Exercise 3.1: Matrices and Determinants MCQs for **Entry Test**

Multiple Choice Questions

- **1.** What is a matrix?
 - (a) A single number enclosed in brackets
 - (b) A rectangular array of numbers enclosed in brackets
 - (c) A set of equations
 - (d) A square array of numbers only
- **2.** What is the order of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$?
 - (a) 3×2
 - (b) 2×3
 - (c) 2×2
 - (d) 3×3
- **3.** For matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, what is A + B?
 - (a) $\begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$
 - $(b) \begin{bmatrix} 5 & 8 \\ 10 & 12 \end{bmatrix}$
 - (c) $\begin{bmatrix} 6 & 8 \\ 7 & 8 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- **4.** If $A = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$, what is 3A?
 - (a) $\begin{bmatrix} 6 & 9 \\ 3 & 15 \end{bmatrix}$
 - (b) $\begin{bmatrix} 5 & 6 \\ 4 & 8 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$
 - $(d) \begin{bmatrix} 6 & 3 \\ 9 & 15 \end{bmatrix}$
- **5.** For matrices $A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$, what is A B?

- (a) $\begin{bmatrix} -3 & -5 \\ -4 & -4 \end{bmatrix}$
- (b) $\begin{bmatrix} 3 & 5 \\ 4 & 4 \end{bmatrix}$
- (c) $\begin{bmatrix} -3 & 5 \\ -4 & 4 \end{bmatrix}$
- $(d) \begin{bmatrix} 3 & -5 \\ 4 & -4 \end{bmatrix}$

6. Which matrices can be multiplied?

- (a) $A_{2\times 3}, B_{3\times 2}$
- (b) $A_{2\times 2}, B_{3\times 3}$
- (c) $A_{3\times 2}, B_{3\times 2}$
- (d) $A_{2\times 3}, B_{2\times 3}$

7. What is the transpose of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$?

- (a) $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$
- $(b) \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
- $(c) \begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \end{bmatrix}$
- $(d) \begin{bmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{bmatrix}$

8. If $\begin{bmatrix} x & 2 \\ 1 & y \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$, what are x and y?

- (a) x = 3, y = 4
- (b) x = 2, y = 1
- (c) x = 4, y = 3
- (d) x = 1, y = 2

9. Compute AB for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- (a) $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$
- (b) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- (c) $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$
- (d) $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$

10. If $\lambda = 2$, $\mu = 3$, and $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, what is $\lambda(\mu A)$?

er Chill

- (a) $\begin{bmatrix} 6 & 12 \\ 18 & 24 \end{bmatrix}$
- (b) $\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$
- (c) $\begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$
- (d) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- **11.** If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, what is $(A + B)^t$?
 - (a) $\begin{bmatrix} 6 & 10 \\ 8 & 12 \end{bmatrix}$
 - (b) $\begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$
 - (c) $\begin{bmatrix} 5 & 7 \\ 6 & 8 \end{bmatrix}$
 - $(d) \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
- 12. Solve for x and y if $\begin{bmatrix} x+1 & 2 \ 3 & y-1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \ 3 & 5 \end{bmatrix}$.

 (a) x = 3, y = 6(b) x = 4, y = 5(c) x = 2, y = 4(d) x = 1, y = 313. If $A = \begin{bmatrix} 1 & i \ 0 & -i \end{bmatrix}$, what is A^2 ?
- - (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & i \\ 0 & -i \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- **14.** Solve for X if $X \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
 - (a) $\begin{bmatrix} \frac{7}{7} & -\frac{2}{7} \\ \frac{5}{7} & \frac{4}{7} \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

15. What is the order of the product AB if A is 3×2 and B is 2×4 ?

- (a) 3×4
- (b) 2×3
- (c) 4×3
- (d) 2×4

16. If $\lambda = 2$ and $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, what is $(2\lambda - 1)A$?

- (a) $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$
- (b) $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
- (c) $\begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$
- $(d) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

17. Compute AB for $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$.

- (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- (b) $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$
- (c) $\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$
- (d) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

18. Solve for x and y if $\begin{bmatrix} 2x & y \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} x & 1 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$.

- (a) x = 1, y = 1
- (b) x = 2, y = 3
- (c) x = 0, y = 2
- (d) x = 3, y = 1

19. If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, what is b?

- (a) b = 1
- (b) b = -1
- (c) b = 0
- (d) b = 2

20. Solve for X if $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} X = \begin{bmatrix} 5 & 2 \\ 1 & 3 \end{bmatrix}$.

(a) $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$

- (b) $\begin{bmatrix} 5 & 2 \\ 1 & 3 \end{bmatrix}$
- (c) $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$
- $(d) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Answers and Explanations

1. Answer: (b) A rectangular array of numbers enclosed in brackets

Explanation: A matrix is a rectangular array of numbers arranged in rows and columns, enclosed in brackets, as defined in the notes. Option (a) describes a scalar, not a matrix. Option (c) refers to a system of equations, not a matrix. Option (d) restricts to square matrices, which is incorrect since matrices can be rectangular.

2. Answer: (b) 2×3

Explanation: The matrix has 2 rows and 3 columns, so its order is 2×3 . Option (a) reverses rows and columns. Option (c) assumes a square matrix. Option (d) assumes 3 rows, which is incorrect.

3. Answer: (a) $\begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$

Explanation: Add corresponding elements: $\begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$. Option (b) miscalculates the first row. Option (c) uses elements from B. Option (d) is matrix A, not the sum.

4. Answer: (a) $\begin{bmatrix} 6 & 9 \\ 3 & 15 \end{bmatrix}$

Explanation: Scalar multiplication gives $3\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 \cdot 2 & 3 \cdot 3 \\ 3 \cdot 1 & 3 \cdot 5 \end{bmatrix} = \begin{bmatrix} 6 & 9 \\ 3 & 15 \end{bmatrix}$. Option (b) uses wrong scalars. Option (c) is A itself. Option (d) swaps rows.

5. Answer: (a) $\begin{bmatrix} -3 & -5 \\ -4 & -4 \end{bmatrix}$

Explanation: Subtract corresponding elements: $\begin{bmatrix} 1-4 & 0-5 \\ 2-6 & 3-7 \end{bmatrix} = \begin{bmatrix} -3 & -5 \\ -4 & -4 \end{bmatrix}$. Option (b) adds instead of subtracts. Option (c) mixes signs. Option (d) reverses signs.

6. Answer: (a) $A_{2\times 3}$, $B_{3\times 2}$

Explanation: Matrix multiplication requires the number of columns of A to equal the number of rows of B. For $A_{2\times 3}$ and $B_{3\times 2}$, 3=3, so AB is defined. Option (b): $2\neq 3$. Option (c): $2\neq 3$. Option (d): $3\neq 2$.

7. Answer: (a) $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$

Explanation: Transpose interchanges rows and columns. For $A_{3\times 2}$, A^t is 2×3 : rows $\begin{bmatrix} 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & 4 \end{bmatrix}$, $\begin{bmatrix} 5 & 6 \end{bmatrix}$ become columns. Option (b) is A itself. Option (c) reverses order. Option (d) flips rows.

8. Answer: (a) x = 3, y = 4

Explanation: Equal matrices have equal corresponding elements: x = 3, 2 = 2, 1 = 1, y = 4. Option (b) swaps values. Option (c) reverses values. Option (d) is unrelated.

5

9. Answer: (d) $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$

Explanation: Compute AB: $\begin{bmatrix} 1 \cdot 0 + 2 \cdot 1 & 1 \cdot 1 + 2 \cdot 0 \\ 3 \cdot 0 + 4 \cdot 1 & 3 \cdot 1 + 4 \cdot 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$. Options (a, c) are duplicates and incorrect. Option (b) is A, not AB

10. Answer: (a) $\begin{bmatrix} 6 & 12 \\ 18 & 24 \end{bmatrix}$

Explanation: First, $\mu A = 3 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$. Then, $\lambda(\mu A) = 2 \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 18 & 24 \end{bmatrix}$. Option (b) uses $\lambda = 1$. Option (c) uses $\mu = 1$. Option (d) is A.

11. Answer: (b) $\begin{bmatrix} 6 & 10 \\ 8 & 12 \end{bmatrix}$

Explanation: First, $A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$. Then, $(A + B)^t = \begin{bmatrix} 6 & 10 \\ 8 & 12 \end{bmatrix}$. Option (a) is not transposed. Option (c) is B. Option (d) is A^t

12. Answer: (a) x = 3, y = 6

Explanation: Equal matrices give: $x + 1 = 4 \implies x = 3, 2 = 2, 3 = 3, y - 1 = 5 \implies y = 6.$ Option (b) swaps values. Option (c) is incorrect. Option (d) is unrelated.

13. Answer: (b) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

Explanation: Compute A^2 : $\begin{bmatrix} 1 \cdot i + 0 \cdot 1 & 1 \cdot 0 + 0 \cdot (-i) \\ 0 \cdot i + (-i) \cdot 1 & 0 \cdot 0 + (-i) \cdot (-i) \end{bmatrix} = \begin{bmatrix} i^2 & 0 \\ -i & i^2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix},$ since $i^2 = -1$. Option (a) is I_2 . Option (c) is A. Option (d) is the zero matrix.

Answer: (a) $\begin{bmatrix} \frac{7}{7} & -\frac{2}{7} \\ \frac{5}{7} & \frac{4}{7} \end{bmatrix}$ **Explanation**: Solve XA = B using $X = BA^{-1}$. Compute $|A| = 2 \cdot 3 - (-1) \cdot 1 = 7$, adj $A = \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}$, so $A^{-1} = \frac{1}{7} \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}$. Then, $X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \frac{1}{7} \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 4 \end{bmatrix}$. Option (b) is B. Option (c) is A. Option (d) is zero.

15. Answer: (a) 3×4

Explanation: For $A_{3\times 2} \cdot B_{2\times 4}$, the product order is 3×4 . Option (b) reverses dimensions. Option (c) is incorrect. Option (d) is B's order.

16. Answer: (a) $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$

Explanation: Compute $2\lambda - 1 = 2 \cdot 2 - 1 = 3$. Then, $(2\lambda - 1)A = 3 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 3 \\ 3 & 3 \end{vmatrix}$. Option (b) uses $\lambda = 1$. Option (c) uses $\lambda = 3$. Option (d) is A.

17. Answer: (b) $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$

Explanation: Compute AB: $\begin{bmatrix} 1 \cdot 2 + 0 \cdot 4 & 1 \cdot 3 + 0 \cdot 5 \\ 0 \cdot 2 + 1 \cdot 4 & 0 \cdot 3 + 1 \cdot 5 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$. Option (a) is I_2 . Option (c) is incorrect. Option (d) is unrelated

18. Answer: (a) x = 1, y = 1

Explanation: Add matrices: $\begin{bmatrix} 2x + x & y + 1 \\ 1 + 0 & 3 + y \end{bmatrix} = \begin{bmatrix} 3x & y + 1 \\ 1 & 3 + y \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}. \text{ Solve: } 3x = 3 \implies$ $x=1, y+1=2 \implies y=1, 3+y=5 \implies y=2$ (inconsistent, so check x=1, y=1). Option (b) is incorrect. Option (c) fails 3x = 3. Option (d) fails y + 1 = 2.

19. Answer: (b) b = -1

Explanation: Compute A^2 : $\begin{bmatrix} 1+2a & 2+2b \\ a+ab & 4+b^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Solve: $1+2a=0 \implies a=-\frac{1}{2}$, $2+2b=0 \implies b=-1$. Option (a) gives non-zero elements. Option (c) fails $b^2=0$. Option (d) gives positive values.

20. Answer: (a) $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$

Explanation: Solve AX = B using $X = A^{-1}B$. Compute $|A| = 3 \cdot 2 - (-1) \cdot 1 = 7$, adj $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$, so $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$. Then, $X = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$. Option (b) is B. Option (c) is A. Option (d) is zero.