Kelsey Cameron

Intro to Discrete Structures Assignment 1

- 1.
- a) $p \rightarrow q$
- b) $(s^r) \rightarrow q$
- $(\neg p \land r) \rightarrow q$ c)
- d) If I don't finish my computer project before lunch and the sun is not shining, then I shall not play tennis in the afternoon.
- I shall play tennis in the afternoon if and only if the sun is shining. e)
- 2.
- $p \rightarrow (p \land q)$ a)

a) P (P 4)				
р	q	$p \rightarrow (p \land q)$		
Т	Т	Т		
Т	F	F		
F	Т	Т		
F	F	Т		

- 3.
- a) Tautology
- b) Contradiction
- Contingency (neither) c)

$p v q \rightarrow p$

<u>r 1 r </u>			
р	q	pvq	$p \vee q \rightarrow p$
Т	Т	Т	Т
T	F	Т	Т
F	Т	Т	F
F	F	F	Т

- 4.
- Prove that $(p \rightarrow q) \wedge (\neg q \wedge (r \vee \neg q)) = \neg (q \vee p)$ a)

$$(p \rightarrow q) \wedge (\neg q \wedge (r \vee \neg q))$$

 $(\neg q \land \neg p) \lor (\neg q \land q)$

¬q ^ ¬p

 $\neg (q \lor p)$

b) Prove that $p v (p ^ (p v q)) = p$

p v (p v (p ^ q))

рур

р

Absorption Laws

Distributive

Contradiction

De Morgan's

Distributive

Idempotency Absorption

Idempotency