§ 12. Векторное произведение векторов

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Ориентация тройки векторов (1)

Для того, чтобы дать определение векторного произведения векторов, необходимо ввести понятие ориентации тройки векторов. Это понятие пригодится нам и в дальнейшем.

Определение

Упорядоченная тройка некомпланарных векторов (\vec{u} , \vec{v} , \vec{w}) называется *правой*, если из конца вектора \vec{w} поворот от \vec{u} к \vec{v} по наименьшему углу выглядит происходящим против часовой стрелки, и *левой* — в противном случае. Правую тройку векторов называют также *положительно ориентированной*, а левую — *отрицательно ориентированной*.

 Термины «правая» и «левая» тройки векторов имеют «антропогенное» происхождение: если смотреть с конца большого пальца на поворот от указательного пальца к среднему, то на правой руке он будет происходить против часовой стрелки, а на левой — по ней.

Причина, по которой правая тройка называется также положительно ориентированной, а левая — отрицательно ориентированной, станет ясной в следующем параграфе.

Ориентация тройки векторов (2)

На рис. 1 тройка векторов ($\vec{u}, \vec{v}, \vec{w}$) слева является правой, а справа — левой (имеется в виду, что векторы \vec{u} и \vec{v} расположены в горизонтальной плоскости, а вектор \vec{w} направлен вверх).

Рис. 1. Правая (слева) и левая (справа) тройки векторов

Несложно убедиться в том, что

• перестановка двух соседних векторов в тройке меняет ее ориентацию на противоположную, а циклическая перестановка не меняет¹.

 $^{^1}$ Циклическая перестановка — это переход от тройки $(\vec{u}, \vec{v}, \vec{w})$ к тройке $(\vec{v}, \vec{w}, \vec{u})$ или к тройке $(\vec{w}, \vec{u}, \vec{v})$.

Определение векторного произведения векторов

Определение

Векторным произведением неколлинеарных векторов \vec{a} и \vec{b} называется вектор \vec{c} такой, что:

- 1) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\widehat{\vec{a},\vec{b}})$,
- 2) вектор \vec{c} ортогонален к векторам \vec{a} и \vec{b} ,
- 3) тройка векторов $(\vec{a}, \vec{b}, \vec{c})$ правая.

Векторное произведение коллинеарных векторов по определению равно нулевому вектору. Векторное произведение векторов \vec{a} и \vec{b} обозначается через $\vec{a} imes \vec{b}$ или $[\vec{a}, \vec{b}]$.

Заметим, что п. 2) из определения векторного произведения определяет прямую, вдоль которой направлен вектор $\vec{a} \times \vec{b}$ (это прямая, перпендикулярная к плоскости векторов \vec{a} и \vec{b}), но не указывает, в какую сторону вдоль этой прямой направлен этот вектор. Для того, чтобы однозначно указать направление вектора $\vec{a} \times \vec{b}$, и нужен п. 3) определения.

Пример: векторные произведения векторов правого ортонормированного базиса

Пусть ($\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$) — правый ортонормированный базис пространства, т. е. ортонормированный базис, являющийся правой тройкой векторов (см. рис. 2). Тогда

$$\vec{e}_1 imes \vec{e}_2 = \vec{e}_3, \quad \vec{e}_1 imes \vec{e}_3 = -\vec{e}_2 \quad \text{if} \quad \vec{e}_2 imes \vec{e}_3 = \vec{e}_1.$$
 (1)

Первое равенство вытекает из того, что

$$\mid \vec{e}_3 \mid = 1 = 1 \cdot 1 \cdot \sin \frac{\pi}{2} = \mid \vec{e}_1 \mid \cdot \mid \vec{e}_2 \mid \cdot \sin (\widehat{\vec{e}_1}, \widehat{\vec{e}_2}),$$

 $ec{e}_3 \perp ec{e}_1,\ ec{e}_3 \perp ec{e}_2$ и тройка $\left(\ ec{e}_1, ec{e}_2, ec{e}_3
ight)$ — правая. Два других равенства проверяются аналогично.

Рис. 2. Правый ортонормированный базис

2-й критерий коллинеарности векторов

В § 10 был приведен критерий коллинеарности векторов. С помощью векторного произведения можно указать еще одно утверждение такого рода.

2-й критерий коллинеарности векторов

Векторы $ec{a}$ и $ec{b}$ коллинеарны тогда и только тогда, когда $ec{a} imes ec{b} = ec{0}$.

Доказательство. Если $\vec{a} \parallel \vec{b}$, то $\vec{a} \times \vec{b} = \vec{0}$ по определению векторного произведения. Обратно, если $\vec{a} \times \vec{b} = \vec{0}$, то $|\vec{a} \times \vec{b}| = 0$, т. е. либо $|\vec{a}| = 0$, либо $|\vec{b}| = 0$, либо $\sin(\widehat{\vec{a}}, \widehat{\vec{b}}) = 0$. Ясно, что в каждом из этих трех случаев $\vec{a} \parallel \vec{b}$.

