A Study of Dynamics of the Tricomplex Polynomial $\eta^p + c$

Pierre-Olivier Parisé¹

Joint work with Prof. Dominic Rochon Département de mathématiques et d'informatique Université du Québec, Trois-Rivières

CHAOS 2016, University of London May, 2016

¹Research supported by NSERC (Canada).

Introduction and mind map

Bicomplex Numbers: definition

Definition 1 ($\mathbb{M}(2)$ or \mathbb{BC} space)

Let $z_1=x_1+x_2\mathbf{i_1},\ z_2=x_3+x_4\mathbf{i_1}$ be two complex numbers $\mathbb{C}(\mathbf{i_1})\simeq\mathbb{C}$ with $\mathbf{i_1}^2=-1$. A bicomplex number ζ is defined as:

$$\zeta = z_1 + z_2 \mathbf{i_2} \tag{1}$$

where $\mathbf{i_2^2} = -1$ and $\mathbf{i_2} \neq \mathbf{i_1}$.

Various representations:

- In terms of four real numbers: $\zeta = x_1 + x_2 \mathbf{i_1} + x_3 \mathbf{i_2} + x_4 \mathbf{j_1}$
- In terms of two idempotent elements:

$$\zeta = (z_1 - z_2 \mathbf{i_1}) \gamma_1 + (z_1 + z_2 \mathbf{i_1}) \overline{\gamma}_1$$

where $\gamma_1 = \frac{1+\mathbf{j_1}}{2}$ and $\overline{\gamma}_1 = \frac{1-\mathbf{j_1}}{2}$.

Bicomplex numbers: operations

Let
$$\zeta_1 = z_1 + z_2 \mathbf{i_2}$$
 and $\zeta_2 = z_3 + z_4 \mathbf{i_2}$.

- 1) Equality : $\zeta_1 = \zeta_2 \iff z_1 = z_3 \text{ and } z_2 = z_4$.
- 2) Addition : $\zeta_1 + \zeta_2 := (z_1 + z_3) + (z_2 + z_4)\mathbf{i}_2$.
- 3) Multiplication : $\zeta_1 \cdot \zeta_2 := (z_1 z_3 z_2 z_4) + (z_2 z_3 + z_1 z_4) \mathbf{i}_2$.
- 4) Modulus : $\|\zeta_1\|_2 := \sqrt{|z_1|^2 + |z_2|^2} = \sqrt{\sum_{i=1}^4 x_i^2}$

Remark:

- $(M(2), +, \cdot)$ forms a commutative ring with unity and zero divisors.
- $(M(2), +, \cdot, ||\cdot||_2)$ forms a **Banach space**.

Tricomplex Numbers: definition

Definition 2 ($\mathbb{M}(3)$ or \mathbb{TC} space)

Let $\zeta_1 = z_1 + z_2 \mathbf{i_2}$, $\zeta_2 = z_3 + z_4 \mathbf{i_2}$ be two bicomplex numbers. A tricomplex number η is defined as:

$$\eta = \zeta_1 + \zeta_2 \mathbf{i_3} \tag{2}$$

where $i_3^2 = -1$.

Various representations:

- In terms of four complex numbers: $\eta = z_1 + z_2 \mathbf{i_2} + z_3 \mathbf{i_3} + z_4 \mathbf{j_3}$
- In terms of eight real numbers:

$$\eta = x_1 + x_2 \mathbf{i}_1 + x_3 \mathbf{i}_2 + x_4 \mathbf{i}_3 + x_5 \mathbf{i}_4 + x_6 \mathbf{i}_1 + x_7 \mathbf{i}_2 + x_8 \mathbf{i}_3$$

Go to Table

Tricomplex Numbers: definition

Various representations (continuing):

• In terms of two idempotent elements:

$$\eta = (\zeta_1 - \zeta_2 \mathbf{i_2}) \gamma_2 + (\zeta_1 + \zeta_2 \mathbf{i_2}) \overline{\gamma}_2$$

where
$$\gamma_2 = \frac{1+\mathbf{j_3}}{2}$$
 and $\overline{\gamma}_2 = \frac{1-\mathbf{j_3}}{2}$.

• In terms of four idempotent elements:

$$\eta = w_1 \cdot \gamma_1 \gamma_2 + w_2 \cdot \gamma_1 \overline{\gamma}_2 + w_3 \cdot \overline{\gamma}_1 \gamma_2 + w_4 \cdot \overline{\gamma}_1 \overline{\gamma}_2$$

where $w_i \in \mathbb{C}(\mathbf{i_1})$ for i = 1, 2, 3, 4.

