1 第二章线性算子

1.1 §1 线性映射的矩阵

定义 设 V,W 是 F 上的线性空间,Hom(V,W) 是从 V 到 W 的线性映射的集合, 它是 F 上的线性空间.

1.1.1 §1.1 矩阵表示

设 $\vec{e}_1, ..., \vec{e}_n$ 是 V 的基, $\vec{\varepsilon}_1, ..., \vec{\varepsilon}_m$ 是 W 的基. $\phi \in Hom(V, W) \forall j \in 1, ..., n$.

1.2 §5 特征子空间的应用

1.2.1 §5.1 线性算子和矩阵的对角化

定义 设 $A \in \mathcal{L}(V)$, A 在 F 中互不相同的特征根的集合称为 A 在 F 上的谱(spectrum)

定义 设 $A \in \mathcal{L}(V)$, 如果 A 在 V 的某组基下的矩阵是对角的,则称 A 是可对角化的。设 $A \in M_n(F)$, 如果 A 相似于某个对角矩阵,则称 A 在 F 上是可对角化的。

定理 5.1 设 $A \in \mathcal{L}(V)$,则下列断言等价:

- (i) A 可对角化
- (ii)A 有 n 个线性无关的特征向量, 其中 n=dim(V)
- (iii)V= $\bigoplus_{\lambda \in spec(A)}$

推论 5.1 设 $A \in \mathcal{L}(V)$,dimV=n, 如果 A 在 F 中有 n 个互不相同的特征根,则 A 可对角化.

定理 5.2 设 $A \in \mathcal{L}(V)$, 则 A 可对角化 \Leftrightarrow (i) \mathcal{X}_A 在 F 中可以分解为一次多项式之积 (ii)A 在 每个特征根的代数重数与几何重数相同.

1.2.2 §5.2 复数方阵的三角化

引理 5.2 设 V 是 C 上的 n 维线性空间,n>0, $A \in \mathcal{L}(V)$,则 A 有 n-1 维不变子空间.

定理 5.3 设 $A \in \mathcal{L}(V)$, 其中 $V \in \mathbb{C}$ 上 n 维线性空间, 则存在 V 中一组基, 使得 A 在该基下的矩阵是上三角型的.

推论 5.2 设 $A \in M_n(\mathbb{C})$, 则 A 相似于一个上三角型矩阵.

引理 5.3 设 $A \in \mathcal{L}(V)$,U 是 A-子空间, 定义:

 $\overline{\mathcal{A}}: V/U \to V/U$ $\vec{a} + U \mapsto \mathcal{A}(\vec{a}) + U$ 则 $\overline{\mathcal{A}} \in \mathcal{L}(V/U)$

定义 设 $A \in \mathcal{L}(V)$,U 是 A-子空间,则

 $\overline{\mathcal{A}}: V/U \to V/U$ $\vec{v} + U \mapsto \mathcal{A}(\vec{v}) + U$ 称为 \mathcal{A} 关于 U 的商算子.

命题 5.1 设 $A \in \mathcal{L}(V)$, U 是 A-子空间

 $\Pi: V \to V/U$ 自然投射

则 (i) $\Pi \circ A = \overline{A} \circ \Pi$, 其中 \overline{A} 是 A 关于 U 的商映射.

(ii) 设 $\varphi: V/U \to V/U$ 满足 $\pi \circ A = \varphi \circ \pi$, 则 $\varphi = \overline{A}$

定理 5.3 设 V 是 n 维线性空间,n>1, 设 $\mathcal{A} \in \mathcal{L}(V)$,U 是 \mathcal{A} -子空间,d=dimU>0, 设 $\vec{e}_1,...,\vec{e}_d$ 是 U 的基, $\vec{e}_1,...,\vec{e}_d$, $\vec{e}_{d+1},...,\vec{e}_n$ 是 V 的基. 记 $A|_U$ 为 A_U , \mathcal{A} 关于 U 的商算子为 $\overline{\mathcal{A}}$. 令 A_U 为 A_U 在 $\vec{e}_1,...,\vec{e}_d$ 下的矩阵. $\overline{\mathcal{A}}$ 为 $\overline{\mathcal{A}}$ 在 $\vec{e}_{d+1},...,\vec{e}_n$ 下的矩阵,则 \mathcal{A} 在 $\vec{e}_1,...,\vec{e}_d$, $\vec{e}_{d+1},...,\vec{e}_n$ 下的矩阵

$$A = \begin{bmatrix} A_U & B \\ 0 & \overline{A} \end{bmatrix} \tag{1}$$

,其中 B $\in F^{d\times(n-d)}$

推论 5.2 沿用定理 5.3 中记号, $\mathcal{X}_{\mathcal{A}}(t) = \mathcal{X}_{\overline{\mathcal{A}}}(t)\mathcal{X}_{\mathcal{A}_{\mathcal{A}}}(t)$

命题 5.2 设 $A \in \mathcal{L}(V)$.U 是 A-不变子空间, $P \in F[t]$ 则

- (i) U 是 $\mathcal{P}(\mathcal{A})$ -子空间
- (ii) 设 \overline{A} 和 $\overline{\mathcal{P}(A)}$ 是 \overline{A} 和 $\overline{\mathcal{P}(A)}$ 关于 \overline{U} 的商算子,则 $\overline{\mathcal{P}(A)} = P(\overline{A})$

定义 设 $A \in \mathcal{L}(V)$, $\vec{v} \in V$, 由 \vec{v} , $A(\vec{v})$, $A^2(\vec{v})$, ... 生成的子空间称为由 A 和 \vec{v} 生成的循环子空间, 记为 $F[A] \cdot \vec{v}$

命题 **5.3** 设 $A \in \mathcal{L}(V), \vec{v} \in V$

- (i) $F[A] \cdot \vec{v}$ 是 A-子空间
- (ii) $F[A] \cdot \vec{v} = \{p(A)(\vec{v}) | p \in F[t]\}$
- (iii) $dim F[A] \cdot \vec{v}$ 为 d⇔ \vec{v} , $A(\vec{v})$, ..., $A^{d-1}(\vec{v})$ 是 $F[A] \cdot \vec{v}$ 的一组基 (这里 $\vec{v} \neq \vec{0}$)

定义 设 $A \in \mathcal{L}(V), \vec{v} \in V, p \in F[t]$

- (i) 如果 $p(A)(\vec{v}) = \vec{0}$, 则称 p(t) 是关于 A 和 \vec{v} 的零化多项式
- (ii) 在关于 A 和 \vec{v} 的所有零化多项式中, 非零, 次数最低, 首一的多项式, 称为关于 A 和 \vec{v} 的极小多项式, 记为 $\mu_{A,\vec{v}}$

命题 **5.4** 设 $A \in \mathcal{L}(V)$, $\vec{v} \in V$

- (i) $\mu_{A,\vec{v}}$ 存在且唯一
- (ii) 若 $p \in F[t]$ 是关于 A 和 \vec{v} 的零化多项式, 则 $\mu_{A.\vec{v}}|p$. 特别地 $\mu_{A.\vec{v}}|\mu_A$
- (iii) $dim_F F[\mathcal{A}] \cdot \vec{v} = deg\mu_{\mathcal{A}, \vec{v}}$

引理 5.4 设 $A \in \mathcal{L}(V)$ 且 $\vec{v} \in V$, 如果 $V = F[A] \cdot \vec{v}$, 则 $\mu_A(t) = \mathcal{X}_A(t)$, 特别地 $\mathcal{X}_A(t)$ 零化 A.

Cayley-Hamilton 定理 设 $A \in \mathcal{L}(V)$, 则 $\mathcal{X}_A(t)$ 零化 A.

推论 5.3 设 $A \in \mathcal{L}(V)$, 则 $\mu_A | \mathcal{X}_A$, 特别地, $deg \mu_A \leq dim V$

推论 5.4(Cayley-Hamilton 定理的矩阵版) 设 $A \in M_n(F)$, 则

- (i) $\mathcal{X}_A(t)$ 零化 A
- (ii) $\mu_A(t)|\mathcal{X}_A(t)$, 特别地, $deg\mu_A \leq n$

1.3 §6 各种类型的直和分解

1.3.1 §6.1 预备引理

引理 6.1 设 $p_1, ..., p_k, q \in F[t] \setminus \{0\}$

- (i) 如果 $\forall i \in \{1,...,k\}, gcd(p_I,q) = 1, 则 gcd(p_1,...,p_k,q) = 1$
- (ii) 如果 $p_1, ..., p_k$ 两两互素, 且 $p_I|q$.

引理 6.2 设 $p_1,...,p_k \in F[t]\setminus\{0\}$ 两两互素, 则 $lcm(p_1,...,p_k)=p_1...p_k$

引理 **6.3** 设 $A \in \mathcal{L}(V)$, $f \in F[t]$ 零化 A, 设 f = pq, 其中 $p, q \in F[t] \setminus F$ 且 gcd(p, q) = 1, 令 $K_p = ker(p(A))$ 和 $K_q = ker(q(A))$, 则

- (i) K_p 和 K_q 是 A-子空间且 $V = K_p \bigoplus K_q$
- (ii) $p(A)|_{K_q}$ 和 $q(A)|_{K_p}$ 上都是双射
- (iii) 设 $f = \mu_A$ 且 p, q 都首一, 则 p 和 q 分别是 $A|_{K_q}$ 和 $A|_{K_q}$ 的极小多项式.

1.3.2 §6.2 广义特征子空间分解

定义 设 $\mathcal{A} \in \mathcal{L}(V)$, $\mu_{\mathcal{A}}$ 在 F[t] 中的不可约因式分解为 $\mu_{\mathcal{A}} = p_1^{m_1}...p_s^{m_s}$, 其中 $p_1,...,p_s \in F[t] \setminus F$, 首一, 不可约, 两两互素, $m_1,...,m_s \in \mathbb{Z}^+$, 则 $ker(p_i^{m_i}(\mathcal{A}))$ 称为 \mathcal{A} 关于因子 p_i 的广义子空间, 记为 $V(p_i)$.

注 $V(p_I)$ 是 A-子空间

注 书中定义的根子空间是广义子空间的特殊情形, 我们将在之后说明.

定理 6.1 利用上述定义中的记号, 我们有 $V = V(p_1) \oplus ... \oplus V(p_s)$ 且

- (i) $p_I^{m_I} \mathcal{A}|_{V(p_i)}$ 的极小多项式
- (ii) $p_I(A)$ 在 $V(p_1) \oplus ... \oplus V(p_{i-1}) \oplus V(p_{i+1}) \oplus ... \oplus V(p_s)$ 上是可逆的.

推论 6.1 设 $\mathcal{A} \in \mathcal{L}(V)$, 则 \mathcal{A} 可对角化 $\Leftrightarrow \mu_{\mathcal{A}}(t) = (t - \alpha_1)...(t - \alpha_m)$, 其中 $\alpha_1, ..., \alpha_m \in F$, 两两不同.