Tematy zadań

1 czerwca 2015

Zadanie 1. Dany jest obwód elektryczny jak na rysunku poniżej.

Źródło napięcia przez jedną sekundę podawało napięcie 1 [V], a następnie przestało podawać dalej napięcie (przyjąć 0 [V]). Zamodelować obwód w postaci równania różniczkowego, wyliczyć wartość napięcia w chwili T=2 [s] i naszkicować przebieg napięcia w funkcji czasu.

Zadanie 2. Dane jest równanie różniczkowe

$$\dot{x}(t) = -x(t) + u(t)$$

gdzie $x(0) = 0, t \ge 0$. Znaleźć takie sterowanie u(t), że x(t) = t dla $t \ge 0$.

Zadanie 3. Zamodelować poniższy obwód elektryczny za pomocą równania różniczkowego

przy czym $R=4.7\mathrm{k}\Omega$ zaś $C=2\mu\mathrm{F}$.

Zadanie 4. Zamodelować poniższy obwód elektryczny za pomocą równania różniczkowego

przy czym $R = 4.7 \text{k}\Omega$ zaś $C = 2\mu\text{F}$.

Zadanie 5. Dane jest równanie różniczkowe

$$\dot{x}(t) = -x(t) + 2$$

gdzie $x(0) = 0, t \ge 0$. Po jakim czasie t_k zachodzi $x(t_k) = 1$.

Zadanie 6. Dane jest równanie różniczkowe

$$\dot{x}(t) = -x(t) + u(t)$$

gdzie x(0) = 0, $t \ge 0$ zaś sterowanie ma postać sygnału PWM o amplitudzie 10, okresie 1 s i współczynniku wypełnienia $\theta \in (0,1]$, tzn.

$$u(t) = \begin{cases} 10 & \text{dla} \quad t \in [n, n+\theta] \\ 0 & \text{dla} \quad t \in (n+\theta, n+1) \end{cases}$$

Wiedząc, że x(3) = 2 obliczyć θ .

Zadanie 7. Zbadaj stabilność wszystkich punktów równowagi korzystając z pierwszej i drugiej metody Lapunowa dla systemu:

$$\dot{x}_1 = -x_1^3 + x_2
\dot{x}_2 = -x_1^3 - x_2^3$$

Zadanie 8. Zbadaj stabilność wszystkich punktów równowagi korzystając z pierwszej i drugiej metody Lapunowa dla systemu:

$$\dot{x}_1 = -x_1 + 2x_1^2 x_2$$

$$\dot{x}_2 = -x_2$$

Zadanie 9. Zbadaj stabilność wszystkich punktów równowagi korzystając z pierwszej i drugiej metody Lapunowa dla systemu:

$$\dot{x}_1 = x_2 - x_1 + x_1^3
\dot{x}_2 = -x_1$$

Zadanie 10. Dany jest obwód elektryczny jak na rysunku poniżej.

Źródło napięcia podaje sygnał będący dodatnią częścią sinusoidy o amplitudzie A=25 V, częstości $\omega=\frac{5}{3}\pi$ i przesunięciu fazowym $2\pi/3$. Obliczyć napięcie na kondensatorze w chwili t=3 s.

Zadanie 11. Dany jest układ dyskretny

$$x(k+1) = Ax(k), \quad A = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}_{n \times n}$$

przy czym $k = 1, 2, \dots$ Wyznaczyć x(n).

Zadanie 12. Dany jest układ dyskretny

$$x(k+1) = Ax(k) + Bu(k), \quad A = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix},$$

przy czym $k = 1, 2, \dots$ Wyznaczyć x(n) wiedz?c, że u(i) = 1 dla $i = 1, 2, \dots, n$.

Zadanie 13. Dany jest układ dyskretny

$$x(k+1) = Ax(k), \quad A = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}_{n \times n}$$

przy czym $k = 1, 2, \dots$ Wyznaczyć x(2n).

Zadanie 14. Do ciągłego systemu dynamicznego opisanego równaniami

$$\dot{x}_1(t) = -2x_1(t) + x_2(t),$$

$$\dot{x}_2(t) = -2x_1(t),$$

podłączono ekstrapolator rzędu zerowego na wejściu i impulsator na wyjściu, przy czym pracuje one synchronicznie z okresem próbkowania $h=1\,\mathrm{s}$. Wyliczyć parametry systemu dyskretnego odpowiadające takiemu poręczeniu.

