

MILLE Surgical

MILLE Surgical Zongyuan Ge⁴, Lixu Gu¹, and Junjun He ^{2,3*}
Intelligence Laboratory, China, ³ Shanghai Innovation Institute, China, ⁴ Monash University, Australia, ⁵ East China Normal

Wei Li^{1,2}, Ming Hu^{2,4}, Guoan Wang⁵, Lihao Liu², Kaijing Zhou⁶, Junzhi Ning^{2,8}, Xin Guo⁷,

Shanghai Jiao Tong University, China, ²Shanghai Artificial Intelligence Laboratury, China, ²Shanghai Academy of Artificial Intelligence for Science, China, ⁸ Imperial College London, UK.

University, China, ⁸ Eye Hospital, Wenzhou Medical University, China, ⁸ Iiwei2022@sjtu.edu.cn *hejunjun@pilab.org.cn Shanghai Jiao Tong University, China, ² Shanghai Artificial Intelligence La

In ophthalmic surgery, procedural videos serve as critical visual data for training AI systems that interpret surgical scenes and predict subsequent actions, potentially enhancing outcomes when integrated with robotics. However, acquiring large-scale, annotated surgical videos is challenging due to privacy concerns and annotation costs. To address this, generating synthetic surgical videos based on surgeon

instructions has emerged as a promising solution, with two major challenges; Current Text-to-video (T2V) models for surgical videos rely heavily on coarse phase labels that lack fine-grained surgical detail. This limits their ability to

accurately depict complex interactions between tools and anatomy. Existing T2V models using image-based backbones and temporal mixing layers often suffer from frame inconsistency due to insufficient modeling of spatialtemporal dynamics in surgical procedures.

Contributions

We propose a novel text-guided ophthalmic surgical video generation model, named Ophora, that can generate realistic and reliable ophthalmic videos following natural

☐ We construct Ophora-160K, a large-scale ophthalmic video-instruction dataset, using a comprehensive curation pipeline to ensure video-instruction correspondence and visual quality;

☐ We propose a progressive video-instruction tuning strategy to adapt general T2V models for ophthalmic surgical video generation;

☐ We demonstrate the effectiveness of Ophora on both video realism and its utility in downstream ophthalmic surgical workflow understanding tasks.

Fig. 1. Overview of the proposed Ophora

Comprehensive Data Curation

To construct Ophora-160K, we propose a data curation pipeline that refines noisy video-caption pairs from OphVL. We employ a powerful LLM (e.g., Qwen2.5-72B) to remove redundant narrative content and convert captions into concise generation

Additionally, we filter video clips with abnormal temporal dynamics by analyzing keyframe density using PySceneDetect (Dynamics-based Filtering). Further filtering based on resolution ensures the quality of the final 160K video-instruction dataset.

Overview of Ophora

Ophora builds upon CogVideoX-2b, a latent diffusion model comprising a 3D VAE, a T5 text encoder, and a transformer-based denoising network. Video frames are compressed into latent embeddings, while input text is encoded into text embeddings and the embeddings. During training, Gaussian noise is added to video embeddings, and the abjective minimizer model learns to denoise them conditioned on text. The training objective minimizes the MSE between predicted and diffusion pipeline the MSE between predicted and true noise. following the standard diffusion pipeline.

 $L_{\text{diff}} = \mathbb{E}_{t,\epsilon_{t},(z^{v},z^{\phi}) \sim \mathcal{D}} \left[\|\epsilon - \epsilon_{\theta}([z^{v}_{t},z^{\phi}],t)\|_{2}^{2} \right]$

My WeChat Lab. Welcome to join us!

Please feel free to contact me! I'm currently interning with GMAI group at Shanghai AI

GMAI-github Team Leader - Junjun He

Paper Link Google Scholar

Ophora adopts a two-stage training strategy to preserve privacy while transferring spatial-temporal knowledge from natural videos. In the transfer pre-training stage, the model is continually trained on Ophora-160K by updating only the denoising network, while keeping the text encoder and VAE frozen. In the privacy-preserving

MICCA12025

fine-tuning stage, we detect and filter out videos with sensitive content using a large vision-language model (e.g., Qwen2.5-VL-72B), leading to Ophora-28K. This dataset is used to fine-tune the model to avoid generating sensitive videos without compromising previously learned knowledge.

Results

compromising previously loss	thesized videos from the Ophora. The sized videos		
	reized videos from the Opi	Metric CS ↑	
- Juste the quality of synth	Dataset setting OphVL [12] Ophora-160K	FID + FVD + CD	
We evaluate the	Dataset Ophora-160K	167.75 1433.29	
Model	Ophvi I	60.50 990.30	
1-10 [17]		138.30 1761.42 32.02	
Endora [17] Endora (w/ Ophora-160K)		49.74 604.20	
Bora [22] Ophora-160K)			
Bora (w/ Ophoto		141 09 37.00	
# 7° 1 0 0 1 = (1) 1 1 1 1	•	42.16 441.05 33.72 276.96 39.19	
Ophora (TPT-only)		hasad on quantitative	
Ophora	video quality across different n	nodels based on quantitative	
- faunthorized	Vineo quality	a ' indicates bis	

Table 1. Comparison of synthesized video quality across different models based on quantitative metrics. Bold font denotes the best performance for each metric, and '-' indicates that CLIPScore (CS) was not calculated for this model.

Fig. 2. Synthesized video frames from the input text prompts of different models. '*' denotes that

Fig. 3. Ophthalmologists' scores on different criteria (a) and surgical phases (b). (b) Ophthalmologists' scores on different phases Downstream Task Performance

Traini		
Training data Classifier	Val	
	Phase Operation	Test
Source SlowFast [5	Top-5 Top-1 Top 5	Top 1
Source MIVITY2 Inc	34.55 70.24 26.93 65.11	Phase Operation Top-1 Top-5 Top-1 Top-5
old oldwr-	12:04/2/00	37.00 71.09 27.21 67.26
Source + Ophora SlowFast MViTv2 Table 2. Comparison MViTv2	37.43 73.62 28.58 67.52	39 24 74 04 28.56 68.32
Table 2 Co MViTv2	38.55 73.23 30.81 68.34	20 00 28.88 69 52
sets of OphNet of the	40.15 76.52 32.80 70	41.05 77.43 21.10
data configurations purify phase	and top-5 accuracy of	42.24 78.56 33 63 72.01
Bold denotes	and operation-based classis	sifiers on the wall to
	the best performance for each	39.26 75.76 28.88 69.53 41.05 77.43 31.10 72.01 42.24 78.56 33.62 73.27 differs on the validation and test split.
		39.26 75.76 30.44 70.32 41.05 77.43 31.10 72.01 42.24 78.56 33.62 73.27 differs on the validation and test sign tasks, under three training