Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет инфокоммуникационных технологий

Математическая лингвистика

Практическая работа №4

Выполнили:

студент группы К34422

Малаев Степан Геннадьевич

Проверил:

доцент практики, КТН

Болгова Екатерина Владимировна

Санкт-Петербург

2025

Ход работы.

- 1. Постройте НКА, распознающие следующие множества цепочек:
- а) abc, abd и aacd. Входным алфавитом считать $\{a, b, c, d\}$;
- б) 0101, 101 и 011;
- в) ab, bc и са. Входным алфавитом считать {a, b, c}.
- a) Множество: {abc, abd, aacd}.

Алфавит: {a, b, c, d}.

1. q_0 — начальное состояние.

Переход: $q_0 \longrightarrow a \longrightarrow q_1$.

- 2. q1 с этого состояния происходит недетерминированный выбор:
 - а. При чтении b переходим в состояние q2, ветвь для abc и abd.
 - b. При чтении а переходим в состояние q₃, ветвь для aacd.
- 3. Ветвь $q_1 b \rightarrow q_2$:
 - а. $q_2 c \rightarrow q_4 cocтoяние q_4$ является допускающим, распознает слово abc.
 - b. $q_2 d \rightarrow q_5$ состояние q_5 является допускающим, распознает слово abd.
- 4. Ветвь $q_1 a \rightarrow q_3$:
 - a. $q_3 \longrightarrow c \longrightarrow q_6$.
 - b. $q_6 d \rightarrow q_7 cocтoяние q_7$ является допускающим, распознает слово aacd.
- б) Множество: {0101, 101, 011}.

Алфавит: {0, 1}.

1. q₀ – начальное состояние.

Переходы:

- $q_0 \longrightarrow q_1$ ветвь для цепочек, начинающихся с 0: 0101 и 011.
- q₀ 1 → q₅ ветвь для 101.

- 2. Ветвь для цепочек, начинающихся с 0:
 - a. $q_1 \longrightarrow q_2$.
 - b. Из состояния q₂:
 - ullet 0101: q_2 0 \to q_3 , затем q_3 1 \to q_4 , где q_4 допускающее.
 - 011: $q_2 1 \rightarrow q_4$, общая допускающая для данной ветви.
- 3. Ветвь для цепочки 101:
 - a. $q_5 \longrightarrow q_6$.
 - b. $q_6 1 \rightarrow q_7$, где q_7 является допускающим.
- в) Множество: {ab, bc, ca}.

Алфавит: {a, b, c}.

1. q₀ – начальное состояние.

Переходы:

- $q_0 a \rightarrow q_1 для ab$.
- $q_0 b \to q_2 для bc$.
- $q_0 c \rightarrow q_3 для ca.$
- 2. Далее:
 - а. $q_1: q_1 b \to q_4*$, где q_4 допускающее, распознаёт ab.
 - b. $q_2: q_2 c \to q_5^*$, где q_5 допускающее, распознаёт bc.
 - с. q_3 : $q_3 a \rightarrow q_6^*$, где q_6 допускающее, распознаёт са.

2. Преобразуйте НКА из (1) в ДКА

При преобразовании НКА в ДКА, создается состояния ДКА, каждое из которых соответствует подмножеству состояний исходного НКА. При отсутствии є-переходов достаточно взять замыкание по начальным состояниям равным самому состоянию. Для каждого нового подмножества определяются переходы по каждому символу алфавита как объединение переходов всех входящих в него состояний. При этом множество считается допускающим, если хотя бы одно из входящих в него состояний НКА является допускающим.

a)

1. Начальное состояние:

$$Q_0 = \{q_0\}.$$

- 2. Переход из Q₀:
 - а. По символу а:

Из q_0 по а переходим в $q_1 \rightarrow Q_1 = \{q_1\}$.

b. По символам b, c, d:

Переходы не определены, пустое множество.

- 3. Переход из $Q_1 = \{q_1\}$:
 - а. По а:

Из q_1 по а получаем $q_2 \to Q_2 = \{q_2\}$.

b. По b:

Из q_1 по b получаем $q_3 \rightarrow Q_3 = \{q_3\}$.

- 4. Переход из $Q_2 = \{q_2\}$:
 - а. По с:

Из q_2 по с переходим в $q_4 \rightarrow Q_4 = \{q_4\}$.

b. Остальные символы не дают перехода.

