Lecture 9

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

September 24, 2021

Linear Span

Linear Span of Vectors

Definition

Let V be a vector space and let $S = \{x_1, x_2, \ldots\}$ be a set of vectors in V. Then the *linear span* of S, denoted by span(S), is the set

$$\{c_1\mathbf{x}_{i_1}+\cdots+c_m\mathbf{x}_{i_m}:c_1,\ldots,c_m\in\mathbb{R}\}.$$

Example

Let $V = \mathbb{R}^n$ and $S = \{e_1, \dots, e_n\}$, where e_i denotes the element of \mathbb{R}^n *i*th component is 1 and all other are zero. Then any vector of \mathbb{R}^n can be written as a linear combination of vectors of S.

Proposition

If $S = \{x_1, x_2 ...\}$ be a set of vectors in V, then span(S) is the smallest subspace of V containing S.

Proof. Clearly, $S \subseteq \operatorname{span}(S)$. Let $\mathbf{x}, \mathbf{y} \in \operatorname{span}(S)$ and c, d are scalars. Then there exist scalars $c_1, \ldots, c_n, d_1, \ldots, d_n$, and $\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_n} \in S$ such that $\mathbf{x} = c_1 \mathbf{x}_{i_1} + \cdots + c_n \mathbf{x}_{i_n}$ and $\mathbf{y} = d_1 \mathbf{x}_{i_1} + \cdots + d_n \mathbf{x}_{i_n}$

$$c\mathbf{x} + d\mathbf{y} = c(c_1\mathbf{x}_1 + \dots + c_n\mathbf{x}_n) + d(d_1\mathbf{x}_1 + \dots + d_n\mathbf{x}_n)$$

= $(cc_1 + dd_1)\mathbf{x}_1 + \dots + (cc_n + dd_n)\mathbf{x}_n \in \text{span}(S).$

Hence span(S) is a subspace of V. Now, let W be any other subspace of V containing S. Then $\mathbf{x}_i \in W$ for all i. Since W is a subspace of V, all linear combinations of \mathbf{x}_i 's belong to W, and hence span(S) $\subseteq W$.

Example

- 1. The linear span of a single nonzero vector in \mathbb{R}^3 is a line passing through origin.
- 2. The linear span of two vectors (1,1,0) and (0,0,1) is a plane in \mathbb{R}^3 passing through origin.
- 3. Show that linear span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\} = \mathbb{R}^3$.
- 4. Show that linear span $\left\{ \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 4\\1\\-3 \end{bmatrix}, \begin{bmatrix} -6\\3\\5 \end{bmatrix} \right\} \neq \mathbb{R}^3$.

Example

Let *S* be a subset of the vector space \mathbb{R}^3 defined by

$$S = \left\{ \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \right\}. \text{ Show that } \mathbf{x} = \begin{bmatrix} -4 \\ 4 \\ 6 \end{bmatrix} \text{ is in the span}(S).$$

Solution. To determine if v is in the span(S), we consider the equation

$$c_1 \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -4 \\ 4 \\ 6 \end{bmatrix}.$$

Solving these equations we get, $c_1 = -2$, $c_2 = 1$, $c_3 = -1$.