CLIMATOLOGICAL AND AEROMETRIC ANALYSIS ON NANTICOKE ENVIRONMENTAL MANAGEMENT PROGRAM NETWORK DATA UP TO DECEMBER 1979

REPORT NO: ARB - 18-82-ARSP

MAY 1982

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

NANTIGOKE

ENVIRONMENTAL

MANAGEMENT

PROGRAM

880 Bay St., Toronto, Ontario M5S 1Z8

Phone: (416) 965-4081

NEMP Co-Ordinator - Dr. M. Lucis

CHOON EN.665 1982 C41

CLIMATOLOGICAL AND AEROMETRIC ANALYSIS ON NANTICOKE ENVIRONMENTAL MANAGEMENT PROGRAM NETWORK DATA UP TO DECEMBER 1979

REPORT NO: ARB - 18-82-ARSP

MAY 1982

TABLE OF CONTENTS

				Pa
			List of Tables	i
			List of Figures	i
			Acknowledgements	i
1.0	Intro	oduction		1
2.0	Clin	natology		2
	2.1	Wind	d Distribution	4
		2.1.	l Annual Distribution	4
		2.1.2	2 Seasonal Distribution	5
	2.2	Atm	nospheric Stability	6
	2.3	Mixe	ed Layer Heights at Nanticoke	9
		2.3.	l Distribution of Mixed Layer Heights	9
		2.3.	2 Frequency Distribution of Mixed Layer Heights	10
3.0	Aero	ometric Ar	nalysis of Gaseous Compounds	11
	3.1	Distribut	tion of Sulfur Dioxide (SO ₂)	11
		3.1.1	Annual SO ₂ Distribution	12
		3.1.2	Seasonal SO ₂ Distribution	12
		3.1.3	SO ₂ Exceedances of the AQC	13
	3.2	Distribut	tion of Ozone (O ₃)	14
		3.2.1	Annual O ₃ Distribution	14
		3.2.2	Seasonal O ₃ Distribution	14
		3.2.3	O ₃ Exceedances of the AQC	14
	3.3	Distribut	tion of Total Reduced Sulfur (TRS)	15
		3.3.1	Annual TRS Distribution	15
		3.3.2	Seasonal TRS Distribution	16
		3.3.3	Exceedance of the H ₂ S Criterion	16
	3.4	Distribut	tion of Nitrogen Dioxide (NO ₂)	16
		3.4.1	Annual NO ₂ Distribution	17
		3.4.2	Seasonal NO ₂ Distribution	17
4.0	Ana	lysis of Pre	ecipitation Data	18
5.0	Ana,	lysis of Air	rborne Particulates Data	20

		Page
6.0 Conclusion	ns	22
References		24
Tables		26
Figures	•	37
APPENDIX 1	NEMP Monthly Precipitation Data	70
APPENDIX 2	Intercomparison of NEMP Precipitation	79
	Network Results with AES and Ontario Hydro	
	Stations in the Nanticoke Area	

LIST OF TABLES

T	able I	No.	Page
	1.	Updated List of Operating Instruments by Station	26
	2.	Richardson Number Categories	29
	3.	Seasonal Distribution of BLH According to Wind Direction	30
	4.	Seasonal Distribution of BLH >400 m According to	
		Wind Direction	31
	5.	Monthly Distribution of Ozone Exceedances	32
	6.	Percentage of Valid Data - NO/NO ₂	32
	7.	Precipitation Trace Metal Concentrations - NEMP Network	33
	8.	Distribution of Airborne Particulate Matter	
		Concentration According to Wind Direction	34
	9	Estimated Air Quality Criteria Based on Regulation 15	
		of the Environmental Protection Act (1971).	35
	10.	Particulate Trace Metal Concentrations - NEMP Network	36
	T.E	Paired t test Decults	0.0

LIST OF FIGURES

Figu	re No.	Pag
1.	Monitoring Stations in Nanticoke Region	37
2.	Fumigation Due To Internal Boundary Layer	38
3.	Annual Wind Rose -10 m level Winds at Jarvis Met. Tower 75-79	39
4.	Annual Wind Rose -85 m level Winds at Jarvis Met. Tower 75-79	40
5.	Fall Wind Rose -10 m level Winds at Jarvis Met. Tower 75-79	41
6.	Fall Wind Rose -85 m level Winds at Jarvis Met. Tower 75-79	42
7.	Winter Wind Rose -10 m level Winds at Jarvis Met. Tower 75-79	43
8.	Winter Wind Rose -85 m level Winds at Jarvis Met. Tower 75-79	44
9.	Spring Wind Rose -10 m level Winds at Jarvis Met. Tower 75-79	45
10.	Spring Wind Rose - 85 m level Winds at Jarvis Met. Tower 75-79	46
11.	Summer Wind Rose - 10 m level Winds at Jarvis Met. Tower 75-79	47
12.	Summer Wind Rose - 85 m level Winds at Jarvis Met. Tower 75-79	48
13.	Frequency Distribution of Ri Values	
	Annually and According to Time of Day	49
14.	Seasonal Frequency Distribution of $R_{\dot{1}}$ Values	50
15.	Annual Distribution of Hourly Averaged Boundary	
	Layer Heights According to Wind Direction	51
16.	Seasonal Distribution of Hourly Averaged Boundary	
	Layer Heights According to Wind Direction.	52
17.	Annual SO ₂ Concentration Rose	53
18.	Winter SO ₂ Concentration Rose	54
19.	Summer SO ₂ Concentration Rose	55
20.	Spring SO ₂ Concentration Rose	56
21.	Fall SO ₂ Concentration Rose	57
22.	Exceedance SO ₂ Concentration Rose	58
23.	Annual, Seasonal and Exceedance 0, Concentration Rose	59.

F	igure N	lo.	Page						
	24.	Map of Gas Wells in Nanticoke Area	60						
	25.	Annual TRS Concentration Rose	61						
	26.	Seasonal TRS Concentration Rose	62						
	27.	TRS Concentration Rose - Elevated Concentrations	63						
	28.	Annual and Seasonal NO ₂ Concentration Rose	64						
	29	Precipitation Sampling Network in Nanticoke Region	65						
	30.	Monthly Ph, SO ₄ =, Ca ⁺ and NO ₃ = Concentrations							
		for the NEMP Precipitation Network 1978-1979	66						
	31.	NADP and CANSAP Data -pH Annual Average 1979	67						
	32.	NADP and CANSAP Data -SO ₄ = Annual Concentration 1979	68						
	33.	Hi-Vol Sampling Network -NEMP	69						
	34.	Comparison of Nemp Versus CANSAP Monthly							
		Precipitation Data	84						

ACKNOWLEDGEMENTS

This report was prepared by P. Kiely and H. Sahota, Air Resources Branch, Ministry of the Environment.

The data analysed in this report were collected by Moniteq Limited (under contract to Stelco Inc., Texaco Canada Inc. and the Ministry of the Environment), as well as by Ontario Hydro and the Ministry of the Environment (MOE) West Central Region.

Comments on the manuscript by K. Heidorn of the Air Resources Branch and members of the NEMP Technical Committee are gratefully acknowledged.

1.0 Introduction

The Nanticoke Environmental Management Program (NEMP) is a joint government - industry venture to monitor air quality in the vicinity of Nanticoke in order to determine the impact of local and distant industrial sources on air quality in the Nanticoke region. The current NEMP network is comprised of 16 gaseous and 16 airborne particulate monitors. In addition to the NEMP network, Ontario Hydro has been operating an SO₂ network of approximately 16 monitors since 1970 and MOE West-Central Region has been operating gaseous monitors at Cheapside and Simcoe as well as a hivol network consisting of 6 samplers. The data set analysed in this report consists of NEMP network data - (October 1978 to December 1979), MOE West-Central Region data - (1979) and Ontario Hydro network data - (1975 to 1979). Monitoring locations for all stations in the Nanticoke area are shown in Figure 1 and a description of the pollutants measured at each station appears in Table 1. Data analysis is focussed on four main areas:

- (1) Description of the climatology of the Nanticoke region showing seasonal and annual wind variations (at 10 and 85 m levels) and seasonal, annual and time-of-day distribution of stability conditions according to Richardson Number.
- (2) An aerometric analysis of the criteria gaseous pollutants annually, seasonally and according to the number of exceedances of the air quality criteria (AQC).
- (3) An analysis of the NEMP precipitation chemistry results.
- (4) An analysis of the airborne particulate matter chemical composition results.

2.0 Climatology

Winds in the first kilometre or so from the surface control the dispersal and transport of the pollutants released in this layer (usually termed as the planetary boundary layer PBL). It is therefore important that the behaviour of the winds in this layer be well understood if one is to evaluate the air quality of a given airshed.

Factors Affecting Winds in the PBL

Although the winds in the PBL are greatly influenced by the large scale synoptic conditions, mesoscale topographical features and large bodies of water such as lakes, modify considerably the wind and temperature field in the PBL. Topographical features can channel winds in a preferred direction, act as barrier to wind flow and produce upslope or downslope winds. Abrupt changes in surface roughness, for example a large forest or smooth terrain, can generate convergent or divergent regions in the air flow.

Large lakes can induce local circulations (commonly known as lake breeze) due to differential heating of land and water. The magnitude of these circulations is primarily dependent on the temperature gradient between land and water and the general synoptic conditions. Weak pressure gradients, clear skies and strong solar insolation favour the development of the lake breeze circulation. Detailed analysis of the lake breeze can be found in the abundant literature on this subject.

In a coastal environment, an internal boundary layer usually develops with an onshore flow in response to the change in two important parameters viz. aerodynamic roughness and thermal properties. This boundary layer typically starts at the shoreline and grows with downwind distance. The rate of growth is governed largely by the amount of surface heating and wind speed. In a study done by Brookhaven National Laboratories (10) it was observed that the height of the internal boundary layer is inversely proportional to the wind speed and correlated with the temperature difference between land and water. It has been observed in the field (9) and proven theoretically that the profile of the internal boundary layer is approximately parabolic (Figure 2). If the internal boundary layer develops primarily in response to solar heating then it is usually termed as the Thermal Internal Boundary Layer (TIBL).

Formation of the TIBL complicates the diffusion processes in the shoreline. Plumes released upwind from elevated stacks outside the TIBL, will intersect the top surface of the TIBL at some distance downwind. Because of intense mixing in the TIBL, it entrains a large portion of the plume, giving elevated ground level concentration (Figure 2 and (6) for a more detailed description).

Usually the mixed layer heights are obtained from radiosonde soundings of temperature and winds, but since the closest weather station with regular radiosonde flights is Buffalo, an acoustic sounder was deployed about 6 kilometres north-north-east of the generating station. The acoustic sounder determines the temperature structure of the mixed layer by transmitting and receiving the reflected sound signals. The reflected sound signal is recorded on a chart which can be later interpreted to determine the mixing layer height. The sounder has a range of approximately 1500 metres and the accuracy with which the charts can be read is about 50 metres depending upon the legibility of the charts. Even though there is considerable subjectivity in the interpretation of these charts, the acoustic sounder data provides a reasonable picture of the development of the mixed layer.

In the following sections we have attempted to give a general climatological picture of the winds, stability in the lower layer and mixing layer heights in the Nanticoke area. These parameters were chosen because they are the primary controlling factors in the dispersal of pollutants in the mixed layer.

2.1 Wind Distribution

The frequent variations, in direction and speed, of the winds over Lake Erie and the surrounding area, are due inpart to the many low and high pressure systems which traverse the area. These lows and highs are much more intense and move more rapidly during the winter season. As a consequence, wind speeds are normally higher during the winter season. Ordinarily winds reach higher speeds over open water surfaces than over rougher land surfaces. Consequently winds from the southerly direction are usually higher at Nanticoke due to the long fetch over the open waters of Lake Erie.

The following wind and temperature data analyses are based on the five years of hourly observations from the Jarvis meteorological tower, which is located 12 km inland from the Lake Erie shoreline. Wind direction data were analysed by using the standard 16 point rose. Wind speed was subdivided into five classes according to the World Meteorological Organization classification system. Winds less than or equal to 5 km/hr were defined as calm, and the remaining data were divided into: 6-11 km/hr, 12-19 km/hr, 20-29 km/hr, and 30 + km/hr.

2.11 Annual Distribution of Winds

Figures 3 and 4 show the distribution of winds (hourly averaged) at the 10 and 85 m level for the period 1975 to 1979. From the figures it is apparent that the distribution of winds at the 85 m level is quite similar to that of the 10 m level. At both levels, winds are predominantly from the south-southwest to west. Wind speeds in the SSW to W sector are relatively higher than wind speed in other sectors. This is partially due to the presence of the open

lake surface which has a lower roughness than the land. Wind speeds are comparatively higher at the 85 m level than at the 10 m level. Calm winds occur 10.9% of the time at the 10 m level compared to 2.8% of the time at the 85 m level.

2.12 Seasonal Distribution of Winds

The fall season at Nanticoke is characterized by a SSW to W air flow with the westerly flow becoming more pronounced at the 85 m level (Figure 5 and 6). At the 85 m level, a large percentage of the winds from the north-east coincides with relatively high wind speeds. This is probably due to the passage of fall storms over Lake Erie. Calm winds represent 11.9 and 2.5 percent of the data from the 10 m and 85 m levels respectively.

During the winter season the predominant wind direction (20% of the time) is from the west (Figure 7 and 8). Wind speeds are much higher during the winter period due to the large pressure gradients between strong high and low pressure systems. Calm winds occur less frequently in winter than in summer (5.9% in winter versus 11.9% in summer at the 10 m level).

The frequency distribution of winds during the spring period is much more uniform than it is for the other seasons of the year (Figures 9 and 10). Winds are predominantly from the SSW to NW sector. The frequency of occurrence is similar for all other directions except the NE and ENE direction which together have a 15% frequency of occurrence. Winds are calm 9.7% and 2.8% of the time at the 10 m and 85 m level respectively.

The summer period at Nanticoke is characterized by a predominantly

^{*} Winter = Dec-Feb; Spring = March-May; Summer = June-Aug; Fall = Sept-Nov.

SSW to SW wind direction at both the 10 m and 85 m level (Figures 11 and 12). However, wind speeds are lower in the summer, as indicated by the relatively larger percentage of occurrence of wind speed within the 6-11 and 12-19 km/hr classes. The frequency of calm winds is also highest during the summer season. At the 10 m and 85 m levels, calm periods occur 15.8% and 3.6% of the time respectively.

2.2 <u>Atmospheric Stability</u>

Atmospheric stability is one of the more important input parameters in determining dispersion rates and hence ground level concentrations of pollutants. Lapse rate (temperature change with height) is often used as a stability indicator; however, it only takes into account buoyancy forces. The Richardson Number (Ri) on the other hand, takes into account both buoyancy and momentum forces making it a better indicator of stability when momentum forces are significant. However, since the Richardson number approach used in this report describes the stability of the atmosphere over the first 85 metres, it would not necessarily be relevant in describing the stability of the Hydro plume which attains a height of approximately 400 metres.

