UNIVERSIDAD PRIVADA DE TACNA FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA DE SISTEMAS

Informe

"TAREA ACADÉMICA – PRUEBA T PARA MUESTRAS RELACIONADAS"

Curso: Estadística inferencial y análisis de datos

Docente: Ing. Luis Alfredo Fernández Vizcarra

Integrantes:

Ayma Choque, Erick Yoel (2021072616)
Poma Machicado, Fabiola Estefani (2021070030)
Tapia Vargas, Dylan Yariet (2021072630)

Introducción

En el ámbito de la estadística inferencial, la prueba t para muestras relacionadas es una herramienta clave que permite comparar las medias de dos conjuntos de datos emparejados, con el objetivo de determinar si existen diferencias significativas entre ellas. Este tipo de análisis es particularmente útil cuando las mediciones provienen de los mismos sujetos antes y después de una intervención, o cuando se trata de condiciones comparables dentro del mismo grupo.

El presente informe tiene como finalidad aplicar esta prueba estadística en un contexto práctico vinculado al rendimiento de un software de procesamiento de imágenes. Para ello, se evaluarán los tiempos de procesamiento obtenidos por un mismo conjunto de imágenes procesadas en dos versiones distintas del programa, con el fin de identificar si una de ellas presenta un desempeño promedio superior.

Este ejercicio permitirá a los estudiantes afianzar sus conocimientos en el uso de herramientas estadísticas para datos emparejados, así como interpretar adecuadamente los resultados para una toma de decisiones fundamentada en evidencia cuantitativa.

TAREA ACADÉMICA – PRUEBA T PARA MUESTRAS INDEPENDIENTES

1. Información sobre el evento práctico

1.1. Título del evento práctico

TAREA ACADÉMICA – PRUEBA T PARA MUESTRAS INDEPENDIENTES

1.2. Objetivos

- Comparar el rendimiento promedio de dos versiones de un software utilizando la prueba t para muestras relacionadas, aplicando mediciones sobre el mismo conjunto de datos.
- Aplicar correctamente los pasos del análisis inferencial para identificar si existen diferencias estadísticamente significativas entre dos condiciones evaluadas sobre los mismos sujetos u objetos de estudio.
- Interpretar los resultados obtenidos a partir de la prueba estadística y tomar decisiones fundamentadas en evidencia cuantitativa.

1.3. Resultados de Aprendizaje (RA)

1.4. Recursos (Equipos, materiales, programas y otros)

- Computadora con Sistema Operativo Windows, Linux o MacOS.
- Conexión a internet.
- SPSS

2. Procedimiento

- 1. Se desea evaluar el rendimiento de un servidor web antes y después de una actualización de software.
- a) Se registraron los tiempos de respuesta de 20 solicitudes de página web antes de la actualización, con los siguientes tiempos (en milisegundos): 120, 125, 130, 118, 122, 128, 123, 127, 129, 124, 121, 126, 132, 119, 133, 131, 123, 126, 120, 128.
- b) Después de la actualización, se registraron los siguientes tiempos de respuesta (en milisegundos): 110, 115, 118, 112, 108, 113, 117, 114, 119, 111, 116, 112, 119, 110, 115, 117, 113, 112, 118, 114.

Utilice la Prueba t para determinar si la actualización mejoró significativamente el rendimiento del servidor.

Planteamiento del problema

Se desea evaluar si una actualización de software mejora el rendimiento de un servidor web. Para ello, se comparan los tiempos de respuesta de 20 solicitudes antes y después de la actualización. Usando una prueba t para muestras relacionadas, se determinará si la reducción en los tiempos de respuesta es estadísticamente significativa.

Hipótesis nula (H₀):

La implementación del nuevo algoritmo de encriptación no redujo significativamente el tiempo de encriptación de los mensajes.

 $H0: Ma \leq Md$

Hipótesis alternativa (H₁):

El nuevo algoritmo de encriptación redujo significativamente el tiempo de encriptación de los mensajes.

H1: Ma > Md

Nivel de significancia:

0.05

Calcular la variable de diferencia "di":

Ingresamos los datos de variables en SPSS

		, – –									
	Nombre	Tipo	Anchura	Decimales	Etiqueta	Valores	Perdidos	Columnas	Alineación	Medida	Rol
1	ID	Numérico	8	0	id	Ninguna	Ninguna	8	Derecha	Nominal	> Entrada
2	Antes	Numérico	8	0	Antes de la actualizacion	Ninguna	Ninguna	8	Derecha		> Entrada
3	Despues	Numérico	8	0	Despues de la actualiz	Ninguna	Ninguna	8	To Derecha		> Entrada
4	di	Numérico	8	0	Diferencia	Ninguna	Ninguna	8	To Derecha		> Entrada
5											

Ingresamos datos

& ID	Antes	Despues		٧
1	120	110	10	
2	125	115	10	
3	130	118	12	
4	118	112	6	
5	122	108	14	
6	128	113	15	
7	123	117	6	
8	127	114	13	
9	129	119	10	
10	124	111	13	
11	121	116	5	
12	126	112	14	
13	132	119	13	
14	119	110	9	
15	133	115	18	
16	131	117	14	
17	123	113	10	
18	126	112	14	
19	120	118	2	
20	128	114	14	

Estadísticos descriptivos:

Nos vamos a Analizar -> Estadísticos Descriptivos -> Frecuencias Ingresamos los siguientes datos

Seleccionamos estos estadísticos

Y obtenemos este gráfico estadístico

Estadísticos

		Antes de la actualizacion	Despues de la actualizacion	Diferencia
N	Válido	20	20	20
	Perdidos	0	0	0
Media		125,25	114,15	11,10
Error estár	ndar de la media	1,002	,719	,885
Desv. Des	viación	4,482	3,216	3,959

El servidor parece haber mejorado tras la actualización, ya que los tiempos de respuesta disminuyeron en promedio (de 125,25 ms a 114,15 ms).

La disminución promedio es de 11,10 ms, y la variabilidad en los tiempos también disminuyó después de la actualización.

Prueba de Normalidad para la diferencia.

Nos dirigimos a Analizar -> Estadísticos Descriptivos -> Explorar

Seleccionamos la diferencia

Obtenemos este gráfico

Descriptivos

			Estadístico	Error estándar
Diferencia	Media		11,10	,885
	95% de intervalo de	Límite inferior	9,25	
	confianza para la media	Límite superior	12,95	
	Media recortada al 5%		11,22	
	Mediana		12,50	
	Varianza		15,674	
	Desviación estándar		3,959	
	Mínimo		2	
	Máximo		18	
	Rango	16		
	Rango intercuartil		5	
	Asimetría		-,687	,512
	Curtosis		,140	,992

Diferencia

```
Diferencia Gráfico de tallo y hojas

Frecuencia Stem & Hoja

1.00 Extremes (=<2)
.00 0.
4.00 0. 5669
13.00 1. 0000233344444
2.00 1. 58

Ancho del tallo: 10
Cada hoja: 1 caso(s)
```

El gráfico muestra que, en promedio, los tiempos de respuesta después de la actualización son más bajos que antes, y las diferencias varían entre 2 ms y 18 ms. La distribución de estas diferencias es ligeramente asimétrica y hay una dispersión considerable, pero en general, los datos parecen aproximadamente normales

Normalidad

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Diferencia	,184	20	,073	,930	20	,154

a. Corrección de significación de Lilliefors

Para ambas pruebas, el valor de significancia (Sig.) es lo más importante. Comúnmente, se usa un umbral de α = 0.05 para tomar decisiones:

- Si Sig. > 0.05, no se rechaza la hipótesis nula (H₀) ⇒ la distribución es normal.
- Si Sig. ≤ 0.05, se rechaza H₀ ⇒ la distribución no es normal.

Tanto en Kolmogorov-Smirnov (Sig. = 0.073) como en Shapiro-Wilk (Sig. = 0.154), los valores de significancia son mayores a 0.05, por lo que:

No hay evidencia suficiente para rechazar la normalidad.

Se concluye que la muestra sigue una distribución normal.

Constatar la hipótesis:

Nos dirigimos a Analizar -> Comprar medias -> Pruebas T de para muestras relacionadas

Ingresamos la variable antes y después de la actualización. Asegurándonos que el intervalo de confianza sea de 95%.

Gráfico resultantes

Prueba de muestras emparejadas Diferencias emparejadas 95% de intervalo de confianza de la diferencia Desv. Desv. Error Media Desviación Inferior Superior Sig. (bilateral) Antes de la actualizacion 11,100 3.959 ,885 9,247 12,953 12,539 Despues de la

El valor de **t = 12.54** que se obtuvo es muy alto, lo que indica que la diferencia entre los tiempos de respuesta antes y después de la actualización es grande en relación con la variabilidad de los datos.

