Regresi dan Optimasi

Ali Akbar Septiandri

August 4, 2017

Universitas Al Azhar Indonesia

Table of contents

- 1. Regresi Linear
- 2. Regresi Logistik
- 3. Optimasi

Regresi Linear

Prediksi hubungan antara dua variabel

Figure 1: Data hubungan antara 'share' dengan 'like' pada Facebook

Prediksi hubungan antara dua variabel

Figure 1: Data hubungan antara 'share' dengan 'like' pada Facebook

Simple linear regression

Fungsi linear

Kasus paling sederhana adalah mencocokkan garis lurus ke sekumpulan data

$$y = ax + b$$

dengan a adalah *slope*, gradien, atau kemiringan; sedangkan b dikenal dengan nama *intercept* atau bias.

Notasi lain

$$y = w_0 + w_1 x_1$$

dengan w adalah bobot atau koefisien.

Linear regresi dari fungsi yang diketahui

Example

```
rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y);
```


Figure 2: Data yang dimunculkan secara acak [VanderPlas, 2016]

Ordinary least squares (OLS) regression

Figure 3: Hasil pencocokan garis [VanderPlas, 2016]

Model slope: 2.02720881036

Model intercept: -4.99857708555

Bagaimana kalau ada lebih dari dua variabel yang ingin kita lihat hubungannya?

Multidimensional linear regression

Model

$$y = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_D x_D = \sum_{j=0}^{D} w_j x_j$$

dengan $x_0 = 1$

Notasi matriks-vektor

$$y = \mathbf{w} \cdot \phi(x)$$

dengan $\phi(x)$ adalah vektor fitur (feature vector)

7

Regresi linear untuk dua variabel

Figure 4: Hubungan antara 'share', 'comment', dan 'like' pada foto di Facebook

Prediktor linear (contoh)

Vektor bobot $\mathbf{w} \in \mathbb{R}^D$

bias: -20.24

share: 6.65

comment: 3.53

Vektor fitur $\phi(x) \in \mathbb{R}^D$

bias: 1

share: 147

comment: 58

$$\hat{y} = \mathbf{w} \cdot \phi(x)$$

$$= \sum_{j=1}^{D} w_j \phi_j(x)$$

$$= -20.24(1) + 6.65(147) + 3.53(58) = 1162.05$$

Jadi, diprediksi bahwa untuk foto dengan share = 147 dan comment = 58, foto tersebut akan mendapatkan ≈ 1162.05 likes.

Bagaimana cara mendapatkan nilai w?

(Supervised) Learning

• Kita ingin mencari $f: \mathcal{X} \to \mathcal{Y}$

X: data masukan

Y: data keluaran

dari data latih yang i.i.d.¹

$$\mathcal{D} = (x_1, y_1), ..., (y_N, y_N)$$

 Objektif: Meminimalkan generalisation error dengan menggunakan loss function ℓ, contohnya:

$$\ell(y, f(x)) = (y - f(x))^2$$

yang juga dikenal dengan nama squared loss

¹independent and identically distributed

Meminimalkan error pada data latih

• Untuk meminimalkan generalisation error

$$w^* = \arg\min_{w} \mathbb{E}_{X,Y}[(Y - w^T X)^2]$$

- Kita tidak punya data untuk seluruh kemungkinan pasangan nilai X dan Y!
- Ide: Minimalkan error pada data latih

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{|\mathcal{D}_{train}|} \sum_{(x,y) \in \mathcal{D}_{train}} \ell(y, x, \mathbf{w})$$

• Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

• Nilainya dapat dioptimasi dengan mencari turunan pertama, lalu atur nilainya menjadi 0, i.e. $\frac{\partial E}{\partial w}=0$ atau $\nabla_{\mathbf{w}}E(\mathbf{w})=0$

Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

- Nilainya dapat dioptimasi dengan mencari turunan pertama, lalu atur nilainya menjadi 0, i.e. $\frac{\partial E}{\partial w} = 0$ atau $\nabla_{\mathbf{w}} E(\mathbf{w}) = 0$
- Solusi tertutupnya:

$$\hat{\mathbf{w}} = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$

Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

- Nilainya dapat dioptimasi dengan mencari turunan pertama, lalu atur nilainya menjadi 0, i.e. $\frac{\partial E}{\partial w} = 0$ atau $\nabla_{\mathbf{w}} E(\mathbf{w}) = 0$
- Solusi tertutupnya:

$$\hat{\mathbf{w}} = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$

• Bagian $(\phi^T \phi)^{-1} \phi^T$ dikenal sebagai *pseudo-inverse*

Perhatikan kembali

Apa kekurangan dari regresi linear sederhana seperti ini?

Non-linearity

Figure 5: Data yang dihasilkan dari fungsi sin dengan *noise*

Bagaimana kalau datanya seperti ini?

