Obliczenia

Przyrządy pomiarowe

Woltomierz do p	omiaru napięcia żarówki	analogowy
Watomierz do	pomiaru mocy żarówki	analogowy
Woltomierz do por	niaru napięcia fotokomórki	Miernik 3650
Amperomierz do pomia	aru natężenia prądu anodowego	Multimetr UNIT UT8802E
		71,0
A 1	1.	
Analogowy	woltomierz	(.7.5)
Używany zakres	300 V	
Klasa	0.5	.00
	_	
		701,
Analogowy	watomierz	100
Używany zakres	100 W	
Klasa	0.5	
		19/1
Mieri	nik 3650, pomiar napięcia DC 🧪	
Używane zakresy	Rozdzielczość D	okładność
20 V	10 mV	(0/ 1 1 -1-)
200 V	100 mV	5% + 1 dgts)
	11/0	

Analogowy woltomierz			
Używany zakres 300 V			
Klasa	0.5		

Analogowy watomierz			
Używany zakres 100 W			
Klasa	0.5		

Miernik 3650, pomiar napięcia DC					
Używane zakresy	Rozdzielczość	Dokładność			
20 V	10 mV	1(0 E0/ + 1 data)			
200 V	100 mV	$\pm (0.5\% + 1 \text{dgts})$			

Multimetr UNIT UT8802E, pomiar prądu DC					
Używany zakres	zakres Rozdzielczość Dokładność				
200 μΑ	0.01 μΑ	$\pm (0.5\% + 20 \text{ dgts})$			
illullo.com	KIL				

Pomiary

Niepewności typu B przyrządów cyfrowych obliczyliśmy w następujący sposób:

$$\Delta x = a\% \cdot wynik + b \cdot rozdzielczość$$

gdzie a% – podawana w % klasa przyrządu, b – dgts

$$u_b(x) = \frac{\Delta x}{\sqrt{3}}$$

Na przykład niepewność ostatniego pomiaru napięcia na fotokomórce w pomiarach natężenia prądu anodowego od napięcia fotokomórki:

$$\Delta U_f = 0.5\% \cdot 63.4 \text{ V} + 1 \cdot 0.1 \text{ V} = 0.417 \text{ V}$$

$$u_b(U_f) = \frac{\Delta U_f}{\sqrt{3}} \approx 0.2408 \text{ V}$$

Niepewności typu B przyrządów analogowych obliczyliśmy w następujący sposób:

$$\Delta x = \frac{klasa \cdot zakres}{100}$$

$$u_b(x) = \frac{\Delta x}{\sqrt{3}}$$

Na przykład niepewność pomiaru mocy żarówki w pomiarach natężenia prądu anodowego od napięcia żarówki:

$$\Delta U_z = \frac{0.5 \cdot 100 \text{ V}}{100} = 0.5 \text{ V}$$

$$u_b(U_z) = \frac{\Delta U_z}{\sqrt{3}} \approx 0.289 \text{ V}$$

Najmniejsza działka skali linijki wykorzystanej do zmierzenia odległości d żarówki od fotokomórki jest równa 1~cm. Przeważnie przyjmuje się, że dokładność jest równa najmniejszej działce skali, jednak skorygowaliśmy tę ocenę w dół i subiektywnie oceniliśmy dokładność Δd jako równą 0.5~cm.

$$u_b(d) = \frac{\Delta d}{\sqrt{3}}$$

$$u_b(d) \approx 0.29 \text{ cm}$$

Zależność natężenia prądu anodowego od napięcia fotokomórki

U_z , V	220	
P, W	40	
d, cm	60	

U_f , V	I_a , μ A	$u_b(U_f)$, V	$u_b(I_a)$, μA	Zakres U_f	
0.00	0.18	0.006	0.116		
1.82	0.98	0.011	0.118		
4.00	1.16	0.017	0.119		
5.80	1.20	0.023	0.119		71,0
7.80	1.23	0.028	0.119		18:17/18
9.81	1.27	0.034	0.119	20 V	
11.87	1.31	0.040	0.119		
13.65	1.32	0.045	0.119		(0)
15.61	1.33	0.051	0.119	10	
17.36	1.35	0.056	0.119	160	
19.40	1.37	0.062	0.119	2</td <td></td>	
21.2	1.39	0.119	0.119		
23.3	1.38	0.125	0.119	3/1/4	
25.1	1.39	0.130	0.119	0.	
27.2	1.41	0.136	0.120		
28.9	1.41	0.141	0.120	200 V	
32.8	1.43	0.152	0.120		
46.4	1.48	0.192	0.120		
59.6	1.49	0.230	0.120		
63.4	1.50	0.241	0.120		
North States					
Ollin					

