Конспект по линейной алгебре II семестр

Коченюк Анатолий

20 февраля 2021 г.

Глава 1

Дополнительные главы линейной алгебры

1.1 Полилинейная формы

Замечание (вспомним). Линейное отображение $\varphi(x + \alpha y) = \varphi(x) + \alpha \cdot \varphi(y)$

Определение 1. $\triangleleft X - \Pi\Pi$, dim X = n

 X^* – сопряжённое к X пространство.

Полилинейной формой (ПЛФ) называется отображение:

$$U: X \times X \times \ldots \times X \times X^* \times X^* \times \ldots \times X^* \to K$$

обладающее свойством линейности по каждому аргументу.

$$\exists x_1, x_2, x_3, \dots, x_p \in X \quad y^1, y^2, \dots, y^q \in X^*$$

$$u(x_1, x_2, \dots, x_i' + \alpha x_i'', \dots, x_p, y^1, y^2, \dots, y^q) =$$

$$= (x_1, x_2, \dots, x_i', \dots, x_p, y^1, y^2, \dots) + \alpha u(x_1, x_2, \dots, x_i'', \dots, x_p, y^1, y^2, \dots, y^q)$$

Замечание. Пара чисел (p,q) называется валентностью полилинейной формы

Пример.
$$\mathbb{R}^n$$
 $f: \mathbb{R} \to K - \Pi \Pi \Phi (1,0)$

$$\hat{x}: \mathbb{R}^{n*} \to K - \Pi \Pi \Phi(0,1)$$

Скалярное произведение $u(x_1, x_2) = (\vec{x}_1, \vec{x}_2) - \Pi \Pi \Phi(2,0)$

Смешанное произведение $w(x_1, x_2, x_3) = (\vec{x}_1, \vec{x}_2, \vec{x}_3) - \Pi \Pi \Phi(3,0)$

 $\exists u, w$ – две полилинейные формы валентности (p,q)

Определение 2.

1. $u = w \iff$

$$u(x_1, \dots, x_p, y^1, \dots, y^q) = w(x_1, \dots, x_p, y^1, \dots, y^q) \quad \forall x_1 \dots x_p y^1 \dots y^1$$

- 2. Нуль форма $\Theta \ \Theta (x_1, ..., x_n, y^1, ..., y^q) = 0$
- 3. Суммой ПЛФ валентностей (p,q) u+v называется такое отображение ω , что $\omega(x_1,\ldots,x_p,y^1,\ldots,y^1)=u\left(x_1,\ldots,x_p,y^1,\ldots,y^1\right)+v\left(x_1,\ldots,x_p,y^1,\ldots,y^1\right)$

Лемма 1.
$$w$$
 – ПЛФ (p,q)
$$w\left(\dots,x_i'+\alpha x_i'',\dots\right)=w\left(\dots,x_i',\dots\right)+\alpha w\left(\dots x_i''\dots\right)$$

4. Произведением полилинейной формы на число λ называется отображение λu , такое что:

$$(\lambda u)(x_1,...,x_p,y^1,...,y^1) = \lambda \cdot u(x_1,...,x_p,y^1,...,y^1).$$

Лемма 2. $\lambda u - \Pi \Pi \Phi (p,q)$

 $\square \Omega_p^q$ – множество ПЛФ (p,q)

Утверждение 1. $\Omega_p^q - \Pi\Pi$

$$\exists \{e_i\}$$
 – базис $X = \exists \{f^k\}$ – базис X^*

 $x_1 = \sum_{j_1=1}^n \xi_1^{j_1} e_{j_1} = \xi_1^{j_1} e_{j_1}$. Дальше значок суммы писаться не будет (иначе помрём) (соглашение о немом суммировании).

$$x_2 = \xi_2^{j_2} e_{j_2} \quad \dots \quad x_p = \xi^{j_p} e_{j_p}$$

$$\begin{split} y^1 &= \eta_{k_1}^1 f^{k_1} \quad y_2 = \eta_{k_2}^2 f^{k_2} \quad \dots \quad y^1 = \eta_{k_q}^q f^{k_q} \\ w\left(x_1, x_2, \dots, x_p, y^1, y^2, \dots, y^q\right) &= w\left(\xi_1^{j_1} e_{j_1}, \xi_2^{j_2} e_{j_2}, \dots, \xi_p^{j_p} e_{j_p}, \eta_{k_1}^1 f^{k_1}, \eta_{k_2}^2 f^{k_2}, \dots, \eta_{k_q}^q f^{k_q}\right) \\ &= \xi_1^{k_1} \xi_2^{j_2} \dots \xi_p^{j_p} \eta_{k_1}^1 \eta_{k_2}^2 \dots \eta_{k_q}^q \underbrace{w\left(e_{j_1}, e_{j_2}, \dots, e_{j_p}, f^{k_1}, f^{k_2}, \dots, f^{k_q}\right)}_{\omega_{j_1 j_2 \dots j_p}^{k_1 k_2 \dots k_q} - \text{ тензор } \Pi \Pi \Phi} \\ &= \xi_1^{k_1} \xi_2^{j_2} \dots \xi_p^{j_p} \eta_{k_1}^1 \eta_{k_2}^2 \dots \eta_{k_q}^q \omega_{j_1 j_2 \dots j_p}^{k_1 k_2 \dots k_q}. \end{split}$$

Лемма 3. Задание полилинейной формы эквивалентно заданию её тензора в известном базисе

$$w \longleftrightarrow \omega_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} = \omega_{\vec{i}}^{\vec{j}}.$$

Доказательство. (выше)

Лемма 4.
$$v \longleftrightarrow v_{\vec{i}}^{\vec{j}} \quad w \longleftrightarrow \omega_{\vec{i}}^{\vec{j}}$$

$$\Longrightarrow \begin{cases} w + v \longleftrightarrow v_{\vec{i}}^{\vec{j}} + \omega_{\vec{i}}^{\vec{j}} \\ \alpha v \longleftrightarrow \alpha v_{\vec{i}}^{\vec{j}} \end{cases}$$

 ${f 3}$ амечание. ${}^{s_1s_2...s_p}_{t_1t_2...t_q}w$ — индексация базиса Ω^q_p

$${}^{s_1s_2...s_p}_{t_1t_2...t_q}w^{j_1j_2...j_q}_{i_1i_2...i_p}$$

$$_{t_1t_2...t_q}^{s_1s_2...s_p}w\left(x_1,x_2,\ldots,x_p,y^1,y^2,\ldots,y^q\right)=\xi_1^{s_1}\xi_2^{s_2}\ldots\xi_p^{s_p}\eta_{t_1}^1\eta_{t_2}^2\ldots\eta_{t_q}^q$$

Замечание.
$$\sphericalangle_{i_1 t_2 \dots t_q}^{s_1 s_2 \dots s_p} w_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} =_{t_1 t_2 \dots t_q}^{s_1 s_2 \dots s_p} w \left(e_{i_1}, e_{i_2}, \dots, e_{i_p}, f^{j_1}, f^{j_2}, \dots, f^{j_q} \right) = \delta_{i_1}^{s_1} \delta_{i_2}^{s_2} \dots \delta_{i_p}^{s_p} \delta_{t_1}^{j_1} \delta_{t_2}^{j_2} \dots \delta_{t_q}^{j_q}$$

Пример. \mathbb{R}_2^2

$$a_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad a_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad a_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \quad a_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$a_1 = \begin{bmatrix} 11 & a_1 & a_2 = \\ 12 & a_2 & a_3 = \\ 21 & a_3 & a_4 = \\ 22 & a_4 & a_4 = \\ 31 & a_4 & a_4 = \\ 42 & a_4 & a_4 = \\ 43 & a_4 & a_4 = \\ 44 & a_4 & a_4$$

Теорема 1. Набор
$$\left\{ \substack{s_1s_2...s_p\\t_1t_2...t_q} W \right\}_{s_1s_2...s_p}^{t_1t_2...t_p}$$
 – образует базис в Ω_q^p

Доказательство.

$$\Pi \mathbf{H} \ \sphericalangle u \in \Omega^p_q$$

$$\begin{split} u\left(x_{1}, x_{2}, \dots, x_{p}, y^{1}, y^{2}, \dots, y^{q}\right) &= \xi_{1}^{i_{1}} \xi_{2}^{i_{2}} \dots \xi_{p}^{i_{p}} \eta_{j_{1}}^{1} \eta_{j_{2}}^{2} \dots \eta_{j_{q}}^{q} u_{i_{1} i_{2} \dots i_{p}}^{j_{1} j_{2} \dots j_{q}} &= \\ &= \sum_{j_{1} j_{2} \dots j_{p}}^{i_{1} i_{2} \dots i_{p}} w\left(x_{1}, x_{2}, \dots, x_{p}, y^{1}, y^{2}, \dots, y^{q}\right) u_{i_{1} i_{2} \dots i_{p}}^{j_{1} j_{2} \dots j_{q}} & \forall x_{1}, x_{2}, \dots, x_{p}, y^{1}, y^{2}, \dots, y^{q}. \end{split}$$

$$\implies u = \stackrel{i_1 i_2 \dots i_p}{j_1 j_2 \dots j_q} w \cdot u_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q}$$

ЛНЗ $i_1 i_2 \dots i_p \atop j_1 j_2 \dots j_q W \alpha_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} = \Theta$ Посчитаем на наборе $e_{s_1}, e_{s_2}, \dots, e_{s_p}, f^{t_1}, f^{t_2}, \dots, f^{t_q}$ $\delta_{s_1}^{i_1} \delta_{s_2}^{i_2} \dots \delta_{j_1}^{t_1} \delta_{j_2}^{t_2} \dots \delta_{j_q}^{t_q} \alpha_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} = 0$ $\alpha_{s_1 s_2 \dots s_p}^{t_1 t_2 \dots t_q} = 0 \quad \forall s_1 \dots s_p t_1 \dots t_q \implies$ ЛНЗ (альфа 0 на всех, значит она

Замечание. Размерность пространства полилинейных форм $\dim \Omega^p_q = n^{p+q}$

1.2 Симметричные и антисимметричные ПЛФ

$$\triangleleft \Omega_0^p \qquad u\left(x_1, x_2, \dots, x_p\right)$$

 $\lhd \sigma$ – перестановка чисел от 1 до p. $\sigma\left(1,2,\ldots,p\right)=\left(\sigma(1),\sigma(2),\ldots,\sigma(p)\right)$

Определение 3. Полилиненйая форма u называется <u>симметричной</u>, если

$$u(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)}) = u(x_1, x_2, \dots, x_p)$$

Лемма 5. Симметричные полилинейные формы валентности (p,0) образуют подпространство Σ^p линейного пространства Ω^p_0

Доказательство. $\exists u, v \in \Sigma^p$

$$\sphericalangle(u+v) \left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(p)} \right) = u \left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(p)} \right) + v \left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(p)} \right) = 0$$

$$= u(x_1, x_2, \dots, x_n) + v(x_1, x_2, \dots, x_n) = (u+v)(x_1, x_2, \dots, x_n)$$

Так же с умножением на число.

Определение 4. Полилинейная форма u валентности (p,0) называется антисимметричной, если:

$$u(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)}) = (-1)^{[\sigma]} u(x_1, x_2, \dots, x_p).$$

Лемма 6. Антисимметричные полилинейные формы валентности (p,0) образуют подпространство Λ^p линейного пространства Ω^p_0

Лемма 7. Полилинейная форма $u \in \Lambda^p \iff u = 0$ при любых двух совпадающих аргументах.

Доказательство.

$$\implies \exists \ u \in \Lambda^p \ \text{if} \ x_i = x_j \quad i \neq j$$

$$a = \sphericalangle u (\dots x_i \dots x_j \dots) = -u (\dots x_j \dots x_i \dots) = -a \implies a = 0$$

Докажем, что u принадлежит Λ^p

$$x_{i} = x_{j} = x'_{i} + x''_{i}$$

$$u(\dots x_{i} \dots x_{j} \dots) = u(\dots x'_{i} + x''_{i} \dots x'_{i} + x''_{i} \dots) = u(\dots x'_{i} \dots x'_{i}) + u(x'_{i} \dots x''_{i}) + u(\dots x''_{i} \dots x''_{i} \dots)$$

Правая часть равна 0. В левой части первое и последнее слагаемые тоже нули, а значит получам

$$u(\ldots x_i'\ldots x_i'') = -u(\ldots x_i'',\ldots x_i').$$

Лемма 8. Полилинейная форма $u\in \Lambda^p\iff u\left(x_1,x_2,\ldots,x_p\right)=0$ лишь только $\{x_i\}_{i=1}^p$ – ЛЗ

Доказательство.

$$\implies \exists \{x_i\}_{i=1}^p - \exists \exists x_i = \sum_{j \neq k} \beta^j x_j = \beta^1 x_1 + \beta^2 x_2 + \dots + \beta^p x_p$$

$$\forall u (x_1, \dots, x_k, \dots, x_p) = u (x_1, \dots, \beta^1 x_1 + \beta^2 x_2 + \dots + \beta^p x_p, \dots, x_p) = 0$$

При раскрытии будут выносится коэффициенты и получится образ от совпадающих аргументов (хотя бы двух), который 0 по пред. лемме, а значит всё выражение, как сумма нулей, будет нулём.

$$\longleftarrow u(x_1,x_2,\ldots,x_p)=0$$
, когда $\{x_i\}_{i=1}^n$ – ЛЗ $\implies u\in\Lambda^p$

$$u(x_{1}, x_{2}, \dots, x_{p}) = u(x_{1} + \sum \alpha^{i} x_{i}, \dots, x_{p} + \sum \alpha^{i} x_{i}) = u(x_{1}, x_{2}, \dots, x_{p}) + u(x_{1}, \dots, \sum \alpha^{i} x_{i}) + u(\sum \alpha^{i} x_{i}, \dots, x_{p}) = u(x_{1}, x_{2}, \dots, x_{p}) + \sum_{j=2}^{p} \alpha^{i} u(x_{1}, \dots, x_{j}) + \sum_{i=1}^{p-1} \alpha^{i} u(x_{i}, \dots, x_{p})$$

1.3 Практика 02.12

1.3.1 Тензоры

 $\omega_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q}$

Определение 5 (Соглашение об упорядочивании индексов). Слева направо сверху вниз: (p,q) r=p+q – ранг тензора, сколько значков.

r=0 – число ω , инвариант

$$r=1$$
: a_i — строчка $\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ b^j — столбик $\begin{bmatrix} b^2 \\ b^2 \\ \vdots \\ b^n \end{bmatrix}$

r=2: $a_{ij} b_i^i c^{ij}$ – первый индекс всегда строка, второй всегда столбец

$$a_{ij} \longleftrightarrow A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$b_j^i \longleftrightarrow B = \begin{bmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \\ b_1^3 & b_2^3 & b_3^3 \end{bmatrix}$$

$$r = 3: a_{ijk} b^i_{jk} c^{ij}_k d^{ijk}$$

1й – строка, 2й – столбец, 3й – слой

$$a_{ijk} \longleftrightarrow A = \begin{bmatrix} a_{111} & a_{121} & a_{112} & a_{122} \\ a_{211} & a_{221} & a_{212} & a_{222} \end{bmatrix}$$

Пример. Построить тензор
$$\varepsilon_k^{ij} = \begin{cases} -1 & (i,j,k)$$
– чётная $1 & (i,j,k)$ – чётная $0 & (i,j,k)$ – не перестановка

r = 4: строка, столбец, слой, сечение

 $a_{ijkl}\;b^i_{jkl}\;c^{ij}_{kl}\;d^{ijk}_l\;e^{ijkl}$ – последний тензор типа 4,0 (число вверху, число внизу)

$$c_{kl}^{ij} \longleftrightarrow C = \begin{bmatrix} c_{11}^{11} & c_{11}^{12} & c_{12}^{11} & c_{12}^{12} \\ c_{11}^{21} & c_{11}^{22} & c_{12}^{21} & c_{12}^{22} \\ c_{21}^{21} & c_{21}^{22} & c_{22}^{21} & c_{22}^{22} \\ c_{21}^{21} & c_{21}^{22} & c_{22}^{21} & c_{22}^{22} \\ c_{21}^{21} & c_{21}^{22} & c_{22}^{22} & c_{22}^{22} \end{bmatrix}$$

Пример.
$$c_{kl}^{ij} = \begin{cases} 1 & i = k \neq j = l \\ -1 & i = l \neq j = k \\ 0 & \text{иначе} \end{cases}$$

1.3.2 Операции с тензорами

1. Линейные операции:

$$\begin{split} &\omega_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} \qquad v_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} \\ &u = v + \omega \quad u_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} = (v + \omega)_{\vec{i}}^{\vec{j}} = v_{\vec{i}}^{\vec{j}} + \omega_{\vec{i}}^{\vec{j}} - \text{матричное сложение.} \\ &(\lambda v)_{\vec{i}}^{\vec{j}} = \lambda \cdot v_{\vec{i}}^{\vec{j}} \end{split}$$

2. Произведение:

$$u_{\vec{i}}^{\vec{j}} \quad v_{\vec{s}}^{\vec{t}}$$

$$\omega = u \cdot v \quad \omega_{\vec{l}}^{\vec{k}} = u_{\vec{i}}^{\vec{j}} \cdot v_{\vec{s}}^{\vec{t}} = \omega_{i_1 i_2 \dots i_{p_1} s_1 s_2 \dots s_{p_2}}^{j_1 j_2 \dots j_{q_1} t_1 t_2 \dots t_{q_2}}$$

$$\vec{l} = \vec{j} \vec{t} = j_1 \dots j_{q_1} t_1 \dots t_{q_2}$$

$$\vec{l} = \vec{i} \vec{s} = i_1 \dots i_{p_1}, s_1 \dots s_{p_2}$$

Пример.
$$a^i_j \longleftrightarrow A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$b_k \longleftrightarrow \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

