課題 7 の解答 T.S. 00/11/14

FDS法のBurgers方程式に対する数値流束は次式で与えられる.

$$\widetilde{f} = \frac{1}{2} \left[F_L + F_R - \psi(u)(u_R - u_L) \right]$$

$$= u = \frac{1}{2} (u_L + u_R)$$

ここで、

である. たとえば、

$$\overline{u}_{i-2} = \overline{u}_{i-1} = -U, \quad \overline{u}_i = \overline{u}_{i+1} = +U$$

のような場合、

$$\widetilde{f}_{i-3/2} = \widetilde{f}_{i-1/2} = \widetilde{f}_{i+1/2} = \frac{1}{2}U^2$$

となってしまい、 \overline{u}_{i-1} , \overline{u}_i の値は時間を進めても変化しない.これによって、膨張衝撃波を許すことになる.(数学的な解ではあるが、これを物理的な制約の下で考えるならば、Entropy 条件を破ることに相当する.) このようなことが起きるのは、数値拡散係数を与える関数 ψ が絶対値関数であり、引数がゼロの時ゼロとなり、数値拡散が消滅することによるものである.

従って、関数 ψ をゼロ付近で修正し、常に、必要かつ最小限の数値粘性が入るようにすればよい.

ここでは、次の関数形を考える.

$$\psi(u) = \begin{vmatrix} = \\ u \end{vmatrix} \qquad ; \quad \begin{vmatrix} = \\ u \end{vmatrix} \ge \delta$$
$$= \frac{1}{2\delta} (u^2 + \delta^2) \qquad ; \quad \begin{vmatrix} = \\ u \end{vmatrix} < \delta$$

 δ はパラメータであり、数値実験によって、適切な値を定める.

FDS

$$\delta = 5 \times 10^{-3}$$

$$\delta = 10^{-2}$$

$$\delta = 10^{-1}$$

$$\delta = 5 \times 10^{-1}$$

FDS $\phi = 0$

 $\delta = 1$

 $\delta = 5$

FDS

$$\delta = 5 \times 10^{-3}$$

$$\delta = 10^{-2}$$

FDS $\phi = 1$, $\kappa = -1$

 $\delta = 5 \times 10^{-2}$

 $\delta = 10^{-1}$

 $\delta = 5 \times 10^{-1}$

FDS
$$\phi = 1$$
, $\kappa = -1$

 $\delta = 1$

 $\delta = 5$

- 高次精度近似を使うことが重要
- $\delta = 0.5$ 程度が適切な量

以上

先述の数値拡散項は膨張衝撃波を除去するのに効果的であったが、 δ を大きくするにつれて衝撃波が鈍ってしまうため、適切な量を選定する必要がある.

そこで、 δ を大きくしても衝撃波が鈍らないようにするため、さらに工夫する.

膨張衝撃波が生じるのは、

$$u_R \ge 0$$
 $\eta > 0$ $u_L \le 0$

が成立しているときである. 従って、この場合にのみ、Entropy Fix を施すようにすればよい.

このように修正した場合の計算結果を以下に示す.

 $\delta = 1$

 $\delta = 5$

B:t=0.0 C:t=0.1, D:t=0.2 E:t=0.3, F:t=0.4, G:t=0.5

 $\delta = 0.1$

FDS
$$\phi = 1$$
, $\kappa = -1$

 $\delta = 0.5$

 $\delta = 1$

 $\delta = 5$