1

Assignment 17

Utkarsh Surwade AI20MTECH11004

Download latex-tikz codes from

https://github.com/utkarshsurwade/Matrix Theory EE5609/tree/master/codes

1 Problem

Let **u** be a real $n \times 1$ vector satisfying $\mathbf{u}^T \mathbf{u} = 1$, where \mathbf{u}^T is the transpose of **u**.Define $\mathbf{A} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^T$ where **I** is the n^{th} order identity matrix. Which of the following statements are true?

- 1. A is singular
- 2. $A^2 = A$
- 3. Trace(\mathbf{A})=n-2
- 4. $A^2 = I$

2 Theorem 1.

Let $A_{m \times n}$ and $B_{n \times k}$ be matrices such that the product AB is well defines. Then

$$rank(\mathbf{AB}) \le min(rank(\mathbf{A}), rank(\mathbf{B})) \tag{2.0.1}$$

Proof: Matrix **A** can be treated as a linear transformation from \mathbb{F}^n to \mathbb{F}^m . In that case rank of the matrix is the dimension of the image space of the transformation. If **T** is a linear transformation from \mathbf{V}_1 to \mathbf{V}_2 then clearly dim $\mathbf{T}(\mathbf{V}_1) \leq \dim (\mathbf{V}_1)$. Hence $\mathrm{rank}(\mathbf{AB}) \leq \mathrm{rank}(\mathbf{B})$. Since row rank and column rank of a matrix are equal,

Therefore
$$rank(\mathbf{AB}) \le min(rank(\mathbf{A}), rank(\mathbf{B}))$$
 (2.0.2)

3 Explanation

Statement	Solution
1.	
	Let $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$
	Let $\mathbf{B} = \mathbf{u}\mathbf{u}^T$
	$\therefore \mathbf{B} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} (u_1 u_2 \dots u_n)$
	$\therefore \mathbf{B} = \begin{pmatrix} u_1^2 & u_1 u_2 & \dots & u_1 u_n \\ u_2 u_1 & u_2^2 & \dots & u_2 u_n \\ \vdots & \vdots & \ddots & \vdots \\ u_n u_1 & u_n u_2 & \dots & u_n^2 \end{pmatrix}$
	given that, $\mathbf{u}^T \mathbf{u} = 1$
	$\therefore \mathbf{u}^T \mathbf{u} = \begin{pmatrix} u_1 & u_2 & \dots & u_n \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$
	$\therefore \mathbf{u}^T \mathbf{u} = u_1^2 + u_2^2 + \dots + u_n^2$
	Since u is non-zero vector and $\mathbf{B} = \mathbf{u}\mathbf{u}^T$. Hence B is a non-zero matrix. Therefore Rank of B is at least 1. From (2.0.2)
	$rank(\mathbf{B}) \leq min(rank(\mathbf{u}), rank(\mathbf{u}^T))$ $\therefore rank(\mathbf{B}) \leq min(1, 1)$
	So Rank of B is at most 1. Hence Rank of B is equal to 1. Therefore B has n-1 eigenvalues equal to 0. Since the trace of a matrix is equal to the sum of its eigen values. We know that trace of $\mathbf{B} = u_1^2 + u_2^2 + \cdots + u_n^2 = 1$
	$\therefore \text{ Trace of } \mathbf{B} = \lambda_1 + \lambda_2 + \dots + \lambda_{n-1} + \lambda_n$ $1 = 0 + 0 + \dots + \lambda_n$ $\therefore \lambda_n = 1$
	Therefore the eigen values of B are $\lambda_1 = 0, \lambda_2 = 0, \dots, \lambda_{n-1} = 0, \lambda_n = 1$ Hence the characteristic polynomial for $\mathbf{B} = x^{n-1}(x-1)$ Since $\mathbf{A} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^T$

	and we know the eigen values of I are $\lambda_1 = 1, \lambda_2 = 1, \dots, \lambda_{n-1} = 1, \lambda_n = 1$ and we know the eigen values of $\mathbf{u}\mathbf{u}^{T}$ are $\lambda_1 = 0, \lambda_2 = 0, \dots, \lambda_{n-1} = 0, \lambda_n = 1$
	$\therefore \text{ The eigen values of } \mathbf{A} = \lambda_1 = 1, \lambda_2 = 1, \dots, \lambda_{n-1} = 1, \lambda_n = -1 \tag{3.0.1}$
	Since A does not have 0 as an eigen value Therefore A is not singular.
Conclusion	Therefore the statement is false.
2.	For $A^2 = A$, we know that $p(x) = x^2 - x$. \therefore minimal polynomial of A must divide $x(x-1)$. \therefore possible eigenvalues of A are 0 or 1. But from (3.0.1), we know that A has -1 as an eigen value. Therefore $A^2 = A$ is false.
Conclusion	Therefore the statement is false.
3.	From equation (3.0.1), Trace of $\mathbf{A} = n - 2$
Conclusion	Therefore the statement is true.
4.	Since $\mathbf{A} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^{T}$ $\mathbf{A}^{2} = (\mathbf{I} - 2\mathbf{u}\mathbf{u}^{T})(\mathbf{I} - 2\mathbf{u}\mathbf{u}^{T})$ $\therefore \mathbf{A}^{2} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^{T} - 2\mathbf{u}\mathbf{u}^{T} + 4\mathbf{u}\mathbf{u}^{T}\mathbf{u}\mathbf{u}^{T}$ Since $\mathbf{u}^{T}\mathbf{u} = 1$ $\therefore \mathbf{A}^{2} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^{T} - 2\mathbf{u}\mathbf{u}^{T} + 4\mathbf{u}\mathbf{u}^{T}$ $\therefore \mathbf{A}^{2} = \mathbf{I}$
Conclusion	Therefore the statement is true.

TABLE 2: Solution summary