マーケティング分野における 協調フィルタリング手法に関する研究

B9EM1013 酒井洋輔

Contents

- 1. Motivation
- 2. Previous research
- 3. 提案モデルに関して
- 4. Reference

1. Motivation

- ▶2000年以降電子商取引数が急増すると共に、「推薦システム」が注目されることとなった。
 - ▶ 推薦システム…利用者にとって有用と思われる対象、情報、商品などを選び出し、それを 利用者の目的に合わせた形で提示するシステム (神嶌 2007)
- ▶ 推薦の手法は大きく2種類に分けられる
 - ▶協調フィルタリング
 - …推薦対象のユーザーaに近いユーザーbを 選び出し、ユーザーbの評価値を用いて推薦を 行う。

例)
$$\hat{r}_{aj} = \sum_b w_{ab} r_{bj}$$

- ▶内容ベースフィルタリング
 - …商品の特徴ベクトルから、ユーザーaが高く評価 した商品に近い商品を選び出し、推薦を行う。

1. Motivation

- ▶「推薦」は情報処理の分野で盛んなトピック。
- ➤ Deep learning のような、解釈性には乏しいが、精度は高い手法を用いた研究が多い。
- ⇒「消費者の購買を促進する」というマーケティングの目的に適合しているのにも関わらず、 価格反応やブランド選択といったメジャーなトピックに比べて研究数が少ない。

▶本発表の目的...

解釈性を伴った推薦に関する研究を紹介、問題点や課題を明らかにするとともに、提案手法のアイディアを紹介する。

研究	手法	使用したデータ	概要
Ansari et al.(2000)	ベイズ線形回帰	評価行列、消費者の属性情報、商品のカテゴリー情報	属性情報、商品のカテゴリー情報毎の全体的な嗜好に加え、消費者毎、商品毎のrandom effectをモデルに取り入れた
Ying et al.(2006)	ベイズ線形回帰	評価行列、消費者の属性情報、商品のカテゴリー情報	評価行動を"select" と"evaluation"の二段階に分け、 属性情報、商品のカテゴリー情 報毎の、2段階それぞれへの影 響を明らかにした
Jacobs et al.(2016)	Topic modeling	購買履歴データ、消費者の属性情報	購買履歴データから、潜在的な 購買パターンを抽出し、推薦精 度の向上を示した。

- 1. Ansari et al. (2000) "Internet Recommendation Systems" Journal of Marketing Research
- \triangleright ユーザーiによる、商品jの評価(星の数) r_{ij} は、以下のモデルから生成されるとする。
- ightarrowこの時、 μ がfixed effect、 λ_i 、 γ_i がユーザー、商品ごとのrandom effectを表す。
- \succ モデル: $r_{ij} = constant + Genre_j + Demogra_i + Customer Hetero_{ij} + Movie Hetero_{ij} + e_{ij}$ $Genre_j = \sum_p \mu_p Genre_{jp}$, $Demogra_i = \sum_{p'} \mu_p$, $Demogra_{ip'}$

Customer Hetero_{ij} = $\lambda_{i1} + \sum_{p} \lambda_{ip} Genre_{jp}$, Movie Hetero_{ij} = $\gamma_{j1} + \sum_{p'} \gamma_{jp'} Demogra_{ip'}$ \Rightarrow 事前分布: $\mu \sim \mathcal{N}(\eta, C^{-1})$, $\lambda_i \sim \mathcal{N}(0, \Lambda^{-1})$, $\gamma_j \sim \mathcal{N}(0, \Gamma^{-1})$

- ▶ 消費者毎、商品(ここでは映画)毎の異質性を考慮したことが新しい

1. Ansari et al.(2000) "Internet Recommendation Systems" Journal of Marketing Research パラメータの推定結果 https://drive.google.com/file/d/10rAL0c9nMEbcilZ1yMHkByBKUhGYT4fo/view?usp=sharing 【解釈】

Fixed effect μ

- ➤ Movie genreに関するパラメータは、全て有意とはならなかった。
- ▶ Demographic に関しては、性別に関するパラメータは有意とならなかったものの、年齢に関しては正に有意となった。→年齢が高いほど、高く評価する傾向がある。

