Epreuve écrite

Examen de fin d'études secondaires 2011

Section: B et C

Branche: Chimie

Numéro d'ordre du candidat

QC = Question de cours (20) ; AT = Application de transfert (20) ; AN = Application numérique (20)	
I) L'acétone (la propanone) 18 points	
1) Synthèse industrielle	
La synthèse industrielle mondiale annuelle de l'acétone dépasse 5 millions de tonnes. Elle se fait en 2 étapes à partir du gaz propène :	
a) hydratation du propène en milieu acide, selon Markownikoff	
lpha) dressez l'équation globale et étudiez le mécanisme réactionnel	QC4
 β) expliquez sur base de considérations électroniques pourquoi la réaction conduit à l'alcool secondaire plutôt qu'à l'alcool primaire 	AT2
b) oxydation catalytique du propan-2-ol au contact du cuivre ; dressez l'équation	AT2
 c) un industriel réussit à synthétiser 2,12 kg d'acétone à partir de 1 m³ (aux c.n.t.p.) de propène ; calculez le rendement de la synthèse 	AN2
2) Propriétés à expliquer :	
 a) à pression normale, le propan-2-ol entre en ébullition à 82°C alors que l'acétone, de masse moléculaire comparable, bout déjà à 56°C 	QC2
b) l'acétone est un solvant organique parfaitement miscible à l'eau	QC2
c) le groupement carbonyle se prête facilement aux additions nucléophiles	QC4
II) Le styrène (le phényléthène) 15 points	
Indiquez et étudiez le mode d'hybridation de tous les atomes de carbone du styrène (représenté ci-contre)	QC2
 Expliquez la formation de la liaison double dans la chaîne latérale à partir des nuages atomiques des atomes de carbone 	QC2
 Expliquer pourquoi les atomes de carbone du noyau benzénique s'associent en une structure hexagonale plane 	QC2
4) Exposez la formation du nuage moléculaire π du cycle benzénique de la molécule	QC2
5) Si l'on ajoute du dibrome au styrène, on obtient le 1,2-dibromo-1-phényléthane	
a) dressez l'équation de la réaction	AT1
 b) pourquoi le dibrome s'additionne-t-il sur la chaîne latérale du styrène et non sur le cycle benzénique ? 	AT2
6) Le 1,2-dibromo-1-phényléthane est un composé chiral a) représentez la structure spatiale de l'énantiomère R	AT2
b) représentez ce même énantiomère R en projection de Newman $C_1 \!\!\to\!\! C_2$ dans une conformation décalée	AT2

Epreuve écrite

Examen de fin d'études secondaires 2011

Section: B et C

Branche: Chimie

Numéro d'ordre du candidat

III) Titrage d'un vinaigre

15 points

Une prise de 10,0 cm³ d'un vinaigre est soumise au titrage par NaOH 0,50 M. Le graphe cidessous représente le pH en fonction du volume de titrant ajouté.

1) Montrez qu'il s'agit du titrage d'un acide faible par une base forte (2 arguments)

AT2

2) Déduire de la courbe un argument en faveur du fait que le vinaigre est une solution d'acide éthanoïque ; motivez dûment le raisonnement

AN2;AT1

3) Calculer la concentration molaire de la solution soumise au titrage

AN₂

4) L'indication sur le flacon du vinaigre « concentration minimale en acide : 5 % » est-elle correcte ? (masse volumique du vinaigre = 1,0 g/cm³)

AN₃

5) Vérifiez par calcul le pH au point d'équivalence

AN3

6) Lequel des indicateurs du tableau ci-contre est le plus approprié pour reconnaître le point d'équivalence ? Motivez!

indicateur	domaine de virage
méthylorange	pH 3,1 - 4,4
bromothymol	pH 5,5 - 7,5
phénolphtaléine	pH 8.2 - 9.8

AT2

suite du questionnaire -

Epreuve écrite

<u>Epieuve ecitte</u>	
Examen de fin d'études secondaires 2011 Section: B et C Branche: Chimie	
IV) Applications du pH 12 points	
1) L'acide lactique (acide α -hydroxypropanoïque) est utilisé comme acidifiant (E270) de boissons (p.ex. Rivella).	
Une solution aqueuse renferme 0,90 g d'acide lactique par litre de solution.	
Calculer : a) le pH de la solution	AN3
b) son degré de dissociation α	AN2
2) Le pH de l'eau des piscines doit être maintenu entre 7,0 et 7,4. En cas d'acidification, on ajoute du rectificateur « pH Plus » constitué de carbonate de sodium. Analysez le comportement acido-basique du carbonate de sodium en solution aqueuse (sans faire de calcul)	AT2
	AIZ
 Pour calibrer le pH-mètre, on a besoin d'une solution tampon de pH 7,00. A cette fin on prépare un mélange renfermant les anions dihydrogénophosphate et hydrogénophosphate. 	

