Rappels : espace euclidien

Espaces affines euclidiens

isomethes vectoriene.

Isométries affine

M53 - Partie 2

septembre 2015

Rappels : espace euclidien

Définition

Espaces affines euclidiens

Isométries vectorielle

Isométries affines

Similitude

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\begin{array}{c} \overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\ (\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} \, | \overrightarrow{w} \rangle \end{array}$$

- symétrique : $\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \langle \overrightarrow{w} | \overrightarrow{v} \rangle$,
- $définie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \geq 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isomètries vectorielle

Isometries affi

Similitude

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\begin{array}{c} \overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\ (\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} \, | \overrightarrow{w} \rangle \end{array}$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $definie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \geq 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Rappels : espace euclidien

Définition

Norme

euclidiens

Isomètries vectorielle

sometries atti

Similitude

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $définie: \langle \vec{v} | \vec{v} \rangle = 0 \Leftrightarrow \vec{v} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Rappels : espace
euclidien

Définition

Norme

Notations

Espaces affines euclidiens

Isométries vectorielle

lsomètries affi

Similitude

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \langle \overrightarrow{w} | \overrightarrow{v} \rangle$,
- $\bullet \text{ définie}: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Rappels : espace
euclidien

Définition

Norme

Notations

Espaces affin euclidiens

Isométries vectorielle

Isometries affi

Similitude

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- lacksquare définie : $\langle \overrightarrow{m{v}} \, | \, \overrightarrow{m{v}}
 angle = 0 \Leftrightarrow \, \overrightarrow{m{v}} = 0$,
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Rappels : espace euclidien Définition Norme Notations

Espaces affines euclidiens

Isométries vectorielle

Isometries affi

Similitude

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $\bullet \ \ \, \mathrm{définie}: \langle \overrightarrow{\mathbf{v}} \, | \, \overrightarrow{\mathbf{v}} \rangle = 0 \Leftrightarrow \overrightarrow{\mathbf{v}} = 0 ,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Rappels : espace euclidien Définition Norme Notations

Espaces affines euclidiens

Isométries vectorielle

Isometries affi

Similitude

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $\bullet \text{ définie}: \langle \overrightarrow{\mathbf{v}} | \overrightarrow{\mathbf{v}} \rangle = 0 \Leftrightarrow \overrightarrow{\mathbf{v}} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Rappels: norme euclidienne

Rappels : espace euclidien

Notations
Espaces affir

Isométries vectorielles

Isométries affines

Similitude

- 1 La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \vec{v} | \vec{w} \rangle = \frac{1}{2} (\| \vec{v} + \vec{w} \|^2 - \| \vec{v} \|^2 - \| \vec{w} \|^2).$$

3 De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels: norme euclidienne

- Rappels : espace euclidien Définition
- Espaces affines
- Isométries vectorielles
- Isométries affines
- Similitude

- 1 La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \vec{v} | \vec{w} \rangle = \frac{1}{2} (\| \vec{v} + \vec{w} \|^2 - \| \vec{v} \|^2 - \| \vec{w} \|^2)$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels : norme euclidienne

- Rappels : espace euclidien ^{Définition} Norme
- Espaces affine
- Isométries vectorielles
- Isométries affines
- Similitude

- 1 La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left| \left\langle \overrightarrow{v} \, \middle| \, \overrightarrow{w} \right\rangle \right| \le \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

4 On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels : norme euclidienne

- Rappels : espace euclidien ^{Définition} Norme
- Espaces affine

Isométries vectorielles

Isométries affine

Similitudes

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

3 De plus la norme et la produit scalaire sont reliés par *l'inégalité de Cauchy-Schwarz*

$$\left| \left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels : norme euclidienne

Rappels : espace euclidien ^{Définition} Norme

Espaces affin euclidiens

Isométries vectorielles

Isométries affi

Similitude:

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

3 De plus la norme et la produit scalaire sont reliés par *l'inégalité de Cauchy-Schwarz*

$$\left| \left\langle \overrightarrow{v} \right| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$
.

Rappels : espace euclidien Définition

Espaces affines euclidiens

Notations

Isométries vectorielle

sométries affi

Similitude

- $\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$
- 2 Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}.$
- $\exists \ \mathsf{Soit} \ \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}, \ \mathsf{alors} \ \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^\perp$
- 4 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^\perp = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^\perp = \overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien Définition

Espaces affines

Notations

Isométries vectorielle

Isométries affi

Similitude

- $\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$
- 2 Soit $\overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}}$, alors $\overrightarrow{\mathcal{F}}^{\perp} = \{ \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \mid \forall \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \overrightarrow{v} \perp \overrightarrow{w} \}.$
- $\exists \ \mathsf{Soit} \ \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}, \ \mathsf{alors} \ \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^\perp,$
- 4 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^\perp = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^\perp = \overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien Définition Norme

Espaces affine

Notations

Isométries vectorielle

lsométries affi

Similitude:

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $\ \ \, \text{Soit} \,\, \overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}} \,, \,\, \text{alors} \,\, \overrightarrow{\mathcal{F}}^\perp = \big\{ \, \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \, \big| \,\, \forall \, \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \, \overrightarrow{v} \perp \overrightarrow{w} \big\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^\perp ,$
- 4 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\oplus\overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1\perp\overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_1^\perp=\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_2^\perp=\overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien ^{Définition} Norme

Espaces affines euclidiens

Notations

Isométries vectorielles

lsométries affi

Similitude

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^{\perp} = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^{\perp} = \overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isométries vectorielle

lsométries affi

Similitude

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Rappels : espace
euclidien

Définition
Norme
Notations

Espaces affines euclidiens

Isométries vectorielle

Isométries affi

Similitudes

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}} \text{, alors } \vec{\mathcal{F}}^{\perp} = \big\{ \vec{v} \in \vec{\mathcal{E}} \, \big| \, \, \forall \vec{w} \in \vec{\mathcal{F}}, \, \vec{v} \perp \vec{w} \big\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$

Rappels : espace
euclidien

Définition

Norme

Notations

Espaces affines euclidiens

Isométries vectorielle

sométries affi

Similitude

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}} \text{, alors } \vec{\mathcal{F}}^{\perp} = \big\{ \vec{v} \in \vec{\mathcal{E}} \, \big| \, \, \forall \vec{w} \in \vec{\mathcal{F}}, \, \vec{v} \perp \vec{w} \big\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\oplus\overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1\perp\overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_1^\perp=\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_2^\perp=\overrightarrow{\mathcal{F}}_1$.

Notations

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- 2 Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- Soit $\vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}$.
- $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\vec{\mathcal{F}}_1$ et $\vec{\mathcal{F}}_2$, noté $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2$, si $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \oplus \vec{\mathcal{F}}_2$ et $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2$.

Rappels : espace euclidien

Espaces affines euclidiens

Définition

Isométries affines

Similitude

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affine

Définition

isomethes annie

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\vec{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affin euclidiens

Définition

Isométries affine

Similitudes

Définition

Un ensemble ${\mathcal E}$ est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries affine

C:...:1:4...d...

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions a est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens Définition

Isométries affines

Similitudes

Définition

Un ensemble $\mathcal E$ est métrique s'il est muni d'un application distance

$$\begin{array}{c} \mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+ \\ (\textit{M}, \textit{N}) \mapsto \textit{d}(\textit{M}, \textit{N}) \end{array}$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit <u>euclidien</u> si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \|\overrightarrow{AB}\|.$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielle

Isométries affine

Similitudes

Définition

Un ensemble $\mathcal E$ est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit <u>euclidien</u> si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A, B) = \left\| \overrightarrow{AB} \right\|.$$

Rappels : espace euclidien

Espaces affin euclidiens

Définition

Distance entre parties

isomethes vectorienes

Isométries affine

Similitude

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M, N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A}, \mathcal{B}) = d(M, N)$. Et pour \mathcal{A} seulement fermée?
- La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\widehat{MN} \perp (\widehat{A} + \widehat{B})$.
- Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces a euclidiens

Définition

Distance entre parties

isometries airin

Similitude

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $MN \perp (A + B)$.
- Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces af euclidiens

Distance entre parties

Isométries vectorielle

Isométries affine

Similitude

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affi euclidiens

Distance entre parties

Isométries vectorielles

Isométries affine

Similitudes

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N)\in\mathcal{A}\times\mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B})=d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affineuclidiens

Distance entre parties

isometries vectoriene

Isométries affine

Similitudes

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N)\in\mathcal{A}\times\mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B})=d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3 Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Rappels : espace euclidien

Espaces aff euclidiens

Distance entre parties

isometries vectoriene

Isométries affine

Similitudes

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N)\in\mathcal{A}\times\mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B})=d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Rappels : espace euclidien

Espaces af euclidiens

Distance entre parties

isometries vectoriene:

Isométries affine

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- 3 Deux hyperplans distincts \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G})>0$. Et pour s.e.a. quelconques?
- 4 Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définiti

Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Similitude

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

$$1 \quad \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{v}, \overrightarrow{w} \in \overline{\mathcal{E}}$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}$$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définiti

Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitude

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\overrightarrow{v}, \overrightarrow{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}$$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal Petites dimensions Forme standard

Isométries affin

Similitude

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{2} \ \forall \overrightarrow{v}, \overrightarrow{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id}$$

$$\Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : espace euclidien

euclidiens

Isomètries vectorielles

Définiti

Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Similitude

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : espace euclidien

euclidiens

Isomètries vectorielles

Définiti

Groupe orthogonal
Petites dimensions
Forme standard

Isométries affin

Similitude

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : espace euclidien

euclidiens

Isométries vectorielle

Définition

Groupe orthogonal
Petites dimensions
Forme standard

Isométries affin

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

3

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : espace euclidien

euclidiens

Isomètries vectorielle

Définition

Groupe orthog

Forme standard

Décompositi

Isométries affin

Similitude

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$$

En particulier, si $\widehat{\mathcal{F}}$ n'est pas trivial, $\widehat{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\widehat{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \stackrel{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}.$$

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

lacksquare Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielle

Définition

Groupe orthogo Petites dimension

Décompositio

Isométries affin

Similitude

1 Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

En particulier, si $\widehat{\mathcal{F}}$ n'est pas trivial, $\widehat{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\widehat{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \stackrel{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}$$
.

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

lacksquare Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielle

Définition

Petites dimension Forme standard

Décompositio

Isométries affin

Similitude

I Si une isométrie $\vec{\phi}$ de $\vec{\mathcal{E}}$ préserve un s.e.v. $\vec{\mathcal{F}}$ (c.-à-d. $\vec{\phi}(\vec{\mathcal{F}}) \subset \vec{\mathcal{F}} \Leftrightarrow \vec{\phi}(\vec{\mathcal{F}}) = \vec{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$$

En particulier, si $\mathcal F$ n'est pas trivial, $\mathcal E$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \oplus \vec{\mathcal{F}}^{\perp}$$

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

lacksquare Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogon Petites dimension Forme standard

Isométries affin

Similitude

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal.

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$$

En particulier, si ${\mathcal F}$ n'est pas trivial, ${\mathcal E}$ se décompose en somme directe orthogonale de deux sous-espaces stables par ϕ :

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \oplus \vec{\mathcal{F}}^{\perp}$$

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\phi = \phi_1 \oplus \phi_2.$$

Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogona
Petites dimensions
Forme standard
Décomposition

Isométries affin

Similitude

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

En particulier, si $\widehat{\mathcal{F}}$ n'est pas trivial, $\widehat{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\widehat{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \stackrel{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}.$$

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sonttogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \oplus \overrightarrow{\phi}_2.$$

Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$.

