Dimensions et incertitudes

#chapitre0

Dimensions et unités:

Une unité est nécessaire pour déterminer la valeur d'une grandeur physique.

Longueur	Mètre (m)	Symbole: L
Masse	Kilogramme (kg)	Symbole : M
Temps	Second (s)	Symbole : T
Intensité électrique	Ampère (A)	Symbole : I
Quantité de matière	Mole (mol)	Symbole : N
Température	$Kelvin\;(K)$	symbole : $ heta$
Intensité lumineuse	Candela (cd)	Symbole : J

Opérations possibles:

- $[a+b] \equiv [a] + [b]$
- $[a imes b] \equiv [a] imes [b]$ (division possible)

On cherche l'homonéite des fonctions

Grandeurs fréquemment utilisées

Force:

On la trouve en utilisant la deuxième loi de Newton.

$$[\overrightarrow{F}] = MLT^{-2}$$

Energie:

On la trouve en utilisant l'énergie cinétique.

$$\bullet \ [E_c] = ML^2T^{-2}$$

Champ magnétique

On utilise la Force de Lorentz.

•
$$[B] = MT^{-2}I$$

Incertitude:

Variabilité et incertitude-type:

Expérimentalement aucune mesure n'est parfait. On quantifié cette variabilité

$$ullet \ \overline{X} = rac{1}{N} \sum_{i=1}^N x_i u(x) = \sqrt{rac{1}{N-1} \sum_{i=1}^N (x_i - \overline{X})^2}$$

• Il y a moins de 5% de chances que deux mesures soient distant de plus de 4u(x)

Comparaison de deux mesurages :

$$ullet R_n = rac{|\overline{x_1} - \overline{x_2}|}{\sqrt{u(x_1)^2 + u(x_2)^2}}$$

 $E_n \leq 2$: compatible

 $E_n > 2$: compatible

Evaluation d'une incertitude type:

Statistique : possibilité de repetition

•
$$u(\overline{x}) = \frac{u(x)}{\sqrt{N}}$$

Autre que statistique : pas de possibilité de répétition

•
$$u(\overline{x}) = \frac{\Delta}{\sqrt{3}}$$

Résultat experimental

•
$$x=(\overline{x}\pm u(x))$$
 unité

Incertitude-type composé:

Somme : $u(q)=\sqrt{(\alpha u(x))^2+(\beta u(y))^2}$ Produit : $\frac{u(q)}{q}=\sqrt{(\alpha \frac{u(x)}{x})^2+(\beta \frac{u(y)}{y})^2}$

Regression linéaire:

Déterminer les paramètres de a et b tels que la droite y=ax+b passe au plus près de tous les points expérimentaux