МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

- Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

Двудольным графом (= графом Кёнига) называется граф K(X,U), у которого множество вершин X состоит из двух долей (подмножеств) - X_1 и X_2 таких, что:

$$X = X_1 \cup X_2, X_1 \cap X_2 = \emptyset$$
,

а множество U состоит только из таких ребер и (или) дуг, для которых выполняется

следующее условие:

$$\forall (x,y) \in U : x \in X_1, \ y \in X_2$$

Примечание:

1. Граф Кёнига можно раскрасить в два цвета, т.к. вершины в долях не смежны между собой. Поэтому граф Кёнига называют еще и бихроматическим графом.

Примечание:

2. Число внутренней устойчивости графа Кёнига $lpha_0(K) = \max(|X_1|,\,|X_2|).$

- Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

- ✓ Понятие двудольного графа (графа Кёнига)
- Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

Для двудольности графа необходимо и достаточно, чтобы этот граф не содержал простых циклов нечётной длины.

Доказательство необходимости.

Пусть задан двудольный граф K(X,U), содержащий множество циклов C.

 $\forall c \in C: l_c = 4, 6, 8...,$ т.к. по определению двудольного графа все простые циклы в нем строятся из ребер, концы которых находятся в разных долях этого графа.

Для двудольности графа необходимо и достаточно, чтобы этот граф не содержал простых циклов нечётной длины.

Доказательство необходимости.

Пусть задан двудольный граф K(X,U), содержащий множество циклов C.

 $\forall c \in C: l_c = 4, 6, 8...,$ т.к. по определению двудольного графа все простые циклы в нем строятся из ребер, концы которых находятся в разных долях этого графа.

Для двудольности графа необходимо и достаточно, чтобы этот граф не содержал простых циклов нечётной длины.

Доказательство достаточности.

Пусть задан граф G(X,U), содержащий множество циклов C.

Разметим вершины этого графа с помощью метода обхода вершин вширь следующим образом. Произвольно выберем первую вершину в графе», например, x_1 и присвоим ей числовую метку «1». Далее присвоим метку «2» образам этой вершины, а метку «3» - образам вершин, получивших метку «2» и т.д. до тех пор, пока все вершины графа не будут размечены.

Для двудольности графа необходимо и достаточно, чтобы этот граф не содержал простых циклов нечётной длины.

Доказательство достаточности.

При разметке вершин цикла $c \in C$ с чётной длиной каждая вершина получит метки из ряда «1,3...» или «2,4,...». Если в графе все циклы только чётной длины, то все вершины делятся на две доли X_1 и X_2 с метками «1,3...» или «2,4,...», причем ребра, входящие в эти циклы, будут инцидентны вершинам из разных долей.

Для двудольности графа необходимо и достаточно, чтобы этот граф не содержал простых циклов нечётной длины.

Доказательство достаточности.

При разметке вершин цикла $c \in C$ с нечётной длиной каждая вершина получит чётные и нечётные метки. Такие вершины нельзя разбить на две доли двудольного графа X_1 и X_2 , т.к. $X_1 \cap X_2 \neq \emptyset$.

Примечание: Любое дерево (лес) является графом Кёнига.

- ✓ Понятие двудольного графа (графа Кёнига)
- Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- Задача линейного назначения,понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

Содержательная постановка задачи линейного назначения

Имеется n вакантных рабочих мест, на которые претендуют n рабочих. Известна стоимость назначения каждого рабочего на каждое вакантное рабочее место. Необходимо так распределить рабочих по рабочим местам, чтобы суммарная стоимость такого назначения была минимальной.

Формальная постановка задачи линейного назначения

<u>Дано</u>: взвешенный полный двудольный граф K(X,U), в котором множество вершин X состоит из двух долей - R и Y (R моделирует n рабочих, а Y-n рабочих мест). Граф представлен матрицей весов $||W||_{n \times n}$, в которой w_{ij} — стоимость назначения i—го рабочего на j—место.

<u>Найти</u>: Совершенное паросочетание $U^*\subset U$ в графе K(X,U).

