The University of Sheffield Department of Electronic and Electrical Engineering

EEE117 Problem Sheet

a.c. Sources and Circuits

Q1 Express each of the following voltages in polar form. (remember that they must all be referred to the same base reference that can be either a sin or a cos)

$$v_1 = 212 \sin(\omega t + 45^{\circ})$$
 $v_2 = 141 \sin(\omega t - 90^{\circ})$ $v_3 = 127 \cos(\omega t + \frac{\pi}{6})$

$$v_4 = 85 \cos(\omega t - 45^{\circ})$$
 $v_5 = 141 \sin(\omega t + 180^{\circ})$ $v_6 = 100 \cos(\omega t - \frac{\pi}{3})$

[$212\angle 45^{\circ}$, $141\angle -90^{\circ}$, $127\angle 120^{\circ}$, $85\angle 45^{\circ}$, $141\angle 180^{\circ}$, $100\angle 30^{\circ}$][these answers use $\sin \omega t$ as phase reference] [$212\angle -45^{\circ}$, $141\angle -180^{\circ}$, $127\angle 30^{\circ}$, $85\angle -45^{\circ}$, $141\angle 90^{\circ}$, $100\angle -60^{\circ}$][these answers use coswt as phase reference. Note that $+180^{\circ}$ is indistinguishable from -180°]

Q2 Convert the following complex voltages into polar form,

$$(2-j2)$$
; $(3+j8)$; $(-5+j3)$; $(-4-j4)$; $(2-j2)(3+j8)$; $(-5+j3)-(-4-j4)$
[2.83 \angle -45°; 8.54 \angle 69.4°; 5.83 \angle 149°; 5.66 \angle 225° or 5.66 \angle -135°; 24.2 \angle 24.4°; 7.1 \angle 98.1°]

Q3 Convert the following polar voltages into an (a + jb) form,

$$6\angle 45^{\circ}$$
; $50\angle -170^{\circ}$; $4\angle 105^{\circ}$; $3\angle -90^{\circ}$; $(5\angle -30^{\circ})(6\angle 120^{\circ})$; $(3\angle 15^{\circ} + 3\angle 135^{\circ} + 3\angle -105^{\circ})$
[$(4.2+j4.2)$; $(-49.2-j8.7)$; $(-1.0+j3.9)$; $(0-j3)$; $(0+j3)$]

- **Q4** Use phasor diagrams to evaluate the sum of each of (i), (ii) and (iii) below and give your answers in polar form.
 - (i) $i_1 = 14 \sin(\omega t + 45^\circ)$ and $i_2 = 14 \sin(\omega t + 45^\circ)$
 - (ii) $v_1 = 14.14 \sin(\omega t + 13^{\circ})$ and $v_2 = 14.14 \sin(\omega t + 103^{\circ})$
 - (iii) $i_1 = 3\sin(\omega t 145^{\circ})$ and $i_2 = 3\sin(\omega t 25^{\circ})$ and $i_3 = 3\sin(\omega t + 95^{\circ})$ [28 $\angle 45^{\circ}$, 20 $\angle 58^{\circ}$, 0]
- Q5 A series circuit consisting of two unknown components draws a current of $11\cos(800t + 140^{\circ})$ when driven by a voltage of $280\cos(800t + 150^{\circ})$.
 - (i) What two components must be involved? [L and R]
 - (ii) Find values for those components. [25 Ω , 5.5 mH]
 - (iii) Calculate the power dissipated in the circuit. [1.52 kW]

- **Q6** A coil draws 10 A when connected to a 230 Vrms 50 Hz voltage source. If the coil resistance is 2Ω , find its inductance. Using a phasor diagram, or by other means, find the phase of the current with respect to the voltage. [73 mH, -85°]
- Q7 |Z| of a particular RC series combination is 110 Ω. If R = 47 Ω and f = 100Hz find the reactance of the capacitor and hence its value. Use a phasor diagram to find the phase of the current with respect to the driving voltage. [99.5 Ω, 16μF, 64.7°]
- **Q8** For the circuit of figure 8, find the magnitude and phase of I and V_C with respect to V_I for
 - (i) f = 50 Hz [0.30 \angle 73°; 18.8 \angle -17°]
 - (ii) f = 150 Hz [0.14 \angle 82.2°; 2.9 \angle 172°]

- **Q9** For the circuit of figure 9,
 - (i) Draw a phasor diagram to sum the voltages in the loop and hence find the magnitude of V_3 . [41 V]
 - (ii) Express V_{S1} and V_{S2} in an a + jb form. [(40 + j 0); (10.3 + j 28.2)]
 - (iii) Find I in the form a + jb and evaluate its magnitude and phase. What is the reference phase with respect to which the phase of I has been calculated? [0.56 \angle -92.4; All phases w.r.t V_{S1}]

Figure 9

- **Q10** For the circuit of figure 10,
 - (i) Calculate Z and express it in a + jb and polar forms. [(5+j9.3); 10.6 \angle 61.7°]
 - (ii) What components might Z be composed of? $[L(j 9.3 \Omega) \text{ in series with } R(5 \Omega)]$
 - (iii) Write down *I* and *Z* if the source is modified to $50\angle 0$. $[2.5\angle -60^\circ; (5+j9.3)]$

Figure 10

Q11 In figure 11 all the resistances and reactances given are in Ω and the sources are specified by their rms values. There is no phase difference between the two sources. Use loop analysis to find I in the form (a+jb) and evaluate the power delivered to the circuit by each of the two sources. [(1-j1.5), 0, 5 W]

Figure 11