Chapitre III Systèmes linéaires

- 1. Introduction
- 2. Méthodes directes
 - Factorisation QR
 - Factorisation LU
 - Factorisation de Cholesky
- 3. Méthodes itératives
 - Méthode de Jacobi
 - Méthode de Gauss-Siedel
 - Convergence

1. Introduction

- **Objectif**: proposer des méthodes de résolution d'un système linéaire de la forme $\mathbf{A}\mathbf{x} = \mathbf{b}$ où $\mathbf{A} \in \mathbb{R}^{n \times n}$ est une matrice inversible, $\mathbf{x} = (x_1, ..., x_n)^T$ et $\mathbf{b} = (b_1, ..., b_n)^T$ sont des vecteurs colonnes de \mathbb{R}^n (\mathbf{x} est l'inconnue).
- Théoriquement il existe une solution unique x dont les composantes sont données par la formule de Kramer :

$$x_i = \frac{\det \mathbf{A}_i}{\det \mathbf{A}}$$

où \mathbf{A}_i est la matrice obtenue à partir de \mathbf{A} en remplaçant la $i^{\grave{e}me}$ colonne par le vecteur \mathbf{b} .

- Dans la pratique, le coût de calcul de la formule ci-dessus est de l'ordre de (n+1)! flops (floating-point operations); plus exactement, le calcul de chaque déterminant se fait par la formule :

$$\det \mathbf{A} = \sum_{\sigma} (-1)^{\varepsilon(\sigma)} \prod_{i=1}^{n} a_{i\sigma(i)}$$

dans laquelle la somme se fait sur toutes les permutations σ sur n indices ; le calcul de la formule ci-dessus requiert n! flops. Calculer le déterminant d'une matrice 100×100 prendrait un temps supérieur à l'âge de l'Univers.

Nous proposons de présenter des méthodes alternatives pour lesquelles les algorithmes présentent des temps de calcul plus raisonnables : on distinguera les <u>méthodes directes</u> (qui donnent un résultat exact) et les <u>méthodes itératives</u> (qui donnent un résultat approché en construisant une suite (\mathbf{x}_n) convergeant vers la solution \mathbf{x}).

Les méthodes directes consistent le plus souvent à « factoriser » la matrice $\bf A$ du système $\bf Ax=\bf b$, c'est-à-dire à l'écrire sous la forme d'un produit de matrices « plus simples » dont le déterminant se calcule plus facilement :

- Factorisation QR:

A = QR avec Q: matrice orthogonale

R : matrice triangulaire supérieure

Factorisation LU:

A = LU avec L: matrice triangulaire inférieure

U : matrice triangulaire supérieure

Factorisation de Cholesky :

 $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ avec \mathbf{L} : matrice triangulaire inférieure

Factorisation QR

Exemple introductif

On considère la matrice
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$

On peut facilement vérifier que les vecteurs colonnes \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 de \mathbf{A} sont libres. Appliquons alors le procédé de Gram-Schmidt (cf. chapitre II) à ces vecteurs :

■ 1^{ère} étape

$$r_{11} = \|\mathbf{a}_1\| = \sqrt{1^2 + 1^2 + 1^2 + 1^2} = 2$$

$$\mathbf{q}_1 = \frac{\mathbf{a}_1}{r_{11}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}^T$$

Factorisation QR

■ 2^{ème} étape

$$r_{12} = \langle \mathbf{a}_2, \mathbf{q}_1 \rangle = \mathbf{a}_2^T \mathbf{q}_1 = 3$$

$$\mathbf{v}_2 = \mathbf{a}_2 - r_{12}\mathbf{q}_1 = (-1 \quad 4 \quad 4 \quad -1)^T - \frac{3}{2}(1 \quad 1 \quad 1 \quad 1)^T = \frac{5}{2}(-1 \quad 1 \quad 1 \quad -1)^T$$

$$r_{22} = \|\mathbf{v}_2\| = 5$$

$$\mathbf{q}_2 = \frac{\mathbf{v}_2}{r_{22}} = \frac{1}{2} (-1 \quad 1 \quad 1 \quad -1)^T$$

Factorisation QR

■ 3^{ème} étape

$$r_{13} = \langle \mathbf{a}_3, \mathbf{q}_1 \rangle = \mathbf{a}_3^T \mathbf{q}_1 = 2$$
 et $r_{23} = \langle \mathbf{a}_3, \mathbf{q}_2 \rangle = \mathbf{a}_3^T \mathbf{q}_2 = -2$

$$\mathbf{v}_3 = \mathbf{a}_3 - r_{13}\mathbf{q}_1 - r_{23}\mathbf{q}_2 = \dots = (2 \quad -2 \quad 2 \quad -2)^T$$

$$r_{33} = \|\mathbf{v}_3\| = 4$$

$$\mathbf{q}_3 = \frac{\mathbf{v}_3}{r_{33}} = \frac{1}{2} (1 \quad -1 \quad 1 \quad -1)^T$$

Factorisation QR

On pose alors:

 ${f R}$ est triangulaire supérieure et ${f Q}$ est orthogonale (car les vecteurs colonnes forment une famille orthonormée).

On vérifie facilement que $\mathbf{QR} = \mathbf{A}$: c'est la factorisation QR de \mathbf{A} .

Factorisation QR

A retenir

Toute matrice \mathbf{A} de dimensions $m \times n$ ($m \ge n$) de rang n peut s'écrire sous la forme $\mathbf{A} = \mathbf{Q}\mathbf{R}$ où \mathbf{Q} est une matrice $m \times n$ orthogonale et \mathbf{R} est une matrice triangulaire supérieure.

Remarque

- Nous appliquerons la factorisation QR aux problèmes de moindres carrés au chapitre VI.

Factorisation LU

Exemple introductif

On considère le système suivant :

$$\begin{cases} x - y + 3z = 4 & L_1 \\ 2x - y + z = 5 & L_2 \\ 3x & -3z = 6 & L_3 \end{cases}$$
 de matrice $\mathbf{A}_1 = \begin{pmatrix} 1 & -1 & 3 \\ 2 & -1 & 1 \\ 3 & 0 & -3 \end{pmatrix}$

Méthode du pivot de Gauss :

• 1ère étape
$$\begin{cases} x - y + 3z = 4 \\ y - 5z = -3 \\ 3y - 12z = -6 \end{cases}$$
 de matrice $\mathbf{A}_2 = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & -5 \\ 0 & 3 & -12 \end{pmatrix}$

■ 2ème étape
$$\begin{cases} x - y + 3z = 4 \\ y - 5z = -3 \\ 3z = 3 \end{cases}$$
 de matrice $\mathbf{A}_3 = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & -5 \\ 0 & 0 & 3 \end{pmatrix}$

Factorisation LU

Les systèmes (S_1) , (S_2) et (S_3) sont équivalents ; on a effectué les opérations suivantes :

■ 1^{ère} étape

$$L_2 \leftarrow L_2 - m_{21}L_1$$
 avec $m_{21} = \frac{a_{21}}{a_{11}} = 2$ et $L_3 \leftarrow L_3 - m_{31}L_1$ avec $m_{31} = \frac{a_{31}}{a_{11}} = 3$

Cela revient à écrire :

$$\mathbf{A}_2 = \mathbf{M}_2 \mathbf{A}_1 \quad \text{avec} \quad \mathbf{M}_2 = \begin{pmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}$$

■ 2^{ème} étape

$$L_3 \leftarrow L_3 - m_{32}L_2$$
 avec $m_{32} = \frac{a_{32}}{a_{22}} = 3$

Cela revient à écrire :

$$\mathbf{A}_3 = \mathbf{M}_3 \mathbf{A}_2 \quad \text{avec} \quad \mathbf{M}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$

Factorisation LU

Donc, en posant $\mathbf{U} = \mathbf{A}_3$:

$$\mathbf{U} = \mathbf{M}_3 \mathbf{A}_2 = \mathbf{M}_3 \mathbf{M}_2 \mathbf{A}_1$$

Les matrices \mathbf{M}_2 et \mathbf{M}_3 sont triangulaires inférieures avec des 1 sur la diagonale principale, il en est donc de même pour le produit $\mathbf{M}_3\mathbf{M}_2$.

