Lecture 3: Uniform bounds and empirical processes

July 27, 2021

Lecturer: Lei Wu Scribe: Lei Wu

1 Uniform bounds of generalization gap

Let \mathcal{H} be the hypothesis class. Consider the estimator:

$$\hat{h}_n = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{\mathcal{R}}_n(h).$$

This estimator guarantees the smallness of the empirical risk. But the question is: How small is the true error $\mathcal{R}(\hat{h}_n)$? This is equivalent to control the generalization gap:

$$\mathcal{R}(\hat{h}_n) - \hat{\mathcal{R}}_n(\hat{h}_n). \tag{1.1}$$

Unfortunately, concentration inequalities cannot be applied directly since \hat{h}_n depends on the training set. To deal with this dependence, we can consider the uniform bound

$$|\mathcal{R}(\hat{h}_n) - \hat{\mathcal{R}}_n(\hat{h}_n)| \le \sup_{h \in \mathcal{H}} |\mathcal{R}(h) - \hat{\mathcal{R}}_n(h)|. \tag{1.2}$$

Obviously, when the hypothesis space \mathcal{H} is sufficiently "small", e.g., the extreme case: $\mathcal{H}=\{h\}$, it is expected that

$$\sup_{h \in \mathcal{H}} |\mathcal{R}(h) - \hat{\mathcal{R}}_n(h)| \sim \frac{1}{\sqrt{n}}.$$

Some natural questions go as follows.

- What kind of \mathcal{H} can guarantee the smallness of uniform bound?
- What is the rate? Do we still have $O(1/\sqrt{n})$?

Let us first look at a simple example: finite hypothesis class.

Lemma 1.1. Assume $|\mathcal{H}| < \infty$ and $\sup_{y,y'} |\ell(y,y')| \le 1$. For any $\delta \in (0,1)$, with probability $1 - \delta$ over the random sampling of training set S, we have

$$\sup_{h \in \mathcal{H}} |\mathcal{R}(h) - \hat{\mathcal{R}}_n(h)| \le \sqrt{\frac{2\ln(2|\mathcal{H}|/\delta)}{n}}.$$

Proof. Let $Z(h, X) = \ell(h(X), h^*(X))$. Taking the union bound gives us

$$\mathbb{P}\left\{\sup_{h\in\mathcal{H}}\left|\frac{1}{n}\sum_{i=1}^{n}Z(h,X_{i})-\mathbb{E}[Z(h,X)]\right|\geq t\right\}\leq \sum_{j=1}^{m}\mathbb{P}\left\{\left|\frac{1}{n}\sum_{i=1}^{n}Z(h_{j},X_{i})-\mathbb{E}[Z(h_{j},X)]\right|\geq t\right\}$$
(1.3)

$$\leq m2e^{\frac{-2nt^2}{2^2}} = 2me^{\frac{-nt^2}{2}}. (1.4)$$

Let the failure probability $2me^{\frac{-nt^2}{2}}=\delta$, which leads to $t=\sqrt{\frac{2\ln(2m/\delta)}{n}}$

The upper bound only depends on $|\mathcal{H}|$ logarithmically. Hence, even when the hypothesis class has exponentially many functions, the generalization gap can be still well controlled.

Definition 1.2 (Empirical process). Let \mathcal{F} be a class of real-valued functions $f: \Omega \mapsto \mathbb{R}$ where (Ω, Σ, μ) is a probability space. Let $X \sim \mu$ and X_1, \ldots, X_n be independent copies of X. Then, the random process $(X_f)_{f \in \mathcal{F}}$ defined by

$$X_f := \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E} f(X)$$

is called an *empirical process* indexed by \mathcal{F} .

In our case, $f(X) = \ell(h(X), h^*(X))$. Our task is to bound the suprema:

$$\sup_{f\in\mathcal{F}}|X_f|.$$

Note that the above quantity can viewed a "weak" distance between μ and the empirical measure $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta(\cdot - x_i)$ with the test functions given by \mathcal{F} :

$$d_{\mathcal{F}}(\hat{\mu}_n, \mu) := \sup_{f \in \mathcal{F}} |\mathbb{E}_{\hat{\mu}_n} f - \mathbb{E}_{\mu} f|.$$

2 Rademacher complexity

Lemma 2.1 (Symmetrization of empirical processes).

