

Институт информационных технологий, математики и механики Кафедра алгебры, геометрии и дискретной математики

Направление подготовки: «Прикладная математика и информатика» Профиль подготовки: «Прикладная математика и информатика (общий профиль)»

Выпускная квалификационная работа на тему: «Минимизация неявно заданной функции, применение метода имитации отжига»

Выполнил: студент группы 381903_3

Розанов Д.И

Научный руководитель:

Чирков А.Ю.

Постановка задачи.

Поставлена целочисленная задача о ранце на максимизацию (1):

$$\begin{cases} c_1 x_1 + c_2 x_2 + \ldots + c_n x_n = \sum_{i=1}^n c_i x_i \to \max_{x_1, \ldots, x_n} \\ a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = \sum_{i=1}^n a_i x_i \le b \end{cases}$$
(1),

где:

 c_i – цена i-ого предмета (i = 1, ..., n), a_i – вес i-ого предмета (i = 1, ..., n), b - максимальный вес, который может быть в рюкзаке

 $x_i \in Z_+, i = \overline{1,n}$ $\mathbf{c} = (c_1, c_2, \dots, c_n)^\mathrm{T}$ — вектор цен предметов $\mathbf{a} = (a_1, a_2, \dots, a_n)^\mathrm{T}$ — вектор весов предметов $x = (x_1, x_2, \dots, x_n)^\mathrm{T}$ - вектор, где x_i количество предметов i-ого типа.

Оптимальное решение целочисленной задачи о ранце - точка $p \in Z_+^n$, на которой достигается максимум целевой функции и удовлетворяющая ограничению $\sum_{i=1}^n a_i x_i \leq b$ Оптимальное значение задачи (1) $\lambda(a,b,c) = cp$ — значение функции в этой точке.

Множество Z_k^n – множество из наборов размерности n, y которых k компонент отличны от нуля

К-оптимальное решение целочисленной задачи о ранце (1) - точка $v \in Z_k^n$, на которой достигается максимум целевой функции и удовлетворяющая ограничению $\sum_{i=1}^n a_i x_i \leq b$

К-оптимальное значение задачи (1) $\lambda_k(a,b,c)=cv$ - значение функции в этой точке

Постановка задачи. Цель работы.

Поставлена целочисленная задача о ранце на максимизацию (1):

$$\begin{cases} c_1 x_1 + c_2 x_2 + \ldots + c_n x_n = \sum_{i=1}^n c_i x_i \to \max_{x_1, \ldots, x_n} \\ a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = \sum_{i=1}^n a_i x_i \le b \end{cases}$$
(1),

где:

 c_i – цена i-ого предмета (i = 1, ..., n), a_i – вес i-ого предмета (i = 1, ..., n),

b - максимальный вес, который может быть в рюкзаке

$$x_i \in Z_+, i = \overline{1,n}$$
 $\mathbf{C} = (c_1, c_2, \dots, c_n)^\mathrm{T}$ — вектор цен предметов $\mathbf{a} = (a_1, a_2, \dots, a_n)^\mathrm{T}$ — вектор весов предметов $x = (x_1, x_2, \dots, x_n)^\mathrm{T}$ - вектор, где x_i количество предметов i -ого типа.

Точность k - оптимального решения целочисленной задачи

о рюкзаке (1):
$$\alpha_k = \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)}$$
.

- если $\lambda(a, b, c) = 0$, то $\alpha_k(a, b, c) = 1$.
- $\forall a, c \in \mathbb{Z}_+^n, b \in \mathbb{N} \Rightarrow 0 \le \alpha_k = \left| \frac{\lambda_k(a, b, c)}{\lambda(a, b, c)} \right| \le 1$

Гарантированная точность k-оптимального решения целочисленной задачи о ранце (1) $\alpha_{k,n} = \inf_{a,b,c} \{ \left| \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right| : a, c \in Z_+^n, b \in N \}$

• Необходимо, используя различные методы для минимизации функции, найти: $\inf_{a,b,c} \left| \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right|$, если а, $c \in Z_+^n$, $b \in N$.

Сложность задачи. Методы решения.

Сложность задачи: задача относится к классу NP-полной

Методы решения:

- Для нахождения оптимального значения задачи (1) $\lambda(a,b,c)=cp$ используется метод динамического программирования
- Для нахождения k-оптимального значения задачи (1) $\lambda_k(a,b,c) = cv$ необходимо найти k ненулевых компонент для вектора $v^* = (v_1^*, \dots, v_n^*)^{\mathrm{T}} : \max\{\sum_{i=1}^n c_i x_i^*\} = \sum_{i=1}^n c_i v_i^* = \lambda_k$, используя метод динамического программирования
- Для поиска минимума функции $\alpha_k = \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)}$ и нахождения значения $\alpha_{k,n}$ используется метод имитации отжига, использующий случайный поиск с постепенным уменьшением температуры

рис.1: блок-схема реализованной программной реализации

Алгоритм метода имитации отжига

1. Множества:

■ S – множество всех состояний задачи.

2. Параметры:

- $s_i \in S$ состояние і-го шага.
- $t_i \in R$ температура і-го шага.

3. Функции:

- $E: S \to R$ функция энергии, ставит каждому решению в соответствие число, полученное по правилу, которое зависит от оптимизируемого параметра.
- $T: N \to R$ убывающая функция изменения температуры с течением времени, ставит номеру итерации $i \in N$ в соответствие температуру $t_i \in R$.
- $F: S \to S$ функция, порождающая новое состояниекандидат (s_c) на основе предыдущего, в которое система может перейти или отбросить.

Исследования 3адача поиска $lpha_{1,n}$

■ для проведения исследований были использованы результаты, описанные в статье А.Ю. Чиркова, В.Н. Шевченко "О приближении оптимального решения целочисленной задачи о ранце оптимальными решениями целочисленной задачи о ранце с ограничением на мощность", и они были сопоставлены с результатами, полученными в программе.

Их статьи для задачи по поиску $\alpha_{1,n}$: $\forall n$ и k = 1: $\alpha_{k,n} > 0.59136$

Из программной реализации:

n	$\inf_{\substack{a,c\in Z_+^n\\b\in N}} \left \frac{\lambda_1(a,b,c)}{\lambda(a,b,c)} \right $	
3	0.613059	
4	0.631744	Табл.1: результаты
5	0.66959	программной реализации задачи поиска $lpha_{1,n}$

■ Итог:

минимизированные значения $\alpha_1 = \left| \frac{\lambda_1(a,b,c)}{\lambda(a,b,c)} \right| \ \text{из запуска программы}$ удовлетворяют нижней оценке $\alpha_{1,n} > 0.59135549205, \ \text{полученной в статье}$

Исследования 3адача поиска $\alpha_{n-1,n}$

■ для проведения исследований были использованы результаты, описанные в статье А.Ю. Чиркова, В.Н. Шевченко

Из статьи для задачи по поиску $\alpha_{n-1,n}$: $\forall n \ \alpha_{n-1,n} = \frac{2^n-2}{2^n-1}$

2	3	4	5	6	Табл.2: значения
$\alpha_{n-1,n}$	0.857142	0.933333	0.96774193	0.984126	$lpha_{n-1,n}$ из статьи

Из программной реализации:

n	3	4	5	6
$\min_{\substack{a, c \in Z_+^n \\ b \in N}} \{ \left \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right \}$	0.857142	0.933333	0.97619	0.997199
$\min_{\substack{a, c \in Z_+^n \\ b \in N}} \{ \left \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right \} - a_{n-1,n}$			0.00844807	0.013073

Табл.3: результаты программной реализации задачи поиска $\alpha_{n-1,n}$

Исследования Задача поиска $lpha_{2,n}$ и $lpha_{3,5}$

■ для проведения исследований были использованы результаты, описанные в статье А.Ю. Чиркова, В.Н. Шевченко

Из статьи для задачи по поиску $\alpha_{2,n}$: $\forall n \ \frac{2^n-2^{n-k}}{2^n-1} = \frac{2^n-2^{n-2}}{2^n-1} \le \alpha_{2,n} \le \frac{2^{k+1}-2}{2^{k+1}-1} = \frac{2^3-2}{2^3-1} \cong 0.857143$

n n	4	5	6	7	8	9	10
нижняя оценка $lpha_{2,n}$	0.8	0.774194	0.761905	0.755906	0.752941	0.751468	0.750733

Табл.4: значения $\alpha_{n-1,n}$ из статьи

Из программной реализации:

5	4	5	6	7	8	9	10
$\min_{\substack{a, c \in \mathbb{Z}_+^n \\ b \in \mathbb{N}}} \left\{ \left \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right \right\}$	0.86602	0.89473.	0.9	0.909091	0.916667	0.925926	0.941176

Табл.5: результаты программной реализации задачи поиска $\alpha_{2,n}$

Из статьи для задачи по поиску $\alpha_{3,5}$: $\forall n \ \frac{2^n-2^{n-k}}{2^n-1} = \frac{2^5-2^{5-3}}{2^5-1} \le \alpha_{2,n} \le \frac{2^{k+1}-2}{2^{k+1}-1} = \frac{2^4-2}{2^4-1}$

Тогда: 0.903226 $\leq \alpha_{2,n} \leq$ 0.933333

Из программной реализации:

$$\min_{\substack{a, c \in Z_+^n \\ b \in N}} \left| \frac{\lambda_3(a,b,c)}{\lambda(a,b,c)} \right| = 0.961538 \qquad \blacksquare |0.933333 - 0.961538| = 0.028205$$

Решение задачи поиска $\alpha_{2,n}$ с доп. ограничениями.