Rappels : espace euclidien

euclidiens

Isométries vectorielle

Définit

Petites dimension

Isométries affine

Similitud

1 Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

2 En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}$:

$$\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}.$$

Si on note $\overrightarrow{\phi}_1 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}}$ et $\overrightarrow{\phi}_2 = \overrightarrow{\phi}|_{\overrightarrow{\mathcal{F}}^{\perp}}$, alors $\overrightarrow{\phi}_1$ et $\overrightarrow{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

 $f Si~\lambda~$ est valeur propre (réelle) de $~\phi~$ alors $~\lambda=\pm 1.$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Similitude

1 Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

2 En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \overset{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}.$$
 Si on note $\vec{\phi}_1 = \vec{\phi}|_{\vec{\mathcal{F}}}$ et $\vec{\phi}_2 = \vec{\phi}|_{\vec{\mathcal{F}}^{\perp}}$, alors $\vec{\phi}_1$ et $\vec{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

3 Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm1$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définiti

Petites dimension

Isométries affin

Similitud

1 Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

2 En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \overset{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}.$$
 Si on note $\vec{\phi}_1 = \vec{\phi}|_{\vec{\mathcal{F}}}$ et $\vec{\phi}_2 = \vec{\phi}|_{\vec{\mathcal{F}}^{\perp}}$, alors $\vec{\phi}_1$ et $\vec{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

3 Si λ est valeur propre (réelle) de $\overrightarrow{\phi}$ alors $\lambda=\pm 1$.

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définitio

Groupe orthogonal

Petites dimensio

Décompositio

Isométries affir

Similitude:

```
Le groupe des isométries de \overrightarrow{\mathcal{E}} est noté O(\overrightarrow{\mathcal{E}}).

Et on note O_n = O(\mathbb{R}^n).

(O_n = \{ M \in M_n(\mathbb{R}) | M^n M = I_n \}_n )
```

Soit $\overline{\phi} \in \mathcal{O}(\overline{\mathcal{E}})$, alors $\det(\overline{\phi}) = \pm 1$.

esométries à déterminant 1, dites directes, de 2 (resp. M2).

De même l'averable des importants à déterminant — I dites

indirectes, est noté $O^-(\mathcal{E})$ (resp. O_n^-).

 $(O^+(\vec{E})$ est un sous-groupe du groupe compact $O(\vec{E})$, mais $O^-(\vec{E})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

-

Dácompociti

Isométries affir

Similitude

■ Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.

$$(O_n = \left\{ M \in M_n(\mathbb{R}) \middle| M^t M = I_n \right\}.)$$

■ Soit $\phi \in O(\mathcal{E})$, alors $\det(\phi) = \pm 1$

indirectes, est noté $O^+(\mathcal{E})$

 $(O^+(\widetilde{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\widetilde{\mathcal{E}})$, mais $O^-(\widetilde{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Forme standa

Décomposition

Isométries affin

Similitude

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\phi \in O(\overline{\mathcal{E}})$, alors $\det(\phi) = \pm 1$.
 - In note $O^+(\mathcal{E})$ ou $SO(\mathcal{E})$ (resp. O_n^+ ou SO_n) L'ensemble des isométries à déterminant 1, dites directes, de $\overrightarrow{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).
 - $(O^+(\mathcal{E})$ est un sous-groupe du groupe compact $O(\mathcal{E})$, mais $O^-(\mathcal{E})$ n'en est pas un.)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Forme standar

Décomposition

Isométries affin

Similitude:

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- $\blacksquare \ \, \mathsf{Soit} \ \, \overrightarrow{\phi} \in \mathit{O}(\overrightarrow{\mathcal{E}}) \mathsf{, \ alors \ } \mathsf{det}(\overrightarrow{\phi}) = \pm 1.$
 - On note $O^+(\overline{\mathcal{E}})$ ou $SO(\overline{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\overline{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\overline{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\overline{\mathcal{E}}), \text{ mais } O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogonal Petites dimensions

Forme standar Décomposition

Isométries affin

Similitudes

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O^-_n).

 $(O^+(\overline{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\overline{\mathcal{E}}), \text{ mais } O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimensi Forme standard

Décomposition

Isométries affine

Similitudes

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\overline{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\overline{\mathcal{E}}), \text{ mais } O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimensi Forme standard

leométries affi

Isometries affine

Similitude

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}), \text{ mais } O^-(\vec{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Forme standard

Isométries affine

Similitudes

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_n(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}), \text{ mais } O^-(\vec{\mathcal{E}})$ n'en est pas un.)

Dimensions 1 et 2

Rappels : espace euclidien

euclidiens

sométries vectorielles

Définitio

Groupe orthogor

Petites dimensions

Forme standard

Décompositio

Isométries affin

Similitudes

$$O_1 = \{1, -1\}.$$

$$O_2 = O_2^+ \sqcup O_2^-$$
, où

$$O_2^+ = \left\{ \overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \middle| \alpha \in \mathbb{R}/2\pi\mathbb{Z} \right\}$$
 est le sous-groupe des rotations

$$O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

Les règles de composition sont

 $= \overline{R}_{\alpha} \circ \overline{R}_{\beta} = \overline{R}_{\alpha + \beta} \ (= 50, = 9)$

 $= \underline{S}_{\alpha} \circ \underline{S}_{\beta} = \underline{R}_{\alpha - \beta}$

 $\approx S_{lpha} \circ R_{\gamma} = S_{lpha - \gamma} \circ t \; R_{\gamma} \circ S_{eta} = S_{\gamma + \beta}$

euclidiens

Isométries vectorielles

Définition

Groupe orthogo

Petites dimensions

Forme standard

Décomposition

Isométries affin

Similitudes

- $O_1 = \{1, -1\}.$
- $O_2 = O_2^+ \sqcup O_2^-$, où

$$O_2^+ = \{ \vec{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z}$$
 est le sous-groupe des rotations

$$\bullet O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

Les règles de composition sont

 $0 \quad R_0 \circ R_0 = R_{0+0} \ (= 0.05 - 0.05)$ $0 \quad \overline{S} \circ \overline{S} \circ = \overline{R} \circ \overline{S}$

 $=\widetilde{S}_{0}\circ\widetilde{R}_{1}-\widetilde{S}_{0}-et\ \widetilde{R}_{1}\circ\widetilde{S}_{2}-\widetilde{S}_{1+p}.$

Espaces affine euclidiens

lsométries vectorielles

Définition
Groupe orthogonal
Petites dimensions

Décomposition

Isométries affine

Similitudes

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+ \sqcup O_2^-$, où

$$O_2^+ = \{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est le sous-groupe des rotations,

$$\bullet O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

 $(S_lpha$ est la symétrie par rapport à la droite d'angle lpha/2.)

