Différentes Représentations

- Aspects Relationnel:
 - Représentation Logique
 - Règles de production
- Aspect Procédural :
 - Représentation Procédurale
- Aspect Objet :
 - Réseaux sémantiques
 - Frames
 - Dépendances conceptuelles

Références:

Bernard Espinasse, cours « Introduction aux graphes », « Réseaus Sémantiques », « Frame & Scripts », Université Aix-Marseille, 2008

Réseaux Sémantiques Définition

• conçus à l'origine en linguistique

- devenus ensuite un langage pour la représentation de concepts très divers, une structure informatique utilisée en IA (QUILLIAN / COLLINS 1966)
- Ces recherches sont à la base de l'école de sémantique lexicale qui a produit le réseau sémantique Wordnet très utilisé aujourd'hui en traitement de la langue

Réseaux Sémantiques Définition

- *Un réseau sémantique est un graphe orienté et étiqueté
- Une « sémantique » (au sens de la logique) est associée par le biais des relations.
- Réseau = conjonction de formules logiques associées à chacun des arcs

Réseaux Sémantiques Concepts de base

- un réseau sémantique est un graphe composé :
 - d'un ensemble de nœuds étiquetés : représentant généralement des objets,
 - d'un ensemble de liens orientés et étiquetés entre ces nœuds : représentant des relations entre des objets,
 - d'un ensemble d'opérations d'exploitation de ce graphe : constituants les mécanismes de raisonnement

Réseaux Sémantiques Concepts de base

- représentation graphique:
 - facilite la lecture, ne correspond généralement pas au formalisme d'implémentation,

- représentation non-graphique:
 - (alice, manger, pomme)

Réseaux Sémantiques Concepts de base : nœuds

- Nœuds: peuvent être :
 - atomiques : entités élémentaires (valeurs, individus,...)
 - complexes : entités complexes (propositions, phrases,...)
- ⇒ ils doivent être typés : concept, individu, action, proposition, etc...

Réseaux Sémantiques Concepts de base: liens

- Liens peuvent être:
 - structuraux: indépendants de la sémantique du domaine,
 - spécifiques: dépendants de la sémantique du domaine,

⇒ il faut essayer d'augmenter la proportion des liens structuraux par rapport aux liens spécifiques

Réseaux Sémantiques Concepts de base: liens

- On distingue les liens structuraux:
 - Sorte de : A Kind of (AKO) ⇔ inclusion d'une classe dans une autre
 - Instance : is-a ⇔ appartenance d'un individu à une classe

Réseaux Sémantiques Concepts de base: liens

- Exemple: « les poneys sont des chevaux »
 - Poneys et chevaux : concepts --> classes
 - sont des : relation --> inclusion de classes

Réseaux sémantiques Concepts de base: liens

- Exemple: « Snoop est un poney »
 - Snoop: individu --> élément d'un ensemble
 - Est un : relation --> appartenance à une classe

Autre Exemple :

Réseaux sémantiques

Exemple:

Réseaux Sémantiques Attributs

 Attribut : relation qui relie un nœud concept ou un nœud individu à une valeur ou propriété

Réseaux Sémantiques

Attributs

- ⇒ lien spécifique dont le sens dépend du domaine d'application
- ⇒ peut être plus structurel en créant un nœud_attribut

Réseaux Sémantiques Héritage dans les RS [Collins & Quillan]

- Repose sur des liens de type est_un ou sorte_de reliant un concept à un autre concept plus élevé :
 - Exemple: "canari" est une sorte de "oiseau"
- Héritage des propriétés rattachées au concept père au concept fils :
 - Ainsi, on pourra dire que « le canari a des ailes et une peau » en remontant les liens « sorte_de »
- ⇒ Le principe d'héritage permet d'obtenir de nombreuses déductions automatiques

Réseaux Sémantiques Héritage dans les RS

- Le principe d'héritage permet de :
 - Obtenir de nombreuses déductions automatiques
 - Définir la notion de distance sémantique entre 2 concepts = nombre de liens devant être traversés pour aller d'un concept à l'autre.

