第十章 机器语言程序设计

本章重点

- 课程内容回顾
- 机器语言程序设计
- 示例

课程内容回顾

第六章 数据的机器级表示

第七章 数字逻辑电路

第八章 冯•诺依曼模型

第九章 指令集结构

指令集结构

DLX 算术/逻辑运算指令 数据传送指令 控制指令 浮点指令

- 计算机能够执行的指 集合
 - •操作码:让计算机执行的操作
 - 操作数: 每一步操作所需的数据
 - "数据类型":操作数在计算机中的 大方式
 - "寻址模式":如何计算操作数在存储器中的
 - 存储器
 - 地址空间: 计算机存储单元的数量(2ⁿ)
 - 寻址能力: 每个存储单元存储信息的能力(m位)
 - 寄存器集(DLX包含32个整数寄存器)

DLX 二进制补码整数 (8/16/32位) 单/双精度浮点数 (32/64位)

DLX

不同的指令集结构规定的操作、操作数数据类型和寻址模式等是不同的。

		31 26	25 21	20 16	15 11	10 6	5 0
	ADD	000000	SR1	SR2	DR	未用	000001
	ADDI	000001	SR1	DR		Imm16	
	SUB	000000	SR1	SR2	DR	未用	000011
	SUBI	000011	SR1	DR		Imm16	
	AND	000000	SR1	SR2	DR	未用	001001
DLX	ANDI	001001	SR1	DR		Imm16	
	OR	000000	SR1	SR2	DR	未用	001010
114	ORI	001010	SR1	DR		Imm16	
址	XOR	000000	SR1	SR2	DR	未用	001011
7	XORI	001011	SR1	DR		Imm16	
指	LHI	001100	未用	DR		Imm16	
令子集	SLL	000000	SR1	SR2	DR	未用	001101
Ž	SLLI	001101	SR1	DR		Imm16	
•	SRL	000000	SR1	SR2	DR	未用	001110
7	SRLI	001110	SR1	DR		Imm16	
—	SRA	000000	SR1	SR2	DR	未用	001111
•	SRAI	001111	SR1	DR		Imm16	
4	SLT	000000	SR1	SR2	DR	未用	010000
重	SLTI	010000	SR1	DR		Imm16	
7	SLE	000000	SR1	SR2	DR	未用	010010
1.	SLEI	010010	SR1	DR		Imm16	
太	SEQ	000000	SR1	SR2	DR	未用	010100
1 🗖	SEQI	010100	SR1	DR		Imm16	
14	LB	010110	SR1	DR		Imm16	
#	SB	010111	SR1	DR		Imm16	
上	LW	011100	SR1	DR		Imm16	
•	SW	011101	SR1	DR		Imm16	
	BEQZ		SR1	未用		Imm16	
	BNEZ	101001	SR1	未用	DCO (C +24	Imm16	
	J	101100	CD 1	土田	PCOffset26	土田	
	JR	101101	SR1	未用	DCOff+26	未用	
	JAL	101110	CD 1	土田	PCOffset26	土田	
	JALR TRAP	101111	SR1	未用	Vector26	未用	
	INAP	110000			vector20		

DLX指令操作类型

- 由指令的[31:26]位定义, 64种指令类型
- R类型
 - 指令的[31:26]位为000000
 - [5:0] 位定义了函数,有64种可能的函数
- 只定义了91条指令

