

Description

The VSM18N03 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge . The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

General Features

N-Channel

 V_{DS} =30V, I_{D} =18A

 $R_{DS(ON)}$ < 41m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 54m Ω @ V_{GS} =4.5V

P-Channel

 $V_{DS} = -30V, I_{D} = -12A$

 $R_{DS(ON)}$ <58m Ω @ V_{GS} =-10V

 $R_{DS(ON)} < 85 m\Omega$ @ V_{GS} =-4.5V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM18N03-T2-4	VSM18N03	TO-252-4L	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter		Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage		V _{DS}	30	-30	V	
Gate-Source Voltage		V _{GS}	±12	±12	V	
Continuous Drain Current	T _A =25℃		18	-12	Α	
	T _A =70°C	I _D	14.4	-8.5		
Pulsed Drain Current (Note 1)		I _{DM}	72	-48	Α	
Maximum Power Dissipation	T _A =25°C	P _D	25	25	W	
Operating Junction and Storage Temperature Range		T _J ,T _{STG}	-55 To 150	-55 To 150	℃	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note2)	R _{θJC}	N-Ch	5	°C/W
Thermal Resistance,Junction-to-Case ^(Note2)	$R_{ heta JC}$	P-Ch	5	°C/W

N-CH Electrical Characteristics (T_A =25 $^{\circ}$ C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
\Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1	1.5	2.0	V	
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =10A	-	36	41	mΩ	
Diam-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A	-	45	54	mΩ	
Forward Transconductance	g FS	V _{DS} =5V,I _D =10A		10	-	S	
Dynamic Characteristics (Note4)				•			
Input Capacitance	C _{lss}	\/ 45\/\/ 0\/	-	519.9	-	PF	
Output Capacitance	C _{oss}	V _{DS} =15V,V _{GS} =0V, F=1.0MHz	-	55.5	-	PF	
Reverse Transfer Capacitance	C _{rss}	F-1.0IVID2	-	49.3	-	PF	
Switching Characteristics (Note 4)	·		•				
Turn-on Delay Time	t _{d(on)}		-	5	-	nS	
Turn-on Rise Time	t _r	V_{DD} =15V, R_L =1.5 Ω	-	3	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =3 Ω	-	15	-	nS	
Turn-Off Fall Time	t _f		-	3	-	nS	
Total Gate Charge	Qg	V _{DS} =15V,I _D =10A, V _{GS} =10V	-	14.7	-	nC	
Gate-Source Charge	Q _{gs}		-	2.5	-	nC	
Gate-Drain Charge	Q _{gd}	VGS-10V	-	3.0	-	nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-	0.8	1.2	V	

P-CH Electrical Characteristics (T_A =25 $^{\circ}$ C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-30	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V,V _{GS} =0V	-	-	-1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)				•		•	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.0	-1.5	-2.0	V	
Drain-Source On-State Resistance	В	V _{GS} =-10V, I _D =-12A	-	50	58	mΩ	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-10A	-	71	85	mΩ	
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-12A	-	10	-	S	
Dynamic Characteristics (Note4)			•				
Input Capacitance	C _{lss}	\\ 45\\\\ 0\\	-	464.7	-	PF	
Output Capacitance	C _{oss}	V _{DS} =-15V,V _{GS} =0V,	-	70.4	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	53.8	-	PF	
Switching Characteristics (Note 4)			•				
Turn-on Delay Time	t _{d(on)}		-	5	-	nS	
Turn-on Rise Time	t _r	V_{DD} =-15V, R_L =1.25 Ω	-	3	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =6 Ω	-	15	-	nS	
Turn-Off Fall Time	t _f		-	4	-	nS	
Total Gate Charge	Qg	V _{DS} =-15V,I _D =-12A V _{GS} =-10V	-	12.6	-	nC	
Gate-Source Charge	Q _{gs}		-	2.1	-	nC	
Gate-Drain Charge	Q _{gd}	VGS1UV	-	3.0	-	nC	
Drain-Source Diode Characteristics			•	•	•	•	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-12A	-	-	-1.2	V	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

N- Channel Typical Electrical and Thermal Characteristics (Curves)

Figure 1:Switching Test Circuit

Figure 3 Output Characteristics

Figure 5 Drain-Source On-Resistance

Figure 2:Switching Waveforms

Figure 4 Transfer Characteristics

Figure 6 Drain-Source On-Resistance

Figure7 Current De-rating

Qg Gate Charge (nC) Figure 9 Gate Charge

Vds Drain-Source Voltage (V)

Figure 11 Capacitance vs Vds

 T_J -Junction Temperature(${}^{\circ}\mathbb{C}$)

Figure 10 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 12 Safe Operation Area

Figure 13 Normalized Maximum Transient Thermal Impedance

P- Channel Typical Electrical and Thermal Characteristics (Curves)

-Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

-Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Qg Gate Charge (nC)

Figure 6 Source- Drain Diode Forward

-Vds Drain-Source Voltage (V)

Figure 7 Capacitance vs Vds

Figure 9 Power Dissipation

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance