Fig. 1: Identification of differentially expressed genes in a fluorescence differential display screen

Fig. 2: Verification of differential expression of SULT4A1 splice variant 1 and/or splice variant 2 by quantitative RT-PCR

BEST AVAILABLE COPY

expression of SULT4A1sv1 and/or SULT4A1sv2 Fig. 6: Analysis of absolute mRNA

Companison of Break 0-3 with 4-5

Comparison of Brack 0.2 with Break 3-5

ENS0857

ensป647

Comparison of Braak 0.2 with Braak 3-6

Fig. 7: Analysis of absolute mRNA expression of SULT4A1sv1

Companison of Break 0-1 with 2-6

ensolitzwi

ens06178v1

-8/26-

Fig. 8: SEQ ID NO. 1:
amino acid sequence of
human SULT4A1 protein,
splice variant 1

Length: 284 aa

1 MAESEAETPS TPGEFESKYF EFHGVRLPPF CRGKMEEIAN FPVRPSDVWI

51 VTYPKSGTSL LQEVVYLVSQ GADPDEIGLM NIDEQLPVLE YPQPGLDIIK

101 ELTSPRLIKS HLPYRFLPSD: LHNGDSKVIY MARNPKDLVV SYYQFHRSLR

151 TMSYRGTFQE FCRRFMNDKL GYGSWFEHVQ EFWEHRMDSN VLFLKYEDMH

201 RDLVTMVEQL ARFLGVSCDK AQLEALTEHC HQLVDQCCNA EALPVGRGRV

251 GLWKDIFTVS MNEKFDLVYK QKMGKCDLTF DFYL

-9/26-

Fig. 9: SEQ ID NO. 2: amino acid sequence of human SULT4A1 protein, splice variant 2

Length: 171 aa

- 1 MAESEAETPS TPGEFESKYF EFHGVRLPPF CRGKMEEIAN FPVRPSDVWI
- 51 VTYPKSVGYG SWFEHVQEFW EHRMDSNVLF LKYEDMHRDL VTMVEQLARF
- 101 LGVSCDKAQL EALTEHCHQL VDQCCNAEAL PVGRGRVGLW KDIFTVSMNE
- 151 KFDLVYKQKM GKCDLTFDFY L

-10/26-

Fig. 10: SEQ ID NO. 3: nucleotide sequence of human SULT4A1 cDNA, splice variant 1

