Informed search

Christos Dimitrakakis

March 7, 2024

Outline

The Shortest Path Problem

The shortest path problem Heuristic Search Upper and lower bounds algorithms

General weight shortest path
General weight shortest path

► Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$

- ▶ Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$
- ▶ Following a path h has a total cost $C(h) = \sum_{\langle x,y \rangle \in h} c(\langle x,y \rangle)$

- ▶ Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$
- ▶ Following a path h has a total cost $C(h) = \sum_{\langle x,y \rangle \in h} c(\langle x,y \rangle)$
- ▶ We can equivalently consider state-action costs c(s, a).

- ► Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$
- ▶ Following a path h has a total cost $C(h) = \sum_{\langle x,y \rangle \in h} c(\langle x,y \rangle)$
- We can equivalently consider state-action costs c(s, a).
- A policy π specifies a path x_1, \ldots with $x_{k+1} = \tau(x_k, \pi(x_k))$

- ▶ Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$
- ▶ Following a path h has a total cost $C(h) = \sum_{\langle x,y \rangle \in h} c(\langle x,y \rangle)$
- ▶ We can equivalently consider state-action costs c(s, a).
- A policy π specifies a path x_1, \ldots with $x_{k+1} = \tau(x_k, \pi(x_k))$
- Following a policy π from state $x_1 = x$ has a total cost $C^{\pi}(x_1) = \sum_{k=1}^{t} c(x_k, \pi(x_k))$.

- ▶ Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$
- ▶ Following a path h has a total cost $C(h) = \sum_{\langle x,y \rangle \in h} c(\langle x,y \rangle)$
- ▶ We can equivalently consider state-action costs c(s, a).
- A policy π specifies a path x_1, \ldots with $x_{k+1} = \tau(x_k, \pi(x_k))$
- Following a policy π from state $x_1 = x$ has a total cost $C^{\pi}(x_1) = \sum_{k=1}^{t} c(x_k, \pi(x_k))$.

- ▶ Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$
- ▶ Following a path h has a total cost $C(h) = \sum_{\langle x,y \rangle \in h} c(\langle x,y \rangle)$
- ▶ We can equivalently consider state-action costs c(s, a).
- A policy π specifies a path x_1, \ldots with $x_{k+1} = \tau(x_k, \pi(x_k))$
- Following a policy π from state $x_1 = x$ has a total cost $C^{\pi}(x_1) = \sum_{k=1}^{t} c(x_k, \pi(x_k))$.

- ▶ Input: start nodes X and goal nodes Y and edge costs $c: A \to \mathbb{R}$.
- ▶ Output: Find a path h from X to Y so that $C(h) \leq C(h')$ for all h'

- ▶ Traversing arc $\langle x, y \rangle$ incurs costs $c(\langle x, y \rangle)$
- ► Following a path h has a total cost $C(h) = \sum_{\langle x,y \rangle \in h} c(\langle x,y \rangle)$
- ▶ We can equivalently consider state-action costs c(s, a).
- A policy π specifies a path x_1, \ldots with $x_{k+1} = \tau(x_k, \pi(x_k))$
- Following a policy π from state $x_1 = x$ has a total cost $C^{\pi}(x_1) = \sum_{k=1}^{t} c(x_k, \pi(x_k))$.

The shortest path problem

- ▶ Input: start nodes X and goal nodes Y and edge costs $c: A \to \mathbb{R}$.
- ▶ Output: Find a path h from X to Y so that $C(h) \leq C(h')$ for all h'

Notes

- ▶ If the path/policy does not reach a goal, the cost is infinite.
- ▶ We can maximise rewards instead of minimising costs.

Formalising the shortest path problem

The cost from state x of a policy that reaches a goal is

$$C^{\pi}(s) \triangleq \sum_{i=1}^{\infty} c[s_t, \pi(s_t)], \qquad s_{t+1} = \tau[s_t, \pi(s_t)], \quad s_1 = s$$

where for every $s \in Y$, c(s, a) = 0 and $\tau(s, a) = s$ for all actions.

