

SMA Ver.	0.7.0	ShiftLe	ft	Test Algeb	raic '	'Shift Lef	t" Ins	structions	22 Mar 2024 22:32:25 Page	2
LOC	ОВЈЕСТ	CODE	ADDR1	ADDR2	STMT					
			0000000	00000530	22 23	* *******	*****	LOW ********	**************************************	
0000000			00000000	0000052B		SHIFTEST S			Han abaaluka addusaadaa	
0000000			00000000		27		USING	^,K0	Use absolute addressing	
0000000			00000000	000001A0	29	(ORG	SHIFTEST+X'1A0'	z/Arch Restart new PSW	
00001A0	00000001 80000000				31 32			XL4'00000001' XL4'80000000'		
00001A4 000001A8	00000000				33 34	I	DC	XL4'00000000'		
DOUGLAC	000001E0				34	·	DC .	A(BEGIN)		
00001B0			000001B0	000001D0	36	(ORG	SHIFTEST+X'1D0'	z/Arch Program new PSW	
	00020001		00000100	00000100					2/AICH TIOGTAM HEW TOW	
00001D0 00001D4 000001D8	00020001 80000000 00000000 0000DEAD				38 39 40 41] [DC DC	XL4'00020001' XL4'80000000' XL4'00000000' A(X'DEAD')		

ASMA Ver.	0.7.0	ShiftLeft	Te	st Algebra	aic "S	Shift Lef	t" Ins	tructions	22 Mar 2024 22:32:25 Page 3
LOC	OBJECT	CODE AD	DDR1	ADDR2	STMT				
					43 :	******	*****	:*****	**********
					44	*		Main P	
					45	*****	*****	******	**********
000001E0					47 I	BEGIN	DS	0H	
	45E0 0220 45E0 0256			0000220 0000256	49 50			R14,SLA R14,SLDA	Test Shift Left Single Test Shift Left Double
000001E8	45E0 0296			0000236	51		BAL	R14, SLAK	Test Shift Left Single Distinct
000001EC	45E0 02DE		0(00002DE	52		BAL	R14,SLAG	Test Shift Left Single Long
000001F0	B2B2 0200		00	0000200	54		LPSWE	GOODPSW	Success! All tests passed!
000001F4	4BD0 033C		0(000033C	56 1	FAILTEST	SH	R13,=H'4'	Backup to actual failure location
000001F8	B2B2 0210		00	0000210	57		LPSWE	FAILPSW	Abnormal termination disabled wait
00000200					59 (GOODPSW	DC	0D'0'	Test SUCCESS disabled wait PSW
00000200					60		DC	XL4'00020001'	
00000204 00000208	00000000	0000000			61 62			XL4'80000000' AD(0)	
00000210					64	FAILPSW	DC	0D'0'	Test FAILURE disabled wait PSW
00000210					65		DC	XL4'00020001'	
00000214 00000218	00000000	0000BAD			66 67			XL4'80000000' AD(X'BAD')	
								,	

ASMA Ver.	0.7.0	ShiftLef	ft	Test Algeb	raic "Shif	t Left" Instructions	22 Mar 2024 22:32:25 Page	4
LOC	ОВЈЕСТ	CODE	ADDR1	ADDR2	STMT			
	02020.		,,,,,,,,,,			ate ale ale ale ale ale ale ale ale ale al		
					~ ~		**************************************	
					70 * 8 71 ****	**************************************	ngle ****************	
					71 72 *			
					73 *	SHIFT LEFT SINGLE (SLA)		
					74 *			
					75 *	The SHIFT LEFT SINGLE ins		
					76 * 77 *	SHIFT LEFT DOUBLE, except	t that it shifts only the gle register. Therefore, this	
					77 · 78 *	instruction performs an a	algebraic left shift of a 32-bit	
					79 *	signed binary integer.	argebrare refer 51111 e of a 52 bre	
					80 *			
					81 *	For example, if the conte	ents of register 2 are:	
					82 * 83 *	00 7E 01 72 - 00000000	111111 00001010 01110010	
					83 * 84 *	00 /F 0A /Z = 000000000 0]	TITITI MAMATATA MITIMATA	
					85 *	The instruction:		
					86 *			
					87 *	Machine Format		
					88 * 89 *	0 1	2 2	
					89 * 90 *	0 1	2 3 4	
					91 *	8B 2 ///	/	
					92 *		++	
					93 *			
					94 *	Assembler Format		
					95 * 96 *	Op Code R1,D2(B2)		
					97 *			
					98 *	SLA 2,8(0)		
					99 *			
					100 * 101 *	positions so that its new	ing shifted left eight bit	
					102 *	positions so that its new	w concents are.	
