PD-95081A

International Rectifier

IRLR024NPbF IRLU024NPbF HEXFET® Power MOSFET

- Logic-Level Gate Drive
- Surface Mount (IRLR024N)
- Straight Lead (IRLU024N)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	Α
I _{DM}	Pulsed Drain Current ①	72	
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	45	W
	Linear Derating Factor	0.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy ②	68	mJ
I _{AR}	Avalanche Current ①	11	Α
E _{AR}	Repetitive Avalanche Energy①	4.5	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		3.3	
$R_{\theta JA}$	Case-to-Ambient (PCB mount)**		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient	_	110	

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994
WWW.irf.com

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55		_	V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.061	_	V/°C	Reference to 25°C, I _D = 1mA
				0.065		V _{GS} = 10V, I _D = 10A ⊕
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.080	Ω	V _{GS} = 5.0V, I _D = 10A ④
				0.110]	V _{GS} = 4.0V, I _D = 9.0A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	8.3		_	S	V _{DS} = 25V, I _D = 11A
	Duning to Commonly advance Commont			25		$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C
Lana	Gate-to-Source Forward Leakage			100	nA -	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -16V
Qg	Total Gate Charge			15		I _D = 11A
Q _{gs}	Gate-to-Source Charge			3.7	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			8.5		$V_{GS} = 5.0V$, See Fig. 6 and 13 \oplus \odot
t _{d(on)}	Turn-On Delay Time		7.1	_		V _{DD} = 28V
t _r	Rise Time		74	_	ns	I _D = 11A
t _{d(off)}	Turn-Off Delay Time		20	_	115	$R_G = 12\Omega, V_{GS} = 5.0V$
t _f	FallTime		29			$R_D = 2.4\Omega$, See Fig. 10 \oplus \odot
	Internal Drain Inductance		4.5	4.5 —	— nH	Between lead,
L _D			4.5			6mm (0.25in.)
L _S	Internal Source Inductance	_	7.5			from package G
						and center of die contact
C _{iss}	Input Capacitance		480	_		$V_{GS} = 0V$
Coss	Output Capacitance		130	_	pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		61	 - 	1	f = 1.0MHz, See Fig. 5®

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			47		MOSFET symbol
	(Body Diode)		17	- 1/	A	showing the
I _{SM}	Pulsed Source Current			70		integral reverse
	(Body Diode) ①			72		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 11A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		60	90	ns	$T_J = 25^{\circ}C$, $I_F = 11A$
Q _{rr}	Reverse RecoveryCharge	_	130	200	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $V_{DD} = 25V$, starting $T_J = 25$ °C, $L = 790 \mu H$ $R_G = 25Ω$, $I_{AS} = 11A$. (See Figure 12)
- ③ $I_{SD} \le 11A$, $di/dt \le 290A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 175^{\circ}C$
- 4 Pulse width \leq 300 μ s; duty cycle \leq 2%.
- © Uses IRLZ24N data and test conditions.

International TOR Rectifier

IRLR/U024NPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

4

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLR/U024NPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFET® MOSFETs

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information

International IOR Rectifier

IRLR/U024NPbF

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

SYMBOL

b1 b2 b3 b4 c

L2 L3 ø1

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
 DIMENSIONIS ARE SHOWN IN MULLIMETERS [INCHES].
 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED
 0.005 (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST
 EXTREMES OF THE PLASTIC GODY.
 THERMALE PAD CONTIOUR OPTION, WITHIN DIMENSION 64, L2, E1 & D1.
 LEAD DIMENSION UNCONTROLLED IN L3.

0.045

NOTES

- DIMENSION 61, 63 APPLY TO BASE METAL ONLY. OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA. CONTROLLING DIMENSION: INCHES.

DIMENSIONS

0.025

0,025 0.031

0.030

n 195 0.215

0.016 0.022

0.018 0.205

0.250 0.265

0,035

0.045 0*

0.79 1.14 1.04

0.56 0.86 6.22

-6.73

1,52 15'

MIN. MAX

0.89 0.64 0.64 0.76 0.76 5.00 0.46 0.41

6.35 4.32

LEAD ASSIGNMENTS

<u>HE</u>	(FET
1,-	GATE

- 2.- DRAIN 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.12/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/