Zależność natężenia prądu anodowego od napięcia żarówki

U_f , V	50
d, cm	60

U_z , V	I_a , μA	P, W	$u_b(I_a)$, μA	$u_b(U_z)$, V	$u_b(P)$, W
50	0.09	4.0	0.116		
60	0.09	5.3	0.116		
70	0.09	6.1	0.116		
80	0.09	8.2	0.116		
90	0.11	10.0	0.116		N.
100	0.12	11.0	0.116		
110	0.16	13.0	0.116		61.1
120	0.21	15.3	0.116		
130	0.23	17.9	0.116	0.866	0.289
140	0.27	19.9	0.116	0.000	0.289
150	0.33	22.2	0.116	10°	
160	0.37	25.1	0.117		
170	0.45	27.2	0.117	"IIO.	
180	0.61	28.2	0.117		
190	0.87	32.1	0.118	O'	
200	1.01	33.9	0.118	•	
210	1.18	37.5	0.119		
220	1.49	40.0	0.120		

Zależność natężenia prądu anodowego od odległości żarówki od fotokomórki

U_f , V	50
U_z , V	180
P, W	29.4

d, cm	I_a , μ A	$u_b(I_a)$, μA	$u_b(d)$, cm
60	0.62	0.117	
62	0.54	0.117	
64	0.50	0.117	
66	0.48	0.117	
68	0.45	0.117	
70	0.43	0.117	0.29
72	0.41	0.117	0.29
74	0.40	0.117	
76	0.38	0.117	
78	0.37	0.117	
80	0.36	0.117	
82	0.34	0.116	

Wszystkie pomiary I_a zostały wykonane na zakresie $200~\mu\text{A}$, czyli najmniejszym dostępnym na UT8802E.

Wykres zależności natężenia prądu anodowego fotokomórki od napięcia fotokomórki

Wykres zależności natężenia prądu anodowego fotokomórki od napięcia żarówki

Wykres zależności natężenia prądu anodowego fotokomórki od mocy pobieranej przez żarówkę.

illinio. On the state of the st

Wykres zależności natężenia prądu anodowego fotokomórki od odległości żarówki od fotokomórki

CONKIZSLIMI

Wykres zależności natężenia prądu anodowego fotokomórki od odwrotności kwadratu odległości żarówki od fotokomórki

Na wykresach $I=f(U_z)$ oraz I=f(P) widać korelację dodatnią między natężeniem prądu anodowego, a napięciem na żarówce oraz pobieraną przez nią mocą. Jest ona spowodowana rosnącą energią fotonów, które padają na fotokomórkę. Zwiększanie napięcia i mocy żarówki prowadzi do wzrostu energii fotonów. Na wykresach można dostrzec, że po przekroczeniu pewnej wartości U_z i P natężenie prądu anodowego szybko rośnie, co świadczy o tym, że energia fotonów w tym punkcie przekroczyła pracę wyjścia.

Na wykresie $I=f(d^{-2})$ widać, że zależność natężenia prądu anodowego od odwrotności kwadratu odległości od żarówki jest liniowa. Obserwacja ta jest zgodna z teorią, ponieważ natężenie światła jest proporcjonalne do odwrotności kwadratu odległości punktu powierzchni od punktowego źródła światła.

Niepewności natężenia prądu anodowego $u(I_a)$ są duże w stosunku do zmierzonych wartości I_a . Mierzony prąd był mały w porównaniu z zakresem ustawionym na amperomierzu. Wartości I_a nie przekraczały $1.5~\mu\text{A}$, a najmniejszy dostępny zakres na amperomierzu wynosił $20~\mu\text{A}$.

Wnioski

Przeprowadzone doświadczenie potwierdza występowanie zjawiska fotoelektrycznego zewnętrznego. Fotokomórkę gazowaną można zastosować do detekcji światła i pomiaru jego intensywności lub do zmierzenia odległości od źródła światła, co jest szczególnie przydatne w automatyce. Prąd płynący przez fotokomórkę po oświetleniu jej żarówką jest możliwy do wykrycia, jednak jest na tyle mały, że niektóre mierniki będą miały problem ze zmierzeniem go z dużą dokładnością.

ojthub.com/kr.s.thutwolst-squared com/kr.s.thutwolst-squared com/kr.s.thutw