### **Module 6 - Secrets Management**



**CPSC 4970 Applied Cyber Security** 

# AUBURN

#### What is a Secret?

- Definition of "Secret
  - Non-human privileged credentials
  - Private piece of information used to unlock protected resources or sensitive information
  - Location can be in applications, databases, servers, cloud-native environments, build pipelines.

#### Examples

- User or auto-generated passwords
- API and other application keys/credentials (including within containers)
- SSH Keys
- Database and other system-to-system passwords.
- Private certificates
  - Secure communication, transmitting and receiving of data (TLS, SSL etc.)
  - Code or file signing
- Private encryption keys for systems like PGP
- RSA and other one-time password devices
- API Keys



#### **Industry Challenges Drivers Secrets Mgmt**

- Visibility
  - Proliferation of secrets among admins, developers, and other team members who all manage their secrets separately, if they're managed at all.
  - Security risk with all different people and methods who handle secrets
- Hardcoded/embedded credentials
  - Privileged passwords and other secrets are needed to facilitate authentication for communications and access to resources (database, applications)
  - Applications are shipped and installed with hardcoded, default credentials, which are easy to crack by hackers using scanning tools and applying simple guessing or dictionary-style attacks.
  - DevOps tools frequently have secrets hardcoded in scripts or files, which jeopardizes security
- Privileged credentials and the cloud
  - Cloud and SaaS administrator access (as with AWS, Office 365, etc.) provide broad superuser privileges.
- DevOps tools
- While secrets need to be managed across the entire IT ecosystem, DevOps



#### **Industry Challenges Drivers Secrets Mgmt**

- DevOps tools
  - DevOps teams require access to orchestration, configuration management, and other tools a(Chef, Puppet, Docker containers, etc.) relying on automation and other scripts that require secrets to work.
  - Secrets should all be managed according to best security practices
    - Credential rotation
    - Limited time/activityaccess
    - Auditing trail
- Manual secrets management processes
  - Risk increases when people manually manage secrets
  - Weak secrets
    - Lack of password rotation
    - Default passwords
    - Embedded secrets
    - Password sharing
    - Easy-to-remember passwords
  - Manual secrets management processes equate to a higher likelihood of security gaps and bad practice



#### **Secrets Management Best Practices**

- Centralized Management.
  - Bring all secrets under a Key Management System (KMS)
  - Audit all source code and IT infrastructure for secrets
- Eliminate hardcoded/embedded secrets
  - During development -
    - DevOps tool configurations, build scripts, code files, test builds, production builds, applications.
  - During Production -
    - API calls, system access, cloud environments
- Enforce Password Rules
  - Complexity length, uniqueness, no words
  - Expiration from minutes to months
  - Rotation change on regular interval as people leave organizations.
  - Temporary passwords one time usage
  - Change once shared.



#### **Secrets Management Best Practices**

- Privileged session monitoring
  - Log and audit access
  - SEIM tools can alert on suspicious activities based on logs
  - Recording to capture keystrokes and screens
  - Tools can trigger locks if detects suspicious activity in-progress
- 3rd Parties
  - Temporary employees/contractors, parters,
  - Important they conform to best practices in using and managing secrets.
- Threat analytics
  - Detection of anomalies and potential threats.
  - The more integrated and centralized your secrets management, the better you will be able to report on accounts, keys applications, containers, and systems exposed to risk.
- Secure Development Lifecycle
  - Treat development tools as sensitive systems, control access and secrets
  - Use security testing so that code does not contain embedded secrets



### **AWS Secret Management Tool**



- 1. Administrator sets up credentials to a database
- 2. Enters credentials in AWS Secrets Manager
- 3. Application requiring use of database asks for credentials from AWS Secrets Mgr
- 4. Credentials are return to application
- 5. Application uses credentials to access database
- Policies can be set on Secrets Manager to trigger rotation, expiration as well as keep an audit log and history of credentials.



## AUBURN UNIVERSITY