Class Exercises. Set 2. Linear Regression

- 1. We measure the height of a rocket at fixed time intervals as the data pair (s,t). The time t is the time in seconds and s is in meters. The observations are: for times 5, 10, 15, 20, 25 and 30, with heights 722, 1073, 1178, 1177, 781, 102 respectively. Suppose a model $s = a + bt + ct^2$.
 - a) Compute the values of a, b, and c with linear regression (without regularization).
 - b) Compute the values of a, b, and c with linear ridge regression, setting lambda = 0.5.
 - c) What's the average squared error for both models in the 6 points?
 - d) *An advantage of Ridge Regression is that a unique solution always exists since $(X^tX + \lambda I)$ is always invertible. Remind that to be invertible, a matrix needs to be full rank. Show that $(X^tX + \lambda I)$ is full rank by characterizing its p eigenvalues in terms of the singular values of X^tX and λI .

		x_1	x_2	y(=output)
2.	Consider the following data	368	15	1.7
		340	16	1.5
		665	25	2.8
		954	40	5
		331	15	1.3

a) What's the regression solution for $f(y) = w_1x_1 + w_2x_2$?

	x_1	x_2	23	g(-output)	
Trying to improve the fitting, we collect another feature x_3 :	368	15	383	1.7	What's
	340	16	356	1.5	
b) Trying to improve the fitting, we conect another feature x ₃ .	665	25	690	2.8	
	954	40	994	5	
	331	15	346	1.3	
					_

now the solution for $f(y) = w_1x_1 + w_2x_2 + w_3x_3$? Is it unique? What's the complete set of solutions?

- 3. In some contexts, it is interesting to introduce different costs per example in the error function: $L(w) = 1/2\sum_{n=1}^{N} c_n(y_n w_0 w^t x_n)^2$. with $x_n, w \in R^d$ and $c_n \in R^+, w_0 \in R$. Generalize the Probabilistic Interpretation as given in the classes to motivate the given loss function.
- 4. **Consider the probabilistic model for linear regression as discussed in the class. Assume the model without the bias. For a generic xtest observation, what's the variance in the output variable \hat{y} ? a) What's the variance of \hat{y} in the origin, xtest=0? b) What's the variance of \hat{y} when the norm of xtest is very large?