FUZZY SET THEORY & FUZZY LOGIC MC-432

ANISH SACH DEVA

DTU/2KI6/MC/13

10th April 2021

ASSIGNMENT-III

Q1)
$$\int (x, z) = \int (x), s(x), t(x)$$

 $\int (x) = x^2 + (x)^2 = \frac{1}{4}$
 $\int (x) = \frac{1}{4} + (x)^2 = \frac{1}{4}$
 $\int (x) = \frac{1}{4} + (x)^2 = \frac{1}{4}$

L(x) and R(x) have no effect or value of integral of such juzzy junction

$$\int \int (x) dx = \int \int (x) dx = \int \int x dx = \left| \frac{x^3}{5} \right|^{\frac{1}{2}} = 21$$

$$\int \int \int (x) dx = \int \int x dx = \left| \frac{x^3}{5} \right|^{\frac{1}{2}} = 1.875$$

$$\int \int \int \int (x) dx = \int \int x dx = \frac{x^3}{5} \left| \frac{x^3}{5} \right|^{\frac{1}{2}} = 3.75$$

Frence I (9,6) = (21,1.875/3.75)LR

2) $\tilde{a} = \{(4,0.3), (8,0.4)\}$ $\tilde{b} = \{(6,0.7), (7,1), (8,0.7)\}$ $f(8) = 2 \times (5,7.4)$

1 (1) - 2	,	
	$\int_{a}^{s} f(n) dn = \int_{a}^{s} 2 dn$	him (Ma(a), MB(b))
[a,6]	α	0-7
[4,6]	4	0
[4,7]	6	0.8
[4,8]	g	0.2
[5,6]	2	ð·-7
(5,7)	4	1
[5,8]	6	0-2

(Q3)
$$f(x) = 2x-3$$
 $g(x) = 2x+5$
 $\hat{a}^{2} \hat{b}^{2} (1_{1}0.18), (2,1), (3,0.4)3$
 $\hat{b}^{2} \{(3_{1}0.7), (4_{1}1), (5,0.3)3\}$
 $f(x) = 2(2x+5) \cdot 3 = 4x + 10 \cdot 3 = 4x+7$
 $g(x) = 2(2x+3) + 5 = 4x - 6 + 5 = 4x-1$

•		
i) [9,5]	$\int_{a}^{b} f(x) = \int_{a}^{c} 2x - 3x = x^{2} - 3x \Big _{a}^{b}$	min {Ma(a), Me (b)}
[1,3]	2	07
(1,4)	6	D. 8
[(,5]	12	0-3
[2,3]	2	0.7
(2,4)	6	
[2,5]	[2	0 -3
[3,3]	0	0.4
[3,4]	4	0-4
(3,5)	(0	p -3

I(A)B) ~ (0,0.4), (2,0.7), (6,1), (12,0.3), (4,0.4), (10,0.3)}

(i) [a,b]	5 f(31) dn 2 52m25	mint (leacas Mo(6) 3
	= x2+5x/a	
[1,3]	1 8	0.7
[14]	30	6-3
(1,3)	44	0.3
[2,3]	()	0-7
[2,4]	22	D -]
[2/5]	36	6-3
[3/30]	0	0-4
[3,4]	[2	0-4
[3,5]	26	0-3

I(A,B) - - (10,0 4), (10,0 4), (19,0 4), (19,0 7), (27), (26,0-3), (30,0-8), (30,0-3),

m) in	. 7	1 Kan	
[9,5]	5 a421.47	9 471-1= 25/2-1/a	mint Ma(a), Ma(b) }
V	= 2)(2+7)/a		
[13]	30	14	0.7
t1,47	51	27	0.8
[1,5]	76	44	o ·3
[5/3]	(7	9	0.7
(2,4)	38	22	1
(7,5)	63	39	0.3

[3,3]	O	Ð	0.4
[3,4]	21	13	0.4
[3,5]	46	30	0.3

4)
$$J(x)=x^{3}$$
 $\tilde{J}(=\{(-1,0.4),(0,1),(1,0.6)\}$
 $J'(3)=3\chi^{2}$
Using extention principle
 $J'(3)=q(0,1),(3,0.6)$

5)
$$f(y) = x^2 + 1$$
 $g(x) = 2 - x$
 $\hat{a} = (1,2,3)$
 $\hat{b} = (3,4,5)$

6)
$$5i = 5(-1,0.4), (0,0.1), (1,0.6)3$$

 $f(3i) = 33^2 g(3) = 2343$
 $f'(3i) = 3x^2 g(3i) = 2$
 $f'(3i) + g'(3i) = 33^2 + 2$

