

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de São José dos Campos Instituto de Ciência e Tecnologia

Ajuste de Curvas: Método dos Mínimos Quadrados

Prof. Dr. Rogério Galante Negri

Motivação

• Suponhamos que foi medido em laboratório o crescimento

médio de pés de feijão:

		3 (QL			
Dia	3	10	13	17	22
Altura (cm)	2.2	7.7	9.2	9.9	11

- Como fazemos para conhecer o valor no 6º dia?
- Em que dia (decimal) os feijões atingem altura de 10 cm?

Questões como esta são resolvidas com auxílio da <u>Interpolação</u>: "Aproximação da função original por uma outra, escolhida dentre uma classe de funções que satisfaz determinadas propriedades"

Contraindicações da Interpolação

- A interpolação é usada para aproximar uma função da qual só conhecemos poucos pontos
- Ela não é indicada para:
 - Determinar valores da função fora do intervalo "interpolado" (não há extrapolação)
 - Os dados tabelados são obtidos de experimentos, pois, os mesmos contém erros inerentes não previsíveis
- Tais contraindicações motiva ajuste de funções aos valores tabelados, da melhor forma possível
- Dessa forma, é possível extrapolar informações com segurança

Casos de Ajuste

- Dois casos para ajuste de curvas são:
 - Discreto
 - Contínuo

• Discreto: ajuste de curvas sobre um conjunto de pontos $(x_i, f(x_i)), i = 1, ..., n$ tabelados

• Contínuo: ajuste de curvas sobre uma função f(x) contínua definida em um intervalo [a, b]

Caso discreto

- O ajuste é feito sobre os pontos $(x_1, f(x_1)), ..., (x_m, f(x_m))$ com $x_1, ..., x_m \in [a, b]$
- Para realizar o ajuste:
 - Escolher *n* funções $g_1(x)$, ..., $g_n(x)$ contínuas em [a, b]
 - Obter *n* constantes $\alpha_1, ..., \alpha_n$ de forma que:

$$\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \dots + \alpha_n g_n(x)$$
seja a mais próxima possível de $f(x)$

- Observa-se que:
 - É um modelo linear, já que as constantes α_i aparecem linearmente
 - As funções $g_i(x)$ podem não ser lineares
 - A escolha das $g_i(x)$'s é feita pela observação do <u>diagrama de dispersão</u> dos pontos tabelados

Diagrama de dispersão

- Suponhamos os diagramas (obtidos experimentalmente)
- Podemos observar um comportamento bem estabelecido
- Nem sempre é possível...

Menor desvio

- Nos exemplos anteriores, qual reta, parábola e exponencial são as que melhor se ajustam?
- Com a escolha das funções $g_i(x)$'s, é observada a proximidade entre $\varphi(x)$ e f(x)
- Uma maneira é exigir o menor desvio $f(x) \varphi(x)$
- O Método dos Mínimos Quadrados (MMQ) determina tal $\varphi(x)$

Caso continuo

- Dada f(x) contínua em [a, b] e escolhidas $g_1(x), ..., g_n(x)$, também contínuas em [a, b]
- Podemos definir $\varphi(x) = \alpha_1 g_1(x) + \dots + \alpha_n g_n(x)$ que se aproxime o máximo possível de f(x)
- A proximidade pode ser dada pela área sob o gráfico de $\varphi(x) f(x)$
- Área mínima equivale a maior proximidade

- Dados $(x_i, f(x_i)), i = 1, ..., m, e g_j(x), j = 1, ..., n \le m$
- Devemos determinar os coef. $\alpha_j, j=1,...,n$ tal que: $\varphi(x)=\alpha_1g_1(x)+\alpha_2g_2(x)+\cdots+\alpha_ng_n(x)$ seja a mais próxima possível de f(x)
- Desejamos $d_k = f(x_k) \varphi(x_k)$ mínimo, k = 1, ..., m
- O MMQ consiste em selecionar os α_i 's que minimiza a seguinte função (soma dos quadrados dos desvios) :

$$F(\alpha_1, \alpha_2, ..., \alpha_n) = \sum_{k=1}^{m} d_k^2 = \sum_{k=1}^{m} (f(x_k) - \varphi(x_k))^2$$

