Scilab Textbook Companion for Applied Physics by P. K. Palanisamy¹

Created by
G Krishna Chaitanya
B.Tech
Computer Engineering
CVSR College of Engineering
College Teacher
NA
Cross-Checked by
K. V. P. Pradeep

June 16, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Applied Physics

Author: P. K. Palanisamy

 ${\bf Publisher:} \ {\bf Scitech \ Publications (india)}$

Edition: 8

Year: 2009

ISBN: 9788183710985

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Bonding in Solids	8
2	Crystal Structures and X ray diffraction	11
3	Principles of Quantum Mechanics	24
4	Electron Theory of Metals	30
6	Dielectric Properties	35
7	Magnetic Properties	40
8	Semiconductors	45
9	Superconductivity	56
10	Lasers	58
11	Fiber Optics and Holography	60

List of Scilab Codes

Exa 1.1	To determine whether the gaseous molecule is stable.	8
Exa 1.2	To calculate the energy required and seperation between	
	ion pair	9
Exa 1.3	To calculate the bond energy for NaCl molecule	9
Exa 1.4	To calculate the cohesive energy of NaCl	10
Exa 2.1	To calculate the maximum radius of the interstitial sphere	11
Exa 2.2	To calculate the percent volume change	11
Exa 2.3	To calculate the volume of the unit cell and density of	
	Zinc	12
Exa 2.4	To calculate the maximum radius of the sphere	13
Exa 2.5	To calculate the density of diamond	13
Exa 2.6	To calculate the distance between two adjacent atoms	14
Exa 2.7	To calculate the density of Copper crystal	14
Exa 2.8	To calculate the free volume per unit cell	15
Exa 2.9	To sketch the crystal plane structures	15
Exa 2.10	To sketch the crystal plane structures	15
Exa 2.11	To calculate the number of atoms per square millimetre	16
Exa 2.12	To calculate the interplanar spacing for the planes	16
Exa 2.13	To calculate the ratio of the seperation between succes-	
	sive lattice planes	17
Exa 2.14	To calculate the miller indices of a plane	18
Exa 2.15	To calculate the wavelength of X rays and maximum	
	order of diffraction possible	18
Exa 2.16	To calculate the highest order for which Braggs reflec-	
	tion can be seen	19
Exa 2.17	To calculate the interatomic spacing	19
Exa 2.18	To calculate the glancing angle	20
Exa 2.19	To calculate the distance between 110 planes	20

Exa 2.20	To compare the density of lattice points
Exa 2.21	To calculate the glancing angle
Exa 2.22	To calculate the cube edge
Exa 2.23	To calculate the cube edge
Exa 3.1	To calculate the de Broglie wavelength
Exa 3.2	To calculate the de Broglie wavelength
Exa 3.3	To calculate the de Broglie wavelength
Exa 3.4	To calculate the wavelength
Exa 3.5	To calculate the uncertainty in momentum 25
Exa 3.6	To calculate the lowest energy of an electron 26
Exa 3.7	To calculate the energy of electron
Exa 3.8	To calculate the wavelength
Exa 3.9	To calculate the minimum energy
Exa 3.10	To calculate the energy values
Exa 3.11	To calculate the velocity and kinetic energy of electron 28
Exa 3.12	To calculate the wavelength
Exa 3.13	To calculate the spacing of crystal
Exa 4.1	To calculate the density and mobility of electrons 30
Exa 4.2	To calculate the mobility of electrons
Exa 4.3	To calculate the relaxation time
Exa 4.4	To calculate the free electron concentration mobility and
	drift velocity
Exa 4.5	To calculate the lowest energy of an electron 32
Exa 4.6	To evaluate the fermi function
Exa 4.7	To calculate the temperature
Exa 4.8	To calculate the temperature
Exa 6.1	To calculate the energy stored in the condensor and po-
	larizing the dielectric
Exa 6.2	To calculate the ratio between electronic and ionic po-
	larizability
Exa 6.3	To calculate the difference in magnetic potential energy 36
Exa 6.4	To calculate the dielectric constant of material 37
Exa 6.5	To calculate the electronic polarizability
Exa 6.6	To calculate the capacitance and charge on plates 38
Exa 6.7	To calculate the electronic polarizability
Exa 6.8	To calculate the resultant voltage across capacitors 39
Exa 6.9	To calculate the dielectric displacement
Exa 7.1	To calculate the relative permeability 40