Donc $det(\mathbf{M}_3\mathbf{M}_2) = 1$ donc $\mathbf{M}_3\mathbf{M}_2$ est inversible et, en posant $\mathbf{L} = (\mathbf{M}_3\mathbf{M}_2)^{-1}$:

$$A_1 = LU$$

avec
$$\mathbf{L} = \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{pmatrix}$$

et
$$\mathbf{U} = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & -5 \\ 0 & 0 & 3 \end{pmatrix}$$

Factorisation LU

Revenons au système (S_1) , c'est-à-dire :

$$\mathbf{AX} = \mathbf{B}$$
 avec $\mathbf{X} = (x_1 \quad x_2 \quad x_3)^T$ et $\mathbf{B} = (4 \quad 5 \quad 6)^T$

On a alors:

$$AX = B \Leftrightarrow LUX = B \Leftrightarrow LY = B \text{ avec } Y = UX$$

Résoudre le système (S_1) revient alors à résoudre 2 systèmes triangulaires :

- d'abord
$$\mathbf{L}\mathbf{Y} = \mathbf{B} \iff \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \implies \text{on trouve } \mathbf{Y} = \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}$$

- puis
$$\mathbf{U}\mathbf{X} = \mathbf{Y} \Leftrightarrow \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & -5 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix} \Rightarrow \text{ on trouve } \mathbf{X} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Factorisation LU

A retenir

La factorisation LU d'une matrice inversible $\bf A$ consiste à la décomposer sous la forme $\bf A=LU$ où $\bf L$ est une matrice <u>triangulaire inférieure</u> avec des 1 sur la diagonale principale et $\bf U$ est une matrice <u>triangulaire supérieure</u>.

Résoudre le système $\mathbf{AX} = \mathbf{B}$ revient alors à résoudre les 2 systèmes triangulaires $\mathbf{LY} = \mathbf{B}$ et $\mathbf{UX} = \mathbf{Y}$.

Factorisation LU

Remarques

- Le coût de la factorisation LU est le même que celui de la méthode du pivot de Gauss (de l'ordre de n^3). L'avantage de LU est que, une fois les matrices ${\bf L}$ et ${\bf U}$ calculées et stockées en mémoire, on peut résoudre directement tout système linéaire de la forme ${\bf AX}={\bf B}$ (alors qu'avec la méthode du pivot de Gauss, on recommence les calculs à chaque fois que ${\bf B}$ change).
- Si la factorisation LU existe (c'est-à-dire si aucun pivot n'est nul) alors elle est unique.
- La factorisation LU est très utile pour calculer le déterminant de grosses matrice. En effet si ${f A}={f L}{f U}$ alors :

 $\det \mathbf{A} = \det \mathbf{L} \times \det \mathbf{U} = \det \mathbf{U} = \text{produit des pivots}$

Factorisation LU

Méthode pratique pour effectuer la factorisation LU « à la main »

$$\mathbf{A} = \begin{pmatrix} \frac{a \mid \mathbf{B}}{\mathbf{C} \mid \mathbf{D}} \end{pmatrix} = \begin{pmatrix} \frac{1}{a} \mid \mathbf{0} \\ \frac{1}{a} \mid \mathbf{C} \mid \mathbf{L}_1 \end{pmatrix} \begin{pmatrix} \frac{a \mid \mathbf{B}}{\mathbf{0} \mid \mathbf{U}_1} \end{pmatrix}$$

A l'aide d'un calcul par blocs on obtient :

$$\mathbf{D} = \frac{1}{a}\mathbf{C}\mathbf{B} + \mathbf{L}_1\mathbf{U}_1$$

C'est-à-dire:

$$\mathbf{L}_1 \mathbf{U}_1 = \mathbf{D} - \mathbf{C} a^{-1} \mathbf{B}$$

On réitère en redécoupant par bloc la matrice $\mathbf{L}_1\mathbf{U}_1$ de la même façon ... et ainsi de suite jusqu'à obtenir un bloc 1×1 .

Factorisation LU

Exemple:
$$A = \begin{pmatrix} 4 & 2 & 4 \\ 16 & 9 & 18 \\ 4 & 9 & 21 \end{pmatrix}$$

• 1ère étape :
$$a = 4$$
, $\mathbf{B} = (2 \ 4)$, $\mathbf{C} = (16 \ 4)^T$, $\mathbf{D} = \begin{pmatrix} 9 & 18 \\ 9 & 21 \end{pmatrix}$

$$\mathbf{L}_{1}\mathbf{U}_{1} = \mathbf{D} - \mathbf{C}a^{-1}\mathbf{B} = \begin{pmatrix} 9 & 18 \\ 9 & 21 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \end{pmatrix}(2 \quad 4) = \begin{pmatrix} 9 & 18 \\ 9 & 21 \end{pmatrix} - \begin{pmatrix} 8 & 16 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 7 & 17 \end{pmatrix}$$

