Search & AI

Stephen J. Guy

Many images from Lavalle, Planning Algorithms and Peter Abbeel

1

Search

- Very common in Al
 "Al is search"
 - Game trees, decision trees, puzzle solving
- · We'll see the same things in path planning

2

Breadth-first vs Depth-first

- · DFS:
 - o Less Memory
 - Will not find optimal solution
 - o Gets suck in loops and infinite paths
- Breadth First:
 - o Lots of memory required
 - o Finds solution with least nodes
 - o Handles loops & infinite paths
- Hybrid Options...

6

/

Aside: Priority Queue

• Priority queue allows insert of (key, value) pairs

pq.push(key, value)	inserts (key, value) into the queue.
pq.pop()	returns the key with the lowest value, and removes it from the queue.

- Insertions normally O(log n)
- Decrease value: pop(), push(key, val-1)
- Priority Queues used in cost-sensitive search methods

9

10

9

Uniform Cost Search: Analysis UCS: Explore increasing cost contours Advantages: UCS is complete and optimal Issue: Explores in every "direction" equally Uses no info. about goal Goal

UCS vs A* Contours

 Uniform cost expands in all directions

- A* expands mainly towards the goal
 Hedges by
 - Hedges by expanding outward as needed

13

13

Terminating A*

- Can we stop when we push the goal onto the PQ?
- No Terminate on dequeueing a goal

Admissible Heuristic

• A heuristic h is admissible if

$$h(n) \le h^*(n)$$

 $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost to the nearest goal

Examples:

 Finding admissible heuristic is main part of using A* in practice

Optimality

- Terminating A*
 - A* is done when the goal is the lowest thing on the priority queue.
- A* finds optimal path if heuristic is admissible!

17

17

Classic Example 8 Puzzle • Empty space can slide 5 3 up, down, left, or right Start State Ideas for heuristics? Num displace tiles Average nodes expanded when o Total Manhattan dist. optimal path has length... ...4 steps ...8 steps ...12 steps UCS 112 6,300 3.6×10^6 TILES 13 227 39 25 73 MANHATTAN 12

Weighed $A^* f = g + \varepsilon h$

- Weighted A*
 - Expands nodes in order of f(n) = g(n) +εh(n)
 - 0 ε> 1
 - Bias towards goal nodes

20

Weighted A* f = g+ ϵ h : ϵ > 1

- Trades off optimality for speed
- ε-suboptimal:
 - \circ cost(solution) ≤ ϵ^* cost(optimal solution)
 - Test your understanding by trying to prove this!
- In many domains, it has been shown to be orders of magnitude faster than A*!
- Research challenge is to find heuristics with shallow local minima

25

25

Anytime Algorithm

- Algorithm that returns valid answer when interrupted mid run
- Use in robotics
 - Robot can make best current decision as it moves given current information
- Use in games/VR
 - NPCs can make the best decision given time budget for AI

Anytime A*

- Weighted A*
 - o Trades off speed for optimality
 - ο ε-suboptimal
- Anytime A*
 - o Run weighted A* large ε
 - o Rerun with decreasing ε to refine path

27

A* Variants

- Anytime Repairing A* (ARA*) [Likhachev, Gordon, Thrun 2004]
 - Efficient version of Anytime A* that reuses state values within each iteration
- Anytime Nonparametric A* (ANA*) [van den Berg, Shah, Huang, Goldberg, 2011]
 - o Provides the "right" next ε to ARA*
- Lifelong Planning A* (LPA*)
 - Modified A* to allow updates in weights (e.g., passage becomes blocked)

D*: A*, but Goal to Start

- A* with consistent heuristic finds shortest path from goal to start
- Flip start and goal
 Shortest path from any point to start
- Policy for any point in space
 - o Can account for noise/errors in motion

29

29

D* in practice

- Field D* implemented on Mars rovers Spirit and Opportunity
- Anytime D* used in DARA urban challenge winner

31

Research/Project Ideas

- Can you use LPA*/D* ideas to create NPCs which explore games worlds intelligently
 - Allow dynamic environments
 - o NPCs in "unknown" environments
 - o Play hide-and-seak

2

Terms

- Search Tree (Root, Node, Child, Fringe)
- Depth First Search (DFS)
- Breadth First Search (BFS)
- Heuristics
- A*
- Admissibility
- Anytime Algorithms
- Policies

33