Перечисление графов

Воронов Всеволод Александрович

Определение 1. Помеченным графом называется граф на заданных пронумерованных вершинах.

Теорема 1. Число помеченных графов на n вершинах ровно $2^{\frac{n(n-1)}{2}}$. Доказательство. Каждая пара вершин либо соединена, либо нет.

Определение 2. Производящей функцией последовательности a_i называется выражение $A(x) = \sum_i a_i \cdot x^i$.

Примеры.

- Если $a_i = 1$, то $A(x) = \frac{1}{1-x}$.
- Если $a_i = i + 1$, то $A(x) = \frac{1}{(1-x)^2}$.
- Если $a_i = 2^i$, то $A(x) = \frac{1}{1 2x}$.
- Если $a_i = (-1)^{i-1}i$, то $A(x) = \frac{1}{(1+x)^2}$.
- Если $a_i = i(i+1)$, то $A(x) = \frac{2}{(1-x)^3}$.
- Если $a_i = (i+1)^2$, то $A(x) = \frac{2}{(1-x)^3} \frac{1}{(1-x)^2}$.
- Если $a_i = (i+1)^3$, то $A(x) = \frac{6}{(1-x)^4} \frac{6}{(1-x)^3} + \frac{1}{(1-x)^2}$.
- Пусть a_i числа Фибоначчи. Тогда $a_{i+2}=a_{i+1}+a_i$, т.е. $\frac{A(x)-a_0-a_1x}{x^2}=\frac{A(x)-a_0}{x}+A(x)$ и после решения этого уравнения получаем $A(x)=\frac{1}{1-x-x^2}$, т.е. $a_i=(\frac{1}{2}-\frac{1}{2\sqrt{5}})(\frac{1-\sqrt{5}}{2})^i+(\frac{1}{2}+\frac{1}{2\sqrt{5}})(\frac{1+\sqrt{5}}{2})^i.$

Свойства рядов.

- Ряды можно складывать: $A(x) + B(x) = \sum_{i} (a_i + b_i) x^i$.
- Ряды можно умножать: $A(x)B(x) = \sum_{i} x^{i} \cdot \sum_{j} (a_{j} + b_{i-j}).$
- Ряды можно обращать: $\frac{1}{c-A(x)} = \sum_{i} (\frac{A}{c})^{i}(x)$, если $a_{0} = 0$. $\left(\frac{A(x)}{B(x)} = A(x) \cdot \frac{1}{B(x)}\right)$.
- Из ряда с свободным членом, большим нуля, или равным нулю при условии, что минимальное n такое, что $a_n \neq 0$, чётно, можно извлекать корень, причём свободный член результата будет положительным корнем из свободного члена. Доказательство. Будем находить коэффициенты корня K(x) по очереди. Вначале разделим ряд на x^n , чтобы компенсировать это, в конце умножим K(x) на $x^{\frac{n}{2}}$. $k_0 = \sqrt{a_0}$, и для всех остальных коэффициентов получаем такое уравнение: $\sum_i k_i k_{m-i} = a_m$, линейное уравнение относительно k_m с старшим членом, не равным 0. Кроме того, очевидно, что при отрицательном свободном члене или если $n \not / 2$, K(x) найти не удастся.

Бинарные корневые деревья на n вершинах

Определение 3. Бинарными корневыми деревьями называются деревья с выделенной вершиной (корнем), подвешенные на корне, такие, что от каждой вершины вниз идут не более двух рёбер и рёбра, идущие вниз из вершины, пронумерованы подмножеством $\{R, L\}$.

Пусть b_i — количество таких деревьев. Заметим, что $b_{n+1} = \sum_i b_i b_{n-i}$, поэтому $\frac{B(x)-b_0}{x} = B^2(x)$. Если решить это уравнение (например, через дискриминант), получится $B(x) = \frac{1 \pm \sqrt{1-4x}}{2x}$. Чтобы узнать знак перед корнем, посмотрим на свободный член числителя. Если в числителе стоит знак +, этот член равен двум и делить на 2x нельзя. Значит, $B(x) = \frac{1-\sqrt{1-4x}}{2x}$ (это числа Каталана).

