High-Performance Deep-Learning Operators on CPU and GPU via Multi-Dimensional Homomorphisms

Ari Rasch, Richard Schulze, Sergei Gorlatch

Generation

Let T and T' be two arbitrary types. A function $h: T[N_1] \dots [N_d] \to T'$ on d-dimensional arrays is called a Multi-Dimensional Homomorphism (MDH) iff there exist $combine\ operators\ \circledast_1, \dots, \circledast_d: T' \times T' \to T'$, such that for each $k \in [1, d]$ and arbitrary, concatenated input array a + k in dimension k:

$$h(a + +_k b) = h(a) \circledast_k h(b)$$

[IJPP'18]

MDHs can be uniformly represented via our md_hom parallel pattern:

$$\operatorname{md_hom}(\ f,\ (\circledast_1,\ldots,\circledast_d)\)(\ a\) = \underset{i_1\in[1,N_1]}{\circledast_1}\ldots \underset{i_d\in[1,N_d]}{\circledast_d} \ f(\ a[\ i_1\]\ldots[\ i_d\]\)$$

Important Deep-Learning Operators can be expressed as MDHs:

Linear Algebra (BLAS)

Convolution

Tensor Contractions

$$TC = md_hom(*, (++, ..., ++, ++, ++, ..., +)) o view(...)$$

Generating Auto-Tunable OpenCL Code

$$\operatorname{md}_{-}\operatorname{hom}(f,(\circledast_1,\ldots,\circledast_k))$$
 — [PACT'19]

Optimization

Our Auto-Tuning Framework (ATF) is a general-purpose approach that supports auto-tuning of programs with interdependent tuning parameters. [CCPE'18]

chain-of-trees search space structure

for interdependent tuning parameters.

#atf::tp name /* name */
 range /* range */
 constraint /* constraint */

We extend the traditional definition of tuning
 parameters by a parameter constraint.

ATF efficiently

generates / stores / explores

the search spaces of

interdependent tuning parameters

2.75x faster than TVIVI

4x faster than Intel MKL/NVIDIA cuBLAS

Our MDH approach achieves often better performance than well-performing machine- and hand-optimized approaches.

3.31x faster than NVIDIA CUDNN

2x faster than COGENT & Tensor Comprehensions