Adversary Gain vs. Defender Loss in Quantifying Information Flow

Piotr (Peter) Mardziel,† Mário S. Alvim,† Michael Hicks,†

[†]University of Maryland, College Park,

⁺Universidade Federal de Minas Gerais

Quantified Information Flow [QIF]

- ► Secrets leak to bad guys.
- Quantify leakage of the secret.

Why Quantified Information Flow?

- Evaluate risks.
- ▶ Evaluate relative merits of protection mechanisms.
- Design incentives to keep adversaries from participating.

- Password authentication
- Location-based services
- Address space randomization

- ▶ **Flow** $\stackrel{\text{def}}{=}$ increase in adversary's expected success
 - ▶ Model channel.

after observation

- ▶ Model adversary behavior, exploitation.
- Quantify expected success of optimal adversary.

- ▶ **Flow** $\stackrel{\text{def}}{=}$ increase in adversary's expected success
 - Model channel.
 - ▶ Model adversary behavior, exploitation.
 - Quantify expected success of optimal adversary.

- ▶ **Flow** $\stackrel{\text{def}}{=}$ increase in adversary's expected success
 - ▶ Model channel.
 - ▶ Model adversary behavior, exploitation.
 - Quantify expected success of optimal adversary.

- ▶ **Flow** $\stackrel{\text{def}}{=}$ increase in adversary's expected success
 - Model channel.
 - ▶ Model adversary behavior, exploitation.
 - Quantify expected success of optimal adversary.

- ▶ **Flow** $\stackrel{\text{def}}{=}$ increase in adversary's expected success
 - Model channel.
 - ▶ Model adversary behavior, exploitation.
 - Quantify expected success of optimal adversary.

Quantified Gain: The Approach

- ▶ ∆ adversary's gain
 - Model channel.
 - ▶ Model adversary behavior, exploitation.
 - ► Quantify (optimal adversary) gain.

Quantified Gain: The Approach

- $ightharpoonup \Delta$ adversary's **gain** $\stackrel{?}{=} \Delta$ defender's **loss**
 - ► Model channel.
 - ▶ Model adversary behavior, exploitation.
 - Quantify (optimal adversary) gain.

Password authentication

Location-based services

Address space randomization

- Password authentication
 - ▶ Loss of bank contents = gain of bank contents
 - ► Loss of private info \(\) gain (theft) of identity
- Location-based services

► Address space randomization

- Password authentication
 - ▶ Loss of bank contents = gain of bank contents
 - ► Loss of private info \(\) gain (theft) of identity
- Location-based services

 - ▶ Loss of house contents > Gain of stolen items
- Address space randomization

- Password authentication
 - ▶ Loss of bank contents = gain of bank contents
- Location-based services

 - ► Loss of house contents > Gain of stolen items
- Address space randomization
 - ► (Small) loss of service < Gain of spam machine
 - ▶ Loss of critical service >> Gain of spam machine

- Password authentication
 - ▶ Loss of bank contents = gain of bank contents
- Location-based services

 - ► Loss of house contents > Gain of stolen items
- Address space randomization
 - ► (Small) loss of service < Gain of spam machine
 - ▶ Loss of critical service >> Gain of spam machine
- ... depends

- Password authentication
 - ▶ Loss of bank contents = gain of bank contents
- Location-based services

 - ► Loss of house contents > Gain of stolen items
- Address space randomization
 - ▶ (Small) loss of service < Gain of spam machine
 - ▶ Loss of critical service >> Gain of spam machine
- ... depends
- ▶ loss ≠ gain

This work: Defender loss \neq Adversary gain

- Defined model for information release with distinct defender loss and adversary gain.
- Both gain and loss are necessary to accurately quantify defender loss.
- Consequences about approximation:
 - Over-approximating adversary gain can be unsound
 - Over-approximating the channel (via partition refinement) can be unsound
- Worst-case (or best-case) metric to quantify the effect of catastrophic (or fortunate) defender behavior.

Outline

- Defined model for information release with distinct defender loss and adversary gain.
- Both gain and loss are necessary to accurately quantify defender loss.
- Consequences about approximation:
 - Over-approximating adversary gain can be unsound
 - Over-approximating the channel (via partition refinement) can be unsound
- Worst-case (or best-case) metric to quantify the effect of catastrophic (or fortunate) defender behavior.

Caveat

- ▶ Determining gain / loss is in the real world is hard.
- ▶ We assume the "instantaneous" gain and loss are given.
 - ▶ Gain and loss functions, $Secrets \times Exploits \rightarrow \mathbb{R}$
- ► This work: analyze gain and loss dynamics as the adversary learns about the secret through some channel.

