

第4章

4.10钢管订购和运输

目录 CONTENTS

01 问题描述

02 问题分析

03 模型的建立与求解

01 问题描述

(2000 年全国大学生数学建模竞赛 B 题)要铺 设一条 $A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_{15}$ 的输送天然气的主管道, 如图 4.21 所示。经筛选后可以生产这种主管道钢管 的钢厂有 $S_1,S_2,\cdots S_7$ 。图中粗线表示铁路,单细线表 示公路,双细线表示要铺设的管道(假设沿管道或者 原来有公路,或者建有施工公路),圆圈表示火车 站、每段铁路、公路和管道旁的阿拉伯数字表示里 程(单位 km)。

图 4.21 交通网络及管道图

为方便计, 1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产 500 个单位。钢厂 S_i 在指定期限内能生产该钢管的最大数量为 S_i 个单位,钢管出厂销价 1 单位钢管为 P_i 万元,见表 4.13; 1 单位钢管的铁路运价见表 4.14。

表 4.13 各钢管厂的供货上限及销价

i	1	2	3	4	5	6	7
\boldsymbol{S}_{i}	800	800	1000	2000	2000	2000	3000
p_i	160	155	155	160	155	150	160

表 4.14 单位钢管的铁路运价

里程(km)	≤300	301~350	351~400	401~450	451~500
运价(万元) 20		23	26	29	32
里程(km)	501~600	$601 \sim 700$	701~800	801~900	901~1000
运价(万元)	37	44	50	55	60

1000km以上每增加1至100km运价增加5万元。 公路运输费用为1单位钢管每公里 0.1 万元 (不足整公里部分按整公里计算)。钢管可由铁路、公路运往铺设地点(不只是运到点A₁,A₂,…,A₁₅,而是管道全线)。

请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。

02 问题分析

问题的建模目的是求一个主管道钢管的订购和 运输策略, 使总费用最小。首先, 问题给出了7个供 选择的钢厂,选择哪些? 订购多少? 是一个要解决的 问题。其次,每一个钢厂到铺设地点大多都有多条可 供选择的运输路线、应选择哪一条路线运输、取决了 建模的目标。而目标总费用包含两个组成部分: 订购 费用和运输费用。订购费用取决于单价和订购数量, 运输费用取决于往哪里运和运输路线。结合总目标的 要求,可以很容易地想到应选择运费最小的路线。

从同一个钢管厂订购钢管运往同一个目的地、一 旦最小运输费用路线确定,则单位钢管的运费就确定 了、单位钢管的总订购及运输费用=钢管单价+运输费 用。因此,同一个钢管厂订购钢管运往同一个目的地 的总费用等于订购数量乘以单位钢管的购运费用(单 价+单位钢管运费)。因而,在制定订购与运输计划时, 要分成两个子问题考虑:

(1)运输路线及运输费用的确定: 钢管可以通过 铁路或公路运输。公路运费是运输里程的线性函数, 但是铁路运价却是一种分段的阶跃的常数函数。因此 在计算时,不管对运输里程还是费用而言,都不具有 可加性,只能将铁路运价(即由运输总里程找出对应 费率)和公路运价分别计算后再叠加。 (2)铺设方案的设定:从钢管厂订购若干个单位的钢管运送至枢纽点A₁,A₂,…,A₁₅,再由枢纽点按一个单位计分别往枢纽点两侧运送至最终铺设地点,计算从枢纽点开始的铺设费用。

虽然准备把问题分解为两个子问题进行处理,但 最终优时,必须作为一个综合的优化问题进行处理 否则无法得到全局最优解。

03

模型的建立 与求解

记第 $i(i=1,2,\cdots,7)$ 个钢厂的最大供应量为 s_i ,从 第i个钢厂到铺设节点j($j=1,2,\cdots,15$)的订购和运输 费用为 c_{ii} ; 用 $l_k = |A_k A_{k+1}|$ $(k = 1, 2, \dots, 14)$ 表示管道第k段需要铺设的钢管量。 x_{ii} 是从钢厂 S_i 运到节点j的钢 管量, y_i 是从节点j向左铺设的钢管量, z_i 是从节点j向右铺设的钢管量。

根据题中所给数据,可以先计算出从供应点 S_i 到 需求点 A_i 的最小购运费 c_{ii} (即出厂售价与运输费用之 和),再根据 c_{ii} 求解总费用,总费用应包括:订购费用 (已包含在 c_{ii} 中),运输费用(由各厂 S_i 经铁路、公路 至各点 A_i , $i=1,2,\cdots,7$, $j=1,2,\cdots,15$), 铺设管道 $A_{j}A_{j+1}(j=1,2,\dots,14)$ 的运费。

1.运费矩阵的计算模型

购买单位钢管及从 S_i ($i=1,2,\cdots,7$) 运送到 A_j ($j=1,2,\cdots,15$) 的最小购运费用 c_{ii} 的计算如下。

(1) 计算铁路任意两点间的最小运输费用

由于铁路运费不是连续的,故不能直接构造铁路费用赋权图,用 Floyd 算法来计算任意两点间的最小运输费用。但可以首先构造铁路距离赋权图,用 Floyd 算法来计算任意两点间的最短铁路距离值,再依据题中的铁路运价表,求出任意两点间的最小铁路运输费用。这就巧妙地避开铁路运费不是连续的问题。

首先构造铁路距离赋权图 $G_1 = (V, E_1, W_1)$, 其中 $V = \{S_1, \dots, S_7, A_1, \dots, A_{15}, B_1, \dots, B_{17}\} = \{v_1, v_2, \dots, v_{30}\},$ 总共39个顶点的编号如图 4.21 所示; $W_1 = (w_{ii}^{(1)})_{39\times39}$, $w_{ij}^{(1)} = \begin{cases} d_{ij}^{(1)}, & v_i, v_j \geq \text{间有铁路直接相连} \\ +\infty, & v_i, v_j \geq \text{间没有铁路直接相连} \end{cases}$, $(d_{ij}^{(1)})$ 表示vi, vi两点之间的铁路路程。)

然后应用 Dijkstra 标号算法求得任意两点间的最短铁路距离。

根据铁路运价表,可以得到铁路费用赋权完全图 $\tilde{G}_1 = (V, E_1, \tilde{W}_1)$,其中 $\tilde{W}_1 = (c_{ij}^{(1)})_{39\times39}$,这里 $c_{ij}^{(1)}$ 为第i,j 顶点间的最小铁路运输费用,若两点间的铁路距离值为无穷大,则对应的铁路运输费用也为无穷大。

(2) 构造公路费用的赋权图

构造公路费用赋权图 $G_2=(V,E_2,W_2)$,其中V同上, $W_2=(c_{ii}^{(2)})_{39\times 39}$,

$$c_{ij}^{(2)} = \begin{cases} 0.1d_{ij}^{(2)}, v_i, v_j 之间有公路直接相连 \\ +\infty, v_i, v_j 之间没有公路直接相连 \end{cases}$$

 $d_{ij}^{(2)}$ 表示 v_i , v_j 两点之间的公路路程。

(3) 计算任意两点间的最小运输费用

由于可以用铁路、公路交叉运送,所以任意相邻两点间的最小运输费用为铁路、公路两者最小运输费用的最小值。

构造铁路公路的混合赋权图G=(V,E,W), $W=(c_{ij}^{(3)})_{39\times 39}$,其中 $c_{ij}^{(3)}=\min(c_{ij}^{(1)},c_{ij}^{(2)})$ 。

对图G应用 Dijkstra 标号算法,就可以计算出所有顶点对之间的最小运输费用,最后提取需要的 S_i $(i=1,2,\cdots,7)$ 到 A_j $(j=1,2,\cdots,15)$ 的最小运输费用 \tilde{c}_{ii} (单位:万元)见表 4.15。

表 4.15 最小运费计算结果

170.7	160.3	140.2	98.6	38	20.5	3.1	21.2	64.2	92	96	106	121.2
215.7	205.3	190.2	171.6	111	95.5	86	71.2	114.2	142	146	156	171.2
230.7	220.3	200.2	181.6	121	105.5	96	86.2	48.2	82	86	96	111.2
260.7	250.3	235.2	216.6	156	140.5	131	116.2	84.2	62	51	61	76.2
255.7	245.3	225.2	206.6	146	130.5	121	111.2	79.2	5 7	33	51	71.2
265.7	255.3	235.2	216.6	156	140.5	131	121.2	84.2	62	51	45	26.2
275.7	265.3	245.2	226.6	166	150.5	141	131.2	99.2	76	66	56	38.2

任意两点间的最小运输费用加上出厂售价,得到单位钢管从任一个 S_i ($i=1,2,\cdots,7$)到 A_j ($j=1,2,\cdots,15$)的购买和运送最小费用 c_{ii} 。

2.总费用的数学规划模型

目标函数

(1) 从钢管厂到各枢纽点 A_1,A_2,\cdots,A_{15} 的总购运

费用为
$$\sum_{i=1}^{7}\sum_{j=1}^{15}c_{ij}x_{ij}$$
。

(2)铺设管道不仅只运输到枢纽点,而是要运送并铺设到全部管线,注意到将总量为y_j的钢管从枢纽点往左运到每单位铺设点,其运费应为第一公里、第二公里、…直到第y_j公里的运费之和,即为

$$0.1 \times (1 + 2 + \dots + y_j) = \frac{0.1}{2} y_j (y_j + 1).$$

从枢纽点 A_j 往右也一样,对应的铺设费用为

$$0.1 \times (1 + 2 + \cdots + z_j) = \frac{0.1}{2} z_j (z_j + 1).$$

总的铺设费用为

$$\frac{0.1}{2}\sum_{j=1}^{15} \left[y_j(y_j+1) + z_j(z_j+1) \right].$$

因而, 总费用为

$$\sum_{i=1}^{7} \sum_{j=1}^{15} c_{ij} x_{ij} + \frac{0.1}{2} \sum_{j=1}^{15} \left[y_j (y_j + 1) + z_j (z_j + 1) \right].$$

约束条件:

(1) 根据钢管厂生产能力约束或购买限制,有

$$\sum_{j=1}^{15} x_{ij} \in \{0\} \cup [500, s_i], \quad i = 1, 2, \dots, 7.$$

(2) 购运量应等于铺设量

$$\sum_{j=1}^{7} x_{ij} = z_j + y_j, \quad j = 1, 2, \dots, 15.$$

- (3) 枢纽点间距约束: 从两个相邻枢纽点分别往右、往左铺设的总单位钢管数应等于其间距,即 $z_j + y_{j+1} = \left| A_j A_{j+1} \right| = l_j, \quad j=1,2,\cdots,14.$
- (4) 端点约束: 从枢纽点 A_1 只能往右铺,不能往左铺,故 $y_1=0$,从枢纽点 A_{15} 只能往左铺,不能往右铺,故 $z_{15}=0$.
 - (5) 非负约束:

 $x_{ij} \ge 0, y_j \ge 0, z_j \ge 0, i = 1, 2, \dots, 7, j = 1, 2, \dots, 15.$

综上所述,建立如下数学规划模型

min
$$\sum_{i=1}^{7} \sum_{j=1}^{15} c_{ij} x_{ij} + \frac{0.1}{2} \sum_{j=1}^{15} (z_j(z_j+1) + y_j(y_j+1))$$
 (4.25)

$$\begin{cases}
\sum_{j=1}^{15} x_{ij} \in \{0\} \cup [500, s_i], & i = 1, 2, \dots, 7, \\
\sum_{i=1}^{7} x_{ij} = z_j + y_j, & j = 1, 2, \dots, 15, \\
z_j + y_{j+1} = l_j, & j = 1, 2, \dots, 14, \\
y_1 = 0, z_{15} = 0, \\
x_{ij} \ge 0, y_j \ge 0, z_j \ge 0, & i = 1, 2, \dots, 7, j = 1, 2, \dots, 15.
\end{cases}$$
(4.26)

3.模型求解

使用计算机求解上述数学规划时,需要对约束 条件(4.26)中的第一个非线性约束

$$\sum_{j=1}^{15} x_{ij} \in \{0\} \cup [500, s_i], \quad i = 1, 2, \dots, 7$$
 (4.27)

进行处理。

首先把约束条件松弛为

$$0 \le \sum_{j=1}^{15} x_{ij} \le s_i, \quad i = 1, 2, \dots, 7.$$
 (4.28)

求解发现第4个钢管厂和第7个钢管厂的供货量 达不到500,不符合要求。 再利用分支定界的思想,在约束(4.28)的基础上, 把原问题分解为4个优化问题,在原来目标函数和约 束条件的基础上,分别再加如下的4个约束条件:

问题1:
$$\begin{cases} \sum_{j=1}^{15} x_{4j} = 0, \\ \sum_{j=1}^{15} x_{7j} = 0. \end{cases}$$
 (4.29)

问题2:
$$\begin{cases} \sum_{j=1}^{15} x_{4j} \ge 500, \\ \sum_{j=1}^{15} x_{7j} \ge 500. \end{cases}$$
 (4.30)

问题3:
$$\begin{cases} \sum_{j=1}^{15} x_{4j} \ge 500, \\ \sum_{j=1}^{15} x_{7j} = 0. \end{cases}$$
 (4.31)

问题4:
$$\begin{cases} \sum_{j=1}^{15} x_{4j} = 0, \\ \sum_{j=1}^{15} x_{7j} \ge 500. \end{cases}$$
 (4.32)

利用 MATLAB 软件,分别求解上述 4 个问题。 从计算结果得知,问题 1 的解是最优的。求得总费用 的最小值为 127.8632 亿。具体的订购和运输方案见表 4.16 所示。

表 4.16 钢管订购和运输方案

	订															
	购	$A_{\mathbf{l}}$	A_{2}	A_3	A_{4}	A_{5}	A_{6}	A_7	A_8	A_{9}	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}	A_{15}
	量															
S_1	800	0	0	0	147	188	200	265	0	0	0	0	0	0	0	0
S_2	800	0	179	113	99	109	0	0	300	0	0	0	0	0	0	0
S_3	1000	0	0	124	95	117	0	0	0	664	0	0	0	0	0	0
S_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S_5	1216	0	0	271	127	202	0	0	0	0	201	415	0	0	0	0
S_6	1355	0	0	0	0	0	0	0	0	0	150	0	86	333	621	165
S_7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

程序见随书程序包,此处略