Appendix B

Fourier Series, Fourier Transform, Laplace Transform

ACIT4710 Appendix B

1

Fourier series

- A method to split a periodic function into harmonic components
- The harmonic functions are: $\cos(n\omega_0 t)$ and $\sin(n\omega_0 t)$, where n is the harmonic number and $\omega_0=2\pi/T$ is the fundamental frequency, and T is the period.
- Trigonometric FS: $x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$
- The Fourier coefficients of the harmonics are found as correlations between the function, x(t), and the harmonic:
- Symmetric components: $a_n = \frac{2}{T_0} \int_{T_0} x(t) \cos(n\omega_0 t) dt$;
- Antisymmetric comp.: $b_n = \frac{2}{T_0} \int_{T_0} x(t) \sin(n\omega_0 t) \mathrm{d}t$
- DC-component: $a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$ (average value of x(t))

ACIT4710 Appendix B

Example 5.1

Period: $T_0=2$; $\omega_0=\pi$

Average value: $a_0 = \frac{1}{T_0} \int_{-1}^1 x(t) dt = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} dt = \frac{1}{2}$

ACIT4710 Appendix B

3

$$\begin{split} a_n &= \frac{2}{T_0} \int_{T_0} x(t) \cos(n\omega_0 t) \, \mathrm{d}t = \frac{2}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos(n\pi t) \, dt = \frac{1}{n\pi} - \frac{\frac{1}{2}}{\frac{1}{2}} [\sin(n\pi t)] \\ &= \frac{1}{n\pi} \Big[\sin\left(\frac{n\pi}{2}\right) - \sin\left(-\frac{n\pi}{2}\right) \Big] = \frac{2}{n\pi} \frac{1}{\sin\left(\frac{n\pi}{2}\right)} = \mathrm{sinc}\left(\frac{n\pi}{2}\right) \; ; \; \; a_n = 0 \; for \; n \; even \\ b_n &= \frac{2}{T_0} \int_{T_0} x(t) \sin(n\omega_0 t) \, \mathrm{d}t = \frac{2}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \sin(n\pi t) \, dt = \frac{1}{n\pi} - \frac{\frac{1}{2}}{\frac{1}{2}} [-\cos(n\pi t)] \\ &= \frac{-1}{n\pi} \Big[\cos\left(\frac{n\pi}{2}\right) - \cos\left(-\frac{n\pi}{2}\right) \Big] = 0 \; ; \; \; \text{All} \; b_n = 0 \; because \; x(t) \; is \; symmetric \end{split}$$

The Fourier series is:

$$x(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin\left(\frac{n\pi}{2}\right) \cos(n\pi t) = \frac{1}{2} + \frac{2}{\pi} \cos(\pi t) - \frac{2}{3\pi} \cos(3\pi t) + \frac{2}{5\pi} \cos(5\pi t) \dots$$

ACIT4710 Appendix B

4

Summing up results in x(t) for n=1,2,3,...N

Summing up the harmonics, results in x(t) as N approaches infinity.

ACIT4710 Appendix B

5

Fourier series as amplitude and phase

We use the trigonometric identity:

$$a\cos(\omega t) + b\sin(\omega t) = C\cos(\omega t + \theta)$$
; $C = \sqrt{a^2 + b^2}$; $\theta = \tan^{-1}\left(\frac{-b}{a}\right)$

We apply this to all the harmonics and get:

$$\begin{split} x(t) &= a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \\ &= C_0 + \sum_{n=1}^\infty C_n \cos(n\omega_0 t + \theta_n) \\ \text{Her er: } C_0 &= a_0 \text{ ; } C_n = \sqrt{{a_n}^2 + {b_n}^2} \text{ ; } \theta_n = \tan^{-1}\left(\frac{-b_n}{a_n}\right) \end{split}$$

ACIT4710 Appendix B

6

Frequency spectrum as amplitude and phase:

$$x(t) = \frac{1}{2} + \frac{2}{\pi}\cos(\pi t) - \frac{2}{3\pi}\cos(3\pi t) + \frac{2}{5\pi}\cos(5\pi t) - \frac{2}{7\pi}\cos(7\pi t) + \cdots$$
$$= \frac{1}{2} + \frac{2}{\pi}\cos(\pi t) + \frac{2}{3\pi}\cos(3\pi t - \pi) + \frac{2}{5\pi}\cos(5\pi t) + \frac{2}{7\pi}\cos(7\pi t - \pi) + \cdots$$

ACIT4710 Appendix E

7

Exponential Fourier series

We now use: $\cos(\omega t) = \frac{1}{2} [\exp(j\omega t) + \exp(-j\omega t)]$

We apply this to all harmonics and get:

$$x(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n)$$

$$= D_0 + \sum_{n=1}^{\infty} D_n \exp(jn\omega_0 t) + D_{-n} \exp(-jn\omega_0 t) = \sum_{n=-\infty}^{\infty} D_n \exp(jn\omega_0 t)$$

We have introduced negative n and thereby also negative frequencies.

We see that:
$$D_0=C_0$$
 ; $D_{-n}=D_n^*$; $|D_n|=|D_{-n}|=\frac{C_n}{2}$; $\angle D_n=\theta_n$; $\angle D_{-n}=-\theta_n$

The amplitude is symmetric, and the phase is antisymmetric.

The D's are therefore pare wise complex conjugate for n and –n.

This is necessary for x(t) to be real.

ACIT4710 Appendix B

Table B.1 Fourier Series Expansions for Some Common Waveform Signals in the Sine-Cosine Form

Time domain signal x(t)Positive square wave $x(t) = \frac{A_{2}}{2} + \frac{2A_{1}}{\pi} \left(\sin \alpha_{0} t + \frac{1}{3} \sin 3\alpha_{0} t + \frac{1}$

The Fourier transform

- The Fourier transform is a generalization of the Fourier series for non-periodic functions.
- The Fourier transform results in the frequency spectrum of x(t):
- $X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$
- We get back to the time function, x(t), by the inverse transform:
- $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega$
- We use the Fourier transform to analyze the frequency content of the signal.

ACIT4710 Appendix B 11

11

$$x(t) = \Pi(t/\tau)$$

 $X(\omega) = \tau \operatorname{sinc}(\omega \tau/2)$

ACIT4710 Appendix B

12

Real $x(t) \rightarrow$ Symmetric $|X(\omega)|$ and antisymmetric $\angle X(\omega)$ Symmetric $x(t) \rightarrow$ Real $X(\omega)$

ACIT4710 Appendix B 13

13

Line	Time Function	Fourier Transform
1	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
2	$\frac{dx(t)}{dt}$	$\alpha X_1(f) + \beta X_2(f)$ $j2\pi f X(f)$
3	$\alpha x_1(t) + \beta x_2(t)$ $\frac{dx(t)}{dt}$ $\int_{-\infty}^{t} x(t)dt$ $x(t - \tau)$ $e^{j2\pi f_0 t} x(t)$	$\frac{X(f)}{j2\pi f}$
4	x(t- au)	$e^{-j2\pi f\tau}X(f)$
5	$e^{j2\pi f_0 t} \chi(t)$	$X(f-f_0)$
6	x(at)	$e^{-j2\pi f\tau}X(f)$ $X(f-f_0)$ $\frac{1}{a}X\left(\frac{f}{a}\right)$

ACIT4710 Appendix B 14

The Laplace Transform

- The Laplace transform was developed to solve linear differential equations.
- Definition: $X(s) = \int_0^\infty x(t) \exp(-st) dt$
- This is the unilateral transform, and we need starting conditions.
- The Laplace variable is complex: $s = \sigma + j\omega$.
- We use the Laplace transform to analyze systems.
- An important property of the LT is the following: $\mathcal{L}\left\{\frac{dx(t)}{dt}\right\} = sX(s)$
- A time derivative results in a multiplication with s.

