

Topic for the next 2 lectures: integral Hoolge Couj and rationality problems

Plan

- 11) The integral Hodge conjecture is false (Kollánis example)
- 12) Still, there is some thopse
- 13) Actually, in some cases there is really no brope that IHC could be true
 14) In some other cases, there is some brope

Kollén's example

Integral Hodge conjecture is false (I Hodge dess & in HPIP(X) st & is not algebrain)

 Clown For general for the have:

• f: P4 > P4 has degree p4 exercises

• f: P4 > P4 has degree p4 exercises

• f: Y -> f(Y) =: X_b is generically 1:1 prove store from exercise 1.

It's not 1:1 on SCY, and f: S -> f(S)

is generically 2:1- Moreover, fs it's

wot 2:1 on D = S and fo D -> f(D)

coding

is 3.2.

Claim: $deg(X_0) = p^35$ [$(X_0) = f_*[Y] = f_*(S[H]) = p^3[H]$ $f_*[P^n] = f^4[P^n]$ $f_*[P^n] = f_*(H) = f^4[H]$ $f_*[H] = f_*(H) = f^4[H]$ $f_*[H] = f^{n-1}[H]$

Claim

Let X be a very general hyperscripte in P^h of degree p^3S and let $C \subseteq X$ be a curve. Then (X,C) ~ (Xo,Co) what do you Sketch of proof 3U and (7,8) Hilbert scheme

Hilbert scheme

Gree P 9)and volve U the fiber of (ZiC) We would like to connect (CEXEPT) w (GEXEPT) over U, " (Xo(Co))
Problem! the geometry of Hills X/PN Can be
very complicated, Last JHills X/PN [PN given by (DEZEPT)] H) (ZEPT)

Hills une = U Hills polynou of the case polynou of the case imduable! Consider Hills XIPK PU PN (Hills XIPN) go is not dominant by construction Consider X & PUU... there on closed selv. this is a (hence X very general) union ofth a countable by construction (X,C) and set (Xo,Co) belong to an open short in the same imedicable component of thills xerips (X,C)~(X0,C0)

Upshot: $X \subset \mathbb{P}^6$ of degree p^35 , $C \subseteq X$ $(X,C) \longrightarrow (X_0,G) \subset \lim_{s \to \infty} \sup_{(X_0,G)} \underbrace{3G \in X_0}_{s \to \infty}$ Important remark: deg (G) = deg (C) What can we say about day(Co)? Rember, fy: Y >> Xo gen 1:1, 2:1 on S, 3:1 D dey (Co) =? (Co) ∈ { \$x[C'o], 2fx[S'], 3 fx[D]} $\Rightarrow dey(G[G]) = dey(f_*Y) = \int f_*Y \cdot [H] = \int Y \cdot f'[H]$ $\times \int Y = \int Y \cdot P[H]$ Ruks (1) Key point: every $C \in X$ has degree Pt. (x would like to be [l], l line) A natural question: what if X is nationally connected?

Is the IHC true?

Levery two points are connected by Auswer: no. Proof Consider X < Pht as the ones considered before (very general, of degree p3)

X c P = P = P = BI P is nationally connected.

In general, for $\widetilde{y} = B_{12}y$ we have: E is the exceptional diller, in particular HK(Y) = HK(Y) & HK-2 (E) $E = P(N_{ZY})$ Hx-2c(Z) (= coolin(Ziy) HK-4E EJ gam gride HK(F) K-LY I I I I H(X) $H^{2i}(\mathbb{P}^{n+l}) = H^{2i}(\mathbb{P}^{n+l}) \oplus \left(\bigoplus_{j=0}^{e-2} H^{2i-2j-2}(X) \cdot t^{j} \right) / t^{i-n} \cup x \text{ is intally}$ (i=x(ti-rax)) is not algebraic. (*)

almys the

For projective boll

We have constructe a notionally connected variety such that BBE H'(Y) which is Hodge (x is (ii)-form) but it's not algebraic. is tope the 29 and 220 2 (2) The previous construction works $i \neq 2, n-1$.

Actually: $Z^{4}(X) := Hdy^{5}(X)/H^{4}(X,Z)dy$ $Z^{2n-2}(X) := Hdy^{2n-2}(X)/H^{2n-2}(X,Z)dy$

(IHC in dey 4,2h-2) (=) =0 a Z2n-2(x)=0

$$H'(Bl_2X) = H'(X) \oplus H^2(E)$$
 $Hdy^2(E) = H^2(E) dy$
 $Hdy^2(E) = Hdy^2(X)/H^2(X) = Hdy^2(E)/H^2(E) dy$
 $H'(Bl_2X) = Hdy^2(X)/H^2(X) = 0$
 $H'(Bl_2X) = Hdy^2(X)/H^2(X) = 0$
 $H'(Bl_2X) = 0$
 $H'(Bl_2X) = Hdy^2(X)/H^2(X)$
 $H'(X) = 0$
 $H'(Bl_2X) = 0$
 $H'(Bl_2X) = 0$
 $H'(Bl_2X) = 0$
 $H'(Bl_2X) = 0$
 $H'(X) \oplus H^2(E) = 0$
 $Hdy^2(E) = Hdy^2(E)$
 $H'(X) \oplus Hdy^2(E) = 0$
 $H'(X) \oplus Hdy^2(E) = 0$
 $H'(X) \oplus H^2(E) \oplus H^2(E) \oplus 0$
 $H'(X) \oplus H^2(E) \oplus$

Upshot 3: 24(X), 21/X) bointional Invariants,

Natural Question: 3× not com st Z(X), Z(X)