RICERCA OPERATIVA - PARTE II

ESERCIZIO 1. (10 punti) Sia dato il seguente problema di PLI

$$\max \qquad 2x_1 + x_2$$

$$2x_2 \ge 3$$

$$2x_2 \le 11$$

$$2x_1 \ge 3$$

$$-3x_1 + 2x_2 \le \frac{7}{2}$$

$$3x_1 - 2x_2 \le 12$$

$$\frac{2}{3}x_1 + x_2 \le \frac{17}{2}$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in Z$$

Si visualizzi graficamente la chiusura convessa della regione ammissibile di questo problema e se ne dia una descrizione tramite opportune disuguaglianze lineari. Si risolva il problema con l'algoritmo branch-and-bound, risolvendo i rilassamenti lineari per via grafica.

ESERCIZIO 2. (9 punti)

Sia dato il seguente problema

$$\begin{aligned} & \min & & e^{2x+y} \\ & & & x \geq 0 \\ & & & y \geq 0 \\ & & & -x-y \geq -1 \end{aligned}$$

- È un problema di programmazione convessa?
- ci sono punti che non soddisfano almeno una delle constraint qualification citate a lezione?
- si impostino le condizioni KKT;
- trovare tutti i punti che soddisfano le condizioni KKT;
- é possibile risolvere lo stesso problema come se fosse un problema di programmazione lineare? (motivare la risposta)

ESERCIZIO 3. (5 punti) Si dia la definizione di rilassamento di un problema di ottimizzazione $\max_{\mathbf{x} \in T} f(\mathbf{x})$ e si dimostri che il valore ottimo del rilassamento fornisce un upper bound per il valore ottimo del problema di ottimizzazione.

ESERCIZIO 4. (5 punti) Si definisca il principio di ottimalità, necessario per poter applicare l'approccio di programmazione dinamica, e lo si illustri nel caso del problema KNAPSACK.