MP2I Paul Valéry Groupe symétrique 2023-2024 Chapitre 33 Groupe symétrique Sommaire. **Permutations** 1 Cycles. 1 **Transpositions** 1 Théorème de décomposition. 1 Signature 1 Les propositions marquées de \star sont au programme de colles. Permutations Définition 1 Une bijection de [1, n] dans lui-même est appelée une **permutation** de [1, n]. L'ensemble des permutations de [1, n] sera noté S_n . Exemple 2 Soient $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} \quad \text{et} \quad \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$ Calculer $\sigma\sigma'$, $\sigma'\sigma$, σ^2 et σ^{-1} . Solution: On a: $\sigma\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$ $\sigma'\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$ $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$ $\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$ Proposition 3 1. (S_n, \circ) est une groupe, appelé **groupe symétrique**. 2. S_n est fini et son cardinal vaut n!. 3. Ce groupe n'est pas abélien dès que $n \geq 3$. 1 Cours sur les structures algébriques. 3 S₃ n'est pas abélien car $\tau := \dots$ et $\tau' = \dots$ ne commutent pas. Soient $\sigma, \sigma' \in S_n \mid \sigma_{|\{1,2,3\}} = \tau$ et $\sigma'_{|\{1,2,3\}} = \tau'$, fixes sur $[\![4,n]\!]$, alors $\sigma\sigma' \neq \sigma'\sigma$. Définition 4: Vocabulaire Soit $\sigma \in S_n$. 1. Si $x \in [1, n]$, l'ensemble $\{\sigma^k(x), k \in \mathbb{Z}\}$ est appelé **orbite** de x. 2. On dit que x est un **point fixe** de σ si $\sigma(x) = x$. 3. On appelle **support** de σ l'ensemble des éléments de [1, n] qui ne sont pas des points fixes. 4. Deux permutations σ et σ' sont dites **conjuguées** s'il existe $\alpha \in S_n$ tel que $\sigma' = \alpha \sigma \alpha^{-1}$. Proposition 5 Deux permutations dont les supports sont disjoints commutent. Preuve: Soient $\sigma, \sigma' \in S_n$. On note $S(\sigma) = \{x \in [1, n] \mid \sigma(x) \neq x\}$. Supposons $S(\sigma) \cap S(\sigma') = \emptyset$. Soit $x \in [1, n]$. • Si $x \in S(\sigma)$: $x \notin S(\sigma')$ donc $\sigma \sigma'(x) = \sigma(x) \in S(\sigma)$ par bijectivité de σ . • Si $x \notin S(\sigma)$: Soit $x \in S(\sigma')$ et on se ramène au 1er cas, soit $x \notin S(\sigma')$ et $\sigma\sigma'(x) = x = \sigma'\sigma(x)$. Dans tous les cas, $\sigma \sigma'(x) = \sigma' \sigma(x)$ $\mathbf{2}$ Cycles. Définition 6: p-cycles Soit p un entier supérieur à 2. Une permutation γ est appellée un p-cycle s'il existe p éléments distincts $a_1, ..., a_p$ de [1, n] tels que $a_1 \stackrel{\gamma}{\mapsto} a_2 \stackrel{\gamma}{\mapsto} \dots \stackrel{\gamma}{\mapsto} a_p \stackrel{\gamma}{\mapsto} a_1$ et $\forall b \in [1, n] \setminus \{a_1, ..., a_p\} \ \gamma(b) = b$. On note alors $\gamma = (a_1 \ a_2 \dots a_n)$. Exemple 7: Conjugué d'un cycle Soit $\gamma = (a_1, ..., a_p)$ un p-cycle et $\sigma \in S_n$. Montrer que $\sigma \gamma \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_p)).