ДИСКРЕТНИ СТРУКТУРИ II ТЕОРИЯ I

1. Регулярен израз.

Регулярен израз над азбуката Σ е стринг над азбуката $\Sigma \cup \{\emptyset, \cdot\,, \cup\,, ^*\,\}$, който може да се дефинира индуктивно както следва:

- \emptyset и всеки елемент от Σ е регулярен израз;
- Ако α и β са регулярни изрази, то $\alpha \cdot \beta$, $\alpha \cup \beta$ и α^* са регулярни изрази;
- Нищо друго не е регулярен израз, освен ако не следва от първите две условия.

2. Регулярен език $\mathcal{L}(\alpha)$ за регулярен израз α .

 $\mathscr L$ е функцията, която описва връзката между регулярен израз и езика, който той задава. $\mathscr L$ е дефинирана индуктивно както следва:

- $\mathcal{L}(\emptyset) = \emptyset$, $\mathcal{L}(\alpha) = \{\alpha\}$, за всяко $\alpha \in \Sigma$ (дори за $\alpha = \varepsilon$);
- Ако α и β са регулярни изрази, то $\mathcal{L}(\alpha \cdot \beta) = \mathcal{L}(\alpha) \cdot \mathcal{L}(\beta)$, $\mathcal{L}(\alpha \cup \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$, $\mathcal{L}(\alpha^*) = \left(\mathcal{L}(\alpha)\right)^*$.

3. Рефлексивно и транзитивно затваряне на бинарна релация.

Нека релацията $R \subseteq A^2$ задава ориентиран граф над множеството от върхове A . Рефлексивно и транзитивно затваряне на R е релацията:

$$R^* = \{(a, b) : a, b \in A \text{ и съществува път от } a \text{ до } b \text{ в } R\}.$$

Индуктивна дефиниция на R^* :

- $\forall a \in A : (a, a) \in R^*$;
- $(a,b) \in R \Rightarrow (a,b) \in R^*$;
- $(a,b) \in R^* \land (b,c) \in R^* \Rightarrow (a,c) \in R^*$.

4. Затваряне на множеството $B \subseteq A$ относно релацията $B \subseteq A^2$.

Нека A е непразно множество и нека $R\subseteq A^2$ е бинарна релация в A . Тогава подмножеството B на A е затворено относно R, ако $b_2\in B$ всеки път когато $b_1\in B$ и $(b_1,b_2)\in R$.

5. Краен детерминиран автомат.

Краен детерминиран автомат (КДА) наричаме наредената петорка $\mathscr{A}=\big(Q,\Sigma,\delta,s,F\big)$, където Q е крайно множество от състояния, Σ е крайна азбука, $\delta:Q\times\Sigma\to Q$ е функция на преходите, $s\in Q$ е начално състояние, $F\subseteq Q$ е множество от заключителни (финални) състояния.

6. Краен недетерминиран автомат.

Краен недетерминиран автомат (КНДА) наричаме наредената петорка $\mathcal{A} = (Q, \Sigma, \Delta, s, F)$, където Q е крайно множество от състояния, Σ е крайна азбука, $\Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$ е релация на преходите, $s \in Q$ е начално състояние, $F \subseteq Q$ е множество от заключителни (финални) състояния.

7. ⊢ за краен детерминиран автомат.

За краен детерминиран автомат $\mathscr{A}=\left(Q,\Sigma,\delta,s,F\right)$, релацията $\vdash_{\mathscr{A}}$ дефинираме по следния начин: $(q,\omega)\vdash_{\mathscr{A}}(q',\omega')\Leftrightarrow \omega=a\omega'$ и $a\in\Sigma;q,q'\in Q;\omega,\omega'\in\Sigma^*$.

8. ⊢ иза краен недетерминиран автомат.

За краен детерминиран автомат $\mathscr{A} = (Q, \Sigma, \Delta, s, F)$, релацията $\vdash_{\mathscr{A}}$ дефинираме по

следния начин: $(q,\omega) \vdash_{\mathscr{A}} (q',\omega') \Leftrightarrow \exists u \in \Sigma \cup \{\varepsilon\}$, такава че $\omega = u\omega'$ и $(q,u,q') \in \Delta$. $q,q' \in Q; \omega,\omega' \in \Sigma^*$.

9. $\mathscr{L}(\mathscr{A})$ за краен детерминиран (недетерминиран) автомат $\mathscr{A}.$

За крайния детерминиран (недетерминиран) автомат $\mathscr{A} = \left(Q, \Sigma, \delta, s, F\right)$, езикът $\mathscr{L}(\mathscr{A})$ дефинираме по следния начин: $\mathscr{L}(\mathscr{A}) = \{\omega \,|\, \omega \in \Sigma^* \text{ и } (s, \omega) \vdash_{\mathscr{A}}^* (q, \varepsilon), \, q \in F\}$, където $\vdash_{\mathscr{A}}^*$ е рефлексивното и транзитивното затваряне на релацията $\vdash_{\mathscr{A}}$.

- 10. Кога една дума се разпознава (приема) от даден краен детерминиран автомат \mathscr{A} . Казваме, че $\omega \in \Sigma^*$ се разпознава (приема) от автомата $\mathscr{A} = \left(Q, \Sigma, \delta, s, F\right) \Leftrightarrow (s, \omega) \vdash_{\mathscr{A}}^* (f, \varepsilon)$, където $\omega \in \Sigma$ и $f \in F$.
- 11. Релация на еквивалентност $pprox_L$ за даден език L.

