An Analysis of Cyclist Bike Share Dataset

Term Paper for Business Intelligence II

Group 2 (Option 2)
Redwan Hossin, Fatih Karahan, Fidan Tahirova
02.10.2025

Table of Content

- 1. Motivation
- 2. Introduction
- 3. Data Preprocessing Feature Engineering
- 4. <u>EDA</u>
- 5. <u>Machine Learning</u>
- 6. Outlook and Future Steps

Motivation

Bike Rider Types

Casual Riders

Member riders

Introduction

Dataset Description

12 months of public trip data from Divvy (Chicago's bike-share system)

5.7 Million individual rides analyzed

Key feature points:

- Ride start/end times and locations
- Bike type (Classic, Electric, Docked)
- Rider type (Casual vs. Member)

Data Preprocessing - Feature Engineering

1. Unification and Cleaning

- a) Combined 12 monthly files into one master dataset.
- b) Handled missing station data by creating an "Unknown" category, presenving over 800,000 rides from dockless bikes.

2. Feature Engineering

- a) Created new metrics like ride duration, distance, and speed
- b) Added temporal context: hour, day of week, and rush hour flags

Preprocessing - Missing Values

Summary of Missing Values

					Missi	ng Valu	es Heatr	map by M	Month				
2021-04	0.0	0.0	0.0	0.0	7.7	7.7	8.3	8.3	0.0	0.0	0.1	0.1	0.0
2021-05	0.0	0.0	0.0	0.0	10.1		10.9	10.9	0.0	0.0	0.1	0.1	0.0
2021-06	0.0	0.0	0.0	0.0	11.0	11.0	11.8	11.8	0.0	0.0	0.1	0.1	0.0
2021-07	0.0	0.0	0.0	0.0	10.6	10:6	11.31	11.3	0.0	0.0	0.1	0.1	0.0
2021-08	0.0	0.0	0.0	0.0	11.0	11.0	11.7	11.7	0.0	0.0	0.1	0.1	0.0
£ 2021-09	0.0	0.0	0.0	0.0	12.3	12.3	13.1	13.1	0.0	0.0	0.1	0.1	0.0
2021-09 2021-10	0.0	0.0	0.0	0.0	17.1	17.1	18.2	18.2	0.0	0.0	0.1	0.1	0.0
2021-11	0.0	0.0	0.0	0.0	20.9	20.9	22.0	22.0	0.0	0.0	0.1	0.1	0.0
2021-12	0.0	0.0	0.0	0.0	20.6	20.6	21.6	21.6	0.0	0.0	0.1	0.1	0.0
2022-01	0.0	0.0	0.0	0.0	15.7	15.7	17.3	17.3	0.0	0.0	0.1	0.1	0.0
2022-02	0.0	0.0	0.0	0.0	16.1	16.1	17.6	17.6	0.0	0.0	0.1	0.1	0.0
2022-03	0.0	0.0	0.0	0.0	16.6	16.6	18.0	18.0	0.0	0.0	0.1	0,1	0.0
	nde_id	rideable_type	started_at	ended_at	start_station_name	start_station_id	Columbia and station name	end_station_id	start_lat	start_ing	end_lat	end_ing	member_casual

Docked Bikes – picked up and returned at specific docking stations.

Electric Bikes – can be parked anywhere within the service area.

7.5

5.0

2.5

Preprocessing - Outlier Detection

Data Spread

Preprocessing - Outlier Detection

Preprocessing - Outlier Identification

Noise in the Data

• 145 negative duration rides

Impossible data entries

• 514 zero-minute rides

System errors

4,138 rides longer than 24 hours

Unclosed trips

EDA – Weekday vs. Weekend usage

Casual riders are weekend-focused

Members are weekday commuters

EDA

Impact of Seasonality

> Strong Seasonality

EDA – Impact of Seasonality

Casual Riders

Strong summer peak: June–August

Sharp winter decline: Jan-Feb

Highly sensitive to weather/season

Annual Members

Flatter seasonal trend

Stable usage even in winter

Less influenced by season

EDA – Casuals Take Longer Rides

External Data Integration

Machine Learning - Introduction Algorithms

- Logistic Regression Simple Benchmark
- Random Forest Strong and Interpretable
- XGBoost Efficient and High Accuracy

Features Used in Data Modeling

Туре	Features
Numeric (scaled)	ride_distance_km, ride_duration_min, speed_kmh, start_hour, start_month, temp_c, precip_mm, wind_kmh, rh_pct, cloud_pct
Boolean (binary)	is_weekend, is_rush_hour
Categorical (one-hot encoded)	rideable_type, season, duration_category, temp_bin, precip_bin, wind_bin

Machine Learning

Pipeline Structure

Machine Learning

Random Forest Classification Report

	Predicted Casual	Predicted Member		
Actual Casual	37%	63%		
Actual Member	7%	93%		

	Precision	Recall	F1- score	Num(#)
Casual	0.67	0.37	0.48	109k
Member	0.79	0.93	0.86	282k
Macro avg.	0.73	0.65	0.67	391k
Weighted avg.	0.76	0.77	0.75	391k

Machine Learning – Random Forest

Key Drivers

Model Performance & Feature Importance

Confusion Matrix

Model	Accuracy	Precision	Recall	F1-Score
Logistic Regression	0.76	0.71	0.64	0.65
Random Forest	0.77	0.73	0.65	0.67
XGBoost	0.77	0.77	0.72	0.74

Outlook and Future Steps

Weekdays vs. Weekend ride patterns, action point, positioning of the bikes

- Seasonality
 - Summer Casual rider campaigns
 - Winter Member rider campaings

Docked Bike Stations

References

Source of Data and Algorithms

- 1. Karahan, F., Hossin, R., & Tahirova, F. (2025). *An Analysis of Cyclist Bike Share Dataset Code*. GitHub. https://github.com/Fatih0234/bike-share-bi2-project
- 2. Gower, E. (2023). Cyclistic bike-share dataset [Data set]. Kaggle. https://www.kaggle.com/datasets/evangower/cyclistic-bike-share
- 3. Cox, D. R. (1958). *The regression analysis of binary sequences*. Journal of the Royal Statistical Society: Series B, 20(2), 215–242.
- 4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
- 5. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM.
- 6. Open-Meteo. (2025). Free weather forecast API for non-commercial use. Retrieved from https://open-meteo.com/

Thank you for your attention!

Are there any questions?

