2012-2013 第一学期概率论期末考试试卷

一. 判断选择题 (每题 3 分,答题请写在试卷上):

1. 设 A,B,C 是三个随机	1. 设 A,B,C 是三个随机事件,则在下列不正确的是					
$(A)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$						
$(B)(A \cup B) \cap C = A \cup (B)$	$(B)(A \cup B) \cap C = A \cup (B \cap C)$					
$(C)A \cap (B \cap C) = (A \cap B) \cap C$						
$(D)A \cap (\overline{B \cap C}) = (A \cap B)$						
2. 设事件 A 与自身独立,						
(A)0 $(B)1$	(C)0 或 1	(D)1/2				
3. 设 $f(x)$ 和 $g(x)$ 为两个	、概率密度函数,则下述还	是密度函数的是				
(A)f(x)/g(x)	(B)f(x)-g(x)					
(C)(f(x) + g(x))/2	(D)(1+f(x))(1-f(x))	1-g(x))				
4. 随机变量 X 和 Y 独立	Z,Y 和 Z 独立,且都有期	望方差,则必有				
(A)X 和 Z 独立	(B)X 和 Z 不材	相关				
(C)X 和 Z 相关	(D)Cov(X, Y)	=0				
5. 设 0 < P(B) < 1,则 F	5. 设 $0 < P(B) < 1$,则 $P(A B) = P(A \overline{B})$ 成立的充分必要条件是					
(A)P(AB) = P(A)P(B)	(B)P(A+B) =	=P(A)+P(B)				
(C)P(A) = P(B)	(D)P(A) = P(A)	$ar{B})$				
6. 设 X_1,\ldots,X_n 为来自	均匀分布 $U(-\theta,\theta)$ 的一组	1 样本, θ 为未知参数,则下				
述量为统计量的是						
$(A)\bar{X}-\theta$	$(B) \max_{1 \le i \le n} (X_i - \theta)$	$-\min_{1 \le i \le n} (X_i - \theta)$				
$(\mathbf{C}) \max_{1 \le i \le n} (X_i - \theta)$	$(D) \min_{1 \le i \le n} (X_i - \theta)$					
	态总体中各得到样本量为					
体的方差相同,则使用两样本	t 检验时 t 分布的自由度	为				

	9. 假设总体密度为 $f_{\theta}(x)$,其中 θ 为参数. 若 X 为来自该总体的样本,则下述				
	不正确的是				
	(A) 固定 x 时 $f_{\theta}(x)$ 为似然函数 (B) 固定 θ 时 $f_{\theta}(x)$ 为似然函数				
	(C) 固定 θ 时 $f_{\theta}(x)$ 为密度函数 (D) $f_{\theta}(x)$ 衡量了不同 θ 下观测到 x 的可				
	能性大小				
	10. 假设总体 X 为取值 $0,1,2$ 的离散型随机变量,且取各值的概率分别为				
	P(X = 0) = 0.5, $P(X = 1) = p$, $P(X = 2) = 0.5 - p$,其中 $0 为参数. 则$				
当使用拟合优度检验时,检验统计量的渐近卡方分布的自由度为					
	(A)3 (B)2 (C)1 (D)0				
	二.(15分)设昆虫产卵数目服从参数为1的 Poisson 分布,而每个卵孵化为				
幼虫的概率为 p ,各卵是否孵化相互独立,试求					
	(1) 一个昆虫产生 m 个幼虫的概率。				
	(2) 若已知某个昆虫产生了 m 个幼虫,求该昆虫产了 $n(n \ge m)$ 个卵的概率。				
	三. $(15 分)$ 设随机变量 X,Y 相互独立,且 X 服从均匀分布 $U(-1,1),Y$ 服				
从均值为 1/2 的指数分布,则					
	(1) 求随机变量 $Z = (X+1)Y$ 和 X 的相关系数.				
	(2) 求条件概率 $P(Z > 1 X = 0)$.				
	四.(15分) 当 PM2.5 值全天监测平均在 35 微克/立方米以内时,空气质量属				
	于一级. 现观测到合肥市琥珀山庄过去 10 天的日平均 PM2.5 值分别为 28.24,				
	21 40 22 07 20 24 25 50 24 20 22 21 21 22 25 25 37 37 37 37 37 37 37 37 37 37 37 37 37				
	31.48,33.85,39.34,37.78,30.21,29.92,31.21,30.17,37.84. 若假设琥珀山庄区域日				

(C)18

(C) 犯第一类或者第二类错误 (D) 同时犯第一类和第二类错误

(B) 犯第二类错误

(A)9

(A) 犯一类错误

(B)10

(1) 试给出日均 PM2.5 值的 95% 置信上限.

装食盐,分别测得抽出各袋食盐的重量(单位为克)为

据给出p的极大似然估计.

8. 当原假设 H_0 为真时,检验 ϕ 有可能______.

(D)20

略重量不可取负值). 现从这两家工厂产品中各随机抽出 10 件标称为 500 克的袋

(2) 若感兴趣空气质量为一级的概率 $p = P(X \le 35)$, 试基于观测的日均数

五.(15分)设甲乙两家食用盐工厂生产的食盐每袋重量均服从正态分布(忽

甲厂: 495,494,500,502,501,492,495,495,499,503;

 $Z\Gamma$: 494,506,496,505,500,508,502,504,502,499.

试问甲乙两家工厂生产这种标称为 500 克的袋装盐重量上有无差异 ($\alpha = 0.05$).

六.(10 分) 为研究人们每天阅读电子书的时间 (T) 长短与购买实体书 (Y) 两者之间的关系,随机调查了 210 个人,结果如下

	t < 1	1 < t < 3	t > 3
购买	12	70	20
不购买	40	28	40

试在水平 $\alpha = 0.05$ 下判断每天阅读电子书的时间长短和购买实体书两者之间是否有关? 阅读电子书的时间长短和购买实体书之间呈现何种特点?

一. 判断选择题 (每题 3 分):

1. B 2. C 3. C 4. D 5. A 6. B 7. C 8. A 9. B 10. C 二.(15 分) (1)

$$P(X = m) = \sum_{n=m}^{\infty} P(X = m | Y = n) P(Y = n) = \sum_{n=m}^{\infty} {n \choose m} p^m q^{n-m} \frac{1}{n!} e^{-1}$$
$$= \frac{p^m}{m!} e^{-p}, \quad m = 0, 1, 2, \dots$$

(2)

$$P(Y = n | X = m) = \frac{P(X = m | Y = n)P(Y = n)}{P(X = m)}$$
$$= \frac{q^{n-m}}{(n-m)!}e^{-q}, \quad n = m, m+1, \dots$$

三.(15 分) (1) 由于 EZX = E[X(X+1)]EY = 1/6, Var(Z) = 5/12, 因此

$$\rho_{Z,X} = [EZX - EZ \cdot EX] / \sqrt{Var(Z)Var(X)} = 1/\sqrt{5}$$

求随机变量 Z = (X+1)Y 的期望和方差.

(2)
$$P(Z > 1|X = 0) = P(Y > 1) = e^{-2}$$
.

四. $(15 \ \beta)(1)$ 由于 $\bar{x}=33.004, s=3.95$, 在题设下易知日均 PM2.5 的 95% 置信上限为 $\bar{x}+\frac{S}{\sqrt{n}}t_{0.05}(n-1)$, 带入样本值得到 35.5.

(2) $p = P(X \le 35) = P(\frac{x-\mu}{\sigma} \le \frac{35-\mu}{\sigma}) = \Phi(\frac{35-\mu}{\sigma})$, 而 \bar{x} 和 $\sqrt{(n-1)/ns^2} = \sqrt{9/10}s = 3.75$ 为 μ 和 σ 的似然估计值,因此 p 的极大似然估计值为 $\hat{p} = \Phi(\frac{\bar{x}-\hat{\mu}}{\hat{\sigma}}) = \Phi(0.53) = 0.70$.

五.(15 分) 记 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_1, \sigma_1^2)$ 分别表示两家工厂袋装盐的重量分布

- (1) 考虑方差是否一致: 对假设 $H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$, 由检验统计量 $F = S_x^2/S_y^2 = 14.71/19.6 = 0.75 > F_{0.975}(9,9) = 1/F_{0.025}(9,9) = 1/4.03 = 0.25$, 因此在 0.05 水平下不能拒绝零假设。
- (2) 考虑均值是否一致: 考虑假设 $H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 \neq \mu_2$, 由 (1) 结果知可以使用两样本 t 检验, 由检验统计量 $T = |\bar{x} \bar{y}|/\sqrt{(s_x^2 + s_y^2)/10} = 2.16 > t_{0.025}(18) = 2.10$, 因此拒绝零假设。即在 0.05 水平下拒绝"两家工厂的袋装食盐平均重量一致"这一假设。

六.(10 分) 假设每天阅读电子书时间长短与购买实体书之间无关,则由 Pearson 卡方检验有 $T = \sum \frac{(O-E)^2}{E} = 39.60 > \chi_{0.05}(2) = 5.99$,因此在 0.05 水平下拒绝"每天阅读电子书时间长短与购买实体书之间无关"这一假设。注意到在三类阅读时间下,购买实体书人的比例分别为 0.23,0.71 和 0.33,因此每天阅读电子书时间在 1 小时和 3 小时之间的人群购买实体书的比例最高,而当每天阅读电子书时间长于 3 小时后,购买实体书的人比例反而下降为 0.33.