In [1]: # import libraries

```
import pandas as pd
import numpy as np
import sklearn as sk
import matplotlib as mlb
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: # import dataset

zoo = 'D:/Setelah Wisuda/Digitalent Kominfo/FGA - Data Scientist/Assignment/Challenge 2/1. Zoo Animal Classification - Kazoo = pd.read_csv(zoo)

classes = 'D:/Setelah Wisuda\Digitalent Kominfo/FGA - Data Scientist/Assignment/Challenge 2/1. Zoo Animal Classification classes = pd.read_csv(classes)

zhead = zoo.head()
chead = classes.head()

display(zhead)
display(chead)
```

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	legs	tail	domestic	catsiz
0	aardvark	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	
1	antelope	1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	
2	bass	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	(
3	bear	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	
4	boar	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	

	Class_Number	Number_Of_Animal_Species_In_Class	Class_Type	Animal_Names
0	1	41	Mammal	aardvark, antelope, bear, boar, buffalo, calf,
1	2	20	Bird	chicken, crow, dove, duck, flamingo, gull, haw
2	3	5	Reptile	pitviper, seasnake, slowworm, tortoise, tuatara
3	4	13	Fish	bass, carp, catfish, chub, dogfish, haddock, h
4	5	4	Amphibian	frog, frog, newt, toad

```
In [3]: # Data Cleaning (check missing/invalid values, eliminating duplictae rows, formatting properly)
        zDC1 = zoo.dtypes
        zDC2 = zoo.info()
        zDC3 = zoo.describe (include='all')
        cDC1 = classes.dtvpes
        cDC2 = classes.info()
        cDC3 = classes.describe (include='all')
        # menunjukkan bahwa data zoo dan classes sudah clean karena tidak ada missing value dan formatnya sudah benar
        display(zDC1)
        display(zDC2)
        display(zDC3)
        display(cDC1)
        display(cDC2)
        display(cDC3)
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 101 entries, 0 to 100
        Data columns (total 18 columns):
                          Non-Null Count Dtype
         #
             Column
             animal name 101 non-null
                                           object
             hair
                          101 non-null
                                           int64
         1
             feathers
                          101 non-null
                                           int64
                          101 non-null
         3
                                           int64
             eggs
             milk
                          101 non-null
                                           int64
             airborne
                          101 non-null
                                           int64
                          101 non-null
             aquatic
                                           int64
             predator
                          101 non-null
                                           int64
             toothed
                          101 non-null
                                           int64
             backbone
                          101 non-null
                                           int64
         10 breathes
                          101 non-null
                                           int64
         11 venomous
                          101 non-null
                                           int64
         12 fins
                           101 non-null
                                           int64
                           101
                                           . . . .
```

```
In [4]: # unique value tiap feature yang akan digunakan
              print('unique value pada feature hair adalah:', zoo.hair.unique())
               print('unique value pada feature feathers adalah:', zoo.feathers.unique())
               print('unique value pada feature eggs adalah:', zoo.eggs.unique())
               print('unique value pada feature milk adalah:', zoo.milk.unique())
               print('unique value pada feature airbone adalah:', zoo.airborne.unique())
               print('unique value pada feature aquatic adalah:', zoo.aquatic.unique())
               print('unique value pada feature predator adalah:', zoo.predator.unique())
               print('unique value pada feature toothed adalah:', zoo.toothed.unique())
               print('unique value pada feature backbone adalah:', zoo.backbone.unique())
               print('unique value pada feature breathes adalah:', zoo.breathes.unique())
               print('unique value pada feature venomous adalah:', zoo.venomous.unique())
               print('unique value pada feature fins adalah:', zoo.fins.unique())
               print('unique value pada feature legs adalah:', zoo.legs.unique())
               print('unique value pada feature domestic adalah:', zoo.domestic.unique())
               print('unique value pada feature catsize adalah:', zoo.catsize.unique())
              # unique value tiap feature untuk info tambahan
               print('unique value pada feature Class Number adalah:', classes.Class Number.unique())
               print('unique value pada feature Number Of Animal_Species_In_Class adalah:', classes.Number_Of_Animal_Species_In_Class.unique value pada feature Number Of Animal_Species_In_Class.unique value 
               print('unique value pada feature Class Type adalah:', classes.Class Type.unique())
               unique value pada feature hair adalah: [1 0]
               unique value pada feature feathers adalah: [0 1]
               unique value pada feature eggs adalah: [0 1]
               unique value pada feature milk adalah: [1 0]
               unique value pada feature airbone adalah: [0 1]
               unique value pada feature aquatic adalah: [0 1]
               unique value pada feature predator adalah: [1 0]
               unique value pada feature toothed adalah: [1 0]
               unique value pada feature backbone adalah: [1 0]
               unique value pada feature breathes adalah: [1 0]
               unique value pada feature venomous adalah: [0 1]
               unique value pada feature fins adalah: [0 1]
               unique value pada feature legs adalah: [4 0 2 6 8 5]
               unique value pada feature domestic adalah: [0 1]
               unique value pada feature catsize adalah: [1 0]
               unique value pada feature Class Number adalah: [1 2 3 4 5 6 7]
               unique value pada feature Number Of Animal Species In Class adalah: [41 20 5 13 4 8 10]
               unique value pada feature Class Type adalah: ['Mammal' 'Bird' 'Reptile' 'Fish' 'Amphibian' 'Bug' 'Invertebrate']
```

```
In [5]: # Explorattory Data Analysis
        # join zoo dataframe dengan classes dataframe untuk menunjukkan nama origin class type pada setiap row
        merge df=pd.merge(zoo,classes,how='left',left on='class type',right on='Class Number')
        # delete column class type pada dataframe zoo dan keep class type pada dataframe classes
        del merge df['class type']
        merge df.rename(columns = {'Class Number':'class number'}, inplace = True)
        merge df.rename(columns = {'Class Type':'class type'}, inplace = True)
        # ganti column legs dengan has legs agar datanya binary seperti data yang lain
        merge df['has legs'] = np.where(merge df['legs']>0,1,0)
        df = merge_df[['animal_name', 'hair', 'feathers', 'eggs', 'milk', 'airborne', 'aquatic', 'predator', 'toothed', 'backbone', 'breatle'
                        'venomous', 'fins', 'has legs', 'tail', 'domestic', 'catsize', 'class number', 'class type',
                        'Number Of Animal Species In Class', 'Animal Names']]
        display(df.head())
        # summary origin animal type dari dataset
        print("Dataset Zoo ini memiliki",len(zoo),"rows.")
        sns.catplot('class type', data=df,kind="count", aspect=2)
        # correlation plot dari 16 feature
        corr = zoo.iloc[:,1:-1].corr()
        colormap = sns.diverging palette(20, 120, as cmap = True)
        plt.figure(figsize=(14,13))
        sns.heatmap(corr, cbar = True, square = True, annot=True, fmt= '.2f',annot kws={'size': 14},
                    cmap = colormap, linewidths=0.1, linecolor='white')
        plt.title('Correlation of ZOO Features', y=1.05, size=15)
```

