inzva Applied AI - 4. Hafta

Yapay Öğrenme Modellerinin Geliştirilme Süreci

Eğitim

TED Mersin Koleji (2012-2016)

İstanbul Teknik Üniversitesi (2017-...)

Projeler ve Çalışmalar

Recommender Systems

Graph Neural Networks and Predictive Medicine **Predictive Modeling** and Explainable AI

Konular

- Eksik Veri ve Sınıf Dengesizliği
- Open Neural Network Exchange ile PyTorch'ta Geliştirilen Modeli Tensorflow'da Kullanmak
- Torchscript ile PyTorch Modellerini C++'ta Kullanmak
- MLFlow ile Deney Takibi

Eksik Veri ve Sınıf Dengesizliği

Eksik Veri Giderme Yöntemleri

- Tek Değişken Yöntemleri (Sütun Bazlı Veri Doldurma)
- Çoklu Değişken Yöntemleri (Diğer Sütunlar Dikkate Alınarak Veri Doldurma)

Eksik Veri Giderme

Tek Değişken

- Tek sütuna has istatistiksel bilgilerin veya sabit değerin kullanılması
 - Aritmetik Ortalama
 - Medyan
 - Mod
 - Sabit Değer

Çoklu Değişken

- Eksik veriler doldurulurken diğer sütunların da dikkate alınması.
 - o En Yakın Komşu
 - Eksik Veri için Model Eğitmek

Sınıf Dengesizliğini Giderme

- Karar Sınırını Değiştirme
- Aşırı Örnekleme (Oversampling)
- Eksik Örnekleme (Undersampling)
- Hem Aşırı Hem Eksik Örnekleme
- Sentetik Veri Üretme
 - Generative Adversarial Networks
 - Normalizing Flows
 - Variational Autoencoders

Aşırı Örnekleme

- Rastgele Aşırı Örnekleme
- SMOTE (Synthetic Minority Oversampling Technique)

Rastgele Aşırı Örnekleme

Rastgele Aşırı Örnekleme

Rastgele Aşırı Örnekleme

Eksik Örnekleme

- ENN (Edited Nearest Neighbor)
- Tomek-Links

ENN

ENN

ENN

Notebook 1

Open Neural Network Exchange

ONNX

- https://onnx.ai
- https://github.com/microsoft/onnxruntime
- Interoperability: En sevdiğin kütüphaneyi kullanarak model yaz, istediğim dilde ve platformda kullan.
- Donanım ivmelendirmesinden yararlan.
- Yapay öğrenme geliştiricilerinin iletişim için kullanabileceği ortak bir format.
- Emekleme aşamasında.

Notebook 2

TorchScript

Torchscript

- Interoperability için PyTorch ekosisteminden bir alternatif.
- ONNX'e göre daha iyi destekleniyor.
- Emekleme aşamasında.

Notebook + Komut Satırı

Ön Hazırlık

Komut satırında:

- wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
- unzip libtorch-shared-with-deps-latest.zip

Program Derleme ve Çalıştırma

Komut satırında:

- Prepare CMakeLists.txt
- nano -T 4 example-app.cpp
- cmake -DCMAKE_PREFIX_PATH=/home/ubuntu/projects/inzva/libtorch
- cmake --build . --config Release

Daha Fazla Bilgi

- TorchScript: https://pytorch.org/docs/master/jit.html
- PyTorch C++ API: https://pytorch.org/cppdocs/

MLFlow ile Deney Takibi

Komut Satırı

Ön Hazırlık

Komut satırında:

• pip install mlflow