PA4: Multiple GPU Hannah Munoz 2/22/18

#### Introduction

In this project, we compare speedups from sequential algorithms to multi gpu algorithms using CUTThreads and the compare the results. The speedup, throughput, and timing of the parallel implementation is calculated.

#### Method

Both algorithms start by filling the array with random numbers. Then, the timer is started. The overarching algorithm of both algorithms is

$$resultMat = (Mat_1 + Mat_2) + (Mat_3 \times Mat_4) + (Mat_5 + Mat_6)...$$

### Sequential Algorithm

When a matrix needs to be added, each cell in the matrix is iterated through and added to the corresponding matrix cell of the result matrix. When multiplication is needed, each row, cell, and column of the array is iterated through as into the resulting matrix as seen below.

$$MatC[i*size + j] = \sum_{0}^{size} (MatA[i*size + k]*MatB[k*size + j])$$

Once all the matrices have been calculated, the timer is stopped.

### Parallel Algorithm

Each matrix is allocated in unified memory. A dataset, DataStruct of information about the runtime, including blocks, threads, matrix size, and matrices themselves are constructed. Each DataStruct is given a GPU to run on. A set of CUTThreads the size of the amount of matrices are constructed and started. Some threads go to the add routine while the other go to the multiple routine. The main program waits for all threads to finish and the timer stops.

### **Results and Conclusion**

### Sequential

The sequential algorithm's execution times in Table 1 and Fig. 1.

Table 1: The sequential execution times in ms

| # of        | 2        | 4       | 6       | 8       | 10      | 12      |
|-------------|----------|---------|---------|---------|---------|---------|
| Matrices/Ma |          |         |         |         |         |         |
| trix Size   |          |         |         |         |         |         |
| 100         | 0.537792 | 28.0054 | 28.6308 | 68.2393 | 69.9427 | 84.369  |
| 200         | 1.94502  | 278.059 | 284.502 | 578.46  | 556.224 | 850.728 |
| 300         | 4.38019  | 934.737 | 903.655 | 1565.49 | 1898.83 | 2652.24 |
| 400         | 7.44669  | 1958.8  | 2010.78 | 3854.03 | 3718.02 | 5977.63 |
| 500         | 11.3952  | 3650.71 | 3749.14 | 7852.76 | 7647.9  | 1115    |
| 600         | 16.7005  | 6433.4  | 6340.8  | 13084.7 | 12656.5 | 19304.2 |
| 700         | 19.0808  | 10740.7 | 10509.5 | 20839.2 | 19932   | 30710.1 |
| 800         | 29.2385  | 15736.4 | 16688.1 | 31857.8 | 31050   | 46460.8 |
| 900         | 40.8808  | 22570.3 | 22700   | 47755.5 | 44857.1 | 66704.2 |
| 1000        | 35.9852  | 30190.5 | 30210.2 | 61510.2 | 66827   | 95349.5 |

Figure 1: A graph of the sequential execution times found in Table 1.

## Sequential Runtimes



### Parallel

The parallel algorithms execution times for 2 GPU are in Table 2 and Fig. 2. 10 threads were used in each and the appropriate amount of blocks was determined from the matrix size.

Table 2: The parallel execution times for 2 GPU

| # of        | 2       | 4       | 6       | 8       | 10      | 12      |
|-------------|---------|---------|---------|---------|---------|---------|
| Matrices/Ma |         |         |         |         |         |         |
| trix Size   |         |         |         |         |         |         |
| 1000        | 4.58944 | 366.947 | 385.036 | 390.535 | 322.745 | 335.307 |
| 2000        | 11.795  | 371.419 | 374.192 | 366.682 | 371.001 | 401.777 |
| 3000        | 26.4886 | 348.914 | 371.268 | 351.521 | 370.153 | 366.825 |
| 4000        | 42.163  | 339.122 | 346.693 | 368.322 | 365.126 | 365.554 |
| 5000        | 57.8348 | 315.248 | 353.38  | 393.303 | 363.504 | 351.955 |
| 6000        | 101.387 | 394.911 | 346.769 | 360.061 | 352.569 | 368.123 |
| 7000        | 147.928 | 381.976 | 379.297 | 364.997 | 327.647 | 337.554 |
| 8000        | 182.46  | 350.628 | 366.133 | 374.584 | 363.995 | 370.268 |
| 9000        | 193.762 | 352.203 | 366.2   | 395.266 | 387.728 | 387.234 |
| 10000       | 266.59  | 372.516 | 381.387 | 366.586 | 373.448 | 393.795 |



Figure 2: The execution times for 2 GPU over varying matrix sizes.

