Fachbereich Informatik Modellierung und Analyse von Informationssystemen Prof. Dr.-lng. Helio Mantel

Modellierung, Spezifikation und Semantik

Sommersemester 2020 - 18.9.2020

Nachname:	
Vorname:	
Matrikelnummer:	
Studiengang:	
E-mail:	
Unterschrift:	

Bills form Six the Alaman Andrew Andrew State St

VIEL ERFOLG!

Aufgabe	1	2	3	4	5	6	Σ
Punkte							
	(von 19)	(von 18)	(von 18)	(von 16)	(von 11)	(von 18)	(von 100)

Note:

Beiblatt zur Klausur Modellierung, Spezifikation und Semantik

IMP

Nathol A: Regels für die Herleitung des Urteils (a, a) & n für a c AExp.

Kalkill \mathcal{B} : Regeln für die Herleitung des Urteils (b, σ) $\Downarrow t$ für $b \in \mathsf{BExp}$

Kalkül C: Regeln für die Herleitung des Urteils $(c, \sigma) \rightarrow \sigma'$ für $c \in Com$.

$$\begin{array}{lll} \operatorname{rsk} & & & & & & & & & & & & & \\ (\operatorname{skip}, \, \sigma) \to \sigma & & & & & & & & \\ (\operatorname{skip}, \, \sigma) \to \sigma & & & & & & & \\ (\operatorname{skip}, \, \sigma) \to \sigma & & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & \\ (\operatorname{skip}, \, \sigma) & & & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & & \\ (\operatorname{skip}, \, \sigma) & & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & & \\ (\operatorname{cl}_1, \, \sigma) \to \sigma' & & \\ (\operatorname{cl$$

CSP

Syntax von CSP

Ein Prozess wird durch einen Prozessausdruck aus der Sprache

$$P ::= \mathsf{STOP_E} \mid \mathsf{SKIP_E} \mid (x \to P) \mid (P \sqcap P) \mid (P \mid P) \mid (P \parallel P) \mid (P \parallel P) \mid id \mid (\mu X : \mathsf{E}.F(X))$$

und durch eine Menge von Gleichungen der Form

$$\{id =_{\mathbb{E}} P \mid id \in \mathsf{Id}\}$$

spezifiziert, wobei Id eine Menge von Prozessbezeichnern ist.

Semantik von CSP

Prämisse	Alphabet	Menge der Spuren
	oSTOP∉ = E	$traces(STOP_E) = \{(i)\}$
	αSKIP _E = EU (√)	$traces(SKIP_E) = \{(), (\checkmark)\}$
$x \in \alpha P$	$\alpha(x \to P) = \alpha P$	$traces(\{x \to P)) = \{(\}\} \cup \{(x).t \mid t \in traces(P)\}$
$\alpha P = \alpha Q$	$\alpha(P \sqcap Q) = \alpha P$	$\operatorname{traces}((P \cap Q)) = \operatorname{traces}(P) \cup \operatorname{traces}(Q)$
$\alpha P = \alpha Q$	$\alpha(P; Q) = \alpha P$	$traces((P; Q)) = \{s \in traces(P) \mid \sqrt{kommt \text{ in s nicht vor}}\}$ $\cup \{s, t \mid s, (\sqrt{\epsilon}) \in traces(P) \land t \in traces(Q)\}$
	$\alpha(P \parallel Q) = \alpha P \cup \alpha Q$	$\operatorname{traces}((P \parallel Q)) = \{ t \in (\alpha P \cup \alpha Q)^* \mid (t \mid \alpha P) \in \operatorname{traces}(P) \\ \land (t \mid \alpha Q) \in \operatorname{traces}(Q) \}$
$\alpha P = \alpha Q$	$\alpha(P \parallel Q) = \alpha P$	$traces((P \parallel Q)) = \{ s \in (\alpha P \sqcup \alpha Q)^* \mid \exists t \in traces(P) : \exists u \in traces(Q) : s \in interloaving(t, u) \}$

wobei

$$\begin{split} & \text{interleaving}: (\alpha P)^* \times (\alpha P)^* \to \mathcal{P}\{(\alpha P)^*\}, \\ & \text{interleaving}(t,u) := \begin{cases} \{t\} & \text{wenn } u = (), \\ \{u\} & \text{wenn } t = (), \\ \{(x).x \mid s \in \text{interleaving}(t',u)\}, \\ & \cup \{(y).x \mid s \in \text{interleaving}(t,u')\}, \end{cases} \end{aligned}$$

Intuition von CSP

Prozessausdruck	Intuition des Prozessausdrucks
STOPE	spezifiziert, dass gar nichts passiert.
SKIP _E	spezifiziert, dass der Prozess terminiert.
$(x \rightarrow P)$	spezifiziert, dass der Prozess zuerst am Ereignis z teilnimmt, und sich anschließend wie der durch P spezifizierte Prozess verhält.
$(P \cap Q)$	spezifiziert, dass der Prozess sich entweder wie der Prozess P oder wie der Prozess Q verhält. Die Systemumgebung hat keine Kontrolle, ob sich der Prozess entweder wie P oder wie Q verhält.
(P;Q)	spezifiziert den Prozess, der sich zunächst wie der durch P spezifizierte Prozess verhält und, nachdem dieser terminiert wäre, sich wie der Prozess verhält, der durch Q spezifiziert ist.
$(P \parallel Q)$	spezifiziert einen Prozess der die Prozesse die durch P und Q spezifiziert sind, nebenläufig ablaufen läßt, wobei sich die Prozesse bei Ereignissen, die in beiden Alphabeten vorkommen synchronisieren.
$(P \parallel \mid Q)$	spezifiziert einen Prozess, der die Prozesse, die durch P und Q spezifiziert sind, nebenläufig ablaufen läßt, ohne dass sich die Prozesse synchronisieren.

Namer	Matrikoh	n= -	
	S A PRINCIPALITY	AR NO.	

