

1

2

3 CLAIMS:

4

5 1. (Original) An energy conditioner comprising:
6 an internally floating shield structure;
7 a first electrode structure;
8 a second electrode structure;
9 wherein said first electrode structure comprises at least one first electrode structure
10 first conductive layer, said second electrode structure comprises at least one second electrode
11 structure first conductive layer;
12 wherein said internally floating shield structure shields said first electrode structure
13 first conductive layer from said second electrode structure, and said internally floating shield
14 structure shields said second electrode structure first conductive layer from said first electrode
15 structure; and
16 said first electrode structure includes a first electrode contact region.

17

18 2. (Original) A filter arrangement comprising the energy conditioner of claim 1 and
19 a conductive line segment of a circuit, wherein said first electrode structure contact region is
20 electrically connected to said conductive line segment.

21

22 3. (Original) A capacitively/inductively coupling energy conditioner, comprising:
23 an internally floating shield structure;
24 a first electrode structure;
25 a second electrode structure;
26 wherein said first electrode structure comprises at least one first electrode structure
27 first conductive layer, said second electrode structure comprises at least one second electrode
28 structure first conductive layer;
29 wherein said internally floating shield structure shields said first electrode structure
30 first conductive layer from said second electrode structure, and said internally floating shield

1 structure shields said second electrode structure first conductive layer from said first electrode
2 structure; and

3 said first electrode structure includes a first electrode capacitive/inductive coupling
4 pad.

5

6 4. (Original) A filter arrangement comprising the capacitively/inductively coupling
7 energy conditioner of claim 3 and a conductive line segment of a circuit, wherein first
8 electrode capacitive/inductive coupling pad is capacitively/inductively coupled to said
9 conductive line segment.

10

11 5. (Original) An internally shielded capacitor comprising;

12 a shielding conductive layer;

13 a first electrode defining at least a first electrode layer, wherein said first electrode
14 layer is above said shielding conductive layer;

15 a second electrode defining at least a second electrode layer, wherein said second
16 electrode layer is below said shielding conductive layer;

17 wherein said shielding, said first electrode, and said second electrode are electrically
18 isolated from one another; and

19 wherein said first electrode, said second electrode, and said shielding conductive layer
20 are positioned and sized relative to one another such that any straight line passing through
21 said first electrode and said second electrode contacts said shielding conductive layer.

22

23 6. (Original) An energy conditioner comprising;

24 a shielding defining at least (1) upper shielding conductive layer, (2) a center shielding
25 conductive layer, and (3) a lower shielding conductive layer, wherein said upper shielding
26 conductive layer is above said center shielding conductive layer and said center shielding
27 conductive layer is above said lower shielding conductive layer;

28 a first electrode defining at least a first electrode layer, wherein said first electrode
29 layer is below said upper shielding conductive layer and above said center shielding
30 conductive layer;

1 a second electrode defining at least a second electrode layer, wherein said second
2 electrode layer is below said center shielding conductive layer and above said lower shielding
3 conductive layer; and

4 wherein said shielding, said first electrode, and said second electrode are electrically
5 isolated from one another; and

6 wherein said first electrode, said second electrode, and said center shielding
7 conductive layer are positioned and sized relative to one another such that any straight line
8 passing through said first electrode and said second electrode contacts said center shielding
9 conductive layer.

10

11 7. (Original) The conditioner of claim 6, wherein said shielding further comprises at
12 least one conductive aperture operable for conductively coupling together all of said shielding
13 conductive layers to one another.

14

15 8. (Original) The conditioner of claim 6, wherein said shielding further comprises at
16 least one conductive via structure operable for conductively coupling together all of said
17 shielding conductive layers to one another.

18

19 9. (Original) The conditioner of claim 6, wherein said shielding further comprises at
20 least one conductive aperture, wherein said at least one conductive aperture passes through at
21 least said first electrode layer or said second electrode layer; and

22 wherein said at least one conductive aperture is operable for conductively coupling
23 together all of said shielding conductive layers to one another.

24

25 10. (Original) The conditioner of claim 6, wherein said shielding further comprises at
26 least one conductive via structure, wherein said at least one conductive via structure passes
27 through at least said first electrode layer or said second electrode layer; and

28 wherein said at least one conductive via structure is operable for conductively
29 coupling together all of said shielding conductive layers to one another.

30

1 11. (Original) The energy conditioner of claim 7, wherein said shielding is not
2 operable to be physically coupled to a circuit path.

3

4 12. (Original) The energy conditioner of claim 8, wherein said shielding is not
5 operable to be physically coupled to a circuit path.

