Presentation Title

Cameron Bracken *Humboldt State University*

June 18, 2014

Introduction

Introduction

Greedy Heuristic Algorithm

Optimal solution to a path

EXAMPLE

PHYSICAL SYSTEM

Modeling the physical system, of an EV and a path.

- ► Path
 - + Charging stations, with charging rate ($R_{CH}(u_i)$)
 - + Road segments, with speed limit $(v_{min}(e_i), v_{max}(e_i))$ and distance $(D(e_i))$
- ► EV
 - + Driving consumes energy accordingly to the speed of the EV, defined by: $(R_{CO}(e_i))$
 - + Further two constants from the EV are important to model, namely, battery capacity (B_{max}) and initial battery (B_{cur})

OPTIMISATION PROBLEM

Formulating a optimization problem, which when solved will yield a optimal solution.

- ▶ Objective: Move from u_1 to u_n using minimum time .
 - + Time can be used driving or charging.

- min:
$$\sum_{i=1}^{n-1} \left(\frac{D(e_i)}{v_{e_i}} + CT_{u_i} \right)$$

- ► Physical constraints:
 - + Each edge must be driven at a speed within the speed limit:

-
$$\forall_{i \in 1...n-1}$$
: $v_{min}(e_i) \leq v_{e_i} \leq v_{max}(e_i)$

- + Time can only be positive.
 - $\forall_{i \in 1}$ $n: 0 < CT_{u_i}$
- + The energy is the battery must alway be between 0 and B_{max}

BATTERY CONSTRAINT

The battery constraint of the optimization problem can be split into two parts

- No road segment can be passed without having the required energy
- No overcharging at any charging station.

Energy can be..

- ▶ Spend: $\forall_{i \in 1...n-1}$: $ES(e_i) = D(e_i) \times R_{CO}(v_{e_i})$
- ► Acuried: $\forall_{i \in 1...n}$: $EA(u_i) = R_{CH}(u_i) \times CT_{u_i}$
- ▶ Already in the battery: B_{cur}

BATTERY CONSTRAINT

No road segment can be passed without having the required energy

▶
$$\forall_{i \in 1...n-1} : 0 \le B_{cur} + \sum_{j=1}^{i} EA(u_j) - \sum_{j=1}^{i} ES(e_j) \le B_{max}$$

BATTERY CONSTRAINT

No overcharging at any charging station.

▶
$$\forall_{i \in 1...n-1} : 0 \le B_{cur} + \sum_{j=1}^{i+1} EA(u_j) - \sum_{j=1}^{i} ES(e_j) \le B_{max}$$

LINEAR PROGRAMMING

NP-complete problem.

Linearization and linear programming for approximate solution.

Two functions of the optimization problem are non linear functions.

- ► Consumption rate $(R_{CO}(v_{e_i}))$
- ▶ Driving time $(\frac{D(e_i)}{v_e})$

LINEARIZATION EXAMPLE

Function for energy consumption before linearization.

$$R_{CO}(v) = 0.019 * x^2 - 0.770 * x + 184.4$$

LINEARIZATION EXAMPLE

Function for energy consumption after linearization.

$$R_{CO}(v) = 0.019 * x^2 - 0.770 * x + 184.4$$

LINEARIZATION

- ► For all linear function their slope and the y-intercept is precomputed.
- ► For every edge in the path exactly one line segment needs to be chosen. Thus a binary matrix i introduced of size $n \times m$, where n = edges in the path and m = linear pieces of each line.