DESCRIPTION

The SE/NE5534 is a high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as 741 and 301A, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amp is internally compensated for gain equal to, or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew-rate, low overshoot, etc.) If very low noise is of prime importance, it is recommended that the SE/NE5534A version be used which has guaranteed noise specifications.

PIN CONFIGURATIONS

FEATURES

- Small-signal bandwidth: 10MHz
- Output drive capability: 600Ω , 10V (rms) at $V_s = \pm 18V$
- Input noise voltage: 4nV/ √Hz
- DC voltage gain: 100000
- AC voltage gain: 6000 at 10kHz
- Power bandwidth: 200kHz
- Slew-rate: 13V/μs
- Large supply voltage range: ±3 to ±20V

EQUIVALENT SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

	PARAMETER		UNIT		
Vs V _{IN}	Supply voltage Input voltage	±22 ±V supply	V		
V _{DIFF}	Differential input voltage Operating temperature range1	±.5	v		
	SE NE	-55 to +125 0 to 70	°C		
T _{STG}	Storage temperature	-65 to +150	°C		
T _J P _D	Junction temperature Power dissipation	150	°C		
	5534T 5534N	680 500	mW mW		
	Output short circuit duration ² Lead temperature (soldering 10 sec) ³	indefinite 300	°C		

NOTES

- Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10mA.
- For operation at elevated temperature T package must be derated based on a thermal resistance of 150° C/W junction to ambient, 45° C/W junction to case. Thermal resistance of the N package is 240° C/W.
- 3. Output may be shorted to ground at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

DC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$ unless otherwise specified.1,2

PARAMETER		TEST CONDITIONS	SE5534/5534A			NE	UNIT		
			Min	Тур	Max	Min	Тур	Max	0.411
Vos	Offset voltage	Over temperature		.5	2 3		.5	- 4 5	mV mV
los	Offset current	Over temperature		10	200 500		20	300 400	nA nA
lв	Input current	Over temperature		400	800 1500		500	1500 2000	nA nA
lcc	Supply current	Over temperature		4	6.5 9		4	8	mA mA
V _{CM} CMRR PSRR	Common mode input range Common mode rejection ratio Power supply rejection ratio	·	±12 80	±13 100 10	50	±12 70	±13 100 10	100	V dB μV/V
Avol	Large signal voltage gain	$R_L \ge 600\Omega$, $V_O = \pm 10V$ Over temperature	50 25	100		25 15	100		V/mV V/mV
Vоит	Output swing	$\begin{array}{c} R_L \geq 600\Omega \\ R_L \geq 600\Omega \ V_S = \pm 18V \end{array}$	±12 ±15	±13 ±16		±12 ±15	±13 ±16		V V
R _{IN} Isc	Input resistance Output short circuit current		50	100 38		30	100 38		KΩ mA

NOTES

- 1. For NE5534, NE5534A, $T_{MIN} = 0$ °C, $T_{MAX} = 70$ °C
- 2. For SE5534, SE5534A, T_{MIN} = -55°C, T_{MAX} = +125°C

NE/SE5534,NE/SE5534A

NE/SE5534, NE/SE5534A-N,T

AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$ unless otherwise specified.

	PARAMETER	TEST CONDITIONS	SE5534/5534A			NE5534/5534A			
PANAMETER		TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
Rout	Output resistance	$A_V = 30 dB \ closed \ loop \\ f = 10 kHz, R_L = 600 \Omega, C_C = 22 pF$		0.3			0.3		Ω
Transien	t response	Voltage follower, $V_{IN} = 50 \text{mV}$ $R_L = 600\Omega$, $C_C = 22 \text{pF}$, $C_L = 100 \text{pF}$		20			20		ns
I R	Overshoot			20			20		%
Transien	t response	$V_{IN} = 50 \text{mv}, R_L = 600 \Omega$ $C_C = 47 \text{pF}, C_L = 500 \text{pF}$							
TR	Rise time Overshoot			50 35			50 35		ns %
AC	Gain	$f = 10kHz, C_C = 0$ $f = 10kHz, C_C = 22pF$		6 2.2			6 2.2		V/mV V/mV
	Gain bandwidth product	C _C = 22pF, C _L = 100pF		10			10		mHz
	Slew rate	$C_C = 0$ $C_C = 22pF$		13 6			13 6		V/μS V/μS
	Power bandwidth	$V_{OUT} = \pm 10V, C_C = 0$ $V_{OUT} = \pm 10V, C_C = 22pF$ $V_{OUT} = \pm 14V, R_L = 600\Omega$ $C_C = 22pF, V_{CC} = \pm 18V$		200 95 70			200 95 70		kHz kHz kHz

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$ unless otherwise specified.

PARAMETER	TEST CONDITIONS	SE5534/NE5534			SE5534A/NE5534A			UNIT
		Min	Тур	Max	Min	Тур	Max	ONII
Input noise voltage	$f_0 = 30Hz$ $f_0 = 1kHz$		7 4			5.5 3.5	7 4.5	nV/√Hz nV/√Hz
Input noise current	$f_0 = 30$ Hz $f_0 = 1$ kHz		2.5 0.6			1.5 0.4		pA/√Hz pA/√Hz
Broadband noise figure	$f = 10Hz - 20kHz$, $R_S = 5k\Omega$		-			0.9		dB

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

TEST LOAD CIRCUITS