Factorisation LU

• $2^{\text{ème}}$ étape : a = 1, B = (2), C = (7), D = (17)

$$\mathbf{L}_2 \mathbf{U}_2 = \mathbf{D} - \mathbf{C} a^{-1} \mathbf{B} = (17) - (7) \times (2) = (3)$$

On construit alors la matrice :

ullet 3 $^{\mbox{\scriptsize eme}}$ étape : on sépare diagonalement cette matrice pour obtenir ${f L}$ et ${f U}$ en ajoutant des 1 sur la diagonale de ${f L}$

$$\mathbf{A} = \mathbf{L}\mathbf{U} \quad \text{avec} \quad \mathbf{L} = \begin{pmatrix} \mathbf{1} & 0 & 0 \\ 4 & \mathbf{1} & 0 \\ 1 & 7 & \mathbf{1} \end{pmatrix} \quad \text{et} \quad \mathbf{U} = \begin{pmatrix} 4 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

Factorisation de Cholesky

Exemple introductif

On considère la matrice $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 10 & 4 \\ 1 & 4 & 6 \end{pmatrix}$. Cette matrice est symétrique définie positive (on peut

le prouver en vérifiant que ses valeurs propres sont strictement positives par exemple).

On cherche à écrire cette matrice comme le produit d'une matrice <u>triangulaire inférieure à termes</u> <u>diagonaux positifs</u> par sa transposée, c'est-à-dire :

$$\begin{pmatrix}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{pmatrix}
\begin{pmatrix}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 \\
1 & 10 & 4 \\
1 & 4 & 6
\end{pmatrix}$$

$$\mathbf{L}$$

$$\mathbf{L}$$

Factorisation de Cholesky

•
$$l_{11}^2 = 1 \implies l_{11} = 1$$

•
$$l_{21}l_{11} = 1 \Rightarrow l_{21} = 1$$

•
$$l_{31}l_{11} = 1 \Rightarrow l_{31} = 1$$

•
$$l_{21}^2 + l_{22}^2 = 10 \implies l_{22} = 3$$

•
$$l_{21}l_{31} + l_{22}l_{32} = 4 \implies l_{32} = 1$$

•
$$l_{31}^2 + l_{32}^2 + l_{33}^2 = 6 \implies l_{33} = 2$$

Donc
$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$
 et $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 10 & 4 \\ 1 & 4 & 6 \end{pmatrix} = \mathbf{L}\mathbf{L}^T = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

Factorisation de Cholesky

A retenir

Soit ${\bf A}$ une matrice symétrique définie positive. Il existe une unique matrice ${\bf L}$ triangulaire inférieure dont les termes de la diagonale sont positifs telle que ${\bf A}={\bf L}{\bf L}^T$

Remarques

On peut utiliser la factorisation de Cholesky pour faire la factorisation QR d'une matrice \mathbf{M} de dimensions $m \times n$ (avec $m \ge n$) et de rang n. Pour cela, on forme la matrice de Gram $\mathbf{A} = \mathbf{M}^T \mathbf{M}$, alors on montre que \mathbf{A} est symétrique définie positive (à faire en exercice), donc \mathbf{A} admet une décomposition de Cholesky, c'est-à-dire $\mathbf{A} = \mathbf{L}\mathbf{L}^T$. On a alors :

$$\mathbf{M} = \mathbf{M}(\mathbf{L}^T)^{-1}\mathbf{L}^T = \mathbf{Q}\mathbf{R}$$
 avec $\mathbf{Q} = \mathbf{M}(\mathbf{L}^T)^{-1}$ matrice orthogonale (à démontrer en exercice) et $\mathbf{R} = \mathbf{L}^T$ matrice triangulaire supérieure (évident)

Factorisation de Cholesky

Remarques (suite)

 $\det \mathbf{A} = \det \mathbf{L} \det \mathbf{L}^T = (\det \mathbf{L})^2 = \det \mathbf{L}^2$

Comme \mathbf{L}^2 est aussi une matrice triangulaire, plus précisément :

$$\mathbf{L}^{2} = \begin{pmatrix} l_{11}^{2} & 0 & \cdots & 0 \\ * & l_{22}^{2} & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ * & * & \cdots & l_{nn}^{2} \end{pmatrix}$$

on en déduit que :

$$\det \mathbf{A} = \prod_{i=1}^{n} l_{ii}^2$$

- Le coût de la factorisation de Cholesky est de l'ordre de n^3 .

