1	LISTING	OF	CLATMS
		Ot.	CITATIO

- 2 CLAIMS:
- 3 What is claimed is:
- 4 1. (Original) A method for imparting a watermark onto a
- 5 digitized image, said method comprising:
- 6 providing a digitized image having at least one image plane,
- 7 said image plane being represented by an image array having
- 8 a plurality of pixels, said pixel having at least one color
- 9 component, said watermark being formed using a distinct
- 10 watermarking plane represented by an array having a
- 11 plurality of distinct watermarking elements, each of said
- 12 distinct watermarking elements having an array position and
- 13 having one-to-one positional correspondence with said image
- 14 pixels, and
- multiplying said brightness data associated with said at
- least one color component by a predetermined brightness
- multiplying factor, wherein said brightness multiplying
- 18 factor is a corresponding distinct watermarking element, and
- 19 said watermark has a invisibility classification.
- 20 2. (Original) A method as recited in claim 1, wherein said
- 21 brightness multiplying factor has a relationship with a number
- 22 taken from a random number sequence.
- 23 3. (Original) A method as recited in claim 2, wherein said
- 24 relationship is a linear remapping to provide a desired
- 25 modulation strength.

- 1 4. (Original) A method as recited in claim 3, wherein said
- 2 modulation strength lies in the domain greater than or equal to
- 3 zero and less than or equal to 0.5.
- 4 5. (Original) A method for imparting a watermark onto a
- 5 digitized image comprising the steps of:
- 6 providing said digitized image comprised of a plurality of
- 7 pixels, wherein each of said pixels includes brightness data
- 8 that represents a brightness of at least one color; and
- 9 altering said brightness data associated with a plurality of
- said pixels maintaining the hue and saturation of said
- ll pixel.
- 12 6. (Original) A method as recited in claim 5, wherein said
- image has I rows and J columns, and has a pixel in row i and
- 14 column j having at least one brightness, Y(i,j), and the step of
- 15 altering includes:
- 16 adding to or subtracting from the brightness Y(i,j) a different
- 17 small random value e(i,j), wherein $1 \le i \le I$ and $1 \le j \le J$ are
- 18 the row and column indices of a pixel location in the image.
- 19 7. (Original) A method as recited in claim 6, wherein the step
- of adding to or subtracting from includes making e(i,j)
- 21 proportional to an original brightness of the pixel.
- 22 8. (Original) A method as recited in claim 6, wherein color
- components of the unaltered pixel are X(i,j), Y(i,j), and Z(i,j),
- 24 and color components of the brightness altered pixel are X'(i,j),
- Y'(i,j), and Z'(i,j), and the step of adding to or subtracting
- 26 from includes setting e(i,j) = d(i,j)Y(i,j), where d(i,j) is a

- value selected from an array of random values within a range of 0
- 2 $\leq d(i,j) \leq 1$, such that the modified brightness Y'(i,j) =
- Y(i,j)+e(i,j) = Y(i,j)+d(i,j)Y(i,j), and X'(i,j)/X(i,j) =
- 4 Z'(i,j)/Z(i,j) = Y'(i,j)/Y(i,j) = e(i,j) = 1-d(i,j).
- 5 9. (Original) A method as recited in claim 8, wherein the step
- 6 of setting includes preserving ratios of color components in each
- 7 pixel.
- 8 10. (Original) A method as recited in claim 9, wherein the step
- 9 of preserving includes setting X'(i,j)/X(i,j) = Z'(i,j)/Z(i,j) =
- 10 Y'(i,j)/Y(i,j) = 1-d(i,j), wherein the color components of the
- unaltered pixel are X(i,j), Y(i,j), and Z(i,j), and the color
- 12 components of the brightness altered pixel are X'(i,j), Y'(i,j),
- 13 and Z'(i,j).
- 14 11. (Original) A method for imparting a watermark onto a
- 15 digitized image comprising the steps of:
- 16 providing said digitized image comprised of a plurality of
- 17 pixels, wherein each of said pixels includes brightness data
- 18 that represents a brightness of at least one color, with
- said image having I rows and J columns, and a pixel in row i
- and column j having a brightness Y(i,j); and
- 21 for a plurality i and at least one j adding to or
- 22 subtracting from the brightness Y(i,j) a random value
- 23 e(i,j), wherein $1 \le i \le I$ and $1 \le j \le J$ are the row and
- 24 column indices of a pixel location in the image.
- 25 12. (Original) A method as recited in claim 11, wherein e(i,j)
- 26 is in the domain 0 to 1 multiplied by Y(i,j).

