3. The OR Game

Zadanie

Dana jest liczba docelowa G oraz tablica dodatnich, unikalnych liczb
 całkowitych T[N]. Zaczynamy od liczby X=0. Zadaniem gry jest uzyskanie liczby G w jednym lub więcej krokach. W każdym kroku wybieramy dowolną liczbę z tablicy T i zastępujemy X przez alternatywę bitową X i wybranego elementu T.

Napisz program, który wyznaczy i wypisze na standardowe wyjście minimalną liczbę elementów tablicy T, które należy z niej usunąć aby nie dało się uzyskać liczby G.

Jeżeli a i b są pojedynczymi bitami ich alternatywa bitowa $a|b = \max(a, b)$. Alternatywą bitową dwóch liczb całkowitych, A i B, o reprezentacjach bitowych odpowiednio $A = a_n \dots a_1$ i $b_n \dots b_1$ jest liczba $C = A|B = c_n \dots c_1$, gdzie $c_i = a_i|b_i$. Na przykład $10|3 = (1010)_2|(0011)_2 = (1011)_2 = 11$.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite $1 \le N \le 20$: długość tablicy T i $1 \le G \le 10^9$: liczba docelowa. Kolejny wiersz zawiera dokładnie N liczb z przedziału $[1, 10^9]$: elementy tablicy T. Dla $i \ne j$: $T[i] \ne T[j]$.

Wyjście

W pierwszym i jedynym wierszu standardowego wyjścia program powinien wypisać jedną liczbę całkowitą: liczbę elementów tablicy T, którą należy usunąć by nie dało się uzyskać liczby docelowej G.

Przykład

Dla danych wejściowych:

5 7 1 2 4 7 8

poprawną odpowiedzią jest:

2

 ${\bf W}$ tym przykładzie należy usunąć liczbę 7 i jedną z liczb $1,\,2,\,4.$