Clase 2 Ensayos de Hipótesis para Medias

- Ensayo con varianza conocida (Z-test).
- Ensayo con varianza desconocida (t de Student).
- Determinación del tamaño muestral.
- Aplicación con datos reales.

BIBLIOGRAFÍA GENERAL

Walpole, R. E. Probabilidad y Estadística para Ingenieros.

México: Pearson Education.

Devore, J. L. Probabilidad y estadística para ingeniería y ciencias México:Thomson.

Ensayos de Hipótesis para Medias

- Tema de la inferencia estadística.
- Permiten tomar decisiones sobre parámetros poblacionales (en este caso, la media µ) en presencia de incertidumbre.
- Se formulan dos proposiciones:
 - Hipótesis nula H₀ afirmación inicial que se somete a prueba.
 - Hipótesis alternativa H₁ afirmación que se acepta si hay evidencia suficiente contra H₀.

Se definen:

- Nivel de significación α probabilidad de cometer un error Tipo I (rechazar H₀ siendo verdadera).
- Potencia (1–β): probabilidad de rechazar H₀ cuando H1 es verdadera.
- Estadístico de prueba: valor calculado a partir de la muestra para contrastar contra una distribución de referencia.
- Error Tipo II (β): no rechazar H_0 cuando en realidad es falsa.

Ensayos de Hipótesis para Medias Ensayo con varianza conocida (Z-test)

- Supongamos lo siguiente:
 - Población con distribución normal o tamaño muestral grande (n>30).
 - Varianza poblacional σ² conocida.
- Hipótesis:

- Bilateral: $H_0: \mu=\mu_0$ $H_a: \mu\neq\mu_0$

- Unilateral (mayor): $H_0: \mu \leq \mu_0$ $H_a: \mu > \mu_0$

– Unilateral (menor): H_0 : μ ≥ μ 0 H_a : μ < μ 0

Estadístico de prueba:

$$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$$

Ensayos de Hipótesis para Medias Ensayo con varianza conocida (Z-test)

Verificación:

- Calcular Z.
- Comparar con el valor crítico Z_{α} (o $Z_{\alpha}/2$ en pruebas bilaterales).
- Ejemplo: si $|Z| > Z_{\alpha}/2 \Rightarrow rechazar H_0$
- Una cola derecha: $Z > z_{1-\alpha}$
- Una cola izquierda: $Z < z_{\alpha}$
- Dos colas: $|Z| > z_{1-\alpha/2}$
- p-valor: se calcula con la función de distribución acumulada estándar Φ(z)

- Supongamos lo siguiente:
 - Población con distribución normal.
 - Varianza poblacional σ₂ desconocida.
 - Se reemplaza σ por el desvío estándar muestral s.
- Estadístico de prueba: $T=rac{ar{X}-\mu_0}{s/\sqrt{n}}\sim t_
 u, \qquad
 u=n-1.$
 - s es la desviación estándar muestral.
 - Se definen con los cuantiles de la distribución t con n–1 grados de libertad.
 - Para muestras pequeñas (n<30), la normalidad es condición esencial.
 - Para muestras grandes, la aproximación normal es válida.

- Verificación o reglas de decisión:
 - (nivel α)

Una cola derecha: rechazar H_0 si $T>t_{1-lpha,
u}$.

Una cola izquierda: rechazar H_0 si $T < t_{lpha,
u}.$

Dos colas: rechazar H_0 si $|T|>t_{1-lpha/2,
u}$.

- p-value (con CDF de t).
- El p-value es la probabilidad de obtener un estadístico de prueba tan extremo o más extremo que el observado, suponiendo que la hipótesis nula H₀ es verdadera.
 - Si el p-value es pequeño (<α), significa que el resultado observado sería muy poco probable, si H₀ fuera cierta → se rechaza H₀
 - Si el p-value es grande, significa que la evidencia no es suficiente para rechazar H₀.

- Si tenemos el caso t de Student (varianza desconocida)
 - Cuando usamos el estadístico:

$$T=rac{ar{X}-\mu_0}{s/\sqrt{n}}\sim t_{\,
u}, \quad
u=n-1$$

- El p-value se calcula con la función de distribución acumulada (CDF) de la distribución t con v grados de libertad $Ft_{\nu}(t)$
 - El p-value con CDF de t es el área de cola (izquierda, derecha o ambas) de la distribución t de Student con v grados de libertad, calculada en el valor observado del estadístico de prueba.
 - Ft_v(t) es la función de distribución acumulada (CDF) de una variable aleatoria T que sigue una distribución t de Student con v grados de libertad.
 - Probabilidad acumulada de que T tome un valor menor o igual que el valor observado t.

$$F_{t_
u}(t) = \Pr(T \leq t), \quad T \sim t_
u$$

- Qué es $F_{tv}(t)$ y cómo se calcula.
 - F_{tv} es la CDF (función de distribución acumulada).
 - Base para determinar los p-values: $F_{t_{\nu}}(t) = \Pr(T \leq t), \quad T \sim t_{\nu}.$
 - Una cola izquierda $(H_1:\mu<\mu_0)$ $p=F_{t_{\nu}}(t_{\rm obs})$.
 - Una cola derecha $(H_1:\mu>\mu_0)$ $p=1-F_{t_\nu}(t_{\rm obs})$.
 - Dos colas $(H_1: \mu \neq \mu_0)$ $p = 2 \cdot \min\{F_{t_{\nu}}(t_{\text{obs}}), 1 F_{t_{\nu}}(t_{\text{obs}})\}.$
 - F_{tv}(t) es la función de distribución acumulada (CDF) de una variable aleatoria T que sigue una distribución t de Student con v grados de libertad. Es la probabilidad acumulada de que T tome un valor menor o igual que el valor observado t.

- Jué significa Pr? $F_{t_{\nu}}(t) = Pr(T \le t), \quad T \sim t_{\nu}.$
 - La probabilidad que la variable aleatoria T tome un valor menor o igual que t.
 - Esa probabilidad no se calcula "contando casos" (como en problemas discretos), sino integrando la función de densidad de probabilidad en el intervalo adecuado.

- La integral es complicada. Por eso se usan tablas de la t-Student que dan valores de cuantiles
 - (Ej: t_{0.05, 19}=-1.729)
 - Supongamos: $t_{obs} = -2.24$, v=19
 - Una cola izquierda: $p = F_{t19}(-2.24) \approx 0.019$
 - Dos colas: $p = 2 \times 0.019 \approx 0.038$
- Una cola izquierda ($H_1:\mu<\mu_0$) $p=F_{tv}(t_{obs})$, es la probabilidad de observar un valor tan extremo por debajo de t_{obs}
- Una cola derecha $(H_1:\mu>\mu_0)$ $p=1-F_{tv}(t_{obs})$ es la probabilidad de observar un valor tan extremo por encima de t_{obs}
- Dos colas $(H_1:\mu\neq\mu_0)$ p=2·min $\{F_{tv}(t_{obs}),1-F_{tv}(t_{obs})\}$ se multiplica por 2 porque se consideran ambas colas de la distribución.
- lacksquare p-value es exactamente la probabilidad acumulada bajo lacksquare

Ensayos de Hipótesis para Medias Determinación del tamaño muestral (n)

- La planificación de un ensayo requiere calcular n en función de:
 - Nivel de significación a.
 - Error Tipo II deseado (β).
 - Diferencia mínima detectable δ=lµ1-µ0l
 - Desvío estándar σ (conocido o estimado).
- Fórmula general (caso Z, una cola): $n = \left(rac{z_{1-lpha} + z_{1-eta}}{\delta/\sigma}
 ight)^2$
- Interpretación:
 - A mayor variabilidad (σ) , se necesita un n mayor.
 - A menor diferencia mínima detectable (δ), el n crece cuadráticamente.
 - Para dos colas se usa $z_{1-\alpha/2}$.