- Vysvetlite pojem numerické riešenie obyčajnej diferenciálnej rovnice. [2b]
- Načrtnite prechodovú charakteristiku astatického systému prvého rádu. [3b]
- 3. Nájdite analytické riešenie diferenciálnej rovnice pričom $y(0)=3,\,\dot{y}(0)=2$ a u(t)=0. Použite metódu charakteristickej rovnice. [7b]

$$\ddot{y}(t) + 5\dot{y}(t) + 4y(t) = u(t)$$

4. S využitím Laplaceovej transformácie nájdite analytické riešenie rovnice pričom $y(0)=y_0,\,\dot{y}(0)=z_0$ a u(t)=1. [9b]

$$\ddot{y}(t) + (a+b)\dot{y}(t) + aby(t) = u(t)$$

5. Uvažujte statický systém prvého rádu (SS1R) daný prenosovou funkciou v tvare

$$Y(s) = \frac{b_0}{s + a_0} U(s)$$

kde $a_0,b_0\in\mathbb{R}$ sú parametre systému. Stanovte časovú funkciu, ktorá je analytickým vyjadrením prechodovej charakteristiky tohto systému. [3b]

6. Nasledujúcu diferenciálnu rovnicu druhého rádu prepíšte na sústavu diferenciálnych rovníc prvého rádu. $\beta,\ m,\ g$ a l sú reálne čísla. [3b]

$$ml^2\ddot{y}(t) + \beta\dot{y}(t) + mgl\sin(y(t)) = u(t)$$

7. Schematicky znázornite dynamický systém, ktorého výstupná veličina je y(t), a ktorý je daný diferenciálnou rovnicou v tvare [3b]

$$\ddot{y}(t) + a\dot{y}(t) = bu(t)$$
 $y(0) = y_0, \dot{y}(0) = z_0$

kde $a,\,b$ sú konštanty a u(t) je známy vstupný signál.

Tabuľka Laplaceových obrazov:			
f(t)	$\mathcal{L}\{f(t)\}$	f(t)	$\mathcal{L}\{f(t)\}$
$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$s^n F(s) - s^{(n-1)} f(0) \cdots - s^0 \frac{\mathrm{d}^{(n-1)}}{\mathrm{d}t^{(n-1)}} \left(f(0) \right)$	1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$	$\delta(t)$	1