EWS Pipeline Documentation

Corporate Credit Early Warning System - Technical Workflow

Document Information

Project: Corporate Credit Early Warning System (12-month PD model)

Date: October 1, 2025

Purpose: Technical documentation of end-to-end modeling pipeline

Pipeline Overview

The EWS pipeline consists of **7 main stages** from raw data generation to production scoring:

```
    Data Generation (Synthetic)

   ─ gen_cohorts.py
                       → Monthly snapshots (backtest cohorts)
   ├ gen_input.py
                       → Raw tables (financials, credit, cashflow, covenants)
   ☐ gen portfolio.py → Scoring portfolio
2. Feature Engineering
   feature_engineering.py → Financial ratios + behavioral features
3. Model Training
   └─ train_baseline.py → LightGBM classifier + SHAP explainability
4. Calibration
   └─ calibrate.py
                        → Isotonic regression for probability calibration
5. Scoring
   └─ scoring.py
                         → Batch scoring with absolute thresholds
6. Validation & Testing
   backtest_monthly.py → Performance over 18 months
   ├─ calculate_psi.py → Population Stability Index
   ☐ plot validation.py → Validation dashboard
7. Monitoring & Stress Testing
   ⊢ run_monitoring.py → Production monitoring

    stress_test.py → Scenario stress testing
```

Stage 1: Data Generation

1.1 Generate Monthly Cohorts (gen_cohorts.py)

Purpose: Create monthly snapshots for backtesting (18 months: Jan 2024 → Jun 2025)

Inputs: None (synthetic generation)

Process:

- 1. Generate 10,000 customers per month
- 2. Assign sector (10 sectors: Manufacturing, Construction, Retail, etc.)
- 3. Assign credit grade (A–G) with realistic distribution:
 - Grade A: 82% (PD = 0.5%)
 - Grade B: 8% (PD = 1.0%)
 - Grade C–G: 10% (PD = 2–20%)
- 4. Apply sector multipliers (Construction \times 1.3, Retail \times 1.2, Tech \times 0.8)
- 5. Add seasonal/temporal shocks (sine wave + linear trend)
- 6. Generate binary labels (default within 6M, 12M)

Outputs: - data/processed/backtest_cohorts.parquet (180,000 rows = 18 months × 10,000)

Key Parameters:

```
start = "2024-01-31"
end = "2025-06-30"
n_customers = 10,000
seed = 42
```

Sample Output:

customer_id	as_of_date	sector	grade	pd_12m	y_event_12m	ead	lgd
C00001	2024-01-31	MFG	Α	0.0048	0	125,000	0.35
C00002	2024-01-31	CON	В	0.0132	1	580,000	0.42

1.2 Generate Raw Input Tables (gen_input.py)

Purpose: Generate 5 raw data tables simulating bank systems

Inputs: - Configuration: Config dataclass (customers, sectors, time windows) - As-of date: 2025-06-30 (snapshot date)

Process:

Step 1: Customer Master - 1,000 customers with sector, size bucket (SME 80%, Corp 20%) - Assign base financials (Revenue, EBITDA, Total Assets, Total Debt)

Step 2: Financial Statements (Quarterly) - 12 quarters of historical financials (Q3/2022 → Q2/2025) - Generate income statement & balance sheet items: - Revenue, COGS, Operating Expenses - EBITDA, Interest Expense, Tax - Total Assets, Total Debt, Shareholder Equity - Working Capital, Cash, Inventory - Apply industry-specific patterns

Step 3: Credit Behavior (Daily) - 180 days of credit line usage (lookback from as-of date) - Track daily: Limit, Outstanding, Utilization Rate, Days Past Due (DPD) - Simulate realistic payment patterns: - Good customers: DPD = 0–15 days - Risky customers: DPD spikes to 30–90+ days

Step 4: Cashflow Transactions (Daily) - 180 days of cash movements - Track: Total Inflow, Total Outflow, Net Cashflow - Detect negative days, volatility

Step 5: Covenant Monitoring - Track financial covenants (Debt/EBITDA \leq 3.5x, ICR \geq 1.5x) - Daily breach indicators (0/1)

