pctl-kurt

May 10, 2021

1 A Quick-and-Dirty Attempt to Maximize "Percentile Kurtosis"

1.1 Motivation

Suppose someone tells you the event X = x is a " $+4\sigma$ event" i.e. that its z-score z(X = x) = +4. That sounds statistically extreme! X = x seems like a very rare event. In other words, its percentile $\Pr[X \le x]$ is probably very high. Indeed, if X is Normal, X = x would be essentially impossible.

I want to try to construct a "pathological" example: A distribution with finite mean μ and standard deviation σ where an event as extreme as $X = x := \mu + 4\sigma$ (i.e. a $+4\sigma$ event) is actually *very* likely. This is hard, but I'll settle for making it *pretty* likely.

In other words, I want to construct a distribution that is highly "percentile-kurtotic": A distribution where $1 - \Pr[X \le \mu + 4\sigma]$ is maximal.

1.2 Definitions

1.2.1 *z*-score

We define z-score

$$z(X=x) := \frac{x-\mu}{\sigma(X)},$$

with

$$\sigma^{2}(X) := \int_{x=-\infty}^{x=\infty} (x-\mu)^{2} \Pr[X=x] dx,$$

where X is a random variable and we abuse notation a bit to let Pr[X = x] represent its probability density function. (We're going to continue to be a bit hand-wavey with this, assuming some mild conditions e.g. PDF is continuous.)

1.2.2 percentile

We define percentile (AKA cumulative distribution function) the usual way, as

$$Pr[X \le x] := \int_{t=-\infty}^{t=x} \Pr[X=t] dt.$$

1.2.3 "percentile kurtosis"

Finally, as I alluded above, I'm going to define the "percentile kurtosis" (a made-up term) k of a random variable as

$$k(X) := 1 - \Pr[X < \mu + 4\sigma],$$

the complement-percentile of a $+4\sigma$ event. Maximizing k is equivalent to minimizing the percentile.

1.3 Background

Using the definitions above, let's answer a couple quick questions.

1.3.1 Can k be literally 0, i.e. $Pr[X \le \mu + 4\sigma] = 1$?

Yes. Consider the Standard Uniform from 0 to 1.

$$\mu + 4\sigma = 0.5 + 4\sqrt{1/12} \approx 1.65 > 1,$$

so that a 4σ event is not just "essentially" impossible, but "literally" impossible: It's literally outside the support of the distribution.

This is not a very helpful example for our question, because we want to maximize k. But it's just background.

1.3.2 Can k be essentially but not literally 0?

Yes, we already mentioned the example of the Standard Normal.

1.3.3 Can k be some small but nontrivial positive value?

Yes, the Standard χ^2 distribution has $\mu = 1$ and $\sigma = \sqrt{2}$. In this case, $k = 1 - \Pr[X \le \mu + 4\sigma]$ turns out to be about 0.01.

1.3.4 Can k be literally 1, i.e. $Pr[X \le \mu + 4\sigma] = 0$?

No. This sounds silly but it's still worth convincing ourselves that it's truly impossible.

Assume for simplicity that $\mu = 0$ (this is WLOG, because if $\mu \neq 0$, we can just shift the entire distribution by $-\mu$).

Suppose to the contrary that it is possible, i.e. there is some random variable X s.t. $\Pr[X \le +4\sigma] = 0$. Then,

$$\Pr[X = x] = 0 \quad \forall x \in (-\infty, +4\sigma].$$

Hence, we can collapse the expression for variance to

$$\sigma^{2}(X) = \int_{x=+4\sigma}^{x=+\infty} x^{2} \Pr[X=x] dx.$$

So we can think of the variance as a weighted average of squared values between $+4\sigma$ and $+\infty$.

Standard deviation is of course nonnegative, so also $+4\sigma \ge 0$. So the smallest squared value in the weighted average is $(+4\sigma)^2 = 16\sigma^2$. Necessarily, then, the final weighted average must be at least $16\sigma^2$. (Actually, it must be just a smidge more than $16\sigma^2$, because we put zero density at exactly $X = +4\sigma$, hence the smallest-possible squared value is $(+4\sigma + \varepsilon)^2$, and if we accounted for this smidge, we'd run into a contradiction immediately. However, I find it more illuminating at this step to draw the weaker conclusion, which is still true, but lets us run further before hitting a contradiction.)