Table of imaginary units

		i_1						
1	1	i ₁	i ₂	iз	i ₄	j ₁	j ₂	jз
i_1	i ₁	- 1	\mathbf{j}_1	\mathbf{j}_2	$-\mathbf{j_3}$	$-i_2$	$-i_3$	i ₄
i_2	i ₂	j ₁	- 1	j з	$-j_2$	$-i_1$	i ₄	$-i_3$
i ₃	iз	\mathbf{j}_2	j 3	-1	$-\mathbf{j_1}$	i ₄	$-i_1$	$-i_2$
i ₄	i ₄	$-\mathbf{j_3}$	$-\mathbf{j_2}$	$-\mathbf{j_1}$	- 1	i ₃	i_2	i_1
j ₁	j ₁	$-i_2$	$-i_1$	i 4	iз	1	− j ₃	$-\mathbf{j}_2$
j 2	j ₂	$-i_3$	i ₄	$-i_1$	i ₂	− j ₃	1	$-\mathbf{j_1}$
j 3	j 3	i ₄	$-i_3$	$-i_2$	i_1	$-\mathbf{j_2}$	$-\mathbf{j}_1$	1

Table: Product of tricomplex imaginary units

Tricomplex numbers: operations

Let
$$\eta_1 = \zeta_1 + \zeta_2 \mathbf{i_2}$$
 and $\eta_2 = \zeta_3 + \zeta_4 \mathbf{i_2}$.

- 1) Equality: $\eta_1 = \eta_2 \iff \zeta_1 = \zeta_3$ and $\zeta_2 = \zeta_4$.
- 2) Addition: $\eta_1 + \eta_2 := (\zeta_1 + \zeta_3) + (\zeta_2 + \zeta_4)\mathbf{i}_2$.
- 3) Multiplication: $\eta_1 \cdot \eta_2 := (\zeta_1 \zeta_3 \zeta_2 \zeta_4) + (\zeta_2 \zeta_3 + \zeta_1 \zeta_4) \mathbf{i_2}$.
- 4) Modulus : $\|\eta_1\|_3 := \sqrt{\|\zeta_1\|_2^2 + \|\zeta_2\|_2^2} = \sqrt{\sum_{i=1}^4 |z_i|^2} = \sqrt{\sum_{i=1}^8 x_i^2}$.

Remark:

- $(M(3), +, \cdot)$ forms a commutative ring with unity and zero divisors.
- $(M(3), +, \cdot, ||\cdot||_3)$ forms a **Banach space**.

Remarks: some Viewpoints

Bicomplex numbers:

- as a pair of complex variables (z_1, z_2) ;
- as a quadruple of real numbers (x_1, x_2, x_3, x_4) .

Tricomplex numbers:

- as a pair of bicomplex numbers (ζ_1, ζ_2) ;
- as a quadruple of complex numbers (z_1, z_2, z_3, z_4) ;
- as a octuple of real numbers $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$.

Remarks: subsets of M(3)

Definition 3

Let $i_k\in\{i_1,i_2,i_3,i_4\}$ and $j_k\in\{j_1,j_2,j_3\},$ where $i_k^2=-1$ and $j_k^2=1.$ We define

$$\mathbb{C}(\mathbf{i_k}) := \{ \eta = x_0 + x_1 \mathbf{i_k} : x_0, x_1 \in \mathbb{R} \}$$

and

$$\mathbb{D}(\mathbf{j_k}) := \{x_0 + x_1 \mathbf{j_k} : x_0, x_1 \in \mathbb{R}\}.$$

- $\mathbb{C}(\mathbf{i_k})$ is a subset of $\mathbb{M}(3)$ for $k \in \{1, 2, 3, 4\}$. They are all isomorphic to \mathbb{C} .
- $\mathbb{D}(\mathbf{j_k})$ is a subset of $\mathbb{M}(3)$ and is isomorphic to the set of hyperbolic numbers \mathbb{D} for $k \in \{1, 2, 3\}$.

Remarks: subsets of M(3) (continued)

Definition 4

Let $\mathbf{i_k}, \mathbf{i_l}, \mathbf{i_m} \in \{1, \mathbf{i_1}, \mathbf{i_2}, \mathbf{i_3}, \mathbf{i_4}, \mathbf{j_1}, \mathbf{j_2}, \mathbf{j_3}\}$ with $\mathbf{i_k} \neq \mathbf{i_l}, \ \mathbf{i_k} \neq \mathbf{i_m}$ and $\mathbf{i_l} \neq \mathbf{i_m}$. We define

$$\mathbb{T}(\mathbf{i}_{\mathbf{m}}, \mathbf{i}_{\mathbf{k}}, \mathbf{i}_{\mathbf{l}}) := \{x_1 \mathbf{i}_{\mathbf{k}} + x_2 \mathbf{i}_{\mathbf{l}} + x_3 \mathbf{i}_{\mathbf{m}} : x_1, x_2, x_3 \in \mathbb{R}\}. \tag{3}$$

• This set is used to make 3D slices in the Tricomplex Multibrot sets.

General definition: Tricomplex Multibrot sets

Definition 5

Let $Q_{p,c}(\eta) = \eta^p + c$ where $\eta, c \in \mathbb{M}(3)$ and $p \geq 2$ an integer. The tricomplex *Multibrot* set is defined as the set

$$\mathcal{M}_3^p := \left\{ c \in \mathbb{M}(3) : \left\{ Q_{p,c}^m(0) \right\}_{m=1}^{\infty} \text{ is bounded } \right\}. \tag{4}$$

Properties

- 1) $c \in \mathcal{M}_3^p \iff \|Q_{p,c}^m(0)\|_3 \le 2^{1/(p-1)}$ for all $m \in \mathbb{N}$.
- 2) $c \in \mathcal{M}_3^p \Longrightarrow ||c||_3 \le 2^{1/(p-1)}$.
- 3) \mathcal{M}_3^p is a connected set

General definition: Tricomplex Multibrot sets

Definition 5

Let $Q_{p,c}(\eta) = \eta^p + c$ where $\eta, c \in \mathbb{M}(3)$ and $p \geq 2$ an integer. The tricomplex *Multibrot* set is defined as the set

$$\mathcal{M}_3^p := \left\{ c \in \mathbb{M}(3) : \left\{ Q_{p,c}^m(0) \right\}_{m=1}^\infty \text{ is bounded } \right\}.$$
 (4)

Properties

- 1) $c \in \mathcal{M}_3^p \iff \|Q_{p,c}^m(0)\|_3 \le 2^{1/(p-1)}$ for all $m \in \mathbb{N}$.
- 2) $c \in \mathcal{M}_3^p \Longrightarrow ||c||_3 \le 2^{1/(p-1)}$.
- 3) \mathcal{M}_3^p is a connected set.

Particular cases: complex numbers

If $c \in \mathbb{C}(\mathbf{i_1})$, then we obtain what we call the Multibrot sets:

$$\mathcal{M}_1^{p} := \left\{ c = x + y \mathbf{i_1} \, : \, \left\{ \mathit{Q}_{p,c}^{m}(0) \right\}_{m=1}^{\infty} \text{ is bounded } \right\}.$$

Remark:

 Properties 1 and 2 are used to generate, with a computer, a multibrot set.

Multibrot sets Pictured

Multibrot sets Pictured

Multibrot sets Pictures

Particular cases: complex numbers (continued)

Properties:

- \mathcal{M}_1^p is a connected set.
- For any odd integer p > 2,

$$\mathcal{M}_1^p \cap \mathbb{R} = \left[-\frac{p-1}{p^{p/(p-1)}}, \frac{p-1}{p^{p/(p-1)}} \right].$$

Thus, the real intersection of a multibrot set is an interval.

Particular cases: complex numbers (continued)

Properties:

- \mathcal{M}_1^p is a connected set.
- For any odd integer p > 2,

$$\mathcal{M}_1^p \cap \mathbb{R} = \left[-\frac{p-1}{p^{p/(p-1)}}, \frac{p-1}{p^{p/(p-1)}} \right].$$

Thus, the real intersection of a multibrot set is an interval.

Particular cases: hyperbolic numbers

If $c \in \mathbb{D}(\mathbf{j_1})$, then we obtain what we call the Hyperbrot sets:

$$\mathcal{H}^{p}:=\left\{c=x+y\mathbf{j}_{1}\,:\,\left\{\mathit{Q}_{p,c}^{m}(0)\right\}_{m=1}^{\infty}\text{ is bounded }\right\}.$$

Theorem 6

Let p > 2 be an odd integer. Then

$$\mathcal{H}^p = \left\{ c = x + y \mathbf{j}_1 : |x| + |y| \le \frac{p-1}{p^{p/(p-1)}} \right\}.$$

