Assignment Set: 6, 7, 15, 17, 19, 21 from pages 141 - 142

6)

Find the closure of each set:

- a. $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$
 - Answer: \emptyset
- b. **№**

Answer: \mathbb{N}

c. \mathbb{Q}

Answer: \mathbb{R}

- d. $\bigcap_{n=1}^{\infty} (0, \frac{1}{n})$
 - Answer: \emptyset
- e. $\{ \mathbf{x} : |x 5| \le \frac{1}{2} \}$
 - [4.5, 5.5]

Answer: [4.5, 5.5]

- f. $\{ x : x^2 > 0 \}$
 - $(0,\infty)$

Answer: $[0, \infty)$

7)

Let S, T $\subset \mathbb{R}$. Find a counterexample of each of the following:

- a. If P is the set of all isolated points of S, then P is a closed set.
 - Answer: Let $S = \mathbb{N}$
- b. Every open set contains at least two points.
 - Answer: \emptyset
- c. If S is closed, then cl(int S) = S.
 - Answer: Let $S = \mathbb{Q}$
- d. If S is open, then int (cl S) = S.
 - Answer: Let $S = (-1, 0) \cup (0, 1)$
- e. bd (cl S) = bd S
 - Answer: Let $S = (-1, 0) \cup (0, 1)$
- f. bd (bd S) = bd S

Answer: Let $S = \mathbb{Q}$. Then bd S is \mathbb{R} , and bd (bd S) = $\emptyset \neq \mathbb{R}$.

- g. $\operatorname{bd}(S \cup T) = (\operatorname{bd} S) \cup (\operatorname{bd} T)$
 - Answer: Let $S = \mathbb{R}$, T = (0,1). bd $(S \cup T) = \emptyset$, but bd $S \cup$ bd $T = \emptyset \cup \{0,1\}$
- h. $bd (S \cap T) = (bd S) \cap (bd T)$
 - Answer: Let S = (0, 1), T = (1, 2). bd $(S \cap T) = \emptyset$, but bd $S \cap$ bd T = 1.

15)

Prove: If x is an accumulation point of the set S, then every neighborhood of x contains infinitely many points of S.

Proof.

Suppose that \exists a deleted neighborhood of x, called N, that contains n points $x_1, x_2, ... x_n$ of S where n is a finite amount and $x_1 \leq x_2, \leq ... x_n$

x is an accumulation point on S if $\forall \epsilon > 0$, $N^*(x, \epsilon) \cap S \neq \emptyset$.

N is a deleted neighborhood of S if $\forall x \in \{y \in \mathbb{R} : 0 < |y - x| < \epsilon\}, x \in \mathbb{N}$.

Let $\hat{\epsilon} = \epsilon + \epsilon$, and $x_0 = x_1 - \hat{\epsilon}$.

By definition, $x_0 \in N$, since N is a neighborhood $\forall \epsilon > 0$.

However, N only has n elements. A contradiction.

So, N can't be a deleted neighborhood since it has a finite number of elements, which means x can't be an accumulation point.

17)

Prove: S' is a closed set.

Proof.

By definition, $\forall x \in S', \ \epsilon > 0, \ N^*(x, \epsilon) \cap S \neq \emptyset$

Notice that if S' is empty or S' is \mathbb{R} , then S' is a closed set and we are done.

Let: $\mathbb{R} \setminus S' \subset \mathbb{R}$, $x \in \mathbb{R} \setminus S'$

Want to show: $\mathbb{R} \setminus S'$ is open.

 $\mathbb{R} \setminus S'$ is open iff $\mathbb{R} \setminus S' = \operatorname{int} (\mathbb{R} \setminus S')$

int $\mathbb{R} \setminus S' = \{ s: N(s, \epsilon) \subset \mathbb{R} \setminus S' \}$

19)

Suppose S is a nonempty bounded set and let $m = \sup S$. Prove or give a counter example: m is a boundary point of S.

Proof.

By definition,

 $s \leq m, \forall s \in S, and,$

 $\forall \epsilon > 0, \exists s' \in S \text{ st } m - \epsilon < s'$

By the second part of the definition of the supremum of S, $N(m, \epsilon) \cap S \neq \emptyset$.

Notice also that, by the first part of the definition of the supremum of S, $(m + \epsilon) \notin S$. This means that $N(m, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$.

By definition, m is a boundary point.

21)

Let A be a nonempty open subset of \mathbb{R} and let $Q \subset \mathbb{Q}$. Prove: $A \cap Q \neq \emptyset$.

Proof.

Notice that $Q \subset \mathbb{Q} \subset \mathbb{R}$.

Since A is nonempty, \exists at least one element $a \in \mathbb{R}$.

Since A is nonempty and open, $a + \epsilon \in A$.

If $a \in \mathbb{Q}$, then result.

If a $+\epsilon \in \mathbb{Q}$, then result.

If $a \notin \mathbb{Q}$ and $(a + \epsilon) \notin \mathbb{Q}$, then:

Let x = a, $y = a + \epsilon$, z = y - x.

By Archimedes' axiom, \exists n st n > $\frac{1}{z}$

nz > 1

ny - nx > 1

Since the difference between ny and nx is bigger than 1,

 $\exists m \in \mathbb{Z} \text{ st nx} < m < \text{ny}.$

See that since $\mathbf{x} < \frac{m}{n} < y, \, \frac{m}{n}$ is a rational number, and $\frac{m}{n} \in \mathbf{A}$.

Hence, result.