The A-Priori Algorithm

Monotonicity of "Frequent"
Candidate Pairs
Extension to Larger Itemsets

A-Priori Algorithm

- A two-pass approach called a-priori limits the need for main memory.
- Key idea: monotonicity: if a set of items appears at least s times, so does every subset of s.
- Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets.

A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items.
- Items that appear at least s times are the frequent items.

A-Priori Algorithm – (3)

- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
- Requires memory proportional to square of *frequent* items only (for counts), plus a list of the frequent items (so you know what must be counted).

Picture of A-Priori

28

Detail for A-Priori

- You can use the triangular matrix method with n = number of frequent items.
 - May save space compared with storing triples.
- Trick: number frequent items 1,2,... and keep a table relating new numbers to original item numbers.

A-Priori Using Triangular Matrix

Frequent Triples, Etc.

- For each k, we construct two sets of k-sets (sets of size k):
 - $C_k = candidate \ k$ -sets = those that might be frequent sets (support $\geq s$) based on information from the pass for k-1.
 - L_k = the set of truly frequent k-sets.

Passes Beyond Two

- C_1 = all items
- In general, L_k = members of C_k with support $\geq s$.
 - Requires one pass.
- $C_{k+1} = (k+1)$ -sets, each k of which is in L_k .

Memory Requirements

- At the k^{th} pass, you need space to count each member of C_k .
- In realistic cases, because you need fairly high support, the number of candidates of each size drops, once you get beyond pairs.