

Dinámica (FIS1514) Introducción

Felipe Isaule

felipe.isaule@uc.cl

Lunes 5 de Agosto de 2024

Clase 1: Introducción

- Introducción del curso.
- Conceptos básicos.
- Repaso vectores.

- Bibliografía recomendada:
 - Meriam (1.2, 1.4, 1.6).

Clase 1: Introducción

- Introducción del curso.
- Conceptos básicos.
- Repaso vectores.

¿Qué es Dinámica (FIS1514)?

Dinámica es un curso introductorio sobre los principios de la mecánica y sus aplicaciones.

Se estudiarán los cuatro pilares de la mecánica clásica:

- Cinemática
- Dinámica (Cinética)
- Trabajo-energía
- Impulso-momentum

Objetivos del curso

Modelar **sistemas mecánicos** simples, tanto estáticos como en movimiento, usando **herramientas de la mecánica clásica**.

Objetivos específicos:

- Plantear ecuaciones de movimiento de partículas.
- Predecir el movimiento de partículas sometidas a fuerzas.
- Analizar sistemas mecánicos utilizando trabajo y energía.
- Analizar sistemas mecánicos utilizando impulso y momentum.

Contenidos del curso

1. Cinemática de partículas

Movimiento en una, dos, y tres dimensiones. Sistemas de coordenadas. Movimiento relativo.

2. Dinámica de partículas

Leyes de Newton. Trabajo y energía. Oscilador armónico. Impulso y momentum.

3. Dinámica de sistemas de partículas

Conservación de energía y momentum. Colisiones. Torque. Centro de masa.

4. Dinámica de cuerpos rígidos en el plano

Momento de inercia. Rotación y traslación de un cuerpo rígido. Ecuaciones de movimiento de un cuerpo rígido.

Bibliografía

- Meriam J L, Kraige L G, Bolton J N, Mecánica para ingenierios, Dinámica.
- Hibbeler R C, Ingeniería Mecánica, Dinámica.
- Tipler P A, Mosca G, Física para la Ciencia y la Tecnología.
- Young H D, Freedman R A, Sears & Zemansky's: Física Universitaria.
- Serway R A, Jewett J W, Física para Ciencias e Ingeniería.

Requisitos del curso

- Laboratorio de Dinámica (c), Cálculo I y Algebra Linear (c).
 - → Trigonometría. Vectores.
 - → Diferenciación e integración.

Metodología para el aprendizaje

Clases expositivas.

Lunes y Miercoles 12:20 - 13:30.

Talleres.

Viernes 12:20 - 13:30.

Ayudantías de ejercicios.

Lunes 14:50 - 16:00.

Evaluaciones

• 3 controles (horario taller): 20% de la nota.

Viernes 30/08, Viernes 11/10, Viernes 08/11.

• 2 interrogaciones. 50% de la nota.

Sábado 07/09. Martes 29/10.

• Exámen. 30% de la nota.

Jueves 05/12 (17:30).

- Talleres con 2 o menos inasistencias añade 0.5 a nota de controles.
- Evaluaciones sin formulario ni calculadora. Se evaluan contenidos hasta la semana anterior a la evaluacion.

Calendario

Semana	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado
5-11/8	Cátedra		Cátedra.			
12-18/8	Cátedra. Ayud.		Cátedra.	Feriado.	Taller 1.	
19-25/8	Cátedra. Ayud.		Cátedra.		Taller 2.	
26-32/8	Cátedra. Ayud.		Cátedra.		Control 1.	
2-8/9	Cátedra. Ayud.		Cátedra.		Taller 3.	Int 1.
9-15/9	Cátedra. Ayud.		Cátedra		Taller 4.	
16-22/9			Receso			
23-29/9	Cátedra. Ayud.		Cátedra.		Taller 5.	
30/9-6/10	Cátedra. Ayud.		Cátedra.		Taller 6.	
7-13/10	Cátedra. Ayud.		Cátedra.		Control 2.	
14-20/10	Cátedra. Ayud.		Cátedra.		Taller 7.	
21-27/10	Cátedra. Ayud.		Cátedra.		Taller 8.	
28/10-3/11	Cátedra. Ayud.	Int 2.	Cátedra.	Feriado.	Feriado.	
4-10/11	Cátedra. Ayud.		Cátedra.		Taller 9.	
11-17/11	Cátedra. Ayud.		Cátedra.		Taller 10.	
18-24/11	Cátedra. Ayud.		Cátedra.	Feriado.	Control 3.	
25/11-1/12	Cátedra. Ayud.		Cátedra.		Taller 11.	

Equipo docente

Profesor de cátedra:

Felipe Isaule (felipe.isaule@uc.cl)

Ayudante de cátedra:

Diego Lastra

Ayudantes de taller:

Importante

- Leer reglas generales del curso en Canvas.
- Consultas las pueden realizar vía Canvas o e-mail a felipe.isaule@uc.cl y se contestarán en horario de oficina (Lunes a Viernes 9:00 – 18:00).

Clase 1: Introducción

- Introducción del curso.
- Conceptos básicos.
- Repaso vectores.

Conceptos básicos

- Partículas: Cuerpo "sin dimensiones". Podemos despreciar las dimensiones de un cuerpo cuando éstas son irrelevantes.
- Espacio: Región geométrica donde residen las partículas.
- Sistema de referencia: Convención geométrica utilizada para medir la posición y otras propiedades físicas.
- Tiempo: Medida de sucesión de eventos.
 Es absoluto en física clásica.
- **Escalar**: Cantidad física descrita sólo por un <u>número (magnitud)</u>.
- Vector: Cantidad física que además de tener una magnitud, tiene una dirección y sentido.

Unidades

- Un **sistema de unidades** es una **convención** utilizada para cuantificar **magnitudes físicas**.
- El sistema más utilizado es el **sistema internacional** (SI). Algunas de sus unidades básicas:
 - → Metro (m)
 - → Kilogramo (kg)
 - → Segundo (s)

- Siempre verificar que las cantidades tienen las unidades correctas.
- Sin embargo, muchas veces nos interesan soluciones algebraicas o simbólicas.

Análisis dimensional

- Cantidades físicas pueden ser descritas en distintas unidades, pero tienen una sóla dimensión. Por ejemplo:
 - → Distancia (L)
 - → Masa (M)
 - → Tiempo (T)

Siempre verificar que las cantidades físicas (incluyendo ecuaciones y soluciones) tienen las dimensiones correctas.

Clase 1: Introducción

- Introducción del curso.
- Conceptos básicos.
- Repaso vectores.

Vectores

• En coordenadas cartesianas y en tres dimensiones, un vector se puede escribir

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} = (A_x, A_y, A_z)$$

Los vectores unitarios:

$$A = \|\vec{A}\| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Operaciones de vectores

La suma de vectores:

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_z + B_z)\hat{k}$$

El producto punto:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$
$$= A B \cos \theta$$

El producto cruz:

$$\vec{D} = \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$D = |\vec{A} \times \vec{B}| = A B \sin \phi$$

Resumen

- Hemos definido conceptos básicos usados en la física como partícula, sistema de unidades, y dimensiones.
- Hemos repasado las definiciones básicas de vectores.
- Próxima clase:
 - → Cinemática.
 - → Movimiento rectilíneo.