AER210F VECTOR CALCULUS AND FLUID MECHANICS

Quiz 2

26 October 2015

8:50 am - 9:50 am

Closed Book, No aid sheets, No calculators

Instructor: J. W. Davis

Last Name:	
Given Name:	
Student #:	
Tutorial/TA:	

FOR MARKER USE ONLY						
Question	Marks	Earned				
1	10					
2	10					
3	10					
4	10					
5	14					
TOTAL	54	/ 50				

Note: The following integrals may be useful.

$$\int \cos^2\theta \, d\theta = \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta + C; \qquad \int \sin^2\theta \, d\theta = \frac{1}{2}\theta - \frac{1}{4}\sin 2\theta + C$$

$$\oint_{C} P dx + Q dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dR; \qquad \oiint_{S} \vec{F} \cdot \hat{n} dS = \iiint_{V} \nabla \cdot \vec{F} dV; \qquad \oint_{C} \vec{F} \cdot d\vec{r} = \iint_{S} \nabla \times \vec{F} \cdot d\vec{S}$$

1) Let R be the region in the first quadrant bounded by the parabolas: $x - y^2 = 0$, $x - y^2 = -4$, $x + y^2 = 9$, and $x + y^2 = 16$. Use a coordinate transformation to evaluate $\iint_R xy \, dR$. Provide a sketch of the original region in the x-y plane, and the new region in the u-v plane.

(10 marks)

2) Verify Green's theorem for the line integral $\oint_C x^2 y \, dx + e^y \, dy$, where C is the triangle with vertices (0, 1), (0, 0) and (1, 1).

3) The fundamental theorem of calculus as applied to volume integrals gives the following results: for a function f(x, y, z) which is continuous over a volume V enclosed by a surface S, if $\hat{n} = n_x \hat{i} + n_y \hat{j} + n_z \hat{k}$ is the unit normal on S pointing to the exterior of V, then

$$\int_{V} \frac{\partial f}{\partial x} dV = \int_{S} f \hat{n} \cdot \hat{i} dS \; ; \qquad \int_{V} \frac{\partial f}{\partial y} dV = \int_{S} f \hat{n} \cdot \hat{j} dS \; ; \qquad \int_{V} \frac{\partial f}{\partial z} dV = \int_{S} f \hat{n} \cdot \hat{k} dS$$

Use this result to derive the Gradient and Divergence Theorems.

(10 marks)

4) Evaluate the surface integral $\int_{S} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = x\hat{i} - y\hat{j} + z\hat{k}$, where S consists of the paraboloid $x = y^2 + z^2$, $0 \le x \le 1$, and the disk $y^2 + z^2 \le 1$, x = 1.

(10 marks)

5) Verify the Stokes' theorem for the vector field $\vec{F}(x,y,z) = z\hat{i} + 2xz\hat{j} + xy\hat{k}$ over the part of the plane 2x + 4y + z = 8 in the first octant. Provide a sketch of the surface and the boundary curve.

(14 marks)