$$U_p(4) \times U_q(4)$$

Jamil KR

February 6, 2020

$\mathbf{0.1} \quad \mathbf{Math} \ \mathbf{Functions} \ \mathbf{Module} \rightarrow \mathtt{MOD_matfun.f90}$

• Functions:

$$- p_symbol(a,b) = (a)_s = a(a+1)...(a+s-1)$$

$0.2 \quad U_p(4) \text{ Module} \rightarrow \texttt{MOD_Up4.f90}$

Hamiltonian:

$$\hat{H}_{U_{p}(4)} = \beta \, \, \mathcal{C}_{2} \left[so_{p}(4) \right] + \gamma \, \, \mathcal{C}_{2} \left[so_{p}(3) \right] + \gamma_{2} \, \, \left[\mathcal{C}_{2} \left[so_{p}(3) \right] \right]^{2} + \kappa \, \, \mathcal{C}_{2} \left[so_{p}(4) \right] \mathcal{C}_{2} \left[so_{p}(3) \right]$$

$$\tag{1}$$

- Global definitions:
 - Npval: U(4) Totally symmetric representation.
- Functions:

- Function: RME_Casimir_SOp4

- Function: RME_Casimir_SOp3

- Function: RME_Qp2

$0.3 \quad U_q(4) \text{ Module} \rightarrow \texttt{MOD_Uq4.f90}$

Hamiltonian:

$$\hat{H}_{U_q(4)} = a \, \mathcal{C}_1 \left[u_q(3) \right] + b \, \mathcal{C}_2 \left[u_q(3) \right] + c \, \mathcal{C}_2 \left[so_q(3) \right] + d \, \mathcal{C}_2 \left[so_q(4) \right] \tag{2}$$

- Global definitions:
 - $-\,$ Nqval: U(4) Totally symmetric representation.
- Functions:

- Function: RME_Casimir_Uq3

- Function: RME_Casimir_SOq3

- Function: RME_Casimir_SOq4

- Function: RME_Qq2

$0.4 \quad U_p(4) \times U_q(4) \text{ Module} \rightarrow \texttt{MOD_Up_x_Uq.f90}$

• Global definitions:

_

• Functions:

- Subroutine: dimension_po

- Subroutine: build_basis_po

- Subroutine: initialize_position_index

0.4.1 Building the basis

We have a block-diagonalizable system dividing the problem in para (mod(J,2) = 0) and ortho (mod(J,2) = 1) cases, and separating by different Λ . The states will be stored in the same array sorted by Λ . The dimension of each block will be saved in $\dim_{\mathbb{C}}[\text{SYM}](\Lambda = 0), \ldots, \dim_{\mathbb{C}}[\text{SYM}](\Lambda = \Lambda_{\text{max}})$.

$$\begin{bmatrix} \left| \psi_1^{\Lambda=0} \right\rangle \\ \vdots \\ \left| \psi_{\texttt{dim_[SYM]}(\Lambda=0)}^{\Lambda=0} \right\rangle \end{bmatrix} \right\} \rightarrow 1: \texttt{dim_[SYM]}(\Lambda=0)$$

$$\vdots \qquad (3)$$

$$\begin{bmatrix} \left| \psi_1^{\Lambda=\Lambda_{\max}} \right\rangle \\ \vdots \\ \left| \psi_{\texttt{dim_[SYM]}(\Lambda=\Lambda_{\max})} \right\rangle \end{bmatrix} \right\} \rightarrow 1: \texttt{dim_[SYM]}(\Lambda=\Lambda_{\max})$$

Therefore, the basis array is as follow:

$$\mathtt{basis_[SYM]} = \left[\left| \psi_1^{\Lambda=0} \right\rangle, ..., \psi_{\mathtt{dim_[SYM]}(\Lambda=0)}^{\Lambda=0}, ..., \left| \psi_1^{\Lambda=\Lambda_{\max}} \right\rangle, ..., \psi_{\mathtt{dim_[SYM]}(\Lambda=\Lambda_{\max})}^{\Lambda=\Lambda_{\max}} \right] \tag{4}$$

Each element of the basis must cotain information about quantum numbers:

$$\left|\psi_{i}^{\Lambda}\right\rangle = \left(w\ J;\ n\ L;\ \Lambda \in \left[\left|J - L\right|, J + L\right]\right) \tag{5}$$

Dimension: dimension_po

Fortran90 subroutine.

