

| Student Name    |  |  |
|-----------------|--|--|
|                 |  |  |
| Teacher's Name: |  |  |

# **Extension 1 Mathematics**

# TRIAL HSC

# August 2022

# **General Instructions**

- Reading time 10 minutes
- Working time 120 minutes
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided at the back of this paper
- In questions 11-14, show relevant mathematical reasoning and/or calculations

#### **Total marks:**

#### Section I – 10 marks

70

- Attempt Questions 1-10
- Allow about 15 minutes for this section

#### Section II - 60 marks

- Attempt questions 11-14
- Allow about 1 hour and 45 minutes for this section

### **SECTION I**

#### 10 marks

#### **Attempt Questions 1-10.**

#### Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

- 1. The number of different arrangements of the letters of the word NORTHERN which begin and end with the letter N is:
  - A)  $\frac{8!}{2!}$
  - B)  $\frac{6!}{2!}$
  - C)  $\frac{8!}{2!2!}$
  - D)  $\frac{6!}{2!2!}$
- 2. Given  $f(x) = \sqrt{x} 1$ , what are the domain and range of  $f^{-1}(x)$  respectively?

A) 
$$x \ge 0, y \ge -1$$

B) 
$$x \ge -1, y \ge -1$$

C) 
$$x \ge -1, y \ge 0$$

D) 
$$x \ge 1, y \ge 0$$

- 3. Find  $\lim_{x\to 0} \frac{\sin\frac{x}{3}}{5x}$ 
  - A)  $\frac{1}{15}$
  - B)  $\frac{3}{5}$
  - C)  $\frac{5}{3}$
  - D) 15
- 4. Which of the following is the primitive of  $\frac{1}{\sqrt{4-9x^2}}$ ?
  - A)  $\frac{1}{2}sin^{-1}(3x) + c$
  - B)  $\frac{1}{3}sin^{-1}(3x) + c$
  - C)  $\frac{1}{3}sin^{-1}\left(\frac{2x}{3}\right) + c$
  - D)  $\frac{1}{3}sin^{-1}\left(\frac{3x}{2}\right) + c$
- 5. The polynomial  $P(x) = 8x^3 + ax^2 4x + 1$  has a factor of 2x + 1.

What is the value of a?

- A) -8
- B) 0
- C) 3
- D) 8

6. The diagram below shows the graph of a function



A possible equation for the function is:

A) 
$$y = \frac{1}{4} sin^{-1}(3x)$$

B) 
$$y = \frac{1}{4} sin^{-1} \left( \frac{x}{3} \right)$$

C) 
$$y = 4sin^{-1} \left(\frac{x}{3}\right)$$

D) 
$$y = 4sin^{-1}(3x)$$

7. Given the points A(1,3), B(4,5) and C(2,r), it is known that  $\overrightarrow{AB}$  is perpendicular to  $\overrightarrow{BC}$ .

What is the value of r?

- A) -8
- B) -3
- C) 3
- D) 8

8. A Bernoulli variable, X, has a value of p such that E(X) = 5Var(X).

Given that  $p \neq 0$ , what is the value of p?

- A)  $\frac{1}{2}$
- B)  $\frac{4}{5}$
- C)  $\frac{1}{5}$
- D)  $\frac{3}{5}$
- 9. Suppose that f(x) is a continuous function and that  $\int_1^5 f(x) dx = -6$  and

$$\int_2^5 3f(x)dx = 6.$$

What is the value of  $\int_{1}^{2} f(x)dx$ ?

- A) -8
- B) -12
- C) 8
- D) 12

10. The graph of the function f(x) is drawn below



Which of the following best represents the graph of y = |f(|x|)|?

A)



B)



C)



D)



**End of Section I** 

#### **SECTION II**

#### 60 marks

#### **Attempt Questions 11-14.**

#### Allow about 1 hour and 45 minutes for this section.

Answer each question on a new page in the answer booklet.

In questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

#### Question 11 (15 marks) Start a NEW page.

a) Solve for 
$$x: \frac{3}{x-1} \ge 2$$

3

b) Find the value of  $sin15^{\circ}$  in simplest exact form

2

1

c) Find the Cartesian equation for the function with these parametric equations:

$$x = 2t + 1$$

$$y = t - 2$$

d) A committee of five is to be chosen from six men and seven women.

(i) How many committees are possible if there are no restrictions?

1

(ii) How many committees are possible if there are more women than men?

2

Question 11 continues on page 9

e) A rock drops into a lake, creating a circular ripple. The radius of the ripple increases from 0 cm, at a constant rate of 6 cm/s.

2

- At what rate is the area enclosed within the ripple increasing when the radius is 12 cm?
- f) (i) Write  $\sqrt{3}\cos\theta \sin\theta$  in the form  $R\cos(\theta + \alpha)$ 
  - (ii) Hence, or otherwise, solve  $\sqrt{3}\cos\theta \sin\theta = 1$  for  $0 \le \theta \le 2\pi$

## Question 12 (15 marks) Start a NEW page.

a) Find the exact value of  $sin\left(2cos^{-1}\frac{2}{3}\right)$ 

2

- b) The polynomial  $P(x) = ax^3 + bx^2 + c$  has a double root at x = 3 and has remainder -36 when divided by x + 3. Find the values of a, b and c.
- 3

c) Use the substitution u = x - 3 to evaluate

3

- $\int_3^4 x \sqrt{x-3} \, dx$
- d) Find the term independent of x in the expansion of  $\left(3x^4 \frac{1}{x^2}\right)^9$

3

- e) Prove by mathematical induction that  $7^n 3^n$  is divisible by 4 for  $n \ge 1$
- 3

f) State the range of  $y = cos^{-1}(cosx)$ 

1

#### Question 13 (15 marks) Start a NEW page.

- a) Consider the points A(2, -2) and B(2, 6). Using vector methods or otherwise, show that  $\angle AOB = 117^{\circ}$  to the nearest degree, where O is the origin.
- 2

1

1

b) A container of water, heated to  $100^{\circ}$ C, is placed in a cool room where the temperature is maintained at a constant  $-5^{\circ}$ C.

After t minutes, the rate of change of the temperature,  $T^{\circ}C$  of the water is given by  $\frac{dT}{dt} = -k(T+5)$ , where k is a constant.

- (i) Assuming the function  $T = Ae^{-kt} 5$ , where A is a constant, is a solution to the above differential equation, find the value of A.
- (ii) After 30 minutes, the water temperature falls to 20°C. 2

  Find, to the nearest degree, the water temperature after a further 10 minutes.

- c) Jürgen Klopp enters a football tipping competition. The probability that he chooses the winner of any one game is 0.7. In a competition where there are 9 games in a round:
  - (i) What is the probability that he will choose exactly seven winners?
  - (ii) What is the probability that he will choose less than seven winners?

#### Question 13 continues on page 12

d) (i) Find  $\frac{d}{dx}(xtan^{-1}x)$ 

1

(ii) Hence, find  $\int_0^1 tan^{-1}x \ dx$ , leaving your answer in exact form

3

3

e) The diagram below shows part of the graph y = 1 - cosx.



Find the volume generated when the area bounded by  $y = 1 - \cos x$ ,  $x = \frac{\pi}{2}$ ,

 $x = \frac{3\pi}{2}$  and the *x*-axis is rotated about the *x*-axis.

Leave your answer in exact form.

### Question 14 (15 marks) Start a NEW page.

a)



*X* is the point on *AB* such that *AX*: XB = 1:2 and  $\overrightarrow{BY} = 5\underline{a} - \underline{b}$ .  $\overrightarrow{OA} = 3\underline{a}$  and  $\overrightarrow{OB} = 6\underline{b}$ .

(i) Express  $\overrightarrow{AB}$  in terms of  $\underset{\sim}{a}$  and  $\underset{\sim}{b}$ 

1

(ii) Hence or otherwise, prove  $\overrightarrow{OX} = \frac{2}{5}\overrightarrow{OY}$ 

2

Question 14 continues on page 14

- b) Samsung does a quality check of their latest television model. In a sample of 160 televisions, 8 were found to be defective.
  - (i) It is known that the sample proportion is approximately normally distributed.

    Show that the sample mean is 0.05 and the sample standard deviation is 0.01723.

2

(ii) The Hilton group needs to purchase 160 televisions for a new hotel.

By referring to the z-score table provided, estimate the probability that the number of defective televisions purchased is at least 4 but no more than 6.

| Z   | .00    | .01    | .02    | .03    | .04    | .05    | .06    | .07    | .08    | .09    |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | .50000 | .50399 | .50798 | .51197 | .51595 | .51994 | .52392 | .52790 | .53188 | .53586 |
| 0.1 | .53983 | .54380 | .54776 | .55172 | .55567 | .55962 | .56356 | .56749 | .57142 | .57535 |
| 0.2 | .57926 | .58317 | .58706 | .59095 | .59483 | .59871 | .60257 | .60642 | .61026 | .61409 |
| 0.3 | .61791 | .62172 | .62552 | .62930 | .63307 | .63683 | .64058 | .64431 | .64803 | .65173 |
| 0.4 | .65542 | .65910 | .66276 | .66640 | .67003 | .67364 | .67724 | .68082 | .68439 | .68793 |
| 0.5 | .69146 | .69497 | .69847 | .70194 | .70540 | .70884 | .71226 | .71566 | .71904 | .72240 |
| 0.6 | .72575 | .72907 | .73237 | .73565 | .73891 | .74215 | .74537 | .74857 | .75175 | .75490 |
| 0.7 | .75804 | .76115 | .76424 | .76730 | .77035 | .77337 | .77637 | .77935 | .78230 | .78524 |
| 0.8 | .78814 | .79103 | .79389 | .79673 | .79955 | .80234 | .80511 | .80785 | .81057 | .81327 |
| 0.9 | .81594 | .81859 | .82121 | .82381 | .82639 | .82894 | .83147 | .83398 | .83646 | .83891 |
| 1.0 | .84134 | .84375 | .84614 | .84849 | .85083 | .85314 | .85543 | .85769 | .85993 | .86214 |
| 1.1 | .86433 | .86650 | .86864 | .87076 | .87286 | .87493 | .87698 | .87900 | .88100 | .88298 |
| 1.2 | .88493 | .88686 | .88877 | .89065 | .89251 | .89435 | .89617 | .89796 | .89973 | .90147 |
| 1.3 | .90320 | .90490 | .90658 | .90824 | .90988 | .91149 | .91309 | .91466 | .91621 | .91774 |
| 1.4 | .91924 | .92073 | .92220 | .92364 | .92507 | .92647 | .92785 | .92922 | .93056 | .93189 |

Question 14 continues on page 15

- c) (i) Show that  $y = \frac{e^x e^{-x}}{e^x + e^{-x}}$  has no stationary points.
  - (ii) Given that  $y = \pm 1$  are horizontal asymptotes, sketch the curve.
  - (iii) For k > 0, consider the area enclosed by the curve, the lines y = 1, x = 0 and x = k.

Show that this area can be expressed in the form  $ln\left(\frac{2e^k}{e^k+e^{-k}}\right)$ 

(iv) Hence, deduce that for all values of k, the area found in part (iii) is always less than ln2.

End of paper