MATH 4108: Abstract Algebra II

Frank Qiang Instructor: Jennifer Hom

Georgia Institute of Technology Spring 2024

Contents

1		8 - Rings and Fields	3
	1.1	Lots of Definitions	3
2	Jan.	. 10 — Field of Fractions, Polynomials	6
	2.1	Isomorphisms	6
	2.2	Field of Fractions	7
	2.3	The Characteristic of a Field	8
	2.4	Polynomials	9
3	Jan.	. 17 — Irreducible Polynomials	10
	3.1	Principal Ideal Domains and Irreducibile Polynomials	10
	3.2	Irreducible Polynomials over \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z}	11
4	Jan.	. 22 — Field Extensions	15
	4.1	More on Irreducibility	15
	4.2	Field Extensions	16
5	Jan.	. 24 — Algebraic Extensions	2 0
	5.1	Minimal Polynomials	20
	5.2	Algebraic Extensions	21
6	Jan.	. 29 — Geometric Constructions	2 3
	6.1	K-Isomorphisms	23
	6.2	Applications to Geometric Constructions	24
	6.3	Classic Problems	25
		6.3.1 Duplicating the Cube	25
		6.3.2 Trisecting the Angle	25
7	Ian	. 31 — Splitting Fields	27
7	7.1	Review of Notation	27
	7.2	Splitting Fields	$\frac{27}{27}$
	7.3	Finite Fields	29
	1.0		20
8	Feb.	. 5 — Finite Fields	30
	8.1	Last Time	30
	8.2	Finite Fields	30
	8.3	Automorphisms of Fields	32
9	Feb.	. 7 — The Galois Correspondence	34
	9.1	Automorphisms of Fields	34
	9.2	The Galois Correspondence	34

CONTENTS 2

	9.3	Normal Extensions	36
10		. 12 — Normal Closures	38
		Normal Closures	
	10.2	Separable Extensions	40
11	Feb.	. 21 — Galois Extensions	42
	11.1	Example of an Inseparable Extension	42
		Galois Extensions	
12	Feb.	. 26 — The Fundamental Theorem	44
	12.1	Normal Subgroups	44
		The Fundamental Theorem of Galois Theory	
13	Feb.	28 — Join of Subgroups and Subfields	47
	13.1	Join of Subgroups	47

Jan. 8 — Rings and Fields

1.1 Lots of Definitions

Recall the definitions of a ring and a field:

Definition 1.1 (Ring). A ring $R = (R, +, \cdot)$ is a non-empty set R together with two binary operations + and \cdot , called addition and multiplication respectively, which satisfy:

- (R1) Associative law for addition: (a+b)+c=a+(b+c) for all $a,b,c\in R$.
- (R2) Commutative law for addition: a + b = b + a for all $a, b \in R$.
- (R3) Existence of zero: There exists $0 \in R$ such that a + 0 = a for all $a \in R$.
- (R4) Existence of additive inverses: For all $a \in R$, there exists $-a \in R$ such that a + (-a) = 0.1
- (R5) Associative law for multiplication: (ab)c = a(bc) for all $a, b, c \in R$.
- (R6) Distributive laws: a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$.

Definition 1.2 (Commutative ring). In this class, we will mostly be interested in *commutative rings*, which satisfy the following additional property for multiplication:

(R7) Commutative law for multiplication: ab = ba for all $a, b \in R$.

Definition 1.3 (Ring with unity). A ring with unity satisfies the additional property that

(R8) Existence of unity: There exists $1 \neq 0 \in R$ such that and a1 = 1a = a for $a \in R$.

Note that a ring need not be commutative to have a unity.

Definition 1.4 (Domain). A commutative ring with unity is called a *(integral) domain* if it has the following cancellation property:

- (R9) Cancellation: For all $a, b \in R$ and $c \neq 0$, ca = cb implies a = b.
- (R9') No zero divisors: For all $a, b \in R$, ab = 0 implies a = 0 or b = 0.

The conditions (R9) and (R9') are equivalent.

Definition 1.5 (Field). A commutative ring with unity is called a *field* if it has the following additional property for multiplicative inverses:

(R10) Existence of multiplicative inverses: For all $a \neq 0 \in R$, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$.

Note that we'll usually write a - b in place of a + (-b).

Example 1.5.1. Some examples of rings are $\mathbb{Z}/2\mathbb{Z}$, which also happens to be a field. The ring \mathbb{Z} is a domain. The set $M_{2\times 2}(\mathbb{R})$ is a non-commutative ring with unity, and has zero divisors. The ring \mathbb{Q} is a field. The real polynomials in a single variable $\mathbb{R}[x]$ form a ring, which is a domain but not a field. The complex numbers \mathbb{C} and the real numbers \mathbb{R} both form a field. The even integers $2\mathbb{Z}$ form a commutative ring without unity. In general, $\mathbb{Z}/n\mathbb{Z}$ is a commutative ring with unity, and is a field if and only if n is prime (and has zero divisors otherwise, if n is composite).

Remark. If $(R, +, \cdot)$ is a ring, then (R, +) is an abelian group. If $(K, +, \cdot)$ is a field, then (K^*, \cdot) is an abelian group, where $K^* = K \setminus \{0\}$.

Definition 1.6 (Group of units). Let R be a commutative ring with unity. The group of units of R is

$$U = \{u \in R \mid \text{there exists } v \in R \text{ such that } uv = 1\}.$$

Exercise 1.1. Show that U is in fact a group under multiplication.

Definition 1.7 (Associate). If $a, b \in R$ such that a = ub for some $u \in U$, then a and b are called associates, denoted by $a \sim b$.

Exercise 1.2. Show that \sim is in fact an equivalence relation.

Example 1.7.1. The group of units of \mathbb{Z} is $\{1, -1\}$. The group of units of a field K is $K^* = K \setminus \{0\}$.

Exercise 1.3. Let $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Check the following:

- 1. R is a commutative ring with unity.
- 2. The group of units of R is $\{a+b\sqrt{2} \mid a,b\in\mathbb{Z}, |a^2-2b^2|=1\}$.

Definition 1.8 (Divisor). Let D be an integral domain, $a \in D \setminus \{0\}$, $b \in D$. Then a divides b, or a is a divisor or factor of b, denoted by a|b, if there exists $z \in D$ such that az = b. We write $a \nmid b$ if a does not divide b. We say that a is a proper divisor or that a properly divides b if z is not a unit.

Remark. Equivalent, a is a proper divisor of b if and only if a|b and $b\nmid a$.

Definition 1.9 (Subring). A subring U of a ring R is a non-empty subset of R with the property that for all $a, b \in R$, $a, b \in U$ implies $a + b \in U$ and $ab \in U$, and $a \in U$ implies $-a \in U$.

Remark. Equivalently, U is a subring of R if and only if $a, b \in U$ implies $a - b \in U$ and $ab \in U$.

Remark. We automatically have $0 \in U$ since we can pick any $a \in U$, and then $0 = a - a \in U$.

Definition 1.10 (Subfield). A *subfield* of a field K is a subset E containing at least two elements such that $a, b \in E$ implies $a - b \in E$ and $a \in E, b \in E \setminus \{0\}$ implies $ab^{-1} \in E$. If E is a subfield and $E \neq K$, then we say E is a *proper* subfield.

Remark. As before, we can replace the last condition with the equivalent statement that $a, b \in E$ implies $ab \in E$ and $a \in E \setminus \{0\}$ implies $a^{-1} \in E$.

Definition 1.11 (Ideal). An *ideal* of R is a non-empty subset I of R with the properties that $a, b \in I$ implies $a - b \in I$ and $a \in I, r \in R$ implies $ra \in I$.

Remark. All ideals are subrings, but the converse is not true in general.

Example 1.11.1. The integers \mathbb{Z} form a subring of \mathbb{R} but not an ideal.

²In fact, \mathbb{Q} is somehow the smallest field containing \mathbb{Z} .

Remark. We trivially have that $\{0\}$ and R are both ideals of R. An ideal I is called *proper* if $\{0\} \subseteq I \subseteq R$.

Theorem 1.1. Let $A = \{a_1, \ldots, a_n\}$ be a finite subset of a commutative ring R. Then the set

$$Ra_1 + \dots + Ra_n = \{x_1a_1 + \dots + x_na_n \mid x_i \in R\}$$

is the smallest ideal of R containing A.

Proof. See Howie. Check this is indeed an ideal and is contained in any other ideal containing A. \square

Definition 1.12 (Ideals generated by elements of a ring). The set $Ra_1 + \cdots + Ra_n$ is the *ideal generated* by a_1, \ldots, a_n , denoted by $\langle a_1, \ldots, a_n \rangle$. If the ideal is generated by a single element $a \in R$, then we say that $Ra = \langle a \rangle$ is a *principal ideal*.

Example 1.12.1. In \mathbb{Z} , the ideal $\langle 2 \rangle = 2\mathbb{Z}$ are the even numbers. We have $\langle 2, 3 \rangle = \mathbb{Z}$, but $\langle 6, 8 \rangle = \langle 2 \rangle$.

Theorem 1.2. Let D be an integral domain with group of units U and let $a, b \in D \setminus \{0\}$. Then

- 1. $\langle a \rangle \subseteq \langle b \rangle$ if and only if b|a,
- 2. $\langle a \rangle = \langle b \rangle$ if and only if $a \sim b$,
- 3. $\langle a \rangle = D$ if and only if $a \in U$.

Proof. See Howie. \Box

Definition 1.13 (Homomorphism of rings). A homomorphism from a ring R to a ring S is a mapping $\varphi: R \to S$ such that $\varphi(a +_R b) = \varphi(a) +_S \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.

Example 1.13.1. The zero mapping $\varphi(a) = 0$ is always a homomorphism. The inclusion map $\iota : 2\mathbb{Z} \to \mathbb{Z}$ or $\iota : \mathbb{Z} \to \mathbb{Q}$ is a homomorphism.

Theorem 1.3. Let R, S be rings and $\varphi: R \to S$ a homomorphism. Then

- 1. $\varphi(0_R) = 0_S$,
- 2. $\varphi(-r) = -\varphi(r)$ for all $r \in R$,
- 3. the image $\varphi(R)$ is a subring of S.

Proof. See Howie. \Box

Definition 1.14 (Monomorphism). Let $\varphi : R \to S$ be a homomorphism. If φ is injective, we say that φ is a *monomorphism* or an *embedding*.

Example 1.14.1. The inclusion map $\varphi : \mathbb{Z} \to \mathbb{R}$ given by $\varphi(n) = n$ is an embedding.

Jan. 10 — Field of Fractions, Polynomials

2.1 Isomorphisms

Definition 2.1 (Isomorphism). If a homomorphism $\varphi : R \to S$ is both one-to-one and onto, then φ is an *isomorphism* and we say R and S are *isomorphic*, denoted $R \cong S$.

Definition 2.2 (Automorphism). An isomorphism $\varphi: R \to R$ is called an *automorphism*.

Example 2.2.1. For any ring R, the identity map $\varphi: R \to R$ with $\varphi = \mathrm{id}$ is an automorphism.

Exercise 2.1. The complex conjugation $\varphi : \mathbb{C} \to \mathbb{C}$ with $\varphi(z) = \overline{z}$ is an automorphism.

Definition 2.3 (Kernel). Let $\varphi: R \to S$ be a homomorphism. The kernel of φ is

$$\ker \varphi = \phi^{-1}(0_S) = \{ a \in R : \varphi(a) = 0_S \}.$$

Exercise 2.2. For any homomorphism φ , ker φ is an ideal.

Definition 2.4 (Residue class). Let I be an ideal of a ring R and $a \in R$. The set

$$a+I=\{a+x\mid x\in I\}$$

is the $residue\ class$ of a modulo I.

Exercise 2.3. The set R/I of residue classes modulo I forms a ring with respect to the operations

$$(a+I) + (b+I) = (a+b) + I$$
 and $(a+I)(b+I) = ab + I$.

Exercise 2.4. The map $\theta_I : R \to R/I$ with $\theta_I(a) = a + I$ is a surjective homomorphism onto R/I with kernel I. This map θ_I is called the *natural homomorphism* from R to R/I.

Example 2.4.1. Consider \mathbb{Z} and $I = \langle n \rangle = n\mathbb{Z}$. Then $\theta_I : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ with $\theta_I(a) = a + \langle n \rangle$ is the natural homomorphism. There are n residue classes, which are

$$\langle n \rangle$$
, $1 + \langle n \rangle$, ..., $(n-1) + \langle n \rangle$.

Theorem 2.1. Let $n \in \mathbb{Z}_{>0}$. Then $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime.

Proof. See Howie.
$$\Box$$

Remark. If n = 0, then $\mathbb{Z}/0\mathbb{Z} \cong \mathbb{Z}$.

Theorem 2.2. Let $\varphi: R \to S$ be a surjective homomorphism with kernel K. Then there is an isomorphism $\alpha: R/K \to S$ such that the following diagram commutes (i.e. $\varphi = \alpha \circ \theta_K$):

$$R \xrightarrow{\varphi} S$$

$$\theta_K \downarrow \qquad \alpha \qquad \qquad S$$

$$R/K$$

Proof. See Howie. But the general idea is to define $\alpha : R/K \to S$ by $\alpha(a+K) = \varphi(a)$. Then need to check that α is well-defined and an isomorphism.

2.2 Field of Fractions

The motivating question is: How do we get from \mathbb{Z} to \mathbb{Q} ? Recall that

$$\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z}, b \neq 0 \},\$$

where a/c = b/d if ad = bc. We add and multiply fractions by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

How do we do this more generally (construct a field out of an arbitrary integral domain)?

Definition 2.5 (Field of fractions of a domain). Let D be an integral domain and

$$P = D \times (D \setminus \{0\}) = \{(a, b) \mid a, b \in D, b \neq 0.\}$$

Define an equivalence relation \equiv on P by $(a,b) \equiv (a',b')$ if ab'=a'b. Then the field of fractions of D is

$$Q(D) = P/\equiv$$
.

We denote the equivalence class [a, b] by a/b, i.e. a/b = c/d if ad = bc. We define addition and multiplication on Q(D) by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

Exercise 2.5. Do the following:

- 1. Check that \equiv is an equivalence relation.
- 2. Check that these operations are well-defined.
- 3. Check that Q(D) is a commutative ring with unity.
 - The zero element is 0/b for $b \neq 0$.
 - The unity element is a/a for $a \neq 0$.
 - The negative of a/b is (-a)/b or equivalently a/(-b).
 - The multiplicative inverse of a/b is b/a for $a, b \neq 0$.
- 4. Complete the previous exercise and check that Q(D) is a field.

Exercise 2.6. The map $\varphi: D \to Q(D)$ defined by $\varphi(a) = a/1$ is a monomorphism. In particular, the field of fractions Q(D) contains D as a subring and Q(D) is the smallest field containing D, in the sense that if K is a field with the property that there exists a monomorphism $\theta: D \to K$, then there exists a monomorphism $\psi: Q(D) \to K$ such that the following diagram commutes:

$$D \xrightarrow{\theta} K$$

$$\varphi \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Q(D)$$

2.3 The Characteristic of a Field

Note that for $a \in R$, we might write a + a as 2a and $a + a + \cdots + a$ (n times) as na. Furthermore, $0a = 0_R$ and (-n)a = n(-a) for $n \in \mathbb{Z}_{>0}$. Thus na has meaning for all $n \in \mathbb{Z}$.

