Module 2 – Electricity Spot Markets (e.g. day-ahead)

2.1 From bilateral contracts to the electricity pool

- Bilateral contracts are for a direct exchange of energy between a buyer and a seller, in a
 decentralized fashion
- They may both be producers and/or consumers
- Most likely a broker is involved...
- Eventually, the system operator is informed about the trades that occurred

Types of bilateral trading

Customized long-term contracts:

- very flexible contracts (basically, you can try to negotiate whatever you want)
- private transactions (conditions are fully unknown to others)
- large transactions costs
- large amounts of energy, over long periods of times

Types of bilateral trading

Customized long-term contracts:

- very flexible contracts (basically, you can try to negotiate whatever you want)
- private transactions (conditions are fully unknown to others)
- large transactions costs
- large amounts of energy, over long periods of times

• Over the counter (OTC) trading:

- standard contracts
- lower transactions costs
- typically, smaller amount and short lead times

Types of bilateral trading

Customized long-term contracts:

- very flexible contracts (basically, you can try to negotiate whatever you want)
- private transactions (conditions are fully unknown to others)
- large transactions costs
- large amounts of energy, over long periods of times

Over the counter (OTC) trading:

- standard contracts
- lower transactions costs
- typically, smaller amount and short lead times

Electronic trading:

- based on an electronic platform that consistently match supply and offer bids
- virtually no transactions costs
- very fast, therefore allowing trading "until the last second"

Placing it into perspective...

- Bilateral trading may be interesting...
- but the pool provides a centralized form of system management, which seems to be increasingly preferred in Europe for day-ahead markets.

Example:

- Nord Pool Spot is the Europe's largest power market
- 505 TWh of energy traded in 2016
- Nordic and Baltic day-ahead auction Elspot represents 391 TWh of energy traded
- Average system price of 26.91€
- In Elspot: 380 buyers/sellers >2000 orders a day
- Let us focus on pools and auctions for now...

Auctions in an electricity pool

- All generation bids and consumption offers are placed at the same time
- No-one knows about others' bids and offers
- A centralized market-clearing algorithm decides about bids and offers that are retained
- Eventually, the system operator is informed about the trades that occurred

An example auction setup

- Deadline for offers: 29th of January, 12:00 Delivery period: 30th of January, 11:00-12:00
- Supply and demand offers include:

Demand: (for a total of 1065 MWh)

Company	Supply/Demand	id	Amount (MWh)	Price (€/MWh)
CleanRetail	Demand	D_1	250	200
El4You	Demand	D_2	300	110
EVcharge	Demand	D_3	120	100
QualiWatt	Demand	D_4	80	90
IntelliWatt	Demand	D_5	40	85
El4You	Demand	D_6	70	75
CleanRetail	Demand	D_7	60	65
IntelliWatt	Demand	D_8	45	40
QualiWatt	Demand	D_9	30	38
IntelliWatt	Demand	D_{10}	35	31
CleanRetail	Demand	D_{11}	25	24
El4You	Demand	D_{12}	10	16

An example auction setup

DTU

Supply: (for a total of 1435 MWh)

Company	Supply/Demand	id	Amount (MWh)	Price (€/MWh)
$RT^{\mathbb{R}}$	Supply	G_1	120	0
WeTrustInWind	Supply	G_2	50	0
BlueHydro	Supply	G_3	200	15
$RT^{\mathbb{R}}$	Supply	G_4	400	30
KøbenhavnCHP	Supply	G_5	60	32.5
KøbenhavnCHP	Supply	G_6	50	34
KøbenhavnCHP	Supply	G_7	60	36
DirtyPower	Supply	G_8	100	37.5
DirtyPower	Supply	G_9	70	39
DirtyPower	Supply	G_{10}	50	40
$RT^{\mathbb{R}}$	Supply	G_{11}	70	60
$RT^{\textcircled{R}}$	Supply	G_{12}	45	70
SafePeak	Supply	G_{13}	50	100
SafePeak	Supply	G_{14}	60	150
SafePeak	Supply	G_{15}	50	200

That is a lot of offers to match... but how?

Merit order and equilibrium

DTU

- Consumption offers are ranked in *decreasing* price order
- Supply offers are ranked in increasing price order
- This defines the merit order
- A "magic" point appears: the equilibrium point between supply and demand...

Social welfare and its maximization

DTU

- Social welfare is defined as the area between consumption and generation
- This equilibrium point is that which allows to maximize social welfare

- Why?
 - Any buyer is to pay at most what he was ready to pay
 - Any seller will get at minimum the price he was ready to sell for

Use the self-assessment quizz to check your understanding!

