Einführung Wahrscheinlichkeitsrechnung						
Permutationen (Anordnung, die jed	les Element genau 1 mal enthält)	Kombinationen (Eine Auswahl von k aus n E				
Anzahl Permutationen von n-Eleme	nten = <mark>n! TR-> Math</mark>	Anzahl Kombinationen = $\frac{n!}{(n-k)!*k!}$ oder $(\frac{n}{k}) \rightarrow \frac{k \ Faktoren \ abwärts \ von \ n}{k \ Faktoren \ auf \ wärts \ 1}$ Bsp: $(\frac{5}{3}) \rightarrow \frac{5*4*3}{1*2*3}$ \rightarrow TR:Math nCr(5,3)				
Wahrscheinlichkeit	Zufallsvariable Z	diskrete Zufallsvariable	stetige Zufallsvariable			
P= Anzahl günstige Fälle Anzahl aller gleichmöglichen Fälle	Variable, deren angenommenen Werte vom Zufall abhängen	Kann nur bestimmte isolierte Werte annehmen (Bsp. Würfel:1,2,3,4,5,6)	Kann in einem Intervall jede reelle Zahl annehmen (Bsp: Flasche: Anzahl ml)			
diskrete Wahrscheinlichkeitsvertei	lung	Taschenrechner Tipps				
Die Funktion, die jedem Wert einer	_	arithmetisches Mittel x → mean(L1,L2)	Varianz s^2 \rightarrow variance(L1,L2)			
Wahrscheinlichkeit zuordnet! Bsp:V	Vürfel: z={1,2,3,4,5,6} → p= $\frac{1}{6}$	Standardabweichung s → stdDev(L1,L2)	geometrisches Mittel \rightarrow prod(L1) ^{1/n}			
Bezeichnungen der Stichprobe S		Bezeichnungen der Grundgesamtheit G				
$\begin{array}{ll} n = Stichprobengrösse \\ s = empirische Standardabweichung \\ E(X) = Erwartungswert \ \mu \\ X_n = Zufallsvariable \\ \end{array} \begin{array}{ll} \overline{\mathbf{x}} = \operatorname{arithmetisches} \ \operatorname{Mittel} \\ s^2 = \operatorname{empirische} \ \operatorname{Varianz} \\ \operatorname{Var}(E) = \operatorname{Varianz} \ \sigma^2 \end{array}$		N = Grösse der Grundgesamtheit μ = Erwartungswert π = μ (einfach nominal)	σ = Standardabweichung σ^2 = Varianz (Formel von σ ohne Wurzel)			
Arithmetisches Mittel Standardabweichung s		Erwartungswert μ	Standardabweichung σ			
$\frac{-}{\mathbf{x}} = \sum_{i=1}^{k} \mathbf{x}_{i} \cdot \frac{\mathbf{W}_{i}}{\mathbf{n}} = \sum_{i=1}^{k} \mathbf{x}_{i} \cdot \mathbf{w}_{i}$ $= \text{Summe der Merkmalswerte mal ihre relativen Gewick}$	$S = \sqrt{\sum_{i=1}^{k} \left(x_i - \overline{x}\right)^2 \cdot \frac{W_i}{n-1}}$	$\mu = \sum_{i=1}^{k} x_i \cdot p_i$	$\sigma = \sqrt{\sum_{i=1}^{k} (x_i - \mu)^2 \cdot p_i}$			

Wahrscheinlichkeitsverteilungen

Binomialverteilung (Qualitativ)

Beispiele:

- Wahr oder nicht wahr
- Zahl oder Kopf

Bei der n-mailgen Ausführung eines Experimentes besteht für das Eintreten des Ereignisses E immer dieselbe Wahrscheinlichkeit p Die Zufallsvariable X nimmt die Werte 0 bis n an mit den Wahrscheinlichkeiten

$$P(X=k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

Für die Binomialverteilung gilt:

Die Zufallsvariable X hat den Erwartungswert

$$\mu = \mathbf{n} \cdot \mathbf{p}$$

und die Standardabweichung

$$\sigma = \sqrt{n \cdot p \cdot (1-p)}$$

resp. die Varianz

$$\sigma^2 = \mathbf{n} \cdot \mathbf{p} \cdot (1-\mathbf{p})$$

binompdf(n,p,L1) ->liefert Funktionswert

$binomcdf(n,p,untergrenze,obergrenze) \ -> lie fert \ Fl\"{a} che$

Rechenregeln für Varianz und Erwartungswert

- $E(X \pm Y) = E(X) \pm E(Y)$ 1.
- Var(X+Y) = Var(X) + Var(Y)2. Var(X-Y) = Var(X) + Var(Y)
- 3. $E(a \cdot X) = a \cdot E(X)$
- $a \in \mathbb{R}$
- $Var(a \cdot X) = a^2 \cdot Var(X)$
- $Var(X) = E(X^2) (E(X))^2$

Normalverteilung (Quantitativ)

Im Intervall von μ - σ bis μ + σ liegen 68.27% der Fläche. Im Intervall von μ -2 σ bis μ +2 σ liegen 95.45% der Fläche. Im Intervall von μ -3 σ bis μ +3 σ liegen 99.73% der Fläche.

Standardnormalverteilung (μ=0, σ=1) (Quantitativ) Standardnormalverteilung Fläche Φ von -∞ bis z

z=invnorm(C) ->liefert **Z-Wert** auf X-Achse

Jede normalverteilte Zufallsvariable X kann in die standardnormalverteilte Zufallsvariable Z transformiert werden:

$$Z = \frac{X - \mu}{\sigma}$$

 $normpdf(x, \mu, \sigma)$ ->liefert Funktionswert (Bei stdNV nur x angeben) normcdf(untergrenze, obergrenze, μ , σ) ->liefert Fläche

Der zentrale Grenzwertsatz

Die Zufallsvariablen $X_1,\,X_2,\,\ldots,\,X_n$ seien unabhängig und identisch verteilt (i.i.d.),

wobei $E[X_i] = \mu$ und $Var(X_i) = \sigma^2$.

Dann gilt für die Zufallsvariablen $S = X_1 + X_2 + ... + X_n$ sowie

$$\begin{split} \overline{X} &= \frac{S}{n} = \frac{X_1 + X_2 + ... + X_n}{n} \ : \\ E(S) &= n \cdot \mu \end{split} \ E(\overline{X}) \end{split}$$

Intervallschätzung

$$F(\overline{X}) = 0$$

 $Var(S) = n \cdot \sigma^2 \qquad Var(\overline{X}) = \frac{\sigma^2}{n}$

n muss mindestens 30 betragen!

Die Standardabweichung des Durchschnitts wird als Standardfehler $\frac{\sigma}{\sqrt{n}}$ bezeichnet!

Konfidenzintervalle

Ziel: Aus beobachteten Messwerten (\bar{x} , s^2 , p) die unbekannten Grössen (μ , σ^2 , π) der Grundgesamtheit schätzen durch Punkt- oder Intervallschätzung.

Ein einzelner Wert wird als Schätzung angegeben	Ein Bereich (Intervall) wird als Schätzung angegeben
$\bar{x} = \sum_{i=1}^{k} x_i \cdot p_i$ $\rightarrow schoolses for V$	$s^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{\infty} (x_i - \overline{x})^2 \Rightarrow \text{ schotzer fire } o^2$

- Schotzer for Th P = relative Honfigkeit

Vertrauensbereiche für arithmethische Mittelwerte (Qantitativ)

Z-Verteilung (σ bekannt ->Grundgesamtheit) (Quantitativ)

α=Fehlerrisiko

Punktschätzung

 $1 - \alpha = Konfidenzniveau$

Mit der Wahrscheinlichkeit
$$1-\alpha$$
 enthält das Intervall von $\overline{x}-z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}$ bis $\overline{x}+z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}$

das arithmethische Mittel μ der Grundgesamtheit Bei grossen Stichproben (Faustregel: n > 5% von N) wird

$$\frac{\sigma}{\sqrt{n}}$$
 durch $\frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$ ersetzt.