• O mínimo de $F(\alpha_1, \alpha_2, ..., \alpha_n)$ está vinculado aos pontos críticos, isto é:

$$\left. \frac{\partial F}{\partial \alpha_j} \right|_{(\alpha_1, \alpha_2, \dots, \alpha_n)} = 0; j = 1, \dots, n$$

Sabemos que:

$$\left. \frac{\partial F}{\partial \alpha_j} \right|_{(\alpha_1, \dots, \alpha_n)} = 2 \sum_{k=1}^m \left(f(x_k) - \alpha_1 g_1(x_k) - \dots - \alpha_n g_n(x_k) \right) \cdot \left(-g_j(x_k) \right)$$
Verifique

• Exigindo $\frac{\partial F}{\partial \alpha_j}\Big|_{(\alpha_1,\alpha_2,\dots,\alpha_n)} = 0; j = 1,\dots,n$, temos:

$$\sum_{k=1}^{m} \left(f(x_k) - \alpha_1 g_1(x_k) - \dots - \alpha_n g_n(x_k) \right) \cdot \left(-g_j(x_k) \right) = 0$$
 para $j = 1, \dots, n$

Uma vez que

$$\sum_{k=1}^{m} (f(x_k) - \alpha_1 g_1(x_k) - \dots - \alpha_n g_n(x_k)) \cdot (-g_j(x_k)) = 0$$

para j = 1, ..., n, podemos escrever:

$$\begin{cases} \sum_{k=1}^{m} \left(f(x_k) - \alpha_1 g_1(x_k) - \dots - \alpha_n g_n(x_k) \right) \cdot \left(-g_1(x_k) \right) = 0 \\ \sum_{k=1}^{m} \left(f(x_k) - \alpha_1 g_1(x_k) - \dots - \alpha_n g_n(x_k) \right) \cdot \left(-g_2(x_k) \right) = 0 \\ \vdots \\ \sum_{k=1}^{m} \left(f(x_k) - \alpha_1 g_1(x_k) - \dots - \alpha_n g_n(x_k) \right) \cdot \left(-g_n(x_k) \right) = 0 \end{cases}$$

$$\begin{cases} \left(\sum_{k=1}^{m} g_{1}(x_{k}) \cdot g_{1}(x_{k})\right) \alpha_{1} + \dots + \left(\sum_{k=1}^{m} g_{n}(x_{k}) \cdot g_{1}(x_{k})\right) \alpha_{n} = \sum_{k=1}^{m} f(x_{k}) \cdot g_{1}(x_{k}) \\ \left(\sum_{k=1}^{m} g_{1}(x_{k}) \cdot g_{2}(x_{k})\right) \alpha_{1} + \dots + \left(\sum_{k=1}^{m} g_{n}(x_{k}) \cdot g_{2}(x_{k})\right) \alpha_{n} = \sum_{k=1}^{m} f(x_{k}) \cdot g_{2}(x_{k}) \\ \vdots \\ \left(\sum_{k=1}^{m} g_{1}(x_{k}) \cdot g_{n}(x_{k})\right) \alpha_{1} + \dots + \left(\sum_{k=1}^{m} g_{n}(x_{k}) \cdot g_{n}(x_{k})\right) \alpha_{n} = \sum_{k=1}^{m} f(x_{k}) \cdot g_{n}(x_{k}) \end{cases}$$

$$\begin{cases} a_{11}\alpha_{1} + a_{12}\alpha_{2} + \dots + a_{1n}\alpha_{n} = b_{1} \\ a_{21}\alpha_{1} + a_{22}\alpha_{2} + \dots + a_{2n}\alpha_{n} = b_{2} \\ \vdots \\ a_{n1}\alpha_{1} + a_{n2}\alpha_{2} + \dots + a_{nn}\alpha_{n} = b_{n} \end{cases}$$

SL: $\mathbf{A} \cdot \mathbf{\alpha} = \mathbf{b}$

onde
$$a_{ij} = \sum_{k=1}^{m} g_i(x_k) \cdot g_j(x_k)$$
 e $b_i = \sum_{k=1}^{m} f(x_k) \cdot g_i(x_k)$ $\langle \mathbf{g}_i, \mathbf{g}_j \rangle$ $\langle \mathbf{f}, \mathbf{g}_j \rangle$

- Dado $\mathbf{g}_i = (g_i(x_1), g_i(x_2), ..., g_i(x_m))^T$
- Se $\mathbf{g}_1, \dots, \mathbf{g}_n$ são <u>Linearmente Independentes</u> então $\det(\mathbf{A}) \neq 0$
- Logo, o SL possui solução única $\overline{\alpha} = (\overline{\alpha}_1, ..., \overline{\alpha}_n)$
- Ainda, $\overline{\alpha}$ é o ponto de mínimo de $F(\alpha_1, \alpha_2, ..., \alpha_n)$
- Se os vetores \mathbf{g}_i ' são tais que o produto escalar

$$\langle \mathbf{g}_i, \mathbf{g}_j \rangle$$
: $\begin{cases} = 0, \text{ se } i \neq j \\ \neq 0, \text{ se } i = j \end{cases}$

ou seja, ortogonais, teremos **A** diagonal, com $a_{ii} \neq 0$ e com solução facílima de calcular [pense!]

O melhor de tudo é que, a partir de $x_1, ..., x_m$, é simples obter polinômios de grau 0 até n que sejam ortogonais

Exercício - Caso Discreto

 Aproxime uma função para o seguinte conjunto de pontos:

x	-2	-1	0	1	2	3
f(x)	19.01	3.99	-1.0	4.01	18.99	45.0

Por simplicidade, adotaremos apenas duas funções

- Desejamos que $\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x)$ se aproxime o máximo possível de f(x) em [a,b]
- Precisamos obter α_1 e α_2 tais que $\int_a^b (f(x) \varphi(x))^2 dx$ seja o menor possível

• Desenvolvendo:

$$F(\alpha_1, \alpha_2) = \int_a^b (f(x) - \varphi(x))^2 dx =$$

$$= \int_a^b f(x)^2 dx - 2\alpha_1 \int_a^b f(x)g_1(x)dx - 2\alpha_2 \int_a^b f(x)g_2(x)dx +$$

$$+\alpha_1^2 \int_a^b g_1^2(x)dx + 2\alpha_1 \alpha_2 \int_a^b g_1(x)g_2(x)dx + \alpha_2^2 \int_a^b g_2^2(x)dx$$

MMQ - Caso Contínuo

• Determinamos os pontos críticos de $F(\alpha_1, \alpha_2)$ fazendo:

$$\left. \frac{\partial F}{\partial \alpha_j} \right|_{(\alpha_1, \alpha_2)} = 0; \quad j = 1,2$$

• Para α_1 :

$$\frac{\partial F}{\partial \alpha_1}\bigg|_{(\alpha_1, \alpha_2)} = -2 \int_a^b f(x) g_1(x) dx + 2\alpha_1 \int_a^b g_1^2(x) dx + 2\alpha_2 \int_a^b g_1(x) g_2(x) dx$$

• Para α_2 :

$$\frac{\partial F}{\partial \alpha_2}\bigg|_{(\alpha_1, \alpha_2)} = -2 \int_a^b f(x) g_2(x) dx + 2\alpha_2 \int_a^b g_2^2(x) dx + 2\alpha_1 \int_a^b g_1(x) g_2(x) dx$$

$$\mathbf{A} \cdot \mathbf{\alpha} = \mathbf{b} \begin{cases} \alpha_1 \int_a^b g_1^2(x) dx + \alpha_2 \int_a^b g_1(x) g_2(x) dx = \int_a^b f(x) g_1(x) dx \\ \alpha_1 \int_a^b g_1(x) g_2(x) dx + \alpha_2 \int_a^b g_2^2(x) dx = \int_a^b f(x) g_2(x) dx \end{cases}$$

