Maik Schünemann

20. Juni 2016

Outline

- Einführung
- 2 Kodierung der Bedingungen in Aussagenlogik
- 3 Evaluation
- Fazit

Fazit

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

• zum erleichtern der manuellen Stundenplanerzeugung

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen

Fazit

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen
- automatische Stundenplanerzeugung wurde als optionale Anforderung gestellt.

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen
- automatische Stundenplanerzeugung wurde als optionale Anforderung gestellt.

Besonderheiten der Grundschule Oslebshausen

• Mehrere Gebäude an entfernten Standorten

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen
- automatische Stundenplanerzeugung wurde als optionale Anforderung gestellt.

- Mehrere Gebäude an entfernten Standorten
- Bandunterricht

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen
- automatische Stundenplanerzeugung wurde als optionale Anforderung gestellt.

- Mehrere Gebäude an entfernten Standorten
- Bandunterricht
- Lehrer können zu gewissen Zeiten nicht verfügbar sein.

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen
- automatische Stundenplanerzeugung wurde als optionale Anforderung gestellt.

- Mehrere Gebäude an entfernten Standorten
- Bandunterricht
- Lehrer können zu gewissen Zeiten nicht verfügbar sein.
- Manche Fächer können nur in bestimmten Räumen unterrichtet werden und haben unterschiedliche Längen.

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen
- automatische Stundenplanerzeugung wurde als optionale Anforderung gestellt.

- Mehrere Gebäude an entfernten Standorten
- Bandunterricht
- Lehrer können zu gewissen Zeiten nicht verfügbar sein.
- Manche Fächer können nur in bestimmten Räumen unterrichtet werden und haben unterschiedliche Längen.
- Stundenplan soll rhytmisiert sein.

SWP II WS 2014/2015

Interaktiver Stundenplaner für die Grundschule Oslebshausen

- zum erleichtern der manuellen Stundenplanerzeugung
- Markierung bzw Verhinderung von Verletzungen von weichen und harten Bedingungen
- automatische Stundenplanerzeugung wurde als optionale Anforderung gestellt.

- Mehrere Gebäude an entfernten Standorten
- Bandunterricht
- Lehrer können zu gewissen Zeiten nicht verfügbar sein.
- Manche Fächer können nur in bestimmten Räumen unterrichtet werden und haben unterschiedliche Längen.
- Stundenplan soll rhytmisiert sein.
 - In dieser Arbeit nicht behandelt.

Anforderungen an einen zulässigen Stundenplan

 Kein Lehrer, Klasse oder Raum darf zu einer Zeit von mehreren Events belegt sein.

Evaluation

Anforderungen an einen *zulässigen* Stundenplan

- Kein Lehrer, Klasse oder Raum darf zu einer Zeit von mehreren Events belegt sein.
- Kein Lehrer, Klasse oder Raum darf zu einer Zeit belegt sein, in der er/sie/es nicht verfügbar ist.

Fazit

- Kein Lehrer, Klasse oder Raum darf zu einer Zeit von mehreren Events belegt sein.
- Kein Lehrer, Klasse oder Raum darf zu einer Zeit belegt sein, in der er/sie/es nicht verfügbar ist.
- Kein Fach darf in einem Raum unterrichtet werden, in dem es nicht stattfinden darf.

Anforderungen an einen zulässigen Stundenplan

- Kein Lehrer, Klasse oder Raum darf zu einer Zeit von mehreren Events belegt sein.
- Kein Lehrer, Klasse oder Raum darf zu einer Zeit belegt sein, in der er/sie/es nicht verfügbar ist.
- Kein Fach darf in einem Raum unterrichtet werden, in dem es nicht stattfinden darf.
- Jedem zu verplanenden Event muss ein Zeitslot der gebrauchten Länge sowie die teilnehmenden Klassen/Lehrer/Räume zugewiesen werden.

Anforderungen an einen zulässigen Stundenplan

- Kein Lehrer, Klasse oder Raum darf zu einer Zeit von mehreren Events belegt sein.
- Kein Lehrer, Klasse oder Raum darf zu einer Zeit belegt sein, in der er/sie/es nicht verfügbar ist.
- Kein Fach darf in einem Raum unterrichtet werden, in dem es nicht stattfinden darf.
- Jedem zu verplanenden Event muss ein Zeitslot der gebrauchten Länge sowie die teilnehmenden Klassen/Lehrer/Räume zugewiesen werden.
- Jeder Lehrer und jede Klasse muss zwischen zwei Events an einem Tag genug Zeit haben, um vom Standort des ersten zum Standort des zweiten zu gelangen.

