

Простейшая нейросеть – 1 нейрон

Разделяющая поверхность – линейная

$$a(x) = b + w_1 x_1 + \ldots + w_n x_n = \sum_{t=0}^n w_t x_t$$
 $h(x) = \sigma(a(x))$ b – смещение σ – функция активации w_t – веса связей

Линейные модели – нейросети!

Линейная регрессия

$$a(x) = b + w_1 x_1 + \ldots + w_n x_n$$

Линейный классификатор

$$a(x) = \operatorname{th}(b + w_1 x_1 + \ldots + w_n x_n)$$

Логистическая регрессия

$$a(x) = \sigma(b + w_1x_1 + \ldots + w_nx_n)$$

Функции активации

Тождественная функция (линейная / linear activation function)

$$f(z) = z$$

$$f(z) = z$$
$$\frac{\partial f(z)}{\partial z} = 1$$

Пороговая функция (threshold function)

$$th(z) = I[z > 0]$$

$$\frac{\partial \operatorname{th}(z)}{\partial z} = 0$$

Функции активации

Сигмоида (sigmoid activation function)

$$\sigma(z) = \frac{1}{1 + e^{-z}} \in (0, 1)$$

$$\frac{\partial \sigma(z)}{\partial z} =$$

$$= \sigma(z)(1 - \sigma(z)) > 0$$

Гиперболический тангенс (hyperbolic tangent)

$$\tanh(z) = \frac{2}{1 + e^{-2z}} - 1 =$$

$$= \frac{e^{+z} - e^{-z}}{e^{+z} + e^{-z}} = \frac{e^{+2z} - 1}{e^{+2z} + 1}$$

$$\frac{\partial \tanh(z)}{\partial z} = 1 - \tanh^2(z)$$

Функции активации в задачах классификации

softmax
$$(z_1,...,z_k) = \frac{1}{\sum_{t=1}^{k} \exp(z_t)} (\exp(z_1),...,\exp(z_k))^{\mathrm{T}}$$

сумма выходов = 1 выходы интерпретируются как вероятности

$$[0.5, 0.5, 0.1, 0.7] \rightarrow [0.257, 0.257, 0.172, 0.314]$$

 $[-1.0, 0, 1.0, 0, -1.0] \rightarrow [0.07, 0.18, 0.5, 0.18, 0.07]$
 $[1.0, 1.0, 1.0, 2.0, 1.0] \rightarrow [0.15, 0.15, 0.15, 0.4, 0.15]$

Что может один нейрон

Глубокое обучение

Логическое ИЛИ

Для простоты – пороговая функция активации

Что НЕ может один нейрон Исключающее ИЛИ

th(th(
$$x_1 + x_2 - 1.5$$
) + th($-x_1 - x_2 + 0.5$) - 0.5)

$$th(th(0+0-1.5)+th(-0-0+0.5)-0.5)=th(0+1-0.5)=1\\ th(th(0+0-1.5)+th(-0-1+0.5)-0.5)=th(0+0-0.5)=0\\ th(th(0+0-1.5)+th(-1-0+0.5)-0.5)=th(0-0-0.5)=0\\ th(th(1+1-1.5)+th(-1-1+0.5)-0.5)=th(1+0-0.5)=1$$

Что НЕ может один нейрон

Сигмоида стремится к пороговой функции

$$\sigma_c(\sigma_c(x_1 + x_2 - 1.5) + \sigma_c(-x_1 - x_2 + 0.5) - 0.5)$$

$$\sigma_c(z) = \frac{1}{1 + e^{-cz}}$$

- Сигмоиду проще обучать дифференцируемая
 - Есть возможность получать «вероятности»

Двуслойная нейронная сеть

Регрессия

Классификация

Такой нейронной сети хватит...

Теорема об универсальной аппроксимации [Hornik, 1991]
Любую непрерывную функцию можно с любой точностью приблизить нейросетью глубины 2 с сигмоидной функцией активации на скрытом слое и линейной функции на выходном слое

Нейросеть глубины два с фиксированной функцией активации в первом слое и линейной функцией активации во втором может равномерно аппроксимировать (м.б. при увеличении числа нейронов в первом слое) любую непрерывную функцию на компактном множестве тогда и только тогда, когда функция активации неполиномиальная.

http://www2.math.technion.ac.il/~pinkus/papers/neural.pdf

Более того, функция активации м.б. любая (неполиномиальная)!

Но...

- много нейронов (неизвестно сколько)
 - экспоненциальные веса
 - сложность обучения

Многослойная нейронная сеть – пример нелинейной модели

hidden layer 1 hidden layer 2

Ориентированный граф вычислений

Вершины – переменные или нейроны Рёбра – зависимости

Сеть прямого распространения – Feedforward Neural Network (т.е. нет циклов)

все нейроны предыдущего слоя связаны с нейронами следующего

входной слой один или несколько скрытых слоёв выходной слой

Важная аналогия

Глубокая НС – последовательное преобразование признакового пространства Зачем нужны глубокие нейронные сети:

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, Yann LeCun «The Loss Surfaces of Multilayer Networks» 2015, https://arxiv.org/abs/1412.0233

Обучение

Как принято...

минимизация регуляризованного эмпирического риска

$$\frac{1}{m} \sum_{i=1}^{m} L(a(x_i \mid w), y_i) + \lambda R(w) \to \min_{w}$$

Задача оптимизации невыпуклая!

«Настройка» нейронной сети – получение весов ${\it W}$

Метод стохастического градиента

$$w^{(t+1)} = w^{(t)} - \eta \nabla [L(a(x_i \mid w^{(t)}), y_i) + \lambda R(w^{(t)})]$$

т.к. очень много слагаемых... и так быстрее;)

Функции ошибки

Классификация – logloss (CrossEntropyLoss)

$$L((a_1,...,a_l), y) = -\log \frac{\exp(a_y)}{\sum_{j=1}^{l} \exp(a_j)} =$$

$$= -a_y + \log \sum_{j=1}^{l} \exp(a_j)$$

- Часто при реализации делают так:

$$-a_y + \max\{a_j\} + \log\left(\sum_{j=1}^l \exp(a_j - \max\{a_j\})\right)$$

Обратное распространение (Backpropagation)

Идея: вычисление производной сложной функции

$$\nabla f(w, g(w), h(w)) = \frac{\partial f}{\partial w} + \frac{\partial f}{\partial g} \nabla g(w) + \frac{\partial f}{\partial h} \nabla h(w)$$

Автоматическое дифференцирование

Прямое распространение

$$x, w \rightarrow f(x, w, g(x, w), h(x, w))$$

вычисление ответов, функции ошибки

Обратное распространение

$$x, w, \nabla g, \nabla h \rightarrow \nabla f$$

вычисление градиентов

Производные на компьютере

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind «Automatic differentiation in machine learning: a survey» 2015-2018 https://arxiv.org/abs/1502.05767

Функции активации

Проблема – затухание градиента

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

$$ReLU(z) = max(0, z)$$

$$\frac{\partial \operatorname{ReLU}(z)}{\partial z} = I[z > 0]$$

Rectified Linear Unit

Что плохого в сигмоиде

- «убивает» градиенты
- выходы не отцентрированы (легко устранить o tanh)
 - вычисление экспоненты всё-таки дорого...

Ещё функции активации

LeakyReLU(
$$z$$
) = max(0.1 z , z)

ELU(z) =
$$\begin{cases} z, & z \ge 0, \\ \alpha(e^z - 1), & z < 0. \end{cases}$$

$$Maxout(z) = \max(w^{\mathsf{T}}z + w_0, v^{\mathsf{T}}z + v_0)$$

$$f(x, y, z) = \underbrace{(x+y) \cdot (y-z)}_{g(x,y)} \cdot \underbrace{(y-z)}_{h(y,z)}$$

Как проводится вычисление функции?

$$x, y, z = 1, 2, 3$$

$$f(x, y, z) = \underbrace{(x+y) \cdot (y-z)}_{g(x,y)} \cdot \underbrace{(y-z)}_{h(y,z)}$$

Как проводится вычисление функции?

$$x, y, z = 1, 2, 3$$

«Прямой ход»

$$f = (x + y) \cdot (y - z)$$

$$f(x, y, z) = \underbrace{(x+y) \cdot (y-z)}_{g(x,y)} \cdot \underbrace{(y-z)}_{h(y,z)}$$

Как проводится вычисление производных?

$$\frac{\partial f}{\partial g} = h, \frac{\partial f}{\partial h} = g$$

$$\frac{\partial g}{\partial x} = 1, \frac{\partial h}{\partial x} = 0$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial h} \frac{\partial h}{\partial x}$$

$$f(x, y, z) = \underbrace{(x+y) \cdot (y-z)}_{g(x,y)} \cdot \underbrace{(y-z)}_{h(y,z)}$$

Как проводится вычисление производных?

«Обратный ход»

http://cs231n.stanford.edu/2017/index.html

Обратное распространение = SGD + дифференцирование сложных функций

http://cs231n.stanford.edu/2017/index.html

http://cs231n.stanford.edu/2017/index.html

http://cs231n.stanford.edu/2017/index.html

Борьба с переобучением

Очень много параметров ⇒ переобучение

- Нормировки (Normalization of Data)
- Инициализация весов
- Верификация ранний останов (Early Stopping)
- Настройка темпа обучения (Learning Rate)
- Мини-батчи (Mini-Batches) / Batch-обучение
- Продвинутая оптимизация
- Регуляризация + Weight Decay
- Max-norm-регуляризация
- Dropout
- Увеличение выборки + Расширение выборки (Data Augmentation)
- Обрезка градиентов (Gradient clipping)

Борьба с переобучением

- Доучивание уже настроенных нейросетей (Pre-training)
- Unsupervised Learning
- Техника зануления весов (разреживания НС)
- Использование специальных архитектур под задачу (например, использующих локальность – свёрточных НС)
- зашумление (inject noise)

Нормировки (Normalization of Data)

Признак
$$X = (X_1, \dots, X_m)$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 среднее признака

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^m (X_i - \mu)^2$$
 дисперсия признака

иногда м.б. РСА

$$X = \frac{X - \mu}{\sqrt{\sigma^2}}$$
 нормировка

- сырые данные
 - после нормировки
- после РСА

Нормировки (Normalization of Data)

Huang et al, «Decorrelated Batch Normalization», arXiv 2018 (Appeared 4/23/2018)

Инициализация весов

- нарушение симметричности (чтобы нейроны были разные)
- недопустить «насыщенности» нейрона (почти всегда близок к нулю или 1)

так, чтобы признаки, поступающие в слой имели одинаковую дисперсию – для избегания «насыщения» нейронов

смещения := 0 (зависит от того, где смещение; если на выходе...)

Xavier initialization

$$w_{ij}^{(k)} \sim U \left[-\sqrt{\frac{6}{n_{\text{in}}^{(k)} + n_{\text{out}}^{(k)}}}, +\sqrt{\frac{6}{n_{\text{in}}^{(k)} + n_{\text{out}}^{(k)}}} \right]$$

[Glorot & Bengio, 2010]

Распределение, чтобы
$$Dw_{ij}^{(k)} = \frac{2}{n_{\text{in}}^{(k)} + n_{\text{out}}^{(k)}}$$

Формула выведена в предположении, что нет нелинейностей...

$$z^{(k+1)} = f(W^{(k)}z^{(k)}) \equiv W^{(k)}z^{(k)}$$

можно посчитать см.

https://www.youtube.com/watch?v=PjS2y8LBMLc&list=PLrCZzMib1e9oOGNLh6_d65HyfdqlJwTQP&index =5

Плохо для ReLu – [He et al., 2015]

Верификация – ранний останов (Early Stopping) Смотрим ошибку на отложенной выборке! Выбираем итерацию, на которой наименьшая ошибка.

Настройка темпа обучения (Learning Rate)

Мини-батчи (mini-batches) / Batch-обучение

$$w^{(t+1)} = w^{(t)} - \frac{\eta}{|I|} \sum_{i \in I} \nabla [l(a(x_i \mid w^{(t)}), y_i) + \lambda R(w^{(t)})]$$

- Градиенты не такие случайные (оцениваем по подвыборке)
- Можно вычислять быстрее (на современных архитектурах) Можно делать максимальный батч, который влезает в память
- Можно делать нормировку по батчу
- Немного противоречит теории

м.б. специально организовывать батчи

(должны содержать представителей всех классов)

Мини-батчи (mini-batches) / Batch-обучение

увеличение размера батча – тот же эффект, что и уменьшение темпа обучения

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le «Don't Decay the Learning Rate, Increase the Batch Size» https://arxiv.org/abs/1711.00489

Продвинутая оптимизация

Обучение: стохастический градиент

$$w^{(t+1)} = w^{(t)} - \eta \nabla L^{(t)}(w^{(t)})$$

Эпоха – проход по всей обучающей выборке Надо случайно перемешивать данные перед каждой эпохой

Продвинутая оптимизация

стохастический градиент с моментом (momentum)

$$m^{(t+1)} = \rho m^{(t)} + \nabla L^{(t)}(w^{(t)})$$
$$w^{(t+1)} = w^{(t)} - \eta m^{(t+1)}$$

добавление инерции

метод Нестерова

$$m^{(t+1)} = \rho m^{(t)} + \nabla L^{(t)} (w^{(t)} - \eta m^{(t)})$$
$$w^{(t+1)} = w^{(t)} - \eta m^{(t+1)}$$

- градиент случаен (зависит от батча) добавляем градиенту инертность
- уровни функции могут быть сильно вытянуты adam
 - все параметры разные

скорость обучения – для каждого параметра

Иллюстрация СГ с моментом

Добавление инерции может помочь, когда

- линии уровня вытянуты...
- для проскакивания седловых точек

https://distill.pub/2017/momentum/

Продвинутая оптимизация – Адаптивная

Adagrad [Duchi и др., 2011]

$$v_i^{(t+1)} = v_i^{(t)} + (\nabla_i L^{(t)}(w^{(t)}))^2$$

$$w_i^{(t+1)} = w_i^{(t)} - \frac{\eta}{\sqrt{v_i^{(t+1)} + \varepsilon}} \nabla_i L^{(t)}(w^{(t)})$$

RMSprop = Adagrad + MA [Hinton, 2012]

$$\begin{aligned} v_i^{(t+1)} &= \beta v_i^{(t)} + (1 - \beta) (\nabla_i L^{(t)}(w^{(t)}))^2 \\ w_i^{(t+1)} &= w_i^{(t)} - \frac{\eta}{\sqrt{v_i^{(t+1)} + \varepsilon}} \nabla_i L^{(t)}(w^{(t)}) \end{aligned}$$

Продвинутая оптимизация – Адаптивная Adam = RMSprop + momentum

$$\begin{split} m_i^{(t+1)} &= \alpha m_i^{(t)} + (1-\alpha) \nabla_i L^{(t)}(w^{(t)}) \\ v_i^{(t+1)} &= \beta v_i^{(t)} + (1-\beta) (\nabla_i L^{(t)}(w^{(t)}))^2 \\ w_i^{(t+1)} &= w_i^{(t)} - \frac{\eta}{\sqrt{v_i^{(t+1)} + \varepsilon}} m_i^{(t)} \end{split}$$

Adam = «Adaptive Moment Estimation»

18k ссылок, неверное доказательство сходимости

[Kingma, Ba, 2014 https://arxiv.org/abs/1412.6980]

Продвинутая оптимизация

AdaDelta (усл. Adagrad)

$$\begin{aligned} v_i^{(t+1)} &= v_i^{(t)} + (\nabla_i L^{(t)}(w^{(t)}))^2 \\ \Delta w_i^{(t+1)} &= -\frac{\sqrt{\eta_i^{(t)} + \varepsilon}}{\sqrt{v_i^{(t+1)} + \varepsilon}} \nabla_i L^{(t)}(w^{(t)}) \\ w_i^{(t+1)} &= w_i^{(t)} + \Delta w_i^{(t+1)} \\ \eta_i^{(t+1)} &= \gamma \eta_i^{(t)} + (1 - \gamma)(\Delta w_i^{(t+1)})^2 \end{aligned}$$

Подбор гиперпараметров очень важен! Подбор метода оптимизации очень важен!

Регуляризация + Weight Decay

Не применяется к весам к константным входам (смещениям)

L2, L1 – регуляризация

Уменьшение весов (вид регуляризации)

$$w^{(t+1)} = (1 - \lambda)w^{(t)} - \eta \nabla L^{(t)}(w^{(t)})$$

На самом деле это L2-регуляризация:

$$\nabla (L(w) + \lambda \| w \|^{2}) = \nabla L(w) + \lambda w$$

$$w^{(t+1)} = w^{(t)} - \eta (\nabla L(w^{(t)}) + \lambda w^{(t)}) = (1 - \lambda \eta) w^{(t)} - \eta \nabla L(w^{(t)})$$

Max-norm-регуляризация

Для каждого нейрона ограничиваем норму весов:

$$|| w_{\text{neuron}} || \le c$$

если превысила – проекция

Results from MNIST (handwritten digit recognition)

Method	Unit Type	Architecture	Error %
Standard Neural Net (Simard et al., 2003)	Logistic	2 layers, 800 units	1.60
SVM Gaussian kernel	NA	NA	1.40
Dropout NN	Logistic	3 layers, 1024 units	1.35
Dropout NN	ReLU	3 layers, 1024 units	1.25
Dropout NN $+$ max-norm constraint	ReLU	3 layers, 1024 units	1.06
Dropout NN $+$ max-norm constraint	ReLU	3 layers, 2048 units	1.04
Dropout NN $+$ max-norm constraint	ReLU	2 layers, 4096 units	1.01
Dropout NN $+$ max-norm constraint	ReLU	2 layers, 8192 units	0.95
Dropout NN $+$ max-norm constraint (Goodfellow et al., 2013)	Maxout	2 layers, (5×240) units	0.94

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Оптимизаторы

« An overview of gradient descent optimization algorithms»

http://ruder.io/optimizing-gradient-descent/

Dropout

случайное обнуление активаций ~ выбрасывание нейронов из сети не выбрасываем из последнего слоя

Обычно в полносвязных слоях!

Отключают в режиме теста – выход умножается на вероятность выбрасывания.

Dropout

В отличие от бэгинга все модели делят параметры (не независимы) [DLbook]

Inverted Dropout

Во время обучения выход нейрона умножается на

$$\frac{1}{1-p}$$

р - вероятность выбрасывания

Во время тестирования ничего не делаем...

DropConnect

Зануление отдельных весов, а не нейронов

https://cs.nyu.edu/~wanli/dropc/

Обрезка градиентов (Gradient clipping)

$$g = \frac{\partial L}{\partial w}$$

$$g^{\text{new}} = \frac{\min(\theta, ||g||)}{||g||} g$$

Работает пока дисперсия градиента маленькая...

Обрезка помогает, когда попадаем на утёс...

Pascanu, Mikolov, Bengio для RNN

- метод адаптивной перепараметризации

Проблема:

градиент – как изменять параметры, при условии, что вся остальная сеть не меняется

трудно предсказать, насколько изменится какое-то значение (оно зависит от всех предыдущих в суперпозиции)

Covariate shift – изменение распределений входов во время обучения Надо уменьшить это изменение в скрытых слоях!

loffe and Szegedy, 2015 https://arxiv.org/abs/1502.03167

минибатч
$$\left\{ x_{i}^{}\right\} _{i=1}^{m}$$

$$\mu_{B} = \frac{1}{m} \sum_{i=1}^{m} x_{i}$$
 среднее по мини-батчу

$$\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$
 дисперсия по мини-батчу

$$x_i^{
m new} = rac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \mathcal{E}}}$$
 нормировка

$$y_i = \gamma x_i^{
m new} + eta$$
 растяжение и сдвиг

Надо определить параметры γ и eta

Зачем центрировать, а потом смещать?

Так эффективнее обучать: смещение является параметром в чистом виде

При обучении среднее и дисперсия – по мини-батчу

При тесте

среднее и дисперсия -

- по обучению
- усреднение значений, что были во время обучения
 - экспоненциальное среднее = *=

нормализация перед входом в каждый слой (иногда до активации, иногда после)

- можно увеличить скорость обучения
 - можно убрать dropout
 - можно уменьшить регуляризацию
- можно использовать более глубокие сети

Обучение Inception с / без батч-нормализацией

обоснование эффективности – открытая проблема

дело не в изменении распределения, а в сглаживании функции

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, Aleksander Madry How Does Batch Normalization Help Optimization? 2018 // https://arxiv.org/abs/1805.11604

```
from keras.layers.normalization import BatchNormalization
inp_norm = BatchNormalization(axis=1)(inp) # применить к inp
# conv_1 = Convolution2D(...)(inp_norm)
conv_1 = BatchNormalization(axis=1)(conv_1) # применить к conv_1
```

Расширение обучающего множества (Data Augmentation)

Аугментация – построение дополнительных данных их исходных

- Изображения
- симметрии (flip)
- вырезки (сгор)
- изменение масштаба (rescaling)
- случайные модификации (+шум)
 - повороты (rotation)
 - сдвиги (shift)
 - изменение яркости, контраста, палитры
 - эффекты линзы
- перерисовка изображения (ex GAN) Звук
 - +фоновый шум
 - тональность

Текст

замена синонимов

Тонкость: преобразования могут переводить объект в другой класс, например повороты «6» и «9».

Расширение обучающего множества (Data Augmentation)

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

https://github.com/aleju/imgaug

Расширение обучающего множества (Data Augmentation)

```
from keras.preprocessing.image import ImageDataGenerator
# после model.compile(...)
datagen = ImageDataGenerator(
            width shift range=0.1, # случайные сдвиги
            height shift range=0.1) # случайные сдвиги
datagen.fit(X train)
# обучение на батчах, которые генерирует datagen.flow()
model.fit generator(datagen.flow(X train, Y train,
                        batch size=batch size),
                        samples per epoch=X train.shape[0],
                        nb epoch=num epochs,
                        validation data=(X val, Y val),
                        verbose=1)
```

Ансамбль нейросетей

- несколько независимых моделей (как всегда +2%)
- усреднение ~ одной НС на разных эпохах обучения (аналог усреднения Поляка)

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016

Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017

```
from keras.layers import merge # for merging predictions in an ensemble
# ...
ens_models = 3 # we will train three separate models on the data
# ...
inp_norm = BatchNormalization(axis=1)(inp) # Apply BN to the input (N.B. need to rename here)

outs = [] # the list of ensemble outputs
for i in range(ens_models):
        # conv_1 = Convolution2D(...)(inp_norm)
        # ...
        outs.append(Dense(num_classes, init='glorot_uniform', W_regularizer=12(12_lambda),
activation='softmax')(drop)) # Output softmax layer

out = merge(outs, mode='ave') # average the predictions to obtain the final output
```

Диагностика проблем с НС

1. Численно проверить градиенты (с помощью конечных разностей)

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\varepsilon) - f(x-\varepsilon)}{2\varepsilon}$$

проверка реализации обратного и прямого распространения

Диагностика проблем с НС

2. Визуализация

Признаки (в общем смысле) должны быть некоррелированными и с большой дисперсией

Хорошие фильтры имеют структуру и некоррелированные

3. Убедиться, что сеть работает на небольшом куске данных

(~ 100 – 500 объектов)

4. Насыщены ли нейроны ещё до обучения?

Нормировка!

5. Как ведёт себя ошибка обучения

Настроить темп обучения!

6. Насколько меняются веса за итерацию (~ 0.1%)

Недообучение

Переобучение

Другие методы оптимизации GPU Регуляризация Обучение без учителя

(более сложная задача ⇒ меньше переобучения)

Dropout

Кривые ошибок

Настройка темпа

Плохая инициализация

Большой зазор ⇒ переобучение ⇒ усилить регуляризацию

Маленький ⇒ усложнить модель (?)

Transfer Learning

Чтобы решать задачи нужны данные... берём предобученную НС

1. Train on Imagenet

2. Small Dataset (C classes)

3. Bigger dataset

[cs231]

11 февраля 2019 года

Transfer Learning

Есть предтренированные НС:

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

Есть предобучение с учителем

Узкие глубокие сети учат с помощью уже обученных неглубоких широких

Упрощение HC (Pruning)

[Han et al. NIPS'15]

- Original: a man is riding a surfboard on a wave
- Pruned 90%: a man in a wetsuit is riding a wave on a beach

- Original: a soccer player in red is running in the field
- Pruned 95%: a man in a red shirt and black and white black shirt is running through a field

Ещё... нормализации

Layer Normalization

Ba, Kiros, and Hinton, «Layer Normalization», arXiv 2016

Instance Normalization

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Wu and He, "Group Normalization", arXiv 2018

Практические советы

- начинайте с простых архитектур и методов (оптимизации)
- начинайте с небольшого набора данных (для начальных экспериментов)
- выбирайте правильную архитектуру (классификация изображений CNN, последовательности LSTM/GRU и т.п.)
- Добавление параметров ⇒ усложнение сети (больше времени на обучение, риск переобучения)
- Используйте средства борьбы с переобучением (см. выше)
- Если данных слишком много средства могут не понадобиться. Если можно – собирайте данные!
- Используйте уже натренированные модели.
- Learning rate часто самый важный параметр лучше уменьшать
- Есть методы настройки параметров лучше, чем structured (grid) search.
- Визуализируйте!
- 1% Rule (???) веса должны меняться на 1% от своих значений