1. Силовые линии однородного магнитного поля перпендикулярны плоскости контура (от нас к чертежу), ток в котором направлен по часовой стрелке. Сила Ампера, действующая со стороны однородного магнитного поля на контур...старается растянуть контур в его плоскости.

- 2. Выберите верное выражение для вектора намагничения. $\frac{\sum_{\Delta V} \overline{p_m}}{\Delta V}$.
- 3. χ магнитная восприимчивость диамагнетиков, p_m магнитный момент их атомов. Какое утверждение справедливо? $\chi < 0, |\chi| \ll 1, p_m = 0$.
- 4. Скорость изменения магнитного потока, пронизывающего контур, численно равна...ЭДС, индуцируемой в контуре.
- 5. Укажите строку, в которой правильно представлены выражение для силы Лоренца и правило, которым надо руководствоваться при определении направления вектора силы для положительного заряда. $q[\vec{v}*\vec{B}]$, правило левой руки.
- 6. Чему равен период колебания, описываемого уравнением $x = 2\sin(2\pi t + \pi/6)$? Из условия $\boldsymbol{\omega} = 2\pi$. $T = 2\pi\sqrt{LC}$, $\boldsymbol{\omega} = \frac{2\pi}{T} = \frac{1}{\sqrt{LC}}$, $\sqrt{LC} = \frac{1}{\omega} = \frac{1}{2\pi}$, $T = \frac{2\pi}{2\pi} = 1$ с.
- 1. Величина B вектора магнитной индукции поля бесконечного прямого тока зависит от расстояния r между точкой наблюдения и проводником с током следующим образом... $B \sim 1/r$.
- 2. Поток вектора магнитной индукции (магнитный поток) через замкнутую поверхность равна...нулю.
- 3. Какая формула правильно описывает энергию магнитного поля W, создаваемого контуром с током I и индуктивностью L (ψ полный магнитный поток, пронизывающий контур)? $\mathbf{W} = \frac{LI^2}{2}$.
- 4. Природа ЭДС индукции при движении проводника в постоянном магнитном поле обусловлена силой....Лоренца.
- 5. На экзаменационном тестировании по физике студент 1-го курса НИУ ИТМО выписал следующие уравнения Максвелла в интегральной форме. Допустил ли он в них ошибку, и если да, то в каком уравнении? $\oint D_n ds = \int_s j_n ds$.
- 6. Прямой проводник длиной 40см и током 2,5А помещен в однородное магнитное с индукцией 0,07Тл. Определите силу, действующую на проводник со стороны поля, если направление движения тока составляет с силовыми линиями угол 30°. $F = BIL \sin \alpha = 0.035H$.
- 1. Из предложенного перечня выберите векторные величины: магнитная индукция B, сила тока I, магнитный момент p_m , поток Φ_B вектора магнитной индукции. B, p_m .

- 2. В одной плоскости лежат два взаимно перпендикулярных проводника с равными токами *I*. Укажите точки, в которых индукция магнитного поля равна нулю. **1 и 3**.
- 3. Как изменится величина напряженности магнитного поля внутри соленоида, если из него вынуть магнетик с проницаемостью $\mu=9$? **Уменьшится в 9 раз**.
- 4. Под каким номером правильно описаны выражения, определяющие: а) коэффициент взаимной индукции L_{12} и б) энергию W магнитного поля, создаваемого двумя контурами с токами i_1 и i_2 (ψ_2 полный магнитный поток, пронизывающий второй контур за счет тока i_1 первого контура, L_1 и L_2 индуктивности, соответственно, первого и второго контуров)? $\psi_2 = L_{21}i_1$, $W = \frac{L_1i_1^2}{2} + \frac{L_2i_2^2}{2} + L_{21}i_1i_2$.
- 5. Пучок положительно заряженных частиц влетает в однородное электрическое поле перпендикулярно вектору *E*. Как должен быть направлен вектор магнитной индукции *B*, чтобы скомпенсировать отклонение пучка, создаваемое электрическим полем? Показанные на рисунке вектора лежат в плоскости чертежа. За чертеж.

- 6. Гиря, подвешенная к пружине, колеблется по вертикали с амплитудой 4см. Определите полную энергию колебания гири, если жесткости пружины равна 1 кН/м. $E_{\text{полн}} = E_{\text{кин}} + E_{\text{пот}} = \frac{mv^2}{2} + \frac{kx^2}{2}$. В момент максимального смещения v = 0. Следовательно, в этот момент $E_{\text{кин}} = 0$ и $E_{\text{полн}} = \frac{kx^2}{2} = \frac{1000*0.04*0.04}{2} = 0.8$ Дж.
- 1. Какая физическая величина имеет в единицах СИ размерность, равную Кл * В? Работа.
- 2. На рисунке изображены сечения двух параллельных прямолинейных длинных проводников с противоположно направленными токами J_1 и J_2 , причем $J_1=2J_2$. Магнитная индукция B результирующего магнитного поля равна нулю в некоторой точке интервала... \mathbf{d} .

- 3. Коэффициент взаимной индукции двух контуров с током в вакууме зависит только от...**размеров, формы контуров,** расстояния между ними и их взаимной ориентации.
- 4. В какой строке правильно отражены свойства диамагнетиков и составляющих их молекул (χ магнитная восприимчивость)? Величина маленькая и отрицательная, собственный магнитный момент молекул равен нулю.
- 5. Под каким номером правильно представлена индуктивность L соленоида (μ относительная магнитная проницаемость, μ_0 магнитная постоянная, n число витков на единицу длины соленоида, l его длина, S площадь поперечного сечения, длина соленоида во много раз больше его диаметра)? $L = \mu \mu_0 n^2 S L$.
- 6. Материальная точка массой 20г совершает колебания по закону $x=0.1\cos\left(4\pi t+\frac{\pi}{4}\right)$, м. Определите полную энергию этой точки. $E_{\text{полн}}=E_{\text{кин}}+E_{\text{пот}}=\frac{mv^2}{2}+\frac{kx^2}{2}$. В момент прохождения состояния равновесия смещение равно нулю x=0, а

скорость максимальна. Следовательно, в этот момент $E_{\text{пот}}=0$ и $E_{\text{полн}}=\frac{mv_{\text{макс}}^2}{2}$; $v=x'=-0.4\pi\sin\left(4\pi t+\frac{\pi}{4}\right)$. Отсюда максимальное значение скорости по модулю будет равно 0.4π ; Следовательно, $E_{\text{полн}}=\frac{mv_{\text{макс}}^2}{2}=\frac{0.02(0.4\pi)^2}{2}=0.01577$ Дж.

- 1. Два бесконечно длинных параллельных проводника с токами сближаются, перемещаясь по дуге окружности. Как изменяется модуль индукции магнитного поля в центре этой окружности для случая параллельных и для случая антипараллельных проводников? Плоскость, на которой расположена окружность, перпендикулярна проводникам с током. Для параллельных возрастает, для антипараллельных убывает.
- 2. Линии магнитной индукции поля бесконечного прямого тока имеют вид...концентрических окружностей.
- 3. Укажите выражение, определяющее зависимость магнитной восприимчивости χ от температуры T для парамагнетиков (C постоянная Кюри). $\chi = C/T$.
- 4. Каким образом однородное магнитное поле с индукцией B действует на прямоугольную рамку с током I? Поворачивает рамку стороной AC к нам.

