Теория вероятностей

(Ещё не)алгебраист

8 июня 2025 г.

Предисловие

Эти записки созданы с целью аккуратно формализовать и заполнить пробелы в лекциях Елены Борисовны Яровой. В разделе 1 будут содержаться основные принятые в курсе обозначения, а также сведения и определения из разных разделов математики, которыми автор будет пользоваться. Поскольку автор считает полезным взгляд на всякий раздел математики с точки зрения теории категорий и её приложений, этот язык также будет упоминаться (тем не менее, не замещая собой прочие подходы).

Содержание

1	Пре	едварительные сведения	3
	1.1	Обозначения	3
	1.2	Предварительные сведения из действительного анализа	3
	1.3	Предварительные сведения из анализа Фурье	4
	1.4	Предварительные сведения из линейной алгебры	4
		1.4.1 Билинейные и квадратичные формы	4
		1.4.2 Полуторалинейные функции	5
	1.5	Теория категорий и взгляд на измеримые пространства с её точки	
		зрения	6
2	Bep	оятностное пространство, случайные события	6
3	Усл	овные вероятности, формула Байеса, формула полной вероят-	
	нос	7 1 1 0	9
4	Слу	учайные величины, их распределения, функции распределения	
	•	лотности	9

5	Классические примеры распределений	!
	5.1 Распределение константы	
	5.2 Распределение Бернулли	
	5.3 Дискретное равномерное распределение	
	5.4 Биномиальное распределение	
	5.5 Распределение Пуассона	
	5.6 Геометрическое распределение	
	5.7 Гипергеометрическое распределение	
	5.8 Отрицательное биномиальное распределение	
	5.9 Равномерное распределение	
	5.10 Экспоненциальное (показательное) распределение	
	5.11 Нормальное распределение (распределение Гаусса)	
	5.12 Распределение Коши	1
6	Численные характеристики случайных величин	10
7	Сходимости случайных величин	1
8	Производящие функции	10
9	Характеристические функции	10
10	О Предельные теоремы	10
	10.1 Неравенства	1
	10.2 Закон больших чисел	
	10.3 Теорема Муавра-Лапласа	1
	10.4 Закон нуля или единицы	1
	10.5 Закон повторного логарифма	1
	10.6 Закон арксинуса	
	10.7 Правило трёх сигм	
	10.8 Центральная предельная теорема	1
11	1 Совместные распределения случайных величин	1
12	2 Свёртки случайных величин	1
13	3 Указатель терминов	1

1 Предварительные сведения

1.1 Обозначения

- Ω пространство элементарных исходов;
- ω элементарный исход;
- $\mathfrak{F} \sigma$ -алгебра событий;
- Р вероятностная мера;
- ξ, η, ζ случайные величины;
- Е ξ математическое ожидание случайной величины ξ ;
- $D\xi$ дисперсия случайной величины ξ ;
- $Cov(\xi, \eta)$ ковариация случайных величин ξ и η ;
- $\rho(\xi,\eta)$ корреляция случайных величин ξ и η ;

1.2 Предварительные сведения из действительного анализа

Пусть Ω — некоторое множество. Система множеств (следует понимать как синоним термина «семейство множеств») $R \subset 2^{\Omega}$ называется σ -алгеброй с единицей Ω , если выполнены следующие аксиомы.

- (1) $\Omega \in R$;
- $(2) \ \forall \ A, B \in R : A \cup B, A \cap B \in R$
- (3) $\forall A \in R : \Omega \setminus A := \overline{A} \in R;$
- $(4) \ \forall \ \{A_k\}_{k \in R} \subset R: \ \bigcup_{k \in \mathbb{N}} A_k \in R.$

Мы опускаем многие классические определения, которые не будут возникать непосредственно при доказательствах (например, если выполнены только первые три свойства, то R называется алгеброй). Далее, если не оговорено иное, все алгебры являются σ -алгебрами с единицей Ω и будут называться « σ -алгебрами».

Будем называть функцию $\mu \colon R \to \mathbb{R} \sqcup \{+\infty\}$ мерой на σ -алгебре R, если выполнена аксиома $\forall A, B \in R, A \cap B = \varnothing \ \mu(A \sqcup B) = \mu(S) + \mu(B)$. Если дополнительно для любой последовательности попарно непересекающихся подмножеств $\{A_k\}_{k \in \mathbb{N}}$ имеет место равенство $\mu\left(\bigsqcup_{k \in \mathbb{N}}\right) = \sum_{k \in \mathbb{N}} \mu(A_k)$, то мера называется σ -аддитивной.

1.3 Предварительные сведения из анализа Фурье

1.4 Предварительные сведения из линейной алгебры

1.4.1 Билинейные и квадратичные формы

Пусть k — некоторое поле (в нашем случае будут рассматриваться только поля вещественных чисел \mathbb{R}) и V — векторное пространство над k.

Отображение $B\colon V\times V\to \Bbbk$ называется билинейной функцией, если выполнены следующие аксиомы

- (1) $\forall v, u, w \in V \ B(u+v, w) = B(u, w) + B(v, w);$
- (2) $\forall v, u \in V, \lambda \in \mathbb{k} \ B(\lambda u, v) = \lambda B(u, v);$
- (3) $\forall v, u, w \in V \ B(u, v + w) = B(u, w) + B(u, v);$
- (4) $\forall v, u \in V, \lambda \in \mathbb{k} \ B(u, \lambda v) = \lambda B(u, v).$

Билинейная функция называется симметрической, если дополнительно для любых $u, v \in V$ выполнено B(u, v) = B(v, u).

Пример. Пусть $V = \mathbb{k}$ и $B(a,b) = a \cdot b$, где · — умножение в поле \mathbb{k} . Тогда B — симметрическая билинейная функция.

Пример. Пусть в векторном пространстве V фиксирован базис e_1, \ldots, e_n . Тогда если $B(x,y) = \sum_{i=1}^n x_i y_i$, где $x = \sum_{i=1}^n x_i e_i$ и $y = \sum_{i=1}^n y_i e_i$, то B — также билинейная симметрическая форма.

Квадратичной формой называется отображение $Q\colon V\to \Bbbk$ такое, что для некоторой билинейной формы и любой вектора $v\in V$ имеет место равенство Q(v)=B(v,v). Если B — билинейная функция, то квадратичная форма Q, заданная формулой Q(v)=B(v,v) называется квадратичной формой соответствующей билинейной функции B. Пусть $\Bbbk=\mathbb{R},\ Q$ — квадратичная форма и для любого ненулевого вектора $v\in V$ выполнено неравенство Q(v)>0. Тогда форма Q называется положительно определённой. Если для любого $v\in V$ выполнено неравенство $Q(v)\geqslant 0$, то форма Q называется неотрицательно определённой.

Симметрическую билинейную форму с положительно определённой соответствующей квадратичной формой называют скалярным произведением. Вместо B(u,v) часто пишут (u,v) или $\langle u,v \rangle$.

Примеры. Квадратичные формы, соответствующие билинейным функциям из примеров выше являются положительно определёнными.

Теорема 1.1 (Коши, Буняковский, Шварц). Пусть V — векторное пространство над полем \mathbb{R} и B — скалярное произведение на V. Тогда дл любых двух векторов $u,v\in V$ выполнено равенство

$$B(u, v)^2 \leqslant B(u, u)B(v, v),$$

причём равенство достигается тогда и только тогда, когда и и v коллинеарны.

Доказательство. Рассмотрим вектор u+tv, где $t\in\mathbb{R}$ и значение квадратичной формы на нём. По билинейности, симметричности и положительной определённости имеем

$$B(u+tv, u+tv) = B(u, u) + tB(u, v) + tB(v, u) + t^2B(v, v) = B(u, u) + 2tB(u, v) + t^2B(v, v) \geqslant 0,$$

причём последнее равенство достигается тогда и только тогда, когда u + tv = 0.

Многочлен второй степени принимает только неотрицательные (положительные) значения тогда и только тогда, когда его дискриминант меньше или равен 0 (меньше 0). Итого

$$D = 4B(u,v)^2 - 4B(u,u)B(v,v) \leqslant 0 \Leftrightarrow B(u,v)^2 \leqslant B(u,u)B(v,v)$$

и $D = 0 \Leftrightarrow B(u, v)^2 = B(u, u)B(v, v)$. Последнее равносильно тому, что многочлен имеет корень t и u + tv = 0, то есть u и v пропорциональны.

Заметьте, что доказательство этого неравенства в случае поля комплексных чисел требует добавления дополнительной «поправки» λ .

1.4.2 Полуторалинейные функции

В этом подразделе будем рассматривать только векторные пространства над полем комплексных чисел.

Отображение $S: V \times V \to \mathbb{R}$ называется полуторалинейной функцией (по второму аргументу), если выполнены следующие аксиомы

- (1) $\forall v, u, w \in V \ S(u+v, w) = S(u, w) + S(v, w);$
- (2) $\forall v, u \in V, \lambda \in \mathbb{k} \ S(\lambda u, v) = \lambda S(u, v);$
- (3) $\forall v, u, w \in V \ S(u, v + w) = S(u, w) + S(u, v);$
- (4) $\forall v,u\in V,\lambda\in \mathbbm{k}$ $S(u,\lambda v)=\overline{\lambda}S(u,v)$, где надчёркивание означает комплексное сопряжение.

