Exercices—Plan incliné, forces et énergie

Nicolas Landucci

28 avril 2024

1. Décollage

Un avion d'une masse de $7.50 \times 10^4 \,\mathrm{kg}$ s'élance sur une piste de $2.00 \,\mathrm{km}$ de longueur pour décoller. Ses moteurs fournissent une poussée de $2.42 \times 10^5 \,\mathrm{N}$; le coefficient de frottement cinétique entre les pneus de l'appareil et la piste est de 0.03 (résistance de roulement).

FIGURE 1 – Un avion sur une piste de décollage.

- a) Quelle sera l'accélération de l'avion?
- b) S'il quitte le sol lors qu'il atteint la vitesse de 155 nœuds (79,7 $\frac{m}{s}$), sur quelle distance l'avion rouler a-t-il sur la piste ?

FIGURE 2 – Le même avion, après décollage.

- c) Une fois que l'avion décolle, il monte en conservant la même vitesse (155 nœuds, $79.7 \frac{m}{s}$) et la même poussée. Si la résistance de l'air est négligeable, quel est l'angle de l'avion?
- d) Lorsqu'il sera rendu à l'extrémité de la piste, quelle sera la hauteur de l'avion?

Solution

a) Quelle sera l'accélération de l'avion?

Diagramme de corps libre

DIAGRAMME 1 – Un avion sur une piste de décollage.

$$m = 7,50 \times 10^4 \,\mathrm{kg}$$

$$g = 9,8 \,\frac{\mathrm{m}}{\mathrm{s}^2}$$

$$F = 2,42 \times 10^5 \,\mathrm{N}$$

$$\mu_c = 0,03$$

Calculer F_N

$$\sum_{F_{N}} F_{y} = 0$$

$$F_{N} - F_{g} = 0$$

$$F_{N} = F_{g}$$

$$F_{N} = mg$$

$$F_{N} = (7,50 \times 10^{4} \text{ kg}) (9.8 \frac{\text{m}}{\text{s}^{2}})$$

$$F_{N} = 7,35 \times 10^{5} \text{ N}$$

Calculer a

$$\sum F_x = ma$$

$$F - F_{F_c} = ma$$

$$F - \mu_c F_N = ma$$

$$2,42 \times 10^5 \text{ N} - 0,03 (7,35 \times 10^5 \text{ N}) = (7,50 \times 10^4 \text{ kg}) a$$

$$\frac{2,42 \times 10^5 \text{ N} - 0,03 (7,35 \times 10^5 \text{ N})}{7,50 \times 10^4 \text{ kg}} = a$$

$$2,93 \frac{\text{m}}{\text{s}^2} = a$$

b) S'il quitte le sol lorsqu'il atteint la vitesse de 155 nœuds (79,7 $\frac{m}{s}$), sur quelle distance l'avion roulera-t-il sur la piste?

$$v_i = 0 \frac{\text{m}}{\text{s}}$$

$$v_f = 79.7 \frac{\text{m}}{\text{s}}$$

$$a = 2.93 \frac{\text{m}}{\text{s}^2}$$

Calculer Δx

$$\begin{split} v_f^2 &= v_i^2 + 2a\Delta x \\ v_f^2 - v_i^2 &= 2a\Delta x \\ \left(79.7 \, \frac{\mathrm{m}}{\mathrm{s}}\right)^2 - \left(0 \, \frac{\mathrm{m}}{\mathrm{s}}\right)^2 &= 2 \left(2.93 \, \frac{\mathrm{m}}{\mathrm{s}^2}\right) \Delta x \\ \frac{\left(79.7 \, \frac{\mathrm{m}}{\mathrm{s}}\right)^2 - \left(0 \, \frac{\mathrm{m}}{\mathrm{s}}\right)^2}{2 \left(2.93 \, \frac{\mathrm{m}}{\mathrm{s}^2}\right)} &= \Delta x \\ 1.084 \times 10^3 \, \mathrm{m} &= \Delta x \quad \text{(Plus de précision pour les calculs suivants)} \\ 1.08 \times 10^3 \, \mathrm{m} &= \Delta x \quad \blacksquare \quad \text{(3 C. S. pour la réponse)} \end{split}$$

c) Une fois que l'avion décolle, il monte en conservant la même vitesse (155 nœuds, $79.7 \frac{m}{s}$) et la même poussée. Si la résistance de l'air est négligeable, quel est l'angle de l'avion?

