ARBOL DE EXPANSIÓN MINIMA

Considere el siguiente grafo:

¿En qué orden se agregan las aristas al árbol usando el algoritmo de Kruskal?

V	Distancia ordenada
a – d	1
a – e	2
d – e	3
a – b	4
b - f	5
f – g	6
c – k	7
g – c	8
g – k	9
b – c	10
e-f	11
k – j	12
f — i	13
d - h	14
h – i	15
i — j	16
j – g	17
h – e	18

Por el algoritmo de Kruskal, las aristas se agregan en el siguiente orden:

- **b** f
- g-c d-h

- ® a − e
- f g
- k j

- ® a − b
- c k
- f i

® a, d, e, b, f, g, c, k, j, i, h

¿En qué orden se agregan las aristas al árbol usando el algoritmo de Prim?

Por el algoritmo de Prim, las aristas se agregan en el siguiente orden:

$$b - f$$

d - h

$$g - c$$

¿Cuál es el costo del árbol de expansión mínima?

$$C = 1 + 2 + 4 + 5 + 6 + 8 + 7 + 12 + 13 + 14 = 72$$