- 5. Колебательный контур состоит из катушки индуктивности и двух одинаковых конденсаторов, включенных параллельно. Как изменится период колебаний контура, если конденсаторы включить последовательно? Уменьшится в 2 раза.
- 6. Один математический маятник имеет период 3c, другой 4c. Каков период колебаний математического маятника, длина которого равна сумме длин данных маятников? $T=2\pi\sqrt{\frac{l}{g}}; l=\frac{T^2g}{4\pi^2}; l=l_1+l_2=\frac{25g}{4pl^2};$ Следовательно, $T^2=25; T=5c$.
- 1. Единицей измерения магнитной индукции является...Тесла.
- 3. Поток вектора магнитной индукции через замкнутую поверхность...всегда равен нулю.
- 4. Магнитный поток, пронизывающий катушку, изменяется со временем в соответствии с графиком. В каком интервале ЭДС индукции имеет минимальное по модулю, но не равное нулю значение? t_4-t_5 .

- 5. На экзаменационном тестировании по физике студент 1-ого курса СПбГУИТМО представил следующие уравнения Максвелла в интегральной форме. Допустил ли он в них ошибку, и ,если допустил, то в каком уравнении? $\oint E_l dl = -\int_s \, \left(\frac{\partial \vec{b}}{\partial t}\right)_n ds.$
- 6. Грузик массой 250г, подвешенный к пружине, колеблется по вертикали с периодом 1с. Определить жесткость пружины. $T = 2\pi\sqrt{\frac{m}{k}}; k = \frac{4\pi^2m}{T^2} = \frac{4\pi^2*0.25}{1^2} = 9.8596\frac{H}{M}$.
- 1. Выберите правильное выражение для вектора напряженности магнитного поля. $\frac{\overline{B}}{\mu_0} \vec{J}$.
- 2. Вектор индукции B однородного магнитного поля направлен слева направо. Перпендикулярно плоскости рисунка расположен проводник с прямым током I (ток течет от нас). Выберите точку, в которой суммарная индукция может быть нулевой. **4**.

- 3. Как изменится энергия, запасенная в магнитном поле соленоида, если ток соленоида вдвое уменьшится и одновременно вдвое увеличится индуктивность соленоида? Уменьшится в два раза.
- 4. Во внешнее магнитное поле $\overrightarrow{B_0}$ поместили стакан с водой, молекулы которой не имеют собственного магнитного момента. Какой станет в воде величина магнитного поля \overrightarrow{B} и как будет направлен вектор намагниченности \overrightarrow{J} воды? \overrightarrow{B} станет меньше $\overrightarrow{B_0}$ на доли процента, вектор \overrightarrow{J} будет направлен вдоль вектора $\overrightarrow{B_0}$.
- 5. Пучок положительно заряженных частиц проходит через однородные электрическое и магнитное поля, направленные перпендикулярно движению пучка. Как должен быть направлен вектор магнитной индукции \vec{B} , чтобы скомпенсировать отклонение пучка, создаваемое электрическим полем? В положительном направлении оси Z.

- 6. Точечный заряд влетает со скоростью 15м/с в однородное магнитное поле с индукцией 2Тл. Вектор скорости и магнитной индукции составляет угол 30°. Величина силы Лоренца, действующей на частицу со стороны этого поля, составляет 0,5мН. Найдите величину заряда в мкКл. $F = qvB \sin \alpha$; $q = \frac{F}{vB \sin \alpha} = \frac{0.5 * 10^{-3}}{15 * 2 * \frac{1}{5}} = 33.3 * 10^{-6}$ Кл = 33.3мкКл.
- 1. Единицей измерения ЭДС самоиндукции является...Вольт.
- 3. Как изменится энергия, запасенная в магнитном поле соленоида, если ток соленоида вдвое увеличится и одновременно вчетверо уменьшится индуктивность соленоида? **Не изменится**.
- 4. Положительно заряженная частица движется от бесконечного проводника с током. Сила, действующая на частицу, будет...**уменьшаться, отклоняя частицу вверх**.