Diagramme de corps libre

DIAGRAMME 2 – Le même avion, après décollage.

$$m=7.50\times 10^4\,\mathrm{kg}$$

$$g=9.8\,\frac{\mathrm{m}}{\mathrm{s}^2}$$

$$F=2.42\times 10^5\,\mathrm{N}$$

$$a=0\,\frac{\mathrm{m}}{\mathrm{s}^2}$$
 (Vitesse constante)

Calculer θ

$$\sum F_x = ma$$

$$F - F_{g_x} = m \left(0 \frac{m}{s^2}\right)$$

$$F - F_{g_x} = 0$$

$$F = F_{g_x}$$

$$F = mg \sin \theta$$

$$2,42 \times 10^5 \text{ N} = \left(7,50 \times 10^4 \text{ kg}\right) \left(9,8 \frac{m}{s^2}\right) \sin \theta$$

$$\frac{2,42 \times 10^5 \text{ N}}{\left(7,50 \times 10^4 \text{ kg}\right) \left(9,8 \frac{m}{s^2}\right)} = \sin \theta$$

$$\sin^{-1} \left(\frac{2,42 \times 10^5 \text{ N}}{\left(7,50 \times 10^4 \text{ kg}\right) \left(9,8 \frac{m}{s^2}\right)}\right) = \theta$$

$$19,2^\circ = \theta$$

d) Lorsqu'il sera rendu à l'extrémité de la piste, à quelle hauteur sera l'avion?

DIAGRAMME 3 – Hauteur à la fin de la piste et distance restante.

$$\theta = 19.2^{\circ}$$

Calculer h

$$\tan \theta = \frac{h}{(2000 - 1084) \,\mathrm{m}}$$

$$\tan 19.2^{\circ} = \frac{h}{916 \,\mathrm{m}}$$

$$(\tan 19.2^{\circ}) (916 \,\mathrm{m}) = h$$

$$319 \,\mathrm{m} = h$$

2. Freinage d'urgence

En freinant au seuil (freinage maximal sans que les pneus dérapent), quelle distance une voiture prend-elle pour passer de $100\,\frac{\mathrm{km}}{\mathrm{h}}$ à l'arrêt sur une route plate? Les coefficients de friction statique et cinétique entre le caoutchouc et l'asphalte sont respectivement de 0,7 et de 0,5.

Solution

Étant donné que les pneus ne dérapent pas, le coefficient de friction entre les roues et le sol est de $0.7 (\mu_s)$.

Diagramme de corps libre

DIAGRAMME 4 – Une voiture en freinage.

$$\begin{split} g &= 9.8 \, \frac{\mathrm{m}}{\mathrm{s}^2} \\ \mu_s &= 0.7 \\ v_i &= 100 \, \frac{\mathrm{km}}{\mathrm{h}} \\ v_i &= 100 \, \frac{\mathrm{km}}{\mathrm{h}} \cdot \frac{1 \, \frac{\mathrm{m}}{\mathrm{s}}}{3.6 \, \frac{\mathrm{km}}{\mathrm{h}}} = 27.78 \, \frac{\mathrm{m}}{\mathrm{s}} \\ v_f &= 0 \, \frac{\mathrm{m}}{\mathrm{s}} \end{split}$$

Calculer F_N

$$\sum F_y = 0$$

$$F_N - F_g = 0$$

$$F_N = F_g$$

$$F_N = mg$$

$$F_N = m \left(9.8 \frac{\text{m}}{\text{s}^2}\right)$$

${\bf Calculer}\ a$

$$\begin{split} \sum F_x &= ma \\ -F_{F_s} &= ma \\ -\mu_s F_N &= ma \\ -0.7 \cdot m \left(9.8 \frac{\mathrm{m}}{\mathrm{s}^2} \right) &= ma \\ -0.7 \left(9.8 \frac{\mathrm{m}}{\mathrm{s}^2} \right) &= a \end{split} \qquad \text{(Simplification de m des deux côtés)} \\ -6.86 \frac{\mathrm{m}}{\mathrm{s}^2} &= a \end{split}$$

Calculer Δx

$$\begin{split} v_f^2 &= v_i^2 + 2a\Delta x \\ v_f^2 - v_i^2 &= 2a\Delta x \\ \left(0\frac{\mathrm{m}}{\mathrm{s}}\right)^2 - \left(27.78\frac{\mathrm{m}}{\mathrm{s}}\right)^2 = 2\left(-6.86\frac{\mathrm{m}}{\mathrm{s}^2}\right)\Delta x \\ \frac{\left(0\frac{\mathrm{m}}{\mathrm{s}}\right)^2 - \left(27.78\frac{\mathrm{m}}{\mathrm{s}}\right)^2}{2\left(-6.86\frac{\mathrm{m}}{\mathrm{s}^2}\right)} &= \Delta x \\ 56.2\,\mathrm{m} &= \Delta x \end{split} \tag{3 C. S.}$$