Generalized Hadamard matrices $GH(2^k, 1)$ over an elementary abelian group

Sara Sasani, Priya Soundararajan

May 28, 2014

Abstract

To find Generalized Hadamard matrices $GH(2^k, 1)$ for $k \ge 3$ on the multiplicative group consisting of diagonal matrices each having as its diagonal one row of H_{2^k} (a Hadamard matrix of order 2^k) which we denote as $\{D_1, D_2, \dots, D_{2^k}\}$.

Definition 1. An $nxn(\pm 1)$ -matrix H is a Hadamard matrix if $HH^T = nI(i.e$ its rows are pairwise orthogonal). H_n denotes a Hadamard matrix of order n.

If H is a Hadamard matrix, then H^T is also a Hadamard matrix.

Definition 2. [1] If G is a finite group of order s, then a square matrix $H = [h_{ij}]$ of order r with elements from G is called a Generalized Hadamard matrix of type r/s, denoted by GH(G, r/s) if:

- (i) For each $1 \le i \ne j \le r$, $\{h_{ik}h_{jk}^{-1} : 1 \le k \le r\}$ includes r/s copies of every element of G. (ii) H^T has the property (i).
- **Definition 3.** Two Hadamard matrices H_{2^k} , H'_{2^k} are said to be equivalent to each other if one can be obtained from the other by the following operations:
- (i) Permutation of rows
- (ii) Permutation of columns
- (iii) Multiplication of a row(column) with -1

Definition 4. A finite abelian group G of order n is said to be an elementary abelian group if each element of G has order p, where p is a prime.

1 Introduction to the group D^{2^k}

In this section, we are going to construct an elementary abelian group of order 2^k , for each $k \ge 1$. The elements of these groups are diagonal matrices having order 2. At first, we review a definition.

Definition 5. If $M = [m_{ij}]$ and $N = [n_{ij}]$ are two matrices of order m and n respectivley, then the Kronecker product of M and N, denoted by $M \otimes N$, is a matrix of order nm which is defined as follows:

$$M \otimes N = [m_{ij}N]$$

1.1 Sylvester's construction

For k = 1, we start with the following Hadamard matrix of order 2^1 and call it H_2 :

$$H_2 = \left(\begin{array}{cc} 1 & 1 \\ 1 & - \end{array}\right)$$

For k = 2, define H_{2^2} as follows

$$H_{2^2} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & - & 1 & - \\ 1 & 1 & - & - \\ 1 & - & - & 1 \end{pmatrix}$$

For $k \ge 2$, we define H_{2^k} as follows

$$H_{2^k} = H_2 \otimes H_{2^{k-1}}$$

Now, we introduce a notation which is useful.

Notation 6. For each $k \ge 1$, let S_k be the set of rows of H_{2k} ; i.e.,

$$S_k = \{a_i^{2^k} : a_i^{2^k} \text{ is the ith row of } H_{2^k}, \text{ for each } 1 \le i \le 2^k\}$$

Note that S_k *has* 2^k *elmements.*

By using this notation, we have

- For $1 \le i \le 2^k$, $a_i^{2^{k+1}} = (a_i^{2^k} | a_i^{2^k})$; and
- For $2^k + 1 \le i \le 2^{k+1}$, $a_i^{2^{k+1}} = (a_{imod2^k}^{2^k} | -a_{imod2^k}^{2^k})$.

The rows of these matrices have some properties mentioned in the following theorem.

Lemma 7. The rows of H_{2^k} form an elemetary abelian group of order 2^k , for each $k \ge 1$. The operation of this group is componentwise multiplication, *.

Proof. S_k has associativity and commutativity because the componentwise multiplication of real vectors is commutative and associative. The first element of S_k includes only ones because of the first row of H_2 , [1,1], and the property of the Kronecker product.

This element is the identity element of S_k . On the other hand, since the rows or elements, we are dealing with, include only ± 1 , the inverse of each element is itself. In fact, the order of each element is two.

Therefore, for each $k \ge 1$, S_k is a set with the properties associativity, inverse element, and identity. We use induction to prove closure.

Let n = 1. Then, $S_1 = \{a_1^2, a_2^2\} = \{[1, 1], [1, -1]\}$. If we denote component-wise multiplication by *, then we have

$$a_1^2 * a_1^2 = a_1^2$$

 $a_2^2 * a_1^2 = a_2^2$
 $a_2^2 * a_2^2 = a_1^2$

Therefore, the set S_1 is closed under componentwise multiplication.

Assume, for n = k, we have S_k is closed under componentwise multiplication. Let n = k + 1. Then we have

$$H_{2^{k+1}} = H_2 \otimes H_{2^k} = \left(egin{array}{cc} H_{2^k} & H_{2^k} \ H_{2^k} & -H_{2^k} \end{array}
ight)$$

Let $a_i^{2^{k+1}}$ and $a_j^{2^{k+1}}$ be two arbitrary elements of S_{k+1} . Since the set of rows of Hadamard matrix H_{2^k} , S_k , is closed under componentwise multiplication, we have

- If $1 \le i \ne j \le 2^k$, then $a_i^{2^{k+1}} * a_j^{2^{k+1}} = a_r^{2^{k+1}}$, for some $1 \le r \le 2^k$.
- If $2^k + 1 \le i \ne j \le 2^{k+1}$, then $a_i^{2^{k+1}} * a_j^{2^{k+1}} = a_r^{2^{k+1}}$, for some $1 \le r \le 2^k$.
- If $1 \le i \le 2^k$ and $2^k + 1 \le j \le 2^{k+1}$, then $a_i^{2^{k+1}} * a_j^{2^{k+1}} = a_r^{2^{k+1}}$, for some $2^k + 1 \le r \le 2^{k+1}$.

Hence, the rows of H_{2^k} form an elemetary abelian group of order 2^k , for each $k \ge 1$.

Remark 8. Note that H_2 is a symmetric Hadamard matrix, so $H_2 = H_2^T$ Then H_{2^k} is also symmetric because it is constructed by repetitions of Kronecker product of H_2 with itself (k-1) times. Thus the columns of H_{2^k} form the same elemetary abelian group S_k of order 2^k , for each $k \ge 1$.

For each k, we have

$$S_k = \{a_i^{2^k} : a_i^{2^k} \text{ is the ith row of } H_{2^k}, \text{ for each } 1 \le i \le 2^k\}$$

For each *i*, we can replace $a_i^{2^k}$ with $D_i = diag(a_i^{2^k})$, a diagonal matrix having $a_i^{2^k}$ on its diagonal. Now, let's make a new set called T_k as follow

$$T_k = \{D_i^{2^k} : D_i^{2^k} \text{ is a diagonal matrix having } a_i^{2^k} \text{ on its diagonal }, \text{ for each } 1 \leq i \leq 2^k\}$$

By using matrix multiplication, T_k is also an elemetary abelian group of order 2^k isomorphic to S_k , for each $k \ge 1$.

Now, see an example for the case k = 3.

Example 9. *let* k = 3. *Then we have*

$$H_{2^k} = H_{2^3} = H_2 \otimes H_{2^2}$$

So

$$H_{2^3} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & - & 1 & - & 1 & - & 1 & - \\ 1 & 1 & - & - & 1 & 1 & - & - & 1 \\ 1 & - & - & 1 & 1 & - & - & - & 1 \\ 1 & 1 & 1 & 1 & - & - & - & - & 1 \\ 1 & 1 & - & - & - & 1 & 1 & 1 \\ 1 & - & - & 1 & - & 1 & 1 & - & \end{pmatrix}$$

The first row of this matrix includes only ones, and is a symmetric matrix. Then,

$$S_3 = \{a_1^{2^3}, a_2^{2^3}, \dots, a_8^{2^3}\}$$

where

$$a_1^{2^3} = [1, 1, 1, 1, 1, 1, 1, 1]$$

$$a_2^{2^3} = [1, -, 1, -, 1, -, 1, -]$$

$$a_3^{2^3} = [1, 1, -, -, 1, 1, -, -]$$

$$a_4^{2^3} = [1, -, -, 1, 1, -, -, 1]$$

$$a_5^{2^3} = [1, 1, 1, 1, -, -, -, -]$$

$$a_6^{2^3} = [1, -, 1, -, -, 1, -, 1]$$

$$a_7^{2^3} = [1, 1, -, -, -, -, 1, 1]$$

$$a_8^{2^3} = [1, -, -, 1, -, 1, 1, -]$$

and

$$T_3 = \{D_1^{2^3}, D_2^{2^3}, \dots, D_8^{2^3}\}$$

where

$$D_6^{2^3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & - & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & - & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & - & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Then the multiplication tables of S_3 and T_3 are the same if i refers to both $D_i^{2^3}$ and $a_i^{2^3}$, for each $1 \le i \le 8$. Hence, we have

*	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	4	3	6	5	8	7
3	3	4	1	2	7	8	5	6
4	4	3	2	1	8	7	6	5
5	5	6	7	8	1	2	3	4
6	6	5	8	7	2	1	4	3
7	7	8	5	6	3	4	1	2
8	8	7	6	5	4	3	2	1

The following lemma states for each $k \ge 1$, S_k has a subset U_k with k elements, with a specific property.

Lemma 10. For each $k \ge 1$, there is a subset U_k of S_k with k elements satisfying the following condition:

• For each $1 \le i \le k$, there is an element $b_i^{2^k} = [(b_i^{2^k})_j]$, $1 \le j \le 2^k$, in U_k such that:

- If
$$i > 1$$
, $b_i^{2^k} = [(b_i^{2^k})_j] = [(-1)^{q_j}]$, where q_j is $[j/2^i]$; and

- if
$$i = 1$$
, $b_1^{2^k} = [(b_1^{2^k})_j] = [-(-1)^j]$.

:

Proof. We use induction for this proof. We have two base cases n = 1 and n = 2.

Let n = 1, then U_1 has one element, and i can only be 1. We have $b_1^{2^1} = [-(-1)^j] = [1, -1] = a_2^2$. Hence, $U_1 = \{a_2^2\}$.

If n = 2, then U_2 has two elements and i can take values 1 and 2. We have $b_1^{2^1} = [-(-1)^j] = [1, -1, 1, -1] = a_2^{2^2}$, and $b_2^{2^2} = [(-1)^{q_j}] = [1, 1, -1, -1] = a_3^{2^2}$. Therefore, $U_2 = \{a_3^{2^2}, a_2^{2^2}\}$.

Assume, for n = k, we have $U_k = \{b_1^{2^k}, \dots, b_k^{2^k}\}$ with desired properties. Let n = k + 1. By the construction of S_k , we have the set $\{(b_1^{2^k}|b_1^{2^k}), \dots, (b_k^{2^k}|b_k^{2^k})\}$ is a subset of S_{k+1} . Moreover, for $1 \le i \le k$, we have

$$b_i^{2^{k+1}} = (b_i^{2^k}|b_i^{2^k})$$

Hence, we have k elements of U_{k+1} . We also have that the first 2^k components of $b_{k+1}^{2^{k+1}}$ are one, and the rest are minus one. By constructure of S_{k+1} , this element is $b_{k+1}^{2^{k+1}} = a_{2^{k+1}}^{2^{k+1}} = (a_1^{2^k} | - a_1^{2^k})$ which make the last element of U_{k+1} .

The rows of the Hadamard matrix H_{2^k} are permuted to obtain an equivalent Hadamard matrix $H_{2^k}^{'}$, such that the i^{th} row of $H_{2^k}^{'}$ is $b_i^{2^k}$. We use $S_k^{'}$ to denote the group of columns of $H_{2^k}^{'}$.

Lemma 11. The first k elements of any two columns in the group S'_k are distinct.

Proof. For the sake of clarity, we can impose an order on the elements of S'_k . The i^{th} column of H'_{2^k} is expressed as $a_i'^{2^k}$ for each i, $1 \le i \le k$.

We want to prove that if $1 \le r \ne s \le 2^k$, $(a_r'^{2^k})_j \ne (a_s'^{2^k})_j$ for at least one $j, 1 \le j \le k$.

Toward a contradiction, suppose $r \neq s$ but $(a_r'^{2^k})_j = (a_s'^{2^k})_j$ for each $1 \leq j \leq k$.

$$(a_r'^{2^k})_k = (a_s'^{2^k})_k \implies 1 \le r, \ s \le 2^{k-1} \text{ or } 2^{k-1} + 1 \le r, \ s \le 2^k.$$
 With out loss of generality, suppose $1 \le r, \ s \le 2^{k-1}$.

Then,
$$(a_r'^{2^k})_{k-1} = (a_s'^{2^k})_{k-1} \Rightarrow 1 \le r$$
, $s \le 2^{k-2}$ or $2^{k-2} + 1 \le r$, $s \le 2^{k-1}$.

With out loss of generality, suppose $1 \le r$, $s \le 2^{k-2}$.

Continuing this way,

Since
$$(a_r^{'2k})_1 = (a_s^{'2k})_1$$
, we have $1 \le r$, $s \le 2^{k-k} = 1$.

This is a contradiction because we have assumed that $r \neq s$. Hence, the first k elements of any two columns in S'_k are distinct.

2 Construction of Generalized Hadamard matrices

A method presented in [1] illustrates a construction for GH(G,n), where G is an elementary abelian group. This method can be extended by an isomorphism described in Proposition 15 construct a GH(G,1), where G is the elementary abelian group of columns of a Hadamard matrix, S'_k .

Proposition 12. [1], There is a symmetric GH matrix of type 1 over every finite elementary abelian group G of order p^k , where p is a prime.

Proof. The GH matrix is constructed as follows:

G, the elementary abelian group of prime power order p^k is taken to be the additive group of the field $F = GF(p^k)$. A multiplication table for the field constitutes the elements of the GH matrix of type 1 over G.

We now focus on Galois field of order 2^k , $GF(2^k)$. For a specific k, the elements of $GF(2^k)$ are polynomials of order less than or equal to k-1 with coefficients from GF(2). Addition is pointwise and multiplication is done modulo some primitive polynomial over GF(2). For each $k \ge 1$, let G_k denote the additive group of $GF(2^k)$.

$$G_k = \{v_i = v_{i1} + v_{i2}T + \dots v_{ik}T^{k-1} | v_{ij} \in \{0,1\} \ \forall j, 1 \le j \le k\}$$

Addition of two polynomials v_i and v_j is defined as,

$$v_i + v_j = (v_{i1} + v_{j1}) + (v_{i2} + v_{j2})T + \dots + (v_{ik} + v_{jk})T^{k-1}$$

Remark 13. The additive group of GF(2) is isomorphic to the multiplicative group of $\{1, -1\}$ with the usual operation of multiplication. By this isomorphism, 1 is mapped to -1, 0 is mapped to 1, and addition is changed to multiplication. G_k obtains another representation through the use of this isomorphism as:

$$G_k = \{ v_i = v_{i1} + v_{i2}T + \dots v_{ik}T^{k-1} | v_{ij} \in \{-1, 1\} \ \forall j, 1 \le j \le k \}$$

with the operation being pointwise multiplication, denoted by \odot ,

$$v_i \odot v_j = (v_{i1} \cdot v_{j1}) + (v_{i2} \cdot v_{j2})T + \dots (v_{ik} \cdot v_{jk})T^{k-1}$$

This representation of G_k finds use in the next proposition. Before that, we view an example of the construction.

Example 14. *GH* matrix constructed over the additive group of
$$GF(2^3) = \mathbb{Z}/2\mathbb{Z}[T]/(T^3 + T + 1)$$
 $GF(2^3) = \{0, 1, T, T + 1, T^2, T^2 + 1, T^2 + T, T^2 + T + 1\}$ $G_3(2^3) = \{(1 + T + T^2), (-1 + T + T^2), (-1 - T + T^2), (-1 - T + T^2), (-1 + T - T^2), (-1 - T - T^2)\}$

The multiplication table for $GF(2^3)$:

$$\begin{pmatrix} 1+T+T^2 & 1$$

It is easy to see that the set $1 \le i \ne j \le 2^k$, $\{h_{il} \cdot h_{jl}^{-1} : 1 \le l \le 2^k\}$ includes every element of G_k once.

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & T & T+1 & T^2 & T^2+1 & T^2+T & T^2+T+1 \\ 0 & T & T^2 & T^2+T & T+1 & 1 & T^2+T+1 & T^2+1 \\ 0 & T+1 & T^2+T & T^2+1 & T^2+T+1 & T^2 & 1 & T \\ 0 & T^2 & T+1 & T^2+T+1 & T^2+T & T & T^2+1 & 1 \\ 0 & T^2+1 & 1 & T^2 & T & T^2+T+1 & T+1 & T^2+T \\ 0 & T^2+T & T^2+T+1 & 1 & T^2+T & T & T^2 \\ 0 & T^2+T+1 & T^2+1 & T & 1 & T^2+T & T^2 & T+1 \end{pmatrix}$$

Proposition 15. There is an isomorphism between the elements of the group S'_k , with the operation of pointwise multiplication *, and the elementary abelian group G_k , also with the operation of pointwise multiplication \odot formed using 12.

Proof. Consider the mapping,

$$f: S'_k \longrightarrow G_k$$

$$a_i^{'2^k} \mapsto (a_i^{'2^k})_1 + (a_i^{'2^k})_2 T^1 + (a_i^{'2^k})_3 T^2 \dots (a_i^{'2^k})_k T^{k-1}$$

From remark 13, the mapping is well defined. To show that it is one-one, let $f(a_i'^{2^k}) = f(a_j'^{2^k})$ for some $1 \le i \ne j \le 2^k$. $\Rightarrow (a_i'^{2^k})_r = (a_j'^{2^k})_r$, for all $1 \le r \le k$.

Using lemma 11, $a_i^{\prime 2^k} = a_i^{\prime 2^k}$. Thus it is injective.

The number of elements in S'_k and G is 2^k , hence it is onto in addition to being one-one. To show that the mapping is a homomorphism,

$$\begin{split} f(a_i'^{2^k}*a_j'^{2^k}) &= ((a_i'^{2^k})_1 \cdot (a_j'^{2^k})_1) \, + \, ((a_i'^{2^k})_2 \cdot (a_j'^{2^k})_2) T^1 \, + \ldots ((a_i'^{2^k})_k (a_j'^{2^k})_k) T^{k-1} \\ &= ((a_i'^{2^k})_1 \, + \, (a_i'^{2^k})_2 T^1 \, + \ldots (a_i'^{2^k})_k T^{k-1}) \odot ((a_j'^{2^k})_1 \, + \, (a_j'^{2^k})_2 T^1 \, + \ldots (a_j'^{2^k})_k T^{k-1}) \\ &= f(a_i'^{2^k}) \odot f(a_j'^{2^k}) \end{split}$$

 \Rightarrow , the above arguments prove that f is an isomorphism.

References

[1] DAVID A. DRAKE, Partial λ geometries and Generalized Hadamard matrices over groups Can.J.Math.(1979), pp. 617-627