

LEBENSWISSENSCHAFTLICHE FAKULTÄT INSTITUT FÜR BIOLOGIE

MASTERARBEIT

ZUM ERWERB DES AKADEMISCHEN GRADES MASTER OF SCIENCE

"Körpergrößentrends in fossilen Landschildkröten aus dem Neogen"

"Body size trends in Neogene testudinid tortoises"

vorgelegt von

Julia Joos

geb. am 18.05.1991 in Freudenstadt

angefertigt in der Arbeitsgruppe Paläozoologie am Institut für Biologie/Museum für Naturkunde

Berlin, im September 2017

Contents

Lis	st of	Figures	4					
Li	st of	ables						
1	Abs	stract	6					
2	Intro	oduction						
	2.1	Body size evolution	7					
	2.2	Maximum body size - Megafauna	8					
	2.3	Giant Tortoises - Testudinidae	9					
	2.4	Aim of this work						
3	Mat	erial & Methods	13					
	3.1	Data collection	13					
	3.2	Body size estimation	13					
	3.3	Analyses	14					
		3.3.1 Descriptive statistics	15					
		3.3.2 Body size trends over time	16					
4	Res	sults	19					
	4.1	Sample-based accumulation curves	19					
	4.2	Descriptive statistics	20					
	4.3	PaleoTS analysis	24					
		4.3.1 Complete dataset	24					
		4.3.2 Continental dataset (excluding insular species)	26					
		4.3.3 Insular dataset (excluding continental species)	28					
		4.3.4 Per continent	30					
5	Disc	cussion	35					
	5.1	Data coverage	35					
	5.2	Distribution of testudinid body size	36					
	5.3	Time-scale analysis	37					
	5.4	Causes for extinction	38					

	5.5 Cond	clusion	39
6	Reference	es	40
Αį	opendix A	Geographical and stratigraphic distribution of body size data	48
Αį	opendix B	Sampling accumulation curves	49
Αŗ	opendix C	Data structure	50
Αŗ	opendix D	Random Sampling	51
Αŗ	opendix E	paleoTS	52
Αį	opendix F	Tables	59

List of Figures

1	Fossii occurrences of Testudinidae	14
2	Carapace length over time	17
3	Sample-based accumulation curve on generic level	19
4	Body size distribution of the complete data set	20
5	Body size distribution comparing fossil/modern and continental/insular taxa	21
6	Comparison of carapace length among time bins	22
7	Comparing carapace lengths between fossil/modern and continental/insular tes-	
	tudinids	23
8	Comparison of continental and insular testudinids of modern and fossil age	23
9	Comparison of carapace lengths among continents	24
10	PaleoTS plot of the complete data set	26
11	PaleoTS plot of continental data set	28
12	PaleoTS plot of insular data set	30
13	PaleoTS plot of European Testudinidae	32
14	PaleoTS plot of Eurasian Testudinidae	34
S1	Map: body size localities	48
S2	Additional sampling accumulation curves	49
S3	Testing normal distribution	50
S4	Comparison of carapace lengths in subgroups	50
S5	Random sampling	51
S6	Random sampling: continents	51
S7	PaleoTS plot of continental Testudinidae in Europe	53
S8	PaleoTS plot of insular Testudinidae in Europe	54
S9	PaleoTS plot of continental Testudinidae in Eurasia	56
S10	PaleoTS plot of insular Testudinidae in Eurasia	57

List of Tables

1	Sample sizes per time bins	18
2	PaleoTS object of the complete dataset	25
3	Model fits for complete data set	26
4	PaleoTS object of continental Testudinidae	27
5	Model fits for the continental data set	28
6	PaleoTS object of insular Testudinidae	29
7	Model fits for the insular data set	30
8	PaleoTS object of European Testudinidae	31
9	Model fits for European Testudinidae	32
10	PaleoTS object of Eurasian Testudinidae	33
11	Model fits for Eurasian Testudinidae	34
S1	PaleoTS object of continental Testudinidae in Europe	52
S2	Model fits for continental Testudinidae in Europe	53
S3	PaleoTS object of insular Testudinidae in Europe	54
S4	Model fits for insular Testudinidae in Europe	55
S5	PaleoTS object of continental Testudinidae in Eurasia	55
S6	Model fits for continental Testudinidae in Eurasia	56
S7	PaleoTS object of insular Testudinidae in Eurasia	57
S8	Model fits for insular Testudinidae in Eurasia	58
S9	Mean carapace length per genus and time bin	59
S10	Mean carapace length per genus	62
S11	Descriptive statistics of carapace length	64
S12	Body size data set of fossil Testudinidae	66
S13	Body size data set of extant Testudinidae	78
S14	Fossil occurrences of Testudinidae	87

1 Abstract

- no body size trend in global scale continents: random walk islands: stasis
- modern testudinids are smaller than fossil ones continental testudinids are smaller than insular ones -> these proportions are constant over time
- population strucure is constant on spatial and temporal scale right-skewed like most animals; bimodal; on islands: left-skewed (more large species!)

2 Introduction

2.1 Body size evolution

The body size of organisms has been of interest to researchers for a long time (Peters, 1983; ?). It is a universal trait that can easily be measured and compared among different organisms (?). Furthermore, it is readily available for many animals in the fossil record which allows for comparison with extant species (?). In general, a number of biotic and abiotic factors including habitat, resource availability, competition, climate and many more influence body size which is also linked to ecological and evolutionary processes (Blackburn and Gaston, 1994; Blueweiss et al., 1978; Smith and Lyons, 2009). Specifically, Body size is dependent on resource availability, intra- and interspecific competition and environmental conditions during development, genetic predisposition, and a trade-off between costs of early vs. late maturation, namely investing in growth or reproduction (?). Extreme habitats or environmental conditions can result in extreme body size changes, i. e. in dwarfism, either due to restricted resources or reduced predation, or gigantism, which is usually linked to reduced competition. Finally, extreme body size is constrained by physical, physiological and structural properties, e. g. newborns of marine mammals like whales need to weigh at least 5 kg to maintain their body temperate due to the high rate of convective heat loss in the water (Smith et al., 2016; ?). Different body sizes are associated with different requirements. On the one hand, larger animals need more resources, therefore usually occupy a larger territory and have longer generation times than smaller ones, which is associated with a lower population density. On the other hand, they are also less prone to predation, live longer and have increased competitive abilities (Smith et al., 2016; ?).

Patterns of body size variation across spatial and/or temporal scales have been described for many animal groups and some have been summarised as ecological rules (Angielczyk et al., 2015; Millien et al., 2006). For example, Cope's rule describes the gradual within-lineage body size increase over time (Cope, 1887). According to the island rule large species become smaller on islands, because of a reduced predation risk, while small species often show an increase in body size due to reduced competition (Foster, 1964). Bergmann's rule states that animals attain a larger body size at higher latitudes (Bergmann, 1848), which can be considered a special case of the temperature-size rule, which predicts an increase in body size at lower temperatures (Angilletta et al., 2004). While such patterns have been well documented (Millien et al., 2006), the underlying mechanisms might not be the same across all taxa and require

further investigation (Smith and Lyons, 2009).

2.2 Maximum body size - Megafauna

In many taxa a right-skewed body size distribution is observed, which means that smaller body sizes are more abundant than large ones (Blackburn and Gaston, 1994; Kozlowski and Gawelczyk, 2002; Lyons and Smith, 2008). Evolutionary theory implies that this skewed distribution is the optimal distribution of body sizes, taking into account all external constraints (Smith and Lyons, 2009). But what factors determine its shape? As stated above, a large body size is associated with certain advantages and disadvantages. In the history of Earth, animals have repeatedly attained very large body sizes, although patterns of when and how often maximum body size is achieved are inconsistent across time and different animal groups (Smith et al., 2016). Some famous examples of giant forms are the large insects from the Carboniferous/Permian period, the giant non-avian dinosaurs from the Jurassic/Triassic, the giant mammals from the Quatenary or today's largest animal, the blue whale (?). Animals with a body mass exceeding 44 kg are referred to as megafauna (Barnosky, 2004; Rhodin et al., 2015; Sandom et al., 2014). It has been suggested that large animals are more prone to extinction than smaller ones, because their longer generation times and descreased population densities make them vulnerable in case of a diminished population size (?). During the Quaternary, a huge number of large mammals which were considered megafauna went extinct (?). Two possible reasons for this extinction event have been discussed: climate change and anthropogenic influence (?). Some recent studies suggest that human influence has been the main driver of extinctions of mammalian megafauna (Barnosky, 2004; Gibbons, 2004; Sandom et al., 2014; Schuster and Schüle, 2000).

While the mammalian megafauna as well as their extinction have been well investigated, the herpetofauna has also lost a considerable number of species during the Quaternary (Blain et al., 2016). For example, many turtle and tortoise species have gone extinct, with several large species among them, which can also be considered megafauna (Froyd et al., 2014; Pedrono et al., 2013; Rhodin et al., 2015). One popular example of a giant tortoise is *Megalochelys atlas*, which frequently reaches carapace lengths of over 2 m and occured throughout Asia, on the mainland and on several islands (?). Similarly sized tortoises have also been found in southern Greece (?) In fact, giant tortoises were abundant on the continents as well as on many islands throughout the Neogene (De Lapparent De Broin, 2002). In contrast, nowadays giant tortoises

are present only on two island regions in the tropics, the Galapagos Island, which are located off the western coast of Ecuador, and the West Indian Islands, which consist of Madagascar and its surrounding islands (?)

2.3 Giant Tortoises - Testudinidae

In the fossil record two clades of terrestrial tortoises have been identified, which both contained giant forms. One is the family Meiolaniidae, which occurred exclusively in Argentina, Australia and its surrounding islands and is completely extinct nowadays (??). The other one is the family Testudinidae, which comprises all extant terrestrial tortoises as well as many extinct or fossil taxa (?). The testudinids included giant forms and occurred on all continents but Australia (?). Testudinidae have been known in the fossil record from the Eocene onwards, the earliest fossils being Hadrianus which are known from North America and Europe and probably originated in Asia (?). Body size played an important role in the earlier times of testudinid taxonomy (?). In the beginning, all tortoise fossils were assigned to the genus Testudo, but around the 20th century tortoises were grouped into two clades based on body size (?). Large taxa were all assigned to the genus Geochelone, while small tortoises were assigned to Testudo (?). Eventually, over the past few decades, the taxonomy has been revised for many clades (?). In the Americas, all tortoises are now referred to as either Hesperotestudo, Gopherus or Chelonoidis, with the latter containing all extant Galapagos giant tortoises (?). In Europe, the genus Cheirogaster has been introduced but is currently being replaced by Titanochelon, although not all species have been revised accordingly yet (?). Small species still belong to *Testudo*, which contains the extant species T. graeca, T. hermanni, T. marginata, T. kleinmanni and T. horsfieldii (Fritz and Havaš, 2007). In Asia and Africa, which are the two current biodiversity hotspots for turtles and tortoises in general (?), many different taxa have now been differentiated (?). In Asia, the genera Geochelone, Indotestudo and Manouria are present (?). On mainland Africa there are seven extant genera: Homopus, Psammobates, Kinixys, Malacochersus, Chersina, Stigmochelys and Centrochelys, the latter consisting of only one species, Centrochelys sulcata, which is the largest extant continental tortoise with a carapace length of about 80 cm (?). In the West Indian Islands (Madagascar, Seychelles, Aldabra etc.), there are three extant gerena, Astrochelys, Pyxis and the giant Aldabrachelys, as well as the extinct Cylindraspis (?).

Both on the contintents and on remote islands giant tortoises exceeding carapace lengths of 2 m were abundant in former times and have frequently been found in fossil deposits (?).

The presence of large tortoises on islands has been explained by their ability to float and to survive for months without water or food (Cheke et al., 2016; Gerlach et al., 2006; Patterson, 1973). However, the abundance of giant tortoises on these remote oceanic islands along with their resilience and survivability without resources made them a very attractive food item for humans, especially in the whaling industry (?). In addition to the exploitation of giant tortoises on islands, both small and large tortoises and turtles were also frequently eaten on the mainland (?). Tortoises are easily captured, do not need a great amount of preparation before they can be cooked and can even be kept as a "staple" since they stay alive for quite a while withoud food or water (Thompson and Withers, 2003; Thompson and Henshilwood, 2014). Intensive hunting and exploitation has been suggested to affect tortoise body size (?); since larger individuals are more easily visible and yield more meat, they are more prone to exploitation than small ones (Rhodin et al., 2015). This may have lead to a decreased body size within a tortoise population where tortoise consumption is common. For this reason, tortoise body size has even been suggested as a proxy for human population size in some areas (Steele and Klein, 2005; ?; ?). To this day, turtles and tortoises are still being eaten in some countries, although many are endangered (?).

Apart from anthropogenic influences, climate probably also affected tortoises (?). As ectotherms, turtles and tortoises are inherently more dependent on climate than endotherms (Delfino et al., 2003). Especially large tortoises are very temperature-sensitive due to their unique physiology and morphology (??). In the fossil record, large tortoises are considered to be an indicator for warm periods characterized by mild winters (Hibbard, 1960; Schleich, 1981), since they are thought to not have been able to dig themselves burrows for hibernation like modern *Gopherus* tortoises do (??). Additionally, giant tortoises run a high risk of overheating and display behavioral thermoregulation to keep their body temperature below a dangerous or even lethal value (Schleich, 1981; ?). Many extant tortoise species are endangered and extinction rates have been especially high for insular species since the Pleistocene (Rhodin et al., 2015). In fact, a number of giant insular tortoise species went extinct relatively recently within just few centuries (?).

Understanding how giant form of tortoises evolved and how their size relates to their extinction, can hold valuable information about basic evolutionary processes and can even find application in current conservation efforts (?).

2.4 Aim of this work

Testudinidae have an excellent fossil record due to their rigid shell, which is easily preserved and provides information on body size (?). Conversely, other skeletal structures like limbs and especially skulls are rarer in the fossil record (?). For this reason, it is difficult to resolve phylogenetic relationships of fossil tortoises, since phylogenetic inferences are often are often drawn from skull features (?). However, since Testudinidae are monophyletic, comparisons can be studied on the clade level.

In this study, I am interested in several aspects of testudinid body size. First, how body size data is distributed within Testudinidae in general. For the description and exploration of body size distributions, I follow the methods described in Lyons and Smith (2008). Secondly, since many large-bodied species have gone extinct, I would expect extant tortoises to be smaller than fossil ones. Thirdly, as extant tortoises reach larger body sizes on islands than on the mainland, if this pattern can be observed in fossil testudinids as well. Finally, the main goal of this study is to identify general body size trends in tortoises (Testudinidae) on a global scale across the last 20 million years.

Giant tortoises, that only occur on islands nowadays, used to be abundant on continents until many species went extinct several hundreds of years ago (?). Therefore, I would expect body size to decrease over time and this change to be reflected in the evolutionary trajectory. To test this, the methods of Hunt (2006, 2008) and Hunt and Carrano (2010) are used. The mean of a trait, in this case carapace length, over time is fitted to different evolutionary models either stasis, unbiased random walk or a generalized random walk - and identify the model that describes the observed trend best (?). The development of body size or any other trait over time can follow different evolutionary trajectories, that describe general trends of trait evolution. If a trait changes in a way where it fluctuates around a mean so that the net change over time is near zero, this obersvation is described as stasis (Hunt, 2006). The variance around the mean, referred to as volatility, can be high or low in this case, but the defining property is that these fluctuations result in no change after all (Hunt, 2006). If a trait does show a net change, this change can either be directional, referred to as a generalized random walk, or non-directional, which is described as an unbiased random walk (?).

Changes in body size on the clade level can either be due to selective forces affecting the whole clade (trends) or individual species being influenced by different causes (tendencies)

(Hunt, 2006). A trend can be an increase or decrease in minimum, mean or maximum size of a clade and can be caused by differing speciation and extinction rates and therefore occur independently of within-lineage tendencies (Smith et al., 2016).

3 Material & Methods

3.1 Data collection

I collected data on body size of fossil testudinids from the Miocene until recent times. The body size data set includes 24 fossil genera, comprising almost 100 fossil species. The majority of the data was obtained from the primary literature (Table S12). To find relevant publications, I relied mostly on the references listed in the FosFarBase (Böhme and Ilg, 2003), the Paleobiology Database (http://paleobiodb.org), and the review on fossil turtles and tortoises by Rhodin et al. (2015). Furthermore, the FosFarBase (http://www.wahre-staerke.com/, last accessed 23.03.2017) provided fossil occurrences of testudinids all over the world, including their exact localities and age (Table S14). The FosFarBase contains 769 testudinid occurrences from 647 localities between the Eocene (33.9 - 56 mya) and the Holocene (0.0117 - 0 mya) (Fig. 1). Of those, 641 occurrences from 534 localities were of relevant age (Miocene to Holocene, 23.03 - 0 mya). However, although the FosFarBase already contained a lot of fossil occurrences, the literature review showed that additional data not recorded in the FosFarBase was readily available in the existing literature. The final body size data set includes 376 data records from 193 localities, of which 106 localities are present in the FosFarBase.

For extant testudinid taxa, I measured dry material (n = 67) from the collection of the Museum für Naturkunde zu Berlin (MfN) with an accuracy of the first decimal (unless stated otherwise) using calipers. In addition, body size data (n = 173) from the literature was included (Table S13), most were obtained from Itescu et al. (2014). I could not find body size data for three species, namely *Chelonoidis porteri*, *Kinixys nogueyi* and *Kinixys zombensis*, but since the following analyses were conducted on the generic level only (see below), this lack of data is negligible.

3.2 Body size estimation

Body size is reported as straight carapace length (SCL) in mm. When SCL for fossil taxa was not available from the primary literature, it was estimated (n = 254) either from plastron length (PL) or appendicular elements (Table S12). For carapace length estimations based on plastron length, the measurements from the MFN collection material were used to calculate the ratio between SCL and PL. Since the SC/PL ratio did not show a significant difference among species (Kruskal Wallis Test, P > 0.05; SCL/PL between 0.95 - 1.47), a single general

Figure 1: Map displaying fossil occurrences of Testudinidae from the Eocene to the Holocene across the world. Body size data was available for 106 localities from the Miocene until the Holocene (blue circles). The other localities (black circles) which are listed in the FosFarBase were either older or there was no body size data available for them. Testudinidae are frequently recovered in the fossil records of Europe and North America.

ratio (SCL/PL = 1.1) was calculated for all testudinids and hence used for the SCL estimations unless stated otherwise (Table S12). For estimations based on femora and humeri, ratios based on data provided by Hutterer et al. (1998) and Franz et al. (2001b), respectively, were used. A number of publications did not state measurements but instead provided scaled figures of the fossil remains, from which either SCL directly or PL, humeri, or femora lengths for estimating SCL could be measured.

3.3 Analyses

All subsequent analyses were performed with R 3.4.1 (R Core Team, 2017), including the packages dplyr (Wickham et al., 2017) to prepare the data for the analysis and ggplot2 (Wickham, 2009) to create figures. The R package vegan (Oksanen et al., 2017) was used to create randomized sample-based accumulation curves, which show the increase in individuals, species or genera per sampling unit and are therefore used to determine if sampling is sufficient or not in terms of covering diversity and richness (Thompson and Withers, 2003). Most commonly these accumulation curves are conducted at the species level, but they can also be applied to

higher taxa like families and genera (Gotelli and Colwell, 2011, 2001). The accumulation curves also give information about species richness, relative abundance and diversity (Thompson and Withers, 2003). Typically a species accumulation curve shows an initially steep, continuously decreasing slope and converges to an asymptote, when the maximum number of species has been reached. However, this shape can be affected in several ways (Gotelli and Colwell, 2011, 2001); when a lot of rare species opposed to only a few abundant species are present or if sampling is conducted on a large geographical scale, the transition between the initial slope and the following flatter slope of the curve may be lower and the slope towards the asymptote may be rather long or an asymptote may not be reached at all within figure margins. Since the data set in this study relies on literature, references were used as a sampling unit (x-axis). Sampling accumulation curves were created both at the species and the genus level, since genera of fossil testudinids are relatively well resolved whereas determination on the species level is still obscure in some cases, because fossil species are frequently based on single individuals that are often incompletely preserved as well (Brattstrom, 1961; de Lapparent de Broin, 2001). Since genera were better sampled than species (Fig. 3, S2 (a) - (b)), all subsequent analyses were performed on the generic level. Additional sampling accumulation curves for the continents were created (Fig. S2 (c) - (i)), to check if subsequent analyses could be applied to these subgroups.

3.3.1 Descriptive statistics

To explore the data structure, normalized histograms with density curves and boxplots of the entire data set and several subgroups (fossil vs. modern, insular vs. continental) were created. Descriptive statistics like mean, median, variance, skewness and kurtosis were calculated with the R package moments (Komsta and Novomestky, 2015; Table S11) for the raw and log-transformed data.

While mean, median and variance describe the location and distribution of a data set, skewness and kurtosis are referred to as 'shape statistics', which give information about symmetry (skewness) and the weight of the tails compared to the rest of the distribution, i. e. outliers will results in a higher kurtosis. However, the accuracy and suitability of these shape statistics has been debated, since sample size, extreme values and homogeneity of the data impact their results and uncertainties are higher than when mean and median are used (Bai and Ng, 2005; McNeese, 2016). Especially for small sample sizes, the histograms might provide more reliable

information about the structure of the data set than skewness and kurtosis (McNeese, 2016).

The Wilcoxon Rank Sum Test (unpaired data) was used to test for differences in body size between modern and fossil taxa as well as between insular and continental taxa. To be able to compare different subgroups, a random subsample (1000 repeats) of the respective larger subgroup was taken to compare equal sample sizes. For the majority of random subsamples, the median coincided with the real median (see Appendix D), therefore subsamples were assumed to reflect the actual sample and subsequently used for statistical comparisons. The Kruskal-Wallis test was used to test for differences among subsamples, e. g. body size per time bin and body size per continent. As post-hoc test, a multiple comparison (kruskalmc()) (Siegel and Castellan, 1988) was conducted to identify which groups differed significantly from each other.

3.3.2 Body size trends over time

To investigate trends in body size over time, the R package paleoTS (Hunt, 2015) was used. Data was split into time bins according to stratigraphic stages (Table 1, Fig. 2), with the exception of the two lower stages of the Miocene, which were considered as one time bin, because the last bin otherwise would have contained only two data records. Bins were chosen to reflect stratigraphic stages to ensure a decent sample size in each bin and because an exact dating was not available for all localities, but often only a rough estimate of the stratigrahic stage. To prevent sampling bias and because sampling accumulation curves showed that the genus level was better sampled than the species level, the mean SCL per genus was calculated before summarising mean SCL per time bin for the timescale analysis. The paleoTS plots display the mean trait over time and can be fitted to different evolutionary models: stasis, where the trait mean fluctuates around a steady mean (no change), generalized random walk (GRW), where the trait mean increases or decreases over time (directional change) or unbiased random walk (URW), where the trait mean changes over time but not in a way where these changes accumulate and move the trait mean in a specific direction (non-directional change). Model fits are based on maximum-likelihood estimation and model support is reported as Akaike Information Criterion (AICc), with the lowest values indicating the best suited model. Additionally, Akaike weights are reported, which give the proportional support for each model. PaleoTS plots and model-fitting was performed for the entire data set, continental, and insular genera subsets. The same approach was repeated for European and Eurasian genera for all data, as well as continental and insular genera separately.

Figure 2: Carapace length plotted over time, indicating insular (triangle) and continental species (circles) and colour indicating the continents. Straight lines indicate stratigraphic stages which were used as time bins, the dashed line indicates the border between the two stages of the Lower Miocene, which were consideres as one time bin. The largest testudinids recorded occur in the Pliocene of continental Europe.

Table 1: Time ranges, mean age per bin, corresponding stratigraphic stages and epochs, and respective sample sizes (on individual, species and genus level). Apart from the modern samples, which include all extant genera, the Lower Pleistocene contains the highest sample size.)

Age Range [mya] Mean Age [mya]	Mean Age [mya]	Stages	Epochs	n (Individuals) n (Species) n (Genera)	n (Species)	n (Genera)
0 - 0.0117	0.00585	Modern	Modern	254	99	18
0.0117 - 0.126	0.06885	Upper Pleistocene	Upper Pleistocene	20	18	∞
0.126 - 0.781	0.45350	Middle Pleistocene	Middle Pleistocene	53	13	7
0.781 - 1.81	1.29350	Lower Pleistocene	Lower Pleistocene	22	27	12
1.81 - 2.59	2.19700	Gelasian	Lower Pleistocene	33	15	თ
2.59 - 3.6	3.09400	Piacencian	Upper Pliocene	24	15	10
3.6 - 5.33	4.46600	Zanclean	Lower Pliocene	31	17	∞
5.33 - 7.25	6.28900	Messinian	Upper Miocene	12	o	9
7.25 - 11.6	9.42700	Tortonian	Upper Miocene	46	20	o
11.6 - 13.8	12.71400	Serravallian	Middle Miocene	27	∞	9
13.8 - 16	14.89500	Langhian	Middle Miocene	18	4	თ
16 - 23	19.50000	Burdigalian/Aquitanian	Lower Miocene	31	15	თ

4 Results

4.1 Sample-based accumulation curves

To see if sampling was sufficient, sample-based accumulation curves were created. The sample-based accumulation curve (SAC) on the generic level shows a relatively low intial slope and a long upward slope to the asymptote, which does not reach full saturation (Fig. 3). In contrast, the species accumulation curves, both per reference and per locality, show only a slight initial increase and, for the same number of references/sampling units, are far from reaching an asymptote (Fig. S2 (a), (b)). This demonstates that sampling is sufficient on the generic but not on the species level, which is the following analyses were conducted on the generic level. Accumulation curves for individual continents show that Europe reflects the trend of the overall dataset, with a long upward slope after the initial steep slope (Fig. S2 (h) - (i)). This shows that Europe and Eurasia are sufficiently sampled, whereas the other continents would require further sampling (Fig. S2 (c) - (g)). For this reason, the timescale analysis was only conducted for Europe and Eurasia, but not for the other continents.

Figure 3: Sample-based accumulation curve of fossil genera per reference. Dashed lines represent the confidence interval.

4.2 Descriptive statistics

To explore the strucure of the data set, histograms with density curves were created. The histograms indicate that testudinid body size is not normally distributed (Fig. 4), which is supported by QQ-Plots for raw as well as log-transformed data (Fig. S3).

The body size distribution is moderately right-skewed (Table S11), with a higher frequency of smaller body sizes. Body size ranges from a minimum of 80 mm to a maximum of 2500 mm for the entire data set. When comparing body sizes on a temporal scale, the minimum body size per stratigraphic stages excluding modern taxa ranges from 90 mm to 270 mm, while the maximum reaches values between 1100 mm to 2500 mm. The highest maximum body size was observed in the fossil record from continental Europe with a carapace length of 2500 mm.

Figure 4: Body size distribution of the complete data set. The data is bimodally distributed and right-skewed.

Considering insularity, body size distribution is right-skewed for continental taxa, but left-skewed for insular species, meaning larger body size is more frequent than smaller body size on islands. The overall pattern of bimodality is also apparent when splitting the data set into fossil and modern taxa (Fig. 5 (a)). Insular taxa are left-skewed when only considering fossil taxa, but modern insular taxa have a skewness close to 0, indicating a symmetric distribution (Table S11). Kurtosis suggests light tails with no/few outliers (kurtosis < 3) for insular and modern insular species, whereas continental species have a heavy tail (kurtosis > 3; Table S11).

Figure 5: Comparison of body size distributions of modern vs. fossil and continental vs. insular data. All distributions are bimodal. Fossil, modern and continental subgroups are right-skewed whereas the distribution of insular data is left-skewed.

The histograms show a bimodal distribution, wich is also apparent on most sublevels, except for modern insular species (Fig. S4 (a)). Body size distributions are similar, right-skewed and bimodal, for the four continents and reflect the overall trend (Fig. S4 (b)).

To investigate differences in carapace length among stratigraphic stages, between modern and fossil testudinids, and continental and insular testudinids, boxplots were created. Mean body size differs significantly across time bins (Kruskal Wallis Test, χ^2 = 71.441, P < 0.01; Fig. 6). The multiple comparison test showed that modern median body size is smaller than body size in the Upper Pleistocene. Body size within the Pleistocene and between Pleistocene and Pliocene/Upper Miocene does not differ. Serravallian body size is smaller than Langhian body size in the Middle Miocene, but Langhian body size is not different from Lower Miocene body size. These results show that body size is relatively steady over time, only between Modern and Upper Pleistocene as well as within the Middle Miocene a significant difference in carapace length is observed.

Comparison of modern and fossil testudinids showed that modern tortoises are significantly smaller than fossil ones (Wilcoxon Rank Sum Test, W = 22318, P < 0.01; Fig. 7). Furthermore, continental testudinids are significantly smaller than insular taxa (Wilcoxon Rank Sum Test, W = 13854, P < 0.01; Fig. 7).

These results can even be considered in combination as modern continental taxa are smaller than fossil continental taxa (Wilcoxon Rank Sum Test, W = 8046, P < 0.01; Fig. 8) and modern insular taxa are smaller than fossil insular taxa (Wilcoxon Rank Sum Test, W = 631.5, P < 0.01;

Fig. 8))

Figure 6: Comparison of carapace length across all time bins. Bold lines indicate medians, boxes indicate lower and upper quartiles, whiskers indicate largest and smallest observations and outliers represent extreme values. Numbers refer to number of genera per time bin. The mean carapace lengths per genera are depicted as grey circles with errorbars indicating the respective standard deviation. Smallest average carapace length and variance is found in modern testudinids.

Finally, body size differs among continents (Kruskal Wallis Test, χ^2 = 34.343, P < 0.01; Fig. 9). The multiple comparison test showed that African testudinids differ significantly from the other three continents in body size. American testudinid body size is comparable to that of Asia, but differs from those of Africa and Europe. Furthermore, Asian and European testudinids are similar in body size.

(a) Modern testudinids have a smaller average cara-(b) Continental Testudinidae have a larger average pace length and variance than their fossil counterparts.

Carapace length and variance than insular testudinids

Figure 7: Comparison of carapace length between (a) fossil and modern as well as (b) continental and insular testudinids. Bold lines indicate medians, boxes indicate lower and upper quartiles, whiskers indicate largest and smallest observations and outliers represent extreme values. Numbers refer to number of genera per time bin. The mean carapace lengths per genera are depicted as grey circles with errorbars indicating the respective standard deviation.

Figure 8: Boxplots fossil vs. modern, continental vs. insular species. Comparison of carapace length among continental and insular Testudinidae of different age. Bold lines indicate medians, boxes indicate lower and upper quartiles, whiskers indicate largest and smallest observations and outliers represent extreme values. Numbers refer to number of genera per time bin. The mean carapace lengths per genera are depicted as grey circles with errorbars indicating the respective standard deviation. Modern testudinids are smaller than fossil ones on both, continents and islands.

Figure 9: Comparison of testudinid carapace length among continents. Bold lines indicate medians, boxes indicate lower and upper quartiles, whiskers indicate largest and smallest observations and outliers represent extreme values. Numbers refer to number of genera per time bin. The mean carapace lengths per genera are depicted as grey circles with errorbars indicating the respective standard deviation. African testudinids have the smallest average carapace length compared to the other continents.

4.3 PaleoTS analysis

4.3.1 Complete dataset

To investigate the evolutionary trajectory of body size across time, time scale analysis based on the mean carapace length and variance per time bin were conducted and fitted to three evolutionary models (stasis, unbiased random walk and generalized random walk). How mean body size progresses over time is similar for the complete data set as well as continental and insular subgroups (Fig. 10, 11, 12). All show peaks in the Upper Miocene and Lower Pleistocene and a dip during the Pliocene (Table 2, 4, 6). However, the decline in body size is very pronounced for continental testudinids (Fig. 11), whereas body size only slowly decreases on islands (Fig. 12). All three data sets also show a very sharp decline in the youngest time bin. For the complete data set as well as the continental one, body size seems to increase constantly during the Miocene. For the insular data set, the Upper Miocene is the starting point for the analysis, where mean carapace length is even larger than on continents. The model fittings showed that stasis is best supported for both the complete and the insular data set (Table 3, 7). However, while it is very well supported for insular testudinids (100 %, Table 7), the model support for the

complete data set is rather weak (50 %, Table 3). In conrast, on continents an unbiased random walk is the best supported model, but also with only a rather weak support (Table 5).

Table 2: PaleoTS object of the complete data set. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. Largest mean carapace length occurs in the Upper Miocene, followed by the Lower Pleistocene.

tt	nn	mm	VV
0.00585	22	330.1456	50307.87
0.06885	8	506.3265	64620.11
0.45350	7	516.4053	155241.85
1.29350	12	593.8669	147507.20
2.19700	8	971.8850	580540.76
3.09400	9	658.0826	271043.73
4.46600	8	785.0792	187937.61
6.28900	4	1141.9375	584378.85
9.42700	9	703.9570	195766.19
12.71400	6	628.3020	285258.36
14.89500	7	687.9619	169914.58
19.50000	9	441.5420	78467.65

Figure 10: Evolutionary trajectory of Testudinidae body size (Trait Mean) over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size seems to continuously increase until the Upper Miocene, dip and go back up again in the Pliocene and steadily drop with onset of the Pleistocene.

Table 3: Model-fitting results for the complete data set. Stasis is the best although not very strongly supported model, followed by URW.

	logL	K	AICc	Akaike.wt
GRW	-81.31790	2	167.9691	0.161
URW	-82.05721	1	166.5144	0.332
Stasis	-80.16802	2	165.6694	0.507

4.3.2 Continental dataset (excluding insular species)

Table 4: PaleoTS object of the continental data set. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. Largest mean carapace length occurs in the Lower Pleistocene, followed closely by the Upper Miocene.

tt	nn	mm	VV
0.00585	18	240.3544	11701.08
0.06885	6	397.4606	50619.39
0.45350	5	416.9341	200982.12
1.29350	7	346.8484	66240.07
2.19700	7	1103.1067	595507.93
3.09400	6	725.4156	414253.29
4.46600	6	771.3833	259173.08
6.28900	4	1054.4375	531455.93
9.42700	9	703.9570	195766.19
12.71400	6	628.3020	285258.36
14.89500	7	687.9619	169914.58
19.50000	9	441.5420	78467.65

Figure 11: Evolutionary trajectory of Testudinidae body size (Trait Mean) on the continents over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size seems to increase until the Upper Miocene, dip and go back up again in the Pliocene and steadily drop with onset of the Pleistocene.

Table 5: Model-fitting results for the continental data set. URW is the best although not very strongly supported model, followed by GRW.

	logL	K	AICc	Akaike.wt
GRW	-82.26287	2	169.8591	0.300
URW	-83.12577	1	168.6515	0.548
Stasis	-82.93984	2	171.2130	0.152

4.3.3 Insular dataset (excluding continental species)

Table 6: PaleoTS object of the insular data set. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. First records are from the Upper Miocene, where the largest mean carapace length occurs, followed by the Lower Pleistocene.

tt	nn	mm	VV
0.00585	13	416.5655	80682.22
0.06885	4	727.5938	14997.58
0.45350	3	748.8333	142649.08
1.29350	6	829.6744	112964.44
2.19700	3	1178.3333	821158.33
3.09400	4	449.4375	27058.77
4.46600	2	826.1667	15196.06
6.28900	1	1850.0000	0.00

Figure 12: Evolutionary trajectory of Testudinidae body size (Trait Mean) on islands over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size decreases during the Pliocene and goes back up again in the Lower Pleistocene, then drops slowly until it declines sharply in the Holocene.

Table 7: Model-fitting results for the insular data set. Stasis is the best supported model.

	logL	K	AICc	Akaike.wt
GRW	-68.57344	2	143.5469	0
URW	-75.76576	1	154.1982	0
Stasis	-60.41581	2	127.2316	1

4.3.4 Per continent

The time-scale analysis was repeated for sufficiently sampled continents, Europe and Eurasia.

Europe, genera

When repeating the analysis for European taxa only, all three groups – complete, continental and insular data – are best described by stasis with a model support between 92-99% (Fig. 13, S7, S8; Tables 9, S2, S4). Mean carapace length over time is similar to the global analysis, althought the drop during is the Pleistocene is much more pronounced in continental European testudinids (Fig. S7), while it is a lot less pronounced in insular European testudinids (Fig. S8). Also, the highest carapace length for European testudinids are found during the Lower Pliocene and Upper Miocene (Table 8, S1, S3)

Table 8: PaleoTS object of European testudinids. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. Largest mean carapace length occurs in the Lower Pliocene.

vv	mm	nn	tt
3338.406	148.8559	2	0.00585
138802.333	616.6667	3	0.06885
89203.953	377.8167	3	0.45350
218431.974	697.3717	5	1.29350
1110050.000	895.0000	2	2.19700
39433.333	453.3333	3	3.09400
159317.256	1215.8667	5	4.46600
875495.281	838.3750	2	6.28900
263434.389	800.0508	6	9.42700
351634.528	653.9625	5	12.71400
223154.375	772.0000	5	14.89500
183706.682	533.8533	5	19.50000

Figure 13: Evolutionary trajectory of Testudinidae body size (Trait Mean) in Europe over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size seems to increase until the Lower Pliocene and generally decline afterwards. However, body size shows two slight peaks, one at the beginnign and one at the end of the Pleistocene.

Table 9: Model-fitting results for European testudinids. Stasis is the best supported model.

	logL	K	AICc	Akaike.wt
GRW	-84.14010	2	173.7802	0.006
URW	-85.90727	1	174.2590	0.005
Stasis	-79.01365	2	163.5273	0.990

Eurasia, genera

The results for Eurasian taxa only generally coincide with the results for the complete data set. For Eurasia, the complete data set (Fig. 14, Table 10) and insular taxa (Fig. S10, Table S7) are best described by stasis, with higher model supports than for the global data set (Table 11, S8).

Continental taxa (Fig. S9, Table S6) are best described by an unbiased random walk (Table S6), which reflects the results for the global data set, although model support for Eurasian continental taxa is even higher.

Mean carapace length over time differs from the complete and the European data, at least for entire Eurasia and mainland Eurasia because body size does not peak during the Lower Pleistocene but drops steadily from the Upper Miocene onwards (Fig. 14, S9). On Eurasian islands, however, body size shows a second peak during the Lower Pleistocene (Fig. S10), similar to the complete and European data sets on insular testudinids.

Table 10: PaleoTS object of the Eurasian testudinids. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. Largest mean carapace length occurs from the Upper Miocene to the Lower Pliocene.

tt	nn	mm	vv
0.00585	6	210.8687	10460.89
0.06885	4	530.0000	122579.33
0.45350	3	377.8167	89203.95
1.29350	7	777.5579	162641.14
2.19700	5	909.6667	562217.22
3.09400	5	892.0000	381770.00
4.46600	6	1048.0556	296417.22
6.28900	3	1208.9167	849651.02
9.42700	6	800.0508	263434.39
12.71400	5	653.9625	351634.53
14.89500	5	772.0000	223154.38
19.50000	5	513.8533	162399.35

Figure 14: Evolutionary trajectory of Testudinidae body size (Trait Mean) in Eurasia over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size seems to increase until the Upper Miocene and then decline continuously with only one slight peak during the Upper Pleistocene.

Table 11: Model-fitting results for Eurasian testudinids. Stasis is the best supported model.

	logL	K	AICc	Akaike.wt
GRW	-78.25066	2	162.0013	0.039
URW	-78.39530	1	159.2350	0.154
Stasis	-75.21099	2	155.9220	0.807

5 Discussion

For this study, a data set comprising 58 extant and 98 fossil species has been assembled, including body size measurements from 616 specimens. The analyses revealed that Testudinidae have a bimodally distributed body size, which is generally right-skewed except for insular species, where a negative skewness indicates a higher abundance of large-bodied testudinids. I could confirm that modern testudinids are significantly smaller than fossil tortoises. Moreover, continental taxa are significantly smaller than insular forms, which has been observed for both modern and fossil testudinids. Interestingly, the time scale analysis identified stasis as the best-fitting model for the complete data set as well as most subgroups. Only for continental testudinids, globally and in Eurasia, an unbiased random walk was the favoured evolutionary model.

5.1 Data coverage

Sample-based accumulation curves show that genera have been sufficiently sampled, i.e. that further sampling will probably not result in recording more genera. However, this is not the case for species. Since there are fewer genera than species in a clade, it is to be expected that genera reach an asymptote earlier than species (Gotelli and Colwell, 2001). Although the accumulation curve for the entire data set does not completely converge to an asymptote, considering the large area covered (Thompson and Withers, 2003) and the high number of rare genera in the dataset (which are to be expected in a fossil dataset), it can be considered well enough sampled for the present study (Gotelli and Colwell, 2001). The remaining analyses are conducted on the generic level because generic level identifications in the fossil record are more robust than species level identification and genera are better sampled in my data set (Jass et al., 2014). According to Rhodin et al. (2015) 121 species of testudinidae have been recognized in the fossil record since the beginning of the Pleistocene. For 117 species from that time period, body size data could be obtained for this study. Therefore it can be assumed, that at least for the time period since the Pleistocene the data set sufficiently resembles the actual fossil record of testudinidae on a global scale. However, to be able to investigate body size patterns on smaller spatial or temporal scales further body size data should be collected.

