Q1	let $\Sigma = \{a, b; \}$ show that $L = \{ww^R w \in \Sigma\}$ is not Regula
ANS	STEP 1: Assume L'is regular language
	STEP 2: let n be pumping lemma constant let $\omega = a^n b$; $\omega^R = ba^n$ let $z = \omega \omega^R = a^n bba^n$
	Repxes enting z in pumping lemma constant
	∴ let z = anbban
	Dividing z into 3 paxts such that z = uvw and
	Juvien and 15/1/50
	: Selet values of (u,v, w) satisfying the above two conditions
	$\therefore \text{ let } a \approx u = a^{n-2}$
	V = aa
	w=bba ⁿ
	Then uvio = an-2 (aa) bban
	For i=0 we get uviw = a^n-2 bban & L
	: Resultant a ⁿ⁻² b cannot be a xeverse of ban
	Hence it contradicts our assumption
	'
	: L is not regular.
	· · · · · · · · · · · · · · · · · · ·

J	
Q2	let z = {0} show that L = {0} in is a prime 3 is not
-	regular
ANS	STEP 1: let us assume L* is a regular language
	: L = { 00,000,0000000,3
	s 7GP 2: consider w = 0000000 n = 7
	STEP 3: Divide w in three paxts
	n = 000
	y = 0
	Z =000
, , , , , , , , , , , , , , , , , , ,	S76P 4: Hexe, 141 > 0
	[ny <n< th=""></n<>
	Now we check, ny'z
	ω ₀ = ηy°z = 000000 ∉L
	10 MU7 - DODOOOO & L
	$\omega_2 = ny^2z = 000000000 \neq L$
	8
	·: V ny'z & L jor au i > 0
Ÿ.	
	: our assumption is wrong
	V V
	:. Given language is NOT regular.

FOR EDUCATIONAL USE

Sundaram

Q3 Convert the following FA to RE

STEP 1: No dead states

STEP 3: substitute q2 in q,

$$\therefore \quad q_1 = q_0 1 + q_1 1 + q_1 01$$

$$q_1 = q_0 1 + q_1 (1 + 01)$$

$$R = QP^* = q_0 1 (1+01)^*$$

$$\therefore q_1 = q_0 1 (1+01)^* \qquad \therefore q_2 = q_0 1 (1+01)^* 0$$

Now, substitute 9, and 92 in 90

$$q_0 = [0 + 1(1+01)^*01]^*$$
 [: $e_R^* = e_R^*$]

:
$$q_0 = [0 + 1(1+01)^* 01]^*$$
 [: $e^* = R^*$]
: Regular Empression of given FA is $[0+1(1+01)^* 01]^*$

8

24

ANS STEP 1: 93 is removed as it has no outgoing transition and thus is a dead state

STEP 2: qo = qb + q2a+ E 9, = 9,0

92 = 90b-12 + 42 + 12 +

STEP 3: Substitute values of q_1 and q_2 in q_0 $\therefore q_0 = q_0 \text{ ab} + q_0 \text{ ba} + \varepsilon$ $\therefore q_0 = \varepsilon + q_0 \text{ (ab + ba)}$

i.e. R = Q + RP [ARDENS THEOREM]

 $R = RP^* = e(ab + ba)^*$ $Q_0 = (ab + ba)^* \quad [:eR^* = R^*]$

: Regular Enpression of given DFA is (ab + ba)*