MA2108 Cheatsheet by Yiyang, AY23/34

1. Pre-requisites

<u>Well-Ordering Principle of \mathbb{N} </u> Every non-empty subset $S \in \mathbb{N}$ has a least (smallest) element.

2. The Real Numbers

Algebric Properties, ~

Different types of means

- Arithmetic Means $A_n = \frac{1}{n} \sum_{k=1}^n a_k$
- Geometric Means $G_n = \left(\prod_{k=1}^n a_k\right)^{1/n}$
- Harmonic Means $H_n = n \left(\sum_{k=1}^n a_k^{-1} \right)^{-1}$

, for $n\in\mathbb{N}_{\geq 2}$ and $a_1,a_2,...,a_n\in\mathbb{R}$ are positive. For the means, we have the **AM-GM-HM Inequality** :

$$H_n \leq G_n \leq A_n$$

, taking "=" iff. $a_1 = ... = a_n$.

Bernoulli's Inequality For x > -1, we have $(1 + x)^n \ge 1 + nx$, for any $n \in \mathbb{N}$.

Triangle Inequity $|a + b| \le |a| + |b|$, for all $a, b \in \mathbb{R}$. Derived: $[1] ||a| - |b|| \le |a - b|$, $[2] ||a - b|| \le |a| + |b|$.

Neighbourhood

For any $a \in \mathbb{R}$ and $\epsilon > 0$, the ϵ -neighbourhood of a is the set:

$$V_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\}$$

Theorem 2.2.8 For $a \in \mathbb{R}$, if $x \in V_{\epsilon}(a)$ for every $\epsilon > 0$, then x = a.

Completeness Properties, ~

For a non-empty $S \subseteq \mathbb{R}$, it is **Bounded Above** (**Bounded Below**) if S has an upper bound (a lower bound). S is **Bounded** if it is bounded above and below, and is **Unbounded**, otherwise.

For a non-empty $S \subseteq \mathbb{R}$, u is the Supremum of S if the following conditions are met, and we denote it as $\sup S$:

- 1. *u* is an upper bound of *S*.
- 2. $\forall v \in \mathbb{R}$, if v is an upper bound of S, then $v \ge u$.

For a non-empty $S \subseteq \mathbb{R}$, w is the Infinum of S if the following conditions are met, and we denote it as inf S:

- 1. w is a lower bound of S.
- 2. $\forall v \in \mathbb{R}$, if v is a lower bound of S, then $v \leq w$.

<u>Note</u>: Sup. and Inf. are **uniquely determined**, if they exist. Alternative Definition (Similarly for Infinum):

Lemma 2.3.4 For *u* an upper bound of $S \subseteq \mathbb{R}$, $u = \sup S$ iff.

$$\forall \epsilon > 0, \exists s_{\epsilon} \in S, u - \epsilon < s_{\epsilon}$$

For a non-empty $S \subseteq \mathbb{R}$, u is the Maximum (Minimum) of S, if $u = \sup S$ ($u = \inf S$) and $u \in S$.

 $\underline{\text{Note:}}$ Sup. and Inf. are not necessarily elements in S (if they exist), but maximum and minimum are.

Supremum Property of \mathbb{R} Every non-empty subset of \mathbb{R} that has an upper bound has a supremum.

The Archimedeam Property If $x \in \mathbb{R}$, then $\exists n_x \in \mathbb{N}$ s.t. $x < n_x$. Corollary 2.4.6 If x > 0, then $\exists n \in \mathbb{N}$ such that $n - 1 \le x < n$. Density Theorems For $x, y \in \mathbb{R}$ with x < y, tehre exists $r \in \mathbb{Q}$ $(z \in \mathbb{R} \setminus \mathbb{Q})$ s.t. x < r < y (x < z < y).

Intervals

A sequence of intervals I_n , $n \in \mathbb{N}$ is Nested if

$$I_1 \supseteq I_2 \supseteq ... \supseteq I_n \supseteq I_{n+1} \supseteq ...$$

Properties: [1] If $I_n = [a_n, b_n], n \in \mathbb{N}$ is a nested seq. of closed bounded intervals, then $\exists \xi \in \mathbb{R}$ s.t. $\xi \in I_n, \forall n \in \mathbb{N}$. [2] If $I_n = [a_n, b_n], n \in \mathbb{N}$ satisfying $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$, then ξ contained in all I_n is unique.

3. Sequences & Series

Sequence & Convergence

Sequence in \mathbb{R} : a real-valued function $X : \mathbb{R} \to \mathbb{R}$. We write $x_n = X(n)$ for the n-th term of the sequence, and denote the sequence as $(x_n, : n \in \mathbb{N})$.

