAE(truth, response)
```

Arguments

truth [numeric] vector of true values
response [numeric] vector of predicted values

MMCE

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
MEDAE(truth, response)
```

MEDSE

Median of squared errors

Description

Defined as: median((response - truth)^2).

Usage

```
MEDSE(truth, response)
```

Arguments

truth [numeric] vector of true values
response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
MEDSE(truth, response)
```

MMCE

Mean misclassification error

Description

Defined as: mean(response != truth)

Usage

```
MMCE(truth, response)
```

Arguments

truth vector of true values
response vector of predicted values

MSE 19

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
response = as.factor(sample(c(1,2,3), n, replace = TRUE))
MMCE(truth, response)
```

MSE

Mean of squared errors

Description

```
Defined as: mean((response - truth)^2)
```

Usage

```
MSE(truth, response)
```

Arguments

truth [numeric] vector of true values
response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
MSE(truth, response)
```

MSLE

Mean squared logarithmic error

Description

Defined as: $mean((log(response + 1, exp(1)) - log(truth + 1, exp(1)))^2)$. This is mostly used for count data, note that all predicted and actual target values must be greater or equal '-1' to compute the mean squared logarithmic error.

```
MSLE(truth, response)
```

20 multiclass.AU1P

Arguments

truth [numeric] vector of true values

response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = abs(rnorm(n))
response = abs(rnorm(n))
MSLE(truth, response)
```

multiclass.AU1P

Weighted average 1 vs. 1 multiclass AUC

Description

Computes AUC of c(c - 1) binary classifiers while considering the a priori distribution of the classes. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf.

Usage

```
multiclass.AU1P(probabilities, truth)
```

Arguments

probabilities [numeric] matrix of predicted probabilities with columnnames of the classes truth vector of true values

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
probabilities = matrix(runif(60), 20, 3)
probabilities = probabilities/rowSums(probabilities)
colnames(probabilities) = c(1,2,3)
multiclass.AU1P(probabilities, truth)
```

multiclass.AU1U 21

multiclass.AU1U

Average 1 vs. 1 multiclass AUC

Description

Computes AUC of c(c - 1) binary classifiers (all possible pairwise combinations) while considering uniform distribution of the classes. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferriclass-perf-metrics.pdf.

Usage

```
multiclass.AU1U(probabilities, truth)
```

Arguments

```
probabilities [numeric] matrix of predicted probabilities with columnnames of the classes truth vector of true values
```

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
probabilities = matrix(runif(60), 20, 3)
probabilities = probabilities/rowSums(probabilities)
colnames(probabilities) = c(1,2,3)
multiclass.AU1U(probabilities, truth)
```

multiclass.AUNP

Weighted average 1 vs. rest multiclass AUC

Description

Computes the AUC treating a c-dimensional classifier as c two-dimensional classifiers, taking into account the prior probability of each class. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf.

Usage

```
multiclass.AUNP(probabilities, truth)
```

Arguments

```
probabilities [numeric] matrix of predicted probabilities with columnnames of the classes truth vector of true values
```

22 multiclass.AUNU

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
probabilities = matrix(runif(60), 20, 3)
probabilities = probabilities/rowSums(probabilities)
colnames(probabilities) = c(1,2,3)
multiclass.AUNP(probabilities, truth)
```

multiclass.AUNU

Average 1 vs. rest multiclass AUC

Description

Computes the AUC treating a c-dimensional classifier as c two-dimensional classifiers, where classes are assumed to have uniform distribution, in order to have a measure which is independent of class distribution change. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferriclass-perf-metrics.pdf.

Usage

```
multiclass.AUNU(probabilities, truth)
```

Arguments

```
probabilities [numeric] matrix of predicted probabilities with columnnames of the classes truth vector of true values
```

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
probabilities = matrix(runif(60), 20, 3)
probabilities = probabilities/rowSums(probabilities)
colnames(probabilities) = c(1,2,3)
multiclass.AUNU(probabilities, truth)
```

multiclass.Brier 23

multiclass.Brier

Multiclass Brier score

Description

Defined as: (1/n) sum_i sum_j $(y_i - p_i)^2$, where $y_i = 1$ if observation i has class j (else 0), and p_ij is the predicted probability of observation i for class j. From http://docs.lib.noaa.gov/rescue/mwr/078/mwr-078-01-0001.pdf.

Usage

```
multiclass.Brier(probabilities, truth)
```

Arguments

probabilities [numeric] matrix of predicted probabilities with columnnames of the classes truth vector of true values

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
probabilities = matrix(runif(60), 20, 3)
probabilities = probabilities/rowSums(probabilities)
colnames(probabilities) = c(1,2,3)
multiclass.Brier(probabilities, truth)
```

MultilabelACC

Accuracy (multilabel)

Description

Averaged proportion of correctly predicted labels with respect to the total number of labels for each instance, following the definition by Charte and Charte: https://journal.r-project.org/archive/2015-2/charte-charte.pdf. Fractions where the denominator becomes 0 are replaced with 1 before computing the average across all instances.

Usage

```
MultilabelACC(truth, response)
```

Arguments

truth matrix of true values

response matrix of predicted values n = 20 set.seed(122) truth = matrix(sample(c(0,1), 60,

replace = TRUE), 20, 3) response = matrix(sample(c(0,1), 60, replace = TRUE),

20, 3) MultilabelACC(truth, response)

24 MultilabelHamloss

MultilabelF1

F1 measure (multilabel)

Description

Harmonic mean of precision and recall on a per instance basis (Micro-F1), following the definition by Montanes et al.: http://www.sciencedirect.com/science/article/pii/S0031320313004019. Fractions where the denominator becomes 0 are replaced with 1 before computing the average across all instances.

Usage

```
MultilabelF1(truth, response)
```

Arguments

truth matrix of true values

response matrix of predicted values n = 20 set.seed(122) truth = matrix(sample(c(0,1), 60,

replace = TRUE), 20, 3) response = matrix(sample(c(0,1), 60, replace = TRUE),

20, 3) MultilabelF1(truth, response)

MultilabelHamloss

Hamming loss

Description

Proportion of labels that are predicted incorrectly, following the definition by Charte and Charte: https://journal.r-project.org/archive/2015-2/charte-charte.pdf.

Usage

```
MultilabelHamloss(truth, response)
```

Arguments

truth matrix of true values
response matrix of predicted values

```
n = 20
set.seed(122)
truth = matrix(sample(c(0,1), 60, replace = TRUE), 20, 3)
response = matrix(sample(c(0,1), 60, replace = TRUE), 20, 3)
MultilabelHamloss(truth, response)
```

MultilabelPPV 25

MultilabelPPV	Positive p	oredictive	value	(multilabel)
HAT CITABCII I	1 Oblilio p	recurerre	receive	(11111111111111111111111111111111111111

Description

Also called precision. Averaged ratio of correctly predicted labels for each instance, following the definition by Charte and Charte: https://journal.r-project.org/archive/2015-2/charte-charte.pdf. Fractions where the denominator becomes 0 are ignored in the average calculation.

Usage

```
MultilabelPPV(truth, response)
```

Arguments

truth matrix of true values

response matrix of predicted values n = 20 set.seed(122) truth = matrix(sample(c(0,1), 60,

replace = TRUE), 20, 3) response = matrix(sample(c(0,1), 60, replace = TRUE),

20, 3) MultilabelPPV(truth, response)

MultilabelSubset01 Subset-0-1 loss

Description

Proportion of observations where the complete multilabel set (all 0-1-labels) is predicted incorrectly, following the definition by Charte and Charte: https://journal.r-project.org/archive/2015-2/charte-charte.pdf.

Usage

```
MultilabelSubset01(truth, response)
```

Arguments

truth matrix of true values
response matrix of predicted values

```
n = 20
set.seed(122)
truth = matrix(sample(c(0,1), 60, replace = TRUE), 20, 3)
response = matrix(sample(c(0,1), 60, replace = TRUE), 20, 3)
MultilabelSubset01(truth, response)
```

26 NPV

MultilabelTPR	TPR (multilabel)
---------------	------------------

Description

Also called recall. Averaged proportion of predicted labels which are relevant for each instance, following the definition by Charte and Charte: https://journal.r-project.org/archive/2015-2/charte-charte.pdf. Fractions where the denominator becomes 0 are ignored in the average calculation.

Usage

