

Current Transducer LA 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

PN	Primary nominal r.m.s. curre	25		At	
,	Primary current, measuring	0 ± 36		At	
М	Measuring resistance		\mathbf{R}_{Mmin}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	with ± 15 V @	2 ± 25 At _{max}	100	320	Ω
	@	2 ± 36 At max	100	190	Ω
iN.	Secondary nominal r.m.s. cu	25		mΑ	
SN N	Conversion ratio	1-2-3-4-5 : 1000			
C	Supply voltage (± 5 %)		± 15		V
	Current consumption	10 + I _s		mΑ	
; d	R.m.s. voltage for AC isolation	2.5		kV	
b	R.m.s. rated voltage 1), safe	600		V	
	basio	c isolation	1700		V

Accuracy - Dynamic performance data						
X	Accuracy @ I _{PN} , T _A = 25°C		± 0.5		%	
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity		< 0.2		%	
			Тур	Max		
I _o	Offset current ²⁾ @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}$ C	;	± 0.05	± 0.15	mΑ	
I _{OM}	Residual current 3) @ I _P = 0, after a	n overload of 3 x I _{PN}	± 0.05	± 0.15	mΑ	
I _{OT}	Thermal drift of I _o	0°C + 25°C	± 0.06	± 0.25	mΑ	
	-	+ 25°C + 70°C	± 0.10	± 0.35	mΑ	
t,	Response time 4) @ 90 % of I _{P max}		< 1		μs	
di/dt	di/dt accurately followed		> 50		A/µs	
f	Frequency bandwidth (- 1 dB)		DC 1	150	kHz	

G	General data						
\mathbf{T}_{A}	Ambient operating temperature	0+70	°C				
T _s	Ambient storage temperature	- 25 + 85	°C				
$\mathbf{R}_{_{\mathrm{P}}}^{^{\mathrm{T}}}$	Primary resistance per turn @ T _A = 25°C	< 1.25	$m\Omega$				
Rs	Secondary coil resistance @ T _A = 70°C	110	Ω				
R	Isolation resistance @ 500 V, T _A = 25°C	> 1500	$M\Omega$				
m	Mass	22	g				
	Standards 5)	EN 50178					

$I_{PN} = 5-6-8-12-25 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes : 1) Pollution class 2

2) Measurement carried out after 15 mn functionning

3) The result of the coercive field of the magnetic circuit

4) With a di/dt of 100 A/µs

5) A list of corresponding tests is available

980909/8

Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch)

Number	Primary	current	Nominal	Turns	Primary	Primary insertion	Recommended
of primary	nominal	maximum	output current	ratio	resistance	inductance	connections
turns	I _{PN} [A]	I _P [A]	I _{SN} [mA]	\mathbf{K}_{N}	\mathbf{R}_{P} [$\mathrm{m}\Omega$]	L _P [μΗ]	
1	25	36	25	1/1000	0.3	0.023	5 4 3 2 1 IN 0-0-0-0-0 0-0-0-0-0 OUT 6 7 8 9 10
2	12	18	24	2/1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3	8	12	24	3/1000	2.5	0.21	5 4 3 2 1 IN 0-0 0 0-0 0-0 0-0 OUT 6 7 8 9 10
4	6	9	24	4/1000	4.4	0.37	5 4 3 2 1 IN 0 0-0 0 0 0 0-0 0 0 OUT 6 7 8 9 10
5	5	7	25	5/1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 0 OUT 6 7 8 9 10

Mechanical characteristics

- General tolerance
- Fastening & connection of primary
- Fastening & connection of secondary
- Recommended PCB hole
- ± 0.2 mm
- 10 pins 0.7 x 0.6 mm
- 3 pins Ø 1 mm
- 1.2 mm

Remarks

- \bullet $\textbf{I}_{_{\rm S}}$ is positive when $\textbf{I}_{_{\rm P}}$ flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.