Полуторалинейная функция называется эрмитовой, если для любых векторов u и v дополнительно выполнено равенство $S(u,v) = \overline{S(v,u)}$.

Эрмитова функция называется скалярным произведением, если для любого ненулевого вектора v выполнено неравенство S(v,v)>0.

Теорема 1.2 (Коши, Буняковский, Шварц). Пусть V — векторное пространство над полем \mathbb{C} и S — скалярное произведение на V. Тогда для любых двух векторов $u, v \in V$ выполнено равенство

$$S(u,v)\overline{S(u,v)} \leqslant S(u,u)S(v,v),$$

причём равенство достигается тогда и только тогда, когда и и v коллинеарны.

Доказательство. Если S(u,v) = 0, то неравенство выполнено. При таком условии u и v пропорциональны тогда и только тогда, когда один из этих векторов равен 0. Последнее в свою очередь равносильно тому, что правая часть неравенства обращается в нуль. Далее будем считать, что $S(u,v) \neq 0$.

Рассмотрим вектор $u + t\lambda v$, где $t \in \mathbb{R}$ и $\lambda = S(u, v)$. Поскольку S — скалярное произведение и из условий наложенных на λ , то

$$S(u+t\lambda v, u+t\lambda v) = S(u,u) + t\overline{\lambda}S(u,v) + t\lambda S(v,u) + t^2\lambda\overline{\lambda}S(v,v) =$$

$$= S(u,u) + 2tS(u,v)S(v,u) + t^2S(u,v)S(v,u)S(v,v) \leqslant 0$$

причём последнее равенство достигается тогда и только тогда, когда $u + t\lambda v = 0$.

Многочлен второй степени принимает только неотрицательные (положительные) значения тогда и только тогда, когда его дискриминант меньше или равен 0 (меньше 0). Итого

$$D = 4S(u,v)^2S(v,u)^2 - 4S(u,u)S(v,v)S(u,v)S(v,u) \leqslant 0 \Leftrightarrow S(u,v)S(v,u) \leqslant S(u,u)S(v,v)$$
 и $D = 0 \Leftrightarrow S(u,v)^2 = S(u,u)S(v,v)$. Последнее равносильно тому, что многочлен имеет корень t и $u + tS(u,v)v = 0$, то есть u и v пропорциональны.

1.5 Теория категорий и взгляд на измеримые пространства с её точки зрения

2 Вероятностное пространство, случайные события

Пусть Ω — некоторое множество, \mathfrak{F} — σ -алгебра с единицей Ω и P — σ -аддитивная мера на \mathfrak{F} , удовлетворяющая свойству $P(\Omega) = 1$. Тогда тройка $(\Omega, \mathfrak{F}, P)$ называется вероятностным пространством. Множество Ω называется пространством элементарных событий (исходов), элементы σ -алгебры \mathfrak{F} называются событиями.

Вероятностное пространство называется дискретным, если множество Ω не более, чем счётно.

Для кратности, если множество $\{\omega\}$ является событием, вместо $P(\omega)$ будем писать $P(\omega)$.

Примеры. Пусть $\Omega = \{1, 2, 3, 4, 5, 6\}$ — числа, возникающие при броске игральной кости. Будем считать, что все элементарные исходы равновероятны, то есть $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$. Тогда вероятность события $A = \{2, 4, 6\}$ — «>выпало чётное число> равна $P(A) = P(2) + P(4) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$.

Рассмотренный пример мотивирует нас ввести параллельные определения для дискретного пространства. Дискретным вероятностным пространством мы будем называть пару (Ω, P) , где $\Omega = \{\omega_k\}_{k \in \mathbb{N}}$ — не более чем счётное множество (также называемое пространством элементарных исходов), а $P \colon \Omega \to \mathbb{R}$ — неотрицательная функция, удовлетворяющая свойству $\sum_{k \in \mathbb{N}} P(\omega_k) = 1$. Говорят, что в этом случае

на Ω заданы вероятности элементарных событий и что функция P задаёт на Ω распределение вероятностей. Событиями называются подмножества Ω . Вероятностью события $A \subset \Omega$ называется величина

$$P(A) = \sum_{\omega \in A} P(\omega),$$

которую мы также будем обозначать буквой Р. Последнее данное определение корректно, поскольку ряд в правой части сходится абсолютно.

