

FCC Test Report

APPLICANT : DATALOGIC MOBILE s.r.l.

EQUIPMENT: Pocket-Sized Mobile Computer

BRAND NAME : Datalogic Memor[™]

MODEL NAME : DL-MEMOR P/N: 944201019 DL-Memor+802.11g+BT+1DGS+CE5

DL-MEMOR P/N: 944201022 DL-Memor+802.11g+BT+2D+CE5

DL-MEMOR P/N: 944201014 DL-Memor+802.11g+BT+1DGS+WM6.1

DL-MEMOR P/N: 944201015 DL-Memor+802.11g+BT+2D+WM6.1

FCC ID : U4G0030

STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : Digital Spread Spectrum (DSS)

The product sample received on Apr. 01, 2009 and completely tested on Apr. 20, 2009. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.4-2003 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Roy We / Manager

Report No.: FR940109A

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3				
SU	MMA	RY OF TEST RESULT	4				
1	GEN	IERAL DESCRIPTION	5				
	1.1	Applicant	5				
	1.2	Manufacturer	5				
	1.3	Feature of Equipment under Test	6				
	1.4	Testing Site	8				
	1.5	Applied Standards	8				
	1.6	Ancillary Equipment List	8				
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	9				
	2.1	RF Output Power	9				
	2.2	Test Mode	10				
	2.3	Connection Diagram of Test System	11				
	2.4	RF Utility	11				
3	TES	T RESULT	12				
	3.1	Number of Channel Measurement	12				
	3.2	20dB and 99% Bandwidth Measurement	14				
	3.3	Hopping Channel Separation Measurement					
	3.4	Dwell Time Measurement	30				
	3.5	Peak Output Power Measurement					
	3.6	Band Edges Measurement					
	3.7	AC Conducted Emission Measurement					
	3.8	Radiated Emission Measurement					
	3.9	Antenna Requirements	52				
4	LIST	OF MEASURING EQUIPMENT	53				
5	UNC	ERTAINTY OF EVALUATION	54				
6	CERTIFICATION OF TAF ACCREDITATION56						
ΑF	PEND	DIX A. PHOTOGRAPHS OF EUT					
ΔΕ	DENIC	NIV R SETUD DHOTOGDADHS					

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR940109A	Rev. 01	Initial issue of report	Jun. 05, 2009

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 3 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(b)(1)	A8.4(2)	Number of Channels	≥ 15Chs	Pass	
3.2	15.247(a)(1)	A8.1(a)	20dB Bandwidth	NA	Pass	-
3.2	-	Gen 4.4.1	99% Bandwidth	-	Pass	-
3.3	15.247(a)(1)	A8.1(b)	Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.4	15.247(a)(1)	A8.1(d)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.5	15.247(a)(1)	A8.1(b)	Peak Output Power	≤ 1W	Pass	-
3.6	15.247(d)	A8.5	Frequency Band Edges	≤ 20dBc	Pass	-
3.7	15.207	Gen 7.2.2	AC Conducted Emission	15.207(a)	Pass	Under limit 11.8 dB at 1.27 MHz
3.8	15.247(d)	A8.5	Transmitter Radiated Emission	15.209(a) & 15.247(d)	Pass	Under limit 4.69 dB at 49.17 MHz
3.9	15.203 & 15.247(b)	A8.4	Antenna Requirement	N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 4 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

General Description 1

1.1 Applicant

DATALOGIC MOBILE s.r.l.

Via S. Vitalino, 13 40012 Lippo di Caiderara di Reno Bologna - Italy

1.2 Manufacturer

DATALOGIC MOBILE s.r.l.

Via S. Vitalino, 13 40012 Lippo di Caiderara di Reno Bologna - Italy

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

: 5 of 56 Page Number Report Issued Date: Jun. 05, 2009

Report No.: FR940109A

Report Version : Rev. 01

1.3 Feature of Equipment under Test

Product Feature & Specification				
Equipment	Pocket-Sized Mobile Computer			
Brand Name	Datalogic Memor [™]			
	DL-MEMOR P/N: 944201019 DL-Memor+802.11g+BT+1DGS+CE5			
Madal Nama	DL-MEMOR P/N: 944201022 DL-Memor+802.11g+BT+2D+CE5			
Model Name	DL-MEMOR P/N: 944201014 DL-Memor+802.11g+BT+1DGS+WM6.1			
	DL-MEMOR P/N: 944201015 DL-Memor+802.11g+BT+2D+WM6.1			
FCC ID	U4G0030			
Sample A	DL-MEMOR P/N: 944201015 DL-Memor+802.11g+BT+2D+WM6.1			
Sample B	DL-MEMOR P/N: 944201014 DL-Memor+802.11g+BT+1DGS+WM6.1			
Tx/Rx Frequency Range	2400 MHz ~ 2483.5 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Channel Spacing	1 MHz			
	Bluetooth (1Mbps): 0.64 dBm (1.16 mW)			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 1.87dBm (1.54 mW)			
	Bluetooth EDR (3Mbps) : 2.23dBm (1.67 mW)			
Antenna Type	Sample A: PCB Antenna with gain 3.888 dBi			
7 mionia Typo	Sample B: PCB Antenna with gain 4.205 dBi			
Antenna Connector Type	N/A			
HW Version	R2			
SW Version	4.0			
	Bluetooth (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			
EUT Stage	Identical Prototype			

Remark: This product has two kinds of software version, WM6.1 and CE5. The model with WM6.1 means that Window Mobile OS includes much more application programs than CE5. CE5 is the same kind of OS as WM6.1, but it just includes some basic application programs. The difference of software can't relate any RF effect, so only WM6.1 is used for test.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 6 of 56
Report Issued Date : Jun. 05, 2009

Report No.: FR940109A

Report Version : Rev. 01

List of Accessory:

Specification of Accessory				
	Brand Name	AKII		
	Model Name	A15P2-05MP		
AC Adapter	Power Rating	I/P: 100-240Vac, 47-63Hz, 0.5A;		
	I Ower Ivaling	O/P: 5Vdc, 3.0A		
	AC Power Cord Type	1.5 meter shielded cable without ferrite core		
	Brand Name	ETICA		
Battery	Model Name	BP08-000600		
Batter y	Power Rating	3.7Vdc, 1100mAh		
	Туре	Li-ion		
	Brand Name	AATCC		
Earphone	Model Name	AEP-HA36D-04		
	Signal Line Type	1.3 meter non-shielded cable without ferrite core		
	Brand Name	CHIN SHONG		
USB Cable	Model Name	S081219201		
	Signal Line Type	1.2 meter non-shielded cable without ferrite core		
RS232 Cable	Signal Line Type	1.6 meter non-shielded cable without ferrite core		
LCD Panel	Brand Name	DATAIMGE		
LOD Fallel	Model Name	FX020240DWSWCGT1		
1D Scan Module	Brand Name	Motorola		
Jo Scall Woudle	Model Name	SE950		
2D Scan Module	Brand Name	Motorola		
20 Scall Would	Model Name	SE4500		

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. For accessories equipped with this EUT, please refer to the appendix of the external photo.
- 3. For other wireless features of this EUT, test report will be issued separately.
- 4. This test report recorded only product characteristics and test results of Digital Spread Spectrum (DSS).

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 7 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

1.4 Testing Site

Test Site	SPORTON INTERNATIONAL INC.			
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,			
Test Site Location	Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.			
	TEL: +886-3-3273456 / FAX: +886-3-3284978			
Toot Site No	Sporton	Site No.	FCC/IC Registration No.	
Test Site No.	CO05-HY	03CH07-HY	TW1022/4086B-1	

1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC Public Notice DA 00-705
- ANSI C63.4-2003
- IC RSS-210 Issue 7

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B (DoC), recorded in a separate test report.

1.6 Ancillary Equipment List

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-Link	DIR-628	KADIR628A2	N/A	Unshielded, 1.8 m
2.	PC	DELL	T3400	FCC DoC	N/A	Unshielded, 1.8 m
3.	LCD Monitor	Lenovo	6135-AB1	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
4.	(PS2) Keyboard	Acer	KB-2971	FCC DoC	Shielded, 1.3 m	N/A
5.	(PS2) Mouse	detrois	CM-201	FCC DoC	Shielded, 1.4 m	N/A
6.	i-pod	Apple	A1199	FCC DoC	Shielded, 1.0 m	N/A
7.	Printer	HP	LaserJet1300	FCC DoC	Unshielded, 1.8 m	Unshielded, 1.8 m
8.	Bluetooth Earphone	Nokia	BH-100	PYA1YH	N/A	N/A
9.	Bluetooth Dongle	Ergotech	ET-BD201	PQY-4710874203662	N/A	N/A

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 8 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

2.1 RF Output Power

Preliminary tests were performed in different data rate and recorded the RF output power in the following table:

			Bluetooth RF Output Power	
Channel	Fraguenay		Data Rate / Modulation	
Channel	Frequency -	GFSK	π/4-DQPSK	8-DPSK
		1Mbps	2Mbps	3Mbps
Ch00	2402MHz	0.64 dBm	1.87 dBm	2.23 dBm
Ch39	2441MHz	0.55 dBm	1.21 dBm	1.60 dBm
Ch78	2480MHz	-0.12 dBm	-0.13 dBm	0.24 dBm

Remark:

- 1. The data rate 3Mbps was set for all the test cases, due to the highest RF output power.
- 2. The EUT is programmed to transmit signal continuously for all testing.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 9 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

2.2 Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2003 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Report No.: FR940109A

Pre-scanned tests were conducted to determine the final configuration from all possible combinations. Pre-scanned tests, X, Y, Z in three orthogonal panels, were conducted to determine the final configuration from all possible combinations, laptop / tablet modes.

The following tables are showing the test modes as the worst cases and recorded in this report.

	Test Cases						
	Data Rate / Modulation						
Test Item	Bluetooth 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK				
Conducted	■ Mode 1: CH00_2402 MHz	■ Mode 4: CH00_2402 MHz	■ Mode 7: CH00_2402 MHz				
TCs	■ Mode 2: CH39_2441 MHz	■ Mode 5: CH39_2441 MHz	■ Mode 8: CH39_2441 MHz				
105	■ Mode 3: CH78_2480 MHz	■ Mode 6: CH78_2480 MHz	■ Mode 9: CH78_2480 MHz				
Radiated			■ Mode 1: Sample B in CH00				
TCs	N/A	N/A	■ Mode 2: Sample B in CH39				
ics			■ Mode 3: Sample B in CH78				
AC	Mode 1 : Sample A + WLAN Link + BT Link + 2D Scanner + Earphone + Adapter + USB						
Conducted	Mode 2 Sample B + WLAN Link + BT Link + 1D Scapper + Fambone + Adapter + USB Link						
Emission							
	+ Mini SD Card +	· MP3					

Remark:

- 1. The worst case of conducted TCs is Bluetooth 3Mbps, only the test data of these modes was reported.
- 2. The worst case of radiated emission was Bluetooth 3Mbps mode; only the test data of this mode was reported.
- 3. The worst case of conducted emission is mode 1; only the test data of this mode was reported.
- 4. The sample B was used for RSE test only due to higher antenna gain.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 10 of 56

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 05, 2009

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: U4G0030

2.3 Connection Diagram of Test System

<Conducted Emission>

<Radiated Emission>

2.4 RF Utility

For Bluetooth function, executed "BlueTest.exe" to make the EUT transmitting and receiving signals continuously.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

: 11 of 56 Page Number Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedure

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. The modulation types of EUT are irrelevant to number of hopping channels deviation.
- 4. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW ≥ 1% of the span; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 5. The number of hopping frequency used is defined as the device has the numbers of total channel.

