Sistemas Inteligentes Híbridos

HYBRID SYSTEM COURSE PROJECT, MASTER SCIENCE DEGREE PROGRAM, CIN/UFPE/JUNE/2016

Improving Image Classification Accuracy using Hybrid Systems of Support Vector Machines and Convolutional Neural Networks

David Macêdo, Member, IEEE

Motivation

Present the limitations of SVMs (more generally, of shallow architectures) and CNNs

Show that a Hybrid Systems combining SVMs and CNNs can achieve a better test accuracy than both original system components

Support Vector Machines

Input data (pixels)

feature representation (hand-crafted)

Learning Algorithm (e.g., SVM)

Low-level vision features (edges, SIFT, HOG, etc.)

Object detection / classification

Support Vector Machines

Computer vision features

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH,

Support Vector Machines

- Maximum Margin Classifiers
- Empirical Risk Minimization
- Convex Optimization
- Shallow Architecture
- Feature Engineering

Good classifier, but do not learn deeper features from data

Receptive Fields, Weight Sharing and Translational Symmetry: Feature Learning

Compositional and Hierarchical Feature Learning Architecture

- Hierarchical and Compositional Feature Learn
- Very Scalable and Parallel Computation
- "Perceptron-Like" Full Connected Classifier
- Non-convex Optimization

Good learnable feature extractor, but not so good classifier

Proposed Hybrid System

- Train a Convolutional Neural Network (CNN)
- ▶ Remove the Last Full Connected Layer: Extract the Features Learned
- Classifier the SVM using the Learned Features

The hope is to use the best characteristic of each individual system in order to create the hybrid system

MNIST Dataset

- 28x28 Grayscale Images of Handwritten Digits
- Linearized 784 Features
- Training Set: 55.000 Examples
- Test Set: 10.000 Examples

Random Sampling of MNIST

Experiments: Models

- Linear Kernel SVM
- Gaussian Kernel SVM
- 1024 Nodes Extreme Learning Machine
- 4096 Nodes Extreme Learning Machine
- Convolutional Neural Network (CNN)
- SVM+CNN: The Hybrid Proposed System

Experiments: Models

- 5x5 Kernel Sizes in All Convolutional Layers
- The First Convolutional Layer = 32 Kernels
- The Second Convolutional Layer = 64 Filters
- The Third Layer = 128 Nodes Fully Connected
- → The Fourth Layer = 10 Nodes Fully Connected

Experiments: Methods

- Each model were trained and tested when possible using a Graphics Processing Unit (GPU)
- One hundred execution of training and test of each model was performed, with exception of SVM with Linear and Gaussian Kernels
- ➤ The extracted features are 128 higher level characteristics instead of the original 784 vector

TABLE I
TEST PERCENT ACCURACY COMPARISON

S	V	M	T	=	93	.93	3%
\sim	•	_,,_			\mathbf{o}	• • •	,, 0

$$SVM_G = 94.39\%$$

Experiment	CNN	SVM _{CNN}	
1	97.52	98.55	
2	97.59	98.66	
3	97.58	98.59	
4	97.25	98.51	
5	97.29	98.49	
6	97.44	98.62	
7	97.03	98.44	
8	97.49	98.62	
9	97.26	98.48	
10	97.16	98.32	

Test Performance Comparison

Fig. 1. Box plot of the distribution of test percent accuracy of one hundred of experiments of each model on MNIST data set.

Training Performance Comparison

Fig. 2. Mean training time in seconds of one hundred of experiments of each model, with exception of SVM_L and SVM_G , that were executed just once since they have an almost deterministic training time.

Experiments: Models

- → The proposed hybrid system <u>achieves better test</u> <u>performance than both original systems</u>
- The compound system presents <u>much faster training</u> time than the <u>original SVM model</u>
- The resultant system is <u>very competitive when</u> <u>compared to state-of-art models</u>

Software Tools

https://github.com/dlmacedo/SVM-CNN

References

- ▶ [1] V. N. Vapnik, Statistical learning theory. Wiley, 1998.
- ▶ [2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.
- ▶ [5] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273–297, 9 1995. [Online]. Available: http://link.springer.com/10.1007/BF00994018
- ▶ [6] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 12 2014.
 [Online]. Available: http://arxiv.org/abs/1412.6980
- [4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and . Duchesnay, "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

