Initial Project Screening Method: Payback Period

Lecture No. 12
Chapter 5
Contemporary Engineering Economics
Third Canadian Edition
Copyright © 2012

Chapter Opening Story

Ultimate Questions

Municipalities' Point of View:

- Would there be enough new revenues from installing the expensive parking monitoring devices?
- How many devices could be installed to maximize the revenue streams?

Manufacturer's Point of View:

- Would there be enough demand for their product to justify the investment required in new facilities and marketing?
- What would be the potential financial risk if the actual demand is far less than its forecast or adoption of technology is too slow?

Chapter 5 Objectives

- How do firms screen potential investment opportunities?
- How do firms evaluate the profitability of an investment project by considering the time value of money?
- How do you determine the net present worth (cost), net annual worth (cost), net future worth (cost), and the internal rate of return of a project?

Chapter 5 Objectives (continued)

- How do you determine the capital recovery cost when you purchase an asset?
- How do you determine unit cost or unit profit?
- What is the meaning of the rate of return?
- What are some of the various methods to compute the rate of return?
- How do you resolve the multiple rates of return problem?
- How do make an accept or reject decision with each of the PW, FW, AE, and IRR criteria?

Lecture 12 Objectives

- How do firms screen potential investment opportunities?
- How do firms evaluate the profitability of an investment project by considering the time value of money?

Bank Loan vs. Investment Project

Example 5.1: Identifying Project Cash Flows

- XL Chemicals: 40% of its time is used to produce demulsification products,
 i.e. operating 3500 hrs per year, 30,000 kg/yr @\$15/kg
- The other 60% of the time produce other specialty chemicals
- It plans to install computer control system, which costs \$650,000 upfront and additional maintenance \$53,000/yr with the following benefits:
 - Higher purity, then \$2/kg price increase
 - Production increase of 4,000 kg/yr due to better yield at no additional costs
 - Reduced operators, leading to saving of \$25/hr

New beneficial cash flows generated:

- Revenue increase due to price increase: 30,000 kg/yr x \$2/kg = \$60,000/yr
- Added production volume: 4,000 kg/yr x \$17/yr = \$68,000/yr
- Manpower saving: \$25/hr x 3500 hrs/yr = \$87,500/yr
- Total benefits in cash incomes: \$215,500/yr

Example 5.1: Describing Project Cash Flows

Year (<i>n</i>)	Cash Inflows (Benefits)	Cash Outflows (Costs)	Net Cash Flows
0	0	\$650,000	-\$650,000
1	215,500	53,000	162,500
2	215,500	53,000	162,500
8	215,500	53,000	162,500

Example 5.1: Identifying Project Cash Flows

Independent versus Mutually Exclusive Investment Projects

Independent:

- Costs and benefits of one project do not depend on whether another is chosen.
- Example: Computer process control project, Waste heat recovery boiler, etc.

Mutually Exclusive:

- A project is excluded if another is chosen.
- Example: a mortgage, from Bank A, Bank B, or Bank C?

Payback Period

Principle:

How fast can I recover my initial investment?

Method:

based on the cumulative cash flow (also called project balance or accounting profit)

Screening Guideline:

If the payback period is shorter than a maximum acceptable specified payback period, the project would be considered for further analysis.

Weakness:

does not consider the time value of money

Example 5.2: Conventional Payback Period

How long does it take to recover the initial investment for the computer process control system project in Example 5.1?

Payback Period =
$$\frac{\text{Initial Cost}}{\text{Uniform annual benefit}}$$
$$= \frac{\$650,000}{\$162,500}$$
$$= 4 \text{ years}$$

Example 5.3: Conventional Payback Period With Salvage Value

Autonumerics Company has just bought a new spindle machine at a cost of \$105,000 to replace one that had a salvage value of \$20,000. The projected annual after-tax savings via improved efficiency, which will exceed the investment cost, are provided in the next slide.

Example 5.3: Conventional Payback Period With Salvage Value

N	Cash Flow	Cum. Cash Flow
0	-\$105,000+\$20,000	-\$85,000
1	\$15,000	-\$70,000
2	\$25,000	\$45,000
3	\$35,000	-\$10,000
4	\$45,000	\$35,000
5	\$45,000	\$80,000
6	\$35,000	\$115,000

Payback period occurs somewhere between N = 3 and N = 4. We say it is 4 years if the end-of-period convention is followed.

Example 5.3: Conventional Payback Period Calculation

Advantages and Disadvantages of the Payback Period Method

Advantages

- easy to understand
- adjusts for uncertainty of later cash flows
- reduces time spent analyzing some alternatives

Disadvantages

- fails to measure profitability
- ignores the time value of money
- biased against long-term projects

Discounted Payback Period

Principle:

How fast can I recover my initial investment plus interest?

Method:

Based on the cumulative discounted cash flow

Screening Guideline:

If the discounted payback period (DPP) is less than or equal to some specified payback period, the project would be considered for further analysis.

Weakness:

Cash flows occurring after DPP are ignored

Example 5.3: Discounted Payback Period Calculation

Period	Cash Flow	Cost of Funds (15%)*	Cumulative Cash Flow
0	-\$85,000	0	-\$85,000
1	15,000	-\$85,000(0.15) = -\$12,750	-82,750
2	25,000	-\$82,750(0.15) = -12,413	-70,163
3	35,000	-\$70,163(0.15) = -10,524	-45,687
4	45,000	-\$45,687(0.15) =-6,853	-7,540
5	45,000	-\$7,540(0.15) = -1,131	36,329
6	35,000	\$36,329(0.15) = 5,449	76,778

^{*} Cost of funds = (Unrecovered beginning balance) X (interest rate)

Example 5.3: Discounted Payback Period Calculation

Extra Example: Problem 5.11

Period	Cash Flow	Project Balance
0	-\$1,000	-\$1,000
1	?	-1,100
2	?	-800
3	460	-500
4	?	0

* Find the interest rate used and the missing cash flows.

Summary

Independent projects are considered one at a time and are either accepted or rejected. Payback periods can be used as a screening tool for liquidity, but we need a measure of investment worth for profitability.