					103 *	7F 0A 72 00 =		
					104 *			
					105 *	01111111 00001010 01110	0010 00000000	
					106 * 107 *	Condition code 2 is set t	to indicate that the result is	
					107 *	greater than zero.	to indicate that the result is	
					109 *	B. 54 55. 511411 251 0 .		
					110 *		places had been specified, a	
					111 *		ve been shifted out of bit	
					112 * 113 *		de 3 would have been set to nd, if the fixed-point-overflow	
					114 *		one, a fixed-point-over-low	
					115 *	interruption would have o		
					116 *	·		
					117 ****	*********	************	

ASMA Ver.	0.7.0	ShiftLef	t	Test Algebr	raic "Shift L	eft" In	structions	22 Mar 2024 22:32:25 Page	5
LOC	ОВЈЕСТ	CODE	ADDR1	ADDR2	STMT				
00000220			00000000		119	USING	TTAB32,R1		
00000220	5810 0330			00000330	121 SLA	L	R1,=A(TST32TAB)	R1> test table	
00000224 00000228	9825 1000 4344 032C			00000000 0000032C	123 SLA1 124	LM IC	R2,R5,0(R1) R4,BCMASKS(R4)	Load parameters Get BC instruction mask	
	8B20 3000			00000320	126	SLA	R2,0(R3)	Do the shift	
00000230	4440 0252 45D0 01F4			00000252 000001F4	127 128	EX BAL	R4,SLACC R13,FAILTEST	Expected CC? Unexpected CC! FAIL!	
	1525 4780 0242 45D0 01F4			00000242 000001F4	130 SLA2 131 132	CLR BE BAL	R2,R5 SLA3 R13,FAILTEST	Expected results? Yes, continue No! Unexpected results! FAIL!	
00000246	4110 1010 D503 0334	1000	00000334	00000010 00000000	134 SLA3 135	LA CLC	R1,TT32NEXT =CL4'END!',0(R1)	Next test table entry End of test table?	
0000024C 00000250	4770 0224 07FE			00000224	136 137	BNE BR	SLA1 R14	No, loop Yes, return to caller	
00000252	4700 0238			00000238	139 SLACC	ВС	0,SLA2	Expected condition code?	
00000256					141	DROP	R1		

ASMA Ver.	0.7.0	ShiftLeft		Test Algebi	raic "Shift	Left" Instructions	22 Mar 2024 22:32:25	Page	6
								_	
LOC	OBJECT (CODE	ADDR1	ADDR2	STMT				
					143 ****	************	********	****	
					144 * 8F	SLDA - Shift Left Double	[RS-	·al	
					145 *****	*************	********	*****	
					146 *				
						SHIFT LEFT DOUBLE (SLDA)			
					148 *	TI CUTET LEET DOUBLE ' L L' L'	C		
						The SHIFT LEFT DOUBLE instruction shif			
					150 * 151 *	numeric bits of an even-odd register p leaving the sign bit unchanged. Thus,	the instruction		
						performs an algebraic left shift of a	64-hit signed		
						binary integer.	0. 010 016cm		
					154 *	ý			
						For example, if the contents of regist	ters 2 and 3 are:		
					156 *				
						00 7F 0A 72 FE DC BA 98 =			
					158 * 159 *	00000000 01111111 00001010 01110010			
					160 *	1111110 11011100 10111010 10011000			
					161 *	11111110 110111100 10111010 10011000			
					162 *				
						The instruction:			
					164 *				
					165 * 166 *	Machine Format			
					167 *	0 1 2	3 4		
					168 *	++			
					169 *	8F 2 /// 0	01F RS-a		
					170 *	++	-++		
					171 *	A			
					172 * 173 *	Assembler Format			
