Will Argus 004610455

Problem 1)

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 3 & 6 & 9 & 5 \\ 2 & 4 & 6 & 9 \end{bmatrix}$$

1. a) conk of A

$$\begin{bmatrix} 1 & 2 & 3 & 2 \\ 3 & 6 & 9 & 5 \\ 0 & 0 & 0 & 5 \end{bmatrix} r_3 - 2r,$$

16) What by does equation $A_x = 6 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ have a solution?

$$\begin{bmatrix} 1 & 2 & 3 & 2 & | & 1 \\ 3 & 6 & 9 & 5 & | & 2 \\ 2 & 4 & 6 & 9 & | & b_3 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 3 & 2 & | & 1 \\ 0 & 0 & 0 & -1 & | & -1 \\ 0 & 0 & 0 & 1 & | & b_3 & -2 \end{bmatrix} \xrightarrow{-X_4 = -1} \xrightarrow{-X_4 = -1$$

$$-x_{4}=-1$$
 $5x_{4}=6_{3}-2$ $\rightarrow x_{4}=1$ $\rightarrow |6_{3}=7|$

 $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 3 & 6 & 9 & 5 \\ 2 & 9 & 6 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$

Xy=1 from above

 $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 3 & 6 & 9 & 5 \\ 2 & 4 & 6 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \\ y_3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$

$$y_1 + 2x_2 + 3x_3 + 2 = 1$$

 $x_1 = 1 - 2x_2 - 3x_3$

$$2x_{7} + 3x_{3} + 2 = 1$$

$$x_{1} = 1 - 2x_{2} - 3x_{3}$$

$$50 \quad x = \begin{bmatrix} 1 - 2x_{2} - 3x_{3} \\ x_{2} \\ x_{3} \\ 1 \end{bmatrix}$$

Problem 2

Problem 2)
$$\dot{y}(t) = Z(t) + U(t)$$
 $\dot{z}(t) = Zy(t) + Z(t) + 3u(t)$

2b.) transfer function
$$H(s) = \frac{y(s)}{U(s)}$$

$$X = \begin{bmatrix} y \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} + u \\ 2y + \frac{1}{2} + 3u \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} y \\ \frac{1}{3} \end{bmatrix} u$$

$$Y = y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} y \\ \frac{1}{2} \end{bmatrix} + \underbrace{0 \cdot u}_{D} = Cx + Du$$

$$2a) \ \ V(s) = \left(D + C(sI - A)^{-1}B \right) U(s)$$

$$H(s) = \left(0 + \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s & -1 \\ -2 & s - 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right)$$

$$= \left[1 & 0 \end{bmatrix} \left(s^{2} - s - 2 \right)^{-1} \left[s - 1 & 1 \end{bmatrix} \begin{bmatrix} s - 1 \\ 2 & s \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$= \left(s^{2} - s - 2 \right)^{-1} \left[s - 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$= \frac{s - 1}{s^{2} - s - 2} = \frac{s + 2}{s^{2} - s - 2} = H(s)$$

2c) Describe normal modes of the system 3 stability, given by evaluation of A $H(s) = \frac{s+z}{(s-z)(s+i)}$

$$\lambda_{1} = 2 \qquad Av^{(1)} = \Lambda_{1}v^{(1)} \qquad so \qquad v^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\lambda_{2} = -1 \qquad Av^{(2)} = \lambda_{2}v^{(2)} \qquad so \qquad v^{(2)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$so \quad modes \quad orc \quad \begin{bmatrix} 1 \\ 2 \end{bmatrix}e^{2t} \quad (unstable)$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}e^{-t} \quad (stable)$$

2d) U = ky. What value of K is system shalf? $U = [K \ 0] \begin{bmatrix} \frac{1}{2} \end{bmatrix} = [K \ 0] \ \underline{X}$ $\underline{Y} = A\underline{X} + B\underline{U} = Ax + B \begin{bmatrix} K \ 0 \end{bmatrix} \underline{X} = (A + B \begin{bmatrix} K \ 0 \end{bmatrix}) \underline{X} = (\begin{bmatrix} 0 \ 1 \end{bmatrix} + \begin{bmatrix} 1/3 \end{bmatrix} \begin{bmatrix} K \ 0 \end{bmatrix}) \underline{X}$ so $X = \begin{bmatrix} K \ 1 \end{bmatrix} \underline{X} = A_{C_1} \underline{X}$ $A(A_{C_1}) = A_{C_1} = A_{C_2} = A_{C_1} = A_{C_2} = A_{C_$

