

UniCEUB - Centro Universitário de Brasília

FATECS – Faculdade de Tecnologia e Ciências Sociais Aplicadas

Curso: Engenharia da Computação

Disciplina: Projeto Final

Monitoramento de ambiente loT

Autora: Flávia Resende Peixoto

Prof. Orientador: Ivandro da Silva Ribeiro

Sumário

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Metodologia
- 4. Apresentação e Análise de resultados
- 5. Considerações finais

Introdução

 Este projeto tem como principal objetivo desenvolver um protótipo, utilizando-se de sensores de monitoramento de ambiente, construído a partir de componentes de baixo custo.

Modelo simplificado do uso de aplicação nas nuvens com MQTT

Justificativa e Objetivos

- Garantia de segurança é uma das preocupações prioritárias, pois invasões e furtos residenciais são os casos mais frequentes
- Este projeto tem por objetivo contribuir para a constante busca de mais tranquilidade e bem-estar da sociedade.

Recursos Utilizados

- Internet das Coisas
- Sensores
 - Sensor de temperatura e umidade DHT11
 - Sensor de Presença PIR
 - Sensor de Gás MQ-7
- Protocolo de rede MQTT
- Microcontrolador NodeMCU
- Aplicativo Blynk

Internet das Coisas e MQTT

É onde dispositivos se tornam capazes de comunicar uns com os outros, serviços ou pessoas em

escala global.

- MQTT é um protocolo de rede leve, barato e rápido, muito utilizado em projetos de pequena escala.
- o MQTT define dois tipos de entidades na rede: o broker e os clientes.

Sensores

- Sensor MQ-7:
 - Este é capaz de detectar gases no ambiente.
- Sensor DHT11:
 - É capaz de medir a temperatura e umidade de um ambiente.
- Sensor de presença PIR
 - Este é capaz de detectar movimento em um ambiente específico.

NodeMCU

- O módulo Wifi ESP8266 NodeMCU é uma placa de desenvolvimento que combina o chip ESP8266, uma interface usb-serial e um regulador de tensão 3.3V.
- Essa placa é muito interessante pelo USB serial integrado.
- Pode ser programada em Luna e Arduino.

Se comporta como um Arduino, porém é bem mais em conta e possui Wi-Fi nativo, graças a

integração com o módulo ESP8266.

Aplicativo Blynk

 Blynk é um aplicativo para manipulação de microcontroladores pela internet.

Nesse caso foi utilizado para monitorar o ambiente, pelo nível de Gás

CO.

Metodologia

 O desenvolvimento parte de uma base detalhada de um conjunto de hardware e software que permite monitorar um cômodo em uma casa residencial.

Usuario

Desenvolvimento

- Primeira etapa: O cômodo escolhido com o protótipo enviará as informações coletadas.
- Segunda etapa: O microcontrolador receberá as informações emitidas pelos sensores, tratará esses dados e enviará para a próxima etapa.
- Terceira etapa: Criação da instância CloudMQTT.
- Quarta etapa: o usuário verá os dados no WebSocket UI do CloudMQTT ou no aplicativo Blynk.

Esquemático do circuito:

Disciplinas utilizadas como base para o Projeto

- Eletrônica para Internet das Coisas
- Sistemas Digitais
- Lógica de Programação
- Circuitos Eletrônicos

Código Arduino

Conexão com a internet e configuração do servidor Broker

Configuração do Broker: const char* ssid = "PINHONET";// wifi da minha casa const char* password = "********"; //Senha, colocamos a que usaremos no WIFI const char* mqttServer = "tailor.cloudmqtt.com"; // servidor do broker const int mqttPort = 17678; // porta const char* mqttUser = "bvxcyhby"; // usuário criado para conexão com o broker const char* mqttPassword = "Y3q7p47nJrMS"; // senha criada para conexão com o broker Conexão com o broker: d reconnect() { // tentará reconectar ao broker, caso não tenha conse ile (!client.connected()) {

```
void reconnect() { // tentará reconectar ao broker, caso não tenha conseguido
while (!client.connected()) {
    Serial.println("Connecting to MQTT...");
    WiFi.mode(WIFI_STA);
    if (client.connect("ESP8266Client", mqttUser, mqttPassword )) {
        Serial.println("connected");
    } else {
        Serial.print("failed with state ");
        Serial.print(client.state());
        delay(5000);
    }
}
```

Conexão a rede:

```
void setup wifi() {
 delay(10);
 // Conectamos a WiFi network
 Serial println();
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL CONNECTED)
 delay (500);
 Serial.print(".");
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
```

Código responsável pelo Blynk

- Para mostrar o nível de CO, o widget de variação do BlynkTimer timer;
 monóxido de carbono foi conectado ao pino AO.

 WidgetRTC rtc:
- Os LCDs virtuais na plataforma utilizam pinos digitais criados no código do arduino, V1 e V2 para data e hora. E os pinos virtuais V3 e V4 para umidade e temperatura.
- Os pequenos widgets de smartphone e relógio, são respectivamente para notificações em tempo real, e localização de hora.

```
WidgetRTC rtc;
// Digital clock display of the time
void clockDisplay()
 // You can call hour(), minute(), ... at any time
 // Please see Time library examples for details
 String currentTime = String(hour()) + ":" + minute() + ":" + second();
 String currentDate = String(day()) + "/" + month() + "/" + year();
  Serial.print("Current time: ");
  Serial.print(currentTime);
 Serial.print(" ");
  Serial.print(currentDate);
  Serial println();
 // Send time to the App
  Blynk.virtualWrite(V1, currentTime);
 // Send date to the App
  Blynk.virtualWrite(V2, currentDate);
BLYNK_CONNECTED() {
 // Synchronize time on connection
  rtc.begin();
```

Protótipo

Resultados Obtidos

 Foram realizados testes aumentando o nível de CO do local, fazendo movimento no ambiente e medindo a temperatura e umidade

Tabela 2.	Testes	temperatura.
I docid 2.	I COLCO	terriperatura.

