Graph Isomorphisms & Automorphisms

University of Twente & Nedap University Nedap University 2016–2018 graduation

A. G. van Herwijnen C. A. M. A. Reuvers F. T. F. Meijer Cluwen M. H. B. Banierink M. M. Slot E. Huizinga

23-04-2018

Vertex

Vertex

(1)

2

- Vertex
- Edge

- Vertex
- Edge
- Graph

- Vertex
- Edge
- Graph
 - Undirected vs. directed

- Vertex
- Edge
- Graph
 - Undirected vs. directed
 - Simple vs. multi-edge

- Vertex
- Edge
- Graph
 - Undirected vs. directed
 - Simple vs. multi-edge

We only consider simple, undirected graphs

What is graph isomorphism?

Graph Isomorphism problem

- Graph Isomorphism problem
 - Why do we need it?

- Graph Isomorphism problem
 - Why do we need it?
 - Solvable in polynomial time?

- Graph Isomorphism problem
 - Why do we need it?
 - Solvable in polynomial time?
- Number of automorphisms problem

Processing pipeline overview

Processing pipeline overview

GI processing pipeline

GI processing pipeline

Size = 2

Order = 3

$$deg = 1: (A,C), deg = 2: (B)$$

GI processing pipeline

GI processing pipeline

Connectivity

- Keep track of visited vertices
- Select any unvisited vertex
- 3 Start Breadth First Search from this vertex

Connectivity

- Meep track of visited vertices
- Select any unvisited vertex
- 3 Start Breadth First Search from this vertex

 $\begin{aligned} & \text{Visited} = [0] \\ & \text{Number of components} = 1 \end{aligned}$

- Meep track of visited vertices
- Select any unvisited vertex
- 3 Start Breadth First Search from this vertex

 $\begin{aligned} & \text{Visited} = [0, \, 1, \, 3] \\ & \text{Number of components} = 1 \end{aligned}$

- Keep track of visited vertices
- Select any unvisited vertex
- 6 Start Breadth First Search from this vertex
- 4 If there are still unvisited vertices, there is another component

Visited = [0, 1, 3, 2]Number of components = 1

- Keep track of visited vertices
- Select any unvisited vertex
- 3 Start Breadth First Search from this vertex
- If there are still unvisited vertices, there is another component

Visited = [0, 1, 3, 2, 4]Number of components = 2

- Meep track of visited vertices
- Select any unvisited vertex
- 6 Start Breadth First Search from this vertex
- 4 If there are still unvisited vertices, there is another component

Visited = [0, 1, 3, 2, 4, 5]Number of components = 2

- Keep track of visited vertices
- Select any unvisited vertex
- 6 Start Breadth First Search from this vertex
- 4 If there are still unvisited vertices, there is another component

Visited = [0, 1, 3, 2, 4, 5, 6]Number of components = 2

• Simplify graph by grouping similar vertices, i. e. modules, into one vertex

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

- Simplify graph by grouping similar vertices, i. e. modules, into one vertex
- Vertices are grouped by neighbourhood

This is a tree, albeit a linear one sa

Tree isomorphism

- Trees are non-cyclic graphs
- Solution for the GI problem in linear time
- Good combination with modular decomposition

From graph to rooted tree

Algorithm by Bonany [2], returns the root that splits the tree in half

- 1 Choose an arbitrary root r
- Assign each vertex the weight of its induced subtree
- **6** Start at r and shift it with the neighbour that has weight $> \frac{n}{2}$

Initial graph

Rooted with assigned levels

In $\mathcal{O}(n)$, by Aho, Hopcroft and Ullman [1].

level 0

level 1

level 2

level 3

Assigned 0 to all leaves

Remark: The orange indicates the final value of that node

level 0

level 1

level 2

level 3

Assign tuples to the vertices at level 2

Assign values to the distinct tuples, starting at 1, at level 2

Assign tuples to the vertices at level 1

Assign values to the distinct tuples

Assign tuples to the roots

Algorithm

Assign values to the root

Modular decomposition and trees

- Assign the same value to isomorphic modules, starting at the length of the vertices.
- Check if the modules in both graphs have the tuples; otherwise their induced subtrees
 are different.