Exercise 2.7. For $a, b \in R$ and $m, n \in \mathbb{Z}$, we have (ma)(nb) = (mn)(ab).

Definition 2.6 (Characteristic of a ring). For an arbitrary ring R, there are two possibilities:

- 1. $m1_R$ for $m \in \mathbb{Z}$ are all distinct. In this case, we say that R has characteristic 0.
- 2. There exists $m, n \in \mathbb{N}$ such that $m1_R = (m+n)1_R$. In this case, we say that R has *characteristic* n, where n is the least positive n for which this property holds.

We denote the characteristic of R by char R. If char R = n, then $na = 0_R$ for all $a \in R$ since

$$na = (n1_R)a = 0a = 0.$$

Example 2.6.1. We have char $\mathbb{Z}/n\mathbb{Z} = n$.

Theorem 2.3. The characteristic of a field is either 0 or a prime.

Proof. Let K be a field and suppose char $K = n \neq 0$ and n is not prime. Then we can write n = rs where 1 < r, s < n. The minimal property of n implies that $r1_K \neq 0$ and $s1_K \neq 0$. But then

$$r1_K \cdot s1_K = rs1_K = n1_K = 0,$$

which is impossible since K is a field and thus has no zero divisors.

Remark. Note the following:

1. If K is a field with char K = 0, then K has a subring isomorphic to \mathbb{Z} , i.e. elements of the form $n1_K$ for $n \in \mathbb{Z}$, and K has a subfield isomorphic to \mathbb{Q} , i.e.

$$P(K) = \{ m1_K / n1_K \mid m, n \in \mathbb{Z}, n \neq 0 \}.$$

This is the prime subfield of K, and any subfield of K must contain P(K).

2. If K is a field with char K = p, then the prime subfield of K is

$$P(K) = \{1_K, 2 \cdot 1_K, \dots, (p-1) \cdot 1_K\},\$$

which is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

¹This is saying that any abelian group is naturally a module over the integers \mathbb{Z} .

Remark. In other words, every field of characteristic 0 is an *extension* of \mathbb{Q} (contains \mathbb{Q} as a subfield), and every field of characteristic p is an *extension* of $\mathbb{Z}/p\mathbb{Z}$ (contains $\mathbb{Z}/p\mathbb{Z}$ as a subfield).

Remark. If char K = 0, then writing $a/n1_K$ as a/n is fine. But if char K = p, then a/n does not make sense when p|n (since $p \cdot 1_K = 0$).

Theorem 2.4. If K is a field with char K = p, then for all $x, y \in K$, $(x + y)^p = x^p + y^p$.

Proof. See Howie. Uses the binomial theorem.

2.4 Polynomials

Let R be a ring, then we have the polynomial ring over R

$$R[X] = \{a_0 + a_1X + \dots + a_nX^n \mid a_i \in R, n \in \mathbb{N}\}.$$

If $f \in R[X]$, then it has degree n if the last nonzero element in the sequence $\{a_0, a_1, \dots\}$ is a_n , denoted $\partial f = n$. By convention, the zero polynomial has degree $-\infty$. The coefficient a_n is called the *leading coefficient*, and if $a_n = 1$, then f is *monic*. Addition and multiplication work as expected:

$$(a_0 + a_1X + \dots + a_mX^m) + (b_0 + b_1X + \dots + b_nX^n) = (a_0 + b_0) + (a_1 + b_1)X + \dots$$

and

$$(a_0 + a_1X + \dots + a_mX^m)(b_0 + b_1X + \dots + b_nX^n) = c_0 + c_1X + \dots$$

where

$$c_k = \sum_{i+j=k}^k a_i b_j.$$

The ground ring R sits inside of the polynomial ring R[X]. Take the monomorphism $\theta: R \to R[X]$ by $\theta(a) = a$, i.e. an element a maps to the constant polynomial a.

Theorem 2.5. Let D be an integral domain. Then

- 1. D[X] is an integral domain.
- 2. If $p, q \in D[X]$, then $\partial(p+q) \le \max(\partial p, \partial q)$.
- 3. If $p, q \in D[X]$, then $\partial(pq) = \partial p + \partial q$.
- 4. The group of units of D[X] coincides with the group of units of D.

Proof. Statements (2) and (3) are left as exercises.

- (1) We need to show that D[X] has no zero divisors. For this, suppose that p, q are nonzero polynomials with leading coefficients a_m and b_n respectively. Then the leading coefficient of pq is $a_m b_n$, which is nonzero since D is an integral domain and thus has no zero divisors. So pq is nonzero.
- (4) Let $p, q \in D[X]$ and suppose pq = 1. Since $\partial(pq) = \partial(1) = 0$, we must have $\partial p = \partial q = 0$. Thus $p, q \in D$ and pq = 1 if and only if p and q are in the group of units of D.

Since D[X] is a domain, we can consider polynomials in the variable Y with coefficients in D[X]:

$$D[X,Y] = (D[X])[Y].$$

We can repeat this to get polynomials in n variables: $D[X_1, X_2, \dots, X_n]$, which is an integral domain.

Jan. 17 — Irreducible Polynomials

3.1 Principal Ideal Domains and Irreducibile Polynomials

Definition 3.1. The field of fractions of D[X] consists of rational forms

$$\frac{a_0 + a_1 X + \dots + a_m X^m}{b_0 + b_1 X + \dots + b_n X^n}$$

where $b_0 + b_1 X + \cdots + b_n X^n \neq 0$, denoted by D(X).

Definition 3.2. A domain D is a principal ideal domain (PID) if all of its ideals are principal.¹

Example 3.2.1. The integers \mathbb{Z} is a PID, since every ideal is of the form $\langle n \rangle$.

Definition 3.3. A non-zero, non-unit element p in a domain D is *irreducible* if it has no proper factors.

Definition 3.4. A domain D is a unique factorization domain (UFD) if every non-unit $a \neq 0$ in D has an essentially unique² factorization into irreducible elements.

Example 3.4.1. Again \mathbb{Z} is a UFD, e.g. $12 = 2 \cdot 2 \cdot 3 = (-2) \cdot 2 \cdot (-3)$.

Theorem 3.1. Every PID is a UFD.

Proof. See Howie.
$$\Box$$

Theorem 3.2. If K is a field, then K[X] is a PID.

Proof. See Howie.
$$\Box$$

Theorem 3.3. Let p be an element in a PID D. Then the following are equivalent:

- 1. p is irreducible.
- 2. $\langle p \rangle$ is maximal.
- 3. $D/\langle p \rangle$ is a field.

In particular if $f \in K[X]$, then $K[X]/\langle f \rangle$ is a field if and only if f is irreducible.

Proof. See Howie.
$$\Box$$

¹Recall that a principal ideal is one generated by a single element.

²As in, unique up to use of associates or adding in units.

Definition 3.5. Let D be a domain and $\alpha \in D$. Let $\sigma_{\alpha} : D[X] \to D$ defined by

$$\sigma_{\alpha}(a_0 + a_1X + \dots + a_nX^n) = a_0 + a_1\alpha + \dots + a_n\alpha^n.$$

Note that we often write $\sigma_{\alpha}(f)$ as $f(\alpha)$. If $f(\alpha) = 0$, we say α is a root of f, or a zero.

Exercise 3.1. Check that σ_{α} is a homomorphism.

Theorem 3.4. Let K be a field, $\beta \in K$ and f a non-zero polynomial in K[X]. Then β is a root of f if and only if $X - \beta | f$.

Proof. See Howie. \Box

Example 3.5.1. We have $X^2 + 1$ in $\mathbb{R}[X]$ is irreducible, so $\mathbb{R}[X]/\langle X^2 + 1 \rangle$ is a field. In fact this field is isomorphic to the complex numbers \mathbb{C} .

Exercise 3.2. Do the following:

1. Show that $\varphi : \mathbb{R}[X] \to \mathbb{C}$ given by

$$\varphi(a_0 + a_1X + \dots + a_nX^n) = a_0 + a_1i + \dots + a_ni^n$$

is a surjective homomorphism.³

2. Show that $\ker \varphi = \langle X^2 + 1 \rangle$.

So by the first isomorphism theorem we can conclude that $\mathbb{R}[X]/\langle X^2+1\rangle=\mathbb{R}/\ker\varphi\cong\varphi(\mathbb{R}[X])=\mathbb{C}.$

Theorem 3.5. Let K be a field and $g \in K[X]$ an irreducible polynomial. Then $K[X]/\langle g \rangle$ is a field containing K up to isomorphism.

Proof. Since g is irreducible, $K[X]/\langle g \rangle$ is a field. Now define $\varphi: K \to K[X]/\langle g \rangle$ by

$$\varphi(a) = a + \langle g \rangle.$$

(Left as an exercise to check that φ is a homomorphism.) We need to show that φ is injective. For this, take $a, b \in K$. If $a + \langle g \rangle = b + \langle g \rangle$, then $a - b \in \langle g \rangle$. But K is a field, so this happens precisely when a = b. Thus φ embeds K into $K[X]/\langle g \rangle$, as desired.

3.2 Irreducible Polynomials over \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z}

Our goal now is to study irreducible polynomials. Note that linear polynomials are irreducible, and recall that every polynomial in \mathbb{C} factorizes, essentially uniquely, into linear factors. Furthermore, complex roots of real polynomials come in conjugate pairs, hence

$$g = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{R}[X]$$

factors as

$$g = a_n(X - \beta_1) \dots (X - \beta_r)(X - \gamma_1)(X - \overline{\gamma}_1) \dots (X - \gamma_3)(X - \overline{\gamma}_s)$$

³Note that there's some technicality about this φ not being a σ_{α} since we defined σ_{α} for α in the base domain, and i is kind of somewhere else.

in $\mathbb{C}[X]$, where $\beta_1, \ldots, \beta_r \in \mathbb{R}$ and $\gamma_1, \ldots, \gamma_s \in \mathbb{C} \setminus \mathbb{R}$ and r+2s=n. Thus over $\mathbb{R}[X]$, g factors as

$$g = a_n(X - \beta_1) \dots (X - \beta_r)(X^2 - (\gamma_1 + \overline{\gamma}_1)X + \gamma_1\overline{\gamma}_1) \dots (X^2 - (\gamma_s + \overline{\gamma}_s)X + \gamma_s\overline{\gamma}_s)$$

in $\mathbb{R}[X]$, where the quadratic factors are irreducible in $\mathbb{R}[X]$.

Exercise 3.3. A quadratic $aX^2 + bX + c \in \mathbb{R}[X]$ is irreducible if and only if its discriminant $b^2 - 4ac < 0$.

Now we have pretty much characterized irreducible polynomials in $\mathbb{R}[X]$. But what about $\mathbb{Q}[X]$?

Theorem 3.6. Let $g = a_0 + a_1 X + a_2 X^2 \in \mathbb{Q}[X]$. Then

- 1. If g is irreducible over \mathbb{R} , then it is irreducible over \mathbb{Q} .
- 2. If $g = a_2(X \beta_1)(X \beta)$ with $\beta_1, \beta_2 \in \mathbb{R}$, then g is irreducible in $\mathbb{Q}[X]$ if and only if β_1 and β_2 are irrational.

Proof. (1) We show the contrapositive. If g factors as

$$g = a_2(X - q_1)(X - q_2) \in \mathbb{Q}[X],$$

then g also factors in $\mathbb{R}[X]$.

(2) If β_1 and β_2 are rational, then g factors in $\mathbb{Q}[X]$ and is thus not irreducible. For the other direction, if β_1 and β_2 are irrational, then $g = a_2(X - \beta_1)(X - \beta_2)$ is the only factorization in $\mathbb{R}[X]$ since $\mathbb{R}[X]$ is a UFD, so there is no factorization in $\mathbb{Q}[X]$ into linear factors.

Example 3.5.2. Are the following polynomials irreducible in $\mathbb{R}[X]$? In $\mathbb{Q}[X]$?

- 1. $X^2 + X + 1$ is irreducible over \mathbb{R} and \mathbb{O} since $b^2 4ac = -3$.
- 2. $X^2 X 1$ has roots $(-1 \pm \sqrt{5})/2$, so it factors over $\mathbb R$ but is irreducible over $\mathbb Q$.
- 3. $X^2 + X 2$ factors as (X + 2)(X 1) over \mathbb{R} and \mathbb{Q} .

Now that we have studied irreducible polynomials in $\mathbb{R}[X]$ and $\mathbb{Q}[X]$, can a polynomial in $\mathbb{Z}[X]$ be irreducible over \mathbb{Z} but not \mathbb{Q} ? The answer is no!

Theorem 3.7 (Gauss's lemma). Let f be a polynomial in $\mathbb{Z}[X]$, irreducible over \mathbb{Z} . Then f is irreducible over \mathbb{Q} .

Proof. For sake of contradiction, suppose f = gh with $g, h \in \mathbb{Q}[X]$ and $\partial g, \partial h < \partial f$. Then there exists $n \in \mathbb{Z}_{>0}$ such that nf = g'h' where $g', h' \in \mathbb{Z}[X]$. Let n be the smallest positive integer with this property. Let

$$g' = a_0 + a_1 X + \dots + a_k X^k$$

 $h' = b_0 + b_1 X + \dots + b_l X^l$.

If n = 1, then g' = g and h' = h, a contradiction. Now $n \ge 1$, so let p be a prime factor of n.⁴ Without loss of generality, assume p divides g', i.e. g' = pg'' where $g'' \in \mathbb{Z}[X]$. Then

$$\frac{n}{p}f = g''h',$$

contradicting the minimality of n. Hence f cannot be factored over \mathbb{Q} .

⁴Lemma: Either p divides all the coefficients of g' or p divides all the coefficients of h'. Proof left as an exercise.

Example 3.5.3. Show that $g = X^3 + 2X^2 + 4X - 6$ is irreducible over \mathbb{Q} .

Proof. If g factors over \mathbb{Q} , it factors over \mathbb{Z} and at least one factor must be linear, i.e.

$$g = X^3 = 2X^2 + 4X - 6 = (X - a)(X^2 + bX + c)$$

where $a, b, c \in \mathbb{Z}$. We must have ac = 6, so $a \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$ and g(a) = 0. We can check this:

Hence g is irreducible over \mathbb{Z} and thus also irreducible over \mathbb{Q} .

We could do this trick since the degree was 3, forcing a linear factor. What about degrees higher than 3?

Theorem 3.8 (Eisenstein's criterion). Let $f = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{Z}[X]$. Suppose there exists a prime p such that

- 1. $p \nmid a_n$,
- 2. $p|a_i \text{ for } i = 0, \ldots, n-1,$
- 3. $p^2 \nmid a_0$.

Then f is irreducible over \mathbb{Q} .