Step 6: Labels - Binary outcome: event_h12m (default within 12 months after as-of date) - Label logic: - DPD \geq 90 days for 30+ consecutive days \rightarrow Default - Or: Utilization rate > 90% + covenant breach \rightarrow Bump PD by 20–40%

```
Outputs (5 files): - data/raw/fin_quarterly.parquet (12K rows = 1K customers × 12 quarters) - data/raw/credit_daily.parquet (180K rows = 1K customers × 180 days) - data/raw/cashflow_daily.parquet (180K rows) - data/raw/covenant.parquet (180K rows) - data/raw/labels.parquet (1K rows = 1 label per customer)
```

Key Parameters:

```
n_customers = 1,000
n_quarters = 12 (financial history)
behavior_days = 180 (credit behavior window)
label_horizon_days = 365 (12 months forward)
asof_date = "2025-06-30"
```

1.3 Generate Scoring Portfolio (gen portfolio.py)

Purpose: Create current portfolio for production scoring

Process: - Similar to gen_input.py but for production snapshot only - Generate customer master + financials + credit behavior at as-of date - No labels (production scoring doesn't have future outcomes yet)

Outputs: - data/processed/portfolio_scored.csv (production customer list)

Stage 2: Feature Engineering

Script: feature_engineering.py

Purpose: Transform raw tables into modeling-ready features

Inputs:

- 5 raw tables from Stage 1.2
- As-of date: 2025-06-30
- Observation window: 180 days

Feature Categories (20+ features total):

A. Financial Ratios (from Quarterly Statements)

Leverage Ratios:

- debt_to_ebitda = Total Debt / EBITDA
- debt_to_equity = Total Debt / Shareholder Equity
- debt to assets = Total Debt / Total Assets

Coverage Ratios:

- interest_coverage = EBITDA / Interest Expense
- ebitda margin = EBITDA / Revenue

Liquidity Ratios:

- current ratio = Current Assets / Current Liabilities
- cash_to_assets = Cash / Total Assets

Operational Ratios:

- asset turnover = Revenue / Total Assets
- working_capital_to_revenue = Working Capital / Revenue

Growth Indicators:

- revenue growth gog = (Revenue_Q0 Revenue_Q1) / Revenue_Q1
- ebitda_growth_qoq = (EBITDA_Q0 EBITDA_Q1) / EBITDA_Q1

B. Credit Behavior (from Daily Credit Data)

Utilization Metrics (180-day window):

- util_mean = Average utilization rate
- util max = Peak utilization
- util_p95 = 95th percentile utilization
- util_days_above_80 = # days with utilization > 80%

Delinquency Metrics:

- dpd_mean = Average days past due
- dpd max = Maximum DPD in window
- dpd_days_above_30 = # days with DPD > 30

dpd_max_streak = Longest consecutive days with DPD ≥ 30

C. Cashflow Indicators (from Daily Cashflow)

- cf_net_mean = Average daily net cashflow
- cf_negative_days = # days with negative cashflow
- cf_volatility = Std dev of daily net cashflow

D. Covenant Breaches

cov_breach_days = # days with covenant violation in 180-day window

E. Sector & Size Normalization

Z-score by (Sector, Size):

- For each numeric ratio, compute robust z-score:
 - feature zs sector size = (value median) / IQR
 - Grouped by (sector_code, size_bucket)
 - Uses median & IQR instead of mean/std for outlier robustness

Process Flow:

- Load 5 raw tables
- Filter data to observation window (as_of_date 180 days → as_of_date)
- 3. Compute financial ratios (TTM = trailing 12 months)
- 4. Aggregate credit behavior (mean, max, percentiles over 180 days)
- 5. Aggregate cashflow metrics
- 6. Count covenant breaches
- 7. Normalize by sector & size (z-scores)
- 8. Join all features with labels
- 9. Drop missing values
- Save as modeling dataset

Outputs: - data/processed/model_features.parquet (1 row per customer, 20+ feature columns)