DLX指令:第一个源操作数

- 来自寄存器
 - 用5位编码标识
 - [25:21], SR1

I-类型

31	26 25	· '7 I '	20 16	15 0
操作码	冯	SR1	DR	Imm16

• R-类型

31	26	25 2 1	20	16	15 1	1	10	6	5	0
操作码		SR1	S	R2	DR		未用		函数	

DLX指令: 第二个源操作数

- I-类型, Immediate
 - [15:0], 直接获得
 - 立即数

31	76	25 21	711 16	15 0
	操作码	SR1	DR	Imm16

- R-类型, Register
 - [25:21], SR2

31 26	25 21	20 16	15 11	10 6	5 0
操作码	SR1	SR2	DR	未用	函数

DLX指令:目标操作数

- I-类型, Immediate
 - [20:16], DR

31	26	25 21	20 16	<u>0</u>
	操作码	SR1	DR	Imm16

- R-类型, Register
 - [15:11], DR

31	26	25	21	20		16	15		11	10		6	5		0
操作码	,		SR1		SR2			DR			未用			函数	

I-类型运算指令

- 第二个源操作数
 - 来自于指令[15:0]进行符号扩展得到的32位整数, 即立即数
- 目标操作数
 - 来自于指令[20:16]所标识的寄存器中

R-类型运算指令

- [31:26]位为000000, [5:0]位定义了函数
- 第一个源操作数
 - 来自于指令[25:21]所标识的寄存器中
- 第二个源操作数
 - 来自于指令[20:16] 所标识的寄存器中
- 目标操作数
 - 来自于指令[15:11] 所标识的寄存器中

算术/逻辑运算指令

- 对整数进行处理
- 37个算术逻辑运算指令:加、减、乘、除、与、或、异或、移位、比较、加载高位立即数等
- 除加载高位立即数指令(LHI)外,其他运算指令执行的都是二元运算
 - 两个源操作数(即待运算的数据)
 - 来自通用寄存器或从指令中直接获得
 - 一个目标操作数(运算执行后的结果)
 - 存储于通用寄存器中

ADDI (算术运算指令)

- ADD代表加, I代表立即数(Immediate)
 - 第一个操作数R4
 - 第二个源操作数在指令中
 - [15:0]位符号扩展(SEXT)
 - 目标操作数写入R1

ADD I

(算术运算指令)

哪些整数可以用作立即数?

ADD

- •操作码000000, R-类型
 - [5:0]为000001, ADD函数

ADD

ANDI (逻辑运算指令)

- 指令执行结果: 寄存器R2被清空
 - R2←(R2) AND 0
 - 结果, R2的32位全部为0

	寄存器堆			寄存器堆	
R0	0000 0000 0000 0000 0000 0000 0000 0000	0	R0	0000 0000 0000 0000 0000 0000 0000 0000	(
R1	•••••		R1	•••••	
R2	****	*	R2	0000 0000 0000 0000 0000 0000 0000 0000	(
R3			R3		
R4			R4		
R29			R29		
R30			R30		
R31			R31		

数据传送指令

- 存储器和通用寄存器之间
- 加载(load):将数据从存储器移动到寄存器的过程
- 存储(store):将数据从寄存器移动到存储器的过程
- LB和SB:加载和存储一个8位的字节,在一个 存储单元和一个寄存器之间传送数据
- LW和SW:加载和存储一个32位的字,在4个连续的存储单元和一个寄存器之间传送数据

LB (数据传送指令)

地址

x5678 1234	0000 1111
x5678 1235	*****
x5678 1236	*****
x5678 1237	*****

- 基址+偏移量
 - (R2) + x0000 1234
 - x56781234
- 符号扩展到32位

SB(数据传送指令)

- 基址+偏移量
 - (R2) + x0000 1234
 - x56781234
- R1中数值低8位(最低有效字节)

控制指令

- 改变被执行的指令的顺序
- DLX有10条指令能使顺序流被打破
 - 条件分支: BEQZ、BNEZ指令
 - 无条件跳转: JR、J指令
 - TRAP指令
 - 子例程(有时称为函数)调用
 - 从异常/中断返回

BEQZ指令(控制指令)

- PC ← PC + 4 + SEXT (Imm16)
 - 实际PC ← PC + x0000 0004 + x0000 1234

JR指令(控制指令)

- 寄存器跳转(Jump Register)
- I-类型
- [20:0]位未用,设为0
- [25:21]位的寄存器
 - 包含下一条将要被执行的指令地址
- PC ← (R3)

J指令(控制指令)

- 跳转(Jump)
- J-类型
- PC ← PC+4+SEXT (PCOffset26)
- 订正: 边界对齐, x4320

思考

• 为什么需要这两种不同类型的指令?