Геометрический смысл векторного произведения

Следующее утверждение указывает свойство векторного произведения, важное в различных приложениях (как в математике, так и за ее пределами, например, в физике).

Геометрический смысл векторного произведения

Если векторы \vec{a} и \vec{b} неколлинеарны, то длина векторного произведения этих векторов равна площади параллелограмма, построенного на этих векторах как на сторонах.

Доказательство. Пусть ABCD — параллелограмм, построенный на неколлинеарных векторах \vec{a} и \vec{b} как на сторонах (при этом $\vec{a} = \overrightarrow{AB}$, а $\vec{b} = \overrightarrow{AD}$), S — площадь этого параллелограмма, h — длина его высоты, опущенной из точки D, а α — угол между векторами \vec{a} и \vec{b} (см. рис. 3). Тогда $S = |\vec{a}| \cdot h = |\vec{a}| \cdot |\vec{b}| \cdot \sin \alpha = |\vec{a} \times \vec{b}|$.

Рис. 3. Вычисление площай параллелограмма

Свойства векторного произведения

Укажем теперь алгебраические свойства векторного произведения.

Свойства векторного произведения

 \vec{c} Если \vec{a} , \vec{b} и \vec{c} — произвольные векторы, а t — произвольное число, то:

- 1) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (векторное произведение антикоммутативно);
- 2) $(t\vec{a}) \times \vec{b} = \vec{a} \times (t\vec{b}) = t(\vec{a} \times \vec{b});$
- 3) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ (векторное произведение дистрибутивно относительно сложения векторов по первому аргументу);
- 4) $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ (векторное произведение дистрибутивно относительно сложения векторов по второму аргументу).
- Из свойств сложения и векторного произведения векторов видно, что множество всех векторов с этими двумя операциями является кольцом. Это кольцо некоммутативно и неассоциативно. Это единственный пример неассоциативного кольца, возникающий в нашем курсе.

Свойства 1) и 4) будут доказаны на следующем слайде, а свойства 2) и 3) — в следующем параграфе.

Свойства векторного произведения (доказательство)

Доказательство свойства 1). Если $\vec{a} \parallel \vec{b}$, то, в силу 2-го критерия коллинеарности, $\vec{a} \times \vec{b} = \vec{0}$ и $\vec{b} \times \vec{a} = \vec{0}$. Из последнего равенства вытекает, что $-(\vec{b} \times \vec{a}) = \vec{0}$, откуда $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$. Предположим теперь, что $\vec{a} \not\parallel \vec{b}$. Убедимся сначала, что модули векторов, указанных в левой и правой частях доказываемого равенства, равны между собой. В самом деле, $\sin(\vec{a}, \vec{b}) = \sin(\vec{b}, \vec{a})$, и потому

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\widehat{\vec{a}, \vec{b}}) = |\vec{b}| \cdot |\vec{a}| \cdot \sin(\widehat{\vec{b}, \vec{a}}) = |\vec{b} \times \vec{a}| = |-(\vec{b} \times \vec{a})|.$$

Как левая, так и правая части доказываемого равенства ортогональны векторам \vec{a} и \vec{b} . Поскольку тройка векторов $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ является правой (по определению векторного произведения), для завершения доказательства равенства осталось убедиться в том, что тройка $(\vec{a}, \vec{b}, -(\vec{b} \times \vec{a}))$ также является правой. Заметим, что по определению векторного произведения тройка $(\vec{b}, \vec{a}, \vec{b} \times \vec{a})$ — правая. Если у последнего вектора сменить знак, мы получим левую тройку $(\vec{b}, \vec{a}, -(\vec{b} \times \vec{a}))$. Поскольку перестановка соседних векторов меняет ориентацию тройки, мы получаем, что тройка $(\vec{a}, \vec{b}, -(\vec{b} \times \vec{a}))$ — правая.

Свойство 4) следует из свойств 1) и 3). В самом деле,

$$\vec{a} \times (\vec{b} + \vec{c}) = -(\vec{b} + \vec{c}) \times \vec{a} = -(\vec{b} \times \vec{a} + \vec{c} \times \vec{a}) = -(\vec{b} \times \vec{a}) - (\vec{c} \times \vec{a}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}.$$

Свойство 4) доказано.

