Analiza descendenta - prima parte

April 14, 2024

Automat finit - reamintire

Automat finit (finite automaton, finite state acceptor):

$$A = (T, Q, R, q_0, F)$$

- Q set nevid setul starilor interne
- ▶ $(T \cup Q, R)$ sistem de rescriere; $T \cap Q = \emptyset$
- $ightharpoonup q_0 \in Q$ starea initiala
- $ightharpoonup F \subseteq Q$ stari finale
- ▶ fiecare element din R are forma $qt \rightarrow q'$, $q, q' \in Q, t \in T$

$$L(A) = \{ \tau \in T^* | q_0 \tau \Rightarrow^* q, q \in F \}$$

Automat stiva - definitie sistem de rescriere -reamintire

Automat stiva

$$A = (T, Q, R, q_0, F, S, s_0)$$

, unde:

- Q set nevid setul starilor interne
- ▶ $(T \cup Q \cup S, R)$ sistem de rescriere; $T \cap Q = \emptyset$
- ▶ $q_0 \in Q$ starea initiala
- $s_0 \in S \cup \{\varepsilon\}$ simboluri stiva, s_0 continutul initial al stivei
- $ightharpoonup F \subseteq Q$ stari finale
- fiecare element din R are forma $\sigma q t \tau \to \sigma' q' \tau$, $\sigma, \sigma' \in S^*, \ q, q' \in Q, t \in T \cup \varepsilon, \tau \in T^*$

Daca automatul e la configuratia $s_1...s_nq\tau$ intr-o derivare, automatul e in starea q, τ este partea necitita din input, $s_1,...,s_n$ este continutul pe stiva, s_n in varf.

Limbaj acceptat

Daca automatul e la configuratia $s_1...s_nq\tau$ intr-o derivare, automatul e in starea q, τ este partea necitita din input, $s_1,...,s_n$ este continutul pe stiva, s_n in varf.

$$L(A) = \{\tau | s_0 q_0 \tau \Rightarrow^* q, q \in F, \tau \in T^* \}$$

CFG - PDA

Pentru fiecare gramatica independenta de context G exista un automat stiva A a.i. L(A)=L(G).

Parsing

- Rolul parsarii: reconstruirea derivarii prin care o CFG poate genera un input string dat.
- Echivalent cu construirea arborelui de parsare care reprezinat derivarea
- Directii:
 - ► Top-Down constructia incepe de la radacina; derivarea stanga
 - ▶ Bottom-up constructia incepe de la frunze; mai greu de construit manual, dar pot fi generate

Rezumat

Recursive descent parsing

Predictive parsing

Structuri ajutatoare: FIRST, FOLLOW

Definire Gramatici LL(k)

Algoritmul LL(K)
Exemplu aplicare LL(k)
Exemplu aplicare LL(3)

1. Recursive descent - top down parse

Arborele de parsare e construit:

- de la simbolul de start
- de la stanga la dreapta
- se incearca regulile in ordinea in care apar
- revenire si incercare alternative

$$E \to T \mid T + E$$

$$T \to int \mid int * T \mid (E)$$
Parse tree pt: \uparrow

E | T

$$E \to T|T + E$$

$$T \to \inf|\inf * T|(E)$$
Parse tree pt: \uparrow

$$E \rightarrow T|T + E$$

$$T \rightarrow int|int * T|(E)$$
Parse tree pt: (int)

$$E \rightarrow T|T + E$$

$$T \rightarrow int|int * T|(E)$$
Parse tree pt: (int)

$$E \to \frac{T}{|T|} + E$$

$$T \to int|int * T|(E)$$
Parse tree pt:
$$\uparrow$$

Recursive-descent parser - nestiind care dintre productiile alternative pt un nonterminal trebuie aplicata, exista posibilitatea de esec

▶ Predictive parser: dat fiind sirul de intrare a (primul din sirul ramas) si nonterminalul A care trebuie expandat, am putea determina care productie alternativa e cea care deriveaza stringul ramas dupa a idee: alternativa corecta trebuie detectata uitandu-ne inainte la k simboluri din stringul care trebuie derivate: LL(1) si LR(1)

2. Parser predictiv¹

Fie G=(T,N,P,Z) o CFG si automatul stiva $A=(T,\{q\},R,q,\{q\},V,Z)$ cu $V=T\cup N$ si R: (alfabet, stari, productii, stare initiala, stari finale, alfabet stiva, continut initial stiva)

$$\{tqt \rightarrow q | t \in T\} \cup \{Xq \rightarrow x_n....x_1 q | X \rightarrow x_1x_2...x_n \in P, n \ge 0, X \in N, X_i \in V\}$$

Automatul accepta un sir din L(G) prin

- construirea unei derivari cea mai din stanga a acelui sir si
- compararea simbolurilor generate (de la stanga la dreapta) si incarcate pe stiva cu simbolurile care apar in sir.

¹Letia& Chifu 4.2

exemplu 1

Fie
$$G_1 = (T, N, S, P)$$
 $T = \{+, (,), i\}, N = \{S, F\}$
 cu productiile P
 $S \to F$
 $S \to (S + F)$
 $F \to i$

Care e automatul pentru analiza descendenta? Care e derivarea stanga pentru (i + i)? Automatul accepta (i + i)?

exemplu 2

Fie
$$G_1 = (T, N, E, P)$$

- $T = \{+, *, (,), i\}, N = \{E, T, F\}$
- cu productiile P
 - \blacktriangleright $(1,2)E \rightarrow T|E+T$
 - $(3,4)T \rightarrow F|T * F$
 - ▶ $(5,6)F \to i|(E)$

Automatul stiva construit pentru analiza descendenta:

$$T = \{+, *, (,), i\}, Q = \{q\},\$$

$$q_0 = q, F = \{q\}, S = \{+, -, *, (,), i, E, T, F\}, s_0 = E$$

- cu productiile R
 - 1. $Eq \rightarrow Tq, Eq \rightarrow T + Eq$,
 - 2. $Tq \rightarrow Fq$, $Tq \rightarrow F * Tq$,
 - 3. $Fq \rightarrow iq, Fq \rightarrow)E(q,$
 - 4. $+q+ \rightarrow q, *q* \rightarrow q, (q(\rightarrow q,)q) \rightarrow q, iqi \rightarrow q$

Derivarea gasita: i+i*i

stiva	stare	intrare	derivarea cea mai din stanga
Е	q	i + i * i	E
T + E	q	i + i * i	E+T
T + T	q	i + i * i	T+T
T+F	q	i + i * i	F+T
T+i	q	i + i * i	i+T
T+	q	+i*i	
Т	q	i * i	
F*T	q	i * i	i+T*F
F*F	q	i * i	i+F*F
F*i	q	i * i	i+i*F
F*	q	* <i>i</i>	
F	q	i	
i	q	i	i+i*i
	q		

Exemplul 3

Fie
$$G_1 = (T, N, E, P)$$

$$T = \{a, b, c\}, N = \{Z, X, Y\}$$

- cu productiile P
 - \triangleright (1) $Z \rightarrow X$
 - $(2,3) X \rightarrow Y|bYa$
 - $\blacktriangleright (4,5) Y \rightarrow c|ca$

Automatul $({a, b, c}, {q}, R, q, {q}, {a, b, c, X, Y, Z}, Z)$:

- ightharpoonup aga ightharpoonup q
- ▶ $bqb \rightarrow q$
- ightharpoonup cqc ightharpoonup q
- ightharpoonup Zq
 ightarrow Xq
- ightharpoonup Xq
 ightarrow Yq
- ightharpoonup Xq
 ightarrow aYbq
- ightharpoonup Yq
 ightarrow cq
- Yq → acq

3. No backtracking

Analiza descendenta sau predictiva - traseaza derivarea de la simbolul de start la propozitie, prezicand simbolurile care trebuie sa fie prezente.

- ightharpoonup stiva precizeaza sirul din V^* utilizat pentru derivarea restului sirului de la intrare
- \triangleright automat stiva determinist: pentru gramatici LL(k)

Asumptii si structuri ajutatoare: CFG

Presupunem ca CFG (T, N, P, Z) contin

- ightharpoonup Z
 ightharpoonup S singura in care apare Z daca nu exista o introducem
- ▶ fiecare propozitie se termina cu # indica finalul propozitiei
- productia i are forma

$$X_i \rightarrow \chi_i$$
, unde $\chi_i = x_{i,1}x_{i,2}...x_{i,m}$

ightharpoonup k : ω primele min(k, |ω| + 1) simboluri din ω#

$$k: \omega = egin{cases} \omega \#, & \mathit{daca} \ |\omega| < k \ lpha, & \mathit{daca} \ \omega = lpha \gamma \ \mathit{si} \ |lpha| = k \end{cases}$$

► $FIRST_k(\omega)$ setul tuturor capetelor $k:\omega$ terminale ale sirurilor derivabile din ω

$$FIRST_k(\omega) = \{\tau | \exists \nu \in T^* \text{ a.i. } \omega \Rightarrow^* \nu, \tau = k : \nu\}$$

▶ $EFF_k(\omega)$ (ε – free first, primul fara ε) - toate sirurile din $FIRST_k(\omega)$ pentru care nu s-a aplicat nicio productie ε in ultimul pas din derivarea cea mai din dreapta

$$EFF_k(\omega) = \{ \tau \in FIRST_k(\omega) | \nexists A \in N, \nu \in T^* \text{ a.i. } \omega \Rightarrow^R A \tau \nu \Rightarrow \tau \nu \}$$

► $FOLLOW(\omega)$ captele k terminale care ar putea urma lui ω ; $FOLLOW_k(Z) = \{\#\}$

$$FOLLOW_k(\omega) = \{ \tau | \exists \nu \in T^* \text{ a.i. } Z \Rightarrow^* \mu \omega \nu, \tau \in FIRST_k(\nu) \}$$

Exemplu de valori FIRST, FOLLOW pt k = 1

- $T = \{id, *, +, (,)\}, N = \{E, E', T, T', F\}$
- cu productiile P
 - ightharpoonup Z
 ightharpoonup E
 - ightharpoonup F
 ightarrow TF'
 - $ightharpoonup E'
 ightarrow + TE' | \varepsilon$
 - ightharpoonup T
 ightarrow FT'
 - $ightharpoonup T' o *FT' | \varepsilon$
 - ightharpoonup F
 ightarrow (E)|id

simbol	$FIRST_1(X)$	$FOLLOW_1(X)$
Ε	{(, id}	{),#}
E'	$\{+, \varepsilon\}$	$\{),\#\}$
T	$\{(,id\}$	$\{+,\#,)\}$
T'	$\{*, arepsilon\}$	$\{+, \#,)\}$
F	$\{(,id\}$	$\{*,+,\#,)\}$

Exemplu

$$E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow (E)T'E' \Rightarrow^{+} (id) * FT'E' \Rightarrow$$

$$(id) * F * T' + TE' \Rightarrow (id) * id * id + id$$

Exemplu de valori FIRST, FOLLOW pt k = 1

- $T = \{id, *, +, (,)\}, N = \{E, E', T, T', F\}$
- cu productiile P
 - ightharpoonup Z
 ightharpoonup E
 - ightharpoonup F o TF'
 - \triangleright $E' \rightarrow +TE'|\varepsilon$
 - ightharpoonup T
 ightarrow FT'
 - $ightharpoonup T' o *FT' | \varepsilon$
 - ightharpoonup F
 ightarrow (E)|id

simbol	$FIRST_1(X)$	$FOLLOW_1(X)$
Ε	{(, id}	{),#}
E'	$\{+, \varepsilon\}$	$\{),\#\}$
Τ	$\{(,id\}$	$\{+,\#,)\}$
T'	$\{*,arepsilon\}$	$\{+, \#,)\}$
F	$\{(, id)\}$	$\{*,+,\#,)\}$

Exemplu

$$E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow (E)T'E' \Rightarrow^{+} (id) * FT'E' \Rightarrow$$
$$(id) * F * T' + TE' \Rightarrow (id) * id * id + id$$

Gramatici LL(k)

O gramatica independenta de context G = (T, N, P, Z) este LL(k) pentru un $k \ge 0$ daca pentru derivari arbitrare

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \nu \chi \Rightarrow^* \mu \gamma$$

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \omega \chi \Rightarrow^* \mu \gamma'$$

unde
$$\mu, \gamma, \gamma' \in T^*, \nu, \chi, \omega \in V^*, X \in N$$

avem urmatoarea proprietate: $\mathbf{k}: \gamma = \mathbf{k}: \gamma'$ implica $\nu = \omega$