We can calculate this recursively (from the goal state)

$$C^{\pi}(s) = \sum_{i=1}^{\infty} c[s_t, \pi(s_t)]$$
 (1)

$$= c[s, \pi(s)] + \sum_{i=2}^{\infty} c[s_t, \pi(s_t)]$$
 (2)

$$= c[s, \pi(s)] + C^{\pi} \{ \tau[s, \pi(s)] \}.$$
 (3)

► The same idea applies for the shortest path

$$C^*(s) \triangleq \min_{\pi} C^{\pi}(s) = \min_{a} \{c[s, a] + C^*[\tau(s, a)]\}.$$
 (4)

Dijkstra's shortest path algorithm: backward search

Shortest path algorithm

```
Input: Goal states Y, starting state x.
Set C(s) = 0 for all states s \in Y, F_0 = Y.
for t = 0, 1, ... do
  for s' \in F_t do
     \pi(s) = \operatorname{arg\,min}_a c(s, a) + C(\tau(s, a))
     C(s) = \min_{a} c(s, a) + C(\tau(s, a))
   end for
   F_{t+1} = parent(F_t)
  if F_{t+1} = \emptyset or x \in F_t then
     return \pi, C
   end if
end for
```

Algorithm idea

- ► Start from goal states
- Go back one step each time, adding the cost.
- ► Stop whenever there are no more states to go back to, or if we reach the start state.

Optimality proof

Theorem

$$C(s) = C^*(s)$$

Proof

- ▶ If $s \in Y$, then $C(s) = 0 = C^*(s)$.
- For any other s', s = parent(s'): we will show that: if $C(s') < C^*(s')$ then $C(s) < C^*(s)$.

$$\begin{split} C(s) &= \min_{a} \left\{ c(s,a) + C(\tau(s,a)) \right\} &\qquad \text{(by definition)} \\ &\leq \min_{a} \left\{ c(s,a) + C^*(\tau(s,a)) \right\} &\qquad \text{(by induction)} \\ &\leq \min_{a} \left\{ c(s,a) + C^{\pi'}(\tau(s,a)) \right\}, \qquad \forall \pi' &\qquad \text{(by optimality)} \\ &\leq C^{\pi}(s), \qquad \forall \pi. \end{split}$$

For the optimal policy π^* , $C^{\pi^*}(s) = C^*(s)$, so $C(s) \leq C^*(s)$. Finally,

$$C^*(s) \ge C^{\pi}(s) = C(s) \ge C^*(s),$$

since $C^{\pi}(s) = C(s)$ for the policy returned by the algorithm.

Partial graphs

- ▶ Why do we need search?
- ▶ We do not want to calculate on the whole graph
- We use search to find the shortest path more efficiently (perhaps).
- ▶ We denote the total cost of some path $x_1, ..., x_t$ as:

$$C(x_1,\ldots,x_t)$$

The remaining cost from x_t to the goal using some policy π as $C^{\pi}(x_t)$

Generic search

We define heuristic search in the context of shortest-path problems. We now consider a general method for searching a node in the frontier.

```
input G = \langle N, E \rangle: Graph.
input f: N \to \mathbb{R}: evaluation function.
input x : Start node
function Heuristic Search(G, x, h)
S' = \emptyset: Nodes searched.
F = \{x\}. Initialise the frontier
c_x = 0. Initialise the cost of node x
while F \neq \emptyset do
  n = \operatorname{arg\,min}_{i \in F} f(i). Select "best" node.
   F = F \setminus \{n\}. Remove n from the frontier.
  if n \notin S' then
      B = \text{child}(n) \setminus S'. Get the set of unsearched children of n.
     \forall b \in B, b_i = c_n + c(n, b). Calculate the total cost to each child b.
     S' = S' \cup \{n\}. Add n to the list of searched nodes.
      F = F \cup B. Add n's children to the frontier.
   end if
end while
```

A* search

We now consider a general method for searching a node in the frontier. input $G = \langle N, E \rangle$: Graph. **input** $h: N \to \mathbb{R}$: heuristic function. **input** x : Start node function A-Star(G, x, h) $S' = \emptyset$: Nodes searched. $F = \{x\}$. Initialise the frontier $c_x = 0$. Initialise the cost of node x while $F \neq \emptyset$ do $n = \arg\min_{i \in F} c_i + h(i)$. Select minimum cost + heuristic node. $F = F \setminus \{n\}$. Remove *n* from the frontier. if $n \notin S'$ then $B = \text{child}(n) \setminus S'$. Get the set of unsearched children of n. $\forall b \in B, b_i = c_n + c(n, b)$. Calculate the total cost to each child b. $S' = S' \cup \{n\}$. Add n to the list of searched nodes. $F = F \cup B$. Add n's children to the frontier.

end if

end while

▶ You can see that h = 0 corresponds to minimum-cost search.

Admissible heuristics

- ▶ If *h* is arbitrary, then the search can fail.
- ► We need *h* to be admissible. In particular,

$$C^*(n) \geq h(n)$$
.

Admissibility of A*

Theorem

 A^* returns an optimal solution if

- ► The graph has a bounded branching factor.
- ▶ All costs are greater that $\epsilon > 0$
- ▶ The heuristic is admissible, i.e. $0 \le h(n) \le C^*(n)$ for all $n \in N$.

Proof

- **Existence**. There is a finite number of paths that will be explored, as the longest possible path to a goal is $C^*(0)/\epsilon$.
- Optimality. The proof is by contradiction. Let as assume that A^* finds some $\pi \neq \pi^*$ so that $C(\pi) > C(\pi^*)$. That means that at some node n on the path there is an action a^* on the optimal policy, but we keep expanding the path x_1, x_2, \ldots of π . However, since $C(\pi) > C(\pi^*)$ there must be some t such that $C(n, x_1, \ldots, x_t) > C^{\pi^*}(n)$. But then, to expand π requires that $C(n, x_1, \ldots, x_t) + h(x') < h(x) \le C^{\pi^*}(n)$.

Calculating Upper and Lower Bounds

Starting from a set of leaf nodes S_0

Upper bound $U(s) \geq C^*(s)$ for $s \in S_0$

Setting $U(0) \ge C^*(0)$ and recursing:

$$U(s) = \min_{a \in A_s} c(s, a) + U[\tau(s, a)]$$

By induction, we can prove that this is an upper bound on C^* :

$$U(s) = \min_{a \in A_s} c(s, a) + U[\tau(s, a)] \ge \min_{a \in A_s} c(s, a) + C^*[\tau(s, a)] = C^*(s).$$

Lower bound $L(s) \leq C^*(s)$ for $s \in S_0$

$$L(s) = \min_{a \in A_s} c(s, a) + L[\tau(s, a)]$$

Similarly, we can prove that it is a lower bound:

$$L(s) = \min_{a \in A_s} c(s, a) + L[\tau(s, a)] \le \min_{a \in A_s} c(s, a) + C^*[\tau(s, a)] = C^*(s)$$

Branch and bound

The algorithm is rather simple to describe in words.

- ▶ [1] Set s = 0.
- ▶ [1.1] Select action a^* minimising $c(s, a) + L(\tau(s, a))$.
- ▶ [1.2] Discard subtrees (s, a) for which $c(s, a) + L(\tau(s, a)) \ge c(s, a^*) + L(\tau(s, a^*))$.
- ▶ [1.3] Proceed to $s = \tau(s, a)$ and go to 1.1. unless we are at a leaf.
- ▶ [2] Expand the leaf node, and generate new leaf nodes with corresponding upper and lower bounds.
- \triangleright [3] Calculate L, S for the corresponding subtree.
- ▶ [4] Go to 1.

General weight shortest path

- In this problem, actions can have positive or negative costs.
- ▶ Negative edges generate problems if we have cycles
- ▶ However, the basic algorithmic idea is again Dynamic Programming

Bellman-Ford Algorithm

In state-action notation, the algorithm is simply

- $ightharpoonup C_0(0) = 0, \ C_i(0) = \infty \ \text{for all} \ i \neq 0.$
- ▶ For $k \in {1, ..., |S|}$:

$$C_k(s) = \min_a c(s,a) + C_{k-1}(\tau(s,a))$$

Bellman-Ford Algorithm

```
C(0) = 0. C(i) = \infty, for i \neq 0.
for i \in {1, ..., |N| - 1} do
  for all edges (i, j) do
     if C(i) + c(i, j) < C(j) then
       c(i) = C(i) + c(i, j)
     end if
  end for
end for
for all edges (i, j) do
  if C(i) + c(i, j) < C(j) then
     error "Negative cycle"
  end if
end for
```

- Succinctly, the algorithm is just like Dijkstra, but it ensures it goes at most |N| 1 times through all vertices, and has a sanity check as no more updates should be possible at the end.
- Instead of keeping a track of explored nodes, it uses the fact that C is initialised to infinity.