Based on the data available from the Jarvis meteorological tower, a bulk Richardson Number formula as modified by Fulle (1976) was selected. The formula is defined as follows:

$$R_{i} = \frac{g(\Upsilon_{d} - \Upsilon)}{Ts U^{2}/Z^{2}}$$

where

$$g = 9.8 \text{ m/sec}^2$$

Ts = the surface temperature, (OK)

 Υ_d = dry adiabatic lapse rate, (.98 $^{\rm O}$ K/100 m)

 Υ = atmospheric lapse rate, (${}^{\circ}$ K/100 m)

u = wind speed at 10 m level (m/sec)

Z = height of wind speed measurement (10 m)

No standard categories of this Richardson number were available corresponding to the seven Turner stability classes (4), so categories were developed, based on the resulting distribution of this number for one year of data at Salt Lake City. The categories developed are presented in Table 2. A description of the stability of the atmosphere according to the Richardson number categories is also shown.

Fulle (1976) stated that the classes in Table 2 are site-specific; however, they will be used in this analysis as no other values are available. In future, especially for purposes of mathematical modelling, site specific stability categories should be developed for the Nanticoke area.

The data set consisted of four years of hourly wind speeds and temperatures from the Jarvis meteorological tower. A Richardson number value was calculated for each hour. A frequency distribution of R_i values was plotted annually, seasonally and according to time of day.

Figure 13a shows the annual frequency distribution of R_i values based on four years (18,900 hourly data points). Sixty-six percent of the time, the atmospheric stability from the ground to the 85 m level at Nanticoke is neutral. The slightly unstable and slightly stable classes represent 12 and 17 percent of the data respectively. The remaining 5% of the cases are spread among the stable, very stable, unstable and very unstable classes.

Seasonally there is a distinct difference between atmospheric stability as indicated by Figure 14. During the winter season, 98% of the data lies in the neutral to slightly stable stability class. During the summer period the reverse of the winter condition is true in that 28% of the data falls into the unstable class. Unstable conditions enhance the vertical mixing within the lower atmosphere. The greatest variation within atmospheric stability was found during the spring. Fourteen percent of the data represented unstable to very unstable and stable to very stable categories. The fall season had 18% of the data in the stable classes against 8% in the unstable categories. 71% of the fall season is characterized by a neutral atmosphere over the first 85 metres.

The R_i values were also examined according to daytime (0700 to 1800 hrs) versus nighttime (1900 to 0600 hrs). During the nighttime, conditions are more stable than during the day (Figure 13b). Twenty-eight percent of the nighttime period is characterized by a stable atmosphere while only 7% of the daytime period is represented by stable conditions. The distribution is reversed for unstable conditions. Twenty-three percent of the time conditions are unstable during the day against 2% of the time at night.

Finally an analysis of stability according to R_i values is shown for three time periods during the day: morning (0700 to 1100 hrs), afternoon (1200 to 1600 hrs) and evening (1700 to 2100 hrs) - Figure 13c. Unstable atmospheric conditions have the greatest frequency of occurrence during the afternoon period and the smallest frequency of occurrence during the evening. Stable conditions occur 4, 14 and 17% of the time during the afternoon, morning and evening periods respectively.

2.3 Mixed Layer Heights at Nanticoke

The diurnal and seasonal changes in the characteristics such as height and stability govern the dispersion of pollutants released in or above the mixed layer. In the following sections we briefly examine the frequency distribution and seasonal behavior of the mixed layer heights in the Nanticoke area. In the analysis no distinction was made between the TIBL and PBL. Further stratification of the data is required before we can identify the TIBL data. A total of 3000 hours of data were extracted from the acoustic sounder charts and analysed for the period Feb. 1979 to Oct. 1980.

2.3.1 Distribution of Mixed Layer Heights

Figure 16 shows the behaviour of average daily mixed layer heights for winter, spring, summer, and fall. The most notable feature of Figure 16 is the different growth rate of the mixed layer, which grows rapidly with the sunrise reaching its maximum value before noon during summer and fall, whereas during winter and spring the growth is much slower and the maximum height is attained after 12 noon. Another significant difference is the presence of a pronounced secondary peak in summer and a smaller peak in fall. This secondary peak is absent in the winter and spring season and for northerly flow (see Figure 16). This secondary peak may indicate the passage of the lake breeze fronts. With the onset of a lake breeze, cold lake air is advected overland and erodes the mixed layer. After the front passes through, the mixed layer builds up again which shows up as the secondary peak in Figure 16.

If we compare the average maximum heights for all the seasons, it is apparent that there is not a big difference. This is because of the lake effect. During winter, warm unstable air from the lake when advected overland will erode the stable surface layer thus giving higher mixed layer heights. During summer the process is reversed, cold stable air is advected overland (due to lake breeze or

general synoptic conditions) which will inhibit the growth of the mixed layer near the shoreline.

2.3.2 Frequency Distribution of Mixed Layer Heights

Annual and seasonal contingency tables for the mixed layer heights at Nanticoke are shown in Tables 3 and 4. Seasonally mixed layer heights are higher than 400 m (400 meter was selected as reference height because the average plume height of Nanticoke Generating Station (NANTGS) is around 400 meters). During spring and summer TIBL heights greater than 400m occur more frequently with winds from the SE to SW quadrant, whereas in winter, winds from the northerly direction correlate with high mixed layer heights. In fall except for westerly winds (high TIBL heights) and easterly winds (low TIBL heights) the distribution is fairly uniform.

3.0 Aerometric Analysis of Gaseous Compounds

The hourly average gaseous concentrations as a function of wind direction for four gaseous compounds - namely sulfur dioxide (SO₂), ozone (O₃), total reduced sulfur (TRS), and nitrogen dioxide (NO₂) have been plotted annually, seasonally, and according to the number of exceedances of MOE's air quality criteria, for each station in the Nanticoke area (Figures 17 to 28). Also included on the plots are wind frequencies at the Jarvis meteorological tower.

3.1 <u>Distribution of SO</u>₂

The SO₂ analysis is based on hourly averaged concentrations obtained from Ontario Hydro's network (1975 to 1979), MOE's West Central Region (1976 to 1979) and the NEMP network (1979). Monitoring stations were located according to criteria that take into account predominant wind patterns, source configuration; as well as to be able to differentiate between industrial and other types of contributions. It should be noted that a fixed monitoring network does not always record the maximum ground level concentration (glc). Although the Nanticoke area has a good coverage by monitors, plume impingement between monitors as well as beyond the range of the network is possible. Further complicating the situation is the complex dispersion due to the meteorology within a shoreline environment. However, accumulation of data over a sufficiently long period of time should allow aerometric analyses such as the present one to draw valid conclusions about the contributions of local and other emission sources to air quality in the area.

3.1.1 Annual SO₂ Distribution

The annual concentration rose for SO₂ data collected for each site during the 1975 to 1979 period is shown in Figure 17. Most of the monitors which are located in the NNE to NE quadrant show correlation between high SO₂ levels and winds from the SSW to SW direction; monitors located in the NNW to N quadrant show correlation between relatively high SO₂ concentrations and SSE to S wind flow probably indicating the effect of the NANTGS on air quality within the surrounding area. Correlation between high SO₂ concentrations and winds from the S to SSW direction at E05, W13 and WNWO3, suggest that sources south of the lake also contribute to high SO₂ in the Nanticoke area.

3.1.2 <u>Seasonal SO₂ Distribution</u>

Highest averaged SO₂ concentrations occur during the winter periodFigure 18. High NANTGS loads due to peak demand, a high frequency of occurrence of stable atmospheric conditions and high wind speeds coincide with the elevated SO₂ concentrations during the winter season. Also, these high SO₂ concentrations show a consistent correlation with winds from the south indicating that the sources to the south including the Hydro plant influence SO₂ levels in the Nanticoke area. Previous studies on the long range transport of SO₂ and present data as indicated in Figure 18 show that SO₂ advected across Lake Erie during the winter period is significant (3) (12). Local sources (space heating) also contribute to high concentrations during the winter.

During the summer, spring and fall seasons, the average SO2

concentrations are comparatively lower than during the winter period. However, the correlation of high concentrations with winds from the SE to SW sector, suggests that sources from the south including the Hydro plant have an influence on SO₂ levels in the Nanticoke area.

3.1.3 SO₂ Exceedances of the AQC

During the five year period of interest there were 74 exceedances of the hourly (250 ppb) AQC, I exceedance of the daily (100 ppb) AQC and no exceedances of the annual (20 ppb) AQC. Of the 74 hourly exceedances, all but two can be associated with winds from the south which includes transport across the lake and from the generating station towards the monitors (Figure 22). The remaining two hourly exceedances at WNW20 and NNE16 occurred during light and variable winds. Prior to and during the recording of the high glc at WNW 20 the wind shifted from SSE to E. Plume fumigation was responsible for this exceedance. The exceedance at NNE 16, occurred at 1800 hours. Elevated glc's were most likely the result of a frontal passage. Seventy-three per cent of the hourly exceedances occurred during the spring and summer period. In spring and summer, the differential heating of the land and water causes the formation of the TIBL. As the plume impinges on the boundary layer, the plume material is convectively mixed to the ground thereby producing elevated glc's of S0₂.

The one daily exceedance of the AQC occurred on January 24, 1977. The daily average concentration was 106 ppb at N15. Steady winds from the SW and high S0₂ concentrations recorded by all monitors between 0100 and 0400 hours suggests sources south of Lake Erie were responsible for this episode. A comprehensive study of each of the S0₂ exceedance episodes will be carried out in a future report.

3.2 Ozone (0₃) Distribution

Within the Nanticoke region, ozone is monitored at three stations SW37, NNE39 and WNW19. In the presence of sunlight, a series of photochemical reactions may take place between nitrogen oxides and hydrocarbons producing ozone. Conditions conducive to ozone formation are most probable during late spring or summer. Ozone data collected during 1979 is analysed in this section.

3.2.1 Annual Ozone Distribution

The annual (hourly averaged) O₃ concentrations as a function of wind direction for each station are presented in Figure 23. Average concentrations are in the 35 to 45 ppb range for SE to SSW air flow compared to a range of 15 to 25 ppb for northerly flow. The annual (hourly averaged) 0₃ concentration for 1979 was highest at the coastal location (SW37) and decreased as one moved inland. In the summer of 1981 an attempt was made to establish if a consistent gradient in the ozone levels exists with distance inland. Due to poor meteorological conditions, no conclusive results were obtained (7).

3.2.2 Seasonal Ozone Distribution

Ozone concentrations are lowest during the winter season and highest during the summer period (Figure 23). High summer O₃ concentrations generally coincide with strong solar insolation and southerly flows. Average concentrations from the southerly quadrants again exceed those from the northerly sector. For station SW37, highest hourly averaged O₃ concentrations occur with winds from the south suggesting regional or long range transport.

3.2.3 Ozone Exceedances of the AQC

The Ontario AQC for O₃ is a one-hour average of 80 ppb. During 1979, the AQC was exceeded 216 times. SW37 had 86 exceedances, WNW20 had 96 and NNE39 reported only 34.Sixty-eight percent of the AQC exceedances

occurred during a WSW to S air flow (Figure 23). The monthly frequency distribution of O_3 exceedances is shown in Table 5. Eighty-nine percent of the exceedances occurred during the summer season, whereas only 4% and 7% of the hourly O_3 exceedances occurred during the spring and fall seasons respectively.

3.3 Distribution of Total Reduced Sulfur (TRS)

In 1979 the NEMP network recorded TRS concentrations at three stations: NNE05, NNW08 and NNE 10. Two of these stations were located downwind of the major industrial sources of TRS (Texaco and Stelco) and the third station was placed to provide background values. Seepages from natural gas wells also might contribute to the TRS levels in the Nanticoke area (Figure 24). Stelco did not operate during 1979. Texaco refinery operated throughout most of 1979. However, the sulfur recovery unit (SRU) was not commissioned until June 12, 1979. TRS levels will be considered during the pre/post -commissioning situation. TRS concentrations as a function of wind direction are presented in Figures 25 to 27.

3.3.1 Annual TRS Distribution

The annual (hourly averaged) TRS concentrations for 1979 were well below 1 ppb for all stations in the NEMP network. Annual TRS concentrations for each site during 1979 are shown in Figure 25. Relatively high TRS concentrations were recorded in the WSW to SW wind sector for station NNE10, in the WSW sector for NNE05 and in the NNE and ENE sector for NNW08.

The sulfur recovery unit at the Texaco refinery was commissioned June 12, 1979. Concentration roses were constructed for this pre/post commissioning period (Figure 25). Results revealed that ambient TRS levels in the Nanticoke area decreased after the commissioning of the SRU.

3.3.2 Seasonal TRS Distribution

Seasonal TRS concentration roses are shown in Figure 26. TRS concentrations are lowest during the summer and fall season and highest during the winter and spring. Additional data is required in order to assess the seasonal distribution of TRS in the Nanticoke area.

3.3.3 TRS Exceedance of the H₂S Criterion

At present there is no AQC for TRS. However, preliminary results of inplant monitoring during the fall of 1981 at Texaco and Stelco suggests that TRS emissions include a large proportion of hydrogen sulfide (H₂S). The MOE (one hour average) AQC for H₂S is 20 ppb. This guideline was used in the analysis of the Naticoke TRS data. Further investigation into a suitable criteria for TRS/H₂S levels is being continued. Additional in plant monitoring has been recommended for some time in 1982.

During 1979 two elevated values occurred at NNE05, (Figure 27). A maximum (hourly averaged) concentratrion of 60 ppb occurred during a WSW flow and a second exceedance of 43 ppb occurred with a SW wind. Both exceedances were recorded prior to the commissioning of the SRU.

3.4 <u>Distribution of Nitrogen Dioxide (NO₂)</u>

 NO_X emissions are mainly due to high-temperature combustion processes (internal combustion engines, fossil fuel-fired generating stations, etc.). Oxides of nitrogen (NO_X) are considered to be the sum of nitric oxide (NO) and nitrogen dioxide (NO_2) . Nitric oxide (NO) is measured directly and the total oxides (NO_X) are measured by internally converting all other nitrogen oxides to nitric oxide. Nitrogen dioxide is derived as the difference of the two measurements. NO and NO_X are monitored at SW37, NNE39, and NO7. The hourly AQC for NO_2 is 200 ppb. During 1979 there were no exceedances of the AQC at any of the monitoring locations. Table 6 shows the percentage of valid data annually and seasonally for each NEMP station reporting NO/NO_X

concentrations. Any station reporting less than 75% valid data was not included in the analysis. $N0_2$ concentrations as a function of wind direction are shown in Figure 28.

3.4.1 Annual NO₂ Distribution

NNE39 was the only NEMP station which reported in excess of 75% valid data for the full year during 1979. The annual average NO_2 concentration at NNE39 was less than 13 ppb. The highest (hourly averaged) NO_2 concentrations (20 ppb) were recorded at NNE39 when winds were in the N to SE quadrant (Figure 28). High NO_2 concentrations at NNE39 may be influenced by the industrial areas of Hamilton, St. Catherines, Niagara Falls and Buffalo.