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^{n}f(X_i)-\mathbb{E}f(X)\right]\leq 2\,\mathbb{E}\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^{n}\xi_if(X_i)\right],$$

where ξ_1, \ldots, ξ_n are i.i.d. Rademacher random variable: $\mathbb{P}(\xi = 1) = \mathbb{P}(\xi = -1) = \frac{1}{2}$

Proof. Let X_i' be an independent copy of X_i . To simplify the notation, we use \mathbb{E}_{X_i} and $\mathbb{E}_{X_i'}$ to denote the expectation with respect to $\{X_i\}_{i=1}^n$ and $\{X_i'\}_{i=1}^n$, respectively. Then,

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f(X)\right] = \mathbb{E}_{X_{i}}\sup_{f\in\mathcal{F}}\mathbb{E}_{X_{i}'}\left[\frac{1}{n}\sum_{i=1}^{n}(f(X_{i})-f(X_{i}'))\right]$$
(2.1)

$$\leq \mathbb{E}_{X_i, X_i'} \sup_{f \in \mathcal{F}} \left[\frac{1}{n} \sum_{i=1}^n (f(X_i) - f(X_i')) \right]$$
 (2.2)

Due to that $f(X_i) - f(X_i')$ is symmetric, for any $\{\xi_i\} \in \{\pm 1\}^n$, we have

$$\mathbb{E}_{X_{i},X_{i}'} \sup_{f \in \mathcal{F}} \left[\frac{1}{n} \sum_{i=1}^{n} f(X_{i}) - f(X_{i}') \right] = \mathbb{E}_{X_{i},X_{i}'} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} [f(X_{i}) - f(X_{i}')]$$

$$= \mathbb{E}_{X_{i},X_{i}',\xi} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} [f(X_{i}) - f(X_{i}')]$$

$$\leq \mathbb{E}_{X_{i},X_{i}',\xi} [\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} f(X_{i}) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} f(X_{i}')]$$

$$= 2 \mathbb{E}_{X_i,\xi} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \xi_i f(X_i)$$

Definition 2.2 (Rademacher complexity). The empirical Rademacher complexity of a function class \mathcal{F} on finite samples is defined as

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) = \mathbb{E}_{\xi}[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \xi_i f(X_i)].$$

The population Rademacher complexity is given by

$$\operatorname{Rad}_n(\mathcal{F}) = \mathbb{E}_S[\widehat{\operatorname{Rad}}_n(\mathcal{F})].$$

The symmetrization lemma 2.1 implies that

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^{n}f(X_i)-\mathbb{E}f(X)\right]\leq 2\operatorname{Rad}_n(\mathcal{F}). \tag{2.3}$$

Theorem 2.3. Assume that $0 \le f \le B$ for all $f \in \mathcal{F}$. For any $\delta \in (0,1)$, with probability at least $1 - \delta$ over the choice of the training set $S = \{X_1, \ldots, X_n\}$, we have

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}f(X) \right| \le 2 \operatorname{Rad}_n(\mathcal{F}) + B \sqrt{\frac{\log(2/\delta)}{2n}},$$

and the sample-dependent version:

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}f(X) \right| \le 2\widehat{\mathrm{Rad}}_n(\mathcal{F}) + 3B\sqrt{\frac{\log(4/\delta)}{n}}.$$

Proof. Let

$$g(x_1, \dots, x_n) = \sup_{f \in \mathcal{F}} \left[\frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E}f(X) \right]$$

and note that

$$\sup_{\alpha} g\left(x_1, \dots, x_{i-1}, \alpha, x_{i+1}, \dots, x_n\right) - \inf_{\alpha} g\left(x_1, \dots, x_{i-1}, \alpha, x_{i+1}, \dots, x_n\right) \le \frac{B}{n}.$$

By McDiarmid's inequality,

$$\mathbb{P}\{|g(X_1,\ldots,X_n) - \mathbb{E}\,g| \ge t\} \le 2e^{-\frac{2nt^2}{B^2}}.$$

Let the failure probability $2e^{-\frac{2nt^2}{B^2}}=\delta$, which leads to $t=\sqrt{\frac{2B\log(2/\delta)}{n}}$. This proves the first statement. Analogously, using again the McDiarmid's inequality to $g'(x_1,\ldots,x_n)=\mathbb{E}_{\xi}\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^n\xi_if(x_i)\right]$ leads to the sample-dependent one.

