International Rectifier

Typical Applications

• Industrial Motor Drive

Features

- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- · Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

This design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

IRF3007SPbF IRF3007LPbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	62	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	44	Α
I_{DM}	Pulsed Drain Current ①	320	
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	120	W
	Linear Derating Factor	0.8	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	290	mJ
E _{AS} (6 sigma)	Single Pulse Avalanche Energy Tested Value @	946	Ī
I _{AR}	Avalanche Current①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy®		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.25	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted,steady state)**		62	

^{**} This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994.

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.084		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		10.5	12.6	mΩ	V _{GS} = 10V, I _D = 48A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
9fs	Forward Transconductance	180			S	V _{DS} = 25V, I _D = 48A
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 75V, V_{GS} = 0V$
				250	· ·	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
lass	Gate-to-Source Forward Leakage			200	nA .	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-200	117 ($V_{GS} = -20V$
Qg	Total Gate Charge		89	130		$I_D = 48A$
Q _{gs}	Gate-to-Source Charge		21	32	nC	$V_{DS} = 60V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		30	45		$V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 38V$
t _r	Rise Time		80		no	$I_D = 48A$
t _{d(off)}	Turn-Off Delay Time		55		ns	$R_G = 4.6\Omega$
t _f	Fall Time		49			V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5		nH	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package and center of die contact
C _{iss}	Input Capacitance		3270			V _{GS} = 0V
Coss	Output Capacitance		520		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		78			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		3500]	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		340]	$V_{GS} = 0V, V_{DS} = 60V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance ©		640		1 1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V$

Source-Drain Ratings and Characteristics

9										
	Parameter	Min.	Тур.	Max.	Units	Conditions				
Is	Continuous Source Current			00@		MOSFET symbol				
	(Body Diode)		80®	A	showing the					
I _{SM}	Pulsed Source Current		3	000			000	000		integral reverse
	(Body Diode) ①			320		p-n junction diode.				
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 48A$, $V_{GS} = 0V$ ④				
t _{rr}	Reverse Recovery Time		85	130	ns	$T_J = 25^{\circ}C$, $I_F = 48A$, $V_{DD} = 38V$				
Q _{rr}	Reverse Recovery Charge		280	420	nC	di/dt = 100A/µs ④				
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)								

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $\begin{tabular}{ll} \hline \& Starting $T_J=25^\circ$C, $L=0.24mH$\\ $R_G=25\Omega$, $I_{AS}=48A$, $V_{GS}=10V$ (See Figure 12). \\ \end{tabular}$
- ③ $I_{SD} \le 48A$, $di/dt \le 330A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 175^{\circ}C$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ ^{\textcircled{\$}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.

International TOR Rectifier

IRF3007S/LPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance Vs. Drain Current

International TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF3007S/LPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Normalized On-Resistance Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs.Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche. D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{\text{thJC}}(D, t_{\text{av}})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \triangle T / \; Z_{thJC} \\ I_{av} &= 2\triangle T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

International IOR Rectifier

IRF3007S/LPbF

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

S	DIMENSIONS					
№ B 0	MILLIMETERS		INC	O T E S		
L	MIN.	MAX.	MIN.	MAX.	E S	
Α	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
b	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	5	
ь2	1,14	1,78	.045	.070		
b3	1,14	1,73	.045	.068	5	
С	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1,14	1.65	.045	.065		
D	8,38	9.65	.330	.380	3	
D1	6.86	-	.270		4	
E	9.65	10.67	.380	.420	3,4	
E1	6,22	-	.245		4	
е	2,54	BSC	.100	BSC		
Н	14,61	15,88	.575	.625		
L	1.78	2.79	.070	.110		
L1	-	1.65	-	.066	4	
L2	-	1.78	-	.070		
L3	0.25 BSC		.010 BSC			
L4	4.78	5.28	.188	.208		

- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- DIMENSION DALE DO NOT INCLUDE WOLD FLASH, WOLD FLASH SHALL NOT EXCEED
 0.127 [0.05*] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST
 EXTREMES OF THE PLASTIC BODY AT DATUM H.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY.

 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIVENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB

D²Pak (TO-263AB) Part Marking Information

- 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

International TOR Rectifier

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

Notes

- 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 07/2010

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.