Conjuntos y Números Curso 2012-2013 Grupos 711, 715, 716, DT

1º de Matemáticas y de DT Miércoles 16 de enero de 2013 Examen final

Tiempo disponible: 3 horas	
Apellidos y Nombre	
Grupo D.N.I	FIRMA

1)

- (a) Probar por inducción que: $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{7}{12}$, para cada $n \ge 2$.
- (b) ¿Habrá algún c > 0 tal que se tenga para cada $n \ge 1$: $\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \ge c$? Hallar un tal c, o probar que no lo hay.

2)

(a) Explicar a cuál de las que la siguen (A1 ó A2) equivale la afirmación:

"si un número $n \in \mathbb{N}$ es la suma de dos cuadrados de números enteros, entonces n no es congruente con -1 módulo 4",

- A1) "si un número $n \in \mathbb{N}$ no coincide con ninguna suma de dos cuadrados de números enteros, entonces n es congruente con -1 módulo 4",
- **A2)** "un número $n \in \mathbb{N}$ que es congruente con -1 módulo 4 no coincide con ninguna suma de dos cuadrados de números enteros".
 - (b) Averiguar y probar cuáles de las afirmaciones anteriores son ciertas o falsas.
 - 3) Decidir si son numerables los siguientes tres conjuntos, y explicar por qué:
- (a) el conjunto de sucesiones infinitas $\{m_j\}_{j=1}^{\infty}$ de ceros y unos, que contienen sólo un número finito de unos;
- (b) el conjunto de sucesiones infinitas $\{m_j\}_{j=1}^{\infty}$ de ceros y doses. (c) el conjunto de sucesiones infinitas $\{m_j\}_{j=1}^{\infty}$ de ceros y unos, que no contiene tres ceros ni tres unos seguidos.

4)

- (a) Demostrar que $104^{401} + 401^{104}$ es un múltiplo de 9.
- (b) ¿Es múltiplo de 10?

5)

- (a) ¿Cuántas soluciones complejas tiene la ecuación $2 + z^4 = \frac{3}{z^4}$?
- (b) Calcular todas estas soluciones e indicar, dónde se encuentran en el plano complejo.