

Shading II

- Ed Angel
- Professor of Computer Science, Electrical and Computer Engineering, and Media Arts
- University of New Mexico

Objectives

- Continue discussion of shading
- Introduce modified Phong model
- Consider computation of required vectors

Ambient Light

- Ambient light is the result of multiple interactions between (large) light sources and the objects in the environment
- Amount and color depend on both the color of the light(s) and the material properties of the object
- Add ka Ia to diffuse and specular terms

reflection coef intensity of ambient light

Distance Terms

- The light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the form 1/(ad + bd +cd2) to the diffuse and specular terms

The constant and linear terms sometime effect of the point source

Light Sources

- In the Phong Model, we add the results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source Idr, Idg, Idb, Isr, Isg, Isb, Iar, Iag, Iab

Material Properties

 Material properties match light source properties

Nine absorbtion coefficients

kdr, kdg, kdb, ksr, ksg, ksb, kar, kag, kab Shininess coefficient a

Adding up the Components

For each light source and each color component, the Phong model can be written (without the distance terms) as

Modified Phong Model

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each vertex
- •Blinn suggested an approximation using the halfway vector that is more efficient

The Halfway Vector

 h is normalized vector halfway between I and v

$$h = (I + v)/|I + v|$$

Using the halfway vector

- Replace (v · r)a by (n · h)b
- b is chosen to match shineness
- Note that halway angle is half of angle between r and v if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn lighting model Specified in OpenGL standard

Example

Only differences in these teapots are the parameters in the modified Phong model

Computation of Vectors

- I and v are specified by the application
- Can computer r from I and n
- Problem is determining n
- For simple surfaces is can be determined but how we determine n differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
 - Exception for GLU quadrics and Bezier surfaces (Chapter 11)

Plane Normals

- Equation of plane: ax+by+cz+d=0
- From Chapter 4 we know that plane is determined by three points p0, p2, p3 or normal n and p0

$$\mathbf{n} = (p2-p0) \times (p1-p0)$$

Normal to Sphere

- Implicit function f(x,y.z)=0
- Normal given by gradient
- Sphere $f(\mathbf{p}) = \mathbf{p} \cdot \mathbf{p} 1$
- $n = [\partial f/\partial x, \partial f/\partial y, \partial f/\partial z]T = p$

Parametric Form

For sphere

 $x=x(u,v)=\cos u \sin v$ $y=y(u,v)=\cos u \cos v$ $z=z(u,v)=\sin u$

Tangent plane determined by vectors

$$\partial \mathbf{p}/\partial \mathbf{u} = [\partial \mathbf{x}/\partial \mathbf{u}, \, \partial \mathbf{y}/\partial \mathbf{u}, \, \partial \mathbf{z}/\partial \mathbf{u}]T$$

 $\partial \mathbf{p}/\partial \mathbf{v} = [\partial \mathbf{x}/\partial \mathbf{v}, \, \partial \mathbf{y}/\partial \mathbf{v}, \, \partial \mathbf{z}/\partial \mathbf{v}]T$

Normal given by cross product

$$\mathbf{n} = \partial \mathbf{p}/\partial \mathbf{u} \times \partial \mathbf{p}/\partial \mathbf{v}$$

General Case

We can compute parametric normals for other simple cases

Quadrics

Parameteric polynomial surfaces

Bezier surface patches (Chapter 11)