Import necessary libraries

```
In [1]: import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score, classification_report, confusio
    import matplotlib.pyplot as plt
    import seaborn as sns
```

Load the dataset

```
In [3]: df = pd.read_csv('https://github.com/sakshi2k/Social_Network_Ads/raw/master
```

Display the first few rows of the dataset to understand its structure

Select features and target variable

```
In [5]: X = df[['Age', 'EstimatedSalary']]
y = df['Purchased']
```

Split the data into training and testing sets

```
In [6]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra
```

Standardize the features (optional, but often improves performance)

```
In [7]: scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

Create a Logistic Regression model

```
In [8]: model = LogisticRegression(random_state=42)
```

Train the model

Make predictions on the test set

```
In [10]: y_pred = model.predict(X_test)
```

Evaluate the model

```
In [11]: accuracy = accuracy_score(y_test, y_pred)
    print(f'Accuracy: {accuracy}')
```

Accuracy: 0.875

Display classification report and confusion matrix

2 of 4 03-03-2024, 09:43 pm

```
In [19]: print('Classification Report:\n', classification_report(y_test, y_pred))
# Create confusion matrix
conf_mat = confusion_matrix(y_test, y_pred)
print('Confusion Matrix:\n', conf_mat)
```

Classification	Report: precision	recall	f1-score	support
0	0.86	0.96	0.91	52
1	0.91	0.71	0.80	28
accuracy			0.88	80
macro avg	0.89	0.84	0.85	80
weighted avg	0.88	0.88	0.87	80

Confusion Matrix: [[50 2] [8 20]]

```
In [31]: sns.countplot(x=y)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x2a52f9a95c8>

Visualize the decision boundary (for two features)

3 of 4 03-03-2024, 09:43 pm

```
In [13]: sns.scatterplot(x='Age', y='EstimatedSalary', hue='Purchased', data=df)
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
```

Out[13]: Text(0, 0.5, 'Estimated Salary')


```
In [ ]:

In [ ]:
```

4 of 4 03-03-2024, 09:43 pm