

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт кибербезопасности и цифровых технологий КБ-4 «Интеллектуальные системы информационной безопасности»

Отчет по лабораторной работе №2 по дисциплине: «Анализ защищенности систем искусственного

интеллекта»

Выполнил:

Студент группы ББМО-02-22

Филиппов Леонид Алексеевич

Проверил:

Спирин Андрей Андреевич

1. Загрузка основной библиотеки ART

1. Для этой части используйте набор данных GTSRB (German Traffic Sign Recognition Benchmark). Набор данных состоит примерн из 51 000 изображений дорожных знаков. [1] !pip install adversarial-robustness-toolbox Collecting adversarial-robustness-toolbox Downloading adversarial_robustness_toolbox-1.17.0-py3-none-any.whl (1.7 MB) Requirement already satisfied: numpy>=1.18.0 in /usr/local/lib/python3.10/dist-packages (from adversarial-robustness) Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from adversarial-robustness Collecting scikit-learn<1.2.0,>=0.22.2 (from adversarial-robustness-toolbox) Downloading scikit_learn-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.5 MB) s eta 0:00:00 Installing collected packages: scikit-learn, adversarial-robustness-toolbox Attempting uninstall: scikit-learn Found existing installation: scikit-learn 1.2.2 Uninstalling scikit-learn-1.2.2: Successfully uninstalled scikit-learn-1.2.2 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This be bigframes 0.19.2 requires scikit-learn>=1.2.2, but you have scikit-learn 1.1.3 which is incompatible. Successfully installed adversarial-robustness-toolbox-1.17.0 scikit-learn-1.1.3

2. Загрузка набора данных с диска

3. Обучение двух классификаторов на основе глубоких нейронных сетей на датасете GTSRB

3. Обучить 2 классификатора на основе глубоких нейронных сетей на датасете GTSRB

```
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import VGG16, ResNet50
from tensorflow.keras import layers, models
train_data_dir = '/content/archive/Train'
test_data_dir = '/content/archive/Test'
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(32, 32),
    batch_size=32,
    class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
    test_data_dir,
    target_size=(32, 32),
    batch_size=32,
    class_mode='categorical')
vgg_model = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3))
resnet_model = ResNet50(weights='imagenet', include_top=False, input_shape=(32, 32, 3))
vgg_classifier = models.Sequential()
vgg_classifier.add(vgg_model)
vgg_classifier.add(layers.Flatten())
vgg_classifier.add(layers.Dense(256, activation='relu'))
vgg_classifier.add(layers.Dropout(0.5))
vgg_classifier.add(layers.Dense(43, activation='softmax'))
resnet_classifier = models.Sequential()
resnet_classifier.add(resnet_model)
resnet_classifier.add(layers.Flatten())
resnet_classifier.add(layers.Dense(256, activation='relu'))
resnet_classifier.add(layers.Dropout(0.5))
resnet_classifier.add(layers.Dense(43, activation='softmax'))
for layer in vgg_model.layers:
    layer.trainable = False
for layer in resnet_model.layers:
    layer.trainable = False
```

```
vgg_classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
resnet_classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history_vgg = vgg_classifier.fit(train_generator, epochs=10, validation_data=test_generator)
history_resnet = resnet_classifier.fit(train_generator, epochs=10, validation_data=test_generator)
```

4. Графики точности и потерь для моделей ResNet 50 и VGG16

5. Заполнение итоговой таблицы

5. Заполнение итоговой таблицы Модель Обучение Валидация Тест ResNet50 loss: 0.0663 accuracy: 0.9723 loss: 0.0835 accuracy: 0.9654 loss: 0.3653 accuracy: 0.9032 VGG16 loss: 0.1397 accuracy: 0.9623 loss: 1.3513 accuracy: 0.9132 loss: 1.4123 accuracy: 0.8644

6. Применить нецелевую атаку уклонения на основе белого ящика против моделей глубокого обучения

```
6. Применить нецелевую атаку уклонения на основе белого ящика против моделей глубокого обучения.
[1] import numpy as np
           import matplotlib.pyplot as plt
           from \ art. attacks. evasion \ import \ FastGradient Method, \ Projected Gradient Descent
           from art.estimators.classification import KerasClassifier
          from \ \textbf{art.utils} \ \texttt{import} \ \textbf{load\_dataset}
          from tensorflow.keras.applications import VGG16
          from tensorflow.keras.models import load_model
from tensorflow.keras.applications import ResNet50
          from tensorflow.python.framework.ops import disable_eager_execution
          disable_eager_execution()
           vgg_classifier = KerasClassifier(model=vgg_model, clip_values=(0, 1))
           (x_test, y_test), _, _, _ = load_dataset('gtsrb')
          x_{test} = x_{test}[:1000]
          y_test = y_test[:1000]
           epsilons = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]
          def plot_adversarial_examples(model, attack, original_image, epsilon_values):
                    plt.figure(figsize=(15, 10))
                     for i, epsilon in enumerate(epsilon_values):
                            adversarial_image = attack.generate(original_image, eps=epsilon)
                             prediction_original = np.argmax(model.predict(np.array([original_image])))
                             prediction_adversarial = np.argmax(model.predict(adversarial_image))
                             plt.subplot(2, 5, i + 1)
plt.imshow(adversarial_image.squeeze(), cmap='gray')
plt.title(f'Epsilon: {epsilon}\nPred: {prediction_adversarial}')
                              plt.axis('off')
                    plt.show()
          def evaluate_attack(model, attack, x_test, y_test, epsilon_values):
                     accuracies = []
                     for epsilon in epsilon_values:
                             x_test_adv = attack.generate(x_test, eps=epsilon)
                             accuracy = np.sum(np.argmax(model.predict(x\_test\_adv), \ axis=1) == np.argmax(y\_test, \ axis=1)) \ / \ len(y\_test) = np.argmax(y\_test, \ axis=1)) \ / \ len(y\_test) = np.argmax(y\_test, \ axis=1)) \ / \ len(y\_test) = np.argmax(y\_test, \ axis=1)) \ / \ len(y\_test, \ axis=1) = np.argmax(y\_test, \ axis=1)) \ / \ len(y\_test, \ axis=1)) \ / \ len(y\_test, \ axis=1)) = np.argmax(y\_test, \ axis=1)) \ / \ len(y\_test, \ axis=1)) \ / \ len(y\_test, \ axis=1)) = np.argmax(y\_test, \ axis=1)) \ / \ len(y\_test, \ axis=1
                             accuracies.append(accuracy)
                     return accuracies
```

7. Графики зависимостей классификации от параметра искажения

8. Заполнение итоговой таблицы

8. Заполнение итоговой таблицы				
Модель	Исходные изображения	Adversarial images e=1/255	Adversarial images e=5/255	Adversarial images e=10
ResNet50 - FGSM	90%	73%	32%	16%
ResNet - PGD	90%	70%	29%	22%
VGG16 - FGSM	88%	78%	43%	20%
VGG16 - PGD	88%	76%	47%	31%

9. Применение целевой атаки уклонения методом белого против моделей глубокого обучения

Пример атаки FGSM:

Пример атаки PGD:

Пример атаки PGD: Исходное изображение, предсказанный класс: 14, действительный класс 14 15 20 25 30 0 5 10 15 20 25 30 Изображение с eps: 0.0392156862745098 предсказанный класс: 5 лействит

10. Заполнение итоговой таблицы

10. Заполнение итоговой таблицы:				
Искажение	PGD-атака	FGSM-атака		
e=1/255	98%	99%		
e=3/255	89%	84%		
e=5/255	91%	74%		
e=10/255	69%	26%		
e=20/255	58%	3%		
e=50/255	1%	0%		
e=80/255	1%	0%		