Astrocytic intensity and area coverage analysis

Automatized pipeline

Preprocessing

Open ImageJ and open the macro GLT-1_GFAP.ijm

```
if (channels == 4) {
    run("Split Channels");
    selectWindow ("C1-" + title);
    run("Close");
    selectWindow ("C2-" + title);
    run("Close");
    selectWindow ("C3-" + title);
    rename("GLT");
    selectWindow ("C4-" + title);
    rename("GFAP");
```

Please change channel name of GFAP and GLT depending on which channel hold this information.

If you have less than 4 channel, change it in the accroding line.

Preprocessing

```
// Thresholding of Astrocytes
selectWindow("GFAP_threshold");
setAutoThreshold("Huang dark");
setOption("BlackBackground", false);
run("Convert to Mask");
selectWindow("GFAP_threshold");
run("Create Selection");
```

If your images are not good with the same thresholding algorithm, you can change the algorithm used here.

Preprocessing

Postprocessing of morphological data

• Use the *AstrocyteAnalysis.py* code to process you data Important: you have to decode your data if they are coded

```
# Please decode your conditions (or leave this empty if its already decoded)
17
      **********************
      global replacements
      replacements = {
21
           'A1 ' : 'Male ctrl 24h +MG A ',
          'A2' : 'Male H7N7 24h +MG A '
23
          'A3' : 'Male ctrl 24h -MG A '
          'A4' : 'Female ctrl 24h -MG A
          'A5' : 'Female ctrl 24h +MG A
          'A6' : 'Female H7N7 24h +MG A
          'A7' : 'Male ctrl 6h -MG A ',
          'A8' : 'Female ctrl 6h -MG A
          'A9' : 'Female ctrl 6h +MG A
           'A10' : 'Female H7N7 6h +MG A ',
           'A11' : 'Male H7N7 24h -MG A '
           'A12' : 'Male ctrl 6h +MG A '
          'A13' : 'Male H7N7 6h +MG A
           'A14' : 'Male H7N7 6h -MG A ',
           'A15' : 'Female H7N7 6h -MG A '
           'A16' : 'Female H7N7 24h -MG A ',
```

Postprocessing of morphological data

If you would like to have an automatized normalization, you may have to adjust the round names (round_letter) and the time_points (if you have some)

```
*******************
133
       # Normalization
134
135
136
       ******************
137
       df data['Round'] = df data['file'].str.extract(r' ([ABC]) ')
138
       df data['Time'] = df data['file'].str.extract(r' ([0-9]+h) ')
139
141
       normalized data = df data.copy()
142
143
       for round letter in ['A', 'B', 'C']:
144
           for time point in ['6h', '24h']:
145
146
               # Subset current group
               current group = df data[(df data['Round'] == round letter) & (df data['Time'] == time point)]
147
```

What you get after running the code

hyperexcitability.csv

	А	В	С	D	Е	F
1	file	GFAP_area	GFAP_mean_	GLT-1_mean	GLT-1_mean_	_int_whole
2	MAX_Male_ct	1312.83	199.186	77.386	64.779	
3	MAX_Male_ct	1979.437	110.76	61.517	52.438	
4	MAX_Male_ct	1292.429	362.056	74.476	65.262	
5	MAX_Male_ct	1996.127	384.861	69.125	54.002	
6	MAX_Male_ct	1523.756	387.29	77.027	67.689	
7	MAX_Male_ct	1826.739	309.369	81.972	66.208	
8	MAX_Male_ct	2076.322	421.51	71.03	58.234	
9	MAX_Male_ct	1519.664	114.974	79.808	63.738	
10	MAX_Male_ct	1951.751	260.464	70.393	56.434	
11	MAX Male ct	1849.32	238.218	83.268	65.808	

Despite the used intensity staining for GLT-1, each staining within astrocytes can be analyzed with this code!