Définition

Propriété

Exemples

On veut calculer -3,2 + (-5,9).

- -3,2 et -5,9 sont deux nombres négatifs :
- leur somme est négative
- on ajoute leurs distances à zéro

$$-3,2+(-5,9)=-(3,2+5,9)=-9,1$$

On veut calculer A = 5,6 - (-3,2).

Pour soustraire -3,2, on ajoute son opposé 3,2.

$$A = 5,6 - (-3,2)$$

$$A = 5,6 + 3,2$$

$$A = 8.8$$

Pour éviter que deux signes se suivent, on utilise des parenthèses.

Calculer les expressions suivantes. A = -14 + (-17)

$$B = 13,7 + (-6,9)$$

$$C = -25 - 13$$

$$D = -21,3 - (-4,8)$$

Solution

A = -14 + (-17)A = -(14 + 17)A = -31

–14 et –17 sont deux nombres négatifs : leur somme est négative;
on ajoute leurs distances à zéro.

B = 13,7 - 6,9B = 6.8

B = 13.7 + (-6.9) 13.7 et -6.9 sont de signes contraires : • leur somme est positive (car 13,7 > 6,9); · on soustrait leurs distances à zéro.

C = -25 - 13C = -25 + (-13)C = -38

Pour soustraire 13, on ajoute son opposé –13.

D = -21,3 + 4,8D = -16,5

D = -21,3 - (-4,8) Pour soustraire -4,8, on ajoute son opposé 4,8.

💢 Entraine-toi avec Calculs avec des nombres relatifs (1 à 4) 💥

Définition

Propriété

Exemples

$$2 \times 7 = 14$$
 $\frac{5}{-4} = -1,25$

$$\frac{-3}{-5} = 0.6$$
 $3 \times (-5.5) = -16.5$

Attention, le produit (ou le quotient) de deux nombres négatifs est positif!

Calculer les expressions suivantes.

$$A = -4 \times 12$$
 $B = -3 \times (-4,2)$

$$C = \frac{-15}{-3}$$
 $D = \frac{25}{-2,5}$

Solution

 $A = -4 \times 12$ A = -48

-4 et 12 sont de signes contraires, donc le produit est négatif. On multiplie les distances à zéro : $4 \times 12 = 48$.

 $B = -3 \times (-4,2)$ B = 12,6

-3 et -4,2 sont de même signe, donc le produit est positif. On multiplie les distances à zéro : $3 \times 4,2 = 12,6$.

 $C = \frac{-15}{-3}$ C = 5

–15 et –3 sont de même signe, donc le quotient est positif. On divise les distances à zéro : $15 \div 3 = 5$.

 $D = \frac{25}{-2.5}$ D = -10

25 et –2,5 sont de signes contraires, donc le quotient est négatif. On divise les distances à zéro : $25 \div 2,5 = 10.$

Propriétés

a et b désignent des nombres relatifs ($b \neq 0$).

- •
- •

Exemples

- $-7.2 \times (-1) = -(-7.2) = 7.2$. L'opposé de -7.2 est 7.2.
- $\frac{-2}{13} = \frac{2}{-13} = -\frac{2}{13}$: les trois quotients sont négatifs.

Recopier les fractions suivantes puis encadrer en vert celles égales à $-\frac{3}{7}$ et en bleu celles égales à $\frac{3}{7}$.

Solution

3 -7

XEntraine-toi avec Calculs avec des nombres relatifs (à partir de 5)
X

DM

Climatologie : le mois de janvier dans le village le plus froid de France

F

Act. 1

Définition

a désigne un nombre relatif et n désigne un nombre entier supérieur ou égal à 2.

Remarque

Cas particuliers: on convient que $a^1 = a$ et que, si $a \ne 0$, $a^0 = 1$.

Exemples

$$(-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = 81$$
4 facteurs

$$2^{-3} = \frac{1}{2^3} = \frac{1}{2 \times 2 \times 2} = \frac{1}{8}$$

$$4^0 = 1$$

Calculer : $A = -3^2 + 5 \times 2^{-3}$

$$B = (-3)^2 + (5 \times 2)^3$$

Solution

$$A = -3^2 + 5 \times 2^{-3}$$

 $A = -9 + 5 \times 0,125$ A = -9 + 0,625A = -8,375 On commence par les puissances puis la multiplication et enfin l'addition.

