1μA (typ.)

N

LM4857 Boomer® Audio Power Amplifier Series Stereo Audio Sub-system with 3D Enhancement

General Description

The LM4857 is an integrated audio sub-system designed for stereo cell phone applications. Operating on a 3.3V supply, it combines a stereo speaker amplifier delivering 475mW per channel into an 8Ω load, a stereo headphone amplifier delivering 30mW per channel into a 32Ω load, a mono earpiece amplifier delivering 30mW into a 32Ω load, and a line output for an external powered handsfree speaker. It integrates the audio amplifiers, volume control, mixer, power management control, and National 3D enhancement all into a single package. In addition, the LM4857 routes and mixes the stereo and mono inputs into 16 distinct output modes. The LM4857 is controlled through an $l^2 C$ compatible interface.

Boomer audio power amplifiers are designed specifically to provide high quality output power with a minimal amount of external components.

The LM4857 is available in a 30-bump ITL package

Key Specifications

■ Pout, Stereo BTL, 8Ω , 3.3V, 1% 475mW (typ.) ■ Pout H/P, 32Ω , 3.3V, 1% 30mW (typ.) ■ Pout Mono Earpiece, 32Ω , 1% 30mW (typ.)

■ Shutdown current

Features

- Stereo speaker amplifier, 475mW/ch
- Stereo headphone amplifier, 30mW/ch
- Mono earpiece amplifier, 30mW
- Mono Line Output for external handsfree carkit
- Independent Left, Right, and Mono volume controls
- National 3D enhancement
- I²C compatible interface
- Ultra low shutdown current
- Click and Pop Suppression circuit
- 16 distinct output modes

Applications

- Cell Phones
- PDA,s

Block Diagram

FIGURE 1: Audio Sub-system Block Diagram

Boomer® is a registered trademark of National Semiconductor Corporation

30 Bump ITL Package

(Bump side down)
Order Number LM4857ITL
See NS Package Number TLA30XXX

Pin Connection

Pin	Name	Pin Description
A1	RLS-	Right Loudspeaker Negative Output
A2	V_{DD}	Power Supply
A3	SDA	Data
A4	RHP3D	Right Headphone 3D
A5	HPR	Right Headphone Output
B1	GND \	Ground \
B2	I ² CV _{DD}	I ² C Interface Power Supply
B3	ADR	I ² C Address Select
B4	LHP3D	Left Headphone 30
B5	V_{DD}	Power Supply
C1	RLS+	Right Loudspeaker Positive Output
C2	NC	No Connect
C3	SCL	Clock
C4	LINEOUT	Mono Line Output
C5	GND	Ground
D1	LLS+	Left Loudspeaker Positive Output
D2	V_{DD}	Power Supply
D3	M _{IN}	Mono Input
D4	NC	No Connect
D5	EP-	Mono Earpiece Negative Output
E1	GND	Ground
E2	BYPASS	Half-supply bypass
E3	LLS3D	Left Loudspeaker 3D
E4	R _{IN}	Right Stereo Input
E5	EP+	Mono Earpiece Positive Output
F1	LLS-	Left Loudspeaker Negative Output
F2	V_{DD}	Power Supply
F3	RLS3D	Right Loudspeaker 3D
F4	L _{IN}	Left Stereo Input
F5	HPL	Left Headphone Output

Absolute Maximum Ratings (Note 1, 2)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Thermal Resistance θ_{JA} (TLA30CZA)

TBD

Operating Ratings

Temperature Range $T_{MIN} \leq T_{A} \leq T_{MAX}$ Supply Voltage

 $\text{-40}^{\circ}C \leq T_{A} \leq \text{+85}^{\circ}C$

$$\begin{split} 2.7V &\leq V_{DD} \leq 5.5V \\ 2.7V &\leq I^2CV_{DD} \leq 5.5V \end{split}$$

Audio Amplifier Electrical Characteristics V_{DD} = 5.0V (Notes 1, 2)

The following specifications apply $V_{DD} = 5.0V$, unless otherwise specified. Limits apply for $T_A = 25$ °C.

