Contents

Problem 1:	Newton's Method	. 2
Problem 2:	Derivation of SoftMax Regression Gradient Updates	. 5
Problem 3:	Logistic Sigmoid Identity	l1
Problem 4:	Implementation of SoftMax Regression	12

Problem 1: Newton's Method

roblem 1: Newton's Method	
1. Newton's Method >	
That I was all a said days of the said of the said of the	
gradient -> g= fw(x) = WX	
7 (10) (0) 2	
$J(w) = 1 \underbrace{Z}_{i=1} \left(y(i) - y(i) \right)^{2} \Rightarrow f_{MSE}$	
$\nabla_{w} f_{NSE}(y, \hat{y}; w) = \nabla_{w} \left[\frac{1}{2n} \sum_{i=1}^{m} \left(\chi^{(i)} w - y^{(i)} \right)^{2i} \right]$	27
2n ict	
$= \frac{1}{2n} \left[\left(\chi \stackrel{\text{int}}{w} - y \stackrel{\text{int}}{v} \right)^2 \right]$	
= 1 2 W (2W - yt)	
Chelle L	
WHI - WH +- WHI WIZ -	
$= \frac{1}{2} \leq n^{(i)} \left(n^{(i)} w - y^{(i)} \right)$	
nie	
See of the mortage of	4
$= \underbrace{1}_{N} \times (x^{T}w - y)$	—(1)
M-01+ M-0	
(W) - W - W - W - W	
hessian > \(\n \left(x \text{w-y} \right) \)	
$= 1 \times (x) \qquad \qquad (2)$	
n	

Newton's Mothod > - let the 2" decler Taylor expansion of faround w (") bet J(w) = J(w'm) + Jw f(w'm) (w-w'm) + 1 (w-w'm) + (w-w'm) To minimize f, we will find the roat of the gradient of Is JW f(w) & Jw f(w) + J Jw (w THW - W THW (K) - W (THW) $= \sqrt{w(k)} + Hw - \frac{1}{2} Hw^{(k)} - \frac{1}{2} Hw^{(k)}$ = Jwf (w(k)) + Hw-Hw(k) equating it to zero > 0 = Juf(w(k)) + HW-HW(k) HW=HW(N)- TW/(W(N)) W (K+1) = W (K) - H-1 Jw (W (K))

Problem 2: Derivation of SoftMax Regression Gradient Updates

biver 5:
$$\hat{q}_{k} = \frac{e^{2kt}}{\sum_{k=1}^{\infty} e^{2kt'}}$$
 $z_{k} = n^{T} w^{(k)} + b_{k}$

(ost $\Rightarrow |c_{k}(w)b| = -1$ $\hat{z}_{k+1}^{2} + \hat{z}_{k+1}^{2} + \hat{z}_{k}^{2} + \hat{z}_$

of
$$\nabla_{\omega}[a] \hat{g}_{k}^{(i)} = \pi_{i} \times (\hat{g}_{k}^{(i)} - \hat{g}_{k}^{(i)})$$

Hence $\nabla_{\omega}[a] \hat{g}_{k}^{(i)} = \pi_{i}[a] \hat{g}_{k}^{(i)} (1 - \hat{g}_{k}^{(i)})$ when $l = k$

Now when $l \neq k$

$$\nabla_{\omega}[a] \hat{g}_{k}^{(i)} = \nabla_{\omega}[a] \left(\frac{e^{2ik}}{\sum_{k=1}^{2} e^{2ik}}\right)$$

$$= e^{2ik} \nabla_{\omega}[a] \left(\frac{1}{\sum_{k=1}^{2} e^{2ik}}\right)$$

$$= e^{2ik} \nabla_{\omega}[a] \left(\frac{1}{\sum_{k=1}^{2} e^{2ik}}\right)$$

$$= e^{2ik} \nabla_{\omega}[a] \left(\frac{1}{\sum_{k=1}^{2} e^{2ik}}\right)$$

$$= e^{2ik} \times e^{2ik} \times \nabla_{\omega}[a] \left(\frac{1}{\sum_{k=1}^{2} e^{2ik}}\right)$$

$$= e^{2ik} \times e^{2ik} \times \nabla_{\omega}[a] \left(\frac{1}{\sum_{k=1}^{2} e^{2ik}}\right)$$

The $\nabla_{\omega}[a] = -\pi_{i}[a] \times \hat{g}_{i}[a] \times \hat{g}_{i}[a]$

when $l \neq k$

Now lets compute the total gradient of the each with ω

$$\Rightarrow \nabla_{\omega}[a] = -\frac{1}{2} \sum_{k=1}^{2} \sum_{k=1}^{2} y_{i}[a] \nabla_{\omega}[a] \log \hat{g}_{i}[a]$$

