TRABALHO DE CONCLUSÃO DE DISCI-PLINA

Machine Learning Aplicado: HR Analytics Challenge

Disciplina: Data Science Experience

Professor: Matheus H. P. PAcheco

Data de Entrega: 17/07/2025

Valor: 10 pontos

CONTEXTO DO PROBLEMA

A **TechCorp Brasil**, uma das maiores empresas de tecnologia do país com mais de 50.000 funcionários, está enfrentando um problema crítico: sua taxa de attrition (rotatividade de funcionários) aumentou 35% no último ano, gerando custos estimados em R\$ 45 milhões.

Cada funcionário que deixa a empresa representa não apenas custos de demissão e contratação (estimados em 1,5x o salário anual), mas também: - Perda de conhecimento institucional - Impacto na produtividade das equipes - Diminuição da moral dos colaboradores - Atrasos em projetos críticos

Você foi contratado como Cientista de Dados para desenvolver um sistema preditivo que identifique funcionários com alto risco de deixar a empresa, permitindo que o RH tome ações preventivas.

OBJETIVO DO TRABALHO

Desenvolver um **pipeline completo de Machine Learning** para prever attrition de funcionários, demonstrando domínio das técnicas aprendidas na disciplina e criatividade na solução do problema.

Entregáveis Obrigatórios:

- Código Python completo e documentado (Jupyter Notebook ou scripts .py)
- 2. Relatório técnico (10-15 páginas) detalhando toda a solução
- 3. Dashboard interativo ou visualizações que comuniquem os resultados

SOBRE O DATASET

O dataset fornecido contém informações de 1 milhão de funcionários (sintético baseado no IBM HR Analytics) com 35 variáveis:

Variáveis Disponíveis:

- Demográficas: Age, Gender, MaritalStatus, Education, EducationField
- Profissionais: Department, JobRole, JobLevel, JobInvolvement, YearsAtCompany
- Compensação: MonthlyIncome, PercentSalaryHike, StockOptionLevel
- Satisfação: JobSatisfaction, EnvironmentSatisfaction, RelationshipSatis-
- Work-Life: OverTime, WorkLifeBalance, BusinessTravel, Distance-FromHome
- $\bullet \ \ \mathbf{Performance:} \ \mathrm{PerformanceRating,} \ \mathrm{TrainingTimesLastYear}$
- Target: Attrition (Yes/No)

IMPORTANTE: O dataset é altamente desbalanceado (~16% attrition)

CDITTO DE AMATAGÃO

(CRITERIOS DE AVALIAÇÃO				
1.	Análise Exploratória (2 pontos)				
	 □ Análise estatística completa das variáveis □ Identificação de padrões e correlações □ Visualizações criativas e informativas □ Insights de negócio relevantes □ Tratamento de dados faltantes/outliers 				
2.	Feature Engineering (2 pontos)				
	 □ Criação de no mínimo 10 novas features □ Justificativa técnica e de negócio para cada feature □ Análise do impacto das novas features □ Uso de técnicas avançadas (polynomial features, embeddings, etc.) 				
3.	Modelagem (2 pontos)				
	 □ Implementação de pelo menos 4 algoritmos diferentes □ Tratamento adequado do desbalanceamento □ Otimização de hiperparâmetros (Grid/Random Search, Bayesian, etc.) □ Validação cruzada apropriada □ Análise de ensemble methods 				

4. Av	aliação	e I	Interpre	tação	(2	pontos)
-------	---------	-----	----------	-------	----	--------	---

□ Metricas apropriadas para despaianceamento
☐ Análise de erro detalhada
☐ Análise de viés e fairness
☐ Recomendações de threshold ótimo

5. Implementação e Comunicação (2 pontos)

Código limpo e bem documentado
Pipeline reproduzível
Visualizações profissionais
Comunicação clara dos resultados
Proposta de implementação em produção

DESAFIOS EXTRAS (Pontos Bônus)

Desafio: Deployment (3 pontos)

Crie uma API REST ou aplicação web que permita: - Upload de dados de novos funcionários - Predição em tempo real - Dashboard de monitoramento - Sistema de alertas

DICAS E RECURSOS

Bibliotecas Recomendadas:

```
# Essenciais
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Machine Learning
from sklearn.model_selection import *
from sklearn.ensemble import *
from sklearn.linear_model import *
import lightgbm as lgb
import xgboost as xgb
import catboost as cb
# Balanceamento
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import *
from imblearn.ensemble import *
```

```
# Otimização
import optuna
from hyperopt import *
from skopt import *

# Interpretabilidade
import shap
from lime import *
from sklearn.inspection import *

# Deep Learning (opcional)
import tensorflow as tf
import pytorch
```

Técnicas para Desbalanceamento:

