

- 1) Weight vector \_\_\_\_\_
  Separatives hyperplane (P)
- 2) Weight vector directed toward "(+) somirpare".

3) Distance of × from sep. hyperplane:

# X. X. X. (P)

### 1) Weight vector \_\_\_\_ separatives hyperplane (P)



2) Weight vector directed toward "(+) somirpare".

Consider: x: w.x-W.>0.} =>

w·(x-x1)>0.

# X-XIX D (P)

$$D = ||X - X_1|| \cos \theta$$

$$(X - X_1) \cdot W = ||X - X_1|| ||W|| \cos \theta$$

$$\Rightarrow D = ||X - X_1|| |\cos \theta = (X - X_1) \cdot W$$

$$D = (\times -\times_1) \cdot \frac{\vee}{|\vee|} =$$

### perceptron: Evample



| pet | tens | tomets. |  |  |
|-----|------|---------|--|--|
| 1   | 0    | 1       |  |  |
| 0   | 1    | 1       |  |  |
| -1  | 0    | -1      |  |  |
|     |      |         |  |  |

E=1

|   | W, Wz Wo | €×, | txz | (x0        | $+\omega \times$ | update | Δw   |
|---|----------|-----|-----|------------|------------------|--------|------|
|   | 10-1     | 1   | 0   | -1<br>-1   | 0 1              |        | 10-1 |
|   | 10-1     | 1   | 0   | 1          | 1 0              |        | 101  |
|   | 200      | 1 0 | 0   | - <u>1</u> | 20               | N<br>> | 000  |
|   | 21-1     | 1   | 0   | 1          | 1                | N      | 000  |
|   | 21-1     | 1   | 0   | - 1        | 3                | N      | 000  |
|   | 21-1     | 0   | 1   | -1         | 2                | N      | 000  |
| _ | 21-1     | 1   | 0   | 1          | 1                | N      | 000  |
|   |          |     |     |            |                  | 1      |      |

## 2-layered perceptron: Example.





$$-x_2=0$$
 $x_1+x_2-1=0$ 
 $-x_1+x_2-1=0$ 





#### Regions: 2, 22 23









#### V121+1222+1323+16=0





$$\frac{2}{2} = \frac{1}{2} = 0.$$

$$\frac{2}{2} = \frac{1}{2} = 0.$$

$$\frac{2}{3} = \frac{1}{2} = 0.$$