Байесовский выбор субоптимальной структуры модели глубокого обучения

О. Ю. Бахтеев

Диссертация на соискание ученой степени кандидата физико-математических наук 05.13.17 — Теоретические основы информатики Научный руководитель: д.ф.-м.н. В.В. Стрижов

Московский физико-технический институт 16 июня 2019 г.

Выбор структуры модели глубокого обучения

Цель работы:

Предложить метод выбора структуры модели глубокого обучения.

Задачи:

- Предложить критерии оптимальной и субоптимальной сложности модели глубокого обучения.
- ② Предложить алгоритм построения модели субоптимальной сложности и оптимизации параметров.

Основные проблемы:

- Большое число параметров и гиперпараметров.
- Многоэкстремальность и невыпуклость задачи оптимизации параметров и гиперпараметров модели.
- 3 Высокая вычислительная сложность оптимизации.

Методы исследования.

Используются методы вариационного байесовского вывода. Рассматриваются графовое представление нейронной сети. Для получения вариационных оценок правдоподобия модели используется метод, основанный на градиентном спуске. В качестве метода получения модели субоптимальной сложности используется метод автоматического определения релевантности параметров с использоваением градиентных методов оптимизации гиперпараметров.

Проблема выбора оптимальной структуры модели глубокого обучения

Правдоподобие моделей с избыточным числом параметров не меняется при их удалении.

Глубокое обучение предполагает оптимизацию моделей с заведомо избыточной сложностью.

Выбор структуры: двуслойная нейросеть

Структурные параметры: $\Gamma = [\gamma^{0,1}, \gamma^{1,2}].$

$$\begin{split} \mathbf{f}(\mathbf{x}) &= \mathsf{softmax}\left(\mathbf{W}_0^{1,2}\mathsf{T}\mathbf{f}_1(\mathbf{x})\right), \quad f(\mathbf{x}): \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad \mathbf{x} \in \mathbb{R}^n. \\ \mathbf{f}_1(\mathbf{x}) &= \gamma_0^{0,1}\mathbf{g}_0^{0,1}(\mathbf{x}) + \gamma_1^{0,1}\mathbf{g}_1^{0,1}(\mathbf{x}) \end{split}$$

где $\mathbf{W} = [\mathbf{W}_0^{0,1}, \mathbf{W}_1^{0,1}, \mathbf{W}_0^{1,2}]^\mathsf{T}$ — матрицы параметров, $\{\mathbf{g}_{0,1}^0, \mathbf{g}_{0,1}^1, \mathbf{g}_{1,2}^0\}$ — обобщенно-линейные функции скрытых слоев нейросети.

Графовое представление модели глубокого обучения

Определение

Пусть:

- \bigcirc задан ациклический граф (V, E);
- ② для каждого ребра $(j,k) \in E$ определен вектор базовых функций мощности $K^{j,k}$: $\mathbf{g}^{j,k} = [\mathbf{g}_0^{j,k}, \dots, \mathbf{g}_{k'i,k}^{j,k}];$
- $oldsymbol{3}$ для каждой вершины $v \in V$ определена функция агрегации \mathbf{agg}_v .

Граф (V,E) в совокупности со множестом векторов базовых функций $\{\mathbf{g}^{j,k},(j,k)\in E\}$ и множеством функций агрегаций $\{\mathbf{agg}_v,v\in V\}$ задает параметрическое семейство моделей \mathfrak{F} , если функция $\mathbf{f}=\mathbf{f}_{|V|-1}$, задаваемая по правилу

$$\mathbf{f}_{v}(\mathbf{w}, \mathbf{x}) = \mathsf{agg}_{v}\left(\left\{\left\langle \boldsymbol{\gamma}^{j,k}, \mathsf{g}^{j,k}\right\rangle \left(\mathbf{f}_{j}(\mathbf{x})\right) | j \in \mathsf{Adj}(v_{k})\right\}\right), v \in \left\{1, \dots, |V| - 1\right\}, \quad \mathbf{f}_{0}(\mathbf{x}) = \mathbf{x}$$

является дифференцируемой по параметрам **w** функцией из признакового пространства $\mathbb X$ в пространство меток $\mathbb Y$ при значениях векторов, $\boldsymbol{\gamma}^{j,k} \in [0,1]^{K^{j,k}}$.