- 5. Переход из $Q_3 = \{q_3\}$:
 - а. По с:

Из q_3 по $c \to q_6 \to Q_6 = \{q_6\}$, принимающее, так как $q_6 -$ финальное для abc.

b. По d:

Из q_3 по $d \to q_7 \to Q_7 = \{q_7\}$, принимающее, для abd.

- 6. Переход из $Q_4 = \{q_4\}$:
 - а. По d:

Из q_4 по $d \to q_5 \to Q_5 = \{q_5\}$, принимающее, для aacd.

Принимающими будут множества, содержащие:

- $Q_5 = \{q_5\}.$
- $Q_6 = \{q_6\}.$
- $Q_7 = \{q_7\}.$
- б)
- 1. Начальное состояние:

$$Q_0 = \{q_0\}.$$

- 2. Переходы из Q₀:
 - а. По 0:

Из q_0 по 0 могут быть переходы в два состояния, так как в НКА для 0101 и 011 оба начинаются с 0.

$$Q_1 = \{q_1, q_8\}.$$

b. По 1:

Из q_0 по 1 переходим в $q_5 \to Q_5 = \{q_5\}$.

- 3. Переход из $Q_1 = \{q_1, q_8\}$:
 - а. По 1:

Из q_1 по $1 \to q_2$, из q_8 по $1 \to q_9$, таким образом $Q_2 = \{q_2, \, q_9\}.$

b. По символам 0 или 1 — пустое множество.

- 4. Переход из $Q_2 = \{q_2, q_9\}$:
 - а. По 0:

Из q_2 по $0 \rightarrow q_3$; если для q_9 по 0 перехода нет, то $Q_3 = \{q_3\}$.

- b. Остальные переходы не дают дополнительных состояний.
- 5. Переход из $Q_3 = \{q_3\}$:
 - а. По 1:

Из q_3 по 1 \rightarrow q_4 , получаем $Q_4 = \{q_4\}$, которое является принимающим, цепочка 0101.

- 6. Обработка ветви для цепочки 101:
 - а. $Q_5 = \{q_5\}$, из Q_0 по 1.
 - b. Из Q₅ по 0:
 Из q₅ по 0 → q₆, получаем Q₆ = {q₆}.
 - с. Из Q6 по 1:
 - d. Из q_6 по $1 \rightarrow q_7$, получаем $Q_7 = \{q_7\}$, принимающее, для 101.
- 7. Отдельная обработка для цепочки 011:

Уже рассмотренная ветвь через Q_1 и Q_2 привела к конечному состоянию $Q_4 = \{q_4\}$ для 0101, но цепочка 011 должна обрабатываться отдельно. Если рассматривать, что переходы из Q_0 по 0 могли быть неоднозначны, то можно выделить:

- Из Q_0 по $0 \rightarrow Q_1 = \{q_1, q_8\}$.
- Из Q_1 по 1: $Q_2 = \{q_2, q_9\}$.
- Из Q₂:

Если по 1 для некоторого элемента переход существует, то: Рассмотрим, что для q_9 по 1 \rightarrow q_{10} , тогда дополнительно из Q_2 по 1 дополнительно получаем Q_{10} ' = $\{q_{10}\}$. Таким образом, для цепочки 011:

- Из Q_0 по $0 \to \{q_1, q_8\}$.
- Из $\{q_1, q_8\}$ по $1 \to \{q_2, q_9\}$.
- Из $\{q_2, q_9\}$ по 1 \rightarrow получаем $\{q_{10}\}$, если только q_9 имеет переход по 1.

Тогда $Q_{10} = \{q_{10}\}$ будет принимающим состоянием для 011.

Принимающими будут множества, содержащие:

- $Q_4 = \{q_4\}.$
- $Q_7 = \{q_7\}.$
- $Q_{10} = \{q_{10}\}.$

B)

1. Начальное состояние:

$$Q_0 = \{q_0\}.$$

- 2. Переходы из Q₀:
 - а. По а:

 $Q_1 = \{q_1\}$, для цепочки ab.

b. По b:

$$Q_3 = \{q_3\}$$
, для bc.

с. По с:

$$Q_5 = \{q_5\}$$
, для са.

- 3. Дальнейшие переходы:
 - а. Из $Q_1 = \{q_1\}$ по b:

Переход в $\{q_2\} \to Q_2 = \{q_2\}$, принимающее для ab.

b. Из $Q_3 = \{q_3\}$ по с:

Переход в $\{q_4\} \to Q_4 = \{q_4\}$, принимающее для bc.

с. Из $Q_5 = \{q_5\}$ по а:

Переход в $\{q_6\} \to Q_6 = \{q_6\}$, принимающее для са.

Принимающими будут множества Q_2 , Q_4 и Q_6 , поскольку они содержат состояния, являющиеся принимающими в исходном НКА.

3. Преобразуйте следующий НКА в эквивалентный ДКА и опишите неформально язык, который он допускает

	0	1
→p	{p,q}	{p}
q	{r,s}	{t}
r	{p,r}	{t}
* s	Ø	Ø
*t	Ø	Ø

Обозначим состояния для исходного НКА:

- р начальное.
- q, r промежуточные.
- s, t конечные.

Начальное состояние ДКА: {р}.

Переходы:

- 1. Из {р}:
 - a. по $0 \rightarrow \{p, q\}$.
 - b. no $1 \rightarrow \{p\}$.
- 2. Из {p, q}:
 - а. по $0 \to \{p, q, r, s\}$, объединяем переходы из p и q.
 - b. no $1 \rightarrow \{p, t\}$.
- 3. Из {p, q, r, s}:
 - а. по $0 \to \{p, q, r, s\}$, само в себя.
 - b. no $1 \rightarrow \{p, t\}$.
- 4. Из {p, t}:
 - a. no $0 \rightarrow \{p, q\}$.
 - b. по $1 \to \{p\}$.

Состояния ДКА:

- $S_0 = \{p\}$, начальное.
- $S_1 = \{p, q\}$
- $S_2 = \{p, q, r, s\}$
- $S_3 = \{p, t\}$

Конечные состояния:

- $S_1 = \{p, q, r, s\}$, содержит s.
- $S_3 = \{p, t\}$, содержит t

Неформальное описание языка:

Автомат начинает в р. Пока читаем 1, остаёмся в р. При первом 0 мы добавляем в множество и состояние q.

Далее два варианта:

- Если в q, или в r, который возникает по дальнейшим 0, считываем 1, то переходим в t.
- Если в q считываем ещё 0, то переходим в s.

Состояния s и t не имеют исходящих переходов, поэтому слово должно заканчиваться ровно тогда, когда НКА попал в s или t. Язык — это все строки, в которых после некоторой последовательности единиц обязательно встречается хотя бы один ноль, и в итоге завершиться либо на том 0, который привёл к s, либо на 1, которая привела к t.

ДКА содержит четыре непустых подмножества, а язык — это все строки, заканчивающиеся ровно на переходе в s когда двойной 0 из q или t когда 1 из q или r.

4. Рассмотрите следующий є-НКА

	ε	a	b	С
→p	Ø	{p}	{q}	{r}
q	{p}	{q} {r}	{r}	Ø
*r	{q}	{r}	Ø	{p}

- а) найдите є-замыкание каждого из состояний;
- б) выпишите все цепочки, длина которых не более 3, допустимые данным автоматом;

a)

Замыкания:

1. ε — замыкание(р):

 ϵ — замыкание(p) = {p}, переходов по ϵ из p нет.

2. ε — замыкание(q):

 ϵ — замыкание(q) = {q, p}, из q по ϵ можно перейти в p.

3. ε — замыкание(r):

 ϵ — замыкание(r) = {r, q, p}, из r по ϵ \rightarrow q, а из q по ϵ \rightarrow p.

б)

Состояние r – конечное, значит итоговое множество состояний, с учётом ε-замыканий, должно содержать r.

Все принимаемые цепочки для заданной длины:

1. Длина 0:

 ϵ -строка не принимается, начинаем в p, ϵ — замыкание(p) не содержит r.

2. Длина 1:

- a. a: $p \rightarrow p$, HeT r.
- b. b: p → q, ε замыкание $\{q, p\}$, нет r
- с. с: $p \to r$, ε замыкание $\{r, q, p\}$, содержит r, следовательно принимается.

3. Длина 2:

Обозначим:

- $A = \{p\}$, начальное, непринимающее.
- $B = \{q, p\}$, непринимающее.
- $C = \{r, q, p\}$, принимающее.

Из A по а остаёмся в A, по b переходим в B, по $c \to C$.

Из В по $a \rightarrow B$, по $b \rightarrow C$, по $c \rightarrow C$.

Из C по a,b,c \rightarrow C.

Две буквы приводят в C, если: $A \xrightarrow{x} A \mid B \mid C \xrightarrow{y} C$.

Все пары:

- ac: $A \rightarrow A \rightarrow C$
- bb: $A \rightarrow B \rightarrow C$
- bc: $A \rightarrow B \rightarrow C$
- са, сb, сc: уже первый с переводит в C, второй символ оставляет в C.

Тогда принимаются: {ac, bb, bc, ca, cb, cc}.

4. Длина 3:

Если мы в С, принимающем, на любом шаге, то оставшиеся символы удерживают в С.

Следовательно:

- 1. Первый символ с \rightarrow сразу C, любые два символа дальше $(a,b,c) \rightarrow$ остаёмся в C. Строки вида схх, их 9 вариантов.
- 2. Переходим в C на втором символе, тогда третий символ любой $\rightarrow 3*3=9$ вариантов.
- 3. Переходим в С только на третьем символе.

Получаем 23 принимаемые строки из 27 возможных:

- c: caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc.
- ac: aca, acb, acc.
- bb: bba, bbb, bbc.
- bc: bca, bcb, bcc.
- $aa \rightarrow c$: aac.
- $ab \rightarrow b$ или c: abb, abc.
- ba → b или c: bab, bac.
- 5. Опишите обычными словами языки следующих регулярных выражений:
- a) $(1 + \varepsilon)(00*1)*0*$
- б) (0*1*)*000(0+1)*
- (0+10)*1*

a)
$$(1 + \varepsilon)(00*1)*0*$$

Язык, где строки могут начинаться с 1 или без неё, затем содержать повторяющиеся конструкции как 0 с дополнительными нулями и 1, а завершаться цепочкой 0.

Структура:

- 1. Строка может начинаться с 1 или сразу с пустой строки.
- 2. Затем может идти любое количество повторений блока, где блок выглядит так:
 - а. Сначала идёт 0,
 - b. Далее следует любое количество дополнительных 0
 - с. Затем 1.
- 3. Строка завершается произвольной последовательностью нулей, включая пустую.

6) (0*1*)*000(0+1)*

Язык включает все строки, в которых обязательно присутствует последовательность трёх нулей, а до неё строка состоит из упорядоченных блоков нулей и единиц.

Структура:

- 1. Сначала идёт любая последовательность блоков, где каждый блок представляет собой последовательность нулей, возможно пустую, и за ней последовательность единиц, также возможно пустая. Заметим, что в каждом таком блоке все нули располагаются перед единицами, то есть никогда 1 не следует за 0 внутри одного блока.
- 2. Затем должна встретиться подстрока 000.
- 3. После неё может идти любая последовательность символов 0 и 1, включая пустую.

(0+10)*1*

Строки начинаются с комбинаций 0 и 10, то есть, 1 никогда не встречается без следующего 0, а завершаются цепочкой единиц, которая может отсутствовать.

Структура:

- 1. Начинается с любой, возможно пустой, последовательности, составленной из символа 0 и подстроки 10.
- 2. Затем следует произвольное, возможно пустое, количество единиц.
- 6. Напишите регулярное выражение для описания телефонных номеров. Мобильных и городских.

Для мобильных номеров: $+7\d{10}$.

Номер мобильного телефона в России начинается с +7, за которым следует 10 цифр.

Для городских номеров: $(?:\+7|8)\s^*\(\d{3}\)\s^*\d{3}-\d{2}-\d{2}$

Номер городского телефона может начинаться с +7 или 8. Далее, возможно, идут пробелы, затем код города в круглых скобках, после чего – опциональные пробелы и сам номер.

Примеры:

- +7 (495) 123-45-67
- 8(495)123-45-67
- 7. Дано регулярное выражение (0+1)*1(0+1)+(0+1)*1(0+1)(0+1). С помощью дистрибутивных законов преобразуйте его в два различных, более простых, эквивалентных выражения.

Оба слагаемых содержат общий префикс (0+1)*1(0+1). Можно заметить что, в первом слагаемом после общего префикса ничего не остаётся, что можно записать как ε , а во втором слагаемом остается (0+1).

Получается: $(0+1)*1(0+1)(\epsilon+(0+1))$.

Также можно вынести не всю общую часть, а (0 + 1)*1. Тогда можно упростить к: (0 + 1)*1((0 + 1) + (0 + 1)(0 + 1)).

8. Постройте конечный автомат для распознавания в тексте переменных. Для простоты будем считать: имена переменных, функций, методов должны содержать строчные и прописные буквы латинского алфавита, цифры от 0 до 9, знак _. При этом начинаться имя должно с буквы. Для расширения: используйте также выделение специальных зарезервированных "магических имён", которые играют особую роль в Руthon (возьмем, init , import , file).

Автомат для обычных идентификаторов:

- q0, начальное: При входном символе из диапазона A–Z или a–z \rightarrow переход в q1.
- q1, принимающее:
 При входном символе из диапазона A–Z, а–z, цифры (0–9) или символ → остаёмся в q1.

Регулярное выражение для обычного идентификатора: [A-Za-z][A-Za-z0-9_]*

Распознавание магических имён:

Если из q0 первым символом является _, проверяем, что сразу после него идёт ещё _. Далее, с помощью ветвления, сравниваем последовательность символов с одним из зарезервированных имён:

- init
- __import__
- file

Если последовательность полностью совпадает с одним из этих паттернов, автомат переходит в специальное принимающее состояние.

9. Постройте конечный автомат для распознавания в тексте зарезервированных слов. Для простоты возьмем следующие слова: class, for, while, if, elif, else, function, procedure.

Схема:

- Начальное состояние:
 q0.
- 2. Из q0 по первому символу осуществляется ветвление:
 - а. Если символ = с:

Распознаётся слово class: q0 — $c \rightarrow q1$ — $1 \rightarrow q2$ — $a \rightarrow q3$ — $s \rightarrow q4$ — $s \rightarrow q5$, конечное.

b. Если символ = f:

Из q0 переход по f ведёт к ветке, где различают:

- i. for: $q0 f \rightarrow q6 o \rightarrow q7 r \rightarrow q8$, конечное.
- ii. function: $q0 f \rightarrow q6 u \rightarrow q9 n \rightarrow q10 c \rightarrow q11 t \rightarrow q12 i \rightarrow q13 o \rightarrow q14 n \rightarrow q15$, конечное.
- c. Если символ = w:

while: $q0 - w \rightarrow q16 - h \rightarrow q17 - i \rightarrow q18 - l \rightarrow q19 - e \rightarrow q20$, конечное.

d. Если символ = i:

if: q0 — i \rightarrow q21 — f \rightarrow q22, конечное.

е. Если символ = е:

Из q0 переход по е ведёт к ветке для слов, начинающихся с el: q0 — $e \rightarrow q23$ — $l \rightarrow q24$, затем:

- i. elif: $q24 i \rightarrow q25 f \rightarrow q26$, конечное.
- іі. else: $q24 s \rightarrow q27 e \rightarrow q28$, конечное.
- f. Если символ = p:

procedure: q0 — p \rightarrow q29 — r \rightarrow q30 — o \rightarrow q31 — c \rightarrow q32 — e \rightarrow q33 — d \rightarrow q34 — u \rightarrow q35 — r \rightarrow q36 — e \rightarrow q37, конечное.

10. Напишите регулярное выражение для проверки корректности использования скобок — все скобки должны быть в паре: (), [], {}.

Регулярное выражение:

Для каждой группы используется конструкция вида $((?>[^()]*|g<0>)*)$, где:

- \(открывающая скобка.
- $(?>[^{()}]*|_{g<0>)*$ либо последовательность символов, не являющихся скобками, либо рекурсивный вызов того же шаблона.
- √) закрывающая скобка.

Вывод.

В ходе выполнения данной практической работы были исследованы методы построения конечных автоматов для распознавания цепочек и их преобразование в ДКА.

Также вычислены є-замыкания, построены регулярные выражения для проверки корректности вложенности скобок, форматов телефонных номеров и идентификаторов.

Результаты демонстрируют практическое применение теории автоматов и регулярных выражений в лексическом анализе.