EE 4211 Computer Vision

Lecture 3A: Image enhancement (Frequency)

Semester A, 2020-2021

Schedules

Week	Date	Topics
1	Sep. 4	Introduction/Imaging
2	Sep. 11	Image enhancement in spatial domain
3	Sep. 18	Image enhancement in frequency domain (HW1 out)
4	Sep. 25	Morphological processing
5	Oct. 2	Image restoration(HW1 due)
6	Oct. 9	Image restoration
7	Oct. 16	Midterm (no tutorials this week)
8	Oct. 23	Edge detection (HW2 out, illustrate the project)
9	Oct. 30	Image segmentation (HW2 due)
10	Nov. 6	Face recognition with PCA, LDA (tutorial on deep learning framework)
11	Nov. 13	Face recognition based on deep learning Image segmentation based on deep learning (tutorial on coding)
12	Nov. 20	Object detection with traditional methods (Quiz) Object detection based on deep learning
13	Nov. 27	Project presentation
14	Dec. 4	Review and Summary

Spatial Domain vs. Frequency Domain

- Spatial Domain (image plane)
 - Techniques are based on direct manipulation of pixels in an image
- Frequency Domain
 - Techniques are based on modifying the spectral transform (in our course, we'll use Fourier transform) of an image
- There are some enhancement techniques based on various combinations of methods from these 2 domains

Spatial Domain Topics

- Point processing Gray values change without any knowledge of its surroundings (Part I)
 - Log (spectrum), power-law, linear (choose suitable transforms)
 - Histogram Equalization (pdf->cdf->transformation) (calculation)

Spatial Domain Topics

- Neighborhood processing Gray values change depending on the gray values in a small neighborhood of pixels around the given pixel (Part II)
 - Smoothing filters
 - Median filters
 - Sharpening

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

0	-1	0	-1	-1	-1
-1	5	-1	-1	9	-1
0	-1	0	-1	-1	-1

Spatial Domain Topics

0	0	0
0	1	0
0	0	0

Has clear physical meaning: Calculate four direction gradients and also preserve the original value

$$= 5 f(x, y) - f(x+1, y) - f(x-1, y) - f(x, y+1) - f(x, y-1)$$

What is a Transform?

- Transforms are decompositions of a function f(x) into some basis functions $\Phi(x,u)$
- Fourier's Idea in 1807: Periodic functions could be represented as a weighted sum of sines and cosines

The right one can be represented by a weighted sum of the left ones

1D Fourier Transform

Forward Transform

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} dx$$

Inverse Transform

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} du$$

Discrete Fourier Transform (DFT)

The Fourier Transform of a discrete function (DFT) of one variable, f(x), x=0,1,...M-1, is given by

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux/M}$$

The Inverse DFT is

$$f(x) = \sum_{u=0}^{M-1} F(u) e^{j2\pi ux/M}$$

Discrete Fourier Transform (DFT)

The Euler's formula:

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux/M}$$

By substituting the Euler formula, we can write the DFT as:

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) [\cos(2\pi ux/M) - j\sin(2\pi ux/M)]$$

The domain of values of u is the frequency domain

Example: 1D FT

Reminder transform pair – definition

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} dx$$
$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} du$$

Example

$$f(x) = \begin{cases} 1, & |x| < \frac{X}{2}, \\ 0, & |x| \ge \frac{X}{2}. \end{cases}$$

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux}dx$$

$$= \int_{-X/2}^{X/2} e^{-j2\pi ux}dx \qquad \left[\frac{e^{-j2\pi ux}}{-j2\pi u}\right]_{-X/2}^{X/2}$$

