Глава IV КОЛЕБАНИЯ И ВОЛНЫ

§ 12. Гармоническое колебательное движение и волны

В задачах 12.43, 12.55 дан авторский вариант решения.

12.1. Написать уравнение гармонического колебательного движения с амплитудой A=5 см, если за время t=1 мин совер-шается 150 колебаний и начальная фаза колебаний $\varphi=\frac{\pi}{4}$. Начертить график этого движения.

Решение:

Уравнение гармонического колебания имеет вид: $x = A sin(\omega t + \varphi)$. Круговая частота $\omega = 2\pi n = 2\pi \frac{N}{t}$. По условию N = 150, отсюда $\omega = 5\pi$. Подставляя числовые данные, получим уравнение данного колебания $x = 0.05 sin \left(5\pi t + \frac{\pi}{4} \right)$.

12.2. Написать уравнение гармонического колебательного движения с амплитудой A=0, I м, периодом T=4 с и начальной фазой $\varphi=0$.

Решение:

Уравнение гармонического колебания имеет вид: $x = A \sin(\omega t + \varphi)$. Круговая частота $\omega = \frac{2\pi}{T}$. Подставляя числовые данные, получим $x = 0.1 \sin \frac{\pi}{2} t$.

12.3. Написать уравнение гармонического колебательного движения с амплитудой A=50 мм, периодом T=4 с и начальной фазой $\varphi=\frac{\pi}{4}$. Найти смещение x колеблющейся точки от положения равновесия при t=0 и t=1,5 с. Начертить график этого движения.

Решение:

260

Уравнение гармонического колебательного движения имеет вид: $x = A \sin\left(\frac{2\pi}{T}t + \varphi\right)$. В данных условиях

$$x = 0.05 sin \left(\frac{\pi}{2}t + \frac{\pi}{2}\right)$$
. Отсюда $x_1 = 0.05 sin \frac{\pi}{4} = 0.035$; $x_2 = 0.05 sin \left(\frac{\pi}{2} \cdot 1.5 + \frac{\pi}{4}\right) = 0$.

T t c	0	0,5	1	1,5	2	2,5	3	3,5	4
x, M	0,035	0,050	0,035	0	-0,035	-0,050	-0,035	0,000	0,035

12.4. Написать уравнение гармонического колебательного движения с амплитудой $A=5\,\mathrm{cm}$ и периодом $T=8\,\mathrm{c}$, если начальная фаза φ колебаний равна: a) 0; б) $\frac{\pi}{2}$; в) π ; г) $\frac{3\pi}{2}$; д) 2π . Начертить график этого движения во всех случаях.

Решенне:

Уравнение гармонического колебания имеет вид: $x = A \sin(\omega t + \varphi)$. Круговая частота $\omega = \frac{2\pi}{T}$. Подставим числовые данные. Уравнение гармонического колебательного движения будет иметь вид:

a)
$$x = 0.05 \sin \frac{\pi}{4} t$$
;

6)
$$x = 0.05 \sin\left(\frac{\pi}{4}t + \frac{\pi}{2}\right) = 0.05 \cos\frac{\pi}{4}t$$
;

B)
$$x = 0.05 \sin\left(\frac{\pi}{4}t + \pi\right) = -0.05 \sin\frac{\pi}{4}t$$
;

r)
$$x = 0.05 \sin\left(\frac{\pi}{4}t + \frac{3\pi}{2}\right) = -0.05 \cos\frac{\pi}{4}t$$
;

д)
$$x = 0.05 \sin \frac{\pi}{4} t.$$

12.5. Начертить на одном графике два гармонических колебания с одинаковыми амплитудами $A_1=A_2=2$ см и одинаковыми периодами $T_1=T_2=8$ с, но имеющие разность фаз $\varphi_2-\varphi_1$, равную: a) $\frac{\pi}{4}$; б) $\frac{\pi}{2}$; в) π ; г) 2π .

