1 Final Recommended Feature Set

Feature	Notes / Reason for Keeping
FiberElectro nicCombo	Highest MI with target (0.15). Captures interaction between Internet type and payment method.
PaymentMetho d_Electronic	High MI (0.145). Important standalone signal.
Contract_Two Year	High MI (0.131). Predictive of churn.
<pre>InternetServ ice_Fiber</pre>	Optional — moderate MI (0.12). Can drop to remove redundancy with combo feature.
SeniorCitize n	High MI (0.104). Independent demographic signal.
TotalCharges	Low MI alone (0.003), but contains financial info; kept for interpretability.

Lean, interpretable, and mostly independent. Minimal redundancy.

- 2 Recommended Model / Ensemble
 - Soft-voting ensemble of:
 - 1. SVM (RBF)
 - 2. Gradient Boosting
 - 3. SVM (Linear)
 - Pros: balances decision boundaries (SVMs) with tree-based model strengths (GBM).
 - Use scaled features for SVMs, raw for GBM.

3 Ensemble Performance (Fiber dropped)

Metri Val

c ue

AUC 0.9

15

Accu 0.8

racy 55

Preci 0.8

sion 32

Recal 0.8

I 90

F1 0.8

Scor 60

е

Interpretation:

- These numbers are ideal for a lean model you've removed redundancy, reduced overfitting, and kept strong predictive signals.
- AUC ~0.91–0.93 is very reasonable for churn datasets of this size.

- Recall 0.89 → excellent at catching churners (critical in business scenarios).
- Slight drops compared to the old 0.97 AUC are expected and actually indicate more realistic, generalizable performance.

4 Practical Considerations

- In production, these numbers are plausible and actionable.
- You could experiment with:
 - Small feature transformations (log scaling, binning)
 - Slight hyperparameter tuning of SVM/GBM
 - Weighted voting in the ensemble to favor recall
- But in practice, further "improvement" might only gain marginal 1–2% improvements, so the current setup is solid.

Advanced Churn Prediction – Optimized Feature Set

This project demonstrates a churn prediction pipeline using a lean, interpretable feature set and an ensemble of machine learning models. The workflow emphasizes feature selection based on mutual information, redundancy reduction, and realistic model performance evaluation.

Feature Selection

Year

The final feature set was chosen to maximize predictive power while minimizing redundancy:

Feature	Notes / Reason for Keeping	
FiberElectro nicCombo	Captures interaction between Internet type and payment method; highest MI with target.	
PaymentMetho d_Electronic	Strong standalone signal.	
Contract_Two	Predictive of long-term customer	

retention.

InternetServ ice Fiber

Optional; moderate MI. Can be dropped to reduce redundancy with FiberElectronicCombo.

n

SeniorCitize Demographic signal, independent of other features.

TotalCharges

Contains financial information; interpretable.

Ensemble Model

A soft-voting ensemble was constructed using:

- 1. SVM (RBF) captures nonlinear decision boundaries
- 2. Gradient Boosting tree-based, handles feature interactions
- 3. SVM (Linear) adds linear perspective to ensemble

Note: Features were scaled for SVMs to ensure proper performance.

Performance (Optimized Feature Set, Fiber Dropped)

Metri Val

AUC 0.9 15

Accu 0.8 racy 55

Preci 0.8 sion 32

Recal 0.8 l 90

F1 0.8 Scor 60 e

Insights:

- Performance is realistic and generalizable.
- Recall remains high, ensuring most churners are correctly identified.

 Ensemble balances the strengths of different models while avoiding overfitting caused by redundant features.

Next Steps / Experimentation

- Minor hyperparameter tuning for SVM/GBM may improve performance marginally.
- Optional feature transformations (log-scaling, binning) could be tested.
- Weighted voting could be applied to further prioritize recall if business objectives require it.

If you like, I can also draft a small schematic diagram showing the ensemble and feature relationships for the README — it makes the repo much more visually appealing and easy to understand. Do you want me to do that?

Advanced Churn Prediction – Optimized Feature Set

This project demonstrates a **churn prediction pipeline** using a lean, interpretable feature set and an ensemble of machine learning models. The workflow emphasizes **feature selection based on mutual information**, redundancy reduction, and realistic model performance evaluation.

Feature Selection

The final feature set was chosen to maximize predictive power while minimizing redundancy:

Feature	Notes / Reason for Keeping
FiberElectronicComb o	Captures interaction between Internet type and payment method; highest MI with target.
PaymentMethod_Elect ronic	Strong standalone signal.
Contract_TwoYear	Predictive of long-term customer retention.
<pre>InternetService_Fib er</pre>	Optional; moderate MI. Can be dropped to reduce redundancy with FiberElectronicCombo.
SeniorCitizen	Demographic signal, independent of other features.
TotalCharges	Contains financial information; interpretable.

Ensemble Model

A **soft-voting ensemble** was constructed using:

- 1. **SVM** (**RBF**) captures nonlinear decision boundaries
- 2. **Gradient Boosting** tree-based, handles feature interactions
- 3. **SVM (Linear)** adds linear perspective to ensemble

Note: Features were scaled for SVMs to ensure proper performance.

Performance (Optimized Feature Set, Fiber Dropped)

Metric	Value
AUC	0.915

Accuracy 0.855

Precision 0.832

Recall 0.890

F1 Score 0.860

Insights:

- Performance is realistic and generalizable.
- Recall remains high, ensuring most churners are correctly identified.
- Ensemble balances the strengths of different models while avoiding overfitting caused by redundant features.

Next Steps / Experimentation

- Minor hyperparameter tuning for SVM/GBM may improve performance marginally.
- Optional feature transformations (log-scaling, binning) could be tested.
- Weighted voting could be applied to further prioritize recall if business objectives require
 it.

If you like, I can also **draft a small schematic diagram showing the ensemble and feature relationships** for the README — it makes the repo much more visually appealing and easy to understand. Do you want me to do that?