Introduction

Data

Research

Algorithms
Processing Data
Computing
Matrix
Simulation

Discussion

References

Simulating Genome of Dictyostelium discoideum Using k^{th} -Order Markov Chain Genetic Models

Kairavi Chahal, Tony Yang, Julian Zhou

Department of Statistics Carnegie Mellon University

December 9, 2013

Chromosomes, DNA sequences, nucleotide bases

Introduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

Results

Discussion

- Soil-living amoeba, aka 'slime mold'
- Interested in simulating sequences of *ACGT*

Source: Plant & Soil Sciences eLibrary

kth-th Order Markov Chain

Introduction

Data

Research Question

Algorithms
Processing Dat
Computing
Matrix
Simulation
Comparison

Results

Discussion

- A single-stranded DNA sequence: B_1 , B_2 , ..., B_n ; $b = \{A, C, G, T\}$
- $P(B_i = b|B_{i-1}, ..., B_1) = P(B_i = b|B_{i-1}, ..., B_{i-k})$
- i.e. $P(B_i = b)$ is conditionally independent of $\{B_{i-k-1}, ..., B_1\}$, given $\{B_i, ..., B_{i-k}\}$

kth-th Order Transition Matrix

Introduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

Results

Discussion

References

Row: $(i-k)^{th}$ through $(i-1)^{th}$ bases - 'prior sequence'

■ Column: *i*th base Dimension: 4^k×4

= Each row sums up to

■ Each row sums up to 1

■ E.g. 2nd-order transition matrix based on original sequence in Chromosome 2

	Α	С	G	T
AA	r0.505	0.093	0.074	0.328 7
AC	0.420	0.245	0.054	0.282
AG	0.424	0.107	0.131	0.337
ΑT	0.310	0.127	0.119	0.445
CA	0.468	0.138	0.093	0.300
CC	0.612	0.116	0.045	0.227
CG	0.436	0.106	0.131	0.327
CT	0.277	0.152	0.151	0.419
GA	0.420	0.071	0.114	0.394
GC	0.462	0.142	0.065	0.332
GG	0.307	0.078	0.114	0.501
GT	0.290	0.080	0.191	0.439
TA	0.436	0.103	0.082	0.380
TC	0.484	0.135	0.066	0.316
TG	0.387	0.091	0.219	0.303
TT	0.262	0.100	0.135	0.503

Reading in Data

Introduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation

Result

Discussio

References

>DDB0169550 |Chromosomal Sequence| Chromosome: M position 1 to 55564
AATGAAATAAAAAAAAACCAAAATAAAAAAAAAATAATGACAATAATAACGAATAATAAGCAATAATA
TGAATGTAGTGATAGGAATAATATAAGGAATAATAATAAGCAATAATAATGCCGA
ACCAAAAATTTCAAAGAATATTTAATTATGAGACTACAAGGAATACTAATAGTATTAAGTG

- Observe that the data is in FASTA format
- Function read.fasta in package seqinr reads such format

Summary of Data

ntroduction

Data

Questions

Processing Dat

Computing Matrix

Results

Discussion

Chromosome	Length (bases)
1	4, 923, 596
2	8, 484, 197
2F	161,967
3	6, 357, 299
3F	16,660
4	5, 450, 249
5	5, 125, 352
6	3,602,379
BF	75, 732
М	55, 564
R	85, 150

Questions of Interest

Introduction

Data

Research Questions

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

Results

Discussion

- How do simulation results change as *k* changes?
- Do simulation results differ from one chromosome to another?

Why not just concatenate the chromosomes?

Introduction

Data

Research Questions

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

.

Discussion

D (

- Doing so assumes that the starting sequence of one chromosome depends on the ending sequence of another
- Doing so assumes that transition matrices will be similar for each chromosome
- Markov matrices for the whole genome and individual chromosomes may be different
- Order in which to join the chromosomes is unknown
- Logistically, computing transition matrix and simulate the sequence for the entire genome would be overly time-consuming

Approach

Introductior

Data

lesearch Juestion

Algorithms

Processing Data Computing Matrix Simulation

Result

Discussion

Replacing Ns

Introduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation

Results

Discussio

- Missing data: Ns in place of some bases which are not known
- **Idea:** replace the Ns with nucleotides using a uniform distribution
- **Alternative Idea:** calculating a matrix of marginal probabilities based on the rest of the sequence, and then applying it to the sequence of Ns as a 0th order
 - **Problem:** The marginal prob. matrix is inconsistent with the overall transition matrix
- Alternative Idea: Drop all Ns
 - **Problem:** Will affect the transition matrix and results

Computing Transition Matrices

Introduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation

Poculte

Discussion

- Choose order k, and obtain all consecutive subsequences of length k+1
- Group subsequences by which nucleotide is in last (k+1th) position
- Count occurrences of sequence of nucleotides in 1st to kth position within the four groups
- Divide each row by the sum of the row (ensures each row's probability is 1)
- If a row has all zeroes, then replace with all 0.25, since each combination is equally (un)likely

Simulations

ntroduction

Data

Research Question

Processing Da Computing Matrix Simulation

Results

Discussion

References

- Take the first *k* nucleotide bases from the original sequence as a starting point
- Use the transition matrix based on the original sequence (\mathbb{M}_{orig}) to simulate the next base
- Take the last k nucleotide bases in the current simulated sequence to generate the next base, using \mathbb{M}_{orig} ; repeat

■ 1st, 2nd and 3rd order Markov chains for 11 chromosomes, each simulated 10 times ⇒ 330 simulations.

Why not convert nucleotides into codons?

ntroduction

Data

Research Questions

Algorithms
Processing Data
Computing
Matrix

Simulation Comparison

Discussion

Dofovonoso

	Codons	are	degenerate
--	--------	-----	------------

■ Without knowledge of where the *coding* region begins, simply treating the first 3 bases as the starting codon could result in *frameshift mutation*

Source: Nature

Base-wise Comparison

Introductior

Data

Research

Algorithms
Processing Dat
Computing
Matrix
Simulation

Comparison Results

Discussion

- Proportion of exact matches
- Proportions of A, T, G, C (marginal probability distribution)

Comparing Transition Matrices

Introduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix

Comparison

Discussion

References

- lacktriangledown $\mathbb{M}_{\textit{orig}}$: transition matrix based on the original sequence
- \blacksquare \mathbb{M}_{sim} : transition matrix based on the simulated sequence

$$\label{eq:theta} \quad \pmb{\hat{\theta}} = \frac{\sum_{i=1}^{4^k} \sum_{j=1}^4 |\mathbb{M}_{\textit{orig}_{ij}} - \mathbb{M}_{\textit{sim}_{ij}}|}{4^{k+1}}$$

Standardized by the number of entries in the matrix

Pairwise Global Alignment

Introduction

Data

Research Questions

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

Results

Discussion

References

As opposed to semi-global or local alignment

- Needleman-Wunsch algorithm (dynamic programming)
- Implemented by pairwiseAlignment in package Biostrings of Bioconductor
- Yields an optimal pairwise alignment score, based on a given scoring scheme

$$Align(A[i], B[j]) = \max \begin{cases} Align(A[i-1], B[j-1]) + m, & A[i] = B[j] \\ Align(A[i-1], B[j-1]) + x, & A[i] \neq B[j] \\ Align(A[i-1], B[j]) + g \\ & Align(A[i], B[j-1]) + g \end{cases}$$
 best alignment on the first i characters of A and the first j characters of B

Source: Dr. R Schwartz's 02-250 slide

Pairwise Global Alignment - Scoring Scheme

ntroduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

Results

Discussion

References

■ General guidelines

- If looking for closely related sequences, penalize mismatches/ gaps heavily
- Heavier penalty for a gap opening; smaller penalty for subsequent gap extensions
- match= +2, mismatch-2, gap opening= -5, gap extension= -2

$$GA - - TTA$$

$$4m+1x+10+3e =$$

$$4(2)+1(-2)+1(-5)+3(-2)=-5$$

Univariate EDA

Introduction

Data

Research Question

Algorithm

Processing Data Computing Matrix Simulation Comparison

Results

Discussion

ntroduction

Data

Research

Algorithms
Processing Data
Computing
Matrix

Results

Discussion

References

Proportions of Base-wise Exact Matches in Simulated Sequences by Order K & Chromosome

Introduction

Data

Research Questions

Algorithma

Computing Matrix

Simulation Comparison

Results

Discussion

ntroduction

Data

Questions

Algorithms
Processing Data
Computing
Matrix
Simulation

Results

Discussion

References

Thetas for Comparing Transition Matrices in Simulated Sequences by Order K & Chromosome

ntroduction

Data

Research Questions

Algorithms
Processing Dat
Computing
Matrix
Simulation

Results

Discussion

References

Pairwise Global Alignment Scores in Simulated Sequences by Order K & Chromosome

Zooming In

ntroduction

Data

Questions

. ..

Computing Matrix

Results

Discussion

References

Pairwise Global Alignment Scores in Simulated Sequences of Chromosome 2f by Order K

Formal Analysis

ntroduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

Results

Discussion

- \blacksquare lm(Proportion of Base-wise Exact Matches \sim Chromosome + k)
- \blacksquare lm(Thetas for Comparing Matrices \sim Chromosome + k)
- \blacksquare lm(Thetas for Comparing Matrices \sim Total Length + k)
- \blacksquare lm(Pairwise Global Alignment Scores \sim Chromosome + k)
- lacktriangleright lm(Pairwise Global Alignment Scores \sim Total Length + k)
- Global F-tests for all models are highly significant with p-values $< 2*10^{-16}$
- $R_{adj}^2 = .9272, .7844, .8545, .9736, ,.9996$ respectively
- Total Length and all categories of Chromosome are significant at $\alpha=.02$ in all of their respective models; many actually have p-values $<2*10^{-16}$
- k appears significant at $\alpha = 0.02$ in the presence of Total Length or Chromosome in all but the 4^{th} model (p-value=0.508)

Possible Improvements

Introduction

Data

Questions

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

Discussion

■ Represent bases with integers (1, 2, 3, 4) instead of characters ('a', 'c', 'g', 't'), since R processes them faster

- Use BLAST for comparison, which is faster and has a standardized result, but requires manual input, which is prone to human error.
- Previously assumed that transition matrices remain constant throughout. Could take into account of evolution of transition matrices, mutation rates, etc.

References

Introduction

Data

Research Question

Algorithms
Processing Data
Computing
Matrix
Simulation
Comparison

_. .

- http://a-little-book-of-r-forbioinformatics.readthedocs.org/en/latest/src/chapter1.html
- http://a-little-book-of-r-forbioinformatics.readthedocs.org/en/latest/src/chapter4.html
- http://cran.r-project.org/web/packages/seqinr/seqinr.pdf
- http://tata-box-blog.blogspot.com/2012/04/introductionto-markov-chains-and.html
- Lecture slides from Dr. R Schwartz's 02-250 Intro to Computational Biology