```
MultilabelTPR(truth, response)
```

Arguments

truth matrix of true values

response matrix of predicted values n = 20 set.seed(122) truth = matrix(sample(c(0,1), 60,

replace = TRUE), 20, 3) response = matrix(sample(c(0,1), 60, replace = TRUE),

20, 3) MultilabelTPR(truth, response)

NPV

Negative predictive value

Description

```
Defined as: tn / (tn + fn).
```

Usage

```
NPV(truth, response, negative)
```

Arguments

truth vector of true values response vector of predicted values

negative negative class

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
negative = 0
NPV(truth, response, negative)
```

PPV 27

PPV

Positive predictive value

Description

Defined as: tp / (tp + fp). Also called precision. If the denominator is 0, PPV is set to be either 1 or 0 depending on whether the highest probability prediction is positive (1) or negative (0).

Usage

```
PPV(truth, response, positive, probabilities = NULL)
```

Arguments

truth vector of true values
response vector of predicted values
positive positive class

probabilities [numeric] vector of predicted probabilities

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
PPV(truth, response, positive, probabilities = NULL)
```

QSR

Quadratic Scoring Rule

Description

Defined as: 1 - (1/n) sum_i sum_j (y_ij - p_ij)^2, where y_ij = 1 if observation i has class j (else 0), and p_ij is the predicted probability of observation i for class j. This scoring rule is the same as 1 - multiclass.brier. See: Bickel, J. E. (2007). Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2), 49-65.

```
QSR(probabilities, truth)
```

28 RMSE

Arguments

probabilities [numeric] vector (or matrix with column names of the classes) of predicted prob-

abilities

truth vector of true values n = 20 set.seed(122) truth = as.factor(sample(c(1,2,3), n, re-

place = TRUE)) probabilities = matrix(runif(60), 20, 3) probabilities = probabilities/rowSums(probabilities) colnames(probabilities) = c(1,2,3) QSR(probabilities,

truth)

RAE

Relative absolute error

Description

Defined as sum_of_absolute_errors / mean_absolute_deviation. Undefined for single instances and when every truth value is identical. In this case the output will be NA.

Usage

```
RAE(truth, response)
```

Arguments

truth [numeric] vector of true values
response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
RAE(truth, response)
```

RMSE

Root mean squared error

Description

The RMSE is aggregated as sqrt(mean(rmse.vals.on.test.sets^2))

```
RMSE(truth, response)
```

RMSLE 29

Arguments

truth [numeric] vector of true values

response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
RMSE(truth, response)
```

RMSLE

Root mean squared logarithmic error

Description

Definition taken from: https://www.kaggle.com/wiki/RootMeanSquaredLogarithmicError. This is mostly used for count data, note that all predicted and actual target values must be greater or equal '-1' to compute the root mean squared logarithmic error.

Usage

```
RMSLE(truth, response)
```

Arguments

truth [numeric] vector of true values

response [numeric] vector of predicted values

```
n = 20
set.seed(123)
truth = abs(rnorm(n))
response = abs(rnorm(n))
RMSLE(truth, response)
```

30 RSQ

RRSE

Root relative squared error

Description

Defined as sqrt (sum_of_squared_errors / total_sum_of_squares). Undefined for single instances and when every truth value is identical. In this case the output will be NA.

Usage

```
RRSE(truth, response)
```

Arguments

truth [numeric] vector of true values response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
RRSE(truth, response)
```

RSQ

Coefficient of determination

Description

Also called R-squared, which is 1 - residual_sum_of_squares / total_sum_of_squares.

Usage

```
RSQ(truth, response)
```

Arguments

truth [numeric] vector of true values response [numeric] vector of predicted values

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
RSQ(truth, response)
```

SAE 31

SAE

Sum of absolute errors

Description

```
Defined as: sum(abs(response - truth))"
```

Usage

```
SAE(truth, response)
```

Arguments

truth [numeric] vector of true values response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
SAE(truth, response)
```

SpearmanRho

Spearman's rho

Description

Defined as: Spearman's rho correlation between truth and response. Only looks at the order. See Rosset et al.: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.1398&rep=rep1&type=pdf.