			1	1000
Data	Hora	Projeto	Clima	En
		(°C)	(°C)	(%)
16/06	21:30	18.2	18	1,09
16/06	22:30	16.8	15	10,71
16/06	23:30	14.5	14	3,44
17/06	13:30	24.4	22	9,83
17/06	16:30	22.6	22	2,65
17/06	19:30	18.9	18	4,76
17/06	21:10	17.9	17	5,02
17/06	23:50	16.6	16	3,61
18/06	12:15	22.1	20	9,50
18/06	14:10	27.5	26	5,45
18/06	17:30	25.4	24	5,51
18/06	22:10	17.8	17	4,49
19/06	10:20	18.5	17	8,10
19/06	13:10	21.6	23	6,48
19/06	23:20	19.2	18	6,25
20/06	01:00	17.9	17	5,02

Fonte: Próprio Autor (2020)

Tabela 3. Testes umidade.

Data	Hora	umidade	Clima	Erro
		(%)	(%)	(%)
16/06	21:30	81	79	2,40
16/06	22:30	92	80	13,04
16/06	23:30	93	82	11,83
17/06	13:30	64	67	4,68
17/06	16:30	71	73	2,81
17/06	19:30	93	89	4,30
17/06	21:10	92	90	2,17
17/06	23:50	92	90	2,17
18/06	12:15	80	77	3,75
18/06	14:10	52	56	7,69
18/06	17:30	62	59	4,83
18/06	22:10	92	88	4,34
19/06	10:20	93	89	4,30
19/06	13:10	85	79	7,05
19/06	23:20	92	90	2,17
20/06	01:00	93	92	1,07
	г . ъ	,	(0000)	

Fonte: Próprio Autor (2020)

CloudMQTT e Monitor Serial Arduino IDE

Figura 16 – Resultado na plata	itorma CloudMOT1	-
--------------------------------	------------------	---

Торіс	Message
outTopic	18.20 *C!!!
outTopic	93.00 %
outTopic	18.30 *C!!!
outTopic	93.00 %
outTopic	18.30 *C!!!
outTopic	93.00 %
outTopic	18.30 *C!!!
outTopic	93.00 %
outTopic	18.30 *C!!!

19:11:13.701 -> Temperatura DHT11: 24.30 *C 19:11:13.701 -> Humidade DHT11: 54.00 % 19:11:13.737 -> 436 19:11:13.737 -> GAS DETECTADO !!! 19:11:19.276 -> 19:11:19.276 -> 19:11:19.777 -> 19:11:19.777 -> Temperatura DHT11: 24.30 *C 19:11:19.813 -> Humidade DHT11: 54.00 % 19:11:19.851 -> 414 19:11:19.851 -> GAS DETECTADO !!! 19:11:25.357 -> 19:11:25.391 -> 19:11:25.890 -> 19:11:25.890 -> Temperatura DHT11: 24.30 *C 19:11:25.926 -> Humidade DHT11: 54.00 % 19:11:25.926 -> 402 19:11:25.926 -> GAS DETECTADO !!! 19:11:31.477 -> 19:11:31.477 -> 19:11:31.964 -> 19:11:31.964 -> Temperatura DHT11: 24.30 *C 19:11:32.001 -> Humidade DHT11: 54.00 %

19:11:32.040 -> GAS AUSENTE !!! e Nenhum movimento detectado

19:11:38.078 -> GAS AUSENTE !!! e Nenhum movimento detectado

19:11:37.991 -> Temperatura DHT11: 24.30 *C 19:11:38.027 -> Humidade DHT11: 54.00 %

19:11:32.040 -> 393

19:11:38.078 -> 387

19:11:37.497 -> 19:11:37.497 -> 19:11:37.991 ->

Figura 17 - Resultado Monitor Serial Arduino IDE

Orçamento

Tabela 4. Tabela de Gastos com protótipo.

Material	Valor(R\$)
NodeMCU	39,90
DHT11	13,00
Sensor MQ-7	34,90
Protoboard	19,90
Jumpers	19,80
PowerBank	130,00
Total	257,50

Fonte: Próprio Autor (2020)

O protótipo custou aproximadamente R\$258,00 e mesmo se tratando de um protótipo, pode ser considerado uma alternativa.

Conclusão

- Ao cair da noite a temperatura diminui e a umidade aumenta, como visto nos testes.
- Média dos erros um valor médio:
- Mais ou menos 4,91% para a umidade.
- Aproximadamente 5,74% para temperatura.
- A diferença dos dados pode ter sido ocasionada pela referência de medição.

Contato do Autora

Flávia Resende Peixoto
flaviaresende98@gmail.com
Engenharia da Computação
UniCEUB – Asa Norte – Brasília,DF
OBRIGADA!