For orders on 14th June

For Objective 1: Minimize the number of vehicles used

xijv variables **3798**siv variables **513**Iv variables **19**Optimization solver GUROBI called Status: Optimal objective= 4.0
Time taken < 1min

Validation

Post processing to get routes of each vehicle used

```
T3_1 ['INV_source_00', 'INV_14062024_25', 'INV_14062024_21', 'INV_14062024_10', 'INV_14062024_02', 'INV_14062024_06', 'INV_14062024_14', 'INV_14062024_17', 'INV_14062024_07', 'INV_sink_00']

Truck T3_1
```

Capacity 2800 total weights served 2753.88 total distance covered 444.86

```
T3_3 ['INV_source_00', 'INV_14062024_24', 'INV_14062024_20', 'INV_14062024_04', 'INV_14062024_13', 'INV_14062024_15', 'INV_14062024_22', 'INV_14062024_11', 'INV_14062024_23', 'INV_14062024_12', 'INV_sink_00'] Truck T3_3
```

Capacity 2800 total weights served 2769.6 total distance covered 332.07

```
T3_5 ['INV_source_00', 'INV_14062024_16', 'INV_14062024_03', 'INV_sink_00']  
Truck T3_5
```

Capacity 2800 total weights served 2484.0 total distance covered 193.37

```
T7_1 ['INV_source_00', 'INV_14062024_09', 'INV_14062024_01', 'INV_14062024_18', 'INV_14062024_19', 'INV_14062024_05', 'INV_14062024_08', 'INV_sink_00']

Truck T7_1
```

Capacity 7000 total weights served 6969.0 total distance covered 147.1700000000002

Total Travel Distance of all trucks 1117.47

Time Window validation

T3_1 [('INV_source_00', 480.0), ('INV_14062024_25', 557.0), ('INV_14062024_21', 631.0), ('INV_14062024_10', 846.0), ('INV_14062024_02', 1006.0), ('INV_14062024_06', 1027.0), ('INV_14062024_14', 1101.0), ('INV_14062024_17', 1178.0), ('INV_14062024_07', 1224.0), ('INV_sink_00', 1321.0)]

T3_3 [('INV_source_00', 480.0), ('INV_14062024_24', 525.0), ('INV_14062024_20', 588.0), ('INV_14062024_04', 644.0), ('INV_14062024_13', 747.0), ('INV_14062024_15', 814.0), ('INV_14062024_22', 855.0), ('INV_14062024_11', 919.99999999999), ('INV_14062024_23', 978.99999999999), ('INV_14062024_12', 1044.99999999999), ('INV_sink_00', 1117.0)]

T3_5 [('INV_source_00', 480.0), ('INV_14062024_16', 595.0), ('INV_14062024_03', 1320.0), ('INV_sink_00', 1427.0)]

T7_1 [('INV_source_00', 480.0), ('INV_14062024_09', 530.0), ('INV_14062024_01', 581.0), ('INV_14062024_18', 633.0), ('INV_14062024_19', 680.0), ('INV_14062024_05', 700.0), ('INV_14062024_08', 725.0), ('INV_sink_00', 802.0)]

For Objective 2: Minimize total travel distance

xijv variables **3798**siv variables **513**Iv variables **19**Optimization solver GUROBI called
Set parameter MIPFocus to value 2
Set parameter Cuts to value 3
Set parameter MIPGap to value 0.07

Gurobi status= 2 Status: Optimal objective= 567.610000000001 Time taken ~2hrs

Validation

Post processing to get routes of each vehicle

T3_1 ['INV_source_00', 'INV_14062024_10', 'INV_14062024_20', 'INV_14062024_09', 'INV_14062024_15', 'INV_sink_00'

Truck T3 1

Capacity 2800 total weights served 2718.0 total distance covered 211.9799999999999

T3_2 ['INV_source_00', 'INV_14062024_16', 'INV_14062024_13', 'INV_14062024_14', 'INV sink 00']

