Consistency of Hierarchical Parameter Learning Empirical Bayes and Kernel Flow Approaches

Yifan Chen (Caltech)

Joint work with Andrew M. Stuart and Houman Owhadi, Caltech

Bernoulli-IMS One World Symposium 2020

August 9, 2020

Gaussian process regression (GPR)

 \blacksquare Supervised learning: recover $u^\dagger:D\subset\mathbb{R}^d\to\mathbb{R}$ from

$$y_i = \mathbf{u}^{\dagger}(x_i), 1 \le i \le N$$
 (Noiseless data)

■ GPR solution:

$$u(\cdot, \theta, \mathcal{X}) = \mathbb{E}\left[\xi(\cdot, \theta) \mid \xi(\mathcal{X}, \theta) = u^{\dagger}(\mathcal{X})\right]$$

$$= K_{\theta}(\cdot, \mathcal{X})[K_{\theta}(\mathcal{X}, \mathcal{X})]^{-1}u^{\dagger}(\mathcal{X})$$
(Depend on kernel K_{θ} , data set \mathcal{X} , and truth u^{\dagger})

Compressed notation: $(\theta \in \Theta \text{ is a hierarchical parameter})$

$$\mathcal{GP}: \xi(\cdot, \theta) \sim \mathcal{N}(0, K_{\theta}), \text{ where } K_{\theta}: D \times D \to \mathbb{R}$$

 $\mathcal{X} = \{x_1, ..., x_N\}, \text{ and } \mathbf{u}^{\dagger}(\mathcal{X}) \in \mathbb{R}^N, K_{\theta}(\mathcal{X}, \mathcal{X}) \in \mathbb{R}^{N \times N}$
 $K_{\theta}(\cdot, \mathcal{X}): D \to \mathbb{R}^N, \text{ and } u(\cdot, \theta, \mathcal{X}): D \to \mathbb{R}$

Gaussian process regression (GPR)

 \blacksquare Supervised learning: recover $\pmb{u}^\dagger:D\subset\mathbb{R}^d\to\mathbb{R}$ from

$$y_i = \mathbf{u}^{\dagger}(x_i), 1 \le i \le N$$
 (Noiseless data)

■ GPR solution:

$$u(\cdot, \theta, \mathcal{X}) = \mathbb{E}\left[\xi(\cdot, \theta) \mid \xi(\mathcal{X}, \theta) = \mathbf{u}^{\dagger}(\mathcal{X})\right]$$
$$= K_{\theta}(\cdot, \mathcal{X})[K_{\theta}(\mathcal{X}, \mathcal{X})]^{-1}\mathbf{u}^{\dagger}(\mathcal{X})$$
(Depend on kernel K_{θ} , data set \mathcal{X} , and truth \mathbf{u}^{\dagger})

Compressed notation: $(\theta \in \Theta \text{ is a hierarchical parameter})$

$$\mathcal{GP}: \xi(\cdot, \theta) \sim \mathcal{N}(0, K_{\theta}), \text{ where } K_{\theta}: D \times D \to \mathbb{R}$$

$$\mathcal{X} = \{x_{1}, ..., x_{N}\}, \text{ and } \mathbf{u}^{\dagger}(\mathcal{X}) \in \mathbb{R}^{N}, K_{\theta}(\mathcal{X}, \mathcal{X}) \in \mathbb{R}^{N \times N}$$

$$K_{\theta}(\cdot, \mathcal{X}): D \to \mathbb{R}^{N}, \text{ and } u(\cdot, \theta, \mathcal{X}): D \to \mathbb{R}$$

What's the problem?

■ Any $\theta \in \Theta$, gets an interpolated solution on \mathcal{X} (zero training loss)

But, for out-of-sample/generalization error, how to pick a good θ ?

■ We need to do model selection — learn a good hierarchical parameter

Roadmap of this talk

- Empirical Bayes' approach
- 2 Approximation-theoretic approach
- **3** Comparison of their consistency as # of data $\to \infty$, and beyond

Bayes' solution

- Put a prior on θ , and $\mathbf{u}^{\dagger}|\theta \sim \mathcal{N}(0, K_{\theta})$ then calculate the posterior
- Empirical Bayes (EB) with uninformative prior:

$$\theta^{\mathrm{EB}}(\mathcal{X}, \boldsymbol{u}^{\dagger}) = \underset{\theta \in \Theta}{\operatorname{argmin}} \, \mathsf{L}^{\mathrm{EB}}(\theta, \mathcal{X}, \boldsymbol{u}^{\dagger})$$

$$\mathsf{L}^{\mathrm{EB}}(\theta, \mathcal{X}, \boldsymbol{u}^{\dagger}) = \boldsymbol{u}^{\dagger}(\mathcal{X})^{\mathsf{T}} [K_{\theta}(\mathcal{X}, \mathcal{X})]^{-1} \boldsymbol{u}^{\dagger}(\mathcal{X}) + \log \det K_{\theta}(\mathcal{X}, \mathcal{X})$$

Maximum Likelihood Estimate!

- The EB solution: just pick $\theta^{EB}(\mathcal{X}, u^{\dagger})$
 - depend on data set \mathcal{X} , truth u^{\dagger} (and the prior)

Bayes' solution

- Put a prior on θ , and $\mathbf{u}^{\dagger}|\theta \sim \mathcal{N}(0, K_{\theta})$ then calculate the posterior
- Empirical Bayes (EB) with uninformative prior:

$$\begin{split} \boldsymbol{\theta}^{\mathrm{EB}}(\mathcal{X}, \boldsymbol{u}^{\dagger}) &= \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) \\ \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) &= \boldsymbol{u}^{\dagger}(\mathcal{X})^{\mathsf{T}} [K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X})]^{-1} \boldsymbol{u}^{\dagger}(\mathcal{X}) + \log \det K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X}) \end{split}$$

Maximum Likelihood Estimate!

- The EB solution: just pick $\theta^{EB}(\mathcal{X}, \mathbf{u}^{\dagger})$
 - depend on data set \mathcal{X} , truth u^{\dagger} (and the prior)

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- Problem: u^{\dagger} not available solution: approximation

$$\min_{\theta} \mathsf{d}(u(\cdot,\theta,\mathcal{X}),u(\cdot,\theta,\pi\mathcal{X})) \tag{One example}$$

 π : subsampling operator (similar to cross-validation)

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- Problem: u^{\dagger} not available solution: approximation

$$\min_{\theta} \mathsf{d}(u(\cdot, \theta, \mathcal{X}), u(\cdot, \theta, \pi \mathcal{X}))$$
 (One example)

 π : subsampling operator (similar to cross-validation)

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- Problem: u^{\dagger} not available solution: approximation

$$\min_{\theta} \mathsf{d}(u(\cdot,\theta,\mathcal{X}),u(\cdot,\theta,\pi\mathcal{X})) \tag{One example}$$

 π : subsampling operator (similar to cross-validation)

Kernel Flow

A specific choice of d: [Owhadi, Yoo 2018]

$$\begin{split} & \boldsymbol{\theta}^{\mathrm{KF}}(\mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \, \mathsf{L}^{\mathrm{KF}}(\boldsymbol{\theta}, \mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) \\ & \mathsf{L}^{\mathrm{KF}}(\boldsymbol{\theta}, \mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) = \frac{\|\boldsymbol{u}(\cdot, \boldsymbol{\theta}, \mathcal{X}) - \boldsymbol{u}(\cdot, \boldsymbol{\theta}, \pi \mathcal{X})\|_{K_{\boldsymbol{\theta}}}^{2}}{\|\boldsymbol{u}(\cdot, \boldsymbol{\theta}, \mathcal{X})\|_{K_{\boldsymbol{\theta}}}^{2}} \end{split}$$

where

- $\blacksquare \pi$: a subsampling operator, so $\pi \mathcal{X} \subset \mathcal{X}$
- $\|\cdot\|_{K_{\theta}}$: RKHS norm determined by K_{θ}
- A kernel is good, if subsampling data does not influence solution much

Consistency

How do θ^{EB} and θ^{KF} behave, as # of data $\to \infty$?

