```
clc
clear all
```

Here we show the classification results using SMOTE and Random undersampling as well as SVM vs BiLSTM

The metrics considered are Class specific F-measures, macro average and micro average F-measure, precision, specificity, sensitivity etc. We have also included accuracy even though it may not be a good metric for testing imbalanced dataset. In addition normalized confusion matrix is also provided for analysis.

SVM based Classification

REM vs Wake

```
Model = load('C:\courses\ML\project\SVM_2_class\trained_model_SVM_US.mat'); % Model trained wire
Model = Model.model;
Testing = load('C:\courses\ML\project\SVM_2_class\Testingred_features_SVM_US.mat');
Testing = Testing.testFeatures1;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\TwoclastingLabels = TestingLabels.TwoClassTest_US_Labels';
[label,score] = predict(Model,Testing);
C = confusionmat(TestingLabels,categorical(label));
[stats] = statsOfMeasure(C, 1);
```

 $stats = 9 \times 4 table$

	name	cla	sses	macroAVG	microAVG
1	"true_positive"	2385	716	1.5505e+03	1.5505e+03
2	"false_positive"	113	878	495.5000	495.5000
3	"false_negative"	878	113	495.5000	495.5000
4	"true_negative"	716	2385	1.5505e+03	1.5505e+03
5	"precision"	0.9548	0.4492	0.7020	0.7578
6	"sensitivity"	0.7309	0.8637	0.7973	0.7578
7	"specificity"	0.8637	0.7309	0.7973	0.7578
8	"accuracy"	0.7578	0.7578	0.7578	0.7578
9	"F-measure"	0.8280	0.5910	0.7095	0.7578

```
figure
confusionchart(TestingLabels,categorical(label),'Normalization','row-normalized','RowSummary',
```



```
Model = load('C:\courses\ML\project\SVM_2_class\trained_model_SVM_SMOTE.mat'); % Model trained
Model = Model.model;
Testing = load('C:\courses\ML\project\SVM_2_class\Testingred_features_SVM_SMOTE.mat');
Testing = Testing.testFeatures1;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\TwoclassTestingLabels = TestingLabels.TwoClassTest_SMOTE_Labels';
[label,score] = predict(Model,Testing);
C = confusionmat(TestingLabels,categorical(label));
[stats] = statsOfMeasure(C, 1);
```

stats = 9×4 table

	name	cla	classes		microAVG
1	"true_positive"	2927	605	1766	1766
2	"false_positive"	224	336	280	280
3	"false_negative"	336	224	280	280
4	"true_negative"	605	2927	1766	1766
5	"precision"	0.9289	0.6429	0.7859	0.8631
6	"sensitivity"	0.8970	0.7298	0.8134	0.8631

	name	classes		macroAVG	microAVG
7	"specificity"	0.7298	0.8970	0.8134	0.8631
8	"accuracy"	0.8631	0.8631	0.8631	0.8631
9	"F-measure"	0.9127	0.6836	0.7982	0.8631

figure
confusionchart(TestingLabels, categorical(label), 'Normalization', 'row-normalized', 'RowSummary',

NREM vs Wake

Model trained using Random Undersampling of Majority class (The models considered here are the best models obtained using hyperparameter optimization)

```
Model = load('C:\courses\ML\project\SVM_3_class\trained_model_SVM_US.mat'); % Model trained wir
Model = Model.model;
Testing = load('C:\courses\ML\project\SVM_3_class\Testingred_features_SVM_US.mat');
Testing = Testing.testFeatures1;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\Three
TestingLabels = TestingLabels.ThreeClassTest_US_Labels';
[label,score] = predict(Model,Testing);
C = confusionmat(TestingLabels,categorical(label));
[stats] = statsOfMeasure(C, 1);
```

 $stats = 9 \times 4 table$

	name	cla	sses	macroAVG	microAVG
1	"true_positive"	13184	716	6950	6950
2	"false_positive"	113	2076	1.0945e+03	1.0945e+03
3	"false_negative"	2076	113	1.0945e+03	1.0945e+03
4	"true_negative"	716	13184	6950	6950
5	"precision"	0.9915	0.2564	0.6240	0.8639
6	"sensitivity"	0.8640	0.8637	0.8638	0.8639
7	"specificity"	0.8637	0.8640	0.8638	0.8639
8	"accuracy"	0.8639	0.8639	0.8639	0.8639
9	"F-measure"	0.9233	0.3955	0.6594	0.8639

figure
confusionchart(TestingLabels, categorical(label), 'Normalization', 'row-normalized', 'RowSummary',


```
Model = load('C:\courses\ML\project\SVM_3_class\trained_model_SVM_SMOTE.mat'); % Model trained
Model = Model.model;
Testing = load('C:\courses\ML\project\SVM_3_class\Testingred_features_SVM_SMOTE.mat');
Testing = Testing.testFeatures1;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\Three
```

```
TestingLabels = TestingLabels.ThreeClassTest_SMOTE_Labels';
[label,score] = predict(Model,Testing);
C = confusionmat(TestingLabels,categorical(label));
[stats] = statsOfMeasure(C, 1);
```