Klausurregeln

- · Für die Klausur haben Sie 90 Minuten Zeit.
- Sobald Sie eine Klausur erhalten haben, dürfen Sie den Raum bis zum Ende der Klausur nicht mehr verlassen. Ausnahmer Wenn Sie das WC bemutzen wollen, melden Sie sich. Verlassen Sie Ihren Platz nicht unaufgefordert. Es darf immer nur ein Studierender außerhalb des Raumes sein.
- Schreiben Sie mit Füller oder Kugelschreiber, nicht mit Bleistift. Schreiben Sie mit Schwarz oder Blau, nicht mit Rot. Schreiben Sie leserlich. Nicht lesbare Antworten werden nicht bewertet.
- Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer. Fallt eine Klausur auseinander, so werden Blätter, auf denen kein Name und keine Matrikelnummer stehen, nicht gewertet.
- Antworten Sie bei Aufgaben ohne Vorgaben (wie z. B. Boxen oder zu definierende Symbole) in ganzen Sätzen. Schreiben Sie Ihre Antworten in die freien Plätze nach den Teilaufgaben.
- Wenn Ihnen der Platz auf den Klausurblättern nicht ausreicht, erhalten Sie von uns zusätzliches Papier. Verwenden Sie kein eigenes Papier. Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedos Blatt. Kennzeichnen Sie deutlich, zu welcher Aufgabe welche Antwort gehört.
- Wenn Sie Schmierpapier benötigen, erhalten Sie dieses von uns. Verwenden Sie kein eigenes Papier, Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedes Blatt. Schreiben Sie "nicht bewerten" gut sichtbar oben auf das Schmierpapier.
- Am Ende der Klausur missen Sie jegliches Papier mit Ausnahme Ihres vorgefertigten Blattes, das als Hilfsmittel erlaubt ist, abgeben. Ein Fortsetzen der Bearbeitung nach Ende der Klausur ist untersagt.
- Als Hilfsmittel sind ein beidseitig handbeschriebenes DIN-A4-Blatt (kein Ausdruck, keine Kopien, muss deutlich lesbar mit Ihrem Namen und Ihrer Matrikelnummer am oberen Rand auf beiden Seiten markiert sein) und eine Uhr zugelassen. Es sind keine Folien, Bücher, elektronischen Geräte, Gesprächspartner, usw. zugelassen. Schalten Sie Ihre Mobiltelefone, Smartwatches o. A. aus. Mobiltelefone, Smartwatches, o. A. missen während der gesamten Klausur abgeschaltet sein und dürfen nicht in unnuttelbarer Reichweite aufbewahrt werden. Betriebsbereite Mobiltelefone, Smartwatches, o. A. werden als Täuschungsversuch gewertet.
- Täuschungsversuche sind zu unterlassen. Versuchte Täuschung kann zu Nichtbestehen der Klausur führen und gef, weitere Konsequenzen haben. Bei einem Täuschungsversuch kann die Aufsicht die bis dahin erzielten Ergebnisse einsammeln. Die Klausur wird dann höchstens "unter Vorbehalt" weitergeführt.
- · Außere Störungen sind unverzüglich bei der Außsicht zu rügen.

Besondere Klausurregeln

- Prüfen Sie zu Beginn der Klausur, dass sie 19 paarweise verschiedene Seiten der Klausur, ein Beiblatt und zwei Zusatzbögen haben.
- Lassen Sie alle Klausurunterlagen während Toilettengängen verdeckt auf Ihrem Piatz liegen.
- Sollten Sie aus gesundheitlichen Gründen die Klausur abbrechen, hinterlassen Sie den Grund Ihres Abbruchs bitte schriftlich auf einem der Zusatzblätter und signalisieren Sie der Aufsicht Ihren Abruch. Lassen Sie alle Klausurunterlagen verdeckt auf Ihrem Platz liegen. Bitte setzen Sie sich unmittelbar nach Abbruch mit Ihrem Studienbüro zum weiteren Vorgehen in Verbindung, insbesondere bezüglich eines eventuell benötigten ärztlichen Attesta. Geben Sie dabei insbesondere an, dass Sie die Klausur nach Beginn der Bearbeitung abgebrochen haben. Die Entscheidung über den Rücktritt trifft die Prüfungskommission.

Bitte lesen Sie auch den Auszug aus den Corona-Richtlinien der TU Darmstadt auf der nächsten Seite.

Name:	. Matrikelnr.:
STORING.	Midding

Auszug aus den Corona-Richtlinien der TU Darmstadt

- In Situationen, in denen Maßnahmen der physischen Distanzierung nur schwer eingehalten werden können, wird das Tragen einer Mund-Nasen-Bedeckung dringend empfohlen.
- Beachten Sie bitte die Einhaltung des Mindestabstandes beim Eintreten und Verlassen der Gebäude und der Prüfungsräume.
- Die Identitätsfeststellung und Anwesenheitsüberprüfung wird von den Aufsichtspersonen an Ihren Prüfungsplätzen vorgenommen. Legen Sie zur Feststellung Ihrer Identität Ihren Studierendenausweis und Ihren Personalausweis an den freien Platz rechts neben sich. Sollte sich rechts neben Ihnen kein Platz befinden, dann bitte links. Das Aufsichtspersonal wird die freien Reihen zwischen Ihnen nutzen, um die Kontrolle durchzuführen. Bitte entfernen Sie bei der Identitätsfeststellung kurz Ihre Mund-Nasen-Bedeckung.
- Bitte halten Sie sich an die Anweisungen des außsichtsführenden Personen zum Ablauf (Beginn, Ende).
 Aufgrund der besonderen Situation ist die Beantwortung individueller Nachfragen zur Aufgabenstellung durch einzelne Prüffinge während der Klausur leider nicht möglich.
- Nach Verlassen der Prüfungsräume begeben Sie sich bitte wieder zügig und einzeln zu den Gebändeausgängen und vermeiden Sie Ansammlungen.

Bitte beachten Sie, dass dieser Auszug der Corona-Richtlinien nicht vollständig ist. Auch alle weiteren von der TU Darmstadt ausgegebenen Richtlinien sind zu befolgen.

Name:	, Matrikelnr.:
Aufgabe 1: Formale Modellierung	g mit Symbolen, Mengen und Funktionen (19 Punkte)
In dieser Aufgabe sollen Sie das folgend IoT-Infrastruktur werden verschiedene	ie Modell einer Internet-of-Things (IoT) Infrastruktur betrachten. In der Geräte betrieben, die jeweils einen von drei Gerätetypen haben. Geräte I-Infrastruktur wird durch folgende Mengen und Funktionen modelliert:
GERÄT	ist eine Menge, welche die Geräte modelliert, die in der IoT-
$GERATE\text{-TYP} := \{sens, track, mon\}$	Infrastruktur betrieben werden. modelliert die verschiedenen Typen, die ein Gerät haben kann, wobei sens den Typ Sensor modelliert, truck den Typ Tracker modelliert und
NUTZER $ \label{eq:typ-von:GERÄT} \mbox{typ-von:GERÄT} \rightarrow \mbox{GERÄTE-TYP} \\ \mbox{nutzer-von:GERÄT} \rightarrow \mathcal{P}(\mbox{NUTZER}) $	mon den Typ Monitor modelliert, ist eine Menge, welche die Nutzer der IoT-Infrastruktur modelliert, modelliert für jedes Gerät, von welchem Typ das Gerät ist. modelliert für jedes Gerät, welche Nutzer das Gerät verwenden.
Ansonsten bleiben diese Mengen und F	unktionen unterspezifiziert.
▶ Notationskonvention: Sie können die Folge $(x, x_1,, x_n)$ verwenden, w	die aus den Übungen bekannte Schreibweise (x,xs) als Abkürzung für eenn $xs=(x_1,\dots,x_n)$ gilt.
Hirer Lösung Mengen, Relationen un	genden Aufgabenteile sind unabhängig voneinander lösbar. Sie dürfen in id Funktionen wiederverwenden, die in den vorigen Aufgabenstellungen sse Aufgabenteile nicht bearbeitet haben.
ist-von-typ: (GERAT x GERATE-T	on einem bestimmten Typ ist durch formale Definition einer Funktion $\forall P) \to \{w, f\}$. Die Funktion soll für ein Gerät g und einen Typ t genau rät g vom Typ t ist, und genau dann f zurückgeben, falls das Gerät g
(B). Modellieren Sie welche Geräte der Menge MONITOR ⊆ GERÄT.	IoT-Infrastruktur vom Typ Monitor sind durch formale Definition einer
Antwort:	
the Edition (F)	

(3P)

(4P)

leren Sie, dass zwei Geräte von den selben Nutzern serwendet am inären Aquivalenzelation SELBE NUTZER (GERÄT > GERÄT). orti lieren Sie, welche Geräte einer gegebenen Liste von Geräten gemeins nen Gerät haben durch formale Definition einer rekursiven Funktion**, ") → GERÄT". Die Funktion soll, gegeben ein Gerät g und eine Ferilte aus der Folge gs zurückgeben, die von mindestens einem Nuträt g verwendet.	des directs formule Dellaine
lieren Sie, welche Geräte einer gegebenen Liste von Geräten gemeins nen Gerät haben durch formale Definition einer rekursiven Funktion	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	
nen Gerät haben durch formale Definition einer rekursiven Funktion f^*) \rightarrow GERÄT. Die Funktion soll, gegeben ein Gerät g und eine F erlite aus der Folge gs zurückgeben, die von mindestens einem Nut rät g verwendet.	

Name:	, Matrikelnr.:
Aufgabe 2: Formale Model	lierung von Anforderungen (18 Punkte)
In dieser Aufgabe sollen Sie An	nforderungen an das Modell der IoT-Infrastruktur aus Aufgabe 1 modellieren die folgende Funktion erweitert ist:
MONITOR ⊆ GERÄT	ist die in Aufgabe 1(B) eingeführte Menge aller Monitore, die in der IoT-Infrastruktur betrieben werden. In dieser Aufgabe ist ein Monitore in Comit des andere Geräte überwacht.
- überwacht : MONITOR $ ightarrow \mathcal{P}(GE)$	
Ansonsten bleiben diese Menge	und diese Funktion unterspezifiziert.
Alle vier nachfolgenden Aufg Mengen, Relationen und Funk	en diese Aufgabe auch dann lösen, wenn Sie Aufgabe 1 nicht bearbeitet haben abenteile sind unabhängig voneinander lösbar. Sie dürfen in Ihrer Lösung alle ktionen wiederverwenden, die in der Aufgabenstellung von Aufgabe 1 (inklusive len, auch wenn Sie Aufgabe 1 nicht vollständig bearbeitet haben.
(A). Die Anforderung "Jeder Me	onitor überwacht maximal 10 Geräte." sei durch folgende Relation modelliert:
	\subseteq (MONITOR $\rightarrow \mathcal{P}(GERÄT)$) RDERUNG1 genau dann, wenn die prädikatenlogische Formel φ_1 gilt.
	φι in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der
Antwort:	
$\varphi_1 :=$	
(B). Die Anforderung "Jedes Ger- modelliert:	ät wird von mindestens einem Monitor überwacht." sei durch folgende Relation
	$\mathcal{P}(MONITOR \to \mathcal{P}(GERAT))$ RDERUNG2 genau dann, wenn die prädikatenlogische Formel φ_2 gilt.
	e ₂ in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der
Antwort:	
$arphi_2 :=$	
3 12 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

(3P)

(4P)

überwacht \in ANFORDERUNG3 genau dann, wenn die prädikatenlogische Formel φ_3 gilt. Definieren Sie die Formel φ_3 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden. Antwort: $\varphi_3 :=$ Die Anforderung "Wenn ein Monitor mehr als 5 Geräte überwacht, dann wird jedes Gerät, das von diesem Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR \rightarrow \mathcal{P} (GERÄT)) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.	olgende Relatio	DERUNG3 ⊆ (MONITOR → P(GEI	RĀT))	
Antwort: 23 := Die Anforderung "Wenn ein Monitor mehr als 5 Geräte überwacht, dann wird jedes Gerät, das von diesem Annitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 ⊆ (MONITOR → 𝑃(GERÄT)) überwacht ∈ ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel 𝒪₄ gilt. Definieren Sie die Formel 𝒪₄ in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der forlesung behandelt wurden.				
Die Anforderung "Wenn ein Monitor mehr als 5 Geräte überwacht, dann wird jedes Gerät, das von diesem Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 ⊆ (MONITOR → 𝑃(GERÄT)) überwacht ∈ ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel 𝒪₄ gilt. Definieren Sie die Formel 𝒪₄ in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der forlesung behandelt wurden.	Definieren Sie /orlesung beha	lie Formel φ_3 in Prädikatenlogik idelt wurden.	mit Hilfe von mathematischen Konzepten, die in d	er
Die Anforderung "Wenn ein Monitor mehr als 5 Geräte überwacht, dann wird jedes Gerät, das von diesem fonitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation modelliert: ANFORDERUNG4 ⊆ (MONITOR → 𝑃(GERÄT)) überwacht ∈ ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel 𝒪₄ gilt. Definieren Sie die Formel 𝒪₄ in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der forlesung behandelt wurden.	Antwort:			
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.	o ₃ (==			
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR \rightarrow $\mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden. Antwort:				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR \rightarrow $\mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden. Antwort:				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR \rightarrow $\mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden. Antwort:				
Monitor überwacht wird, von mindestens einem weiteren Monitor überwacht." sei durch folgende Relation nodelliert: ANFORDERUNG4 \subseteq (MONITOR $\rightarrow \mathcal{P}(GERAT)$) überwacht \in ANFORDERUNG4 genau dann, wenn die prädikatenlogische Formel φ_4 gilt. Definieren Sie die Formel φ_4 in Prädikatenlogik mit Hilfe von mathematischen Konzepten, die in der Vorlesung behandelt wurden.				
Antwort:	Aonitor überwi nodelliert: ANFOI überwa	cht wird, von mindestens einem wo $DERUNG4 \subseteq (MONITOR \to \mathcal{P}(GE))$ ht $\in ANFORDERUNG4$ genau dar	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie /orlesung beha	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Vorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Yorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Yorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Yorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Yorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie foriesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie foriesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Yorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Vorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Vorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwindelliert: ANFOI überwa Definieren Sie Yorlesung beha Antwort:	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion
	Monitor überwinodelliert: ANFOI überwa Definieren Sie	cht wird, von mindestens einem we DERUNG4 \subseteq (MONITOR \rightarrow P (GE ht \in ANFORDERUNG4 genau dar lie Formel φ_4 in Prädikatenlogik	eiteren Monitor überwacht." sei durch folgende Reia \mathbb{R} ÄT)) in, wenn die prädikatenlogische Formel φ_4 gilt.	tion

Matrikelnr.:

Name:

	A. F. Saillen rive	
Name:	, Matrikelnr.: _	
T. S. COLLIECT.	The second secon	

Aufgabe 3: Syntax und Semantik (18 Punkte)

- ▶ Zur Information: Alle zwei nachfolgenden Aufgabenteile sind unabhängig voneinander lösbar
- Zur Information: Alle Kalkülregeln der operationalen Semantik der Programmiersprache IMP finden Sie zusammengefasst auf dem Beiblatt "Beiblatt zur Klausur Modelherung, Spezifikation und Semantik".
- (6 P) (A). Sei $\mathsf{Var} := \{x\}$. Seien $\sigma, \sigma' \in \Sigma$ beliebige Zustände, so dass $\sigma(x) = 3$ und $\sigma' = \sigma[x \setminus 6]$ gelten.
 - Vervollständigen Sie die nachfolgende Herleitung des Urteils

$$(x := (x \odot 2); skip, \sigma) \rightarrow \sigma'$$

im Kalkül $\mathcal C$ für die Programmiersprache IMP. Füllen Sie für Ihre Antwort nur die untenstehenden Boxen aus und modifizieren Sie keine anderen Teile der Aufgabenstellung.

Antwort:

wobei H1 die folgende Herleitung ist

Name:,	Matrikelnr.:	
--------	--------------	--

(B). In dieser Aufgabe definieren Sie Kalkülregeln zur Herieitung von Kommandos in einer modifizierten Form (12P) der Programmiersprache IMP. Folgende Wertebereiche werden verwendet:

Num die Zahlen, AExp die arithmetischen Ausdrücke, Bool die Wahrheitswerte, BExp die Booleschen Ausdrücke, Var die Programmyariablen, MCom die Kommandos.

Der Wertebereich MCom ist durch folgende Grammatik in BNF definiert, wobei $a \in AExp$ und $X \in Var$:

$$c := \text{skip} \mid X := a \mid c; c \mid \text{if-unchanged } X \text{ in } c \text{ then } c \text{ ufi}$$

Das heißt, dass MIMP das Kommando if-unchanged X in c_1 then c_2 uf zusätzlich zu den Kommandos von IMP enthält und dass MIMP die Kommandos if b then c_1 else c_2 fi und while b do c od von IMP nicht enthält.

Die Intuition des Kommandos if-unchanged X in c1 then c2 ufi ist

Antwort:

- Fall 1: Wenn die Variable X im Zustand vor der Ausführung des Kommandos c₁ zum selben Wert auswertet wie im Zustand nach der Ausführung des Kommandos c₁, dann wird das Kommando c₂ im Zustand vor der Ausführung des Kommandos c₁ ausgewertet.
- Fall 2: Wenn die Variable X im Zustand vor der Ausführung des Kommandos c₁ zu einem anderen Wert auswertet als im Zustand nach der Ausführung des Kommandos c₁, dann ändert die Ausführung von if-unchanged X in c₁ then c₂ ufi den ursprünglichen Zustand nicht.
- Erweitern Sie den Kalkül für die Herleitung von Instanzen des Urteils ⟨c, σ⟩ → σ' (siehe Beiblatt) um Kalkülregeln, mit denen Instanzen des Urteils (if-unchanged X in c₁ then c₂ ufi, σ⟩ → σ' für die Sprache MIMP hergeleitet werden können. Dabei sollen die Kalkülregeln die im Aufgabentext beschriebene Intuition des neu hinzugefügten Kommandos if-unchanged X in c₁ then c₂ ufi angemessen modellieren.

Die Kommandos if b then c_1 else c_2 fi und while b do c od sind nicht Teil der Programmiersprache MIMP und können daher nicht in Prämissen der definierten Kalkülregeln verwendet werden.

Sie brauchen in dieser Aufgabe nicht für die Angemessenheit der Kalkülregeln zu argumentieren.

▶ Zur Information: Es existiert eine angemessene Lösung mit zwei Kalkülregeln.

۱	
۱	

$r ASMseq \frac{\langle c_1, \sigma \rangle \rightrightarrows \sigma'' \langle c_2, \sigma'' \rangle \rightrightarrows \sigma'}{\langle c_1; c_2, \sigma \rangle \rightrightarrows \sigma'}$ Determinismus. Die Ausführung von ASM ist deterministisch, d.h. es gilt: $\forall c \in Com_{ASM} \colon P(c)$ obei $P(c) := \forall \sigma, \sigma', \sigma'' \in \Sigma_{ASM} \colon (\langle c, \sigma \rangle \rightrightarrows \sigma' \text{ ist herleitbar } \wedge \langle c, \sigma \rangle \rightrightarrows \sigma'' \text{ ist herleitbar }) \Rightarrow \sigma' = \sigma''.$ I Vervollständigen Sie den Beweis der folgenden beiden Aussagen auf dieser Seite und den nächsten beiden Seiten. $4.i) \ \forall v \in Val \colon P(add v)$ $4.ii) \ \forall c_1, c_2 \in Com_{ASM} \colon P(c_1) \wedge P(c_2) \Rightarrow P(c_1; c_2)$ intwort:	Name:	, Matri	kelnra
In dieser Aufgabe sollen Sie einen Teilbeweis für den Determinismus von Ausführungen der Programmiersprache ASM für Stackoperationen führen. Die Syntax und Bemantik der Programmiersprache ASM wird im restlichen Aufgabentext definiert. Dabei werden folgende Wertebereiche verwendet: Val die Werte, $\Sigma_{ASM} := Val^*$ die Stackzustände, Syntax. Der Wertebereich Com _{ASM} ist durch folgende Grammatik in BNP definiert, wobei $v \in Val$: $c := puah \ v \ \ add \ v \ \ c_1 \ c$ Die Intuition der einzelnen Kommandos ist: • puah $v \ \ add \ v \ \ add \ v \ \ c_1 \ c$ Die Intuition der einzelnen Kommandos ist: • puah $v \ \ add \ v \ \ add \ v \ \ ansonsten unverändert$ • add $v \ \ add \ v \ \ add \ v \ \ ansonsten unverändert$ • add $v \ \ add \ v \ $	Aufgabe 4: Determinis	smus von Programmierspra	chen (16 Punkte)
Syntax. Der Wertebereich Com _{ASM} ist durch folgende Grammatik in BNF definiert, wobei $v \in Val$: $c ::= \operatorname{push} v \mid \operatorname{add} v \mid c : c$ Die Intuition der einselnen Kommandos ist:	In dieser Aufgabe sollen Sie ASM für Stackoperationen	e einen Teilbeweis für den Deter n führen, Die Syntax und Semar	minismus von Ausführungen der Programmiersprache ntik der Programmiersprache ASM wird im restlichen
$c ::= \operatorname{punh} v \mid \operatorname{add} v \mid e ; c$ Die Intuition der einzelnen Kommandos ist: • punh $v \mid \operatorname{eqt} den \operatorname{Wert} v$ oben auf den Stack unsgeführt werden und verändert • add $v \mid \operatorname{kann} \operatorname{nur} \operatorname{bel} \operatorname{olinen} \operatorname{nicht-leeren} \operatorname{Stack} \operatorname{ausgeführt} \operatorname{werden} \operatorname{und} \operatorname{verändert} \operatorname{das} \operatorname{oberste} \operatorname{Element} \operatorname{eines} \operatorname{nicht-leeren} \operatorname{Stack} \operatorname{ausgeführt} \operatorname{werden} \operatorname{und} \operatorname{verändert} \operatorname{das} \operatorname{oberste} \operatorname{Element} \operatorname{eines} \operatorname{nicht-leeren} \operatorname{Stack} \operatorname{ausgeführt} \operatorname{werden} \operatorname{und} \operatorname{verändert} \operatorname{ven verändert} \circ \operatorname{ch} \circ \circ \operatorname{ch} \circ \operatorname{ch} \circ \operatorname{ch} \circ \operatorname{ch} \circ \operatorname{ch} \circ \circ \operatorname{ch} \circ \circ$	Va Σ _{ABM} :	al die Werte, = Val* die Stackzustände,	Com _{ASM} die Kommandos
Die Intuition der einzelnen Kommandos ist: • punh v legt den Wert v oben auf den Stack und lässt den Stack ansonsten unverändert • aud v kann nur bei einem nicht-leeren Stack ausgeführt werden und verändert das oberste Element eines nicht-leeren Stack durch Addition von v und lässt den Stack ansonsten unverändert • $v_1 \cdot v_2$ führt zunächst das Kommando v_1 aus und anschließend das Kommando v_2 • Notationskonvention: Die aus den Übungen bekannte Schreibweise (x,xs) wird als Abkürzung für die Folge (x,x_1,\dots,x_n) verwendet wenn $xs=(x_1,\dots,x_n)$ gilt. Semantik. Die Semantik von ASM ist mit Hilfe des Urteils $(v,\sigma) \rightrightarrows \sigma'$ definiert. Die Intuition des Urteils $(v,\sigma) \rightrightarrows \sigma'$ ist, dass das Kommando v im Stackzustand v zum Stackzustand v auswertet. Der folgende Kalkül definiert die Semantik von ASM: **rASMpush** v auswertet. **rASMpush** v auswertet. **rASMpush** v auswertet. **Pasmend** v auswertet. **Pasmend	Syntax. Der Wertebereie	ch Com _{ASM} ist durch folgende (Grammatik in BNF definiert, wobei v∈Val:
 punh v legt den Wert v oben auf den Stack und lässt den Stack ansonsten unverändert add v kann nur bei einem nicht-ieeren Stack ausgeführt werden und verändert das oberste Element eines nicht-leven Stacks durch Addition von v und lässt den Stack ansonsten unverändert c₁: c₂ führt zunächst das Kommando c₁ aus und anschließend das Kommando c₂ Notationskonvention: Die aus den Übungen bekannte Schreibweise (x, xs) wird als Abkürzung für die Folge (x, x₁,,x_n) verwendet wenn xs = (x₁,,x_n) gilt. Semantik. Die Semantik von ASM ist mit Hilfe des Ürteils (c, σ) = σ' definiert. Die Intuition des Ürteils (c, σ) = σ' ist, dass das Kommando c im Stackzustand σ zum Stackzustand σ' auswertet. Der folgende Kalkül definiert die Semantik von ASM: raSMpush (push v, σ) = σ' (v, σ)		c ::= punh v a	idd v c;c
Folge (x, x_1, \dots, x_n) verwendet wenn $xs = (x_1, \dots, x_n)$ gilt. Semantik. Die Semantik von ASM ist mit Hilfe des Urteils $(c, \sigma) \rightrightarrows \sigma'$ definiert. Die Intuition des Urteils $(c, \sigma) \rightrightarrows \sigma'$ ist, dass das Kommando c im Stackzustand σ zum Stackzustand σ' auswertet. Der folgende Kalkül definiert die Semantik von ASM: r ASMpush $\overline{(push \ v, \ \sigma) \rightrightarrows \sigma'} = (v, \sigma)$ r ASMadd $\overline{(add \ v, \ \sigma) \rightrightarrows \sigma'} = \overline{v}^* \in Val: \exists \sigma^* \in \Sigma_{ASM}: \sigma = (v^*, \sigma^*) \land \sigma' = (v^* + v, \sigma^*) \land \sigma' = (v$	 push v legt den Wert add v kann nur bei ei nicht-leeren Stacks de 	t v oben auf den Stack und läss inem nicht-leeren Stack ausgefü urch Addition von v und lässt e	ihrt werden und verändert das oberste Element eines den Stack ansonsten unverändert
Der folgende Kalkül definiert die Semantik von ASM: $^{\circ}$ ASMpush $^{\circ}$ $^{$	► Notationskonvention: Folge (x, x ₁ , , x _n) very	Die aus den Übungen bekannt wendet wenn $xs = (x_1, \dots, x_n)$	nte Schreibweise (x,xs) wird als Abkürzung für die gilt.
