CS 229 Homework

Tyler Neylon

345.2016

These are solutions to the most recent problems posted for Stanford's CS 229 course, as of June 2016. I'm not sure if this course re-uses old problems, but please don't copy the answers if so. This document is also available as a pdf.

1 Problem set 1

1.1 Logistic regression

1.1.1 Part (a)

The problem is to compute the Hessian matrix H for the function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \log(g(y^{(i)}x^{(i)})),$$

where g(z) is the logistic function, and to show that H is positive semi-definite; specifically, that $z^T H z \ge 0$ for any vector z.

We'll use the fact that g'(z) = g(z)(1 - g(z)). We'll also note that since all relevant operations are linear, it will suffice to ignore the summation over i in the definition of J. I'll use the notation ∂_j for $\frac{\partial}{\partial \theta_j}$, and introduce t for $y\theta^T x$. Then

$$-\partial_{j}(mJ) = \frac{g(t)(1 - g(t))}{g(t)}x_{j}y = x_{j}y(1 - g(t)).$$

Next

$$-\partial_k \partial_j(mJ) = x_j y \big(-g(t)(1-g(t)) \big) x_k y,$$

so that

$$\partial_{jk}(mJ) = x_j x_k y^2 \alpha,$$

where $\alpha = g(t)(1 - g(t)) > 0$.

Thus we can use repeated-index summation notation to arrive at

$$z^T H z = z_i h_{ij} z_j = (\alpha y^2)(z_i x_i x_j z_j) = (\alpha y^2)(x^T z)^2 \ge 0.$$

This completes this part of the problem.

1.1.2 Part (b)

Here is a matlab script to solve this part of the problem:

```
% problem1_1b.m
% Run Newton's method on a given cost function for a logistic
% regression setup.
printf('Running problem1_1b.m\n');
% Be able to compute J.
function val = J(Z, theta)
  [m, _] = size(Z);
       = 1 ./ (1 + \exp(Z * \text{theta}));
 val
         = -sum(log(g)) / m;
end
% Setup.
      = load('logistic_x.txt');
[m, n] = size(X);
       = [ones(m, 1) X];
       = load('logistic_y.txt');
       = diag(Y) * X;
% Initialize the parameters to learn.
old_theta = ones(n + 1, 1);
theta
         = zeros(n + 1, 1);
          = 1; % i = iteration number.
% Perform Newton's method.
while norm(old_theta - theta) > 1e-5
 printf('J = %g\n', J(Z, theta));
```

```
printf('theta:\n');
 disp(theta);
 printf('Running iteration %d\n', i);
            = 1 ./ (1 + \exp(Z * \text{theta}));
 f
            = (1 - g);
            = f .* g;
 alpha
            = diag(alpha);
 Α
            = Z' * A * Z / m;
 nabla
           = Z' * f / m;
 old_theta = theta;
           = theta - inv(H) * nabla;
 theta
 i++;
end
% Show and save output.
printf('Final theta:\n');
disp(theta);
save('theta.mat', 'theta');
Because I have copious free time, I also wrote a Python version. Also because
I'm learning numpy and would prefer to consistently use a language that I know
can produce decent-looking graphs. Here is the Python script:
#!/usr/bin/env python
import numpy as np
from numpy import linalg as la
# Define the J function.
def J(Z, theta):
 m, _ = Z.shape
      = 1 / (1 + np.exp(Z.dot(theta)))
 return -sum(np.log(g)) / m
# Load data.
     = np.loadtxt('logistic_x.txt')
m, n = X.shape
     = np.insert(X, 0, 1, axis=1) # Prefix an all-1 column.
Y
     = np.loadtxt('logistic_y.txt')
     = np.diag(Y).dot(X);
# Initialize the learning parameters.
old_theta = np.ones((n + 1,))
theta
        = np.zeros((n + 1,))
```

```
i
          = 1
# Perform Newton's method.
while np.linalg.norm(old_theta - theta) > 1e-5:
  # Print progress.
 print('J = {}'.format(J(Z, theta)))
 print('theta = {}'.format(theta))
 print('Running iteration {}'.format(i))
 # Update theta.
            = 1 / (1 + np.exp(Z.dot(theta)))
            = 1 - g
            = (f * g).flatten()
 alpha
            = (Z.T * alpha).dot(Z) / m
 Η
            = Z.T.dot(f) / m
 nabla
 old_theta = theta
          = theta - la.inv(H).dot(nabla)
 # Update i = the iteration counter.
  i += 1
# Print and save the final value.
print('Final theta = {}'.format(theta))
np.savetxt('theta.txt', theta)
The final value of \theta that I arrived at is
```