• Let $\mathcal{F} = \{f\}$. Then,

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) = \mathbb{E}_{\xi}[\frac{1}{n}\sum_{i=1}^n \xi_i f(x_i)] = 0.$$

• Two functions. Let $\mathcal{F} = \{f_{-1}, f_1\}$ where $f_{-1} \equiv -1$ and $f_1 \equiv 1$.

$$\sqrt{n}\widehat{\mathrm{Rad}}_n(\mathcal{F}) = \mathbb{E}_{\xi} \sup_{f \in \{-1, +1\}} f \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi = \mathbb{E}_{\xi} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i \right| \to \mathbb{E}_{Z \sim \mathcal{N}(0, 1)} \left| Z \right| = \sqrt{\frac{2}{\pi}}.$$

Hence, when n is sufficiently large,

$$\operatorname{Rad}_n(\mathcal{F}) \sim \sqrt{\frac{2}{n\pi}}.$$

Lemma 2.4 (Massart's lemma). Assume that $\sup_{x \in \mathcal{X}, f \in \mathcal{F}} |f| \leq B$ and \mathcal{F} is finite. Then,

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) \le B\sqrt{\frac{2\log|\mathcal{F}|}{n}}.$$

Proof. Let $Z_f = \sum_{i=1}^n \xi_i f(x_i)$. Then,

$$\mathbb{E}[e^{\lambda Z_f}] = \prod_{i=1}^n \mathbb{E}[e^{\lambda \xi_i f(x_i)}] \le \prod_{i=1}^n e^{\lambda^2 \frac{(B-(-B))^2}{8}} = e^{\frac{\lambda^2 n B^2}{2}}.$$

Hence, Z_f is sub-Gaussian with the variance proxy $\sigma^2 = \sqrt{n}B$. Using the maximal inequality, we have

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) = \frac{1}{n} \mathbb{E}_{\xi}[\sup_{f \in \mathcal{F}} Z_f] \le \frac{1}{n} \cdot \sqrt{n} B \sqrt{2 \log |\mathcal{F}|} = B \sqrt{\frac{2 \log |\mathcal{F}|}{n}}.$$
 (2.4)

Applying Massart's lemma to bound the generalization gap recovers Lemma 1.1.

Linear functions. Let $\mathcal{F} = \{w^Tx : ||w||_p \le 1\}$. Let q be the conjugate of p, i.e., 1/q + 1/p = 1. Then,

$$\widehat{\text{Rad}}_{n}(\mathcal{F}) = \mathbb{E}_{\xi} \sup_{\|w\|_{p} \le 1} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} w^{T} X_{i} = \mathbb{E}_{\xi} \sup_{\|w\|_{p} \le 1} w^{T} \left(\frac{1}{n} \sum_{i=1}^{n} \xi_{i} X_{i} \right) = \mathbb{E}_{\xi} \| \frac{1}{n} \sum_{i=1}^{n} \xi_{i} X_{i} \|_{q}.$$
 (2.5)

Lemma 2.5. Assume that $||x_i||_q \leq 1$ for all $x_i \in S$. Then,

• If p = 2, then

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) \le \sqrt{\frac{1}{n}}.$$

• If p = 1, then,

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) \le \sqrt{\frac{2\log(2d)}{n}}.$$

Proof. For the case where p = 2,

$$\widehat{\text{Rad}}_{n}(\mathcal{F}) \leq \mathbb{E}_{\xi} \| \frac{1}{n} \sum_{i=1}^{n} \xi_{i} x_{i} \|_{2} \leq \sqrt{\mathbb{E}_{\xi} \| \frac{1}{n} \sum_{i=1}^{n} \xi_{i} x_{i} \|_{2}^{2}}$$

$$= \sqrt{\frac{1}{n^{2}} \sum_{i,j=1}^{n} x_{i} x_{j} \mathbb{E}[\xi_{i} \xi_{j}]} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}} \leq \sqrt{\frac{1}{n}}.$$

The case of p = 1 leaves to homework.

