Abstract Algebra - Fraleigh text, 2018

Trevor Klar

July 23, 2018

Contents

1	Groups and Subgroups						
	1.1	Binary Operations	2				
	1.2	Isomorphic Binary Structures	2				
	1.3	Groups	9				
	1.4	Subgroups	4				
	1.5	Cyclic Groups and Generators					
2	More Groups and Cosets						
	2.1	Groups of Permutations	7				
	2.2	Orbits, Cycles, and the Alternating Groups	8				
3	Ind	ov.	10				

Note: If you find any typos in these notes, please let me know at trevor.klar.834@my.csun.edu. If you could include the page number, that would be helpful.

1 Groups and Subgroups

1.1 Binary Operations

Definition. A binary operation is a function $*: S \times S \to S$. For any $(a,b) \in S \times S$, we notate *(a,b) as

$$a * b$$
.

Note that since * is a function, these two properties must hold:

- \bullet * is well-defined on all S
- S is closed under *.

Definition. Let S be a set equipped with the operation *, and let $H \subseteq S$. We say H is **closed under** * if

for all $a, b \in H$, we also have $a * b \in H$.

Definition. Let S be a set equipped with the operation *. If $H \subseteq S$ is closed under *, then

$$*|_{H}: H \times H \to H$$

is the **induced operation** of * on H. Usually we suppress the notation for the induced operation.

Definition. A binary operation * on a set S is **commutative** iff for all $a,b \in S$, we have

$$a * b = b * a$$
.

Definition. A binary operation * on a set S is **associative** iff for all $a, b, c \in S$, we have

$$(a * b) * c = a * (b * c).$$

1.2 Isomorphic Binary Structures

Definition. A binary algebraic structure is a set S equipped with a binary operation *, notated $\langle S, * \rangle$.

Definition. Let $\langle S, * \rangle$, $\langle S', *' \rangle$ be binary algebraic structures. An **isomorphism** of S with S' is a bijection $\phi : S \to S'$ such that for all $x, y, \in S$,

$$\phi(x * y) = \phi(x) *' \phi(y).$$

If such a map exists, then we say S and S' are **isomorphic** binary structures,

and denote this as $S \cong S'$.

Definition. A **structural property** of a binary structure is one that must be shared by any isomorphic structure. An **algebraic property** is a structural property that is characterized in terms of the operation, i.e. associativity.

Definition. Let $\langle S, * \rangle$ be a binary structure. An element $e \in S$ is an **identity** of * if, for all $s \in S$,

$$e * s = s * e = s$$
.

1.3 Groups

Definition. A group $\langle G, * \rangle$ is a binary structure (and thus is closed under *) such that:

 \mathcal{G}_1 : (Associativity) * is associative,

 \mathcal{G}_2 : (Identity) There exists e an identity for *,

 \mathscr{G}_3 : (Inverse) For each $a \in G$, there exists $a' \in G$ which is an inverse of a, that is, a * a' = e, where e is the identity under *.

Definition. A group $\langle G, * \rangle$ is an **abelian** group if * is commutative.

Theorem (Left and right cancellation laws). Let $\langle G, * \rangle$ be a group. Then for any $a, b, c \in G$,

If
$$a * b = a * c$$
,
then $b = c$,

and

If
$$b*a = c*a$$
,
then $b = c$.

Theorem. Let $\langle G, * \rangle$ be a group. For all $a, b \in G$, there exist unique $x, y \in G$ such that

$$a * x = b$$

and

$$y*a=b.$$

That is, all linear equations have unique solutions in G.

Theorem. The identity and inverse of a group are unique.

Corollary 1. Let $\langle G, * \rangle$ be a group. For all $a, b \in G$, we have

$$(a*b)' = b'*a'.$$

Definition. The **general linear group** of degree n is the following set of matrices equipped with matrix multiplication:

$$GL(n,\mathbb{R}) = \{ A \in M_{n \times n}(\mathbb{R}) \mid A \text{ is invertible} \}$$

There is a similar group consisting of invertible linear transformations equipped with function composition:

$$GL(\mathbb{R}^n) = \{ T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \,|\, T \text{ is invertible} \}$$

1.4 Subgroups

We will now dispense with the $\langle S, * \rangle$ notation unless necessary, and use the symbol + along with juxtaposition to denote abstract "addition" and "multiplication" operations, respectively. Thus, -a and a^{-1} mean exactly what you'd think: inverses of a additive and multiplicative group, respectively.

