Hypothesis Testing

Adejumo Ridwan Suleiman

What is a Statistical Hypothesis?

What is Hypothesis?

Statement about an expected relationship between one or more independent variables and a dependent variable

Types of Hypothesis

- Research Hypothesis: Statement that motivates the research
- Statistical Hypothesis: Statements that can be evaluated by statistical techniques.

What is Statistical Hypothesis?

- Statement or fact not yet tested
- Characteristics of a population not yet verified
- For example, smokers are at risk of devloping lung cancer

Null and Alternative Hypothesis

Null Hypothesis ()

- Statement forming basis of investigation
- Statement of no difference, no association, no effect or statement of equality.
- Example:
 - The average weight of patients in the clinic is not equal
 60kg
 - : Smokers have no risk of getting lung cancer
- \bullet This hypothesis is either **rejected** or **not rejected**

Alternative Hypothesis ()

- Complement or alternative of
- Statement of inequality
- Investigators will accept if is rejected
- Example:
 - The average weight of patients in the clinic is more thatthg

 H_0

Smokers have a higher risk of getting lung cancer
 H₁

Steps in Hypothesis Testing

- 1. State the null hypothesis ()
- 2. State the alternative hypothesis ()
- 3. State the level of significane ()
- 4. Choose the appropriate test statistic
- 5. Evaluate the test statistic
- 6. Decision making

Errors in Hypothesis Testing

Type I Error

- Rejecting a true null hypothesis
- Probability of committing a Type I error is denoted by
- Incorrectly concluding that a difference exists, when actually there is no difference
- A false positive decision

Type II Error

- Accepting a false null hypothesis
- Probability of committing a Type II error is denoted by
- Incorrectly concluding that no difference exists, when actually there is a difference
- A false negative decision

Errrors Compliment

Confidence level ()

$$1-\alpha$$

 Tests the ability to accept the null hypothesis when it is actually true

Power of a test ()

$$1-\beta$$

- Power of a test
- Tests the ability to reject a null hypothesis when it is false

Level of significance

- Maximum probability of committing a Type I error
- Mostly 0.05
- Denoted by

 α

P-value

P-value

- Measure of the amount of evidence we have against the null hypothesis
- ullet The smaller the **p-value** the more the evidence against and vice versa H_0

P-value Interpretation

- If, and, this implies statistical significance.
- This means that the probability of getting an observed effect if truly there was no effect is 3%.
- In other words, there is a 3% probability that an observed effect is likely by chance.

Decision Making

p-value $< \alpha$ Difference is unlikely due to chance p-value $> \alpha$ Chance chance

Choice of Test Statistic

- Test Statistic tests for a statistical hypothesis
- Depends:
 - Study objective
 - Study design
 - Variable type
 - Sample size and sampling method
 - Sampling distribution

Selecting appropriate Test Statistic

- Relationship between two qualitative variables
 - Z-test or chi-square test (for difference in proportion)
 - Chi-square test (for association/independence)
- Relationship between one qualitative and one quantitative variable
 - two groups t-test
 - more than two groups F-test
- Relationship between two quantitative variables
 - Correlation analysis
 - Linear regression analysis

Types of parametric tests

Parametric

Assumes measurements are normally distributed

Non-parametric

- Assumes measurements are not normally distributed
- Small sample size, nominal or ordinal data
- Weaker than parametric tests

