Routing

Routing protocol

Goal: determine "good" path (sequence of routers) thru network from source to dest.

Graph abstraction for routing algorithms:

- graph nodes are routers
- graph edges are physical links
 - link cost: delay, \$ cost, or congestion level

- "good" path:
 - typically means minimum cost path
 - Cost for whom?
 - other definitions possible

Routing Algorithm classification

Global or decentralized information? Global:

- all routers have complete topology, link cost info
- "link state" algorithms

Decentralized:

- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Static or dynamic?

Static:

routes change slowly over time

Dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes
 - People with backhoes!

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via *link state*broadcast
 - all nodes have same info
- computes least cost paths from one node ("source") to all other nodes
 - gives routing table for that node
- iterative:
 - after k iterations, know least cost path to k dest.'s

Notation:

- C(i,j): link cost from node i to j. cost infinite if not direct neighbors
- D(v): current value of cost of path from source to dest. V
- p(v): predecessor node along path from source to v, that is next v
- N: set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
Initialization:
   N = \{A\}
   for all nodes v
     if v adjacent to A
      then D(v) = c(A,v)
5
      else D(v) = \infty
6
   Loop
    find w not in N such that D(w) is a minimum
    add w to N
    update D(v) for all v adjacent to w and not in N:
       D(v) = \min(D(v), D(w) + c(w,v))
12
    /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N
```

Dijkstra's algorithm: example

S	tep	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	Α					
	1						
	2						
,	3						
	4						
	5						

Dijkstra's algorithm: example

S	tep	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	Α	2,A	5,A	1,A	∞	∞
	1	AD	2,A	4,D		2,D	00
	2	ADE	2,A	3,E			4,E
	3	ADEB		3,E			4,E
	4	ADEBC					4,E
	5	ADEBCF					

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- $n^*(n+1)/2$ comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

Oscillations possible:

e.g., link cost = amount of carried traffic

Dijkstra's algorithm, discussion

How can we fix it?

- Make sure all the re-computations don't happen at the same time
- Unfortunately routing updated tend to happen at the same time...
- Don't use traffic as the cost in Link State
- OSFP is a link state routing algo what cost is used? (number of hops)

