Big Data for Cities Week 9

Curt Savoie Connor McKay

Agenda

- Recap of last week
- Advanced Statistics / Regression
- R Demo

Recap

- Location based analysis?
- R issues?

More Statistics!

- Correlation
- Regressions
- ANOVA

Linear Regression!

- What is it?
 - is an analysis that assesses whether one or more predictor variables explain the dependent (criterion) variable.
 - Slope = 0, no linear relationship
- When do you use it?
 - The relationship between the variables is linear.
 - Normal Distribution

Linear Regression!

- Caveats
 - can be affected by data clustering
 - does not accurately describe nonlinear relationships
 - o can be affected by 'outlier data points',

Correlation!

Correlation! (Not all plots are equal!)

ANOVA!

- What is it?
 - Analysis of Variance
 - compares the means of two or more independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different
 - F test

ANOVA!

- When do you use it?
 - Statistical differences among the means of two or more groups
 - Statistical differences among the means of two or more interventions
 - Statistical differences among the means of two or more change scores

ANOVA! (data requirements)

- Dependent variable that is continuous (i.e., interval or ratio)
- Independent variable that is categorical (i.e., two or more groups)
- Cases that have values on both the dependent and independent variables
- Independent samples/groups (i.e., independence of observations)
 - There is no relationship between the subjects in each sample. This means that:
 - subjects in the first group cannot also be in the second group
 - no subject in either group can influence subjects in the other group
 - no group can influence the other group
- Random sample of data from the population
- Normal distribution (approximately) of the dependent variable for each group

ANOVA!

SS: Sum of Squares, d.f.: degrees of freedom MS: Mean Square

Source of Variation	d.f.	SS	MS	$\mathbf{F_0}$
Factor A (between groups)	a-l	$SSA = \sum_{i=1}^{a} n_i \left(\overline{y}_{i.} - \overline{y}_{} \right)^2$	$MSA = \frac{SSA}{(a-1)}$	$\frac{MSA}{MSE}$
Factor B (between groups)	b-1	$SSB = \sum_{j=1}^{b} n_{j} \left(\overline{y}_{.j} - \overline{y}_{}\right)^{2}$	$MSB = \frac{SSB}{(b-1)}$	$\frac{MSB}{MSE}$
Error (within groups)	(a-1)(b-1)	SSE = SST - SSA - SSB	$MSE = \frac{SSE}{(a-1)(b-1)}$	
Total	N-1	$SST = \sum_{i=1}^{a} \sum_{j=1}^{n} \left(y_{ij} - \overline{y}_{} \right)^{2}$		

For Next Week

- Reading on theory and practice
 - https://projects.fivethirtyeight.com/p-hacking/
 - o FOR 2 WEEKS FROM NOW
 - https://en.wikipedia.org/wiki/Association rule learning
 - https://en.wikipedia.org/wiki/Network_theory
- In R
 - More homework