# Image-to-Image Deep Learning for Climate and Weather Modelling

Mentors: Zeel B Patel, Prof. Nipun Batra

Members: Aditi Agarwal, Dheeraj Yadav, Rishabh Mondal, Sandeep Desai, Saumya Karan, Suraj Borate, Suraj Jaiswal,

#### **Motivation**

# India Had Eighth-Worst Air Pollution in 2022: Report

Indian cities filled 12 of the top 15 rankings of the most polluted cities in the world, the same as in last year's report.

Source

#### Air pollution shortening lives by 5.3 years in India

Work: CAMx, Chemical Transport Model (Ramboll. 2019)



#### **Motivation**

Example of a dispersion model for modelling air quality(CMAQ)

$$\frac{\partial c}{\partial t} = -\nabla \cdot \vec{V}c + \nabla \cdot K\nabla c + R_C + R_E + R_D$$

Time complexity for solving the equation

$$\mathcal{O}(N^{3d})-\mathcal{O}((N+1)^{3d})=\mathcal{O}(N^{3d-1})$$

The compute is extremely expensive and time consuming

#### **Problem Statement**

Can we eliminate existing numerical method based air quality models like CAMx by replacing them with flexible and generalizable Deep Learning based models to enhance efficiency and produce instantaneous predictions?

### **Dataset Exploration**

#### **CAMx Meteorological Dataset**

#### CAMx 96hr: 14 features(Input)



14 input features available as hourly 80\*80 images across 96 hours

Features include metrics for temperature, pressure, wind speed, snow cover etc.

#### Normalized TSURF Data for 96 hrs



#### **CAMx Meteorological Dataset**

#### CAMx 120hr: 2 features



2 output features:

**P25**: Concentration of pollutant PM 2.5

**P10**: Concentration of pollutant PM 1.0

Primary source of pollution and responsible for asthma, lung infections and premature death

#### **Research Questions**

# RQ1: Can we train a MLP AutoEncoder which uses a single channel as input?



#### **Experimental Setup**

| Epochs     | 200   |
|------------|-------|
| Optimizer  | Adam  |
| Batch Size | 32    |
| LR         | 0.001 |

#### RQ1: Can we train a MLP AutoEncoder which uses a single

channel as input?

|                                                                           |                                                                               | V10_N   |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------|
|                                                                           |                                                                               | U10_N   |
| Key                                                                       | Takeaways:                                                                    | SOLM_   |
|                                                                           |                                                                               | CLOUD   |
| 1.                                                                        | Horizontal wind speed, vertical wind speed, soil moisture content and opacity | PRATE_  |
| of clouds are important features for prediction of the particulate matter | SNOW                                                                          |         |
|                                                                           | particles                                                                     | T2_K    |
|                                                                           |                                                                               | CAPE    |
|                                                                           |                                                                               | SNOW    |
|                                                                           |                                                                               | PBL_W   |
|                                                                           |                                                                               | CLDTO   |
|                                                                           |                                                                               | PBL_YS  |
|                                                                           |                                                                               | S1445=6 |

| Input channel | MSE Loss of P10 and P25 |   |
|---------------|-------------------------|---|
| V10_MpS       | 0.4                     |   |
| U10_MpS       | 0.7                     |   |
| SOLM_M3pM3    | 76.4                    |   |
| CLOUD_OD      | 95.1                    |   |
| PRATE_MMpH    | 275.4                   |   |
| SNOWEW_M      | 275.5                   |   |
| T2_K          | 275.8                   |   |
| CAPE          | 276                     |   |
| SNOWAGE_HR    | 276                     |   |
| PBL_WRF_M     | 276.2                   |   |
| CLDTOP_KM     | 276.8                   |   |
| PBL_YSU_M     | 277.9                   |   |
| SWSFC_WpM2    | 280.9                   |   |
| TSURF_K       | 296                     | 3 |

# RQ2: Can we utilize a Convolutional Autoencoder which can take single as well as multiple input channels?



#### Convolutional Autoencoder Architecture (input 14 channels -> output 2 channels) Image shape: (80,80)

| RQ2: Can we utilize a Convolutional Autoei<br>well as multiple input |                | h can take si                | ngle as            |
|----------------------------------------------------------------------|----------------|------------------------------|--------------------|
|                                                                      | Input channel  | Convolutional<br>Autoencoder | MLP<br>Autoencoder |
|                                                                      | U10_MpS        | 6                            | 0.7                |
| 24 Cinale Chemal Innut                                               | SOLM_M3pM<br>3 | 9.8                          | 76.4               |
| 2.1 Single Channel Input                                             | CLOUD_OD       | 13.1                         | 95.2               |
|                                                                      | V10_MpS        | 13.2                         | 0.4                |
| Key Takeaways:                                                       | SWSFC_WpM2     | 278.9                        | 280.9              |
|                                                                      | CAPE           | 279                          | 276                |

