Inteligência Artificial Aula 9 - vídeo 2 - Aprendizado de Máquina

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

21 de outubro de 2020

• Conceito Alvo: O que deve ser aprendido.

- Conceito Alvo: O que deve ser aprendido.
- Atributos: Conjunto de características com valores fixos que identificam as instâncias.

- Conceito Alvo: O que deve ser aprendido.
- Atributos: Conjunto de características com valores fixos que identificam as instâncias.
 - Categóricos: quando o atributo assume valores discretos.
 - Numéricos: valores inteiros ou reais.

- Conceito Alvo: O que deve ser aprendido.
- Atributos: Conjunto de características com valores fixos que identificam as instâncias.
 - Categóricos: quando o atributo assume valores discretos.
 - Numéricos: valores inteiros ou reais.
- Instâncias: Elementos de um conceito.

- Conceito Alvo: O que deve ser aprendido.
- Atributos: Conjunto de características com valores fixos que identificam as instâncias.
 - Categóricos: quando o atributo assume valores discretos.
 - Numéricos: valores inteiros ou reais.
- Instâncias: Elementos de um conceito.
- Exemplos: Conjunto de instâncias utilizado para aprender o conceito.

- Conceito Alvo: O que deve ser aprendido.
- Atributos: Conjunto de características com valores fixos que identificam as instâncias.
 - Categóricos: quando o atributo assume valores discretos.
 - Numéricos: valores inteiros ou reais.
- Instâncias: Elementos de um conceito.
- Exemplos: Conjunto de instâncias utilizado para aprender o conceito.
- Descrição do Conceito: Resultado produzido por um processo de aprendizado.

Conceito Alvo: 'Dias em que Ana gosta de praticar seu esporte favorito.'
 Vamos chamá-lo de EnjoySpt

- Conceito Alvo: 'Dias em que Ana gosta de praticar seu esporte favorito.'
 Vamos chamá-lo de EnjoySpt
- Atributos e seus Valores
 - Sky: sunny, rainy, cloudy
 - Temp: warm, cold
 - Humid: normal, high
 - Wind: strong, weak
 - Water: warm, cool
 - Forecast: same, change

- Conceito Alvo: 'Dias em que Ana gosta de praticar seu esporte favorito.'
 Vamos chamá-lo de EnjoySpt
- Atributos e seus Valores
 - Sky: sunny, rainy, cloudy
 - Temp: warm, cold
 - Humid: normal, high
 - Wind: strong, weak
 - Water: warm, cool
 - Forecast: same, change
- Instâncias: $3 \times 2 \times 2 \times 2 \times 2 \times 2 = 3 \times 2^5 = 96$ instâncias

• Exemplos: Conjunto de instâncias utilizado para aprender o conceito.

Sky	Temp	Humid	Wind	Water	Forecast	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes
Rainy	Cold	High	Strong	Cool	Change	No
Sunny	Warm	High	Strong	Cool	Same	Yes
Cloudy	Cold	High	Strong	Cool	Change	No

• Exemplos: Conjunto de instâncias utilizado para aprender o conceito.

Sky	Temp	Humid	Wind	Water	Forecast	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes
Rainy	Cold	High	Strong	Cool	Change	No
Sunny	Warm	High	Strong	Cool	Same	Yes
Cloudy	Cold	High	Strong	Cool	Change	No

96 instâncias \Rightarrow 7 exemplos

• Exemplos: Conjunto de instâncias utilizado para aprender o conceito.

Sky	Temp	Humid	Wind	Water	Forecast	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes
Rainy	Cold	High	Strong	Cool	Change	No
Sunny	Warm	High	Strong	Cool	Same	Yes
Cloudy	Cold	High	Strong	Cool	Change	No

96 instâncias \Rightarrow 7 exemplos

Aprender: generalizar a classificação das 89 instâncias não conhecidas a partir dos 7 exemplos.

• Exemplos: Conjunto de instâncias utilizado para aprender o conceito.