1	13. (Original) A method for generating a watermarked image, the
2	method comprising:
3	imparting a watermark onto a digitized image having a
4	plurality of original pixels, each of said pixels having at
5	least one original pixel brightness value;
6	providing said digitized watermarking plane comprising
7	a plurality of watermarking elements, each element
8	having a watermark brightness multiplying factor and
9	having one-to-one positional correspondence with said
10	original pixels; and
11	producing a watermarked image by multiplying said
12	original brightness of each of said original pixels by
13	said brightness multiplying factor of a corresponding
14	one of said watermark elements.
15	14. (Original) A method comprising:
16	forming a watermarking plane including a plurality of elements
17	each having a brightness adding or subtracting factor, including
18	the steps of:
19	generating a secure random sequence of integers having
20	a first plurality of bits;
21	linearly remapping said random sequence to form a
22	remapped sequence of brightness multiplying factors to

23

provide a desired modulation strength;

remapped sequence of brightness multiplying factors to

•	computing a discrete Fourier transform of said remapped
2	sequence to form a Fourier sequence having frequency
3	coordinates;
4	expanding said frequency coordinates to form an
5	expanded sequence;
6	computing an inverse discrete Fourier transform of said
7	expanded sequence to obtain a watermarking sequence of
8	values; and
9	deriving said brightness adding or subtracting values
10	of said elements of said watermarking plane based upon
11	said watermarking sequence of values.
12	15. (Original) A method for detecting a watermark in a marked
13	image, said method comprising:
14	providing said marked image marked by a watermarking plane,
15	said marked image having at least one color plane including
16	a plurality of image pixels, said watermarking plane having
17	a plurality of watermarking elements, wherein each of said
18	image pixels has at least one brightness value and each of
19	said watermarking elements has a brightness adding and/or
20	subtracting factor, including the steps of:
21	(a) reconstructing said watermarking plane;
22	(b) aligning said watermarking plane with said marked
23	image such that each watermarking element has a
24	corresponding image pixel;

-	(c) providing a selector array and a visualizer image
2	of equal size, wherein said selector array has a
3	plurality of selector elements each having at least one
4	counter, and wherein said visualizer image has a
5	plurality of visualizer pixels each having at least one
6	brightness value, and wherein said visualizer pixels
7	represent a recognizable pattern when displayed;
8	(d) resetting said at least one counter to zero;
9	(e) placing said selector in an initial position by
10	aligning said selector elements with a plurality of
11	corresponding image pixels and a plurality of
12	corresponding watermarking elements;
13	(f) choosing a selector element and identifying a
14	corresponding watermarking element;
-15	(g) identifying a first plurality of watermarking
16	elements that neighbor said corresponding watermarking
17	element;
18	(h) generating a first average that represents an
19	average of brightness multiplying factors of said first
20	plurality of watermarking elements;
21	(i) choosing a color plane of said marked image and
22	finding a corresponding image pixel;
23	(j) identifying a first plurality of neighboring pixels
24	that neighbor said corresponding image pixel;
25	

•	(K) generating a second average that represents an
2	average of brightness values of said first plurality of
3	neighboring pixels;
4	(1) updating said at least one counter based upon first
5	and second comparison operations, wherein said first
6	comparison operation compares said first average with
7	said brightness multiplying factor of said
8	corresponding watermarking element and said second
9	comparison operation compares said second average with
10	said brightness value of said corresponding pixel;
11	(m) repeating steps (i) through (1) for all color
12	planes;
13	(n) repeating steps (f) through (m) for all selector
14	elements;
15	(o) choosing a new selector position that does not
16	overlap any previous selector position;
17	(p) repeating steps (f) through (o) for all
18	non-overlapping selector positions; and
19	(q) generating a visual representation indicating
20	detection of said watermark in said marked image
21	utilizing said at least one counter of said selector
22	array and said visualizer pixels.
23	16. (Withdrawn) A method for detecting a watermarking plan
24	comprising the steps of:

1	providing an image having a plurality of image pixels,
2	u(i,j), with said image having I rows and J columns, and a pixel
3	in row i and column j having at least one component, marked by a
4	watermarking plane; said watermarking plane having a plurality of
5	watermarking elements, w(i,j), with said watermarking plane
6	having I rows and J columns, and an element in row i and column j
7	having a brightness multiplying factor;
8	aligning said watermarking plane with said image;
9	identifying a subset of said image elements;
	·
10	for each pixel, u(i,j), of said subset of image pixels,
11	generating a first value representing a relationship
12	between an attribute of said pixel u(i,j) and an
13	attribute of image pixels that neighbor said pixel
14	u(i,j);
15	identifying a watermarking element, w(i,j), that
16	corresponds to said pixel u(i,j) and watermarking
17	elements that correspond to said image pixels that
18	<pre>neighbor said image pixel u(i,j);</pre>
19	generating a second value representing a relationship
20	between an attribute of said watermarking element
21	w(i,j) and an attribute of the identified watermarking
22	elements; and
23	generating a coincidence value representing a
24	likelihood that said image is marked by said
25	watermarking plane based upon said first and second
26	values.