α	l–α	$z_{\alpha/2}$	
0.317	0.683	1	
0.05	0.95	1.96	
0.046	0.954	2	
0.01	0.99	2.58	

TR: ZIntervall oder TIntervall

z oder $z_{a/2}$ mit TR bestimmen (α =5%, C=95%):

Einseitig: z = invnorm(0.95)

Zweiseitig: $z_{a/2}$ =invnorm(0.975)

Funktionswert \rightarrow tpdf(x,v)

 \rightarrow tcdf(untere Grenze, obere Grenze, v) Fläche

T-Wert auf X-Achse (t) →invt(Confidentially, v)

T-Verteilung (s bekannt -> Stichprobe) (Quantitativ)

v=Anzahl Freiheitsgrade= n-1

$$\overline{x} \pm t_{\alpha/2,\nu} \cdot \frac{s}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

Wobei der Korrekturfaktor nur angewendet wird wenn n>5%!!

Vertrauensbereiche für Anteilswerte (Qualitativ)

$$\hat{\mathbf{p}} = \frac{\mathbf{x}}{\mathbf{n}}$$

1) II Mit der Wahrscheinlichkeit von 1 – α enthält das Intervall von

$$\hat{p}\pm z_{\alpha/2}\cdot \sqrt{\frac{\hat{p}\cdot (1-\hat{p})}{n}}:\quad \text{den Anteil }\pi\text{ der Grundgesamtheit}$$

Voraussetzung:

Wobei der Korrekturfaktor nur angewendet wird wenn n>5%!!

2-PropZInt(2 Stichproben)

Stichprobengrösse Quantitativ

$$n \ge \frac{z_{\alpha/2}^2 \cdot \sigma^2}{F^2}$$

 σ ist entweder durch eine Studie bekannt, ansonsten 3-Sigma-Regel:

- Max Min = Spannweite
- $SW/6 = \sigma$

Qualitativ

 $n \geq \frac{z_{\alpha/2}^2 \cdot \pi \cdot (1-\pi)}{F^2}$

 π entweder durch Studie bekannt, ansonsten:

- π*(1- π) durch
- 0.25 ersetzen

TR: 1-PropZInt (eine Stichprobe)

Testen von Hypothesen							
Null-Hypothese H ₀ -> immer =	Alternativ-Hypothese H_A	Signifikanzniveau					
Sie wird entweder verworfen oder beibehalten!!	Sie versuchen wir zu beweisen/bestätigen!!!	α_1 =5% oder für hochsignifikanz α_2 =1%					
		• $p = \alpha_1 \rightarrow signifikant$					
Immer mit gleichheitszeichen:	3 Möglichkeiten:	 p < α₁ → signifikant 					
• μ =	> (einseitig)	• $p = \alpha_2 \rightarrow hochsignifikant$					
• π =	< (einseitig)	 p < α₂ →hochsignifikant 					
• p =	 Ungleich (zweiseitig) 	Grenze wird als kritischer Wert c bezeichnet.					
		Verwerfungsbereich V = {1,2,3}					
2 Schritte um c und V zu bestimmen (α=5%)	Liste 1 erstellen (Anzahl n)	1-binomcdf(n, π, L1)					
	z.B. n=40 \rightarrow L1=seq(x,x,1,40,1)	→liefert zu jedem n den Anteilswert					
		→erster Wert der im Signifikanzniveau ist = c					
2 Mögliche Resultate	1. H_0 wird verworfen (p <oder= <math="">\alpha)</oder=>	2. H_0 wird beibehalten (p> α)					
	ebnisse, bei deren Eintreffen wir die Nullhypothese verwerfen P-Wert	Ist der p-Wert ≤ 0.05 so wird die Nullhypothese verworfen.					
Bereich K wollen. Signifikanz- Die Wahrscheinlichkeit P(K) soll klein sein, klein							
niveau Bei einem Signifikanzniveau von α = 1% spricht							