Factorisation de Cholesky

Méthode pratique pour effectuer la factorisation de cholesky « à la main »

On s'inspire de la méthode utilisant le calcul par blocs vue pour la factorisation LU.

$$\mathbf{A} = \begin{pmatrix} a & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} & \frac{1}{10} & \frac{1}{4} \\ \frac{1}{1} & \frac{1}{4} & 6 \end{pmatrix}$$

- 1^{ère} étape
 - On écrit le complément de Schur : $\mathbf{S} = \mathbf{D} \mathbf{C}a^{-1}\mathbf{B} = \begin{pmatrix} 10 & 4 \\ 4 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}(1 & 1) = \begin{pmatrix} 9 & 3 \\ 3 & 5 \end{pmatrix}$
 - On divise la marge gauche et la marge haute par $\sqrt{a}=1$
 - On construit la matrice : $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 9 & 3 \\ 1 & 3 & 5 \end{pmatrix} = s$

Factorisation de Cholesky

- 2^{ème} étape
 - On écrit le complément de Schur : $\mathbf{S} = \mathbf{D} \mathbf{C}a^{-1}\mathbf{B} = 5 3 \times \frac{1}{9} \times 3 = 4$

- On divise la marge gauche et la marge haute par $\sqrt{a}=3$

- On construit la matrice :

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix} \longrightarrow S$$

Factorisation de Cholesky

- 3^{ème} étape
 - On divise $\mathbf{S}=4$ par $\sqrt{a}=2$ et on obtient la matrice : $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$
 - On sépare diagonalement et on obtient : $\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}$

La décomposition de Cholesky de la matrice **A** est donc :

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 10 & 4 \\ 1 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\stackrel{\mathbf{L}}{\mathbf{L}}$$

Les méthodes itératives consistent à écrire la matrice $\bf A$ du système $\bf Ax=\bf b$ sous la forme :

$$A = M - N$$

où **M** est une matrice (facilement) inversible. Ainsi :

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \mathbf{M}\mathbf{x} = \mathbf{N}\mathbf{x} + \mathbf{b}$$

$$\Leftrightarrow \quad \mathbf{x} = \mathbf{M}^{-1}\mathbf{N}\mathbf{x} + \mathbf{M}^{-1}\mathbf{b} \qquad (1)$$

On remarque alors que l'équation (1) est de la forme $\mathbf{x} = f(\mathbf{x})$; on est donc face à une problème de type « point fixe » dont la solution consiste à construire une suite qui repose sur l'itération de l'équation :

$$\mathbf{x}_{k+1} = \mathbf{M}^{-1} \mathbf{N} \mathbf{x}_k + \mathbf{M}^{-1} \mathbf{b} \tag{2}$$

où
$$\mathbf{x}_k = \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\right).$$

On initialise l'algorithme par un vecteur arbitraire $\mathbf{x}_0 = \left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}\right)$ et on arrête les calculs lorsque :

$$\forall i \in [1, n], \quad \left| x_i^{(k)} - x_i^{(k-1)} \right| < \varepsilon$$

où ε est une valeur que l'on s'est fixé et qui définit la précision avec laquelle la suite doit converger.

On utilisera les notations suivantes :

$$\mathbf{A} = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$\mathbf{D} = \operatorname{diag} \mathbf{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

$$-\mathbf{E} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ a_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{pmatrix} \quad \text{matrice triangulaire inférieure avec des 0 sur la diagonale}$$

$$-\mathbf{F} = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \quad \text{matrice triangulaire supérieure avec des 0 sur la diagonale}$$

On a alors : $\mathbf{A} = \mathbf{D} - (\mathbf{E} + \mathbf{F})$

Méthode de Jacobi

La matrice du système $\mathbf{A}\mathbf{x} = \mathbf{b}$ s'écrit $\mathbf{A} = \mathbf{M} - \mathbf{N}$ avec $\mathbf{M} = \mathbf{D}$ et $\mathbf{N} = \mathbf{E} + \mathbf{F}$.