Inputs:

- Npval. Integer
- Nqval. Integer
- Λ_{\max} . Integer

Outputs:

- dim_para. Integer, dimension $(0:\Lambda_{max})$
- dim_ortho. Integer, dimension $(0:\Lambda_{max})$

Basis: build_basis_po

Inputs:

- Npval. Integer
- Nqval. Integer
- Λ_{\max} . Integer
- total_para. Integer, total dimension of para basis
- total_ortho. Integer, total dimension of ortho basis
- dim_para. Integer, dimension $(0:\Lambda_{max})$
- dim_ortho. Integer, dimension $(0:\Lambda_{max})$

Outputs:

- $\bullet \ \ \text{basis_para}. \ \ \text{Integer}, \ \ \text{dimension} \bigg(1:5, \ 1: \sum_{\Lambda=0}^{\Lambda_{\max}} \texttt{dim_para}(\Lambda) \bigg)$
- basis_ortho. Integer, dimension $\left(1:5,\ 1:\sum\limits_{\Lambda=0}^{\Lambda_{\max}} \mathtt{dim_ortho}(\Lambda)\right)$
 - basis_[SYM](1,:) $\longrightarrow w$
 - $\text{ basis}_{-}[\text{SYM}](2,:) \longrightarrow J$
 - basis_[SYM](3,:) $\longrightarrow n$
 - basis_[SYM](4,:) $\longrightarrow L$
 - basis_[SYM](5,:) $\longrightarrow \Lambda$

Para-states

```
\begin{split} \text{LOOP: } J &= 0, 2, ..., N_p - \operatorname{mod}(N_p, 2) \\ \text{LOOP: } L &= 0, 1, ..., N_q \\ \text{CONDITIONAL: } |J - L| \leq \Lambda_{max} \text{ to continue, else go to next } L \\ \text{LOOP: } \Lambda &= |J - L|, |J - L| + 1, ..., \min(\Lambda_{max}, J + L) \\ \text{LOOP: } w &= 0, 2, 4, ... J \\ \text{LOOP: } n &= L, L + 2, ..., Nq \\ \text{basis\_para}\left(1, \dim_{\text{para}}\left(\Lambda\right)\right) &= w \\ \text{basis\_para}\left(2, \dim_{\text{para}}\left(\Lambda\right)\right) &= J \\ \text{basis\_para}\left(3, \dim_{\text{para}}\left(\Lambda\right)\right) &= L \\ \text{basis\_para}\left(4, \dim_{\text{para}}\left(\Lambda\right)\right) &= L \\ \text{basis\_para}\left(5, \dim_{\text{para}}\left(\Lambda\right)\right) &= \Lambda \end{split}
```

Ortho-states

LOOP:
$$J=1,3,...,N_p-(1-\operatorname{mod}(N_p,2))$$

LOOP: $L=0,1,...,N_q$
CONDITIONAL: $|J-L| \leq \Lambda_{max}$ to continue, else go to next L
LOOP: $\Lambda=|J-L|,|J-L|+1,...,\min(\Lambda_{max},J+L)$
LOOP: $w=1,3,5,...J$
LOOP: $n=L,L+2,...,Nq$ (7)
basis_ortho $(1,\dim_ortho(\Lambda))=w$
basis_ortho $(2,\dim_ortho(\Lambda))=J$
basis_ortho $(3,\dim_ortho(\Lambda))=n$
basis_ortho $(4,\dim_ortho(\Lambda))=L$
basis_ortho $(5,\dim_ortho(\Lambda))=\Lambda$

${\bf Pseudo\text{-}pointer:} \ {\tt initialize_position_index}$

```
subroutine initialize_position_index(ijk,partial_dim,lambda_max)
!
! Inputs:
! o) partial_dim: Integer array dimension 0:lambda_max
! o) lambda_max
!
! Output:
! o) ijk: Integer array dimension 0:lambda_max
!
! This functions initializes the initial integer "pointer" ijk(0:lambda_max),
! so that
! ijk(0) = 1
! ijk(1) = position where lambda=1 block starts
! ...
! ijk(lambda_max) = position where lambda=lambda_max block stats
!
! This function is going to be of vital importance during the program's development
!
```