Проблема согласованности и сравнение шкал в задачах принятия решений

Тимофеев Иван Михайлович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А. Рецензент: асп., Кушербаева В.Т.

Санкт-Петербург 2010г.

Введение

- $X = \{x_1, x_2, \dots, x_n\}$ множество альтернатив,
- $C = \{c_1, c_2, \dots, c_n\}$ множество критериев,
- F главная цель.

Задачи:

- Упорядочить альтернативы по степени важности;
- Найти вес каждой альтернативы в итоговом упорядочении.

Задача о лидере

Пусть $A=(a_j^i)$ — матрица смежности графа G с вершинами x_1,\ldots,x_n . $p^i(k)$ — итерированная сила порядка k альтернативы x_i .

$$p^{i}(t) = \sum_{m=1}^{n} a_{km} p^{m}(t-1).$$

Определим силу альтернативы x_i как предел:

$$\pi^i = \lim_{k \to \infty} \frac{p^i(k)}{\sum_{j=1}^n p^j(k)}.$$

Виды шкал

Определение

Шкала — функция метода: $f: \mathbb{Z} \to \mathbb{R}^+$.

Мультипликативная и логистическая шкалы:

$$f_{MAI}(t) = (x_{mai} |t| + 1)^{sign(t)}.$$

$$f_{MLK}(t) = \frac{2}{1 + e^{\mu(1-t)}}.$$

Определение

- Эмпирическая система $U = (A, R_1, R_2, \ldots)$.
- Числовая система $V = (Z, W_1, W_2, \ldots)$.
- ullet Отображение $\varphi:U o V$.

 $\mathsf{Tor}\mathsf{\it pa}$ φ называют шкалой градаций.

Сравнение шкал

Пусть имеется два набора чисел $a=(a_1,\ldots,a_n)$ и $b=(b_1,\ldots,b_n)$. Сравнения производились по двум критериям:

- $SKO = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i b_i)^2}$.
- c = a b, $MAD = median\{|c - median(c)|\}$.

Пример:оценка расстояний

Оценка расстояний:

Расстояние измерялось от Филадельфии до Каира, Токио, Чикаго, Сан-Франциско, Лондона и Монреаля.

Города	Расстояние до Фила-	Нормализованное
	дельфии в милях	расстояние
Каир	5729	0.278
Токио	7449	0.361
Чикаго	660	0.032
Сан-Франциско	2732	0.132
Лондон	3658	0.177
Монреаль	400	0.019

Пример: оценка расстояний

Рис.: Мультипликативная шкала.

При
$$x_{mai} = 1$$
: $SKO = 0.048$; $MAD = 0.045$.

Рис.: Логистическая шкала.

При
$$\mu = 0.5$$
: $SKO = 0.038$; $MAD = 0.039$.

Определение

Считаем, что выполнена порядковая согласованность, если $a \succ b, b \succ c$, то $a \succ c$.

Пример несоблюдения порядковой согласованности, на примере трех объектов.

$$X=(x_1,x_2,x_3).$$
 И пусть их упорядочили: $x_2\succ x_3,\ x_3\succ x_1,\ x_1\succ x_2.$ В итоге упорядочение $x_1\succ x_2\succ x_3\succ x_1.$

Представление упорядочения

Упорядочению $a \succ b \succ c \succ d$ соответствует:

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & 1 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0
\end{pmatrix}$$

Два способа возникновения контуров в графе упорядочений:

- Появление обратных дуг.
- Смена «ориентации» дуг.

Представление упорядочения

Упорядочению $a \succ b \succ c \succ d$ соответствует:

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & 1 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0
\end{pmatrix}$$

Два способа возникновения контуров в графе упорядочений:

- Появление обратных дуг.
- Смена «ориентации» дуг.

Представление упорядочения

Упорядочению $a \succ b \succ c \succ d$ соответствует:

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & 1 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0
\end{pmatrix}$$

Два способа возникновения контуров в графе упорядочений:

- Появление обратных дуг.
- Смена «ориентации» дуг.

Рассмотрим вершину c.

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ \mathbf{1} & \mathbf{1} & 0 & 1 \\ -1 & -1 & \mathbf{1} & 0 \end{pmatrix}$$

Рис.: Граф упорядочений и матрица с градациями.

Рис.: Контуры.

Рассмотрим вершину c.

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ \mathbf{1} & \mathbf{1} & 0 & 1 \\ -1 & -1 & \mathbf{1} & 0 \end{pmatrix}$$

Рис.: Граф упорядочений и матрица с градациями.

Итоговый вектор: (0.295, 0.230, 0.295, 0.180)

Рассмотрим вершину c.

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ \mathbf{1} & \mathbf{1} & 0 & 1 \\ -1 & -1 & \mathbf{1} & 0 \end{pmatrix}$$

Рис.: Граф упорядочений и матрица с градациями.

Итоговый вектор: (0.295, 0.230, 0.295, 0.180).

Рассмотрим вершину c.

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix}$$

Рис.: Граф упорядочений и матрица с градациями.

Рис.: Контуры.

Рассмотрим вершину c.

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix}$$

Рис.: Граф упорядочений и матрица с градациями.

Итоговый вектор: (0.276, 0.203, 0.294, 0.227).

Рассмотрим вершину c.

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix}$$

Рис.: Граф упорядочений и матрица с градациями.

Итоговый вектор: (0.276, 0.203, 0.294, 0.227).

Правила заполнения матриц

Правило 1

Матрица с градациями A может заполняться таким образом, что в результате сравнения объектов i и j, a_{ij} присваивается t, где $t \in \mathbb{Z}^+$, и при этом $a_{ij} = a_{ji}$, $i, j = 1, \ldots, n$.

Правило 2

Матрица с градациями A может заполняться таким образом, что в результате сравнения объектов i и j, a_{ij} и a_{ji} присваиваются числа из $\mathbb Z$ так, чтобы выполнялось $a_{ij}=-a_{ji}$, $i,j=1,\dots,n$.

<u>Поиск несогл</u>асованности

Утверждение

A — матрица размера $n \times n$, составленная по правилу 1, тогда, если $p^+
eq \frac{n(n-1)}{2}$, либо $p^-
eq \frac{n(n-1)}{2}$, где p^+ — количество положительных элементов, а p^- — количество отрицательных элементов в матрице A, то в A имеется несогласованность.

Утверждение

A — матрица размера $n \times n$, составленная по правилу 2, тогда если $p_{i\cdot}^+ = p_{j\cdot}^+$ и $p_{i\cdot}^- = p_{j\cdot}^-$, $\forall i,j \in \overline{1,n}, i \neq j$, где $p_{i\cdot}^+$ — количество положительных элементов матрицы A в i-й строке, $p_{i\cdot}^-$ — количество отрицательных элементов, то в A имеется несогласованность.

Заключение

- Разработаны рекомендации по выбору параметров шкал.
- Исследовано влияние несогласованности на итоговое упорядочение.
- Предложены способы поиска несогласованности.

Перспективы развития:

- Обобщить полученные результаты на большее количество градаций и альтернатив.
- Поиск оптимальной шкалы.