 $a^i_j b_k = \omega^i_{jk}.$ То же самое можно записать как $a \otimes b = \omega$

$$\omega \longleftrightarrow \left[\begin{array}{cc|c} 1 & 2 & -1 & -2 \\ 3 & 4 & -3 & -4 \end{array} \right]$$

$$v = b \otimes a \quad v_{kj}^i = b_k \cdot a_j^i \longleftrightarrow V = \begin{bmatrix} 1 & -1 & 2 & -2 \\ 3 & -3 & 4 & -4 \end{bmatrix}$$

Лемма 9.
$$\Box \{x_i\}_{i=1}^p$$
 – ДЗ

Доказательство. $u(x_1, x_2, \ldots, x_p) = 0$

$$u\left(\alpha x_1, x_2, \dots, x_p\right) = 0$$

$$u\left(\sum\limits_{i=1}^{p-1} \alpha^i x_i, x_2, \dots, x_p\right) = 0$$
 – равные x_p и первый аргумент

 Ω^p_0 — хотим делать из произвольной формы симметричную $\exists \ u \in \Omega^p_0$

Определение 6. $u^{(s)}\left(x_1,x_2,\ldots,x_p\right)=\frac{1}{p!}\sum_{\sigma}u\left(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma_p}\right)$ – симметричная форма, образованная из u $u^{(s)}$ называю симметризацией u и пишут

$$u^{(s)} = Sym \ u.$$

Замечание. $u^{(s)} \in \Sigma^p$

 \mathcal{A} оказательство. $\mathcal{A} \widetilde{\sigma}$ – другая перестановка

$$u^{(s)}\left(x_{\widetilde{\sigma}(1)},\ldots,x_{\widetilde{\sigma}(pa)}\right) = \frac{1}{p!} \sum_{\sigma} \left(x_{\sigma \circ \widetilde{\sigma}(1)},\ldots,x_{\sigma \circ \widetilde{\sigma}(p)}\right) = u^{(s)}\left(x_1,x_2,\ldots,x_p\right) \quad \blacksquare$$

Замечание. Деление на p! нужно, чтобы выполнялось

$$Sym\ u=u.$$

, если u уже симметричная форма

Замечание. $Sym (\alpha u + \beta v) = \alpha Sym u + \beta Sym v$

Определение 7.

$$u^{(a)} = \frac{1}{p!} \sum_{\sigma} (-1)^{[\sigma]} u \left(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)} \right).$$

Эта операция называется антисимметризацией или альтернированием

$$u^{(a)} = Asym \ u.$$

Замечание. $u^{(a)} \in \Lambda^p$

Замечание.

$$(\alpha u + \beta v)^{(a)} = \alpha u^{(a)} + \beta v^{(a)}.$$

Замечание. Sym Sym = Sym

 $Asym \ Asym = Asym$

 $Sym \ Asym = 0$ $Asym \ Sym = 0$

Задача 1. $Omega_0^p$

Найдём базис Λ^p

 $\ensuremath{\mathcal{A}\!\mathit{orasamesecmeo}}. \mathrel{\mathrel{\checkmark}} \{^{s_1,s_2,\ldots,s_p}W\}_{\vec{s}}$ – базис

$$\triangleleft^{s_1, s_2, \dots, s_p} F = p! \cdot Asym\left(^{s_1, s_2, \dots, s_p} W\right)$$

Лемма 10. Некоторые формы будут повторятся.

$$s_1...s_i...s_j...s_p F = -s_1...s_j...s_i...s_p F$$

Доказательство.

$$s_1 \dots s_i \dots s_p F(x_1 \dots x_i \dots x_j \dots x_p) = s_1 \dots s_j \dots s_p F(x_1, \dots, x_j, \dots, x_i, \dots x_p)$$

$$= -s_1 \dots s_j \dots s_p$$

$$= -s_1 \dots s_j \dots s_p F(x_1 \dots x_i \dots x_j \dots x_p)$$

Замечание. Ненулевых C_n^p штук

Упорядочивание $\{s_1s_2...d_pF\}_{1\leqslant s_1< s_2<...< s_p\leqslant n}$ – ненулевой набор. Докажем, что он базис

Теорема 2. Набор
$$\{s_1s_2...s_pF\}_{1\leqslant s_1< s_2...< s_p\leqslant n}$$
 образует базис в Λ^p

Доказательство.

