More About PCA

Foundations of Data Analysis

March 26, 2020

Review: Principal Component Analysis

PCA is an eigenanalysis of the covariance matrix:

$$\Sigma = V\Lambda V^T$$

- ▶ Eigenvectors: $v_k = V_{\bullet k}$ are principal components
- ▶ Eigenvalues: λ_k are the **variance** of the data in the v_k direction

Maximizing Variance of Projected Data

Fact: PCA finds dimensions that maximize variance

Given direction $v \in \mathbb{R}^d$, with ||v|| = 1, project data point $x \in \mathbb{R}^d$ onto v:

$$z = \langle v, x \rangle$$

Maximizing Variance of Projected Data

Given mean-centered data, x_i , first principal component, v_1 maximizes variance:

$$v_1 = \arg\max_{\|v\|=1} \sum_{i=1}^n \langle v, x_i \rangle^2$$

PC's as Rotation

The principal components matrix, V, acts as a rotation:

$$Z = XV$$

Columns of Z are new coordinates, called **loadings**

Example: Iris Data

Example: Iris Data PCA


```
s. len. s. wid. p. len. p. wid. PC 1: v_1 = \begin{array}{cccc} & \text{s. wid.} & \text{p. len.} & \text{p. wid.} \\ & \text{PC 1: } v_1 = & -0.36 & 0.08 & -0.86 & -0.36 \\ & \text{PC 2: } v_2 = & 0.66 & 0.73 & -0.17 & -0.08 \\ & \text{These coefficients are called } \textbf{weights} \end{array}
```

Homework 4

- You may use a Python library for SVD and eigenanalysis (e.g., numpy.linalg)
- For part 1, you want to use SVD (e.g., numpy.linalg.svd)
- For part 2, you want to use eigenanalysis (e.g., numpy.linalg.eigh)
- You should not use a library function for PCA
- Finally, you may use a library (e.g., matplotlib or seaborn) for plotting hands