Data Streams Quest

Team RHYMe Fundamentals of Operationalizing Al

Contents				
01	Introduction			
02	Project Infrastructure			
03	Data Overview & Feature Engineering			
04	Model Training (MLFlow)			
05	Drift Detection (Evidently)			
06	Monitoring (Prometheus and Grafana)			
07	Takeaways and Enhancements			

Introduction

Context:

Air pollution is one of the top global health risks which requires immediate anomaly detection

Dataset:

UCI Air Quality with hourly sensor readings of pollutants from a monitoring station

Goal:

Develop an end to end data streaming pipeline for environmental time series forecasting that predicts the level of Carbon Monoxide in real time

Project Infrastructure

Data Overview and Feature Engineering

UCI Machine Learning Repository Air Quality Data Set 9357 Hourly Observations March 2004 to April 2005 **15 Parameters**Gaseous Pollutants, MO
Sensors, Meteorological

CO Target Variable

Feature Engineering

Category	Examples	Purpose	
Lag Features	CO(GT)_lag_{1,2,3,6,12,24,48,72}	Model recent history and autoregressive effects	
Rolling Statistics	Mean / Std / Min / Max over {3, 6, 12, 24, 48, 168 h}	Capture short and long-term trends	
Rate-of-changes	1 h, 3 h, 24 h differences of pollutant sensors	Detect sudden spikes or decays	
Cross-Pollutant interactions	Pairwise products & ratios	Encode chemical/physical coupling	
Environmental effects	T×AH, T², AH², T×RH	Capture nonlinear weather influences	
Temporal context	Hour, Day, Month, Week, sin/cos encodings	Preserve cyclical daily / seasonal patterns	
Binary Flags	Weekend, Rush hour, Night, Winter, Summer	Represent categorical time patterns	

Model Training

Model	RMSE	MAE	R ²	SMAPE
Random Forests	0.3618	0.2166	0.9249	11.978%
Extra Trees	0.4099	0.2743	0.9036	15.636%
Gradient Boosting	0.3142	0.2165	0.9434	13.561%
XGBoost (XGB)	0.2686	0.1715	0.9586	10.498%
LightGBM (LGB)	0.3115	0.2006	0.9443	11.923%
CatBoost (CAT)	0.3111	0.2074	0.9445	12.848%
StackEnsemble	0.2889	0.1956	0.9521	12.454%
WeightedEnsemble	0.2907	0.1859	0.9515	11.185%

XGBoost Training

Bayesian optimization tuned XGBoost hyperparameters. Early stopping to find the optimal number of trees. Retrained model using using the optimal parameters.

Evidently

Continuously tracks data quality, feature drift, and model stability in the real-time air-quality pipeline. Compare current feature distributions with a reference dataset.

Evidently - Model Performance

Regression Model Performance. Target: 'CO(GT)'

Index binned

Bonus: Grafana & Prometheus

Grafana pulls data from Prometheus which comes from tracking API service predictions.

Avg. prediction latency says how long each API request takes to return a result.

Early spike due to cold start, stabilizes as requests flow.

Learnings

- Feature engineering strongly improved predictive power
- Bayesian search, took a long time but helped finding optimal configurations
- Databricks with MLFlow streamlined training and comparison

Future Enhancements

- Investigate
 - Dimensionality Reduction
 - Multi-source Forecasting
- Potential LLM integration for automated business decision making for stakeholders and leadership members