Soap films and minimal surfaces

Jacob Reinhold

University of Texas at Austin icreinhold@gmail.com

April 29, 2016

Soap films

Look at the surface the soap film makes as it is streched between the two loops. That is a minimal surface, a topic of interest in the subject of differential geometry.

To understand what this means, let's introduce some key concepts.

Concepts

Curvature

2 Minimal Surfaces and Surfaces of Revolution

Catenoid

Curvature

The word "curvature" corresponds to what you generally think of when the word comes to mind. A ball is something with a lot of curvature, while a floor (usually) corresponds to something that does not.

Definition

If γ is a unit-speed curve with parameter t, its curvature $\kappa(t)$ at the point $\gamma(t)$ is defined to be $\|\ddot{\gamma}(t)\|$.

In other words, the curvature at a point t on the curve is the rate with which direction is changing at t.

Shape Operator

Definition

For a given surface, let ${\bf N}$ be the surface normal and ${\bf v}$ be tangent to the surface, then the shape operator is defined as

$$S_{\mathbf{v}} = \nabla_{\mathbf{v}} \mathbf{N},$$

which is a linear map.

Or, the shape operator describes the rate at which the surface normal changes along a direction \mathbf{v} .

Principal Curvatures

In the picture we see X_1 and X_2 point in the *principal directions* which are the eigenvectors of the shape operator. The *principal curvatures*, κ_1 and κ_2 are the eigenvalues of the shape operator.

Remark

The curvature of a surface is completely characterized by the principal curvatures.

Mean Curvature

The mean curvature is an extrinsic measure of curvature that locally describes the curvature of a surface $\mathcal{S} \subset \mathbb{R}^3$.

Definition

The *mean curvature* H at $p \in \mathcal{S}$ is defined to be

$$H=\frac{1}{2}\mathrm{tr}(S_{\nu})=\frac{1}{2}(\kappa_1+\kappa_2).$$

The mean curvature is a property of the surface being embedded into an ambient Euclidean space (ambient meaning the space surround an object).

Minimal Surfaces

If a surface minimizes area for a given boundary, then it is a minimal surface.

Theorem

If a surface has minimal surface area for a given boundary, then

$$H=0.$$

Minimal surfaces tend to be saddle-*like* surfaces, since the principal curvatures must have equal magnitude but opposite sign.

Surface of Revolution

A *surface of revolution* is the surface obtained by rotating a plane curve about a straight line in the plane.

Let's suppose we are rotating a curve around the z-axis, and the curve is given by

$$x = f(t), \quad z = t,$$

then the surface of revolution is the set of points

$$S_r = \{(f(t)\cos\theta, f(t)\sin\theta, t): t \in (\alpha, \beta), \theta \in [0, 2\pi)\}.$$

Minimizing the area of a surface of revolution

We can find the surface area of a surface of revolution for a plane curve as defined before, by the following equation:

$$\mathcal{A}(f) = 2\pi \int_{\alpha}^{\beta} f \sqrt{1 + f'^2} dt.$$

Then to minimize the area, we take the derivative of the area functional with respect to an ϵ scaling of a variation ϕ of the surface, and set the quantity equal to zero:

$$\frac{d}{d\epsilon}\Big|_{\epsilon=0} \mathcal{A}(f+\epsilon\phi) = \frac{d}{d\epsilon} \int_{\alpha}^{\beta} (f+\epsilon\phi) \sqrt{1 + (f+\epsilon\phi)^{2}} dt$$

$$\vdots$$

$$= \int_{\alpha}^{\beta} \left[\sqrt{1 + f^{2}} - \left(\frac{f \cdot f'}{\sqrt{1 + f^{2}}} \right)' \right] \phi dt = 0$$

mean curvature of a surface of revolution

What?

Let's say f_* is a function that minimizes surface area, then

Catenoid

The curve defined by *f* which solves

$$\sqrt{1+f'^2} - \left(\frac{f \cdot f'}{\sqrt{1+f'^2}}\right)' = 0$$

is the caternary. If we want to find the caternary that goes through the points in the plane: (x_1, y_1) and (x_2, y_2) , this is described by

$$f(t) = a \cosh\left(\frac{t-b}{a}\right)$$

where a and b are constants determined by

$$y_1 = a \cosh\left(\frac{x_1 - b}{a}\right)$$
 $y_2 = a \cosh\left(\frac{x_2 - b}{a}\right)$.

Remark

Catenoids are, apart from the plane, the only minimal surface of revolution.

Demonstration

So let's make a soap film!

or maybe just graph a catenoid in Mathematica

References

Andrew Pressley

Elementary Differential Geometry Second Edition

London: Springer, 2012

Peter Schröder, Keenan Crane

Discrete Differential Geometry - CS 177 (Fall 2011)

Wikipedia

The End