This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-265488

(43)Date of publication of application: 01.11.1988

(51)Int.CI.

H05K 1/11

(21)Application number : 62-100362

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

23.04.1987

(72)Inventor: TSUNASHIMA EIICHI

(54) PRINTED CIRCUIT BOARD

(57)Abstract:

PURPOSE: To avoid the abnormal rise of a continuity resistance by a method wherein base is impregnated with epoxy resin and cured and the resin is brought into a C stage to form a board and a through-hole formed in the board is filled with solventless copper powder-resin system paste and its surface parts are coated with epoxy resin system paint.

CONSTITUTION: When a hole 3 drilled in a paper base epoxy resin laminated board 2 whose both surfaces are coated with copper foils 1 is coated or filled with copper powder paint 4 composed of copper powder-epoxy resin of an A stage, stencil printing is applied to one or two surfaces and the copper powder paint is dried in the air to be in a set-to-touch state. At that time, the time, the resin in the copper powder is in a B stage. Then epoxy resin is applied over surface conductors and the copper powder paint application parts of the hole and dried in the air to be in a set-to-touch state to formresin paint layers 5. At that time, the resin paint is in a B stage. Then the epoxy resin paint and the copper powder paint are simultaneously heated to bring them into a C stage. With this constitution, an initial resistance can be stabilized at a low value and the variation of a PCT treatment can be reduced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

19日本国/特許庁(JP)

10 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭63-265488

@Int.Cl.4

識別記号

松下電器産業株式会社

庁内整理番号

❸公開 昭和63年(1988)11月1日

H 05 K 1/11

N-6412-5F

審査請求 未請求 発明の数 1 (全3頁)

母発明の名称 印刷配線板

②特 顧 昭62-100362

②出 頭 昭62(1987)4月23日

70発明者

创出

细阜

瑛 一

大阪府門真市大字門真1006番地 松下電器產業株式会社内

大阪府門真市大字門真1006番地

20代 理 人 弁理士 中尾 敏男

外1名

明細

1、発明の名称

印刷配棒板

2、特許請求の範囲

基材にエポキシ樹脂を含浸して硬化して、前記 樹脂をCステイジとして得た基板に対して、銀絡 剤型の飼粉・樹脂系導体ペーストをスルーホール 内に埋め込み、その表面部をエポキシ樹脂系ペイ ントで被った機造の印刷配線板。

3、発明の詳細な説明

産業上の利用分野

本発明は、エレクトロニクス機器に用いる印刷 配線板に関するもので、とくにそのスルーホール 接続導体を顕粉ー樹脂系導体ペーストを安定化し て用いる構造に関する。

従来の技術

ブリント配線板の両面間のスルーホール接続について従来スルーホールめっき法の伯に、穴は閉塞されるが照ペイントの充填または塗りつけ、立体印刷などの方法による接続がおこなわれてき

た。しかしながら鍵は黄金製であり、マイグレイションによる信頼性低下の問題を発生する。銀にかえて餌を用いたペイントも開発されているが、導通抵抗が高く、また、断線の発生のため、スルーホール部への実際の適用は見送られていた。

発明が解決しようとする問題点

類ペイントをスルーホール接続に用いた場合の 導通低抗値の異常上昇をなくし、安定した接続機 途を得なければならない。

本発明は穴に充填した質ペイントの硬化行程の 改良によって、前記問題を解決しようとするもの である。

問題点を解決するための手段

本発明においては、孔および孔と表面写体との 接触部において塗布形成する解粉・側脂系ペイン トをまず80℃以下の温度で乾燥し、溶剤等の揮 発成分を放出させ、指触乾燥状態としたのち、B ステイジの状態に維持し、前記スルーホール孔の 類粉・樹脂系ペイントの表面に帽子をかぶせる形 で、エポキシ樹脂のAステイジのものを樹脂ペイ

特開時63-265488(2)

ントとして印刷する。そして、溶剤を除くための 乾燥処理を80℃以下でおこないBステイジの状態とし、最終的に、前記の餌ペイントならびに樹脂ペイントの国方のBステイジ状態のものを、健時に120~150℃。30~160分の加熱硬化をおこないCステイジの状態とする。

作用

■の孔での導体抵抗値変化率で評価する。次表は その評価結果を従来例と比較して示す。料定条件 は初期値と121℃、2昇圧のプレッシャークッ カーテストにより、温度と温度による劣化加速値 とである。

_	-
9 7	

銅	\$7	*	•	1	ン	1	. 🗯				用				澧			用				
																8	0	r		3	0	分
##	П	^	•	ジ	ン	۲			非	油用			***			用 .						
:							ŀ									8	Q	T		3	0	分
硬		化		1		庚	1	5	0	C	ì	2	0	A	1	5	0	r	1	2	0	Я
١.											•											
:							從 来 法							本発明方法								
		:			•																	
7	Ŋ	Ŋ	Ħ	ŧ.4	た (×	•	6	0	~	8	0	m	Ω		2	б	~	3	2	m	Ω
												·										
P	C	T	쳧	1	3 (及	1	5	0	~	2	8	0	%		0	• .	2. 1	~	1.	8	%
	ŧ	,	ħ	0	2	4	ĺ															
	•							: •														

脂ペイントでおおった同時硬化はさらに効果的で ある。 ・

実 旌 例

図に示すように、両面に銅箔1を被着せる紙巻 材エポキシ樹脂積層型基板2にあけた孔3に対し てAスティジ(油状)の鋼粉-エポキシ樹脂から 成る鋼粉ペイント4を塗布または充填する方法と して、片面・または両面からのステンシル印刷が 定量化するのに適している。 歳布後80℃25分 間、空気中で乾燥し指触乾燥の状態とする。顕粉 ペイントの樹脂はBステイジとなっている。次 に、スクリーン印刷の通常手法により、表面導体 と、孔郎における餌粉ペイント適用部分に重ねて エポキシ樹脂を印刷し70℃20分間、空気中で 乾燥し、指触乾燥の状態とし樹脂ペイント層5と する。樹脂ペイントはBステイジとなっている。 最後に、エポキシ樹脂ペイントと鋼粉ペイントと を同時に155℃120分の条件でCステイジの 状態とする。

この実施例の効果を、深さ1.0mの直径0.8

発明の効果

本発明によれば、実施例の結果からも明らかなように、初期抵抗値は低くまとまり、PCT処理の変化も少ない。

4、図面の簡単な説明

図は本発明実施例の印刷配線板の断面図である。

1 ······ 顕答、2 ······ 蓋板、3 ·······孔、4 ······ 顧 粉 - 樹 腫 ペイント、5 ······ 樹 脂 ペイント 層。 代理人の氏名 - 弁理士 - 中尾 敏 男 - ほか 1 名

特開昭63-265488(3)

1 - 銅 店 2 - 基 板 3 - ユ 4 - 網砂 - 樹脂ペイント 5 - 樹脂ペイント 号