2.2 Very Hord

Problem 3

Problem 3)
$$M_g = 10 \text{ kg}$$
 $l = 2m$, $w = .4m$, thichease = .02 m
Young's med $E = 100 \text{ GPa}$. Clamped at one end
take $g \approx 10 \text{ N}_{\text{kg}}$ $K = E \frac{\omega l^3}{4l^3}$ for contileved board

3a)

Figure =
$$m_d g$$

 $K_X = K (board displacement) = (100 6 P_a) \frac{\omega t^3}{4 t^3} (bard disp.)$

36) Force on board: ½ Kx2

$$m_{g}gh = \frac{1}{2}kx^{2}$$

$$h = \frac{kx^{2}}{m_{g}g} = \frac{(100 \text{ GPa})^{\frac{(.4)(.02)^{3}}{4(2)^{3}}}(0.1)^{2}}{2(10 \text{ kg})(10 \frac{N}{\text{kg}})} = \boxed{0.5 \text{ moler}}$$

dog speed. =
$$V_{\text{sind}}$$
 $V_{\text{initial}} = 0$

$$V_{\text{sind}}^2 - V_{\text{initial}}^2 = 2gh$$

$$V_{\text{sind}} = \sqrt{2(10 \frac{N}{Kg})(.5 \text{ order})} = \sqrt{10 \frac{m \frac{Kg}{s}}{s \frac{kg}{s}}} m = \sqrt{10 \frac{m}{s}}$$

3c) board 1% thicker => thickness: 0.0202 meter

force board = force dog lounched

$$\frac{1}{2} k x^{2} = m_{d} gh$$

$$h = \frac{k x^{2}}{z m_{d} g} = \frac{(100 \text{ GPa})(\frac{\cdot 4 (.2202)^{3}}{4 (2)^{3}})(.1)^{2}}{2 (10 \text{ kg})(10 \frac{N}{\text{kg}})} = \boxed{0.515 \text{ meter}}$$

Problem 4

46)
$$p(H) = .25 = (.75)^{6} (.75)^{2} = \boxed{0.01112}$$

$$P(b|a) = P(b|a) P(a)$$

$$P(b|a) = \frac{P(b|a) P(a)}{P(a)} = \frac{\left(\frac{1}{4}\right)(0.01112)}{\left(\frac{1}{4}\right)(0.003900)} = \boxed{0.487} P(b|a)$$

14.2 easy

Problem 5 (Code in Appendix)

Part A)

5 Sequences of 40 flops for a fair coin

0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	0	1	0	1	1	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	0	1	0	1	0
0	1	0	1	0	1	1	1	1	0	0	0	1	1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0
1	0	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	1	1	0	1	0	0	1	0	0	1	1	1	0	1	1	0	1	0	0	1	0	0	0	1
1	1	0	1	1	1	0	0	0	0	1	1	1	0	1	0	1	1	0	0	0	0	0	0	1	1	0	0	1	1	1	1	0	1	0	1	1	1	1	0	1
1	1	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1
0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	0	1	0	1	1	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	0	1	0	1	0

5 sequences of 40 flips for a biased coin

0	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	1	0	1	0	1	0	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	0
1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	1	1
0	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Part B) Likelihood coin is biased given coin is biased, over the course of each of the 5 sequences in part A

