

ETC3250 Business Analytics: Classification with Support Vector Machines

Souhaib Ben Taieb, Di Cook, Rob Hyndman

September 21, 2015

LDA to SVM

- Support vector machines build a classifier by finding gaps between clusters
- Primarily only work on two classes at a time, so multiclass problems need some tweaking of approach
- Let's look at how it works on the same three examples as used for LDA

Boundaries for Olive oils: LDA, SVM

Boundaries for Beetles: LDA, SVM

Boundaries for Crabs: LDA, SVM

Comparison

- Which boundaries look better?
- Why?

How does SVM work?

- Variables $(x_1,...,x_p)$ need to be standardized
- Class (y) is coded as ± 1
- Separating hyperplane defined to be $\{x : x^T b + b_o = 0\}$ $\{x, b \text{ are } p\text{-dimensional vectors}\}$
- where $b = \sum_{i=1}^{s} (\alpha_i y_i) x_i$
- s is the number of support vectors
- estimated by maximizing margin M=2/||b|| subject to $\sum_{i=1}^{p}b_{i}^{2}=1$, $y_{i}(x_{i}^{T}b+b_{o})\geq 1, i=1,...,n$

Best separating hyperplane

■ All are separating hyperplanes. Which is best?

Maximum margin

Distance between the two planes

Support vectors

✓ Distance between these is what is maximized

Support vectors for the olive oil classification

Simulation example

```
## x1 x2 y
## 1 0.7741756 0.7869346 1
## 2 1.1457799 0.7869346 1
## 3 0.7741756 1.1366833 1
## 4 -0.8980437 -0.7869346 -1
## 5 -1.0838459 -0.9618089 -1
## 6 -0.7122416 -0.9618089 -1
```

Simulation example

Fit the classifier

```
df.svm <- svm(y~., data=df, kernel="linear")</pre>
df.svm$SV
df.svm$index
df.svm$coefs
##
             x1
                       x2
## 1 0.7741756 0.7869346
## 4 -0.8980437 -0.7869346
## 6 -0.7122416 -0.9618089
## [1] 1 4 6
##
              [,1]
## [1.] 0.3094284
## [2,] -0.1404977
## [3,] -0.1689307
```

Calculate

Look at it

Non-separable, and outliers

Outliers can overly influence a strict boundary

Non-separable

- estimated by maximizing margin M = 2/||b||
- subject to $\sum_{i=1}^{p} b_i^2 = 1$, $y_i(x_i^T b + b_o) \ge M(1 \epsilon_i)$, i = 1, ..., n, where $b = \sum_{i=1}^{s} (\alpha_i y_i) x_i$
- \bullet $\epsilon_i \geq 0$, and $\sum_{i=1}^{n} \epsilon_i < C$ where C is a non-negative tuning parameter

Nonlinear separability

- Variables $(x_1,...,x_p)$ could be expanded to include $(x_1^2,...,x_p^2)$
- then proceed with building classifier in the expanded space
- maximize margin M = 2/||b|| subject to $\sum_{1}^{p} b_{1i}^{2} + \sum_{1}^{p} b_{2i}^{2} = 1$, $y_{i}((x_{i}^{2})^{T}b_{2} + x_{i}^{T}b_{1} + b_{o}) \geq M(1 \epsilon_{i})$

Kernels - make nonlinear classification easy to define

- Because $b = \sum_{i=1}^{s} (\alpha_i y_i) x_i$
- $y_i(x_i^T b + b_o)$ can be written as
- $y_i(\alpha_i x_i^T x_i + b_o)$

■ $x_i^T x_i$ can be wrapped into a kernel function $K(x_i^T x_i)$ which enables building nonlinear boundaries

Common kernels

$$K(\mathbf{x}_i,\mathbf{x}_j)$$

Name	Function
Polynomial	$(\mathbf{x}_i ^T\mathbf{x}_j +d)^p$
Gaussian radial basis	$exp(- \mathbf{x}_i - \mathbf{x}_j ^2/2\sigma^2)$
Sigmoid	$tanh(a \mathbf{x}_i ^T\mathbf{x}_j +d)$

Examples

Examples

```
##
## Call:
## svm(formula = y \sim ., data = df)
##
##
## Parameters:
##
      SVM-Type: C-classification
## SVM-Kernel: radial
##
         cost: 1
        gamma: 0.5
##
##
## Number of Support Vectors:
                               16
##
               x1
                          x2
## 147 0.5036281 0.3744985
## 148 -0.6434527 0.1471393
## 150 0.2449530 -0.4603625
```

Examples

olive.svm <- svm(region~linoleic + arachidic, data=olive.sub,
 kernel="polynomial", degree=2)</pre>

olive.svm <- svm(region~linoleic + arachidic, data=olive.sub,
 kernel="radial")</pre>

olive.svm <- svm(region~., data=olive.sub[,-c(2,10)],
 kernel="radial")</pre>

High-dimensional data

- For high-dimension low sample size problems (more variables than samples) SVM cannot properly estimate the coefficients for the separating hyperplane
- Even fitting a linear kernel is a problem
- The same is true for LDA
- Dimension reduction, or penalisation, needs to be used in association with the classifiers

Links to ggobi videos

- How do boundaries look in high dimensions?
- This video is a basic intro to visualising the SVM model
- This video shows boundaries for a radial kernel fitted to 3D data
- This video shows boundaries for a polynomial kernel fitted to 5D data
- This video another video illustrating looking at boundaries for an SVM model

Multiclass

The available procedures are:

- One-vs-one (also called all-vs-all) or one-vs-all.
- One-vs-one, makes all pairwise classifiers. Predictions are made by a voting scheme.
- One-vs-all does A vs not A, B vs not B, ... Predictions are made by picking the best "positive" class (A, B, ...).