

Tarea 1- Cálculo de Enlace— Año 2020

Profesor: Ing Gustavo Luis Biau

Alumno 1: FRAGA, JUAN MANUEL

Alumno 2: OLMEDO PACO, JHON DANIEL

Alumno 3: VERON, PABLO HERNAN

1. ASIGNATURA: Comunicaciones

2. CURSO: 4to Año

3. DEPARTAMENTO de la UTN -FRBA: Sistemas

4. OBJETIVOS GENERALES:

El alumno debe estar en capacidad de aplicar las metodologías empleadas, conceptos y definiciones utilizados en la resolución de ejercicios de las prácticas anteriores para realizar un cálculo de enlace entre dos equipos empleando como canal de comunicaciones un vínculo físico (cable de cobre, coaxil, fibra óptica), en este caso particular no utilizaremos enlace de microondas (o sea a través de un frente de ondas que se propaga).

5. CONCEPTOS ANTERIORES, UNIDADES DIDÁCTICAS: 1,2,3

- a. Repaso de conceptos básicos de electricidad y circuitos.
- b. Introducción a la teleinformática y a la red Internet.
- c. Señales analógicas y digitales. Concepto de periodo, frecuencia y longitud de onda. FRP, Ancho de pulso, velocidad de modulación y de transmisión. Serie de Fourier aplicada a representación de señales periódicas.

- d. Concepto de ancho de banda. Velocidad de transmisión y su relación con el ancho de banda. Transmisión multinivel.
- e. Tipos y modos de transmisión. Transmisión serie y paralelo. Sincronismo. Transmisión sincrónica y asincrónica.
- f. Cálculo de enlaces. Unidades de medida, el dB y el dBm.Interfases digitales.

6. OBJETIVOS ESPECÍFICOS:

Aplicar los conceptos, definiciones y métodos vistos hasta ahora a un caso real para establecer la comunicación en modo de voz y datos entre dos puntos utilizando un amplificador en el canal de comunicaciones.

Identificar aquellas variables/parámetros necesarias a tener en cuenta para el cálculo de la sensibilidad del amplificador y la ganancia generada por él mismo.

Calcular la atenuación en los distintos trayectos. Recalcular cambiando las distancias de los trayectos; analizar los resultados alcanzados.

Justificar la elección de compra del amplificador en función de los resultados obtenidos.

Defender en público los resultados obtenidos.

7. SITUACIÓN INICIAL:

El alumno conoce la configuración de un sistema de comunicaciones básico y está familiarizado con los conceptos atenuación, distorsión, ruido, unidades de medida (el decibel) como unidad relativa y absoluta, potencia de un transmisor y sensibilidad de un receptor. Sabe definir los principales factores que condicionan o limitan la velocidad de transmisión de datos en una línea digital de comunicaciones. Conoce como calcular la atenuación en función de la distancia y del medio a utilizar. Conoce el significado de un amplificador y de un circuito atenuador. Conoce la expresión de la ecuación del cálculo de enlace.

8. ENUNCIADO DEL EJERCICIO PRÁCTICO

Para el siguiente enlace de comunicaciones en forma alámbrica (a través de una fibra óptica) entre dos puntos distantes dentro de la Ciudad Autónoma de Buenos Aires, uno es una Empresa cuya casa Matriz se encuentra en el límite con la Av Grl Paz a la altura de la localidad de Mataderos y el otro el Depósito de mercaderías de la citada empresa con ubicación en la Av Beiró a la altura de la localidad de Villa Devoto, Calcular los siguientes parámetros para que el enlace funcione correctamente:

- a) La Ganancia (Ganancia del Amplificador) y SA(Sensibilidad del Amplificador)
- b) Recalcular para L1 = 100m y L2 = 2000m. Analizar los resultados.
- c) Si se consiguen en el mercado local amplificadores de 3, 6 y 9dB, ¿Cuál elegiría?, ¿Qué consecuencias trae para el circuito la elección que acaba de realizar ?.
- d) Si utilizáramos Cable Coaxil del tipo RG-218 con una atenuación de 0,8dB/100m, Cual sería la Ganancia del Amplificador?.
- e) Efectúe un cuadro comparativo con los resultados obtenidos y las características técnicas entre el uso la Fibra Optica y el cable coaxial utilizado. Extraiga conclusiones.

Se analizarán las distintas propuestas de resolución del ejercicio por parte de los distintos equipos.

