

Universidade Federal de Goiás Instituto de Informática Engenharia de Software

Matriz Curricular: ENGSO-BN-2 - 2017.1

Plano de Disciplina

Ano Letivo: 2019 - 2º Semestre

Dados da Disciplina

	Cádigo	Nomo	Carga Horária	
Código	Nome	Teórica	Prática	
	10000088	Análise e Projeto de Algoritmos - NBC	64	0

Prof(a): Diogo Stelle

Turma: Α

Ementa

Medidas de complexidade, análise assintótica de limites de complexidade para algoritmos iterativos e recursivos, técnicas de prova de cotas inferiores. Corretude de Algoritmos. Exemplos de análise de algoritmos. Técnicas de projeto de algoritmos: dividir para conquistar, programação dinâmica, algoritmos gulosos. Introdução à NP-Completude.

Objetivo Geral

Desenvolver a capacidade de propor algoritmos e avaliar a corretude e a eficiência dos mesmos para um determinado problema computacional, através do conceito de complexidade algorítmica.

Objetivos Específicos

Ensinar conceitos de complexidade assintótica e desenvolver a capacidade de verificar a corretude e a eficiência de algoritmos. Capacitar na construção de algoritmos eficientes usando técnicas bem fundamentadas. Apresentar algoritmos clássicos para problemas em computação

Relação com Outras Disciplinas

Pré-requisitos: Fundamentos Matemáticos para Computação, Algoritmos e Estrutura de Dados II. Importante ter cursado: Cálculo 1.

Programa

1) Análise de complexidade de algoritmos: 1.1) Conceitos básicos e introdução à análise de complexidade - definição de algoritmos, prova de corretude por invariante, modelo de máquina RAM, análise do tempo de execução, exemplo da análise de alguns algoritmos. 1.2) Análise de pior caso, melhor caso e caso médio. Crescimento de funções notações assintóticas e comparação entre funções de complexidade. 1.3) Técnica de dividir e conquistar para projeto de algoritmos (Exemplos em busca binária, ordenação com Mergesort e Quicksort, multiplicação de números inteiros, multiplicação de matrizes). 1.4) Análise de funções de tempo recursivas - método da substituição, método iterativo, método de árvore de recursão, método mestre. 1.5) Aplicação de análise de algoritmos em ordenação -- Heapsort, limite inferior de ordenação por comparação e ordenação em tempo linear. 2) Outras Técnicas para Projeto de Algoritmos: 2.1) Programação Dinâmica - definição e técnica. Estudos de casos em: sequência de multiplicação de matrizes, mochila 0-1, maior subsequência comum, caminhos mínimos e etc. 2.2) Algoritmos Gulosos - definição e apresentação da técnica. Estudos de casos em: escalonamento de tarefas, códigos de Huffman, mochila fracionária, problema do troco com moedas, etc. 3) Introdução à NP-Completude (Reduções entre problemas, Classes P, NP, NP-difícil, NP-completo).

Procedimentos Didáticos

Legenda	Descrição	Objetivo
AEX	Aula teórica	Transmitir conhecimento utilizando quadro ou slides.
AP	Aula prática	Proporcionar ao aluno a aplicação prática do conteúdo ministrado em aula teórica.
ED	Estudo dirigido	Desenvolver a capacidade analítica, capacidade de síntese, de avaliação crítica e de análise.
OTR	Outros	Transmitir conhecimento utilizando quadro ou slides.
RE	Aula teórica com resolução de exercícios	Desenvolver o raciocínio lógico, criatividade e capacidade de abstração e a capacidade de identificar, analisar e projetar soluções de problemas.
SE	Seminários	Desenvolver o raciocínio lógico, criatividade, capacidade de abstração, capacidade para identificar, analisar, projetar soluções de problemas, a capacidade de comunicação oral e a capacidade de trabalhar em grupo.
TG	Trabalho em grupo	Desenvolver a capacidade de comunicação oral e escrita. Capacidade de trabalhar em grupo.

Conteúdo Programático / Cronograma

Inicio	Proc. Didático	Tópico	# Aul.
20/08/19	OTR	Semana de Integração	4
27/08/19	AEX, RE	Apresentação da disciplina. Motivação. Conceitos básicos introdução à análise de complexidade definição de algoritmo prova de corretude por invariante, modelo de máquina RA análise do tempo de execução, exemplo da análise de algualgoritmos. Atividade supervisionada sobre o tópico.	
03/09/19	AEX, RE	Análise de pior caso, melhor caso e caso médio. Crescimento de funções - notações assintóticas e comparação entre funções de complexidade. Atividade supervisionada sobre o tópico.	8
10/09/19	AEX, RE	Técnica de dividir e conquistar para projeto de algoritmo (Exemplos em busca binária, ordenação com Mergesort Quicksort, multiplicação de números inteiros, multiplicação o matrizes). Análise de funções de tempo recursivas Método Substituição, Método iterativo, Método de árvore de recursã Método mestre. Atividade supervisionada sobre o tópico.	
08/10/19	OTR	Aplicação da Prova 1.	2
15/10/19	AEX, RE	Aplicação de análise de algoritmos em ordenação Heapsort, limite inferior de ordenação por comparação e ordenação em tempo linear. Atividade supervisionada sobre o tópico.	
22/10/19	OTR	16º Congresso de Pesquisa, Ensino e Extensão (CONPEEX)	
05/11/19	OTR	Aplicação da Prova 2.	2
05/11/19	AEX, RE	Programação Dinâmica - Definição e técnica. Estudo de casos em: corte unidimensional, sequência de multiplicação de matrizes, mochila 0-1, maior subsequência comum, caminhos mínimos e etc. Atividade supervisionada sobre o tópico.	
26/11/19	AEX, RE	Algoritmos Gulosos - Definição e apresentação da técnic Estudos de casos em: escalonamento de tarefas, código Huffman, mochila fracionária e etc. Atividade supervisionad sobre o tópico.	
03/12/19	AEX, RE	Introdução à NP-Completude (Reduções entre problemas Classes P, NP, NP-difícil, NP-completo). Atividad supervisionada sobre o tópico.	
17/12/19	OTR	Aplicação da Prova 3.	2
		Total	64

Critério de Avaliação

A nota final (NF) será obtida pela fórmula: NF = (P1 x 0.25 + P2 x 0.30 + P3 x 0.30) + (NT x 0.15); Onde: Pi representa a nota da Prova i (para i = 1,2,3), valendo 10,0 pontos; NT representa a nota dos exercícios e trabalhos realizados durante o semestre, valendo 10,0 pontos; OBSERVAÇÕES: - Eventualmente ocorrerão aulas não presenciais através de acompanhamento/atividades no ambiente virtual SIGAA e/ou Moodle da disciplina, divulgadas previamente; - Serão realizadas várias atividades avaliativas em sala ou extraclasse, em datas não previamente definidas, que irão compor a NT; - Não

haverá avaliação substitutiva; - Para as provas escritas, será considerado o conteúdo ministrado (teórico, exemplos e exercícios) até a data de sua aplicação; - Será atribuída a nota 0,0 (zero) a qualquer avaliação/atividade não realizada; - Os alunos que se envolverem em "cola" (colando ou deixando colar) ou plágio receberão nota 0 (zero) para a atividade correspondente; - O aluno que não comparecer a pelo menos 75% das aulas estará reprovado por falta; - O aluno que não conseguir nota final (NF) maior ou igual a 6,0 (seis) estará reprovado por média; - O aluno que deixar de realizar alguma das provas poderá solicitar segunda chamada de avaliação, até 7 (sete) dias após a data da realização da avaliação; - As atividades supervisionadas serão acompanhadas via ambiente virtual e/ou por meio de encontros extraclasse em horários a serem previamente divulgados.

Data da Realização das Provas

Serão realizadas três provas, previstas para as seguintes datas: P1: 08/10/2019; P2: 05/11/2019; e, P3: 17/12/2019.

Local de Divulgação dos Resultados das Avaliações

As notas serão divulgadas no SIGAA e as atividades avaliativas serão entregues aos alunos em sala de aula.

Bibliografia Básica

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e Prática . 3a edição, Campus,

16BRASSARD, G; BRATLEY, P. Fundamentals of Algorithmics. Upper Saddle River, NJ: Prentice-Hall, Inc., 1996. PAPADIMITRIOU, C. H.; VAZIRANI, U. V.; DASGUPTA, S. Algoritmos. Mc-Graw-Hill, 2009.

Bibliografia Complementar

BAASE, S.; GELDER, A. V. Computer Algorithms: Introduction to Design and Analysis. 3rd Edition. Pearson, 1999. SZWARCFITER, J. L.; MARKENZON, L. Estrutura de Dados e seus Algoritmos. 3a ediça o . LTC Editora , 2010. MAMBER, U. Introduction to Algorithms. Addison Wesley Publishing Company. 1989.

SEDGEWICK, R., WAYNE, K. Algorithms. 4th edition. Addison-Wesley Professional, 2011.

AHO, A.V., HOPCROFT, J.E., ULLMAN, J.D. The Design and Analysis of Computer Algorithms, Addison-Wesley Publishing Company, 1974.ISBN 0-201-00029-6.

Bibliografia Sugerida

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e Prática . 3a edição, Campus, 2012.

PAPADIMITRIOU, C. H.; VAZIRANI, U. V.; DASGUPTA, S. Algoritmos. Mc-Graw-Hill, 2009.

SZWARCFITER, J. L.; MARKENZON, L. Estrutura de Dados e seus Algoritmos. 3a ediça o . LTC Editora , 2010.

SEDGEWICK, R., WAYNE, K. Algorithms. 4th edition. Addison-Wesley Professional, 2011.

Termo de Entrega	Termo de Aprovação	
Apresentado à Coordenação no dia	Aprovado em Reunião de CD no dia	
Prof(a) Diogo Stelle Professor	Prof. Dr. Sérgio Teixeira de Carvalho Diretor do Instituto de Informática	
Termo de Ho	omologação	
Data de Expedição: Goiânia, de	e	