3.1.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 12 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

FCC Test Report No.: FR940109A

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	Mode 7~9	Temperature :	23~24 ℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Number of Hopping Channels (Channel)	Limits (Channel)	Pass/Fail
79	> 15	Pass

Number of Hopping Channel Plot on Channel 00 - 78

Date: 13.APR.2009 20:40:40

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 13 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3.2 20dB and 99% Bandwidth Measurement

3.2.1 Limit of 20dB Bandwidth

N/A

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. The EUT should be transmitting at its maximum data rate as the worst cases.
- 4. Use the following spectrum analyzer settings:
 - Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 5. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

3.2.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 14 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3.2.5 Test Result of 20dB Bandwidth

Test Mode :	Mode 1, 2, 3	Temperature :	23~24℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	0.820
39	2441	0.820
78	2480	0.820

20 dB Bandwidth Plot on Channel 00

Date: 13.APR.2009 19:54:27

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 15 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

20 dB Bandwidth Plot on Channel 39

Date: 13.APR.2009 19:54:53

20 dB Bandwidth Plot on Channel 78

Date: 13.APR.2009 19:55:21

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 16 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

FCC Test Report No.: FR940109A

Test Mode :	Mode 4, 5, 6	Temperature :	23~24℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1,240
39	2441	1,220
78	2480	1,240

20 dB Bandwidth Plot on Channel 00

Date: 13.APR.2009 19:57:45

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 17 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

20 dB Bandwidth Plot on Channel 39

Date: 13.APR.2009 19:58:41

20 dB Bandwidth Plot on Channel 78

Date: 13.APR.2009 19:59:03

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 18 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

FCC Test Report

Test Mode :	Mode 7, 8, 9	Temperature :	23~24℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.204
39	2441	1.204
78	2480	1.204

20 dB Bandwidth Plot on Channel 00

Date: 13.APR.2009 20:00:53

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 19 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

20 dB Bandwidth Plot on Channel 39

Date: 13.APR.2009 20:01:43

20 dB Bandwidth Plot on Channel 78

Date: 13.APR.2009 20:02:03

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

: 20 of 56 Page Number Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

3.2.6 Test Result of 99% Occupied Bandwidth

Test Mode :	Mode 1, 2, 3	Temperature :	23~24 ℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	0.796
39	2441	0.796
78	2480	0.796

99% Bandwidth Plot on Channel 00

Date: 13.APR.2009 21:05:33

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 21 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

99% Occupied Bandwidth Plot on Channel 39

Date: 13.APR.2009 21:05:12

99% Occupied Bandwidth Plot on Channel 78

Date: 13.APR.2009 21:05:51

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

: 22 of 56 Page Number Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

FCC Test Report Report No.: FR940109A

Test Mode :	Mode 4, 5, 6	Temperature :	23~24 ℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	1.180
39	2441	1.180
78	2480	1.152

99% Bandwidth Plot on Channel 00

Date: 13.APR.2009 21:07:13

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 23 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

99% Occupied Bandwidth Plot on Channel 39

Date: 13.APR.2009 21:06:55

99% Occupied Bandwidth Plot on Channel 78

Date: 13.APR.2009 21:06:38

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 24 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

FCC Test Report Report No.: FR940109A

Test Mode :	Mode 7, 8, 9	Temperature :	23~24 ℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	1.152
39	2441	1.152
78	2480	1.156

99% Bandwidth Plot on Channel 00

Date: 13.APR.2009 21:07:44

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 25 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

99% Occupied Bandwidth Plot on Channel 39

Date: 13.APR.2009 21:07:59

99% Occupied Bandwidth Plot on Channel 78

Date: 13.APR.2009 21:08:21

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 26 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

3.3 Hopping Channel Separation Measurement

3.3.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. Please refer FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. The EUT should be transmitting at its maximum data rate as the worst cases.
- 4. Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels; RBW ≥ 1% of the span;
 VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

3.3.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 27 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3.3.5 Test Result of Hopping Channel Separation

Test Mode :	Mode 7, 8, 9	Temperature :	23~24 ℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.000	0.803	Pass
39	2441	1.000	0.803	Pass
78	2480	1.000	0.803	Pass

Channel Separation Plot on Channel 00 - 01

Date: 13.APR.2009 20:22:51

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

Page Number : 28 of 56 Report Issued Date: Jun. 05, 2009

Report No.: FR940109A

: Rev. 01 Report Version

Channel Separation Plot on Channel 39 - 40

Date: 13.APR.2009 20:23:23

Channel Separation Plot on Channel 77 - 78

Date: 13.APR.2009 20:23:51

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 29 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

3.4 Dwell Time Measurement

3.4.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. The EUT should be transmitting at its maximum data rate as the worst cases.
- 4. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 5. Use the marker-delta function to calculate the dwell time.

3.4.4 Test Setup

3.4.5 Test Result of Dwell Time

Test Mode :	Mode 8	Temperature :	23~24 ℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Package Mode	Average Hopping Channel	Package Transfer Time (usec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
3DH5	3.400	3040.000	0.327	0.4	Pass

Remark:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number.
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 30 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3DH5 Dwell Time (One Pulse) Plot on Channel 39

Date: 1.APR.2009 18:36:51

3DH5 Dwell Time (Count Pulses) Plot on Channel 39

Date: 13.APR.2009 20:27:32

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 31 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1W (30 dBm).

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

3.5.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the peak power meter by a low loss cable.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Test Mode :	Mode 7, 8, 9	Temperature :	23~24℃
Test Engineer :	Eric Huang	Relative Humidity :	43~44%

Channel	Fraguenov	RF Power (dBm)					
	Frequency	8-DPSK	Max. Limits	D/F-:1			
	(MHz)	3 Mbps	(dBm)	Pass/Fail			
00	2402	2.23	30	Pass			
39	2441	1.60	30	Pass			
78	2480	0.24	30	Pass			

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 32 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

Peak Output Power Plot on Channel 00

Date: 13.APR.2009 19:31:25

Peak Output Power Plot on Channel 39

Date: 13.APR.2009 19:31:47

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 33 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

Peak Output Power Plot on Channel 78

Date: 13.APR.2009 19:32:04

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

Page Number : 34 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

3.6 Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.

3.6.3 Test Procedures

- The testing follows the guidelines in ANSI C63.4-2003 and FCC Public Notice DA 00-705
 Measurement Guidelines.
- 2. RF antenna conducted test: Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB.
- 3. Radiated emission test: Applies to band edge emissions that fall in the restricted bands listed in FCC Section 15.205. The maximum permitted average field strength is listed in FCC Section 15.209. A pre-amp is necessary for this measurement. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See FCC Section 15.35(b) and (c).

3.6.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 35 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3.6.5 Test Result of Radiated Band Edges

Test Mode :	Mode 1	Temperature :	23~26°C
Test Channel :	00	Relative Humidity :	43~46%
		Test Engineer :	Kai Wang

Report No.: FR940109A

	ANTENNA POLARITY : HORIZONTAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2375.93	49.89	-24.11	74.00	46.80	32.02	5.46	34.38	160	10	Peak
2375.93	30.18	-23.82	54.00	27.08	32.00	5.47	34.38	160	10	Average

Remark:

<Delta Marker>

Delta marker at 1% RBW of span = 45.67 + 0.66 = 46.33 dB (can be referred to section 3.6.6)

Peak band edge at 2375.93 MHz (RBW = VBW = 1MHz) = 96.22 dBuV/m - 46.33 dB = 49.89 dBuV/m

Duty factor = 20 x log ((Package Transfer Times(ms) x Avg Hopping Channel) / 100 ms)

$$= 20 \times \log ((3.04 \times 3.4) / 100) = -19.71$$

Average band edge = Peak band edge + Duty factor = 49.89 dBuV/m + (-19.71) = 30.18 dBuV/m

	ANTENNA POLARITY : VERTICAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2372.13	42.54	-31.46	74.00	39.42	31.95	5.53	34.36	100	46	Peak
2372.13	22.83	-31.17	54.00	19.73	32.00	5.47	34.38	100	46	Average

<Delta Marker>

Delta marker at 1% RBW of span = 45.67 + 0.66 = 46.33 dB (can be referred to section 3.6.6)

Peak band edge at 2372.13 MHz (RBW = VBW = 1MHz) = 88.87 dBuV/m - 46.33 dB = 42.54 dBuV/m

Duty factor = 20 x log ((Package Transfer Times(ms) x Avg Hopping Channel) / 100 ms)

$$= 20 \times \log ((3.04 \times 3.4) / 100) = -19.71$$

Average band edge = Peak band edge + Duty factor = 42.54 dBuV/m + (-19.71) = 22.83 dBuV/m

 SPORTON INTERNATIONAL INC.
 Page Number
 : 36 of 56

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 05, 2009

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: U4G0030

FCC Test Report

Test Mode :	Mode 3	Temperature :	23~26°C
Test Channel :	78	Relative Humidity :	43~46%
		Test Engineer :	Kai Wang

	ANTENNA POLARITY : HORIZONTAL									
Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Remar							Remark			
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2483.50	55.63	-18.37	74.00	52.56	32.09	5.38	34.40	100	331	Peak
2483.50	35.92	-18.08	54.00	32.85	32.09	5.38	34.40	100	331	Average

<Delta Marker>

Delta marker at 1% RBW of span = 45.66 - 1.31 = 44.35 dB (can be referred to section 3.6.6)

Peak band edge at 2483.50 MHz (RBW = VBW = 1MHz) = 99.98 dBuV/m - 44.35 dB = 55.63 dBuV/m

Duty factor = 20 x log ((Package Transfer Times(ms) x Avg Hopping Channel) / 100 ms)

 $= 20 \times \log ((3.04 \times 3.4) / 100) = -19.71$

Average band edge = Peak band edge + Duty factor = 55.63 dBuV/m + (-19.71) = 35.92 dBuV/m

	ANTENNA POLARITY : VERTICAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2483.50	47.76	-26.24	74.00	44.69	32.09	5.38	34.40	161	234	Peak
2483.50	28.05	-25.95	54.00	24.98	32.09	5.38	34.40	161	234	Average

<Delta Marker>

Delta marker at 1% RBW of span = 45.66 - 1.31 = 44.35 dB (can be referred to section 3.6.6)

Peak band edge at 2483.50 MHz (RBW = VBW = 1MHz) = 92.11 dBuV/m - 44.35 dB = <math>47.76 dBuV/m

Duty factor = 20 x log ((Package Transfer Times(ms) x Avg Hopping Channel) / 100 ms)

 $= 20 \times \log ((3.04 \times 3.4) / 100) = -19.71$

Average band edge = Peak band edge + Duty factor = 47.76 dBuV/m + (-19.71) = 28.05 dBuV/m

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: U4G0030

Page Number : 37 of 56 Report Issued Date: Jun. 05, 2009

Report No.: FR940109A

: Rev. 01 Report Version

3.6.6 Test Result of Conducted Band Edges

Test Mode :	Mode 7 and 9	Temperature :	23~24 ℃
Test Channel :	00 and 78	Relative Humidity :	43~44%
		Test Engineer :	Eric Huang

Low Band Edge Plot on Channel 00

Date: 13.APR.2009 20:06:17

High Band Edge Plot on Channel 78

Date: 13.APR.2009 20:08:06

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 38 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3.7 AC Conducted Emission Measurement

3.7.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguency of emission (MUz)	Conducted limit (dBuV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.7.2 Measuring Instruments

See list of measuring instruments of this test report.

3.7.3 Test Procedures

- 1. Please follow the guidelines in ANSI C63.4-2003.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 39 of 56
Report Issued Date : Jun. 05, 2009

Report No.: FR940109A

Report Version : Rev. 01

Report No.: FR940109A

3.7.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

Page Number : 40 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

3.7.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	23~24 ℃				
Test Engineer :	Cona Huang	Relative Humidity :	43~44%				
Test Voltage :	120Vac / 60Hz	Phase :	Line				
Function Type :	Sample A + WLAN Link + BT Link + 2D Scanner + Earphone + Adapter + USB Link						
runction type:	+ Mini SD Card + MP3						
Remark :	All emissions not reported h	All emissions not reported here are more than 10 dB below the prescribed limit.					

