

OC Pizza

Spécifications techniques Version 1.0

TABLE DES MATIÈRES

1.	Versions	.2
II.	Introduction	2
	Etude du contexte	
IV.	Etude des packages	4
V.	Etude du cycle de vie d'une commande	5
	Description du domaine fonctionnel	
VII.	Etudes techniques	13

AuteurBESEVIC Ivan *Analyste programmeur*

1 - Versions

Auteur	Date	Description	Version
IB	06/02/2019	Création du document	1.0

2.1 - Objet du document

Le présent document constitue le dossier de conception technique de l'application PIZZAPP. L'objectif du document est de présenter les outils, les technologies, et les méthodes mises en œuvre pour réaliser l'application.

2.2 - Références

Pour de plus amples informations, se référer également aux éléments suivants:

- 1. P9 DCF 1.0 : Dossier de conception fonctionnelle de l'application.
- 2. P9 DE 1.0: Dossier d'exploitation de l'application.

Etude du contexte

En étudiant le cahier des charges on peut distinguer les différents acteurs qui interagissent avec le système de la pizzeria.

Voici la liste:

- Le client
- Le préparateur de commande
- Le Livreur
- Le manager
- Le système bancaire
- La base données

Acteurs principaux

Le client pourra passer une commande via le site internet de la pizzeria qui proposera au client un large choix de produits en fonction du stock disponible. Il aura la possibilité de payer en ligne ou en espèce à la livraison du produit.

Les préparateurs de commande utilisent le système pour suivre les commandes validé en attente de préparation ainsi que la disponibilité de la matière première dans le stock, ils pourront aussi mettre à jour l'état des commandes en cours.

Les livreurs pourront récupérer les coordonnées des dernières commande en attente de livraison et livrer le produit au client.

Le manager pourra accéder au chiffre d'affaires, ajouter ou modifier un produit dans le catalogue et lire les messages d'erreur provenant du système.

Acteurs secondaire

Le système bancaire pour payer en ligne.

La base de données est utilisé pour stocker des informations concernant la pizzeria et les utilisateurs.

Etude des packages

Le système peut-être divisé en trois parties

I. Interface d'achat

Le package "interface d'achat" regroupe la partie site web qui permettra au client de commander des produits en ligne. Il pourra visualiser une liste de produits, créer un panier pour stocker tous ses articles, de proposer divers moyens de paiement et de vérifier l'avancée de sa commande.

II. Interface d'administration

Le package "interface d'administration" regroupe les fonctionnalités de gestions administrateur que propose le site internet de la pizzeria

II. Interface des utilisateurs

Le package "Interface des utilisateurs" s'occupe de la collecte des informations du client et de l'identification des différents types d'acteurs pouvant communiquer avec le site internet.

Acteur	Interface d'achat	Interface d'administration	Interface des utilisateurs
Client / Visiteur	X		X
Préparateur de commande		X	
Livreur		X	
manager		X	
système bancaire	X		
base de données	X	X	X

Etude du cycle de vie d'une commande

Le cycle de vie d'une commande se construit en plusieurs étapes, allant du choix des produits par le client jusqu'à la livraison. Elle peut-être supprimée ou modifié par l'ordre du client avant la validation du panier de commande.

Statuts d'une commande

Une commande peut avoir quatre statuts :

- Statut «en attente» :
 - Ce statut est généré par l'action du client «Valider son panier ».

 C'est aussi le statut de création de la commande. Ce statut veut dire que la commande est passée au système mais n'a pas encore été prise en charge par un préparateur de commande.
- Statut « en cours de préparation » :
 Ce statut est généré par l'action d'un préparateur de commande, lorsqu'il commence la préparation de la commande.
 - status « stock indisponible » :
 Lors de la préparation de la commande, le préparateur a rencontré un problème avec le stock d'ingrédient et a dû annuler la commande.
- Statut «en livraison» :
 Ce statut est généré par l'action d'un livreur lorsqu'il reçoit la commande préparé.
- Statut «Livré» :

Pour que ce statut soit atteint il faut que la commande soit livrée et payée. C'est le livreur qui prend en charge cette étape final et la mise à jour du statut.

Statut «Non livré» :
 Le livreur a reçu une mauvaise adresse et le client est injoignable.

Annulation d'une commande

Après validation du panier, l'annulation d'une commande peut encore être faite par l'action du client : elle n'est possible que lorsque la commande est en statut « en attente ». Dans ce cas, le système supprime la commande de la base de données et rembourse le client si il a payé en ligne.

Etude du cycle de vie d'une commande

Synthèse

Etude du cycle de vie d'une commande

DESCRIPTION DU DOMAINE FONCTIONNEL:

Dans cette partie, nous expliciterons les différentes entités du domaine fonctionnel permettant la construction d'un modèle physique de données.

L'utilisateur:

Un **utilisateur** possède une et une seul **adresse** et une **adresse** peut être détenue par aucun ou un **utilisateur**.

Un utilisateur possède un et un seul rôle et un rôle doit être détenue par au moin un utilisateur.

Les pizzerias:

Une **pizzeria** possède une et une seul **adresse** et une **adresse** peut être détenue par aucune ou une **pizzeria**.

Une **pizzeria** doit proposer au moin six un **ingrédient** et un **ingrédient** doit être proposé par au moin cinq **pizzerias**.

DESCRIPTION DU DOMAINE FONCTIONNEL (suite):

Les commandes:

Une **commande** est associé à une et une seul **pizzeria** et une **pizzeria** peut être associé à aucune, une ou plusieurs **commandes**.

