Documentation - Projet de Prédiction du Diabète

Contexte du Projet

Ce projet vise à développer un système intelligent de prédiction du risque de diabète en utilisant des critères cliniques. L'analyse exploratoire des données constitue la première étape cruciale pour comprendre la structure et les caractéristiques du dataset.

III Code d'Analyse Exploratoire

1. Importation des Bibliothèques

```
python

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Explication:

- (pandas): Manipulation et analyse des données tabulaires
- (numpy): Calculs numériques et opérations sur les arrays
- (seaborn): Visualisations statistiques avancées
- (matplotlib.pyplot): Création de graphiques et visualisations

2. Chargement et Inspection Initiale des Données

```
python

print("CHARGEMENT DES DONNÉES...")

df = pd.read_csv('diabetes.csv')

print(f"Dimensions du dataset: {df.shape}")

print(f"Colonnes: {df.columns.tolist()}")
```

Objectif: Charger le dataset et obtenir une vue d'ensemble de sa structure

Informations extraites:

- Nombre de lignes et colonnes
- Liste des variables disponibles
- Vérification que le fichier est correctement chargé

3. Analyse Exploratoire Détaillée

```
print("ANALYSE EXPLORATOIRE ...")
print("Information sur le dataset:")
print(df.info())

print("Valeurs manquantes par colonne:")
print(df.isnull().sum())

print("Nombre de doublons:", df.duplicated().sum())
```

Analyse des Résultats:

df.info()

- Types de données : Vérification que les variables numériques sont bien reconnues
- **Mémoire utilisée** : Estimation de la taille du dataset
- Valeurs non-null : Détection rapide des données manquantes

Valeurs manquantes

- Identification : Localisation des colonnes avec des données manquantes
- **Quantification**: Nombre exact de valeurs manquantes par variable
- Impact : Évaluation de la nécessité de traitement

Doublons

- **Détection** : Identification des lignes identiques
- Nettoyage : Préparation pour la suppression si nécessaire

4. Visualisation de la Distribution des Variables

python		

```
print("Distribution des variables ...")
fig, axes = plt.subplots(3, 3, figsize=(15, 12))
axes = axes.ravel()
for i, column in enumerate(df.columns):
  if i < len(axes):
     df[column].hist(bins=30, ax=axes[i], alpha=0.7)
     axes[i].set_title(f'Distribution de {column}')
     axes[i].set_xlabel(column)
     axes[i].set_ylabel('Fréquence')
plt.tight_layout()
plt.show()
```

Analyse des Distributions:

Variable	Interprétation Attendue
Pregnancies	Distribution asymétrique, beaucoup de femmes avec 0-2 grossesses
Glucose	Distribution proche de la normale, avec des valeurs élevées indiquant un risque
BloodPressure	Distribution normale centrée autour de 70-80 mmHg
SkinThickness	Présence possible de valeurs nulles (0) à traiter
Insulin	Distribution très asymétrique avec beaucoup de zéros
ВМІ	Distribution légèrement asymétrique, centrée autour de 25-30
DiabetesPedigreeFunction	Distribution asymétrique avec queue étendue
Age	Distribution uniforme avec concentration chez les jeunes adultes
Outcome	Variable binaire (0/1) pour diabète/non-diabète
✓	· •

5. Analyse des Corrélations

```
python
print("Matrice de corrélation ...")
plt.figure(figsize=(10, 8))
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Matrice de corrélation des variables')
plt.show()
```

Correction du Code Original :

python

```
# Code corrigé (erreur dans l'original)

plt.figure(figsize=(10, 8)) # Au lieu de plt.Figure

correlation_matrix = df.corr() # Correction du nom de variable
```

Interprétation des Corrélations :

- Corrélations fortes (|r| > 0.5): Relations significatives à explorer
- Corrélations modérées (0.3 < |r| < 0.5) : Relations intéressantes
- Corrélations faibles (|r| < 0.3) : Relations peu significatives

6. Détection des Valeurs Aberrantes (Outliers)

```
python
def detect_outliers(df, column):
  Q1 = df[column].quantile(0.25)
  Q3 = df[column].quantile(0.75)
  IQR = Q3 - Q1
  Iower bound = Q1 - 1.5 * IQR
  upper_bound = Q3 + 1.5 * IQR
  return (df[column] < lower_bound) | (df[column] > upper_bound) # Correction: | au lieu de &
numerical_columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
            'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']
outlier indices = set()
for column in numerical columns:
  outliers = detect_outliers(df, column)
  outlier_indices.update(df[outliers].index.tolist())
  print(f"{column}: {outliers.sum()} outliers détectés")
df clean = df.drop(index=list(outlier indices)).reset index(drop=True)
print(f"Dataset après suppression des outliers : {df_clean.shape}")
```

^ Corrections Importantes :

- 1. **Opérateur logique** : (I) (OR) au lieu de (&) (AND) pour la détection d'outliers
- 2. **Nom de variable** : (outlier_indices) au lieu de (outlier_indice)

Méthode IQR (Interquartile Range) :

- **Q1**: Premier quartile (25%)
- **Q3** : Troisième quartile (75%)
- IQR: Q3 Q1

Seuils: Q1 - 1.5×IQR et Q3 + 1.5×IQR

• Outliers : Valeurs en dehors de ces seuils

7. Sélection des Variables pour le Clustering