 $B = (-3)^{2} + (5 \times 2)^{3}$ $B = (-3)^{2} + 10^{3}$ B = 9 + 1000

B = 1009

Les parenthèses modifient les priorités de calculs.

Convention

Exemples

$$A = 1 + 3 \times 2^3 = 1 + 3 \times 8 = 1 + 24 = 25$$

$$B = 1 + (3 \times 2)^3 = 1 + 6^3 = 1 + 216 = 217$$

Propriété

n désigne un nombre entier strictement positif.

Exemples

$$10^9 = 1 \underbrace{000000000}_{9.7 \text{éros}}$$
 (1 milliard)

$$10^{-6} = \underbrace{0,000001}_{6 \text{ zéros}}$$
 (1 millionième)

Donner l'écriture décimale des nombres suivants.

a. 10⁵

b. 10^{-4}

Solution

a.
$$10^5 = 100000$$
 5 zéros

b.
$$10^{-4} = \underbrace{0,000}_{4 \text{ zéros}} 1$$

Écrire les nombres suivants sous forme d'une puissance de 10.

a. 10 000 000 Solution

a.
$$1\underbrace{0\,000\,000}_{7\,\text{zeros}} = 10^7$$

b.
$$\underbrace{0,000\,000}_{\text{7 zéros}} 1 = 10^{-7}$$

b. 0,000 000 1

Définition

Exemples

L'écriture scientifique de 1 785 000 000 est $1,785 \times 10^9$ (1 milliard 785 millions).

L'écriture scientifique de 0,000 028 est 2.8×10^{-5} .

Donner l'écriture décimale des nombres suivants.

 $A = 3.5 \times 10^3$

 $B = 450 \times 10^{-5}$

Solution

 $A = 3.5 \times 10^3$

$$B = 450 \times 10^{-5}$$

 $A = 3.5 \times 1000$ A = 3500

$$B = \frac{450}{100000}$$

B = 0.0045

Donner l'écriture scientifique des nombres suivants. $A = 365\,000\,000$

B = 0,0000276

Solution

A = 365000000

B = 0.00002762,76

 $A = 3,65 \times 100000000$

 $A = 3,65 \times 10^8$ 100000

 $B = 2,76 \times 10^{-5}$

🕇 Evolution démographique, gestion des ressources et réchauffement climatique

Définition

Remarques

- Les nombres entiers, les nombres décimaux et les fractions sont des nombres rationnels.
- Il existe des nombres qui ne sont pas rationnels, par exemple : π et $\sqrt{2}$, qui ne peuvent pas s'écrire sous forme de fraction.

Propriétés

Exemples

$$\frac{3,1}{7} = \frac{3,1 \times 10}{7 \times 10} = \frac{31}{70}$$

$$\frac{18}{30} = \frac{18 \div 6}{30 \div 6} = \frac{3}{5}$$

• On veut savoir si les fractions $\frac{20}{37}$ et $\frac{220}{407}$ sont égales.

On calcule les « produits en croix »:

$$20 \times 407 = 8140$$
 et $220 \times 37 = 8140$.

Les produits en croix sont égaux, donc les fractions sont égales :

$$\frac{20}{37} = \frac{220}{407}$$

Les fractions suivantes sont-elles égales ? **a.** $\frac{48}{42}$ et $\frac{8}{7}$ **b.** $\frac{4}{3}$ et $\frac{32}{21}$ **c.** $\frac{168}{42}$ et $\frac{60}{15}$ **d.** $\frac{48}{5}$ et $\frac{31}{3}$

a.
$$\frac{48}{42}$$
 et $\frac{8}{7}$

b.
$$\frac{4}{3}$$
 et $\frac{32}{21}$

c.
$$\frac{168}{42}$$
 et $\frac{60}{15}$

d.
$$\frac{48}{5}$$
 et $\frac{31}{3}$

Act. 3

a.
$$\frac{48}{42} = \frac{48 \div 6}{42 \div 6} = \frac{8}{7}$$
 donc $\frac{48}{42} = \frac{8}{7}$.
b. $\frac{4}{3} = \frac{4 \times 7}{3 \times 7} = \frac{28}{21}$; $28 \ne 32$ donc $\frac{4}{3} \ne \frac{32}{21}$.

c.
$$168 \times 15 = 2520$$
 et $60 \times 42 = 2520$ donc $\frac{168}{42} = \frac{60}{15}$.
d. $48 \times 3 = 144$ et $5 \times 31 = 153$ donc $\frac{48}{5} \neq \frac{31}{3}$.

