COL703 Quiz 3

Sreemanti Dey

TOTAL POINTS

2/2

QUESTION 1

1Q11/1

- √ + 1 pts Both parts correct
 - + 0.5 pts only part(a) correct
 - + 0.5 pts only part(b) correct
 - + 0 pts incorrect or unattempted

QUESTION 2

2 Q3 1/1

- √ + 1 pts Correct
 - + 0.5 pts Partially correct
 - + 0 pts Incorrect/Not attempted

Name:

Sucemanti Dey

Entry No.: 2020Cl 10393

- 1. Recall that α is said to be *consistent* if $\nvdash \neg \alpha$. Suppose that $\vdash \alpha \rightarrow \beta$. For the following statements, answer whether they are true or not, and provide an explanation. Answers with missing or inadequate explanations will not get any marks.
 - (a) [0.5 marks] If α is consistent then β is consistent.
 - (b) [0.5 marks] If β is consistent then α is consistent.
- 2. [1 marks] Prove, in Hilbert's proof system, that $(\alpha \to \neg \neg \alpha)$.
- 3. [1 marks] Prove, in Hilbert's proof system, that $(\alpha \to \beta) \to ((\delta \to \gamma) \to ((\alpha \lor \delta) \to (\beta \lor \gamma)))$. Feel free to rewrite \lor is terms of \neg and \to if you need to.

1) a) $+ \alpha \Rightarrow \beta$ To prove: If α is consistent then β is consistent.

If 1β is not derivable than 1β is not derivable.

If 1β is derivable than 1α is derivable $+ 1\beta \Rightarrow 1\alpha$ Which was to is derived places

Solly $+ (\alpha \Rightarrow \beta) \Rightarrow (1\beta \Rightarrow 1\alpha)$ Lence $+ (\beta \Rightarrow 7\alpha)$ Proved.

To prom: If 1x is derivable then 18 is derivable

7x > 7B.

This is follse.

total FX B.

and completeness

i. FX > B.

uning soundness of Hilbort's axiom.

hence if X is F and B is T.

Then X > B gives true

but 1X > TB gives fake

hence not valid.

(3)
$$((3)) \Rightarrow ((3)) \Rightarrow ((3)) \Rightarrow ((3))$$

Deduction Thom

$$((3)) \Rightarrow ((3)) \Rightarrow ((3)) \Rightarrow ((3)) \Rightarrow ((3))$$

$$((3)) \Rightarrow ((3)) \Rightarrow ((3))$$

Proof of
$$A \times 8183$$
 $(X \Rightarrow B) \Rightarrow (7B \Rightarrow 7X)$

uning

 $(7B \Rightarrow 7X) \Rightarrow (A \Rightarrow B)$ uni dom

 $(77X \Rightarrow 71B) \Rightarrow (7B \Rightarrow 7X)$

uning $(77X \Rightarrow 71X) \Rightarrow (7B \Rightarrow 7X)$

uning $(77X \Rightarrow 71X) \Rightarrow (7B \Rightarrow 7X)$

uning $(77X \Rightarrow 71X) \Rightarrow (7B \Rightarrow 71X)$

uning $(77X \Rightarrow 71X) \Rightarrow (7B \Rightarrow 71X)$

proved.