Truck T3_2

Capacity 2800 total weights served 2635.0 total distance covered 132.5199999999998

```
T3_3 ['INV_source_00', 'INV_14062024_17', 'INV_14062024_11', 'INV_14062024_21', 'INV_14062024_12', 'INV_14062024_06', 'INV_14062024_02', 'INV_14062024_04', 'INV_14062024_07', 'INV_14062024_25', 'INV_14062024_22', 'INV_14062024_23', 'INV_sink_00']
```

Truck T3 3

Capacity 2800 total weights served 2784.48 total distance covered 131.7399999999998

T7_2 ['INV_source_00', 'INV_14062024_03', 'INV_14062024_08', 'INV_14062024_01', 'INV_14062024_05', 'INV_14062024_19', 'INV_14062024_24', 'INV_14062024_18', 'INV_sink_00']

Truck T7 2

Capacity 7000 total weights served 6839.0 total distance covered 91.37

Time Window validation

T3_1 [('INV_source_00', 480.0), ('INV_14062024_10', 639.0), ('INV_14062024_20', 722.0), ('INV_14062024_09', 1293.0), ('INV_14062024_15', 1320.0), ('INV_sink_00', 1372.0)]

T3_2 [('INV_source_00', 480.0), ('INV_14062024_16', 595.0), ('INV_14062024_13', 648.0), ('INV_14062024_14', 1320.0), ('INV_sink_00', 1388.0)]

T3_3 [('INV_source_00', 480.0), ('INV_14062024_17', 531.0), ('INV_14062024_11', 556.0), ('INV_14062024_21', 600.0), ('INV_14062024_12', 620.0), ('INV_14062024_06', 677.0), ('INV_14062024_02', 698.0), ('INV_14062024_04', 1206.0), ('INV_14062024_07', 1231.0), ('INV_14062024_25', 1257.0), ('INV_14062024_22', 1278.0), ('INV_14062024_23', 1320.0), ('INV_14062024_23', 1372.0)]

T7_2 [('INV_source_00', 480.0), ('INV_14062024_03', 557.0), ('INV_14062024_08', 580.0), ('INV_14062024_01', 602.0), ('INV_14062024_05', 628.0), ('INV_14062024_19', 1244.0), ('INV_14062024_24', 1291.0), ('INV_14062024_18', 1320.0), ('INV_sink_00', 1366.0)]

For Objective 3: Minimize total cost

xijv variables **3798** siv variables **513** lv variables **19**

Optimization solver GUROBI called Set parameter MIPFocus to value 1 Set parameter Cuts to value 3 Set parameter MIPGap to value 0.02 Validation

Post processing to get routes of each vehicle

T3_3 ['INV_source_00', 'INV_14062024_16', 'INV_14062024_14', 'INV_14062024_13', 'INV_sink_00']

Truck T3 3

Capacity **2800** total weights served **2635.0** total distance covered **132.51**99999999998

T3_4 ['INV_source_00', 'INV_14062024_18', 'INV_14062024_10', 'INV_14062024_20', 'INV_14062024_19', 'INV_14062024_22', 'INV_14062024_15', 'INV_14062024_23', 'INV_sink_00']

Truck T3_4

Capacity 2800 total weights served 2756.0 total distance covered 211.01

T3_5 ['INV_source_00', 'INV_14062024_24', 'INV_14062024_25', 'INV_14062024_07', 'INV_14062024_06', 'INV_14062024_02', 'INV_14062024_12', 'INV_14062024_21', 'INV_14062024_11', 'INV_14062024_17', 'INV_sink_00']

Truck T3_5

Capacity 2800 total weights served 2706.48 total distance covered 131.3

T7_2 ['INV_source_00', 'INV_14062024_05', 'INV_14062024_01', 'INV_14062024_04', 'INV_14062024_03', 'INV_14062024_08', 'INV_14062024_09', 'INV_sink_00']

Truck T7 2

Capacity 7000 total weights served 6879.0 total distance covered 95.93

Total Travel Distance of all trucks 570.76

Time Window validation

T3_3 [('INV_source_00', 480.0), ('INV_14062024_16', 595.0), ('INV_14062024_14', 648.0), ('INV_14062024_13', 1320.0), ('INV_sink_00', 1388.0)]