Fie gramatica $G=(\{i,(,+,)\},\{Z,E,F\},P,Z)$ cu productiile

$$ightharpoonup E
ightharpoonup (E+F)$$

$$Z \Rightarrow E \Rightarrow (E+F) \Rightarrow (F+F) \Rightarrow^* (i+i)$$

 $Z \Rightarrow E \Rightarrow (E+F) \Rightarrow ((E+F)+F) \Rightarrow^* ((i+i)+i)$

unde
$$\mu, \gamma, \gamma' \in T^*, \nu, \chi, \omega \in V^*, X \in N$$

Exemplul 3 - reluat

Fie
$$G_1 = (T, N, E, P)$$

- $T = \{a, b, c\}, N = \{Z, X, Y\}$
- cu productiile P
 - $\blacktriangleright (1) Z \to X$
 - \blacktriangleright (2,3) $X \rightarrow Y|bYa$
 - ▶ (4,5) $Y \to c | ca$
- 1) Z=> X =>Y=> c
- 2) Z => X => Y => ca
- 3) Z=> X =>bYa=> bca
- 4) Z=> X =>bYa=> bcaa

Pentru 1 si 2, s-au aplicat $Y \rightarrow c$ si $Y \rightarrow ca$ dar 1:c=1:ca.

Pentru 3 si 4, s-au aplicat $Y \to c$ si $Y \to ca$ dar 1:ca=1:caa, la fel si 2:ca = 2:caa.

Situatie

$$[X_p \to \mu.\nu; \Omega]$$

$$\mu = x_{p,1}...x_{p,j}, \nu = x_{p,j+1}...x_{p,n_p},$$

$$|\mu| = j, |\nu| = n_p - j$$

Punctul nu face parte din vocabular. Marcheaza pozitia curenta a analizei in partea dreapta a productiei

ex:
$$q_7 = [X \to b. Ya; \#]$$

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat
- 3. Daca $\mathbf{v} = \mathbf{\varepsilon}$ atunci se include $\mathbf{q}\mathbf{\varepsilon} \to \mathbf{\varepsilon}$ in R.

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat
- 3. Daca $v = \varepsilon$ atunci se include $q\varepsilon \to \varepsilon$ in R.
- 4. Daca $v = t\gamma$, $t \in T$ si $\gamma \in V^*$, fie $q' = [X \to \mu t. \gamma; \Omega]$. Adauga q' in Q si $qt \to q'$ in R.

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat
- 3. Daca $\nu = \varepsilon$ atunci se include $q\varepsilon \to \varepsilon$ in R.
- 4. Daca $\nu = t\gamma$, $t \in T$ si $\gamma \in V^*$, fie $q' = [X \to \mu t. \gamma; \Omega]$. Adauga a' in Q si $at \rightarrow a'$ in R.
- 5. Daca $\nu = Y\gamma$, $Y \in \mathbb{N}$ si $\gamma \in \mathbb{V}^*$.
 - fie $a' = [X \rightarrow \mu Y. \gamma: \Omega]$
 - ▶ si $H = \{ [Y \to .\beta_i; FIRST_k(\gamma\Omega)] | Y \to \beta_i \in P \}.$
 - ▶ actualizeaza $Q = Q \cup \{q'\} \cup H$
 - ightharpoonup si $R = R \cup \{q\tau_i \rightarrow q'h_i\tau_i|h_i \in H, \tau_i \in FIRST_k(\beta_i\gamma\Omega)\}$
- 6. daca toate starile din q au fost analizate, stop. Altfel continua cu 2.

Construirea automatului se termina datorita numarului finit de situatii.

Automatul rezultat este determinist daca si numai daca G este o gramatica LL(k).

Exemplu de construire (gramatica e CFG dar si regulata)

- ightharpoonup Z
 ightharpoonup S
- \triangleright $S \rightarrow 0S$
- \triangleright $S \rightarrow 1$

		-
k	_	1
r	_	_

		stari noi	tranzitii noi
			$q_0 = [Z \rightarrow .S; \{\#\}]$
q_0	5	$q'=[Z o S.;\#]=q_1$	$q_0 au$? $ o q_1h$? $ au$?
		$H = \{[S \rightarrow .0S; \#] = q_2,$	$q_00 ightarrow q_1q_20$
		$[\mathcal{S} \rightarrow .1; \#] = q_3\}$	$q_01 ightarrow q_1q_31$
q_1	3	-	$q_1 \varepsilon o \varepsilon$
q_2	4	$q' = [S ightarrow 0.S; \#] = q_4$	$q_2 0 ightarrow q_4$
q_3	4	$q'=[\mathcal{S} ightarrow 1.;\#]=q_5$	$q_31 o q_5$
q_4	5	$q'=[S o 0S.;\#]=q_6$?
		$H = Ia$ fel cu analiza pt q_0	$q_40 \rightarrow q_6q_20$
			$q_41 ightarrow q_6q_31$
q_5	3	-	$q_5 \varepsilon o \varepsilon$
q 6	3	-	$q_6\varepsilon \to \varepsilon$

derivare

Care e derivarea pt 001#?

$$q_0q_0001\# \Rightarrow$$
?

