泛函分析

强基数学 002

吴天阳 2204210460

题目 1. 设两个度量空间分别为 $(X_1, \rho_1), (X_2, \rho_2)$,映射 $T: X_1 \to X_2$,证明下述两种函数连续性定义是等价的

- 1. 任意的数列 $\{x_n\} \subset X_1$,若 $\exists x \in X_1, \ \rho_1(x_n, x) \to 0, \ 则有 <math>\rho_2(Tx_n, Tx) \to 0.$
- 2. $\forall \varepsilon > 0$, $\forall x_0 \in X_1$, $\exists \delta > 0$ 使得当 $\rho_1(x, x_0) < \delta$ 时 $\rho_2(Tx, Tx_0) < \varepsilon$.

证明. $(1 \Rightarrow 2)$ 反设, $\exists x_0 \in X$, $\exists \varepsilon > 0$,使得 $\forall n \in \mathbb{N}$,有 $\rho_1(x_n, x_0) < \frac{1}{n}$,但 $\rho_2(Tx_n, Tx_0) \geqslant \varepsilon$ 则 $\rho_1(x_n, x_0) \to 0$,由原命题假设可知 $\rho_2(Tx_n, Tx_0) \to 0$ 矛盾.

 $(2 \Rightarrow 1) \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \$ 使得 $\forall n \geqslant N \$ 有 $\rho_1(x, x_0) < \frac{1}{n}, \$ 有 $\rho_2(Tx, Tx_0) < \varepsilon, \$ 令 x_n 满足 $\rho_1(x_n, x_0) < \frac{1}{n}, \$ 则由 ε 的任意性可知 $\rho_1(x_n, x_0) \to 0 \Rightarrow \rho_2(Tx_n, Tx_0) \to 0.$

题目 2. 在等距同构的意义下, 度量空间的完备化空间是唯一的.

证明. 反设存在 (X_1, ρ_1) , (X_2, ρ_2) 为 (X, ρ) 的两个在等距同构下不同的完备化空间, 设 $T_1: X \to X_1, T_2: X \to X_2$ 分别为 X 到 X_1 和 X_2 的等距同构映射.

 $\forall x_1, x_2 \in X_1$,由稠密性可知,存在 Cauchy 列 $\{x_{n1}\}, \{x_{n2}\} \subset X$ 使得 $T_1x_{n1} \to x_1, T_2x_{n2} \to x_2$,由等距性可知

$$\rho(x_{n1}, x_{n2}) = \rho_1(T_1 x_{n1}, T_2 x_{n2}) = \rho_1(T_1 x_{n1}, x_1) + \rho_1(x_1, x_2) + \rho_1(x_2, T_2 x_{n2}) = \rho_1(x_1, x_2), \quad (n \to \infty)$$

由于 $\{x_{n1}\}$, $\{x_{n2}\}$ 均为 Cauchy 列,则存在 $x_1', x_2' \in X_2$,使得 $T_2x_{n1} \to x_1', T_2x_{n2} \to x_2'$,类似地有

$$\rho(x_{n1}, x_{n2}) = \rho_2(x'_1, x'_2), \quad (n \to \infty)$$

于是 $\rho_1(x_1, x_2) = \rho_2(x_1', x_2')$.

由 x_1, x_2 的任意性,可构造等距同构映射 $T' = T_2(T_1^{-1}): X_1 \to X_2$,则 $T'^{-1} = T_1(T_2^{-1})$,且 $\forall x_1, x_2 \in X_1$ 有 $\rho_1(x_1, x_2) = \rho_2(T'x_1, T'x_2)$. 故度量空间 X_1 与 X_2 在 X_2 不 下等距同构,与假设矛盾. 所以度量空间的完备化空间是唯一的.

题目 3. 设 $C_0^1(0,1) := \{ f \in C^1(0,1) : f$ 在0和1的某领域上等于0 $\}$,定义

$$\rho(x,y) = \left(\int_0^1 (|x(t) - y(t)|^2 + |x'(t) - y'(t)|^2) \, \mathrm{d}x \right)^{1/2}$$

- 1. $(C_0^1(0,1), \rho)$ 是一个度量空间,但不完备.
- 2. 设 $X \in C_0^1(0,1)$ 在 ρ 下的完备化空间, 证明 $X \subset C[0,1]$.

证明. 1. (正定性) $\forall x, y, z \in C_0^1(0,1)$ 在 (0,1) 上有 $|x-y|^2 + |x'-y'|^2 \geqslant 0$,于是 $\rho(x,y) \geqslant 0$. 又由于 $\rho(x,y) = 0 \iff x = y, x' = y', a.e. \iff x = y$ (连续性) .

(对称性) 由于
$$|x - y| = |y - x|$$
, 于是 $\rho(x, y) = \rho(y, x)$.