Example: Pirate Treasure

- Defender's reasoning about the adversary stealing his treasure and how to prevent it.
- Approximately password authentication.

Example: Pirate Treasure

Secret Prior

Secret Prior = Defender Belief

► Assume adversary knows defender behavior.

Exploitation

▶ Adversary "raids" an island e for the treasure. If e = h he succeeds.

Exploitation

Smith (FoSSaCS '09): (prior) Vulnerability: expected probability of optimal adversary with one guess being correct.

Exploitation: Measures of Success

Optimal adversary behavior:

- ► **Guessing Entropy**: Minimal number of guesses to find secret.
- ▶ Alvim et al. (CSF '12): *g*-Vulnerability Gain/payoff according to function *g*(secret, exploit).

Exploitation: Vulnerability

- Connect probability of success to economic quantities.
- ▶ If the treasure is worth w doubloons, the expected gain to adversary and loss to the defender is $w \times \mathbb{V}$ doubloons. Here, w/8.
- Will stick with expected probability of success using the term "gain" in the remainder of this talk.

Observation

► Adversary can "stake out" an island to check whether the treasure is there.

Observation

► Adversary can "stake out" an island to check whether the treasure is there.

Increased knowledge

- Observation leads to increase in knowledge.
- Which leads to increased odds of exploitation.

Increased knowledge ⇒ increased gain

- ▶ (posterior) **Gain**: expected probability of optimal adversary succeeding in one guess **given observation(s)**.
 - ▶ Optimal island to stake out.
 - ▶ Optimal island to raid.

Increased knowledge ⇒ increased gain

- ▶ (posterior) **Gain**: expected probability of optimal adversary succeeding in one guess **given observation(s)**.
 - ▶ Optimal island to stake out.
 - Optimal island to raid.
- ► Here: 1/7.

adversary

Observations over time

- ► Adversary continues observations (stake outs) but only has one exploitation chance (raid).
- ► How does their expected gain grow when they have more time to make observations?

Observations over time

- ► Adversary continues observations (stake outs) but only has one exploitation chance (raid).
- ► How does their expected gain grow when they have more time to make observations?

Observations over time

- ► Adversary continues observations (stake outs) but only has one exploitation chance (raid).
- ► How does their expected gain grow when they have more time to make observations?
- Eventually the treasure will be lost.

Moving the treasure

▶ Defender moves the treasure every once in a while.

Moving the treasure

- Defender moves the treasure every once in a while.
- Assume adversary knows the process with which the defender does this.

Gain with moving treasure

▶ Defender moves his treasure every 3 time steps.

Gain with moving treasure

- Defender moves his treasure every 3 time steps.
- Eventually the treasure is lost.

Costly Observation

- Defender makes it harder for the adversary to stake out for the treasure.
- ▶ It costs 0.10 [treasure] to stake out an island.

Costly Observation

- Defender makes it harder for the adversary to stake out for the treasure.
- ▶ It costs 0.10 [treasure] to stake out an island.
- ▶ Gain = (1.0 if treasure raided) (0.1 * num. of observations)

Costly Observation

- Defender makes it harder for the adversary to stake out for the treasure.
- ▶ It costs 0.10 [treasure] to stake out an island.
- ▶ Gain = (1.0 if treasure raided) (0.1 * num. of observations)
 - Gain can no longer be interpreted as chances of adversary successfully capturing the treasure.

▶ Defender still moves his treasure every 3 time steps.

- ▶ Defender still moves his treasure every 3 time steps.
- Adversary gain bounded even in the limit.

- ▶ Defender wants $\leq 50\%$ chance of losing his treasure.
- ► Should be be satisfied with this result?

- ▶ Defender wants $\leq 50\%$ chance of losing his treasure.
- ► Should be be satisfied with this result?
- Adversary gain does not measure defender loss.

- ▶ Defender wants $\leq 50\%$ chance of losing his treasure.
- ▶ Should he be satisfied with this result?
- ► Adversary gain does not measure defender loss.

- ▶ Defender wants $\leq 50\%$ chance of losing his treasure.
- ▶ Should he be satisfied with this result?
- ► Adversary gain does not measure defender loss.
- ▶ Optimal adversary will keep on staking out indefinitely.

Dimensions of adversary strategy

- Each adversary strategy induces both a gain and a resulting defender loss.
 - ► Strategies: functions that determine adversary's action based on their past actions and observations.

