Assignment 3a.

- 1) Run the code of 2 layer neural network from for multi class classification
- 2) https://stackabuse.com/creating-a-neural-network-from-scratch-in-python-multi-class-classification/
- 3) Go through the code and understand each line.
- 4) Build the artificial dataset as shon in the blog.
- 5) Take 70% data for training. 30% data for testing
- 6) Build a two-layer neural network from from scratch where zo is the output.
 - a) You will have two layers.
 - i) One is hidden layers (use 4 neurons)
 - ii) three output layer (use one output neuron)
 - b) Use sigmoid function as activation function in hidden layers
 - c) Use softmax for output layer
 - d) Use negative log likelihood loss
 - e) Derive the derivative for softmax
 - f) Calculate the derivatives for back propagation.
- 7) Write codes training module for 2000 epochs to train the neural network.
- 8) Now classify the test data using the trained neural network.
 - a) During the test, you will do only forward pass.
 - b) Argmax the forward pass output
 - c) Report your accuracy.
- 9) Draw data points for training data and also plot the class boundary in 3D plot
- 10) Draw data points for test data and also plot the class boundary in 3D plot
- 11) You cannot use any built-in deep learning functions

Assignment 3b (same as 3a. But the input is 3X32X32 image, output 10 classes.. And **three layer** neural network

- Download and read train data from CIFAR 10 from 10 classes
- Now, read one image, reshape it to row vector **x**. **x** is our input data now with dimension 1X3072.
- * x's class label would be one hot encoded
- Use two hidden layer and one output layer.
- Build a three-layer neural network from scratch

		You	will	have	three	layers
--	--	-----	------	------	-------	--------

- First hidden layer (use 4000 neurons)
- Second hidden layer (use 400 neurons)
- Output layer (10 output neurons)

	So.	Outpu ⁻	t-pro	babi	lity:
--	-----	--------------------	-------	------	-------

s =	softmax	(W _a * sigmoid	(Wb * sigmoid(Wb	$_{1} * x + b_{h_{1}} + b_{h_{2}} + $	b ₂)

- □ Where $\underline{\mathbf{x}}$ is input vector, W_{h1} , and W_{h2} are weight matrices for hidden layers. Wo is the weight matrix for output layers. $\underline{\mathbf{b}}_{h1}$, $\underline{\mathbf{b}}_{h2}$, and $\underline{\mathbf{b}}_{0}$ are bias vectors for corresponding layers.
- Use the sum of cross entropy as your loss function. \underline{s} is the output vector of size 10.
- □ Derive and Calculate the derivatives for back propagation for the three layer neural network.

- ❖ Write codes for a training module for 10 epochs to train the neural network.
- ❖ Report your accuracy on the test set
- Show confusion matrix of your test prediction
- ❖ You cannot use any built-in deep learning functions

Assignment 3c (use functions) -

- ❖ Download and read train data from CIFAR 10 from 10 classes
- Same as assignment 3b.
- Write forward(X) function to implement the forward calculation.
- Use the forward function to pass the input data to calculate the probabilities.
- Calculate the loss using criterion function with cross entropy option.
- Using the loss, use autograd and backward() to calculate the derivatives automatically.
- ❖ Write codes for a training module for 10 epochs to train the neural network.
- Report your accuracy on the test set
- Show confusion matrix of your test prediction
- Explore internet blogs to get more information.