

Mansoura University Faculty of Computers and Information Department of Computer Science First Semester: 2020-2021

[MED121] Bioinformatics: An Introduction

Grade: Third Year (Medical Informatics Program)

Sara El-Metwally, Ph.D.

Faculty of Computers and Information,

Mansoura University,

Egypt.

AGENDA

- What is Bioinformatics.
- Bioinformatics Vs. Medical Informatics.
- Central Dogma of Life.
- DNA, Genomes.
- RNA, Transcriptomes.
- Proteins, Proteomics.
- Transcriptions and Translation.
- Omics era.

COURSE OUTLINES

- Course Meeting Time: Wednesday, 2:15 pm 4.00 pm
- Course Instructor: Sara El-Metwally, PhD
- Course TAs: Eng. Aya Ayad, Eng. Mohamed Ashraf,
- Course Labs: Python
- Course Grading:
 - Midterm: 10%
 - Oral: 10%
 - Practical: 20%
 - Final: 60%
 - Any Projects are welcomed! (up to 40%)
 - Quizzes, attendance, etc..

COURSE OBJECTIVES

- Bioinformatics course works as an interface between the computer science and biology and opens new opportunity to deal with different algorithms and tools for sequence comparisons, assembly, pattern matching, and efficient data structure to process a biological text.
- Understand the basic computer science terminologies regarding algorithm analysis and design, data analysis, and computer programming.
- Define the challenges that are facing the large scale biological data and think how to solve them through developing algorithms and bioinformatics tools.

MANSOURA FCIS COURSE DEPENDENCY

COURSE OUTPUT

http://phdcomics.com/

LET'S START!

What do you think "Bioinformatics" is? and why?

LET'S START!

WHAT IS BIOINFORMATICS?

Bioinformatics is conceptualizing biology in terms of molecules and applying "informatics techniques" (derived from disciplines such as applied maths, computer science and statistics) to <u>understand</u> and <u>organize</u> the information associated with these molecules, on a <u>large</u> <u>scale</u>.

 Bioinformatics is computer aided biology! Also called <u>computational</u> <u>biology</u>.

BIOINFORMATICS: A SIMPLE VIEW

Biological Data

Computer Calculations

BIOINFORMATICS, MEDICAL INFORMATICS & BIOMEDICAL INFORMATICS

https://osteopathic.nova.edu/msbi/evolution.html

BIOINFORMATICS IS FUN!

CENTRAL DOGMA OF LIFE

Central dogma of molecular biology

Central dogma of genomics

Photo credit: Functional Genomics Book by Jonathan Pevsner

Photo credit: https://edu.t-bio.info/course/transcriptomics-1/

- DNA stands for Deoxyribo Nucleic Acid that carries the genetic instructions required for the development, functioning and reproduction of all known living organisms.
- In eukaryotic organisms (like animals, plants, and fungi), DNA is present in the nucleus of each cell.
- In prokaryotic organisms (single-celled organisms like bacteria and mitochondria), DNA is present in the cell's cytoplasm.

Photo Credit: https://www.yourgenome.org/facts/what-is-dna

Photo Credit: https://www.yourgenome.org/facts/what-is-dna

TACTGTGACACTGT

```
Y    Pyrimidine (C or T)
R    Purine (A or G)
W    Weak (A or T)
S    Strong (G or C)
K    Keto (T or G)
M    Amino (C or A)
D    A, G, T (not C - remember as after C)
V    A, C, G (not T - remember as after T/U - We'll get to "U" soon)
H    A, C, T (not G - remember as after G)
B    C, G, T (not A - remember as after A)
N    Any base
- Gap
```

Photo credit: BIOSTAR Handbook

GENOMES

- Genome refers to the complete set of genetic information in an organism, it is your DNA!
- Human genome contains approximately 3 billion base pairs, which reside in the 23 chromosomes.
- Mosquitoes have 3 pairs, i.e. tiger mosquito has 1,967, 000, 000 bp = 1,967 Mbp.