ACIT4710 Appendix B

Table B.5 Laplace Transform Table		
Line	Time Function $x(t)$	Laplace Transform $X(s) = L(x(t))$
1	$\delta(t)$	1
2	1 or $u(t)$	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$e^{-at}u(t)$	$\frac{1}{s+a}$
5	$\sin(\omega t)u(t)$	$\frac{\omega}{s^2 + \omega^2}$
6	$\cos(\omega t)u(t)$	$\frac{s}{s^2 + \omega^2}$
7	$\sin(\omega t + \theta)u(t)$	$\frac{s\sin(\theta) + \omega\cos(\theta)}{s^2 + \omega^2}$
8	$e^{-at}\sin(\omega t)u(t)$	$\frac{\omega}{(s+a)^2+\omega^2}$
9	$e^{-at}\cos(\omega t)u(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$
10	$(A\cos(\omega t) + \frac{B-aA}{\omega}\sin(\omega t))e^{-at}u(t)$	$\frac{As+B}{(s+a)^2+\omega^2}$
11a	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
11b	$\frac{1}{(n-1)!}t^{n-1}u(t)$	$\frac{1}{s^n}$
12a	$e^{-at}t^nu(t)$	$\frac{n!}{(s+a)^{n+1}}$
12b	$\frac{1}{(n-1)!}e^{-at}t^{n-1}u(t)$	$\frac{1}{(s+a)^n}$
13	$(2\operatorname{Real}(A)\cos(\omega t) - 2\operatorname{Imag}(A)\sin(\omega t))e^{-\alpha t}u(t)$	$\frac{A}{s+\alpha-j\omega} + \frac{A^*}{s+\alpha+j\omega}$
14	$\frac{dx(t)}{dt}$	$sX(s) - x(0^-)$
15	$\int_0^{\infty} dx(t)dt$	$\frac{X(s)}{s}$
16	x(t-a)u(t-a)	$e^{-as}X(s)$
17	$e^{-at}x(t)u(t)$ ACIT4710 Appendix B	X(s+a)

Solving differential equations with Laplace

- Any linear differential equation with constant coefficients with all starting conditions being zero, can be transformed to:
- A(s)Y(s) = B(s)X(s), where Y(s) and X(s) are the Laplace transforms of the output signal and the input signal, respectively.
- A(s) is the characteristic polynomial and B(s) the driving polynomial.
- Poles: A(s)=0 ; Zeros: B(s)=0.
- The transfer function of the system is defined as the output over the input: $H(s) = \frac{Y(s)}{X(s)} = \frac{B(s)}{A(s)}$
- And we get: Y(s) = H(s)X(s) ; $y(t) = \mathcal{L}^{-1}{Y(s)}$

ACIT4710 Appendix B

17

The impulse response of a system

- The impulse response, h(t), of a system is defined as the response of the system when the input is an impulse, $\delta(t)$.
- The impulse function is defined as a time function that is infinitely short and with infinite amplitude, but so that the area under the curve is 1. It is also called the Dirac's delta function.

ACIT4710 Appendix B

- We get: $X(s) = \mathcal{L}\{\delta(t)\} = 1$
- $h(t) = y(t) = \mathcal{L}^{-1}{Y(s)} = \mathcal{L}^{-1}{H(s)X(s)} = \mathcal{L}^{-1}{H(s)}$
- And therefore: $H(s) = \mathcal{L}\{h(t)\}$

Frequency response

- We can get to the Fourier transform from the Laplace transform by setting: $s=j\omega$.
- This requires that the system is asymptotically stable and causal.
- The systems frequency response is defined as: $H(j\omega) = H(s = j\omega)$
- $H(j\omega)$ is a complex function and therefore split into an amplitude response and a phase response:

$$H(j\omega) = |H(j\omega)| \exp(j \angle H(j\omega))$$
$$|H(j\omega)| = \sqrt{(Re[H(j\omega)])^2 + (Im[H(j\omega)])^2}; \angle H(j\omega) = tan^{-1} \left(\frac{Im[H(j\omega)]}{Re[H(j\omega)]}\right)$$

• Finally, the frequency response is the Fourier transform of the impulse response: $H(\omega) = \mathcal{F}\{h(t)\}$

ACIT4710 Appendix B

19

Summary of analog signal processing

ACIT4710 Appendix B