

Internet of Things (IoT) Protocols

Module Leaders (CSC8112):

Prof. Rajiv Ranjan and Dr. Deepak Puthal

IoT Protocol Stack

ISO/OSI Reference Model	IoT Protocol Stack	TCP/IP Protocol Stack
Application Layer	olication Layer <u>Applications</u>	
	Se <u>rvice Layer</u> (oneM2M, ETSI M2M, OMA, BBF)	Application Layer
Presentation Layer	Application Protocol Layer (HTTP, CoAP, XMPP, AMQP, MQTT) (NETCONF, SNMP, mDNS,	
Session Layer	DNS-SD)	
Transport Layer	T <u>ransport Layer</u> (TCP, MPTCP, UDP, DCCP, SCTP) (TLS, DTLS)	Transport Layer
Network Layer	<u>Network Layer</u> (IPv4, IPv6, 6LoWPAN, ND, DHCP, ICMP)	Internet Layer
Data Link Layer	PHY/MAC Layer	Link Layer
Physical Layer	(3GPP MTC, IEEE 802.11, IEEE 802.15)	

Communication Protocols

Standardization efforts in support of the loT

Application Protocol		SDD	CoAP	AMQP	MQTT	MQTT-SN		XMPP	HTTP REST	
Service Discovery		mDNS					DNS-SD			
e	Routing Protocol	RPL								
rctur 20ls	Network Layer	6LoWPAN					IPv4/IPv6			
Infrastructure Protocols	Link Layer	IEEE 802.15.4								
Inf	Physical/ Device Layer	LTE-A EPCglobal 8			IEEI 802.15	/_/		Wave		

IoT Protocols hierarchy

Communication Model

- Request-Response: Client sends requests to the server and the server responds to the requests. When the server receives a request, it decides how to respond, fetches the data, retrieves resource representations, prepares the response, and then sends the response to the client.
- Request-Response model is a stateless communication model and each requestresponse pair is independent of others

Communication Model

- **Publish-Subscribe:** is a communication model that involves publishers, brokers and consumers.
- Publishers are the source of data. Publishers send the data to the topics which are managed by the broker.
- Publishers are not aware of the consumers. Consumers subscribe to the topics which are managed by the broker.

• When the broker receives data for a topic from the publisher, it sends the data to

all the subscribed consumers.

Common operating systems used in IoT

Operating System	Language Support	Minimum Memory (KB)	Event-based Programming	Multi- threading	Dynamic Memory
TinyOS	nesC	1	Yes	Partial	Yes
Contiki	C	2	Yes	Yes	Yes
LiteOS	C	4	Yes	Yes	Yes
Riot OS	C/C++	1.5	No	Yes	Yes
Android	Java	-	Yes	Yes	Yes

IEEE 802.11ah

IEEE 802.11 standards are the most commonly used wireless standards.

– Wi-Fi

IEEE 802.11ah is a light version of the original IEEE 802.11 wireless medium access standard. – for IoT

The basic 802.11ah MAC layer features include:

Synchronization Frame

Efficient Bidirectiona Packet Exchange

Short MAC Frame

Null Data Packet

Increased Sleep Time

The IEEE 802.15.4 protocol is designed for enabling communication between compact and inexpensive low power embedded devices that need a long battery life.

IEEE 802.15.4

It defines standards and protocols for the physical and link (MAC) layer of the IP stack.

Transmission requires very little power (maximum one milliwatt),

1% of WiFi or cellular networks.

packet size is limited to 127 bytes

he rate of communication is imited to 250 kbps

RFID

- The Radio Frequency Identification of RFID works with the help of wireless technology.
- It uses the electromagnetic fields so that it can identify objects.
- The best part of RFID IoT Connectivity Protocols is they do not need any power.
 - The short ranged Radio Frequency Identification is around 10 cm.
 - The long-range Radio Frequency can go up to 200 mm.

Near Field Communication (NFC)

- Near Field Communication (NFC) from the IoT Protocols takes the benefit of safe two-way communication linking.
- NFC IoT Communication Protocols are applicable for the smartphones.
- The essential work of NFC is to expand the "contactless" card technology.
- It works within 4cm (between devices) by enabling the devices for sharing information.

Standard: ISO/IEC 18000-3

Frequency: 13.56MHz (ISM)

Range: 10cm

Data Rates: 100–420kbps

Bluetooth

- One of the broadly used wireless technologies of short-range
- The recently introduced Bluetooth protocol among the IoT protocols is BLE (Bluetooth Low-Energy protocol)
 - afford the range of conventional Bluetooth in combined with lower power consumption
- BLE is not designed for transferring large files and will go perfectly with the small portions of data
- The newly invented Bluetooth Core Specification 4.2 adds up one innovative Internet Protocol Support Profile.
- It permits Bluetooth Smart Sensor to get access on the internet straight via 6LoAPAN. Standard: Bluetooth 4.2 core specification

Frequency: 2.4GHz (ISM)

Range: 50-150m (Smart/BLE)

Data Rates: 1Mbps (Smart/BLE)

Zigbee

- Just like Bluetooth, there is a vast user base of ZigBee.
- ZigBee is designed more for the industrials and less for the consumers.
- ZigBee and the popular ZigBee Remote Control are popular as famed IoT Security Protocols for supplying secure, low-power, scalable solutions along with high node counts.
- The ZigBee 3.0 has taken the protocol to a single standard.
- It made it handier.

Standard: ZigBee 3.0 based on IEEE802.15.4

Frequency: 2.4GHz

Range: 10-100m

Data Rates: 250kbp

WiFi

- For IoT integration, WiFi is a favoured choice
- It has quick data transfer rates along with the aptitude to control a large quantity of data.
- The widespread WiFi standard 802.11 presents you the ability to transfer hundreds of megabits in only one second.
- The only own drawback of this IoT protocol is it can consume excessive power for some of the IoT Application.
 - Standard: Based on 802.11n (most common usage in homes today)
 - Frequencies: 2.4GHz and 5GHz bands
 - Range: Approximately 50m
 - Data Rates: 600 Mbps maximum, but 150-200Mbps is more typical, depending on channel frequency used and number of antennas (latest 802.11-ac standard should offer 500Mbps to 1Gbps)

Long Ranged Wide Area Network (LoRaWAN)

- LoRaWAN is one of the IoT Protocols for the wide area networks.
- LoRaWAN IoT Network Protocols is specifically designed for supporting the vast networks with the help of million low-power devices.
- Smart cities is an application widely used this protocol
- Including the low-cost mobile communication, LoRaWAN is also famed in scores of industries for protected bidirectional communication. Standard: LoRaWAN

Frequency: Various

Range: 2-5km (urban environment), 15km (suburban

environment)

Data Rates: 0.3-50 kbps.

Narrowband IoT (NB-IoT)

- Low Power Wide Area Network
 - developed by 3GPP
 - subset of the LTE standard
- Focuses specifically on
 - indoor coverage
 - low cost
 - long battery life
 - high connection density

References

https://ieeexplore.ieee.org/document/7123563

http://downloads.hindawi.com/journals/jece/2017/932 4035.pdf