

American International University-Bangladesh (AIUB)

Department of Computer Science Faculty of Science & Technology (FST)

PROJECT TITLE: BreathEase An AI-Powered Solution for Stress and Anxiety Management.

A Software Engineering Project Submitted By

Sem	ester: Summer_21_22	Section:	Group Number:	
SN	Student Name	Student ID	Contribution	Individual
			(CO3+CO4)	Marks
1	DIBAJIT ROY	22-48569-3		
2	NABIB AHAMED SUJAN	23-51193-1		
3	MAHBUB HASAN MITHIL	22-48560-3		
4	TONIMA ISLAM	22-48325-3		
5	MST. FAHMIDA ZAMAN	23-50291-1		

Supervised By SAEEDA SHARMEEN

Description of Student's Contribution in the Project work

Student Name: DIBAJIT ROY Student ID: 22-48569-3 Contribution in Percentage (20%): Contribution in the Project: Background of the problem Solution of the problem Model selection Project Roles and Responsibilities Signature of the Student Student Name: NABIB AHAMED SUJAN Student ID: 23-51193-1 Contribution in Percentage (20%): Contribution in the Project: Background of the problem Solution of the problem Project Roles and Responsibilities Signature of the Student Student Name: MAHBUB HASAN MITHIL Student ID: 22-48560-3 Contribution in Percentage (20%): Contribution in the Project: Background of the problem Solution of the problem Model selection Project Roles and Responsibilities Signature of the Student Student Name: TONIMA ISLAM Student ID: 22-48325-3 Contribution in Percentage (20%): Contribution in the Project:

- Background of the problem
- Solution of the problem
- Project Roles and Responsibilities

Signature of the Student

Student Name: MST. FAHMIDA ZAMAN

Student ID: 23-50291-1

Contribution in Percentage (20%):

Contribution in the Project:

- Background of the problem
- Solution of the problem
- Project Roles and Responsibilities

Signature of the Student

1. Diagram (Draw-io):

Use Case Diagram:

Description:

The diagram outlines the user interactions and system functions for a "BreathEase App". The main actors are the User and the Therapist. A User can register, manage their profile, track their mood, and book consultations. The app's core functionality, powered by an AI Engine, allows the system to monitor behavior, determine risk, and provide personalized recommendations to the user, who can also access a Wellness Toolkit. The Therapist can manage their own profile and view the user's data to provide support

Class Diagram:

Description:

The diagram shows relationships like association (e.g., User to Behavior Monitoring, User to Wellness Toolkit), aggregation (e.g., Therapist to User), and dependency (e.g., AI Engine to Behavior Monitoring). The numbers (e.g., "1..*", "1.1") indicate multiplicity, showing how many instances of one class can be related to instances of another. For instance, one User can be associated with multiple Behavior Monitoring records.

Activity Diagram:

Description: The activity diagram shows how the BreathEase App supports users through AI monitoring and therapist consultation. After registration or login, the system tracks screen time, stores data, and analyzes behavior. If unhealthy usage is detected, notifications and wellness activities are provided. Users can request consultation, set goals with therapist guidance, and track progress. In case of crisis, the system triggers emergency protocols and displays the helpline; otherwise, users continue normally.

Sequence Diagram:

Description: The provided sequence diagram illustrates the chronological interactions between different components of the "BreathEase App" system. It details the flow of messages for key processes such as user registration, login, data tracking, and consultation initiation. For instance, a user's registration involves the app storing data in the database and receiving confirmation, followed by login validation. The AI Engine analyzes usage data to generate reports and send reminders, while users can access the wellness toolkit and request consultations, leading to sessions with therapists. The diagram visually represents how these elements work together over time to deliver the app's functionality

2. UI Design (Figma):

BreathEase
Care yourself, Live better.

Login

Email

Password

Remember me Forgot password?

Login

Don't have an account? Sign Up

Page NO.1

Page NO.2

Page NO.3

Page No.4 Page No.5 Page No.6

Page NO.7

Page NO.8

BreathEase App – Page Flow Documentation:

Page No.	Page Name	Description
1	Welcome / Sign Up Options	User can sign up using Email, Facebook, Google, or Apple.
2	Login	User enters Email and Password to access account.
3	User Goals	User selects goals like Improve Performance, Reduce Anxiety, Better Sleep, Increase Happiness.
4	Create Account	Form to create a new account with Full Name, Email, Password, and Confirm Password.
5	Profile	Displays user info, Recently Used, Favorites, and Saved items.
6	Dashboard	Main screen with Behavior Monitor, Smart Alerts, Wellness Tracker, AI Assistant, and Resources.
7	Behavior Monitor	Shows Daily Screen Time, App Usage Breakdown, Usage Trends, and Risk Warnings.
8	Doctor's Consultant	Provides Secure Chat, Call Support, Availability Indicators, and Intervention options.