Sky	Temp	Humid	Wind	Water	Forecast	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes
Rainy	Cold	High	Strong	Cool	Change	No
Sunny	Warm	High	Strong	Cool	Same	Yes
Cloudy	Cold	High	Strong	Cool	Change	No

96 instâncias \Rightarrow 7 exemplos

Aprender: generalizar a classificação das 89 instâncias não conhecidas a partir dos 7 exemplos.

Como aprender ?

Separar os exemplos

 Separe os exemplos conhecidos em dois conjuntos: treinamento e teste.

- Holdout
 - 2/3 para treinamento
 - 1/3 para teste
 - Estimativa Pessimista: usa somente parte dos dados.

Holdout

- 2/3 para treinamento
- 1/3 para teste
- Estimativa Pessimista: usa somente parte dos dados.

Amostragem Aleatória

- Cada divisão seleciona um número fixo de exemplos sem reposição.
- Para cada conjunto de dados dividido, o conjunto de treinamento é usado para treinar e depois o de teste usado para avaliar o erro obtido em cada conjunto.
- O erro real estimado é a média dos erros obtidos.

K- Fold Cross-validation

- Para cada um dos k experimentos: k-1 folds para treinar e 1 para testar.
- Todos os elementos s\u00e3o usados para treinamento e teste.

K- Fold Cross-validation

- Para cada um dos k experimentos: k-1 folds para treinar e 1 para testar.
- Todos os elementos s\u00e3o usados para treinamento e teste.

Leave One Out Cross-Validation

 Como saber se o que foi aprendido, de fato, ajuda quando novas instâncias são examinadas?

- Como saber se o que foi aprendido, de fato, ajuda quando novas instâncias são examinadas?
- Como medir a acurácia do aprendizado?

- Como saber se o que foi aprendido, de fato, ajuda quando novas instâncias são examinadas?
- Como medir a acurácia do aprendizado?
- Acurácia: percentagem dos elementos que são corretamente classificadas (taxa de reconhecimento)

- Como saber se o que foi aprendido, de fato, ajuda quando novas instâncias são examinadas?
- Como medir a acurácia do aprendizado?
- Acurácia: percentagem dos elementos que são corretamente classificadas (taxa de reconhecimento)

Verdadeiros Positivos: Número de elementos da classe A=yes, classificados como A=yes

 Acurácia: percentagem dos elementos que são corretamente classificadas (taxa de reconhecimento)

- Considere um conjunto de exemplos com 1000 exemplos, sendo 30 positivos e 970 negativos (3% de casos de câncer)
- Suponha que treinamos um classificador e obtemos acurácia de 90%.
- O classificador é bom?

- Considere um conjunto de exemplos com 1000 exemplos, sendo 30 positivos e 970 negativos (3% de casos de câncer)
- Suponha que treinamos um classificador e obtemos acurácia de 90%.
- O classificador é bom?

Acurácia: 90% (caso com 5+ e 45-)

Medidas Alternativas

• Sensibilidade: proporção de instâncias positivas corretamente classificadas.

$$\frac{\#verdadeiros_positivos}{\#positivos}$$

• Especificidade: proporção de instâncias negativas corretamente classificadas.

• Precisão: proporção de instâncias corretamente classificadas.

```
#verdadeiros_positivos

#verdadeiros_positivos + #falsos_positivos
```

Medidas Alternativas

Classes Previstas

Reconhecimento Classes A = yes**Total** A = no(%) A = yes6954 46 7000 99.34 Classes 412 2588 3000 86.27 Reais A = no7366 2634 10000 95.42 Total

• Sensibilidade: proporção de instâncias positivas corretamente classificadas.

$$\frac{6954}{7000} = 0.9934$$

• Especificidade: proporção de instâncias negativas corretamente classificadas.

$$\frac{2588}{3000} = 0.8627$$

• Precisão: proporção de instâncias corretamente classificadas.

$$\frac{6954}{7366} = 0.9441$$

As medidas devem ser feitas no treinamento e no teste

Inteligência Artificial Aula 9 - vídeo 2 - Aprendizado de Máquina

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

21 de outubro de 2020