			LM4	1	
Symbol	Parameter	Conditions	Typical	Limit	Units
•			(Note 6)	(Note 7, 8)	(Limits)
I _{DD}	Supply Current	Vin = 0; No Load; LD5 = RD5 = 0			
		Mode 1, 6, 11	6.6	TBD	mA (max)
		Mode 4 5, 9, 10, 14, 15	_ 5.3	TBD	mA (max)
		Mode 2, 3, 7, 8, 12, 13	14	TBD \	mA (max)
I _{SD}	Shutdown Current	Mode 0	1	10	μΑ (max)
Po	Output Power	Speaker; THD=1%; f=1kHz, 8Ω BTL	_ 1.1 _		W (min)
P ₀	Output Power	Headphone; THD=1%; f=1kHz, 32Ω SE	60	50	mW (min)
		Earpiece; THD=1%; f=1kHz, 32Ω BTL; CD4 = 0	85	65	mW (min)
		Earpiece; THD=1%; f=1kHz, 32Ω BTL; CD4 = 1	100		mW
		LD5 = RD5 = 0			
THD+N	Total Harmonic Distortion	Speaker; Po = 500mW; f=1kHz; 8Ω BTL	0.2		%
		Headphone; Po = 30mW; $f = 1kHz$; 32Ω SE	0.1		%
		Earpiece; Po =40mW; f = 1kHz; 32Ω BTL; CD4 = 0	0.1		%
		Line Out; Vo = 1Vrms; f=1kHz; $10k\Omega$ SE	0.1		%
		Speaker; LD5 = RD5 = 0	5	30	mV (max)
Vos	Offset Voltage	Earpiece; LD5 = RD5 = 0	5	30	mV (max)
Nout	Output Noise	A=weighted; 0dB gain; LD5 = RD5 = 0			
		Speaker; Mode 2, 3, 7, 8	34		μV
		Speaker; Mode 12, 13	47		μV

		Headphone; Mode 3, 4, 8, 9	13		μV
		Headphone; Mode 13, 14	19		μV
		Earpiece; Mode 1; CD4 = 0	18		μV
		Earpiece; Mode 6	25		μV
		Earpiece; Mode 11	28		μV
		Line Out; Mode 5	13		μV
		Line Out; Mode 10	19		μV
		Line Out; Mode 15	26		μV
		f = 217Hz; Vrip=200mVpp; 0dB Gain Setting; $C_B = 2.2uF$ LD5 = RD5 = 0			
	Power Supply Rejection	Speaker; Mode 2, 3, 7, 8	68		dB
PSRR		Speaker; Mode 12, 13	62	TBD	dB (min)
		Headphone; Mode 3, 4, 8, 9	70		dB
		Headphone; Mode 13, 14	70	TBD	dB (min)
		Earpiece; Mode 1	70		dB
		Earpiece; Mode 6	70		dB
		Earpiece; Mode 11	_{[66}	тво∖	dB (min)
		Line Out; Mode 5	70		dB
		Line Out; Mode 10	70		dB
		Line Out; Mode 15	66 -	→ BD	dB (min)
Xtalk	Crosstalk	LD5 = RD5 = 0			
		Loudspeaker; Po=400mW; f = 1kHz	55		dB
		Headphone; Po=15mW; f = 1kHz	55		dB
		CD5 = 0; C _B = 2.2uF	120	TBD	ms (max)
T_{WU}	Wake-up Time	CD5 = 1; C _B = 2.2uF	230	TBD	ms (max)

Audio Amplifier Electrical Characteristics $V_{DD} = 3.0V$ (Notes 1, 2) The following specifications apply $V_{DD} = 3.0V$, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

			LM4	LM4857		
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)	
			(Note 6)	(Note 7, 8)		
I _{DD}	Supply Current	Vin = 0; No Load; LD5 = RD5 = 0		,		
		Mode 1, 6, 11	6	TBD	mA (max)	
		Mode 4, 5, 9, 10, 14, 15	5	TBD	mA (max)	
		1	•	•	•	

		Mode 2, 3, 7, 8, 12, 13	12	TBD	mA (max)
I _{SD}	Shutdown Current	Mode 0	1	10	μΑ (max)
Po	Output Power	Speaker; THD=1%; f=1kHz, 8Ω BTL	350	320	mW (min)
Γ0	Odiput Fower	Headphone; THD=1%; f=1kHz, 32Ω SE	25	18	mW (min)
		Earpiece; THD=1%; f=1kHz, 32Ω BTL; CD4 = 0	25	18	mW (min)
		Earpiece; THD=1%; f=1kHz, 32Ω BTL; CD4 = 1	25		mW
		LD5 = RD5 = 0			
THD+N	Total Harmonic Distortion	Speaker; Po = 200mW; f=1kHz; 8Ω BTL	0.2		%
		Headphone; Po = 10mW; $f = 1kHz$; 32Ω SE	0.1		%
		Earpiece; Po =10mW; f = 1kHz; 32Ω BTL; CD4 = 0	0.1		%
		Line Out; Vo = 1Vrms; $f=1kHz$; $10k\Omega$ SE	0.1		%
Vos	Offset Voltage	Speaker; LD5 = RD5 = 0	5	30	mV (max)
		Earpiede; LD5 = RD5 = 0 A=weighted; 0dB gain; LD5 = RD5 = 0	5	30	mV (max)
Nout	Output Noise	Speaker; Mode 2, 3, 7, 8 Speaker; Mode 12, 13	34 47		μV μV
		Headphone; Mode 3, 4, 8, 9	13		<u>μ</u> V
		Headphone; Mode 13, 14	19		μV
		Earpiece; Mode 1	18		μV
		Earpiece; Mode 6	25		μV
		Earpiece; Mode 11	28		μV
		Line Out; Mode 5	13		μV
		Line Out; Mode 10	19		μV
		Line Out; Mode 15	26		μV
PSRR	Power Supply Rejection	f = 217Hz; $Vrip=200mVpp$; $0dB Gain Setting$; $C_B = 2.2uF$ LD5 = RD5 = 0			l
		Speaker; Mode 2, 3, 7, 8	68		dB
		Speaker; Mode 12, 13	62	TBD	dB (min)
		Headphone; Mode 3, 4, 8, 9	70		dB
		Headphone; Mode 13, 14	70	TBD	dB (min)
		Earpiece; Mode 1	70		dB

		Earpiece; Mode 6	70		dB
		Earpiece; Mode 11	66	TBD	dB (min)
		Line Out; Mode 5	70		dB
		Line Out; Mode 10	70		dB
		Line Out; Mode 15	66	TBD	dB (min)
Xtalk	Crosstalk	LD5 = RD5 = 0			
		Loudspeaker; Po=200mW; f = 1kHz	55		dB
		Headphone; Po=10mW; f = 1kHz	55		dB
_		CD5 = 0; C _B = 2.2uF	80	TBD	ms (max)
Twu	Wake-up Time	CD5 = 1; C _B = 2.2uF	140	TBD	ms (max)

Volume Control Electrical Characteristics (Notes 1, 2) The following specifications apply for $3V \le V_{DD} \le 5V$ and $3V \le I^2CV_{DD} \le 5V$, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

			LM4	857	
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)
			(Note 6)	(Note 7, 8)	
		maximum gain setting	6	5.5 6.5	dB (min) dB (max)
	Stereo Volume Control Range	minimum gain setting	-40.5	41 -40	dB (min) dB (max)
		maximum gain setting	12	11.5 12.5	dB (min) dB (max)
	Mono Volume Control Range	minimum gain setting	-34.5	-35 -34	dB (min) dB (max)
	Volume Control Step Size		1.5		dB
	Volume Control Step Size Error		+/- 0.2	+/- 0.5	dB (max)
	Stereo Channel to Channel Gain Mismatch		0.3		dB
		mode 12; Vin = 1Vrms			
	Mute Attenuation	Headphone	70	TBD	dB (min)
		Line Out	70	TBD	dB (min)
		maximum gain setting	33.5	25	kΩ (min)
	L _{IN} and R _{IN} Input Impedance	maximum gain setting	00.0	42	kΩ (max)
	LIN and KIN Imput impedance	minimum gain setting	100	75	kΩ (min)
		Thin in total gain setting	100	125	kΩ (max)
	M _{IN} Input Impedance	mayimum gain catting	20	15	kΩ (min)
		maximum gain setting	20	25	kΩ (max)
		6			

minimum gain cotting	98	73	$k\Omega$ (min)
minimum gain setting	96	123	kΩ (max)

