Probability and Measure Section 1 Problems

Top Maths, mjachi, p1186, cedardrawers

Last Updated: Tuesday 5th March, 2024

1.1.

- (a) Show that a discrete probability space cannot contain an infinite sequence A_1, A_2, \ldots of independent events each of probability $\frac{1}{2}$. Since A_n could be identified with heads on the nth toss of a coin, the existence of such a sequence would make this section superfluous.
- (b) Suppose that $0 \le p_n \le 1$ and put $\alpha_n = \min\{p_n, 1 p_n\}$. Show that, if $\sum_n \alpha_n$ diverges, then no discrete probability space can contain independent events A_1, A_2, \ldots such that A_n has probability p_n .

Proof. Let Ω be an at most countable sample space, so that probabilities are assigned to points by the probability mass function $P: \Omega \to [0,1]$ where P satisfies

$$\sum_{\omega \in \Omega} P(\omega) = 1.$$

Here, for $A \subseteq \Omega$,

$$P(A) = \sum_{\omega \in A} P(\omega).$$

(a) Let $A_1, A_2, \dots \subseteq \Omega$ be independent events of probability $\frac{1}{2}$. We can partition Ω into four sets:

$$\Omega = (A_1 \cap A_2) \cup (A_1 \cap A_2^c) \cup (A_1^c \cap A_2) \cup (A_1^c \cap A_2^c) \,.$$

Consequently, each $\omega \in \Omega$ has probability bounded as follows:

$$P(\omega) \le \frac{1}{4}.$$

To see why, suppose for contradiction that $P(\omega) > \frac{1}{4}$, and without loss of generality let $\omega \in A_1$. Then, since A_1, A_2 are independent events so that $P(A_1 \cap A_2) = P(A_1)P(A_2)$,

$$P[(A_1 \cap A_2) \cup (A_1 \cap A_2^c)] = P(A_1 \cap A_2) + P(A_1 \cap A_2^c) - P(A_1 \cap A_2 \cap A_1 \cap A_2^c)$$

= $P(A_1)P(A_2) + P(A_1)P(A_2^c)$

(b)