

planetmath.org

Math for the people, by the people.

Lying-Over Theorem

Canonical name LyingOverTheorem Date of creation 2013-03-22 19:15:42 Last modified on 2013-03-22 19:15:42

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872)
Entry type Theorem
Classification msc 16D99
Classification msc 13C99
Defines lie over

Let \mathfrak{o} be a subring of a commutative ring \mathfrak{O} with nonzero unity and integral over \mathfrak{o} . If \mathfrak{a} is an ideal of \mathfrak{o} and \mathfrak{A} an ideal of \mathfrak{O} such that

$$\mathfrak{A} \cap \mathfrak{o} = \mathfrak{a},$$

then \mathfrak{A} is said to *lie over* \mathfrak{a} .

Theorem. If \mathfrak{p} is a prime ideal of a ring \mathfrak{o} which is a subring of a commutative ring \mathfrak{O} with nonzero unity and integral over \mathfrak{o} , then there exists a prime ideal \mathfrak{P} of \mathfrak{O} lying over \mathfrak{p} . If the prime ideals \mathfrak{P} and \mathfrak{Q} both lie over \mathfrak{p} and $\mathfrak{P} \subseteq \mathfrak{Q}$, then $\mathfrak{P} = \mathfrak{Q}$.

References

- [1] M. LARSEN & P. MCCARTHY: Multiplicative theory of ideals. Academic Press, New York (1971).
- [2] P. Jaffard: Les systèmes d'idéaux. Dunod, Paris (1960).