FG-submodules and reducibility

We begin the study of FG-modules by introducing the basic building blocks of the theory – the irreducible FG-modules. First we require the notion of an FG-submodule of an FG-module.

Throughout, G is a group and F is \mathbb{R} or \mathbb{C} .

FG-submodules

5.1 Definition

Let V be an FG-module. A subset W of V is said to be an FG-submodule of V if W is a subspace and $wg \in W$ for all $w \in W$ and all $g \in G$.

Thus an FG-submodule of V is a subspace which is also an FG-module.

5.2 Examples

- (1) For every FG-module V, the zero subspace $\{0\}$, and V itself, are FG-submodules of V.
- (2) Let $G = C_3 = \langle a: a^3 = 1 \rangle$, and let V be the 3-dimensional FG-module defined in Example 4.11. Thus, V has basis v_1, v_2, v_3 , and

$$v_1 1 = v_1, v_2 1 = v_2, v_3 1 = v_3,$$

 $v_1 a = v_2, v_2 a = v_3, v_3 a = v_1,$
 $v_1 a^2 = v_3, v_2 a^2 = v_1, v_3 a^2 = v_2.$

Put $w = v_1 + v_2 + v_3$, and let W = sp (w), the 1-dimensional subspace spanned by w. Since

$$w1 = wa = wa^2 = w$$
.

W is an FG-submodule of V. However, sp $(v_1 + v_2)$ is not an FG-submodule, since

$$(v_1 + v_2)a = v_2 + v_3 \notin \operatorname{sp}(v_1 + v_2).$$

Irreducible FG-modules

5.3 Definition

An FG-module V is said to be *irreducible* if it is non-zero and it has no FG-submodules apart from $\{0\}$ and V.

If V has an FG-submodule W with W not equal to $\{0\}$ or V, then V is reducible.

Similarly, a representation $\rho: G \to \operatorname{GL}(n, F)$ is *irreducible* if the corresponding FG-module F^n given by

$$vg = v(g\rho) \quad (v \in F^n, g \in G)$$

(see Theorem 4.4(1)) is irreducible; and ρ is *reducible* if F^n is reducible.

Suppose that V is a reducible FG-module, so that there is an FG-submodule W with $0 < \dim W < \dim V$. Take a basis \mathcal{B}_1 of W and extend it to a basis \mathcal{B} of V. Then for all g in G, the matrix $[g]_{\mathcal{B}}$ has the form

$$\begin{pmatrix}
X_g & 0 \\
\hline
Y_g & Z_g
\end{pmatrix}$$

for some matrices X_g , Y_g and Z_g , where X_g is $k \times k$ ($k = \dim W$).

A representation of degree n is reducible if and only if it is equivalent to a representation of the form (5.4), where X_g is $k \times k$ and 0 < k < n.

Notice that in (5.4), the functions $g \to X_g$ and $g \to Z_g$ are representations of G: to see this, let $g, h \in G$ and multiply the matrices $[g]_{\mathscr{B}}$ and $[h]_{\mathscr{B}}$ given by (5.4). Notice also that if V is reducible then dim $V \ge 2$.

5.5 Examples

(1) Let $G = C_3 = \langle a: a^3 = 1 \rangle$ and let V be the 3-dimensional FG-module with basis v_1, v_2, v_3 such that

$$v_1a = v_2, v_2a = v_3, v_3a = v_1,$$

as in Example 4.11. We saw in Example 5.2(2) that V is a reducible FGmodule, and has an FG-submodule $W = \operatorname{sp}(v_1 + v_2 + v_3)$. Let \mathscr{B} be the
basis $v_1 + v_2 + v_3$, v_1 , v_2 of V. Then

$$[1]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, [a]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix},$$
$$[a^{2}]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

This reducible representation gives us two other representations: at the 'top left' we have the trivial representation and at the 'bottom right' we have the representation which is given by

$$1 \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a \to \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, a^2 \to \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}.$$

(2) Let $G = D_8$ and let $V = F^2$ be the 2-dimensional FG-module described in Example 4.5(1). Thus $G = \langle a, b \rangle$, and for all $(\lambda, \mu) \in V$ we have

$$(\lambda, \mu)a = (-\mu, \lambda), \quad (\lambda, \mu)b = (\lambda, -\mu).$$

We claim that V is an irreducible FG-module. To see this, suppose that there is an FG-submodule U which is not equal to V. Then dim $U \le 1$, so $U = \operatorname{sp}((\alpha, \beta))$ for some $\alpha, \beta \in F$. As U is an FG-module, $(\alpha, \beta)b$ is a scalar

multiple of (α, β) , and hence either $\alpha = 0$ or $\beta = 0$. Since $(\alpha, \beta)a$ is also a scalar multiple of (α, β) , this forces $\alpha = \beta = 0$, so $U = \{0\}$. Consequently V is irreducible, as claimed.

Summary of Chapter 5

- 1. If *V* is an *FG*-module, and *W* is a subspace of *V* which is itself an *FG*-module, then *W* is an *FG*-submodule of *V*.
- 2. The FG-module V is irreducible if it is non-zero and the only FG-submodules are $\{0\}$ and V.

Exercises for Chapter 5

- 1. Let $G = C_2 = \langle a : a^2 = 1 \rangle$, and let $V = F^2$. For $(\alpha, \beta) \in V$, define $(\alpha, \beta)1 = (\alpha, \beta)$ and $(\alpha, \beta)a = (\beta, \alpha)$. Verify that V is an FG-module and find all the FG-submodules of V.
- 2. Let ρ and σ be equivalent representations of the group G over F. Prove that if ρ is reducible then σ is reducible.
- 3. Which of the four representations of D_{12} defined in Exercise 3.5 are irreducible?
- 4. Define the permutations a, b, $c \in S_6$ by

$$a = (1 \ 2 \ 3), b = (4 \ 5 \ 6), c = (2 \ 3)(4 \ 5),$$

and let $G = \langle a, b, c \rangle$.

(a) Check that

$$a^{3} = b^{3} = c^{2} = 1$$
, $ab = ba$,
 $c^{-1}ac = a^{-1}$ and $c^{-1}bc = b^{-1}$.

Deduce that G has order 18.

(b) Suppose that ε and η are complex cube roots of unity. Prove that there is a representation ρ of G over \mathbb{C} such that

$$a\rho = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}, \ b\rho = \begin{pmatrix} \eta & 0 \\ 0 & \eta^{-1} \end{pmatrix}, \ c\rho = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

- (c) For which values of ε , η is ρ faithful?
- (d) For which values of ε , η is ρ irreducible?
- 5. Let $G = C_{13}$. Find a $\mathbb{C}G$ -module which is neither reducible nor irreducible.