On a alors:

La matrice $J = I - D^{-1}A$ est appelée matrice de Jacobi.

$$\mathbf{J} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{nn}} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{pmatrix}$$

Méthode de Jacobi

Il faut donc construire la suite de vecteurs : $\mathbf{x}_{k+1} = \mathbf{J}\mathbf{x}_k + \mathbf{D}^{-1}\mathbf{b}$

En développant les calculs on obtient :

$$\begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ \vdots \\ x_n^{(k+1)} \end{pmatrix} = \begin{pmatrix} -\frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} \dots - \frac{a_{1n}}{a_{11}} x_n^{(k)} \\ -\frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} \dots - \frac{a_{2n}}{a_{22}} x_n^{(k)} \\ \vdots \\ -\frac{a_{n1}}{a_{nn}} x_1^{(k)} - \frac{a_{n2}}{a_{nn}} x_2^{(k)} \dots - \frac{a_{1,n-1}}{a_{n-1,n-1}} x_{n-1}^{(k)} \end{pmatrix} + \begin{pmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{pmatrix}$$

Ce qui revient à construire les n suites numériques suivantes :

$$\forall i \in [1, n], \qquad x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j^{(k)} \right)$$

Pour chaque valeur de i on effectue n-1 multiplications, n additions et 1 division soit 2n opérations. Le calcul de la méthode de Jacobi effectue donc $2n^2$ opérations et nécessite, en tenant compte de la matrice ${\bf A}$ et du vecteur ${\bf b}$, une place mémoire de $3n^2+n$ nombres flottants.

Méthode de Jacobi

Exemple : résoudre par la méthode de Jacobi le système $\mathbf{A}\mathbf{x} = \mathbf{b}$ où $\mathbf{A} = \begin{pmatrix} 4 & 2 & 1 \\ -1 & 2 & 0 \\ 2 & 1 & 4 \end{pmatrix}$ et $\mathbf{b} = \begin{pmatrix} 4 \\ 2 \\ 9 \end{pmatrix}$ en partant de la valeur initiale $\mathbf{x_0} = (0,0,0)^T$.

D'après ce qui précède on a :

- 1^{ère} itération

$$\begin{cases} x_1^{(1)} = \frac{4 - (2 \times 0 + 1 \times 0)}{4} = 1 \\ x_2^{(1)} = \frac{2 - (-1 \times 0 + 0 \times 0)}{2} = 1 \\ x_3^{(1)} = \frac{9 - (2 \times 0 + 1 \times 0)}{4} = \frac{9}{4} \end{cases} \Rightarrow \mathbf{x}_1 = \begin{pmatrix} 1 & 1 & \frac{9}{4} \end{pmatrix}^T$$

- 2^{ème} itération

$$\begin{cases} x_1^{(2)} = \frac{4 - (2 \times 1 + 1 \times 9/4)}{4} = -\frac{1}{16} \\ x_2^{(2)} = \frac{2 - (-1 \times 1 + 0 \times 9/4)}{2} = \frac{3}{2} \\ x_3^{(2)} = \frac{9 - (2 \times 1 + 1 \times 1)}{4} = \frac{3}{2} \end{cases} \Rightarrow \mathbf{x}_2 = \left(-\frac{1}{16} \quad \frac{3}{2} \quad \frac{3}{2}\right)^T$$

Méthode de Jacobi

$$\begin{cases} x_1^{(2)} = \frac{4 - (2 \times 3/2 + 1 \times 3/2)}{4} = -\frac{1}{8} \\ x_2^{(2)} = \frac{2 - (1 \times 1/16 + 0 \times 3/2)}{2} = \frac{31}{32} \\ x_3^{(2)} = \frac{9 - (-2 \times 1/16 + 1 \times 3/2)}{4} = \frac{61}{32} \end{cases} \Rightarrow \mathbf{x}_3 = \left(-\frac{1}{8} \cdot \frac{31}{32} \cdot \frac{61}{32}\right)^T$$

$$\Rightarrow \mathbf{x}_3 = \left(-\frac{1}{8} \quad \frac{31}{32} \quad \frac{61}{32}\right)^{7}$$

-
$$4^{eme}$$
 iteration : $\mathbf{x}_4 = \begin{pmatrix} \frac{5}{128} & \frac{15}{16} & \frac{265}{128} \end{pmatrix}^T$

-
$$5^{\grave{e}me}$$
 itération : $\mathbf{x}_5 = \left(\frac{7}{512} \quad \frac{261}{256} \quad \frac{511}{256}\right)^T$

etc ...

