- Determine the real roots of $f(x) = -0.6x^2 + 2.4x + 5.5$:
 - (a) Using the quadratic formula.
 - (b) Using three iterations of the bisection method to determine the
 - highest root. Employ initial guesses of xl = 5 and xu = 10.
 - Compute the estimated error εa and the true error εt after each iteration.
- Use the graphical approach and bisection method to determine the drag coefficient c needed for a parachutist of mass m=68.1 kg to have a velocity of 40 m/s after free falling for 10 seconds (t=10 s).

Note: The acceleration due to gravity is 9.81 m/s2.

The quadratic formula is given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Coefficients:

- a = -0.6
- b = 2.4
- c = 5.5

Step 1: Calculate the Discriminant

$$b^2 - 4ac = (2.4)^2 - 4 \times (-0.6) \times 5.5$$

 $b^2 = 5.76$ and $-4ac = 13.2$

Discriminant = 5.76 + 13.2 = 18.96

Step 2: Compute the Roots

$$x = \frac{-2.4 \pm \sqrt{18.96}}{2 \times (-0.6)}$$

$$x = \frac{-2.4 \pm 4.352}{-1.2}$$

Calculating each root:

• For $+\sqrt{18.96}$:

$$x_1 = \frac{-2.4 + 4.352}{-1.2} = \frac{1.952}{-1.2} \approx -1.6267$$

• For $-\sqrt{18.96}$:

$$x_2 = \frac{-2.4 - 4.352}{-1.2} = \frac{-6.752}{-1.2} \approx 5.6267$$

Thus, the roots using the quadratic formula are:

$$x_1 \approx -1.63$$
 and $x_2 \approx 5.63$

The highest root is $x_2 = 5.63$.

We want to use the bisection method for three iterations to approximate the highest root, starting with $x_l = 5$ and $x_n = 10$.

Iteration 1

1. Compute the midpoint:

$$x_r = \frac{x_l + x_u}{2} = \frac{5+10}{2} = 7.5$$

2. Evaluate $f(x_r)$:

$$f(7.5) = -0.6(7.5)^2 + 2.4(7.5) + 5.5 = -0.6 \times 56.25 + 18 + 5.5 = -33.75 + 18 + 5.5 = -10.25$$

Since f(7.5) is negative and f(5) is positive, the root lies between 5 and 7.5. Update $x_u = 7.5$.

3. Calculate the estimated error:

$$arepsilon_a = \left| rac{7.5 - 5}{7.5} \right| imes 100 = rac{2.5}{7.5} imes 100 = 33.33\%$$

4. Calculate the true error:

$$arepsilon_t = \left| rac{5.63 - 7.5}{5.63}
ight| imes 100 pprox rac{1.87}{5.63} imes 100 pprox 33.21\%$$

Iteration 2

1. Compute the new midpoint:

$$x_r = rac{5+7.5}{2} = 6.25$$

2. Evaluate $f(x_r)$:

$$f(6.25) = -0.6(6.25)^2 + 2.4(6.25) + 5.5 = -0.6 \times 39.0625 + 15 + 5.5 = -23.4375 + 15 + 5.5 = -2.9375$$

Since f(6.25) is negative, update $x_u = 6.25$.

3. Calculate the estimated error:

$$arepsilon_a = \left| rac{6.25 - 5}{6.25}
ight| imes 100 = rac{1.25}{6.25} imes 100 = 20.00\%$$

4. Calculate the true error:

$$arepsilon_t = \left| rac{5.63 - 6.25}{5.63}
ight| imes 100 pprox rac{0.62}{5.63} imes 100 pprox 11.01\%$$

Iteration 3

1. Compute the new midpoint:

$$x_r = \frac{5+6.25}{2} = 5.625$$

2. Evaluate $f(x_r)$:

$$f(5.625) = -0.6(5.625)^2 + 2.4(5.625) + 5.5 = -0.6 \times 31.640625 + 13.5 + 5.5 = -18.984375 + 13.5 + 5.5 = 0.015625$$

Since f(5.625) is positive, update $x_l = 5.625$.

