

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 8(c)

Review for Final Exam Part 3

Piezo-Resistivity

Figure TF7-2: Piezoresistance varies with applied force.

$$R = R_0 \left(1 + \frac{\alpha F}{A_0} \right)$$

 R_0 = resistance when F = 0 F = applied force A_0 = cross-section when F = 0 α = piezoresistive coefficient of material

Figure TF7-3: Piezoresistor films.

Example: Charge Density vs. Charge

Calculate the total charge Q contained in a line charge extending from z = -5 m to z = +5 m, and whose charge density is $\rho_l = 2|z|$ (C/m).

Faraday Accelerometer

Figure TF12-3: In a Faraday accelerometer, the induced emf is directly proportional to the velocity of the loop (into and out of the magnet's cavity).

The acceleration **a** is determined by differentiating the velocity u with respect to time

Example: Potential & Electric Field

An electric field in space is defined by

$$\mathbf{E} = -2.5 \,\hat{\mathbf{y}} \, \frac{\mathbf{V}}{\mathbf{cm}}$$

Evaluate the potential difference from P(x = 2 cm, y = 0) to Q(x = 0, y = 2 cm).

$$\hat{\mathbf{x}} = \cos\phi \,\hat{\mathbf{r}} - \sin\phi \,\hat{\boldsymbol{\phi}}$$

$$\hat{\mathbf{y}} = \sin\phi \,\hat{\mathbf{r}} + \cos\phi \,\hat{\boldsymbol{\phi}}$$

Radio-Frequency Identification

Flgure TF13-2 How an RFID system works is illustrated through this EZ-Pass example. The UHF RFID shown is courtesy of Prof. C. F. Huang of Tatung University, Taiwan.

Example: Electrostatic Energy

Along the surface of a conducting sphere is a uniform charge density of 10 nC/m². The sphere has a radius of 10 cm.

Calculate the electrostatic energy that is stored in this system. Assume $\varepsilon = \varepsilon_0$.

Electromagnetic Fields

- -- a branch of physics or electrical engineering in which electric & magnetic phenomena are studied
- microwaves
- radio frequencies, lasers
- antennas
- electrical machines
- nuclear research
- fiber optics
- interference & compatibility
- energy conversion
- radar meteorology
- remote sensing
- induction heating

$$\nabla \cdot \mathbf{D} = \rho_{v} \qquad \nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial}{\partial t} \mathbf{D}$$