					174 *	Op Code R1,D2(B2)			
					175 *				
					176 *	SLDA 2,31(0)			
					177 *		7 6. 116		
					178 *	results in registers 2 and 3 both beir	ng lett-shitted 31		
					179 * 180 *	bit positions, so that their new conte	ents are:		
						7F 6E 5D 4C 00 00 00 00 =			
					182 *				
					183 *	01111111 01101110 01011101 01001100			
					184 *	00000000 00000000 00000000 00000000			
					185 * 186 *	Possuso significant hits and shifted a	out of hit position		
						Because significant bits are shifted o 1 of register 2, overflow is indicated			
						condition code 3, and, if the fixed-po			
						in the PSW is one, a fixed-point-overf			
					190 *	interruption occurs.	. 5		
					191 *		the standards at the st	a ala ala ala al!-	
					192 ****	**************	· · · · · · · · · · · · · · · · · · ·	****	

ASMA Ver.	0.7.0 Shif	tLeft To	est Algebr	aic "Shift Le	ft" In	structions	22 Mar 2024 22:32:25 Page	8
LOC	OBJECT CODE	ADDR1	ADDR2	STMT				
				222 ******	*****	*******	**********	
				223 * EBDD	SLAK	- Shift Left Single [Distinct [RSY-al	
					*****	******	***********	
				225 *		T CINCLE DICTINGT /CL	1.414.	
				226 * SHI 227 *	FI LEF	T SINGLE DISTINCT (SI	LAK)	
				228 *				
					p Code	R1,R3,D2(B2)		
				230 * -				
				231 *	SLAK	2,3,8(0)		
				232 *				
				233 * 234 * Thi	c inct	nuction is basically	identical to SLA except that	
							ld in R3 and remains unchanged,	
							t shift being placed into R1.	
				237 *				
				238 ******	*****	*******	***********	
00000296		0000000		240	USING	TTAB32,R1		
						/		
00000296	5810 0330		00000330	242 SLAK	L	R1,=A(TST32TAB)	R1> test table	
0000029A	9825 1000		00000000	244 SLAK1	LM	R2,R5,0(R1)	Load parameters	
0000029E	1862			245	LR	R6,R2	Load beginning value	
000002A0	1F22			246	SLR	R2,R2	Clear target register	
000002A2	4344 032C	(0000032C	247	IC	R4,BCMASKS(R4)	Get BC instruction mask	
000002A6	EB26 3000 00DD		00000000	249	SLAK	R2,R6,0(R3)	Do the shift	
	4440 02DA		000002DA	250	EX	R4,SLAKCC	Expected CC?	
000002B0	45D0 01F4	(000001F4	251	BAL	R13,FAILTEST	NOT CC2! FAIL!	
00000000	1525			252 CLAV2	CLD	חם חב	Eveneted popult-1	
000002B4	1525 4780 02BE	1	000002BE	253 SLAK2 254	CLR BE	R2,R5 SLAK3	Expected results? Yes, continue	
	45D0 01F4		000002BE	255	BAL	R13, FAILTEST	No! Unexpected results! FAIL!	
					_ / 	,	·	
000002BE	5560 1000		00000000	257 SLAK3	CL	R6,BEGVAL32	Input register unchanged?	
	4780 02CA		000002CA	258	BE	SLAK4	Yes, continue	
000002C6	45D0 01F4	(000001F4	259	BAL	R13,FAILTEST	No! Unexpected results! FAIL!	
000002CA	4110 1010		00000010	261 SLAK4	LA	R1,TT32NEXT	Next test table entry	
000002CE	D503 0334 1000		00000000	262	CLC	=CL4'END!',0(R1)	End of test table?	
	4770 029A		0000029A	263	BNE	SLAK1	No, loop	
000002D8	07FE			264	BR	R14	Yes, return to caller	
000002DA	4700 02B4	(000002B4	266 SLAKCC	ВС	0,SLAK2	Expected condition code?	
