

DATA SCIENCE 102: INTRODUCTION TO MACHINE LEARNING

AGENDA

- What is Machine Learning?
- Types of Machine Learning
 - Applications of Machine Learning
- Sci-Kit Learn
 - **Fundamentals**
 - Standard steps
 - Reading the library
 - Examples
 - Regression

WHAT IS MACHINE LEARNING

WHAT IS MACHINE LEARNING

WHAT IS MACHINE LEARNING

A study of <u>algorithms and statistical models</u> that computers use to perform a specific task effectively without being explicitly programmed

EXAMPLE - SPAM EMAIL DETECTION

Without Machine Learning

- You will write explicit rules to filter out emails containing words like:
 - "4U", "Loan", "Prince", "Money Transfer", "Free"
- Classify any email that contain these text as spam email

EXAMPLE - SPAM EMAIL DETECTION

With Machine Learning

- You train a model on some train data (spam & non-spam emails) with an algorithm that **infers** characteristics and patterns of spam emails
- The trained model can then apply learnt rules to detect signals of spam in an incoming email

TYPES OF MACHINE LEARNING

- Types of Machine Learning
- Supervised Applications
- Unsupervised Applications

TYPES OF MACHINE LEARNING

- Supervised Learning
 - Based on **labelled data,** makes <u>predictions</u> on a test set
- Unsupervised Learning
 - Based on **unlabelled data**, algorithm **discovers patterns** within the dataset

SUPERVISED APPLICATIONS

- Regression
 - Predict Housing Price (Target Variable) from Housing Floor Area (Input Feature)

SUPERVISED APPLICATIONS

- Classification
 - Predict if a patient has diabetes (Yes/No)

UNSUPERVISED APPLICATIONS

- Clustering
 - Given a set of unlabelled data points, identify cluster each point belongs to

GENERAL MACHINE LEARNING STEPS USING SKLEARN

- Fundamentals
 - Standard Steps
 - Reading the library
- Examples
 - Regression
 - Clustering
 - Decision Tree

FUNDAMENTALS - STANDARD STEPS

When using any machine learning models with scikit learn, the following steps are usually applied in order:

Step 1: Choose a class of machine learning model from the library

Step 2: Choose the model's hyperparameters by instantiating with desired values (tuning)

Step 3: Arrange data into features and target

Step 4: Fit model to your data by using the fit() method of the model

Step 5: Apply the model to new data:

- For supervised learning, using the predict() method
- For unsupervised learning, using the predict() or transform()

FUNDAMENTALS - READING THE LIBRARY

- Determine what model is used, then delve into details of that model in the library, and the other required parts of the library
- Here are some of the common classes you would use:
 - sklearn.<a name of a model> (i.e sklearn.linear_model)
 - Access to all functionalities of that model
 - o sklearn.metrics
 - Functionalities of assessing the performance of your models
 - o sklearn.model_selection
 - Performs cross validation and tuning of parameters
 - o sklearn.feature_selection
 - Reduce dimension of dataset to boost performance

EXAMPLE - REGRESSION


```
from sklearn import datasets, linear_model
                    from sklearn.metrics import mean_squared_error, r2_score
                    # Load the diabetes dataset
                   diabetes = datasets.load_diabetes()
                    # Use only one feature
                    diabetes_X = diabetes.data[:, np.newaxis, 2]
    Step 3
                    # Split the data into training/testing sets
                    diabetes_X_train = diabetes_X[:-20]
                    diabetes_X_{\text{test}} = \text{diabetes}_X[-20:]
                    # Split the targets into training/testing sets
                    diabetes_y_train = diabetes.target[:-20]
                    diabetes_y_test = diabetes_target[-20:]
                    # Create linear regression object
                    regr = linear_model.LinearRegression()
Step 1 & 2
                    # Train the model using the training sets
                                                                                      Step 4
                    rear.fit(diabetes_X_train, diabetes_y_train)
                    # Make predictions using the testing set
                    diabetes_y_pred = regr.predict(diabetes_X_test)
                                                                                      Step 5
```