Performance and Usage Analytics for NCAR's Climate Model

Lolita Mannik

Regis University

National Center for Atmospheric Research (NCAR)

Summer Internships in Parallel Computational Science (SIParCS)

NCAR October 24, 2019

Overview

- 1. Background on Community Earth System Model (CESM)
- 2. Model's configuration
- 3. Data preparation and analysis
- 4. Key findings
- 5. Conclusion and future work

Goal

Analyze CESM performance metadata

- ☐ Establish basic metrics
- ☐ Effect of a system upgrade on performance

CESM Climate Model

- Virtual laboratory
- Freely available
- Components:
 - Atmosphere
 - Land
 - 。 Ocean
 - River
 - Sea and Land Ice
 - Wave

CESM = Community Earth System Model

Data Engineering

- Acquiring
- Saving

```
TIMING PROFILE --
              : b.e21.BHIST.f09_g17.CMIP6-historical.001
 Case
              : 2979765.chadmin1.181015-050236
  LID
  User
              : cmip6
 Curr Date
              : Mon Oct 15 10:01:22 2018
  grid
a%0.9x1.25 1%0.9x1.25 oi%gx1v7 r%r05 g%gland4 w%ww3a m%gx1v7
               HIST_CAM60_CLM50%BGC-CROP_CICE_POP2%ECO%ABIO-
 compset
                DIC MOSART CISM2%NOEVOLVE WW3 BGC%BDRD
              : hybrid, continue run = TRUE (inittype = FALSE)
  run type
  stop option : nyears, stop n = 5
             : 1825 days (1825.0 for ocean)
  run length
  Init Time
                     63.817 seconds
                  17837.627 seconds
  Run Time
                                            9.774 seconds/day
  Final Time
                      0.057 seconds
```


Data Engineering

- Acquiring
- Saving

2

Data Wrangling

- Reindexing
- More parsing
- Set data types
- Intuitive columns
- Calculations

Parse Run_Length

3650 days (3650.0 for ocean)

```
#1. Strip everything after "days" in run length column
  df['run length temp'] = df['run length'].str.split('(').str[0]
  #Confirm every run length contains the same units of days
  substr = 'days'
  print ("Rows in df:", len(df))
  print ("Rows with units of days:", df.run length temp.str.count(substr).sum())
  Rows in df: 5160
  Rows with units of days: 5160
#2. Strip "days" in run length column
  df['run length days'] = df['run length temp'].str.split('d').str[0]
  df.run length days.unique()
  array(['3650 ', '365 ', '730 ', '2 ', '31 ', '1825 ', '2189 ', '1095 ',
         '5840', '5475', '1460', '2190', '5', '1', '10950', '7300',
         '4014 ', '426 ', '90 ', '4379 '], dtype=object)
▶ #Convert necessary columns to numeric format
  for col in df.columns:
     if 'length days' in col:
        df[col] = pd.to numeric(df[col])
```

```
3650 days (3650.0 for ocean)
```

```
#1. Strip everything after "days" in run length column
  df['run length temp'] = df['run length'].str.split('(').str[0]
  #Confirm every run length contains the same units of days
  substr = 'days'
  print ("Rows in df:", len(df))
  print ("Rows with units of days:", df.run length temp.str.count(substr).sum())
  Rows in df: 5160
  Rows with units of days: 5160
#2. Strip "days" in run length column
  df['run length days'] = df['run length temp'].str.split('d').str[0]
  df.run length days.unique()
  array(['3650 ', '365 ', '730 ', '2 ', '31 ', '1825 ', '2189 ', '1095 ',
         '5840', '5475', '1460', '2190', '5', '1', '10950', '7300',
         '4014 ', '426 ', '90 ', '4379 '], dtype=object)
▶ #Convert necessary columns to numeric format
  for col in df.columns:
     if 'length days' in col:
        df[col] = pd.to numeric(df[col])
```

```
3650 days (3650.0 for ocean)
```

```
#1. Strip everything after "days" in run Length column
  df['run_length_temp'] = df['run_length'].str.split('(').str[0]
  #Confirm every run length contains the same units of days
  substr = 'days'
  print ("Rows in df:", len(df))
  print ("Rows with units of days:", df.run length temp.str.count(substr).sum())
  Rows in df: 5160
  Rows with units of days: 5160
#2. Strip "days" in run length column
  df['run length days'] = df['run length temp'].str.split('d').str[0]
  df.run length days.unique()
  array(['3650 ', '365 ', '730 ', '2 ', '31 ', '1825 ', '2189 ', '1095 ',
         '5840', '5475', '1460', '2190', '5', '1', '10950', '7300',
         '4014 ', '426 ', '90 ', '4379 '], dtype=object)
▶ #Convert necessary columns to numeric format
  for col in df.columns:
     if 'length days' in col:
        df[col] = pd.to numeric(df[col])
```

```
3650 days
```

```
#1. Strip everything after "days" in run length column
   df['run length temp'] = df['run length'].str.split('(').str[0]
   #Confirm every run length contains the same units of days
   substr = 'days'
  print ("Rows in df:", len(df))
  print ("Rows with units of days:", df.run length temp.str.count(substr).sum()
  Rows in df: 5160
  Rows with units of days: 5160
▶ #2. Strip "days" in run length column
  df['run length days'] = df['run length temp'].str.split('d').str[0]
  df.run length days.unique()
  array(['3650 ', '365 ', '730 ', '2 ', '31 ', '1825 ', '2189 ', '1095 ',
         '5840', '5475', '1460', '2190', '5', '1', '10950', '7300',
         '4014 ', '426 ', '90 ', '4379 '], dtype=object)
▶ #Convert necessary columns to numeric format
  for col in df.columns:
     if 'length days' in col:
        df[col] = pd.to numeric(df[col])
```

```
3650 days
```

```
#1. Strip everything after "days" in run length column
   df['run length temp'] = df['run length'].str.split('(').str[0]
   #Confirm every run length contains the same units of days
   substr = 'days'
  print ("Rows in df:", len(df))
  print ("Rows with units of days:", df.run length temp.str.count(substr).sum())
  Rows in df: 5160
  Rows with units of days: 5160
#2. Strip "days" in run <u>length column</u>
  df['run_length_days'] = df['run_length_temp'].str.split('d').str[0]
  df.run length days.unique()
  array(['3650 ', '365 ', '730 ', '2 ', '31 ', '1825 ', '2189 ', '1095 ',
          '5840 ', '5475 ', '1460 ', '2190 ', '5 ', '1 ', '10950 ', '7300 ',
          '4014 ', '426 ', '90 ', '4379 '], dtype=object)
▶ #Convert necessary columns to numeric format
  for col in df.columns:
     if 'length days' in col:
        df[col] = pd.to numeric(df[col])
```