Incercare cu $k=1; Z \rightarrow S, S \rightarrow 0S1, S \rightarrow 01$

		stari noi	No	tranzitii noi
		$q_0 = [Z \rightarrow .S; \{\#\}]$		
$\overline{q_0}$	5	$q' = [Z \rightarrow S.; \#] = q_1$		$q_0 \tau$? $\rightarrow q_1 h$? τ ?
		$H = \{[S \rightarrow .0S1; \#] = q_2,$		$ au \in \mathit{FIRST}_1(0S1\#);$
			1	$q_00 ightarrow q_1q_20$
		$[S ightarrow .01;\#]=q_3\}$		$ au \in \mathit{FIRST}_1(01\#);$
			2	$q_00 ightarrow q_1q_30$
q_1	3	-	3	$q_1 \varepsilon o \varepsilon$
q_2	4	$q'=[S ightarrow 0.S1;\#]=q_4$	4	$q_20 o q_4$
q ₃	4	$q'=[S ightarrow 0.1;\#]=q_5$	5	$q_30 \rightarrow q_5$
q_4	5	$q' = [S \to 0S.1; \#] = q_6$		
		$H = \{[S \rightarrow .0S1; FIRST_1(1\#)]\}$		$ au \in \mathit{FIRST}_1(0S11\#);$
		$=q_7,$	6	$q_40 ightarrow q_6q_70$
		$[S ightarrow .01; \mathit{FIRST}_1(1\#)] = q_8 \}$		$ au \in \mathit{FIRST}_1(011\#);$
			7	$q_40 ightarrow q_6 q_8 0$
q_5	4	$[S ightarrow 01.;\#]=q_9$	8	$q_51 o q_9$
q 6	4	$[S ightarrow 0S1.;\#]=q_{10}$	9	$q_61 o q_{10}$
q 9	3		10	$q_9arepsilon o arepsilon$

k=1 : automat nedeterminist: $q_00 \to q_1q_20$ si $q_00 \to q_1q_30$ Derivare 01: cu un lookahead de 1 nu stim pe care productie sa o aplicam

$$q_0q_001\# \stackrel{1}{\Rightarrow} q_0q_1q_201\# \stackrel{4}{\Rightarrow} q_0q_1q_41\# \quad \textit{deadend}$$

$$q_0q_001\# \stackrel{2}{\Rightarrow} q_0q_1q_301\# \stackrel{5}{\Rightarrow} q_0q_1q_51\# \stackrel{8}{\Rightarrow} q_0q_1q_9\# \stackrel{10}{\Rightarrow} q_0q_1\varepsilon\# \Rightarrow q_0\#$$

Incercare cu k=2; $Z \rightarrow S$, $S \rightarrow 0S1$, $S \rightarrow 01$

Lei Cai	C ($Ju K - Z, Z \to J, J \to U$	JΙ,	$J \rightarrow 01$
		stari noi	No	tranzitii noi
		$q_0 = [Z \rightarrow .S; \{\#\}]$		
q_0	5	$q' = [Z \rightarrow S.; \#] = q_1$		$q_0 au$? $ o q_1 h$? $ au$?
		$H = \{[S \rightarrow .0S1; \#] = q_2,$		$ au \in FIRST_2(0S1\#);$
			1	$q_000 ightarrow q_1q_200$
		$[S\rightarrow.01;\#]=q_3\}$		$ au \in \mathit{FIRST}_2(01\#);$
			2	$q_001 ightarrow q_1q_301$
q_1	3	-	3	$q_1arepsilon o arepsilon$
q_2	4	$q'=[S o 0.S1;\#]=q_4$	4	$q_2 0 o q_4$
q 3	4	$q' = [S \to 0.1; \#] = q_5$	5	$q_30 o q_5$
q_4	5	$q' = [S \to 0S.1; \#] = q_6$		
		$H = \{[S \rightarrow .0S1; FIRST_2(1\#)]\}$		$ au \in \mathit{FIRST}_2(0S11\#);$
		$=q_7,$	6	$q_400 ightarrow q_6 q_7 00$
		$[S\rightarrow .01; \textit{FIRST}_2(1\#)] = q_8\}$		$ au \in \mathit{FIRST}_2(011\#);$
			7	$q_401 ightarrow q_6q_801$
q 5	4	$[S ightarrow 01.;\#]=q_9$	8	$q_51 o q_9$
q_6	4	$[S ightarrow 0S1.;\#]=q_{10}$	9	$q_61 o q_{10}$
q 7	4	$[S ightarrow 0.S1;1\#]=q_{11}$	10	$q_70 o q_{11}$
q_8	4	$[\mathcal{S} ightarrow 0.1;1\#]=q_{12}$	11	$q_80 ightarrow q_{12}$
q_9	3		10	$q_9arepsilon o arepsilon$
q_{10}	3		10	$q_{10}arepsilon ightarrow arepsilon$
q_{11}	5	$q' = [S o 0S.1; \{1\#\}] = q_{13}$		
		$H = \{[S \to .0S1; FIRST_2(11\#)]\}$		$ au \in FIRST_2(0S111\#);$
		$=q_{14},$	6	$q_{11}00 o q_{13}q_{14}00$
		$[S o .01; FIRST_2(11\#)] = q_{15} $		$ au \in \mathit{FIRST}_2(0111\#);$
			7 4	$ q_{11}01 \rightarrow q_{1\overline{3}}q_{15}01 \qquad = $

Derivare $Z \Rightarrow 0011$

Stiva	Stare	Intrare	Derivarea cea mai din stanga
$\overline{q_0}$	q 0	0011#	Z
$q_0 q_1$	q_2	0011#	S
$q_0 q_1$	q_4	011#	0S1
9 0 9 1 9 6	q 8	011#	0011
9 0 9 1 9 6	q_{12}	11#	

Gramatica *LL*(3)

- ightharpoonup Z o X
- ightharpoonup X
 ightarrow Y | bYa
- ightharpoonup Y
 ightharpoonup c | ca

		stari noi		tranzitii noi
		$q_0 = [Z \rightarrow .X; \#]$		
q_0	5	$q'=[Z o X.;\#]=q_1$		$ au \in \mathit{FIRST}_3(Y\#) = \{c\#, \mathit{ca}_7\}$
		$H = \{[X \rightarrow .Y; \#] = q_2,$	1	$q_0c\# o q_1q_2c\#$
			2	$q_0ca\# o q_1q_2ca\#$
		$[X ightarrow.bYa;\#]=q_3\}$		$ au \in \mathit{FIRST}_3(\mathit{bYa}) = \{\mathit{bca}\}$
			3	$q_0 bca ightarrow q_1 q_3 bca$
q_2	5	$q' = [X \rightarrow Y.; \#] = q_4$		$ au \in \mathit{FIRST}_3(c\#) = \{c\#\}$
		$H = \{[Y \rightarrow .c; \#] = q_5,$	4	$q_2c\# o q_4q_5c\#$
		$Y ightarrow .ca;\#]=q_{6}\}$	5	q_2 ca $\# o q_4q_6$ ca $\#$

Gramatica LL(3)

- ightharpoonup Z o X
- ightharpoonup X
 ightarrow Y | bYa
- ightharpoonup Y
 ightharpoonup c | ca

$$\begin{array}{llll} q_0 &= [Z \to \bullet X; \#] & q_9 &= [Y \to c \bullet a; \#] \\ q_1 &= [Z \to X \bullet; \#] & q_{10} &= [X \to bY \bullet a; \#] \\ q_2 &= [X \to \bullet Y; \#] & q_{11} &= [Y \to \bullet c; a\#] \\ q_3 &= [X \to \bullet bY a; \#] & q_{12} &= [Y \to \bullet ca; a\#] \\ q_4 &= [X \to Y \bullet; \#] & q_{13} &= [Y \to ca \bullet; \#] \\ q_5 &= [Y \to \bullet c; \#] & q_{14} &= [X \to bY a \bullet; \#] \\ q_6 &= [Y \to \bullet ca; \#] & q_{15} &= [Y \to c \bullet; a\#] \\ q_7 &= [X \to b \bullet Y a; \#] & q_{16} &= [Y \to c \bullet a; a\#] \\ q_8 &= [Y \to c \bullet; \#] & q_{17} &= [Y \to ca \bullet; a\#] \end{array}$$

