International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia

dreaming

Italian -1.0

Questa storia si svolge tanto tempo fa, quando il mondo era ancora giovane e le IOI non erano ancora state sognate.

Il signor Serpente vive in una terra che ha [N] billabong (pozze d'acqua), numerate [0, ..., N] - 1. Ci sono [M] sentieri bidirezionali lungo cui Serpente si sposta, ciascuno dei quali collega due billabong. Ogni coppia di billabong è connessa da al più una sequenza di sentieri, ma alcune coppie di billabong potrebbero non essere connesse (quindi $[M \le N-1]$). Serpente impiega un certo numero di giorni per percorrere ciascun sentiero: il numero può essere diverso da sentiero a sentiero.

Canguro, l'amico di Serpente, vuole creare N-M-1 nuovi sentieri, in modo che per ciascuna coppia di billabong Serpente possa spostarsi da un billabong all'altro. Canguro può creare sentieri tra qualunque coppia di billabong, e Serpente impiega sempre L giorni a percorrere un qualunque sentiero creato da Canguro.

Inoltre, Canguro vuole far sì che Serpente possa spostarsi il più velocemente possibile. Canguro vuole quindi costruire i nuovi sentieri in modo che il massimo tempo di spostamento tra due billabong qualsiasi sia il più piccolo possibile. Aiuta Canguro e Serpente a determinare il massimo tempo di spostamento tra due billabong qualsiasi, una volta che Canguro ha costruito i nuovi sentieri in questo modo.

Esempio

Nella figura soprastante ci sono N = 12 billabong e M = 8 sentieri. Sia L = 2, in modo che Serpente impieghi 2 giorni per percorrere ciascun nuovo sentiero. Canguro può costruire tre nuovi sentieri:

- tra i billabong 1 e 2;
- tra i billabong 1 e 6;
- tra i billabong 4 e 10.

La figura soprastante mostra l'insieme finale di sentieri. Il tempo massimo di spostamento è di 18 giorni, tra i billabong 0 e 11. Questo è il più piccolo risultato possibile: indipendentemente da come Canguro costruisca i sentieri, ci sono due billabong per i quali Serpente impiega almeno 18 giorni a spostarsi da uno all'altro.

Implementazione

Devi sottoporre un file che implementa la funzione (travelTime ()), come segue:

Funzione: travelTime()

```
C/C++ int travelTime(int N, int M, int L, int A[], int B[], int T[]);

Pascal function travelTime(N, M, L : LongInt; var A, B, T : array of LongInt) : LongInt;
```

Descrizione

Questa funzione deve calcolare il massimo tempo di spostamento (misurato in giorni) tra ciascuna coppia di billabong, assumendo che Canguro abbia aggiunto N-M-1 sentieri in modo che tutti i billabong siano connessi e il massimo tempo di spostamento sia il più breve possibile.

Parametri

- N: Il numero di billabong.
- M: Il numero di sentieri già esistenti.
- L: I giorni che Serpente impiega ad attraversare i nuovi sentieri.
- A, B e T: Array di lunghezza M che specificano gli estremi e il tempo di spostamento per ciascun sentiero preesistente, così che l'i-esimo sentiero colleghi i billabong A[i-1] e B[i-1], e richieda T[i-1] giorni per spostarsi in entrambe le direzioni.
- *Restituisce*: Il massimo tempo di spostamento tra qualsiasi coppia di billabong, come descritto sopra.

Sessione di esempio

La seguente sessione descrive l'esempio precedente:

Parameter	Value
N	12
М	8
L	2
A	[[0, 8, 2, 5, 5, 1, 1, 10]]
В	[[8, 2, 7, 11, 1, 3, 9, 6]]
T	[[4, 2, 4, 3, 7, 1, 5, 3]]
Returns	18

Limiti

■ Tempo limite: 1 secondo

Limite di memoria: 64 MiB

■ 1 < N < 100 000

■ 0 ≤ M ≤ N - 1

■ 0 ≤ A[i], B[i] ≤ N - 1

■ 1 ≤ T[i] ≤ 10 000

■ 1 ≤ L ≤ 10 000

Subtask

Subtask	Punteggio	Limiti aggiuntivi dell'input
1	14	M = N - 2, e ci sono esattamente uno o due sentieri preesistenti che partono da un billabong qualsiasi. In altre parole, ci sono due insiemi di billabong connessi, e in ciascun insieme i sentieri formano un percorso senza ramificazioni.
2	10	$M = N - 2$ e $N \le 100$
3	23	M = N - 2
4	18	Esiste al massimo un sentiero preesistente che parte da un billabong qualsiasi.
5	12	N ≤ 3 000
6	23	(Nessuno)

Testing

Il grader di esempio sul computer legge l'input dal file dreaming.in, che deve essere nel seguente formato:

```
linea 1: N M L
linee 2, ..., M + 1: A[i] B[i] T[i]
```

In particolare, l'esempio precedente viene codificato in questo modo:

```
12 8 2
0 8 4
8 2 2
2 7 4
5 11 3
5 1 7
1 3 1
1 9 5
10 6 3
```

Note relative al linguaggio

```
C/C++ Devi inserire #include "dreaming.h".

Pascal Devi definire unit Dreaming. Tutti gli array sono numerati da 0 (non da 1).
```

Vedi i template delle soluzioni sulla tua macchina per alcuni esempi.