Random Algebra/Number Theory Problems

Shaun Ostoic

June 7, 2018

Exercise 1. Let G be a finite group. Show that $a \in G$ is a generator of G if and only if $a^{\frac{|G|}{q}} \neq 1$, for each prime factor p of |G|.

Proof. (\rightarrow) Since a generates G, it is a cyclic group, hence $G=\langle a \rangle$. A consequence of this is that $|G|=|\langle a \rangle|=|a|$. Let us assume for sake of a contradiction, that $a^{\frac{|G|}{q}}=1$ for some prime factor q of |G|. Then we see that $a^{\frac{|G|}{q}}=1 \implies |a|$ divides $\frac{|G|}{q} \implies |a|=|G|<\frac{|G|}{q}$, which is a contradiction. (\leftarrow) Assume $a^{\frac{|G|}{q}}=1$ for every prime factor q of |G|. Since $\langle a \rangle$ is a subgroup of G, $|\langle a \rangle|$ divides |G| (by Lagrange's Theorem. Let $m=\frac{|G|}{q}$. Then

$$|a^m| = \frac{|a|}{(m,|a|)}.$$

We claim that $|a^m| = q$. To see this, observe that

$$(a^{\frac{|G|}{q}})^q = a^{|G|} = 1.$$

From this we see that $|a^m|$ divides q. Since $a^m \neq 1$ and q is prime, it follows that $|a^m| = q$. Thus,

$$|a^m| = \frac{|a|}{(m,|a|)} = q$$

$$|a| = q(m, |a|)$$

$$\implies q$$
 divides $|a|$.

Since q was an arbitrary prime factor of |G|, we see that every prime factor of |G| divides |a|. \square