T2\_K

PBL\_WRF\_M

PRATE MMpH

SNOWEW\_M

CLDTOP\_KM

PBL\_YSU\_M

TSURF\_K

279

279.1

281.1

282.4

282.6

286.4

288.6

275.8

276.2

275.4

296

275.5

276.8

277.9

| W 0 tt di0 111 ditti     |                |                              |                    |
|--------------------------|----------------|------------------------------|--------------------|
|                          | Input channel  | Convolutional<br>Autoencoder | MLP<br>Autoencoder |
|                          | U10_MpS        | 6                            | C                  |
|                          | SOLM_M3pM<br>3 | 9.8                          | 76                 |
| 2.1 Single Channel Input | CLOUD_OD       | 13.1                         | 95                 |
|                          | V10_MpS        | 13.2                         | C                  |
| Vov Takonyove            | SWSFC WpM2     | 278.9                        | 280                |

Both MLP Autoencoder and Convolutional Autoencoders have

These features are thus most important for PM concentration

Features like cloud cover and soil moisture witness a significant

the same four features with the lowest MSE test loss.

decrease in test loss but other features' losses remain

prediction.

consistent.

## RQ2: Can we utilize a Convolutional Autoencoder which can take single as well as multiple input channels?

#### 2.2 All channel input

Key Takeaways:

1. Convolutional layers in the Autoencoders significantly decrease the loss

MSE Loss: 20.457

# RQ3: Can we utilize UNet architecture across single and multiple channel inputs?

#### Why?

- 1. To improve CNN autoencoders we cannot add more layers since it leads to degradation problem
- 2. UNet(Ronneberger et. al. 2015) solves this by using a similar architecture but introducing skip connections which help "remind" the network of what it was trying to learn initially.
- 3. Skip connections retain spatial information

# RQ3: Can we utilize UNet architecture across single and multiple channel inputs?

#### 3.1 Single channel input



| Input channel | Convolutional<br>Autoencoder | MLP<br>Autoencoder | UNet |
|---------------|------------------------------|--------------------|------|
| V10_MpS       | 13.2                         | 0.4                | 5.8  |
| U10_MpS       | 6                            | 0.7                | 10.1 |
| SOLM_M3pM3    | 9.8                          | 76.4               | 11.6 |
| CLOUD_OD      | 13.1                         | 95.1               | 12.4 |

Input Channels with the lowest test loss

# RQ3: Can we utilize UNet architecture across single and multiple channel inputs?

#### 3.2 All channel input

Key Takeaways:

1. Addition of skip connections significantly reduces the MSE test loss.

CNN AE MSE Loss: **20.457** 

UNet MSE Loss: **3.9575** 

# RQ4: Can we use only a subset of the channels for training?

|               | Convolutional Autoencoder    |                              | UNet                          |                              |
|---------------|------------------------------|------------------------------|-------------------------------|------------------------------|
|               | All channels                 | Subset of Channels(4)        | All channels                  | Subset of Channels(4)        |
| Test Loss     | 20.457                       | 3.3631                       | 3.9575                        | 0.9041                       |
| Training Time | 14 min 3 sec<br>(200 epochs) | 2 min 40 sec<br>(100 epochs) | 13 min 15 sec<br>(200 epochs) | 3 min 17 sec<br>(100 epochs) |
| Parameters    | 106,001,410                  | 105,995,650                  | 106,001,410                   | 105,995,650                  |

Note: In above table output channels are 2 (ie P10 and P25) across all.

#### Key Takeaways:

- 1. Using a subset of the "most important features" significantly decreases the test loss.
- 2. Utilization of a partial input also helps decrease computation time as well as memory.
- 3. Decreases likelihood of incorporating noisy and irrelevant information.

#### Conclusion

- 1. Thus, through a heuristic approach we are able to develop a data driven approach to model air quality.
- 2. Utilization of a subset of the most important CAMx inputs for training provides the best results while also significantly reducing the training time and compute.
- 3. Introduction of skip connections(UNet) in an existing convolution architecture significantly improves the model performance.

Thanks