Groups & Vector Spaces

Mathematical Methods in the Physical Sciences

Steve Mazza

Naval Postgraduate School Monterey, CA

SE3030, Winter/2014
Quantitative Methods of Systems Engineering

Groups

Definition of Groups

A group is a set of elements, G, together with a set operation, \cdot , that satisfies the following conditions:

Group Conditions

Closure: $\forall a, b \in G, a \cdot b \in G$

Association: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$

Identity: \exists exactly 1 element, $i \in G \mid \forall \ a \in G, i \cdot a = a \cdot i = a$

Inversion: $\forall a \in G \exists b \mid a \cdot b = b \cdot a = i$, where *i* is the identity

element.

Operation Table

Product

The term *product* is used in the generalized sense.

It is handy to write out an operation table for the group.

Group Isomorphism

Definition

$$f: (G, \cdot) \to (H, \times) \mid \forall u, v \in G, f(u \cdot v) = f(u) \times f(v)$$

Two groups are considered *isomorphic* if an isomorphism exists between them. We write $G \cong H$. Isomorphic groups are considered indistinguishable.

Group Symmetry

Definition

The symmetry group is the group of all isometries under which the elements are invariant with regard to the group operation.

Equilateral Triangle

We consider the example presented on Boas, page 174, where the equilateral triangle is symmetric on three reflections and three rotations.

Conjugate Elements, Class, Character

Irreducible Representations

Infinite Groups

Vector Spaces

Definition of Vector Spaces

A vector space over field F is a set V together with two binary operations satisfying following conditions:

Group Conditions

```
Closure: \forall \ \vec{u}, \vec{v} \in V, \vec{u} + \vec{v} \in V

Vector Addition:  \begin{array}{c} \text{Commutation:} & \forall \ \vec{u}, \vec{v} \in V, \vec{u} + \vec{v} = \vec{v} + \vec{u} \\ \text{Association:} & \forall \ \vec{u}, \vec{v} \in V, (\vec{u} + \vec{w}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}) \\ \text{Additive Identity:} & \exists \ \vec{0} \in V \mid \forall \ \vec{v} \in V, \vec{0} + \vec{v} = \vec{v} + \vec{0} = \vec{v} \\ \text{Additive Inverse:} & \forall \ \vec{v} \in V \ \exists \ -\vec{v} \mid \vec{v} + (-\vec{v}) = 0 \\ \text{Multiplication:} & \text{Distribution 1:} & \forall \ \vec{u}, \vec{v} \in V, k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v} \\ \text{Distribution 2:} & \forall \ \vec{v} \in V, \vec{v}(k_1 + k_2) = k_1\vec{v} + k_2\vec{v} \\ \text{Association:} & \forall \vec{v} \in V, \vec{v}(k_1 \cdot k_2) = (\vec{v} \cdot k_1)k_2 \\ \text{Identity:} & \forall \ \vec{v} \in V, 1 \cdot \vec{v} = \vec{v} \\ \text{Zero:} & \forall \ \vec{v} \in V, 0 \cdot \vec{v} = \vec{0} \\ \end{array}
```

Inner Product, Norm, Orthogonality

Schwart's Inequality

Orthonormal Basis

Infinite Dimensional Spaces

Questions?

