

Agencia de Aprendizaje a lo largo de la vida

Codo a Codo inicial Clase 4

Les damos la bienvenida

Vamos a comenzar a grabar la clase

Herramientas que utilizamos en clases

PSeInt es una herramienta para asistir a un estudiante en sus primeros pasos en programación

Whimsical es el espacio de trabajo visual y colaborativo que ayuda a tu equipo a comunicarse a la velocidad del pensamiento ya que ofrece esquemas de base, diagramas de flujo, mapas mentales, notas adhesivas y documentos (beta) que son increíblemente rápidos.

Programación - Conceptos básicos

- Datos.
- Algoritmos.
 Características, diseño,
 verificación.
- Diagrama de flujo
- Desafíos.

Análisis y resolución de problemas

- Programa Informático.Concepto.
- Estructura de un programa.
- Metodologías para la resolución de problemas.
- Instalación de PSeint.
- Desafíos.

Instalacion de Software : Sintaxis y variables

- Variables y ejemplos.
- Sintaxis.
- Ejemplos.

Pensamiento Computacional

¿Qué es el pensamiento computacional?

- Es un proceso que permite abordar un problema complejo, comprenderlo y desarrollar las soluciones más adecuadas.
- El pensamiento computacional tiene 4 etapas, que las veremos a continuación.

Etapas del pensamiento computacional

- La descomposición: se trata de desarticular el problema complejo en unidades más chicas que resulten más fáciles de resolver.
- Reconocimiento de patrones: consiste en buscar similitudes o serie que se repiten dentro o fuera de la situación problemática
- La abstracción: es simplificar un problema complejo, dejando de lado los detalles pocos relevantes para centrar la atención en los datos importantes y definir un plan acotado.
- **El algoritmo:** es la definición de los pasos ordenados necesarios para la resolución del problema.

Habilidades del pensamiento computacional

El pensamiento computacional permite:

- Ampliar habilidades de comunicación.
- Aprender a trabajar con otros para lograr un objetivo común.
- Lidiar con problemas complejos y situaciones diversas.
- Poner en juego la creatividad.
- Desarrollar el pensamiento crítico y el razonamiento lógico.

EL PROBLEMA

Agencia de Aprendizaje a lo largo de la vida

Resolver Problema

Como mencionamos anteriormente los algoritmos resuelven problemas, pero ¿Cómo definimos a estos problemas? ¿Existenciales, pasionales, naturales?

¿Qué tipo de problemas se pueden resolver?

Computables

¿Qué métodos hay para resolver problemas computables?

 Metodología de la programación (centrado en los algoritmos)

Fases de resolución de problemas computables

Fases para resolver un problema computable

Las fases para resolver un problema computable son

- 1. Diseñar el programa.
- 2. Llevarlo a la computadora.

1. Diseñar el programa

El diseño de programa podemos resumirlo en los **siguientes pasos**

1.1 Análisis del problema

Es el análisis propiamente dicho

1.2 Diseño del algoritmo

 Es el diseño, lo que aprendimos en la clase pasada, el refinamiento paso a paso

1.3 Verificación manual del algoritmo

1.1 Análisis del problema

- El Análisis del problema, consiste en:
 - a. Definir y entender el problema.
 - b. Identificar los datos de entrada.
 - c. Identificar los datos de salida es decir qué voy a obtener como resultado.

1.1 Análisis del problema

- El primer paso a seguir para encontrar la solución a un problema computable es el análisis del problema.
- En el análisis del problema se **requiere** del máximo de **creatividad e imaginación.**
- Debido a que se busca una solución se debe examinar cuidadosamente el problema a fin de identificar que tipo de información es necesaria producir. Enseguida se deben identificar aquellos elementos de información ofrecidos por el problema y que resulten útiles para obtener la solución al problema.
- Finalmente, elaborar un procedimiento para producir los resultados deseados a partir de los datos, es decir, el algoritmo.

1.1 Análisis del problema

- Para identificar un problema existen variado métodos y son objetos de especialidades en resolución de problemas, por ejemplo:
 - Las entrevistas
 - Diagrama de Ishikawa
 - o El método de los 5 por qué

Resumido en un esquema conceptual

2. Llevarlo a la computadora

Llevar el diseño anterior a la compu consiste simplemente en:

- Codificación del algoritmo
- **Ejecución** del programa
- Verificación del programa (pruebas)
- Mantenimiento y documentación.

Un ejemplo de análisis

Miriam va a estudiar programación y para ello decide comprar dos libros, uno de algoritmos y otro de Python, quiere saber el monto total con la promoción que le llegó por correo ofreciéndole un descuento del 20% para la compra de ambos libros.

La fórmula a aplicar es:

costo = ((primerLibro+segundoLibro)*0.8)

Entendiendo el problema

Podemos deducir que **este problema busca una solución simple** recurriendo a un poco de matemáticas, pero para ello se deben identificar los precios de ambos libros.

Identificando las entradas y salidas

Entradas

- Costo del libro de algoritmos.
- Costo del libro de Python.

Salidas

Monto total a pagar.