 $stats = 9 \times 4 table$

	name	classes		macroAVG	microAVG
1	"true_positive"	13780	632	7206	7206
2	"false_positive"	197	1480	838.5000	838.5000
3	"false_negative"	1480	197	838.5000	838.5000
4	"true_negative"	632	13780	7206	7206
5	"precision"	0.9859	0.2992	0.6426	0.8958
6	"sensitivity"	0.9030	0.7624	0.8327	0.8958
7	"specificity"	0.7624	0.9030	0.8327	0.8958
8	"accuracy"	0.8958	0.8958	0.8958	0.8958
9	"F-measure"	0.9426	0.4298	0.6862	0.8958

figure
confusionchart(TestingLabels, categorical(label), 'Normalization', 'row-normalized', 'RowSummary',

Five class Classification

Model = load('C:\courses\ML\project\SVM_5_class\AUTOMATEDCODE\trained_model_SVM_US.mat'); % Model

```
Model = Model.model;
Testing = load('C:\courses\ML\project\SVM_5_class\AUTOMATEDCODE\Testingred_features_SVM_US.mat
Testing = Testing.testFeatures1;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\Fivec
TestingLabels = TestingLabels.Class_Testing';
[label,score] = predict(Model,Testing);
C = confusionmat(TestingLabels,categorical(label));
[stats] = statsOfMeasure(C, 1);
```

stats = 9x4 table

. . .

	name
1	"true_positive"
2	"false_positive"
3	"false_negative"
4	"true_negative"
5	"precision"
6	"sensitivity"
7	"specificity"
8	"accuracy"
9	"F-measure"

```
figure
confusionchart(TestingLabels, categorical(label), 'Normalization', 'row-normalized', 'RowSummary',
```


REM

score = 4092×2 single matrix

Bidirectional Long Short Term Memory (BiLSTM) based classification REM vs Wake

```
Model = load('C:\courses\ML\project\codes\TrainNetworkProject2\BiLSTM_fiveclass\hyperparameter)
Model = Model.netLSTM;
Testing = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\TwoclassTes
Testing = Testing.Balancedsleep2ClasstestUSCell;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\Twocla
TestingLabels = TestingLabels.TwoClassTest_US_Labels';
[label,score] = classify(Model,Testing)
label = 4092×1 categorical
REM
REM
REM
REM
REM
REM
Wake
Wake
REM
```

```
0.9400
         0.0600
0.9822
         0.0178
0.8458
         0.1542
0.9981
         0.0019
0.9988
         0.0012
0.9978
         0.0022
0.0114
         0.9886
0.0762
         0.9238
0.9956
         0.0044
0.9952
         0.0048
```

```
C = confusionmat(TestingLabels, categorical(label));
[stats] = statsOfMeasure(C, 1);
```

 $stats = 9 \times 4 table$

	name	cla	sses	macroAVG	microAVG
1	"true_positive"	2835	522	1.6785e+03	1.6785e+03
2	"false_positive"	307	428	367.5000	367.5000
3	"false_negative"	428	307	367.5000	367.5000
4	"true_negative"	522	2835	1.6785e+03	1.6785e+03
5	"precision"	0.9023	0.5495	0.7259	0.8204
6	"sensitivity"	0.8688	0.6297	0.7493	0.8204
7	"specificity"	0.6297	0.8688	0.7493	0.8204
8	"accuracy"	0.8204	0.8204	0.8204	0.8204
9	"F-measure"	0.8852	0.5868	0.7360	0.8204


```
Model = load('D:\ML\hyperparametertuning_SMOTE_BILSTM_2CLASS\0.22749.mat'); % Best Model train
Warning: While loading an object of class 'nnet.cnn.TrainingOptionsADAM':
'CheckpointFrequency' is not an option for solver 'adam'.
Model = Model.netLSTM;
Testing = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\TwoclassTes
Testing = Testing.Balancedsleep2ClasstestSMOTECell;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\Twocla
TestingLabels = TestingLabels.TwoClassTest_SMOTE_Labels';
[label,score] = classify(Model,Testing)
label = 4092×1 categorical
REM
REM
REM
REM
REM
REM
Wake
Wake
REM
REM
score = 4092×2 single matrix
```

0.9557

0.0443

```
0.9990
         0.0010
0.9346
         0.0654
0.9931
         0.0069
0.9985
         0.0015
0.9686
         0.0314
         0.9032
0.0968
0.0771
         0.9229
0.9849
         0.0151
0.9945
         0.0055
```

```
C = confusionmat(TestingLabels, categorical(label));
[stats] = statsOfMeasure(C, 1);
```

 $stats = 9 \times 4 table$

	name	cla	sses	macroAVG	microAVG
1	"true_positive"	3006	505	1.7555e+03	1.7555e+03
2	"false_positive"	324	257	290.5000	290.5000
3	"false_negative"	257	324	290.5000	290.5000
4	"true_negative"	505	3006	1.7555e+03	1.7555e+03
5	"precision"	0.9027	0.6627	0.7827	0.8580
6	"sensitivity"	0.9212	0.6092	0.7652	0.8580
7	"specificity"	0.6092	0.9212	0.7652	0.8580
8	"accuracy"	0.8580	0.8580	0.8580	0.8580
9	"F-measure"	0.9119	0.6348	0.7733	0.8580

NREM vs Wake

```
Model = load('C:\courses\ML\project\codes\TrainNetworkProject2\BiLSTM_fiveclass\Hyperparameter_
Model = Model.netLSTM;
Testing = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\ThreeclassTesting = Testing.Balancedsleep3ClasstestUSCell;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\ThreeclassTestingLabels = TestingLabels.ThreeClassTest_US_Labels';
[label,score] = classify(Model,Testing)
```

```
0.0128
         0.9872
        0.7755
0.2245
         0.7826
0.2174
0.7075
         0.2925
0.6582
         0.3418
         0.4546
0.5454
0.4442
         0.5558
0.7784
         0.2216
0.2841
         0.7159
```

```
C = confusionmat(TestingLabels, categorical(label));
[stats] = statsOfMeasure(C, 1);
```

stats = 9x4 table

	name	cla	sses	macroAVG	microAVG
1	"true_positive"	13295	493	6894	6894
2	"false_positive"	336	1965	1.1505e+03	1.1505e+03
3	"false_negative"	1965	336	1.1505e+03	1.1505e+03
4	"true_negative"	493	13295	6894	6894
5	"precision"	0.9754	0.2006	0.5880	0.8570
6	"sensitivity"	0.8712	0.5947	0.7330	0.8570
7	"specificity"	0.5947	0.8712	0.7330	0.8570
8	"accuracy"	0.8570	0.8570	0.8570	0.8570
9	"F-measure"	0.9204	0.3000	0.6102	0.8570


```
Model = load('C:\courses\ML\project\codes\TrainNetworkProject2\BiLSTM_fiveclass\Hyperparameter]
Model = Model.netLSTM;
Testing = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\ThreeclassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTellassTe
Testing = Testing.Balancedsleep3ClasstestSMOTECell;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\Three
TestingLabels = TestingLabels.ThreeClassTest_SMOTE_Labels';
[label,score] = classify(Model,Testing)
label = 16089×1 categorical
NREM
Wake
NREM
NREM
NREM
NREM
Wake
NREM
NREM
Wake
score = 16089×2 single matrix
             0.7798
                                                 0.2202
             0.3349
                                                 0.6651
             0.6163
                                                 0.3837
             0.6663
                                                 0.3337
```

0.6256

0.3744

```
0.8045 0.1955
0.1394 0.8606
0.6510 0.3490
0.8357 0.1643
0.3852 0.6148
:
```

```
C = confusionmat(TestingLabels, categorical(label));
[stats] = statsOfMeasure(C, 1);
```

 $stats = 9 \times 4 table$

	name	cla	sses	macroAVG	microAVG
1	"true_positive"	14366	419	7.3925e+03	7.3925e+03
2	"false_positive"	410	894	652	652
3	"false_negative"	894	410	652	652
4	"true_negative"	419	14366	7.3925e+03	7.3925e+03
5	"precision"	0.9723	0.3191	0.6457	0.9190
6	"sensitivity"	0.9414	0.5054	0.7234	0.9190
7	"specificity"	0.5054	0.9414	0.7234	0.9190
8	"accuracy"	0.9190	0.9190	0.9190	0.9190
9	"F-measure"	0.9566	0.3912	0.6739	0.9190

