Matrizeak eta determinanteak Ekuazio linealetako sistemak

- 1.- Matrize baten definizioa
- 2.- Matrizeekin erlazionatutako funtzioak
- 3.- Eragiketak matrizeekin
- 4.- Determinantea, alderantzizkoa eta eragiketa elementalak
- 5.- Ekuazio linealetako sistemak
 - Solve (NSolve)
 - LinearSolve
 - Reduce

1. MATRIZE BATEN DEFINIZIOA:

Matrizeak errenkaden zerrendak bezala adierazten dira:

Out[1]= $a = \{\{1, 2, 4\}, \{0, 5, 1\}\}\}$ $\{\{1, 2, 4\}, \{0, 5, 1\}\}$

lehenengo errenkada

bigarren errenkada

Matrize eran ikusteko:

Bereiztu beharrekoak:

• Bektoreak: {1,2,3}

• Errenkada matrizeak: {{1,2,3}}

• Zutabe matrizeak: {{1},{2},{3}} edo {1,2,3}

2. FUNTZIO BATZUK:

Table[funtzioa,{i,i_{min},i_{max}},{j,j_{min},j_{max}}] Lehenengo argumentuan adierazitako espresioaren arabera kalkulatutako elementuekin mxn ordenako matrizea sortzen du. Elementu horiek sortzeko erabiltzen diren indizeak ere argumentu bezala zehazten dira.

 $Array[funtzioa, \{n_1, n_2, ...\}]$ Lehenengo argumentuan emandako adierazpenaren arabera kalkulatutako elementuez osatutako mxn ordenako matrizea sortzen du. Adierazpen hau bigarren argumentuan eta giltzen artean adierazitako indizeen balioen menpekoa izanik.

2. **FUNTZIO BATZUK:**

Flatten[zerrenda] $m \times n$ ordenako matrizea $m \times n$ koordenatuko bektorea bihurtzen duen funtzioa.

2. FUNTZIO BATZUK:

DiagonalMatrix[zerrenda] Matrize diagonal bat sortuko du, non diagonal nagusiko elementuak datu bezala erabilitako zerrendako elementuak diren.

IdentityMatrix[n] n ordenako unitate matrizea sortuko du.

Transpose[a] a matrizearen matrize iraulia sortuko du.

Dimensions[a] a matrizearen dimentsioa, hau da, errenkada eta zutabe kopurua adieraziko du.

3. **ERAGIKETAK MATRIZEEKIN:**

Matrizeen batura: a + b

Matrize baten eta eskalar baten arteko biderkadura: 3 a edo 3*a

Matrizeen biderkadura: a.b Kontuz!! (Ez a*b, ezta a b)

Matrizeen berredura: MatrixPower[a, n] "a" matrizea n. potentziara berretuko du

4. MATRIZE BATI BURUZ INFORMAZIOA LORTZEKO:

$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 5 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$

a[[i,j]]: a matrizearen a_{ij} elementua lortzeko (edo Part[a,i,j])

KONTUZ: MatrixForm

adierazpen grafikoa da

funtzioaren emaitza

Matrizea

definitzeko

a[[i]]: a matrizearen i-garren errenkada lortzeko (edo Part[a,i])

Transpose[a][[j]]: a matrizearen *j*-garren zutabea lortzeko (edo Part[Transpose[a],j])

edo

a[[$\{e_1, e_2, ..., e_m\}, \{z_1, z_2, ..., z_n\}$]]: a matrizean $e_1, e_2, ..., e_m$ errenkadak eta $z_1, z_2, ..., z_n$ zutabeak aukeratuz lortutako azpimatrizea lortzeko:

5. <u>DETERMINANTEA, ALDERANTZIZKOA ETA ERAGIKETA ELEMENTALAK</u>

Det[a] a matrizearen determinantea lortuko du
Inverse[a] a matrizearen alderantzizkoa lortuko du
MatrixRank[a] a matrizearen heina kalkulatuko du. Ez erabili parametroak
daudenean.

Matrizea definitzeko

Out[15]=
$$\left\{ \left\{ \frac{23}{5}, -\frac{2}{5}, -\frac{18}{5} \right\}, \left\{ \frac{1}{5}, \frac{1}{5}, -\frac{1}{5} \right\}, \left\{ -1, 0, 1 \right\} \right\}$$

Matrize alderantzizkoa aurkitzeko

RowReduce[a] eragiketa elementalen bidez matrizearen baliokide bat lortuko du, hau bere adierazpen errazenean agertuko delarik. Ez erabili parametroak badaude.

In[17]:= a = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[17]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[18]:= a = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[18]= RowReduce[a]

{{1, 0, -1}, {0, 1, 2}, {0, 0, 0}}

Matrizearen heina 2 Lizango da, bi errenkada ez-nulu daudelako

Minors[a,n] a matrizearen n-ordenako minore guztiak kalkulatzen ditu

a = {{1, 2, 4}, {0, 5, 1}, {1, 2, 5}}

Out[19]= {{1, 2, 4}, {0, 5, 1}, {1, 2, 5}}

In[20]:= MatrixForm[a]

Out[20]//MatrixForm=

 $\begin{pmatrix} 1 & 2 & 4 \\ 0 & 5 & 1 \\ 1 & 2 & 5 \end{pmatrix}$

| Minors[a, 2]

Out[21]= {{5, 1, -18}, {0, 1, 2}, {-5, -1, 23}}

Minore bat kalkulatzeko, Det[] funtzioa eta azpimatrizeak erabil dezakegu:

Det[a[[{1, 2}, {1, 2}]]]

Out[22]=

5

Matrizeak eta determinanteak | 1 m 1 1

$$\begin{pmatrix} 1 & 1 & 1 & m \\ 1 & 1 & m & 1 \\ 1 & m & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Heina kalkulatzeko parametroak daudenean:

Matrizeak eta determinanteak | 1 m 1 1

Kasu honetan matrizearen heina 1 da

Hortaz, soluzioa

1.
$$m \neq 1 \Longrightarrow |A| \neq 0 \Longrightarrow h(A) = 4$$

2.
$$m=1 \implies h(A)=1$$

Matrizeak eta determinanteak 1 1 3 1 1 1 1 1 2 m 1 1 2 m 1 1 2 m 1

$$\begin{bmatrix} 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & m & 1+2m & m^2 \end{bmatrix}$$

Heina kalkulatzeko parametroak daudenean:

Minore guztiak nuluak noiz diren aztertzeko beste era bat:

Matrizeak eta determinanteak $\begin{pmatrix} 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & m & 1+2m & m^2 \end{pmatrix}$

$$\begin{pmatrix} 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & m & 1+2m & m^2 \end{pmatrix}$$

Heina kalkulatzeko parametroak daudenean:

Matrizea m=1 denean

In[34]:= MatrixRank[a1] Out[34]=

m=1 denean heina=2

Hortaz, soluzioa

1.
$$m \neq 1 \Longrightarrow h(A) = 3$$

2.
$$m=1 \implies h(A) = 2$$

Ekuazio linealetako sistemak

Ekuazio linealetako sistemak ebazteko:

Sintaxis-a: Funtzioa[{ekuazioa1,ekuazioa2, ekuazioa3} , {x1,x2,x3}]

Solve[]: Ekuazio bat edo ekuazio linealetako sistema bat ebazten du. Parametrorik ez dagoenean erabili.

Nsolve[]: Solve funtzioaren analogoa, hala ere, soluzio hurbildua lortzeko zenbakizko metodoak erabiltzen ditu,beraz, ahaltsuagoa da. **Parametrorik ez dagoenean erabili.**

Solve eta **Nsolve** funtzioek sistema bateragarri determinatua denean emaitza ematen dute. Sistema bateragarri indeterminatua denean, berriz, emaitzak ematen dituzte, eta ezezagun bat(zuk) beste bat(zu)en menpe jarri dituztela jakinarazteko mezu bat bueltatzen dute.

LinearSolve[] Era matrizialean emandako ekuazio linealetako sistema ebazten du.
Parametrorik ez dagoenean eta sistema bateragarri determinatua denean erabili.

Reduce[] Ekuazio bat edo ekuazio linealetako sistema bat ebazten du. Parametroak daudean erabili. Sistema bateragarria (determinatua edo/eta indeterminatua) deneko emaitza guztiak ematen ditu. (|| = edo , &&= eta)

Ekuazio linealetako sistemak $^{2x_1+x_2+2x_3-x_4=2}$

$$x_1 + 2x_2 - x_3 + x_4 = 1$$

 $2x_1 + x_2 + 2x_3 - x_4 = 2$
 $x_1 + 5x_2 - 5x_3 + 4x_4 = 1$

```
In[35]:=
             Solve [ \{x1 + 2 \times 2 - x3 + x4 = 1, 2 \times 1 + x2 + 2 \times 3 - x4 = 2, 
                 x1 + 5 * x2 - 5 * x3 + 4 * x4 == 1, {x1, x2, x3, x4}]
           Solve::svars: Equations may not give solutions for all "solve" variables. >>
Out[35]=
             \{\{x3 \rightarrow 3 - 3 \times 1 - 3 \times 2, x4 \rightarrow 4 - 4 \times 1 - 5 \times 2\}\}
```

Soluzioa: $x_3 = 3 - 3x_1 - 3x_2$ eta $x_4 = 4 - 4x_1 - 5x_2$ $\forall x_1, x_2 \in \mathbb{R}$ Sistema bateragarri indeterminatua da, izan ere, h(A)=h(AM)=2<3 =ezez. kop.

```
In[36]:=
          a = \{\{1, 2, -1, 1\}, \{2, 1, 2, -1\}, \{1, 5, -5, 4\}\}\}
In[37]:=
          am = \{\{1, 2, -1, 1, 1\}, \{2, 1, 2, -1, 2\}, \{1, 5, -5, 4, 1\}\};
In[38]:=
          MatrixRank[a]
Out[38]=
          2
```

In[39]:= MatrixRank[am] Out[39]=

$$px_1 + x_2 + x_3 = 1$$

Ekuazio linealetako sistemak $-x_1+px_2-x_3=1$

 $x_1 + px_2 + x_3 = p$

In[40]:=

Out[40]=

Reduce[{p*x1+x2+x3=1, -x1+p*x2-x3=1, x1+p*x2+x3=p}, {x1, x2, x3}]
(p = 1 && x2 = 1 && x3 = -x1) ||

$$\left((-1+p) p \neq 0 && x1 = \frac{1-p}{2p} && x2 = \frac{1}{2} (3-p+2 x1-2 p x1) && x3 = \frac{1}{2} (-1+p-2 x1) \right)$$

Soluzioa:

1. p=1 bada $x_2=1$ eta $x_3=-x_1$ $\forall x_1 \in \mathbb{R}$, hau da, sistema bateragarri indeterminatua da.

2. $p \ne 1$ eta $p \ne 0$ badira $x_1 = \frac{1-p}{2p}$, $x_2 = \frac{1}{2}(3-p+2x_1-2px_1)$ eta $x_3 = \frac{1}{2}(-1+p-2x_1)$, hau da, sistema bateragarri determinatua da.

Sistema bateraezina da beste kasu guztietan!!

$$px_1 + x_2 + x_3 = 1$$

Ekuazio linealetako sistemak $-x_1+px_2-x_3=1$ $x_1 + px_2 + x_3 = p$

p=1 denean matrizeen heinak aztertuz, sistema bateragarri indeterminatua dela ikus daiteke, izan ere, h(A)=h(AM)=2<3=ezez. kop:

```
In[79]:=
          ap1 = \{\{p, 1, 1\}, \{-1, p, -1\}, \{1, p, 1\}\} /. p \rightarrow 1
Out[79]=
           \{\{1, 1, 1\}, \{-1, 1, -1\}, \{1, 1, 1\}\}
In[80]:=
          amp1 = \{\{p, 1, 1, 1\}, \{-1, p, -1, 1\}, \{1, p, 1, p\}\} / p \rightarrow 1
Out[80]=
          \{\{1, 1, 1, 1\}, \{-1, 1, -1, 1\}, \{1, 1, 1, 1\}\}
In[81]:=
          MatrixRank[ap1]
Out[81]=
In[82]:=
          MatrixRank[amp1]
Out[82]=
          2
```