Les règles de composition sont :

$$\mathbf{R} \stackrel{\blacksquare}{R}_{\alpha} \circ \stackrel{\longleftarrow}{R}_{\beta} = \stackrel{\longleftarrow}{R}_{\alpha+\beta} (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$\bullet \hat{S}_{\alpha} \circ \hat{S}_{\beta} = \hat{R}_{\alpha-\beta},$$

$$\mathbf{F}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}$$

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

 $(S_{\alpha}$ est la symétrie par rapport à la droite d'angle $\alpha/2$.

Les règles de composition sont :

$$\mathbf{R} \stackrel{\overrightarrow{R}}{\circ} \overrightarrow{R}_{\beta} = \overrightarrow{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$$

$$\hat{m{S}}_lpha\circ \hat{m{R}}_\gamma=\hat{m{S}}_{lpha-\gamma}$$
 et $\hat{m{R}}_\gamma\circ \hat{m{S}}_eta=\hat{m{S}}_{\gamma+eta}$.

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$O_2^- = \left\{ \overrightarrow{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \right\}$$
 est l'ensemble des réflexions.

$$(\overline{S}_{lpha}$$
 est la symétrie par rapport à la droite d'angle $lpha/2.$

Les règles de composition sont :

- \blacksquare $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$
- $S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$
- lacksquare $S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}$

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affin

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

•
$$O_2^- = \{ \vec{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

 $(\widetilde{S}_{\alpha}$ est la symétrie par rapport à la droite d'angle $\alpha/2$.)

Les règles de composition sont :

- $\blacksquare R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$
- $S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}$

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) - \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions. $(\vec{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ \overrightarrow{R}_{\beta} = \overrightarrow{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

 $S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$

 $S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}$

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) - \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions. $(\vec{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ \overrightarrow{R}_{\beta} = \overrightarrow{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$lacksquare S_{lpha} \circ R_{\gamma} = S_{lpha - \gamma} ext{ et } R_{\gamma} \circ S_{eta} = S_{\gamma + eta}$$

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$lackbox{lack} ec{R}_lpha \circ ec{R}_eta = ec{R}_{lpha+eta} \; (\Rightarrow \mathit{SO}_2 \cong \mathbb{S}^1)$$
,

$$S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha-\gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma+\beta}.$$

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$ightharpoonup ec{R}_{lpha} \circ ec{R}_{eta} = ec{R}_{lpha+eta} \; (\Rightarrow \mathit{SO}_2 \cong \mathbb{S}^1)$$
,

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitudes

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+ \sqcup O_2^-$, où

 - $O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions. $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$lackbox{lack} ec{R}_lpha \circ ec{R}_eta = ec{R}_{lpha+eta} \; (\Rightarrow \mathit{SO}_2 \cong \mathbb{S}^1)$$
,

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitudes

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$lackbox{lack} ec{R}_lpha \circ ec{R}_eta = ec{R}_{lpha+eta} \; (\Rightarrow \mathit{SO}_2 \cong \mathbb{S}^1)$$
,

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

euclidiens

Isométries vectorielles

Définition
Groupe orthogo

Petites dimensions

Forme standar

Décomposition

Isométries affir

Similitude

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

$$\blacksquare \ \rho_{e^{i\theta}} = R_{\theta}$$

$$\sigma_{e^{i\theta}} = S_{\theta}$$

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

euclidiens

sométries vectorielles

Définition

Groupe orthogonal

Petites dimensions

Forme standard

Isométries affin

Similitude

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

$$\blacksquare \ \rho_{e^{i\theta}} = R_{\theta}$$

$$\sigma_{e^{i\theta}} = S_{\theta}$$

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

euclidiens

sométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Similitude

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- σ_a : $z \mapsto a\overline{z}$ avec |a| = 1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

- $\qquad \qquad \rho_{e^{i\theta}} = R_{\theta}$
- $\sigma_{e^{i\theta}} = S_{\theta}$

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Petites dimension

Isométries affine

Similitude

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

- $\sigma_{e^{i\theta}} = S_{\theta}$

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

euclidiens

isometries vectorielles

Groupe orthogo

Forme standard

Isométries affine

Similitude

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $\mathit{O}(\mathbb{C})$ est donnée par :

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

euclidiens

Définition

Petites dimensi

Isométries affin

Similitude

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogo Petites dimensi

Isométries affin

Similitude

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Rappels : espace euclidien

euclidiens

sométries vectorielle

Définition

Groupe orthogonal

Petites dimensions

Forme standard

Isométries affin

Similitude

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overline{\phi} = \overline{\rho}_{\overline{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overline{w} .