■ We answer the question for some specific model

Set-up and theorem

- Domain: $D = \mathbb{T}^d = [0, 1]_{per}^d$
- Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d, \# \text{ of data: } 2^{qd}$
- Kernel $K_{\theta} = (-\Delta)^{-t}$, and $\theta = t$
- Subsampling in KF: $\pi \mathcal{X}_q = \mathcal{X}_{q-1}$

Theorem (Chen, Owhadi, Stuart, 2020)

Informal: if $u^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s})$ for some s, then as $q \to \infty$,

$$\theta^{\rm EB} \to s$$
 and $\theta^{\rm KF} \to \frac{s-d/2}{2}$ in probability

Set-up and theorem

- Domain: $D = \mathbb{T}^d = [0, 1]_{\text{per}}^d$
- Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d, \#$ of data: 2^{qd}
- Kernel $K_{\theta} = (-\Delta)^{-t}$, and $\theta = t$
- Subsampling in KF: $\pi \mathcal{X}_q = \mathcal{X}_{q-1}$

Theorem (Chen, Owhadi, Stuart, 2020)

Informal: if $\mathbf{u}^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s})$ for some s, then as $q \to \infty$,

$$\theta^{\rm EB} \to s$$
 and $\theta^{\rm KF} \to \frac{s-d/2}{2}$ in probability

Experiments

 $d = 1, s = 2.5, \# \text{ of data } N = 2^9, \text{ mesh size } 2^{-10}$

Figure: Left: EB loss; right: KF loss

- Patterns in the loss function (our theory can predict!)
 - EB: first linear, then blow up quickly
 - KF: more symmetric

Experiments

 $d = 1, s = 2.5, \# \text{ of data } N = 2^9, \text{ mesh size } 2^{-10}$

Figure: Left: EB loss; right: KF loss

- Patterns in the loss function (our theory can predict!)
 - EB: first linear, then blow up quickly
 - KF: more symmetric

How are the limits s (= 2.5) and $\frac{s-d/2}{2}$ (= 1) special?

- What is the *implicit bias* of EB and KF algorithms?
- We will look at their L^2 population errors

Experiment 1

• # of data: 2^q ; compute $\mathbb{E}_{u^{\dagger}} \| u^{\dagger}(\cdot) - u(\cdot, t, \mathcal{X}_q) \|_{L^2}^2$

Figure: L^2 error: averaged over the GP

 \blacksquare $\frac{s-d/2}{2}$ (= 1) is the minimal t that suffices for the fastest rate of L^2 error

Experiment 2

• # of data: $2^q, q = 9$; compute $\mathbb{E}_{\mathbf{u}^{\dagger}} \| \mathbf{u}^{\dagger}(\cdot) - u(\cdot, t, \mathcal{X}_q) \|_{L^2}^2$

Figure: L^2 error: averaged over the GP, for q=9

• s = (2.5) is the t that achieves the minimal L^2 error in expectation

Takeaway messages

- For Matérn-like kernel model, EB and KF have different selection bias
 - **EB** selects the t that achieves the minimal L^2 error in expectation
 - KF selects the minimal t that suffices for the fastest rate of L^2 error
- More comparisons between EB and KF in our paper
 - Estimate amplitude and lengthscale in $\mathcal{N}(0, \sigma^2(-\Delta + \tau^2 I)^{-s})$
 - Variance of estimators
 - Robustness to model misspecification (important!)
 - Computational cost

Hierarchical parameter learning: via Bayes or approximation-theoretic?

Thank you!