Proof. By Gauss's lemma, it suffices to show that f is irreducible over \mathbb{Z} . Suppose for sake of contradiction that f = gh for

$$g = b_0 + b_1 X + \dots + b_r X^r$$
 and $h = c_0 + c_1 X + \dots + c_s X^s$,

r, s < n, and r + s = n. Note that $a_0 = b_0 c_0$, so $p|a_0$ from (2) implies that $p|b_0$ or $p|c_0$. Since $p^2 \nmid a_0$, it cannot be both. Without loss of generality, assume $p|b_0$ and $p\nmid c_0$. Now suppose inductively that p divides b_0, \ldots, b_{k-1} where $1 \le k \le r$. Then

$$a_k = b_0 c_k + b_1 c_{k-1} + \dots + b_{k-1} c_1 + b_k c_0$$

and since p divides a_k , b_0c_k , b_1c_{k-1} , ..., $b_{k-1}c_1$, it follows that $p|b_kc_0$. Since $p\nmid c_0$ by assumption, we must have $p|b_k$. Thus $p|b_r$ and since $a_n = b_rc_s$, we have $p|a_n$, contradicting (1). Hence is f is irreducible. \square

Example 3.5.4. The polynomial

$$X^5 + 2X^3 + \frac{8}{7}X^2 - \frac{4}{7}X + \frac{2}{7}$$

is irreducible over \mathbb{Q} .

Proof. Multiply by 7 and take the integer polynomial $7X^5 + 14X^3 + 8X^2 - 4X + 2$. Taking p = 2 satisfies Eisenstein's criterion, so this polynomial is irreducible over \mathbb{Z} and thus also irreducible over \mathbb{Q} .

Example 3.5.5. If p > 2 is prime, then show that

$$f = 1 + X + X^2 + \dots + X^{p-1}$$

is irreducible over \mathbb{Q} .

Proof. First observe that

$$f = \frac{X^p - 1}{X - 1}.$$

Let g(X) = f(X+1). Then

$$g(X) = \frac{(X+1)^p - 1}{(X+1) - 1} = \frac{1}{X}((X+1)^p - 1) = \frac{1}{X}\sum_{i=0}^p \binom{p}{i}X^{p-i} - 1$$
$$= \frac{1}{X}\sum_{i=0}^{p-1} \binom{p}{i}X^{p-i} = \sum_{i=0}^{p-1} \binom{p}{i}X^{p-i-1}.$$

Note that $\binom{p}{1}, \binom{p}{2}, \ldots \binom{p}{p-1}$ are all divisible by p, so g is irreducible by Eisenstein's criterion. Now if f factors as f = uv, then g(X) = u(X+1)v(X+1), which is a contradiction since g is irreducible. \square

Jan. 22 — Field Extensions

4.1 More on Irreducibility

The following excerpt is from Howie:

Another device for determining irreducibility over \mathbb{Z} (and consequently over \mathbb{Q}) is to map the polynomial onto $\mathbb{Z}_p[X]$ for some suitably chosen prime p. Let $g = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{Z}[X]$, and let p be a prime not dividing a_n . For each i in $\{0, 1, \ldots, n\}$, let \overline{a}_i denote the residue class $a_i + \langle p \rangle$ in the field $\mathbb{Z}_p = \mathbb{Z}/\langle p \rangle$, and write the polynomial $\overline{a}_0 + \overline{a}_1 X + \cdots + \overline{a}_n X^n$ as \overline{g} . Our choice of p ensures that $\partial \overline{g} = n$. Suppose that g = uv, with $\partial u, \partial v < \partial f$ and $\partial u + \partial v = \partial g$. Then $\overline{g} = \overline{u} \overline{v}$. If we can show that \overline{g} is irreducible in $\mathbb{Z}_p[X]$, then we have a contradiction, and we deduce that g is irreducible. The advantage of transferring the problem from $\mathbb{Z}[X]$ to $\mathbb{Z}_p[X]$ is that \mathbb{Z}_p is finite, and the verification of irreducibility is a matter of checking a finite number of cases.

Example 4.0.1. Show that

$$q = 7X^4 + 10X^3 - 2X^2 + 4X - 5$$

is irreducible over \mathbb{Q} .

Proof. Let p = 3 and

$$\overline{g} = X^4 + X^3 + X^2 + 1$$

This has no linear factors since

$$\bar{g}(0) = 1, \quad \bar{g}(1) = 2, \quad \bar{g}(-1) = 1.$$

So suppose

$$\overline{g} = X^4 + X^3 + X^2 + X + 1 = (X^2 + aX + b)(X^2 + cX + d)$$

in $\mathbb{Z}_3[x]$. Then for some $a, b, c, d \in \mathbb{Z}_3 = \{-1, 0, 1\}$, we have

$$\begin{cases} X^3 & a+c=1\\ X^2 & b+ac+d=1\\ X & ad+bc=1\\ 1 & bd=1 \end{cases}$$

The first case is if b = d = 1, but this implies ac = -1, so $a = \pm 1$ and $c = \mp 1$. But a + c = 1, so this cannot happen. The second case is if b = d = -1. This implies that ac = 0 and a + c = 1. So if a = 0, then c = 1, so 1 = ad + bc = b, which is a contradiction with b = -1. If c = 0, then 1 = ad + bc = d,

which is a contradiction with d = -1. Thus \overline{g} is irreducible in $\mathbb{Z}_3[x]$, so g is irreducible in $\mathbb{Z}[x]$, and by Gauss's lemma, g is irreducible in $\mathbb{Q}[x]$.

Remark. If we had tried p=2, then we have $\overline{g}=x^4+1\in\mathbb{Z}_2[x]$, which is not in fact irreducible since

$$\overline{g} = x^4 + 1 = (x+1)^4 \in \mathbb{Z}_2[x].$$

4.2 Field Extensions

Definition 4.1. Let K, L be fields and $\varphi : K \to L$ an injective homomorphism. Then L is a *field extension* of K, denoted L : K.

Example 4.1.1. We have $\mathbb{C} : \mathbb{R}$ is a field extension.

Definition 4.2. Recall that V is a K-vector space if

- 1. V is an abelian group under +,
- 2. For $a, b \in K$ and $x, y \in V$, we have

(i).
$$a(x+y) = ax + ay$$
, (ii). $(a+b)x = ax + bx$, (iii). $(ab)x = a(bx)$, (iv). $1x = 1$.

Remark. If L: K is a field extension, then L is a a vector space over K.

Definition 4.3. A basis for a vector space is a linearly independent spanning set.

Example 4.3.1. The complex numbers \mathbb{C} is a \mathbb{R} -vector space with basis $\{1, i\}$. Bases are not unique, since $\{1 + i, 1 - i\}$ is another basis for \mathbb{C} .

Example 4.3.2. If there is a vector space that we know to be a field, then it is automatically a field extension of its ground field.

Definition 4.4. The dimension of L is the cardinality of a basis for L: K.¹ The dimension is also called the degree of L: K, denoted [L: K]. We say that L is a finite extension if [L: K] is finite, and an infinite extension otherwise.

Example 4.4.1. We have $[\mathbb{C}:\mathbb{R}]=2$, which is finite. On the other hand, $\mathbb{R}:\mathbb{Q}$ is an infinite extension.

Theorem 4.1. Let L: K be a field extension. Then L = K if and only if [L: K] = 1.

Proof. (\Rightarrow) If L = K, then $\{1\}$ is a basis for L : K, and thus [L : K] = 1.

(\Leftarrow) If [L:K]=1, then $\{x\}$ is a basis for L:K for some $x\in L$. Then there exists some $a\in K$ such that 1=ax, so $x=a^{-1}\in K$. For every $y\in L$, there exists $b\in K$ such that y=bx. But then

$$y = bx = b(a^{-1}) \in K,$$

so $y \in K$ as well by closure. Thus L = K as desired.

Remark. Let L: K and M: L be field extensions with

$$K \xrightarrow{\alpha} L \xrightarrow{\beta} M$$

¹Note that this is well-defined since any two bases of L have the same length.

Then M: K is also a field extension.

Theorem 4.2. For field extensions L: K and M: L, we have [M:L][L:K] = [M:K].

Proof. Suppose $\{a_1, a_2, \dots a_r\}$ is a linearly independent subset of M over L and $\{b_1, b_2, \dots, b_s\}$ is a linearly independent subset of L over K. Now we claim that

$${a_ib_i \mid 1 \le i \le r, 1 \le j \le s}$$

is a linearly independent subset of M over K. To see this, suppose

$$\sum_{i=1}^{r} \sum_{j=1}^{s} \lambda_{ij} a_i b_i = 0$$

for some $\lambda_{ij} \in K$. We can rewrite this as

$$\sum_{i=1}^{r} \left(\sum_{j=1}^{s} \lambda_{ij} b_j \right) a_i = 0.$$

Since the a_i are linearly independent over L, it follows that

$$\sum_{j=1}^{s} \lambda_{ij} b_j = 0$$

for each i = 1, ..., r. Since the b_j are linearly independent over K, it follows that $\lambda_{ij} = 0$ for each i, j, which proves the claim. Returning to the main proof, if [M:L] or [L:K] is infinite, then r or s can be made arbitrarily large, so

$$\{a_ib_j \mid 1 \le i \le r, 1 \le j \le s\}$$

can also be made arbitrarily large, and hence [M:K] is infinite. Now suppose $[M:L] = r < \infty$ and $[L:K] = s < \infty$. Let $\{a_1, a_2, \ldots, a_r\}$ be a basis for M:L and $\{b_1, b_2, \ldots, b_s\}$ be a basis for L:K. We will show that

$$\{a_ib_j \mid 1 \le i \le r, 1 \le j \le s\}$$

is a basis for M:K. Since we already showed that $\{a_ib_j\}$ is linearly independent, it only remains to show that they span M over K. For each $z \in M$, there exist $\lambda_1, \ldots, \lambda_r \in L$ such that

$$z = \sum_{i=1}^{r} \lambda_i a_i.$$

Then for each $\lambda_i \in L$, there exist $\mu_{i1}, \ldots, \mu_{is} \in K$ such that

$$\lambda_i = \sum_{j=1}^s \mu_{ij} b_j.$$

Combining this yields

$$z = \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij} a_i b_j$$

as desired, which finishes the proof.

Example 4.4.2. Consider $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

Exercise 4.1. Show that $\mathbb{Q}[\sqrt{2}]$ is a field. (Hint: $1/(a+b\sqrt{2})=(a-b\sqrt{2})/(a^2-2b^2)$.)

Definition 4.5. Let K be a subfield of L and S a subset of L. The *subfield of* L *generated over* K *by* S, denoted K(S), is the intersection of all subfields of L containing $K \cup S$. If $S = \{\alpha_1, \ldots, \alpha_n\}$ is finite, we write $K(\alpha_1, \ldots, \alpha_n)$.

Theorem 4.3. Let E be the elements in L that can be expressed as quotients of finite K-linear combinations of finite products of elements in S. Then K(S) = E.

Proof. To see that $K(S) \subseteq E$, simply check that E is a subfield of L containing $K \cup S$.

For $E \subseteq K(S)$, note that any subfield of L containing K and S must contain all finite products of elements in S, all linear combinations of such products, and all quotients of such linear combinations. This is precisely what is means to have $E \subseteq K(S)$.

Definition 4.6. A simple extension of K is $K(\alpha)$, i.e. S has a single element $\alpha \notin K$.

Example 4.6.1. The previous example $\mathbb{Q}(\sqrt{2})$ is a simple extension.

Theorem 4.4. Let L be a field, K a subfield, and $\alpha \in L$. Then either

- 1. $K(\alpha)$ is isomorphic to K(X), the field of rational forms with coefficients in K,
- 2. or there exists a unique monic polynomial $m \in K[X]$ with the property that for all $f \in K[X]$,
 - (a) $f(\alpha) = 0$ if and only if m|f,
 - (b) the field $K(\alpha)$ coincides with $K[\alpha]$, the ring of all polynomials in α with coefficients in K,
 - (c) and $[K[\alpha]:K] = \partial m$.

Proof. Suppose there does not exist nonzero $f \in K[X]$ such that $f(\alpha) = 0$. Then there exists a map $\varphi : K(X) \to K(\alpha)$ with $f/g \mapsto f(\alpha)/g(\alpha)$, which is defined since $g(\alpha) = 0$ only if g is the zero polynomial. Note that φ is a surjective homomorphism, which one can check as an exercise. Now we show that φ is also injective. To see this, suppose

$$\varphi(f/g) = \varphi(p/q),$$

which happens if and only if

$$f(\alpha)q(\alpha) - p(\alpha)g(\alpha) = 0.$$

in L. This happens if and only if fq - pg = 0 in K[X], which happens if and only if f/g = p/q in K(X). This completes the first case of the theorem.

Now suppose there exists nonzero $g \in K[X]$ such that $g(\alpha) = 0$. Furthermore, suppose g is a polynomial of least degree with this property. Let a be the leading coefficient of g, and let m = g/a, so that m is monic and $m(\alpha) = 0$ still. The reverse implication in (2a) is clear. For the forwards implication in (2a), note that by division with remainder for polynomials over a field, we can write

$$f = qm + r,$$

where $\partial r < \partial m$. By the minimality of ∂m , we must have r = 0, so m|f. For the uniqueness of m, suppose there exists m' with the same properties. Then $m(\alpha) = m'(\alpha) = 0$, so m|m' and m'|m, which

²Also check that φ is well-defined.

implies that m=m' since m and m' are monic. For the irreducibility of m, suppose for the sake of contradiction that m=pq with $\partial p, \partial q < \partial m$. Then $m(\alpha)=p(\alpha)q(\alpha)=0$, so either $p(\alpha)=0$ or $q(\alpha)=0$, which contradicts the minimality of ∂m .

Now we show (2b), which says that $K(\alpha) = K[\alpha]$. For this, consider $p(\alpha)/q(\alpha) \in K(\alpha)$ for $q(\alpha) \neq 0$. Then $m \nmid q$, and since m is irreducible we have $\gcd(m,q) = 1$. Now by Theorem 2.15 of Howie (about gcd's in the Euclidean domain K[X]), there exist polynomials a, b such that aq + bm = 1. Setting $X = \alpha$ yields $a(\alpha)q(\alpha) = 1$, so

$$\frac{p(\alpha)}{q(\alpha)} = p(\alpha)a(\alpha) \in K[\alpha].$$

Thus $K(\alpha) \subseteq K[\alpha]$. Since we already know that $K[\alpha] \subseteq K(\alpha)$, we conclude that $K(\alpha) = K[\alpha]$.

Finally we show (2c), which claims that $[K[\alpha]:K]=\partial m$. For this, suppose $\partial m=n$ and let

$$p(\alpha) \in K[\alpha] = K(\alpha).$$

Then p = qm + r where $\partial r < \partial m = n$. We have $p(\alpha) = r(\alpha)$, so if

$$r = c_0 + c_1 X + \dots + c_{n-1} X^{n-1}$$

for $c_i \in K$, then

$$p(\alpha) = c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1}$$
.