a) expliquez (sans calcul), pour quoi le couple $\rm H_2PO_4^-$ / $\rm HPO_4^{2^-}$ convient pour un tamponnage efficace à pH 7

b) calculez la masse d'hydrogénophosphate de sodium qu'il faut ajouter à 1 litre d'une solution 1M de dihydrogénophosphate de sodium pour obtenir le tampon

désiré

AT2

AN3

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H₂O	eau	-1,74
ac. chlorique	HCIO ₃	CIO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl ₃ COO ⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl ₂ COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HCIO ₂	CIO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄ -	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH₂CICOO ⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH ₂ ICOOH	CH₂ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN ⁻	an. cyanate	3,66
ac. méthanoïque	нсоон	HCOO ⁻	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ ⁻	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH ₃ COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH ₃ CH ₂ COO⁻	an. propanoate	4,87
cat. hexaqua aluminium	AI(H ₂ O) ₆ ³⁺	Al(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH ₂ OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ ⁻	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO ⁻	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃ -	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃)₃NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO .	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	$(C_2H_5)_3NH^+$	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable

bases fortes(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)

TABLEAU PERIODIQUE DES ELEMENTS

							Γ	,	7			6		Π	5			4			ω			2			-			
	actinides			lanthanides			10/	7	Ţ	(223)	55	S	132,9	37	Rb	85,5	19	X	39,1	11	Na	23,0	ω	<u></u>	6,9	1	I	1,0		groupe
	es			nides			88	8	Ra	226,0	56	Ba	137,3	38	Sr	87,6	20	က	40,1	12	Mg	24,3	4	Ве	9,0				_	groupes principaux
90	쿩	232,0	58	S	140,1		89		A	227,0	57	La	138,9	39	~	88,9	21	Sc	45,0	=				*********						aux
91	Pa	231,0	59	Pr	140,9		104		R	(261)	72	千	178,5	40	Zr	91,2	22	=	47,9	<										
92	C	238,0	60	Nd	144,2		COL	2 1	Db	(262)	73	Ta	180,9	41	N	92,9	23	<	50,9	<										
93	Np	237,0	61	Pm	(145)		901		Sa	(266)	74	\$	183,9	42	<u>N</u>	95,9	24	Ç	52,0	<										
94	Pu	(244)	62	Sm	150,4		701	1	Bh	(264)	75	Re	186,2	43	Tc	(97)	25	Z	54,9	≦		groupe								
95	Am	(243)	63	<u>E</u>	152,0		801		HS	(269)	76	20	190,2	44	Ru	101,1	26	Fe	55,8			groupes secondaires								
96	Cm	(247)	64	Gd	157,3		60L		Z	(268)	77	۲	192,2	45	R ₂	102,9	27	င္ပ	58,9	\		laires								
97	BK	(247)	65	7	158,9		01.1		Ds	(281)	78	P	195,1	46	Pd	106,4	28	Z	58,7										č	
98	Ω,	(251)	66	Dy	162,5						79	Au	197,0	47	Ag	107,9	29	C	63,5	-										
99	Es	(254)	67	Ho	164,9						80	Hg	200,6	48	8	112,4	30	Zn	65,4	=										
100	3	(257)	68	찍	167,3						81	=	204,4	49	In	114,8	31	Ga	69,7	13	2	27,0	5	œ	10,8				=	
101	Md	(258)	69	T _m	168,9						82	Pb	207,2	50	Sn	118,7	32	Ge	72,6	14	Si	28,1	6	0	12,0				<	gro
102	N _O	(259)	70	4	173,0						83	В	209,0	51	Sb	121,8	33	AS	74,9	15	P	31,0	7	z	14,0				<	groupes principaux
103	5	(256)	71	<u>_</u>	175,0						84	Po	(209)	52	Te	127,6	34	Se	79,0	16	S	32,1	8	0	16,0				_ <	ncipaux
						e1.					85	At	(210)	53	н	126,9	35	Br	79,9	17	Ω	35,5	9	חד	19,0				<u></u>	
											86	Rn	(222)	54	×e	131,3	36	즉	83,8	18	Ar	39,9	10	Ne e	20,2	2	He	4,0	<u> </u>	