5. Energy and Power Signals

Energy E of a signal x(t) (or x[n]) is defined as

$$\mathbf{E} = \int_{-\infty}^{\infty} |x(t)|^2 dt \quad \text{for CT signal,} \quad \mathbf{E} = \sum_{n=-\infty}^{\infty} |x[n]|^2 \quad \text{for DT signal,}$$
 (1.6)

whereas the Power P of a signal is defined as follows

 $P = \begin{cases} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt & \text{for CT signal,} = \\ \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 & \text{for DT signal} \end{cases}$

• Energy signal has finite energy and zero power

and zero power
$$-\frac{1}{2}$$

$$0 < \mathbf{E} < \infty$$
, $\mathbf{P} = 0$.

• Power signal has finite power and infinite energy

$$0 < \mathbf{P} < \infty$$
, $\mathbf{E} = \infty$.

• Signals that satisfy neither property are neither energy signals nor power signals.

1.2 Basic Signal Operations

- **Time Reversal**: Flip the signal around the vertical axis $x(t) \rightarrow x(-t)$
- **Time Shifts**: Shift the signal to left or right $x(t) \rightarrow x(t-t_0)$
 - Right-shift if $t_0 > 0$, Left-shift if $t_0 < 0$.
- **Time Scaling**: Linearly stretch or compress the signal $x(t) \rightarrow x(ct)$
 - Compression if |c| > 1, Expansion if |c| < 1.
- **Affine Transformation**: $x(t) \to x (\alpha t + \beta) = x (\alpha (t + \beta/\alpha))$ for any real α, β
 - Step 1. **Scale by** α . If α < 0, reflection across y-axis
 - Step 2. **Shift by** $-\beta/\alpha$.
 - * If α and β have different signs, right-shift.
 - * If α and β have same signs, left shift.

poriodi Poriodi

Time Reflection: $x(t) \longrightarrow x(-t)$

Time shifts: $x(t) \longrightarrow x(t-t_1)$

Time scaling: $x(t) \longrightarrow x(ct)$

1.3 Example of Important Signals

1. **Unit Step Function** (also referred as *Heaviside unit function*)

$$u\left(t\right) = \begin{cases} 1, & t > 0 \\ 0, & t < 0, \end{cases}$$

(1.8)

Properties

- Aperiodic signal
 Power signal P = 1/2 Infinite Energy $E = \infty$

Functions related to the step function u(t)

E= 500 Uch dt

- a) Signum Function
 - Definition

$$sgn(t) = 2u(t) - 1 = \begin{cases} 1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases} \quad \overrightarrow{-} \quad \int_{\bullet}^{\bullet} |\cdot| dt = \bullet$$

$$E = \int_{-\infty}^{\infty} \operatorname{Sgn}(H) dt = \int_{0}^{\infty} \int_{0}^{\infty} dt + \int_{0}^{\infty} \int_{0$$

- Aperiodic & odd signalPower signal P = 1

Definition

$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}, \qquad \int_{-\infty}^{t} u(\tau) d\tau = r(t)$$

$$\int_{-\infty}^{t} u(\tau) d\tau = r(t)$$

Properties

- Infinite Power
$$P = ∞$$

– Infinite Energy
$$\mathbf{E} = \infty$$

• Definition

$$rect (t/\tau) = \begin{cases} 1, & |t| < \frac{\tau}{2} \\ 0, & |t| > \frac{\tau}{2} \end{cases}$$

$$=\lim_{t\to\infty}\frac{1}{3T}\left(t^{3}\right)^{T}=\lim_{t\to\infty}\frac{T^{3}}{3T}$$

$$rect\left(t/\tau\right) = \begin{cases} 1, & |t| < \frac{\tau}{2} \\ 0, & |t| > \frac{\tau}{2} \end{cases}, \qquad rect\left(t/\tau\right) = u\left(t + \frac{\tau}{2}\right) - u\left(t - \frac{\tau}{2}\right) \quad (1.9) \qquad \boxed{ }$$

· Properties

- Aperiodic & Even signal

- Zero Power P = 0

– Energy Signal $\mathbf{E} = \tau$

$$\int_{0}^{t} U(s) ds = \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$= \begin{cases} f + 70 & ft = t \cdot y \\ \hline + \sqrt{0} & ft = t \cdot y \end{cases}$$

$$\int_{\alpha}^{b} \chi(t) \int_{\epsilon}^{b} (t-t_{0}) dt = \int_{\epsilon}^{b} \chi(t_{0}) \int_{\epsilon}^{b} (t-t_{0}) dt$$

$$\int_{\epsilon}^{b} \chi(t-t_{0}) dt = \int_{\epsilon}^{b} \chi(t-t_{0}) dt$$

- 2. **Unit Impulse Function** (also referred as *Direc delta function*)
 - Definition

$$\delta(t) = \begin{cases} 0, & t \neq 0 \\ \infty, & t = 0 \end{cases}, \qquad \int_{-\infty}^{\infty} \delta(t) dt = 1$$
 (1.10)

- · Properties
 - Sampling Property

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

- Sifting Property

$$\int_{a}^{b} x(t)\delta(t - t_{0}) dt = \begin{cases} x(t_{0}), & \text{if } a < t_{0} < b \\ 0, & \text{otherwise} \end{cases}$$

Impulse function is the *building block of any signal*, *i.e.*, arbitrary signal
can be respresented as an infinite sum of impulse function and signal
amplitude.

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau \tag{1.11}$$

Relationship between Rectangular Pulse and Impulse Function

• $\delta_{\epsilon}(t) = \frac{1}{\epsilon} rect(\frac{t}{\epsilon})$

• $\delta(t) = \lim_{\epsilon \to 0} \delta_{\epsilon}(t)$

• $\delta_{\epsilon}(0) = \frac{1}{\epsilon}$

• $\delta(0) \rightarrow \infty$

• $\delta_{\epsilon}(t) = 0$, $|t| > \frac{\epsilon}{2}$

• $\delta(t) = 0, t \neq 0$

• $\int_{-\infty}^{\infty} \delta_{\epsilon}(t) dt = 1$

• $\int_{-\infty}^{\infty} \delta(t) dt = 1$

Additional Properties of Unit impulse function

• Scaling Property:

$$\delta\left(at\right) = \frac{1}{|a|}\delta\left(t\right)$$

• Even Function:

$$\delta\left(-t\right) = \delta\left(t\right)$$

• Derivative and Integral:

$$\delta(-t) = \delta(t)$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau, \quad \delta(t) = \frac{du(t)}{dt}$$

3. Complex Exponential Function

Definition

$$e^{jw_0t} = \cos(w_0t) + j\sin(w_0t)$$

- Properties
 - Periodic with $T = \frac{2\pi n}{w_0}$ where *n* is an integer
 - Fundamental period $T_0 = \frac{2\pi}{|w_0|}$
 - Infinite Energy E = ∞

- Finite power
$$\mathbf{P} = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_0^{T_0} |e^{jw_0 t}|^2 dt = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_0^{T_0} 1 \cdot dt = 1$$

4. Sinusoidal Function

$$A\cos(w_0t+\theta)$$
 or $A\sin(w_0t+\theta)$,

where A is the amplitude, θ is the phase angle, w_0 is the radian frequency with

Fundamental period $T_0 = \frac{2\pi}{w_0}$ (sec), Fundamental frequency $f_0 = \frac{1}{T_0}$ hertz (Hz)

1.4 Classification of System Types

• [Def] A system is a mathematical model of a physical process that relates the input signal to the *output signal* in the form y = Tx.

1. Invertible and Noninvertible System

A system is said to be **invertible** if distinct inputs lead to distinct outputs. Otherwise, the system is said to be **noninvertible**.

[Examples] **Invertible System**

•
$$y(t) = 2x(t) \leftrightarrow w(t) = \frac{1}{2}y(t)$$

•
$$y[n] = 0$$

•
$$y[n] = \sum_{k=-\infty}^{n} x[k] \leftrightarrow w[n] = y[n] - y[n-1]$$
 • $y(t) = x^2(t)$

•
$$y(t) = x^2(t)$$

2. Memory and Memoryless System

A system is said to be **memoryless** if the output at any time depends only on the input at that same time. Otherwise, the system is said to have memory.

[Examples]

Memoryless System

•
$$y(t) = Rx(t)$$

•
$$y[n] = (2x[n] - x^2[n])^2$$

System with Memory

•
$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

•
$$y[n] = x[n-1]$$

•
$$y(t) = \frac{1}{c} \int_{-\infty}^{t} x(\tau) d\tau$$

3. Causal and Noncausal System

A system is said to be **causal** if its output at the present time depends on only the present and/or past values of the input. If its output at the present time depends on future values of the input, the system is known as **noncausal**.