Length: 2419 bp

1	GCGACGGCGA	CGGCGGCGGC	ATGGCGGAGA	GCGAGGCCGA	GACCCCCAGC
51	ACCCCGGGGG	AGTTCGAGAG	CAAGTACTTC	GAGTTCCATG	GCGTGCGGCT
101	GCCGCCCTTC	TGCCGCGGGA	AGATGGAGGA	GATCGCCAAC	TTCCCGGTGC
151	GGCCCAGCGA	CGTGTGGATC	GTCACCTACC	CCAAGTCCGG	CACCAGCTTG
201	CTGCAGGAGG	TGGTCTACTT	GGTGAGCCAG	GGCGCTGACC	CCGATGAGAT
251	CGGCTTGATG	AACATCGACG	AGCAGCTCCC	GGTCCTGGAG	
301	CGGGCCTGGA	CATCATCAAG		CTCCCCGCCT	
351	CACCTGCCCT	ACCGCTTTCT	GCCCTCTGAC	CTCCACAATG	GAGACTCCAA
401	GGTCATCTAT	ATGGCTCGCA	ACCCCAAGGA	TCTGGTGGTG	
451	AGTTCCACCG	CTCTCTGCGG		ACCGAGGCAC	
501	TTCTGCCGGA	GGTTTATGAA		GGCTACGGCT	
551	GCACGTGCAG	GAGTTCTGGG	AGCACCGCAT	GGACTCGAAC	
601			CGGGACCTGG	TGACGATGGT	
651	GCCAGATTCC	TGGGGGTGTC	CTGTGACAAG		AAGCCCTGAC
701	GGAGCACTGC	CACCAGCTGG		CTGCAACGCT	
751	CCGTGGGCCG	GGGAAGAGTT	GGGCTGTGGA	AGGACATCTT	CACCGTCTCC
801	ATGAATGAGA	AGTTTGACTT	GGTGTATAAA	CAGAAGATGG	GAAAGTGTGA
851	CCTCACGTTT	GACTTTTATT		GAAACAACAA	
901	CACAATACCC	AGACAGTCTA	CTAGCCAAAA	GTCCTGTATG	CATTCATTTA
951		GACAAACTCT		TGTGAAACAG	CGGGGGAAGG
1001	GAAGAGCGGC	GTGAGCGGAG		GATTCCCAAC	
1051	GTCTCGCCTT				CAAACAGTCT
1101	CCACATTGCA	GTTCCAATGG	CCTGGACCGT		CCTGTAATAT
1151	ATGCAACTAG	AATGTCTGCC	TTTTCAACCC		TATTTTATAG
1201	AGCTTTTCAC	TGGAAATCTA	CATAAATGTC		ATAAAAGTTC
1251	ATTTCCAAGG	GGAATCAGGA			AGAAAGATCT
1301	CAGGGTTAAC	TCTTTATTTT	TGTAGTTTTA		CACAGCCATT
1351	CTGTTCTCAC				ATGAGTTGGG
1401	TCTGTTGGGG		CACTTGTTTA		GTTCACTTCT
1451	TCAGAACCTI		GCAGAAATTG		
1501	GACGTCCTTC		TTCCAGCGGG		GGCCCAATGC
1551	AGAGGAGCCC		TGCTGAGGGA		GTGAGGCTGG
1601	CAGGTGGGAG	TCTAATGCAG	TCAGGAGCAT	TTGCATGCAG	
1651		: AAAGGACCGA			
1701	AGCCTTACTI		AGTGATAGCC		
1751		TAAATTTCTA	AAATCCCCGG	GTCTTTATCA	TTCAGTTTGT
1801	TCTGTGCACC			GGACCATTT	
1851	CCCTGTTTC			CCGCCTGCGT	
1901		C CGTGTATCTG	AGGGAGTAAA	GGTGAGGTC	TTATTGCTTC
1951	ACTGCCTAAT				A GAGTCGGGGG
2001		A GCCAACCCCG			
2051	GCTGGAAAG	C ACCCAAAGTG	GTGGTCAGGA	GGGTCGCTG(TGTGGAAGGG

-11/26-

2101	GTCTCCGTTC	TTGGTGCTGT	ATTTGAAACG	GGTGTAGAGA	GAAGCTTGTG	
2151	TTTTTGTTTG	TAATGGGGAG	AAGCGTGGCC	AGGCAGGTGG	CACGTGGCAT	
2201	CGCATGGTGG	GCTCGGCAGC	ACCTTGCCTG	TGTTTCTGTG	AGGGAGGCTG	
2251	CTTTCTGTGA	AATTTCATTT	ATATTTTTCT	ATTTTTAGTA	CTGTATGGAT	
2301	GTTACTGAGC	ACTACACATG	ATCCTTCTGT	GCTTGCTTGC	ATCTTTAATA	
2351	AAGACATGTT	CCCGGCGTTG	CAAAAAAAAA	AAAAAAAAA	AAAAAAAAA	
2401	AAAAAAAAA	AAAAAAAA				

-12/26-

Fig. 11: SEQ ID NO. 4: nucleotide sequence of human SULT4A1 cDNA, splice variant 2

Length: 2080 bp

1 GCGACGGCGA CGGCGGCGGC ATGGCGGAGA GCGAGGCCGA GACCCCCAGC 51 ACCCCGGGGG AGTTCGAGAG CAAGTACTTC GAGTTCCATG GCGTGCGGCT 101 GCCGCCCTTC TGCCGCGGGA AGATGGAGGA GATCGCCAAC TTCCCGGTGC 151 GGCCCAGCGA CGTGTGGATC GTCACCTACC CCAAGTCCGT GGGCTACGGC 201 TCCTGGTTTG AGCACGTGCA GGAGTTCTGG GAGCACCGCA TGGACTCGAA 251 CGTGCTTTTT CTCAAGTATG AAGACATGCA TCGGGACCTG GTGACGATGG 301 TGGAGCAGCT GGCCAGATTC CTGGGGGTGT CCTGTGACAA GGCCCAGCTG 351 GAAGCCCTGA CGGAGCACTG CCACCAGCTG GTGGACCAGT GCTGCAACGC 401 TGAGGCCTG CCCGTGGGCC GGGGAAGAGT TGGGCTGTGG AAGGACATCT TCACCGTCTC CATGAATGAG AAGTTTGACT TGGTGTATAA ACAGAAGATG 501 GGAAAGTGTG ACCTCACGTT TGACTTTTAT TTATAATAAC AGAAACAACA 551 ACCTGCATGC TCACAATACC CAGACAGTCT ACTAGCCAAA AGTCCTGTAT 601 GCATTCATTT ATTCCTTGCT GGACAACTC TGGAAGCAGC GTGTGAAACA 651 GCGGGGAAG GGAAGAGCGG CGTGAGCGGA GGGAGTGTGA TGATTCCCAA 701 CCGAAGCAGC TGTCTCGCCT TTAGAACGTG CAGCCTCTCC ATGTCTGATT 751 ACAAACAGTC TCCACATTGC AGTTCCAATG GCCTGGACCG TAAGGATAAA 801 GCCTGTAATA TATGCAACTA GAATGTCTGC CTTTTCAACC CCGTATTATT 851 GTATTTATA GAGCTTTTCA CTGGAAATCT ACATAAATGT CAGTAAACCA 901 AATAAAAGTT CATTTCCAAG GGGAATCAGG AGCGAGCCAC ACCCGAATGG 951 TAGAAAGATC TCAGGGTTAA CTCTTTATTT TTGTAGTTTT ATTATCTAAG 1001 GCACAGCCAT TCTGTTCTCA CTTGGTTCTG AGATAGTGGT GAGAACAGAG 1051 GATGAGTTGG GTCTGTTGGG GGGAATCTGG ACACTTGTTT ATTCTGACGG 1101 AGTTCACTTC TTCAGAACCT TCCTGAAATG AGCAGAAATT GTTCACTAGG 1151 TCTTCAGAAT GGACGTCCTT CTGCCAGAGA CTTCCAGCGG GCGGCTCCAA 1201 AGGCCCAATG CAGAGGAGCC CGCGGAGCAT GTGCTGAGGG AAGTCTGCCT 1251 GGTGAGGCTG GCAGGTGGGA GTCTAATGCA GTCAGGAGCA TTTGCATGCA 1301 GTGGGTGGAG AGTCGGCCAC CAAAGGACCG AGTTGCGCTC GGAATTTGAG 1351 CTGAATTCCA CAGCCTTACT TTGTTTCCTG AAGTGATAGC CTACTAATGC 1401 TGGCAAGCAG ATGCTTAATA GTAAATTCT AAAATCCCCG GGTCTTTATC 1451 ATTCAGTTTG TTCTGTGCAC CTGAGGCGCT CAGCCGTGGG AGGACCATTT 1501 TGCGAGTGTA GCCCTGTTTC ACTCGGATCA GGTTGGCACG GCCGCCTGCG 1551 TGTCTGTCCA CCTCATCCCT CCGTGTATCT GAGGGAGTAA AGGTGAGGTC 1601 TTTATTGCTT CACTGCCTAA TTTTCTCACC CACATTCGCT GAAGCGATGG 1651 AGAGTCGGGG GCCAGTAGCC AGCCAACCCC GTGGGGACCG GGGTTGTCTG TCATTTATGT GGCTGGAAAG CACCCAAAGT GGTGGTCAGG AGGGTCGCTG CTGTGGAAGG GGTCTCCGTT CTTGGTGCTG TATTTGAAAC GGGTGTAGAG 1801 AGAAGCTTGT GTTTTTGTTT GTAATGGGGA GAAGCGTGGC CAGGCAGGTG 1851 GCACGTGGCA TCGCATGGTG GGCTCGGCAG CACCTTGCCT GTGTTTCTGT 1901 GAGGGAGGCT GCTTTCTGTG AAATTTCATT TATATTTTTC TATTTTTAGT 1951 ACTGTATGGA TGTTACTGAG CACTACACAT GATCCTTCTG TGCTTGCTTG 2001 CATCTTTAAT AAAGACATGT TCCCGGCGTT GCAAAAAAA AAAAAAAAA 2051 ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ

-13/26-

Fig. 12: SEQ ID NO. 5

Length: 32 bp

1 GATTGCATCT TTAATAAAGA CATGTTCCCG GC

-14/26-

Fig. 13: SEQ ID NO. 6: nucleotide sequence of human SULT4A1 coding sequence

Length: 855 bp

1 ATGGCGGAGA GCGAGGCCGA GACCCCCAGC ACCCCGGGGG AGTTCGAGAG 51 CAAGTACTTC GAGTTCCATG GCGTGCGGCT GCCGCCCTTC TGCCGCGGGA 101 AGATGGAGGA GATCGCCAAC TTCCCGGTGC GGCCCAGCGA CGTGTGGATC 151 GTCACCTACC CCAAGTCCGG CACCAGCTTG CTGCAGGAGG TGGTCTACTT 201 GGTGAGCCAG GGCGCTGACC CCGATGAGAT CGGCTTGATG AACATCGACG 251 AGCAGCTCCC GGTCCTGGAG TACCCACAGC CGGGCCTGGA CATCATCAAG 301 GAACTGACCT CTCCCCGCCT CATCAAGAGC CACCTGCCCT ACCGCTTTCT 351 GCCCTCTGAC CTCCACAATG GAGACTCCAA GGTCATCTAT ATGGCTCGCA 401 ACCCCAAGGA TCTGGTGGTG TCTTATTATC AGTTCCACCG CTCTCTGCGG 451 ACCATGAGCT ACCGAGGCAC CTTTCAAGAA TTCTGCCGGA GGTTTATGAA 501 TGATAAGCTG GGCTACGGCT CCTGGTTTGA GCACGTGCAG GAGTTCTGGG 551 AGCACCGCAT GGACTCGAAC GTGCTTTTTC TCAAGTATGA AGACATGCAT 601 CGGGACCTGG TGACGATGGT GGAGCAGCTG GCCAGATTCC TGGGGGTGTC 651 CTGTGACAAG GCCCAGCTGG AAGCCCTGAC GGAGCACTGC CACCAGCTGG 701 TGGACCAGTG CTGCAACGCT GAGGCCCTGC CCGTGGGCCG GGGAAGAGTT 751 GGGCTGTGGA AGGACATCTT CACCGTCTCC ATGAATGAGA AGTTTGACTT 801 GGTGTATAAA CAGAAGATGG GAAAGTGTGA CCTCACGTTT GACTTTTATT 851 TATAA

-15/26-

Fig. 14: Alignment of SEQ ID NO. 5 with human SULT4A1sv1 and SULT4A1sv2 cDNAs

Length: 32 bp

SEQ ID NO.5 : SULT4A1sv1

SEQ ID NO.5 : SULT4A1sv2

Fig. 16:

BEST AVAILABLE COPY

-18/26-

)

BEST AVAILABLE COPY

SULT4A1 protein in neuroglioma cells Fig. 18: Immunofluorescence analysis of

Fig. 19. Effect of trophic factor deprivation on SULT4A1 over-expressing cells

BEST AVAILABLE COPY

Fig. 20: Generation of Sult4A1 deficient mice

BEST AVAILABLE COr 1

Fig. 21: Generation of Sult4A1 trangenic mice

-23/26-

Fig. 22: Transgenic expression of Sult4A1

A

B

name	cycle number	mean	stdev	error [%]	efficiency (expression normalized to housekee ping gene)
SULT4A1#3	21.34	21.300	0.14422205	0.67709883	1.8 times more than
SULT4A1#3	21.14				SULT4A1#8; 2.7 times
SULT4A1#3	21.42				more than SULT4A1#22
SULT4A1#8	23.79	23.917	0.11676187	0.48820292	
SULT4A1#8	23.94				
SULT4A1#8	24.02				
SULT4A1#22		23.915	0.03535534	0.1478375	
SULT4A1#22	23.94				
SULT4A1#22	23.89				

E= 10^(-1/stope) slope= -2.960 E= 2.176

+ SULT4A1#3 APP + BACE + SULT4A1#22 + SULT4A1#8 APP + BACE + SULT4A1#3 **APP + BACE + SULT4A1#22** APP + BACE + SULT4A1#8 APP + BACE APP + BACE 24B10 SULT4A1#22 SULT4A1#3 **SULT4A1#8** 4 8 U

Fig. 23: Histological analysis of Sult4A1 expression

BEST AVAILABLE COPY

Fig. 25: Thioflavin S positive amyloid plaques in transgenic flies

00

38d

APP + BACE + PsnL235P