DIGITAL FINANCE

This project has received funding from the Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101119635

Time-Series xAI Methods

Faizan Ahmed

Time series

Number of observations collected over a successive period of time.

- Variable anything that changes over time
- Time periods Can be daily, weekly, monthly, yearly
- Variable Behaviour —
 Quantifiable value

Image vs TS

Why Special methods for XAI?

Time series lack the spatial structure—no pixels, colours or shapes to **rely on**.

- Image saliency is visually intuitive; temporal signals rarely offer such anchors.
- Peaks and valleys alone seldom explain domain meaning; context over time is key.
- ECG example: subtle disturbances become clear only across several cardiac cycles.

Explanation methods for sequences must account for temporal dynamics.

Challenges

- Choosing an in-distribution baseline
- Interpretable temporal representation
- Capturing temporal interactions
- Managing computational cost

Family Bucket One-liner intuition Mask or alter inputs and see how the prediction Model-Perturbationshifts (e.g., TimeSHAP, agnostic based LIME-Segment, Dynamask). Replace inputs with indistribution **Distribution-aware** counterfactual samples; measure distributional shift (e.g., FIT).

XAI for time series

TAXONOMY MODEL TYPE: GU, XINYUE & YANG, LINXIAO & SUN, LIANG. (2024). EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR TIME SERIES: A. SYSTEMATIC SURVEY. 10.13140/RG.2.2.23062.56642.

Modelspecific Decompositionbased Algebraically split the model into additive parts (e.g., Contextual Decomposition, ACD, REAT). Treat attention weights in

Attention-score

Treat attention weights in RNNs/Transformers as importance indicators (e.g., RETAIN, TFT).

XAI for time series

- Taxonomy: Explanation Type
- See: https://ieeexplore.ieee.org/document/989 5252

XAI for TS: Windowing and Tabeling

- Window the raw signal slice it into fixed-length segments so each row in the future table corresponds to a "view" of the sequence.
- Compute hand-crafted features for each window
 - Time-domain: mean, variance, max/min, zero-crossings, slope, etc.
 - Frequency-domain: dominant frequency, band-power, spectral entropy, etc.
- Result: a tabular matrix (rows = windows, columns = features)
 - Now you can apply any tabular XAI tool (SHAP, LIME, feature permutation, global surrogate trees, etc.).
- Pros & Cons
 - Pros: interpretable features, fast inference, mature XAI support.
 - Cons: may discard fine-grained temporal patterns; requires domain knowledge to choose features.

Time Series Grad-CAM

Algorithm 3: Gradient-weighted Class Activation Mapping **Input:** (Multi/single variate) time series t, trained CNN, target class c Output: Heat-map $L_{GradCAM}$ 1 ; /* Forward pass **2** $A^k \leftarrow$ feature-maps of the *last conv* layer; **3** $S_c \leftarrow$ predicted score for class c; 4 ; /* Backward pass 5 $\frac{\partial S_c}{\partial A^k}$ \leftarrow gradients w.r.t. each map; 6 ; /* Channel importance */ 7 $\alpha_k = \frac{1}{T} \sum_{t} \frac{\partial S_c}{\partial A_t^k}$ 8 * average only along the time axis 9 ; /* Linear combination & ReLU 10 $L_{\text{GradCAM}} = \text{ReLU}(\sum \alpha_k A^k);$ 11 ; /* Upsample 12 Resize $L_{GradCAM}$ to the resolution of T and overlay; 13 Generate Heatmap?

Mandatory:

- 1. Assaf, R., & Schumann, A. (2019, August). Explainable deep neural networks for multivariate time series predictions. In *IJCAI* (pp. 6488-6490).
- 2. J. Van Der Westhuizen and J. Lasenby. Techniques for visualizing Istms applied to electrocardiograms. arXiv preprint arXiv:1705.08153, 2017.

Family	Typical design	Strengths	Pain-points called out by the authors
A. Point-wise heat- maps	Put colour directly on the data marks (circles, dots).	extremely compact; preserves raw signal shape	heavy over-plotting, colour perception issues, later points over-draw earlier ones, hard beyond toy sequences
B. Gradient line segments	Encode relevance as a colour ramp along the poly-line.	keeps temporal ordering; no extra screen space	if the ramp is poorly chosen the signal itself becomes illegible; still juxtaposes high & low values without structure
C. Line-over- background heat- maps	Original curve in front, rectangular heat-map behind.	separates data & attribution layers; easy to add multiple attribution rows	overwhelms non-experts; small line vs huge heat- map; adjacent extremes visually clash
D. Dense pixel heat- maps (no signal)	Drop the line, show only a colour grid of relevance.	exposes recurrent patterns; good when the signal itself is distracting	eliminates temporal reference—experts struggle to relate colours back to real values
E. Pipe / tube overlays	Draw a variable-width, colour-coded "pipe" around the line.	width + colour jointly guide attention; low-relevance still visible	needs careful scale setting; may hide small fluctuations of the original series
F. Separate attribution lanes	Stack a second line plot (or small multiples) for relevance.	clean split—data intact, attribution legible; easy brushing & linking	relation between series & attribution requires eye jumps; less screen-efficient
G. Additive bar / arrow charts	Use SHAP additivity to draw positive/negative bars above & below the series, sometimes with arrows to compare models.	communicates direction (\uparrow helpful, \downarrow harmful); supports multi-model comparison	only works for additive attributions; unsuitable for uni-variate series
H. Counter-factual- first workflows	Show "what would flip the prediction" examples first; drill down with attributions + what-if sliders.	aligns with Shneiderman mantra (overview \rightarrow zoom \rightarrow details); empirically easier for lay users	still a research vision; needs interactive tooling

Visualizing TS explanation

Visualizing TS explanation

Explaining LSTM

TimeSHAP, WindowSHAp and C-SHAP

Shapley Values for Time Series

- Consider the multivariate time series $X \in \Re^{D \times L}$
- D is the number of variables
- L is the length of time series
- $\Delta = \{(i,t): 1 \le i \le D, 1 \le t \le T\}\}$ set of all combination of time and variables.
- $\phi_{i,t} = \sum_{(S \subset \Delta \setminus \{(i,j)\}} \frac{|S|!(D \times L |S| 1)!}{(D \times L)!} [v_{X^*}(S \cup \{(i,t)\}) v_{X^*}(S)]$

Input vector (features)

- Tabular KernelSHAP treats the whole history as one feature vector → loses temporal context.
- RNNs, TCNs, Transformers output predictions because of specific features at specific timesteps.
- Question: "Which past events actually drove the prediction?"
- Requires attributions on two axes → variables × timesteps.

TimeSHAP perturbs features × timesteps (two-axis attributions)

- Events are sorted by recency.
- Starting from the far past, merge events into one background player until

$$\sum_{j \in merged} \phi_{event_j} \leq \eta$$

where η is a user-set tolerance (e.g. 0.05).

 Reduces the exponential coalition space without violating Shapley axioms.

Keep top-k rows (important features) and top-k columns (important timesteps).

Perturb only the k^2 intersection cells \rightarrow quadratic, not exponential.

Produces fine-grained insights:

"This unusually large transfer amount at t = k triggered the fraud alert."

João Bento, Pedro Saleiro, André F. Cruz, Mário A.T. Figueiredo, and Pedro Bizarro. 2021. TimeSHAP: Explaining Recurrent Models through Sequence Perturbations. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD '21). Association for Computing Machinery, New York, NY, USA, 2565–2573. https://doi.org/10.1145/3447548.3467166

- TimeSHAP extends KernelSHAP to sequences, producing feature-, event- and cell-level Shapley attributions while remaining model-agnostic and post-hoc.
 - Sequence-wide Shapley perturbations: Extends KernelSHAP to two axes—features and timesteps—so you can ask "which past events and which variables actually drove the RNN's output?"
 - Temporal-coalition pruning: Groups the oldest, lowimpact events into a single "background" coalition once their combined attribution falls below a tolerance η, slashing the exponential search space and runtime without losing Shapley guarantees.
 - Cell-level zoom-in: After isolating the few critical rows (features) and columns (events), it perturbs the individual cells at their intersections, yielding finegrained attributions like "this unusually large transfer amount in event k triggered the fraud alert."

Figure 1: Current SHAP-based methods (left) only calculate attributions for a single input vector. TimeSHAP (right) applies perturbations throughout the input sequence.

- Drawbacks (Kernel)SHAP for time series:
- Not originally intended to be used with time-series data.
- KernelSHAP approximates Shapley values and reduces computational time, but is still computationally expensive for highdimensional data.
- Sequential data points are often highly dependent. For dependent features, their joint contribution is distributed among them, resulting in many small Shapley values.
 - Difficult to draw conclusions

Nayebi, A., Tipirneni, S., Reddy, C. K., Foreman, B., & Subbian, V. (2023). WindowSHAP: An efficient framework for explaining timeseries classifiers based on Shapley values. Journal of biomedical informatics, 144, 104438.

Window SHAP

KernelSHAP:

- To mask a feature (=data point) replace it by an uninformative value
 - For example: zero, sampling from training data, ...

WindowSHAP

- To mask a feature (=partition of data points) replace them all by an uninformative value
 - For example: zero, sampling from training data (subsequences), ...

WindowSHAP solves these issues by partitioning data points and treating the partitions as features for SHAP:

- Partitioning means less features, so lower computational complexity
- Partitioning balances out small SHAP values and instead leads to more meaningful explanations

WindowSHAP – partitioning

- Stationary WindowSHAP
 - Segment time series into adjacent fixed length windows

WindowSHAP – partitioning

Stationary WindowSHAP

Sliding WindowSHAP

- Segment time series into overlapping fixed length windows to mitigate boundary issues
- SHAP is repeatedly applied for each segment
- Average out SHAP values for overlapping windows

WindowSHAP – partitioning

- Stationary WindowSHAP
- Sliding WindowSHAP
- Dynamic WindowSHAP
 - Flexible length windows
 - Repeatedly apply WindowSHAP and split partitions with high SHAP values

Figure 7. Heatmaps depicting the importance of all time steps for the important features for a certain patient record from the MIMIC-III dataset. The top 15 variables depicted on the y axis are ranked according to their importance. The darker the color is, the higher the absolute value of the assigned Shapley value is.

C-SHAP

(https://arxiv.org/abs/2504.11159)

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Horizon Europe: Marie Skłodowska-Curie Actions. Neither the European Union nor the granting authority can be held responsible for them.

