

P525/1 Chemistry Paper 1 August 2023 2 hours 45 minutes

UNNASE MOCK EXAMINATIONS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

Chemistry

PAPER ONE

DURATION: 2 HOURS 45 minutes

Candidate's Name:	Signature	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-------------------	-----------	---

INSTRUCTIONS TO CANDIDATES

- Answer all questions in Section A and six questions in Section B.
- All your answers <u>must</u> be written in the spaces provided.
- The periodic table, with relative atomic masses, is attached at the end of the paper.
- Mathematical tables (3 figure tables) are dequate or non-programmable scientific electronic calculators may be used.
- · Where necessary, use the following;
 - Molar gas constant, R = 8.31JK⁻¹mol⁻¹.
 - Molar volume of a gas at s.t.p is 22.4 litres.
 - Standard temperature = 273K.
 - Standard pressure = 101325NM⁻².

	For Examiner's use only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	TOTAL

SECTION A (46 MARKS)

Answer all questions from this Section

1. a) What is meant by the term colligative property.	(01 mark)
b) Propane - 1,2,3 - triol, HOCH₂CH(OH)CH₂OH, is used as an ar	nti-freeze for
water in car radiators. Calculate the freezing point of the $1000g$ of propane - $1,2,3$ - triol are dissolved in 5 litres of wat point constant for water is $1.86^{\circ}C$ Kg ⁻¹ mol ⁻¹ and density of water	er. (Freezing is 1gcm ⁻³)
marks)	(3 ½
2. Complete the equation below and write the mechanism for the react	tion.
CH₃COCH₃ + H₂NNH—	(04 marks)
2023 UNNASE Joint Mock Examinations	1

State what	would be obsereved and write equation(s) for the reaction(s) that
would take p	place when each of the following solutions	is added drop-wise until in
	nromium (III) sulphate solution.	
	ated ammonia solution	(03 marks)
Observat	tion	,
Equation		
b) Sodium c	arbonate solution	(2½ marks)
Observat	rion	
Equation		
4. The followin	ng reagents can be used to distinguish be	tween members of classes
of organic	compounds; nitrous acid, and anhyc	drous zinc chloride and
concentrate	d hydrochloric acid.	
For each red	agent state, the class of compounds and b	riefly describe what would
be observed	when the reagent is reacted with each m	ember of the class.
		(2½ marks)
a) nitrous ac	:id	
i) Class o	of compounds	
C 2022 TABVASE	Joint Mack Examinations	2

ii)	Observations	
b) a	inhydrous zinc chloride and concentrated hydrochloric acid	
i) Class of compounds	
i	i) Observations	
		••••••
5. a)	Determine the oxidation state of sulphur in each of the following	g species;
i	i) $S_2O_3^{2-}$	(01 mark)
		(01 mark)
	ii) S₄O ₆ ²⁻	

) Write an equation for the reaction between $S_2O_3^{2-}$ and:	41 - 1-3
i) Iodine	(1½ marks)
ii) excess chlorine	(1½ marks)
 a) Write i) equation for the hydrolysis of sodium ethanoate in water. 	(1½ marks)
ii) the expression for the hydrolysis constant, K_h of sodium et ($\frac{1}{2}$	hanoate. mark)
b) 50cm ³ of a 0.02 ethanoic acid was added to an equal volu	ime of a 0.02
sodium hydroxide solution. Calculate the PH of the solution. (K_h of ethanoic acid is 1.8×10^{-5} mol dm ⁻³ , $K_W = 1.0 \times 10^{-14}$ mol ²	² dm ⁻⁶)
(Kh of ethanoic acid is 1.8 x 10° morally, kw = 1.0 x 20° morally	(05 marks
.,,	
	•••••

7. write equations to show how the following compounds can be synthesized. COOH $(2\frac{1}{2} \text{ marks})$ (2½ marks) b) CH3CH=CHCH3 to CH3CH2OH 8. a) Although beryllium is an element in group (II) of the periodic table, it behaves differently from the other members of the group. State three reasons why beryllium behaves differently from the other $(1\frac{1}{2} \text{ marks})$ members.

l	O) Write equa Solution witl	tion for the react	tion between conc	entrated sodium	hydroxdes
	i) beryllium	oxide			(1½ marks)
	ii) aluminiun	n oxide		·	(1½ marks)
	***************************************			•••••	•••••
9.	The data in th	e table below was	obtained for the	reaction betwee	n propanone
	A and Iodine s		obtained for the f	eaction betwee	п ргорапопе,
	Experiment	[A] (mol dm ⁻³)	[I ₂] (mol dm ⁻³)	Initial rate (m	ol s ⁻¹)
	1	0.10	0.10	1 × 10 ⁻⁴	
	2	0.10	0.20	1 × 10 ⁻⁴	
	3	0.30	0.10	3 x 10 ⁻⁴	
	State the orde	er of reaction with	respect to A and I		(1 mark)
					(½ mark)
					,
b)	Give a reason f	or your answer in	(a).		(02 marks)
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

c)	Determine the overall order of the reaction.	(<u>1</u> mark)
d)	Calculate the value for the rate constant for the reaction and indic	
		(1½ marks)
	SECTION B (54 MARKS) Answer six questions from this Section.	
	Complete the following equations and in each case, write the mechanism.	he accepted
	a) $+ \frac{Br_2/Fe}{heat}$	(03 marks)

@ 2023 UNNASE Joint Mock Examinations

7

b)	CH₃CH₂OH -	$\xrightarrow{Conc.H_2SO_4}$ 140^0C	(2½ marks)	
		140 C		
c)	ОН	$\xrightarrow{Conc.H_2SO_4}$ 170^0C		(2½ marks)
11. a)	State: i) what is m	eant by the term firs	t electron affinity.	(01 mark)
	ii) three fac element.	tors which affect th	e magnitude of first	electron affinity of an (1½ marks)

14 13.4 versus	15 4.8	16 20.0	17
	4.8	20.0	240
versus			34.9
	atomic	number.	. (03 m
			•••••
	••••••		
	•••••		
			$(1\frac{1}{2} \text{ m})$

@ 2023 UNNASE Joint Mock Examinations

	The solubility of silver oxalate at $25^{\circ}C$ is 3.27×10^{-2} g dm ⁻³ . solubility constant for silver oxalate at $25^{\circ}C$.	Calculate the (03 marks)
		•••••••••••••••••••••••••••••••••••••••
		•••••••••
c)	Determine the molar concentration silver ions required to pre- oxalate from an aqueous solution containing 0.005M oxalate ions	cipitate silver s. (02 marks)
d)	A solution containing silver ions was added to a solution conto oxalate ions and 0.005M chloride ions. State which of th chloride or silver oxalate was precipitated first. Give a re	e salts silver
	answer. (Ksp for AgCl = $1.96 \times 10^{-10} \text{ moi}^2 \text{ dm}^{-5}$).	$(1\frac{1}{2} \text{ marks})$
	(KSP TOT Age) = 1.50 K TO	

	•••••		
	••••		
	••••		
13.a)	St	tate:	
	i)	the common oxidation states of group (IV) elements of the p	eriodic table.
			(01 mark)
	ii)	how the stability of the oxidation states of the elements v	ary down the
		group (illustrate your answer with chlorides of carbon and lea	d)
			(03 marks)
b)	Ex	plain your answer in (a)(ii).	(2½ marks)
			•••••••••••

	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••		•••••				
	•••••••			•••••						
	••••	•••••		•••••						
	•••••	•••••			•••••					
Α	sample	of	lead	(IV)	oxide	was	treated	with	warm	concentrated

 c) A sample of lead (IV) oxide was treated with warm concentrated hydrochloric acid.

i)	State what was observed.	(OI mark)
ii)	Write equation for the reaction that took place.	(1½ marks)
		•••••

14. The electrode potentials of some half-cells are shown below.

		E ⁰ /volts		
Α	$Zn_{(aq)}^{2+} + 2e \rightleftharpoons Zn_{(s)}$	-0.76		
В	$MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e \rightleftharpoons Mn_{(aq)}^{2+} + 4H_{2}O_{(l)}$	+1.52		
С	$MnO_{4(aq)}^{-} + e \rightleftharpoons MnO_{4(aq)}^{2-}$	+0.56		
D	$Cu_{(aq)}^{2+} + 2e \rightleftharpoons Cu_{(s)}$	+0.34		
Ε	$MnO_{4(aq)}^{2-} + 4H_{(aq)}^{+} + 2e \rightleftharpoons MnO_{2(s)} + 2H_{2}O_{(l)}$	+2.26		
a) Giving reasons, name the species that is the strongest:				
i) reducing agent			(01 mark)	

	ii)oxidising agent	(01 mark)
ь)	i) Write the cell convention for the cell made by combining the	
	the half-cell reactions A and B.	(01 mark)
	ii) Write equation for the overall cell reaction.	(1½ mark)
	iii) Determine the e.m.f of the cell.	(01 mark)
i	iv) State whether the reaction in (ii) is possible or not. Give a re your answer.	eason for (01 mark)
		······································

c) Ca	rbondioxide was bubbled through a solution containing manganate	e (VI) ions.
	i) State what was observed.	(1½ marks)
	ii) Write equation for the reaction that took place.	(1½ marks)
15.a)	An organic compound Q contains Carbon 80%, Hydrogen 6.7% th	ne rest being
	oxygen. Calculate the empirical formula of Q.	(02 marks)
b) (0.25g when vapourised at $150^{ m o}$ C and 760mmHg occupies 122.3cm $^{ m 3}$. Determine
1	the molecular formula of Q.	(03 marks)
	······································	

