Инфузионная терапия у животных

Архив номеров / Номер 2, 2006 год Распечатать

П.Р. Пульняшенко, Р.С. Ветеринарный госпиг

Инфузионная терапия (ИТ) - одна из важнейших составных частей комплекса реанимационных мероприятий, введен любых жидкостей парентеральным путем. Применяется для профилактики и коррекции нарушений функций и систем (сердечно-сосудистые, волемические, дыхательные, метаболические и др.), вызванных основным заболеванием, или наркозом. ИТ при шоке любой этиологии направлена на коррекцию вызванных им нарушений наряду с другими мера терапии. Устранение нарушений кровообращения, КОС, электролитных нарушений, восстановление дируеза, профил микротромбозов - важнейшие задачи ИТ при шоке. При перитоните и кишечной непроходимости ИТ начинают в предклериоде для устранения дегидратации и гиповолемического ацидотического (алкалозного) шока, восстановления нас солевого обмена. Задачами ИТ при кровопотере являются: устранение дефицита ОЦК, спазма периферических сосу

ПАРЕНТЕРАЛЬНОЕ (ВНУТРИВЕННОЕ) ПИТАНИЕ (ПП) входит в комплекс ИТ наряду с другими методами лечения то невозможности или нежелательности энтерального или зондового питания. ПП, как и обычное питание, полностью об организм всеми питательными веществами (углеводами, белками, жирами, водой, витаминами, микроэлементами) и проведении поддерживает азотистый баланс и массу тела больного. ПП с успехом применяют в хирургии у ослаблені предоперационной подготовки при операциях на желудочно-кишечном тракте и в осложненном послеоперационном г (перитониты, кишечные свищи и т. д.), ПП может быть полным, когда все питание осуществляется исключительно в/в пьет воду), и сочетанным (сочетание внутривенного и перорального питания). В состав ПП входят источники азота и с витамины и электролиты. Оптимальным соотношением углеводов, жиров и белков в общем калораже смесей для пог соответственно 50, 40 и 10 %. Общая потребность в энергии и других ингредиентах.

При ПП глюкоза, аминокислоты, белковые гидролизаты и жировые эмульсии непосредственно, без промежуточного р вступают в обменные процессы с клетками тканей. Роль глюкозы в ПП - обеспечение основной потребности в энерги белкового распада и азотозащитный эффект. Жировые эмульсии, помимо снабжения организма жирными кислотами малом объеме большое количество энергии.

В комплексе мероприятий при проведении инфузионной терапии переливание крови имеет важное значение. В клинг гемотрансфузии применяют с заместительной целью (перелитые эритроциты находятся в крови реципиента 30—120 стимулирующей целью (действует на различные функции животного организма); с целью улучшения гемодинамики (у усиливается работа сердца, повышается минутный объём сердца); гемостатической целью (переливание крови оказь стимулирующее действие на систему гемостаза реципиента, вызывая умеренную гиперкоагуляцию, обусловленную у тромбопластической и снижением антикоагулянтной функции крови).

У собак имеется семь групп крови, определяемых по антигенной принадлежности: A, B, C, D, E, F и G. Фактор A у жив же значение, как и резус-фактор у людей. Этот фактор имеется примерно у 60—65% животных. Повторное переливающивотному, у которого этого фактора нет, может привести к тяжёлым гемотрансфузиологическим последствиям—темс животного. Во избежание этих осложнений необходимо проводить пробы на на групповую и индивидуальную совмест необходимо к 1 мл сыворотки реципиента добавить 0,1 мл эритроцитов донора. Реакция проводиться на стекле при т 25?С. Учёт осуществляется через 5 минут. При отсутствии реакции агглютинации можно приступать к пробе на биолу совместимость.

Биологическая проба на индивидуальную совместимость проводится путём переливания 10—15 мл крови крупным п мл—мелким. Проба проводится трёхкратно. При этом у животного, по возможности, измеряется артериальное давлен число дыханий до переливания и через 10—15 мин. После струйного вливания крови. Беспокойство животного, одыш аритмия, падение давления, рвота, проявление болевых ощущений свидетельствуют о несовместимости переливаем

При переливании крови следует учитывать, что наиболее подходящей для гемотрансфузии является свежая донорск переливании заранее заготовленной крови её необходимо подогревать на водной бане до температуры +37°C, т.к. хо вызывает гипотермию миокарда, спазм периферических сосудов и ацидоз, легко уходит в кровяное депо. На каждые цитратной крови вводится 5 мл 10% раствора хлористого кальция, 50 мл 40% глюкозы с 4 ед. инсулина и 20—30 мл 3

Забор крови от животного осуществляется путём венепункции толстой иглой и сливанием её во флакон с приготовлег Для предупреждения коагуляции крови в системе, последнюю необходимо предварительно промыть раствором гепар глюгициром

Без ущерба для здоровья животного можно забирать кровь из расчёта 10мл/кг. Переливают кровь капельно с темпом расчёта 5—18 мл/кг в час. Повторный забор крови можно проводить через 1,5-2 месяца.

Жидкость в организме

ВНУТРИСОСУДИСТАЯ ЧАСТЬ: 7-9% ВЕСА ТЕЛА

- артериальная система: 18% венозная система: 70%
- сердце: 7% . капилляры: 5%

ВНЕСОСУДИСТАЯ ЧАСТЬ: 53% ВЕСА ТЕПА.

внутриклеточно: 33% веса телаинтерстициально: 20% веса тела

Растворенные в воде вещества находятся в ионизированной и неионизированной форме. Количество катионов и ани равновесии, обеспечивая электронейтральность среды. Состав водных пространств постоянно изменяется, обеспечи физические, нейрогуморальные механизмы регуляции и обменные процессы. При этом он находится в постоянном р

обмена жидкости между организмом и внешней средой. Это происходит при соответствии между приемом и выделен здоровых животных суточные потери жидкости составляют 40 мл/кг в сутки. из них 50% приходится на неопределяем (слюноотделение, перспирация, выделение с поверхности тела, при внутреннем обмене воды и т.п.) и 50% (около 20 выделяется в виде мочи и с каловыми массами. Любой патологический процесс, сопровождающийся потерями жидко одышка, повышение температуры тела) приводит к потере большого количества воды. Так - повышение температурь увеличивает потерю воды на 4-8 мл/кг. В норме нарушение равновесия водных пространств регулируется жаждой. Пс наблюдается у животных при перитоните, кишечной непроходимости и других патологических состояниях. сопровожд повышением температуры тела, одышкой. Изменение объема водных пространств может приводить к изменению эле обмена.