Valor de p (Sig. bilateral = 0,000):

El valor p = 0,000 es muy bajo, lo que significa que la diferencia entre los tiempos es estadísticamente significativa. Un valor de p tan pequeño indica que es extremadamente improbable que la diferencia observada haya ocurrido por casualidad.

Como p < 0,05, podemos rechazar la hipótesis nula.

Elección de Hipótesis:

Rechazamos H₀ y aceptas H₁,

Conclusión:

Dado que p < 0,05, rechazamos la hipótesis nula (H_0) y aceptamos la hipótesis alternativa (H_1) . Esto significa que la actualización sí mejoró significativamente el rendimiento del servidor, ya que la diferencia en los tiempos de respuesta es estadísticamente significativa.

- 2. Se ha desarrollado un nuevo algoritmo de encriptación para proteger la comunicación entre servidores. Para evaluar su eficacia, se midió el tiempo de encriptación de 15 mensajes antes y después de implementar el nuevo algoritmo.
- a) Los tiempos de encriptación antes de la implementación fueron (en microsegundos): 850, 830, 870, 820, 840, 860, 875, 835, 855, 865, 840, 870, 825, 840, 830.
- b) Después de la implementación, los tiempos de encriptación fueron (en microsegundos): 780, 795, 810, 785, 800, 820, 790, 805, 815, 810, 790, 800, 785, 795, 800.

Emplee la Prueba t para determinar si el nuevo algoritmo de encriptación ha reducido significativamente el tiempo de encriptación.

Planteamiento del problema

Se desea evaluar si un nuevo algoritmo de encriptación mejora la eficiencia del proceso de codificación de mensajes. Para ello, se comparan los tiempos de encriptación de 15 mensajes antes y después de implementar el nuevo algoritmo. Usando una prueba t para muestras relacionadas, se determinará si la reducción en los tiempos de encriptación es estadísticamente significativa.

Hipótesis nula (H₀):

La actualización no mejoró significativamente el tiempo de respuesta del servidor. $H0: Ma \leq Md$

Hipótesis alternativa (H₁):

La actualización mejoró significativamente el rendimiento del servidor.

H1: Ma > Md

Nivel de significancia:

0.05

Calcular la variable de diferencia "di":

Ingresamos los datos de variables en SPSS

Ingresamos datos

12:					
	& ID	Antes	Despues	Diferencia	va
1	1	850	780	70	
2	3	830	795	35	
3	3	870	810	60	
4	4	820	785	35	
5	5	840	800	40	
6	6	860	820	40	
7	7	875	790	85	
8	8	835	805	30	
9	9	855	815	40	
10	10	865	810	55	
11	11	840	790	50	
12	12	870	800	70	
13	13	825	785	40	
14	14	840	795	45	
15	15	830	800	30	
16					
17					

Estadísticos descriptivos:

Nos vamos a Analizar -> Estadísticos Descriptivos -> Frecuencias Ingresamos los siguientes datos

Seleccionamos estos estadísticos

Y obtenemos este gráfico estadístico

Estadísticos

		Antes	Despues	Diferencia
Ν	Válido	15	15	15
	Perdidos	0	0	0
Media		847,00	798,67	48,33
Error está	ndar de la media	4,624	3,026	4,245
Desv. Des	sviación	17,908	11,721	16,439

El sistema de encriptación parece haber mejorado tras la implementación del nuevo algoritmo, ya que los tiempos de encriptación disminuyeron en promedio, pasando de 847,00 a 798,67.

La disminución promedio fue de 48,33, lo cual indica una mejora significativa en la eficiencia del proceso. Además, la variabilidad en los tiempos también se redujo después de la implementación, como se observa en la disminución de la desviación estándar (de 17,91 a 11,72), lo que sugiere un comportamiento más consistente del nuevo algoritmo.

Prueba de Normalidad para la diferencia.

Nos dirigimos a Analizar -> Estadísticos Descriptivos -> Explorar

Seleccionamos la diferencia

Obtenemos este gráfico

Descriptivos

			Estadístico	Error estándar
Diferencia	Media		48,33	4,245
	95% de intervalo de	Límite inferior	39,23	
	confianza para la media	Límite superior	57,44	
	Media recortada al 5%	47,31		
	Mediana	40,00		
	Varianza		270,238	
	Desviación estándar		16,439	
	Mínimo	30		
	Máximo		85	
	Rango	55		
	Rango intercuartil		25	
	Asimetría		,967	,580
	Curtosis		,109	1,121

Diferencia

Diferencia Gráfico de tallo y hojas

Frecuencia	Stem &	Hoja
4.00	3.	0055
5.00	4.	00005
2.00	5.	05
1.00	6.	0
2.00	7.	00
1.00	8 .	5

Ancho del tallo: 10
Cada hoja: 1 caso(s)

El gráfico muestra que, en promedio, los tiempos de encriptación después de implementar el nuevo algoritmo son más bajos que antes. Las diferencias en los tiempos de encriptación varían entre 30 y 85, con un rango total de 55 y un rango intercuartil de 25, lo que indica una dispersión moderada en los datos.

Normalidad

Pruebas de normalidad

	Kolmo	gorov-Smirn	ov ^a	Shapiro-Wilk		
Estadístico gl Sig.			Estadístico	gl	Sig.	
Diferencia	,227	15	,036	,892	15	,073

a. Corrección de significación de Lilliefors

Pruebas de normalidad
Kolmogorov-Smirnova Shapiro-Wilk
Estadístico gl Sig. Estadístico gl Sig.
Diferencia ,227 15 ,036 ,892 15 ,073
a Corrección de significación de Lilliefors

Normalidad

Para ambas pruebas, el valor de significancia (Sig.) es lo más importante. Comúnmente, se usa un umbral de α = 0,05 para tomar decisiones:

- Si Sig. > 0,05, no se rechaza la hipótesis nula (H₀) ⇒ la distribución es normal.
- Si Sig. ≤ 0,05, se rechaza H₀ ⇒ la distribución no es normal.

Constatar la hipótesis:

Nos dirigimos a Analizar -> Comprar medias -> Pruebas T de para muestras relacionadas

Ingresamos la variable antes y después de la actualización. Asegurándonos que el intervalo de confianza sea de 95%.

Gráfico resultantes

Prueba de muestras emparejadas

	Diferencias emparejadas								
		Media	Desv. Desviación	Desv. Error promedio	95% de interval de la dit Inferior		t	gl	Sig. (bilateral)
Par 1	Antes - Despues	48,333	16,439	4,245	39,230	57,437	11,387	14	,000

El valor de **t = 11,387** que se obtuvo es considerablemente alto, lo que indica que la diferencia entre los tiempos de encriptación antes y después de la implementación del nuevo algoritmo es grande en relación con la variabilidad de los datos.

El valor de p (Sig. bilateral) = 0,000 es muy bajo, lo que significa que la diferencia en los tiempos de encriptación es estadísticamente significativa. Un valor p tan pequeño sugiere que es extremadamente improbable que esta diferencia haya ocurrido por azar.

Dado que p < 0,05, podemos rechazar la hipótesis nula. Esto respalda la conclusión de que el nuevo algoritmo de encriptación ha reducido significativamente el tiempo de encriptación.

Elección de Hipótesis:

Rechazamos H₀ y aceptamos H₁.

Conclusión:

Dado que p < 0,05, rechazamos la hipótesis nula (H_0) y aceptamos la hipótesis alternativa (H_1) . Esto indica que la implementación del nuevo algoritmo de encriptación

sí ha reducido significativamente el tiempo de encriptación, ya que la diferencia observada es estadísticamente significativa.

- 3. Se está investigando el impacto de una nueva técnica de almacenamiento en la velocidad de acceso a los datos en una base de datos distribuida. Se tomaron mediciones del tiempo de acceso a una muestra de datos antes y después de implementar la nueva técnica.
- a) Los tiempos de acceso antes de la implementación fueron (en milisegundos): 15, 16, 14, 17, 15, 16, 16, 17, 14, 15.
- b) Después de la implementación, los tiempos de acceso fueron: 12, 13, 11, 14, 12, 13, 14, 11, 12.

Utilice la Prueba t para determinar si la nueva técnica de almacenamiento ha mejorado significativamente la velocidad de acceso a los datos.

Planteamiento del problema

Se desea evaluar si una nueva técnica de almacenamiento mejora significativamente la velocidad de acceso a los datos en una base de datos distribuida. Para ello, se comparan los tiempos de acceso a 10 muestras de datos antes y después de la implementación. Utilizando una prueba t para muestras relacionadas, se determinará si la disminución en los tiempos de acceso es estadísticamente significativa.

Hipótesis nula (H₀):

La nueva técnica no ha mejorado significativamente el tiempo de acceso a los datos. H_0 : $M_a \le M_d$

Hipótesis alternativa (H₁):

La nueva técnica ha mejorado significativamente el tiempo de acceso a los datos. H_1 : $M_a > M_c$ d

Nivel de significancia:

0.05

Calcular la variable de diferencia "di":

Ingresamos los datos de variables en SPSS

Ingresamos datos

Estadísticos descriptivos:

Nos vamos a Analizar -> Estadísticos Descriptivos -> Frecuencias Ingresamos los siguientes datos

Seleccionamos estos estadísticos

Y obtenemos este gráfico estadístico

Estadísticos

		Antes	Despues	Diferencia
N	Válido	10	10	10
	Perdidos	0	0	0
Media		15,50	12,50	3,00
Error esta	ándar de la media	,342	,342	,000
Desv. De	sviación	1,080	1,080	,000

El sistema parece haber mejorado tras la implementación de la nueva técnica de almacenamiento, ya que los tiempos de acceso disminuyeron en promedio de 15,50 ms a 12,50 ms.

La disminución promedio fue de 3,00 ms. Además, la variabilidad en los tiempos se redujo drásticamente, siendo la diferencia constante entre todas las observaciones. Esto indica una mejora uniforme y sistemática en la velocidad de acceso a los datos, lo cual es un fuerte indicio de la efectividad de la nueva técnica aplicada en la base de datos distribuida.

Prueba de Normalidad para la diferencia.

Nos dirigimos a Analizar -> Estadísticos Descriptivos -> Explorar

Seleccionamos la diferencia

Obtenemos este gráfico

Descriptivos

			Estadístico	Error estándar
Diferencia	Media		3,00	,000
	95% de intervalo de confianza para la media	Límite inferior	3,00	
		Límite superior	3,00	
	Media recortada al 5%		3,00	
	Mediana	3,00		
	Varianza	,000		
	Desviación estándar		,000	
	Mínimo		3	
	Máximo		3	
	Rango		0	
	Rango intercuartil		0	
	Asimetría			
	Curtosis			

Diferencia

```
Diferencia Gráfico de tallo y hojas

Frecuencia Stem & Hoja

10,00 0. 3333333333

Ancho del tallo: 10
Cada hoja: 1 caso(s)
```

Esto indica una mejora absolutamente consistente en la velocidad de acceso gracias a la nueva técnica de almacenamiento, con una disminución fija de 3 ms en todos los casos observados. No se observan valores atípicos ni variación alguna, lo que es inusual en estudios de este tipo y podría deberse a condiciones de prueba altamente controladas.

Normalidad

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Diferencia		10			10	

a. Corrección de significación de Lilliefors

Pruebas de normalidad

Kolmogorov-Smirnova Shapiro-Wilk Estadístico gl Sig. Estadístico gl Sig. Diferencia . 10 . . 10 .

a Corrección de significación de Lilliefors

Constatar la hipótesis:

Nos dirigimos a Analizar -> Comprar medias -> Pruebas T de para muestras relacionadas

Ingresamos la variable antes y después de la actualización. Asegurándonos que el intervalo de confianza sea de 95%.

Gráfico resultantes

Estadísticas de muestras emparejadas

		Media	N	Desv. Desviación	Desv. Error promedio
Par 1	Antes	15,50 ^a	10	1,080	,342
	Despues	12,50ª	10	1,080	,342

a. La correlación y t no se pueden calcular porque el error estándar de la diferencia es 0.

Los tiempos de acceso antes de la implementación de la nueva técnica de almacenamiento tenían una media de 15,50 ms, mientras que después de la implementación la media disminuyó a 12,50 ms. No se puede calcular la prueba t debido a que el error estándar de la diferencia es 0, lo que indica que la mejora en los tiempos de acceso fue uniforme (todas las diferencias fueron de 3 ms). Esto sugiere que la nueva técnica de almacenamiento ha reducido consistentemente los tiempos de acceso a los datos, lo que indica una mejora significativa en la velocidad de acceso.

Elección de Hipótesis:

Rechazo de H₀ (hipótesis nula) Y Aceptación de H₁ (hipótesis alternativa)

Conclusión:

Dado que el error estándar de la diferencia es 0 y todas las diferencias entre los tiempos de acceso fueron consistentes (3 ms), se puede concluir que la nueva técnica de almacenamiento ha mejorado significativamente la velocidad de acceso a los datos. Como todas las diferencias son iguales, podemos rechazar la hipótesis nula (H_0) en favor de la hipótesis alternativa (H_1) , indicando que la nueva técnica ha tenido un impacto positivo en el rendimiento de acceso a los datos.