	$\frac{7}{8} = 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$
	8 2
3	Il y a 8 sites tétraédriques par maille (tous entérement inclus dans la meille).
	Il y a un site octaédrique totalment inches dans la naille et 12 partagés estre 4 mailles d'ai 1 + 12 x 1 = 4 sites octaédriques par maille.
	On an déduit qu'il y a : " un von Fe par meille, " deux vous Grépar maille,
4	de farmule de la chaomite est donc:
	Fe Cr2 04
	Afrir de ses parter l'électronentralité dans le cristal, on doit
	2 + 2xt - 4x(-2) = 0 = t = 3
	Il s'agit d'ions Cr3+
(5)	La tangence des cetions et des aviors dans les etes octatedrique
	2r (02-) + 2r (octa) = a
	$r(oda) = \frac{a}{2} - k(0^{2-}) = 70 \text{ pm}$

	Concous blanc de chimie - 2023/2024 - Correction 2
	de condition de tangence dans les sites tetraédriques (le long de la demi-diagarale de arte) impose:
	$\frac{\alpha\sqrt{3}}{2} = 2n\left(0^{2-}\right) + 2n\left(\text{tetra}\right)$
	-> r(tda): a√3 - r(02) ≈ 30 pm
6	r (Fe ²⁺) r (octa) et r (C ³⁺) > r (telra) :, il n'y a per tangence extre les vous 0 ²⁻ , comme avoné.
	On note ME la vaux molaire de fer, Mo celle de l'oxygène et MC celle du chrone.
	9 = 4 Mo + Mrz + 2 Mcr Wa a ³
	Parke 8 - Etude cinétique mettant le jeu un composé du chron
8	La la de viterse s'écrit:
	υ= k[A] «[HGO4-] β[H] »,
	avec le la constante de vitere de le réaction.
(9)	On observe que b « a et b « [H ⁺] « ll s'eget d'une méthode par dégénérasseure de l'ordre. On pour supposer: [A] (t) « a et [H ⁺] (t) » [H ⁺] « .
	La vitere de reacha s'était alors:

	Concours blanc de chimie - 2023/2024 - Correction 3
E.T.	$3A + 2HGO_{1}^{-} + 8II^{+} = 2G^{3+} + 3B + 8H_{2}O$ $a' = \frac{2}{3}a' = E_{1}a^{2} = 0$ $a' = 3n = \frac{2}{3}a' - 2n = E_{1}a^{2} = 2n = 3n = E_{1}a^{2} = 2n$
	On a donc: [A](t) = a'-3n et [HGOL] = \frac{2}{3}a'-2n
	Soit $x = \frac{1}{2} \left(\frac{2}{3} \alpha' - \left[H(cO_4^{-1}) \right] \right) = A - \alpha' + \frac{3}{2} \left[H(cO_4^{-1}) \right]$
)	Le la de vitere s'écrit:
	υ= b[H ¹] _{0,2} x [H(cO ₄ -] x (3) x [H(cO ₄ -] x
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$
43	On observe graphiquement:
	1 . Czt + C4 avec G et (4 des conctates. 5'-[G3+] (1- b. [HCO1-]2- 1 d[HCO4-]
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	On $[HGO_{4}^{-}] = \frac{2}{3}a - [G^{3+}] = 5' - [G^{3+}]$
	On a donc $\frac{1}{b'-[Cc^{3+}]}$ $\frac{1}{b'}$
	b'-[G3+] b'