T3_4 [('INV_source_00', 480.0), ('INV_14062024_18', 520.0), ('INV_14062024_10', 624.0), ('INV_14062024_20', 1045.0), ('INV_14062024_19', 1233.0), ('INV_14062024_22', 1258.0), ('INV_14062024_15', 1300.0), ('INV_14062024_23', 1320.0), ('INV_sink_00', 1372.0)]

T3_5 [('INV_source_00', 480.0), ('INV_14062024_24', 525.0), ('INV_14062024_25', 560.0), ('INV_14062024_07', 614.0), ('INV_14062024_06', 640.0), ('INV_14062024_02', 661.0), ('INV_14062024_12', 735.0), ('INV_14062024_21', 755.0), ('INV_14062024_11', 808.0), ('INV_14062024_17', 833.0), ('INV_sink_00', 885.0)]

T7_2 [('INV_source_00', 480.0), ('INV_14062024_05', 540.0), ('INV_14062024_01', 564.0), ('INV_14062024_04', 591.0), ('INV_14062024_03', 616.0), ('INV_14062024_08', 1278.0), ('INV_14062024_09', 1320.0), ('INV_sink_00', 1375.0)]

Comparison of 3 objectives

Objective	No. Of Vehicles Used	Total Distance(Km)	Total Cost (Rs)	Time to solve(min)
Min No. Of Vehicles	4	1117.47	49208.31	<1
Min Total Distance	4	567.61	40083.89	1200
Min Total Cost	4	570.76	40119.19	6

From the above table it is better to implement objective 3 to minimize total cost as it takes less time to solve the problem.

For Orders on 31st May

The model is infeasible and Irreducible Inconsistent Subsystem (IIS) is calculated and written into the .ils file available in the output folder.

An IIS is a subset of the constraints and variable bounds with the following properties:

- It is still infeasible, and
- If a single constraint or bound is removed, the subsystem becomes feasible.

One such IIS is calculated and it has following constraints and bounds causing infeasibility.

Constraints:

```
exactlyOnce_INV_31052024_05_
exactlyOnce_INV_31052024_06_
exactlyOnce_INV_31052024_07_
exactlyOnce_INV_31052024_08_
exactlyOnce_INV_31052024_15_
exactlyOnce_INV_31052024_16_

vehicleCap_T3_1_
vehicleCap_T3_2_
vehicleCap_T3_3_
vehicleCap_T3_5_
vehicleCap_T5_1_
vehicleCap_T7_1_
vehicleCap_T7_2_
```

Bounds

```
Binaries
```

```
I#T3_1, I#T3_2, I#T3_3, I#T3_4, I#T3_5, I#T5_1, I#T7_1, I#T7_2
And x ijk variables corresponding to these vehicles.
```

If a single constraint or bound is removed, the subsystem becomes feasible.

There may be many such IIS for an infeasible model.

For Orders on 8th June

The model is infeasible and Irreducible Inconsistent Subsystem (IIS) is calculated and written into the .ils file available in the output folder.

Constraints

```
exactlyOnce_INV_08062024_16_
exactlyOnce_INV_08062024_18_
exactlyOnce_INV_08062024_20_
```

```
exactlyOnce_INV_08062024_35_
exactlyOnce_INV_08062024_36_
exactlyOnce_INV_08062024_37_
vehicleCap_T3_1_
vehicleCap_T3_2_
vehicleCap_T3_3_
vehicleCap_T3_4_
vehicleCap_T3_5_
vehicleCap_T5_1_
vehicleCap_T7_1_
vehicleCap_T7_2_
```

Bounds

Binaries

I#T3_1, I#T3_2, I#T3_3, I#T3_4, I#T3_5, I#T5_1, I#T7_1, I#T7_2 And x_ijk variables corresponding to these vehicles.

Solution same as 31st may.

For Orders on 12th June

The model is infeasible.

IIS set has:

Constraints

45 exactlyOnce constraints 5 vehicleCap constraints (for vehicles T3_1T3_5)

Bounds

Binaries

I#T3_1 I#T3_2 I#T3_3 I#T3_4 I#T3_5

And x_ijk variables correspond to the above vehicles.

To make the problem feasible in all three cases.

Possible Option : Increasing the capacity of vehicles so the bounds gets relaxed or removing some orders so no need to visit that order.