Assignment Moject Exam Help Introduction to Machine Learning

Add WeChat powcoder

Towards formalizing 'learning'

What does it mean to **learn** a concept?

Gain knowledge or experience of the concept.
 Assignment Project Exam Help

https://powcoder.com
The basic process of learning

- Observe a phenometable Chat powcoder
- Construct a model from observations
- Use that model to make decisions / predictions

How can we make this more precise?

A statistical machinery for learning

Phenomenon of interest:

Input space: X Output space: Y

There is an unknown distribution \mathcal{D} over $(X \times Y)$

The learner observes m examples $(x_1, y_1), \ldots, (x_m, y_m)$ drawn from \mathcal{D} Assignment Project Exam Help

Construct a model: https://powcoder.com Machine learning

Let \mathcal{F} be a collection of models, where each $f: X \to Y$ predicts y given x From m observations select a model f which predicts well.

$$\operatorname{err}(f) := \mathbb{P}_{(x,y) \sim \mathcal{D}} \Big[f(x) \neq y \Big]$$
 (generalization error of f)

We can say that we have *learned* the phenomenon if

$$\operatorname{err}(f_m) - \operatorname{err}(f^*) \le \epsilon \qquad f^* := \operatorname{argmin}_{f \in \mathcal{F}} \operatorname{err}(f)$$

for any tolerance level $\epsilon > 0$ of our choice.

PAC Learning

For all tolerance levels $\epsilon > 0$, and all confidence levels $\delta > 0$, if there exists some model selection algorithm \mathcal{A} that selects $f_m^{\mathcal{A}} \in \mathcal{F}$ from m observations ie, $\mathcal{A}: (x_i,y_i)_{i=1}^m \mapsto f_m^{\mathcal{A}}$, and has the property:

with probability at least 1 Propert the drawing the sample,

$$\frac{\operatorname{err}(f_{m}^{\mathcal{A}}) - \operatorname{err}(f^{*}) \leq \epsilon}{\text{https://powcoder.com}}$$

We call

- The model class Add Add Echat powcoder
- If the m is polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$, then $\mathcal F$ is **efficiently** PAC-learnable

A popular algorithm:

Empirical risk minimizer (ERM) algorithm

$$f_m^{\text{ERM}} := \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \mathbf{1} \{ f(x_i) \neq y_i \}$$

PAC learning simple model classes

Theorem (finite size \mathcal{F}):

Pick any tolerance level $\epsilon > 0$, and any confidence level $\delta > 0$ let $(x_1, y_1), \ldots, (x_m, y_m)$ be m examples drawn from an unknown \mathcal{D}

$$\text{if} \quad m \geq C \cdot \frac{1}{\epsilon^2} \ln \frac{\sqrt{ssi} \text{ game with piechility and Help} - \delta$$

Add WeChat powcoder

 \mathcal{F} is efficiently PAC learnable

Occam's Razor Principle:

All things being equal, usually the simplest explanation of a phenomenon is a good hypothesis.

Simplicity = representational succinctness

Proof sketch

Define:

$$\operatorname{err}(f) := \mathbb{E}_{(x,y)\sim\mathcal{D}}\Big[\mathbf{1}\big\{f(x)\neq y\big\}\Big] \qquad \operatorname{err}_m(f) := \frac{1}{m}\sum_{i=1}^m\Big[\mathbf{1}\big\{f(x_i)\neq y_i\big\}\Big]$$

(generalization in the legent of f) (generalization in the legent of f)

https://powcoder.com

We need to analyze: Add WeChat powcoder

$$\operatorname{err}(f_m^{\operatorname{ERM}}) - \operatorname{err}(f^*) \\ = \operatorname{err}(f_m^{\operatorname{ERM}}) - \operatorname{err}_m(f_m^{\operatorname{ERM}}) \\ + \operatorname{err}_m(f_m^{\operatorname{ERM}}) - \operatorname{err}_m(f^*) \\ + \operatorname{err}_m(f^*) - \operatorname{err}(f^*)$$
 eviations of of a random

 $\sup_{f} \left| \operatorname{err}(f) - \operatorname{err}_m(f) \right|$

Uniform deviations of expectation of a random variable to the sample

Proof sketch

Fix any $f \in \mathcal{F}$ and a sample (x_i, y_i) , define random variable

$$\mathbf{Z}_i^f := \mathbf{1} \big\{ f(x_i) \neq y_i \big\}$$

$$\mathbb{E}[\mathbf{Z}_{1}^{A}]$$
ssignment Project Exam $\bigoplus_{i=1}^{m} [\mathbf{Z}_{i}^{f}]$

(generalization error $\frac{f}{f}$) (generalization error $\frac{f}{f}$) (generalization error $\frac{f}{f}$)

Add WeChat powcoder

Lemma (Chernoff-Hoeffding bound '63):

Let $\mathbf{Z_1}, \dots, \mathbf{Z_m}$ be m Bernoulli r.v. drawn independently from $\mathbf{B}(\boldsymbol{p})$. for any tolerance level $\epsilon > 0$

$$\mathbb{P}_{\mathbf{z}_i} \left[\left| \frac{1}{m} \sum_{i=1}^m [\mathbf{Z_i}] - \mathbb{E}[\mathbf{Z_1}] \right| > \epsilon \right] \le 2e^{-2\epsilon^2 m}.$$

A classic result in **concentration of measure**, proof later

Proof sketch

Need to analyze

$$\mathbb{P}_{(x_i,y_i)} \left[\text{ exists } f \in \mathcal{F}, \ \left| \frac{1}{m} \sum_{i=1}^m [\mathbf{Z}_i^f] - \mathbb{E}[\mathbf{Z}_1^f] \right| > \epsilon \right]$$

$$\text{Assignment Project Exam Help}$$

$$\text{https://powcoder} \left| \frac{1}{60} \sum_{i=1}^m [\mathbf{Z}_i^f] - \mathbb{E}[\mathbf{Z}_1^f] \right| > \epsilon \right]$$

$$\text{Add WeChatepowcoder}$$

Equivalently, by choosing $\ m \geq \frac{1}{2\epsilon^2} \ln \frac{2|\mathcal{F}|}{\delta}$ with probability at least $1-\delta$, for all $f \in \mathcal{F}$

$$\left| \frac{1}{m} \sum_{i=1}^{m} [\mathbf{Z}_{i}^{f}] - \mathbb{E}[\mathbf{Z}_{1}^{f}] \right| = \left| \operatorname{err}_{m}(f) - \operatorname{err}(f) \right| \leq \epsilon$$

PAC learning simple model classes

Theorem (Occam's Razor):

Pick any tolerance level $\epsilon > 0$, and any confidence level $\delta > 0$ let $(x_1, y_1), \ldots, (x_m, y_m)$ be m examples drawn from an unknown \mathcal{D}

$$\text{if} \quad m \geq C \cdot \frac{1}{\epsilon^2} \ln \frac{\text{Assignment: Projectifity ame Help}}{\delta} - \delta$$

Add WeChat powcoder

 \mathcal{F} is efficiently PAC learnable

One thing left...

Still need to prove:

Lemma (Chernoff-Hoeffding bound '63):

Let Z_1, \ldots, Z_{rssign} meaning including implementation B(p). for any tolerance level $\epsilon > 0$

Need to analyze: How does the probability measure concentrates towards a central value (like mean)

Detour: Concentration of Measure

Let's start with something simple:

Let X be a non-negative random variable.

For a given constant signifie: Project Exam Help

https://xpow]coder.com

Markov's Inequality

Why?

Observation $c \cdot \mathbf{1}[X \geq c] \leq X$

Take expectation on both sides.

Concentration of Measure

Using Markov to bound deviation from mean...

Let X be a random variable (not necessarily non-negative).

Want to examine: $Assign \overline{ment}$ Project some given constant c > 0

Observation:

https://powcoder.com

$$\mathbb{P}[|X - \mathbb{E}X| \ge c]$$
 Add (We hat powcoder

$$\leq \frac{\mathbb{E}(X - \mathbb{E}X)^2}{c^2}$$

by Markov's Inequality

$$= \frac{\operatorname{Var}(X)}{c^2}$$

Chebyshev's Inequality

True for **all** distributions!

Concentration of Measure

Sharper estimates using an exponential!

Let X be a random variable (not necessarily non-negative).

For some given constant ent Project Exam Help

Observation:

https://powcoder.com

$$\mathbb{P}\big[X \ge c\big]$$

AddeWeChat powcoder, t > 0

$$\leq \frac{\mathbb{E}[e^{tX}]}{e^{tc}}$$

by Markov's Inequality

This is called Chernoff's bounding method

Concentration of Measure

Now, Given $X_1, ..., X_m$ i.i.d. random variables (assume $0 \le X_i \le 1$)

$$\mathbb{P}\Big[\frac{1}{m}\sum_{i=1}^{m}X_{i} - \mathbb{E}X_{1} \geq c\Big] = \mathbb{P}\Big[\sum_{i=1}^{m}X_{i} - m\mathbb{E}X_{1} \geq mc\Big] \qquad \text{Define } Y_{i} := X_{i} - \mathbf{E}X_{i}$$

$$\mathbf{Assignment} \quad \underbrace{\mathbf{Project Exam Help}}_{=\mathbb{P}\Big[\sum_{i=1}^{m}Y_{i} \geq mc\Big]}$$

$$\mathbf{bttps:}//\mathbf{protected er.com}$$

https://powcoder.com

$$= \frac{1}{e^{tmc}} \prod_{i=1}^m \mathbb{E}[e^{tY_i}] \qquad \qquad \mathbf{Y_i} \textit{i.i.d.}$$

$$\leq e^{t^2m/8 - tmc}$$

$$\leq e^{-2c^2m}$$

 $\mathbb{E}[e^{tY_i}] \le e^{t^2/8}$

t = 4c

This **implies** the Chernoff-Hoeffding bound!