GENOME SIZES

Comparison of Genome Size in Different Organisms

Species	T2 phage	Escherichia coli	Drosophila melanogaster	Homo sapiens	Paris japonica
Genome Size	170,000 bp	4.6 million bp	130 million bp	3.2 billion bp	150 billion bp
Common Name		W.	970		×
	Virus	Bacteria	Fruit fly	Human	Canopy Plant

Photo Credit: https://ib.bioninja.com.au/standard-level/topic-3-genetics/32-chromosomes/genome-size.html

Organism	Completion date	Size	Description
phage phiX 174 human mtDNA lambda phage HIV H. influenzae M. genitalium S. cerevisiae E. coli K12 C. trachomatis D. melanogaster A. thaliana	1978 1980 1982 1985 1995 1995 1996 1997 1998 2000 2000	5,368 bp 16,571 bp 48,502 bp 9,193 bp 1,830 Kb 580 Kb 12.5 Mb 4.6 Mb 1,042 Kb 180 Mb 125 Mb	Ist viral genome Ist organelle genome important virus model AIDS retrovirus Ist bacterial genome smallest bacterial genome Ist eukaryotic genome bacterial model organism internal parasite of eukaryotes fruit fly, model insect thale cress, model plant
H. sapiens SARS	2001 2003	3,000 Mb 29,751 bp	human coronavirus

Photo Credit: http://book.bionumbers.org/how-many-genes-are-in-a-genome/

GENES

main components of the human genome

	Organism	# of protein- coding genes	# of genes naïve estimate: (genome size /1000)	BNID
Γ	HIV 1	9	10	105769
viruses	Influenza A virus	10-11	14	105767
	Bacteriophage λ	66	49	105770
	Epstein Barr virus	80	170	103246
prokaryotes	Buchnera sp.	610	640	105757
	T. maritima	1,900	1,900	105766
	S. aureus	2,700	2,900	105500
	V. cholerae	3,900	4,000	105760
	B. subtilis	4,400	4,200	111448
	E. coli	4,300	4,600	105443
eukaryotes	S. cerevisiae	6,600	12,000	105444
	C. elegans	20,000	100,000	101364
	A. thaliana	27,000	140,000	111380
	D. melanogaster	14,000	140,000	111379
	F. rubripes	19,000	400,000	111375
	Z. mays	33,000	2,300,000	110565
	M. musculus	20,000	2,800,000	100308
	H. sapiens	21,000	3,200,000	100399, 111378
	T. aestivum (hexaploid)	95,000	16,800,000	105448, 102713

Photo Credit: https://ib.bioninja.com.au/standard-level/topic-3-genetics/32-chromosomes/genome-size.html

GENES

- Gene is a basic unit of heredity, it is a sequence of bases that carries the instructions to make a
 particular protein.
- There are an estimated 19,000 20,000 human protein-coding genes.
- Not all of the DNA in a genome encodes protein, i.e. ~ 1.5 % of human genome are protein coding regions.

```
ATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAACCTTCTCTTTTGGAACTTT
AATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCT(
GCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATAC'
TTTTATGGTTATGAAGAGGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGAT
CTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAA
TAATATACCTCTATACTTTAACGTCAAGGAGAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA
TAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCG
TTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGA
{\tt CGATTTGCCGTTGGACGGTTCTTATGTCACAATTGATCCTTCTGTGTCGGACTGGTCTAATTACTTTAAATGTGGTCTCCATGTTC
ACTCTTTTCTAAAGAAACTTGCACCGGAAAGGTTTGCCAGTGCTCCTCTGGCCGGGCTGCAAGTCTTCTGTGAGGGTGATGTACCA
GGCAGTGGATTGTCTTCTTCGGCCGCATTCATTTGTGCCGTTGCTTTAGCTGTTGTTAAAGCGAATATGGGCCCTGGTTATCATA'
CAAGCAAAATTTAATGCGTATTACGGTCGTTGCAGAACATTATGTTGGTGTTAACAATGGCGGTATGGATCAGGCTGCCTCTGTT
GTGAGGAAGATCATGCTCTATACGTTGAGTTCAAACCGCAGTTGAAGGCTACTCCGTTTAAATTTCCGCAATTAAAAACCATGAA
AGCTGCAAATGTTTTAGCTGCCACGTACGGTGTTGTTTTACTTTCTGGAAAAGAAGATCGAGCACGAATAAAGGTAATCTAAGA(
TCATGAACGTTTATTATGCCAGATATCACAACATTTCCACACCCTGGAACGGCGATATTGAATCCGGCATCGAACGGTTAACAAA
ATTCACAAGAGACTACTTAACAACATCTCCAGTGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAA'
TAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATG
GAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGAT
TGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTA
AAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACC/
GCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATA
{
m TTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGG
CCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAA
AACCCTTTGTCCTACTGATTAATTTTGTACTGAATTTGGACAATTCAGATTTTAGTAGACAAGCGCGAGGAGGAAAAGAAATGAC
```

GCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCT**CGC**GCCGCACTGCT**CGG**AACAATAAAGATTC TTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGG**CCCCAS**AAACCTTCAAATTAACG ATGCGATTAGTTTTTTAGCCTTATTTC**TGGGG**TAATTAATCAGCGA Genes GAAAGGTTTGCCAGTGCTCCTCTGGCCGGGCTG Regulatory motifs **CCTTCCAGAACATTATGTTGGTGTTAACAATG** Encode GAGTTCAAACCGCAGTTGAAGGCTACTCCGTTT Control **FGTATCTAACAAGTTTGAAACCGCCCCAACCAA** proteins ACGGTGTTGTTTTACTTTCTGGAAAAGAAGAT gene expression CACAACATTTCCACACCCTGGAACGGCGATATT CTAGTACTAGTTGAAGAGTCTCT **SCCAATAAGAAACAGGGCTTTAGTGTTGACGATGT** TGGTTCCCGTTTGACCGGAGCTGGCTGG TGGTTGTACTGTTCACTTGGTTCCAGGGGGCC

GENOTYPE VS. PHENOTYPE

- Genotype is the set of genes in an organism.
- Phenotype is the set of all observable characteristics which are influenced both by its genotype and by the environment.

Sources: http://evolution.berkeley.edu/evolibrary/article/genovspheno_01

RNA

- RNA is like DNA except that:
 - Backbone is a little different.
 - 2. Often single stranded.
 - 3. The base Uracil (U) is used in place of Thymine (T).
- RNA as a string of four alphabets:

AUGACACUGUGACA

Photo Credit: https://www.micropia.nl/en/discover/microbiology/rna/

DNA vs. RNA

DNA vs. RNA

Double-stranded

b.

Deoxyribose as the sugar

C.

Generally single-stranded

Ribose as the sugar

Thymine (T) Cytosine (C)

Adenine (A)

d. Guanine (G)

Uracil (U)

Cytosine (C)

Adenine (A)

Guanine (G)

- Transcription is the process of transforming information in a gene in a DNA strand to an RNA strand, i.e. making RNA from a DNA template.
- Genetic information is carried on only one of the two strands of the DNA, which known as a coding strand.

RNA polymerase recognizes short sequence of bases called promoter sequence and bind to it.

RNA polymerase

template strand

RNA PROCESSING

ALTERNATIVE SPLICING

NOTES

Other DNA products:

- 1. ribosomal RNA (rRNA), which includes major constituents of ribosomes.
- 2. transfer RNAs (tRNAs), which carry amino acids to ribosomes.
- 3. micro RNAs (miRNAs), which play an important regulatory role in various plants and animals.

Photo credit: https://edu.t-bio.info/course/transcriptomics-1/

TRANSLATION

- Ribosome is the machine that synthesizes proteins from mRNA.
- Proteins are molecules composed of one or more polypeptides.
- a polypeptide is a polymer composed of amino acids.
- Cells build their proteins from 20 different amino acids.
- A polypeptide can be thought of as a string composed from a 20-character alphabet.

TRANSLATION

AMINO ACIDS

PROTEIN SEQUENCE

Photo Credit: https://www.peptidesciences.com/information/peptides-vs-proteins/

PROTEIN SEQUENCE

Photo credit: https://www.zmescience.com/medicine/designer-protein-upon-us-25072019/

VIDEO

https://www.youtube.com/watch?v=gG7uCskUOrA

OMICS

- Genomics: DNA.
- Transcriptomics: RNA.
- Proteomics: Proteins.
- Metagenomics: is a new research area focused on the analysis of mixture of DNA sequences extracted from different organisms i.e. viral, bacterial, or eukaryotic that are living together in a symbiotic community.
- Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The epigenome is made up of chemical compounds and proteins that can attach to DNA and direct such actions as turning genes on or off, controlling the production of proteins in particular cells.

OMICS ERA (LARGE SCALE BIOLOGY)

Name	Study of	
Genomics	entire genome of an organism	
Transcriptomics	expressed genes	
Exomics	coding sequences	
Proteomics	proteins within an organism	
Metagenomics	mixture of DNA sequences from different organisms	
Metabolomics	metabolites within an organism	
Interactomics	interactions between nucleotides, proteins and metabolites	
Connectomics	neural pathways in the brain	
Pharmocogenomics	application of genomics to pharmacology	
Phenomics	observable phenotypes	
Physiomics	functional behaviour of an organism	
Exposomics	organism's environment	

TYPES OF BIOINFORMATICS DATA

(BIOLOGICAL MOLECULES)

Thank you!