به نام آنکه جان را فکرت آموخت

بخش نهم: عملیات در پایگاه داده رابطهای

مرتضى اميني

نیمسال اول ۹۸–۹۸

(محتویات اسلایدها برگرفته از یادداشتهای کلاسی استاد محمدتقی روحانی رانکوهی است.)

یاد آوری: مدل دادهای

بخش نهم: عملیات در پایگاه داده رابطهای

UNION - اجتماع اشتراک - INTERSECT ً عملگرهای متعارف ـ $R_1 \ op \ R_2$ عملگرهای دو عملوندی - عملگرهای دو تفاضل - MINUS $op \in \{ \cup, \cap, , -, \times \}$ ضرب کارتزین - TIMES عملگرها RESTRICT – گزینش یا تحدید عملگرهای خاص - پرتو یا تصویر - PROJECT پيوند يا الصاق - JOIN

عملگرهای متعارف جبر رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

- □ خاصیت بسته بودن: حاصل ارزیابی هر عبارت جبر رابطهای معتبر، باز هم یک رابطه است (که تاپل تکراری ندارد).
 - اشند: \Box برای **سه عملگر** \Box \Box باید عملوندها نوع–سازگار (Type Compatible) باشند:
- \Box پیش شرط: $H_{R_1} = H_{R_2}$
- \square $R_3 = R_1 \ op \ R_2 \longrightarrow H_{R_3} = H_{R_1} = H_{R_2} \qquad op \in \{\cup, \cap, -\}$
 - □ بدنه نتیجه، حاصل انجام هر یک از اَعمال اجتماع، اشتراک و یا تفاضل دو مجموعه بدنه است.
 - 🗖 در عملگر ضرب کارتزین (TIMES):
 - $H_{R_2} \cap H_{R_1} = \emptyset$ سرط: در عنوان دو رابطه نباید صفت همنام وجود داشته باشد. \square
- عنوان رابطه نتیجه برابر است با $\operatorname{H}_{R_2} \, lacktrightarrows \, H_{R_2} \, lacktrightarrows \, H_{R_1}$ و بدنه نتیجه برابر ضرب کارتزین دو مجموعه بدنه است.
 - در SQL چگونه شبیهسازی میشود؟ \square

یک عبارت بولی تشکیل شده از شرطهای ساده به صورت (A_i theta literal) یا (A_i theta A_j) که در آن A_i یکی از عملگرهای A_i خو A_j است و literal یک مقدار ثابت است.

□ عملگر گزینش یا تحدید – RESTRICT

نماد ریاضی: σ_c نماد ریاضی: σ_c نماد ریاضی کرینش کے شرط یا شرایط گزینش کے

RESTRICT R WHERE c یا $\sigma_c(R)$ شکل کلی: $\sigma_c(R)$

- \square تک عملوندی: Monadic
- 🗖 **عملکرد** (در نمایش جدولی رابطه): زیرمجموعهای افقی میدهد. ــــــــ عملگر تاپل(ها)یاب

عملگر گزینش (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

مشخصات کامل دانشجویان رشته فیزیک دوره کارشناسی را بدهید.

$$\sigma_{STJ='phys' \land STL='bs'}(STT)$$

SELECT STT.*

FROM STT

WHERE STJ='phys' AND STL='bs'

وقتی در شرط C (یا کلاز WHERE) بخشی از کلید را با شرط تساوی داده باشیم.

 CK_{R} , \subseteq CK_{R} . اگر $\mathrm{R}'=\sigma_{\mathrm{c}}(\mathrm{R})$ باشد آنگاه

عملگر گزینش (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

☐ عملگر گزینش <u>جابجایی پذیر</u> است، یعنی:

$$\sigma_{c1}(\sigma_{c2}(R)) = \sigma_{c2}(\sigma_{c1}(R)) = \sigma_{c1 \wedge c2}(R)$$

🗖 عبارتهای جبری معادل:

R WHERE $(C_1 \text{ AND } C_2) = (R \text{ WHERE } C_1) \text{ INTERSECT } (R \text{ WHERE } C_2) \square$

R WHERE $(C_1 \ OR \ C_2) = (R \ WHERE \ C_1) \ UNION \ (R \ WHERE \ C_2) \ \Box$

R WHERE NOT C = R MINUS (R WHERE C)

□ عملگر يرتو – PROJECT

□ نماد ریاضی: □

PROJECT R OVER (L) يا $\Pi_{\langle L \rangle}(R)$ يا $\Pi_{\langle L \rangle}(R)$ شكل كلى: $\Pi_{\langle L \rangle}(R)$ يا $\Pi_{\langle L \rangle}(R)$

 \square تک عملوندی: Monodic

🖵 **عملکرد** (در نمایش جدولی رابطه): زیرمجموعه عمودی میدهد. 🚤 عملگر ستون(ها)یاب

عملگر پرتو تکراریها را حذف می کند. \longrightarrow چون جواب رابطه است، پس یک مجموعه است و عضو \Box تکراری ندارد.

شماره و رشته تمام دانشجویان را بدهید.

 $\Pi_{\langle STID,STJ \rangle}(STT)$

SELECT STID, STJ FROM STT

شماره دانشجویانی که درسی انتخاب نکردهاند.

$$R \coloneqq \Pi_{\langle STID \rangle}(STT) - \Pi_{\langle STID \rangle}(STCOT)$$

شماره و مقطع تحصیلی دانشجویان رشته IT را بدهید.

$$\Pi_{\langle STID,STL \rangle} (\sigma_{STJ='IT'}(STT))$$

عملگر پرتو (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

- اگر $\Pi_{(L)}(R)=\Pi_{(L)}(R)$ باشد آنگاه: \square
- CK_{R} , $= \mathsf{CK}_{\mathsf{R}}$ آنگاه $\mathsf{CK}_{\mathsf{R}} \subseteq \mathsf{L}$ اگر \square
 - \square اگر نه در بدترین حالت \square

$$.\mathsf{CK}_\mathsf{R},=?$$
 اگر $p\in\{\cup\,,\cap\,,,-, imes\}$ و $\mathsf{R}'=\mathsf{R}_1\ op\ \mathsf{R}_2$ آنگاه $\mathsf{R}'=\mathsf{R}_1$

است. SELECT در SQL استاندارد، در حالت کلی ترکیبی از دو عملگر RESTRICT و PROJECT است.

عملگر پرتو گسترش یافته

بخش نهم: عملیات در پایگاه داده رابطهای

- 🗖 عملگر پرتو گسترش یافته EXTENDED PROJECT
 - 🗖 نماد ریاضی: Π
 - $\Pi_{\langle F1,F2,...,Fn
 angle}(R)$ شكل كلى: \square

→ لیست صفات و یا توابع حسابی پرتو

🖵 این عملگر امکان میدهد تا در لیست صفات پرتو، از توابع حسابی استفاده شود و صفت (صفاتی) با

مقادیر حاصل از اجرای تابع (توابع) در رابطه جواب داشت.

رابطهای با صفات شماره دانشجو، شماره درس و نمره دانشجو در درس، تغییریافته با فرمول

:=1.2*GRADE بدهید

 $\Pi_{\text{(STID, COID, (1.2*GRADE) RENAME AS G)}}(STCOT)$

- RENAME عملگر تغییر نام 🗖
 - 📮 نماد رياضي: ρ
 - $ho_{ extbf{R}}(extbf{E})$ شکل کلی: lacksquare

E بام رابطه حاصل از عبارت جبر رابطهای €

- این عملگر برای نامیدن رابطه حاصل از یک عبارت جبر رابطهای به کار میرود.
- ابرمی گرداند. $P_{R}(E)$ عملکرد: $\rho_{R}(E)$ رابطه حاصل از عبارت جبر رابطه $\rho_{R}(E)$ برمی گرداند.
- 🖵 از عملگر RENAME برای دگرنامی صفت هم میتوان استفاده کرد (مشابه آنچه در مثال اسلاید قبل
 - آمد). مثلاً با دستور B_i داده می شود. R از A_i نام دیگر B_i داده می شود.

که باید همدامنه و ناهمنام باشند.

چون نتیجه JOIN رابطه است و در headingاش صفت تکراری نباید وجود داشته باشد.

- □ نکته: اگر صفات پیوند همنام باشند، حداقل یکی را باید دگرنامی کرد (به دلیل وجود این راه حل، حساسیتی در وجود صفت مشترک نداریم).
- در حالت کلی شرط پیوند می تواند به صورت زیر باشد که در آن c_n ...، c_1 قالب بالا (قالب شرط ساده c_n در حالت کلی شرط پیوند می تواند به صورت زیر باشد که در آن c_n خالب بالا (قالب شرط ساده c_n در حالت کلی شرط پیوند) را دارند.

مشخصات کامل جفت تهیه کننده -قطعه از یک شهر را بدهید.

$R_1 := S \bowtie_{S.CITY=P.PCITY} (P RENAME CITY AS PCITY)$

S	(S#, SNAME, ST	ATUS, CITY)	P (<u>P#</u> ,	, W,	CITY)
	S1	C1	P1	5	C1
	S2	C2	P2	6	C2
	S3	C3	Р3	4	C1
	S4	C4	P4	7	C4
	S5	C5	P5	10	C5
	S6	C6			

R_1 (S#, ..., CITY, P#, ..., W, PCITY)

S 1	C1	P1	5	C1
S 1	C1	P3	4	C1
S2	C2	P2	6	C2
S3	تاپل پیوندشدنی ندارد.			
S4	C4	P4	7	C4
S4 S5	C5	P5	10	C5
S6	تایل پیوندشدنی ندارد.			

 $R_3 = R_1 \bowtie_C R_2$ عملکرد:

 $H_{R_3} = H_{R_1} \cup H_{R_2}$

در بدنه R_3 تاپلهای پیوندشدنی از دو رابطه قرار دارند. lacktriangle

┖ خصوصيات: └

- رابطه نظم مکانی ندارند. R $_1 \bowtie_{\mathbb{C}} R_2 = R_2 \bowtie_{\mathbb{C}} R_1$ و جون صفات در R $_1 \bowtie_{\mathbb{C}} R_2 = R_2 \bowtie_{\mathbb{C}} R_1$
- از برمجموعه ای افقی از R₁ $\bowtie_C R_2 = \sigma_C(R_1 \times R_2)$ Theta-Join حاصل $\bowtie_C R_1 = \sigma_C(R_1 \times R_2)$ خرب کارتزین است که در آن تاپلهایی از حاصلضرب که حائز شرط پیوند هستند حضور دارند.

⊃ وقتی در شرط پیوند، تساوی بخشی از کلید هر دو رابطه را داده باشیم.

. پیادهسازی این نوع از پیوند است. INNER JOIN در SQL ، پیادهسازی این نوع از پیوند است.

گونههای خاص عملگر پیوند - پیوند طبیعی

بخش نهم: عملیات در پایگاه داده رابطهای

(Natural Join) پیوند طبیعی

🖵 گونهای از پیوند است که دو ویژگی دارد:

=:Theta -

۲- صفات پیوند یک بار در جواب می آیند. (صفت یا صفات پیوند باید همنام هم باشند.)

$$R_2 := S \bowtie_{S.CITY=P.CITY} P$$

R_2 (S#,	,	CITY,	P#,	 , W)
4 (-)	,		,	, · · ,

S1	C1	P1	5
S1 S1 S2 S4 S5	C1	P3	4
S2	C2	P2	6
S4	C4	P4	7
S5	C5	P5	10

گونههای خاص عملگر پیوند - پیوند طبیعی (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

در **پیوند طبیعی**، پیوند روی تساوی مقادیر تمام صفات مشترک انجام میشود. \Box

 $R_1: (A, B, C)$

 R_2 : (A, F, C)

 $R' = R_1 \bowtie R_2$

R': (A, B, C, F)

 $R_1\bowtie R_2=R_1 imes R_2$ اگر $H_{R_1}\cap H_{R_2}=\emptyset$ ، آنگاه $H_{R_1}\cap H_{R_2}=\emptyset$

 $R_1\bowtie R_2=R_1\cap R_2$ اگر $H_{R_1}=H_{R_2}$ ، آنگاه \square

□ **در عمل:** دستور NATURAL JOIN در SQL، پیادهسازی این نوع از پیوند است که پیوند را روی همه صفات مشترک انجام میدهد.

گونههای خاص عملگر پیوند - نیمپیوند

بخش نهم: عملیات در پایگاه داده رابطهای

- (Semijoin) نيم پيوند
- 🖵 در شکل عمومی با هر Theta نوشته میشود.
 - □ نماد: _C (در چپ تعریف شده)
- $R_3 \coloneqq R_1 \ltimes_{\mathbb{C}} R_2 = \Pi_{\langle H_{R_1} \rangle}(R_1 \bowtie_{\mathbb{C}} R_2)$ مدل ریاضی: \square
 - 🗖 عملكرد:
 - $H_{R_3} = H_{R_1}$
 - در بدنه R_3 : تاپلهای پیوند شدنی از رابطه چپ

گونههای خاص عملگر پیوند - نیمپیوند (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

 $R_3 := S \ltimes_{S.CITY=P.PCITY} (P RENAME CITY AS PCITY)$

R_3	(S#,	,	CITY)
113	(S_{11})	• • • •	

S1	C1
S2	C2
S4	C4
S5	C5

کاربرد این عملگر چیست؟

گونههای خاص عملگر پیوند - برونپیوند

بخش نهم: عملیات در پایگاه داده رابطهای

🔲 برون پیوند (Outer Join)

- □ Theta هر چيزې مي تواند باشد.
 - 🖵 سه گونه دارد:

 \bowtie_{C} Left O. J. -1

№_C Right O. J. -7

™_C Full O. J. -۳

 $: R_4 \coloneqq R_1 \boxtimes_{\mathbb{C}} R_2$ عملکرد \square

 $H_{R_4} = H_{R_1} \cup H_{R_2} \quad \blacksquare$

در بدنه R_4 : تاپلهای پیوند شدنی از دو رابطه و lacktriangle

تاپلهایهای پیوندناشدنی از رابطه چپ گسترشیافته با هیچمقدار (Null Value)

در عمل: دستور SQL در عمل: دستور LEFT/RIGHT/FULL OUTER JOIN در عمل دستور \Box

گونههای خاص عملگر پیوند - برونپیوند (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

	S1	C1	P1	5
	S1	C1	P3	4
	S2	C2	P2	6
	S4	C4	P4	7
_	S5	C5	P5	10
	S3	C3	?	?
	S6	C6	?	?

۱- از نظر ریاضی رابطه نیست، چون کلید اصلی ندارد.

۲- مصرف حافظه زیاد

این عملگرها در عمل چه کاربردی دارند؟

آیا عملگرهای Outer Join خاصیت جابجایی دارند؟

- (Semi Minus) نيم تفريق
- R_1 **SEMIMINUS** $R_2 = R_1$ **MINUS** $(R_1$ **SEMIJOIN** $R_2)$
 - عملكرد 🖵
 - $H_{R_5} = H_{R_1}$
 - در بدنه R_5 : تاپلهای پیوند نشدنی از رابطه چپ

$$\begin{cases} X & Y \\ R_1(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m) \\ R_2(B_1, B_2, ..., B_m) \end{cases}$$

🗖 مفروضند رابطههای:

🗖 شرط عمل:

$$R_3(X) := R_1(X,Y) \div R_2(Y) \longrightarrow H_{R_2} \subseteq H_{R_1}$$

🗖 عملكرد:

$$H_{R_3} = X = H_{R_1} - H_{R_2} - Y$$

ر بدنه R_3 : بخش X از تاپلهایی از R_1 که حاوی تمام مقادیر X از X باشند.

S2 P2 S3 P1

عملگر تقسیم (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

المال

$\mathbf{K_1}$	(\$#,	P#) 2	$\mathbf{R}_{2}(\mathbf{P}^{\#}) =$	R ₃ (S#)
	S1	P1	P1	S1
	S1	P2	P2	
	S1	P3	P3	
	S2	P1		

\mathbf{R}_{1}	(S#,	P#) 🛭	$\mathbf{R}_4(\mathbf{P}\#) =$	R ₅ (S#)
	S1	P1	P1	S1
	S1	P2	P2	S2
	S1	P3		
	S2	P1		
	S2	P2		
	S3	P1		

عملگر تقسیم (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

- □ ضرب و تقسیم جبر رابطهای لزوماً عکس هم نیستند.
- تمرین: عملگر تقسیم را در SQL شبیهسازی کنید.
- DIVIDE تمرین: Q3 و Q4 (صفحه A-3 از یادداشتهای تکمیلی سری A) را بدون استفاده از عملگر A

بنويسيد.

عملگر گسترش

بخش نهم: عملیات در پایگاه داده رابطهای

🗖 عملگر گسترش – EXTEND

🗖 صفت یا صفاتی را به عنوان (heading) یک رابطه اضافه می کند. حاصل، رابطه دیگری است.

EXTEND STUD ADD STADDRESS

STUD (STID, ..., STD, STADDRESS)

□ در SQL با ALTER TABLE پیادهسازی شده ولی ALTER ستون(هایی) را به همان جدول اضافه میکند.

🖵 با این عملگر می توانیم یک ستون محاسبه شدنی به رابطه اضافه نماییم.

🗖 عملگر تلخيص – SUMMARIZE

- تایلهای رابطه را گروهبندی می کند به نحوی که مقدار صفت (صفات) گروهبندی در هر گروه یکسان \Box باشد؛ معمولاً با یک یا چند تابع جمعی استفاده میشود.
 - 🖵 این عملگردر SQL با GROUP BY پیادهسازی شده است.

SUMMARIZE STCOT BY (STID) ADD AVG(GRADE) AS AVER

- ☐ برای این پرسشها، اول عنوان (Heading) رابطه جواب را تعیین می کنیم.
- به جای AVG میتوانیم از توابع جمع و یا گروهی دیگر مانند MIN (حداقل)، MAX (حداکثر)، SUM (جمع) و یا COUNT (شمارشگر تایلها) استفاده کنیم.

عملیات ذخیرهسازی با جبر رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

🔲 از لحاظ تئوریک می توان عملیات ذخیره سازی را هم با عملگرهای جبر رابطه ای انجام داد.

عملگر	عمل
?	درج
_	حذف
اول _ بعد ?	بەھنگامسازى

- 🗖 مقایسه دو رابطه
- $(H_{R_2}=H_{R_1})$ دو رابطه R_1 و R_2 مقایسهشدنی (قابل قیاس) هستند، هر گاه نوع-سازگار باشند R_2
- در مقایسه رابطه R_1 با بدنه R_1 با بدنه R_2 مقایسه میشود از نظر هم مجموعگی، زیرمجموعگی و زبرمجموعگی و زبرمجموعگی

$$\Pi_{\langle STID \rangle}(STT) * \Pi_{\langle STID \rangle}(SCR)$$

$$* \in \{ \subset, \supset, \subseteq, \supseteq, =, \neq \}$$

- پاسخ عمل مقایسه: یا T یا F. به طور مثال در رابطه فوق: \Box
- اگر \subset باشد، پاسخ T است اگر حداقل یک دانشجو باشد که درسی انتخاب نکرده باشد.
- اگر \supset باشد، پاسخ T است اگر حداقل در یک عمل ذخیرهسازی در این DB قاعده جامعیت C2 رعایت نشده باشد (حذف از دانشجو و یا درج در انتخاب درس).

کامل بودگی جبر رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

- □ جبر رابطهای **زبانی** است از نظر رابطهای کامل (Relational Completeness) یعنی هر رابطه معتبر متصور از مجموعه رابطههای ممکن را می توان به کمک یک عبارت جبر رابطهای بیان کرد.
 - 🗖 جبر رابطهای ضابطه تشخیص کامل بودن زبانهای رابطهای است.
- اگر هر رابطهای را که با جبر رابطهای میتوان نشان داد، با زبانی مدعی کامل بودن رابطهای بتوان نشان داد، آن زبان از نظر رابطهای کامل است.

🗖 کاربردهای جبر رابطهای:

- 🗖 عملیات بازیابی
- 🖵 عملیات ذخیرهسازی
- SQL تعریف انواع رابطههای مشتق (رابطه مجازی، لحظهای و ...) مثال: تعریف دید (View) در
 - ... 🔲

مباحث تکمیلی در جبر رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

- 🗖 برای نوشتن یک پرسش (Query)، اصولا به ترتیب زیر باید مشخص کنیم که:
 - ۱- از چه رابطههایی استفاده کنیم.
 - ۲- از چه عملگرهایی استفاده کنیم (حتی الامکان با کمترین تعداد عملگر)
 - ۳- چه ترتیبی از عملگرها را استفاده کنیم.

A-1 مثالهایی از کاربرد جبر رابطهای را در عملیات در RDB (در یادداشتهای تکمیلی سری II) (صفحه \Box و A-2) مطالعه نمایید.

- □ **حساب رابطهای** شاخهای است از منطق ریاضی، منطق مسندات.
- □ حساب رابطهای و جبر رابطهای معادلند. یعنی هر رابطهای را که بتوان با یک عبارت جبر رابطهای نوشت، میتوان با عبارتی از حساب رابطهای هم نوشت و برعکس.
 - حساب رابطهای حالت توصیفی دارد ولی جبر رابطهای حالت دستوری دارد. \Box

↓ Prospective

Descriptive

دستورات عملیاتی به سیستم میدهیم.

به کمک عبارات منطقی، شرایط ناظر

به رابطه را برای سیستم توصیف می کنیم.

🔲 حساب رابطهای هم ضابطه تشخیص زبانهای رابطهای کامل است.

حساب رابطهای - متغیرتاپلی

بخش نهم: عملیات در پایگاه داده رابطهای

🗖 متغير تاپلي (Tuple Variable) يا متغير طيفي (Range Variable):

□ متغیری است که مقادیر آن تاپلهای یک رابطه است (هر لحظه یک تاپل).

RANGVAR SX RANGES OVER S;

RANGVAR PX RANGES OVER P;

RANGVAR SPX RANGES OVER SP;

RANGVAR C2X RANGES OVER (S WHERE CITY='C2');

طیف مقادیرش تاپلهایی از S است که شرط را داشته باشند.

حساب رابطهای - سورها

بخش نهم: عملیات در پایگاه داده رابطهای

(Quantifiers) سورها

- سور وجودی (F) EXISTS (F) حداقل یک مقدار برای متغیر (F) وجود دارد به نحوی که به ازای آن، فرمول (F) به درست ارزیابی شود.
- سور همگانی (عمومی) FOR ALL X (F): به ازای تمام مقادیر متغیر X، فرمول F به درست ارزیابی می شود.

حاصل ارزيابي: TRUE حاصل ارزيابي

حاصل ارزيابي: FALSE حاصل ارزيابي: FALSE

حساب رابطهای - سورها (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

- **یادآوری:** بین این دو سور روابط زیر وجود دارد.
- FOR ALL X(F) = NOT EXISTS X(NOT F)
- EXISTS X(F) = NOT(FORALL(X(NOT(F)))
- FORALL $X(F) \Rightarrow EXISTS X(F)$
- NOT EXISTS $X(F) \Rightarrow NOT FORALL X(F)$