5.2 Distribution of testudinid body size

Distribution of testudinid body size is rather homogenous across spatial and temporal scales. Body size distribution is right-skewed on a large scale, as well as for modern, fossil and continental species. Similar patterns have been observed in tortoises (Angielczyk et al., 2015; Jaffe et al., 2011) and freuently throughout the animal kingdom (Kozlowski and Gawelczyk, 2002; ?). Only insular taxa show a body size distribution with a negative skewness, which indicates a higher frequency of larger-bodied species. This left-skewed distribution seems to be largely driven by fossil insular species, as modern insular species are not skewed and show a rather flat, symmetrical distribution. Interestingly, Angielczyk et al. (2015) find a strongly left-skewed body size distribution for insular species when investigating the entire clade of Testudines. This observation is probably driven by their well-sampled data set on Testudinidae, which comprises all extant and a few extinct species. The bimodality of overall body size distribution and the consistency across the continents in testudinids observed in the present study is similar to what Lyons and Smith (2008); ? report for Quaternary mammals, which were observed to have a constant bimodal distribution across alls continents but Australia. However, since tortoise body size is only sampled well enough for Europe and Eurasia, these results have to be considered with caution.

When looking at continental tortoises on a temporal scale, the second peak representing large body sizes disappears for modern tortoises, which is probably due to the extinction of large continental taxa and coincides with other findings (Itescu et al., 2014). This may be partially due to the fact that almost half of the extant body size data for this study was obtained from the mentioned publication. Nonetheless, despite the higher number of data recors for this study, my results are consistens with Itescu et al. (2014). Moreover, the disappearance of larger taxa in recent times is similar to what has been observed in the mammalian megafauna during the Quaternary (Lyons and Smith, 2008). For insular species, however, the results of the present study deviate from the observations in Lyons and Smith (2008). While the bimodal body size distribution of testudinids is constant over time on islands, it is also left-skewed, whereas for mammals the opposite has been observed (Lyons and Smith, 2008). This contradiction is easily explained by the fact that many mammals show a decrease in body size in insular environments as stated by the island rule (Foster, 1964). Insular tortoises, on the contrary, reach larger sizes than continental testudinids, which is consistent with other findings Angielczyk et al. (2015);

Itescu et al. (2014); Jaffe et al. (2011). Whether or not these results can be considered as complying the island rule depends on the biogeographic history of giant tortoises and whether they evolved to be large on islands or prior to island colonizations. Many authors agree that tortoises were already large when they colonized the islands, which would contradict the island rule (Itescu et al., 2014; Cheke et al., 2016; Gerlach et al., 2006; Caccone et al., 1999; but see Jaffe et al., 2011). Colonization of oceanic islands via sea dispersal has been argued to be the only plausible explanation for the presence of tortoises on islands (Cheke et al., 2016). Since a larger size improves bouyancy and fasting endurance in tortoises, it seems logical that tortoises first evolved large size and then spread to islands (Cheke et al., 2016; Gerlach et al., 2006; Jaffe et al., 2011; Patterson, 1973; ?).

Modern tortoises are significantly smaller-bodied than their fossil conspecifics, which coincides with earlier findings for animals in general (?) and reptiles as a clade (Smith et al., 2016). This significant decrease in testudinid body size takes place during the Pleistocene and seems to coincide with the spread of humanity across the globe (Rhodin et al., 2015).

5.3 Time-scale analysis

The time scale analysis showed that overall there is no net change in testudinid body size through time. However, when only considering continental taxa, unbiased random walk is the favoured model. This is a special case of directional evolution, where the probability of descendants being larger or smaller than their ancestors is the same (Hunt and Carrano, 2010; Smith et al., 2016). This change is most likely due to the extinction of the giant continental forms, which is also apparent in the frequency curves. For insular species, however, stasis is again the favoured evolutionary model, which seems plausible since there still are giant forms on islands today. Also, model support is the highest for insular species, fitting only stasis. On a continental level, for Europe stasis fits best for the complete data set as well as for continental and insular species. Eurasia, however, reflects the overall trend, with body size of continental genera being best described by a unbiased random walk, although model support is weaker than for Europe. Yet, all model supports for Eurasia (complete, continental and insular data sets) are better than for the overall data set and the continental taxa, which suggest that Eurasia somehow drives this trend.

In the literature, stasis is often encountered in large-scale analyses (Hunt, 2006, 2007; Hunt et al., 2015; Smith et al., 2016). On a broad scale, stasis may be favoured when evolutionary

changes are too small to be noted (Hunt et al., 2015). Unbiased random walk has also been reported for several animal groups at the clade level (Pimiento et al., 2015; Smith et al., 2016).

The unbiased random walk for continental testudinids is certainly influenced by the complete loss of giant forms in recent times. Additionally, within-lineage changes, referred to as tendencies, towards smaller body size have been suggested for certain tortoise species (Franz and Quitmyer Irvy, 2005; Klein and Cruz-Uribe, 2000; Speth and Tchernov, 2002; Steele and Klein, 2005). That stasis is the favoured model for insular taxa as well as insular and continental taxa combined, although modern tortoises have significantly smaller body sizes compared to fossil tortoises, might be because the range of body sizes is still considerably large for insular taxa, whereas the range of body sizes in extant continental taxa is profoundly smaller than for fossil continental taxa. Therefore, the within-lineage tendencies towards smaller body size might not be visible as a trend at the clade level as long as body size range does not decrease significantly.

5.4 Causes for extinction

There are numerous accounts of tortoise exploitation by humans from all over the world (Archer et al., 2014; Avery et al., 2004; Blasco, 2008; Blasco et al., 2011, 2016; Franz et al., 2001a; Karl, 2012; Mudar and Anderson, 2007; Munro and Grosman, 2010; Peres and Nascimento, 2006; Pritchard, 2013; Sampson, 2000, 1998; Speth and Tchernov, 2002; Steadman et al., 2017; Thompson and Henshilwood, 2014) and extinction patterns in tortoises are associated with the spread of hominin and humans, for example that they reached islands later, which is why many large island species were overexploited leading to their extinction during the Holocene (Rhodin et al., 2015). In many archeological sites where tortoise remains are found, cut or burn marks are visible, indicating human consumption (?). But besides direct anthropogenic threats like hunting, human presence was associated with issues like habitat fragmentation or, especially on islands, introduced predators or competitors which may have further accelerated tortoise extinction (?). Tortoises are frequently found associated with dwarf forms of proboscideans on islands (Hooijer, 1951; Vlachos and Tsoukala, 2014), which were found to have been overexploited by humans and only able to survive in regions inaccessible to humans (Surovell et al., 2005). The significant decrease in tortoise body size that was observed in this study also coincides with the time of human spread and may be comparable to the exploitation of the mammalian megfauna, for which human influence has been suggested to be the main cause (Barnosky, 2004; Sandom et al., 2014). Further, for the other group of terrestrial tortoises, the Australian Meiolaniidae, evidence suggests that human exploitation lead to their extinction (?). However, there are also records of mass mortalities of giant insular tortoises in Mauritius and Réunion, before humans had reached the islands (Cheke et al., 2016). Moreover, there are still extant species that have been heavily exploited, which did not lead to their extinction but instead to a decrease in body size (Steele and Klein, 2005; ?). Still, the literature suggests that human overexploitation is likely to have caused many tortoise extinction, possibly in conjunction with climate change (?).

Giant tortoises seem to occupy only a small temperature range, since they are in danger of overheating (?), but also seem to be unable to cope with cold winters (Hibbard, 1960). However, since they are currently still present on some islands, climatic conditions seem to be suitable. Climate change might have indirectly influenced tortoise populations through altered vegetation cover, which serves as a source of shade and food for tortoises (Cheke et al., 2016; Hunter et al., 2013; Schleich, 1981).

5.5 Conclusion

The results suggest that the extinction of giant continental fossils accounts for differences in evolutionary patterns of continental and insular species. Loss of biodiversity is not reflected in these patterns, if the size range does not change significantly. The significant size difference between modern and fossil tortoises on a global scale and within-lineage tendencies are also not reflected as a trend in body size. Possible reasons for the extinction of giant tortoises are complex and require further investigation. On the one hand, direct and indirect anthropogenic influence is massive and may have affected tortoises in the same way as it affected the mammalian megafauna (Barnosky, 2004; Sandom et al., 2014). On the other hand, giant tortoises seem to be sensitive to their environment in terms of thermoregulation and climatic fluctuations might have affected tortoise populations (?).

This study would certainly benefit from further sampling, ideally by directly measuring fossil specimens from museum collections. With a larger data set, smaller-scale analyses could be conducted, for example for separate continents or individual lineages. It would also be interesting to include phylogenetic relationships, although many species and genera would have to be revisited and revised before a complete phylogeny can be created.

-> Try model that allows for different optimal body sizes as in Jaffe et al. (2011)

6 References

- Angielczyk, K. D., Burroughs, R. W., and Feldman, C. R. (2015). Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, 324(3):270–294.
- Angilletta, M. J., Steury, T. D., and Sears, M. W. (2004). Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle. *Integrative and Comparative Biology*, 44(6):498–509.
- Archer, W., Braun, D. R., Harris, J. W. K., McCoy, J. T., and Richmond, B. G. (2014). Early Pleistocene aquatic resource use in the Turkana Basin. *Journal of Human Evolution*, 77:74–87.
- Avery, G., Kandel, A., Klein, R. G., Conard, N. J., and Cruz-Uribe, K. (2004). Tortoises as food and taphonomic elements in palaeo "landscapes". *Petits animaux et . . .*, pages 147–161.
- Bai, J. and Ng, S. (2005). Tests for Skewness, Kurtosis, and Normality for Time Series Data. *Journal of Business & Economic Statistics*, 23(1):49–60.
- Barnosky, A. D. (2004). Assessing the Causes of Late Pleistocene Extinctions on the Continents. *Science*, 306(5693):70–75.
- Bergmann, C. (1848). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, Göttingen.
- Blackburn, T. M. and Gaston, K. J. (1994). Animal body size distributions: patterns, mechanisms and implications. *Trends in Ecology & Evolution*, 9(12):471–474.
- Blain, H. A., Bailon, S., and Agustí, J. (2016). The geographical and chronological pattern of herpetofaunal Pleistocene extinctions on the Iberian Peninsula. *Comptes Rendus Palevol*, 15(6):731–744.
- Blasco, R. (2008). Human consumption of tortoises at Level IV of Bolomor Cave (Valencia, Spain). *Journal of Archaeological Science*, 35(10):2839–2848.

- Blasco, R., Blain, H. A., Rosell, J., Carlos Díez, J., Huguet, R., Rodríguez, J., Arsuaga, J. L., Bermúdez De Castro, J. M., and Carbonell, E. (2011). Earliest evidence for human consumption of tortoises in the European Early Pleistocene from Sima del Elefante, Sierra de Atapuerca, Spain. *Journal of Human Evolution*, 61(4):503–509.
- Blasco, R., Rosell, J., Smith, K. T., Maul, L. C., Sañudo, P., Barkai, R., and Gopher, A. (2016). Tortoises as a dietary supplement: A view from the Middle Pleistocene site of Qesem Cave, Israel. *Quaternary Science Reviews*, 133(January):165–182.
- Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., and Sams, S. (1978). Relationships between body size and some life history parameters. *Oecologica*, 37:257–272.
- Böhme, M. and Ilg, A. (2003). FosFARbase. *Available at www. wahre- staerke. com/. Accessed October*, 10:2011.
- Brattstrom, B. H. (1961). Some New Fossil Tortoises from Western North America with remarks on the Zoogeography and Paleoecology of Tortoises. *Journal of Paleontology*, 35(3):543–560.
- Caccone, a., Gibbs, J. P., Ketmaier, V., Suatoni, E., and Powell, J. R. (1999). Origin and evolutionary relationships of giant Galápagos tortoises. *Proceedings of the National Academy of Sciences of the United States of America*, 96(23):13223–13228.
- Cheke, A. S., Pedrono, M., Bour, R., Anderson, A., Griffiths, C., Iverson, J. B., Hume, J. P., and Walsh, M. (2016). Giant tortoises spread to western Indian Ocean islands by sea drift in pre-Holocene times, not by later human agency response to Wilm?? et al. (2016a). *Journal of Biogeography*, pages 1426–1429.
- Cope, E. D. (1887). *The origin of the fittest: essays on evolution*. D. Appleton.
- de Lapparent de Broin, F. (2001). The European turtle fauna from the Triassic to the Present. *Dumerilia*, 4(3):155–217.
- De Lapparent De Broin, F. (2002). A giant tortoise from the Late Pliocene of Lesvos Island (Greece) and its possible relationships.
- Delfino, M., Rage, J.-C., and Rook, L. (2003). Tertiary mammal turnover phenomena: what happened to the herpetofauna? *Deinsea*, 10(10):153–161.

- Foster, J. B. (1964). Evolution of mammals on islands. *Nature*, 202:234–235.
- Franz, R., Carlson, L. A., Owen, R. D., and Steadman, D. (2001a). Fossil tortoises from the Turks and Caicos Islands, B.W.I.
- Franz, R., Carlson, L. A., Owen, R. D. R. D., and Steadman, D. (2001b). Fossil tortoises from the Turks and Caicos Islands, BWI. In *Proceedings of the 8th Symposium on the Natural History of the Bahamas. Gerace Research Center, San Salvador, Bahamas*, pages 27–31.
- Franz, R. and Quitmyer Irvy, R. (2005). A fossil and zooarchaeological history of the gopher tortoise (Gopherus polyphemus) in the Southeastern United States. *Bulletin of the Florida Museum of Natural History*, 45:179–199.
- Fritz, U. and Havaš, P. (2007). Checklist of Chelonians of the World. *Vertebrate Zoology*, 57(2):148–368.
- Froyd, C. A., Coffey, E. E. D., van der Knaap, W. O., van Leeuwen, J. F. N., Tye, A., and Willis, K. J. (2014). The ecological consequences of megafaunal loss: Giant tortoises and wetland biodiversity. *Ecology Letters*, 17(2):144–154.
- Gerlach, J., Muir, C., and Richmond, M. D. (2006). The first substantiated case of trans-oceanic tortoise dispersal. *Journal of Natural History*, 40(41-43):2403–2408.
- Gibbons, R. (2004). Examining the extinction of the Pleistocene megafauna. *Stanford Undergraduate Research Journal*, 3:22–27.
- Gotelli, N. and Colwell, R. (2011). Chapter 4: Estimating species richness. *Biological Diversity.*Frontiers in Measurement and Assessment, (2):39–54.
- Gotelli, N. J. and Colwell, R. K. (2001). Quantifyinf Biodiversity: Procedures and Pitfalls in the Measurement and Comparison of Species Richness. *Ecology Letters*, 4(4):379–391.
- Hibbard, C. W. (1960). An interpretation of the Pliocene and Pleistocene climates in North America. *Annual Report of the Michigan Academy of Science, Arts and Letters*, 62:5–30.
- Hooijer, D. A. (1951). Pygmy Elephant and Giant Tortoise. *The Scientific Monthly*, 72(1):3–8.
- Hunt, G. (2006). Data Analysis in Paleontology Using. pages 1–9.

- Hunt, G. (2007). The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. *Proceedings of the National Academy of Sciences*, 104(47):18404–18408.
- Hunt, G. (2008). Evolutionary patterns within fossil lineages: Model-based assessment of modes, rates, punctuations and process. *From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century*, 14:117–131.
- Hunt, G. (2015). paleoTS: Analyze Paleontological Time-Series.
- Hunt, G. and Carrano, M. T. (2010). Models and Methods for Analyzing Phenotypic Evolution in Lineages and Clades. *Quantitative Methods in Paleobiology*, 16(October):245–269.
- Hunt, G., Hopkins, M. J., and Lidgard, S. (2015). Simple versus complex models of trait evolution and stasis as a response to environmental change. *Proceedings of the National Academy of Sciences*, 112(16):4885–4890.
- Hunter, E. A., Gibbs, J. P., Cayot, L. J., and Tapia, W. (2013). Equivalency of Galápagos Giant Tortoises Used as Ecological Replacement Species to Restore Ecosystem Functions. *Conservation Biology*, 27(4):701–709.
- Hutterer, R., García-Talavera, F., López-Martínez, N., Michaux, J., Hutterer, F., García-Talavera, F., López-Martínez, N., and Michaux, J. (1998). New chelonian eggs fom the tertiary of Lanzarote and Fuerteventura and a review of fossil tortoises of the Canary Islands (Reptilia, Testudinidae).
- Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H., and Meiri, S. (2014). Is the island rule general? Turtles disagree. *Global Ecology and Biogeography*, 23(6):689–700.
- Jaffe, A. L., Slater, G. J., and Alfaro, M. E. (2011). The evolution of island gigantism and body size variation in tortoises and turtles. *Biology Letters*, 7(4):558–561.
- Jass, C. N., Cobb, T. P., and Bell, C. J. (2014). Regional, Depositional, and Chronologic Comparisons of Pleistocene Turtle Richness in North America. *Chelonian Conservation and Biology*, 13(1):16–26.
- Karl, H. V. (2012). Human consumption of turtles of the Homo rudolfensis site Uraha (Malawi, East Africa). *Archaeofauna*, 21:267–279.

- Klein, R. G. and Cruz-Uribe, K. (2000). Middle and Later Stone Age large mammal and tortoise remains from Die Kelders Cave 1, Western Cape Province, South Africa. *Journal of Human Evolution*, 38(1):169–195.
- Komsta, L. and Novomestky, F. (2015). *moments: Moments, cumulants, skewness, kurtosis and related tests.*
- Kozlowski, J. and Gawelczyk, A. T. (2002). Why are species 'body size distributions usually skewed to the right ? *Functional Ecology*, 16(4):419–432.
- Lyons, S. K. and Smith, F. A. (2008). Macroecological Patterns of Body Size in Mammals across

 Time and Space. *Animal Body Size: Linking Pattern and Process across Space, Time, and Taxonomic Group*, pages 116–144.
- McNeese, B. (2016). Are Skewness and Kurtosis Useful Statistics? *BPI Consulting, LLC*, (https://www.spcforexcel.com).
- Millien, V., Kathleen Lyons, S., Olson, L., Smith, F. A., Wilson, A. B., and Yom-Tov, Y. (2006). Ecotypic variation in the context of global climate change: revisiting the rules. *Ecology Letters*, 9(7):853–869.
- Mudar, K. and Anderson, D. D. (2007). New Evidence for Southeast Asian Pleistocene Foraging Economies: Faunal Remains from the Early Levels of Lang Rongrien Rockshelter, Krabi, Thailand. *Asian Perspectives*, 46(2):298–334.
- Munro, N. D. and Grosman, L. (2010). Early evidence (ca. 12,000 B.P.) for feasting at a burial cave in Israel. *Proceedings of the National Academy of Sciences*, 107(35):15362–15366.
- Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H. (2017). *vegan: Community Ecology Package*.
- Patterson, R. (1973). Why tortoises float. 7(4):373–375.
- Pedrono, M., Griffiths, O. L., Clausen, A., Smith, L. L., Griffiths, C. J., Wilmé, L., and Burney, D. A. (2013). Using a surviving lineage of Madagascar's vanished megafauna for ecological restoration. *Biological Conservation*, 159:501–506.

- Peres, C. A. and Nascimento, H. S. (2006). Impact of game hunting by the Kayap?? of south-eastern Amazonia: Implications for wildlife conservation in tropical forest indigenous reserves. *Biodiversity and Conservation*, 15(8):2627–2653.
- Pérez García, A., Ortega, F., and Jiménez Fuentes, E. (2016). Taxonomy, systematics, and diversity of the European oldest testudinids. *Zoological Journal of the Linnean Society*, 177(3):648–675.
- Peters, R. H. (1983). The ecological implications of body size.
- Pimiento, C., Nifong, J. C., Hunter, M. E., Monaco, E., and Silliman, B. R. (2015). Habitat use patterns of the invasive red lionfish Pterois volitans: A comparison between mangrove and reef systems in San Salvador, Bahamas. *Marine Ecology*, 36(1):28–37.
- Pritchard, P. (2013). Madagascar: island continent of tortoises great and small. (6):17–24.
- R Core Team (2017). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.
- Rhodin, A. G. J., Thomson, S., Georgalis, G. L., Karl, H.-V., Danilov, I. G., Takahashi, A., de la Fuente, M. S., Bourque, J. R., Delfino, M., Bour, R., Iverson, J. B., Shaffer, B. H., and van Dijk, P. P. (2015). Turtles and tortoises of the world during the rise and global spread of humanity: first checklist and review of extinct Pleistocene and Holocene chelonians. *Chelonian Research Monographs*, 5(5):1–66.
- Sampson, C. (2000). Taphonomy of Tortoises Deposited by Birds and Bushmen. *Journal of Archaeological Science*, 27(9):779–788.
- Sampson, C. G. (1998). Tortoise Remains from a Later Stone Age Rock Shelter in the Upper Karoo, South Africa. *Journal of Archaeological Science*, 25:985–1000.
- Sandom, C., Faurby, S., Sandel, B., and Svenning, J.-C. (2014). Global late Quaternary megafauna extinctions linked to humans, not climate change. *Proceedings of the Royal Society B: Biological Sciences*, 281(1787):20133254–20133254.
- Schleich, H.-H. (1981). Jungtertiäre Schildkröten Süddeutschlands unter besonderer-Berücksichtigung der Fundstelle Sandelzhausen.

- Schuster, S. and Schüle, W. (2000). Anthropogenic causes, mechanisms and effects of Upper Pliocene and Quaternary extinctions of large vertebrates. *Oxford Journal of Archaeology*, 19(3):223–239.
- Siegel, S. and Castellan, N. J. (1988). Non-Parametric Statistics for the behavioural Sciences.
- Smith, F. A. and Lyons, S. K. (2009). On Being the Right Size: The Importance of Size in Life History, Ecology, and Evolution. (Galileo 1638).
- Smith, F. A., Payne, J. L., Heim, N. A., Balk, M. A., Finnegan, S., Kowalewski, M., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Anich, P. S., and Wang, S. C. (2016). Body Size Evolution Across the Geozoic. *Annual Review of Earth and Planetary Sciences*, 44(1):523–553.
- Speth, J. D. and Tchernov, E. (2002). Middle Paleolithic Tortoise Use at Kebara Cave (Israel). *Journal of Archaeological Science*, 29(5):471–483.
- Steadman, D. W., Singleton, H. M., Delancy, K. M., Albury, N. A., Soto-Centeno, J. A., Gough, H., Duncan, N., Franklin, J., and Keegan, W. F. (2017). Late Holocene Historical Ecology: The Timing of Vertebrate Extirpation on Crooked Island, Commonwealth of The Bahamas. *The Journal of Island and Coastal Archaeology*, 0(0):1–13.
- Steele, T. E. and Klein, R. G. (2005). Mollusk and tortoise size as proxies for stone age population density in South Africa: Implications for the evolution of human cultural capacity. *Munibe* (*Antropologia-Arkeologia*), 57(0):221–237.
- Surovell, T., Waguespack, N., and Brantingham, P. J. (2005). Global archaeological evidence for proboscidean overkill. *Proceedings of the National Academy of Sciences*, 102(17):6231–6236.
- Thompson, G. G. and Withers, P. C. (2003). Effect of species richness and relative abundance on the shape of the species accumulation curve. *Austral Ecology*, 28:355–360.
- Thompson, J. C. and Henshilwood, C. S. (2014). Tortoise taphonomy and tortoise butchery patterns at Blombos Cave, South Africa. *Journal of Archaeological Science*, 41:214–229.
- Vlachos, E. and Tsoukala, E. (2014). Testudo cf . graeca from the new Late Miocene locality of Platania (Drama basin , N . Greece) and a reappraisal of previously published specimens. XLVIII(April 2015):27–40.

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York.

Wickham, H., Francois, R., Henry, L., and Müller, K. (2017). *dplyr: A Grammar of Data Manipulation*.

Appendix A Geographical and stratigraphic distribution of body size data

Body size data was available from all four continents, were testudinidae occur, and over a time period of 20 mya (Fig. S1, Table 1).

-> samples all over the world and over the whole time period with more or less equally distributed sample sizes (over time bins, continents are uneven -> see SAC)

Figure S1: Map displaying all localities for which body size data for testudinids was available in the literature. Size of points denotes sample size, color denotes approximate age.

Appendix B Sampling accumulation curves

Figure S2: Sampling accumulation curves: (a) - (b) Species are not sufficiently sampled, regardless of sampling unit. (c) - (i) Sampling Accumulation Curves on generic level per continent. Only Europe (h) and Eurasia (i) are sufficiently sampled. Dashed lines represent the confidence interval.

Appendix C Data structure

Normality test

Figure S3: Visual test for normal distribution. In case of normally distributed data, the black circles should follow the red line, which is not the case for either raw data (a) nor logtransformed data (b). Therefore, data is assumed to not be normally distributed and nonparametric test are used for all statistical analyses.

Body size distribution for subgroups

(a) Comparison of carapace length of modern and(b) Comparison of carapace length among continents fossil continental/insular Testudinidae

Figure S4: Body size distribution of subgroups. (a) Comparison of body size in modern continental and modern insular as well as fossil continental and fossil insular testudinids. Fossil continental testudinids reflect the bimodal distribution of the complete dataset, but large testudinids are missing in modern continental testudinids. Fossil insular testudinids are strongly left-skewed, whereas modern insular testudinids show a rather flat distribution. (b) Comparison of carapace length among continents. All continents roughly reflect the bimodal distribution of the complete dataset.

Appendix D Random Sampling

Figure S5: Random sampling for several subgroups. This was done to be able to do pair-wise comparisons of subgroups. Subsamples of the size of the respective larger sample were taken (1000 repeats). For (a), (c), and (d) the random sample reflects the real sample, for (b) this is not the case.

Figure S6: Random sampling for different continents. All random samples reflect the real sample.

Appendix E paleoTS

Europe, genera, continental

Table S1: PaleoTS object of continental testudinids in Europe. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. Largest mean carapace length occurs in the Lower Pliocene and Lower Pleistocene.

tt	nn	mm	vv
0.00585	2	149.5381	3450.8267
0.06885	1	187.0000	0.0000
0.45350	2	205.4750	198.0050
1.29350	2	204.9292	23.1767
2.19700	1	1420.0000	0.0000
3.09400	1	232.5000	0.0000
4.46600	3	1475.6667	57926.3333
6.28900	2	663.3750	473607.7812
9.42700	6	800.0508	263434.3893
12.71400	5	653.9625	351634.5281
14.89500	5	772.0000	223154.3750
19.50000	5	533.8533	183706.6821

Figure S7: Evolutionary trajectory of Testudinidae body size (Trait Mean) on mainland Europe over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size seems to remain largely unchanged during the Miocene, then fluctuate strongly during the Pliocene and drop sharply in the Pleistocene.

Table S2: Model-fitting results for continental testudinids in Europe. Stasis is the best supported model.

	logL	K	AlCc	Akaike.wt
GRW	-87.93137	2	181.3627	0.009
URW	-92.56882	1	187.5821	0.000
Stasis	-83.21073	2	171.9215	0.991

Europe, genera, insular

Table S3: PaleoTS object of insular testudinids in Europe. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. Largest mean carapace length occurs in the Upper Miocene.

tt	nn	mm	VV
0.00585	1	187.5077	0.00
0.06885	2	831.5000	684.50
0.45350	1	722.5000	0.00
1.29350	4	835.0833	168423.36
2.19700	2	1005.0000	1462050.00
3.09400	3	451.6667	40558.33
4.46600	2	826.1667	15196.06
6.28900	1	1850.0000	0.00

Figure S8: Evolutionary trajectory of Testudinidae body size (Trait Mean) on European islands over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size decreases starting from the Upper Miocene, increases slightly during the Pleistocene and then drops sharply during the Holocene.

Table S4: Model-fitting results for insular testudinids in Europe. Stasis is the best supported model.

	logL	K	AlCc	Akaike.wt
GRW	-67.12192	2	141.2438	0.000
URW	-57.51634	1	117.8327	0.074
Stasis	-52.89638	2	112.7928	0.926

Eurasia, genera, continental

Table S5: PaleoTS object of continental testudinids in Eurasia. Mean Age [mya] (tt), sample size [individuals] (nn), mean carapace lengths [mm] (mm) and variance (vv) are shown. Largest mean carapace length occurs in the Upper Miocene and throughout the Pliocene.

tt	nn	mm	vv
0.00585	6	210.6223	10502.932
0.06885	2	228.5000	3444.500
0.45350	2	205.4750	198.005
1.29350	4	595.5388	191487.404
2.19700	4	1044.5833	442006.250
3.09400	3	1110.8333	581102.083
4.46600	4	1159.0000	439728.667
6.28900	3	1092.2500	788605.188
9.42700	6	800.0508	263434.389
12.71400	5	653.9625	351634.528
14.89500	5	772.0000	223154.375
19.50000	5	513.8533	162399.349

Figure S9: Evolutionary trajectory of Testudinidae body size (Trait Mean) on mainland Eurasia over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size seems to constantly increase during the Miocene, peak during the Pliocene and then steadilydecline during the Pleistocene.

Table S6: Model-fitting results for continental testudinids in Eurasia. URW is the best supported model.

	logL	K	AlCc	Akaike.wt
GRW	-74.89025	2	155.2805	0.211
URW	-75.10165	1	152.6477	0.787
Stasis	-79.85118	2	165.2024	0.001

Eurasia, genera, insular

Table S7: PaleoTS object of insular testudinids in Eurasia. Mean Age (tt), sample size (nn), mean carapace lengths (mm) and variance (vv) are shown. Largest mean carapace length occurs in the Upper Miocene.

tt	nn	mm	VV
0.00585	4	272.9348	14139.94
0.06885	2	831.5000	684.50
0.45350	1	722.5000	0.00
1.29350	5	876.4427	134870.49
2.19700	3	1178.3333	821158.33
3.09400	3	451.6667	40558.33
4.46600	2	826.1667	15196.06
6.28900	1	1850.0000	0.00

Figure S10: Evolutionary trajectory of Testudinidae body size (Trait Mean) on Eurasian islands over time. Bars respresent standard errors of mean. The dashed line depicts the mean carapace length averaged across all time bins. The triangles indicate the Pleistocene/Pliocene and Pliocene/Miocene borders, respectively. Body size decreases starting from the Upper Miocene, peaks shortly during the Lower Pleistocene and then drops sharply during the Holocene.

Table S8: Model-fitting results for insular testudinids in Eurasia. Stasis is the best supported model.

	logL	K	AICc	Akaike.wt
GRW	-56.16352	2	119.3270	0.027
URW	-63.16971	1	129.1394	0.000
Stasis	-52.56060	2	112.1212	0.973

Appendix F Tables

Table S9: Mean carapace lengths [mm] and number of species (n) per genus and stratigraphic stage.

Stage	Genus	n	\bar{x} CL
Modern	Aldabrachelys	12	974.5833
Modern	Astrochelys	14	366.2143
Modern	Centrochelys	3	493.3333
Modern	Chelonoidis	45	531.5178
Modern	Chersina	15	176.2667
Modern	Cylindraspis	5	724.0000
Modern	Geochelone	8	252.1250
Modern	Gopherus	23	302.4839
Modern	Hesperotestudo	1	250.0000
Modern	Homopus	7	139.2857
Modern	Indotestudo	16	242.9875
Modern	Kinixys	15	213.0667
Modern	Malacochersus	2	166.5000
Modern	Manouria	9	380.7778
Modern	Psammobates	17	113.4118
Modern	Pyxis	16	124.1875
Modern	Stigmochelys	6	405.3333
Modern	Testudo	39	197.5436
Upper Pleistocene	Centrochelys	1	850.0000
Upper Pleistocene	Chelonoidis	11	693.1818
Upper Pleistocene	Eurotestudo	1	187.0000
Upper Pleistocene	gen. indet.	1	813.0000
Upper Pleistocene	Geochelone	2	475.0000
Upper Pleistocene	Gopherus	22	294.1545
Upper Pleistocene	Hesperotestudo	10	468.2760
Upper Pleistocene	Indotestudo	1	270.0000

Table S9 – continued from previous page

Stage	Genus	n	\bar{x} CL
Middle Pleistocene	Centrochelys	4	722.5000
Middle Pleistocene	Chelonoidis	1	1139.0000
Middle Pleistocene	Eurotestudo	4	195.5250
Middle Pleistocene	Geochelone	1	170.0000
Middle Pleistocene	Gopherus	33	307.0721
Middle Pleistocene	Hesperotestudo	5	882.0000
Middle Pleistocene	Testudo	5	198.7400
Lower Pleistocene	Centrochelys	4	762.5000
Lower Pleistocene	Cheirogaster	2	857.0000
Lower Pleistocene	Chelonoidis	3	716.6667
Lower Pleistocene	Eurotestudo	4	201.5250
Lower Pleistocene	gen. indet.	1	900.0000
Lower Pleistocene	Geochelone	1	340.0000
Lower Pleistocene	Gopherus	13	316.8077
Lower Pleistocene	Hesperotestudo	16	323.0562
Lower Pleistocene	Megalochelys	5	1041.8800
Lower Pleistocene	Psammobates	1	107.8000
Lower Pleistocene	Testudo	6	259.1667
Lower Pleistocene	Titanochelon	1	1300.0000
Gelasian	Centrochelys	1	2050.0000
Gelasian	Eurotestudo	1	150.0000
Gelasian	Gopherus	15	185.7467
Gelasian	Hesperotestudo	2	1000.0000
Gelasian	Manouria	1	900.0000
Gelasian	Megalochelys	3	1683.3333
Gelasian	Testudo	6	166.0000
Gelasian	Titanochelon	2	1640.0000
Piacencian	Aldabrachelys	3	1333.3333
Piacencian	Centrochelys	1	610.0000

Table S9 – continued from previous page

Stage	Genus	n	$ar{x}$ CL
Piacencian	Chelonoidis	4	442.7500
Piacencian	Gopherus	1	885.5000
Piacencian	Hesperotestudo	5	211.1600
Piacencian	Homopus	1	90.0000
Piacencian	Megalochelys	2	1600.0000
Piacencian	Testudo	3	230.0000
Piacencian	Titanochelon	1	520.0000
Zanclean	Caudochelys	2	805.5000
Zanclean	Centrochelys	3	913.3333
Zanclean	Cheirogaster	1	739.0000
Zanclean	Ergilemys	2	209.0000
Zanclean	Geochelone	6	741.0000
Zanclean	Hesperotestudo	1	195.8000
Zanclean	Testudo	5	1377.0000
Zanclean	Titanochelon	6	1300.0000
Messinian	Hesperotestudo	2	941.0000
Messinian	Megalochelys	2	1950.0000
Messinian	Testudo	4	176.7500
Messinian	Titanochelon	2	1500.0000
Tortonian	"Hadrianus"	1	1000.0000
Tortonian	Cheirogaster	3	1288.3333
Tortonian	gen. indet.	3	660.0000
Tortonian	Geochelone	3	741.3333
Tortonian	Gopherus	6	354.0000
Tortonian	Hesperotestudo	4	439.9750
Tortonian	Paleotestudo	3	233.6667
Tortonian	Testudo	20	218.3050
Tortonian	Titanochelon	2	1400.0000
Serravallian	Cheirogaster	2	1250.0000

Table S9 – continued from previous page

Stage	Genus	n	$ar{x}$ CL
Serravallian	gen. indet.	1	270.0000
Serravallian	Gopherus	1	500.0000
Serravallian	Paleotestudo	19	206.5789
Serravallian	Testudo	3	190.2333
Serravallian	Titanochelon	1	1353.0000
Langhian	Caudochelys	1	339.9000
Langhian	Chelonoidis	3	553.3333
Langhian	Ergilemys	1	1000.0000
Langhian	gen. indet.	1	1000.0000
Langhian	Paleotestudo	2	272.5000
Langhian	Testudo	2	337.5000
Langhian	Titanochelon	4	1312.5000
Burdigalian/Aquitanian	Caudochelys	1	334.0000
Burdigalian/Aquitanian	gen. indet.	1	270.0000
Burdigalian/Aquitanian	Geochelone	4	652.5000
Burdigalian/Aquitanian	Impregnochelys	1	620.0000
Burdigalian/Aquitanian	Mesocherus	5	180.0000
Burdigalian/Aquitanian	Namibchersus	9	518.1111
Burdigalian/Aquitanian	Paleotestudo	2	146.1500
Burdigalian/Aquitanian	Testudo	6	252.1167
Burdigalian/Aquitanian	Titanochelon	1	1001.0000

Table S10: Mean carapace lengths [mm] and number of species (n) per genus summarised for the complete data set.

Genus	n	$ar{x}$ CL
"Hadrianus"	1	1000.0000
Aldabrachelys	15	1046.3333
Astrochelys	14	366.2143
Caudochelys	4	571.2250

Table S10 – continued from previous page

Genus	n	$ar{x}$ CL
Centrochelys	17	804.1176
Cheirogaster	8	1102.2500
Chelonoidis	67	571.0940
Chersina	15	176.2667
Cylindraspis	5	724.0000
Ergilemys	3	472.6667
Eurotestudo	10	192.5200
gen. indet.	8	654.1250
Geochelone	25	510.2800
Gopherus	114	298.0361
Hesperotestudo	46	465.3296
Homopus	8	133.1250
Impregnochelys	1	620.0000
Indotestudo	17	244.5765
Kinixys	15	213.0667
Malacochersus	2	166.5000
Manouria	10	432.7000
Megalochelys	12	1446.6167
Mesocherus	5	180.0000
Namibchersus	9	518.1111
Paleotestudo	26	210.1269
Psammobates	18	113.1000
Pyxis	16	124.1875
Stigmochelys	6	405.3333
Testudo	99	269.2465
Titanochelon	20	1315.2000

continental and insular data both in general and for modern and fossil testudinids separately and, finally, per continent. The table Table S11: Descriptive statistics of carapace length for the entire data set (all) as well as different subgroups, i. e. per time bin, all fossil testudinids, contains sample size (n), minimum (min), maximum (max), variance (s^2) , mean (\bar{x}) , log mean $(log(\bar{x}))$, median (\tilde{x}) , log median $(log(\tilde{x}))$, skewness (skew), log skewness (log(skew)), kurtosis (kurt) and log kurtosis (log(kurt)) of carapace length.

u	min	max	s^2	\bar{x}	$log(ar{x})$	$ ilde{x}$	$log(\tilde{x})$	skew	log(skew)	kurt	kurt log(kurt)	Subgroup
616	80.00	2500	164537.80	437.2	2.5	270.5	2.4	2.14	69.0	8.00	2.73	all
253	80.00	1300	67485.50	330.3	2.4	242.0	2.4	1.83	0.58	5.87	2.69	Modern
49	102.44	1250	99.06969	445.9	2.6	334.7	2.5	1.20	0.24	3.61	2.56	Upper Pleistocene
53	132.00	1800	97910.83	387.1	2.5	292.9	2.5	3.03	1.52	12.24	5.55	Middle Pleistocene
27	107.80	2000	161948.82	463.5	2.5	263.0	2.4	1.74	0.73	5.76	2.40	Lower Pleistocene
31	118.90	2050	411224.51	555.2	2.5	194.9	2.3	1.31	0.93	3.12	2.11	Gelasian
21	90.00	1600	270535.82	610.6	2.6	428.0	2.6	1.00	0.14	2.50	1.99	Piacencian
26	176.00	2500	476162.71	955.2	2.9	857.5	2.9	1.1	-0.40	3.56	2.30	Zanclean
10	140.00	2100	602611.21	948.9	2.8	916.0	2.9	0.26	-0.22	1.49	1.29	Messinian
45	107.00	1540	175470.12	462.7	2.5	250.0	2.4	1.49	0.81	3.74	2.54	Tortonian
27	111.00	1500	126060.40	337.7	2.4	220.0	2.3	2.49	1.77	7.77	5.30	Serravallian
4	270.00	1600	230451.33	747.9	2.8	700.0	2.8	0:30	0.03	1.55	1.18	Langhian
30	113.00	1100	76288.76	406.8	2.5	302.4	2.5	1.27	0.45	3.45	2.26	Burdigalian/Aquitanian
363	90.00	2500	219004.66	511.7	2.6	285.6	2.5	1.83	0.68	6.11	2.42	Fossil
469	81.00	2500	157808.79	392.9	2.5	250.0	2.4	2.65	1.07	10.57	3.74	continental
147	80.00	2000	160834.35	578.5	2.6	500.0	2.7	1.02	-0.27	3.95	2.05	insular

Table S11 – continued from previous page

	ental	_	tal					
Subgroup	modern continenta	modern insular	fossil continenta	fossil insular	Africa	America	Asia	Europe
log(kurt)	2.98	1.77	2.96	3.18	2.48	2.91	2.24	2.34
kurt	8.09	2.47	7.25	4.02	7.97	6.79	3.61	6.30
$ ilde{x}$ $log(ilde{x})$ $skew$ $log(skew)$ $kurt$ $log(kurt)$ Subgroup	0.29	0.01	96.0	-0.40	0.68	0.75	0.85	0.81
skew	1.92	0.82	2.11	<u>+</u> .	2.10	1.92	1.43	1.86
$log(\tilde{x})$	2.3	2.5	2.4	2.9	2.3	2.5	2.4	2.4
$ ilde{x}$	221.0	353.0	270.0	750.0	193.5	302.2	280.0	245.0
$log(ar{x})$	2.3	2.6	2.5	2.8	2.4	2.5	2.6	2.5
x	244.0	471.5	467.9	780.0	347.7	415.0	585.5	491.2
s^2	17009.02 244.0	118641.09 471.5	212116.79 467.9	180825.40	112417.26	82209.71	323123.20	254222.84
min max	830	1300	2500	2000	2050	1800	2100	2500
min	81.00	80.00	90.00	150.00	80.00	102.44	59 150.00	173 107.00
u	157	96	312	21	142	242	29	173

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular (Continent	Reference
-	Laetoli, Tanzania	Aldabrachelys	"Aldabrachelys" laetoliensis	1000.00	шо	Piacencian	2.70300	u u	Africa	Meylan and Auffenberg, 1986
2	Sal Island	Centrochelys	Centrochelys atlantica	400.00	ОШ	Lower Pleistocene	1.30000	^	Africa	Lopez-Jurado et al., 1998
က	Ahl al Oughlam (near Casablanca)	Centrochelys	Centrochelys marocana	2050.00	ОШ	Gelasian	2.50000	u u	Africa	Lapparent de Broin F.de, 2002a: A giant tortoise from t
4	Kanapoi	Geochelone	Geochelone crassa	865.00	ш	Zanclean	4.14500	u u	Africa	Harris et al., 2003
2	Djebel Krechem	Geochelone	Geochelone sp.	1446.00	eh	Tortonian	8.47600	u u	Africa	Geraads, 1989
9	Pellatal Phosphate Member, E Quarry Langebaanweg	Geochelone	Geochelone stromeri	350.00	Ε	Zanclean	4.46600	u u	Africa	Meylan and Auffenberg, 1986
7	Pellatal Phosphate Member, E Quarry Langebaanweg	Geochelone	Geochelone stromeri	425.00	Ε	Zanclean	4.46600	u u	Africa	Meylan and Auffenberg, 1986
80	South Africa	Homopus	Homopus fenestratus	90.00	ОШ	Piacencian	3.05650	u u	Africa	Rhodin et al., 2015
6	Rusinga Island, Lake Victoria, Kenya	Impregnochelys	Impregnochelys pachytectis	620.00	Ε	Burdigalian/Aquitanian	19.50000	u u	Africa	Meylan and Auffenberg, 1986
10	Arrisdrift	Mesocherus	Mesocherus orangeus	160.00	ОШ	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
£	Arrisdrift	Mesocherus	Mesocherus orangeus	180.00	ОШ	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
12	Arrisdrift	Mesocherus	Mesocherus orangeus	180.00	ош 0	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
13	Arrisdrift	Mesocherus	Mesocherus orangeus	180.00	ош	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
14	Arrisdrift	Mesocherus	Mesocherus orangeus	180.00	ош 0	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
15	Arrisdrift	Mesocherus	Mesocherus orangeus	180.00	ОШ	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
16	Arrisdrift	Mesocherus	Mesocherus orangeus	200.00	ОШ	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
17	Arrisdrift	Namibchersus	Namibchersus aff. namaquensis	1100.00	ОШ	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
18	Arrisdrift	Namibchersus	Namibchersus aff. namaquensis	440.00	ош	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
19	Arrisdrift	Namibchersus	Namibchersus aff. namaquensis	550.00	ОШ	Burdigalian/Aquitanian	17.25000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
20	Auchas	Namibchersus	Namibchersus namaquensis	254.00	Ε	Burdigalian/Aquitanian	18.00000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
21	Elisabethfeld (= Elisabeth Bay) area, northern Sperrgebiet	Namibchersus	Namibchersus namaquensis	264.00	Ε	Burdigalian/Aquitanian	19.50000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
22	Elisabethfeld (= Elisabeth Bay) area, northern Sperrgebiet	Namibchersus	Namibchersus namaquensis	300.00	Ε	Burdigalian/Aquitanian	19.50000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
23	Auchas	Namibchersus	Namibchersus namaquensis	470.00	Ε	Burdigalian/Aquitanian	18.00000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
24	Auchas	Namibchersus	Namibchersus namaquensis	470.00	Ε	Burdigalian/Aquitanian	18.00000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
25	Auchas	Namibchersus	Namibchersus namaquensis	815.00	Ε	Burdigalian/Aquitanian	18.00000	u u	Africa	Lapparent de Broin F.de, 2003: Miocene Chelonians fr
56	Drimolon, Sterkfontein, Krugersdorp District, Gauteng Province	Psammobates	Psammobates antiquorum	107.80	Ε	Lower Pleistocene	1.80000	u u	Africa	Broadley, 1997
27	Ahl al Oughlam (near Casablanca)	Testudo	Testudo aff. kenitrensis	142.00	ju ju	Gelasian	2.50000	u u	Africa	Gmira s., 2013
28	Kénitra, Guilloux quarry, near Rabat	Testudo	Testudo kenitrensis	132.00	ОШ	Middle Pleistocene	0.45350	u u	Africa	Gmira S., 1993: Une nouvelle espèce de tortue Testud
59	Ahl al Oughlam (near Casablanca)	Testudo	Testudo oughlamensis	120.00	ОШ	Gelasian	2.50000	u u	Africa	Gmira s., 2013
30	Ahl al Oughlam (near Casablanca)	Testudo	Testudo sp.	184.00	jE	Gelasian	2.50000	u	Africa	Gmira s., 2013

Φ
Ď
pag
Q
co
Š.
õ
·Ę
Q.
≲
Z
и
Ξ
Q.
_
ō
æ
2
.≒
7
2
Ö
1
_'.
N
Ξ.
ഗ
(D)
충
≍

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular C	Continent	Reference
31	Ahl al Oughlam (near Casablanca)	Testudo	Testudo sp.	200.00	m	Gelasian	2.50000	<u>د</u>	Africa	Gmira s., 2013
32	Tha Chang area, Nakhon Ratchasima Province	Aldabrachelys	Aldabrachelys? sp.	1500.00	ОШ	Piacencian	3.00000	L A	Asia	Claude J., Naksri W., Boonchai N., Buffetaut E., Duang
33	Tha Chang area, Nakhon Ratchasima Province	Aldabrachelys	Aldabrachelys? sp.	1500.00	ОШ	Piacencian	3.00000	u V	Asia	Claude J., Naksri W., Boonchai N., Buffetaut E., Duang
34	Tha Chang area, Chaloem Pra Kiat district, Nakhon Ratchasima Province	Aldabrachelys	Aldabrachelys ? sp.	1500.00	ОШ	Piacencian	3.00000	u	Asia	Claude J., Naksri W., Boonchai N., Buffetaut E., Duang
35	Tha Chang area, Chaloem Pra Kiat district, Nakhon Ratchasima Province	Aldabrachelys	Aldabrachelys? sp.	1500.00	ОШ	Piacencian	3.00000	u V	Asia	Claude J., Naksri W., Boonchai N., Buffetaut E., Duang
36	Altan-Teli main fossiliferous bed (Dzereg valley)	Ergilemys	Ergilemys oskarkuhni	198.00	Ε	Zanclean	3.95000	L A	Asia	Mlynarski, 1968: Notes on tortoises (Testudinidae) fror
37	Altan-Teli main fossiliferous bed (Dzereg valley)	Ergilemys	Ergilemys oskarkuhni	220.00	Ε	Zanclean	3.95000	u V	Asia	Mlynarski, 1968: Notes on tortoises (Testudinidae) fror
38	Guangxi	gen.	gen. indet.	900.00	ОШ	Lower Pleistocene	1.68450	n A	Asia	Rhodin et al., 2015
39	Ghaba	Geochelone	Geochelone sp.	800.00	ě	Burdigalian/Aquitanian	16.50000	L A	Asia	Roger, 1994
40	Lang Rongrien Rockshelter, Krabi, Thailand	Indotestudo	Indotestudo elongata	270.00	Ε	Upper Pleistocene	0.03700	u د	Asia	Mudar and Anderson, 2007
41	Punjab	Manouria	Manouria punjabiensis	900.00	ОШ	Gelasian	2.19050	u V	Asia	Rhodin et al., 2015
42	Sulawesi (Celebes), Indonesia	Megalochelys	Megalochelys atlas	1400.00	ОШ	Gelasian	2.00000	Α Α	Asia	Hooijer, 1951
43	Northwest of Naipli	Megalochelys	Megalochelys atlas	1600.00	ОШ	Piacencian	3.09400	u V	Asia	Badam, 1981
44	Northwest of Naipli	Megalochelys	Megalochelys atlas	1600.00	ош 0	Piacencian	3.09400	u V	Asia	Badam, 1981
45	Northwest of Naipli	Megalochelys	Megalochelys atlas	1600.00	ош 0	Piacencian	3.09400	u V	Asia	Badam, 1981
46	Northwest of Naipli	Megalochelys	Megalochelys atlas	1600.00	ош 0	Piacencian	3.09400	u V	Asia	Badam, 1981
47	Sulawesi (Celebes), Indonesia	Megalochelys	Megalochelys atlas	1650.00	ош 0	Gelasian	2.00000	γ	Asia	Setiyabudi, 2009
48	Pauk Twonship	Megalochelys	Megalochelys atlas	1800.00	Ε	Messinian	5.42300	n A	Asia	Hirayama, R., Sonoda, T., Takai, M., Htike, T., Thein, Z
49	Siwalik	Megalochelys	Megalochelys atlas	2000.00	ОШ	Gelasian	2.19050	n A	Asia	Setiyabudi, 2009
20	Pauk Twonship	Megalochelys	Megalochelys atlas	2100.00	ОШ	Messinian	5.42300	n A	Asia	Hirayama, R., Sonoda, T., Takai, M., Htike, T., Thein, Z
51	Tres Hermanas, Manila, Luzon	Megalochelys	Megalochelys sondaari	1000.00	o e	Lower Pleistocene	1.35000	^	Asia	Karl, H., & Staesche, U. (2007). Fossile Riesen-Lands
52	Tres Hermanas, Manila, Luzon	Megalochelys	Megalochelys sondaari	818.00	900	Lower Pleistocene	1.35000	Α .	Asia	Karl, H., & Staesche, U. (2007). Fossile Riesen-Lands
53	Flores	Megalochelys	Megalochelys sp.	1200.00	ev ev	Lower Pleistocene	0.90000	γ	Asia	Setiyabudi, 2009
54	Bumiayu, Java Island	Megalochelys	Megalochelys sp.	191.40	Ε	Lower Pleistocene	1.68450	γ	Asia	Setiyabudi, 2009
55	Java Island	Megalochelys	Megalochelys sp.	2000.00	Ε	Lower Pleistocene	1.68450	Α .	Asia	Hirayama, R., Sonoda, T., Takai, M., Htike, T., Thein, Z
26	Zhejiang	Testudo	Testudo changshanesis	330.00	ОШ	Lower Pleistocene	1.68450	u V	Asia	Rhodin et al., 2015
22	Khatlon	Testudo	Testudo ranovi	200.00	ОШ	Gelasian	2.19050	L L	Asia	Rhodin et al., 2015
28	Gerogia (Caucasus)	Testudo	Testudo transcaucasia	150.00	ОШ	Gelasian	2.19050	n A	Asia	Rhodin et al., 2015
29	Sawmill Sink, Abaco	Chelonoidis	Chelonoidis alburyorum	424.00	Ε	Piacencian	3.20150	Α .	America	Franz, R., & Franz, S. E. (2009). A new fossil land torto
09	Sawmill Sink, Abaco	Chelonoidis	Chelonoidis alburyorum	428.00	Ε	Piacencian	3.20150	Α .	America	Franz, R., & Franz, S. E. (2009). A new fossil land torto
61	Sawmill Sink, Abaco	Chelonoidis	Chelonoidis alburyorum	453.00	Ε	Piacencian	3.20150	Α .	America	Franz, R., & Franz, S. E. (2009). A new fossil land torto
62	Sawmill Sink, Abaco	Chelonoidis	Chelonoidis alburyorum	466.00	Ε	Piacencian	3.20150	Α .	America	Franz, R., & Franz, S. E. (2009). A new fossil land torto
63	Santa Clara	Chelonoidis	Chelonoidis cubensis	1139.00	ef	Middle Pleistocene	0.39350	Α .	America	Williams, E. E. (1950). Testudo cubensis and the evolu
64	Cueva del Papayo, Pedernales	Chelonoidis	Chelonoidis marcanoi	530.00	eh	Upper Pleistocene	0.0690.0	γ	America	Turvey, S. T., Almonte, J., Hansford, J., Scofield, R. P.,
65	Cueva del Papayo, Pedernales	Chelonoidis	Chelonoidis marcanoi	614.00	eh	Upper Pleistocene	0.0690.0	Α .	America	Turvey, S. T., Almonte, J., Hansford, J., Scofield, R. P.,
99	Cueva del Papayo, Pedernales	Chelonoidis	Chelonoidis marcanoi	767.00	eh	Upper Pleistocene	0.0690.0	×	America	Turvey, S. T., Almonte, J., Hansford, J., Scofield, R. P.,
29	Cueva del Papayo, Pedernales	Chelonoidis	Chelonoidis marcanoi	778.00	eh	Upper Pleistocene	0.0690.0	∢	America	Turvey, S. T., Almonte, J., Hansford, J., Scofield, R. P.,

page
ра
S
ğ.
orev
_
rom
£
9
į,
ü
8
1
2
ဢ
Φ
ᅙ
മ

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular C	Continent	Reference
89	Mona Island	Chelonoidis	Chelonoidis monensis	500.00	Ε	Upper Pleistocene	0.06450	Α	America	Williams, 1952
69	Sombrero Island	Chelonoidis	Chelonoidis sombrerensis	00.066	Ε	Upper Pleistocene	0.0690.0	γ	America	Carlson, L. A. (2000). Aftermath of a feast: Human col
70	Navassa Island	Chelonoidis	Chelonoidis sp.	400.00	ош	Upper Pleistocene	0.0690.0	Α	America	Auffenberg, W. (1967). Notes on West Indian tortoises.
71	San Pedro, Curaçao	Chelonoidis	Chelonoidis sp.	00.009	ОШ	Lower Pleistocene	1.35700	γ	America	Hooijer, D. A. (1963). Geochelone from the Pleistocene
72	Bayaguana, Los Haitises, San Cristobal	Chelonoidis	Chelonoidis sp.	00.009	ОШ	Upper Pleistocene	0.0690.0	y ,	America	Franz, R., & Woods, C. A. (1983). A fossil tortoise from
73	San Pedro, Curaçao	Chelonoidis	Chelonoidis sp.	750.00	ОШ	Lower Pleistocene	1.35700	y ,	America	Hooijer, D. A. (1963). Geochelone from the Pleistocene
74	San Pedro, Curaçao	Chelonoidis	Chelonoidis sp.	800.00	ОШ	Lower Pleistocene	1.35700	y ,	America	Hooijer, D. A. (1963). Geochelone from the Pleistocene
75	Cedazo local fauna, Aguascalientes, Mexico	Geochelone	Geochelone sp.	340.00	ОШ	Lower Pleistocene	1.05000	n	America	Mooser, 1972
76	Cedazo local fauna, Aguascalientes, Mexico	Gopherus	Gopherus berlandieri	195.00	Ε	Lower Pleistocene	1.05000	, n	America	Mooser, 1972
77	Cedazo local fauna, Aguascalientes, Mexico	Gopherus	Gopherus berlandieri	256.30	Ε	Lower Pleistocene	1.05000	, n	America	Mooser, 1972
78	Cedazo local fauna, Aguascalientes, Mexico	Gopherus	Gopherus flavomarginatus	450.00	Ε	Lower Pleistocene	1.05000	, n	America	Mooser, 1972
79	Smith's Parrish, No. 3Verdmont Valley Close	Hesperotestudo	Hesperotestudo bermudae	270.00	Ε	Middle Pleistocene	0.31000	, ,	America	Meylan and Sterrer, 2000
80	Smith's Parrish, No. 3Verdmont Valley Close	Hesperotestudo	Hesperotestudo bermudae	200.00	Ε	Middle Pleistocene	0.31000	, ,	America	Olson and Meylan, 2009
81	Río Tomayate, Apopa Municipality	Hesperotestudo	Hesperotestudo sp.	1500.00	ОШ	Lower Pleistocene	0.96600	n A	America	Cisneros, 2005
82	Belomechetskaya	Ergilemys	Ergilemys sp.	1000.00	Ε	Langhian	14.00000	n	Europe	FosFarBase
83	Dmanisi	Testudo	Testudo graeca	195.00	Ju.	Lower Pleistocene	1.77000	n	Europe	Blain H.A., Agustí H., Lordkipanidze D., Rook L., Delfir
84	Prottes	"Hadrianus"	"Hadrianus sp."	1000.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
85	Adeje, Tenerife	Centrochelys	Centrochelys burchardi	500.00	ош	Middle Pleistocene	0.43500	y	Europe	Ahl, E. (1925). Über eine ausgestorbene Riesenschild
98	Callao de Fañabé, Tenerife	Centrochelys	Centrochelys burchardi	650.00	ош	Middle Pleistocene	0.43500	y	Europe	Hutterer et al., 1998
87	Adeje, Tenerife	Centrochelys	Centrochelys burchardi	800.00	Ε	Middle Pleistocene	0.43500	y	Europe	Ahl, E. (1925). Über eine ausgestorbene Riesenschild
88	Callao de Fañabé, Tenerife	Centrochelys	Centrochelys burchardi	940.00	ош	Middle Pleistocene	0.43500	y E	Europe	Hutterer et al., 1998
88	Corrida, Malta	Centrochelys	Centrochelys robusta	1100.00	ош	Zanclean	4.91700	y	Europe	Adams A.L., 1877: On gigantic land-tortoises and a sn
06	Ghar Dalam	Centrochelys	Centrochelys robusta	1200.00	ev	Lower Pleistocene	1.30000	y E	Europe	Hunt and Schembri, 1999
91	Ghar Dalam	Centrochelys	Centrochelys robusta	00.009	ev	Lower Pleistocene	1.30000	y E	Europe	Hunt and Schembri, 1999
92	Mnaidra Gap, Malta	Centrochelys	Centrochelys robusta	790.00	ef	Zanclean	4.91700	y E	Europe	Adams A.L., 1877: On gigantic land-tortoises and a sn
93	Corrida, Malta	Centrochelys	Centrochelys robusta	850.00	ОШ	Zanclean	4.91700	y E	Europe	Adams A.L., 1877: On gigantic land-tortoises and a sn
94	Zebbug and Gahr Dalam Cave deposits	Centrochelys	Centrochelys robusta	850.00	ОШ	Upper Pleistocene	0.06600	y E	Europe	Lapparent de Broin F.de, 2002a: A giant tortoise from t
92	Ghar Dalam	Centrochelys	Centrochelys robusta	850.00	ev	Lower Pleistocene	1.30000	y E	Europe	Hunt and Schembri, 1999
96	Barranco de las Ballenas, Las Palmas, Gran Canaria	Centrochelys	Centrochelys vulcanica	610.00	ош	Piacencian	3.09400	y E	Europe	Hutterer et al., 1998
26	Pujo d'es Fum, Formentera, Balearic Islands	Cheirogaster	Cheirogaster cf. gymnesica	789.00	ош	Lower Pleistocene	1.80000	y	Europe	Filella-Subira et al., 1999
86	Punta Nati near Ciutadella, Minorca	Cheirogaster	Cheirogaster gymnesica	739.00	eĮ	Zanclean	4.45000	y	Europe	Mercadal B., Pretus Real L., 1980: Nuevo yacimiento o
66	Hostalets de Piérola, Barcelone province, Cataluña	Cheirogaster	Cheirogaster richardi	1155.00	ош	Tortonian	10.40000	n	Europe	Pérez-García A., Vlachos E., 2014: New generic propo
100	La Ciesma 1, Aragón	Cheirogaster	Cheirogaster sp.	1000.00	ОШ	Serravallian	12.20000	п	Europe	Murelaga X., Azanza B., Astibia H., 2006: Restos de q
101	El Lugarejo (Arévalo), Ávilla, Castilla	Cheirogaster	Cheirogaster sp.	1170.00	Ε	Tortonian	10.25000	n	Europe	Jiménez Fuentes, E., Acosta, P., & Fincias San Martín.
102	Chañe, Segovia	Cheirogaster	Cheirogaster sp.	1500.00	Φ	Serravallian	13.80000	n	Europe	Jiménez Fuentes E., 2000: Tortugas gigantes fósiles d
103	Crevillente 2	Cheirogaster	Cheirogaster sp.	1540.00	eĮ	Tortonian	8.30000	n	Europe	Jiménez E., Montoya P., 2002: Quelonios del Mioceno
104	Rock-Cavities, Gibraltar Peninsula	Cheirogaster	Cheirogaster sp.	925.00	eĮ	Lower Pleistocene	0.96500	y	Europe	Adams A.L., 1877: On gigantic land-tortoises and a sn

page
evious
n pre
fron
continued
Į N
S
Table

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular	Continent	Reference
105	Soave, Zoppega 2 cave, Verona	Eurotestudo	Eurotestudo aff. hermanni	179.30	JE.	Middle Pleistocene	0.74000	_	Europe	Lapparent de Broin F. de, Bour R., Perälä J., 2006: Mo
106	Soave, Zoppega 2 cave, Verona	Eurotestudo	Eurotestudo aff. hermanni	194.70	JE	Middle Pleistocene	0.74000	L	Europe	Lapparent de Broin F. de, Bour R., Perälä J., 2006: Mo
107	Monte Tuttavista VII mustelide, Sardinia	Eurotestudo	Eurotestudo cf. hermanni	150.00	ОШ	Gelasian	2.00000	>	Europe	Abbazzi L., Angelone C., Arca M., Barisone G., Bedett
108	Le Ville, Upper Valdarno	Eurotestudo	Eurotestudo globosa	263.00	Ε	Lower Pleistocene	1.80000	L	Europe	Portis A., 1890: I Rettili pliocenici del Valdarno superio
109	Cueva de la Victoria-1 (CV-1), Carthagène, Murcia	Eurotestudo	Eurotestudo hermanni	126.00	jE	Lower Pleistocene	1.15000	L	Europe	Pérez-García, 2012
110	Saint-Estève-Janson, l'Escale Cave (Bouches du Rhône)	Eurotestudo	Eurotestudo hermanni	170.50	jE	Middle Pleistocene	0.60000	L	Europe	Lapparent de Broin F. de, Bour R., Perälä J., 2006: Mo
Ξ	Cova del Rinoceront, eastern Garraf Massif, Castelldelfs	Eurotestudo	Eurotestudo hermanni	187.00	jE	Upper Pleistocene	0.11050	L	Europe	Daura J., Sanz M., Julià R., García-Fernández D., Forr
112	Saint-Estève-Janson, l'Escale Cave (Bouches du Rhône)	Eurotestudo	Eurotestudo hermanni	237.60	ш	Middle Pleistocene	0.60000	ч	Europe	Lapparent de Broin F. de, Bour R., Perälä J., 2006: Mo
113	Sierra de Quibas, Abanilla, Murcia	Eurotestudo	Eurotestudo hermanni	284.00	ш	Lower Pleistocene	1.35000	ч	Europe	Pérez-García et al., 2015
114	Tarazona de Aragón	gen.	gen. indet.	1000.00	ош	Langhian	14.70000	ч	Europe	Murelaga X., Azanza B., Astibia H., 2006: Restos de q
115	La Ciesma 1, Aragón	gen.	gen. indet.	270.00	ОШ	Serravallian	12.20000	L	Europe	Murelaga X., Azanza B., Astibia H., 2006: Restos de q
116	Monteagudo, Aragón	gen.	gen. indet.	270.00	ОШ	Burdigalian/Aquitanian	16.40000	L	Europe	Murelaga X., Azanza B., Astibia H., 2006: Restos de q
117	Kohfidisch	gen.	gen. indet.	440.00	Ε	Tortonian	8.75000	L	Europe	Bachmayer F., M?ynarski M., 1983: Die Fauna der pon
118	Kohfidisch	gen.	gen. indet.	00.099	Ε	Tortonian	8.75000	L	Europe	Bachmayer F., M?ynarski M., 1983: Die Fauna der pon
119	Zubbio di Cozzo San Pietro	gen.	gen. indet.	813.00	eĮ	Upper Pleistocene	0.01250	>	Europe	Delfino et al., 2015
120	Kohfidisch	gen.	gen. indet.	880.00	Ε	Tortonian	8.75000	u	Europe	Bachmayer F., M?ynarski M., 1983: Die Fauna der pon
121	Jambol	Geochelone	Geochelone s. I.	1750.00	ош	Zanclean	4.46600	L	Europe	Stojanoc, A. (2009). Erster Nachweis einer Riesenlanc
122	Kirchdorf an der Iller	Geochelone	Geochelone sp.	1000.00	Ε	Burdigalian/Aquitanian	16.65000	L	Europe	FosFarBase
123	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	145.00	jE	Serravallian	13.00000	L	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraise
124	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	152.00	Ε	Serravallian	13.00000	u	Europe	Schleich H.H., 1981: Jungtertiäre Schildkröten Süddet
125	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	159.50	Ε	Serravallian	13.00000	ч	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraisa
126	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	180.00	Ε	Serravallian	13.00000	ч	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraisa
127	Gammelsdorf	Paleotestudo	Paleotestudo antiqua	183.70	Ε	Serravallian	12.15000	ч	Europe	Schleich H.H., 1981: Jungtertiäre Schildkröten Süddet
128	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	185.00	ш	Serravallian	13.00000	ч	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraise
129	Sansan, Gers (lake)	Paleotestudo	Paleotestudo antiqua	191.00	JE.	Serravallian	13.60000	и	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
130	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	195.00	Ε	Serravallian	13.00000	L	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraisa
131	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	195.00	m	Serravallian	13.00000	ч	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraisa
132	Gammelsdorf	Paleotestudo	Paleotestudo antiqua	203.00	Ε	Serravallian	12.15000	ч	Europe	Schleich H.H., 1981: Jungtertiäre Schildkröten Süddet
133	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	206.00	m	Serravallian	13.00000	ч	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraise
134	Sansan, Gers (lake)	Paleotestudo	Paleotestudo antiqua	213.00	m	Serravallian	13.60000	ч	Europe	Lapparent de Broin F. de, Bour R., Perälä J., 2006: Mo
135	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	220.00	m	Serravallian	13.00000	ч	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraisa
136	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	229.00	JE.	Serravallian	13.00000	ч	Europe	Corsini J.A., Böhme M., Joyce W.G., 2014: Reappraise
137	Sansan, Gers (lake)	Paleotestudo	Paleotestudo antiqua	234.00	JE.	Serravallian	13.60000	ч	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
138	Hohenhöwen, Engen, Hegau, southwestern Germany	Paleotestudo	Paleotestudo antiqua	240.00	Ε	Serravallian	13.00000	u	Europe	Schleich H.H., 1981: Jungtertiäre Schildkröten Süddet
139	Sansan, Gers (lake)	Paleotestudo	Paleotestudo antiqua	240.00	m	Serravallian	13.60000	L	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
140	Barajas, Madrid	Paleotestudo	Paleotestudo antiqua	275.00	ш	Langhian	15.00000	ч	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
141	Illescas, Toledo	Paleotestudo	Paleotestudo antiqua	283.80	m	Serravallian	12.50000	c	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni

(I)
ž
ä
ž
~
S
2
.0
S
ø
≿
4
и
≍
.2
Ť.
σ
ø
2
2.
₽
2
8
O
- 1
٠.
u
Ξ
(J)
(D)
š
ૠ

	Locality	Genus	Taxon	ر ا	estimated	Stages	Age	Insular C	Continent	Reference
142	Can Mas near El Papiol, Barcelone province, Cataluña	Paleotestudo	Paleotestudo cf. antiqua	113.00	Œ.	Burdigalian/Aquitanian	17.30000	n	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
143	El Buste, Aragón	Paleotestudo	Paleotestudo cf. sp.	270.00	шо	Serravallian	12.40000	n E	Europe	Murelaga X., Azanza B., Astibia H., 2006: Restos de q
144	Tarazona de Aragón	Paleotestudo	Paleotestudo cf. sp.	270.00	шо	Langhian	14.70000	ū	Europe	Murelaga X., Azanza B., Astibia H., 2006: Restos de q
145	Cerro de los Batallones, Madrid	Paleotestudo	Paleotestudo sp.	170.00	m	Tortonian	9.50000	n	Europe	Pérez-García and Murelaga, 2013
146	Teiritzberg (T1 = 001/D/C), Korneuburg Basin, Lower Austria	Paleotestudo	Paleotestudo sp.	179.30	E	Burdigalian/Aquitanian	16.55000	n	Europe	Gemel R., 2002b: Weitere Schildkrötenreste aus dem
147	Cerro de los Batallones, Madrid	Paleotestudo	Paleotestudo sp.	261.00	m	Tortonian	9.50000	n	Europe	Pérez-García and Murelaga, 2013
148	Cerro de los Batallones, Madrid	Paleotestudo	Paleotestudo sp.	270.00	m	Tortonian	9.50000	n	Europe	Pérez-García and Murelaga, 2013
149	Torrente Melacce, Cinigiano (GR)	Testudo	Testudo amiatae	140.00	шо	Messinian	5.81500	ū	Europe	Chesi, F. (2009). Il registro fossile italiano dei cheloni (
150	Milia, Grevena, W Macedonia	Testudo	Testudo brevitesta	165.00	mf	Piacencian	2.60000	n E	Europe	Vlachos E., Tsoukala E., 2016: The diverse fossil chelo
151	Milia, Grevena, W Macedonia	Testudo	Testudo brevitesta	300.00	mf	Piacencian	2.60000	n E	Europe	Vlachos E., Tsoukala E., 2016: The diverse fossil chelo
152	Kohfidisch	Testudo	Testudo burgenlandica	112.00	E	Tortonian	8.75000	n E	Europe	Karl, ??? (Einige Bemerkungen über die fossilen Schil
153	Kohfidisch	Testudo	Testudo burgenlandica	275.00	Ε	Tortonian	8.75000	ū	Europe	Bachmayer F., M?ynarski M., 1983: Die Fauna der pon
154	Sant Quirze de Terrassa/de Galliners (del Vallès), Barcelona	Testudo	Testudo catalaunica	107.00	Ε	Tortonian	11.50000	ū u	Europe	Luján et al., 2016
155	Castell de Barbera	Testudo	Testudo catalaunica	165.00	E	Tortonian	11.50000	n n	Europe	Luján et al., 2016
156	Sant Quirze de Terrassa/de Galliners (del Vallès), Barcelona	Testudo	Testudo catalaunica	175.00	Ε	Tortonian	11.50000	u u	Europe	Luján et al., 2016
157	Sant Quirze de Terrassa/de Galliners (del Vallès), Barcelona	Testudo	Testudo catalaunica	181.00	E	Tortonian	11.50000	n	Europe	Luján et al., 2016
158	Abocador de Can Mata (els Hostalets de Pierola), Cataluña	Testudo	Testudo catalaunica	232.00	E	Serravallian	12.35000	n	Europe	Luján et al., 2016
159	Megalo Emvolon 1 (MEV), 20 km SW Thessaloniki	Testudo	Testudo cf. graeca	185.00	E	Zanclean	3.90000	u u	Europe	Bachmayer F., M?ynarski M., Symeonidis N., 1980: Fo
160	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	ш u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
161	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
162	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	ш u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
163	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	ū u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
164	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	ш u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
165	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
166	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
167	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
168	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
169	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
170	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
171	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
172	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	u u	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
173	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	ū	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
174	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	ū	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
175	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	ū	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
176	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
177	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	ū	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
178	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	u L	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkrö

a,
Ψ
9
~~`
рá
Q
S
\rightarrow
$\overline{}$
.0
~
<u></u>
œ,
≂
2
_
8
-
9
for
_
σ
\simeq
y.
-3
ć
.=
₩.
~
O
O
- 1
\sim 1
~~
_
'n
U)
•
Φ
ᅐ
~

	Locality	Genus	Taxon	Ы	estimated	Stages	Age	Insular Cor	Continent	Reference
179	Prottes	Testudo	Testudo cf. promarginata	250.00	E	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
180	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröt
181	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
182	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
183	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
184	Prottes	Testudo	Testudo cf. promarginata	250.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
185	Pylea, eastern part of Thessaloniki, western Chalkidiki peninsula	Testudo	Testudo graeca	167.00	Ε	Messinian	5.50000	n Eur	Europe	Vlachos E., Kotsakis T., Delfino M., 2015: The chelonia
186	Allatini, eastern part of Thessaloniki, western Chalkidiki peninsula	Testudo	Testudo graeca	200.00	m,	Messinian	5.50000	n Eur	Europe	Vlachos E., Kotsakis T., Delfino M., 2015: The chelonia
187	Platania, Drama basin	Testudo	Testudo graeca	210.00	m,	Tortonian	8.45000	n Eur	Europe	Vlachos and Tsoukala, 2014
188	Sima del Elefante TE14, Sierra de Atapuerca, Burgos	Eurotestudo	Testudo hermanni	133.10	Ju.	Lower Pleistocene	1.22000	n Eur	Europe	Blasco R., Blain H.A., Rosell J., Díez J.C., Huguet R., I
189	Obermaintor, Ebensfeld (Lichtenfels), Franken	Testudo	Testudo hermanni	220.00	m,	Lower Pleistocene	1.30000	n Eur	Europe	Karl & Tichy, 2002
190	Leithagebirge between Au and Loretto	Testudo	Testudo kalksburgensis	225.00	шо	Burdigalian/Aquitanian	18.00000	n Eur	Europe	Siebenrock F., 1914: Testudo kalksburgensis Toula aus
191	Eggenburg-Schindergraben, Lower Austria	Testudo	Testudo kalksburgensis	230.00	Ε	Burdigalian/Aquitanian	19.96500	n Eur	Europe	Gemel R., 2002b: Weitere Schildkrötenreste aus dem
192	Wien-Kalksburg	Testudo	Testudo kalksburgensis	275.00	Ε	Langhian	14.50000	n	Europe	Bachmayer M.F., M?ynarski M., 1981: Testudo kalksbu
193	Cova de Gràcia, Park Güell, Barcelona	Testudo	Testudo lunellensis	176.00	ш	Middle Pleistocene	0.45350	n Eur	Europe	Delfino M., Luján À.H., Carmona R., Alba D.M., 2012:
194	Caverna de Gràcia, Güell park, Barcelona	Testudo	Testudo lunellensis	194.00	m,	Middle Pleistocene	0.45000	n Eur	Europe	Lapparent de Broin F. de, Bour R., Perälä J., 2006: Mo
195	Cova de Gràcia, Park Güell, Barcelona	Testudo	Testudo lunellensis	231.00	ev ev	Middle Pleistocene	0.45350	n Eur	Europe	Delfino M., Luján À.H., Carmona R., Alba D.M., 2012:
196	Caverna de Gràcia, Güell park, Barcelona	Testudo	Testudo lunellensis	260.70	m,	Middle Pleistocene	0.45000	n Eur	Europe	Lapparent de Broin F. de, Bour R., Perälä J., 2006: Mo
197	Lakonia	Testudo	Testudo marginata	210.00	Ε	Lower Pleistocene	1.72000	n Eur	Europe	Schleich H.H., 1982a: Testudo marginata Schoepff aus
198	Zourida-Höhle	Testudo	Testudo marginata	290.00	Ε	Lower Pleistocene	1.30000	y Eur	Europe	Bachmayer, Brinkerink and Symeonidis, 1975
199	Gerani-Höhle an der Nordküste Kretamin der Nähe von Rethymnon	Testudo	Testudo marginata	310.00	Ε	Lower Pleistocene	1.30000	y Eur	Europe	Bachmayer, Brinkerink and Symeonidis, 1975
200	Capo Mannu near San Vero Milis, base of D4 dune, Sardinia	Testudo	Testudo pecorinii	225.00	Ε	Piacencian	3.09400	y Eur	Europe	Abbazzi L., Carboni S., Delfino M., Gallai G., Lecca L.,
201	Saint-Gérand-le-Puy, Allier	Testudo	Testudo promarginata	230.00	m	Burdigalian/Aquitanian	21.50000	n Eur	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
202	Saint-Gérand-le-Puy, Allier	Testudo	Testudo promarginata	304.70	Ţ.	Burdigalian/Aquitanian	21.50000	n Eur	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
203	Neuville-aux-Bois, Loiret	Testudo	Testudo promarginata	310.00	m,	Burdigalian/Aquitanian	18.00000	n Eur	Europe	Pérez-García A., 2016: Analysis of the Iberian Aragoni
204	Sandelzhausen	Testudo	Testudo rectogularis	213.00	ош	Burdigalian/Aquitanian	16.37000	n Eur	Europe	Schleich H.H., 1981: Jungtertiäre Schildkröten Süddeu
205	Nikiti 2, Chalkidiki, Macedonia	Testudo	Testudo s. s.	189.00	Ε	Tortonian	8.00000	n Eur	Europe	Garcia et al., 2016
206	Liossati, Kiourka	Testudo	Testudo sp.	1200.00	Ţ.	Zanclean	3.96000	n Eur	Europe	Bachmayer, F., & Symeonidis, N. (1977). Eine neue "P
207	Santa-Vittoria d'Alba	Testudo	Testudo sp.	200.00	Ţ.	Messinian	6.16500	n Eur	Europe	Chesi, F. (2009). Il registro fossile italiano dei cheloni (
208	Holzmannsdorfberg bei St. Marein	Testudo	Testudo sp.	232.10	Ε	Tortonian	10.75000	n Eur	Europe	Gross M., 2002: Aus der paläontologischen Sammlung
209	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
210	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
211	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
212	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi
213	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
214	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
215	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n Eur	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröi

ious page
pre
from
continued
- 1
S12
Table

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular	Continent	Reference
216	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	L L	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
217	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
218	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
219	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
220	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
221	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
222	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
223	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
224	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
225	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
226	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
227	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
228	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
229	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
230	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
231	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
232	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	п	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
233	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
234	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
235	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
236	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröt
237	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
238	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröt
239	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
240	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröl
241	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
242	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
243	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
244	Prottes	Testudo	Testudo sp.	245.00	Ε	Tortonian	8.30000	n	Europe	Bachmayer F., M?ynarski M., 1985: Die Landschildkröf
245	Megalo Emvolon 1 (MEV), 20 km SW Thessaloniki	Testudo	Testudo sp.	2500.00	mf	Zanclean	3.90000	n	Europe	Bachmayer F., M?ynarski M., Symeonidis N., 1980: Fo
246	Megalo Emvolon 1 (MEV), 20 km SW Thessaloniki	Testudo	Testudo sp.	2500.00	JE	Zanclean	3.90000	n	Europe	Bachmayer F., M?ynarski M., Symeonidis N., 1980: Fo
247	Megalo Emvolon 1 (MEV), 20 km SW Thessaloniki	Testudo	Testudo sp.	2500.00	ш	Zanclean	3.90000	n	Europe	Bachmayer F., M?ynarski M., Symeonidis N., 1980: Fo
248	Megalo Emvolon 1 (MEV), 20 km SW Thessaloniki	Testudo	Testudo sp.	2500.00	JE	Zanclean	3.90000	n	Europe	Bachmayer F., M?ynarski M., Symeonidis N., 1980: Fo
249	W??e 1	Testudo	Testudo sp.	500.00	ош	Zanclean	3.90000	n	Europe	M?ynarski M., 1955: Zolwie z pliocenu Polski [Tortoise.
250	Altenstadt, 7 km S Illertissen	Testudo	Testudo steinheimensis	111.00	Ε	Serravallian	12.15000	n	Europe	Staesche K., 1931: Die Schildkröten des Steinheimer I
251	Steinheim a. Albuch	Testudo	Testudo steinheimensis	227.70	jE	Serravallian	13.00000	n	Europe	Schleich H.H., 1981: Jungtertiäre Schildkröten Süddeu
252	Lesbos Island, F-Site	Titanochelon	Titanochelon aff. schafferi	1860.00	Ε	Gelasian	2.00000	y	Europe	Lapparent de Broin F.de, 2002a: A giant tortoise from t

a,
Ψ
9
~~`
рá
Q
S
\rightarrow
$\overline{}$
.0
~
<u></u>
œ,
≂
2
_
8
-
9
for
_
σ
\simeq
y.
-3
ć
.=
₩.
~
O
O
- 1
\sim 1
. 4
_
'n
U)
•
Φ
ᅐ
~

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular	Continent	Reference
253	Epanomi (EPN II), western Chalkidiki Peninsula, Thessaloniki area	Titanochelon	Titanochelon bacharidisi	1164.00	Ε	Zanclean	3.95000	۵	Europe	Vlachos E., Tsoukala E., Corsini J., 2014: Cheirogaste
254	Epanomi (EPN I), western Chalkidiki Peninsula, Thessaloniki area	Titanochelon	Titanochelon bacharidisi	1196.00	Ε	Zanclean	3.95000	L	Europe	Vlachos E., Tsoukala E., Corsini J., 2014: Cheirogaste
255	Nea Michaniona, western Chalkidiki Peninsula, Thessaloniki area	Titanochelon	Titanochelon bacharidisi	900.00	ОШ	Zanclean	3.95000	п	Europe	Vlachos E., Tsoukala E., Corsini J., 2014: Cheirogaste
256	Nea Kallikratia, western Chalkidiki Peninsula, Thessaloniki area	Titanochelon	Titanochelon bacharidisi	900.00	ОШ	Zanclean	3.95000	ч	Europe	Vlachos E., Tsoukala E., Corsini J., 2014: Cheirogaste
257	Nea Michaniona, western Chalkidiki Peninsula, Thessaloniki area	Titanochelon	Titanochelon bacharidisi	900.00	ОШ	Zanclean	3.95000	u	Europe	Vlachos E., Tsoukala E., Corsini J., 2014: Cheirogaste
258	Nea Kallikratia, western Chalkidiki Peninsula, Thessaloniki area	Titanochelon	Titanochelon bacharidisi	900.00	ОШ	Zanclean	3.95000	ч	Europe	Vlachos E., Tsoukala E., Corsini J., 2014: Cheirogaste
259	Vallecas, Madrid	Titanochelon	Titanochelon bolivari	1100.00	ОШ	Langhian	15.00000	u	Europe	Pérez-García A., Vlachos E., 2014: New generic propo
260	Puerto de la Cadena, Murcia	Titanochelon	Titanochelon bolivari	1150.00	Ε	Messinian	6.28900	ч	Europe	Jiménez et al., 2001
261	Alcalá de Henares, Cerro del Viso, Madrid	Titanochelon	Titanochelon bolivari	1250.00	ОШ	Langhian	15.00000	ч	Europe	Pérez-García A., Vlachos E., 2014: New generic propo
262	Cerro de los Batallones, Madrid	Titanochelon	Titanochelon bolivari	1300.00	m	Tortonian	9.50000	ч	Europe	Pérez-García and Murelaga, 2013
263	Cerro del Otero, Palencia	Titanochelon	Titanochelon bolivari	1353.00	ОШ	Serravallian	12.50000	п	Europe	Pérez-García A., Vlachos E., 2014: New generic propo
264	Charneco do Lumiar	Titanochelon	Titanochelon cf. bolivari	1300.00	ev ev	Langhian	14.89500	п	Europe	Pérez-García et al., 2016: Westernmost records of ext
265	Aveiras de Baixo, Azambuja	Titanochelon	Titanochelon cf. bolivari	1500.00	JE	Tortonian	9.43300	L	Europe	Pérez-García et al., 2016: Westernmost records of ext
266	Quinta da Farinheira	Titanochelon	Titanochelon cf. bolivari	1600.00	eţ	Langhian	14.89500	ч	Europe	Pérez-García et al., 2016: Westernmost records of ext
267	Sandelzhausen unterer Geröllmergel (B)	Titanochelon	Titanochelon cf. perpiniana	1001.00	ОШ	Burdigalian/Aquitanian	16.37000	u	Europe	Schleich H.H., 1981: Jungtertiäre Schildkröten Süddeu
268	Cala Es Pous near Ciutadella, Minorca	Titanochelon	Titanochelon gymnesica	1300.00	eĮ	Lower Pleistocene	1.30000	χ	Europe	Bate, D. M. (1914). II.—On Remains of a Gigantic Lan
269	Serrat-d'en-Vacquer near Perpignan, Pyrénées-Orientales	Titanochelon	Titanochelon perpiniana	1140.00	Ε	Zanclean	3.90000	u	Europe	Lapparent de Broin F.de, 2002a: A giant tortoise from t
270	Samos 1	Titanochelon	Titanochelon schafferi	1850.00	Ε	Messinian	6.25000	χ.	Europe	Lapparent de Broin F.de, 2002a: A giant tortoise from t
271	Pikermi	Titanochelon	Titanochelon schafferi	2500.00	ОШ	Zanclean	4.46600	L	Europe	Bachmayer, F. (1967). Eine Riesenschildkröte aus den
272	Fonelas P-1, Guadix Basin	Titanochelon	Titanochelon sp.	1420.00	ОШ	Gelasian	1.85000	u	Europe	Pérez-García, A., Vlachos, E., & Arribas, A. (2017). Th
273	Cova de Ca Na Reia, Eivissa, Ibiza	Titanochelon	Titanochelon sp.	520.00	ОШ	Piacencian	2.60000	>	Europe	Bour R., 1985: Una nova tortuga terrestre del Pleistoco
274	Plum Point, Calvert County, Maryland	Caudochelys	Caudochelys ducateli	339.90	٤	Langhian	15.00000	L	America	Collins & Lynns, 1936
275	Rexroad local fauna (Fox Canyon locality 3), Meade County, Kansas	Caudochelys	Caudochelys rexroadensis	781.00	Ε	Zanclean	4.55000	L	America	Oelrich T.M., 1952: A New Testudo from the Upper Plic
276	Rexroad local fauna (Fox Canyon locality 3), Meade County, Kansas	Caudochelys	Caudochelys rexroadensis	830.00	Ε	Zanclean	4.55000	u	America	Oelrich T.M., 1952: A New Testudo from the Upper Plid
277	Garvin Gully, 2 mi. north of Navasota, Jl J . Grimes County, Texas	Caudochelys	Caudochelys williamsi	334.00	Ε	Burdigalian/Aquitanian	17.75000	u	America	Auffenberg, 1964
278	Gilliland local fauna, Burnett Ranch, Knox County, Texas	Geochelone	Geochelone sp.	170.00	j j	Middle Pleistocene	0.70000	u	America	Preston, 1966
279	Santee, Knox County, Nebraska	Geochelone	Geochelone sp.	176.00	Θ	Zanclean	5.00000	ч	America	Parmley D., 1992a: Turtles from the late Hemphillian (I.
280	Orange Lake 2 miles south, Marion County, Florida	Geochelone	Geochelone sp.	350.00	ef	Upper Pleistocene	0.0690.0	L	America	Holman J.A., 1959b: A Pleistocene herpetofauna near
281	Ricardo Fauna, Mojave Desert, Kern County, California	Geochelone	Geochelone sp.	500.00	Ε	Tortonian	10.10000	L	America	Whistler D.P., Tedford R.H., Takeuchi G.T., Wang X., Ts
282	Banana Hole, New Providence Island	Geochelone	Geochelone sp.	00.009	ОШ	Upper Pleistocene	0.01250	χ.	America	Olson, 1982
283	Lee Creek Mine, Yorktown Sample, Beaufort County, North Carolina	Geochelone	Geochelone sp.	880.00	Ε	Zanclean	4.50000	L	America	Zug G.R., 2001: Turtles of the Lee Creek Mine (Plioce
284	Thomas Farm Local Fauna, Gilchrist County, Florida	Geochelone	Geochelone tedwhitei	370.00	Ε	Burdigalian/Aquitanian	18.50000	L	America	Williams E., 1953: A new fossil tortoise from the Thom
285	Thomas Farm Local Fauna, Gilchrist County, Florida	Geochelone	Geochelone tedwhitei	440.00	Ε	Burdigalian/Aquitanian	18.50000	L	America	Williams E., 1953: A new fossil tortoise from the Thom
286	Ricardo Fauna, Mojave Desert, Kern County, California	Gopherus	Gopherus ? sp.	200.00	Ε	Tortonian	10.10000	u	America	Whistler D.P., Tedford R.H., Takeuchi G.T., Wang X., Ts
287	Iron Canyon Fauna, Mojave Desert, Kern County, California	Gopherus	Gopherus ? sp.	200.00	Ε	Serravallian	11.85000	u	America	Whistler D.P., Tedford R.H., Takeuchi G.T., Wang X., Ts
288	Sabertooth Camel Maze, Eddy County, New Mexico	Gopherus	Gopherus agassizi	252.00	Ε	Upper Pleistocene	0.02550	u	America	Van Devender T.R., Moodie K.B., Harris A.H., 1976: Th
289	Pecos River near Melena and Acme, Chaves County, New Mexico	Gopherus	Gopherus agassizi	445.00	ош	Middle Pleistocene	0.15600	۵	America	Lucas and Morgan, 1996

a)
3
pag
22
~
Ś
sno
≍
٠,٥
~
<u>a</u>
2
Õ
~
2
ron
9
₽
σ
Ø.
8
7
.=
Ħ
ĭ
0
Ö
- 7
- 1
~ .
. 4
77
'n
٠,
Φ
ă
므
m.
_

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular Co	Continent	Reference
290	North Cita Canyon (Middle Stratum), Randall County, Texas	Gopherus	Gopherus canyonensis	885.50	Ε	Piacencian	2.70000	n Am	America	Johnston C.S., 1937: Osteology of Bysmachelys canyo
291	Texas	Gopherus	Gopherus laticaudatus	375.00	шо	Middle Pleistocene	0.39635	n An	America	Rhodin et al., 2015
292	Barstow Beds, San Bernardino County, California	Gopherus	Gopherus mohavetus	202.00	Ε	Tortonian	8.47600	n An	America	Brattstrom, 1961
293	Cache Peak fauna, Tehachapi Mountains, Kern County, California	Gopherus	Gopherus mohavetus	315.00	Ε	Tortonian	8.47600	n An	America	Brattstrom, 1961
294	Barstow Beds, San Bernardino County, California	Gopherus	Gopherus mohavetus	334.50	Ε	Tortonian	8.47600	n Arr	America	Brattstrom, 1961
295	Barstow Beds, San Bernardino County, California	Gopherus	Gopherus mohavetus	360.00	Ε	Tortonian	8.47600	n Arr	America	Brattstrom, 1961
296	Barstow Beds, San Bernardino County, California	Gopherus	Gopherus mohavetus	412.50	Ε	Tortonian	8.47600	n An	America	Brattstrom, 1961
297	Texas	Gopherus	Gopherus pertenuis	1050.00	шо	Lower Pleistocene	1.68450	n An	America	Rhodin et al., 2015
298	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	102.44	ош	Upper Pleistocene	0.0690.0	n Arr	America	Franz and Quitmyer, 2005
538	Reddick IA+B, Marion County, Florida	Gopherus	Gopherus polyphemus	155.50	ош	Upper Pleistocene	0.0690.0	n An	America	Franz and Quitmyer, 2005
300	Leisey Shell Pit 1A, Hillsborough County, Florida	Gopherus	Gopherus polyphemus	217.90	шо	Lower Pleistocene	1.20000	n An	America	Franz and Quitmyer, 2005
301	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	239.80	шо	Middle Pleistocene	0.25000	n An	America	Franz and Quitmyer, 2005
302	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	252.56	ОШ	Upper Pleistocene	0.0690.0	n An	America	Franz and Quitmyer, 2005
303	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	253.70	шо	Middle Pleistocene	0.25000	n Arr	America	Franz and Quitmyer, 2005
304	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	256.44	ОШ	Middle Pleistocene	0.25000	n Arr	America	Franz and Quitmyer, 2005
305	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	257.80	ош	Middle Pleistocene	0.25000	n Arr	America	Franz and Quitmyer, 2005
306	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	258.30	ОШ	Upper Pleistocene	0.0690.0	n An	America	Franz and Quitmyer, 2005
307	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	260.11	ош	Upper Pleistocene	0.0690.0	n Am	America	Franz and Quitmyer, 2005
308	Coleman 2A	Gopherus	Gopherus polyphemus	260.50	ош	Middle Pleistocene	0.40000	n Am	America	Franz and Quitmyer, 2005
309	Coleman 2A	Gopherus	Gopherus polyphemus	260.51	ош	Middle Pleistocene	0.40000	n An	America	Franz and Quitmyer, 2005
310	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	267.00	ОШ	Middle Pleistocene	0.25000	n An	America	Franz and Quitmyer, 2005
311	Leisey Shell Pit 1A, Hillsborough County, Florida	Gopherus	Gopherus polyphemus	268.90	ош	Lower Pleistocene	1.20000	n Am	America	Franz and Quitmyer, 2005
312	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	272.48	ош	Middle Pleistocene	0.25000	n Am	America	Franz and Quitmyer, 2005
313	Coleman 2A	Gopherus	Gopherus polyphemus	272.57	ош	Middle Pleistocene	0.40000	n An	America	Franz and Quitmyer, 2005
314	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	273.24	ош	Upper Pleistocene	0.0690.0	n Am	America	Franz and Quitmyer, 2005
315	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	274.30	ош	Middle Pleistocene	0.25000	n Am	America	Franz and Quitmyer, 2005
316	Leisey Shell Pit 1A, Hillsborough County, Florida	Gopherus	Gopherus polyphemus	276.60	ош	Lower Pleistocene	1.20000	n Am	America	Franz and Quitmyer, 2005
317	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	278.00	ош	Upper Pleistocene	0.0690.0	n Am	America	Franz and Quitmyer, 2005
318	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	279.94	ОШ	Upper Pleistocene	0.0690.0	n An	America	Franz and Quitmyer, 2005
319	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	283.00	ош	Middle Pleistocene	0.25000	n Am	America	Franz and Quitmyer, 2005
320	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	283.41	ош	Middle Pleistocene	0.25000	n Am	America	Franz and Quitmyer, 2005
321	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	284.90	ош	Upper Pleistocene	0.0690.0	n An	America	Franz and Quitmyer, 2005
322	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	285.20	ош	Middle Pleistocene	0.25000	n Am	America	Franz and Quitmyer, 2005
323	Coleman 2A	Gopherus	Gopherus polyphemus	285.60	ош	Middle Pleistocene	0.40000	n An	America	Franz and Quitmyer, 2005
324	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	292.00	шо	Middle Pleistocene		n Am	America	Franz and Quitmyer, 2005
325	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	292.94	ош	Middle Pleistocene	0.25000	n Am	America	Franz and Quitmyer, 2005
326	Coleman 2A	Gopherus	Gopherus polyphemus	293.00	ош	Middle Pleistocene	0.40000	۸m	America	Franz and Quitmyer, 2005

×
pad
20
~
S
2
Ö
previous
ᅑ
2
۵
from I
7
ō
æ
_
σ
ø
2
П
÷
continued
0
Ö
- 1
- 1
S12
_
'n
٠,
Table
ᅐ
元
Ľ

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular	Continent	Reference
327	Coleman 2A	Gopherus	Gopherus polyphemus	293.57	ш	Middle Pleistocene	0.40000	c	America	Franz and Quitmyer, 2005
328	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	294.16	ОШ	Upper Pleistocene	0.0690.0	ч	America	Franz and Quitmyer, 2005
329	Coleman 2A	Gopherus	Gopherus polyphemus	295.90	ОШ	Middle Pleistocene	0.40000	ч	America	Franz and Quitmyer, 2005
330	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	301.97	ОШ	Upper Pleistocene	0.0690.0	L	America	Franz and Quitmyer, 2005
331	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	302.40	ш	Upper Pleistocene	0.0690.0	L	America	Franz and Quitmyer, 2005
332	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	302.40	ОШ	Middle Pleistocene	0.25000	L	America	Franz and Quitmyer, 2005
333	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	304.20	ш	Upper Pleistocene	0.0690.0	L	America	Franz and Quitmyer, 2005
334	Coleman 2A	Gopherus	Gopherus polyphemus	304.70	ш	Middle Pleistocene	0.40000	L	America	Franz and Quitmyer, 2005
335	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	306.00	ОШ	Middle Pleistocene	0.25000	ч	America	Franz and Quitmyer, 2005
336	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	306.00	шо	Middle Pleistocene	0.25000	ч	America	Franz and Quitmyer, 2005
337	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	306.00	ОШ	Middle Pleistocene	0.25000	ч	America	Franz and Quitmyer, 2005
338	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	306.00	шо	Middle Pleistocene	0.25000	ч	America	Franz and Quitmyer, 2005
339	Coleman 2A	Gopherus	Gopherus polyphemus	308.20	шо	Middle Pleistocene	0.40000	c	America	Franz and Quitmyer, 2005
340	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	314.60	шо	Middle Pleistocene	0.25000	ч	America	Franz and Quitmyer, 2005
341	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	322.63	шо	Middle Pleistocene	0.25000	L	America	Franz and Quitmyer, 2005
342	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	324.00	шо	Upper Pleistocene	0.0690.0	L	America	Franz and Quitmyer, 2005
343	Reddick IA+B, Marion County, Florida	Gopherus	Gopherus polyphemus	327.60	ОШ	Upper Pleistocene	0.0690.0	ч	America	Franz and Quitmyer, 2005
344	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	334.70	ОШ	Upper Pleistocene	0.0690.0	ч	America	Franz and Quitmyer, 2005
345	Haile, Alachua County, Florida	Gopherus	Gopherus polyphemus	337.30	шо	Middle Pleistocene	0.25000	ч	America	Franz and Quitmyer, 2005
346	Coleman 2A	Gopherus	Gopherus polyphemus	348.70	шо	Middle Pleistocene	0.40000	ч	America	Franz and Quitmyer, 2005
347	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	350.00	шо	Upper Pleistocene	0.0690.0	L	America	Franz and Quitmyer, 2005
348	Coleman 2A	Gopherus	Gopherus polyphemus	350.83	шо	Middle Pleistocene	0.40000	L	America	Franz and Quitmyer, 2005
349	Little Salt Spring, Florida	Gopherus	Gopherus polyphemus	352.00	шо	Upper Pleistocene	0.01200	L	America	Holman & Clausenm, 1984
350	Coleman 2A	Gopherus	Gopherus polyphemus	353.30	ОШ	Middle Pleistocene	0.40000	ч	America	Franz and Quitmyer, 2005
351	Reddick IA+B, Marion County, Florida	Gopherus	Gopherus polyphemus	391.90	ш	Upper Pleistocene	0.0690.0	L	America	Franz and Quitmyer, 2005
352	Surprise Cave, Alachua, Florida	Gopherus	Gopherus polyphemus	431.48	ОШ	Upper Pleistocene	0.0690.0	ч	America	Franz and Quitmyer, 2005
353	Gilliland local fauna, Burnett Ranch, Knox County, Texas	Gopherus	Gopherus polyphemus	539.00	m	Middle Pleistocene	0.70000	L	America	Preston, 1966
354	Melbourne, Brevard County, Florida	Gopherus	Gopherus praecedens	360.00	шо	Upper Pleistocene	0.0690.0	L	America	Franz and Quitmyer, 2005
355	Inglis 1A, Florida	Gopherus	Gopherus sp.	118.90	ш	Gelasian	1.90000	L	America	Franz and Quitmyer, 2005
356	Inglis 1A, Florida	Gopherus	Gopherus sp.	143.90	ш	Gelasian	1.90000	L	America	Franz and Quitmyer, 2005
357	Inglis 1A, Florida	Gopherus	Gopherus sp.	163.50	шо	Gelasian	1.90000	L	America	Franz and Quitmyer, 2005
358	Inglis 1A, Florida	Gopherus	Gopherus sp.	180.90	шо	Gelasian	1.90000	L	America	Franz and Quitmyer, 2005
329	Inglis 1A, Florida	Gopherus	Gopherus sp.	181.00	шо	Gelasian	1.90000	c	America	Franz and Quitmyer, 2005
360	Inglis 1A, Florida	Gopherus	Gopherus sp.	181.00	шо	Gelasian	1.90000	ч	America	Franz and Quitmyer, 2005
361	Inglis 1A, Florida	Gopherus	Gopherus sp.	181.00	ОШ	Gelasian	1.90000	L	America	Franz and Quitmyer, 2005
362	Inglis 1A, Florida	Gopherus	Gopherus sp.	181.00	ОШ	Gelasian	1.90000	ч	America	Franz and Quitmyer, 2005
363	Inglis 1A, Florida	Gopherus	Gopherus sp.	182.30	o m	Gelasian	1.90000	c	America	Franz and Quitmyer, 2005

Θ
age
Œ.
Q
S
Z,
Ö
~
<u>a</u>
⊱
Z,
n
≍
101
_
Ø
Ð
2
.≒
Ħ
≿
ĸ
7
1
S
_
S
d)
픙
₽
on.

	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular	Continent	Reference
364	Inglis 1A, Florida	Gopherus	Gopherus sp.	188.30	ОШ	Gelasian	1.90000	_	America	Franz and Quitmyer, 2005
365	Inglis 1A, Florida	Gopherus	Gopherus sp.	188.70	om Om	Gelasian	1.90000	c	America	Franz and Quitmyer, 2005
366	Inglis 1A, Florida	Gopherus	Gopherus sp.	193.30	ОШ	Gelasian	1.90000	c c	America	Franz and Quitmyer, 2005
367	Inglis 1A, Florida	Gopherus	Gopherus sp.	194.90	om Om	Gelasian	1.90000	_L	America	Franz and Quitmyer, 2005
368	Inglis 1C, Florida	Gopherus	Gopherus sp.	202.80	om Om	Lower Pleistocene	1.80000	_L	America	Franz and Quitmyer, 2005
369	Inglis 1A, Florida	Gopherus	Gopherus sp.	204.40	om Om	Gelasian	1.90000	_L	America	Franz and Quitmyer, 2005
370	Inglis 1A, Florida	Gopherus	Gopherus sp.	209.60	om Om	Gelasian	1.90000	_L	America	Franz and Quitmyer, 2005
371	Inglis 1A, Florida	Gopherus	Gopherus sp.	218.80	om Om	Gelasian	1.90000	L L	America	Franz and Quitmyer, 2005
372	Inglis 1C, Florida	Gopherus	Gopherus sp.	224.10	om Om	Lower Pleistocene	1.80000	L L	America	Franz and Quitmyer, 2005
373	Inglis 1C, Florida	Gopherus	Gopherus sp.	230.10	om Om	Lower Pleistocene	1.80000	L L	America	Franz and Quitmyer, 2005
374	Inglis 1A, Florida	Gopherus	Gopherus sp.	236.70	ОШ	Gelasian	1.90000	L	America	Franz and Quitmyer, 2005
375	Inglis 1C, Florida	Gopherus	Gopherus sp.	241.90	ош	Lower Pleistocene	1.80000	_	America	Franz and Quitmyer, 2005
376	Inglis 1C, Florida	Gopherus	Gopherus sp.	245.40	ОШ	Lower Pleistocene	1.80000	L	America	Franz and Quitmyer, 2005
377	Inglis 1C, Florida	Gopherus	Gopherus sp.	259.50	0	Lower Pleistocene	1.80000	L	America	Franz and Quitmyer, 2005
378	McGehee Farm near Newberry, Alachua County, Florida	Hesperotestudo	Hesperotestudo alleni	240.90	Ε	Tortonian	10.95000	_L	America	Holman J.A., 1972b: Amphibian and Reptiles. in: M.F.
379	Texas	Hesperotestudo	Hesperotestudo campester	1000.00	om Om	Gelasian	2.19050	_L	America	Rhodin et al., 2015
380	Little Salt Spring, Florida	Hesperotestudo	Hesperotestudo crassiscutata	1250.00	ě	Upper Pleistocene	0.01200	L	America	Holman & Clausenm, 1984
381	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	168.00	Ε	Lower Pleistocene	1.30000	۵	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
382	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	180.00	E	Lower Pleistocene	1.30000	_	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
383	Reddick IA+B, Marion County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	180.40	Ε	Upper Pleistocene	0.0690.0	c	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
384	Little Salt Spring, Florida	Hesperotestudo	Hesperotestudo crassiscutata	188.00	ош	Upper Pleistocene	0.01200	c c	America	Holman & Clausenm, 1984
385	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	192.00	Ε	Lower Pleistocene	1.30000	c c	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
386	Reddick IA+B, Marion County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	282.70	Ε	Upper Pleistocene	0.0690.0	c c	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
387	Reddick IA+B, Marion County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	284.90	Ε	Upper Pleistocene	0.0690.0	_L	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
388	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	327.00	Ε	Lower Pleistocene	1.30000	L L	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
389	Little Salt Spring, Florida	Hesperotestudo	Hesperotestudo crassiscutata	425.00	ош	Upper Pleistocene	0.01200	L	America	Holman & Clausenm, 1984
390	Leisey Shell Pit 1A, Hillsborough County, Florida	Hesperotestudo	Hesperotestudo crassiscutata	561.00	E	Lower Pleistocene	1.25000	_	America	Meylan P.A., 1995: Pleistocene amphibians and reptile
391	Cragin Quarry Local Fauna, Meade County, Kansas	Hesperotestudo	Hesperotestudo equicomes	340.00	٩	Middle Pleistocene	0.30000	_	America	Holman J.A., 1972b: Amphibian and Reptiles. in: M.F.
392	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	212.00	Ε	Lower Pleistocene	1.30000	_	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
393	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	216.00	Ε	Lower Pleistocene	1.30000	L	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
394	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	224.00	Ε	Lower Pleistocene	1.30000	c	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
395	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	228.00	Ε	Lower Pleistocene	1.30000	ᄕ	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
396	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	231.00	Ε	Lower Pleistocene	1.30000	c	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
397	Arredondo IIA, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	232.76	Ε	Upper Pleistocene	0.0690.0	c c	America	Holman J.A., 1972b: Amphibian and Reptiles. in: M.F.
398	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	241.00	Ε	Lower Pleistocene	1.30000	c c	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
399	Haile, Alachua County, Florida	Hesperotestudo	Hesperotestudo incisa	290.40	Ε	Lower Pleistocene	1.30000	L	America	Auffenberg, W. (1963). Fossil testudinine turtles of Flor
400	Cita Canyon, UCMP V-3721, Harrell Ranch, Randall County, Texas	Hesperotestudo	Hesperotestudo johnstoni	235.00	Ε	Piacencian	3.35000	c	America	Auffenberg W., 1962: A new species of Geochelone fro

ω
9
a,
Õ
55
≥
٠,٥
S
Ф
5
Q
٦
2
0
₽
_
Ō
æ
2
.5
₽
_
0
O
- 1
N
$\overline{}$
ഗ
(D)
ž
ᆚ
'n

			6-1							
	Locality	Genus	Taxon	CL	estimated	Stages	Age	Insular	Continent	Reference
401	Leisey Shell Pit 1A, Hillsborough County, Florida	Hesperotestudo	Hesperotestudo mlynarskii	165.00	Ε	Lower Pleistocene	1.25000	۵	America	Auffenberg, 1988
402	Leisey Shell Pit 2, Hillsborough County, Florida	Hesperotestudo	Hesperotestudo mlynarskii	203.50	Ε	Lower Pleistocene	1.25000	ч	America	Auffenberg, 1988
403	Sand Draw local fauna, Brown County, Nebraska	Hesperotestudo	Hesperotestudo oelrichi	283.80	Ε	Piacencian	3.00000	_	America	Preston R.E., 1979: Late Pleistocene cold-blooded ver
404	UCMP V71137, Turlock Lake 10, Stanislaus County, California	Hesperotestudo	Hesperotestudo orthopygia	1200.00	0W	Messinian	5.50000	ч	America	Biewer J., Sankey J., Hutchison H., Garber D., 2016: A
405	UCMP V81248, Turlock Lake 11, Stanislaus County, California	Hesperotestudo	Hesperotestudo orthopygia	682.00	ош 0	Messinian	5.50000	_L	America	Biewer J., Sankey J., Hutchison H., Garber D., 2016: A
406	Buis Ranch Local Fauna, Beaver County, Oklahoma	Hesperotestudo	Hesperotestudo riggsi	159.50	ош 0	Tortonian	7.60000	_L	America	Oelrich, 1957
407	Buis Ranch Local Fauna, Beaver County, Oklahoma	Hesperotestudo	Hesperotestudo riggsi	159.50	ш	Tortonian	7.60000	ч	America	Oelrich, 1957
408	Buis Ranch Local Fauna, Beaver County, Oklahoma	Hesperotestudo	Hesperotestudo riggsi	159.50	ш	Tortonian	7.60000	ч	America	Oelrich, 1957
409	Buis Ranch Local Fauna, Beaver County, Oklahoma	Hesperotestudo	Hesperotestudo riggsi	159.50	ОШ	Tortonian	7.60000	ч	America	Oelrich, 1957
410	Sawrock Canyon local fauna, Seward County, Kansas	Hesperotestudo	Hesperotestudo riggsi	176.00	Ε	Piacencian	3.00000	С	America	Hibbard C.W., 1944: A new land tortoise, Testudo riggs
411	Sawrock Canyon local fauna, Seward County, Kansas	Hesperotestudo	Hesperotestudo riggsi	185.00	Ε	Piacencian	3.00000	_	America	Hibbard C.W., 1944: A new land tortoise, Testudo riggs
412	Rexroad local fauna (Fox Canyon locality 3), Meade County, Kansas	Hesperotestudo	Hesperotestudo riggsi	195.80	Ε	Zanclean	4.55000	c	America	Oelrich, 1957
413	Caballo Local Fauna, Palomas Basin, Sierra County, New Mexico	Hesperotestudo	Hesperotestudo sp.	1000.00	ош 0	Gelasian	2.00000	c	America	Morgan et al., 2011
414	UCMP V-3952, Ingram Creek site 8, Stanislaus County, California	Hesperotestudo	Hesperotestudo sp.	1200.00	e	Tortonian	9.50000	ч	America	Biewer J., Sankey J., Hutchison H., Garber D., 2016: A
415	Gilliland local fauna, Burnett Ranch, Knox County, Texas	Hesperotestudo	Hesperotestudo sp.	1500.00	ш	Middle Pleistocene	0.70000	ч	America	Holman, 1969; Preston, 1966
416	Cuchillo Negro Creek Local Fauna, Sierra County, New Mexico	Hesperotestudo	Hesperotestudo sp.	176.00	jE	Piacencian	3.10000	_L	America	Morgan et al., 2011
417	Gilliland local fauna, Burnett Ranch, Knox County, Texas	Hesperotestudo	Hesperotestudo sp.	1800.00	ОШ	Middle Pleistocene	0.70000	С	America	Preston, 1966
418	Ingleside Local Fauna, San Patricio County, Texas	Hesperotestudo	Hesperotestudo sp.	639.00	Ε	Upper Pleistocene	0.06000	c	America	Auffenberg, 1962: A Redescription of Testudo hexagor
419	Ingleside Local Fauna, San Patricio County, Texas	Hesperotestudo	Hesperotestudo sp.	974.00	də	Upper Pleistocene	0.06000	С	America	Auffenberg, 1962: A Redescription of Testudo hexagor
420	Kansas	Hesperotestudo	Hesperotestudo turgida	230.00	ОШ	Lower Pleistocene	1.68450	С	America	Rhodin et al., 2015
421	Friesenhahn Cave, Bexar County, Texas	Hesperotestudo	Hesperotestudo wilsoni	226.00	Ε	Upper Pleistocene	0.01800	_	America	Milstead W.W., 1956: Fossil turtles of Friesenhahn Cav
422	Atascosa county, Texas	Testudo	Testudo sp.	400.00	ОШ	Langhian	14.18100	_	America	Hay, 1902
423	Libertador San Martín, Entre Rios Province	Chelonoidis	Chelonoidis denticulata	616.00	Ε	Upper Pleistocene	0.12000	c	America	Manzano A.S., Noriega J.I., Joyce W.G., 2009: The tro
424	Arroyo Toropí, Corrientes	Chelonoidis	Chelonoidis lutzae	830.00	Ε	Upper Pleistocene	0.03850	_L	America	Zacarías et al., 2013
425	Quebrada de Ñuapua, Chuquisaca department	Chelonoidis	Chelonoidis sp.	1000.00	0W	Upper Pleistocene	0.0690.0	ч	America	De Broin, 1991
426	Beautiful Bone, Alta Guajira Peninsula, Cocinetas basin	Chelonoidis	Chelonoidis sp.	1060.00	90	Langhian	15.90000	۵	America	Cadena, 2015
427	Beautiful Bone, Alta Guajira Peninsula, Cocinetas basin	Chelonoidis	Chelonoidis sp.	300.00	ОШ	Langhian	15.90000	c	America	Cadena, 2015
428	Beautiful Bone, Alta Guajira Peninsula, Cocinetas basin	Chelonoidis	Chelonoidis sp.	300.00	ОШ	Langhian	15.90000	С	America	Cadena, 2015
429	Beautiful Bone, Alta Guajira Peninsula, Cocinetas basin	Chelonoidis	Chelonoidis sp.	300.00	шо	Langhian	15.90000	c	America	Cadena, 2015
430	Beautiful Bone, Alta Guajira Peninsula, Cocinetas basin	Chelonoidis	Chelonoidis sp.	300.00	ОШ	Langhian	15.90000	c	America	Cadena, 2015
431	San Nicolas, UCMP locality V4536	Geochelone	Geochelone hesterna	278.00	Ε	Tortonian	8.50000	c	America	Auffenberg W., 1971: A new fossil tortoise, with remark

Table S13: Body size data set of extant testudinid.

measurements (SCL: straight carapace I width, CH: carapace height, PL: plastron fossil record was recovered and whether obtained are listed.

	Genus	Taxon	CollNr	SCL	CCL	SCW	CCW	СН	PL	PW	Island	Con	Reference
-	Kinixys	Kinixys belliana	ZMB 37388	162.0	16.20	22.5	15.5	21.5	164.0	12.6	u	Africa	freshly measured (MFN collection)
N	Aldabrachelys	Aldabrachelys gigantea	ZMB 51996	770.0	77.00	106.0	52.0	112.0	Ϋ́	Α̈́	>	Africa	freshly measured (MFN collection)
က	Astrochelys	Astrochelys yniphora	ı	426.0	42.60	Ϋ́	ΑN	Ϋ́	Ϋ́	¥	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
4	Centrochelys	Centrochelys sulcata	ZMB 63203	215.0	21.50	29.5	16.5	27.0	214.0	14.8	С	Africa	freshly measured (MFN collection)
2	Malacochersus	Malacochersus tornieri	ZMB 63174	153.0	15.30	17.0	10.5	14.0	149.0	8.6	C	Africa	freshly measured (MFN collection)
9	Astrochelys	Astrochelys radiata	ı	395.0	39.50	Ϋ́	Ν A	Ϋ́	Ϋ́	Α̈́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
7	Pyxis	Pyxis arachnoides	ZMB 37616	110.0	11.00	15.0	8.0	14.0	75.0	9.7	>	Africa	freshly measured (MFN collection)
80	Kinixys	Kinixys homeana	ZMB 17747	193.0	19.30	25.0	14.0	21.0	175.0	11.8	_	Africa	freshly measured (MFN collection)
6	Aldabrachelys	Aldabrachelys gigantea	ZMB 47494	870.0	87.00	116.0	92.0	110.0	Α̈́	¥	>	Africa	freshly measured (MFN collection)
10	Psammobates	Psammobates tentorius	ZMB 28782	111.0	11.10	15.0	8.5	14.0	95.0	6.7	L	Africa	freshly measured (MFN collection)
=======================================	Psammobates	Psammobates oculifer	ZMB 25439	119.0	11.90	17.0	9.0	14.5	99.0	8.4	C	Africa	freshly measured (MFN collection)
12	Psammobates	Psammobates oculifer	ZMB 37472	107.0	10.70	15.0	8.4	13.5	106.0	8	C	Africa	freshly measured (MFN collection)
13	Astrochelys	Astrochelys yniphora	ı	307.0	30.70	Ν	Ν Α	Ν	Ϋ́	A A	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
4	Homopus	Homopus aerolatus	ZMB 229	88.0	8.80	10.5	6.9	9.0	78.0	6.1	С	Africa	freshly measured (MFN collection)
15	Homopus	Homopus signatus	ZMB 63173	94.0	9.40	12.5	7.7	11.0	82.0	5.6	п	Africa	freshly measured (MFN collection)
16	Kinixys	Kinixys belliana	ZMB 63191	194.0	19.40	25.5	12.5	19.0	173.0	12	L	Africa	freshly measured (MFN collection)
17	Astrochelys	Astrochelys radiata	ı	285.0	28.50	N	N	Ν	ΑΝ	A A	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
18	Kinixys	Kinixys belliana	ZMB 63192	174.0	17.40	24.5	11.5	20.5	143.0	1.1	c	Africa	freshly measured (MFN collection)
19	Kinixys	Kinixys belliana	ZMB 63193	157.0	15.70	21.0	6.6	16.5	141.0	9.4	c	Africa	freshly measured (MFN collection)
20	Aldabrachelys	Aldabrachelys gigantea	ZMB 37545	810.0	81.00	110.0	52.0	Ν	A A	A A	>	Africa	freshly measured (MFN collection)
21	Chersina	Chersina angulata	ZMB 49400	162.0	16.20	21.5	10.9	17.5	170.0	9.5	c	Africa	freshly measured (MFN collection)
22	Chersina	Chersina angulata	ZMB 63181	170.0	17.00	23.0	11.4	19.0	169.0	10	_	Africa	freshly measured (MFN collection)
23	Chersina	Chersina angulata	ZMB 63183	120.0	12.00	17.0	8.6	15.5	118.0	7.3	С	Africa	freshly measured (MFN collection)

						مهما							
	Genus	Taxon	CollNr	SCL	CCL	SCW	CCW	CH	Ы	ΡW	Island	Con	Reference
24	Chersina	Chersina angulata	ZMB 63182	136.0	13.60	18.0	6.6	16.0	138.0	œ	C	Africa	freshly measured (MFN collection)
25	Kinixys	Kinixys erosa	ZMB 63190	164.0	16.40	21.0	11.2	16.5	163.0	10.6	_	Africa	freshly measured (MFN collection)
26	Centrochelys	Centrochelys sulcata	ZMB 37387	435.0	43.50	54.0	29.9	53.0	405.0	29.1	_	Africa	freshly measured (MFN collection)
27	Indotestudo	Indotestudo travancorica	ZMB 37717	224.0	22.40	28.0	15.2	23.0	200.0	15.4	_	Africa	freshly measured (MFN collection)
28	Stigmochelys	Stigmochelys pardalis	ZMB 37344	405.0	40.50	22.0	27.0	50.5	350.0	24.3	_	Africa	freshly measured (MFN collection)
29	Stigmochelys	Stigmochelys pardalis	ZMB 63235	315.0	31.50	43.5	23.4	39.0	298.0	22.1	_	Africa	freshly measured (MFN collection)
30	Stigmochelys	Stigmochelys pardalis	ZMB 37495	297.0	29.70	41.5	21.4	36.0	271.0	19.2	_	Africa	freshly measured (MFN collection)
31	Stigmochelys	Stigmochelys pardalis	ZMB 42400	345.0	34.50	46.5	24.0	40.0	285.0	21.3	_	Africa	freshly measured (MFN collection)
32	Stigmochelys	Stigmochelys pardalis	ZMB 63232	350.0	35.00	46.0	23.9	45.0	303.0	21.1	ㄷ	Africa	freshly measured (MFN collection)
33	Psammobates	Psammobates geometricus	ZMB 192	92.0	9.20	13.5	7.1	13.0	0.89	6.3	_	Africa	freshly measured (MFN collection)
34	Chersina	Chersina angulata	1	181.9	18.19	Ž	Ν	Ϋ́	Ϋ́	N A	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
35	Aldabrachelys	Aldabrachelys gigantea	ZMB 47443	800.0	80.00	105.0	51.5	105.0	Ä	N A	>	Africa	freshly measured (MFN collection)
36	Astrochelys	Astrochelys yniphora	1	415.0	41.50	Ϋ́	Ν	Ϋ́	Ä	A A	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
37	Astrochelys	Astrochelys yniphora	1	370.0	37.00	Ϋ́	Ν	Ϋ́	N A	N A	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
38	Aldabrachelys	Aldabrachelys gigantea	ZMB 51995	1030.0	103.00	138.0	Ν	Ϋ́	¥	A A	>	Africa	freshly measured (MFN collection)
39	Aldabrachelys	Aldabrachelys gigantea	ZMB ???	720.0	72.00	105.5	25.0	117.0	Ϋ́	Ą	>	Africa	freshly measured (MFN collection)
40	Cylindraspis	Cylindraspis triserrata	ı	1100.0	110.00	Ν	Ν	Ϋ́	¥	A A	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
4	Cylindraspis	Cylindraspis vosmaeri	1	500.0	50.00	Ν	Ν	Ϋ́	¥	Ą	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
42	Astrochelys	Astrochelys radiata	1	334.0	33.40	Ν	Ν	Ϋ́	¥	Ą	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
43	Astrochelys	Astrochelys radiata	1	305.0	30.50	Ϋ́	Ν	Ϋ́	¥	Ą	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
44	Centrochelys	Centrochelys sulcata	1	830.0	83.00	Ϋ́	Ν	Ϋ́	Ä	A A	_	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
45	Psammobates	Psammobates geometricus	ZMB 186	105.0	10.50	13.5	7.4	13.0	90.0	6.9	_	Africa	freshly measured (MFN collection)
46	Astrochelys	Astrochelys radiata	ı	242.0	24.20	Ν	Ν	Ϋ́	¥	A A	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
47	Psammobates	Psammobates tentorius	ZMB 37627	116.0	11.60	15.0	9.4	14.5	117.0	8.9	>	Africa	freshly measured (MFN collection)
48	Psammobates	Psammobates tentorius	ZMB 50571	95.0	9.50	12.0	7.3	12.0	79.0	7	_	Africa	freshly measured (MFN collection)
49	Psammobates	Psammobates tentorius	ZMB 14766	81.0	8.10	10.5	8.9	10.0	0.79	5.9	_	Africa	freshly measured (MFN collection)
20	Pyxis	Pyxis planicauda		114.0	11.40	Ϋ́	Ν	Ϋ́	Ϋ́	Ą	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur

Pedrono, M., & Smith, L. L. (2013). Overview of the natur. Pedrono, M., & Smith, L. L. (2013). Overview of the natur. tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Pedrono, M., & Smith, L. L. (2013). Overview of the natur. Pedrono, M., & Smith, L. L. (2013). Overview of the natur tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei reshly measured (MFN collection) Reference Africa Con Island 11.8 15.9 ĕ 9.2 7.3 7.8 7.4 ¥ 8.2 ₹ ₹ ¥ ₹ ₹ 9.7 ¥ ž ₹ ¥ ¥ ¥ ₹ ≶ Ž 98.0 100.0 93.0 76.0 58.0 231.0 177.0 0.80 79.0 12.0 ¥ ¥ ž ž ž Ž ž ž ž Ž ₹ ¥ ¥ చ ž 26.0 SH ž ž ž ¥ 18.5 CCW 10.0 11.6 Ϋ́ Ϋ́ Ϋ́ 9.1 Ϋ́ ¥ Ϋ́ Ϋ́ Ϋ́ ž Ϋ́ Ϋ́ Ž Ϋ́ ¥ SCW 24.0 0.9 15.0 15.0 ₹ 4.0 ¥ 20.0 22.5 8.0 ₹ ¥ ¥ ¥ ž ž ž ž ¥ ¥ ₹ ¥ Table S13 – continued from previous page SC 10.10 10.30 10.50 16.00 10.70 87.50 119.00 20.20 35.10 44.60 16.00 27.10 18.10 14.70 14.50 15.00 11.80 72.00 17.93 35.50 12.60 14.40 18.00 111.0 875.0 1190.0 351.0 160.0 271.0 181.0 147.0 145.0 150.0 126.0 120.0 101.0 105.0 180.0 160.0 107.0 202.0 446.0 118.0 720.0 179.3 355.0 144.0 SCL 103.0 ZMB 16399 ZMB 50568 ZMB 50198 ZMB 14772 ZMB 37623 ZMB 37393 ZMB 37392 ZMB 24261 ZMB 37489 **ZMB 185** CollNr Psammobates geometricus Psammobates geometricus Psammobates tentorius Aldabrachelys gigantea Aldabrachelys gigantea Psammobates oculifer Psammobates oculifer Psammobates oculifer Psammobates oculifer Psammobates oculifer Stigmochelys pardalis Astrochelys yniphora Astrochelys radiata **Testudo kleinmanni** Chersina angulata Chersina angulata Chersina angulata Chersina angulata Chersina angulata Pyxis arachnoides Pyxis planicauda Pyxis planicauda Pyxis planicauda Pyxis planicauda Kinixys belliana Kinixys erosa Taxon -sammobates -sammobates -sammobates -sammobates Aldabrachelys >sammobates -sammobates -sammobates Aldabrachelys -sammobates Stigmochelys Astrochelys Astrochelys Chersina Chersina Shersina Chersina Chersina Kinixys **Festudo** Kinixys Genus Pyxis Pyxis Pyxis 99 73 52 53 54 55 58 59 9 62 63 64 65 99 67 89 69 70 74 57 61 7 51

tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei

Africa

ž

¥

¥

Ϋ́

¥

60.00

600.0

Cylindraspis indica

Cylindraspis

page
ious
pre
from
Q
æ
ű
₽
8
-
က
S
Table

	Genus	Taxon	CollNr	SCL	CCL	SCW	CCW	СН	PL	PW	Island	Con	Reference
78	Astrochelys	Astrochelys yniphora	•	361.0	36.10	A	Ϋ́	A A	N A	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
79	Astrochelys	Astrochelys yniphora	1	486.0	48.60	NA	Ϋ́	¥	Α	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
80	Pyxis	Pyxis planicauda	1	148.0	14.80	NA	Ϋ́	Ϋ́	Α	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
81	Pyxis	Pyxis arachnoides	1	111.0	11.10	N	Ν	¥	Ϋ́	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
82	Pyxis	Pyxis arachnoides	1	110.0	11.00	N	Ϋ́	¥	Ϋ́	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
83	Pyxis	Pyxis arachnoides	1	80.0	8.00	N	Ν	Ϋ́	ΑN	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
84	Kinixys	Kinixys lobatsiana	1	200.0	20.00	N	Ν	Ϋ́	ΑN	Ϋ́	L	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
85	Pyxis	Pyxis arachnoides	1	86.0	8.60	N	Ν	Ϋ́	ΑN	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
98	Pyxis	Pyxis arachnoides	1	154.0	15.40	NA	Ν	Ϋ́	Α	Υ	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
87	Kinixys	Kinixys homeana	1	223.0	22.30	NA	Ν	Ϋ́	Α	Υ	۵	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
88	Homopus	Homopus femoralis	1	168.0	16.80	Ϋ́	N	Ą	Ϋ́	Α̈́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
88	Pyxis	Pyxis planicauda	1	132.0	13.20	N A	Ϋ́	Ϋ́	Α	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
06	Homopus	Homopus aerolatus	1	300.0	30.00	Ä	Ν	Α̈́	Α	Ϋ́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
91	Homopus	Homopus boulengeri	1	110.0	11.00	Ä	Ν	Α̈́	Α	Ϋ́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
92	Kinixys	Kinixys erosa	1	400.0	40.00	Ä	Ν	ΑN	Α	Α̈́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
93	Chersina	Chersina angulata	ZMB 37479	148.0	14.80	20.0	10.1	17.0	142.0	9.5	٦	Africa	freshly measured (MFN collection)
94	Psammobates	Psammobates geometricus	1	165.0	16.50	N A	Ϋ́	ΑN	Α	Ϋ́	_	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
95	Homopus	Homopus solus	1	109.0	10.90	Ä	Ν	Α̈́	Α	Ϋ́	_	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
96	Malacochersus	Malacochersus tornieri	1	180.0	18.00	Ä	Ν	Ϋ́	Ϋ́	Ϋ́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
26	Chersina	Chersina angulata	1	153.5	15.35	Ä	Ν	Α̈́	Α	Ϋ́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
86	Pyxis	Pyxis arachnoides	1	144.0	14.40	Ä	Ν	Α̈́	Α	Ϋ́	>	Africa	Pedrono, M., & Smith, L. L. (2013). Overview of the natur
66	Kinixys	Kinixys belliana	1	230.0	23.00	Ä	Ν	ΑN	Α	Α̈́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
100	Aldabrachelys	Aldabrachelys gigantea	1	1140.0	114.00	Ä	Ν	ΑN	Α	Α̈́	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
101	Astrochelys	Astrochelys radiata	1	400.0	40.00	Ä	Ν	Ϋ́	Ϋ́	Ϋ́	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
102	Chersina	Chersina angulata	1	166.4	16.64	N A	Ϋ́	Ϋ́	Α	Ϋ́	٦	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
103	Chersina	Chersina angulata	1	171.6	17.16	N	Ν	¥	Ϋ́	Ϋ́	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
104	Cylindraspis	Cylindraspis peltastes		420.0	42.00	Ϋ́	Ϋ́	N N	N A	Ϋ́	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei

			lable S13 – continued from previous	ntinued tror	n previous	page							
	Genus	Taxon	CollNr	SCL	CCL	SCW	CCW	СН	Ъ	PW	Island	Con	Reference
105	Chersina	Chersina angulata	ı	161.3	16.13	NA	N	Ϋ́	Ϋ́	¥	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
106	Homopus	Homopus signatus	1	106.0	10.60	Ϋ́	Ν	N	N	Α̈́	С	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
107	Kinixys	Kinixys spekii	1	220.0	22.00	Ϋ́	Ν A	N	N	Ϋ́	п	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
108	Cylindraspis	Cylindraspis inepta	1	1000.0	100.00	Ϋ́	Ν A	A	N	Ϋ́	>	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
109	Kinixys	Kinixys natalensis	ı	160.0	16.00	Ϋ́	Ν Α	N	N	Ϋ́	С	Africa	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
110	Geochelone	Geochelone elegans	ZMB 63222	208.0	20.80	29.5	14.6	28.5	199.0	13.3	С	Asia	freshly measured (MFN collection)
111	Geochelone	Geochelone elegans	ZMB 37523	245.0	24.50	32.0	16.6	32.0	228.0	14.6	c	Asia	freshly measured (MFN collection)
112	Geochelone	Geochelone elegans	ZMB 63220	221.0	22.10	32.0	16.0	31.0	179.0	13.5	С	Asia	freshly measured (MFN collection)
113	Geochelone	Geochelone elegans	ZMB 63221	220.0	22.00	31.0	15.4	27.0	209.0	4	>	Asia	freshly measured (MFN collection)
114	Geochelone	Geochelone elegans	ZMB 63218	221.0	22.10	31.5	15.1	30.0	203.0	13.7	C	Asia	freshly measured (MFN collection)
115	Geochelone	Geochelone platynota	ZMB 6096	222.0	22.20	29.5	15.1	27.0	Ν	Ψ	С	Asia	freshly measured (MFN collection)
116	Manouria	Manouria emys	1	0.009	00.09	Ϋ́	Ν	A	Ν	Ϋ́	С	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
117	Indotestudo	Indotestudo forstenii	ı	202.0	20.20	Ϋ́	Ν	Ä	Ν	Ϋ́	>	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
118	Indotestudo	Indotestudo travancorica	ı	249.7	24.97	Ϋ́	Ν	Ä	Ν	Ϋ́	С	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
119	Indotestudo	Indotestudo forstenii	ı	309.0	30.90	Α̈́	Ν	Ä	Ν	Α̈́	>	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
120	Indotestudo	Indotestudo elongata	ı	360.0	36.00	Α̈́	Ν	A	Ν	Α̈́	С	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
121	Indotestudo	Indotestudo forstenii	ı	199.0	19.90	Α̈́	Ν	A	Ν	Α̈́	>	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
122	Indotestudo	Indotestudo elongata	1	244.2	24.42	Α̈́	Ν	Ϋ́	Ν	Ą	_	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
123	Indotestudo	Indotestudo travancorica	ı	244.2	24.42	Α̈́	Ν	Ϋ́	Ν	Α̈́	_	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
124	Manouria	Manouria impressa	ZMB 63172	165.0	16.50	20.0	12.9	18.0	157.0	10.5	_	Asia	freshly measured (MFN collection)
125	Indotestudo	Indotestudo elongata	ZMB 50492	276.0	27.60	33.0	19.4	28.5	246.0	17.1	С	Asia	freshly measured (MFN collection)
126	Indotestudo	Indotestudo elongata	ZMB 63175	235.0	23.50	30.5	16.0	29.5	202.0	14.4	С	Asia	freshly measured (MFN collection)
127	Indotestudo	Indotestudo elongata	ZMB 4174	208.0	20.80	26.0	13.4	20.0	180.0	11.6	_	Asia	freshly measured (MFN collection)
128	Indotestudo	Indotestudo elongata	ZMB 6106	166.0	16.60	21.0	11.3	18.0	151.0	11.3	_	Asia	freshly measured (MFN collection)
129	Manouria	Manouria emys	ı	0.009	00.09	Ϋ́	Ν	Ä	Ν	¥	c	Asia	Karl, H., & Staesche, U. (2007). Fossile Riesen-Landschi
130	Testudo	Testudo graeca	ı	250.0	25.00	Ϋ́	Ν	Ä	Ν	¥	c	Asia	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
131	Testudo	Testudo graeca	ı	280.0	28.00	Α̈́	Ν	Ϋ́	Ν	Ā	>	Asia	ltescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei

tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Karl, H., & Staesche, U. (2007). Fossile Riesen-Landschil tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei reshly measured (MFN collection) reshly measured (MFN collection) reshly measured (MFN collection) Reference Asia S Island 29.8 23.4 ĕ ¥ ₹ ₹ ¥ ₹ ₹ ¥ ¥ ₹ ₹ 455.0 330.0 ž ¥ ¥ ¥ ¥ ž ž చ SH ¥ ¥ ¥ ž ž CCW Ϋ́ 26.7 Ϋ́ Ϋ́ ž Ϋ́ Ϋ́ Ϋ́ Ϋ́ Ϋ́ Ϋ́ SCW ¥ ¥ ₹ ₹ ₹ ₹ ₹ ¥ ž ₹ Table S13 – continued from previous page 33.10 20.05 SC 44.50 33.00 21.96 28.00 35.00 38.00 27.50 21.96 30.00 30.00 330.0 331.0 219.6 200.5 280.0 350.0 380.0 275.0 219.6 300.0 300.0 445.0 212.0 ZMB 37342 ZMB 49049 ZMB 37350 CollNr Indotestudo travancorica Indotestudo travancorica Geochelone platynota Indotestudo elongata Geochelone elegans Indotestudo forstenii Manouria impressa Manouria impressa Festudo horsfieldii Manouria emys Manouria emys Manouria emys Testudo graeca Taxon Geochelone Geochelone Indotestudo ndotestudo Indotestudo Indotestudo Manouria Manouria Manouria Manouria Manouria **Testudo Festudo** Genus

132 133 134 135 136 138 139 140 141 142 143 144 145 146

137

7		70000	7100070	000		<u></u>	1	C	0	7	2	,	
- 5 5	Tyxis	ryxis aracimoldes	ZIVID 3/013	0.00	0.00	0.0		0.0		/	=	edoina	ITESTILY ITTERASULED (IVITIA COLLECTION)
150	Testudo	Testudo marginata	1	241.7	24.17	Ą	ΑN	A	Ϋ́	Ϋ́	u	Europe	Willemsen, R. E., & Hailey, A. (2003). Sexual dimorphism
151	Testudo	Testudo horsfieldii	ZMB 63258	123.0	12.30	14.5	10.9	15.0	121.0	9.8	п	Europe	freshly measured (MFN collection)
152	Testudo	Testudo hermanni	1	183.3	18.33	Ϋ́	ΑN	N	Ϋ́	Ϋ́	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
153	Testudo	Testudo hermanni	1	176.9	17.69	Ą	ΑN	N	Ϋ́	Ϋ́	u	Europe	Willemsen, R. E., & Hailey, A. (2003). Sexual dimorphism
154	Testudo	Testudo horsfieldii	ZMB 63257	114.0	11.40	14.5	10.2	14.0	110.0	6.6	п	Europe	freshly measured (MFN collection)
155	Testudo	Testudo marginata	1	246.7	24.67	Ą	ΑN	A	Ϋ́	Ϋ́	u	Europe	Willemsen, R. E., & Hailey, A. (2003). Sexual dimorphism
156	Testudo	Testudo hermanni	1	196.0	19.60	Ą	ΑN	A	Ϋ́	Ϋ́	u	Europe	Willemsen, R. E., & Hailey, A. (2003). Sexual dimorphism
157	Testudo	Testudo hermanni	1	143.5	14.35	Ą	ΑN	A	Ϋ́	Ϋ́	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
158	Testudo	Testudo graeca	1	194.6	19.46	Ϋ́	Ϋ́	Y Y	¥	ΑĀ	_	Europe	Willemsen, R. E., & Hailey, A. (2003). Sexual dimorphism

tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei

America **America** America Europe

₹ ¥ ž

₹

Α̈́

₹

40.00 29.90 24.00

400.0 299.0 240.0

Gopherus flavomarginatus

Gopherus Gopherus Gopherus berlandieri

Gopherus

147

Festudo

148

Testudo horsfieldii

Gopherus morafkai

₹ ž

Ϋ́

¥

reshly measured (MFN collection)

08.0

10.0

111.0

ZMB 63259

Ϋ́

₹

page
previous
from
continued
13 –
Table S

	Genus	Taxon	CollNr	SCL	CCL	SCW	CCW	CH	J.	PW	Island	Con	Reference
159	Testudo	Testudo hermanni	•	200.0	20.00	Ϋ́	N	N A	A A	A A	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
160	Testudo	Testudo hermanni	1	250.0	25.00	NA	NA	Ϋ́	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
161	Testudo	Testudo marginata	1	246.0	24.60	NA	NA	Ϋ́	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
162	Testudo	Testudo marginata	1	242.5	24.25	N	N	Ϋ́	Ϋ́	ΑŽ	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
163	Testudo	Testudo marginata	1	246.0	24.60	N	N	Ϋ́	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
164	Testudo	Testudo hermanni	1	147.0	14.70	NA	NA	Ϋ́	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
165	Testudo	Testudo marginata	1	290.0	29.00	NA	NA	Ϋ́	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
166	Testudo	Testudo marginata	1	250.0	25.00	Ν	N	Ϋ́	Ϋ́	ΑN	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
167	Testudo	Testudo hermanni	1	145.9	14.59	NA	NA	Ϋ́	Ϋ́	Ϋ́	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
168	Testudo	Testudo graeca	1	178.2	17.82	NA	NA	Ϋ́	Ϋ́	Ϋ́	п	Europe	Willemsen, R. E., & Hailey, A. (2003). Sexual dimorphism
169	Testudo	Testudo marginata	ı	400.0	40.00	N	N	Ž	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
170	Testudo	Testudo horsfieldii	ZMB 63255	136.0	13.60	18.0	13.0	16.5	129.0	12.2	п	Europe	freshly measured (MFN collection)
171	Testudo	Testudo horsfieldii	ZMB 63256	132.0	13.20	17.0	12.4	17.0	133.0	11.3	L	Europe	freshly measured (MFN collection)
172	Testudo	Testudo hermanni	1	168.3	16.83	NA	NA	Ϋ́	Ϋ́	Ϋ́	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
173	Testudo	Testudo hermanni	ı	160.0	16.00	N	N	Ϋ́	Α̈́	Υ Y	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
174	Testudo	Testudo hermanni	ı	154.0	15.40	N	N	Ϋ́	Α̈́	Υ Y	L	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
175	Testudo	Testudo hermanni	1	138.5	13.85	NA	NA	Ϋ́	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
176	Testudo	Testudo hermanni	1	173.0	17.30	N A	N	Ϋ́	Ϋ́	ΑŽ	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
177	Testudo	Testudo marginata	1	242.5	24.25	N	N	Ϋ́	Ϋ́	Ϋ́	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
178	Testudo	Testudo hermanni	ı	195.0	19.50	N	ΝΑ	Š	Ϋ́	Ϋ́	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
179	Testudo	Testudo hermanni	ı	157.0	15.70	N	NA	Ϋ́	Ϋ́	ΑŽ	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
180	Testudo	Testudo hermanni	1	176.6	17.66	NA	NA	Ϋ́	Ϋ́	Ϋ́	>	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
181	Testudo	Testudo hermanni	1	130.0	13.00	NA	NA	Ϋ́	Ϋ́	Ϋ́	п	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
182	Testudo	Testudo hermanni		161.0	16.10	Ν	N	Ϋ́	Α̈́	N A	c	Europe	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
183	Gopherus	Gopherus polyphemus	1	300.0	30.00	N A	ΝΑ	Ϋ́	Ϋ́	ΑĀ	>	America	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei
184	Gopherus	Gopherus sp.	MVZ 210020	N A	¥ ¥	N A	N	Ϋ́	219.6	A A	L	America	Biewer J., Sankey J., Hutchison H., Garber D., 2016: A fo
185	Gopherus	Gopherus sp.	MVZ 210003	Υ Y	NA	Υ Y	N A	N A	192.1	¥ V	۵	America	Biewer J., Sankey J., Hutchison H., Garber D., 2016: A fo

Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Biewer J., Sankey J., Hutchison H., Garber D., 2016: A fo Siewer J., Sankey J., Hutchison H., Garber D., 2016: A fo Siewer J., Sankey J., Hutchison H., Garber D., 2016: A fo ltescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei ltescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Legler, 1959 Legler, 1959 Legler, 1959 Legler, 1959 Legler, 1959 Legler, 1959 Reference America America America America America America America America America **America** America America America America America America **America** America **America** America America America **America** America America America Son Island ₹ ₹ ¥ ₹ ₹ ¥ ₹ ₹ ₹ ¥ ₹ ž ₹ ₹ ₹ ₹ ₹ ₹ ¥ ¥ ¥ ¥ ₹ ž ₹ ₹ 232.8 212.0 358.0 252.0 506.0 515.0 61.0 69.0 162.0 219.0 215.0 96.7 240.1 ¥ ž ž ž చ ž ž ž ž ž ž SH ¥ ¥ ₹ ₹ ¥ ₹ 16.6 29.2 21.2 22.0 44.5 15.5 CCW 23.2 Ϋ́ 21.4 13.2 14.6 15.3 4.4 14.7 ž ž Ϋ́ Ϋ́ Ϋ́ Ž ž ž ž SCW 25.0 68.3 22.8 ₹ ¥ ₹ ₹ ₹ ₹ ¥ ¥ ¥ ₹ ž ¥ ž ž ₹ ¥ ₹ ž Table S13 – continued from previous page 38.70 37.10 28.10 58.80 CCL 40.00 30.30 30.80 30.30 34.20 22.20 23.89 24.60 27.80 61.00 59.30 98.00 33.34 16.90 18.60 71.70 16.90 24.20 25.30 253.0 303.0 308.0 303.0 342.0 222.0 371.0 238.9 246.0 281.0 278.0 588.0 610.0 980.0 169.0 242.0 400.0 387.0 593.0 333.4 169.0 186.0 717.0 **JSNM1 102904 USNM 51069 USNM 61253** 92609 WNSN MVZ 210009 MVZ 210010 **USNM 61254** MVZ 120004 KU 39415 IU 42954 UF33618 IU 42953 UF33604 UF33617 UF27384 UF33597 CollNr Gopherus flavomarginatus Gopherus flavomarginatus Gopherus flavomarginatus Gopherus flavomarginatus Gopherus flavomarginatus Gopherus flavomarginatus Gopherus polyphemus Gopherus polyphemus Gopherus polyphemus Gopherus polyphemus Chelonoidis carbonaria Chelonoidis denticulata Chelonoidis carbonaria Gopherus polyphemus Gopherus polyphemus Chelonoidis abingdonii Chelonoidis carbonaria Chelonoidis chilensis Chelonoidis chilensis Chelonoidis chilensis Gopherus agassizii Chelonoidis nigra Chelonoidis nigra Chelonoidis nigra Gopherus sp. Gopherus sp. Chelonoidis Chelonoidis Chelonoidis Chelonoidis Chelonoidis Chelonoidis Chelonoidis Chelonoidis **Shelonoidis** Chelonoidis Chelonoidis **Bopherus Bopherus Bopherus** Gopherus **Bopherus Bopherus Bopherus** Genus 186 193 195 196 197 198 661 200 202 203 204 205 187 188 88 190 192 194 191 201

Franz, R., & Franz, S. E. (2009). A new fossil land tortoise tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Franz, R., & Franz, S. E. (2009). A new fossil land tortoise Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Franz, R., & Franz, S. E. (2009). A new fossil land tortoise tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei tescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei Reference America **America** America America America America America America **America** America America America Son Island ĕ ₹ ¥ ₹ ₹ ₹ ₹ ¥ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ¥ ¥ ¥ ¥ ₹ ž ₹ ¥ ₹ ₹ ¥ 98.0 0.99 214.0 74.0 410.0 334.0 45.0 305.0 291.0 326.0 ž ₹ ¥ ž ž ž ž ¥ ¥ చ ž ž ž ž ž ž SH ₹ ¥ ₹ ₹ ₹ ¥ ₹ ¥ ₹ ¥ 26.5 23.8 CCW 15.5 12.1 Ϋ́ Ϋ́ Ϋ́ Ϋ́ Ϋ́ Ϋ́ ž Ž ž Ϋ́ Ž Ϋ́ Ϋ́ ¥ ž ž SCW 33.9 38.0 ¥ ₹ ¥ ¥ ¥ ₹ ž ₹ ¥ 28.7 ž 24.7 ¥ ₹ 59.7 47.1 ž ž ž CCL 22.60 105.00 33.30 31.70 36.50 18.30 73.13 20.00 24.70 29.65 29.00 18.90 74.57 89.00 46.60 37.70 82.00 84.00 22.20 15.70 86.00 25.00 81.30 130.00 96.50 731.3 200.0 247.0 290.0 189.0 377.0 1300.0 226.0 1050.0 183.0 296.5 745.7 890.0 466.0 820.0 840.0 222.0 157.0 965.0 333.0 250.0 **JSNM1 222494** UF61931 UF48278 UF33596 JF19242 UF33600 UF33670 JF33603 UF33661 UF23231 UF5259 CollNr Chelonoidis chathamensis Chelonoidis duncanensis Chelonoidis phantastica Chelonoidis denticulata Chelonoidis denticulata Chelonoidis denticulata Chelonoidis carbonaria Chelonoidis denticulata Chelonoidis denticulata Chelonoidis denticulata Chelonoidis carbonaria Chelonoidis carbonaria Chelonoidis carbonaria Chelonoidis carbonaria Chelonoidis carbonaria Chelonoidis hoodensis Chelonoidis chilensis Chelonoidis chilensis Chelonoidis chilensis Chelonoidis chilensis Chelonoidis darwini Chelonoidis vicina Chelonoidis nigra Chelonoidis becki Chelonoidis nigra Chelonoidis nigra Chelonoidis nigra Chelonoidis Chelonoidis Chelonoidis **Chelonoidis** Chelonoidis Chelonoidis Chelonoidis Shelonoidis Shelonoidis Shelonoidis Shelonoidis **Chelonoidis** Shelonoidis Shelonoidis Chelonoidis Chelonoidis Chelonoidis Shelonoidis Chelonoidis Chelonoidis Chelonoidis Chelonoidis **Chelonoidis** Chelonoidis **Shelonoidis** Chelonoidis Chelonoidis Genus 214 215 213 216 217 223 224 225 233 237 221 222 229 230 231 232 227

			Table S13 – continued from previou	ontinued from	previous	us page							
	Genus	Taxon	CollNr	SCL	SCL CCL	SCW	CCW	CH	7	ΡW	SCW CCW CH PL PW Island Con	Con	Reference
240	Chelonoidis	Chelonoidis chilensis		450.0	45.00	ΑĀ	ΑN	NA NA NA	Ā	A A	ے	America	Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C., & Mei

Table S14: Fossil occurences of testudinids as provided in the FosFarBase. Contains information on locality, exact coordinates, age, genus and taxon names plus author.

	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
-	Kabyle 2 km N, Yambol Region	Bulgaria	42.54720	26.48430	0.0020	Testudo	Testudo sp.	Linnaeus, 1758
0	El Harhoura 2 (Temara)	Morocco	33.95220	-6.92590	0.0050	Testudo	Testudo graeca	Linnaeus, 1758
ო	El Harhoura 2 (Temara)	Morocco	33.95220	-6.92590	0.0050	Testudo	Testudo sp.	Linnaeus, 1758
4	Guenfouda Cave (Ghar Zebouj, ??????), Jerada Province	Morocco	34.43300	-2.00000	0.0060	Testudo	Testudo sp.	Linnaeus, 1758
2	Brown Sand Wedge Local Fauna, Roosevelt County, New Mexico	USA	34.00000	-103.50000	0.0060	Hesperotestudo	Hesperotestudo wilsoni	(Milstead, 1956)
9	Blackwater Loc. No. 1, Roosevelt County, New Mexico	USA	34.00000	-103.50000	0.0110	Hesperotstudo	Hesperotestudo cf. wilsoni	(Milstead, 1956)
7	Robledo Cave, west side of the Robledo Mountains, Doña Ana County, New Mexico	USA	33.00000	-106.50000	0.0110	Gopherus	Gopherus agassizi	(Cooper, 1861)
∞	Domebo Local Fauna, Caddo County, Oklahoma	USA	36.00000	-100.00000	0.0110	Hesperotestudo	Hesperotestudo wilsoni	(Milstead, 1956)
თ	Salt Creek, 4.7 mi S and 5.7 mi. W Orla, Reeves County, Texas	USA	31.78000	-103.99000	0.0130	Gopherus	Gopherus cf. sp.	Rafinesque, 1832
10	Schulze Cave Fauna, Edwards County, Texas	USA	30.30000	-99.90000	0.0150	Hesperotestudo	Hesperotestudo cf. wilsoni	(Milstead, 1956)
Ξ	U-Bar Cave Late Wiskonsin, Hidalgo County, New Mexico	USA	31.60000	-108.40000	0.0175	Geochelone	Geochelone cf. sp.	Rafinesque, 1832
12	Friesenhahn Cave, Bexar County, Texas	USA	29.00000	-98.00000	0.0180	Hesperotestudo	Hesperotestudo wilsoni	(Milstead, 1956)
13	Gorham's cave IIIb, Gibrattar Peninsula	England	36.12030	-5.34190	0.0200	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
14	Gruta do Caldeirão, Tomar	Portugal	39.60070	-8.41380	0.0200	Testudo	Testudo sp.	Linnaeus, 1758
15	Gruta do Escoural, Évora	Portugal	38.57000	-7.91000	0.0200	Eurotestudo	Eurotestudo cf. hermanni	(Gmelin, 1789)
16	Sims Bayou Local Fauna, Harris County, Texas	USA	29.00000	-95.00000	0.0200	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
17	Shelter Cave (LACM 1010, UTEP 30), Doña Ana County, New Mexico	USA	33.00000	-106.50000	0.0215	Gopherus	Gopherus agassizi	(Cooper, 1861)
18	Rancho La Brea, California	USA	34.05220	-118.24300	0.0240	Gopherus	Gopherus? sp.	Rafinesque, 1832
19	Sabertooth Camel Maze, Dry Cave (UTEP 5), Eddy County, New Mexico	USA	32.00000	-104.00000	0.0255	Gopherus	Gopherus agassizi	(Cooper, 1861)
20	Sabertooth Camel Maze, Dry Cave (UTEP 5), Eddy County, New Mexico	USA	32.00000	-104.00000	0.0255	Hesperotestudo	Hesperotestudo wilsoni	(Milstead, 1956)
21	Gruta Nova da Columbeira, Bombarral	Portugal	39.30510	-9.19530	0.0275	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
22	Clear Creek Local Fauna, Denton County, Texas	USA	33.20000	-97.10000	0.0280	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
23	Lewisville Site, Denton County, Texas	USA	33.00000	-97.00000	0.0280	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
24	Moore Pit, Dallas County, Texas	USA	32.70000	-96.70000	0.0290	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
25	Gruta da Figueira Brava, Arrábida	Portugal	38.56800	-9.14800	0.0300	Eurotestudo	Eurotestudo cf. hermanni	(Gmelin, 1789)
56	U-Bar Cave Mid Wiskonsin, Hidalgo County, New Mexico	USA	31.60000	-108.40000	0.0315	Geochelone	Geochelone cf. sp.	Rafinesque, 1832
27	Gorham's cave IV, Gibraltar Peninsula	England	36.12040	-5.34200	0.0330	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
28	Room of the Vanishing Floor, Dry Cave (UTEP 26, 27), Eddy County, New Mexico	USA	32.00000	-104.00000	0.0335	Gopherus	Gopherus agassizi	(Cooper, 1861)
59	Pendejo Cave, Rough Canyon on Fort Bliss land, Otero County, New Mexico	USA	32.41670	-105.91670	0.0350	Gopherus	Gopherus agassizi	(Cooper, 1861)
30	Megenity Peccary Cave, Crawford County, Indiana	USA	38.33000	-86.55000	0.0370	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)
31	Easley Ranch Local Fauna, Foard County, Texas	USA	34.00000	-99.00000	0.0550	Geochelone	Geochelone sp.	Fitzinger, 1835
32	Easley Ranch Local Fauna, Foard County, Texas	USA	34.00000	-99.00000	0.0550	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
33	Vero Beach, Indian River County, Florida	USA	27.60000	-80.40000	0.0560	Gopherus	Gopherus polyphemus	(Daudin, 1803)
34	Vero Beach, Indian River County, Florida	USA	27.60000	-80.40000	0.0560	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)
35	Ingleside Local Fauna, San Patricio County, Texas	USA	27.00000	-96.00000	0.0600	Hesperotestudo	Hesperotestudo sp.	Williams, 1950

Decided to the following that the following the following that the following that the following the foll									
One of the class of particle (Loss) (Faunt Son Petrico County) (Faunt Son Petri		Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
Attack of the Children Chen obtained the Children Chen Children	36	Ingleside Local Fauna, San Patricio County, Texas	USA	27.00000	-96.00000	0.0600	Gopherus	Gopherus sp.	Rafinesque, 1832
Authorish control Countile control 54,862.00 13,880.00 13,880.00 Institution of the control operand and control operan	37	Zebbug and Gahr Dalam Cave deposits	Malta	35.88970	14.44250	0.0660	Testudo	Testudo graeca	Linnaeus, 1758
Bits of the picture state of the picture of size of the picture of size of the picture o	38	Šandaija near Pula	Croatia	44.86830	13.84800	0.0685	Testudo	Testudo graeca	Boulenger, 1891
Subtrict Lope Pheiacoren artial, General Meuritaria Hugay 477500, 16185 Tread-off Trea	39	Bate Cave, Rethymnon	Greece	35.36470	24.47140	0.0685	Testudo	Testudo marginata	Schoepff, 1792
Towns of Entire Lockes IIII 1839 4.0 38200 11 81520 0.0858 Transmish Demoninal	40	Süttö Upper Pleistocene strata, Gerecse Mountains	Hungary	47.75000	18.45000	0.0685	Testudo	Testudo graeca	Linnaeus, 1758
The ror and by Indicated. Home 41 13000. 41 3000. 6,855 Europeach Department Europeach Department Convent Silvaire Care, Petrovica 18 20 200. 43 11280 13 2000. 0.0895 Europeach Department Convent Silvaire Care, Petrovica 18 20 200. 18 20 200. 0.0895 Europeach Department Convent Silvaire Care, Petrovica 18 20 200. 18 20 200. 0.0895 Europeach Department Convent Silvaire Care, Petrovica 18 20 200. 18 20 200. 0.0895 Europeach Department Europeach Department Area Care, Millarine, February Sirvaire of Althority Special Care, Petrovica 18 20 20 00. 2.8 4000 0.0895 Europeach Department Europeach Department Area Care, Millarine, February Special 18 20 20 00. 2.8 4000 0.0895 Europeach Department Europeach Department February Points 18 20 20 00. 2.8 4000 0.0895 Europeach Department Europeach Department February Early Alterna Carry, Points 18 20 20 00. 2.8 4000 0.0895 Europeach Department Europeach Department February Early Alterna Carry, Points 18	4	Sternatia, Lecce	Italy	40.38330	18.18330	0.0685	Testudo	Testudo sp.	Linnaeus, 1758
Coveres Signing Cane, Petrovica Serbia 43,11280 11,330,00 Code Eucodestable Or Petrovica Eucodestable Or Petrovica Coveres Signing Cane, Petrovica Coveres Signing Cane, Petrovica Serbia 43,11280 13,3000 0,0858 Facino Teachor Development of Cane Petrovica Covered Signing Cane, Petrovica Covered Signing Cane, Petrovica Serbia 43,1280 0,0858 Facino Teachor Operation of Cane Petrovica Cover Signing Cane, Petrovica Cover Signing Cane, Petrovica Cover Signing Cane, Petroperation of Cane Petrovica Petrovica Cane Cane Petroperation Cane Petrovica Petroperation Cane Petroperat	45	Torre del Pagliaccetto, Rome	Italy	41.90000	12.48330	0.0685	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
Centure Siginat Cancer Petrovica Senia 4311280 193500 0.0857 Testacho Testacho Testacho Cuevar o Siginat Cancer Petrovica Span 35,9267 4,31350 0.0865 Testacho	43	Crevene Stijena Cave, Petrovica	Serbia	43.11280	19.33030	0.0685	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
Convols Signar One Spiera Care Percovate Sahab 4311250 1533200 0.0865 Instanctor Treatudo sp. Cours dol Golgoute for Sterrings Series of Allman, Malding and Cours for Allman, Malding and Cours of Allman, Malding and Allman, Malding Allman 59am 37,35000 0.0865 Instanctor Treatudo of Instanctor Horns Cone, Virginande, Frendrit Franco 43,73600 0.0865 Instanctor Instanctor of Instanctor Horns Cone, Virginande, Frendrit Franco 26,900 0.0869 Instanctor Instanctor of Instanctor Oringo Lab Zamies south, Marker County, Florida USA 28,000 0.0890 Inspirator Inspirator Inspirator Reddick NAB Marker County, Florida USA 28,000 0.0890 Inspirator Inspirator Inspirator Arcestorio Louis, Florida Marker County, Florida USA 28,000 0.0890 Inspirator Inspirator Arcestorio Louis, Florida Marker County, Florida Valor 28,000 0.0890 Inspirator Inspirator Arcestorio Louis, Alexania Marker County, Florida Valor 28,000 <t< td=""><th>44</th><td>Crevene Stijena Cave, Petrovica</td><td>Serbia</td><td>43.11280</td><td>19.33030</td><td>0.0685</td><td>Testudo</td><td>Testudo graeca</td><td>Linnaeus, 1758</td></t<>	44	Crevene Stijena Cave, Petrovica	Serbia	43.11280	19.33030	0.0685	Testudo	Testudo graeca	Linnaeus, 1758
Concer del Bogoube de Zultmyuk, Serian de Albuma, Málaga Spain 3.56677 4.13520 0.0685 Finando Tesacho de production de Lumination	45	Crevene Stijena Cave, Petrovica	Serbia	43.11280	19.33030	0.0685	Testudo	Testudo sp.	Linnaeus, 1758
Canada Lebra Canadal Spain 37500 3.005 Envioable Envioable College Envioable College <th< td=""><th>46</th><td>Cueva del Boquete de Zafarraya, Sierra de Alhama, Málaga</td><td>Spain</td><td>36.96670</td><td>-4.13330</td><td>0.0685</td><td>Testudo</td><td>Testudo sp.</td><td>Linnaeus, 1758</td></th<>	46	Cueva del Boquete de Zafarraya, Sierra de Alhama, Málaga	Spain	36.96670	-4.13330	0.0685	Testudo	Testudo sp.	Linnaeus, 1758
Hours Gow, Vallishurisk, Henritt Hance 437989 387480 0.0851 Testudos Testudos in Casaba Avredoncol IVA, Alachia County, Porida USA 224,0000 0.0890 1 Responded to the specification of the specification	47	Cueva Horá (Darro, Granada)	Spain	37.35000	-3.30000	0.0685	Eurotestudo	Eurotestudo cf. hermanni	(Gmelin, 1789)
Are protected to Line Alachua County, Florida USA 22 60000 62,04000 6,040 Hespericate and Central Alachua County, Florida List	48	Hortus Cave, Valflaunès, Herault	France	43.79980	3.87460	0.0685	Testudo	Testudo sp.	Linnaeus, 1758
Control Learning Sabert out, Marinn County, Florida USA 22,40000 62,20000 0.0890 Geocheinne Andersouth, Marinn County, Florida Geocheinne Andersouth, Marinne County, Florida Geocheinne Andersouth, County, County	49	Arredondo IIA, Alachua County, Florida	NSA	29.60000	-82.40000	0.0690	Hesperotestudo	Hesperotestudo incisa	(Hay, 1916)
Reddick (Au.B. Marion County, Florida USA 24 1000 42 2000 0.0590 Gopherus Gopherus Reddick (Au.B. Marion County, Florida USA 28 1000 42 2000 0.0590 Gopherus Gopherus Reddick (Au.B. Marion County, Florida USA 28 6000 42 2000 0.0590 Gopherus Gopherus Areddoro (I.A. Barron County, Florida USA 28 6000 28 4000 0.0590 Gopherus Gopherus Areddoro (I.A. Barron County, Florida USA 28 6000 0.0590 Hespericatedud crassiscutan Areddoro (I.A. Barron County, Florida USA 28 6000 0.0590 Hespericatedud crassiscutan Alexand Glamino Septeur (Permati, Pinida del Valle, Madrid USA 3.80630 0.0500 Eurotestudo rensaiscutan Alexand Septeur (Permati, Pinida del Valle, Madrid Madrid USA 3.80630 0.0500 Eurotestudo rensaiscutan Alexand Septeur (Permati, Pinida del Valle, Madrid Madrid USA 3.80630 0.0100 Hespericatedud crassiscutan Alexand Septeur (Permati, Permatikat Manida (Permatikat) Manida (Permat	20	Orange Lake 2 miles south, Marion County, Florida	NSA	29.40000	-82.20000	0.0690	Geochelone	Geochelone sp.	Fitzinger, 1835
Reduction LALB, Marien County, Fordia USA 28 10000 42.30000 10.69 Hesperidestude County, Fordia Hesperidestude Consistentials	51	Reddick IA+B, Marion County, Florida	NSA	29.10000	-82.30000	0.0690	Gopherus	Gopherus polyphemus	(Daudin, 1803)
Average Camino Societar Central, Printia del Valle, Madrid Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Camino Societar Central, Printia del Valle, Madrid Byan Average Cane, Florior Byan Average Cane, Florior Byan Average Cane, Florior Average River Camino Manthema Ensenada stream, Entre Rios Province Average Manth month bank Ensenada stream, Entre Rios Province Average Manthema Arma, Chawces Cantry, New Mexico Byan Average Cane, Sicily Average Cane, Sicily Byan Average Cane, Sicily Average Cane, Sicily Byan Average Cane, Sicily Average Can	25	Reddick IA+B, Marion County, Florida	NSA	29.10000	-82.30000	0.0690	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)
Arredondo IIA, Alachua County, Florida USA 28,60000 60.690 Hesperclaestudo crassiscutata Hesperclaestudo crassiscutata Mabburnne, Brevard County, Florida USA 49,265.00 0.0890 Hesperclaestudo Hesperclaestudo crassiscutata Oueva de Icamino Secleur Central, Plinila del Valle, Madrid Spain 40,925.40 3.06000 0.0890 Hesperclaestudo Hesperclaestudo crassiscutata Loueva de Icamino Secleur Nord, Prilla del Valle, Madrid USA 39,3000 0.0890 10,000 Hesperclaestudo crassiscutata Hopwood Farm Sills, enar Fillmore, Montgomery County, Illinois of Valle, Madrid Morcozo 26,91730 42,14260 0.1000 Hesperclaestudo crassiscutata Peace Creek, Florida El Harhoura 1 (Femaria) El Harhoura 1 (Femaria) 10,000 48,2400 0.100 Hesperclaestudo crassiscutata Aco de Binoceront, esisem Garraf Massil, Castelider Familie and Valle, Madrid Angentin north barrik Ensemada stream, Entre Rice Province Spain 40,3780 6.1500 1100 Hesperclaestudo crassiscutata Aco de Binoceront, esisem Garraf Massil, Castelider Familie and Valle, Decardo County, New Mexico Bortugat 40,3780 6.1500 110,000<	23	Sabertooth Cave, Lecanto 2A, Citrus County, Florida	NSA	28.80000	-82.20000	0.0690	Gopherus	Gopherus polyphemus	(Daudin, 1803)
Methourne, Brevard County, Forda USA 28.10000 60.600 Hesperofestudo crassiscudata Oueva del Camino Secleur Central, Pinilla del Valle, Madrid Spain 40.92540 3.80630 0.0310 Eurorestudo crassiscudata Cueva del Camino Secleur Central, Pinilla del Valle, Madrid USA 3.80630 0.0301 Eurorestudo crassiscudata Cueva del Camino Secleur Nord, Pinilla del Valle, Madrid USA 3.80630 0.0300 Eurorestudo crassiscudata Peace Craek, Fiorda Los Produced Familia del Valle, Madrid USA 3.80630 0.100 Hesperotestudo crassiscudata Peace Craek, Fiorda Los Produced Familia del Valle, Madrid Morcozo 3.80600 4.82780 0.100 Hesperotestudo crassiscudata Peace Craek, Fiorda Productiva Salemada sitream, Entre Rios Province Argantin 4.12780 1.100 Hesperotestudo crassiscudata Libertador San Martin north bark Ersenada sitream, Entre Rios Province Argantin 4.12780 1.100 1.100 Hesperotestudo crassiscudata Libertado Correctoria Barrianda San Martin north bark Ersenada sitream, Entre Rios Province Endagan 1.100 1.100 1.100	24	Arredondo IIA, Alachua County, Florida	NSA	29.60000	-82.40000	0.0690	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)
Quency del Camino Secteur Central, Pinilla del Valle, Madrid Spain 40,925-40 3,80630 0,0910 Eurotestudo e Trontestudo termanni Cueva del Camino Secteur Central, Pinilla del Valle, Madrid USA 38,1300 1,800 1,800 Eurotestudo e Trontestudo crassiscutata Place de Camino Secteur Nord, Pinilla del Valle, Madrid USA 28,1300 1,900 Hespertosstudo crassiscutata Place Creek, Florida Morco 23,9500 1,160 Hespertosstudo crassiscutata Place Creek, Florida Morco 33,9500 1,160 Hespertosstudo crassiscutata Le Harhoura I (Fenral del Camarin Maskif, Castellidelfs Agentina 41,2736 1,160 Hespertosstudo crassiscutata Libertador San Martin north bank Ersenada stream, Ente Rios Province Agentina 40,3781 0,150 Flethoridis Chelonoidis denicularia Meabhada, Coimbra Meabhada, Coimbra Agentina 1,860 0,120 1,860 1,870 1,170 Eurotestudo rensiscutata San Vilo Lo Capo KZ2, Sicily Meabhada, Coimbra 1,870 1,120 1,100 1,100 1,100 1,100 1,100	22	Melbourne, Brevard County, Florida	NSA	28.10000	-80.60000	0.0690	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)
Quava del Camino Secteur Nord, Philla del Valle, Madrid Spain 49.92540 3.80630 0.0920 Eurotestudo hermanni Hopwood Farm Sile, near Fillmore, Montgomeny County, Illinois USA 39.13000 69.23000 0.1000 Hesperrotestudo crassiscuata Peace Creek, Florida Norcozo 33.91300 6.93330 0.1060 Hesperrotestudo crassiscuata Peace Creek, Florida Montroco 33.9500 6.93330 0.1060 Hesperrotestudo crassiscuata Libertador San Martin north bank Ensenada stream, Entre Rios Province Argentine 41.27360 1.96090 0.1105 Funcistudo hermanni Libertador San Martin north bank Ensenada stream, Entre Rios Province Argentine 42.2360 6.93330 0.1060 Prestudo provincial denticulata Meethado, Colinbra Meethado, Colinbra Provincial denticulata 42.24500 0.1000 Prestudo provincial denticulata Meethador San Martin north bank Ensenada stream, Entre Rios Provincia Provincial 4.45210 0.1000 Prestudo provincial denticulata Meethado Cave, Glavaltar Peninsula Provincia de Alaquerca, Burgos USA 104.0000 0.1260 Cheloridos <th>26</th> <td>Cueva del Camino Secteur Central, Pinilla del Valle, Madrid</td> <td>Spain</td> <td>40.92540</td> <td>-3.80630</td> <td>0.0910</td> <td>Eurotestudo</td> <td>Eurotestudo hermanni</td> <td>(Gmelin, 1789)</td>	26	Cueva del Camino Secteur Central, Pinilla del Valle, Madrid	Spain	40.92540	-3.80630	0.0910	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
Hopwood Farm Sile, near Fillmore, Montgomery County, Illinois USA 39.13000 49.28000 0.1000 Hesperdestudo crassiscutata Hesperdestudo crassiscutata Peace Creek, Forida Bornous Creek, Forida 42.14260 0.100 Hesperdestudo crassiscutata Hesperdestudo crassiscutata El Harhoura I (Femara) Morocco 41.27360 6.9330 0.106 Testudo Institudo gracea Cova del Rinnocront, eastern Garral Massif, Castelidelis Argentina -32.08780 6.046830 0.105 Furniestudo bramanni Libertador San Martin north bank Ersenada stream, Entre Rios Province Argentina -32.08780 -6.1560 0.106 Testudo Furniestudo hermanni Mealhada, Colindra Percental Massif, Castelidelis England -32.08780 -0.150 Chelonodis denticulata Percental Amagin Lo Caeve, Glavaltar Peninsula England 18.27000 10.150 Chelonodis denticulata Percental Amagin Lo Caeve, Glavaltar Peninsula La Caeve, Glavaltar Peninsula Siaughi Lo Cae	22	Cueva del Camino Secteur Nord, Pinilla del Valle, Madrid	Spain	40.92540	-3.80630	0.0920	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
Heaper Creek, Florida USA 26.91730 48.214260 0.1000 Heaper destudo crassiscutata Morocco El Hanhoura I (Temara) Morocco 33.9500 6.593330 0.1050 Testudo pracea Cova del Rinoceront, eastern Garraf Massif, Castelldelfs Agentina 41.2736 1.96090 0.1105 Eurotestudo remaini Libertador San Martin north bank Ensenada stream, Entre Rios Province Agentina 41.2736 6.648630 0.105 Chelonoidis Eurotestudo remaini Mealhada, Coimbra Mealhada, Coimbra England 40.37810 1.96090 0.100 Chelonoidis denticulata Anguard Cave, Gibraltar Peninsula England 1.27500 0.1200 Chelonoidis Eurotestudo remaini San Vito Lo Capo KZ2, Sicily Los Sicily 1.27500 0.1500 Eurotestudo Eurotestudo remaini San Vito Lo Capo KZ2, Sicily Bergant Menera and Acme, Chaves County, New Mexico USA 32.0000 1.24500 0.1500 Gopherus agassizi Sing diplier Carnyon Cave, Eddy County, New Mexico USA 2.340000 1.04.50000 0.2900 Gopherus Gopherus agassizi	28	Hopwood Farm Site, near Fillmore, Montgomery County, Illinois	NSA	39.13000	-89.28000	0.1000	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)
El Harhoura 1 (Temara) Morocco 33.95000 6.93330 0.1050 Testudo Testudo graeca Cova del Rinoceront, eastern Garraf Massif, Castelldelfs Spain 41.2736 1.96090 0.105 Eurotestudo Eurotestudo hermanni Libertador San Martin north bank Ensenada stream, Entre Rios Province Agentina -80.48630 0.120 Chelonoidis Chelonoidis denticulata Mealhada, Coimbra Mealhada, Coimbra Portugal 40.37810 3.45210 0.120 Chelonoidis Chelonoidis denticulata Vanguard Cave, Gibraliar Peninsula Lorgan Martin north bank Ensenada stream, Entre Rios Province Lorgan 3.20000 6.1300 Chelonoidis Chelonoidis denticulata San Vito Lo Capo KZ2, Sicily Peros River near Melena and Acme, Chaves County, New Mexico USA 3.20000 1.04,5000 0.150 Eurotestudo hermanni Slaughter Canyon Cave, Eddy County, New Mexico USA 32.4000 1.050 0.250 Gopherus Gopherus agassizi Dy Cave Fauna, Eddy County, New Mexico USA 1.04,50000 0.290 1.04,50000 0.290 Gopherus Gopherus agassizi <th>29</th> <td>Peace Creek, Florida</td> <td>NSA</td> <td>26.91730</td> <td>-82.14260</td> <td>0.1000</td> <td>Hesperotestudo</td> <td>Hesperotestudo crassiscutata</td> <td>(Leidy, 1889)</td>	29	Peace Creek, Florida	NSA	26.91730	-82.14260	0.1000	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)
Cova del Rinoceront, eastern Garraf Massif, Castelldelfs Spain 4.27360 1.96090 0.105 Eurotestudo Permanni Libertador San Martin north bank Ensenada stream, Entre Rios Province Argentina -60.48630 0.1200 Chelonoidis Chelonoidis denticulata Mealhada, Coimbra Portugal Portugal 40.37810 -8.45210 0.1200 Testudo Testudo sp. Avanguard Cace, Gibraltar Peninsula England 38.12030 -5.34190 0.120 Testudo Testudo sp. San Vito Lo Capo KZZ, Sicily Italy 38.2000 1.045300 0.150 Gopherus Gopherus agassizi Broos River near Melena and Acme, Chaves County, New Mexico USA 32.0000 1.04500 0.150 Gopherus Gopherus agassizi Sima del Elefante TE18+TE19, Sierra de Atapuerca, Burgos Spain 42.33000 1.04500 0.2500 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Maxico USA 32.4000 1.045000 0.290 Gopherus Gopherus agassizi Dry Cave Fauna, Meade County, Kansas USA 37.202420 1.00.41500	09	El Harhoura 1 (Temara)	Morocco	33.95000	-6.93330	0.1050	Testudo	Testudo graeca	Linnaeus, 1758
Mealhada, Coimbra Argentina -32.08760 -60.48630 0.1200 Chelonoidis Chelonoidis denticulata Mealhada, Coimbra Mealhada, Coimbra Portugal 40.37810 -8.45210 0.1200 Testudo Testudo sp. Vanguard Cave, Gibraltar Peninsula England 12.7500 0.1500 Eurotestudo Eurotestudo hermanni San Vito Lo Capo KZ2, Sicily Lisy 0.1500 Eurotestudo Eurotestudo hermanni Pecos River near Melena and Acme, Chaves County, New Mexico USA 32.0000 -104.5300 0.1560 Gopherus Gopherus agassizi Slaughter Canyon Cave, Eddy County, New Mexico USA 32.0000 -104.5000 0.2500 Testudo Testudo sp. Dy Cave Fauna, Eddy County, New Mexico USA 32.4000 -104.5000 0.2500 Gopherus agassizi Dy Cave Fauna, Eddy County, New Mexico USA 32.4000 -104.5000 0.2900 Gopherus agassizi Dy Cave Fauna, Eddy County, New Mexico USA 37.2000 -104.5000 0.2900 Hesperotestudo Mexico Cagin Quarry Local Fauna, Meade County, Kansas	61	Cova del Rinoceront, eastern Garraf Massif, Castelldelfs	Spain	41.27360	1.96090	0.1105	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
Mealhada, Coimbra Mealhada, Coimbra Portugal 40.37810 -8.45210 0.1200 Testudo portugan Testudo sp. Vanguard Cave, Gibraltar Peninsula England 36.12030 -5.34190 0.120 Eurotestudo Eurotestudo hermanni San Vito Lo Capo K22, Sicily USA 38.20000 12.75000 0.1500 Eurotestudo hermanni Pecos River near Melena and Acme, Chaves County, New Mexico USA 32.0000 -104.53000 0.1500 Gopherus Gopherus agassizi Slaughter Canyon Cave, Eddy County, New Mexico USA Spain -104.53000 0.209 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Hesperdestudo equicomes Dry Cave Fauna, Eddy County, Meade County, Kansas USA 37.22420 -100.41760 0.3000 Hesperdestudo equicomes Buller Spring XI Banch (KU Locality 7), Meade County, Kansas USA 37.00000 -100.00000 0.3000	62	Libertador San Martín north bank Ensenada stream, Entre Rios Province	Argentina	-32.08760	-60.48630	0.1200	Chelonoidis	Chelonoidis denticulata	Linnaeus 1766 (p. 325)
Vandard Cave, Gibraltar Peninsula England 36.12030 -5.34190 0.1200 Eurotestudo Eurotestudo hermanni San Vito Lo Capo K22, Sicily 1taly 38.20000 12.75000 0.150 Eurotestudo Eurotestudo hermanni Pecos River near Melena and Acme, Chaves County, New Mexico USA 33.47000 -104.5000 0.1560 Gopherus Gopherus agassizi Slaughter Canyon Cave, Eddy County, New Mexico USA 32.0000 -104.0000 0.260 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.4000 -104.5000 0.2800 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.4000 -104.5000 0.2800 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, Mexico USA 32.4000 -104.5000 0.2900 Hesperotestudo wilsoni Cagin Ourity, Mexico USA 37.22420 -104.1760 0.3000 Hesperotestudo equicomes Buller Spring XI Banch (KU Locality 7), Mexico USA 37.0000 0.3000 Gopherus Gopherus sp. <th>63</th> <td>Mealhada, Coimbra</td> <td>Portugal</td> <td>40.37810</td> <td>-8.45210</td> <td>0.1200</td> <td>Testudo</td> <td>Testudo sp.</td> <td>Linnaeus, 1758</td>	63	Mealhada, Coimbra	Portugal	40.37810	-8.45210	0.1200	Testudo	Testudo sp.	Linnaeus, 1758
San Vito Lo Capo K22, Sicily Ltaby 38.20000 12.75000 0.1500 Eurotestudo Permanni Pecos River near Melena and Acme, Chaves County, New Mexico USA 33.47000 -104.53000 0.1560 Gopherus Gopherus agassizi Slaughter Canyon Cave, Eddy County, New Mexico USA 32.00000 -104.00000 0.290 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Hosperotestudo Roperus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Hosperotestudo Mesperotestudo Roperus agassizi Dry Cave Fauna, Eddy County, Mexico USA 32.40000 -104.50000 0.2900 Hosperotestudo Mesperotestudo Roperus agassizi Dry Cave Fauna, Eddy County, Mexico USA 37.22420 -104.1760 0.3000 Hosperotestudo Roperus agassizi Builer Spring XI Banch (KU Locality 7), Mexico USA 37.00000 -100.0000 0.3000 Gopherus sp.	64	Vanguard Cave, Gibraltar Peninsula	England	36.12030	-5.34190	0.1200	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
Pecos River near Melena and Acme, Chaves County, New Mexico USA 33.47000 -104.53000 0.1560 Gopherus Gopherus agassizi Slaughter Carnyon Cave, Eddy County, New Mexico USA 32.00000 -104.00000 0.290 Gopherus Gopherus agassizi Sima del Elefante TE18+TE19, Sierra de Atapuerca, Burgos USA 32.4000 -104.5000 0.290 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.4000 -104.5000 0.2900 Hesperotestudo Mexico Hesperotestudo Misoni Cragin Ouarry Local Fauna, Meade County, Kansas USA 37.22420 -104.1760 0.3000 Hesperotestudo equicomes Buller Spring XI Ranch (KU Locality 7), Meade County, Kansas USA 37.00000 -100.00000 0.3000 Gopherus Sp. Gopherus sp.	65	San Vito Lo Capo K22, Sicily	Italy	38.20000	12.75000	0.1500	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
Slaughter Canyon Cave, Eddy County, New Mexico USA 32.00000 -104.00000 0.290 Gopherus Gopherus agassizi Sima del Elefante TE18+TE19, Sierra de Atapuerca, Burgos Spain -2.51000 -3.51000 0.290 Testudo Sp. Testudo sp. Dry Cave Fauna, Eddy County, New Mexico USA 32.4000 -104.50000 0.290 Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.4000 -104.50000 0.2900 Hesperotestudo Hesperotestudo Hesperotestudo Hesperotestudo equicomes Cragin Ouarry Local Fauna, Meade County, Kansas USA 37.22420 -100.41760 0.3000 Hesperotestudo equicomes Buller Spring XI Ranch (KU Locality 7), Meade County, Kansas USA 37.00000 -100.00000 0.3000 Gopherus sp.	99	Pecos River near Melena and Acme, Chaves County, New Mexico	NSA	33.47000	-104.53000	0.1560	Gopherus	Gopherus agassizi	(Cooper, 1861)
Sima del Elefante TE18+TE19, Sierra de Atapuerca, Burgos Spain -3.51000 -3.51000 Testudo sp. Testudo sp. Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Hesperotestudo Hesperotestudo wilsoni Cragin Ouarry Local Fauna, Meade County, Kansas USA 37.22420 -100.41760 0.3000 Hesperotestudo equicomes Butler Spring XI Ranch (KU Locality 7), Meade County, Kansas USA 37.00000 -100.00000 0.3000 Gopherus Gopherus sp.	29	Slaughter Canyon Cave, Eddy County, New Mexico	NSA	32.00000	-104.00000	0.2090	Gopherus	Gopherus agassizi	(Cooper, 1861)
Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Gopherus Gopherus agassizi Dry Cave Fauna, Eddy County, New Mexico USA 32.40000 -104.50000 0.2900 Hesperotestudo Hesperotestudo wilsoni Cragin Quarry Local Fauna, Meade County, Kansas USA 37.22420 -100.41760 0.3000 Hesperotestudo equicomes Butler Spring XI Ranch (KU Locality 7), Meade County, Kansas USA 37.00000 -100.00000 0.3000 Gopherus Gopherus sp.	89	Sima del Elefante TE18+TE19, Sierra de Atapuerca, Burgos	Spain	42.33000	-3.51000	0.2500	Testudo	Testudo sp.	Linnaeus, 1758
Dry Cave Fauna, Eddy County, New Mexico USA 37.22420 -100.41760 0.2900 Hesperotestudo Hesperotestudo wilsoni USA 37.22420 -100.41760 0.3000 Hesperotestudo equicomes USA 37.00000 -100.00000 0.3000 Gopherus sp.	69	Dry Cave Fauna, Eddy County, New Mexico	NSA	32.40000	-104.50000	0.2900	Gopherus	Gopherus agassizi	(Cooper, 1861)
Cragin Quarry Local Fauna, Meade County, Kansas USA 37.22420 -100.41760 0.3000 Hesperotestudo Hesperotestudo equicomes Butler Spring XI Ranch (KU Locality 7), Meade County, Kansas USA 37.00000 -100.00000 0.3000 Gopherus Gopherus sp.	20	Dry Cave Fauna, Eddy County, New Mexico	NSA	32.40000	-104.50000	0.2900	Hesperotestudo	Hesperotestudo wilsoni	(Milstead, 1956)
Butler Spring XI Ranch (KU Locality 7), Meade County, Kansas USA 37.00000 -100.00000 0.3000 Gopherus Sp.	7	Cragin Quarry Local Fauna, Meade County, Kansas	NSA	37.22420	-100.41760	0.3000	Hesperotestudo	Hesperotestudo equicomes	(Hay, 1917)
	72	Butler Spring XI Ranch (KU Locality 7), Meade County, Kansas	NSA	37.00000	-100.00000	0.3000	Gopherus	Gopherus sp.	Rafinesque, 1832

	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
73	Butler Spring XI Ranch (UM-K2-62), Meade County, Kansas	USA	37.00000	-100.00000	0.3000	Gopherus	Gopherus sp.	Rafinesque, 1832
74	Butler Spring XI Ranch (UM-K3-59), Meade County, Kansas	NSA	37.00000	-100.00000	0.3000	Geochelone	Geochelone sp.	Fitzinger, 1835
75	Butler Spring XI Ranch (UM-K3-59), Meade County, Kansas	USA	37.00000	-100.00000	0.3000	Gopherus	Gopherus sp.	Rafinesque, 1832
9/	Nye Sink Local Fauna, Beaver County, Oklahoma	USA	36.00000	-100.00000	0.3000	Gopherus	Gopherus sp.	Rafinesque, 1832
77	Qesem Cave ~12 km east of Tel Aviv, western slopes Samaria hills	Israel	32.11000	34.98000	0.3100	Testudo	Testudo graeca	Linnaeus, 1758
78	Lunel-Viel, Mas des Caves (Hérault)	France	43.68330	4.13330	0.3200	Eurotestudo	Eurotestudo aff. hermanni	(Gmelin, 1789)
79	Caprine, Rome	Italy	41.90000	12.48330	0.3550	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
80	Palombara Marcellina, Rome	Italy	41.90000	12.48330	0.3550	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
81	Tarquina, Rome	Italy	41.90000	12.48330	0.3550	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
82	Angus Local Fauna (UNSM No-101), Nuckolls County, Nebraska	USA	40.00000	-98.00000	0.4000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
83	Berends Local Biota, Beaver County, Oklahoma	USA	36.00000	-100.00000	0.4000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
84	Kanopolis Local Fauna, Ellsworth County, Kansas	NSA	38.00000	-98.00000	0.4000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
82	Stazione Ferroviaria, Comiso (RG), Sicily	Italy	36.93330	14.60000	0.4130	gen.	gen. Indet.	Gray, 1825
98	Contrada Annunziata, Ragusa (RG), Sicily	Italy	36.91670	14.73330	0.4135	Testudo	Testudo sp.	Linnaeus, 1758
87	Contrada Castellazzo, Vittoria (RG), Sicily	Italy	36.95000	14.53330	0.4135	gen.	gen. Indet.	Gray, 1825
88	Marjan	Croatia	44.87360	15.27690	0.4135	Testudo	Testudo sp.	Linnaeus, 1758
88	Spinagallo Cave, Siracusa, Sicily	Italy	37.06670	15.30000	0.4135	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
06	Abime de la Fage, Correze	France	45.36670	1.88330	0.4135	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
91	Caverna de Gràcia, Güell park, Barcelona	Spain	41.40000	2.15000	0.4500	Testudo	Testudo lunellensis	Almera &Bofill, 1903
95	Caverna de Gràcia, Güell park, Barcelona	Spain	41.40000	2.15000	0.4500	Eurotestudo	Eurotestudo globosa	(Portis, 1890)
93	Caverna de Gràcia, Güell park, Barcelona	Spain	41.40000	2.15000	0.4500	Eurotestudo	Eurotestudo pyrenaica	(Depéret & Connezan, 1890)
94	Riparo di Visogliano (TS)	Italy	45.78000	13.65000	0.4500	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
92	Kénitra, Guilloux quarry, near Rabat	Morocco	34.30000	-6.60000	0.4535	Testudo	Testudo kenitrensis	Gmira, 1993
96	Cova de Gràcia, Park Güell, Barcelona	Spain	41.41360	2.15280	0.4535	Testudo	Testudo lunellensis	Almera &Bofill, 1903
26	Raebia, Atambua area, Timor	Indonesia	-9.10000	124.90000	0.4535	Geochelone	Geochelone sp.	Fitzinger, 1835
86	Alcamo travertini (TP)	Italy	37.98330	12.96670	0.5900	gen.	gen. Indet.	Gray, 1825
66	Grotta Marasà (PA)	Italy	38.00000	13.00000	0.5900	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
100	Saint-Estève-Janson, l'Escale Cave (Bouches du Rhône)	France	43.68330	5.38330	0.6000	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
101	Arkalon Local Fauna, Seward County, Kansas	USA	37.00000	-100.00000	0.6000	Gopherus	Gopherus	Rafinesque, 1832
102	Arkalon Local Fauna, Seward County, Kansas	USA	37.00000	-100.00000	0.6000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
103	Valdemino Cave, 20-24 (Borgio Verezzi, Liguria)	Italy	44.16330	12.45230	0.7000	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
104	Gilliland local fauna, Burnett Ranch, 7 miles W of Vera, Knox County, Texas	USA	33.80000	-99.50000	0.7000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
105	Soave, Zoppega 2 cave, Verona	Italy	45.42000	11.25000	0.7400	Eurotestudo	Eurotestudo aff. hermanni	(Gmelin, 1789)
106	Valle de Fontechevade, Charente	France	45.68070	0.48000	0.8250	Testudo	Testudo graeca	Linnaeus, 1758
107	Monsummano	Italy	43.86670	10.81670	0.8250	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
108	Loreto di Venosa, Potenza	Italy	40.63330	15.80000	0.8835	Eurotestudo	Eurotestudo cf. hermanni	(Gmelin, 1789)
109	Rock-Cavities, Gibraltar Peninsula	England	36.12030	-5.34190	0.9650	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935

			o Send o						,
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author	,
110	Wolo Sege, Flores	Indonesia	-8.69060	121.09970	1.0200	Colossochelys	Colossochelys sp.	Falconer & Cautley, 1844	
=======================================	Cedazo local fauna, Aguascalientes, Mexico	Mexico	21.82401	-102.36874	1.0500	Gopherus	Gopherus pargensis	Mooser, 1980	
112	Cueva de la Victoria-1 (CV-1), Carthagène, Murcia	Spain	37.61670	-0.86670	1.1500	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
113	Cava Dell'Erba Apricena, Foggia	Italy	41.45000	15.56670	1.1700	Eurotestudo	Eurotestudo ex. gr. hermanni	(Gmelin, 1789)	
114	Cava Pirro Apricena, Foggia	Italy	41.45000	15.56670	1.1700	Eurotestudo	Eurotestudo ex. gr. hermanni	(Gmelin, 1789)	
115	Sima del Elefante TE14, Sierra de Atapuerca, Burgos	Spain	42.33000	-3.51000	1.2200	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
116	Sima del Elefante TE11, Sierra de Atapuerca, Burgos	Spain	42.33000	-3.51000	1.2200	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
117	Sima del Elefante TE12, Sierra de Atapuerca, Burgos	Spain	42.33000	-3.51000	1.2200	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
118	Sima del Elefante TE13, Sierra de Atapuerca, Burgos	Spain	42.33000	-3.51000	1.2200	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
119	Sima del Elefante TE9, Sierra de Atapuerca, Burgos	Spain	42.33000	-3.51000	1.2200	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
120	Leisey Shell Pit 1A, Hillsborough County, Florida	USA	27.70000	-82.50000	1.2500	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)	
121	Leisey Shell Pit 1A, Hillsborough County, Florida	USA	27.70000	-82.50000	1.2500	Hesperotestudo	Hesperotestudo mlynarskii	(Auffenberg, 1998)	
122	Leisey Shell Pit 2, Hillsborough County, Florida	USA	27.70000	-82.50000	1.2500	Hesperotestudo	Hesperotestudo mlynarskii	(Auffenberg, 1998)	
123	Leisey Shell Pit 1A, Hillsborough County, Florida	USA	27.70000	-82.50000	1.2500	Gopherus	Gopherus polyphemus	(Daudin, 1803)	
124	Leisey Shell Pit 2, Hillsborough County, Florida	USA	27.70000	-82.50000	1.2500	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)	
125	Leisey Shell Pit 3, Hillsborough County, Florida	USA	27.70000	-82.50000	1.2500	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)	
126	Leisey Shell Pit 3A, Hillsborough County, Florida	USA	27.70000	-82.50000	1.2500	Hesperotestudo	Hesperotestudo crassiscutata	(Leidy, 1889)	
127	Casimba de Jatibonica, Santa Clara Province	Cuba	21.95000	-79.17000	1.3000	Testudo	Testudo cubensis	Leidy, 1868	
128	Tangi Talo, Dhozo Dhalu, Flores	Indonesia	-8.70000	121.10000	1.3000	Geochelone	Geochelone sp.	Fitzinger, 1835	
129	Barranco León 5 (BL-5=Capa D), Dépression de Guadix-Baza, Grenade	Spain	37.50000	-3.00000	1.3000	Testudo	Testudo sp.	Linnaeus, 1758	
130	Chapepote spring at Banos de Ciego Montero, Santa Clara Province	Cuba	22.34000	-80.40000	1.3005	Testudo	Testudo cubensis	Leidy, 1869	
131	Hato Nuevo, Matanzas Province	Cuba	23.05000	-81.50000	1.3015	Testudo	Testudo cubensis	Leidy, 1870	
132	Mesilla Basin Fauna C, Doña Ana County, New Mexico	USA	33.00000	-106.50000	1.3500	Gopherus	Gopherus sp.	Rafinesque, 1832	
133	Mesilla Basin Fauna C, Doña Ana County, New Mexico	USA	33.00000	-106.50000	1.3500	Hesperotestudo	Hesperotestudo sp.	Williams, 1950	
134	Sierra de Quibas, Abanilla, Murcia	Spain	38.30000	-1.05000	1.3500	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
135	Gervasio 5 (FG)	Italy	41.80000	15.40000	1.4000	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
136	El Paso, eastern side of the Franklin Mountains and along the Rio Grande, Texas	USA	31.76000	-106.49000	1.4000	Gopherus	Gopherus ? sp.	Rafinesque, 1832	
137	Tijeras Arroyo, Bernalillo County, New Mexico	USA	35.01670	-106.61670	1.4000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950	
138	Pirro Nord (Cava dell'Erba, Cava Pirro); Apricena, Apulia Italy	Italy	41.80190	15.38470	1.5000	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)	
139	La Union, Doña Ana County, New Mexico	USA	32.00000	-106.70000	1.7000	Gopherus	Gopherus cf. sp.	Rafinesque, 1832	
140	La Union, Doña Ana County, New Mexico	USA	32.00000	-106.70000	1.7000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950	
141	Pearson Mesa near Virden, Hidalgo County, New Mexico	USA	31.50000	-108.50000	1.7000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950	
142	Lakonia	Greece	36.90000	22.60000	1.7200	Testudo	Testudo marginata	Schoepff, 1792	
143	Dmanisi	Georgia	41.32000	44.35000	1.7700	Testudo	Testudo graeca	Linnaeus, 1758	
144	Figline, Upper Valdarno	Italy	43.61670	11.46670	1.8000	Eurotestudo	Eurotestudo globosa	(Portis, 1890)	
145	Il Tasso, S. Giovanni (AR), Upper Valdarno	Italy	43.00000	11.00000	1.8000	Eurotestudo	Eurotestudo globosa	(Portis, 1890)	
146	Le Mignaie, Upper Valdamo	Italy	43.00000	11.00000	1.8000	Eurotestudo	Eurotestudo globosa	(Portis, 1890)	

		and the second s	a Brad and					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
147	Le Ville, Upper Valdarno	Italy	43.48330	12.08330	1.8000	Eurotestudo	Eurotestudo globosa	(Portis, 1890)
148	L'Inferno, Upper Valdarno	Italy	43.00000	11.00000	1.8000	Eurotestudo	Eurotestudo globosa	(Portis, 1890)
149	Montecarlo, Upper Valdarno	Italy	42.86670	10.68330	1.8000	Eurotestudo	Eurotestudo globosa	(Portis, 1890)
150	Kisláng, Fejer	Hungary	47.00000	18.40000	1.9000	Testudo	Testudo sp.	Linnaeus, 1758
151	Montoussé 5, Hautes Pyrenees	France	43.06670	0.41670	1.9500	Eurotestudo	Eurotestudo cf. hermanni	(Gmelin, 1789)
152	Monte Tuttavista VII mustelide, Sardinia	Italy	40.38330	9.70000	2.0000	Eurotestudo	Eurotestudo cf. hermanni	(Gmelin, 1789)
153	White Rock local fauna, Republic County, Kansas	USA	39.90000	-97.70000	2.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
154	Lesbos Island, F-Site	Greece	39.50000	26.50000	2.0000	Titanochelon	Titanochelon aff. schafferi	(Szalai, 1931)
155	Big Springs Gravel Pit (UNSM Ap-103), Antelope County, Nebraska	USA	42.40000	-98.20000	2.0000	Hesperotestudo	Hesperotestudo oelrichi	Holman, 1972
156	Caballo Local Fauna, Palomas Basin, Sierra County, New Mexico	USA	32.97000	-107.31000	2.0000	Gopherus	Gopherus sp.	Rafinesque, 1832
157	Caballo Local Fauna, Palomas Basin, Sierra County, New Mexico	USA	32.97000	-107.31000	2.0000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
158	Capo Mannu near San Vero Milis, base of D4 dune, Sardinia	Italy	40.04090	8.38450	2.1970	Testudo	Testudo pecorinii	Delfino, 2008 (p.123-126, figs.5-6)
159	Kelatchay (Dushak)	Turkmenistan	37.80000	58.50000	2.2000	Agrionemys	Agrionemys horsfieldii	(Gray, 1844)
160	Varshets 6 km NNE, Michajlovrad Province	Bulgaria	43.21670	23.28330	2.2500	Testudo	Testudo sp.	Linnaeus, 1758
161	MacAsphalt Shell Pit, Sarasota County, Florida	USA	27.40000	-82.50000	2.2500	Geochelone	Geochelone sp.	Fitzinger, 1835
162	St. Petersburg Times Site, Pinellas County, Florida	USA	27.80000	-82.70000	2.2500	Geochelone	Geochelone sp.	Fitzinger, 1835
163	Ahl al Oughlam (near Casablanca)	Morocco	33.59310	-7.61640	2.5000	Testudo	Testudo aff. kenitrensis	Gmira, 1993
164	Ahl al Oughlam (near Casablanca)	Morocco	33.59310	-7.61640	2.5000	Testudo	Testudo sp.	Linnaeus, 1758
165	Ahl al Oughlam (near Casablanca)	Morocco	33.59310	-7.61640	2.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
166	Cova de Ca Na Reia, Eivissa, Ibiza	Spain	38.90910	1.42670	2.6000	Titanochelon	Titanochelon cf. gymneisucs	(Bate, 1914)
167	Es Pujol d'es Fum, Formentera	Spain	38.72350	1.45520	2.6000	Titanochelon	Titanochelon cf. gymnesicus	(Bate, 1914)
168	Kryshanovka 1	Ukraine	46.56000	30.79170	2.6000	Testudo	Testudo sp.	Linnaeus, 1758
169	Milia, Grevena, W Macedonia	Greece	40.17910	21.47560	2.6000	Testudo	Testudo brevitesta	Vlachos & Tsoukala, 2016
170	Milia, Grevena, W Macedonia	Greece	40.17910	21.47560	2.6000	Titanochelon	Titanochelon sp.	Pérez-Garcia & Vlachos, 2014
171	North Cita Canyon (Middle Stratum), Randall County, Texas	USA	34.90000	-101.60000	2.7000	Gopherus	Gopherus canyonensis	(Johnston, 1937)
172	Novaya Etulia 2	Moldova	45.52000	28.44000	2.8000	Testudo	Testudo cernovi	Khozatskiy, 1948
173	Palomas Creek Fauna, Palomas Basin, Sierra County, New Mexico	USA	33.05000	-107.30000	2.8000	Gopherus	Gopherus sp.	Rafinesque, 1832
174	Tha Chang area, Chaloem Pra Kiat district, Nakhon Ratchasima Province	Thailand	14.98740	102.33520	3.0000	Aldabrachelys	Aldabrachelys ? sp.	Loveridge & Williams, 1975
175	Sand Draw local fauna, Brown County, Nebraska	USA	42.70000	-100.00000	3.0000	Hesperotestudo	Hesperotestudo oelrichi	Holman, 1972
176	Sawrock Canyon local fauna, Seward County, Kansas	USA	37.00000	-100.00000	3.0000	Hesperotestudo	Hesperotestudo riggsi	(Hibbard, 1944)
177	Sand Draw local fauna, Brown County, Nebraska	USA	42.70000	-100.00000	3.0000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
178	Sand Draw local fauna, Brown County, Nebraska	USA	42.70000	-100.00000	3.0000	Caudochelys	Caudochelys sp.	Auffenberg, 1963
179	UCMP V6327, La Porteria, Kettleman Hills, Kings County, California	USA	35.90000	-119.90000	3.1000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
180	Cuchillo Negro Creek Local Fauna, Engle Basin, Sierra County, New Mexico	USA	33.19500	-107.25700	3.1000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
181	Elephant Butte Lake Fauna, Engle Basin, Sierra County, New Mexico	USA	33.20000	-107.20000	3.1000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
182	Las Higueruelas, Alcolea de Calatrava, Ciudad Real	Spain	38.98830	-4.08570	3.2000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
183	Las Higueruelas, Alcolea de Calatrava, Ciudad Real	Spain	38.98830	-4.08570	3.2000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)

		10.0	aged and					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
184	Las Tunas, Baja California Sur	Mexico	23.18330	-109.18330	3.2500	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
185	Laetoli	Tanzania	-2.99620	35.35240	3.2550	Geochelone	Geochelone laetoliensis	Meylan & Auffenberg, 1987
186	Laetoli	Tanzania	-2.99620	35.35240	3.2550	Stigmochelys	Stigmochelys brachygularis	(Meylan & Auffenberg, 1987)
187	Dikika (DIK-1)	Ethiopia	11.10000	40.60000	3.3300	Centrochelys	Centrochelys sp.	Gray, 1872
188	Cita Canyon, UCMP V-3721, Harrell Ranch, Randall County, Texas	USA	34.90000	-101.60000	3.3500	Hesperotestudo	Hesperotestudo johnstoni	Auffenberg, 1962
189	Cita Canyon, UCMP V-3721, Harrell Ranch, Randall County, Texas	USA	34.90000	-101.60000	3.3500	Gopherus	Gopherus canyonensis	(Johnston, 1937)
190	Liventsovka horizon 5, near Rostov-on-Don	Russia	47.24000	39.71000	3.7000	Testudo	Testudo sp.	Linnaeus, 1758
191	Serrat-d'en-Vacquer near Perpignan, Pyrénées-Orientales	France	42.88000	2.88000	3.9000	Titanochelon	Titanochelon perpiniana	(Depéret, 1885)
192	Megalo Emvolon 1 (MEV), 20 km SW Thessaloniki	Greece	40.50170	22.81770	3.9000	Testudo	Testudo cf. graeca	Linnaeus, 1758
193	Megalo Emvolon 1 (MEV), 20 km SW Thessaloniki	Greece	40.50170	22.81770	3.9000	Testudo	Testudo sp.	Linnaeus, 1758
194	W??e 1	Poland	52.35000	22.15000	3.9000	Testudo	Testudo sp.	Linnaeus, 1758
195	W??e 1	Poland	52.35000	22.15000	3.9000	Eurotestudo	Eurotestudo globosa	(Portis, 1890)
196	W??e 1	Poland	52.35000	22.15000	3.9000	Eurotestudo	Eurotestudo hermanni	(Gmelin, 1789)
197	Perpignan et sa région, Pyrénées-Orientales	France	42.68330	2.88330	3.9000	Eurotestudo	Eurotestudo pyrenaica	(Depéret & Donnezan, 1890)
198	Perpignan et sa région, Pyrénées-Orientales	France	42.68330	2.88330	3.9000	Titanochelon	Titanochelon perpiniana	(Depéret, 1885)
199	Serrat-d'en-Vacquer near Perpignan, Pyrénées-Orientales	France	42.88000	2.88000	3.9000	Eurotestudo	Eurotestudo pyrenaica	(Depéret & Donnezan, 1890)
200	Musaid right bank of Big Salcha River, Vulkaneshty Region	Moldova	45.82060	28.50500	3.9000	Testudo	Testudo sp.	Linnaeus, 1758
201	Novo-Savitzkaya	Moldova	46.80610	29.86860	3.9000	Testudo	Testudo cernovi	Khozatskiy, 1948
202	Ptolemais 6A = Notio 1 (NO 1)	Greece	40.50000	21.75000	3.9400	gen.	gen. indet.	Gray, 1825
203	Ptolemais 6B = Notio 1	Greece	40.50000	21.75000	3.9400	gen.	gen. indet.	Gray, 1825
204	Ptolemais 6C = Notio 1 (NO 1)	Greece	40.50000	21.75000	3.9400	gen.	gen. indet.	Gray, 1825
202	Epanomi (EPN I), western Chalkidiki Peninsula, Thessaloniki area	Greece	40.40460	22.89800	3.9500	Titanochelon	Titanochelon bacharidisi	(Vlachos, Tsoukala & Corsini, 2014)
206	Epanomi (EPN II), western Chalkidiki Peninsula, Thessaloniki area	Greece	40.40460	22.89800	3.9500	Titanochelon	Titanochelon bacharidisi	(Vlachos, Tsoukala & Corsini, 2014)
207	Altan-Teli main fossiliferous bed (Dzereg valley)	Mongolia	47.10000	93.16670	3.9500	Ergilemys	Ergilemys oskarkuhni	M?ynarski(, 1968)
208	Nea Kallikratia, western Chalkidiki Peninsula, Thessaloniki area	Greece	40.31460	23.04620	3.9500	Titanochelon	Titanochelon bacharidisi	(Vlachos, Tsoukala & Corsini, 2014)
209	Nea Michaniona, western Chalkidiki Peninsula, Thessaloniki area	Greece	40.47310	22.83850	3.9500	Titanochelon	Titanochelon bacharidisi	(Vlachos, Tsoukala & Corsini, 2014)
210	Farola Monte Hermoso, 12 km SW Pehuen Có Beach, Buenos Aires Province	Argentina	-39.00830	-61.50280	3.9650	Testudo	Chelonoidis australis	Linnaeus, 1758 (p. 198)
211	Çatta	Turkey	40.25000	32.55000	4.0000	Testudo	Testudo sp.	Linnaeus, 1758
212	El Arquillo 3 (ARQ3)	Spain	40.40000	-1.10000	4.0300	Geochelone	Geochelone sp.	Fitzinger, 1835
213	Kanapoi	Kenya	3.54000	35.87000	4.0700	Geochelone	Geochelone crassa	(Andrews, 1914)
214	Kanapoi	Kenya	3.54000	35.87000	4.0700	Geochelone	Geochelone cf. sp.	Fitzinger, 1835
215	Kanapoi	Kenya	3.54000	35.87000	4.0700	Stigmochelys	Stigmochelys sp.	Gray, 1873
216	Aramis, ARA-VP-6/500, Middle Awash Valley	Ethiopia	9.00000	40.16670	4.4000	Geochelone	Geochelone sp.	Fitzinger, 1835
217	Cala Es Pous near Ciutadella, Minorca	Spain	40.05000	3.82600	4.4500	Titanochelon	Titanochelon gymneisucs	(Bate, 1914)
218	Punta Nati near Ciutadella, Minorca	Spain	40.05060	3.82570	4.4500	Titanochelon	Titanochelon gymnesicus	(Bate, 1914)
219	Jambol, Tenovo or General Insovo sandstone quarries	Bulgaria	42.48000	26.51000	4.4500	Geochelone	Geochelone sp.	Fitzinger, 1835
220	Montpellier, Hérault	France	42.60840	3.87930	4.4500	Testudo	Testudo sp.	Linnaeus, 1758

	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
221	Novopetrovka	Ukraine	47.04170	29.86500	4.4500	Testudo	Testudo sp.	Linnaeus, 1758
222	Lee Creek Mine, Yorktown Sample, Beaufort County, North Carolina	USA	35.40000	-76.80000	4.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
223	Rexroad local fauna (Fox Canyon locality 3), Meade County, Kansas	NSA	37.20000	-100.30000	4.5500	Caudochelys	Caudochelys rexroadensis	(Oelrich, 1952)
224	Rexroad local fauna (Fox Canyon locality 3), Meade County, Kansas	USA	37.20000	-100.30000	4.5500	Hesperotestudo	Hesperotestudo riggsi	(Hibbard, 1944)
225	Tchelopetchene 1 (sand facies)	Bulgaria	42.73330	23.48330	4.6500	Testudo	Testudo sp.	Linnaus, 1758
226	Nikolskoe	Moldova	46.87550	29.86140	4.7500	Testudo	Testudo sp.	Linnaeus, 1758
227	Yepómera, Chihuahua	Mexico	28.80000	-108.00000	4.7500	Gopherus	Gopherus cf. sp.	Rafinesque, 1832
228	Santee, Knox County, Nebraska	USA	42.00000	-97.00000	5.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
229	Devil's Nest Airstrip, Knox County, Nebraska	NSA	42.00000	-97.00000	5.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
230	Devil's Nest Airstrip, Knox County, Nebraska	NSA	42.00000	-97.00000	5.0000	Hesperotestudo	Hesperotestudo aff. sp.	Williams, 1950
231	Santee, Knox County, Nebraska	NSA	42.00000	-97.00000	5.0000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
232	Devil's Nest Airstrip, Knox County, Nebraska	NSA	42.00000	-97.00000	5.0000	Caudochelys	Caudochelys aff. rexroadensis	(Oelrich, 1952)
233	Kuchurgan	Ukraine	46.75000	29.98330	5.0500	Testudo	Testudo cernovi	Khozatskiy, 1948
234	Kuchurgan	Ukraine	46.75000	29.98330	5.0500	Titanochelon	Titanochelon ex. gr. perpiniana	(Depéret, 1885)
235	Osztramos 1C	Hungary	48.52500	20.75830	5.1650	Testudo	Testudo ? sp.	Linnaeus, 1758
236	Polenzo section along Tanaro River, Verduno, Piedmont Italy	Italy	44.68580	7.93140	5.4400	Testudo	Testudo sp.	Linnaeus, 1758
237	UCMP V71137, Turlock Lake 10, Stanislaus County, California	NSA	37.60000	-120.60000	5.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
238	UCMP V81248, Turlock Lake 11, Stanislaus County, California	NSA	37.60000	-120.60000	5.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
239	Allatini, eastern part of Thessaloniki, western Chalkidiki peninsula	Greece	40.58990	22.97160	5.5000	Testudo	Testudo graeca	Linnaeus, 1758
240	Pylea, eastern part of Thessaloniki, western Chalkidiki peninsula	Greece	40.59940	22.98760	5.5000	Testudo	Testudo graeca	Linnaeus, 1758
241	As Sahabi	Libya	30.16670	20.83330	5.5000	Centrochelys	Centrochelys aff. sulcata	(Miller, 1779)
242	UCMP V65711, Turlock Lake General, Stanislaus County, California	NSA	37.60000	-120.60000	5.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
243	UCMP V6878, Turlock Lake, Stanislaus County, California	NSA	37.60000	-120.60000	5.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
244	UCMP V71138, Dallas-Warner Reservoir 1, Stanislaus County, California	USA	37.60000	-120.60000	5.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
245	UCMP V90007, Turlock Lake 13, Stanislaus County, California	NSA	37.60000	-120.60000	5.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
246	UCMP V90008, Turlock Lake 14, Stanislaus County, California	NSA	37.60000	-120.60000	5.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
247	Withlacoochee River Site 4A, Marion County, Florida	NSA	28.80000	-82.30000	5.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
248	Chiquimil, Catamarca	Argentina	-28.00000	-66.00000	5.5000	Geochelone	Chelonoidis gallardoi	Rovereto, 1914 (p. 115)
249	Brisghella Cava Monticino	Italy	44.21670	11.76670	5.6650	Testudo	Testudo sp.	Linnaeus, 1758
250	Polgárdi 2	Hungary	47.05000	18.30000	5.7500	Testudo	Testudo sp.	Linnaeus, 1758
251	Venta del Moro (Cabriel Basin)	Spain	39.48330	-1.35000	5.8000	gen.	gen. indet.	Gray, 1825
252	Torrente Melacce, Cinigiano (GR)	Italy	42.88330	11.40000	5.8150	Testudo	Testudo sp.	Linnaeus, 1758
253	Gretoni, Stazione Monte Amiata (SI)	Italy	42.96670	11.55000	5.8150	Testudo	Testudo sp.	Linnaeus, 1758
254	Shkodova Gora	Ukraine	46.46670	30.73330	6.0250	Testudo	Testudo sp.	Linnaeus, 1758
255	Santa-Vittoria d'Alba	Italy	44.70000	7.93330	6.1650	Testudo	Testudo sp.	Linnaeus, 1758
256	Stanianzi	Bulgaria	43.06250	22.92260	6.1650	Testudo	Testudo sp.	Linnaeus, 1758
257	Samos 1	Greece	37.80000	26.90000	6.2500	Titanochelon	Titanochelon schafferi	(Szalai, 1931)

		Table S14 – continued from previous page	ous page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
258	Tudorovo	Moldova	46.43500	30.04250	6.3000	Protestudo	Protestudo bessarabica	(Riabinin, 1918)
259	Kuyalnik	Ukraine	46.56000	30.74000	6.3000	Testudo	Testudo sp.	Linnaeus, 1758
260	Lukeino	Kenya	0.80000	35.90000	6.3000	gen.	gen. indet.	Gray, 1825
261	Autovía A-30, Murcia	Spain	37.99100	-1.14570	6.3000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
262	Casa Castillo near Jumilla, Murcia	Spain	38.46470	-1.42310	6.3000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
263	Megalo Rema near Paleomilos	Greece	38.45000	22.02000	6.5000	Testudo	Testudo marmorum	Gaudry, 1862
264	Lothagam 1	Kenya	2.88300	36.06600	6.5000	Geochelone	Geochelone cf. sp.	Fitzinger, 1835
265	Lothagam 2	Kenya	2.88300	36.06600	6.5000	Geochelone	Geochelone cf. sp.	Fitzinger, 1835
566	Barranco del Cigarrón (B-Cg1), S El Palmar, Murcia	Spain	37.91510	-1.17080	6.5000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
267	Hamra	United Arabian Emirates	23.10000	52.52500	7.0000	Centrochelys	Centrochelys aff. sulcata	(Miller, 1779)
268	Jebel Dhannah	United Arabian Emirates	24.15000	52.60000	7.0000	Centrochelys	Centrochelys aff. sulcata	(Miller, 1779)
569	Kihal	United Arabian Emirates	24.12000	52.85000	7.0000	Centrochelys	Centrochelys aff. sulcata	(Miller, 1779)
270	Shuwaihat	United Arabian Emirates	24.10000	52.44000	7.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
271	Azmaka quarry 2.5 km NNE Chirpan	Bulgaria	42.23710	25.33580	7.0000	Testudo	Testudo marmorum	Gaudry, 1862
272	Toros-Menalla, Djurab desert (TM 266)	Chad	16.25000	17.48750	7.0400	gen.	gen. indet.	Gray, 1826
273	Chimishlia	Moldova	46.52000	28.78420	7.0400	Protestudo	Protestudo bessarabica	(Riabinin, 1918)
274	Taraklia	Moldova	46.22000	28.22670	7.0400	Protestudo	Protestudo bessarabica	(Riabinin, 1918)
275	Tardosbánya 3	Hungary	47.66670	18.45000	7.2500	Testudo	Testudo sp.	Linnaeus, 1758
276	Morskaya 2 locality of the Sea of Azov region	Russia	47.28330	39.10000	7.2500	gen.	gen. Indet.	Gray, 1825
277	Novoelizavetovka	Ukraine	47.15000	30.40550	7.3300	Protestudo	Protestudo bessarabica	(Riabinin, 1918)
278	Fosso della Fittaia 2013, Baccinello-Cinigiano Basin, Tuscany	Italy	42.68330	11.33330	7.3500	Testudo	Testudo sp.	Linnaeus, 1758
279	Chobruchi	Moldova	46.60030	29.70830	7.3650	Protestudo	Protestudo bessarabica	(Riabinin, 1918)
280	Cliffs in the Paraná eastern riverside near Paraná, Entre Ríos	Argentina	-31.70000	-60.40000	7.5000	gen.		Gray, 1825 (p. 210)
281	Montagne du Lubéron à Cucuron, Vaucluse et Alpes-de-Haute-Provence	France	43.79500	5.45000	7.5000	Testudo	Testudo sp.	Linnaeus, 1758
282	Montagne du Lubéron à Cucuron, Vaucluse et Alpes-de-Haute-Provence	France	43.79500	5.45000	7.5000	Titanochelon	Titanochelon leberonensis	(Depéret, 1890)
283	Kalimantsi 2-4	Bulgaria	41.45750	23.47390	7.6000	Testudo	Testudo cf. antiqua	Bronn, 1831
284	Kalimantsi 2-4	Bulgaria	41.45750	23.47390	7.6000	Testudo	Testudo sp.	Linnaeus, 1758
285	Buis Ranch Local Fauna, Beaver County, Oklahoma	USA	36.80000	-100.50000	7.6000	Hesperotestudo	Hesperotestudo riggsi	(Hibbard, 1944)
286	Salinas Grandes de Hidalgo, Atreucó, La Pampa	Argentina	-37.20000	-63.60000	7.9000	Chelonoidis		Fitzinger, 1835
287	Bajo Giuliani, La Pampa	Argentina	-36.68100	-64.37500	7.9000	Chelonoidis	Chelonoidis sp.	Fitzinger, 1835 (p. 112)
288	Quehué, La Pampa	Argentina	-37.12640	-64.50890	7.9000	Chelonoidis		Fitzinger, 1835
289	Belka	Ukraine	46.89400	30.42000	7.9000	Protestudo	Protestudo bessarabica	(Riabinin, 1918)
290	Rooilepel D. laini level	Namibia	-27.00000	15.50000	8.0000	Namibchersus	Namibchersus sp.	Lapparent de Broin, 2003
291	Aubignas 1+2, Ardèche	France	44.58330	4.61670	8.0250	Testudo	Testudo amberiacensis	Deperet, 1894
292	Yurievka	Ukraine	46.94560	36.27500	8.0750	gen.	gen. indet.	Gray, 1825
293	Novoukrainka 1 (= Budenovka)	Ukraine	46.81500	30.28300	8.1500	Protestudo	Protestudo bessarabica	(Riabinin, 1918)
294	Grebeniki 1	Ukraine	46.89200	29.82500	8.1500	Protestudo	Protestudo bessarabica	(Riabinin, 1918)

	al a	Table S14 – continued from previous page	us page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
295	Csákvár, Esterh?y Cave, Fejér Province	Hungary	47.40000	18.45000	8.2000	Protestudo	Protestudo csakvarensis	(Szalai, 1934)
596	Prottes	Austria	48.38960	16.74540	8.3000	Hadrianus	Hadrianus sp.	Cope, 1872
297	Prottes	Austria	48.38960	16.74540	8.3000	Testudo	Testudo cf. promarginata	Reinach, 1900
298	Prottes	Austria	48.38960	16.74540	8.3000	Testudo	Testudo sp.	Linnaeus, 1758
299	Crevillente 2	Spain	38.27000	-0.80000	8.3000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
300	Crevillente 2	Spain	38.27000	-0.80000	8.3000	Testudo	Testudo catalaunica	(Bataller, 1926)
301	Prottes	Austria	48.38960	16.74540	8.3000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
302	Crevillente 2	Spain	38.27000	-0.80000	8.3000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
303	Dorn-Dürkheim, Giloth Quarry, about 25 km S Mainz	Germany	49.76860	8.26970	8.3000	Testudo	Testudo sp.	Linnaeus, 1758
304	Altan-Teli Oshi horizon (Dzereg valley)	Mongolia	47.10000	93.16670	8.3150	Ergilemys	Ergilemys devjaktini	(Khozatskiy & Narmandakh, 1975)
305	Kainary	Moldova	46.67890	29.04610	8.4000	Protestudo	Protestudo sp.	(Chkhikvadze, 1970)
306	San Nicolas, UCMP locality V4536	Colombia	3.20000	-75.20000	8.5000	Geochelone	Geochelone hesterna	Auffenberg, 1971
307	Cava Monticino, near Brisigella, Emilia-Romana	Italy	44.21670	11.76670	8.5000	Testudo	Testudo sp.	Linnaeus, 1758
308	Ambérieu-en-Bugey, Ain	France	45.95000	5.35000	8.5000	Testudo	Testudo amberiacensis	Deperet, 1894
309	Saint-Bauzile, Ardèche	France	44.68050	4.68710	8.5000	Testudo	Testudo sp.	Linnaeus, 1758
310	Dove Spring Fauna, Mojave Desert, Kern County, California	USA	35.30000	-118.50000	8.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
311	Dove Spring Fauna, Mojave Desert, Kern County, California	USA	35.30000	-118.50000	8.5000	Gopherus	Gopherus? sp.	Rafinesque, 1832
312	Kohfidisch	Austria	47.16670	16.35000	8.7500	gen.		Gray, 1825
313	Kohfidisch	Austria	47.16670	16.35000	8.7500	Testudo	Testudo burgenlandica	Bachmayer & Mlynarski, 1983
314	Kohfidisch	Austria	47.16670	16.35000	8.7500	Protestudo	Protestudo csakvarensis	Szalai, 1934)
315	El Hatillo, 1.5 km north of, Falcón State	Venezuela	11.22000	-70.23000	8.8000	gen.	gen. indet.	Gray, 1825
316	Montredon, Aude	France	43.23600	2.38820	8.9500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
317	Udabno	Georgia	41.49220	45.38670	8.9500	Centrochelys	Centrochelys sp.	Gray, 1872
318	Krivoj Rog	Ukraine	47.91670	33.35000	8.9500	Testudo	Testudo ? sp.	Linnaeus, 1758
319	Love Bone Bed along State Road 241 near Archer, Alachua County, Florida	USA	29.60000	-82.50000	9.2500	Geochelone	Geochelone sp.	Fitzinger, 1835
320	Patos (= Acre 6, LACM Locality 4611), Assisbrasil County, Acre	Brazil	-10.90000	-69.90000	9.4300	Chelonoidis	Chelonoidis sp.	Fitzinger, 1835
321	UCMP V-3952, Ingram Creek site 8, Stanislaus County, California	USA	37.60000	-120.80000	9.5000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
322	Kamenica nad Hronom	Slovakia	47.83150	18.72380	9.5000	Testudo	Testudo aff. sp.	Linnaeus, 1758
323	Poc?e?ti right side Ikel River valley	Moldova	47.24500	28.67960	9.5000	Protestudo	Protestudo sp.	Chkhikvadze, 1970
324	Cerro de los Batallones, Madrid	Spain	40.17940	-3.72460	9.5000	Paleotestudo	Paleotestudo sp.	Lapparent de Broin, 2000
325	Cerro de los Batallones, Madrid	Spain	40.17940	-3.72460	9.5000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
326	Varnitza	Moldova	46.86410	29.46920	9.6000	Protestudo	Protestudo moldavica	Chkhikvadze & Lungu, 1979
327	Borský Svätý Jur	Slovakia	48.24000	17.20000	9.6500	Protestudo	Protestudo csakvarensis	(Szalai, 1934)
328	Bushor 1	Moldova	46.92250	28.26830	9.7000	Protestudo	Protestudo csakvarensis	(Szalai, 1934)
329	Kalfa	Moldova	46.90420	29.37530	9.7000	Protestudo	Protestudo csakvarensis	(Szalai, 1934)
330	Lapushna	Moldova	46.88420	28.41190	9.8000	Testudo	Testudo sp.	Linnaeus, 1758
331	Götzendorf	Austria	48.01670	16.58330	9.8600	Testudo	Testudo sp.	Linnaeus, 1758

	Tabk	Table S14 – continued from previous page	ous page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
332	Jebel Semama	Tunisia	35.33330	8.83330	10.0000	Testudo	Testudo semenensis	Bergounioux, 1945-1955
333	Sabadell	Spain	41.55000	2.10000	10.0000	Paleotestudo	Paleotestudo? antiqua	(Bronn, 1831)
334	Saint-Fons, Rhône	France	45.70910	4.85320	10.0000	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
335	WaKeeney Local Fauna (UM-K6-59 on the Lowell Hillman Ranch), Trego County, Kansas	USA	39.10000	-99.80000	10.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
336	WaKeeney Local Fauna (UM-K6-59 on the Lowell Hillman Ranch), Trego County, Kansas	USA	39.10000	-99.80000	10.0000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
337	Ricardo Fauna, Mojave Desert, Kern County, California	USA	35.30000	-118.50000	10.1000	Geochelone	Geochelone sp.	Fitzinger, 1835
338	Ricardo Fauna, Mojave Desert, Kern County, California	USA	35.30000	-118.50000	10.1000	Gopherus	Gopherus ? sp.	Rafinesque, 1832
339	Rudabanya (grey green marl 5C)	Hungary	48.38330	20.63330	10.1000	Testudo	Testudo sp.	Linnaeus, 1758
340	Rudabánya, Borsod-Abaúj-Zemplén Province (all)	Hungary	48.38330	20.63330	10.1000	Testudo	Testudo sp.	Linnaeus, 1758
341	El Lugarejo (Arévalo), Ávilla, Castilla	Spain	41.05600	-4.71690	10.2500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
342	Autovía A6, Arévola, Ávila	Spain	41.05270	-4.70010	10.2500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
343	Tataru?-Brusturi	Romania	47.15000	22.25000	10.2500	Testudo	Testudo sp.	Linnaeus, 1758
344	Arevalillo River (Arévola), Ávila	Spain	40.59350	-5.37790	10.2500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
345	Arévalo, Ávila, Castilla	Spain	41.06670	-4.72500	10.2500	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1917)
346	Höwenegg	Germany	47.90000	8.75000	10.3000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1953
347	Höwenegg	Germany	47.90000	8.75000	10.3000	Testudo	Testudo sp.	Linnaeus, 1758
348	Autovía Orbital de Barcelona B-40 (B40OV/S4K), Vallés-Penedés basin, Cataluña	Spain	41.53310	1.94260	10.3000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
349	Autovía Orbital de Barcelona B-40 (B40OV/S4K), Vallés-Penedés basin, Cataluña	Spain	41.53310	1.94260	10.3000	Testudo	Testudo sp.	Linnaeus, 1758
350	Can Filuà, Santa Perpétua, Vallès Occidental, Barcelona	Spain	41.53330	2.18190	10.3000	Cheirogaster	Cheirogaster richardi	(Bergounioux, 1938)
351	Can Gavarra, Polinyá, Vallès Occidental, Barcelona	Spain	41.55710	2.15780	10.3000	Cheirogaster	Cheirogaster richardi	(Bergounioux, 1938)
352	Can Vinyalets, Barcelona	Spain	41.53320	2.18190	10.3000	Cheirogaster	Cheirogaster richardi	(Bergounioux, 1938)
353	Djebel Krechem el Artsouma	Tunisia	35.50000	9.00000	10.3050	Geochelone	Geochelone sp.	Fitzinger, 1835
354	Vösendorf-Brunn, near Wien	Austria	48.20000	16.36000	10.3500	Testudo	Testudo sp.	Linnaeus, 1758
355	Hostalets de Piérola, Barcelone province, Cataluña, Vallés-Penedés basin	Spain	41.53490	1.76850	10.4000	Cheirogaster	Cheirogaster richardi	(Bergounioux, 1938)
356	Valles de Fuentidueña, Segovia Province	Spain	41.41670	-4.00000	10.4000	Cheirogaster	Cheirgaster sp.	Bergounioux, 1935
357	Valles de Fuentidueña, Segovia Province	Spain	41.41670	-4.00000	10.4000	Testudo	Testudo aff. catalaunica	(Bataller, 1926)
358	Valles de Fuentidueña, Segovia Province	Spain	41.41670	-4.00000	10.4000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
359	Benavente, Zamora	Spain	42.00340	-5.67840	10.5500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
360	Estació Depuradora d'Aigües Residuals Sabadell Riu-Ripoll, Cataluña	Spain	41.55000	2.10000	10.5500	Cheirogaster	Cheirogaster richardi	(Bergounioux, 1938)
361	Hostalets de Piérola Superior, Barcelone province, Cataluña, Vallés-Penedés basin	Spain	41.53490	1.76850	10.5500	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
362	Küçükçekmece	Turkey	40.98330	28.76670	10.6500	Testudo	Testudo cf. sp.	Linnaeus, 1758
363	Ecoparc de Can Mata (els Hostalets de Pierola), Vallés-Penedés basin, Cataluña	Spain	41.53280	1.80320	10.7000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
364	Holzmannsdorfberg bei St. Marein	Austria	47.01670	15.66670	10.7500	Testudo	Testudo sp.	Linnaeus, 1758
365	McGehee Farm near Newberry, Alachua County, Florida	USA	29.70000	-82.60000	10.9500	Hesperotestudo	Hesperotestudo alleni	(Auffenbgerg, 1996)
366	Karingarab D. wardi level	Namibia	-27.00000	15.50000	11.0000	Namibchersus	Namibchersus sp.	Lapparent de Broin, 2003
367	Rooilepel D. wardi level	Namibia	-27.00000	15.50000	11.0000	Namibchersus	Namibchersus sp.	Lapparent de Broin, 2003
368	Hammerschmiede 3	Germany	47.92730	10.59150	11.1000	Testudo	Testudo sp.	Linnaeus, 1758

			age page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
369	Atzelsdorf, 35 km NE Vienna, Lower Austria	Austria	48.51030	16.54420	11.1500	Testudo	Testudo cf. burgenlandica	Bachmayer & Mlynarski (1983)
370	Hammerschmiede 1	Germany	47.92730	10.59150	11.1800	Testudo	Testudo sp.	Linnaeus, 1758
371	Petersbuch 14	Germany	48.97790	11.19090	11.3000	gen.	gen. indet	Gray, 1825
372	Sant Quirze de Terrassa/de Galliners (del Vallès), Barcelona	Spain	41.38330	2.18330	11.3000	Paleotestudo	Paleotestudo antiqua	(Bronn, 1831)
373	Wessington Springs local fauna, Jerauld County, South Dakota	USA	44.10000	-98.60000	11.5000	gen.	gen. indet.	Gray. 1825
374	Gritsev (Khmelnitsk area, Shepetovski district)	Ukraine	49.97500	27.16000	11.5270	Protestudo	Protestudo sp.	Chkhikvadze, 1970
375	Hammerschmiede 5 (HAM 5)	Germany	47.92730	10.59150	11.6200	Testudo	Testudo sp.	Linnaeus, 1758
376	Nombrevilla 2. NOM 2	Spain	41.07000	-1.21000	11.6900	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
377	Iron Canyon Fauna, Mojave Desert, Kern County, California	USA	35.30000	-118.50000	11.8500	Gopherus	Gopherus ? sp.	Rafinesque, 1832
378	Can Mata (els Hostalets de Pierola), Vallés-Penedés basin, Cataluña	Spain	41.51920	1.72830	11.9000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
379	North of Gypsum Plate Pan D. wardi level	Namibia	-27.00000	15.50000	12.0000	Namibchersus	Namibchersus sp.	Lapparent de Broin, 2003
380	Gratkorn, clay pit St. Stefan, Styria	Austria	47.13720	15.34890	12.1000	Testudo	Testudo kalksburgensis	Toula, 1896
381	Gratkorn, clay pit St. Stefan, Styria	Austria	47.13720	15.34890	12.1000	Testudo	Testudo cf. steinheimensis	Staesche, 1931
382	Toril 3A. TOR 3A, near Daroca, Zaragoza province	Spain	41.13330	-1.38330	12.1300	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
383	Toril 3B. TOR 3B, near Daroca, Zaragoza province	Spain	41.13330	-1.38330	12.1400	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
384	Sofca (125) - F 434	Turkey	39.16670	30.18330	12.1500	gen.	gen. indet.	Gray, 1825
385	La Ciesma 1, Aragón	Spain	41.86000	-1.80000	12.2000	gen.	gen. indet.	Gray, 1825
386	La Ciesma 1, Aragón	Spain	41.86000	-1.80000	12.2000	Titanochelon	Titanochelon cf. bolivari	(Hernández Pacheco, 1971)
387	El Buste, Aragón	Spain	41.88600	-1.60290	12.4000	Paleotestudo	Paleotestudo cf. sp.	Lapparent de Broin, 2000
388	Cerro del Otero, Palencia	Spain	42.01010	-4.52870	12.5000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
389	Fuensaldaña, Valladoid	Spain	41.70800	-4.76420	12.5000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
390	Illescas, Toledo	Spain	40.12650	-3.84890	12.5000	Paleotestudo	Paleotestudo antiqua	(Bronn, 1831)
391	Illescas, Toledo	Spain	40.12650	-3.84890	12.5000	Titanochelon	Titanochelon cf. bolivari	(Hernández Pacheco, 1971)
392	La Cistérniga, Valladolid	Spain	41.59730	-4.65490	12.5000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
393	Bois de Fabregues, Aups, Var	France	43.62840	6.22480	12.5000	Cheirogaster	Cheirogaster cf. sp.	Bergounioux, 1935
394	La-Grive-Saint-Alban (M+L7), Isère	France	45.58000	5.26000	12.6000	Testudo	Testudo ex. gr. antiqua	Bronn, 1831
395	Abocador de Can Mata (els Hostalets de Pierola), Cataluña	Spain	41.51920	1.72830	12.7500	Cheirogaster	Cheirogaster df. richardi	(Bergounioux, 1931)
396	Coca cemetery, Segovia	Spain	41.21940	-4.52880	12.8500	Titanochelon	Titanochelon cf. bolivari	(Hernández Pacheco, 1971)
397	Oehningen, oberer Bruch, Schienerberg N Oehningen-Wangen	Germany	47.67600	8.92510	12.8500	Testudo	Testudo scutella	(Meyer, 1845)
398	Valentine Railway Quarry A, UNSM Cr 12, Cherry County, Nebraska	NSA	42.80000	-100.80000	12.9000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
399	Valentine Railway Quarry B, UNSM Cr 13, Cherry County, Nebraska	NSA	42.80000	-100.80000	12.9000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
400	Fort Niobrara, UCMP V-3218, Cherry County, Nebraska	NSA	42.80000	-100.80000	12.9500	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1863)
401	Steinheim a. Albuch	Germany	48.69390	10.06780	13.0000	Testudo	Testudo steinheimensis	Staesche, 1931
402	Hohenhöwen, Engen, Hegau, southwestern Germany	Germany	47.83560	8.74900	13.0000	Paleotestudo	Paleotestudo antiqua	(Bronn, 1831)
403	Steinheim a. Albuch	Germany	48.69390	10.06780	13.0000	Testudo	Testudo sp.	Linnaeus, 1758
404	Myers Farm, Webster County, Nebraska	USA	40.00000	-98.00000	13.1000	Geochelone	Geochelone sp.	Fitzinger, 1835
405	Myers Farm, Websier County, Nebraska	USA	40.00000	-98.00000	13.1000	Hesperotestudo	Hesperotestudo cf. orthopygia	(Cope, 1878)

	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
406	DISC Cluster Sites, conglomerate, Fort Polk, Louisiana	USA	31.08030	-93.20120	13.4000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
407	Coca-Villeguillo, Segovia	Spain	41.25000	-4.57750	13.5000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
408	Uitikon-Schlieren, quarry on road, near Zürich	Switzerland	47.38200	8.44730	13.5000	Titanochelon	Titanochelon vitodurana	(Biedermann, 1862)
409	Veltheim-Winterthur	Switzerland	47.51240	8.71700	13.5000	Titanochelon	Titanochelon vitodurana	(Biedermann, 1862)
410	Sansan, Gers (lake)	France	43.90000	-0.50000	13.6000	Paleotestudo	Paleotestudo antiqua	(Bronn, 1831)
411	Petersbuch 31 - oben	Germany	48.97790	11.19090	13.6000	gen.	gen. indet	Gray, 1825
412	Mynsualmas	Kazakhstan	45.90000	55.25000	13.7000	gen.	gen. indet.	Gray, 1825
413	Chañe, Segovia	Spain	41.33890	-4.42500	13.8000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
414	Somosaguas Sur, Madrid Basin	Spain	40.42440	-3.79230	13.9000	gen.	gen. indet.	Gray, 1825
415	Belomechetskaya	Russia	44.40000	41.93330	14.0000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
416	Puente de la Princessa, Madrid	Spain	40.38890	-3.69840	14.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
417	Villalcón, Palencia	Spain	42.29320	-4.85520	14.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
418	Goldberg near Pflaumloch, Nördlinger Ries (without number)	Germany	48.85970	10.47530	14.1500	Testudo	Testudo sp.	Linnaeus, 1758
419	Kirrberg b. Balzhausen - Tongrube	Germany	48.22500	10.50140	14.1500	Geochelone	Geochelone sp.	Fitzinger, 1835
420	Kirrberg b. Balzhausen - Tongrube	Germany	48.22500	10.50140	14.1500	Testudo	Testudo sp.	Linnaeus, 1758
421	Ursberg (nördliche Sandgrube)	Germany	48.26110	10.45170	14.1500	Testudo	Testudo sp.	Linnaeus, 1758
422	Bohlinger Schlucht 6	Germany	47.70600	8.89000	14.3500	gen.	gen. indet	Gray, 1825
423	Wien-Kalksburg	Austria	48.12000	16.26000	14.5000	Testudo	Testudo kalksburgensis	Toula, 1896
424	Egelhoff Ranch Local Fauna, Keya Paha County, Nebraska	USA	42.00000	-100.00000	14.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1863)
425	La Barranca, Zaragoza	Spain	41.60000	-0.90000	14.5000	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
426	Stätzling	Germany	48.40000	10.96670	14.5000	Paleotestudo	Paleotestudo antiqua	(Bronn, 1831)
427	Bonlanden, Illertal	Germany	48.06860	10.07470	14.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
428	Bonlanden, Illertal	Germany	48.06860	10.07470	14.5000	Testudo	Testudo sp.	Linnaeus, 1758
429	Unterzell 1a	Germany	48.38330	11.01670	14.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
430	Norden Bridge Local Fauna, Brown County, Nebraska	USA	42.80000	-100.00000	14.5000	Geochelone	Geochelone nordensis	Holman, 1973
431	Norden Bridge Local Fauna, Brown County, Nebraska	USA	42.80000	-100.00000	14.5000	Hesperotestudo	Hesperotestudo orthopygia	(Cope, 1878)
432	Laimering 3	Germany	48.38960	11.08850	14.6000	Testudo	Testudo sp.	Linnaeus, 1758
433	Ziemetshausen 1e	Germany	48.29390	10.53030	14.6000	Testudo	Testudo sp.	Linnaeus, 1758
434	Tarazona de Aragón	Spain	41.90250	-1.72520	14.7000	gen.	gen. indet.	Gray, 1825
435	Tarazona de Aragón	Spain	41.90250	-1.72520	14.7000	Paleotestudo	Paleotestudo cf. sp.	Lapparent de Broin, 2000
436	Hambach 6C	Germany	50.90000	6.45000	14.7000	Testudo	Testudo sp.	Linnaeus, 1758
437	Georgensgmünd, Reznat-Altmühl-Stausee	Germany	49.19600	11.01000	14.7500	Testudo	Testudo sp.	Linnaeus, 1758
438	Edelbeuren-Schlachtberg	Germany	48.08900	10.02330	14.8000	Testudo	Testudo sp.	Linnaeus, 1758
439	Griesbeckerzell 1a	Germany	48.44680	11.05430	14.8000	Geochelone	Geochelone sp.	Fitzinger, 1835
440	Griesbeckerzell 1a	Germany	48.44680	11.05430	14.8000	Testudo	Testudo sp.	Linnaeus, 1758
441	Tobel Oelhalde Nord 1	Germany	48.04130	9.83060	14.8000	Geochelone	Geochelone sp.	Fitzinger, 1835
442	Tobel Oelhalde Süd	Germany	48.04130	9.83060	14.8000	Geochelone	Geochelone sp.	Fitzinger, 1835

	Table	Table S14 – continued from previous page	s page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
443	Tobel Oelhalde Süd	Germany	48.04130	9.83060	14.8000	Testudo	Testudo sp.	Linnaeus, 1758
444	Ziemetshausen 1b	Germany	48.29390	10.53030	14.8000	Geochelone	Geochelone sp.	Fitzinger, 1835
445	Ziemetshausen 1b	Germany	48.29390	10.53030	14.8000	Testudo	Testudo sp.	Linnaeus, 1758
446	Ziemetshausen 1g	Germany	48.29390	10.53030	14.8000	gen.	gen. indet.	Gray, 1825
447	Valdemoros 3B. VA 3B	Spain	41.09000	-1.48200	14.8400	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
448	Derching 1b (unten)	Germany	48.40910	10.97190	14.9000	Geochelone	Geochelone sp.	Fitzinger, 1835
449	Edelbeuren-Maurerkopf	Germany	48.09620	10.03110	14.9000	Geochelone	Geochelone sp.	Fitzinger, 1835
450	Edelbeuren-Maurerkopf	Germany	48.09620	10.03110	14.9000	Testudo	Testudo sp.	Linnaeus, 1758
451	Alcalá de Henares, Cerro del Viso, Madrid	Spain	40.48820	-3.31340	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1917)
452	Vallecas, Madrid	Spain	40.38150	-3.62240	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
453	Burgerbachtobel 1 near Wippertsweiler	Germany	47.80180	9.45040	15.0000	Titanochelon	Titanochelon vitodurana	(Biedermann, 1862)
454	Przeworno I	Poland	50.68050	17.18330	15.0000	Testudo	Testudo sp.	Linnaeus, 1758
455	Barajas, Madrid	Spain	40.48390	-3.56790	15.0000	Paleotestudo	Paleotestudo antiqua	(Bronn, 1831)
456	Barajas, Madrid	Spain	40.48390	-3.56790	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
457	Ciudad Universitaria, Madrid	Spain	40.44670	-3.73020	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
458	Henares 1, Los Santos de la Humosa, Madrid	Spain	40.45060	-3.44270	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
459	Puente de los Franceses, Madrid	Spain	40.43370	-3.73580	15.0000	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
460	Puente de los Franceses, Madrid	Spain	40.43370	-3.73580	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
461	Vallecas, Madrid	Spain	40.38150	-3.62240	15.0000	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
462	Plum Point, Calvert County, Maryland	USA	38.00000	-76.00000	15.0000	Caudochelys	Caudochelys ducateli	(Collins & Lynn, 1936)
463	Hottell Ranch rhino quarries, Banner County, Nebraska	USA	41.50000	-103.80000	15.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
464	Lassé, Maine-et-Loire	France	47.53780	0.01160	15.0000	Testudo	Testudo promarginata	Reinach, 1900
465	Pontigné-les-Buisseneaux, Maine-et-Loire	France	47.54000	-0.04010	15.0000	Testudo	Testudo promarginata	Reinach, 1900
466	Calle Moratines, Madrid	Spain	40.40270	-3.70360	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
467	Calle Paseo de Moret, Madrid	Spain	40.43400	-3.72190	15.0000	Titanochelon	Titanochelon bolivari	(Hernández Pacheco, 1971)
468	Paracuellos de Jarama, Madrid	Spain	40.50570	-3.53020	15.0000	Titanochelon	Titanochelon cf. bolivari	(Hernández Pacheco, 1971)
469	Benistobel (Kohltobel)	Germany	47.79570	9.44290	15.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
470	Burgerbachtobel 1 near Wippertsweiler	Germany	47.80180	9.45040	15.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
471	Burgerbachtobel 1 near Wippertsweiler	Germany	47.80180	9.45040	15.0000	Testudo	Testudo sp.	Linnaeus, 1758
472	Ettishofener Ach between Inntobel and Berg-Ettishofen	Germany	47.82330	9.59010	15.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
473	Ettishofener Ach between Inntobel and Berg-Ettishofen	Germany	47.82330	9.59010	15.0000	Testudo	Testudo sp.	Linnaeus, 1758
474	Griesbeckerzell 1b	Germany	48.44680	11.05430	15.0000	Testudo	Testudo sp.	Linnaeus, 1758
475	Hotterloch-Tobel SW Ravensburg	Germany	47.76960	9.56860	15.0000	Paleotestudo	Paleotestudo antiqua	(Bronn, 1831)
476	Lattentobel	Germany	47.82910	9.42970	15.0000	Testudo	Testudo sp.	Linnaeus, 1758
477	Ochsenhausen am Heselsberg, Baustelle Remmele	Germany	48.06870	9.95670	15.0000	Testudo	Testudo sp.	Linnaeus, 1758
478	Schmalegger Tobel	Germany	47.80930	9.53320	15.0000	Geochelone	Geochelone cf. sp.	Fitzinger, 1835
479	Schmalegger Tobel	Germany	47.80930	9.53320	15.0000	Testudo	Testudo sp.	Linnaeus, 1758

	Tab	Table S14 – continued from previous page	us page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
480	Ziemetshausen 1d	Germany	48.29390	10.53030	15.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
481	Ziemetshausen 1f	Germany	48.29390	10.53030	15.0000	gen.	gen. indet.	Gray, 1825
482	Grund near Hollabrunn (Collection Schaffer)	Austria	48.61670	16.06670	15.1000	Testudo	Testudo sp.	Linnaeus, 1758
483	Petersbuch 41	Germany	48.97790	11.19090	15.2000	Testudo	Testudo sp.	Linnaeus, 1758
484	Eibiswald	Austria	46.68780	15.24890	15.2200	Paleotestudo	Paleotestudo mellingi	Peters, 1868
485	Furth 460m	Germany	48.60000	12.03330	15.2250	Testudo	Testudo sp.	Linnaeus, 1758
486	Eberstetten 2 (unter Weg)	Germany	48.53050	11.53690	15.3000	Testudo	Testudo sp.	Linnaeus, 1758
487	Untereichen-Altenstadt 565m	Germany	48.18330	10.11670	15.3000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
488	Untereichen-Altenstadt 565m	Germany	48.18330	10.11670	15.3000	Testudo	Testudo sp.	Linnaeus, 1758
489	Randle Cliff, Calvert County, Maryland	USA	38.66650	-76.52980	15.4000	Floridemys	Floridemys hurdi	Weems & George, 2013
490	Pontlevoy-Thenay, Loir-et-Cher	France	47.40000	1.20000	15.4000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
491	Pontlevoy-Thenay, Loir-et-Cher	France	47.40000	1.20000	15.4000	Testudo	Testudo sp.	Linnaeus, 1758
492	Biberach-Jordanbad	Germany	48.07480	9.82220	15.5000	Testudo	Testudo sp.	Linnaeus, 1758
493	Heggbach am Buchhaldenberg, Maselheim, near Biberach	Germany	48.14070	9.88710	15.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
494	Heggbach am Buchhaldenberg, Maselheim, near Biberach	Germany	48.14070	9.88710	15.5000	Testudo	Testudo sp.	Linnaeus, 1758
495	Coldspring Trinity River Local Fauna, San Jacinto County, Texas	NSA	30.00000	-95.00000	15.5000	Hesperotestudo	Hesperotestudo sp.	Williams, 1950
496	Chesapeak Beach RR Station, Maryland	NSA	38.67990	-76.53240	15.7000	Caudochelys	Caudochelys ducateli	(Collins & Lynn, 1936)
497	Oberbernbach a	Germany	48.47160	11.12840	15.7000	Testudo	Testudo sp.	Linnaeus, 1758
498	Oggenhof near Häder	Germany	48.35800	10.76060	15.7000	Testudo	Testudo sp.	Linnaeus, 1758
499	Vieux-Collonges, Saint-Cyr-au-Mont-d'Or, Rhône, France	France	45.75000	4.85000	15.7500	gen.	gen. indet	Gray, 1825
200	Vieux-Collonges, Saint-Cyr-au-Mont-d'Or, Rhône, France	France	45.75000	4.85000	15.7500	Testudo	Testudo sp.	Linnaeus, 1758
201	Moratilla 2. MOR 2	Spain	40.63330	-2.03330	15.7800	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
502	Gisseltshausen 1b	Germany	48.71090	12.01800	15.8000	Testudo	Testudo sp.	Linnaeus, 1758
503	Castelnau d'Arbieu, Gers	France	43.88330	0.70000	15.8500	Cheirogaster	Cheirogaster cf. sp.	Bergounioux, 1935
504	Dénezé-sous-le-Lude, Maine-et-Loire	France	47.53300	0.13300	15.9000	Testudo	Testudo promarginata	Reinach, 1900
202	Noyant-sous-le-Lude, Maine-et-Loire	France	47.51700	0.11700	15.9000	Testudo	Testudo promarginata	Reinach, 1900
909	Savigné-sur-Lathan, Indre-et-Loire	France	47.45000	0.31700	15.9000	Testudo	Testudo promarginata	Reinach, 1900
202	Gisseltshausen 1a	Germany	48.71090	12.01800	15.9000	Testudo	Testudo sp.	Linnaeus, 1758
208	Sainbach (bei Ichenhofen)	Germany	48.51670	11.10000	15.9000	Testudo	Testudo sp.	Linnaeus, 1758
209	Häder	Germany	48.35630	10.63890	16.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
510	Unterempfenbach 1d	Germany	48.63040	11.74730	16.0000	Testudo	Testudo sp.	Linnaeus, 1758
511	Walda 2 (oben)	Germany	48.61090	11.09080	16.1000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
512	Walda 2 (oben)	Germany	48.61090	11.09080	16.1000	Testudo	Testudo sp.	Linnaeus, 1758
513	Altheim-Breitenlauh 2	Germany	48.32830	9.79170	16.2650	Testudo	Testudo sp.	Linnaeus, 1758
514	Eggingen-Schleiche B	Germany	48.35220	9.85210	16.2650	Geochelone	Geochelone sp.	Fitzinger, 1835
515	Eggingen-Schleiche B	Germany	48.35220	9.85210	16.2650	Testudo	Testudo sp.	Linnaeus, 1758
516	Maßendorf	Germany	48.59710	12.44930	16.3000	Geochelone	Geochelone sp.	Fitzinger, 1835

	Germany	48.59710	12.44930	16.3000	Genus Testudo Ergilemys	laxon Testudo sp. Ergilemys sp.	Author Linnaeus, 1758 Ckhikvadze, 1972
	Germany	48.61090	11.09080	16.3000	Testudo	Testudo sp.	Linnaeus, 1758
	Spain Germany	41.10000	11.79600	16.3700	Geochelone	Geocheione an sp. Testudo rectogularis	Fitzinger, 1835 Schleich, 1981
Sandelzhausen unterer Geröllmergel (B)	Germany	48.62830	11.79600	16.3700	Titanochelon	Titanochelon cf. perpiniana	(Depéret, 1885)
	Germany	48.62830	11.79600	16.3700	Titanochelon	Titanochelon cf. perpiniana	(Depéret, 1885)
Sandelzhausen oberer Geröllmergel (D2)	Germany	48.62830	11.79600	16.3700	Testudo	Testudo rectogularis	Schleich, 1981
Sandelzhausen oberer Geröllmergel (E)	Germany	48.62830	11.79600	16.3700	Testudo	Testudo rectogularis	Schleich, 1981
Sandelzhausen unterer Geröllmergel (B)	Germany	48.62830	11.79600	16.3700	Testudo	Testudo rectogularis	Schleich, 1981
Sandelzhausen unterer Geröllmergel (C1)	Germany	48.62830	11.79600	16.3700	Testudo	Testudo rectogularis	Schleich, 1981
Sandelzhausen unterer Geröllmergel (C2)	Germany	48.62830	11.79600	16.3700	Testudo	Testudo rectogularis	Schleich, 1981
Sandelzhausen unterer Geröllmergel (C3/D1)	Germany	48.62830	11.79600	16.3700	Testudo	Testudo rectogularis	Schleich, 1981
	Spain	41.96270	-1.69220	16.4000	gen.	gen. indet.	Gray, 1825
	Germany	48.61220	11.77730	16.4000	Testudo	Testudo sp.	Linnaeus, 1758
	Germany	48.61220	11.77730	16.5000	Testudo	Testudo sp.	Linnaeus, 1758
	Germany	48.29740	10.24320	16.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
	Germany	48.29740	10.24320	16.5000	Testudo	Testudo sp.	Linnaeus, 1758
	Germany	48.37190	10.40960	16.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
	Germany	48.37190	10.40960	16.5000	Testudo	Testudo sp.	Linnaeus, 1758
Feiritzberg (T1 = 001/D/C), Korneuburg Basin, Lower Austria	Austria	48.36670	16.33330	16.5500	Paleotestudo	Paleotestudo sp.	Lapparent de Broin, 2000
feiritzberg (T1 = 001/D/C), Korneuburg Basin, Lower Austria	Austria	48.36670	16.33330	16.5500	gen.	gen. indet.	Gray, 1825
Kleinebersdorf, Wolmuth-Sandgrube (010/G/Liegendes), Korneuburg Basin	Austria	48.50000	16.40000	16.5500	gen.	gen. indet.	Gray, 1825
Obergänserndorf (OG2), Korneuburg Basin, Lower Austria	Austria	48.41670	16.36670	16.5500	gen.	gen. indet.	Gray, 1825
Feiritzberg (001/X/C), Korneuburg Basin, Lower Austria	Austria	48.36670	16.33330	16.5500	gen.	gen. indet.	Gray, 1825
leiritzberg (001/X/C), Korneuburg Basin, Lower Austria	Austria	48.36670	16.33330	16.5500	Paleotestudo	Paleotestudo angustihyoplastralis	
Weinsteig (107), Korneuburg Basin, Lower Austria	Austria	48.45000	16.40000	16.5500	gen.	gen. indet.	Gray, 1825
Weinsteig (107/S/B), Korneuburg Basin, Lower Austria	Austria	48.45000	16.40000	16.5500	gen.	gen. indet.	Gray, 1826
	Germany	48.07280	10.14240	16.6500	Geochelone	Geochelone sp.	Fitzinger, 1835
	Germany	48.60670	11.21410	16.7000	Testudo	Testudo sp.	Linnaeus, 1758
	Germany	48.61220	11.77730	16.8000	Testudo	Testudo sp.	Linnaeus, 1758
	Germany	48.82030	11.32030	16.8000	gen.	gen. indet	Gray, 1825
	Germany	48.82030	11.32030	16.8000	Testudo	Testudo sp.	Linnaeus, 1758
	Germany	48.56670	9.53333	16.8250	Testudo	Testudo sp.	Linnaeus, 1758
	Germany	48.31000	10.04600	16.8500	Geochelone	Geochelone sp.	Fitzinger, 1835
	Germany	48.31000	10.04600	16.8500	Testudo	Testudo sp.	Linnaeus, 1758
	Ó						

		Table S14 – continued from previous page	orevious page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
554	Wackersdorf Westfeld	Germany	49.31670	12.18330	17.0000	Testudo	Testudo sp.	Linnaeus, 1758
555	Contres, Loir-et-Cher	France	47.41810	1.42870	17.0000	Testudo	Testudo sp.	Linnaeus, 1758
929	Günzburg 2/1 Umgehungsstrasse Sande	Germany	48.45600	10.27680	17.0000	gen.	gen. indet	Gray, 1825
222	Günzburg 2/2 Umgehungstr höhere Bereiche der Sande	Germany	48.45600	10.27680	17.0000	gen.	gen. indet	Gray, 1825
228	Günzburg 2/5 Umgehung Sande im Süden Aufschluss	Germany	48.45600	10.27680	17.0000	gen.	gen. indet	Gray, 1825
559	Günzburg 2/6 Umgehung Sande im Norden Aufschluss	Germany	48.45600	10.27680	17.0000	gen.	gen. indet	Gray, 1825
260	La Romieu, Gers	France	44.20000	0.90000	17.2000	gen.	gen. indet.	Gray, 1825
561	Forsthart	Germany	48.63580	13.03140	17.2000	Testudo	Testudo sp.	Linnaeus, 1758
299	Arrisdrift	Namibia	-28.55000	16.50000	17.2500	Mesocherus	Mesocherus orangeus	Lapparent de Broin, 2003
563	Arrisdrift	Namibia	-28.55000	16.50000	17.2500	Namibchersus	Namibchersus aff. namaquensis	(Stromer, 1926)
564	Aerotrain a Chevilly pres d'Artenay (Loiret)	France	48.05000	1.85000	17.2500	Testudo	Testudo sp.	Linnaeus, 1758
292	Baigneaux-en-Beauce (Eure-et-Loir)	France	48.10000	2.15000	17.2500	Paleotestudo	Paleotestudo mellingi	(Peters, 1868)
999	Suèvres aux Imberts, Loir-et-Cher	France	47.67000	1.47000	17.2500	Ergilemys	Ergilemys bruneti	Broin, 1977
292	Suèvres aux Imberts, Loir-et-Cher	France	47.67000	1.47000	17.2500	Paleotestudo	Paleotestudo mellingi	(Peters, 1868)
268	Erkertshofen 1	Germany	48.97970	11.22500	17.2500	Testudo	Testudo sp.	Linnaeus, 1758
269	Erkertshofen 2	Germany	48.97970	11.22500	17.2500	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
220	Gerlenhafen	Germany	48.20000	10.02000	17.2500	Testudo	Testudo sp.	Linnaeus, 1758
571	Can Mas near El Papiol, Barcelone province, Cataluña, Vallés-Penedés basin	Spain	41.43330	2.01670	17.3000	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
572	Ba?a Dolina in Ve?ký Krtíš	Slovakia	48.20730	19.34780	17.4000	gen.	gen. Indet.	Gray, 1825
573	Reisensburg near Günzburg	Germany	48.46200	10.31400	17.4500	Geochelone	Geochelone sp.	Fitzinger, 1835
574	Reisensburg near Günzburg	Germany	48.46200	10.31400	17.4500	Testudo	Testudo sp.	Linnaeus, 1758
575	Culebra Reach, Station 1998 + 00, 600 feet W of center line of Panama Canal	Panama	9.10000	-79.70000	17.5000	gen.	gen. Indet.	Gray, 1825
929	Freudenegg 2 Baggersee	Germany	48.33330	10.01670	17.5000	Testudo	Testudo sp.	Linnaeus, 1758
222	Freudenegg 3 Baggersee	Germany	48.33330	10.01670	17.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
218	Freudenegg 3 Baggersee	Germany	48.33330	10.01670	17.5000	Testudo	Testudo sp.	Linnaeus, 1758
629	Petersbuch 4	Germany	48.97790	11.19090	17.5000	Testudo	Testudo sp.	Linnaeus, 1758
280	Djebel Zetten	Libya	28.50000	20.00000	17.5000	Geochelone	Geochelone sp.	Fitzinger, 1835
581	Béon 1 (Montréal-du-Gers)	France	43.95000	0.20000	17.6500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
582	Béon 1 (Montréal-du-Gers)	France	43.95000	0.20000	17.6500	Testudo	Testudo sp.	Linnaeus, 1758
583	Petersbuch 7	Germany	48.97790	11.19090	17.7500	Testudo	Testudo sp.	Linnaeus, 1758
584	Pamunkey River, between King William and New Kent Counties, Virginia	NSA	37.61640	-77.09630	17.7500	Caudochelys	Caudochelys williamsi	(Auffenberg, 1964)
585	Pollack Farm Site near Cheswold, Kent County, Delaware	NSA	39.23460	-75.57270	17.7500	Caudochelys	Caudochelys williamsi	(Auffenberg, 1964)
586	Rauscheröd near Passau, Bavaria	Germany	48.55650	13.26020	17.7500	Testudo	Testudo sp.	Linnaeus, 1758
287	Langenau 1	Germany	48.50030	10.12190	17.7750	Geochelone	Geochelone sp.	Fitzinger, 1835
288	Langenau 1	Germany	48.50030	10.12190	17.7750	Testudo	Testudo sp.	Linnaeus, 1758
589	Langenau 2	Germany	48.50000	10.10000	17.7750	Geochelone	Geochelone sp.	Fitzinger, 1835
290	Langenau 2	Germany	48.50000	10.10000	17.7750	Testudo	Testudo sp.	Linnaeus, 1758

		2000	ومصور					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
591	Hiwegi loc. R 1	Kenya	-0.40000	34.20000	17.8000	gen.	gen. indet.	Gray, 1825
592	Hiwegi loc. R 106	Kenya	-0.40000	34.20000	17.8000	gen.	gen. indet.	Gray, 1825
593	Hiwegi loc. R 3	Kenya	-0.40000	34.20000	17.8000	gen.	gen. indet.	Gray, 1825
594	Hiwegi loc. R 5	Kenya	-0.40000	34.20000	17.8000	gen.	gen. indet.	Gray, 1825
262	Mfangano	Kenya	-0.45000	34.05000	17.8000	gen.	gen. indet.	Gray, 1825
296	Nira and Kachuku near Karungu	Kenya	-0.90000	34.25000	17.8000	Geochelone	Geochelone crassa	(Andrews, 1914)
265	Rangoye, Uyoma peninsula lake Victoria	Kenya	-0.30000	34.30000	17.8000	gen.	gen. indet.	Gray, 1825
298	Eggingen-Mittelhart	Germany	48.35230	9.85980	17.8750	Geochelone	Geochelone sp.	Fitzinger, 1835
299	Eggingen-Mittelhart	Germany	48.35230	9.85980	17.8750	Testudo	Testudo sp.	Linnaeus, 1758
009	Walangani	Kenya	-0.45000	34.05000	17.9000	gen.	gen. indet.	Gray, 1825
601	Auchas	Namibia	-28.55000	16.50000	18.0000	Namibchersus	Namibchersus namaquensis	(Stromer, 1926)
602	Leithagebirge between Au and Loretto	Austria	47.91510	16.53580	18.0000	Testudo	Testudo kalksburgensis	Toula, 1896
603	Marsolan, Gers	France	43.95000	0.55000	18.0000	Testudo	Testudo promarginata	Reinach, 1900
604	Neuville-aux-Bois, Loiret	France	48.06700	2.05000	18.0000	Testudo	Testudo promarginata	Reinach, 1900
605	Grimmelfingen	Germany	48.22000	9.56000	18.0000	Testudo	Testudo sp.	Linnaeus, 1758
909	Kiahera loc. R 120	Kenya	-0.40000	34.20000	18.0000	gen.	gen. indet.	Gray, 1825
209	Thomas Farm Local Fauna, Gilchrist County, Florida	USA	29.70000	-82.60000	18.5000	Geochelone	Geochelone tedwhitei	(Williams, 1953)
809	Chitenay, Loir-et-Cher	France	47.50000	1.36670	18.5000	Testudo	Testudo cf. promarginata	Reinach, 1900
609	Mauvieres, Marcilly-sur-Maulne, Indre-et-Loire	France	47.55000	0.33000	18.5000	Testudo	Testudo cf. promarginata	Reinach, 1900
610	Thomas Farm Local Fauna, Gilchrist County, Florida	USA	29.70000	-82.60000	18.5000	Geochelone	Geochelone cf. sp.	Rafinesque, 1832
611	Torralba de Ribota (Zaragoza)	Spain	41.58330	-1.00000	18.5050	Paleotestudo	Paleotestudo cf. antiqua	(Bronn, 1831)
612	Baltringen	Germany	48.16670	9.86670	18.6000	Geochelone	Geochelone sp.	Fitzinger, 1835
613	Baltringen	Germany	48.16670	9.86670	18.6000	Testudo	Testudo sp.	Linnaeus, 1758
614	Chilleurs-aux-Bois, Loiret (Burdigalian)	France	48.06670	2.13330	19.0000	Testudo	Testudo promarginata	Reinach, 1900
615	La Brosse, Maine-et-Loire	France	47.23000	0.22000	19.0000	Testudo	Testudo cf. promarginata	Reinach, 1900
616	Stubersheim 3	Germany	48.59470	9.91390	19.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
617	Glastal	Namibia	-26.90000	15.40000	19.0000	Namibchersus	Namibchersus sp.	Lapparent de Broin, 2003
618	Langental, nothern Sperrgebiet	Namibia	-26.90000	15.40000	19.0000	Namibchersus	Namibchersus sp.	Lapparent de Broin, 2003
619	Elisabethfeld (= Elisabeth Bay) area, northern Sperrgebiet	Namibia	-26.91610	15.18380	19.5000	Namibchersus	Namibchersus namaquensis	(Stromer, 1926)
620	Chubut Valley south side between Gaiman and Dolavon, Patagonia	Argentina	-43.28560	-65.58220	19.5000	Testudo	Testudo gringorum	Simpson, 1942 (p. 1-3, fig. 1.2)
621	Fiskus	Namibia	-26.90000	15.40000	19.5000	Namibchersus	Namibchersus namaquensis	(Stromer, 1926)
622	Grillental, northern Sperrgebiet	Namibia	-26.98330	15.35000	19.5000	Namibchersus	Namibchersus cf. namaquensis	(Stromer, 1926)
623	Marsland Quadrangle, Box Butte County, Nebraska	USA	42.40000	-103.30000	19.9000	gen.	gen. indet.	Gray, 1825
624	Eggenburg-Schindergraben, Lower Austria	Austria	48.63330	15.81700	19.9650	Testudo	Testudo kalksburgensis	Toula, 1896
625	Auterive, Haute-Garonne	France	43.35060	1.47320	20.7500	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
626	Grépiac, Haute-Garonne	France	43.40490	1.44790	20.7500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
627	Grépiac, Haute-Garonne	France	43.40490	1.44790	20.7500	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972

Locality Landes-le-Gaulois, Loir-et-Cher	Country	acitite	Longitude	۷			
et-Cher		במונסס		שמע ש	Genus	laxon	Author
	France	47.65410	1.18380	20.7500	Testudo	Testudo sp.	Linnaeus, 1758
Barbotan-les-Thermes (Gers)	France	44.20000	0.40000	20.7500	Cheirogaster	Cheirogaster cf. sp.	Bergounioux, 1935
	Germany	48.53330	11.30000	20.9000	Testudo	Testudo rectogularis	Schleich, 1981
	France	46.36820	3.52490	21.0000	gen.	gen. indet.	Gray, 1825
Marcoin, Volvic, Puy-de-Dôme	France	45.87270	3.03950	21.5000	Testudo	Testudo sp.	Linnaeus, 1758
	France	46.25810	3.51200	21.5000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
	France	46.25810	3.51200	21.5000	Ergilemys	Ergilemys aff. bruneti	Broin, 1977
	France	46.25810	3.51200	21.5000	Testudo	Testudo promarginata	Reinach, 1900
Wallenried Channel, 10 km N Fribourg	Switzerland	46.88160	7.10650	21.7500	gen.	gen indet.	Gray, 1825
Montaigu-le-Blin, La Chacotte, Allier	France	46.32000	3.52000	22.0000	gen.	gen. indet.	Gray, 1825
	France	46.26730	3.46970	22.1000	Testudo	Testudo sp.	Linnaeus, 1758
	France	46.33000	3.27000	22.5000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
Pechbonnieu, Haute-Garonne	France	43.70280	1.46650	22.7500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
Pechbonnieu, Haute-Garonne	France	43.70280	1.46650	22.7500	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
Toledo Bend Dam, Newton County, Texas	USA	31.00000	-93.00000	23.0000	Geochelone	Geochelone sp.	Fitzinger, 1835
	France	44.56190	0.82040	23.0300	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
	France	46.36630	3.63640	23.0300	gen.	gen. indet.	Gray, 1825
	France	46.26670	3.41670	23.0650	Ergilemys	Ergilemys bruneti	Broin, 1977
Venelles 35 km N Marseille	France	43.62000	5.48000	23.0650	gen.	gen. indet.	Gray, 1825
Toulouse Puits Borderouge niveau inférieur, Haute-Garonne	France	43.60000	1.43330	23.1150	Ergilemys	Ergilemys bruneti	Broin, 1977
Hautesvignes, Lot-et-Garonne	France	44.45910	0.34440	23.3500	gen.	gen. indet.	Gray, 1825
Moissac 2, Tarn-et-Garonne	France	44.10390	1.08500	23.4150	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
Moissac 2, Tarn-et-Garonne	France	44.10390	1.08500	23.4150	gen.	gen. indet.	Gray, 1825
La Milloque, Hautefage, Lot-et-Garonne	France	44.32000	0.78000	23.5000	Ergilemys	Ergilemys bruneti	Broin, 1977
Mine des Rois, Dallet et Pont-du-Château, Puy-de-Dôme	France	45.78420	3.25840	23.5000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
Saint-Thomas, Hautefage, Lot-et-Garonne	France	44.35570	0.77130	23.5000	gen.	gen. indet.	Gray, 1825
Dieupentale, Tarn-et-Garonne	France	43.86190	1.26960	23.5150	gen.	gen. indet.	Gray, 1825
	Germany	50.35000	10.05000	24.0000	Geochelone	Geochelone aff. sp.	Fitzinger, 1835
	Germany	50.35000	10.05000	24.0000	Testudo	Testudo sp.	Linnaeus, 1758
	France	46.30000	3.28330	24.0000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
Gannat, Allier (shallow lake)	France	46.10000	3.20000	24.0000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
	France	46.44600	3.63000	24.2500	gen.	gen. indet.	Gray, 1825
Pech-Desse, Moulliac, Tarn-et-Garonne, Phosphorite du Quercy	France	44.40000	1.60000	24.3000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
Pech-Desse, Moulliac, Tarn-et-Garonne, Phosphorite du Quercy	France	44.40000	1.60000	24.3000	gen.	gen. indet.	Gray, 1825
Paali Nala level 1, Balochistan	Pakistan	28.85000	69.21670	24.5000	gen.	gen. Indet.	Gray, 1825
Pech-du-Fraysse, Saint-Projet, Tarn-et-Garonne, Phosporites du Quercy	France	44.75000	2.66670	24.9000	Cheirogaster	Cheirogaster phosphoritarum	Bergounioux, 1935
Pech-du-Fraysse, Saint-Projet, Tarn-et-Garonne, Phosporites du Quercy	France	44.75000	2.66670	24.9000	Ergilemys	Frailemys sp	Ckhikvadze 1972

	Tal	Table S14 – continued from previous page	us page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
999	Pech-du-Fraysse, Saint-Projet, Tarn-et-Garonne, Phosporites du Quercy	France	44.75000	2.66670	24.9000	Testudo	Testudo sp.	Linnaeus, 1758
999	Veauche, Loire	France	45.56230	4.27560	25.0000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
299	Paali Nala level C2, Balochistan	Pakistan	28.85000	69.21670	25.5000	gen.	gen. Indet.	Gray, 1825
899	Aktau Chul'adyr Formatioon Lower Member	Kazakhstan	44.06670	79.36670	26.1000	gen.	gen. indet.	Gray, 1825
699	Marseille, Saint-André, Bouches-du-Rhône	France	43.45000	5.45000	26.5000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
029	Marseille, Saint-André, Bouches-du-Rhône	France	43.45000	5.45000	26.5000	gen.	gen. indet.	Gray, 1825
671	Le Crozatier, Brons, Cantal	France	45.04020	3.15070	28.0000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
672	Le Crozatier, Brons, Cantal	France	45.04020	3.15070	28.0000	Testudo	Testudo sp.	Linnaeus, 1758
673	Le Garouillas, Phosphorites du Quercy	France	44.40000	1.60000	28.7500	Cheirogaster	Cheirogaster nov. sp.	1
674	Rigal-Jouet, Phosphorites du Quercy	France	44.40000	1.60000	28.7500	gen.	gen. indet.	Gray, 1825
675	Neschers à La Sauvetat, Puy-de-Dôme	France	45.59920	3.17100	28.8500	gen.	gen. indet.	Gray, 1825
929	Saint-Germain-Lembron, Puy-de-Dôme	France	45.45850	3.23870	28.8500	gen.	gen. indet.	Gray, 1825
229	Vaumas, Alier	France	46.44610	3.63030	28.8500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
829	Puylaurens, Tarn	France	43.57140	2.01380	29.5000	gen.	gen. indet.	Gray, 1825
629	Pichovet, Vachères, Lubéron, Provence-Alpes-Côte d'Azur	France	43.90000	5.60000	29.7000	gen.	gen. indet.	Gray, 1825
089	Espenhain near Leipzig	Germany	51.18000	12.47000	30.2500	gen.	gen. indet	Gray, 1825
681	Talagay (Tayzhuzgen section)	Kazakhstan	47.59840	84.00000	30.2500	Ergilemys	Ergilemys saikenensis	(Chkhikvadze, 1972)
682	Saint-Vivien-de-Monségur, Gironde	France	44.61570	0.17010	30.5000	gen.	gen. indet.	Gray, 1825
683	Itardies (Caylus, Tarn-et-Garonne)	France	44.23330	1.78330	30.5000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
684	Mounayne, Phosphorites du Quercy	France	44.40000	1.60000	30.5000	gen.	gen. indet.	Gray, 1825
685	Roqueprune, Mouillac, Tarn-et-Garonne, Phosphorites du Quercy	France	44.61670	0.03330	30.5000	gen.	gen. indet.	Gray, 1825
989	Pech-Crabit, Bach, Lot, Phosphorites du Quercy	France	44.40000	1.60000	30.6000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
289	Pech-Crabit, Bach, Lot, Phosphorites du Quercy	France	44.40000	1.60000	30.6000	gen.	gen. indet.	Gray, 1825
889	North Mesa, Shara Murun region, Inner Mongolia	China	43.00000	112.00000	31.0000	Testudo	Testudo ulanensis	Gilmore, 1931
689	Twin Oboes, Shara Murun region, Inner Mongolia	China	43.00000	112.00000	31.0000	Testudo	Testudo nanus	Gilmore, 1931
069	Ardyn Obo basin, Chinese Postroad	Mongolia	45.00000	110.00000	31.0000	Ergilemys	Ergilemys insolitus	(Matthew & Granger, 1923)
691	Ardyn Obo basin, Chinese Postroad	Mongolia	45.00000	110.00000	31.0000	Testudo	Testudo demissa	Gilmore, 1931
692	Ardyn Obo basin, Chinese Postroad	Mongolia	45.00000	110.00000	31.0000	Testudo	Testudo kaiseni	Gilmore, 1931
693	Promontory Bluff (Sair Usu 150- Kalgan 350 miles)	Mongolia	45.00000	110.00000	31.0000	Ergilemys	Ergilemys insolitus	(Matthew & Granger, 1923)
694	Bournoncle-Saint-Pierre, Auvergne, Haute-Loire	France	45.34870	3.32530	31.0000	Taraschelon	Taraschelon gigas	(Bravard, 1844)
695	Los Barros quarry, 4 km SE Àvila	Spain	40.63080	-4.65870	31.0000	Cheirogaster	Cheirogaster ? sp.	Bergounioux, 1935
969	La Plante 2, Concots, Lot, Phosporite du Quercy	France	44.40000	1.60000	31.8000	gen.	gen. indet.	Gray, 1825
269	Mas de Got A, Phosphorites du Quercy	France	44.40000	1.60000	31.8000	gen.	gen. indet.	Gray, 1825
869	Mas de Got B, Phosphorites du Quercy	France	44.40000	1.60000	31.8000	gen.	gen. indet.	Gray, 1825
669	Quercy (Phosphorites du Quercy)	France	44.20000	1.50000	32.0000	Cheirogaster	Cheirogaster phosphoritarum	Bergounioux, 1935
200	Quercy (Phosphorites du Quercy)	France	44.20000	1.50000	32.0000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
701	Thaytiniti, Dhofar	Oman	17.00000	54.00000	32.5000	gen.	gen. Indet.	Gray, 1825

	la el	Table S14 – continued from previous page	rious page					
	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
702	Kalgan area	China	41.00000	115.00000	32.5000	Testudo	Testudo kalganensis	Gilmore, 1931
703	Gua Teg	Mongolia	43.50000	108.00000	32.6000	Ergilemys	Ergilemys insolitus	(Matthew & Granger, 1923)
704	AMNH quarries A, B, C, Fayyum	Egypt	29.50000	30.90000	32.6500	Gigantochersina	Gigantochersina ammon	Andres in Andrews & Beadnell, 1903
705	Neumühle near Weinheim/Alzey	Germany	49.73610	8.06530	32.9500	gen.	gen. indet	Gray, 1825
902	Ruch, Gironde	France	44.77550	-0.03920	33.1000	gen.	gen. indet.	Gray, 1825
707	Sainte-Marthe, Eymet, Dordogne	France	44.67850	0.39680	33.1000	gen.	gen. indet.	Gray, 1825
208	Ravet-Lupo, Caylus, Lot, Phosphorites du Quercy	France	44.40000	1.60000	33.2000	gen.	gen. indet.	Gray, 1825
200	Soumaille, Pardaillan, Lot-et-Garonne	France	44.66710	0.25980	33.2500	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
710	Aubrelong 1, Phosphorites du Quercy, Lot	France	44.40000	1.60000	33.5000	Cheirogaster	Cheirogaster cf. sp.	Bergounioux, 1935
711	Baby 2, Saint-André-et-Appelles, Gironde	France	44.81200	0.21330	33.9500	Cheirogaster	Cheirogaster maurini	Bergounioux, 1935
712	Saint-Capraise-d'Eymet, Dordogne	France	44.70870	0.50320	33.9500	gen.	gen. indet.	Gray, 1825
713	Korablik Kiinkerish	Kazakhstan	48.00000	84.50000	34.2000	Ergilemys	Ergilemys sp.	Chkhikvadze, 1972
714	Ardyn Obo (Ergelyeen Dzo), SE Gobi	Mongolia	43.50000	109.00000	34.2000	Ergilemys	Ergilemys insolitus	(Matthew & Granger, 1923)
715	Escamps, Phosphorites du Quercy	France	44.40000	1.58330	34.4000	gen.	gen. indet.	Gray, 1825
716	Lostange, Beduer, Lot	France	44.58110	1.94840	34.4000	Dithyrosternon	Dithyrosternon sp.	Pictet & Humbert, 1869
717	Lostange, Beduer, Lot	France	44.58110	1.94840	34.4000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
718	Rosières, Escamps, Lot, Phosporites du Quercy	France	44.40000	1.60000	34.4000	gen.	gen. indet.	Gray, 1825
719	Sainte-Croix-de-Brignon, Gard	France	43.98890	4.21660	35.0000	Ergilemys	Ergilemys aff. sp.	Ckhikvadze, 1972
720	Sindou D, Phosphorites du Quercy	France	44.40000	1.60000	35.0000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
721	Paris Montmartre	France	48.86670	2.33330	35.2000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
722	Côja, Cerâmica da Carriça	Portugal	40.27010	-7.97810	35.5000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
723	La Débruge = Butte de Sainte Radegonde (pres d'Apt, Gargas, Vaucluse)	France	43.90000	5.38330	35.5000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
724	La Grave, Bonsac, Gironde	France	45.01130	-0.22510	35.5000	Cheirogaster	Cheirogaster sp.	Bergounioux, 1935
725	Langlès, Saint-Martin-de-Villeréal, Lot-et-Garonne	France	44.64470	0.82040	35.5000	gen.	gen. indet.	Gray, 1825
726	Sainte-Néboule, Béduer, Lot	France	44.58330	1.93330	35.5500	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
727	Santiago Yolomécatl, Oaxaca	Mexico	17.47000	-97.56000	36.5000	Hadrianus	Hadrianus aff. sp.	Cope, 1872
728	Santiago Yolomécatt, Oaxaca	Mexico	17.47000	-97.56000	36.5000	Stylemys	Stylemys sp.	Leidy, 1851
729	Calf Creek near Eastend, Saskatchewan	Canada	49.00000	-109.00000	36.9000	gen.	gen. indet.	Gray, 1825
730	Chéry-Chartreuve (Aisne)	France	49.26670	3.61670	37.7000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
731	Grisolles, Est du Basin de Paris, Aisne	France	49.15000	3.35000	37.7000	gen.	gen. indet.	Gray, 1825
732	Rocourt-Saint-Martin, Aisne	France	49.15000	3.38330	38.5000	gen.	gen. indet.	Gray, 1825
733	Rocourt-Saint-Martin, Aisne	France	49.15000	3.38330	38.5000	Hadrianus	Hadrianus sp.	Cope, 1872
734	Myaing UCMP locality V6204	Myanmar	21.60000	94.80000	38.5000	gen.	gen. Indet.	Gray, 1825
735	Thandaung kyitchaung, UCMP locality V78090	Myanmar	21.92000	94.56000	38.5000	gen.	gen. Indet.	Gray, 1825
736	Naia, Tondela, Viseu	Portugal	40.57480	-8.03980	38.5000	Cheirogaster	Cheirogaster ? sp.	Bergounioux, 1935
737	Castres, Bassin de l'Agout, Tarn	France	43.60520	2.24090	39.0000	Hadrianus	Hadrianus castrensis	(Bergounioux, 1935)
738	Lautrec, Tarn	France	43.70560	2.13590	39.0000	Hadrianus	Hadrianus sp.	Cope, 1872

	Locality	Country	Latitude	Longitude	Age	Genus	Taxon	Author
739 F	Robiac, Saint-Mamert, Gard	France	44.26670	4.13330	39.0000	gen.	gen. indet.	Gray, 1825
740 F	Robiac, Saint-Mamert, Gard	France	44.26670	4.13330	39.0000	Hadrianus	Hadrianus sp.	Cope, 1872
741 N	Mazaterón, Soria Province, Castilla y León	Spain	41.50000	-2.10000	39.5000	Pelorochelon	Pelorochelon soriana	Pérez García et al. (2016)
742 ls	Issel, Department Aude	France	43.46670	1.98330	42.4000	Hadrianus	Hadrianus sp.	Cope, 1872
743 L	Le Guépelle, Saint-Witz, Val d'Oise	France	49.08420	2.53550	42.5000	Ergilemys	Ergilemys sp.	Ckhikvadze, 1972
744 A	Aigues-Vives 2, Hérault	France	43.33750	2.81790	43.5000	Hadrianus	Hadrianus sp.	Cope, 1872
745 J	Jumencourt, Aisne	France	49.50860	3.35630	43.5000	Hadrianus	Hadrianus sp.	Cope, 1872
746 L	La Défense, Hauts-de-Seine	France	48.90000	2.23330	43.6000	Hadrianus	Hadrianus sp.	Cope, 1872
747 S	Swift Current Creek, southern Saskatchewan	Canada	50.20000	-107.60000	44.5000	gen.	gen. indet.	Gray, 1826
748 G	Geiseltal near Halle (Mücheln), Sachsen-Anhalt	Germany	51.33390	11.83180	44.5000	Pelorochelon	Pelorochelon eocaenica	(Hummel, 1935)
749 E	Bouxwiller, Bas-Rhin	France	48.81670	7.48330	45.0000	Hadrianus	Hadrianus sp.	Cope, 1872
750 S	Stena	Kazakhstan	47.50000	84.80000	48.0000	Hadrianus	Hadrianus obailiensis	Chkhikvadze, 1972
751 L	UCMP V98009, Uinta County, Wyoming	USA	41.00000	-110.00000	49.4000	Hadrianus	Hadrianus corsoni	(Leidy, 1871)
752 N	North Fork, Wapiti Valley north Shoshone River (NF-5 Wapiti III), Park County, Wyoming	USA	44.30000	-109.00000	49.4500	Hadrianus	Hadrianus sp.	Cope, 1872
753 C	Cuis (Marne)	France	49.00000	3.96670	49.5000	Hadrianus	Hadrianus sp.	Cope, 1872
754 G	Grauves (Marne)	France	48.96670	3.96670	49.5000	Hadrianus	Hadrianus sp.	Cope, 1872
755 N	Mancy, Marne	France	48.98370	3.93510	49.5000	Hadrianus	Hadrianus sp.	Cope, 1872
756 N	Monthelon, Marne	France	48.98330	3.93330	49.5000	Hadrianus	Hadrianus sp.	Cope, 1872
757 F	Haunsberg near St. Pankraz, Salzburg	Austria	47.76560	14.20790	50.0000	Titanochelon	Titanochelon steinbacheri	Karl, 1996
758 A	Andarak 2, Osh Region	Kyrgyzstan	39.79000	69.49000	50.5000	Hadrianus	Hadrianus vialovi	(Chkhikvadze, 1984)
759 A	Andarak 1, Osh Region	Kyrgyzstan	39.74990	69.49160	52.0000	Hadrianus	Hadrianus vialovi	(Chkhikvadze, 1984)
760 K	Khayzhin-Ula 2	Mongolia	44.20000	100.00000	52.0000	Kansuchelys	Kansuchelys sp.	Ye, 1963
761 S	Saint-Papoul NE Carcasonne, Aude	France	43.33330	2.03330	52.2000	Fontainechelon	Fontainechelon cassouleti	(Claude & Tong, 2004)
762 N	North Fork, Wapiti Valley north Shoshone River (NF-16 Wapiti II), Park County, Wyoming	USA	44.30000	-109.00000	52.8500	Hadrianus	Hadrianus sp.	Cope, 1872
763 N	North Fork, Wapiti Valley north Shoshone River (NF-17 Wapiti II), Park County, Wyoming	USA	44.30000	-109.00000	52.8500	Hadrianus	Hadrianus sp.	Cope, 1872
764 N	North Fork, Wapiti Valley north Shoshone River (NF-3 Wapiti II), Park County, Wyoming	USA	44.30000	-109.00000	52.8500	Hadrianus	Hadrianus sp.	Cope, 1872
765 N	North Fork, Wapiti Valley north Shoshone River (NF-8 Wapiti II), Park County, Wyoming	USA	44.30000	-109.00000	52.8500	Hadrianus	Hadrianus sp.	Cope, 1872
א 992	UCMP V70251, Patrick Draw S, Sweetwater County, Wyoming	USA	41.70000	-109.00000	52.9000	Hadrianus	Hadrianus majusculus	Hay, 1904
ר ע	UCMP V70251, Patrick Draw S, Sweetwater County, Wyoming	USA	41.70000	-109.00000	52.9000	Hadrianus	Hadrianus sp.	Cope, 1872
ר 892	UCMP V74024, Turtle Graveyard General, Sweetwater County, Wyoming	USA	41.00000	-108.00000	52.9000	Hadrianus	Hadrianus majusculus	Hay, 1904
769 T	Tsagan-Khushu (Naran member, layer 2)	Mongolia	43.45500	100.37000	56.1100	gen.	gen. Indet.	Gray, 1825
N 077								

Acknowledgements

Johannes

МО

Catalina

Frank Tillack

Foreign literature: Roberto Rozzi Irena Rostalski

Sonja

Reading first draft: Phillip, Aaron, Falk, Vivi, Maria

Familie?!

Declaration of Authorship