LANGARA COLLEGE

MATHEMATICS 1171 - Calculus I FINAL EXAMINATION April 2013

Duration: 2 hours

Short answers at back (not available during exam)

	Last NAME:		
	First NAME:		
	STUDENT NUMBER:		
	This exam has 13 pages including the front page. Please check yours!	1	7 pts
	r tease check yours:	2	7 pts
	INSTRUCTIONS	3	6 pts
	<u> </u>	4	8 pts
•	Answer questions $1-13$ in the space provided. Indicate if there is work on the back of a page that should be marked.	5	7 pts
		6	7 pts
•	Non-graphing calculators are permitted; no other materials are permitted.	7	5 pts
		8	4 pts
•	For full marks, all appropriate work must be shown. Exact answers must be given when they can be found.	9	8 pts
	must be given when they can be round.	10	8 pts
	There are 90 marks in total. Good luck!	11	8 pts
	There are 70 marks in total. Good rack.	12	7 pts
		13	8 pts
		Total	90 pts
		1	ı

Please circle your instructor's name and section number:

Instructors: M. Lavallee, Section 1 D. Lidstone, Section 2

E. Belchev, Section 3 E. Avelino, Section 4

- 1. (a) [2 points] Define what it means for a function f to be continuous at x = a.
 - (b) [2 points] If a function f is continuous at x = a, must f be differentiable there too? If "yes", give a brief argument why, otherwise, give an example that fails.

(c) [3 points] Let
$$f(x) = \begin{cases} \frac{(x-\pi)\cos x}{1-\sin x} & x \neq \frac{\pi}{2} \\ 2 & x = \frac{\pi}{2} \end{cases}$$

Is f continuous at $x = \frac{\pi}{2}$?

2. (a) Shown below are the graphs of a function f , its derivative f^\prime , and also an antiderivative F of f .

[3 points] Decide which graph is which (you need not give your reasons).

Answer (circle your choice):

The graphs of F, f, f' (in order) are:

abc acb bac bca cab cba

(b) [3 points] The graph of $f(x) = -\frac{x}{|x|}$ is shown. On the same axes, draw the graph of a continuous function F(x) satisfying F(0) = 1 that has derivative f(x) (i.e. F'(x) = f(x) for all $x \neq 0$).

3. (a) [2 points] State the limit definition of f'(3), which is the derivative of a function f(x) at a point x=3.

(b) [5 points] Use the limit definition of the derivative to find f'(a) for $f(x) = \frac{-3}{x-2}$.

- 4. For a function f(x), it is known that $f'(x) = 3e^x x$ and f(0) = 2.
 - (a) [3 points] Use linear approximation at x = 0 to estimate f(1).

(b) [5 points] Now use antiderivatives to find a formula for f(x) and then find the exact value of f(1).

5. [7 points] A plot of the graph of $f(x) = x^2 \ln x$ is given below and shows an absolute minimum at about x = 0.6 and an inflection point at about x = 0.3. Use calculus to find exact values of these locations and explain what happens when $x \to 0^+$.

- 6. Differentiate each of the following functions
 - (a) [3.5 points] $f(x) = \arctan(x/2) 2e^{-\frac{4}{\pi}\sin(x-2)}$. Then, find f'(2).

(b) [3.5 points] $y = (x+1)^{\sin(x+1)}$.

7. The following has been observed on the position f(t) of a particle moving continuously on a line with positive acceleration:

$$f(0) = -1$$
, $f'(0) = 0$; and $f(1) = 2$, $f'(1) = 5$.

Use the data to estimate:

(a) [3 points] the average speed of the particle over the interval $0 \le t \le 1$

(b) [2 points] the time t when the particle was at the origin, using one iteration of Newton's method. Use an initial approximation of $t_1 = 1$.

8. [4 points] A rock is dropped off of a 98 meters cliff. Its height above the ground t seconds later is given by $s = f(t) = 98 - 4.9t^2$ meters. Find its velocity when it hits the ground.

9. [8 points] Two highways intersect at a right angle. Two recording lights are located at points A and B, 200 meters and 300 meters away from the intersection on one of the highway. A car, C, approaching the intersection along the other highway, is being tracked by the two lights. Let θ be the angle ACB (see figure below). Find how far from the intersection the car is when the angle θ is a maximum?

10. [8 points] A Princess and her rescuer, Hero, are running from a castle. On the roof of the castle (100 meters above the ground) an angry (and hungry) dragon watches their escape. Princess and Hero are running at 3 meters per second. When they are 100 meters away how fast is the angle at which the dragon observes them changing?

11. On a college campus of 5000 students, the spread of a flu virus through the student population is modelled by

$$P(t) = \frac{5000}{1 + 4999e^{-0.5t}}$$

where P(t) is the total number of infected people at time t. Time is measured in days.

(a) [3 points] Find $\lim_{t\to\infty} P(t)$ and interpret the result.

(b) [3 points] Given that $P'(t) = \frac{12497500e^{-0.5t}}{\left(1 + 4999e^{-0.5t}\right)^2}$, find P'(2) and interpret the result.

(c) [2 points] Use differentials to approximate P(2.5) - P(2).

12. Given below is a plot of the parametric curve $C: x = t^2 + t$, $y = t - t^3$, $-\infty < t < \infty$.

(a) [3 points] Show that C intersects the origin at two different times.

(b) [3 points] Determine the slope of *C* at the origin the *first* time that it goes through the origin.

(c) [1 point] Show on the plot with an arrow the direction that *C* is drawn as *t* increases.

- 13. A positive function y = f(x) is given implicitly by the equation cos(xy) = x sin(xy).
 - (a) [1 point] Check that the point $\left(1, \frac{\pi}{4}\right)$ is on the graph of the above equation.
 - (b) [5 points] Find y' at the point $\left(1, \frac{\pi}{4}\right)$ using implicit differentiation.

(c) [2 points] Find the equation of the tangent line of this curve at point $\left(1, \frac{\pi}{4}\right)$.

Answers

- 1. (a) $\lim_{x \to a} f(x) = f(a)$ (b) No. e.g. f(x) = |x| is continuous, but not differentiable at x = 0.
 - (c) Not continuous. $f(x) \to -\infty$ as $x \to \pi/2$.
- 2. (a) *cba*

- 3. (a) $f'(3) = \lim_{x \to 3} \frac{f(x) f(3)}{x 3} = \lim_{h \to 0} \frac{f(3 + h) f(3)}{h}$ (either of these limits).
 - (b) $f'(a) = \frac{3}{(a-2)^2}$.
- 4. (a) $f(1) \approx f(0) + f'(0)(1-0) = 2+3=5$
 - (b) $f(x) = 3e^x \frac{1}{2}x^2 1$, $f(1) = 3e \frac{3}{2}$.
- 5. Absolute min at $x = \exp(-1/2)$, inflection point at $x = \exp(-3/2)$, $f(x) \to 0$ as $x \to 0^+$ (l'Hosp.)
- 6. (a) $f'(x) = \frac{1}{1 + (x/2)^2} \cdot \frac{1}{2} 2e^{-\frac{4}{\pi}\sin(x-2)} \cdot \frac{-4}{\pi}\cos(x-2); \quad f'(2) = \frac{1}{4} + \frac{8}{\pi}.$
 - (b) $y' = (x+1)^{\sin(x+1)} \left(\frac{\sin(x+1)}{x+1} + \cos(x+1)\ln(x+1) \right)$
- 7. (a) $\frac{\Delta f}{\Delta t} = 3$, (b) $t = 1 \frac{f(1)}{f'(1)} = 0.6$.
- 8. Hits ground when $t = \sqrt{20}$ sec. with velocity $f'(\sqrt{20}) = -9.8\sqrt{20} = -19.6\sqrt{5} \, m/s$.
- 9. θ is maximum when the car is $100\sqrt{6} \approx 245 m$ from the intersection.
- 10. $3/200 = 0.015 \text{ radians/sec.} \approx 0.86 \text{ deg./sec.}$
- 11. (a) 5000 students. After enough time all students will be infected.

- (b) $P'(2) \approx 1.358$ students per day. After 2 days, the rate of spread of the infection is about 1.358 students/day.
- (c) $P(2.5) P(2) \approx 1.358 \times (0.5) = 0.679$ students.
- 12. (a) (x, y) = (0,0) at times t = -1, t = 0.
 - (b) slope = 2
 - (c)

13. (a) $\sqrt{}$ (b) $y' = -\frac{\pi+2}{4}$ (c) $y - \frac{\pi}{4} = -\frac{\pi+2}{4}(x-1)$