So $\{1, \alpha, \dots, \alpha^{n-1}\}$ is a spanning set for $K[\alpha]$. To see that $\{1, \alpha, \dots, \alpha^{n-1}\}$ is also linearly independent, suppose there exists $a_i \in K$ such that

$$a_0 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1} = 0.$$

Then $a_0 = \cdots = a_{n-1} = 0$ since otherwise we would have a polynomial

$$p = a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$

with $\partial p \leq n-1$ and $p(\alpha)=0$, which is a contradiction with the minimality of $\partial m=n$. Thus $\{1,\alpha,\ldots,\alpha^{n-1}\}$ is a basis, and so $[K[\alpha]:K]=n=\partial m$.

Example 4.6.2. Continuing the same example, note that

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} = \{a_0 + a_1\sqrt{2} + a_2\sqrt{2}^2 + a_3\sqrt{2}^3 + \dots + a_n\sqrt{2}^n \mid a_i \in \mathbb{Q}\},\$$

which falls in the second case of the previous theorem.

Remark. We also have $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}[X]/\langle X^2 - 2 \rangle$.

Jan. 24 — Algebraic Extensions

5.1 Minimal Polynomials

Remark. The m in the previous theorem from last class is called the minimal polynomial of α .

Example 5.0.1. Let

$$\mathbb{Q}[i\sqrt{3}] = \{a + bi\sqrt{3} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{C}.$$

Here $m = X^2 + 3$, so this is a degree 2 extension.

Exercise 5.1. Write $1/(a + bi\sqrt{3})$ in the form $c + di\sqrt{3}$.

Example 5.0.2. Is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ a simple extension? In fact it is! Note that certainly

$$\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

For the reverse inclusion, observe that $(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 1$, so

$$1/(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}).$$

From this we have

$$(\sqrt{3} + \sqrt{2}) + (\sqrt{3} - \sqrt{2}) = 2\sqrt{3},$$

which implies that $\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Similarly $\sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$, so that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Now we can consider

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}[\sqrt{2}, \sqrt{3}] = (\mathbb{Q}[\sqrt{2}])[\sqrt{3}].$$

First we have $[Q[\sqrt{2}]:\mathbb{Q}]=2$. Note that X^2-3 is the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}[\sqrt{2}]$, so $[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}[\sqrt{2}]]=2$. Hence $[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}]=4$ with basis $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$. To find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} , we can compute

$$(\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}$$
$$(\sqrt{2} + \sqrt{3})^4 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6}.$$

Thus $X^4 - 10X^2 + 1$ is the minimal polynomial, since $\alpha^4 - 10\alpha^2 + 1 = 0$ for $\alpha = \sqrt{2} + \sqrt{3}$.

¹Since $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\alpha]$ where $\alpha = \sqrt{2} + \sqrt{3}$, we have $\{1, \alpha, \alpha^2, \alpha^3\}$ as another basis.

5.2 Algebraic Extensions

Definition 5.1. If α has a minimal polynomial over K, we say α is algebraic over K, and $K[\alpha] = K(\alpha)$ is an algebraic extension of K. A complex number that is algebraic over $\mathbb Q$ is called an algebraic number. Otherwise, if $K(\alpha) \cong K(X)$, then we say α is transcendental over K. A transcendental number α is a complex number that is transcendental over $\mathbb Q$.

Example 5.1.1. We have that $\mathbb{Q}(i\sqrt{3})$, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, and $\mathbb{Q}(\sqrt{2},\sqrt{3})$ are all simple algebraic extensions of \mathbb{Q} , whereas $\mathbb{Q}(X)$ is a simple transcendental extension of \mathbb{Q} .

Theorem 5.1. Let $K(\alpha)$ be a simple transcendental extension of K. Then $[K(\alpha):K]=\infty$.

Proof. Observe that $1, \alpha, \alpha^2, \ldots$ are linearly independent over K, since no minimal polynomial exists. \square

Definition 5.2. An extension L over K is an algebraic extension if any element of L is algebraic over K. Otherwise, L is a transcendental extension.

Theorem 5.2. Every finite extension is algebraic.

Proof. Let L: K be a finite extension and suppose for sake of contradiction that $\alpha \in L$ is transcendental over K. Then $1, \alpha, \alpha^2, \ldots$ are linearly independent, contradicting the fact that L: K is finite. \square

Theorem 5.3. Let L: K be a field extension and let A(L) be the set of elements in L that are algebraic over K. Then A(L) is a subfield of L.

Proof. See Howie. Just need to show the closure of algebraic elements under usual field operations. \Box

Example 5.2.1. For $L = \mathbb{C}$ and $K = \mathbb{Q}$, we have that $\mathcal{A}(\mathbb{C})$ is the field \mathbb{A} of algebraic numbers.

Theorem 5.4. The set of algebraic numbers \mathbb{A} is countable.

Proof sketch. Note that the set of monic polynomials of degree n with coefficients in \mathbb{Q} is countable, and each such polynomial has at most n distinct roots in \mathbb{C} . Hence the number of roots of such polynomials is countable. Then \mathbb{A} is the countable union of countable sets, so \mathbb{A} is countable.

Theorem 5.5. Transcendental numbers exist.

Proof. Since $|\mathbb{R}| = |\mathbb{C}| = 2^{\aleph_0} > \aleph_0$, we must have that $\mathbb{C} \setminus \mathbb{A}$ is nonempty.

Remark. The above proof is very nonconstructive, what about actual examples of transcendental numbers? In 1844, Liouville constructed the following example:

$$\sum_{n=1}^{\infty} 10^{-n!},$$

which was shown to be transcendental. In 1873, Hermite showed that e is transcendental, and in 1882, Lindemann showed that π is transcendental.

Theorem 5.6. Let L: K be a field extension and $\alpha_1, \ldots, \alpha_n \in L$ have minimal polynomials m_1, \ldots, m_n , respectively. Then $[K(\alpha_1, \ldots, \alpha_n): K] \leq \partial m_1 \partial m_2 \ldots \partial m_n$.

Proof. See Howie. Uses induction and the fact that [M:L][L:K] = [M:K].

Example 5.2.2. Consider

$$[\mathbb{Q}[\sqrt{2}]:\mathbb{Q}] = [\mathbb{Q}[\sqrt{3}]:\mathbb{Q}] = [\mathbb{Q}[\sqrt{6}]:\mathbb{Q}] = 2,$$

but $[\mathbb{Q}[\sqrt{2},\sqrt{3},\sqrt{6}]:\mathbb{Q}]=4$. So the bound in the previous theorem cannot be made into an equality.

Proposition 5.1. A field extension L: K is finite if and only if for some n, there exist $\alpha_1, \ldots, \alpha_n$ algebraic over K such that $L = K(\alpha_1, \ldots, \alpha_n)$.

Proof. (\Leftarrow) This is precisely the previous theorem.

 (\Rightarrow) Suppose L: K is finite and $\{\alpha_1, \ldots, \alpha_n\}$ is a basis for L over K. Since finite extensions are algebraic, the α_i must be algebraic.

Exercise 5.2. Show that $\varphi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[X]/\langle X^2 - 2 \rangle$ defined by

$$a + b\sqrt{2} \mapsto a + bX + \langle X^2 - 2 \rangle$$

is an isomorphism.

Theorem 5.7. Let K be a field and m a monic irreducible polynomial in K[X]. Then $L = K[X]/\langle m \rangle$ is a simple algebraic extension $K[\alpha]$ of K, and $\alpha = X + \langle m \rangle$ has minimal polynomial m over K.

Proof. First note that L is indeed a field since m is irreducible. Also L:K is indeed a field extension since $\varphi:K\to L$ defined by $a\mapsto a+\langle m\rangle$ is an injective homomorphism. Now let $\alpha=X+\langle m\rangle$. For

$$f = a_0 + a_1 X + \dots + a_n X^n \in K[X],$$

we have

$$f(\alpha) = a_0 + a_1 \alpha + \dots + a_n \alpha^n = a_0 + a_1 (X + \langle m \rangle) + \dots + a_n (X + \langle m \rangle)^n$$

= $a_0 + a_1 X + \dots + a_n X^n + \langle m \rangle = f + \langle m \rangle.$

So $f(\alpha) = 0$ if and only if $f \in \langle m \rangle$, i.e. m|f. Hence m is the minimal polynomial of α .

Jan. 29 — Geometric Constructions

6.1 K-Isomorphisms

Recall from last class that $L = K[X]/\langle m \rangle$ is a simple algebraic extension of K. In fact, we can show that the field L is essentially unique, i.e. unique up to isomorphism.

Theorem 6.1. Let K be a field and and f and an irreducible polynomial in K[X]. If L and L' are two extensions of K containing roots α and α' respectively of f, then there exists an isomorphism $K[\alpha] \to K[\alpha']$ which fixes every element of K.

Proof sketch. Suppose

$$f = a_0 + a_1 X + \dots + a_n X^n.$$

Then $K[\alpha]$ consists of polynomials of the form

$$b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1}.$$

This is because multiplication in $K[\alpha]$ relies on the observation that

$$\alpha^n = -\frac{1}{\alpha_n}(a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1})$$

since α is a root of f. Define $\psi: K[\alpha] \to K[\alpha']$ by $\psi(g(a)) = g(\alpha')$ and show that ψ is an isomorphism. \square

Exercise 6.1. Check the following from the previous proof:

- 1. ψ is one-to-one and onto,
- 2. ψ fixes K,
- 3. and ψ is a homomorphism.

For the last point, the addition is mostly straightforward but the multiplication is more involved since we need to reduce when we get α^n terms in the product.

Definition 6.1. A K-isomorphism is an isomorphism $\varphi: L \to L'$ such that $\varphi(x) = x$ for all $x \in K$.

Example 6.1.1. For $\mathbb{C} : \mathbb{R}$, the complex conjugation map $\varphi : \mathbb{C} \to \mathbb{C}$ given by $\varphi(a + bi) = a - bi$ is a \mathbb{R} -isomorphism.

Example 6.1.2. For $\mathbb{Q}[X]/\langle X^2+3\rangle:\mathbb{Q}^1$, the map $\psi:\mathbb{Q}[X]/\langle X^2+3\rangle\to\mathbb{Q}[X]/\langle X^2+3\rangle$ given by

$$\psi(a+bX+\langle X^2+3\rangle) = a-bX+\langle X^2+3\rangle$$

is a \mathbb{Q} -isomorphism. The analogous map $\psi : \mathbb{Q}[i\sqrt{3}] \to \mathbb{Q}[i\sqrt{3}]$ given by $\psi(a + bi\sqrt{3}) = a - bi\sqrt{3}$ also works, which we can view as a restriction of the complex conjugation map to $\mathbb{Q}[i\sqrt{3}]$.

6.2 Applications to Geometric Constructions

Consider the straightedge and compass Constructions from geometry. Let B_0 be a set of points. Then we have the following operations:

- 1. (straightedge) Draw a straight line through any two points in B_0 .
- 2. (compass) Draw a circle whose center is a point in B_0 passing through another point in B_0 .

Let $C(B_0)$ be the set of points which are intersections of lines or circles obtained form B_0 by (1) and (2). Let $B_1 = B_0 \cup C(B_0)$, and proceed inductively to get $B_n = B_{n-1} \cup C(B_{n-1})$.

Definition 6.2. A point is *constructible from* B_0 if it belongs to B_n for some n. A point is *constructible* if it is constructible from $\{O, I\}$ where O = (0, 0) and I = (1, 0).

Example 6.2.1. To find the midpoint of the line segment OI from $B_0 = \{O, I\}$, we can do the following:

- 1. Draw a circle with center O passing through I.
- 2. Draw a circle with center I passing through O.
- 3. Mark points P and Q where these circles intersect. So $B_1 \supseteq \{O, I, P, Q\}$.
- 4. Draw a line connecting P and Q.
- 5. Draw a line connecting O and I.
- 6. Mark the point M where PQ and OI meet. So $B_2 \supseteq \{O, I, P, Q, M\}$.

Thus M is constructible from $\{O,I\}$.

The algebraic perspective is the following: Associate to B_i the subfield of \mathbb{R} generated by coordinates of points in B_i , i.e. view each coordinate of each point as an element and take the subfield generated.

Example 6.2.2. For $B_0 = \{(0,0), (1,0)\}$, we have $\{0,0,1,0\} \subseteq K_0 = \mathbb{Q}$ is the subfield of \mathbb{R} generated by the coordinates of B_0 . Next take²

$$B_1 = \{O, I, P, Q\} = \{(0, 0), (1, 0), (1/2, \pm \sqrt{3}/2)\},\$$

so that $K_1 = \mathbb{Q}[\sqrt{3}]$ is the field generated by B_1 . Then

$$B_2 = \{O, I, P, Q, M\} = \{(0, 0), (1, 0), (1/2, \pm \sqrt{3}/2), (1/2, 0)\},\$$

and the field generated by B_2 is still $K_2 = \mathbb{Q}[\sqrt{3}]$.

Note that $\mathbb{Q}[X]/\langle X^2+3\rangle\cong\mathbb{Q}[i\sqrt{3}]$. The isomorphism is given by $a+bX+\langle X^3+3\rangle\mapsto a+bi\sqrt{3}$.

²There is some abuse of notation here since we take B_i to be only some subset of all the actual possible points.

Theorem 6.2. Let P be a constructible point belonging to B_n , where $B_0 = \{(0,0), (1,0)\}$, and let K_n be the field generated over \mathbb{Q} by B_n . Then $[K_n : \mathbb{Q}]$ is a power of 2.

Proof sketch. We proceed by induction. The base case is $K_0 = \mathbb{Q}$, so $[K_0 : \mathbb{Q}] = 1 = 2^0$. Now suppose $[K_{n-1} : \mathbb{Q}] = 2^k$ for some $k \geq 0$, and we want to show that $[K_n : K_{n-1}]$ is a power of 2. Observe that new points in B_n can be obtained by

- 1. intersection of two lines,
- 2. intersection of a line and a circle,
- 3. or intersection of two circles.

In case (1), the intersection of two lines is given by solving a system of two linear equations, which only involves rational operations³. In other words, this case takes place entirely in K_{n-1} .

In case (2), the intersection of a line and a circle is given by solving of a system of one linear equation and one quadratic equation. Solving the linear equation for one of the variables and substituting into the quadratic equation reduces the system down to a single quadratic equation in a single variable. The solution involves $\sqrt{\Delta}$, where Δ is the discriminant. Then the new points are in $K_{n-1}[\sqrt{\Delta}]$.

In case (3), the intersection of two circles is given by solving a system of two quadratic equations. Subtracting the two quadratic equations yields a linear equation, which reduces back to case (2).

Thus the elements in K_n are either in K_{n-1} or $K_{n-1}[\sqrt{\Delta}]$ for some $\Delta \in K_{n-1}$.⁴ Hence $[K_n : K_{n-1}]$ is either 1 or 2, so by induction $[K_n : \mathbb{Q}]$ is a power of 2.

