Statistical Methods in NLP 1 Assignment 1: Exploring Entropy and Language Modeling

Andrew McIsaac

January 31, 2022

Contents

1	Entropy of a Text							
	1.1	English						
	1.2	Czech						
	1.3	Discussion						
	1.4	Independent Languages L_1 and L_2						
2	Cross-Entropy and Language Modeling							
	2.1	Smoothing Parameters						
	2.2	Cross-Entropy						
\mathbf{A}	Cod	le and Results Files						

1 Entropy of a Text

1.1 English

Table 1: Conditional Entropy of English

Text	Entropy			Avg. Perplexity
original	5.2874			39.0553
	Min	Max	Average	
char 10%	4.7262	4.7367	4.7308	26.5533
char 5%	5.0522	5.0622	5.0564	33.2764
char 1%	5.2473	5.2529	5.2504	38.0654
$\mathrm{char}\ 0.1\%$	5.2825	5.2842	5.2835	38.9484
char 0.01%	5.2868	5.2873	5.2871	39.0454
char 0.001%	5.2874	5.2875	5.2874	39.0549
word 10%	5.4508	5.4602	5.4572	43.9313
word 5%	5.3769	5.3836	5.3800	41.6440
word 1%	5.3053	5.3087	5.3072	39.5928
word 0.1%	5.2890	5.2899	5.2894	39.1089
word 0.01%	5.2875	5.2878	5.2877	39.0609
word 0.001%	5.2874	5.2876	5.2875	39.0560

1.2 Czech

Table 2: Conditional Entropy of Czech

Text	Entropy			Avg. Perplexity
Original	4.7478			26.8685
	Min	Max	Average	
char 10%	3.9976	4.0117	4.0048	16.0534
char 5%	4.3338	4.3443	4.3383	20.2283
char 1%	4.6547	4.6610	4.6578	25.2430
$\mathrm{char}\ 0.1\%$	4.7384	4.7399	4.7390	26.7039
$\mathrm{char}\ 0.01\%$	4.7467	4.7471	4.7469	26.8516
char 0.001%	4.7477	4.7478	4.7478	26.8671
word 10%	4.6335	4.6444	4.6378	24.8945
word 5%	4.6965	4.7022	4.6992	25.9768
word 1%	4.7383	4.7417	4.7394	26.7126
word 0.1%	4.7464	4.7474	4.7468	26.8508
word 0.01%	4.7475	4.7478	4.7477	26.8662
word 0.001%	4.7478	4.7479	4.7478	26.8686

Figure 1: Conditional entropy of text for English and Czech with varying probabilities of messing up the text at the character and word level.

1.3 Discussion

Table 3: Text statistics at word, bigram, and character level

	English	Czech
Text Size	221098	222412
Vocabulary Size	9607	42826
Top 20 Word Frequency	109798	78095
Unique Words	3811	26315
Different Bigrams	73246	147136
Unique Bigrams	49600	125007
Total Characters	972917	1030631
Average Characters	4.400	4.633
Different Characters	74	117

The conditional entropy of the original Czech data is lower than the original English data (4.7478 compared to 5.2874). This suggests that the ability to predict a word given another word is slightly better for Czech. From Table 3, comparing vocabulary size shows that the number of different words in Czech is about 4.5x more than in English, meaning that there are more different bigrams for Czech (about 2x). Further, the number of unique bigrams in Czech represents a larger proportion (85.0%) of the total different bigrams when compared to English (67.7%). This means that 85% of the bigrams have perfect conditional predictive ability, and do not increase the entropy at all. So the total conditional

entropy of Czech is lower than English. The reason for the difference in the distribution between languages may be because of the morphological richness of Czech, with many inflectional forms that English does not have contributing to the larger vocabulary.

For both English and Czech data, when messing up characters within words, the entropy changes in a similar pattern (Figs. 1a, c). For very small probabilities the entropy is approximately equal to the original text, but as the probability of messing up a character increases, the entropy decreases. Again, this may be because the number of hapax legomena (words occurring only once in the text) increases and thus the number of unique bigrams, meaning fewer bigrams have any uncertainty at all.

When messing up words, however, the conditional entropy of English increases at larger probabilities, while for Czech it decreases (Figs. 1b, d). A large reason for this may be because of the respective vocabulary sizes, and specifically the hapax legomena. The number of hapax legomena reduce quite significantly in English because of the smaller vocabulary, so that when changing a word with some probability in two similar sized texts, the hapax legomena are chosen more often and are no longer unique. Hence the log conditional probability of a bigram is 0 less often, and this results in an increase in conditional entropy. For Czech, this effect isn't seen to the same extent because there are far more hapax legomena, (26315 vs 3811), and so there are still many 0 terms which keep the conditional entropy down.

Finally, the range in which the entropy changes differs when messing up characters or words. The conditional entropy has a range of 0.56 for English and 0.74 for Czech for characters, while for words it is just 0.17 and 0.11 for English and Czech respectively. This emphasises the importance of hapax legomena in determining the entropy, with changing characters making many more unique words.

1.4 Independent Languages L_1 and L_2

Assuming that texts T_1 and T_2 have start and end tags, so that the bigram count of the final word of T_1 is not affected by appending T_2 , the conditional entropy of the joined text will be greater than the individual entropies E of T_1 and T_2 . This is because the conditional probabilities of the entropy equation do not change, and the joint probabilities, as computed by MLE, only change in their denominator, which is equal to the sum of the number of bigrams in the text minus one (accounting for the reduced number of bigrams including start/end tags). So with a smaller denominator and the same numerator over all pairs of words, the total conditional entropy is larger than E.

2 Cross-Entropy and Language Modeling

2.1 Smoothing Parameters

Trained smoothing parameters using both heldout and training data for both languages are detailed in Table 4.