00000ZDA	-, 00 02D -			200 SLANCC	DC	O, JEARE	Expected condition code:	
000002DE				268	DROP	R1		

ASMA Ver.	0.7.0	ShiftLe	eft	Test Algebr	aic "S	hift Let	ft" In	structions	22 Mar 2024 22:32:25 Page 9
LOC	OBJEC	T CODE	ADDR1	ADDR2	STMT				
					271 * 272 * 273 * 274 *	EBØB S *******	5LAG *****	- Shift Left Sing	*************
					275 * 276 * 277 *	Asse	embler	Format	
					278 * 279 * 280 *	Ор 		R1,R3,D2(B2)	
					281 * 282 * 283 *		SLAG	2,3,31(0)	
					284 * 285 * 286 * 287 *	63-l	oit sh	ift instead of a	cal to SLAK except that the shift is a 31-bit shift.
000002DE			00000000		289			TTAB64,R1	
000002DE	5810 033	8		00000338	291 S	LAG	L	R1,=A(TST64TAB)	R1> test table
000002E2 000002E6	B90B 002 E330 100			00000000	293 S 294	LAG1	SLGR LG	R2,R2 R3,BEGVAL64	Clear target register Load beginning value
000002EC 000002F0 000002F4 000002F8	5850 100	C C		00000008 0000000C 0000032C 00000010	295 296 297 298		L L IC LG	R4,SHIFT64 R5,CC64 R5,BCMASKS(R5)	Get shift amount Get expected CC Get BC instruction mask
								R6, ENDVAL64	Load expected ending value
000002FE 00000304 00000308	EB23 400 4450 032 45D0 01F	8		00000000 00000328 000001F4	300 301 302		EX BAL	R2,R3,0(R4) R5,SLAGCC R13,FAILTEST	Do the shift Expected CC? Unexpected CC! FAIL!
0000030C 00000310 00000314		8		00000318 000001F4	304 S 305 306	LAG2	CLGR BE BAL	R2,R6 SLAG3 R13,FAILTEST	Expected results? Yes, continue No! Unexpected results! FAIL!
00000318 0000031C 00000322	D503 033	4 1000	00000334	00000018 00000000 000002E2	308 S 309 310	LAG3	LA CLC BNE	R1,TT64NEXT =CL4'END!',0(R1) SLAG1	Next test table entry End of test table? No, loop
	07FE				311		BR	R14	Yes, return to caller
00000328	4700 030	С		0000030C	313 S	LAGCC	ВС	0,SLAG2	Expected condition code?
0000032C					315		DROP	R1	

```
ShiftLeft -- Test Algebraic "Shift Left" Instructions
                                                                                   22 Mar 2024 22:32:25 Page
ASMA Ver. 0.7.0
                                                                                                            10
 LOC
          OBJECT CODE
                         ADDR1
                                  ADDR2
                                         STMT
                                          318 *
                                                                 Working Storage
                                          321 BCMASKS DC X'80', X'40', X'20', X'10'
0000032C 80402010
                                                                               CC 0, 1, 2, 3
00000330
                                          323
                                                     LTORG ,
                                                                  Literals Pool
                                          324
                                                          =A(TST32TAB)
00000330 00000340
00000334 C5D5C45A
                                          325
                                                          =CL4'END!'