Control Interface Electrical Characteristics (Notes 1, 2)

The following specifications apply for $3V \le V_{DD} \le 5V$ and $3V \le I^2CV_{DD} \le 5V$, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

				LM4857		
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)	
			(Note 6)	(Note 7, 8)	(Lillits)	
_t ₁	SCL period			2.5	μs (min)	
t_2	SDA Setup Time			100	ns (min)	
t ₃	SDA Stable Time			0	ns (min)	
t ₄	Start Condition Time			100	ns (min)	
t ₅	Stop Condition Time			100	ns (min)	
V _{IH}	Digital Input High Voltage			0.7 x I ² CV _{DD}	V (min)	
V _{IL}	Digital Input Low Voltage			0.3 x I ² CV _{DD}	V (max)	

Note 1: All voltages are measured with respect to the GND pin unless other wise specified

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4857 typical application with $V_{DD} = 3.3V$, $R_L = 8\Omega$ stereo operation the total power dissipation is TBDW. $\theta_{JA} = TBD^{\circ}C/W$.

- **Note 4:** Human body model, 100 pF discharged through a 1.5 k Ω resistor.
- Note 5: Machine Model, 220pF-240pF discharged through all pins.
- Note 6: Typicals are measured at 25°C and represent the parametric norm.
- Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
- Note 8: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
- Note 9: Shutdown current is measured in a normal room environment.

Application Information

FIGURE 2: I²C Timing Diagram

FIGURE 3: I²C Bus Format

Table 1. Chip Address

	A7	A6	A5	A4	A3	A2	A1	A0
Chip Address	1	1	1	1	1	0	EC	0
ADR = 0	1	1	1	1	1	0	0	0
ADR = 1	1	1	1	1	1	0	1	0

EC – externally configured by ADR pin

GON GONTON Registers Told Segisters Told Segisters

	D7	D6	D5	D4	D3	D2	D1	D0
Mono Volume control	0	0	0	MD4	MD3	MD2	MD1	MD0
Left Volume control	0	1	LD5	LD4	LD3	LD2	LD1	LD0
Right Volume control	1	0	RD5	RD4	RD3	RD2	RD1	RD0
Mode Control	1	1	CD5	CD4	CD3	CD2	CD1	CD0

Table 3. Mono Volume Control

MD4	MD3	MD2	MD1	MD0	Gain (dB)
0	0	0	0	0	-34.5
0	0	0	0	1	-33
0	0	0	1	0	-31.5
0	0	0	1	1	-30
0	0	1	0	0	-28.5
0	0	1	0	1	-27
0	0	1	1	0	-25.5
0	0	1	1	1	-24
0	1	0	0	0	-22.5
0	1	0	0	1	-21
0	1	0	1	0	-19.5
0	1	0	1	1	-18
0 0	1 1 1	1 1 1 1	0	0 1 0 1	-16.5 -15 -13.5 -12
	0	10	0 -	0	-10.5
1	0	0	1	0	-7.5
1	0	0	1	1	-6
1	0	1	0	0	-4.5
1	0	1	0	1	-3
1	0	1	1	0	-1.5
1	0	1	1	1	0
1	1	0	0	0	1.5
1	1	0	0	1	3
1	1	0	1	0	4.5
1	1	0	1	1	6
1	1	1	0	0	7.5
1	1	1	0	1	9
1	1	1	1	0	10.5
1	1	1	1	1	12

