Desafío STEM: Interferencia y Difracción de Ondas

Objetivos

- Comprender los principios de la interferencia y difracción de ondas.
- Experimentar con distintas configuraciones de doble rendija y apertura circular.
- Analizar gráficamente la distribución de intensidad.
- Relacionar los patrones observados con parámetros físicos del sistema: longitud de onda, separación de ranuras, tamaño de abertura.
- Desarrollar habilidades de investigación, modelado y análisis de datos con la guía del profesor.

Contexto del Problema

Una empresa de tecnologías ópticas desea diseñar sensores que funcionen con fuentes de luz láser. Para ello, necesita comprender cómo la luz se comporta al atravesar rendijas o pequeñas aberturas. Tu equipo ha sido contratado para investigar estos fenómenos mediante simulación, registrar patrones, analizarlos y proponer modelos matemáticos que predigan la distribución de intensidad.

Materiales

■ Simulador: Phet

Cuaderno de laboratorio o formato digital

Acompañamiento activo del profesor

Conexiones STEM

Ciencia: Principios físicos de interferencia y difracción de ondas.

• Tecnología: Uso de simuladores interactivos para modelar fenómenos.

Ingeniería: Aplicación en diseño de sensores ópticos.

Matemáticas: Modelado y análisis de funciones periódicas.

Sesión 1: Interferencia con Dos Ranuras

- 1. Selecciona la pestaña Ranuras.
- 2. Configura la opción **Dos ranuras**.
- 3. Varía la **separación entre ranuras** y observa el patrón.
- 4. Cambia la longitud de onda y repite.
- 5. Activa "Pantalla" e "Intensidad".
- 6. Usa la gráfica para registrar el patrón. Mide la separación entre máximos.
- 7. Registra tus observaciones: ¿Qué sucede si las ranuras están muy juntas? ¿Qué ocurre si la longitud de onda aumenta?
- 8. Elabora un modelo matemático que relacione la posición de los máximos con la longitud de onda y la separación entre ranuras.

Sesión 2: Difracción por Abertura Circular

- 1. Selecciona la pestaña **Difracción**.
- 2. Cambia el diámetro de la abertura y observa el patrón.
- 3. Varía la longitud de onda.
- 4. Registra el número y tamaño de los anillos brillantes.
- 5. Establece la relación entre el patrón y los parámetros físicos.
- 6. Relaciona los resultados con la expresión:

$$\sin \theta \approx 1{,}22\frac{\lambda}{D}$$

donde λ es la longitud de onda y D el diámetro de la abertura.

Producto Entregable

Informe de laboratorio por grupos que incluya:

- Introducción teórica clara sobre interferencia y difracción de ondas.
- Procedimiento detallado con capturas de pantalla y parámetros utilizados.
- Análisis gráfico del patrón de franjas y anillos.
- Desarrollo y aplicación de los modelos matemáticos que describen:
 - La posición de los máximos de interferencia (condiciones de interferencia constructiva y destructiva).
 - El patrón de difracción de una abertura circular (mínimos en función de λ y D).
- Conclusiones sobre cómo varían los patrones con los parámetros.
- Bibliografía.

Rúbrica de Evaluación del Informe (5.0 puntos)

Criterio	Puntaje
Claridad y profundidad en la introducción conceptual	0.75
Registro completo y claro del procedimiento experimental	1.00
Análisis correcto y justificado de los patrones observados	1.25
Elaboración y uso de modelos matemáticos adecuados	1.00
Organización, redacción, ortografía y presentación del infor-	1.00
me	
Total	5.00

Referencia:

https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_all.html?locale=es