stribution

Lesson: Introduction to Probability Di							
Defini	tions:						
Ra	ndom	Variable					
-	"X" (Captial	letter X)					
-	a single valu	e for each outcome in					
	Discrete	Variable					
-		ate from each other					
-	finite numbe	er of outcomes					
-	data is coun	ted					
	ntinuous	Variable					
-		ues of x are elements (
-	infinite num	ber of outcomes					
-	data is meas	ured					

_ (cannot break it smaller

_ (can break it smaller of real numbers +than 1)

an experiment

Examples:

Classify each of the following random variables as discrete or continuous:

Random Variables	Discrete OR Continuous	
1) the number of phone calls made by a person	D	
2) the length of time the salesperson spent on the telephone	<u>C</u>	
3) a company's annual sales	C Hof fransaction	
4) the distance from earth to the sun	C	
5) the number of widgets sold by a company	D	

Distribution outcomes of the distribution are equally likely in any single trial table to list all the outcomes with - the sum of the probability is one

Ex

xa	mple:		their associated probabilities.
	Random	Probability,	their associated probabilities.
	Variable, X	P (X)	1.0
	1	$\frac{1}{6}$	0.9
	2	$\frac{1}{6}$	example of interior 0.6 probability ion 0.5 probability ion 0.5 probability ion 0.4
	3	$\frac{1}{6}$	0.5 No. 4 1871 Och
	4	$\frac{1}{6}$	0.3 ————————————————————————————————————
	5	$\frac{1}{6}$	0.1
	6	$\frac{1}{6}$	face 1 face 2 face 3 face 4 face 5 face 6

Expected Value.

E

- expected value

-E(X)

- predicted average of all possible outcomes of a probability experiment

we don't round the value to the nearest one even if it is discrete variable

To calculate probability distribution

$$P(x) = \frac{1}{n}$$

$$E(X) = \sum_{i=1}^{n} x_i P(x_i)$$

$$P(x_i) = \sum_{i=1}^{n} x_i P(x_i)$$

$$P(x_i) = \sum_{i=1}^{n} x_i P(x_i)$$

$$P(x_i) = \sum_{i=1}^{n} x_i P(x_i)$$

Examples:

Given the following probability distribution, determine the expected values:

(a)

Random Variable,
$$X$$

Probability, $P(X)$

5 0.3

10 0.25

15 0.45

 $E(X) = 10.75$

$$x \cdot P(x) + x \cdot P(x) + x \cdot P(x)$$

 $E(x) = 5 \times 0.3 + 10 \times 0.25 + 15 \times 0.45$
 $= 10.75$

(b)

Random Probability, Variable, X P(x)

1 000 0.25

100 000 0.25

1 000 000 0.25

10 000 000 0.25 $E(X) = \frac{0.25 (1000 + 100 000 + 100 000)}{2 \times 175 250}$

(c)					
Random	Probability,				
Variable, X	P(x)				
1	$\frac{1}{6}$				
2	$\frac{1}{5}$				
3	$\frac{1}{4}$				
4	$\frac{1}{3}$				
5	$\frac{1}{20}$				
$E(X) = \frac{1}{29}$	<u>20</u> +2(ち)+3(本)+特(3)+5(30)			
= 10					
= 2.9					