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.190000	44.9	Off	L1	19.4	19.1	64.0
0.382000	35.9	Off	L1	19.4	22.3	58.2
0.574000	34.3	Off	L1	19.3	21.7	56.0
1.270000	34.7	Off	L1	19.5	21.3	56.0
1.718000	34.2	Off	L1	19.5	21.8	56.0
3.622000	34.5	Off	L1	19.5	21.5	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr.	Margin (dB)	Limit (dBµV)
0.190000	33.3	Off	L1	19.4	20.7	54.0
0.382000	34.7	Off	L1	19.4	13.5	48.2
0.574000	34.0	Off	L1	19.3	12.0	46.0
1.270000	34.1	Off	L1	19.5	11.9	46.0
1.718000	30.1	Off	L1	19.5	15.9	46.0
3.622000	30.1	Off	L1	19.5	15.9	46.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 41 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

23~24℃ Test Mode: Mode 1 Temperature : Cona Huang 43~44% Test Engineer: Relative Humidity: 120Vac / 60Hz Phase: Test Voltage : Neutral Sample A + WLAN Link + BT Link + 2D Scanner + Earphone + Adapter + USB Link Function Type: + Mini SD Card + MP3 Remark: All emissions not reported here are more than 10 dB below the prescribed limit.

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.190000	44.5	Off	N	19.4	19.5	64.0
0.382000	35.8	Off	N	19.4	22.4	58.2
0.638000	33.1	Off	N	19.4	22.9	56.0
1.270000	35.7	Off	N	19.5	20.3	56.0
1.718000	33.6	Off	N	19.5	22.4	56.0
3.494000	34.8	Off	N	19.5	21.2	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.190000	32.7	Off	N	19.4	21.3	54.0
0.382000	34.0	Off	N	19.4	14.2	48.2
0.638000	32.1	Off	N	19.4	13.9	46.0
1.270000	34.2	Off	N	19.5	11.8	46.0
1.718000	28.6	Off	N	19.5	17.4	46.0
3.494000	31.0	Off	N	19.5	15.0	46.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 42 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3.8 Radiated Emission Measurement

3.8.1 Limit of Radiated Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

See list of measuring instruments of this test report.

3.8.3 Test Procedures

- 1. The testing follows the guidelines in FCC Public Notice DA 00-705 Measurement Guidelines.
- Use the following spectrum analyzer settings:
 Span = wide enough to fully capture the emission being measured; RBW = 1 MHz for f ≥ 1 GHz,
 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 3. Follow the guidelines in ANSI C63.4-2003 with respect to maximizing the emission by rotating the EUT, measuring the emission for three EUT orthogonal planes, and adjusting the measurement antenna height and polarization. A pre-amp and a high pass filter are used for this test in order to get the good signal level.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 43 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

Report No.: FR940109A

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

Page Number : 44 of 56 Report Issued Date: Jun. 05, 2009

: Rev. 01 Report Version

FCC Test Report

3.8.5 Test Results of Radiated Emissions (9kHz ~ 30MHz)

Temperature	23~26°	Humidity	43~46%
Test Engineer	Kai Wang		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 45 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

3.8.6 Test Result of Radiated Emission (30MHz ~ 10th Harmonic)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 46 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

23~26°C Test Mode: Mode 1 Temperature : 00 Test Channel: 43~46% Relative Humidity: Test Engineer : Kai Wang Polarization: Vertical Remark: #9 and #10 are Fundamental Signals which can be ignored.

Site : 03CH07-HY
Condition : FCC CLASS-B 3m SHF-EHF HORN VERTICAL

Real Battery 3.7V Power FR 940109 Mode 1 Project

Memo	: Mode 1	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Ant Pos	Table Pos	Remark
		MHz	$\overline{d}\overline{B}\overline{u}\overline{V}\overline{/m}$	$^{}\overline{d}\overline{B}$	$\overline{d}\overline{B}\overline{u}\overline{V}7\overline{m}$	dBu∇	$-\overline{dB}/m$	\overline{dB}	<u>dB</u>	cm	deg	
1		30.54	29.49	-10.51	40.00	41.18	19.36	0.65	31.70	444		Peak
2		50.25	33.14	-6.86	40.00	54.81	9.20	0.83	31.70			Peak
2		243.30	32.86	-13.14	46.00	50.26	12.23	1.89	31.51			Peak
		623.40	39.77	-6.23	46.00	47.64	19.78	3.33	30.98			Peak
5		741.00	39.33	-6.67	46.00	44.84	21.64	3.67	30.82			Peak
6!		780.20	40.29	-5.71	46.00	45.38	21.86	3.79	30.74	100	294	Peak
4 5 6 ! 7		2372.13	42.54	-31.46	74.00	39.42	31.95	5.53	34.36	100	46	Peak
8		2372.13	22.83	-31.17	54.00	19.73	32.00	5.47	34.38	100		Average
9 X		2402.00	88.87		A.O. A. A. A.	85.78	32.03	5.44	34.38	100	46	Peak
10 @		2402.00	75.33			72.24	32.02	5.46	34.38	100		
11		2494.00	44.83	-29.17	74.00	41.76	32.10	5.37	34.40	100		Peak
12		2494.00	32.10	-21.90	54.00	29.03	32.10	5.37	34.40	100		Average
13		7926.00	54.24	-19.76	74.00	44.14	35.58	9.81	35.28	100		Peak
14		7926.00	41.03	-12.97	54.00	30.93	35.58	9.81	35.28	100		Average

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 47 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

Test Mode: Mode 2 23~26°C Temperature : 39 Test Channel: 43~46% Relative Humidity: Test Engineer : Kai Wang Polarization: Horizontal Remark: #9 and #10 are Fundamental Signals which can be ignored.

Trace: (Discrete): 03CH07-HY

Site

Condition: FCC CLASS-B 3m SHF-EHF HORN HORIZONTAL

Power Real Battery 3.7V FR 940109 Memo : Mode 2

viento . 141	Fre	q Level	Over Limit			Antenna Factor		Preamp Factor	Ant Pos	Table Pos	Remark
	М Н	z dBuV/1	i	$\overline{\tt d}\overline{\tt B}\overline{\tt u}\overline{\tt V}7\overline{\tt m}$	dBu∇	$-\overline{dB/m}$	<u>dB</u>	<u>dB</u> -	cm	deg	
1	30.5	4 27.60	-12.40	40.00	39.29	19.36	0.65	31.70	200		Peak
2	189.3	0 32.42	2 -11.08	43.50	52.97	9.40	1.66	31.61			Peak
234567890	242.4	9 30.98	-15.02	46.00	48.46	12.15	1.89	31.51			Peak
4	701.8	0 36.25	-9.75	46.00	42.65	20.94	3.56	30.90	-1-1-	-1-1-	Peak
5	741.0	0 36.36	9.64	46.00	41.86	21.64	3.67	30.82			Peak
6	780.2	0 37.97	-8.03	46.00	43.06	21.86	3.79	30.74	100	281	Peak
7	2318.0	0 46.11	-27.89	74.00	43.00	31.96	5.51	34.37	100	339	Peak
8	2318.0	0 32.61	-21.39	54.00	29.50	31.96	5.51	34.37	100	339	Average
9 @	2441.0	0 97.88	3		94.80	32.06	5.41	34.39	100	339	Peak
10 @	2441.0	0 83.69)		80.61	32.06	5.41	34.39	100	339	Average
11	2484.0	0 45.28	-28.72	74.00	42.21	32.09	5.38	34.40	100		Peak
12	2484.0	0 32.59	-21.41	54.00	29.52	32.09	5.38	34.40	100	339	Average
11 12 13	8853.0	0 54.19	-19.81	74.00	43.29	35.98	10.29	35.37	100		Peak
14	8853.0	0 41.06	-12.94	54.00	30.16	35.98	10.29	35.37	100	239	Average

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 48 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

23~26°C Test Mode: Mode 2 Temperature : 39 Test Channel: 43~46% Relative Humidity: Test Engineer : Kai Wang Polarization: Vertical

Remark: #9 and #10 are Fundamental Signals which can be ignored.

Trace: (Discrete): 03CH07-HY

Site

Condition : FCC CLASS-B 3m SHF-EHF HORN VERTICAL

Power Real Battery 3.7V Project Memo : FR 940109 : Mode 2

31.62	dBu∇/m 26.41	<u>dB</u>	$\overline{dBuV/m}$	dBuV	dB/m					
	26.41				O.D./ JIL	dB	dB	cm	deg	
50 25		-13.59	40.00	38.63	18.82	0.66	31.70			Peak
										Peak
										Peak
623.40	39.66	-6.34	46.00	47.53	19.78	3.33	30.98			Peak
662.60	39.73	-6.27	46.00	46.92	20.30	3.45	30.94			Peak
780.20	40.13	-5.87	46.00	45.22	21.86	3.79	30.74	100	108	Peak
2372.00	44.35	-29.65	74.00	41.25	32.00	5.47	34.38	117	312	Peak
2372.00	32.42	-21.58	54.00	29.32	32.00	5.47	34.38	117	312	Average
2441.00	91.87			88.79	32.06	5.41	34.39			Peak
2441.00	77.12									Average
		-30.24	74.00							Peak
75.000 F4885 F4 R4 R4				100 FE F 170 FA			THE PARTY AND THE			Average
									145	Peak
Further Control of Village	70.70 70.00					This could	515 T 515			Average
	2372.00 2372.00	50.25 34.00 242.49 32.24 623.40 39.66 662.60 39.73 780.20 40.13 2372.00 32.42 2441.00 91.87 2441.00 77.12 2484.00 43.76 2484.00 32.22 8877.00 53.87	50.25 34.00 -6.00 242.49 32.24 -13.76 623.40 39.66 -6.34 662.60 39.73 -6.27 780.20 40.13 -5.87 2372.00 44.35 -29.65 2372.00 32.42 -21.58 2441.00 91.87 2441.00 77.12 2484.00 43.76 -30.24 2484.00 32.22 -21.78 8877.00 53.87 -20.13	50.25 34.00 -6.00 40.00 242.49 32.24 -13.76 46.00 623.40 39.66 -6.34 46.00 662.60 39.73 -6.27 46.00 2372.00 40.13 -5.87 46.00 2372.00 32.42 -21.58 54.00 2441.00 91.87 2441.00 77.12 2484.00 43.76 -30.24 74.00 2484.00 32.22 -21.78 54.00 8877.00 53.87 -20.13 74.00	50.25 34.00 -6.00 40.00 55.67 242.49 32.24 -13.76 46.00 49.72 623.40 39.66 -6.34 46.00 47.53 662.60 39.73 -6.27 46.00 45.22 2372.00 44.35 -29.65 74.00 41.25 2372.00 32.42 -21.58 54.00 29.32 2441.00 91.87 88.79 2444.00 43.76 -30.24 74.00 40.69 2484.00 32.22 -21.78 54.00 29.15 8877.00 53.87 -20.13 74.00 42.95	50.25 34.00 -6.00 40.00 55.67 9.20 242.49 32.24 -13.76 46.00 49.72 12.15 623.40 39.66 -6.34 46.00 47.53 19.78 662.60 39.73 -6.27 46.00 46.92 20.30 780.20 40.13 -5.87 46.00 45.22 21.86 2372.00 32.42 -21.58 54.00 29.32 32.00 2372.00 32.42 -21.58 54.00 29.32 32.00 2441.00 91.87 74.04 32.06 2484.00 43.76 -30.24 74.00 40.69 32.09 2484.00 32.22 -21.78 54.00 40.69 32.09 8877.00 53.87 -20.13 74.00 42.95 35.99	50.25 34.00 -6.00 40.00 55.67 9.20 0.83 242.49 32.24 -13.76 46.00 49.72 12.15 1.89 623.40 39.66 -6.34 46.00 47.53 19.78 3.33 662.60 39.73 -6.27 46.00 45.22 20.30 3.45 780.20 40.13 -5.87 46.00 45.22 21.86 3.79 2372.00 44.35 -29.65 74.00 41.25 32.00 5.47 2372.00 32.42 -21.58 54.00 29.32 32.00 5.47 2441.00 91.87 88.79 32.06 5.41 2441.00 77.12 74.04 32.06 5.41 2484.00 43.76 -30.24 74.00 40.69 32.09 5.38 2484.00 32.22 -21.78 54.00 29.15 32.09 5.38 8877.00 53.87 -20.13 74.00 42.95 35.99 10.30	50.25 34.00 -6.00 40.00 55.67 9.20 0.83 31.70 242.49 32.24 -13.76 46.00 49.72 12.15 1.89 31.51 623.40 39.66 -6.34 46.00 47.53 19.78 3.33 30.98 662.60 39.73 -6.27 46.00 46.92 20.30 3.45 30.94 780.20 40.13 -5.87 46.00 45.22 21.86 3.79 30.74 2372.00 44.35 -29.65 74.00 41.25 32.00 5.47 34.38 2372.00 32.42 -21.58 54.00 29.32 32.00 5.47 34.38 2441.00 91.87 74.04 32.06 5.41 34.39 2484.00 43.76 -30.24 74.00 40.69 32.09 5.38 34.40 2484.00 32.22 -21.78 54.00 29.15 32.09 5.38 34.40 8877.00 53.87 -20.13 74.00 42.95 35.99 10.30 35.37 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 49 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