3. Project Estimation and Expected Budget Calculation:

Why our project is considered Organic:

- Small team (3–5 people)
- Low complexity work
- Clear and stable project scope and requirements
- Simple and familiar technology

Therefore, our calculations (PM, DM, ST) are based on the Organic project type.

PM (Person-Months): The amount of work one person can complete in one month; represents total effort required for the project.

SLOC (Source Lines of Code): Total number of lines of source code written in the project.

DM (**Development Months** / **Duration in Months**): Total time required to complete the project, measured in months.

ST (Staffing / Required People): Total number of people required to complete the project.

Project Estimation

```
Project Type: Organic
```

Were,

P = 1.05

T = 0.38

Coefficient = 2.4

SLOC = 17,000

Now,

PM = Coefficient <Effort Factor> * (SLOC / 1000) ^ P

$$= 2.4 * (17,000/1000) ^ 1.05$$

=47.01

$$DM = 2.50 * (47.01) ^ 0.38$$

$$= 10.80 \approx 11$$
(week)

Required number of people = ST = PM / DM = $47.01 / 11 = 4.27 \approx 4$

Note:

Although the required number of people is approximately 4, to ensure better efficiency and timely completion, we will assign 5 people to the project.

Decision Tree for Budget Estimation of Development Options:

Build

Simple
$$(P = 0.35) \rightarrow $50,000$$

Complex
$$(P = 0.65) \rightarrow $120,000$$

Reuse

Minor Customization (P = 0.45) \rightarrow \$30,000

Major Customization (P = 0.55):

- o Simple Change (P = 0.25) → \$40,000
- Complex Change $(P = 0.75) \rightarrow $90,000$

Buy

Minor Change
$$(P = 0.60) \rightarrow $20,000$$

Major Change (P =
$$0.40$$
) \rightarrow \$60,000

Contract

Without Change (P =
$$0.55$$
) \rightarrow \$15,000

With Change
$$(P = 0.45) \rightarrow $45,000$$

Expected Budget (Per Option)

1. Build

Expected (Build) = $0.35 \times 50,000 + 0.65 \times 120,000$ = 17,500 + 78,000

= \$95,500

2) Reuse

First, calculate inside Major Custom:

(Major Custom) = $0.25 \times 40,000 + 0.75 \times 90,000 = 10,000 + 67,500 = 77,500$

Then full Reuse:

Expected (Reuse) = $0.45 \times 30,000 + 0.55 \times 77,500$

= 13,500 + 42,625

= \$56,125

3) Buy

Expected (Buy) = $0.60 \times 20,000 + 0.40 \times 60,000$

= 12,000 + 24,000

= \$36,000

4) Contract

Expected (Contract) = $0.55 \times 15,000 + 0.45 \times 45,000$

= 8,250 + 20,250

=\$28,500

Total Expected Budget

Total = 95,500 + 56,125 + 36,000 + 28,500

= \$216,125

4. Risk Management:

Risk Management Plan for BreathEase Project:

Risk	Category	Probability	Impact	Risk Mitigation/Management Strategy
AI may misinterpret user's emotional state	Technology (TE)	40%	3	Incorporate human therapist review for critical cases and continuous AI model updates.
User data privacy	Customer/User (CU)	30%	3	Use end-to-end encryption,

breaches				anonymization, and comply with GDPR/CCPA.
Low user engagement over time	Business Impact (BU)	50%	2	Add gamification, streak tracking, and regular motivational content.
Excessive reliance on AI instead of human experts	Business/Technology (BU/TE)	40%	2	Integrate hybrid model: AI + live consultation option.
Social stigma prevents app adoption	Customer/User (CU)	60%	2	Enable anonymous consultations and awareness campaigns.
App crashes during peak usage	Product Size (PS)	30%	3	Stress testing, scalable cloud infrastructure, and load balancing.
Delayed emergency support detection	Technology (TE)	20%	3	Implement multi-signal crisis detection and emergency helplines integration.
Lack of training for development tools	Development Environment (DE)	40%	2	Provide training sessions and detailed documentation.
Team inexperience in AI/ML	Staff Experience (ST)	50%	2	Conduct workshops, hire AI consultants, and peer-learning programs.
Changing requirements after Baseline	Product Size (PS)	70%	2	Use (Scrum) with iterative sprints and frequent reviews.

