Week 3 Revision notes IFB240 Week 3 - Managing Security

Overview

This week's lecture focused on **Information Security Risk Management** and the standards that guide effective security management practices. Key elements include the **risk management process**, detailed **risk assessments**, and how international standards like **AS/NZS 27001** and **AS/NZS 27002** help organisations systematically protect their information assets.

1. Why Manage Cyber/Info Security?

Regular Activities that Put Information Assets at Risk

- Many daily actions expose data and systems to threats, such as:
 - · Using email with images, links, or attachments.
 - · Cloud storage for data.
 - Using mobile devices (laptops, phones) and portable storage like USBs.
 - Banking, shopping, gaming, and social networking online.

Importance of Security Management

Regular use of technology means that information security risks are prevalent. Protecting against
these risks ensures that information remains confidential, intact, and available when needed.

Managing Information Security Involves Key Questions:

- 1. What needs protection? Identify your information assets and their location.
- 2. Why protect these assets? Consider potential threats and vulnerabilities that could lead to damage.
- 3. What could go wrong? Evaluate the consequences and impact if an asset is compromised.
- 4. How can assets be protected? Consider the resources needed, their costs, and how urgently protection is required.
- 5. What happens if assets aren't protected? Understand the potential costs of unaddressed vulnerabilities.
- 6. **Limited Resources**: We can't protect all assets from all threats—security is about **making tradeoffs** and **managing risk** effectively.

2. Understanding Risk in Information Security

Defining Risk

- Risk refers to the effect of uncertainty on objectives. It's usually assessed in terms of likelihood (chance of an event happening) and consequences (impact of that event).
- The AS/NZS 27005:2012 standard defines risk in cybersecurity as involving threats exploiting vulnerabilities to cause harm to an asset.

Elements of Risk

- 1. Likelihood: Probability of an event occurring.
- 2. Consequences: Impact of the event on the organization's objectives.

Real-World Context

\$1,000 financial loss from a student's bank account may have a much higher perceived impact
compared to a bank losing the same amount. The perception of impact varies with the stakeholder's
perspective.

Examples of Negative Events

- Power loss to systems or buildings.
- Communication failures in specific locations.
- Data loss or theft of intellectual property.
- Public disclosure of confidential information.

3. The Risk Management Process (AS/NZS 27005:2012)

Overview of the Process

1. Establish the Context:

- External Context: Relationship between the organization and its environment.
- Internal Context: Organization's goals, objectives, and capabilities.
- Risk Management Context: Define the criteria for evaluating risks, considering asset value, impact on operations, and legal obligations.

2. Risk Assessment:

- Risk Identification: Identify assets, plausible threats, existing controls, and vulnerabilities.
- Risk Analysis: Determine the magnitude of identified risks using either qualitative or quantitative methods.
 - Qualitative Analysis: Descriptive scales (e.g., minor, major, catastrophic).

- Quantitative Analysis: Numerical scales (e.g. value, probability).
- Risk Evaluation: Compare identified risks against risk criteria to prioritise actions.

3. Risk Treatment:

- Options include:
 - Risk Avoidance: Stop activities that introduce the risk.
 - Risk Modification: Apply controls to reduce likelihood or consequences.
 - Risk Sharing: Transfer the risk to another party (e.g., insurance).
 - Risk Retention: Decide not to act, accepting the risk.

4. Monitoring and Review:

- · Ongoing reviews are crucial to assess:
 - Changes in the likelihood or consequence of identified risks.
 - · Effectiveness of risk treatment plans.
- Example: Netgear discontinued support for older routers, making them vulnerable to attacks—highlighting the importance of reviewing security posture as circumstances evolve.

4. Information Security Standards Overview

AS/NZS 27001:2023 and AS/NZS 27002:2022

- AS/NZS 27001: Focuses on establishing, implementing, and continually improving an Information Security Management System (ISMS).
 - Certification is possible under this standard, demonstrating a company's commitment to information security.
- AS/NZS 27002: Provides guidance on security controls for information management. It serves as a
 practical tool for implementing the security measures outlined by AS/NZS 27001.

Structure and Key Clauses

- Clause 4: Establishing the context of the organization for implementing an ISMS.
- Clause 6: Planning, which includes risk assessment and risk treatment processes.
- Clause 8: Operational planning, where security controls are implemented.
- Clause 10: Continuous improvement of the ISMS, adapting to new risks and challenges.

Importance of Standards

- Applying these standards helps organizations ensure consistent and comprehensive protection of information assets.
- Certification under AS/NZS 27001 offers assurance that proper security management practices are in place and helps to instill confidence in customers and stakeholders.

5. NIST Cybersecurity Framework (CSF)

- NIST CSF is another widely used framework that provides a structured approach to managing and reducing cybersecurity risks.
 - Five Functions: Identify, Protect, Detect, Respond, Recover.
 - Particularly useful for critical infrastructure and is designed for risk-based decision-making.
 - Version 2.0 (published in February 2024) emphasizes governance and supply chains, making it
 more adaptable to emerging threats.

Key Differences from ISO Standards

- Unlike the ISO27K series, which is more descriptive and process-based, NIST CSF is structured into functional domains, making it more action-oriented.
- Both frameworks are risk-based, but NIST's emphasis is on actionable steps for each function, tailored to an organization's unique environment.

6. Risk Analysis: Qualitative vs Quantitative

Types of Analysis

- Qualitative Analysis:
 - Uses descriptive categories (e.g., minor, moderate, catastrophic).
 - Suitable when data is scarce, such as assessing the potential impact of new threats.
- Quantitative Analysis:
 - Uses numerical scales (e.g. values, probability from 0 to 1).
 - Suitable when accurate data on risk frequency and impact is available.

Example:

- Risk Assessment for Found USB Drives:
 - Quantitative Analysis: Use metrics like the percentage of users who plugged in a found USB (e.g., "50% of users plugged in found USB drives").
 - Qualitative Analysis: Describing the potential consequences as high or moderate based on historical incidents.

7. Real-World Examples and Emerging Risks

Case Study: Netgear Routers

- Vulnerability: Netgear discontinued support for older routers, leaving them vulnerable to exploitation.
- Impact: Customers using unsupported devices face increased risk, especially with the growing trend of remote work, which places more reliance on secure home networks.

Case Study: Equifax Data Breach (2017)

- Data Compromised: Personal identifiable information (PII) for over 145 million people.
- Impact: Significant reputational and financial consequences, leading to regulatory scrutiny.
- Key Lesson: The need for effective incident response and continual improvement in risk
 management practices to prevent recurring issues.

8. Summary and Key Takeaways

- Information Security Risk Management is about understanding what needs protection, why, and how
 to protect it within the available resources.
- Risk Assessments are central to effective management, allowing for prioritizing actions to mitigate risks.
- Security Standards (e.g., AS/NZS 27001 and AS/NZS 27002) provide a framework for organizations to systematically manage and protect their information assets.
- Monitoring and Review is crucial for adapting to new threats and ensuring that controls remain
 effective over time.
- Real-world examples like Netgear and Equifax show the practical importance of continuous monitoring, risk analysis, and adaptive risk management to secure information in an evolving landscape.