A sequence $X = (x_n)$ in \mathbb{R} is Convergent to $x \in \mathbb{R}$ iff. for every $\epsilon > 0$, there exists $K = K(\epsilon) \in \mathbb{N}$ s.t.

$$n \ge K(\epsilon) \implies |x_n - x| < \epsilon$$

, and we call x the Limit of (x_n) , denoted as $\lim_{n\to\infty} x_n = x$. A sequence is Divergent if it is not convergent. Technique for proving convergence:

- 1. Express $|x_n x|$ in terms of n and find a simpler upper bound L = L(n), i.e. $|x_n x| < L$.
- 2. Let $\epsilon > 0$ be arbitrary, find $K \in \mathbb{N}$ s.t. for all $n \geq K$, $L = L(n) < \epsilon$, then

$$n \ge K \implies |x_n - x| < L < \epsilon$$

Squeeze Theorem If $x_n \le y_n \le z_n$, for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, then

$$\lim_{n\to\infty}y_n=a$$

A sequence $X = (x_n)$ is **Bounded** if there exists M > 0 such that $|x_n| \le M$ for all $n \in \mathbb{N}$.

Monotone Convergence Theorem Let (x_n) be a monotone sequence of real numbers, then (x_n) is convergent iff. (x_n) is bounded. If it is bounded and increasing, then $\lim_{n\to\infty} x_n = \sup\{x_n : n \in \mathbb{N}\}$. (Similarly for decreasing.)

For a sequence (x_n) , it tends to $+\infty$, i.e. $\lim_{n\to\infty} x_n = +\infty$ if for all $\alpha\in\mathbb{R}$, there exists $K=K(\alpha)\in\mathbb{N}$ such that if $n\geq K(\alpha)$, then $x_n>\alpha$. (Similarly for $\lim_{n\to\infty} x_n=-\infty$.)

A sequence (x_n) is **Properly Divergent** if $\lim_{n\to\infty} x_n = \pm \infty$.

Subsequences

A **Subsequence** of $X = (x_n)$ is $X' = (x_{n_k})$:

$$X'=(x_{n_1},x_{n_2},...,x_{n_3})$$

, where $n_1 < n_2 < ... < n_k < ...$ is a strictly increasing sequence in $\mathbb N$. Note: $n_k \ge n$, $\forall k$.

Theorem 3.4.2 If (x_n) converges to x, then any subsequence (x_{n_k}) also converges to x,

$$\lim_{n_k \to \infty} x_{n_k} = \lim_{k \to \infty} x_{n_k} = x$$

Theorem 3.4.5 If (x_n) has either of the following properties, it is divergent: [1] (x_n) has two convergent subsequences with different limits. [2] (x_n) is unbounded.

Theorem 3.4.7 Every sequence has a monotone subsequence.

Bolzano-Weierstrass Theorem Every bounded sequence has a convergent subsequence.

Cauchy Sequences

A Cauchy Sequence (x_n) is a sequence where for all $\epsilon > 0$, there exists $H = H(\epsilon) \in \mathbb{N}$ such that

$$\forall n, m \in \mathbb{N}, n, m \ge H \implies |x_n - x_m| < \epsilon$$

Cauchy Criterion A sequence is convergent iff. it is Cauchy.

A Contractive Sequence (x_n) is a sequence where there exists $C \in (0,1)$ s.t.

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|, \ \forall n \in \mathbb{N}$$

Theorem 3.5.8 Every contractive sequence is Cauchy.

Infinite Series

For (x_n) , its (Infinite) Series is sequence (s_n) , where $s_n = \sum k = 1^n x_k$ is called a Partial Sum of the series, and x_k is a Term. Tests for infinite series' convergence:

- *n*-th Term Test If $\sum x_n$ converges, then $\lim_{n\to\infty} x_n = 0$.
- Cauchy Criterion Test
- Partial Sum Bounded Test, for series w. non-negative terms Suppose $x_n \geq 0, \forall n \in \mathbb{N}$, then \sum_{x_n} converges iff. (s_n) is bounded.
- Comparison Test For (x_n) , (y_n) with some $K \in \mathbb{N}$, s.t. $n \ge K \implies 0 \le x_n \le y_n$. Then $[1] \sum y_n$ converges $\implies \sum x_n$ converges, and $[2] \sum x_n$ diverges $\implies \sum y_n$ diverges.
- Limit Comparison Test For strictly positive $(x_n), (y_n)$ with limit $r = \lim_{n \to \infty} (\frac{x_n}{y_n})$. Then [1] if r = 0, $\sum y_n$ converges $\Rightarrow \sum x_n$ converges. [2] if r > 0, $\sum y_n$ converges iff $\sum x_n$ converges.

Intermediate Results & Lemmas