Versuch 351

Fourier- Analyse und Sythese

 ${\bf Stefanie\ Hilgers} \\ {\bf Stefanie. Hilgers@tu-dortmund. de}$

Lara Nollen Lara.Nollen@tu-dortmund.de

Durchführung: 14.11.2018 Abgabe: 21.11.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1 Theorie

2 Durchführung

3 Auswertung

3.1 Zählrohr-Charakteristik

Die Messwerte der Zählrohr-Charakteristik sind in Tabelle 1 abzulesen. Aus den Werten für die Anzahl N
 der Impulse pro min lässt sich durch

$$\Delta N = \sqrt{N} \tag{1}$$

der Fehler der Messung bestimmen.

 ${\bf Tabelle~1:}~{\bf Messwerte~der~Z\ddot{a}hlrohrcharakteristik}$

U/V	N pro min	ΔN pro min	$I/\mu A$
300	0	0	0,05
310	11511	107	0,10
320	12126	110	$0,\!15$
330	12288	111	$0,\!20$
340	12304	111	$0,\!20$
350	12449	112	$0,\!20$
360	12240	111	0,20
370	12498	112	0,20
380	12484	112	$0,\!25$
390	12615	112	0,30
400	12668	113	$0,\!32$
410	12663	113	0,39
420	12648	112	0,40
430	12899	114	0,40
440	12715	113	0,40
450	12858	113	0,41
460	12931	114	0,50
470	12905	114	0,55
480	12744	113	0,60
490	12745	113	0,60
500	12750	113	0,60
510	12784	113	0,60
520	12767	113	0,60
530	12693	113	0,65
540	12860	113	0,70
550	12623	112	0,70
560	12936	114	0,80
570	12704	113	0,80
580	12952	114	0,80
590	13016	114	0,85
600	12937	114	0,90
610	12956	114	0,90
620	13 136	115	1,00
630	12962	114	1,00
640	13 118	115	1,00
650	13 053	114	1,00
660	13 338	115	1,10
670	13 150	115	1,00
680	13358	116	1,10
690	13 630	117	1,20
700	13 539	116	1,20

Die Werte sind, zusammen mit den entsprechenden Fehlerbalken, in Abbildung $\ref{Abbildung}$ dargestellt, wobei der erste Wert bei $300\,\mathrm{V}$ zur besseren Skalierung außer Acht gelassen wird. Es lässt sich erkennen, dass das Plateau in einem Bereich von etwa $400\,\mathrm{V}$ bis $650\,\mathrm{V}$ liegt. In diesem Bereich wird dann eine lineare Ausgleichsrechnung der Form

$$y = a \cdot x + b \tag{2}$$

durchgeführt, woraus sich die Parameter

$$a = 1.32 \pm 0.29 \frac{1}{V}$$

 $b = 12154 \pm 154 V$,

ergeben. Da der Startwert bei $400\,\mathrm{V}$ bei $12668\,\mathrm{Impulsen}$ pro Minute liegt, entspricht a einer Steigung von 0,0104% pro $1\,\mathrm{V}$, also 1,04% pro $100\,\mathrm{V}$.

Die gemessenen Werte zum zeitlichen Abstand der Primär- und Nachentladungsimpulsen befinden sich in Tablle 2.

Tabelle 2: Messwerte der Nachentladung

U/V	t/ms
350	0,4
400	2,6
450	2,5
500	3,75

3.2 Bestimmung der Totzeit

Bei der Zwei-Quellen-Methode lauten die gemessenen Werte bei einer Spannung von $450\,\mathrm{V}$ in einer Minute :

$$\begin{split} N_1 &= 12835 \pm 113 \\ N_2 &= 15937 \pm 126 \\ N_{1+2} &= 28081 \pm 168 \end{split}$$

Aus Gleichung ?? ergibt sich somit eine Totzeit von

$$T \approx (101 \pm 34) \,\mu s$$
,

wobei sich der Fehlre nach Gleichung ?? durch die Formel

$$\Delta T = \sqrt{\left(\frac{N_1^2 - N_2^2 - N_{12}}{2N_1^2N_2}\right)^2 \cdot (\Delta N_1)^2 + \left(\frac{N_2^2 - N_1^2 - N_{12}}{2N_1N_2^2}\right)^2 \cdot (\Delta N_2)^2 + \left(\frac{1}{2N_1N_2}\right)^2 \cdot (\Delta N_{12})^2} \tag{3}$$

ergibt.

Die mithilfe des Oszilloskops gemessenen Totzeiten sind in Tabelle?? abzulesen.

Tabelle 3: Messwerte der Totzeit

U/V	$t/\mu s$
400	160
450	175
500	175
550	200
600	210

Durch die Gleichung

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{4}$$

lässt sich der Mittelwert bilden, wobei der dazugehörige Fehler sich durch

$$\Delta \bar{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 (5)

ergibt. Hierdurch ergibt sich somit insgesamt eine Totzeit von

$$T \approx (184 \pm 9) \,\mu s$$

3.3 Freigesetzte Ladung

Die pro Teilchen vom Zählrohr freigesetzten Ladungsmenge lässt sich die Formel ?? berechen, wobei $\Delta t = 60$ s beträgt. Der Fehler lässt sich nach Gleichung ?? durch

Fehler
$$\Delta Q = \frac{\bar{I} \cdot \Delta t}{N^2} \cdot \Delta N$$
 (6)

berechnen. Die so berechneten Werte lassen sich in Tabelle?? ablesen.

Tabelle 4: Werte der pro Teilchen vom Zählrohr freigesetzten Ladungsmenge

U/V	N pro min	ΔN pro min	$I/\mu A$	$\Delta Q/\mathrm{e}_0$	Fehler $\Delta Q/e_0$
300	0	0	0,05	0	0
310	11511	107	0,10	$0,325 \cdot 10^{10}$	$0,00 \cdot 10^{10}3$
320	12126	110	0,15	$0.463 \cdot 10^{10}$	$0,004 \cdot 10^{10}$
330	12288	111	0,20	$0,610 \cdot 10^{10}$	$0,006 \cdot 10^{10}$
340	12304	111	0,20	$0,609 \cdot 10^{10}$	$0,005 \cdot 10^{10}$
350	12449	112	0,20	$0,602 \cdot 10^{10}$	$0,005 \cdot 10^{10}$
360	12240	111	0,20	$0,612 \cdot 10^{10}$	$0,006 \cdot 10^{10}$
370	12498	112	0,20	$0,599 \cdot 10^{10}$	$0,005 \cdot 10^{10}$
380	12484	112	$0,\!25$	$0,750 \cdot 10^{10}$	$0.007 \cdot 10^{10}$
390	12615	112	0,30	$0.891 \cdot 10^{10}$	$0,008 \cdot 10^{10}$
400	12668	113	0,32	$0,946 \cdot 10^{10}$	$0,008 \cdot 10^{10}$
410	12663	113	0,39	$1,153\cdot10^{10}$	$0.010 \cdot 10^{10}$
420	12648	112	0,40	$1,184\cdot10^{10}$	$0,010 \cdot 10^{10}$
430	12899	114	0,40	$1{,}161 \cdot 10^{10}$	$0.010 \cdot 10^{10}$
440	12715	113	0,40	$1,178 \cdot 10^{10}$	$0,010 \cdot 10^{10}$
450	12858	113	0,41	$1,194\cdot10^{10}$	$0.010 \cdot 10^{10}$
460	12931	114	0,50	$1,448 \cdot 10^{10}$	$0.013 \cdot 10^{10}$
470	12905	114	$0,\!55$	$1,596 \cdot 10^{10}$	$0,014 \cdot 10^{10}$
480	12744	113	0,60	$1,763 \cdot 10^{10}$	$0.016 \cdot 10^{10}$
490	12745	113	0,60	$1,763 \cdot 10^{10}$	$0.016 \cdot 10^{10}$
500	12750	113	0,60	$1,762 \cdot 10^{10}$	$0.016 \cdot 10^{10}$
510	12784	113	0,60	$1,758 \cdot 10^{10}$	$0.016 \cdot 10^{10}$
520	12767	113	0,60	$1,760\cdot10^{10}$	$0.016 \cdot 10^{10}$
530	12693	113	0,65	$1,918 \cdot 10^{10}$	$0.017 \cdot 10^{10}$
540	12860	113	0,70	$2,038 \cdot 10^{10}$	$0.018 \cdot 10^{10}$
550	12623	112	0,70	$2,077 \cdot 10^{10}$	$0.018 \cdot 10^{10}$
560	12936	114	0,80	$2,316\cdot10^{10}$	$0.020 \cdot 10^{10}$
570	12704	113	0,80	$2,358 \cdot 10^{10}$	$0.021 \cdot 10^{10}$
580	12952	114	0,80	$2,313\cdot10^{10}$	$0.020 \cdot 10^{10}$
590	13016	114	0,85	$2,446 \cdot 10^{10}$	$0.021 \cdot 10^{10}$
600	12937	114	0,90	$2,605 \cdot 10^{10}$	$0.023 \cdot 10^{10}$
610	12956	114	0,90	$2,601 \cdot 10^{10}$	$0.023 \cdot 10^{10}$
620	13136	115	1,00	$2,851 \cdot 10^{10}$	$0.025 \cdot 10^{10}$
630	12962	114	1,00	$2,889 \cdot 10^{10}$	$0.025 \cdot 10^{10}$
640	13118	115	1,00	$2,855 \cdot 10^{10}$	$0.025 \cdot 10^{10}$
650	13053	114	1,00	$2,869 \cdot 10^{10}$	$0.025 \cdot 10^{10}$
660	13338	115	1,10	$3,088 \cdot 10^{10}$	$0.027 \cdot 10^{10}$
670	13150	115	1,00	$2,848 \cdot 10^{10}$	$0.025 \cdot 10^{10}$
680	13358	116	1,10	$3,084 \cdot 10^{10}$	$0.027 \cdot 10^{10}$
690	13630	117	1,20	$3,297 \cdot 10^{10}$	$0,028 \cdot 10^{10}$
700	13 539	116	1,20	$3,319 \cdot 10^{10}$	$0,028 \cdot 10^{10}$

4 Diskussion