Полнота $\exists u \in \Lambda^p$

$$\begin{split} u\left(x_{1},x_{2},\ldots,x_{p}\right) &= \xi_{1}^{i_{1}}\xi_{2}^{i_{2}}\ldots\xi_{p}^{i_{p}}u_{i_{1}i_{2}\ldots i_{p}} \\ &=^{i_{1}i_{2}\ldots i_{p}}W\left(x_{1},x_{2},\ldots,x_{p}\right)u\left(i_{1}i_{2}\ldots i_{p}\right) \end{split}$$
 То же самое: $u=^{i_{1}i_{2}\ldots i_{p}}W\cdot u_{i_{1}i_{2}\ldots i_{p}}$

$$Asym \ u = Asym \begin{pmatrix} i_{1}i_{2}...i_{p}W \cdot u_{i_{1}i_{2}...i_{p}} \\ u = Asym \begin{pmatrix} i_{1}i_{2}...i_{p}W \end{pmatrix} \cdot u_{i_{1}i_{2}...i_{p}} \\ = \frac{1}{p!} & i_{1}i_{2}...i_{p}F \cdot u_{i_{1}i_{2}...i_{p}} \\ = \frac{1}{p!} & \sum_{1 \leqslant i_{1} < i_{2} < ... < i_{p} \leqslant n} \sum_{\sigma} \sigma^{(i_{1})\sigma(i_{2})...\sigma(i_{n})} F \cdot u_{\sigma(i_{1})\sigma(i_{2})...\sigma(i_{p})} \\ = \frac{1}{p!} & \sum_{1 \leqslant i_{1} < ... < i_{p} \leqslant n} \sum_{\sigma} (-1)^{[\sigma]i_{1}i_{2}...i_{p}} F \cdot (-1)^{[\sigma]} u_{i_{1}i_{2}...i_{p}} \\ = \frac{1}{p!} & \sum_{1 \leqslant i_{1} < ... < n} p!^{i_{1}i_{2}...i_{p}} F u_{i_{1}i_{2}...i_{p}}$$

Лемма 11. $u \in \Lambda^p \implies \forall \sigma u_{\sigma(i_1)\sigma(i_2)...\sigma(i_p)=(-1)^{[\sigma]}} u_{i_1i_2...i_p}$

Тензоры это значение u на $e_{i_1}\dots e_{i_p}$. А тогда оно выполняется просто по определению антисимметричной формы

Линейная независимость $<\!\!\! < \!\!\! \alpha_{i_1 i_2 \dots i_p} F \alpha_{i_1 i_2 \dots i_p} F \alpha_{i_1 i_2 \dots i_p} = .$ Подействуем на $e_{s_1} e_{s_2} \dots e_{s_p}$ $i_1 i_2 \dots i_p F \left(e_{s_1}, e_{s_2}, \dots, s_{s_p} \right) \alpha_{i_1 i_2 \dots i_p} = 0$ $p! \left[Asym^{i_1 i_2 \dots i_p} \right] \left(e_{s_1} e_{s_2} \dots s_{s_p} \right) \alpha_{i_1 i_2 \dots i_p} = 0$ $p! \cdot \frac{1}{p!} \sum_{\sigma} (-1)^{[\sigma] i_1 i_2 \dots i_p} W \left(e_{\sigma(s_1)}, e_{\sigma(s_2)}, \dots, e_{\sigma(s_p)} \right) \alpha_{i_1 i_2 \dots i_p} = 0$ $\sum_{\sigma} (-1)^{[\sigma]} \delta^{i_1}_{\sigma(s_1)} \delta^{i_2}_{\sigma(s_2)} \dots \delta^{i_p}_{\sigma(s_p)} \alpha_{i_1 i_2 \dots i_p} = 0$ $\sum_{\sigma} (-1)^{[\sigma]} \alpha_{\sigma(s_1) \sigma(s_2) \dots \sigma(s_2)} = 0$ $p! \alpha_{s_1 s_2 \dots s_p} = 0 \forall s_1 s_2 \dots s_p \implies \alpha = 0,$ если α антисимметричный тензор