ОБМЕН ЭЛЕКТРОЛИТОВ

Натрий – основной катион экстрацеллюлярного пространства, где находится 98% натрия всего организма; 2% натрия интрацеллюлярном пространстве. В костной ткани натрий находится в связанном виде и в норме в обмене не участв главную роль в поддержании осмотического давления, в обмене жидкости между пространствами и имеет значение в ном равновесии.

Физиологическая концентрация натрия 135 -145 ммоль/л. Натрий выводится главным образом с мочой (120-220 ммог степени - с калом (10 ммоль/сут). В почечной регуляции содержания натрия играет роль клубочковая фильтрация, в в тикоидной – обратное всасывание в канальцах.

Определение натрия в сыворотке крови выше 150 ммоль/л) еще не означает увеличения содержания натрия во всем

Гипернатриемия - возможна при гипертонической дегидратации (недостаток свободной от электролитов воды) и гипер пергидратации (избыток натрия).

Гипонатриемия - содержание натрия в сыворотке крови ниже 135 ммоль/л. При гипонатриемии уменьшается выделе При истощении регулирующих механизмов развивается явная гипонатриемия. В тяжелых случаях общее содержание также уменьшается. Гипонатриемию сопровождает одновременно и гипохлоремия, что вызывает алкалоз (повышени или потеря кислот). Уровень натрия в сыворотке крови как при гипотонической дегидратации, так и при гипотоническо уменьшается. В дифференцильной диагностике этих состояний большое значение имеет выявление первопричины в электролитного обмена и нарушение какого обмена - водного или электролитного - преобладает.

Калий является главным катионом интрацеллюлярного пространства. В сыворотке крови уровень калия составляет 4 количество калия в организме - 51 ммоль/кг массы тела. 98 % калия находится в клетках, а 2% - в экстрацеллюлярно общего количества калия 10% его связано с белками, гликогеном, фосфатами. активный калий составляет Суточная 0,7—1,0 ммоль/кг, Калий всасывается, в верхних отделах тонкой кишки, выделяется в основном с мочой, 10% -с калог фильтруется клубочками почек, в проксимальных канальцах всасывается обратно, а в дистальных — путем ионообмє выделяется.

Нарушение обмена калия отмечается в первую очередь при нарушении поступления калия, проникновения его в клет выделения через почки и только иногда - вследствие патологического распределения его в организме. В экстрацеллк странстве нормальный уровень калия колеблется в небольших пределах и уже незначительное снижение или повыш развитию патологических состояний.

В интрацеллюлярном пространстве калий в клетке определяет электронейтральность, осмотическую концентрацию и активность; в экстрацеллюлярном - мышечную сократимость и нервную возбудимость

Нормальный уровень калия в сыворотке крови - предпосылка целостности клеток. При повреждении функции клеток функция натрий-калиевого насоса, вследствие чего калий выходит в экстрацеллюлярное пространство, а его мест ионы водорода. .

Уровень калия в экстрацеллюлярном пространстве не отражает содержания калия в клетках, но практически для опр нарушения равновесия количество калия в сыворотке крови дает удовлетворительную информацию, особенно если и направление миграции калия при данной патологии насыщения организма водой и точные суточные потери калия с м обмена калия наблюдается при недостаточном поступлении его в организм, при нарушении попадания его в клетку и

Гиперкалиемия - уровень калия в сыворотке крови выше 5 ммоль/л. При здоровых почках, выделение калия соответс а при недостаточности почек, при олиго- или анурии выделение калия в канальцах нарушается и его уровень в сывор вышается.

Гиперкалиемия наблюдается при состояниях, связанных с размозжением тканей, при ожогах, травмах, некрозе паренганов, внутрисосудистом гемолизе, при переливании больших количеств консервированной крови, при усиленном клюме, метаболическом ацидозе. Опасную гиперкалиемию вызывает быстрое введение растворов калия (свыше 20-40 м Хроническая гиперкалиемия отмечается при введении лекарственных средств, вызывающих задержку его.

Клиническая картина не всегда соответствует степени повышения уровня калия в сыворотке крови, так как одноврем метаболический ацидоз и нарушение обмена натрия и хлора. Характерными симптомами являются: торможение нер возбудимости, общая мышечная слабость, нарушение чувствительности, расширение сердца, нарушение ритма серготмечаются высокий палаточный. зубец *T*, расширение комплекса *QRS*, укорочение интервала *Q-T*, вырисовывание уплощение зубца *P*. Если уровень калия в сыворотке крови превышает 7-10 ммоль/л, возможна фибрилляция желудс сердца в диастоле.

Гипокалиемия (уровень калия в сыворотке крови ниже 3,5 ммоль/л) наблюдается при недостаточном поступлении каз усиленном выведении его. Изменение концентрации К+ в сыворотке крови не всегда соответствует изменению уровн

При тяжелых гипокалиемиях уменьшается и уровень калия в клетках. Самыми частыми причинами гипокалиемии явг хронические воспалительные заболевания почек, стадия полиурии при сахарном диабете, гиперсекреция желудка и в калиемия возможна при бесконтрольном применении диуретических средств, кортикостероидов и слабительных — б терь калия. Патогенез потери калия почками, когда почечными канальцами резко уменьшается реабсорбция калия, т ферментном нарушении. К гипокалиемии приводит накопление кислых продуктов обмена, так как часть H+ связывае водится. К преходящей гипокалиемии приводит гликогенообразование и анаболизм белков, так как оба процесса треб в больших количествах. Применение солевых растворов и растворов глюкозы без содержания в них калия приводит внутриклеточного калия, который выделяется с мочой, а натрий при этом входит внутрь клеток.

Клинические симптомы, появляющиеся при гипокалиемии: ослабление рефлексов вплоть до исчезновения, мышечн астения. Мышечная деятельность резко снижается, возможен паралич дыхательных мышц. Нарушение функции неик ких) мышц приводит к атонии желудка и кишок. Слабость дыхательных мышц затрудняет дыхание, выделение мокрот функции миокарда отчетливо видны на ЭКГ: нарушение ритма сердца, уплощение зубца T и слияние его с зубцом U, S-T, удлинение интервала Q-T. Тяжелая гипокалиемия может привести к остановке сердца. Сопровождающий гипока метаболический алкалоз обусловливает потерю H+ и C1?. При гипокалиемии выведение калия почками уменьшается щается, однако роль почек в сбережении калия ничтожна. Интенсивные потери калия наблюдаются диабетическом ε некоторых заболеваниях почек, при применении диуретиков и стероидных гормонов.