The parallel algorithms execution times for 3 GPU are in Table 3 and Fig. 3.

Table 3: The parallel execution times for 3 GPU

| # of        | 2       | 4       | 6       | 8       | 10      | 12      |
|-------------|---------|---------|---------|---------|---------|---------|
| Matrices/Ma |         |         |         |         |         |         |
| trix Size   |         |         |         |         |         |         |
| 1000        | 3.47037 | 373.89  | 636.969 | 704.855 | 647.463 | 737.367 |
| 2000        | 17.3529 | 312.876 | 627.279 | 691.942 | 663.059 | 687.891 |
| 3000        | 24.6417 | 383.511 | 635.507 | 676.941 | 721.489 | 706.104 |
| 4000        | 42.8763 | 341.49  | 639.152 | 707.231 | 708.573 | 710.502 |
| 5000        | 57.9292 | 368.454 | 658.316 | 648.996 | 588.886 | 689.913 |
| 6000        | 82.996  | 357.503 | 648.33  | 666.118 | 667.18  | 676.718 |
| 7000        | 116.179 | 330.228 | 625.007 | 632.139 | 711.198 | 620.948 |
| 8000        | 151.901 | 375.65  | 683.279 | 667.309 | 613.991 | 741.671 |
| 9000        | 222.353 | 340.111 | 622.945 | 694.882 | 695.572 | 654.673 |
| 10000       | 241.266 | 371.838 | 718.319 | 668.916 | 698.268 | 755.595 |



Figure 3: The execution times for 3 GPU over varying matrix sizes

The parallel algorithms execution times for 4 GPU are in Table 4 and Fig. 4.

Table 4: The parallel execution times for 4 GPU

| # of        | 2       | 4       | 6       | 8       | 10      | 12      |
|-------------|---------|---------|---------|---------|---------|---------|
| Matrices/Ma |         |         |         |         |         |         |
| trix Size   |         |         |         |         |         |         |
| 1000        | 5.02176 | 384.6   | 653.713 | 922.105 | 1039.44 | 1043.87 |
| 2000        | 16.9959 | 329.43  | 671.343 | 1037.98 | 975.478 | 949.649 |
| 3000        | 24.2787 | 387.765 | 610.451 | 1023.31 | 950.086 | 977.161 |
| 4000        | 36.9939 | 352.962 | 655.246 | 979.124 | 1105.64 | 1017.95 |
| 5000        | 57.3397 | 370.104 | 651.137 | 973.464 | 994.956 | 956.601 |
| 6000        | 112.312 | 354.422 | 684.338 | 1058.31 | 930.787 | 1091.42 |
| 7000        | 113.902 | 357.952 | 645.848 | 998.509 | 1064.13 | 998.883 |
| 8000        | 155.571 | 378.825 | 618.236 | 1062.33 | 936.157 | 1001.65 |
| 9000        | 220.88  | 347.849 | 727.271 | 946.851 | 1043.36 | 1011.57 |
| 10000       | 235.262 | 364.533 | 653.075 | 1013.26 | 1060.38 | 1079.08 |



Figure 4: The execution times for 4 GPU over varying matrix sizes

The runtimes for the GPU increase as the amount of GPUs increases. I believe this is because of the overhead of unified memory across multiple GPUs. I could not find whether unified memory was optimized across multiple GPU. Multiple devices accessing the PCIe could cause an increase in runtime. Figures 5 and 6 show the runtime profilers of 2 GPU and 4 GPU side by side.