- 1 17. (Original) A method as recited in claim 1, wherein said
- 2 distinct watermarking element, has a value being in the domain
- 3 greater than or equal to zero and less than or equal to one.
- 4 18. (Withdrawn) A method for imparting a watermark onto a
- 5 digitized image comprising the steps of:
- 6 providing said digitized image comprised of a plurality
- of image pixels with said digitized image having I rows
- 8 and J columns, and a pixel in row i and column j having
- 9 at least one component, Y(i,j); and
- 10 adding to or subtracting from said brightness data
- 11 associated with at least one of said pixels a
- 12 predetermined brightness adding factor in the range of
- 0 to Y(i,j), or brightness subtracting factor in the
- range of 0 to Y(i,j).
- 15 wherein said brightness adding or subtracting factor has a
- 16 relationship with a number taken from a random number sequence,
- 17 said relationship is a linear remapping to provide a desired
- 18 modulation strength, and said modulation strength is less than or
- 19 equal to 50 percent.
- 20 19. (Withdrawn) A method for imparting a watermark onto a
- 21 digitized image comprising the steps of:
- 22 providing said digitized image comprised of a plurality
- of image pixels with said image having I rows and J
- 24 columns, and a pixel in row i and column j having at
- least one component, Y(i,j); and

- 1 adding to or subtracting from said brightness data
- 2 associated with at least one of said pixels by a
- 3 predetermined brightness adding or subtracting factor
- 4 in the range of 0 to Y(i,j),
- 5 wherein said brightness adding or subtracting factor has a
- 6 relationship with a number taken from a random number sequence,
- 7 said relationship is a linear remapping to provide a desired
- 8 modulation strength, said sequence is formed from a plurality of
- 9 robust watermarking parameters, and said parameters comprise a
- 10 cryptographic key, two coefficients and an initial value of said
- 11 random number generator.
- 12 20. (Withdrawn) A method for detecting a watermark, said method
- 13 comprising:
- 14 providing a marked image having a plurality of image pixels said
- 15 marked image being marked by a watermarking plane, having a
- 16 plurality of watermark elements;
- 17 aligning said watermarking plane with said marked image, and
- 18 generating a coincidence value by averaging a detection
- 19 coincidence for each selector element of a group of selector
- 20 elements taken from said image pixels.
- 21
- 22 21. (Withdrawn) A method as recited in claim 20, wherein each
- 23 of said group of selector elements has a selector size, said
- 24 method further comprising:

- l providing a visualizer pattern having a plurality of visualizer
- 2 pixels and a visualizer size equal to said selector size, each of
- 3 said visualizer pixels being associated with one of said selector
- 4 elements and having a visualizer color; and
- 5 displaying a watermark detection pattern having a size at least
- 6 equal to said visualizer size and a plurality of
- 7 visualizer-coincidence pixels, wherein each of said
- 8 visualizer-coincidence pixels is associated with a corresponding
- 9 selector element and a corresponding visualizer pixel, and each
- 10 of said visualizer-coincidence pixels being displayed having said
- ll visualizer color when said coincidence value of said
- 12 corresponding selected element has an indication of a detection
- 13 success and having another color otherwise.
- 14 22. (Withdrawn) A method as recited in claim 20 wherein said
- 15 watermark is based on a factor multiplying a brightness value of
- 16 each of said image pixels.
- 17 23. (Withdrawn) A method as recited in claim 20, further
- 18 comprising:
- 19 reconstructing said watermarking plane used in generating said
- 20 watermark.
- 21
- 22 24. (Withdrawn) A method as recited in claim 23, wherein said
- 23 watermarking plane has a plurality of watermarking elements, said
- 24 method further comprising:
- 25 rotating, resizing and said image to bring it to a size and
- 26 position of an original image, and

- 1 aligning said watermarking plane with said marked image such that
- 2 each of said watermarking elements has a corresponding image
- 3 pixel.
- 4 25. (Withdrawn) A method as recited in claim 20, wherein each
- 5 said group contains 128 elements.
- 6 26. (Withdrawn) A method as recited in claim 20, wherein each
- 7 pixel of said image pixels has a monochrome brightness value.
- 8 27. (Withdrawn) A method as recited in claim 20, wherein said
- 9 watermarking plane is generated using a plurality of robust
- 10 watermarking parameters.
- 11 28. (Withdrawn) A method as recited in claim 20, wherein said
- 12 coincidence variable is determined using a statistically related
- 13 attribute relating each said selector element to a plurality of
- 14 neighboring elements.
- 15 29. (Withdrawn) A method as recited in claim 28, wherein said
- 16 attribute is a brightness value.
- 17
- 18 30. (Withdrawn) A method for detecting a watermark imparted on
- 19 an image, said method comprising:
- 20 providing said image having at least one image plane, said image
- 21 plane being represented by an image array having a plurality of
- 22 image elements, said watermark being formed using a watermarking
- 23 plane represented by a watermarking array having a plurality of
- 24 watermarking elements, each of said watermarking elements having
- 25 a first array position and having one-to-one positional
- 26 correspondence with said image elements;