Table 4. Stereo Volume Control

LD4 // RD4	LD3 // RD3	LD2 // RD2	LD1 // RD1	LD0 // RD0	Gain (dB)
0	0	0	0	0	-40.5
0	0	0	0	1	-39
0	0	0	1	0	-37.5
0	0	0	1	1	-36
0	0	1	0	0	-34.5
0	0	1	0	1	-33
0	0	1	1	0	-31.5
0	0	1	1	1	-30
0	1	0	0	0	-28.5
0	1	0	0	1	-27
0	1	0	1	0	-25.5
0	1	0	1	1	-24
0	1	1	0	0	-22.5
0	1	1	0	1	-21
0	1	1	1	0	-19.5
	1	1		7 7	-18
	0	O	o	0	-16.5
	0	d	О	1	-15
1	0	0	1	0	-13.5
1	0	0	1	1	-12
1	0	1	0	0	-10.5
1	0	1	0	1	-9
1	0	1	1	0	-7.5
1	0	1	1	1	-6
1	1	0	0	0	-4.5
1	1	0	0	1	-3
1	1	0	1	0	-1.5
1	1 0		1	1	0
1	1	1	0	0	1.5
1	1	1	0	1	3
1	1	1	1	0	4.5
1	1	1	1	1	6

Table 5. Mixer and Output Mode Control

CD CD CD		0.5	Mono	Mono Earpiece		Loud-	Loud-	Head-	Head-		
Mode	CD 3	CD 2	CD 1	CD 0	Line Out	(CD4 = 0)	(CD4 = 1)	speaker L	speaker R	phone L	phone R
0	0	0	0	0	SD	SD	SD	SD	SD	SD	SD
1	0	0	0	1	MUTE	(G _M x M)	2(G _M x M)	SD	SD	MUTE	MUTE
2	0	0	1	0	MUTE	SD	SD	2(G _M x M)	2(G _M x M)	MUTE	MUTE
3	0	0	1	1	MUTE	SD	SD	2(G _M x M)	2(G _M x M)	(G _M x M)	$(G_M \times M)$
4	0	1	0	0	MUTE	SD	SD	SD	SD	(G _M x M)	$(G_M \times M)$
5	0	1	0	1	(G _M x M)	SD	SD	SD	SD	MUTE	MUTE
6	0	1	1	0	MUTE	(G _L x L) + (G _R x R)	2(G _L x L) + 2(G _R x R)	SD	SD	MUTE	MUTE
7	0	1	1	1	MUTE	SD	SD	2(G _L x L)	2(G _R x R)	MUTE	MUTE
8	1	0	0	0	MUTE	SD	SD	2(G _L x L)	2(G _R x R)	(G _L x L)	(G _R x R)
9	1	0	0	1	MUTE	SD	SD	SD	SD	(G _L x L)	(G _R x R)
10	1	0	1	0	(G _L x L) + (G _R x R)	SD	SD	SD	SD	MUTE	MUTE
11		0	1	7	MUTE	(G _M x M) + (G _R x L) + (G _R x R)	2(G _M x M) + 2(G _L x L) + 2(G _R x R)	SD	SD	MUTE	MUTE
12	1		þ	0	MUTE	\$D	SD	2(G _L x L) + 2(G _M x M)	2(G _R x R) + 2(G _M x M)	MUTE	MUTE
13	1) 1	0	1	MUTE	SD	SD	2 (G _L x L) + 2(G _M x M)	2(G _R x R) = + 2(G _M x M)	+ (G _M x M)	(G _R x R) + (G _M x M)
14	1	1	1	0	MUTE	SD	SD	SD	SD	(G _L x L) + (G _M x M)	(G _R x R) + (G _M x M)
15	1	1	1	1	(G _M x M) + (G _L x L) + (G _R x R)	SD	SD	SD	SD	MUTE	MUTE

M - M_{IN} Input Level

 $L-L_{\text{IN}}$ Input Level

R - R_{IN} Input Level

G_M – Mono Volume Control Gain

G_L – Left Stereo Volume Control Gain
G_R – Right Stereo Volume Control Gain
SD – Shutdown
MUTE – Mute

Table 6. National 3D Enhancement

LD5	0	Internal HandsFree National 3D Off		
	1	Internal HandsFree National 3D ON		
RD5	0	HeadPhone National 3D Off		
	1	HeadPhone National 3D ON		

Table 7. Wake-up Time Select

CD5	0	Fast Wake-up Setting
	1	Slow Wake-up Setting

Table 8. Earpiece Amplifier Gain Select

CD4	0	0dB Earpiece Output Stage Gain Setting
CD4	1	6dB Earpiece Output Stage Gain Setting

CONFIDENTIAL

Application Information

I²C Compatible Interface

The LM4857 uses a serial bus, which conforms to the I²C protocol, to control the chip's functions with two wires:

clock (SCL) and data (SDA). The clock line is unidirectional. The data line is bi-directional (open-collector) with a pullup resistor (typically $10k\Omega$). The maximum clock frequency specified by the I²C standard is 400kHz. In this discussion, the master is the controlling microcontroller and the slave is the LM4857.

