

www.ust.ac.kr

15장

RNN 소개

이 홍 석 (hsyi@kisti.re.kr) 한국과학기술정보연구원 슈퍼컴퓨팅응용센터

목차

Contents 1	PCA 소개
Contents 2	PCA 실습
Contents 3	PCA 적용 : 붓꽃데이터
Contents 4	MNIST 데이터 적용
Contents 5	혼동 행렬 연습 ॥
Contents 6	파마인디언 당료병 예측

01. RNN 개념 소개

이홍석 (hsyi@kisti.re.kr)

순환 신경망(RNN) 소개 (1)

• 미래를 예측하는 RNN 활용 분야

- 문장, 문서, 오디오 자동분석 등 자연어 처리 분야
- 감성분석 분야 (영화 리뷰를 읽어서 평가자의 느낌을 추출하는 것)
- 멜로디를 순식간에 작곡하는 음악 분야 (구글 마젠타 프로젝트)
- 주식, 교통흐름 등 시계열 데이터를 활용한 미래 예측

순환 신경망(RNN) 소개 (2)

- 가장 간단한 순환 신경망을 만들자. (뉴런 1개)
 - 지금 이 순간(t)에 입력 x(t)와 바로 직전의 출력 y(t-1)을 받아서 출력 y(t)한다.

순환 신경망(RNN) 소개 (3)

- 가장 간단한 순환 신경망을 만들자. (뉴런 1개)
 - 지금이 순간(t)에 입력 x(t)와 바로 직전의 출력 y(t-1)을 받아서 출력 y(t)한다.

순환 신경망(RNN) 소개 (4)

$$\mathbf{y}_t = \boldsymbol{\phi} \left(\mathbf{W}_x^T \cdot \mathbf{x}_t + \mathbf{W}_y^T \cdot \mathbf{y}_{t-1} + \mathbf{b} \right)$$

활성함수로 ReLU.

床런의 개수(n)은 5개이며, 미니배치에 입는 샘플의 개수는 m이다. y(t)=mxn.

미니배치, 전체 샘플에 대한 순환 층의 출력

$$\mathbf{Y}_{t} = \phi \left(\mathbf{X}_{t} \cdot \mathbf{W}_{x} + \mathbf{Y}_{t-1} \cdot \mathbf{W}_{y} + \mathbf{b} \right)$$
$$= \phi \left(\begin{bmatrix} \mathbf{X}_{t} & \mathbf{Y}_{t-1} \end{bmatrix} \begin{bmatrix} \mathbf{W}_{x} \\ \mathbf{W}_{y} \end{bmatrix} + \mathbf{b} \right)$$

순환 신경망(RNN) 소개 (5)

메모리 셀(cell)

- 지금 순간(t)에서 뉴런의 출력은 모든 입력 (t-1)까지의 함수이다.
- 타임 스텝에 걸쳐서 어떤 상태를 보존하는 신경망의 구성 요소
- 셀의 상태 히든 $\mathbf{h_t} = \mathbf{f}(\mathbf{h_{t-1}}, \mathbf{x_t})$

순환 신경망(RNN) 소개 (6)

입력 출력 시퀀스

Vector to Sequence (One to Many)

영화 리뷰를 입력받고, 감성 점수를 출력하는 RNN 시퀀스-벡터

Sequence to Vector (Many to one)

주식 예측처럼, 하루 전 데이터를 입력 받고, 오늘 주식 예측하고

Sequence to Sequence (Many to Many)

한 언어 문장을 다른 언어로 번역하는데 사용. 번역시에 끝 까지 들어야 한다.

Delayed Sequence to Sequence (Many to Many)

02. 쉬운 RNN 개념 이해

이홍석 (hsyi@kisti.re.kr)

RNN에서 가중치는 모든 시간에 대하여 공유한다

바닐라 RNN 셀

$$h_t = \tanh W \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix}$$

$$y_t = F(h_t)$$

$$C_t = \text{Loss}(y_t, GT_t)$$

BNN 예시로 감성 분류 (1)

• 감성적 RNN 예시

- 인터넷에서 맛집의 평가에 대한 분류 혹은 영화 데이터 세에서 리뷰 평가
 - 긍정적 혹은 부정정
- 입력
 - 말 뭉치, 한 개 혹은 여러 개의 문장
- 출력
 - 긍정적 혹은 부정적인 분류
 - "The food was really good"
 - "The chicken crossed the road because it was uncooked"

BNN 예시로 감성 분류 (2)

BNN 예시로 감성 분류 (3)

BNN 예시로 감성 분류 (4)

BNN 예시로 감성 분류 (5)

BNN 예시로 감성 분류 (6)

BNN 예시로 감성 분류 (7)

BNN 예시로 감성 분류 (8)

BNN 예시로 이미지 캡션 (1)

- 문제: 이미지 속의 내용을 설명하는 말을 만들어라.
 - 입력: 이미지 특성 (CNN로 부터)
 - 출력: 여러 개의 단어들로 구성된 한 개의 문장

The dog is hiding

BNN 예시로 이미지 캡션 (2)

BNN 예시로 이미지 캡션 (3)

BNN 예시로 이미지 캡션 (4)

BNN 예시로 이미지 캡션 (5)

이미지 캡션의 성공 결과들

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

BNN 예시로 이미지 캡션 (6)

Captions generated using <u>neuraltalk2</u>
All images are <u>CCO Public domain: cat</u>
<u>suitcase, cat tree, dog, bear, surfers,</u>
tennis, giraffe, motorcycle

이미지 캡션의 성공 결과들

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

BNN 예시로 이미지 캡션 (7)

이미지 캡션의 실패 결과들

한 여성은 손에 고양이를 들고 있다.

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

A woman standing on a beach holding a surfboard

한 여성이 해변에서 서핑보드를 들고 서있다.

한 사람이 책상에서 마우스를 들고 있다.

All images are <u>CCO Public domain</u>: <u>fur cos</u> <u>handstand</u>, <u>spider web</u>, <u>baseball</u>

새가 나무 가지에 앉았다.

A bird is perched on a tree branch

Captions generated using neuraltalk2

A man in a baseball uniform throwing a ball

야구 유니폼을 입은 사람이 공을 던지고 있다.

BNN 예시로 이미지 캡션 (8)

피드-포워드 신경망

이미지 캡션 문제에 적용하면 좋다

감성 분류 문제에 적용하면 좋다. 영화 리뷰를 평가, 맛집 리뷰를 평가하는 모델 등.

언어를 번역하는 모델

주식 예측하는 모델

The Popular LSTM Cell

Thank You!

www.ust.ac.kr