3. Calculate the estimated error:

$$arepsilon_a = \left| rac{6.25 - 5.625}{6.25}
ight| imes 100 = rac{0.625}{6.25} imes 100 = 10.00\%$$

4. Calculate the true error:

$$arepsilon_t = \left| rac{5.63 - 5.625}{5.63}
ight| imes 100 pprox rac{0.005}{5.63} imes 100 pprox 0.09\%$$

Final Results

After three iterations, the approximate root is $x_r = 5.625$ with:

- Estimated error $\varepsilon_a \approx 11.11\%$
- True error $arepsilon_t pprox 0.089\%$

The bisection method gives a close approximation to the true root 5.62 with good accuracy in just three iterations.

The velocity v of a parachutist after time t when the force of gravity and air resistance (drag) are acting is given by:

$$v(t) = rac{mg}{c} \left(1 - e^{-rac{c}{m}t}
ight)$$

where:

- m = 68.1 kg (mass of the parachutist)
- $g = 9.81 \text{ m/s}^2$ (acceleration due to gravity)
- c is the drag coefficient
- v(t) = 40 m/s (velocity after time t)
- t = 10 s (time of freefall)

Objective

We need to solve for c so that:

$$40 = \frac{68.1 \times 9.81}{c} \left(1 - e^{-\frac{c}{68.1} \times 10} \right)$$

Rearranging the Equation

The equation can be rearranged to form:

$$f(c) = \frac{68.1 \times 9.81}{c} \left(1 - e^{-\frac{c}{68.1} \times 10} \right) - 40 = 0$$

Our goal is to find the value of c that satisfies this equation.

Step 1: Graphical Approach

To solve graphically:

1. Define the function f(c) as:

$$f(c) = rac{68.1 imes 9.81}{c} \left(1 - e^{-rac{c}{68.1} imes 10}
ight) - 40$$

2. Plot the function f(c) over a reasonable range of c values to visually estimate the root.

Step-by-step for Graphical Approach:

- 1. Consider a range for c, such as c from 5 to 20, and evaluate f(c) at various points to see where it crosses the x-axis.
- 2. Plot f(c) and identify the value of c where f(c)=0.

Step 2: Bisection Method

We will use the bisection method to numerically find the root c.

Bisection Method Steps:

- 1. Choose Initial Guesses: We need to pick two initial values c_l and c_u such that $f(c_l)$ and $f(c_u)$ have opposite signs (indicating a root lies between them). From the graphical method, we can estimate a suitable interval.
- 2. Compute Midpoint:

$$c_r = rac{c_l + c_u}{2}$$

- 3. Check the Sign of $f(c_r)$:
 - If $f(c_r)$ has the same sign as $f(c_l)$, update $c_l=c_r$.
 - If $f(c_r)$ has the same sign as $f(c_u)$, update $c_u=c_r$.
- 4. Repeat: Continue halving the interval until the error is small enough.

Exercise

Apply 'by hand' the bisection method as used in the bisection code to find the root of

$$f(x) = x^2 - x$$

between $\frac{1}{2}$ and 2.

Calculate the error as Ea=abs(xr-xrold) at each step.

Example

- Open function file example_bisection
- Define the function

$$f(z) = \sqrt{z_0^2 - z^2} \sin(z) + z \cos(z)$$

Set $z_0 = 10$ before you define the function.

 Use bisect find the root between 5.5 and 5.7

Homework

Problem 5.22

Extend the problem to different radii.

For r = 1:5, use a for loop for r and calculate the function f(h), the root of which gives the required height.

Plot f(h) vs h for $0 \le h \le 2r$ for every r in the same figure.

Print the values of h for every r in a tabular form with heading "r h"

- 5.2 Determine the real root of $f(x) = 4x^3 6x^2 + 7x 2.3$:
- (a) Graphically.
- **(b)** Using bisection to locate the root. Employ initial guesses of
- xl = 0 and xu = 1 and iterate until the estimated error εa falls
- below a level of $\varepsilon s = 10\%$.
- 5.3 Determine the real root of $f(x) = -26 + 85x 91x^2 + 44x^3 8x^4 + x^5$:
- (a) Graphically.
- **(b)** Using bisection to determine the root to $\varepsilon s = 10\%$. Employ initial
- guesses of xl = 0.5 and xu = 1.0.