[Examples] Causal System

•
$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

•
$$y(t) = x^2(t)$$

Noncausal System

•
$$y[n] = x[n] + x[n+2]$$

•
$$y[n] = x[-n]$$
 or $y(t) = x(t+1)$

* Note) All memoryless systems are causal, but not vice versa.

4. Linear and Nonlinear System

A system is said to be **linear** if the following superposition property (1.12) holds for a given operator **T**. If the system does not satisfy (1.12), it is a **nonlinear system**.

$$T \{\alpha_1 x_1 + \alpha_2 x_2\} = \alpha_1 T \{x_1\} + \alpha_2 T \{x_2\}$$
(1.12)

[Examples] Linear System

Nonlinear System

•
$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

•
$$y(t) = x^2(t)$$

•
$$y(t) = tx(t)$$

•
$$y[n] = 2x[n] + 3$$

* Note) For a linear system, zero input always yields a zero output.

5. Time-invariant and Time-Varying System

A system is **time-invariant** if a time-shift of the input causes a corresponding shift in the output. In other words, the system response is independent of time.

If
$$y(t) = T\{x(t)\}$$
, then $y(t - t_0) = T\{x(t - t_0)\}$ (1.13)

[Examples]

Time invariant System

Time varying System

•
$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

•
$$y(t) = x(2t)$$

•
$$y[n] = x[n - n_0]$$

•
$$y[n] = nx[n]$$

LTI System

Linear time-invariant (LTI) system: A system that is linear and also time-invariant.

6. Stable and Unstable System

A system is **stable** if every bounded input produces a bounded output for all time.

If
$$|x(t)| < A$$
, then $|y(t)| < B$ where $|A| < \infty$, $|B| < \infty$ (1.14)

[Examples] Stable System

Unstable System

•
$$y(t) = x^2(t)$$

•
$$y[n] = \frac{1}{x[n]}$$

•
$$y[n] = x[n] + x[n+2]$$

•
$$y[n] = nx[n]$$

1.5 Examples

[Example 1-1] Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.

a)
$$x(t) = \cos\left(t + \frac{\pi}{4}\right)$$

b)
$$x(t) = \sin\left(\frac{2\pi t}{3}\right)$$

c)
$$x(t) = \cos\left(\frac{\pi t}{3}\right) + \sin\left(\frac{\pi t}{4}\right)$$

d)
$$x(t) = \cos(t) + \sin(\sqrt{2}t)$$

e)
$$x(t) = \sin^2(t)$$

f)
$$x(t) = e^{j[\frac{\pi}{2}t-1]}$$

g)
$$x(t) = \cos\left(2t + \frac{\pi}{4}\right)$$

$$h) x(t) = \cos^2(t)$$

i)
$$x(t) = (\cos(2\pi t)) u(t)$$

$$j) \quad x(t) = e^{j\pi t}$$

Solution) To solve this type of problem, try to find the minimum T that satisfy x(t+T) = x(t). For instance, in (a), if the following equality holds with a nonzero constant T, then it is periodic

$$\cos\left(t + \frac{\pi}{4}\right) = \cos\left(t + T + \frac{\pi}{4}\right) \quad \to \quad \cos\left(t'\right) = \cos\left(t' + T\right),\tag{1.15}$$

where we used a *change of variable* $t' = t + \frac{\pi}{4}$ in the second equality. Since the minimum T that satisfy (1.15) is 2π , (a) is a periodic signal with period $T = 2\pi$. Similarly, for (b),

$$\sin\left(\frac{2\pi t}{3}\right) = \sin\left(\frac{2\pi t}{3} + \frac{2\pi T}{3}\right) \quad \to \quad \frac{2\pi T}{3} = 2\pi,\tag{1.16}$$

and by denoting $t' = \frac{2\pi t}{3}$, the minimum T that satisfy (1.16) is 3.

For (c) and (d), we can use (1.18); The period T_1 for $\cos\left(\frac{\pi t}{3}\right)$ in (c) is $T_1=6$ and T_2 for $\sin\left(\frac{\pi t}{4}\right)$ is $T_2=8$. Since $T_1/T_2=3/4$, (c) is a periodic signal with period T=24. In (d), the period T_1 for $\cos(t)$ is $T_1=2\pi$ and T_2 for $\sin\left(\sqrt{2}t\right)$ is $T_2=\sqrt{2}\pi$. Since $T_1/T_2=\sqrt{2}$, (d) is aperiodic signal.

