FRAUD CHECK

In [1]: #Import the libraries

import pandas as pd

from sklearn.tree import DecisionTreeClassifier #importing decision tree classifi
from sklearn.model_selection import train_test_split #importing train_test_split
from sklearn.metrics import accuracy_score#importing metrics for accuracy calcula
from sklearn.ensemble import BaggingClassifier#bagging combines the results of mu
from sklearn.metrics import classification_report, confusion_matrix

In [2]: #Import the dataset
#reading the dataset

Fraud_check=pd.read_csv("C:\\Users\\nishi\\Desktop\\Assignments\\Decision_Trees\\

In [3]: Fraud_check

Out[3]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 6 columns

In [4]: Fraud_check.head()

Out[4]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO

In [5]: #viewing the types Fraud_check.dtypes

Out[5]: Undergrad object
Marital.Status object
Taxable.Income int64
City.Population int64
Work.Experience int64
Urban object
dtype: object

In [6]: Fraud_check.rename(columns={'Work.Experience':'Work_Experience',"Taxable.Income":

In [7]: Fraud_check

Out[7]:

	Undergrad	Marital_Status	Taxable_Income	City_Population	Work_Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 6 columns

Out[8]:

	Undergrad	Marital_Status	Taxable_Income	City_Population	Work_Experience	Urban	Risky_1
0	NO	Single	68833	50047	10	YES	0
1	YES	Divorced	33700	134075	18	YES	0
2	NO	Married	36925	160205	30	YES	0
3	YES	Single	50190	193264	15	YES	0
4	NO	Married	81002	27533	28	NO	0

In [9]: #label encoding to convert categorical values into numeric.
Fraud_check['Undergrad']=Fraud_check['Undergrad'].cat.codes
Fraud_check['Urban']=Fraud_check['Urban'].cat.codes
Fraud_check['Marital_Status']=Fraud_check['Marital_Status'].cat.codes
Fraud_check.head()

Out[9]:

	Undergrad	Marital_Status	Taxable_Income	City_Population	Work_Experience	Urban	Risky_1
0	0	2	68833	50047	10	1	0
1	1	0	33700	134075	18	1	0
2	0	1	36925	160205	30	1	0
3	1	2	50190	193264	15	1	0
4	0	1	81002	27533	28	0	0

```
In [10]: #----- setting feature and target variables -----
        feature_cols=['Undergrad','Marital_Status','City_Population','Work_Experience','L
         #x = fraud.drop(['Taxable_Income','Risky_1'], axis=1)
         x = Fraud check[feature cols]
        y = Fraud_check.Risky_1
         print(x)
         print(y)
             Undergrad Marital_Status City_Population Work_Experience
                                                                        Urban
         0
                                    2
                                                 50047
                                                                    10
                                                                            1
         1
                     1
                                    0
                                                                    18
                                                                            1
                                                134075
         2
                                    1
                                                                    30
                     0
                                                160205
                                                                            1
         3
                     1
                                    2
                                                                    15
                                                                            1
                                                193264
         4
                     0
                                    1
                                                 27533
                                                                    28
                                                                            0
                                                   . . .
                                                                   . . .
                                                                          . . .
         . .
                   . . .
                                   . . .
         595
                     1
                                    0
                                                 39492
                                                                    7
                                                                            1
         596
                     1
                                    0
                                                 55369
                                                                     2
                                                                            1
         597
                     0
                                    0
                                                154058
                                                                     0
                                                                            1
         598
                     1
                                    1
                                                180083
                                                                    17
                                                                            0
         599
                                    0
                                                158137
                                                                    16
                                                                            0
         [600 rows x 5 columns]
               0
         1
               0
         2
               0
         3
               0
               0
         4
         595
               0
         596
               0
         597
               0
         598
               0
         599
         Name: Risky_1, Length: 600, dtype: int64
In [11]: #----- splitting into train and test data ------
        x_train,x_test,y_train,y_test= train_test_split(x,y, test_size=0.20,random_state=
In [12]: #-----building decision tree model------
         Fraud_model = BaggingClassifier(DecisionTreeClassifier(max_depth = 6), random_st
         fraudmodel = Fraud_model.fit(x_train,y_train) #train decision tree
        y_predict = Fraud_model.predict(x_test)
```

```
In [13]: #-----Finding the accuracy-----
        print("Accuracy : ", accuracy_score(y_test,y_predict)*100 )
        print(confusion_matrix(y_test,y_predict))
        print(classification report(y test,y predict))
        Accuracy: 80.0
        [[96 1]
         [23 0]]
                      precision
                                recall f1-score
                                                    support
                          0.81
                                    0.99
                                             0.89
                                                         97
                   0
                          0.00
                                    0.00
                   1
                                             0.00
                                                         23
            accuracy
                                             0.80
                                                        120
                          0.40
                                    0.49
                                             0.44
                                                        120
           macro avg
        weighted avg
                          0.65
                                    0.80
                                             0.72
                                                        120
```

COMPANY DATA

```
In [63]: import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.tree import DecisionTreeClassifier as DT
         from sklearn.model selection import train test split
         from sklearn.preprocessing import LabelEncoder
         from sklearn.metrics import classification_report, confusion_matrix
         from sklearn import metrics
         from sklearn import externals
         from io import StringIO
         import pydotplus
         from sklearn.metrics import accuracy_score
         import matplotlib.image as mpimg
         from sklearn.tree import export graphviz
         Company_data = pd.read_csv("C:\\Users\\nishi\\Desktop\\Assignments\\Decision_Tree
         Company_data.head()
```

Out[63]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban
0	9.50	138	73	11	276	120	Bad	42	17	Yes
1	11.22	111	48	16	260	83	Good	65	10	Yes
2	10.06	113	35	10	269	80	Medium	59	12	Yes
3	7.40	117	100	4	466	97	Medium	55	14	Yes
4	4.15	141	64	3	340	128	Bad	38	13	Yes

4

```
In [64]: corr=Company data.corr()
In [65]: Company_data=pd.get_dummies(Company_data,columns=['ShelveLoc','Urban','US'])
In [66]: corr=Company_data.corr()
In [67]: plt.figure(figsize=(10,10))
         sns.heatmap(corr,annot=True)
         NameError
                                                    Traceback (most recent call last)
         <ipython-input-67-4a59abe243aa> in <module>
               1 plt.figure(figsize=(10,10))
         ---> 2 sns.heatmap(corr,annot=True)
         NameError: name 'sns' is not defined
         <Figure size 720x720 with 0 Axes>
In [68]: Company data['Sales'].mean()
Out[68]: 7.496325
In [69]: # Sales variable is continuous, we take values <=7.49 as "less" and >7.49 as "mor
         Company data["sales"]="less"
         Company_data.loc[Company_data["Sales"]>7.49, "sales"]="more"
         Company data.drop(["Sales"],axis=1,inplace=True)
In [70]: Company_data.isnull().any()#to check if we have null valuesin dataset or not
         #so there are no null values in the dataset
Out[70]: CompPrice
                              False
         Income
                              False
         Advertising
                             False
         Population
                              False
         Price
                              False
         Age
                              False
         Education
                              False
         ShelveLoc Bad
                              False
         ShelveLoc_Good
                              False
         ShelveLoc Medium
                             False
         Urban_No
                              False
         Urban_Yes
                             False
         US No
                              False
         US Yes
                              False
         sales
                              False
         dtype: bool
```

In [71]: Company_data.dtypes# to check the data types

Out[71]: CompPrice int64 Income int64 Advertising int64 Population int64 Price int64 Age int64 Education int64 ShelveLoc_Bad uint8 ShelveLoc_Good uint8 ShelveLoc_Medium uint8 Urban_No uint8 Urban_Yes uint8 US_No uint8 US_Yes uint8

dtype: object

sales

In [72]: Company_data.describe()### to check the summary of the dataset

object

Out[72]:

	CompPrice	Income	Advertising	Population	Price	Age	Education	Shelv
count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	4
mean	124.975000	68.657500	6.635000	264.840000	115.795000	53.322500	13.900000	
std	15.334512	27.986037	6.650364	147.376436	23.676664	16.200297	2.620528	
min	77.000000	21.000000	0.000000	10.000000	24.000000	25.000000	10.000000	
25%	115.000000	42.750000	0.000000	139.000000	100.000000	39.750000	12.000000	
50%	125.000000	69.000000	5.000000	272.000000	117.000000	54.500000	14.000000	
75%	135.000000	91.000000	12.000000	398.500000	131.000000	66.000000	16.000000	
max	175.000000	120.000000	29.000000	509.000000	191.000000	80.000000	18.000000	
4								•

```
In [73]: Company data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 400 entries, 0 to 399
         Data columns (total 15 columns):
          #
              Column
                                Non-Null Count Dtype
              -----
                                 -----
          0
              CompPrice
                                400 non-null
                                                 int64
          1
              Income
                                 400 non-null
                                                 int64
          2
                                400 non-null
              Advertising
                                                 int64
          3
              Population
                                400 non-null
                                                 int64
          4
              Price
                                400 non-null
                                                 int64
          5
                                400 non-null
              Age
                                                 int64
          6
              Education
                                400 non-null
                                                 int64
          7
              ShelveLoc Bad
                                400 non-null
                                                 uint8
          8
              ShelveLoc Good
                                400 non-null
                                                 uint8
          9
              ShelveLoc_Medium 400 non-null
                                                 uint8
          10 Urban No
                                 400 non-null
                                                 uint8
          11 Urban Yes
                                400 non-null
                                                 uint8
          12 US_No
                                400 non-null
                                                 uint8
          13 US Yes
                                400 non-null
                                                 uint8
          14 sales
                                400 non-null
                                                 object
         dtypes: int64(7), object(1), uint8(7)
         memory usage: 27.9+ KB
In [74]: X=Company data.iloc[:,0:14]
         Y=Company_data.iloc[:,14]
In [75]: Y
Out[75]: 0
                more
         1
                more
         2
                more
         3
                less
         4
                less
                . . .
         395
                more
         396
                less
         397
                less
         398
                less
         399
                more
         Name: sales, Length: 400, dtype: object
In [76]: x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,stratify=Y)
In [77]: y_train.value_counts()
Out[77]: less
                 161
         more
                 159
         Name: sales, dtype: int64
```

```
In [78]: model=DT(criterion="entropy")
         model.fit(x_train,y_train)
Out[78]: DecisionTreeClassifier(criterion='entropy')
In [79]: pred_train=model.predict(x_train)
In [80]: | accuracy_score(y_train,pred_train)
Out[80]: 1.0
In [81]: confusion_matrix(y_train,pred_train)
Out[81]: array([[161,
                        0],
                [ 0, 159]], dtype=int64)
In [82]: pred_test=model.predict(x_test)
In [83]: | accuracy_score(y_test,pred_test)
Out[83]: 0.85
In [84]: confusion_matrix(y_test,pred_test)
Out[84]: array([[36, 4],
                [ 8, 32]], dtype=int64)
In [85]: Company_data_t=pd.DataFrame({'Actual':y_test,'predicted':pred_test})
```

```
In [86]: Company_data_t
```

Out[86]:

	Actual	predicted
252	more	less
113	less	more
117	more	more
194	less	less
139	more	more
354	less	less
28	less	less
175	more	less
210	less	less
257	more	more

80 rows × 2 columns

```
In [87]: columns=list(Company_data.columns)
```

```
In [88]: predictors=columns[0:14]
    target=columns[14]
```

```
In [89]: dot_data=StringIO()
```

```
In [90]: export_graphviz(model, out_file=dot_data,filled=True, rounded=True,special_charac
```

```
In [91]: graph=pydotplus.graph_from_dot_data(dot_data.getvalue())
```

```
In [92]: graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
    graph.write_png('Sales.png')
    Image(graph.create_png())
```

```
Out[92]:
```

```
In [95]: fea
```

Out[95]:

	feature	importance
4	Price	0.286861
0	CompPrice	0.193104
1	Income	0.097720
3	Population	0.089592
8	ShelveLoc_Good	0.085508
2	Advertising	0.083381
5	Age	0.081229
10	Urban_No	0.029120
9	ShelveLoc_Medium	0.023412
6	Education	0.008387
12	US_No	0.008298
13	US_Yes	0.007339
11	Urban_Yes	0.006047
7	ShelveLoc_Bad	0.000000

In []:	
In []:	