EXERCISES - SET II

1. Let \mathcal{V} be the set of all real numbers > 0. Let addition $x \oplus y$ of any two positive real numbers, and scalar multiplication $\alpha \odot x$ of any positive real number x by a real scalar α , be defined as follows:

$$x \oplus y = xy$$
 for every $x, y \in \mathcal{V}$
 $\alpha \odot x = x^{\alpha}$ for every $\alpha \in \mathbb{R}$ and for every $x \in \mathcal{V}$

Examine if \mathcal{V} is a vector space over \mathbb{R} with these operations

2. Let $\mathcal{V} = \mathbb{R}^2$ with + as the usual addition. Scalar multiplication $\alpha \odot x$ of $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, by real numbers α is defined as below. In each case determine which of the axioms of scalar multiplication are satisfied and which are not satisfied:

(a)
$$\alpha \odot x = \begin{pmatrix} \alpha x_1 \\ 2\alpha x_2 \end{pmatrix}$$

(b)
$$\alpha \odot x = \begin{pmatrix} \alpha^2 x_1 \\ \alpha^2 x_2 \end{pmatrix}$$

(c)
$$\alpha \odot x = \begin{pmatrix} \alpha x_1 \\ 0 \end{pmatrix}$$

(d)
$$\alpha \odot x = \begin{pmatrix} \alpha x_2 \\ \alpha x_1 \end{pmatrix}$$

3. Let \mathbb{C}^2 denote the collection of all ordered pairs of complex numbers,

$$\mathbb{C}^2 = \left\{ x = \left(\begin{array}{c} z_1 \\ z_2 \end{array} \right) : z_1, \ z_2 \in \mathbb{C} \right\}$$

Let addition on \mathbb{C}^2 be defined as usual. Consider scalar multiplication $\alpha \odot x$ of an $x = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2$ by a scalar $\alpha \in \mathbb{C}$ be defined as follows:

$$\alpha \odot x = \begin{pmatrix} \mathcal{R}e(\alpha)z_1 \\ \mathcal{R}e(\alpha)z_2 \end{pmatrix}$$

(where $\mathcal{R}e(\alpha)$ stands for Real Part of α). Determine which of the axioms of scalar multiplication are satisfied and which are not satisfied.

1

- 4. Which of the following subsets of \mathbb{R}^n (n > 2) are subspaces of \mathbb{R}^n ?
 - (a) $W = \{x \in \mathbb{R}^n : x_i \ge 0, \ 1 \le j \le n\}$
 - (b) $W = \{x \in \mathbb{R}^n : x_1 = 0\}$
 - (c) $W = \{x \in \mathbb{R}^n : x_1 x_2 = 0\}$
 - (d) $\mathcal{W} = \left\{ x \in \mathbb{R}^n : \sum_{j=1}^n x_j = 0 \right\}$
- 5. Which of the following subsets of $\mathbb{R}^{n \times n}$ are subspaces of $\mathbb{R}^{n \times n}$?
 - (a) W= $\{A \in \mathbb{R}^{n \times n} : A^T = A\}$, the set of all symmetric matrices
 - (b) W={ $A \in \mathbb{R}^{n \times n} : A \text{ is a diagonal matrix}}$
 - (c) $W = \{A \in \mathbb{R}^{n \times n} : A \text{ is an upper triangular matrix } \}$
 - (d) W={ $A \in \mathbb{R}^{n \times n} : A \text{ is a lower triangular matrix}}$
 - (e) W={ $A \in \mathbb{R}^{n \times n} : A \text{ is a triangular matrix matrix}}$
 - (f) Let B be a fixed matrix in $\mathbb{R}^{n\times n}$, and

$$\mathcal{W} = \left\{ A \in \mathbb{R}^{n \times n} : AB = BA \right\}$$

- (g) $W = \{ A \in \mathbb{R}^{n \times n} : Trace(A) = 0 \}$
- 6. Let $\mathcal{F}_{\mathbb{R}}$ be the vector space, over the field \mathbb{R} , of all real valued functions defined on \mathbb{R} . Which of the following subsets are subspaces of this vector space?
 - (a) $W = \{ f \in \mathcal{F}_{\mathbb{R}} : f(0) = f(-1) \}$
 - (b) $W = \{ f \in \mathcal{F}_{\mathbb{R}} : f(x) = f(-x) \text{ for all } x \in \mathbb{R} \}$
 - (c) $W = \{ f \in \mathcal{F}_{\mathbb{R}} : f(x) = -f(-x) \text{ for all } x \in \mathbb{R} \}$
 - (d) $\mathcal{W} = \left\{ f \in \mathcal{F}_{\mathbb{R}} : f(x^2) = \left\{ f(x) \right\}^2 \text{ for all } x \in \mathbb{R} \right\}$
- 7. Let x_0 be a fixed vector in \mathbb{R}^n . Let

$$\mathcal{W} = \left\{ A \in \mathbb{R}^{m \times n} : A(x_0) = \theta_m \right\}$$

Is W a subspace of $\mathbb{R}^{m \times n}$?

