4 Multivariate Distributions

4.1 Joint Distributions

1. **Joint distribution function**: If X_1, \ldots, X_n are random variables, the joint (cumulative) distribution function is

$$F(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n).$$

We sometimes use the notation $F_{X_1,...,X_n}(x_1,...,x_n)$ when we need to distinguish the joint distribution function of $X_1,...,X_n$ from other distribution functions.

2. Bivariate distribution function: For two random variable X and Y the joint distribution functions is

$$F(x,y) = P(X \le x, Y \le y).$$

We sometimes use the notation $F_{X,Y}(x,y)$ for the joint distribution function of X and Y.

- (a) $F(-\infty, y) = \lim_{x \to -\infty} F(x, y) = 0,$ $F(x, -\infty) = \lim_{y \to -\infty} F(x, y) = 0,$ $F(\infty, \infty) = \lim_{x \to \infty, y \to \infty} F(x, y) = 1.$
- (b) $P(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) F(x_1, y_2) [F(x_2, y_1) F(x_1, y_1)].$
- (c) Right continuous is x: $\lim_{h\downarrow 0} F(x+h,y) = F(x,y)$, Right continuous in y: $\lim_{h\downarrow 0} F(x,y+h) = F(x,y)$.
- 3. Marginal distribution functions: If $F_{X,Y}$ is the joint distribution function of X and Y then the marginal distribution functions are given by

$$F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y) = F_{X,Y}(x,\infty),$$

$$F_Y(y) = \lim_{x \to \infty} F_{X,Y}(x,y) = F_{X,Y}(\infty,y).$$

- 4. Discrete bivariate distributions: for discrete random variables X and Y.
 - (a) Joint mass function: $f(x,y) = f_{X,Y}(x,y) = P(X=x,Y=y)$.
 - (b) Probabilities: $P(x_1 < X \le x_2, y_1 < Y \le y_2) = \sum_{x_1 < x < x_2} \sum_{y_1 < y < y_2} f(x, y)$.
 - (c) Marginal mass functions: $f_X(x) = \sum_y f_{X,Y}(x,y),$ $f_Y(y) = \sum_x f_{X,Y}(x,y).$
- 5. Continuous bivariate distributions: for jointly continuous random variables X and Y.
 - (a) Joint density function: is a positive real-valued function f such that

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$
 for each $x,y \in \mathbb{R}$.

- (b) Probabilities: $P(x_1 < X \le x_2, y_1 < Y \le y_2) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x, y) dx dy$.
- (c) Marginal density functions: $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$, $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx$,

6. Expectation of a function of two variables: If g is a well-behaved, real-valued function of two variables $(g: \mathbb{R}^2 \longrightarrow \mathbb{R})$ and X and Y are random variable with joint mass/density function $f_{X,Y}$ then

$$E[g(X,Y)] = \begin{cases} \sum_{y} \sum_{x} g(x,y) f_{X,Y}(x,y), & \text{discrete case,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy, & \text{continuous case.} \end{cases}$$

- 7. Multivariate generalizations: for random variables X_1, \ldots, X_n and for $j = 1, \ldots, n$.
 - (a) Marginal distribution: $F_{X_j}(x_j) = F_{X_1,...,X_n}(\infty,...,\infty,x_j,\infty,...,\infty)$
 - (b) Marginal mass/density

$$f_{X_j}(x_j) = \begin{cases} \sum_{x_1} \dots \sum_{x_{j-1}} \sum_{x_{j+1}} \dots \sum_{x_n} f_{X_1,\dots,X_n}(x_1,\dots,x_n), & \text{discrete case,} \\ \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{X_1,\dots,X_n}(x_1,\dots,x_n) dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n, & \text{continuous case.} \end{cases}$$

(c) Expectation of a function of n variables:

$$E[g(X_1,\ldots,X_n)] = \begin{cases} \sum_{x_1} \ldots \sum_{x_n} g(x_1,\ldots,x_n) f_{X_1,\ldots,X_n}(x_1,\ldots,x_n), & \text{discrete,} \\ \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g(x_1,\ldots,x_n) f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) dx_1 \ldots dx_n, & \text{continuous.} \end{cases}$$

4.2 Conditional Distributions

- 1. Discrete conditional distributions: X and Y discrete random variables with P(X=x) > 0.
 - (a) Conditional distribution function of Y given X = x: $F_{Y|X}(y|x) = P(Y \le y|X = x)$.
 - (b) Conditional mass function of Y given X = x: $f_{Y|X}(y|x) = P(Y = y|X = x) = f_{X,Y}(x,y)/f_X(x)$.
 - (c) Relationship between distribution and mass functions: $F_{Y|X}(y|x) = \sum_{y_i < y} f_{Y|X}(y_i|x)$.
- 2. Continuous conditional distributions: X and Y jointly continuous random variables with $f_X(x) > 0$.
 - (a) Conditional distribution function of Y given X = x: $F_{Y|X}(y|x) = \int_{-\infty}^{y} (f_{X,Y}(x,v)/f_X(x))dv$.
 - (b) Conditional density function of Y given X = x: $f_{Y|X}(y|x) = f_{X,Y}(x,y)/f_X(x)$.
- 3. Conditional, joint and marginal densities: given $f_X(x) > 0$ and (for (d)) $f_Y(y) > 0$.
 - (a) Conditional mass/density

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \begin{cases} \frac{f_{X,Y}(x,y)}{\sum_y f_{X,Y}(x,y)}, & \text{discrete case,} \\ \frac{f_{X,Y}(x,y)}{\int_{-\infty}^{\infty} f_{X,Y}(x,y)dy}, & \text{continuous case.} \end{cases}$$

- (b) Joint mass/density: $f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x)$.
- (c) Marginal mass/density

$$f_Y(y) = \begin{cases} \sum_x f_{Y|X}(y|x) f_X(x), & \text{discrete case,} \\ \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx, & \text{continuous case.} \end{cases}$$

(d) Reverse conditioning

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(x)} = \frac{f_X(x)}{f_Y(y)} f_{Y|X}(y|x).$$

- 4. Conditional expectation: X and Y random variables.
 - (a) Condition expectation of Y given X: define

$$\psi(x) = E(Y|X=x) = \begin{cases} \sum_{y} y f_{Y|X}(y|x), & \text{discrete case,} \\ \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy, & \text{continuous case.} \end{cases}$$

The conditional expectation of Y given X is $E(Y|X) = \psi(X)$ (a random variable).

(b) Condition expectation of g(Y) given X: If g is a well-behaved, real-valued function, define

$$h(x) = E(g(Y)|X = x) = \begin{cases} \sum_{y} g(y) f_{Y|X}(y|x), & \text{discrete case,} \\ \int_{-\infty}^{\infty} g(y) f_{Y|X}(y|x) dy, & \text{continuous case.} \end{cases}$$

The conditional expectation of g(Y) given X is E(g(Y)|X) = h(X) (a random variable).

(c) Law of iterated expectations:

$$E[\psi(X)] = E[E(Y|X)] = E(Y).$$

Useful consequence,

$$E(Y) = \begin{cases} \sum_{x} E(Y|X=x) f_X(x), & \text{discrete case,} \\ \int_{-\infty}^{\infty} E(Y|X=x) f_X(x) dx, & \text{continuous case.} \end{cases}$$

5. Conditional variance: for random variables X and Y, define

$$\omega(x) = \operatorname{Var}(Y|X=x) = \begin{cases} \sum_y [y - E(Y|X=x)]^2 f_{Y|X}(y|x), & \text{discrete case,} \\ \int_{-\infty}^{\infty} [y - E(Y|X=x)]^2 f_{Y|X}(y|x) dy, & \text{continuous case.} \end{cases}$$

The conditional variance of Y given X is $Var(Y|X) = \omega(X) = E(Y^2|X) - [E(Y|X)]^2$. The conditional variance is a random variable. Using the law of iterated expectations, we can show that Var(Y) = Var[E(Y|X)] + E[Var(Y|X)].

4.3 Dependence

1. Independence of random variables The random variables X_1, X_2, \ldots, X_n are (mutually) independent if and only if the events $\{X_1 \leq x_1\}, \{X_2 \leq x_2\}, \ldots, \{X_n \leq x_n\}$ are independent for all choices of x_1, x_2, \ldots, x_n .

If X_1, X_2, \ldots, X_n independent, then for all x_1, x_2, \ldots, x_n :

- (a) $F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\ldots F_{X_n}(x_n)$,
- (b) $f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\ldots f_{X_n}(x_n),$
- (c) $E(X_1X_2...X_n) = E(X_1)E(X_2)...E(X_n)$,
- (d) $g_1(X_1), g_2(X_2), \dots, g_n(X_n)$ are independent for real-valued functions g_1, g_2, \dots, g_n .
- 2. Covariance function: for random variables X and Y,

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y).$$

- (a) Symmetry: Cov(X, Y) = Cov(Y, X).
- (b) With constant multipliers: Cov(aX, bY) = abCov(X, Y).
- (c) Bilinearity: $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_1) + Cov(X_2, Y_2)$.
- (d) Variance: $\operatorname{Var}(X) = \operatorname{Cov}(X, X)$, $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y),$ $\operatorname{Var}(X-Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) 2\operatorname{Cov}(X, Y).$
- (e) If X and Y are independent, Cov(X, Y) = 0.
- 3. Correlation coefficient: for random variables X and Y,

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}.$$

Correlation is scaled covariance, $|Corr(X, Y)| \le 1$. Independent implies uncorrelated but the reverse implication does not hold.

4.4 Joint Moments

If X and Y are random variables with joint mass/density function $f_{X,Y}$ then the $(r,s)^{\text{th}}$ joint moment is

$$m_{r,s} = E(X^r Y^s) = \begin{cases} \sum_{y} \sum_{x} x^r y^s f_{X,Y}(x,y), & \text{discrete case,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^r y^s f_{X,Y}(x,y) dx dy, & \text{continuous case.} \end{cases}$$

The (r, s)th joint central moment is

$$\mu_{r,s} = E[(X - E(X))^r (Y - E(Y))^s] = \begin{cases} \sum_y \sum_x [(x - \mu_X)^r (y - \mu_Y)^s] f_{X,Y}(x,y), & \text{discrete case,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [(x - \mu_X)^r (y - \mu_Y)^s] f_{X,Y}(x,y) dx dy, & \text{continuous case.} \end{cases}$$

- 1. Properties of joint moments
 - (a) r^{th} moment for X: $m_{r,0} = E(X^r)$.
 - (b) r^{th} central moment for X: $\mu_{r,0} = E[(X \mu_X)^r]$.
 - (c) Covariance: $\mu_{1,1} = E[(X E(X))(Y E(Y))] = Cov(X, Y)$.

2. Joint moment generating function

$$M_{X,Y}(t,u) = E(e^{tX+uY}) = \begin{cases} \sum_{y} \sum_{x} e^{tx+uy} f_{X,Y}(x,y), & \text{discrete case,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{tx+uy} f_{X,Y}(x,y) dx dy, & \text{continuous case.} \end{cases}$$

(a) Coefficient of $t^r u^s$:

$$\frac{1}{r!s!}E(X^rY^s) = \frac{1}{r!s!}m_{r,s}$$

.

- (b) Moment generating function for marginal: $M_X(t) = E(e^{tX}) = M_{X,Y}(t,0),$ $M_Y(t) = E(e^{uY}) = M_{X,Y}(0,u).$
- (c) Derivatives at zero:

$$M_{X,Y}^{(r,s)}(0,0) = \frac{d^{r+s}}{dt^r du^s} M_{X,Y}(t,u) \Big|_{t=0,u=0} = E(X^r Y^s) = m_{r,s}.$$

- (d) If X and Y independent: $M_{X,Y}(t,u) = M_X(t)M_Y(u)$.
- 3. Conditional moment generating function: define

$$\nu(u,x) = M_{Y|X}(u|x) = E(e^{uY}|X=x) = \begin{cases} \sum_{y} e^{uy} f_{Y|X}(y|x), & \text{discrete case,} \\ \int_{-\infty}^{\infty} e^{uy} f_{Y|X}(y|x) dy, & \text{continuous case.} \end{cases}$$

The conditional moment generating function of Y given X is $M_{Y|X}(u|X) = \nu(u,X) = E(e^{uY}|X)$. This is a conditional expectation so it is a random variable. We can calculate joint moment generating function and moment generating function for marginal Y from the conditional moment generating function,

$$M_{X,Y}(t,u) = E(e^{tX+uY}) = E[e^{tX}M_{Y|X}(u|X)],$$

 $M_{Y}(u) = M_{X,Y}(0,u) = E[M_{Y|X}(u|X)].$

- 4. **Joint cumulants**: let $K_{X,Y}(t,u) = \log M_{X,Y}(t,u)$, then we define the $(r,s)^{\text{th}}$ joint cumulant $\kappa_{r,s}$ as the coefficient of $(t^r u^s)/(r!s!)$ in the expansion of $K_{X,Y}$. Thus, $\kappa_{1,1} = \text{Cov}(X,Y)$.
- 5. Multivariate generalization: for random variables X_1, \ldots, X_n with joint mass/density function f_{X_1, \ldots, X_n} .
 - (a) Joint moments:

$$\begin{split} m_{r_1,...,r_n} = & E(X_1^{r_1} \dots X_n^{r_n}) \\ = & \begin{cases} \sum_{x_1} \dots \sum_{x_n} x_1^{r_1} \dots x_n^{r_n} f_{X_1,...,X_n}(x_1,\dots,x_n), & \text{discrete case,} \\ \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} x_1^{r_1} \dots x_n^{r_n} f_{X_1,...,X_n}(x_1,\dots,x_n) dx_1 \dots dx_n, & \text{continuous case.} \end{cases} \end{split}$$

- (b) Joint central moments: $\mu_{r_1,...,r_n} = E[(X_1 E(X_1))^{r_1}...(X_n E(X_n))^{r_n}]$
- (c) Joint moment generating function: $M_{X_1,\ldots,X_n}(t_1,\ldots,t_n)=E(e^{t_1X_1+\ldots+t_nX_n})$. The coefficient of $t_1^{r_1}\ldots t_n^{r_n}$ in the expansion of M_{X_1,\ldots,X_n} is $E(X_1^{r_1}\ldots X_n^{r_n})/(r_1!\ldots r_n!)$.
- (d) Joint cumulant generating function: $K_{X_1,...,X_n}(t_1,...,t_n) = \log(M_{X_1,...,X_n}(t_1,...,t_n))$. The $(r_1,...,r_n)^{\text{th}}$ joint cumulant is defined as the coefficient of $(t_1^{r_1}...t_n^{r_n})/(r_1!...r_n!)$ in the expansion of $K_{X_1,...,X_n}$.
- (e) Independence: if X_1, \ldots, X_n are independent then $M_{X_1, \ldots, X_n}(t_1, \ldots, t_n) = M_{X_1}(t_1) \ldots M_{X_n}(t_n)$.