Math 535a Homework 3

Due Monday, February 13, 2017 by 5 pm

Please remember to write down your name on your assignment.

1. Give a detailed proof of the equivalence between the three definitions of T_pM given in class. Then, prove that the construction of the derivative

$$df_p: T_pM \to T_{f(p)}N$$

is the same for the three definitions, meaning the following: If $T_p^{(i)}M$ denotes the *i*th construction of the tangent space, for i = 1, 2, 3, and

$$df_p^{(i)}: T_p^{(i)}M \to T_{f(p)}^{(i)}N$$

the corresponding three different constructions of the derivative, then show that for any M and p and any i, j there are isomorphisms

$$g_{p,M}^{(ij)}: T_p^{(i)}M \cong T_p^{(j)}M$$

which intertwine the derivative maps, in the sense that $df_p^{(i)} = g_{f(p),N}^{(ji)} \circ df_p^{(j)} \circ g_{p,M}^{(ij)}$ (where $g_{p,M}^{(ji)} = (g_{p,M}^{(ij)})^{-1}$).

- 2. Let $M=f^{-1}(y)$ be the preimage of a regular value $y\in\mathbb{R}^{N-m}$ of a smooth function $f:\mathbb{R}^N\to\mathbb{R}^{N-m}$. (for instance, $M=S^2=\{x^2+y^2+z^2=1\}\subset\mathbb{R}^3=f^{-1}(1)$, where $f:(x,y,z)\mapsto x^2+y^2+z^2$).
 - (a) Let $\widetilde{TM} = \{(x,v) \in \mathbb{R}^N \times \mathbb{R}^N | x \in M, v \in \ker df_x\}$. Show that as defined, \widetilde{TM} is a smooth submanifold of $\mathbb{R}^N \times \mathbb{R}^N$ of dimension 2m (where M is an m-dimensional manifold).
 - (b) Prove that there is a diffeomorphism between \widetilde{TM} and the tangent bundle of M as defined in class:

$$\widetilde{TM} \cong TM$$

(It follows that, for instance, $TS^2 \cong \{(x, v) \in \mathbb{R}^3 \times \mathbb{R}^3 | x \in S^2 | v \cdot x = 0\}$.

- 3. Let M^m be a manifold of dimension m and $p \in M$ a point. Recall that $\mathcal{F}_p \subset C^{\infty}(p)$ is the ideal of germs of functions on M which vanish at $p \in M$. Let \mathcal{F}_p^k be the ideal of $C^{\infty}(p)$ generated by $f_1 \cdots f_k$, where $f_i \in \mathcal{F}_p$. (This means that every element of \mathcal{F}_p^k is a sum $\sum_i g_i f_{1i} \cdots f_{ki}$, where $g^i \in C^{\infty}(p)$, and $f_{ij} \in \mathcal{F}_p$).
 - (a) Prove that, in every set of local coordinates (x_1, \ldots, x_k) around the point p, an element $f \in \mathcal{F}_p^k$ has a Taylor expansion which vanishes to order k. You may assume a version of Taylor's approximation theorem stated in class.
 - (b) Compute the dimension of $\mathcal{F}_p^k/\mathcal{F}_p^{k+1}$.

- (c) Construct a smooth manifold along with a map to M, $E \xrightarrow{\pi} M$ whose "fiber" $E_p = \pi^{-1}(p)$ at the point $p \in M$ is $\mathcal{F}_p^1/\mathcal{F}_p^3$.
- 4. Let $f: M \to N$ be a smooth map between manifolds. Prove that the following diagram commutes:

$$\Omega^{0}(N) \xrightarrow{f^{*}} \Omega^{0}(M)$$

$$\downarrow^{d} \qquad \qquad \downarrow^{d}$$

$$\Omega^{1}(N) \xrightarrow{f^{*}} \Omega^{1}(M)$$

- 5. Give a detailed proof that the cotangent bundle T^*M is a smooth manifold and that the projection map $\pi: T^*M \to M$ is a smooth map.
- 6. Let f and g be smooth real-valued functions on a manifold M. Prove that d(fg) = fdg + gdf.
- 7. Let $i: S^1 = [0, 2\pi]/(0 \sim 2\pi) \to \mathbb{R}^2$ be the map $\theta \mapsto (\cos(\theta), \sin(\theta))$. Compute $i^*((x^2 + y)dx + (3 + xy^2)dy)$.
- 8. Earlier in class, we defined the notion of a *category* C; examples given include *topological* spaces **Top**, and vector spaces **Vect**.

A functor $F: \mathcal{C} \to \mathcal{D}$ from category \mathcal{C} to \mathcal{D} is an assignment, to every object of \mathcal{C} , an object of \mathcal{D} , and an induced map on morphism spaces. More precisely, a *(covariant) functor* $F: \mathcal{C} \to \mathcal{D}$ is specified by the following data:

- A map on object $F : ob \ \mathcal{C} \to ob \ \mathcal{D}$
- For every pair of objects X, Y, a map on morphism spaces $F = F_{XY} : \hom_{\mathfrak{C}}(X, Y) \to \hom_{\mathfrak{D}}(F(X), F(Y))$, which satisfies:
 - F sends identity morphisms to identity morphisms (so $F(id_X) = id_{F(X)}$, where $X \in \text{ob } \mathcal{C}$.), and
 - F is compatible with compositions, in the sense that $F(g) \circ F(f) = F(g \circ f)$ for any objects X, Y, Z and morphisms $g \in \text{hom}(Y, Z), f \in \text{hom}(X, Y)$.

A contravariant functor from \mathcal{C} to \mathcal{D} , written as

$$G: \mathbb{C}^{op} \to \mathbb{D}$$
.

consists of the following data: 2

- A map on object $G : ob \ \mathcal{C} \to ob \ \mathcal{D}$
- For every pair of objects X, Y, a map on morphism spaces $G = G_{XY}$: hom_{\mathbb{C}} $(X, Y) \to \text{hom}_{\mathbb{D}}(G(Y), G(X))$ (note the order reversal), which satisfies:
 - G sends identity morphisms to identity morphisms (so $G(id_X) = id_{G(X)}$, where $X \in \text{ob } \mathcal{C}$.), and

¹As discussed in class, the notation $f_1dx + f_2dy$, where f_1 and f_2 are smooth functions on \mathbb{R}^2 , is a common shorthand for the 1-form $\mathbb{R}^2 \to T\mathbb{R}^2 = \mathbb{R}^2 \times \mathbb{R}^2$ sending \vec{x} to $(\vec{x}, (f_1(\vec{x})dx + f_2(\vec{x})dy))$.

²A contravariant functor from \mathcal{C} to \mathcal{D} is the same as a covariant functor from the *opposite category* \mathcal{C}^{op} of \mathcal{C} to \mathcal{D} , hence the notation. We will not elaborate on this point more here.

- G is compatible with compositions, in the sense that $G(f) \circ G(g) = G(g \circ f)$ for any objects X, Y, Z and morphisms $g \in \text{hom}(Y, Z), f \in \text{hom}(X, Y)$.

In other words, a contravariant functor is specified by the same sort of data as a covariant functor, except the order of morphisms in the target is reversed in passing from the source to the target category.

- (a) To any topological space M, define a category $\mathbf{Open}(M)$ as follows:
 - objects of $\mathbf{Open}(M)$ are the open subsets $U \subset M$.
 - Morphisms from U to V are *inclusions*, meaning that: if U is not contained in V, then $hom(U, V) = \emptyset$, and if $U \subset V$, then $hom(U, V) = \{i_{UV} : U \hookrightarrow V\}$, where i_{UV} simply denotes the inclusion map $U \hookrightarrow V$.
 - Composition of morphisms $hom(V, W) \times hom(U, V) \to hom(U, W)$ (which is only non-trivial if $U \subset V \subset W$) is the usual composition of inclusions. Namely $i_{VW} \circ i_{UV} = i_{UW}$.

Verify that $\mathbf{Open}(M)$ satisfies the axioms of a category.

(b) A **pre-sheaf** on M taking values in a category \mathcal{C} is a functor

$$F: \mathbf{Open}(M)^{op} \to \mathfrak{C}.$$

For instance, if $\mathbf{Alg}_{\mathbb{R}}$ denotes the category of \mathbb{R} -algebras (objects are \mathbb{R} algebras,³ and morphisms are \mathbb{R} -algebra homomorphisms⁴, then a *pre-sheaf of* \mathbb{R} -algebras on M is a functor $F: \mathbf{Open}(M) \to \mathbf{Alg}_{\mathbb{R}}$.

Let M be a smooth manifold now, and define a functor $C^{\infty}(-)$: $\mathbf{Open}(M)^{op} \to \mathbf{Alg}_{\mathbb{R}}$ by, on objects

$$U \to C^{\infty}(U),$$

and on the inclusions $i_{UV}: U \to V$, the induced map $C^{\infty}(-)_{UV}(i_{UV}) \in \text{hom}_{\mathbf{Alg}_{\mathbb{R}}}(C^{\infty}(V), C^{\infty}(U))$ is the restriction map on functions. $i_{UV}^*: C^{\infty}(V) \to C^{\infty}(U)$.

Verify that $C^{\infty}(-)$ is indeed a pre-sheaf of algebras, and in particular a contravariant functor.

- (c) Verify that the notion of a pre-sheaf of algebras $\mathcal F$ is equivalent to the following data:
 - For every open set $U \in M$, an algebra $\mathcal{F}(U)$.
 - For every inclusion of open sets $U \subseteq V$, a restriction map $\rho_{U \subset V} : \mathcal{F}(V) \to \mathcal{F}(U)$, satisfying, $\rho_{U \subset U} = id_{\mathcal{F}(U)}$, and for any triple $U \subset V \subset W$, that $\rho_{U \subset V} \circ \rho_{V \subset W} = id_{\mathcal{F}(U)}$

 $^{^3}$ Let k be any field. For our purposes, a k-algebra A is a vector space over k equipped with a multiplication map $\times: A \times A \to A$ which is a bilinear map. We further assume that the mutiplication map is associative, and that there is a multiplicative identity $1 \in A$ satisfying $1 \cdot \alpha = \alpha \cdot 1 = \alpha$, for $\alpha \in A$ (elsewhere, such A are frequently called associative unital algebras). You should verify for yourself that if U is any manifold, then $C^{\infty}(U)$ is an \mathbb{R} -algebra in this sense.

⁴For our purposes, an k-algebra homomorphism $F:A\to B$ is a linear map of vector spaces which is compatible with the multiplication maps, meaning that $F(\alpha\cdot\beta)=F(\alpha)\cdot F(\beta)$. F should also preserve the identity elements, so F(1)=1; this is frequently elsewhere called a unital algebra homomorphism. You should verify for yourself that if $f:M\to N$ is any C^∞ map, then the pullback $f^*:C^\infty(N)\to C^\infty(M)$ is an \mathbb{R} -algebra homomorphism

 $\rho_{U\subset W}$.

(d) A pre-sheaf as defined in the previous section is said to be a *sheaf* if for any pair of open sets U, V, whenever there is an element $f_1 \in \mathcal{F}(U)$ and an element $f_2 \in \mathcal{F}(V)$ with the same restriction on the overlapping region,⁵ then there exists a unique element $g \in \mathcal{F}(U \cup V)$ restricting to f_1 and f_2 on U and V.⁶

Let M be a manifold. Verify that the pre-sheaf on M, $C^{\infty}(-)$ defined above is in fact a sheaf.

⁵meaning that $\rho_{U \cap V \subset U}(f_1) = \rho_{U \cap V \subset V}(f_2)$ ⁶meaning that $\rho_{U \subset U \cup V}(g) = f_1$, $\rho_{U \subset U \cup V}(g) = f_2$.