GEL-2005Systèmes et commande linéaires

Examen #2

Lundi 18 décembre 2017, 8h30-10h20

Document permis: une feuille manuscrite recto-verso

Professeur: André Desbiens, Département de génie électrique et de génie informatique

Nomenclature:

Question 1 (17%)

Le système illustré à la figure 1 est stable (asymptotiquement) avec:

- $r = d_y = d_m = 0$,
- $\bullet \quad \lim_{s\to 0} G_p(s) \neq 0,$
- d_u est un échelon d'amplitude d_0 .

<u>Démontrez</u> la condition nécessaire (c'est-à-dire des caractéristiques que doivent posséder $G_c(s)$ et/ou $G_p(s)$) pour que $y(\infty) = 0$.

Question 2 (16%)

Pour le système de la figure 1, si $G(s) = \frac{2e^{-\theta s}}{1+5s}$, quelle doit être la valeur de θ pour obtenir une marge de gain de 6 dB?

Ouestion 3 (17%)

Le système illustré à la figure 2 est stable (asymptotiquement) avec:

- $d_{yi} = 0$,
- r est un échelon d'amplitude 3,
- d_y est un échelon d'amplitude 2,
- tous les pôles de $G_{pi}(s)$ sont à partie réelle négative,
- $G_{ci}(s)$ est un régulateur PI,
- $G_{po}(s) = \frac{2e^{-3s}}{s(1+5s)}$
- $G_{co}(s)$ est un régulateur proportionnel.

Que vaut $r_i(\infty)$? Toutes les étapes du raisonnement doivent être expliquées et correctement justifiées.

Figure 2

Question 4 (17%)

Le modèle identifié du procédé est $G_p(s) = \frac{-2e^{-0.1s}}{(1+10s)(1+0.5s)}$. On désire utiliser un régulateur PI comme illustré à la figure 1: $G_c(s) = \frac{K_c(1+T_is)}{T_is}$. Quelles doivent être les valeurs de K_c et T_i pour obtenir approximativement $H(s) = \frac{1}{1+8s}$?

Question 5 (17%)

Le modèle identifié du procédé est $G_p(s) = \frac{2e^{-5s}}{1+6s}$. Concevez un régulateur PI comme illustré à la figure 1 de façon à obtenir $\omega_0 = 0.09$ rad/s et une marge de phase de 55°. Donnez la fonction de transfert du régulateur.

Question 6 (16%)

Le système est celui illustré à la figure 1. La figure 3 montre la réponse en fréquences de G(s). Esquissez le lieu de Nyquist de H(s) en nommant les axes et en plaçant précisément les points pour les fréquences 0.1, 1 et 3 rad/s.

Réponses

- 1. Voir le chapitre 12 des notes de cours, section « NÉCESSITÉ D'UN INTÉGRATEUR DANS LE RÉGULATEUR », sous-section « Perturbation en échelon à l'entrée du procédé »
- 2. 2.35 sec
- 3. 0
- 4. $K_c = -0.625$, $T_i = 10$
- 5. 0.19(1 + 3.88s) / (3.88s)

6.

