CS225 Assignment 6 Solution Set

EECS, Oregon State University

Summer, 2012

4.3 Recursive Definitions

Textbook 4.3

2. Find f(1), f(2), f(3), f(4), and f(5) if f(n) is defined recursively by f(0) = 3 and for n = 0, 1, 2, ...

Solution:

a).
$$f(n+1) = -2f(n)$$
.

$$f(1) = -2f(0) = -2 * 3 = -6,$$

$$f(2) = -2f(1) = -2 * (-6) = 12,$$

$$f(3) = -2f(2) = -2 * (12) = -24,$$

$$f(4) = -2f(3) = -2 * (-24) = 48,$$

$$f(5) = -2f(4) = -2 * (48) = -96.$$

b).
$$f(n+1) = 3f(n) + 7$$
.

$$f(1) = 3f(0) + 7 = 3 * 3 + 7 = 16,$$

$$f(2) = 3f(1) + 7 = 3 * 16 + 7 = 55,$$

$$f(3) = 3f(2) + 7 = 3 * 55 + 7 = 172,$$

$$f(4) = 3f(3) + 7 = 3 * 172 + 7 = 523,$$

$$f(5) = 3f(4) + 7 = 3 * 523 + 7 = 1576.$$

- 8. Given a recursive definition of the sequence $\{a_n\}$, $n=1,2,3,\ldots$ if Solution:
 - a). $a_n = 4n 2$. Basis Step: Specify a_1 by $a_1 = 4 * 1 - 2 = 2$. Recursive Step: Give a rule for finding a_{n+1} from a_n , for $n \ge 1$:

$$a_{n+1} = 4(n+1) - 2$$

= $4n + 4 - 2$
= $4n - 2 + 4$
= $a_n + 4$

b). $a_n = 1 + (-1)^n$. Basis Step: Specify a_1 by $a_1 = 1 + (-1)^1 = 0$. Recursive Step: Give a rule for finding a_{n+1} from a_n , for $n \ge 1$:

$$a_{n+1} = 1 + (-1)^{n+1}$$

$$= 1 + (-1)^n (-1)$$

$$= 1 + [((-1)^n + 1) - 1] (-1)$$

$$= 1 + (a_n - 1)(-1)$$

$$= 2 - a_n.$$

c). $a_n = n(n+1)$. Basis Step: Specify a_1 by $a_1 = 1(1+1) = 2$. Recursive Step: Give a rule for finding a_{n+1} from a_n , for $n \ge 1$:

$$a_{n+1} = (n+1)[(n+1)+1]$$

= $n(n+1) + n + (n+1) + 1$
= $a_n + 2n + 2$.

d). $a_n = n^2$. Basis Step: Specify a_1 by $a_1 = 1^2 = 1$. Recursive Step: Give a rule for finding a_{n+1} from a_n , for $n \ge 1$:

$$a_{n+1} = (n+1)^2$$

= $n^2 + 2n + 1$
= $a_n + 2n + 1$.

24. Given a recursive definition of *Solution:*

a). the set of odd positive integers. Basis Step: $1 \in S$. Recursive Step: If $x \in S$, then $x + 2 \in S$.

b). the set of positive integer power of 3. Basis Step: $3 \in S$. Recursive Step: If $x \in S$, then $3x \in S$.

c). the set of polynomials with integer coefficients. Basis Step: $0 \in S$.

Recursive Step: If $p(x) \in S$, then $p(x) + cx^n \in S$, where $c \in Z$, $n \in Z$, and $n \ge 0$.

(Z is the set of integers.)

26. a) Let S be the subset of the set of ordered pairs of integers defined by Basis Step: $(0,0) \in S$. Recursive Step: If $(a,b) \in S$, then $(a+2,b+3) \in S$, and $(a+3,b+2) \in S$. List the elements of S produced by the first five applications of the recursive definition.