Sample Row:

customer_id	debt_to_ebitda	interest_coverage	util_mean	dpd_max	event_h12m
C00001	2.3	4.5	0.45	0	0
C00002	5.8	1.2	0.87	45	1

Stage 3: Model Training

Script: train baseline.py

Purpose: Train LightGBM classifier with calibration & explainability

Inputs: - data/processed/model features.parquet - Target: event h12m (binary: 0 = no default, 1 = default)

Process:

Step 1: Feature Selection

- Auto-select normalized features: *__zs_sector_size (prioritize z-scored features)
- If < 5 z-scored features available, use all numeric columns
- Drop: customer_id, sector_code, size_bucket, event_h12m

Step 2: Train-Test Split

- Split: 80% train, 20% test
- Stratified by target (maintain default rate balance)
- Random seed = 42 (reproducible)

Step 3: Train Base Model (LightGBM)

Hyperparameters:

```
objective = "binary"
metric = "auc"
num_leaves = 31
learning_rate = 0.05
n_estimators = 500
min_child_samples = 20
feature_fraction = 0.8
bagging_fraction = 0.8
bagging_freq = 5
early_stopping_rounds = 50
```

Training:

- Fit on train set with validation monitoring
- Early stopping if AUC doesn't improve for 50 rounds
- Save best iteration

Step 4: Probability Calibration

- Method: **Platt Scaling** (sklearn CalibratedClassifierCV)
- Calibrator: Sigmoid (logistic regression on LightGBM outputs)
- CV: 5-fold cross-validation on train set
- Purpose: Convert raw model scores → well-calibrated probabilities

Step 5: SHAP Explainability

- Compute **SHAP TreeExplainer** on test set (sample 100 customers)
- Generate global feature importance (mean |SHAP|)
- Save SHAP values for top 3 drivers per customer

Step 6: Evaluate Metrics (Test Set)

- **AUC-ROC**: Discrimination ability (target > 80%)
- KS Statistic: Max separation (TPR FPR)
- **Brier Score**: Calibration error (target < 2%)
- Precision-Recall AUC: Performance on imbalanced data

Step 7: Define Thresholds

- **Red**: Top 5% highest risk (Red ≥ 95th percentile)
- **Amber**: Top 10% total (Amber ≥ 90th percentile, excluding Red)

Outputs:

- artifacts/models/lgb_model.pkl (trained LightGBM)
- artifacts/models/calibrator.pkl (Platt scaler)
- artifacts/models/feature names.json (feature list)
- artifacts/models/thresholds.json (Red/Amber cutoffs)
- artifacts/models/baseline_metrics.json (AUC, KS, Brier)
- artifacts/shap/shap summary.csv (feature importance)

Sample Metrics:

```
{
  "AUC": 0.925,
  "KS": 0.783,
  "Brier": 0.0196,
  "PR_AUC": 0.161,
  "test_default_rate": 0.0137
}
```

Stage 4: Calibration

Script: calibrate.py

Purpose: Apply isotonic regression for better probability calibration

Inputs:

- data/processed/scores_raw.csv (raw model scores from Stage 3)
- Target: event_h12m

Process:

Isotonic Regression

- Fit: IsotonicRegression(out_of_bounds="clip")
- Input: Raw model score (0–1)
- Output: Calibrated probability (0-1)
- Constraint: Monotonic (higher score → higher probability)

Threshold Mapping

Two strategies available:

Strategy 1: Percentile-Based (Default from train_baseline.py)

- Method: Top 5% highest risk = Red, Top 10% total = Amber
- **Red**: PD ≥ 16.07% (95th percentile cutoff)
- **Amber**: PD ≥ 3.24% (90th percentile cutoff)
- **Green**: PD < 3.24%
- Advantage: Consistent alert volumes regardless of portfolio risk level
- **Use when**: Alert capacity is fixed (e.g., 500 analysts can handle 5% of portfolio)

Strategy 2: Absolute PD (Optional from calibrate.py)