Impact Values and Category Notations

Impact Value / Category	Notation
1 – catastrophic	PS – Product size
2 – critical	BU – Business Impact
3 – marginal	CU – Customer Characteristics
4 – negligible	TE – Technology to be built
	DE – Development environment
	ST – Staff size and Experience

Budget Allocation per Risk

Risk	Estimated Cost (\$)	Notes
TGSK	Formula: Base ×	Trotes
	Probability \times (5 – Impact)	
AI may misinterpret user's	\$4,000	P=40%, Impact=3,
emotional state	\$ 1,000	Weight=2. Model
omononar state		retraining, therapist
		supervision integration
User data privacy breaches	\$3,000	P=30%, Impact=3,
Cisci data privacy oreaches	ψ3,000	Weight=2. Encryption,
		secure cloud, compliance
		audits
Low user engagement over	\$7,500	P=50%, Impact=2,
time	\$7,500	Weight=3. Gamification,
time		reward systems, retention
		campaigns
Excessive reliance on AI	\$6,000	P=40%, Impact=2,
instead of human experts	\$0,000	Weight=3. Hybrid AI +
mistead of numan experts		therapist support
		integration
Social stigma prevents app	\$9,000	P=60%, Impact=2,
adoption	\$9,000	Weight=3. Awareness
adoption		campaigns, anonymous
		consultations
App crashes during peak	\$3,000	P=30%, Impact=3,
	\$3,000	Weight=2. Load testing,
usage		auto-scaling, infra
		upgrades
Delayed emergency	\$2,000	P=20%, Impact=3,
	\$2,000	Weight=2. Multi-signal
support detection		crisis detection, SOS
		integration
I advatuaining for	\$6,000	
Lack of training for	\$6,000	P=40%, Impact=2,
development tools		Weight=3. Team training,
Transiture	\$7,500	workshops, documentation
Team inexperience in	\$7,500	P=50%, Impact=2,
AI/ML		Weight=3. Workshops,
		consultants, skill
C1	¢10.500	development
Changing requirements	\$10,500	P=70%, Impact=2,
from stakeholders		Weight=3. Agile sprint
		buffers, stakeholder
		workshops

Total Estimated Risk Management Budget = \$58,500

5. Gantt Chart (Notion)

The project is planned for a total duration of 11 weeks. All the main tasks and activities will be completed within the first 10 weeks, ensuring that every milestone and deliverable is achieved on time. The remaining 1 week will be kept as a buffer or extra time to handle any unexpected delays, revisions, or final checks. This approach ensures that the project stays on track while also maintaining flexibility for adjustments if needed.

Workload Distribution

1. Project Initiation and Planning (July 1 – July 7, 2025)

Task	Assigned Staff	Backup
Problem and Solution	Full Team	Tonima
Identification		
Selection of Development	Full Team	Tonima
Methodology		
Role Finalization	Dibajit Roy	Tonima
Initial Product Backlog	Fahmida	Tonima
Creation		
Tool and Environment Setup	Mithil	Tonima

2. Requirement Analysis (July 9 – July 14, 2025)

Task	Assigned Staff	Backup
Collect Functional and Non-	Nabib	Tonima
Functional Requirements		
Draft User Stories	Nabib	Tonima
Backlog Prioritization	Dibajit Roy	Tonima

3. System Design and Prototyping (July 15 – July 21, 2025)

Task	Assigned Staff	Backup
Diagram (Class, Activity,	Fahmida, Mithil	Tonima
Sequence)		
Prototype Design	Nabib, Dibajit Roy	Tonima

4. Project Estimation (July 22 – July 26, 2025)

Task	Assigned Staff	Backup
Effort Estimation	Mithil	Tonima
Cost Estimation (Using	Mithil	Tonima
COCOMO method)		

5. Development and Testing (July 29 – August 29, 2025)

Task	Assigned Staff	Backup
Coding/Development	Full Team	Tonima
Testing	Dibajit Roy, Fahmida	Tonima
Unit and Integration Testing	Nabib	Tonima
System Testing	Nabib, Dibajit Roy	Tonima
User Acceptance Testing	Fahmida, Mithil	Tonima

6. Maintenance and Documentation (August 1, 2025 – September 5, 2026)

Task	Assigned Staff	Backup
Maintenance and Support	Full Team	Tonima
Documentation	Full Team	Tonima

Note: In case of workload pressure, unexpected issues, or if specialized input is required, **Tonima** will act as an expert backup for tasks related to requirement analysis, system design, estimation, and testing.

References

- 1. Sommerville, I. (2011). *Software Engineering* (9th ed.). Boston, MA: Pearson. Retrieved from https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/Software-Engineering-9th-Edition-by-Ian-Sommerville.pdf
- 2. Mandeep Kaur. (n.d.). *Software Project Management*. Lovely Professional University. Retrieved from https://ebooks.lpude.in/management/mba/term 4/DCAP304 DCAP515 SOFTWARE PROJECT MA NAGEMENT.pdf