$ **Solution:** Soit $b \in [1, n] \setminus {\sigma(a_1), ..., \sigma(a_p)}$. Alors $\sigma \gamma \sigma^{-1}(b) = \sigma \gamma(\sigma^{-1}(b)) = \sigma \sigma^{-1}(b) = b$ car $b \notin \{\sigma(a_1), ..., \sigma(a_p)\}$ donc $\sigma^{-1}(b) \notin \{a_1, ..., a_p\}$ donc c'est un Soit $j \in [1, p]$, on a $\sigma \gamma \sigma^{-1}(\sigma(a_j)) = \sigma \gamma(a_j) = \sigma(a_{j+1})$ avec $a_{p+1} := a_1$. On a bien que $\sigma \gamma \sigma^{-1}$ et $(\sigma(a_1)...\sigma(a_p))$ sont égaux en tout point. **Remarque:** Ceci démontre que tous les *p*-cycles sont conjugués. Soient $\gamma = (a_1 \dots a_p)$ et $\gamma' = (b_1 \dots b_p)$ deux p-cycles. Posons $\sigma \in S_n$ telle que : • $\forall j \in [1, p] \ \sigma(a_j) = b_j$. • Notons $[\![1,n]\!]\setminus \{a_1,...,a_p\} := \{a'_1,...,a'_{n-p}\}$ et $[\![1,n]\!]\setminus \{b_1,...b_p\} := \{b'_1,...,b'_{n-p}\}$. On pose alors $\forall i \in [1, n-p] \ \sigma(a_i') = b_i'$. Alors σ est bien une bijection de [1, n] dans lui-même car injective et de même cardinal. On a donc $\gamma' = (b_1 \dots b_p) = (\sigma(a_1) \dots \sigma(a_p)) = \sigma \gamma \sigma^{-1}$ donc γ et γ' sont conjugués. Exemple 8: Calculs sur un cycle Soit $\gamma = (a_1 \dots a_p)$. Déterminer γ^{-1} et γ^p . La réciproque γ^{-1} : Si $\gamma(b)=b$ alors $\gamma^{-1}(b)=b$ car c'est un point fixe. Soit $j \in [1, p-1]$, $\gamma(a_i) = a_{i+1}$ donc $a_i = \gamma^{-1}(a_{i+1})$. Alors $\forall k \in [2, p], \ \gamma^{-1}(a_k) = a_{k-1}, \ \text{et} \ \gamma^{-1}(a_1) = a_p.$ Ainsi, $\gamma^{-1} = (a_p \ a_{p-1} \dots a_2 \ a_1).$ La puissance γ^p : On a $\gamma = (a, \gamma(a), ..., \gamma^{p-1}(a))$ pour un $a \in [1, n]$. • $\gamma^p(a) = \gamma(\gamma^{p-1}(a)) = a$. • Soit $j \in [1, p-1]$, $\gamma^p(\gamma^j(a)) = \gamma^j(\gamma^p(a)) = \gamma^j(a)$. • Soit $b \in [1, n] \setminus \{a, \gamma(a), ..., \gamma^{p-1}(a)\}$, alors $\gamma^p(b) = b$ car point fixe. Ainsi, $\forall x \in [1, n], \ \gamma^p(x) = x \text{ donc } \gamma^p = id.$ **Remarque:** On pourrait aussi prouver que $p = \min\{j \in \mathbb{N}^* \mid \gamma^j = id\}$. $\mathbf{3}$ Transpositions Définition 9 Une permutation τ qui est un 2-cycle est appelé une transposition. Une transposition est donc une permutation de la forme (a, b) où $\{a, b\}$ est une paire de [1, n]. Proposition 10: Involutivité Si τ est une transposition, alors $\tau^2 = id$ et $\tau^{-1} = \tau$ Preuve: C'est un 2-cycle donc $\tau^2 = id$. On en déduit que $\tau^{-1} = \tau$. Lemme 11: Décomposition d'un cycle en produit de transpositions Soit $\gamma = (a_1 \dots a_p)$. Alors $\gamma = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$ ou $\gamma = (a_1 \ a_p)(a_1 \ a_{p-1})...(a_1 \ a_2)$ Preuve: Notons $\pi = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$. Montrons que $\gamma = \pi$. • Soit $b \in [1, n] \setminus \{a_1, ..., a_p\} : \gamma(b) = b$ et $\forall j \in [1, p-1], (a_j \ a_{j+1})(b) = b$ car $b \notin \{a_j, a_{j+1}\}.