Ограничения на структурные параметры

Примеры ограничений для одного структурного параметра $\gamma, |\gamma|=3.$

Структурный параметр лежит на вершинах куба

Структурный параметр лежит на вершинах симплекса

Структурный параметр лежит внутри куба

Структурный параметр лежит внутри симплекса

Априорное распределение параметров

Определение

Априорным распределением параметров W и структуры Γ модели f назовем вероятностное распределение $\rho(W,\Gamma|h): \mathbb{W} \times \mathbb{\Gamma} \times \mathbb{H} \to \mathbb{R}^+$, где \mathbb{W} — множество значений параметров модели, Γ — множество значений структуры модели.

Гиперпараметрами $\mathbf{h} \in \mathbb{H}$ модели назовем параметры распределения $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h})$ (параметры распределения параметров модели \mathbf{f}).

Вариационными параметрами модели $m{ heta} \in \mathbb{R}^u$ назовем параметры распределения q, приближающие апостериорное распределение параметров и структыр:

$$q \approx \rho(\mathbf{W}, \mathbf{\Gamma}|\mathbf{X}, \mathbf{y}, \mathbf{h}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}, \mathbf{h}) p(\mathbf{W}, \mathbf{\Gamma}|\mathbf{h})}{\int \int_{\mathbf{W}', \mathbf{\Gamma}'} p(\mathbf{y}|\mathbf{X}, \mathbf{W}', \mathbf{\Gamma}', \mathbf{h}) p(\mathbf{W}', \mathbf{\Gamma}'|\mathbf{h}) d\mathbf{W}' d\mathbf{\Gamma}'}.$$

Оптимизационная задача

Определение. Пусть задано вариационное распределение q с параметрами θ , приближающие апостериорное распределение $p(\mathbf{W}, \mathbf{\Gamma} | \mathbf{X}, \mathbf{y}, \mathbf{h})$ параметров и структуры.

 Φ ункцией потерь $L(\theta|\mathbf{h},\mathbf{X},\mathbf{y})$ назовем дифференцируемую функцию, принимаемую за качество модели на обучающей выборки при параметрах распределения q.

 Φ ункцией валидации $Q(\mathbf{h}|\boldsymbol{\theta},\mathbf{X},\mathbf{y})$ назовем дифференцируемую функцию, принимаемую за качество модели при векторе $\boldsymbol{\theta}$, заданном неявно.

Bыбором модели ${f f}$ назовем решение двухуровневой задачи оптимизации:

$$\mathbf{h}^* = \operatorname*{arg\,min}_{\mathbf{h} \in \mathbb{H}} Q(\mathbf{h}|oldsymbol{ heta}^*, \mathbf{X}, \mathbf{y}),$$

где $oldsymbol{ heta}^*$ — решение задачи оптимизации

$$oldsymbol{ heta}^* = \mathop{\mathrm{arg\,min}}_{oldsymbol{ heta} \in \mathbb{R}^{oldsymbol{u}}} L(oldsymbol{ heta} | oldsymbol{\mathsf{h}}, oldsymbol{\mathsf{X}}, oldsymbol{\mathsf{y}}).$$

Правдоподобие как статистическая сложность

Статистическая сложность модели f:

$$\mathsf{MDL}(\mathsf{y},\mathsf{f}) = -\log \, \rho(\mathsf{h}) - \log \, \big(\rho(\mathsf{y}|\mathsf{X},\mathsf{h})\delta\mathfrak{D} \big) \big),$$