6.3 Classic Problems

6.3.1 Duplicating the Cube

Consider the problem of taking a cube of volume 1, and constructing a cube of volume 2. We need α such that $\alpha^3 = 2$. But $X^3 - 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion, so $[\mathbb{Q}[\alpha] : \mathbb{Q}] = 3$. This is not a power of 2, so α is not constructible and thus we cannot duplicate the cube.

6.3.2 Trisecting the Angle

Recall the triple angle formula:

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta.$$

Suppose $\cos 3\theta = c$. So to find $\cos \theta$, we want a root of $4X^3 - 3X - c = 0$. This depends on c.

Example 6.2.3. If $3\theta = \pi/2$, then c = 0 and the polynomial factors into

$$4X^3 - 3X = 4X(4X^2 - 3),$$

so $[\mathbb{Q}[\alpha]:\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}]:\mathbb{Q}]=2$. So in fact we can trisect $\pi/2=90^\circ$.

³By rational operations we mean addition, subtraction, multiplication, division.

⁴We can set it up so that we only gain one extra intersection, i.e. only one Δ , at each step.

Example 6.2.4. If $3\theta = \pi/3$, then c = 1/2 and we have $4X^3 - 3X - 1/2$. Let

$$f(X) = 8X^3 - 6X - 1,$$

so that $g(X) = g(X/2) = X^3 - 3X - 1$. Note that g does not factor over \mathbb{Z} since that requires a linear factor of $X \pm 1$ but $g(\pm 1) \neq 0$. So g is irreducible over \mathbb{Z} and by Gauss's lemma, g is irreducible over \mathbb{Q} . Thus f is irreducible. Hence $[\mathbb{Q}[\alpha]:\mathbb{Q}] = 3$, so we cannot trisect $\pi/3$ with a straightedge and compass.

Jan. 31 — Splitting Fields

7.1 Review of Notation

Recall that

$$\mathbb{Q}[X] = \{a_0 + a_1 X + \dots + a_n X^n : a_i \in \mathbb{Q}\}$$

$$\mathbb{Q}(X) = \{f/q : f, q \in \mathbb{Q}[X], q \neq 0\} / \sim,$$

where \sim is the usual relation on fractions, e.g. 2f/2g = f/g. Next, recall that

$$\mathbb{Q}[\sqrt{2}] = \{a_0 + a_1\sqrt{2} + \dots + a_n\sqrt{2}^n : a_i \in \mathbb{Q}\} = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}\$$

since $\sqrt{2}^2 = 2$. Also $\mathbb{Q}(\sqrt{2})$ is the smallest subfield of \mathbb{R} containing $\mathbb{Q} \cup \{\sqrt{2}\}$. In this case, $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}]$ since

$$\frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2}.$$

Next, we have

$$\mathbb{Q}[X]/\langle X^2 - 2 \rangle = \{ a_0 + a_1 X + \dots + a_n X^n + \langle X^2 - 2 \rangle : a_i \in \mathbb{Q} \}$$

= $\{ a + bX + \langle X^2 - 2 \rangle : a, b \in \mathbb{Q} \}$

since $X^2 + \langle X^2 - 2 \rangle = 2 + \langle X^2 - 2 \rangle$. In fact, $\mathbb{Q}[X]/\langle X^2 - 2 \rangle \cong \mathbb{Q}[\sqrt{2}]$.

7.2 Splitting Fields

The motivating question here is: When can we factor a polynomial into linear factors?

Definition 7.1. A polynomial splits completely over K if it can be factored into linear factors over K.

Example 7.1.1. The polynomial X^2+2 splits completely over $\mathbb{Q}[i\sqrt{2}]$ since $X^2+2=(X-i\sqrt{2})(X+i\sqrt{2})$.

Example 7.1.2. The polynomial $X^3 - 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion. However, it factors as

$$X^{3} - 2 = (X - \alpha)(X^{2} + \alpha X + \alpha^{2})$$

in $\mathbb{Q}[\alpha]$, where $\alpha = \sqrt[3]{2}$. Also $X^2 + \alpha X + \alpha^2$ is irreducible over $\mathbb{Q}[\alpha]$, since its discriminant shows that it is irreducible even over \mathbb{R} . But in \mathbb{C} , we can factor it as

$$X^{3} - 2 = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{4\pi i/3}).$$

A smaller field that $X^3 - 2$ splits completely over is $\mathbb{Q}[\sqrt[3]{2}, i\sqrt{3}]$.

¹Here the isomorphism $\mathbb{Q}[X]/\langle X^2-2\rangle \to \mathbb{Q}[\sqrt{2}]$ is given by $a+bX+\langle X^2-2\rangle \mapsto a+b\sqrt{2}$.

Definition 7.2. Let K be a field and $f \in K[X]$. An extension L of K is a splitting field for f over K if

- 1. f splits completely over L,
- 2. and f does not split completely over any subfield E with K < E < L.

Example 7.2.1. From the last two examples, $\mathbb{Q}[i\sqrt{2}]$ is a splitting field over \mathbb{Q} for X^2+2 , and $\mathbb{Q}[\sqrt[3]{2},i\sqrt{3}]$ is a splitting field for X^3-2 over \mathbb{Q} .

Theorem 7.1. Let K be a field and $f \in K[X]$ with $\partial f = n$. Then there exists a splitting field L for f over K and $[L:K] \leq n!$.

Proof. The proof is essentially the process we perform in the following example. At each step, construct an extension in which we can split off a linear factor from f. For more details, see Howie.

Example 7.2.2. Let us find a splitting field for

$$f = X^5 + X^4 - X^3 - 3X^2 - 3X + 3$$

over \mathbb{Q} . Note that $\partial f = n$. Stare hard enough and we can see that

$$f = (X^3 - 3)(X^2 + X - 1),$$

where the first factor is irreducible by Eisenstein's criterion and the second factor is irreducible by checking the discriminant. Now add a root, say $\alpha = \sqrt[3]{3}$, and let $E_1 = \mathbb{Q}(\alpha)$. Then

$$f = (X - \alpha)(X^{2} + \alpha X + \alpha^{2})(X^{2} + X - 1).$$

Note that $[E_1:K] \leq n = \partial f$. Now let $E_2 = E_1(\alpha e^{2\pi i/3})$, so that

$$f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X^2 + X - 1).$$

Note that $[E_2:\mathbb{Q}] \leq n(n-1)$. Next $E_3 = E_2(\alpha e^{-2\pi i/3})$ with

$$f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X^2 + X - 1).$$

Note that $[E_3:K] \leq n(n-1)(n-2)$. Now let

$$\gamma = \frac{-1 + \sqrt{5}}{2}, \quad \delta = \frac{-1 - \sqrt{5}}{2}.$$

Let $E_4 = E_3(\gamma)$,

$$f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X - \gamma)(X - \delta).$$

Finally $E_5 = E_4(\delta)$ is the splitting field for f over \mathbb{Q} . Note that we did much better than n! here, since

$$[E_1:\mathbb{Q}]=3, \quad [E_2:E_1]=2, \quad [E_3:E_2]=1, \quad [E_4:E_3]=2, \quad [E_5:E_4]=1,$$

so $[E_5:\mathbb{Q}] = 12 \le 120$.

Remark. Splitting fields are unique (up to isomorphism).

Theorem 7.2. Let L and L' be splitting fields of f over K. Then there exists an isomorphism $\varphi: L \to L'$ fixing K.

Proof sketch. Induct on the number of roots of f that are not in K. The induction step uses Theorem 6.1 from last class giving an isomorphism $K[\alpha] \to K[\alpha']$ for α, α' roots of an irreducible polynomial. \square

Example 7.2.3. Let us find the splitting field of $f = X^4 - 2$ over \mathbb{Q} and its degree. Note that $X^4 - 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion. Note that

$$X^4 - 2 = (X - \alpha)(X + \alpha)(X - i\alpha)(X + i\alpha)$$

where $\alpha = \sqrt[4]{2}$. So the splitting field is $\mathbb{Q}(\sqrt[4]{2},i)$. For the degree, note that $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 4$ since the minimal polynomial of $\sqrt[4]{2}$ is $X^4 - 2$. A basis for this extension is $\{1, \sqrt[4]{2}, \sqrt[4]{2}^2, \sqrt[4]{2}^3\}$. Since $i \notin \mathbb{Q}(\sqrt[4]{2})$, we have $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}(\sqrt[4]{2})] = 2$ since the minimal polynomial of i over $\mathbb{Q}(\sqrt[4]{2})$ is $X^2 + 1$. Thus we see that the degree of the splitting field is $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}] = 8$.

Example 7.2.4. Let us look at monic quadratic polynomials over $\mathbb{Z}_3 = \{-1, 0, 1\}$. These are

$$X^2$$
 $X^2 + 1$ $X^2 - 1$
 $X^2 + X$ $X^2 + X + 1$ $X^2 + X - 1$
 $X^2 - X$ $X^2 - X + 1$ $X^2 - X - 1$.

We have 0 is a root of the polynomials in the first column, 1 is a root of $X^2 - 1$ and $X^2 + X + 1$, and -1 is a root of $X^2 - X + 1$. So the irreducible polynomials over \mathbb{Z}_3 are

$$X^2 + 1$$
, $X^2 + X - 1$, $X^2 - X - 1$.

Let $L = \mathbb{Z}_3[X]/\langle X^2 + 1 \rangle$. Observe that $\alpha = X + \langle X^2 + 1 \rangle$ satisfies

$$\alpha^2 = X^2 + \langle X^2 + 1 \rangle = -1 + \langle X^2 + 1 \rangle.$$

Hence L is a splitting field for $X^2 + 1$ since $(X - \alpha)(X + \alpha) = X^2 + 1$. Similarly, $\mathbb{Z}_3[X]/\langle X^2 + X - 1 \rangle$ is a splitting field for $X^2 + X - 1$ and $\mathbb{Z}_3[X]/\langle X^2 - X - 1 \rangle$ is a splitting field for $X^2 - X - 1$. Note that each of these fields have $9 = 3^2$ elements since they are degree 2 extensions of \mathbb{Z}_3 .

Remark. In L, we had $\alpha \in L$ such that $\alpha^2 = -1$ and addition is performed modulo 3. Now observe

$$(\alpha + 1)^2 + (\alpha + 1) - 1 = (\alpha^2 - \alpha + 1) + (\alpha + 1) - 1 = \alpha^2 - \alpha + \alpha + 1 + 1 - 1 = 0$$

since $\alpha^2 = -1$. So $\alpha + 1$ is a root of $X^2 + X - 1$ in L. By a similar computation, we see that $-\alpha + 1$ is a root of $X^2 + X - 1$, so L is also a splitting field for $X^2 + X - 1$. Additionally, $\alpha - 1$ and $-\alpha - 1$ are roots of $X^2 - X - 1$, so L is also a splitting field for $X^2 - X - 1$. So by uniqueness of splitting fields,

$$\mathbb{Z}_3[X]/\langle X^2+1\rangle \cong \mathbb{Z}_3[X]/\langle X^2+X-1\rangle \cong \mathbb{Z}_3[X]/\langle X^2-X-1\rangle.$$

Exercise 7.1. Find explicit isomorphisms between these fields.

7.3 Finite Fields

Definition 7.3. Let $f = a_0 + a_1 X + \cdots + a_n X^n \in K[X]$. Then the formal derivative of f is

$$Df = a_1 + 2a_2X + \dots + na_nX^{n-1}.$$

Exercise 7.2. The usual formulas for derivatives

$$D(kf) = kDf, \quad D(f+g) = Df + Dg, \quad D(fg) = (Df)g + f(Dg)$$

all still hold for $f, g \in K[X]$ and $k \in K$.

²Note that as opposite to \mathbb{Q} , this field has finite characteristic.

Feb. 5 — Finite Fields

8.1 Last Time

Example 8.0.1. The splitting field of $X^4 - 2$ over \mathbb{Q} is $\mathbb{Q}(i, \sqrt[4]{2})$ since

$$X^{4} - 2 = (X - \sqrt[4]{2})(X + \sqrt[4]{2})(X - i\sqrt[4]{2})(X + i\sqrt[4]{2}).$$

Example 8.0.2. The splitting field of $Y^2 + 1$ over \mathbb{Z}_3 is $\mathbb{Z}_3[X]/\langle X^2 + 1 \rangle$. If $\alpha = X + \langle X^2 + 1 \rangle$, then

$$Y^2 + 1 = (Y - \alpha)(Y + \alpha).$$

Also the degree of this extension is $[Z_3[X]/\langle X^2+1\rangle:\mathbb{Z}_3]=2$, and a basis for the extension is $\{1,X\}$.

8.2 Finite Fields

Lemma 8.1. Let $f \in K[X]$, K a field, and L be a splitting field for f over K. Then the roots of f are distinct if and only if f and Df have no nonconstant common factor.

Proof. (\Leftarrow) We show the contrapositive. Suppose f has a repeated root α in L. Then

$$f = (X - \alpha)^r g$$

for some $r \geq 2$. Then

$$Df = (X - \alpha)^r Dg + r(X - \alpha)^{r-1}g,$$

so Df and f both have $X - \alpha$ as a factor.

 (\Rightarrow) Suppose the roots of f are all distinct. Then for each root α of f in L, we have

$$f = (X - \alpha)g,$$

where $g(\alpha) \neq 0$. Then

$$Df = (X - \alpha)Dg + g,$$

so that

$$(Df)(\alpha) = g(\alpha) \neq 0,$$

i.e. $X - \alpha \nmid Df$. This holds for factor of f in L[X], so f and Df have no common proper factors. \square

Theorem 8.1. Finite fields exist and are unique up to isomorphism. In particular,

- 1. Let K be a finite field. Then $|K| = p^n$ for some prime p and integer $n \ge 1$. Every element of K is a root of $X^{p^n} X$ and K is a splitting field of $X^{p^n} X$ over \mathbb{Z}_p .
- 2. Let p be a prime and $n \in \mathbb{Z}$, $n \geq 1$. Then there exists a unique field of order p^n up to isomorphism.

Proof. (1) Let char K = p. Then K is a finite extension of \mathbb{Z}_p . Let $n = [K : \mathbb{Z}_p]$. If $\{\delta_1, \ldots, \delta_n\}$ is a basis for K over \mathbb{Z}_p , then every element in K can be uniquely written as

$$a_1\delta_1 + \cdots + a_n\delta_n$$

for some $a_i \in \mathbb{Z}_p$. There are p^n such elements, so $|K| = p^n$. Then $|K^*| = p^n - 1$. For any $\alpha \in K^*$, the order of α divides $p^n - 1$. So $\alpha^{p^n - 1} = 1$, and hence $\alpha^{p^n} - \alpha = 0$. We also have $0^{p^n} - 0 = 0$ so every element in K is a root of $X^{p^n} - X$. Hence $X^{p^n} - X$ splits completely over K. Since $X - \alpha$ is a factor of $X^{p^n} - X$ for each of the p^n elements of K, $X^{p^n} - X$ does not split over any proper subfield of K. Thus we conclude that K is a splitting field of $X^{p^n} - X$ over \mathbb{Z}_p .