Совершенное паросочетание — это наибольшее паросочетание графа с минимальным суммарным весом его ребер.

$$lpha_1=3 \ \{(r_1,y_1),(r_2,y_3),(r_3,y_2)\}$$
 стоимость назначения $1+1+2=4$

Совершенное паросочетание — это наибольшее паросочетание графа с минимальным суммарным весом его ребер.

$$lpha_1=3 \ \{(r_1,y_1),(r_2,y_3),(r_3,y_2)\}$$
 стоимость назначения $1+1+2=4$

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- Задача линейного назначения,понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- Кёнигово представление гиперграфа, понятие гиперграфа
 - ✓ Моделирование сложных объектов

$$X = \{x_1, x_2, ..., x_n\}, X \neq \emptyset$$

Гиперграф H(X, R) — это:

- графовая модель, задающая N-арное отношение на множестве X ∪ X * X ∪ X * X ∨ ... ∪ X * X * ... * X;
- отношение инцидентности на множествах X и R, где X множество вершин, а R множество его гипердуг (гиперрёбер), причём \forall r \in R: r \subset X.

n = 6, m = 5

$$r_1 = \{x_1, x_2, x_3\}$$

 $r_2 = \{x_2, x_5, x_6\}$
 $r_3 = \{x_1, x_3, x_5, x_6\}$
 $r_4 = \{x_4\}$
 $r_5 = \{x_3, x_4\}$

$$r_1 = \{x_1, x_2, x_3\}$$

$$r_2 = \{x_2, x_5, x_6\}$$

$$r_3 = \{x_1, x_3, x_5, x_6\}$$

$$\mathsf{r}_{4} = \{\mathsf{x}_{4}\}$$

$$r_5 = \{x_3, x_4\}$$

Примечание.

- 1. Количество вершин n и количество гиперрёбер m определяют порядок гиперграфа (аналог размерности бинарного графа).
- 2. Равные множества в R называются кратными гиперрёбрами.
- 3. Количество вершин, инцидентных гиперребру $r \in R$, определяет **степень этого гиперребра** $\rho(r)$, причем $\rho(r) \ge 1$.
- **4. Смежность** в гиперграфах. Два гиперграфа r' и r'' называются смежными, если выполняется условие $r' \cap r'' \neq \emptyset$.
- **5.** Однородность гиперграфов. Если в гиперграфе H(X, R) выполняется условие \forall $r \in R$: $\rho(r) = h$, то такой гиперграф называется h-однородным или h-униформным.
- 6. Бинарный граф является частным случаем гиперграфа, причем однородным с h = 2.

Кёнигово представление гиперграфа H(X, R) — это двудольный граф K(H) = G(X', U), где $X' = X \cup R$ — множество вершин, а U — множество рёбер, моделирующих инцидентность вершин и гиперрёбер в гиперграфе H(X, R). \checkmark

Кёнигово представление гиперграфа H(X, R) – это двудольный граф K(H) = G(X', U), где $X' = X \cup R$ – множество вершин, а U – множество рёбер, моделирующих инцидентность вершин и гиперрёбер в гиперграфе H(X, R).

R) KONMANCERO BEDIUMH — D + M A KONMANCERO

Примечание.

- 1. В Кёниговом представлении гиперграфа H(X, R) количество вершин n + m, а количество бинарных рёбер $\sum_{r=0}^{\infty} \rho(r)$.
- 2. Кёнигово представлёние гиперграфа H(X, R) адекватно отображает свойства этой модели (инцидентность вершин и гиперрёбер).
- 3. Кёнигово представление гиперграфа H(X, R) позволяет использовать для гиперграфов все известные методы и алгоритмы, разработанные для бинарных графов.

Кёнигово представление гиперграфа H(X, R) – это двудольный граф K(H) = G(X', U), где $X' = X \cup R$ – множество вершин, а U – множество рёбер, моделирующих инцидентность вершин и гиперрёбер в гиперграфе H(X, R).

