

DIGITAL DESIGN

ASSIGNMENT REPORT

ASSIGNMENT ID: 2

Student Name: 杨钰城

Student ID: 12112323

PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

D= d

(Ctd)

cod

• (20 points) An 8-to-1 MUX has inputs A, B, and C connected to selection lines S_2 , S_1 , and S_0 , respectively. The data inputs I_0 to I_7 are connected as $I_1 = I_2 = I_7 = 1$, $I_3 = I_5 = 0$, $I_0 = I_4 = D$, and $I_6 = D'$. Determine the Boolean expression of the MUX output.

Question 5

- (20 points) Implement the Boolean function $F(A,B,C,D) = \sum (1,2,4,9,12,13,15)$ using
 - 1 decoder and external gates, and
 - 2 8-to-1 MUX and external gates.

Draw the logic diagram.

PART 2: DIGITAL DESIGN LAB (TASK1)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design (provide the Verilog code)
- Truth-table

```
ASSIGNMENT 2

Part 2

Task 1: If we want to realize the Parity checker, the logic Connection is X[0] & x[1] & x[2] & x[2]
```

```
module a2t1_xor(
input [3:0]x,
output y

);
  wire d1;
  xor a1(y,x[3],x[2],x[1],x[0]);
endmodule
```

```
module a2t1_nand(
input [3:0]x,
output y
   );
   wire a1,a2,a3,a4;
   nand b1(a1,x[0]);
   nand b2(a2,x[1]);
   nand b3(a3,x[2]);
   nand b4(a4,x[3]);
   wire c1,c2,c3,c4,c5,c6,c7,c8;
   nand d1(c1,a4,a3,a2,x[0]);
   nand d2(c2,a4,a3,x[1],a1);
   nand d3(c3,a4,x[2],a2,a1);
   nand d4(c4,x[3],a3,a2,a1);
   nand d5(c5,a4,x[2],x[1],x[0]);
   nand d6(c6,x[3],a3,x[1],x[0]);
   nand d7(c7,x[3],x[2],a2,x[0]);
   nand d8(c8,x[3],x[2],x[1],a1);
   nand d9(y,c1,c2,c3,c4,c5,c6,c7,c8);
endmodule
```

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog(provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation.

• Through the simulation result, we can see the result is obviously right as the truth-table, and we use truth-table to design this logic gate, so we can think that the function of the design meet the expectation.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK2)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using primitive gates on Sum-of-Minterms
- Verilog design while using primitive gates on Product-of-Maxterms
- Truth-table

Task 2: The BCD code is valid if the value is n't greater than 9:

F(A,B,C,D)=Z(0,1,2,3,4,5,6,7,8,9)=A'+B'C'

ABE	00	01	-11	10
00	1	l	t	1
01	1	1	ı	1
l l	0	0	ଚ	ฮ
10	ı	ı	0	0

= A'B'c'D' + A'B'C'D + A'B'CD'+A'B'CD + A'BC'D' + A'B'C'D + AB'C'D' + AB'C'D

F(A,B,C,D)= T(10,11,12,13,14,15) =(A'+B'XA'+C') = (A'+B+C'+D)(A'+B+C'+D)(A'+B'+C+D)(A'+B'+C+D)(A'+B'+C'+D)(A'+B'+C'+D)

```
module a2t2_somin(
input [3:0]x,
output y
   wire a1,a2,a3,a4;
   not b1(a1,x[3]);
   not b2(a2,x[2]);
   not b3(a3,x[1]);
   not b4(a4,x[0]);
   wire c1,c2,c3,c4,c5,c6,c7,c8,c9,c10;
   and d1(c1,a1,a2,a3,a4);
   and d2(c2,a1,a2,a3,x[0]);
   and d3(c3,a1,a2,x[1],a4);
   and d4(c4,a1,a2,x[1],x[0]);
   and d5(c5,a1,x[2],a3,a4);
   and d6(c6,a1,x[2],a3,x[0]);
   and d7(c7,a1,x[2],x[1],a4);
   and d8(c8,a1,x[2],x[1],x[0]);
   and d9(c9,x[3],a2,a3,a4);
   and d10(c10,x[3],a2,a3,x[0]);
   or d11(y,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10);
endmodule
```

```
module a2t2_pomax(
4
   input [3:0]x,
    output y
        wire a1,a2,a3;
       not b1(a1,x[3]);
3
        not b2(a2,x[2]);
       not b3(a3,x[1]);
       not b4(a4,x[0]);
       wire c1,c2,c3,c4,c5,c6;
        or d1(c1,a1,x[2],a3,x[0]);
       or d2(c2,a1,x[2],a3,a4);
       or d3(c3,a1,a2,x[1],x[0]);
       or d4(c4,a1,a2,x[1],a4);
       or d5(c5,a1,a2,a3,x[0]);
        or d6(c6,a1,a2,a3,a4);
Э
        and d7(y,c1,c2,c3,c4,c5,c6);
9
    endmodule
1
```