The first value θ_0 represents the constant term, so that the final model is given by

 $\theta = (2.62051, -0.76037, -1.17195).$

$$y = g(2.62 - 0.76x_1 - 1.17x_2).$$

1.1.3 Part (c)

1.2 Poisson regression and the exponential family

1.2.1 Part (a)

Write the Poisson distribution as an exponential family:

$$p(y; \eta) = b(y) \exp \left(\eta^T T(y) - a(\eta)\right),$$

Figure 1: The data points given for problem 1.1 along with the decision boundary learned by logistic regression as executed by Newton's method.

where

$$p(y;\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}.$$

This can be done via

$$\begin{array}{rcl} \eta & = & \log(\lambda), \\ a(\eta) & = & e^{\eta} = \lambda, \\ b(y) & = & 1/y!, \text{ and } \\ T(y) & = & y. \end{array}$$

1.2.2 Part (b)

As is usual with generalized linear models, we'll let $\eta = \theta^T x$. The canonical response function is then given by

$$g(\eta) = E[y; \eta] = \lambda = e^{\eta} = e^{\theta^T x}.$$

1.2.3 Part (c)

Based on the last part, I'll define the hypothesis function h via $h(x) = e^{\theta^T x}$.

For a single data point (x, y), let $\ell(\theta) = \log(p(y|x)) = \log(\frac{1}{y!}) + (y\theta^T x - e^{\theta^T x})$. Then

$$\frac{\partial}{\partial \theta_j} \ell(\theta) = y x_j - x_j e^{\theta^T x} = x_j (y - e^{\theta^T x}).$$

So stochastic gradient ascent for a single point (x, y) would use the update rule

$$\theta := \theta + \alpha x(y - h(x)).$$

1.2.4 Part (d)

In section 1.10 of my notes — the section on generalized linear models — I derived the update rule:

$$\theta := \theta + \alpha (T(y) - a'(\theta^T x))x.$$

The missing piece is to proof that $h(x) = E[y] = a'(\eta)$, which we'll do next. We'll work in the context of T(y) = y, as given by the problem statement. Notice that, for any η ,

$$\int p(y)dy = \int b(y) \exp(\eta^T y - a(\eta))dy = 1.$$

Since this identity is true for all values of η , we can take $\frac{\partial}{\partial \eta}$ of it to arrive at the value 0:

$$0 = \frac{\partial}{\partial \eta} \int p(y) dy$$

=
$$\int \frac{\partial}{\partial \eta} b(y) \exp(\eta^T y - a(\eta)) dy$$

=
$$\int b(y) (y - a'(\eta)) \exp(\eta^T y - a(\eta)) dy$$

=
$$\int y p(y) dy - a'(\eta) \int p(y) dy$$

=
$$E[y] - a'(\eta).$$

Thus we can conclude that $E[y] = a'(\eta) = a'(\theta^T x)$, which completes the solution.

1.3 Gaussian discriminant analysis

1.3.1 Part (a)

This problem is to show that a two-class GDA solution effectively provides a model that takes the form of a logistic function, similar to logistic regression. This is something I already did in section 2.1 of my notes.