POLITECHNIKA POZNAŃSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT AUTOMATYKI I INŻYNIERII INFORMATYCZNEJ

Konrad Dysput

PRACA DYPLOMOWA INŻYNIERSKA

Wirtualny system plików zarządzający przechowywaniem i synchronizacją danych w chmurze

Promotor: dr Andrzej Sikorski

Spis treści

1	Weta	p	2		
1.	1.1.	Wirtualny system plików	2		
	1.2.	Cel i zakres pracy	2		
2.	Fukr	ncjonalności systemu	3		
	2.1.	Porównanie systemów plików NTFS	3		
	2.2.	Porównanie systemów plików SMB	3		
	2.3.	Porównanie systemów plików FAT32	3		
	2.4.	Usługa Blob Azure Storage	3		
3.	Proj	ekt wirtualnego systemu plików	4		
	3.1.	System katalogów	4		
	3.2.	Menadzer danych	4		
	3.3.	Udostępniane funkcje	4		
4.	Impl	ementacja systemu	5		
	4.1.	Architektura systemu	5		
	4.2.	Standardy architektury	6		
	4.3.	Przepływ danych	6		
	4.4.	Użyte biblioteki	6		
	4.5.	Komunikacja z chmurą danych Azure	8		
5 .	Test	y, wdrożenia oraz scenariusze użycia	9		
6.	. Zakończenie				
Ri	Ribliografia 11				

1. Wstęp

Systemy archiwizacji danych w związku z coraz większą ilością przetwarzanych informacji zyskały na ogromnej popularności.

1.1. Wirtualny system plików

1.2. Cel i zakres pracy

2. Fukncjonalności systemu

- 2.1. Porównanie systemów plików NTFS
- 2.2. Porównanie systemów plików SMB
- 2.3. Porównanie systemów plików FAT32
- 2.4. Usługa Blob Azure Storage

3. Projekt wirtualnego systemu plików

- 3.1. System katalogów
- 3.2. Menadżer danych

3.3. Udostępniane funkcje

```
public void CodeTemplate(templateValue value, float valueNumber)

var temp = 1;
var stringExample = "strig";
}
```

Listing 3.1. Code example

4. Implementacja systemu

W celu realizacji poszczególnych założeń projektowych został wykonany złożony program przy użyciu platformy .NET w wersji 4.6. Część serwerowa aplikacji została napisana w języku C# 6.0, a widoki użytkownika została stworzone przy pomocy języków SCSS, JavaScript oraz HTML. W celu zmniejszenia złożoności oraz kosztów utrzymania projektu zdecydowano się na rozbicie architektury na cztery moduły. Każdy z wyodrębnionych modułów ma za zadanie spełniać określoną czynność w architekturze systemu. Rozbicie projektu pozwala na łatwiejsze zarządzanie kodem oraz w przypadku dalszego rozwoju przez większą ilość programistów umożliwia na szybką aklimatyzacje. Zastosowanie warstw projektowych bardzo dobrze sprawdza się przy projektach dużej wielkości w przypadkach, gdy programista dąży do rozłożenia odpowiedzialności komponentów w poszczególnych modułach.

4.1. Architektura systemu

System został podzielony na cztery moduły:

Nazwa	Тур	Opis
Moduł aplikacji użytkownika	Aplikacja internetowa ASP.NET MVC	Aplikacja internetowa odpowiedzialna za sterowanie komunikacji pomiędzy in- terfejsem użytkownika na stronie inter- netowej, a logiką aplikacji.
Moduł logiki biznesowej	Biblioteka klas	Aplikacja biblioteczna odpowiedzialna za kontrolowanie przepływu informacji pomiędzy aplikacją internetową, do której użytkownik wysyła żądania, a bazą danych na której wykonywane są operacje pobrania danych niezbędnych do stworzenie i wyświetlenia widoku użytkownikowi.
Moduł bazodanowy	Biblioteka klas	Aplikacja zawierające modele struktury bazodanowych potrzebnych do stworzenia bazy danych (eng. code-first)oraz operacji na nich przy użycia języka zapytań funkcyjnych LINQ.
Moduł testów	Projekt testów jednostkowych	Aplikacja zawierająca scenariusze testowe oraz testy sprawdzające poprawność działania kodu poprzez sprawdzanie oczekiwanego wyjścia z metod.

W celu realizacji aplikacji użytkownika zastosowano wzorzec architektoniczny Model-View-Controller (MVC), który zakłada dodatkowy podział projektu ASP.NET MVC na trzy dodatkowe warstwy.

4.2. Standardy architektury

4.3. Przepływ danych

4.4. Użyte biblioteki

W celu łatwiejszego korzystania z dostępnych kolekcji danych oraz skorzystania ze stworzonych modułó

Biblioteka	Moduły	Opis
Automapper	— Moduł aplikacji użytkownika — Moduł aplikacji biznesowej	biblioteka umożliwiająca mapowanie pomiędzy obiektami różnego typu np. modeli bazodanowych na modele widoków
Unity	— Moduł aplikacji użytkownika	biblioteka umożliwiająca wstrzykiwanie struktur danych. Została użyta w związki z zastosowaniem wzorca architektonicznego odwróconego sterowania (ang. Inversion of Control), aby wstrzykiwać serwisy do przetwarzania logiki biznesowej aplikacji
Entity Framework	 — Moduł aplikacji użytkownika — Moduł logiki biznesowej — Moduł dostępu do danych bazodanowych 	biblioteka umożliwiająca operacje na kolekcjach danych oraz tworzenie ich.
Microsoft Identity	— Moduł aplikacji użytkownika	Biblioteka zapewniająca aplikacji użytkownika zestaw metody umożliwiających autoryzacje oraz uwierzytelnienie
Newtonsoft Json.NET	— Moduł aplikacji użytkownika	biblioteka umożliwiająca zamianę dowolnego typu obiekt na tekst w formacie JSON
Automapper	— Moduł aplikacji użytkownika — Moduł aplikacji biznesowej	biblioteka umożliwiająca mapowanie pomiędzy obiektami różnego typu np. modeli bazodanowych na modele widoków

Dodatkowo w celu łatwiejszego użytkowania wymienionych bibliotek, zostały stworzone pomocnicze atrybuty, umożliwiające w prosty oraz szybki sposób wykorzystanie funkcjonalności biblioteki. Do tej listy należy zaliczyć:

- **AutomapAttribute** Atrybut stworzony w celu zamiany zwracanego z kontrolera z modelu bazodanowego na model widoku zaraz po przetworzeniu logiki znajdującej się w akcji.
- **AjaxAttribute** Atrybut umożliwiający dostęp do danej akcji tylko poprzez użycie asynchronicznego zapytania AJAX (Asynchronous JavaScript and XML). Użycie atrybutu umożliwi nie wykonanie się logiki zawartej w akcji poprzez zapytanie inne niż AJAX.

4.5. Komunikacja z chmurą danych Azure

5. Testy, wdrożenia oraz scenariusze użycia

6. Zakończenie

Bibliografia

[1] Ksi??ka