Section 1.4 – Volume by Shells

Slicing with Cylinders

Example

The region enclosed by the *x*-axis and the parabola $y = f(x) = 3x - x^2$ is revolved about the vertical line x = -1 to generate a solid. Find the volume of the solid

Solution

If we rotate a vertical strip of thickness Δx , this rotation produces a cylindrical shell of height y_k above a point x_k within the base of the vertical strip.

 $\Delta V_{k} = circumference \times height \times thickness$

$$=2\pi\Big(1+x_k^{}\Big)\cdot\Big(3x_k^{}-x_k^2\Big)\cdot\Delta x_k^{}$$

The Riemann sum:

$$\sum_{k=1}^{n} \Delta V_k = \sum_{k=1}^{n} 2\pi \left(1 + x_k\right) \cdot \left(3x_k - x_k^2\right) \cdot \Delta x_k$$

Taking the limit as the thickness $\Delta x_k \to 0$ and $n \to \infty$ gives the volume integral

$$V = \lim_{n \to \infty} \sum_{k=1}^{n} 2\pi (1+x_k) \cdot (3x_k - x_k^2) \cdot \Delta x_k$$

$$= \int_0^3 2\pi (x+1) (3x - x^2) dx$$

$$= 2\pi \int_0^3 (3x^2 + 3x - x^2 - x^3) dx$$

$$= 2\pi \int_0^3 (2x^2 + 3x - x^3) dx$$

$$= 2\pi \left(\frac{2}{3}x^3 + \frac{3}{2}x^2 - \frac{1}{4}x^4\right)_0^3$$

$$= 2\pi \left(\frac{2}{3}(3)^3 + \frac{3}{2}(3)^2 - \frac{1}{4}(3)^4\right)$$

$$= \frac{45\pi}{2} \quad unit^3$$

Shell Method

Example

Let *R* be the region bounded by the graph of $f(x) = \sin x^2$, the *x*-axis, and the vertical line $x = \sqrt{\frac{\pi}{2}}$. Find the volume of the solid generated when *R* is revolved about the *y*-axis.

Solution

$$V = 2\pi \int_{a}^{b} \left(\frac{shell}{radius} \right) \left(\frac{shell}{height} \right) dx$$

$$= 2\pi \int_{0}^{\sqrt{\pi/2}} x \sin x^{2} dx$$

$$= \pi \int_{0}^{\sqrt{\pi/2}} \sin x^{2} d \left(x^{2} \right)$$

$$= -\pi \cos \left(x^{2} \right) \begin{vmatrix} \sqrt{\pi/2} \\ 0 \end{vmatrix}$$

$$= -\pi \left(\cos \left(\frac{\pi}{2} \right) - \cos 0 \right)$$

$$= \pi \quad unit^{3}$$

-

Example

Let R be the region in the first region bounded by the graph $y = \sqrt{x-2}$ and the line y = 2.

- a) Find the volume of the solid generated when R is revolved about the x-axis.
- b) Find the volume of the solid generated when R is revolved about the line y = -2.

Solution

a)
$$y = \sqrt{x-2} \rightarrow y^2 = x-2 \Rightarrow x = y^2 + 2$$

 $0 \le y \le 2$

$$V = 2\pi \int_{c}^{d} {shell \choose radius} {shell \choose height} dy$$

$$= 2\pi \int_{0}^{2} y(y^2 + 2) dy$$

$$= 2\pi \int_{0}^{2} (y^3 + 2y) dy$$

$$= 2\pi \left[\frac{y^4}{4} + y^2 \right]_{0}^{2}$$

$$= 16\pi \quad unit^3$$

b) Revolved *R* about the line y = -2.

$$V = 2\pi \int_{c}^{d} {shell \choose radius} {shell \choose height} dy$$

$$= 2\pi \int_{0}^{2} {(y+2)(y^2+2)dy}$$

$$= 2\pi \left(\frac{1}{4}y^4 + \frac{2}{3}y^3 + y^2 + 4y\right) \begin{vmatrix} 2\\0 \end{vmatrix}$$

$$= 2\pi \left(4 + \frac{16}{3} + 4 + 8\right)$$

$$= \frac{128\pi}{3} \quad unit^3$$

Example

The region R is bounded by the graphs of $f(x) = 2x - x^2$ and g(x) = x on the interval [0, 1].

