<u>Linear Algebra 1—Exercise 4</u>: Vector Spaces (I)—Definition, Examples, Subspaces

To submit: 1 b, c, g, k, n 3 b, d 4 b 5 b 6 b 7 b, c 8 a 10 12

1) Check if each set is a subspace of the vector space of which it is a subset. If it is, prove it; if it isn't, bring a counterexample.

a.
$$\left\{ s \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} : s, t \in \Re \right\}$$

b.
$$\left\{t \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} : t \in \mathfrak{R} \right\}$$

c.
$$\left\{t \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \end{pmatrix} : t \in \Re \right\}$$

d.
$$\{s \begin{pmatrix} 2\\1\\1 \end{pmatrix} + t \begin{pmatrix} -1\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\3\\1 \end{pmatrix} \mid s, t \in \mathbb{R}\}$$

$$e. \quad \left\{ ax^2 + bx + 2 : a, b \in \mathbb{R} \right\}$$

f.
$$\left\{t^5 \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} : t \in \Re \right\}$$

- g. The set of solutions of the system $\begin{cases} x_1 + 4x_2 + 3x_3 + x_4 = 0 \\ 4x_1 + 16x_2 + 12x_3 = 0 \end{cases}$.
- h. $\{ax^2 + bx : a, b \in \Re\}$

i.
$$\left\{ t^2 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} : t \in \Re \right\}$$

- j. The set of solutions of the system $\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 4x_3 = 2 \end{cases}$.
- k. The set of solutions of the system $x_1x_2^3 + x_3 = 0$.
- 1. $\{f \in F[0,1]: f(0.25) = 0\}$, where F[0,1] is the set of all functions from the interval [0,1] to \mathbb{R} where addition and scalar multiplication are defined as in question 6.
- m. The set $K = \{(x, y) \in \mathbb{R}^2 : |x| = |y|\}$ as a subset of \mathbb{R}^2 .

n.
$$\left\{ s \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} : s, t \in \Re \right\}$$

- a. Let $U = \{p(x) \in \Re_4[x] | p(2) = 4p(3)\}$. Prove that U is a subspace of $\mathbb{R}_4[x]$.
- b. Let W be the set of 3x3 matrices such that the sum of the second and third rows is zero. Prove that W is a subspace of the space of all 3x3 matrices.

3) Is U a subspace of $\mathbb{R}_3[x]$? Prove or give a counterexample.

a.
$$U = \{a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_2 = 0\}$$

b.
$$U = \{a_0 + a_1x + a_2x^2 + a_3x^3 | a_2 = 5\}$$

c.
$$U = \{a_0 + a_1x + a_2x^2 + a_3x^3 | a_2 = 4a_3\}$$

d.
$$U = \{a_0 + a_1x + a_2x^2 + a_3x^3 | a_1 = a_0^2\}$$

4) In each part, U_1 and U_2 are subspaces of the same vector space V. Show that the union $U_1 \cup U_2$ is **not** a subspace of V.

a.
$$V = \mathbb{R}^2$$
, $U_1 = \left\{t \begin{pmatrix} 1 \\ 0 \end{pmatrix} | t \in R \right\}$, $U_2 = \left\{t \begin{pmatrix} 0 \\ -2 \end{pmatrix} | t \in R \right\}$

b.
$$V=\mathbb{R}^4$$
 , $U_1=\{\vec{x}\in\Re^4|x_4=x_3\}$, $U_2=\{\vec{x}\in\Re^4|x_2=0\}$

c.
$$V = \mathbb{R}_2[x]$$
, $U_1 = \{a_0 + a_1x + a_2x^2 \mid a_0 = 0\}$, $U_2 = \{a_0 + a_1x + a_2x^2 \mid a_1 = 0\}$

- 5)
- a. Given a vector space V and two subspaces U_1 and U_2 , prove that the union $U_1 \cup U_2$ is a subspace if and only if $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.
- b. Find an example of two subspaces U_1 and U_2 of the same vector space V such that the union $U_1 \cup U_2$ is a subspace of V.
- 6) Let $F(\mathbb{R})$ denote the set of functions from \mathbb{R} to itself. Define addition on $F(\mathbb{R})$ as follows: For $f,g\in F(\mathbb{R})$, the function f+g is defined by (f+g)(x)=f(x)+g(x) for all $x\in\mathbb{R}$. Scalar multiplication is defined as follows: For $f,g\in F(\mathbb{R})$ and $\alpha\in\mathbb{R}$, the function αf is defined by $(\alpha f)(x)=\alpha\cdot f(x)$ for all $x\in\mathbb{R}$.

