

Entry-Flipped Transformer for Inference and Prediction of Participant Behavior

Bo Hu^{1,2} and Tat-Jen Cham^{1,2}

¹ Singtel Cognitive and Artificial Intelligence Lab (SCALE@NTU) ² School of Computer Science and Engineering, Nanyang Technological University

Problem Definition

Participants behavior inference and prediction are to estimate the behavior of a number of target participants in a group, based on information of other observed participants in the same group.

* It is different from trajectory prediction.

Challenges

- 1. Participants are highly correlated
- Trajectories are highly non-smooth
- Prediction relies on social interaction more than self intention

Motivation

- Tasks of participants behavior inference and prediction can be modeled as an online frame-wise sequence estimation problems
- which usually solved by autoregressive methods
- Current autoregressive frameworks are likely to introduce error accumulation
 - Seq2Seq (RNN-based)
 - Transformer (Attention-based)

Typical Transformer

- * X : Observation participants
- Y: Target participants
- \widehat{Y} : Estimated target participants

Errors are accumulated in the autoregressive decoding procedure

Entry-Flipping Mechanism

Attention function

$$X^{(\text{att})} = f_o \left[\frac{S(f_q(X_q)f_k(X_k)^T)}{\sqrt{d}} f_v(X_v) \right] + X_q$$

Attention is a summarization of query, key, and value entries, where

- Query is the base, where the error will be accumulated
- Key and value are **references**, where the error can be suppressed by low attention weight

Entry-Flipping in Decoders

- Flip query and key-value entries
- Send one-frame observation as query at one time

Analysis

Why is entry-flipping important?

In scenarios where the behavior of participants are highly coupled and reactive, the most important clue for determining the behavior of a target participant in next frame would be the status of other observed participants in the current frame

Entry-flipping protects this clue by limiting the error level during autoregressive procedure

Trajectory Inference with manually injected noise

Noise	Methods	\mathbf{FAD}							
Position	Methods	Short	\mathbf{Mid}	Long	\mathbf{Avg}				
	No Noise	37.14	52.06	68.14	49.34				
Transformer	Noise@t=3	75.99	103.24	141.06	99.67				
Transformer	Noise@ $t=6$	80.03	105.35	145.39	105.85				
	Noise@t=9	131.76	161.07	205.26	157.81				
	No Noise	35.38	48.62	64.23	46.43				
EF-Transformer	Noise@t=3	37.23	56.37	84.65	54.15				
Er-Transformer	Noise@t=6	55.19	64.90	90.71	65.68				
	Noise@t=9	115.93	123.30	145.31	124.29				

Ablation study of decoders							Trajectory prediction on Tennis dataset										
Decoder	MAD				FAD			Methods	MAD				FAD				
	Short	\mathbf{Mid}	Long	\mathbf{Avg}	Short	Mid	Long	\mathbf{Avg}	Wiethods	Short	Mid	Long	Avg	Short	Mid	\mathbf{Long}	\mathbf{Avg}
Typical	20.14	33.09	50.70	31.33	35.85	52.55	71.57	49.67	CNN-based	22.58	41.81	71.57	39.80	38.84	70.35	105.26	64.76
All Query	20.80	33.05	46.86	30.92	38.25		70.14		RNN-based	23.84	41.99	78.97	41.57	41.34	68.29	110.63	65.58
									Transformer	20.14	33.09	50.70	31.33	35.85	52.55	71.57	49.67
Limited Query	19.24	30.71	41.98	28.44	34.97	50.36	62.60	46.83	SR-LSTM [41]	20.43	43.86	85.88	42.37	39.11	75.36	117.43	69.25
$\operatorname{Hybrid}(\operatorname{TP} {\rightarrow} \operatorname{EF})$	19.49	31.01	45.71	29.29	35.31	50.96	69.81	48.43	STAR [36]	23.83	43.80	83.65	43.20	37.83	70.61	117.19	66.50
$\operatorname{Hybrid}(\operatorname{EF} \to \operatorname{TP})$	19.52	31.53	43.84	29.24	35.53	52.62	70.57	49.43	EF-Transformer	19.24	30.71	41.98	28.44	34.97	50.36	62.60	46.83

Qualitative Results

