Mox-Flow Min-but Theorem

An S-t cut is a portition (A,B) of the vertex set V, so that SEA and t & B. The capacity of a cut (A,B) is simply the sum of the copacities of all edges ont of A: C(A,B) = E entof A.

Let f be any S-t flow, and (A,B) any S-t aut.
Then V(f) = f ont (A) - f in (A).

V(f)= font(s) and f (s) = 0 > v(f)= f out - fin(s) -0 For $v \in A-S$, applying co-posity condition:

fort (1) - f(1) = 0 -> @

From (1) and (2) we get

2 (f)= \(\int (v) - fing)

There are 4 types of edges:

1) Edges within A:

Contribution in (3)= +fe)

2) Edges within B:

Edges within B:

Contribution in (3) = 0 (no Contribution)

= fontaj - finaj

Enample

There are 4 S-t luts:

Enomple:

e out of A

In all the above cases, we have $2(t) = 30 \le C(A, B)$ If f is an 5-t flow such that there is no 5-t path in the residual graph Grf, then there is an 5-t cut (A^*, B^*) in G for which $2(f) = C(A^*, B^*)$ consequently, f has the monimum value of any flow in Gr, and (A^*, B^*) has the minimum capacity of any 5-t cut in G.

Let A* denote the set of all nodes v in Gr for which there is an S-v path in Grf. Let B* denote the set of all other nodes: B* = V-A* Grf D* Gri-Color

Solve there is there is f(e) = (e) because there is f(e) = (e) because there is f(e) = (e) because there is f(e) = (e) and f(e) = (e) because there is f(e) = (e) and f(e) = (e) a

$$=$$
 $\leq f(e) - \leq f(e)$
 $= eontof A^* = einto A^*$

$$= \sum_{\text{eoutof}A^*} (e - 0) = C(A^*B^*)$$

 \Rightarrow fisthermore flow and (A^*, B^*) is the min cut. If V(f) > V(f) then we will have $v(f) > V(f) = C(A^*, B^*)$ which is a contradiction

 (A^*, B^*) is a cut in the Ford-Fulkerson algorithm, because in Grf there is no S-t path \Rightarrow SEA* and tEB*. (A^*, B^*) is a partition of V.

> The flow freturned by the Ford-Eulkerson Algorithm is a monimum Flow.

Given a flow of of monimum value, we can compute on S-t cut of minimum copacity in O(121) time.

Mox-Flow Min-Cut Theorem: In every flow network, the manimum value of an S-t flow is equal to the minimum copacity of an S-t Cut.

If all copacities in the flow network are integers, then there is a manimum flow of for which every flow where fee is on integer.

Enamplel: After running the Ford-Eulkers on Algorithm, we get the following flow:

and the residual graph Gif'

 $A^* = \{5\}, \quad \beta^* = \{u, v, t\}$

(A*, B*) is the min (ut with c(A*, 8*)= 20+10=30=20(1)

Example 2: Eind the mon-flow and min-cut waing the Ford- Eulkerson Algorithm for the following flow graph:

