Tema 2: Derivación e integración numérica Apéndice: diferencias divididas

Métodos Numéricos II

Departamento de Matemática Aplicada Universidad de Granada

Curso 2024/25

Interpolación polinomial

Problema básico de interpolación polinómica

Dados n+1 puntos (x_i,y_i) , $i=0,\ldots,n$, hallar un polinomio p(x), que interpola a estos datos, o sea, que verifique:

$$p(x_i) = y_i, \quad i = 0, \dots, n.$$

Teorema

Dados n+1 puntos (x_i,y_i) , $i=0,\ldots,n$, existe un único polinomio de grado menor o igual que n, $p_n(x)$, que interpola a estos datos, es decir,

$$p_n(x_i) = y_i, \quad i = 0, \dots, n.$$

Fórmula de Lagrange

Polinomios básicos de Lagrange

Para $0 \le k \le n$, se define

$$\ell_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}$$

Son polinomios de grado exacto n y verifican

$$\ell_k(x_j) = \delta_{k,j} = \begin{cases} 1, & k = j, \\ 0, & k \neq j \end{cases}$$

Además, $\{\ell_k(x); k=0,1,\ldots,n\}$ constituyen una base de \mathbb{P}_n .

El polinomio $p_n(x)$ que interpola a f en los nodos x_0, \ldots, x_n , se escribe como

$$p_n(x) = \sum_{k=0}^{n} f(x_k) \ell_k(x),$$

y se denomina fórmula de Lagrange

Fórmula de Newton

El polinomio $p_n(x)$ que interpola a f en los nodos x_0, \ldots, x_n , se escribe como

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}) = f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k] \prod_{i=0}^{k-1} (x - x_i)$$

donde $f[x_0, \ldots, x_k]$ es la diferencia dividida de orden k. Las diferencias divididas se definen de forma recurrente como:

$$f[x_0] = f(x_0)$$

$$f[x_0, \dots, x_k] := \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

Diferencias divididas y derivadas

Teorema

Sean $x_0 < x_1 < \cdots < x_n$, n+1 puntos distintos y $f \in C^{(k)}((x_0,x_n))$. Entonces, para algún punto $\xi = \xi(x)$ en este intervalo se verifica

$$f[x_0, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Como consecuencia se tiene que

$$f[\overbrace{x,\dots,x}^{n+1}] = \frac{f^{(n)}(x)}{n!}$$

Diferencias divididas y derivadas

Proposición

Sean $x_0 < x_1 < \cdots < x_n$, n+1 puntos distintos y $f \in C^{(k)}((x_0, x_n))$. Entonces, para algún punto $\xi = \xi(x)$ en este intervalo se verifica

$$f[x_0, \dots, x_n, \underbrace{x, \dots, x}^{k+1}] = \frac{1}{k!} \frac{d^k}{dx^k} f[x_0, \dots, x_n, x]$$

Consecuencia

Sean $x_0 < x_1 < \cdots < x_n$, n+1 puntos distintos y $f \in C^{(k)}((x_0,x_n))$. Entonces, para algún punto $\xi = \xi(x)$ en este intervalo se verifica

$$\frac{d}{dx}f[x_0,\ldots,x_n,\overbrace{x,\ldots,x}^k] = kf[x_0,\ldots,x_n,\overbrace{x,\ldots,x}^{k+1}]$$

Error de interpolación

Teorema

Sean $x_0, x_1, \ldots, x_n \in [a, b]$ y sea $f \in \mathcal{C}^{n+1}[a, b]$. Sea $p_n(x)$ el polinomio de interpolación en los puntos $(x_i, f(x_i))$, $i = 0, \ldots, n$. Entonces:

$$e(x) = f(x) - p_n(x) = f[x_0, \dots, x_n, x] \prod_{i=0}^{n} (x - x_i).$$

Consecuencia

Sean $x_0, x_1, \ldots, x_n \in [a, b]$ y sea $f \in \mathcal{C}^{n+1}[a, b]$. Sea $p_n(x)$ el polinomio de interpolación en los puntos $(x_i, f(x_i))$, $i = 0, \ldots, n$. Entonces existe $\xi \in [a, b]$ tal que

$$e(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$