Exa 7.2	To calculate the relative permeability of material	40
Exa 7.3	To calculate the magnetisation and flux density	41
Exa 7.4	To calculate the magnetisation and flux density	41
Exa 7.5	To calculate the magnetic moment	41
Exa 7.6	To calculate the change in magnetic moment	42
Exa 7.7	To calculate the susceptibility	42
Exa 7.8		43
Exa 7.9	To calculate the temperature	43
Exa 7.10	To calculate the magnetic moment and saturation mag-	
	netisation	43
Exa 8.1	To calculate the resistivity	45
Exa 8.2		45
Exa 8.3		46
Exa 8.4	To calculate the resistivity	46
Exa 8.5	To calculate the resistance	47
Exa 8.6		47
Exa 8.7		48
Exa 8.8		49
Exa 8.9		49
Exa 8.10		50
Exa 8.11		50
Exa 8.12	To calculate the conductivity of intrinsic Silicon	51
Exa 8.13	To calculate the conductivity equilibrium hole concen-	
		52
Exa 8.14	To calculate the diffusion coefficient of electrons	52
Exa 8.15		53
Exa 8.16	· · · · · · · · · · · · · · · · · · ·	53
Exa 8.17	To calculate the density and mobility of charge carriers	54
Exa 8.18	· · · · · · · · · · · · · · · · · · ·	54
Exa 8.19		55
Exa 9.1	To calculate the critical field	56
Exa 9.2		56
Exa 9.3	To calculate the penetration depth	57
Exa 9.4		57
Exa 10.1		58
Exa 10.2	1 1	58
Exa 10.3		59
Exa 11 1	1	ദവ

Exa 11.2	To calculate the angle of acceptance	60
Exa 11.3	To calculate the refractive index of the core	61
Exa 11.4	To calculate the fractional index change	61
Exa 11.5	To calculate the numerical aperture and acceptance angle	61

Chapter 1

Bonding in Solids

Scilab code Exa 1.1 To determine whether the gaseous molecule is stable

```
1 //To determine whether the gaseous molecule is
      stable
2 IE_1 = 502; //first ionisation energy, kJ/mol
3 EA_B = -335; //electron affinity for B atom, kJ/mol
     mol
4 e = 1.602*10^-19;
5 r = 0.3; //inter ionic separation, nm
6 r = r*10^-9; //inter ionic seperation, m
7 N = 6.022*10^23*10^-3;
8 epsilon0 = 8.85*10^-12; //permittivity of free
      space, C/N-m
9 E = (-e^2*N)/(4*\%pi*epsilon0*r);
      electrostatic attraction energy, kJ/mol
10 printf ("electrostatic attraction energy is %d kJ/mol
     ",E);
11 dE = IE_1 + EA_B + E; //net change in energy per
12 printf("net change in energy is %d kJ/mol", dE);
13 printf ("since the net change in energy is negative,
     A+B- molecule will be stable");
14
```

15 //answer for net change, dE given in the book is wrong

Scilab code Exa 1.2 To calculate the energy required and separation between ion pair

Scilab code Exa 1.3 To calculate the bond energy for NaCl molecule

Scilab code Exa 1.4 To calculate the cohesive energy of NaCl

Chapter 2

Crystal Structures and X ray diffraction

Scilab code Exa 2.1 To calculate the maximum radius of the interstitial sphere

Scilab code Exa 2.2 To calculate the percent volume change

```
1 //To calculate the percent volume change
2 r_BCC = 1.258; //atomic radius, A
```

```
3 \text{ r_FCC} = 1.292; //atomic radius, A
4 \text{ a_BCC} = (4*r_BCC)/sqrt(3);
                                   //In BCC, A
5 \text{ a\_BCCm} = \text{a\_BCC*10^--10}; //converting a from A to
      \mathbf{m}
6 V_BCC = a_BCCm^3; //volume of unit cell, m^3
7 n_BCC = ((1/8)*8)+1; //number of atoms per unit
      cell
8 V1_BCC = V_BCC/n_BCC; //volume occupied by 1
     atom, m<sup>3</sup>
9 a_FCC = 2*sqrt(2)*r_FCC; //In FCC, A
10 a_FCCm = a_FCC*10^-10; //converting a from A to
      \mathbf{m}
11 V_FCC = a_FCCm^3; //volume of unit cell, m^3
12 n_FCC = ((1/2)*6) + ((1/8)*8);
                                         //number of
     atoms per unit cell
                          //volume occupied by 1
13 V1\_FCC = V\_FCC/n\_FCC;
     atom, m<sup>3</sup>
14 delta_V = (V1_BCC - V1_FCC)*100/V1_BCC;
                                                    //
     change in volume in %
15 printf ("decrease of volume during conversion from
     BCC to FCC is %5.1f percent", delta_V);
```

Scilab code Exa 2.3 To calculate the volume of the unit cell and density of Zinc

```
9 //if rho is density then mass = V*rho
10 //V*rho = 6*M/N
11 rho = (6*M)/(N*V); //density, kg/m^3
12 printf("Volume of the unit cell in m^3 is");
13 disp(V);
14 printf("density of Zinc is %d kg/m^3",rho);
15
16 //answer for density given in the book is wrong
```

Scilab code Exa 2.4 To calculate the maximum radius of the sphere

```
1 //To calculate the maximum radius of the sphere 2 //a = 4*r/sqrt(2) and R = (a/2) - r 3 //R = (4*r/(2*sqrt(2))) - r = (2*r/sqrt(2)) - r 4 //R = r*(sqrt(2)-1) = 0.414*r 5 printf("maximum radius of the sphere that can fit into the void is 0.414*r");
```

