Step-1

Stability status: Stability depends on the Eigen values. The difference equation $u_{k+1} = Au_k$ will have following stability status corresponding to the Eigen values:

Stable: If all Eigen values are $|\lambda_i| < 1$.

Neutrally stable: If some $|\lambda_i| < 1$ and some are $|\lambda_i| = 1$

Unstable: If at least one Eigen value has $|\lambda_i| > 1$.

Step-2

To find the value of α which produces instability in the following:

$$v_{n+1} = \alpha v_n + \alpha w_n$$

$$w_{n+1} = \alpha v_n + \alpha w_n$$

Step-3

Above defined equations can be converted into the following equation of matrices:

$$u_{k+1} = Au_k$$

Here, matrices u_{k+1} , A, u_k are defined as follows:

$$A = \begin{bmatrix} \alpha & \alpha \\ \alpha & \alpha \end{bmatrix}$$

$$u_{k+1} = \begin{bmatrix} v_{n+1} \\ w_{n+1} \end{bmatrix}$$

$$u_k = \begin{bmatrix} v_n \\ w_n \end{bmatrix}$$

Step-4

Calculate the Eigen values of matrix \boldsymbol{A} by doing following calculations:

$$\det(A - \lambda I) = 0$$

$$\alpha^2 + \lambda^2 - 2\alpha\lambda - \alpha^2 = 0$$

$$\lambda(\lambda - 2\alpha) = 0$$

$$\lambda = 0$$

Or
$$\lambda = 2\alpha$$

Step-5

Difference equation $u_{k+1} = Au_k$ will have following stability status:

Stable: If $|\lambda_i| < 1$ or

 $|2\alpha| < 1$

 $|\alpha| < \frac{1}{2}$

Unstable: If $|\lambda_i| > 1$ or

 $|2\alpha| > 1$

 $|\alpha| > \frac{1}{2}$

Step-6

Therefore, value of $\frac{|\alpha| > \frac{1}{2}}{|\alpha|}$ gives the instability in $u_{k+1} = Au_k$