Parse Run_Length

if 'length days' in col:

df[col] = pd.to numeric(df[col])

3650

```
#1. Strip everything after "days" in run length column
  df['run length temp'] = df['run length'].str.split('(').str[0]
  #Confirm every run length contains the same units of days
  substr = 'days'
  print ("Rows in df:", len(df))
  print ("Rows with units of days:", df.run length temp.str.count(substr).sum())
  Rows in df: 5160
  Rows with units of days: 5160
#2. Strip "days" in run length column
  df['run length days'] = df['run length temp'].str.split('d').str[0]
  df.run length days.unique()
  array ['3650', '365', '730', '2', '31', '1825', '2189', '1095',
          '5840 ', '5475 ', '1460 ', '2190 ', '5 ', '1 ', '10950 ', '7300 ',
          '4014 ', '426 ', '90 ', '4379 '], dtype=object)
▶ #Convert necessary columns to numeric format
  for col in df.columns:
```

Parse Run_Length

3650

```
#1. Strip everything after "days" in run length column
  df['run length temp'] = df['run length'].str.split('(').str[0]
  #Confirm every run length contains the same units of days
  substr = 'days'
  print ("Rows in df:", len(df))
  print ("Rows with units of days:", df.run length temp.str.count(substr).sum())
  Rows in df: 5160
  Rows with units of days: 5160
▶ #2. Strip "days" in run length column
  df['run length days'] = df['run length temp'].str.split('d').str[0]
  df.run length days.unique()
  array(['3650 ', '365 ', '730 ', '2 ', '31 ', '1825 ', '2189 ', '1095 ',
         '5840', '5475', '1460', '2190', '5', '1', '10950', '7300',
         '4014 ', '426 ', '90 ', '4379 '], dtype=object)
▶ #Convert necessary columns to numeric format
  for col in df.columns:
     if 'length davs' in col:
        df[col] = pd.to_numeric(df[col])
```


Data Engineering

- Acquiring
- Saving

2

Data Wrangling

- Reindexing
- More parsing
- Set data types
- Intuitive columns
- Calculations

3

Data Storage

Exploratory Data Analysis

52 unique component configurations

Exploratory Data Analysis

Statistical Analysis

Pandas
Numpy
Scipy Stats
StatsModels

Exploratory Data Analysis

5

6

Statistical Analysis

Visualization

MatPlotLib Seaborn Plotly

Analysis: Dataset Totals

416 Days

948
Unique
Cases

21,785
Simulated
Years

137,112,802 CPU Hours

Power Equivalence

137,112,802 CPU Hours

or

218 trips around the equator in a Nissan Leaf Annual power for 180 Colorado homes