@ 2023 UNNASE Joint Mock Examinations

		••••••
		l with Brady's
c)	Q burns with a yellow sooty flame, forms a yellow-orange solid	ido to form a
	reagent and reacts with a solution of iodine in sodium hydrox	ide to form a
	pale yellow solid.	
	Write the structural formula of Q.	(01 mark)

۲)	Write equation for the reaction between Q and sodium hydroge	en sulphite.
a)	Wille Equation for the case	(01 mark)
e)	.Show how Q can be synthesized from an alkene.	(02 marks)
16	.State what would be observed and write equation for th	e reaction that
	would take place when	
	a) Sulphur dioxide gas is bubbled through an acidified soluti	on of potassium
@ 202	3 UNNASE Joint Mock Examinations	15

	dichromate (VI).	(2 ½ marks)
	Observation	
	Equation	
	b) Dilute hydrochloric acid is added to a solution of sodium t	hiosulphate.
		(02 marks)
	Observation	•
	Equation	
c)	A mixture of propanal and ammoniacla silver nitrate solution w	warmed.
		(02 marks)
	Observation	
	Equation	

and sodium hydroxide

(02 marks)

_				
()	bse	rv	nt	10
\sim	036	.1 4	u	•

*	

17.a) Distinguish between addition and condensation polymerisation. (02 marks)

b) The structural formulae of polymers X, Y and Z are shown below.

$$X: -CH_2 - C - CH_2 - C - CH_3$$
 $COOCH_3$
 $COOCH_3$

In the table below, write the structural formula(e) of the monomer(s), name(s) of the monomer(s) and type of polymerisation. $(7\frac{1}{2} \text{ marks})$

	Structural formula(e) of monomer(s)	Name of monomer(s)	Type of polymerisation
X			
У			
Z			
	- 12		
	11 - 1		

c) Give one use of:	(1½ marks)
X	
and a MNNASE Joint Mack Examinations	18

Z.	

THE PERIODIC TABLE

_	_	-					_	_		_	\neg	,	4	5	6	7	•
1 1 H	2															1 H 1.0	2 Flo 4.0
3 11	4 114		• •									5 B 18.8	6 C 120	7 N 140	0	9 19.0	10 No 10.3
11 11	9.0 12 Mg											13 Al 27.0	14 51 28.1	15 P 31.0	16 8 32.1	17 Cl 35.4	18 /\r 40.6
19 K	243 Ca	21 E4	22 TI	23 V 50.9	74 Cr \$1.0	25 Ma 54.9	26 Yo 55.8	27 Co 51.9	28 NI KILT	1) CI	30 7.a 63.7	31 Ge 69.7	32 Ge 72.6	33 A.5	34 54 79.0	35 Er 79.3	34 Kr 83.5
37 Rb	49.1 38 8r	39 Y	40 Zr	41 Nb 92,9	42 Ma 95.9	43 Tc 91.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 104	44 Cd 112	49 In :15	50 8'n 119	51 5b 122	SI To IM	53 137	54 Xa 131
85 O 133	64 Ea 137	67 139	91.2 72 111 178	73 To 121	74 W 184	75 Rs 186	76 O+ 190	77 Ir 192	78 Pt 195	79 A= 197	80 Hg 201	81 TI 204	12 176 207	E3 81 209	84 Po (189)	#5 A1 (210	86 Rn (217
67 Fr	22	89 Ac (117)										,		_		_	
	1	1	57 La 139	58 Ce 140	59 Fr 141	60 Nd 144	61 Pm (145)	62 8m 152	63 Sm 150	64 En 152	65 Tb 159	66 Dy 163	67 Ho 165	Et	TE		L
			89 Ac (227	90 Th 232	91 Pa 131	92 U 238	93 Np 237	94 Fa (24)	95 Am (143	96 Cm (247	97 BL		E	Fr	n M	r N	o L

1. 1 - Indicates Atomic number.

2. H - indicates relative Atomic number.

END.

END