La suite (x_k) converge vers $\mathbf{x} = (0 \ 1 \ 2)^T$.

Vérification:
$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 4 & 2 & 1 \\ -1 & 2 & 0 \\ 2 & 1 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 9 \end{pmatrix} = \mathbf{b}$$

Méthode de Gauss-Seidel

La matrice du système Ax = b s'écrit A = M - N avec M = D - E et N = F.

On a alors:

Il faut donc construire la suite de vecteurs :

En multipliant par $\mathbf{D} - \mathbf{E}$ on obtient :

$$\begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ \vdots \\ x_n^{(k+1)} \end{pmatrix} = \begin{pmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & 0 & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Méthode de Gauss-Seidel

La 1ère ligne du système donne :

$$x_1^{(k+1)} = \frac{1}{a_{11}} \left(-a_{12} x_2^{(k)} - a_{13} x_3^{(k)} \dots - a_{1n} x_n^{(k)} + b_1 \right)$$

La 2^{eme} ligne utilise le résultat obtenu à la 1^{ere} :

$$x_2^{(k+1)} = \frac{1}{a_{22}} \left(-a_{21} x_1^{(k+1)} - a_{23} x_3^{(k)} - \dots - a_{2n} x_n^{(k)} + b_2 \right)$$

 $3^{\grave{e}me}$ ligne :

$$x_3^{(k+1)} = \frac{1}{a_{33}} \left(-a_{31} x_1^{(k+1)} - a_{32} x_2^{(k+1)} - a_{34} x_4^{(k)} - \dots - a_{3n} x_n^{(k)} + b_3 \right)$$

Et ainsi de suite jusqu'à $x_n^{(k+1)}$.

Méthode de Gauss-Seidel

De façon plus générale, la formule de l'algorithme de Gauss-Seidel s'écrit :

$$\forall i \in [1, n], \qquad x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$

La méthode de Gauss-Seidel est une amélioration de la méthode de Jacobi car à chaque itération le calcul utilise les valeurs obtenues aux itérations précédentes : la vitesse de convergence est alors augmentée.

L'application de l'algorithme de Gauss-Seidel sur l'exemple précédent donne :

$$\mathbf{x}_1 = \begin{pmatrix} 1 & \frac{3}{2} & \frac{11}{8} \end{pmatrix}^T$$

$$- \mathbf{x}_2 = \left(-\frac{3}{32} \quad \frac{61}{64} \quad \frac{527}{256} \right)^T$$

$$- \mathbf{x}_3 = \left(\frac{9}{1024} \quad \frac{2047}{2048} \quad \frac{16349}{8192}\right)^T$$

- etc ...

 \Rightarrow convergence vers $\mathbf{x} = (0 \ 1 \ 2)^T$

Convergence

Définition : On dit qu'une matrice $\mathbf{A} = (a_{ij})$ est

- à diagonale dominante par ligne si :

$$\forall i \in [1, n], \qquad |a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$

- à diagonale dominante par colonne si :

$$\forall j \in [1, n], \qquad |a_{ii}| > \sum_{\substack{i=1\\i \neq j}}^{n} |a_{ij}|$$

$$\mathbf{A} = \begin{pmatrix} a_{1j} & & & \\ a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\ & \vdots & & \\ & a_{nj} & & \end{pmatrix}$$

Convergence

Théorème

Les méthodes de Jacobi et de Gauss-Seidel convergent si **A** est une matrice à diagonale dominante par ligne ou par colonne.

Démonstration pour la méthode de Jacobi

Soit A = M - N alors on a la suite $x_{k+1} = M^{-1}Nx_k + M^{-1}b$

En appliquant la matrice \mathbf{M} on obtient : $\mathbf{M}\mathbf{x}_{k+1} = \mathbf{N}\mathbf{x}_k + \mathbf{b}$

Par ailleurs on a également $\mathbf{M}\mathbf{x} = \mathbf{N}\mathbf{x} + \mathbf{b}$ où \mathbf{x} est la solution du système $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Par soustraction on a: $\mathbf{M}(\mathbf{x}_{k+1} - \mathbf{x}) = \mathbf{N}(\mathbf{x}_k - \mathbf{x})$ ou encore $\mathbf{x}_{k+1} - \mathbf{x} = \mathbf{M}^{-1}\mathbf{N}(\mathbf{x}_k - \mathbf{x})$

