Homological Algebra

Problem Set 7

D. Zack Garza

D. Zack Garza University of Georgia dzackgarza@gmail.com

 $Last\ updated \hbox{:}\ 2021\hbox{-}05\hbox{-}01$

Table of Contents

Contents

Table of Contents	2
1 Problem Set 7	3

Table of Contents

1 | Problem Set 7

Problem 1.0.1 (Weibel 7.2.1) 1. Let $f: M \to N$ be a morphism of \mathfrak{g} -modules over a field k. Show that the k-modules $\ker(f), \operatorname{im}(f), \operatorname{coker}(f)$ are the kernel, image, and cokernel respectively of f in the category \mathfrak{g} -Mod

2. Show that a monic (resp. epi) in \mathfrak{g} -Mod is also a monic (resp. epi) in k-Mod. Use (1) to show that \mathfrak{g} -Mod is an abelian category.

Solution:

Proof (of 1).

Note that there is an inclusion of sets

$$\operatorname{Hom}_{\mathfrak{g}\operatorname{\mathsf{-Mod}}}(M,N) \coloneqq \left\{ f \in \operatorname{Hom}_{\mathsf{k}\operatorname{\mathsf{-Mod}}}(M,N) \mid f(gm) = gf(m) \ \forall g \in \mathfrak{g}, \ \forall m \in M \right\}$$
$$\subseteq \operatorname{Hom}_{\mathsf{k}\operatorname{\mathsf{-Mod}}}(M,N),$$

where we can regard M, N as k-modules by applying a forgetful functor $\mathfrak{g}\text{-Mod} \to \mathsf{k}\text{-Mod}$. This is in fact a k-submodule: if $f_1, f_2 \in \mathrm{Hom}_{\mathfrak{g}\text{-Mod}}(M, N)$ and $t \in k$, we have

$$(tf_1 + f_2)(gm) := tf_1(gm) + f_2(gm) = g \cdot tf_1(m) + g \cdot f_2(m) = g \cdot (tf_1(m) + f_2(m)),$$

which shows $tf_1 + f_2 \in \operatorname{Hom}_{\mathfrak{g}\text{-Mod}}(M,N)$ and the one-step submodule test applies.

Moreover, kernels exist in \mathfrak{g} -Mod since they exist in k-Mod: given $f \in \operatorname{Hom}_{\mathfrak{g}\text{-Mod}}(M,N)$, using the submodule structure above we can identify $f \in \operatorname{Hom}_{\mathsf{k}\text{-Mod}}(M,N)$ and produce $\ker f$ as a k-submodule of M. Using the kernels are set inclusions in categories of R-modules, we can define a \mathfrak{g} -module structure on $\ker f \leq M$ by restricting the \mathfrak{g} -action on M. Then the k-module inclusion ι : $\ker f \hookrightarrow M$ is a morphism of \mathfrak{g} -modules, since $\iota(\ell) = \ell$ for $\ell \in \ker f$, so it is product-preserving:

$$q\iota(\ell) = q\ell = \iota(q\ell).$$

Similarly, $\operatorname{im}(f)$ in \mathfrak{g} -Mod is gotten by setting $\operatorname{im}(f) := \operatorname{im}_{\mathsf{k}\text{-Mod}}(f)$ and restricting the \mathfrak{g} -action from N to $\operatorname{im}(f)$, and the cokernel is obtained as the quotient $\operatorname{coker}(f) := N/\operatorname{im}(f)$ with a \mathfrak{g} -module structure induced by the canonical quotient map.

Proof (of 2).

To see that monics in \mathfrak{g} -Mod are also monics in k-Mod, first consider the forgetful functor

$$F: \mathfrak{g}\operatorname{\mathsf{-Mod}} \to \mathsf{k}\operatorname{\mathsf{-Mod}}.$$

This is adjoint to the trivial g-module functor, yielding an adjunction

$$\mathfrak{g} ext{-Mod} \xrightarrow{F \atop \operatorname{Triv}} \mathsf{k} ext{-Mod}.$$

We need to check that if $f:A\to B$ in $\mathfrak{g}\text{-Mod}$ is monic, then its image $F(f):F(A)\to F(B)$ is monic in k-Mod. Note that being a monomorphism is equivalent to having the following injections on hom sets for all $Z\in\mathfrak{g}\text{-Mod}$:

$$f_* : \operatorname{Hom}_{\mathfrak{g}\operatorname{\mathsf{-Mod}}}(Z,A) \hookrightarrow \operatorname{Hom}_{\mathfrak{g}\operatorname{\mathsf{-Mod}}}(Z,B)$$

