

Tipos de resíduos nos GLMs

Tipos de Resíduos nos GLMs

O **resíduo de Pearson** é definido como (r_i^P) é definido como:

$$r_i^P = \frac{y_i - \widehat{\mu_i}}{\sqrt{V(\widehat{\mu_i})}},$$

 $r_i^P = \frac{y_i - \mu_i}{\sqrt{V(\widehat{\mu_i})}}$, Componente da estatística de Pearson generalizada X_p^2 .

Para o modelo linear o resíduo de Pearson coincide com o resíduo ordinário. Matricialmente, o resíduo de Pearson o expresso da seguinte forma:

$$r^P = \widehat{V}^{1/2}(y - \hat{\mu}) = \widehat{W}^{1/2}(\hat{z} - \hat{\eta})$$

Em que V = diag{ $(V(\mu_1),...,V(\mu_n))$ } e W = diag{ $g'(\mu_i)^{-2}V(\mu_i)^{-1}$ }

Desvantagem: Muito assimétrico para modelos não normais

Resíduo de Pearson Padronizado

O resíduo de Pearson tem uma versão padronizada, com média 0 e variância aproximadamente 1, definido por:

$$r_i^{P'} = \frac{y_i - \widehat{\mu_i}}{\sqrt{\phi V(\widehat{\mu_i})(1 - \widehat{h_{ii}})}},$$

Em que h_{ii} é o i-ésimo elemento da diagonal da matriz H

$$H = W^{1/2}X(X^TWX)^{-1}X^TW^{1/2}$$

Os resíduos de Pearson padronizados apresentam propriedade razoáveis de segunda ordem, mas podem ter distribuições muito divergentes da normal

Resíduo Componente da Deviance

São as raízes quadradas dos componentes da deviance com sinal igual a $y_i - \widehat{\mu}_i$. Sabe-se que a deviance é dada por:

$$D_p = 2 \sum_{i=1}^{n} [y_i(\widetilde{\theta_i} - \widehat{\theta_i})] + b(\widehat{\theta_i}) - b(\widetilde{\theta_i})$$

Então temos:

$$r_i^D = sinal \ (y_i - \widehat{\mu}_i) \cdot \sqrt{2y_i(\widetilde{\theta}_i - \widehat{\theta}_i) + b(\widehat{\theta}_i) - b(\widetilde{\theta}_i)}$$

O resíduo r_i^D representa a distância da observação y_i ao valor ajustado $\widehat{\mu_i}$, medida na escala da verossimilhança.

Resíduo Componente da Deviance

Quando r_i^D temos que a i-ésima observação está mal ajustada pelo modelo

O resíduo componente da *deviance* possui uma versão padronizada que é dada por:

$$r_i^{D'} = \frac{r_i^D}{\sqrt{\phi (1 - \widehat{h_{ii}})}},$$

Em que h_{ii} é o i-ésimo elemento da diagonal da matriz H

$$H = W^{1/2}X(X^TWX)^{-1}X^TW^{1/2}$$

Resíduo Quantílico

O resíduo quantílico aleatorizado baseia-se no método da transformação integral da probabilidade.

Seja y_i uma v.a. com fda $F(y_i; \mu_i; \phi)$. O método da transformação integral da probabilidade baseia-se no seguinte resultado:

$$u_i = F(y_i; \mu_i; \phi) \sim U(0,1).$$

Considerando que u_i tem distribuição uniforme entre 0 e 1, temos então:

$$\phi^{-1}(F(y_i; \mu_i; \phi)) \sim N(0,1).$$

Resíduo Quantílico

O Resíduo Quantílico aleatorizado pode ser definido por:

$$r_i^q = \phi^{-1} [F(y_i; \mu_i; \phi)]$$

De forma que se o modelo estiver corretamente especificados, estes resíduos seguiram uma distribuição normal padrão.

Se y_i fo uma v.a. discreta, então $F(y_i; \mu_i; \phi)$ é uma com fda com "saltos" em cada valor de y_i .

Análise de Resíduos

Os resíduos de Perason e componente da Deviance geralmente não possuem boas aproximações com a distribuição normal, ainda que o modelo ajustado esteja correto.

A avaliação da qualidade do ajuste baseado em gráficos de probabilidade (QQ-plot), podem não ser adequados.

Um tipo de resíduo que, por construção, tem distribuição normal caso o modelo ajustado esteja correto é o resíduo quantílico aleatorizado

