Tecnologia CAD 2D

Prof Marcelo Hounsell, PhD Prof Roberto Rosso, PhD (Revisão) DCC/UDESC

Tecnologia CAD

- O que é CAD
- Capacidades
- Aplicações
- O Papel do CAD no Design
- Tipos e Classificação
- Vantagens e Desvantagens

O que é CAD?

- Computer Automatic Drafting
- Computer Aided Drafting
- Computer Aided Drafting and Design
- Projeto Auxiliado por Computador (PAC)
- Computer-Aided Design
 - Proporcionam a capacidade de criar e modificar desenhos de produtos usando entidades como pontos, linhas, circuitos e estas podem ser transferidas de lugar, giradas, aumentadas ou apagadas, vistas com "zoom" (Slack97)
 - Sistema computacional para auxílio a criação, modificação, análise e/ou otimização de um projeto (Groover84)

O que é CAD ? Drafting - Desenho

▲PRINCIPAIS ÊNFASES:

- ▲ AUXÍLIO AO DESENHO BIDIMENSIONAIS (2D), VISTAS
- ▲ DIVERSIDADE DE OPÇÕES PARA HACHURAS, COTAS, TOLERÂNCIAS
- ▲ HÁ PREOCUPAÇÃO COM O PROJETO DO PRODUTO E SEU DETALHAMENTO
- ▲ PRANCHETA ELETRÔNICA

O que é CAD ? Design - Projeto

- PRINCIPAIS ÊNFASES
 - FACILITAR A CRIAÇÃO E DEFINIÇÃO DE GEOMETRIAS COMPLEXAS
 - PERMITIR O MODELAMENTO 3D
 - HÁ PREOCUPAÇÃO COM O USO SUBSEQUENTE DA INFORMAÇÃO GEOMÉTRICA (FABRICAÇÃO)
- AMBIENTE DE PROJETO

Capacidades do CAD

- Aplicações do CAD
 - O CAD não é usado somente na fase de criação, teste e prototipagem. É usado amplamente em todas as etapas do ciclo-de-vida do produto (Slack96)
- CAD é capaz de gerar (Filho97:36)
 - Circuitos Eletrônicos
 - Diagramas Organizacionais
 - Mapas (Cartografia, Topografia)
 - Desenhos (Drafting, Draughting) Arquitetônicos (p.ex.) e Gráficos em Geral Cotagens,
 - Detalhamentos Geométrico e Publicações Técnicas

Áreas de Aplicação do CAD (Filho97:37)

- Elétrica/Eletrônica
 - Esquemas, diagramas de conexão/esquemáticos, tubulações elétricas, projetos de circuitos integrados, placas de circuito impresso
- · Mapeamento
 - Levantamento de superfícies, traçado de ruas, lotes, redes de distribuição, agrimensura, plantas cadastrais, curvas de nível
- Mecânica
 - Projeto de peças, máquinas e processos, ferramentas, moldes
- Civil
 - Rodovias, drenagem, projeto estrutural, topografia
- Arquitetura
 - Plantas, elevações, perspectivas, tubulações hidráulicas, maqueta eletrônica
- Nava
 - Projeto de navios, portos, estruturas
- · Aeronáutica/Aeroespacial/Automobilística
 - Cinemática, hidráulica, estrutural

O Papel do CAD no Design

- CAD é uma tecnologia na qual Homem e Máquina se completam
- O computador não deve ser usado quando o projetista é mais eficiente e vice-versa.

	Homem	Computador
Raciocínio e Lógica	Intuitivo por experiência, imaginação e julgamento	Sistemático e estilizado
Nível de Inteligência	Aprende rapidamente mas é sequencial, Inteligência não confiável	Pouca capacidade de aprendizado mas nível de inteligência confiável
Método de Saída de Informação	Saída sequencial lenta através da fala ou de ações manuais	Saída sequencial estilizada rápida pelo equivalente às ações manuais
Organização da Informação	Informal e intuitiva	Formal e detalhada
Esforço envolvido na organização da informação	Pouco	Muito
Armazenamento de informações detalhada	Pouca capacidade, altamente dependente do tempo	Grande capacidade, independente do tempo
Tolerância para trabalhos simples e repetitivos	Pouca	Excelente
Capacidade para extrai informações significativas	Boa	Ruim
Produção de Erros	Frequente	Rara
Tolerância a informações errôneas	Boa correção intuitiva de erros	Altamente intolerante
Método de detecção de erros	Intuitivo	Sistemático
Método para edição e informações	Fácil e instantâneo	Difícil e envolvido
Capacidade de Análise	Boa análise intuitiva, capacidade de análise numérica ruim	Nenhuma análise intuitiva, boa capacidade de análise numérica

Excelência no Uso do CAD (1)

(Geoff Hall, CADCAM Online, 04982, Set, 2000)

- O envolvimento da Direção no processo de busca da melhor ferramenta CAD para atender as necessidades específicas da empresa é um bom indicador.
- "Diretores esclarecidos levam à excelência no uso do CAD"

Excelência no Uso do CAD (2)

(Geoff Hall, CADCAM Online, 04982, Set, 2000)

- Um bom sinal é um programa de treinamento que vai além dos conceitos básicos. Isto ajuda e estimula a alcançar todo o potencial da ferramenta, com brevidade.
- "Treinamentos iniciais básicos somente ajudam a frustrar os usuários"

