

Anders Damgaard

Energistrømsanalyse og genanvendelse

Energistrømsanalyse

Formål: En analyse af energistrømmene i jeres system

Typer af energi:

- Energi I affald
- Energi I el og brændstoffer (oil, gas og kul) brugt I behandlingsprocesser
- Genereret energi

Massestrømsanalyse

Affaldsfraktion	Tørstofindhold (TS)	Energiindhold
	% af total mængde	MJ/kg TS
Glas	98	0
Aluminium	98	0
Jern	98	0
Papir	93	14
Plast	98	37
Madaffald	28	19
Blandet restaffald	73	14

Energistrømsanalysen

Affaldsfraktion	Tørstofindhold (TS)	Energiindhold
	% af total mængde	MJ/kg TS
Glas	98	0
Aluminium	98	0
Jern	98	0
Papir	93	14
Plast	98	37
Madaffald	28	19
Blandet restaffald	73	14

Materiale genanvendelse

- Material genanvendelse: genavendelige materialer bliver brugt som den samme type produkt (papir → papir; papir → pap etc.)
- Oparbejdning til genanvendeligt materiale har normalt en lavere miljøpåvirkning en primær produktion, hvorfor genavendelse er fordelagtigt.
- Modellen der opstilles er:
 genanvendelse = oparbejdning A-B -primær
 produktion
- A er den tekniske substitutions ratio; 1 ton of papiraffald producerer 0.85 ton sekundært papir produkt
- B er den undgåede mængde givet ved markedsresponse, kan være <1, aldrig >1 (<u>skal</u> <u>først bruges I Del 2.)</u>

Materialer brugt i processer

Jern, genanvendelse, 1 kg input				
INPUT				
Elektricitet	kWh	6.0E-01		
Fjernvarme	MJ	0.0E+00		
Gas	Nm3	2.4E-02		
Olie	I	1.3E-07		
Vand	m3	3.6E-04		
OUTPUT				
Elektricitet	kWh	0.0E+00		
Fjernvarme	MJ	0.0E+00		
Sekundær materiale	kg	0.87		
Substitution (markedsrespo kg 1				
EMISSIONER (LUFT)				
CO2 (fossil)	kg	7.30E-02		
CH4	kg	0.00E+00		
NOx	kg	3.70E-05		
EMISSIONER (VAND)				
NO3-	kg	1.52E-06		

For nemhed: Antag at input af materialer = output i form af tab som emissioner hvor I her kan ignorere de specifikke emissioner (Husk enheder)