L'approche topologique.

Définition 1. Un espace topologique est une paire $(X, \Omega X)$ où X est un ensemble et $\Omega X \subseteq \wp(X)$ que l'on appelle ensemble des ouverts telle que

- $\triangleright \text{ si } \mathcal{S} \subseteq_{\text{fin}} \Omega X \text{ alors } \bigcap \mathcal{S} = \bigcap_{V \in \mathcal{S}} V \in \Omega X ;$
- \triangleright si $\mathcal{S} \subseteq \Omega X$ alors $\bigcup \mathcal{S} = \bigcup_{V \in \mathcal{S}} V \in \Omega X$.

Remarque 1. On a toujours \emptyset , $X \in \Omega X$ avec $\emptyset = \bigcup \emptyset$ et $X = \bigcap \emptyset$.

Remarque 2 (Intuition). On peut voir les ouverts comme "analogues" aux ensembles récursivement énumérables.

Dans la suite, on va définir une topologie sur Σ^{ω} où les ouverts sont ext(W) où $W \subseteq \Sigma^{\star}$ et $\text{ext}(W) = \bigcup_{u \in W} \text{ext}(u)$ et

$$\operatorname{ext}(u) = \{ \sigma \in \Sigma^{\omega} \mid u \subseteq \sigma \}.$$

Ainsi, si on a une manière d'énumérer W, on peut tester si $u \in \text{ext}(W)$ en temps fini, mais il n'est pas forcément possible de vérifier que $u \notin \text{ext}(W)$.