On peut également calculer les « produits en croix » et regarder si'ls sont égaux ou non.

Définition

a et b désignent deux entiers relatifs ($b \neq 0$).

 $\frac{5}{8}$ est une fraction irréductible car le seul diviseur positif commun à 5 et 8 est 1.

Méthode

a et b désignent deux entiers relatifs ($b \neq 0$).

▶ Exemple

On cherche la forme irréductible de $\frac{24}{36}$.

$$\frac{24}{36} = \frac{24 \div 2}{36 \div 2} = \frac{12}{18} = \frac{12 \div 2}{18 \div 2} = \frac{6}{9} = \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \qquad \text{ou} \qquad \frac{24}{36} = \frac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3} = \frac{2}{3}$$

$$\frac{24}{36} = \frac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3} = \frac{2}{3}$$

a.
$$\frac{-615}{45}$$

b.
$$\frac{126}{72}$$

$$c. -\frac{525}{405}$$

d.
$$\frac{-720}{-3,150}$$

Solution

a.
$$\frac{-615}{45} = -\frac{615 \div 3}{45 \div 3} = -\frac{205}{15} = -\frac{205 \div 5}{15 \div 5} = -\frac{41}{3}$$

b.
$$\frac{126}{72} = \frac{126 \div 2}{72 \div 2} = \frac{63}{36} = \frac{63 \div 9}{36 \div 9} = \frac{7}{4}$$

$$\mathbf{c.} - \frac{525}{405} = -\frac{3 \times 5 \times 5 \times 7}{3 \times 3 \times 3 \times 3 \times 5} = -\frac{5 \times 7}{3 \times 3 \times 3} = -\frac{35}{27}$$

d.
$$\frac{-720}{-3150} = \frac{2^4 \times 3^2 \times 5}{2 \times 3^2 \times 5^2 \times 7} = \frac{2^3}{5 \times 7} = \frac{8}{35}$$

On simplifie la fraction par étapes, par divisions successives du numérateur et du dénominateur, en s'aidant par

On décompose le numérateur et le dénominateur en produits de facteurs

★ Sensibilité écologique

★

Propriété

Exemple 1

$$\frac{5}{2} + \frac{3}{7} = \frac{5 \times 7}{2 \times 7} + \frac{3 \times 2}{7 \times 2} = \frac{35}{14} + \frac{6}{14} = \frac{41}{14}$$

Exemple 2

$$\frac{5}{2} + \frac{3}{7} = \frac{5 \times 7}{2 \times 7} + \frac{3 \times 2}{7 \times 2} = \frac{35}{14} + \frac{6}{14} = \frac{41}{14}$$

$$\frac{3}{4} - \frac{11}{6} = \frac{3 \times 3}{4 \times 3} - \frac{11 \times 2}{6 \times 2} = \frac{9}{12} - \frac{22}{12} = \frac{-13}{12}$$

Propriété

Exemple 1

$$\frac{3}{8} \times \frac{-1}{4} = \frac{3 \times (-1)}{8 \times 4} = \frac{-3}{32}$$

$$\frac{24}{28} \times \frac{56}{18} = \frac{24 \times 56}{28 \times 18} = \frac{6 \times 4 \times 8 \times 7}{4 \times 7 \times 3 \times 6} = \frac{8}{3}$$

Calculer et donner le résultat sous forme d'une fraction irréductible. $A = \frac{7}{10} - \frac{3}{5} + \frac{-2}{25} \qquad B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$ On cherche le signe du résultat,

$$A = \frac{7}{10} - \frac{3}{5} + \frac{-2}{25}$$

$$B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$$

A =
$$\frac{7 \times 5}{10 \times 5} - \frac{3 \times 10}{5 \times 10} + \frac{-2 \times 2}{25 \times 2}$$
A = $\frac{35}{50} - \frac{30}{50} + \frac{-4}{50}$
A = $\frac{35 - 30 - 4}{50}$

$$A = \frac{50}{50} - \frac{1}{50} + \frac{1}{50}$$

$$A = \frac{35 - 30 - 4}{50}$$

multiple commun à 10, 5 et 25, par exemple 50.

$$B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$$

$$B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$$

$$B = -\frac{3 \times 5 \times 3 \times 3 \times 2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 3 \times 7}$$

$$B = -\frac{3 \times 2}{7 \times 7}$$

$$B = -\frac{6}{49}$$
puls on décompose en produ de facteurs premiers pour simplifier avant de calculer.

$$B = -\frac{3 \times 2}{7 \times 7}$$

$$B = -\frac{6}{49}$$

Définition

Propriété

a et b désignent des nombres relatifs non nuls.

Exemple

L'inverse de –3 est $\frac{1}{3}$, c'est-à-dire $\frac{-1}{3}$ ou $-\frac{1}{3}$.

Propriété

$$\frac{2}{9} \div \frac{-3}{7} = \frac{2}{9} \times \frac{7}{-3} = \frac{2 \times 7}{9 \times (-3)} = \frac{14}{-27} = -\frac{14}{27}$$

$$\bullet \frac{\frac{7}{3}}{\frac{-4}{5}} = \frac{7}{3} \div \frac{-4}{5} = \frac{7}{3} \times \frac{5}{-4} = -\frac{35}{12}$$

$$\frac{1}{4}$$
 c. $\frac{-3}{8}$

2. Calculer et donner le résultat sous forme d'une fraction irréductible.
$$A = \frac{-11}{9} \div \frac{-8}{5} \quad B = \frac{\frac{-5}{7}}{8} \quad C = \frac{\frac{-5}{7}}{8} \quad D = \frac{\frac{-14}{25}}{\frac{-21}{15}}$$

Solution

1. a. 0,1 × 10 = 1 donc l'inverse de 0,1 est 10.
b.
$$\frac{1}{4}$$
 × 4 = 1 donc l'inverse de $\frac{1}{4}$ est 4. c. $\frac{-3}{8}$ × $\frac{8}{-3}$ = 1 donc l'inverse de $\frac{-3}{8}$ est $\frac{8}{-3}$ ou $\frac{-3}{8}$.

2.
$$A = \frac{-11}{9} \div \frac{-8}{5}$$

$$B = \frac{\frac{-5}{7}}{8}$$

$$C = \frac{-5}{\frac{7}{8}}$$

$$D = \frac{\frac{-14}{25}}{\frac{-21}{15}}$$

2. $A = \frac{-11}{9} \div \frac{-8}{5}$ $B = \frac{\frac{-5}{7}}{8}$ $C = \frac{-5}{\frac{7}{8}}$ $D = \frac{\frac{-14}{25}}{\frac{15}{15}}$ On transforme la division en une multiplication en remplaçant la deuxième fraction par son inverse. On peut remplacer le trait principal de fraction par une division. $A = \frac{-11 \times 5}{9 \times (-8)}$ $A = \frac{-5 \times 1}{7 \times 8}$ $A = \frac{-5}{56}$ $A = \frac{-5}{56}$ $A = \frac{-40}{7}$ $A = \frac{2}{5}$

$$A = \frac{-11}{9} \times \frac{5}{-8}$$

$$B = \frac{-5}{7} \div 8$$
 C =

$$D = -5 \div \frac{7}{8}$$

$$D = \frac{-14}{25} \div \frac{1}{25}$$

$$A = \frac{-11 \times 5}{9 \times (-8)}$$

$$A = \frac{55}{2}$$

$$B = \frac{-5}{7} \times \frac{1}{8}$$
$$B = \frac{-5 \times 1}{1}$$

$$C = \frac{-5 \times 8}{7}$$

$$D = \frac{2 \cdot 7 \cdot 3 \cdot 5}{5 \cdot 5 \cdot 3 \cdot 7}$$

XEntraine-toi avec Opérations avec des fractions