0.1. 06.08.2020 - Conceptos Fundamentales

0.1.1. Grafo

Un **grafo** G es un terna que consiste en un conjunto de vértices V(G), un conjunto de aristas E(G) y una relación que asocia a cada arista un par de vértices no necesariamente distinos.

0.1.2. Relación de adyacencia

- \blacksquare Dos vértices $y \lor v$ son adyacentes (vecinos) si $u \lor v$ son los extremos de una aeista e.
- Si u es advacente a v se nota: $u \leftrightarrow v$.

Observación _____

- Un bucle o lazo es una arista cuyos extremos son iguales.
- Dos o más aristas son múltiples o paralelas si tiene el mismo par de extremos.

0.1.3. Grafo simple

Un grafo simple G=(V,E) es un grafo sin bucles ni aristas múltiples, donde E es un conjunto de pares no ordenados de vértices.

0.1.4. Grafo finito

Un grafo es **finito** si V(G) y E(G) son conjuntos finitos.

0.1.5. Grafo nulo

El **grafo nul** es el grafo G, tal que $V(G) = \emptyset$ y $E(G) = \emptyset$.

0.1.6. Grafos complemetarios

El complemeto \overline{G} de un grafo G, es el grafo simple con conjunto de vértices $V\left(G\right)$ definido por: $uv \in E\left(\overline{G}\right)$ sii $\notin E\left(G\right)$.

0.1.7. Clique

Un **clique** es un conjunto de vértices $2 \ a \ 2^1$

0.1.8. Conjunto independiente

Un conjunto independiente es un conjunto de vértices no adyacentes 2 a 2

Observación ______

W es un clique en G sii W es un conjunto independiente en \overline{G} .

0.1.9. Grafo bipartito

Un grafo G es **bipartito** si V(G) es la unión de dos conjuntos disyuntos independientes denominados conjuntos partitos de G.

 $^{^1{\}rm Todo}$ par de vértices en el conjunto es adyacente.

Figura 1: bipartito

0.1.10. Grafo k-partito

Un grafo es k-partito si V(G) es la unión de k conjuntos disyuntos independientes.

0.1.11. Número cromático

El **número cromático** de un grafo G, X(G), es el mínimo número de colores necesarios para etiquetar los vértices de G de tal manera que vértices adyacentes reciban colores distintos.

Teorema

Un grafo es G es k-partito sii $X(G) \leq k$.

0.1.12. Subgrafo

Un subgrafo de un grafo G es un grafo H tal que:

- 1. $V(H) \subseteq V(G)$
- 2. $E(H) \subseteq E(G)$

Y la asignación de extremos a las aristas en H es la misma que en G. Se nota $H \subseteq G$.

0.1.13. Camino

Un **camino** es un grafo simple cuyos vértices pueden ordenarse en una lista de tal manera que dos vértices son adyacentes sii son consecutivos en la lista.

0.1.14. Ciclo

Un **ciclo** es un grafo simple con el mismo númer de vértices y aristas cuyos vpertices pueden ubicarse alrededor de un cirdulo de tal manera que dos vértices son adyacentes sii aparecen de manera consecutiva sobre el circulo.

0.1.15. Conexidad

Un grafo G es **conexo** si cada par de vértices en G pertenece a un camino, de lo contrario, G es disconexo.

0.1.16. Matriz de adyacencia y Matriz di incidencia

Sea *G* un grafo sin bucles con $V(G) = \{v_1, v_2, ..., v_n\}$ y $E(G) = \{e_1, e_2, ..., e_n\}$.

■ La matriz de adyacencia de G es la matriz $n \times n, A(G)$, definida por:

 $a_{ij} := \text{número de aristas en } G \text{ con extremos } \{v_i, v_j\}$

 \blacksquare La matriz de incidencia de G es la matriz $n\times m,\ M\left(G\right) ,$ definida por:

$$m_{ij} := \begin{cases} 1 & \text{si } v_i \text{ es extremo de } e_j. \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Observación

- 1. A(G) depende del orden de los vértices.
- 2. Toda matriz de adyacencia es simpetrica.
- 3. Si G es simple, la matriz de advacencia tiene entradas 1 o 0 con 0's en la diagonal.

0.1.17. Grado de un vértice (1)

El grado de un vértice v es la suma de las entradas en la fila v en A(G) o M(G). Se nota d(v).

Observación _____

- 1. La matriz de adyacencia tambié se usa para representar grafos con bucles. Un bucle en el vértice v_i es representado por un 1 en la posición (i,i) de la matriz de adyacencia.
- 2. En esté caso no se cumple la propiedad del grado de un vértice.

0.1.18. Grado de un vértice (2)

El **grado** de un vértice v es el número de aristas iniciales en v. Un bucle en v aporta dos unidades al grado de v.