GI processing pipeline

GI processing pipeline

Fast colour refinement and branching

- Start with an initial colouring, eg. by degree
- Queue = [red, orange, green, blue]

- Refine vertices on amount of red neighbours?
- Queue = [red, orange, green, blue]

- Refine orange vertices on amount of orange neighbours
- Queue = [orange, green, blue]

- Recolour orange vertices with 2 orange neighbours
- Queue = [green, blue] \leftarrow orange

- Refine orange vertices on amount of green neighbours
- Queue = [green, blue, orange]

- Recolour orange vertices with no green neighbours
- Queue = [blue, orange] \leftarrow gray

- Repeat these actions until the queue is empty
- ullet Same colours o vertices map onto each other

Colour refinement flow

Colour refinement flow

Sometimes fast colour refinement results in a balanced non-bijective colouring.

• There are multiple possible mappings

Sometimes fast colour refinement results in a balanced non-bijective colouring.

- There are multiple possible mappings
- Pick a colour class with at least 4 vertices

Sometimes fast colour refinement results in a balanced non-bijective colouring.

- There are multiple possible mappings
- Pick a colour class with at least 4 vertices
- Pick a vertex from G (eg. G0)

Sometimes fast colour refinement results in a balanced non-bijective colouring.

- There are multiple possible mappings
- Pick a colour class with at least 4 vertices
- Pick a vertex from G (eg. G0)
- Branch on vertices of H

Colour refinement flow

GI processing pipeline

Processing pipeline overview

Counting automorphisms

Automorphism groups

- number automorphisms is a group
- generating set: subgroup of a group which generates all elements of the group
- generating set can be small for large groups

Automorphism groups

- number automorphisms is a group
- generating set: subgroup of a group which generates all elements of the group
- generating set can be small for large groups

Tree pruning

Generating set

- order: number of automorphisms
- non-trivial mapping: mapping of a node to another node
- orbit: all possible mappings of a node
- stabilizer: permutations in the set where a node maps to itself

Compute number of automorphisms


```
generating set [(6,7),(1,2),(0,8)(1,6,2,7)(3,5)]

non-trivial mapping 1

orbit (1,2,6,7)

stabilizer [(6,7)]

order [(6,7)]
```

Compute number of automorphisms


```
generating set [(6,7),(1,2),(0,8)(1,6,2,7)(3,5)]

non-trivial mapping 1

orbit (1,2,6,7)

stabilizer [(6,7)]

order [(6,7)]

order [(6,7)]

= 4 \times \text{ order of } [(6,7)]
```

Compute number of automorphisms

generating set	[(6,7),(1,2),(0,8)(1,6,2,7)(3,5)]	[(6,7)]
non-trivial mapping	1	6
orbit	(1,2,6,7)	(6,7)
stabilizer	[(6,7)]	-
order	$length(orbit) \times order of [(6,7)]$	length(orbit)
	$= 4 \times \text{ order of } [(6,7)]$	= 2

number of automorphisms = 8

Processing pipeline overview

Results of the basic graphs

file name	number of graphs	graph order	graph size	modular decom- position factor	isomorphic graphs	number of automorphisms	time to solve (sec)
basicAut1.gr	1	35	34	576	-	2304	0.037
basicAut2.gr	1	69	96	1	-	128	1.554
basicGl1.grl	4	147	857	1	[0, 2] [1, 3]	-	10.678
basicGl2.grl	4	40	60	1	[0, 2] [1, 3]	-	6.179
basicGl3.grl	7	32	80	1	[0, 2, 6] [1, 3, 4, 5]	-	1.813
basicGIAut.grl	9	40	75	1	[0, 5, 7] [1, 6] [2, 3] [4, 8]	10 20 20 10	3.719

