OLLSCOIL NA hÉIREANN, GAILLIMH

NATIONAL UNIVERSITY OF IRELAND, GALWAY

AUTUMN EXAMINATIONS 2008 - HONOURS

B.A. and **B.Sc EXAMINATIONS**

MATHEMATICS

MA416 [RING THEORY] and MA491 [FIELD THEORY]

Professor D. Armitage Professor J. Hinde Professor T. Hurley Dr R. Quinlan Dr J. Ward

Those seeking credit for one semester should answer *three* questions. Those seeking credit for both semesters should answer *five* questions. Please use separate answer books for each section.

Time Allowed: Three hours

Section A – Ring Theory (MA416)

A1. (a) Give an example of

- i. A ring;
- ii. A non-commutative ring;
- iii. A non-commutative ring having an uncountable number of elements;
- iv. A commutative ring having a finite number of elements;
- v. A non-commutative ring with exactly 8 elements.
- (b) What is meant by a zero-divisor in a communitative ring R with identity? Suppose that both a and b are zero-divisors in R. Must it follow that the sum a+b is also a zero-divisor?

What are the zero-divisors in the ring $D_3(\mathbb{Q})$ of diagonal 3×3 matrices with rational entries?

- (c) Let R be a commutative ring with an identity element for multiplication. What is meant by a unit in R?
 - Prove that the product of two units in R is again a unit. What are the units of the ring $M_2(\mathbb{Z})$ of 2×2 matrices with integer entries?
- (d) Suppose that R is a ring and that a and b are elements of R having the property that the product ab is the zero element of R. Must it be the case that the product ba is also the zero element of R?

P.T.O.

- A2. (a) Let F be a field. What is meant by an irreducible polynomial in the ring F[x] of polynomials with coefficients in F?
 State the division algorithm for polynomials in F[x].
 Hence or otherwise show that if a polynomial f(x) of degree at least 2 in F[x] has a root in F, then f(x) is reducible in F[x].
 - (b) What is meant by a *primitive* polynomial in $\mathbb{Z}[x]$? Show that the product of two primitive polynomials is again primitive. Suppose that f(x) and g(x) are (non-constant) polynomials in $\mathbb{Z}[x]$ with the property that the product f(x)g(x) is primitive. Does it follow that f(x) and g(x) are both primitive?
 - (c) Give an example (with explanation) of
 - i. A polynomial in $\mathbb{Q}[x]$ that has no root in \mathbb{Q} but is reducible in $\mathbb{Q}[x]$.
 - ii. An polynomial of degree at least 2 that has rational coefficients and is irreducible in $\mathbb{R}[x]$.
 - iii. An irreducible polynomial of degree 5 in $\mathbb{Z}[x]$.
 - iv. An irreducible polynomial of degree 3 in $\mathbb{F}_2[x]$ (here \mathbb{F}_2 denotes the field $\mathbb{Z}/2\mathbb{Z}$ of two elements).
 - (d) For each of the following polynomials, determine, with explanation, if it is irreducible in the indicated ring.
 - i. $4x^6 3x^5 + 6x^3 12x^2 + 9x 15$, in $\mathbb{Q}[x]$
 - ii. $x^4 7x^3 + 10x^2 + 8x 6$, in $\mathbb{Z}[x]$
 - iii. $2x^3 + 2x^2 + 1$, in $\mathbb{F}_3[x]$ (here \mathbb{F}_3 denotes the field $\mathbb{Z}/3\mathbb{Z}$ of integers modulo 3).
 - iv. $3x^2 4x + 6$, in $\mathbb{R}[x]$.
- **A3.** (a) Let R and S be rings. What is meant by a ring homomorphism $\phi: R \longrightarrow S$? Two functions $\phi: \mathbb{Q}[x] \longrightarrow \mathbb{Q}$ and $\psi: \mathbb{Q}[x] \longrightarrow \mathbb{Q}$ are defined as follows for $f(x) \in \mathbb{Q}[x]$.
 - $\phi(f(x))$ is defined to be the *leading* coefficient of f(x), for $f(x) \neq 0$. $(\phi(f(x)) = 0$ if f(x) is the zero polynomial).
 - $\psi(f(x))$ is defined to be the constant coefficient of f(x).

Determine, with explanation, whether each of the functions ϕ and ψ is a ring homomorphism.