Zadanie 15. Do ciągłego systemu dynamicznego opisanego równaniami

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

przy czym

$$A = \begin{bmatrix} -0.5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

podłączono ekstrapolator rzędu zerowego na wejściu i impulsator na wyjściu, przy czym pracuje one synchronicznie z okresem próbkowania $h=1\,\mathrm{s}$. Wyliczyć parametry systemu dyskretnego odpowiadające takiemu poręczeniu.

Zadanie 16. Do ciągłego systemu dynamicznego opisanego równaniami

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

przy czym

$$A = \begin{bmatrix} -1 & 0 & \dots & 0 \\ 0 & -2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & -n \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix},$$

podłączono ekstrapolator rzędu zerowego na wejściu i impulsator na wyjściu, przy czym pracuje one synchronicznie z okresem próbkowania $h=1\,\mathrm{s}$. Wyliczyć parametry systemu dyskretnego odpowiadające takiemu poręczeniu.

Zadanie 17. Do ciągłego systemu dynamicznego opisanego równaniami

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

przy czym

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

podłączono ekstrapolator rzędu zerowego na wejściu i impulsator na wyjściu, przy czym pracuje one synchronicznie z okresem próbkowania $h=1\,\mathrm{s}$. Wyliczyć parametry systemu dyskretnego odpowiadające takiemu poręczeniu.

Zadanie 18. Obliczyć A^n dla macierzy

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

Zadanie 19. Obliczyć A^n dla macierzy

$$A = \begin{bmatrix} \frac{1}{2} & 0\\ 2 & \frac{1}{2} \end{bmatrix}$$

Zadanie 20. Obliczyć A^n dla macierzy

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Zadanie 21. Dla jakich wartości parametrów k_1 i k_2 system dynamiczny

$$x(k+1) = \begin{bmatrix} -k_2 & k_1 \\ -k_1 & -k_2 \end{bmatrix} x(k)$$

będzie asymptotycznie stabilny. Zaznaczyć obszar stabilności na płaszczyźnie $k_1 \times k_2$.

Zadanie 22. Dla jakich wartości parametrów k_1 i k_2 system dynamiczny

$$x(k+1) = \begin{bmatrix} k_1 & 1 & 2 \\ 0 & k_2 & 1 \\ 0 & 0 & k_1 + k_2 \end{bmatrix} x(k)$$

będzie asymptotycznie stabilny. Zaznaczyć obszar stabilności na płaszczyźnie $k_1 \times k_2$.

Zadanie 23. Dla jakich wartości parametrów k_1 i k_2 system dynamiczny

$$x(k+1) = \begin{bmatrix} -k_2 & k_1 & 0\\ -k_1 & -k_2 & 0\\ 0 & 0 & k_1^2 + k_2^2 \end{bmatrix} x(k)$$

będzie asymptotycznie stabilny. Zaznaczyć obszar stabilności na płaszczyźnie $k_1 \times k_2$.

Zadanie 24. Dla jakich wartości parametrów k_1 i k_2 system dynamiczny

$$x(k+1) = \begin{bmatrix} 0 & k_1 & 0 \\ k_2 & 0 & 0 \\ 0 & 0 & k_1 + k_2 \end{bmatrix} x(k)$$

będzie asymptotycznie stabilny. Zaznaczyć obszar stabilności na płaszczyźnie $k_1 \times k_2$.

Zadanie 25. Na układ o transmitancji operatorowej $G(s) = \frac{50}{s+10}$ podano sygnał sinusoidalny $3\sin(4t+\pi)$. Obliczyć, jak zmieni się amplituda sygnału wyjściowego.

Zadanie 26. Odpowiedź skokowa pewnego układu ma postać:

$$h(t) = \mathbf{1}(t-1)$$

Znaleźć transmitancję tego układu.

Zadanie 27. Znaleźć odpowiedź skokową układu opisanego transmitancją:

$$G(s) = \frac{s-1}{s^2+1}$$

Zadanie 28. Odpowiedź skokowa pewnego układu ma postać:

$$h(t) = 1 - e^{\frac{-t}{5}}.$$

Znaleźć transmitancję tego układu.

Zadanie 29. Znaleźć odpowiedź skokową układu opisanego transmitancją:

$$G(s) = \frac{s}{2s^2 + 1}$$