Estimating photometric redshifts using Deep Learning

Hrishabh Srivastava

Supervisor: Prof. Douglas Scott

Why photo-z?

Spectroscopic Redshifts	Photometric Redshifts
More accurate	Comparatively less accurate
More expensive	Way less expensive
Far more telescopic time	Way less telescopic time

Photo-z measurement techniques

- 1. Direct Shift Measurement: Baum(1962)
- 2. Color-color diagrams: Koo (1985)
- 3. Template Fitting: Loh & Spiller (1986)
- 4. Machine Learning (using regression)

Machine Learning

- Dataset: Hubble Deep Survey (GOODS- North) from Barro(2019)
- Input: Multiband fluxes from 500 nm to 941 nm
- Output: Photometric redshifts
- Comparison Metric: Mean-squared error

Classical ML Algorithms

Gradient Boosted Regression Trees (MSE = 0.154) Gaussian Processes (MSE = 0.584)

Classic ML Algorithms

Random Forests (MSE = 0.242) Adaboost Regressor (MSE = 0.359)

Classic ML Algorithms

K-Nearest Neighbor (MSE = 0.189)

Support Vector Machines (MSE = 0.156)

Neural Networks

Baseline network

Multitask Network

Network features

- Dataset: PAU Survey Catalogue
- **Broadband data:** 9 bands from u,b,v,g,r,z,i,j,k bands (fluxes in Janskys)
- Narrowband data: 40 bands from 455 nm to 845 nm
- Redshift output

Comparison Metrics

• **Dispersion:**
$$\sigma_{68} \coloneqq \frac{1}{2} \left[Q_{84}(\Delta z) - Q_{16}(\Delta z) \right]$$

where,

$$\Delta z := (z_p - z_t) / (1 + z_t)$$

• Outlier: $|z_p - z_t| / (1 + z_t) > 0.15$

Results

CONCLUSION