

Calculus 2 Cheat Sheet

by ejj1999 via cheatography.com/66363/cs/16562/

Taylor Series		
1/1-x	1+x+x ² +x ³ +	$\sum x^n$
sin(x)	$x^{1}-x^{3}/3!+x^{5}/5!-+$	Σ (-1) ⁿ x ²ⁿ⁺¹ /(2n+1)!
e ^x	$1+x+x^2/2!+x^3/3!+$	$\sum x^n/n!$
cos(x)	$1-x^2/2!+x^4/4!-+$	$\sum (-1)^n x^{2n} / (2n)!$
centered around 0		

centered around 0 (1/1-x only valid for -1<x<1.)

Trig Sub's		
$\sqrt{(x^2+a^2)}$	x=atan(θ)	
$\sqrt{(a^2-x^2)}$	x -asin(θ)	
$\sqrt{(x^2-a^2)}$	x=asec(θ)	
b-ax ²	x= √b / √a sin(θ)	
ax ² +b	x= √b / √a tan(θ)	
ax ² -b	x= √b / √a sec(θ)	

Convergence	Divergence t	est
N th term test	lim(n>∞)	≠0 ∑an
for divergence	an	diverges
P-Test	converge p>1	diverge p≤1
Limit	L=	L≠0 series both
Comparison	lim(n>∞)	diverge c-
	(an/bn)	onverge
Ratio test	r=	r<1 converge
	lim(n>∞)	r>1 diverge
	an+1/an	
Alternating	lim(n>∞)	=0 \sum (-1) ⁿ an
series test	an	converges

Common Integrals		
∫sin(x)dx	-cos(x)+C	
∫cos(x)dx	sin(x)+C	
∫tan(x)dx	-ln(cos(x))+C	
∫sec(x)dx	ln(sec(x)+tan(x))+C	
$\int \csc(x)dx$	-ln(csc(x)+cot(x))+C	
∫cot(x)dx	ln(sin(x))+C	
$\int \sec^2(x)dx$	tan(x)+C	
$\int e^{f(x)} dx$	$e^{f(x)}/f(x)+C$	
$\int (1/x)dx$	ln(x)+C	
$\int (1/x^n)dx$	(x ⁿ⁺¹ /n+1)+C	
$\int \! dx / \sqrt{(a-x^2)}$	$\arcsin(x/\sqrt(a))+C$	
∫dx/x ² +a	(1/√a)arctan(x/√a)+C	

Important Derivatives	
d/dx arctan f(x)	$f'(x)/x^2+1$
$d/dx sec(\theta)$	$sec(\theta)tan(\theta)$

Power Series	
general form	∑ an(x-a) ⁿ
an = sequence of c	oeff.
center	x=a
radius of conver- gence	R=lim(n>∞) an/an+1
endpoints	x=a+R and x=a-R in series

Parametric Curves	
Horizontal Tangents	when dy/dx=0 t=?
(x)	

Equations for Parabola	
$y=a(x-h)^2+k$	
Directrix	y=k-(1/4a)
Focus	(h,k+1/4a)
$x=a(y-k)^2+h$	
Directrix	x=h-(1/4a)
Focus	(h+1/4a,k)

Equations for Ellipses		
$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$	$c=\sqrt{(a^2-b^2)}$	
eccentricity	c/(max a b)	
foci (on major axis)	when x= center and y= center	
y= horizontal axis x= vertical axis		

Trig Identities	
$sec^2(\theta)$	tan ² (θ)+1
$\sin^2(\theta)$	$1-\cos^2(\theta)$
$tan^2(\theta)$	$\sec^2(\theta)$ -1
$\cos^2(\theta)$	[1+cos(20)]/2
$\sin^2(\theta)$	[1-cos(2θ)]/2
double angle $\cos^2(\theta)$	$(1+\cos(2\theta)/2)$
double angle $\sin^2(\theta)$	(1-cos(2θ)/2

Polar Coordinates & Area	
Area	$\int 1/2 (f(x))^2 dx$
One petal of r=sin(n θ)	interval [0,π/n]
One petal of r=cos(nθ)	[-π/2n,π/2n]
Polar > Cartesian	$x=rcos(\theta) y=rsin(\theta)$
Cartesian > Polar	$tan(\theta)=y/x$ $x^2+y^2=r^2$

C

By ejj1999 cheatography.com/ejj1999/ Published 14th May, 2019. Last updated 5th August, 2018. Page 1 of 1. Sponsored by **Readable.com**Measure your website readability!
https://readable.com