                                          326
                                                          =A(TST64TAB)
00000338 00000408
                                          327
                                                          =H'4'
0000033C 0004
00000340
                                          329 TST32TAB DC
                                                        0D'0'
                                          330 *********************
                                          331 *
                                                     old way slowest possible positive
                                          332 *
                                                                       shift CC
                                                          A(X'00000001'),A(30),A(2)
00000340 00000001 0000001E
                                          333
                                                     DC
                                                          A(X'40000000')
0000034C 40000000
                                          334
                                          335 *
                                          336 **************************
                                          337 *
                                                     old way slowest possible negative
                                          338 *
                                                                       shift CC
00000350 FFFFFFF 0000001F
                                          339
                                                          A(X'FFFFFFFFF'), A(31), A(1)
0000035C 80000000
                                          340
                                                     DC A(X'80000000')
                                          341 *
                                          342 ***************************
                                          343 *
                                                     positive, 0 bits
                                          344 *
                                                                       shift CC
                                                          A(X'00000123'),A(0),A(2)
                                          345
00000360 00000123 00000000
                                                     DC
                                                          A(X'00000123')
                                                     DC
                                          346
0000036C 00000123
                                          347 *
                                          348 ***************************
                                          349 *
                                                     negative, 0 bits
                                          350 *
                                                                       shift CC
00000370 80000123 00000000
                                          351
                                                          A(X'80000123'), A(0), A(1)
0000037C 80000123
                                          352
                                                          A(X'80000123')
                                          353 *
                                          354 **************************
                                          355 *
                                                     max positive, 1 bit
                                          356 *
                                                                       shift CC
                                                          A(X'7FFFFFFFF'), A(1), A(3)
00000380 7FFFFFF 00000001
                                          357
                                                     DC
0000038C 7FFFFFE
                                          358
                                                          A(X'7FFFFFFE')
                                          359 *
                                          360 ***************
                                          361 *
                                                     max negative, 1 bit
                                          362 *
                                                                       shift CC
                                                          A(X'80000000'),A(1),A(3)
                                          363
00000390 80000000 00000001
0000039C 80000000
                                          364
                                                     DC
                                                          A(X'80000000')
                                          365 *
                                          366 ****************************
                                          367 *
                                                     positive, 1 bit
                                          368 *
                                                                       shift CC
                                                          A(X'22222222'), A(1), A(2)
000003A0 2222222 00000001
                                          369
                                                     DC
000003AC 4444444
                                          370
                                                     DC A(X'4444444')
                                          371 *
                                          372 ***************************
```

```
ShiftLeft -- Test Algebraic "Shift Left" Instructions 22 Mar 2024 22:32:25 Page
ASMA Ver. 0.7.0
 LOC
           OBJECT CODE
                            ADDR1
                                     ADDR2
                                              STMT
00000408
                                              405 TST64TAB DC
                                                                0D'0'
                                              406 ************
                                                                       ********
