Solve the following problems. Some of these are based on past/practice midterm questions. The problems are purposefully mixed, as on an exam, so you must also recognize which method you should be using.

1. (a) True or false?
$$\int \frac{1}{1+x^2} dx = \ln|1+x^2| + C$$
.

(b) True or false?
$$\frac{1}{x^2} \le \frac{1 + \sin x \cos x}{x^2}$$
 for $x \ge 1$.

(c) True or false?
$$\frac{1}{x^2} \le \frac{1 + \sin x \cos x}{x^2}$$
 for $0 \le x \le \frac{\pi}{2}$.

(d) True or false?
$$x^x \ge 1$$
 for $0 < x < 1$.

(e) If
$$x = \sqrt{2} \sec \theta$$
, what is $\tan \theta$ equal to in terms of x ?

(f) Given the reduction formula

$$\int \cos^{n} x \, dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

write down a reduction formula for $\int_0^{\frac{\pi}{4}} \cos^n x \, dx$.

- 2. Compute $\int x \ln(x) dx$.
- 3. Compute $\int \frac{1}{y\sqrt{1-y^2}} dy$.
- 4. Compute $\int \frac{dx}{\sqrt{1-e^{2x}}}$.
- 5. Compute $\int_0^1 \ln(2t+1)dt$.
- 6. Compute $\int (\cos(x) + \sin(x))^2 dx$.
- 7. Determine whether

$$\int_{3}^{\infty} \frac{4-x}{2x^2 + 2x - 4} \, dx$$

coverges or diverges. If it converges, what does it converge to?

- 8. Show that $\int_1^\infty \frac{dx}{x^2-4}$ is not a finite number. What answer do you get if you forget that the integrand has an asymptote at 2 and fail to split the integral up there?
- 9. Compute $\int \frac{p+2}{p^2-1} dp$
- 10. Compute $\int e^x \sin(x) dx$.
- 11. Compute $\int \sec^2(x) \tan(x) dx$.
- 12. Find a solution to the initial value problem

$$\frac{dy}{dx} = y\sqrt{y^2 - 1}\cos(x)$$
$$y(0) = 1$$

13. Determine whether

$$\int_{1}^{\infty} \frac{1 - e^{-x}}{x} \, dx$$

converges or diverges.

- 14. Compute $\int \frac{x^3}{x^2+2} dx$.
- 15. Compute $\int \cos^4(x) dx$.
- 16. Identify which of the following differential equations are associated to each of the following direction fields:

17. Circle the differential equation that corresponds to the slope field shown below.

$$y' = y/x$$

$$y' = y/x \qquad \qquad y' = \sin(x) \qquad \qquad y' = x + y \qquad \qquad y' = -x/y$$

$$y' = x + y$$

$$y' = -x/y$$

18. Circle the differential equation that corresponds to the slope field shown below.

$$y' = y/x$$

$$y' = \sin(x)$$

$$y' = x + y$$

$$y' = -x/y$$

19. Consider a continuous function f(x):

$$f(x) = \begin{cases} 2x^{3/2} & \text{if } 0 \le x \le 4\\ 4x & \text{if } 4 \le x < \infty \end{cases}$$

For what p values is the integral $\int_0^\infty x^p f(x) dx$ convergent? For what p values is the integral divergent?