Back to Learning Theory!

Theorem (Occam's Razor):

Pick any tolerance level $\epsilon > 0$, and any confidence level $\delta > 0$ let $(x_1, y_1), \ldots, (x_m, y_m)$ be m examples drawn from an unknown \mathcal{D}

$$\text{if} \quad m \geq C \cdot \frac{1}{\epsilon^2} \ln \frac{\sqrt{85}}{\delta} \text{gamentithroisestility and Help} - \delta$$

https://powcoder.com

Add WeChat powcoder

 \mathcal{F} is efficiently PAC learnable

Learning general concepts

Consider linear classification

$$\mathcal{F} = \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right\} \qquad \left| \mathcal{F} \right| = \infty$$

Occam's Razor bound is ineffective

VC Theory

Need to capture the true richness of \mathcal{F}

Definition (Vapnik-Chervonenkis or VC dimension):

We say that a $x_1, \dots, x_d \subset X$ such that for all possible labelings of x_1, \dots, x_d there exists some $f \in \mathcal{F}$ that achieves that labelling.

Add WeChat powcoder

Example: \mathcal{F} = linear classifiers in \mathbb{R}^2

linear classifiers can realize all possible labellings of 3 points

linear classifiers CANNOT realize all labellings of 4 points

$$VC(\mathcal{F}) = 3$$

VC Dimension

Another example:

$$\mathcal{F}$$
 = Rectangles in \mathbf{R}^2

$$VC(\mathcal{F}) = 4$$

VC dimension:

- A combinatorial concept to capture the true richness of ${\mathcal F}$
- Often (but not always!) proportional to the degrees-of-freedom or the number of independent parameters in ${\cal F}$

VC Theorem

Theorem (Vapnik-Chervonenkis '71):

Pick any tolerance level $\epsilon > 0$, and any confidence level $\delta > 0$ let $(x_1, y_1), \ldots, (x_m, y_m)$ be m examples drawn from an unknown \mathcal{D}

$$\text{if} \quad m \geq C \cdot \frac{\text{VCASsight}}{\epsilon^2} \text{enterprise} \text{project Example Past } 1 - \delta$$

https://powcoder.com

Add WeChat powcoder

 \mathcal{F} is efficiently PAC learnable

VC Theorem → Occam's Razor Theorem

Tightness of VC bound

Theorem (VC lower bound):

Let \mathcal{A} be any model selection algorithm that given m samples, returns a model from \mathcal{F} , that is, $\mathcal{A}:(x_i,y_i)_{i=1}^m\mapsto f_m^{\mathcal{A}}$

For all tolerance levels $0 < \epsilon < 1$, and all confidence levels $0 < \delta < 1/4$, there exists a distribution $\mathcal D$ such that if $m \le C \cdot \frac{1}{\epsilon^2}$ https://powcoder.com

$$\mathbb{P}_{(x)}$$
 Adde We Chatrow coder δ

Some implications

VC dimension of a model class fully characterizes its learning ability!

https://powcoder.com

Results are agnostic to the underlying distribution.
 Add WeChat powcoder

One algorithm to rule them all?

From our discussion it may seem that ERM algorithm is universally consistent.

This is not the case!
Assignment Project Exam Help

Theorem (no free lunch) total total

Pick any sample size m, any algorithm $\mathcal A$ and any $\epsilon>0$ There exists a distribution $\mathcal D$ such that

$$\operatorname{err}(f_m^{\mathcal{A}}) > 1/2 - \epsilon$$

while the Bayes optimal error, $\min_f \operatorname{err}(f) = 0$

Further refinements and extensions

- How to do model class selection? Structural risk results.
- Dealing with ke Assignment growty Exam Help
- https://powcoder.com
 Incorporating priors over the models PAC-Bayes theory

Add WeChat powcoder

- Is it possible to get distribution dependent bound? Rademacher complexity
- How about regression? Can derive similar results for nonparametric regression.

What We Learned...

- Formalizing learning
- PAC learnability
 Assignment Project Exam Help
- Occam's razor Theorem https://powcoder.com
- VC dimension and VG theorem
 Add WeChat powcoder
- VC theorem
- No Free-lunch theorem

Questions?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder