Lista 20 – Séries de Potências

Referência: James Stewart, Cálculo, v. 2

3–28 Encontre o raio de convergência e o intervalo de convergência da série.

$$3. \quad \sum_{n=1}^{\infty} (-1)^n n x^n$$

5.
$$\sum_{n=1}^{\infty} \frac{x^n}{2n+1}$$

$$7. \quad \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

9.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$$

11.
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n\sqrt{n}} x^n$$

13.
$$\sum_{n=2}^{\infty} (-1)^n \frac{x^n}{4^n \ln n}$$

15.
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

17.
$$\sum_{n=1}^{\infty} \frac{3^n (x+4)^n}{\sqrt{n}}$$

4.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$$

8.
$$\sum_{n=1}^{\infty} n^n x^n$$

10.
$$\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$$

12.
$$\sum_{n=1}^{\infty} \frac{x^n}{5^n n^5}$$

14.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

16.
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}$$

18.
$$\sum_{n=1}^{\infty} \frac{n}{4^n} (x+1)^n$$

3–10 Encontre uma representação em série de potências para a função e determine o intervalo de convergência.

3.
$$f(x) = \frac{1}{1+x}$$

5.
$$f(x) = \frac{2}{3-x}$$

7.
$$f(x) = \frac{x}{9 + x^2}$$

9.
$$f(x) = \frac{1+x}{1-x}$$

4.
$$f(x) = \frac{3}{1 - x^4}$$

6.
$$f(x) = \frac{1}{x+10}$$

8.
$$f(x) = \frac{x}{2x^2 + 1}$$

10.
$$f(x) = \frac{x^2}{a^3 - x^3}$$

15–20 Encontre uma representação em série de potências para a função e determine o raio de convergência.

15.
$$f(x) = \ln(5 - x)$$

16.
$$f(x) = x^2 \operatorname{tg}^{-1}(x^3)$$

17.
$$f(x) = \frac{x^3}{(x-2)^2}$$

18.
$$f(x) = \left(\frac{x}{2-x}\right)^3$$

19.
$$f(x) = \frac{x^3}{(x-2)^2}$$

20.
$$f(x) = \frac{x^2 + x}{(1 - x)^3}$$

25–28 Calcule a integral indefinida como uma série de potências. Qual é o raio de convergência?

$$25. \int \frac{t}{1-t^8} dt$$

$$26. \int \frac{t}{1+t^3} dt$$

27.
$$\int x^2 \ln(1+x) dx$$

$$28. \int \frac{\mathrm{tg}^{-1} x}{x} \, dx$$

29–32 Use uma série de potências para aproximar a integral definida com precisão de seis casas decimais.

29.
$$\int_0^{0.2} \frac{1}{1+x^5} \, dx$$

30.
$$\int_0^{0.4} \ln(1 + x^4) dx$$

31.
$$\int_0^{0.1} x \arctan(3x) dx$$

32.
$$\int_0^{0.3} \frac{x^2}{1+x^4} dx$$