Лабораторная работа №3

АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ И ТОЧНОСТИ В САУ

Цель работы: исследовать влияние структуры и параметров системы на качество переходных процессов и статическую ошибку.

Чёрный – входной сигнал (r)

Красный – возмущение (m)

Жёлтый – выходной сигнал (у)

Зелёный – ошибка (е)

1.

Рисунок 1 – график переходного процесса при ступенчатом входном воздействии.

$$e_0$$
=0
t = 36.5 c
 y_{max} = 1.8 \rightarrow σ = 80%

Корневой способ:

$$A(s) = 4 + s + 1.3s^2 + 0.25s^3$$

$$A(s) = 0 \rightarrow s1 = -5.0365503 + 0.i$$

$$s2 = -0.0817248 + 1.7804771i$$

$$s3 = -0.0817248 - 1.7804771i$$

$$\eta = 0.0817 \rightarrow t = 36.7 \ c$$

$$\mu = 21.79 \rightarrow \sigma = 86.57\%$$

Частотный способ:

Рисунок 2 — ВЧХ замкнутой системы. P_{max} = 3.5, P_{min} = -5.5, P(0) = 1 \rightarrow σ = 485% ω_{Π} = 1.75

2. Рисунок 3 – график переходного процесса при ступенчатом возмущении. e_0 = -0.6

3.

Рисунок 4 – график переходного процесса в режиме линейной заводки по входу.

$$e_{c/r} = 1$$

Расчётное значение: lim (s \rightarrow 0) s*E(s) = 1.25

4.

Рисунок 5 – график переходного процесса при ступенчатом входном воздействии.

$$e_0 = 0$$

 $t = 36.5 c$
 $y_{max} = 1.815 \rightarrow \sigma = 81.5\%$

Рисунок 6 – график переходного процесса при ступенчатом возмущении.

$$e_0 = 0$$

5.

Рисунок 7 – график переходного процесса при ступенчатом входном воздействии.

$$e_0 = 0.2$$

$$t = 5.5 c$$

$$y_{max} = 1.125 \rightarrow \sigma = 40.6\%$$

Рисунок 8 – график переходного процесса при ступенчатом возмущении.

$$e_0 = -0.4$$

6.

Рисунок 9 – график переходного процесса при ступенчатых входном воздействии и возмущении. e_0 = -0.2

Расчётное значение: lim (s \rightarrow 0) s*E(s) = -0.2

7. Таблица 1 – Зависимость показателей качества от параметра K2.

K2	е	t, c	sigma, %
1	0,33	4,5	20,14
1,5	0,25	4,4	31,3

2	0,2	5,2	40,6
2,5	0,17	7,4	48,8

Зависимость е от К2

Рисунок 10 – зависимость ошибки.

Зависимость t от K2

Рисунок 11 – зависимость времени переходного процесса.

Зависимость sigma от K2

Рисунок 12 – зависимость величины перерегулирования.