Уменьшается выделение калия при олиго- и анурии, гипокалиемии. С калом выделяется 5 ммоль/сут калия.

Кальций

99% содержится в костной ткани. В экстрацеллюлярном пространстве находится 0,3 г кальция. Обмен кальция регул щитовидные железы. В плазме крови находится 4,5-5 ммоль/л кальция, 2/3 в ионизированном состоянии. Клиническу определяет уровень кальция' в плазме крови. Поступающий с пищей кальций всасывается в тонкой кишке. Всасыван эргокальциферолом (витамином D2) и химическим составом содержимого тонкой кишки. Кальций играет большую ро свертывания крови, в регуляции нервно-мышечной возбудимости и проницаемости клеточной мембраны.

Причиной *гиперкальциемии* чаще является передозировка солей кальция и эргокальциферола, а также повышенная щитовидных желез. Гиперкальциемия отмечается при множественной миеломе, саркоидозе, хроническом гломерулог костей, метастазах опухолей в кости и в некоторых случаях респираторного алкалоза.

Клинические симптомы: слабость, жажда, отсутствие аппетита, рвота, икота, полиурия. Характерно снижение нервно возбудимости, усиленной сократительной способности сердца, нарушение ритма сердца, в частности желудочковая с приводит к систолической остановке сердца и гиперкальциемической коме.

Гипокальциемия вызывается недостаточным поступлением кальция с пищей, нарушением всасывания и усиленным организма. Причинами гипокальциемии являются гипофункция паращитовидных желез или удаление их, а также нед эргокальциферола. Гипокальциемия возможна при массивной гемотрансфузии консервированной крови (цитрат связ Гипокальциемия сопровождается повышением уровня фосфора в крови.

Клиническая картина характеризуется повышением нервно-мышечной возбудимости, что вызывает тетанические суд колику, диплопию, стридор, диспноэ. ЭКГ характеризуется нарушением сократимости сердца, удлинением интервала *Т*. Выведение кальция с мочой зависит от поступления его в организм. В норме в сутки выделяется около 100-300 мг выделяется 50-150 мг/сут кальция. При гиперкальциемии выведение кальция с мочой повышено, а при гипокальцием

Магний. В организме содержится 7-12 ммоль/кг магния, 50% его находится в нерастворенном состоянии в костной тк трацеллюлярном пространстве находится 1,2-2,5 ммоль/л магния. Магний, как и калий, является главнейшим внутрин тионом. Магний участвует в активации ферментативных систем организма и в процессах сокращения мышцы.

Большие количества магния теряются при профузном поносе и полиурии.

Клиническая картина: повышенная возбудимость нервной системы, атетоз. Поражение миокарда характеризутся тах нарушением ритма.

С мочой выделяется 2-24 ммоль магния в сутки, с калом – 80-90% введенного магния.

Выделение магния повышается при усиленной физической нагрузке, введении диуретиков.

Хлор является основным анионом внеклеточного пространства. В организме содержится-30 ммоль/кг хлора, в сывор ммоль/л. Введение CI- зависит, главным образом, от введения NaCI с пищей. Хлор всасывается в тонкой кишке, выдотом. Хлор, как и натрий, участвует в поддержании осмотической концентрации. Содержание хлоридов в моче в ног сут. Выделение хлоридов увеличивается при введении диуретиков и при заболеваниях почек, гипокалиемии, уменьш стероидами, при гиперсекреции желез пищевого канала, при бессолевой диете. С калом выделяется 2 ммоль/сут хло потеря хлора увеличивается до 60-500 ммоль/ сут.

Причины *гиперхлоремии* те же, что и при гипернатриемии. При повышенном введении натрия хлорида возможна гипи интерстициальными отеками, отеком легких (при введении гипертонических растворов). Для поддержания электроне при гиперхлоремии усиленно выделяют гидрокарбонаты, что может привести к метаболическому ацидозу.

В клинической картине доминируют симптомы метаболического ацидоза.

Гипохлоремия развивается при рвоте, вызываемой пилоростенозом, непроходимости тонких кишок и длительном дус сывании. Гипохлоремия сопровождается гипонатриемией, однако пропорции могут быть нарушены. Потерю хлора ор сирует повышением уровня гидрокарбонатов в плазме для поддержания электронейтральности. В результате развив ческий алкалоз. Клиническая картина гипохлоремии проявляется симптомами алкалоза.

Потребности организма в различных компонентах

Ингредиент	Общая суточная потребность организма (на 1кг массы тела)
Вода	40мл
Энергия	30ккал
Азот(аминокислоты)	1-2г аминокислот

Глюкоза	3-5 г
Жиры	0,7-1,5 г
Натрий	1,5 ммоль
Калий	0,8 ммоль
Кальций	0,11 ммоль
Хлор	2,5 ммоль
Витамины: A B1 B2 B5 B12 C	10мкг 0,02 мг 0,03 мг 0,03 мг 0,03 мг 0,5 мг 1,5мг
Никотинамид	0,2 мг
Фолиевая кислота	3 мкг

1. Расчет физиологических и патологических потерь и потребностей жидкости и электролитов при различных патологических состояниях;

Для осуществления коррекции нарушений водно-электролитного баланса необходима полная информация о состоян Наибольшее значение имеет определение дефицита жидкости, особенно внутрисосудистой, осмолярности плазмы и состава потерь - электролитов, белка и гемоглобина. При определении баланса воды и электролитов возникают опре методические трудности.

Анамнестические данные о количестве и качественном составе потерь (рвотныемассы, объем мочи, жидкий стул и т., ориентировочными.

Метод подсчета потерь и поступлений жидкости. Организованный учет всех введенных жидкостей и потерь при ди наблюдении позволяет достаточно точно судить о количественной и качественной характеристике водно-солевого об

Объем. Для учета поступлений суммируют объем жидкости, выпитой и введенной в желудок через зонд, инфузионны подкожно, в/м, в/в и др.Точно так же стараются учитывать все потери. Некоторые потери (диурез, рвота, активная асп содержимого ЖКТ, потери через дренажи, фистулы, диарея и т. д.) учесть легко. Однако нужно учесть и незаметные г перспирацией.

Качественный состав. Измерив объем фактических потерь, можно ориентировочно судить о количественных выделентаблицам состава биологических сред. (См. в табл.).

