1. Funkcje analityczne

Liczby zespolone - powtórka

1. Zapisać w postaci x + iy podane liczby.

$$(3+2i) - (4-i) \qquad (2-3i)(-2+i) \qquad i(2-7i) \qquad \frac{1+i}{2-i}$$

$$(1-i)^4 \qquad (3+i)(3-i)\left(\frac{2+i}{10}\right) \qquad \frac{1+2i}{3-4i} + \frac{2-i}{5i} \qquad \frac{2i}{(i-1)(i-2)(i-3)}$$

2. Rozwiązać równania

$$z^2 - 2z + 2 = 0;$$
 $3z^2 + 2z + 1 = 0.$

- 3. Uzasadnić, że jeśli $z_1z_2z_3=0$, to jeden z czynników jest równy zeru.
- 4. Uzasadnić zasady przemienności i łączności mnożenia:

$$z_1 z_2 = z_2 z_1,$$
 $z_1(z_2 z_3) = (z_1 z_2) z_3.$

5. Zaznaczyć na płaszczyźnie liczby $z_1, z_2, z_1 + z_2$ oraz $z_1 - z_2$.

(a)
$$z_1 = -3 + i$$
, $z_2 = 1 + 4i$.

(b)
$$z_1 = 3$$
, $z_2 = -3 + 5i$.

- **6.** Pokazać, że wektor przedstawiający sumę $z_1+z_2+z_3$ jest zamykającym bokiem czworokąta, o pozostałych bokach z_1, z_2 i z_3 . Jaki jest kierunek tego wektora?
- 7. Jaki punkt płaszczyzny przedstawia $\frac{1}{2}(z_1+z_2)$, w odniesieniu do punktów z_1 i z_2 ?
- **8.** Obliczyć \overline{z} , Re z, Im z oraz |z|.

$$z = 3 - 4i$$
 $z = -2i$ $z = 4$ $z = 2 - 2i$

9. Wyprowadzić podane wzory.

$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2} \qquad \overline{z_1 z_2} = \overline{z_1} \ \overline{z_2} \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} \quad (z_2 \neq 0) \qquad |z_1 z_2| = |z_1| \cdot |z_2|$$

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \qquad \overline{iz} = -i\overline{z} \qquad \overline{(z^4)} = (\overline{z})^4 \qquad \overline{\left(\frac{z_1}{z_2 z_3}\right)} = \frac{\overline{z_1}}{\overline{z_2}} \ \overline{z_3}, \quad z_2 z_3 \neq 0$$

- 10. Pokazać, że jeśli $z^2=(\overline{z})^2$, to liczba z jest rzeczywista lub czysto urojona.
- 11. Podać algebraiczny dowód nierówności $|z_1 z_2| \ge ||z_1| |z_2||$.
- **12.** Pokazać, że $|z| \ge (|x| + |y|)/\sqrt{2}$.
- 13. Opisać położenie punktów

(a)
$$|z| = 1$$
 (b) $|z - 2| = 3$ (c) $\text{Re } z = \frac{1}{2}$

14. Opisać położenie punktów z spełniających

$$z\overline{z} - \overline{a}z - a\overline{z} + a\overline{a} = b\overline{b}$$

dla ustalonych liczb zespolonych a i b.

15. Opisać geometrycznie warunki jakie spełniają liczby z_1 i z_2 jeśli

(a)
$$|z_1 + z_2| = |z_1| + |z_2|$$
 (b) $|z_1 + z_2| = |z_1| - |z_2|$

16. Zapisać liczby w postaci trygonometrycznej.

$$1+i\sqrt{3}$$

$$-2$$

17. Wykonać obliczenia korzystając z postaci trygonometrycznej.

$$i(1-i\sqrt{3})(\sqrt{3}+i)$$
 $\frac{2-2i}{-1-i}$ $\frac{3}{(\sqrt{3}-i)^2}$ $(-2-2i)^7$ $(1-i)^4$ $(\sqrt{3}+i)^{-3}$

$$\frac{2-2i}{-1-i}$$

$$\frac{3}{(\sqrt{3}-i)^2}$$

$$(-2-2i)^7$$

$$(1-i)^4$$

18. Obliczyć podane pierwiastki.

- (a) drugi z i (b) trzeci z 1

- (c) trzeci z -1 (d) szósty z 64
- (e) szósty z -i (f) czwarty z -9 trzeci z 1+i
- 19. Rozwiązać $x^4 + 4 = 0$ i rozłożyć wielomian $x^4 + 4$ na iloczyn dwu trójmianów kwadratowych z rzeczywistymi współczynnikami.
- **20.** Pokazać, że te same znane wzory obowiązują przy rozwiązywaniu równania $az^2 + bz + c = 0$, gdzie a, b, csą współczynnikami zespolonymi.
- 21. Opisać graficznie obszary opisane w płaszczyźnie zespolonej nierównościami.

(a)
$$|x| < 3$$

(b)
$$\text{Im } z > 1$$

(c)
$$0 \le \arg z < \pi$$

(d)
$$1 < |z - 2i| < 2$$

(e)Im
$$(z^2) > 0$$

(f)
$$|2z - 3| > 3$$

$$\begin{array}{lll} \text{(a)} & |x| < 3 & \text{(b)} & \text{Im } z > 1 & \text{(c)} & 0 \leqslant \arg z < \pi & \text{(d)} & 1 < |z-2i| < 2 \\ \text{(e)} & \text{Im} & (z^2) > 0 & \text{(f)} & |2z-3| > 3 & \text{(g)} & |z-1| + |z+1| \leqslant 4 & \text{(h)} & |z| < |z-4| \end{array}$$

(h)
$$|z| < |z - 4|$$