It will be the sum over l=1, --, c terms so when k=1 & k + 1 we know the term : We can split Ebab = alt Zktlak : \(\frac{1}{2}\) \(\frac{1}{2 = - (\(\frac{2}{n} \) \(\frac{1}{n} \) \(\fr $\frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} = \frac{1}{12} \frac{1}{1$ $= -\frac{1}{2} + \frac{1}{2} + \frac$ Similarly we can prove por the (w,b) $\Rightarrow \nabla_b \mathcal{O} \left\{ ce(\omega, b) = -\frac{1}{N} \underbrace{\sum_{i=1}^{\infty} \chi_b^{(i)} \nabla_b e^{i} \log \hat{y}_k^{(i)}}_{N = 1} = -\frac{1}{N} \underbrace{\sum_{i=1}^{\infty} \chi_b^{(i)} \nabla_b \hat{y}_k^{(i)}}_{N = 1} \underbrace{\nabla_b \hat{y}_k^{($

It will be the sum over l=1, --, c terms so when k=1 & k + 1 we know the term : We can split Ebab = alt Zktlak : \(\frac{1}{2}\) \(\frac{1}{2 = - (\(\frac{2}{n} \) \(\frac{1}{n} \) \(\fr $\frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} = \frac{1}{12} \frac{1}{1$ $= -\frac{1}{2} + \frac{1}{2} + \frac$ $\Rightarrow -\frac{1}{n} \sum_{i=1}^{n} n^{(i)} \left(y_{\ell}^{(i)} - \hat{y}_{\ell}^{(i)} \right) = \nabla_{w} \left(y_{\ell} \right) \left(w_{\ell} b \right)$ Similarly we can prove por the (w,b) $\Rightarrow \nabla_b \mathcal{O} \left\{ ce(\omega, b) = -\frac{1}{N} \underbrace{\sum_{i=1}^{N} \chi_b^{(i)} \nabla_b e^{i} \log \hat{y}_k^{(i)}}_{N = 1} = -\frac{1}{N} \underbrace{\sum_{i=1}^{N} \chi_b^{(i)} \nabla_b \hat{y}_k^{(i)}}_{N = 1} \underbrace{\nabla_b \hat{y}_k^{($

	We have two cases: () when l=k
	then $\nabla_{b}(\hat{y}_{b}) = \nabla_{b}(\hat{y}_{b}) = \nabla_{b}(\hat{y}_{b})$
and the same	=> Heing quotient rule
	$\Rightarrow e^{2e_{\times}} \times \underbrace{\leq}_{k \succeq 1} e^{2k} - e^{2k} \times e^{2k}$
	$\left(\frac{5}{8}e^{2kl}\right)^2$
	=> e2 x 5 = 1 e2k e2(
	(\$ e ^{2k'}) x (\$ e ^{2k'}) 2
	$V_{g(a)}\hat{\mathcal{G}}_{k}^{(a)} \Rightarrow e \hat{\mathcal{G}}_{e}^{(a)} - \hat{\mathcal{G}}_{e}^{(a)}$
	2) when l + k
	760 g 61 - ezh 760 (1)
	$= e^{2h} \times -1 \times e^{2k}$ $= \left(\frac{5}{8} e^{2h}\right)^2$
	Thuy's = - y's ye
	$\frac{\nabla_{b}(x)}{\nabla_{b}(x)} = \frac{1}{n} = $
4.2	i. We can split Eak = alt Zak
	k ktl

Problem 3: Logistic Sigmoid Identity

Problem 4: Implementation of SoftMax Regression

- We developed a 2-layer SoftMax neural network using the Fashion MNIST dataset. The file is saved as *homework3_590146168_249812226.py*.
- The model is trained via stochastic gradient descent method to minimize cross-entropy loss.
- There are 4 Hyperparameters that can be altered:
 - Mini-Batch Size LearningRate Number of Epochs ○
 - L₂ Regularization Strength
- The training data is split into Training (80%) and Validation (20%) dataset.
- We have selected a set of 8 values for each hyperparameter i.e., 8^4 =4096 combinations.
- The weights and bias are initialized to zero.
- Once training is done, we calculate the cost on validation set. If the cost is minimum, the best hyperparameter is updated. This process is done till all hyperparameters are checked.
- It took approximately 30 hours to check all 8⁴ combinations.
- At the end we obtain the best set of hyperparameters. Using these hyperparameters we train the model on validation + training dataset.
- Now this trained model is used to calculate the cost (unregularized MSE) and percent correctly classified examples for the test dataset and the and the result is reported below:

```
(base) saammmy@saammmy-xps15:~/projects/3$ /usr/bin/python3 /home/saammmy/projects/3/neural_network.py

Performing Grid Search for 4096 combinations of Hyperparameters:

Grid Search Completed
Results after performing Grid Search:
Best Hyperparameters:
    Epochs= 35
    Alpha= 1
    Learning Rate= 5e-07
    Mini Batch Size= 32
Cost on Validation Set with Best Hyperparameters= 0.433649244826

Training on Training + Validation Dataset:

Training Completed

Performance Evaluation

Cost on Test Dataset= 0.455827235063
Accuracy on Test Dataset= 84.26 %
```

End Of Assignment