Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática Segundo Semestre de 2024

MAT1203L * Laboratorio Álgebra Lineal

Sesión 5: Transformaciones Lineales

1. Objetivos del Laboratorio

1.1. Objetivo General

Entender y aplicar transformaciones lineales en el plano y el espacio.

Objetivos Específicos

- Aplicar matrices para realizar transformaciones lineales como rotación, escalamiento y reflexión.
- Visualizar el efecto de las transformaciones lineales sobre figuras geométricas.
- Comprobar las propiedades fundamentales de las transformaciones lineales.

2. Introducción Teórica

2.1. Definición de Transformación Lineal

Una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^m$ es una función que asigna un vector en \mathbb{R}^n a otro vector en \mathbb{R}^m , de tal manera que se cumplen las dos propiedades siguientes:

■ Aditividad (linealidad en la suma): Para cualesquiera vectores $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, se cumple que

$$T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w}).$$

■ Homogeneidad (linealidad en la multiplicación por un escalar): Para cualquier vector $\mathbf{v} \in \mathbb{R}^n$ y cualquier escalar $c \in \mathbb{R}$, se cumple que

$$T(c\mathbf{v}) = cT(\mathbf{v}).$$

2.2. Propiedades de las Transformaciones Lineales

Las transformaciones lineales tienen algunas propiedades importantes que se pueden verificar mediante su representación matricial:

 Las transformaciones lineales siempre preservan la estructura del espacio vectorial, lo que significa que transforman rectas en rectas y planos en planos. \blacksquare Cualquier transformación lineal puede representarse mediante una matriz A tal que

$$T(\mathbf{v}) = A\mathbf{v}.$$

Esto significa que aplicar una transformación lineal a un vector es equivalente a multiplicar dicho vector por una matriz.

2.3. Ejemplos de Transformaciones Lineales

Existen varios tipos comunes de transformaciones lineales que se pueden aplicar en el plano \mathbb{R}^2 :

■ Rotación: Una rotación por un ángulo θ alrededor del origen está dada por la matriz

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Esta matriz rota cualquier vector ${\bf v}$ en el plano por un ángulo θ en sentido antihorario.

■ Escalamiento: Un escalamiento en el plano está dado por una matriz diagonal, donde los elementos en la diagonal controlan el factor de escalamiento en cada dirección:

$$S(s_x, s_y) = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix}.$$

Esta transformación estira o comprime los vectores en las direcciones del eje x y el eje y.

• Reflexión: Una reflexión con respecto al eje x está dada por la matriz

Reflexión_x =
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

Esta transformación invierte los vectores en la dirección del eje y mientras deja intactos los vectores en la dirección del eje x.

2.4. Matriz Asociada a la Transformación

Toda transformación lineal en \mathbb{R}^n puede representarse mediante una matriz $A \in \mathbb{R}^{m \times n}$. La acción de la transformación sobre un vector \mathbf{v} está dada por el producto matricial:

$$T(\mathbf{v}) = A\mathbf{v}.$$

Donde A es la matriz asociada a la transformación, y \mathbf{v} es el vector al que se aplica la transformación.

La matriz A se obtiene transformando los vectores de una base de \mathbb{R}^n . Si $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ es una base del espacio, entonces la matriz A tiene como columnas los vectores transformados de la base:

$$A = (T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)).$$

Es decir, cada columna de la matriz A corresponde a la imagen de uno de los vectores de la base bajo la transformación T. Esto garantiza que la transformación lineal esté completamente determinada por cómo actúa sobre una base del espacio.

3. Implementación en Python con SymPy

3.1. Visualización de Transformaciones

Vamos a implementar algunas transformaciones lineales en Python utilizando la biblioteca SymPy para manejar las matrices y Matplotlib para visualizar cómo estas transformaciones afectan figuras geométricas en el plano. En particular, aplicaremos rotación, escalamiento y reflexión a un triángulo.

3.1.1. Ejemplo 1: Rotación de un Triángulo

Supongamos que tenemos un triángulo con vértices (0,0), (1,0) y (0,5,1). Nuestro objetivo es rotar este triángulo en sentido antihorario por un ángulo de 45° . La matriz de rotación para un ángulo θ es:

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Para $\theta = 45^{\circ} = \frac{\pi}{4}$, la matriz de rotación se convierte en:

$$R\left(\frac{\pi}{4}\right) = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

Ahora aplicamos esta matriz a los vértices del triángulo:

1. Para el punto (1,0):

$$R\left(\frac{\pi}{4}\right) \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} \end{pmatrix}$$

2. Para el punto (0,5,1):

$$R\left(\frac{\pi}{4}\right) \begin{pmatrix} 0.5\\1 \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{2}}{4}\\\frac{3\sqrt{2}}{4} \end{pmatrix}$$

El resultado es que los vértices del triángulo rotado serán:

$$(0,0), \quad \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \quad \left(-\frac{\sqrt{2}}{4}, \frac{3\sqrt{2}}{4}\right)$$

Este triángulo ha sido rotado 45° en sentido antihorario.

3.1.2. Ejemplo 2: Escalamiento del Triángulo

Ahora vamos a escalar el mismo triángulo. Queremos estirarlo en el eje x con un factor de $s_x = 2$ y comprimirlo en el eje y con un factor de $s_y = 0,5$. La matriz de escalamiento está dada por:

$$S = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix}$$

Aplicamos esta matriz a los vértices del triángulo:

1. Para el punto (1,0):

$$S\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$$

2. Para el punto (0,5,1):

$$S\begin{pmatrix}0,5\\1\end{pmatrix} = \begin{pmatrix}1\\0,5\end{pmatrix}$$

El resultado es que los vértices del triángulo escalado serán:

Este triángulo ha sido estirado en el eje x y comprimido en el eje y.

3.1.3. Ejemplo 3: Reflexión sobre el Eje x

Finalmente, vamos a reflejar el triángulo respecto al eje x. La matriz de reflexión con respecto al eje x está dada por:

Reflexión_x =
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Aplicamos esta matriz a los vértices del triángulo:

1. Para el punto (1,0):

$$Reflexión_x \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

2. Para el punto (0,5,1):

Reflexión_x
$$\begin{pmatrix} 0.5\\1 \end{pmatrix} = \begin{pmatrix} 0.5\\-1 \end{pmatrix}$$

El resultado es que los vértices del triángulo reflejado serán:

$$(0,0), (1,0), (0,5,-1)$$

Este triángulo ha sido reflejado respecto al eje x, invirtiendo el signo de las coordenadas y.

