Report

Works done before implementation:

- 1. Create the environment with the following packages: matplotlib, networkx, numpy
- 2. Understand the Factor class, including the functions and the data structures, by reading and running the factor readme.py.
- 3. Understand the code given in the function factor_product(), especially the code used to get the mapping from variables in one factor to those in another factor.

Functions implemented and effects:

factor_product(): Compute the product of two factors.

factor_marginalize(): Sums over a list of variables to obtain the marginal.

observe_evidence(): Modify a set of factors given some evidence.

factor_sum(): Compute the sum of two factors.

factor_max_marginalize(): Marginalize over a list of variables by taking the maximum value.

compute_joint_distribution(): Compute the joint distribution.

compute_marginals_naive(): Compute the marginal naively.

compute_marginals_bp(): Compute single node marginals for multiple variables using sum-product belief propagation algorithm.

map_eliminate(): Obtains the maximum a posteriori configuration for a tree graph given optional evidence.