Scilab code Exa 2.5 To calculate the density of diamond

```
1 //To calculate the density of diamond
2 a = 0.356;
                   //cube edge of diamond, nm
                     //atomic weight of carbon in kg
3 \text{ aw} = 12.01;
4 N = 6.023*10^26;
                         //avagadro's number
                        //cube edge of diamond, m
5 a_m = a*10^-9;
                        //number of atoms/m<sup>3</sup>
6 n = 8/(a_m^3);
7 M = aw/N;
                   //mass of 1 carbon atom, kg
8 \text{ rho} = M*n;
9 printf("number of atoms per m<sup>3</sup> is");
11 printf("density of diamong is %d kg/m^3",rho);
12
13 //answer for density given in the book is wrong
```

Scilab code Exa 2.6 To calculate the distance between two adjacent atoms

```
1 //To calculate the distance between two adjacent
     atoms
2 \text{ MW} = 23+35.5; //molecular weight of NaCl, gm
3 N = 6.023*10^23; //avagadro number, mol-1
4 rho = 2.18; //density of NaCl, gm/cm^3
5 M = MW/N;
                  //mass of NaCl molecule, gm
                  //number of molecules per unit volume
6 n = rho/M;
                 //since NaCl is diatomic, atoms/cm<sup>3</sup>
7 n = 2*n;
8 //length of edge of unit cube is n*a
9 //volume V = n^3*a^3 = 1 cm^3
10 V = 1; //volume of unit cube, cm<sup>3</sup>
11 a = (V/n)^(1/3);
                     //distance between two
     adjacent atoms, cm
12 \ a = a*10^8;
                //distance between two adjacent
     atoms, A
13 printf ("distance between two adjacent atoms is \%5.2 f
      A",a);
```

Scilab code Exa 2.7 To calculate the density of Copper crystal

```
//To calculate the density of Copper crystal
AW = 63.5;    //atomic weight of Cu, gm/mol
N = 6.023*10^23;    //avagadro's number, mol-1
r = 1.278;    //atomic radius, A
n = 4;    //number of atoms in unit cell
r = r*10^-8;    //atomic radius, cm
M = AW/N;    //mass of each Copper atom, gm
a = 4*r/sqrt(2);    //lattice constant, cm
m = n*M;    //mass of unit cell, gm
```

Scilab code Exa 2.8 To calculate the free volume per unit cell

Scilab code Exa 2.9 To sketch the crystal plane structures

```
1 //To sketch the crystal plane structures
2 //sketching is not possible
```

Scilab code Exa 2.10 To sketch the crystal plane structures

```
1 //To sketch the crystal plane structures
2 //sketching is not possible
```

Scilab code Exa 2.11 To calculate the number of atoms per square millimetre

```
1 //To calculate the number of atoms per square
      millimetre
2 //in (100) plane the total number of atoms are n
3 n = (1/4)*4;
4 //A = a^2. number of atoms per mm<sup>2</sup> is n/a^2
5 printf("number of atoms in (100) plane are %d",n);
6 printf("number of atoms per mm^2 is 1/a^2");
7 //in (110) plane, area is sqrt(2)*a*a = sqrt(2)*a^2
8 printf("number of atoms in (100) plane is 1");
9 printf("unit area contains 1/(\operatorname{sqrt}(2)*a^2) = 0.707/a
      ^2 atoms/mm^2");
10 //in (111) plane, area = (1/2)*base*height = (1/2)*a
     *sqrt(2)*a*sqrt(2)*cosd(30)
11 x = cosd(30);
12 / area = (1/2) *a * sqrt(2) *a * sqrt(2) *x = 0.866 * a^2 =
      0.58/a^2
13 n1 = (1/360)*60*3;
14 //number of atoms per unit area is 0.5/(0.866*a^2) =
15 printf ("total number of atoms in (111) plane is %5.1
      f", n1);
16 printf ("number of atoms per unit area is 0.58/a^2
      atoms/mm<sup>2</sup>");
```

Scilab code Exa 2.12 To calculate the interplanar spacing for the planes

```
7 12 = 2; //for (212) plane
8 r = 0.1278;
                   //atomic radius, nm
                    //atomic radius, m
9 r = r*10^-9;
10 x1 = sqrt(h1^2+k1^2+l1^2);
11 a = 4*r/x1;
                   //nearest neighbouring distance, m
12 \ a = a*10^9;
                   //nearest neighbouring distance, nm
                  //interplanar spacing for (110), nm
13 d_110 = a/x1;
14 	ext{ x2 = } sqrt(h2^2+k2^2+12^2);
15 d_212 = a/x2; //interplanar spacing for (212), nm
16 printf("interplanar spacing for (110) is %5.4 f nm",
     d_110);
17 printf ("interplanar spacing for (212) is %5.4 f nm",
     d_212);
```

