2. Конечные автоматы

2.1 Построение КА с заданными свойствами

Во всех следующих задачах необходимо построить в виде диаграммы или автоматной таблицы КА, производящий заданное преобразование информации.

1. $A_{\theta x} = A_{\theta v t x} = \{0,1\}$. Построить KA, осуществляющий задержку на один такт поданной на вход двоичной последовательности. Задерживающий символ – 0.

Пример работы: $11\ 11101100010 \longrightarrow 1111011000100$.

2. $A_{\theta x} = A_{\theta b t x} = \{0,1\}$. Построить KA, осуществляющий задержку на два такта поданной на вход двоичной последовательности. При построении не использовать автомат задержки на один такт. Задерживающие символы – 00.

Пример работы: $01011101100010 \longrightarrow 01110110001000$.

3. $A_{\theta x} = \{0, 1, *\}; A_{\theta b t x} = \{0, 1, *u, *u\}$. Словом будем называть последовательность из символов 0 и 1, оканчивающуюся символом *, например *110101 \longrightarrow . Построить KA, который, не изменяя символы 0 и 1, вместо каждого символа * выдает *u или *u зависимости от четности единиц в слове, которое заканчивается данной *. KA должен работать на последовательностях из нескольких слов подряд.

Примеры работы: $*110101 \longrightarrow u110101$ $*1110101 * * * 11 * 01 * 000 * 1 \longrightarrow u1110101 uuu11u01 u000 u1.$

4. $A_{6x} = \{0, 1, *, +\}; A_{6blx} = \{0, 1, u, u\}$. В двоичном слове (см. предыдущую задачу) могут встречаться символы +, никак не влияющие на четность числа единиц в слове. Построить KA, который вместо символа * выдает четность числа единиц в слове, которое заканчивается данной *, а вместо + четность числа единиц во всей поданной на вход до данного символа + последовательности.

Примеры работы: $*+0111+1001 \longrightarrow \mu\mu0111 \nu1001 + *11 *1 +00 +1 *11 +111 *00 + \longrightarrow \mu\nu11 \mu1 \nu00 \nu1 \nu11 \mu111 \nu00 \nu.$

5. $A_{6x} = A_{6blx} = \{0,1\}$. Построить KA, который после каждых трех символов, вместо четвертого выдает двоичную сумму трех предшествовавших (эти три символа подаются на выход без изменения).

Пример работы:

 $11010111101001000010 \longrightarrow 01011111101011001010.$

6. $A_{\theta x} = A_{\theta b l x} = \{0,1\}$. Построить KA, увеличивающий заданное в двоичной записи число на единицу. Число подается поразрядно, начиная с младшего разряда. Значение старшего разряда поданного числа равно 0.

 $\begin{array}{c} 0110111 \longrightarrow 01111000 \\ \Pi \text{римеры работы:} & 0100 \longrightarrow 0101 \\ 01111 \longrightarrow 10000. \end{array}$

- 7. $A_{\theta x} = A_{\theta b l x} = \{0, 1\}$. На вход проектируемого КА поразрядно, начиная с младшего разряда, подается число в двоичной записи. Необходимые условия на количество нулевых старших разрядов нужно сформулировать при решении каждой задачи.
 - а) Построить KA, увеличивающий заданное число в два раза. Пример работы: $01101 \longrightarrow 11010$.
 - б) Построить KA, увеличивающий заданное число в четыре раза. Пример работы: $001001 \longrightarrow 100100$.
 - в) Построить KA, увеличивающий заданное число в пять раз. Пример работы: $00101 \longrightarrow 11001$.
- 8. $A_{\theta \mathcal{X}} = \{0, 1, *\}; A_{\theta \mathcal{W} \mathcal{X}} = \{0, 1, 2, *\}$. На вход проектируемого КА подается последовательность чисел в двоичной записи, каждое с младшего разряда. Два числа разделены символом *.

 - **б**) Построить КА, выдающий вместо каждого символа * остаток от деления на 3 числа, которое оканчивается данной *. Само число должно быть переведено в последовательность символов *. Пример работы: $*110*101100*100001*0*1111 \longrightarrow 0***2******0*****0*1*0**.$

2.2 Автоматные функции, диаграммы, таблицы переходов и выходов, канонические уравнения

Построить диаграммы, таблицы переходов и выходов, канонические уравнения для функции:

1.

$$y(t) = \begin{cases} 0 \operatorname{при} t = 1, \\ 1 \operatorname{при} t \ge 2; \end{cases}$$

2.

$$y(t) = \left\{ \begin{array}{l} x(t) \, \text{при} \, t \, \text{нечетном}, \\ \overline{x}(t-1) \, \text{при} \, t \, \text{четном}; \end{array} \right.$$

3.

$$y(t) = \left\{ \begin{array}{l} 1 \operatorname{при} t = 1, \\ x(1) \operatorname{при} t \ge 2; \end{array} \right.$$

2.3 Эквивалентность автомата Мили и Мура

1. Для автомата Мура найти эквивалентный автомат Мили.

(a)

(b)

(c)

2. Для автомата Мили построить эквивалентный автомат Мура.

(c)

2.4 Минимизация КА

Во всех следующих задачах необходимо минимизировать KA, заданный в виде автоматной таблицы.

1.		q_0	q_1	q_2	q_3	
	0	$0/q_2$	$1/q_3$	$1/q_1$	$0/q_0$	
	1	$0/q_3$	$1/q_1$	$1/q_2$	$0/q_1$	

2.		q_0	q_1	q_2	q_2 q_3		q_5	
	0	$1/q_3$	$0/q_6$	$1/q_1$	$0/q_4$	$1/q_5$	$0/q_0$	
	1	$0/q_7$	$1/q_2$	$0/q_5$	$1/q_6$	$0/q_5$	$1/q_4$	

	q_6	q_7
0	$1/q_7$	$0/q_2$
1	$0/q_3$	$1/q_0$

3.		q_0	q_1 q_2		q_3	q_4	q_5
	0	$0/q_1$	$0/q_5$	$1/q_4$	$1/q_0$	$1/q_4$	$0/q_1$
	1	$1/q_5$	$1/q_3$	$1/q_0$	$1/q_4$	$1/q_5$	$1/q_0$

4.		q_0	q_1 q_2		q_3	q_4	q_5
	0	$1/q_5$	$1/q_2$	$1/q_4$	$0/q_0$	$1/q_0$	$1/q_0$
	1	$0/q_2$	$0/q_3$	$0/q_1$	$1/q_5$	$0/q_5$	$0/q_2$

5.		q_0	q_1	q_2	q_3	q_4	q_5	q_6
	0	$1/q_2$	$0/q_2$	$1/q_4$	$1/q_1$	$0/q_2$	$0/q_2$	$0/q_2$
	+	$1/q_6$	$1/q_3$	$1/q_1$	$1/q_6$	$0/q_1$	$0/q_6$	$1/q_3$
	*	$0/q_4$	$0/q_1$	$0/q_3$	$0/q_6$	$1/q_5$	$1/q_4$	$0/q_6$

6.		q_0	q_1 q_2		q_3 q_4		q_5
	0	$+/q_1$	$+/q_0$	$0/q_0$	$+/q_2$	$0/q_1$	$+/q_2$
	1	$+/q_2$	$+/q_2$	$*/q_2$	$+/q_5$	$/q_2$	$+/q_3$
	2	$ /q_3 $	$0/q_4$	$+/q_4$	$0/q_4$	$/q_5$	$0/q_4$
	3	$0/q_5$	$+/q_1$	$*/q_1$	$0/q_0$	$0/q_3$	$0/q_0$