(2) Given a prime p and an integer $n \geq 1$, let L be the splitting field of $X^{p^n} - X$ over \mathbb{Z}_p . Note that

$$Df = p^n X^{p^n - 1} - 1 = -1$$

since char $\mathbb{Z}_p = p$. Then Df and f have no nonconstant common factors, so by Lemma 8.1, we see that $X^{p^n} - X$ has p^n distinct roots in L. Let K be the set of p^n distinct roots, and we claim that K is a subfield of L. To check this, let $a, b \in K$. Then by an extension of Theorem 2.4,

$$(a-b)^{p^n} = a^{p^n} - b^{p^n} = a - b$$

in \mathbb{Z}_p , $a - b \in K$. Also

$$(ab^{-1})^{p^n} = a^{p^n}(b^{p^n})^{-1} = ab^{-1},$$

so $ab^{-1} \in K$. Hence K is a field of order p^n . In fact, K = L since K contains all the roots of $X^{p^n} - X$ and no proper subfield does. By uniqueness of splitting fields, K is unique up to isomorphism.

Definition 8.1. We call the field of order p^n the Galois field of order p^n , denoted $GF(p^n)$.

Example 8.1.1. We have $GF(3^2) = \mathbb{Z}_3[X]/\langle X^2 + 1 \rangle \cong \mathbb{Z}_3[X]/\langle X^2 + X - 1 \rangle \cong \mathbb{Z}_3[X]/\langle X^2 - X - 1 \rangle$.

Remark. Recall that for a finite group G and $a \in G$, the *order* of a is

$$\operatorname{ord}(a) = \min\{k \in \mathbb{N} : a^k = 1\}.$$

The exponent of G is

$$\exp(G) = \min\{k \in \mathbb{N} : a^k = 1 \text{ for all } a \in G\}.$$

Also recall that ord(a) divides |G| for all $a \in G$, and thus exp(G) divides |G|.

Exercise 8.1. Show that $\exp(G) = \operatorname{lcm} \{\operatorname{ord}(a) : a \in G\}.$

Example 8.1.2. For $S_3 = \{ id, (12), (23), (13), (123), (132) \}$, the order of the transpositions is 2 and the order of 3-cycles is 3. So we see that $\exp(S_3) = 6$.

Proposition 8.1. If G is a finite abelian group, then there exists $a \in G$ such that $\operatorname{ord}(a) = \exp(G)$.

¹Recall that K^* is the set of nonzero elements of K, which forms a group under multiplication. We also call K^* the group of units of K.

Proof. Suppose that

$$\exp(G) = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k},$$

where the p_i are distinct primes and $\alpha_i \geq 1$ for all i. Since

$$\exp(G) = \operatorname{lcm}\{\operatorname{ord}(a) : a \in G\},\$$

there exists $h_1 \in G$ such that $p_1^{\alpha_1} | \operatorname{ord}(h_1)$. So $\operatorname{ord}(h_1) = p_1^{\alpha_1} q_1$ where $q_1 | p_2^{\alpha_2} \dots p_k^{\alpha_k}$. Let $g_1 = h_1^{q_1}$. For each $m \geq 1$, we have $g_1^m = h_1^{mq_1}$, and

$$h_1^{mq_1} = 1 \iff p_1^{\alpha_1} q_1 | mq_1 \iff p_1^{\alpha_1} | m.$$

Hence $\operatorname{ord}(g_1) = p_1^{\alpha_1}$. Similarly for $i = 2, \ldots, k$, we can find elements g_i of order $p_i^{\alpha_i}$. Let

$$a = g_1 g_2 \dots g_k$$

and $n = \operatorname{ord}(a)$. Now check as an exercise that $\operatorname{ord}(a) = \exp(G)$. This relies on

$$a^n = g_1^n g_2^n \dots g_k^n = 1,$$

which uses the assumption that G is abelian.

Remark. The previous example shows that the abelian condition in this theorem is necessary.

Corollary 8.1.1. If G is a finite abelian group with $\exp(G) = |G|$, then G is cyclic.

Theorem 8.2. The group of units $GF(p^n)^*$ of a Galois field is cyclic.

Proof. Let $e = \exp(\operatorname{GF}(p^n)^*)$. Then $a^e = 1$ for all $a \in \operatorname{GF}(p^n)^*$, so every element $a \in \operatorname{GF}(p^n)^*$ is a root of $X^e - 1$. Since $X^e - 1$ has at most e roots, we see that $|\operatorname{GF}(p^n)^*| \le e$. But $e \le |\operatorname{GF}(p^n)^*|$ since $\exp(\operatorname{GF}(p^n)^*)$ divides $|\operatorname{GF}(p^n)^*|$. Hence $|\operatorname{GF}(p^n)^*| = e$, so by Corollary 8.1.1, $\operatorname{GF}(p^n)^*$ is cyclic. \square

8.3 Automorphisms of Fields

Example 8.1.3. The complex conjugation $f: \mathbb{C} \to \mathbb{C}$ given by f(a+bi) = a-bi is an automorphism of \mathbb{C} . Observe that f(c) = c if and only if $c \in \mathbb{R}$.

Theorem 8.3. Let K be a field. The set $\operatorname{Aut} K$ of automorphisms of K forms a group under composition.

Proof. First observe that composition is associative. The identity element in Aut K is the identity map id_K . For inverses, let $\alpha \in \mathrm{Aut}\,K$. Since α is a bijection, there exists an inverse map $\alpha^{-1}:K\to K$, where $\alpha^{-1}(x)$ is the unique element s such that $\alpha(s)=x$. Now we check that α^{-1} is also a homomorphism. For this, let $x,y\in K$ and suppose that $\alpha^{-1}(x)=s$ and $\alpha^{-1}(y)=t$. Then $\alpha(s)=x$ and $\alpha(t)=y$, so

$$\alpha(s+t) = \alpha(s) + \alpha(t) = x+y$$

since α is a homomorphism. Then we see that

$$\alpha^{-1}(x+y) = s + t = \alpha^{-1}(x) + \alpha^{-1}(y).$$

Similarly, $\alpha(st) = xy$, so

$$\alpha^{-1}(xy) = st = \alpha^{-1}(x)\alpha^{-1}(y).$$

Hence $\alpha^{-1} \in \operatorname{Aut} K$ and $\alpha \circ \alpha^{-1} = \alpha^{-1} \circ \alpha = \operatorname{id}_K$, so $\operatorname{Aut} K$ is indeed a group.

Definition 8.2. We call Aut K the group of automorphisms of K.

Definition 8.3. Let L be a field extension of K. A K-automorphism is an automorphism $\alpha: L \to L$ such that $\alpha(x) = x$ for all $x \in K$. The Galois group of L over K, denoted $\operatorname{Gal}(L:K)$, is the set of K-automorphisms of L. The Galois group $\operatorname{Gal}(f)$ of a polynomial $f \in K[X]$ is $\operatorname{Gal}(L:K)$ where L is a splitting field of f over K.

Theorem 8.4. The Galois group Gal(L:K) is a subgroup of Aut L.

Proof. Clearly $\mathrm{id}_L \in \mathrm{Gal}(L:K)$ since it fixes all elements of L. Now let $\alpha, \beta \in \mathrm{Gal}(L:K)$. Then we have $\alpha(x) = x$ and $\beta(x) = x$ for all $x \in K$. Then $\beta^{-1}(x) = x$, which gives

$$\alpha \beta^{-1}(x) = \alpha(x) = x,$$

so $\alpha \beta^{-1} \in \operatorname{Gal}(L:K)$. Thus $\operatorname{Gal}(L:K)$ is a subgroup of Aut L.

Remark. The big idea here is that there is a correspondence between subfields E with $K \subseteq E \subseteq L$ and subgroups H of Gal(L:K).

Exercise 8.2. From a past homework, we identified the subfields of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ as:

Compare the subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q})$ to the subfields of $\mathbb{Q}(\sqrt{3},\sqrt{5})$ containing \mathbb{Q} .

Feb. 7 — The Galois Correspondence

9.1 Automorphisms of Fields

Example 9.0.1. The complex conjugation $\beta: \mathbb{C} \to \mathbb{C}$ given by $\beta(a+bi) = a-bi$ is a nontrivial element of the Galois group of $\mathbb{C}: \mathbb{R}$. In fact, $Gal(\mathbb{C}: \mathbb{R}) = \{id, \beta\}$. Note that β fixes \mathbb{R} , id fixes \mathbb{C} , and

9.2 The Galois Correspondence

Definition 9.1. Define

$$\Gamma(E) = \{ \alpha \in \text{Aut } L : \alpha(z) = z \text{ for all } z \in E \},$$

$$\Phi(H) = \{ x \in L : \alpha(x) = x \text{ for all } \alpha \in H \},$$

where E is a subfield of L and H is a subgroup of Gal(L:K). This is called the Galois correspondence.

Example 9.1.1. In the previous example of $\mathbb{C} : \mathbb{R}$, we have $\Gamma(\mathbb{C}) = \{id\}$ and $\Gamma(\mathbb{R}) = \{id, \beta\}$. We also have $\Phi(\{id, \beta\}) = \mathbb{R}$ and $\Phi(\{id\}) = \mathbb{C}$.

Remark. The goal is to determine: When are Γ and Φ inverses of one another?

Theorem 9.1. We have the following:

- 1. For every subfield E of L containing K, $\Gamma(E)$ is a subgroup of $\operatorname{Gal}(L:K)$.
- 2. Conversely, for every subgroup H of $\operatorname{Gal}(L:K)$, $\Phi(H)$ is a subfield of L containing K.

Proof. See Howie.

Theorem 9.2. Let $z \in L \setminus K$. If z is a root of $f \in K[X]$ and $\alpha \in Gal(L : K)$, then $\alpha(z)$ is also a root of f.

Proof. Let $f = a_0 + a_1 X + \cdots + a_n X^n$, where $a_i \in K$. Then since α fixes each $a_i \in K$, we have

$$f(\alpha(z)) = a_0 + a_1 \alpha(z) + \dots + a_n (\alpha(z))^n = \alpha(a_0) + \alpha(a_1)\alpha(z) + \dots + \alpha(a_n)(\alpha(z))^n$$

= $\alpha(a_0 + a_1 z + \dots + a_n z^n) = \alpha(0) = 0,$

which completes the proof.

Example 9.1.2. Recall this example from homework:

A basis for L over K is $\{1, \sqrt{3}, \sqrt{5}, \sqrt{15}\}$. Since $\sqrt{3}$ is a root of $X^2 - 3$, by the previous theorem, any element in Gal(L:K) must send $\sqrt{3} \mapsto \pm \sqrt{3}$. Similarly, any element must send $\sqrt{5} \mapsto \pm \sqrt{5}$. So the \mathbb{Q} -isomorphisms of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ are

$$\alpha(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}+c\sqrt{5}-d\sqrt{15},$$

$$\beta(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a+b\sqrt{3}-c\sqrt{5}-d\sqrt{15},$$

$$\gamma(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}-c\sqrt{5}+d\sqrt{15},$$

$$\mathrm{id}(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}.$$

We can write the multiplication table for this group as:

The proper subgroups are $H_1 = \{id, \alpha\}$, $H_2 = \{id, \beta\}$, and $H_3 = \{id, \gamma\}$. Also $\{id\}$ and $G = \{id, \alpha, \beta, \gamma\}$ are subgroups. Then

$$\Phi(H_1) = \mathbb{Q}(\sqrt{5}), \quad \Phi(H_2) = \mathbb{Q}(\sqrt{3}), \quad \Phi(H_3) = \mathbb{Q}(\sqrt{15}),$$

$$\Phi(\{\text{id}\}) = \mathbb{Q}(\sqrt{3}, \sqrt{5}), \quad \Phi(G) = \mathbb{Q}.$$

Under Φ , this gives the diagram:

Also note that $\Gamma(\mathbb{Q}(\sqrt{3})) = \{id, \alpha\}$ since

$$\alpha(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}+c\sqrt{5}-d\sqrt{15}.$$

Exercise 9.1. Show that Γ is the inverse of Φ in the previous example.

Theorem 9.3. Let L: K be a field extension. Then

- 1. If E_1, E_2 are two subfields of L containing K, then $E_1 \subseteq E_2$ implies $\Gamma(E_1) \supseteq \Gamma(E_2)$.
- 2. If H_1, H_2 are subgroups of Gal(L:K), then $H_1 \subseteq H_2$ implies $\Phi(H_1) \supseteq \Phi(H_2)$.

Proof. (1) Suppose $E_1 \subseteq E_2$ and $\alpha \in \Gamma(E_2)$. Then α fixes every element in E_2 , so since $E_1 \subseteq E_2$, α also fixes every element in E_1 . Hence $\alpha \in \Gamma(E_1)$ by definition.

(2) Suppose $H_1 \subseteq H_2$ and let $z \in \Phi(H_2)$. Then $\alpha(z) = z$ for every $\alpha \in H_2$, and since $H_1 \subseteq H_2$, $\alpha(z) = z$ for every $\alpha \in H_1$ as well. Hence $z \in \Phi(H_1)$ by definition.

Remark. Note that Γ and Φ are not always inverses of one another.

Example 9.1.3. Consider the extension $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}$. If $\alpha \in \text{Gal}(\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q})$, then

$$\alpha(\sqrt[3]{2})^3 = \alpha(2) = 2.$$

Since there is only one cube root of 2 in this field, we must have $\alpha(\sqrt[3]{2}) = \sqrt[3]{2}$. So $Gal(\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}) = \{id\}$. So Γ cannot be the inverse of Φ here since there are two subfields, namely $\mathbb{Q}(\sqrt[3]{2})$ and \mathbb{Q} . In particular,

$$\Gamma(\mathbb{Q}(\sqrt[3]{2})) = \Gamma(\mathbb{Q}) = \{id\} \text{ and } \Phi(\{id\}) = \mathbb{Q}(\sqrt[3]{2}).$$

Theorem 9.4. For any subfield E of L and subgroup H of Gal(L:K), we have

- 1. $E \subseteq \Phi(\Gamma(E))$
- 2. and $H \subseteq \Gamma(\Phi(H))$.

Proof. (1) Let $z \in E$. Then $\Gamma(E)$ is the set of all automorphisms fixing every element of E, and so z is fixed by every element of $\Gamma(E)$. Hence $z \in \Phi(\Gamma(E))$.

(2) Let $\alpha \in H$. Then $\Phi(H)$ is the set of elements of L fixed by every element of H, and so α fixes every element of $\Phi(H)$. Hence $\alpha \in \Gamma(\Phi(H))$.

Remark. Now the goal will be to find sufficient conditions for Γ and Φ to be inverses of one another.

9.3 Normal Extensions

Definition 9.2. A field extension L: K is *normal* if every irreducible polynomial in K[X] having at least one root in L splits completely over L.

Example 9.2.1. An nonexample is $\mathbb{Q}(\sqrt[3]{2})$: \mathbb{Q} . This is not a normal extension since X^3-2 is irreducible and has a root in $\mathbb{Q}(\sqrt[3]{2})$, but does not split completely over $\mathbb{Q}(\sqrt[3]{2})$.

