

Stacks

TOPICS

Linked Lists

Doubly Linked Lists

Linked List Practice

Searching Arrays

Queues

Stacks

Stack overflow

Every stack has a size that determines how many nodes it can accommodate. Attempting to push a node in a full stack will result in a stack overflow. The program may crash due to a stack overflow.

Cheatsheets / Linear Data Structures

A stack is illustrated in the given image.

stackA.push(xg) will result in a stack overflow since the stack is already full.

The stack data structure

A stack is a data structure that follows a last in, first out (LIFO) protocol. The latest node added to a stack is the node which is eligible to be removed first. If three nodes (a, b and, c) are added to a stack in this exact same order, the node c must be removed first. The only way to remove or return the value of the node a is by removing the nodes c and b.

Main methods of a *stack* data structure

The stack data structure has three main methods: push(), pop() and peek(). The push() method adds a node to the top of the stack. The pop() method removes a node from the top of the stack. The peek() method returns the value of the top node without removing it from the stack.

Stack data structure

A Stack is a data structure that supports two basic operations: pushing a new item to the top of the stack and popping a single item from the top of the stack.

In order to implement a stack using a node class, we have to store a node that is currently referencing the top of the stack and update it during the push and pop operations.

```
from node import Node
class Stack:
  def __init__(self, limit=1000):
    self.top_item = None
    self.size = 0
    self.limit = limit
  def push(self, value):
    if self.has_space():
     item = Node(value)
     item.set_next_node(self.top_item)
     self.top_item = item
     self.size += 1
    else:
     print("All out of space!")
  def pop(self):
   if self.size > 0:
     item_to_remove = self.top_item
     self.top_item
= item_to_remove.get_next_node()
     self.size -= 1
     return item_to_remove.get_value()
   else:
     print("This stack is totally empty.")
  def peek(self):
   if self.size > 0:
     return self.top_item.get_value()
   else:
     print("Nothing to see here!")
  def has_space(self):
   return self.limit > self.size
  def is_empty(self):
   return self.size == 0
```

← Previous

Related Courses

```
PRO Path

Pass the Technical Interview with
Python

Enrolled... Keep Going
```

code cademy from skillsoft	RESOURCES	COMMUNITY	COURSE CATALOG		
	Projects	Forums	Subjects	Languages	
About	Interview Challenges	Discord	Web Development	HTML & CSS	C++
Careers	Docs	Chapters	Data Science	Python	R
Affiliates	Cheatsheets	Events	Computer Science	JavaScript	C#
Shop y f □ You Tube	Articles Videos	Learner Stories	Developer Tools	Java	PHP
	Blog		Machine Learning	SQL	Go
	Career Center		Code Foundations	Bash/Shell	Swift
MOBILE	INDIVIDUAL PLANS	ENTERPRISE PLANS	Web Design	Ruby	Kotlin
Download on the App Store	Pro Membership	Business Solutions	Full Catalog		
	For Students		Beta Content		
Get IT ON Google Play			Roadmap		
	SUPPORT				
	Help Center				