$r_{ASMeeq} \frac{\langle c_1, \sigma \rangle \rightrightarrows \sigma'' \langle c_2, \sigma'' \rangle \rightrightarrows \sigma'}{\langle c_1, c_2, \sigma \rangle \rightrightarrows \sigma'}$ Determinismus. Die Ausführung von ASM ist deterministisch, d.h. es gilt: $\forall c \in Com_{ASM} \colon P(c)$ obei $P(c) := \forall \sigma, \sigma', \sigma'' \in \Sigma_{ASM} \colon (\langle c, \sigma \rangle \rightrightarrows \sigma' \text{ ist herleitbar } \wedge \langle c, \sigma \rangle \rightrightarrows \sigma'' \text{ ist herleitbar }) \Rightarrow \sigma' = \sigma''.$ I Vervollständigen Sie den Beweis der folgenden beiden Aussagen auf dieser Seite und den nlichsten beiden Seiten. 4.i) $\forall v \in Val \colon P(add v)$ 4.ii) $\forall c_1, c_2 \in Com_{ASM} \colon P(c_1) \wedge P(c_2) \Rightarrow P(c_1; c_2)$ ntwort: i) $\forall v \in Val \colon P(add v)$ Sei $v \in Val$ beliebig aber fest. Es ist zu zeigen, dass $P(add v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{ASM}$ beliebig aber fest. Angenommen es gilt	$(c, \sigma) \rightrightarrows \sigma'$ ist, dass das Ke	commando c im Stackzustand c	rteils (c, σ) \rightrightarrows σ' definiert. Die Intuition des Urteils τ zum Stackzustand σ' auswertet.
Octerminismus. Die Ausführung von ASM ist deterministisch, d.h. es gilt: ∀c ∈ Com _{ASM} : P(c) obei P(c) := ∀σ, σ', σ'' ∈ Σ _{ASM} : (⟨c, σ⟩ □ σ' ist herleitbar ∧ ⟨c, σ⟩ □ σ'' ist herleitbar ⟩ ⇒ σ' = σ''. I Vervollständigen Sie den Beweis der folgenden beiden Aussagen auf dieser Seite und den nächsten beiden Seiten. 4.i) ∀v ∈ Val: P(add v) 4.ii) ∀v _{c1} , v ₂ ∈ Com _{ASM} : P(c ₁) ∧ P(c ₂) ⇒ P(c ₁ ; c ₂) ntwort: i) ∀v ∈ Val: P(add v) Sei v ∈ Val beliebig aber fest. Es ist zu zeigen, dass P(add v) gilt. Seien die Stackzustände σ, σ', σ'' ∈ Σ _{ASM} beliebig aber fest. Angenommen es gilt	rASMpush $\overline{\langle push v, \sigma \rangle} {\rightrightarrows} \sigma'$	$\sigma' = (v, \sigma)$ rASMadd $\frac{1}{(\operatorname{add} v, \sigma)}$	$\sigma = \sigma'$ $\exists v^* \in Val: \exists \sigma^* \in \Sigma_{ASM}: \sigma = (v^*, \sigma^*) \land \sigma' = (v^* + v, \sigma^*)$
Octerminismus. Die Ausführung von ASM ist deterministisch, d.h. es gilt: ∀c ∈ Com _{ASM} : P(c) obei P(c) := ∀σ, σ', σ'' ∈ Σ _{ASM} : (⟨c, σ⟩ □ σ' ist herleitbar ∧ ⟨c, σ⟩ □ σ'' ist herleitbar ⟩ ⇒ σ' = σ''. I Vervollständigen Sie den Beweis der folgenden beiden Aussagen auf dieser Seite und den nächsten beiden Seiten. 4.i) ∀v ∈ Val: P(add v) 4.ii) ∀v _{c1} , v ₂ ∈ Com _{ASM} : P(c ₁) ∧ P(c ₂) ⇒ P(c ₁ ; c ₂) ntwort: i) ∀v ∈ Val: P(add v) Sei v ∈ Val beliebig aber fest. Es ist zu zeigen, dass P(add v) gilt. Seien die Stackzustände σ, σ', σ'' ∈ Σ _{ASM} beliebig aber fest. Angenommen es gilt		$_{rASMseq}$ $\langle c_1, \ \sigma \rangle \rightrightarrows c_1$	$\sigma'' \langle c_2, \sigma'' \rangle ightharpoons \sigma'$
$\forall c \in Com_{ASM} \colon P(c)$ beliebig aber fest. Angenommen es gilt		174	114000000000000000000000000000000000000
obei $P(c) := \forall \sigma, \sigma', \sigma'' \in \Sigma_{\mathrm{ASM}} : (\langle c, \sigma \rangle \rightrightarrows \sigma')$ ist herleitbar $\wedge \langle c, \sigma \rangle \rightrightarrows \sigma''$ ist herleitbar $\rangle \Rightarrow \sigma' = \sigma''$. Vervollständigen Sie den Beweis der folgenden beiden Aussagen auf dieser Seite und den nächsten beiden Seiten. 4.i) $\forall v \in Val : P(add \ v)$ 4.ii) $\forall c_1, c_2 \in Com_{ASM} : P(c_1) \wedge P(c_2) \Rightarrow P(c_1; c_2)$ ntwort: i) $\forall v \in Val : P(add \ v)$ Sei $v \in Val$ beliebig aber fest. Es ist zu zeigen, dass $P(add \ v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{ASM}$ beliebig aber fest. Angenommen es gilt	Determinismus. Die Au	AND DESCRIPTION OF THE PARTY OF	
Vervollständigen Sie den Beweis der folgenden beiden Aussagen auf dieser Seite und den nächsten beiden Seiten. 4.i) $\forall v \in \forall al \colon P(add\ v)$ 4.ii) $\forall c_1, c_2 \in Com_{ASM} \colon P(c_1) \land P(c_2) \Rightarrow P(c_1, c_2)$ ntwort: i) $\forall v \in \forall al \colon P(add\ v)$ Sei $v \in \forall al \colon P(add\ v)$ Sei $v \in \forall al \colon beliebig\ aber\ fest$. Es ist zu zeigen, dass $P(add\ v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{ASM}\ beliebig\ aber\ fest$. Angenommen es gilt			
Seiten. 4.i) $\forall v \in Val \colon P(add\ v)$ 4.ii) $\forall c_1, c_2 \in Com_{ASM} \colon P(c_1) \land P(c_2) \Rightarrow P(c_1; c_2)$ ntwort: i) $\forall v \in Val \colon P(add\ v)$ Sei $v \in Val$ beliebig aber fest. Es ist zu zeigen, dass $P(add\ v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{ASM}$ beliebig aber fest. Angenommen es gilt	wobei $P(c) := \forall \sigma, \sigma', \sigma'' \in \Sigma$	$\Sigma_{\mathrm{ASM}}: (\langle c, \sigma \rangle \rightrightarrows \sigma') \text{ ist herleitb}$	$\operatorname{ar} \wedge (e, \sigma) \rightrightarrows \sigma'' \text{ ist herleithar }) \Rightarrow \sigma' = \sigma''.$
4.ii) $\forall c_1, c_2 \in Com_{ASM} \colon P(c_1) \land P(c_2) \Rightarrow P(c_1, c_2)$ ntwort: i) $\forall v \in Val \colon P(add \ v)$ Sei $v \in Val$ beliebig aber fest. Es ist zu zeigen, dass $P(add \ v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{ASM}$ beliebig aber fest. Angenommen es gilt	Seiten.		Aussagen auf dieser Seite und den nächsten beiden
ntwort: i) $\forall v \in \text{Val}: P(\text{add } v)$ Sei $v \in \text{Val}$ beliebig aber fest. Es ist zu zeigen, dass $P(\text{add } v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{\text{ASM}}$ beliebig aber fest. Angenommen es gilt			
i) $\forall v \in Val: P(add\ v)$ Sei $v \in Val$ beliebig aber fest. Es ist zu zeigen, dass $P(add\ v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{ASM}$ beliebig aber fest. Angenommen es gilt	Tony Tolling C Company.	. (61) (62) (61) . 2)	
Sei $v \in Val$ beliebig aber fest. Es ist zu zeigen, dass $P(add\ v)$ gilt. Seien die Stackzustände $\sigma, \sigma', \sigma'' \in \Sigma_{ASM}$ beliebig aber fest. Angenommen es gilt	Antwort:		
$\sigma, \sigma', \sigma'' \in \Sigma_{\text{ASM}}$ beliebig aber fest. Angenommen es gilt	A) $\forall v \in Val: P(add v)$		
und es gilt			
			und es gilt
Da die Regel die letzte Regel in den Herleitungen von (add $v, \ \sigma) \rightrightarrows \sigma'$ und (add $v, \ \sigma) \rightrightarrows$	Da die Regel	die letzte Regel in de	in Herleitungen von (add $v, \ \sigma) \rightrightarrows \sigma'$ und (add $v, \ \sigma) =$
σ" sein muss, haben die Herleitungen die folgende Form:	σ [#] sein muss, haben di	ie Herleitungen die folgende F	orm:

