Verification & Validation

Motivation

- The simulation model needs to work as intended.
- It should adequately represent the system being simulated.

Verification & Validation

Verification –

Validation –

Verification

Possible methods

- **...**
- Use all of the prior methods in extreme cases
 - Examples
 - Examine only one part type at a time.
 - Allow only one entity into the system.

Verification

- Use all of the prior methods in extreme cases
 - Examples
 - Control the distributions used.
 - Set all processing times to constants You should be able to predict quantities such as the entity avg. TIS.
 - Control arrival rates
 - Extremely high.
 - Extremely low.

Verification

- Need to run very large models for a long simulated time to check for gradual buildup of queues.
 - May be able to compute utilizations.
- During model development

Validation

- In general this is more difficult than verification.
- Two general cases

Validation

- System exists.
 - Compare results to historical results.
 - Does the data exist?
 - Are you comparing "apples to apples"?
 - Control model variability
 - Resource availability
 - If a known long maintenance period occurred for machines or if known long failures/repairs occurred, duplicate these in the model.
 - Duplicate resource schedules.
 - Duplicate the arrival pattern over which historical performance data has been collected.
 - Job types.
 - Job arrival times.

Validation

- System does not exist.
 - Change the data and modify the model so that it simulates a system that still exists. Then compare to historical data.
 - Expert opinion.
 - Run extreme cases.

Output Analysis

Introduction

- A simulation model has been constructed of a system to generate estimates of one or more performance measures.
- Random inputs/system components in the simulation imply that the outputs (performance measure estimates) will be observations from probability distributions.

Introduction

Questions about starting and running the model.

Types of Simulation "Runs"

- In general, there are two types of simulation analyses performed that dictate how the previous questions should be answered.
 - Terminating –

2. Steady state –

Example

- Simulation of a bank from open to close (9AM-5PM).
 - This is an example of a terminating simulation.
 - How do you start the simulation?
 - Empty and idle.
 - How long should the model be run (how much simulated time before stopping the run)?
 - 9AM until all customers depart after 5PM.

Time period of interest is defined.

Example

- Bank simulation from 9AM-5PM.
 - Customers arriving before 5PM are all served.
 - The simulation ending time may vary from replication to replication.
 - What is the termination criteria?

Arena

- To properly end such a simulation, use
 - Run -> Setup -> Replication Parameters
 - 1. Set ending criteria in "Terminating Condition".
 - 2. Leave "Replication Length" field blank.
- The termination criteria will use Arena "syntax".

Arena

- ◆ A simulation of a service facility with "rush hour" periods is constructed. There is a specific time period of interest – 11AM -1PM. The facility is open at 9AM.
 - How long to simulate? 11AM-1PM.

~

- Approaches for starting a simulation with unknown initial conditions.
 - 1. Collect data on the system state at the start of the rush hour period.
 - Initialize the simulation with the "average" system state.
 - Initialize the simulation with a random system state based on the collected data.
 - Both hard to do in Arena,
 - Straightforward in an "event driven" model (e.g., the manual simulation).

Approaches for starting a simulation with unknown initial conditions.

2.

Arena

Steady state simulations are used to understand how a system performs after being in operations for a long time. The system has reached "steady state" where the performance is independent of the initial conditions.

Examples

- Production line simulations the line starts where it left off at the end of prior shifts.
- Emergency rooms.
- Worst case analysis.

- How to start the simulation?
 - Typically a warm-up period is used to minimize any impact of initial conditions.
 - How long should the warm-up period be?
 - Can determine from some sample runs of the simulation.
- How long to run the simulation?
 - Can determine from some sample runs of the simulation.

- What are you looking for in the plots?
 - Impact of initial conditions.
 - Does the plot from time zero look different than other portions of the graph?
 - Does the performance measure seem to be growing without bound?

The Number of Replications and Analysis of Output

- We will focus on the analysis of terminating simulations.
 - They are more common in practice.
 - The analysis is more straightforward.
- Simulation models are used for experimentation.
 - One simulation replication → a single realization of each system performance measure.
 - n independent replications $\rightarrow n$ independent samples from the same distribution.

The Number of Replications and Analysis of Output

- ullet Consider a single performance measure. Let X_i be the random variable that represents the value of the performance measure for the ith simulation replication.
 - x_i = outcome/realization of X_i from the ith simulation replication.
- ullet Since the X_i are independent and identically distributed random variables the performance can be characterized using the "typical" confidence interval.

