AR 13 SET-1

Code: 13BS1002

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Regular / Supplementary Examinations, July, 2015 ENGINEERING MATHEMATICS – II

(Common to EEE & ECE)

Time: 3 Hours Max. Marks: 70

PART-A

Answer all Questions

 $(10 \times 1 = 10 \text{ Marks})$

- 1. a) Write the Iteration formula for Newton Raphson method
 - b) Write the normal equations to fit $y = ab^x$
 - c) Find $\Delta^2(e^{2x})$
 - d) State Newton's forward interpolation formula
 - e) State the Picard's formula for solving the differential equation $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$.
 - f) State the Milner's Predictor and corrector's formulae for solving first order differential equation
 - g) Find $L[e^{-3t} \sin 3t]$
 - h) Find $L^{-1}\left[\frac{1}{s^2+4}\right]$
 - i) Eliminate f from $z = f(x^2 + y^2)$
 - j) Solve the partial differential equation (p+q)(z-px-qy)=1

PART-B

Answer one question from each unit

 $(5 \times 12 = 60 \text{ Marks})$

UNIT-I

- 2. a) Using Newton Raphson method find a real root of the equation $3x \cos x 1 = 0$
 - b) Fit a curve of the form y = ax + b from the following data

Х	1980	1985	1990	1995
У	5	15	25	35

(OR)

- 3. a) Using Regula Falsi method find a real root of the equation $x^3 + 2x 5 = 0$
 - b) Fit a curve of the form $y = ax^b$ to the data given below.

х	1	4	9	16	25
у	0.25	0.5	0.75	1	1.25

Code: 13BS1002

4. a) Evaluate $\Delta(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)$ by taking the length h=1

b) From the following data

X	0	1	2	3	4	5	6
f(x)	1	0.5	0.2	0.1	0.0588	0.0385	0.027

Evaluate $\int_{0}^{6} f(x) dx$ by Simpon's $\frac{3}{8}$ rule

(OR)

5. Calculate the approximate value of $\sin x$ for x = 0.54 and x = 1.36 using Newton forward and backward interpolation formula.

X	0.5	0.7	0.9	1.1	1.3	1.5
sin x	0.4794	0.6442	0.7833	0.8912	0.9636	0.9975

UNIT-III

6. Using Runge Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2, 0.4.

(OR)

7. a) Solve $\frac{dy}{dx} = y + e^{2x}$, y(0) = 0 by Picard's method and find y(0.1).

b) Solve
$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$ by Modified Euler's method to find $y(0.2)$

8. a) Find $L\left(\frac{1-\cos t}{t}\right)$

b) Find the inverse Laplace transform of $\frac{e^{-fs}}{(s^2+1)(s^2+9)}$

9. Solve the differential equation using Laplace transform $y'' - 2y' + y = e^t$ with y(0) = 2, y'(0) = -1

UNIT-V

10. a) Solve $z^2(p^2x^2 + q^2) = 1$.

b) Solve (mz - ny) p + (nx - lz)q = ly - mx(OR)

11. Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x,0) = 3\sin fx$, u(0,t) = 0, u(1,t) = 0 where 0 < x < 1, t > 0

AR13/SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

IB. Tech II Semester Regular / Supplementary Examinations, July, 2015

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to MECH and CIVIL Branches)

Time: 3 hours Max Marks: 70

PART-A

Answer all questions

[10 x 1=10M]

- 1. a) Define Kirchhoff's current law?
 - b) What is the effective inductance of three inductors L₁, L₂, L₃ connected in parallel?
 - c) Write the emf equation of a DC generator?
 - d) What are the losses occur in DC motor?
 - e) What are the advantage of Direct method of DC motor testing?
 - f) Sketch the torque-current characteristics DC series Motor?
 - g) List the losses in a 1-phase transformer?
 - h) Define efficiency of transformer?
 - i) Define ripple factor of a half wave rectifier circuit?
 - j) Define alpha and beta of a transistor?

PART-B

Answer one question from each unit

[5x12=60M]

8M

UNIT-I

2. a) Find the voltage drop across 1 Ω resistor and the power through 2 Ω resistor?

b) Find the total capacitance across the terminal x-y shown in figure below.