Excelência no Uso do CAD (3)

(Geoff Hall, CADCAM Online, 04982, Set, 2000)

- A excelência é alcançada pela busca incessante da excelência, apostando continuamente em novos recursos, novas funcionalidades, o mais cedo possível
- "Só terá benefícios pesados quem investir pesado"

Excelência no Uso do CAD (4)

"É **muito** importante que os 'tomadores de decisões' **saibam** com clareza o que é, o potencial e as limitações da Tecnologia **CAD**"

Geoff Hall

O Papel do CAD no Design (Bessant 88.25)

- O computador tem 3 funções principais:
 - Servir como extensão de memória do projetista, em quantidade e precisão
 - Melhorar o poder analítico e lógico do projetista suprindo-o de informações (cálculos/buscas) com sua alta velocidade.
 - Liberar o projetista de tarefas enfadonhas e repetitivas, facilitando a manutenção e recuperação de erros
- O projetista tem 3 funções principais
 - Controle do processo de projeto (tomada de decisões e distribuição da informação)
 - A aplicação da concepção da ideia com criatividade, perspicácia e experiência
 - A organização das informações do projeto (justificativas, relacionamentos, agrupamentos, etc...)

Classificação dos CADs Dimensões

- 2D: bidimensional
 - Produz plantas e elevações do projeto.
- 2,5D: 2D com informações sobre a 3a. Dimensão
 - Produz/Modela peças de extrusão e revolução
 - Modelo 2,5D, é como uma simulação computacional entre 2D e 3D). O termo modelo 2,5 dimensional é usado para modelos que incluem cálculo além de um mero modelo 2D, mas não tratam a terceira dimensão da mesma maneira. (http://astro.vaporia.com/ acesso em abril/2024)
 - Em computação gráfica, pode ser visto para alguns atalhos na criação de imagens de objetos vistos em um ângulo, como renderizar a imagem de uma caixa simplesmente esticando para remodelar imagens 2D de cada um dos lados da caixa visíveis na imagem. O termo 2.5D também tem sido usado para representação estéreo.

Classificação dos CADs Dimensões

- 3D: tridimensional
 - Produz modelos exatos de peças complexas
 - modelos em arames (wireframes)
 - modelos sólidos (B-rep, C-rep, CSG, etc...)
 - modelagem de superfícies (Bezier, B-spline, NURBS)

CAD 2D: Vantagens

- O software é bem mais barato
- São sistemas mais rápidos
 - exigem computadores mais baratos
- São fáceis e intuitivos
 - usam a metáfora da prancheta eletrônica
- Aplicações específicas produzem sistemas altamente efetivos
 - Circuitos, PCB, Civil, Topografia, Cartografia

CAD 2D: Modelo pseudo-3D

CAD 2D: Modelo pseudo-3D

Prédios Impossíveis

M. C. Escher

CAD 2D: Desvantagens (1)

- Todo desenho 2D requer trabalho de interpretação:
 - para peças complexas fica difícil e, se usando superfícies, impossível.
 - difícil de avaliar choques e interferências
- Não permite a análise da integridade e consistência dos modelos (Modelos Pseudo-3D)
- Não permite visualização mais apelativa
- Não permite cálculos de volume, CG, Momento de Inércia, Áreas totais, Superfícies totais (se curvas livres)
- Limita/atrapalha a criatividade

CAD 2D: Desvantagens (2)

- As informações em uma vista são de difícil manutenção ou associação automática em outra vista
 - uma mudança de um desenho 2D em uma vista precisa ser atualizada manualmente num outro desenho 2D em outra vista do mesmo modelo.
- O modelo não é útil para a maioria dos outros sistemas computacionais ou outras simulações
- O modelo não se presta para o desenvolvimento colaborativo pois a "*leitura técnica*" é linguagem de conhecimento de poucos (engenheiros).

2D or not 2D?

Brian Davis, e4engineering.com, 23 August 2001

- Analisando o survey da Business Advantage com 250 empresas do UK
- Usa somente ferramentas para desenho 2D (51%)
- Usa somente ferramentas 3D (7%)
 - Os menores índices de uso de 3D são na engenharia elétrica e civil
 - Metade das empresas de eng. mecânica usam algo de 3D
- Usa uma combinação de 2D e 3D (39%)

2D or not 2D? cont

Brian Davis, e4engineering.com, 23 August 2001

- Sobre a mudança...
 - 75% dos que não usam 3D **não** pretendem usá-lo
 - Os que foram para 3D disseram que tiveram grandes lucros
- Antagonismos na produtividade
 - Empresas dizem que levam até 2 anos para o uso efetivo
 - Vendedores dizem que se aprende em dias, máximo meses.

2D or not 2D? cont......

Brian Davis, e4engineering.com, 23 August 2001

- Os maiores problemas para ir do 2D -> 3D
 - 3D é muito caro,
 - toma muito tempo para aprender
 - é difícil de usar
- Os maiores benefícios para ir do 2D -> 3D
 - aumentos de até 25% de produtividade
 - projeto "certo da primeira vez"
 - associatividade entre o modelo 3D e os desenhos 2D

USO 2D/3D

https://youtu.be/MyO9wfU86el

(3DS, 2020)