 $h_i \mapsto f \circ h_i.$

So the content of the problem is to check that for all $W \in \mathsf{k}\text{-}\mathsf{Mod},$ the following map is an injection:

$$F(f)_* : \operatorname{Hom}_{\mathsf{k-Mod}}(W, F(A)) \hookrightarrow \operatorname{Hom}_{\mathsf{k-Mod}}(W, F(B))$$

 $g_i \mapsto F(f) \circ g_i.$

Using the adjunction, we have natural isomorphism

$$\operatorname{Hom}_{\mathsf{k}\operatorname{\mathsf{-Mod}}}(W,F(A)) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{g}\operatorname{\mathsf{-Mod}}}(\operatorname{Triv}(W),A)$$

 $\operatorname{Hom}_{\mathsf{k\text{-}Mod}}(W,F(B)) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{g\text{-}Mod}}(\operatorname{Triv}(W),B),$

and by assumption,

$$f_*: \operatorname{Hom}_{\mathfrak{q}\operatorname{\mathsf{-Mod}}}(\operatorname{Triv}(W), A) \hookrightarrow \operatorname{Hom}_{\mathfrak{q}\operatorname{\mathsf{-Mod}}}(\operatorname{Triv}(W), B),$$

since we can take Z := Triv(W). Since f_* is an injection, pushing it through the isomorphism shows that $F(f)_*$ is an isomorphism, and so any monic \mathfrak{g} -module morphism descends to a monic k-module morphism.

Problem 1.0.2 (Weibel 7.2.2)

For $M \in \mathsf{k}\text{-}\mathsf{Mod}$, let $E := \operatorname{End}_{\mathsf{k}\text{-}\mathsf{Mod}}(M) \in \mathsf{Alg}_{/k}$ be the associative algebra of k-module endomorphisms of M. Show that there is a correspondence

$$\left\{ \begin{array}{l} \operatorname{Maps}\, \mathfrak{g} \otimes M \to M \\ \operatorname{making}\, M \text{ a } \mathfrak{g}\text{-module} \end{array} \right\} \ensuremath{\rightleftharpoons} \left\{ \begin{array}{l} \operatorname{Lie} \text{ algebra morphisms} \\ \mathfrak{g} \! \to \! \operatorname{Lie}(E) \end{array} \right\}$$

Conclude that a \mathfrak{g} -module may also be described as an $M \in \mathsf{k}\text{-}\mathsf{Mod}$ together with a morphism of Lie algebras

$$\mathfrak{g} \to \mathrm{Lie}\left(\mathrm{End}_{\mathsf{k-Mod}}(M)\right).$$

Solution:

Define maps

$$\begin{split} \{f: \mathfrak{g} \otimes_k M \to M \in \mathsf{k\text{-}Mod}\} & \xrightarrow{\Theta} \{\mathfrak{g} \to \mathrm{Lie}\left(\mathrm{End}_{\mathsf{k\text{-}Mod}}(M)\right) \in \mathsf{Lie\text{-}Alg}\} \\ f \mapsto \Theta_f & \coloneqq (g \mapsto f(g \otimes -)) \\ \Psi_h & \coloneqq (g \otimes m \mapsto h_q(m)) \longleftrightarrow h, \end{split}$$

where $h_g(m) := h(g)(m)$, and we have $\Theta_f(g)(m) := f(g,m)$ and $\Psi_h(g,m) := h(g)(m)$.

Claim: Let $f: \mathfrak{g} \otimes_k M \to M$ be a k-module morphism. Θ_f defines a morphism of Lie algebras.

Proof(?).

Write $[-,-]_{\mathfrak{g}}$ for the bracket on \mathfrak{g} and $[-,-]_{\operatorname{End}}$ for the bracket on $\operatorname{Lie}(\operatorname{End}_{\mathsf{k-Mod}}(M))$ defined by $[x,y]_{\operatorname{End}} := x \circ y - y \circ x$, it then suffices to check the following identity:

$$[\Theta_f(x), \Theta_f(y)]_{\text{End}} = \Theta_f([x, y]_{\mathfrak{g}}).$$

Expanding the right-hand side, we have

$$[\Theta_f(x), \Theta_f(y)]_{\text{End}} := \Theta_f(x) \circ \Theta_f(y) - \Theta_f(y) \circ \Theta_f(x)$$

$$= f(x \otimes -) \circ f(y \otimes -) - f(y \otimes -) \circ f(x \otimes -)$$

$$= f(x \otimes f(y \otimes -)) - f(y \otimes f(x \otimes -)),$$

and now using multiplicative notation to write $gm\coloneqq f(g,m),$ evaluating this on an element $m\in M$ yields

$$(f(x \otimes f(y \otimes -)) - f(y \otimes f(x \otimes -)))(m) = x(ym) - y(xm).$$

For the right-hand side, we have

$$\Theta_f([x, y]_{\mathfrak{g}})(m) := f([x, y]_{\mathfrak{g}} \otimes m)$$
$$= [x, y]_{\mathfrak{g}}(m)$$
$$:= x(ym) - y(xm),$$

where in the last step we've used that f is a structure map that makes M into a \mathfrak{g} -module. So the two sides agree on every element of M, and are thus equal as k-module endomorphisms of M.