Usage

```
SpearmanRho(truth, response)
```

Arguments

```
truth [numeric] vector of true values
response [numeric] vector of predicted values
```

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
SpearmanRho(truth, response)
```

32 SSR

SSE

Sum of squared errors

Description

```
Defined as: sum((response - truth)^2)
```

Usage

```
SSE(truth, response)
```

Arguments

truth [numeric] vector of true values
response [numeric] vector of predicted values

Examples

```
n = 20
set.seed(123)
truth = rnorm(n)
response = rnorm(n)
SSE(truth, response)
```

SSR

Spherical Scoring Rule

Description

Defined as: mean(p_i(sum_j(p_ij))), where p_i is the predicted probability of the true class of observation i and p_ij is the predicted probablity of observation i for class j. See: Bickel, J. E. (2007). Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2), 49-65.

Usage

```
SSR(probabilities, truth)
```

Arguments

probabilities [numeric] vector (or matrix with column names of the classes) of predicted prob-

abilities

truth vector of true values

TN 33

Examples

```
n = 20
set.seed(122)
truth = as.factor(sample(c(1,2,3), n, replace = TRUE))
probabilities = matrix(runif(60), 20, 3)
probabilities = probabilities/rowSums(probabilities)
colnames(probabilities) = c(1,2,3)
SSR(probabilities, truth)
```

TN

True negatives

Description

Sum of correctly classified observations in the negative class. Also called correct rejections.

Usage

```
TN(truth, response, negative)
```

Arguments

truth vector of true values
response vector of predicted values
negative negative class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
negative = 0
TN(truth, response, negative)
```

TNR

True negative rate

Description

Percentage of correctly classified observations in the negative class. Also called specificity.

```
TNR(truth, response, negative)
```

34 TP

Arguments

truth vector of true values
response vector of predicted values
negative negative class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
negative = 0
TNR(truth, response, negative)
```

TP

True positives

Description

Sum of all correctly classified observations in the positive class.

Usage

```
TP(truth, response, positive)
```

Arguments

truth vector of true values
response vector of predicted values

positive positive class

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
TP(truth, response, positive)
```

TPR 35

TPR True positive rate

Description

Percentage of correctly classified observations in the positive class. Also called hit rate or recall or sensitivity.

Usage

```
TPR(truth, response, positive)
```

Arguments

truth vector of true values response vector of predicted values

positive positive class

Examples

```
n = 20
set.seed(125)
truth = as.factor(sample(c(1,0), n, replace = TRUE))
probabilities = runif(n)
response = as.factor(as.numeric(probabilities > 0.5))
positive = 1
TPR(truth, response, positive)
```

WKAPPA

Mean quadratic weighted kappa

Description

Defined as: 1 - sum(weights * conf.mat) / sum(weights * expected.mat), the weight matrix measures seriousness of disagreement with the squared euclidean metric.

Usage

```
WKAPPA(truth, response)
```

Arguments

truth vector of true values

response vector of predicted values n = 20 set.seed(122) truth = as.factor(sample(c(1,2,3),

n, replace = TRUE)) response = as.factor(sample(c(1,2,3), n, repla WKAPPA(truth,

response)

Index

ACC, 3 ARSQ, 3 AUC, 4 BAC, 5 BER, 5 Brier, 6	MultilabelACC, 23 MultilabelF1, 24 MultilabelHamloss, 24 MultilabelPPV, 25 MultilabelSubset01, 25 MultilabelTPR, 26
BrierScaled, 7	NPV, 26
EXPVAR, 7	PPV, 27
F1, 8 FDR, 8 FN, 9 FNR, 10	QSR, 27 RAE, 28 RMSE, 28 RMSLE, 29
FP, 10 FPR, 11	RRSE, 30 RSQ, 30
GMEAN, 12	
GPR, 12	SAE, 31 SpearmanRho, 31
KAPPA, 13	SSE, 32
KendallTau, 13	SSR, 32
listAllMeasures, 14	TN, 33
Logloss, 14	TNR, 33
LSR, 15	TP, 34 TPR, 35
MAE, 16	
MAPE, 16	WKAPPA, 35
MCC, 17	
MEDAE, 17	
MEDSE, 18	
MMCE, 18	
MSE, 19	
MSLE, 19	
multiclass.AU1P, 20	
multiclass.AU1U, 21	
multiclass.AUNP, 21	
multiclass.AUNU, 22	
multiclass.Brier, 23	