6

7 13. (Original) A method of making an energy conditioner comprising:
8 providing an internally floating shield structure;
9 providing a first electrode structure;
10 providing a second electrode structure;
11 wherein said first electrode structure comprises at least one first electrode structure
12 first conductive layer, said second electrode structure comprises at least one second electrode
13 structure first conductive layer;
14 wherein said internally floating shield structure shields said first electrode structure
15 first conductive layer from said second electrode structure, and said internally floating shield
16 structure shields said second electrode structure first conductive layer from said first electrode
17 structure; and
18 said first electrode structure includes a first electrode contact region.

19

20 14. (Original) A method of making filter arrangement comprising (1) an energy
21 conditioner comprising an internally floating shield structure; a first electrode structure; a
22 second electrode structure; wherein said first electrode structure comprises at least one first
23 electrode structure first conductive layer, said second electrode structure comprises at least
24 one second electrode structure first conductive layer; wherein said internally floating shield
25 structure shields said first electrode structure first conductive layer from said second electrode
26 structure, and said internally floating shield structure shields said second electrode structure
27 first conductive layer from said first electrode structure; wherein said first electrode structure
28 includes a first electrode contact region and (2) a conductive line segment of a circuit,
29 wherein said first electrode structure contact region is electrically connected to said
30 conductive line segment, comprising the steps of:

1 providing said energy conditioner;
2 providing said conductive line segment; and
3 electrically connecting said conductive line segment to said energy conditioner.

4

5 15. (Original) A method of making a capacitively/inductively coupling energy
6 conditioner, comprising:

7 providing an internally floating shield structure;
8 providing a first electrode structure;
9 providing a second electrode structure;
10 wherein said first electrode structure comprises at least one first electrode structure
11 first conductive layer, said second electrode structure comprises at least one second electrode
12 structure first conductive layer;

13 wherein said internally floating shield structure shields said first electrode structure
14 first conductive layer from said second electrode structure, and said internally floating shield
15 structure shields said second electrode structure first conductive layer from said first electrode
16 structure; and

17 said first electrode structure includes a first electrode capacitive/inductive coupling
18 pad.

19

20 16. (Original) The method of making a circuit including the method of claim 15, and
21 further comprising capacitively/inductively coupling said energy conditioner to a conductive
22 line segment.

23

24 17. (Original) A method of making an internally shielded capacitor comprising;
25 providing a shielding conductive layer;
26 providing a first electrode defining at least a first electrode layer, wherein said first
27 electrode layer is above said shielding conductive layer;
28 providing a second electrode defining at least a second electrode layer, wherein said
29 second electrode layer is below said shielding conductive layer;
30 wherein said shielding, said first electrode, and said second electrode are electrically

1 isolated from one another; and

2 wherein said first electrode, said second electrode, and said shielding conductive layer
3 are positioned and sized relative to one another such that any straight line passing through
4 said first electrode and said second electrode contacts said shielding conductive layer.

5

6 18. (Original) A method of making an energy conditioner comprising;

7 providing a shielding defining at least (1) upper shielding conductive layer, (2) a
8 center shielding conductive layer, and (3) a lower shielding conductive layer, wherein said
9 upper shielding conductive layer is above said center shielding conductive layer and said
10 center shielding conductive layer is above said lower shielding conductive layer;

11 providing a first electrode defining at least a first electrode layer, wherein said first
12 electrode layer is below said upper shielding conductive layer and above said center shielding
13 conductive layer;

14 providing a second electrode defining at least a second electrode layer, wherein said
15 second electrode layer is below said center shielding conductive layer and above said lower
16 shielding conductive layer; and

17 wherein said shielding, said first electrode, and said second electrode are electrically
18 isolated from one another; and

19 wherein said first electrode, said second electrode, and said center shielding
20 conductive layer are positioned and sized relative to one another such that any straight line
21 passing through said first electrode and said second electrode contacts said center shielding
22 conductive layer.

23

24 19. (Original) The method of claim 18, wherein said shielding further comprises at
25 least one conductive aperture operable for conductively coupling together all of said shielding
26 conductive layers to one another.

27

28 20. (Original) The method of claim 18, wherein said shielding further comprises at
29 least one conductive via structure operable for conductively coupling together all of said
30 shielding conductive layers to one another.

1 21. (Original) The method claim 18, wherein said shielding further comprises at least
2 one conductive aperture, wherein said at least one conductive aperture passes through at least
3 said first electrode layer or said second electrode layer; and

4 wherein said at least one conductive aperture is operable for conductively coupling
5 together all of said shielding conductive layers to one another.

6

7 22. (Original) The method of claim 18, wherein said shielding further comprises at
8 least one conductive via structure, wherein said at least one conductive via structure passes
9 through at least said first electrode layer or said second electrode layer; and

10 wherein said at least one conductive via structure is operable for conductively
11 coupling together all of said shielding conductive layers to one another.

12

13 23. (Original) The method of claim 19, wherein said shielding is designed to be
14 physically isolated from a circuit path.

15

16 24. (Original) The energy conditioner of claim 20, wherein said shielding is designed
17 be physically isolated from a circuit path.

18

19 25. (Original) A method of using an energy conditioner, said energy conditioner
20 comprising:

21 an internally floating shield structure; a first electrode structure; a second electrode
22 structure; wherein said first electrode structure comprises at least one first electrode structure
23 first conductive layer, said second electrode structure comprises at least one second electrode
24 structure first conductive layer; wherein said internally floating shield structure shields said
25 first electrode structure first conductive layer from said second electrode structure, and said
26 internally floating shield structure shields said second electrode structure first conductive
27 layer from said first electrode structure; and said first electrode structure includes a first
28 electrode contact region, said method comprising:

29 connecting said energy conditioner in an electrical circuit.

30

1 26. (Original) A method of using a capacitively/inductively coupling energy
2 conditioner, said energy conditioner comprising: an internally floating shield structure; a first
3 electrode structure; a second electrode structure; wherein said first electrode structure
4 comprises at least one first electrode structure first conductive layer, said second electrode
5 structure comprises at least one second electrode structure first conductive layer; wherein said
6 internally floating shield structure shields said first electrode structure first conductive layer
7 from said second electrode structure, and said internally floating shield structure shields said
8 second electrode structure first conductive layer from said first electrode structure; and said
9 first electrode structure includes a first electrode capacitive/inductive coupling pad, said
10 method comprising:

11 connecting said energy conditioner in an electrical circuit.

12

13 27. (Original) A method of using an internally shielded capacitor, said internally
14 shielded capacitor comprising: a shielding conductive layer; a first electrode defining at least
15 a first electrode layer, wherein said first electrode layer is above said shielding conductive
16 layer; a second electrode defining at least a second electrode layer, wherein said second
17 electrode layer is below said shielding conductive layer; wherein said shielding, said first
18 electrode, and said second electrode are electrically isolated from one another; and wherein
19 said first electrode, said second electrode, and said shielding conductive layer are positioned
20 and sized relative to one another such that any straight line passing through said first
21 electrode and said second electrode contacts said shielding conductive layer, said method
22 comprising:

23 connecting said internally shielded capacitor in an electrical circuit.

24

25 28. (Original) A method of using an energy conditioner, said energy conditioner
26 comprising: a shielding defining at least (1) upper shielding conductive layer, (2) a center
27 shielding conductive layer, and (3) a lower shielding conductive layer, wherein said upper
28 shielding conductive layer is above said center shielding conductive layer and said center
29 shielding conductive layer is above said lower shielding conductive layer; a first electrode
30 defining at least a first electrode layer, wherein said first electrode layer is below said upper

1 shielding conductive layer and above said center shielding conductive layer; a second
2 electrode defining at least a second electrode layer, wherein said second electrode layer is
3 below said center shielding conductive layer and above said lower shielding conductive layer;
4 and wherein said shielding, said first electrode, and said second electrode are electrically
5 isolated from one another; and wherein said first electrode, said second electrode, and said
6 center shielding conductive layer are positioned and sized relative to one another such that
7 any straight line passing through said first electrode and said second electrode contacts said
8 center shielding conductive layer, said method comprising:
9 connecting said energy conditioner in an electrical circuit.

10
11 29. (Original) The method of claim 28, wherein said shielding further comprises at
12 least one conductive aperture operable for conductively coupling together all of said shielding
13 conductive layers to one another.

14
15 30. (Original) The method of claim 28, wherein said shielding further comprises at
16 least one conductive via structure operable for conductively coupling together all of said
17 shielding conductive layers to one another.

18
19 31. (Original) The method of claim 28, wherein said shielding further comprises at
20 least one conductive aperture, wherein said at least one conductive aperture passes through at
21 least said first electrode layer or said second electrode layer; and
22 wherein said at least one conductive aperture is operable for conductively coupling
23 together all of said shielding conductive layers to one another.

24
25 32. (Original) The method of claim 28, wherein said shielding further comprises at
26 least one conductive via structure, wherein said at least one conductive via structure passes
27 through at least said first electrode layer or said second electrode layer; and
28 wherein said at least one conductive via structure is operable for conductively
29 coupling together all of said shielding conductive layers to one another.

30

1 33. (Original) The method of claim 29, wherein said shielding is designed to be
2 physically isolated from a circuit path.

3

4 34. (Original) The method of claim 30, wherein said shielding is designed to be
5 physically isolated from a circuit path.

6