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	 venomous	fins	has_legs	tail	domestic	catsiz
0	aardvark	1	0	0	1	0	0	1	1	1	 0	0	1	0	0	
1	antelope	1	0	0	1	0	0	0	1	1	 0	0	1	1	0	

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	 venomous	fins	has_legs	tail	domestic	catsiz
2	bass	0	0	1	0	0	1	1	1	1	 0	1	0	1	0	
3	bear	1	0	0	1	0	0	1	1	1	 0	0	1	0	0	
4	boar	1	0	0	1	0	0	1	1	1	 0	0	1	1	0	
5 rc	ows × 21 colun	nns														_
4																>

Dataset Zoo ini memiliki 101 rows.

Out[5]: Text(0.5, 1.05, 'Correlation of ZOO Features')

- -0.75

						Cor	relati	on of	zoo	Featu	ıres					
hair ·	1.00	-0.43	-0.82	0.88	-0.20	-0.47	-0.15	0.49	0.19	0.44	-0.10	-0.28	0.39	0.05	0.21	0.46
feathers ·	-0.43	1.00	0.42	-0.41	0.66	-0.06	-0.10	-0.61	0.23	0.25	-0.15	-0.22	-0.21	0.29	0.03	-0.14
eggs ·	-0.82	0.42	1.00	-0.94	0.38	0.38	0.01	-0.64	-0.34	-0.38	0.10	0.16	-0.22	-0.22	-0.16	-0.51
milk -	0.88	-0.41	-0.94	1.00	-0.37	-0.36	-0.03	0.63	0.38	0.42	-0.24	-0.16	0.21	0.21	0.16	0.57
airborne -	-0.20	0.66	0.38	-0.37	1.00	-0.17	-0.30	-0.59	-0.10	0.29	0.01	-0.25	0.04	0.01	0.06	-0.35
aquatic -	-0.47	-0.06	0.38	-0.36	-0.17	1.00	0.38	0.05	0.02	-0.64	0.09	0.60	-0.36	-0.03	-0.22	-0.11
predator ·	-0.15	-0.10	0.01	-0.03	-0.30	0.38	1.00	0.13	0.05	-0.26	0.12	0.19	-0.10	0.02	-0.31	0.14
toothed -	0.49	-0.61	-0.64	0.63	-0.59	0.05	0.13	1.00	0.58	-0.07	-0.06	0.36	-0.19	0.31	0.07	0.34
backbone ·	0.19	0.23	-0.34	0.38	-0.10	0.02	0.05	0.58	1.00	0.21	-0.25	0.21	-0.43	0.73	0.10	0.36
breathes -	0.44	0.25	-0.38	0.42	0.29	-0.64	-0.26	-0.07	0.21	1.00	-0.12	-0.62	0.37	0.09	0.12	0.20
venomous ·	-0.10	-0.15	0.10	-0.24	0.01	0.09	0.12	-0.06	-0.25	-0.12	1.00	-0.03	0.02	-0.16	-0.00	-0.18
fins -	-0.28	-0.22	0.16	-0.16	-0.25	0.60	0.19	0.36	0.21	-0.62	-0.03	1.00	-0.61	0.20	-0.09	0.03
legs -	0.39	-0.21	-0.22	0.21	0.04	-0.36	-0.10	-0.19	-0.43	0.37	0.02	-0.61	1.00	-0.35	0.07	0.07
tail -	0.05	0.29	-0.22	0.21	0.01	-0.03	0.02	0.31	0.73	0.09	-0.16	0.20	-0.35	1.00	0.02	0.24
domestic -	0.21	0.03	-0.16	0.16	0.06	-0.22	-0.31	0.07	0.10	0.12	-0.00	-0.09	0.07	0.02	1.00	0.02
catsize -	0.46	-0.14	-0.51	0.57	-0.35	-0.11	0.14	0.34	0.36	0.20	-0.18	0.03	0.07	0.24	0.02	1.00
	hair -	thers -	- sõõa	milk -	- рогле	quatic -	dator -	othed -	kbone -	athes -	- snom	fins -	egs -	a ii	nestic -	atsize -

tail	backbone	milk	eggs	hair	
NaN	NaN	0.878503	-0.817382	NaN	hair
NaN	NaN	-0.938848	NaN	-0.817382	eggs
NaN	NaN	NaN	-0.938848	0.878503	milk
0.731762	NaN	NaN	NaN	NaN	backbone
NaN	0.731762	NaN	NaN	NaN	tail

In [7]: # hasil check feature setiap class_type:

- # 1. feature feathers menentukan class_type BIRD
- # 2. feature milk menentukan class_type MAMMAL
- # 3. feature has_legs menentukan class_type FISH

df.groupby('class_type').mean()

Out[7]:

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	has_legs	tail
class_type														
Amphibian	0.00000	0.0	1.00000	0.0	0.00000	1.000000	0.750000	1.00000	1.0	1.0	0.250000	0.000000	1.000000	0.250000
Bird	0.00000	1.0	1.00000	0.0	0.80000	0.300000	0.450000	0.00000	1.0	1.0	0.000000	0.000000	1.000000	1.000000
Bug	0.50000	0.0	1.00000	0.0	0.75000	0.000000	0.125000	0.00000	0.0	1.0	0.250000	0.000000	1.000000	0.000000
Fish	0.00000	0.0	1.00000	0.0	0.00000	1.000000	0.692308	1.00000	1.0	0.0	0.076923	1.000000	0.000000	1.000000
Invertebrate	0.00000	0.0	0.90000	0.0	0.00000	0.600000	0.800000	0.00000	0.0	0.3	0.200000	0.000000	0.600000	0.100000
Mammal	0.95122	0.0	0.02439	1.0	0.04878	0.146341	0.536585	0.97561	1.0	1.0	0.000000	0.097561	0.926829	0.853659
Reptile	0.00000	0.0	0.80000	0.0	0.00000	0.200000	0.800000	0.80000	1.0	0.8	0.400000	0.000000	0.400000	1.000000

```
In [8]: # tentukan data x (feature) dan data y (label data) untuk pemodelan menggunakan metode machine learning

features = list(df.columns.values)
    features.remove('animal_name')
    features.remove('class_type')
    features.remove('class_number')
    features.remove('Number_Of_Animal_Species_In_Class')
    features.remove('Animal_Names')

x = df[features]
    y = df['class_number']

display(x.shape)
    display(x.shape)
    display(x.head())
    display(y.head())
```

(101, 16)

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	has_legs	tail	domestic	catsize
0	1	0	0	1	0	0	1	1	1	1	0	0	1	0	0	1
1	1	0	0	1	0	0	0	1	1	1	0	0	1	1	0	1
2	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0
3	1	0	0	1	0	0	1	1	1	1	0	0	1	0	0	1
4	1	0	0	1	0	0	1	1	1	1	0	0	1	1	0	1

0 1

1 1

2 4

3 1

4 1

Name: class_number, dtype: int64

```
In [9]: from sklearn.model_selection import train_test_split

# melakukan evaluasi data dengan menggunakan tipe TRAIN/TEST SPLIT

# split : 70% Train, 30% Test

train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.3, random_state=42, stratify=y)

print("Training Data memiliki",train_x.shape)
print("Testing Data memiliki",test_x.shape)
print("Training Target memiliki",train_y.shape)
print("Testing Target memiliki",test_y.shape)
display (train_x)
display (train_x)
display (test_x)
display (test_y)
```

Training Data memiliki (70, 16)
Testing Data memiliki (31, 16)
Training Target memiliki (70,)
Testing Target memiliki (31,)

```
In [10]: from sklearn import preprocessing
         from sklearn import metrics
         from sklearn.metrics import accuracy score
         from sklearn.neighbors import KNeighborsClassifier
         range k = range(1,7)
         scores = {}
         scores list = []
         for k in range k:
             knn = KNeighborsClassifier(n neighbors=k)
             knn.fit(train x, train y)
             pred y = knn.predict(test x)
             scores = metrics.accuracy score(test y,pred y)
             scores list.append(metrics.accuracy score(test y,pred y))
         result = metrics.classification report(test y,pred y)
         print("Classification Report:",)
         print (result)
         print('Accuracy vs Value of K')
         %matplotlib inline
         plt.plot(range k,scores list)
         plt.xlabel("Value of K")
         plt.ylabel("Accuracy")
         Classification Report:
```

	precision	recall	f1-score	support
1	1.00	1.00	1.00	13
2	1.00	1.00	1.00	6
3	1.00	0.50	0.67	2
4	0.80	1.00	0.89	4
5	1.00	1.00	1.00	1
6	1.00	1.00	1.00	2
7	1.00	1.00	1.00	3
accuracy			0.97	31

0.93

0.97

0.94

0.96

31

31

0.97

0.97

macro avg

weighted avg

Accuracy vs Value of K

Out[10]: Text(0, 0.5, 'Accuracy')


```
In [11]: # hasil iterasi pergantian nilai K pada model, menunjukkan K = 2 memiliki nilai accuracy tertinggi
         # Lakukan pemodelan pada K = 2
         from sklearn import preprocessing
         from sklearn.metrics import plot confusion matrix
         from sklearn.metrics import accuracy score
         class type = df['class type'].unique()
         x2 = df[features]
         v2 = df['class number']
         train x2, test x2, train y2, test y2 = train test split(x2, y2, test size=0.3, random state=42, stratify=y)
         knn2 = KNeighborsClassifier(n neighbors=1)
         knn2.fit(train x2, train y2)
         pred y2 = knn2.predict(test x2)
         scores2 = metrics.accuracy score(test y2,pred y2)
         result2 = metrics.classification report(test y2,pred y2, target names=(df['class type'].unique()))
         cnf mat = metrics.confusion matrix(test y2,pred y2)
         plot conf mat = plot confusion matrix(knn2, test x2, test y2,
                                          display labels=class type,
                                          cmap=plt.cm.Blues, normalize='all')
         print('Accuracy:',metrics.accuracy score(test y2,pred y2))
         print("Confusion Matrix:")
         print(cnf mat)
         print("Classification Report:",)
         print (result2)
         Accuracy: 0.967741935483871
         Confusion Matrix:
```

Confusion Matrix:

[[13 0 0 0 0 0 0]

[0 6 0 0 0 0 0]

[0 0 1 1 0 0 0]

[0 0 0 4 0 0 0]

[0 0 0 0 1 0 0]

[0 0 0 0 0 0 2 0]

[0 0 0 0 0 0 0 3]]

Classification Report:

	precision	recall	f1-score	support
Mammal	1.00	1.00	1.00	13
Fish	1.00	1.00	1.00	6
Bird	1.00	0.50	0.67	2
Invertebrate	0.80	1.00	0.89	4
Bug	1.00	1.00	1.00	1
Amphibian	1.00	1.00	1.00	2
Reptile	1.00	1.00	1.00	3
accuracy			0.97	31
macro avg	0.97	0.93	0.94	31
weighted avg	0.97	0.97	0.96	31


```
In [12]: # komparasi nilai target actual (test y2) dengan nilai target prediksi (pred y2)
         # predicted class = pred y2
         print('nilai predicted_class')
         display(pred v2)
         # actual class = numpy array test y2
         actual y2 = np.array(test y2)
         print('nilai actual class:')
         display(actual y2)
         nilai predicted class
         array([2, 2, 2, 2, 1, 6, 1, 1, 2, 3, 1, 2, 4, 1, 7, 4, 1, 1, 1, 5, 4, 1,
                1, 4, 1, 4, 7, 1, 7, 6, 1], dtype=int64)
         nilai actual class:
         array([2, 2, 2, 2, 1, 6, 1, 1, 2, 3, 1, 2, 4, 1, 7, 4, 1, 1, 1, 5, 4, 1,
                1, 4, 1, 3, 7, 1, 7, 6, 1], dtype=int64)
In [ ]:
```

In []:	
In []:	
In []:	