Robot Motion Planning Classic Path Planning Algorithms

A. Narayanan¹

¹Department of Informatics

Outline

Overview of Classic Path Planning Approaches

Roadmaps

Visibility Maps Generalized Voronoi Diagrams

- Roadmap Represent the connectivity of the free space by 1-D Curves
- Cell Decomposition Decompose the free space into simple cells and represent the connectivity of the free space by adjacency graph of these cells
- Potential Field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Roadmaps

- construct a map once and then use that map to plan subsequent paths more quickly
- ► Topological maps aim at representing environments with graphlike structures
- Roadmaps are a type of topological map embedded in free space where each node corresponds to a specific location and an edge corresponds to a path between neighboring locations

find path from q_{start} to roadmap o traverse roadmap to vicinity of goal o find path from roadmap to the q_{goal}

Definition

A union of one-dimensional curves is a roadmap RM if for all q_{start} and q_{goal} in \mathcal{Q}_{free} that can be connected by a path, the following properties hold:

- 1. Accessibility: there exists a path from $q_{start} \in Q_{free}$ to some $q'_{start} \in RM$,
- 2. **Departability**: there exists a path from some $q'_{goal} \in RM$ to $q_{goal} \in \mathcal{Q}_{free}$, and
- 3. Connectivity: there exists a path in RM between q_{start}' and q_{goal}' .

Visibility Graph

Assume a polygonal configuration space with obstacles approximated as polygons, with the nodes v_i of the graph consisting of q_{start} , q_{goal} and all obstacle vertices

Figure: A polygonal config space with start and goal

Visibility Graph

The graph edges e_{ij} are straight-line segments that connect two line-of-sight nodes v_i and v_j

Figure: The Visibility graph

Reduced Visibility Graph

the visibility graph has many needless edges. The use of supporting and separating lines can reduce the number of edges.

Figure: Supporting and Separating Line Segments

Figure: Reduced Visibility graph

Rotational Plane Sweep Algorithm

Generalized Voronoi Diagrams

The Generalized Voronoi Diagram (GVD) is the set of points where the distance to the two closest obstacles is the same.

Figure: Voronoi Diagram

Construction of the GVD

Figure: The Brushfire algorithm uses a grid to approximate distance