$$= \frac{1}{-j2\pi u} [e^{-j2\pi uX/2} - e^{j2\pi uX/2}]$$

$$= X \frac{\sin(\pi X u)}{(\pi X u)} = X \operatorname{sinc}(\pi X u).$$

$\int \cos(x)dx$	$\sin(x)$
$\int \sin(x)dx$	$-\cos(x)$
$\int x \cos(x) dx$	$\cos(x) + x\sin(x)$
$\int x \sin(x) dx$	$\sin(x) - x\cos(x)$
$\int x^2 \cos(x) dx$	$2x\cos(x) + (x^2 - 2)\sin(x)$
$\int x^2 \sin(x) dx$	$2x\sin(x) - (x^2 - 2)\cos(x)$
$\int e^{\alpha x} dx$	$\frac{e^{ax}}{a}$
$\int xe^{\alpha x}dx$	$e^{ax} \left[\frac{x}{a} - \frac{1}{a^2} \right]$
$\int x^2 e^{\alpha x} dx$	$e^{ax} \left[\frac{x^2}{a} - \frac{2x}{a^2} - \frac{2}{a^3} \right]$
$\int \frac{dx}{\alpha + \beta_X}$	$\frac{1}{\beta}\ln \alpha+\beta x $
$\int \frac{dx}{\alpha^2 + \beta^2 x^2}$	$\frac{1}{\alpha\beta}\tan^{-1}(\frac{\beta x}{\alpha})$

Example: 1D FT

$$f(x) = \begin{cases} 1, & |x| < \frac{X}{2}, \\ 0, & |x| \ge \frac{X}{2}. \end{cases}$$

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux}dx$$

$$= \int_{-X/2}^{X/2} e^{-j2\pi ux}dx$$

$$= \frac{1}{-j2\pi u} [e^{-j2\pi uX/2} - e^{j2\pi uX/2}]$$

$$= X \frac{\sin(\pi X u)}{(\pi X u)} = X \operatorname{sinc}(\pi X u).$$

2-D Fourier Transform

1-D Fourier Transform
$$F(u)=\int_{-\infty}^{\infty}f(x)e^{-j2\pi ux}\,dx$$

$$f(x)=\int_{-\infty}^{\infty}F(u)e^{j2\pi ux}\,du$$

Forward Transform

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy$$

Inverse Transform

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

Important Fourier Transform Pairs

rectangle centred at origin with sides of length *X* and *Y*

When X is larger than Y, then the value

Find
$$F(u,v) = \int \int f(x,y)e^{-j2\pi(ux+vy)}dxdy,$$
 $f(x,y) = \int_{-X/2}^{X/2} e^{-j2\pi ux}dx \int_{-Y/2}^{Y/2} e^{-j2\pi vy}dy,$ separability
$$= \left[\frac{e^{-j2\pi ux}}{-j2\pi u}\right]_{-X/2}^{X/2} \left[\frac{e^{-j2\pi vy}}{-j2\pi v}\right]_{-Y/2}^{Y/2},$$

$$= \frac{1}{-j2\pi u} \left[e^{-juX} - e^{juX}\right] \frac{1}{-j2\pi v} \left[e^{-jvY} - e^{jvY}\right],$$

$$= XY \left[\frac{\sin(\pi Xu)}{\pi Xu}\right] \left[\frac{\sin(2\pi Yv)}{\pi Yv}\right]$$

$$= XY \sin(\pi Xu) \sin(\pi Yv).$$

Important Fourier Transform Pairs

Important Fourier Transform Pairs

$$f(x,y) = \delta(x,y) = \delta(x)\delta(y)$$

$$F(u,v) = \int \int \delta(x,y)e^{-j2\pi(ux+vy)} dxdy$$
$$= 1$$

$$\int_{-\infty}^{\infty} f(t) \delta(t) dt = f(0). \qquad \int_{-\infty}^{\infty} f(t) \delta(t-t_0) dt = f(t_0)$$

$$f(x,y) = \frac{1}{2}(\delta(x,y-a) + \delta(x,y+a))$$

2-D Discrete Fourier Transform

The Fourier Transform of a discrete function (DFT) of two variables, f(x, y), an image of size MxN, where x=0,1,...M-1 and y=0,1,...N-1 is given by

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

■ The Inverse 2-D DFT is

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

2-D Discrete Fourier Transform

$$F(u,v) = R(u,v) + jI(u,v) = |F(u,v)|e^{j\phi(u,v)}$$

Fourier Spectrum

$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2}$$

Phase

$$\phi(u, v) = \tan^{-1} \left[\frac{I(u, v)}{R(u, v)} \right]$$

Power Spectrum

$$P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v)$$

2D DFT Example (1)

Calculation

$$H(u,v) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} h(x,y)e^{-j2\pi(xu+yv)}$$

$$= h(0,0) + h(-1,0)e^{j2\pi u} + h(1,0)e^{-j2\pi u} + h(0,-1)e^{j2\pi v} + h(0,1)e^{-j2\pi v}$$

$$= \frac{1}{3} + \frac{1}{6}e^{j2\pi u} + \frac{1}{6}e^{-j2\pi u} + \frac{1}{6}e^{j2\pi v} + \frac{1}{6}e^{-j2\pi v}$$

$$= \frac{1}{3} + \frac{1}{6} \cdot 2\cos 2\pi u + \frac{1}{6} \cdot 2\cos 2\pi v$$

2D DFT Example (2)

$$h(x,y) = \begin{bmatrix} 0.075 & 0.124 & 0.075 \\ 0.124 & 0.204 & 0.124 \\ 0.075 & 0.124 & 0.075 \end{bmatrix}$$

$$H(u,v) = 0.204 + 0.124 \cdot 2 \cdot \cos 2\pi u + 0.124 \cdot 2 \cdot \cos 2\pi v + 0.075 \cdot 2 \cdot \cos(2\pi u + 2\pi v) + 0.075 \cdot 2 \cdot \cos(2\pi u - 2\pi v)$$

2D DFT Example (3)

$$h(x,y) = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$H(u, v) = 9 - 2 \cdot \cos 2\pi u + 2 \cdot \cos 2\pi v - 2 \cdot \cos(2\pi u + 2\pi v) - 2 \cdot \cos(2\pi u - 2\pi v)$$

- In Matlab, the relevant functions for 2-D DFT are
 - fft2: take the DFT of a 2-D matrix
 - ifft2: take the inverse DFT of a 2-D matrix
 - fftshift: shift a transform to place the coefficient in the center


```
%% phase and magnitute
clc;
clear;
close all;
Il=imread('rectangle.tif');
F1=fft2(II);

F2=fftshift(F1);

S1=abs(F1);
S2=abs(F2);
S3= log(1+ abs(F2));

subplot(2,2,1);imshow(I1);title('Rectangle');
subplot(2,2,2);imshow(S1,[]);title('Fourier Spectrum');
subplot(2,2,3);imshow(S2,[]);title('Centered Spectrum');
subplot(2,2,4); imshow(S3,[]); title('Enhance Spectrum');
```

- Edges and shape transitions in gray values in an image contribute significantly to high-frequency content of its Fourier transform
- The boundary of spectrum represents high frequency information
- The center of spectrum represents low frequency information
- Regions of relatively uniform gray values in an image contribute to low frequency content of its Fourier transform

- Translation will not change spectrum, but change the phase
- Rotation will change spectrum and the phase
- The zero crossing of the spectrum is closer in the vertical direction because the rectangle is longer in that direction

subplot(3,4,4); imshow(R1); title('rectangle rotate 45 degree');

- High frequencies correspond to small image detail, shape edges.
- A shape edge will result in high energy perpendicular to the edge.

- The longitudinal periodic changes in the spatial domain are reflected on the X-axis of the spectrum
- The periodic change across horizon in the spatial domain is reflected on the Y-axis of the spectrum

- The closer in the center of the spectrum, the lower the frequency in spatial domain
- The farther in the center of the spectrum, the higher the frequency
- The changes of gray values are faster, then the spectrum are higher

Practice question 1

a-h b-e c-g d-f

Example

$$f(x,y) = \sin(2\pi x + 3\pi y) = \frac{1}{2j} \left(e^{j(2\pi x + 3\pi y)} - e^{-j(2\pi x + 3\pi y)} \right)$$

$$F\left\{ e^{j(2\pi x + 3\pi y)} \right\} = \iint e^{j(2\pi x + 3\pi y)} e^{-j2\pi(xu + yv)} dxdy$$

$$= \int e^{j2\pi x} e^{-j2\pi ux} dx \int e^{j3\pi y} e^{-j2\pi yv} dy$$

$$= \delta(u - 1)\delta(v - \frac{3}{2}) = \delta(u - 1, v - \frac{3}{2})$$
Likewise, $F\left\{ e^{-j(2\pi x + 3\pi y)} \right\} = \delta(u + 1, v + \frac{3}{2})$
Therefore,

 $F\{\sin(2\pi x + 3\pi y)\} = \frac{1}{2i} \left[\delta(u - 1, v - \frac{3}{2}) - \delta(u + 1, v + \frac{3}{2})\right]$

[X,Y]=meshgrid(-2:1/16:2,-2:1/16:2); f=sin(2*pi*X+3*pi*Y); imagesc(f); colormap(gray) Truesize, axis off;

Practice question 2

Match the spatial domain image to the Fourier magnitude image

1-d 2-b 3-a 4-e 5-c