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation

• Through the simulation result, we can see the result out1equals to out2 and out3 equals to out4, which proves DeMorgan of 2 bits is right and the result is right as the truth-table. we use truth-table to design this logic gate, so we can think that the function of the design meet the expectation.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK3)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using data flow (provide the Verilog code)
- Truth-table

```
22
23
     module a2t3_df(
24
     input [3:0]x,
25
     output [3:0]y
         assign y[3]=\simx[3]&&(x[2]||x[1]||x[0])||x[3]&&\sim(x[2]||x[1]||x[0]);
         assign y[2]=x[2]&&(x[1]||x[0])||x[2]&&x(x[1]||x[0]);
28
         assign y[1]=\sim x[1]\&\&x[0]||x[1]\&\&\sim x[0];
29
30
        assign y[0]=x[0];
31
     endmodule
32
```

```
module a2t3_bd(
input [3:0]x,
output reg [3:0]y
      );
   always @(*)
  begin case ({x})
4'b0000:
{y}= 4'b0000;
4'b0001:
      {y}= 4'b1111;
4'b0010:
{y}= 4'b1110;
4'b0011:
{y}= 4'b1101;
       4'b0100:
{y}= 4'b1100;
       4'b0101:
{y}= 4'b1011;
       4'b0110:
{y}= 4'b1010;
       4'b0111:
{y}= 4'b1001;
       4'b1000:
{y}= 4'b1000;
        4'b1001:
        {y}= 4'b0111;
        4'b1010:
       {y}= 4'b0110;
4'b1011:
         {y}= 4'b0101;
         4'b1100:
         {y}= 4'b0100;
4'b1101:
         {y}= 4'b0011;
4'b1110:
        {y}= 4'b0010;
4'b1111:
      {y}= 4'b0001;
endcase
     end
```

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation

```
module a2t3_sim();
reg [3:0]x=3'b0000;
wire [3:0]y,y1;
a2t3_df xixi(
    .x(x),.y(y)
);
a2t3_bd haha(
    .x(x),.y(y1)
);
initial begin
    {x} = 3'b0000;
    repeat(15) #10 {x} = {x}+ 1;
    #10 $finish();
end
endmodule
```


• Through the simulation result, we can see the result is obviously right as the truth-table, and out1 equals to out2 and out3, which proves that three expressions are logical same. we use truth-table to design this logic gate, so we can think that the function of the design meet the expectation.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

- Problems and solutions
- PART 2: DIGITAL DESIGN LAB (TASK4)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using data flow (provide the Verilog code)
- Truth-table

```
module d74139(
input ne,
input[1:0]x,
output reg [3:0]y
  );
 always @(*) begin
   if (∼ne)
   case (x)
      2'b00: y=4'b1110;
      2'b01: y=4'b1101;
      2'b10: y=4'b1011;
      2'b11: y=4'b0111;
   endcase
   else
   y=4'b1111;
 end
endmodule
 module mux16to1(
 input[3:0]sel,
 input[15:0]x,
 output reg y
 );
 always @*
  case({sel})
  4'b0000: y=x[0];
  4'b0001: y=x[1];
  4'b0010: y=x[2];
  4'b0011: y=x[3];
  4'b0100: y=x[4];
  4'b0101: y=x[5];
  4'b0110: y=x[6];
  4'b0111: y=x[7];
  4'b1000: y=x[8];
  4'b1001: y=x[9];
  4'b1010: y=x[10];
  4'b1011: y=x[11];
  4'b1100: y=x[12];
  4'b1101: y=x[13];
  4'b1110: y=x[14];
  4'b1111: y=x[15];
  endcase
 endmodule
```