- 5. Какая из формул представляет собой уравнение затухающих колебаний (γ коэффициент затухания, ω_0 собственная частота колебаний)? $x'' + 2\gamma x' + \omega_0^2 x = 0$.
- 6. Заряженная частица движется в однородном магнитном поле по окружности радиуса R_1 . После увеличения индукции поля и скорости частицы в 2 раза радиус окружности стал R_2 . Найдите отношение $\frac{R_2}{R_1}$. $R_1 = \frac{m}{q} \frac{v_1}{B_1}$; $R_2 = \frac{m}{q} \frac{v_2}{B_2}$; $v_2 = 2v_1$; $B_2 = 2B_1$; $\frac{R_1}{R_2} = \frac{2}{2} = 1$.
- 1. Однородным является магнитное поле...внутри бесконечного соленоида.
- 2. Укажите направление силы, действующей на проводник с плотностью тока \vec{J} . 5.
- 3. Во внешнее магнитное поле $\overrightarrow{B_0}$ поместили кусок парамагнитного алюминия. Какой станет величина магнитного поля \overrightarrow{B} внутри алюминия и как будет направлен вектор намагничения \overrightarrow{J} алюминия? \overrightarrow{B} станет больше на доли процента, вектор \overrightarrow{J} будет направлен вдоль $\overrightarrow{B_0}$.

- 4. Какому правилу подчиняется направление токов Фуко? Правилу Ленца.
- 5. Какая из формул представляет собой уравнение вынужденных колебаний (γ коэффициент затухания, ω_0 собственная частота колебаний, f величина, пропорциональная амплитуде вынуждающей силы, ω частота вынуждающей силы)? x'' + $2\gamma x'$ + $\omega_0^2 x = f \cos \omega t$.
- 6. Плоский проводящий контур площадью 100см 2 расположен в магнитном поле перпендикулярно магнитным силовым линиям. Магнитная индукция изменяется по закону $B=(1-3t^2)*10^{-3}$ Тл. Определить ЭДС индукции, возникающей в момент времени t=2с. $E=-\frac{d\Phi}{dt}=-S\frac{dB}{dt}=-10^{-2}*10^{-3}*(-6t)=6t*10^{-5}=0$, 12 мВ.
- 1. Контур с током находится в магнитном поле, p_m его магнитный момент, $M_{\rm макс}$ максимальный вращательный момент, $M_{\rm мин}$ минимальный вращательный момент. Величина вектора магнитной индукции B равна... $M_{\rm макс}/p_m$.

- 2. Из перечисленных ниже величин выберите ту, от которой не зависит индуктивность соленоида в неферромагнетной среде. Зависит от числа витков на единицу длины, площади сечения соленоида, длины соленоида, магнитной проницаемости среды.
- 3. В какой строке приведены три правильных выражения для плотности энергии w магнитного поля в изотропном магнетике $(\mu$ относительная магнитная проницаемость, μ_0 магнитная постоянная, B величина вектора магнитной индукции, H величина вектора напряженности магнитного поля)? $w = \frac{\mu\mu_0 H^2}{2}$, $w = \frac{B^2}{2\mu\mu_0}$, $w = \frac{HB}{2}$.
- 4. Магнитный поток, пронизывающий катушку, изменяется со временем в соответствии с графиком. В каком интервале ЭДС индукции равно нулю? $t_1 t_2$.
- 5. Какое утверждение относительно свойств токов проводимости и токов сцепления является правильным? **Оба тока создают магнитное поле**.
- 6. Электрон движется по окружности в однородном магнитном поле напряженностью 10кА/м. Вычислить период вращения электрона. Удельный заряд электрона считать равным $1.8*10^{11}$ Кл/кг, магнитная постоянная $\mu_0=4\pi*10^{-7}$ Гн/м. $F_\pi=F_\mu$; $F_\pi=qvB\sin\alpha=qvB$; $B=\mu\mu_0H$; $F_\mu=ma$; $\alpha=v\omega$; $\omega=\frac{2\pi}{T}$; $qv\mu\mu_0H=mv\frac{2\pi}{T}$; $T=\frac{2\pi m}{\mu\mu_0Hq}=\frac{2\pi}{4\pi*10^{-7}*1.8*10^{11}*10*10^3}=2.7777*10^{-9}$ с.
- 1. Токи в двух параллельных проводниках равны по величине и направлены в противоположные стороны. Определить направление результирующего вектора магнитной индукции в точке А. **Вверх**.