- 1. Sampling: SMOTE, ADASYN, Tomek Links
- 2. Cost-sensitive: class_weight, sample_weight
- 3. Ensemble: BalancedRandomForest, RUSBoost
- 4. Threshold: Optimization via ROC/PR curves
- 5. Anomaly Detection: Isolation Forest, One-Class SVM

Métricas Importantes:

- Precision-Recall AUC (mais importante que ROC AUC)
- F1-Score, F2-Score (priorizar recall)
- Matthews Correlation Coefficient
- Balanced Accuracy
- Cost-based metrics (considerando custo do negócio)

ESTRUTURA DO RELATÓRIO

- 1. Resumo Executivo (1 página)
 - Problema, solução e principais resultados
 - Recomendações para o negócio
- 2. **Introdução** (1-2 páginas)
 - Contextualização do problema
 - Objetivos específicos
 - Metodologia proposta
- 3. Análise Exploratória (2-3 páginas)
 - Principais descobertas
 - Visualizações mais importantes
 - Insights de negócio
- 4. Desenvolvimento da Solução (3-4 páginas)

- Feature engineering detalhado
- Estratégia de modelagem
- Tratamento do desbalanceamento
- 5. Resultados e Avaliação (2-3 páginas)
 - Comparação de modelos
 - Análise de erros
 - Interpretabilidade
- 6. Implementação e Próximos Passos (1-2 páginas)
 - Proposta de deployment
 - Monitoramento e manutenção
 - Melhorias futuras
- 7. Conclusão (1 página)
 - Principais aprendizados
 - Impacto esperado no negócio

CRITÉRIOS DE ORIGINALIDADE

Exigências:

- 1. Código próprio: Não serão aceitas cópias diretas de soluções online
- 2. Abordagem única: Cada aluno deve ter sua estratégia de feature engineering
- 3. Análise crítica: Justificar TODAS as decisões técnicas
- 4. Citações: Referenciar adequadamente fontes e inspirações

Diferenciação Esperada:

- Features criativas baseadas em hipóteses de negócio
- Combinações não-óbvias de algoritmos
- Visualizações inovadoras
- Estratégias únicas para o desbalanceamento

CRONOGRAMA SUGERIDO

Semana	Atividade	Entregável
1	Análise exploratória e compreensão do problema	Notebook com EDA
2	Feature engineering e preparação dos dados	Features documentadas
3	Modelagem inicial e tratamento de desbalanceamento	Primeiros modelos

Semana	Atividade	Entregável
4	Otimização e ensemble methods	Modelos finais
5	Interpretação e análise de resultados	Visualizações
6	Documentação e preparação da apresentação	Relatório final

FORMA DE ENTREGA

- 1. Repositório GitHub contendo:
 - README.md detalhado
 - Notebooks organizados
 - Scripts Python modularizados
 - requirements.txt
 - Pasta com visualizações
- 2. Relatório em PDF via plataforma da disciplina
- 3. [Opcional] Link para aplicação deployed

PERGUNTAS NORTEADORAS

Para guiar seu trabalho, considere:

- 1. **Negócio:** Qual o real impacto financeiro de reduzir o attrition em 10%?
- 2. Ética: Como garantir que o modelo não discrimine grupos protegidos?
- 3. Prático: Como o RH usaria esse modelo no dia-a-dia?
- 4. **Técnico:** Por que sua solução é melhor que uma abordagem simples?
- 5. Futuro: Como o modelo se adaptaria a mudanças no mercado?

CRITÉRIOS PARA NOTA MÁXIMA

Para alcançar a nota máxima, seu trabalho deve demonstrar:

- 1. Profundidade técnica: Uso correto e justificado de técnicas avançadas
- 2. **Pensamento crítico:** Questionamento de suposições e análise de limitações
- 3. **Impacto no negócio:** Tradução clara de métricas técnicas em valor de negócio

- 4. Inovação: Pelo menos uma abordagem criativa não vista em aula
- 5. **Profissionalismo:** Código e documentação de qualidade production-ready

DÚVIDAS FREQUENTES

P: Posso usar bibliotecas além das sugeridas? R: Sim, desde que justifique a escolha e cite adequadamente.

P: Como lidar com o desbalanceamento extremo? R: Essa é parte do desafio! Pesquise, experimente e justifique suas escolhas.

P: Preciso usar todos os algoritmos ensinados? R: Não, mas quanto maior a variedade (bem justificada), melhor a avaliação.

BOA SORTE!

"In God we trust. All others must bring data." - W. Edwards Deming

_ ____

Observação: Este trabalho simula um desafio real de Data Science. Trate-o como se fosse um projeto para um cliente real. A qualidade do seu trabalho pode ser um diferencial importante em seu portfólio profissional.