Scilab code Exa 2.13 To calculate the ratio of the seperation between successive lattice planes

```
1 //To calculate the ratio of the seperation between
      successive lattice planes
2 h1 = 1;
3 k1 = 0;
4 \ 11 = 0;
             //for (100) plane
5 x1 = sqrt(h1^2+k1^2+l1^2);
6 h2 = 1;
7 k2 = 1:
8 12 = 0;
            //for (110) plane
9 	 x2 = sqrt(h2^2+k2^2+12^2);
10 \text{ h3} = 1:
11 k3 = 1;
12 \ 13 = 1;
             // for (111) plane
13 x3 = sqrt(h3^2+k3^2+13^2);
14 //d = a/sqrt(h^2+k^2+l^2)
15 //d100:d110:d111 = a:a/sqrt(2):a/sqrt(3)
16 //d100 : d110 : d111 = 1:1/sqrt(2):1/sqrt(3) =
      1:0.71:0.58
```

17 **printf**("ratio of the seperation between successive lattice planes is 1:0.71:0.58");

Scilab code Exa 2.14 To calculate the miller indices of a plane

```
1 //To calculate the miller indices of a plane
2 //plane intercepts at a,b/2,3*c
3 //therefore intercepts are (1 1/2 3)
4 //reciprocal of the intercepts is (1/2 2 1/3)
5 //thus miller indices are (3 6 1)
6 printf("miller indices of the plane are (3 6 1)");
```

Scilab code Exa 2.15 To calculate the wavelength of X rays and maximum order of diffraction possible

```
1 //To calculate the wavelength of X-rays and maximum
     order of diffraction possible
2 d = 0.282;
                 //lattice spacing, nm
3 n = 1; //first order
4 theta = 8+(35*0.0166666667); //glancing angle
     in degrees
5 d = d*10^-9; //lattice spacing, m
6 lamda = 2*d*sind(theta)/n; //wavelength of X-
     rays, m
7 lamda_nm = lamda*10^9; //wavelength of X-rays,
     nm
8 	ext{ theeta} = 90;
                   //maximum value possible in degrees
                                //maximum order
9 \text{ n1} = 2*d*sind(theeta)/lamda;
     of diffraction possible
10 printf("wavelength of X-rays is %5.4f nm", lamda_nm);
11 printf("maximum order of diffraction possible is %d"
     ,n1);
```

Scilab code Exa 2.16 To calculate the highest order for which Braggs reflection can be seen

Scilab code Exa 2.17 To calculate the interatomic spacing

Scilab code Exa 2.18 To calculate the glancing angle

Scilab code Exa 2.19 To calculate the distance between 110 planes

Scilab code Exa 2.20 To compare the density of lattice points

```
1 //To compare the density of lattice points
2 //area of (110) plane is a*sqrt(2)*a = sqrt(2)*a^2
3 n = (1/4)*4; //number of atoms
4 theta = 30; //glancing angle
```

```
5 x = cosd(theta);
6 //area of (111) plane is (a/\operatorname{sqrt}(2))*x*a*\operatorname{sqrt}(2)
7 //hence area is (\operatorname{sqrt}(3)/2)*a^2
8 \text{ n1} = 3*(1/6); //number of atoms
9 printf("area of (110) plane contains %d atom",n);
10 printf ("density of lattice points is 1/(\operatorname{sqrt}(2)*a^2)
      ");
11 printf("area of (111) plane contains %5.1 f atom", n1)
12 //density of lattice points is (1/2)/(\operatorname{sqrt}(3)*a^2/2)
13 printf ("density of lattice points is 1/(\operatorname{sqrt}(3)*a^2)
      ");
14 //density of lattice points (111) plane : (110)
      plane is 1/(sqrt(3)*a^2) : 1/(sqrt(2)*a^2) = sqrt
      (2): sqrt(3)
15 printf ("density of lattice points (111) plane:
      (110) plane is sqrt(2):sqrt(3)");
```

Scilab code Exa 2.21 To calculate the glancing angle

```
1
2 //To calculate the glancing angle
3 n = 2; //second order
4 h = 1;
5 k = 1;
6 1 = 0; //plane (110)
7 lamda = 0.065; //wavelength of X-rays, nm
8 lamda_m = lamda*10^-9; //wavelength of X-rays, m
9 a = 0.26; //axial length, nm
10 a_m = a*10^-9; //axial length, m
11 x = sqrt(h^2+k^2+1^2);
12 theta = asind(n*lamda_m*x/(2*a_m)); //glancing
      angle, degrees
13 deg = int(theta);
                         //glancing angle, degrees
14 t = 60*(theta-deg);
```

Scilab code Exa 2.22 To calculate the cube edge

Scilab code Exa 2.23 To calculate the cube edge

```
11 printf("the cube edge in m is");
12 disp(a);
```

Chapter 3

Principles of Quantum Mechanics

Scilab code Exa 3.1 To calculate the de Broglie wavelength

```
//To calculate the de Broglie wavelength
c = 3*10^8; //velocity of light, m/sec
v = (1/10)*c; //velocity of proton, m/sec
m = 1.67*10^-27; //mass of proton, kg
h = 6.626*10^-34; //planck's constant
lamda = h/(m*v); //de Broglie wavelength, m
printf("de Broglie wavelength of proton in m is");
disp(lamda);
```

