

Boosting the Priority of Garbage: Scheduling Collection on Heterogeneous Multicore Processors

[TACO 2016]

S. Akram, J.B. Sartor, K. Van Craeynest,
W. Heirman, and L. Eeckhout

Previous Scheduling Work

T. Cao, S.M. Blackburn, T. Gao and K.S. McKinley. The Yin and Yang of Power and Performance for Asymmetric Hardware and Managed Software. ISCA 2012

If Concurrent GC Cannot Keep Up

Testing GC's Criticality

Run concurrent collector on LITTLE vs. BIG and measure the difference in execution time

GC Criticality

Run concurrent collector on LITTLE vs. BIG and measure the difference in execution time

Our Adaptive Scheduler

- Measures GC criticality during runtime
- Communicates from JVM down to scheduler
- Scheduler dynamically adapts big core cycles given to GC

Other Schedulers

- Baseline = “gc-on-small”
- gc-fair
 - All threads equal time on the big core(s)
 - Round-robin
 - Based on K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout. Fairness-aware Scheduling on Single-ISA Heterogeneous Multi-cores. In PACT 2013.

Our GC-criticality-aware Scheduler

State	How many ms scheduled on the BIG core
P0	First GC thread = 1 ms, Second GC thread = 1 ms
P1	First GC thread = 1 ms, Second GC thread = 2 ms
...	

Sampling interval is a variable parameter (different from scheduling quantum)

Jikes

Research
virtual
machine

Concurrent garbage collector
2 GC threads

Version 4.0

- BIG core is OOO
- Small core is in-order
- 3-level cache hierarchy
- We vary the small core frequency
- We vary the # BIG cores
- We vary the total # cores

4 single-threaded and 5 multithreaded
We vary the number of threads (2-4)

Experimental Results

- Lots of heterogeneous architectures
 - We will show 3B1S
- Baseline = gc-on-small
- Our adaptive scheduler, varying
 - Sampling interval
 - I_{max}

Performance of GC-criticality-aware Scheduler

Energy Efficiency of GC-criticality-aware Scheduler

Performance: Small Core Slower

Conclusions

- Concurrent garbage collection benefits from out-of-order execution
- Multi-threaded applications exhibit GC-criticality STW
- Our GC-criticality-aware scheduler dynamically gives GC more big core time based on information from
 - Improves performance and energy for GC-critical applications

DVFS PERFORMANCE PREDICTION FOR MANAGED MULTITHREADED APPLICATIONS

[ISPASS 2016]

Shoaib Akram, Jennifer B. Sartor, Lieven Eeckhout
Ghent University, Belgium

Sources of Inaccuracy in M+CRIT

Sources of Inaccuracy in M+CRIT

Our Contribution

Our Contribution

DEP+BURST

A New DVFS Performance Predictor

Managed Multithreaded Applications

Heterogeneity

Synchronization

Store Bursts

Conclusions

- **DEP+BURST**: First predictor that accounts for
 - Application and service threads
 - Synchronization → inter-thread dependencies
 - Store bursts
- High accuracy
 - Less than 10% estimation error for Java benchmarks
- Negligible hardware cost
- Demonstrated energy savings
 - 20 % avg. for a 10% slowdown (mem-intensive Java apps.)

If You Are Interested

J.B. Sartor, W. Heirman, S.M. Blackburn, L. Eeckhout and K.S. McKinley. **Cooperative Cache Scrubbing**. International Conference on Parallel Architectures and Compilation Techniques (PACT), pages 15-26, Edmonton, Alberta, Canada, August 2014.

S. Akram, J.B. Sartor, K. Van Craeynest, W. Heirman, and L. Eeckhout. **Boosting the Priority of Garbage: Scheduling Collection on Heterogeneous Multicore Processors**. ACM Transactions on Architecture and Code Optimization (TACO), April 2016.

S. Akram, J.B. Sartor, and L. Eeckhout. **DVFS Performance Prediction for Managed Multithreaded Applications**. IEEE Symposium on Performance Analysis of Systems and Software (ISPASS), Uppsala, Sweden, April 2016.

Thank You!

Jennifer B. Sartor

Jennifer.sartor@elis.ugent.be

<http://users.elis.ugent.be/~jsartor/>