

信息系统安全

数据安全保护 机密性保护

陈春华博士 chunhuachen@scut.edu.cn

2018 春季 华南理工大学 软件学院

大纲

- 数据机密性保护
 - 加密概念
 - 古典加密
 - 现代密码体制
 - 密钥管理
 - 数据隐藏概述

数据安全保护的概念

- 机密性保护
 - 保护数据不为非授权者(用户、实体或者过程)获取或使 用
- 完整性保护
 - 保护数据在传输或者存储过程中不受到非授权的篡改或者破坏
- 抗抵赖性保护
 - 指在传输数据时必需携带含有自身特质、别人无法复制的信息,防止数据的发送者或者接受者事后对自己行为的否认。

软件学院

数据安全保护的概念

- 可用性保护
 - 保证数据能够正常地使用
- 本讲重点关注数据的机密性保护

数据的机密性保护

- 可读性保护
 - 借助数据加密技术
- 可见性保护
 - 借助数据隐藏技术

数据加密基础

• 数据加密是隐藏数据的可读性,使得非授权用户不能直接了解数据的内容。

· 加密/密码系统包括: 明文空间、密文空间 、密钥空间和密码算法

加密算法分类

加密算法分类

古典密码体制

- 人类很早就使用密码,用于在战争中传递命令等信息,比如凯撒密码等
- 古典密码主要包括如下两种:
 - 替代密码 substitution cipher
 - 换位密码 transposition cipher
 - 在现代计算机的计算能力下,古典密码都是不安全的。
 - 多是因为密钥空间小,难以抵抗穷举密钥攻击

加密设备-简单历史

Battle of France with the Enigma machine

The Enigma machine

Alan Turing

The Lorenz SZ42 machine The bombe/ Bletchley Park

简单替代密码

- 原理: 将明文中每个位置的字母都用其他字母代替
- 凯撒密码算法:
 - 将明文字母替换成字母表中后面的距离为**5**的字母代替
 - CHINA → HMNSF
- 维吉利亚密码,一种较为复杂的替代密码

软件学院

简单替代密码-维吉利亚密码

· 维吉利亚方阵: 第i行以I开头

明文	a	b	С	d	•••	•••	V	W	y	×	Z
a	A	В	C	D			V	W	У	X	Z
b	В	C	D	E			W	У	X	Z	A
•											
i	I	J	K	L	•••	•••	D	E	F	G	Н
•											
Z	Z	A	В	C			U	V	W	X	У

简单替代密码-维吉利亚密码

- · 明文: data security; 密钥: basic
- 首先按照密钥长度将明文分解为若干节:

密钥	b	a	S	i	C
明	d	a	†	a	S
明文	е	С	u	r	i
	†	У			

简单替代密码-维吉利亚密码

- · 第二步:对每一个明文字母,利用密钥 basic和维吉利亚方阵进行替换操作
 - 明文首字母"d"对应密钥的"b"列,则选取维吉利亚方阵中的第"b"行"d"列中的字母(E)进行替换
 - C = EALIU FCMZK UY

替代密码

- 比简单替代密码复杂的替代密码还有
 - · 多名替换密码 (homophonic substitution cipher)
 - · 多字母密码 (poly alphabetic cipher)

换位密码

- 原理: 将明文中字母的位置重新排列
- 最简单: 将明文倒序输出
- 列换位法:
 - 将明文按密钥长度排列成明文矩阵
 - 按密钥字母在字母表中的顺序,输出明文中的 矩阵
 - 例子: 密钥 K = computer
 - 明文: WHAT CAN YOU LEARN FROM THIS BOOK

软件学院

换位密码-列换位法

密钥	C	0	M	P	U	T	E	R
序号	1	4	3	5	8	7	2	6
明文	W	Н	A	T	C	A	N	У
	0	U	L	E	A	R	N	F
	R	0	M	T	Н	I	5	В
	0	0	K	X	X	X	X	X

WORO NNSX

现代密码体制

加密: $C = E_{EK}(M)$ 解密: $M = D_{DK}(C)$

- · 其中,E为加密函数,EK为加密码密钥,D为解密函数,DK为解密密钥;
- · 按照EK与DK的关系,现代密码体制可分为
 - 对称密码体制,又称单钥密码体制
 - 非对称密码体制,又称公钥密码体制

对称密码体制

- ·加密与解密使用相同的密钥,即EK=DK
- 对称密码体制又可分为:
 - 流加密 stream cipher
 - RC4算法等
 - 块加密 block cipher
 - · DES算法和AES算法等