- Method: Fixed PD thresholds
- **Red**: PD ≥ 20.0% (absolute cutoff)
- Amber: PD ≥ 5.0%Green: PD < 5.0%
- Advantage: Aligned with risk appetite, consistent with regulatory PD definitions
- Use when: Business has specific risk tolerance (e.g., "PD > 20% = unacceptable")

Current deployment: Uses Strategy 1 (Percentile) from train baseline.py

EWS Score (0–100)

- Linear scaling: score = prob calibrated × 100
- **Percentile mode**: Red 16–100, Amber 3–16, Green 0–3
- **Absolute mode**: Red 20–100, Amber 5–20, Green 0–5

Outputs:

- artifacts/calibration/calibrator_isotonic.pkl (isotonic model)
- artifacts/calibration/thresholds.json (absolute thresholds)
- artifacts/calibration/mapping.csv (raw score → calibrated PD)
- data/processed/scores calibrated.csv (with tier assignments)

Sample Output:

customer_id	score_raw	prob_calibrated	score_ews	tier
C00001	0.0048	0.0052	5.2	Green
C00002	0.0654	0.0712	71.2	Red

Stage 5: Batch Scoring

Script: scoring.py

Purpose: Score production portfolio (customers without labels)

Inputs:

data/processed/model_features.parquet (production features)

• artifacts/models/lgb_model.pkl

• artifacts/models/calibrator.pkl

• artifacts/calibration/thresholds.json

Process:

- 1. Load production customer features
- 2. Apply trained model → raw score
- 3. Apply calibrator → calibrated PD
- 4. Compute EWS score (0–100)
- 5. Assign tier (Red/Amber/Green) based on absolute thresholds
- 6. Map action recommendations:
 - Green: Routine monitoring, update financials on schedule
 - **Amber**: RM review ≤10 days, request management accounts, limit increases frozen
 - **Red**: Customer meeting ≤5 days, 13-week cashflow plan, watchlist, covenant tightening

Outputs:

- artifacts/scoring/ews_scored_2025-06-30.csv
 - Columns: customer_id, prob_default_12m, score_ews, tier, action
- artifacts/scoring/thresholds_used.json (for audit trail)

Sample Output:

customer_id	prob_default_12m	score_ews	tier	action
C00001	0.52%	5.2	Green	Theo dõi định kỳ; cập nhật BCTC đúng hạn.
C00125	3.8%	38.0	Amber	Soát xét RM ≤10 ngày; yêu cầu management accounts.

customer_id	prob_default_12m	score_ews	tier	action
C00847	12.5%	125	Red	Họp KH ≤5 ngày; lập kế hoạch dòng tiền 13 tuần.

Stage 6: Validation & Backtesting

6.1 Monthly Backtest (backtest_monthly.py)

Purpose: Test model performance over 18 months (Jan 2024 → Jun 2025)

Inputs:

- data/processed/backtest_cohorts.parquet (180K rows)
- Trained model + calibrator

Process:

- 1. For each month (18 iterations):
 - Filter cohort (10,000 customers)
 - Apply model → predict PD
 - Apply calibrator → calibrated PD
 - Assign tier (Red/Amber/Green)
 - Compare with actual labels (y event 12m)
 - o Compute metrics: AUC, KS, Brier, Precision, Recall
- 2. Aggregate monthly metrics

Outputs:

- artifacts/backtest/monthly_metrics.csv (18 rows)
 - o Columns: as_of_month, auc, ks, brier, precision, recall, amber_alert_rate, red_alert_rate

Sample Output:

as_of_month	auc	ks	brier	precision	recall	amber_alert_rate	red_alert_rate
2024-01-31	0.834	0.601	0.0106	0.096	0.575	8.3%	4.2%
2024-02-29	0.819	0.582	0.0144	0.092	0.568	8.5%	4.3%

6.2 Population Stability Index (calculate_psi.py)

Purpose: Measure data drift across 18 months

Process:

- 1. Bucket scores into 10 deciles (baseline = first month)
- 2. For each subsequent month:
 - Compute distribution across same deciles
 - $PSI = \Sigma$ (actual% expected%) × In(actual% / expected%)
- 3. PSI > 0.10 → Warning (data shifting)
- 4. PSI > 0.25 → Critical (recalibration needed)

Outputs:

artifacts/backtest/psi monthly.csv (17 rows, one per month vs. baseline)

Sample:

month	psi	status	
2024-02-29	0.002	OK	
2024-03-31	0.005	OK	
2025-06-30	0.000	OK (synthetic → perfect stability)	

6.3 Validation Dashboard (plot_validation.py)

Purpose: Generate visual validation report

Plots Generated (5 total):

- 1. AUC & KS Trend Over Time (auc ks trend.png)
 - Line charts: 18-month AUC & KS scores
 - Reference line: AUC = 75% (minimum threshold)
- 2. **Decile Calibration** (decile calibration.png)
 - o Bar chart: Predicted vs. Actual default rate by decile
 - Error bars: ±1 std dev
- 3. **Precision-Recall Curve** (precision recall curve.png)
 - Curve showing trade-off between precision & recall
 - Markers: Selected thresholds (Amber, Red)
- 4. **Alert Volume vs Threshold** (alert volume vs threshold.png)
 - Sweep chart: Alert rate from 0.5% to 10% threshold
 - Dual axis: Precision & Recall
- 5. **Validation Dashboard** (validation dashboard.png)
 - o 2×2 layout combining: AUC/KS trend, Calibration, Threshold analysis, Summary metrics

Outputs:

- artifacts/validation/plots/*.png (5 files)
- artifacts/validation/VALIDATION_REPORT_EN.md (integrated report with plots)

Stage 7: Monitoring & Stress Testing

7.1 Production Monitoring (run_monitoring.py)

Purpose: Monthly tracking of production performance

Inputs:

- Current month's predictions + actuals (after 12 months maturity)
- Historical baseline metrics

Metrics Tracked:

- 1. **PSI** (data drift)
- 2. AUC (discrimination)
- 3. **Brier** (calibration)
- 4. Alert Rate (operational load)
- 5. **Actual Precision** (after labels available)

Alerts:

- PSI > 0.10 → Email warning
- AUC < 75% for 2 months → Recalibration trigger
- Alert rate > 15% → Threshold adjustment

Outputs:

- artifacts/monitoring/monitoring YYYYMMDD HHMMSS.json (timestamped)
- artifacts/monitoring/monitoring metrics.csv (cumulative)

7.2 Stress Testing (stress_test.py)

Purpose: Test model under crisis scenarios

Scenarios (from stress_scenarios.yaml):

- 1. **Baseline**: Current conditions (no shock)
- 2. Mild Recession: Revenue -15%, Debt +10%
- 3. **Severe Recession**: Revenue -30%, Debt +25%, Liquidity -20%
- 4. **Sector Shock**: Construction sector EBITDA -40%
- 5. Liquidity Crisis: Utilization +30pp, Cashflow volatility ×3

Process:

- 1. Load base features
- 2. Apply scenario shocks to features
- 3. Re-score with model
- 4. Compare tier migrations (Green → Amber → Red)

Outputs:

- artifacts/stress_testing/stress_results.csv
 - Columns: scenario, baseline_red%, stressed_red%, migration_rate
- artifacts/stress_testing/STRESS_TEST_NOTE.md (report with waterfall charts)

Sample Result:

Scenario	Baseline Red%	Stressed Red%	Migration
Mild Recession	4.2%	7.8%	+85%
Severe Recession	4.2%	15.3%	+264%

Data Flow Diagram

Key Files & Artifacts

Input Data

```
data/
- raw/
                                      # Stage 1.2 outputs
    ├─ fin_quarterly.parquet
                                      # 12K rows (1K \times 12Q)
    credit_daily.parquet
                                      # 180K \text{ rows } (1K \times 180d)
    cashflow_daily.parquet
                                      # 180K rows
    ─ covenant.parquet
                                      # 180K rows
    └─ labels.parquet
                                      # 1K rows
  - processed/
    backtest_cohorts.parquet
                                      # 180K rows (backtest)
    model_features.parquet
                                      # 1K rows (20+ features)
    ─ scores_raw.csv
                                      # Raw model outputs
                                      # Calibrated PD + tiers
      scores calibrated.csv
    └─ portfolio_scored.csv
                                      # Production portfolio
```

Model Artifacts

```
artifacts/
 - models/
    ├─ lgb_model.pkl
                                    # Trained LightGBM (500 trees)
    ├─ calibrator.pkl
                                    # Platt scaler
    ├── feature_names.json
                                    # 20 feature list
    ─ thresholds.json
                                    # Red/Amber cutoffs
    └─ baseline_metrics.json
                                    # AUC, KS, Brier
  - calibration/
    ├─ calibrator_isotonic.pkl
                                    # Isotonic regression
    — thresholds.json
                                    # Absolute PD thresholds
    └─ mapping.csv
                                    # Score → PD mapping
  - shap/
    # Global feature importance
    feature_importance.csv
                                    # SHAP rankings
    top_drivers_per_customer.csv # Top 3 drivers per alert
  backtest/
    ─ monthly_metrics.csv
                                    # 18-month performance
    ├─ psi_monthly.csv
                                    # Stability tracking
    threshold_sweep.csv
                                    # Precision/Recall curves
    ☐ BACKTEST_REPORT.html
                                    # Quarto report
  validation/
    ├─ plots/
        — auc_ks_trend.png
         decile_calibration.png
        precision_recall_curve.png
```

```
— alert_volume_vs_threshold.png
     validation_dashboard.png
  └─ VALIDATION_REPORT_EN.md
                                 # English validation report
- scoring/
  — ews_scored_2025-06-30.csv
                                 # Scored customers
  └─ thresholds_used.json
                                 # Audit trail
— monitoring/
  ├─ monitoring_YYYYMMDD.json
                                 # Monthly snapshots
  # Cumulative tracking
- stress_testing/

─ stress_results.csv

                                 # Scenario results
                                 # Scenario definitions

─ stress_scenarios.yaml

  └─ STRESS_TEST_NOTE.md
                                 # Stress test report
```

Execution Guide

Full Pipeline (from scratch)

```
# 1. Generate data
python src/gen_data/gen_cohorts.py --start 2024-01-31 --end 2025-06-30 --n 10000
python src/gen_data/gen_input.py --output-dir data/raw --n 1000
python src/gen_data/gen_portfolio.py --output data/processed/portfolio_scored.csv
# 2. Feature engineering
python src/modeling/feature_engineering.py \
    --raw-dir data/raw \
    --asof-date 2025-06-30 \
    --output data/processed/model_features.parquet
# 3. Train model
python src/modeling/train_baseline.py \
    --input data/processed/model_features.parquet \
    --target event_h12m \
    --outdir artifacts/models
# 4. Calibration (Optional - only if switching to absolute thresholds)
# Main pipeline uses percentile thresholds from train_baseline.py
# Run this step ONLY if business requires absolute PD cutoffs
# First, extract raw scores from trained model:
python src/make_scores_raw.py \
    --features data/processed/feature_ews.parquet \
    --model artifacts/models/model_lgbm.pkl \
    --y-col event_h12m \
    --out data/processed/scores_raw.csv
# Then apply isotonic calibration with absolute thresholds:
python src/calibrate.py \
```

```
--input data/processed/scores_raw.csv \
    --y-col event_h12m \
    --score-col score_raw \
    --red-thr 0.20 \
    --amber-thr 0.05 \
    --outdir artifacts/calibration
# Note: By default, train_baseline.py already creates calibrated scores
# with percentile-based thresholds (Red=top 5%, Amber=top 10%)
# 5. Batch scoring
python src/scoring.py \
    --features data/processed/portfolio_scored.csv \
    --model artifacts/models/lgb_model.pkl \
    --thresholds artifacts/calibration/thresholds.json \
    --asof 2025-06-30 \
    --outdir artifacts/scoring
# 6. Validation
python src/backtest/backtest_monthly.py
python src/backtest/calculate_psi.py
python src/plot_validation.py all
# 7. Monitoring
python src/run_monitoring.py --asof 2025-06-30
python src/stress_test.py --scenarios artifacts/stress_testing/stress_scenarios.yaml
```