| <u> </u> | by side.    |          |          |       |          |          |          |                                         |
|----------|-------------|----------|----------|-------|----------|----------|----------|-----------------------------------------|
|          | Type        | Time (%) | Time     | Calls | Avg      | Min      | Max      | Name                                    |
| GPU      | activities: | 50.72%   | 398.78us | 2     | 199.39us | 1.5680us | 397.22us | add(float*, float*, float*, int)        |
|          |             | 49.28%   | 387.40us | 2     | 193.70us | 3.0720us | 384.32us | multiply(float*, float*, float*, int, i |
|          | API calls:  | 72.43%   | 1.27549s |       | 318.87ms | 395.24us | 425.10ms | cudaLaunch                              |
|          |             | 27.20%   | 478.97ms |       | 159.66ms | 40.816us | 478.67ms | cudaMallocManaged                       |
|          |             | 0.17%    | 3.0648ms | 188   | 16.302us | 206ns    | 719.29us | cuDeviceGetAttribute                    |
|          |             | 0.09%    | 1.5495ms |       | 1.5495ms | 1.5495ms | 1.5495ms | cudaGetDeviceProperties                 |
|          |             | 0.05%    | 824.68us |       | 274.89us | 109.25us | 573.45us | cudaFree                                |
|          |             | 0.03%    | 584.29us | 2     | 292.14us | 271.88us | 312.41us | cuDeviceTotalMem                        |
|          |             | 0.02%    | 312.02us | 2     | 156.01us | 139.34us | 172.68us | cuDeviceGetName                         |
|          |             | 0.00%    | 39.641us | 2     | 19.820us | 12.554us | 27.087us | cudaEventRecord                         |
|          |             | 0.00%    | 31.289us | 4     | 7.8220us | 5.5830us | 9.3310us | cudaSetDevice                           |
|          |             | 0.00%    | 17.561us |       | 17.561us | 17.561us | 17.561us | cudaEventSynchronize                    |
|          |             | 0.00%    | 9.6260us | 2     | 4.8130us | 1.1350us | 8.4910us | cudaEventCreate                         |
|          |             | 0.00%    | 8.1340us | 18    | 451ns    | 204ns    | 917ns    | cudaSetupArgument                       |
|          |             | 0.00%    | 5.7250us | 2     | 2.8620us | 1.1210us | 4.6040us | cudaEventDestroy                        |
|          |             | 0.00%    | 3.9740us | 1     | 3.9740us | 3.9740us | 3.9740us | cudaEventElapsedTime                    |
|          |             | 0.00%    | 3.2670us |       | 1.0890us | 322ns    | 2.3300us | cuDeviceGetCount                        |
|          |             | 0.00%    | 3.1890us | 4     | 797ns    | 267ns    | 1.6560us | cuDeviceGet                             |
|          |             | 0.00%    | 3.0040us | 4     | 751ns    | 519ns    | 970ns    | cudaConfigureCall                       |
|          |             | 0.00%    | 388ns    |       | 388ns    | 388ns    | 388ns    | cudaGetDeviceCount                      |

Figure 5: The profile of 2 GPU on eight 10x10 matrices.

|             | Type  | Time (%) | Time     | Calls | Avg      | Min      | Max      | Name                                     |
|-------------|-------|----------|----------|-------|----------|----------|----------|------------------------------------------|
| GPU activit | ies:  | 51.73%   | 881.25us |       | 440.62us | 435.68us | 445.57us | multiply(float*, float*, float*, int, in |
|             |       | 48.27%   | 822.33us |       | 411.17us | 401.63us | 420.70us | add(float*, float*, float*, int)         |
| API ca      | alls: | 86.84%   | 3.606728 |       | 901.68ms | 325.33us | 1.22813s | cudaLaunch                               |
|             |       | 12.85%   | 533.62ms |       | 177.87ms | 93.486us | 532.99ms | cudaMallocManaged                        |
|             |       | 0.17%    | 7.1265ms | 376   | 18.953us | 207ns    | 857.15us | cuDeviceGetAttribute                     |
|             |       | 0.05%    | 2.0837ms |       | 694.56us | 265.93us | 1.4621ms | cudaFree                                 |
|             |       | 0.04%    | 1.8448ms |       | 1.8448ms | 1.8448ms | 1.8448ms | cudaGetDeviceProperties                  |
|             |       | 0.03%    | 1.2439ms |       | 310.97us | 273.69us | 336.55us | cuDeviceTotalMem                         |
|             |       | 0.02%    | 722.91us |       | 180.73us | 139.49us | 218.55us | cuDeviceGetName                          |
|             |       | 0.00%    | 60.525us |       | 30.262us | 26.821us | 33.704us | cudaEventRecord                          |
|             |       | 0.00%    | 44.719us |       | 11.179us | 8.0820us | 18.406us | cudaSetDevice                            |
|             |       | 0.00%    | 16.034us |       | 16.034us | 16.034us | 16.034us | cudaEventSynchronize                     |
|             |       | 0.00%    | 13.988us |       | 6.9940us | 2.2770us | 11.711us | cudaEventCreate                          |
|             |       | 0.00%    | 9.9990us | 18    | 555ns    | 193ns    | 1.4370us | cudaSetupArgument                        |
|             |       | 0.00%    | 7.3020us |       | 3.6510us | 1.4240us | 5.8780us | cudaEventDestroy                         |
|             |       | 0.00%    | 5.2960us |       | 662ns    | 258ns    | 1.6250us | cuDeviceGet                              |
|             |       | 0.00%    | 4.5130us |       | 1.5040us | 588ns    | 3.1230us | cuDeviceGetCount                         |
|             |       | 0.00%    | 4.1730us |       | 4.1730us | 4.1730us | 4.1730us | cudaEventElapsedTime                     |
|             |       | 0.00%    | 3.9390us |       | 984ns    | 642ns    | 1.3740us | cudaConfigureCall                        |
|             |       | 0.00%    | 759ns    |       | 759ns    | 759ns    | 759ns    | cudaGetDeviceCount                       |

Figure 6: The profile of 4 GPU on eight 10x10 matrices.

