Algebraische Zahlentheorie II Sommersemester 2022

Dr. Katharina Hübner basierend auf Alexander Schmidts AZT2-Skript von 2014

Inhaltsverzeichnis

1	Hor	nologische Algebra (Auffrischung)	1
	1.1	Injektive und projektive Objekte	1
	1.2	Adjungierte Funktoren	3
	1.3	Komplexe	4
	1.4	Abgeleitete Funktoren	7
	1.5	Azyklische Objekte	8
	1.6	Universelle δ -Funktoren	8
	1.7	Tor und Ext	C

1 Homologische Algebra (Auffrischung)

1.1 Injektive und projektive Objekte

Sei \mathcal{A} eine abelsche Kategorie (z.B. die Kategorie der R-Moduln, R ein unitärer Ring). Eine Folge

$$M' \stackrel{u}{\to} M \stackrel{v}{\to} M''$$

heißt exakt, wenn $v \circ u = 0$ und der natürliche Homomorphismus $\operatorname{im}(u) \to \ker(v)$ ein Isomorphismus ist.

Satz 1.1. (i) Eine Folge $M' \stackrel{u}{\to} M \stackrel{v}{\to} M'' \to 0$ in \mathcal{A} ist genau dann exakt, wenn für jedes $N \in \mathcal{A}$ die Folge abelscher Gruppen

$$0 \longrightarrow \operatorname{Hom}\nolimits_{\mathcal{A}}(M'',N) \stackrel{v^*}{\longrightarrow} \operatorname{Hom}\nolimits_{\mathcal{A}}(M,N) \stackrel{u^*}{\longrightarrow} \operatorname{Hom}\nolimits_{\mathcal{A}}(M',N)$$

exakt ist.

(ii) Eine Folge $0 \to N' \xrightarrow{u} N \xrightarrow{v} N''$ in \mathcal{A} ist genau dann exakt, wenn für jedes $M \in \mathcal{A}$ die Folge abelscher Gruppen

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{A}}(M, N') \xrightarrow{u_*} \operatorname{Hom}_{\mathcal{A}}(M, N) \xrightarrow{v_*} \operatorname{Hom}_{\mathcal{A}}(M, N'')$$

exakt ist.

Definition. Ein Funktor zwischen abelschen Kategorien heißt **exakt**, wenn er exakte Folgen in exakte Folgen überführt.

Definition. $I \in ob(A)$ heißt **injektiv**, falls sich jedes Diagramm

$$B \xrightarrow{i} A \xrightarrow{f} I$$

in dem i ein Monomorphismus ist und f ein beliebiger Morphismus, kommutativ durch ein g ergänzen läßt.

 $P \in ob(\mathcal{A})$ heißt **projektiv**, wenn $P \in ob(\mathcal{A}^{op})$ injektiv ist. M.a.W., wenn sich jedes Diagramm

$$B$$

$$p \downarrow \qquad \qquad g$$

$$A \leftarrow f P$$

mit p Epimorphismus und f beliebig, durch ein g kommutativ ergänzen läßt.

Bemerkung. Ist $0 \to A' \to A \to A'' \to 0$ eine exakte Folge in \mathcal{A} und A' injektiv oder A'' projektiv, so zerfällt die Folge.

Lemma 1.2. (i) I ist genau dann injektiv, wenn der Funktor

$$\operatorname{Hom}_{A}(-,I): \mathcal{A}^{\operatorname{op}} \longrightarrow \mathcal{A}b$$

exakt ist.

(ii) P ist genau dann projektiv, wenn der Funktor $\operatorname{Hom}_{\mathcal{A}}(P,-): \mathcal{A} \to \mathcal{A}b$ exakt ist.

Bemerkung. Sei A ein Hauptidealring. Dann sind die injektiven A-Moduln genau die teilbaren A-Moduln, die projektiven genau die freien.

2

1.2 Adjungierte Funktoren

Seien \mathcal{C}, \mathcal{D} Kategorien und $F: \mathcal{C} \to \mathcal{D}$ und $G: \mathcal{D} \to \mathcal{C}$ Funktoren.