Convergence

Dans le cas de la méthode de Jacobi on a :

$$\mathbf{x}_{k+1} - \mathbf{x} = \mathbf{M}^{-1} \mathbf{N} (\mathbf{x}_k - \mathbf{x}) \qquad \Leftrightarrow \qquad \begin{pmatrix} x_1^{(k+1)} - x_1 \\ x_2^{(k+1)} - x_2 \\ \vdots \\ x_n^{(k+1)} - x_n \end{pmatrix} = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{pmatrix} \begin{pmatrix} x_1^{(k)} - x_1 \\ x_2^{(k)} - x_2 \\ \vdots \\ x_n^{(k)} - x_n \end{pmatrix}$$

$$\Leftrightarrow \forall i \in [1, n], \qquad x_i^{(k+1)} - x_i = -\frac{1}{a_{ii}} \left(\sum_{\substack{j=1 \ j \neq i}}^n a_{ij} \left(x_i^{(k)} - x_i \right) \right)$$

$$\Rightarrow \forall i \in [1, n], \qquad \left| x_i^{(k+1)} - x_i \right| \leq \frac{1}{|a_{ii}|} \left(\sum_{\substack{j=1 \\ j \neq i}}^n |a_{ij}| \ \left| x_i^{(k)} - x_i \right| \right) \leq \frac{1}{|a_{ii}|} \left(\sum_{\substack{j=1 \\ j \neq i}}^n |a_{ij}| \max_{1 \leq i \leq n} \left| x_i^{(k)} - x_i \right| \right)$$

$$= \frac{1}{|a_{ii}|} \left(\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \right) \max_{1 \le p \le n} \left| x_p^{(k)} - x_p \right|$$

Convergence

Donc:

$$\max_{1 \leq i \leq n} \left| x_i^{(k+1)} - x_i \right| \leq \frac{1}{|a_{ii}|} \left(\sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}| \right) \max_{1 \leq p \leq n} \left| x_p^{(k)} - x_p \right|$$

$$\|\mathbf{x}_{k+1} - \mathbf{x}\|_{\infty}$$

$$\alpha \in]0,1[$$

$$(par hyp. de diagonale-dominance)$$

$$\|\mathbf{x}_k - \mathbf{x}\|_{\infty}$$

$$\Leftrightarrow \quad \|\mathbf{x}_{k+1} - \mathbf{x}\|_{\infty} \leq \alpha \|\mathbf{x}_k - \mathbf{x}\|_{\infty} \leq \cdots \leq \alpha^{k+1} \|\mathbf{x}_0 - \mathbf{x}\|_{\infty} \quad \Leftrightarrow \quad \lim_{k \to \infty} \|\mathbf{x}_{k+1} - \mathbf{x}\|_{\infty} = 0$$

La méthode est donc convergente.

Convergence

Théorème (admis)

Plus généralement, les méthodes itératives de résolution de $\mathbf{A}\mathbf{x} = \mathbf{b}$ où $\mathbf{A} = \mathbf{M} - \mathbf{N}$ sont convergentes pour toute condition initiale \mathbf{x}_0 si et seulement si $\rho(\mathbf{M}^{-1}\mathbf{N}) < 1$.

Exemple précédent :
$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 1 \\ -1 & 2 & 0 \\ 2 & 1 & 4 \end{pmatrix}$$
 et $\mathbf{b} = \begin{pmatrix} 4 \\ 2 \\ 9 \end{pmatrix}$

$$\mathbf{A} = \mathbf{M} - \mathbf{N} = \mathbf{D} - (\mathbf{E} + \mathbf{F}) \text{ avec } \mathbf{D} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \qquad \mathbf{E} = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix} \text{ et } \mathbf{F} = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{J} = \mathbf{M}^{-1} \mathbf{N} = \begin{pmatrix} 0 & -\frac{1}{2} & -\frac{1}{4} \\ \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{4} & 0 \end{pmatrix}$$

Les valeurs propres de $\bf J$ sont -0.0964+0.3910i, -0.0964-0.3910i, 0.1927 et ont respectivement pour module 0.4027, 0.4027, 0.1927 donc $\rho(\bf J)=0.4027<1$

Chapitre IV Géométrie

- 1. Projection orthogonale
- 2. Symétrie
- 3. Rotation