Use the washer method and the shell method to find the volume of the solid formed when R is revolved about the x-axis.

Solution

$$f(x) = g(x)$$

$$2x - x^{2} = x$$

$$x^{2} - x = 0 \implies x = 0, 1$$

Washer Method:

$$V = \pi \int_{0}^{1} \left[\left(2x - x^{2} \right)^{2} - x^{2} \right] dx$$

$$= \pi \int_{0}^{1} \left(3x^{2} - 4x^{3} + x^{4} \right) dx$$

$$= \pi \left(x^{3} - x^{4} + \frac{x^{5}}{5} \right) \Big|_{0}^{1}$$

$$= \pi \left(1 - 1 + \frac{1}{5} \right)$$

$$= \frac{\pi}{5} \quad unit^{3}$$

Shell height = $y - (1 - \sqrt{1 - y})$ Shell radius = y

Shell Method:

$$x = y$$

$$y = 2x - x^{2}$$

$$x^{2} - 2x + y = 0$$

$$x = \frac{2 \pm \sqrt{4 - 4y}}{2}$$

$$= \begin{cases} 1 - \sqrt{1 - y} \\ 1 + \sqrt{1 - y} \end{cases}$$

$$x = 0 \rightarrow y = 0$$
$$x = 1 \rightarrow y = 1$$

$$V = 2\pi \int_{0}^{1} y \left[y - \left(1 - \sqrt{1 - y} \right) \right] dy$$

$$= 2\pi \int_{0}^{1} y \left(y - 1 + \sqrt{1 - y} \right) dy$$

$$= 2\pi \int_{0}^{1} \left(y^{2} - y + y (1 - y)^{1/2} \right) dy$$

$$= 2\pi \left(\frac{1}{3} y^{3} - \frac{1}{2} y^{2} + \frac{2}{5} (1 - y)^{5/2} - \frac{2}{3} (1 - y)^{3/2} \right) \Big|_{0}^{1}$$

$$= 2\pi \left(\frac{1}{3} - \frac{1}{2} - \left(\frac{2}{5} - \frac{2}{3} \right) \right)$$

$$= 2\pi \left(-\frac{1}{6} + \frac{4}{15} \right)$$

$$= 2\pi \left(\frac{9}{90} \right)$$

$$= \frac{\pi}{5} \quad unit^{3} \Big|_{0}^{1}$$

$$= 2\pi \left(\frac{9}{10} \right) = \frac{2}{5} (1 - y)^{5/2} - \frac{2}{3} (1 - y$$

Let
$$u = 1 - y \rightarrow y = 1 - u$$

$$dy = -du$$

$$\int y(1 - y)^{1/2} dy = -\int (1 - u)u^{1/2} du$$

$$= -\int \left(u^{1/2} - u^{3/2}\right) du$$

$$= \frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2}$$

$$= \frac{2}{5}(1 - y)^{5/2} - \frac{2}{3}(1 - y)^{3/2}$$

Summary of the Shell Method

- **1.** Draw the region and sketch a line segment across it parallel to the axis of revolution. Label the segment's height or length (*shell height*) and distance from the axis of revolution (*shell radius*)
- 2. Find the limits of integration for the thickness variable.
- 3. Integrate the product 2π (*shell radius*) (*shell height*) with respect to the thickness variable (x or y) to find the volume

Integration With respect to x

Disk/washer method about the x-axis

Disks/washers are *perpendicular* to the *x*-axis

$$V = \pi \int_{a}^{b} \left(f(x)^{2} - g(x)^{2} \right) dx$$

Shell method about the y-axis

Shells are *parallel* to the y-axis

$$V = 2\pi \int_{a}^{b} x \left(f(x) - g(x) \right) dx$$

Integration With respect to y

Disk/washer method about the y-axis

Disks/washers are *perpendicular* to the y-axis

$$V = \pi \int_{c}^{d} \left(p(y)^{2} - q(y)^{2} \right) dy$$

Shells are *parallel* to the *x*-axis

$$V = 2\pi \int_{c}^{d} y \left(p(y) - q(y) \right) dy$$

Exercises Section 1.4 – Volume by Shells

(1-13) Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the *y-axis*

1. y = x

2. y =

3. $y = \sqrt{x}$

4. $y = \frac{1}{2}x^2 + 1$

- 5. $y = \frac{1}{4}x^2$, y = 0, x = 4
- **6.** $y = \frac{1}{2}x^3$, y = 0, x = 3
- 7. $y = x^2$, $y = 4x x^2$
- 8. $y = 9 x^2$, y = 0
- **9.** $y = 4x x^2$, x = 0, y = 4

- **10.** $y = x^{3/2}$, y = 8, x = 0
- **11.** $y = \sqrt{x-2}$, y = 0, x = 4
- **12.** $y = -x^2 + 1$, y = 0
- 13. $y = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, y = 0, x = 0, x = 1
- (14-15) Use the shell method to find the volume of the solid generated by revolving the shaded region about the indicated axis
- **14.** $y = 2 \frac{1}{4}x^2$

15. $x = y^2$

16. Use the shell method to find the volume of the solid generated by revolving the shaded region about the *y*-axis

$$y = \frac{9x}{\sqrt{x^3 + 9}}$$

- 17. Use the shell method to find the volume of the solid generated by revolving the region bounded by the curve and lines $y = x^2$, y = 2 x, x = 0, for $x \ge 0$ about the y-axis.
- 18. Use the shell method to find the volume of the solid generated by revolving the region bounded by the curve and lines $y = 2 x^2$, $y = x^2$, x = 0 about the y-axis.
- 19. Use the shell method to find the volume of the solid generated by revolving the region bounded by the curve and lines $y = \frac{3}{2\sqrt{x}}$, y = 0, x = 1, x = 4 about the y-axis.
- **20.** Let $g(x) = \begin{cases} \frac{(\tan x)^2}{x} & 0 < x \le \frac{\pi}{4} \\ 0 & x = 0 \end{cases}$

- a) Show that $x \cdot g(x) = (\tan x)^2$, $0 \le x \le \frac{\pi}{4}$
- b) Find the volume of the solid generated by revolving the shaded region about the y-axis.
- **21.** Use the shell method to find the volume of the solid generated by revolving the region bounded by the curve and lines $x = \sqrt{y}$, x = -y, y = 2 about the *x*-axis.
- 22. Use the shell method to find the volume of the solid generated by revolving the region bounded by the curve and lines $x = y^2$, x = -y, y = 2, $y \ge 0$ about the *x*-axis.

23. Compute the volume of the solid generated by revolving the region bounded by the lines

y = x and $y = x^2$ about each coordinate axis using

- a) The shell method
- b) The washer method
- **24.** Use the shell method to find the volumes of the solids generated by revolving the shaded regions about the *indicated* axes.

25. Use the *washer* method to find the volume of the solid generated by revolving the region bounded by the curve and lines $y = \sqrt{x}$, y = 2, x = 0 about

c) the line
$$x = 4$$

d) the line
$$y = 1$$

26. Find the volume of the solid generated by revolving the region bounded by $y = \frac{4}{x^3}$ and the lines

x = 1, and $y = \frac{1}{2}$ about

c) the line
$$x = 2$$
;

d) the line
$$y = 4$$
.

- 27. The region in the first quadrant that is bounded by the curve $y = \frac{1}{\sqrt{x}}$, on the left by the line $x = \frac{1}{4}$, and below by the line y = 1 is revolved about the y-axis to generate a solid. Find the volume of the solid by
 - a) The shell method
- b) The washer method
- **28.** The region bounded by the curve $y = \sqrt{x}$, the x-axis, and the line x = 4 to generate a solid. Find the volume of the solid.
 - *a*) revolved about the *x*-axis
 - b) revolved about the y-axis
- **29.** Find the volume of the solid generated by revolving the region bounded by $y = \sin x$ and the lines x = 0, $x = \pi$, and y = 2 about the line y = 2.
- **30.** A cylinder hole with radius r is drilled symmetrically through the center of a sphere with radius R, where $r \le R$. What is the volume of the remaining material?

61

- Use the shell method to find the volume of the solid generated by revolving the region bounded by the curve and lines $y = \sqrt{x}$, y = 2 - x, y = 0 about the x-axis.
- Find the volume of the region bounded by $y = \frac{\ln x}{r^2}$, y = 0, x = 1, and x = 3 revolved about the y-axis
- Find the volume of the region bounded by $y = \frac{e^x}{x}$, y = 0, x = 1, and x = 2 revolved about the y-axis
- Find the volume of the region bounded by $y^2 = \ln x$, $y^2 = \ln x^3$, and y = 2 revolved about the x-axis
- The profile of a football resembles the ellipse. Find the football's volume to the nearest *cubic inch*. **35.**

- (36-38) Find the volume using both the *disk/washer* and *shell* methods of
- **36.** $y = (x-2)^3 2$, x = 0, y = 25; revolved about the *y-axis*
- 37. $y = \sqrt{\ln x}$, $y = \sqrt{\ln x^2}$, y = 1; revolved about the *x-axis*
- 38. $y = \frac{6}{x+3}$, y = 2-x; revolved about the *x-axis*
- (39-42) Use the shell method to find the volume of the solid generated by the revolving the plane region about the given line
- $y = 2x x^2$, y = 0, about the line x = 4
- **40.** $y = \sqrt{x}$, y = 0, x = 4, about the line x = 6
- **41.** $y = x^2$, $y = 4x x^2$, about the line x = 4
- **42.** $y = \frac{1}{3}x^3$, $y = 6x x^2$, about the line x = 3
- (43-44) Use the disk method or shell method to find the volume of the solid generated vy revolving the region bounded by the graph of the equations about the given lines.
- **43.** $y = x^3$, y = 0, x = 2

 - a) the x-axis b) the y-axis
- c) the line x = 4

44.
$$y = \frac{10}{x^2}$$
, $y = 0$, $x = 1$, $x = 5$

- *a)* the x-axis
- b) the y-axis
- c) the line y = 10
- **45.** Let V_1 and V_2 be the volumes of the solids that result when the plane region bounded by $y = \frac{1}{x}$, y = 0, $x = \frac{1}{4}$, and x = c (where $c > \frac{1}{4}$) is revolved about the *x-axis* and the *y-axis*, respectively. Find the value of c for which $V_1 = V_2$
- **46.** The region bounded by $y = r^2 x^2$, y = 0, and x = 0 is revolved about the *y-axis* to form a paraboloid. A hole, centered along the axis of revolution, is drilled through this solid. The hole has a radius k, 0 < k < r. Find the volume of the resulting ring
 - a) By integrating with respect to x.
 - b) By integrating with respect to y.
- **47.** The region R in the first quadrant bounded by the parabola $y = 4 x^2$ and the coordinate axes is revolved about the y-axis to produce a dome-shaped solid. Find the volume of the solid in the following ways.
 - a) Apply the disk method and integrate with respect to y.
 - b) Apply the shell method and integrate with respect to x.
- **48.** The region bounded by the curves $y = 1 + \sqrt{x}$, $y = 1 \sqrt{x}$, and the line x = 1 is revolved about the y-axis. Find the volume of the resulting solid by
 - a) Integrating with respect to x and
 - b) Integrating with respect to y.
- **49.** The region bounded by the graphs of x = 0, $x = \sqrt{\ln y}$, and $x = \sqrt{2 \ln y}$ in the first quadrant is revolved about the y-axis. What is the volume of the resulting solid?
- **50.** The region bounded by $y = (1 x^2)^{-1/2}$ and the *x*-axis over the interval $\left[0, \frac{\sqrt{3}}{2}\right]$ is revolved about the *y*-axis. What is the volume of the solid that is generated?
- **51.** The region bounded by the graph $y = 4 x^2$ and the *x*-axis over the interval [-2, 2] is revolved about the line x = -2. What is the volume of the solid that is generated?
- **52.** The region bounded by the graph y = 6x and $y = x^2 + 5$ is revolved about the line y = -1 and the line x = -1. Find the volumes of the resulting solids. Which one is greater?

- 53. The region bounded by the graph y = 2x, y = 6 x and y = 0 is revolved about the line y = -2 and the line x = -2. Find the volumes of the resulting solids. Which one is greater?
- **54.** The region R is bounded by the curves $x = y^2 + 2$, y = x 4, and y = 0

- a) Write a single integral that gives the area of R.
- *b*) Write a single integral that gives the volume of the solid generated when *R* is revolved about the *x*-axis.
- c) Write a single integral that gives the volume of the solid generated when R is revolved about the y-axis.
- d) Suppose S is a solid whose base is R and whose cross sections perpendicular to R and parallel to the x-axis are semicircles. Write a single integral that gives the volume of S.
- **55.** The region *R* is bounded by $y = \frac{1}{x^p}$ and the *x*-axis on the interval [1, a], where p > 0 and a > 1.

Let V_x and V_y be the volumes of the solids generated when R is revolved about the x- and y-axes, respectively.

- a) With a = 2 and p = 1, which is greater, V_x or V_y ?
- b) With a = 4 and p = 3, which is greater, V_x or V_y ?
- c) Find a general expression for V_x in terms of a and p. Note that $p = \frac{1}{2}$ is a special case, what is V_x when $p = \frac{1}{2}$?

- d) Find a general expression for V_y in terms of a and p. Note that p=2 is a special case, what is V_y when p=2?
- e) Explain how parts (c) and (d) demonstrate that $\lim_{h\to 0} \frac{a^h 1}{h} = \ln a$
- f) Find any values of a and p for which $V_x > V_y$
- **56.** Let R be the region bounded by the graph of f(x) = cx(1-x) and the x-axis on [0, 1]. Find the positive value of c such that the volume of the solid generated by revolving R about the x-axis equals the volume of the solid generated by revolving R about the y-axis.
- **57.** Find the volume of the torus (doughnut formed when the circle of radius 2 centered at (3, 0) is revolved about the *y*-axis.
 - a) Use geometry to evaluate the integral
 - b) Use Shell method (use integral table)

58. The nose of a rocket is a solid of revolution of base radius *r* and height *h* that must join smoothly to the cylindrical body of the rocket. Taking the origin at the tip of the nose and the *x*-axis along the central axis of the rocket, various nose shapes can be obtained by revolving the cubic curve about *x*-axis.

$$y = f(x) = ax + bx^2 + cx^3$$

The cubic curve must have slope 0 at x = h, and its slope must be positive for 0 < x < h. Find the particular cubic curve that maximizes the volume of the nose. Also show that his choice of the cubic makes the slope $\frac{dy}{dx}$ at the origin as large as possible and, hence, corresponds to the bluntest nose.

59. A landscaper wants to create on level ground a ring-shaped pool having an outside radius of 10 m and a maximum depth of 1 m surrounding a hill that will be built up using all the earth excavated from the pool. She decided to use a fourth-degree polynomial to determine the cross-sectional shape of the hill and pool bottom: at distance r m from the center of the development the height above or below normal ground level will be

$$h(r) = a(r^2 - 100)(r^2 - k^2)$$
 m

For some a > 0, where k is the inner radius of the pool.

Find k and a so that the requirements given above are all satisfied.

How much earth must be moved from the pool to build the hill?