1. Write a structural style VHDL code for a 4bit adder/subtractor. The 4bit adder/subtractor comprises of 1 bit full adders. Use suitable switches for inputs and LEDs for outputs in the CPLD board.

); end adsub_4bit;

-----DEFINE THE ARCHITECTURE FOR ADDER_SUBTRACTOR architecture rtl of adsub_4bit is

--DEFINE THE COMPONENT FULL ADDER USED-----

```
--DEFINE THE INTERMEDIATE SIGNALS IF REQUIRED-----
--DEFINE THE FUNCTIONALITY WITH STRUCTURAL MODELING--
begin
end rtl;
-----VHDL CODE FOR 1 bit full adder-----
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--Define input and output ports
entity fulladder is
Port ( x : in STD_LOGIC;
y: in STD_LOGIC;
z: in STD_LOGIC;
sum : out STD_LOGIC;
cout : out STD_LOGIC);
end fulladder;
--Defining the architecture of full adder in dataflow modelling style
architecture b_fa of fulladder is
begin
sum = x xor y xor z;
cout = (x and y) or (x and z) or (y and z);
```

end b_fa;

2. Write a behavioural style VHDL code for an ALU described below.

Select inputs	ALU operation
00	A+B
01	A-B
10	A and B
11	A xor B

CONDITIONAL STATEMENTS-----

architecture	Behavioral_ALU	of	ALU	is
DEC	LARE THE SIGNAL	LS II	F REQU	VIRED
begin				
end Behavior	ral_ALU;			