	1	2	3	4	5	6	7	8	9	10
2	0.3333	0.4286	0.2727	0.1579	0.2195	0.2967	0.3876	0.4870	0.5874	0.6811
3	0.3333	0.4286	0.5294	0.6279	0.7168	0.7915	0.8506	0.8952	0.9276	0.9505
4	0.3333	0.4286	0.2727	0.3600	0.2195	0.1233	0.0657	0.0954	0.1366	0.1918
5	0.3333	0.4286	0.5294	0.3600	0.2195	0.2967	0.3876	0.4870	0.5874	0.6811
	11	12	13	14	15	16	17	18	19	20
	0.7621	0.8277	0.8782	0.7828	0.8439	0.8902	0.9240	0.8588	0.9012	0.9319
	0.9665	0.9351	0.8782	0.9153	0.9419	0.8902	0.9240	0.9480	0.9647	0.9762
	0.1061	0.1511	0.0817	0.0426	0.0626	0.0910	0.1306	0.1838	0.2525	0.3364
	0.7621	0.8277	0.7061	0.5457	0.6431	0.4740	0.3106	0.4033	0.5034	0.6032
	21	22	23	24	25	26	27	28	29	30
	0.9535	0.9685	0.9788	0.9585	0.9719	0.9454	0.9629	0.9750	0.9832	0.9669
	0.9840	0.9893	0.9928	0.9858	0.9905	0.9936	0.9957	0.9972	0.9981	0.9987
	0.4319	0.5328	0.3631	0.4610	0.5620	0.6580	0.7427	0.8124	0.8666	0.7646
	0.6952	0.5328	0.3631	0.4610	0.5620	0.3908	0.4904	0.5907	0.6840	0.7646
	31	32	33	34	35	36	37	38	39	40
	0.9360	0.9564	0.9705	0.9427	0.9610	0.9737	0.9823	0.9881	0.9921	0.9947
	0.9975	0.9983	0.9966	0.9978	0.9985	0.9990	0.9993	0.9996	0.9997	0.9994
	0.6189	0.7089	0.7851	0.8457	0.8915	0.9250	0.9487	0.9024	0.8222	0.6981
	0.8297	0.7089	0.7851	0.8457	0.7326	0.8043	0.8604	0.7550	0.8222	0.8740

Likelihood coin is biased given coin is fair, over the course of each of the 5 sequences in part A

	1	2	3	4	5	6	7	8	9	10
1	0.3333	0.20	00 0.27	0.360	0.457	6 0.296	7 0.387	0.4870	0.3219	0.1918
2	0.3333	0.20	00 0.272	0.360	0.219	5 0.123	3 0.065	0.0340	0.0173	0.0087
3	0.1429	0.20	0.11	0.058	0.085	7 0.123	3 0.065	0.0954	0.1366	0.1918
4	0.3333	0.42	86 0.529	0.360	0.219	0.123	3 0.174	0.2404	0.3219	0.4159
5	0.3333	0.42	86 0.529	0.360	0.219	0.123	3 0.065	0.0340	0.0501	0.0257
	11	12	13	14	15	16	17	18	19	20
	0.2625	0.3481	0.2107	0.2859	0.3753	0.4740	0.5747	0.6697	0.7525	0.8202
	0.0130	0.0065	0.0098	0.0146	0.0218	0.0323	0.0164	0.0244	0.0124	0.0062
	0.2625	0.3481	0.4447	0.2859	0.1668	0.2310	0.3106	0.4033	0.5034	0.6032
	0.2625	0.3481	0.2107	0.1178	0.1668	0.2310	0.3106	0.4033	0.2525	0.3364
	0.0130	0.0065	0.0098	0.0049	0.0074	0.0110	0.0055	0.0028	0.0042	0.0062
	21	22	23	24	25	26	27	28	29	30
	0.0031	0.0047	0.0070	0.0104	0.0053	0.0026	0.0013	6.5949e	9.8891e	0.0015
	0.6952	0.7738	0.6311	0.7196	0.5620	0.6580	0.4904	0.3248	0.1939	0.2651
	0.4319	0.5328	0.6311	0.7196	0.5620	0.6580	0.4904	0.5907	0.6840	0.5198
	0.0093	0.0047	0.0070	0.0035	0.0018	0.0026	0.0013	6.5949e	9.8891e	0.0015
	31	32	33	34	35	36	37	38	39	40
	0.0022	0.0011	0.0017	8.3452e	4.1743e	2.0876e	1.0439e	5.2198e	2.6100e	1.3050e
	0.3512	0.4481	0.5491	0.6462	0.4773	0.3135	0.4065	0.2551	0.1462	0.0789
	0.6189	0.7089	0.5491	0.6462	0.4773	0.3135	0.1859	0.2551	0.1462	0.2044
	0.0022	0.0011	5.5650e	8.3452e	0.0013	6.2602e	9.3874e	0.0014	7.0422e	3.5223e

Part C)

Part D)

5.2: Hard

Problem 6

Problem 6)

Prob 1: 25 mins

Prob 2: 2.5 hours or more

Prob 3: 15 mins

P106 4: 10 mins

Prob 5: 4 hours.

