Km Mayawati Govt. Girls Polytechnic, Badalpur

Assignment (Unit-1)

[Applied Mathematics-I(1 Sem)]

- 1- Find the sum of 10 terms of the series 4+8+12+......
- 2- If the nth term of an AP is given by 2n-1, find its 10th term.
- 3- Which term of the series 68+64+60+..... is -8?
- 4- If the pth term of an AP is q and qth term is p, find its (p+q) th term.
- 5- Prove the series $\frac{4}{\sqrt{2}}$ + $3\sqrt{2}$ + $\frac{8}{\sqrt{2}}$ +is in AP .Find the sum of its 50 terms.
- 6- If the sum of p, q, and r terms of an AP be a, b, and c respectively, prove

$$\frac{a}{b}$$
 (q-r) + $\frac{b}{a}$ (r-p) + $\frac{c}{r}$ (p-q) = 0

- 7- Find three numbers in AP .whose sum is 21 and product is 231.
- 8- Insert 4 AMs between -1 and 9 and find their sum.
- 9- If a^2 , b^2 , c^2 are in AP .then prove that $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ will be in AP.
- 10- Find the 10th term of the series 3 , -6 ,12 , -24 ,
- 11- Which term of the sequence 1, $\sqrt{3}$,3,......is 81 ?
- 12- If the pth , qth and rth terms of a GP are x, y, z respectively , then show that

$$x^{q-r}y^{r-p}z^{p-q}=1$$

- 13- How many terms of the GP 1+4+16+64+.....will make 5461.
- 14- Find sum of n terms of 6+66+666+.......
- 15- Find the sum of the infinite series 1+1/3+1/9+1/27+.....∞
- 16- Insert 4 GMs between 160 and 5.
- 17- If a, b, c are in GP prove log a, log b, log c will be in AP.
- 18- Find three numbers in GP. whose sum is 42 and product is 512.
- 19- If 2, a, 8 are in AP and 5, b, 20 are in GP then find a+b.

- 20- (a) Expand $(2x^2 \frac{3}{x})^6$
- (b) Find $(1000)^3$ using binomial theorem
- (c) Find the 6th term in the expansion of $\left(\frac{4x}{5} \frac{5}{4x}\right)^{10}$
- (d) Find the middle term of the expansion of $(\frac{4x}{5a} + \frac{5a}{4x})^{10}$
- (e) Find the term free of x in the expansion of $(3x \frac{2}{x^2})^{15}$
- (f) find the coefficient of x^5 in the expansion of $(\frac{4x}{5} + \frac{5}{2x})^{17}$
- 21- Evaluate 10_{C_r} if 10_{C_r} = $10_{C_{r+2}}$.
- 22-Find the greatest term of the expansion $(4-3x)^8$, when x = 4.
- 23-Prove the following -

(i)
$$c_1$$
 + 2 c_2 + 3 c_3 ++ n c_n = n 2^{n-1}

(ii)
$$c_0 + 1/3 c_2 + 1/5 c_4 + \dots = \frac{2^n}{n+1}$$

(iii)
$$c_1/c_0 + 2 c_2/c_1 + 3 c_3/c_2 + \dots + n c_n/c_{n-2} = \frac{n(n+1)}{2}$$

(iv)
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)!}{(n!)^2}$$

(v)
$$C_0$$
 + 2 C_1 +3 C_2 +.....+ (n+1) C_n = 2^{n-1} (2+n)

- 24-(i) Expand $(3 + 2x)^{3/2}$ upto 4 terms.
 - (ii) Find the coefficient of x^5 in the expansion $(4-3x)^{-1/2}$
 - (iii) Find the general term in the expansion $(1-x^2)^{-3}$
 - (iv) Find the fifth term in the expansion $(1-2x^3)^{11/2}$
 - (v) Evaluate $\sqrt{30}$ upto 4 decimal places
- 25-Find the sum of the series $1 + 2 \times \frac{1}{3} + 3 \times \frac{1}{3^2} + 4 \times \frac{1}{3^3} + \dots \infty$