Бином Ньютона

$$(1+x)^{\alpha} = \sum_{k} {\alpha \choose k} \cdot x^{k}$$
, где ${\alpha \choose k} = \frac{\prod\limits_{i=0}^{k-1} (\alpha-i)}{k!}$

ПРОИЗВОДЯЩАЯ КОМБИНАТОРИКА

- Если a_n число способов представить n в виде суммы m слагаемых (порядок не важен), то $a_n = \frac{1}{(1-x)^n}$.
- Если a_n число способов представить n в виде суммы m слагаемых (порядок важен), то $a_n = \prod_i \frac{1}{1-x^i}.$

ГРУППЫ ПЕРЕСТАНОВОК

Определение 4. Группа — множество G с определённой на ней операцией \times со следующими свойствами:

- 1. $\forall a, b \in G \ a \times b \in G$:
- 2. $\exists e \in G : \forall a \in G \ e \times a = a \times e = a$;
- 3. $\forall a \in G \exists a^{-1} \in G : a \times a^{-1} = a^{-1} \times a = e$:
- 4. $\forall a, b, c \in G \ (a \times b) \times c = a \times (b \times c)$.

Определение 5. Симметрическая группа S_n — множество всех перестановок $M_n = \{1, 2, \ldots, n\}$ с операцией их композиции. Запись операций: $(a_{1,1}a_{1,2} \ldots a_{1,m_1}) \ldots (a_{k,1} \ldots a_{k,m_k})$ переставляет элементы по циклу: $a_{k,l}$ переходит в $a_{k,l+1}$. $|S_n| = n!$

Определение 6. Подгруппа H группы G — подмножество G такое, что $\forall a, b \in H$ $a \times b \in H$.

Определение 7. Стабилизатор St(n, M) — подгруппа S_n такая, что все действия из неё оставляют элементы M на месте.

Определение 8. Цикловой индекс — полином от n переменных: $z(\alpha) = \prod_i x_i^{f(i)}$, где f(i) — кол-во циклов длины i у α ; $Z(A) = \operatorname{avg}_{\alpha \in A} z(\alpha)$. Например:

$$z((1)(2)(3)) = x_1^3, z((13)(2)) = x_1x_2, Z(S_2) = \frac{1}{2} \cdot (x_1^2 + x_2), Z(S_3) = \frac{1}{6} \cdot (x_1^3 + 2x_3 + 3x_1x_2).$$

Лемма 2. Для любой группы перестановок G выполняется $|G| = |Orb(x)| \cdot |St(x)|$, где Orb(x) обозначает орбиту точки x (множество точек, в которые может перейти x при действии действий из G).

Доказательство. Пусть $Orb(x) = \{x_1, x_2, \dots, x_n\}$. Тогда количество перестановок, переводящих x_i в x_j , не зависит от i и j. Действительно, можно взять все перестановки, переводящие x_i в себя, и при умножении их на конкретную перестановку, переводящую x_i в x_j , получатся все перестановки такого вида.

Лемма 3 (Бернсайд). $|Orb_G| = \frac{1}{|G|} \cdot \sum_{\alpha} (fix(\alpha))$, где $fix(\alpha)$ — число неподвижных точек перестановки.

Доказательство. Возьмём по одной вершине из каждой орбиты. Пусть мы взяли точки x_1, x_2, \ldots, x_n . Запишем для этих точек утверждение 2 и сложим. Получим $|Orb_G| \cdot |A| = \sum_i |Orb(x_i)| \cdot |St(x_i)|$, откуда всё следует.

Лемма 4. Утверждение 3 верно для объединения нескольких орбит. **Доказательство.** Это частный случай 3.

Присвоим каждой орбите вес w(Orb(x)) и определим $w(fix(\alpha))$ как сумму весов орбит неподвижных точек α .

Лемма 5 (Взвешенный Бернсайд).
$$\sum_i w(Orb_i) = \frac{1}{|A|} \cdot \sum_{\alpha} w(fix(\alpha))$$
. Доказательство. Аналогично 3.

