Lecture6-homework

3. Find the number of integers between 1 and 10,000 that are neither perfect squares nor perfect cubes.

Define a set $S = \{1, 2, \ldots, 10000\}$. Let A (resp. B) denote the set of integers in S that are perfect squares (resp. perfect cubes). We seek $| \overline{A} \cap \overline{B}|$. We have:

set	size	justification
S	10000	
A	100	1002=10000
В	21	21 ³ =9261 and 22 ³ =10648
A ∩ B	4	4 ⁶ =4096 and 5 ⁶ =15625

By inclusion/exclusion:

$$|\overline{A} \cap \overline{B}| = 10000 - (100 + 21 - 4) = 9883.$$

8. Determine the number of solutions of the equation $X_1 + X_2 + X_3 + X_4 + X_4 + X_5 + X_4 + X_5 + X_6 +$

$X_5 = 14$ in positive integers X_1 , X_2 , X_3 , X_4 and X_5 not exceeding 5.

Let S denote the set of positive integral solutions for $x_1 + x_2 + x_3 + x_4 + x_5 = 14$. For $1 \le i \le 5$ let A_i denote the set of elements in S with $x_i \ge 6$. We seek $| \overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3 \cap \overline{A}_4 \cap \overline{A}_5 |$. We have:

	2 0 1 01	
set	size	justification
S	C(13, 4)	13=14-5+(5-1)
A_{i}	C(8, 4)	8=9-5+(5-1)
$A_i \cap A_j$	0	

By_inclusion/exclusion :

$$|\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3 \cap \overline{A}_4 \cap \overline{A}_5| = C(13, 4) - 5*C(8, 4) = 365$$

11. Determine the number of permutations of {I, 2, ...,8} in which no even integer is in its natural position.

Let the set S consist of the permutations of $\{1, 2, \ldots, 8\}$. For i $\in \{2, 4, 6, 8\}$ let A_i denote the set of permutations in S for which i is in its natural position. We seek $|\overline{A}2 \cap \overline{A}4 \cap \overline{A}6 \cap \overline{A}8|$. We have :

set	size
S	8!
A _i	7!
$A_i \cap A_j$	6!
$A_i \cap A_j \cap A_k$	5!
$A_i \cap A_j \cap A_k \cap A_1$	4!

By inclusion/exclusion : $| \overline{A}2 \cap \overline{A}4 \cap \overline{A}6 \cap \overline{A}8 |$ =8!-[C(4,1)*7!-C(4,2)*6!+C(4,3)*5!-C(4,4)*4!] =8!-4*7!+6*6! -4*5! +4!

25. Count the permutations $i_1i_2i_3i_4i_5i_6$ of {I, 2, 3, 4, 5, 6}, where $i_1 \neq 1,5$; $i_3 \neq 2,3,5$; $i_4 \neq 4$; and $i_6 \neq 5,6$.

X		7		x	
	x	x		x	
			x		
				X	x

We interpret this problem in terms of placing six nonattacking rooks on a 6×6 chessboard. The answer is $\sum_{k=0}^{6} r_k(-1)^k$ (6-k)! where:

k	0	1	2	3	4	5	6
r_{k}	1	8	20	20	7	0	0

Chessboard polynomial:

31. How many circular permutations are there of the multiset $\{2 . a, 3 \cdot b, 4 \cdot c, 5 . d\}$, where, for each type of letter, all letters of that type do not appear consecutively?

Let S denote the set of circular permutations of $\{2 \cdot a, 3 \cdot b, 4 \cdot c, 5 \cdot d\}$. Let A denote the set of elements in S such that all occurrences of a are consecutive.B,C,D is similar to A. We seek $|\overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D}|$. We have :

Set X	X contains CP of	x
S	{2 · a, 3 · b, 4 · c, 5 · d}	13!/(2!3!4!5!)
А	{1 · aa, 3 · b, 4 · c, 5 · d}	12!/(1!3!4!5!)
В	{2 · a, 1 · bbb, 4 · c, 5 · d}	11!/(2!1!4!5!)
С	{2 · a, 3 · b, 1 · cccc, 5 · d}	10!/(2!3!1!5!)
D	{2 · a, 3 · b, 4 · c, 1 · ddddd}	9!/(2!3!4!1!)
$A \cap B$	{1 · aa, 1 · bbb, 4 · c, 5 · d}	10!/(1!1!4!5!)
A∩C	{1 · aa, 3 · b, 1· cccc, 5 · d}	9!/(1!3!1!5!)
$A \cap D$	{1 · aa, 3 · b, 4 · c, 1· ddddd}	8!/(1!3!4!1!)
B∩C	{2 · a, 1 · bbb, 1 · cccc, 5 · d}	8!/(2!1!1!5!)
$B\capD$	{2 · a, 1 · bbb, 4 · c, 1 · ddddd}	7!/(2!1!4!1!)
$C \cap D$	{2 · a, 3 · b, 1 · cccc, 1 · ddddd}	6!/(2!3!1!1!)
$A \cap B \cap C$	{1 · aa, 1 · bbb, 1 · cccc, 5 · d}	7!/(1!1!1!5!)
$A \cap B \cap D$	{1 · aa, 1 · bbb, 4 · c, 1· ddddd}	6!/(1!1!4!1!)
$A \cap C \cap D$	{1 · aa, 3 · b, 1 · cccc, 1 · ddddd}	5!/(1!3!1!1!)
$B \cap C \cap D$	{2 · a, 1 · bbb, 1 · cccc, 1 · ddddd}	4!/(2!1!1!1!)
$A \cap B \cap C \cap D$	{1 · aa, 1 · bbb, 1 · cccc, 1 · ddddd}	3!/(1!1!1!1!)

By inclusion/exclusion:

$$| \bar{A} \cap \bar{B} \cap \bar{C} \cap \bar{D} |$$

=13!/(2!3!4!5!) -12!/(1!3!4!5!) -11!/(2!1!4!5!) -10!/(2!3!1!5!)

-9!/(2!3!4!1!) +10!/(1!1!4!5!)

+9!/(1!3!1!5!)+8!/(1!3!4!1!)+8!/(2!1!1!5!)+7!/(2!1!4!1!)+6!/(2!3!1!1!)-

7!/(1!1!1!5!)-6!/(1!1!4!1!)-5!/(1!3!1!1!)-4!/(2!1!1!1!)+3!/(1!1!1!1!).