

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ - ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ Ι

ΕΡΓΑΣΤΗΡΙΟ

ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ANNA MAPIA KAT Σ ANAKH MAYPOKE Φ A Λ OY geo23391009

ΑΣΚΗΣΗ 1

- ΕΠΙΛΕΓΩ 4 ΤΥΧΑΙΑ ΣΗΜΕΙΑ Α, Β ,Γ ,Δ
- ΥΠΟΛΟΓΙΖΩ ΤΗΝ ΑΠΟΣΤΑΣΗ ΤΟΥΣ ΑΠΟ ΤΟ ΟΠΤΙΚΟ ΚΕΝΤΡΟ
- ΒΡΙΣΚΩ ΠΟΥ ΠΡΟΒΑΛΛΟΝΤΑΙ ΤΑ ΣΗΜΕΙΑ ΣΤΟΝ ΣΤΑ ΕΠΙΠΕΔΑ ΓΙΑ ΕΣΤΙΑΚΗ ΑΠΟΣΤΑΣΗ f=1

ΑΣΚΗΣΗ 2

• ΓΙΑ ΤΙΣ ΠΡΟΒΟΛΕΣ ΠΟΥ ΥΠΟΛΟΓΙΣΑΜΕ ΣΤΗΝ 1^H ΑΣΚΗΣΗ ΒΡΕΙΤΕ ΑΛΛΟ ΕΝΑ ΣΗΜΕΙΟ ΣΤΟΝ ΧΩΡΟ ΠΟΥ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΙ ΓΙΑ ΚΑΘΕ ΜΙΑ ΑΠΟ ΑΥΤΕΣ ΤΙΣ ΠΡΟΒΟΛΕΣ

ΕΠΙΛΕΓΩ ΑΡΧΙΚΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΤΩΝ ΑΣΚΗΣΕΩΝ ΤΑ ΣΗΜΕΙΑ ΜΕ ΣΥΝΤΕΤΑΓΜΕΝΕΣ $A (1,0,2) , B (2,4,3) , \Gamma (0,2,1) , \Delta (0,0,3)$

a)
$$\frac{d_{1,1}-\sqrt{(x_1-x_1)^2+(y_1-y_1)^2+(z_1-z_1)^2}{(AB)-\sqrt{(x_1-x_1)^2+(y_1-y_1)^2+(z_1-z_1)^2}}$$
 $\sqrt{(x_1-x_1)^2+(x_1-x_1)^2+(y_1-y_1)^2+(z_1-z_1)^2}$
 $\sqrt{(x_1-x_1)^2+(x_1-x_1)^2+(y_1-y_1)^2+(z_1-z_1)^2}$
 $\sqrt{(x_1-x_1)^2+(y_1-y_1)^2+(z_1-z_1)^2}$
 $\sqrt{(x_1-x_1)^2+(x_1-x_1)^2+(x_1-x_1)^2+(z_1-z_1)^2}$
 $\sqrt{(x_1-x_1)^2+(x_1-x_1)^2+(x_1-x_1)^2+(z_1-z_1)^2}$
 $\sqrt{(x_1-x_1)^2+(x_1-x_1)^2+(x_1-x_1)^2+(z_1-z_1)^2}$
 $\sqrt{(x_1-x_1)^2+(x_1-x_1)^2+(x_1-x_1)^2+(z_1-z_1)^2+(z_1-z_1)^2}$
 $\sqrt{(x_1-x_1)^2+(x_1-x_1)^$

B)
$$Di = \sqrt{x_1^2 + y_1^2 + 2_1^2}$$

OF (0,00) O CHIPS OF HAVE ON THE OF HAVE OF ONE OF THE CHIPS OF HAVE O

(OA) = V(XA-X0) + (YA-Y0) + (PA-X0) 2 = V5 =>

 $(0A) = 2,936 \, \text{m}$

(OB) = V(XB-X6)2+(YB-Y6)2+(2B-26)21 = V23+92+32 = V9+16+9 =

(OB) = 5,385 m]

(Or)=V(xr-x6)2+(yr-y6)2+(21-26)21 = V07-27-12=V5 =>

(Or)=2,236 m]

 $(OD) = \sqrt{(XD - XB)^2 + (YD - YB)^2 + (DD - ZB)^2} = \sqrt{0^2 + 0^2 + 3^2} = \sqrt{9} = \sqrt{000} = 3m.$

Ital Nalpanaivu Npartaliu 3 demaldinai yngia oto Tedino anotedegia enerdii elvau anototoiaes

nos f=1 (sorgin) ornòprosa D'Aprènes vos Bou nou mobbinhomo To anytic crait Eninted Soi Xonayonomau To awans aggraphylle THIOD DUVEROUPE GUTETODIPÈNES OMITINAL MEVITAU, CNIMBO TO 2 de Apollogia der Mapar von 10 Boin Bricha Hovo |x'1 hou /y'1 HE Bolon how TO OIDRINES BOSSON IOXÍS UON CSVSYNLIOTETIVO |XA' |= £|XA|, |yA' |= £|yA| |XA'| = 1.4 = |XA'| = 16 |yA'|=1.0 => [yA']=0 Enquarios ((XA', YA') = (1/2,0) (XB') = \$ |XB|, |YB'| = \$ |YB| |XB'|=1.2 => [XB']=9/3 XB', YB')=(2/3,4/3) 19B1=1.7 => 19B1=7/3 |xr' = f |xr |, |yr' = f |yr | 17/1= Je 0.1=(1X/ Enguerus (xr'yr')=(0,2) |yr/ = 1.3 => |yr/ = 2] $|x_{\Delta'}| = f |x_{\Delta}|, |y_{\Delta'}| = f |y_{\Delta}|$ $|X\Delta'| = 1.0 \Rightarrow |X\Delta' = 0$ Snoperus (XA', YA) = (0,0 1901=10 = 190'=0

