Matrices

Una matriz o tabla es un array de dos dimensiones. Para declarar una tabla utilizaremos:

```
Tipo_de_dato [ ] [ ] nombre_tabla;
```

Una vez declarado, debemos reservar el espacio con new. Por ejemplo:

```
int [ ][ ] numeros;
numeros = int[4][5];
```

Hemos asignado a la tabla 20 posiciones para almacenar enteros organizado en 4 filas y 5 columnas.

Para asignar un valor o para acceder al valor almacenado en una posición de la tabla será necesario indicar dos índices, uno para la fila y otro para la columna. Por ejemplo:

```
numeros[2][3] = 5;
```

Hemos colocado el valor 5 en la posición 2, 3 (recuerda que tanto las filas como las columnas comienzan en el índice 0). Podemos conocer el número de filas con el método length, por ejemplo numeros.lenght y también podemos conocer el número de columnas con el mismo método de la siguiente forma numeros[0].lenght

Ejercicios:

- 1. Realizar un programa en Java que rellene una matriz de 3 x 4 por filas colocando números consecutivos en cada posición de la tabla. Una vez rellenada la tabla la tiene que mostrar en pantalla por filas (con forma de matriz).
- 2. Realizar un programa que pida al usuario las filas (mínimo 2 y máximo 10) y las columnas (mínimo 2 y máximo 10) que tendrá una tabla de valores enteros (suponemos que el usuario tecleará correctamente los datos). Después se rellenará esa tabla con números aleatorios del 1 al 50 y por último la mostrará en pantalla. Para leer el número de filas y de columnas utilizaremos la clase Scanner. La salida será similar a (recuerda que son números aleatorios, tus valores serán diferentes):

```
Introduce Nº de filas (2-10)
Introduce Nº de columnas (2-10)
50
     18
            20
                  39
                        50
                              1
42
     20
            11
                  33
                        3
                              39
27
     28
           39
                 42
                        23
                              34
46
                  29
     13
           28
                        32
                             4
7
           47
                 45
     36
                       36
                             41
2
            33
                             49
     45
                  34
                       13
27
     41
            5
                 36
                       7
                              7
```

3. Realizar un programa en Java que rellene dos matrices de números enteros de 3 x 4 con números aleatorios entre 1 y 30. Después calculará la matriz suma (también de 3 x4) que será la suma elemento a elemento de las dos anteriores y por último mostrará las tres matrices según la salida adjunta.

La salida será similar a (recuerda que son números aleatorios y los valores pueden cambiar):

MATRIZ A										
12	9	29	1							
14	24	20	1							
22	6	25	23							
+ MATRIZ B										
29	20	18	3							
27	13	12	14							
30	28	21	16							
= MATRIZ C										
41	29	47	4							
41	37	32	15							
52	34	46	39							

4. Realizar un programa en Java que rellene dos matrices de números enteros de 3 x 4 con números aleatorios entre 1 y 30. Después calculará la matriz suma (también de 3 x4) que será la suma elemento a elemento de las dos anteriores y por último mostrará las tres matrices según la salida adjunta.

La salida será similar a (recuerda que son números aleatorios y los valores pueden cambiar):

MATRIZ A						MATRIZ B			MATRIZ C				
30	25	14	12		14	12	13	16		44	37	27	28
1	12	12	17	+	1 5	25	16	9	=	16	37	28	26
27	24	28	3		13	1 3	17	22		40	37	45	25

5. Muestre por pantalla una simulación de un tablero de ajedrez. Las casillas blancas las representaremos con el carácter B y las negras con el carácter N. Utilice arrays de dos dimensiones.

La salida será similar al siguiente ejemplo: