Matgeo-1.2.22

P.Prahladha Al24BTECH11024 IIT Hyderabad.

November 5, 2024

- Problem
- Solution
 - Terms
 - Velocity Vectors
 - Resultant Velocity Vector
 - Direction vector and Slope
 - Required Angle
 - Plot of Velocity Vectors
 - Codes

Problem Statement

Rain is falling vertically at a speed of $35ms^{-1}$. Winds start blowing after sometime with a speed of $12ms^{-1}$ in east to west direction. In which direction should a boy waiting at a bus stop hold his umbrella?

Terms

Term	Description
V_1	velocity vector of Rain
V_2	velocity vector Wind
V ₃	Resultant velocity vector of Rain and Wind
θ	Angle made by umbrella with horizontal

velocity Vectors

Velocity vector of rain:

$$\mathbf{V_1} = \begin{pmatrix} 0 \\ -35 \end{pmatrix} \tag{3.1}$$

Velocity vector of Wind:

$$\mathbf{V_2} = \begin{pmatrix} -12\\0 \end{pmatrix} \tag{3.2}$$

Resultant Velocity Vector

The resultant velocity vector:

$$\mathbf{V_1} + \mathbf{V_2} = \begin{pmatrix} 0 \\ -35 \end{pmatrix} + \begin{pmatrix} -12 \\ 0 \end{pmatrix} \tag{3.3}$$

$$\mathbf{V_3} = \begin{pmatrix} -12 \\ -35 \end{pmatrix} \tag{3.4}$$

Direction vector and Slope

The direction vector of Resultant velocity vector is:

$$\mathbf{D} = \begin{pmatrix} -12 \\ -35 \end{pmatrix} = -12 \begin{pmatrix} 1 \\ \frac{35}{12} \end{pmatrix} \tag{3.5}$$

Slope of direction vector D is

$$Slope = \frac{35}{12} \tag{3.6}$$

Required Angle

The required angle(θ) made by umbrella axis with the horizontal is;

$$\theta = \tan^{-1}\left(\frac{35}{12}\right) = 71.075^{\circ} \tag{3.7}$$

 \therefore The boy hold the umbrella at an angle 71.075° with horizontal direction

Plot of Velocity Vectors

Figure: Plot showing the velocity vectors

Codes

The C code is:

https://github.com/Prahladha09/matgeo-

1/blob/052f0e157e20ddbdbc2b9bb1bc67a4f8f578951b/assignment-1/codes/angle.c

The Python code is:

https://github.com/Prahladha09/matgeo-

1/blob/052f0e157e20ddbdbc2b9bb1bc67a4f8f578951b/assignment-1/codes/plot.py