

FIG. 2

FIG. 3

The fight from the first the first first from the time the fight fluid

FIG. 4

(DEVICE STRUCTURE)

IMPURITY CONCENTRATION OF P-TYPE SUBSTRATE

 $3 \times 10^{17} \text{cm}^{-3}$

GATE OXIDE FILM THICKNESS

6nm

GATE ELECTRODE

N-TYPE POLYSILICON

GATE LENGTH

 $0.3 \,\mu\,\mathrm{m}$

SOURCE/DRAIN DIFFUSION LAYER MAXIMUM CONCENTRATION

 $1 \times 10^{20} \text{cm}^{-3}$

SOURCE/DRAIN DIFFUSION LAYER

JUNCTION DEPTH

 $0.08\,\mu\,\mathrm{m}$

DEVICE WIDTH

 $1 \mu \mathrm{m}$

FIG. 5A

	NO GR	SRH ONLY	II ONLY	BBT ONLY	ALL
SOURCE CURRENT	4.08E-17	1.38E-17	1.37E-17	4.17E-19	1.29E-18
DRAIN CURRENT	4.07E-17	6.78E-17	6.72E-17	9.45E-14	9.63E-14
SUBSTRATE CURRENT	3.37E-18	9.41E-18	1.72E-18	9.45E-14	9.62E-14

FIG. 5B

SOURCE CURRENT	1.29E-18
DRAIN CURRENT	9.63E-14
SUBSTRATE CURRENT	9.62E-14

MECHANISM	VOLUME INTEGRAL VALUE X PRIME CHARGE
J_{SRHn}	1.50E-17
$J_{ m IIn}$	1.68E-15
$J_{ m BBTn}$	9.45E-14

FIG. 6A

	NO GR	SRH ONLY	II ONLY	BBT ONLY	ALL
SOURCE CURRENT	4.08E-04	4.48E-04	4.48E-04	4.48E-04	4.48E-04
DRAIN CURRENT	4.08E-04	4.48E-04	4.48E-04	4.48E-04	4.48E-04
SUBSTRATE CURRENT	4.66E-18	1.59E-17	4.33E-08	4.66E-18	4.33E-08

FIG. 6B

SOURCE CURRENT	4.48E-04
DRAIN CURRENT	4.48E-04
SUBSTRATE CURRENT	4.33E-08

MECHANISM	VOLUME INTEGRAL VALUE X PRIME CHARGE
J_{SRHn}	4.78E-14
$ m J_{IIn}$	4.33E-08
J_{BBTn}	0.00E+00

FIG. 7A
$$\frac{\delta n}{\delta t} = \frac{1}{q} \overrightarrow{\nabla} \cdot \overrightarrow{J}_n + GR_n$$

$$GR_n = GR_{SRHn} + GR_{IIn} + GR_{BBTn}$$

$$A_{SRHn} = \int_{Si} GR_{SRHn} dv$$

FIG. 7D
$$A_{IIn} = \int_{Si}^{GR_{IIn}dv}$$

$$A_{BBTn} = \int_{Si} GR_{BBTn} dv$$

$$J_{SRHn} = q \int_{Si}^{GR} GR_{SRHn} dv$$

$$J_{IIn} = q \int GR_{IIn} dv$$

$$J_{BBTn} = q \int_{Si}^{GR_{BBTn}} dv$$