UCS749: Conversational AI: Speech Proc. [...]

Time: 2 hours MM:-Faculty: RGB

Thapar Institute of Engineering & Technology

Computer Science & Engineering Department EXERCISE (TTS) (2024-25 ODD)

- 1. If P_{θ} models a data \mathcal{D} with an intent of generating novel samples, $\mathbf{x} \sim P_{\theta}$. Is P_{θ} a posterior distribution? Comment. [2 marks]
- 2. If $X = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$ is a temporal sequence and each time step is independently and identically distributed,
 - a) Prove that $\log P(X) = \sum_{i=1}^{T} \log P(x_i)$;
 - b) If X is a Bernoulli process, i.e. if each x_i is a coin toss, with hit rate p, the log likelihood of k hits is $k \log p + (T - k) \log(1 - p)$.

2a)
$$X = \{n_1 \dots n_7\}$$

 $P(X) = P(n_1 \dots n_7)$
 $= P(n_1 | n_1 \dots n_{r-1}) \cdot P(n_1 \dots n_{r-1})$
 $= (ln_1) \text{ Danyes Rule})$
 $= \prod_{i=1}^{r} P(n_i | n_1 \dots n_{i-1}) - D$
 $(an powering similarly)$
But $n_i \mid n_j \neq i \neq j$ because ind.
hence $P(n_i \mid n_1 \dots n_{i-1}) = P(n_i)$ $-D$
 $from 0 \notin D$,
 $P(X) = \prod_{i=1}^{r} P(n_i)$
 $\log P(X) = \log \prod_{i=1}^{r} P(n_i) = \sum_{i=1}^{r} \log P(n_i)$

26) For a Bornoulli Process with hit rate
$$\beta'$$
.

The favorable of k' hits in 'T' tricks in given as,

 $P(X) = P(k,T;\beta) = \beta^{x} (1-\beta)^{T-k}$.

Or $\log P(X) = k \log P + (T-k) \log (1-\beta)$

3. If $X = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$ is the temporal sequence of a Markov process, prove that $\log P(X) = \sum_{i=1}^{T} \log P(x_i \mid x_{i-1})$.

Speech sample X is a temporal sequence of intensities,

$$X \equiv \{x_1 \dots x_T\}$$

Given speech samples \mathscr{D} as evidence, estimate $P_{\theta} \approx \mathscr{D}$ so that $X \sim P_{\theta}$ is a valid speech sample.

Let $G_{\theta,\mathcal{N}}: \mathbb{X}^K \to \mathbb{X}$ represent the model. where,

- X is the field of inputs.
 - For a continuous model, $X \equiv \mathbb{R}$; whereas,
 - For categorical model, $X = \mathbb{R}^{256}_{[0,1]}$;
 - It may also be a hybrid model, $\mathbb{R}^{K} \setminus \mathbb{R}^{256}$

e.g. $G_{\theta,\mathcal{N}}: \mathbb{R}^K \to \mathbb{R}^{256}_{[0,1]}$.

Can you think how?

Let $G_{\theta,\mathcal{N}}: \mathbb{X}^K \to \mathbb{X}$ represent the model. where,

- \mathcal{N} is a noise sampler,
 - Generally, implemented as a normal distribution; or
 - Implemented implicitly as dropouts.

Let $G_{\theta,\mathcal{N}}: \mathbb{X}^K \to \mathbb{X}$ represent the model. where,

- θ are parameters of the model; and
- $\mathbf{x}_t = G_{\theta, \mathcal{N}}\left(\left[\mathbf{x}_{t-K} \dots \mathbf{x}_{t-1}\right]\right)$ models the conditional distribution $P(x_t \mid x_{t-K} \dots x_{t-1})$

In case of Conditional Generation,

$$\mathbf{x}_{t} = G_{\theta, \mathcal{N}} \left(\left[\mathbf{x}_{t-K} \dots \mathbf{x}_{t-1} \right], \mathbf{h} \right)$$
 models the conditional distribution $P(x_{t} \mid x_{t-K} \dots x_{t-1}, \mathbf{h})$

h represents the global conditions, e.g.

- Text input;
- Speaker;
- Accent;
- and so forth.

Let

 $X \equiv \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_T \end{bmatrix} \sim G_{\theta, \mathcal{N}}$ be the output of the auto-regressive model, so that

$$\mathbf{x}_{t} = G_{\theta, \mathcal{N}}\left(\left[\mathbf{x}_{t-K} \dots \mathbf{x}_{t-1}\right]\right)$$

And,

 $Y \equiv [\mathbf{y}_1 \dots \mathbf{y}_T] \sim \mathcal{D}$ be a speech sample from dataset. Recall that for each time step, the sound intensity is pre-processed so that the values are remapped, quantised, and converted to one-hot vectors, so that $\mathbf{y}_t \in \{0, 1\}^{256}$; $\|\mathbf{y}_t\|_1 = 1$.

The training objective is the cross entropy function, given as,

minimise
$$\mathbb{E}_{X \sim G, Y \sim \mathcal{D}} \left[\sum_{i,t} y_{i,t} \log x_{i,t} \right]$$