Name: _	* HEE	, 1	Matrikelnr.:	
Form der Herleitung von	(add or or) - or			
	(1000 01 07 02 075			
Form der Herleitung von	ladd a al - al.			
Total der Heritatung von	(edd 8, 0) 0 .			
A RESIDENCE				215
Aus der Form der Herleitung	von (add v, σ) == σ' foli	ct, dass es einen	Wert v* ∈ Val und	einen Stackzu-
stand $\sigma^* \in \Sigma_{\text{ASM}}$ gibt, so dass				
Aus der Form der Herleitung v stand $\sigma^{\star\prime} \in \Sigma_{\mathrm{ASM}}$ gibt, so das	on (add v , σ) $\Longrightarrow \sigma''$ folds $\sigma = (v^{*i}, \sigma^{*i}) \wedge \sigma'' = (v^{*i}, \sigma^{*i}) \wedge \sigma' = (v^{*i}, \sigma^{*i}) \wedge \sigma' = (v^{*i}, \sigma^{*i}) \wedge \sigma' = (v^{*i}, \sigma^$	gt, dass es einen $v^{*\prime} + v, \sigma^{*\prime}$).	Wert $v^{*\prime} \in Val$ und	einen Stackzu-
Aus $\sigma = (v^*, \sigma^*)$ und $\sigma = (v^{*\prime}, \sigma^*)$	σ*′) folgt, dass		gilt und dass	
gilt. Mit $\sigma' = (v^* + v, \sigma^*)$ und	$\sigma'' = (v^{*\prime} + v, \overline{\sigma^{*\prime}}) \text{ folg}$	t, dass $\sigma' = \sigma''$	gilt.	0
$\forall c_1, c_2 \in Com_{AHM} : P(c_1) \land P(c_2)$	$(c_2) \Rightarrow P(c_1; c_2)$			
Seien c ₁ , c ₂ ∈ Com _{ASM} beliebi	g aber fest. Angenomn	en es gelten P	(c ₁) und P(c ₂). Es	ist noch zu zei-
gen, dass $P(c_1; c_2)$ gilt. Seien	lie Stackzustände σ , σ' ,	$\sigma^{H} \in \Sigma_{ABM}$ beli	ebig aber fest. Ang	enommen es gilt
				und es gilt
	DESCRIPTION OF			Tier
Da die Regel	die letzte Regel in den	Herleitungen vo	$m(e_1:e_2,\sigma) \rightrightarrows \sigma'$	and (n : n a) =
σ" sein muss, gibt es Stackzus				
Form der Herleitung von	$(c_1:c_2,\sigma)=!\sigma'$:			
	114.1044.130			
THE STATE OF				

4.ii)

Name:	, Matrikelnr.:
• F	Form der Herleitung von $\langle c_1; c_2, \sigma \rangle ightharpoons \sigma''$:
MAN AND AND AND AND AND AND AND AND AND A	
3.70	
Da (c ₁	$ s,\sigma\rangle \rightrightarrows \sigma^{*'}$ und $(c_1,\sigma) \rightrightarrows \sigma^{*''}$ herleitbar sind, folgt aus der ersten Induktionsannahme $P(c_1)$, das
	gilt.
Da (c ₂	$\sigma^{*\prime}$ $\Rightarrow \sigma'$ und $\langle c_2, \sigma^{*\prime\prime} \rangle \Rightarrow \sigma''$ herleitbar sind, folgt damit aus der zweiten Induktionsannahm

gilt.