Une **commande** est constitué par un et un seul **utilisateur** et un **utilisateur** peut constituer aucune, une ou plusieurs **commandes**.

Les produits:

Un **produit** contient au moin un **ingrédient** et un **ingrédient** est contenue dans au moin un **produit**.

Un **produit** est associé à une et une seul **catégorie** et une **catégorie** est associé à aucun, un ou plusieurs **produits**.

DESCRIPTION DU DOMAINE FONCTIONNEL (suite) :

Les menus:

Un **menu** est associé à au moin une **catégorie** et une **catégorie** peut être associé à aucun, un ou plusieurs **menus**.

Par exemple un menu peut être associé à une entrée, deux pizzas et une boisson.

DESCRIPTION DU DOMAINE FONCTIONNEL (suite):

Une **commande** peut être associé à aucun, un ou plusieurs **produits** et un **produit** peut être associé à aucune, une ou plusieurs **commandes**.

Une **commande** peut être associé à aucune, une ou plusieurs "**commande_menu**" et une "**commande_menu**" doit être associé à une et une seul **commande**.

Une "commande_menu" est associé à un et un seul menu et un menu est associé à aucune, une ou plusieurs "commande_menu".

Une "commande_menu" contient au moin un produit et un produit peut être contenu dans aucune, une ou plusieurs "commande_menu".

Synthèse des entités retenus dans un diagramme modélisant le domaine fonctionnel :

Etudes techniques

Pour une mise en œuvre fiable, efficace et évolutive des besoins clients décrit ci dessus, il est proposé d'utiliser un ensemble de technologies web parmi les plus fiable et au développement très actif.

Django framework

Django est un framework web libre et open-source, écrit en Python facilitant la création de sites Web complexes. Django permet une adaptabilité en cas d'évolution future car il comporte de nombreuse bibliothèques pré-codée.

PostgreSQL

PostgreSQL est un système de gestion de base de données relationnelle et objet. C'est un outil libre.

PayPal

PayPal est un service de paiement en ligne. Paypal est accepté comme moyen de paiement par plus de 16 millions de commerçants dans le monde.

Google MAP API Distance Matrix API

LA Distance Matrix API est un service qui fournit la distance et le temps pour une matrice d'origines et de destinations. L'API renvoie des informations basées sur l'API Google Map.

Schéma de déploiement

Les composants internes

Explication

Serveur d'application :

- → Nous utiliserons un serveur programmé en Python en respectant les bonnes pratiques de la PEP 8 et utilisant le framework Django. Toute la logique métier se trouvera sur ce même serveur.
- → Pour améliorer les pages HTML, nous utiliserons Bootstrap et JavaScript avec AJAX :
 - Bootstrap permettra de modifier facilement la présentation des pages web demandées par l'utilisateur.
 - JavaScript pour rendre les pages web plus ergonomiques et interactive.
 - AJAX pour mettre à jour une partie de la page web en limitant les échanges client/serveur.

Serveur web:

Nous utiliserons Apache 2 (opensource) comme serveur HTTP.

→ Le protocole de communication entre notre projet Django et le serveur Apache est WSGI. Ceci nous permettra de gérer notre application web en conservant les avantages de la programmation objet de Python. Avec WSGI les requêtes HTTP sont transformées en objets Python lors d'un appel au serveur d'application et inversement.

Serveur de données :

- → Nous utiliserons le système de gestion de base de données relationnelles PostgreSQL. L'interface python-postgresql utilisé sera psycopg2.
- → La base de données portera le nom de « oc_pizza » (l'unique base de données du projet).

Modèle physique de données

Le modèle physique de donnée présenté ci-dessous se base sur le diagramme de classe détaillée dans les pages 8 à 12.

Les composants externes

Explication d'utilité

Google Maps Distance Matrix API:

Afin de localiser la position du client par rapport aux différentes pizzeria, l'application va communiquer avec une API de géolocalisation. Nous avons sélectionné Google Maps Distance Matrix API.

L'idée serait d'envoyer une requête HTTP contenant l'adresse du client et des différentes adresses des pizzerias à l'API. Nous attendons en retour des distances calculée par l'API nous permettant de sélectionner la pizzeria la plus proche et confirmer ou non l'éligibilité du client pour une livraison basée sur un critère de « distance maximale de livraison ».

Synthèse:

Les composants externes

Explication d'utilité (suite)

API PayPal

Le client clique sur « Paiement avec PayPal » lors de la création de la commande, nous faisons donc appel au service PayPal en lui indiquant dans une requête http les informations de paiement, celui-ci nous réponds en nous envoyant un « token » qu'il nous ait possible d'utiliser pour rediriger le client sur le site PayPal afin de finaliser la transaction.

Déploiement sur le web

Explication

Hébergement des serveurs :

Nous opterons pour un hébergement sur le cloud ceci permettant notamment de facilement modifier la taille du serveur si le nombre de connexion sur le site internet augmente.

Les serveurs seront hébergés sur HEROKU un Hébergeur simple, rapide et infogéré.

Glossaire

HTTP:

L'*Hypertext Transfer Protocol* (HTTP, littéralement « protocole de transfert hypertexte ») est un protocole de communication client-serveur développé pour le *World Wide Web*

TCP/IP:

La **suite TCP/IP** est l'ensemble des protocoles utilisés pour le transfert des données sur Internet.

WSGI:

La **Web Server Gateway Interface** (WSGI) est une spécification qui définit une interface entre des serveurs et des applications web pour le langage Python.