 The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation


```
module a2t4_dc(
input [4:0] x,
output y
   );
   wire [3:0]cur1;
   wire [3:0]cur2;
   wire [3:0]cur3;
d74139 a1(.ne(1'b0),.x({1'b0,x[4]}),.y(cur1));
d74139 a2(.ne(1'b0),.x(x[3:2]),.y(cur2));
d74139 a3(.ne(1'b0),.x(x[1:0]),.y(cur3));
wire c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,j1,j2,j3,j4,j5;
or d1(c1,cur1,cur2);
or n1(j1,cur1,cur3);
or n2(j2,cur2,cur3);
or n3(j3,c1,j1,j2);
and d2(c2,cur1[3],cur2[3],cur3[3]);
xor d90(j4,cur1[3],cur2[3],cur3[3]);
and d89(j5,j4,c2);
xor d88(c3,cur1[2],cur2[2],cur3[2]);
not d5(c5,c3);
and d4(c4,cur1[2],cur2[2],cur3[2]);
or d6(c6,c4,c5);
xor d7(c7,cur1[1],cur2[1],cur3[1]);
not d8(c8,c7);
and d9(c9,cur1[1],cur2[1],cur3[1]);
or d10(c10,c8,c9);
xor d11(c11,cur1[0],cur2[0],cur3[0]);
nand d12(c12,cur1[0],cur2[0],cur3[0]);
and d13(c13,c11,c12);
and d14(y,c2,c6,c10,c13,j3,j5);
endmodule
 module a2t4_mux(
 input [4:0]x ,
 output y
    );
   wire D;
    not a1(D,x[4]);
   mux16to1 xixi(
 sel(x[3:0]), x({7'b000_0000,D,3'b000,D,1'b0,D,D,x[4]}), y(y));
endmodule
```

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)


```
module decoder_mux_sim( );
reg [1:0]x1;
reg ne1;
reg [3:0]sel1;
reg [15:0]x2;
wire [3:0]out1;
wire out2;
d74139 d1(.ne(ne1),.x(x1),.y(out1));
mux16to1 m1(.sel(sel1),.x(x2),.y(out2));
   initial begin
   \{x1,ne1\} = 3'b000;
   {x2,sel1} = {16'b0000000000000001,4'h0};
 #10
   repeat(7) #10 {x1,ne1} = {x1,ne1}+ 1;
   #10
   #10
   {x2,sel1} = {16'b0000000000000000000,4'h3};
   {x2,sel1} = {16'b000000000010000,4'h4};
   {x2,sel1} = {16'b0000000000100000,4'h5};
   #10
   {x2,sel1} = {16'b0000000001000000,4'h6};
   #10
   {x2,sel1} = {16'b0000000010000000,4'h7};
   #10
   {x2,sel1} = {16'b0000000100000000,4'h8};
   #10
   {x2,sel1} = {16'b0000001000000000,4'h9};
   {x2,sel1} = {16'b0000010000000000,4'ha};
   #10
   {x2,sel1} = {16'b0000100000000000,4'hb};
   #10
   {x2,sel1} = {16'b0001000000000000,4'hc};
   #10
   {x2,sel1} = {16'b0010000000000000,4'hd};
   #10
   {x2,sel1} = {16'b0100000000000000,4'he};
   #10
   {x2,sel1} = {16'b1000000000000000,4'hf};
   #10
   $finish();
   end
endmodule
```


Through the simulation result, we can see the result is obviously right as the
truth-table, and out1 equals to out2 and out3, which proves that three
expressions are logical same. we use truth-table to design this logic gate, so we
can think that the function of the design meet the expectation.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

• Problems and solutions