Вычисление векторного произведения в координатах (в произвольном базисе)

Пусть $(\vec{e_1},\vec{e_2},\vec{e_3})$ — некоторый базис пространства, а (x_1,x_2,x_3) и (y_1,y_2,y_3) — координаты векторов \vec{x} и \vec{y} в этом базисе соответственно. Применяя свойства 2)-4) векторного произведения, имеем

$$\begin{split} \vec{x} \times \vec{y} &= (x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3}) \times (y_1 \vec{e_1} + y_2 \vec{e_2} + y_3 \vec{e_3}) = \\ &= (x_1 y_1) \cdot \vec{e_1} \times \vec{e_1} + (x_1 y_2) \cdot \vec{e_1} \times \vec{e_2} + (x_1 y_3) \cdot \vec{e_1} \times \vec{e_3} + \\ &+ (x_2 y_1) \cdot \vec{e_2} \times \vec{e_1} + (x_2 y_2) \cdot \vec{e_2} \times \vec{e_2} + (x_2 y_3) \cdot \vec{e_2} \times \vec{e_3} + \\ &+ (x_3 y_1) \cdot \vec{e_3} \times \vec{e_1} + (x_3 y_2) \cdot \vec{e_3} \times \vec{e_2} + (x_3 y_3) \cdot \vec{e_3} \times \vec{e_3}. \end{split}$$

Используя 2-й критерий коллинеарности векторов и антикоммутативность векторного произведения, можно переписать это равенство в виде

$$\vec{x} \times \vec{y} = (x_1 y_2 - x_2 y_1) \cdot \vec{e_1} \times \vec{e_2} + (x_1 y_3 - x_3 y_1) \cdot \vec{e_1} \times \vec{e_3} + (x_2 y_3 - x_3 y_2) \cdot \vec{e_2} \times \vec{e_3}.$$
 (2)

Как и в случае со скалярным произведением векторов, эта формула не позволяет вычислить векторное произведение без дополнительной информации о векторных произведениях базисных векторов.

Вычисление векторного произведения в координатах (в правом ортонормированном базисе)

Предположим теперь, что ($\vec{e_1}, \vec{e_2}, \vec{e_3}$) — правый ортонормированный базис. Используя равенства (1), получаем, что формула (2) приобретает вид

$$\vec{x} \times \vec{y} = (x_2 y_3 - x_3 y_2) \vec{e}_1 - (x_1 y_3 - x_3 y_1) \vec{e}_2 + (x_1 y_2 - x_2 y_1) \vec{e}_3.$$
 (3)

Правую часть этого равенства удобно представлять как результат разложения по первой строке символического определителя

$$\begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}.$$

С учетом этой договоренности, окончательно имеем

$$\vec{x} \times \vec{y} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}. \tag{4}$$

Приложения векторного произведения (1)

Пусть $(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ — правый ортонормированный базис, а (x_1, x_2, x_3) и (y_1, y_2, y_3) — координаты векторов \vec{x} и \vec{y} в этом базисе соответственно. Используя векторное произведение, можно

1) вычислить площадь параллелограмма, построенного на векторах \vec{x} и \vec{y} : из геометрического смысла векторного произведения и формулы (3) вытекает, что

$$S = \sqrt{(x_2y_3 - x_3y_2)^2 + (x_1y_3 - x_3y_1)^2 + (x_1y_2 - x_2y_1)^2};$$
 (5)

2) вычислить синус угла между ненулевыми векторами \vec{x} и \vec{y} : из определения векторного произведения и формулы (3) вытекает, что

$$\sin(\widehat{\vec{x},\vec{y}}) = \frac{\sqrt{(x_2y_3 - x_3y_2)^2 + (x_1y_3 - x_3y_1)^2 + (x_1y_2 - x_2y_1)^2}}{\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}}.$$

Наряду с формулой (5), можно указать еще одну формулу для вычисления площади параллелограмма. Предположим, что мы знаем только координаты векторов, на которых построен параллелограмм, в базисе той плоскости, в которой эти векторы лежат. А именно, пусть параллелограмм построен на неколлинеарных векторах \vec{x} и \vec{y} , а ($\vec{e_1}$, $\vec{e_2}$) — ортонормированный базис плоскости π , в которой лежат \vec{x} и \vec{y} . Обозначим координаты векторов \vec{x} и \vec{y} в базисе ($\vec{e_1}$, $\vec{e_2}$) через (x_1, x_2) и (y_1, y_2) соответственно.

Приложения векторного произведения (2)

Пусть $\vec{e_3}$ — вектор единичной длины, перпендикулярный плоскости π и направленный так, что ($\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$) — правая тройка векторов. Ясно, что эта тройка образует правый ортонормированный базис пространства, в котором векторы \vec{x} и \vec{y} имеют координаты ($x_1, x_2, 0$) и ($y_1, y_2, 0$) соответственно. В силу (4) имеем

$$\vec{x} \times \vec{y} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ x_1 & x_2 & 0 \\ y_1 & y_2 & 0 \end{vmatrix} = \left(0, 0, \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}\right).$$

Учитывая геометрический смысл векторного произведения, имеем

$$S = \operatorname{mod} \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \tag{6}$$

(символом mod мы обозначили модуль определителя, поскольку стандартное обозначение модуля числа было бы здесь неудобочитаемым). Отметим, что формулу (6) можно переписать в виде $S=|x_1y_2-x_2y_1|$. Легко видет, что правая часть последнего равенства совпадает с правой частью равенства (5) при $x_3=y_3=0$.