Университет ИТМО

Практическое задание №2 по дисциплине

«Теория информации и информационных систем»

Исследование точности алгоритма преобразования Фурье при обработке информационных сигналов ограниченной протяженности

Цель работы

Изучение влияния ограниченной протяженности реальных последовательностей данных, представляющих информационные сигналы, на результаты преобразования Фурье.

Теоретические основы

Последовательность $\xi(k)$, k=0,..., K-1 формируют в виде K отсчетов известной (заданной) функции g(x), представляющей исходный сигнал, с учетом влияния апертурной функции элемента дискретизации h(x) в соответствии с формулой

$$\xi(k) = A \sum_{l=1}^{2b} g(x_k - l\Delta x) h(l\Delta x), \qquad (1)$$

где $A = \left[\sum_{l=1}^{2b} h(l\Delta x)\right]^{-1}$ — нормирующий множитель, Δx — шаг дискретизации,

 $x_k = k\Delta x$, 2b — протяженность апертурной функции элемента дискретизации.

Формула (1) выражает операцию дискретной свертки: для каждого значения x_k вычисляется сумма значений функции g(x) в окрестности точки x_k в пределах интервала 2b отсчетов, l=1,...,2b, "взвешенных" в соответствии с апертурной функцией элемента дискретизации $h(l\Delta x)$.

В случае апертурной функции $h(l\Delta x)$ прямоугольной формы, когда ее значения постоянны на интервале 2b, свертка в (1) представляет собой "скользящее" среднее арифметическое значение в окрестности точек x_{ι} .

Конкретный вид функций g(x) и h(x) определяется индивидуальным заданием.

В результате выполнения операции ДПФ $F\{\xi(k)\}=S_c(f)-jS_s(f)$, f=0,...,K-1, получают два массива данных спектра $S_c(f)$ и $S_s(f)$, соответствующих его действительной и мнимой частям. Эти массивы являются исходными данными для исследования точности ДПФ.

Методика оценивания погрешностей алгоритма ДПФ состоит в выявлении разностей значений массивов $S_c(f)$, $S_s(f)$, $|S(f)|^2 = S_c^2(f) + S_s^2(f)$, $\varphi(f) = \text{Im}[\ln S(f)]$, получаемых для

последовательностей *реальных* $\xi(k)$ и *идеализированных* s(k) исходных данных, где $s(k) = g(x_k) = g(k\Delta x)$.

Оценивание погрешностей алгоритма ДПФ

Оценивание погрешностей алгоритма ДПФ производится для случаев, указанных ниже.

<u>Источник погрешностей 1</u>: Влияние апертурной функции h(x).

Идеализированный сигнал

$$s(k) = g(x_k) = g(k\Delta x), k = 0,..., K-1.$$
 (2)

Реальный сигнал определяется формулой (1):

$$\xi(k) = A \sum_{l=1}^{2b} g(x_k - l\Delta x) h(l\Delta x).$$
(3)

Нужно сравнить результаты ДПФ (при сопоставлении построенных графиков) $S_c(f)$, $S_s(f)$, $|S(f)|^2 = S_c^2(f) + S_s^2(f)$, $\varphi(f) = \text{Im}[\ln S(f)]$, полученные для последовательности (2) и последовательности (3).

<u>Источник погрешностей 2</u>: Ограниченное число отсчетов в выборке данных.

Идеализированный сигнал

$$s(k) = g(x_k) = g(k\Delta x), k = 0,..., K-1.$$
 (4)

Реальный сигнал имеет ограниченную протяженность L:

$$\xi(k) = \begin{cases} s(k) = g(k\Delta x) & \text{при } (K - L)/2 \le k \le (K + L)/2, \\ 0 & \text{иначе.} \end{cases}$$
 (5)

Значение L определяется условием L << K, например, L = K/2, после чего нужно сравнить результаты ДПФ (при сопоставлении построенных графиков) $S_c(f), \qquad S_s(f), \qquad |S(f)|^2 = S_c^2(f) + S_s^2(f), \qquad \varphi(f) = \text{Im}[\ln S(f)] \qquad$ для последовательности (4) и последовательности (5).

Порядок выполнения работы

- 1. Смоделировать сигнал согласно выданному индивидуальному заданию, соответствующий выражению (2).
- 2. Вычислить спектральные характеристики сигнала (2): $S_c(f)$, $S_s(f)$, $|S(f)|^2 = S_c^2(f) + S_s^2(f)$, $\varphi(f) = \text{Im}[\ln S(f)]$ и построить их графики.
- 3. Смоделировать реальный сигнал согласно выражению (3).
- 4. Вычислить спектральные характеристики сигнала (3): $S_c(f)$, $S_s(f)$, $|S(f)|^2 = S_c^2(f) + S_s^2(f)$, $\varphi(f) = \text{Im}[\ln S(f)]$ и построить их графики.

- 5. Сопоставить графики по пп. 2 и 4 и оценить их отличия.
- 6. Повторить пункты (2 5) при различной протяженности апертурной функции.
- 7. Смоделировать реальный сигнал согласно выражению (5).
- 8. Вычислить спектральные характеристики сигнала (5): $S_c(f)$, $S_s(f)$, $|S(f)|^2 = S_c^2(f) + S_s^2(f)$, $\varphi(f) = \text{Im}[\ln S(f)]$ и построить их графики.
- 9. Сопоставить графики по пп. 2 и 7 и оценить их отличия.
- 10.Повторить пункты (7 9) при различной протяженности реального сигнала.
- 11. Проанализировать результаты, сформулировать выводы, составить отчёт по работе.