3.4.2 <u>Seasonal NO₂ Distribution</u>

 ${
m NO}_2$ concentrations are highest during the winter season for NNE39. Hourly ${
m NO}_2$ averages during the winter are higher during the nighttime compared to the daytime period. Highest ${
m NO}_2$ concentrations during the spring at SW37 occurred during NE winds and at NO7 during S and NNE winds. The absence of continuous ${
m NO/NO}_{
m X}$ data during 1979 has made analysis difficult. The addition of the 1980 data should aid in a better analysis of ${
m NO}_2$ concentration levels.

4.0 Analysis of Precipitation Data

There are two basic mechanisms responsible for the removal of the material emitted into the atmosphere: viz wet and dry deposition. At present there is considerable concern about the effects of the deposition of acid and other substances by precipitation, especially in aquatic ecosystems. Calcareous soil at Nanticoke acts as a buffering agent and therefore acid rain is not of the same concern at Nanticoke as it is in other areas, e.g. Haliburton and Muskoka. Nevertheless, the Nanticoke area is being monitored to determine the relative effects of local and distant sources on precipitation chemistry.

In October 1978, the NEMP precipitation network was established to (1) determine the precipitation quality in the Nanticoke area with special regard to acidic substances and (2) to monitor the trends in precipitation quality over the years. The NEMP network collects monthly samples of rain or snow at seven sites throughout the Nanticoke region (Figure 29). These samples are analysed for pH, major ions and trace metals. The chemical analysis for all precipitation samples collected during October 1978 to December 1979 for the entire NEMP network is listed in Appendix 1.

The present section contains a brief discussion of the main features of the precipitation chemistry data. Seasonal trends will be discussed in a future report, as it is difficult to comment on trends with only one year's data. In Appendix 2 an intercomparison is carried out between the results of the NEMP precipitation sampling network for H⁺, NO₃⁻, NH₄⁺ and Ca⁺ with other samplers operated independently in the Nanticoke area by the Atmospheric Environment Service (CANSAP) and Ontario Hydro. It is shown that generally there is no statistical difference at the 95% confidence level between the different sets of results, thus establishing confidence in our data.

Figure 30 shows the monthly variation of pH, SO_4^- , Ca^+ and NO_3^- for the entire NEMP network. Monthly weighted means as well as minimum and maximum concentrations are shown on the graphs.

The average pH for wet deposition in the NEMP network during 1979 is 4.1 (Figure 30). This value is very similar to that shown by the pH Isopleth Map, (Figure 31) in which the precipitation weighted pH for 1979 based on the National Atmospheric Deposition Program (NADP) and Canadian (CANSAP) networks for the Nanticoke area was found to be about 4.1. (13)

Volume weighted mean sulphate (in precipitation sample) concentration for the NEMF network is 5.7 mg/l whereas the 1979 NADP and CANSAP sulphate data (Figure 32), show an SO_4^- average value of 2 to 3 mg/l. Thus it appears that SO_4^- concentrations in the Nanticoke area are higher than would be expected from other measurements in Southwestern Ontario and nearby areas in the United States, possibly due to local industrial activity.

The network volume weighted mean for precipitation nitrate and calcium are 3.6 and 0.71 mg/l respectively.

Trace metal concentrations in the precipitation samples for the NEMP network are listed in Table 7. Arithmetic means, standard deviations, minimum and maximum values are calculated for Ca, Cd, Cu, Fe, K, Mg, Na, Ni, Pb, Zn and Mn and expressed as network averages.

5.0 Analysis of Airborne Particulates Data

The particulate monitoring network in the Nanticoke area consists of 13 hi-vol samplers operated by NEMP (Figure 33). The analysis to follow was carried out on the 13 samplers. Glass fibre filters are used at all stations with parallel sampling on Whatman 41 cellulose filters at 8 stations. TSP measurements are carried out on the glass fibre filters while a detailed chemical analysis is done on selected Whatman 41 filters. Some of the glass fibre filters are also analysed for polynuclear aromatic hydrocarbons and inorganic and total carbon. Data is collected every sixth day with a 24 hour sampling period. At three sampler locations samples are collected every three days. Data analysis has shown that there is no significant difference between the third day and sixth day sampling means (11), therefore, the results from the six-day sampling cycle are used in the following analysis.

Annual sulphate, nitrate, calcium, magnesium and TSP levels, as a function of wind direction for the period January to December 1979 are presented in Table 8. Wind directions were extracted from the monthly meteorological summaries at Simcoe, Ontario. They represent the most frequent hourly direction during a 24 hour period. Annual concentrations of SO_4^- , NO_3^- , Ca^+ , Mg and TSP are generally higher during southerly versus northerly air flows.

TSP geometric mean for the NEMP network during 1979 was 45.0 ug/m³. There were in total 19 exceedances of the daily TSP criteria of 120 ug/m³. The highest number of exceedances (9) occurred at SW37. These high values were probably due to windblown dust. Network geometric means for SO₄=, NO₃-, Ca⁺ and Mg are 5.3, 3.0, 0.90 and 0.28 ug/m³ respectively. Table 9 lists the estimated AQC for several airborne particulates, for comparison with the NEMP results. Estimates are based on Regulation 15 of the Environmental Protection Act, 1971.

The Whatman 41 filters are submitted to the laboratory for a chemical analysis that includes a number of other elements - Al, Cd, Fe, Mn, Ni, Pb, Zn, B, Cr, Si and Ti. Results for the NEMP network are shown in Table 10.

The polynuclear aromatic hydrocarbon (PAH) results, according to wind direction patterns for the NEMP network, are shown in Table 8. Results are similar to other rural areas and considerably less than those found in the vicinity of certain sources and industries in other areas of Ontario (14). Total carbon (TC) and free carbon (FC) results associated with different wind directions are also found in Table 8.

6.0 Conclusions

In this report, it has been attempted to establish a relationship between the NEMP, MOE, and Ontario Hydro network data and the 10 and 85 m winds from the Jarvis meteorological tower. Seasonal and annual average wind directions have been determined for the Nanticoke area. A strong westerly wind component is observed during the winter season and a strong southerly component during the summer. High wind speeds during the spring, summer and fall season are associated with southerly wind flow. Wind speeds during the winter period are consistently higher than during other seasons of the year. High wind speed during this season is coincident with elevated SO₂ readings.

An analysis of atmospheric stability based on the Richardson number showed the atmosphere to be more stable during the winter season. During the morning period (0700 to 1100 hrs) the atmosphere was found to be relatively stable while during the afternoon period (1200 to 1600 hrs) it is relatively unstable.

Elevated SO₂ concentrations correlate well with southerly wind flow patterns suggesting that the NANTGS and sources south of the lake influence the high concentrations. Sources south of the lake increase the background SO₂ level, especially in winter however, elevated one-hour concentrations are probably all due to local industry. A detailed study of the exceedance episodes is necessary in order to delineate more specifically the cause of these high concentrations.

Ozone levels during 1979 are highest in the late spring and summer. Elevated O₃ concentrations at SW37 during southerly wind flow patterns suggests the source of the pollutant to be south of the border.

Annual average TRS concentrations are below 1 ppb.

The directional distribution of the NO₂ values coincide with the close proximity of the industrial centres of Hamilton, St. Catherines, Niagara Falls and Buffalo.

Precipitation data from the NEMP network for the period October 1978 to December 1979 have been validated by intercomparing with other networks in the Nanticoke area. Average pH for the 1979 NEMP precipitation data was 4.1.

Airborne particulate analysis of 1979 NEMP data showed higher concentrations of SO_4^- , NO_3^- , Ca^+ and Mg during southerly air flow. High TSP levels during the summer period are attributed primarily to wind blown dust. The polynuclear aromatic hydrocarbon concentrations were relatively low, quite typical of rural areas.

REFERENCES

- 1. Chamberlain, A.J., 1976: The short term effects of 2-year dock construction activity on the fishes in the Nanticoke region of Long Point Bay, Lake Erie. Report No. 2, Ontario Ministry of Natural Resources.
- Chan, W. H., Lusis, M. A., Ro, C. and Vet, R. J., 1980: An Analysis of the impact of Inco Emissions on precipitation quality in the Sudbury area. Internal ARB Report No. ARB-TDA-35-80.
- Fleming, R. A., 1980 Long Range Transport of sulphur dioxide. Presented at 73rd annual meeting of the Air Pollution Control Assoc., Montreal, Quebec.
- 4. Fulle, D., 1976: A comparison of three stability classification systems using surface and radiosonde data for four cites in the Western United States. Presented at the third symposium on atmospheric turbulence, diffusion and air quality, Raleigh, North Carolina pp 140-148.
- Misra, P. K., 1980; Verification of a shoreline dispersion model for continuous fumigation, Boundary Layer Meteorology.
- 6. Misra, P.K. 1980: Dispersion From Tall Stacks into a Shoreline Environment, Atmospheric Environment, 14, pp 393-397.
- 7. Moniteq Ltd., 1980: Ozone Gradient Monitoring Study Nanticoke 1981.
- Pack, D. H., 1980: Precipitation Chemistry Patterns:
 A two-network data set. Science vol. 208.

 Prophet, D.T. 1961: Survey of the Available Information Pertaining to the Transport and Diffusion of Airborne Material over Ocean and Shoreline Complexes. Technical Report 89, Aerosol Laboratory, Stanford University.

 Raynor, G.S., Michael, P. and Sethu Raman, S., 1980: Meteorological Measurement Methods and Diffusion Models for use at Coastal Nuclear Reactor Sites. Nuclear Safety, Vol. 21, No. 6.

 Sahota, H., 1980: First data report on Nanticoke Environmental Management Program network data up to December 1979. Internal ARB report number ARB-TDA-64-80.

Shenfeld, L., et al., 1980: An air pollution incident in Southern, Ontario,
 Canada with international implications. Presented at 5th Clean Air
 Congress, Buenas Aires, Argentina.

Annual report of Co-operative Regional Project - January 1 to December
 13. Project NC-141-NADP.

14. Adamek, E.G., 1976: A Two Year Survey of Benzo (a) Pyrene and Benzo (k) Fluoranthene in Urban Atmospheres in Ontario. Internal Report.

PK/as: AR 9-15

NE 11-04-02

TABLE 1 Station Location and Description

OGRAFIII CAL	VÕÕIS	E-W UTM!	N-S UTM#	SITE HAME	INSTRUMENT, COMPLIMENT AND NOTES	MAINTAINER
5¥37	22901	05102	47138		SC. (Pullins) 0-2 (Bandix) niù (Teco) CO ^x (Bendix) TSP H1-Vol (Gen. Met.) Comp. H1-Vol (Gen. Met.) Auto APM (GCA) COH (RAC)	NEMP Contract
5¥40	22959	05454	47152	Big Creek	Precip Gauge (F/P) Precip Collector (Sangamo)	HEMP Contract
WQ 7	22953	05702	47396	Dogs Hest East	TSP Hi-Vol (Gen. Met.) Comp. Hi-Vol (Gen. Met.) Precip Collector (Sangamo) Precip Gauge (F/P)	NEMP Contract
W13	22861				 SO_ (Phillips) Data Recorder (West)	Hydro CTS/HGS
	22056	05641	47383	Port Cover	TSP Hi-Vol (Gen. Met.)	MOE/NCR
KIMOJ	22871	05752	47398	Nanticoke Village	CO. (Phillips) Data Recorder (West)	Hydro CTS/NGS
MHM F 3	22071	05597	47449	Simcoe Horticul- tural	SO ₂ (Tec.) O ₃ (Rendix) HO ₃ (Teco) Con (RAC)	MOE/WCR
ww20	22872	05596	47485 "	81 coms burg	SO, (Philips) Data Recorder (West)	Hydra CTS/HGS
n:03	22961	05758	47412	Hanticoke North	TSP H1-Yol (Gen. Met.) Comp. H1-Yol (Gen. Met.)	NEMP Contract
	22881	-			SO ₂ (Philips) Data Recorder (West)	Hydro CTS/HGS
ВОИНН	22905	05744	47456	Nanticoke Road	TRS (Philips) HC (Byron) 2 Data Recorders (West)	HEMP Contract
	22882				SO ₂ (Philips) Data Recorder (West)	Hydra CTS/NGS
KDW11	22032	05712	47478	Jarvis	TSP H1-Vol (Gen. Met.)	MOE/WCR
uka12	22883	05744	47499	Jarvis Met. Towe	r 10 m wind speed/dir (Bendix) 10 m temperature (Rosemont) 10 m dewpoint (Honeywell) 30 m wind speed/dir (Bendix) 85 m wind speed/dir (Bendix) 85 m temperature (Rosemont) 12 Data Recorders (West)	Hydro CTS/NGS
ICR15	22584	05717	47522	Livingston	SO ₂ (Philips) Cata Recorder (Mest)	MyJro CTS/HGS
MAIE	22954	05.054	47535	VIIIa 'nuva	(SP hi-Vol (Gen. Met.) recty Collector (Sangama)	NEMP Contra

TABLE 1 Cont

SCHAPILICAL)	70 70 115	C-W UTH/	H-S UTH#	SITE HAME	INSTRUMENT, COMPLIMENT AND NOTES	MAINIAHUN
	22811				SO ₂ (Philips) Data Recorder (West)	Hydro C15/NGS
407	22906	05787	47458	Sandusk	NO _x (Teco) Data Recorder (West)	HEMP Contract
,	22069				TSP H1-Vol (Gen. Met.)	MOE/WCR
N15	22812	05774	47535	Garnet	SO ₂ (Philips) Data Recorder (West)	Hydro CTS/NGS
K17	22951	05768	47548	Hagersville South	TSP Hi-Vol (Gen. Net.) Comp. Hi-Vol (Gen. Met.)	NEMP Contract
	22921				SO _Z (Philius) Data Recorder (West)	Hydro CTS/HGS
unt ue	22904	05794	47434	Walpool South School	TRS (Philips) HC (Byron) 2 Oata Recorders (West) TSP Hi-Vol (Gen. Met.) Comp. Hi-Vol (Gen. Met.)	NEMP Contracts
ınıCOò	22822	05838	47463	Ory Creek	SO ₂ (Philips) Data Recorder (West)	Hydro CTS/NGS
Har I u	22086	05821 **	47472	Cheaps ide	502 (Teco) 100 (Teco) Coll (RAC) ISI' Hi-Yol	HOE/NCR
rai£10	22903	05821	47472	Cheapside	TRS (Philips) HC (Byron) Auto APM (GCA)	NEMP Contracto
mE16	22823	05872	47518	Balmoral	SC ₂ (Philips) Data Recorder (West)	Hydra CTS/RGS
rait 20	22825	05880	47561	Decemsville	SO ₂ (Philips)	Itydro CTS/MGS
101 E22	22960	05839	47600	Oufferin Horth	TSP Hi-Vol Precip Collector (Sangamo)	NEMP Cuntract
121839	22902	05914	47746	Binbrook West	SO ₂ (Philips) O ₃ (Bendix) NO _x (Teco) CO (Bendix) TSP hi-Vol (Gen. Met.) CoH (RAC) Precio Collector (Sanyamo) Precip Gauge (F/P)	NEMP Contract
	22962	05818	47543	Dry Creek west	Acoustic Sounder	NEMP Contract