2) Now to conjusto A

(XA', YA') = (XA', YA', ZA')

Way sixty outsign TD most onlise $|XA'| = \frac{E|XA''|}{2A'}$ TOUPOI $|XA''| = |XA'| \frac{O}{2}A''$, $|YA''| = |YA'| \frac{O}{2}A''$ To antisa Sa noonyow (es A: (XA", YA", ZA") = (XA, YA, ZA") o har ton anyelon nou exacu idro arrispouro normandado ata (x,4,2) $|XA'| = \frac{f|XA'|}{2A} = \frac{f|XA'|}{2A} = |XA''|$ ON $|XA'| = \frac{2}{2}XA$ $|XA| = \frac{8}{2}XA$ $|YA''| = \frac{2}{2}YA$ $|ZA| = \frac{8}{2}XA$ anyeluan Ynarlogiques artinoù neitpou to angleo togirs their Ewerier MOU APOSITISMOTION OND TO A,B,CA Mails onthing on the sold more than the sold of the sold the sold of the sold X=XC+(X-XC) 7 drow notice crysto (xyz) environ or servor one to crysto (xyz) (now the non-poscoli) to crysto (xyz) (now the noscoli) to (xyz) 2=20+60-20

COMO TINV EPÍDICA TUN EPÍDICECAN PRONUNTE OTI TO OPITINE MENTRO ELVOU OXECEN GO HINDER OPITICE N CIRAJANÍN (TIND) HOS UNICEN ELVOU OLINO CENTÍN
Enopein # (1,0,2) -2 (10),00,20) = (2,0,7)
Tion to onlysto B
(XB', YB') = (XB', YB', ZB'') (XB', YB', ZB'') (XB', YB', YB', ZB'') (XB', YB', YB'') (XB', YB', YB'') (XB', YB', YB'') (XB', YB', YB'') $(XB', YB', Y$
XB! = \$\frac{1}{2Bt} TWPOI XBT = \frac{1}{2Bt} (3) \frac{1}{9Bt} = \frac{1}{9Bt} \frac{1}{2Bt} (1)
discipally to $3 \Rightarrow XB^{+} = XB^{+} $ $ YB^{+} = YB^{+} $
TOI CHIEROI DOI MOONINGER W
B: (XB*, YB*, 2B*) = (XB, YB, ZB*)
órda Tai chydia nou Éxau r'dio ainspouro normaindario
XB' = £ XB" = £ XB" = XB" XB" = 3XB
$\frac{2B}{1XB} = \frac{2B^{+}}{3XB}$ $\frac{1XB}{2B} = \frac{3XB}{32B}$
Groperum (293)=(23),43,33)=(6)2,9)

That to anythe [(xr',yr')=(xr',yr',2r')we six autis the noobaris IXI' = f XI' TWPOI KIT = KITZI" @ |YI' = |YI' | 21' @ Flou pospe Ton (|Xrx = |Xr'| | |Yr'| chusia da npondyou cos [: (xr*, yr*, zr*) = (xr, yr, zr*) orbor tor charles now exact idro antiparo narridambicio OP (X, Y, Z) |XC|= x|XC| = x|XC| = |XC| av Xr*=9Xr Xr=9Xr 9r*=99r 2r 92r (P,80) = (P, P, P, P) (1,80) without lia D A (xo', yo') = (xo+ yo+ 20+) < va éxa autés TD Apabartes |XA' = f|XA' TOUPO | XA' = |XA' | 20* @ |4A" = |4A' | ZA'

Houpoups to $\frac{1}{8}\frac{ x_{\Lambda}x }{ y_{\Lambda}x } = \frac{ x_{\Lambda}x }{ y_{\Lambda}x }$
TOI ONUBOI DOI MOONUYOUY W
$\Delta \cdot (x_{\Delta}, y_{\Delta}, z_{\Delta}) = (x_{\Delta}, y_{\Delta}, z_{\Delta})$
àda Toi Onytain nou Exocu idlo aintépous modifiquitaires
$ X\Delta' = \frac{1}{2} X\Delta' = \frac{1}{2} X\Delta' = X\Delta' '$
on $X\Delta^{\#} = 5X\Delta$ $ X\Delta = 9X\Delta$ $y\Delta^{\#} = 5y\Delta$ $ Z\Delta = 9Z\Delta$
$(0,0,3) \xrightarrow{\text{(3)}} (0,0,3) = (0,0,35)$