Results of the bonus graph isomorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	isomorphic graphs	time to solve (min:sec)
1	8	52	{762, 858}	67108864 4403012567040000 543581798400 4403012567040000	[0, 7] [1, 6] [2, 4] [3, 5]	0.9
2	12	64	204	86973087744 67108864 5706304286883840000 4403012567040000 704482010726400 5706304286883840000	[0, 3] [1, 4] [2,9] [5, 10] [6, 7] [8, 11]	0.4
3	4	627	6777	1	[0,3], [1,2]	15:46.6
4	6	80	120	1	[0, 2, 3, 4], [1, 5]	6:27.5
5	8	300	300	1	[0, 2], [1, 3], [4, 6], [5, 7]	1.5

Results of the bonus graph isomorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	isomorphic graphs	time to solve (min:sec)
1	8	52	{762, 858 }	67108864 4403012567040000 543581798400 4403012567040000	[0, 7] [1, 6] [2, 4] [3, 5]	0.9
2	12	64	204	86973087744 67108864 5706304286883840000 4403012567040000 704482010726400 5706304286883840000	[0, 3] [1, 4] [2, 9] [5, 10] [6, 7] [8, 11]	0.4
3	4	627	6777	1	[0, 3], [1, 2]	15:46.6
4	6	80	120	1	[0, 2, 3, 4], [1, 5]	6:27.5
5	8	300	300	1	[0,2], [1,3], [4,6], [5,7]	1.5

Results of the bonus graph isomorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	isomorphic graphs	time to solve (min:sec)
1	8	52	{762, 858}	67108864 4403012567040000 543581798400 4403012567040000	[0, 7] [1, 6] [2, 4] [3, 5]	0.9
2	12	64	204	86973087744 67108864 5706304286883840000 4403012567040000 704482010726400 5706304286883840000	[0, 3] [1, 4] [2 ,9] [5, 10] [6, 7] [8, 11]	0.4
3	4	627	6777	1	[0,3], [1,2]	15:46.6
4	6	80	120	1	[0, 2, 3, 4], [1, 5]	6:27.5
5	8	300	300	1	[0,2], [1,3], [4,6], [5,7]	1.5

Results of the bonus automorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	number of automorphisms	time to solve (min:sec)
1	1	995	994	1	3538944	27:36.5
2	1	181	180	13589544960000	305267893261020841472415498240000	5:02.7
3	4	36	126	262144	5435817984 32614907904 32614907904 5435817984	2.4
4	3	240	480	1	12779520 17031168 16220160	32:50.6
5	3	86	165	16 4 6	9277129359360 1307993702400 2231764254720	2:44.3

Results of the bonus automorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	number of automorphisms	time to solve (min:sec)
1	1	995	994	1	3538944	27:36.5
2	1	181	180	13589544960000	305267893261020841472415498240000	5:02.7
3	4	36	126	262144	5435817984 32614907904 32614907904 5435817984	2.4
4	3	240	480	1	12779520 17031168 16220160	32:50.6
5	3	86	165	16 4 6	9277129359360 1307993702400 2231764254720	2:44.3

Results of the bonus automorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	number of automorphisms	time to solve (min:sec)
1	1	995	994	1	3538944	27:36.5
2	1	181	180	13589544960000	305267893261020841472415498240000	5:02.7
3	4	36	126	262144	5435817984 32614907904 32614907904 5435817984	2.4
4	3	240	480	1	12779520 17031168 16220160	32:50.6
5	3	86	165	16 4 6	9277129359360 1307993702400 2231764254720	2:44.3

Results of the bonus automorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	number of automorphisms	time to solve (min:sec)
1	1	995	994	1	3538944	27:36.5
2	1	181	180	13589544960000	305267893261020841472415498240000	5:02.7
3	4	36	126	262144	5435817984 32614907904 32614907904 5435817984	2.4
4	3	240	480	1	12779520 17031168 16220160	32:50.6
5	3	86	165	16 4 6	9277129359360 1307993702400 2231764254720	2:44.3

Results of the bonus automorphism problems

file nr	number of graphs	graph order	graph size	modular decom- position factor	number of automorphisms	time to solve (min:sec)
1	1	995	994	1	3538944	27:36.5
2	1	181	180	13589544960000	305267893261020841472415498240000	5:02.7
3	4	36	126	262144	5435817984 32614907904 32614907904 5435817984	2.4
4	3	240	480	1	12779520 17031168 16220160	32:50.6
5	3	86	165	16 4 6	9277129359360 1307993702400 2231764254720	2:44.3
-	1	298	297	210357201231685877760000	9587292865845886180 9541639114720040295 52885047052206080000	53:42.5

Conclusion

- All basic instances were successfully solved
- GI-problem could efficiently be solved for:
 - graphs were the complement is smaller
 - trees
 - graphs with modules
 - disconnected graphs
- Number of automorphisms had only a smart algorithm for graphs with modules
- Bug in the detection of isomorphic graphs with disconnected components

Possible improvements

- Optimisation for fast colour refinement after branching
- Use smart branching
- Use efficient algorithms for different types of graphs for the number of automorphisms

Reflection

- Development of different good ideas in parallel does not guarantee good results
- However, the team effort ultimately resulted in a successful integration

Bibliography

Marthe Bonamy.
A small report on graph and tree isomorphism.
2010.

Results of the basic graphs - improved

file name	number of graphs	graph order	graph size	MD factor	after order	MD size	isomorphic graphs	number of automorphisms	time to solve (sec)	time to solve improved (sec)
basicAut1.gr	1	35	34	576	27	26	-	2304	0.037	0.016
basicAut2.gr	1	69	96	1	-	-	-	128	1.554	0.146
basicGI1.grl	4	147	857	1	-	-	[0, 2] [1, 3]	-	10.678	1.843
basicGI2.grl	4	40	60	1	-	-	[0, 2] [1, 3]	-	6.179	3.550
basicGl3.grl	7	32	80	1	-	-	[0, 2, 6] [1, 3, 4, 5]	-	1.813	1.700
basicGIAut.grl	9	40	75	1	- - - -	- - - -	[0, 5, 7] [1, 6] [2, 3] [4, 8]	10 20 20 10	3.719	2.573

Results of the bonus graph isomorphism problems - improved

file	number	graph	graph	MD	after	MD	isomorphic	time to solve	time to solve												
nr	of graphs	order	size	factor	order	size	graphs	(min:sec)	improved (min:sec)												
				67108864	26	18	[0,7]														
1	8	52	{762,858}	4403012567040000	18	50*	[1, 6]	0.928	0.611												
1	0	32	{102,000}	543581798400	22	143	[2, 4]	0.926	0.011												
				4403012567040000	18	103	[3, 5]														
	12	64	64 204	86973087744	30	45	[0, 3]														
				67108864	38	61	[1, 4]														
2				204	5706304286883840000	22	25	[2, 9]	0.438	0.305											
2					204	204	204	204	204	204	204	204	204	204	204	4403012567040000	30	41	[5, 10]	0.438	0.305
																					704482010726400
																	5706304286883840000	22	25	[8, 11]	
3	4	627	6777	1	-	-	[0,3], [1,2]	15:46.585	58.621												
4	6	80	120	1	-	-	[0, 2, 3, 4], [1, 5]	6:27.488	3:01:330												
5	8	300	300	1	-	-	[0,2], [1,3], [4,6], [5,7]	1.549	1.559												

Results of the bonus automorphism problems - improved

file	number	graph	graph	MD	after	MD	number of	time to solve	time to solve
nr	of graphs	order	size	factor	order	size	automorphisms	(min:sec)	improved (min:sec)
1	1	995	994	1	-	-	3538944	27:36.511	?
2	1	181	180	13589544960000	149	148	305267893261020841472415498240000	5:02.722	32.111
3	4	36	126	262144	18	27	5435817984 32614907904 32614907904 5435817984	2.421	1.356
4	3	240	480	1	-	-	12779520 17031168 16220160	32:50.569	10:42.775
5	3	86	165	16 4 6	82 84 84	155 160 160	9277129359360 1307993702400 2231764254720	2:44.286	36.878
-	1	298	297	210357201231685877760000	244	243	9587292865845886180 9541639114720040295 52885047052206080000	53:42.532	6:29.500

Choose an arbitrary root and assign weights

Shift the weight

Shift the weight, blue is the final root