- 1 computing a first statistically related variable for each element
- 2 of at least one first grouping of a first selector array of
- 3 elements taken from said image elements, wherein each of said
- 4 image elements has a second array position;
- 5 computing a second statistically related variable for each
- 6 element of at least one second grouping of a second selector
- 7 array of elements taken from said watermarking elements, wherein
- 8 each element of said second selector array of elements has
- 9 one-to-one positional correspondence with said first selector
- 10 array, and wherein said correspondence forms combinations of
- 11 corresponding elements;
- 12 comparing to determine an affirmative and non-affirmative
- 13 likeness of said first and second statistically related variables
- 14 for each of said combinations of corresponding elements; and
- 15 forming at least one comparison array having one-to-one
- 16 correspondence with said at least one first grouping and having a
- 17 plurality of comparison elements, wherein each of said comparison
- 18 elements contains a positive detection indication for each
- 19 element of said first grouping when said step of comparing
- 20 results in an affirmative likeness, and a negative detection
- 21 indication for each element of said first grouping when said step
- of comparing results in a non-affirmative likeness.
- 23 31. (Withdrawn) A method as recited in claim 30, wherein said
- 24 watermark is formed by adding or subtracting a brightness factor
- 25 of each of said image elements by an amount contained in a
- 26 corresponding element of said watermarking elements.

- 1 32. (Withdrawn) A method as recited in claim 30, wherein said
- 2 first grouping corresponds to a selector positioned to encompass
- 3 said first selector array of elements forming a rectangular
- 4 cluster of elements.
- 5 33. (Withdrawn) A method as recited in claim 30, wherein said
- 6 first statistical variable is formed by comparing an attribute of
- 7 said each element of said first selector array of elements to an
- 8 average attribute of its 128 closest neighbors.
- 9 34. (Withdrawn) A method as recited in claim 30, wherein said
- 10 attribute is a ratio of the color component to the average of
- 11 neighboring color components in the same color plane. (Withdrawn)

12

- 13 35. (Withdrawn) A method as recited in claim 30, wherein each
- 14 of said at least one first grouping is positioned so as not to
- 15 overlap any other of said at least one first grouping.

16

- 17 36. (Withdrawn) A method as recited in claim 30, wherein each
- 18 said comparison elements has a particular position in said
- 19 comparison array, said method further comprising:
- 20 determining an average percentage of said affirmative and
- 21 non-affirmative likeness of each element of said comparison
- 22 elements having a same particular position in all arrays of said
- 23 at least one comparison array, and
- 24 forming a detection array of elements having one-to-one element
- 25 correspondence with said comparison elements, wherein each
- 26 element of said detection array of elements contains said average
- 27 percentage.

- 1 37. (Withdrawn) A method as recited in claim 36, further
- 2 comprising the steps of:
- 3 providing a visualizer pattern of pixels represented by an array
- 4 having visualizer pixels which have one-to-one element
- 5 correspondence with said detection array, each of said visualizer
- 6 pixels has a first logical value if a corresponding visualizer
- 7 pixel is black, and a complementary logical value if said
- 8 corresponding pixel is white;
- 9 forming a visualizer coincidence image having a plurality of
- 10 coincidence pixels, wherein a coincidence pixel has a
- ll corresponding visualizer pixel and a corresponding detection
- 12 array element; and
- 13 setting said coincidence pixel to black if both said
- 14 corresponding visualizer pixel is black and said percentage
- 15 average of said corresponding detection array element has a value
- 16 greater than a predetermined detection threshold, otherwise
- 17 setting said coincidence pixel to white.
- 18 38. (Withdrawn) A method as recited in claim 30, wherein said
- image has three color planes.
- 20 39. (Withdrawn) A method comprising generating a visual
- 21 representation of a data array of data elements having a data
- 22 array size, including the steps of:
- 23 providing a visualizer pattern of visualizer pixels
- 24 represented by a visualizer array of visualizer pixels, said
- visualizer array having a visualizer array size equal to
- 26 said data array size;

I	forming a visualizer-coincidence image of image pixels
2	represented by an image array having an image array size
3	equal to said visualizer array size;