Табл. Потери электролитов в биологических средах

Источник потерь	Na+ ммоль/л	К+ ммоль/л	СІ- ммоль/л
Желудок	60	9	100
Желчь	148	6	100
Панкреатический сок	140	5	75
Тонкая кишка	110	5	105
Оформленный стул	10	10	15
Диарея	50-100	20-40	40-80
Моча (большие вариации)	55	50	60

Состояние водно-электролитного баланса по данным обследования больного.

Определяют электролитный, газовый состав и КЩС, концентрацию глюкозы в крови с помощью общепринятых метод значение имеют показатели: АД, ЦВД, ОЦК и пульс.

Нормальные показатели концентрации гемоглобина, эритроцитов, белка плазмы и гематокрита не являются абсолют признаками отсутствия нарушений баланса воды. Эти показатели могут быть сильно изменены в результате дегидрагипергидратации и анемии. Важно знать исходный уровень гемоглобина и гематокрита, что практически невозможно. проводить расчеты дефицита жидкости на основании этих показателей при кровотечениях и гипопротеинемии. Нельз расчеты, ориентируясь лишь на результаты единичных лабораторных исследований. Трактовка всех этих данных быг затруднена, и показатели, рассматриваемые изолированно, могут привести к ложным заключениям. Только комплекс позволяет дать объективную оценку. Исследование водных пространств организма. Для этого используют методы, ос принципе разведения индикаторов. Для определения объема циркулирующей плазмы (ОЦП) используют индикаторы др., которые не проникают через сосудистую стенку.

Для исследования объема внеклеточной жидкости используют хлориды, бромиды, роданат натрия, инулин, маннитог распространяются во всем внеклеточном пространстве,непроникая в клетки.

Определение объема общей воды организма проводят с помощью окиси дейтерия, окиси трития, антипирина, мочевы

Индикатор, введенный в сосудистое русло, в течение определенного времени распределяется во внеклеточной и кле зависимости от объема общей жидкости изменяется его концентрация. Определение концентрации производят черек промежутки времени. Для расчетов объемов общей, внеклеточной и плазматической жидкости используют формулу:

У=0/C

- V исследуемый объем жидкости
- О количество введенного индикатора
- С плазматическая концентрация индикатора

Объем внутриклеточной жидкости определяют как разность между объемом общей жидкости и объемом внеклеточно организма. Объем интерстициальной жидкости равен разнице между объемами внеклеточного и внутрисосудистого г Различные сочетания индикаторов могут быть использованы для одномоментного определения всех водных простра имеет большое практическое значение. Этот метод в практичной ветеринарии не используется. Содержание натрия, в других электролитов в плазме крови можно рассчитать, если известны объем плазмы и концентрация в ней определя Содержание в плазме искомого вещества будет равно объему плазмы (в литрах) и концентрация этого вещества (в мі Для определения электролитоввовнеклеточной жидкости необходимо знать ее объем и концентрацию электролитов і Последнюю определяют методом пламенной фотометрии.

Содержание натрия и хлора (внеклеточные ионы) рассчитываютпо их концентрации в плазме и объему внеклеточной составляющей 20%от массы тела. В упрощенном варианте дефицит натрия во внеклеточной жидкости рассчитывают

+ ++

Дефицит Na (ммоль) = (Na д - Na ф)х20%масы тела (кг)

Где, Na+ д- должная концентрация натрия в крови, т.е. 142 ммоль/л; Na+ф- фактическая концентрация натрия в плазме, ммоль/л; 20% массы тела - объем внеклеточной жидкости.

Подобным же образом рассчитывают дефицит хлора.

При определении калиевого баланса руководствуются результатами динамического исследования этого катиона в пл симптомами и ЭКГ- признаками, данным по биологическим жидкостям.

Дефицит K+ (ммоль/л) = [4,5(ммоль/л) - K+ ф(ммоль/л)]•Вне КЖ(л)•2

Где, К+ - дефицит калия, 4,5 -нормальный уровень калия в плазме;

К+- фактическая концентрация калия плазме, ммоль/л;

ВнеКЖ -внеклеточное пространство, равное массетела в (кг)"0,2;

2 — значение полученное опытным путем.

Расчет объема суточной инфузионной терапии:

Универсальный метод: (Для всех видов дегидратации).

Объем = суточная потребность + патологические потери + дефицит.

Суточная потребность - 20-30 мл/кг; при температуре окружающей среды более 20 градусов На каждый градус +1 г

Патологические потери:

- Рвота приблизительно 20-30 мл/кг (лучше измерить объем потерь);
- Диарея 20-40 мл/кг (лучше измерить объем потерь);
- Парез кишечника 20-40 мл/кг;
- Температура +1 градус = +10мл/кг;
- ЧД более 20 в минуту +1 дыхание = +1мл/кг;
- Объем отделяемого из дренажей, зонда и т. д.;
- Полиурия диурез превышает индивидуальную суточную потребность.

Для гипертонической дегидратации:

Дефицит жидкости (л) = (Na больного -142) /142 x MT x 0,6

Для изотонической дегидратации:

Дефицит жидкости (л) = (Ht больного -0,45) / 0,45 x MT x 0,2

Расчет дефицита электролитов:

Дефицит (в ммоль) = (Эл. Норма - Эл. больного) х Масса тела х 0,2

Суточная доза электролита в инфузионной терапии =дефицит +суточная потребность.

Суточная потребность:

- Na 1,0-1,5 ммоль/кг;
- К 0,7-1,0 ммоль/кг;
- С1 2,0-2,5 ммоль/кг.

1 ммоль калия, также как и ммоль хлора содержится в:

- 1,0мл 7,5%p-paKC1
- 1,9мл 4%р-раКС1
- 2,5мл 3 % р-ра КС1

1 ммоль натрия, также как и 1 ммоль хлора содержится в:

- 6,5 мл 0,9 % p-pa NaC1
- 0,6мл 10%p-pa NaC1

При полиионных нарушениях (дефицитах) коррекцию по формулам начинают с наименьшего нарушения (наименьше

Жидкостная терапия у мелких домашних животных:

Оценка водного баланса:

- Анамнез пациента (анорексия, рвота, диарея, полиурия, частое поверхностное дыхание, потеря крови.);
- Физиологическое обследование:

Гиповолемический шок:

- 1.Пульс;
- 2. Слизистые оболочки (время наполнения капилляров ВПК);
- 3. Периферическая температура.

Дегидратация: 1. Эластичность кожи или тургор; 2. Содержимое мочевого пузыря; 3. Вес тела.