Anforderungen an einen optimalen Stundenplan

• Lehrer und Klassen sollen möglichst wenig zeitliche Lücken in ihrem Stundenplan haben.

Anforderungen an einen optimalen Stundenplan

- Lehrer und Klassen sollen möglichst wenig zeitliche Lücken in ihrem Stundenplan haben.
- Lehrer und Klassen sollen möglichst wenig zwischen verschiedenen Gebäuden innerhalb eines Tages wechseln müssen.

• Übersetze Bedingung in einer aussagenlogische Formel in konjunktiver Normalform.

Ansatz dieser Arbeit

- Übersetze Bedingung in einer aussagenlogische Formel in konjunktiver Normalform.
 - mit harten und weichen Klauseln (für optimalen Stundenplan)

Ansatz dieser Arbeit

- Ubersetze Bedingung in einer aussagenlogische Formel in konjunktiver Normalform.
 - mit harten und weichen Klauseln (für optimalen Stundenplan)
- Ubergebe diese einem SAT bzw. Weighted Partial MAX-SAT Solver.

Einführung

Ansatz dieser Arbeit

- Ubersetze Bedingung in einer aussagenlogische Formel in konjunktiver Normalform.
 - mit harten und weichen Klauseln (für optimalen Stundenplan)
- Ubergebe diese einem SAT bzw. Weighted Partial MAX-SAT Solver.
- Erzeuge aus der ausgegebenen Variablenzuweisung den generierten Stundenplan.

1 zulässiger Stundenplan bei bekannter Raumbelegung

- 1 zulässiger Stundenplan bei bekannter Raumbelegung
- Optimaler Stundenplan bei bekannter Raumbelegung

- 1 zulässiger Stundenplan bei bekannter Raumbelegung
- Optimaler Stundenplan bei bekannter Raumbelegung
- 3 zulässiger Stundenplan bei unbekannter Raumbelegung

- 2 zulässiger Stundenplan bei bekannter Raumbelegung
- Optimaler Stundenplan bei bekannter Raumbelegung
- 3 zulässiger Stundenplan bei unbekannter Raumbelegung
- optimaler Stundenplan bei unbekannter Raumbelegung

• at-most, at-least, exactly k von n übergebenen Variablen dürfen wahr sein.

- at-most, at-least, exactly k von n übergebenen Variablen dürfen wahr sein.
- Werden für die Stundenplanerzeugung oft verwendet.

- at-most, at-least, exactly k von n übergebenen Variablen dürfen wahr sein.
- Werden für die Stundenplanerzeugung oft verwendet.
 - Effizientes Übersetzungsschema ist wichtig.

- at-most, at-least, exactly k von n übergebenen Variablen dürfen wahr sein.
- Werden für die Stundenplanerzeugung oft verwendet.
 - Effizientes Übersetzungsschema ist wichtig.
- Kardinalitätsnetzwerke

- at-most, at-least, exactly k von n übergebenen Variablen dürfen wahr sein.
- Werden für die Stundenplanerzeugung oft verwendet.
 - Effizientes Übersetzungsschema ist wichtig.
- Kardinalitätsnetzwerke
 - $O(n \log k)$ zusätzliche Klauseln und Hilfsvariablen

Verwendung eines Sortiernetzwerkes

Abbildung: Kardinalitätsbedingungen durch ein Sortiernetzwerk.

Optimierung des Sortiernetzwerkes (k i n)

Abbildung: Vereinfachtes Sortiernetzwerk.

zulässiger Stundenplan bei bekannter Raumplanung

Variablen

 occurs-at-hour_{e,h} ist true genau dann, wenn ein Event e auf die Stunde h gelegt wurde.

zulässiger Stundenplan bei bekannter Raumplanung

Variablen

- occurs-at-hour_{e,h} ist true genau dann, wenn ein Event e auf die Stunde h gelegt wurde.
- occurs-at-day $_{e,d}$ ist true genau dann, wenn ein Event e auf eine Stunden am Tag d gelegt wurde.

zulässiger Stundenplan bei bekannter Raumplanung

Variablen

- occurs-at-hour_{e,h} ist true genau dann, wenn ein Event e auf die Stunde h gelegt wurde.
- occurs-at-day_{e,d} ist true genau dann, wenn ein Event e auf eine Stunden am Tag d gelegt wurde.
- occurs-at-room_{e,r} ist true genau dann, wenn Event e in Raum r stattfindet.