	On oblient bien une droite, ce qui permet de justifice X = 1.
	On a visute $k_2 = \frac{C_3}{2} = 0,50 \text{ L. mol}^{-1} \text{ min}^{-1}$
(14)	On conneît by et kz. On pert former le rapport:
	$\frac{k_{2}}{k_{1}} = \frac{k_{1}}{k_{1}} \frac{(3/2)^{2}}{(3/2)^{2}} = \frac{3^{2} [H^{+}]_{0,2}^{2}}{(2a)^{2} [H^{+}]_{0,1}^{2}}$
	On coment tout soul & , ce qui permet de le déterminer. Une fors d'onum, on trouve le grâce à
	k. kr kr a* [H+] v a [H+] 2
	le s'aprime en L3. ml -1 min -1.
	Partie C - Réduction de l'oxyde de chaons par le dity- dropoire.
(15)	On utilise le loi de Hes pour valailer l'alhabre et andard de réaction:
	ΔrH°= 3ΔfH°(H2O) + 2ΛfH°(Cr) - 3ΛfH°(H2) - ΛfH°(CrQ) ΔrH°= 420 & 2. mol-1
	On fait de mêne par l'entropie standard de réaction:
	Δ _r S° = 35m (H ₂ O) + 25m (G) - 35m (H ₂) - 5m (G ₂ O ₃) Δ _r S° = 150 J. L ⁻¹ mol

	Concours blanc de chimie - 2023/2024 - Correction	4
(16)	Le réartion étant endothernique (ArH°>0) on se p à hande température pour favoriser le forvalier du choone solide.	lece_
(17)	d'enthalpie la standard est donnée par:	
	ArG° = Arth - TAcs°	
	On soit que Arb° = - RTlu K° =, K° = up (-/-R	tr (-°)
	On one Ko K 1 - La réaction n'est pas favoris thomodynamiquement.	tl_
(18)	On verifie K° « 1, ve qui est coherent avec la quel	Kan
19	On note li la presion postrelle de l'espèce che Or = PH20 PH2	inique i.
20	$\frac{C_{7}O_{3}(s)}{E.I.} + \frac{3H_{2}(g)}{m_{1}(H_{2})} = \frac{2G_{2}(s)}{O} + \frac{3H_{2}(s)}{O}$ $E.I. M_{1}(G_{2}O_{3}) - G_{1} + \frac{3H_{2}(s)}{m_{1}(H_{2})} = \frac{2G_{2}(s)}{O} + \frac{3H_{2}(s)}{O}$ $E.F. M_{1}(G_{2}O_{3}) - G_{1} + \frac{3H_{2}(s)}{m_{1}(H_{2})} - \frac{3G_{2}(s)}{G_{2}(s)} + \frac{3H_{2}(s)}{G_{2}(s)}$ $E.F. M_{1}(G_{2}O_{3}) - G_{1} + \frac{3H_{2}(s)}{m_{1}(H_{2})} - \frac{3G_{2}(s)}{G_{2}(s)} + \frac{3H_{2}(s)}{G_{2}(s)}$) (_{\$})
21	On assimile tous les gaz à de gaz perfaits. A l'	1
	(Mi(Hz)-3ff)3 on ausz Gf (Mi(Hz)	
	1° ≈ 27913 -> 8f - mi 1° 13 33	3.10 mal

	Concours blanc de chimie - 223/2024 - Correction	_5_
	On calcula la nouvre de rules de chaque forcies:	
	n (Cr) = 2 gf ~ 6,6. so mol	
	Parter D - Etude theoreodynamique d'une pile:	
22	Solt A: le couple mis en jeu est Fe ³⁴ /Fe ²⁴ : Fe ³⁴ + e ⁻ = Fe ²⁴	
	$E_2 : E_2 + 0,06 \log \left(\frac{[Fe^{3+}]}{[Fe^{2+}]} \right) = E_2 : 0,77$ Solution B: le couple mis en jeu est $C_2 O_7^{2-} / G^{3+}$ $C_{12} O_7^{2-} + 14H^+ + 6e^- = 2G^{3+} + 7H_2O$	V
	Solution B: le couple mis en jeu est $C_2O_7^2/G^{3+}$ $C_2O_7^2 + 14H^+ + 6e^- = 2G^{3+} + 7H_2O$:
	E1: E1" + 0,01 bg ([G20;2][H+]") = E1"-1,4pH	= E4
	=) £ ₁ = 1,33 V	
	E2> E2 => la solution B est le fâle + de le pile	
	Le force électronotrice vont: e= E1-E2.0,56	<u>V</u>
23	d'équation mise en jeu est :	
	Cr2072+ 14H+ 6Fe2+ 6Fe3+ 2Cr3+ 7H20	
	Cr202 se réduit - l'élutro de plangeent dans la solute et la cathodo. L'acorde est dans la solute A.	108
<u></u>	1, G° = - 6 F (E1° - E2°)	

