Izmir Institute of Technology
CENG 115

Discrete Structures

Slides are based on the Text

Discrete Mathematics & Its Applications (6th Edition)

by Kenneth H. Rosen

Slides were prepared by Dr. Michael P. Frank for COT 3100 course in University of Florida

Module #13 – Inductive Proofs

Module #12: **Inductive Proofs**

Rosen 6th ed., § 4.1-4.2

§ 4.1: Mathematical Induction

- A powerful, rigorous technique for proving that a predicate P(n) is true for *every* natural number n, no matter how large.
- Based on a predicate-logic inference rule:

$$P(0)$$

$$\forall k \geq 0 \ (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n \geq 0 \ P(n)$$

"The First Principle of Mathematical Induction"

Validity of Induction

- Given $\forall k \geq 0$ ($P(k) \rightarrow P(k+1)$) (premise #2) trivially implies $\forall k \geq 0$ (k < n) $\rightarrow (P(k) \rightarrow P(k+1))$, or $(P(0) \rightarrow P(1)) \land (P(1) \rightarrow P(2)) \land \dots \land (P(n-1) \rightarrow P(n))$.
- Repeatedly applying the hypothetical syllogism rule to adjacent implications n-1 times gives $P(0) \rightarrow P(n)$; which with P(0) (premise #1) and modus ponens gives P(n). Thus $\forall n \geq 0$ P(n).

Analogy with Domino Effect

- Let P(n): n^{th} domino is knocked over
- If you show:
 - 1) P(1) is true.
 - 2) $\forall k \ge 1 \ (P(k) \rightarrow P(k+1))$ is true.
- This implies $\forall n \ P(n)$, meaning all dominoes are knocked over.

12/21/2020

Outline of an Inductive Proof

- Want to prove $\forall n \ P(n)...$
- Base case (or basis step): Prove P(0).
- *Inductive step*: Prove $\forall k \ P(k) \rightarrow P(k+1)$.
 - -E.g. use a direct proof:
 - Let k∈N, assume P(k). (inductive hypothesis)
 - Under this assumption, prove P(k+1).
- Inductive inference rule then gives $\forall n \ P(n)$.

Generalizing Induction

- Base case does not have to be P(0).
- Can be used to prove $\forall n \geq c \ P(n)$ for a given constant $c \in \mathbb{Z}$, where $c \neq 0$.
 - In this circumstance, the base case is to prove P(c) rather than P(0), and the inductive step is to prove $\forall k \geq c \ (P(k) \rightarrow P(k+1))$.

Induction Example

• Prove that the sum of the first n odd positive integers is n^2 . That is, prove:

$$\forall n \ge 1 : \sum_{i=1}^{n} (2i-1) = n^2$$

- Proof by induction.
 - Base case: P(1) is True. The sum of the first 1 odd positive integer is 1 which equals 1².
 (Cont...)

P(n)

Example cont.

- Inductive step: Prove $\forall k \ge 1$: $P(k) \rightarrow P(k+1)$.
 - Let $k \ge 1$, assume P(k), and prove P(k+1).

$$\sum_{i=1}^{k+1} (2i-1) = \left(\sum_{i=1}^{k} (2i-1)\right) + (2(k+1)-1)$$

$$= (k^2) + 2k + 1$$

$$= (k+1)^2$$

$$= (k+1)^2$$
By inductive hypothesis $P(k)$

Also see Example 3 in Section 4.1

Another Induction Example

- Prove that $\forall n > 0$, $n < 2^n$. Let $P(n) = (n < 2^n)$
 - Base case: $P(1)=(1<2^1)=(1<2)=T$.
 - Inductive step: For k>0, prove P(k)→P(k+1).
 - Assuming $k < 2^k$, prove $k+1 < 2^{k+1}$.
 - Note $k + 1 < 2^k + 1$ (by inductive hypothesis) $< 2^k + 2^k$ (because $1 < 2 = 2 \cdot 2^0 \le 2 \cdot 2^{k-1} = 2^k$) $= 2^{k+1}$
 - So $k + 1 < 2^{k+1}$, and we're done.

Another Induction Example

- Prove "3 divides n^3+2n when n is a positive integer".
 - Base case: P(1) is true because $3 \mid 1^3+2$
 - Inductive step: For k>0, prove $P(k)\rightarrow P(k+1)$.
 - Assume P(k) is true (ind. hyp.): $3 \mid k^3 + 2k$
 - Then, $(k+1)^3+2(k+1)=k^3+3k^2+3k+1+2k+2$
 - $k^3 + 2k + 3(k^2 + k + 1)$
 - $k^3 + 2k + 3j$
 - 3m + 3j (by inductive hypothesis)
 - 3(m+j) and we're done.

§ 4.2: Strong Induction

- Also called Second Principle of Induction.
- Characterized by:
 - P(0) Inductive hypothesis: P(0) to P(k) is true $\forall k \geq 0$ $P(0) \land P(1) \land ... \land P(k) \rightarrow P(k+1)$ $\therefore \forall n \geq 0 \ P(n)$
- Difference with 1st principle is that the inductive step uses the fact that P(j) is true for all values < k+1, not just for k.

Example of Strong Induction

- Show that every n>1 can be written as a product $p_1p_2...p_s$ of some series of s prime numbers. Let P(n)="n has that property"
- Basis step: P(2) is true, let $s=1, p_1=2$.
- Inductive step: Let $k \ge 2$. Inductive hypothesis is the assumption that $\forall 2 \le j \le k \ P(j)$ is true. To complete the inductive step we must sho

To complete the inductive step we must show P(k+1) is true under this assumption.

Example of Strong Induction

inductive step continues..

Consider k+1. There are two cases:

- 1) If k+1 is prime, let s=1, $p_1=k+1$. P(k+1) is true.
- 2) If k+1=ab, where $1 < a \le k$ and $1 < b \le k$.

Since P(j) is true $\forall 2 \le j \le k$, P(a) and P(b) are true.

Then $a=p_1p_2...p_t$ and $b=q_1q_2...q_u$.

Then $n+1=p_1p_2...p_tq_1q_2...q_u$, which is a product of t+u=s primes.

Another Strong Induction Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.
- Basis step:

12=3(4),
13=2(4)+1(5),
14=1(4)+2(5),
15=3(5),
so
$$\forall$$
12 \leq n \leq 15, $P(n)$.

Example continues..

- Inductive step: Let $k \ge 15$ and $\forall 12 \le j \le k P(j)$ is true. Since $12 \le k-3$, P(k-3) is true.
- To form k+1 cents, we add a 4-cent stamp to the stamps we used to form k-3 cents.