где $\delta \mathfrak{D} -$ допустимая точность передачи информации о выборке $\mathfrak{D}.$ Правдоподобие модели:

$$Q(\mathbf{h}|\boldsymbol{\theta}^*, \mathbf{X}, \mathbf{y}) = \log p(\mathbf{h}|\mathbf{X}, \mathbf{y}) = \log p(\mathbf{h}) + \log \int_{\mathbf{W}, \mathbf{\Gamma}} p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}) p(\mathbf{W}, \mathbf{\Gamma}|\mathbf{h}) d\mathbf{W} d\mathbf{\Gamma},$$

$$L(\boldsymbol{\theta}|\boldsymbol{h},\boldsymbol{X},\boldsymbol{y}) = log \rho(\boldsymbol{W},\boldsymbol{\Gamma}|\boldsymbol{X},\boldsymbol{y},\boldsymbol{h}) \propto log \rho(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{W},\boldsymbol{\Gamma},\boldsymbol{h}) + log \rho(\boldsymbol{W},\boldsymbol{\Gamma}|\boldsymbol{h}).$$

Выбор модели по правдоподобию

Аппроксимация выборки полиномами

Выбор оптимальной модели

Основные проблемы выбора оптимальной модели

- ullet Интеграл правдоподобия $p(\mathbf{y}|\mathbf{X},\mathbf{h})$ невычислим аналитически.
- Задача его оптимизации многоэкстремальна и невыпукла.

Требуется

Предложить метод поиска субоптимального решения задачи оптимизации, обобщающего различные алгоритмы оптимизации:

- Оптимизация правдоподобия.
- Последовательное увеличение и снижение сложности модели.
- Полный перебор вариантов структуры модели.

Вариационная нижняя оценка правдоподобия

Интеграл правдоподобия невычислим аналитически.

Правдоподобие модели:

$$\rho(\mathbf{y}|\mathbf{X}) = \int_{\mathbf{W},\mathbf{\Gamma}} \rho(\mathbf{y}|\mathbf{X},\mathbf{W},\mathbf{\Gamma}) \rho(\mathbf{W},\mathbf{\Gamma}) d\mathbf{W} d\mathbf{\Gamma}.$$

Пусть $q(\mathbf{W}, \mathbf{\Gamma}) = q_{\mathbf{W}}(\mathbf{W})q_{\mathbf{\Gamma}}(\mathbf{\Gamma})$ — непрерывное распределение, аппроксимирующее апостериорное распределение $p(\mathbf{W}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X})$. Получим нижнюю оценку интеграла правдоподобия.

$$\log p(\mathbf{y}|\mathbf{X}) \geq \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X},\mathbf{W},\mathbf{\Gamma}) - \mathsf{D}_{\mathit{KL}}(p(\mathbf{w},\mathbf{\Gamma})||q(\mathbf{W},\mathbf{\Gamma})) = \log \hat{p}_{q_{\mathbf{W}}q_{\mathbf{\Gamma}}}(\mathbf{y}|\mathbf{X}).$$

Полученная оценка совпадает с интегралом правдоподобия при

$$D_{\mathsf{KL}}(q(\mathsf{W},\mathsf{\Gamma})|(p(\mathsf{W},\mathsf{\Gamma}|\mathsf{y},\mathsf{X}))=0.$$

Общая задача оптимизации

Теорема (будет)

Следующая оптимизационная задача обобщает алгоритмы оптимизации: оптимизация правдоподобия, последовательное увеличение и снижение сложности модели, полный перебор вариантов структуры модели:

$$\begin{aligned} \mathbf{h}^* &= \operatorname*{arg\,max}_{\mathbf{h}} Q = \\ &= c_{\mathsf{train}} \mathsf{E}_{q^*} \mathsf{log}_{} \; p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}, \mathbf{h}, c_{\mathsf{prior}}) - \\ &- c_{\mathsf{prior}} \mathsf{D}_{\mathit{KL}} (p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, c_{\mathsf{temp}}) || q^*(\mathbf{W}, \mathbf{\Gamma})) - \\ &- c_{\mathsf{comb}} \sum_{p' \in \mathsf{P}} \mathsf{D}_{\mathit{KL}} (\mathbf{\Gamma}|p'), \end{aligned}$$

где

$$q^* = \underset{q}{\operatorname{arg\,max}} L = \mathsf{E}_q \mathsf{log} \ p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}, \mathbf{A}^{-1}, c_{\mathsf{temp}}) - \\ -c_{\mathsf{reg}} \mathsf{D}_{\mathit{KL}}(p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{A}^{-1}, \mathbf{m}, c_{\mathsf{temp}}) || q(\mathbf{W}), q(\mathbf{\Gamma}))$$

Нижняя вариационная оценка правдоподобия на основе мультистарта

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{h}) \geq \mathsf{E}_{q(\mathsf{W})} \mathsf{log} \; p(\mathbf{y}, \mathbf{W}|\mathbf{X},\mathbf{h}) - \mathsf{E}_{q_{\mathsf{W}}}(-\mathsf{log}(q_{\mathsf{W}})).$$

Теорема [Бахтеев, 2016]

Пусть L — функция потерь, градиент которой —

непрерывно-дифференцируемая функция с константой Липшица C. Пусть $\theta = [\mathbf{W}^1, \dots, \mathbf{W}^k]$ — начальные приближения оптимизации модели, β

— шаг градиентного спуска.

Тогда разность энтропий на смежных шагах оптимизации приближается следующим образом:

$$\mathsf{E}_{q_{\mathsf{W}}^{\tau}}(-\mathsf{log}(q_{\mathsf{W}}^{\tau})) - \mathsf{E}_{q_{\mathsf{W}}^{\tau-1}}(-\mathsf{log}(q_{\mathsf{W}}^{\tau-1})) \approx \frac{1}{k} \sum_{r=1}^{k} \left(\beta \operatorname{Tr}[\mathsf{H}(\mathsf{W}^{r})] - \beta^{2} \operatorname{Tr}[\mathsf{H}(\mathsf{W}^{r})\mathsf{H}(\mathsf{w}^{r})]\right)$$

где ${\bf H}$ — гессиан функции потерь L, $q_{{f W}}^{ au}$ — распределение $q_{{f W}}^{ au}$ в момент оптимизации au.

Градиентный спуск как вариационная оценка правдоподобия модели

Для вычисления правдоподобия был предложен ряд алгоритмов, основанных на стохастическом градиентном спуске.

Априорное распределение на структуре модели Распределение Дирихле

 $\tau = 5.0$

Распределение Гумбель-софтмакс

$$au=0.995$$

$$\tau = 5.0$$

Оператор оптимизации

Определение

Назовем *оператором оптимизации* алгоритм T выбора вектора параметров heta' по параметрам предыдущего шага heta.

Оператор стохастического градиентного спуска:

$$\hat{m{ heta}} = T \circ T \circ \cdots \circ T(m{ heta}_0, \mathbf{A}^{-1}, \mathbf{m}) = T^{\eta}(m{ heta}_0, \mathbf{A}^{-1}, \mathbf{m}), \quad \mathsf{где}T(m{ heta}, \mathbf{A}^{-1}, \mathbf{m}) =$$

$$= m{ heta} - eta
abla L(m{ heta}, \mathbf{A}^{-1}, \mathbf{m})|_{\widehat{\mathfrak{D}}},$$

 γ — длина шага градиентного спуска, $heta_0$ — начальное значение параметров heta, $\hat{\mathfrak{D}}$ — случайная подвыборка исходной выборки \mathfrak{D} .

Перепишем итоговую задачу оптимизации:

$$\mathbf{h}^* = \operatorname*{arg\,max}_{\mathbf{h}} Q\left(T^{\eta}(oldsymbol{ heta}_0, \mathbf{A}^{-1}, \mathbf{m})\right),$$

где $heta_0$ — начальное значение heta.

Оптимизация гиперпараметров: пример

Кросс-Валидация

Вариационная оценка

Оптимизация правдоподобия модели

Теорема [Бахтеев, 2018].