Предложение 2.1. Пусть $(\Omega, P) - \partial u c \kappa p e m hoe вероятностное пространство в смысле последнего определения. Пусть <math>P \colon 2^{\Omega} \to \mathbb{R} - \phi y$ нкция, сопоставляющая событию его вероятность. Тогда тройка $(\Omega, 2^{\Omega}, P)$ является вероятностным пространством в смысле исходного определения.

Доказательство. Множество 2^{Ω} является σ -алгеброй, поэтому достаточно проверить, что функция Р удовлетворяет аксиомам вероятностной меры.

Из определения Р имеем

$$P(\Omega) = \sum_{i=1}^{+\infty} P(\omega_i) = 1.$$

Пусть $A, B \subset \Omega$ и $A \cap B = \emptyset$. Положим $A = \{\omega_i\}_{i \in I_A}$, $B = \{\omega_i\}_{i \in I_B}$ и $A \sqcup B = \{\omega_i\}_{i \in I_{A \sqcup B}}$. Поскольку A и B не пересекаются, то $I_A \sqcup I_B = I_{A \sqcup B}$. Тогда, так как ряды в формуле ниже сходятся абсолютно, имеем

$$P(A \sqcup B) = \sum_{i \in I_{A \sqcup B}} \omega_i = \sum_{i \in I_A} \omega_i + \sum_{i \in I_B} \omega_i = P(A) + P(B).$$

Пусть теперь $\{A_k\}_{k\in\mathbb{N}}$ — счётное семейство непересекающихся подмножеств множества Ω . Положим $A_k=\{\omega_i\}_{i\in I_k},\ A=\bigsqcup_{k\in I}A_k$. Снова, поскольку A_k попарно не пересекаются, то $I=\bigsqcup_{k\in\mathbb{N}}I_k$. Поскольку все ряды ниже сходятся абсолютно, то выполнены равенства

$$P(A) = \sum_{i \in I} P(\omega_i) = \sum_{k \in \mathbb{N}} \sum_{i \in I_k} P(\omega_i) = \sum_{k \in \mathbb{N}} P(A_k).$$

Пусть $A, B \in \mathfrak{F}$ — события. Введём основные операции над событиями и приведём их классические наименования и обозначения в теории вероятностей.

Событие $\Omega \setminus A$ называется дополнением к событию A и обозначается \overline{A} («событие A не произошло»).

Событие $A \cup B$ называется суммой событий A и B и обозначается A + B («произошло событие A или B»). В курсе лекций это обозначение использовалось для случаев, когда $A \cap B = \emptyset$.

7

Событие $A \cap B$ называется произведением событий A и B и обозначается AB («произошло и событие A и событие B»).

События Ω и \varnothing называются достоверным и невозможным, соответственно.

Если $AB = \emptyset$, то события A и B называются несовместными. («события A и B не происходят одновременно»).

Предложение 2.2. Пусть $A, B, A_k \in \mathfrak{F}$ — события. Тогда имеет место следуюшее:

- (1) $P(\overline{A}) = 1 P(A);$
- (2) $ecnu A \subset B$, $mo P(A) \leq P(B)$;
- (3) $P(A \cup B) = P(A) + P(B) P(AB)$;

(4)
$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{i_1 < i_2 < \dots < i_k} P(A_{i_1} \dots A_{i_k});$$

Доказательство. Первое равенство следует из цепочки

$$1 = P(\Omega) = P(A \sqcup \overline{A}) = P(A) + P(\overline{A}).$$

Второе равенство — из цепочки

$$P(B) = P(A \cup (B \setminus A)) = P(A) + P(B \setminus A) \geqslant P(A).$$

Третье равенство — из цепочки

$$P(A \cup B) = P((A \setminus B) \sqcup (A \cap B) \sqcup (B \setminus A)) =$$

$$= P(A \setminus B) + P(A \cap B) + P(B \setminus A) + P(A \cap B) - P(A \cap B) =$$

$$= P((A \setminus B) \sqcup (A \cap B)) + P((B \setminus A) \sqcup (A \cap B)) - P(A \cap B) =$$

$$= P(A) + P(B) - P(A \cap B).$$

Докажем четвёртое равенство по индукции.

База n=2 была доказана в пункте 3.

Докажем шаг. Положим $B = \bigcup_{k=1}^{n-1} A_k$. По базе индукции

$$P(B \cup A_n) = P(B) + P(A_n) - P(BA_n).$$

Далее, положим $B_k = A_k A_n$. Тогда $BA_n = \bigcup_{k=1}^{n-1} B_k$. По индукционному предположению вероятность $P(B \cup A_n)$ равна

$$\sum_{k=1}^{n-1} (-1)^{k-1} \sum_{i_1 < i_2 < \dots < i_k} P(A_{i_1} \dots A_{i_k}) + P(A_n) - \left(\sum_{k=1}^{n-1} (-1)^{k-1} \sum_{i_1 < i_2 < \dots < i_k} P(A_{i_1} \dots A_{i_k} A_n) \right) =$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{i_1 < i_2 < \dots < i_k} P(A_{i_1} \dots A_{i_k}).$$

- 3 Условные вероятности, формула Байеса, формула полной вероятности
- 4 Случайные величины, их распределения, функции распределения и плотности

НУЖНО: вписать все определения

НУЖНО: ввести функцию распределения

НУЖНО: определить распределение как прямой образ вероятностной меры

НУЖНО: доказать, что прямой образ вероятностной меры и мера Лебега-

Стилтьеса, порождённая функцией распределения совпадают

НУЖНО: ввести понятие абсолютно непрерывной случайной величины и её

плотности

5 Классические примеры распределений

НУЖНО: вписать описания для всех классических распределений Дискретные распределения.

- 5.1 Распределение константы
- 5.2 Распределение Бернулли
- 5.3 Дискретное равномерное распределение
- 5.4 Биномиальное распределение
- 5.5 Распределение Пуассона
- 5.6 Геометрическое распределение
- 5.7 Гипергеометрическое распределение
- 5.8 Отрицательное биномиальное распределение

Абсолютно непрерывные случайные величины

- 5.9 Равномерное распределение
- 5.10 Экспоненциальное (показательное) распределение
- 5.11 Нормальное распределение (распределение Гаусса)
- 5.12 Распределение Коши

6 Численные характеристики случайных величин

НУЖНО: записать определения и свойства, описать ковариацию как скалярное произведение

НУЖНО: доказать формулы для вычисленя матожидания через интегралы Лебега, Лебега-Стилтьеса и интеграл Римана для абсолютно непрерывной случайно величины

7 Сходимости случайных величин

НУЖНО: записать определения всех сходимостей и вывод одних сходимостей из других

8 Производящие функции

НУЖНО: записать определение

9 Характеристические функции

Теорема 9.1 (Бохнер, Хинчин).

10 Предельные теоремы

НУЖНО: дописать ниже доказательства теорем

10.1 Неравенства

10.2 Закон больших чисел

Теорема 10.1 (Закон больших чисел в форме Бернулли).

Теорема 10.2 (Закон больших чисел в форме Чебышёва).

Теорема 10.3 (Усиленный закон больших чисел).

Теорема 10.4 (Закон больших чисел в форме Хинчина). content

10.3 Теорема Муавра-Лапласа

Теорема 10.5 (Теорема Пуассона).

Теорема 10.6 (Формула Стирлинга).

Теорема 10.7 (Муавр, Лапласа).

10.4 Закон нуля или единицы

Лемма 10.8 (Борель, Кантелли).

Лемма 10.9 (Борель, Кантелли).

Теорема 10.10 (Закон нуля или единицы Колмогорова).

10.5 Закон повторного логарифма

Теорема 10.11 (Закон повторного логарифма).

10.6 Закон арксинуса

Теорема 10.12 (Закон арксинуса).

10.7 Правило трёх сигм

Теорема 10.13 (Правило трёх сигм).

10.8 Центральная предельная теорема

Теорема 10.14 (Центральная предельная теорема).

Теорема 10.15 (Оценка Берри-Эссена).

11 Совместные распределения случайных величин

d

12 Свёртки случайных величин

d

13 Указатель терминов

d

14 Указатель теорем

d

Список литературы

- [1] J. Buhler, Z. Reichstein On the Essential Dimension of a Finite Group, Comp. Math. 106, 1997, 159–179.
- [2] Huah Chu, Shou-Jen Hu, Ming-chang Kang, Jiping Zhang, Groups with essential dimension one, 2006, 26 p.
- [3] I. V. Dolgachev McKay correspondence. Winter 2006/07, 2009, 161 p.
- [4] A. Duncan Finite groups of essential dimension 2, Comment. Math. Helv. 88, no. 3, 2013, 555-585.
- [5] D. Kaur, Z. Reichstein Essential Dimension of Small Finite Groups, 2024.
- [6] N. A. Karpenko, A. S. Merkurjev Essential dimension of finite p-groups, Invent. Math. 172, no. 3, 2008, 491–508.
- [7] Ж.-П. Серр Линейные представления конечных групп, Мир, 1970, 133 с.
- [8] M. Suzuki Group Theory I, Springer, 1981, 446 p.