Inference Model & Belief Network

Presented By: Shahzaib Irfan 2021-CS-7

Agenda

- 1. Why do we need this system
- 2. Introduction
- 3. Objectives
- 4. Scope
- 5. Assignment Modules
- 6. Data Flow Diagram
- 7. Conclusion

Introduction

This assignment introduces two probabilistic models:

- Inference Model
- Belief Network

This app computes relevance judgements, rank documents dynamically which simplifies exploration of retrieval model in real-world scenarios.

Objectives

Goal:

- Develop a basic search engine to rank documents using Inference Model & Belief Network.
- Optimize user experience by providing relevant and accurate search results.

Scope

- Scope:
 - Build a intermediate level, web based search engine for large corpus.

Assignment modules

- Text Preprocessing
- Gather Data
- Initial Setup
- IDF Implementation
- Inference Model
- Belief Network
- Ranking Documents

Pre-Processing

Preprocessing is a crucial first step in building a search engine or any system dealing with large text data. It involves cleaning and organizing text to make it more "search-friendly."

Pre-Processing Technique:

Tokenization

Pre-Processing (Continued...)

Tokenization:

Split text into individual words or "tokens" that can be indexed.

Lets understand with an example:

"Ali plays video games in the evening" ⇒["Ali", "plays", "video", "games", "in", "the", "evening"]

Gather Data

- Text files stored in a directory, containing different folders each representing a category.
- Each folder contains 100 text documents.

Initial Setup

Prior Probablities:

```
# Probability distributions
self.prior_probabilities = {
    'query_importance': 0.5,
    'term_significance': defaultdict(float)
}
```

- 1. Query_importance: Initially we say, query is neutral.
- 2. Significance: Tells that how much relevant a term is.

IDF Implementation

- IDF (Inverse Document Frequency):
 - Measures term importance across documents by giving higher scores to terms with fewer appearance in dataset.
 - Formula:
 - Term = log(Total Documents / (1 + Documents Containing Term)).

TF-IDF Implementation (Continued...)

- IDF (Formula Explanation):
 - Total Documents: Total documents in corpus.
 - Documents Containing Term: Simply it is count of terms in the complete corpus.
 - Adding 1: To avoid division by 0.
 - Logarithmic Function: To penalize common terms and reward rare terms.

TF-IDF Implementation (Continued...)

- IDF (Logarithm Function):
 - It penalizes higher values more and lower values less.

- Example:
 - $\log(100) = 2$
 - $\log(10) = 1$

TF-IDF Implementation (Continued...)

- IDF (Calculated Example):
 - Consider two words "machine" and "data".
 - Documents with "machine" = 9.
 - Documents with "data" = 499.
 - \circ IDF[machine] = log(1000 /(1 + 9)) => log(100) => 2.
 - \circ IDF[data] = log(1000 / (1 + 499)) => log(2) => 0.3.

So, word "machine" is more relevant to be retrieved because of its higher relevancy score.

Inference Model Steps

- 1. Calculate Prior Probability.
- 2. Calculate Overlap
 - a. Overlap: Query ∩ Document / Query
 - i. Overlap is the number of common terms between query and document.
 - ii. Result is divided by the no. of query token to normalize result.
- 3. Calculate Relevance Score

Inference Model Steps (Continued)

- 1. Relevance Score(Formula):
 - a. Relevance Score = Prior Probability * (1 + Overlap)
 - b. Let's understand this formula:
 - i. Case 1: ... Assume Prior = 0.5(Neutral)
 - 1. No Overlap:
 - a. Prior * 1 = Prior
 - 2. Partial Overlap:
 - a. Prior *(1 + 0.5)
 - 3. Complete Overlap:
 - a. Prior * (1 + 1)

Belief Network Steps

- 1. Calculate Prior Probability.
- 2. Calculate Overlap
 - a. Overlap: Query ∩ Document / Query
 - i. Overlap is the number of common terms between query and document.
 - ii. Result is divided by the no. of query token to normalize result.
- Implement Bayesian Probability

Belief Network Steps (Continued)

- 1. Bayesian Probability(Formula):
 - a. P(Relevance | Query) = P(Query | Relevance)
 P(Relevance) / P(Query)
 - b. Let's understand this formula:
 - i. P(Query | Relevance):
 - 1. This is result of Step 2 in previous slide.
 - ii. P(Relevance):
 - 1. This is initial relevance judgement score. It is calculated for the given document.
 - iii. P(Query):1. This is Prior Probability

Ranking

 Documents are ranked on the basis of relevance score in decreasing order.

Data Flow Diagram