	I−类型	R−类型
灵活性	内存访问、带有常数的操作	寄存器之间的操作
性能	相对较慢,需要访问内存	相对较快,寄存器级别
内存访问	允许访问,数据加载和存储	不允许

本章重点

- 课程内容回顾
- 机器语言程序设计
- 实例

高级语言

- 与底层计算机指令集无关
- "独立于机器"
- 不能直接被计算机执行
- 被翻译为目标机器 I SA的二进制指令序列

低级语言

- 与执行程序的计算机指令集紧密相关
- 汇编语言
 - 依据指令集的汇编语言格式编写,需经过语言处理,翻译 为机器语言才能在计算机上执行
- 机器语言
 - 依据指令集使用二进制编码,直接在计算机上执行,不需要经过语言处理

低级语言的作用

- **硬件控制:** 允许程序员<u>直接控制计算机的硬件</u>,如CPU 、内存、寄存器等,高度优化的性能关键应用程序和 硬件驱动程序。
- 系统编程:操作系统、设备驱动程序、嵌入式系统等需要与底层硬件交互的领域,需要对计算机硬件有深刻的理解和控制。
- 性能优化:允许程序员更好地控制寄存器和内存使用 ,在某些情况下,使用低级语言可以比使用高级编程 语言获得更高的性能。
- 调试和逆向工程:研究恶意软件、漏洞分析以及系统 逆向工程等安全领域,允许深入分析和理解二进制代 码的内部工作方式。

结构化程序设计

(1) A 特分解 的任务

- 三种基本结构
 - 顺序
 - 选择
 - 循环

顺序

选择

31	76	25 21	20 16	15 0
	操作码	SR1	未用	Imm16

- 一组指令序列生成条件
 - · 将某个寄存器Rx设置为零(假)/非零(真)
- · 地址B2"条件分支指令"测试该寄存器
 - 条件为真(BNEZ Rx, Y)
 - PC<-C2+4
 - · 立即数Y:子任务2的指令数目加1后再乘以4
 - 条件为假
 - PC <- B2+4
 - 子任务2
 - 终止于C2中的无条件跳转指令
 - PC <- D2+4
 - J指令中的立即数: 子任务1的指令数目乘以4

(1)

循环

31	76	25 21	20 16	15 0
	操作码	SR1	未用	Imm16

- 一组指令序列生成条件
 - ・ 将某个寄存器Rx设置为零(假)/非零(真)
- · 地址B3 "条件分支指令"测试该寄存器
 - 条件为假(BEQZ Rx, Y)
 - PC <- D3+4
 - · 立即数Y: 子任务的指令数目加1后再乘以4
 - 条件为真
 - PC <- B3+4
 - 子任务
 - 结束于D3中的无条件跳转指令
 - PC <- A
 - · 问题: J指令中的立即数应为多少?

(7)

A 生成条件指令 B3 条件分支指令 子任务 D3 J指令

本章重点

- 课程内容回顾
- 机器语言程序设计
- 示例

示例1: 文档加密

- 根据键盘输入的数值n(0到9之间的整数,ASCII码 $x30^{2}x39$),对文档进行加密
- 文档有一个个字符组成,终止标识E0T(x04)
- 加密算法:
 - 如果文档中的字符ASCII码值大于"126-n",将该字符减去"94-n",并替换原来的字符;
 - 而其他字符则加上n, 进行替换;
 - 最后在显示器上显示字符 "Y" (x59),加密结束。
 - 假设文档中的字符ASCII码值在33~126范围内。

示例1: 文档加密

مغمانيات	AS	CII	مقام بنجا	AS	CII		AS	CII	.3., 846	AS	CII
字符	D	Н	字符	D	Н	字符	D	Н	字符	D	Н
NUL	0	00	SP	32	20	<u>a</u>	64	40	`	96	60
SOH	1	01	1	33	21	A	65	41	a	97	61
STX	2	02	"	34	22	В	66	42	b	98	62
ETV	,	0.3	#	35	23	C	67	43	С	99	63
EOT	4	04	\$	36	24	D	68	44	d	100	64
ENQ	5	05	%	37	25	E	69	45	e	101	65
ACK	6	06	&	38	26	F	70	46	f	102	66
BEL	7	07	1	39	27	G	71	47	g	103	67
BS	8	08	(40	28	Н	72	48	h	104	68
HT	9	09)	41	29	I	73	49	i	105	69
LF	10	0A	*	42	2A	J	74	4A	j	106	6A
VT	11	0B	+	43	2B	K	75	4B	k	107	6B
FF	12	0C	,	44	2C	L	76	4C	1	108	6C
CR	13	0D	-	45	2D	M	77	4D	m	109	6D
SO	14	0E		46	2E	N	78	4E	n	110	6E
SI	15	0F		17	2E	0	79	4F	0	111	6F
DLE	16	10	0	48	30	P	80	50	p	112	70
DC1	17	11	1	49	31	Q	81	51	q	113	71
DC2	18	12	2	50	32	R	82	52	r	114	72
DC3	19	13	3	51	33	S	83	53	S	115	73
DC4	20	14	4	52	34	T	84	54	t	116	74
NAK	21	15	5	53	35	u	85	55	u	117	75
SYN	22	16	6	54	36	V	86	56	\mathbf{v}	118	76
ETB	23	17	7	55	37	W	87	57	w	119	77
CAN	24	18	8	56	38	X	QQ	58	X	120	78
EM	25	19	9	57	39	Y	89	59	у	121	79
SUB	26	1A	•	50	ЭA	Z	90	5A	z	122	7A
ESC	27	1B	;	59	3B	[91	5B	{	123	7B
FS	28	1C	<	60	3C	\	92	5C		124	7C
GS	29	1D	=	61	3D]	93	5D	}	125	7D
RS	30	1E	>	62	3E	٨	94	5E	~	126	7E
us	31	1F	?	63	3F	_	95	5F	DEL	127	7F