Dimensions of adversary strategy

- Each adversary strategy induces both a gain and a resulting defender loss.
 - Strategies: functions that determine adversary's action based on their past actions and observations.
- Our metric: expected defender loss assuming adversary optimizes gain.

► Cannot analyze a scenario in just one dimension.

- ► Cannot analyze a scenario in just one dimension.
- ► Gain only: not what a defender is interested in.

- ► Cannot analyze a scenario in just one dimension.
- Loss only: miss out on disincentives.

- ► Cannot analyze a scenario in just one dimension.
- Loss only: miss out on disincentives.
 - ▶ In example: stake out cost must be $\geq 1/7$ treasure units.

- ► Cannot analyze a scenario in just one dimension.
- Loss only: miss out on disincentives.
 - Or miss bad incentives.

 Prior: initial secret distribution and distribution over (non-deterministic) functions describing secret evolution.

Adversary optimization: optimize low inputs (channel influence) and exploitation for maximal gain.

Measurement: measure the resulting defender loss.

Prototype, Prototyping Implementation

- Describe models as probabilistic programs in monadic-style OCaml.
- ▶ Optimize adversary behavior via backward induction.
- Compute the resulting defender loss.
- Analyze a series of scenarios (including this talk's examples)
- Freely available online.

Approximations

- Previously: both loss and gain are necessary.
- ► Previously: loss and gain functions might be hard to ascertain in the real world.
- ► Also: channel might be uncertain or too hard to analyze.
- Solution: over-approximations?

► Adversary gain (and defender loss): treasure is spread out around a central island; *secret* = 4 is shown below.

Very bad over-approximation: g'(secret, exploit) ≥ g(secret, exploit)

- Very bad over-approximation: g'(secret, exploit) ≥ g(secret, exploit)
- Not sound for loss.

▶ Preference preserving approximation: $g(secret, exploit_1) \ge g(secret, exploit_2) \Leftrightarrow g'(secret, exploit_1) \ge g'(secret, exploit_2)$

- ▶ Preference preserving approximation: $g(secret, exploit_1) \ge g(secret, exploit_2) \Leftrightarrow g'(secret, exploit_1) \ge g'(secret, exploit_2)$
- Not sound for loss.

Linear scaling: g'(secret, exploit) = r * g(secret, exploit) with r > 0.

Approximating Gain

- Linear scaling: g'(secret, exploit) = r * g(secret, exploit) with r > 0.
- ► Sound approximation, but (arguably) not useful.

Approximating Gain

- Linear scaling: g'(secret, exploit) = r * g(secret, exploit) with r > 0.
- ▶ (the only) Sound approximation, but (arguably) not useful.

- ▶ Approximate channel C with $C' \supseteq C$.
 - ► Example: C(secret) = "nothing" and C'(secret) = secret

- ▶ Approximate channel C with $C' \supseteq C$.
 - ► Example: C(secret) = "nothing" and C'(secret) = secret
- ► Not sound for loss.

- ▶ Approximate channel C with $C' \supseteq C$.
 - ► Example: C(secret) = "nothing" and C'(secret) = secret
- ► Not sound for loss.
- Example: Assume inverse relationship between gain and loss.

- ▶ Approximate channel C with $C' \supseteq C$.
 - ► Example: C(secret) = "nothing" and C'(secret) = secret
- Not sound for loss.
- ► Example: Assume inverse relationship between gain and loss.
 - The more the adversary knows, the less loss is incurred by defender.

Soundness of Approximations

- ▶ No "useful" approximations of gain are sound for loss.
- ► Conjecture: no approximation of channel is sound for loss.

► Model for information flow distinct adversary gain and defender loss.

- Model for information flow distinct adversary gain and defender loss.
- ▶ Both gain and loss are necessary for accurate measurement of loss.

- Model for information flow distinct adversary gain and defender loss.
- Both gain and loss are necessary for accurate measurement of loss.
- Unsound consequences for loss when over-approximating gain or channel.

- Model for information flow distinct adversary gain and defender loss.
- Both gain and loss are necessary for accurate measurement of loss.
- Unsound consequences for loss when over-approximating gain or channel.
- ► Implementation and Experiments

Adversary Gain vs. Defender Loss in Quantified Information Flow

- Model for information flow distinct adversary gain and defender loss.
- Both gain and loss are necessary for accurate measurement of loss.
- Unsound consequences for loss when over-approximating gain or channel.
- ► Implementation and Experiments
- ▶ http://ter.ps/fcs14
 - ► This paper, Oakland'14 paper, TR, Implementation, Experiments