Quiz 7

Name:	W.	é x	

You must show your work to get full credit.

1. Let a, b, c, d integers and r a rational number with $cr + d \neq 0$. Show that $s = \frac{ar + b}{cr + d}$ is also a rational number. Hint: Start by assuming that r = p/q for integers p and q and recall that to show s is rational you need to show that of the form $s = \frac{\text{integer}}{\text{integer}}$.

Assume
$$r = \frac{1}{6}$$
 with $p, q \in \mathcal{H}$. Then
$$S = \frac{ar + b}{cr + cl} = \frac{a(\frac{1}{3}) + b}{c(\frac{1}{3}) + cl} = \frac{a(\frac{1}{3}) + b}{c(\frac{1}{3}) + cl} = \frac{a(\frac{1}{3}) + b}{c(\frac{1}{3}) + cl} = \frac{a(\frac{1}{3}) + cl}{c(\frac{1}{3}) + cl} = \frac{a(\frac{1}{3}) + cl}{c(\frac{1}{3}) + cl} = \frac{a(\frac{1}{3}) + b}{c(\frac{1}{3}) + cl} = \frac{a(\frac{1}{3}) + cl}{c(\frac{1}{3}) + cl$$

2. Let α be a real number. Show that α is irrational if and only if $3\alpha - 2$ is irrational. *Hint:* You are allowed to use the result of Problem 1.