Kyeframing by Interpolation

Wen-Chieh (Steve) Lin

National Chiao-Tung University

Parent, Computer Animation, Chapter 3, Appendix B

Keyframing

- Animator specifies the important key frames
- Computer generates the in-betweens automatically using interpolation

What is the key?

Difficult to interpolate hand-drawn images

- Different approach in computer animation
 - Each keyframe is described by a set of parameters
 - Sequence of keyframes = points in high-dimensional space
- Compute inbetweenings by interpolating these points

Example: Keys in Pixar Characters

Keyframing Procedures

- Specify the key frames
 - rigid transformation, forward/inverse kinematics
- Specify the type of interpolation
 - linear, cubic, parametric curves
- Specify the speed profile of the interpolation
 - constant velocity, ease-in/out, etc.
- Computer generates the inbetween frames

Keyframe Animation: Pros and Cons

- Good control over motion
- Eliminates much of the labor in traditional animation, but still very labor-intensive
- Impractical for complex scenes
 - water, smoke
 - grass in the wind
 - crowds

Interpolation

How to interpolate between key frames?

Need a smooth interpolation with user control

Problem

 Generate a path through points at designated times with smooth motion

Solution

- Generate a space curve
- Distribute points evenly along curve
- Speed control: vary points temporally

Example: Spatial Keyframing

 Takeo Igarashi, Tomer Moscovich, John F. Hughes, "Spatial Keyframing for Performance-driven Animation," SCA 2005

- Associate a key pose with a 3D position
- Interpolate in pose space
- Video

Review: Interpolating and Approximating Curves

- Curve representation
- Basic techniques in interpolation and approximation

Types of Curve Representation

- Explicit y = f(x)
 - Good for generate points
 - For each input, there is a unique output
- Implicit f(x,y) = 0
 - Good for testing if a point is on a curve
 - Bad for generating a sequence of points
- Parametric x = f(u), y = g(u)
 - Good for generating a sequence of points
 - Can be used for multi-valued function of x

Example: Representing Unit Circle

Cannot be represented explicitly as a function of x

Implicit form: $f(x,y)=x^2+y^2=1$

Parametric form:
 x=cos(u), y=sin(u), 0<u<2π

3-D Space Curve Parameterization

- Parametric form: P = P(u) = (x,y,z)
- $x = P_x(u), y = P_y(u), z = P_z(u)$

Space-curve
$$P = P(u)$$
 0.0 <= u <= 1.0

Appropriate Space Curve

- Interpolation vs. Approximation
 - match data vs. design
- Complexity
 - tradeoff between efficiency and flexibility
 - cubic polynomial is sufficient in general
- Continuity
- Global vs. Local control

Continuity

Global vs. Local Control

- Does a small change affect the whole curve or just a small segment?
- Local control is usually more intuitive and provided by composite curves

Global Control: Polynomial Interpolation

- An n-th degree polynomial fits a curve to n+1 points
 - Example: fit a second-degree curve to three points
 - $x(u) = au^2 + bu + c$
 - control points to interpolate: $(u_1, x_1), (u_2, x_2), (u_3, x_3)$
 - solve for coefficients (a, b, c):
 3 linear equations, 3 unknowns
- Called Lagrange Interpolation

Interpolating Data with a High-Degree Polynomial is Bad!

Often causes undesirable wiggling in a flat region!

Polynomial Interpolation (cont.)

 Result is a curve that is too wiggly, change to any control point affects entire curve (nonlocal) – this method is poor

- We usually want the curve to be as smooth as possible
 - minimize the wiggles
 - high-degree polynomials are bad

Local Control: Composite Segments

- Divide a curve into multiple segments
- Represent each in a parametric form
- Maintain continuity between segments
 - position
 - tangent
 - curvature

Splines: Piecewise Polynomials

- A spline is a piecewise polynomial
 - many low degree polynomials are used to interpolate (pass through) the control points
- A springy wire minimizes its bending energy (subject to constraints)
- Bending energy approximated by the integral of squared curvature
 - minimize this and the curve looks real
 - 2nd derivative approximates curvature

Splines: Piecewise Polynomials (cont.)

- Intuitively: try to make curvature zero everywhere
 - If you can't, distribute bends as uniformly as possible
- Cubic polynomials are the most common:
 - lowest order polynomials that interpolate two points and allow the gradient at each point to be defined -C1 continuity is possible
 - Higher or lower degrees are possible, of course

A Linear Piecewise Polynomial

A simple example:

Each segment is of the form: (this is a vector equation)

$$P(u) = (1 - u)p_1 + up_2$$

Two basis (blending) functions

Hermite Interpolation

Hermite Curves—cubic polynomial

$$P(u) = (P_{x}(u), P_{y}(u), P_{z}(u))$$

$$P_{x}(u) = a_{x}u^{3} + b_{x}u^{2} + c_{x}u + d_{x}$$

- Really represents 3 equations in 3-D space
- Hermite interpolation requires
 - endpoints
 - derivatives at endpoints

control points/knots

 To create a composite curve, use the end of one as the beginning of the other and share the tangent vector

Hermite Curve Formation

Cubic polynomial and its derivative

$$P_{x}(u) = a_{x}u^{3} + b_{x}u^{2} + c_{x}u + d_{x}$$

$$P'_{x}(u) = 3a_{x}u^{2} + 2b_{x}u + c_{x}$$

- Given $P_x(0)$, $P_x(1)$, $P'_x(0)$, $P'_x(1)$, solve for a, b, c, d
 - 4 equations are given for 4 unknowns

$$P_{x}(0) = d_{x}$$

$$P_{x}(1) = a_{x} + b_{x} + c_{x} + d_{x}$$

$$P'_{x}(0) = c_{x}$$

$$P'_{x}(1) = 3a_{x} + 2b_{x} + c_{x}$$

Hermite Curve Formation (cont.)

Problem: solve for a, b, c, d

$$P_{x}(0) = d_{x}$$

$$P_{x}(1) = a_{x} + b_{x} + c_{x} + d_{x}$$

$$P'_{x}(0) = c_{x}$$

$$P'_{x}(1) = 3a_{x} + 2b_{x} + c_{x}$$

Solution:

$$a_{x} = 2(P_{x}(0) - P_{x}(1)) + P_{x}'(0) + P_{x}'(1)$$

$$b_{x} = 3(P_{x}(1) - P_{x}(0)) - 2P_{x}'(0) - P_{x}'(1)$$

$$c_{x} = P_{x}'(0)$$

$$d_{x} = P_{x}(0)$$

Hermite Curve Formation (cont.)

x component of Hermite curve can be represented
 as

$$P_{x}(u) = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \begin{bmatrix} a_{x} \\ b_{x} \\ c_{x} \\ d_{x} \end{bmatrix}$$

$$= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_x(0) \\ P_x(1) \\ P'_x(0) \\ P'_x(1) \end{bmatrix}$$

Parametric Curves in Matrix Form

$$P(u) = au^{3} + bu^{2} + cu + d$$

$$P(u) = U^{T}MB$$

$$U^{T} = [u^{3}, u^{2}, u, 1] \text{ is the parameter}$$

$$M \text{ is the cofficient matrix}$$

$$B \text{ is the geometric information}$$

$$\mathbf{M} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{B} = \begin{bmatrix} P_x(0) & P_y(0) & P_z(0) \\ P_x(1) & P_y(1) & P_z(1) \\ P_x^{'}(0) & P_y^{'}(0) & P_z^{'}(0) \\ P_x^{'}(1) & P_y^{'}(1) & P_z^{'}(1) \end{bmatrix}$$

$$\frac{i \text{th segment in}}{\text{composite curves}} \mathbf{B} = \begin{bmatrix} p_i \\ p_{i+1} \\ p'_i \\ p'_{i+1} \end{bmatrix}$$

Blending Functions of Hermite Splines

 Each cubic Hermite spline is a linear combination of 4 blending functions

geometric information

$$P(u) = U^T M B$$

$$P(u) = \begin{bmatrix} 2u^3 - 3u^2 + 1 \\ -2u^3 + 3u^2 \\ u^3 - 2u^2 + u \\ u^3 - u^2 \end{bmatrix}^T \begin{bmatrix} p_1 \\ p_2 \\ p'_1 \\ p'_2 \end{bmatrix}$$

$$P_x(u) = (2u^3 - 3u^2 + 1)p_{1x} + (-2u^3 + 3u^2)p_{2x} + (u^3 - 2u^2 + u)p'_{1x} + (u^3 - u^2)p'_{2x}$$

Bezier Curves

- Another variant of the same game
- Instead of endpoints and tangents, four control points
 - points p_1 and p_4 are on the curve
 - points p_2 and p_3 are off the curve

$$-P(0) = p_1, P(1) = p_4,$$

- P'(0) =
$$3(p_2 - p_1)$$
, P'(1) = $3(p_4 - p_3)$

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

Bezier Curves (cont.)

- Variant of the Hermite spline
 - basis matrix derived from the Hermite basis
- Gives more uniform control knobs (series of points) than Hermite
- The slope at u = 0 is the slope of the secant line between p_0 and p_1

$$P'(0) = 3(p_1 - p_0)$$

$$dx/du = 3(x_1 - x_0)$$

$$dy/du = 3(y_1 - y_0)$$

$$dy/dx = (y_1 - y_0)/(x_1 - x_0)$$

Composing Bezier Curves

 Control points at consecutive segments need be collinear to avoid a discontinuity of slope

Catmull-Rom Splines

- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C¹ continuity. Similar for Bezier. This gets tedious.
- Catmull-Rom: an interpolating cubic spline with built-in C¹ continuity.
- Compared to Hermite/Bezier: fewer control points required, but less freedom.

Catmull-Rom Splines (cont.)

- Given *n* control points in 3-D: $p_1, p_2, ..., p_n$
 - Tangent at p_i given by $s(p_{i+1} p_{i-1})$ for i=2..n-1, for some s
 - Curve between p_i and p_{i+1} is determined by p_{i-1} , p_i ,

 p_{i+1}, p_{i+2}

Catmull-Rom Splines (cont.)

- Given *n* control points in 3-D: p_1, p_2, \ldots, p_n
 - Tangent at p_i given by $s(p_{i+1} p_{i-1})$ for i=2..n-1, for some s
 - Curve between p_i and p_{i+1} is determined by $\overline{p_{i-1}}$, $\overline{p_i}$, p_{i+1} , p_{i+2}
 - What about endpoint tangents? (several good answers: extrapolate, or use extra control points p_0 , p_{n+1})
 - Now we have positions and tangents at each knot – a Hermite specification.

Catmull-Rom Spline Matrix

- Derived similarly to Hermite and Bezier
- s is tension parameter; typically s=1/2

$$P(u) = U^{T} \begin{bmatrix} -s & 2-s & s-2 & s \\ 2s & s-3 & 3-2s & -s \\ -s & 0 & s & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \\ p_{4} \end{bmatrix}$$

Catmull-Rom Spline Matrix Derivation

•
$$P(0) = p_2$$
, $P'(0) = s(p_3 - p_1)$,

•
$$p(1) = p_3$$
, $P'(1) = s(p_4 - p_2)$

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P(0) \\ P(1) \\ P'(0) \\ P'(1) \end{bmatrix}$$

$$= U^{T} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \\ p_{4} \end{bmatrix}$$

Splines and Other Interpolation Forms

- See Computer Graphics textbooks
- Review
 - Appendix B.4 in Parent

Now What?

- We have key frames or points
- We have a way to specify the space curve
- Now we need to specify velocity to traverse the curve

Speed Curves

Speed Control

- Maps parameters such as time to arc length
- Simplest form is constant velocity along the path

s is the arc length along the space curve; \overline{t} is time

Non-uniformity in Parametrization

• Generally, equally spaced samples in parameter space are not equally spaced along the curve $u_2 - u_1 \neq s(u_2) - s(u_1)$

Arc Length Reparameterization

- Reparametrize the space curve by arc length
- Problem
 - Given a parametric curve and two parameter values u_1 and u_2 , find $arclength(u_1, u_2)$
 - Given an arc length s, and parameter value u_1 , find u_2 such that $arclength(u_1, u_2) = s$
- Not possible analytically for most curves, e.g., B-splines

Finite Differences

- Sample the curve at small intervals of the parameter
- Compute the distance between samples
- Build a table of arc length for the curve

u	Arc Length
0.0	0.00
0.1	0.08
0.2	0.19
0.3	0.32
0.4	0.45
•••	•••

Arc Length Reparameterization Using Lookup Table

- Given an arc length, find the parametric value
 - Find the entry in the table closest to this u
 - Or take the u before and after it and interpolate linearly

u	Arc Length
0.0	0.00
0.1	0.08
0.2	0.19
0.3	0.32
0.4	0.45
•••	•••

Speed Control

Arc Length Table

Constant Speed Curve

- Moving at 1 m/s if meters and seconds are the units
- Too simple to be what we want

Ease-in Ease-out Curve

 Assume that the motion starts and stops at the beginning and end of the motion curve

Equally spaced samples in time specify arc length required for that frame

Sine Interpolation

$$s(t) = \frac{1}{2}\sin(t\pi - \frac{\pi}{2}) + \frac{1}{2}, \quad 0 \le t \le 1$$

$$\sin(\alpha), \quad -\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$$

Piecing Curves Together for Ease In/Out

Integrating to avoid the sine function