Физиологическое обследование: эластичность кожиили тургор является приблизительной мерой дегидратации:

- < 5% ВТ не определяется;
- 5-6% легко снижен тургор кожи;
- 6-8% заметно снижен тургор кожи/ВНК>1;
- 10-12% кожная складка остается на месте/ ВНК;
- 12-15%-ШОК.

Принцип гидратации

- 1. Для предупреждения водно-электролитных нарушений объем инфузии определяют из расчета 30-40мл/кг тела в
- 2. Дефициты крови и жидкости должны быть устранены вовремя, только тогда можно предупредить и ограничить компенсаторные и патологические реакции.
- 3. Объем инфузии подлежит обязательной коррекции в процессе динамического наблюдения в зависимости от по·
- 4. Объем инфузированой жидкости должен складываться из суммы дефицита жидкости суточной потребности орг 5. Ренальные потери жидкости возмещают введением 5% p-ра глюкозы и изотоническими солевыми растворами.
- 6. Патологические потери, потери внеклеточной жидкости возмещают полиионными растворами.
- 7. Потери крови возмещают переливанием цельной крови. Переливают при снижении гематокрита до 0,30-0,28. Ог для микроциркуляции создаются при гематокрите 0,30-0,35.
- 8. Нормальную осмоляльность внеклеточной жидкости поддерживают с помощью введения изотонических электри (Рингер и др.), которые создают осмотическое равновесие.
- 9. Специально корригируют дефициткалия, гидрокарбоната, добавляя молярныер-ры.
- 10. Потери кальция и магния.
- 11. Избранные среды должны обеспечить поступление белка и калорий.
- 12. Мониторинг: АД, частоты сердечных сокращений, частоты дыхательных движений, температуратела, ЦВД, диур патологических потерь.
- 13. При ухудшении состояния больного инфузии временно прекращают и возобновляют после выяснения причиг
- 14. Подводят баланс поступлений и потерь за сутки, проводят доступные лабораторные исследования.

3. Путь введения:

- В/в периферические или центральные вены;
- Внутрикостно;

4. Количество жидкости:

Изотонические кристаллоидные растворы

- Половина объема крови (собаки 45 мл/кг, кошки 35 мл/кг). Но реально для достижения эффекта изотонические і растворы:
- 1/3 количества кристаллоидных растворов;
- макс. 20-40 мл/кг/день. Гипертонические растворы:
- собаки 4-7 мл/кг; кошки 2-4 мл/кг.

5. Темп введения:

Изотонические кристаллоидныерастворы:

- до достижения эффекта;
- макс. 90 мл/кг/час (собаки) и 55 мл/кг/час (кошки);

Изо-онкотический коллоидный раствор:

до достижения эффекта;

Гипертонический раствор: болюс 5-15 мин.

6. Электролитный и кислотно-щелочной баланс

Восстановление электролитного и кислотно-щелочного баланса не является необходимым, за исключением определ

Раствор с таким же составом как экстрацелюллярная жидкость не заменим в большинстве случаев, например, лакта-

7. Гиповолемия скорректирована, и шок преодолен за счет введения жидкости. 2. Повторное физическое обследован стабильное состояние.

Восполняющие потребности:

Гидратационный дефицит:

- 1. Потери жидкости, которые происходят до начала терапии;
- 2. выражается как процент от веса тела.

Одновременные потери жидкости:

- 1. Экстра потери жидкости в период жидкостной терапии
- 2. Выражается в миллилитрах.
- 3. Содействие диурезу:
- Не способствует коррекции жидкостного баланса
- Цель увеличить выделение мочи и улучшить выделительную функцию почек.

1. Оценка пациента.

Существует ли гидратационный дефицит и может ли пациент поддерживать жидкостной баланс организма?;

- 2. Тип жидкости: Поддерживающие жидкости:
 - 1. изотонические кристаллоидные "поддерживающие" жидкости;
 - 2. композиция определяется концентрацией электролитов нормальных суточных потерь жидкости Na 40-60 ммоль

Возмещающие жидкости:

- 1. изотонические кристаллоидные "возмещающие" жидкости;
- 2. композиция сходна с составом экстрацеллюлярной жидкости;
- 3. синтетические коллоидные растворы.

3. Путь введения:

- орально /энтерально;
- подкожно;
- в/в периферические, центральные.

4. Количество жидкости:

Для поддержания: собаки 40-70 мл/кг/день, кошки 40-50мл/кг/день.

Для возмещения: гидратационный дефицит %; одновременные потери жидкости мл.

Содействие диурезу (2-7% ВТ).

5. Темп введения:

Темп = общее количество жидкости /период времени. Время доступное для введения жидкости, различается среди в Период времени, используемый для коррекции гидратационного дефицита, должен варьировать от нескольких часов

6. Электролитный баланс:

- Определяется композицией электролитов в плазме и их ненормальными потерями или накоплениями.
- Небольшой дисбаланс может быть восстановлен только при помощи коррекции водного баланса.
- Существенный дисбаланс может бытьскорректирован "возмещающими" жидкостямиили добавлениями электро.
- При большинстве электролитных дисбалансов должны также быть возмещены "поддерживающие" потребности
- Na ^ глюкоза 5%, 2,5%, NaC1 0.45%
- Nav NaC1 0.9%
- К^ в солевых р-рах калий
- Ку калий дополнительно нужно вводить : (4.3-[K+])x0.6xBV = ? mm1/1
- Фосфат Mg Ca[^] электролит свободный в жидкости
- Фосфат Mg Ca2+ удополнительно

7. Кислотно-щелочной дисбаланс

- 1. Коррекция водного и электролитного баланса в большинстве случаев восстанавливает кислотно-щелочной баля
- 2. только в крайних случаях показана активная терапия (добавление бикарбоната) для восстановления кислотно-ц дисбаланса.

8. Итог:

- Гидратационный дефицит скорректирован
- Определяется: физическими обследованиями, масса животного лабораторная диагностика, измерение ЦВД.
- Пациент сам способен поддерживать водный баланс.
- При выполнении таких планов учитывать другие заболевания, упростить если это возможно, производить монит

Характеристики свойств и особенности применения некоторых инфузионных растворов, совместимость и не другими препаратами.

ИТ острых водно-электролитных нарушений складывается из ряда экстренных мероприятий,

направленных на восстановление нормального объема циркулирующей крови, объема и качественного состава водн организма.

Важнейшими звеньями терапии является: 1.) устранение гиповолемии, создание наиболее экономных режимов рабо условиях достаточного венозного притока и периферического кровоснабжения; 2) ликвидация наиболее опасных нар воды и электролитов. сдвигов КЩС; 3) восстановление диуреза, поддержание достигнутого равновесия, обеспечение секторального распределения жидкостных объемов и электролитов.

