Computability and Complexity COSC 4200

Regular Expressions II

Theorem

A language is regular if and only if it can be described by a regular expression.

Now: DFA \rightarrow regular expression.

Let M be a DFA.

- Oreation of GNFA (Generalized NFA):
 - Add a new initial state s and a new final state f.
 - Put an ϵ -transition from s to the old initial state.
 - Put ϵ -transitions from all old final states to f.

Let M be a DFA.

- Oreation of GNFA (Generalized NFA):
 - Add a new initial state s and a new final state f.
 - Put an ϵ -transition from s to the old initial state.
 - Put ϵ -transitions from all old final states to f.
 - Replace transitions with multiple labels by ∪ regular expressions:

$$\bigcirc$$
 a, b is replaced by \bigcirc a \cup b \bigcirc

Let M be a DFA.

- Oreation of GNFA (Generalized NFA):
 - Add a new initial state s and a new final state f.
 - Put an ϵ -transition from s to the old initial state.
 - Put ϵ -transitions from all old final states to f.
 - Replace transitions with multiple labels by ∪ regular expressions:

$$\bigcirc$$
 a, b is replaced by \bigcirc a \cup b \bigcirc

• In a GNFA, all edges are labeled by regular expressions. Throughout the algorithm we will maintain a GNFA.

② Select a state $q_{\rm rip}$ other than s or f to remove. For every pair of states q_i, q_j where there is a transition from q_i to $q_{\rm rip}$ and a transition from $q_{\rm rip}$ to q_j , do the following.

2 Select a state $q_{\rm rip}$ other than s or f to remove. For every pair of states q_i, q_j where there is a transition from q_i to $q_{\rm rip}$ and a transition from $q_{\rm rip}$ to q_j , do the following.

New transition from q_i to q_j after q_{rip} is removed:

$$\overbrace{q_i} \xrightarrow{R_1(R_2)^*R_3 \cup R_4} \overbrace{q_j}$$

There are a few other special cases.

- **3** Repeat step 2 (removing states) until only s and f remain.
- The regular expression on the transition from s to f is equivalent to the original DFA.

See book for proof of correctness.

Remove
$$c: \rightarrow (s) \xrightarrow{\epsilon} (a) \xrightarrow{0} (b) \xrightarrow{11^*(00^* \cup \epsilon) \cup 00^*} (f)$$

Remove
$$d: \rightarrow S \xrightarrow{\epsilon} a \xrightarrow{0} b \xrightarrow{00^*} f$$

Remove
$$c: \rightarrow s \xrightarrow{\epsilon} a \xrightarrow{0} b \xrightarrow{11^*(00^* \cup \epsilon) \cup 00^*} f$$

Remove
$$b: \longrightarrow S \longrightarrow a \longrightarrow 0(11^*(00^* \cup \epsilon) \cup 00^*) \longrightarrow f$$

$$0(11^*(00^* \cup \epsilon) \cup 00^*) \longrightarrow f$$

Remove a: \rightarrow (s) (f)

Theorem

A language is regular if and only if it can be described by a regular expression.

We have now completed the proof:

Equivalent Definitions of Regularity

Theorem

Let A be any language. The following are equivalent.

- A is regular.
- A = L(M) for some DFA M.
- A = L(N) for some NFA N.
- A = L(N') for some NFA N' without ϵ -transitions.
- A = L(R) for some regular expression R.