Gnuplot

Atelier d'aide à la programmation

Léo Baudouin

baudouin.leo@gmail.com

03-04 juin 2019

Exemple d'utilisation

plot [x=0:2*pi] cos(x), sin(x)

Introduction ○•	Plot et splot 00000	Génération d'image o	Génération d'image O
Space	raise gnuplot console wind	low	
q	quit X11 terminal		
a	'builtin-autoscale' (set aut	oscale keepfix; replot)	
b	'builtin-toggle-border'		
е	'builtin-replot'		
g	'builtin-toggle-grid'		
h	'builtin-help'		
		ale for plots, z and cb logscale	for splots
L		logscale of axis nearest cursor	
m	'builtin-toggle-mouse'		
r	'builtin-toggle-ruler'		
1	'builtin-decrement-mousen		
2	'builtin-increment-mousem		
3	'builtin-decrement-clipboa		
4	'builtin-increment-clipboar		
5	'builtin-toggle-polardistand	ce'	
6	'builtin-toggle-verbose'		
7	'builtin-toggle-ratio'		
n	'builtin-zoom-next' go to ı	next zoom in the zoom stack	
р		to previous zoom in the zoom	stack
	'builtin-unzoom'		
Right	'builtin-rotate-right' only f	for splots ; $<$ shift $>$ increases an	nount
Up	'builtin-rotate-up' only for	splots; <shift> increases amo</shift>	unt
Left	'builtin-rotate-left' only fo	r splots ; $<$ shift $>$ increases amo	ount
Down	'builtin-rotate-down' only	for splots; <shift> increases a</shift>	mount
Escape	'builtin-cancel-zoom' canc	el zoom region	3 / 10

Plot

Cloner le dépôt suivant

https://github.com/lbaudouin/module-gnuplot.git

Tracer des données

```
pop(x)=103*exp((1965-x)/10)
plot [1960:1990] 'population.dat', pop(x)
```

Définir les commentaires dans un fichier

set datafile commentschars "#%"
Pour l'ajouter de façon permanente, le mettre dans le fichier :
~/.gnuplot

Modifier les titres

- Modifier le titre de la courbe : plot pop(x) title "Nouveau titre" plot pop(x) t "Nouveau titre"
- Ajouter un titre au graphique : set title "Titre du graphique"

Styles

Plot

```
plot sin(x) with <style>
plot sin(x) w <style>
```

Styles de courbe

nom	raccourci	description
boxes		rectangles verticaux
dots	d	petits points
errorbars	е	points et barre verticale d'erreur
impulses	i	lignes verticales
lines	1	lignes
linespoints	lp	lignes et points
points	р	points
steps	st	marche d'escalier

Couleurs

Ajouter des couleurs

```
plot sin(x) linecolor 1
plot sin(x) lc 3
```

Correspondance des couleurs

1	red	6	yellow
2	green	7	black
3	blue	8	orange
4	magenta	9	grey
5	lightblue		

Colonnes d'un fichier

```
Utilisation des colonnes
```

```
splot "pts3D.txt" using 1:3:2
splot "pts3D.txt" u 1:3:(-$2)
```

Combiner couleurs et colonnes

plot "path.txt" u 1:2:0 w lp lc palette

Utiliser Gnuplot dans vos programmes

```
Commande
  system("gnuplot file.gnup")
  file.gnup
1 set term png size 1024,768
2 set out "output.png"
  set xr [-10:2]
  set yr [-2:10]
  unset label
6 set view equal xyz
  splot 'x.txt' w l, 'y.txt' w l, 'z.txt' w l
```

Génération d'image

Utiliser Gnuplot dans vos programmes

Installer une API

sudo apt install libgnuplot-iostream-dev

```
http://stahlke.org/dan/gnuplot-iostream/
```

```
#include <map>
    #include <vector>
    #include <cmath>
    #include "gnuplot-iostream.h"
    int main() {
         Gnuplot gp:
         std::vector<std::pair<double, double>> xy_pts_A;
         for (double x=-2; x<2; x+=0.01) {
9
             xy_pts_A . push_back(std :: make_pair(x, x*x*x));
10
         std::vector<std::pair<double, double>> xy_pts_B;
         for (double alpha = 0; alpha < 1; alpha += 1.0/24.0) {
             double theta = alpha * 2.0 * 3.14159:
             xv_pts_B.push_back(std::make_pair(cos(theta), sin(theta)));
         gp \ll "set xrange [-2:2] \setminus nset yrange [-2:2] \setminus n";
         gp << "plot" << gp.file1d(xy_pts_A) << "with lines title 'cubic',"</pre>
           << gp.fileld(xy_pts_B) << "with points title 'circle'" << std::endl;</pre>
```