20 November 2020

ROC (Receiver operating characteristic) curve

$$\begin{aligned} \operatorname{POS}(z) &=& \sum_{i \in \mathcal{L}_1} I(\hat{\pi}_i \geq z) \\ \operatorname{FALNEG}(z) &=& \sum_{i \in \mathcal{L}_1} I(\hat{\pi}_i < z) \\ \operatorname{FALPOS}(z) &=& \sum_{i \in \mathcal{L}_0} I(\hat{\pi}_i \geq z) \\ \operatorname{NEG}(z) &=& \sum_{i \in \mathcal{L}_0} I(\hat{\pi}_i < z) \\ \operatorname{Sensitivity}(z) &=& \frac{\operatorname{POS}(z)}{\operatorname{number of observations in } \mathcal{L}_1} \\ 1 - \operatorname{Specificity}(z) &=& \frac{\operatorname{FALPOS}(z)}{\operatorname{number of observations} in \mathcal{L}_0} \end{aligned}$$

The ROC curve is a plot of sensitivity against (1 - specificity).

where area under the curve is equal to $\frac{\text{nc} + 0.5 * \text{tied}}{\text{t}}$

- nc (number of concordant) = $\sum_z POS(z) * NEG(z)$
- nd (the number of disconcordant) = $\sum_z \text{FALNEG}(z) * \text{FALPOS}(z)$
- tied (number of tied pairs) = $\sum_{z} \sum_{i \in \mathcal{L}_1} I(\hat{\pi}_i = z) * \sum_{i \in \mathcal{L}_0} I(\hat{\pi}_i = z)$
- t (total number of pairs) is equal to nc + nd + tied

Chapter 4

Sequential Variable Selection Procedures

Forward selection

- The initial model contains only a constant term.
- Use the test statistic

$$F = \frac{ResS.S.|_{H_0}}{ResS.S.|_{H_A}} * (n - p') - n + p'$$

- Add the variable which would have the largest F statistic of any of the variables that are not already in the model.
 - \Rightarrow Since $ResS.S.|_{H_0}$ is the same at the same step, choose the variable which would have the smallest $ResS.S.|_{H_A}$ (or the largest $RegS.S.|_{H_A}$ or the largest $R^2|_{H_A}$) to add into the model.
- The process continues until, at some stage, the candidate regressor for entry does not exceed a preselected $F_{IN} = F_{\alpha_{IN},1,n-p'}$.

Backward elimination

- The initial model contains all regressors (independent variables).
- Use the test statistic

$$F = \frac{ResS.S.|_{H_0}}{ResS.S.|_{H_A}} * (n - p') - n + p'$$

- Remove the variable which has the smallest F value for all the variables in that step
 - \Rightarrow Since $ResS.S.|_{H_A}$ is the same no matter what the null hypothesis is, choose the variable which would have the smallest $ResS.S.|_{H_0}$ (or the largest $RegS.S.|_{H_0}$ or the largest $R^2|_{H_0}$) to remove from the model.
- The process continues until the candidate regressor for removal exceeds the preselected $F_{OUT} = F_{\alpha_{OUT},1,n-p'}$.

Stepwise regression

- The initial model contains only a constant term.
- For each step
 - 1. Forward: add the variable which would have the largest F statistic of any of the variables that are not already in the model if the F value exceeds a preselected F_{IN}
 - 2. <u>Backward:</u> removed the variable which has the smallest F value for all the variables in that step if the F value does not exceed a preselected F_{OUT}
- The process continues until
 - 1. the candidate regressor for entry does not exceed a preselected F_{IN}
 - 2. the regressors for entry and removal are the same one.