Analysis of Output

• The approximate $(1-\alpha)*100\%$ confidence interval

 Assumes the observations are from a normal distribution.

- How to estimate number of independent replications required for a desired precision expressed as a confidence interval half-width.
- lacktriangle The half-width h of this confidence interval is

This cannot be used to precisely calculate n to get the desired precision h since the t-value is a function of n.

Substitute

Use this formula to approximate the number of replications needed to get a desired half-width (precision) for some performance measure.

 Example – Average Time In System (TIS) for entities being processed.

- Use Arena to send TIS average results from independent replications to a text file.
- ◆ Use this data to estimate n the number of independent replications needed for a desired precision.

Project: Exercise 3.1

User: Kelton Data item: TIS2

Run date: 2/27/2006

Options: YDT 20

Time Observation

1 8.341297

-1 0
2 7.39797

-2 0
3 5.40304

-3 0
4 9.393243

-4 0
5 3.859661

-5 0
6 14.76574

-6 0
7 26.15339

-7 0

$$z_{1-\alpha/2}$$
 for $t_{n-1,1-\alpha/2}$

$$\Rightarrow n \approx z_{1-\alpha/2}^2 * \frac{s^2(AvgTIS)}{h^2}$$

Avg. 8.187022 Stdev 5.428285

$$z_{1-0.025} = 1.96$$

$$n \approx 1.96^2 \frac{5.43^2}{.5^2} = 453$$

The Number of Replications

Project: Exercise 3.1
User: Kelton

Data item: TIS2

Run date: 2/27/2006

Options: YDT

Stdev

Time	Observation	
	1	8.341296692
	2	7.397970199
	3	5.403039681
	4	9.393242671
	5	3.859660527
	6	14.7657369
	7	26.15339254
	8	10.11390026
	9	6.071090565
	10	4.278436904
	11	6.390677328
	12	2.874782431
	13	12.45966732
	14	5.197794785
	15	3.92990998
	16	4.978496969
	17	6.029672064
	18	12.99574679
	19	9.837051072
	20	3.268866729
Avg.		8.18702162

5.428284629

- In many situations where simulation is used, changes to an existing or "base" system are explored.
- There is a need to do a comparison of two systems.
- Simulation has been used to generate estimates of performance measure for the base system and a changed system.
- Analysis
 - Two sample t-confidence interval.
 - Paired t-confidence interval.

Let

 $X_{i1}, X_{i2}, ..., X_{in_i}$ be a sample of n_i independent and identically distributed observations of some system performance measure (e.g., X_{i1} is the average TIS from replication 1 of the simulation model) for i = 1,2.

$$\mu_i = E(X_{ij})$$

$$\delta = \mu_1 - \mu_2$$

The independence of X_{1j} and X_{2j} depends on how the simulation experiments were conducted (over which there is control).

- "Standard" two-sample t-confidence interval.
- Assumptions
 - X_{1j} 's and X_{2j} 's are independent.

 - n_1 and n_2 need not be equal.
- Not recommended for simulation output analysis since the equal variance assumption is often not met (Kelton and Law 2000).
 - However, the test is robust if $n_1 = n_2$.

- "Welch" two-sample t-confidence interval.
- Assumptions
 - X_{1j} 's and X_{2j} 's are independent and normally distributed.
 - n_1 and n_2 need not be equal.

Compute sample means and sample variances for the output of the two simulations,

$$\overline{X}_1(n_1), \overline{X}_2(n_2), s_1^2(n_1), s_2^2(n_2).$$

Compute the estimated degrees of freedom \hat{f}

$$\hat{f} = \frac{\left[s_1^2(n_1)/n_1 + s_2^2(n_2)/n_2\right]^2}{\left[s_1^2(n_1)/n_1\right]^2/(n_1 - 1) + \left[s_2^2(n_2)/n_2\right]^2/(n_2 - 1)}$$

Form the confidence interval as

$$\overline{X}_1(n_1) - \overline{X}_2(n_2) \pm t_{\hat{f}, 1-\alpha/2} \sqrt{s_1^2(n_1)/n_1 + s_2^2(n_2)/n_2}$$

- Paired t-confidence interval.
- Assumptions
 - n_1 and n_2 are equal.