Reduce komandoa erabiliz berriz, sistema p=0 denean bateraezina dela ikus

```
daiteke:
         Reduce \{p * x1 + x2 + x3 = 1, -x1 + p * x2 - x3 = 1, x1 + p * x2 + x3 = p\}, \{x1, x2, x3\}\} / p \rightarrow 0
Out[45]=
         False
```

Ekuazio linealetako sistemak

Adibidea:
$$x_1 + x_2 + bx_3 = 1$$

 $ax_1 + x_2 + bx_3 = 1$
 $x_1 + 2x_2 + bx_3 = 1$

 Sailkatu eta ebatzi honako ekuazio linealetako sistema a eta b parametroen arabera

Reduce [
$$\{x1 + x2 + b * x3 = 1, a * x1 + x2 + b * x3 = 1, x1 + 2 * x2 + b * x3 = 1\}$$
, $\{x1, x2, x3\}$]

Out[46]=
$$\left(a = 1 & & x2 = 0 & & b \neq 0 & & x3 = \frac{1-x1}{b}\right) \mid | (b = 0 & & a = 1 & & x1 = 1 & & x2 = 0) \mid |$$

$$\left(-1 + a \neq 0 & & x1 = 0 & & x2 = 0 & & b \neq 0 & & x3 = \frac{1}{b}\right)$$

Soluzioa:

- 1. $a = 1 \land b \neq 0 \implies x_2 = 0$ eta $x_3 = \frac{1-x_1}{b} \ \forall x_1 \in \mathbb{R}$ sistema bateragarri indeterminatua
- 2. $a=1 \land b=0 \implies x_1=1, x_2=0 \ \forall x_3 \in \mathbb{R}$ sistema bateragarri indeterminatua
- 3. $a \ne 1 \land b \ne 0 \implies x_1 = 0$, $x_2 = 0$ $x_3 = \frac{1}{b}$ sistema bateragarri determinatua

Sistema bateraezina da beste kasu guztietan!!

Ekuazio linealetako sistemak

Adibidea:
$$x_1 + 2x_2 - x_3 = 1$$

 $2x_1 + 3x_2 - 3x_3 = 1$
 $3x_1 + 4x_2 + ax_3 = b$

 Sailkatu eta ebatzi honako ekuazio linealetako sistema a eta b parametroen arabera

$$In[47]:= \begin{cases} Reduce[\{x1+2 \ x2-x3=1,\ 2 \ x1+3 \ x2-3 \ x3=1,\ 3 \ x1+4 \ x2-a \ x3=b\}, \\ \{x1,\ x2,\ x3\}] \end{cases}$$

$$Out[47]:= \begin{cases} b=1 \ \&\&\ a=5 \ \&\&\ x2=\frac{2-x1}{3} \ \&\&\ x3=\frac{1+x1}{3} \end{pmatrix} \mid i \\ \left(-5+a \ne 0 \ \&\&\ x1=\frac{8-a-3 \ b}{-5+a} \ \&\&\ x2=\frac{2-x1}{3} \ \&\&\ x3=\frac{1+x1}{3} \right) \end{cases}$$

Soluzioa:

- 1. $b = 1 \land a = 5 \Rightarrow x_2 = \frac{2 x_1}{3}$ eta $x_3 = \frac{1 + x_1}{3} \ \forall x_1 \in \mathbb{R}$ sistema bateragarri indeterminatua
- 2. $a \neq 5 \Rightarrow x_1 = \frac{8 a 3b}{-5 a}$, $x_2 = \frac{2 x_1}{3}$ eta $x_3 = \frac{1 + x_1}{3}$ sistema bateragarri determinatua

Sistema bateraezina da beste kasu guztietan!!