	On a enseite: Arbo RTle Ko: - 6F (Ero- Ezo)
	$= \mathcal{K}^{\circ} = \alpha p \left(\frac{6 F \left(E_{1}^{\circ} - E_{2}^{\circ} \right)}{R + 1} \right) = \Lambda b \left(\frac{E_{1}^{\circ} \cdot E_{2}^{\circ} / 0, 01}{R} \right)$
	=) K°: 10 56
25)	On trave un takean d'avancement (volunique) en supprisat la réaction totale:
	C202 + 14H+, 6Fe2+ = 6Fe3+ 2C3+, 7H20
	$C_{12}O_{1}^{2-} + 14H^{+}, 6Fe^{2+} \cdot 6Fe^{3+}, 2C_{1}^{3+}, 7H_{2}O$ EI 0,06 \$ 0,06 0,06 0,06 \$ EF 0,05 \$ 0 0,12 0,08 \$
	On a donc: [GO2 -] f = 0, 05 md. L-1 [Fe3+] f = 0, 12 mol. L-1 [G3+] f: 0, 08 mol. L-1
	Partie E - Etude d'une solution contenent de lator discas
26)	Une largueur d'orde de 808 non carrespard au marinner d'absorbance, ce qui auguenton le précision de la méthode.
(27)	de la de feer-dansert donce l'absoluce suivant:
	de la de feer - dansent donce l'associace suivant: A = El C où a C cet la concertantion de l'aprèce chimique absorbente a l'est le lagrene percourue par le semaneurel à touvoir le solution
	« E est le coefficient d'estrubia undaire de l'apèce.
	On s'alted d'en à une proportionalté entre A et c, a qui justifie l'oblestion d'une deste.

Cavans blanc de chimie - 2-23/2024 - Consection 6
On pert déterminer le coefficient d'abindion molaise à poulée du coefficient directeur p de la drote: p = El ., E = 12,033 L 10-2
., <u>E</u> = 1203, 3 m ⁻¹ . L. ml ⁻¹
On lit une concertation approximative: C=0,05 md. L-2
Calculors le mars de anivre Man correspondant aux 0,05 mol. L-1:
ma · c V Ma = 0,05 x 5. 10-3 x 64
=> Man = 16 mg
D'où un pour entage massigne en avivre:
Ru = 16 = 67%.
On a un pouventage en zinc de 33%, ce qui est compatible avec l'émonté (5% à 45% de nouve en zinc).
Parke F- Etude électrochinique d'une réaction d'oydoredation
des complus de cuivre et de l'agent sat espeles. Pour l'eau, on ne peut pas concluse.
Il s'agit d'un palier de diffusion. La viteur de seaction et donc l'intenté du cavail à travers l'électrole sont limités par la viteur d'appoint des séarlifs au voisings de l'électrole.
Par les autres courses, le réactif est sont le métal anciètent

	l'électrode ne peut pas être limitée.
(34)	La reaction qui a lieu est: Cu(s) + 2Ag (cq) = Cu (cq) + Ag (s)
(35)	La constate d'équilibre et.
	K°: 10 2 (E3 - E4) = 10 0,46/0,03 × 105
	K° >> 1 , la réaction est thermodynamiquement favorale.
(36)	Il existe un potential mixte domant lien à des courses audi
	Il existe un potentiel mixte domant lien à des consuls anodique et cathologue surablement différents de 0 -> la réaction ent rapide.
	rapide.
	ia a la
	Cu Ar Cu2
	1 1
	Em €
	+/
	ic=-ia Ag - Ag +