- 4. Замкнутый проводник находится в однородном магнитном поле, направленном за чертеж. Индукция *В* уменьшается со временем. Определить направление индукционного тока в проводнике. **По часовой стрелке**.
- 5. Два протона с разной энергией влетают в однородное магнитное поле. Какая траектория движения соответствует протону с наибольшей энергией? **Траектория 2**.

1. Выберите строку, в которой физические величины имеют размерность A/м (H – напряженность магнитного поля, μ – магнитная проницаемость, J – намагниченность магнетика, j – плотность тока, p_m – магнитный момент). H, J.

- 2. Сравните модули индукции магнитного поля в центре витка с током для трех конфигураций проводников. $B_2 > B_1 > B_3$.
- 3. Свойства магнитных силовых линий (линий магнитной индукции). **Линии располагаются так, чтобы касательные к этим линиям совпадали бы по направлению с вектором магнитной индукции**.
- 4. Относятся ли к парамагнетикам вещества вольфрам (μ = 1.000176), платина (μ = 1.000360) и висмут (μ = 0.999524). Относятся только вольфрам и платина.

- 5. Следующая система уравнений Максвелла $\oint E_l dl = -\int_S \left(\frac{\partial D}{\partial t}\right) dS$; $\oint_S ds = 0$; $\oint_L H_L dl = \int_S \left(\frac{\partial D}{\partial t}\right) dS$; $\oint_S D_S ds = \oint_V \rho dV$ справедлива...**только в отсутствие токов проводимости**.
- 6. Конденсатор емкостью 500нФ соединен параллельно с катушкой индуктивностью 1мГн. Определить период колебаний осциллятора. $T = 2\pi\sqrt{LC} = 2\pi\sqrt{500*10^{-12}*10^{-3}} = 4.44*10^{-6}$ с = 4.44мкс.
- 1. Циркуляция вектора напряженности магнитного поля равна нулю...тогда, если контур не охватывает токи.
- 2. В стихотворении Бориса Леонидовича Пастернака «Объяснение» есть такая строфа. О каких расположениях двух прямых токов говорит автор? Вариант, где токи сонаправлены и параллельны друг другу.
- 3. Свойства напряженности H магнитного поля бесконечного соленоида (I ток соленоида). Внутри соленоида поле однородно и H = In (n число витков на единицу длины соленоида). Вне соленоида поля равна нулю.
- 4. Протон и частица $(q_n=2q_p;m_n=4m_p)$ разгоняются до одинаковой энергии и влетают в магнитное поле под разными углами 30° и 60° соответственно к направлению вектора магнитной индукции. Как соотносятся периоды обращения протона (T_1) и частицы (T_2) ? $\frac{T_1}{T_2}=\frac{1}{2}$.
- 5. На экзаменационном тестировании по физике студент первого курса НИУ ИТМО предоставил следующие уравнения Максвелла в интегральной форме. Допустил ли он в них ошибку, и, если допустил, то в каком уравнении. Смотри приложение. Если все совпали с уравнениями полной системы, то ответ «ошибки нет».
- 6. Уравнение затухающих колебаний имеет вид $x''+0.5x'+900x=0.1\cos 150t$. Коэффициент затухания значительно меньше собственной частоты колебаний. Насколько следует уменьшить частоту вынуждающей силы, чтобы наступил резонанс? Из уравнения следует, что $\omega=150$; $\omega_0^2=900$; $2\delta=0.5$; $w_0=30$; $\delta=0.25$; $\frac{\omega}{\omega_0}=\frac{150}{30}=5$.
- 1. Как располагается контур с током при его свободной ориентации в однородном магнитном поле? Нормаль к контуру располагается параллельно вектору магнитной индукции.
- 2. Величина B вектора магнитной индукции в центре кругового проводника с радиусом r и силой тока I равна... $\frac{\mu_0 I}{2r}$.
- 3. Циркуляция вектора напряженности магнитного поля при обходе по контуру, пронизывающему проводники с током, равна...алгебраической сумме токов, пронизывающих контур.
- 4. χ магнитная восприимчивость парамагнетиков, p_m магнитный момент их атомов. Какое утверждение справедливо? $\chi > 0$, $|\chi| \ll 1$, $p_m \neq 0$.

