可燃气体传感器

(型号: MQ-4)

使用说明书

MQ-4 可燃气体传感器

产品描述

MQ-4 气体传感器所使用的气敏材料是在清洁空 气中电导率较低的二氧化锡(SnO2)。当传感器所处 环境中存在可燃气体时, 传感器的电导率随空气中 可燃气体浓度的增加而增大。使用简单的电路即可 将电导率的变化转换为与该气体浓度相对应的输 出信号。

MQ-4 气体传感器对甲烷灵敏度高,对酒精及其 他一些干扰性气体有较强的抗干扰能力。

传感器特点

本品在较宽的浓度范围内对甲烷有良好的灵敏度,具有长寿命、低成本、驱动电路简单等优点。

主要应用

广泛适用于家庭用气体泄漏报警器、工业用可燃气体报警器以及便携式气体检测器。

技术指标

表一

产品型号			MQ-4
产品类型			半导体气体传感器
标准封装			胶木、金属罩
检测气体			甲烷
检测浓度			300~10000ppm(甲烷)
标准 电路 条件	回路电压	$V_{\rm c}$	≤24V DC
	加热电压	$V_{\rm H}$	5.0V±0.1V AC or DC
	负载电阻	$R_{\scriptscriptstyle L}$	可调
标测条下敏件准试件气元特	加热电阻	R _H	26Ω±3Ω (室温)
	加热功耗	P _H	≤950mW
	灵敏度	S	Rs(in air)/Rs(in 5000ppm 甲烷)≥5
	输出电压	Vs	2.5V∼4.0V (in 5000ppm CH₄)
性	浓度斜率	α	≤0.6 (R _{5000ppm} /R _{1000ppm} CH ₄)
标准 测试 条件	温度、湿度		20℃±2℃; 55%±5%RH
	标准测试电路		Vc:5.0V±0.1V; V _H :5.0V±0.1V
	预热时间		不少于48小时

图 1 传感器结构图

基本电路

图 2: MQ-4 测试电路

说明:上图为 MQ-4 传感器的基本测试电路。该传感器需要施加 2 个电压:加热器电压 (V_H) 和测试电压 (V_C) 。其中 V_H 用于为传感器提供特定的工作温度,可用直流电源或交流电源。 V_{RL} 是传感器串联的负载电阻 (R_L) 上的电压。 V_C 是为负载电阻 R_L 提供测试的电压,须用直流电源。

传感器特性描述

图3: 传感器典型的灵敏度特性曲线

图中纵坐标为传感器的电阻比(Rs/R_o),横坐标为气体浓度。Rs表示传感器在不同浓度气体中的电阻值,R_o表示传感器在洁净空气中的电阻值。图中所有测试都是在标准试验条件下完成的。

图4: 传感器典型的温度、湿度特性曲线

图中纵坐标是传感器的电阻比(Rs/R_{so})。Rs表示在含 5000ppm甲烷、不同温/湿度下传感器的电阻值。 Rs_{so} 表示在5000ppm甲烷、 $20^{\circ}C/55$ %RH环境条件下传感器的电阻值。

图 5 表示传感器在不同浓度甲烷中所对应的 V_{RL} 值。所用负载 (R_L) 为 $4.7 \, K\Omega$,图中所有测试都是在标准试验条件下完成的。

图 6: 响应恢复特性曲线

图 6 表示传感器先被放入检测气氛中,然后再从该 气氛中移走,这个过程中传感器的 V_R值变化情况。

图 7: 长期稳定性曲线

图中所有测试都是在标准试验条件下完成的, 横坐标为观察时间, 纵坐标为 V_n值。

注意事项

1 必须避免的情况

1.1 暴露于可挥发性硅化合物蒸气中

传感器要避免暴露于硅粘接剂、发胶、硅橡胶、腻子或其它存在可挥发性硅化合物的场所。如 果传感器的表面吸附了硅化合物蒸气,传感器的敏感材料会被硅化合物分解形成的二氧化硅包裹, 抑制传感器的敏感性,并且不可恢复。

1.2 高腐蚀性的环境

传感器暴露在高浓度的腐蚀性气体(如 $\mathrm{H}_2\mathrm{S}$, SO_x , Cl_2 , HCl 等)中,不仅会引起加热材料及传感器引线的腐蚀或破坏,并会引起敏感材料性能发生不可逆的劣变。

1.3 碱、碱金属盐、卤素的污染

传感器被碱金属尤其是盐水喷雾污染后,或暴露在卤素如氟利昂中,也会引起性能劣变。

1.4 接触到水

溅上水或浸到水中会造成传感器敏感特性下降。

1.5 结冰

水在传感器敏感材料表面结冰会导致敏感层碎裂而丧失敏感特性。

1.6 施加电压过高

如果给传感器或加热器施加的电压高于规定值,即使传感器没有受到物理损坏或破坏,也会造成引线和/或加热器损坏,并引起传感器敏感特性下降。

1.7 电压加错管脚(仅限于旁热式系列)

对 6 脚型的传感器, 2、5 为加热电极, (1、3) / (4、6) 为测试用电极, 1 和 3 导通, 4 和 6 导通。如果电压加在 1、3 或 4、6 管脚会导致引线烧断, 加在 2、4 管脚上则取不到信号。 (见右图 8)

图 8: 传感器引线示意图

2 尽可能避免的情况

2.1 凝结水

在室内使用条件下,轻微凝结水对传感器性能会产生轻微影响。但是,如果水凝结在敏感层表面并保持一段时间,传感器特性则会下降。

2.2 处于高浓度气体中

无论传感器是否通电,在高浓度气体中长期放置,均会影响传感器特性。如用打火机气直接喷向传感器,会对传感器造成极大损害。

2.3 长期贮存

传感器在不通电情况下长时间贮存,其电阻会产生可逆性漂移,这种漂移与贮存环境有关。传感器应贮存在不含可挥发性硅化合物的密封袋中。经长期贮存的传感器,在使用前需要更长时间通电以使其达到稳定。贮存时间及对应的老化时间建议如表 2 所示。

贮存时间	建议老化时间
1 个月以下	不低于 48 小时
1 ~ 6 个月	不低于 72 小时
6 个月以上	不低于 168 小时

表 2

2.4 长期暴露在极端环境中

无论传感器是否通电,长时间暴露在极端条件下,如高湿、高温或高污染等极端条件,传感器性能将受到严重影响。

2.5 振动

频繁、过度振动会导致传感器内部引线产生共振而断裂。在运输途中及组装线上使用气动改锥/ 超声波焊接机会产生此类振动。

2.6 冲击

如果传感器受到强烈冲击或跌落会导致其引线断裂。

- 2.7 使用条件:
- 2.7.1 对传感器来说手工焊接为最理想的焊接方式,建议焊接条件如下:
 - 助焊剂:含氯最少的松香助焊剂
 - 恒温烙铁
 - 温度: 250℃
 - 时间:不大于3秒
- 2.7.2 使用波峰焊时应满足以下条件:
 - 助焊剂:含氯最少的松香助焊剂
 - 速度: (1-2) 米/分钟
 - 预热温度: (100±20) °C
 - 焊接温度: (250±10) °C
 - 1次通过波峰焊机

违反以上使用条件将使传感器特性下降。