

Università degli Studi di Firenze

Scuola di Ingegneria - Dipartimento di Ingegneria dell'Informazione

Tesi di Laurea Magistrale in Ingegneria Informatica

PROGETTAZIONE E SVILUPPO DI COMPONENTI PER LA PIATTAFORMA AIRQINO DEDICATA AL MONITORAGGIO DELLA QUALITÀ DELL'ARIA

Candidato Edoardo D'Angelis Relatori

Prof. Andrew D. Bagdanov

Prof. Pietro Pala

Correlatori Walter Nunziati Alice Cavaliere

Anno Accademico 2021/2022

Abstract

Indice

Abstract						
1 Introduzione						
	1.1	Conte	sto	1		
		1.1.1	Descrizione del problema	1		
		1.1.2	Progetti simili	1		
	1.2 La piattaforma AirQino		attaforma AirQino	1		
		1.2.1	Hardware dei sensori	2		
		1.2.2	Architettura e tecnologie	2		
		1.2.3	Progetti correlati	2		
2	Sviluppi tecnologici					
	2.1 Replica del database di produzione		ca del database di produzione	3		
		2.1.1	Motivazioni	3		
		2.1.2	Streaming Replication	3		
2.2 Ottimizzazione di query temporali		izzazione di query temporali	3			
		2.2.1	Motivazioni	3		
		2.2.2	Continuous Aggregates	4		
		2 2 3	Risultati ottenuti	4		

Indice

3	Calibrazione					
	3.1	I dati a disposizione	5			
		3.1.1 Dataset NO2	5			
		3.1.2 Dataset PM2.5 e PM10	5			
		3.1.3 Preprocessamento	5			
	3.2	Regressione	5			
		3.2.1 Regressione lineare	6			
		3.2.2 Regressione non lineare	6			
	3.3	Esperimenti e risultati ottenuti	6			
		3.3.1 NO2	6			
		3.3.2 PM2.5	6			
		3.3.3 PM10	6			
	3.4	Validazione	6			
		3.4.1 PM2.5	6			
		3.4.2 PM10	7			
	3.5	Discussione	7			
4	Interfaccia di calibrazione					
	4.1	Motivazioni	8			
	4.2	Tecnologie	8			
		4.2.1 Backend	8			
		4.2.2 Frontend	8			
	4.3	Funzionamento	8			
	4.4	Autenticazione	9			
	4.5	CI e deploy automatico	9			
Co	onclu	sioni e sviluppi futuri 1	0			
D:	Ribliografia					
Bibliografia 1						

Introduzione

. . .

1.1 Contesto

. . .

1.1.1 Descrizione del problema

. . .

1.1.2 Progetti simili

. .

1.2 La piattaforma AirQino

1.2.1 Hardware dei sensori

. . .

1.2.2 Architettura e tecnologie

. . .

1.2.3 Progetti correlati

Sviluppi tecnologici

2.1 Replica del database di produzione

. . .

2.1.1 Motivazioni

. . .

2.1.2 Streaming Replication

. .

2.2 Ottimizzazione di query temporali

. .

2.2.1 Motivazioni

2.2.2 Continuous Aggregates

. . .

2.2.3 Risultati ottenuti

Calibrazione

3.1 I dati a disposizione

. . .

3.1.1 Dataset NO2

. . .

3.1.2 Dataset PM2.5 e PM10

. . .

3.1.3 Preprocessamento

. . .

3.2 Regressione

3.2.1 Regressione lineare

. . .

3.2.2 Regressione non lineare

. . .

3.3 Esperimenti e risultati ottenuti

. . .

3.3.1 NO2

. . .

3.3.2 PM2.5

. . .

3.3.3 PM10

. . .

3.4 Validazione

. . .

3.4.1 PM2.5

3.4.2 PM10

. . .

3.5 Discussione

Interfaccia di calibrazione

4.1 Motivazioni

. . .

4.2 Tecnologie

...

4.2.1 Backend

. .

4.2.2 Frontend

. .

4.3 Funzionamento

4.4 Autenticazione

. . .

4.5 CI e deploy automatico

Conclusioni e sviluppi futuri