- 5. Два электрона с разной энергией влетают в однородное магнитное поле. Какая траектория движения соответствует электрону с наименьшей энергией? **Траектория 5**.
- 6. Колебание материальной точки массой 0,1г происходит согласно уравнению $x = A\cos\omega t$, где A = 5см, $\omega = 20c^{-1}$. Определить максимально значение возвращающей сил. $F = ma = -mA\omega^2\cos\omega t$; $F_{\text{макс}} = mA\omega^2 = 0.0001*0.05*400 = 0.002$ H.
- 1. Единицей измерения коэффициента взаимной индукции является...Генри.
- 2. Величина B вектора магнитной индукции поля бесконечного прямого тока I зависит от расстояния r между точкой наблюдения и проводником с током следующим образом... $\frac{\mu_0 I}{2\pi r}$.
- 3. Элементарная работа силы Ампера при перемещении контура с током в магнитном поле равна произведению силы тока в контуре...**на изменение магнитного потока, пронизывающего контур.** Ибо $F_{\rm a} = I * \int [dl * B]$.
- 4. Магнитный поток, пронизывающий катушку, изменяется со временем в соответствие с графиком. В каком интервале времени ЭДС индукции имеет минимальное по модулю, но не равное нулю значение? $t_4 t_5$. Ибо ЭДС индукции зависит от скорости изменения потока.

- 5. Напряжение на конденсаторе в колебательном контуре описывается выражением $U=U_0 sin\left(\frac{2\pi}{T}t\right)$. В какой момент времени t энергия магнитного поля в катушке максимальна (T период)? $t=\frac{T}{4}$.
- 6. Точечный заряд влетает со скоростью 15 м/с в однородное магнитное поле с индукцией 2Тл. Векторы скорости и магнитной индукции составляют угол 30°. Найти величину заряда, если сила Лоренца, действующая на частицу со стороны поля, равна 0.5 мН. $F_{\pi} = q[v*B]; q = \frac{F_{\pi}}{[v*B]}; F_{\pi} = 0.5*10^{-3} \text{H}; q = 0.5* \frac{10^{-3}}{15*2*cos30^{\circ}} = \frac{10^{-4}}{3\sqrt{3}} = 1.92*10^{-5} \text{Кл.}$
- 1. Укажите строку, в которой правильно представлены закон Био-Савара-Лапласа и правило, которым надо руководствоваться при определении направления магнитной индукции элемента тока. $d\vec{B} = \frac{\mu_0}{4\pi} * \frac{I[r \times d\vec{I}]}{r^3}$, правило правого винта.
- 2. Выберите правильное выражение для вектора намагничения. $\frac{\overrightarrow{B}}{\mu_0} \overrightarrow{H}$.
- 3. Проводник AC движется в однородном магнитном поле. Потенциал какой из двух точек проводника $(A \ u \ C)$ выше? Потенциалы одинаковы.
- 4. На экзаменационном тестировании по физике студент 1-ого курса НИУ ИТМО представил следующие уравнения Максвелла в интегральной форме. Допустил ли он в них ошибку, и, если допустил, то в каком уравнении? $\oint D_s ds = \int_V \rho dV$.
- 5. Полная энергия механического осциллятора, колеблющегося по закону $x = A \sin \omega t ...$ пропорциональна A^2 .
- 6. Конденсатор емкостью 500пФ соединен параллельно с катушкой индуктивности 1мГн Определить период колебаний осциллятора. $T = 2\pi\sqrt{LC} = 2\pi\sqrt{500*10^{-12}*1*10^{-3}} = 4.44*10^{-6}$ с.
- 1. Свойства магнитных силовых линий (линий магнитной индукции). Линии располагаются так, чтобы касательные к этим линиям совпадали бы по направлению с вектором магнитной индукции.

- 2. По оси кругового контура с током проходит бесконечно длинный прямолинейный проводник с током. Как действует магнитное поле проводника на круговой контур? **Никак не действует**.
- 3. Магнитная восприимчивость меньше нуля в случае...только диамагнетиков.
- 4. Замкнутый проводник находится в однородном магнитном поле. Индукция *В* увеличивается со временем. Определить направление индукционного тока в проводнике. **Если ток направлен от наблюдателя, то по часовой стрелке.** Если на против часовой стрелки.

- 5. Какого вида энергию содержит идеальный колебательный контур через половину периода после начала разряда конденсатора? Только электрическую.
- 6. Плоский контур площадью 250см² находится в однородном магнитном поле с индукцией 0,2Тл. Найдите магнитный поток, если его плоскость составляет угол 30 градусов с линиями индукции. $d\Phi = BdS$; $\Phi = BS * sin\alpha = 0,25 * 0,2 * 0,5 = 0,025$ Вб.
- 1. Единицей измерения коэффициента взаимной индукции является...Генри.
- 2. В изотропном магнетике с проницаемостью μ магнитная индукция равна B. Выберите правильное выражение для напряжённости магнитного поля H. $B\mu\mu_0$.
- 3. Под каким номером правильно представлены выражения, связанные с индуктивностью L контура. (ψ полный магнитный поток, пронизывающий контур, I сила тока в контуре, ε_i индукционная ЭДС, возникающая в контуре, B величина магнитной индукции)? $\psi = LI$; $\varepsilon_i = -L\frac{dI}{dt}$.
- 4. Какая лампочка на схеме загорится позднее всех после замыкания ключа? **3**. Индуктивность будет мешать прохождению тока.
- 5. Как изменится частота электромагнитных колебаний, если в катушку индуктивности ввести ферримагнитный сердечник? **Увеличится**.
- 6. Электрон движется по окружности в однородном магнитном поле напряженностью 10кА/м. Вычислить период вращения электрона. Удельный заряд электрона считать равным $1.8*10^{11}$ Кл/кг, магнитная постоянная $\mu_0 = 4\pi*10^{-7}$ Гн/м. $F_{\pi} = F_{\pi}$; $F_{\pi} = qvB\sin\alpha = qvB$; $F_{\pi} = ma$; $F_{\pi} = qvB\sin\alpha = qvB$; $F_{\pi} = ma$;

Для справки по заданиям на уравнения Максвелла:

Полная система с учетом всего что только можно:

$$\oint_{L} \vec{E} \, d\vec{l} = - \int_{S} \frac{\partial \vec{B}}{\partial t} \, d\vec{S} \oint_{L} \vec{H} \, d\vec{l} = \int_{S} \left(\vec{j}_{np} + \frac{\partial \vec{D}}{\partial t} \right) \, d\vec{S} \oint_{S} \vec{D} \, d\vec{S} = \int_{V} \rho \, dV \oint_{S} \vec{B} \, d\vec{S} = 0.$$

$$\left(\int\limits_V \rho dV = 0\right)$$

В отсутствии заряженных тел меняется:

$$\left(\int\limits_{S} \vec{j} d\vec{S} = 0\right)$$

В отсутствии токов проводимости меняется: