Organização e Arquitetura de Computadores

Julio Cesar Goldner Vendramini

Visão Geral

Julio Cesar Goldner Vendramini

Como um computador funciona?

 O conteúdo das aulas serão baseados fortemente no livro Organização estruturada de computadores – Tanenbaum – 6^a edição

Como um computador funciona?

- Formado por diversos circuitos eletrônicos;
- Possui um circuito que gera uma frequência de operação
- Possui capacidade de executar um conjunto de instruções(pequenas tarefas)
- A combinação de instruções, geram tarefas mais elaboradas (programas)
- O computador apenas realiza operações lógicas e aritméticas.
 - Tudo o que vemos são operações em cima de números

A organização de um computador simples com uma CPU e dois dispositivos de E/S.

Unidade central de processamento (CPU)

A máquina de 12 bits PDP-8 foi o primeiro sucesso comercial (pois foi) minicomputador, produzida pela Digital Equipment Corporation (DEC) na década de 1960. DEC introduziu-o em 22 março de 1965, e vendeu mais de 50.000 sistemas, mais do que qualquer computador até essa data.

Memória

Terminal

de console

E/S de fita

de papel

Barramento omnibus do PDP-8.

CPU

Arquitetura lançada em 2005

10TH GEN INTEL® CORE™ VPRO™ S/H PROCESSOR BLOCK DIAGRAM

Arquitetura lançada em 2019

Exemplo de níveis de abstração de um computador

Um computador com seis níveis. O método de suporte para cada nível é indicado abaixo dele (junto com o nome do programa que o suporta).

NSTITUTO FEDERAL Espírito Santo

Camadas de integração entre software e hardware atual

Fonte: https://wpjr2.wordpress.com/2012/10/16/computador-camadas/

Por que vimos na disciplina a parte de circuitos?

- Como já falado o computador possui diversos circuitos para funcionar;
- Faremos então no curso algum dos circuitos que ele possui, para entendermos melhor como o processador executa suas instruções;
- Criaremos alguns circuitos do processador e da memória;

Circuito Somador de 1bit

(a) Tabela verdade para somador completo. (b) Circuito para um somador completo.

Α	В	Vem-	Soma	Vai-
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

TITUTO FEDERAL ito Santo

Unidade de Processamento Central

Julio Cesar Goldner Vendramini

O que é?

- Unidade de Processamento Central (UCP) ou Central Processor Unit (CPU)
- Executa as instruções de programa e assim realiza as operações do computador
- Sem ela o computador n\u00e3o funciona
- Qualquer programa de computador é um conjunto de instruções (milhares, ou até milhões de instruções)


```
AREA SUM10, CODE, READONLY ENTRY
```

LOOP

MOV

MOV

ADD

ADD

CMP

BNE

CMP

LOOP

```
ADDGE R4,R4,#10; add 10 if it is greater or equal STOP B STOP

END

Fonte: https://community.arm.com/developer/tools-software/tools/f/keil-forum/46282/keil-uvision-4-
```

R4, #0 ; sum = 0

R5,R5,#1 ; i = i + 1

R5, #11 ; is j!=11

R4, #30 ; is R4 >= 30

R4,R4,R5; sum = sum + j

R5, #1 ; i = 1

Fonte: https://community.arm.com/developer/tools-software/tools/f/keil-forum/46282/keil-uvision-474-022-arm-assembly-syntax-highlighting-of-conditional-mnemonics

O caminho de dados de uma típica máquina de von Neumann.

CPU

- Nem todos os projetos possuem os registradores A, B e de saída.
- Instruções:
 - Registrador-memória
 - Registrador-registrador

Execução de instrução -> Buscar-decodificar-executar

- A CPU executa cada instrução em uma série de pequenas etapas:
- Trazer a próxima instrução da memória até o registrador de instrução.
- Alterar o contador de programa para que aponte para a próxima instrução.
- Determinar o tipo de instrução trazida.
- Se a instrução usar uma palavra na memória, determinar onde essa palavra está.
- Trazer a palavra para dentro de um registrador da CPU, se necessário.
- Executa a instrução.
- Volta para a primeira etapa.

- Os processadores atuais de desktop e notebooks usando a arquitetura chamada de x86(possui um conjunto de instruções específicas).
- Cada geração de processador possui uma organização interna diferente, mesmo executando o mesmo conjunto de instruções.
- Os processadores atuais possuem várias técnicas diferentes para conseguir melhorar a performance por ciclo de operação.
 - EX: Buscar informações da memória é um processo lento. Por isso se criou a memória cache que fica dentro do próprio processador.

- A velocidade de operação dos processadores(clock) é medida em Hertz(Hz)
 Atualizações por segundo.
- · Porém não podemos comparar os clocks de modelos diferentes.
- Existem vários programas para medir o desempenho de um processador. Ex: CPU-Z

- Neste site existem várias fotos da pastilha do processador (die)
 - https://cpumuseum.jimdofree.com
- Detalhes do primeiro processador x86 do mundo
 - http://www.righto.com/2020/06/a-look-at-die-of-8086-processor.html

Núcleo do processador 8086 – 42 anos

http://www.righto.com/2020/06/a-look-at-die-of-8086-processor.html

TO FEDERAL

nto

Soquetes de processador

- · São os encaixes do processador.
- Hoje alguns soquetes possuem na casa dos 1000 pinos!
- Existem pinos de alimentação e pinos de sinal.
- Existem basicamente 3 tipos de conexões com a placa mãe.
 - Soldado direto
 - PGA
 - LGA

Dissipadores para processador

- Servem para dissipar o calor gerado pelo processador
- Quanto mais rápido e mais núcleos tiver, mais o processador consome
- Potência de dissipação é medida em Watts. E o design termal (TDP) indica o cooler que devemos usar.
- Existem hoje, coolers passivos a ar, ativos a ar e watercoolers.
- Geralmente, um cooler comercial é compatível com mais de um modelo de soquete de processador.

Técnicas para otimização dos processadores

Julio Cesar Goldner Vendramini

Princípios de projetos para computadores modernos

- Todas as instruções são executadas diretamente por hardware;
- Maximize a taxa de execução de instruções (MIPS e execuções fora de ordem);
- Instruções devem ser fáceis de decodificar;
- Somente LOAD e STORE acessam a memória;
- Providencie muitos registradores;

Princípios de projetos para computadores modernos PIPELINE

(a) Pipeline de cinco estágios. (b) Estado de cada estágio como uma função do tempo. São ilustrados nove ciclos de clock.

S₅

Unidade de

gravação

O Intel 486, lançado em 1989 foi o primeiro processador x86 a possuir pipeline.
O Pentium que veio depois, possuía um Pipeline de 5 estágios

ERAL

Princípios de projetos para computadores modernos Arquiteturas Superescalares

Pipelines duplos de cinco estágios com uma unidade de busca de instrução em comum.

Princípios de projetos para computadores modernos Arquiteturas Superescalares

Processador superescalar com cinco unidades funcionais.

Princípios de projetos para computadores modernos

- Cada vez queremos processadores mais rápidos, mas:
 - A velocidade da luz é uma barreira
 - 20cm/nanossegundo
 - Quanto mais rápido, mais calor é gerado.

Princípios de projetos para computadores modernos MultiProcessamento

(a) Multiprocessador de barramento único. (b) Multicomputador com memórias locais.

Educação pública, gratuita e de qualidade