SEOUSYLHICVE	AQUIS	¥-3 ₩##	N - S UTM/	SITE HAME	INSTRUMENT, COMPLIMENT AND HOTES	HATHIAINED
HE16	22957	05886	47509	Fisherville North	TSP Hi-Val (Gen. Met.) Comm. Hi-Val (Gen. Met.)	NEMP Contracte
nE19	22832	05935	47489	Kohier Road	50 ₂ (Pnilips) Oata Recorder (West)	Hydro CTS/HGS
HE 27	22956	. 05025	47527	Canfield South	TSP Hi-Vol (Gen. Met.) Precin Collector (Sangamo) Precin Gauge (F/P)	REMP Contracio
HEAL	22958	06109	47507	Camboro East	TSP Hi-Vol (Gen. Met.) Precia Callector (Sangama)	HEMP Contracto
£11611	22841		47434	Selkirk	SO ₂ (Chilips) Data Recorder (Mest)	Hydro CTS/NGS
	22031	05870	1/434	SGIKIFK	TSP Hi-Val (Gen. Met.)	MOE/WCR
ENC 17	22955	05943	47441	Rainnam Centre South	TSP Hi-Vol (Gen. Met.) Comp Hi-Vol (Gen. Met.)	nem Contracto
Enc 18	22942	05950	47445	Rainham Centre	SO ₂ (Philips) Data Recorder (West)	Hydro CTS/#GS
E04	22952	05822	47388	Peacock Point Par	Comp Hi-Vol (Gen. Met.)	NEMP Contracto
£05	22851	05831	17380	Peacock Point	502 (Philips) Parta Recorner (Mest)	Hyers. C15/RGS

TABLE 2 ... RICHARDSON NUMBER CATEGORIES - FULLE(1976)

TURNER STABILITY CLASS	RICHARDSON NUMBER	STABILITY CHARACTERISTICS
i	Ri < −1,0	VERY UNSTABLE
2	-1.0 \leq Ri $<$ -0.2	UNSTABLE
3	$-0.2 \le Ri < 0.0$	SLIGHTLY UNSTABLE
4	0.0 🐒 Rí < 0.2	NEUTRAL
5	$0.2 \le Ri \le 0.8$	SLIGHTLY STABLE
6	$0.8 \le \mathrm{Ki} < 2.0$	STABLE
7	Ři ≥ 2.0	VERY STABLE

TABLE 3

SEASONAL DISTRIBUTION OF BLH (N) ACCORDING TO WIND DIRECTION

ATM LER			*			No a to		2001
SECTOR	1/1	ИE	E.	BE.	9	SW	M.	999 1414
AVERAGE HT	205	230	128	261	281	205	245	220
TH MUMIKAN	600	540	300	,660	450	450	900	750
OCCURRENCES	77	125	44	20	21	56	73	68
					.es.) .es			
SEKTING.								
SECTOR	14	}4F_		(a)	8	SW	IJ	1117
AVERAGE HT	125	199	1.74	208	180	257	275	150
AAXIMUM HT	600	960	540	750	720	1250	900	750
OCCURRENCES	70	206	101	77	146	209	39	70
				·····································		*		
SUMMER								
SECTOR	и	ИE	Œ	SE	S	รผ	1,4	ИЙ
AVERAGE HT	148	177	166	266	245	209	194	194
MAXIMUM HT	900	1050	570	500	750	900	900	1050
O'.CURRENCES	33	151	66	53	205	273	135	134
				w.				
FALL.			,					
SECTOR	ř4	NE	E	SE	9	SW	l _i j	Mili
AVERAGE III	209	220	152	222	233	226	255	232
HAXIMUM HT	1050	1050	1050	680	1230	750	200	1200
OCCURRENCES	110	221	115	56	222	234	329	186

BLH are obtained from Acoustic Sounder charts

TABLE 4

SEASONAL DISTRIBUTION OF BLH > 400 G ACCORDING TO WIND DIRECTION

HINTER								
SECTOR AVERAGE HT MAXIMUM HT OCCURRENCES	1) 477 600 9	NE 455 540 13	E 0 0 0	SE 640 660 3	S 450 450 4	SW 450 450 5	ы 900 900 12	NW 750 750 10
OPPORT CHARGES	,	3 .3. 3.4.				*		
SPELNG	*							
SECTOR AVERAGE HT MAXIMUM HT OCCURRENCES	N 555 600 2	NE 607 - 960 22	E 480 540 . 3	SE 546 750 10	8 615 720 10	5W 549 1250 . 30	W 588 900 24	NW 548 750 5
SUMMER								
SECTOR AVERAGE HT MAXIMUM HT OCCURKENCES	N 675 900 2	рЕ 668 1050 8	E 483 570 6	SE 475 600 6	\$ 509 750 36	SM 503 900 28	W 527 900 17	NW 626 1050 17
FALL						*		
SECTOR AVERAGE HT NAXINUM HT- OCCURRENCES	N 418 1050 18	ME 632 1050 31	E 720 1050 9	9E 556 590 10	\$ 641 1260 28	5W 502 750 26	W 543 900 75	NW 615 1200 37

BLN are obtained from Acoustic Sounder charts-

Table 5

MONTHLY DISTRIBUTIONS OF DZONE EXCEEDANCES
OF THE AGC DURING 1979

нтиом	WWW20	инез9	SW37
MAL	0	0	0
FEB	o	0	0
MAR	٥	٥	0
AFR	3 (0.4)	0	0
MAY	6 (0.3)	0	12 (1.6)
אטע	44 (6.3)	3 (0.5)	5 (7.3)
JUL	31 (4.3)	30 (4.2)	12 (6.3)
AUG	8 (1.0)	. 0	0
SEF	4 (0.7)	1 (0.1)	9 (1.5)
OCT	0	0	0
ИOV	٥	0	0
DEC	0	0	0

() Represent % of the time that Ozone exceedances occurred.

Table 6
PERCENTAGE OF VALID DATA SEASONALLY AND ANNUALLY - 1979

		3437	ин	E39	ОМ	7
WINTER SPRING SUMMER FALL	NO2 71.9 81.9 13.1 17.1	NO 85.3 85.4 13.8 33.1	NO2 86.3 72.5 89.9 91.2	NO 86.4 86.4 91.9 92.9	NO2 33.2 79.5 34.5 13.1	83.7 81.5 35.6 13.3
ANNUAL	46.0	54.4	85.0	89.4	52.6	53.

144

Table 7

PRECIPITATION TRACE METAL CONCENTRATIONS -- NEMP NETWORK

	Mean	Standard	Minimum	Maximum
		Deviation		
Ca	.710	.650	.04	3.32
Cd	.001	.006	.00	.05
Cu	.012	.012	.00	.06
Fe	.096	.127	.00	.60
ĸ	.124	.139	.03	1.00
Wа	.196	.196	.02	1.12
Na	.258	.364	.01	2.50
Ni	.003	.031	.00	.27
Pb	.012	.006	.00	.04
Zn	.194	.519	.00	2.80
Mn	.010	.005	.00	.02

Concentrations are in PPM

Table 8 Annual Airborne Particulate Matter Concentration (us/m3) according to Wind Direction

	S	N	С	ALL
HO3 SO4 TSP*- Ca Hg F1 Bap BkF B(ghi)P	2.2 (48) 5.9 (50) 46 (58) .49 (34) .27 (34) .144 (32) .083 (32) .062 (32) .182 (32) .035 (32)	N 1.7 (44) 3.9 (44) 43 (69) .49 (39) .21 (39) .057 (36) .030 (35) .037 (36) .112 (36) .013 (36)	2.4 (14) 4.4 (14) 29 (23) .39 (13) .15 (13) .112 (13) .051 (13) .043 (13) .158 (13)	2.1 5.3 45 .53 .21 .09 .05
TC FC	4.8 (32) 1.8 (32)	4.2 (35)	4.3 (13) 2.3 (13)	4.5 1.3

F1 - Flouranthene BkF - Benzo(k)Fluoranthene Be - Perslene BaP - Benzo(a)Parene B(shi)F - Benzo(shi)Pyrene TC- Total Carbon FC - Free Carbon

^{*} Data collected by 13 NEMP hi-vol samplers

^() Number of samples

^{&#}x27;S' Most frequent direction was from the SW to SE sector

^{&#}x27;N' most frequent direction was from the NW to NE sector

^{&#}x27;C' calm wind - average speed < 6 km/hr

ESTIMATED AIR QUALITY CRITERIA (AQC) BASED ON REGULATION 15 OF THE ENVIRONMENTAL PROTECTION ACT (1971)

Table 9

PARA	METER	AQC	(Em/ku)
	В	,	30
	Be		.01
*	Са		15
	Cd		2
	Cr		10
	Cu		50 &
**	F		2
	Fe		3
***	Ма	*	20
	Mn		50 %
	Ni		2
	Fb		5
	Zn		30
1	SP		120
8	604 (SULPHURIC ACID)		30
٨	IO3 (NITRIC ÁCID)		30
(*)			

* Ca expressed as Ca/CaO

** F expressed as Total Fluorides (daseous and particulate)

^{***} Ms expressed as Ms/MsO

A Value is based on medical grounds

-36

Table 10

FARTICULATE TRACE METAL CONCENTRATIONS -- NEMP NETWORK

	Mean	Standard Deviation	Minimum	Meximum	
Al Cd Cu Fe Mn Ni Pb Zn B Ca Cr	.572 .001 .068 .449 .282 .017 .005 .073 .054 .007	.903 .001 .111 .449 .343 .016 .016 .049 .042 .003 1.630	.03 .00 .00 .02 .01 .00 .00 .00	8.90 .01 .65 2.85 3.79 .11 .14 .26 .32 .01 18.07	

Concentrations are in us/m3.

MONITORING STATIONS IN NANTICOKE REGION

FIGURE 2 FUMIGATION DUE TO INTERNAL BOUNDARY LAYER

Figure 3. Annual Wind Rose for 10m Winds at Jarvis Met Tower 1975-1979.

Figure 4. Annual Wind Rose for 85m Winds at Jarvis Met Tower 1975-1979.

Figure 5. Fall Wind Rose for 10m Winds at Jarvis Met Tower 1975-1979.

Figure 6. Fall Wind Rose for 85m Winds at Jarvis Met Tower 1975-1979.

Figure 7. Winter Wind Rose for 10m Winds at Jarvis Met Tower 1975-1978.

Figure 8. Winter Wind Rose for 85m Winds at Jarvis Met Tower 1975-1979.

Figure 9. Spring Wind Rose for 10m Winds at Jarvis Met Tower 1975-1979.

Figure 10. Spring Wind Rose for 85m Winds at Jarvis Met Tower 1975-1979.

Figure 11. Summer Wind Rose for 10m Winds at Jarvis Met Tower 1975-1979

Figure 12. Summer Wind Rose for 85m Winds at Jarvis Met Tower 1975-1979

RI CLASS

FIGURE 14 : SEASONAL FREQUENCY DISTRIBUTION OF RI VALUES.

FIGURE 15 ANNUAL DISTRIBUTION OF HOURLY AVERAGED BLH ACCORDING TO WIND DIRECTION.

FIGURE 16 SEASONAL DISTRIBUTION OF HOURLY AVERAGED BLH ACCORDING TO WIND DIRECTION.

NUST and MANITY - data reported in ppic and converted to ppb.

JARVIS (85, UIHD)

-59-

FIGURE 24 MAP OF GAS WELLS IN NANTICOKE AREA

- HYDROCARBON MONITORS
- **☼ WELLS IN SERVICE**
- S WELLS ABANDONED ---- CAS LINES

FIGURE 25

٥ ١٥

WINTER SPRING SUMMER FALL FIGURE 26 TRS CONCENTRATION ROSE PERIOD: 1979 0 10 FREQUENCY OF WIND (X) CONCENTRATION (SCALE IN PPB) NHE05 HHU12 JARV13 (85, 9140) JARVIS (85. Uild)

.

WWUG

HNEDS

FIGURE 27

TRS CONCENTRATION ROSE
PERIOD: 1979
FREQUENCY OF WIND (X)
CONCENTRATION (SCALE IN PPB)

* • LESS THAN 75% VALID DATA

PRECIPITATION SAMPLING NETWORK

FIGURE 30 . MONTHLY CONCENTRATIONS OF PH, SO4, CA AND NO3 FOR THE NEMP PRECIPITATION NETWORK 1978-1979.

HI-VOL SAMPLING NETWORK

APPENDIX I

NEMP PRECIPITATION DATA COLLECTED DURING OCTOBER 1978 TO DECEMBER 1979

Data are presented on a monthly basis according to sampling station. All concentrations are expressed in ppm (water) except precipitation volume which is expressed in ml. Total acidity is expressed as CaCO₃. Sampling station SW40 was set up for intercomparison purposes. During the study period only four months of data was collected at SW40. Dashes represent missing or unavailable data. Included in the missing data category are those concentrations which were determined to be contaminated. It should also be noted that the NO₃ and NH₄ concentrations are expressed as N-NO₃ and N-NH₄ respectively.

H011418	AC I D	РН .	SECH	CL	F	H-HII4	11-1103	402	504	LKH	TPH	CA	PRECIPITATION
2902	3.16	4.25	=	1.73	_	1.000	1.00	1.250	8.30		.0195	1.30	1145.
2753	8.41	3.89	_	3.54	_	. 550	.94	. 450	5.40	-	.0045	. 40	2712.
	0.61	4.31	_	1.12	.038	. 807	1.09	.003	5.90	-	.0070	. 59	1656.
2954		4.00	-	2.64	- 0 16	. 440	.72	. 525	4.20	-	.0030	.52	540.
2954	6.86				_	-			-	_	-	-	·
2958	, -	-	-	-		_	_	-	_	-) =)		· -
2959		4.07	-	2.84	-	.340	.54	. 414	3.30	-	.0020	. 43	1725.
2940	5.35	4.07	-	2.01	_	.310	.56	1 1.6.7	3.30				
	CD	CU	FE	K	нв	нн	NA	NI	PB	P	\$102	ZN	
2902	.0075	.012	.030	.70	.31	-	.90	.0080	.023	.0150	.080	.060	
2953	.0008	.004	. 120	.14	.12	-	.20	.0150	.029	.0030	.057	.023	
2954	.0012	. 004	. 190	. 47	. 1 1	n-	. 20	.0040	.023	.0024	. 066 .	.032	
2954	.0008	.004	.110	. 12	.08	-	. 20	.0120	.020	.0004	.054	.022	
2958	-	-	-		-	1-1	-	-	-	=	₩.	-	
2959	-	-	-	-	-	-	: - 1			-	₩	-	
2940	.0024	.004	.170	.10	412	_	.20	.0230	.021	.0004	.039	.025	×.
									÷	.00			
KECIFIT	ATION ANA	LYSIS <i>Da</i>	NIA FOR N	IEHP HETH	JORK 1117	78			ä	.20	К		FRECIFITATIO
	ATION ANA	LYSIS <i>da</i> Ph	NIA FOR N SPCN	IEMP NETU CL	IORKILLZ:	78 H-NH4	H-N03	NO2	504	TKN	Teh	CA	VOLUME
1A110H	ACID	PH		CL			N-NQ3	NO2	S04 9.00			CA 2.20	
1A110N 2902	AC10	FH 4.90	SPCH -	CL 2.51	F	H-NH4 . 950	1.20	1.005		TKN	TFH		VOLUME
TATION 2902 2953	AC1D 3.43 3.88	PH 4.90 4.13	SPCH - -	CL 2.51 .59	F -	N-NH4 .950 .470	1.20	1.005	9.00	TKN -	TFH ,0250 ,0080	2.20	VOLUHE 795.
TATION 2902 2953 2954	3.63 3.68 3.97	PH 4.90 4.15 4.13	SPCH - -	CL 2.51 .59 1.08	F .	N-NH4 .950 .470 .520	1.20 .41 .67	1.005 .563 .614	9.00 4.40 4.80	TKN - -	TFH .0250 .0080 .0030	2.20 .30 .42	VOLUME 795. 1207.
TATION 2902 2953 2954 2954	ACID 3.43 3.88 3.97 4.55	FH 4.90 4.15 4.13 3.97	SPCN - - -	CL 2.51 .59 1.08 2.33	F -	N-NH4 .950 .470 .520 .430	1.20 .41 .47 .75	1.005 .563 .614 .544	9.00	TKH - -	TFH ,0250 ,0080	2.20	VOLUHE 795. 1207. 1610.
TATION 2902 2953 2954 2954 2956 2958	3.63 3.88 3.97 6.55	FH 4.90 4.15 4.13 3.97	SPCH - - - -	2.51 .59 1.08 2.33	F	N-NH4 .950 .470 .520	1.20 .41 .67	1.005 .563 .614	9.00 4.40 4.80 5.30	TKN	1FH .0250 .0080 .0030 .0035	2.20 .30 .42 .35	VOLUHE 795. 1207. 1810. 1337.
TATION 2902 2953 2954 2954 2956 2958	ACID 3.43 3.88 3.97 4.55	FH 4.90 4.15 4.13 3.97	SPCN - - -	CL 2.51 .59 1.08 2.33	F	H-NH4 .950 .470 .520 .430	1.20 .41 .47 .75	1.005 .563 .614 .544	9.00 4.40 4.80 5.30	TKN	1FH .0250 .0080 .0030 .0035	2.20 .30 .42 .35	VOLUHE 795. 1207. 1810. 1337.
TATION 2902 2953 2954 2954	3.63 3.88 3.97 6.55	FH 4.90 4.15 4.13 3.97	SPCH - - - - -	2.51 .59 1.08 2.33	F	H-NH4 .950 .470 .520 .430	1.20 .41 .47 .75	1.005 .563 .614 .544	9.00 4.40 4.80 5.30	TKN	1FH .0250 .0080 .0030 .0035	2.20 .30 .42 .35	VOLUHE 795. 1207. 1610. 1337.
TATION 2902 2953 2954 2954 2956 2958	ACID 3.43 3.88 3.97 4.55	PH 4.90 4.13 4.13 3.97 - 4.13	SPCH	2.51 .59 1.08 2.33	F .	N-NH4 .950 .470 .520 .430 - -	1.20 .41 .67 .75 -	1.005 .563 .614 .544 -	9.00 4.40 4.89 5.30	TKN	1FH .0250 .0080 .0030 .0035	2.20 .30 .42 .35 .55	VOLUHE 795. 1207. 1610. 1337.
TATION 2902 2953 2954 2956 2958 2959 2960	ACID 1.43 3.88 3.97 4.55	PH 4.90 4.13 4.13 3.97 - 4.13	SPCH	CL 2.51 .59 1.08 2.33 - 2.10	F	N-NH4 .950 .470 .520 .430480	1.20 .41 .67 .75 - .47	1.005 .363 .614 .544 - .570	9.00 4.40 4.80 5.30 	TKN	1FH .0250 .0080 .0030 .0035 .0020	2.20 .30 .42 .35	VOLUHE 795. 1207. 1610. 1337.
TATION 2902 2953 2954 2956 2958 2959 2960	ACID 3.43 3.88 3.97 4.55 4.23 CD .0091	PH 4.90 4.15 4.13 3.97 - 4.13 CU .004	SPCH	CL 2.51 .59 1.08 2.33 - 2.10 K	F	N-NH4 .950 .470 .520 .430480	1.20 .61 .67 .75 - .67 NA	1.005 .563 .614 .544 .570 NI	9.00 4.40 4.80 5.30 - 4.50	TKN	1FH .0250 .0080 .0030 .0035 .0020	2.20 .30 .42 .35 .55	VOLUHE 795. 1207. 1610. 1337.
TATION 2902 2953 2954 2956 2958 2959 2960	ACID 3.43 3.88 3.97 4.55 4.23 CD .0091 .0008	PH 4.90 4.15 4.13 3.97 - 4.13 CU .004 .004	FE .110 .037 .216	CL 2.51 .59 1.08 2.33 - 2.10 K .15 .08 .08	HO .75	N-NH4 .950 .470 .520 .430 - .480	1.20 .61 .67 .75 - .67 NA	1.005 .563 .614 .544 - .570 NI .0210 .0550	9.00 4.40 4.89 5.30 - 4.50 FB .013 .022 .027	TKN	1FH .0250 .0080 .0030 .0035 .0020 \$102	2.20 .30 .42 .35 .55	VOLUHE 795. 1207. 1610. 1337.
FATION 2902 2953 2954 2954 2958 2758 2759 2960 2902 2902 2903 2954	ACID 3.43 3.88 3.97 4.55 4.23 CD .0091 .0008 .0500	PH 4.90 4.13 4.13 3.97 - 4.13 CU .004 .004 .004	FE .110 .037 .216 .410	CL 2.51 .59 1.08 2.33 - 2.10 K	F	N-NH4 .950 .470 .520 .430480	1.20 .61 .67 .75 - .67 NA	1.005 .563 .614 .544 - .570 NI .0210 .0550 .0360	9.00 4.40 4.89 5.30 	F .0160 .0033 .0005	16H .0250 .0080 .0030 .0035 .0020 5102	2.20 .30 .42 .35 .55	VOLUHE 795. 1207. 1610. 1337.
TATION 2902 2953 2954 2956 2958 2959 2960	ACID 3.43 3.88 3.97 4.55 4.23 CD .0091 .0008	PH 4.90 4.15 4.13 3.97 - 4.13 CU .004 .004	FE .110 .037 .216	CL 2.51 .59 1.08 2.33 - 2.10 K .15 .08 .08	HO .75	N-NH4 .950 .470 .520 .430480	1.20 .61 .67 .75 - .67 NA .30 .20 .20	1.005 .563 .614 .544 - .570 NI .0210 .0550	9.00 4.40 4.89 5.39 - 4.50 FB .013 .022 .027	F .0160 .0033 .0005 .0001	16H .0250 .0080 .0030 .0035 - .0020 5102 .130 .654 .053	2.20 .30 .42 .35 .55 ZH .055 .023 .918	VOLUHE 795. 1207. 1610. 1337.

.2700

.027

1.760

.005

AL ELEMENTS ARE MEASURED IN FFM

FECTIFICATION VOLUMES ASS REASURED IN AL

ten in	it tom men		ATA FOR H	em mena								6.5	- 16 FEAT (a.
HOLTAL	ACTO	FH	SECH	CL	F	11-11114	11-1103	HO.5	304	LEH	TFH	CA	1367 36074
	2. 2.	-	-	. 80		. 301	_	. 435	5.30	±	. 0054	1.30	*
902	24.21	4.10		.70		.111	. 45	.172	3.20	~) 050	. 32	-
953	4.30		-	1.40	-	. 234	. 54	. 278	3.10	-	.0067	. 20	
954	6.11	4.10		1.00	14	.142	. 67	.202	1.30	(144)	.0057	. 20	*
954	4.21	4.00	-		-		-	-	-		-	=	
958	*	-	-	-	-	_	_	-	7=1	m2	~	-	-
959	· ·	Ψ.	-		-	. 195	-	. 333	2.70	140	.0100	. 37	*
960	41.50	-	-	1.40	-	.175			# 2 31 E3				
	CD	CU	FE	K	мо	ни	HA	NI.	F B	P	2105	IN	
902	.0024	.004	.025	.41	.32	<u>~</u>	. 37	.0070	.017	.0012	* A:	.036	
			.050	. 24	. 09	-	. 32	.0100	.009	.0028	.037	.023	
953	.0030	.004	.080	.12	.05	-	. 30	.0040	.012	.0019	.021	.013	
954	.0050	.003		.04	.05	-	. 29	.0035	.013	.0031	.023	.014	
954	.0012	.009	. 100		03	_	* ***	-	_	=		-	
950	i	~	-	-	_	_		-	-	200	=	-	
959	-	-	-			_	. 21	.0110	.021	.0012	.030	.027	
940	.0028	.005	. 200	. 19	.07		1	.0110					
ECIPIT		ALYSIS D	ATA FOR M	IEMP NETI	JORK: 1/	79							
		ALYSIS D PH	ATA FOR N	IEMP NETI	JORK: 1/ F	79 N-HH4	n-n03	HO2	\$04	I KN	TPH	CA	SPECIFITATI VOLUME
NO11A	ATIUN ANA ACID	РН	SECH	CL	F	H-HH4		NO2	504	: 1kn -	÷	. 65	90LUME
AT [OH	ATIUN ANA ACID	Р Н -	SFCN 289.00	CL 1.66	F .020	N-HH4 . 188	.52					. 65	70LUME 1385. 1365.
4110H 902 951	ATIUN ANA ACID -	РН - 3.80	SFCN 289.00 64.00	CL 1.66 1.13	F .020 .070	N-HH4 .188 .261	.52 .72	.001	-	-	÷	. 45 . 46 . 25	90LUHE 1385. 1385. 1485.
ATTON 902 95J 954	ACID - -	PH - 3.80 3.90	SFCN 289.00 64.00 42.00	CL 1.46 1.13 .79	F .020 .070 .030	N-HH4 .188 .241 .313	.52 .72 .54	.001	- 6.10	-	-	. 65	70LUME 1385. 1385. 1485. 2035.
902 953 954 956	ACID ACID	PH 3.80 3.90	SECN 289.00 64.00 42.00 266.00	CL 1.46 1.13 .79 .54	F .020 .070 .030 .020	N-NH4 .188 .261 .313 .145	.52 .72 .54 .45	.001	4.10 4.50	- - -	-	. 45 . 46 . 25	1385. 1365. 1405. 2035.
ATION 902 95J 954 956	ACID - - - - -	PH 3.80 3.90	SFCN 289.00 64.00 42.00	1.46 1.13 .79 .54	F .020 .070 .030 .020	N-NH4 .188 .241 .313 .145	.52 .72 .54	.001 .001 .003	4.50	-	*	.45 .46 .25	70LUME 1385. 1385. 1485. 2035.
ATTON 902 953 954 956 958 959	ACID	7H 3.80 3.90	5FCH 289.00 64.00 42.00 266.00	1.46 1.13 .79 .54	F .020 .070 .030 .020 -	H-HH4 .188 .241 .313 .145	.52 .72 .54 .45	.001	4.10	-		. 45 . 46 . 25 . 20	70LUME 1385. 1365. 1485. 2035.
ATION 902 953 954 956 958 959	ACID - - - - -	PH 3.80 3.90	SECN 289.00 64.00 42.00 266.00	1.46 1.13 .79 .54	F .020 .070 .030 .020	N-NH4 .188 .241 .313 .145	.52 .72 .54 .45	.001	4.50	-		.65 .46 .25 .20	70LUME 1385. 1365. 1485. 2035.
ATION 902 953 954 956 958 959	ACID	7H 3.80 3.90	5FCH 289.00 64.00 42.00 266.00	1.46 1.13 .79 .54	F .020 .070 .030 .020 -	H-HH4 .188 .241 .313 .145	.52 .72 .54 .45	.001	4.10	-		.65 .46 .25 .20	1385. 1385. 1485. 2035.
ATION 902 954 954 956 950 959 960	ATION AND ACID	7H -3.80 3.90 3.90	SECH 289.00 64.00 42.00 266.00	1.46 1.13 .79 .54 - 1.33	.020 .070 .030 .020	N-NH4 .188 .261 .313 .145 - .174	.52 .72 .54 .45	.001	4.10 4.50 			.45 .46 .25 .20 - .19 ZH	70LUME 1385. 1365. 1485. 2035.
ATION 902 951 954 954 958 959 959 940	ATIUN ANA ACID - - - - - - - - - - - -	3.80 3.90 - - 3.90 CU	SECH 289.00 44.00 42.00 266.00 	CL 1.46 1.13 .79 .54 - 1.33	F .020 .070 .030 .020	N-NH4 .188 .261 .313 .145174 HN .006	.52 .72 .54 .45 .39	.001 .003 .001 - - .005	- 4.10 4.50 - 3.70	- - - - - -	5102	. 45 . 46 . 25 . 20 - . 19 ZN . 150 . 096	70LUME 1385. 1365. 1485. 2035.
ATION 902 953 954 956 958 959 940	ACID	3.80 3.90 3.90 CU	SECH 289.00 44.00 42.00 266.00 	CL 1.46 1.13 .79 .54 - 1.33 K	F .020 .070 .030 .020020 HG .13 .06	N-NH4 .188 .241 .313 .145174 HN .006	.52 .72 .54 .45 .39 NA	.001 .003 .001 - .005 NI		P'	5102	.45 .46 .25 .20 - - .19 ZH .150 .076 2.800	90LUHE 1385. 1385. 1485. 2035.
ATION 902 951 954 958 958 959 940 902 953 954	ACID	3.80 3.90 - 3.90 CU .004	SECN 289.00 64.00 42.00 266.00 	CL 1.46 1.13 .79 .54 - 1.33 K	F .020 .070 .030 .020	N-NH4 .188 .261 .313 .145174 HN .006 .004	.52 .72 .54 .45 .39 NA	.001 .003 .001 - .005 NI	4.10 4.50 - 3.70 FB .008	e'	5102	.45 .46 .25 .20 - .19 ZH .150 .096 2.800	90LUHE 1385. 1385. 1485. 2035.
902 954 954 956 958 959 940 902 953 954	ACID	3.80 3.90 3.90 	SECH 289.00 44.00 42.00 268.00 	CL 1.46 1.13 .79 .54 - 1.33 K .10 .05 .10	F .020 .070 .030 .020020 HG .13 .04 .05 .04	N-NH4 .188 .241 .313 .145174 HN .006	.52 .72 .54 .45 .39 NA	.001 .003 .001 - .005 MI .0020 .0020	- 4.10 4.50 3.70 FB .008	e'	5102	.45 .46 .25 .20 - .19 ZN .150 .096 2.800	90LUHE 1385. 1365. 1485. 2035.
ATION 902 951 954 956 959 940 902 9953 9954 9958	ACID	3.90 3.90 3.90 3.90 CU .006 .013 .004	SECH 289.00 44.00 42.00 266.00 EE .200 .200 .270	CL 1.46 1.13 .79 .54 - 1.33 K	F .020 .070 .030 .020	N-NH4 .188 .241 .313 .145174 MN .004 .004 .003	.52 .72 .54 .45 .39 NA	.001 .003 .001 - .005 MI .0020 .0020		e'	3102	.45 .46 .25 .20 - .19 ZN .150 .096 2.800	70LUME 1385. 1365. 1485. 2035.
ATTON 902 953 954 956 958 959 940 902 953	ACID	3.80 3.90 3.90 	SECH 289.00 44.00 42.00 268.00 	CL 1.46 1.13 .79 .54 - 1.33 K .10 .05 .10	F .020 .070 .030 .020	N-NH4 .188 .261 .313 .145174 HN .006 .004 .003	.52 .72 .54 .45 .39 NA	.001 .003 .001 - .005 M1 .0020 .0020 .0010	6.10 4.50 	e'	5102	.45 .46 .25 .20 - .19 ZN .150 .096 2.800	90LUHE 1385. 1385. 1485. 2035.

SEL FLEMENTS AFE MEASURED TO FFM
FETCTITIATION VOLUMES AFF MEASURED IN ML
- - STORTETTS SATA INVALID OR UNAVAILABLE

1911011	AC 14	F-H	SFCH	CI.	F .	H-11114	M-1103	1102	504	TKH	15.11	CA	AOLANE
2902	4	~	~	-	-	-	3	=	~	=	-		152,
2953	-		-	-	.050	.220	1.14	.001	7.10	Text		1.44	456.
2954	-			-	.040	. 255	. 99	.001	5.50	~	-	. 56	299.
2954	_	-	_	:-	.040	. 224	1.11	.001	4.30	-	-	1.07	392.
3958	:	_	-	-	.090	1.540	1.81	.001	1.20	-	₩.	2.72	.175.
2959	-	-		-	-	-	-	=	-	=	*	-	-
2760	-	×=	-	-	-	-	-	-	10.10	=	*	-	156.
	c b	CU	FE	ĸ	н6	MM	NA	н1	FB	f	\$102	ZN	
2902	.0003	. 004	. 200	. 59	-	-	2.50	.0030	.002	-	-	. 170	
2953	.0003	.004	. 150	.08	. 27	.011	. 42	.0070	.011	-	_	.210	
2754	.0002	.007	.120	. 07	.07	-	. 31	.0030	.008	=	=	.110	
2755	.0010	.010	. 150	.12	.22	.008	. 58	.0070	.011	<u>+</u>	-	. 130	
2758	.0017	.007	.120	. 22	. 84	.021	1.10	.0070	.010	_	L .	. 130	
2959	-	-	-		-	-		-	-	_		*	
2740	.0014	.008	.200	. 23	_	-	1.45	.0050	.015	-	~	.100	
	110N ANA	LYSIS (ATA FOR N				M-M03	,	504	TKH	TPU	CA	
HOTTAT			ATA FOR N	IEMF NETH CL	F	N-NII4	N-N03	но2	504	TKH	TFII	CA	PRECIPITATI VOLUME
7992 TAT (OH	110N ANA	LYSIS D FH	SECN	CL -	F . 030	N-NII4 . 591	1.08	.001	4.30	-	-	.00	VOLUME 1300.
14f (QH 1492 1753	ACID	LYSIS D PH	SPCN 263.00	CL -	. 030 . 030	N-NII4 .591 .465	1.08	.001	4.30 5.50	-	-	.00	VOLUME 1300. 1300.
14f (OH 1992 1953 1954	ACID	LYS1S II FH 	SPCN 243.00 100.00 58.00	CL - 1.06	F .030 .030 .020	N-NII4 .591 .465 .394	1.08	.001	4.30 5.50 4.40	-	-	.88 .40	VOLUME 1300. 1300. 1825.
1AF (QH 1992 1953 1954 1956	ACTO ACTO -	LYSIS II FH 	SPCN SPCN 263.00 100.00 58.00 76.00	CL - 1.06 1.36	F .030 .030 .020	N-NII4 . 591 . 445 . 394 . 530	1.08 1.03 .85	.001	6.30 5.50 4.40 6.00	-		.88 .40 .40	VOLUME 1300. 1300. 1825. 1315.
TAT (UN 2902 2753 2754 2754 2756 2758	ACTO	FH 3.90 3.80	SFCN SFCN 243.00 100.00 58.00 74.00	CL 1.06 1.36	F .030 .030 .020 .030	N-NII4 .591 .445 .394 .530	1.08 1.03 .85 1.12	.001	4.30 5.50 4.40 6.00	•	-	.88 .40 .40	1300. 1300. 1300. 1825. 1315.
TATION 2902 2953 2954 2954 2956 2959	ACTO - - - -	FH 3.90	SECN 263.00 100.00 58.00 74.00	CL 1.06 1.36	F .030 .030 .020 .030	N-NII4 .591 .445 .394 .530	1.08 1.03 .85 1.12	.001	4.30 5.50 4.40 4.00	-	-	.88 .40 .40 .65	VOLUME 1300. 1300. 1825. 1315.
14 (tun 1902 1953 1954 1956 1958	ACTO	FH 3.90 3.80	SFCN SFCN 243.00 100.00 58.00 74.00	CL 1.06 1.36	F .030 .030 .020 .030	N-NII4 .591 .445 .394 .530	1.08 1.03 .85 1.12	.001	4.30 5.50 4.40 6.00		-	.88 .40 .40	1300. 1300. 1300. 1825. 1315.
TAT (UN 2902 2753 2954 2956	ACTO - - - -	FH 3.90	SECN 263.00 100.00 58.00 74.00	CL 1.06 1.36	F .030 .030 .020 .030	N-NII4 .591 .445 .394 .530	1.08 1.03 .85 1.12	.001	4.30 5.50 4.40 4.00		-	.88 .40 .40 .65	VOLUME 1300. 1300. 1825. 1315.
TATION 2902 2953 2954 2956 2959	AC (0.	LYSIS & FH 3.90 3.80	263.00 100.00 58.00 76.00	CL 1.04 1.34	F .030 .010 .020 .030	N-NII4 .591 .465 .394 .530 -2.390	1.08 1.03 .85 1.12 2.24 .74	.001	4.30 5.50 4.40 4.00 	-	-	.88 .40 .40 .45	VOLUME 1300. 1300. 1825. 1315.
FAF CON 2992 2953 2954 2956 2959 2959 2960	CD	1.90 3.90 3.00	263.00 100.00 58.00 76.00	CL.	F .030 .030 .020 .030 .090 .020	N-NII4 .591 .465 .394 .530 .2.390 .413	1.08 1.03 .85 1.12 	.001 .001 .001 .001	4.30 5.50 4.40 4.00 	- - - -	5102	.88 .80 .40 .65 3.32 .41	VOLUME 1300. 1300. 1825. 1315.
FAF (UH 2992 2953 2954 2956 2956 2959 2959 2960		LYSIS II FH 3.90 3.80	263.00 100.00 58.00 76.00 76.00	CL	F .030 .030 .020 .030 .020 .020 HG .20	N-NII4 .591 .445 .394 .530 -2.390 .413 MH	1.08 1.03 .85 1.12 	.001 .001 .001 .001 .001	4.30 5.50 4.40 4.00 	- - - -	5102	.88 .40 .40 .65 3.12 .41	VOLUME 1300. 1300. 1825. 1315.
FAF (Un) 2902 2953 2954 2956 2958 2959 2960	CD .0008	LYSIS & FH	243.00 100.00 58.00 74.00 	CL 1.04 1.34 	F .030 .030 .020 .030 .090 .020 HG .20 .09 .06	N-NII4 .591 .465 .394 .530 - 2.390 .413 MN .010 .007	1.08 1.03 .85 1.12 2.24 .74 HA	.001 .001 .001 .001 .001 MI	6.30 5.50 4.40 6.00 15.50 1.50 7	- - - - -	5102	.88 .60 .40 .65 3.32 .41 ZN	VOLUME 1300. 1300. 1825. 1315.
FAFCON 2992 2953 2954 2956 2958 2959 2960 2960 2962 2963		1.90 3.80 CU	243.00 100.00 58.00 74.00 279.00 FE	CL	F .030 .030 .020 .030 .020 HG .20 .00	N-NII4 .591 .445 .394 .530 -2.390 .413 MH	1.08 1.03 .85 1.12 -2.24 .74	.001 .001 .001 .001 .001	4.30 5.50 4.40 4.00 	P	5102	.88 .40 .40 .65 3.32 .41 ZN	VOLUME 1300. 1300. 1825. 1315.
FAF (On 2992 2953 2954 2956 2958 2959 2960	CD .0004 .0003 .0002 .0004	LYSIS & FH	243.00 100.00 58.00 74.00 	CL. 1.04 1.34 1.34 N 08 07 05	F .030 .030 .020 .030 .020 .020 HG .20 .00 .04 .11	N-NII4 .591 .465 .394 .530 2.390 .413 MN .010 .007 .005	1.08 1.03 .85 1.12 2.24 .74 HA	.001 .001 .001 .001 .001 .001	6.30 5.50 4.40 6.00 15.50 4.50 7 6 8	P	\$102	.88 .60 .40 .65 3.32 .41 ZN	VOLUME 1300. 1300. 1825. 1315.

AT STEHEOUS ONE HEASURED IN PEN

^{*}E-11-1161100 90COMES APE MEASURED IN MC

STRUTTERS PASA CHANTLE OF BUNAVETIVEES

FFECTITA	ALLON SHA	LYSIS D	ATA FOR H				n-n03	но2 .	S04	TKN	TEH	0A	POLUME
115/1100	AC LD	FH	SECH	CL	F	4 - 144 4	11-11-12						202.
27902 22953 22954 22954 22958 22958 22959 22760		3.90 3.90 4.10	192.00 89.00 60.00 57.00	1.36 .71 1.06	.050 .020 .020 .020 .030	.994 .323 .356 .306 1.070	1.34 .76 .74 .80 .99	.001 .001 .603 .002 .002	8.60 4.40 4.90 5.10 .70	-		1.78 .43 .50 .47 1.03	2664. 724. 2554. 2266.
	CD	Cu	FE	ĸ	HG	nn ,	на	и	PB	P	\$102	ZH	
12902 12953 22954 22956 22958 22958 22959	.0021 .0010 .0003 .0008	.040 .040 .055 .030 .033	.350 .080 .020 .070 .200	.14 .05 .05 .09 .12	. 45 . 08 . 12 . 13 . 33	.021 .005 .010 .004 .010	.42 .15 .12 .20 .28	.0040 .0010 .0010 .0020 .0020	.015 .007 .004 .008 .007			.130 .070 .040 .210 .180	

PRECIPITA	IANA HOLTA	LYSIS DA	TA FOR N	EHP NETU	IORK: 5/7	79					and 144 (174)		FRECIFITATION VOLUME
STALLON	ACID	FH	SPCH	CL	F	N-11114	N-H03	1102	504	TKH	TPH	CA	
72702 12753 12754 22754 22756 22757 22760	-	3.80 3.80 3.80 3.80	69.00 71.00 86.00 80.00	1.40 .80 1.14 2.05 - .59	.040 .030 .030 .030 .030	.919 1.100 .888 .788 -	1.00 1.04 .92 1.08 - 1.52 .85	.002	8.40 8.70 6.30 6.40 10.30 6.20		-	1.08 .80 .04 .47 1.05	1234. 1300. 1623. 1500. 1194.
	C D	CU	FE	K	nG	нн	на	114	FB	P	\$102	ZN	
23993 23954 23954 23954 23954 23973 23949	.0007 .0006 .0005 .0007	.014 .004 .044 .036	.024 .022 .019 .023	.08	.26	.012 .011 .010 .010	.13 .25 .15 .22 -	.0010 .0020 .0020 .0020	.007			. 069 . 296 . 109 . 590 . 110	

