Auxiliar N° 10

Profesor: Hugo Arellano S. Profesor auxiliar: Felipe Isaule

14 de Mayo de 2015

- **P1.** Considere los generadores $\hat{U}_a = e^{ia\hat{p}/\hbar}$ y $\hat{U}_q = e^{-iq\hat{x}/\hbar}$. Vea si $\hat{U}_a\hat{U}_q|\Psi\rangle = \hat{U}_q\hat{U}_a|\Psi\rangle$.
- ${f P2.}$ Para el oscilador armónico en el estado fundamental, calcule la presión cuántica Q. Compare con el potencial
- P3. Considere el oscilador armónico en una dimensión
- a) Construya una combinación lineal de $|0\rangle$ y $|1\rangle$ de manera que $\langle x \rangle$ sea lo más largo posible.
- b) Suponga que en tiempo t=0 se tiene el estado construído en a). Encuentre el estado en tiempo t>0 en el cuadro de Schrödinger. Evalúe $\langle x \rangle$ para t>0 en el cuadro de Heisenberg.
- **P4.** Una partícula esta confinada en un pozo infinito entre x = 0 y x = a. El estado inicial esta dado por:

$$\Psi(x) = \sqrt{\frac{30}{a^5}}x(x-a)$$

a) Encuentre la probabilidad, luego de una medición de la energía, que el sistema se encuentre en el estado correspondiente a la energía $E_n=\hbar^2\pi^2n^2/2ma^2$

$$\phi_n(x) = \sqrt{\frac{2}{a}} sin(n\pi x/a)$$

.

- b) Si la energía medida es igual a $9\hbar^2\pi^2/2ma^2$, ¿cuál es la densidad de probabilidad que en una segunda medición la partícula se encuentre en un intervalo δx alrededor de x=a/2?
- c) Si la medición de la energía E_n no se hubiera hecho, ¿cual sería la densidad de probabilidad de encontrar la partícula en x = a/2?