8. Let S be a nonempty subset of \mathbb{R}^n . Let

$$\mathcal{W} = \left\{ A \in \mathbb{R}^{m \times n} : A(s) = \theta_m \text{ for all } s \in \mathcal{S} \right\}$$

Is W a subspace of $\mathbb{R}^{m \times n}$?

9. Let x_0 be a fixed vector in \mathbb{R}^n . Let

$$\mathcal{W} = \left\{ u \in \mathbb{R}^n : u^T x_0 = 0 \right\}$$

Is W a subspace of \mathbb{R}^n ?

10. Let \mathcal{S} be a nonempty subset of \mathbb{R}^n . Let

$$\mathcal{W} = \left\{ u \in \mathbb{R}^n : u^T s = 0 \text{ for all } s \in \mathcal{S} \right\}$$

Is W a subspace of \mathbb{R}^n ?

11. Let $A \in \mathbb{R}^{n \times n}$ and

$$\mathcal{W} = \{ x \in \mathbb{R}^n : Ax = 3x \}$$

Is W a subspace of \mathbb{R}^n ?

12. Let $A \in \mathbb{R}^{n \times n}$ and

$$\mathcal{W} = \left\{ x \in \mathbb{R}^n : A^2 x = x \right\}$$

Is W a subspace of \mathbb{R}^n ?

13. Let W a subspace of \mathbb{R}^n . Let $A \in \mathbb{R}^{n \times n}$ and

$$\mathcal{W}_1 = \{ x \in \mathbb{R}^n : Ax \in \mathcal{W} \}$$

Is W_1 subspace of \mathbb{R}^n ?

- 14. Let \mathcal{V} be a vector space over a field \mathcal{F} . Are the following statements TRUE or FALSE. If TRUE give a proof and if FALSE give an example where it is false:
 - (a) If S and T are subsets of $\mathcal V$ such that $S\subseteq T$ then $\mathcal L[S]\subseteq \mathcal L[T]$

(b) If S is a subset of \mathcal{V} and $x \notin \mathcal{L}[S]$ then

$$\mathcal{L}[S] \subset \mathcal{L}[T]$$
 where $T = S \cup \{x\}$

- (c) If S and T are subsets of \mathcal{V} and $T \subset \mathcal{L}[S]$ then $\mathcal{L}[S] = \mathcal{L}[S \cup T]$
- (d) If S and T are subsets of \mathcal{V} such that T is not a subset of $\mathcal{L}[S]$ then $\mathcal{L}[S] \subset \mathcal{L}[S \cup T]$
- (e) If S and T are subsets of \mathcal{V} such that $S \subset T$ then $\mathcal{L}[S] \subset \mathcal{L}[T]$
- 15. Let $A \in \mathbb{R}^{4 \times 5}$ be as given below:

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 1 & 2 & 2 & -1 & 3 \\ 2 & 4 & 3 & -1 & 4 \\ 3 & 6 & 1 & 2 & -1 \end{pmatrix}$$

Answer the following:

- (a) Find \mathcal{R}_{A}
- (b) Find \mathcal{N}_{AT}
- 16. Let $A \in \mathbb{R}^{5\times 4}$ be such that the RRE form of A^T is given by

Answer the following:

(a) Determine which of the following vectors are in \mathcal{R}_{A} :

$$b = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \qquad y = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

(b) Find a spanning set for \mathcal{R}_A directly from the RRE form of A^T

- (c) Find a spanning set for $\mathcal{R}_{\scriptscriptstyle A}$ using the property that $b \in \mathcal{R}_{\scriptscriptstyle A}$ if and only if $b^T x = 0$ for every $x \in \mathcal{N}_{\scriptscriptstyle A^T}$
- 17. The matrix $A \in \mathbb{R}^{4 \times 5}$ is such that the following sequince of EROs give the RRE form A_R of A as follows:

Answer the following:

- (a) Find \mathcal{R}_{A}
- (b) Hence find $\mathcal{N}_{_{\!A^T}}$
- 18. Prove the following:
 - (a) If $A \in \mathcal{F}^{n \times n}$ then $\mathcal{R}_{_{A^2}} \subseteq \mathcal{R}_{_{A}}$
 - (b) If $A \in \mathcal{F}^{m \times n}$ and $B \in \mathcal{F}^{n \times p}$ then $\mathcal{R}_{_{AB}} \subseteq \mathcal{R}_{_{A}}$
 - (c) If $A \in \mathcal{F}^{m \times n}$ and $B \in \mathcal{F}^{n \times p}$ then $\mathcal{N}_{\!\scriptscriptstyle B} \subseteq \mathcal{N}_{\!\scriptscriptstyle AB}$
 - (d) If $A \in \mathbb{R}^{m \times n}$ then $\mathcal{N}_{{}_{A^TA}} = \mathcal{N}_{{}_{A}}$