For $a \in \mathbb{R}$, let C(a) denote the set of all functions in $F(\mathbb{R})$ which are **continuous** at a.

- a. Prove that C(a) is a subspace of $F(\mathbb{R})$.
- b. Let D(a) denote the set of all functions in $F(\mathbb{R})$ which are **differentiable** at a. Prove that D(a) is a subspace of C(a). (You may use results from calculus.)
- c. Prove that $W = \{ f \in D(a) \mid f'(a) = 0 \}$ is a subspace of D(a).
- 7) In each part, determine if \underline{w} belongs to the subspace spanned by $\{\underline{v}_1,\underline{v}_2\}$.

a. (in
$$\mathbb{R}^2$$
) $\underline{v}_1 = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, $\underline{v}_2 = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$, $\underline{w} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

b. (in
$$\mathbb{R}^3$$
) $\underline{v}_1 = \begin{pmatrix} 0 \\ -2 \\ -3 \end{pmatrix}$, $\underline{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}$, $\underline{w} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

c. (in
$$\mathbb{R}_2[x]$$
) $\underline{v}_1 = 1 - x$, $\underline{v}_2 = 5 + x^2$, $\underline{w} = x^2 + 2x + 1$

d. (in
$$\mathbb{R}_3[x]$$
) $\underline{v}_1 = -x^3 + x^2 + 2x + 1$, $\underline{v}_2 = x^2 - 3x - 1$, $\underline{w} = x^2 + x + 1$

- 8) Prove or disprove:
 - a. $V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$ with addition defined by $(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$ and scalar multiplication defined by $\lambda(x_1, x_2) = (\lambda x_1, x_2)$ is a vector space.
 - b. $V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$ with addition defined by $(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, x_2 y_2)$ and scalar multiplication defined by $\lambda(x_1, x_2) = (\lambda x_1, \lambda x_2)$ is a vector space.
- 9) Let $M_{3\times 3}(\mathbb{R})$ denote the set of 3x3 matrices with real entries. Let $S_{3\times 3}(\mathbb{R})$ denote the set of symmetric 3x3 matrices, i.e., matrices in which $a_{ij}=a_{ji}$ for all $1 \le i, j \le 3$. For example,

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & -1 \\ 2 & -1 & 8 \end{pmatrix} \in S_{3\times 3}(\mathbb{R})$$
 (a symmetric matrix is one whose rows are equal to its columns).

Prove: $S_{3\times 3}(\mathbb{R})$ is a subspace of $M_{3\times 3}(\mathbb{R})$.

- 10) Let $A_{3\times 3}(\mathbb{R})$ denote the set of **antisymmetric** 3×3 matrices, i.e., matrices in which $a_{ij}=-a_{ji}$ for all $1\leq i,j\leq 3$. For example, $\begin{pmatrix} 0 & -3 & 2 \\ 3 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} \in A_{3\times 3}(\mathbb{R})$. Prove that $A_{3\times 3}(\mathbb{R})$ is a subspace of $M_{3\times 3}(\mathbb{R})$.
- 11) Let $U_{3\times 3}(\mathbb{R})$ be the set of all 3x3 matrices in which the first row consists entirely of zeroes. Prove that $U_{3\times 3}(\mathbb{R})$ is a subspace of $M_{3\times 3}(\mathbb{R})$.
- 12) The set W is defined as: $W = \left\{ \begin{pmatrix} 2a & a \\ c & -c \end{pmatrix} | a,b,c \in \Re \right\}$ where a,c are any real numbers. Prove that W is a subspace of $M_{2\times 2}(\mathbb{R})$.
- 13) (Exam question 5774) Let $W = \left\{ \begin{pmatrix} a+b & a \\ a+c & b \end{pmatrix} : a,b,c \in \mathbb{R} \right\}$. Prove that W is a vector space with the usual operations of addition and scalar multiplication as defined on matrices.