Инфузионные среды

С позиций ИТ водно-электролитных нарушений инфузионные среды целесообразно распределить:

- Объемозамещающие растворы (плазмозаменители и кровь). Основная цель их применения быстрое восстано плазматического и глобулярного объемов.
- Базисные инфузионные растворы глюкозы и электролитов. Применяют их для поддержания водно-электролитнитечение необходимого времени.
- Корригирующие инфузионные растворы, в том числе молярные растворы электролитов и гидрокарбоната натри предназначены для коррекции нарушений гидроионного и ЩКБ.
- Растворы диуретиков. Основная цельих применения восстановление диуреза и предупреждение почечной нед

Объемозамещающие растворы

К этим растворам относятся искусственные плазмозамещающие растворы декстрана, желатина, крахмала и кровь. С гемодинамической эффективности цельную кровь. Они быстрее и надежнее восстанавливают объем циркулирующей положительное влияние на ее реологические свойства, микроциркуляцию и гемодинамику в целом.

Восполнение объема крови означает коррекцию основной причины гиповолемии и, связанной с ней, сердечно-сосуди недостаточности. При восстановлении нормального венозного возврата увеличивается кровенаполнение сердечных г сердечный выброс. Одновременно с ^ АД увеличивается тканевая перфузия, улучшаются метаболические процессы

К коллоидным объемо- и плазмозамещающим средам относят: р-ры декстрана, желатина и крахмала, но их мало кто

Биологическое свойство этих растворов заключается в том, что они в сосудистом русле хорошо связывают воду и уве длительность пребывания коллоидных частиц. Чем выше молекулярная масса раствора, тем дольше его пребывание

Декстраны - это полисахариды, состоящие из отдельных молекул глюкозы. Основу их составляют 0,9% NaC1 и 5% го обладают свойствами дезагрегации тромбоцитов и эритроцитов, что препятствует агглютинации и образованию слад через почки. Декстраны совместимы со всеми растворами электролитов и с большинством фармацевтических препа

Коллоиды

Коллоиды - достаточно крупные молекулы и не могут проникать через капиллярную мембрану. Их можно разбить на д естественного происхождения и синтетические коллоиды. Наиболее важным коллоидом естественного (природного) является сывороточный альбумин. Однако в ветеринарной медицине он вводится только в составе цельной плазмы к масса альбумина составляет 69 000 Дальтон. Имеется также несколько типов синтетических коллоидов (в т.ч. желати декстраны, см. ниже). Преимущество применения растворов коллоидов в сравнении с солевыми растворами заключк крупные молекулы коллоидов не могут проникнуть через стенки капилляров в тканевую жидкостьи, соответственно, с удерживать воду в сосудистом русле в течение длительного времени. Поэтому вызванное введением коллоидов увег циркулирующей крови более стабильно и долговременно, чем вызванное введением солевых растворов. Хотя показа применения внутривенного введения коллоидов при многих заболеваниях мелких домашних животных, их применими травмой исследована недостаточно. Из результатов клинических наблюдений, проведенных на людях, вытекает, что с разницы в выживаемости у больных с травмами при применении солевых растворов и растворов коллоидов не выяв, растворы коллоидов много дороже солевых растворов, трудно рекомендовать такие жидкости для широкого примене травматологической практике.

Применяемые дозировки растворов коллоидов много меньше, чем дозировки солевых растворов,поскольку практиче введенного раствора коллоида остается внутри кровеносных сосудов, обычно рекомендуется вводить его в дозах, со до 1/4 количества солевых растворов. Это соответствует примерно ударной разовой дозе в 10-20 мл/кг у собак и 8-12 Продолжительность пребывания коллоидов в сосудистом русле определяется средним размером и характером распримененного коллоида по этому показателю. Молекулы небольшого размера выводятся быстрее, особенно если их масса меньше 55 000 Дальтон - такие молекулы выводятся почками с мочой. Более крупные молекулы устраняются т гидролиза. Однако некоторые из них могут элиминироваться моноцитарно-макрофагальной системой. Конкретные ск сосудистого русла наиболее распространенных коллоидов будут приведены ниже.

Поскольку практически весь объем введенного раствора коллоида остается внутри кровеносных сосудов, обычно рекего в дозах, составляющих от 1/5 до 1/4 количества солевых растворов. Это соответствует примерно ударной разово у собак и 8-12 мл/кг у кошек. Продолжительность пребывания коллоидов в сосудистом русле определяется средним к характером распределения молекул примененного коллоида по этому показателю. Молекулы небольшого размера вы особенно если их молекулярная масса меньше 55 000 Дальтон - такие молекулы выводятся почками с мочой. Более устраняются только после гидролиза. Однако некоторые из них могут элиминироваться моноцитарно-макрофагально кретные скорости удаления из сосудистого русла наиболее распространенных коллоидов будут приведены ниже.

При использовании коллоидных растворов для восстановления объема циркулирующей крови совместно с солевыми дозировки жидкостей обоих типов соответственно уменьшаются. Например, у собак с гиповолемическим шоком для є объема циркулирующей крови шока достаточно ввести разовую дозу какого-либо синтетического коллоида в 10 мл/кг раствора в 30 мл/кг. Концентрация коллоидов в сосудистом русле со временем также постепенно снижается, однако : текает значительно медленнее, чем в случае солевых растворов. Однако клинические наблюдения показывают, что и коллоидов для устранения гиповолемии, после введения начальной дозы жидкости, требуется поддерживающая ее и случае тяжелых травм. Скорость введения жидкости при поддерживающей жидкостной терапии в случае использова обычно составляет 0,5-2 мл/кг/час. Если предполагается наличие у пациента травмы легких, скорость введения колли следует снизить. В таких случаях следует вводить жидкосгь небольшими порциями в 3-5 мл/кг, оценивая реакцию жиг каждой такой дозы.

