Lecture 6

1. Interpolating polynomials

Sometimes we want to find a function that takes some prescribed values at certain given points. Polynomials help us to find such a function, which has no sharp corners.

Theorem

For $n \in \mathbb{N}$, let x_1, x_2, \dots, x_n be distinct real numbers and y_1, \dots, y_n any real numbers.

Then there is a unique polynomial p(n) of degree $\leq n-1$ such that $p(x_i) = y_i$ for all $i \in \{1, ..., n\}$

Remark: If the x_i 's are not distinct, e.g. $x_1 = x_2$, then there may not be any function with $f(x_1) = y_1$ and $f(x_2) = y_2$, because we may have $y_1 \neq y_2$. (if. "vertical line test")

Examples

n = 1: Given $x_1 \in R$ and $y_1 \in R$ we can find a contrast function p(x) with $p(x_1) = y_1$,

namely $p(x) = y_1$ for all $x \in R$

n=2: Given x_1 , x_2 , y_1 , $y_2 \in R$ with $x_1 \neq x_2$ we can find a linear function p(x) with $p(x_1) = y_1$ and $p(x_2) = y_2$, Writing

$$p(x) = m. x + b$$

we find

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 and $b = \frac{y_1 \cdot x_2 - y_2 \cdot x_1}{x_2 - x_1}$

n=2,

 $y_2 = 0$: The formula simplifies to $y_1 = 1$

$$p(x) = \frac{x - x_2}{x_1 - x_2}$$

with $p(x_1) = 1$ and $p(x_2)$

 $n \ge 2$: $y_1 = 1$, $y_2 = y_3 = \cdots = y_n = 0$: Taking products of the previous case we can take

$$p(x) = \frac{x - x_2}{x_1 - x_2} \cdot \frac{x - x_3}{x_1 - x_3} \cdots \frac{x - x_n}{x_1 - x_n}$$

Here each factor is a linear function. There are n-1 factors, so p(x) has degree = n-1. each factor has value 1 at x_1 , so $p(x_1) = 1$,

For x_i with $i \ge 2$ there is a f actor with value 0, so $p(x_i) = 0$ if $i \ge 2$.

The polynomial in the last example is called a Lagrange basis polynomial.

Given *n* distinct numbers x_1, \dots, x_n

there are n such Lagrange basis polynomials, which vanish at all x_i 's except for one, where their value is 1.

Proof of theorem on interpolating polynomials:

Uniqueness: Suppose that p(x) and q(x) are polynomials of degree $\le n-1$ with $p(x_i) = y_i$ and $q(x_i) = y_i$ for all $i \in \{1, \dots, n\}$. Then p-q is a polynomial of degree $\le n-1$ with $(p-q)(x_i) = p(x_i) - q(x_i) = 0$ for all $i \in \{1, \dots, n\}$ so p-q has n roots. This can only happen when (p-q)(x) = 0 for all $x \in R$, i.e. p(x) = q(x), so p and q are the same function.

Existence: First consider the Lagrange basis polynomials $p_1(x), ..., p_n(x)$ with

$$p_{1}(x) = \frac{x - x_{2}}{x_{1} - x_{2}} \cdot \frac{x - x_{3}}{x_{1} - x_{3}} \cdots \frac{x - x_{n}}{x_{1} - x_{n}} \qquad p_{1}(x_{1}) = 1, \ p(x_{2}) = \cdots = p(x_{n}) = 0$$

$$p_{2}(x) = \frac{x - x_{1}}{x_{2} - x_{1}} \cdot \frac{x - x_{3}}{x_{2} - x_{3}} \cdots \frac{x - x_{n}}{x_{2} - x_{n}} \qquad p_{2}(x_{2}) = 1, \ p(x_{1}) = p(x_{3}) = \cdots = p(x_{n}) = 0$$

$$p_{n}(x) = \frac{x - x_{1}}{x_{n} - x_{1}} \cdot \frac{x - x_{2}}{x_{n} - x_{2}} \cdots \frac{x - x_{n-1}}{x_{n} - x_{n-1}} \qquad p_{n}(x_{n}) = 1, \ p(x_{1}) = \cdots = p(x_{n-1}) = 0$$

We can take $p(x) = y_1$. $p_1(x) + y_2$. $p_2(x) + \cdots + y_n$. $p_n(x)$, which has degree ≤ 1 and $p(x_i) = y_i$ for all $i \in \{1, ..., n\}$.

Example

Find the formulas for the unique quadratic polynomial through (1,-3), (2,2) and (3,-1).

Solution: We find first find the Langrange basis polynomials for the points 1, 2, 3:

$$p_1(x) = \frac{x-2}{1-2} \cdot \frac{x-3}{1-3} = \frac{1}{2}(x^2) - 2\frac{1}{2}x + 3,$$

$$p_2(x) = \frac{x-1}{2-1} \cdot \frac{x-3}{2-3} = -(x-1)(x-3) = -x^2 + 4x - 3,$$

$$p_3(x) = \frac{x-1}{3-1} \cdot \frac{x-2}{3-2} = \frac{1}{2}(x-1) = \frac{1}{2}x^2 - 1\frac{1}{2}x + 1,$$

We have

$$p(x) = -3. \ p_1(x) + 2. \ p_2(x) - 1. \ p_3(x)$$

$$= -3. \left(\frac{1}{2}x^2 - 2\frac{1}{2}x + 3\right) + 2(-x^2 + 4x - 3) - \left(\frac{1}{2}x^2 - 1\frac{1}{2}(x) + 1\right)$$

$$= -1\frac{1}{2}x^2 + 7\frac{1}{2}x - 9 - 2x^2 + 8x - 6 - \frac{1}{2}x^2 + 1\frac{1}{2}x - 1$$

$$= -4x^2 + 17x - 16$$

Check

$$p(1) = -4 + 17 - 16 = -3$$

$$p(2) = -4.4 + 17.2 - 16 = -16 + 34 - 16 = 2$$

$$p(3) = -4.9 + 17.3 - 16 = -36 + 51 - 16 = -1$$

$$(p(x) \text{ has a maximum at } 2\frac{1}{8}, \text{ where } p(2\frac{1}{8}) = 2\frac{1}{16} \text{ the roots of } p \text{ are at } 2\frac{1}{8} - \frac{\sqrt{33}}{8} \text{ and } 2\frac{1}{8} + \frac{\sqrt{33}}{8})$$