Diseñar el algoritmo - DF

Codificar

```
Algoritmo compra_de_libros

Escribir "Costo del libro de algortimos"

Leer primerLibro

Escribir "Costo del libro de python"

Leer segundoLibro

costo = (primerLibro + segundoLibro) * 0.8

Escribir "El costo total sera: ", costo

FinAlgoritmo
```


Depurar

```
Algoritmo compra_de_libros
      Escribir "Costo del libro de algortimos"
                                                        PSeInt - Ejecutando proceso COMPRA_DE_LIBR...
                                                                                                   X
                                                                                              Leer primerLibro
                                                        *** Ejecución Iniciada. ***
      Escribir "Costo del libro de python"
4
                                                        Costo del libro de algortimos
5 •
      Leer segundoLibro
                                                       > 450
      costo = (primerLibro + segundoLibro) * 0.8
6
                                                        Costo del libro de python
      Escribir "El costo total sera: ", costo
                                                       > ww
  FinAlgoritmo
                                                        Lin 5 (inst 1): ERROR 120: No coinciden los ti
                                                        pos (SEGUNDOLIBRO).
```


Programa Informático

Agencia de Aprendizaje a lo largo de la vida

Programa informático - review de la 2da clase

Un programa informático es una secuencia de acciones (**instrucciones**) que manipulan un conjunto de objetos (**datos**).

¿Cómo se compone un programa?

- **Cabecera:** A modo de comentarios se suele especificar:
 - Nombre del programa
 - Fecha de creación
 - Autoría y versionado
- Funciones: Definición de funciones propias creadas por el programador para usarlas en varias ocasiones.
- **Declaraciones:** Definiciones y declaraciones de tipo
 - variables
 - constantes
 - nuevos tipos de datos

¿Cómo se compone un programa?

- Asignaciones: Valores iniciales de los identificadores declarados previamente.
- Entradas: Instrucciones para almacenar en memoria los valores de algunos identificadores.
- Control: Instrucciones de control de flujo del programa. Pueden ser:
 - Alternativas
 - Repetitivas
- Salidas: Instrucciones para devolver los resultados obtenidos.

Descargamos Pseint

Agencia de Aprendizaje a lo largo de la vida

PSeInt

Herramienta que nos permite dar los primeros pasos en programación, mediante pseudocódigo y complementado con diagrama de flujo.

Instalación

Instalación

Instalación

Configuración

Configuración

Configuración

Opciones del Lenguaje	×
No permitir utilizar variables o posiciones de arreglos sin inicializar	
Obligar a definir los tipos de variables	
Controlar el uso de ; al final de sentencias secuenciales	
Permitir concatenar variables de texto con el operador +	
✓ Habilitar funciones para el manejo de cadenas	
Permitir las palabras Y, O, NO y MOD para los operadores &, , ~ y %	
Utilizar indices en arreglos y cadenas en base 0	
Permitir utilizar variables para dimensionar arreglos	
✓ Permitir asignar con el signo igual (=)	
✓ Permitir definir funciones/subprocesos	
✓ Utilizar sintaxis flexible	
Permitir condiciones en lenguaje coloquial	
Limitar la estructura Según a variables de control numéricas	
✓ Permitir omitir el paso -1 en ciclos Para	
Usar diagramas de Nassi-Shneiderman	
Usar formas alternativas para Leer y Escribir en el diagrama	
Permitir utilizar acentos en nombres de variables	
✓ Preferir las palabras clave "Algoritmo" y "FinAlgoritmo"	
✓ Preferir las palabras clave "Función" y "FinFunción"	
✓ Permitir la variación "Repetir Mientras Que"	
✓ Habilitar estructura "Para Cada"	
Preferir "Repetir Mientras Que"	
Proteger contador del Para	
	√ Aceptar

Mi primer programa en PSelnt

Agencia de Aprendizaje a lo largo de la vida

El "Hola Mundo" en PSeInt

Conocemos la primera instrucción: Escribir

```
Algoritmo hola_mundo
Escribir "Hola mundo"
FinAlgoritmo
```

```
PSeInt - Ejecutando proceso HOLA_MUNDO — X

*** Ejecución Iniciada. ***

Hola mundo

*** Ejecución Finalizada. ***

DNo cerrar esta ventana Siempre visible Reiniciar
```


Desafío de clase

Utilizamos PseInt para desarrollar los siguientes algoritmos:

- Lavar 5 platos, de manera de dejarlos listos para la próxima vez.
- Preparamos una taza de té, obtenemos un té listo para tomar.

Lavar 3 platos

- 1. Inicio
- 2. Necesito 3 platos
- 3. Necesito agua en la pileta
- 4. Necesito detergente
- 5. Apilar plato 1
- 6. Apilar plato 2
- 7. Apilar plato 3
- 8. Colocar el agua en la pileta
- 9. Colocar el detergente
- 10. Lavar plato 1
- 11. Lavar plato 2
- 12. Lavar plato 3
- 13. Escurrir plato 1
- 14. Escurrir plato 2
- 15. Escurrir plato 3
- 16. Obtengo platos limpios
- 17. Fin

Preparar una taza de té

- 1. Inicio
- Necesito el recipiente, agua, te, cuchara.
- 3. Coloco agua caliente
- 4. Selecciono el tipo de infusión
- 5. Coloco la infusión en el agua
- 6. Coloco una cucharada de azúcar
- 7. Coloco una cucharada de azúcar
- 8. Coloco una cucharada de azúcar
- 9. Espero 5 minutos
- 10. Obtengo el té
- 11. Fin

Desafío para la clase que viene

- Como te habrás dado cuenta durante las tres clases anteriores diseñamos un programa:
 - analizamos un problema,
 - diseñamos el algoritmo y
 - lo verificamos con el diagrama de flujo
- Vas a utilizar el diseño del diagrama de flujo en la clase pasada (Clase 3) para llevarlo a la compu:
 - Para lograrlo utilizaremos PSeInt.

No te olvides de dar el presente

Recordá:

- Revisar la Cartelera de Novedades.
- Hacer tus consultas en el Foro.

Todo en el Aula Virtual.