MAXIMUM LIKELIHOOD ESTIMATION

MAXIMUM LIKELIHOOD ESTIMATION

- General estimation procedure
- Parametric distribution assumption
 - Normal, exponential, gamma, binomial, Poisson, etc.
- Finds the parameter value(s) that makes the observed data most probable or likely under the assumed distribution.

MAXIMUM LIKELIHOOD ESTIMATION

- 1. Assume a distribution of the observations
- 2. Express the joint distribution of the observations as as a function of the unknown parameter(s)
 - → The likelihood function
- 3. Find the parameter value(s) that maximizes the likelihood

Assumptions

Step 1

- Independent and identically distributed
- Normal distribution
- Known standard deviation $\sigma = 25$
- Unknown mean μ

Step 2

$$X_i \sim iid N(\mu, \sigma^2)$$
 for all $i = 1, ..., n$

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Joint density distribution function:

Joint density distribution function:

Step 2

$$f(x_1, x_2, ..., x_n; \mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$

The likelihood function:

$$L(\mu; x_1, \dots, x_n, \sigma^2)$$

Maximum likelihood estimator:

$$\hat{\mu} = \underset{\mu}{\operatorname{arg\,max}}$$

The likelihood function

Step 2

$$L(\mu; x_1, \dots, x_n, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$

The log-likelihood function

$$\sum_{i=1}^{n} \log f(x_i; \mu, \sigma^2)$$

log

Maximum likelihood estimator:

$$\hat{\boldsymbol{\mu}} = \underset{\boldsymbol{\mu}}{\operatorname{arg\,max}} \log L(\boldsymbol{\mu}; x_1, \dots, x_n, \sigma^2)$$

TECH3

Sondre Hølleland Geir Drage Berentsen