Claim: Let $h : \mathfrak{g} \to \text{Lie}(\text{End}_{\mathsf{k-Mod}}(M))$ be a morphism of Lie algebras. Ψ_h defines a morphism of k-modules.

Proof(?).

It suffices to check $\Psi_h(rx+y) = r(\Psi_h(x) + \Psi_h(y))$ for x, y in the domain $\mathfrak{g} \otimes M$ and $r \in k$. This follows from a computation: on elementary tensors, we have

$$\Psi_{h}(r(g_{1} \otimes m_{1}) + (g_{2} \otimes m_{2})) = \Psi_{h}(r(g_{1} + g_{2}) \otimes (m_{1} + m_{2}))
:= h(r(g_{1} + g_{2}))(m_{1} + m_{2})
= r(h(g_{1}) + h(g_{2}))(m_{1} + m_{2})$$
 using r-linearity of h
= $r(h(g_{1}) + h(g_{2}))(m_{1} + m_{2})$
= $r(h(g_{1}) + h(g_{2}) \otimes m_{1} + m_{2})$
= $r(h(g_{1}) \otimes m_{1}) + (h(g_{2}) \otimes m_{2})$
= $r(\Psi_{h}(g_{1} \otimes m_{1}) + \Psi_{h}(g_{2} \otimes m_{2}))$,

and extending by linearity shows that Ψ_h is k-linear.

Claim: Ψ_h makes M into a \mathfrak{g} -module.

Proof (?).

In multiplicative notation, the condition we need to check is the following:

$$[x,y]m = x(ym) - y(xm) \qquad \forall x,y \in \mathfrak{g}, m \in M.$$

Writing this explicitly, we want

$$\Theta_h([xy], m) = \Theta_h(x, \Theta_h(y, m)) - \Theta_h(y, \Theta_h(x, m)).$$

This follows from a computation:

$$\Theta_h([xy]_{\mathfrak{g}}, m) := h([xy]_{\mathfrak{g}})(m)
= ([h(x), h(y)]_{\operatorname{End}})(m) *
:= (h(x) \circ h(y) - h(y) \circ h(x))(m)
= h(x)(h(y)(m)) - h(y)(h(x)(m))
:= \Theta_h(x, \Theta_h(y, m)) - \Theta_h(y, \Theta_h(x, m)),$$

where in the line marked * we've used that h was a Lie algebra morphism and thus we can commute the brackets.

Claim: Θ and Ψ are mutually inverse.

Proof(?).

Starting with $f: \mathfrak{g} \otimes M \to M$, we obtain $\Theta_f := (g \mapsto f(g \otimes -))$. Applying Ψ yields

$$\Psi_{\Theta_f} := (g \otimes m \mapsto \Theta_f(g)(m))$$
$$:= (g \otimes m \mapsto f(g \otimes -)(m))$$
$$:= (g \otimes m \mapsto f(g \otimes m)),$$

and so this recovers f.

Similarly, starting now with $h: \mathfrak{g} \to \mathfrak{gl}(M)$ and letting $h_g := h(g)$, applying Ψ yields $\Psi_h := (g \otimes m \mapsto h_g(m))$, and applying Θ yields

$$\Theta_{\Psi_h} := (g \mapsto \Psi_h(g \otimes -))$$

:= $(g \mapsto (g \otimes - \mapsto h_g(-)))$
:= $(g \mapsto h_g),$

which recovers h.

The main result now follows.

Problem 1.0.3 (Weibel 7.3.2)

Given an $M \in \mathsf{k}\text{-}\mathsf{Mod}$, consider the Lie algebra $\mathrm{Lie}(T(M))$ underlying the tensor algebra T(M). Let $\mathfrak f$ denote the Lie subalgebra generated by M, so elements of $\mathfrak f$ are iterated brackets of elements:

$$x \in \mathfrak{f} \implies x = \sum [x_1 [x_2 [\cdots x_n]]]$$
 $x_i \in M$.

Show that f satisfies the universal property of a free Lie algebra of M (see 7.1.5).

Solution:

It suffices to show that the following map is an isomorphism of hom sets:

$$\operatorname{Hom}_{\mathsf{k-Mod}}(M,\operatorname{Forget}(\mathfrak{g})) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Lie-Alg}}(\mathfrak{f},\mathfrak{g})$$

$$f \mapsto \tilde{f}$$

$$\bar{g} \leftrightarrow g,$$

where \bar{g} is the restriction of g to only those sums with a single term and no iterated brackets. To define \tilde{f} , first write $[-,-] := [-,-]_{\mathfrak{g}}$ for the bracket on \mathfrak{g} . Using the compatibility of f with sums and brackets on \mathfrak{g} , given an element $x := \sum [x_1, [x_2, \cdots, x_n]] \in \mathfrak{f}$, we can pass f

through each iterated bracket inductively:

$$f(x) := \tilde{f}\left(\sum [x_1, [x_2, \cdots, x_n]]\right)$$

$$= \sum f([x_1, [x_2, \cdots, x_n]])$$

$$= \sum [f(x_1), f([x_2, \cdots, x_n])]$$

$$= \sum [f(x_1), [f(x_2), f(\cdots, x_n])]$$

$$= \sum [f(x_1), [f(x_2), \cdots, f(x_n)]].$$

So we can extend $f: M \to \mathfrak{g}$ to $\tilde{f}: \mathfrak{f} \to \mathfrak{g}$ by linearity and bracketing to make the following definition:

$$\tilde{f}(x) := \tilde{f}\left(\sum [x_1, [x_2, \cdots, x_n]]\right) := \sum [f(x_1), [f(x_2), \cdots, f(x_n)]].$$

Since $\tilde{f}:\mathfrak{f}\to\mathfrak{g}$ is a morphism on the underlying k-modules, it remains to check that it defines a morphism of Lie algebras. For this to be true, we need that

$$\tilde{f}([x,y]_{\mathfrak{f}}) = [\tilde{f}(x), \tilde{f}(y)],$$

where since $\mathfrak{f} \leq \operatorname{Lie}(T(M))$ is a subalgebra of the tensor algebra, its bracket is defined by $[x,y]_{\mathfrak{f}} := [xy-yx]$. Since both brackets are bilinear, it suffices to check this on sums with a single term and extend by linearity. Moreover since \tilde{f} is defined inductively, it suffices to check on a single iteration of bracketing, in which case we have

Remark 1.0.1: Note: I don't see a clear way to get this result. Since f is a morphism of k-modules, one can easily get something like

$$f([x,y]_{\mathfrak{f}}) \coloneqq f(xy-yx) = f(x)f(y) - f(y)f(x) = [f(x),f(y)]_{\mathfrak{g}'},$$

where \mathfrak{g}' is the same underlying k-module as \mathfrak{g} but with the bracket defined as $[a,b]_{\mathfrak{g}'} := ab - ba$. However, this isn't a priori related to the original bracket $[a,b]_{\mathfrak{g}}$.

Problem 1.0.4 (Weibel 7.3.4)

Let $M, N \in \mathfrak{g}\text{-Mod}$ and make $\operatorname{Hom}_{\mathsf{k}\text{-Mod}}(M, N)$ into a $\mathfrak{g}\text{-module}$ via the action

$$(xf)(m) := xf(m) - f(xm)$$
 $x \in \mathfrak{g}, m \in M.$

Show that there is a natural isomorphism

$$\operatorname{Hom}_{\mathfrak{g}\operatorname{\mathsf{-Mod}}}(M,N) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{k}\operatorname{\mathsf{-Mod}}}(M,N)^{\mathfrak{g}} \in \mathfrak{g}\operatorname{\mathsf{-Mod}}.$$

Solution:

The first claim is that these are equal as sets. This follows because for all $x \in \mathfrak{g}$, for f to be a

morphism of g-modules it must be product-preserving, and so we have:

$$f \in \operatorname{Hom}_{\mathfrak{g}\operatorname{\mathsf{-Mod}}}(M,N) \iff xf(m) = f(xm) \qquad \forall m \in M$$

$$\iff xf(m) - f(xm) = 0_M \qquad \forall m \in M$$

$$\iff x \cdot f = 0$$

$$\iff f \in \operatorname{Hom}_{\mathsf{k}\operatorname{\mathsf{-Mod}}}(M,N)^{\mathfrak{g}},$$

where we've used the definition $A^{\mathfrak{g}} := \{ a \in A \mid ga = 0_A \ \forall g \in \mathfrak{g} \}$. So if we define a map

$$\tilde{F}: \operatorname{Hom}_{\mathfrak{g}\operatorname{\mathsf{-Mod}}}(M,N) \to \operatorname{Hom}_{\mathsf{k}\operatorname{\mathsf{-Mod}}}(M,N)^{\mathfrak{g}}$$

$$f \mapsto \tilde{F}_f \coloneqq F(f)$$

where $F:\mathfrak{g}\text{-}\mathsf{Mod}\to\mathsf{k}\text{-}\mathsf{Mod}$ is the forgetful functor, the above argument shows that this is a bijection. It only remains to check that \tilde{F} is a morphism of $\mathfrak{g}\text{-}\mathsf{modules}$, but this follows from the fact that

$$f(m) = F(f)(m) := \tilde{F}_f(m),$$

i.e. f and F(f) are pointwise defined in precisely the same way on the underlying sets. So $\tilde{F}(xf) = x\tilde{F}(f)$, since this already holds for f, making \tilde{F} product-preserving.

Problem 1.0.5 (Weibel 7.7.1)

In the following construction, verify that $d^2 = 0$ and conclude that $V_* \in \mathsf{Ch}(\mathfrak{g}\mathsf{-Mod})$.

Throughout this section $\mathfrak g$ will denote a Lie algebra over k that is free as a k-module. We shall construct the $U\mathfrak g$ -module chain complex $V_*(\mathfrak g)$ originally used by C. Chevalley and S. Eilenberg [ChE] in 1948 to define $H_{\text{Lie}}^*(\mathfrak g, M)$.

Let $\Lambda^p \mathfrak{g}$ denote the p^{th} -exterior product of the k-module \mathfrak{g} , which is generated by monomials $x_1 \wedge \cdots \wedge x_p$ with $x_i \in \mathfrak{g}$; see 4.5.1 above. Our chain complex has $V_p(\mathfrak{g}) = U\mathfrak{g} \otimes_k \Lambda^p \mathfrak{g}$; since $\Lambda^p \mathfrak{g}$ is a free k-module, $V_p(\mathfrak{g})$ is free as a left $U\mathfrak{g}$ -module. By convention, $\Lambda^0\mathfrak{g} = k$ and $\Lambda^1\mathfrak{g} = \mathfrak{g}$, so $V_0 = U\mathfrak{g}$ and $V_1 = U\mathfrak{g} \otimes_k \mathfrak{g}$. We define $\varepsilon : V_0(\mathfrak{g}) = U\mathfrak{g} \to k$ to be the augmentation 7.3.5 and $d: V_1(\mathfrak{g}) \to V_0(\mathfrak{g})$ to be the product map $d(u \otimes x) = ux$ from $U\mathfrak{g} \otimes \mathfrak{g}$ to $U\mathfrak{g}$ whose image is the augmentation ideal \mathfrak{I} . By 7.3.5, we have an exact sequence

$$V_1(\mathfrak{g}) \stackrel{d}{\longrightarrow} V_0(\mathfrak{g}) \stackrel{\varepsilon}{\longrightarrow} k \to 0.$$

Definition 7.7.1 For $p \ge 2$, let $d: V_p(\mathfrak{g}) \to V_{p-1}(\mathfrak{g})$ be given by the formula $d(u \otimes x_1 \wedge \cdots \wedge x_p) = \theta_1 + \theta_2$, where (for $u \in U\mathfrak{g}$ and $x_i \in \mathfrak{g}$):

$$\theta_1 = \sum_{i=1}^p (-1)^{i+1} u x_i \otimes x_1 \wedge \dots \wedge \hat{x}_i \wedge \dots \wedge x_p;$$

$$\theta_2 = \sum_{i < j} (-1)^{i+j} u \otimes [x_i x_j] \wedge x_1 \wedge \dots \wedge \hat{x}_i \wedge \dots \wedge \hat{x}_j \wedge \dots \wedge x_p.$$

/./ Ine Unevalley-Ellengery Complex

(The notation \hat{x}_i indicates an omitted term.) For example, if p=2, then

$$d(u \otimes x \wedge y) = ux \otimes y - uy \otimes x - u \otimes [xy].$$

 $V_*(\mathfrak{g})$ with this differential is called the *Chevalley-Eilenberg complex*. It is sometimes also called the *standard complex*.

Hint: write $d(\theta_i) = \theta_{i,1} + \theta_{i,2}$ and show that $-\theta_{i,1}$ is the i = 1 part of $\theta_{2,1}$ and $\theta_{2,2} = 0$. Then show that $-\theta_{1,2}$ is the i > 1 part of $\theta_{2,1}$.

237

Solution:

 $Todo:\ start\ writing\ calculation.$