

(A) Estatística Aplicada aos **Processos Industriais**

Introdução

O aue é o CEP

Base Estatística

Gráficos de Controle

Interpretação dos Gráficos de Controle

Duas maneiras de implementar melhoraria de processos

EPUSP/2017 - E. A. aos Processos Industriais

Estatística Aplicada aos **Processos Industriais**

Metodologia didática

Aulas Teóricas às quartas-feiras

Aulas práticas às sextas feiras, em grupo, simulando processos com a catapulta

Avaliação

Apresentação das soluções com interpretação das práticas feitas com a catapulta

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Introdução

A variabilidade

Segundo, Montgomery, Quando excessiva resulta em desperdício

Buscar a melhoria de um processo resulta na redução do desperdício

As organizações têm dificuldade em fornecer produtos que tenham características idênticas em todas as unidades, devido a variabilidade

PUSP/2017 - E. A. aos Processos Industriais

Introdução

Como a variabilidade só pode ser descrita em termos estatísticos, os métodos estatísticos desempenham um papel importante na melhoria dos processos.

EPUSP/2017 - E. A. aos Processos Industriais

Estatística

A estatística é uma ciência preocupada com a organização, descrição, análise e interpretação de dados experimentais. Segundo Costa Neto, 1986, ela pode ser dividida em duas partes:

- 1. a estatística descritiva que trata da organização e descrição dos dados, isto é, extrair o máximo de informações contidas neles; e,
- 2. a estatística indutiva que cuida da análise e interpretação de elementos que se constituem, em geral, de uma amostra retirada de uma população que se deseja estudar.

EPUSP/2017 - E. A. aos Processos Industriais

3

Estatística

A ciência e a estatística segundo Box e Hunter, 2005.

A figura apresenta um processo de interação entre a ciência e a aplicação dos métodos estatísticos na evolução de um desenvolvimento ou melhoria de um processo/atividade

EPUSP/2017 - E. A. aos Processos Industriais

Estatística

O que é uma raciocínio dedutivo?

- ✓ Da teoria à prática;
- ✓ Do geral ao particular;
- ✓ Das Considerações às consequências lógicas.

Usado para testar hipóteses.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Estatística

O que é uma raciocínio indutivo?

- ✓ Da prática à teoria;
- ✓ Do particular ao geral;
- ✓ Dos resultados às implicações.

Usado para gerar hipóteses.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Alguns termos da Estatística Básica

POPULAÇÃO:

Número total de observações agrupadas que devem ocorrer como resultado do desempenho de uma medida. É sempre representada por uma distribuição.

AMOSTRA

Um número limitado de observações, retiradas aleatoriamente de uma população, capaz de representar a população. A amostra é melhor representada por um diagrama de pontos.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Alguns termos da Estatística Básica

Para que os testes estatísticos possam ser aplicados aos nossos dados experimentais, é necessário que eles sejam distribuídos aproximadamente como uma normal.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

10

Alguns termos da Estatística Básica

Uma observação importante a ser feita é que, antes de se analisar um conjunto de dados por meio de métodos da **Estatística Indutiva**, eles devem ser organizados por meio da **Estatística Descritiva**, lembrando que o método de **Amostragem** empregado na coleta dos dados é muito importante.

EPUSP/2017 - E. A. aos Processos Industriais

S. Taaveda

11

Alguns termos da Estatística Básica

Medidas de posição

As medidas de posição mais importantes de uma distribuição são: **a média, a mediana e a moda.** Elas servem para localizar a variável em seu eixo de variação. A média e a mediana indicam o centro da distribuição por critérios diferentes, portanto elas coincidem quando a distribuição é perfeitamente simétrica.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Medidas de posição

As medidas de posição mais importantes de uma distribuição são: **a média, a mediana e a moda.** Elas servem para localizar a variável em seu eixo de variação. A média e a mediana indicam o centro da distribuição por critérios diferentes, portanto elas coincidem quando a distribuição é perfeitamente simétrica.

EPUSP/2017 - E. A. aos Processos Industriais

Taqueda

13

Alguns termos da Estatística Básica

Erro experimental

Quando um experimento é conduzido sob determinadas condições experimentais por mais de uma vez, os resultados nunca são completamente idênticos.

Esta flutuação nos resultados é comumente conhecida como ruído, variação experimental ou simplesmente erro.

No contexto da estatística o erro se refere à variação que é inevitável.

Principais fontes que contribuem para ampliar o erro: medições, análises, e amostragem.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

14

Alguns termos da Estatística Básica

Medidas de dispersão

A média não dá uma informação completa sobre a distribuição. A amplitude, a variância (σ^2 da população e s^2 da amostra) e o desvio padrão (σ da população e s da amostra), erro padrão da média e o coeficiente de variação, completam as informações da distribuição.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

15

Alguns termos da Estatística Básica

Medidas de assimetria

As medidas de assimetria indicam o quanto à distribuição é inclinada para:

- à esquerda ou positivamente assimétricas;
- à direita ou negativamente assimétricas;

nulas ou (simétricas).

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

16

Alguns termos da Estatística Básica

Medidas da achatamento ou curtose Indicam quão diferente é o achatamento da distribuição normal:

mesocúrtica, isto é, a distribuição normal é tomada como referência e seu curtose é igual a 3;

Platicúrticas possuem curtose inferior a 3, distribuições mais achatadas;

leptocúrticas, possuem curtose superior a 3, distribuições mais alongadas .

EPUSP/2017 - E. A. aos Processos Industriais M. E. S. Taqueda

Alguns termos da Estatística Básica

Representação das distribuições

O diagrama de pontos → representação de poucos dados experimentais;

Distribuição de frequência, ou diagrama de frequência, ou histograma → representação de um número maior de resultado;

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Média da população, (parâmetro)

n

A medida da posição da distribuição ou o centro de gravidade; é também o primeiro momento da distribuição.

$$\eta = \frac{\sum y}{N}$$

EPUSP/2017 - E. A. aos Processos Industriais

l. F. S. Taqueda

23

Alguns termos da Estatística Básica

Média da amostra (estatística)

Se a a população original se distribui normalmente, a média da amostra, \bar{y} , pode ser expressa pela média aritmética dos valores atribuídos às observações,

$$\bar{y} = \frac{\sum y_i}{n}$$

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

A média não dá uma informação completa sobre a distribuição.

A variância (σ^2) e desvio padrão (σ) da população:

completam as informações da distribuição. A variância representa a medida do espalhamento da distribuição. Ela diz quanto uma observação particular está afastada da média.

$$\sigma^2 = \frac{\sum (y-\eta)^2}{N}$$
EPUSP/2017 - E. A. aos Processos Industriais

E. S. Taqueda

Alguns termos da Estatística Básica

Variância s² e desvio padrão da amostra

$$s^2 = \frac{\sum (y - y)^2}{n - 1}$$

Existem várias medidas do espalhamento da população e da amostra, mas a de maior interesse é a variância.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

26

Alguns termos da Estatística Básica

Coeficiente de variação:

 $\frac{\sigma}{\eta}$ ou $100 \times \frac{\sigma}{\eta}$ — conhecido como erro porcentual.

O inverso do coeficiente de variação da amostra é conhecido como:

sinal – ruído:
$$\frac{\bar{y}}{s}$$

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Alguns termos da Estatística Básica

Distribuição Normal:

Observações repetidas que diferem por causa do erro experimental, variam em torno de um valor central, em uma distribuição grosseiramente simétrica.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

28

Alguns termos da Estatística Básica

- ✓ A probabilidade que um desvio positivo da média exceda 1 desvio padrão é 0,1587 (grosseiramente);
- ✓ Por causa da simetria da distribuição esta probabilidade é exatamente igual à chance de que um desvio negativo da média exceda um desvio padrão;
- ✓ Um desvio em cada sentido (positivo e negativo) exceda um desvio padrão é de 2×0,1587=0,3174 (grosseiramente), e a probabilidade de tais desvios menores do que 1 desvio padrão é 0,6826 (grosseiramente);
- √ A chance que um desvio positivo da média exceda 2 desvios padrões é 0,02275 (grosseiramente).

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

Todas as curvas normais podem ser reduzidas a uma curva padrão, Z, por uma transformação de variáveis. Z é uma distribuição com média 0 (zero) e variância 1 (um).

$$Z = \frac{y - \eta}{\sigma}$$

$$Y = C\frac{1}{\sigma}e^{-[(y-\eta)^2/2\sigma^2]}$$

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

32

Propriedades da média

- A média de uma soma de variáveis aleatórias é igual a soma das médias dessas variáveis;
- ✓ Multiplicando-se os valores de uma variável aleatória por uma constante, a média fica multiplicada por uma constante;

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

34

Propriedades da Variância

$$\sigma^{2}(k)=0$$

$$\sigma^{2}(kx)=k^{2}\sigma^{2}(x)$$

Se x e y são variáveis aleatórias, então:

$$\sigma^2(x \pm y) = \sigma^2(x) + \sigma^2(y)$$

 $\sigma^2(x+k) = \sigma^2(x)$

EPUSP/2017 - E. A. aos Processos Industriais M. E. S. Taqueda

35

Independência estatística

Quando a distribuição probabilidade de uma observação é afetada pelo nível da outra, as observações são estatisticamente dependentes.

A hipótese de amostragem aleatória a partir de uma população implica em independência estatística.

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

(() A média e a variância da média

Para observações independentes e identicamente distribuídas

$$\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$$

EPUSP/2017 - E. A. aos Processos Industriais

Observações independentes e identicamente distribuídas

	Distribuição Pai para y observações	Distribuição de médias da amostra
Media	η	η
variância	σ^2	σ^2/n
Desvio padrão	σ	σ/√n
Forma da distribuição pai	qualquer	Mais próxima da distribuição normal do que a distribuição pai

Uma primeira olhadela na robustez

A amostragem aleatória é uma ação física que induz independência estatística. Logo, a consideração de amostragem aleatória assegura a validade que, as observações são consideradas identicamente e independentemente distribuídas, (IID assumption).

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda

39

Uma primeira olhadela na robustez

Esta consideração não é exatamente verdadeira. Mas, para alguns procedimentos como: comparação de médias proporcionam uma aproximação adequada a esta consideração.; isto é:

Os métodos de comparação de médias são usualmente robustos a consideração de observações IID

EPUSP/2017 - E. A. aos Processos Industriais

M. E. S. Taqueda