Solution:

```
1): (2,3),
                (3,2);
2): (4,6),
                (5,5),
                          (6,4);
3): (6,9),
                          (8,7),
                (7,8),
                                     (9,6);
4): (8,12),
                (9, 11),
                          (10, 10),
                                     (11, 9),
                                                (12, 8);
5): (10,15),
               (11, 14),
                          (12, 13),
                                     (13, 12),
                                               (14,11), (15,10).
```

- 28. Give a recursive definition of each of these sets of ordered pairs for positive integers. [Hint: Plot the points in the set in the plane and look for lines containing points in the set]. Solution:
 - a). $S = \{(a, b) | a \in \mathbf{Z}^+, b \in \mathbf{Z}^+, \text{ and } a + b \text{ is odd.} \}$ Solution:

Basis Step: $(1,2) \in S$.

Recursive Step: If $(a, b) \in S$, then $(a, b + 2) \in S$, $(a + 2, b) \in S$, and $(a + 1, b + 1) \in S$.

All elements put in S satisfy the condition, because (1,2) has an odd sum of coordinates, and if (a,b) has an odd sum of coordinates, then so do (a+2,b), (a,b+2), and (a+1,b+1).

Conversely, we show by induction that if a+b is odd, then $(a,b) \in S$. If the sum is 3 (3 is the basis step because it is the smallest possible sum of a and b), then (a,b) = (1,2), and the basis step put (a,b) in to S. Otherwise the sum is at least 5, and at least one of (a-2,b), (a,b-2), and (a-1,b-1) must have positive integer coordinates whose sum is an odd number smaller than a+b, and therefore must be in S. Then one application of the recursive step shows that $(a,b) \in S$.

32.a) Give a recursive definition of the function ones(s), which counts the number of ones in a bit string s. (A bit string is a string of zeros and ones.) Solution:

Let $\Sigma = \{0, 1\}$. The function is defined by:

Basis Step: $ones(\lambda) = 0$, where λ is the empty string containing no symbols.

Recursive Step: If $x \in \Sigma$, and $w \in \Sigma^*$, then ones(wx) = ones(w) + x, where x is a bit: either 0 or 1.

 $(\Sigma^* \text{ is the set of } strings \text{ over the alphabet } \Sigma \text{ and } \Sigma^* \text{ contains } \lambda. \text{ Note that } \lambda x \text{ is equal to } x.)$

4.4 Structural Induction

Textbook 4.3

12. Prove that $f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1}$ when n is a positive integer. Solution:

Let
$$P(n)$$
 be $f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1}$.
Basis Step: $f_1^2 = f_1 * f_2$ is true, because $f_1 = 1, f_2 = 1$, and $f_1^2 = 1 = 1 \cdot 1 = f_1 * f_2$.

Recursive Step: We use mathematical induction. Assuming P(n) is true, we need to prove P(n+1) is true. That is, assuming $f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1}$, we want to show $f_1^2 + f_2^2 + \cdots + f_n^2 + f_{n+1}^2 = f_{n+1} f_{n+2}$. We show that

$$f_1^2 + f_2^2 + \dots + f_n^2 + f_{n+1}^2 = (f_1^2 + f_2^2 + \dots + f_n^2) + f_{n+1}^2$$

$$= f_n f_{n+1} + f_{n+1}^2 \qquad \text{Inductive Hypothesis}$$

$$= f_{n+1}(f_n + f_{n+1}) \qquad \text{Factorization}$$

$$= f_{n+1} f_{n+2} \qquad \text{Definition of Fibonacci number}$$

26. c) Let S be the subset of the set of ordered pairs of integers defined by Basis Step: $(0,0) \in S$.

Recursive Step: If $(a, b) \in S$, then $(a + 2, b + 3) \in S$, and $(a + 3, b + 2) \in S$. Use structural induction to show that 5|a + b when $(a, b) \in S$. Solution:

Basis Step: This holds for the basis step because 5|(0+0=0).

Recursive Step: In the recursive step, we need to show that if 5|a+b holds, then this also holds for the elements obtained from (a,b). Suppose a+b=5k for some integer k. Then 5|(a+2)+(b+3), because (a+2)+(b+3)=a+b+5=5k+5=5(k+1), where k+1 is also an integer. Similarly, 5|(a+3)+(b+2), because (a+3)+(b+2)=a+b+5=5k+5=5(k+1), where k+1 is also an integer. This completes our structural induction proof.