- 🖵 بر اساس روابط فوق می توان روابط پیچیده دیگری را نیز استنباط کرد مانند روابط هم ارزی زیر:
- FORALL X (FAND G) = NOT EXISTS X (NOT(F) OR NOT(G))
- FORALL X (F OR G) = NOT EXISTS X (NOT(F) AND NOT(G))
- EXISTS X (F OR G) = NOT FORALL X (NOT(F) AND NOT(G))
- EXISTS X (F AND G) = NOT FORALL X (NOT(F) OR NOT(G))

حساب رابطهای - فرمول خوشساخت

بخش نهم: عملیات در پایگاه داده رابطهای

کوش ساخت (WFF) به صورت زیر تعریف میشود: کوش ساخت (WFF) به صورت زیر تعریف میشود:

- اگر R یک رابطه و T یک تاپل یا متغیر تاپلی تعریف شده روی R باشد، آنگاه R(T) یک فرمول اتمی است. [T] یعنی، T یک عنصر (تاپلی) از [T] است.
- اگر T_i یک متغیر تاپلی روی رابطه R و R یک صفت از R باشد و T_i یک متغیر تاپلی بر روی S و S یک اگر T_i صفت از S باشد، آنگاه $T_i.A$ theta $T_j.B$ یک فرمول اتمی است (theta یک از عملگرهای متعارف مقایسهای است).
- یک مقدار ثابت است، فرمول اتمی هستند. C_i theta C_2 و C_1 دور آن C_1 دور آن C_1 دور آن C_2 دور آن
 - اگر F_1 و F_2 فرمول باشند، آنگاه F_1 AND F_2)، F_1 OR F_2)، اگر F_2 فرمول باشند، آنگاه G_1
 - اگر F یک فرمول و T یک متغیر تاپلی باشد، آنگاه $EXISTS\ T(F)$ و $FORALL\ T(F)$ نیز فرمول هستند.

حساب رابطهای - عبارت حساب رابطهای

بخش نهم: عملیات در پایگاه داده رابطهای

ترپوگی اگر X یک متغیرتاپلی روی رابطه $R(A_1,A_2,...,A_n)$ باشد در اینصورت شکل کلی عبارت حساب

رابطهای بدین صورت است:

(target-items) [WHERE F]

Xو Xو Xیک Xیک Xو Xیک Xیک Xو Xیک Xیک Xیک که در آن Xیک فهرستی از صفات متغیر تاپلی Xیه صورت Xفرمول خوشساخت است.

- □ ST.STID شماره تمام دانشجویان در رابطه STT
- ST.STID WHERE ST.STDEID='D11' شماره دانشجویان گروه آموزشی D11
- ☐ (ST.STID, ST.STL) WHERE EXISTS STCO (ST.STID=STCO.STID AND STCO.COID='COM11')

شماره دانشجویی و مقطع تحصیلی آنهایی که درس COM11 را انتخاب کردهاند.

حساب رابطهای - عبارت حساب رابطهای (ادامه)

بخش نهم: عملیات در پایگاه داده رابطهای

شماره همه تهیه کنندگان

□ SX.S#

نام تهیه کنندگان شهرستان C2 که وضعیت آنها بزرگتر از 15 باشد.

□ SX.SNAME WHERE SX.CITY='C2' AND SX.STATUS> 15

نام تهیه کنندگانی که حداقل یک قطعه آبیرنگ تهیه کردهاند.

■ SX.SNAME WHERE EXISTS SPX (SPX.S#=SX.S# AND

EXISTS PX (PX.P#=SPX.P# AND PX.COLOR='Blue'))

نام جفت تهیه کنندگانی که در یک شهر بوده و حداقل یک قطعه مشترک تولید کردهاند.

SX.SNAME, SY.SNAME WHERE SX.CITY=SY.CITY AND

EXISTS SPX (EXISTS SPY SPX.S#=SX.S# AND SPY.S#=SY.S# AND

SPX.P#=SPY.P# AND NOT (SPX.S#=SPY.S#))

مثالهای بیشتر در کتابهای مرجع و یادداشتهای تکمیلی سری II.

پرسش و پاسخ . . .

amini@sharif.edu