Remark. Is $\mathbb{Q}(\sqrt{2}) : \mathbb{Q}$ normal?

Theorem 9.5. A finite extension L: K is normal if and only if it is a splitting field for some polynomial in K[X].

Proof. (\Rightarrow) Let L be a finite normal extension and $\{z_1, \ldots, z_n\}$ be a basis for L: K. let m_i be the minimal polynomial for z_i , and let

$$m=m_1m_2\ldots m_n$$
.

Each m_i has at least one root z_i in L, hence m splits completely over L since L is normal. Since L is generated by z_1, \ldots, z_n , it is not possible for m to split over a proper subfield of L, hence L is a splitting field for m over K.

(\Leftarrow) See Howie. Relies on the isomorphism $K(\alpha) \to K(\beta)$ for α, β roots of an irreducible polynomial f. We also need properties of degrees of field extensions.

Corollary 9.5.1. Let L be a normal extension of K and E a subfield of L containing K. Then every injective K-homomorphism $\varphi : E \to L$ can be extended to a K-automorphism φ^* of L.

Proof. By the theorem, there exists $f \in K[X]$ such that L is a splitting field for f over K. But L is also a splitting field for f over E and $\varphi(E)$. From here, a slight generalization of the proof of uniqueness of splitting fields gives the desired K-automorphism of L extending φ .

Example 9.2.2. Let
$$L = \mathbb{Q}(\sqrt{3}, \sqrt{5})$$
, $K = \mathbb{Q}$, and $E = \mathbb{Q}(\sqrt{3})$. Define $\varphi : E \to L$ by $\varphi(a + b\sqrt{3}) = a - b\sqrt{3}$,

which is an injective K-homomorphism. We have the following diagram:

$$\mathbb{Q}(\sqrt{3}) \xrightarrow{\varphi} \mathbb{Q}(\sqrt{3}, \sqrt{5})$$

$$\downarrow i \qquad \qquad \qquad \downarrow q$$

$$\mathbb{Q}(\sqrt{3}, \sqrt{5})$$

Then we can define

$$\varphi^*(a + b\sqrt{3} + c\sqrt{5} + d\sqrt{15}) = a - b\sqrt{3} + c\sqrt{5} - d\sqrt{15}$$

as an extension of φ . Note that we could have also defined

$$\varphi^*(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}-c\sqrt{5}+d\sqrt{15}.$$

Remark. From the previous example we see that φ^* is not unique.

Feb. 12 — Normal Closures

10.1 Normal Closures

Recall this theorem from last time:

Theorem 9.5. A finite extension L: K is normal if and only if it is a splitting field for some polynomial in K[X].

A natural question to ask is: Can we always extend a finite extension to make it normal?

Definition 10.1. Let L: K be a finite extension. A field N containing L is a normal closure of L: K if

- 1. N is a normal extension of K,
- 2. and if E is a proper subfield of N containing L, then E is not a normal extension of K.

Theorem 10.1. Let L: K be a finite extension. Then

- 1. there exists a normal closure N of L over K,
- 2. and N is unique up to isomorphism.

Proof. Let $\{z_1, \ldots, z_n\}$ be a basis for L: K. Since L: K is finite, each z_i is algebraic over K, with say minimal polynomial $m_i \in K[X]$. Let

$$m=m_1\ldots m_n$$

and let N be the splitting field of m over L. Then N is also a splitting field of m over K, since L is generated over K by some of the roots of m in N. Hence N is a normal extension of K containing L.

To see that N is the smallest such field, suppose E is a subfield of N containing L, and suppose E is normal. For each m_i , E contains a root z_i , so the normality of E implies that E contains all the roots of m, so E = N. For uniqueness, see Howie. The proof relies on the uniqueness of splitting fields.

Definition 10.2. Let K_1, \ldots, K_n be subfields of L. The *join* of K_1, \ldots, K_n , denoted

$$K_1 \vee K_2 \vee \cdots \vee K_n$$

is the smallest subfield of L containing $K_1 \cup K_2 \cup \cdots \cup K_n$.

Remark. The smallest subfield of L containing $K_1 \cup K_2$ is $K_1 \vee K_2 = K_1(K_2) = K_2(K_1)$, similar to how the smallest subfield of \mathbb{R} containing $\mathbb{Q} \cup \{\sqrt{3}\}$ is $\mathbb{Q}(\sqrt{3})$.

Example 10.2.1. Let $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(e^{2\pi i/3} \cdot \sqrt[3]{2}) \subseteq \mathbb{C}$. Then $\mathbb{Q}(\sqrt[3]{2}) \vee \mathbb{Q}(e^{2\pi i/3} \cdot \sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$, since

$$e^{2\pi i/3} \cdot \sqrt[3]{2} = -\frac{\sqrt[3]{2}}{2} + \frac{i\sqrt{3}}{2}\sqrt[3]{2}.$$

Remark. In the above example, we have $\mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}(e^{2\pi i/3} \cdot \sqrt[3]{2}) \cong \mathbb{Q}[X]/\langle X^3 - 2 \rangle$.

Corollary 10.1.1. Let L: K be a finite extension, and N the normal closure of L: K. Then

$$N = L_1 \vee L_2 \vee \cdots \vee L_k$$

where L_1, L_2, \ldots, L_k are subfields of N containing K isomorphic to L.

Proof. As in the previous proof, suppose $\{z_1, \ldots, z_n\}$ is a basis for L: K, so $L = K(z_1, \ldots, z_n)$, and m_i is a minimal polynomial for z_i , and N a splitting field for $m = m_1 \ldots m_n$ over K. Let z_i' be an arbitrary root of m_i . Since z_i and z_i' are both roots of m_i , there exists a K-isomorphism $\varphi: K(z_i) \to K(z_i')$, which by Corollary 9.5.1 implies there exists a K-automorphism $\varphi^*: N \to N$. We have that

$$z_i' \in \varphi^*(L) \cong L$$
,

so every root of m_i is contained in a subfield $L' = \varphi^*(L)$ of N that contains K and is isomorphic to L, since φ^* is a K-automorphism. Since N is generated over K by the roots of m, it is generated by finitely many subfields containing K and isomorphic to L.

Example 10.2.2. Find the normal closure of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} . Following the proof of the theorem,

$$\{1, \sqrt[3]{2}, \sqrt[3]{2}^2\}$$

is a basis of $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}$. The minimal polynomials of $1, \sqrt[3]{2}, \sqrt[3]{2}$ are $X-1, X^3-2, X^3-4$, respectively. The splitting field of

$$(X-1)(X^3-2)(X^3-4)$$

over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$, since

$$X^{3} - 2 = (X - \sqrt[3]{2})(X - e^{2\pi i/3}\sqrt[3]{2})(X - e^{-2\pi i/3}\sqrt[3]{2})$$

and

$$X^{3} - 4 = (X - \sqrt[3]{2})(X - e^{2\pi i/3}\sqrt[3]{2})(X - e^{-2\pi i/3}\sqrt[3]{2}).$$

So $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) = L_1 \vee L_2 \vee L_3$, where $L_1 = \mathbb{Q}(\sqrt[3]{2})$, $L_2 = \mathbb{Q}(e^{2\pi i/3}\sqrt[3]{2})$, and $L_3 = \mathbb{Q}(e^{-2\pi i/3}\sqrt[3]{2})$, and

$$L_1 \cong L_2 \cong L_3 \cong \mathbb{Q}[X]/\langle X^3 - 2 \rangle.$$

Theorem 10.2. Let L: K be a finite normal extension and E a subfield of L containing K. Then E is a normal extension of K if and only if every K-monomorphism of E into L is a K-automorphism of E.

Proof. (\Rightarrow) Suppose E:K is normal and let $\varphi:E\to L$ be a K-monomorphism. Now we would like to show that $\varphi(E)\subseteq E$. So let let $z\in E$ and suppose

$$m = a_0 + a_1 X + \dots + a_n X^n$$

is the minimal polynomial of z over K. Then

$$a_0 + a_1 z + \dots + a_n z^n = 0,$$

so that

$$a_0 + a_1 \varphi(z) + \dots + a_n \varphi(z)^n = 0$$

since φ is a homomorphism fixing K pointwise. Hence $\varphi(z)$ is also a root of m in L. Since E:K is normal, the irreducible polynomial m splits completely over E. Hence $\varphi(z) \in E$, so that $\varphi(E) \subseteq E$. Then¹

$$[\varphi(E) : K] = [\varphi(E) : \varphi(K)] = [E : K] = [E : \varphi(E)][\varphi(E) : K],$$

so $[E:\varphi(E)]=1$. Hence $\varphi(E)=E$, so φ is a K-automorphism of E.

(\Leftarrow) Suppose every K-monomorphism $E \to L$ is a K-automorphism of E. Let f be an irreducible polynomial in K[X] having a root $z \in E$. We need to show that f splits completely over E. Since L is normal, f splits completely over L. Let z' be another root of f in L. Then there exists a K-automorphism $K(z) \to K(z')$ which sends $z \mapsto z'$, which by Corollary 9.5.1 extends to a K-automorphism ψ of L. Let $\psi^* = \psi|_E$, i.e. the restriction of ψ to E. By hypothesis, ψ^* is a K-automorphism of E, so

$$z' = \psi(z) = \psi^*(z) \in E.$$

That is, E is normal.

Example 10.2.3. Consider $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}$, which is not normal. The \mathbb{Q} -monomorphism $\varphi:\mathbb{Q}(\sqrt[3]{2})\to\mathbb{C}$ given by

$$\varphi(a+b\sqrt[3]{2}+c\sqrt[3]{2}) = a+be^{2\pi i/3}\sqrt[3]{2}+ce^{-2\pi i/3}\sqrt[3]{2}$$

is not an automorphism of $\mathbb{Q}(\sqrt[3]{2})$.

Example 10.2.4. Consider $\mathbb{Q}(\sqrt{2}):\mathbb{Q}$, which is normal. The \mathbb{Q} -monomorphisms are id and

$$\varphi(a+b\sqrt{2}) = a - b\sqrt{2},$$

which are both \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt{2})$.

10.2 Separable Extensions

Definition 10.3. An irreducible polynomial $f \in K[X]$ is *separable* over K if it has no repeated roots over a splitting field. A polynomial $g \in K[X]$ is *separable* over K if its irreducible factors are separable over K. An algebraic element in L:K is *separable* over K if its minimal polynomial is separable over K. An algebraic extension L:K is *separable* if every $\alpha \in L$ is separable over K.

Remark. A polynomial like $(X-2)^2$ actually is separable over \mathbb{Q} since its irreducible factors are X-2 and X-2, which are each separable.

Definition 10.4. A field K is *perfect* if every polynomial in K[X] is separable over K.

Theorem 10.3. We have the following:

1. Every field of characteristic 0 is perfect.

¹We need to make this argument since E may be infinite, so injectivity does not imply bijectivity.

2. Every finite field is perfect.

Proof. (1) It suffices to show that if char K=0, then any irreducible polynomial f is separable. Let

$$f = a_0 + a_1 X + \dots + a_n X^n$$

for $n \ge 1$ and suppose f is not separable. Then f and Df have a non-constant common factor d. Since f is irreducible, d must be a constant multiple of f, and thus d cannot divide Df unless

$$Df = a_1 + 2a_2X + \dots + na_nX^{n-1}$$

is the zero polynomial, by comparing degrees. Then

$$a_1 = 2a_2 = \dots = na_n = 0.$$

Since char K = 0, this implies

$$a_1 = a_2 = \dots = a_n = 0,$$

and so $f = a_0$, a constant polynomial.² Contradiction. Hence f is separable.

(2) The same argument as above implies the only possible inseparable irreducible polynomials are of the form³

$$f(X) = b_0 + b_1 X^p + b_2 X^{2p} \cdots + b_m X^{mp}.$$

Now Theorem 7.24 of Howie implies that if K is finite, such a polynomial is reducible. Hence every irreducible polynomial is separable, so K is perfect. See Howie for details.

Remark. Recall that $\mathbb{Z}_p(X)$ is an example of an infinite field with characteristic p.

²Recall that an irreducible polynomial is by definition a non-unit.

³We can still conclude $ka_k = 0$ implies $a_k = 0$ when k is not a multiple of p.

Feb. 21 — Galois Extensions

11.1 Example of an Inseparable Extension

Example 11.0.1. The field $K = \mathbb{Z}_p(X)$ is not perfect. Consider the polynomial

$$f = Y^p - X \in \mathbb{Z}_p(X)[Y],$$

which is irreducible. Now let L be a splitting field of f over K and α a root of f, i.e. $\alpha^p - X = 0$. Then

$$(Y - \alpha)^p = Y^p - \alpha^p = Y^p - X$$

by freshman exponentiation. In particular, α is a repeated root of f in L.

11.2 Galois Extensions

Definition 11.1. A Galois extension of K is a finite extension that is both normal and separable.

Remark. The main goal here is: For a Galois extension, Γ and Φ are inverses of one another.

Theorem 11.1. Let L: K be a separable extension of degree n. Then there are exactly n distinct K-monomorphisms of L into a normal closure N of L over K.

Proof. Use strong induction on the degree of L:K. See Howie for details.

Corollary 11.1.1. If L: K is Galois, then |Gal(L:K)| = [L:K].

Proof. If L: K is Galois, then L: K is normal and separable. So the previous theorem applies, where L is its own normal closure. So we get exactly [L: K] distinct K-monomorphisms of L into L, which are precisely the K-automorphisms of L and thus the elements of the Galois group.

Example 11.1.1. The extension $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}$ is Galois with $[\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}] = 6$. We could have

$$\sqrt[3]{2} \mapsto \sqrt[3]{2} \text{ or } e^{2\pi i/3} \sqrt[3]{2} \text{ or } e^{-2\pi i/3} \sqrt[3]{2} \text{ and } i\sqrt{3} \mapsto i\sqrt{3} \text{ or } -i\sqrt{3}.$$

Combinining these options gives us 6 distinct maps, so these must in fact all be \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$, since we know the Galois group has size 6. In fact, $Gal(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}) \cong S_3 \cong D_3$.

Remark. The proper nontrivial subfields of $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ are $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(e^{2\pi i/3}\sqrt[3]{2})$, $\mathbb{Q}(e^{-2\pi i/3}\sqrt[3]{2})$, and $\mathbb{Q}(i\sqrt{3})$. Maybe draw a pretty diagram with this showing the Galois correspondence.

Exercise 11.1. Show that $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Exercise 11.2. Show that $\mathbb{Z}/4\mathbb{Z} \ncong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Theorem 11.2. Let L: K be a finite extension. Then $\Phi(Gal(L:K)) = K$ if and only if L: K is normal and separable.

Proof. (\Leftarrow) Let [L:K]=n. By Corollary 11.1.1, we have $|\operatorname{Gal}(L:K)|=n$. Let $K'=\Phi(\operatorname{Gal}(L:K))$. By definition, $K\subseteq K'$. By Theorem 7.12 of Howie, we find that

$$[L:K'] = |Gal(L:K)|.$$

Hence [L:K'] = [L:K] and thus we conclude that K = K'.

$$(\Rightarrow)$$
 See Howie.