- setting each said visualizer-coincidence pixel to the color of said corresponding visualizer pixel if a value of said corresponding data element is above a predetermined threshold and to another color if said value is below said predetermined threshold; and
- 9 displaying said visualizer-coincidence image to form said visual representation.
- 11 40. (Withdrawn) A method as recited in claim 39, wherein said
- 12 data array represents data resulting from a watermark detection
- 13 implementation.
- 14 41. (Withdrawn) A method as recited in claim 39, wherein said
- 15 first color is black and said second color is white.
- 16 42. (Withdrawn) A method as recited in claim 39, wherein said
- 17 threshold is set at a fifty percent success rate.
- 18 43. (Withdrawn) A method for demonstrating an existence of a
- 19 watermark in a marked image, said image having a plurality of
- 20 image pixels, said method comprising:
- 21 providing a visualizer pattern represented by an array of
- 22 visualizer elements, each of said visualizer elements
- 23 corresponding with one pixel of a plurality of visualizer pixels
- 24 and having a first value if said one pixel has a first color and
- 25 a second value if said one pixel has a second color, said
- 26 visualizer array having a visualizer array size;

- implementing a watermark detection scheme and computing a
- 2 coincidence value for each of said image pixels within a
- 3 plurality of pixel selector arrays taken from among said image
- 4 pixels, each of said pixel selector arrays having a selector
- 5 array size equal to said visualizer array size;

б

- 7 forming a detection array from a plurality of coincidence values,
- 8 wherein said detection array has a detection array size equal to
- 9 said visualizer size; and
- 10 computing a coincidence detection value for each of said
- 11 visualizer elements such that said detection value represents a
- 12 visualizer.
- 13 44. (Withdrawn) A method for detecting a watermark in a marked
- 14 image having a plurality of image pixels, said marked image
- 15 marked by a watermarking plane having a plurality of watermarking
- 16 elements, said method comprising:
- 17 providing a visualizer pattern having a plurality of visualizer
- 18 pixels and a visualizer size;
- 19 aligning said watermarking plane with said marked image such that
- 20 each said image pixel has a corresponding watermarking element;
- 21 generating a statistically related variable for each image
- 22 element in a plurality of groupings of image elements in
- 23 relationship with said corresponding watermarking element;
- 24 wherein each of said groupings has a grouping size equal to said
- 25 visualizer size;

- 1 averaging said variable for each element in a like position of
- 2 all of said groupings to obtain a composite detection success
- 3 value; and
- 4 displaying detection success values by a plurality of
- 5 visualizer-coincidence pixels having a size equal to said
- 6 visualizer size, each said visualizer-coincidence pixel having a
- 7 same color as said corresponding visualizer pixel when said
- 8 corresponding success value indicates detection success and
- 9 another color otherwise.
- 10 45. (Currently amended) A computer program product comprising a
- 11 computer usable medium having computer readable program code
- 12 means embodied therein for causing a watermark to be imparted
- 13 into an image, the computer readable program code means in said
- 14 computer program product comprising computer readable program
- 15 code means for causing a computer to effect the steps of claim 1:
- 16 providing a digitized image having at least one image plane.
- 17 <u>said image plane being represented by an image array having</u>
- a plurality of pixels, said pixel having at least one color
- 19 <u>component, said watermark being formed using a distinct</u>
- 20 <u>watermarking plane represented by an array having a</u>
- 21 plurality of distinct watermarking elements, each of said
- 22 <u>distinct watermarking elements having an array position and</u>
- 23 <u>having one-to-one positional correspondence with said image</u>
- 24 pixels, and
- 25 <u>multiplying said brightness data associated with said at</u>
- 26 <u>least one color component by a predetermined brightness</u>
- 27 <u>multiplying factor, wherein said brightness multiplying</u>
- 28 <u>factor is a corresponding distinct watermarking element, and</u>
- 29 <u>said watermark has a invisibility classification.</u>

1	46. (Currently amended) A computer program product comprising a
2	computer usable medium having computer readable program code
3	means embodied therein for causing a watermark to be imparted
4	into an image, the computer readable program code means in said
5	computer program product comprising computer readable program
6	code means for causing a computer to effect the steps of claim 5:
7	providing said digitized image comprised of a plurality of
8	pixels, wherein each of said pixels includes brightness data
9	that represents a brightness of at least one color; and
10	altering said brightness data associated with a plurality of
11	said pixels maintaining the hue and saturation of said
12	pixel.
10	
13	47. (Currently amended) A computer program product comprising a
14	computer usable medium having computer readable program code
15	means embodied therein for causing a watermark to be imparted
16	into an image, the computer readable program code means in said
17	computer program product comprising computer readable program
18	code means for causing a computer to effect the steps of claim 11
19	<u> </u>
20	
20	providing said digitized image comprised of a plurality of
21	pixels, wherein each of said pixels includes brightness data
22	that represents a brightness of at least one color, with
23	said image having I rows and J columns, and a pixel in row i
24	and column j having a brightness Y(i, i); and
26	
25	for a plurality i and at least one j adding to or
26	subtracting from the brightness Y(i,i) a random value
27	e(i,j), wherein $1 \le i \le I$ and $1 \le j \le J$ are the row and
28	column indices of a pixel location in the image.