Appendix

```
clc; clear all; close all;
% 5a
% Fair
seqFair = [];
for i = 1:5
    seqFairOutcome = cf(1,40);
    seqFair(i,:) = seqFairOutcome;
end
% Biased
seqBiased = [];
for i = 1:5
    seqBiasedOutcome = cf(2,40);
    seqBiased(i,:) = seqBiasedOutcome;
end
% 5b
% Fair
seqFairB = [];
likeFairB = [];
for i = 1:5
    [sequence_fair_b,likehood_fair_b] = cfl(1,40);
    seqFairB(i,:) = sequence_fair_b;
    likeFairB(i,:) = likehood_fair_b;
end
% Biased
seqBiasedB = [];
likeBiasedB = [];
for i = 1:5
    [sequence_bias_b,likehood_bias_b] = cfl(2,40);
    seqBiasedB(i,:) = sequence_bias_b;
    likeBiasedB(i,:) = likehood_bias_b;
end
% 5c
seqFairC = [];
likeFairC = [];
for i = 1:5
    [sequence_fair_c,likehood_fair_c] = cfl(1,100);
    seqFairC(i,:) = sequence_fair_c;
    likeFairC(i,:) = likehood fair c;
end
figure();
for i = 1:5
    plot(1:100,likeFairC(i,:));
    hold on;
end
hold off;
xlabel('number of flips');
ylabel('Probability using a biased coin');
title('Likelihood of using a biased coin when using a fair coin as it changes over 100 trails');
legend({'sequence 1','sequence 2','sequence 3','sequence 4','sequence 5'});
grid on;
% 5d
seqBiasedD = [];
likeBiasedD = [];
for i = 1:5
    [sequence bias d, likehood bias d] = cfl(2,100);
    seqBiasedD(i,:) = sequence_bias_d;
    likeBiasedD(i,:) = likehood_bias d;
end
figure();
for i = 1:5
    plot(1:100,likeBiasedD(i,:));
```

```
hold on;
end
hold off;
xlabel('number of flips');
ylabel('Probability using a biased coin');
title('Likelihood of using a biased coin when using a biased coin as it changes over 100 trails');
legend({'sequence 1','sequence 2','sequence 3','sequence 4','sequence 5'});
grid on;
% 5a Fn
function seq = cf(cointype,numFlip)
    switch cointype
        % fair
        case 1
                seq = (rand(1, numFlip) < 0.5); % heads prob = 0.5
        % biased
        case 2
                seq = (rand(1, numFlip) < 0.25); % heads prob = 0.25
    end
end
% 5b Fn
function [seq,like] = cfl(type,numFlip)
    switch type
        case 1
            seq = (rand(1,numFlip) < 0.5);
            pFair = 3/4;
                            % 3 fair, 1 biased
            pBiased = 1/4;
                for j = 1:numFlip
                    pFair = pFair*(1/2);
                    % if get head
                    if seq(j) == 1
                        pBiased = pBiased*(1/4);
                    % if get tail
                        pBiased = pBiased*(3/4);
                    end
                    like(j) = pBiased/(pBiased+pFair);
        case 2
            seq = (rand(1, numFlip) < 0.25);
            disp(seq);
                pFair = 3/4;
                                 % 3 fair, 1 biased
                pBiased = 1/4;
                for j = 1:numFlip
                    pFair = pFair*(1/2);
                    % if get head
                    if seq(j) == 1
                        pBiased = pBiased*(1/4);
                    % if get tail
                    else
                        pBiased = pBiased*(3/4);
                    like(j) = pBiased/(pBiased+pFair);
                end
    end
end
```