Réseaux Sémantiques Partition [Hendrix]

 Partition = regroupement de nœuds et d'arcs du réseau dans des espaces spécifiant la portée de relations

- Intérêts des partitions :
 - définition de contextes
 - permet la quantification

Réseaux Sémantiques Partition

- cadres : définissent l'étendue des identificateurs universels
- quelque soit a, pointe sur un cadre représentant l'étendue de la variable quantifiée universellement.
- Le quantificateur existentiel pointe sur le nœud f par rapport au nœud c
- ⇒ certains systèmes experts l'utilise: *Prospector*

Réseaux Sémantiques Quantification

- Quantification : traitée par la notion de partition
- Soit le fait à représenter suivant : « tout chat a mordu un oiseau »
 - Représentation logique : " $\forall x$ chat $(x) \rightarrow (\exists y)$ oiseau $(y) \land mordre(x,y)$)
 - Encodage de la variable quantifiée universellement x en utilisant une partition (cadre rectangulaire) :

Réseaux Sémantiques Quantification

- Les nœuds c, m, o sont des instances de chats, morsure, oiseaux,
- Le cadre dans le réseau définit l'étendue de l'identificateur universel,

Réseaux Sémantiques Quantification

- Le nœud e représente l'énoncé à représenter, instance de l'ensemble des énoncés généraux EG sur le monde,
- Chaque élément de EG possède :
 - une connexion « forme » pointant vers le cadre de la partition et énonce l'affirmation,
 - une ou plusieurs connections « ∀» pointant vers chaque variable quantifiée universellement, ici variable c
- Les variables m et o sont ici quantifiée existentiellement.

- introduction de la logique des prédicats du premier ordre [Schubert & Cerone]
- introduction d'un "nœud prédicatif" instancié en lui associant :
 - un pointeur vers le prédicat
 - o un pointeur vers chaque argument du prédicat

• Exemple : « Jean donne un livre à Marie »

Connecteurs Logiques ET Ou

 Soit la phrase suivante : « Gaston ira au fauteuil ou au lit »

Représentation de la négation

- Soit les phrases suivantes :
 - « Marie n'aime pas Gaston»
 - « Marie aime Jules »

Réseaux Sémantiques Interprétation dans le RS

- l'accès aux données stockées dans un RS n'est pas assuré par le réseau lui-même :
 - appel à un interpréteur : pour transformer les données du réseau en connaissances opératoires
- on doit disposer alors :
 - soit d'un langage élaboré de navigation et d'inférence dans le réseau,
 - soit d'un langage limité à l'accès dans le réseau + autre programme assurant les inférences

Réseaux Sémantiques Interprétation dans le RS

- Exemple: interprétation d'un RS par règles de production (Snark) :
 - moteur d'inférences à règles de production à variables
 - logique d'ordre 0,1,2
 - faits = triplets (O1, R, O2)

Réseaux Sémantiques Interprétation dans le RS

 On dispose d'une base de connaissance organisée en réseau sémantique :

• Question : Quelqu'un fait-il du sport ?

Réseaux Sémantiques Faiblesses

- si taille du réseau importante (nb de nœuds et liens)
 - → explosion combinatoire
 - → difficultés des interprétations

Réseaux Sémantiques Intérêts des RS

- La généralisation, la spécialisation
 - relie un type à un autre type plus générique => classification
 - Ex : oiseau à animal
 - La généralisation (lien « sorte_de ») établit un ordre, une hiérarchie.
 - Economie de place en mémoire (propriétés associées à des types généraux hérités par d'autres types plus spécialisés).
 - généralisation plus facile de grandes bases de connaissances (bases de données)
- La partition
 - quantification

Différentes Représentations

- Aspects Relationnel:
 - Représentation Logique
 - Règles de production
- Aspect Procédural :
 - Représentation Procédurale
- Aspect Objet :
 - Réseaux sémantiques
 - Frames
 - Dépendances conceptuelles