4. Гиперграф можно представить в виде ненулевой подматрицы смежности $||M||_{nxn}$ или ненулевой подматрицы связности $||A||_{nxn}$ его Кёнигова представления.

Двойственность гиперграфов

Пусть имеется n, m-гиперграф H(X,R) без изолированных вершин. Тогда новый m,n-гиперграф $H^*(X^*,R^*)$ называется двойственным к гиперграфу H(X,R), если в нем $X^*=R$, R^* - множество гиперрёбер, каждое гиперребро r^* , моделирует инцидентность гиперрёбер в исходном гиперграфе H(X,R) вершине x_i .

$$X^* = \{r_1, r_2, r_3, r_4, r_5, r_6\}$$

 $r^*_1(x_1) = \{r_1\}, r^*_2(x_2) = \{r_1, r_2\}, ...$

Двойственность гиперграфов

Пусть имеется n, m-гиперграф H(X,R) без изолированных вершин. Тогда новый m,n-гиперграф $H^*(X^*,R^*)$ называется двойственным к гиперграфу H(X,R), если в нем $X^*=R$, R^* - множество гиперрёбер, каждое гиперребро r^* , моделирует инцидентность гиперрёбер в исходном гиперграфе H(X,R) вершине x_i .

Примечание.

- 1. Если гиперграф H(X, R) не имеет изолированных вершин, то $(H^*)^* = H$.
- 2. Гиперграф H(X, R) без изолированных вершин и двойственный к нему гиперграф $H^*(X^*, R^*)$ имеют общее Кёнигово представление, т.е. $K(H) = K(H^*)$.

Цепью в гиперграфе H(X, R) с длиной I > 0 называется такая упорядоченная последовательность $\mu = (x_1, r_1, ..., r_l, x_{l+1})$, в которой:

- 1. Все вершины $X_1,...,X_{l+1}$ различны между собой,
- 2. Все гиперрёбра $r_1,...,r_l$ различны между собой,
- 3. Каждое гиперребро r_i инцидентно вершинам x_i и x_{i+1} .

Пример цепи (I = 3):
$$\mu_1 = (x_2, r_2, x_5, r_3, x_3, r_5, x_4)$$

Цикл в гиперграфе H(X, R) – это замкнутая цепь, т.е. цепь, в которой $\mathcal{X}_1 = \mathcal{X}_{l+1}.$

Пример цикла (I = 3):
$$\mu_2 = (x_2, r_2, x_5, r_3, x_3, r_1, x_2)$$

$$\mu_1 = (x_2, r_2, x_5, r_3, x_3, r_5, x_4)$$

$$\mu_2 = (x_2, r_2, x_5, r_3, x_3, r_1, x_2)$$

Примечание.

- 1. Понятие цепи и цикла в гиперграфе соответствует понятию простой цепи и простого цикла в неографе.
- 2. Поиск цепей и циклов в гиперграфе сводится к поиску простых цепей и простых циклов в его Кёниговом представлении.
- 3. Длина цепи (цикла) в гиперграфе определяются количеством гиперрёбер в последовательности.
- 4. Минимальная длина цикла в гиперграфе 2 (как минимум два гиперребра).
- 5. Понятие связности гиперграфа аналогично понятию связности графа: в связном гиперграфе любая пара вершин может быть соединена хотя бы одной цепью.
- 6. Количество компонент связности гиперграфа совпадает с количеством компонент связности его Кёнигова представления, т.е. k(H) = k(K).

Цикломатический ранг гиперграфа H(X,R) - σ (H) определяется цикломатическим числом его Кёнигова представления K(H).

Известно, что для любого бинарного графа σ (G) = m(G) – n(G) + k(G).

Для графа K(H): n(K) = n + m, m(K) =
$$\sum_{K=0}^{\infty} \rho(r)$$
 , k(H) = k(K).

Тогда
$$\sigma$$
 (H) = σ (K) = $\sum_{\forall r \in R} \rho(r) - (n+m) + k(K)$.

$$\sigma(H) = [3+3+4+1+2]-(6+5)+1=3.$$

1.
$$r_3' = r_3 \setminus \{x_3\}$$

2.
$$r_2' = r_2 \setminus \{x_5\}$$

3.
$$r_2^{"} = r_2^{'} \setminus \{x_6\}$$

Цикломатический ранг гиперграфа H(X, R) - σ (H) определяется цикломатическим числом его Кёнигова представления K(H).

Известно, что для любого бинарного графа σ (G) = m(G) – n(G) + k(G).

Для графа K(H): n(K) = n + m, m(K) =
$$\sum_{\forall r \in R} \rho(r)$$
 , k(H) = k(K). Тогда σ (H) = σ (K) = $\sum_{\forall r \in R} \rho(r) - (n+m) + k(K)$.

Примечание.

- 1. Цикломатический ранг гиперграфа указывает на то, сколько рёбер надо удалить в его Кёниговом представлении, чтобы превратить его в остовное дерево (остовный лес).
- 2. Удаление каждого бинарного ребра (x, r) в Кёниговом представлении гиперграфа приводит к удалению вершины x из гиперребра r.

Подгиперграфом, порожденным в гиперграфе H(X, R) непустым множеством $X' \subset X$, называется новый гиперграф H'(X', R'), в котором R'={r': r' = r \cap X'; r' \neq \emptyset }.

Пусть
$$X' = \{x_1, x_2, x_3, x_4\}$$

Тогда:
 $r_1' = \{x_1, x_2, x_3\} \cap \{x_1, x_2, x_3, x_4\} = \{x_1, x_2, x_3\}$
 $r_2' = \{x_2, x_5, x_6\} \cap \{x_1, x_2, x_3, x_4\} = \{x_2\}$
 $r_3' = \{x_1, x_3, x_5, x_6\} \cap \{x_1, x_2, x_3, x_4\} = \{x_1, x_3\}$
 $r_4' = \{x_4\} \cap \{x_1, x_2, x_3, x_4\} = \{x_4\}$
 $r_5' = \{x_3, x_4\} \cap \{x_1, x_2, x_3, x_4\} = \{x_3, x_4\}$

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- Моделирование сложных объектов

Моделирование электрической принципиальной схемы (ЭПС) с помощью графов

Модели элементов ЭПС

Элемент	Вершина
∋ ₀	x ₀
∋ ₁	x ₁
Э ₂	x ₂
Э ₃	X ₃

Элемент	Вершина
Θ_0	x ₀
Э ₁	x ₁
Э ₂	x ₂
Э ₃	Х ₃

Моделирование электрической принципиальной схемы (ЭПС) с помощью гиперграфов

Модели элементов ЭПС

Элемент	Вершина
3 ₀	x ₀
Э ₁	x ₁
Э ₂	X ₂
Э ₃	X ₃

Элемент	Вершина
Э ₀	x ₀
Э ₁	x ₁
Э ₂	x ₂
Э ₃	x ₃

Объект	Модель объекта
Цепь С1	$r_1 = \{x_0, x_1\}$
Цепь C ₂	$r_2 = \{x_1, x_2\}$
Цепь C ₃	$r_3 = \{x_0, x_1, x_2, x_3\}$
Цепь C ₄	$r_4 = \{x_0, x_2, x_3\}$
Цепь C ₅	$r_5 = \{x_0, x_2, x_3\}$
ЭПС	X_0 r_1 r_2 r_3 r_1 r_2 r_3 r_4 r_5 r_2 r_3 r_4 r_5 r_4 r_5 r_5 r_5 r_4 r_5 r_5 r_5 r_7 r_8 r_8

МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Понятие двудольного графа (графа Кёнига)
- ✓ Теорема Кёнига (критерий двудольности графа)
- ✓ Задача линейного назначения,
 понятие совершенного паросочетания графа
- ✓ Венгерский алгоритм решения задачи линейного назначения
- ✓ Кёнигово представление гиперграфа, понятие гиперграфа
- ✓ Моделирование сложных объектов