Scilab code Exa 3.2 To calculate the de Broglie wavelength

Scilab code Exa 3.3 To calculate the de Broglie wavelength

Scilab code Exa 3.4 To calculate the wavelength

Scilab code Exa 3.5 To calculate the uncertainity in momentum

Scilab code Exa 3.6 To calculate the lowest energy of an electron

Scilab code Exa 3.7 To calculate the energy of electron

Scilab code Exa 3.8 To calculate the wavelength

Scilab code Exa 3.9 To calculate the minimum energy

Scilab code Exa 3.10 To calculate the energy values

Scilab code Exa 3.11 To calculate the velocity and kinetic energy of electron

Scilab code Exa 3.12 To calculate the wavelength

Scilab code Exa 3.13 To calculate the spacing of crystal

Chapter 4

Electron Theory of Metals

Scilab code Exa 4.1 To calculate the density and mobility of electrons

Scilab code Exa 4.2 To calculate the mobility of electrons

```
1 //To calculate the mobility of electrons 2 d = 8.92*10^3; //density, kg/m<sup>3</sup>
```

Scilab code Exa 4.3 To calculate the relaxation time

```
//To calculate the relaxation time
//resistivity, ohm—m

n = 5.8*10^28; //conduction electrons per m^3
m = 9.108*10^-31; //mass of electron, kg
e = 1.602*10^-19;
tow = m/(n*e^2*rho); //relaxation time, sec
printf("relaxation time of conduction electrons in sec is");
disp(tow);
```

Scilab code Exa 4.4 To calculate the free electron concentration mobility and drift velocity

Scilab code Exa 4.5 To calculate the lowest energy of an electron

Scilab code Exa 4.6 To evaluate the fermi function

```
1 //To evaluate the fermi function

2 //Fermi function F(E) = 1/(1+\exp((E-Ef)/(kT)))

3 //given E-Ef = kT. therefore F(E) = 1/(1+\exp(1))

4 F_E = 1/(1+exp(1));

5 printf("fermi function is %5.3f",F_E);
```

Scilab code Exa 4.7 To calculate the temperature

Scilab code Exa 4.8 To calculate the temperature

11 //answer given in the book is wrong

Chapter 6

Dielectric Properties

Scilab code Exa 6.1 To calculate the energy stored in the condensor and polarizing the dielectric

```
1 //To calculate the energy stored in the condensor
     and polarizing the dielectric
            //capacitance, micro-farad
                //capacitance, farad
3 C = C*10^-6;
               //voltage applied, V
4 V = 1000;
5 epsilon_r = 100; //permitivity
                      //energy stored in capacitor, J
6 W = (C*V^2)/2;
7 printf("energy stored in capacitor is %d J", W);
8 CO = C/epsilon_r; //capacitance removing the
     dielectric
                 //energy stored without
9 \text{ WO} = \text{CO*V}^2;
     dielectric, J
10 E = 1-W0; //energy stored in dielectric, J
11 printf("energy stored in the dielectric is %5.2f J",
     E);
```

Scilab code Exa 6.2 To calculate the ratio between electronic and ionic polarizability

```
1 //To calculate the ratio between electronic and
     ionic polarizability
2 \text{ epsilon_r} = 4.94;
3 n_2 = 2.69; //square of index of refraction
4 alpha_i = 0; //at optical frequencies
5 / (epsilon_r - 1) / (epsilon_r + 2) = N*(alpha_e+alpha_i)
     /(3*epsilon0)
6 X = (epsilon_r-1)/(epsilon_r+2);
7 //epsilon_r = n^2. therefore (n^2-1)/(n^2+2) = N*
     alpha_e/(3*epsilon0)
8 Y = (n_2-1)/(n_2+2);
9 /N*(alpha_e+alpha_i)/N*alpha_e = X/Y
10 // let alpha = alpha_i / alpha_e
                        //ratio between electronic
11 alphai_e = (X/Y)-1;
     ionic and electronic polarizability
12 printf("ratio between electronic ionic and
      electronic polarizability is %5.4f",alphai_e);
13 alphae_i = 1/alphai_e;
                           //ratio between
      electronic and ionic polarizability
14 printf("ratio between electronic and ionic
      polarizability is %5.3f",alphae_i);
```

Scilab code Exa 6.3 To calculate the difference in magnetic potential energy

Scilab code Exa 6.4 To calculate the dielectric constant of material

Scilab code Exa 6.5 To calculate the electronic polarizability

```
7 disp(alpha_e);
```

Scilab code Exa 6.6 To calculate the capacitance and charge on plates

```
1 //To calculate the capacitance and charge on plates
2 = 8.85*10^{-12};
3 V = 100;
            //potential, V
               //\operatorname{area}, cm<sup>2</sup>
4 A = 100;
5 A = A*10^-4; //area, m<sup>2</sup>
             //plate separation, cm
6 d = 1;
7 d = d*10^-2; //plate seperation, m
8 C = epsilon0*A/d; //capacitance, farad
9 printf("capacitance of capacitor in F is");
10 disp(C);
11 Q = C*V;
                //charge on plates
12 printf("charge on plates in coulomb is");
13 disp(Q);
```

Scilab code Exa 6.7 To calculate the electronic polarizability

Scilab code Exa 6.8 To calculate the resultant voltage across capacitors

Scilab code Exa 6.9 To calculate the dielectric displacement

```
//To calculate the dielectric displacement
//To calculate the dielectric displacement
// Potential, V

d = 2*10^-3; // plate seperation, m

E = V/d; // electric field, V/m

sepsilon_r = 6;
epsilon0 = 8.85*10^-12;
D = epsilon0*epsilon_r*E; // dielectric displacement, C/m^2
printf("dielectric displacement in C/m^2 is");
disp(D);
```

Magnetic Properties

Scilab code Exa 7.1 To calculate the relative permeability

Scilab code Exa 7.2 To calculate the relative permeability of material

```
//To calculate the relative permeability of material
//To calculate the relative permeability of material
// magnetisation, amp/m
H = 220; // field strength, amp/m
mew_r = (M/H)+1; // relative permeability
printf("relative permeability of material is %d",
mew_r);
```

Scilab code Exa 7.3 To calculate the magnetisation and flux density

Scilab code Exa 7.4 To calculate the magnetisation and flux density

Scilab code Exa 7.5 To calculate the magnetic moment

```
1 //To calculate the magnetic moment
2 I = 500; //current, mA
3 I = I*10^-3; //current, A
```

Scilab code Exa 7.6 To calculate the change in magnetic moment

Scilab code Exa 7.7 To calculate the susceptibility

Scilab code Exa 7.8 To calculate the magnetic moment

```
1 //To calculate the magnetic moment
2 d = 8906; //density, kg/m^3
3 n = 6.025*10^26; //avagadro number
4 AW = 58.7; //atomic weight
5 N = d*n/AW;
                    //number of atoms/m<sup>3</sup>
6 \text{ Bs} = 0.65;
                    //magnetic induction, Wb/m<sup>2</sup>
7 \text{ mew0} = 4*\%pi*10^-7;
8 \text{ mew_m} = Bs/(N*mew0);
                           //magnetic moment, Am<sup>2</sup>
9 \text{ mewB} = 9.27*10^-24;
10 \text{ mew_m} = \text{mew_m/mewB};
                                //magnetic moment, mewB
11 printf("the magnetic moment of Ni is \%5.2 f mewB",
      mew_m);
```

Scilab code Exa 7.9 To calculate the temperature

Scilab code Exa 7.10 To calculate the magnetic moment and saturation magnetisation

```
1 //To calculate the magnetic moment and saturation
      magnetisation
2 \text{ AW} = 157.26;
                      //atomic weight
3 d = 7.8*10^3; //density, kg/m^3
4 A = 6.025*10^26;
                         //avagadro number
5 \text{ mew0} = 4*\%pi*10^-7;
6 N = d*A/AW; //number of atoms 1 kg contains
7 g = N/10^3; //number of atoms 1 g contains 8 mew_B = 7.1; //bohr magneton
9 \text{ mew_m} = 9.27*10^-24;
10 mew_mg = g*mew_B*mew_m; //magnetic moment per
      gram, Am<sup>2</sup>
11 printf ("magnetic moment per gram is %5.2 f Am^2",
      mew_mg);
12 Bs = N*mew0*mew_m; //saturation magnetisation,
     Wb/m^2
13 printf ("saturation magnetisation is %5.4 f Wb/m^2", Bs
      );
14
15 //answer for saturation magnetisation given in the
      book is wrong
```

Semiconductors

Scilab code Exa 8.1 To calculate the resistivity

Scilab code Exa 8.2 To determine the position of Fermi level

Scilab code Exa 8.3 To calculate the concentration of intrinsic charge carriers

```
1 //To calculate the concentration of intrinsic charge
       carriers
2 T = 300;
                   //temperature, K
3 pi = 22/7; //value of pi
4 e = 1.6*10^-19;
5 m = 9.109*10^-31; //mass of electron, kg 6 k = 1.38*10^-23; //boltzmann's constant //planck's constant
8 Eg = 0.7; //band gap, eV
                   //band gap, J
9 \text{ Eg = Eg*e};
10 A = (2*pi*m*k*T/h^2)^(3/2);
11 B = \exp(-Eg/(2*k*T));
12 ni = 2*A*B; //concentration of intrinsic charge
      carriers per m<sup>3</sup>
13 printf("concentration of intrinsic charge carriers
      per m<sup>3</sup> is");
14 disp(ni);
```

Scilab code Exa 8.4 To calculate the resistivity

```
1 //To calculate the resistivity
```

