

planetmath.org

Math for the people, by the people.

growth of exponential function

Canonical name GrowthOfExponentialFunction

Date of creation 2013-03-22 14:51:32 Last modified on 2013-03-22 14:51:32

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 18

Author pahio (2872)
Entry type Theorem
Classification msc 26A12
Classification msc 26A06

Related topic MaximalNumber

 $Related\ topic \qquad LimitRules Of Functions$

Related topic NaturalLogarithm

Related topic AsymptoticBoundsForFactorial Related topic MinimalAndMaximalNumber

Related topic FunctionXx Related topic Growth

 $Related\ topic \qquad LimitsOf Natural Logarithm$

 $Related\ topic \qquad Derivative Of Limit Function Diverges From Limit Of Derivatives$

Lemma.

$$\lim_{x \to \infty} \frac{x^a}{e^x} = 0$$

for all values of a.

Proof. Let ε be any positive number. Then we get:

$$0 < \frac{x^a}{e^x} \le \frac{x^{\lceil a \rceil}}{e^x} < \frac{x^{\lceil a \rceil}}{\frac{x^{\lceil a \rceil + 1}}{(\lceil a \rceil + 1)!}} = \frac{(\lceil a \rceil + 1)!}{x} < \varepsilon$$

as soon as $x > \max\{1, \frac{(\lceil a \rceil + 1)!}{\varepsilon}\}$. Here, $\lceil \cdot \rceil$ the ceiling function; e^x has been estimated downwards by taking only one of the all positive

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

Theorem. The of the real exponential function $x \mapsto b^x$ exceeds all power functions, i.e.

$$\lim_{x \to \infty} \frac{x^a}{b^x} = 0$$

with a and b any , b > 1.

Proof. Since $\ln b > 0$, we obtain by using the lemma the result

$$\lim_{x \to \infty} \frac{x^a}{b^x} = \lim_{x \to \infty} \left(\frac{x^{\frac{a}{\ln b}}}{e^x} \right)^{\ln b} = 0^{\ln b} = 0.$$

Corollary 1. $\lim_{x\to 0+} x \ln x = 0$.

Proof. According to the lemma we get

$$0 = \lim_{u \to \infty} \frac{-u}{e^u} = \lim_{x \to 0+} \frac{-\ln\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to 0+} x \ln x.$$

Corollary 2. $\lim_{x \to \infty} \frac{\ln x}{x} = 0.$

Proof. Change in the lemma x to $\ln x$.

Corollary 3. $\lim_{x\to\infty} x^{\frac{1}{x}} = 1$. (Cf. limit of nth root of n.)

Proof. By corollary 2, we can write: $x^{\frac{1}{x}} = e^{\frac{\ln x}{x}} \longrightarrow e^0 = 1$ as $x \to \infty$ (see also theorem 2 in limit rules of functions).