                                               407 *
                                                          old way slowest possible positive
                                               408 *
                                                                                            shift CC
00000408
                                                              A(X'00000000'),A(X'00000001'),A(62),A(2)
         0000000 00000001
                                               409
                                                                A(X'4000000'), A(X'00000000')
00000418 40000000 00000000
                                              410
                                               411 *
                                               412 ****************************
                                              413 *
                                                          old way slowest possible negative
                                               414 *
                                                                                            shift CC
00000420 FFFFFFF FFFFFFF
                                               415
                                                          DC
                                                                A(X'FFFFFFFF'), A(X'FFFFFFFF'), A(63), A(1)
                                                                A(X'80000000'),A(X'00000000')
                                                          DC
00000430 80000000 00000000
                                               416
                                              417 *
                                               418 ****************************
                                               419 *
                                                           positive, 0 bits
                                               420 *
                                                                                            shift CC
                                                                A(X'00000000'), A(X'00000123'), A(0), A(2)
00000438 00000000 00000123
                                               421
00000448 00000000 00000123
                                               422
                                                                A(X'00000000'),A(X'00000123')
                                              423 *
                                              424 ****************************
                                               425 *
                                                          negative, 0 bits
                                              426 *
                                                                                            shift CC
                                                                A(X'80000000'), A(X'00000123'), A(0), A(1)
00000450 80000000 00000123
                                               427
00000460 80000000 00000123
                                              428
                                                               A(X'80000000'),A(X'00000123')
                                               429 *
                                               430 ***************************
                                              431 *
                                                          max positive, 1 bit
                                               432 *
                                                                                            shift CC
                                                                A(X'7FFFFFFF'), A(X'FFFFFFFF'), A(1), A(3)
00000468 7FFFFFF FFFFFFF
                                               433
                                                          DC
                                                                A(X'7FFFFFFF'),A(X'FFFFFFFE')
                                                          DC
00000478 7FFFFFF FFFFFFE
                                               434
                                               435 *
                                               436 ****************************
                                              437 *
                                                          max negative, 1 bit
                                               438 *
                                                                                            shift CC
00000480 80000000 00000000
                                               439
                                                                A(X'80000000'), A(X'00000000'), A(1), A(3)
                                                                A(X'80000000'), A(X'00000000')
00000490 80000000 00000000
                                               440
                                               441 *
                                               442 *************************
                                               443 *
                                                          positive, 1 bit
                                              444 *
                                                                                            shift CC
                                                                A(X'22222222'), A(X'22222222'), A(1), A(2)
00000498 2222222 2222222
                                               445
                                                          DC A(X'44444444'), A(X'44444444')
000004A8 4444444 44444444
                                               446
                                              447 *
                                               448 ****************************
                                              449 *
                                                          negative, 1 bit
                                               450 *
                                                                                            shift CC
                                                                A(X'CAAAAAAA'), A(X'AAAAAAAA'), A(1), A(1)
