Using Geometric Brownian Motion to Model Options Strategies

Jake Freedle, Pierre Visconti June 12, 2024

Julic 12, 202 i

Walla Walla University

Outline

Mathematical Groundwork

Application to Financial Assets

Stock Price Modeling

Iron Condor Options Strategy

Conclusion

Mathematical Groundwork

What is Geometric Brownian Motion

Geometric Brownian Motion (GBM) is a continuous-time stochastic process in which the logarithm of a randomly varying value follows a Brownian motion with drift.

When does a Stochastic Process follow GBM

A stochastic process S_t is said to follow a GBM if it satisfies the following stochastic differential equation (SDE):

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

We can apply Itô's formula and find the following solution

$$S_t = S_0 \left(e^{\left(\mu - rac{\sigma^2}{2}
ight)t + \sigma W_t}
ight)$$
 .

Standard Brownian Motion W_t

- 1. Initial Value: $W_0 = 0$.
- 2. Independent Increments: The increments of the process $W_t W_s$ for $0 \le s < t$ are independent of the past values W(u) for $u \le s$.
- 3. Normal Distribution of Increments: The increments $W_t W_s$ are normally distributed with mean 0 and variance t-s. Specifically, $W_t W_s \sim N(0, t-s)$.
- 4. Continuous Paths: The paths of W_t are continuous functions of t, W_t is continuous in t.

Application to Financial Assets

Financial Interpretation of the Solution

$$S_t = S_0 \left(e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t} \right)$$

 S_t : Asset Price

t: Time

$$\mu - \frac{\sigma^2}{2}$$
: Expected Return (Drift)

 σ : Standard Deviation (Volatility)

W_t: Standard Brownian Process

Stock Price Modeling

Modeling Process

Historical Daily Percent Change Distribution

Simulated Price Paths

Ending Price Probability Distribution

Ending Price Probability Distribution (Large T)

Iron Condor Options Strategy

An Introduction to Options and the Iron Condor Strategy

Developing an Options Strategy

Determining the Optimal Trade For a Given Interval

Calculating statistics:

- maxProfit = $(SP_p + SC_p LP_p LC_p) * 100.0$
- $\max Loss_p = \max Profit- (SP_s LP_s) * 100.0$
- $\max Loss_c = \max Profit (LC_s SC_s) * 100.0$
- breakEven_p = $SP_s (SP_p + LP_p)$
- breakEven_c = $SC_s + (SC_p + LC_p)$
- RR = $\max Profit / \max \{\max Loss_p, \max Loss_c\}$

Optimizing the outer contracts:

- Define RR as a reward to risk ratio for the trade, where reward=maxProfit and risk=max{maxLoss_p,maxLoss_c}.
- Iterate over all the possible strikes for the long put and long call contracts to find the highest RR. Walla Walla

Expected Value of a Trade

x : profit (loss) per trade.

W: amount won if trade is a win (reward).

L: amount lost if trade is a loss.

$$E[X] = W \cdot P_w - L \cdot P_\ell$$

Determining Minimum RR For a Given Interval

We can represent W as a ratio of reward/loss: RR.

$$\frac{E[X]}{L} = \frac{W}{L} \cdot P_w - \frac{L}{L} \cdot P_\ell$$
$$E_r[X] = RR \cdot P_w - 1 \cdot P_\ell$$

Can solve for minimum RR by setting $E_r[X] = 0$:

$$RR_{\min} = \frac{P_{\ell}}{P_{w}}$$

Ex: Assuming an interval of 90%

$$RR_{min} = \frac{0.1}{0.9} = 0.111$$

Determining if a Trade Should Be Taken

Ex: Assume an interval of 90%, a max profit of \$50, and a max loss of \$120.

$$RR_{min} = \frac{0.1}{0.9} = 0.111$$

$$RR_{trade} = \frac{50}{120} = 0.417$$

$$E[X] = 50 \cdot 0.9 - 120 \cdot 0.1 = $33$$

$$E_r[X] = 0.417 \cdot 0.9 - 1 \cdot 0.1 = 0.275$$

Finding The Optimal Trade

Algorithm:

Iterate over all assets with high options trading volume: {SPY, QQQ, IWM, SLV,...}.

- For each asset, iterate over a list of pre-defined intervals: {0.9, 0.85, 0.8,...}.
 - For each interval, determine the optimal iron condor strategy.

Output:

A list of the optimal iron condor setups for every interval and asset. The optimal trade is the one with the highest $E_r[X]$.

Results

Live coding demo.

Conclusion

Notes and Future Work

- Geometric Brownian Motion is likely too simple.
- Back-testing with historical data to test different assets.
- Building a more complex options model.

Disclaimer: This is not investment advice!

References

Cory Mitchell.

Iron Condor: How This Options Strategy Works, With Examples, April 2024.

Elias Melul.

Monte Carlo Simulations for Stock Price Predictions [Python], May 2020.

Wikipedia contributors.

Geometric brownian motion — Wikipedia, the free encyclopedia, 2024.