Введем следующие ограничения:

$$\sum_{i=1}^n c_i = C$$
 где: $C, A = const \in Z_+$

Итог: ограничили область поиска решения поставленной задачи ⇒ исключаем из рассмотрения некоторое количество решений, но совпадающих имеющие разные c_i и a_i .

 для проведения исследований были использованы результаты, описанные в статье А.Ю. Чиркова, В.Н. Шевченко

Из статьи для задачи по поиску $\alpha_{2,n}$: $\forall n \ \frac{2^n-2^{n-2}}{2^n-1} \leq \alpha_{2,n} \leq 0.857143$

- $0.8 \le \alpha_{2.4} \le 0.857143$,
- $0.774194 \le \alpha_{2.5} \le 0.857143,$

■ Итог:

	n = 4	n = 5
$a_{k,n}$ нижняя оценка	0.8	0.774194
$lpha_{k,n}$ верхняя оценка	0.85	7143
$\min_{\substack{a, c \in \mathbb{Z}_+^n \\ b \in \mathbb{N}}} \left \frac{\lambda_k(a, b, c)}{\lambda(a, b, c)} \right $	0.86602	0.89473
$\left. egin{aligned} \min_{\substack{a,c \in Z_+^n \ b \in N}} \left \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right \ c \ o$ граничением	0.8526	0.874126

Табл.5: сравнение результатов в задаче поиска $\alpha_{2,n}$ с введенными ограничениями и без огр.

Решение задачи поиска $\alpha_{2,n}$ при n=5 с использованием предыдущих результатов

- для проведения исследований были использованы результаты, описанные в статье А.Ю. Чиркова, В.Н. Шевченко
- **для задачи поиска** $\alpha_{2,n}$ **при** n=4: удалось минимизировать $\alpha_2=\frac{\lambda_k(a,b,c)}{\lambda(a,b,c)}$ до значения из отрезка $0.8 \le \alpha_{2,4}=0.8526 \le 0.857143$, введя ограничения на сумму цен и весов.

Но: для $n \ge 5$ не удалось

Идея поиска $\alpha_{2,n}$ при $n \geq 5$:

- Т.к. работа алгоритма метода имитации отжига зависит от начальных условий и параметров метода запуска программы, тогда:
 - используем полученные результаты из исследования $\alpha_{2,4}$ для минимизации $\alpha_2 = \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)}$ в задаче с $\alpha_{2,5}$
 - используем раннее полученные результаты из исследования $\alpha_{2,5}$ для этой же задачи

Целочисленная задача о ранце на max (1):

$$\begin{cases} cx \to \max_{x_1, \dots, x_n} (1), \text{где:} \\ ax \le b \end{cases}$$

$$c = (c_1, c_2, \dots, c_n)^{\mathsf{T}} - \text{вектор}$$
цен предметов
$$a = (a_1, a_2, \dots, a_n)^{\mathsf{T}} - \text{вектор}$$
весов предметов
$$b - \text{максимальный}$$
вес, который может быть
в рюкзаке
$$x = (x_1, x_2, \dots, x_n)^{\mathsf{T}} - \text{вектор},$$
где $x_i \in Z_+$,

количество предметов i-

ого типа.

Решение задачи поиска $\alpha_{2,n}$ при n=5 с использованием предыдущих результатов

 для проведения исследований были использованы результаты, описанные в статье А.Ю. Чиркова, В.Н. Шевченко

	изменения начальных параметров	нижняя оценка для α_{2,5}	верхняя оценка для α _{2,5}	результат предыдущих запусков программной реализации	$\min_{\substack{a, c \in \mathbb{Z}_+^n \\ b \in \mathbb{N}}} \left \frac{\lambda_k(a, b, c)}{\lambda(a, b, c)} \right $	
начальные параметры из задачи поиска $lpha_{2.4}$					0.878983	
начальные параметры из задачи поиска $lpha_{2,5}$		0.770144	0.0574.42	0.074126	0.874126	
начальные параметры из задачи поиска $lpha_{2,5}$	$A = 10^6$	0.779144	0.857143	0.874126	0.874126	Табл.6: сравнение результатов в задаче поиска $\alpha_{2,5}$
начальные параметры из задачи поиска $lpha_{2,5}$	без ограничения В				0.8608	с использованием раннее полученных результатов

Решение задачи с понижением размерности

■ Метод имитации отжига:

1. Множества:

S

2. Параметры:

$$s_i \in S$$

 $t_i \in R$

3. Функции:

$$E: S \to R$$

$$T: N \to R$$

$$F: S \to S$$

Решение задачи поиска $\alpha_{2,5}$ с модифицированным методом имитации отжига

 для проведения исследований были использованы результаты, описанные в статье А.Ю. Чиркова, В.Н. Шевченко

В задаче по поиску $\alpha_{2,5}$ значение точности k-оптимального решения 0.874126 получилось при следующем наборе параметров:

$$c = (1,9,140,255,595),$$

 $a = (2,21,157,215,396),$
 $A = 1000,$
 $B = 791.$

Из программной реализации с н.у, описанными раннее: 0.868056

— Итог:

- удалось получить меньшее значение, чем найденное ранее
- $\alpha_2 = \frac{\lambda_2(a,b,c)}{\lambda(a,b,c)} = 0.868056$ не принадлежит интервальной оценки для гарантированной точности k-оптимального решения из теории $0.774194 \le \alpha_{2,5} \le 0.857143$.
- |0.868056 0.857143| = 0.010913

Выводы:

Задача поиска $\alpha_{1,n}$:

n	3	4	5
$\min_{\substack{a, c \in \mathbb{Z}_+^n \\ b \in \mathbb{N}}} \left \frac{\lambda_k(a, b, c)}{\lambda(a, b, c)} \right $	0.613059	0.631744	0.66959

Табл.7: рез-ты программной реализации для задачи поиска $\alpha_{1,n}$

Из программной реализации получилось: $\forall n \min_{a, c \in Z^n_+} \left| \frac{\lambda_1(a,b,c)}{\lambda(a,b,c)} \right| \geq \alpha_{1,n} \geq 0,59135549205$ $b \in N$

Задача поиска $\alpha_{n-1,n}$:

n	3	4	5	6
$\min_{\substack{a, c \in Z_+^n \\ b \in N}} \left \frac{\lambda_k(a, b, c)}{\lambda(a, b, c)} \right $	0.857142	0.933333	0.97619	0.997199
$\alpha_{n-1,n}$	0.857142	0.933333	0.9677419	0.984126
$\min_{\substack{a, c \in \mathbb{Z}_{+}^{n} \\ b \in \mathbb{N}}} \left \frac{\lambda_{k}(a, b, c)}{\lambda(a, b, c)} \right - \alpha_{n-1, n}$	0	0	0.0084481	0.013073

- $lue{}$ Удалось решить задачу поиска $lpha_{1,n}$
- Удалось решить задачу поиска $\alpha_{n-1,n}$ при n = 3, 4. Для $n \ge 5$ минимизируемое значение отношения приближенного решения к точному близко к $\alpha_{n-1,n}$

Табл.8:

сравнение значений $\alpha_{n-1,n}$ и результатов программной реализации

Выводы:

Задача поиска $\alpha_{2,n}$:

Задача поиска $u_{2,n}$:								
n	4	5	6	7	8	9	10	
нижняя оценка $\pmb{lpha}_{2,n}$	8.0	0.774194	0.76190 5	0.755906	0.752941	0.751468	0.750733	
верхняя оценка $lpha_{2,n}$	0.857143							
в программной реализации без модификаций: $\min_{a,c\in \mathbb{Z}_{+}^{n},b\in \mathbb{N}}\left \frac{\lambda_{k}(a,b,c)}{\lambda\left(a,b,c\right)}\right $	0.86602	0.89473	0.9	0.909091	0.916667	0.925926	0.941176	
в программной реализации с ограничениями: $\min_{a,c\in \mathbb{Z}_{+}^{n},b\in \mathbb{N}}\left \frac{\lambda_{k}(a,b,c)}{\lambda\left(a,b,c\right)}\right $	0.8526	0.874126						
в программной реализации с использованием предыдущих результатов с ограничением A и B: $\min_{a,c\in\mathbb{Z}_{+}^{n},b\in\mathbb{N}} \frac{ \lambda_{k}(a,b,c) }{\lambda\left(a,b,c\right)}$		0.874126						
в программной реализации с использованием предыдущих результатов без ограничения В:		0.8608						
в программной реализации с модифицированным методом отжига: $\min_{a,c\in \mathbb{Z}_+^n,b\in\mathbb{N}} \frac{\lambda_k(a,b,c)}{\lambda\left(a,b,c\right)}$		0.86805						

- Удалось решить задачу поиска
 α_{2,4} при введении в программную
 реализацию ограничений A и B
- Для задачи $\alpha_{2,5}$ удалось минимизировать $\min_{\substack{a, \ c \in Z_+^n \\ b \in N}} \left| \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right|$ до значения 0.8608 при использовании предыдущих результатов запусков программы и без ограничений A и B

Табл.9: сравнение значений $\alpha_{2,n}$ и результатов программной реализации

СПАСИБО ЗА ВНИМАНИЕ!

381903_3 Розанов Д.И.