- (b) What is meant by a (two-sided) *ideal* of a ring R? If $\phi: R \longrightarrow S$ is a ring homomorphism, define the *kernel* of ϕ and prove that it is a two-sided ideal of R.
- (c) What is meant by a *principal ideal* in a commutative ring with identity? Give an example, with explanation, of a commutative ring with identity that contains non-principal ideals.

What is meant by a principal ideal domain (PID)?

Prove that the ring of integers \mathbb{Z} is a PID.

- **A4.** (a) What is meant by a *maximal ideal* in a commutative ring with identity? What is meant by a *prime ideal* in a commutative ring with identity? Give an example (with explanation) of
 - i. A prime ideal of $\mathbb{Q}[x]$.
 - ii. An ideal of $\mathbb{Q}[x]$ that is not prime.
 - iii. A (non-zero) ideal that is prime but not maximal, in some commutative ring with identity.
 - (b) What is meant by an *irreducible element* in a commutative ring with identity? What is meant by a *prime element* in a commutative ring with identity? Prove that in a commutative ring with identity, every prime element is irreducible.
 - (c) Let R denote the ring consisting of those complex numbers of the form $a + b\sqrt{-5}$, where a and b are integers, under the usual addition and multiplication of complex numbers. Show that R contains irreducible elements that are not prime.

Section B - Field Theory (MA 491)

- **B1.** (a) Explain how a field \mathbb{K} may be viewed as a vector space over a sub-field \mathbb{F} and hence define the **degree** $[\mathbb{K} : \mathbb{F}]$.
 - (b) Define the term **splitting field** of a polynomial. Find quadratic factors for the polynomial

$$f(x) = x^4 + 2x^3 - 8x^2 - 6x - 1$$

- over $\mathbb{Z}[x]$ and hence, or otherwise show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a splitting field for f(x) over \mathbb{Q} .
- (c) Show that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ and deduce that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is an extension of degree 4 over
- \mathbb{Q} . Write down a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- (d) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{3} \sqrt{2})$, and find the minimum polynomial of $\sqrt{3} \sqrt{2}$ over $\mathbb{Q}(\sqrt{3})$.
- **B2.** (a) What is meant by a "straight-edge and compass construction"?
 - (b) State Gauss' Theorem concerning the values for which the regular n-gon can be constructed by straight edge and compass.
 - (c) Using part (ii) show that 18° is constructible. Deduce that the angle n° is constructible $\Leftrightarrow 3|n$.
 - (d) State a necessary condition for an algebraic number α to be constructible using straight–edge and compass. Hence **prove** that the regular heptagon is not constructible using straight–edge and compass.
 - (e) Show that $\cos^{-1}\left(\frac{11}{16}\right)$ can be trisected using straight-edge and compass.
- **B3.** (a) Write down the four roots of the polynomial $x^4 2$. Letting $r = \sqrt[4]{2}$ and $i = \sqrt{-1}$, show that a splitting field for this polynomial over \mathbb{Q} is $\mathbb{Q}(r,i)$.
 - (b) Let σ be the \mathbb{Q} -automorphism defined as $\sigma: r \mapsto ir$; $\sigma: i \mapsto i$, and let τ be the \mathbb{Q} -automorphism of complex conjugation, i. e. $\tau: i \mapsto -i$; $\tau: r \mapsto r$. Hence determine the Galois group G of $x^4 2$ over \mathbb{Q} and establish that G is non-abelian of order 8.
 - (c) Under the Galois correspondence find the (fixed) subfield corresponding to the subgroup of G of order 2 generated by σ^2 .

- **B4.** (a) Let \mathbb{F}_q be a finite field of order $q \ (= p^n, \ p \ \text{a prime} \ n \ge 1)$. State the main properties of \mathbb{F}_q .
 - (b) Prove Gauss' formula

$$N_q(d) = \frac{1}{d} \sum_{k|d} \mu\left(\frac{d}{k}\right) q^k$$

where $N_q(d)$ is the number of monic irreducible polynomials of degree d over the finite field of order q.

- (c) By factorising $x^{16} x$ over the field of two elements \mathbb{F}_2 , or otherwise, determine the irreducible polynomials of degree 4 over the field of two elements \mathbb{F}_2 .
- (d) Choosing any of the irreducible quartics in part (c), show that it can be factored into a product of two irreducible quadratics over \mathbb{F}_4 , the finite field of order 4.