(三角不等式) 要证 $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$,只需证 $\rho(x,y)^2 \leq \rho(x,z)^2 + 2\rho(x,z)\rho(z,y) + \rho(z,y)^2$,由于

$$\begin{split} \rho(x,z)^2 + 2\rho(x,z)\rho(z,y) + \rho(z,y)^2 \\ &= \int_0^1 (|x-z|^2 + |x'-z'|^2) \,\mathrm{d}t + 2 \left(\int_0^1 (|x-z|^2 + |x'-z'|^2) \,\mathrm{d}t \int_0^1 (|z-y|^2 + |z'-y'|^2) \,\mathrm{d}t \right)^{1/2} \\ &+ \int_0^1 (|z-y|^2 + |z'-y'|^2) \,\mathrm{d}t \end{split}$$

使用两次 Cauchy-Schwarz 不等式可知

$$\left(\int_0^1 (|x-z|^2 + |x'-z'|^2) \, \mathrm{d}t \int_0^1 (|z-y|^2 + |z'-y'|^2) \, \mathrm{d}t \right)^{1/2}$$
 (积分形式不等式) $\geqslant \int_0^1 \sqrt{|x-z|^2 + |x'-z'|^2} \sqrt{|z-y|^2 + |z'-y'|^2} \, \mathrm{d}t$ (求和形式不等式) $\geqslant \int_0^1 |x-z||z-y| + |x'-z'||z'-y'| \, \mathrm{d}t$

于是

$$\begin{split} &\rho(x,z)^2 + 2\rho(x,z)\rho(z,y) + \rho(z,y)^2 \\ &\geqslant \int_0^1 (|x-z|^2 + 2|x-z||z-y| + |z-y|^2) \,\mathrm{d}t + \int_0^1 (|x'-z'|^2 + 2|x'-z'||z'-y'| + |z'-y'|^2) \,\mathrm{d}t \\ &\geqslant \int_0^1 (|x-z| + |z-y|)^2 \,\mathrm{d}t + \int_0^1 (|x'-z'| + |z'-y'|)^2 \,\mathrm{d}t \\ &\geqslant \int_0^1 (|x-y|^2 + |x'-y'|^2) \,\mathrm{d}t = \rho(x,y)^2 \end{split}$$

题目 4. 证明 $L^{\infty}[a,b]$ 不可分.

注记.
$$L^{\infty}[a,b] := \{f \overline{\eta} \ | \ \lim_{m(E_0)=0} \sup_{x \in [a,b]-E_0} |f(x)| < \infty \}$$
 .

证明. $L^{\infty}[a,b]$ 中测度为 $\rho(f,g) := \inf_{m(E_0)=0} \sup_{x \in [a,b]-E_0} |f(x)-g(x)|$. 不妨令 a=0,b=1,类似证明 l^{∞} 的思路. 构造不可数集合

$$S = \left\{ \lim_{n \to \infty} \sum_{i=1}^{n} \xi_i \cdot \chi_{\left[0, \frac{i}{n}\right]} : \xi_i \in \{0, 1\} \right\}$$

其中 $\chi_{[a,b]}$ 表示在 [a,b] 上取值为 1 其他位置为 0 的函数. 由于 S 与二进制序列等势,则 $\overline{\overline{S}}=\aleph$,且 $\rho(f,g)=1,\ f,g\in S,f\neq g$.

假设 L^{∞} 不可分,则存在 $\{h_n\} \subset L^{\infty}$,使得 $\{h_n\}$ 在 L^{∞} 中稠密,于是 $S \subset \bigcup_{n \geq 1} B(h_n, 1/3)$,由于 S 不可数,则必存在正整数 i 和 S 中的两个不同函数 f,g,使得 $f,g \in B(h_i, 1/3)$,则 $\rho(f,g) \leq 2/3$ 与 $\rho(f,g) = 1$ 矛盾,故 L^{∞} 不可分.

题目 5. 证明 $l^p(1 \le p < \infty)$ 可分.

注记. $l^p := \{ 数列\{x_n\} : \sum_{i=1}^{\infty} |x_i|^p < \infty \},$ 其上的度量为 $\rho(\xi, \mu) = \left(\sum_{i=1}^n |x_i - y_i|^p \right)^{1/p}, (\xi = \{x_n\}, \mu = \{y_n\})$

证明. 设 $S=\{(q_1,q_2,\cdots,q_n,0,0,\cdots):q_i\in\mathbb{Q},n\in\mathbb{N}\},$ 则 S 为可数集,下证 S 在 l^p 中稠密.

 $\forall \xi \in l^p, \ \diamondsuit \ \xi = (x_1, x_2, \cdots), \ \text{由于} \sum_{i=1}^{\infty} |x_i|^p < \infty, \ \text{则} \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ \text{使得} \sum_{i=N+1}^{\infty} |x_i|^p < \varepsilon^p,$ 由于 \mathbb{Q} 在 \mathbb{R} 中稠密,可以取到

$$\eta = (q_1, q_2, \cdots, q_N, 0, 0, \cdots) \in S$$

且满足 $|q_i - x_i|^p < \frac{\varepsilon^p}{2^i}$,于是

$$\rho(\xi, \eta) = \left(\sum_{i=1}^{N} |x_i - q_i|^p + \sum_{i=N+1}^{\infty} |x_i|^p\right)^{1/p}$$

$$\leq \left(\sum_{i=1}^{\infty} \frac{\varepsilon^p}{2^i} + \varepsilon^p\right)^{1/p}$$

$$= (2\varepsilon^p)^{1/p} = 2^{1/p}\varepsilon \to 0.$$

说明可数集 $S \neq l^p$ 上的稠密子集,则 l^p 是可分的.