1 數列

- 1. **數列的定義**:數列是由一系列數字按照一定的順序排列而成的集合。每個數字稱為數列的項,通常用符號 a_n 表示第 n 項。
- 2. **數列的表示法**:數列可以用括號表示,如 $(a_1, a_2, a_3, ...)$,或用尖括號表示,如 $< a_n >_{n=1}^{\infty}$ 。
- 3. **數列的類型:有限數列**和**無窮數列**。有限數列是指包含有限個數字的數列, 而無限數列則包含無窮多個數字。
- 4. **數列的第** n **項**:表示數列的第 n 項,除了可以直接寫出 a_n 的公式(如: $a_n = n^2$),還可以用遞迴公式來定義,如: $a_1 = 1, a_{n+1} = a_n + 2$ 。

例題:

- 1. 數列 $A:1,\frac{1}{2},\frac{1}{3},\ldots$,請寫出這個數列的第 n 項公式。
- 2. 已知一個數列 a_n 的遞迴公式為 $a_1 = 2, a_{n+1} = 3a_n + 1$,請求出他的一般式。
- 3. 假設有一個數列 $< a_n >$ 的前 n 項和為 $S_n = 2n^2 + 3n$,請求出 a_n 的公式。

2 極限

- 1. **數列的極限**:如果說 n 在趨近於無限大的時候,數列 a_n 的值趨近於某個固定的數 L,則稱 L 為數列 a_n 的極限,記作 $\lim_{n\to\infty}a_n=L$,或是 $a_n\to L$ 。
- 2. **發散與收斂**:如果數列的極限存在,則稱該數列為**收斂數列**;如果極限不存在,則稱為**發散數列**。如果計算結果為 $\frac{0}{0}$,則需要進一步化簡整理。
- 3. 極限的四則運算:

假設數列 $a_n \to A$ 和 $b_n \to B$,則:

- $\lim_{n \to \infty} (a_n + b_n) = A + B$
- $\lim_{n \to \infty} (a_n b_n) = A B$
- $\lim_{n \to \infty} (a_n b_n) = AB$
- 如果 $B \neq 0$,則 $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{A}{B}$
- 4. **夾擠定理**:如果有數列 $a_n \leq b_n \leq c_n$,且 $\lim_{n \to \infty} a_n = L$ 和 $\lim_{n \to \infty} c_n = L$,則 $\lim_{n \to \infty} b_n = L$ 。

例題:

1. 判斷以下數列是否收斂,如果是則求出極限:

(a)
$$a_n = \frac{1}{n}$$

(b)
$$b_n = \frac{n^2+1}{n^2-1}$$

(c)
$$c_n = 1, -1, 1, -1, \dots$$

(d)
$$d_n = \left(\frac{-1}{2}\right)^n$$

(e)
$$e_n = \frac{n^2 + 2n + 1}{3n + 2}$$

(f)
$$f_n = \frac{3n+2}{n^2+2n+1}$$

(g)
$$g_n = \left(2 - \frac{1}{n}\right) \left(3 + \frac{3}{n^2}\right)$$

(h)
$$h_n = \frac{n^2}{2n-1} - \frac{n^2}{2n+1}$$

- 2. 數列 $< a_n >$ 中, $a_1 = 0, a_{n+1} = a_n + 2n 1, n > 1$,求 a_{100}
- 3. 若數列 $< a_n >$ 的前 k 項和為 $S_k = 2^{k+1}(k^2 2k)$,請求出 a_{10} 。
- 4. 已知 A, B 皆為無窮數列,請選出正確的選項:
 - (a) 若 $\lim_{n \to \infty} a_n = A$,則 $\lim_{n \to \infty} a_{n+1} = A$
 - (b) 若 $\lim_{n\to\infty} a_n = A$,則 $\lim_{n\to\infty} a_{2n} = A$
 - (c) 若 $\lim_{n\to\infty} a_{2n} = A$,則 $\lim_{n\to\infty} a_n = A$
 - (d) 若 $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = A$,則 $\lim_{n\to\infty} a_{n+1} = A$
 - (e) 若 $\lim_{n\to\infty} a_n = A$,則 $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{A}$
- 5. 請計算 $\lim_{n\to\infty} \frac{2^{n-1}+5\cdot 3^{n+1}-6\cdot 4^{n-1}}{3\cdot 2^{n+1}-4\cdot 3^{n-1}+7\cdot 4^{n+1}}$ 。
- 6. 設 $< a_n >$ 收斂,且 $\lim_{n \to \infty} \frac{2^n + (-3)^n \cdot a_n}{2^n -3^n} = \frac{2}{3}$,請計算 $\lim_{n \to \infty} a_n$
- 7. 若多項式 x^n-1 除以 $x-\frac{1}{4}$ 的商為 $Q_n(x)$,餘式為 r_n ,求 $\lim_{n\to\infty} r_n$ 和 $\lim_{n\to\infty} Q_n(1)$ 。
- 8. 座標平面上,函數 $y = 2^{-x}$ 與 $y = \cos(2x + \pi) + \frac{1}{2}$ 的圖形在 y 軸右側的交點 由左而右依序為 $A_1, A_2, A_3...$,若以 x_k 表示 A_k 的座標,定義數列 $< c_n > = < x_{2n} x_{2n-1} >$,求 $\lim_{n \to \infty} c_n$