9. DATOS:

Para el sistema de comunicaciones se tendrán en cuenta los siguientes parámetros:

- a. PTx = -3 dBm
- b. SRx = 1 mW
- c. L1=500m, L2=1000m
- d. Atenuación Conector At=0.25 dB c/u.
- e. Atenuación F.O = 1.0 dB/1000m

Cálculo de Pamp -

Gonancia del Amplificador :

· Ps on mw

· le en mw

Perro	S.	Li	= 10	00	m	Y		<u>L2</u>	=	20	00	m											
* SAm	ρ <u>:</u>																						
	0.4	Pr×		PT	ote l	endl) (dv	inch	1	ત્રેહ	edo	res)	2	S	np							-
			-3	90	3m	-	(10	om		1000	m	4	2	. 0,	25	9	B)		> S	AM	p	
			-					+	3,6	, 4	Bm	2	(A	nρ								
· PA.	m C =																						
			Pan	P	- 6	total	en	de	3 (d v	in cu	b +	9	67	ect	ore:) =	23	SRY				
			Pa	m ()		(3	200	22	_		13			2	0	25	9	ß`	\	> _	10		
				"F		-(10	1B	ק) =	10	dv		
											Par	np	>	2	, 5	9	B						-
	Gr	20) =	10	la		Ps (m	wJ														
					3	10 -	pe	Cn	[ער														-
	6	Z10.) =		01	210		1,	78	m	W	=	6	71	11	d	B						
(c) s		120	12	COC		l m A	l:c	· Co	43	6 m	w de		3	. 6		Q	4	3		ole	q:r:	q e	1
	2	6 9	B,	e	1	e	ور	ie	ma	23	Ce	ir G	20	0	es	ta	a	1	Va	br	J-1		
	1	Sar	i	1		1	1	1	1			2	1	1		1							
		jo_	1			1	1		-				-		, ,		1	1	1	1	i		
	49	9	ے و		len	nas:	ad	a	Q A	n pl	<i>f</i> :0	'ACi	ón		i'n	rod	JC.	v.	G	ru	ide	>	
	· 1	8								-		-						-					

Same						
P _{TX} - (Protos ends (d	vinub t c	Latenvación)	2 SAMP		
-3	18m - (500. <u>0,820</u>	2.0,2	568) 25	Sarp	
	- 31 Bm	- 498	- 0,5 dB	$\geq S_{amp}$		
			-7,518	≥ SAMP		
Panp Pamp	- Protal egg	B (drince	o + datenac			
						-
and the state of t	PAMP -	(1000 m.	0,8 1.9 + .	2.0,25 dB	$) \geq s$	2x
		the state of the s	0,8 dB + 3	The second secon	the same to the same of	2x
		the state of the s	6 -0,5 d	The second secon		×
Ganancia		the state of the s	6 -0,5 d	$\beta \geq S_{n_X}$		2×
Ganancia GC181:	Panp = 10. Lg	the state of the s	6 - 0,5 d	$\beta \geq S_{n_X}$		2x
	Panp = 10. Lg	- Bd	6 - 0,5 d	$\beta \geq S_{nx}$ $m\rho \geq S_{i}5$	4 <i>B</i>	

	FO Longitud A	to layite B	Coaxil Longitud A
SAMP [dB]	-4	-3,6	-7,5
Pane CdBJ	1,5	2,5	9,5
Gamp CdB]	5,5	6,11	1.6
Besalta en e al utilizar e	el Cable Coax	Vabr de GA	mp para la linea I Contar Con mayor am plificador con
Resolta en a al utilizar a ite nuación por nayor gananci	el Cable Coax or metro, se ia-	Vabr de GA :1 R6-213 . Al e newsita un	mp para la linea 1 Contar Con mayor am plificador con
Resolta en a al utilizar a ite nucción por nayor gananci En los esan	el Cable Coax or metro, se ia- orios de F	Vabr de GA :1 R6-213 . Al e neesita un	mp para la linea 1 Gitar On mayor
Resolta en a al utilizar a itenuación por nayor gananci En los esan 600 m (1500	el Cable Coax or metro, se ia- ia- om entotal	Vabr de GA :1 R6-213. Al e neesita un co, la basita para el primer	mp para la linea I Contar Con mayor am plificador con
Resolta en el al utilizar el ite nucción por nayor gananci En los esca 600 m (1500 Segundo), a	el Cable Coax or metro, se ia - ia - om entotal pesar Je had	vabr de GA I R6-213. Al Para el primer der gunentado	mp para la linea I Contar Con mayor am pl: ficedor con od variaba en