Definition. F ist **linksadjungiert** zu G (und G **rechtsadjungiert** zu F, Schreibweise: $F \dashv G$), wenn eine natürliche Äquivalenz

$$\operatorname{Mor}_{\mathcal{C}}(-, G-) \cong \operatorname{Mor}_{\mathcal{D}}(F-, -)$$

von Bifunktoren: $\mathcal{C} \times \mathcal{D} \to (Mengen)$ existiert.

Sind \mathcal{C}, \mathcal{D} additive Kategorien und F, G additive Funktoren, so wird stillschweigend angenommen, dass eine Äquivalenz von Bifunktoren $\mathcal{C} \times \mathcal{D} \to \mathcal{A}b$ vorliegt.

Beispiele. 1) $\mathcal{C} = \text{Mod-}R$, $\mathcal{D} = \mathcal{A}b$. Sei B ein R-Linksmodul. Wir betrachten die Funktoren

$$Mod - R \to Ab$$
, $A \mapsto A \otimes_R B$,

und

$$Ab \to \text{Mod} - R$$
, $C \mapsto \text{Hom}_{Ab}(B, C)$.

Dann gilt in natürlicher Weise

$$\operatorname{Hom}_{\mathcal{A}b}(A \otimes_R B, C) \cong \operatorname{Hom}_{\operatorname{Mod}-R}(A, \operatorname{Hom}_{\mathcal{A}b}(B, C)).$$

Wir erhalten die Funktorenadjunktion

$$-\otimes_R B \dashv \operatorname{Hom}_{\mathcal{A}b}(B, -).$$

2) Sei $\mathcal{C}=K\text{-Vec},\ \mathcal{D}=\text{(Mengen)},\ F:K\text{-Vec}\to\text{(Mengen)}$ der Vergiß-Funktor und $G:\text{(Mengen)}\to K\text{-Vec},\ M\to K^{(M)}=\text{Vektorraum mit Basis }M.$ Dann gilt

$$\operatorname{Hom}_{K-\operatorname{Vec}}(GM,V) = \operatorname{Hom}_{(\operatorname{Mengen})}(M,FV)$$

also $G \dashv F$.

Satz 1.3. Es seien \mathcal{A}, \mathcal{B} abelsche Kategorien, $F : \mathcal{A} \to \mathcal{B}, G : \mathcal{B} \to \mathcal{A}$ additive Funktoren und sei $F \dashv G$ (im additiven Sinne). Dann gilt

- (i) F ist rechtsexakt, d.h. ist $A' \to A \to A'' \to 0$ exakt in \mathcal{A} , so ist $FA' \to FA \to FA'' \to 0$ exakt in \mathcal{B} .
- (ii) G ist linksexakt.
- (iii) ist F exakt, so überführt G Injektive in Injektive.
- (iv) ist G exakt, so überführt F Projektive in Projektive.

Beweis. F induziert einen Funktor $F^{\text{op}}: \mathcal{A}^{\text{op}} \to \mathcal{B}^{\text{op}}$ und analog $G^{\text{op}}: \mathcal{B}^{\text{op}} \to \mathcal{A}^{\text{op}}$. Es gilt $G^{\text{op}} \dashv F^{\text{op}}$. Daher genügt es (i) und (iii) zu zeigen.

(i) Für $A' \to A \to A'' \to 0$ exakt und $B \in ob(\mathcal{B})$ beliebig ist

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{A}}(A'', GB) \longrightarrow \operatorname{Hom}_{\mathcal{A}}(A, GB) \longrightarrow \operatorname{Hom}_{\mathcal{A}}(A', GB)$$

exakt, also auch

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{B}}(FA'', B) \longrightarrow \operatorname{Hom}_{\mathcal{B}}(FA, B) \longrightarrow \operatorname{Hom}_{\mathcal{B}}(FA', B).$$

Hieraus folgt die Exaktheit von

$$FA' \longrightarrow FA \longrightarrow FA'' \longrightarrow 0.$$

(iii) Sei $I \in ob(A)$ injektiv. Zu zeigen: der Funktor

$$\operatorname{Hom}_{\mathcal{A}}(-,GI)$$

ist exakt. Nun gilt

$$\operatorname{Hom}_{\mathcal{A}}(-,GI) = \operatorname{Hom}_{\mathcal{B}}(F-,I)$$

und weil F exakt und I injektiv ist ...

1.3 Komplexe

Sei \mathcal{A} eine abelsche Kategorie.

Definition. Ein Komplex A^{\bullet} in \mathcal{A} ist eine Folge von Objekten und Homomorphismen

$$\cdots \longrightarrow A^{-1} \xrightarrow{d_{-1}} A^0 \xrightarrow{d_0} A^1 \xrightarrow{d_1} A^2 \ldots$$

so dass $d_i \circ d_{i-1} = 0$ für alle $i \in \mathbb{Z}$ gilt.

Definition. Ein **Homomorphismus** $f: A^{\bullet} \to B^{\bullet}$ zwischen zwei Komplexen ist eine Familie $f = (f_i)_{i \in \mathbb{Z}}$ von Homomorphismen $f_i: A^i \to B^i$, so dass für alle $i \in \mathbb{Z}$ gilt: $d_i \circ f_i = f_{i+1} \circ d_i$, d.h. das Diagramm

kommutiert.

Bemerkung. Komplexe in \mathcal{A} zusammen mit Homomorphismen von Komplexen bilden wieder eine abelsche Kategorie. Kerne, Kokerne und endliche Produkte bilden sich an jeder Stelle separat.

Definition. $Z^i = \ker(d_i) \subset A^i$ heißen die *i*-Kozykel von A^{\bullet} .

 $B^i = \operatorname{im}(d_{i-1}) \subset A^i$ heißen die **i-Koränder**.

 $H^{i}(A^{\bullet}) = Z^{i}/B^{i}$ heißt die **i-te Kohomologiegruppe** von A^{\bullet} .

Bemerkung. Ein Komplexhomomorphismus $f: A^{\bullet} \to B^{\bullet}$ induziert Homomorphismen $Z^{i}(f): Z^{i}A^{\bullet} \to Z^{i}B^{\bullet}$, $B^{i}(f): B^{i}A^{\bullet} \to B^{i}B^{\bullet}$ und $H^{i}(f): H^{i}(A^{\bullet}) \to H^{i}(B^{\bullet})$ für alle i.

Satz 1.4 (Verallgemeinertes Schlangen-Lemma). Sei $0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$ eine kurze exakte Folge von Komplexen (d.h. für jedes i ist $0 \to A^{i} \to B^{i} \to C^{i} \to 0$ exakt). Dann existiert eine natürliche lange exakte Folge

$$\cdots \longrightarrow H^i(A^{\bullet}) \longrightarrow H^i(B^{\bullet}) \longrightarrow H^i(C^{\bullet}) \longrightarrow H^{i+1}(A^{\bullet}) \longrightarrow \cdots$$

Definition. Eine **injektive Auflösung** von $A \in ob(A)$ ist ein Komplex

$$0 \longrightarrow I^0 \xrightarrow{d_0} I^1 \xrightarrow{d_1} I^2 \longrightarrow \cdots$$

bestehend aus injektiven Objekten in \mathcal{A} , mit $H^i(I^{\bullet}) = 0$ für $i \geq 1$ zusammen mit einem Isomorphismus $A \xrightarrow{\sim} \ker(d_0) = H^0(I^{\bullet})$.

Eine **projektive Auflösung** ist eine injektive Auflösung in \mathcal{A}^{op} , d.h. ein Komplex

$$\longrightarrow P^{-2} \longrightarrow P^{-1} \longrightarrow P^0 \longrightarrow 0$$

bestehend aus projektiven Objekten in \mathcal{A} , mit $H^i(P^{\bullet}) = 0$, $i \leq -1$, zusammen mit einem Isomorphismus $H^0(P^{\bullet}) \xrightarrow{\sim} A$.

Bemerkung. Man benutzt gerne die untere Numerierung $P_i = P^{-i}$ und schreibt dann $H_i(-) = H^{-i}(-)$.

Definition. \mathcal{A} hat **genügend viele Injektive**, wenn zu jedem $A \in ob(\mathcal{A})$ ein Monomorphismus $i: A \to I$ mit I injektives Objekt existiert. \mathcal{A} hat **genügend viele Projektive**, wenn \mathcal{A}^{op} genügend viele Injektive hat.

Beispiel. R-Mod hat genügend viele Injektive und genügend viele Projektive.

Lemma 1.5. (i) Hat A genügend viele Injektive, so hat jedes Objekt eine injektive Auflösung.

(ii) ... projektive ...

Beweis. Induktive Konstruktion von I^{\bullet}

- 1. Schritt: Wähle $A \hookrightarrow I^0$
- 2. Schritt: Wähle

$$I^0/A \hookrightarrow I^1$$

n-ter Schritt: Wähle

$$I^{n-2}/\mathrm{im}(I^{n-3}) \hookrightarrow I^{n-1}$$

Definition. Seien $f, g: A^{\bullet} \to B^{\bullet}$ zwei Komplexhomomorphismen f und g heißen **homotop**, wenn Homomorphismen $D^i: A^{i+1} \to B^i$ für alle $i \in \mathbb{Z}$ existieren, so dass f - g = Dd + dD gilt. Schreibweise: $f \sim g$.

Bemerkung. Homotopie ist eine Äquivalenzrelation.

Lemma 1.6. Aus $f \sim g$ folgt

$$H^{i}(f) = H^{i}(q) : H^{i}(A^{\bullet}) \longrightarrow H^{i}(B^{\bullet})$$

für alle $i \in \mathbb{Z}$.

Definition. Ein Komplexhomomorphismus $f: A^{\bullet} \to B^{\bullet}$ heißt **Homotopie-**äquivalenz, wenn $g: B^{\bullet} \to A^{\bullet}$ existiert mit $g \circ f \sim \operatorname{id}_A$ und $f \circ g \sim \operatorname{id}_B$.

Bemerkung. Ist f eine Homotopieäquivalenz, so ist $H^i(f): H^i(A) \to H^i(B)$ ein Isomorphismus für alle i. Solche Homomorphismen nennt man **Quasi-Isomorphismen**. Nicht jeder Quasi-Isomorphismus ist eine Homotopieäquivalenz.

Beispiel. Betrachte den Komplexhomomorphismus

$$[0 \to \mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z} \to 0] \to [0 \to 0 \to \mathbb{Z}/2\mathbb{Z} \to 0].$$

Dieser ist ein Quasiisomorphismus. Wäre er eine Homotopieäquivalenz, so wäre er auch nach Tensorieren mit einer beliebigen abelschen Gruppe wieder eine Homotopieäquivalenz und insbesondere ein Quasisomorphismus. Tensorieren mit $\mathbb{Z}/2\mathbb{Z}$ gibt aber den Komplexhomomorphismus

$$[0 \to \mathbb{Z}/2Z \xrightarrow{0} \mathbb{Z}/2\mathbb{Z} \to 0] \to [0 \to 0 \to \mathbb{Z}/2\mathbb{Z} \to 0],$$

welcher kein Quasiisomorphismus ist.

Satz 1.7. Gegeben seien zwei Komplexe

Wir nehmen an:

- die obere Zeile ist exakt.
- alle I^i , i > 0, sind injektiv.

Dann existiert ein Komplexhomomorphismus f von der oberen zur unteren Zeile mit $f_{-1} = \varphi$. Beliebige zwei solche f sind homotop.

Korollar 1.8 (A = B, $\varphi = id_A$). Zwei injektive Auflösungen desselben Objekts sind homotopieäquivalent, die Homotopieäquivalenz ist wohlbestimmt bis auf Homotopie.

1.4 Abgeleitete Funktoren

Sei \mathcal{A} eine abelsche Kategorie mit genügend vielen Injektiven und sei $F: \mathcal{A} \to \mathcal{B}$ ein linksexakter Funktor in eine abelsche Kategorie \mathcal{B} .

Wir wählen für $A \in ob(A)$ eine injektive Auflösung $A \to I^{\bullet}$ und setzen

$$R^i F(A) = H^i (FI^{\bullet}).$$

Nach 1.8 gibt eine andere injektive Auflösung in kanonischer Weise isomorphe Gruppen $R^iF(A)$. Ist nun $\varphi:A\to B$ ein Homomorphismus und $A\to I^{\bullet}$ und $B\to J^{\bullet}$ injektive Auflösungen, so existiert nach 1.7 ein bis auf Homotopie eindeutiges $f:I^{\bullet}\to J^{\bullet}$ mit $H^0(f)=\varphi$. So wird für alle $i\in\mathbb{Z}$ die Zuordnung $A\mapsto R^iF(A)$ zu einem Funktor $A\to \mathcal{B}$.

Definition. $R^iF(-): \mathcal{A} \to \mathcal{B}$ heißt der *i*-te rechtsabgeleitete Funktor des linksexakten Funktors F.

Lemma 1.9. Es gilt $R^i F = 0$ für i < 0 und $R^0 F = F$. Ist F exakt, so gilt $R^i F = 0$ für i > 0.

Satz 1.10. Für jede exakte Folge $0 \to A' \to A \to A'' \to 0$ in \mathcal{A} existieren natürliche Abbildungen

$$\delta^i: R^i F(A'') \longrightarrow R^{i+1} F(A')$$

für jedes $i \geq 0$, so dass die (lange) Folge

$$\cdots \to R^{i}FA' \to R^{i}FA \to R^{i}FA''$$
$$\to R^{i+1}FA' \to R^{i+1}FA \to R^{i+1}FA'' \to \cdots$$

exakt ist. Ist

ein Homomorphismus exakter Folgen, so kommutiert für alle $i \geq 0$ das Diagramm

$$R^{i}F(A'') \stackrel{\delta}{\longrightarrow} R^{i+1}F(A')$$

$$\downarrow \qquad \qquad \downarrow$$

$$R^{i}(FB'') \stackrel{\delta}{\longrightarrow} R^{i+1}F(B').$$

Linksabgeleitete Funktoren: Man drehe alle Pfeile um:

 $F: \mathcal{A} \to \mathcal{B}$ sei rechtsexakter Funktor und \mathcal{A} habe genügend viele Projektive. Wir wählen für jedes Objekt A eine projektive Auflösung

$$\cdots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

und setzen $L_iF(A) := H_i(FP_{\bullet}).$

- alles analog -

1.5 Azyklische Objekte

Wie vorher sei \mathcal{A} abelsche Kategorie mit genügend vielen Injektiven und $F: \mathcal{A} \to \mathcal{B}$ linksexakter Funktor.

Definition. $A \in ob(A)$ heißt **F-azyklisch**, wenn $R^iFA = 0$ für alle $i \ge 1$ gilt.

Lemma 1.11. Injektive sind F-azyklisch.

Satz 1.12. Sei $A \to I^{\bullet}$ eine Auflösung durch F-azyklische, d.h.

$$0 \longrightarrow A \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \cdots$$

ist exakt und I^i ist F-azyklisch für alle $i \geq 0$. Dann gibt es kanonische Isomorphismen

$$R^iFA \cong H^i(FI^{\bullet}).$$

1.6 Universelle δ -Funktoren

Sei wie vorher \mathcal{A} eine abelsche Kategorie.

Definition. Ein (exakter) δ -Funktor $H = (H^n)_{n \in \mathbb{Z}}$ ist eine Familie von Funktoren $H^n : \mathcal{A} \to \mathcal{B}$ zusammen mit Homomorphismen $\delta : H^n(C) \to H^{n+1}(A)$ für jede kurze exakte Folge $0 \to A \to B \to C \to 0$ in \mathcal{A} , so dass gilt

(i) δ ist funktoriell, d.h. ist

ein kommutatives Diagramm mit exakten Zeilen in A so kommutiert

$$H^{n}(C) \xrightarrow{\delta} H^{n+1}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{n}(C') \xrightarrow{\delta} H^{n+1}(C)$$

in \mathcal{B} .

(ii) Für jede kurze exakte Folge $0 \to A \to B \to C \to 0$ in \mathcal{A} ist die lange Folge

$$\cdots \longrightarrow H^n(A) \longrightarrow H^n(B) \longrightarrow H^n(C) \longrightarrow H^{n+1}(A) \longrightarrow \cdots$$

exakt in \mathcal{B} .

Beispiel. \mathcal{A} habe genügend viele Injektive und $F: \mathcal{A} \to \mathcal{B}$ sei linksexakt. Dann ist $H^n := R^n F$ ein δ -Funktor.

Konvention: Ist ein δ -Funktor nur für gewisse H^n gegeben, so setzen wir $H^m = 0$ für alle anderen Indizes.

Definition. Ein δ -Funktor $H=(H^n)_{n\geq 0}: \mathcal{A}\to B$ heißt universell, wenn für jeden δ -Funktor $H'=(H'^n)_{n\geq 0}: \mathcal{A}\to B$ sich jede natürliche Transformation $f^0: H^0\to H'^0$ eindeutig zu einem Homomorphismus $f: H\to H'$ von δ -Funktoren ausdehnt.

Bemerkung. Das bedeutet, dass sich jeder linkexakte Funktor H^0 höchstens auf eine Weise (d.h. wenn existent, dann bis auf Isomorphie eindeutig) zu einem universellen δ -Funktor ausdehnen läßt.

Definition. Ein Funktor F heißt **auslöschbar**, wenn zu jedem $A \in ob(\mathcal{A})$ ein Monomorphismus $A \stackrel{u}{\hookrightarrow} A'$ existiert mit F(u) = 0.

Satz 1.13. Ein δ -Funktor $H = (H^n)_{n \geq 0}$ ist universell, wenn für jedes $n \geq 1$ der Funktor H^n auslöschbar ist.

Korollar 1.14. \mathcal{A} habe genügend viele Injektive und $F : \mathcal{A} \to \mathcal{B}$ sei linksexakt. Dann ist $(R^n F)_{n>0}$ ein universeller δ -Funktor.

1.7 Tor und Ext

Sei R ein Ring. Wir betrachten den Bifunktor

$$-\otimes_R - : \operatorname{Mod-}R \times R\operatorname{-Mod} \longrightarrow Ab$$
.

Dieser ist in beiden Variablen rechtsexakt.

In Mod-R und R-Mod existieren genügend viele Projektive, also:

für jeden R-Linksmodul N existiert $L_n(-\otimes_R N): \text{Mod-}R \to \mathcal{A}b$.

für jeden R-Rechtsmodul M existiert $L_n(M \otimes_R -) : R\text{-Mod} \to \mathcal{A}b$.

Satz 1.15. Es gibt natürliche Isomorphismen

$$L_n(-\otimes_R N)(M) \cong L_n(M\otimes_R -)(N).$$

Man nennt diesen Funktor

$$\operatorname{Tor}_n^R(M,N).$$

Er kann durch eine flache Auflösung in der ersten oder in der zweiten Variable berechnet werden.

Analog: Für $\operatorname{Hom}_R(-,-): R-\operatorname{Mod}\times R-\operatorname{Mod}\to \mathcal{A}b$ (oder wahlweise auch Rechtsmoduln).

Satz 1.16.

$$R^n \operatorname{Hom}_R(-, N)(M) \cong R^n \operatorname{Hom}_R(M, -)(N)$$

und man bezeichnet diesen Funktor mit

$$\operatorname{Ext}_R^n(M,N).$$

Kann berechnet werden durch projektive Auflösung von M (= injektive Auflösung in $(R\text{-Mod})^{\text{op}}$) oder injektive Auflösung von N.