 $\overline{\phi} \in O^{-}(\overline{\mathcal{E}})$ ssi il existe une b.o.n $\{\overline{u}, \overline{v}, \overline{w}\}$ dans laquelle la matrice de $\overline{\phi}$ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétr $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Espaces affines

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitude

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\phi = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\phi \in O^-(\mathcal{E})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de ϕ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétr $\overrightarrow{\sigma}_{(\overrightarrow{u},\overrightarrow{v})}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation

Rappels : espace euclidien

Espaces affines

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitude

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\phi \in O^{-}(\overline{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de ϕ est sous la forme

$$\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & -1
\end{pmatrix}$$

Dans ce cas $\overline{\phi}$ est la composée de la rotation $\overline{\rho}_{\overline{w},\alpha}$ avec la symétric $\overline{\sigma}_{(\overline{u},\overline{v})}$ par rapport au plan engendré par \overline{u} et \overline{v} , et on dit que $\overline{\phi}$ est une anti-rotation

Rappels : espace euclidien

Espaces affines euclidiens

SOMÉTIES VECTORIElles
Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Similitude:

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétri $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}_{\rangle}}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

euclidien

Espaces affine euclidiens

Isométries vectorielle

Petites dimension

Isométries affin

Similitude

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétrie $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Forme standard des isométries

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition Groupe orthogor Petites dimensio

Décomposition

Isométries affin

Similitudes

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$, à la place du dernier 1 il y a un -1 (donc p > 0)

Forme standard des isométries

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogon
Petites dimensio

Décomposition

Isométries affin

Similitudes

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\vec{\phi} \in O^-(\vec{\mathcal{E}})$, à la place du dernier 1 il y a un -1 (donc p > 0).

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Définition

Groupe orthogo

Petites dimensi

Forme stan

Décomposition

Isométries affin

Similitude

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension dim $\overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots$

Si k est pair $\overline{\phi} \in O^+(\overline{\mathcal{E}})$, si k est impair $\overline{\phi} \in O^-(\overline{\mathcal{E}})$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogo

Petites dimensi

Décomposition

Isométries affin

Similitudes

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension dim $\overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$ Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogo

Décomposition

Isométries affin

Similitude

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\stackrel{.}{\mathcal{E}}$ de dimension dim $\stackrel{.}{\mathcal{E}}=n$, et $\stackrel{.}{\phi}\in O(\stackrel{.}{\mathcal{E}})$. Alors $\stackrel{.}{\phi}$ est le produit de $k(\leq n)$ réflexions : $\stackrel{.}{\phi}=\rho_1\circ\cdots$

Si k est pair $\phi \in O^+(\mathcal{E})$, si k est impair $\phi \in O^-(\mathcal{E})$

Rappels : espace euclidien

euclidiens

Isométries vectorielle: Définition Groupe orthogonal Petites dimensions

Décomposition

Isométries affine

Similitudes

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$ Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Définition
Groupe orthogonal

Décomposition

Isométries affine

Similitudes

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

```
Soient \overrightarrow{\mathcal{E}} de dimension \dim \overrightarrow{\mathcal{E}} = n, et \overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).

Alors \overrightarrow{\phi} est le produit de k(\leq n) réflexions : \overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k

Si k est pair \overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}}), si k est impair \overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}}).
```

Rappels : espace euclidien

euclidiens

Définition
Groupe orthogonal
Petites dimensions

Décomposition

Isométries affine

Similitudes

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$ Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

Espaces affine euclidiens

Définition

Forme standare

Isométries affine

Similitudes

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

 $\textit{Soient} \; \overrightarrow{\mathcal{E}} \; \textit{ de dimension } \dim \overrightarrow{\mathcal{E}} = \textit{n, et } \overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$.

Si k est pair $\phi \in O^+(\mathcal{E})$, si k est impair $\phi \in O^-(\mathcal{E})$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions

Décomposition

Similitudos

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

 $\textit{Soient} \; \overrightarrow{\mathcal{E}} \; \textit{ de dimension } \dim \overrightarrow{\mathcal{E}} = \textit{n, et } \overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$.

Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

euclidiens

isometries vectorienes

Isométries affin

Définition

Structur

Petites dimension

Décomposition

Similitude

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

$$\blacksquare \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$$

$$\phi \in O(\overline{\mathcal{E}}).$$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de $\mathcal{E}.$

Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\vec{\mathcal{E}})$.

euclidiens

isomethes vectorienes

Isométries affin

Définition

Propriet

Petites dimension

Décomposition

Similitude

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

$$\blacksquare$$
 $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$

$$\vec{\phi} \in O(\vec{\mathcal{E}}).$$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overline{\mathcal{E}})$.

euclidiens

isomethes vectoriene:

Isométries affine

Définition

Propriéte

Petites dimension

Décomposition

Similitude

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\vec{\phi} \in O(\vec{\mathcal{E}}).$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

euclidiens

isometries vectorienes

Isométries affin

Définition

C. .

Petites dimension

Décomposition

Similitude

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- \blacksquare $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\vec{\phi} \in O(\vec{\mathcal{E}}).$

On note $lso(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\vec{\mathcal{E}})$.

euclidiens

isometries vectorielle

Isométries affine

Définition

Structure

Petites dimensio

Similitude

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\vec{\phi} \in O(\vec{\mathcal{E}}).$

On note $lso(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Ainsi que $\operatorname{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\vec{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

isometries vectorienes

Isometries affir

Définition

Propriétés

Petites dimension

Similitude

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- loute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

Lance Goden a Maria

isometries affin

Définition Propriétés

Petites dimension

Décomposition

Similitude

- $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- loute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

isometries vectoriene

Isomètries affin

Définition
Propriétés

Structure Petites dimension

Pétites dimension

Similitud

- $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'ill existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- loute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

isometries vectoriene.

Isomètries affin

Définition Propriétés

Petites dimensio

Petites dimension

Similitude

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in Aff(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

Propriétés

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc

Rappels : espace euclidien

euclidiens

isomethes vectorienes

Isométries affin

Définition Propriétés

Petites dimensions

Décomposition

Similitud

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

Propriétés

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des

Propriétés

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des

Rappels : espace euclidien

euclidiens

Isométries affin

Propriétés

Petites dimension

Décomposition

Similitud

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions.

