Ultrasound Measurement

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Lecture - Outline

- Piezoelectric as sensors and actuators
- Applications

Ultrasound Reflection Measurement

Ultrasound Instruments

Time of echo:

$$\tau = 2\frac{d}{c}$$

Attenuation:

$$\frac{I_r}{I_o} = e^{-\mu(2d)}$$

 Automatic depth dependent gain compensation

Flow measurement

Transit time =distance / (effective velocity in medium)

A-scan

- Plot time of reflected waves
- Depth dependent gain compensation is applied
- Calculate distance of every reflecting boundary

M-scan

- Repeated transmitreceive cycles
- Plot calculated distance for each cycle

B-scan

- Move position of the transducer
- Calculate depth of multiple reflection
- Plot depth as intelled on a 2D spatial dis

Doppler shift

- Source frequency f_o
- Source-target velocity u
- Propagation in medium with velocity c
- Dopplet shift f_d

$$\frac{f_d}{f_o} = \frac{u}{c}$$

Doppler flowmetry

- Ultrasound
 - Doppler measurement of motion

Doppler imaging

End of Lecture