ARM PROCESSOR

- CPU performance factors
 - Instruction count
 - Determined by ISA and compiler
 - CPI and Cycle time
 - Determined by CPU hardware
- We will examine two LEGv8 implementations
 - A simplified version
 - A more realistic pipelined version
- Simple subset, shows most aspects
 - Memory reference: LDUR, STUR
 - Arithmetic/logical: add, sub, and, or, slt
 - Control transfer: beq, j

Instruction Execution

- PC → instruction memory, fetch instruction
- Register numbers → register file, read registers
- Depending on instruction class
 - Use ALU to calculate
 - Arithmetic result
 - Memory address for load/store
 - Branch target address
 - Access data memory for load/store
 - PC ← target address or PC + 4

CPU Overview

Control

Building a Datapath

- Datapath
 - Elements that process data and addresses in the CPU
 - Registers, ALUs, mux's, memories, ...
- We will build a LEGv8 datapath incrementally
 - Refining the overview design

Instruction Fetch

R-Format Instructions

- Read two register operands
- Perform arithmetic/logical operation
- Write register result

a. Registers

b. ALU

Load/Store Instructions

- Read register operands
- Calculate address using 16-bit offset
 - Use ALU, but sign-extend offset
- Load: Read memory and update register
- Store: Write register value to memory

a. Data memory unit

b. Sign extension unit

Branch Instructions

- Read register operands
- Compare operands
 - Use ALU, subtract and check Zero output
- Calculate target address
 - Sign-extend displacement
 - Shift left 2 places (word displacement)
 - Add to PC + 4
 - Already calculated by instruction fetch

Branch Instructions

R-Type/Load/Store Datapath

Full Datapath

ALU Control

- ALU used for
 - Load/Store: F = add
 - Branch: F = subtract
 - R-type: F depends on opcode

ALU control	Function			
0000	AND			
0001	OR			
0010	add			
0110	subtract			
0111	pass input b			
1100	NOR			

ALU Control

- Assume 2-bit ALUOp derived from opcode
 - Combinational logic derives ALU control

opcode	ALUOp	Operation	Opcode field	ALU function	ALU control
LDUR	00	load register	XXXXXXXXXX	add	0010
STUR	00	store register	XXXXXXXXXX	add	0010
CBZ	01	compare and branch on zero	XXXXXXXXXX	pass input b	0111
R-type	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		ORR	100101	OR	0001

The Main Control Unit

Control signals derived from instruction

opcode	RM	snamt	Kn	Ra					
31:21	20:16	15:10	9:5	4:0					
a. R-type instruction									
1986 or 1984	address	6 0	Rn	Rt					
31:21	20:12	11:10	9:5	4:0					
b. Load or store instruction									
180	address								
31:26		4:0							
_	31:21 etion 1986 or 1984 31:21 instruction	31:21 20:16 20:16 1986 or 1984 address 31:21 20:12 instruction 180 a	31:21 20:16 15:10 etion 1986 or 1984 address 0 31:21 20:12 11:10 instruction 180 address	31:21 20:16 15:10 9:5 etion 1986 or 1984 address 0 Rn 31:21 20:12 11:10 9:5 instruction 180 address					

c. Conditional branch instruction

Datapath With Control

R-Type Instruction

Load Instruction

CBZ Instruction

Implementing Uncnd'l Branch

- Jump uses word address
- Update PC with concatenation of
 - Top 4 bits of old PC
 - 26-bit jump address
 - 00
- Need an extra control signal decoded from opcode

Datapath With B Added