Пусть существуют параметры распределения $q(\mathbf{W}, \mathbf{\Gamma})$, такие что $D_{\mathsf{KL}}(q(\mathbf{W}, \mathbf{\Gamma})|p(\mathbf{W}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c_{\mathsf{temp}})) = 0$. Тогда двухуровневая задача оптимизация эквивалентна задаче оптимизации правдоподобия модели:

$$\underset{\mathbf{A}.\mathbf{m}}{\operatorname{arg max}} p(\mathbf{y}|\mathbf{X},\mathbf{A},\mathbf{m},c_{\operatorname{temp}})$$

при $c_{\text{reg}} = c_{\text{prior}} = c_{\text{train}} > 0, c_{\text{comb}} = 0.$

Параметрическая сложность

Обозначим за $F(c_{\text{reg}}, c_{\text{train}}, c_{\text{prior}}, c_{\text{comb}}, \mathbf{P}, c_{\text{temp}})$ множество экстремумов функции L при решении задачи двухуровневой оптимизации.

Теорема [Бахтеев, 2018].

Пусть $\mathbf{f} \in F(1,1,c_{\mathsf{prior}},0,\varnothing,c_{\mathsf{temp}})$. При устремлении c_{prior} к бесконечности параметрическая сложность модели \mathbf{f} устремляется к нулю.

$$\lim_{c_{\mathsf{prior}} o \infty} C_{\mathsf{param}}(\mathbf{f}) = 0.$$

Теорема [Бахтеев, 2018].

Пусть $\mathbf{f}_1 \in F(1,1,c_{\mathsf{prior}}^1,0,\varnothing,c_{\mathsf{temp}}), \mathbf{f}_2 \in F(1,1,c_{\mathsf{prior}}^2,0,\varnothing,c_{\mathsf{temp}}), \, c_{\mathsf{prior}}^1 < c_{\mathsf{prior}}^2.$ Пусть вариационные параметры моделей \mathbf{f}_1 и \mathbf{f}_2 лежат в области U, в которой соответствующие функции L и Q являются локально-выпуклыми. Тогда модель \mathbf{f}_1 имеет параметрическую сложность, не меньшую чем у \mathbf{f}_2 .

$$C_{\mathsf{param}}(\mathbf{f}_1) \geq C_{\mathsf{param}}(\mathbf{f}_2).$$

Структурная сложность

Теорема [Бахтеев, 2018].

Пусть для каждого ребра (i,j) семейства моделей $\mathfrak F$ априорное распределение

$$p(\gamma_{i,j}) = \lim_{c_{\mathsf{temp}} \to 0} \mathcal{GS}(c_{\mathsf{temp}}).$$

Пусть $c_{\mathsf{reg}} > 0, c_{\mathsf{train}} > 0, c_{\mathsf{prior}} > 0$. Пусть $\mathbf{f} \in F(c_{\mathsf{reg}}, c_{\mathsf{train}}, c_{\mathsf{prior}}, 0, \varnothing, c_{\mathsf{temp}})$. Тогда структурная сложность модели \mathbf{f} равняется нулю.

$$C_{\text{struct}}(\mathbf{f}) = 0.$$

Теорема [Бахтеев, 2018].

Пусть $\mathbf{f_1} \in F(c_{\mathsf{reg}}, c_{\mathsf{train}}, c_{\mathsf{prior}}, 0, \varnothing, c_{\mathsf{temp}}^1), \mathbf{f_2} \in \lim_{c_{\mathsf{temp}}^2 \to \infty} F(c_{\mathsf{reg}}, c_{\mathsf{train}}, c_{\mathsf{prior}}, 0, \varnothing, c_{\mathsf{temp}}^2)$. Пусть вариационные параметры моделей f_1 и f_2 лежат в области U, в которой соответствующие функции L и Q являются локально-выпуклыми. Тогда разница структурных сложностей моделей ограничена выражением:

$$C_{\mathsf{struct}}(\mathbf{f}_1) - C_{\mathsf{struct}}(\mathbf{f}_2) \leq \mathsf{E}_q^1 \mathsf{log} \ p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}.\mathbf{A}^{-1}, c_{\mathsf{temp}}^1) - \mathsf{E}_q^2 \mathsf{log} \ p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}, \mathbf{A}^{-1}).$$

Полный перебор

Пусть для каждого ребра (i,j) семейства моделей $\mathfrak F$ априорное распределение

$$p(\gamma_{i,j}) = lim_{c_{\mathsf{temp}} \to 0} \mathcal{GS}(c_{\mathsf{temp}}).$$

Рассмотрим последовательность **P**, состоящую из $N = \prod_{(j,k) \in E} K_{j,k}$ моделей, полученных в ходе оптимизаций вида:

$$egin{aligned} f_1 &\in F(\mathit{c}_\mathsf{reg}, 0, 0, \varnothing, \mathit{c}_\mathsf{comb}, \mathit{c}_\mathsf{temp}), \ &f_2 &\in F(\mathit{c}_\mathsf{reg}, 0, 0, \{q_1(\Gamma)\}, \mathit{c}_\mathsf{comb}, \mathit{c}_\mathsf{temp}), \ &f_3 &\in F(\mathit{c}_\mathsf{reg}, 0, 0, \{q_1(\Gamma), q_2(\Gamma)\}, \mathit{c}_\mathsf{comb}, \mathit{c}_\mathsf{temp}), \end{aligned}$$

где $C_{\mathsf{reg}} > 0, c_{\mathsf{comb}} > 0$

Теорема

Вариационные распределения q_Γ структур последовательности ${f P}$ вырождаются в распределения вида $\delta(\hat{f m})$, где $\hat{f m}$ — точка на декартовом произведении вершин симплексов структуры модели.

Последовательность соответствует полному перебору структуры Γ .

Результаты, выносимые на защиту

- Предложен метод выбора модели наиболее правдоподобной структуры, обобщающий ранее описанные алгоритмы оптимизации:
 - оптимизация правдоподобия;
 - ▶ последовательное увеличение сложности модели;
 - ▶ последовательное снижение сложности модели;
 - полный перебор вариантов структуры модели.
- Предложен алгоритм оптимизации параметров, гиперпараметров и структурных параметров моделей глубокого обучения.
- Проведено исследование свойств алгоритмов выбора модели при различных значениях мета-параметров.
- Проведен вычислительный эксперимент, иллюстрирующий работу предложенного метода.

Список работ автора по теме диссертации

Публикации ВАК

- Бахтеев О.Ю., Попова М.С., Стрижов В.В. Системы и средства глубокого обучения в задачах классификации. // Системы и средства информатики. 2016. № 26.2. С. 4-22.
- 2 Бахтеев О.Ю., Стрижов В.В. Выбор моделей глубокого обучения субоптимальной сложности. // Автоматика и телемеханика. 2018. №8. С. 129-147.
- (3) Огальцов А.В., Бахтеев О.Ю. Автоматическое извлечение метаданных из научных PDF-документов. // Информатика и её применения. 2018.
- Смердов А.Н., Бахтеев О.Ю., Стрижов В.В. Выбор оптимальной модели рекуррентной сети в задачах поиска парафраза. // Информатика и ее применения. 2019.
- [5] Грабовой А.В., Бахтеев О.Ю., Стрижов В.В. Определение релевантности параметров нейросети. // Информатика и её применения. 2019.

Выступления с докладом

- Па "Восстановление панельной матрицы и ранжирующей модели в разнородных шкалах", Всероссийская конеренция «57-я научная конеренция МФТИ», 2014.
- (2) "A monolingual approach to detection of text reuse in Russian-English collection", Международная конференция «Artificial Intelligence and Natural Language Conference», 2015.
- 3 "Выбор модели глубокого обучения субоптимальной сложности с использованием вариационной оценки правдоподобия", Международная конференция «Интеллектуализация обработки информации», 2016.
- "Author Masking using Sequence-to-Sequence Models", Международная конференция «Conference and Labs of the Evaluation Forum», 2017.
- (5) "Градиентные методы оптимизации гиперпараметров моделей глубокого обучения", Всероссийская конференция «Математические методы распознавания образов ММРО», 2017.
- (б) "Детектирование переводных заимствований в текстах научных статей из журналов, входящих в РИНЦ", Всероссийская конференция «Математические методы распознавания образов ММРО», 2017.
- Тайесовский выбор наиболее правдоподобной структуры модели глубокого обучения", Международная конференция «Интеллектуализация обработки информации», 2018.