Let

$$D_j = (X_{1j} - X_{2j})$$

$$\overline{D}(n) = \frac{\sum_{j=1}^{n} D_j}{n}, \ s^2(D_j) = \text{sample variance}.$$

The confidence interval is:

$$\overline{D}(n) \pm t_{n-1,1-\alpha/2} \sqrt{\frac{s^2(D_j)}{n}}$$

- The paired t-confidence interval forms a new sample as the difference between corresponding outputs from the same replication number for system 1 and system 2.
 - \blacksquare X_{1i} and X_{2i} may be dependent.
 - The D_i 's must be independent.
 - $Var(X_{1i}) = Var(X_{2i})$ is not necessary.

Example

- Experiment with the single server model arrival process.
 - $t_{9,.975} = 2.26$, Performance measure is avg. TIS.

Time	Expo(5)	U(1,9)	D
1	8.341	8.328	0.013
2	7.398	6.228	1.170
3	5.403	5.943	-0.540
4	9.393	7.924	1.469
5	3.860	2.475	1.385
6	14.766	8.086	6.679
7	26.153	12.673	13.480
8	10.114	15.218	-5.104
9	6.071	5.893	0.178
10	4.278	4.161	0.117

Avg. 1.885 **Stdev.** 4.974

In-class Exercise

- For the following data.
 - Form 95% CIs for system 1 and system 2 output separately. Check for overlap.
 - Form a 95% paired t-confidence interval. Check for the inclusion of zero.
 - Construct a Welch two-sample t[∠] confidence interval.

Let

$$D_{j} = (X_{1j} - X_{2j})$$

$$\overline{D}(n) = \frac{\sum_{j=1}^{n} D_j}{n}, \ s^2(D_j) = \text{sample variance}.$$

The confidence interval is:

$$\overline{D}(n) \pm t_{n-1,1-\alpha/2} \sqrt{\frac{s^2(D_j)}{n}}$$

$$\hat{f} = \frac{\left[s_1^2(n_1)/n_1 + s_2^2(n_2)/n_2\right]^2}{\left[s_1^2(n_1)/n_1\right]^2/(n_1 - 1) + \left[s_2^2(n_2)/n_2\right]^2/(n_2 - 1)}$$

Form the confidence interval as

$$\overline{X}_1(n_1) - \overline{X}_2(n_2) \pm t_{\hat{f}, 1-\alpha/2} \sqrt{s_1^2(n_1)/n_1 + s_2^2(n_2)/n_2}$$

	System 1	System 2	Difference		
Data Pt.	Output	Output	Sys 1- Sys 2		
1	0.66	3.68	-3.02		
2	0.53	3.93	-3.40		
3	3.42	1.37	2.05		
4	4.79	5.89	-1.10		
5	1.11	5.30	-4.20		
6	4.16	1.24	2.92		
7	0.85	3.39	-2.54		
8	3.22	1.58	1.64		
9	4.66	4.48	0.18		
10	1.08	5.00	-3.92		
11	2.97	1.68	1.28		
12	2.97	1.47	1.50		
13	2.82	2.58	0.23		
14	0.57	5.97	-5.40		
15	2.48	4.76	-2.29		
16	4.03	1.71	2.33		
17	4.98	5.50	-0.52		
18	3.30	3.36	-0.06		
19	0.53	2.87	-2.34		
20	1.12	3.65	-2.53		
21	2.01	3.80	-1.79		
22	4.63	1.83	2.80		
23	4.52	5.03	-0.51		
24	0.70	2.84	-2.14		
25	1.48	1.49	-0.01		
26	0.21	1.18	-0.97		
27	2.07	4.93	-2.86		
28	4.89	1.86	3.03		
29	3.12	1.59	1.52		
30	1.92	1.63	0.29		
Average =	2.53	3.19	-0.66		
Std Dev =	1.58	1.59	2.32		
	t(29,0.975) = 2.05				

T(58,.975) = 2.0

In-class Exercise

Comparing >2 Systems

- Comparisons with a base system.
- All pairwise comparisons.
- Simple procedure is to apply what is called the Bonferroni inequality.

Prob(True value
$$\in CI_j$$
, for all $j = 1, 2, ..., k$) $\ge 1 - \sum_{j=1}^{k} \alpha_j$

Comparing >2 Systems

- Example One base system and four alternatives => four confidence intervals when comparing each system with the base system.
- To get 90% overall confidence level each individual confidence interval should be a 97.5% CI.

$$\alpha_i = 1 - \alpha / c$$

Comparing >2 Systems

- Experimental design methods are helpful for exploring a "factor space".
- Care must be taken when conducting the experiments and analyzing experimental results due to the non-random nature of generating "random" values in a simulation.