

Lineare Algebra für Informatik - Woche 4

Cosmin Aprodu

Technische Universität München

Online, 06 Mai 2021

Wiederholung - Linearkombinationen

Sei $v_1, \ldots, v_n \in V$ Vektoren. Ein Vektor $v \in V$ heißt **Linearkombination** von v_1, \ldots, v_n , falls es Skalare $a_1, \ldots, a_n \in K$ gibt mit:

$$v = a_1 \cdot v_1 + \ldots + a_n \cdot v_n$$
 (im Allgemeinen: $v = a_1 \odot v_1 \oplus \ldots \oplus a_n \odot v_n$)

 \rightarrow Sei $\mathbf{0} \in V$ und $0 \in K$. Die Vektoren heißen **linear unabhängig**, falls für alle a_1, \dots, a_n folgende Implikation gilt:

$$a_1 \cdot v_1 + \ldots + a_n \cdot v_n = \mathbf{0} \implies a_1 = 0, \ldots, a_n = 0$$

Erinnerung (erzeugter Unterraum):

- $\langle S \rangle = \{ v \in V \mid v \text{ ist Linearkombination von S} \}$
- $\langle v_1, \ldots, v_n \rangle = \{ \sum_{i=1}^n a_i v_i \mid a_1, \ldots, a_n \in K \}$

Erzeugendensystem und Basis

Sei V ein K-Vektorraum und $S \subseteq V$ eine Teilmenge.

- S heißt ein Erzeugendensystem von V, falls $\langle S \rangle = V$.
- S heißt eine **Basis** von V, falls S ein *linear unabhängiges Erzeugendensystem* von V ist. (Alle Vektoren von S sind *linear unabhängig*).

Sei
$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow (\textit{i-te Position}) \in K^n$$
. Dann ist $S = \{e_1, \dots, e_n\}$ eine Basis von K^n und heißt **Standardbasis**.

Wichtig: → Jeder Vektorraum hat eine Basis.

→ Kein Vektorraum hat eine eindeutige Basis.

Dimension einer Basis

Falls V ein endliches Erzeugendensystem hat, so ist die **Dimension** von V die Elementanzahl einer Basis von V. \rightarrow Jede Basis von V hat die gleiche Dimension (gleiche # an Vektoren).

Sei $v_1, \ldots, v_n \in V$ paarweise verschieden und $S = \{v_1, \ldots, v_n\}$. Dann gelten:

- S ist eine Basis von $V \Leftrightarrow \dim(V) = n$ und S linear unabhängig $\Leftrightarrow \dim(V) = n$ und $V = \langle S \rangle$.
- Falls $n < \dim(V)$, so folgt $V \neq \langle S \rangle$.
- Falls $n > \dim(V)$, so ist *S linear abhängig*.

Sei $U \subseteq V$ ein *Unterraum*. Dann gelten:

- $\dim(U) \leq \dim(V)$.
- Falls $\dim(U) = \dim(V) < \infty$, dann U = V.