Rappels : espace euclidien

euclidiens

Isométries affir

Propriétés

Petites dimension

Petites dimension

Similitud

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

isometries vectorielles

Isométries affin

Définition

Structure Petites dimension

Petites dimension Décomposition

Similitude

Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- lacksquare soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

Isomètries vectorielles

Isométries affin

Definition

Structure Petites dimension

Décomposition

Similitude

Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de ϕ , tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

sométries vectorielles

Isométries affin

Propriétés Structure

Petites dimension

Decomposition

Similitude

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Structure

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- lacksquare soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v} \neq 0$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

euclidiens

isomethes vectoriene

isometries affines

Definition

Structure

Petites dimensions

Décomposition

Decomposition

 $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ $\phi \text{ est la composée d'au plus 2 réflexions.}$

 \blacksquare $\operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2).$

 $=\phi\in \mathrm{Iso}^{\gamma}(\mathbb{R}^{2})$ ssi

 $\phi \in \mathrm{Iso}^+(\mathbb{R}^2)$ ssil

euclidiens

isomethes vectoriene.

Isometries affin

Définition Propriétés

Structure

Petites dimensions

 $(\phi$ est la composée d'au plus 2 réflexions.)

 $= \phi \in Iso'(IK^*)$ ssi

euclidiens

isomethes vectorienes

Isométries affin

Définition

Structure

Petites dimensions

Décomposition

• $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)

 $\phi \in \operatorname{Iso}^+(\mathbb{R}^2)$ ssi

 $\phi \in \operatorname{Iso}^+(\mathbb{R}^d)$ ssi

Espaces affine euclidiens

isometries vectoriene

Isométries affir

Définition

Propriete

Petites dimensions

D/

Similitude

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- - $lack \phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $w \phi = T_{\mathcal{V}} \circ S_{\mathcal{V}} \text{ avec } \tilde{V} \neq 0$
 - $(\phi \text{ est la composée d'au plus } 3 \text{ réflexions.})$

Dimensions 1 et 2

Petites dimensions

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composée d'au plus 2 réflexions.)
- $\mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi

Espaces affine

Isométries vectorielles

Isométries affin

Définition

Structure

Petites dimensions

Décomposition

Similitude:

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (\$\phi\$ est la composée d'au plus 2 réflexions.)
- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\Omega,lpha}$ est la rotation de centre Ω d'angle lpha, ou

 $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

euclidiens

isometries vectorielle

Isométries affin

Définition

Structure

Petites dimension

Cimilitudos

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\quad \quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - lacktriangledown $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.

 $(\phi \text{ est la composée d'au plus } 3 \text{ réflexions.})$

euclidiens

isometries vectorienes

Isométries affin

Définition

Structure

Petites dimensions

Similitudes

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (\$\phi\$ est la composée d'au plus 2 réflexions.)
- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathsf{Iso}^+(\mathbb{R}^2) \; \mathsf{ssi} \;$
 - lacktriangledown $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

■ $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou $\phi = T_{\overline{V}} \circ S_{\mathcal{D}}$ avec $\overline{V} \neq 0$ est un vecteur fixe par la symétrie $\overline{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

euclidiens

isomethes vectoriene:

Isométries affin

Définition

Structure

Petites dimension

Décomposition

Similitude

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $\blacksquare \operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2).$
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - ullet $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D}_{\cdot} ou

dans ce cas on dit que ϕ est une symétrie glissée.

euclidiens

isometries vectorienes

Isométries affine

Propriétés

Structure

Petites dimension

Similitudes

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - ullet $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

Espaces affine euclidiens

Isométries vectorielles

Isométries affines

Définition

Propriétés

Petites dimension

• $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)

- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\Omega, \alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $lack \phi = \mathcal{S}_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{D}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie $\overrightarrow{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

 $(\phi \text{ est la composée d'au plus } 3 \text{ réflexions.})$

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composée d'au plus 2 réflexions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

euclidiens

isometres vectorienes

Isométries affine

Définition

Structure

Petites dimensions

Décomposition

Similitude

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

 $\phi \in \mathsf{Iso}^+(\mathbb{C})$ ssi $\phi(z) = az + b$ avec |a| = 1

w Si a=1, alors ϕ est la translation de

 $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1

w Si $\overline{a}b' \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{K} + b/\sqrt{a}\mathbb{K} + b$

= 5 inon ϕ est une symétrie glissée.

Les isométrie affines de $\mathbb C$

Rappels : espace euclidien

euclidiens

isometries vectorielles

Isométries affine

Définition

Structure

Petites dimensions

Décomocition

Similitude

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z\mapsto \alpha z+\beta \overline{z}+\gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$
 - lacksquare Si a=1, alors ϕ est la translation de b
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - Si $\bar{a}b^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$
 - \blacksquare Sinon ϕ est une symétrie glissée.

euclidiens

Isometries vectorielle

Isométries affine

Propriétés

Structure

Petites dimensions

Décomposition

Similitude

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z\mapsto \alpha z+\beta \overline{z}+\gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - Si $\bar{a}b^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$
 - \blacksquare Sinon ϕ est une symétrie glissée.

euclidiens

isometries vectorielle

Isométries affin

Propriétés

Petites dimensions

Dr. ...

Decomposition

Rappel : Les application affines de l'espace euclidien \mathbb{C} sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - Si $\bar{a}b^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$
 - \blacksquare Sinon ϕ est une symétrie glissée.

euclidiens

isometries vectoriene:

Isométries affine

Propriétés

Petites dimensions

r etites unificisio

Similitude

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - Si $ab^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a\mathbb{R} + b/2}$
 - \blacksquare Sinon ϕ est une symétrie glissée.

euclidiens

isomethes vectoriene

Isométries affin

Propriétés

Petites dimension

Dácomposition

Similitude

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C}) ssi \phi(z) = a\overline{z} + b avec |a| = 1.$
 - Si $\overline{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

Rappel: Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - Si $\bar{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - \blacksquare Sinon ϕ est une symétrie glissée.

euclidiens

isometries vectorielle

Isométries affin

Propriétés Structure

Petites dimensio

Décomposition

Similitude

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a = 1, alors ϕ est la translation de b.
- $\phi \in Iso^-(\mathbb{C})$ ssi $\phi(z) = a\overline{z} + b$ avec |a| = 1.
 - Si $\overline{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - **Sinon** ϕ est une symétrie glissée.

