Artificial Intelligence

Bayes' Nets

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)

Independence

Independence

Two variables are independent iff:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

$$\forall x, y : P(y|x) = P(y)$$
 alternative

- We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

Example: Independence

N fair, independent coin flips:

P(X	$P(X_2)$		
Н	0.5		
Т	0.5		

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

In analogy with independence

$$\forall x, y : P(x|y) = P(x)$$

$$\forall x, y : P(y|x) = P(y)$$

$$\forall x, y : P(x, y) = P(x)P(y)$$

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$P(x|y,z) = \frac{P(x,y,z)}{P(y,z)}$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$\forall x, y, z : P(y|z,x) = P(y|z)$$

$$= \frac{P(z)P(x,y|z)}{P(y,z)} = \frac{P(z)P(x|z)P(y|z)}{P(y,z)}$$

$$= \frac{P(z)P(x|z)P(y|z)}{P(y|z)}$$

$$= \frac{P(z)P(x|z)P(y|z)}{P(z)P(y|z)} = P(x|z)$$

What about this domain:

Traffic

Umbrella

Raining

 $T \perp \!\!\! \perp \!\!\! \perp U \mid R$

 $U \perp \!\!\! \perp T \mid R$

- What about this domain:
 - Fire
 - Smoke
 - Alarm

 $F \perp \!\!\! \perp A \mid S$

Conditional Independence and the Chain Rule

• Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$

Trivial decomposition:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic})$$

With assumption of conditional independence: <</p>

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is redB: Bottom square is redG: Ghost is in the top
- Givens:

P(T,B,G) = P((G)) P(Τ	G) P(B	G')
٠,	(1,0,0)	, ,	ackslash	, , ,	\ •	. •	/ ' \			,

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	-g	0.16
+t	-b	+g	0.24
+t	-b	-g	0.04
-t	+b	+g	0.04
-t	+b	- 90	0.24
-t	-b	+g	0.06
-t	-b	-g	0.06

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

Example: Coin Flips

N independent coin flips

. . .

No interactions between variables: absolute independence

Example: Traffic

Variables:

R: It rains

■ T: There is traffic

Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic II

Let's build a causal graphical model!

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

P(+cavity, +catch, -toothache) = P(+cavity) P(+catch|+cavity) P(-toothache|+cavity)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$
 - \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(X_1)$$

h	0.5
†	0.5

T	1	W	-	`
\boldsymbol{r}	[X	\sim	}
-	١		_	1

h	0.5
t	0.5

$P(X_n)$			
h	0.5		
t	0.5		

$$P(h, h, t, h) = 0.5 * 0.5 * 0.5 * 0.5$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

Example: Alarm Network

Node ordering:

B, E, A, J, M

John

calls

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Mary

calls

Е	P(E)
+e	0.002
-е	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Nets: Independence

Bayes Nets: Assumptions

Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Example

Conditional independence assumptions directly from simplifications in chain rule:

$$P(X,Y,Z,W) = P(X) \ P(Y|X) \ P(Z|X,Y) \ P(W|X,Y,Z) \longleftarrow$$
 Chain rule
$$= P(X) \ P(Y|X) \ P(Z|Y) \ P(W|Z) \longleftarrow$$
 Bayes net assumptions

• Additional implied conditional independence assumptions?

$$W \perp \!\!\! \perp X \mid Y \qquad P(w|x,y) = \frac{P(w,x,y)}{P(x,y)} = \frac{\sum_{z} P(w,x,y,z)}{P(x,y)}$$

$$= \frac{\sum_{z} P(x)P(y|x)P(z|y)P(w|z)}{P(x,y)} = \frac{P(x)P(y|x)\sum_{z} P(z|y)P(w|z)}{P(x)P(y|x)}$$

$$= \sum_{z} P(z|y)P(w|z) = \sum_{z} P(z|y)P(w|z,y) = \sum_{z} P(z,w|y) = P(w|y)$$

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)

Independence properties of triples

Causal Chains

This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

Common Cause

This configuration is a "common cause"

P(x,y,z) = P(y)P(x|y)P(z|y)

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Common Cause

This configuration is a "common cause"

P(x, y, z) = P(y)P(x|y)P(z|y)

• Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

Common Effect

Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated

$$P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)$$

$$P(x,y) = \sum_{z} P(x,y,z) = \sum_{z} P(x)P(y)P(z|x,y) =$$

$$= P(x)P(y)\sum_{z} P(z|x,y) = P(x)P(y)$$

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be
 encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Summary

- A Bayes' net is an efficient encoding of a probabilistic model of a domain
 - A directed, acyclic graph, one node per random variable
 - A conditional probability table (CPT) for each node
 - Bayes' nets implicitly encode joint distributions
- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?
- Guaranteed independencies of distributions can be deduced from BN graph structure
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution