МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Факультет микроприборов и технической кибернетики Кафедра высшей математики №1

Димаков Владислав Сергеевич

Бакалаврская работа по направлению 01.03.04 «Прикладная математика»

«Обнаружение и слежение за объектами в реальном времени на основе самообучающегося классификатора»

Научный руководитель: к.ф.-м.н., доцент Козлитин Иван Алексеевич

Актуальность

- Системы обработки и анализа видеоинформации все более интенсивно применяются в различных областях человеческой деятельности. Наиболее широкое распространение они получили при создании бортовых и стационарных систем обнаружения, слежения и сопровождения объектов.
- Одной из актуальных задач, требующих решения при создании подобных систем, является задача долгосрочного слежения, предполагающая корректные результаты в условиях изменения окружающей обстановки сцены, перекрытия объекта слежения другими объектами или же в случае исчезновения отслеживаемого объекта из области наблюдения.

Цель работы

Цель: разработка и программная реализация метода, способного решать задачу долгосрочного слежения, предполагающего наличие минимальной начальной информации.

Предлагаемый метод долгосрочного слежения

Метод трекинга на основе вычитания изображения фона

Среднее фоновое изображение:

$$B_t = \left(1 - \frac{1}{N}\right) \cdot B_{t-1} + \frac{1}{N} \cdot S[I_t]$$

Изображение средних абсолютных отклонений:

$$D_t = \left(1 - \frac{1}{N}\right) \cdot D_{t-1} + \frac{1}{N} \cdot S[|I_t - B_t|]$$

$$L(x, y) = |L(x, y) - R_{t-1}(x, y)| \le k \cdot D_t$$

$$S[I_t(x,y)] = \begin{cases} I_t(x,y), & |I_t(x,y) - B_{t-1}(x,y)| \leq k_1 \cdot D_{t-1}(x,y) \\ B_{t-1}(x,y) \text{ или } D_{t-1}(x,y), & \text{в противном случае} \end{cases}$$

Бинарное изображение:

$$BIN_t(x,y) = \left\{ egin{array}{ll} 0, & |I_t(x,y) - B_t(x,y)| \leq k_2 \cdot D_t(x,y) \\ 1, & ext{в противном случаe} \end{array} \right., \qquad k_2 > k_1 \geq 1$$

 I_t

 B_t

 D_t

 BIN_t

Компенсация движений камеры

- Опорные элементы угловые особые точки, найденные детектором Харриса.
- Оценка смещений опорных элементов осуществлялась при помощи вычисления оптического потока методом Лукаса-Канаде.

Изменение положений опорных элементов при движении камеры

Результат компенсации движений камеры

 B_t

 BIN_t

Использование порога фоновой части

Предположение: изображение $|I_t - B_t|$ содержит два относительно однородных по яркости класса точек, принадлежащих объекту и фону соответственно.

$$\widetilde{BIN}_t(x,y) = \begin{cases} BIN_t(x,y), & |I_t(x,y) - B_t(x,y)| \ge \omega \\ 0, & \text{в противном случае} \end{cases}$$

 $|I_t - B_t|$

6/11

Результат использования порога фоновой части

 \widetilde{BIN}_t

Классификатор на основе случайного леса

На каждом шаге рекурсивного разбиения используются не все M компонент вектора \mathbf{x}_i^n , а только их случайное число $L=\sqrt{M}$.

Вероятность ошибочной классификации

OOBE – доля примеров обучающей выборки, неверно классифицируемых ансамблем, если не учитывать голоса деревьев на тех примерах, которые входят в их собственные обучающие подвыборки.

Зависимость вероятности ошибочной классификации от числа деревьев в ансамбле при обучении на однородных примерах

Зависимость производительности алгоритма классификации от числа деревьев в ансамбле

Результаты обучения классификатора

Рост вероятности ошибочной классификации при изменении обстановки окружающей сцены, вызванной изменением освещенности

Изменение вероятности ошибочной классификации при длительном периоде работы классификатора

Сравнительная характеристика, выводы

Метод слежения	Доля кадров с неверно определенными координатами цели, %		
	Изменение окружающей	Перекрытие объекта слежения	Исчезновение объекта из области
	обстановки сцены		наблюдения
Классический	18.23	56.45	100.00
Разработанный	6.63	8.03	8.48

- В ходе данной работы был предложен и программно реализован метод долгосрочного слежения, предполагающий наличие минимальной начальной информации.
- Разработанный метод показал высокую устойчивость к изменению окружающей обстановки сцены, перекрытию объекта слежения и его исчезновению из области наблюдения.
- Предложенные методы компенсации движений камеры и улучшения результатов сегментации позволяют расширить область применения разработанного алгоритма, сделав его более устойчивым к внешним условиям и повысив его точность.

Спасибо за внимание!