SISTEMAS PARALELOS

Clase 9 - Tendencias en HPC

Agenda de la clase anterior

- Diseño de algoritmos paralelos
 - Etapa de descomposión de tareas
 - Etapa de mapeo de tareas a procesadores
 - Métodos para reducir overhead de las interacciones
- Modelos de algoritmos paralelos

Agenda de esta clase

Tendencias en HPC

TENDENCIAS EN HPC

Tendencias en HPC

 El objetivo de HPC ha sido incrementar el rendimiento y ocasionalmente el cociente precio/rendimiento

Tendencias en HPC

Notable incremento en el consumo de energía eléctrica

Summit 10.1MW US\$ 17200000

Sierra 7.4MW US\$ 12600000

Sunway TaihuLight Tianhe-2A

15.3MW US\$ 26000000 18.4MW US\$ 31300000

 Representa uno de los mayores obstáculos para alcanzar la escala de los Exaflops

- Ranking que lista las 500 supercomputadoras más potentes del mundo.
 - Comenzó en 1993 manteniéndose hasta la actualidad.
 - Se actualiza 2 veces al año (junio y noviembre).
 - Para el cálculo de la potencia se emplea un benchmark específico llamado LINPACK.

TOP 10 Sites for November 2019

For more information about the sites and systems in the list, click on the links or view the complete list.

1-100	101-200	201-300	301-700	/n1-5nn
1 100	101 200	201 300	301 400	401 000

Rank System

Cores

Cores

Rmax Rpeak Power (ITFlop/s) (TFlop/s) (ITFlop/s) (IKW)

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM D0E/SC/0ak Ridge National Laboratory United States

www.top500.org

www.green500.org

GREEN500

- Ranking que lista las 500 supercomputadoras más eficientes desde el punto de vista energético del mundo.
 - Comenzó en 2006 manteniéndose hasta la actualidad.
 - Se actualiza 2 veces al año (junio y noviembre).
 - Al igual que el TOP500, para el cálculo de la potencia se emplea un benchmark específico llamado LINPACK. Además, se debe medir el consumo energético durante su ejecución

Green 500 List for November 2019

Listed below are the November 2019 The Green 500's energy-efficient supercomputers ranked from 1 to 10.

Note: Shaded entries in the table below mean the power data is derived and not meassured.

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)		Power Efficiency (GFlops/watts)
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876

Tendencias en HPC

 Reciente consolidación de aceleradores en HPC

 Mejoran cociente FLOPS/Watt

2010

145

2019

Desafío de programación

GPUs

- Originalmente diseñadas para procesamiento de gráficos.
 Debido a su gran potencia de cálculo, las empresas fabricantes comenzaron a aumentar su grado de programación de las mismas
- Motivó el surgimiento de nuevas técnicas, lenguajes y herramientas para la programación de GPUs, lo cual permite utilizar a las mismas como arquitecturas paralelas para resolver problemas de propósito general

GPUs

- La significativa diferencia de rendimiento que existe entre las CPUs y las GPUs se debe a que sus filosofías de diseño son muy distintas
 - CPUs destinan los recursos de silicio principalmente a memorias caché y a núcleos de compleja organización que permitan explotar ILP.
 - GPUs emplean la mayor parte del silicio disponible en unidades funcionales. Cada una de ellas tiene un conjunto de núcleos simples que comparten lógica de control, ejecutan instrucciones en orden y operan en grupos como si fueran un procesador vectorial.

GPUs

- Las primeras aplicaciones no gráficas eran programadas en término de operaciones gráficas usando lenguajes como OpenGL o DirectX → Resultaba engorroso y propenso a errores
- Tanto la industria como la academia propusieron varios lenguajes que permiten abstraerse de los gráficos.
 - CUDA, OpenCL, OpenACC
- Al día de hoy, son 3 las empresas que comparten el mercado de las GPUs.
 - Aunque Intel es la más grande, sólo domina el segmento correspondiente a placas integradas y de bajo rendimiento.
 - En el segmento de alto rendimiento, AMD y NVIDIA son los únicos proveedores (NVIDIA supera ampliamente a AMD)

CUDA

- Estándar de facto para programación de GPUs en HPC
- Modelo de ejecución (host-device) y arquitectura de memoria de CUDA

- El host es el responsable de administrar la memoria del dispositivos y sus transferencias, además de invocar la ejecución de los kernels.
- Un kernel es un trozo de código que ejecutan miles de hilos primitivos en paralelo en la GPU.