Scilab code Exa 8.5 To calculate the resistance

```
1 //To calculate the resistance
2 ni = 2.5*10^19; //intrinsic carrier density,
     per m<sup>3</sup>
3 mew_e = 0.39; //electron mobility, m^2/Vs
4 \text{ mew_h} = 0.19;
                     //hole mobility, m<sup>2</sup>/Vs
5 e = 1.6*10^-19;
6 sigma_i = ni*e*(mew_e+mew_h); //conductivity,
     ohm-1 m-1
7 \text{ w} = 1; //width, mm
                     //width, m
8 \quad w = w*10^-3;
9 t = 1; //thickness, mm
10 t = t*10^-3; //thickness, m
11 \quad A = w*t;
                //area, m<sup>2</sup>
12 \ 1 = 1; //length, cm
13 1 = 1*10^-2; //length, m
14 R = 1/(sigma_i*A); //resistivity, ohm m
15 printf ("resistance of intrinsic Ge rod is %5.1f ohm"
     ,R);
```

Scilab code Exa 8.6 To calculate the conductivity

```
1 //To calculate the conductivity
2 m = 9.109*10^{-31}; //mass of electron, kg
3 k = 1.38*10^-23; //boltzmann constant
4 pi = 22/7; //value of pi
5 h = 6.626*10^{-34}; //planck's constant
6 C = 2*(2*pi*m*k/h^2)^(3/2);
7 T = 300; //temperature, K
8 e = 1.6*10^-19;
9 Eg = 1.1; //\text{energy gap}, eV
10 mew_e = 0.48; //electron mobility, m^2/Vs
11 mew_h = 0.013; //hole mobility, m^2/Vs
12 ni = C*T^(3/2)*exp(-Eg*e/(2*k*T)); //intrinsic
     carrier density per m<sup>3</sup>
ohm-1 m-1
14 printf("conductivity is %f ohm-1 m-1", sigma_i);
15
16 //answer given in the book is wrong
```

Scilab code Exa 8.7 To calculate the intrinsic carrier density and conductivity

Scilab code Exa 8.8 To calculate the forbidden energy gap

```
1 //To calculate the forbidden energy gap
2 rho = 2.12; // resistivity, ohm m
                  //\text{conductivity}, ohm-1 m-1
3 \text{ sigma} = 1/\text{rho};
4 e = 1.6*10^-19;
             //value of pi
5 pi = 22/7;
//intrinsic
11 ni = sigma/(e*(mew_e+mew_h));
     carrier density per m<sup>3</sup>
12 C = 2*(2*pi*m*k/h^2)^(3/2);
13 T = 300; //\text{temperature}, K
14 //let \exp(Eg/(2*k*T)) be a
15 a = (C*T^(3/2))/ni;
16 / Eg/(2*k*T) = log(a) and Eg = 2*k*T*log(a)
17 Eg = 2*k*T*log(a)/e; //forbidden energy gap, eV
18 printf("forbidden energy gap is %5.3 f eV", Eg);
19
20 //answer given in the book is wrong
```

Scilab code Exa 8.9 To calculate the energy band gap

```
1 //To calculate the energy band gap
2 \text{ rho}_2 = 4.5;
                     //resistivity at 20C
3 rho_1 = 2; //resistivity
4 T1 = 20; //temperature, C
                      //resistivity at 32C
5 T1 = T1 + 273; //temp, K
6 T2 = 32; //temp, C
                  //temp, K
7 T2 = T2 + 273;
8 k = 8.616*10^{-5};
9 	 dy = log10(rho_2) - log10(rho_1);
10 dx = (1/T1) - (1/T2);
11 Eg = 2*k*dy/dx; //energy band gap, eV
12 printf("energy band gap is %5.3 f eV", Eg);
13
14 //answer given in the book is wrong
```

Scilab code Exa 8.10 To calculate the temperature

Scilab code Exa 8.11 To calculate the electron concentration

Scilab code Exa 8.12 To calculate the conductivity of intrinsic Silicon

```
1 //To calculate the conductivity of intrinsic Silicon
2 \text{ ni} = 1.5*10^{16};
                           //intrinsic charge carriers per
       m^3
3 e = 1.6*10^-19;
4 mew_e = 0.13; //electron mobility, m^2/Vs
5 mew_h = 0.05; //hole mobility, m^2/Vs
                                     //conductivity, ohm
6 sigma = ni*e*(mew_e+mew_h);
      -1 \text{ m}-1
7 printf("conductivity is %f ohm-1 m-1", sigma);
8 \text{ AW} = 28.1;
                     //atomic weight of Si, kg
                      //density of Si, kg/m<sup>3</sup>
9 d = 2.33*10^3;
                      //avaga...
//impurity atoms per ...
//extent of 10^8 Si atoms
//bole concentration per r
                         //avagadro number
10 N = 6.02*10^26;
11 Nd = d*N/AW;
12 \text{ Nd} = \text{Nd}/10^8;
13 p = ni^2/Nd; //hole concentration per m^3
14 sigma_ex = Nd*e*mew_e;
                                      //conductivity, ohm-1 m
      -1
15 printf("conductivity if donor type impurity is added
        is \%5.2 \text{ f ohm}-1 \text{ m}-1", sigma_ex);
16 \text{ Na} = \text{Nd};
17 n = ni^2/Na;
                   //electron concentration per m^3
18 sigma_EX = Na*e*mew_h; //conductivity, ohm-1 m
      -1
```

```
19 printf ("conductivity if acceptor type impurity is added is %5.2 f ohm-1 m-1", sigma_EX);
```

