

A practical example

Machine Learning
Norman Juchler

Learning objectives

- Appreciate that building an ML model can be done in a few simple steps. (Don't worry if you don't understand every detail yet.)
- What the main steps of the machine learning modeling process are.
- How to perform them with scikti-learn in Python.

The problem: Iris flower classification

Our aim: Develop a model that can tell the type of Iris flower

The iris flower dataset

- To build an ML model we need data!
- Feature extraction has already been done here:

1	Α	В	С	D	E
1	Sepal Length	-50	27		Class
2 .	5.1	3.5	1.4	0.2	Iris-setosa
3	4.9	3	1.4	0.2	Iris-setosa
4	4.7	3.2	1.3	0.2	Iris-setosa
5	4.6	3.1	1.5	0.2	Iris-setosa
6	5	3.6	1.4	0.2	Iris-setosa
7	5.4	3.9	1.7	0.4	Iris-setosa
8	4.6	3.4	1.4	0.3	Iris-setosa
9	5	3.4	1.5	0.2	Iris-setosa
10	4.4	2.9	1.4	0.2	Iris-setosa
11	4.9	3.1	1.5	0.1	Iris-setosa
12	5.4	3.7	1.5	0.2	Iris-setosa
13	4.8	3.4	1.6	0.2	Iris-setosa
14	4.8	3	1.4	0.1	Iris-setosa
15	4.3	3	1.1	0.1	Iris-setosa
16	5.8	4	1.2	0.2	Iris-setosa
17	5.7	4.4	1.5	0.4	Iris-setosa
18	5.4	3.9	1.3	0.4	Iris-setosa
19	5.1	3.5	1.4	0.3	Iris-setosa
20	5.7	3.8	1.7	0.3	Iris-setosa
21	5.1	3.8	1.5	0.3	Iris-setosa
22	5.4	3.4	1.7	0.2	Iris-setosa
23	5.1	3.7	1.5	0.4	Iris-setosa
24	4.6	3.6	1	0.2	Iris-setosa
25	5.1	3.3	1.7	0.5	Iris-setosa

Step 1: Data exploration

Understanding the dataset: Overlaps of univariate distributions

Step 1: Data exploration

• Understanding the dataset: Violine plots

Step 1: Data exploration

Understanding the data set: Correlations between features

Step 2: Data preparation

Splitting the data into a train and a test set

- Data cleaning, Replacement of missing values
- Encoding of features

Preparation

Step 3: Building the model

• Many options:

- Linear regression
- Logistic regression
- Naïve Bayes
- Fisher discriminant

- SVM
- Random forest
- Neural networks
- etc.

```
# LogisticRegression
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
Hyperparameters go here
```


Step 4: Training the model

There's not much to it...

classifier.fit(X_train, y_train)

Step 5: Evaluating the model

Make predictions on <u>new samples</u> (not seen during training).
 In ML-lingo, this is called **inference**:

```
y_pred = classifier.predict(X_test)
```

Evaluate the predictive performance of the model based on one or more evaluation metrics:

```
from sklearn.metrics import accuracy_score
print('accuracy is',accuracy_score(y_pred,y_test))
```

Evaluation

Takeaways

- The main modeling steps are:
 - Data exploration
 - Data preparation
 - Model building,
 - Model training,
 - Evaluation
- The most important Python functions we used were: train_test_split(), clf.fit(), clf.predict().
- Judging by the code, the machine learning part looks easier than the visualization part. ©

