- - for each $i \ge 0$, $xy^* \not\equiv A$,
 - 19170, and
 - · 1xy1 =>
- 2. Answer the following questions about the proof of the pumping lemma.
 - (a) (__ /2 pts) Recall that p is taken to be the number of states in a given DFA recognizing a given regular language. Why is $|xy| \leq p$? The string y is chosen to be the characters beding from the first instance of the first repeated state to the second restance, and x the string that preceeds y. Note that, at maximum, p characters are needed to force a repeated state.
 - (b) (__/2 pts) How is the substring z chosen?

 The string Z is chosen such that, for any set with lungth at lest p, we have s= xyt where xy was defined above.
- 3. (__ /3 pts) Let $A = \{a^j b^k \mid j \geq k \geq 0\}$. Write a formal proof that A is not regular using the pumping lemma.

The way of contradiction, suppose A is regular. We may apply the pumping lumma to $S = aPbP \in A$, where p is the pumping length of A. We can write S = xyP such that $y \neq E$ and $|xy| \leq p$. This implies $y = a^k$ with $k \geq 1$. Firsthm, the pumping lumma demands that $x \geq E$ (taking y^i with i = 0), which implies $aP^{-k}bP \in A$. Hence, $p - k \not\geq p$, contradiction.