## IN THE CLAIMS

Please amend claims 1-13 as follows:

- 1.(Currently Amended) A parametric encoder (100, 100') for encoding an audio or speech <u>signal s signal</u> into sinusoidal code data, comprising:
- a segmentation unit  $\frac{(110, 110')}{}$  for segmenting said  $\frac{}{}$  signal into at least one segment  $\frac{}{}$  x(n);
- a calculation unit (120, 120') for calculating said sinusoidal code data in the form of the phase and amplitude data of an given extension  $\widehat{x}(n)$ -from the segment x(n)-such that the extension  $-\widehat{x}(n)$ -approximates the segment x(n)-as good as possible for a given criterion;

## characterised in that wherein

the calculation unit  $\frac{(120,\ 120')}{}$  is adapted to calculate the sinusoidal code data  $\theta_k^i, d_j^i$  and  $e_j^i$  for the following extension  $\widehat{x}$  extension represented by:

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{j=1}^{L} \sum_{j=0}^{J-1} \left[ d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta^{i}(n) = \sum_{k=1}^{K-1} \theta_{k}^{i} n^{k}$$

wherein:

i, j,  $k_{\underline{\text{J}}, \underline{\text{L}}, \underline{\text{J}}, \underline{\text{K}}}$  : represent parameters;

n : represents a discrete time parameter;

Ci : represents the i'th component of the extension  $\hat{x}$ 

extension;

 $heta_{k}^{i}$  : represents the phase coefficient as one of said

sinusoidal data<u>;</u>

 $f_i$ : represents the jth instance out of the set of J

linearly independent functions;

 $\Theta^{i}$  : is a phase; and

 $d_i^i, e_i^i$  : represent the linearly involved amplitude values of

the components representing parts of said

sinusoidal data.

- 2.(Currently Amended) The parametric encoder according to claim 1, characterised in that wherein  $f_j(n) = n^j$ .
- 3.(Currently Amended) The parametric encoder according to claim 1, characterised in that wherein the calculation unit (120) comprises:
- a frequency estimation unit  $\frac{(122)}{(122)}$  for determining a plurality of LxK phase coefficients  $\theta_k^i$  with i=1-L and k=1-K for all components Ci of the extension  $\hat{x}$  (n) representing the received segment-x (n);
- a pattern generating unit (124)—for calculating a plurality of L phases  $\Theta^i$  (n) with i=1-L from the phase coefficients  $\theta_k^i$  according to:

$$\Theta^{i}(n) = \sum_{k=1}^{K-1} \theta_{k}^{i} n^{k}$$

and for generating a plurality of JxL pairs of patterns  $p_{ij}^1,p_{ij}^2$  for the components Ci with i=1-L according to:

$$p_{ij}^{l} = f_{j}(n) \cos(\Theta^{i}(n))$$
 and  $p_{ij}^{2} = f_{j}(n) \sin(\Theta^{i}(n))$ 

- for i = 1-L and j = 0-(J-1); and
- an amplitude estimation unit (126)—for determining a plurality of JxL amplitudes  $d^i_j$  for the patterns  $p^1_{ij}$  and a plurality of JxL amplitudes  $e^i_j$  for the patterns  $p^2_{ij}$  of all components Ci of the extension— $\hat{x}$  extension;
- wherein the sinusoidal data  $\theta_k^i$ ,  $d_j^i$  and  $e_j^i$  is at least approximately optimized optimized for the a criterion that the weighted squared error E between the segment x segment and its extension  $\hat{x}$  is minimised extension is minimized.
- 4. (Currently Amended) The parametric encoder according to claim 1, characterised by further comprising a multiplexer (130) for merging said sinusoidal code data into a data stream.
- 5. (Currently Amended) The parametric encoder according to claim 1, characterised in that wherein the calculation unit (120') comprises:

- a frequency estimation unit  $\frac{(122')}{(122')}$  for determining a plurality of K phase coefficients  $\theta_k^i$  with k=1-K for the component Ci from an input value  $\epsilon_{i-1}$ ; wherein for the first component C1 with i=1 the input value is set to  $\epsilon_0 = x(n)$ , where the segment is x(n);
- a pattern generating unit  $\frac{(124')}{}$  for calculating the phases  $\Theta^i$  for the component Ci from said plurality of phase coefficients  $\theta^i_{\nu}$  according to:

$$\Theta'(n) = \sum_{k=1}^K \theta_k^i n^k$$

and for generating a plurality of 2xJ patterns  $p_{ij}^1,p_{ij}^2$  with j=1-J for the component Ci with:

$$p_{ij}^{1} = j(n) \cos(\Theta^{i}(n))$$
 and  $p_{ij}^{2} = fj(n)\cos(\Theta^{i}(n))$ ;

- an amplitude estimation unit  $\frac{(126')}{(126')}$  for determining a plurality of J amplitudes  $d^1_j$  and of J amplitudes  $e^i_j$  for said patterns of the component Ci from the received segment  $\frac{\mathbf{x}(\mathbf{n})}{(\mathbf{n})}$  and from the received plurality of  $\frac{2\mathbf{x}\mathbf{J}}{(\mathbf{n})}$  patterns  $p^1_{ij}$ ,  $p^2_{ij}$ ;

- a synthesiser (128') synthesizer for re-constructing the component Ci from said plurality of 2xJ patterns  $p_{ij}^1$ ,  $p_{ij}^2$  and form the plurality of amplitudes  $d_j^i$  and  $e_j^i$  according to:

$$Ci = \sum_{j=0}^{J-1} \left[ d_j^i f_j(n) \cos(\Theta^i(n)) + e_j^i f_j(n) \sin(\Theta^i(n)) \right]$$

and

- a <u>substraction</u> <u>subtraction</u> unit (129') for <u>substracting</u> <u>subtracting</u> said component Ci form the input value  $\epsilon_{i-1}$  in order to feed the resulting difference  $\epsilon_i$  as new input value forward to the input of the frequency estimation unit (122') for calculating the sinusoidal code data representing the component Ci+1;

wherein the sinusoidal data  $\theta_k^i$ ,  $d_j^i$  and  $e_j^i$  is optimised optimized for the a criterion that the weighted squared error E between the segment x segment and the extension  $\hat{x}$  extension is minimised minimized.

- 6.(Currently Amended) A parametric coding method for encoding an audio or speech <u>signal signal</u> into sinusoidal code data, comprising the <u>steps acts</u> of:
- segmenting the  $\frac{\text{signal s-signal}}{\text{signal}}$  into at least one segment  $\frac{\text{x(n)}}{\text{signal}}$ ; and
- calculating said sinusoidal code data in the form of phase and amplitude data of an given extension  $\hat{x}$  extension from the segment x(n) such that the extension  $\hat{x}$  extension approximates the segment x(n) as good as possible for a given criterion,

characterised in that wherein

- the extension  $\hat{x}$ -extension is defined to as:

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[ d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

wherein:

i : represents a component Ci of the  $\frac{\hat{x}-n}{\hat{x}}$  extension;

j,  $k_{\underline{,}}$  L, J,  $\underline{K}$  : represent parameters;

n : represents a discrete time parameter;

f; : represents the jth instance out of the set of J

linearly independent functions;

 $heta_{
u}^{i}$  : represents the phase coefficient as one of said

sinusoidal data

 $\Theta^{i}$  : is a phase; and

 $d_{i}^{i}$  ,  $e_{i}^{i}$  : represent the linearly involved amplitude values of

the components representing parts of said

sinusoidal data.

- 7. (Currently Amended) The method according to claim 6,  $\frac{1}{2} \frac{1}{n^{2}} = \frac{1}{n^{2}} \frac{1}{n^{2}} = \frac{1}{n^{2}} \frac{1}{n^$
- 8.(Currently Amended) The method according to claim 6, characterised in that wherein the frequencies phase coefficients  $\theta_1^i$  are defined by picking peak frequencies in the frequency domain of the extension  $\hat{x}$  extension.

- 9. (Currently Amended) The method according to claim 6, characterised in that wherein, for fulfilling the a criterion that the weighted squared error between the segment x segment and the extension  $\hat{x}$ -extension is minimized, the definition of the optimal amplitudes  $d_j^i$  and  $e_j^i$  comprises the steps—acts of:
- determining a plurality of LxK phase coefficients  $\theta_k^i$  with i=1-L and k=1-K for all components Ci of the\_received\_segment x(n) segment;
- calculating a plurality of L phases  $\Theta^i$ (n) with i=1-L from the phase coefficients  $heta_k^i$  according to:

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k} ;$$

- generating a plurality of JxL pairs of patterns  $p_{ij}^1$  ,  $p_{ij}^2$  for the components Ci with i=1-L according to:

$$p_{ij}^{l} = f_{j}(n) \cos(\Theta^{i}(n))$$
 and  $p_{ij}^{2} = f_{j}(n)\sin(\Theta^{i}(n))$ ; and

- determining a plurality of JxL amplitudes  $d^i_j$  and a plurality of JxL amplitudes  $e^i_j$  for all the pairs of patterns  $p^1_{ij}$  ,  $p^2_{ij}$  of all components Ci of the extension  $\widehat{x}$  .
- 10.(Currently Amended) The method according to claim 6, characterised in that wherein, for fulfilling the a criterion that the weighted squared error between the segment x segment and the extension  $\hat{x}$ -extension is minimized, the a definition of the amplitudes  $d_j^i$  and  $e_j^i$  comprises the steps—acts of:
  - a) setting i= 1
  - b)  $\varepsilon_{i-1} = \varepsilon_0 = x(n)$ ;
- c) determining a plurality of K phase coefficients  $\theta_k^i$  with k=1-K for the component Ci from an input value  $\epsilon_{i-1}$ ;
- d) calculating the phases  $\Theta^i$  for the component Ci from said plurality of phase coefficients  $heta_k^i$  according to:

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

e) generating a plurality of 2xJ patterns  $p_{ij}^1$  ,  $p_{ij}^2$  with

j=0-(J-1) for the component Ci with:

$$p_{ij}^{l} = f_{j}(n) \cos(\Theta^{i}(n)) \text{ and } p_{ij}^{2} = f_{j}(n)\sin(\Theta^{i}(n));$$

- f) determining a plurality of J amplitudes  $d_j^i$  and of J amplitudes  $e_j^i$  for said patterns for the component Ci from the received segment  $\mathbf{x}(\mathbf{n})$  segment and from the received plurality of 2xJ patterns  $p_{ij}^1$ ,  $p_{ij}^2$ ;
- g) constructing the component Ci from said plurality of J pairs of patterns pij and from the plurality of amplitudes  $d_j^i$  and  $e_i^i$  according to:

$$Ci = \sum_{j=0}^{J-1} \left[ d_j^i f_j(n) \cos(\Theta^i(n)) + e_j^i f_j(n) \sin(\Theta^i(n)) \right]$$

- h) substracting subtracting said component Ci from the input value  $\epsilon_{i\text{-}1}$  in order to calculate a resulting difference  $\epsilon_{i}$ ;
- i) checking if i > L wherein L represents a given number of
  number of components;

- j) if i < L repeat the method steps\_acts by starting again
  from step\_act c) with i = i+1; and</pre>
- k) if  $i \ge L$  the sinusoidal code data of all L components of the extension  $\hat{x}$ -extension have been calculated—and thus the process has finished.
- 11. (Currently Amended) A parametric decoder (400)—for reconstructing an approximation—\$\hat{s}\$—approximation of an audio or speech signal s from transmitted signal from transmitted or restored code data, comprising:
- a selecting unit (420)—for selecting sinusoidal code data representing segments  $\widehat{x}$ —segments of the approximation  $\widehat{s}$  approximation from said received transmitted or restored code data;
- a synthesiser (440)—synthesizer for re-constructing said segments  $\hat{x}$ —segments from said received sinusoidal code data; and
- a joining unit (460)—for joining consecutive segments  $\hat{x}$ segments to form said approximation— $\hat{s}$ —approximation of the audio or speech—signal s\_signal;

wherein the sinusoidal code data is a plurality of frequency and amplitude values for at least one component of said segment  $\hat{x}$ segments;

characterised in that wherein

- the synthesizer is adapted to re-construct said  $\frac{1}{2}$  segments from said sinusoidal code data according to an extension represented by the following formula:

$$\hat{x} = \sum_{i=1}^{L} Ci = \sum_{j=1}^{L} \sum_{j=0}^{J-1} \left[ d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

wherein:

: represents a component Ci of the extension  $\hat{x}$  (n)

extension;
j,k, L, J, K : represent parameters;

: represents a discrete time parameter;

: represents the jth instance out of the set of J f,

linearly independent functions;

 $heta_{k}^{i}$  : represents the phase coefficient value as one of

said sinusoidal data

 $\Theta^{i}$  : is a phase; and

 $d_i^i$ ,  $e_i^i$ : represent the linearly involved amplitude values of

the components representing parts of said

sinusoidal data.

- 12. (Currently Amended) Decoding method for reconstructing an approximation  $\hat{s}$ —approximation of an audio or speech signal s signal from transmitted or restored code data, comprising the steps acts of selecting sinusoidal code data representing segments  $\hat{x}$  segments of the approximation  $\hat{s}$ —approximation from said received transmitted or restored code data;
- re-constructing said  $\frac{\hat{x}}{\text{segments}}$   $\frac{\hat{x}}{\hat{x}}$   $\frac{\hat{x}}{\text{segments}}$  from said  $\frac{\hat{x}}{\text{received}}$  sinusoidal code data; and
- joining consecutive segments  $\widehat{x}$ -ones of said segments together in order to form said approximation  $\widehat{s}$ -of the audio or speech-signal s signal;

- wherein the sinusoidal code data is a plurality of phase and amplitude values for at least one component of said segment  $\hat{x}$ segment,

characterised in that wherein

- in said re-construction step act, the segments  $\hat{x}$  segments are re-constructed from said sinusoidal code data according to an extension represented by the following formula:

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[ d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta'(n) = \sum_{k=1}^K \theta_k^i n^k$$

wherein:

: represents a component Ci of the extension  $\hat{x}$  (n)

extension;
j,k, L, J, K : represent parameters;

represents a discrete time parameter;

 $f_i$ : represents the jth instance out of the set of J

linearly independent functions;

 $heta_{_{m{ ext{$\iota$}}}}^{_{m{ ext{$\prime$}}}}$  : represents the phase coefficient as one of said

sinusoidal data

 $\Theta^{i}$  : is a phase; and

 $d_i^i, e_i^i$  : represent the linearly involved amplitude values of

the components representing parts of said

sinusoidal data.

13. (Currently Amended) Data stream comprising sinusoidal code data representing segments— $\hat{x}$ —a segment of an approximation— $\hat{s}$  approximation of an audio or speech signal, wherein the sinusoidal code data is a plurality of phase and amplitude values for at least one component of said—segment— $\hat{x}$ —segment, characterised in that wherein the segment— $\hat{x}$ —segment is defined according to an extension represented by to:

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[ d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

wherein:

i : represents a component Ci of the extension  $\hat{x}$  (n)

extension;

j,k, L, J, K : represent parameters;

n : represents a discrete time parameter;

 $f_i$ : represents the jth instance out of the set of J

linearly independent functions;

 $heta_{_{m{ extbf{L}}}}^{_{i}}$  : represents the phase coefficient as one of said

sinusoidal data

 $\Theta^{i}$  : is a phase; and

 $d_i^i$  ,  $e_i^i$  : represent the linearly involved amplitude values of

the components representing parts of said

sinusoidal data.

14.(Original) Storage medium on which a data stream as claimed in claim 13 has been stored.