분석목표 및 고객 세분화

분석 목표

이커머스 데이터를 분석하여 고객들을 세분화하여 분석하고, 의미 있는 인사이트 도출

데이터

RFM 고객분류

Elbow method에 따라,
고객 군집을 4개로 정하여 분석 진행

고객분류	숫자(명)	고객비율(%)
미관심 고객	509	34.67
VIP 고객	400	27.25
신규 고객	341	23.23
수면 고객	218	14.85

미관심 고객

Recency 가장 낮다, Frequency 가장 낮다, Monetary 가장 낮다

VIP 고객

Recency 가장 높다, Frequency 가장 높다, Monetary 가장 높다

수면 고객

Recency 낮은 편, Frequency 높은 편, Monetary 높은 편

신규 고객

Recency 높은 편, Frequency 낮은 편, Monetary 낮은 편

VIP 고객의 재방문율

Cohort - 전체 고객

Cohort - VIP 고객

VIP 선호 상품

- VIP 고객 군집의 경우 분명하게 최종 재방문율이 높음을 확인 가능
- VIP 고객이 주로 거래한 제품의 목록을 확인한 결과 "Drinkware", "Nest", "Office", "Apparel", "Nest-USA"로 나옴
- 따라서, VIP 고객이 선호하는 상품에 대한 프로모션 전략을 수립하면 매출 향상에 도움이 될 거라 예상

이커머스 고객 세분화 분석

장바구니 분석

Apriori 활용 연관성 분석

```
# 거래ID별로 제품ID를 리스트로 그룹화
transactions = Onlinesales_info.groupby('거래ID')['제품ID'].apply(list).values.tolist()

# TransactionEncoder를 사용하여 데이터 변환
encoder = TransactionEncoder()
encoded_array = encoder.fit(transactions).transform(transactions)
transaction_df = pd.DataFrame(encoded_array, columns=encoder.columns_)

# apriori 알고리즘을 사용하여 빈번한 아이템 세트 찾기
frequent_itemsets = apriori(transaction_df, min_support=0.01, use_colnames=True)

# 연관 규칙 생성
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.1)

# 연관 규칙 출력
display(rules.sort_values(by='confidence', ascending=False).head(10))
```

antecedent	consequent	lift	confidence
Product_0917	Product_0915	41.16	72.75
Product_0915	Product_0917	41.16	60.27
Product_0976	Product_0983	1.62	21.46
Product_0983	Product_0976	1.62	20.82

결과 해석

Rule 1

- 제품 0917을 구매했을 때, 제품 0915를 함께 구매할 확률이 약 72.75%
- lift 값이 41.15로 매우 높으므로, 이 두 제품은 서로 매우 강한 양의 연관성

Rule 2

- 제품 0915를 구매했을 때, 제품 0917을 함께 구매할 확률이 약 60.27%
- lift 값이 Rule 1과 동일하게 매우 높으므로, 이 두 제품은 서로 매우 강한 양의 연관성

Rule 3

- 제품 0976을 구매했을 때, 제품 0983을 함께 구매할 확률은 약 21.45%
- lift 값은 1.62로, 두 제품이 서로 구매될 확률이 독립적인 경우보다 약간 더 높음

Rule 4

- 제품 0983을 구매했을 때, 제품 0976을 함께 구매할 확률은 약 20.82%
- lift 값이 Rule 3와 동일, 두 제품이 서로 구매될 확률이 독립적인 경우보다 약간 더 높음

- 상품을 배치하거나 프로모션을 기획할 때 관련성 높게 나온 제품들을 함께 추천하거나 패키지로 묶어 판매
- ex) 제품 0917과 0915는 함께 묶어 할인을 제공하거나, 함께 구매를 유도하는 마케팅캠페인을 진행