OpenCL

- Estándar para programación paralela multi-plataforma
- Modelo de ejecución (host-device) y arquitectura de memoria de OpenCL

 Similar a CUDA pero con un enfoque más general ya que no sólo aplica a GPUs (CPUs, Xeon Phi's, FPGAs, DSPs, entre otros)

SYCL

- Estándar para programación paralela multi-plataforma
- Basado en OpenCL pero buscando reducir esfuerzo de programación
 - Memoria Compartida Unificada
 - Reducciones paralelas (integradas)
 - Funciones a nivel de work-groups y sub-groups
 - Accessors
 - Interoperabilidad con otras APIs

GPUs de NVIDIA

 Una GPU de NVIDIA se compone de un conjunto de Streaming Multiprocessors (SM).

GPUs de NVIDIA

- Cada SM posee
 - Procesadores simples (Scalar Processors o núcleo CUDA):
 - Unidad de Punto Flotante.
 - Unidad Aritmético-Lógica.
 - SFUs (Special Function Units).
 - Una caché de instrucciones.
 - Una caché de sólo lectura.
 - Una memoria compartida (Shared).
 - Registros.

GPUs de NVIDIA

- Arquitectura Pascal en 2016
 - Orientada a mejorar la organización de la memoria y los buses de interconexión (adoptó HBM).
 - NVLINK, bus de alta velocidad (80 Gb/s) que reemplaza al PCIe (16 Gb/s).
 - Esquema de Memoria Unificada entre CPU y GPU para evitar reservas de memoria individuales (ya disponible en arquitectura Maxwell)
- Arquitectura Volta en 2017
 - Orientada al uso de Machine Learning → Incorpora soporte para precisión media (float de 16 bits) mediante núcleos específicos (Tensor cores)
 - Adopta HBM2
 - NVLINK 2.0
- Arquitectura Turing en 2019
 - Muy similar a Volta: Volta orientada al sector de alto rendimiento, Turing orientada al sector consumidor
 - Incorpora soporte específico para Ray-Tracing → Núcleos dedicados

Memoria de Alto Ancho de Banda (HBM)

- Una de las innovaciones más importantes de AMD en los últimos años es su tecnología Memoria de Alto Ancho de Banda (HBM)
 - HBM es un nuevo tipo de memoria RAM que organiza los chips de memoria en forma vertical y apilada (memoria 3D) y que puede ser aprovechado tanto por GPUs como CPUs.
 - Múltiples mejoras: significativo ahorro de espacio y considerables aumentos en la velocidad de comunicación y en la eficiencia energética
 - Incorporada en las GPUs con nombre clave Fiji de de AMD en 2015.
 También fue adoptada por NVIDIA para sus placas de la arquitectura Pascal en 2016.

GPUs de AMD

- En el año 2006, AMD compró la empresa de placas gráficas ATI, lo que le permitió incrementar notablemente su capacidad de producir e innovar hardware gráfico.
- Una GPU de AMD se compone de una colección de arreglos de Compute Units (CUs)
- Cada CU contiene un conjunto de unidades SIMD, unidades para planificación de instrucciones, una unidad escalar y distintos bloques de memoria caché L1

Intel Xeon Phi

- Arquitectura desarrollada por Intel para competir con las GPUs
- Primera generación lanzada en 2013 (Knights Corner, KNC)
 - Coprocesador de hasta 61 núcleos x86 con unidades vectoriales extendidas (512 bits) y SMT (4 hilos hardware por núcleo).
 - Caché L1 de 64 Kb +
 Caché L2 de 512 Kb
 - Interconexión en forma de anillo de alta velocidad
 - Conexión al host a través del bus PCIe Gen2

Intel Xeon Phi – Knights Corner

- Ejecuta un sistema operativo propio basado en Linux
- Compatibilidad de código con procesadores Xeon → requiere compilación cruzada
- Dos modos de ejecución:
 - Nativo
 - Offload

Intel Xeon Phi

- Segunda generación lanzada en 2015: Knights Landing (KNL)
- Capacidad de operar autónomamente
- Características arquitectónicas
 - Hasta 36 Tiles interconectados por malla 2D
 - Cada Tile incluye 2 núcleos:
 - Basados en la micro-arquitectura Intel Atom (fuera de orden, 4 hilos hw por núcleo)
 - 2 unidades vectoriales por núcleo
 - Caché L2 compartida de 1 MB
- Compatibilidad plena con arquitectura x86

Intel Xeon Phi Processor High Performance Programming Knights Landing Edition . Jim Jeffers, James Reinders, Avinash Sodani.