非对称密码体制

- ·加密使用的密钥和解密使用的密钥不同,即EK!=DK
- · 1976年,斯坦福大学科学家Whitfield Diffie and Martin Hellman提出公钥及可利用单向陷门函数构造等概念
- · MIT科学家Rivest, Shamir和Adleman提出了第一个可用的公钥算法,即RSA算法

密码体制的安全性分析

- 主要取决于两个方面:
 - 算法安全: 算法应该公开, 并接受分析与攻击
 - 密钥安全: 密钥保密, 不能泄露
- 密码体制安全性应当基于密钥的安全性, 而不是算法的安全保密。
- 机密性保护-加密的关键是保护密钥的安全

回顾@20160310

- 风险=脆弱性+威胁
- 攻击=威胁的具体实现
- 信息系统安全的概念与内涵
 - 通信安全,信息防御与信息保障
- 信息系统安全体系
 - 安全服务,安全机制,安全策略与安全管理
- 机密性服务与加密机制

回顾@20160310 现代密码体制

加密: $C = E_{EK}(M)$ 解密: $M = D_{DK}(C)$

- · 其中,E为加密函数,EK为加密码密钥,D为解密函数,DK为解密密钥;
- · 按照EK与DK的关系,现代密码体制可分为
 - 对称密码体制,又称单钥密码体制
 - 非对称密码体制,又称公钥密码体制

回顾@20160310 对称密码体制

- ·加密与解密使用相同的密钥,即EK=DK
- 对称密码体制又可分为:
 - 流加密 stream cipher
 - RC4算法等
 - 块加密 block cipher
 - · DES算法和AES算法等

对称体制:流加密

· 通常对明文与**密钥流**进行逐比特位(bit)进行加密操作(异或运算)

对称体制:流加密

- · 密钥流: 基于种子密钥K, 通过密钥流生成 函数不断产生
- 密钥流(生成函数)安全属性:
 - 具有很长的周期, **伪随机性**等扎
 - 通常来说,通过密钥流的一部分去寻找其他部分,在计算上是很困难的
- · 种子密钥K通常仅使用在一个通信会话中, 不可重复使用,即作为会话密钥。

一次一密流加密 (One time pad)

- · 密钥流使用**真随机源**产生的比特流(要求无周期性),且只使用一次进行加密
- · 所描述的加密即为一次一密算法,具有信息论意义上的无条件安全~
- 真随机源很难实现,密钥管理(保密传输)等很难实现,因此它不具有现实的可用性。
- 现代流加密通常使用线性反馈移位寄存器结构构 建密钥流生成函数,可以产生具有很长周期密钥 流。

对称体制: 块加密

· 将明文编码(如使用0,1编码),并按照一定 长度(m)进行分组,再将各组明文的编码分 别在密钥的控制下进行加密

块加密操作模式 mode of operation

- · 块加密算法可以在不同的操作模式下对明 文进行加密
- 推荐的标准操作模式有
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - ..., etc

ECB encryption

信息系统安全 2016 春季

Dr. Chunhua Chen chunhuachen@scut.edu.cn

ECB decryption

2016 春季

chunhuachen@scut.edu.cn

CBC encryption

信息系统安全 2016 春季

Dr. Chunhua Chen chunhuachen@scut.edu.cn

CBC decryption

Intro to InfoSec Spring 2013 Dr. Chunhua Chen chunhuachen@scut.edu.cn

33/117

对称体制: 块加密

- 块加密具有非常广泛的使用,除加密外, 还可以用来构造消息认证码算法
- 明文块的长度对安全具有至关重要的影响
 - 至少64bit, 推荐128bit或以上, 用于抵抗字 典攻击
- 块加密中的密钥是否应当作为会话密码使用,取决于所使用的操作模式
 - ECB模式中,应当作为会话密钥

块加密: DES加密算法

- Data Encryption Standard (DES), 即数据加密标准
 - IBM & 美国国家安全局 (NSA)
 - 块长度: 64位; 有效密钥长度: 56位
 - 含有机密设计元素 (S盒/NSA后门?)
- · 1976年被美国联邦政府的国家标准局确定 为联邦资料处理标准(FIPS),随后在国 际上广泛流传开来

安全性: DES加密算法

- 56位的有效密钥长度,密钥空间(256)太
- 攻击:
 - 微分密码分析
 - 线性密码分析
 - 暴力穷举破解 依次尝试所有可能的密钥
- · DES可以被暴力攻击
 - 2008年,SciEngines的 RIVYERA机器,时间 少于1天!!

