Отчёт по лабораторной работе

Лабораторная №5 по имитационному моделированию

Дзахмишев Камбулат Заурович

Содержание

1	Цель работы	5
2	Задание	6
3	Задание	7
4	Задание	8
5	Выполнение лабораторной работы	9
6	Выполнение лабораторной работы	10
7	Выполнение лабораторной работы	11
8	Выполнение лабораторной работы	12
9	Выполнение лабораторной работы	13
10	Выполнение лабораторной работы	14
11	Выполнение лабораторной работы	15
12	Выполнение лабораторной работы	16
13	Выполнение лабораторной работы	17
14	Выполнение лабораторной работы	18
15	Выполнение лабораторной работы	19
16	Выполнение лабораторной работы	20
17	Выводы	21
Сп	MCOV BUTONOTVINLI	22

Список иллюстраций

5.1	Установка контекста и создание блочной модели	•	9
6.1	Ввод значений начального состояния верхнего интеграла	•	10
7.1	Ввод значений начального состояния нижнего интеграла	•	11
8.1	Установка конечного времени интегрирования	•	12
9.1	График модели эпидемии в xcos	•	13
10.1	Реализация модели с помощью блока Modelica в xcos	•	14
11.1	Код для нашей SIR в OpenModelica	•	15
12.1	Модель для самостоятельного задания в OpenModelica	•	16
13.1	График модели эпидемии	•	17
14.1	График модели эпидемии и её модель в xcos	•	18
15.1	График модели эпидемии с изменёнными параметрами	•	19
16.1	. Изменение контекста к предыдущему графику		20

Список таблиц

1 Цель работы

Реализуйте модель SIR в OpenModelica.

2 Задание

Требуется разработать сценарий, реализующий модель согласно рис. 2.4, построить в Xgraph график изменения TCP-окна, график изменения длины очереди и средней длины очереди

3 Задание

В дополнение к предположениям, которые были сделаны для модели SIR (5.1) , пред- положим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуу- мы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений: $\Box \Box \Box \Box \Box \dot s = -\Box s(t)i(t) + \Box (N - s(t)); \dot i = \Box s(t)i(t) - \Box i(t) - \Box i(t); \dot r = \Box i(t) - \Box r(t),$

4 Задание

где 🗆 — константа, которая равна коэффициенту смертности и рождаемости. Требуется: — реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в ОрепМоdelica; — построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр 🗈); — сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Рис. 5.1: Установка контекста и создание блочной модели

Рис. 6.1: Ввод значений начального состояния верхнего интеграла

Рис. 7.1: Ввод значений начального состояния нижнего интеграла

Рис. 8.1: Установка конечного времени интегрирования

В нашем случае оно равно 30.

Рис. 9.1: График модели эпидемии в хсоѕ

Рис. 10.1: Реализация модели с помощью блока Modelica в xcos

В процессе установки параметров блока Моделика Я забыл сделать скриншот с вводом значений для него, к сожалению. График выходит тем же, что и раньше.

Рис. 11.1: Код для нашей SIR в OpenModelica

Также установил здесь время конечное равное 30 единицам. На выводе графика имеем тот же график, что и в предыдущих пунктах, только в Oprn-Modelica.

```
** Story Models | Mod
```

Рис. 12.1: Модель для самостоятельного задания в OpenModelica

Рис. 13.1: График модели эпидемии

Рис. 14.1: График модели эпидемии и её модель в хсоѕ

Уже здесь изменять начал устанавливать другой контекст, изменяя параметр mu.

Рис. 15.1: График модели эпидемии с изменёнными параметрами

Рис. 16.1: Изменение контекста к предыдущему графику

Здесь можно заметить, что число здоровых людей резко идет на спад, что влечёт по логиче за собой и резкое увеличение числа зараженных.

17 Выводы

В ходе данной лабораторной работы составил графики и модели эпидемии, а также научился изменять параметры модели с целью ознакомления с ходом развития эпидемии.

Список литературы