43. Use structural induction to show that $n(T) \ge 2h(T) + 1$, where T is a full binary tree, n(T) equals the number of vertices of T, and h(T) is the height of T. Solution:

Basis Step: For the full binary tree consisting of just a root the result is true, because n(T) = 1 and h(T) = 0, and $1 \ge 2 \cdot 0 + 1$.

Recursive Step: We use strong induction. Assume the result holds for all full binary trees smaller than T. We need to show that $n(T) \geq 2h(T) + 1$ for the full binary tree T. By the recursive definition of a full binary tree, T is formed by two subtrees T_1 and T_2 with the addition of a root node, where T_1 and T_2 are smaller than T. By the induction hypothesis, we know that the inductive hypothesis holds for T_1 and T_2 , i.e. $n(T_1) \geq 2h(T_1) + 1$ and $n(T_2) \geq 2h(T_2) + 1$. By the recursive definition of n(T) and n(

$$n(T) = 1 + n(T_1) + n(T_2)$$

$$\geq 1 + 2h(T_1) + 1 + 2h(T_2) + 1 \quad \text{Inductive Hypothesis}$$

$$\geq 1 + 2\max(h(T_1), h(T_2)) + 2 \quad \text{By } 2h(T_1) + 2h(T_2) \geq 2\max(h(T_1), h(T_2))$$

$$= 1 + 2(\max(h(T_1), h(T_2)) + 1) \quad \text{Factorization}$$

$$= 1 + 2h(T) \quad \text{Recursive definition of full binary tree}$$

This completes our induction proof.

44. Use structural induction to show that l(T), the number of leaves of a full binary tree T, is 1 more than i(T), the number of internal vertices of T. Solution:

Basis Step: The smallest full binary tree is a single root r. This has no internal vertices and the root itself is a leaf. So l(T) = 1 = 1 + i(T).

Recursive Step: We use strong induction. Assume the result holds for all full binary trees smaller than T. We need to show that the result holds for T. By the recursive definition of a full binary tree, T is formed by two subtrees T_1 and T_2 with the addition of a root node, where T_1 and T_2 are smaller than T. By the induction hypothesis, we know that the result holds for T_1 and T_2 , i.e., $l(T_1) = i(T_1) + 1$ and $l(T_2) = i(T_2) + 1$. We also know that $l(T) = l(T_1) + l(T_2)$ and $i(T) = i(T_1) + i(T_2) + 1$, where the addition of 1 comes from the root node. Hence,

$$l(T) = l(T_1) + l(T_2)$$
 Recursive definition of full binary tree
= $i(T_1) + 1 + i(T_2) + 1$ Induction Hypothesis
= $i(T) + 1$ Recursive definition of full binary tree

This completes our inductive step.

58.(pp.332) The set B of all **balanced strings of parentheses** is defined recursively by $\lambda \in B$, where λ is the empty string; $(x) \in B, xy \in B$ if $x, y \in B$.

Use induction to show that if x is a balanced string of parentheses, then the number of left parentheses equals the number of right parentheses in x.

Solution:

Basis Step: The result holds for the basis step because the empty string does not have left or right parentheses. That is λ has equal number of left and right parentheses, which is 0.

Recursive Step: Assume the results hold for $x, y \in B$, i.e., both x and y have equal numbers of left parentheses and right parentheses, we need to show that the result holds for all elements obtained from $x, y \in B$. Let l_x and l_y be the number of left parentheses of x and y respectively. Let r_x and r_y be the number of right parentheses of x and y respectively. Then we know that $l_x = r_x$ and $l_y = r_y$.

 $(x) \in S$ has 1 more left parentheses and 1 more right parentheses than x. That is, it has $l_x + 1$ left parentheses and $r_x + 1$ right parentheses. Since $l_x + 1 = r_x + 1$. (x) has the same number of left and right parentheses.

The number of left parentheses in string xy is l_x+l_y , while the number of right parentheses is r_x+r_y . By inductive hypothesis, we know that $l_x+l_y=r_x+r_y$. Hence, xy also has the same number of left parentheses and right parentheses. This completes our induction proof.