Intel Xeon Phi - Knights Landing

 Incorporación de memoria de alto ancho de banda (HBM) mediante tecnología MCDRAM

Modo cache

- ✓ Transparente al usuario
- No requiere cambios en el código fuente
- ✓ Puede sufrir pérdida de rendimiento

Modo flat

- Ofrece el mayor ancho de banda y la más baja latencia
- Usualmente requiere cambios en el código fuente

Modo híbrido

 Combinación de las dos anteriores

Knights Landing (KNL): 2nd Generation Intel® Xeon Phi™ Processor. Avinash Sodani.

Intel Xeon Phi

- Tercera generación lanzada en 2017: Knights Mill (KNM)
- Variante de KNL orientada a Deep Learning → Incorpora instrucciones que duplican/cuadriplican rendimiento en FP32/FP16 pero reducen a la mitad en FP64
- Intel discontinuó la línea Xeon Phi en 2019 para orientarse a otros productos

Intel Xe

- Primera GPU discreta de Intel (2021)
 - Variantes para gaming, datacenter y HPC

FPGAs

```
// Finite-State Machine for a simple elevator
                                                              // Seguential logic
                                                              always @(posedge clk, posedge rst)
          module elevator (
           input
                   clk,
                              // clock (~1Hz)
                                                                if (rst)
                             // asynchronous reset button
                                                                  state <= WAIT:
           input
                  rst,
           input
                  go,
                             // 'go' button
                  [3:0] dest floor,
           input
                                                                  state <= next state;
           output reg [3:0] curr floor,
           output door);
                                                              // Next-state logic
                              // indicate door open
    in<sup>.</sup>
                                                              always @(*) begin
           // State assignments
                                                                next state = state;
                                                                                                        Ps
    pr
           parameter WAIT = 0;
                                                                case (state)
           parameter MOVE = 1;
                                                                  WAIT: if (go) next state = MOVE;
           parameter OPEN = 2;
                                                                  MOVE:
                                                                                 /* fill in*/;
Capa
                                                                  OPEN:
                                                                                 /* fill in*/;
           reg [1:0] state, next state;
                                                                endcase
obje
           reg [3:0] goto floor;
                                                              end
           reg [2:0] cnt;
                                                              // Output logic
  Prc
           // latch the new destination floor
                                                              assign door =
                                                                                 /* fill in*/;
           always @(posedge clk)
   De
            if (go)
                                                             endmodule
               goto floor <= dest floor;
           // code curr floor as a 4-bit up/down counter
   always @(posedge clk, posedge rst)
               curr floor <= 0; // start at ground floor
   else if
               /* fill in */
           // add 5-second counter for door
   Re
           always @(posedge clk, posedge rst)
             if (rst)
   per
               cnt <= 0;
             else if
               /* fill in */
   SDK para OpenCL (Altera/Xilinx)
```

Comparación de rendimiento y eficiencia energética

		Intel Xeon	NVIDIA Tesla	Intel Xeon Phi	Xilinx Virtex7
		E5-4669 v3	K40	7120P	XCTV2000T
Número de procesadores		18 núcleos (2 hilos hardware cada uno)	2880 núcleos CUDA	61 núcleos (4 hilos hardware cada uno)	2160 bloques DSP
Frecuencia del reloj (GHz)		2.1 - 2.9	0.745	1.238 - 1.333	< 0.741
Ancho SIMD		8	32	16	Configurable
Pico de FLOPS	Precisión simple	604.8	4290	2416	1636
(GFLOPS)	Precisión doble	302.4	1430	1208	671
TD	P (Watt)	135	245	300	< 40
GFLOPS/Watt		4.48	17.51	8.05	> 40.9

Bibliografía usada para esta clase

- M. Giles and I. Reguly, Trends in high-performance computing for engineering calculations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2022, p. 20130319, 2014.
- M. Vestias and H. Neto, Trends of CPU, GPU and FPGA for high-performance computing, in Field Programmable Logic and Applications (FPL), 2014 24th International Conference on, Sept 2014, pp. 1-6.
- E. Rucci, Evaluación de Rendimiento y Eficiencia Energética de Sistemas Heterogéneos para Bioinformática, Tesis Doctoral, UNLP, 2016.