Все коллоидные растворы могут вызвать снижение свертываемости крови. Такое их действие обусловлено разведен стороны, и преципитацией под влиянием коллоидов ряда факторов свертывания - с другой. Кроме того, коллоиды на фактора Виллебранда. Особенно выраженным снижение свертываемости крови становиться при введении больших коллоидных растворов, свыше 20 мл/кг. Сниженная свертываемость крови может быть осложняющим фактором у тра пациентов с кровотечениями, поэтому гипокоагуляционное действие коллоидов следует устранить, вводя животному источник утраченных факторов свертывания. Следует также помнить, что при использовании коллоидов рефрактоме определения общего белка плазмы может давать ложные результаты. Крахмалы и декстраны дают показания рефра аналогичные белку в концентрации 4,5 мг/100 мл, поэтому синтетические коллоиды обычно снижают количество опря плазме, за исключением тех случаев, когда величина этого показателя до применения коллоидов ниже 4,5 мг/ 100 мл снижение измеряемой концентрации белка в плазме, коллоиды эффективно увеличивают ее онкотическое давление

Желатины

В ветеринарии применяются растворы желатинов разных типов. Большая часть из них содержит химически модифиц желатины, отличающиеся от природных форм этих белков. Молекулярные массы применяемых желатинов составляк поэтому эти соединения достаточно эффективно экскретируются почками. Хотя желатины вызывают быстрое увелич циркулирующей крови, их эффект относительно непродолжителен, т.к. среднее время выведения из сосудистого русг введенного количества данных веществ составляет

Гипертонический солевой раствор

. Гипертонический солевой раствор - это раствор солей в воде, но количество хлористого натрия в нем намного болы крови. Наиболее распространенные гипертонические солевые растворы содержат 5 или 7,5% этой соли. При примен растворов наблюдается очень быстрое, но кратковременное, увеличение объема циркулирующей крови за счет входкапилляры из интерстициального пространства. Кратковременность же увеличения объема циркулирующей крови об выходом ионов натрия и хлорида через мембраны капилляров из крови в тканевую жидкость и уравновешиванием ик жидкости и плазмы крови. Для пролонгирования эффекта гипертонические солевые растворы часто применяют в ком коллоидами, например раствором Декстрана 70. Для получения такой смеси, содержащей 7,5% NaC1, берут 17 мл раконцентрацией 23,5% и 43 мл 6% раствора Декстрана 70.

Поскольку гипертонические солевые растворы высокоэффективны в плане кратковременного увеличения объема ци вводимые объемы таких растворов много меньше, чем в случае использования жидкостей других типов.

Применение гипертонических солевых растворов бывает особенно эффективно у очень крупных животных и в тех сл времени на введение изотонической жидкости, т.к. пациент находится в критическом состоянии и требует срочной по время прямым показанием к применению гипертонического раствора считается травма головы, т.к. введение такого р быстро снизить количество жидкости в тканях головного мозга и предупредигь развитие отека головного мозга. В таки поскольку тяжесть ишемии тканей мозга связана как с величиной внутричерепного давления, так и с системным арте давлением, очень важно бывает не допустить развития отека мозга и, одновременно, предупредить падение артериа этих ситуациях гипертонический раствор — идеальное средство, т.к. при его внутривенном введении уже в небольши наблюдается значительное увеличение артериального давления.

Противопоказаниями к применению гипертонического солевого раствора являются дегидратация (при которой в инте жидкостях не содержится достаточного для требуемого увеличения объема циркулирующей крови и разбавления гип раствора количества воды), гипернатриемия, или тяжелое неконтролируемое кровотечение, которое может усилиться увеличения артериального давления. В частности, из-за быстрого увеличения артериального давления при введении раствора пациентам с травмами легких, у них может усилиться легочное кровотечение, хотя принято считать, что так небольших объемов вводимой жидкости у данных пациентов достаточно эффективен.

Базисные растворы

Растворы Рингера, Рингера-Локка не могут обеспечить организм свободной водой! Для обеспечения дневной потреби поддержания электролитного баланса следует использовать электролитные инфузионные растворы, содержащие ме с плазмой количество натрия и хлора или добавлять растворы с глюкозой. А также ж эти растворы не могут обеспечи организма в ионах калия и тем более корригировать гипокалиемию.

Следует помнить, что изотонические растворы сахаров являются главным источником свободной воды (безэлектроль проведении инфузионной терапии! Растворы сахаров применяют как при проведении поддерживающей гидратацион для коррекции возникающих нарушений водного баланса. При избыточном введении растворов сахаров существует с гипергидратации и отравления водой! Преимущественное использование растворов сахаров при сниженной конценты плазме может привести к гипоосмолярному синдрому.

Корригирующие растворы

Гидрокарбонат натрия применяют для лечения декомпенсированного метаболического ацидоза. Он быстро восстана внеклеточной жидкости и в меньшей мере влияет на рН внутриклеточной жидкости. Являясь буферным раствором, го влияет на ряд важнейших показателей гомеостаза: повышает рН крови, уменьшению отдачи тканям кислорода -влия: В процессе ощелачивания увеличивается образование СО? для элиминации которой нужно увеличить объем легочно Поэтому, противопоказан при дыхательной недостаточности, если при этом нет респираторной поддержки. При назна гидрокарбоната, который в своем составе содержит эквивалентное количество натрия, нужно учитывать склонность и пациентов к отекам, при сердечной недостаточности, гипертонии, эклампсии. Заболевания печени не служат противо применению гидрокарбоната натрия, но являются противопоказанием к назначению лактата натрия. Тяжелая почечно гиперкалиемия и анурия не являются противопоказаниями к применению гидрокарбоната, но в то же время служат о противопоказаниями к назначению трисамина.

При избыточном введении гидрокарбоната натрия возникает опасность возникновения декомпенсированного алкало: кетоацидоза его вообще не используют, либо применяют в малых дозах. Применение расчетной дозы гидрокарбонат диабетического ацидоза (который в значительной мере устраняется путем этиотропной терапии) ведет к алкалозу. Ст гидрокарбоната ведет к тетаническим судорогам. Для инфузии используют 3-5% р-ры.

Хлорид калия вводят разведенным на p-pe глюкозы с добавлением соответствующей дозы инсулина. Применяют при гипокалиемический метаболический алкалоз, угроза передозировки гликозидами. Калий противопоказан при: почечно олигурии и гиперкалиемии. При необходимости увеличения дозы калия нежно под мониторингом ЭКГ. Сульфат магни для профилактики и коррекции дефицита магния. Хлорид кальция 10% применяют для профилактики и коррекции де Вводить дробно 3-4 раза в день. Следует вводить осторожно при гипокалиемии.