Five Class classification

```
Model = load('C:\courses\ML\project\codes\TrainNetworkProject2\BiLSTM_fiveclass\HYPERPARAMETER]
Model = Model.netLSTM;
Testing = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\FiveclassTesting = Testing.BalancedsleepDataTestingCell;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\FiveclassTestingLabels = TestingLabels.Class_Testing';
[label,score] = classify(Model,Testing)
```

```
label = 19352×1 categorical
Wake
Wake
Wake
N2
N2
N3
Wake
N2
N3
Wake
Signature
Sig
```

```
0.0530
         0.0839
                   0.2921
                             0.2769
                                       0.2941
                   0.2754
0.1144
         0.0664
                             0.0247
                                       0.5191
0.1395
         0.3937
                   0.2566
                             0.1097
                                       0.1004
         0.4391
                   0.3134
0.0223
                             0.0291
                                       0.1961
0.0536
         0.3070
                   0.4888
                             0.0843
                                       0.0663
0.1298
         0.1992
                   0.0520
                             0.2576
                                       0.3614
0.1285
         0.4375
                   0.0928
                             0.2532
                                       0.0880
0.1092
         0.2144
                   0.3630
                             0.1461
                                       0.1673
0.0882
         0.1299
                   0.0548
                             0.1778
                                       0.5493
```

C = confusionmat(TestingLabels,categorical(label));
[stats] = statsOfMeasure(C, 1);

 $stats = 9 \times 4 table$

. . .

	name
1	"true_positive"
2	"false_positive"
3	"false_negative"
4	"true_negative"
5	"precision"
6	"sensitivity"
7	"specificity"
8	"accuracy"
9	"F-measure"


```
Model = load('C:\courses\ML\project\codes\TrainNetworkProject2\BiLSTM_fiveclass\trainedModels_I
Model = Model.netLSTM;
Testing = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\FiveclassTesting)
Testing = Testing.BalancedsleepDataTestingSMOTECell;
TestingLabels = load('C:\courses\ML\project\codes\TrainNetworkProject2\dataset_processed\Fivec
TestingLabels = TestingLabels.Class_TestingSMOTE';
[label,score] = classify(Model,Testing)
label = 19352×1 categorical
N1
N2
Ν1
N2
N1
N2
REM
N2
REM
Wake
score = 19352×5 single matrix
   0.6301
            0.2694
                     0.0017
                              0.0023
                                       0.0965
   0.1846
            0.6457
                     0.0057
                              0.0949
                                       0.0692
                              0.0191
   0.5772
            0.2275
                     0.0625
                                       0.1137
   0.2231
            0.6506
                     0.0178
                              0.0407
                                       0.0679
   0.4869
            0.2097
                     0.0240
                              0.0076
                                       0.2719
```

0.1447

0.4082

0.4418

0.0015

0.0039

```
      0.0196
      0.1478
      0.0370
      0.4203
      0.3754

      0.1025
      0.4102
      0.1385
      0.1919
      0.1570

      0.1044
      0.2867
      0.1724
      0.3084
      0.1281

      0.0692
      0.1869
      0.1244
      0.1528
      0.4667

      ...
      ...
      ...
      ...
      ...
```

C = confusionmat(TestingLabels,categorical(label));
[stats] = statsOfMeasure(C, 1);

 $stats = 9 \times 4 table$

. . .

	name
1	"true_positive"
2	"false_positive"
3	"false_negative"
4	"true_negative"
5	"precision"
6	"sensitivity"
7	"specificity"
8	"accuracy"
9	"F-measure"

```
figure
confusionchart(TestingLabels, categorical(label), 'Normalization', 'row-normalized', 'RowSummary',
```

True Class	N1	6.6%	35.5%	10.0%	30.6%	17.3%
	N2	17.8%	58.5%	3.7%	17.9%	2.0%
	N3	80.7%	17.6%	0.2%	0.9%	0.5%
	REM	6.1%	39.2%	8.0%	43.4%	3.4%
	Wake	16.3%	22.3%	7.8%	16.3%	37.3%
	'	N1	N2	N3	REM	Wake

Predicted Class

6.6%	93.4%
58.5%	41.5%
0.2%	99.8%
43.4%	56.6%
37.3%	62.7%