Test Mode: 23~26°C Mode 3 Temperature : 78 Test Channel: 43~46% Relative Humidity: Test Engineer : Kai Wang Polarization: Horizontal Remark: #9 and #10 are Fundamental Signals which can be ignored.

Trace: (Discrete): 03CH07-HY

Site

Condition: FCC CLASS-B 3m SHF-EHF HORN HORIZONTAL

Power Real Battery 3.7V FR 940109 Mode 3

Weitto Note	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Ant Pos	Table Pos	Remark
	MHz	$\overline{d}\overline{B}\overline{u}\overline{V}7\overline{m}$	\overline{dB}	$\overline{d}\overline{B}\overline{u}\overline{V}7m$	<u>dBuV</u>	$-\overline{dB/m}$	<u>dB</u>	<u>dB</u> -	cm	deg	
1 @	30.81 50.25	26.60 24.63		40.00	38.29	19.36	0.65	31.70	555		Peak Peak
2 @ 3 @	182.82	32.15	-11.35	40.00 43.50	46.30 52.74	9.20	0.83 1.63	31.70 31.62			Peak
4 @ 5 @	701.80 741.00	36.81 36.43	-9.19 -9.57	46.00 46.00	43.22	20.94	3.56 3.67	30.90 30.82			Peak Peak
6 @ 7 @	780.20 2356.00	37.86 44.67	-8.14 -29.33	46.00 74.00	42.95 41.57	21.86 31.99	3.79 5.49	30.74 34.37	100 100	331	Peak Peak
8 @ 9 @	2356.00 2480.00	32.43 99.98	-21.57	54.00	29.33 96.90	31.99 32.09	5.49 5.38	34.37 34.40	100 100	331	Average Peak
10 @ 11 @	2480.00 2483.50	85.54 55.63	-18.37	74.00	82.47 52.56	32.09 32.09	5.38 5.38	34.40 34.40	100 100		Average Peak
12 @ 13 @ 14 @	2483.50 8946.00 8946.00	54.61 41.32	-18.08 -19.39 -12.68	54.00 74.00 54.00	32.85 43.63 30.34	32.09 36.05 36.05	5.38 10.32 10.32	34.40 35.39 35.39	100 100 100		Average Peak Average

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 50 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

Test Mode: Mode 3 23~26°C Temperature : 78 Test Channel: 43~46% Relative Humidity: Test Engineer: Kai Wang Polarization: Vertical Remark: #9 and #10 are Fundamental Signals which can be ignored.

Trace: (Discrete)

: 03CH07-HY : FCC CLASS-B 3m SHF-EHF HORN VERTICAL : Real Battery 3.7V : FR 940109 Condition

Power Project : Mode 3

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Ant Pos	Table Pos	Remark
	MHz	$\overline{d}\overline{B}\overline{u}\overline{V}\overline{/m}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\overline{d}\overline{B}\overline{u}\overline{V}7\overline{m}$	\overline{dBuV}	dB/m	<u>dB</u>	\overline{dB}	cm	deg	
1 @	30.81	27.38	-12.62	40.00	39.07	19.36	0.65	31.70			Peak
2 @	49.17	35.31	-4.69	40.00	56.60	9.60	0.81	31.70			Peak
3 @	242.49	32.94	-13.06	46.00	50.42	12.15	1.89	31.51			Peak
3 @ 4 @ 5 @	623.40	39.89	-6.11	46.00	47.76	19.78	3.33	30.98			Peak
4 @ 5 @	662.60	39.70	-6.30	46.00	46.90	20.30	3.45	30.94			Peak
6 @	780.20	40.55	-5.45	46.00	45.64	21.86	3.79	30.74	100		Peak
7 @	2380.00	44.46	-29.54	74.00	41.36	32.00	5.47	34.38	161	234	Peak
8 @	2380.00	32.45	-21.55	54.00	29.35	32.00	5.47	34.38	161		Average
8 @ 9 @	2480.00	92.11	GT (T) T) T)		89.03	32.09	5.38	34.40	161		Peak
10 @	2480.00	77.92			74.85	32.09	5.38	34.40	161		Average
11 @	2483.50	47.76	-26.24	74.00	44.69	32.09	5.38	34.40	161		Peak
12 @	2483.50	28.05	-25.95	54.00	24.98	32.09	5.38	34.40	161		Average
13 @	8718.00	54.65	-19.35	74.00	43.87	35.87	10.25	35.34	100		Peak
14 @	8718.00	41.32	-12.68	54.00	30.54	35.87	10.25	35.34	100		Average

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID : U4G0030

Page Number : 51 of 56 Report Issued Date: Jun. 05, 2009 Report Version : Rev. 01

Antenna Requirements 3.9

3.9.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.9.2 Antenna Connected Construction

The antennas type used in this product is PCB Antenna without connector and it is considered to meet antenna requirement.