 $P(c_2)$, dass

Aufgabe 5: Prozessalgebra CSP (11 Punkte)

- ► Zur Information: Alle swei nachfolgenden Aufgabenteile sind unabhängig voneinander lösbar
- Zur Information: Die Semantik der Prozessausdrücke der Sprache CSP finden Sie auf der Rückseite des Beiblatts "Beiblatt zur Klausur-Modellierung, Spezifikation und Semantik".
- (5P) (A): Sei E_A := {a, δ, c, d} und sei die folgende Menge von Spuren Tr_A definiert.

$$Tr_A := \{(), (a), (a, b), (a, c), (a, b, \checkmark), (a, c, \checkmark), (a, b, d), (a, c, d)\}$$

■ Geben Sie einen Prozessaudruck P_A in CSP an, so dass traces(P_A) = Tr_A gilt.

Antworts

	the second		
H			
N			
4			
4			
1			
1			
1			
ı			
M	State Service Control of the Control		

6P) (B) Sei folgendes Transitionssystem TS_B gegeben. Das rechts gegebene Diagramm visualisiert das Transitionssystem TS_B.

$$\begin{array}{rcl} TS_B &:= & (S^B, S^B_0, E^B, \rightarrow^B), \\ S^B &:= & \{1, 2, 3, 4\} \\ S^B_0 &:= & \{1\} \\ E^B &:= & \{x, y, z\} \\ \rightarrow^B &:= & \{(1, x, 2), (1, y, 3), (3, x, 2), (3, y, 4), (4, z, 1)\} \end{array}$$

Definieren Sie den Prozessbezeichner P_B durch ein Gleichungssystem aus Prozessausdrücken, so dass der Prozessausdruck P_B unter dem Gleichungssystem aus Prozessausdrücken den Prozess (E^B, E-Traces(TS_B)) spezifiziert.

Antwort:

Aufgabe 6: Transitionssysteme und nebenläufige Ausführung (18 Punkte)

- ► Zur Information: Alle zwei nachfolgenden Aufgabenteile sind unabhängig voneinander lösbar.
- (9 P) (A). Seien die beiden nachfolgenden Transitionssysteme TS_I und TS₂ gegeben. Die Transitionssysteme werden jeweils durch das daneben stehende Diagramm veranschaulicht.

$$\begin{array}{lll} TS_{l} &:= & (S^{TS_{l}}, S_{o}^{TS_{l}}, E^{TS_{l}}, \rightarrow^{TS_{l}}) \\ S^{TS_{l}} &:= & (11, 12, 13) \\ S_{o}^{TS_{l}} &:= & \{11\} \\ E^{TS_{l}} &:= & \{e_{l}, e_{\theta}, e_{S}, e_{\ell}\} \\ \rightarrow^{TS_{l}} &:= & \{(11, e_{l}, 12), (12, e_{\theta}, 13), (12, e_{\ell}, 12), \\ & & (12, e_{S}, 11), (13, e_{\ell}, 12), (13, e_{\theta}, 13)\} \end{array}$$

$$\begin{array}{rcl} TS_{\theta} &:= & (S^{TS_{\theta}}, S_{\theta}^{TS_{\theta}}, E^{TS_{\theta}}, \rightarrow^{TS_{\theta}}) \\ S^{TS_{\theta}} &:= & \{21, 22\} \\ S_{\theta}^{TS_{\theta}} &:= & \{21\} \\ E^{TS_{\theta}} &:= & \{e_{\theta}, e_{\delta}, e_{\delta}\} \\ \rightarrow^{TS_{\theta}} &:= & \{(21, e_{\theta}, 22), (22, e_{\theta}, 21), (22, e_{\theta}, 22)\} \end{array}$$

■ Definieren Sie die Relation \rightarrow^{MPC} als Menge der möglichen Transitionen der message-passing Komposition $MPC := (S^{MPC}, S^{MPC}_{\delta}, S^{MPC}_{\delta}, F^{MPC}, F^{MPC})$ von TS_1 und TS_2 . Die Definition der Menge soll als explizite Aufzählung ihrer Elemente erfolgen (extensionale Mengendefinition). Andere Formen der Definition sind hier nicht zulässig.

Antwort:

$$\begin{split} MPC &:= (S^{MPC}, S^{MPC}_{\theta}, E^{MPC}, \longrightarrow^{MPC}) \\ S^{MPC} &:= S^{TS_{\ell}} \times S^{TS_{\ell}} \\ S^{MPC}_{\theta} &:= \{(11, 21)\} \\ E^{MPC} &:= E^{TS_{\ell}} \cup E^{TS_{\ell}} \end{split}$$

Name:	San	
	Metrikabor	

(B). Seien die folgenden beiden Eigenschaften über Transitionasystems gageben: Sei $TS=(S^{TS},S^{TS}_{L},E^{TS},-^{TS})$ ein beliebiges Transitionasystems.

$$P_1(TS):=\forall s\in S^{TS};\ \exists s'\in S^{TS};\ \exists e\in E^{TS};\ \neg(s=s')\land (s,e,s)\in \neg^{TS}\land (s,e,s')\in \neg^{TS}$$

$$P_2(TS) := \forall s,s' \in S^{TS}; \ \forall e,e' \in \rightarrow^{TS}; \ \left((s,e,s) \in \rightarrow^{TS} \land (s',e',s') \in \rightarrow^{TS}\right) \Rightarrow e = e'$$

Die Implikation $P_2(TS) \Rightarrow P_2(TS)$ gilt nächt für beliebige Transitionssystems TS. Zeigen für dien durch Augabe eines Gegenbenspiels in Form eines Transitionssystems TS_2 , für des die Implimaton zeicht gilt.

Antworts

$$TS_{1} = (S^{TS_{1}}, S_{0}^{TS_{1}}, E^{TS_{1}}, -T^{TS_{1}})$$

$$S^{TS_{1}} = \begin{bmatrix} S^{TS_{1}} & S_{0}^{TS_{1}} & S_{0}^{TS_{1}$$