Recherche de chemin par dépôt de phéromones

Merwan Achibet

Université du Havre

Sujet

Le modèle

- Guidage de véhicules par phéromones synthétiques
- Parunak, Brueckner et Sauter (2002)

L'implémentation

- En NetLogo
- José M. Vidal (2010)

Analogie avec le vivant

Les fourmis

- Fragiles, minuscules
- Une espèce pourtant prospère
- Grâce à son caractère social

Coopération \rightarrow communication

Par des signaux chimiques, les phéromones

- Piste vers une source de nourriture
- Délimitation d'un territoire
- Zone dangereuse
- Disposition à la reproduction

Analogie avec le vivant

Les phéromones sont soumises à différents phénomènes naturels : Évaporation Éphémères, elles disparaissent progressivement Diffusion Volatiles, elles s'étalent

Émergence de pistes

- Les meilleures sont renforcées
- Les mauvaises s'effacent

Adapté pour les systèmes multi-agents

Les phéromones rassemblent plusieurs qualités notables :

Diversité Une phéromone peut prendre n'importe quel sens Distribution Elles sont réparties sur l'environnement Décentralisation Une fourmi est un agent parmi d'autres Dynamicité S'adapte aux changements de l'environnement

Le modèle de Parunak et al.

Utilisation de phéromones dans un cadre militaire

- Environnement → zone de conflit divisée en blocs
- Fourmis → drones aériens
- Nourriture → bâtiments cibles
- Dangers → bâtiments menaces

Phéromones employées

Par les drones

GTarget Mène à une cible

GNest Mène à la base

Par les bâtiments

RTarget Libérée par les cibles, elle attire

RThreat Libérée par les menaces, elle repousse

Guidage

Pour se diriger

- On ne veut pas évaluer chaque phéromone séparément
- On calcule une phéromone nette décrivant l'attractivité

$$g = \frac{\theta \operatorname{RTarget} + \gamma \operatorname{GTarget} + \beta}{\alpha \operatorname{RThreat} + \delta \operatorname{Dist} + \beta}$$

Un nouveau type d'agent

Les fantômes

- Courte durée de vie
- Haute vitesse

Ils permettent d'évaluer les chemins que le drone pourrait arpenter dans un futur proche.

L'implémentation de José M. Vidal

- Zones \rightarrow patches
- Agents (drones, fantomes, bâtiments) \rightarrow turtles

La simulation

- Environnement aléatoirement généré
- Un unique drone
- Objectif : atteindre une cible
- On ne se soucie pas du retour à la base

GNest

 ${\sf GTarget}$

RThreat

RTarget

Problème : un guidage trop simpliste

Dans le code

- uphill RTarget guide les fantômes
- uphill GTarget guide le drone

La fonction d'évaluation de l'attractivité n'est pas utilisée

- Le drone suit toujours le chemin le plus court...
- ... Mais ignore les dangers!

Scénario critique

Nouvelle version

L'attractivité de chaque case est mise à jour après chaque itération via la fonction g.

Étapes du déplacement d'un drone/fantôme

- Observer l'attractivité des huits zones voisines
- 2 Tirage aléatoire sur une roue de la fortune biaisée
- 3 Déplacement sur la case gagnante

Scénario critique

Influence des réglages utilisateur

Nombre de fantômes

Trop faible Peu d'émergence

Influence des réglages utilisateur

Taux de diffusion

Trop faible Pistes étroites

Trop élevé L'environnement est inondé

Influence des réglages utilisateur

Taux d'évaporation

Trop faible Les mauvaises pistes perdurent et induisent en erreur Trop élevé Pas le temps de les suivre

Influence des facteurs de g

$$g = \frac{\theta \operatorname{RTarget} + \gamma \operatorname{GTarget} + \beta}{\alpha \operatorname{RThreat} + \delta \operatorname{Dist} + \beta}$$

 θ et γ

- ullet heta
 ightarrow importance des phéromones des bâtiments
- $\gamma
 ightarrow$ importance des phéromones des fantômes
- $\theta < \gamma$, on fait confiance aux fantômes

 α

Trop faible Risque de rencontrer un danger Trop élevé Configurations infranchissables