$ Alors $\gamma(b) = \pi(b) = b$. • Soit $j \in [1, p-1]$. Alors $\pi(a_j) = [...(a_{j-1} \ a_j)(a_j \ a_{j+1})...](a_j) = [...(a_{j-1} \ a_j)](a_{j+1}) = a_{j+1}$. • $\pi(a_p) = [(a_1 \ a_2)...(a_{p-1} \ a_p)](a_p) = [(a_1 \ a_2)...(a_{p-2} \ a_{p-1})](a_{p-1}) = ... = a_1$ Donc $\forall x \in [1, n] \ \gamma(x) = \pi(x)$ **Remarque:** On retrouve que $(1\ 2)(2\ 3) = (1\ 2\ 3)$ et $(2\ 3)(1\ 2) = (3\ 2)(2\ 1) = (3\ 2\ 1) = (1\ 3\ 2)$ On a $(1\ 2)(2\ 3) \neq (2\ 3)(1\ 2)$. Théorème de décomposition. Théorème 12: Décomposition en produit de cycles à supports disjoints Soit $\sigma \in S_n$. Il existe $\gamma_1, ..., \gamma_r$ r cycles à supports disjoints tels que $\sigma = \gamma_1 \gamma_2 ... \gamma_r.$ Les γ_i commutent et cette décomposition est unique à l'ordre près. Preuve: Soit $\sigma \in S_n$. Une relation d'équivalence sur [1, n]. Pour $i, j \in [1, n]$, on note $i \sim j$ si $\exists k \in \mathbb{Z} \mid j = \sigma^k(i)$. • Soit $i \in [1, n]$. $i = \sigma^0(i)$ donc $i \sim i$. • Soient $i, j \in [1, n] \mid i \sim j$. Alors $\exists k \in \mathbb{Z} \mid j = \sigma^k(i) : i = \sigma^{-k}(j)$ et $j \sim i$. • Soient $h, i, j \in [1, n] \mid h \sim i$ et $i \sim j : \exists k, l \in \mathbb{Z} \mid i = \sigma^k(h)$ et $j = \sigma^l(i)$ donc $j = \sigma^{l+k}(h)$ et $j \sim h$. Il existe alors une partition de [1, n] en classes d'équivalences. On fixe $x \in [1, n]$, prouvons qu'il existe $p \in \mathbb{N}^*$ tel que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}$. On pose $p = \min\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\}$. Cet ensemble est minoré et non-vide car : $S: \begin{cases} \mathbb{Z} \to \llbracket 1, n \rrbracket \\ k \mapsto \sigma^k(x) \end{cases}$ n'est pas injective. Ainsi, $\exists k, k' \in \mathbb{Z} \mid k < k' \text{ et } \sigma^k(x) = \sigma^{k'}(x) \text{ donc } \sigma^{k'-k}(x) = x.$ Or $k' - k \in \mathbb{N}^*$, donc $\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\} \neq \emptyset$. Il faut montrer que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$ \supset est trivial. $\overline{\text{Par}}$ division euclidienne : $\exists ! (q,r) \in \mathbb{Z}^2 \mid k = qp + r \text{ et } 0 \le r \le p - 1.$ Donc $y = \sigma^k(x) = \sigma^{pq+r}(x) = \sigma^r(\sigma^{pq}(x)) = \sigma^r(x) : y \in \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$ Notons $A_1,...,A_r$ les classes d'équivalences non triviales de \sim . On a prouvé que : $\forall j \in [1, r] \exists x_j \in [1, n] \exists p_j \in \mathbb{N}^* \mid A_j = \{x_j, \sigma(x_j), ..., \sigma^{p_j - 1}(x_j)\}.$ On pose alors $\gamma_j = (x_j \ \sigma(x_j) \ ... \ \sigma^{p_j-1}(x_j))$, il est clair que $\sigma = \gamma_1 \gamma_2 ... \gamma_r$. Exemple 13: Une décomposition Soit $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 1 & 7 & 8 & 6 & 2 & 3 \end{pmatrix}$.

1. Décomposer σ en produit de cycles à supports disjoints. 2. Déterminer σ^4 , σ^{12} et σ^{666} . **Solution:** $\boxed{1} \ \sigma = (1\ 5\ 8\ 3)(2\ 4\ 7)$ • $\sigma^4 = (\gamma_1 \gamma_2)^4 \underset{\text{comm}}{=} \gamma_1^4 \gamma_2^4 = \gamma_2 \text{ car } \gamma_1^4 = id \text{ et } \gamma_2^4 = \gamma_2^3 \gamma_2 = \gamma_2.$ • $\sigma^{12} = (\gamma_1^4)^3 (\gamma_2^3)^4 = id$ • $\sigma^{666} = (1\ 8)(3\ 5) \text{ car } \sigma^{666} = \sigma_{id}^{12 \times 55} \sigma^6$. Corrolaire 14 Toute permutation est un produit de transpositions. La décomposition n'est pas unique et les transpositions ne commutent pas nécéssairement. Preuve: Soit $\sigma \in S_n$. Le théorème 12 nous dit que : σ s'écrit comme un produit de cycles. (à supports disjoints) Or tout cycle s'écrit comme un produit de transpositions. Donc, si $\gamma = (a_1 a_2 ... a_p)$, alors $\gamma = (a_1 a_2) ... (a_{p-1} a_p)$ et σ s'écrit comme produit de produit de transpositions. Exemple 15 Décomposer en produit de transpositions la permutation : $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 2 & 4 & 6 & 3 \end{pmatrix}$ **Solution:** $\sigma = (173)(254)$ (produit de cycles) $\sigma = (17)(73)(25)(54)$ Signature $\mathbf{5}$ Définition 16 Soit $\sigma \in S_n$ 1. Une paire $\{i, j\}$ de [1, n] est une **inversion** pour σ si i - j et $\sigma(i) - \sigma(j)$ sont de signe opposé. 2. Le nombre d'inversion de σ est noté $Inv(\sigma)$ 3. On appelle **signature** de σ le nombre $\varepsilon(\sigma) = (-1)^{Inv(\sigma)}$ Exemple 17 Après avoir calculé son nombre d'inversions, donner la signature de $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix}$ **Solution**: On va calculer $\varepsilon(\sigma)$ en comptant le nombre d'inversions. Il y a $\binom{5}{2}$ paires dans [1, 5]. Ainsi on a $Inv(\sigma) = 4$ donc $\varepsilon(\sigma) = (-1)^4 = 1$ Proposition 18 1. L'identité a pour signature 1. 2. Les transpositions ont pour signature -1. Preuve: 1 Il est clair que $\operatorname{Inv}(\operatorname{id}_{\llbracket 1,n\rrbracket})=0$ donc $\varepsilon(\sigma)=1^0=1$. $2 \mid \text{Soit } \{i, j\}$ une paire de $[1, n], \tau \in S_n : \exists (a, b) \in [1, n] \mid \tau = (a \ b)$ où $a \leq b$. • Cas $\{i,j\} \cap \{a,b\} = \emptyset$: $\tau(i) = i$ et $\tau(j) = j$ donc i-j est de même signe. • Cas i = a et $j \neq b$: $\tau(a) = b$ et $\tau(j) = j$: ||[a+1, b-1]|. • Cas $i \neq a, j = b : \tau(i) = i$ et $\tau(b) = a : ||[a+1, b-1]||$. • Cas $\{i,j\} = \{a,b\}$: $\tau(a) = b$ et $\tau(b) = a$, c'est une inversion. Bilan: $Inv(\tau) = 2|[a+1, b-1]| + 1 = 2(b-a) - 1$, impair. Donc $\varepsilon(\tau) = -1$. Proposition 19: La signature comme un produit $\forall \sigma \in S_n \ \varepsilon(\sigma) = \prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j}$ Preuve: Fixons $\{i, j\} \in \mathcal{P}_2(\llbracket 1, n \rrbracket)$ (ensembles des paires) $\frac{\sigma(i) - \sigma(j)}{i - j} = (-1)^{x_{\{i,j\}}} \left| \frac{\sigma(i) - \sigma(j)}{i - j} \right| \quad \text{où} \quad x_{\{i,j\}} = \begin{cases} 0 & \text{si i, j n'est pas une inversion.} \\ 1 & \text{sinon.} \end{cases}$ Alors: $\prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j} = \prod_{\{i,j\}} (-1)^{x_{\{i,j\}}} \left| \frac{\sigma(i) - \sigma(j)}{i - j} \right| = (-1)^{\sum_{\{i,j\}} x_{\{i,j\}}} \times \prod_{\{i,j\}} \left| \frac{\sigma(i) - \sigma(j)}{i - j} \right|$ Or: $\sum_{\{i,j\}} x_{\{i,j\}} = \operatorname{Inv}(\sigma) \quad \text{donc} \quad (-1)^{\sum_{\{i,j\}}} = \varepsilon(\sigma)$ $\varphi: \begin{cases} \mathcal{P}_2(\llbracket 1, n \rrbracket) \to \mathcal{P}_2(\llbracket 1, n \rrbracket) \\ \{i, j\} \mapsto \{\sigma(i), \sigma(j)\} \end{cases} \text{ est une bijection.}$ On pose alors le changement d'indice $\{u, v\} = \{\sigma(i), \sigma(j)\}$: $\prod_{\{i,j\}} |\sigma(i) - \sigma(j)| = \prod_{\{u,v\}} |u - v| = \prod_{\{i,j\}} |i - j|$ Donc le produit vaut bien 1.

Théorème 20

Preuve:

Or,

1 Soient $\sigma, \sigma' \in S_n$.

Donc $\varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$.

Corrolaire 21

Preuve:

2 On le sait déjà (proposition 18).

La signature est l'unique application $\varepsilon: S_n \to \{-1, 1\}$ telle que

2. Pour toute transposition $\tau \in S_n$, $\varepsilon(\tau) = -1$

Soit $\sigma \in S_n, \exists r \in \mathbb{N}^* \ \exists \tau_1, ..., \tau_r \text{ transpositions} : \sigma = \tau_1 ... \tau_r$.

Montrons l'existence dans un premier point puis l'unicité.

Appliquons $f: f(\tau^2) = f(id) = 1 \Longrightarrow f(\tau)^2 = -1$ ou 1.

• La fonction constante $1: \begin{cases} S_n \to \mathbb{C}^* \\ \sigma \mapsto 1 \end{cases}$

groupe envoyant sur -1.

Alors $\delta(\sigma) = \delta(\tau_1)...\delta(\tau_r) = \prod_{i=1}^m (-1) = \varepsilon(\tau_1)...\varepsilon(\tau_r) = \varepsilon(\tau_1,...,\tau_r) = \varepsilon(\sigma)$.

La signature est l'unique morphisme de groupes non trivial de (S_n, \circ) dans (\mathbb{C}^*, \times)

 $\varepsilon(\sigma\sigma') = \prod_{\{i,j\}} \frac{\sigma\sigma'(i) - \sigma\sigma'(j)}{i - j} = \prod_{\{i,j\}} \frac{\sigma\sigma'(i) - \sigma\sigma'(j)}{\sigma'(i) - \sigma'(j)} \cdot \prod_{\{i,j\}} \frac{\sigma'(i) - \sigma'(j)}{i - j}$

 $\prod_{\{i,j\}} \frac{\sigma(\sigma'(i)) = \sigma(\sigma'(j))}{\sigma'(i) - \sigma'(j)} = \prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j} = \varepsilon(\sigma) \quad \text{car bijection } \{i,j\} \mapsto \{\sigma(i),\sigma(j)\}.$

La signature ε est un morphisme de groupes de S_n dans C*. Il est non trivial car ε(τ) = -1.
Unicité Soit f: S_n → C* un morphisme de groupes, soit τ transpositions fixée. τ² = id.

Or toute permutation est produit de transpositions $\implies \forall \sigma \in S_n, f(\sigma) = 1.$

1. $f(\tau) = 1$. Soit τ' , conjuguée à $\tau : \exists \alpha \in S_n, \tau' = \alpha \tau \alpha^{-1} f(\tau') = f(\alpha \tau \alpha^{-1}) = f(\alpha) f(\tau) f(\alpha)^{-1} = 1$.

2. $f(\tau) = -1$. Par conjugaison, pour toute transposition τ' , $f(\tau') = -1$ donc f est un morphisme de

est un morphisme de groupes dit morphisme trivial.

1. $\forall \sigma, \sigma' \in S_n \ \varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$

Unicité: Soit $\delta: S_n \to \{-1,1\} \mid 1$. et 2.