Пусть $P = \{0,1\}, G = (V,E)$. Рассмотрим P^V — множество всевозможных $f: V \to P$. Пусть G — подгруппа S_n . Определим $\alpha(f) = x \mapsto f(\alpha x)$ для $f \in P^V$. Наконец, определим w(p) = p для $p \in P$ и $w(f) = \sum_{v \in V} w(f(v))$ для $f \in P^V$.

Пусть $\varphi(y) = a_0 + a_1 y + \ldots$ производящая функция от количеств элементов P по их весам (для $P = \{0,1\}$ $\varphi(y) = 1 + y$), а $\Phi(y) = b_0 + b_1 y + \ldots$ производящая функция от количеств элементов P^V по их весам с точностью до перестановок из A.

Теорема 6 (Пойа).
$$\Phi(y) = Z(A; \varphi(y), \varphi(y^2), \dots, \varphi(y^n)).$$

Применение теоремы Пойа

Пример. Хотим посчитать раскраски ожерелья из 4 элементов в 2 цвета с точностью до поворотов и переворотов. Тогда $A=D_4$. Известно, что $Z(D_4)=\frac{1}{8}\cdot(s_1^4+3s_2^2+2s_4+2s_1^2s_2)$. Тогда $\Phi(y)=\frac{1}{8}\cdot((1+y)^4+3(1+y^2)^2+2(1+y^4)+2(1+y)^2(1+y^2))$. Подставим y=1 (тогда все s_i равны 2): $\Phi(1)=6$, что равно количеству перестановок ожерелья. Также при раскрытии скобок в $\Phi(y)$ коэффициент при y^n будет равен количеству раскрасок с n синими элементами — $\Phi(y)=1+y+2y^2+y^3+y^4$. Также утверждается, что $Z(A;m,m,\ldots,m)$ равно количеству раскрасок ожерелья в m цветов (это так, потому что соответственное взвешенное число имеет вид $1+y+y^2+\ldots+y^{m-1}$ и мы подставляем y=1).

Подсчёт графов

Рассмотрим K_n и пронумеруем его рёбра. Применим на рёбра группу S_n , посчитаем от получившейся группы перестановок $\frac{n(n-1)}{2}$ элементов цикловой индекс и применим теорему. Получим кол-во раскрасок рёбер полного графа в 2 цвета, т.е. кол-во графов на n вершинах.

Доказательство теоремы 6. Заметим, что число раскрасок — это число орбит на множестве раскрасок. Применим 5, получим $\Phi(x) = \frac{1}{|A|} \cdot \sum_{\alpha} w(fix(\alpha))$. Пусть вес

раскраски стоимости k равен x^k . Найдём $w(\alpha):=\sum_{y\in fix(\alpha)}w(y)$. Пусть $\alpha=\overbrace{(\dots)}^{l_1}\overbrace{(\dots)}^{l_2}$ Пусть раскраска имеет стоимость k. Тогда $k=\sum c_i l_i$, где c_i — стоимость вершин i-го цикла. Можно понять, что число раскрасок стоимости k равно количеству способов представить k в виде такой суммы для фиксированных l_i и неотрицательных целых c_i . Тогда $w(\alpha)=\prod_i \frac{1}{1-x^{l_i}}$. Вернее, так было бы при наличии ровно одного цвета каждой стоимости, а в нашем случае $w(\alpha)=\prod_i \varphi(x^i)$. С другой стороны, слагаемое $\prod_i s_{l_i}$ в цикловом индексе выражается $w(\alpha)$, но это то же самое, что мы бы получили после подстановки $s_{l_i}=\varphi(x^{l_i})$ в условие теоремы.

Число корневых деревьев на n вершинах

Пусть у корня дерева степень k. Пусть $t_{n,k}$ — число способов сопоставить каждому из соседей корня дерево на меньшем числе вершин так, что суммарное число вершин у этих деревьев равно n-1. Обозначим за $T_k(x)$ производящую функцию от $t_{n,k}$ по n, а за T(x) — сумму $T_k(x)$ по всем k. Тогда по 6 выполняется

$$Z(S_n; T(x), T(x^2), \dots, T(x^k))x = T_k(x).$$