Một phần bức tranh mật mã

2/7

Mật mã khóa công khai

Thuật toán:

 $\underbrace{(SK, PK)}_{C} \leftarrow \underbrace{Gen(1^{\lambda})}_{Enc}$

sinh cặp khóa (bí mật, công khai) độ dài λ mã hóa thông điệp M với khóa công khai PK, kết quả là bản mã Cgiải mã C dùng khóa bí mật SK để được M.

Ví dụ.

 $\underline{\underline{M}} = Dec(\underline{SK}, C)$

• Giao thức trao đổi khóa Diffie-Hellman (DH)

4/7

Mật mã khóa đôi xứng

Thuật toán:

 $C \leftarrow Enc(K, M)$ $K \leftarrow \underline{Gen(1^{\lambda})}$

mã hóa thông điệp M với khóa K, kết quả sinh khóa độ dài λ

là bản mã C

 $M = Dec(\underline{K}, C)$

giải mã C dùng khóa K để lấy được M

Sử dụng trong thực tế.

- Nếu chỉ cần tính bí mật: AES-128 với CBC mode hoặc CTR mode.
- Nều cần cả tính bí mật và xác thực: EAX, CCM, hoặc GCM mode

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Mật mã khóa công khai

Thuật toán:

 $(SK, PK) \leftarrow Gen(1^{\lambda})$ $C \leftarrow Enc(PK, M)$ sinh cặp khóa (bí mật, công khai) độ dài λ PK, kết quả là bản mã Cmã hóa thông điệp M với khóa công khai

giải mã C dùng khóa bí mật SK để được M

M = Dec(SK, C)

- Giao thức trao đổi khóa Diffie-Hellman (DH)
- Hệ mật mã RSA
- Hệ mật mã dựa trên đường cong Elliptic (ECC)

4/7

Mật mã khóa công khai

Thuật toán:

 $(SK, PK) \leftarrow Gen(1^{\lambda})$ M = Dec(SK, C) $C \leftarrow Enc(PK, M)$ sinh cặp khóa (bí mật, công khai) độ dài λ giải mã C dùng khóa bí mật SK để được M. mã hóa thông điệp M với khóa công khai PK, kết quả là bản mã C

- Giao thức trao đổi khóa Diffie-Hellman (DH)
- Hệ mật mã RSA

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :

Mã xác thực thông điệp

Thuật toán:

 $k \leftarrow \frac{Gen(1^{\lambda})}{t \leftarrow S(\underline{k}, \underline{m})}$ $V(\underline{k}, m, t)$

"yes" hoặc "no" cho biết chữ ký t có phải là sinh khóa độ dài 🔕 tạo chữ ký thông điệp \dot{m} dùng khóa kchữ ký hợp lệ của m hay không.

Ví dụ. HMAC.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

6/7

Kích thước khóa (theo bit)

Khuyến nghị của NIST

256	192	128	112	80	AES
15360	7680	3072	2048	1024	DH & RSA
512 /	384 /	256 ~	224 /	160 —	ECC

4/7

Chữ ký điện tử

Thuật toán:

 $\underline{\underline{V}}(p\underline{k},m,\underline{t})$ $(sk, pk) \leftarrow Gen(1^{\lambda})$ sinh khóa bí mật và công khai độ dài λ $t \leftarrow S(\underline{sk}, m)$ tạo chữ ký thông điệp m dùng khóa bí mật sk"yes" hoặc "no" cho biết chữ ký t có phải là chữ ký hợp lệ của m hay không.

Ví dụ. RSA, DSA, ECDSA