2 Mögliche R	esultate		1.	H_0 wird verworfen (p <oder= <math="">\alpha)</oder=>		2.	H_0 wird beibehalten (p> α)		
Kritischer	Auch Verw	erfungsbereich. Die Menge aller Ergel	nisse, bei de	eren Eintreffen wir die Nullhypothese verwerf	n P-Wert	Ist der p-Wer	t ≤ 0.05 so wird die Nullhypothese verworfen.		
Bereich K	wollen.								
Signifikanz-		Die Wahrscheinlichkeit P(K) soll klein sein, kleiner als eine Schranke o.							
niveau		Signifikanzniveau von $\alpha = 1\%$ spricht i							
			% zur Ablehn	nung der Nullhypothese führt, nennt man sigr	lfikant.				
		P-Wert > 0.05 wird H ₀ belbehalten		W					
		n P-Wert < 0.05 dann wird H ₀ verwor n P-Wert Wert < 0.01 dann wird H ₀ ve							
	Welli	I P-West West < 0.01 dami wird Hove	rworien = no	lociisigiiiikani					
Vorgehen beim	1.	Eine Vermutung kann nicht direkt be	wiesen werd	den → indirekte Bestätigung					
Testen von	2.			vird die Nullhypothese H _o gegenübergestellt, i	n der Hoffnung, h	lo widerlegen z	u können.		
Hypothesen	3.	Zufallsexperiment planen: Wahl eine	r geeigneten	n Testgrösse.	•				
	4.	[Evtl. Signifikanzniveau α wählen,] \	erwerfungsbe	ereich K bestimmen, Entscheidungsregel auf	stellen.				
	5.			isse bestimmen. Es sind 2 Entscheidungen m					
	a) Wert der Testgrösse fällt in den Verwerfungsbereich: Ho wird verworfen. (Fehlerrislkö 1. Art: Ho wird verworfen, obwohl Ho richtig ist. Die WS, diesen Fehler zu begehen,								
	ist kleiner als α.)								
	b) Wert der Testgrösse fällt nicht in den Verwerfungsbereich: H ₀ wird beibehalten. (Fehlerrislko 2. Art: H ₀ wird beibehalten, obwohl H ₀ falsch ist. Die WS β für diesen Fehler								
		kann im Allgemeinen nur durch zusä	itzliche Uberli	legungen oder Annahmen berechnet werden.					

Tests für Anteilswerte (Qualitativ)

1-Stichproben Test

Ist in einer Grundgesamtheit der Anteil π für die Ausprägung eines Merkmals verschieden von einem vermuteten Wert π_0 ?

- H_0 (π = π_0)und H_A (π entweder <, >, oder ungleich π_0 ->Wert der überfrüft wird (effektrive Zahl)bestimmen
- Stichprobe:

$$n>\frac{9}{\pi_0\cdot \left(1-\pi_0\right)}$$

 $\hat{p} = \frac{x}{n}$ Anteil des Merkmals in der Stichprobe

Test Zufallsvariable:

$$Z = \frac{\left(\frac{X}{n} - \pi_0\right) \cdot \sqrt{n}}{\sqrt{\pi_0 \cdot (1 - \pi_0)}} \text{ ist angenāhert standard normal verteilt}$$

Realisation der Testgrösse:

$$z = \frac{\left(\hat{p} - \pi_0\right) \cdot \sqrt{n}}{\sqrt{\pi_0 \cdot (1 - \pi_0)}}$$

Verwerfungsbereich:

zweiseitig $\pi \neq \pi_0$: $|z| > z_{\alpha/2} = \text{invNorm}(1-\alpha/2)$

einseitig $\pi > \pi_0$: $z > z_{\alpha} = \text{invNorm}(1-\alpha)$ einseitig $\pi < \pi_0$: $z < -z_{\alpha}$

1-PropZTest

Input: π_0 , x, n (TR: "prop" statt π sowie " p_0 " statt π_0) Der Output liefert z und den zu z gehörenden p-Wert sowie den Schätzwert p

2-Stichprobentest

Sind die Anteile π_1 und π_2 einer Merkmalsausprägung in zwei Grundaesamtheiten verschieden?