For (e) and (h), convert x(t) as follows, then apply similar approach as (a).

$$\cos^{2}(t) = \frac{1}{2} (1 + \cos(2t)), \quad \sin^{2}(t) = \frac{1}{2} (1 - \cos(2t)), \tag{1.17}$$

and the remaining can be solved using similar method. The solutions are summarized below.

- a) Periodic with $T = 2\pi$
- b) Periodic with T = 3
- c) Periodic with T = 24

- d) Aperiodic
- e) Periodic with $T = \pi$
- f) Periodic with T = 4

- g) Periodic with $T = \pi$
- h) Periodic with $T = \pi$
- i) Aperiodic

j) Periodic with T = 2

Sum of Periodic Signals

• Let $x_1(t)$ and $x_2(t)$ be periodic signals with fundamental periods T_1 and T_2 , respectively. The sum $x(t) = x_1(t) + x_2(t)$ is periodic if and only if the following condition holds

$$\frac{T_1}{T_2} = \frac{k}{m} = \text{rational number} \tag{1.18}$$

where the fundamental period T is the least common multiple of T_1 and T_2 .

• Let $x_1[n]$ and $x_2[n]$ be periodic sequence with fundamental periods N_1 and N_2 , respectively. The sum $x[n] = x_1[n] + x_2[n]$ is periodic given the following condition

$$mN_1 = kN_2 = N (1.19)$$

where the fundamental period N is the least common multiple of N_1 and N_2 . Refer [Schaum's text, Problem 1.14 & 1.15]

[Example 1-2] Determine whether the following signals are energy signals, power signals, or neither.

a)
$$x(t) = e^{-at}u(t), a > 0$$

b)
$$x(t) = A\cos(\omega_0 t + \theta)$$

Solution) To solve this type of problem, **(Step 1.)** you need to calculate the energy E first. If E is finite, the signal is a Energy signal. Otherwise, **(Step 2.)** if E is infinite, you need to calculate the power P as well. If P is finite, the signal is a Power signal. Otherwise, if P is infinite, then it is neither a energy nor a power signal. For example, in (a),

$$\mathbf{E} = \int_{-\infty}^{\infty} e^{-2at} u(t) dt = \int_{0}^{\infty} e^{-2at} dt = \frac{1}{2a},$$
 (1.20)

where we used the definition of the step function in the second equality. Since $\frac{1}{2a}$ is finite, x(t) in (a) is a energy signal. For a periodic signal, the integration interval T in (1.7) is equal to the period. In (b), the period is $T = \frac{2\pi}{\omega_0}$ and the signal power can be calculated as follows

$$\mathbf{P} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} A^{2} \cos^{2}(\omega_{0}t + \theta) dt = \lim_{T \to \infty} \frac{A^{2}}{2\pi} \int_{\theta}^{2\pi + \theta} \cos^{2}(l) dl
= \lim_{T \to \infty} \frac{A^{2}}{4\pi} \int_{\theta}^{2\pi + \theta} \left[1 + \cos(2l)\right] dl = \frac{A^{2}}{2},$$
(1.21)

where we used $T = \frac{2\pi}{\omega_0}$ and a change of variable, $l = \omega_0 t + \theta$ or $\omega_0 dt = dl$, in the second equality, then applied the Cosine rule $\cos^2(t) = \frac{1}{2}(1 + \cos(2t))$ in the third equality. Since $\frac{A^2}{2}$ is finite, x(t) in (b) is a power signal. In summary, the solutions are

a) Energy signal

b) Power signal

Definition of Energy and Power Signals

- Energy signal has finite energy and zero power, i.e., $0 < E < \infty$, P = 0
- **Power signal** has finite power and infinite energy, i.e., $0 < P < \infty$, $E = \infty$, where

$$\mathbf{E} = \int_{-\infty}^{\infty} |x(t)|^2 dt, \quad \mathbf{P} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

Properties of Periodic Signals

The following equalities hold for a periodic signal x(t + T) = x(t)

$$\begin{split} & \int_{\alpha}^{\beta} x(t)dt = \int_{\alpha+T}^{\beta+T} x(t)dt, \quad \int_{0}^{T} x(t)dt = \int_{a}^{a+T} x(t)dt, \\ & \mathbf{P} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2}dt = \frac{1}{T_{0}} \int_{0}^{T_{0}} |x(t)|^{2}dt, \end{split}$$

where T_0 is the fundamental period and α , β , a are arbitrary real valued constants. *Refer* [Schaum's text, Problem 1.17 & 1.18]

[Example 1-3] Determine the even and odd component of the following signals

a)
$$x(t) = u(t)$$

b)
$$x(t) = \sin\left(\omega_0 t + \frac{\pi}{4}\right)$$

Solution) To solve this type of problem, you need to apply (1.22). In (a), x(-t) = u(-t) = 1 for t < 0 and u(-t) = 0 for t > 0. Then, the following results can be derived

$$x_{e}(t) = \frac{1}{2} [u(t) + u(-t)] = \frac{1}{2},$$

$$x_{o}(t) = \frac{1}{2} [u(t) - u(-t)] = \frac{1}{2} sgn(t) = \begin{cases} 0.5, & t > 0, \\ -0.5, & t < 0 \end{cases}$$

In (b), we first use Sine rule to expand the Sine function, then the following reults can be derived.

$$\sin\left(\omega_0 t + \frac{\pi}{4}\right) = \sin\left(\omega_0 t\right) \cos\left(\frac{\pi}{4}\right) + \cos\left(\omega_0 t\right) \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \left(\sin\left(\omega_0 t\right) + \cos\left(\omega_0 t\right)\right).$$

$$x_e(t) = \frac{1}{\sqrt{2}}\cos(\omega_0 t), \quad x_o(t) = \frac{1}{\sqrt{2}}\sin(\omega_0 t).$$

Similarly, the even and odd component of (c) and (d) can be found as follows

Even and Odd Component

Any signal x(t) can be expressed as a sum of two signals

$$x(t) = x_e(t) + x_o(t),$$

where $x_{e}\left(t\right)$ and $x_{o}\left(t\right)$ are related to the original signal x(t) as follows

$$x_e(t) = \frac{1}{2} [x(t) + x(-t)], \quad x_o(t) = \frac{1}{2} [x(t) - x(-t)].$$
 (1.22)

[Example 1-4] [Part 1] Sketch the following signals.

- a) $x_1(t) = u(t) + 5u(t-1) 2u(t-2)$ b) $x_2(t) = r(t) r(t-1) u(t-2)$
- c) $x_3(t) = u(t)u(a-t), a > 0$
- d) $x_4(t) = x_0(t)u(1-t)$

e)
$$x_5(t) = x_0(t) [u(t) - u(t-1)]$$

where the signal $x_0(t)$ is plotted below.

[Part 2] For each of the signals plotted below, write an expression in terms of unit step and unit ramp functions.

Solution)[Part 1]

[Part 2]

(f)
$$x_6(t) = r(t) - r(t-a) - au(t-b)$$
, (g) $x_7(t) = (r(t) - r(-t))(u(t+a) - u(t-a))$

• Time Reversal: Flip the signal around the vertical axis

$$x(t) \to x(-t)$$

• Time Shifts: Shift the signal to left or right

$$x(t) \rightarrow x(t-t_0)$$

- **Right-shift** if $t_0 > 0$, **Left-shift** if $t_0 < 0$.

• Time Scaling: Linearly stretch or compress the signal

$$x(t) \to x(ct)$$

- Compression if |c| > 1, Exp

Expansion if |c| < 1.

[Example 1-5] Evaluate the following integrals.

a)
$$\int_{-\infty}^{t} \cos(\tau) u(\tau) d\tau$$

b)
$$\int_{-\infty}^{t} \cos(\tau) \, \delta(\tau) d\tau$$

c)
$$\int_{-\infty}^{\infty} \cos(t) u(t-1) \delta(t) dt$$

d)
$$\int_0^{2\pi} t \sin\left(\frac{t}{2}\right) \delta\left(t-\pi\right)$$

e)
$$\int_{-\infty}^{\infty} \left(\frac{2}{3}t - \frac{3}{2}\right) \delta(t-1) dt$$

f)
$$\int_{-3}^{2} \left[\exp\left(1 - t\right) + \sin\left(\frac{2\pi t}{3}\right) \right] \delta\left(t - \frac{3}{2}\right) dt$$

Solution)

(a)
$$\int_{-\infty}^{t} \cos(\tau) u(\tau) d\tau = \begin{cases} & \text{If } t > 0, \int_{0}^{t} \cos(\tau) d\tau = \sin(t) \\ & \text{If } t < 0, 0 \end{cases} = u(t) \sin(t)$$

(b)
$$\int_{-\infty}^{t} \cos(\tau) \, \delta(\tau) d\tau = \begin{cases} & \text{If } t > 0, \cos 0 = 1 \\ & \text{If } t < 0, 0 \end{cases} = u(t)$$

(c)
$$\int_{-\infty}^{\infty} \cos(t)u(t-1)\,\delta(t)dt = \cos(0)u(-1) = 0$$

(d)
$$\int_{0}^{2\pi} t \sin\left(\frac{t}{2}\right) \delta\left(t - \pi\right) = \pi \sin\left(\frac{\pi}{2}\right) = \pi$$

(e)
$$\int_{-\infty}^{\infty} \left(\frac{2}{3}t - \frac{3}{2}\right) \delta(t - 1) dt = \frac{2}{3} - \frac{3}{2} = -\frac{5}{6}$$

(f)
$$\int_{-3}^{2} \left[\exp\left(1 - t\right) + \sin\left(\frac{2\pi t}{3}\right) \right] \delta\left(t - \frac{3}{2}\right) dt = \exp\left(-\frac{1}{2}\right) + \sin\left(\pi\right) = \exp\left(-0.5\right)$$

Properties of Unit impulse function

•
$$\int_{a}^{b} x(t)\delta(t-t_0) dt = \begin{cases} x(t_0), & \text{if } a < t_0 < b \\ 0, & \text{otherwise} \end{cases}$$

•
$$x(t) = \int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau$$

•
$$\delta\left(at\right) = \frac{1}{|a|}\delta\left(t\right), \quad u(t) = \int_{-\infty}^{t} \delta\left(\tau\right) d\tau, \quad \delta\left(t\right) = \frac{du(t)}{dt}$$

[Example 1-6] Determine whether the following system is (i) memoryless, (ii) causal, (iii) linear, (iv) time-invariant, or (v) stable. Refer [Schaum's text, Problem 1.33, 1.34, 1.36, 1.38]

a)
$$y(t) = \frac{1}{C} \int_{-\infty}^{t} x(\tau) d\tau$$

b)
$$y(t) = x(t) \cos(\omega_0 t)$$

c)
$$y[n] = x[n-1]$$

d)
$$y[n] = nx[n]$$

Solution) In (a), the output depends on the past input, so it is not memoryless system. The output depends on the present and past values of the input, so it is a Causal system. To test linearlity, substitute $x(t) \leftarrow \alpha_1 x_1(t) + \alpha_2 x_2(t)$ as the input, where $y_1(t)$ and $y_2(t)$ is the corresponding output of $x_1(t)$ and $x_2(t)$, respectively. Then,

$$\begin{split} y(t) &= \frac{1}{C} \int_{-\infty}^{t} \left[\alpha_1 x_1(\tau) + \alpha_2 x_2(\tau) \right] d\tau \\ &= \alpha_1 \left[\frac{1}{C} \int_{-\infty}^{t} x_1(\tau) d\tau \right] + \alpha_2 \left[\frac{1}{C} \int_{-\infty}^{t} x_2(\tau) d\tau \right] = \alpha_1 y_1(t) + \alpha_2 y_2(t), \end{split}$$

so the superposition property holds, which indicates a linear system. To test time-invariance, input time shifted signal $x(t - t_0)$. If the corresponding output is $y(t - t_0)$, then it is a time invariant system.

$$\frac{1}{C} \int_{-\infty}^{t} x \left(\tau - t_0\right) d\tau = \frac{1}{C} \int_{-\infty}^{t - t_0} x \left(l\right) dl = y \left(t - t_0\right),$$

by using a change of variable $l=\tau-t_0$ in the first equality. Hence, it is a time-invariant system. For stability, (a) can be easily proved to be a unstable by substituting a unit step function x(t)=u(t) as the input, which achieves unbounded $y(t)=\frac{tu(t)}{C}$. The remaining can be proved using similar method. The solutions are summarized below.

- a) memory, causal, linear, time-invariant, unstable
- b) memoryless, causal, linear, time-variant, stable
- c) memory, causal, linear, time-invariant, stable
- d) memoryless, causal, linear, time-variant, unstable.

System Characterization

- 1. Memoryless System; output at any time depends only on the input at that same time
- 2. Causal System; output at the present time depends only on the present and/or past input values
- 3. **Linear System**; the superposition property holds, i.e., $T\{\alpha_1x_1 + \alpha_2x_2\} = \alpha_1T\{x_1\} + \alpha_2T\{x_2\}$
- 4. Time-invariant System; time-shift of the input causes a same amount of shifting in the output
- 5. **Stable System**; If |x(t)| < A, then |y(t)| < B where $|A| < \infty$, $|B| < \infty$
- 6. LTI System; A system that is linear and also time-invariant

