1 Volume de sólidos 1

LISTA DE APLICAÇÕES DE INTEGRAIS

1 Volume de sólidos

Exercício 1.1: Esboce o sólido obtido através da rotação, em torno do eixo-x, dos seguintes conjuntos e calcule seu volume.

1.
$$A = \left\{ (x, y) \in \mathbb{R}^2 : \frac{1}{2} \le x \le 2, \ 0 \le y \le \frac{1}{x^2} \right\}$$

2.
$$A = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 4, \ 0 \le y \le \sqrt{x} \}$$

3.
$$A = \{(x, y) \in \mathbb{R}^2 : 2x^2 + y^2 \le 1, \ 0 \le y\}$$

4.
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 \le y, \ x^2 + y^2 \le 2\}$$

Exercício 1.2: Calcule o volume do sólido cuja base é o quadrado de vértices (0,0), (0,1), (1,0), (1,1), e as secções perpendiculares ao eixo-x são triângulos isósceles de altura $x-x^2$. Esboce esse sólido.

Exercício 1.3: Calcule o volume do sólido cuja base é um triângulo equilátero de lado l, e as secções perpendiculares a um dos lados são quadrados. Esboce esse sólido.

2 Comprimento de curva

Exercício 2.1: Calcule o comprimento das seguintes curvas:

1. $y = \cosh(x)$, com $0 \le x \le 1$. Lembrando que o cosseno hiperbólico é dado por

$$\cosh(x) = \frac{e^x + e^{-x}}{2}.$$

2. y = senh(x), com $0 \le x \le 1$. Lembrando que o seno hiperbólico é dado por

$$senh(x) = \frac{e^x - e^{-x}}{2}.$$

- 3. $y = \sqrt{x}$, com $\frac{1}{4} \le x \le \frac{3}{4}$.
- 4. $y = \frac{4}{3}x + 3$, com $0 \le x \le 2$.

Exercício 2.2: Calcule o comprimento das curvas dadas na forma paramétrica:

- 1. x = 1 cos(t) e y = t sen(t) com $0 < t < \pi$.
- 2. x = 1 cos(t) e y = t sen(t) com $0 \le t \le \pi$.
- 3. x = cosh(t) e y = senh(t) com $0 \le t \le 1$.
- 4. x = 2t + 1 e y = t 1 com $1 \le t \le 2$.

Exercício 2.3: Uma partícula se desloca no plano segundo equações paramétricas x = x(t) e y = y(t). Sabe-se que, para todo t, a velocidade de x é 2 e a aceleração de y é -2. Sabendo que a velocidade inicial (em t = 0) de y é 4 e que encontra-se na posição (0,0), determine a distância percorrida pela partícula entre os instantes t = 0 e t = T, sendo que T é o instante em que a partícula toca o eixo-x. Como é a trajetória dessa partícula?

3 Coordenadas Polares 2

3 Coordenadas Polares

Exercício 3.1: Desenhe a curva dada por:

1.
$$\rho = e^{-\theta}$$
, com $\theta > 0$.

2.
$$\theta = \frac{\pi}{4}$$
.

3.
$$\rho = cos(\theta)$$
.

4.
$$\rho = tq(\theta)$$
.

Exercício 3.2: Descreva as curvas abaixo na forma de coordenadas polares e esboce-as.

1.
$$x^4 - y^4 = 2xy$$
.

2.
$$x^2 + y^2 + x = \sqrt{x^2 + y^2}$$
.

3.
$$(x^2 + y^2)^2 = x^2 - y^2$$
.

Exercício 3.3: Calcule a área da região limitada pela curva dada por:

1.
$$\rho = 2 - \cos(\theta)$$
.

2.
$$\rho = cos(2\theta)$$
.

4 Centro de Massa

Exercício 4.1: Calcule o centro de massa das seguintes regiões:

1.
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + 4y^2 \le 1, \ 0 \le x, \ 0 \le y\}$$

2.
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, -2 \le x \le 2\}$$

3.
$$A = \{(x, y) \in \mathbb{R}^2 : \cosh(x), -1 \le x \le 1\}$$

4.
$$A = \{(x, y) \in \mathbb{R}^2 : senh(x), -1 \le x \le 1\}$$

5.
$$A = \{(x, y) \in \mathbb{R}^2 : y \le x, -x \le y, 0 \le x \le 1\}$$

Exercício 4.2: Sejam A_1 e A_2 dados por:

$$A_1 = \left\{ (x,y) \in \mathbb{R}^2 : 1 \le x \le 3 \; , \; 1 \le y \le 2 \right\} \quad \text{e} \quad A_2 = \left\{ (x,y) \in \mathbb{R}^2 : 2 \le x \le 4 \; , \; 2 \le y \le 3 \right\}.$$

Determine o centro de massa de $A = A_1 \cup A_2$.

5 Trabalho

Exercício 5.1: Considere uma partícula que se desloca ao longo do eixo-x com força F(x) = (f(x), 0). Calcule o trabalho realizado pela força em cada um dos casos a seguir:

1.
$$f(x) = 3 \text{ em } a = 0 \text{ e } b = 2.$$

2.
$$f(x) = -\frac{2}{x^2}$$
 em $a = 1$ e $b = 2$.

3.
$$f(x) = -3x \text{ em } a = -1 \text{ e } b = 1.$$