1 Frame 38 – Derivatives and Integrals

1(b) Breaking the derivative into its complex components,

$$\begin{aligned} \frac{d}{dt}[w(t)]^2 &= \frac{d}{dt}[u(t) + iv(t)]^2 \\ &= 2[u(t) + iv(t)][u(t) + iv(t)]' \\ &= 2w(t)w'(t) \end{aligned}$$

2(a) Evaluating the integral,

$$\begin{split} \int_{1}^{2} \left(\frac{1}{t} - i\right)^{2} dt &= \int_{1}^{2} \frac{1}{t^{2}} - 1 - i\frac{2}{t} dt \\ &= -\frac{1}{t} - t - 2i \ln t \Big|_{1}^{2} \\ &= -(\frac{1}{2} - 1) - (2 - 1) - 2i(\ln 2 - 0) \\ &= -\frac{1}{2} - i \ln 4 \end{split}$$

2(b)

$$\begin{split} \int_0^{\pi/6} e^{i2t} &= \frac{1}{2i} e^{i2t} \Big|_0^{\pi/6} \\ &= \frac{1}{2i} (e^{i\pi/3} - 1) \\ &= \frac{1}{2i} \left(i \frac{\sqrt{3}}{2} - \frac{1}{2} \right) \\ &= \frac{\sqrt{3}}{4} + i \frac{1}{4} \end{split}$$

2(c) Converting this improper integral into a limit,

$$\int_0^\infty e^{-zt} = \lim_{L \to \infty} \int_0^L e^{-zt}$$

$$= \lim_{L \to \infty} -\frac{1}{z} e^{-zt} \Big|_0^L$$

$$= -\frac{1}{z} \lim_{L \to \infty} e^{-zL} - 1$$

$$= \frac{1}{z}$$

4 Evaluating the left-side integral,

$$\int_0^{\pi} e^{1+ix} dx = \frac{1}{1+i} e^{1+ix} \Big|_0^{\pi}$$

$$= \frac{1}{1+i} (e^{\pi+i\pi} - 1)$$

$$= \frac{1-i}{2} (-e^{\pi} - 1)$$

$$= -\frac{1}{2} (e^{\pi} + 1) + \frac{i}{2} (e^{\pi} + 1)$$