zulässiger Stundenplan bei bekannter Raumplanung

Variablen

- occurs-at-hour_{e,h} ist true genau dann, wenn ein Event e auf die Stunde h gelegt wurde.
- occurs-at-day $_{e,d}$ ist true genau dann, wenn ein Event e auf eine Stunden am Tag d gelegt wurde.
- occurs-at-room_{e,r} ist true genau dann, wenn Event e in Raum r stattfindet.
- teached-at_{c,h} ist true genau dann, wenn die Klasse c zur Zeit h unterrichtet wird.O

zulässiger Stundenplan bei bekannter Raumplanung

Variablen

- occurs-at-hour_{e,h} ist true genau dann, wenn ein Event e auf die Stunde h gelegt wurde.
- occurs-at-day $_{e,d}$ ist true genau dann, wenn ein Event e auf eine Stunden am Tag d gelegt wurde.
- occurs-at-room_{e,r} ist true genau dann, wenn Event e in Raum r stattfindet.
- teached-at_{c,h} ist true genau dann, wenn die Klasse c zur Zeit h unterrichtet wird.O
- teaches-at_{t,h} ist true genau dann, wenn der Lehrer t zur Zeit h unterrichtet.

Beziehungen zwischen den Variablen

occurs-at-hour und occurs-at-day

 $\mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{day}_{e,d} \Leftrightarrow \bigvee_{h \in \mathsf{hours}(d)} \mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{hour}_{e,h}$

teached-at und occurs-at-hour

teached-at_{c,h} \Leftrightarrow $\bigvee_{e \in \text{Events mit } c \in \text{classes}(e)} \text{occurs-at-hour}_{e,h}$

teaches-at und occurs-at-hour

teaches-at_{t,h} $\Leftrightarrow \bigvee_{e \in \text{Events mit } t \in \text{teachers}(e)} \text{occurs-at-hour}_{e,h}$

Bedingungen - Raumplanung schon bekannt

Verhindern von Doppelbelegungen

```
\forall r \in \mathsf{Teachers} \cup \mathsf{Classes} \cup \mathsf{Rooms}
 \mathsf{at\text{-}most}(\{\mathsf{occurs\text{-}at\text{-}hour}_{e,h} \,| e \in \mathsf{events\text{-}for}(r)\}, 1)
```

Bedingungen - Raumplanung schon bekannt

Verhindern von Doppelbelegungen

$$orall r \in \mathsf{Teachers} \cup \mathsf{Classes} \cup \mathsf{Rooms}$$
 $\mathsf{at-most}(\{\mathsf{occurs-at-hour}_{e,h} \,| e \in \mathsf{events-for}(r)\}, 1)$

Beachten von Zeitbeschränkungen

Bedingungen - Raumplanung schon bekannt

Verhindern von Doppelbelegungen

$$orall r \in \mathsf{Teachers} \cup \mathsf{Classes} \cup \mathsf{Rooms}$$
 $\mathsf{at-most}(\{\mathsf{occurs-at-hour}_{e,h} \,|\, e \in \mathsf{events-for}(r)\}, 1)$

Beachten von Zeitbeschränkungen

• Jedes zu belegende Event muss belegt werden

```
\forall e \in \mathsf{Events}
exactly({starts-at-hour}_{e,h} | h \in \mathsf{Hours}\}, 1)
```

Events mit längerer Dauer

Neue Variable starts-at-hour

$$\forall e \in \mathsf{Events}, \forall h \in \mathsf{Hours}$$

$$\mathsf{starts}\text{-at-hour}_{e,h} \Leftrightarrow \bigwedge_{h' \in \{h \dots h + \mathsf{duration}(e) - 1\}} \mathsf{occurs-at-hour}_{e,h'}$$

Events mit längerer Dauer

Neue Variable starts-at-hour

$$\forall e \in \mathsf{Events}, \forall h \in \mathsf{Hours}$$

$$\mathsf{starts}\text{-at-hour}_{e,h} \Leftrightarrow \bigwedge_{h' \in \{h \dots h + \mathsf{duration}(e) - 1\}} \mathsf{occurs-at-hour}_{e,h'}$$

Verhindern von zu späten Startzeiten

$$\forall e \in \mathsf{Events}, \forall t \in \mathsf{Days}$$

$$\neg \left(\bigvee_{h=h_{t,\mathsf{max}-d+2}...h_{t,\mathsf{max}}} \mathsf{starts}\text{-at-hour}_{e,h} \right)$$

Beachten von Wechselzeiten zwischen Gebäuden

 zwei Events mit einer gemeinsamen Klassen oder Lehrern müssen weit genug auseinander liegen, damit zwischen ihnen gewechselt werden kann.