Random effect Λ, Γ

- ➤ Movie genreに関する各消費者の嗜好のばらつきを表すパラメータΛは大きい値をとっている。
- →消費者によって嗜好の違いが大きい
- Demographicに関する各映画の評価のばらつきを表すパラメータΓも大きい値をとった。
- →映画の観測できない属性によって、属性毎の消費者による評価のされ方が異なる。

- 2. Ying et al.(2006) "Leveraging missing ratings to improve online recommendation systems" Journal of Marketing Research
- ▶ユーザーによる商品の評価行動を、評価行動を"select"と"evaluation"の二段階に分け、それぞれ背後にある"潜在的な効用"によるものと仮定した。
- トモデル: $U_{ijs} = \beta_{is}^G Genre_{js} + \beta_{js}^D Demogra_{is} + e_{ijs} \rightarrow$ "選択"の効用 $U_{ijp} = \beta_{ip}^G Genre_{jp} + \beta_{jp}^D Demogra_{ip} + e_{ijp} \rightarrow$ "評価"の効用 $Pr(Y_s = 1) = Pr(0 < U_s)$ $Pr(Y_p = k) = Pr(K_{k-1} < U_p < K_k)$
- 事前分布: $\beta_{is}^G \sim \mathcal{MVN}(\mu_s^G, \Delta_s^G)$, $\beta_{js}^D \sim \mathcal{MVN}(\mu_s^D, \Delta_s^D)$, $\beta_{ip}^G \sim \mathcal{MVN}(\mu_p^G, \Delta_p^G)$, $\beta_{jp}^D \sim \mathcal{MVN}(\mu_p^D, \Delta_p^D)$ $\log(\Delta K_i) \sim \mathcal{MVN}(\mu_c, \Delta_c)$
- ightharpoonup 閾値 K_i も一緒に推定できる。 $\left\{\mu_s^G, \mu_s^D, \mu_p^D, \mu_p^D\right\}$ がfixed effect、 $\left\{\Delta_s^G, \Delta_s^D, \Delta_p^D, \Delta_p^D\right\}$ がrandom effectを表す。

2. Ying et al.(2006) "Leveraging missing ratings to improve online recommendation systems" Journal of Marketing Research

パラメータの推定結果 https://drive.google.com/file/d/1HLvjvaY7lOIAg-F1D7km3ylb1cwWqQQl/view?usp=sharing 【解釈】

Fixed effect μ

- Movie genreに関するパラメータは、"selection"、"evaluation"ともに有意な結果が多かった。
 例) classic→ "selection"は負に有意"evaluationは正に有意→コアな古典映画ファンの存在の可能性
- ➤ Gender、Ageに関するパラメータは、"selection"が負、"evaluation"が正に有意だった。男性の方が映画を選びにくく、高く評価しやすい?年齢が高いほど映画を選びにくく、高く評価しやすい?

Random effect A

➤ Movie genreに関する各消費者の嗜好のばらつきを表すパラメータ∆は、"horror", "art/foreign","drama"など、なんだか好みが分かれそうなgenreが大きく、"comedy","animation" は小さくなっている

3. Jacobs et al.(2016) "Model-based Purchase Predictions for Large Assortments" Marketing Science

 1.4 ± 10

▶購買履歴データにトピックモデルを用いて潜在的な購買パターンを抽出し、推薦精度の向上を示した。

→ 							
LDA-X	A-X Motivation 1 (Probability 0.21)		Motivation 2 (Probability 0.13)				
M=15	Product	%	Product	%			
1	Diapers – Pampers	20.11	Cleaning – Glorix	5.79			
2	Baby/toddler nutrition – Nutrilon	19.26	${\bf Paper\ towels-Page}$	5.37			
3	Baby/toddler nutrition – Olvarit	16.04	$\operatorname{Dishwashing} - \operatorname{Dreft}$	3.78			
4	Baby/toddler nutrition – Bambix	10.13	${f Laundry-Robijn}$	3.54			
5	Baby care – Zwitsal	7.94	Cleaning - Ajax	3.50			
6	Baby care – Pampers	4.10	$\operatorname{Laundry}-\operatorname{Ariel}$	3.27			
7	Pacifiers – Bibi	2.13	Disposables – Komo	3.08			
8	Bottle appliances – Philips AVENT	2.05	Paper towels - Edet	3.03			
9	Diapers – Huggies	1.70	Cleaning – Sorbo	2.97			
10	Bottle appliances – Nuby	1.25	Cleaning – Cif	2.29			