3.9.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

Page Number : 52 of 56 Report Issued Date: Jun. 05, 2009 : Rev. 01

Report No.: FR940109A

Report Version

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100055	9kHz~40GHz	Jun. 26, 2008	Jun. 25, 2009	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Feb. 19, 2009	Feb. 18, 2010	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US404415 48	N/A	Feb. 19, 2009	Feb. 18, 2010	Conducted (TH02-HY)
EMI Receiver	R&S	ESCS 30	100356	9kHz~2.75GHz	Aug. 01, 2008	Jul. 31, 2009	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100081	9kHz~30MHz	Nov. 26, 2008	Nov. 25, 2009	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100080	9kHz~30MHz	Nov. 26, 2008	Nov. 25, 2009	Conduction (CO05-HY)
AC Power Source	APC	APC-1000W	N/A	N/A	N/A	N/A	Conduction (CO05-HY)
System Simulator	R&S	CMU200	106656	N/A	May 06, 2008	May 05, 2009	Conduction (CO05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2726	30MHz~1GHz	Nov. 20, 2008	Nov. 19, 2009	Radiation (03CH07-HY)
Spectrum Analyzer	R&S	FSP	101067	9kHz~30GHz	Dec. 02, 2008	Dec. 01, 2009	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	75962	1G~18GHz	Aug. 13, 2008	Aug. 12. 2009	Radiation (03CH07-HY)
Pre Amplifier	Agilent	8449B	3008A023 62	1G~26.5GHz	Dec. 17, 2008	Dec. 16, 2009	Radiation (03CH07-HY)
Pre Amplifier	COM-POWER	PA-103A	161241	10~1000MHz. 32dB.GAIN	Mar. 27, 2009	Mar. 26, 2010	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	66584	1G~18GHz	Aug. 06, 2008	Aug. 05. 2009	Radiation (03CH07-HY)
SHF-EHF Horn	SCHWARZBE CK	BBHA 9170	BBHA9170 251	15G - 40GHz	Oct. 16, 2008	Oct. 15, 2009	Radiation (03CH07-HY)
Loop Antenna	R&S	HFH2-Z2	860004/00 1	9 kHz~30 MHz	May 22, 2008	May 21, 2010	Radiation (03CH07-HY)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 53 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

	Uncert	ainty of $^{\mathcal{X}_i}$	$u(x_i)$		
Contribution	dB	Probability Distribution	$u(x_i)$		
Receiver reading	0.10	Normal(k=2)	0.05		
Cable loss	0.10	Normal(k=2)	0.05		
AMN insertion loss	2.50	Rectangular	0.63		
Receiver Spec	1.50	Rectangular	0.43		
Site imperfection	1.39	Rectangular	0.80		
Mismatch	+0.34/-0.35	U-shape	0.24		
Combined standard uncertainty Uc(y)	1.13				
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)					

Uncertainty of Radiated Emission Measurement (30MHz ~ 1000MHz)

	Uncerta	ainty of X_i			
Contribution	dB	Probability Distribution	$u(x_i)$		
	0.44		2.24		
Receiver reading	0.41	Normal(k=2)	0.21		
Antenna factor calibration	0.83	Normal(k=2)	0.42		
Cable loss calibration	0.25	Normal(k=2)	0.13		
Pre Amplifier Gain calibration	0.27	Normal(k=2)	0.14		
RCV/SPA specification	2.50	Rectangular	0.72		
Antenna Factor Interpolation for Frequency	1.00	Rectangular	0.29		
Site imperfection	1.43	Rectangular	0.83		
Mismatch	+0.39/-0.41	U-shaped	0.28		
Combined standard uncertainty Uc(y)	1.27				
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)		2.54			

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 54 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

FCC Test Report

Uncertainty of Radiated Emission Measurement (1GHz ~ 40GHz)

	Uncertai	nty of x_i			$Ci * u(x_i)$		
Contribution	dB	Probability Distribution	$u(x_i)$	Ci	$Ci \cdot u(x_i)$		
Receiver reading	±0.10	Normal(k=1)	0.10	1	0.10		
Antenna factor calibration	±1.70	Normal(k=2)	0.85	1	0.85		
Cable loss calibration	±0.50	Normal(k=2)	0.25	1	0.25		
Receiver Correction	±2.00	Rectangular	1.15	1	1.15		
Antenna Factor Directional	±1.50	Rectangular	0.87	1	0.87		
Site imperfection	±2.80	Triangular	1.14	1	1.14		
Mismatch Receiver VSWR Γ1= 0.197 Antenna VSWR Γ2= 0.194 Uncertainty=20log(1-Γ1*Γ2)	+0.34/-0.35	U-shaped	0.244	1	0.244		
Combined standard uncertainty Uc(y)	2.36						
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)	4.72						

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : 55 of 56
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01

Certification of TAF Accreditation 6

Certificate No.: L1190-090417

Report No.: FR940109A

全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

Accreditation Number : 1190

: December 15, 2003 Originally Accredited

: January 10, 2007 to January 09, 2010 **Effective Period**

Accredited Scope : Testing Field, see described in the Appendix

: Accreditation Program for Designated Testing Laboratory Specific Accreditation Program for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

- San Chen

Date: April 17, 2009

P1, total 20 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030

Page Number : 56 of 56 Report Issued Date: Jun. 05, 2009

: Rev. 01 Report Version

Appendix A. Photographs of EUT

Please refer to Sporton report number EP940109 as below.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U4G0030 Page Number : A1 of A1
Report Issued Date : Jun. 05, 2009
Report Version : Rev. 01