Department of Mathematics

SF1626/SF1686 Several Variable Calculus

Seminar 5

See www.kth.se/social/course/SF1626/SF1686 for information about how the seminars work and what you are expected to do before and during the seminars.

This seminar will start with a quiz on a variant of one of the recommended exercises from the text book Calculus by Adams and Essex (9th edition) which are marked by boldface in the following list:

Section	Recommended problems
	3, 5 , 15 , 17,
15.2	3, 5, 7, 21
15.3	5, 7 , 9, 11
15.4	1, 5 , 7, 15 , 17, 22
15.5	1, 7, 13
15.6	5, 9 , 13, 15

PROBLEMS

Problem 1. Let F and G be the vector fields given by

$$\mathbf{F}(x,y) = \nabla f(x,y) \quad \text{and} \quad \mathbf{G}(x,y) = \left(y^2, -x^2\right)$$

where $f(x,y) = x^4y^2 + xy$ for (x,y) in \mathbb{R}^2 . Let C_1 be the curve given by the staight line segment from (2,4) to (-1,3) and let C_2 be the closed curve given by the unit circle centered at the origin oriented counter-clockwise.

- (a) Compute the line integral $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$.
- (b) Compute the line integral $\int_{C_1} \mathbf{G} \cdot d\mathbf{r}$.
- (c) Compute the line integral $\int_{C_2}^{C_1} \mathbf{F} \cdot d\mathbf{r}$.
- (d) Compute the line integral $\int_{C_2}^{\mathbf{r}} \mathbf{G} \cdot d\mathbf{r}$.

Problem 2. The function f is given by

$$f(x,y) = 2x + x^2 + 2y^2$$
, for all (x,y) in \mathbb{R}^2 .

- (a) Determine a vector field such that its field lines are level curves of f.
- (b) Are there several such vector fields?

Problem 3. Let F be the vector field which is given by

$$\mathbf{F}(x,y) = \left(\frac{ax + by}{x^2 + y^2}, \frac{cx + dy}{x^2 + y^2}\right)$$

away from the origin. Let C be the curve given by

$$\mathbf{r}(t) = (1,1) + e^{-t} (\cos t, \sin t),$$

for $t \ge 0$. Let $D_1 = \{(x, y) : y > 0\}$ and $D_2 = \{(x, y) : y > -1\}$.

- (a) For which values of a, b, c, d is **F** conservative in the region D_1 ?
- (b) For which values of a, b, c, d is **F** conservative in the region D_2 ?
- (c) Use the potential of F in order to compute the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}.$$

when a = d = 1, b = c = 0.

In order to compute the line integral for an infinite curve you can first restrict to a finite part $0 \le t \le T$ and then compute the limit as $T \to \infty$.

Problem 4. Let S be the surface which in spherical coordinates 1 is given by

$$r = 3,$$
 $-\pi/4 \le \theta \le \pi/4.$

The orientation of the surface is such that its normal vector is pointing away from the origin.

- (a) Sketch the surface S and compute its area.
- (b) Compute the flux of the vector field $\mathbf{F}(x,y,z)=(x^2,y^2,z^2)$ through S.

¹In the text book they use R instead of r for the distance to the origin. Here the spherical coordinates are written as r, θ and ϕ where ϕ is the angle to the positive z-axis.