Hence we get

$$\sigma^2 \ge 16\sigma^2 \implies \sigma = 0.$$

So supposing that k can be 1 for some distribution, that distribution must have zero variance.

Well, according to a convention, the Dirac delta is the unique probability density function with zero variance (take this for granted, or if you insist on arguing, email me). It characterizes the density of a point mass.

So let's try it out. Supposing X is a Dirac-delta-distributed random variable (AKA a constant), we have

$$\Pr[X \le +4\sigma] = \Pr[X \le 0] = 1.$$

Sadly, this failed. We had assumed the exact opposite: that $\Pr[X \leq 0] = 0$. Hence by contradition, we have Q.E.D.

1.3.5 What about the evil Cauchy (AKA Standard t) distribution?

Obviously, one of the immediate problems with the Cauchy (that indeed disqualifies it from consideration) is that its variance (or even its mean) is not finite.

But it can be instructive to think about it. If we "define" $\sigma(X) := \infty$ (acceptable) and $\mu(X) := 0$ (please don't haunt my dreams Prof Blitzstein) for a Cauchy random variable, then $\mu(X) + 4\sigma(X) = +\infty$, which is the upper bound of support for the Cauchy, hence k(X) = 0, just like for the Standard Uniform.

The problem here is that the fat tails of the Cauchy are so fat, that they make its standard deviation infinite. At that point, it becomes impossible to push any probability mass at all beyond $\mu + 4\sigma$, because there's no more number line remaining after that.

1.4 The quick-and-dirty exploration

Obviously, the best would be to solve for the maximal k analytically in closed form. Letting WLOG $\mu = 0$, we want to solve

$$\max_{f \in F} \int_{x=\ell}^{x=+\infty} f(x) dx,$$

where F is the set of well-formed PDF's and

$$\ell := 4\sqrt{\int_{t=-\infty}^{t=+\infty} t^2 f(t) dt}.$$

This doesn't look impossible but it certainly looks very boring and I haven't got any good ideas about how to begin.

The worst would be Monte Carlo, which I've genuinely gotten as a suggestion here. Monte Carlo is good for pinning down "averages" but necessarily always as good for pinning down "extremes".