(OR)

3. a) Find the total resistance across the terminal x-y shown in figure below.

6M

b) Find the current in 10 Ω resistor and the voltage V_1 , V_s shown in figure below?

AR13/SET-1

UNIT-II

- 4. a) Explain in detail about the operating characteristics of DC series and shunt generator? **8M** b) A 250 V compound generator has following specifications: armature resistance = 0.4Ω , series field resistance = 0.2Ω , shunt field resistance = 125Ω . If the generator supplies 10 kW at rated voltage, then find the emf generated in the armature when the machine is connected to
 - i) long shunt ii) short shunt

Neglect the contact drop and armature reaction in the machine.

4M

(OR)

- 5. a) Explain in detail about the construction and principle of DC generator with a neat sketch?

 6M
 - b) Discuss in detail about Swinburne's method of DC motor testing. Mention it advantage and disadvantages?

 6M

UNIT-III

- a) Derive the expression of efficiency and voltage regulation of 1-phase transformer?
 b) Discuss various applications of induction motor?
 (OR)
- 7. a) Derive the torque equation for an induction motor and discuss its characteristics?

 6M
 b) Derive the emf equation of an alternator?

 6M

UNIT-IV

- 8. a) Discuss in detail about various types of indicating instruments with their features and applications?
 - b) Explain the construction and principle of PMMC instrument?

(OR)

- 9. a) List merits and demerits of moving coil instrument? 6M
 - b) Explain the principle and construction of repulsion type moving iron instrument? **6M**

<u>UNIT-V</u>

- 10. a) Explain the basic principle of PN junction diode with a neat sketch and discuss its volt-ampere characteristics?
 - b) Draw a neat circuit diagram of full wave rectifier circuit and explain its principle of operation and wave form.

 6M

(OR)

- 11. a) With a neat sketch explain the operation of bridge rectifier circuit? **6M**
 - b) Sketch the V-I characteristics of SCR. Explain in detail about various region of operation?

6M

6M

13CS1002 AR13/SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

IB. Tech II Semester Regular / Supplementary Examinations, July, 2015 DATA STRUCTURES (Common to CSE and IT)

Time: 3 hours			as: 70
		PART- A Answer all questions	[10 x 1=10M]
1.	a)	What is recursion?	
1.	b)		
	c)		
	d)		
	e)	•	
	f)		
		- · · · · · · · · · · · · · · · · · · ·	
	g) h)		
	h)		
	i)		
	j)		
		PART – B	
Ans	swer (one question from each unit	[5x12=60M]
		<u>UNIT – I</u>	
2.		Write and explain the concept of algorithm with a suitable example.	[12M]
		(OR)	
3.	a)	Write a recursive algorithm to find the factorial of a given number.	[6M]
	b)	What is data structure? Discuss in detail about various linear data structures.	[6M]
		$\underline{\mathbf{UNIT}} - \underline{\mathbf{II}}$	
4.	a)	What is a queue? Explain various operations performed on it.	[6M]
	b)	Write a program to implement stack using array.	[6M]
		(OR)	
5.		Write a C program to implement following operations on a doubly linked list	[12M]
		i. Insertion ii. Deletion	

13CS1002 AR13/SET-2

<u>UNIT – III</u>

6. Write a C program for binary search. [4M] a) b) Write an algorithm for selection sort and explain it with an example. [8M] (OR) 7. Write a program for implementing quick sort and trace it with an example. [12M] UNIT - IV8. a) Differentiate tree and binary tree. [3M] Discuss in detail about various tree traversal techniques. [9M] b) (OR) Explain the concept of binary search tree. Write a program to implement insert 9. [12M] operation on a binary search tree. $\underline{UNIT-V}$ 10. Explain in detail about the concept of minimum spanning tree. [6M] b) Write and explain DFS algorithm. [6M] (OR) 11. By means of suitable example, explain how to find shortest path in a graph. [6M] a) [6M] b) Describe how to represent a graph using adjacency list.