Группа	Название	Характеристика	Показания	Противопоказания	Дози введ
Объемозамещающие растворы	Полиглюкин	6% коллоидный раствор декстрана. Максимум действия 5-7 ч. В клетках РЭС расщепление до глюкозы, однако препарат не является источником углеводного питания. Основа 0.9%NaCl	Профилактика и лечение О гиповолемии. Шок: кровопотеря, плазмопотеря, дегидратация, несоответствие ОЦК сосудистой емкости – травма, ожоги, хирургическое вмешательство, сепсис, сосудистая гипотония, циркуляторная недостаточность.	Осторожность при работе с больными ССС (сердечная слабость), инфаркт миокарда, гипертония.	В каж дози инди шоке введи стаби капел Конт

	Реополиглюкин	10% коллоидный рр р декстрана на 0.9%NaCl или 5% глюкозе. Гиперосмотичный рр вызывает перемещение интерстециальной жидкости в сосудистое русло. Выраженные реологические свойства, восстанавливает кровоток в сосудистом русле.	Патологические состояния сопровождающиеся гиповолемией и микроциркуляторными нарушениями: различные виды шока, тромбоэмболия, шоковое легкое, перитонит, панкреатит и др.	Геморрагические диатезы, тромбопения, тяжелые заболевания печени с удлинением времени свертывания, заболевания почек (анурия), сердечная недостаточность когда нельзя вводить много жидкости. Из-за высокой вязкости нарушается пассаж канальцевой мочи вплоть до анурии "декстрановая почка".	При I декс ⁻ возм крови
	Желатиноль	8% р-р частично гидролизированного желатина с добавлением солей. По физико-химическим свойствам близок к плазме крови. Из-за низкой молекулярной массы в крови пребывает кратковременно. Востанавливает плазматический объем.	Плазмозамещающее действие при острой гиповолемии, разные виды шока и интоксикация	При острых заболеваниях почек и жировой эмболии. В последнем случае используют низкомолекулярный декстран.	Ввод струі пока:
	Кровь	Лечебный эффект от переливания крови складывается из многих факторов. Одним из главных это заместительное действие крови в отношении глобулярного объема. При острой кровопотере и гиповолемическом шоке переливание крови вызывает увеличение объема крови	Основным показанием к гемотрансфузии является острая кровопотеря, снижение гематокрита ниже 30%.	Реакции непереносимости. Кровопотеря до 10% объема крови компенсируется самим организмом в большинстве случаев не требуется лечения	Обяз гемо явля собл прав крові клин
Базисные растворы	Лактоосол	Изотонический буферный р-р, электролитный состав которого близок к составу плазмы + содержит лактат Nа который в организме превращается в гидрокарбонат за счет этого увеличивается гидрокарбонатная емкость. Поэтому может компенсировать изотонические нарушения гидроионного равновесия и метаболический ацидоз.	Потери изотонической жидкости при ожогах, острых хирургических вмешательствах органов брюшной полости, потери кишечных соков, сепсис, травма, гиповолемический шок, метаболический ацидоз.	Изотоническая и гипертоническая гипергидратация, гипертоническая дегидратация, алкалоз. Возможны озноб и гипертермия при введении. При струйном введении подогреть до +30-+350 C.	При і введі

	Р-р Рингера	Изотонический электролитный раствор содержит избыток ионов хлора, кислой реакции. Мало калия и воды.	Изотоническая и гипотоническая дегидратация, дефицит натрия и хлора, гипохлоремический алкалоз	Гиперхлоремия, гипернатриемия, изотоническая и гипертоническая гипергидратация, метаболический ацидоз.	По по Скор мл/кг
	Р-р Рингера- Локка	Изотонический электролитный раствор содержит избыток ионов хлора. Мало калия и воды. Содержит и глюкозу.	Дегидратация с дефицитом натрия и хлора, гипохлоремия в сочетании с алкалозом.	Гипертоническая и изотоническая гипергидратация , гиперхлоремия, метаболитический ацидоз. Нельзя применять как универсальный раствор.	Скор мл/кг
	5% р-р глюкозы	Изотонический безэлектролитный р-р. Метаболизируется с образованием H2O и CO2	Гипертоническая дегидратация, обезвоживание с дефицитом свободной воды. Основа для добавления других растворов	Гипотоническая дегидратация и гипергидратация, гипергликемия, непереносимость, отравление метанолом.	Доза конкр Опас водо введ
	10% p-p глюкозы	Гипертонический безэлектролитный р-р с большим количеством свободной воды.	Гипертоническая дегидратация, дефицит свободной воды. Основа для добавления других растворов	То же	Скор мл/кг от по Опас водо
Корригирующие растворы	0,9% хлорида натрия	Р-р изотоничен плазме, содержит мало воды и много ионов хлора. Нельзя использовать как раствор для обеспечения организма водой. Назначать нужно с учетом баланса электролитов чтобы не привести к гиперхлоремии и метаболическому ацидозу.	Гипохлоремия, особенно в сочетании с метаболическим алкалозом, гипонатриемия. Олигоурия в связи с дегидратацией и гипонатриемией.	Метаболический ацидоз, гиперхлоремия, гипонатриемия. Введение 0,9% р-р NaCl усиливает гипокалиемию.	Доза конкұ ситуғ введ
Осмодиуретики	10-20% р-ры маннитола	Гиперосмолярные р-ры 6-ти атомного спирта маннита, вызывающие диурез. В организме не метаболизируется и выделяется почками. Вызывает переходящую гиперволемию	Профилактика острой почечной недостаточности. Лечение острой анурии после ликвидации шока. Отек мозга. Токсический отек легких. Осмотерапия.	Острая сердечная недостаточность, гиперволемия, опасность перегрузки сердца. Следует соблюдать осторожность при анурии (маннитоловая проба).	Ввод ЦВД. ввод

Диуретики

Фуросемид назначают для лечения олигоанурии после ликвидации гиповолемического шока. В отличие от маннитола противопоказан при сердечной недостаточности

Литература

- Elke Rudolf Rebecce Kirbi. Выведение из гиповолемического шока. Focus N°4 2001г.
- Lori S. Waddell and Lasly G. King. Жидкостная терапия травмированных животных. Focus N°4 1999г.
 П. Р. Пульняшенко. Анестезиология и реаниматология собак и кошек. Киев "ФАУНА СЕРВИС"1997 г.
- Теория и практика интенсивной терапии. Под редакцией Петера Варги, Зузанны Бтаж, Миклоша Джачинто, Каль "ЗДОРОВ"Я"1983 г.стр.185-190, 190-195, 215-230.
- Справочник по анестезиологии и реаниматологии. Под редакцией професора А.А. Бунятяна. Москва. "МЕДИЦИІ

blackseavet.ru

Полезные ссылки

Департамент ветеринарии Краснодарского края

Ассоциация Практикующих Ветеринарь

Разработка сайта - Интернет-Имидж

2011 © Ветеринария Кубани