

- Der heisse Draht -Physical Computing

Workshop Oktober 2014 Olav Schettler <<u>olav@tinkerthon.de</u>>

Was sind Microcontroller?

- Computer auf einem Chip
- Elektronengehirn
- Speicher, Rechenkern, Ein-/Ausgabe-Pins
- Programmierbar
- Beispiel Spielzeug "Furby":Berühren, Licht
 - => Bewegung, Töne
- Schalter, Lichtfühler, Mikrofon ... Motoren, LEDs

Blockdiagramme

Blockdiagramme zeigen
 die Baugruppen einer elektronischen Schaltung
 Eingabe ... Verarbeiten ... Ausgabe

Was ist das PICAXE-System?

- Microcontroller sind schwer zu programmieren:
 - SchwierigeProgrammiersprache
 - Spezielles Programmiergerät
- PICAXE:
 - Flußdiagramme zeichnen
 - Programmierung in BASIC
 - Kein extra Programmiergerät

Wir bauen ein elektronisches Spiel

Gehirn: ein PICAXE-08M2

LEDs zur Anzeige von Zeit und Berührungen, Piezo-Wandler für Töne

Reagiert auf Berührung und Zeit

Blockdiagramm unseres Spiels

Elektronische Bauteile

batteries

picaxe download socket

Auf den nächsten Seiten erfahren wir mehr über diese Bauteile ...

Microcontroller

- Computer auf einem Chip
- Werden nach der
 Programmierung in
 Produkte eingebaut, damit diese intelligenter und einfacher zu nutzen sind
- Beispiele:
 - Haushaltsgeräte
 - Alarmanlagen
 - Medizinische Geräte
 - in Fahrzeugen
 - Messgeräte

Wie kommen Programme auf den Microcontroller?

- Die Schaltung wird oft als Blockdiagramm gezeichnet
- Das Programm wird auf einen PC entwickelt
- Programme werden als Flußdiagramm gezeichnet oder in BASIC geschrieben
- ... und auf den Microcontroller hochgeladen

Wie werden Programme hochgeladen?

- Der PICAXE-08 Microcontroller wird über ein Kabel programmiert, das vom USB-Anschluß des PCs zur Platine mit dem Microcontroller verbunden wird
- Die Buchse auf der Platine (sieht aus wie ein Stereo-Kopfhöreranschluß) ist mit zwei Pins des Microcontrollers und dem Minuspol der Batterie verbunden
- Microcontroller und PC reden über dieses Kabel. So lädt der PC ein Programm in den Speicher des Microcontrollers

Batterien

- Wandeln chemische in elektrische Energie um
- 3 Zellen á 1,5V = 4,5V
- Microcontroller benötigen3...5V, daher funktionieren3 AA-Zellen gut.
- Niemals 9V-Blockbatterien benutzen!
- Batterien niemals kurzschließen!
- Auf die Polung achten:+ rot / schwarz

LEDs - Leuchtdioden

- Spezielle Dioden, die beim Anlegen von Strom Licht erzeugen
- Diode = Strom fließt nur in einer Richtung
- Benutzt als Anzeige und immer öfter zur Beleuchtung
- Infrarot-LEDs stecken in Fernsteuerungen
- LEDs brauchen einen Vorwiderstand:
 - 4,5V Batterie => 330 Ohm
 - 3V Batterie => 120 Ohm

Piezo-Schallwandler

- Piezo-Schallwandler sind preiswerte Mini-Lautsprecher
- Einsatz zur Rückmeldung an Nutzer oder in klingenden Geburtstagskarten
- Piezos können direkt mit einem Microcontroller-Pin verbunden werden
- Für lautere Klänge kann ein Lautsprecher mit Kondensator benutzt werden

Digitale Fühler (Schalter)

Lichtempfindliche Widerstände (LPR)

Der Widerstand änder sich in Anhängigkeit vom Lichteinfall

Anwendung in automatischen Strassenlaternen, Alarmanlagen und Spielzeug

- LDRs sind analoge Fühler
- Analoge Fühler messenLicht, Temperatur, Position
- Sie erzeugen eine Spannung, die mit einem Wert o .. 255 dargestellt werden kann

Flußdiagramme zeichnen

Zeichnen eines Flußdiagramms:

- Sklicke auf einen der Knöpfe: if, warten, Unterprogramm, sonstiges
- Wähle das einen Befehl aus dem Aufklappmenü
- Klicke auf die Arbeitsfläche, um das Befehlssymbol zu platzieren
- Bearbeite den zugehörigen BASIC-Befehl am unteren Fensterrand
- Symbole verbinden: Nah zueinander verschieben oder Linie zeichnen
- Ecken in Linien können durch Anklicken erzeugt werden

Programm simulieren

- Der Programmeditor bietet zwei Arten der Simulation:
 - Ablaufsimulation des Flußdiagramms: Klicke "Simulate" im Simulate-Menü
 - Die Geschwindigkeit kann in View > Options > Flowchart Menu eingestellt werden
 - Simulation mit Platine: Klicke "AXE 101 Cyberpet" in Simulate > Simulation Panels > Product Sims
 - Du kannst den Taster drücken und die Helligkeit über den Schieber einstellen. Die LEDs folgen den Ausgabebefehlen

Flußdiagramme hochladen

- Flußdiagramme können direkt auf den Microcontroller geladen werden:
 - Menüpunkt "Programm"
- Bitte beachten:
 - Das Wandeln nach BASIC bricht bei nicht verbundenen Symbole ab
 - Immer ein Stop-Symbol benutzen
 - Umwandeln / Herunterladen: 2x F5 drücken