The I^2C address for the LM4857 is determined using the ADR pin. The LM4857's two possible I^2C chip addresses are of the form 111110X₁0 (binary), where X₁ = 0, if ADR is logic low; and X₁ = 1, if ADR is logic high. If the I^2C interface is used to address a number of chips in a system, the LM4857's chip address can be changed to avoid any possible address conflicts.

The bus format for the I^2C interface is shown in Figure 3. The data is latched in on the rising edge of the clock. The bus format diagram is broken up into six major sections:

The "start" signal is generated by lowering the data signal while the clock signal is high. The start signal will alert all devices attached to the I2C bus to check the incoming address against their own address.

The 8-bit chip address is sent next, most significant bit first. Each address bit must be stable while the clock level is high.

After the last bit of the address bit is sent, the master checks for the LM4857's acknowledge. The master releases the data line high (through a pullup resistor). Then the master sends a clock pulse. If the LM4857 has received the address correctly, then it holds the data line low during the clock pulse. If the data line is not low then the master should send a "stop" signal (discussed later) and abort the transfer.

The 8 bits of data are sent next, most significant bit first. Each data bit should be valid while the clock level is stable high.

After the data byte is sent, the master must check for another acknowledge to see if the LM4857 received the data.

If the master has more data bytes to send to the LM4857, then the master can repeat the previous two steps until all data bytes have been sent.

The "stop" signal ends the transfer. To signal "stop", the data signal goes high while the clock signal is high. The data line should be held high when not in use.

I²C Interface Power Supply Pin (I²CV_{DD})

The LM4857's I^2C interface is powered up through the I^2CV_{DD} pin. The LM4857's I^2C interface operates at a

Application Information

voltage level set by the I^2CV_{DD} pin which can be set independent to that of the main power supply pin V_{DD} . This is ideal whenever logic levels for the I^2C interface are dictated by a microcontroller or microprocessor that is operating at a lower supply voltage than the main battery of a portable system.

National 3D Enhancement

The LM4857 features a 3D audio enhancement effect that widens the perceived soundstage from a stereo audio signal. The 3D audio enhancement improves the apparent stereo channel separation whenever the left and right speakers are too close to one another, due to system size constraints or equipment limitations.

An external RC network, shown in Figure 1, is required to enable the 3D effect. There are separate RC networks for both the stereo loudspeaker outputs as well as the stereo headphone outputs, so the 3D effect can be set independently for each set of stereo outputs.

The amount of the $\overline{3D}$ effect is set by the R_{3D} resistor. Decreasing the value of R_{3D} will increase the 3D effect. The C_{3D} capacitor sets the low cutoff frequency of the 3D effect. Increasing the value of C_{3D} will decrease the low cutoff frequency at which the 3D effect starts to

Figure 4: Reference Design Board Schematic

Demonstration Board Layout

Figure 5. Recommended ITL PCB Layout Top Silkscreen

Figure 6. Recommended ITL PCB Layout Top Layer

Figure 7. Recommended ITL PCB Layout Inner Layer 1

Figure 8. Recommended ITL PCB Layout Inner Layer 2

Figure 9. Recommended ITL PCB Layout Bottom Layer

CONFIDENTIAL

Physical Dimensions (millimeters unless otherwise noted)

30 Bump ITL Order Number LM4857ITL NS Package Number TLA30CZA

6. REFERENCE JEDEC REGISTRATION MO-211, VARIATION DJ

 $X_1 = 2.543 \pm 0.03$ $X_2 = 2.949 \pm 0.03$ $X_3 = 0.6 \pm 0.075$

Notes

CONFIDENTIAL

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect it's safety or effectiveness.

N National Semiconductor Corporation

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group

Tel: 65-2544466 Fax: 65-2504466

Email: ap.support@nsc.com

National Semiconductor Japan Ltd.

Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.