ALL ELEMENTS ARE MEASURED IN PER ESPECIALIZATION POLUMES ARE MEASURED IN ML STORIETES DATA INVALLO OR URAVAILAME

													FRECIPITALL
191100	AC 10	FH	SECH	CF	F	N-11114	H-H03	HO3	504	TKH	TPH	CA	POLUME
2902		3.80	83.00	. 52	. 030	.730	1.03	.001	9.50	4	2	. 93	1117.
2953		-	133.00	-	.020	. 454	. 88	.002	7.20	-		.72	2021.
2954	12 -	3.80	81.00	1.24	.030	1.140	1.04	.005	9.60	-		. 85	1441.
2954	91	3.80	70.00	. 57	.030	. 400	.87	.004	2.70	-	-	.70	1702.
2958	-	-	-	1.70	.040	1.490	1.54	.001	-	_	-	1.82	1051.
2759	-	-	-			-			=	_	= ,		_
2960	-		233.00	-	.020	4.512	.75	.001	4.40	=	*	. 75	1241.
	CD	CU	FE	ĸ	HG	MN	NA	ит	FB	P	\$102	ZH	
2902	.0003	.012	.140	.12	.22	.017	. 20	.0030	.008	-	-	.100	
2953	.0002	.018	.350	.08	. 11	.012	.13	.0150	.008	-	1-	. 230	
954	.0016	.018	. 140	. 24	. 10	.016	. 40	.0120	.009	, - :	-	2.800	
2954	.0004	.014	.090	. 11	. 18	.010	.19	.0020	.007	3 . €		.590	
2950	.0004	.015	.180	. 15	.50	.020	. 20	.0050	.012	-		. 140	
2959	-		-	-	-	-	-			_	-	8	
940	.0011	.017	.120	.11	- 18	.012	.14	.0140	.008	.4.	-	. 030	
ECIPITA	TION ANA	LYSIS O	AIA FOR H	IEMP NETU	106K: 7/	79							
			ATA FOR N				N-NO3	NO2	504	TKN	TPN	CA	FRECIFITAT VOLUME
ATION	TION ANA	LYSIS (I	ATA FOR N	IEMP NETU CL	106K: 7/ F	79 N-NH4	N-NO3	NO2	S04 .	TKN	1PH	CA	VOLUME
ATTON 902		PH 4.10	SPCH 53.00		F . 030		N-NO3 .82	NO2	9.40	TKN -	TPH -	CA 1.42	40LUHE 418.
AT10N 902 953	AC LD	РН	SPCH 53.00 52.00	CL	F .030 .020	N-HH4 1.060 .294	.82	.001	9.40 5.40		-	CA 1.42 .76	YOLUME 618. 1218.
ATION 902 953 954	- AC LD	PH 4.10	SPCH 53.00	CL 1.79	F . 030	N-NH4	.82	.001	9.40	-	-	CA 1.42	VOLUME 618. 1218. 940.
ATION 902 953 954 956	ACID	PH 4.10 4,00	SPCH 53.00 52.00	CL 1.79 1.10	F .030 .020	N-HH4 1.060 .294	.82	.001	9.40 5.40 7.50	-	-	CA 1.42 .76 .78	901.086 418. 1218. 940. 92.
902 953 954 956	ACID - -	PH 4.10 4,00	53.00 52.00 92.00	CL 1.79 1.10	F .030 .020 .020	N-HH4 1.040 .294 .551	.82 .40 .87	.001 .002 .001	9.40 5.40 7.50	=	-	CA 1.42 .76 .78	90LUME 618. 1218. 940.
1ATTON 1902 1953 1954 1956 1958	AC 1 D	PH 4.10 4,00	53.00 52.00 92.00	CL 1.79 1.10	F .030 .020 .020	N-HH4 1.060 .294 .551	.82 .40 .87	.001	9.40 5.40 7.50	-	-	1.42 .74 .78 -	901.0HE 618. 1216. 940. 99. -
ATION 902 953 954 956 958	AC I D	PH 4.10 4,00	53.00 52.00 92.00	CL 1.79 1.10	F .030 .020 .020	N-NH4 1.060 .294 .551	.82 .40 .87	.001	9.40 5.40 7.50	-	-	1.42 .74 .79	90LURE 618. 1218. 940. 99.
ATION 902 953 954 956 958	AC 1 D	PH 4.10 4,00	SPCH 53.00 52.00 92.00	CL 1.79 1.10	F .030 .020 .020	N-NH4 1.060 .294 .551	.82 .40 .87 -	.001	9.40 5.40 7.50 - 8.00	-	-	1.42 .74 .78 -	90LUME 618. 1218. 940. 99. -
902 903 954 954 958 958 958	AC I D	PH 4.10 4,00 - - 4.10 3.80	SPCH 53.00 52.00 92.00	CL 1.79 1.10 - - .45 1.73	F .030 .020 .020 .020 .020	N-NH4 1.040 .294 .551 - .447	.82 .40 .87 - - .37	.001	9.40 5.40 7.50 - 8.00 8.70	-	-	1.42 .74 .78 - - 1.00	90LUME 618. 1216. 940. 99. -
902 953 954 956	ACID	PH 4.10 4,00 - - 4.10 3.80	SPCH 53.00 52.00 92.00 	CL 1.79 1.10 - - .45 1.73	F .030 .020 .020 .020 .020	N-HH4 1.060 .296 .551647 .821	.82 .40 .87 - .37 .81	.001 .002 .001 - .002 .901	9.40 5.40 7.50 - 8.00 8.70	- - - - -	- - - - - - - - - -	1.42 .74 .78 .79 - 1.00 .91	90LUME 618. 1218. 940. 99. -
902 902 953 954 956 958 958 959 960	AC L D 	PH 4.10 4.00 4.10 3.80 CU .0r4	\$PCH 53.00 52.00 92.00 	CL 1.79 1.10 .45 1.73 K	F .030 .020 .020 .020 .020 HG .37	N-NH4 1.060 .294 .551647 .821 HN	.82 .40 .87 - .37 .81	.001 .002 .001 - .002 .901 HI	9.40 5.40 7.50 	- -	5102	1.42 .76 .78 - 1.00 .91 ZH	90LUME 618. 1216. 940. 99. -
ATION 902 953 954 958 958 959 940	ACID	PH 4.10 4.00 - 4.10 3.80 CU .014	\$PCH 53.00 52.00 92.00 	CL 1.79 1.10 - - .45 1.73 K	F .030 .020 .020 .020 HG .37 .21	N-NH4 1.060 .296 .551647 .821 HN .011	.82 .40 .87 - .37 .81	.001 .002 .001 - .002 .901 HI	9.40 5.40 7.50 	P	- - - - - - - - - - - - - - - - - -	CA 1.42 .76 .78 - 1.08 .71 ZH .300 .200 .110	VOLUME 618. 1218. 940. 97
ATION 902 953 954 954 958 958 959 960 902 953 954	ACID	PH 4.10 4.00 - 4.10 3.80 CU .014	\$PCH 53.00 52.00 92.00 	CL 1.79 1.10 - .45 1.73 K	F .030 .020 .020 .020 HG .37 .21 .25	N-NH4 1.060 .296 .551647 .821 MN .011 .004	.82 .40 .87 - .37 .81 NA	.001 .002 .001 - .002 .901 MI	9.40 5.40 7.50 - 8.00 8.70 FB	P	\$102	CA 1.42 .76 .78 - 1.08 .91 ZH .500	90LUME 618. 1218. 940. 99. -
902 903 954 954 958 958 959 940	ACID	PH 4.10 4.00 4.10 3.80 CU .014 .010 .012	5PCH 53.00 52.00 92.00 	CL 1.79 1.10 - .45 1.73 K	F .030 .020 .020 .020 .020 .020 .020	N-HH4 1.060 .294 .551447 .821 HN .011 .004	.82 .40 .87 - .57 .81 NA	.001 .002 .001 - .002 .001 HI .0040 .0020	9.40 5.40 7.50 	P	\$102	CA 1.42 .76 .78 - 1.08 .71 ZH .300 .200 .110	90LUME 618. 1218. 940. 99. -

SEL FLEMENTS AFF MEASURED IN FEM. SECTETIBILION POLUNCS ARE NEASURED IN ML

STORTITES BATA TRYALITY OR UNAVAILABLE

FECTETIAL	LTON YNAI	.7519 ba	TA FOR HE	HE HETUO				NO2	504	TKH	TFH	CA	AUTAME BESCIPTIVIEN
151100	ACLD	FH	SECH	CL	F	H-HH4	11-11113	1102				. 30	2137
1.1.1.011						. 243	. 42	.001	5.20	. 577	.0283	. 43	3925.
2902	5.60	4.00	57.50	. 96	. 327	. 484	. 54	.002	4.10	1.010	. 31170		4120.
2953	4.70	4.00	57.80	1.21	.028		. 55	.002	4.00	.567	.0045	.59	2923.
	5.00	4.00	57.50	.76	.028	.412	.58	.001	6.00	. 434	.0049	. 25	1920.
22954		3.90	42.40	.63	.028	. 303		.003		1.250	.0170	. 42	-
22955	4.00	3.90	75.10	.54	.028	. 250	. 78	-	_	-	-	*	3339.
22958	6.50	3.70		_	-	-	*		5.40	1.030	.1100	. 32	3337.
22959			40.10	. 62	.023	.979	. 45	.001	3.40				
22960	2.50	4.30	40.10	5 7 3									
								***	PB	P	5102	ZH	
		CU	FE	K	HG	HH	HA	HI					
	CD	CU		- 51					.008	-	-	.025	
	22220 0002		022	.10	. 11	.004	. 10	.0035			-	.030	
22902	.0017	.000	.022		. 15	.011	.17	.0020	.011	-	-	.020	
22953	B000.	.004	. 025	. 11	.14	.011	. 1 1	.0020	.013	-		.014	
22754	.0018	.004	.024	. 12		.008	.04	.0015	.011	_	-	.019	
22954	.0007	.003	.021	. 05	. 13	.008	.11	.0025	.014	~	=	.017	
2295A	.0008	.003	.043	.09	. 26		2	7 =	=	-	-	.017	
22959		-	-		. 15	.007	.16	.0050	.008	=	-	.017	
22940	.0020	.002	.019	.08	.13		. 6 . 200. 20						
							3				,		To a second
RECIPITA	ATTON AN	ALYSIS D	ATA FOR M	IEMP HETN	IORK1 9/	79	3						PRECIPITATION VOLUME
					IORK 1 9/	79 M-4H4	N-H03	NO2	S 04	ŢŔŃ	, TEN	CA	FRECIFITATION
RECIPITA	ATTON AN	ALYSIS D	AIA FOR H	IEMP HETW	F	н-ин4	M-H03	- Tree es				CA .42	FRECIFITATION VOLUME
HOLLATE	AC ID	FIL	SFCH	CL	- 5	H-HH4 , L14	N-HO3	.004	2.90	. 294	TEN	CA . 42 . 45	FRECIFITATION VOLUME 1847. 1973.
31A110N 22902	AC ID	FII 4.40	SFCN 22,40	.CL .40	F	H-HH4 .114 .862	н-ноз . 29 . 27	.004	2.90	. 294 . 961	1f11 .0051	CA .42	FRECIFITATION VOLUME. 1867. 1973. 1773.
31A110H 22902 22953	AC ID 1.60 1.10	FII 4.40 4.50	SFCH 22.40 22.10	CL	F .022	H-HH4 , L14	N-HQ3 .29 .27 .19	.004	2.90 3.90 2.40	.294 .961 .359	1fH .0051 .0740 .0073	CA . 42 . 45	FRECIFITATION VOLUME 1867. 1973. 1973. 1999.
31A110N 22902	ACID 1.60 1.10 5.00	FII 4.40 4.50 4.00	SFCN 22.40 22.10 49.50	.40 1.40	.022 .015 .013	H-HH4 .114 .862	н-ноз . 29 . 27	.004	2.90 3.90 2.40 3.40	.294 .961 .359	1fH .0051 .0740	. CA . 42 . 45 . 35	FRECIFITATION VOLUME. 1847. 1973. 1773. 1799.
31A110H 22902 22953	ACID 1.40 1.10 5.00 1.30	FII 4.40 4.50 4.00 4.50	SFCN 22.40 22.10 49.50 25.00	.40 1.40 -	F .022 .015	N-NH4 .114 .662 .177	N-H03	.004	2.90 3.90 2.40 3.40	.294 .961 .359	16H .0051 .0740 .0073 .0183	. CA . 42 . 45 . 35 . 46	FRECIFITATION VOLUME 1847. 1973. 1773. 1999.
214110H 22902 22953 22954	1.60 1.10 5.00 1.30	FII 4.40 4.50 4.00 4.50	SFCH 22.40 22.10 49.50 25.00	.40 1.40 .60	F .022 .015 .013 .015	N-NH4 .114 .662 .177 .160	N-H03 .29 .27 .19	.004	2.90 3.90 2.40 3.40	.294 .961 .359 .347	16H .0051 .0740 .0073 .0183	. CA . 42 . 45 . 35 . 46	FRECIFITATION VOLUME. 1847. 1973. 1773. 1799.
214110H 22902 22953 22954 22954	ACID 1.60 1.10 5.00 1.30	FII 4.40 4.50 4.00 4.50	SFCN 22.40 22.10 49.50 25.00 29.50	.40 1.40 - .60	F .022 .015 .013 .015 .014	H-HH4 .114 .462 .177 .160	N-H03	.004	2.90 3.90 2.40 3.40	.294 .961 .359	16H .0051 .0740 .0073 .0183	. CA . 42 . 45 . 35 . 44	FRECIFITATION VOLUME 1847. 1973. 1773. 1999.
31A110N 22902 22953 22954 22956 23958	1.60 1.10 5.00 1.30	FII 4.40 4.50 4.00 4.50	SFCH 22.40 22.10 49.50 25.00	.40 1.40 .60	F .022 .015 .013 .015	H-HH4 .114 .462 .177 .160	N-H03 .29 .27 .19 .23 .	.004	2.90 3.90 2.40 3.40	.294 .961 .359 .347	16H .0051 .0740 .0073 .0183	. CA . 42 . 45 . 35 . 44	FRECIFITATION VOLUME 1867. 1973. 1773. 1999.
31A110N 20902 22953 22954 22954 22956 22958 22959	ACID 1.40 1.10 5.00 1.30 1.80	6H 4.40 4.50 4.00 4.50 4.40	22.40 22.10 49.50 25.00 29.50 25.40	.40 1.40 - .60 - 1.10	F .022 .015 .013 .015 .014 .014	N-HH4 .114 .662 .177 .160 - .501	N-H03 .29 .27 .19 .23 .	.004	2.90 3.90 2.40 3.40	.294 .961 .359 .347	16H .0051 .0740 .0073 .0183	. CA . 42 . 45 . 35 . 44	FRECIFITATION VOLUME 1867. 1973. 1773. 1999.
31A110N 20902 22953 22954 22954 22956 22958 22959	ACID 1.60 1.10 5.00 1.30	FII 4.40 4.50 4.00 4.50	SFCN 22.40 22.10 49.50 25.00 29.50	.40 1.40 - .60	F .022 .015 .013 .015 .014	H-HH4 .114 .462 .177 .160	N-H03 .29 .27 .19 .23 - .22	.004	2.90 3.90 2.40 3.40 3.40 2.40	.294 .961 .359 .347 .705 .280	16H .0051 .0740 .0073 .0183 .0388 .0085	. CA . 42 . 45 . 35 . 46 . 35 . 35 . 35 . ZH	FRECIFITATION VOLUME 1847. 1973. 1773. 1999.
31A110N 20902 22953 22954 22954 22956 22958 22959	ACID 1.40 1.10 5.00 1.30 1.30 1.70	FII 4.40 4.50 4.00 4.50 4.40 4.40	22.40 22.10 49.50 25.00 29.50 25.40	.40 1.40 60 1.10 1.00	F .022 .015 .013 .015 .014 .014	N-HH4 .114 .662 .177 .160 - .501	N-H03 .29 .27 .19 .23 - .22	.004	2.90 3.90 2.40 3.40 3.60 2.40	.294 .961 .359 .347 .705 .280	1FH .0051 .0740 .0073 .0183 .0388 .0085	. CA . 42 . 45 . 35 . 44 . 35 . 35 . 35	FRECIFITATION VOLUME 1867. 1973. 1773. 1999.
31A110N 20902 22953 22954 22954 22956 22958 22959	ACID 1.40 1.10 5.00 1.30 1.80	6H 4.40 4.50 4.00 4.50 4.40	22.40 22.10 49.50 25.00 29.50 25.40 FE	.40 1.40 .60 .1.10 1.00	F .022 .015 .013 .015 .014 .014	N-HH4 .642 .177 .160 - .501 .117 HH	N-H03 .29 .27 .19 .2318	.004 .001 .004 .004	2.90 3.90 2.40 3.40 3.40 2.40	.294 .961 .359 .347 .705 .280	1FII .0051 .0740 .0073 .0183 .0388 .0085	. CA . 42 . 45 . 35 . 46 35 35 ZH 016 015	FRECIFITATION VOLUME 1867. 1973. 1773. 1999.
31A110N 20902 22953 22954 22956 22958 22959 22960	AC ID 1.40 1.10 5.00 1.30 1.30 1.70	FII 4.40 4.50 4.00 4.50 4.40 4.40	SFCN 22.40 22.10 49.50 25.00 29.50 25.40 FE .020 .020	.40 1.40 60 1.10 1.00 K	F .022 .015 .013 .015 .014 .014 .014	N-HH4 .114 .662 .177 .160501 .117 HH	N-H03 .29 .27 .19 .2322 .18 NA	.004 .004 .001 .004 .004	2.90 3.90 2.40 3.40 3.60 2.40	.294 .961 .359 .347 .705 .280	1FH .0051 .0740 .0073 .0183 .0388 .0085	. CA .42 .45 .35 .46 .35 .35 .ZH .016 .015 .020	FRECIFITATION VOLUME 1867. 1973. 1773. 1999.
31A110N 20902 22953 22954 22956 22958 22959 22960	AC ID 1.60 1.10 5.00 1.30 1.30 1.70 CD .0004	FH 4.40 4.50 4.00 4.50 4.40 6.40	22.40 22.10 49.50 25.00 29.50 25.40 FE	.40 1.40 60 1.10 1.00 K	F .022 .015 .013 .015 .014 .014 .014	N-HH4 .642 .177 .160 - .501 .117 HH .009	N-H03 .29 .27 .19 .23 .22 .18 NA .05	.004 .004 .001 .004 .001 HI	2.90 3.90 2.40 3.40 3.40 2.40 FB	.294 .961 .359 .347 .705 .280	1FII .0051 .0740 .0073 .0183 .0388 .0085	. CA . 42 . 45 . 35 . 46 35 35 35 ZH 016 015 020 000	FRECIFITATION VOLUME 1867. 1973. 1773. 1999.
214110N 22902 22753 22954 22956 22958 22959 22960	AC ID 1.60 1.10 5.00 1.30 1.80 1.70 CD .0004	FII 4.40 4.50 4.00 4.50 4.40 6U .003	SFCN 22.40 22.10 49.50 25.00 29.50 25.40 FE .020 .020	.40 1.40 60 1.10 1.00 K	F .022 .015 .013 .015 .014 .014 .014 .014	N-HH4 .642 .177 .160501 .117 HN .009 .907 .008	N-H03 .29 .27 .19 .2322 .18 NA	.004 .004 .001 .004 .004	2.90 3.90 2.40 3.40 3.60 2.40 FB	.294 .961 .359 .347 .705 .280	1FII .0051 .0740 .0073 .0183 .0388 .0085	. CA . 42 . 45 . 35 . 46 . 35 . 35 . 35 . ZH . 016 . 015 . 020 . 000	FRECIFITATION VOLUME 1867. 1973. 1773. 1999.
20902 20953 20954 20954 20958 20958 20959 20960 20960	AC ID 1.60 1.10 5.00 1.30 1.30 1.70 CD .0004	FII 4.40 4.50 4.00 4.50 4.40 GU .003 .003	SFCN 22.40 22.10 49.50 25.00 29.50 25.40 FE .020 .031	.40 1.40 .60 1.10 1.00 K	F .022 .015 .013 .015 .014 .014 HG .08 .12 .14 .19	N-HH4 .642 .177 .160 .501 .117 HH .009 .907	N-H03 .29 .27 .19 .2322 .18 NA .05 .17 .09	.004 .001 .004 .001 .004 .001	2.90 3.90 2.40 3.40 3.60 2.40 FB .006	.294 .961 .359 .347 .705 .280	1FH .0051 .0740 .0073 .0183 .038B .0085	. CA . 42 . 45 . 35 . 44	FRECIFITATION VOLUME 1847. 1973. 1773. 1999.
214110N 22902 22753 22954 22956 22958 22959 22960	AC ID 1.60 1.10 5.00 1.30 1.80 1.70 CD .0004	FII 4.40 4.50 4.00 4.50 4.40 6U .003 .003 .004	SFCN 22.40 22.10 49.50 25.00 29.50 25.40 FE .020 .020 .031	.40 1.40 60 1.10 1.00 K	F .022 .015 .013 .015 .014 .014 .014 .014	N-HH4 .642 .177 .160501 .117 HN .009 .907 .008	N-H03 .29 .27 .19 .2322 .18 NA .05 .17 .09 .05	.004 .004 .001 .004 .001 HI .0040 .0020 .0025	2.90 3.90 2.40 3.40 3.40 2.40 FB .004 .004	.294 .961 .359 .347 .705 .280	1FII .0051 .0740 .0073 .0183 .0388 .0085	. CA . 42 . 45 . 35 . 46 . 35 . 35 . 35 . ZH . 016 . 015 . 020 . 000	FRECIFITATION VOLUME 1847. 1973. 1773. 1999.

AT FUENCHES ARE MEASURED IN PRM
TECTPOLATION POLUMES ARE MEASURED IN NU
1 STANTETTS SAIA CHPACTE OR DRAPATEAULE

i recletta		*** 10 fo	LA FUR NE	ME HETU	QKK:10/7	9							FFECIFILATION
FRECIFIIA	LTON SOSI	. 1515 Un				N-NH4	11-1103	1003	504	TKH	LEH	Ca	50F DUE
STATION	AC LD	FH	SECH	CL	F	H-HH4			Fire ATTOMATE	000	.0112	1.60	1596.
111111					.042	.797	1.32	.003	5.60	.980	.0112	1.30	1316.
22002	6.90	3.90	73.40	.64	.052	1.050	1.58	. 604	8.70	1.570		. 62	2227.
12953	7.00	3.90	87.10	. 87	.032		-	-	-	.740	.0205	. 71	2795.
32954	5.90	4.00	45.80	-		. 593	1.24	.005	4.80	.012	.0174	1.50	1929.
22254	8.00	3.90	83.00	1.49	.040	1.870	1.52	.003	9.30	2.490	.1069	1.50	=
32958	5.70	4.00	79.50	1.34	.050	1.870		=	-	-	-		1403.
22759	-	-	-	*	-		.99	.003	4.90	. 695	.0162	.50	(*Central State)
	7.70	3.90	79.50	2.44	.033	.544							
22960	,,,,	2										7 14	
							NA	NI	F B	F	5102	ZN	
	CD	CU	FE	, K	HG	HN	nn.						
								.0015	.019		1-1	.017	
E and an order of the contract		.002	.030	.07	.20	.013	.06		.025	-	-	.028	
22902	.0004		.042	.10	.22	.014	.10	.0020	.019	-	-	.018	
22953	.0004	.003	.015	. 10	.15	.011	. 10	.0015		2	-	.015	
22954	.0005	.002		.09	.17	.013	.08	.0010	.018	2	_	.025	*
22954	.0003	.002	.028		.30	.014	.13	.0020	.019		-	-	
22958	.0004	.003	.035	.20			-	-	*	-		.019	
22759	-	-	-	-		.011	.08	.0020	.015	-	_	.0.	
2960	.0012	.002	.020	. 07	.13	.011		*					
									9				
													*
												*	
FRECIFIT		ALVEIS D	ATA FOR	EMP HET	WORK: 11/	79							FRECIPITATION
FRECIPIO	Altun an	ME 1313 C					a financia		504	TKH	1611	CA	OULUHE
		0.44	SPCH	CL	F	H-HH4	H-H03	NO2		• • • • •			2010
STAILON	ACID	PH	31.01	C.					3.50	.503	.0123	.04	2010.
				.44	.027	. 416	.74	.003	3.30	.503	_		
22902	3.16	4.10	41.90	2.77	-	-	: - ::				.0133	. 35	2093.
22953	-		F		.024	.400	. 67	.005	3.31	. 472	.0123	. 40	2222.
22954	3.64	4.00	41.40	. 62	.025	. 453	.76	.003	4.09	. 555		3.30	1495.
22954	4.87	4.00	53.10	. 53		2.620	2.00	.001	-	4.640	.2370	-	-
22958	.00	5.50	76.40	1.13	.076	2.610		-	-	-	i=:		1430.
22757	_	-	-	*	-			.026	2.99	. 554	.0091	. 40	
22940	3.12	4.10	37.90	. 53	.022	.422	.,,	.020					
22700	2											744	
							на	114	FB	P	3102	ZN	
	CD	CU	FE	K	HG	HH	100	***				0.000	
						2122		4000	.012		961	.015	
	.0007	.002	.023	. 05	.08	.005			-	- 2	*	×	
33303				-	-	. =	_	-		-	-	.011	
. 50.23		-		. 0 6	. 05	.005	. 15	.0012	.011		360	.024	
2000	. 961.1	.002	.023	.11	* *		16	,0012	.017		-	.04/	
202.5	. 9491	.004	.019				100	. 9059	.010				
95.3	.0013	.00%		1.00	1.1-						-	1,14	
1.121,0	*	×			. 011	.00	19	.0034	.013				
2.1769	. 9921	. 557	. 020	10									

ALL FLEMFALS AFE MEASURER OF PER TITLETH LIATION POLUMES AFE MEASURED OF ME TO STRUCK SAFE MEASURED OF MAYATLABLE

	TION AND	LYSIS DA	TA FOR M	EHP HETU	ORK: 12/7	79						1	FFEC IF LIAI LON
		FH	SECH	CL	F	n-HH4	n-1103	1402	304	TEN	[FII	CA	AOT (14)
7.4 (100) (29.02) (29.54) (29.54) (29.56) (29.59) (29.60)	2.69 3.35 2.83 2.98 2.44	4.20 4.10 4.20 4.20 4.20	32.20 38.50 31.00 35.50 34.80	.21 .25 .19 .34 .27	.017 .019 .016 .019 .022	.254 .353 .225 .234 .441	. 45 . 54 . 44 . 61 . 65 -	.003	3.01 3.22 2.59 2.99 3.58 2.86	.343 .453 .327 .331 .778	.0049	.30 .30 .20 .40 .40	
	co	CU	FE	ĸ	нв	ин	HA	NI	PB	P	\$102	ZH	
22902 22953 22954 22954 22958 22958 22959	.0004 .0005 .0007 .0009 .0008	.001 .001 .002 .003 .003	.012 .016 .014 .016 .014	.05 .05 .05 .04 .05	.07 .05 .03 .10 .10	.003 .004 .003 .003 .004	.05	.0005 .0010 .0005 .0010	.006			.007	

ALL ELEMENTS ARE MEASURED IN PPM
PRECIPITATION VOLUMES ARE MEASURED IN ML
- 'SIGNIFIES DATA INVALID OR UNAVAILABLE

APPENDIX 2

WITH AES AND ONTARIO HYDRO STATION IN THE NANTICOKE REGION

In addition to MOE, within the Nanticoke area, precipitation sampling is also conducted by Ontario Hydro and the Atmospheric Environment Service (AES). The AES has a monthly CANSAP sampling station at Simcoe and an event APN sampler at Long Point, and Ontario Hydro collects data from an event sampler at E05. It was felt that the results from a paired-t test using data from the closest two stations in the NEMP network versus data from the other sampling agencies would assess the validity of the NEMP precipitation data. W07 and NNW18 were the NEMP stations chosen for the analysis. H+, SO₄=, NO₃- and Ca+ were the parameters included in the paired-t tests. Mean sample difference, standard deviation of the mean difference and the calculated t statistic for each pair of stations, appear in Table 11. The results indiciate that for the most part, there is no statistical difference at the 95% confidence level between precipitation samples collected by the NEMP, CANSAP, APN and Ontario Hydro samplers in the Nanticoke area. Figure 34 shows the levels of $S0_4^-$, $N0_3^-$, Ca^+ , NH_4^+ and H^+ for the NEMP (W07), NEMP (NNW18) and CANSAP (Simcoe) stations.

A similar trend is apparent in the data from all three networks.

PAIRED T-TEST RESULTS FOR HE PARAMETER

STATION NOT (NEMP)	MEAN. UIFFERENCE'	STANDARD DEVIATION	t STATISTIC	đf .	HYPOTHESISE
SIMCOE (CANS	040 (AF)	.077	-1.813	11	T
MO7 (NEMP) PEACOCK PI (.075 HYDRO)	.0916	2.511	. 8	F
WO7 (NEMP) LONG PT (APN	.043	.053	2.291	8	Ţ
NNWIB (NEMP) SINCOE (CANS	.02 0 AF)	.047	1.600	10	ĭ
MMW18 (NEMP) PEACOCK PT (1	.053 (03471	.064	2.467	8	F
NNW18 (NEMP) LONG (APN)	.031	.043	2.041	7	1

^{*} HYPOTHESIS -- THERE IS NO STATISTICAL DIFFERENCE BETWEEN PRECIPATION SAMPLES AT THE 95% CONFIDENCE LEVEL.

TABLE 11 con't

PAIRED T-TEST RESULTS FOR Ca PARAMETER

STATION	MEAN DIFFERENCE	STANDARD DEVIATION	t STATISTIC	df	HYPOTHESISE
.UG7 (NEMP)	-,210	. 4903	-1.545	12	T
SIMCOE (CANS	SAF)			,	
NO7 (NEMP)	511	1.05	-1.669	10	r
PEACOCK PT					
NO7 (NEMP)	.278	.421	2.191	10	T
LONG FT (AF)		• • • • • • • • • • • • • • • • • • • •			•
HNW18 (NEMP)) -,425	0.363	-4.218	12	F
STHOOE COARS		0.303	-4.210	1.0	
нимтв (мемь:			-4 051	1.0	T
PEACOCK PT	-,691 (HYDRO)	1.174	-1.951	10	T
HMW18 (NEMP)				6	*
LONG (APN)	.045	.428	.332	9	T

^{*} HYPOTHESIS -- THERE IS NO STATISTICAL DIFFERENCE BETWEEN PRECIPATION SAMPLES AT THE 95% CONFIDENCE LEVEL.

TABLE 11 con't PAIRED T-TEST RESULTS FOR SO4 PARAMETER

STATION	MEAN DIFFERENCE	STANDARD DEVIATION	t STATISTIC	df	HYPOTHESISA
M07 (NEMP)	1.02	1.99	1.841	12	Ť
SINCOE (CANS	AF)				
WO7 (NEMP)	-1,80	4.56	-1.310	10	Ţ
PEACOCK PT (·
WO7 (NEMP)	20 WO	1 10			
LONG PT (APN	2.39	1.19	5.696	10,	Ę
HHW18 (NEMP)	1.48	1 17	4 707		r:
SIMCOE (CANS		1.17	4.383	. 11	F
HHW18 (NEMF)					
PEACOCK PT (-1.77 HYDRO)	4.58	-1.285	10	T
HNW18 (MEMF)					
LONG (AFN)	1.21	1,72	2,216	9	Ť

^{*} HYPOTHESIS -- THERE IS NO STATISTICAL DIFFERENCE BETWEEN PRECIPATION SAMPLES AT THE 95% CONFIDENCE LEVEL.

TABLE 11 con't PAIRED T-TEST RESULTS FOR NO3T PARAMETER

S16+ (D#	MEAN DIFFERENCE	STANDARD DEVIATION	STATISTIC		đf	HYPOTHES19#
MO · · MEME) SIM JE · CAMS	0.609 SAP)	1.306	1.746		13	ï
MOZ EREMP) Pracuek PT (-1.209 HYDRO)	2.476	-1.619	£	10	τ
NOT REMPT LUND PT (APA	0.335	1.046	1.013		9	ĭ
NAWES CNEMP:	0.919	0.919	3.607		12	F
NOWLE CHEMP	-1.288	2.666	-1.602		Q	r
DHU S UNEMP	-0.112	0.908	-0.390		9	·

^{*} HIPOTHESIS -- THERE IS NO STATISTICAL DIFFERENCE BETWEEN PRECIPITATION SAMPLES AT THE 95% CONFIDENCE LEVEL

ANTARIO.

R.

DATE	ISSUED TO
4	
	— CAT. No. 23-115 PRINTED IN U. S. A