Table 4: Smoothing parameters computed with the EM algorithm with terminating condition $\epsilon=0.00001$

Data	1_0	l_1	l_2	l_3
EN Heldout	0.0700	0.2539	0.4922	0.1836
EN Train	7.504e-29	1.365e-14	5.181e-06	0.9999
CZ Heldout	0.1402	0.4289	0.2446	0.1862
CZ Train	1.717e-42	1.110e-21	3.524 e-06	0.9999

2.2 Cross-Entropy

Cross-entropy for all permutations, along with the associated smoothing lambda parameters, are found for English in Table 5, and for Czech in Table 6.

Table 5: Cross-entropy on English test data with different smoothing parameters

Text		Lam	Cross-Entropy		
	1_0	l_1	1_2	1_3	
original	0.0700	0.2539	0.4922	0.1836	7.4677
add 10%	0.0630	0.2285	0.4430	0.2652	7.4693
add 20%	0.0560	0.2031	0.3938	0.3469	7.4962
add 30%	0.0490	0.1777	0.3445	0.4285	7.546
add 40%	0.0420	0.1523	0.2953	0.5101	7.6197
add 50%	0.0350	0.1269	0.2461	0.5918	7.7215
add 60%	0.0280	0.1015	0.1969	0.6734	7.8602
add 70%	0.0210	0.0761	0.1476	0.7550	8.0533
add 80%	0.0140	0.0507	0.0984	0.8367	8.3409
add 90%	0.0070	0.0253	0.0492	0.9183	8.8501
add 95%	0.0035	0.0127	0.0246	0.9592	9.3614
add 99%	0.0007	0.0025	0.0049	0.9918	10.5003
discount 90%	0.0716	0.2597	0.5033	0.1652	7.4716
discount 80%	0.0732	0.2654	0.5144	0.1469	7.4773
discount 70%	0.0748	0.2711	0.5254	0.1285	7.4851
discount 60%	0.0763	0.2768	0.5365	0.1101	7.4954
discount 50%	0.0779	0.2825	0.5476	0.0918	7.5086
discount 40%	0.0795	0.2882	0.5587	0.0734	7.5255
discount 30%	0.0811	0.2939	0.5697	0.0550	7.5471
discount 20%	0.0826	0.2997	0.5808	0.0367	7.5758
discount 10%	0.0842	0.3054	0.5919	0.0183	7.6166
discount 0%	0.0858	0.3111	0.6030	0	7.7035

Table 6: Cross-entropy on Czech test data with different smoothing parameters

Text	Lambdas				Cross-Entropy
	1_0	l_1	1_2	1_3	
original	0.1402	0.4289	0.2446	0.1862	10.2198
add 10%	0.1262	0.3860	0.2201	0.2675	10.2243
add 20%	0.1121	0.3431	0.1956	0.3489	10.2538
add 30%	0.0981	0.3002	0.1712	0.4303	10.3059
add 40%	0.0841	0.2573	0.1467	0.5117	10.3817
add 50%	0.0701	0.2144	0.1223	0.5930	10.4852
add 60%	0.0560	0.1715	0.0978	0.6744	10.6250
add 70%	0.0420	0.1286	0.0733	0.7558	10.8180
add 80%	0.0280	0.0857	0.0489	0.8372	11.1027
add 90%	0.0140	0.0428	0.0244	0.9186	11.6002
add 95%	0.0070	0.0214	0.0122	0.9593	12.0925
add 99%	0.0014	0.0042	0.0024	0.9918	13.1646
discount 90%	0.1434	0.4387	0.2502	0.1675	10.2230
discount 80%	0.1466	0.4485	0.2558	0.1489	10.2281
discount 70%	0.1498	0.4583	0.2614	0.1303	10.2353
discount 60%	0.1530	0.4681	0.2669	0.1117	10.2451
discount 50%	0.1562	0.4780	0.2725	0.0930	10.2578
discount 40%	0.1595	0.4878	0.2781	0.0744	10.2743
discount 30%	0.1627	0.4976	0.2837	0.0558	10.2959
discount 20%	0.1659	0.5074	0.2893	0.0372	10.3250
discount 10%	0.1691	0.5172	0.2949	0.0186	10.3679
discount 0%	0.1723	0.5270	0.3005	0	10.4885

Figure 2: Cross-entropy of English and Czech data with a modified l_3 parameter

Figure 2 shows how the cross-entropy changes as the smoothing parameters change. It can be seen that the cross-entropy is lowest for the original trained lambdas for both languages, and in both adding and discounting the 1–3 parameter. This would be expected to be the case, as the trained lambdas

represent the optimal values for the heldout data, so assuming a similar distribution between heldout and test data means that the original lambdas are close to optimal for the test data.

The cross-entropy for Czech is higher than it is for English. This suggests that the distribution learnt by the training algorithm is closer to that found in the test data. It can be seen that for English the coverage of words in the test data that have been seen in the training data is 75.8%, while for Czech it is just 65.2%. As seen in Table 3, the reason for this may again be because of the higher number of unique words in Czech arising from its rich morphology.

A Code and Results Files

Note that numpy is required to run the code.

The code for Section 1 is in the file entropy.py. Running the file with python entropy.py will run the entire code for two text files called TEXTEN1.txt and TEXTCZ1.txt. The results of all experiments will be saved in files called entropy_resultsEN.txt and entropy_resultsCZ.txt respectively.

The code for Section 2 is in the file lm.py. Running the file with python lm.py will run the entire code for two text files called TEXTEN1.txt and TEXTCZ1.txt. The results of all experiments will be saved in files called lm_resultsEN.txt and lm_resultsCZ.txt respectively.