4.1 STANDARD ETHERNET

The original Ethernet was created in 1976 at Xerox's Palo Alto Research Center (PARC). Since then, it has gone through four generations. We briefly discuss the Standard (or traditional) Ethernet in this section.

Figure 4.1.1: Ethernet evolution through four generations

Figure 4.1.2802.3 MAC frame

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)

Preamble	SFD	Destination address	Source address	Length or type	Data and padding	CRC
7 bytes	1 byte	6 bytes	6 bytes	2 bytes		4 bytes
Physical I heade	•					

Figure 4.1.3: *Minimum and maximum lengths*

Note

Frame length:

Minimum: 64 bytes (512 bits)

Maximum: 1518 bytes

(12,144 bits)

Figure 4.1.4 Example of an Ethernet address in hexadecimal notation

06:01:02:01:2C:4B

6 bytes = 12 hex digits = 48 bits

Figure 4.1.5 *Unicast and multicast addresses*

Note

The least significant bit of the first byte defines the type of address.

If the bit is 0, the address is unicast; otherwise, it is multicast.

Note

The broadcast destination address is a special case of the multicast address in which all bits are 1s.

Example 4.1.1

Define the type of the following destination addresses:

- $oldsymbol{lpha}$ $oldsymbol{A}oldsymbol{\Delta}\cdot\mathbf{Q}oldsymbol{\Omega}\cdot\mathbf{Q}oldsymbol{\Pi}$
- c. FF:FF:FF:FF:FF

Solution

To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are F's, the address is broadcast. Therefore, we have the following:

- a. This is a unicast address because A in binary is 1010.
- b. This is a multicast address because 7 in binary is 0111.
- c. This is a broadcast address because all digits are F's.

Show how the address 47:20:1B:2E:08:EE is sent out on line.

Solution

The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as shown below:

Figure 4.1.6 Categories of Standard Ethernet

Table 4.1.1 Summary of Standard Ethernet implementations

Characteristics	10Base5	10Base2	10Base-T	10Base-F
Media	Thick coaxial cable	Thin coaxial cable	2 UTP	2 Fiber
Maximum length	500 m	185 m	100 m	2000 m
Line encoding	Manchester	Manchester	Manchester	Manchester

4.2 CHANGES IN THE STANDARD

The 10-Mbps Standard Ethernet has gone through several changes before moving to the higher data rates.. These changes actually opened the road to the evolution of the Ethernet to become compatible with other high-data-rate LANs..

Topics discussed in this section:

Bridged Ethernet Switched Ethernet Full-Duplex Ethernet

Figure 4.2.1 A network with and without a

bridge

a. Without bridging

b. With bridging

Figure 4.2.2 Collision domains in an unbridged network and a bridged

network

a. Without bridging

b. With bridging

Figure 4.2.3 Switched Ethernet

Figure 4.2.4 Full-duplex switched Ethernet

4.3 FAST ETHERNET

Fast Ethernet was designed to compete with LAN protocols such as FDDI or Fiber Channel. IEEE created Fast Ethernet under th nam 80 . u. Fast Ethernet is backward-compatible with Standard Ethernet, but it can transmit data 10 times faster at a rate of 100 Mbps.

Topics discussed in this section:

MAC Sublayer Physical Layer

Figure 4.3.1 Fast Ethernet implementations

Table 4.2 Summary of Fast Ethernet implementations

Characteristics	100Base-TX	100Base-FX	100Base-T4	
Media	Cat 5 UTP or STP	Fiber	Cat 4 UTP	
Number of wires	2	2	4	
Maximum length	100 m	100 m	100 m	
Block encoding	4B/5B	4B/5B		
Line encoding	MLT-3	NRZ-I	8B/6T	

4.4 GIGABIT ETHERNET

The need for an even higher data rate resulted in the design of the Gigabit Ethernet protocol (1000 Mbps). The IEEE committee calls the standard 802.3z.

Topics discussed in this section:

MAC Sublayer
Physical
Layer
Ten-Gigabit
Ethernet

Note

In the full-duplex mode of Gigabit Ethernet, there is no collision; the maximum length of the cable is determined by the signal attenuation in the cable.

Figure 4.4.1 *Gigabit Ethernet implementations*

Figure 4.4.2 *Encoding in Gigabit Ethernet implementations*

Table 4.3 Summary of Gigabit Ethernet implementations

Characteristics	1000Base-SX	1000Base-LX	1000Base-CX	1000Base-T
Media	Fiber short-wave	Fiber long-wave	STP	Cat 5 UTP
Number of wires	2	2	2	4
Maximum length	550 m	5000 m	25 m	100 m
Block encoding	8B/10B	8B/10B	8B/10B	
Line encoding	NRZ	NRZ	NRZ	4D-PAM5

Table 4.4 Summary of Ten-Gigabit Ethernet implementations

Characteristics	10GBase-S	10GBase-L	10GBase-E
Media	Short-wave 850-nm multimode	Long-wave 1310-nm single mode	Extended 1550-mm single mode
Maximum length	300 m	10 km	40 km