000004B0 CAAAAAA AAAAAAA
                                               451
                                                                A(X'95555555'), A(X'55555554')
000004C0 95555555 55555554
                                               452
                                              453 *
                                              454 ****************************
                                               455 *
                                                          positive, 1 bit, OVERFLOW
                                              456 *
                                                                                            shift CC
000004C8 77777777 7777777
                                                                A(X'77777777'), A(X'77777777'), A(1), A(3)
                                               457
000004D8 6EEEEEEE EEEEEEEE
                                               458
                                                                A(X'6EEEEEEE'), A(X'EEEEEEEE')
                                               459 *
                                               460 ***************************
```

ASMA Ver.	0.7.0	ShiftLeft	Test Algeb	raic "Shift	Left" In	structions	22 Mar 2024 22:32:25 Page	14
LOC	ОВЈЕСТ	CODE ADDR1	. ADDR2	STMT				
				482 *		Tes [.]	**************************************	
00000000 00000004 00000008 0000000C	00000000 00000000 00000000 00000000	000000	10 00000001	485 TTAB3 486 BEGVA 487 SHIFT 488 CC32 489 ENDVA 490 TT32N	AL32 DS F32 DS DS AL32 DS	A A A A *	Starting value shift amount (#of bits to shift) Expected condition code Expected ending value	
				492 TTAB6	54 DSECT			
00000000 00000004 00000008	00000000 00000000 00000000			493 BEGVA 494 495 SHIFT	AL64 DS DS	A A	Starting value (hi 32) Starting value (lo 32) shift amount (#of bits to shift)	
0000000C 00000010 00000014	00000000 00000000 00000000	00000	110 0000001	496 CC64 497 ENDVA 498	DS	A A A	Expected condition code Expected ending value (hi 32) Expected ending value (lo 32)	
		000006	18 00000001	499 TT64N	NEXI EQU			
				502 *		Reg	**************************************	
		000006 000006 000006 000006	001 00000001 002 00000001 003 00000001	505 R0 506 R1 507 R2 508 R3	EQU EQU EQU EQU	0 1 2 3		
		000000 000000 000000 000000	05 00000001 06 00000001 07 00000001	509 R4 510 R5 511 R6 512 R7	EQU EQU EQU	4 5 6 7		
		000006 000000 000000 000000	00000001 00A 00000001	513 R8 514 R9 515 R10 516 R11	EQU EQU EQU EQU	8 9 10 11		
		000006 000006 000006 000006	00000001 00E 00000001	517 R12 518 R13 519 R14 520 R15	EQU EQU EQU EQU	12 13 14 15		
			,,,,,,,,	522	END			

ASMA Ver. 0.7.0		iftLeft		est Al	•			Left"	Inst	ructi	ons				2	2 Mar	2024	22:3	2:25	Page	15
SYMBOL	TYPE	VALUE	LENGTH	DEFN	REFE	RENCE	S														
BCMASKS	X	00032C	1	321	124 34	199	247	297													
BEGIN BEGVAL32	H A	0001E0 000000	2 4	47 486	257																
BEGVAL64	A	000000	4	493	294																
CC32	Ā	000008	4	488	274																
CC64	A	00000C	4	496	296																
ENDVAL32	Α	00000C	4	489																	
ENDVAL64	Α	000010	4	497	298																
FAILPSW	D	000210	8	64	57																
FAILTEST	I	0001F4	4	56	128	132	203	207	211	251	255	259	302	306							
GOODPSW	D	000200	8	59	54																
IMAGE	1	000000 000000	1324	0 505	27																
R0 R1	U U	000000	1 1	506	119	121	123	134	135	141	10/	196	198	213	21/	220	240	242	2//	261	262
(L	U	000001	_	300	268	289	291	308	309	315	174	100	100	213	217	220	240	272	277	201	202
R10	U	00000A	1	515	_00	_0,		200		2 - 2											
R11	Ü	00000B	_ 1	516																	
R12	U	00000C	1	517																	
R13	U	00000D	1	518	56	128	132	203	207	211	251	255	259	302	306						
R14	U	00000E	1	519	49	50	51	52	137	216	264	311									
R15	U	00000F	1	520	400	126	120	100	201	205	244	245	246	2.40	252	202	200	204			
R2	U	000002	1	507	123	126	130	198	201	205	244	245	246	249	253	293	300	304			
R3 R4	U	000003 000004	1 1	508 509	126 124	209 127	249 201	294 247	300 250	295	300										
R5	Ü	000004	1	510	123	130	199	202	244	253	296	297	301								
R6	Ü	000006	1	511	205	245	249	257	298	304	230	23,	301								
R7	Ü	000007	1	512	198	209															
R8	U	000008	1	513																	
R9	U	000009	1	514																	
SHIFT32	Α	000004	4	487																	
SHIFT64	A	800000	4	495	295	2.6															
SHIFTEST	J	000000	1324	25	29	36															
SLA SLA1	I I	000220 000224	4 4	121 123	49 136																
SLA2	Ť	000224	2	130	139																
SLA3	Ī	000242	4	134	131																
SLACC	I	000252	4	139	127																
SLAG	I	0002DE	4	291	52																
SLAG1	I	0002E2	4	293	310																
SLAG2	I	00030C	4	304	313																
SLAG3	1	000318	4	308	305																
SLAGCC SLAK	I I	000328 000296	4 4	313 242	301 51																
SLAK1	Ī	000296 00029A	4	242 244	263																
SLAK2	I	00023A	2	253	266																
SLAK3	Ī	0002BE	4	257	254																
SLAK4	I	0002CA	4	261	258																
SLAKCC	I	0002DA	4	266	250																
SLDA	Ī	000256	4	196	50																
SLDA1	I	00025A	4	198	215																
SLDA2	I	00026E	2	205	218																
SLDA3 SLDA4	<u>T</u>	000278 000282	2 4	209 213	206 210																
SLDACC	I	000282	4	213	202																
TST32TAB	D	000232	8	329	121																
LOLOZIAD				J _ J																	

MA Ver. 0.7.0	Sh	iftLeft	T	est Al	gebra	ic "S	hift	Left" Instructions	22 Mar 2024 22:32:25	Page	16
SYMBOL	TYPE	VALUE	LENGTH	DEFN	REFE	RENCE	S				
32NEXT 64NEXT	U U	000010 000018	1 1	499	134 213	308					
AB32 AB64 (TST32TAB)	4 4 A	000000 000000 000330	16 24 4	492	119 194 121	240 289 242					
(TST64TAB) _4'END!' '4'	A C H	000338 000334 00033C	4	326 325	196	291	262	309			

MA Ver. 0.7.0 ACRO DEFN REFERENCE:		st Algebraic "Shift Le	rt" Instructions	22 Mar 2024 22:32:25	Page	17
defined macros	•					

MA Ver. 0.7.0	SHIT CLETC -		ift Left" Instructions	22 Mar 2024 22:32:25	Page	19
STMT		FILE N				
C:\Users\Fis	sh\Documents\Visua	1 Studio 2008\Projects	\MyProjects\ASMA-0\ShiftLeft\	\ShiftLeft.asm		
NO ERRORS FOUND) **					