Exercise 11.3. Show that if $K \subseteq K'$ and [L:K'] = [L:K], then K = K'.

Theorem 11.3. Let L: K be Galois and E a subfield of L containing K. If $\delta \in Gal(L:K)$, then

$$\Gamma(\delta(E)) = \delta\Gamma(E)\delta^{-1}$$
.

Proof. We begin by showing $\delta\Gamma(E)\delta^{-1} \subseteq \Gamma(\delta(E))$. For this, let $\theta \in \Gamma(E)$ and $z' \in \delta(E)$. Then there exists a unique $z \in E$ such that $\delta(z) = z'$, since δ is an automorphism. Then

$$\delta\theta\delta^{-1}(z') = \delta\theta(z) = \delta(z) = z'$$

since $\delta(z) = z'$ and $\theta \in \Gamma(E)$. So we see that $\delta\theta\delta^{-1} \in \Gamma(\delta(E))$.

Now for $\Gamma(\delta(E)) \subseteq \delta\Gamma(E)\delta^{-1}$, we will show that $\delta^{-1}\Gamma(\delta(E))\delta \subseteq \Gamma(E)$. Let $\theta' \in \Gamma(\delta(E))$ and $z \in E$. Then $\delta(z) \in \delta(E)$ and so $\theta'(\delta(z)) = \delta(z)$. Thus

$$(\delta^{-1}\theta'\delta)(z) = (\delta^{-1} \circ \delta)(z) = z,$$

so we get $\delta^{-1}\theta'\delta \in \Gamma(E)$, as desired.

Example 11.1.2. Consider $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}$. Define the elements of $Gal(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q})$ by

$$\mu_{1}: \sqrt[3]{2} \mapsto \sqrt[3]{2}, i\sqrt{3} \mapsto -i\sqrt{3}, \quad \mu_{2}: \sqrt[3]{2} \mapsto e^{2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto -i\sqrt{3},$$

$$\mu_{3}: \sqrt[3]{2} \mapsto e^{-2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto -i\sqrt{3},$$

$$\rho_{1}: \sqrt[3]{2} \mapsto e^{2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto i\sqrt{3}, \quad \rho_{2}: \sqrt[3]{2} \mapsto e^{-2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto i\sqrt{3}.$$

Let $\delta = \mu_3$ and $E = \mathbb{Q}(\sqrt[3]{2})$. Then $\delta(E) = \mathbb{Q}(e^{-2\pi i/3}\sqrt[3]{2})$ since $\mu_3(\sqrt[3]{2}) = e^{-2\pi i/3}\sqrt[3]{2}$. Now

$$\mu_2(e^{-2\pi i/3}\sqrt[3]{2}) = \mu_2(e^{-2\pi i/3})\mu_2(\sqrt[3]{2}) = \mu_2(-\frac{1}{2} - i\frac{\sqrt{3}}{2})\mu_2(\sqrt[3]{2})$$
$$= (-\frac{1}{2} + i\frac{\sqrt{3}}{2})(e^{2\pi i/3}\sqrt[3]{2}) = e^{2\pi i/3}e^{2\pi i/3}\sqrt[3]{2} = e^{-2\pi i/3}\sqrt[3]{2},$$

so $\Gamma(\delta(E)) = \{id, \mu_2\}$. Also $\Gamma(E) = \{id, \mu_1\}$, and we find that

$$\delta\Gamma(E)\delta^{-1} = {\{\delta id\delta^{-1}, \delta\mu_1\delta^{-1}\}} = {\{id, \mu_3\mu_1\mu_3^{-1}\}} = {\{id, \mu_2\}},$$

so indeed we have $\Gamma(\delta(E)) = \delta\Gamma(E)\delta^{-1}$ in this case.

Feb. 26 — The Fundamental Theorem

12.1 Normal Subgroups

Recall the following:

Definition 12.1. A subgroup H of G is normal if

$$gHg^{-1} = H$$

for all $g \in G$ (equivalently, gH = Hg for all $g \in G$).

Remark. If G is abelian, then every subgroup of G is normal.

Exercise 12.1. If [G:H]=2, then H is normal.

Remark. Normality is a necessary and sufficient condition for G/H to be a well-defined group (with operation induced by the operation on G).

Theorem 12.1. Let $\varphi: G \to G'$ be a surjective homomorphism with kernel H. Then there exists a unique isomorphism $\alpha: G/H \to G'$ such that the following diagram commutes:

Here $\pi: G \to G/H$ is the canonical projection $g \mapsto gH$.

12.2 The Fundamental Theorem of Galois Theory

Theorem 12.2 (Fundamental theorem of Galois theory). Let L: K be a separable, normal extension of finite degree n. Then

- 1. For all subfields E of L containing K and for all subgroups H of $\mathrm{Gal}(L:K)$,
 - (a) $\Phi(\Gamma(E)) = E$ and $|\Gamma(E)| = [L:E]$,
 - $(b) \ \Gamma(\Phi(H)) = H \ and \ |\mathrm{Gal}(L:K)|/|\Gamma(E)| = [E:K].$
- 2. A subfield E is a normal extension of K if and only if $\Gamma(E)$ is a normal subgroup of $\operatorname{Gal}(L:K)$. If E:K is normal, then

$$Gal(E:K) \cong Gal(L:K)/\Gamma(E).$$

Proof. (1) By a homework exercise, L:K being normal implies that L:E is normal. Also, by Howie's Theorem 7.26, L:K being finite and separable implies that L:E is separable. Hence L:E is Galois, so $|\Gamma(E)| = [L:E]$. Then

$$[E:K] = \frac{[L:K]}{[L:E]} = \frac{|Gal(L:K)|}{|\Gamma(E)|}.$$

Now $\Gamma(E) = \operatorname{Gal}(L:E)$, so L:E being Galois and Howie's Theorem 7.30 imply that $\Phi(\Gamma(E)) = E$. Now let H be a subgroup of $\operatorname{Gal}(L:K)$. We showed that $H \subseteq \Gamma(\Phi(H))$. Also $\Phi\Gamma\Phi = \Phi$, so

$$|H| = [L : \Phi(H)] = [L : \Phi\Gamma\Phi(H)] = |\Gamma\Phi(H)|$$

by Howie's Theorem 7.12. Now finiteness and $H \subseteq \Gamma(\Phi(H))$ imply that $H = \Gamma(\Phi(H))$.

(2) (\Rightarrow) Suppose E: K is normal and let $\delta \in \operatorname{Gal}(L:K)$. Let $\delta' = \delta|_E$, the restriction of δ to E. Hence δ' is a monomorphism $E \to L$ and thus a K-automorphism of E, by Howie's Theorem 7.21. Hence

$$\delta(E) = \delta'(E) = E$$
,

and so by Theorem 11.3,

$$\Gamma(E) = \Gamma(\delta(E)) = \delta\Gamma(E)\delta^{-1}$$

i.e. $\Gamma(E)$ is a normal subgroup of Gal(L:K).

(\Leftarrow) Suppose $\Gamma(E)$ is a normal subgroup of $\operatorname{Gal}(L:K)$. Let δ_1 be a K-monomorphism from E to L. This extends (by Howie's Corollary 7.14) to a K-automorphism δ of L. Since $\Gamma(E)$ is normal, $\delta\Gamma(E)\delta^{-1}=\Gamma(E)$. Hence by Theorem 11.3, we get $\Gamma(\delta(E))=\Gamma(E)$. Since Γ is injective,

$$\delta_1(E) = \delta(E) = E,$$

so δ is a K-automorphism of E. By Howie's Theorem 7.21, this implies E:K is normal.

Now suppose E: K is normal, and we want to show that

$$Gal(E:K) \cong Gal(L:K)/\Gamma(E).$$

Let $\delta \in \operatorname{Gal}(L:K)$ and $\delta' = \delta|_E$. By Howie's Theorem 7.21, having E:K be normal implies that $\delta'(E) = E$. Thus we can define $\theta : \operatorname{Gal}(L:K) \to \operatorname{Gal}(E:K)$ by $\delta \mapsto \delta'$, i.e. restricting δ to E. Clearly θ is surjective onto $\operatorname{Gal}(E:K)$. Also, we see that

$$\ker \theta = \{ \delta \in \operatorname{Gal}(L : K) \mid \delta|_E = \operatorname{id}_E \} = \Gamma(E).$$

Hence by the first isomorphism theorem, $Gal(E:K) \cong Gal(L:K)/\ker \theta = Gal(L:K)/\Gamma(E)$.

Exercise 12.2. Show that $\Phi\Gamma\Phi = \Phi$.

Exercise 12.3. Check that θ is a homomorphism.

Example 12.1.1. Let $L = \mathbb{Q}(\sqrt[4]{2}, i)$ with $[L : \mathbb{Q}] = 8$. Any \mathbb{Q} -automorphism in $Gal(L : \mathbb{Q})$ must map $i \mapsto \pm i$. $\sqrt[4]{2} \mapsto \pm \sqrt[4]{2}, \pm i \sqrt[4]{2}$.

So there are only 8 possible automorphisms, and thus each of these must in fact be automorphisms since $|Gal(L:\mathbb{Q})| = [L:\mathbb{Q}] = 8$. We can enumerate these automorphisms via

id,
$$\alpha: \sqrt[4]{2} \mapsto i\sqrt[4]{2}, i \mapsto i$$
, $\beta: \sqrt[4]{2} \mapsto -\sqrt[4]{2}, i \mapsto i$, $\gamma: \sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto i$, $\lambda: \sqrt[4]{2} \mapsto \sqrt[4]{2}, i \mapsto -i$, $\mu: \sqrt[4]{2} \mapsto i\sqrt[4]{2}, i \mapsto -i$, $\nu: \sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto -i$, $\rho: \sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto -i$.

Note that $Gal(L : \mathbb{Q})$ is not abelian, as

$$\lambda \alpha(\sqrt[4]{2}) = \lambda(i\sqrt[4]{2}) = -i\sqrt[4]{2}, \quad \lambda \alpha(i) = \lambda(i) = i,$$

so $\lambda \alpha = \rho$. We can show as an exercise that $\alpha \lambda = \mu \neq \rho$, so $\lambda \alpha \neq \alpha \lambda$. The subgroups of $Gal(L : \mathbb{Q})$ are

$$\begin{split} G &= \operatorname{Gal}(L:\mathbb{Q}), \quad \{\operatorname{id}\}, \quad \{\operatorname{id},\beta\}, \quad \{\operatorname{id},\mu\}, \quad \{\operatorname{id},\nu\}, \quad \{\operatorname{id},\rho\}, \\ &\{\operatorname{id},\alpha,\beta,\gamma\}, \quad \quad \{\operatorname{id},\beta,\lambda,\nu\}, \quad \{\operatorname{id},\beta,\mu,\rho\}. \end{split}$$

Now we could draw a nice subgroup lattice for this (identical to D_4 , the dihedral group of order 8). The normal subgroups of $Gal(L:\mathbb{Q})$ are

$$G$$
, $\{id, \beta, \lambda, \nu\}$, $\{id, \alpha, \beta, \gamma\}$, $\{id, \beta, \mu, \rho\}$, $\{id, \beta\}$, $\{id\}$.

Let $H_1 = \{ \mathrm{id}, \alpha, \beta, \gamma \}$. Then $\Phi(H_1) = \mathbb{Q}(i)$. Also $\Phi(\{ \mathrm{id}, \lambda \}) = \mathbb{Q}(\sqrt[4]{2})$ and $\Phi(\{ \mathrm{id}, \nu \}) = \mathbb{Q}(i\sqrt[4]{2})$. We can also see that $\Phi(\{ \mathrm{id}, \mu \}) = \mathbb{Q}((1+i)\sqrt[4]{2})$ and $\Phi(\{ \mathrm{id}, \rho \}) = \mathbb{Q}((1-i)\sqrt[4]{2})$.

Exercise 12.4. Write out the multiplication table for $Gal(L : \mathbb{Q})$.

Feb. 28 — Join of Subgroups and Subfields

13.1 Join of Subgroups

Let H_1, H_2 be subgroups of G.

Exercise 13.1. Show that $H_1 \cap H_2$ is a subgroup of G.

Remark. In general, $H_1 \cup H_2$ is not a subgroup of G.

Definition 13.1. The *join* of H_1 and H_2 , denoted $H_1 \vee H_2$, is the smallest subgroup of G containing $H_1 \cup H_2$, i.e. $H_1 \vee H_2$ consists of all products of the form

$$a_1b_1\ldots a_nb_n$$
,

where $a_i \in H_1$ and $b_i \in H_2$ for all n.

Remark. Recall that if E_1 and E_2 are subfields of L, then $E_1 \cap E_2$ is also a subfield of L, as is the join

$$E_1 \vee E_2 = E_1(E_2) = E_2(E_1).$$

Example 13.1.1. In Example 12.1.1, we have $\{id, \beta\} \vee \{id, \lambda\} = \{id, \beta, \lambda, \nu\}$. Now notice that

$$\Phi(\{\mathrm{id},\beta\}) = \mathbb{Q}(i,\sqrt{2}), \quad \Phi(\{\mathrm{id},\lambda\}) = \mathbb{Q}(\sqrt[4]{2}), \quad \Phi(\{\mathrm{id},\beta,\lambda,\nu\}) = \mathbb{Q}(\sqrt{2}).$$

Notice that $\mathbb{Q}(i, \sqrt{2}) \cap \mathbb{Q}(\sqrt[4]{2}) = \mathbb{Q}(\sqrt{2}).$

Theorem 13.1. Let L: K be Galois and E_1, E_2 subfields of L containing K. If

$$\Gamma(E_1) = H_1, \quad \Gamma(E_2) = H_2,$$

then $\Gamma(E_1 \cap E_2) = H_1 \vee H_2$ and $\Gamma(E_1 \vee E_2) = H_1 \cap H_2$.

Proof. Certainly $E_1 \cap E_2 \subseteq E_1$, so $H_1 = \Gamma(E_1) \subseteq \Gamma(E_1 \cap E_2)$, since the Galois correspondence is order reversing. Similarly, $H_2 = \Gamma(E_2) \subseteq \Gamma(E_1 \cap E_2)$, so $H_1 \vee H_2 \subseteq \Gamma(E_1 \cap E_2)$. Now $H_1 \subseteq H_1 \vee H_2$, so we get $E_1 = \Phi(H_1) \supseteq \Phi(H_1 \vee H_2)$. Similarly, $E_2 = \Phi(H_2) \supseteq \Phi(H_1 \vee H_2)$, so $\Phi(H_1 \vee H_2) \subseteq E_1 \cap E_2$. Since L: K is Galois, we get

$$H_1 \vee H_2 \supseteq \Gamma(E_1 \cap E_2)$$

by applying Γ to both sides. So $\Gamma(E_1 \cap E_2) = H_1 \vee H_2$.

The proof for $\Gamma(E_1 \vee E_2) = H_1 \cap H_2$ is similar, see Howie for details.