$$\begin{array}{llll} q_0 &= [Z \to \bullet X; \#] & q_9 &= [Y \to c \bullet a; \#] \\ q_1 &= [Z \to X \bullet; \#] & q_{10} &= [X \to bY \bullet a; \#] \\ q_2 &= [X \to \bullet Y; \#] & q_{11} &= [Y \to \bullet c; a\#] \\ q_3 &= [X \to \bullet bY a; \#] & q_{12} &= [Y \to \bullet ca; a\#] \\ q_4 &= [X \to Y \bullet; \#] & q_{13} &= [Y \to ca \bullet; \#] \\ q_5 &= [Y \to \bullet c; \#] & q_{14} &= [X \to bY a \bullet; \#] \\ q_6 &= [Y \to \bullet ca; \#] & q_{15} &= [Y \to c \bullet; a\#] \\ q_7 &= [X \to b \bullet Y a; \#] & q_{16} &= [Y \to c \bullet a; a\#] \\ q_8 &= [Y \to c \bullet; \#] & q_{17} &= [Y \to ca \bullet; a\#] \\ R &= \{q_0 c \# \to q_1 q_2 c \#, & q_7 c a \# \to q_{10} q_{11} c a \# \\ & q_0 c a \# \to q_1 q_2 c a \#, & q_7 c a \to q_{10} q_{12} c a a, \\ & q_0 b c a \to q_1 q_3 b c a, & q_8 \to \epsilon, \\ q_1 \to \epsilon, & q_9 a \to q_{13}, \\ & q_2 c \# \to q_4 q_5 c \#, & q_{10} a \to q_{14}, \\ & q_2 c a \# \to q_4 q_6 c a \#, & q_{11} c \to q_{15}, \\ & q_3 b \to q_7, & q_{12} c \to q_{16}, q_{13} \to \epsilon, \\ & q_4 \to \epsilon, & q_{14} \to \epsilon, \\ & q_5 c \to q_8, & q_{15} \to \epsilon, \\ & q_6 c \to q_9, & q_{16} a \to q_{17}, q_{17} \to \epsilon \end{array} \}$$

aceeasi gramatica dar cu k=2

$$q_7$$
ca $ightarrow$ $q_{10}q_{11}$ ca q_7 ca $ightarrow$ $q_{10}q_{12}$ ca

Cu
$$k=3$$

$$q_7 ca\# \to q_{10} q_{11} ca\#$$

$$q_7 caa \to q_{10} q_{12} caa$$

unde pt k = 3

▶
$$q_7 = [X \to b. Ya; #]$$

▶
$$q_{10} = [X \to bY.a; \#]$$

▶
$$q_{11} = [Y \to .c; a\#]$$

▶
$$q_{12} = [Y \to .ca; a\#]$$

Derivare $Z \Rightarrow X \Rightarrow bYa \Rightarrow bcaa$

Stiva	Stare	Intrare	Derivarea cea mai din stanga
$\overline{q_0}$	q 0	bcaa#	Z
$q_0 q_1$	q_3	bcaa#	X
$q_0 q_1$	9 7	caa#	bYa
<i>q</i> 0 <i>q</i> 1 <i>q</i> 10	q_{12}	caa#	bcaa
$q_0q_1q_{10}$	q_{16}	aa#	
$q_0q_1q_{10}$	q_{17}	a#	
$q_0 q_1$	q_{10}	a#	
$q_0 q_1$	q_{14}	#	
q_0	q_1	#	
	q_0	#	

- La tranzitiile de stivuire sunt examinate simbolurile dinainte (lookaheads symbols).
- Aceste tranzitii corespund intrarii intr-o productie noua

 Citirea simbolurilor terminale si decizia de terminare a productiei printr-o tranzitie de destivuire se realizaeaza fara inspectarea simbolurilor dinainte

Rezumat

Recursive descent parsing

Predictive parsing

Structuri ajutatoare: FIRST, FOLLOW

Definire Gramatici LL(k)

Algoritmul LL(K)
Exemplu aplicare LL(k)
Exemplu aplicare LL(3)

$$Z => X => ca$$

$$Z => X => bca$$