Dimension 3

Rappels : espace euclidien

euclidiens

isometries vectorienes

Isométries affine

Définition

Proprietes

Petites dimensions

Petites dimension

Décomposition

Similitudes

■
$$\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3).$$

■ $\phi \in \operatorname{Iso}^+(\mathbb{R}^3)$ ssi

 $\phi \in \operatorname{Iso}^{-}(\mathbb{R}^{3})$ ss

Espaces affin euclidiens

isometries vectorielle

Isométries affir

Définition

Structure

Petites dimensions

r etites dimension

Similitude

- - $\quad \quad \phi \in \mathsf{Iso}^+(\mathbb{R}^3) \; \mathsf{ssi}$

= $\phi = T_{\rm W}$ est une translation, ou

est un vissage d'axe D et d'angle o

 $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi

ψ = T_V ∈ S_N avec V ≠ 0 est un vecteur fixe par la symétrius dans ce cas on dit que ψ est une symétre plusée.

w $\phi=R_{\mathcal{D}_M}\circ S_{\mathcal{H}}$ avec $\mathcal{D}\perp\mathcal{H}_0$ et dans ce cas on dit que ϕ est une e

 $(\phi \text{ est la composée d'au plus } 4 \text{ réflexions.})$

Petites dimensions

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi

Espaces affines euclidiens

Isometries vectorielles

Isométries affir

B 40 4 4

Propriété

Structure

Petites dimensions

Similitudes

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathrm{Iso}^+(\mathbb{R}^3)$ ssi
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - $\phi = I_{\overrightarrow{V}}$ est une translation, ou
 - $\phi = T_{\overline{V}} \circ R_{D,\alpha}$, avec $\mathcal{D} = \langle \overline{V} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in Iso^-(\mathbb{R}^3)$ ssi

w \(\phi = S_Y \) est la symétrie par rapport ou plan affine \(\mathcal{H} \), ou \(\phi = S_Y \) avec \(\mathcal{V} \times \) [lest un vectour fixe par la symétrie pa

dans ce cas on dit que ϕ est une symétrie glissée. w $\phi=R_0$, o S_0 avec D 1. H, et dans ce cas on dit que ϕ est une ϕ

Espaces affine euclidiens

Isometries vectorielles

Isométries affin

Définition

Propriété

Structure

Petites dimensions

Similitudes

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathrm{Iso}^+(\mathbb{R}^3)$ ssi
 - ullet $\phi=R_{\mathcal{D},lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\mathcal{D} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

w $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou w $\phi = T_{\mathcal{H}} \circ S_{\mathcal{H}}$ avec $\mathcal{V} \neq 0$ est un vecteur like par la symétrie ϕ , et une symétrie glasse.

 $\phi = \mathcal{H}_{0,\alpha} \circ \mathcal{S}_{\mathcal{H}}$ avec $D \perp \mathcal{H}_{\epsilon}$ et dans ce cas on dit que ϕ est une

Espaces affines euclidiens

Isomètries vectorielle

Isométries affin

Définition

Camman

Date to the

Petites dimension

Décomposition

- - $\phi \in \mathrm{Iso}^+(\mathbb{R}^3)$ ssi
 - $lack \phi = R_{\mathcal{D}, \alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $lack \phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi

 $\phi = T_{\mathcal{V}} \circ S_{\mathcal{V}}$ avec $V \not\simeq$ dans se cas on diff que ϕ

Espaces affin euclidiens

Isométries vectorielle

Isométries affin

Définition

Structure

Petites dimensio

D/ W

Similitude

- - $\quad \blacksquare \ \phi \in \operatorname{Iso}^+(\mathbb{R}^3) \ \operatorname{ssi}$
 - $lack \phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathrm{Iso}^-(\mathbb{R}^3)$ ssi

Espaces affines euclidiens

Isométries vectorielle

Isométries affin

Définition

Structure

Petites dimension

Décomposition

Similitude

- - $\quad \blacksquare \ \phi \in \operatorname{Iso}^+(\mathbb{R}^3) \ \operatorname{ssi}$
 - $lack \phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lacktriangledown \phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , out
 - $\phi = I_{\nabla} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

Espaces affine euclidiens

Isométries vectorielles

Isométries affin

Définition

Structure

Petites dimension

. ...

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - lacktriangledown $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - ullet $\phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = I_{\nabla} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

- $\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\vec{v}} \circ R_{\mathcal{D},\alpha}$, avec $\vec{\mathcal{D}} = \langle \vec{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{H}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et

Espaces affine euclidiens

Isométries vectorielle

Isométries affine

Propriétés

Structure

retites dimension

Similitude

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.

Espaces affines euclidiens

Isométries vectorielle

Isométries affine

Propriétés

Petites dimension

D/

Similitude

- - $\quad \blacksquare \ \phi \in \operatorname{Iso}^+(\mathbb{R}^3) \ \operatorname{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - ullet $\phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

 $(\phi \text{ est la composée d'au plus } 4 \text{ réflexions.})$

- $\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\vec{v}} \circ R_{\mathcal{D},\alpha}$, avec $\vec{\mathcal{D}} = \langle \vec{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{H}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

Espaces affine euclidiens

Isométries vectorielles

Isométries affine

Petites dimension

Dánamanitian

Similitude

- - $\quad \blacksquare \ \phi \in \operatorname{Iso}^+(\mathbb{R}^3) \ \operatorname{ssi}$
 - $lack \phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

Décomposition des isométries en réflexions

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affin

Définition

Propriété

Structure

Petites dimei

Décomposition

Similitude

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k \leq n+1$ réflexions

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in Iso^+(\mathcal{E})$, et si k est impair $\phi \in Iso^-(\mathcal{E})$.

