Semi-supervised and Active Learning

4/22

Amr

Credit: lecture slides

The big picture

Semi-supervised Learning

How?

- There is no free lunch!
- You need to make assumption
- Leverage them to construct an algorithm
- If assumption are correct we can improve

Assumption: Overview

both try to attack the same problem: making the most of unlabeled data ${\cal U}$

uncertainty sampling

query instances the model is least confident about

self-training expectation-maximization (EM)

propagate confident labelings among unlabeled data

query-by-committee (QBC)

use ensembles to rapidly reduce the version space

co-training multi-view learning

use ensembles with multiple views to constrain the version space

Semi-supervised

- If x and x' are similar, then they are likely to have the same label
- Algorithm
 - Assume generative model
 - Cluster and label
 - Regularize the classifier using unlabeled data
 - Multi-view learning

Does it help?

Example

Examples: 1-NN, works!

Propagating 1-Nearest-Neighbor: now it works

Example: 1-NN, doesn't work

Propagating 1-Nearest-Neighbor: now it doesn't

But with a single outlier...

Can we be more robust?

- So in general how to deal with this problem?
 - Generative model
 - Regularization

SSL using Mixture Models

Use all data not one at a time!

SSL using Mixture Models

They are different because they maximize different quantities.

SSL using Mixture Models

- Inference and learning
 - This was your midterm problem!
 - You know more than you think you do!
- Is this robust to noise?
 - At least you can get Bayes optimal if assumption is correct
 - What if assumption are wrong?

• When the assumption is wrong:

Can we be more robust?

- So in general how to deal with this problem?
 - Generative model
 - Regularization

So why a new method

- As we said earlier
- Different kind of assumption
- What if data is not Gaussian?
 - Remember spectral clustering

Graph Regularization

- Regularized classifier
- Learn a classifier that minimize
 - Loss term + regularize
 - Example: ridge regression
- Can we use unlabeled data for regularization?

$$\min_{f} \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l,u} w_{ij} (f_i - f_j)^2$$

Loss on labeled data (mean square,0-1)

Graph based smoothness prior on labeled and unlabeled data

Is it robust?

$$\min_{f} \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l,u} w_{ij} (f_i - f_j)^2$$

Loss on labeled data (mean square,0-1)

Graph based smoothness prior on labeled and unlabeled data

- You can play with the regularization parameter
- Sensitive to graph construction

Handwritten digits recognition with pixel-wise Euclidean distance

The big picture

Semi-supervised Learning

There is no free lunch

- Passive learning
 - Input a set of example
 - Output a classifier
- Observation:
 - Labels are expensive
 - Sometime you can get the same classifier with subset of the data
 - Example?

- SVM
 - Only need support vector
- Is it that easy?
- What assumption are we making here?
 - Noise free environment
- In general, we need a localized function

Active Learning

When does it help?

Active learning is useful if complexity of target function is localized - labels of some data points are more informative than others.

Active Learning setup

Algorithms from Insights

- We need to learn a decision boundary
- Classification uncertainty
 - Query example closer to decision boundary
 - We become more confident if we get them right
 - Somehow this is still local decisions
- Version-Space uncertainty
 - Some how makes global decision

Version Space

Set of hypothesis consistent with labeled examples

Version Space

- Our goal: get a single hypothesis
- Select example that results in maximum reduction of hypothesis space
- What is the problem with that?

Version space: Algorithm

- Query by committee
 - Keep an ensemble of classifiers to approximate
- Goal reduce "entropy" over their contributions
- Idea
 - Sample from P(parameters | data)

Case study: SVM

How to represent version space

maximize
$$\mathbf{w} \in \mathcal{F}$$
 $\min_{i} \{ y_{i}(\mathbf{w} \cdot \Phi(\mathbf{x}_{i})) \}$ subject to: $\|\mathbf{w}\| = 1$ $y_{i}(\mathbf{w} \cdot \Phi(\mathbf{x}_{i})) > 0 \quad i = 1 \dots n.$

 This is slightly re-parameterized SVM objective but it is the same

Case study: SVM

How to represent version space

Given the current labeled data we have an explicit representation of the version space

Query point

Halving the version space (query point c)

Is it the End?

- Supervised
- Semi-supervised
- Active
- Transductive
 - You still get to see unlabeled data
 - But these are also your test data
 - What can you do with that?

Transductive SVM

Chose a confident labeling of unlabeled data

$$\begin{aligned} & & & \frac{1}{2}||\vec{w}||^2 \\ & & & & \forall m = 1: y_i[\vec{w} \cdot \vec{x}_i + b] \geq 1 \\ & & & \forall m = 1: y_i[\vec{w} \cdot \vec{x}_i + b] \geq 1 \\ & & & \forall m = 1: y_i[\vec{w} \cdot \vec{x}_i + b] \geq 1 \end{aligned}$$
 Unlabeled data

Transductive SVM

Why does it make sense?

Transductive SVM

- When is it useful?
- News filtering
 - Labeled data: news users liked in the past
 - Test data (unlabeled): today's news
 - We only need to do well on those test data