3. 提案モデルに関して

自身の研究に取り入れたい、あるいは明らかにしたい点

研究	取り入れたい点	改善したい点
Ansari et al.(2000)	消費者毎、商品毎の異質性を モデルに取り入れた ⇒階層ベイズモデル	映画の観測できない属性によって、 属性毎の消費者による評価のされ方が異なる ⇒どのような映画が、どの属性の消費者にウケるのか
Ying et al.(2006)	・"selection"を評価行動の中 に考慮する必要性 ・ <u>階層ベイズモデル</u>	どのような映画が、どの属性の消費者にウケるのか
Jacobs et al.(2016)	トピックモデルを用いて、商品 の潜在的な選択パターンを明 らかにする。	潜在的な選択パターンの抽出を、Ying et al.(2006)の"selection" のパートに適応できないだろうか?

3. 提案モデルに関して

▶提案モデルのイメージ

▶潜在クラス+階層ベイズモデルで検索をかけると、石垣先生の研究がヒットする http://www.ifs.tohoku.ac.jp/cmd/reference/LS2_PDF/DI2-Ishigaki.pdf

3. 提案モデルに関して

石垣先生のマーケティング特論資料より http://www.ifs.tohoku.ac.jp/cmd/reference/LS2_PDF/DI2-Ishigaki.pdf

マーケティングと時代の要請

- 消費価値観の変化に準じてマーケティングも進化
 - 画一的価値観の市場
 - ・ 十人一色の時代.メーカー主導の市場形成 効用: $U_{itj} = f(\alpha, x_{itj}) + \varepsilon_{itj}$ \Rightarrow マスマーケティング
 - 価値観・ライフスタイルの分化した市場
 - 少数セグメント毎へのアプローチ⇒セグメンテーション・マーケティング

効用:
$$U_{itj} = f(\underline{\alpha_s}, x_{itj}) + \varepsilon_{itj}$$

価値観・ライフスタイルの多様化した市場

・ 十人十色の時代. 個人毎へのアプローチ ⇒ one to oneマーケティング

効用:
$$U_{itj} = f(\boldsymbol{\alpha}_i, \boldsymbol{x}_{itj}) + \varepsilon_{itj}$$

個人の時間異質性、文脈異質性

一人十色の時代のマーケティング

効用:
$$U_{itj} = f(\underline{a_{it}}, x_{itj}) + \varepsilon_{itj}$$

時代の流れと逆行してた・・・ 個人毎、商品毎のパラメータが 推定できる以上、潜在クラスを 仮定する必要性は無い

3.まとめ

- ▶階層ベイズモデルをrating dataに用いることによって、個人毎、商品毎のパラメータを推定しつつ、 全体的な傾向をモデル化することができた。
- ▶潜在クラスは、データがスパースかつ、推定すべきパラメータ数が多い時にこそ真価を発揮する。
 - ⇒ ·Ansari et al.(2000)とYing et al.(2006)の研究は、個人毎、商品毎のパラメータが推定できていると推測されるため、潜在クラスを導入する意義がない。

4. Reference

- ·神嶌敏弘 (2007), "推薦システムのアルゴリズム" 人工知能学会誌 Vol.22 No.6
- · Asim Ansari, Skander Essegaier, Rajeev Kohli (2000), "Internet Recommendation Systems" Journal of marketing research Vol.37 pp. 363-375
- Bruno Jacobs, Bas Donkers, Dennis Fok (2016), "Model-based Purchase Predictions for Large Assortments." *Marketing Science Vol.35, pp.389-404*
- 'YUANPINGYING, FRED FEINBERG, and MICHEL WEDEL(2006), "Leveraging Missing Ratings to Improve Online Recommendation Systems" *Marketing Science*