Underfitting

Figure 6: Hasil fitting regresi linear sederhana

Jika model yang dihasilkan lebih sederhana dibandingkan data yang seharusnya

mengalami underfitting.

dicocokkan, maka model tersebut disebut

Polynomial Basis Functions

Regresi linear dengan fungsi basis polinomial

Jika kita mengubah $x_p = f_p(x)$, dengan $f_p()$ adalah fungsi transformasi, maka untuk $f_p() = x^p$ dan x adalah input berdimensi satu, modelnya menjadi

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots$$

Polynomial Basis Functions

ln

```
from sklearn.preprocessing import PolynomialFeatures
x = np.array([2, 3, 4])
poly = PolynomialFeatures(3, include_bias=False)
poly.fit_transform(x[:, None])
```

Out

```
array([[ 2., 4., 8.],
        [ 3., 9., 27.],
        [ 4., 16., 64.]])
```


Figure 7: Hasil *fitting* fungsi basis polinomial p = 7

Apa yang terjadi jika p dibuat lebih besar?

Overfitting

Figure 8: Hasil fitting fungsi basis polinomial p = 15

Jika model yang dihasilkan lebih kompleks (∼ parameternya banyak) dibandingkan data yang seharusnya dicocokkan, maka model

tersebut disebut mengalami overfitting.

Kita dapat mengatasi masalah *overfitting* pada regresi linear dengan melakukan regularisasi. (non-examinable)

Regresi Logistik

Memprediksi kategori

 Apa yang harus dilakukan jika kita ingin memprediksi kategori alih-alih nilai riil?

Memprediksi kategori

- Apa yang harus dilakukan jika kita ingin memprediksi kategori alih-alih nilai riil?
- Contoh: Prediksi apakah komentar-komentar berikut termasuk spam atau ham (bukan spam) jika dilihat dari kemunculan kata-kata 'order' dan 'password'.

Memprediksi kategori

- Apa yang harus dilakukan jika kita ingin memprediksi kategori alih-alih nilai riil?
- Contoh: Prediksi apakah komentar-komentar berikut termasuk spam atau ham (bukan spam) jika dilihat dari kemunculan kata-kata 'order' dan 'password'.
- Kita asumsikan spam = 1 dan ham = 0. Bagaimana memaksa keluaran dari regresi linear $y \in (-\infty, \infty)$ menjadi $y \in \{0, 1\}$?

Logistic function

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic function

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

• Karena z bernilai $-\infty$ sampai ∞ , maka $\sigma(z)$ bernilai dari 0 sampai $1\sim$ probabilistik

Logistic function

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Karena z bernilai $-\infty$ sampai ∞ , maka $\sigma(z)$ bernilai dari 0 sampai $1 \sim$ probabilistik
- $p(y = 1|\mathbf{x}) = \sigma(f(\mathbf{x})) = \sigma(\mathbf{w}^T\mathbf{x}) = \sigma(w_0x_0 + w_1x_1)$

Logistic function

 Cara yang banyak digunakan adalah menggunakan fungsi sigmoid/logistik, i.e.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Karena z bernilai $-\infty$ sampai ∞ , maka $\sigma(z)$ bernilai dari 0 sampai $1 \sim$ probabilistik
- $p(y = 1|\mathbf{x}) = \sigma(f(\mathbf{x})) = \sigma(\mathbf{w}^T\mathbf{x}) = \sigma(w_0x_0 + w_1x_1)$
- Karena probabilitas jumlahnya harus 1, maka

$$p(y=0|\mathbf{x})=1-p(y=1|\mathbf{x})$$

Fungsi sigmoid/logistik

Figure 9: Fungsi sigmoid/logistik $\sigma(z) = \frac{1}{1 + exp(-z)}$

• Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya

- Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya
- Batas keputusan yang dihasilkan akan berupa hyperplane yang akan tegak lurus terhadap vektor w

- Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya
- Batas keputusan yang dihasilkan akan berupa hyperplane yang akan tegak lurus terhadap vektor w
- Dari **w**, kita bisa menggambarkan batas keputusan (*decision boundary*) ketika $p(y=1|\mathbf{x})=p(y=0|\mathbf{x})=0.5$, i.e. $\mathbf{w}^T\mathbf{x}=0$

- Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya
- Batas keputusan yang dihasilkan akan berupa hyperplane yang akan tegak lurus terhadap vektor w
- Dari **w**, kita bisa menggambarkan batas keputusan (*decision boundary*) ketika $p(y=1|\mathbf{x}) = p(y=0|\mathbf{x}) = 0.5$, i.e. $\mathbf{w}^T\mathbf{x} = 0$
- Kita perlu mencari nilai w

Batas keputusan

Figure 10: Batas keputusan (hijau) yang dibentuk dari vektor bobot \mathbf{w} (hitam) untuk prediktor dengan dua variabel

Likelihood (non-examinable)

- Asumsi i.i.d.
- Dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Likelihood-nya menjadi

$$egin{aligned} p(\mathcal{D}|\mathbf{w}) &= \prod_{i=1}^N p(y=y_i|\mathbf{x}_i,\mathbf{w}) \ &= \prod_{i=1}^N p(y=1|\mathbf{x}_i,\mathbf{w})^{y_i} (1-p(y=1|\mathbf{x}_i,\mathbf{w}))^{1-y_i} \end{aligned}$$

• Log likelihood $L(\mathbf{w}) = \log p(\mathcal{D}|\mathbf{w})$

$$L(\mathbf{w}) = \sum_{i=1}^{N} y_i \log \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

- Nilai optimum untuk kasus ini unik, i.e. convex
- Untuk memaksimalkan nilainya, gunakan gradien

$$\frac{\partial L}{\partial w_j} = \sum_{i=1}^{N} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) x_{ij}$$

 Tidak ada solusi tertutup sehingga harus menggunakan optimasi numerik, e.g. dengan gradient descent

Optimasi

Mengapa dinamakan machine learning?

Mengapa melakukan optimasi?

- ullet Belajar o masalah optimasi kontinu
- Contoh: regresi linear, regresi logistik, jaringan saraf tiruan, SVM
- Salah satu caranya adalah dengan maximum likelihood

"Berapa peluangnya kita melihat data ini jika diketahui parameternya?"

Cara melakukan optimasi

- Menggunakan fungsi galat/error E(w) yang akan diminimalkan
- e.g. dapat berupa $-L(\mathbf{w})$
- Beda nilai w, beda besar error
- ullet Belajar \equiv menuruni permukaan error

Menuruni permukaan fungsi error

Figure 11: Menuruni lembah fungsi error J(w) [Raschka, 2015]

Gradient descent

```
\begin{array}{c|c} \mathbf{begin} \\ & \text{Inisialisasi } \mathbf{w} \\ & \mathbf{while} \ E(\mathbf{w}) \ \textit{masih terlalu besar } \mathbf{do} \\ & \text{Hitung } \mathbf{g} \leftarrow \nabla_{\mathbf{w}} E(\mathbf{w}) \\ & \mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g} \\ & \mathbf{end} \\ & \text{return } \mathbf{w} \\ & \mathbf{end} \end{array}
```

Algorithm 1: Melatih dengan gradient descent

Learning rate

- η (baca: "eta") dikenal sebagai $step\ size$ atau $learning\ rate$ dengan nilai $\eta>0$
- ullet η terlalu kecil o lambat
- ullet η terlalu besar o tidak stabil

Batch vs online

 Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)

Batch vs online

- Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)
- Bagaimana untuk 10 juta data?

Batch vs online

- Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)
- Bagaimana untuk 10 juta data?
- Ternyata, kita bisa memperbarui nilai w untuk setiap satu data (online)

Gradient descent (batch)

```
begin
Inisialisasi w
while E(\mathbf{w}) masih terlalu besar do
Hitung \mathbf{g} \leftarrow \sum_{i=1}^N \nabla_{\mathbf{w}} E_i(\mathbf{w})
\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g}
end
return w
end
```

Algorithm 2: Melatih dengan batch gradient descent

Stochastic gradient descent

```
begin
     Inisialisasi w
     while E(\mathbf{w}) masih terlalu besar do
          Pilih j sebagai integer acak antara 1..N
          Hitung \mathbf{g} \leftarrow \nabla_{\mathbf{w}} E_i(\mathbf{w})
          \mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g}
     end
     return w
end
            Algorithm 3: Stochastic gradient descent (SGD)
```

Kelebihan dan kekurangan

- Batch lebih powerful
- Batch lebih mudah dianalisis
- Online lebih praktikal untuk data yang besar
- Online dapat melompati optimum lokal

Pengembangan gradient descent (non-examinable)

- "Why Momentum Really Works" [Goh, 2017]
- Performance-dependent η , e.g. "NewBOB": η berubah menjadi setengahnya saat validation set tidak menjadi lebih baik
- Time-dependent schedules, e.g. eksponensial: $\eta(t) = \eta(0) exp(-t/r)$ ($r \sim$ ukuran data latih)

Tentang metode optimasi

- Masih banyak metode optimasi yang tidak dibahas, e.g. linear programming, Newton's method, dll.
- Optimasi merupakan bidang matematika yang kompleks
- Masalah convex: optimum global. Non-convex: optimum lokal.
- Pahami mengapa gradient descent bisa mengalami masalah

Summary

- Regresi linear dapat digunakan untuk memprediksi nilai riil
- Regresi linear mempunyai solusi tertutup untuk mencari nilai bobot
- Kasus non-linear dapat ditangani oleh regresi linear dengan melakukan transformasi terhadap fitur, e.g. dengan fungsi basis polinomial
- Konfigurasi parameter yang tepat dibutuhkan untuk menghindari underfitting dan overfitting
- Regresi linear dapat diubah untuk memprediksi data kategorikal dengan menggunakan fungsi sigmoid/logistik
- Proses optimasi merupakan bagian penting dari machine learning yang dapat dilakukan secara numerik, e.g. gradient descent

Pertemuan berikutnya

- Neural networks
- Gradient descent dan backpropagation
- Aplikasi pada computer vision

References

Jake VanderPlas (2016)

In Depth: Linear Regression

Python Data Science Handbook

Sebastian Raschka (2015)

Single-Layer Neural Networks and Gradient Descent

http://sebastianraschka.com/Articles/2015_ singlelayer_neurons.html

Gabriel Goh (2017)

"Why Momentum Really Works"

Distill

Thank you