安全性: 3DES加密算法

- · 在当前攻击下DES安全性不足,已经被AES加密 算法取代
- · 为了应对密钥太短的弱点,人们提出了3DES加密 算法;其中一种使用2个密钥,按如下结构进行加密
 - $c = e_{k1}(d_{k2}(e_{k1}(m)))$,其中e/d为DES加密和解密
- · 3DES虽然不是标准,但是美国国家标准技术研究 所确认3DES在2030年以前均可用于敏感政府信 息的加密

实验@DES加解密算法编程实现

• 时间, 待安排

块加密: AES加密

- · Advanced Encryption Standard,即高级数据加密标准
 - Joan Daemen和Vincent Rijmen设计,又称 Rijndael加密法
 - 固定块长度: 128位; 可变密钥长度: 128/192 或者256位
- · 2002年称为美国联邦政府标准; 目前是对 称密钥加密中最流行的算法之一

对称体制: 共享密钥问题

- · 对称体制的潜在假设:通信双方共享一个用于加密/解密的密钥K
- ·在一个规模为n的通信群体中
 - 如果任意两个实体共享一个密钥,则每个实体需要保密持有(n-1)个密钥,群体共需要n(n-1)个密钥(复杂度 O(n²))
 - 通常使用密钥分配中心(KDC),每个实体仅与 KDC共享密钥,用于降低密钥复杂度
- 在规模庞大时,密钥管理困难

非对称体制的基本思想

- · 特点:加密与解密使用不同的密钥EK!=DK
- 每个通信实体生成一个密钥对,满足
 - 两个密钥具有某种数学联系
 - 仅知道其中一个密钥,求解对应的另外一个密钥,**在计算上是困 难的**
 - 用其中一个密钥进行加密,可以用对应的另一个密钥进行解密
- 通信时,实体将自己加密密钥公开,又称公钥**PK**;将解密密钥保密持有,又称私钥**SK**。
- · 在一个规模为n的通信群体中
 - 每个实体仅需一个公私密钥对
 - 密钥规模相对对称体制要小

非对称密码体制(~历史)

- · 1976年,斯坦福大学科学家Whitfield Diffie and Martin Hellman提出公钥概念及可利用单向陷门函数构造的基本原理。
- 单向陷门函数多依赖于数学难题
 - 离散对数难题
 - 大整数素因子分解难题
- · 1977年,MIT科学家Rivest, Shamir和Adleman 提出了第一个可用的公钥算法,即RSA算法。

RSA公钥加密算法

- · RSA: 安全性依赖于大整数素因子分解难题。
- · RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准。
- · 为提高保密强度,一般推荐使用1024位,或者更高的 2048位。
- · 在分布式计算和量子计算机理论日趋成熟的今天, **RSA**加密安全性受到了挑战。

实验@深入了解RSA算法基本原理

• 时间,待安排

对称与非对称体制比较

- · 假设A与B要进行保密通信
- 对称加密
 - A (B)生成密钥,需要通过一个安全信道传送给B;如果密钥泄密,A与B均遭受损失。
 - 运算效率高,使用方便,加密效率高
- 非对称加密
 - A(和B)各自产生自己的一对密钥(即公钥PK和私钥SK)
 - ,A(B)将PK在公开信道传送给B(A),A(B)保密SK。
 - 用对方的公钥加密明文,进行保密传输
 - 运算效率低~~ 通常用来加密对称密钥

密钥管理

- 现代密码体制中,密码算法公开,一切安全依赖于密钥
 - 安全,不是弱密钥
 - 保密,没有泄露
- 密钥管理是信息系统安全至关重要的工作 ,包括密钥的生成,分配,使用,更新, 撤销和销毁等一系列过程

密钥管理

- · 密钥生成: 生成好的密钥, 密钥越长, 强 度就越大
 - 对称密钥: 伪随机比特, 随机性要好
 - 公私钥对,需要满足某种数学特征,比如如何 产生大素数**(课外阅读)**
- 密钥分配: 主要涉及密钥发送与验证
 - 网外分配: 可使用秘密信使携带密钥分配
 - 网内分配:用户之间直接分配或者通过KDC分配,涉及密钥分配协议(后续课程)

密钥管理

- 密钥控制使用
 - 限制密钥的主权人、合法使用期限、预定用途、预定算法等
- 密钥的保护与存储
 - 不以明文方式、物理安全
 - 秘密共享(课外阅读)
- 密钥的停用与更新 (后续课程)
- 密钥的销毁

Further Reading:

安全协议

- 参考:
 - 4.2.2节@《基于案例的网络安全技术与实践》
 - , 朱宏峰等, 清华大学出版社
 - 上课使用板书