© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°06

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x \operatorname{sh}\left(\frac{1}{x}\right)$.

- **1.** Étudier la parité de f.
- 2. a. Donner un équivalent de la fonction sh en 0 et en déduire les limites de f en $+\infty$ et $-\infty$.
 - **b.** Déterminer la limite de f en 0.
- **3.** Justifier que f est dérivable sur \mathbb{R}^* et que pour tout $x \in \mathbb{R}^*$,

$$f'(x) = \left(\operatorname{th}\left(\frac{1}{x}\right) - \frac{1}{x} \right) \operatorname{ch}\left(\frac{1}{x}\right)$$

- **4.** Montrer que pour tout $X \in \mathbb{R}_+^*$, th(X) < X.
- **5.** En déduire le tableau de variations de f.
- **6.** Donner le développement limité à l'ordre 4 en 0 de la fonction $X \mapsto \frac{\sinh X}{X}$.
- 7. En déduire qu'au voisinage de $+\infty$ et $-\infty$, f admet un développement asymptotique de la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3} + \frac{a_4}{x^4} + o\left(\frac{1}{x^4}\right)$$

où a_0, a_1, a_2, a_3, a_4 sont cinq réels que l'on précisera.

8. Montrer que la fonction $g: x \in \mathbb{R}^* \mapsto f\left(\frac{1}{x}\right)$ se prolonge sur \mathbb{R} en une fonction continue notée G, puis prouver que G est dérivable sur \mathbb{R} .

Partie II - Une équation différentielle

On considère l'équation différentielle (E) suivante que l'on va résoudre sur différents intervalles.

(E):
$$xy' + y = ch x$$

1

- **9.** Résoudre (E) sur \mathbb{R}_+^* .
- **10.** Donner sans justification les solutions de (E) sur \mathbb{R}_{-}^{*} .

11. Justifier que la fonction G définie à la question 8 est l'unique fonction dérivable sur \mathbb{R} qui soit solution de (E) sur \mathbb{R} .

Partie III - Une fonction définie par une intégrale

Pour
$$x \in \mathbb{R}^*$$
, on pose $J(x) = \int_{\frac{x}{2}}^{x} f(t) dt$.

- 12. Déterminer la parité de J.
- **13.** Montrer que pour tout $x \in \mathbb{R}$, sh 2x = 2 sh x ch x.
- **14.** Justifier que J est dérivable sur \mathbb{R}_+^* et que pour tout $x \in \mathbb{R}_+^*$,

$$J'(x) = f(x)\left(1 - \frac{1}{2}\operatorname{ch}\frac{1}{x}\right)$$

- 15. En déduire le signe de J' sur \mathbb{R}_+^* . On exprimera le (ou les) zéro(s) de J' à l'aide de la fonction ln.
- **16. a.** Montrer que pour tout $t \in \mathbb{R}_+$, sh $t \ge t + \frac{t^3}{6}$.
 - b. En déduire que

$$\forall x \in \mathbb{R}_+^*, \ J(x) \ge \frac{x}{2} + \frac{1}{6x}$$

puis les limites de J en 0^+ et en $+\infty$.

- 17. Donner le tableau de variations de J sur \mathbb{R}_+^* .
- **18.** On pose $h(x) = \frac{\sinh x x}{x^3}$ pour $x \in \mathbb{R}^*$.
 - a. Montrer que h est prolongeable par continuité en 0. On note encore h son prolongement.
 - **b.** Montrer que pour tout $x \in \mathbb{R}_+^*$,

$$J(x) - \frac{x}{2} = \int_{\frac{1}{x}}^{\frac{2}{x}} h(u) du$$

c. Montrer

$$J(x) = \frac{x}{x \to +\infty} \frac{x}{2} + \frac{1}{6x} + o\left(\frac{1}{x}\right)$$

- 19. Montrer que la courbe de J admet en $+\infty$ et en $-\infty$ une asymptote oblique dont on précisera une équation. On donnera également la position de la courbe de J par rapport à cette asymptote.
- **20.** Tracer l'allure de la courbe représentative de J sur \mathbb{R} .

On fera notamment figurer l'asymptote déterminée à la question 19 ainsi que les tangentes horizontales éventuelles.

On donne pour le tracé $\frac{1}{\ln\left(2+\sqrt{3}\right)}\approx 0,76$ et $J\left(\frac{1}{\ln\left(2+\sqrt{3}\right)}\right)\approx 0,65$ à 10^{-2} près.