The Brigade School Term Assessment 1 (2020-21)

Total points 68.5/80 ?

Class: 10 Subject: Chemistry Section 1: Objective

Total Marks: 80

0 of 0 points

Instructions: 1. Select your name correctly 2. Select your school and section correctly 3. This paper consists of Section A (40 marks) and Section B (40 marks) 4. Attempt all questions 5. Ensure that you have completed and revised your paper before submission 6. You can attempt your paper only once

School:*	
TBSG ▼	
Paper_ 1 _Objective 40 : Marks I. Choose the Correct Answer :(10 X 33.5 of 40 1= 10)	
1. The catalyst used in the Contact Process is: *	1/1
Copper Iron	
Vanadium pentoxide	✓
Manganese dioxide	
2. The number of C-H bonds in Ethane molecule are: *	1/1
Four	
Eight	
Seven	
Six	✓

3. The compound responsible for the brown ring in the brown ring test 1/1 for identifying the nitrate ion: *
Nitroso Iron [II] sulphate
Iron [III] chloride
Chromium sulphate
Lead [II] chloride
4. Ammonia can be obtained by adding water to: * 1/1
Ammonium chloride
Ammonium nitrite
Magnesium nitride
Magnesium nitrate
5. Hydrogen chloride gas being highly soluble in the water is dried by : * 1/1
Conc.Sulphuric acid ✓
Quick lime
O Phosphorous pentoxide
Anhydrous calcium chloride

6. Hydroxide of this metal is soluble in NaOH solution: *	1/1
Magnesium	
Lead	✓
Silver	
Copper	
✓ 7. To increase the p ^H value of a neutral solution, we should add: *	1/1
An acid	
An acid salt	
An alkali	✓
O A salt	
8. Compound 'X' consists of only molecules. 'X' will have: *	1/1
Crystaliine hard structure	
A low melting point & low boiling point	✓
An ionic bond	
A strong force of attraction between its molecules	

✓	9. Ionisation Potential increases over a period from left to right because the : *	1/1
0	Atomic radius & nuclear charge increases	
0	Atomic radius & nuclear charge decreases	
0	Atomic radius increases & nuclear charge decreases	
	Atomic radius decreases & nuclear charge increases	✓
~	10. The formation of 1, 2 dibromoethane from ethene and bromine is an example of : *	1/1
0	Substitution reaction	
0	Dehydration	
0	Dehydrohalogenation	
	Addition reaction	✓

II. Match the following conversions using Sulphuric acid, with the type of chemical property it represents in column : (5 X 1 = 5) *

	As an oxidising agent	As a dibasic acid	As an acid when dilute	As a least or non- volatile acid	As a dehydrating agent	Score	
Nitre → Nitric acid	•	0	0	0	0	0/1	×
Copper [II] oxide → Copper [II] sulphate	0	0	0	•	0	0/1	×
Copper → Copper [II] sulphate	0	0	•	0	0	0/1	×
Ethanol → Ethene	0	0	0	0	•	1/1	~
Sodium hydroxide → Sodium bisulphate & sodium sulphate	0	•	0	0	0	1/1	✓

Correct answers

	As an oxidising agent	As a dibasic acid	As an acid when dilute	As a least or non-volatile acid	As a dehydrating agent
Nitre → Nitric acid	0	0	0	•	0
Copper [II] oxide → Copper [II] sulphate	0	0	•	0	0
Copper → Copper [II]		0	0	0	0

Electron affinity

1/1

NH4CI - Because all others have covalent bonds.

Feedback

NH₄Cl - Its exhibit ionic, Covalent & coordinate bond, while rest exhibit only covalent bonds.

VI. State one relevant observation for the following: $-(5 \times 1 = 5)$

X 1. Ammonium hydroxide is first added in a small quantity and then in 0.5/1 excess to a solution of copper sulphate. *

Pale Blue precipitate of Cu(OH)2 is formed in small quantity and its insoulube in excess.

Feedback

Forms pale blue copper hydroxide, which is soluble in excess forms deep blue / inky blue solution.

2. Concentrated Sulphuric acid is added to sugar crystals. *

1/1

Steam is evolved and black spongy mass of carbon is formed.

Feedback

Black spongy mass of carbon is formed.

3. Bromine vapours are passed into a solution of ethyne in carbon tetrachloride. *

1/1

Reddish brown liquid bromine dissolved in water turns colourless when ethyne is passed through it.

Feedback

Reddish brown colour bromine disappears/ decolourises/ turns colourless.

4. Copper is heated with concentrated nitric acid in a hard glass test tube. *

Copper nitrate is formed and reddish brown nitrogen dioxide is evolved.

Feedback

Dense reddish brown fumes of nitrogen dioxide is formed / solution turns bluish green.

✓ 5. Action of sodium hydroxide solution on Iron [II] sulphate solution. * 1/1

Dirty green precipitate of iron[II] hydroxide is formed.

Feedback

Dirty green ppt of Iron[II] hydroxide is formed.

VII. Write a balanced chemical equations for each of the following reactions :- ($5 \times 1 = 5$)

✓ 1. Chlorine gas is reacted with ethene. *

1/1

H2C = CH2 + Cl2 ----> H2C - Cl - Cl - CH2 (C2H4Cl2)

Condition - CCI4

Feedback

C2H4 + Cl2 -- CCl4--> C2H4Cl2

✓ 2. Reaction of ammonia with excess chlorine. *

1/1

NH3 + 3Cl2 (excess) ----> 3HCl + NCl3

Feedback

NH3 + 3Cl2 ---> 3HCl + NCl3

✗ 3. Preparation Iron [III] chloride from Iron. *

0/1

Fe + 2HCl ----> FeCl2 + H2

Feedback

2Fe + 3Cl2 ---> 2FeCl3

✓ 4. The laboratory preparation hydrogen chloride gas. *

1/1

NaCl + H2SO4 ----> NaHSO4 + HCl [g] Conditions - Temperature < 200 degree C

Feedback

Nacl + H2SO4 --<200*C--> NaHSO4 + HCl

5. Action of cold and dilute nitric acid on copper. *

1/1

3Cu + 8HNO39dil.) ----> 3Cu(NO3)2 + 4H20 + 2NO

Feedback

3Cu + 8HNO3 ----> 3 Cu(NO3)2 + 4H2O + 2NO

Section_2_Subjective 40: Marks I. Answer the following questions: 35 of 40 (5 X 2 = 10)points

1. A blue crystalline solid 'X' on heating gave a reddish brown gas 'Y', a gas2/2 which relits a glowing splint and a residue which is black. Identify X and Y, and write the equation for the action of heat on X. *

X - Copper Nitrate

Y - Nitrogen Dioxide

2Cu(NO3)2 (blue) ----> 2CuO(black) + O2 + 4NO2

Feedback

 $X = Cu(NO_3)_2 \& Y = NO_2 [1/2 + 1/2 Mark]$ $2Cu(NO_3)_2 \rightarrow 2CuO + O_2 + 4NO_2 [1 Mark]$

- 2. Solution A is a strong acid, Solution B is a weak acid, Solution C is a strong alkali. Which solution, (a) Contains solute molecules in addition to water molecules. (b) Will give a gelatinous white precipitate with zinc sulphate solution and precipitate dissolves in excess of the solution. (c) Could be glacial acetic acid solution. (d) Give example of a solution of a weak alkali. *
- (a) Solution C Strong Alkali
- (b) Solution C Strong Alkali
- (c) Solution B Weak Acid
- (d) Ammonium Hydroxide

- 1/2 Mark each
- (a) Solution B
- (b) Solution C
- (c) Solution B
- (d) Ammonium hydroxide.
- 3. How will you distinguish between Dilute sulphuric acid and Dilute hydrochloric acid using Barium chloride solution? *

2/2

White precipitate is formed with dil. sulphuric acid and no precipitate is formed with dil.hydrochloric acid.

Feedback

With dil. sulphuric acid barium chloride solution gives white ppt but with dil HCl no white ppt is produced.

- X 4. Name the organic compound prepared by each of the following 1.5/2 reactions: (a) C₂H₂ + H₂ (Ni catalyst,at high temperature) → (b) C₂H₅Br + KOH (alcoholic soln.) → (c) Distinguish between Ethene and Ethyne using ammoniacal CuCl₂. *
- (a) C2H4 ethene
- (b) C2H4 ethene
- (c) No precipitate is seen with ethene but red precipitate is formed of copper acetylide is formed with ethyne.

- (a) Ethene & Ethane [1/2 + 1/2 Mark]
- (b) Ethene / Ethylene [1/2 mark]
- (c) Ethene no ppt, Ethyne Red ppt of copper acetylide.[1/2 Mark]
- 5. Give reasons for the following: (a) When it is left standing in a glass bottle, concentrated nitric acid appears yellow. (b) Inert gases do not form ions. *
- (a) When it is left standing in a glass bottle, concentrated nitric acid appears yellow due to decomposition of acid which is negligible at ordinary temperatures but substantial at high temperatures. Decomposition of nitric acid results in formation of reddish brown NO2 which remains dissolved in acid thereby imparting colour to it. Thus conc.HNO3is yellow when left standing in glass bottle.
- (b) Inert gas have outermost shell filled completely. They don't have to accept or loose electrons as they are stable and have stable electronic configuration. They have no urge to destabilize themselves by accepting or loosing electrons and hence do not form ions.

- 1 Mark each
- (a) Decomposition of nitric acid forms reddish brown nitrogen dioxide which remains dissolved in the acid, imparting the colour to it.
- (b) completely filled octet, extremely stable, neither loose, nor gain electrons.

II. Answer the following questions :- (5 X 3= 15)

X 1. Study the figure given below and answer the questions that follow: 2.5/3 (a) Identify the gas 'Y'. Name another gas which can be demonstrated through this experiment. (b) What property of gas 'Y' does this experiment demonstrate. (c) State why direct absorption of HCl gas in water is not feasible? (d) State what arrangement is used to dissolve HCl gas in water? *

- (a) Y Dry HCl Gas Another Gas - Dry NH3 Gas
- (b) The property is that 'Gas Y' is highly soluble in water.
- (c) Because HCl Acid is formed.
- (d) Special Funnel Arrangement is used to dissolve HCl gas in water.

- (a) Y HCl gas, Ammonia [1/2 + 1/2 Marks]
- (b) High solubility of HCl gas in water. [1 Mark]
- (c) As it creates back suction.[1/2 mark]
- (d) Special funnel arrangement [1/2 Mark]

- ✓ 3. Arrange the following according to the instructions given in brackets: 3/3 (a) Ethane, Methane, Ethene, Ethyne. (In the increasing order of the molecular weight) [H = 1, C = 12]. (b) Li, K, Na, H (In the decreasing order of their lonization potential) (c) F, B, N, O (In the increasing order of electron affinity) *
- (a) Methane, Ethyne, Ethene, Ethane.
- (b) H, Li, Na, K
- (iii) B, N, O, F

- 1 Mark each
- (a) Methane, ethyne, ethene, ethane.
- (b) H, Li, Na, K
- (c) B, N, O, F

- ✓ 4. The p^H value of solution A is 12, B is 2 and C is 7. Which solution will, (i) 3/3 have no effect on litmus solution? (ii) liberate CO₂ when reacted with Na₂CO₃? (iii) turn red litmus solution blue? *
- (i) Solution C
- (ii) Solution B
- (iii) Solution A

- 1 Mark each
- (i) solution C/p^H7
- (ii) solution $B/p^{H}2$
- (iii) solution A / p^H 12

5. Give the IUPAC name of the following: *

3/3

- (1) 2 butene
- (2) 1 propyne
- (3)1 ethanal

Feedback

- 1). Structure 2- butene
- 2). Structure Propyne
- 3). Structure Ethanal

III. Answer the following :- ($3 \times 5 = 15$)

✓ 1. The diagram below shows the set up for the laboratory preparation of 5/5 a pungent alkaline gas. (a) Name the gas collected in the jar. (b) Give a balanced equation for the above preparation. (c) State how the above gas is collected. (d) Name the drying agent used. (e) State how you will find out that the jar is full of the pungent gas. *

- (a) Ammonia Gas
- (b) 2NH4Cl + Ca(OH)2 ----> CaCl2 + 2H2O + 2NH3
- (c) Dry Ammonia Gas is collected through downward displacement of air.
- (d) Quicklime CaO
- (e)A glass rod dipped in conc.HCl is brought near mouth of the jar. If the jar is full, dense white fumes of ammonium chloride is formed.

- 1 Mark each
- (a) Ammonia
- (b) $2NH_4CI + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O + 2NH_3$
- (c) Downward displacement of air
- (d) Quick lime/ CaO
- (e) Bring a moist red litmus paper to the inverted jar mouth, turns blue. OR Bring a glass rod dipped in HCl acid to the inverted jar mouth, produces dense white fumes.

- (i) Chlorine
- (ii) 8 elements
- (iii)Helium
- (iv)Hydrogen

- 1 Mark each
- (i) Chlorine
- (ii) 8
- (iii) Inert gases [He/ Ne/ Ar/ Kr/Xe]
- (iv) Helium
- (v) Hydrogen

- 3. (a) Related to C_nH_{2n-2} and C_nH_{2n+2}, Give the (i) IUPAC name of the 4.5/5 homologous series (ii) IUPAC name of the first member of the series (iii) Characteristic bond type (b) Give balanced equation for conversion of Alkane to carboxylic acid *
- (a)
- (i) CnH2n-2 is Alkyne and CnH2n+2 is Alkane
- (ii) CnH2n-2 is Ethyne and CnH2n+2 is Methane
- (iii) CnH2n-2 is triple bond and CnH2n+2 is single bond
- (b) CH4 ----> CH3OH ----> HCHO ----> HCOOH

Conditions:-

High Pressure

Low Temperature

K2Cr2O7 - oxidizing agent

Feedback

- (a) 1/2 mark each
- (i) alkynes, alkanes
- (ii) ethyne, methane
- (iii) triple, single
- (b)CH₄ \rightarrow CH₃OH \rightarrow HCHO \rightarrow HCOOH or

 $C_2H_6 \rightarrow C_2H_5OH \rightarrow CH_3CHO \rightarrow CH_3COOH$

Condition : Oxidation in presence of potassium dichromate acidified with dil sulphuric acid. [2 Mark]

This content is neither created nor endorsed by Google. - Terms of Service - Privacy Policy

Google Forms