Scilab code Exa 8.13 To calculate the conductivity equilibrium hole concentration and position of Fermi level

```
1 //To calculate the conductivity, equilibrium hole
     concentration and position of Fermi level
2 ni = 1.5*10^16; ///intrinsic charge carriers
     per m<sup>3</sup>
3 e = 1.6*10^-19;
6 sigma = ni*e*(mew_e+mew_h); //conductivity, ohm
7 printf("conductivity is %f ohm-1 m-1", sigma);
                  //phosphorus atoms per m<sup>3</sup>
8 \text{ Nd} = 10^23;
9 p = ni^2/Nd;
                  //hole concentration per m<sup>3</sup>
10 printf("hole concentration per m^3 is");
11 disp(p);
12 sigma_ex = Nd*e*mew_e; //conductivity, ohm-1 m
13 k = 1.38*10^-23;
                       //boltzmann constant
14 T = 300;
           //temperature, K
15 //EF = (Eg/2) + (3*k*T*log(mew_e/mew_h)/4)
16 X = 3*k*T*log(mew_e/mew_h)/(4*e);
17 / EF = (Eg/2) + X
18 printf ("EF = Eg/2 + \%5.2 f", X);
19 printf ("Fermi level will be %5.2 f eV above intrinsic
      level",X);
```

Scilab code Exa 8.14 To calculate the diffusion coefficient of electrons

Scilab code Exa 8.15 To calculate the Hall voltage

Scilab code Exa 8.16 To calculate the Hall coefficient

Scilab code Exa 8.17 To calculate the density and mobility of charge carriers

Scilab code Exa 8.18 To calculate the magnitude of Hall voltage

Scilab code Exa 8.19 To calculate the value of mew and n

Superconductivity

Scilab code Exa 9.1 To calculate the critical field

Scilab code Exa 9.2 To calculate the critical current

```
//To calculate the critical current
T = 4.2;    //temperature, K
d = 1;    //diameter, mm

d = d*10^-3;    //diameter, m

Tc = 7.18;    //critical temperature, K
HO = 6.5*10^4;    //critical field, A/m
Hc = H0*(1-(T/Tc)^2);    //critical field at 2K, A/m
ic = %pi*d*Hc;    //critical current, A
printf("critical current for lead is %5.2f A",ic);
```

Scilab code Exa 9.3 To calculate the penetration depth

Scilab code Exa 9.4 To calculate the critical temperature

Lasers

Scilab code Exa 10.1 To calculate the relative population

```
1 //To calculate the relative population
2 c = 3*10^8; //speed of light, m/sec
3 h = 6.6*10^{-34}; //planck's constant
4 e = 1.6*10^-19;
5 T = 300; //temperature, K
6 K = 8.61*10^{-5};
7 lamda = 6943; //wavelength, armstrong
8 \quad lamda = lamda*10^-10;
                         //wavelength, m
9 // let E2 - E1 be E
10 E = h*c/lamda;
                      //energy, J
                 //energy, eV
11 E = E/e;
12 //let population ratio N2/N1 be N
13 N = \exp(-E/(K*T));
14 printf("relative population of 2 states is");
15 disp(N);
16
17 //answer given in the book is wrong
```

Scilab code Exa 10.2 To calculate the divergence

```
//To calculate the divergence
2 a2 = 6;  //spot diameter, mm
3 a2 = a2*10^-3;  //spot diameter, m
4 a1 = 4;  //spot diameter, mm
5 a1 = a1*10^-3;  //spot diameter, m
6 d2 = 2;  //distance from laser, m
7 d1 = 1;  //distance from laser, m
8 theta = (a2-a1)/(2*(d2-d1));  //divergence, radian
9 theta = theta*10^3;  //divergence, milli radian
10 printf("divergence is %d milli radian", theta);
```

Scilab code Exa 10.3 To calculate the spot size

Fiber Optics and Holography

Scilab code Exa 11.1 To calculate the numerical aperture

```
1 //To calculate the numerical aperture
2 n1 = 1.55;  //refractive index of core
3 n2 = 1.50;  //refractive index of cladding
4 NA = sqrt(n1^2 - n2^2);
5 printf("numerical aperture is %5.3f", NA);
```

Scilab code Exa 11.2 To calculate the angle of acceptance

Scilab code Exa 11.3 To calculate the refractive index of the core

Scilab code Exa 11.4 To calculate the fractional index change

```
1 //To calculate the fractional index change
2 n1 = 1.563;  //refractive index of core
3 n2 = 1.498;  //refractive index of cladding
4 delta = (n1-n2)/n1;  //fractional index change
5 printf("fractional index change is %5.4f", delta);
```

Scilab code Exa 11.5 To calculate the numerical aperture and acceptance angle