*	40. (Garrener) american in companie program product companies a
2 ,	computer usable medium having computer readable program code
3	means embodied therein for causing generation of a watermarked
4	image, the computer readable program code means in said computer
5	program product comprising computer readable program code means
6	for causing a computer to effect the steps of elaim 13 :
7	imparting a watermark onto a digitized image having a
8	plurality of original pixels, each of said pixels having at
9	least one original pixel brightness value;
10	providing said digitized watermarking plane comprising
11	a plurality of watermarking elements, each element
12	having a watermark brightness multiplying factor and
13	having one-to-one positional correspondence with said
14	original pixels; and
15	producing a watermarked image by multiplying said
16	original brightness of each of said original pixels by
17	said brightness multiplying factor of a corresponding
18	one of said watermark elements.
19	49. (Currently amended) A computer program product comprising a
20	computer usable medium having computer readable program code
21	means embodied therein for causing formation of a watermarking
22	plane, the computer readable program code means in said computer
23	program product comprising computer readable program code means
24	for causing a computer to effect the steps of claim 14:
25	forming a watermarking plane including a plurality of elements
26	each having a brightness adding or subtracting factor, including

the steps of:

27

1	<u>generating a secure random sequence of integers having</u>
2	a first plurality of bits;
3	linearly remapping said random sequence to form a
4	remapped sequence of brightness multiplying factors to
5	provide a desired modulation strength;
6	computing a discrete Fourier transform of said remapped
7	sequence to form a Fourier sequence having frequency
8	coordinates;
	•
9	expanding said frequency coordinates to form an
10	expanded sequence;
11	computing an inverse discrete Fourier transform of said
12	expanded sequence to obtain a watermarking sequence of
13	<u>values; and</u>
14	deriving said brightness adding or subtracting values
15	of said elements of said watermarking plane based upon
16	said watermarking sequence of values.
17	50. (Currently amended) An article of manufacture comprising a
18	computer usable medium having computer readable program code
19	means embodied therein for causing detection of a watermark in a
20	marked image, the computer readable program code means in said
21	article of manufacture comprising computer readable program code
22	means for causing a computer to effect the steps of claim 15:
23	providing said marked image marked by a watermarking plane,
24	said marked image having at least one color plane including
25	a plurality of image pixels, said watermarking plane having

•	a prairie or watermarking elements, wherein each or said
2	image pixels has at least one brightness value and each of
3	said watermarking elements has a brightness adding and/or
4	subtracting factor, including the steps of:
5	(a) reconstructing said watermarking plane:
6	(b) aligning said watermarking plane with said marked
7	image such that each watermarking element has a
8	<pre>corresponding image pixel;</pre>
9	(c) providing a selector array and a visualizer image
10	of equal size, wherein said selector array has a
11	plurality of selector elements each having at least one
12	counter, and wherein said visualizer image has a
13	plurality of visualizer pixels each having at least one
14	brightness value, and wherein said visualizer pixels
15	represent a recognizable pattern when displayed;
16	(d) resetting said at least one counter to zero;
17	(e) placing said selector in an initial position by
18	aligning said selector elements with a plurality of
19	corresponding image pixels and a plurality of
20	corresponding watermarking elements;
٥.	
21	(f) choosing a selector element and identifying a
22	corresponding watermarking element;
23	(g) identifying a first plurality of watermarking
24	elements that neighbor said corresponding watermarking
25	element;

1	(h) generating a first average that represents an
2	average of brightness multiplying factors of said first
3	plurality of watermarking elements:
4	(i) choosing a color plane of said marked image and
5	finding a corresponding image pixel;
6	(j) identifying a first plurality of neighboring pixels
7	that neighbor said corresponding image pixel;
8	_
9	(k) generating a second average that represents an
10	average of brightness values of said first plurality of
11	neighboring pixels;
12	(1) updating said at least one counter based upon first
13	and second comparison operations, wherein said first
14	comparison operation compares said first average with
15	said brightness multiplying factor of said
16	corresponding watermarking element and said second
17	comparison operation compares said second average with
18	said brightness value of said corresponding pixel;
	,
19	(m) repeating steps (i) through (l) for all color
20	planes;
21	(n) repeating steps (f) through (m) for all selector
22	elements:
23	(o) choosing a new selector position that does not
24	overlap any previous selector position;
25	(p) repeating steps (f) through (o) for all
26	non-overlapping selector positions; and

1	(g) generating a visual representation indicating
2	detection of said watermark in said marked image
3	utilizing said at least one counter of said selector
4	array and said visualizer pixels.

- 5 51. (Withdrawn) An article of manufacture comprising a computer
- 6 usable medium having computer readable program code means
- 7 embodied therein for causing detection of a watermark in a marked
- 8 image, the computer readable program code means in said article
- 9 of manufacture comprising computer readable program code means
- 10 for causing a computer to effect the steps of claim 16.
- 11 52. (Withdrawn) An article of manufacture comprising a computer
- 12 usable medium having computer readable program code means
- 13 embodied therein for causing generation of a visual
- 14 representation of a data array of data elements, the computer
- 15 readable program code means in said article of manufacture
- 16 comprising computer readable program code means for causing a
- 17 computer to effect the steps of claim 39.
- 18 53. (Withdrawn) An article of manufacture comprising a computer
- 19 usable medium having computer readable program code means
- 20 embodied therein for causing a watermark to be imparted onto a
- 21 digitized image, the computer readable program code means in said
- 22 article of manufacture comprising computer readable program code
- 23 means for causing a computer to effect the steps of claim 18.
- 24 54. (Withdrawn) An article of manufacture comprising a computer
- 25 usable medium having computer readable program code means
- 26 embodied therein for causing a watermark to be imparted onto a
- 27 digitized image, the computer readable program code means in said

- l article of manufacture comprising computer readable program code
- 2 means for causing a computer to effect the steps of claim 19.
- 3 55. (Withdrawn) An article of manufacture comprising a computer
- 4 usable medium having computer readable program code means
- 5 embodied therein for causing detection of a watermark imparted
- 6 onto a digitized image, the computer readable program code means
- 7 in said article of manufacture comprising computer readable
- 8 program code means for causing a computer to effect the steps of
- 9 claim 20.
- 10 56. (Withdrawn) An article of manufacture comprising a computer
- 11 usable medium having computer readable program code means
- 12 embodied therein for causing detection of a watermark in a marked
- image, the computer readable program code means in said article
- 14 of manufacture comprising computer readable program code means
- 15 for causing a computer to effect the steps of claim 30.
- 16 57. (Currently amended and Withdrawn) An article of manufacture
- 17 comprising a computer usable medium having computer readable
- 18 program code means embodied therein for causing generation of a
- 19 visual representation of a data array of data elements, the
- 20 computer readable program code means in said article of
- 21 manufacture comprising computer readable program code means for
- 22 causing a computer to effect the steps of claim 39 40.
- 23 58. (Withdrawn) An article of manufacture comprising a computer
- 24 usable medium having computer readable program code means
- 25 embodied therein for causing demonstration of an existence of a
- 26 watermark in a marked image, the computer readable program code
- 27 means in said article of manufacture comprising computer readable
- 28 program code means for causing a computer to effect the steps of
- 29 claim 43.

- 1 59. (Withdrawn) A computer program product comprising a computer
- 2 usable medium having computer readable program code means
- 3 embodied therein for causing detection of a watermark in a marked
- 4 image, the computer readable program code means in said computer
- 5 program product comprising computer readable program code means
- 6 for causing a computer to effect the steps of claim 44.
- 7 60. (Original) An apparatus to impart a watermark onto a
- 8 digitized image, said apparatus comprising mechanisms for
- 9 implementing the method of claim 1.
- 10 61. (Original) An apparatus for imparting a watermark onto a
- ll digitized image comprising mechanisms for implementing the method
- 12 of claim 5.
- 13 62. (Original) An apparatus for imparting a watermark onto a
- 14 digitized image comprising mechanisms for implementing the method
- 15 of claim 6.
- 16 63. (Original) An apparatus for imparting a watermark onto a
- 17 digitized image comprising mechanisms for implementing the method
- 18 of claim 11.
- 19 64. (Original) A method for detecting a watermark in a marked
- 20 image, said method comprising:
- 21 providing said marked image having said watermark;
- 22 altering said marked image employing a blurring filter in
- 23 producing a filtered image; and

- 1 employing a watermark detection method upon said filtered image
- to detect said watermark. 2
- 3 65. (Original) A method for detecting a watermark in a marked
- 4 image, said method comprising:
- 5 providing said marked image having said watermark;
- 6 processing the marked image and producing a screened image;
- 7 altering said screened image employing a blurring filter in
- 8 producing a filtered image; and
- 9 employing a watermark detection method upon said filtered image
- 10 to detect said watermark.
- 66. (Original) A method as recited in claim 65, wherein the step 11
- 12 of processing includes producing a derivative image by screening,
- 13 printing and scanning the marked image.
- 14 67. (Original) A method as recited in claim 15, wherein the step
- 15 of aligning includes altering said marked image employing a
- 16 blurring filter.
- 17 68. (Withdrawn) A method as recited in claim 16, wherein the step
- 18 of aligning includes altering said marked image employing a
- 19 blurring filter.
- 20 69. (Withdrawn) A method as recited in claim 20, wherein the step
- 21 of aligning includes altering said marked image employing a
- 22 blurring filter.

- 1 70. (Withdrawn) A method as recited in claim 30, wherein the step
- 2 of providing includes altering said marked image employing a
- 3 blurring filter.
- 4 71. (Withdrawn) A method as recited in claim 44, wherein the step
- 5 of aligning includes altering said marked image employing a
- 6 blurring filter.
- 7 72. (Withdrawn) An article of manufacture as recited in claim 51,
- 8 wherein the step of aligning includes altering said marked image
- 9 employing a blurring filter.
- 10 73. (Withdrawn) An article of manufacture as recited in claim 59,
- 11 wherein the step of aligning includes altering said marked image
- 12 employing a blurring filter.
- 13 74. (Original) An apparatus as recited in claim 61, wherein the
- 14 means of providing includes means for altering said marked image
- 15 employing a blurring filter.
- 16 75. (Withdrawn) A method of generating a visual
- 17 representation of a data array of data elements having a data
- 18 array size, said method comprising:
- 19 providing a visualizer pattern of visualizer pixels represented
- 20 by a visualizer array of visualizer elements, said visualizer
- 21 array having a visualizer array size equal to said data array
- 22 size, wherein each of said visualizer elements has a first
- 23 logical value if a corresponding visualizer pixel is a first
- 24 color and a complementary logical value if said corresponding
- 25 visualizer pixel has a second color;

- forming a data image of image pixels represented by an image
- 2 array having an image array size equal to said data array size,
- 3 wherein an image pixel has a corresponding data element and a
- 4 corresponding visualizer pixel;
- 5 setting said data pixel to a color of said corresponding
- 6 visualizer pixel if a value of said data element is above a
- 7 predetermined threshold and to another color if said value is
- 8 below said predetermined threshold; and

9

- 10 displaying said data image to form said visual representation.
- 11 76. (Withdrawn) A method as recited in claim 75, wherein said
- 12 data array represents data resulting from a watermark detection
- 13 implementation.
- 14 77. (Withdrawn) A method as recited in claim 75, wherein said
- 15 first color is black and said second color is white.
- 16 78. (Withdrawn) A method as recited in claim 75, wherein said
- 17 threshold is set at a fifty percent success rate.
- 18 79. (Withdrawn) An article of manufacture comprising a computer
- 19 usable medium having computer readable program code means
- 20 embodied therein for causing generation of a visual
- 21 representation of a data array of data elements, the computer
- 22 readable program code means in said article of manufacture
- 23 comprising computer readable program code means for causing a
- 24 computer to effect the steps of claim 75.
- 25 80. (Withdrawn) A computer program product comprising a computer
- 26 usable medium having computer readable program code means
- 27 embodied therein for causing generation of a visual

- l representation of a data array of data elements, the computer
- 2 readable program code means in said computer program product
- 3 comprising computer readable program code means for causing a
- 4 computer to effect the steps of claim 75.
- 5 81. (Original) An apparatus for generating a watermarked image
- 6 comprising mechanisms for implementing the method of claim 13.
- 7 82. (Original) An apparatus comprising mechanisms for
- 8 implementing the method of claim 14.
- 9 83. (Original) An apparatus for detecting a watermark in a marked
- 10 image comprising mechanisms for implementing the method of claim
- 11 15.
- 12 84. (Withdrawn) An apparatus for detecting a watermarking plane
- 13 comprising mechanisms for implementing the method of claim 16.
- 14 85. (Withdrawn) An apparatus for imparting a watermark onto a
- 15 digitized image comprising mechanisms for implementing the method
- 16 of claim 19.
- 17 86. (Withdrawn) An apparatus for detecting a watermark comprising
- 18 mechanisms for implementing the method of claim 20.
- 19 87. (Withdrawn) An apparatus for detecting a watermark comprising
- 20 mechanisms for implementing the method of claim 30.
- 21 88. (Withdrawn) An apparatus for demonstrating an existence of a
- 22 watermark in a marked image comprising mechanisms for
- 23 implementing the method of claim 43.

9149453281 TO 917038729306

- 1 89. (Withdrawn) An apparatus for detecting a watermark comprising
- 2 mechanisms for implementing the method of claim 44.
- 3 90. (Withdrawn) A method for detecting a watermarking plane
- 4 comprising the steps of:
- 5 providing an image having a plurality of image pixels,
- 6 u(i,j), with said image having I rows and J columns, and a pixel
- 7 in row i and column j having at least one component, marked by a
- 8 watermarking plane; said watermarking plane having a plurality of
- 9 watermarking elements, w(i,j), with said watermarking plane
- 10 having I rows and J columns, and an element in row i and column j
- having a brightness multiplying factor;
- 12 aligning said watermarking plane with said image;
- identifying a subset of said image elements; and
- for each pixel, u(i,j), of said subset of image pixels.
- 15 employing a detection scheme in determining a probability of
- 16 watermark detection based on a property of uniform
- 17 distribution of the random brightness multiplying factors or
- 18 the random brightness adding or subtracting factors.