We have shown the Rademacher complexity of linear functions. To obtain the estimates of more general classes, we need follow results.

Lemma 2.6 (Rademacher calculus). The Rademacher complexity has the following properties.

- $\operatorname{Rad}_n(\lambda \mathcal{F}) = |\lambda| \operatorname{Rad}_n(\mathcal{F}).$
- $\operatorname{Rad}_n(\mathcal{F} + f_0) = \operatorname{Rad}_n(\mathcal{F}).$
- Let $Conv(\mathcal{F})$ denote the convex hull of \mathcal{F} defined by

$$Conv(\mathcal{F}) = \Big\{ \sum_{j=1}^{m} a_j f_j : \alpha_j \ge 0, \sum_{j=1}^{m} a_j = 1, f_1, \dots, f_m \in \mathcal{F}, m \in \mathbb{N}_+ \Big\}.$$

Then, we have $\operatorname{Rad}_n(\operatorname{Conv}(\mathcal{F})) = \operatorname{Rad}_n(\mathcal{F})$.

Proof. Here, we only prove the third result. By definition,

$$n\widehat{\mathrm{Rad}}_{n}(\mathrm{Conv}(\mathcal{F})) = \mathbb{E} \sup_{f_{j} \in \mathcal{F}, \|\alpha\|_{1} = 1} \sum_{i=1}^{n} \xi_{i} \sum_{j=1}^{m} a_{j} f_{j}(X_{i})$$

$$= \mathbb{E} \sup_{f_{j} \in \mathcal{F}, \|\alpha\|_{1} = 1} \sum_{j=1}^{m} a_{j} \sum_{i=1}^{n} \xi_{i} f_{j}(X_{i})$$

$$= \mathbb{E} \sup_{f_{j} \in \mathcal{F}} \max_{j} \sum_{i=1}^{n} \xi_{i} f_{j}(X_{i})$$

$$= \mathbb{E} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \xi_{i} f(X_{i}) = n\widehat{\mathrm{Rad}}_{n}(\mathcal{F})$$

Lemma 2.7 (Ledoux & Talagrand 2011, Contraction lemma). Let $\varphi_i : \mathbb{R} \to \mathbb{R}$ with i = 1, ..., n be β -Lispchitz continuous. Then,

$$\frac{1}{n} \mathbb{E}_{\xi} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \xi_{i} \varphi_{i} \circ f(x_{i}) \leq \beta \widehat{\operatorname{Rad}}_{n}(\mathcal{F}).$$

Proof. WLOG, assume $\beta = 1$. Let $\hat{\xi} = (\xi_1, \dots, \xi_n)$ and $Z_k(f) = \sum_{i=1}^k \xi_i \varphi_i \circ f(x_i)$. Then,

$$\mathbb{E}_{\xi_{n}} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \xi_{i} \varphi_{i} \circ f(x_{i}) = \frac{1}{2} \left[\sup_{f \in \mathcal{F}} (Z_{n-1}(f) + \varphi_{n} \circ f(x_{n})) + \sup_{f \in \mathcal{F}} (Z_{n-1}(f) - \varphi_{n} \circ f(x_{n})) \right]$$

$$= \frac{1}{2} \sup_{f, f' \in \mathcal{F}} \left(Z_{n-1}(f) + Z_{n-1}(f') + \varphi_{n} \circ f(x_{n}) - \varphi_{n} \circ f'(x_{n}) \right)$$

$$\leq \frac{1}{2} \sup_{f, f' \in \mathcal{F}} \left(Z_{n-1}(f) + Z_{n-1}(f') + |f(x_{n}) - f'(x_{n})| \right)$$

$$\leq \frac{1}{2} \sup_{f, f' \in \mathcal{F}} \left(Z_{n-1}(f) + Z_{n-1}(f') + (f(x_{n}) - f'(x_{n})) \right) \quad \text{(Use the symmetry)}$$

$$= \frac{1}{2} \left[\sup_{f \in \mathcal{F}} (Z_{n-1}(f) + f(x_{n})) + \sup_{f \in \mathcal{F}} (Z_{n-1}(f) - f(x_{n})) \right]$$

$$= \mathbb{E}_{\xi_{n}} \sup_{f \in \mathcal{F}} (Z_{n-1}(f) + \xi_{n}f(x_{n})).$$

Hence, by induction, we have

$$\mathbb{E}_{\hat{\xi}}[\sup_{f \in \mathcal{F}} Z_n(f)] \leq \mathbb{E}_{\hat{\xi}} \sup_{f \in \mathcal{F}} (Z_{n-1}(f) + \xi_n f(x_n))$$

$$\leq \mathbb{E}_{\hat{\xi}} \sup_{f \in \mathcal{F}} (Z_{n-2}(f) + \xi_{n-1} f(x_{n-1}) + \xi_n f(x_n))$$

$$\leq \mathbb{E}_{\hat{\xi}} \sup_{f \in \mathcal{F}} (\xi_1 f(x_1) + \dots + \xi_n f(x_n))$$

$$= n \widehat{\text{Rad}}_n(\mathcal{F}). \tag{2.6}$$

Corollary 2.8. Given a function class \mathcal{F} and $\varphi : \mathbb{R} \mapsto \mathbb{R}$, let $\varphi \circ \mathcal{F} = \{ \varphi \circ f : f \in \mathcal{F} \}$. Then,

$$\operatorname{Rad}_n(\varphi \circ \mathcal{F}) \leq \operatorname{Lip}(\varphi) \operatorname{Rad}_n(\mathcal{F}).$$

3 Covering number and metric entropy

For the finite hypothesis classes, we have shown that $\log |\mathcal{F}|$, i.e., the logarithm of cardinality, can be used as a good complexity measure. Can we extend this observation to the case where $|\mathcal{F}| = \infty$. One possible approach is *discretization*. This means that we choose a finite subset $\mathcal{F}_{\varepsilon} \subset \mathcal{F}$ to "represent" \mathcal{F} .

Definition 3.1. Consider a metric space (T, ρ) .

- We say $T_{\varepsilon} \subset T$ is a ε -cover (also called ε -net) of T, if for any $t \in T$, there exists a $t' \in T_{\varepsilon}$ such that $\rho(t,t') \leq \varepsilon$.
- The covering number $\mathcal{N}(\varepsilon, T, \rho)$ is defined as the smallest cardinality of an ε -cover of T with respect to ρ . The *metric entropy* of T is defined by $\log \mathcal{N}(\varepsilon, T, \rho)$.

In the above definition, the metric space (T, ρ) can be arbitrary. However, we will focus on the case of $(\mathcal{F}, L^2(\mathbb{P}_n))$, where \mathcal{F} is the hypothesis class and $L^2(\mathbb{P}_n)$ is defined by

$$||f - f'||_{L^2(\mathbb{P}_n)} = \sqrt{\frac{1}{n} \sum_{i=1}^n (f(x_i) - f'(x_i))^2}.$$

Here, (x_1, \ldots, x_n) denote the finite training samples. Since only the n samples are available, we can really think of these functions as a n-dimensional vector:

$$\hat{f} = (f(x_1), f(x_2), \dots, f(x_n))^T \in \mathbb{R}^n$$

Obviously, we cannot distinguish functions using information beyond these n-dimensional vectors.

Example 1. Let $\mathcal{F}=\{f:\mathbb{R}\mapsto [0,1]:f \text{ is non-decreasing}\}$. Then, $\mathcal{N}(\varphi,\mathcal{F},L_2(\mathbb{P}_n))=n^{1/\varepsilon}$.

Proof. Given $\varepsilon \in (0,1)$, let $I_{\varepsilon} = (0,\varepsilon,2\varepsilon,3\varepsilon,\ldots,1)$. WLOG, assume $-\infty = x_0 < x_1 \le x_2 \le \cdots \le x_n \le x_{n+1} = 1$. Let $q(y;\varepsilon) = \operatorname{argmin}_{t \in I_{\varepsilon}} |t-y|$ for $y \in [0,1]$. For any $f \in \mathcal{F}$, define a piecewise approximation of f as follows

$$\hat{f}_{\varepsilon}(x) = q(f(x_i); \varepsilon), \quad \text{for } x \in [x_i, x_{i+1}], \ i = 0, 1, \dots, n.$$
(3.1)

Using the monotonicity, we have $||f - \hat{f}_{\varepsilon}||_{L^{2}(\mathbb{P}_{n})} \leq \varepsilon$. Then, let $\mathcal{F}_{\varepsilon}$ denote the set of all the piecewise constant functions defined above. By construction, $\mathcal{F}_{\varepsilon}$ is an ε -cover of \mathcal{F} . Moreover, $|\mathcal{F}_{\varepsilon}| \leq n^{1/\varepsilon}$.

In the following, we show that the Rademacher complexity can be bounded using the metric entropy. To simplify notation, we use $\|\cdot\|$ and \langle,\rangle to denote $L^2(\mathbb{P}_n)$ norm and the induced inner product: $\langle f,g\rangle=\frac{1}{n}\sum_{i=1}^n f(x_i)g(x_i)$. Then,

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) = \mathbb{E} \sup_{f \in \mathcal{F}} \langle \xi, f \rangle.$$

Proposition 3.2 (One-step discretization). Suppose $\sup_{x \in \mathcal{X}, f \in \mathcal{F}} |f(x)| \leq B$. Then,

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) \leq \inf_{\varepsilon} \left(\varepsilon + B \sqrt{\frac{2 \log \mathcal{N}(\varepsilon, \mathcal{F}, L_2(\mathbb{P}_n))}{n}} \right).$$

Proof. Let $\mathcal{F}_{\varepsilon}$ be an ε -cover of \mathcal{F} with respect to the metric $L^2(\mathbb{P}_n)$. For any $f \in \mathcal{F}$, let $\pi(f) \in \mathcal{F}_{\varepsilon}$ such that $||f - \pi(f)|| \leq \varepsilon$. Then,

$$\begin{split} \mathbb{E}\sup_{f\in\mathcal{F}}\langle\xi,f\rangle &= \mathbb{E}\sup_{f\in\mathcal{F}}\left[\langle\xi,f-\pi(f)\rangle + \langle\xi,\pi(f)\rangle\right] \\ &\leq \mathbb{E}\sup_{f\in\mathcal{F}}\langle\xi,f-\pi(f)\rangle + \mathbb{E}\sup_{f\in\mathcal{F}}\langle\xi,\pi(f)\rangle \\ &\leq \mathbb{E}\left\|\xi\right\|\|f-\pi(f)\| + \mathbb{E}\sup_{f\in\mathcal{F}_{\varepsilon}}\langle\xi,f\rangle \\ &\leq \varepsilon\sqrt{\frac{\mathbb{E}\left\|\xi\right\|_{2}^{2}}{n} + \widehat{\mathrm{Rad}}_{n}(\mathcal{F}_{\varepsilon}) \qquad \text{(Jesson's inequality)} \\ &\leq \varepsilon + B\sqrt{\frac{2\log|\mathcal{F}_{\varepsilon}|}{n}}, \qquad \text{(Massart's lemma)}. \end{split}$$

Using the definition of covering number and optimizing over ε , we complete the proof.

For the non-decreasing functions considered previously, we have

$$\operatorname{Rad}_n(\mathcal{F}) \le \inf\left(\varepsilon + \sqrt{\frac{2\log n}{\varepsilon n}}\right) = C\left(\frac{\log n}{n}\right)^{1/3}.$$
 (3.2)

This rate is slower than the expected $1/\sqrt{n}$. Is it because non-decreasing functions are complex? No! It is actually just an artifact caused by the proof technique.

In many cases, the one-step discretization may give us sub-optimal bounds of generalization gap. To fix this problem, we need a sophisticated analysis of all the resolutions. This is typically done by using a *chaining* approach introduced by Dudley.

Theorem 3.3 (Dudley's integral inequality). Assume $\sup_{f \in \mathcal{F}, x \in \mathcal{X}} \|f - f'\|_{L^2(\mathbb{P}_n)} = D$ be the diameter of \mathcal{F} . Then,

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) \leq 12 \int_0^D \sqrt{\frac{\log \mathcal{N}(\varepsilon, \mathcal{F}, L^2(\mathbb{P}_n))}{n}} \, \mathrm{d}\varepsilon.$$

Then, for the for non-decreasing functions, we have

$$\operatorname{Rad}_n(\mathcal{F}) \lesssim \int_0^2 \sqrt{\frac{\log n}{n\varepsilon}} \, \mathrm{d}\varepsilon \lesssim \sqrt{\frac{\log n}{n}}.$$

Figure 1 visualizes the difference between the upper bound given in Proposition 3.2 and the one in Theorem 3.3. Clearly, the latter is smaller.

Figure 1: (Left) The result of one-resolution analysis; (Right) The result of chaining.

Proof. Let $D = \sup_{f, f' \in \mathcal{F}} \|f_1 - f_2\|$ be the diameter of \mathcal{F} . Let \mathcal{F}_j be a ε_j -cover of \mathcal{F} with $\varepsilon_j = 2^{-j}D$ be the dyadic scale. Let $f_j \in \mathcal{F}_j$ such that $\|f_j - f\| \le \varepsilon_j$. Consider the decomposition

$$f = f - f_m + \sum_{j=1}^{m} (f_j - f_{j-1}), \tag{3.3}$$

where $f_0 = 0$. Notice that

- $||f f_m|| \le \varepsilon_m$.
- $||f_j f_{j-1}|| \le ||f_j f|| + ||f f_{j-1}|| \le \varepsilon_j + \varepsilon_{j-1} \le 3\varepsilon_j$.

Then,

$$\widehat{\operatorname{Rad}}_{n}(\mathcal{F}) = \mathbb{E} \sup_{f \in \mathcal{F}} \langle \xi, f \rangle$$

$$= \mathbb{E} \sup_{f \in \mathcal{F}} \left(\langle \xi, f - f_{m} \rangle + \sum_{j=1}^{m} \langle \xi, f_{j} - f_{j-1} \rangle \right)$$

$$\leq \varepsilon_{m} + \mathbb{E} \sup_{f \in \mathcal{F}} \sum_{j=1}^{m} \langle \xi, f_{j} - f_{j-1} \rangle$$

$$\leq \varepsilon_{m} + \sum_{j=1}^{m} \mathbb{E} \sup_{f \in \mathcal{F}} \langle \xi, f_{j} - f_{j-1} \rangle$$

$$= \varepsilon_{m} + \sum_{j=1}^{m} \mathbb{E} \sup_{f_{j} \in \mathcal{F}_{j}, f_{j-1} \in \mathcal{F}_{j-1}} \langle \xi, f_{j} - f_{j-1} \rangle$$

$$= \varepsilon_{m} + \sum_{j=1}^{m} \widehat{\operatorname{Rad}}_{n}(\mathcal{F}_{j} \cup \mathcal{F}_{j-1}).$$

Using the Massart lemma and the fact that $\sup_{f \in \mathcal{F}_i, f' \in \mathcal{F}_{i-1}} ||f_j - f_{j-1}|| \leq 3\varepsilon_j$,

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) \leq \varepsilon_m + \sum_{j=1}^m 3\varepsilon_j \sqrt{\frac{2\log(|\mathcal{F}_j||\mathcal{F}_{j-1}|)}{n}}$$

$$\leq \varepsilon_m + \sum_{j=1}^m 6\varepsilon_j \sqrt{\frac{\log|\mathcal{F}_j|}{n}}$$

$$= \varepsilon_m + \sum_{j=1}^m 12(\varepsilon_j - \varepsilon_{j+1}) \sqrt{\frac{\log \mathcal{N}(\varepsilon_j, \mathcal{F}, L^2(\mathbb{P}_n))}{n}}.$$

Taking $m \to \infty$, we obtain

$$\widehat{\mathrm{Rad}}_n(\mathcal{F}) \leq 12 \int_0^D \sqrt{\frac{\log \mathcal{N}(t, \mathcal{F}, L^2(\mathbb{P}_n))}{n}} \, \mathrm{d}t.$$

The key ingredient of proceeding analysis is the multi-resolution decomposition (3.3). The technical reason why chaining provides a better estimate is as follows. In the one-resolution discretization, we apply Massart's lemma to functions whose range in [-1,1], whereas in chaining, we apply Massart's lemma to functions whose range has size $O(\varepsilon_i)$.

Remark 3.4. Metric entropy is actually a more intuitive complexity measure than Rademacher complexity. The essence is discretization and applying Massart's lemma. Moreover, metric entropy is sometimes more convenient to estimate.