Programmieren in BASIC

- BASIC hat mehr Befehle als Flußdiagramme (z.B. for .. next)
 - Das einfache Programm rechts schaltet Ausgang o jede
 Sekunde an / aus
- BASIC-Programme können auch simuliert werden:
 - Menüpunkt Simulate > Run

Programmierumgebung

Dben:

- Herunterladen von BASIC-Programmen
- Speichern eines Programms / Flußdiagramms
- Öffnen eines gespeicherten Programmes
- Ein neues BASIC-Programm erstellen
- Ein neues Flußdiagramm erstellen
- Bildschirm-Simulation eines Flußdiagrammes starten
- Ein Flußdiagramm in ein BASIC-Programm umwandeln
- Ausdrucken eines Programmes / Flußdiagrammes

Blockdiagramm unseres Spiels

... und der Schaltplan

Testen der einzelnen Bausteine

Um sicher zu sein, dass alles funktioniert, probieren wir jetzt die einzelnen Ein- und Ausgänge aus

Programmieren: Test der LEPs 0 und 1

Test LED o

- Verbinde das USB-Kabel mit Computer und Platine
- Schalte die Programmierumgebung auf o8M-Modus und wähle den richtigen Port
- Tippe das nebenstehende
 Programm ein und lade es auf den PICAXE hoch
- Die LED o flickert beim Hochladen und blinkt dann jede Sekunde
- Wiederhole diesen Test, aber
 nutze high 4 und low 4 für
 die andere LED

Programmieren: Test des Piezo

- Programm ein und lad es es auf den PICAXE hoch
- Der Piezo sollte vier unterschiedliche Töne von sich geben

Programmieren: Test des Tasters

- Tippe das untenstehende Programm ein und lade es hoch
- Die erste LED sollte aufleuchten, wenn der Taster gedrückt wird

start

main: if input3 is on then flash goto main

' make a label called 'flash'

' switch output 0 on

' wait 2 seconds

' switch output 0 off

' jump back to start

flash:

high 0 wait 2

low 0

goto main

Programmieren: Test des LPR

Programm ein und lade es

Hoch

Evtl. musst
du die
Schwellwerte ändern.
Versuche
60 und 30.

Die LEDs
sollen je nach
Helligkeit in
verschiedenen
Mustern
leuchten

```
start
                                 readadc 1,b1
main:
       readadc 1,b1
       if b1 > 100 then do4
                                    b1>-100
       if b1 > 50 then do0
       low 0
       low 4
                                     b1> 50
       goto main
do4:
                                                                             high 4
                                                         high 0
       high 4
                                      low 0
       low 0
       goto main
                                                                             low 0
                                                          low 4
do0:
                                      low 4
       high 0
       low 4
       goto main
```

Testergebnis

- Alles funktioniert!
- Jetzt gehen wir daran, unser Spiel zu programmieren ...

Erste Version

```
; hd01
; Heisser Draht 01
do
    if pin1 is on then
        high 0
    else
        low 0
    endif
loop
```

Zweite Version

```
; hd02
; Heisser Draht 02
symbol zaehler = b0 ' Variablenname zur besseren Lesbarkeit
zaehler = 0
do
    if pin1 is on then
                 ' Dauert Berührung länger als 0,2s,
                 ' wird sie mehrfach gezählt
        zaehler = zaehler + 1
                 ' Ausgabe des Zählers
        sertxd (#zaehler, lf)
        high 0
        pause 200 'LED blinkt kurz
        low 0
    endif
loop
```

Zweite Version als Flußdiagramm

3. Version: Punktezähler

```
; hd03
; Heisser Draht 04
symbol zaehler = b0 ' Variablenname zur besseren Lesbarkeit
symbol zeit = b1
symbol punkte = w2
zaehler = 0
zeit = 0
do
    zeit = zeit + 1
    if pin1 is on then
        zaehler = zaehler + 1
        hiah 0
    endif
    pause 200 ' LED blinkt kurz
    low 0
loop until pin3 is on
' punkte = 100 - (zaehler * 10) - zeit
punkte = zaehler * 10
punkte = 1000 - punkte
punkte = punkte - zeit
sertxd ("Punkte: ", #punkte, ", Zaehler: ",
#zaehler, ", Zeit; ", #zeit, lf)
```

3. Version: Punktezähler

```
; hd03
; Heisser Draht 04
symbol zaehler = b0 ' Variablenname zur besseren Lesbarkeit
symbol zeit = b1
symbol punkte = w2
zaehler = 0
zeit = 0
do
    zeit = zeit + 1
    if pin1 is on then
        zaehler = zaehler + 1
        hiah 0
    endif
    pause 200 ' LED blinkt kurz
    low 0
loop until pin3 is on
' punkte = 100 - (zaehler * 10) - zeit
punkte = zaehler * 10
punkte = 1000 - punkte
punkte = punkte - zeit
sertxd ("Punkte: ", #punkte, ", Zaehler: ",
#zaehler, ", Zeit; ", #zeit, lf)
```

Komplett!

- s. Texteditor ...
- Zwei Programme gleichzeitig
- Zeitmessung
- Berührungen zählen
- Punkte ausgeben

Weitere Informationen

- Weitere Informationen zum Workshop am 08./09.10.2014 unter http://tinkerthon.de/
- Die Hardware basiert auf dem "Cyberpet Project"
 http://www.picaxe.com/Hardware/Project-Kits/Cyberpet-Project-Kit/
- Kostenlose Programmierumgebung und Handbuch http://www.picaxe.com/
- Code-Beispiele:
 https://github.com/tinkerthon/Der-heisse-Draht