Решение:

Уравнение гармонического колебания имеет вид: $x = A \sin(\omega t + \varphi)$. Круговая частота $\omega = \frac{2\pi}{T} = \frac{\pi}{4}$. Пусть начальная фаза первого колебания $\varphi_1 = 0$, тогда его уравнение будет иметь вид: $x = 0.02 \sin(\frac{\pi}{4}t)$. Подставляя числовые данные, для второго колебания получим:

a)
$$x = 0.02 \sin\left(\frac{\pi}{4}t + \frac{\pi}{4}\right);$$

6)
$$x = 0.02 \sin\left(\frac{\pi}{4}t + \frac{\pi}{2}\right);$$

B) $x = 0.02 \sin\left(\frac{\pi}{4}t + \pi\right);$

$$\Gamma) \ \ x = 0.02 \sin\left(\frac{\pi}{4}t\right).$$

12.6. Через какое время от начала движения точка, совершающая гармоническое колебание, сместится от положения равновесия на половину амплитуды? Период колебаний $T=24\,\mathrm{c}$, начальная фаза $\varphi=0$.

Решение:

Уравнение гармонического колебательного движения имеет вид: $x = A sin \left(\frac{2\pi}{T} t + \varphi \right)$. Подставляя числовое значение периода T и начальной фазы φ , получим $x = A sin \left(\frac{\pi}{12} t \right)$. По условию $x = \frac{A}{2}$, отсюда $0.5 = sin \left(\frac{\pi}{12} t \right)$, $\frac{\pi}{12} t = \frac{\pi}{6}$ или t = 2 с.

12.7. Начальная фаза гармонического колебаныя $\varphi = 0$. Через какую долю периода скорость точки будет равна половине се максимальной скорости?

Решенне:

Уравнение гармонического колебательного движения имеет вид:
$$x = A sin \left(\frac{2\pi}{T} t + \varphi \right)$$
. Скорость точки, совершающей колебания, $v = \frac{dx}{dt}$; $v = \frac{2\pi}{T} A cos \left(\frac{2\pi}{T} t \right)$. Максимальной скорости точка достигнет при $cos \left(\frac{2\pi}{T} t \right) = 1$. Т. е. $v_{max} = \frac{2\pi}{T} A$. По условию $v = \frac{v_{max}}{2}$, тогда $\frac{2\pi}{T} A cos \left(\frac{2\pi}{T} t \right) = \frac{\pi}{T} A$; $cos \frac{2\pi}{T} = \frac{1}{2}$; $\frac{2\pi}{T} t = \frac{\pi}{3}$; $t = \frac{T}{6}$.

12.8. Через какое время от начала движения точка, совер **шающая** колебательное движение по уравнению $x = 7 \sin \frac{\pi}{2} t$, **проходит путь от положения** равновесия до максимального сме**щения?**

Решение:

По условию точка совершает гармоническое колебательное движение по закону $x = 7 \sin \frac{\pi}{2} t$. Сопоставляя это уравнение с общим уравнением гармонических колебаний $x = A \sin \frac{2\pi}{T} t$, находим, что период колебаний T = 4 с. За время равное периоду колебаний точка совершает одно полное колебание, а прохождение пути от положения равновесия до максимального смещения составляет время $t = \frac{T}{4} = 1$ с.

12.9. Амплитуда гармонического колебання A = 5 см, период T = 4 с. Найти максимальную скорость v_{max} колеблющейся точ-ки и ее максимальное ускорение a_{max} .

Решение:

Скорость и ускорение точки, совершающей колебания, определяется соотношениями $v=\frac{dx}{dt}=\frac{2\pi}{T}A\cos\left(\frac{2\pi}{T}t+\varphi\right)$ и $a=\frac{dv}{dt}=\frac{d^2x}{dt^2}=-\frac{4\pi^2}{T^2}A\sin\left(\frac{2\pi}{T}t+\varphi\right)$. Они имеют максимальные значения соответственно при равенстве синуса и косинуса ± 1 , т. е. $v_{max}=\frac{2\pi}{T}A=7,85\cdot 10^{-2}\,\mathrm{M/c}$ и $a_{max}=\left|-\frac{4\pi^2}{T^2}A\right|=0,12\,\mathrm{m/c}^2$.

12.10. Уравнение движения точки дано в виде $x=2\sin\left(\frac{\pi}{2}t+\frac{\pi}{4}\right)$ см. Найти период колебаний T, максимальную скорость v_{max} и максимальное ускорение a_{max} точки.

Решение:

Сопоставим уравнение движения точки $x=2\sin\left(\frac{\pi}{2}i+\frac{\pi}{4}\right)$ с общим уравнением гармонических колебаний $x=A\sin\left(\frac{2\pi}{T}i+\varphi\right)$. Тогда амплитуда колебаний $A=2\,\mathrm{cm}$, а период колебаний $T=4\,\mathrm{c}$. Максимальная скорость и максимальное ускорение (см. задачу 12.9) $v_{max}=\frac{2\pi}{T}A=3,14\cdot10^{-2}\,\mathrm{m/c}$ и $a_{max}=\frac{4\pi^2}{T^2}A=4,93\cdot10^{-2}\,\mathrm{m/c}$.

12.11. Уравнение движения точки дано в виде $x = \sin \frac{\pi}{6}t$.

жити моменты времени t, в которые достигаются максималь-

решение:

корость точки
$$v = \frac{dx}{dt} = \frac{\pi}{6} \cos \frac{\pi}{6} t$$
. Максимального значе-

ния она достигает при $\cos\frac{\pi}{6}t=\pm 1$ или $\frac{\pi}{6}t=n\pi$, где n=0,

 $\mathbf{2}$, $\mathbf{3}$... Соответствующие моменты времени t=0, 6, 12,

Ускорение точки
$$a = \frac{dv}{dt} = -\frac{\pi^2}{36} \sin \frac{\pi}{6} t$$
 будет макси-

мальным при $sin\frac{\pi}{6}t=1$ или $\frac{\pi}{6}t=\frac{(2n+1)\pi}{2}$. Отсюда най-

пем моменты времени t, соответствующие максимальному **ускорению**: t = 3, 9, 15 с ...

12.12. Точка совершает гармоническое колебание. Период колебаний T=2 с, амплитуда A=50 мм, начальная фаза $\varphi=0$. Найти скорость v точки в момент времени, когда смещение точот положения равновесия x=25 мм.

Решение:

равнение колебания точки имеет вид:
$$x = A \sin\left(\frac{2\pi}{T}t\right)$$
,

откуда
$$t = \frac{arcsin(x/A)}{2\pi/T} = \frac{1}{6}$$
 с. Скорость точки $v = \frac{dx}{dt}$;

$$v = \frac{2\pi}{T} A \cos\left(\frac{2\pi}{T}t\right)$$
. Подставив полученное значение t ,

получим v = 13.6 см/с.

12.13. Написать уравнение гармонического колебательного движения, если максимальное ускорение точки $a_{max} = 49.3 \, \mathrm{cm/c^2},$

период колебаний $T=2\,\mathrm{c}$ и смещение точки от положения равновесня в начальный момент времени $x_0=25\,\mathrm{mm}$.

Решение:

Из уравнения для максимального ускорения (см. задачу 12.9) $a_{max} = \frac{4\pi^2 A}{T^2}$ найдем амилитуду колебаний $A = \frac{a_{mox}T^2}{4\pi^2} = 5$ см. Подставив значения амплитуды и периода в уравнение гармонических колебаний, получим $x = 5\sin(\pi t + \varphi_0)$ — (1). Начальную фазу колебаний найдем из условия, что при t = 0 $x = x_0$. Тогда уравнение (1) примет вид: $x_0 = 5\sin\varphi_0$, откуда $\sin\varphi_0 = \frac{x_0}{5}$ и $\varphi_0 = \arcsin\frac{x_0}{5} = \frac{\pi}{6}$. Подставляя начальную фазу в уравнение (1), окончательно получаем $x = 5\sin\left(\pi t + \frac{\pi}{6}\right)$.

12.14. Начальная фаза гармонического колебания $\varphi=0$. При смещении точки от положения равновесия $x_1=2,4$ см скорость точки $v_1=3$ см/с, а при смещении $x_2=2,8$ см ее скорость $v_2=2$ см/с. Найти амплитуду A и период T этого колебания.

Решение:

Т. к. по условию начальная фаза $\varphi=0$, то уравнения для смещения и скорости будут иметь следующий вид: $x=A\sin\frac{2\pi}{T}t$ — (1) и $v=\frac{2\pi}{T}A\cos\frac{2\pi}{T}t$ — (2). Из уравнения (1) находим $\sin\frac{2\pi}{T}t=\frac{x}{A}$ или $\cos\frac{2\pi}{T}t=\sqrt{1-\frac{x^2}{4^2}}$

(3). Подставляя (3) в (2), получаем
$$v = \frac{2\pi}{T}A\sqrt{1-\frac{x^2}{A^2}}$$
 или $v^2 = \frac{4\pi^2A^2}{T^2}\left(1-\frac{x^2}{A^2}\right) = \frac{4\pi^2}{T^2}\left(A^2-x^2\right)$. Для заданных значений смещения и скорости получаем $v_1^2 = \frac{4\pi^2}{T^2}\left(A^2-x_1^2\right)$ — (4) и $v_2^2 = \frac{4\pi^2}{T^2}\left(A^2-x_2^2\right)$ — (5). Разделим (4) на (5), тогда $\frac{v_1^2}{v_2^2} = \frac{A^2-x_1^2}{A^2-x_2^2}$ или

$$H_3$$
 уравнения (4) период колебаний $T = \frac{2\pi}{v_0} \sqrt{A^2 - x_1^2} = 4.1 \, \text{c}.$

 $v_1^2 x_2^2 - v_2^2 x_1^2 = (v_1^2 - v_2^2) A^2$. Отсюда $A = \sqrt{\frac{v_1^2 x_2^2 - v_2^2 x_1^2}{v_1^2 - v_2^2}} = 3.1$ см.

12.15. Уравнение колебания материальной точки массой $m=16\,\Gamma$ имеет вид $x=0.1\sin\left(\frac{\pi}{8}\,t+\frac{\pi}{4}\right)$ м. Построить график зависимости от времени t (в пределах одного периода) силы F, действующей на точку. Найти максимальную силу F_{max} .

Решенне:

Т. к. уравнение колебания имеет вид $x = 0.1 sin \left(\frac{\pi}{8} t + \frac{\pi}{4} \right)$, то ускорение при колебательном движении $a = \frac{d^2 x}{r^2}$ $=0.1\frac{\pi^2}{64}sin\left(\frac{\pi}{2}t+\frac{\pi}{4}\right)$. Сила, под действием которой точка совершает гармоническое колебание. $F = ma = 0.1m \frac{\pi^2}{64} sin \left(\frac{\pi}{8} t + \frac{\pi}{4} \right)$. Эта сила будет максимальной, когда $sin\left(\frac{\pi}{8}t+\frac{\pi}{4}\right)=1$, откуда $t_{max}=2$ с. Тогда $F_{max} = 0.1 m \frac{\pi^2}{64} = 246 \text{ мкH}.$ Для построения графика необходимо также найти пересечение с осыо абецисс $sin\left(\frac{\pi}{8}t+\frac{\pi}{4}\right)=0$, откуда $t_0=6$ с. Подставляя числовые данные, построим график зависимости в пределах одного периода.

12.16. Уравнение колебаний материальной точки массой $m=10\,\mathrm{r}$ имеет вид $x=5\,sin\!\left(\frac{\pi}{5}t+\frac{\pi}{4}\right)$ см. Найти максимальную силу F_{max} , действующую на точку, и полную энергию W колеблющейся точки.

Решение:

Т. к. уравнение колебаний имеет вид $x = 5 sin \left(\frac{\pi}{5}t + \frac{\pi}{4}\right)$ — (1), то ускорение при колебательном движений $a = \frac{d^2x}{dt^2} = 5\frac{\pi^2}{25} sin \left(\frac{\pi}{5}t + \frac{\pi}{4}\right)$. Тогда максимальная сила, действующая на точку (см. задачу 12.15), 270

$$m = m \frac{\pi^2}{5} = 197$$
 мкН. Кинетическая энергия мате-

риальной точки равна
$$W_{\kappa} = \frac{mv_{\chi}^2}{2} = \frac{kA^2\omega^2\cos^2(\omega t + \varphi_0)}{2}$$
.

Потенциальная энергия материальной точки равна

$$W_{\mathbf{a}} = \frac{k\alpha^2}{2} = \frac{kA^2 \sin^2(\omega t + \varphi_0)}{2}$$
, a T. K. $k = m\omega^2$, TO

$$m\omega^2 A^2 \sin^2(\omega t + \varphi_0)$$
. При этом за нулевой уровень

отечета потенциальной энергии выбирается положение равновесия (x=0). Полная энергия колеблющейся точки

$$W_0 = W_k + W_n = \frac{m\omega^2 A^2}{2}$$
 или, с учетом $\omega = \frac{2\pi}{T}$, имеем

$$M = \frac{2\pi^2 m}{T^2} A^2$$
 — (2). Из уравнения (1) амплитуда $A = 5$ см

инериод $T=10\,\mathrm{c}$, подставляя их в уравнение (2), получаем W = 4.93 мкДж.

12.17. Уравнение колебания материальной точки массой m=16г имеет вид $x=2\sin\left(\frac{\pi}{4}t+\frac{\pi}{4}\right)$ см. Построить график зависимости от времени t (в пределах одного периода) инетической $W_{\mathbf{x}}$, потенциальной $W_{\mathbf{n}}$ и полной W энергии ТОЧКИ.

Решение:

уравнения для кинетической и потенциальной энергии колеблющейся точки имеют следующий вид: $W_{\kappa} = \frac{\omega^2 m}{2} \times$

$$^{*}A^{2}\cos^{2}(\omega t+\varphi)$$
 и $W_{n}=\frac{\omega^{2}m}{2}A^{2}\sin^{2}(\omega t+\varphi)$. Полная энер-

Тая колеблющейся точки
$$W = \frac{\omega^2 m}{2} A^2$$
 (см. задачу 12.16).

По условию $A=2\,\mathrm{cm},~\omega=\frac{\pi}{4},~\phi=\frac{\pi}{4}.$ Подставляя числовые данные, получим $W_{\mathrm{g}}=2\pi^2\cdot 10^{-7}\cos^2\!\left(\frac{\pi}{4}t+\frac{\pi}{4}\right)$ Дж; $W_{\mathrm{ff}}=2\pi^2\cdot 10^{-7}\sin^2\!\left(\frac{\pi}{4}t+\frac{\pi}{4}\right)$ Дж; $W=2\pi^2\cdot 10^{-7}$ Дж.

12.18. Найти отношение кинетической W_{κ} энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии $W_{\rm n}$ для моментов времени: a) $t=\frac{T}{12};$ б) $t=\frac{T}{8};$ в) $t=\frac{T}{6}$. Начальная фаза колебаний $\varphi=0$.

Решение:

Т. к. по условию начальная фаза колебаний $\varphi=0$, то уравнения для кинстической и потенциальной энергия колеблющейся точки имеют следующий вид: $W_{\kappa} = \frac{2\pi^2 m}{T^2} A^2 \cos^2 \frac{2\pi}{T} t \quad \text{и} \quad W_{\pi} = \frac{2\pi^2 m}{T^2} A^2 \sin^2 \frac{2\pi}{T} t . \quad \text{Гогда}$ отношение энергия $\frac{W_{\kappa}}{W_{\pi}} = \frac{\cos^2 (2\pi t/T)}{\sin^2 (2\pi t/T)} = ctg^2 (2\pi t/T).$

a) Если
$$t = \frac{T}{12}$$
, то $\frac{W_{\kappa}}{W_{\pi}} = ctg^2 \frac{\pi}{6} = 3$. б) Если $t = \frac{T}{8}$, то $\frac{W_{\kappa}}{W_{\pi}} = ctg^2 \frac{\pi}{4} = 1$. в) Если $t = \frac{T}{6}$, то $\frac{W_{\kappa}}{W_{\pi}} = ctg^2 \frac{\pi}{3} = \frac{1}{3}$.

12.19. Найти отношение кинетической энергии W_{κ} точки, совершающей гармоническое колебание, к ее потенциальной энергии W_{π} для моментов, когда смещение точки от положения равновесия составляет: а) $x=\frac{A}{4}$; б) $x=\frac{A}{2}$; в) x=A, где A— амплитуда колебаний.

Решение:

Уравнение гармонического колебательного движения имеет вид $x = A \sin\left(\frac{2\pi}{T}t + \varphi\right)$. Отсюда $\sin\left(\frac{2\pi}{T}t + \varphi\right) = \frac{x}{A}$, или из основного тригонометрического тождества $\cos\left(\frac{2\pi}{T}t + \varphi\right) = \sqrt{1 - \frac{x^2}{A^2}}$. Тогда отношение кинетической энергии к потенциальной (см. задачу 12.18) $\frac{W_{\kappa}}{W_{\pi}} = \frac{\cos^2\left((2\pi t/T) + \varphi\right)}{\sin^2\left((2\pi t/T) + \varphi\right)} = \frac{A^2 - x^2}{x^2}$. а) Если $x = \frac{A}{4}$, то $\frac{W_{\kappa}}{W_{\pi}} = 15$. б) Если $x = \frac{A}{2}$, то $\frac{W_{\kappa}}{W_{\pi}} = 3$. в) Если x = A, то $\frac{W_{\kappa}}{W_{\pi}} = 0$.

12.20. Полная энергня тела, совершающего гармоническое колебательное движение, $W=30~{\rm MkД}$ ж; максимальная сила, действующая на тело, $F_{max}=1.5~{\rm MH}$. Написать уравнение движения этого тела, если период колебаний $T=2~{\rm c}$ и начальная фаза $\phi=\frac{\pi}{3}$.

Решение:

Полная энергия тела, совершающего гармоническое колебательное движение, $W=\frac{2\pi^2m}{T^2}A^2$ — (1), а максимальная сила, действующая на тело, $F_{max}=\frac{4\pi^2m}{T^2}A$ — (2). Разделив (1) на (2), получим $\frac{W}{F_{max}}=\frac{A}{2}$, отсюда амплитуда колебаний $A=\frac{2W}{F_{max}}=0.04$ м. Подставляя амплитуду колебаний, период колебаний и начальную фазу в общее уравнение гармонических колебаний $x=A\sin\left(\frac{2\pi}{T}t+\varphi\right)$, окончательно получаем $x=0.04\sin\left(\pi t+\frac{\pi}{3}\right)$.

12.21. Амплитуда гармонических колебаний материальной точки A=2 см, полная энергия колебаний W=0.3 мкДж. При каком смещении x от положения равновесия на колеблющуюся точку действует сила F=22.5 мкН?