- H_0 (π_1 = π_2) und H_A (π_1 entweder <, >, oder ungleich π_2) bestimmen

 $\hat{p}_1 = \frac{x_1}{n_1}$ Anteil des Merkmals in der 1. Stichprobe

 $\hat{p}_2 = \frac{x_2}{n_2}$ Anteil des Merkmals in der 2. Stichprobe

 $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} \quad \frac{\hat{p}_1 \cdot n_1 + \hat{p}_2 \cdot n_2}{n_1 + n_2} \quad \text{Schätzung für } \pi$

Bedingungen: $(n_1 + n_2) \cdot \hat{p} \cdot (1 - \hat{p}) > 9 \land n_1 \ge 50, n_2 \ge 50$

Testgrösse Z und realisation z:

$$Z = \frac{\frac{X_1}{n_1} - \frac{X_2}{n_2}}{\sqrt{\pi \cdot (1 - \pi) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \qquad z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p} \cdot (1 - \hat{p}) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Verwerfungsbereich:

zweiseitig $\pi_1 \neq \pi_2$: $|Z| > Z_{\alpha/2} = \text{invNorm}(1-\alpha/2)$

einseitig $\pi_1 > \pi_2$: $z > z_{\alpha} = \text{invNorm}(1-\alpha)$

einseitig $\pi_1 < \pi_2$: $z < -z_{\alpha}$

2-PropZTest

Input: n_1 , x_1 , n_2 , x_2 (TR: p_1 und p_2 statt π_1 und π_2)

Der Output liefert z und den zu z gehörenden p-Wert, ausserdem \hat{p}_1 , \hat{p}_2 , \hat{p} .

Chi Quadrat-Unabhängigkeitstest (Qualitativ!!)

Ziel: Wird benutzt um zu testen ob zwei qualitative Merkmale voneinander unabhängig sind!

Nullhypothese H₀ Zwischen den beiden Merkmalen besteht Unabhängigkeit.

Alternativhypothese H_A Zwischen den beiden Merkmalen besteht Abhängigkeit.

Kreuztabelle:

	Tal				
Pfeifentyp (M 1)	I	II	III	IV	Σ
A	19	20	9	32	80
В	12	14	9	15	50
C	9	26	2	33	70
Σ	40	60	20	80	200 <

40% 25% 35% Symbolik:
Die empirischen (beobachteten) Häufigkeiten bezeichen wir im Folgenden mit f_{ij}

\wedge			ksorte					
40% von 40 = 1 25% von 40 = 1	Pfeifentyp	I (=1)	II (=2)	III (=3)	IV (=4)	Σ	1 e l	. Häufigkeit p
35% von 40 =	A (=1)	19(16)	20(24	9 (8	32(32)	80	I	40%
0_	B (=2)	12(10)	14 (15)	9 (5)	15(20)	50	١	25%
	C(=3)	9 (14)	26(21)	2 (7)	33(28)	70		35%
$\frac{)^2}{}$ = 13.71	Σ	~ 40	60	20	80	200		
- = 13.71	rel. Häufigkeit q _j	20%	30%	10%	40%		-	

2_	$(19-16)^2$	$(20-24)^2$	$(9-8)^2$	$(32-32)^2$	$+ \dots + \frac{(33-28)^2}{28} = 13.71$
χ –	16	2.4		32	- 15.71

Für α = 5% und ν = 6 lesen wir den kritischen Wert aus der χ^2 -Tabelle ab: $\chi^2_{5\%}$ = 12.59

- 1. Matrix [A] Werte eingeben
- 2. X²-Text auswählen
- 3. P-Wert lesen und beurteilen

Feststellung: Die Testgrösse ist grösser als der kritische Wert. Wir verwerfen die Nullhypothese.

Entscheid: Die Abweichung ist signifikant (aber nicht hochsignifikant). Auf Grund des

Stichprobenergebnisses muss davon ausgegangen werden, dass Abhängigkeit

zwischen Pfeifentyp und Tabaksorte besteht.

TI-Output: $\chi^2 = 13.71$ p = 3.30% (p-Wert)

 $1\% \leq p \leq 5\%$

Tests für arithmetische Mittelwerte (Quantitativ)

1-Stichproben Test (σ unbekannt)

Ist in einer Grundgesamtheit das arithmetische Mittel μ signifikant verschieden von einem vermuteten Wert μ_0 ?

- 1. H_0 (μ = μ_0)und H_A (μ entweder <, >, oder ungleich μ_0)bestimmen
- 2. Stichprobe:

Grösse n

arithmetisches Mittel $\overline{\mathbf{x}}$

Standardabweichung s (σ_0 durch s geschätzt)

3. Test Zufallsvariable:

 $T = \frac{(\overline{X} - \mu_0) \cdot \sqrt{n}}{s} \quad \text{ist t-verteilt mit $\nu = n$} \quad \text{1 Freiheitsgraden}$

4. Realisation der Testgrösse:

$$t = \frac{(\overline{x} - \mu_0) \cdot \sqrt{n}}{}$$

5. Verwerfungsbereich:

zweiseitig $\mu \neq \mu_0$: $|t| > t_{\alpha/2, n-1} = invT(1-\alpha/2, n-1)$

einseitig $\mu > \mu_0$: $t > t_{\alpha,n-1} = invT(1-\alpha,n-1)$

einseitig $\mu < \mu_0$: $t < -t_{\alpha,n-1}$

6. TR

T-Test Input: Stichprobenwerte als Kennzahlen (Stats) oder als Listen (Data)

Der Output liefert t und den p-Wert

2-Stichprobentest (unabhängige Stichproben)

Sind die arithmetischen Mittel μ_1 und μ_2 eines Merkmals in zwei Grundgesamtheiten signifikant verschieden?

1. H_0 (μ_1 = μ_2)und H_A (μ_1 entweder <, >, oder ungleich μ_2)bestimmen

2. TR:

2-SampTTest

Zu unterscheiden sind zwei Fälle; der zweite stellt den Normalfall dar:

• Pooled: Yes

Man weiss im Voraus, dass die beiden Grundgesamtheiten gleiche Varianzen aufweisen: $\sigma_1^2 = \sigma_2^2$ (Spezialfall!)

• Pooled: No

Über die Varianzen der beiden Grundgesamtheiten ist nichts bekannt: $\sigma_1^{\ 2}\neq\sigma_2^{\ 2}$ (Normalfall !)

In beiden Fällen:

Input: Data Stichprobenwerte als Listen, oder

 $\begin{array}{ll} \text{Stats} & \text{Stichprobenumfange } n_1, \, n_2 \\ & \text{arithmetische Mittel } \overline{\mathbf{x}}_1 \,, \,\, \overline{\mathbf{x}}_2 \\ & \text{Standardabweichungen } s_1 \, \text{und } s_2 \end{array}$

Der Output liefert t, v = df und den p-Wert

Gepaarter 2-Stichprobentest (abhängige Stichproben ->Vorher/Nacher)

Weicht der Erwartungswert des Merkmals im Zustand B signifikant vom Erwartungswert des Merkmals im Zustand A ab?

- Gleiches vorgehen wie 1-Stichproben Test ausser: \overline{x} und s wird aus der Differenz A-B berechnet
- Dann entweder mit TR(t-Test) oder schriftlich