sules de Couchy -> citère de convergence (an), an EIR st. s. Car. 8. 4 2 >0, 3 no 7 nm > no, lan-am/ (E rem & 1 , r & IN sa marte avois S, an E Q et E)O, E E Q site de Cauchs closs Q

Theoreme Jose IR, (mas pur dons Q!) (an) et une sûte de Couedry 08: (an) est convergetre. $\in [\forall E)O, \exists no, \forall n > no,$ $\left| - \right| \left| \left| \frac{\varepsilon}{2} \right| \right|$ danc \formall n,m'), 0 Ganzer CEZOT Roma CES $|a_n - a_m| = |(a_n - a) + (a - a_m)|$

Censhiehen de IR (modèle par IR) X_ habes les suites de Comeny dans Q 5 Relat d'Egus sur X. Soir $(a_n) \in X$ et $(b_n) \in X$ Alors, por des $(a_n) \sim (b_n) si$ $\lim_{n\to\infty} (a_n - b_n) = 0$ C-a-d & YESO, EEQ, 3 no EIN $\forall n > no/(an-bn)-o| = |an-bn| \leq \epsilon$ R: = X/2 avec les goraliers +: addle des suites (4n)+ (bn) $= (a_n + b_n)$ $(a_n) \cdot (b_n) = (a_n \cdot b_n)$

PEC. In

Please

$$y(x) = q \cdot x + b, b, q \in \mathbb{R}$$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, b, q \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x + b, d \in \mathbb{R}$
 $y(x) = a \cdot x$

Markons Qe | q/ < 1 = , file Couchy. Soien, doné no EIN, m > no, n> m ~ 2 ex [q] < 1. Alors | an-am $= \left| \left(\alpha_{n} - \alpha_{n-1} \right) + \left(\alpha_{n-1} - \alpha_{n-2} \right) \right|$ + $(a_{Mn+1}-a_{Mn})$ $|a_{n}-a_{n-1}|+|a_{n-1}-a_{n-2}|+...+|a_{m+1}-a_{m}|$ $(|q|^{n-1}+|q|^{n-2}+...+|q|^n)|a_1-a_0|$

Théorème de Bolzano-Weiershans Soil (an) n, oure suite (nx/k), o vne sûle ? (stid) (nx)ne ei k> ? Ink E IN. alos $(d_k)_{k,0}$ ou $d_k := a_{n_k}$ est applieure sois-sure de la suive $(a_n)_{n > 0}$

a₀ a₁ a₁ a₂ a₃ a₅ a₆ d₂ d₃ d₄ $n_0 = 0$ $n_1 = 1$ $n_2 = 2$ $n_3 = 3$ $n_4 = 6$. Théorème (B.W) de le site (an) dense on peut extraine ne sous-suite convergente Argument: on charsit la montré avec une nf d'étanuts
pars en refort le choix "

p	r	re p	cur 3SC	rene	e ,	, Cr		00	cali	se	¥	e	(kv)	ive		
		V														
0	De	<u>}</u> :		2 C		1R	est	- 4	~ f	Zi r	r	d	٦٥٥	∪M.	Juk	O
d	<i>/</i>	æ	Sù	he)	51	-		ma	_ (UI	5-S0	ihe	?
($\int d$	$_{\kappa})$	}	· 9		k-	⊃¬ °	حا	d_{k}	>	Cı	•				

13 poils ace $O_{k} = a_{3k} - 0$ $= a_{2k+1}$ $\lim_{n\to+\infty}\inf a_n=-1$ plus petil 1m sup an -1 plus grand n->+00 Ex3 numerarais des mo rationels ele I an=

Vx EI ed un pom d'acc de an

Construction

In the Em

$$A_0 := \{a_0, a_1, ...\}$$
 $A_0 := \{a_0, a_1, ...\}$
 $A_0 := \{a_1, a_1, ...\}$
 $A_1 := \{a_1, a_1, ...\}$
 $A_1 := \{a_1, a_1, ...\}$

 $MPA \leq SpA1$ $C_{\mathcal{A}} \in C_{\mathcal{O}}$ by est on mirror par An CAS mas pas fe le & grand & be 2 bo $P_n = \{a_n, a_{n+1}, \dots \}$ $b_0 \leq b_1 \leq b_2 \leq \dots \leq b_n = m \leq b_n$ (bn) sure consente et naux

Sère romènque 11 Sommes in Somes " Signation of the street of the réels donée =) sere (numerique). $\sum_{k=0}^{\infty} \lambda_k := \lim_{n \to \infty} \sum_{k=0}^{\infty} \lambda_k$ $\int_{1}^{\infty} S_{n} = \sum_{i=1}^{\infty} a_{k}$

donC $S_0 = 9_0$ S1 = 90 +91 = S0 +01 Sz - 90 - 01 + 02 = S1 + 02 (-) $a_0 = s_0$ $a_{\lambda} = S_{\lambda} - S_{0}$

Termino base la sont appetes les remes cre la rêre (num.)

o la somme fine s, _ n-ième

somme parhelle de la seige rument $\sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^{k} = \lim_{k \to \infty} \sum_{k=0}^{\infty} \left(\frac{1}{2} \right)^{k}$ 1 + 4 + 6 + 16 1 1/2 1/2

e côte pun est congete converes peníelles contege. La limite S = 10m sn ER est applet la summe de la sère run, Def: ne série qui n'est pas convergule est applée diergete. De J Saps Can