Remark: In others words, \mathcal{H}^p are squares

Particular cases: hyperbolic numbers

If $c \in \mathbb{D}(\mathbf{j_1})$, then we obtain what we call the Hyperbrot sets:

$$\mathcal{H}^{p}:=\left\{c=x+y\mathbf{j}_{1}\,:\,\left\{\mathit{Q}_{p,c}^{m}(0)\right\}_{m=1}^{\infty}\text{ is bounded }\right\}.$$

Theorem 6

Let p > 2 be an odd integer. Then,

$$\mathcal{H}^p = \left\{ c = x + y \mathbf{j_1} : |x| + |y| \le \frac{p-1}{p^{p/(p-1)}} \right\}.$$

Remark: In others words, \mathcal{H}^p are squares.

3D slices: definition

To visualize the tricomplex multibrot sets, we have to define a **principal 3D slice** of \mathcal{M}_3^p .

$$\mathcal{T}^p := \mathcal{T}^p(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l}) = \left\{c \in \mathbb{T}(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l}) \,:\, \left\{\mathit{Q}^m_{\mathit{p,c}}(0)\right\}_{m=1}^{\infty} \text{ is bounded } \right\}.$$

There are 56 possible 3D principal slices.

Family Shooting: cubic $\eta^3 + c$

There are in fact four principal slices (up to bijective linear fonctions).

3D slices: Perplexbrot

We define the Perplexbrot, denoted by \mathcal{P}^p , as the set:

$$\left\{c=c_1+c_4\mathbf{j}_1+c_6\mathbf{j}_2\,:\,c_i\in\mathbb{R}\text{ and }\left\{Q_{p,c}^m(0)\right\}_{m=1}^\infty\text{ is bounded}\right\}.$$

Lemma 7

We have the following characterization of the Perplexbrot:

$$\mathcal{P}^p = \bigcup_{y \in [-m_p, m_p]} \{ [(\mathcal{H}^p - y\mathbf{j}_1) \cap (\mathcal{H}^p + y\mathbf{j}_1)] + y\mathbf{j}_2 \}$$

where \mathcal{H}^p is the Hyperbrot generated by the polynomial $z^p + c$ where p is an odd integer and $m_p := \frac{p-1}{p^p/(p-1)}$.

Corollary: The set \mathcal{P}^p is a regular octahedron.

3D slices: Perplexbrot

We define the Perplexbrot, denoted by \mathcal{P}^p , as the set:

$$\left\{c=c_1+c_4\mathbf{j}_1+c_6\mathbf{j}_2\,:\,c_i\in\mathbb{R}\,\,\mathrm{and}\,\,\left\{\mathit{Q}_{p,c}^m(0)\right\}_{m=1}^\infty\,\,\mathrm{is}\,\,\mathrm{bounded}\right\}.$$

Lemma 7

We have the following characterization of the Perplexbrot:

$$\mathcal{P}^{p} = \bigcup_{y \in [-m_{p}, m_{p}]} \{ [(\mathcal{H}^{p} - y\mathbf{j}_{1}) \cap (\mathcal{H}^{p} + y\mathbf{j}_{1})] + y\mathbf{j}_{2} \}$$

where \mathcal{H}^p is the Hyperbrot generated by the polynomial z^p+c where p is an odd integer and $m_p:=\frac{p-1}{p^p/(p-1)}$.

Corollary: The set \mathcal{P}^p is a regular octahedron.

Platonic Solids

Conclusion

Tricomplex dynamics is related with the famous Platonic solids.

(a) Octahedron

Thanks for your attention!

References

- Baley Price, G., An Introduction to Multicomplex Spaces and Functions, Monographs and textbooks on pure and applied mathematics (1991).
- Garant-Pelletier, V. and Rochon, D., On a Generalized Fatou-Julia Theorem in Multicomplex spaces, Fractals 17(3), 241-255 (2009).
- Parisé, P.-O. and Rochon, D., A Study of The Dynamics of the Tricomplex Polynomial $\eta^p + c$, Non Linear Dynam. **82** (1), 241-255 (2015).
- Parisé, P.-O. and Rochon, D., *Tricomplex Dynamical Systems Generated by Polynomials of odd degree*, submitted (2015).
- Rochon, D., A Generalized Mandelbrot Set for Bicomplex Numbers, Fractals. **8**(4), 355-368 (2000).
- Wang, X.-y. and Song W.-J., *The Genralized M-J Sets for Bicomplex Numbers*, Non linear Dynam. **72**, 17-26 (2013).