图结构数据

注:本节大部分内容(包括图片)来源于<u>"Chapter 2 - Foundations of Graphs, Deep Learning on Graphs"</u>, 我们做了翻译与重新排版,并增加了一些细节内容。

一、图的表示

定义一(图):

- 一个图被记为 $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$,其中 $\mathcal{V}=\{v_1,\ldots,v_N\}$ 是数量为 $N=|\mathcal{V}|$ 的节点的集合, $\mathcal{E}=\{e_1,\ldots,e_M\}$ 是数量为 M 的边的集合。
- 图用节点表示实体(entities),用边表示实体间的关系(relations)。
- 节点和边的信息可以是**类别型**的(categorical),类别型数据的取值只能是哪一类别。一般称类别型的信息为标签(label)。
- 节点和边的信息可以是**数值型**的(numeric),数值型数据的取值范围为实数。一般称数值型的信息为**属性** (attribute)。
- 在图的计算任务中,我们认为,节点一定含有信息(至少含有节点的度的信息),边可能含有信息。

定义二(图的邻接矩阵):

- 给定一个图 $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$,其对应的**邻接矩阵**被记为 $\mathbf{A}\in\{0,1\}^{N\times N}$ 。 $\mathbf{A}_{i,j}=1$ 表示存在从节点 v_i 到 v_j 的边,反之表示不存在从节点 v_i 到 v_j 的边。
- 在无向图中,从节点 v_i 到 v_j 的边存在,意味着从节点 v_j 到 v_i 的边也存在。因而无向图的邻接矩阵是对称的。
- 在无权图中, 各条边的权重被认为是等价的, 即认为各条边的权重为1。
- 对于**有权图**,其对应的邻接矩阵通常被记为 $\mathbf{W} \in \{0,1\}^{N \times N}$,其中 $\mathbf{W}_{i,j} = w_{ij}$ 表示从节点 v_i 到 v_j 的边的权重。若边不存在时,边的权重为0。

一个无向无权图的例子:

其邻接矩阵为:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix} \tag{1}$$

二、图的属性

定义三(节点的度, degree):

- 对于有向有权图,节点 v_i 的出度(out degree)等于从 v_i 出发的边的权重之和,节点 v_i 的入度(in degree)等于从连向 v_i 的边的权重之和。
- 无向图是有向图的特殊情况,节点的出度与入度相等。
- 无权图是有权图的特殊情况,各边的权重为1,那么节点 v_i 的出度(out degree)等于从 v_i 出发的边的数量,节点 v_i 的入度(in degree)等于从连向 v_i 的边的数量。
- 节点 v_i 的度记为 $d(v_i)$,入度记为 $d_{in}(v_i)$,出度记为 $d_{out}(v_i)$ 。

定义四(邻接节点, neighbors):

- 节点 v_i 的邻接节点为与节点 v_i 直接相连的节点,其被记为 $\mathcal{N}(v_i)$ 。
- 节点 v_i 的k跳远的邻接节点(neighbors with k-hop)指的是到节点 v_i 要走k步的节点(一个节点的2跳远的 邻接节点包含了自身)。

定义五(行走, walk):

- $walk(v_1, v_2) = (v_1, e_6, e_5, e_4, e_1, v_2)$, 这是一次"行走",它是一次从节点 v_1 出发,依次经过边 e_6, e_5, e_4, e_1 ,最终到达节点 v_2 的"行走"。
- 下图所示为 $walk(v_1, v_2) = (v_1, e_6, e_5, e_4, e_1, v_2)$, 其中红色数字标识了边的访问序号。
- 在"行走"中, 节点是允许重复的。

定理六:

• 有一图,其邻接矩阵为 \mathbf{A} , \mathbf{A}^n 为邻接矩阵的n次方,那么 $\mathbf{A}^n[i,j]$ 等于从节点 v_i 到节点 v_j 的长度为n的行走的个数。(也就是,以节点 v_i 为起点,节点 v_j 为终点,长度为n的节点访问方案的数量,节点访问中可以兜圈子重复访问一些节点)

定义七(路径, path):

● "路径"是节点不可重复的"行走"。

定义八(子图, subgraph):

• 有一图 $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$,另有一图 $\mathcal{G}'=\{\mathcal{V}',\mathcal{E}'\}$,其中 $\mathcal{V}'\in\mathcal{V}$, $\mathcal{E}'\in\mathcal{E}$ 并且 \mathcal{V}' 不包含 \mathcal{E}' 中未出现过的节点,那么 \mathcal{G}' 是 \mathcal{G} 的子图。

定义九(连通分量, connected component):

• 给定图 $\mathcal{G}'=\{\mathcal{V}',\mathcal{E}'\}$ 是图 $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$ 的子图。记属于图 \mathcal{G} 但不属于 \mathcal{G}' 图的节点集合记为 \mathcal{V}/\mathcal{V}' 。如果属于 \mathcal{V}' 的任意节点对之间存在至少一条路径,但不存在一条边连接属于 \mathcal{V}' 的节点与属于 \mathcal{V}/\mathcal{V}' 的节点,那么图 \mathcal{G}' 是图 \mathcal{G} 的连通分量。

左右两边子图都是整图的连通分量。

定义十(连通图, connected graph):

• 当一个图只包含一个连通分量,即其自身,那么该图是一个连通图。

定义十一(最短路径, shortest path):

• $v_s, v_t \in \mathcal{V}$ 是图 $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ 上的一对节点,节点对 $v_s, v_t \in \mathcal{V}$ 之间所有路径的集合记为 $\mathcal{P}_{\mathrm{st}}$ 。节点对 v_s, v_t 之间的最短路径 $p_{\mathrm{st}}^{\mathrm{sp}}$ 为 $\mathcal{P}_{\mathrm{st}}$ 中长度最短的一条路径,其形式化定义为

$$p_{\mathrm{s}t}^{\mathrm{sp}} = \arg\min_{p \in \mathcal{P}_{\mathrm{s}t}} |p| \tag{2}$$

其中,p表示 \mathcal{P}_{st} 中的一条路径,|p|是路径p的长度。

定义十二(直径, diameter):

• 给定一个连通图 $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$,其直径为其所有节点对之间的**最短路径的最大值**,形式化定义为

$$\operatorname{diameter}(\mathcal{G}) = \max_{v_s, v_t \in \mathcal{V}} \min_{p \in \mathcal{P}_{st}} |p| \tag{3}$$

定义十三(拉普拉斯矩阵,Laplacian Matrix):

• 给定一个图 $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$,其邻接矩阵为A,其拉普拉斯矩阵定义为 $\mathbf{L} = \mathbf{D} - \mathbf{A}$,其中 $\mathbf{D} = \mathbf{diag}(\mathbf{d}(\mathbf{v}_1), \dots, \mathbf{d}(\mathbf{v}_N))$ 。

定义十四(对称归一化的拉普拉斯矩阵,Symmetric normalized Laplacian):

• 给定一个图 $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$,其邻接矩阵为A,其规范化的拉普拉斯矩阵定义为

$$L = D^{-\frac{1}{2}}(D - A)D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$
(4)

三、图的种类

- 同质图(Homogeneous Graph): 只有一种类型的节点和一种类型的边的图。
- 异质图(Heterogeneous Graph): 存在多种类型的节点和多种类型的边的图。

• 二部图(Bipartite Graphs): 节点分为两类,只有不同类的节点之间存在边。

四、图结构数据上的机器学习

1. 节点预测: 预测节点的类别或某类属性的取值

1. 例子:对是否是潜在客户分类、对游戏玩家的消费能力做预测

2. 边预测: 预测两个节点间是否存在链接

1. 例子: Knowledge graph completion、好友推荐、商品推荐

3. 图的预测:对不同的图进行分类或预测图的属性

1. 例子: 分子属性预测

4. 节点聚类: 检测节点是否形成一个社区

1. 例子: 社交圈检测

5. 其他任务

1. **图生成**: 例如药物发现
 2. **图演变**: 例如物理模拟

3.

五、应用神经网络于图面临的挑战

在学习了简单的图论知识,我们再来回顾应用神经网络于图面临的挑战。

过去的深度学习应用中,我们主要接触的数据形式主要是这四种:**矩阵、张量、序列(sequence)和时间序列**(**time series),它们都是规则的结构化的数据。然而图数据是非规则的非结构化的**,它具有以下的特点:

- 1. 任意的大小和复杂的拓扑结构;
- 2. 没有固定的节点排序或参考点;
- 3. 通常是动态的,并具有多模态的特征;
- 4. 图的信息并非只蕴含在节点信息和边的信息中,图的信息还包括了图的拓扑结构。

以往的深度学习技术是为规则且结构化的数据设计的,无法直接用于图数据。应用于图数据的神经网络,要求

- 适用于不同度的节点;
- 节点表征的计算与邻接节点的排序无关;
- 不但能够根据节点信息、邻接节点的信息和边的信息计算节点表征,还能根据图拓扑结构计算节点表征。下面的图片展示了一个需要根据图拓扑结构计算节点表征的例子。图片中展示了两个图,它们同样有俩黄、俩蓝、俩绿,共6个节点,因此它们的节点信息相同;假设边两端节点的信息为边的信息,那么这两个图有一样的边,即它们的边信息相同。但这两个图是不一样的图,它们的拓扑结构不一样。

六、结语

在此篇文章中,我们学习了简单的图论知识。对于学习此次组队学习后续的内容,掌握这些图论知识已经足够。如果有小伙伴希望掌握更多的图论知识可以参阅参考文献"<u>Chapter 2 - Foundations of Graphs</u>, <u>Deep Learning on Graphs</u>"。

参考资料

• Chapter 2 - Foundations of Graphs, Deep Learning on Graphs