

Übungen zur Vorlesung

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2022/2023

Prof. Dr.-Ing. Sebastian Schlesinger

Besprechung in nächster Vorlesung

Version: 2022-12-07 22:54:24+01:00

Blatt 3

Aufgabe 3.1 (Mengen)

(3 Punkte)

Bestimmen Sie die folgenden Mengen:

- (i) $(\{1,2\} \times \{3,4\}) \cup \{1,2,3\}$
- (ii) $\{a, b\} \times \mathcal{P}(\{1, 2\})$
- (iii) $\mathscr{P}(\{1,2\}) \cap \mathscr{P}(\{1\})$
- Lösung Anfang
 - (i) $\{1, 2, 3, (1, 3), (1, 4), (2, 3), (2, 4)\}$
 - (ii) $\{(a,\emptyset),(b,\emptyset),(a,\{1\}),(b,\{1\}),(a,\{2\}),(b,\{2\}),(a,\{1,2\}),(b,\{1,2\})\}$
- (iii) $\{\emptyset, \{1\}\}$
- Lösung Ende —

Aufgabe 3.2 (Aussagen über Mengen)

(11 Punkte)

Es sei $A = \{1, 2\}$ und $B = \{1, 2, 3\}$. Welche der folgenden Beziehungen sind richtig?

- (i) $1 \in A$
- (ii) $\{1\} \subseteq A$
- (iii) $1 \in \mathcal{P}(A)$
- (iv) $\{1\} \in \mathcal{P}(A)$
- (v) $\mathscr{P}(A) \subseteq \mathscr{P}(B)$
- (vi) $A \in \mathcal{P}(B)$
- (vii) $\emptyset \in \mathscr{P}(A)$
- (viii) $\emptyset \subseteq \mathscr{P}(A)$
- (ix) $\{\{1\},A\}\subseteq \mathcal{P}(A)$
- (x) $(1,2) \in \mathcal{P}(A \times B)$
- (xi) $\{1,2\} \times \{1,2\} \in \mathcal{P}(A) \times \mathcal{P}(B)$

— Lösung Anfang —

- (i) wahr
- (ii) wahr
- (iii) falsch
- (iv) wahr
- (v) wahr
- (vi) wahr
- (vii) wahr
- (viii) wahr
- (ix) wahr
- (x) wahr
- (xi) falsch

— Lösung Ende —

Aufgabe 3.3 (Kartesische Produkte)

(4 Punkte)

Es sei $A = \{1, 2\}$ und $B = \{2, 3, 4\}$. Bilden Sie die folgenden Mengen:

- (i) $A \times B$
- (ii) $(A \times A) \cap (B \times B)$
- (iii) $(A \times B) \setminus (B \times B)$
- (iv) $A \times A \times A$

— Lösung Anfang —

- (i) $A \times B = \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)\}$
- (ii) $(A \times A) \cap (B \times B) = \{(1,1), (1,2), (2,1), (2,2)\} \cap \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4)\} = \{(2,2)\}$
- (iii) $(A \times B) \setminus (B \times B) = \{(1, 2), (1, 3), (1, 4)\}$
- (iv) $A \times A \times A = \{(1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2)\}$

— Lösung Ende —

Aufgabe 3.4 (Potenzmengenbeweis)

(4 Punkte)

Zeigen Sie für beliebige Mengen *A*, *B*:

$$A \subseteq B \Leftrightarrow \mathscr{P}(A) \subseteq \mathscr{P}(B)$$

— Lösung Anfang —

"⇒":

Sei $M \in \mathcal{P}(A)$. Wir wollen zeigen, dass dann auch $M \in \mathcal{P}(B)$.

Dann ist $M \subseteq A$. Da aber $A \subseteq B$ ist auch $M \subseteq B$ und damit $M \in \mathcal{P}(B)$.

"⇐":

Sei $x \in A$. Wir wollen zeigen, dass dann $x \in B$. Es ist $\{x\} \subseteq A$, also $\{x\} \in \mathcal{P}(A)$.

Wegen Voraussetzung ist aber $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, also $\{x\} \in \mathcal{P}(B)$ und damit $x \in B$.

— Lösung Ende —

Aufgabe 3.5 (Mengenbeweis)

(4 Punkte)

Zeigen Sie für beliebige Mengen *A*, *B*:

$$A \cap (B \cup A) = A$$

— Lösung Anfang —

"⊆":

Sei $x \in A \cap (B \cup A)$. Dann ist $x \in A$ (und irgendwas anderem), also $A \cap (B \cup A) \subseteq A$.

"⊇":

Sei $x \in A$. Dann ist $x \in A \lor (x \in A \land x \in B)$.

 $\Leftrightarrow (x \in A \lor x \in A) \land (x \in A \lor x \in B) \text{ (Distributivit"at)}$

 $\Leftrightarrow x \in A \land (x \in A \lor x \in B)$

 $\Leftrightarrow x \in A \cap (A \cup B)$

— Lösung Ende —

Aufgabe 3.6 (Potenzmengenbeweis)

(4 Punkte)

Zeigen Sie für beliebige Mengen *A*, *B*:

$$\mathcal{P}(A\cap B)=\mathcal{P}(A)\cap\mathcal{P}(B)$$

— Lösung Anfang —

Sei $M \in \mathcal{P}(A \cap B)$

- $\Leftrightarrow M \subseteq A \cap B$
- $\Leftrightarrow \forall x \in M : x \in A \cap B$
- $\Leftrightarrow \forall x \in M : x \in A \land x \in B$
- $\Leftrightarrow M \subseteq A \land M \subseteq B$
- $\Leftrightarrow M \in \mathcal{P}(A) \land M \in \mathcal{P}(B)$
- $\Leftrightarrow M \in \mathscr{P}(A) \cap \mathscr{P}(B)$

— Lösung Ende —

Aufgabe 3.7 (Relationendarstellungen)

(2 Punkte)

Sei $R = \{(1, 1), (2, 2), (1, 3), (2, 3), (2, 1), (3, 1)\}$ eine Relation. Stellen Sie die Relation als Graph und Adjazenzmatrix dar.

Aufgabe 3.8 (Relation) (5 Punkte)

Diese Aufgabe ist etwas schwieriger.

Wir definieren $a \equiv b \Leftrightarrow 3 | (a - b)$ mit $a, b \in \mathbb{Z}$. Beschreiben Sie was die Relation ausdrückt.

Hinweis: Denken Sie an die Division mit Rest.

— Lösung Anfang —

Zwei Zahlen sind in Relation, wenn sie den gleichen Rest bei der Division durch 3 haben.

Begründung:

Jede Zahl a lässt sich darstellen als $a=3\cdot\xi+\eta$ mit geeignetem a,ξ,η , wobei $\eta\in\{0,1,2\}$. η ist der Rest bei der Division von a durch 3. Hat man nun $b=3\cdot\kappa+\lambda$, dann ist $a-b=3\cdot\xi+\eta-3\cdot\kappa-\lambda=\eta-\lambda$ und es gilt $3|(a-b)\Leftrightarrow \eta-\lambda=0$, also wenn a und b denselben Rest bei der Division durch 3 ergeben.

— Lösung Ende —