C2 REVIEW ASSIGNMENT

VERILOG

TEJAS MESHRAM MEC2021015

MTECH 1ST SEM ECE

Question 1 D FLIP FLOP

TRUTH TABLE

Que. 1

=> D-Flipflop Touth Table -

enable	set	9	q-bas
0	.0	0	.1
	0	0	1
0	1	O	
\			0
			1930 31

writing the module

RTL schematic

writing the test bench

Simulations

Question 2 SR FLIP FLOP

TRUTH TABLE

Que. 2

=> SR flip-flop -

Ly Touth Table -

			1
set	Reset	9	q-bas
0	0	0	
0	1	0	
1	0	1	0
1	1	[invalid]	[invalid]

writing the module

RTL schematic

writing the test bench

Simulations

Question 3 SR_to_JK FLIP FLOP

TRUTH TABLE

=> SR_to_JK flipflop -

For this conversion we used the two and gates at the input of our Que.2 SR flip-flop

L> Truth-Table-

J	K	9	9-basi
0	0	0	0
0	1	0	0
ι	0	0	1
1	1	0	1
0	0	1	
0			
1	0	41	
1	1		

writing the module

RTL schematic

writing the test bench

Simulations

Question 4 UP_DOWN_WITH SR_to_JK FLIP FLOP

TRUTH TABLE

Que. 4

=> Synchronous Mod-6 Up-down counter from SR-to_JK flipflop.

F	resen	t	Next			Inputs			
Q3	Q2	Q±	Q3	Q2	Q1	J_3	K3	J2K2	JK
0	0	0	0	0	1	0	×	o ×	(×)
0	0	ı	0	1	0	0	×	1	- N
0	1	0	0	1	1	0	X	× O	1 ×
0	1	1	1	0	0	1	X	× 1	×I
l	0	0	1	0	1	X	0	0 ×	١×
1	0	1	0	0	0	×	1	0 ×	×I
		1							

L) state diagram -

writing the module

RTL schematic

writing the test bench

Simulations

Question 5 32-bit Multiplier

Que. 5

=> Floating Point Representation -

we have 3 elements in a 32-bit floating point representation—

- a) Sign = It is the first bit of the binary representation.

 1 → negative number

 0 → positive number
- Exponent = It is decided by the next 8 bits of binary representation. 127 is the unique number of 32 bit floating point representation. It is known as bias. It is determined by 2K-t-1 where "K" is the number of bits in the exponent field.

 There are 3 exponent bits in 8-bit representation and 8 exponent bits in 32-bit representation.

Mantissa — It is calculated from the remaining 23 bits of the binary representation. It consits of the and a fractional part which is determined as so required.

Les Here instead of giving 5 simulations we give random number assignments and generated more number of results.

writing the module

writing the test bench

Simulations

You have reached end of this document

Thank you