Замечание. $\dim \Lambda^p = C_n^p$

1.
$$p=0 \implies C_n^0=1 \implies K$$

2.
$$p=1 \implies C_n^1 = n \implies X^*$$

3.
$$p=2 \implies C_n^2 = \frac{n(n-1)}{2}$$

$$C_n^p = C_n^{n-p}$$

ГЛАВА 1. ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ЛИНЕЙНОЙ АЛГЕБРЫ 13

n
$$p = n - 1 \implies C_n^{n-1} = C_n^1 = n$$

n+1 $C_n^n = 1$
 $<\Lambda^n$
 $\{i_1 i_2 \dots i_n F\}_{1 \le i_1 < i_2 < \dots < i_n \le n} = \{123 \dots n F\}$
 $\Box u \in \Lambda^n \implies \exists \alpha \quad u = \alpha^{123 \dots n} F$
 $<^{123 \dots n} F (x_1, x_2, \dots, x_n) = p! \cdot [Asym^{123 \dots n} W] (x_1, x_2, \dots, x_n) = \sum_{\sigma} (-1)^{[\sigma]_{123 \dots n}} W (x_{\sigma(1)} x_{\sigma(2)} \dots x_{\sigma(n)}) = (-1)^{[\sigma]} \xi_{\sigma(1)}^1 \xi_{\sigma(2)}^2 \dots \xi_{\sigma(n)}^n \stackrel{\triangle}{=} \det \{x_i\}$

Лемма 12. $\forall u \in \Lambda^n \quad u = \alpha (123...nF)$

Доказательство.

$$u(x_1, x_2, \dots, x_n) = \xi_1^{i_1} \xi_2^{i_2} \dots \xi_n^{i_n} u_{i_1 i_2 \dots i_n}$$

$$=^{i_1, i_2, \dots, i_n} W(x_1, x_2, \dots, x_n) u_{i_1 i_2 \dots, i_n}$$

$$=^{123 \dots n} F(x_1, x_2, \dots, x_n) \underbrace{u_{12 \dots n}}_{\alpha}$$

1.4 Произведение полилинейных форм

 $\square \Omega_n^q$

Определение 8.
$$u\in\Omega_{q_1}^{p_1},v\in\Omega_{q_2}^{p_2}$$
 $<\omega\left(x_1,x_2,\ldots,x_{p_1},x_{p_1+1},\ldots,x_{p_1+p_2},y^1,\ldots,y^{q_1},y^{q_1+1},\ldots,y^{q_1+q_2}\right)==u\left(x_1,x_2,\ldots,x_{p_1},y^1,y^2,\ldots,y^{q_1}\right)\cdot v\left(x_{p_1+1},x_{p_1+2},\ldots,x_{p_1+p_2},y^{q_1+1},\ldots,y^{q_1+q_2}\right)$ Такая форма называется консолидированной формой u и v $u_{j_1j_2\ldots j_{q_1}}^{i_1i_2\ldots i_{p_1}}\cdot v_{t_1t_2\ldots t_{q_2}}^{s_1s_2\ldots s_{p_2}}=\omega_{j_1\ldots j_{q_1}t_1,\ldots,t_{q_2}}^{i_1\ldots i_{p_1}s_1,\ldots,s_{p_2}}$

Замечание.
$$\omega - \Pi \Pi \Phi \ (p_1 + p_2, q^1 + q^2)$$
 $\omega = u \cdot v \subseteq \Omega_{q_1 + q_2}^{p_1 + p_1}$ $\sphericalangle \Omega = \dot{+} \sum_{i,j} \Omega_{q_j}^{p_i} -$ линейное пространство $(\Omega, +, \cdot \lambda, \cdot)$ Новое умножение называется внешним

Свойство 1. 1. $u \cdot (v \cdot w) = (u * v) \cdot w$

2. $u \cdot v \neq v \cdot u$

3. $u \cdot (v + w) = u \cdot v + u \cdot w$

4. $u \cdot = -$ получившийся нооль из бОльшего пространства

5. $u(\alpha v) = (\alpha u) \cdot v$

Определение 9. Ω – внешняя алгебра полилинейных форм

1.5 Практика №2

1.5.1 Свёртки

Пример.
$$\omega_i^j \sim \begin{pmatrix} 1 & 2 & 3 \\ 8 & 7 & 5 \\ 1 & -1 & 9 \end{pmatrix}$$

$$w_i^i = \sum_i = \omega_1^1 + \omega_2^2 + \omega_3^3$$

Пример.
$$w_k^{ij} \sim \begin{pmatrix} 1 & 2 & | & 8 & 9 \\ 5 & -1 & | & 10 & 3 \end{pmatrix}$$

$$w_i^{ij} = \alpha^j$$
 $\alpha^0 = 1 + 10 = 11$ $\alpha^1 = 2 + (-3) = -1$

$$\omega_i^{ij} = \begin{pmatrix} 11 \\ -1 \end{pmatrix}$$

Пример.
$$\omega_{kl}^{ij} \sim \left(egin{array}{c|cccc} 3 & -1 & 4 & 7 \\ -8 & 1 & -3 & 11 \\ \hline -3 & 4 & 13 & 17 \\ 6 & 5 & 19 & 23 \end{array}
ight)$$

$$\omega_{ki}^{ij} = \alpha_k^j \sim \begin{pmatrix} 0 & 10\\ 16 & 27 \end{pmatrix}$$

$$\omega_{ji}^{ij} = \sum_{i} \sum_{j} \omega_{ji}^{ij} = \sum_{k} \alpha_{k}^{k} = \alpha_{0}^{0} + \alpha_{1}^{1} = 27$$

Замечание. Сложную свёртку можно считать как последовательность единичных

1.5.2 Транспонирование

1.5.3 Свёртка и тензорное произведение

$$a^{ij} \sim \begin{pmatrix} 8 & 9 & 1 \\ 7 & -5 & 4 \\ 1 & 1 & 1 \end{pmatrix}$$

$$b_l^k \sim \begin{pmatrix} 7 & -1^{-3} \\ 8 & 4 & 5 \\ 11 & -9 & 1 \end{pmatrix}$$

$$a \otimes b = \omega_l^{ijk} \implies \omega_j^{ijk} = \beta^{ik}$$

$$\beta^{ik} = a^{ij}b_l^k = \begin{pmatrix} 44 \\ 56 \end{pmatrix}$$

$$\beta^{00} = a^{00}b_0^0 + a^{01}b_1^0 + a^{02}b_2^0 =$$

$$a_k^{ij} \sim \begin{pmatrix} 2 & 1 & -1 & -7 \\ 2 & 2 & 8 & 11 \end{pmatrix}$$

$$b_{m,n} \sim \begin{pmatrix} 3 & -3 \\ 8 & -1 \end{pmatrix}$$

$$a \otimes b = \omega_{kmn}^{ij} \implies \omega_{kji}^{ij} = \beta_k \sim \begin{pmatrix} 9 \\ -94 \end{pmatrix}$$

$$\omega \in \Omega_0^2 \quad \omega(x, y) \in \mathbb{R} \quad x, y \in X$$

$$\omega \sim a_{ij} \quad x \sim \xi^k \quad y \sim \eta^l$$

$$\omega(x,y) = a_{ij}\xi^i\eta^j = (a \otimes x \otimes y)_{ij}^{ij}$$

1.5.4 Симметризация и асимметризация тензоров

$$\omega_{ij} \sim \begin{pmatrix} 1 & 3 & 7 \\ -1 & 8 & 4 \\ 3 & 2 & -1 \end{pmatrix}$$

$$sym(\omega_{i_1,...,i_p}) = a_{j_1...j_p} = \sum_{\sigma} \omega_{i_{\sigma(1)},...,i_{\sigma(p)}}$$

$$a_{ij} = w_{(ij)} \sim \begin{pmatrix} 1 & 1 & 5 \\ 1 & 8 & 3 \\ 5 & 3 & -1 \end{pmatrix}$$

$$a_{ij} = \frac{1}{2!}(\omega_{ij} + \omega_{ji})$$

$$\omega_{ijk} \sim \begin{pmatrix} 1 & 2 & 3 & -7 & 8 & 1 & 9 & 3 & 1 \\ 3 & -4 & 5 & 11 & -7 & 13 & 1 & 4 & 2 \\ 8 & 0 & 7 & 5 & 6 & 11 & 7 & 8 \end{pmatrix}$$

$$\omega_{ijk} \sim \left(\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 2 & 3 & -7 & 8 & 1 & 9 & 3 & 13 \\ 3 & -4 & 5 & 11 & -7 & 13 & 1 & 4 & 2 \\ 8 & 9 & 7 & 5 & 6 & 11 & -7 & 8 & -1 \end{array}\right)$$

$$a_{ijk} = \frac{1}{6} \left(\dots \right)$$

$$a_{ijk} \sim \left(\begin{array}{ccc|ccc|c} 1 & -\frac{2}{3} & \frac{20}{3} & -\frac{2}{3} & 5 & 4 & \frac{20}{3} & 4 & \frac{13}{3} \\ -\frac{2}{3} & 5 & 4 & 5 & -7 & \frac{23}{3} & 4 & \frac{23}{3} & 7 \\ \frac{20}{3} & 4 & \frac{13}{3} & 4 & \frac{23}{3} & 7 & \frac{13}{3} & 7 & -1 \end{array} \right)$$