Comparing Figures 5 and 6 we see there's a dramatic increase in runtime only in the GPU activities. However, because both processes should be doing the exact same amount of work within the addition and multiplication routines, I believe that the increased runtime is due to unified memory overhead.

To calculate speed up, the sequential timings were calculated using the data found in Table 1. The results can be seen in Table 5 and Figure 7.

Table 5: The parallel execution times for 4 GPU

| # of        | 2       | 4         | 6         | 8           | 10       | 12       |
|-------------|---------|-----------|-----------|-------------|----------|----------|
| Matrices/Ma |         |           |           |             |          |          |
| trix Size   |         |           |           |             |          |          |
| 1000        | 35.9852 | 30190.5   | 30210.2   | 61510.2     | 66827    | 95349.5  |
| 2000        | 162.586 | 31212.7   | 210082.49 | 453669.16   | 548920.2 | 613505   |
| 3000        | 410.953 | 288310    | 661872.89 | 1482237.36  | 2096034  | 2251089  |
| 4000        | 720.605 | 265517.34 | 1505063.3 | 3445605.56  | 5290748  | 5575273  |
| 5000        | 1155.31 | 872090.14 | 2859653.7 | 6643773.76  | 10733062 | 11186057 |
| 6000        | 1495.22 | 2034662.9 | 4845644.1 | 11376741.96 | 19022976 | 19683441 |
| 7000        | 1995.95 | 3933235.7 | 7583034.5 | 17944510.16 | 30760490 | 31667425 |
| 8000        | 2500.47 | 6747808.5 | 11191825  | 26647078.36 | 46545604 | 47738009 |
| 9000        | 3220.84 | 10658381  | 15792015  | 37784446.56 | 66978318 | 68495193 |
| 10000       | 4226.22 | 15844954  | 21503606  | 51656614.76 | 92658632 | 94538977 |

# **Extended Sequential Timings**



Figure 7: The projected sequential timings used to calculate speedup.

The equation used to calculate speedup in Figures 7,8 and 9 is.

$$speedup = \frac{sequential\ time}{GPU\ time}$$

Figure 7: The speedup factor when using 2 GPU.

Speedup of 2 GPU



Figure 8: The speedup factor when using 3 GPU.

## Speedup of 3 GPU



Speedup of 4 GPU Speedup 7.16585 9.56619 16.9265 19.479 20.1485 13.3131 17.5234 16.0729 14.5819 17.9639 78.4984 94.7476 743.517 752.255 2356.34 5740.79 10988.2 17812.5 30640.8 43466.4 46.2132 312.929 1084.24 2296.94 4391.78 7080.78 11741.2 18102.8 21714.1 32926.7 66.7063 437.069 1448.47 3519.07 6824.88 10749.9 17971.3 25083.6 39905.4 50980.6 10 64.2913 562.719 2206.15 4785.24 10787.5 20437.5 28906.7 49719.9 64194.8 87382.5 12 91.3423 646.033 2303.7 5476.96 11693.5 18034.7 31702.8 47659.4 67711.8 87610.7

Figure 9: The speedup factor when using 4 GPU.

In Figures 7 and 9 we see exactly what is expected, as the matrices get larger, speedup becomes more larger. It's better to do large calculations on the GPU. Figure 8 has 10 and 12 matrices intertwining, however this could be due to noise in the original measurements, as they should have been taking multiple times and averaged.

The equation used to calculate throughput in Figure 10, 11, and 12 is

throughput = 
$$\frac{Matrix Size (N \times N)}{GPU execution time (s)}$$

# Throughput of 2 GPU



Figure 10: The throughput of 2 GPU.



Figure 11: The throughput of 3 GPU.



Figure 12: The throughput of 4 GPU.

The less matrices that need processing, the higher the throughput is. This makes sense, as more matrices will have their threads wait for their assigned GPU to open, essentially making them semi-sequential. The throughput begins to decrease as the number of GPUs increase, once again because of the overhead caused by unified memory. The 2 matrices have so much more throughput than the other matrix lines because there is no multiplication being done on 2 matrices. Multiplication takes far more time than addition does.