Simulation of Membrane and Cell Culture Permeability and Transport

Michael B. Bolger and Viera Lukacova Simulations Plus, Inc.

GPEN, Kansas, 2006

Outline

- Models of microscopic membrane kinetics
- Calculation of membrane entry and exit kinetics.
- Simulation of passive permeability
- Application to efflux transporter Pgp

GPEN, Kansas, 2006

Extended model 1

Addition of diffusion through unstirred water layer (UWL) in donor and acceptor compartments concentration equilibrium in bulk aqueous phases and membrane - instantaneous

Donor bulk (D)	Donor UWL (UD)	Membrane (M)	Acceptor UWL (UA) Acceptor bulk (A)
100 years	k_i	→ [k _i
1300 103 3256	k_o		k _o →
0700 107			
1001 100 1001	D_{w}		D_{w}
401	h_w		h_{w}

GPEN, Kansas, 2006

Extended model 2 - model currently in use

Addition of ionization of compounds

Assume the diffusion through the aqueous phases is the same for neutral and ionized species partitioning into the membrane - only non-ionized species.

Donor bulk (D)	Donor UWL (UD) $k_i \ c^N$	Membrane (M)	Acceptor UWL (UA) $K_i C^N$
0100 100 0110 911	$k_o c^N$		$k_o c^N$
1200 102 3219 A	D_w		D_w
0000 mon 1146	h_{w}		h _w

$$c_{x}^{N} = c_{Ux} \frac{1}{1 + \sum_{r=1}^{j} 10^{\sum_{s=r}^{j} pKa_{s}^{b} - (j-r+1) \times pH} + \sum_{p=1}^{i} 10^{p \times pH - \sum_{s=l}^{p} pKa_{s}^{a}}}$$

GPEN, Kansas, 2006

c_U-total concentration of the drug in the membrane vicinity

 c^{N} -concentration of un-ionized species a and b - acidic and basic pKa i and j- number of acidic and basic pKas x - acceptor or donor (pH in acceptor and donor compartments may be different)

Membrane Composition

- Kansy, M. et al., J. Med. Chem. 41(7):1007 (1998)
 - 1-20% phosphatidylcholine (PC) in hexadecane
- (BAMPA) (Sugano K., et al., Int. J. Pharmaceut. 228:181 (2001)
 - biomimetic lipid composition similar to intestinal brush border membrane.
 - -PC(0.8%)
 - Phosphatidylethanolamine (PE, 0.8%)
 - Phosphatidylserine (PS, 0.2%)
 - Phosphatidylinositol (PI, 0.2%)
 - Cholesterol (CHO, 1.0%)
- Collander R. Acta. Chem. Scand., 5:774 (1951)
 - $\ logP_{PC}/water = log(\alpha) + \beta \ logP_{octanol/water}$
 - with parameters: α =15 and β =0.73 and R²≈0.73

GPEN, Kansas, 2006

Membrane Kinetics

Prediction of rate constants k_i and k_o for partitioning to and out of the membrane. Using the relationship and parameters (γ =0.48 and δ =0.286) from Kubinyi:

$$k_i = \frac{\gamma P}{\delta P + 1}; \quad k_o = \frac{\gamma}{\delta P + 1}$$

Figure 2—Rate constants k_1 and k_2 of the partitioning of homologous quaternary alkylammonium bromides; comparison of experimental volutes from a three-compariment system (sodium bromide added) (2) and values calculated from Eqs. 8 and 9 $(a,b,\beta,and c values from Table$

GPEN, Kansas, 2006

Kubinyi, H., J. Pharm. Sci. 67:262 (1978)

Membrane Accumulation for high log P molecules. Dvorsky-Balaz J. Theor. Biol.185:213 (1997)

Fig. 1. The schematic outline of the system consisting of four alternating aqueous [white (a, c)] and lipoid [grey (b, d)] phases. The lipoid phases represent a membrane and either the hydrophobic core of a globular protein or further membrane. The transport rate is characterized by the rate parameters l, the subscripts indicating the direction of transport (1—from water to a lipoid phase and 2 backwards).

GPEN, Kansas, 2006

Membrane Accumulation for high log P molecules. Dvorsky-Balaz J. Theor. Biol.185:213 (1997) GPEN, Kansas, 2006

Talinolol

- $\log D_{9.4} = 3.14$ (Langguth)
- Basic pKa = 9.8 (QMPRPlus)
- Composite Pgp $K_m = 412 \mu M (149 \mu g/mL)$
 - Two sites high (72 μ M) and low (1570 μ M) (Langguth)
- Solubility = 1.23 mg/mL (pH = 7.4) (Gramatte)
- Peff_{rat} = $0.5 \times 10^{-4} \text{ cm/s}$ (Langguth)
- $Peff_{OMPR} = 1.68 \times 10^{-4} \text{ cm/s}$

GPEN, Kansas, 2006

Image J Analysis of Pgp Micropig H. Tang, AAPS Annual meeting poster, 2002 RT-PCR expression of mRNA Fig 2. RT-PCR detection of p-gp 1 expression in two pigs. The even alternating numbers from 2 to 40 indicate segments from the proximal duodenum to the distal lieum. Western blot of Pgp-1 from proximal to distal SI GPEN, Kansas, 2006

Mouly, S., Paine, M.F. PharmRes-20(10):1595-1598 (2003)

Pgp expression in human SI

P-gp Expression along the Human Small Intestine

Fig. 1. Western blot showing the expression of P-glycoprotein and the control protein villin along the length of a human donor small intestine (HI-31). Segment 1 represents duodenum; segments 3, 5 and 7 represent middle to distal jejunum; and the remaining segments represent ileum. All segments measured approximately 30 cm in length. For a given intestine, the same blot was probed for both proteins, but optimal visualization of each required a different exposure time. HL, human liver homogenate. Caco, homogenate prepared from a representative Caco-2 cell monolayer treated with the CYP3A4P-pg inducing agent 1a,25-(OH)₂-D₂. All lanes of the gel were loaded with 15 µg homogenate protein.

Table II. Relative P-gp Expression* Along the Length of Four Hu-man Donor Small Intestines

	Donor code\$				
Segment†	HI-31	HI-32	HI-35	HI-40	
Duodenum/proximal jejunum					
1/2	0.51	0.63	0.33	0.68	
Middle to distal jejunum					
3/4	0.61	0.61	0.51	0.85	
5/6	0.61	0.81	0.50	0.99	
7/8	0.70	0.72	0.57	0.88	
Ileum					
9/10	0.89	0.72	0.50	0.97	
11/12	0.92	0.74	0.69	1.00	
13/14	0.86	0.73	0.80	0.91	
15/16	1.00	0.86	0.59		
17/18		1.00	1.00		
20		0.89			

- P-gp/villin IOD ratio (normalized to the maximum value).
 † Each segment measured approximately 30 cm in length.
 ‡ HI, human intestine.

GPEN, Kansas, 2006

Conclusions

- Membrane and cellular simulations can improve our understanding of absorption.
- Membrane concentration is important for calibration of *in vitro* transporter kinetics.
- The present state-of-the-art provides useful (not perfect) simulations.

GPEN, Kansas, 2006