IN310 - Mathématiques pour l'informatique 2^{ème} contrôle continu

Durée: 1h.

Seuls les notes de cours sont autorisées. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Question 1

Montrer par induction que $\sum_{k=0}^{n} (k^2 + 6k - 2) = \frac{1}{6} (2n^2 + 19n - 12)(n+1)$ pour tout $n \ge 0$.

Question 2

Si $a, b \in \mathbb{R}$, on note $f_{a,b}$ la fonction

$$f_{a,b}: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto ax + b$

Déterminer pour quelles valeurs de (a, b) la fonction $f_{a,b}$ est injective et pour quelles valeurs elle est surjective.

Question 3

Soit A l'ensemble $\{0,1,2,3\}$. Pour chacune des relations binaires sur A ci-dessous (exprimées comme des sous-ensembles de $A \times A$, dire si elle est réflexive, symétrique, anti-symétrique, transitive.

- (a) $\mathcal{R} = \{(0,3), (0,2), (1,1), (2,0), (2,1), (2,3)\},\$
- **(b)** $S = \{(0,0), (1,1), (2,2), (3,3)\},\$
- (c) $\mathcal{T} = \{(0,0), (0,1), (1,0), (1,1), (2,3), (3,2)\}.$

Question 4

On définit sur \mathbb{N}^2 la relation \mathcal{R} par

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x = x'.$$

- 1. Montrer que \mathcal{R} est une relation équivalence.
- 2. Quelle est la classe d'équivalence de (3,5)? Combien d'éléments y-a-t'il dans cette classe?

Question 5

Donner le résultat des calculs ci-dessous. La réponse doit être un entier compris entre 0 et n-1, où n est le module.

- (a) $10(3+13) \mod 11$ (b) $27 \cdot 14 \mod 13$ (c) $(13+17) \cdot 5 \mod 15$ (d) $486 \cdot 30 \mod 24$
- (e) $484 \cdot 2411 \mod 24$

Question 6

Soient A et B des sous-ensembles d'un ensemble E. Prouver que :

$$A \cup B = E$$
 si et seulement si $\overline{A} \subset B$.