FEUILLE 5: PRINCIPE DU MAXIMUM. APPLICATION OUVERTE

Exercice 1. Soit f une fonction holomorphe sur un ouvert connexe Ω et ne s'annulant pas sur Ω . On suppose qu'il existe $a \in \Omega$ et $\varepsilon > 0$ tels que $|f(z)| \ge |f(a)|$ pour $|z - a| < \varepsilon$. Montrer que f est constante.

Exercice 2. Soit Ω un ouvert connexe borné de \mathbb{C} , f une fonction holomorphe sur Ω , continue sur $\overline{\Omega}$, non constante, telle que |f| est constant sur la frontière de Ω . Montrer que f admet un zéro dans Ω .

Exercice 3. Soit Ω un ouvert connexe de \mathbb{C} contenant le disque fermé $\{z \in \mathbb{C} | |z - z_0| \leq r\}$, et f une fonction holomorphe sur Ω telle que $f(z) \in \mathbb{R}$ si $|z - z_0| = r$. Montrer que f est constante (considérer e^{if}).

Exercice 4. (Principe du maximum sur un ouvert non borné)

Soit φ une fonction holomorphe sur l'ouvert $\Omega = \{z \in \mathbb{C}; 0 < \operatorname{Re} z < 1\}$ et pour $x \in]0,1[$, posons $M(x) = \sup_{y \in \mathbb{R}} |\varphi(x+iy)|$. Soient a < b deux réels dans]0,1[avec M(a) = M(b). On suppose de plus qu'il existe $C > 0, k \in \mathbb{N}$ tels que $|\varphi(z)| \le C(1+|z|)^k$ pour tout $z \in \Omega$.

- 1. On pose pour $\epsilon \in]0,1[$, $\varphi_{\epsilon}(z)=\varphi(z)(1+\epsilon z)^{-k-1}$. Soit $\eta>0$. Montrer qu'il existe $R_0(\epsilon,\eta)$ tel que pour tout $R>R_0(\epsilon,\eta)$, $\sup_{x\in[0,1]}|\varphi_{\epsilon}(x\pm iR)|\leq M(a)+\eta=M(b)+\eta$.
- 2. Montrer que si $R > R_0(\epsilon, \eta)$, pour tout $z \in [a, b] + i[-R, R]$, on a $|\varphi_{\epsilon}(z)| \leq M(a) + \eta = M(b) + \eta$.
- 3. Montrer que $\sup_{a < \text{Re } z < b} |\varphi(z)| = M(a) = M(b)$.

Exercice 5. Pour $\alpha \in U = \{z \in \mathbb{C}, |z| < 1\}$, on pose lorsque $z \in \overline{U}$, $\varphi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$.

- 1. Montrer que si |z| = 1, $|\varphi_{\alpha}(z)| = 1$.
- 2. Montrer (sans calculs!) que φ_{α} envoie U dans U.
- 3. Montrer que φ_{α} est une bijection de U sur U dont on déterminera l'inverse.
- 4. Soit $f: U \to U$ une fonction holomorphe bijective d'inverse holomorphe. Soit α un élément de $U, \beta = f(\alpha)$. Posons $g(z) = \varphi_{\beta} \circ f \circ \varphi_{\alpha}^{-1}(z)$ et $h = g^{-1}$. Montrer que $|g'(0)| \le 1, |h'(0)| \le 1$.
- 5. Déduire des questions précédentes que toute application holomorphe bijective d'inverse holomorphe de U sur U est de la forme $\varphi_{\beta}^{-1} \circ M_{\lambda} \circ \varphi_{\alpha}$, où M_{λ} est la multiplication par une constante λ de module 1.

Exercice 6. Soit U le disque unité ouvert et f une fonction holomorphe de U dans U. On suppose que f admet au moins deux points fixes, c'est-à-dire qu'il existe α et β dans U, $\alpha \neq \beta$, tels que $f(\alpha) = \alpha$ et $f(\beta) = \beta$. Montrer que f est l'identité de U. On pourra utiliser l'application φ_{α} définie dans l'exercice précédent pour se ramener au cas où l'un des points fixes est 0.

Exercice 7. Soient Ω un ouvert connexe de \mathbb{C} , $f:\Omega\to\Omega$ une fonction holomorphe. On suppose que $f\circ f=f$.

- 1. Montrer que soit $f' \equiv 0$ sur Ω , soit $f' \equiv 1$ sur $U = f(\Omega)$.
- 2. Lorsque f' n'est pas identiquement nulle, montrer que $f' \equiv 1$ est constante sur Ω .
- 3. Montrer que f est une constante ou l'identité.