Grundidee:

 $\mathsf{teached}\text{-in-building}_{c,h,b} \Rightarrow \mathsf{teached}\text{-in-building}_{c,h+1,b}$

Optimalitätsbedingung - Minimierung von Gebäudewechseln

• Grundidee:

teached-in-building_{c,h,b} \Rightarrow teached-in-building_{c,h+1,b}

Hat Schwächen:

Grundidee:

 $\mathsf{teached}\text{-}\mathsf{in}\text{-}\mathsf{building}_{c,h,b} \Rightarrow \mathsf{teached}\text{-}\mathsf{in}\text{-}\mathsf{building}_{c,h+1,b}$

- Hat Schwächen:
 - Unterscheidet nicht, zwischen welchen Gebäuden gewechselt wird.

Grundidee:

 $\mathsf{teached}\text{-}\mathsf{in}\text{-}\mathsf{building}_{c,h,b} \Rightarrow \mathsf{teached}\text{-}\mathsf{in}\text{-}\mathsf{building}_{c,h+1,b}$

- Hat Schwächen:
 - Unterscheidet nicht, zwischen welchen Gebäuden gewechselt wird.
 - Kommt nicht mit Lücken zwischen Veranstaltungen klar.

Grundidee:

 $\mathsf{teached}\text{-}\mathsf{in}\text{-}\mathsf{building}_{c,h,b} \Rightarrow \mathsf{teached}\text{-}\mathsf{in}\text{-}\mathsf{building}_{c,h+1,b}$

- Hat Schwächen:
 - Unterscheidet nicht, zwischen welchen Gebäuden gewechselt wird.
 - Kommt nicht mit Lücken zwischen Veranstaltungen klar.
 - Diese müssen aber bei einem zulässigen Stundenplan vorhanden sein.

- Führe Hilfsvariable class-in-building mit rekursiver Beziehung ein:
 - class-in-building c,b,h ist true genau dann, wenn
 - Ein Event e, an dem die Klasse teilnimmt und das in Gebäude b unterrichtet wird zur Zeit h stattfindet:

occurs-at-hour_{e,h}
$$c \in \text{classes}(e), b = \text{building}(e),$$

oder

• Führe Hilfsvariable class-in-building mit rekursiver Beziehung ein:

class-in-building c,b,h ist true genau dann, wenn

Ein Event e, an dem die Klasse teilnimmt und das in Gebäude b unterrichtet wird zur Zeit h stattfindet:

occurs-at-hour_{e,h}
$$c \in classes(e)$$
, $b = building(e)$,

oder

② *h* nicht die erste Stunde eines Tages ist, die Klasse *c* nicht zur Zeit *h* unterrichtet wird, und sie die Stunde davor im Gebäude *b* zuletzt unterrichtet wurde:

```
\neg teached-at<sub>c,h</sub> \land class-in-building<sub>c,h-1,b</sub> h \neq first-hour(day(h))
```

Insgesamt ergibt sich

```
\forall c \in \mathsf{Classes}, h \in \mathsf{Times}, b \in \mathsf{Buildings} \mathsf{class\text{-}in\text{-}building}_{c,h,b} \Leftrightarrow \\ \bigvee \qquad \mathsf{occurs\text{-}at\text{-}hour}_{e,h} e \in \mathsf{Events}, c \in \mathsf{classes}(e), b = \mathsf{building}(e) \forall \ h \neq \mathsf{first\text{-}hour}(\mathsf{day}(h)) \land \neg \, \mathsf{teached\text{-}at}_{c,h} \land \mathsf{class\text{-}in\text{-}building}_{c,h-1,b}
```

Insgesamt ergibt sich

$$\forall c \in \mathsf{Classes}, h \in \mathsf{Times}, b \in \mathsf{Buildings}$$

$$\mathsf{class-in-building}_{c,h,b} \Leftrightarrow \\ \bigvee \qquad \mathsf{occurs-at-hour}_{e,h}$$

$$e \in \mathsf{Events}, c \in \mathsf{classes}(e), b = \mathsf{building}(e)$$

$$\lor h \neq \mathsf{first-hour}(\mathsf{day}(h)) \land \neg \mathsf{teached-at}_{c,h} \land \mathsf{class-in-building}_{c,h-1,b}$$

• Damit kann die Bedingung leicht ausgedrückt werden:

class-in-building
$$_{c,h,b_1} \Rightarrow \neg$$
 class-in-building $_{c,h+1,b_2}$

Mit einer Gewichtung abhängig von der Entfernung von b_1 und b_2 und h nicht die letzte Stunde eines Tages.

Erweiterung des Problems um Raumplanung

 Alle Bedingungen, die von der Zuordnung von Events zu Räumen und zu Gebäuden ausgehen müssen angepasst werden.

Verhindern von Doppelbelegungen von Räumen

Einführung einer neuen Variable

 $\mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{room}\text{-}\mathsf{at}\text{-}\mathsf{hour}_{e,r,h} \Leftrightarrow \mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{room}_{e,r} \land \mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{hour}_{e,h}$

Verhindern von Doppelbelegungen von Räumen

Einführung einer neuen Variable

```
\mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{room}\text{-}\mathsf{at}\text{-}\mathsf{hour}_{e,r,h} \Leftrightarrow \mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{room}_{e,r} \land \mathsf{occurs}\text{-}\mathsf{at}\text{-}\mathsf{hour}_{e,h}
```

 Doppelbelegungen können durch folgende Bedingung verhindert werden:

```
\forall r \in \mathsf{Rooms}, h \in \mathsf{Hours}
at-most({occurs-at-room-at-hour}_{e,r,h} | e \in \mathsf{Events} \}, 1)
```

• Untersuchung der Skalierbarkeit erstellt sich als schwierig.

- Untersuchung der Skalierbarkeit erstellt sich als schwierig.
- Einführung eines skalierbaren Beispielproblems, was für die gegebene Klassenanzahl maximale Auslastung darstellt. Für n Klassen enthält das skalierbare Beispielproblem:

- Untersuchung der Skalierbarkeit erstellt sich als schwierig.
- Einführung eines skalierbaren Beispielproblems, was für die gegebene Klassenanzahl maximale Auslastung darstellt. Für *n* Klassen enthält das skalierbare Beispielproblem:
 - 5 Tage mit je 7 Stunden

- Untersuchung der Skalierbarkeit erstellt sich als schwierig.
- Einführung eines skalierbaren Beispielproblems, was für die gegebene Klassenanzahl maximale Auslastung darstellt. Für n Klassen enthält das skalierbare Beispielproblem:
 - 5 Tage mit je 7 Stunden
 - n Gebäude mit je einem Raum.

- Untersuchung der Skalierbarkeit erstellt sich als schwierig.
- Einführung eines skalierbaren Beispielproblems, was für die gegebene Klassenanzahl maximale Auslastung darstellt. Für n Klassen enthält das skalierbare Beispielproblem:
 - 5 Tage mit je 7 Stunden
 - *n* Gebäude mit je einem Raum.
 - n Klassenlehrer.

- Untersuchung der Skalierbarkeit erstellt sich als schwierig.
- Einführung eines skalierbaren Beispielproblems, was für die gegebene Klassenanzahl maximale Auslastung darstellt. Für n Klassen enthält das skalierbare Beispielproblem:
 - 5 Tage mit je 7 Stunden
 - *n* Gebäude mit je einem Raum.
 - n Klassenlehrer.
 - n * 5 * 7 Veranstaltungen, wobei für Klasse j die 35 Veranstaltungen beim Klassenlehrer j und in dem Raum im \$j\$-ten Gebäude stattfinden.

Klassen	Klauseln	Laufzeit (s) des Solvers
10	924050	12,3
20	1848100	41,7
30	2772150	69,5
40	3696200	131,1
50	4620250	191,4
60	5544300	351,6
70	6468350	434,3
80	7392400	583,2
90	8316450	732,7
100	9240500	904.3

optimaler Stundenplan bei bekannter Raumplanung

- nicht mehr 35 Veranstaltungen pro Woche, sondern 34
- Abbruch des Solvers nach 5 Minuten

Klassen	Klauseln	Laufzeit (s) des Solvers	Gewichtung
10	935610	18	0
20	1909220	74.3	0
30	2920830	273,2	0
40	3970440	TIMEOUT	44
50	5058050	TIMEOUT	56
60	6183660	TIMEOUT	68

zulässiger Stundenplan im erweiterten Problem

Klassen	Klauseln	Laufzeit (s) des Solvers
1	98720	0,8
2	224840	2,5
3	381405	5,5
4	562360	12
5	781775	20,8
6	1018860	36,5
7	1288735	58,5
8	1580480	96,9
9	1948275	134,4
10	2299300	323,3
11	2686475	402,9
12	3092160	531,4

 Zum Vergleich: Ein selbst erstelltes Beispielproblem realistischer Größe mit 12 Klassen hat 1327008 Klauseln und 43 Sekungen zur Lösung benötigt.

optimaler Stundenplan bei unbekannter Raumplanung

• 34 Veranstaltungen pro Woche und keine Raumbelegungen vorgegeben.

Klassen	Klauseln	Zeit Lösung	Gewicht
1	95421	0,5	0
2	217878	1,1	0
4	545260	12,5	0
6	988266	55,2	0
8	1533432	92,8	0
10	2231350	TIMEOUT	12
12	3001236	TIMEOUT	22

Ergebnisse an einem Beispielproblem realistischer Größe

timetable-for-class :class-11				
1	2	3	4	
	:class-11-sk:2 {:cl	:class-11-german:		
	:class-11-art:0 {:c	:class-11-math:3	:class-11-sport:0	
	:class-11-sk:1 {:cl	:class-11-german:		
		:class-11-math:2		
:class-11-werken:	:class-11-werken:	:class-11-german:		
		:class-11-german:		
	1	1 2 :class-11-sk:2 {:cl :class-11-art:0 {:cl :class-11-sk:1 {:cl :class-11-werken: :class-11-werken:	1 2 3	

Abbildung: Stundenplan für Klasse 11 nach 60 Sekunden Optimierung.

timetable-for-room [:building-2 :werkraum]				
0	1	2	3	4
:class-2-werken:0	:class-10-werken:	:class-8-werken:0	:class-6-werken:0	
:class-12-werken:	:class-4-werken:0	:class-1-werken:0	:class-12-werken:	
:class-2-werken:1	:class-9-werken:1	:class-3-werken:0		:class-6-werken:1
:class-10-werken:	:class-5-werken:1	:class-3-werken:1	:class-5-werken:0	
:class-8-werken:1	:class-11-werken:	:class-11-werken:		
:class-7-werken:0	:class-7-werken:1	:class-9-werken:0	:class-1-werken:1	:class-4-werken:1

Abbildung: Werkraumauslastung

• Ein Beispielproblem realistischer Größe und Form konnte in allen Schwierigkeitsstufen effizient gelöst werden.

- Ein Beispielproblem realistischer Größe und Form konnte in allen Schwierigkeitsstufen effizient gelöst werden.
- Untersuchung mittels skalierbaren Beispielproblemem bestätigt dies.

- Ein Beispielproblem realistischer Größe und Form konnte in allen Schwierigkeitsstufen effizient gelöst werden.
- Untersuchung mittels skalierbaren Beispielproblemem bestätigt dies.
- Aber:

Fazit

- Ein Beispielproblem realistischer Größe und Form konnte in allen Schwierigkeitsstufen effizient gelöst werden.
- Untersuchung mittels skalierbaren Beispielproblemem bestätigt dies.
- Aber:
 - Unerfüllbare Probleme machen Schwierigkeiten.

Fazit

- Ein Beispielproblem realistischer Größe und Form konnte in allen Schwierigkeitsstufen effizient gelöst werden.
- Untersuchung mittels skalierbaren Beispielproblemem bestätigt dies.
- Aber:
 - Unerfüllbare Probleme machen Schwierigkeiten.
 - Effizienz kann für ein konkretes Problem noch um einiges erhöht werden.

Fazit

- Ein Beispielproblem realistischer Größe und Form konnte in allen Schwierigkeitsstufen effizient gelöst werden.
- Untersuchung mittels skalierbaren Beispielproblemem bestätigt dies.
- Aber:
 - Unerfüllbare Probleme machen Schwierigkeiten.
 - Effizienz kann für ein konkretes Problem noch um einiges erhöht werden.
- Es wäre interessant, den Weighted Partial MAX-SAT Ansatz mit auf constraint programming oder genetischen Algorithmen basierten Ansätzen zu vergleichen.

Quellen

- Roberto Asín Achá and Robert Nieuwenhuis: Curriculum-based Course Timetabling With Sat And Maxsat, 2012.
- Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez- carbonell: cardinality Networks And Their Applications. In Proc. Theory and Applications of Satisfiability Testing (SAT '09), Volume 5584 of LNCS, pages 167-180, 2009.

Leere Folie 1

Leere Folie 2