

ML Lab 2 SVM 支持向量机

王世炟

October 27, 2022

PB20151796

Part 1: 实验要求

本次实验要求我们完成 SVM 的模型实现,并根据 generate() 生成的数据进行训练和测试。

Part 2: 数据集介绍

本次实验选取的数据集来自 generate() 函数,它随机生成 [m,n] 维的线性可分数据,并且按一定的错标率将点进行错标,有关信息如下:

```
x[:5],·y[:5]

v 05s

(array([[ 16.35598344, -7.51488662, 7.84215491, 8.96189363, 3.26784912], [-10.26585562, 10.56883694, 7.38140384, -4.69291789, 7.88629772], [-1.8436832, 25.30874889, 8.46623682, 3.1899827, 15.74825278], [ 5.67981518, -6.79453519, -5.96566805, 15.3886696, 2.86979885], [ -3.36887894, 9.55892809, -3.83582814, -0.22625917, 5.2675843]]), array([[-1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.], [ 1.])
```

1: Examples of the data set

其中y是本次实验要进行预测的类别。

Part 3: 数据集划分

本实验采用 5 折交叉验证进行模型检验,即训练集与测试集比例为 4:1 具体实现方法为将数据集切成五份,每次取一份作为测试集,另外四份合并作为训练 集。这样做的好处是随机划分,可以提高模型的泛化能力。

Part 4: 理论基础

4.1 软间隔 SVM 标准问题与对偶问题

软间隔 SVM 标准问题:

$$min_{w,b,\xi} \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^m \xi_i$$

$$s.t. \ y_i(\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_i + b)) > 1 - \xi_i, \ i =, 2, \dots, m$$

$$\xi_i \ge 0, \ i =, 2, \dots, m$$

使用合页损失的软间隔 SVM:

$$min_{w,b} \frac{1}{m} \sum_{i=1}^{m} max(0, 1 - y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b)) + \frac{\lambda}{2} ||\boldsymbol{w}||^2$$

是个无约束问题,可直接采用梯度下降法求解。 对偶问题:

$$min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} - \sum_{i=1}^{m} \alpha_{i}$$

$$s.t. \quad 0 \leq \alpha_{i} \leq C, \quad i = 1, 2, \cdots, m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0$$

4.2 优化方法

4.2.1 Pegasos **算法**

解决 SVM 问题的困难在于其属于带约束的优化问题,为了解决此问题,Pegasos 算法 采用了使用合页损失的 SVM 问题,即

$$min_{w,b} \frac{1}{m} \sum_{i=1}^{m} max(0, 1 - y_i(\boldsymbol{w}^T \boldsymbol{x_i} + b)) + \frac{\lambda}{2} ||\boldsymbol{w}||^2$$

为了用梯度法优化参数, 应当将损失函数对参数 w,b 求导, 损失函数即上述最小化的目标函数:

$$\frac{\partial J(w,b)}{\partial w} = -\frac{1}{m} \sum_{i=1}^{m} \coprod (y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) < 1) y_i x_i + \lambda \boldsymbol{w}$$
$$\frac{\partial J(w,b)}{\partial b} = -\frac{1}{m} \sum_{i=1}^{m} \coprod (y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) < 1)$$

其中, $\coprod(L)$ 为示性函数,内部语句成立函数值为 1,否则为 0 然后根据梯度下降法的原理:

$$\beta_{t+1} \leftarrow \beta_t - \alpha \nabla J(\beta)$$

即可进行迭代优化。

Algorithm 1 Pegasos

1: for each epoch do

2:
$$\boldsymbol{w}^* = \boldsymbol{w} - \eta(-\frac{1}{m}\sum_{i=1}^m \coprod (y_i(\boldsymbol{w}^T\boldsymbol{x_i} + b) < 1)y_ix_i + \lambda \boldsymbol{w})$$

3:
$$b^* = b - \eta(-\frac{1}{m} \sum_{i=1}^{m} \coprod (y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) < 1))$$

4: end for

4.2.2 DCD **算法**

DCD 基于坐标下降法求解软间隔线性 SVM 的对偶型:

$$min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} - \sum_{i=1}^{m} \alpha_{i}$$

$$s.t. \quad 0 \leq \alpha_{i} \leq C, \quad i = 1, 2, \cdots, m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0$$

为了使用坐标下降,需要去掉 $\sum_{i=1}^m \alpha_i y_i = 0$ 这个约束,具体做法是将 $\boldsymbol{w^Tx_i} + b$ 写作 $\boldsymbol{w^Tx_i}$,即将偏置 b 并入到 w 中,并且在 X 中添加一列 1,从而得到新的对偶问题:

$$min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} - \sum_{i=1}^{m} \alpha_{i}$$

$$s.t. \quad 0 \leq \alpha_{i} \leq C, \quad i = 1, 2, \dots, m$$

接下来进行坐标下降,每一次迭代时,需要对当前的 α_u 进行优化,从优化目标中拆分得到有关 α 的项,以及无关的项,将 α_u 视为变量,其他无关项视为常量,对 α_u 进行优化,经过一系列运算后得到以下公式:

$$\alpha_u^* = \alpha_u - \frac{y_u \boldsymbol{w}^T \boldsymbol{x}_u - 1}{\boldsymbol{x}_u^T \boldsymbol{x}_u}$$

由于约束的关系 α_u 不能直接更新,新的 $\hat{\alpha}_u^*$ 如下:

$$\hat{\alpha}_u^* = \min(\max(\alpha_u^*, 0), C)$$

并由此推出 w 的更新公式:

$$\hat{w}^* = \hat{w} + (\hat{\alpha}_u^* - \alpha_u) y_u \boldsymbol{x}_u$$

Part 5: 实验结果

数据维度 20×10000 错标率 0.037

5.1 总体对比

对于数据集进行了5折交叉验证,得到如下结果:

模型	第1折	第2折	第3折	第4折	第5折
梯度下降	0.9445	0.9525	0.9515	0.95	0.9435
DCD	0.9535	0.9565	0.965	0.957	0.9435
sklearn LinearSVC	0.958	0.9555	0.966	0.957	0.9465

表 1: 5×10000 五折交叉验证准确率

表 2: Results of 5 fold cross Validation

模型	测试集准确率 (平均)	迭代轮数 (最大)	参数	训练时间 (1 次)
梯度下降	0.9484	500	$lr=1/epoch, \lambda=0.01$	1m8.3s
DCD	0.9551	10^{7}	C = 0.02	1 m 19.7 s
sklearn Linear SVC	0.9566	10^{7}	C=1	24.6s

注:对于梯度下降法,学习率设为 1/epoch 这样的目的是防止出现震荡,但是这样做的缺点就是当轮数较大时步长太小,收敛过慢,解决办法是限制,当学习率小于某个给定值时,保持其不变:

```
while True:
1
2
      wGrad, bGrad = self.grad(X, y)
3
       self.w = LR * wGrad
       self.b = LR * bGrad
4
       self.epoch += 1
5
       if LR > 0.002:
6
          LR = lr / self.epoch
7
       else:
8
9
          LR=LR
```

5.2 具体参数对比

为提高运行速度改用维度 5×1000 错标率 0.028 进行对比

由教材 P_{130} 的知识可知,对于软间隔支持向量机:

$$min_{w,b,\xi} \frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w} + C \sum_{i=1}^{m} \xi_{i}$$

$$s.t. \ y_{i}(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i} + b)) > 1 - \xi_{i}, \ i = 2, \dots, m$$

$$\xi_{i} \geq 0, \ i = 2, \dots, m$$

C 的值越小,容忍样本不满足约束条件的能力越强,软间隔程度越大,下面来验证本条件质:

梯度下降

对于梯度下降来说, 式子

$$min_{w,b} \frac{1}{m} \sum_{i=1}^{m} max(0, 1 - y_i(\boldsymbol{w}^T \boldsymbol{x_i} + b)) + \frac{\lambda}{2} ||\boldsymbol{w}||^2$$

中的 $\lambda \propto \frac{1}{C}$,即 λ 越大,软间隔的程度就越大,而对于本实验数据而言,过大的软间隔间隔显然不是一个好的模型,所以从理论上来说,准确率应该会降低。实验结果:

表 3: 参数 λ 的比较

λ	0.01	0.1	1	10	100	1000
准确率	0.97	0.965	0.86	0.635	0.55	0.635

从结果上来看,符合我们的预期。

DCD 方法

对于 DCD 方法来说参数 C 就与教材中的 C 含义相同, 对此参数做同上测试:

表 4: 参数 λ 的比较

$oldsymbol{C}$	0.01	0.1	1	10	100	1000
准确率	0.975	0.975	0.975	0.97	0.88	0.83

从中选择最好的作为模型参数储存下来。

5.3 可视化

由于高维的点与超平面无法画出,本次实验进行了对于 dim=[2,1000] 的一组随机生成的数据进行了测试,并采取交叉验证的方法得到以下图像(错标率 0.036):

三种方法的准确率对比:

表 5: 2×1000 五折交叉验证准确率

模型	第1折	第2折	第3折	第4折	第5折
梯度下降	0.96	0.95	0.94	0.95	0.925
DCD	0.97	0.97	0.945	0.95	0.93
sklearn LinearSVC	0.975	0.965	0.945	0.955	0.93

可见,在二维问题上,三种方法所得的超平面几乎完全一致,效果较好。

5.3 实验总结

本次实验完成了软间隔 SVM 的梯度下降及 DCD 方法求解。在实验过程中遇到了以下问题:

- 模型需要迭代很多次,消耗时间长
- 调参时比较盲目,无法快速找到合适参数
- 对于 SVM 模型原理,不能弄清楚各个参数的含义

解决办法:

- 熟练运用 numpy 的矩阵乘法, 能极大提高训练计算速度 (DCD 方法无法使用, 因为是每条数据进行一次更新)
- 写程序帮我调
- 重新手动推导一遍 SVM 以加深理解。