Décomposition des isométries en réflexions

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affine

Définition

Campaning

Petites dimensi

Décomposition

Similitude

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k \leq n+1$ réflexions

$$\phi = \rho_1 \circ \cdots \circ \rho_k$$

Si k est pair $\phi \in \mathsf{Iso}^+(\mathcal{E})$, et si k est impair $\phi \in \mathsf{Iso}^-(\mathcal{E})$.

Décomposition des isométries en réflexions

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affine

Définition

Propriété

Structure

Décomposition

Similitud

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$. Alors ϕ est le produit de $k(\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in Iso^+(\mathcal{E})$, et si k est impair $\phi \in Iso^-(\mathcal{E})$.

Décomposition des isométries en réflexions

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affin

Définition

Commence

Petites dimens

Décomposition

Decomposition

Similitue

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k \leq n+1$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in Iso^+(\mathcal{E})$, et si k est impair $\phi \in Iso^-(\mathcal{E})$.

Rappels : espace euclidien

Espaces affines euclidiens

Isometries vectorielle

Isométries affin

Similitudes

Définition

Définition

■ Une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$ est dit similitude vectorielle si elle multiplie les normes par une constante k > 0:

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = k \| \overrightarrow{v} \|, \quad \forall \overrightarrow{v} \in \overrightarrow{\mathcal{E}}.$$

■ Une application affine $\phi \in \text{Aff}(E)$ est dit similitude affine si elle multiplie les distance par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}$$

Le nombre strictement positif k est dit rapport de la similitude.

Rappels : espace euclidien

euclidiens

Isometries vectorielles

Isométries affin

Similitude: Définition Propriétés

Définition

■ Une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$ est dit similitude vectorielle si elle multiplie les normes par une constante k > 0:

$$\|\vec{\phi}(\vec{v})\| = k \|\vec{v}\|, \quad \forall \vec{v} \in \vec{\mathcal{E}}.$$

■ Une application affine $\phi \in \text{Aff}(E)$ est dit similitude affine si elle multiplie les distance par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}$$

Le nombre strictement positif k est dit rapport de la similitude

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Isométries affin

Similitude:

Définition

Propriétés

Définition

■ Une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$ est dit similitude vectorielle si elle multiplie les normes par une constante k>0:

$$\|\vec{\phi}(\vec{v})\| = k \|\vec{v}\|, \quad \forall \vec{v} \in \vec{\mathcal{E}}.$$

■ Une application affine $\phi \in \mathsf{Aff}(E)$ est dit similitude affine si elle multiplie les distance par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}.$$

Le nombre strictement positif k est dit rapport de la similitude

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affin

Similitude

Définition

Propriétés

Définition

■ Une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$ est dit similitude vectorielle si elle multiplie les normes par une constante k>0:

$$\|\vec{\phi}(\vec{v})\| = k \|\vec{v}\|, \quad \forall \vec{v} \in \vec{\mathcal{E}}.$$

■ Une application affine $\phi \in \mathsf{Aff}(E)$ est dit similitude affine si elle multiplie les distance par une constante k > 0:

$$d(\phi(A), \phi(B)) = k \cdot d(A, B), \quad \forall A, B \in \mathcal{E}.$$

Le nombre strictement positif k est dit rapport de la similitude.

Rappels : espace euclidien

Espaces affine euclidiens

isomethes vectoriene:

Isometries affin

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k>0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectoriels (resp. affines, resp. directes) forment un groupe.
- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.

Rappels : espace euclidien

Espaces affines euclidiens

isomethes vectoriene

Isometries affine

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k > 0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectoriels (resp. affines, resp. directes) forment un groupe.
- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.

Rappels : espace euclidien

euclidiens

isometries anim

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k>0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectoriels (resp. affines, resp. directes) forment un groupe.
- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.

Rappels : espace euclidien

euclidiens

Isométries affines

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k>0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectoriels (resp. affines, resp. directes) forment un groupe.
- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.

Rappels : espace euclidien

euclidiens

Isométries affine

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k>0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectoriels (resp. affines, resp. directes) forment un groupe.
- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.

Rappels : espace euclidien

euclidiens

Isométries affines

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k>0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectoriels (resp. affines, resp. directes) forment un groupe.
- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.

Rappels : espace euclidien

euclidiens

Isométries affine

- Une application affine est une similitude ssi sa partie linéaire est une similitude vectorielle.
- Toute similitude vectorielle se décompose de façon unique en $\overrightarrow{\phi} = \overrightarrow{h}_k \circ \overrightarrow{\psi}$, où \overrightarrow{h}_k est une homothétie de rapport k>0 et $\overrightarrow{\psi}$ est une isométrie.
- Une similitude est dite directe (resp. indirecte) si son déterminant est positif (resp. négatif).
- Les similitudes sont des automorphismes (vectoriels, affines). L'inverse d'une similitude de rapport k est une similitude de rapport 1/k.
- Les similitudes vectoriels (resp. affines, resp. directes) forment un groupe.
- Toute similitude affine, qui n'est pas une isométrie, possède un unique point fixe, dit le centre de la similitude.

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isometries affin

Similitudes

- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

Rappels : espace euclidien

euclidiens

isometries vectorielles

Isométries affin

- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

Propriétés

- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux
- L'image d'une sphère par une similitude est une sphère.

Rappels : espace euclidien

euclidiens

isometries affin

- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

Rappels : espace euclidien

Espaces affines euclidiens

isometries vectorienes

isometries affin

- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.

Rappels : espace euclidien

Espaces affine euclidiens

isomethes vectoriene.

isometries affin

- Les similitudes préservent les angles.
- En particulier :
 - Les similitudes préservent les sous-espaces parallèles.
 - Les similitudes préservent les sous-espaces orthogonaux (perpendiculaires).
- L'image d'une sphère par une similitude est une sphère.