Решение:

Полная энергия тела, совершающего гармоническое колебательное движение, $W=\frac{2\pi^2m}{T^2}A^2$ — (1), а сила, действующая на тело, $F=\frac{4\pi^2m}{T^2}x$ — (2). Разделив (1) на (2), получим $\frac{W}{F}=\frac{A^2}{2x}$, отсюда смещение точки от положения равновесия $x=\frac{A^2F}{2W}=1,5$ см.

12.22. Шарик, подвешенный на нити длиной l=2 м, отклониют на угол $\alpha=4^{\circ}$ и наблюдают его колебания. Полагая колебания незатухающими гармоническими, найти скорость шарика при прохождении им положения равновесия. Проверить полученное решение, найдя скорость шарика при прохождении им положения равновесия из уравнений механики.

Решенне:

уравнение колебательного движения шарика имеет вид: $x = A \sin \frac{2\pi}{T} t$ — (1). При малых отклонениях шарика от ноложения равновесия его амплитуда $A = l \sin \alpha \approx 0.14$ м.

Период колебаний $T = 2\pi \sqrt{\frac{l}{g}} = 2.8 \, \text{c.}$ Тогда уравнение (1)

примет вид: $x = 0.14 \sin \frac{2\pi}{2.8} t$ м. Момент времени t = 0

соответствует положению равновесия. Скорость шарика $v = \frac{dx}{dt} = \frac{0.14 \cdot 2\pi}{2.8} \cos \frac{2\pi}{2.8} t$ м/с. Максимального значения

dt 2,8 2,8 скорость достигает при прохождении шариком положения

равновесия, т. е. $v_{max} = \frac{0.14 \cdot 2\pi}{2.8} = 0.31$ м/с. Решая данную

адачу по законам механики, имеем $v = \sqrt{2gl(1-\cos\alpha)}$ (см. **задачу** 2.108). Подставляя числовые данные, получим v = 0.31 м/с.

12.23. К пружине подвешен груз массой $m = 10 \, \mathrm{kr}$. Зная, что пружина под влиянием силы $F = 9.8 \, \mathrm{H}$ растягивается на $l = 1.5 \, \mathrm{cm}$, найти период T вертикальных колебаний груза.

Решение:

По закону Гука сила упругости F = -kx (знак «минус» говорит о том, что F — возвращающая сила), откуда $k = \frac{|F|}{x}$ — (1) — коэффициент жесткости пружины.

Уравнение второго закона Ньютона для груза имеет вид $m\ddot{x}=-kx$ — (2). Введя обозначение $\omega_0^2=\frac{k}{m}$, преобразуем уравнение (2) следующим образом: $\ddot{x}+\omega_0^2x=0$. Величина $\omega_0=\frac{2\pi}{T}$ — циклическая частота колебаний, отсюда период колебаний вертикального пружинного маятника $T=2\pi\sqrt{\frac{m}{k}}$ — (3). Подставляя (1) в (3), окончательно получим $T=2\pi\sqrt{\frac{ml}{F}}=0.78$ с.

12.24. К пружине подвешен груз. Максимальная кинетическая энергия колебаний груза $W_{\kappa max} = 1$ Дж. Амплитуда колебаний A = 5 см. Найти жесткость k пружины.

Решение:

Кинетическая энергия колебаний груза $W_{\kappa} = \frac{2\pi^2 m}{T^2} \times A^2 \cos^2\left(\frac{2\pi}{T}t + \varphi\right)$ имеет максимальное значение, когда $\cos^2\left(\frac{2\pi}{T}t + \varphi\right) = 1$, т. е. $W_{\kappa max} = \frac{2\pi^2 m}{T^2}A^2$ — (1). Период колебаний груза на пружине $T = 2\pi\sqrt{\frac{m}{k}}$ — (2). Возведя (2) в квадрат и подставив в (1), получим $W_{\kappa max} = \frac{2\pi^2 m}{4\pi^2 m} \times A^2 k = \frac{1}{2}A^2 k$. Откуда найдем жесткость пружины $k = \frac{2W_{\kappa max}}{A^2} = 800 \, \text{H/m}$.