Analysis: Monthly Totals

CPU Hours by Month

Component string = compset

14 unique atmospheric components

*OBGC = Ocean Bio-geo-chemsitry

Component string = compset

14 unique atmospheric components

*OBGC = Ocean Bio-geo-chemsitry

Atmospheric Configuration vs. Cost

Atmospheric Configuration vs. Cost

Atmospheric Configuration vs. Cost

Atmospheric Configuration vs. Cost

Atmospheric Configuration vs. Cost

Atmospheric Configuration (Grouped) vs. Cost

Analysis: Atmospheric Components

CPU Hours by Month and Atm Component Group

- Cheyenne Supercomputer: 145,152 processors
- Upgrade: June 25-July 5, 2019
- Install SUSE Linux Enterprise Server Service Pack 4 to update security and support

Spoiler Alert!
Name of new supercomputer!

More maniacal subsetting . . .

By Case

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

More maniacal subsetting . . .

By Case

```
b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001
```

By Base

```
b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001
```

More maniacal subsetting . . .

By Case

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

By Base

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

More maniacal subsetting . . .

By Case

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

By Base

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

By atmospheric component

- + atmospheric processors
- + oceanic processors

compset_atm	comp_pes_atm	comp_pes_ocn	total_submits
CAM60	576	144	10
CAM60	900	751	66
CAM60	1080	1080	912
CAM60%1PCT	1800	432	5
CAM60%1PCT	3456	1536	49
CAM60%WCCM	3456	432	98
CAM60%WCTS	1728	1728	41
CAM60%WCTS%4xCO2	3456	72	64
CAM60%WCTS%4xCO2	3456	108	168

More maniacal subsetting . . .

By Case (811 data points, 3445 sim years, 14 cases)

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

By Base (1206 data points, 4271 sim years, 14 bases)

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

By atmospheric component

- + atmospheric processors
- + oceanic processors

(3113 data points, 12,493 sim years, 9 groups)

compset_atm	comp_pes_atm	comp_pes_ocn	total_submits
CAM60	576	144	10
CAM60	900	751	66
CAM60	1080	1080	912
CAM60%1PCT	1800	432	5
CAM60%1PCT	3456	1536	49
CAM60%WCCM	3456	432	98
CAM60%WCTS	1728	1728	41
CAM60%WCTS%4xCO2	3456	72	64
CAM60%WCTS%4xCO2	3456	108	168

Tests for Normality

All

All - normalized

All - before/after

By case

By base

By group: (atm compset/atm + ocn processors)

Tests for Normality

All

All - normalized

All - before/after

By case

By base

By group: (atm compset/atm + ocn processors)

Tests for Normality

All

All - normalized

All - before/after

By case

By base

By group:

(atm compset/atm + ocn processors)

Theoretical Quantiles

Statistical Tests for Normality:

- Kolmogorov-Smirnoff
- Shapiro-Wilk

Mean Model Cost Before Upgrade

VS.

Mean Model Cost After Upgrade

Calculated percent difference (% change) in means before and after the upgrade:

- By case
- By base
- By group

Determined whether there was statistical significance in the means using Kruskal Wallis test

Cases that span the upgrade

Case ID

Cases that span the upgrade

% Difference in Mean Model Cost

Case ID

Bases that span the upgrade

Base ID

Bases that span the upgrade

% Difference in Mean Model Cost

Base ID

Groups that span the upgrade

Groups that span the upgrade

Conclusion

- More analysis in my Jupyter Notebook that points to performance degradation after the upgrade
- Enormous amounts of information to be sliced and diced by each component, physics module, number of processors, and other settings specific to parallel computing
- **Answers lead to more questions**

Future Work

Machine Learning

- Correlation Plots
- Feature Engineering
- Supervised Learning to Predict Performance (Model Cost)
- Unsupervised Learning (K-Means) to reveal patterns

Acknowledgements

John Dennis

Brian Dobbins

NCAR mentors

Alice Bertini

NCAR SQL Training

AJ Lauer

Virginia Do

NCAR intern managers

Michael Busch

Nate George

Professors at Regis University

References

Balaji, et. al. CPMIP: Measurements of Real Computational Performance of Earth System Models in CMIP6. Geoscience Model Development Issue 10. January 02, 2017. https://www.geosci-model-dev.net/10/19/2017/

Images

Unless otherwise noted, graphics are from www.vecteezy.com

Questions?

NCAR UCAR