I will compromise by selecting some high "resolution" N and simply systematically generating and analyzing all the possible discrete PMF's available at this resolution. This program is in essence combinatorial (factorial) so N will be limited by how long I'm willing to let my notebook run.

```
[1]: from typing import Tuple, Generator
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns; sns.set()
```

```
PMF: type = pd.Series # int index, float data
ZSCORE: float = +4.00 # for pctl-kurt
N: int = 5 # resolution (higher is better) of our PMF's
def gen_perms(len_: int=N, sum_: int=N) -> Generator[Tuple[int], None, None]:
    Generate permutations of Naturals \{0, 1, 2, ...\} with length `len_` and_
⇒sum `sum `.
    Each permutation is a tuple of the form (n_0, n_1, n_2, \ldots, n_{\ell-1}).
    This is pretty general code, but we're going to keep it simple by fixing \Box
 \hookrightarrow some large N,
    and then analyzing `gen_perms(len_=N, sum_=N)`. In this usage, `N`_
\hookrightarrow represents our
    "resolution": Ultimately, we'll normalize (elementwise) each permutation by \Box
\hookrightarrow `N` itself and
    thereby yield a well-formed PMF. It's convenient to let `sum := len `;;
\hookrightarrow because
    then we can perfectly encode a Uniform PMF as an $N$-tuple of 1's.
    You might notice that as `N` increases, so does the support of our PMF:
    That's OK. The key is that larger `N` gives us more flexibility to create
    finer and finer "shapes" for the PMF. It doesn't matter that in the process
    of creating these shapes, we stretch out the support, because you can always
    just imagine analyzing instead the PMF of the random variable $X/N$ i.e. our
    random variable \$X\$ divided by our fixed resolution \$N\$, thereby shrinking \Box
\hookrightarrow the support
    back down to the interval [0, 1]. Results will be equivalent for our
 ⇔purposes.
    Dynamic programming generator:
    The former saves time and the latter saves space.
    Recursive solution, inspired by https://stackoverflow.com/a/7748851.
    n n n
    if len_ < 1:
        raise ValueError(len )
    if sum_ < 0:
        raise ValueError(sum_)
    # base case
    if len_ == 1:
        # only choice is singleton tuple with `sum ` as its only element
        yield (sum_,)
```

```
# recursive case
   else:
        # iterate over choices for head (first) element i.e. $n_0$
        # `reversed` because i want mass to start at LHS and flow rightward,
        # e.g. first-choice PMF puts 100% weight on `O` not `len_-1`
       for head in reversed(range(sum_ + 1)):
            Now having fixed the head, recursively generate choices for
            the tail (remaining) elements i.e. n_1, \ldots, n_{\ell-1}.
            Tail must be `len_ - 1` elements long, and sum to `sum_ - head`.
            for tail in gen_perms(len_=len_-1, sum_=sum_-head):
                # concatenate tuples
                yield (head,) + tail
def get_pmf_from_perm(perm: Tuple[int]) -> PMF:
   Normalize a tuple of ints by its sum, creating a PMF.
    input
   perm: Tuple[int], a permutation of Naturals
       e.g. `(3, 1, 0, 1)`.
   output
   PMF, a well-formed PMF
        e.g. `pd.Series({0: 0.6, 1: 0.2, 2: 0.0, 3: 0.2})`.
   return pd.Series(perm) / sum(perm)
def calc_mean(pmf: PMF) -> float:
    # pmf-weighted average
   return sum(pmf.index * pmf)
def calc std(pmf: PMF) -> float:
    squared_centered_values = (pmf.index - calc_mean(pmf=pmf))**2
    # again, just a pmf-weighted average
   return sum(squared_centered_values * pmf)**0.5
def calc_pctl(pmf: PMF, x: float=0) -> float:
   return pmf.loc[:x].sum()
```

```
def calc_pctl_kurt(pmf: PMF, zscore: float=ZSCORE) -> float:
   mu = calc_mean(pmf=pmf)
   sigma = calc_std(pmf=pmf)
   pctl = calc_pctl(pmf=pmf, x=mu + zscore*sigma)
   return 1 - pctl
def get_pmf_and_pctl_kurt_from_perm(perm: Tuple[int]) -> Tuple[PMF, float]:
   # turn permutation into a probability mass function
   pmf = get pmf from perm(perm=perm)
    # calculate its percentile kurtosis
   pctl_kurt = calc_pctl_kurt(pmf=pmf)
   assert not pd.isnull(pctl_kurt), \
        (pmf, pctl_kurt)
   return pmf, pctl_kurt
def plot_pmf(pmf: PMF) -> None:
   pmf.plot(kind="bar", width=1.00, edgecolor=sns.color_palette()[0])
   plt.xlim(left=pmf.index.min()-0.5, right=pmf.index.max()+0.5)
   plt.ylim(bottom=0)
   plt.xticks(ticks=pmf.index)
   plt.title(f"PMF (pctl-kurt: {calc pctl kurt(pmf=pmf):.2f})")
   plt.show()
def main() -> Tuple[float, PMF]:
    # "do-while" structure
   perms = gen_perms()
    # PMF and value associated w/ maximal pctl-kurt seen so far ("do" part)
   argmax_pctl_kurt, max_pctl_kurt =_
 →get_pmf_and_pctl_kurt_from_perm(perm=next(perms))
    # iterate through the remaining permutations ("while" part)
   for perm in gen perms():
       pmf, pctl_kurt = get_pmf_and_pctl_kurt_from_perm(perm=perm)
       pctl_kurt = calc_pctl_kurt(pmf=pmf)
       if pctl_kurt > max_pctl_kurt:
            max_pctl_kurt = pctl_kurt
            argmax_pctl_kurt = pmf
   plot_pmf(pmf=argmax_pctl_kurt)
   return argmax_pctl_kurt, max_pctl_kurt
if name == " main ":
    argmax_pctl_kurt, max_pctl_kurt = main()
```

