I/O Hardware & Bus Basics

- Note: in the following discussion, a single "system bus" is assumed. For performance reasons, many computers have a hierarchy of busses
- Recall the basic organization:

- For the **data bus**:
 - Can there be more than one writer?
 - Can there be more than one reader?
 - Clearly, yes to both
 - Only one writer at a time

- For the address bus?
- In a simple system (e.g. no DMA, only one CPU/core)
 - NO to both
 - The CPU drives the address bus and controls all bus transfers

- For the control bus lines?
 - The answers depend on the particular line.
 - Bus transfers must follow a protocol
 - Must be controlled by a master.
 - Bus Master component which drives address bus and bus control signals such as R/W
 - R/W single writer the bus master (typically the CPU), but multiple readers

- Control bus lines continued ...
 - IPL lines multiple writers (non-CPU entities) and a single reader the CPU
 - Again, in more complex systems, the CPU isn't always the bus master.
 DMA will be discussed later

- Recall: with multiple writers to a bus line, we must avoid connecting gate outputs together
- We have already seen one technique for allowing multiple (non-simultaneous) bus writers – what is it?
 - A multiplexer. (seen in the Simple Computer)
 - Typically not used for the external system bus. A more flexible approach is to use three state logic.

 Idea: disconnect gates from the bus when they are not needed, using a kind of switch.

Three state buffer:

- Idea: each bus line writer (and reader) can be connected to the (data) bus lines through a three state buffer
 - Max. one writer should be connected at a time
 - If no writers are connected, the bus line is said to be "floating"
 - It is neither 0 nor 1, relative to ground
- Aside: this is why unused gate inputs should never be left unconnected.
 They should be wired to either 0 or 1
 - Remember IC would sometimes be 'on' even when no on signal present

- Bus control signals from the bus master drive the enable signals.
- Why might readers be disconnected when not reading?
 - This avoids reading an incorrect value due propagation delay

- Why might readers be disconnected when not reading?
- This avoids reading an incorrect value due propagation delay.
- Not all connections to the bus are three-state.
 - Three state buffers are involved for the data bus.
 - This is not the case for external control signals (R/W)
 - Depends for the address bus on whether there is a single bus master or not
- For the system bus, why is three state logic more flexible than using a multiplexer?

- For the system bus, why is three state logic more flexible than using a multiplexer?
 - A multiplexer would need to be specifically created for each motherboard
 - How would you handle adding interfaces (i.e. expansion boards)?
 - A multiplexer requires a select signal (lines) would need to either determine which CS line(s) to use for this OR would need to add select lines from CPU
 - As well, CS/RS signals are already generated for individual interfaces based on addresses

Simple Input and Output Interfaces

Note:

- Interfaces are parallel, but with no handshaking
- Neither includes status or control registers; no RS signal
- Neither supports interrupt-driven I/O
- Both assume a synchronous bus
- Generation of CS signal for interfaces is discussed

Simple Input Example

Simple Input Example

Simple Output Example

General Purpose Parallel Interface

6.6 GENERAL-PURPOSE PARALLEL INTERFACE

309

Figure 6.27 A keyboard and a printer connected to a microprocessor bus via a general-purpose parallel interface chip.

Choosing The Interface

- How are the addresses decoded?
 - Assuming and 8-bit address bus
 - Input interface at \$FE
 - Output interface at \$FF

Input/Output Hardware

Figure 6.25 Internal organization of a general-purpose input/output interface.

Open Collector/Open Drain Laines

- Often, it is useful for ≥ 1 units to be able to assert a signal on a common bus line
- An open collector (or "open drain") line is used the precise term depends on the semiconductor logic family used
- The precise electrical details are beyond the scope of this course, but the basic idea is:
 - If "enable A" and "enable B" are both low, the bus line is high.
 Otherwise, the bus line is pulled low
 - The line is not three state it never floats

Open Collector/Open Drain Laines

Open Collector/Open Drain Laines

• This is used to implement signals such as IRQ:

