	TP1 Debit - Charpin Chevillard	Pt		A B C D	Note	
l Préparation	n du travail					
1 Compléter	le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2 Quel est le	nom de la grandeur réglée ?	1	Α		0,5	
3 Quel est le	principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4 Quelle est	la grandeur réglante ?	1	Α		0,5	
5 Donner un	e grandeur perturbatrice.	1	Α		0,5	
U	chéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, ons, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	
II. Etude du p	rocédé					
1 Paramétre	r les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
_	aractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de re et niveau).	1	Α		1	
3 En déduire	le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
4 En déduire	le sens d'action à régler sur le régulateur.	1	Α		1	
5 Détermine	r le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	С		1,05	Choix de l'enregistrement discutable
III. Etude du r	égulateur					
1 Détermine	r la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	Α		1,5	
2 En déduire	le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α		1,5	
IV. Performar	ces et optimisation					
1 Programm	er votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1	
/	es performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de 10%, la valeur du premier dépassement et la précision relative.	2	Α		1,5	
J	votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des s modifiés.	1	Α		1	
4 Mesurer à	nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Α		1,5	
			Note	sur : 20	18,1	

TP°7 Débit

I. Préparation du travail

2)

La grandeur réglée est le débit d'entré Qe.

3)

Ici le principe est de mesurée la vitesse de rotation d'un rotor.

4)

La grandeur réglante est l'ouverture de l'électrovanne.

5)

La grandeur perturbatrice peut être la pression en amont Pe.

II. Etude du procédé

1) Paramètre entrées

TagName	01M01_0A		LIN Name	01M01_0A	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mΑ
			LR_in	4.00	mΑ
HiHi	100.0	%	Al	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
AlmOnTim	0.000	Secs	Options	>0000	
AlmOfTim	0.000	Secs	Status	>0000	

Paramètre PID

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	%
LL_OP	0.0	%	FB_OP	0.0	%

Paramètre sorties :

TagName	02P01_0A		LIN Name	02P01_0A	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
	A.L.T.O.				
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	m/
			LR_out	4.00	m/
Out	0.0	%	AO	0.00	m/
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

OP(%)	PV(%)
0	0,8
20	54
40	61
60	68,2
80	72,4
100	89

- On prendra le point de fonctionnement quand Pv varie de 20 à 80%. J'utilise DeltaY/DeltaX=(72,4-54)/(80-20)=<u>0,3</u>
 Le gain statique autour du procédé est donc de 0,3.
- 4) Quand la mesure augmente il faut fermer la vanne donc diminuer la sortie du régulateur pour diminuer le débit. Le régulateur fonctionne donc en inverse.

$$X = 65-60 = 5$$

$$t0 = 01:06:12:50 = 0s$$

$$t1 = 01:06:14:50 = 2s$$

$$t2 = 01:06:14:80 = 2.3s$$

```
le gain statique K = delta \ X/delta \ Y
K = 5/10
K = 2

le retard T = 2,8(t1-t0) - 1,8(t2-t0)
T = 2,8(2-0) - 1,8(2,3-0)
T = 1,46s

la constante temps t = 5,5(t2-t1)
t = 5,5(2,3-2)
t = 1,65s

kr = T/t
kr= 1,46/1,65
kr = 0,88

III. Étude du régulateur
: 1,2)
La structure du régulateur est mixte
```


Pour nos calcule on prendra un PID mixte car notre car est de 0,88.

IV. Performances et optimisation

1)

Secs	
158.7	%
2.23	
0.49	
	158.7 2.23

t0 = 02:00:31,000 = 0st1 = 02:00:45,000 = 14s

Il n'y à pas de stabilisation, l'erreur statique reste présente.

temps de réponse à 90% est: t1- t0 = 14s mais la courbe n'est pas stable, elle continue de sortir de notre plage, nous allons donc essayer de la stabiliser pour diminuer l'erreur statique.

Ci dessus nous avons appliquer les valeurs obtenue à la question 1.

3,4) J'ai donc modifié les valeurs pour obtenir une erreur statique moindre... Voir ci dessous :

t0 = 0st1 = 70s

t0

TimeBase	Secs	
XP	150.0	%
TI	10.00	
TD	0.00	

t1

On à donc stabiliser la courbe avec un Ti=10s on à diminué Xp de 8,7%.

On à donc perdu 56s sur le temps de réponse par rapport à l'ancien réglages mais nous avons gagner précision en diminuant l'erreur statique, on voit que la mesure ne sort plus plage de temps de réponde de plus et moins 10%. On à donc réssi notre objectif qui était de stabiliser la courbe. J'ai passé Td=0s car ici il ne sert à rien.