TD 5. Probabilités conjointes et marginales

Exercice 1 | Quelques révisions.

5% des interrupteurs sortant d'une chaîne de production sont défectueux. On en prend deux au hasard. Soit X la variable aléatoire représentant le nombre d'interrupteurs défectueux dans l'échantillon prélevé.

- 1°)Donner la loi de probabilité de X
- 2°)Calculer E(X) et Var(X).

Exercice 2 On lance un dé non truqué. On considère les variables aléatoires X et Ydéfinies sur $\{1; 2; 3; 4; 5; 6\}$ par :

- X prend la valeur 0 si le résultat est pair, et la valeur 1 sinon.
- Y prend la valeur 0 si le résultat est 2 ou 4, et la valeur 1 sinon.

Donner le tableau de la loi conjointe du couple (X,Y) et des lois marginales.

Exercice 3 On considère deux V.A.R.X et Y sur $\{0, 1, 2\}$.

On donne la table de la loi conjointe du couple (X, Y).

P	$\{Y=0\}$	$\{Y=1\}$	$\{Y=2\}$	P(X)
X = 1	0.1	0.2	0.3	
X = 2	0	0.1	0.2	
X = 2	0	0	0.1	
P(Y)				

- 1°)Déterminer les lois marginales de X et de Y.
- 2°) Déterminer toutes les lois conditionnelles P(X|Y).

Exercice 4 On lance un dé non truqué. On considère les variables aléatoires X et Ydéfinies sur $\{1; 2; 3; 4; 5; 6\}$ par :

- X prend la valeur 1 si le résultat est pair, et la valeur -1 sinon.
- Y prend la valeur 2 si le résultat est 2 ou 5, et la valeur 1 sinon.
- 1°)Donner la table de la loi conjointe
- 2°) Combien y-a-t-il d'égalités à vérifier pour justifier que les X et Y sont indépendantes?

Exercice 5 | Soit X une variable aléatoire de loi uniforme discrète sur $\{-1,0,1\}$ et la seconde variable $Y = X^2$.

- 1°) Montrer que X et Y ne sont pas indépendantes.
- 2°) Calculer leur covariance.

Exercice 6 La distribution conjointe de deux variables aléatoires discrètes se présente comme suit:

P	$\{Y=0\}$	$\{Y=1\}$	$\{Y=2\}$	P(X)
X = 10	0	0.25	0	
X = 12	0.25	0	0.25	
$ \{X = 14\}$	0	0.25	0	
P(Y)				

- 1°)Déterminer les loi marginales de X et de Y, puis les espérances E(X) et E(Y).
- 2°)Déterminer E(X,Y) et la covariance cov(X,Y).
- 3°) Les deux variables sont-elles indépendantes?

Exercice 7 Deux systèmes de contrôle opèrent indépendamment et sont sujets à un certain nombre de pannes.

On donne les lois de probabilité marginales régissant le nombre de pannes par jour de chaque système :

Système X		Système Y	
a	P(X=a)	b	P(Y=b)
0	0.07	0	0.10
1	0.35	1	0.20
2	0.34	2	0.50
3	0.18	3	0.17
4	0.06	4	0.03

1°)Donner les probabilités des événements :

- Y a au moins 2 pannes par jour;
- Le nombre de pannes de X est strictement inférieur à 2 et celui de Y supérieur ou égal à 3;
- Il se produit une seule panne pendant la journée;
- ullet X a le même nombre de pannes que Y .
- 2°) Déterminer la distribution conjointe de X et Y
- 3°)Déterminer la loi conditionnelle du nombre de pannes par jour du système X sachant que le nombre de pannes par jour du système Y est 1.
- $\mathbf{4}^{\circ}$) Calculer E(X), E(Y), E(X+Y), Var(X), Var(Y), Var(X+Y).
- 5°)Quelle est la covariance de X et Y?

Exercice 8 On dispose de n boites numérotées de 1 à n. La boite k possède k boules numérotées de 1 à k. On choisit au hasard de façon équiprobable une boite, puis une boule dans cette boite. On note X le numéro de la boite et Y le numéro de la boule.

- $\mathbf{1}^{\circ}$) Déterminer la loi conjointe du couple (X,Y).
- 2°) En déduire la loi de Y.
- 3°) Calculer l'espérance de Y.

Exercice 9 (X,Y) un couple de variables aléatoires sur $\{1,2,\ldots,n\}$, suivant une loi conjointe uniforme.

- 1°) Déterminer la loi de X, la loi de Y, la loi de X + Y.
- 2°) X et Y sont elles indépendantes?

Exercice 10 (X, Y) (Un exemple de variable discrète infinie?) un couple de variables aléatoires sur \mathbb{N} telles que

$$P\{(X,Y) = (i,j)\} = \frac{1}{2^{i+j}}.$$

- $\mathbf{1}^{\circ}$)Déterminer les loi marginales de X et de Y.
- $2^{\circ}X$ et Y sont elles indépendantes?