7.		q_0	q_1	q_2	q_3	q_4	q_5
	0	$0/q_3$	$0/q_5$	$0/q_8$	$0/q_6$	$0/q_1$	$0/q_7$
	1	$1/q_1$	$1/q_0$	$1/q_0$	$1/q_5$	$1/q_6$	$1/q_3$
	2	$0/q_7$	$1/q_4$	$1/q_3$	$0/q_4$	$1/q_3$	$1/q_2$

	q_6	q_7	q_8
0	$0/q_3$	$0/q_1$	$0/q_5$
1	$1/q_8$	$1/q_0$	$1/q_6$
2	$0/q_2$	$1/q_3$	$1/q_7$

8.		q_0	q_1	q_2	q_3	q_4	q_5	q_6
	0	$0/q_1$	$1/q_5$	$1/q_6$	$1/q_6$	$0/q_0$	$0/q_5$	$0/q_6$
	1	$0/q_2$	$0/q_0$	$0/q_4$	$0/q_8$	$0/q_7$	$1/q_1$	$1/q_3$
	2	$1/q_3$	$0/q_8$	$0/q_9$	$0/q_0$	$1/q_9$	$1/q_3$	$1/q_1$

	q_7	q_8	q_9
0	$1/q_5$	$0/q_3$	$0/q_8$
1	$0/q_9$	$0/q_7$	$0/q_2$
2	$0/q_9$	$1/q_1$	$1/q_4$

9.		q_0	q_1	q_2	q_3	q_4	q_5	q_6
	0	$1/q_1$	$1/q_2$	$1/q_6$	$1/q_7$	$1/q_9$	$1/q_6$	$1/q_7$
	1	$1/q_2$	$0/q_4$	$0/q_9$	$1/q_{11}$	$0/q_1$	$1/q_4$	$0/q_2$
	2	$0/q_0$	$1/q_{11}$	$1/q_0$	$0/q_1$	$1/q_{10}$	$0/q_5$	$1/q_3$

	q_7	q_8	q_9	q_{10}	q_{11}
0	$1/q_1$	$1/q_4$	$1/q_4$	$1/q_9$	$1/q_2$
1	$0/q_6$	$1/q_3$	$0/q_2$	$1/q_7$	$1/q_8$
2	$1/q_5$	$0/q_6$	$1/q_8$	$0/q_{10}$	$0/q_9$

10. Необходимо минимизировать частичный КАВ

 $A_{\theta \mathcal{X}} = \{a,b,c,d,e\}, \; B_{\theta \mathcal{U} \mathcal{X}} = \{00,01,10,11\}, \; Q = \{1,2,3,4,5,6,7\}, \;$ заданный в виде автоматной таблицы:

$A_{\theta x}/Q$	1	2	3	4	5	6	7
a	1/00	5/00	4/11	6/11	_	_	_
b	5/01	4/0-	_	6/00	7/0-	_	2/
c	_	_	_		_	3/00	1/00
d	_	_	_	2/00	4/00	_	_
e	6/10	_	6/00	_	_	2/10	_

11. Необходимо минимизировать частичный КАВ

 $A_{\theta\mathcal{X}}=\{a,b,c,d\},\ B_{\theta\mathcal{U}\mathcal{X}}=\{0,1\},\ Q=\{1,2,3,4,5,6,7,8\},$ заданный в виде автоматной таблицы:

$A_{\theta x}/Q$	1	2	3	4	5	6	7	8
a	4/1	-/-	2/1	6/0	3/1	2/0	-/-	7/1
b	-/-	-/-	-/-	-/-	4/1	3/1	5/0	-/-
c	5/1	5/1	-/-	_/_	-/-	-/-	5/0	5/0
d	7/0	-/-	8/0	_/_	_/_	-/-	1/1	2/1

12. Необходимо минимизировать частичный КАВ

 $A_{\theta X}=\{a,b,c,d\},\ B_{\theta b l X}=\{0,1\},\ Q=\{1,2,3,4,5,6,7,8\},$ заданный в виде автоматной таблицы:

$A_{\theta x}/Q$	1	2	3	4	5	6	7	8
a	5/0	8/0	8/1	4/1	7/0	7/1	5/0	5/0
b	2/1	1/1	-/-	-/-	8/1	-/-	-/-	7/1
c	3/1	_/_	_/_	5/1	7/0	4/0	-/-	2/0
d	3/0	6/0	1/0	2/1	-/-	-/-	-/-	-/-

13. Необходимо минимизировать частичный КАВ

 $A_{\theta\mathcal{X}}=\{z_1,z_2,z_3,z_4\},\ B_{\theta bl\mathcal{X}}=\{0,1\},\ Q=\{1,2,3,4,5\},$ заданный в виде автоматной таблицы:

$A_{\theta x}/Q$	1	2	3	4	5
z_1	2/0	3/0	3/0	-/-	-/-
z_2	-/1	5/1	4/1	1/1	-/-
z_3	3/-	2/0	-/-	2/-	1/1
z_4	2/0	-/-	5/0	-/-	-/-

14. Необходимо минимизировать частичный КАВ

 $A_{\theta \mathcal{X}} = \{1,2,3\}, \ B_{\theta \mathcal{W} \mathcal{X}} = \{1,2,3,4,5\}, \ Q = \{a_1,a_2,a_3,a_4,a_5,a_6\},$ заданный в виде автоматной таблицы:

$A_{\theta x}/Q$	a_1	a_2	a_3	a_4	a_5	a_6
1	_/_	$a_4/3$	$a_5/5$	$a_3/4$	$a_1/-$	$a_1/-$
2	$a_3/1$	$a_1/4$	$a_3/3$	a_6 /-	-/1	-/1
3	$a_1/2$	_/_	$a_1/3$	$a_2/1$	$a_5/2$	_/_

15. Необходимо минимизировать частичный КАВ

 $A_{\theta \mathcal{X}} = \{a,b,c\},\ B_{\theta b l \mathcal{X}} = \{0,1\},\ Q = \{1,2,3,4,5,6,7,8\},$ заданный в виде автоматной таблицы:

$A_{\theta x}/Q$	1	2	3	4	5	6	7	8
a	7/0	7/0	8/0	8/0	7/0	5/0	1/1	3/1
b	6/1	2/1	6/1	2/1	4/1	1/1	8/0	8/0
c	1/0	1/0	3/0	3/0	3/0	1/0	3/0	1/0

2.5 Абстрактный синтез КАВ

1. Провести абстрактный синтез автомата для управленя роботом-упаковщиком, который укладывает в подарочные коробки три предмета: флакон духов, флакон одеколона и коробочку пудры. Робот обладает «зрением» и снабжен тремя манипуляторами.

С помощью зрительного анализатора робот распознает наличие предметов и выдает для автомата сигнал о наличии духов, пудры или одеколона. Элементы, составляющие набор, поступают неравномерно и без определенного порядка, так что, перед роботом, например, может оказаться флакон духов и пудра, но не одеколон.

Один манипулятор имеет захват для взятия стеклянных флаконов, второй — захват коробочек пудры. Третий манипулятор по жесткой программе осуществляет упаковку коробки и сдвигает ее на отходящий конвейер. Следовательно выходные сигналы: ждать, закрыть коробку и сдвинуть, взять духи, взять одеколон, взять пудру.

Цикл работы робота таков, что, начав собирать один из наборов, он должен полностью завершить сборку.

- 2. Произвести абстрактный и структурный синтез логического устройства «секретный замок», который выдает сигнал тревоги после неправильно набранной комбинации, открывает замок после введения пароля. На панели имеется 4-е кнопки A, B, C, D. Пароль «АСС». Ввод последовательный.
- 3. Произвести абстрактный и структурный синтез стройства «автоматический контроллер в метро», который работает следующим образом:
 - (a) Сначала горит табло «опустить монету».
 - (b) После опускания монеты загорается табло «ИДИТЕ».
 - (с) Если человек не опустил монету и пошел, то срабатывает датчик Ф2 и задвижка.
 - (d) После пересечения луча Ф1 переход в начальное состояние.

