Systèmes linéaires / Superposition

MODÈLE

Regroupement de composants (dipôles ou autres) régi par des équations linéaires (pouvant être différentielles) dans sa relation entre son entrée et sa sortie, permettant le transfert d'énergie entre deux dipôles (ou systèmes)

V_a I_a: tension / courant d'entrée

V_s I_s: tension / courant de sortie

H: fonction de transfert

Z_a: impédance d'entrée

Z_s: impédance de sortie

CARACTÉRISTIQUES

GAIN EN TENSION

 $\underline{\mathbf{H}} = \underline{\mathbf{V}}_{S} / \underline{\mathbf{V}}_{F}$

lorsque $I_c = 0$

c'est à dire, lorsque la charge n'est pas connectée au

système

Lorsque ce gain dépend de la fréquence* du signal d'entrée ($\omega = 2.\pi.f$), on parle alors de **fonction de transfert**: $\underline{T}(j\omega) = \underline{V}_s / \underline{V}_o$

Les impédances d'entrée et de sortie peuvent également dépendre de la fréquence du signal d'entrée appliqué

*Voir également la fiche sur le **régime harmonique**

IMPÉDANCE D'ENTRÉE

Impédance vue par le générateur (ou le système placé en amont) lorsque le **système** à étudier est **chargé** (connecté à sa charge)

$$\underline{\mathbf{Z}}_{e} = \underline{\mathbf{V}}_{e} / \underline{\mathbf{I}}_{e}$$

IMPÉDANCE DE SORTIE

Impédance associée au générateur parfait (gain en tension) vue par la charge en sortie du système lorsque $V_0 = 0 \text{ V}$

$$\underline{\mathbf{Z}}_{S} = \underline{\mathbf{V}}_{S} / \underline{\mathbf{I}}_{S}$$

EN PRATIQUE

GAIN EN TENSION

CAS CONTINU:

- on déconnecte la charge Z
- on applique une tension V continue
- on mesure la tension V
- $-A = V_s / V_o$

ANALYSE HARMONIOUE:

- on applique une tension sinusoïdale **V**_a d'amplitude constante
- on mesure l'amplitude de la tension V

pour diverses fréquences de V

(en vérifiant qu'elle soit toujours sinusoïdale)

- $A(\omega) = V_c(\omega) / V_c(\omega)$
- On peut ensuite tracer l'évolution de A en fonction de ω (Bode)

IMPÉDANCE D'ENTRÉE

CAS CONTINU:

- on connecte la charge Z, au quadripole
- on applique une tension $\mathbf{V}_{\mathbf{a}}$ continue en entrée
- on mesure le courant I_o entrant dans le quadripole $-\mathbf{Z}_{0} = \mathbf{V}_{0} / \mathbf{I}_{0}$

IMPÉDANCE DE SORTIE

CAS CONTINU:

- on court-circuite l'entrée : V. = 0 V
- on applique une tension V_c continue sur la sortie
- on mesure le courant I_s entrant dans le quadripôle, côté sortie $-Z_c = V_c / I_c$

SIMPLIFICATION DE MILLMAN

En un **nœud A** d'un réseau de branches en parallèle de générateurs de tension réels (source de tension et impédance)

la tension au point A vaut :

$$avec Y = 1/Z$$

$$V_{A} = \frac{Y_{1}.V_{1} + Y_{2}.V_{2} + Y_{3}.V_{3} + Y_{i}.V_{i}}{Y_{1} + Y_{2} + Y_{3} + Y_{i}}$$

Attention!

V_{cc}: composante continue

Ce circuit permet de modifier

la valeur movenne d'un signal

comportant des composantes

fréquentielles supérieures à la

fréquence de coupure donnée

par la relation suivante

Tous les potentiels doivent être référencés par rapport à un même potentiel. souvent noté masse.

Généralisation à N branches en parallèle

$$V_{A} = \frac{\sum_{k=1}^{k=N} Y_{k} \cdot V}{\sum_{k=1}^{k=N} Y_{k}}$$

ASTUCE / VALEUR MOYENNE

PETITS SIGNAUX

 $V_{S2} = V_E \cdot \frac{j.R_E.C.\omega}{1+j.R_E.C.\omega}$ $V_{S1} = V_{CC} \cdot \frac{R_2}{R_1 + R_2}$

Passe-haut de fréquence