СОПРОТИВЛЕНИЕ

Выводные резисторы

Сначала поговорим о до недавнего времени привычных выводных резисторах, затем сравним стоимость и характеристики таких резисторов и пленочных.

Выводные резисторы бывают трех основных типов: углеродные, металлопленочные и проволочные.

Углеродные резисторы используются в схемах общего назначения, когда изначальная точность и стабильность, связанные с вариациями температуры, — не критичные параметры. Типовыми применениями таких резисторов являются коллекторные или эмиттерные нагрузки, цепи смещения, цепи разряда конденсаторов и нагрузочные элементы цифровых логических схем.

Значения сопротивлений углеродных резисторов (табл. 1) сформированы квазилогарифмической шкалой от 1 Ом до 22 МОм с точностью от 2 % (пленочные углеродные) до 20 % (композиционные углеродные). Мощность рассеивания — от 0,125 Вт до 2 Вт. Наиболее популярными (опять-таки до недавнего времени) считались резисторы мощностью 0,25 Вт и 0,5 Вт с точностью 5 % и 10 %.

Углеродные резисторы обладают плохим (большим) температурным коэффициентом сопротивления (обычно, 5000 ppm/°C), поэтому не должны использоваться в прецизионных схемах, требующих малой зависимости параметров от температуры. С другой стороны, такие резисторы дешевы.

В таблице 1 приведена одна декада стандартных значений для резисторов с 2, 5 и 10 % точностью (жирным отмечены значения для 10 % точности).

10	16	27	43	68
11	18	30	47	75
12	20	33	51	82
13	22	36	56	91
15	24	39	62	100

Для определения значения сопротивления и его точности углеродные резисторы имеют цветовую маркировку (расшифровка в табл. 2):

цифра	цвет	множитель	кол- во нулей	точность
	серебряный	0.01	-2	10%
	золотой	0.10	-1	5%
0	черный	1	0	_
1	коричневый	10	1	_

2	красный	100	2	2%
3	оранжевый	1 к	3	_
4	желтый	10 к	4	_
5	зеленый	100 к	5	_
6	синий	1 M	6	_
7	фиолетовый	10 M	7	_
8	серый	_	_	_
9	белый	_	_	_
	_	_	_	20%

Металлопленочные резисторы используются в тех случаях, когда требуются точность, низкий температурный коэффициент и низкий шум. Проводящим материалом для резисторов этого типа является нихром, оксид олова или нитрид тантала, который загерметизирован фенольной смолой. Типовыми применениями являются мостовые схемы, RC-генераторы и активные фильтры. Начальная точность находится в диапазоне от 0,1 до 1,0 %, температурный коэффициент сопротивления — от 10 до 100 ppm/°C. Стандартные значения сопротивления — от 10,0 Ом до 301 кОм с шагом 2 % (для 0,5 и 1,0 % точности). В таблице 3 приведена одна декада значений.

1.00	1.29	1.68	2.17	2.81	3.64	4.70	6.08	7.87
1.02	1.32	1.71	2.22	2.87	3.71	4.80	6.21	8.03
				2.92				
1.06	1.37	1.78	2.31	2.98	3.86	4.99	6.46	8.35
1.08								
								8.69
1.13								
1.15	1.49	1.93	2.50	3.23	4.18	5.40	6.99	9.04
1.17	1.52	1.96	2.55	3.29	4.26	5.51	7.13	9.22
1.20	1.55	2.00	2.60	3.36	4.34	5.62	7.27	9.41
								9.59
1.24	1.61	2.09	2.70	3.49	4.52	5.85	7.56	9.79
1.27	1.64	2.13	2.76	3.56	4.61	5.96	7.72	9.98

Для идентификации значения сопротивления металлопленочных резисторов используется 4-значная нумерация:

для значений менее 100, R десятичная запятая, т.е. 49R9 → 49,9 Ом

Проволочные прецизионные резисторы обладают предельно высокой точностью (0,005 %) и стабильностью (<10 ppm/°C) и используются, в основном, в схемах аттенюаторов. Диапазон значений – от 0,1 Ом до 1,2 МОм.

Высокочастотные эффекты

Подобно реальному конденсатору (см. статью "Емкость и конденсаторы") реальный резистор не лишен паразитных компонентов. (По существу, любой двухвыводной элемент может рассматриваться как резистор, конденсатор, индуктивность или демпфированная резонансная схема, параметры которых зависят от частоты.)

Тип токопроводящего материала и отношение длины к площади поперечного сечения определяют величины значений паразитных индуктивности L и емкости C, влияющие на параметры резистора на высоких частотах. Пленочные резисторы, как правило, обладают прекрасным поведением на высокой частоте и достаточно точны вплоть до 100 МГц. Углеродные резисторы используются на частотах до 1 МГц. Проволочные резисторы обладают наивысшей индуктивностью и, поэтому, наихудшим высокочастотным поведением. Даже при использовании безындуктивной (бифилярной) намотки они имеют большую собственную емкость, что ограничивает частоту применения до 50 кГц.

Температурные эффекты

Совершенно необязательно всегда использовать резисторы с низким температурным коэффициентом сопротивления — все зависит от конкретной задачи. В примере, показанном на рисунке, происходит измерение тока, который, протекая через резистор, создает на нем падение напряжение, равное произведению величины этого тока на величину измерительного сопротивления. В данном случае, стабильность сопротивления в заданном температурном диапазоне играет главную роль для точного измерение тока. Поэтому резистор должен обладать низким значением температурного коэффициента сопротивления.

Другим примером может служить схема усилителя на ОУ с коэффициентом усиления 100. Точность установки коэффициента усиления зависит от отношения сопротивлений резисторов и выбирается подбором. Его стабильность определяется соответствием температурных коэффициентов резисторов и является более критичным параметром, чем точность. Ниже приведены два примера расчета.

 Предположим, что оба резистора имеют одинаковый температурный коэффициент сопротивления ТС, равный 100 ppm/°C (0,01 %/°C). Сопротивление при изменении температуры ∆Т вычисляется согласно формуле:

$$R = R_0(1 + TC \times \Delta T)$$

При повышении температуры на 10 °C оба резис-тора (R_F и R_I) увеличат свои номинальные сопротивления на 0.01 %°C × $10 \degree$ C = 0.1 %. Коэффициент усиления ОУ в неинвертирующем включении (с очень хорошим приближением) равен $1 + R_F/R_I$. Поскольку оба резистора одинаково изменят СВОИ величины сопротивлений процентном отношении (относительные величины), TO ИХ отношение останется неизменным. Следует запомнить, что

точность коэффициента усиления зависит только от отношения сопротивлений и не зависит от их абсолютных значений.

2. Предположим, что R_I имеет температурный коэффициент 100 ppm/°C, а R_F-75 ppm/°C. При повышении температуры на 10 °C резистор R_I увеличит свое сопротивление на 0,1 %, а резистор R_F- на 0,075 %. Отношение сопротивлений резисторов при этом станет равным

$$(1.00075 \times R_F)/(1.001 \times R_I) = 0.99975 \times R_F/R_I$$

При повышении температуры окружающей среды на 10°С коэффициент усиления схемы уменьшится на 0,025%, что эквивалентно одному МЗР 12-разрядной схемы

При разработках необходимо учитывать эффект саморазогрева резисторов - при протеканиие тока через резистор выделяемая мощность повышает температуру, что, в свою очередь, вызывает изменение сопротивления. Многие производители в спецификациях на резисторы отражат параметр, называемый "тепловое сопротивление" (thermal resistance или thermal derating), выражающийся в градусах Цельсия на ватт (°С/Вт). Для резисторов типового размера и мощностью 0,25 Вт значение теплового сопротивления равно 125 °C/Вт. На следующем примере показано изменение коэффициента передачи усилителя на ОУ с резисторами. RI=100 Ом, RF=9900 Ом и входным сигналом 100 мВ.

Мощность, рассеиваемая на резисторе R_I, равна $E^2/R = (100 \text{ MB})^2/100 \text{ OM} = 100 \text{ MKBT}, \text{ ЧТО ПРИВОДИТ К}$ увеличению температуры его 100 мкВт \times 125 °C/Вт = 0.0125 °C, т.е. около 1 ppm изменения сопротивления (0,00012 %). Мощность, рассеиваемая на резисторе R_{F} равна $E^2/R = (9.9 \text{ B})^2/9900 \text{ Om} = 9.9 \text{ MBT}, \text{ что приводит к}$ температуры **у**величению его $9,9 \text{ мВт} \times 125 \text{ °C/BT} = 1,24 \text{ °C}, \text{ т.е. } 0,0124 \text{ % изменения}$ сопротивления. Такое изменение сопротивлений резисторов изменение коэффициента вызовет усиления схемы на 0.012 %.

Термоэлектрические эффекты

Применение проволочных прецизионных резисторов преподносит еще одну проблему. Соединение высокоомного провода и вывода резистора образует термопару с электродвижущей силой около 42 мкВ/°С для распространенных материалов ("сплав 180" [77 % меди и 23 % никеля] / нихром). У более дорогих резисторов выводы делаются из чистой меди, что позволяет снизить эдс до 2,5 мкВ/°С.

Такой термоэлектрический эффект является несущественным при работе резистора на переменном токе. Кроме того, термо-эдс, создающаяся на обоих выводах, взаимно компенсируется, если эти выводы имеют одинаковую температуру. Однако, если это не так, то термо-эдс приведет к появлению напряжения ошибки при работе на постоянном токе. При работе с самым обычным проволочным резистором, у которого разность температур выводов составляет всего лишь 4 °C,

напряжение ошибки составит около 168 мкВ, что превышает значение младшего значащего разряда в 10-вольтовой 16-разрядной системе.

Эта проблема может быть решена в процессе размещения и установки проволочных резисторов так, чтобы температурная разность выводов была минимизирована: выводы должны быть одинаковой длины, воздушный поток должен равномерно обдувать корпус резистора.

Резисторные сборки

Кроме явной экономии места на печатной плате, резисторные сборки обладают и другими очевидными преимуществами – одинаковое сопротивление резисторов, входящих в сборку, очень близкие коэффициенты температурного сопротивления и, следовательно, одинаковое поведение при изменении температуры. Типовые применения резисторных сборок – прецизионные аттенюаторы и схемы формирования коэффициента передачи усилителей. Тонкопленочные резистороные сборки также используются при создании монолитных и гибридных инструментальных усилителей, а также в КМОП цифро-аналоговых и аналого-цифровых преобразователях (многозвенные схемы R-2R).

Толстопленочные резисторы относятся к самым дешевым, но у них немалый разброс сопротивлений (<0.1%) и плохой температурный коэффициент (>100 ppm/°C). Токопроводящий слой наносится на стекло или керамику.

Тонкопленочные резисторы имеют среднюю стоимость и очень малый разброс (около 0.01%), хороший температурный коэффициент (<100 ppm/°C). В процессе производства эти резисторы подвергаются лазерной подгонке после вакуумного осаждения токопроводящего слоя.

В таблицах 4 и 5 представлены достоинства и недостатки толсто- и тонкопленочных резисторных сборок и материалов подложки.

Тип	Достоинства	Недостатки	
Толстопленочные	Низкая стоимость Большая мощность Доступность	Большой разброс (0.1%) Большой ТКС (>100 ppm/°C)	
Тонкопленочные на стекле	Мапый ТКС (<100 ppm/°С)	Требуют осторожности Часто большие размеры Малая мощность	
Тонкопленочные на керамике	Умеренная стоимость Малый разброс (<0.01%) Малый ТКС (<100 ppm/°C) Низкая емкость	Часто большие размеры	
Тонкопленочные на кремнии	Умеренная стоимость Малый разброс (<0.01%) Малый ТКС (<100 ppm/°C) Низкая емкость		

Материал	Достоинства	Недостатки	
Стекло	Низкая емкость	Требуется осторожность Малая мощность Большие размеры	
Керамика	Низкая емкость	Большие размеры	
Кремний	Применение в монолитных схемах	Малая мощность Емкость на подложку	
Сапфир	Низкая емкость	Малая мощность Высокая цена	

Ниже приведен пример схемы инструментального усилителя, в котором при хорошем подборе резисторов R1-R1', R2-R2' и R3-R3' можно достичь довольно большого коэффициента ослабления синфазного сигнала (КОСС), т.е. более 120 дБ от 0 до 60 Гц. Когда необходимо получить большой КОСС, то при использовании дискретных ОУ и резисторов может встать проблема

точного подбора компонентов и стабильности их параметров в процессе работы.

Согласованность (в большей степени, чем абсолютное значение) важно для многозвенных схем R-2R, которые используются в КМОП преобразователях. Для достижения п-разрядной точности, резисторы должны быть согласованы с коэффициентом 1/2n, который легко

достигается при лазерной подгонке в процессе изготовления.

Абсолютное значение при этом может отличаться от номинального более чем на $\pm 20\%$. На рисунке показана

типовая схема R-2R, используемая в КМОП цифроаналоговых преобразователях.

