1

Assignment5

Saransh Bali

Abstract—This a simple document that explains the geometry in conics.

https://github.com/saranshbali/EE5609/blob/master/ Assignment1/Code/assignment1 n.ipynb

Download all latex-tikz codes from

https://github.com/saranshbali/EE5609/blob/master/ Orthogonality

1 Problem

Through what angle must the axes be turned to reduce the equation

$$\mathbf{x}^T \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} \mathbf{x} = 1 \tag{1.0.1}$$

to the form

$$\mathbf{x}^T \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix} \mathbf{x} = c \tag{1.0.2}$$

where c is a constant.

2 Solution

The general second order equation can be expressed as follows,

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.0.1}$$

From (1.0.1) and (2.0.1)

$$\mathbf{V} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} \tag{2.0.2}$$

$$\mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.0.3}$$

$$f = -1 \tag{2.0.4}$$

The matrix V can be decomposed as,

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \qquad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix} \tag{2.0.5}$$

where λ_1 and λ_2 are the eigen values of **V**, and **P** contains the eigen vectors corresponding to the

eigen values λ_1 and λ_2 . The affine transformation is given by,

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c} \tag{2.0.6}$$

where, \mathbf{P} indicates the rotation of axes and \mathbf{c} indicates the shift of origin.

Eigen values of V are,

$$|\mathbf{V} - \lambda \mathbf{I}| = 0 \tag{2.0.7}$$

$$\Longrightarrow \begin{vmatrix} 1 - \lambda & -1 \\ -1 & -1 - \lambda \end{vmatrix} = 0 \tag{2.0.8}$$

$$\implies (1 - \lambda)(-1 - \lambda) - 1 = 0$$
 (2.0.9)

$$\Longrightarrow \lambda^2 - 2 = 0 \tag{2.0.10}$$

$$\Longrightarrow \lambda = \pm \sqrt{2}, \qquad \mathbf{D} = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \quad (2.0.11)$$

Eigen vector for $\lambda_1 = \sqrt{2}$,

$$\mathbf{V} - \lambda_1 \mathbf{I} = \begin{pmatrix} 1 - \sqrt{2} & -1 \\ -1 & -1 - \sqrt{2} \end{pmatrix}$$

$$\xrightarrow{r_1/1 - \sqrt{2}} \begin{pmatrix} 1 & -1/1 - \sqrt{2} \\ -1 & -1 - \sqrt{2} \end{pmatrix} \quad (2.0.12)$$

$$\mathbf{V} - \lambda_1 \mathbf{I} = \begin{pmatrix} 1 & -1/1 - \sqrt{2} \\ -1 & -1 - \sqrt{2} \end{pmatrix}$$

$$\stackrel{r_2 = r_1 + r_2}{\longleftrightarrow} \begin{pmatrix} 1 & -1/1 - \sqrt{2} \\ 0 & 0 \end{pmatrix} \quad (2.0.13)$$

Hence,

$$\mathbf{P_1} = \begin{pmatrix} 1 - \sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1 - \sqrt{2}}{4 - 2\sqrt{2}} \\ \frac{1}{4 - 2\sqrt{2}} \end{pmatrix}$$
 (2.0.14)

Eigen vector for $\lambda_2 = -\sqrt{2}$,

(2.0.5)
$$\mathbf{V} - \lambda_2 \mathbf{I} = \begin{pmatrix} 1 + \sqrt{2} & -1 \\ -1 & -1 + \sqrt{2} \end{pmatrix}$$

$$\overset{r_1/1 + \sqrt{2}}{\longleftrightarrow} \begin{pmatrix} 1 & -1/1 + \sqrt{2} \\ -1 & -1 + \sqrt{2} \end{pmatrix} \quad (2.0.15)$$

$$\mathbf{V} - \lambda_2 \mathbf{I} = \begin{pmatrix} 1 & -1/1 + \sqrt{2} \\ -1 & -1 + \sqrt{2} \end{pmatrix}$$

$$\xrightarrow{r_2 = r_1 + r_2} \begin{pmatrix} 1 & -1/1 + \sqrt{2} \\ 0 & 0 \end{pmatrix} \quad (2.0.16)$$

Hence,

$$\mathbf{P_2} = \begin{pmatrix} 1 + \sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1 + \sqrt{2}}{4 + 2\sqrt{2}} \\ \frac{1}{4 + 2\sqrt{2}} \end{pmatrix}$$
 (2.0.17)

Thus,

$$\mathbf{P} = \begin{pmatrix} \frac{1-\sqrt{2}}{4-2\sqrt{2}} & \frac{1+\sqrt{2}}{4+2\sqrt{2}} \\ \frac{1}{4-2\sqrt{2}} & \frac{1}{4+2\sqrt{2}} \end{pmatrix}$$
 (2.0.18)

Therefore V can be written as,

$$\mathbf{V} = \begin{pmatrix} \frac{1-\sqrt{2}}{4-2\sqrt{2}} & \frac{1+\sqrt{2}}{4+2\sqrt{2}} \\ \frac{1}{4-2\sqrt{2}} & \frac{1}{4+2\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} \frac{1-\sqrt{2}}{4-2\sqrt{2}} & \frac{1}{4-2\sqrt{2}} \\ \frac{1+\sqrt{2}}{4+2\sqrt{2}} & \frac{1}{4+2\sqrt{2}} \end{pmatrix}$$
(2.0.19)

Now, (1.0.1) can be transformed as

$$\mathbf{x}^{T} \begin{pmatrix} \frac{1-\sqrt{2}}{4-2\sqrt{2}} & \frac{1+\sqrt{2}}{4+2\sqrt{2}} \\ \frac{1}{4-2\sqrt{2}} & \frac{1}{4+2\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} \frac{1-\sqrt{2}}{4-2\sqrt{2}} & \frac{1}{4-2\sqrt{2}} \\ \frac{1+\sqrt{2}}{4+2\sqrt{2}} & \frac{1}{4+2\sqrt{2}} \end{pmatrix} \mathbf{x} = 1$$
(2.0.20)