MMQ - Caso Contínuo

- Assim como no caso discreto, se g_1 e g_2 são LI, temos $\det(\mathbf{A}) \neq 0$, logo, o SL tem solução única $\overline{\alpha} = (\overline{\alpha}_1, ..., \overline{\alpha}_n)$
- A solução $\overline{\alpha}$ é ponto de mínimo de $F(\alpha_1, \alpha_2)$

• Considerando o produto escalar entre funções p(x) e q(x):

$$\langle p(x), q(x) \rangle = \int_{a}^{b} p(x)q(x)dx$$

• Temos por sua vez que:

$$(a_{ij}) = \langle g_i(x), g_j(x) \rangle = \int_a^b g_i(x)g_j(x)dx$$
$$b_i = \langle f(x), g_i(x) \rangle = \int_a^b f(x)g_i(x)dx$$

É possível obter funções ortogonais para o produto interno *

Polinômios de Legendre

$$\mathcal{L}_0(x) = 1$$

$$\mathcal{L}_k(x) = \frac{1}{2^k k!} \cdot \frac{d^{(k)}}{dx^{(k)}} (x^2 - 1)^k; \quad k = 1, 2, ...$$
são ortogonais em $[-1, +1]$ segundo \bigstar

• Existe ainda uma relação de recorrência para obtenção dos polinômios de Legendre:

$$\mathcal{L}_{k+1}(x) = \left(\frac{2j+1}{j+1}\right) x \mathcal{L}_k(x) - \left(\frac{j}{j+1}\right) \mathcal{L}_{k-1}(x); k = 1, 2, \dots$$

Exercício - Caso Contínuo

• Aproxime a função $f(x) = e^{-x}$ em [1,3] por um polinômio de grau 1 na forma $g(x) = \alpha_1 x + \alpha_2$

Tratamento Não Linear

• Há casos em que as funções escolhidas para ajuste não sejam lineares nos parâmetros α , por exemplo:

$$\varphi(x) = \alpha_1 e^{-\alpha_2 x}$$

• Para uso do MMQ, deve-se <u>linearizar</u> o problema:

$$\varphi(x) = \alpha_1 e^{-\alpha_2 x} \Rightarrow \varphi(x) = \ln(\varphi(x)) = \ln(\alpha_1) - \alpha_2 x$$

- Definindo, $\hat{\alpha}_1 = \ln(\alpha_1)$ e $\hat{\alpha}_2 = -\alpha_2$ temos $\phi(x)$ linear nos parâmetros $\hat{\alpha}_1$ e $\hat{\alpha}_2$
- Após essas considerações, o MMQ é aplicado não problema linearizado

Os parâmetros obtidos são usados para determinar os parâmetros originais

Exemplo

• Considerando os seguintes dados abaixo, faça uma ajuste não-linear. Considere $\varphi(x) = \alpha_1 e^{-\alpha_2 x}$

x	-1.0	-0.7	-0.4	-0.1	0.2	0.5	0.8	1.0
f(x)	36.547	17.264	8.155	3.852	1.82	0.86	0.406	0.246

Verificando o Ajuste Não Linear

- i. Obter a versão linearizada da função original
- ii. Aplicar sobre os dados tabelados
- iii. Fazer o diagrama de dispersão
- iv. Se os pontos no diagrama estiverem alinhados, então a função usada na linearização foi uma boa escolha

Bibliografia da aula

- RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo Numérico Aspectos Teóricos e Computacionais, 2ª Ed. Editora Pearson, 1996.
- FRANCO, N. B. Cálculo Numérico. Pearson, 2007.

