MATH 34B INTEGRATION WORKSHEET SOLUTIONS

* indicates that there was a typo in the original worksheet.

1.
$$\int \sqrt{\pi} dx = (\text{hint: } \sqrt{\pi} \text{ is just a number.})$$

Solution.

$$\int \sqrt{\pi} dx = \sqrt{\pi} \int dx = \sqrt{\pi} x + C.$$

*2.
$$\int \frac{3}{x^8} + \frac{e}{\sqrt[8]{x^3}} dx =$$

Solution.

$$\int \frac{3}{x^8} + \frac{e}{\sqrt[8]{x^3}} dx = \int 3x^{-8} + \frac{e}{x^{\frac{3}{8}}} dx$$

$$= 3 \int x^{-8} dx + e \int x^{\frac{-3}{8}} dx$$

$$= 3(\frac{x^{-8+1}}{-7}) + e(\frac{x^{\frac{-3}{8}+1}}{\frac{-3}{8}+1}) + C$$

$$= \frac{3}{-7}x^{-7} + e(\frac{x^{\frac{5}{8}}}{\frac{5}{8}}) + C$$

$$= \frac{-3}{7}x^{-7} + \frac{8e}{5}x^{\frac{5}{8}} + C.$$

3. $\int \frac{3x^2-4x+8}{x^5} dx$ = (hint: split up the fraction first.)

Solution.

$$\int \frac{3x^2 - 4x + 8}{x^5} dx = \int \frac{3}{x^3} - \frac{4}{x^4} + \frac{8}{x^5} dx$$

$$= 3 \int x^{-3} dx - 4 \int x^{-4} dx + 8 \int x^{-5} dx$$

$$= 3(\frac{x^{-3+1}}{-3+1}) - 4(\frac{x^{-4+1}}{-4+1}) + 8(\frac{x^{-5+1}}{-5+1}) + C$$

$$= 3(\frac{x^{-2}}{-2}) - 4(\frac{x^{-3}}{-3}) + 8(\frac{x^{-4}}{-4}) + C$$

$$= \frac{-3}{2}x^{-2} + \frac{4}{3}x^{-3} - 2x^{-4} + C.$$

4.
$$\int (3x+1)(x+2)^2 dx = (\text{hint: distribute/foil first.})$$

Solution.

$$\int (3x+1)(x+2)^2 dx = \int (3x+1)(x^2+4x+4)dx$$

$$= \int (3x^3+12x^2+12x+x^2+4x+4)dx$$

$$= \int (3x^3+13x^2+16x+4)dx$$

$$= 3\int x^3 dx + 13\int x^2 dx + 16\int x dx + 4\int dx$$

$$= 3(\frac{x^4}{4}) + 13(\frac{x^3}{3}) + 16(\frac{x^2}{2}) + 4x + C$$

$$= \frac{3}{4}x^4 + \frac{13}{3}x^3 + 8x^2 + 4x + C.$$

5. $\int \ln(2e^{\sin(x)})dx =$ (hint: use log rules to simplify this first; there are two rules involved.) **Solution.**

$$\int \ln(2e^{\sin x})dx = \int (\ln 2 + \ln e^{\sin x})dx$$
$$= \int \ln 2dx + \int \sin xdx$$
$$= (\ln 2)x - \cos x + C.$$

(Use u-substitution for the rest of the problems.)

*6.
$$\int 2y^2 e^{\pi - y^3} dy =$$

Solution. Let $u = \pi - y^3$. Then, $du = -3y^2dy \implies \frac{du}{-3} = y^2dy$ so the integral becomes

$$\int 2y^{2}e^{\pi-y^{3}}dy = \int 2(e^{\pi-y^{3}})(y^{2}dy)$$

$$= 2\int e^{u}(\frac{du}{-3})$$

$$= \frac{-2}{3}\int e^{u}du$$

$$= \frac{-2}{3}e^{u} + C$$

$$= \frac{-2}{3}e^{\pi-y^{3}} + C.$$

*7.
$$\int \frac{t^2+2t}{\sqrt[7]{t^3+3t^2+10}} dt =$$

Solution. Let $u = t^3 + 3t^2 + 10$. Then, $du = (3t^2 + 6t)dt = 3(t^2 + 2t)dt \implies \frac{du}{3} = (t^2 + 2t)dt$. So,

$$\int \frac{t^2 + 2t}{\sqrt[7]{t^3 + 3t^2 + 10}} dt = \int \frac{\frac{du}{3}}{\sqrt[7]{u}}$$

$$= \frac{1}{3} \int u^{\frac{1}{7}} du$$

$$= \frac{1}{3} \left(\frac{u^{\frac{1}{7} + 1}}{\frac{1}{7} + 1}\right) + C$$

$$= \frac{1}{3} \left(\frac{u^{\frac{8}{7}}}{\frac{8}{7}}\right) + C$$

$$= \frac{7}{24} (t^3 + 3t^2 + 10)^{\frac{8}{7}} + C.$$

8.
$$\int \frac{x}{3x^2+8} dx =$$

Solution. Let $u = 3x^2 + 8$. Then du = 6xdx and so $\frac{du}{6} = xdx$. Hence,

$$\int \frac{x}{3x^2 + 8} dx = \int \frac{\frac{du}{6}}{u}$$

$$= \frac{1}{6} \int \frac{1}{u} du$$

$$= \frac{1}{6} \ln u + C$$

$$= \frac{1}{6} \ln(3x^2 + 8) + C.$$

*9. $\int \frac{\cos x}{\sin^2 x} dx = \text{(hint: this is similar to the previous problem.)}$

Solution. Let $u = \sin x$. Then $du = \cos x dx$ and so the integral becomes

$$\int \frac{\cos x}{\sin^2 x} dx = \int \frac{du}{u^2}$$

$$= \int u^{-2} du$$

$$= \frac{u^{-2+1}}{-2+1} + C$$

$$= -u^{-1} + C$$

$$= -(\sin x)^{-1} + C.$$

$$10. \int \frac{4}{x \ln x} dx =$$

Solution. Let $u = \ln x$. Then $du = \frac{1}{x}dx$ and so

$$\int \frac{4}{x \ln x} dx = 4 \int \frac{1}{\ln x} (\frac{dx}{x})$$
$$= 4 \int \frac{1}{u} du$$
$$= 4 \ln u + C$$
$$= 4 \ln(\ln x) + C.$$

*11. $\int (\sin^2 x + 1)(\cos x + 2)dx = (\text{hint: distribute; double angle formula; u-sub})$

Solution. First we distribute.

$$\int (\sin^2 x + 1)(\cos x + 2)dx = \int \sin^2 x \cos x + 2\sin^2 x + \cos x + 2dx$$
$$= \int \sin^2 x \cos x dx + 2 \int \sin^2 x dx + \int \cos x dx + 2 \int dx.$$

Now we integrate each integral separately. The last two are easy.

$$2 \int dx = 2x + C_1.$$
$$\int \cos x dx = \sin x + C_2.$$

For the first integral, we use u-sub with $u = \sin x$. Then $du = \cos x dx$ and we get

$$\int \sin^2 x \cos x dx = \int u^2 du = \frac{u^3}{3} + C_3 = \frac{\sin^3 x}{3} + C_3.$$

For the second integral, we use the double angle formula.

$$2 \int \sin^2 x dx = 2 \int \frac{1 - \cos 2x}{2} dx$$
$$= \int (1 - \cos 2x) dx$$
$$= \int dx - \int \cos 2x dx$$
$$= x - \frac{\sin 2x}{2} + C_4.$$

(You can use a u-sub to integrate $\cos 2x$ also; but it's easier if you just think backwards.) Notice that we used different C_i 's for each integral because they are different constants. But when we add everything up at the end, we can combine them all together to become one single constant. Hence,

$$\int \sin^2 x \cos x dx + 2 \int \sin^2 x dx + \int \cos x dx + 2 \int dx = \left(\frac{\sin^3 x}{3}\right) + \left(x - \frac{\sin 2x}{2}\right) + \left(\sin x\right) + \left(2x\right) + C$$
 is the final answer.