Quick Validation Dashboard Only

```
python src/plot_validation.py dashboard
```

Performance Benchmarks

Model Metrics (Test Set)

- **AUC**: 92.5% (target > 80%) √√ (excellent)
- **KS**: 78.3% (excellent separation)
- **Brier Score**: 1.96% (target < 2%) ✓
- **PR-AUC**: 16.1% (reasonable for 1.37% default rate)

Operational Metrics (Backtest Average)

- Amber Alert Rate: 8.3% (830 customers/month)
- Amber Precision: 9.6% (1 in 10 alerts is real default)
- **Amber Recall**: 57.5% (catches 57.5% of defaults)
- Red Alert Rate: 4.2% (420 customers/month)

- False Positive Rate: 90.4% (9 out of 10 Amber alerts are false)
- Missed Defaults: 42.5% (not flagged by system)
- **Workload**: ~15 FTE needed (5 for Amber, 10 for Red)

Stability (18 months backtest)

- **PSI**: 0.00 (synthetic data, perfect stability)
- **AUC Range**: 79.2% 85.9% (±3.5% variation)
- AUC Mean (backtest): 82.3% (slightly lower than test set due to time decay)
- No degradation observed in test period

Key Assumptions & Limitations

Data Quality

- 1. Synthetic Data: Test data is artificially generated
 - No real-world noise (missing data, reporting delays, data errors)
 - PSI = 0 is unrealistic (real production will have drift)
 - Mitigation: Run 6-month pilot with real data
- 2. **Label Quality**: Binary default definition (DPD ≥ 90 for 30 days)
 - May not capture all credit deterioration signals
 - No restructuring/forbearance cases simulated

Model Scope

- 1. No Segmentation: Single model for all sectors/sizes
 - May underperform in specific industries (Construction, Retail)
 - Recommendation: Build sector-specific models if performance gaps found
- 2. 12-Month Horizon Only: Fixed 12-month PD
 - No 6-month or 24-month variants
 - May miss near-term acute risks or long-term structural issues
- 3. **Feature Coverage**: 20 features (financial + behavioral)
 - No macroeconomic variables (GDP, interest rates, FX)
 - No qualitative factors (management quality, industry trends)
 - No external data (credit bureau, industry benchmarks)

Operational Constraints

- 1. High False Positive Rate: 90% of Amber alerts are false
 - Risk of alert fatigue
 - Mitigation: Clear workflow, Red priority, periodic threshold review
- 2. Missed Defaults: 42.5% not caught by Amber/Red
 - System is supplementary, not standalone
 - Mitigation: Combine with quarterly credit reviews

Appendix: Technical Details

LightGBM Hyperparameters

```
params = {
    'objective': 'binary',
    'metric': 'auc',
    'num_leaves': 31,
    'learning_rate': 0.05,
    'n_estimators': 500,
    'min_child_samples': 20,
    'feature_fraction': 0.8,
    'bagging_fraction': 0.8,
    'bagging_freq': 5,
    'verbosity': -1,
    'early_stopping_rounds': 50
}
```

Feature Importance (Top 10)

Rank	Feature	SHAP Value	Description
1	covenant_breach_cnt_180d	0.710	Covenant violation count (180 days)
2	delta_dso_qoq	0.586	Days Sales Outstanding QoQ change
3	dpo	0.530	Days Payable Outstanding
4	icr_ttm	0.504	Interest Coverage Ratio (TTM)
5	%util_p95_60d	0.503	95th percentile utilization (60 days)
6	debt_to_ebitda	0.471	Leverage ratio (Debt/EBITDA)
7	dso	0.359	Days Sales Outstanding
8	dpd_trend_180d	0.326	DPD trend direction (180 days)
9	dpd_max_180d	0.320	Maximum days past due (180 days)
10	doh	0.279	Days on Hand (inventory)

Top 3 features account for **40.9%** of model explanatory power (total SHAP = 1.826).

Note: All features are z-score normalized by sector & size (__zs_sector_size suffix).