

- -

Why do we need the OSI Model?

- To address the problem of networks increasing in size and in number, the International Organization for Standardization (ISO) researched many network schemes and recognized that there was a need to create a network model
- This would help network builders implement networks that could communicate and work together
- ISO therefore, released the OSI reference model in 1984.

Don't Get Confused.

ISO - International Organization for Standardization

OSI - Open System Interconnection

IOS - Internetwork Operating System

To avoid confusion, some people say "International Standard Organization."

The OSI Reference Model

- **Application**
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- **Data Link**
- **Physical**

The OSI Model will be used throughout your entire networking career!

Memorize it!

OSI Model

Layer 7 - The Application Layer

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

This layer deal with networking applications.

Examples:

- Email
- Web browsers

PDU - User Data

Each of the layers have Protocol Data Unit (PDU)

Layer 6 - The Presentation Layer

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

This layer is responsible for presenting the data in the required format which may include:

Code Formatting

Encryption
Compression

PDU - Formatted Data

Layer 5 - The Session Layer

- 7 Application
- **6 Presentation**
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

- This layer establishes, manages, and terminates sessions between two communicating hosts.
- Creates Virtual Circuit
- Coordinates communication between systems
- Organize their communication by offering three different modes
 - □Simplex
 - ☐ Half Duplex
 - □Full Duplex

Example:

- Client Software (Used for logging in)
- **PDU Formatted Data**

Layer 4 - The Transport Layer

- **Application**
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- **Data Link**
- **Physical**

- This layer breaks up the data from the sending host and then reassembles it in the receiver.
- It also is used to insure reliable data transport across the network.
- Can be reliable or unreliable
- Sequencing
- Acknowledgment
- Retransmission
- Flow Control

- Seaments

Layer 3 - The Network Layer

- **Application**
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- **Data Link**
- **Physical**

Sometimes referred to as the "Cisco Layer".

End to End Delivery

Provide logical addressing that routers use for path determination

Segments are encapsulated

Internetwork Communication

Packet forwarding

Packet Filtering

Makes "Best Path Determination"

Fragmentation

PDU - Packets - IP/IPX

Layer 2 - The Data Link Layer

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Performs Physical Addressing

This layer provides reliable transit

This layer provides reliable transit of data across a physical link.

Combines bits into bytes and bytes into frames

Access to media using MAC address

Error detection, not correction

LLC and MAC

Logical Link Control performs Link establishment

11

MAC Performs Access method

PDU - Frames

Preamble	DMAC	SMAC	Data length	DATA	FCS
1 1 0 0 1 1 1 1 1 1 1			Data longth		

Layer 1 - The Physical Layer

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

This is the physical media through which the data, represented as electronic signals, is sent from the source host to the destination host.

Move bits between devices Encoding

PDU - Bits

Data Encapsulation

Data Encapsulation

Bit 1011011100011110000

OSI Model Analogy Application Layer - Source Host

After riding your new bicycle a few times in Bangalore, you decide that you want to give it to a friend who lives in DADAR, Mumbai.

OSI Model Analogy Presentation Layer - Source Host

Make sure you have the proper directions to disassemble and reassemble the bicycle.

OSI Model Analogy Session Layer - Source Host

Call your friend and make sure you have his correct address.

OSI Model Analogy Transport Layer - Source Host

Disassemble the bicycle and put different pieces in different boxes. The boxes are labeled "1 of 3", "2 of 3", and "3 of 3".

OSI Model Analogy Network Layer - Source Host

Put your friend's complete mailing address (and yours) on each box. Since the packages are too big for your mailbox (and since you don't have enough stamps) you determine that you need to go to the post office.

OSI Model Analogy Data Link Layer - Source Host

Bangalore post office takes possession of the boxes.

OSI Model Analogy Physical Layer - Media

The boxes are flown from Bangalore to Mumbai.

OSI Model Analogy Data Link Layer - Destination

Dadar post office receives your boxes.

OSI Model Analogy Network Layer - Destination

Upon examining the destination address, Dadar post office determines that your boxes should be delivered to your written home address.

BSCN v1.0-6-26

OSI Model Analogy Transport Layer - Destination

Your friend calls you and tells you he got all 3 boxes and he is having another friend named **BOB** reassemble the bicycle.

www.cisco.com © 2000, Cisco Systems, Inc. BSCN V1.0-6-26

OSI Model Analogy Session Layer - Destination

Your friend hangs up because he is done talking to you.

OSI Model Analogy Presentation Layer - Destination

BOB is finished and "presents" the bicycle to your friend. Another way to say it is that your friend is finally getting him "present".

www.cisco.com BSCN V1.0-6-26

OSI Model Analogy Application Layer - Destination

Your friend enjoys riding his new bicycle in Dadar.

Data Flow Through a Network

Data flow in a network focuses on layers one, two and three of the OSI model. This is after being transmitted by the sending host and before arriving at the receiving host.

Why Another Model?

Although the OSI reference model is universally recognized, the historical and technical open standard of the Internet is Transmission Control Protocol / Internet Protocol (TCP/IP).

The TCP/IP reference model and the TCP/IP protocol stack make data communication possible between any two computers, anywhere in the world, at nearly the speed of light.

The U.S. Department of Defense (DoD) created the TCP/IP reference model because it wanted a network that could survive any conditions, even a nuclear war.

TCP/IP Protocol Stack

31

© 2000, Cisco Systems, Inc. BSCN v1.0—6-26

Application Layer Overview

Transport Layer Overview

Applicati on

Transport

Internet

Data-Link

Physical

Transmission Control

Protocol (TCP)

User Datagram Protocol (UDP)

Connection-Orie

nted

Connectionless

TCP Segment Format

Data (Varies)

Port Numbers

TCP Port Numbers

TCP Port Numbers

