第四章

1 题参考答案:

(2):

(1): 最右推导

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow b + T \Rightarrow b + T/F \Rightarrow b + b/F \Rightarrow b + b/b$$

(1): 最左推导

3. 证明文法 $G=(\langle S \rangle, \langle a,b \rangle, P,S)$ 是二义的,其中生成式 P 如下: $S \rightarrow aSbS \mid aS \mid a$

题中文法是二义的,因为对于句型 aaaba,有两棵不同的推导树,如下所示:

(1):

设上下文无关语法 G = (N, T, P, S), 其中:

$$N = \{S, A, B\}$$

$$T = \{0, 1\}$$

生成式 P 如下:

$$S \rightarrow 1S0 / 1S / 10$$

(3):

设上下文无关语法 G = (N, T, P, S), 其中:

$$N = \{S, A, B\}$$

$$T=\{0,1\}$$

生成式 P 如下:

$$S \to AB$$

$$A \rightarrow 1A0 \mid 10$$

$$B \rightarrow 1B0 \mid 10$$

(5):

设上下文无关语法 G = (N, T, P, S), 其中:

$$N = \{S, A, B\}$$

$$T=\{0,1\}$$

生成式 P 如下:

$$S \rightarrow 1S \mid 2S \mid 3S \mid 1 \mid 2 \mid 3$$

注:本题如果将正则表达式理解成加与乘的运算也算正确,具体答案略。

(1):

删掉非生成符C及其相关生成式,可以得到生成式 G_1 :

$$S \to ED$$

$$D \to a$$

$$E \to b$$

(2):

删掉非生成符 C及其相关生成式,可以得到生成式 G_2 :

$$S \to D$$

$$D \to bS$$

$$E \to DS \mid b$$

删除不可达符号 E:

$$S \to D$$

$$D \rightarrow bS \mid b$$

9 题参考答案:

在 P1 中加入生成式 $S1 \to S \mid \varepsilon$, 变换后的无 ε 生成式的等价文法为:

$$G1 = (N1, T, P1, S)$$

$$N1 = \{S1, S, C, D, E\}$$

$$T = \{a, b\}$$

生成式 P 如下:

$$S1 \rightarrow S \mid \varepsilon$$

$$S \rightarrow DCE \mid DC \mid CE \mid DE \mid D \mid C \mid E$$

$$D \to CC \mid C$$

$$C \to EE \mid E \mid b$$

$$E \to DD \mid D \mid a$$

(1) 由算法 3, 变换为无 ε 生成式: N' = S 由 $S \rightarrow ASB$ 得出 $S \rightarrow ASB|AB$,

由 $A \rightarrow aAS$ 得出 $A \rightarrow aAS|aA$,

由 $B \rightarrow SBS$ 得出 $B \rightarrow SBS|SB|BS|B$,

由 SN' 得出 $S1\rightarrow |S|$,

因此无 的等效文法 G1 = (S1, S, A, B, a, b, d, P1, S1), 其中生成式 P1 如下:

 $S1 \rightarrow |S|$

 $S \rightarrow ASB|AB$

 $A \rightarrow aAS|aA|a$

 $B{\to}SBS|SB|BS|B|A|bb$

(2) 由算法 4, 消单生成式:

NS1=S1,S , NS=S , NA=A , NB=A,B 由于 $S{\to}ASB|AB$ P 且不是单生成式,故 P1 中有 $S1{\to}|ASB|AB$,

同理有 $S \rightarrow ASB|AB, A \rightarrow aAS|aA|a, B \rightarrow SBS|SB|BS|aAS|aA|a|bb,$

因此生成的无单生成式等效文法为:

G1 = (S1, S, A, B, a, b, P1, S1), 其中生成式 P1 如下:

 $S1 \rightarrow |ASB|AB$

 $S \rightarrow ASB|AB$

 $A \rightarrow aAS|aA|a$

 $B \rightarrow SBS|SB|BS|aAS|aA|a|bb$

- (3) 由算法 1 和算法 2, 消除无用符号 (此题没有无用符号);
- (4) 转化为等价的 Chomsky 范式的文法: 将 $S1 \rightarrow ASB$ 变换为 $S \rightarrow AC, C \rightarrow SB$, 将 $S \rightarrow ASB$ 变换为
- (5) 由此得出符合题目要求的等价文法: G1 = (S1, S, A, B, C, D, a, b, P1, S1), 其中生成式 P1 如下:

$$S1 \rightarrow |AC|AB$$

 $S \rightarrow AC|AB$

 $A \rightarrow ED|EA|a$

 $B \rightarrow CS|SB|BS|ED|EA|a|FF$

 $C{\to}SB$

 $D{\to}AS$

 $E \rightarrow a$

 $F \rightarrow b$

15 题参考答案:

(1):

转化为等价的 Chomsky 范式的文法:

 $A_1 \rightarrow A_3 A_4 | A_2 A_5$ $A_2 \rightarrow A_1 A_4 | A_2 A_6 | b$ $A_3 \rightarrow A_1 A_5 | A_3 A_7 | a$ $A_4 \rightarrow b$ $A_5 \rightarrow a$ $A_6 \rightarrow A_2 A_5$ $A_7 \rightarrow A_3 A_4$

(2):

转化为等价的 Greibach 范式的文法: 将非终结符排序为 $A_1,A_2,A_3,A_4,A_5,A_6,A_7,A_1$ 为低位 A_7 为高位,(1)对于 $A_2 \rightarrow A_1A_4$,用 $A_1 \rightarrow A_3A_4|A_2A_5$ 代入得 $A_2 \rightarrow A_3A_4A_4|A_2A_5A_4|A_2A_6|b$ 用引理 4.2.4,变化为:

 $A_2 \rightarrow A_3 A_4 A_4 |b| A_3 A_4 A_4 A_2' |bA_2' A_2' \rightarrow A_5 A_4 A_2' |A_6 A_2' |A_5 A_4| A_6$

(2) 对于 $A_3 \rightarrow A_1 A_5$, 用 $A_1 \rightarrow A_3 A_4 | A_2 A_5$ 代入得 $A_3 \rightarrow A_3 A_4 A_5 | A_2 A_5 A_5 | A_3 A_7 | a$, A_3 生成式右边第一个字符仍是较低位的非终结符, 将 A_2 生成式代入 A_3 生成式得: $A_3 \rightarrow A_3 A_4 A_5 | A_3 A_4 A_4 A_5 A_5 | b A_5 A_5 | A_3 A_4 A_4 A_2 A_2 A_5 A_5 | b A_2 A_5 A_5 | A_3 A_7 | a$

用引理 4.2.4, 变化为:

 $A_3 {\to} b A_5 A_5 |bA_2'A_5A_5| a |bA_5A_5A_3'| bA_2'A_5A_5A_3'| aA_3'$

 $A_{3} \rightarrow A_{4} A_{5} |A_{4} A_{4} A_{5} A_{5}| A_{4} A_{4} A_{2} A_{5} A_{5} |A_{7}| A_{4} A_{5} A_{3} |A_{4} A_{4} A_{5} A_{5} A_{3} |A_{4} A_{4} A_{2} A_{5} A_{5} A_{3} |A_{7} A_{3} A_{5} A$

(3) 对于 $A_6 \rightarrow A_2 A_5$, 将 A_2 生成式代入 A_6 生成式得:

 $A_6 \rightarrow A_3 A_4 A_4 A_5 |bA_5| A_3 A_4 A_4 A_2' A_5 |bA_2' A_5|$

 A_6 生成式右边第一个字符仍是较低位的非终结符,将 A_3 生成式代入 A_6 生成式得

(4) 对于 $A_7 \rightarrow A_3 A_4$, 将 A_3 生成式代入 A_7 生成式得:

(5) 将 A₅,A₆ 生成式代入 A₂'生成式得:

将 A_4,A_7 生成式代入 A_3 ' 生成式得

 $A_{3}' \rightarrow aA_{5}|aA_{4}A_{5}A_{5}|aA_{4}A_{2}'A_{5}A_{5}|aA_{5}A_{3}'|aA_{4}A_{5}A_{5}A_{3}'|aA_{4}A_{2}'A_{5}A_{5}A_{3}'|bA_{5}A_{5}A_{4}$ $|bA_{2}'A_{5}A_{5}A_{4}|aA_{4}|bA_{5}A_{5}A_{3}'A_{4}|bA_{2}'A_{5}A_{5}A_{3}'A_{4}|aA_{3}'A_{4}|bA_{5}A_{5}A_{4}A_{3}'|bA_{2}'A_{5}A_{5}A_{4}A_{3}'$ $|aA_{4}A_{3}'|bA_{5}A_{5}A_{3}'A_{4}A_{3}'|bA_{2}'A_{5}A_{5}A_{3}'A_{4}A_{3}'|aA_{3}'A_{4}A_{3}'$

(6) 由此得出等价的 Greibach 范式文法: G1 = (S, D, D', a, b, P1, S), 其中生成式 P1 如下:

 $A_1 \rightarrow A_3 A_4 | A_2 A_5$

 $A_2 \rightarrow A_3 A_4 A_4 |b| A_3 A_4 A_4 A_2' |bA_2'$ $A_3 \rightarrow b A_5 A_5 |bA_2' A_5 A_5| a |bA_5 A_5 A_3' |bA_2' A_5 A_5 A_3' |aA_3'$

 $A_4 \rightarrow b$

 $A_5 \rightarrow a$

 $A_6 \rightarrow bA_5A_5A_4A_4A_5|bA_2'A_5A_5A_4A_4A_5|aA_4A_4A_5|bA_5A_5A_3'A_4A_4A_5|bA_2'A_5A_5A_3'A_4A_4A_5\\ |aA_3'A_4A_4A_5|bA_5A_5A_4A_4A_2'A_5|bA_2'A_5A_5A_4A_4A_2'A_5|aA_4A_4A_2'A_5|bA_5A_5A_3'A_4A_4A_2'A_5\\ |bA_2'A_5A_5A_3'A_4A_4A_2'A_5|aA_3'A_4A_4A_2'A_5|bA_2'A_5|bA_5$

- - $A_{3}' \rightarrow aA_{5}|aA_{4}A_{5}A_{5}|aA_{4}A_{2}'A_{5}A_{5}|aA_{5}A_{3}'|aA_{4}A_{5}A_{5}A_{3}'|aA_{4}A_{2}'A_{5}A_{5}A_{3}'|bA_{5}A_{5}A_{4}$ $|bA_{2}'A_{5}A_{5}A_{4}|aA_{4}|bA_{5}A_{5}A_{3}'A_{4}|bA_{2}'A_{5}A_{5}A_{3}'A_{4}|aA_{3}'A_{4}|bA_{5}A_{5}A_{4}A_{3}'|bA_{2}'A_{5}A_{5}A_{4}A_{3}'$ $|aA_{4}A_{3}'|bA_{5}A_{5}A_{3}'A_{4}A_{3}'|bA_{2}'A_{5}A_{5}A_{3}'A_{4}A_{3}'|aA_{3}'A_{4}A_{3}'$

解: $G=(\{S,A,B,C,D,E\},\{a,b,c\},P,S)$

P: S →AD |EB, A →aAb | ε, B →bBc | ε, D →cD | ε, E →aE | ε ψ 文法具有二义性。ψ

因为当句子 ω 中 a.b.c 个数相同时,对于 ω 存在两个不同的最左(右)推导。 ω

如 abc∈L,存在两个不同的最左推导 S⇒AD⇒aAbD⇒abD⇒abcC⇒abc 及S⇒EB⇒aEB⇒aB⇒abBc⇒abc。↩

23 题参考答案:

(1):

证明: 假设 L 是上下文无关语言, 由泵浦引理, 取常数 p, 当 $w \in L$ 且 $|w| \ge p$ 时, 可取 $w = 0^{p*p}a^p(k \ge p, k \ne 1)$, 将 w 写为 $w = w_1w_2w_0w_3w_4$, 同时满足 $|w_2w_0w_3| \le p$, 且 $|w_2w_3| = j \ge 1$,

(1) 如果 w_1, w_2 只含有 0 或 1, 那么 $w_1 w_2^i w_0 w_3^i w_4$ 中当 $i \neq 1$ 时一定会出现 0 的个数和 1 的个数不是 平方的关系,矛盾。(2)如果 $w_2 w_0 w_3$ 同时包含 0, 1, 设 $w_2 w_0 w_3 = 0^{m0p^{-m-n}1^n}$, 那么 $w_1 w_2^i w_0 w_3^i w_4 = 0^{p^2-p+n}0^{mi}0^{p-m-n}1^n i1^{p-n}$, 那么可以得到, $(p^2-m+mi)=(p-n+ni)^2$,显然这个公式不恒成立。矛盾这与假设矛盾,故 L 不是上下文无关语言.

(2):

证明: 假设 L 是上下文无关语言,由泵浦引理,取常数 p, 当 $w \in L$ 且 $|w| \geq p$ 时,可取 $w = a^k (k \geq p, k \neq 1)$,将 w 写为 $w = w_1 w_2 w_0 w_3 w_4$,同时满足 $|w_2 w_0 w_3| \leq p$,且 $|w_2 w_3| = j \geq 1$,则当 i = k + 1 时, $|w_1 w_2^i w_0 w_3^i w_4| = k + (i - 1) * j = k + k * j = k * (1 + j), k * (1 + j)$ 至少包含因子 k 且 $k \neq 1$,因此必定不是质数,即 $w_1 w_2^i w_0 w_3^i w_4$ 不属于 L. 这与假设矛盾,故 L 不是上下文无关语言.

(3):

证明: 假设 L 是上下文无关语言, 由泵浦引理, 取常数 p, 当 $w \in L$, $|w| \ge p$ 时, 可取 $w = 0^k 1^k 2^k (k \ge p)$, 将 w 写为 $w = w_1 w_2 w_0 w_3 w_4$, 同时满足 $|w_2 w_0 w_3| \le p$ (1) w_2 和 w_3 不可能同时分别包含 0 和 2, 因为在这种情况下, 有 $|w_2 w_0 w_3| > p$;

- (2) 如果 w_2 和 w_3 都只包含 0 (1 或 3), 即 $w_2w_0w_3 = a^j(b^j,c^j)(j \le p)$, 则当 $i \ne 1$ 时, $w_1w_2^iw_0w_3^iw_4$ 中会 出现 0,1,2 的个数不再相等;
- (3) 如果 w_2 和 w_3 分别包含 0 和 1 (1 和 2) , $w_1w_2^iw_0w_3^iw_4$ 中会出现 0,1 的个数与 2 的不等; 这些与假设矛盾, 故 L 不是上下文无关语言.

24 题参考答案:

(1):

$$S \to [q, A, p]$$

 $[q, A, p] \rightarrow 0[q, B, p][p, B, p][1[q, C, p][1[q, C, p][p, C, p]]0[q, B, p]$

 $[q,B,p] \to 0[q,B,p][p,B,p][0[q,B,p][p,B,p][p,B,p][p,B,p][1[q,C,p][p,B,p]|1[q,C,p][p,C,p][p,C,p][p,B,p]|0\\ [q,C,p] \to 0[q,B,p][p,C,p]|0[q,B,p][p,B,p][p,C,p]|1[q,C,p][p,C,p]|1[q,C,p][p,C,p]|1$

$$[p, B, p] \rightarrow 0$$

$$[p,C,p] \rightarrow 1$$

```
(1) \{0^m1^n \mid m \leq n \};
解: 设PDA M = (Q,T,\Gamma,\delta,q_0,Z_0,F),其中
              Q = \{ q_0,q_1,q_f \},
              T = \{ 0,1 \},
               \Gamma = \{ 0,1, Z_0 \},
              F = \{ q_f \},
        δ 定义如下:
               \delta ( q_0,~\epsilon , Z_0 ) = { ( q_1,\,Z_0 ) } ,
               \delta ( q_0,\!0,\,Z_0\,) = { ( q_0,\,0Z_0\,) } ,
               \delta ( q_0,\!0,\!0 ) = { ( q_0,\,00 ) } ,
               \delta ( q_0,1,\,Z_0 ) = { ( q_f,\,\epsilon ) } ,
               δ(q_0,1,0) = \{(q_1, ε)\},
               δ(q_1,1,0) = {(q_1,ε)},
               \delta ( q_1,\,\epsilon , Z_0 ) = { ( q_f,\,\epsilon ) } ,
               δ(q_1,1,Z_0) = \{(q_f, ε)\},
               \delta (q_f, 1, \epsilon) = \{ (q_f, \epsilon) \},
       (2) { 0^m1^n | m \ge n  };
解: 设PDA M = (Q,T,\Gamma,\delta,q_0,Z_0,F),其中 Q = \{q_0,q_1,q_f\}
              T = \{ 0,1 \},
               \Gamma = \{ 0,1, Z_0 \},\,
              F = \{\ q_f\ \} ,
        δ 定义如下:
               \delta (q_0, \epsilon, Z_0) = \{(q_1, Z_0)\},
               \delta (q_0,0,Z_0) = \{(q_0,0Z_0)\},
               \delta (q_0,0,0) = \{ (q_0,00) \},
               δ (q_0,1,0) = {(q_1, ε)},
               δ(q_1,1,0) = {(q_1, ε)},
               \delta (q_1, \varepsilon, Z_0) = \{ (q_f, \varepsilon) \},
               \delta (q_1, \varepsilon, 0) = \{ (q_f, \varepsilon) \}
               \delta (q_f, 1, \epsilon) = \{ (q_f, \epsilon) \}
       (3) { 0<sup>m</sup>1<sup>n</sup>0<sup>m</sup> | n和m任意 };
解: 设PDA M = (Q,T,\Gamma,\delta,q_0,Z_0,F),其中
              Q = \{ q_0,q_1, q_2,q_3,q_f \},
               T = \{ 0,1 \},
                  = \{ 0,1, Z_0 \},
              \mathbf{F} = \{ \mathbf{q}_{\mathbf{f}} \},
        δ 定义如下:
               \delta \ (\ q_0, 0, Z_0) = \{ \ (\ q_0, 0 Z_0 \ ) \ \} \ ,
               \delta \ \left( \ q_{0}\text{,}0\text{,}0 \ \right) = \left\{ \ (\ q_{0}\text{,}\ 00\ )\text{,}(\ q_{0}\text{,}\ \epsilon\ )\right\} \ , \ \delta \ \left( \ q_{0}\text{,}1\text{,}\ Z_{0}\ \right) = \left\{ \ (\ q_{3}\text{,}\ \epsilon\ \ )\ \right\} \ ,
               \delta (q_3,1, \epsilon) = \{ (q_3, \epsilon) \},
               \delta ( q_3,\,\epsilon , \,\epsilon ) = { ( q_f,\,\epsilon ) } ,
               \delta (q_0,1,0) = \{(q_1,0)\},\
               \delta (q_1,1,0) = \{(q_1,0)\},
               δ (q_1,0,0) = \{ (q_2, ε) \},
               δ (q_2,0,0) = \{ (q_2, ε) \},
               \delta (q_2, \varepsilon, Z_0) = \{ (q_f, \varepsilon) \},
               \delta ( q_0,~\epsilon , Z_0 ) = { ( q_f,~\epsilon )}
```

✍第五章

- 1. 考虑如下的图灵机 $M = (\{q_0, q_1, q_f, \}, \{0,1\}, \{0,1,B\}, \delta, q_0,B, \{q_f\}),$ 其中 δ 定义为: δ $(q_0,0) = \{(q_1,1,R)\}$, δ $(q_1,1) = \{(q_0,0,R)\}$, δ $(q_1,B) = \{(q_f,B,R)\}$, 非形式化但准确地描述该图灵机的工作过程及其所接受的语言.
- 解: 开始时,M的带上从左端起放有字符串 $0(10)^i$ ($i \ge 0$),后跟无限多个空白符B.M的第一次动作先读到第一个0,并改写为1;然后右移,如果找到第一个1,则改写为0,并继续向右寻找下一个0,这样重复进行.当向右寻找1的时候,找到一个空白符B,则结束. 该图灵机所接受的语言 $L(M) = \{\ 0(10)^i \mid i \ge 0\ \}$.

