Física

Cinemática

Prof. Arnoldo Del Toro Peña

29 de julio de 2025

Cinemática - Resumen Completo

La **cinemática** es la rama de la mecánica que estudia el movimiento de los objetos sin considerar las fuerzas que lo causan. Se enfoca en describir la posición, velocidad y aceleración de los cuerpos en función del tiempo.

1. Movimiento Rectilíneo Uniforme (MRU)

El movimiento rectilíneo uniforme es aquel en el que un objeto se desplaza en línea recta con velocidad constante.

Características:

- Velocidad constante (no hay aceleración)
- Trayectoria rectilínea
- Recorre distancias iguales en tiempos iguales

Fórmulas principales:

FÓRMULA

$$x = x_0 + vt$$

$$v = \frac{\Delta x}{\Delta t} = \text{constante}$$

$$a = 0$$

Donde:

- x = posición final
- $x_0 = \text{posición inicial}$

- v = velocidad
- t = tiempo
- a = aceleración

Ejemplo:

Un automóvil viaja a 60 km/h por una carretera recta. Si parte del kilómetro 10, ¿en qué posición estará después de 2 horas?

Solución:

- $x_0 = 10 \text{ km}$
- v = 60 km/h
- t = 2 h
- x = 10 + (60)(2) = 130 km

2. Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Es el movimiento en línea recta donde la velocidad cambia de manera constante debido a una aceleración uniforme.

Características:

- Aceleración constante
- La velocidad cambia uniformemente
- Trayectoria rectilínea

Fórmulas principales:

FÓRMULA

$$v=v_0+at$$

$$x=x_0+v_0t+\frac{1}{2}at^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Donde:

- v_0 = velocidad inicial
- v = velocidad final
- a = aceleración

• t = tiempo

Ejemplo:

Un automóvil acelera desde el reposo a $3~\rm m/s^2$. ¿Qué velocidad tendrá y qué distancia habrá recorrido después de $5~\rm segundos$?

Solución:

- $v_0 = 0 \text{ m/s}$
- $a = 3 \text{ m/s}^2$
- t = 5 s

Velocidad: v = 0 + (3)(5) = 15 m/s Distancia: $x = 0 + (0)(5) + \frac{1}{2}(3)(5)^2 = 37.5$ m

3. Caída Libre de los Cuerpos

Es un caso especial del MRUA donde los objetos caen bajo la influencia únicamente de la gravedad.

Características:

- Aceleración constante hacia abajo: $g = 9.8 \text{ m/s}^2$
- Movimiento vertical
- Se desprecia la resistencia del aire

Fórmulas principales:

FÓRMULA

$$\begin{split} v &= v_0 + gt \\ y &= y_0 + v_0 t + \frac{1}{2} g t^2 \\ v^2 &= v_0^2 + 2g(y-y_0) \end{split}$$

Ejemplo:

Una pelota se deja caer desde una altura de 20 metros. ¿Con qué velocidad llega al suelo y cuánto tiempo tarda?

Solución:

- $y_0 = 20 \text{ m}$
- y = 0 m

- $v_0 = 0 \text{ m/s}$
- $g = 9.8 \text{ m/s}^2$

Para el tiempo:
$$0=20+0\cdot t+\frac{1}{2}(-9.8)t^2$$
 Resolviendo: $t=\sqrt{\frac{40}{9.8}}=2.02$ s

Para la velocidad:
$$v^2 = 0^2 + 2(-9.8)(0 - 20) \ v = \sqrt{392} = 19.8 \text{ m/s}$$

4. Movimiento en un Plano

Análisis del movimiento en dos dimensiones, considerando componentes horizontales y verticales.

Características:

- lacktriangle Movimiento en coordenadas $x \in y$
- Cada componente se analiza independientemente
- Uso de vectores para posición, velocidad y aceleración

Fórmulas principales:

FÓRMULA
$$\vec{r} = x\hat{i} + y\hat{j}$$

$$\vec{v} = v_x\hat{i} + v_y\hat{j}$$

$$\vec{a} = a_x\hat{i} + a_y\hat{j}$$

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

$$\theta = \arctan\left(\frac{v_y}{v_x}\right)$$

Ejemplo:

Un objeto se mueve con velocidad $v_x=4~\mathrm{m/s}$ y $v_y=3~\mathrm{m/s}$. ¿Cuál es su velocidad total y dirección?

Solución:
$$|\vec{v}| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5 \text{ m/s } \theta = \arctan\left(\frac{3}{4}\right) = 36.87^{\circ}$$

5. Cinemática Rotacional

Estudio del movimiento de rotación de los objetos alrededor de un eje fijo.

Características:

- Análogo al movimiento lineal pero con magnitudes angulares
- Velocidad angular y aceleración angular

Fórmulas principales:

FÓRMULA

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega = \omega_0 + \alpha t$$

$$\omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$$

Relaciones lineales-angulares:

$$s = r\theta$$
$$v = r\omega$$
$$a = r\alpha$$

Donde:

- $\theta = \text{ángulo (radianes)}$
- ω = velocidad angular (rad/s)
- $\alpha = \text{aceleración angular (rad/s}^2)$
- r = radio

Ejemplo:

Una rueda gira desde el reposo con aceleración angular de 2 rad/s². ¿Qué velocidad angular tendrá después de 3 segundos?

Solución:

- $\omega_0 = 0 \text{ rad/s}$
- $\alpha = 2 \text{ rad/s}^2$
- t = 3 s
- $\omega = 0 + (2)(3) = 6 \text{ rad/s}$

6. Tiro Parabólico

Movimiento de proyectiles que siguen una trayectoria curva bajo la influencia de la gravedad.

Características:

- Combinación de MRU horizontal y MRUA vertical
- Trayectoria parabólica
- Aceleración solo en dirección vertical (g)

Fórmulas principales:

Componente horizontal:

FÓRMULA

$$x = x_0 + v_{0x}t$$

$$v_x = v_{0x} = \text{constante}$$

Componente vertical:

FÓRMULA

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2$$

$$v_y = v_{0y} - gt$$

Velocidad inicial:

FÓRMULA

$$v_{0x}=v_0\cos(\theta)$$

$$v_{0y}=v_0\sin(\theta)$$

Alcance máximo:

FÓRMULA

$$R = \frac{v_0^2 \sin(2\theta)}{g}$$

Altura máxima:

FÓRMULA

$$H = \frac{v_0^2 \sin^2(\theta)}{2g}$$

Ejemplo:

Un proyectil se lanza con velocidad inicial de $20~\rm m/s$ a 30° sobre la horizontal. Calcular el alcance y la altura máxima.

Solución:

- $v_0 = 20 \text{ m/s}$
- $\theta = 30^{\circ}$
- $q = 9.8 \text{ m/s}^2$

Componentes de velocidad inicial:

- $v_{0x} = 20 \cdot \cos(30^{\circ}) = 17.32 \text{ m/s}$
- $v_{0y} = 20 \cdot \sin(30^{\circ}) = 10 \text{ m/s}$

Alcance: $R = \frac{20^2 \cdot \sin(60^\circ)}{9.8} = 35.35 \text{ m}$

Altura máxima: $H = \frac{20^2 \cdot \sin^2(30^\circ)}{2 \cdot 9.8} = 5.10 \text{ m}$

Conceptos Clave

- 1. Posición: Ubicación de un objeto en el espacio
- 2. **Desplazamiento**: Cambio de posición (vector)
- 3. Velocidad: Razón de cambio de la posición
- 4. Aceleración: Razón de cambio de la velocidad
- 5. **Trayectoria**: Camino seguido por el objeto
- 6. Sistema de referencia: Marco desde el cual se observa el movimiento