Distribution of X	Probability mass/density function	$\mathrm{E}(X)$	Var(X)	Moment generating function $M_X(t)$
Bernoulli $Ber(p)$ where 0	$p^x (1-p)^{1-x} for x = 0, 1$	p	p(1-p)	$pe^t + 1 - p \qquad \text{for } t \in \mathbb{R}$
Binomial $B(n, p)$ where $n \in \mathbb{N}, 0$	$\binom{n}{x} p^x (1-p)^{n-x}$ for $x = 0, 1, 2, \dots, n$	np	np(1-p)	$(pe^t + 1 - p)^n \qquad \text{for } t \in \mathbb{R}$
Geometric $Geo(p)$ where 0	$(1-p)^{x-1}p$ for $x = 1, 2, 3,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t} \text{for } t < -\ln(1 - p)$
Negative binomial NB (r, p) where $r \in \mathbb{N}, 0$	$\binom{x-1}{r-1}(1-p)^{x-r}p^r$ for $x = r, r+1, r+2, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r \text{ for } t < -\ln(1 - p)$
Hypergeometric $\text{Hyp}(N, m, n)$ where $N \in \mathbb{N}, m, n \in \{0, \dots, N\}$	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}} \text{for } x \in \{\max(0, n+m-N), \dots, \min(n, m)\}$	$\frac{nm}{N}$	$\left(\frac{N-n}{N-1}\right)n\left(\frac{m}{N}\right)\left(1-\frac{m}{N}\right)$	
Poisson $Po(\lambda)$ where $\lambda > 0$	$\frac{e^{-\lambda}\lambda^x}{x!} \qquad \text{for } x = 0, 1, 2, \dots$	λ	λ	$e^{\lambda(e^t - 1)} \qquad \text{for } t \in \mathbb{R}$
Uniform $U(a, b)$ where $a, b \in \mathbb{R}, a < b$	$\frac{1}{b-a} \qquad \qquad \text{for } a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Exponential $\operatorname{Exp}(\lambda)$ where $\lambda > 0$	$\lambda e^{-\lambda x} \qquad \text{for } x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t} \qquad \text{for } t < \lambda$
Gamma $\Gamma(\alpha, \lambda)$ where $\alpha, \lambda > 0$	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} \qquad \text{for } x > 0$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha} \qquad \text{for } t < \lambda$
Normal $N(\mu, \sigma^2)$ where $\mu \in \mathbb{R}, \ \sigma > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \text{for } x \in \mathbb{R}$	μ	σ^2	$e^{\mu t + \frac{1}{2}\sigma^2 t^2} \qquad \text{for } t \in \mathbb{R}$
$\begin{array}{ll} \text{Chi-squared} & \chi^2(r) \\ \text{where } r \in \mathbb{N} \end{array}$	$\frac{1}{\Gamma\left(\frac{r}{2}\right)2^{\frac{r}{2}}}x^{\frac{r}{2}-1}e^{-\frac{x}{2}} \qquad \text{for } x > 0$	r	2r	$\frac{1}{(1-2t)^{\frac{r}{2}}} \qquad \text{for } t < \frac{1}{2}$
Student's t $t(r)$ where $r \in \mathbb{N}$	$\frac{\Gamma\left(\frac{r+1}{2}\right)}{\sqrt{r\pi}\Gamma\left(\frac{r}{2}\right)}\left(1+\frac{x^2}{r}\right)^{-\frac{r+1}{2}} \qquad \text{for } x \in \mathbb{R}$	$0 \\ \text{for } r > 1$	$\frac{r}{r-2} \qquad \text{for } r > 2$	
Snedecor's F $F(m, n)$ where $m, n \in \mathbb{N}$	$\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)}\left(\frac{m}{n}\right)^{\frac{m}{2}}x^{\frac{m}{2}-1}\left(1+\frac{m}{n}x\right)^{-\frac{m+n}{2}} \text{for } x > 0$	$ \frac{n}{n-2} $ for $n > 2$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \text{ for } n > 4$	
Beta $Beta(\alpha, \beta)$ where $\alpha, \beta > 0$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1} \qquad \text{for } 0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	

Notes: $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$ for $\alpha > 0$; $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$, $\Gamma(1) = 1$, $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.