ROBUST SP WITH DELAY MISHATCHES

CONTRACTOR INC DESIGN FOR TIME-DELAY SYSTEMS DELAY UPCENTALIATICS ONLY 9:6+5,7>0

- Process mobile

- 1r1c compoler for type 1 system

- Chich robuston gains the obling unattornly

ED ROBUST STABILITY

UNCERTAINTY

- PANAMETHIC UNCERTAINTY ---> NULTIPLICATIVE UNCERTAINTY $\sum_{n=1}^{\infty} (n) = \frac{1}{1+n} \frac{1}{n} \frac{1}{n}$

upremasours & (a) = 1 em (iv) = 1 pm (jv)), Her

¥

worr-cose: 5

IMC Godholler blesign

STEP1.
$$\widetilde{P}(n) = \frac{K}{1+n\tau} \perp$$

(IAE, ISE) $\widetilde{P}_{+}(n) = \lambda$, $\widetilde{P}_{-}(n) = \frac{K}{1+n\tau}$
 $\widetilde{Q}(n) = \widetilde{P}_{-}(n)^{-2} = \frac{1}{K} (1+n\tau)$

STEP 2. (Typi1) $J(n) = \frac{1}{(1+2n)^m}$, $m=1$? $n \text{ Propernies}$)

 $Q(n) = \widetilde{Q}(n) J(n) = \frac{1}{K} \frac{1+\tau n}{1+2n}$
 $|\widetilde{T}(n)|_{n=0} = |Q(n)|\widetilde{P}(n)|_{n=0} = |\widetilde{P}_{+}(n)|J(n)|_{n=0} = 1$

$$||\Upsilon(j\omega)|| = ||P_{+}(j\omega)|| ||S(j\omega)|| = ||S(j\omega)|| = ||T_{+}(j\omega)|| = ||T_{+}(j\omega$$

Exencuse 6 (SP) 9:215, 5clo,2) <--5=2 - SP mbus Controllin : (type 1 the controlly design is dane for - p(0) nable =0 Inc obsign H DELAY_FREE Inc con Procen SAMTI CRIVITER (1. Delegy-free east 6. Ca) = 6, (2) CASE

IMC
STUPS.
$$\vec{P}_{0}(n) = n \frac{(n+n)^{2}}{(n+p)^{2}}$$
, $\vec{P}_{1}(n) = n - n$, $\vec{P}_{1}(n) = n - n - n$
 $\vec{Q}_{0}(n) = \vec{P}_{1}(n)^{-1} = \frac{1}{10}(n+n)^{2}$
STUPS. Type 1 $f(n) = \frac{n}{(n+2n)^{2}}$, $m = 2$
 $\vec{Q}_{0}(n) = \frac{1}{10}\frac{(n+n)^{2}}{(n+2n)^{2}}$ and then for the oblay - free poun $\vec{Q}_{0}(n) = \frac{1}{10}\frac{(n+n)^{2}}{(n+2n)^{2}}$ obtained on the person $\vec{Q}_{0}(n) = \frac{1}{10}\frac{(n+n)^{2}}{(n+n)^{2}}$ of $\vec{Q}_{0}(n) = \frac{1}{10}\frac{(n+n)^{2}}{(n+n)^{2}}$
 $\vec{Q}_{0}(n) = \frac{1}{10}\frac{(n+n)^{2}}{(n+n)^{2}}$ of $\vec{Q}_{0}(n) = \frac{1}{10}\frac{(n+n)^{2}}{(n+n)^{2}}$

Measure IM (Complete Q. (1) =
$$\frac{1}{10} \frac{(1+2)^2}{(1+2)^2}$$

$$\frac{4}{10} \frac{(n+2)^4}{(n+2n)^2} = \frac{1}{10} \frac{(n+2)^2}{(n+2n)^2}$$

$$\frac{1}{10} \frac{(n+2)^4}{(n+2n)^2} = \frac{1}{10} \frac{(n+2n)^2}{(n+2n)^2} = \frac{1}{10} \frac{(n+2n)^2}{(n+2n)^2} = \frac{1}{10} \frac{n^2+2n+1}{(n+2n)^2} = \frac{1}{10} \frac{(n+2n)^2}{(n+2n)^2} = \frac{1}$$