系统分解过程

- 分解为由4个子任务组成的顺序结构
 - 初始化:得到数值n,将指针指向被检查文档中第一个字符的地址,然后从被检查文档中提取第一个字符。

0	48	30
1	49	31
2	50	32
3	51	33
4	52	34
5	53	35
6	54	36
7	55	37
8	56	38
9	57	39

分解C

- 循环结构: 只要该文档还有字符需要加密
 - 文档结束,标志为 EOT(传输结束, ASCII码为00000100)

分解C1

• 两个顺序的子任务C2和C3

用顺序结双C3

A和B顺序结构

地址	31	26	25	21	20	16	15	11	10	6	5	0	
x0400 0000	110	000			0000	00 000	0000	0 0000	0000	0110			TRAP x06/IN
x0400 0004	000	011	001	.00	001	100		0000	0000	0011	0000		SUBI R4, R4, x30
x0400 0008	001	100	000	000	000	011		0001	1 0000	0000	0000		LHI R3, x1000
x0400 000C	010	110	000	11	000	001		0000	0000	0000	0000		LB R1, 0(R3)
x0400 0010	010	100	000	01	000	010		0000	0000	0000	0100		SEQI R2, R1, #4
x0400 0014	101	001	000	10			0000	0 0000	0011	0000			BNEZ R2, x30
x0400 0018	000	001	000	00	001	101		000	0 0000	0111	1111		ADDI R5, R0, x7F
x0400 001C	000	000	001	.01	001	100	001	101	0000	000	00	00011	SUB R5, R5, R4
x0400 0020	000	000	000	01	001	101	000)10	0000	000	01	.0000	SLT R2, R1, R5
x0400 0024	101	001	000	10			0000	0 0000	0000	1100			BNEZ R2, x0C
x0400 0028	000	011	001	.01	001	101	0000 0000 0010 0001						SUBI R5, R5, x21
x0400 002C	000	000	000	01	001	101	000	0001 000000 000011				00011	SUB R1, R1, R5
x0400 0030	101	100			0000	00 000	0 0000	0000	0000	0100			J x04
x0400 0034	000	000	000	01	001	100	000	001	0000	000	00	0001	ADD R1, R1, R4
x0400 0038	010	111	000	11	000	001		0000	0000	0000	0000		SB 0(R3), R1
x0400 003C	000	001	000	11	000	011		0000	0000	0000	0001		ADDI R3, R3, #1
x0400 0040	010	110	000	11	000	001		0000	0000	0000	0000		LB R1, 0(R3)
x0400 0044	101	100			111111 1111 1111 1111 1100 1000					J #-56			
x0400 0048	000	001	000	000	001	100		0000	0000	0101	1001		ADDI R4, R0, x59
x0400 004C	1100	000			0000	000000 0000 0000 0000 0000 0111						TRAP x07/OUT	
x0400 0050	1100	000			0000	00 000	0000	0000	0000	0000			TRAP x00/HALT

C循环结构

地址	31	26	25	21	20	16	15	11	10	6	5	0	
x0400 0000	110	000			0000	00 000	0000	0000	0000	0110			TRAP x06/IN
x0400 0004	000	011	001	100	001	100		0000	0000	0011	0000)	SUBI R4, R4, x30
x0400 0008	001	100	000	000	000)11		0001	0000	0000	0000)	LHI R3, x1000
x0400 000C	010	110	000)11	000	001		0000	0000	0000	0000)	LB R1, 0(R3)
x0400 0010	010	100	000	01	000)10		0000	0000	0000	0100)	SEQI R2, R1, x04
x0400 0014	101	001	000	10			00000	0000	0011	0000			BNEZ R2, x30
x0400 0018	000	001	000	000	001	101		000	0000	0111	1111		ADDI R5, R0, x7F
x0400 001C	000	000	001	101	001	100	001	.01	0000	000	00	00011	SUB R5, R5, R4
x0400 0020	000	000	000	01	001	101	000	10	0000	000	01	10000	SLT R2, R1, R5
x0400 0024	101	001	000	10			00000	0000	0000	1100			BNEZ R2, x0C
x0400 0028	000	011	001	101	001	101		0000	0000	0010	0001	-	SUBI R5, R5, x21
x0400 002C	000	000	000	001	001	101	000	01	0000	000	00	00011	SUB R1, R1, R5
x0400 0030	101	100			0000	00 000	0 0000	0000	0000	0100			J x04
x0400 0034	000	000	000	01	001	100	000	01	0000	000	00	00001	ADD R1, R1, R4
x0400 0038	010	111	000)11	000	001		0000	0000	0000	0000	1	SB 0(R3), R1
x0400 003C	000	001	000)11	000)11		0000	0000	0000	0001		ADDI R3, R3, #1
x0400 0040	010	110	000)11	000	001		0000	0000	0000	0000	1	LB R1, 0(R3)
x0400 0044	101	100			1111	11 111	1 1111	1111	1100 1	000			J #-56
x0400 0048	000	001	000	000	001	100		0000	0000	0101	1001		ADDI R4, R0, x59
x0400 004C	110	000			0000	00 000	0000	0000	0000	0111			TRAP x07/OUT
x0400 0050	110	000			00000	000 000	0000	0000	0000	0000			TRAP x00/HALT

(7)
A 生成条件指令
B3 条件分支指令
子任务
D3 J指令

C2选择结构

地址 _	31	26	25	21	20	16	15	11	10	6	5	0	
x0400 0000	1100	000			0000	00 000	0000	0000	0000 0)110			TRAP x06/IN
x0400 0004	000	011	00100 00100 0000 0000 0011 0000									SUBI R4, R4, x30	
x0400 0008	0011	100	000	00	000)11		0001	0000 0	0000	0000		LHI R3, x1000
x0400 000C	010	110	000	11	000	01		0000	0000 0	0000	0000		LB R1, 0(R3)
x0400 0010	010	100	000	01	000	10		0000	0000 0	0000	0100		SEQI R2, R1, #4
x0400 0014	1010	001	000	10			0000	0000	0011 0	0000			BEQZ R2, x30
x0400 0018	0000	001	000	00	001	.01		0000	0000	0111	1111		ADDI R5, R0, x7F
x0400 001C	0000	000	001	01	001	.00	001	101	0000	000	00	0011	SUB R5, R5, R4
x0400 0020	0000	000	000	01	001	.01	000	10	0000	000	01	0000	SLT R2, R1, R5
x0400 0024	1010	001	000	10			0000	0000	0000 1	100			BNEZ R2, x0C
x0400 0028	000	011	001	01	001	.01		0000	0000 0	010	0001		SUBI R5, R5, x21
x0400 002C	0000	000	000	01	001	.01	000	01	0000	000		11	SUB R1, R1, R5
x0400 0030	101	100			00000	00 000	0000	0000	0000 0	100			J x04
x0400 0034	0000	000	000	01	001	.00	000	01	0000	00)0	0001	ADD R1, R1, R4
x0400 0038	010	111	000	11	000	01		0000	0000 0	1000	vv00		SB 0(R3), R1
x0400 003C	0000	001	000	11	000			~^^					TOI R3, R3, #1
x0400 0040	010	110					407	/ -	·-\				· 0(R3)
x0400 0044	101	10			ľ	(5=	127	(x/	'F)				
x0400 0048	Doo			4	27	D4	/_\	/ _ \	DE	D.A			0, x59
x0400 004C													
x0400 0050			D1	/DI	5_D	л lī	ulpo	–1	/ 01 1	rtビ		\ -	LT
_	x0400 0050 R1〈R5-R4 则R2=1 (SLT指令) LIT												
					R1>:	=R5	-RZ	L []	IJR2=	=0_			
			=	-	X 1 7	-110			7117	- ,			

C3顺序结构

地址	31	26	25	21	20	16	15	11	10	6	5	0	
x0400 0000	110	000			0000	00 000	00 000	0000	0000	0110			TRAP x06/IN
x0400 0004	000	011	001	100	00100 0000 0000 0011 0000								SUBI R4, R4, x30
x0400 0008	001	100	000	000	000	011		0001	1 0000	0000	0000)	LHI R3, x1000
x0400 000C	010	110	000)11	000	001		0000	0000	0000	0000)	LB R1, 0(R3)
x0400 0010	010	100	000	001	000	010		0000	0000	0000	0100)	SEQI R2, R1, #4
x0400 0014	101	001	000	10			0000	0000	0011	0000			BEQZ R2, x30
x0400 0018	000	001	000	000	001	101		000	0 0000	0111	1111		ADDI R5, R0, x7F
x0400 001C	000	000	001	101	001	100	001	101	0000	000	00	00011	SUB R5, R5, R4
x0400 0020	000	000	000	001	001	101	000	10	0000	000	0.	10000	SLT R2, R1, R5
x0400 0024	101	001	000	10			0000	0000	0000	1100			BNEZ R2, x0C
x0400 0028	000	011	001	101	001	101		0000	0000	SUBI R5, R5, x21			
x0400 002C	000	000	000	001	001	101	000	00001 000000 000011				00011	SUB R1, R1, R5
x0400 0030	101	100			0000	00 000	0000	0000	0000	0100		J x04	
x0400 0034	000	000	000	01	001	100	000	01	0000	000	00	00001	ADD R1, R1, R4
x0400 003	010	111	000)11	000)01		0000	0000	0000	0000		SB 0(R3), R1
x0400 003C	000	001	000)11	000	011		0000	0000	0000	0001		ADDI R3, R3, #1
x0400 004	010	110	000)11	000	001		0000	0000	0000	0000)	LB R1, 0(R3)
x0400 0044	101	100			1111	11 111	1 1111	1111	1100 1	000			J #-56
x0400 0048			UUU	JUU	UU.	LUU		UUU	J UUUU	0101	1001		ADDI K4, K0, X59
x0400 004C	110								0000				TRAP x07/OUT
x0400 0050	110	000			0000	00 000	0000	0000	0000	0000			TRAP x00/HALT

D顺序结构

地址	31	26	25	21	20	16	15	11	10	6	5	0	
x0400 0000	110	000			0000	00 000	0000	0 0000	0000	0110			TRAP x06/IN
x0400 0004	000	011	001	100	001	100		0000	0000	0011	0000)	SUBI R4, R4, x30
x0400 0008	001	100	000	000	000)11		0001	1 0000	0000	0000)	LHI R3, x1000
x0400 000C	010	110	000)11	000	001		0000	0000	0000	0000)	LB R1, 0(R3)
x0400 0010	010	100	000	001	000)10		0000	0000	0000	0100)	SEQI R2, R1, #4
x0400 0014	101	001	000)10			0000	0 0000	0011	0000			BEQZ R2, x30
x0400 0018	000	001	000	000	001	101		000	0 0000	0111	1111		ADDI R5, R0, x7F
x0400 001C	000	000	001	101	001	100	001	101	0000	000	00	00011	SUB R5, R5, R4
x0400 0020	000	000	000	001	001	101	000)10	0000	000	0.	10000	SLT R2, R1, R5
x0400 0024	101	001	000)10			0000	0 0000	0000	1100			BNEZ R2, x0C
x0400 0028	000	011	001	101	001	101		0000	0000	0010	0001		SUBI R5, R5, x21
x0400 002C	000	000	000	001	001	101	000	001	0000	000	00	00011	SUB R1, R1, R5
x0400 0030	101	100			0000	00 000	0000	0000	0000	0100			J x04
x0400 0034	000	000	000)01	001	100	000	001	0000	000	00	00001	ADD R1, R1, R4
x0400 0038	010	111	000)11	000	001		0000	0000	0000	0000)	SB 0(R3), R1
x0400 003C	000	001	000)11	000)11		0000	0000	0000	0001		ADDI R3, R3, #1
x0400 0040	010	110	000)11	000	001		0000	0000	0000	0000)	LB R1, 0(R3)
x0400 0044	101	100			1111	11 111	1 1111	1111	1100 1	000			J#-56
x0400 004	000	001	000	000	001	100		0000	0000	$010\overline{1}$	1001		ADDI R4, R0, x59
x0400 004 C	110	000			0000	00 000	00 00	0 0000	0000	$011\overline{1}$			TRAP x07/OUT
x0400 005	110	000			0000	00 000	0000	0000	0000	0000			TRAP x00/HALT

示例2: 判断连续存储单元内是否包含5

- 检查:
- 从地址x3000 0000开始存储的10个整数
 - 有5, R1设置为1
 - 没有5, R1为0

- 计数器控制的循环
 - R3, 计数器
- 子任务1
 - 选择结构

测试条件 R3==0

- 不需要生成条件指令
- 条件分支指令
 - BEQZ R3, D3+4

测试条件 R2==5

- 生成条件指令
 - SEQ1 Rx, R2, #5
- 条件分支指令
 - BEQZ Rx, D2+4

机器语言程序

31 26	25 21	20 16	15 11 10 6 5	0 解释
001001	00001	00001	0000 0000 0000 0000	ANDI R1,R1,#0
000001	00000	00011	0000 0000 0000 1010	ADDI R3,R0, #10
001100	00000	00100	0011 0000 0000 0000	LHI R4, x3000
011100	00100	00010	0000 0000 0000 0000	LW R2, 0(R4)
101000	00011	00000	0000 0000 0010 0000	BEQZ R3, #32
010100	00010	00101	0000 0000 0000 0101	SEQI R5, R2, #5
101000	00101	00000	0000 0000 0000 1000	BEQZ R5, #8
000001	00000	00001	0000 0000 0000 0001	ADDI R1,R0,#1
101100		00 0000 00	000 0000 0000 0001 0000	J #16
000001	00100	00100	0000 0000 0000 0100	ADDI R4,R4, #4
011100	00100	00010	0000 0000 0000 0000	LW R2, 0(R4)
000011	00011	00011	0000 0000 0000 0001	SUBI R3,R3, #1
101100		11 1111 11	11 1111 1111 1101 1100	J #-36
		••••	••	

- 选择结构
 - 当R2为5时,设置R1为1
 - 使用J指令跳出循环

示例3:找到字中的第一个"1"

- 检查:
 - x3000 0000~x3000 0003中的字
 - 找出第一个"1" (从左到右)
 - 存储到R1中
 - 如果没有1
 - R1 <− −1
 - 例如
 - 0010 0000 0000 0000 0000 0000 0000, R1=29
 - 0000 0000 0000 0000 0000 0010 0000, R1=5

- 选择结构
- 子任务2
 - 标志控制的循环
 - 标志
 - R2<0: R2[31]=1
 - 循环子任务
 - R2=R2<<1
 - R2[30], R2[29] ···==1?

测试条件 R2==0

- 不需要生成条件指令
- 条件分支指令
 - BEQZ R2, C2+4

测试条件 R2<0

- 生成条件指令
 - SLTI Rx, R2, #0
- 条件分支指令
 - BNEZ Rx, D3+4

机器语言程序

31 26	25 21	20 16	15 11 10 6 5	0 解释
000001	00000	00001	0000 0000 0001 1111	ADDI R1,R0, #31
001100	00000	00100	0011 0000 0000 0000	LHI R4, x3000
011100	00100	00010	0000 0000 0000 0000	LW R2, 0(R4)
101000	00010	00000	0000 0000 0001 0100	BEQZ R2,#20
010000	00010	00011	0000 0000 0000 0000	SLTI R3, R2, #0
101001	00011	00000	0000 0000 0001 0000	BNEZ R3, #16
000011	00001	00001	0000 0000 0000 0001	SUBI R1,R1, #1
001101	00010	00010	0000 0000 0000 0001	SLLI R2,R2, #1
101100		111111 11	11 1111 1111 1110 1100	J #-20
001010	00000	00001	1111 1111 1111 1111	ORI R1,R0, #-1
		••••	••	

书面作业

- 10. 1
- 10. 2