External Arduino Connections

74HC595 Output Shift Cascade

74HC165 Input Shift Cascade

Sensor Input Signals

Using pull-up ensures that power will never be directly connected to any off-board components.

10K Ohm (drain .5mA/sensor)

74HC165 input

Tri-Color LED Drivers (common cathode)

Relay Output Drivers

JZV-11F 5VDC SPDT Relay

As nearly as I can tell, this is not a polarized relay and does not care which side of the coil is positive.

Coil resistance: 320 ohms

Minimum current: 10mA

Expected current: 16mA @5VDC

Zone Arm Control

Arduino analog V_{ref}

Using the system armed LED indicator to arm the s/w in the Arduino may seem obtuse, but it eliminates any mode confusion between the Arduino and the external alarm control.

Alarm Controller system armed indicator (ground to iluminate)

Sensor Characteristics

Switch Type	Sense	Transitions
magnetic reed switch	Normally Open (with no magnet present)	clean less than1ms
Mercury window sensor	orientation dependent	bump signals last 20-200ms

Conclusion: (1) no debounce seems to be required,

(2) but we may want signal stretching.