

Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

KDD 2021

Hengxu Lin*, Dong Zhou*, Weiqing Liu, Jiang Bian Sun Yat-sen University, Microsoft Research Asia

Motivation

· Investors hold various beliefs and strategies, and multiple trading patterns* in the stock market could be observed.

^{*} A trading pattern means the causal relation between the available information at the current time (i.e., feature) and the stock price movement in the future (i.e., label).

Motivation

- · Investors hold various beliefs and strategies, and multiple trading patterns* in the stock market could be observed.
 - · e.g., excess return relative to market of three common trading strategies (size, value, momentum) changed and dominated different period

^{*} A trading pattern means the causal relation between the available information at the current time (i.e., feature) and the stock price movement in the future (i.e., label).

Motivation

- · But simply following the identical distribution assumption fails to capture different trading patterns.
 - · e.g., linear coefficients between excess return and strategy-related feature

- Temporal Routing Adaptor (TRA)
 - · Empower existing NN based models with the ability to model multiple trading patterns.

- Temporal Routing Adaptor (TRA) = predictors + router
 - · Empower existing NN based models with the ability to model multiple trading patterns.
 - Predictors: Responsible for representing multiple patterns
 - · Router: Responsible for detecting a sample's underlying pattern and its assignment

- Temporal Routing Adaptor (TRA) = predictors + router
 - Predictors: Responsible for representing multiple patterns

• Extending our TRA on a backbone model avoid heavy parameters and provide fair comparison with backbone model.

Predictors

Samples

- Temporal Routing Adaptor (TRA) = predictors + router
 - · Router: Responsible for detecting a sample's underlying pattern and its assignment

- · Temporal Routing Adaptor (TRA) = predictors + router
 - · An implementation of TRA on RNN: Prediction Errors 1t-

· Optimal Transport (OT):

· While TRA has the capacity to model multiple patterns, it can easily fall to some trivial solutions like selecting only one:

- Optimal Transport (OT):
 - · While TRA has the capacity to model multiple patterns, it can easily fall to some trivial solutions like selecting only one.
 - Introducing constraint to make assigned samples more balanced?

- Optimal Transport (OT):
 - · + Objective: assign samples to predictors to minimize the overall loss
 - · Constraint: keep the assigned samples proportional to the relative share of the pattern

$$\min_{\mathbf{P}} \langle \mathbf{P}, \mathbf{L} \rangle,$$

$$s.t. \sum_{i=1}^{N} \mathbf{P}_{ik} = \nu_k * N, \ \forall k = 1...K$$

$$\sum_{k=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N$$

$$\mathbf{P}_{ik} \in \{0, 1\}, \ \forall i = 1...N, k = 1...K,$$

where P_{ik} is the router assignment matrix, L is the cost matrix.

- · Optimal Transport (OT):
 - · + Objective: assign samples to predictors to minimize the overall loss
 - · Constraint: keep the assigned samples proportional to the relative share of the pattern

$$\min_{\mathbf{P}} \langle \mathbf{P}, \mathbf{L} \rangle,$$

$$s.t. \sum_{i=1}^{N} \mathbf{P}_{ik} = v_k * N, \ \forall k = 1...K$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N$$

$$\mathbf{P}_{ik} \in \{0,1\}, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

where P_{ik} is the router assignment matrix, L is the cost matrix.

- · Optimal Transport (OT):
 - · + Objective: assign samples to predictors to minimize the overall loss
 - · Constraint: keep the assigned samples proportional to the relative share of the pattern

$$\min_{\mathbf{P}} \langle \mathbf{P}, \mathbf{L} \rangle,$$

$$s.t. \sum_{i=1}^{N} \mathbf{P}_{ik} = v_k * N, \ \forall k = 1...K$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N$$

$$\mathbf{P}_{ik} \in \{0,1\}, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

$$\sum_{i=1}^{K} \mathbf{P}_{ik} = 1, \ \forall i = 1...N, k = 1...K,$$

 To emulate OT assignment during testing, we guide the learning of the router through adding an auxiliary regularization term into the objective:

$$\min_{\Theta, \pi, \psi} \mathbb{E}_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D}^{\text{train}}} \left[\ell(\mathbf{x}_i, \mathbf{y}_i; \Theta, \pi, \psi) - \lambda \sum_{k=1}^K P_{ik} \log(q_{ik}) \right]$$

Experiments

- Task: Stock Ranking Prediction
- · Dataset: CSI800 Stocks on China A-share Market
- Metrics:
 - · Regression metrics: MSE, MAE
 - · Finance ranking metrics: Information Coefficients (IC), Information Ratio of IC (ICIR).
 - · Portfolio metrics: Annual Return (AR), Annual Volatility (AV), Sharpe Ratio (SR), Max Drawdown

· Baselines:

- · Linear, LightGBM, MLP, SFM (KDD 17), ALSTM (IJCAI 17, IJCAI 19), Transformer (IJCAI 20)
- Heuristic methods for learning multiple patterns: ALSTM+TS, Transformer+TS

^{*} Our dataset is publicly available at https://github.com/microsoft/qlib

Experiments

· Heuristic methods for learning multiple patterns harm the model performance:

Method	Ranking Metrics				Portfolio Metrics			
Method	MSE (↓)	$MAE(\downarrow)$	IC (†)	ICIR (↑)	AR (↑)	AV (↓)	(↓) SR (↑) .8% -0.191 .5% 0.503 .3% 0.264 .3% 0.497 .7% 0.897 .2% 1.028 .6% 0.480 .7% 0.722	$MDD(\downarrow)$
Linear	0.163	0.327	0.020	0.132	-3.2%	16.8%	-0.191	32.1%
LightGBM	0.160(0.000)	0.323(0.000)	0.041	0.292	7.8%	15.5%	0.503	25.7%
MLP	0.160 (0.002)	0.323 (0.003)	0.037	0.273	3.7%	15.3%	0.264	26.2%
SFM	0.159 (0.001)	0.321 (0.001)	0.047	0.381	7.1%	14.3%	0.497	22.9%
ALSTM	0.158 (0.001)	0.320 (0.001)	0.053	0.419	12.3%	13.7%	0.897	20.2%
Trans.	0.158 (0.001)	0.322 (0.001)	0.051	0.400	14.5%	14.2%	1.028	22.5%
ALSTM+TS	0.160 (0.002)	0.321 (0.002)	0.039	0.291	6.7%	14.6%	0.480	22.3%
Trans.+TS	0.160 (0.004)	0.324 (0.005)	0.037	0.278	10.4%	14.7%	0.722	23.7%
ALSTM+TRA (Ours)	0.157 (0.000)	0.318 (0.000)	0.059	0.460	12.4%	14.0%	0.885	20.4%
Trans.+TRA (Ours)	0.157 (0.000)	0.320 (0.000)	0.056	0.442	16.1%	14.2%	1.133	23.1%

Experiments

· With both TRA and OT, our method can give consistent gains:

Method	Ranking Metrics				Portfolio Metrics			
Method	MSE (↓)	$MAE(\downarrow)$	IC (†)	ICIR (↑)	AR (†)	AV (↓)	SR (↑)	$MDD(\downarrow)$
Linear	0.163	0.327	0.020	0.132	-3.2%	16.8%	-0.191	32.1%
LightGBM	0.160(0.000)	0.323(0.000)	0.041	0.292	7.8%	15.5%	0.503	25.7%
MLP	0.160 (0.002)	0.323 (0.003)	0.037	0.273	3.7%	15.3%	0.264	26.2%
SFM	0.159 (0.001)	0.321 (0.001)	0.047	0.381	7.1%	14.3%	0.497	22.9%
ALSTM	0.158 (0.001)	0.320 (0.001)	0.053	0.419	12.3%	13.7%	0.897	20.2%
Trans.	0.158 (0.001)	0.322 (0.001)	0.051	0.400	14.5%	14.2%	1.028	22.5%
ALSTM+TS	0.160 (0.002)	0.321 (0.002)	0.039	0.291	6.7%	14.6%	0.480	22.3%
Trans.+TS	0.160 (0.004)	0.324 (0.005)	0.037	0.278	10.4%	14.7%	0.722	23.7%
ALSTM+TRA (Ours)	0.157 (0.000)	0.318 (0.000)	0.059	0.460	12.4%	14.0%	0.885	20.4%
Trans.+TRA (Ours)	0.157 (0.000)	0.320 (0.000)	0.056	0.442	16.1%	14.2%	1.133	23.1%

 During test, TRA selects predictor with smaller loss:

 During test, TRA selects predictor with smaller loss:

 During test, TRA selects predictor with smaller loss:

 TRA benefits most from using both latent representation and temporal prediction error as input:

 During test, TRA selects predictor with smaller loss:

Information	MSE (↓)	MAE (↓)	IC (†)	ICIR (†)
Random	0.159 (0.001)	0.321 (0.002)	0.048	0.362
LR	0.158 (0.001)	0.320 (0.001)	0.053	0.409
TPE	0.158 (0.001)	0.321 (0.001)	0.049	0.381
LR+TPE	0.157 (0.000)	0.318 (0.000)	0.059	0.460

· A moderate selection of # predictors (i.e., trading patterns) could give desirable performance gains:

 A moderate selection of # predictors (i.e., trading patterns) could give desirable performance gains:

Thank you!

GitHub: https://github.com/microsoft/qlib

E-mail: <u>HeLin23@gsb.columbia.edu</u>

Zhou.Dong@microsoft.com