Probability Exercise 13.5, Q2

Hema Sri Cheekatla, CS21BTECH11013

May 20, 2022

Outline

Question

Solution

Question

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.

Solution

On throwing a pair of dice, getting doublet is success and we are throwing the pair of dice 4 times.

Consider one event of getting success represented by a Bernoulli random variable X as shown

Table: Events for X

Event	Discription
X = 0	no doublet
X = 1	Doublet

$$P_X(1) = \frac{1}{6} \tag{2.0.1}$$

$$P_X(1) = \frac{1}{6}$$
 (2.0.1)
 $P_X(0) = \frac{5}{6}$ (2.0.2)

Now consider another event of throwing this pair of dice 4 times and represent the corresponding outcomes by the Binomial Random Variable Y as shown

Table: Events for Y

Event	Discription
Y = 0	Getting 0 doublets
Y = 1	Getting 1 doublets
Y = 2	Getting 2 doublets
Y = 3	Getting 3 doublets
Y = 4	Getting 4 doublets

The corresponding Probabilities is given by,

$$P_Y(k) = \begin{cases} {}^{n}C_k p^k q^{n-k}, & k = 1, 2, \dots, n \\ 0, & \text{otherwise} \end{cases}$$
 (2.0.3)

Where n is number of trails = 4

$$p = P_X(1) = \frac{1}{6}$$

 $q = P_X(0) = \frac{5}{6}$

Hence the probability of getting success twice is given by,

$$P_{Y}(2) = {}^{4}C_{2} \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{4-2}$$

$$P_{Y}(2) = \frac{25}{216}$$
(2.0.4)

$$P_{Y}(2) = \frac{25}{216} \tag{2.0.5}$$

Hence the required probability is $\frac{25}{216}$

Now the Probability Mass Function of Y is as follows

Figure: Probability Mass Function of Y