```
python

clustering_features = ['Glucose', 'BMI', 'Age', 'DiabetesPedigreeFunction']

clustering_x = df_clean[clustering_features].copy() # Utilisation de df_clean

print(f"Variables sélectionnées pour le clustering : {clustering_features}")

print(f"Dimensions des données de clustering : {clustering_x.shape}")
```

Justification du Choix:

• Glucose : Indicateur direct du diabète

BMI: Facteur de risque majeur

Age : Facteur de risque croissant avec l'âge

DiabetesPedigreeFunction : Prédisposition génétique

8. Visualisation des Relations entre Variables

```
python

plt.figure(figsize=(12, 10))

g = sns.pairplot(df_clean[clustering_features], diag_kind='hist', height=2.5)

g.fig.suptitle('Relations entre les variables sélectionnées', y=1.02)

plt.show()
```

Analyse du Pairplot:

Diagonale: Histogrammes des distributions individuelles

Hors diagonale : Nuages de points pour les relations bivariées

Patterns : Identification de clusters naturels ou de corrélations

🗐 Résumé des Corrections Apportées

Problème Original	Correction
plt.Figure	plt.figure (minuscule)
corrélation_matrice	(correlation_matrix) (anglais)
(df[column] < lower_bound) & (df[column] >	(df[column] < lower_bound) (df[column] >
upper_bound)	upper_bound)
Outlier_indice	outlier_indices (pluriel)
df[clustering_features]	df_clean[clustering_features] (données nettoyées)

@ Étapes Suivantes

Après cette analyse exploratoire, les prochaines étapes du projet incluront :

- 1. **Prétraitement avancé** : Standardisation des variables
- 2. **Méthode du coude** : Détermination du nombre optimal de clusters
- 3. Clustering K-Means: Application de l'algorithme
- 4. **Réduction dimensionnelle** : PCA pour visualisation
- 5. **Interprétation** : Analyse des profils de risque par cluster

P Bonnes Pratiques Appliquées

- Documentation claire : Commentaires explicatifs
- **Gestion des erreurs** : Vérifications de cohérence
- Visualisations informatives : Graphiques avec titres et labels
- Code modulaire : Fonctions réutilisables
- Vettoyage des données : Suppression des outliers

1 Module Core - Préprocesseur de Données

Fichier: core/preprocessor.py

python			

```
import unittest
import pandas as pd
from core.preprocessor import Preprocessor

class TestPreprocessor(unittest.TestCase):
    def test_remove_outliers_iqr(self):
        data = {'A': [1,2,3,1000,5], 'B':[10,15,10,20,25]}
        df = pd.DataFrame(data)
        preproc = Preprocessor(df)
        df_clean = preproc.remove_outliers_iqr(['A'])
        self.assertTrue(df_clean['A'].max() < 1000)

if __name__ == '__main__':
        unittest.main()</pre>
```

Architecture du Module Preprocessor:

Méthode	Fonction	Usage
init(df)	Initialisation avec DataFrame	preproc = Preprocessor(df)
remove_outliers_iqr(columns)	Suppression outliers par IQR	df_clean = preproc.remove_outliers_iqr(['A'])

Test Unitaire Expliqué:

• Données test : Valeur aberrante (1000) dans colonne A

• Assertion : Vérification que l'outlier est supprimé

• Validation : df_clean['A'].max() < 1000

Module Core - Clustering

Fichier: core/clusterer.py

python

```
import sys
import os
import pandas as pd
import numpy as np
from sklearn.datasets import make_blobs
# Pour trouver le module core
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from core.clusterer import Clusterer
def test_clusterer_workflow():
  # Générer des données synthétiques
  X_{, } = make_blobs(n_samples=100, centers=3, n_features=2, random_state=42)
  df = pd.DataFrame(X, columns=["Feature1", "Feature2"])
  clusterer = Clusterer(df)
  # Test du scale
  X_scaled = clusterer.scale_data()
  assert X_scaled.shape == df.shape, "Erreur de mise à l'échelle"
  # Test de la méthode du coude (ne plante pas)
  clusterer.elbow_method(max_k=5)
  # Test du fit kmeans
  clustered_df = clusterer.fit_kmeans(n_clusters=3)
  assert 'Cluster' in clustered_df.columns, "Clustering non effectué"
  # Test des moyennes par cluster
  means = clusterer.cluster means()
  assert means.shape[0] == 3, "Nombre de clusters incorrect"
  print("Tous les tests ont réussi.")
if __name__ == "__main__":
  test_clusterer_workflow()
```

Architecture du Module Clusterer:

Méthode	Fonction	Test de Validation
scale_data()	Standardisation des données	Shape identique au DataFrame original
(elbow_method(max_k)	Méthode du coude pour k optimal	Exécution sans erreur
fit_kmeans(n_clusters)	Application K-Means	Colonne 'Cluster' créée
cluster_means()	Calcul moyennes par cluster	Nombre de lignes = nombre de clusters

Workflow de Test: 1. **Génération données synthétiques** : make_blobs avec 3 centres 2. Validation séquentielle : Chaque méthode testée individuellement 3. **Assertions robustes** : Vérification des formes et colonnes 4. **Random state** : Reproductibilité des résultats **E** Script d'Entraînement Principal Fichier: (train_model.py) python

```
import os
import pandas as pd
import matplotlib
matplotlib.use('Agg') # 🔬 Avant pyplot !
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import seaborn as sns
import matplotlib.pyplot as plt
import joblib
# 1. Chargement données
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_PATH = os.path.join(BASE_DIR, '..', 'data', 'processed', 'diabetes_clean_no_outliers.csv')
df = pd.read_csv(DATA_PATH)
print(f"Données chargées : {df.shape}")
# 2. Sélection features importantes (sans Outcome)
features = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin",
       "BMI", "DiabetesPedigreeFunction", "Age"]
X = df[features]
# 3. Mise à l'échelle
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 4. Méthode du coude pour choisir k optimal
inertias = []
K_{range} = range(1, 11)
for k in K_range:
  kmeans = KMeans(n_clusters=k, random_state=42)
  kmeans.fit(X_scaled)
  inertias.append(kmeans.inertia_)
plt.figure(figsize=(8,5))
plt.plot(K_range, inertias, 'bo-')
plt.xlabel('Nombre de clusters k')
plt.ylabel('Inertie')
plt.title('Méthode du coude pour choisir k')
plt.grid(True)
output_dir = os.path.join(BASE_DIR, '..', 'outputs')
os.makedirs(output_dir, exist_ok=True)
plt.savefig(os.path.join(output_dir, "cluster_elbow_plot.png"))
```

```
plt.close()
# 5. Clustering avec k choisi (exemple k=2)
k_{optimal} = 2
kmeans = KMeans(n_clusters=k_optimal, random_state=42)
clusters = kmeans.fit_predict(X_scaled)
# Ajout des clusters dans le DataFrame
df['Cluster'] = clusters
# 6. Réduction dimensionnelle pour visualiser les clusters
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
df_pca = pd.DataFrame(X_pca, columns=['PC1', 'PC2'])
df_pca['Cluster'] = clusters
plt.figure(figsize=(8,6))
sns.scatterplot(data=df_pca, x='PC1', y='PC2', hue='Cluster', palette='Set1')
plt.title('Visualisation des clusters avec PCA')
plt.savefig(os.path.join(output_dir, "PCA_clusters.png"))
plt.close()
# 7. Analyse des clusters
print("Moyennes des caractéristiques par cluster:")
print(df.groupby('Cluster')[features].mean())
print("\nEffectifs par cluster:")
print(df['Cluster'].value_counts())
# 8. Sauvegarde des modèles scaler et kmeans + PCA
model_dir = os.path.join(BASE_DIR, '..', 'model')
os.makedirs(model_dir, exist_ok=True)
joblib.dump(scaler, os.path.join(model_dir, "scaler.pkl"))
joblib.dump(kmeans, os.path.join(model_dir, "kmeans_model.pkl"))
joblib.dump(pca, os.path.join(model_dir, "pca_model.pkl"))
print("Modèles scaler, kmeans et PCA sauvegardés avec succès.")
```

III Pipeline d'Entraînement Détaillé

Étape 1 : Configuration et Chargement

```
python

matplotlib.use('Agg') # Mode non-interactif pour serveurs

BASE_DIR = os.path.dirname(os.path.abspath(_file__))
```

Importance: Configuration backend matplotlib pour environnements sans interface graphique

Étape 2 : Sélection des Features

```
python

features = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness",

"Insulin", "BMI", "DiabetesPedigreeFunction", "Age"]
```

Justification : Exclusion de 'Outcome' pour apprentissage non-supervisé

Étape 3: Standardisation

```
python

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)
```

Nécessité : Égalisation des échelles pour K-Means (sensible aux unités)

Étape 4 : Méthode du Coude

```
python

for k in K_range:
    kmeans = KMeans(n_clusters=k, random_state=42)
    inertias.append(kmeans.inertia_)
```

Objectif: Détermination automatique du nombre optimal de clusters

Étape 5 : Clustering Final

```
python

k_optimal = 2 # Basé sur le contexte médical (risque/non-risque)

clusters = kmeans.fit_predict(X_scaled)
```

Étape 6 : Visualisation PCA

```
python

pca = PCA(n_components=2)

X_pca = pca.fit_transform(X_scaled)
```

But: Projection 2D pour visualisation des clusters

Étape 7 : Analyse des Profils

```
python
print(df.groupby('Cluster')[features].mean())
```

Interprétation Médicale:

- **Cluster 0**: Profil faible risque
- Cluster 1: Profil haut risque (Glucose>126, BMI>30, DiabetesPedigreeFunction>0.5)

Étape 8 : Persistance des Modèles

```
python
joblib.dump(scaler, "scaler.pkl")
joblib.dump(kmeans, "kmeans_model.pkl")
joblib.dump(pca, "pca_model.pkl")
```


Tests de Validation des Modèles

Test du Modèle Sauvegardé

```
python
import joblib
import pandas as pd
model = joblib.load("model.pkl")
def test_prediction():
  sample = pd.DataFrame([{
     "Pregnancies": 1, "Glucose": 85, "BloodPressure": 66,
     "SkinThickness": 29, "Insulin": 0, "BMI": 26.6,
     "DiabetesPedigreeFunction": 0.351, "Age": 31
  }])
  pred = model.predict(sample)
  assert pred in [0, 1], "La prédiction doit être binaire"
test_prediction()
```

Analyse du Test:

- Patient exemple: Profil relativement normal
- Valeurs attendues : Glucose=85 (normal), BMI=26.6 (légèrement élevé)
- **Validation**: Prédiction binaire (0=non-diabète, 1=diabète)

Structure du Projet

Workflow Complet du Projet

Phase 1: Exploration et Nettoyage

1. **EDA** : Analyse exploratoire (distributions, corrélations)

2. **Preprocessing**: Suppression outliers, standardisation

3. Feature Selection: Sélection variables pertinentes

Phase 2: Modélisation

1. **Méthode du coude** : Détermination k optimal

2. **K-Means**: Clustering des patients

3. **PCA**: Réduction dimensionnelle pour visualisation

Phase 3 : Validation et Déploiement

1. **Tests unitaires**: Validation modules core

- 2. Sauvegarde modèles: Persistance avec joblib
- 3. **Tests d'intégration** : Validation pipeline complet

Critères d'Interprétation Médicale

Seuils de Risque Diabète

Variable	Seuil Critique	Interprétation
Glucose	> 126 mg/dL	Diabète diagnostiqué
ВМІ	> 30	Obésité (facteur de risque)
Diabetes Pedigree Function	> 0.5	Prédisposition génétique élevée
Age	> 45 ans	Risque croissant
◀		·

Classification des Clusters

```
python
# Logique d'assignation du risque
def assign_risk_category(cluster_means):
  if (cluster_means['Glucose'] > 126 and
     cluster_means['BMI'] > 30 and
    cluster_means['DiabetesPedigreeFunction'] > 0.5):
    return "High Risk"
  else:
    return "Low Risk"
```


Instructions d'Exécution

Prérequis

bash

pip install pandas numpy scikit-learn matplotlib seaborn joblib

Exécution Séquentielle

bash

1. Tests des modules core python tests/test_preprocessor.py python tests/test_clusterer.py

2. Entraînement du modèle python train_model.py

3. Validation du modèle python tests/test_model.py

Sorties Générées

- Graphiques: (outputs/cluster_elbow_plot.png), (outputs/PCA_clusters.png)
- Modèles: (model/scaler.pkl), (model/kmeans_model.pkl), (model/pca_model.pkl)
- Logs: Moyennes par cluster, effectifs, métriques de performance

Recommandations et Bonnes Pratiques

Code Quality

- **Tests unitaires** pour chaque module
- Gestion des chemins avec (os.path.join()
- Random seeds pour reproductibilité
- Z Documentation inline avec docstrings

Production Readiness

- Gestion des erreurs avec try/catch
- Logging structuré pour traçabilité
- Configuration externalisée (fichiers config)
- Monitoring des performances modèles

Évolutions Futures

- Cross-validation pour validation robuste
- Hyperparameter tuning avec GridSearch
- Caracterista Ensemble methods pour améliorer performances
- API REST pour déploiement en production

Cette documentation complète fait partie du projet de prédiction du diabète développé dans le cadre d'un système intelligent pour laboratoire biomédical. Elle couvre l'ensemble du pipeline depuis l'exploration des