Definition. If G is a finite group, then the **order** |G| of G is the number of elements in G.

Definition. Let $\langle G, * \rangle$ be a group.

If $H \subset G$ is closed under *, and $\langle H, * \rangle$ is itself a group, then H is a **subgroup** of G.

We write $H \leq G$ and H < G to mean subgroup and proper subgroup, respectively.

1.5 Cyclic Groups and Generators

Theorem (Characterization of a subgroup). Let $\langle G, * \rangle$ be a group. $H \subset G$ is a subgroup of G iff:

- (Closure) H is closed under *,
- (Identity) The identity e of G is in H,
- (Inverse) For all $a \in H$, we have $a^{-1} \in H$.

Definition. Let G be a group, and let $a \in G$. Then

$$H = \{a^n | n \in \mathbb{Z}\}$$

is called the **cyclic subgroup** of G **generated by** a, and it is denoted as $\langle a \rangle$.

Observe, this includes a^{-1} (a's inverse) as well as $a^0 = e$ (the identity).

Theorem. Let G be a group, and let $a \in G$. Then,

- $\langle a \rangle$ is a subgroup of G, and
- every subgroup that contains a also contains $\langle a \rangle$.

Definition. Let $\langle a \rangle$ be a cyclic subgroup of a group G.

If $\langle a \rangle$ is finite, then the **order of** a is the order $|\langle a \rangle|$ of this cyclic subgroup.

If $\langle a \rangle$ is infinite, then we says that a is of **infinite order**.

Theorem. Every cyclic group is abelian.

PROOF Let G be a cyclic group such that a is a generator of G. We will show that for any two $g_1, g_2 \in G$, we have that $g_1g_2 = g_2g_1$. Let $g_1, g_2 \in G$. Since a is a generator of G, there exists some $n, k \in \mathbb{Z}$ such that $a^n = g_1$ and $a^k = g_2$. Then,

$$g_1g_2 = a^n a^k$$
 since a is a generator $= \underbrace{(a)(a)\cdots(a)}_n\underbrace{(a)(a)\cdots(a)}_k$ by definition $= \underbrace{(a)(a)\cdots(a)(a)\underbrace{(a)\cdots(a)}_k}_k$ associative property $= a^k a^n$ $= g_2g_1$

and we are done.

Division Algorithm for \mathbb{Z} Given a number $n \in \mathbb{Z}$ and divisor $m \in \mathbb{Z}^+$, there exists a unique quotient $q \in \mathbb{Z}$ and remainder $r \in \mathbb{Z}^+$ such that

$$n = mq + r$$
 and $0 \le r < m$.

Theorem. Any subgroup of a cyclic group is cyclic.

Corollary. The subgroups of \mathbb{Z} under addition are precisely the groups $n\mathbb{Z}$ for all $n \in \mathbb{Z}$.

Definition. Let $r, s \in \mathbb{Z}^+$. The generator d of the cyclic group

$$H = \{nr + ms : n, m \in \mathbb{Z}\}\$$

under addition is the **greatest common divisor** (gcd) of r and s.

Note: This means that if gcd(r, s) = d, then there exist $n, m \in \mathbb{Z}$ such that

$$d = nr + ms$$
.

Definition. Two positive integers are **relatively prime** if their gcd is 1.

Theorem. If r and s are relatively prime and r divides sm, then r divides m.

PROOF Since r and s are relatively prime, then there exist $a, b \in \mathbb{Z}$ such that

$$1 = ar + bs$$
.

Multiplying by m,

$$m = arm + bsm$$
.

Since r divides sm, there exists some $k \in \mathbb{Z}$ such that kr = sm. So,

$$m = arm + bkr = (am + bk)r.$$

Thus, r divides m.

Definition. Addition Modulo n It's what you think.

$$h+k \mod n = \text{remainder}((h+k)/n)$$

Theorem. \mathbb{Z}_n under addition mod n is a cyclic group.

Let G be a cyclic group with n elements generated by a.

$$f(x) = \sum_{n=0}^{\infty} \operatorname{proj}_{\sin(nx)} f = \sum_{n=0}^{\infty} \langle f(x), \sin(nx) \rangle \sin(nx)$$

2 More Groups and Cosets

2.1 Groups of Permutations

Definition. A **permutation** of a set A is a bijection $\phi: A \to A$.

Theorem. Let A be a nonempty set, and let S_A be the collection of all permutations of A.

Then S_A is a group under permutation multiplication.

PROOF

- (Closure) True by definition.
- (Associative) Composition of functions is associative.
- (Identity) The identity function is a permutation.
- (Inverse) Permutations are bijections, and bijections are invertible.

Definition. Let A be a finite group of n elements. The group of all permutations on A is the **symmetric group on** n **letters**, denoted S_n .

Note that S_n has n! elements.

Theorem (Cayley's Theorem). Every group is isomorphic to a group of permutations.

Proof Consider a group

	e	$\mid a \mid$	b	
e	e	a	b	
\overline{a}	a	b	c	
b	b	c	d	
:	:	:	:	٠

Consider ϕ such that $\phi(x) \mapsto$ (the row corresponding to x). Informally, one can see the row is the image of the image of the set in a permutation.

7

Definition (Regular representations). The function ϕ mapping each element of a group to the permutation corresponding to multiplication by that element is called the **left regular representation** and **right regular representation** (for left and right multiplication, respectively). i.e. for the group

the left representation is given as follows:

$$\lambda_e = \left(\begin{array}{ccc} e & a & b \\ e & e & a \end{array} \right) \quad \lambda_a = \left(\begin{array}{ccc} e & a & b \\ a & b & e \end{array} \right) \quad \lambda_b = \left(\begin{array}{ccc} e & a & b \\ b & e & a \end{array} \right)$$

2.2 Orbits, Cycles, and the Alternating Groups

Definition. Let σ be a permutation of a sat A. The **orbits** of σ are the equivalence classes given by

$$a \sim b$$
 iff $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$.

An orbit is called **nontrivial** if it has more than one element.

Definition. A permutation $\sigma \in S_n$ is a **cycle** if it has at most one nontrivial orbit. The **length** of a cycle is the number of elements in its nontrivial orbit.

Example. Consider the permutation

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = (1, 3, 5, 4).$$

This is a cycle of length 4, since it has only one nontrivial orbit.

Example. Consider the permutation

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{array} \right) = (1,3,6)(2,8)(4,7,5).$$

This is a not a cycle, since it has 3 nontrivial orbits.

Example. Consider the permutation

$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix} = (1,3,6)(1,3,2)(3,4,5) = (1,6)(2,3,4,5)$$

Note that the product of multiple cycles sometimes simplifies to a product of a smaller number of cycles, perhaps even becoming a cycle in the product. In this case, the product of 3 cycles produced a permutation with 2 nontrivial orbits, so it is not a cycle.

Theorem. Every permutation σ of a finite set is a product of a unique set of disjoint cycles (assuming the identity is not in the set).

PROOF Let σ be a permutation of a finite set S. Let B_1, B_2, \ldots, B_n be the orbits of σ (we know this set exists uniquely by construction, and is finite since S is finite). Then, consider the cycles

$$\mu_i(x) = \begin{cases} \sigma(x) & x \in B_i \\ x & \text{otherwise} \end{cases}$$

Then, since all the orbits B_i are disjoint, then all the cycles μ_i are disjoint. Thus,

$$\prod_{i=1}^{n} \mu_i = \sigma,$$

and we are done.

Definition. A cycle of length 2 is a **transposition**.

Corollary. Any permutation of a finite set (with at least two elements) is a product of transpositions.

PROOF Since any permutation is a product of disjoint cycles, it suffices to show that any cycle is a product of transpositions. Let

$$(a_1,a_2,\ldots,a_n)$$

be an arbitrary cycle. To see that it is a product of transpositions, compute

$$(a_1, a_n)(a_1, a_{n-1}) \cdots (a_1, a_3)(a_1, a_2) = (a_1, a_2, \dots, a_n)$$

and we are done.

Theorem. No permutation in S_n can be expressed as a product of both an even and an odd number of transpositions.

PROOF First, note that we can multiply any permutation by the identity $\iota = (1,2)(1,2)$ to change the number of permutations, but this doesn't change the parity (evenness or oddness). Now, consider some permutation μ written as a product of disjoint nontrivial cycles, $\mu = B_1 B_2 \dots B_n$; and let $\tau = (i,j)$ be some transposition.

Claim: The σ and

3 Index