Нека $L\subseteq \Sigma^*$ е език и $x,y\in \Sigma^*$. Казваме, че x и y са еквивалентни спрямо L и бележим $x\approx_L y$, ако за всяка дума $z\in \Sigma$, е изпълнено $xz\in L\Leftrightarrow yz\in L$. Лесно се проверява, че \approx_L е релация на еквивалентност.

12. E(q) за краен недетерминиран автомат $\mathcal{A} = (Q, \Sigma, \Delta, s, F)$.

За всяко състояние $q\in Q$, нека E(q) е множеството от всички състояния на $\mathscr A$, които могат да се достигнат от q без да се четат каквито и да е букви:

$$E(q) = \{ p \in Q \, | \, (q, \varepsilon \vdash^*_{\mathcal{A}} (p, \varepsilon) \}.$$

13. Лемата за разрастването на регулярни езици.

ЗА ВСЕКИ регулярен език L,

СЪЩЕСТВУВА естествено число n>0, зависещо само от L, такова че

ЗА ВСЯКА дума $\omega \in L$ с дължина НЕ по-малка от $n: |\omega| \ge n$,

СЪЩЕСТВУВАТ думи x,y и z, за които $x\cdot y\cdot z=\omega,y\neq \varepsilon$ и $|x\cdot y|\leq n$ такива, че ЗА ВСЯКО $i>0:x\cdot y^i\cdot z\in L$.

14. Теоремата и следствието на Майхил-Нероуд за регулярни езици.

Нека $L\subset \Sigma^*$ е регулярен език. Тогава съществува краен детерминиран автомат \mathscr{A} , който разпознава L с точно толкова състояния, колкото са класовете на еквивалентност относно релацията \approx_L . Следствие: езикът L е регулярен \Leftrightarrow индексът на релацията \approx_L е краен, тоест $|I_{\approx_L}|=n\in\mathbb{N}$.

- 15. Каква е сложността на изучените алгоритми за:
 - Построяване на съответен регулярен израз по краен автомат експоненциална $\sigma\left(3^{|k|}\right)$.
 - Детерминизация на недетерминиран автомат експоненциална $\sigma\left(2^{|k|} \times |k|^2 \times |\Sigma| \times |\Delta| \times |k|^3\right)$.
 - Проверка дали два крайни недетерминирани автомата са еквивалентни експоненциална.
 - Проверка дали $\mathscr{L}(\alpha)=\mathscr{L}(\beta)$ по дадени два регулярни израза α и β експоненциална.

- Съответен краен недетерминиран автомат по регулярен израз полиномиална $\sigma(2 \mid \alpha \mid + 1)$.
- Проверка дали два крайни детерминирани автомата са еквивалентни или не полиномиална

16. Регулярни операции:

Регулярни операции (U , · , *) над езици, рапознавани от НДКА.

Нека \mathscr{A}_1 и \mathscr{A}_2 са НДКА (недетерминирани крайни автомати):

- Автомат \mathcal{A}_{\cup} с език равен на $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$:
 - 1) Състояния: състоянията на \mathcal{A}_1 и \mathcal{A}_2 и ново състояние q;
 - 2) Начално състояние: новото състояние q;
 - 3) Финални състояния: финалните състояния на \mathscr{A}_1 и \mathscr{A}_2 се запазват. Новото състояние q е финално тогава и само тогава, когато поне едно от началните състояния на \mathscr{A}_1 и \mathscr{A}_2 е финално;
 - 4) Преходи: преходите в \mathscr{A}_1 и \mathscr{A}_2 се запазват. Новото състояние q повтаря преходите на началните състояния на \mathscr{A}_1 и \mathscr{A}_2 .
- Автомат \mathscr{A}_{ullet} с език равен на $\mathscr{L}(\mathscr{A}_1)\cdot\mathscr{L}(\mathscr{A}_2)$:
 - 1) Състояния: състоянията на \mathcal{A}_1 и \mathcal{A}_2 ;
 - 2) Начално състояние: началното състояние на левия автомат \mathcal{A}_1 ;
 - 3) Финални състояния: финалните състояния на десния автомат \mathcal{A}_2 . Добавяме финалните състояния на \mathcal{A}_1 тогава и само тогава, когато началното състояние на десния автомат \mathcal{A}_2 е финално;
 - 4) Преходи: преходите в \mathscr{A}_1 и \mathscr{A}_2 се запазват. Всяко финално състояние на левия автомат \mathscr{A}_1 повтаря преходите на началното състояние на десния автомат \mathscr{A}_2 .
- Автомат \mathscr{A}^* с език равен на $ig(\mathscr{L}(\mathscr{A}_1)ig)^*$:
 - 1) Състояния: състоянията на \mathcal{A}_1 и ново състояние q;
 - 2) Начално състояние: новото състояние q;
 - 3) Финални състояния: финалните състояния на \mathcal{A}_1 и q.
 - 4) Преходи: преходите в \mathscr{A}_1 . Всички финални състояния на \mathscr{A}^* повтарят преходите на анчалното състояние на \mathscr{A}_1 .