Universidade do Minho

Eletrónica

CIRCUITOS COM DÍODOS

Guia de Montagem do Trabalho Prático

Como preparação para o trabalho é requisito que simulem antes de cada aula prática o respetivo circuito utilizando o TINA

INTRODUÇÃO

Os díodos de junção PN caraterizam-se por possuir uma elevada resistência quando inversamente polarizados e uma resistência reduzida quando diretamente polarizados. Estes díodos quando diretamente polarizados começam a conduzir para um valor de tensão que se aproxima dos 0,3V para os de Germânio e 0,6V para os de Silício. Nunca deverá ser ultrapassado o V_D máximo a que corresponde um I_D máximo, indicado pelo fabricante, para que a junção não seja destruída pelo aquecimento excessivo.

Antes de iniciar o trabalho com os díodos de junção PN deve verificar a integridade do díodo. Para tal e recorrendo ao multímetro realize o teste selecionando no multímetro o símbolo com díodo. Quando polarizado diretamente o valor lido deverá ser próximo dos 0,6V e quando polarizado inversamente apresentará 1 . (que significa muito elevada) indicado.

OBJETIVO

O objetivo deste trabalho é o estudo do funcionamento do díodo e as suas aplicações práticas mais comuns como por exemplo:

- Funcionamento do díodo como deslocador de nível de tensão (circuitos clamping)
- Funcionamento do díodo como dispositivo limitador (circuitos de clipping)
- Funcionamento dos circuitos multiplicadores de tensão

MATERIAL A UTILIZAR

- Osciloscópio
- Painel didático com gerador de sinal e fontes de alimentação
- Multímetro
- BreadBoard
- Díodos 1N4002
- Resistências
- Condensadores

Universidade do Minho

Engenharia Física

Escola de Engenharia

EXPERIÊNCIA 1 - Obtenção das caraterísticas diretas e inversas de um díodo de junção PN

TP1 Díodos - Guia de Montagem

PROCEDIMENTO

- Ligue o canal 1 do osciloscópio para medir a tensão V_D e o Canal 2 para medir a tensão V_{R1}.
- Ajuste os comandos do osciloscópio de forma a poder observar os dois canais simultaneamente.
- Ligue o multímetro para medir a corrente no circuito.
- Faça variar a tensão V1 de 0,4 a 6V.
- 1.1 Preencha as tabelas a seguir apresentadas.

V1 (V)	VD	VR	ı
0,4			
0,6			
0,8			
1			
2			
4			
6			

V1 (V)	VD	VR	I
0,4			
0,6 0,8			
0,8			
1			
2			
4			
6			

- **1.2** Com base nos valores obtidos esboce o gráfico da caraterística VI do díodo.
- 1.3 Faça os cálculos para obter os valores de V_D, V_R e I para os seguintes valores de VM1 (0.4, 1 e 6)
- 1.4 Comente os resultados obtidos.

TP1 Díodos - Guia de Montagem

Escola de Engenharia Dep. Electrónica Industrial

EXPERIÊNCIA 2 - Funcionamento do díodo como circuito limitador

Considere o circuito da figura abaixo:

- 2.1 Desenhe as formas de onda obtidas no canal 1 e 2 do osciloscópio.
- 2.2 Calcule o valor máximo e mínimo da onda de saída.
- 2.3 Explique o funcionamento do circuito

EXPERIÊNCIA 3 – Funcionamento do díodo como circuito fixador (clamping)

Considere o circuito da figura abaixo:

- 3.1 Desenhe as formas de onda obtidas no canal 1 e 2 do osciloscópio.
- 3.2 Determine o valor médio de cada onda. Explique o procedimento que utilizou para determinar esses valores.
- 3.3 Explique o funcionamento do circuito

TP1 Díodos - Guia de Montagem

Escola de Engenharia Dep. Electrónica Industrial

EXPERIÊNCIA 4 - Funcionamento do díodo num circuito como multiplicador de tensão

Considere o circuito da figura abaixo:

- 4.1 Desenhe as formas de onda obtidas no canal 1 e 2 do osciloscópio.
- 4.2 Verifique qual é a relação entre o valor de pico da tensão de entrada e de saída.
- 4.3 Explique o funcionamento do circuito.

EXPERIÊNCIA 5 - Funcionamento do díodo de zener

Considere o circuito da figura abaixo:

5.1 Preencha a tabela a seguir apresentada.

V ₁ (V)	V _{Z1} (V)	A (Amp)
1		
2		
3		
4		
5		
6		
7		
8		

Universidade do Minho

Engenharia Física

TP1 Díodos - Guia de Montagem

Escola de Engenharia Dep. Electrónica Industrial

5/5

9	
10	

- 5.2 Com base nos valores obtidos esboce o gráfico da caraterística VI do díodo de zener.
- 5.3 Comente os resultados obtidos.