 $J(3i) + g(3i) = 3i^{2} - 12 \cdot 12 \cdot 1 + 5$ $J'(5i) = \{(3,0.6)(0,0.1)^{3}\}$ $J'(5i) = \{(2,0.6)^{3}\}$ $J'(5i) + g'(5i) = \{(5,0.6), (2,0.1)^{3}\}$ $J'(7i) = \{(5,0.6), (2,0.1)^{3}\}$ Hence J' + g''(7i) = J'(7i) + g'(7i)

Q7) d(x0) = \$\frac{7}{(-2+(-1-1), \cdot 5), (-1, 018), (2+(-1-1), 1), (16+(2-1), 08), (54,+3-1, 0.4)}

= [(-4,05), (-1,0'8)], (2,1), (17,04), (56,0.4),

g(10) - L(-70.5), (-1,0.8), (0,1), (13, 0.8), (50,0.4)3

413= £ (6,0.5),(-3,0.5),(0,0.5),(15,10.5),(54,0.4),(-510.5), (-2,0.8),(1,0.8),((6,0.8),(55,0.4),(-4,0.5),(-1,0.8), (211),(13,0.8),(56,0.9),(9,0.5),(12,0.8),(15,0.3),(39,0.0), (69,0.4),(46,0.4),(49,0.4),(52,10.4),(\$7,0.4),(69,0.4),

Sin a RMS & LMS it is proved.

(a): $\begin{cases} 24^2-3 & -2 \leq x \leq 2 \\ 5 & \text{otherwise} \end{cases}$

M(20) - 1/00 - 1-1000

Jup (m) 2 -3

$$M = (1) = \frac{23^2 - 3 + 3}{5 - (-3)} = \frac{231^2}{8} = \frac{211^2}{4}$$

$$M_{max}(0) = 1/2$$
 $M_{max}(\pi|z) = 1$
 $M_{max}(\pi|z) = 0$

whose R is a justy rulationship. If M is the maninising set of Juzzy Junction it " Am we say we get marrimum value of "f" at a. if: is Mrc (dos is maximum is proas is manimum Los dentes membership of to in domain V) Yes vi) Yes Fragration of Oris Jundion over Juzzy domain Justan= F(B)-F(a) This subtraction is cettended sustruction and done with confomation to extention brinciple. Integration of Jussy, juntion over crisp domain: I(q,L) = Jga(x,dn - Jfayan whee Jx and Jx are x-livel Curves for Juzzy Junctions J' Essing this is defined acrossling to a cuts, it is also in conformity with extention principle. The wordition holds only if I for and I gloss on are Vii) NO Commutative ljenorally, J(J⊕g) dr = Jtoudn ⊕ Jg 51) dn

Visi) Po

The Johnwing condition is always true:

The Johnwing condition is always tru

The given acondition is tou for Juzzy Jurition over Oisp domain but not for voisp J" over Juzzy domain I Just 2 I Juston + I Jouden + I Jouden

For question 6, condition was not true

(1) $f(x) = x^4 + x^2 - 1$ $\int (1,0^2 + 1, (-2,0.6), (3,0.4,0.6), (5,0.2)^3$ $\int (asound 3) = \int (f(1), 0.2) / (1 + (2),0.6) / (1 + (3), 1), (1 + (4), 0.6), (1 + (3), 1), (1 + (4), 0.6), (1 + (3), 1), (1 + (4), 0.6), (1 + (3), 1), (1 + (4), 0.6), (1 + (3), 1), (1 + (4), 0.6), (1 + (3), 1), (1 + (4), 0.6), (1 + (3), 1), (1 + (4), 0.6), (1 + (3), 1), (1 + (4), 0.6),$

(2) P(A) me = { (0.5,0.6), (0.6,0.7), (0.7,0.9), (0.8,0.9), (0.9,1), (1.1)}

P(B) me = { (0.7), (0.6), (0.6), (0.7), (0.7), (0.7), (0.7), (0.8), 0.9), (0.9)

a) P(Â) regation = 9(0,1), (01,1), (0.2,1), (0.3,1), (0.4,1), (0.5,0-4), (0.6,0-3), (0.7,0.2), (0.3,0.1))

- 6) P(A) vog how = of (0.5/0.36), (0.6,0-49), (0.7,0-64), (0.810,81), (0,9,1), (11)}
- C) PANP(B) = { Las, on, Lob, o, (0.7,0.4), (0.8,019), (0.8,0.7)3
- d) P(A) very very true ((05, 0.216), (0'6, 0.343), (0.7, 0.324), (0.8, 0.729), (0.7, 1), (1,1))
- (6.8/0.4) (6.0/0.7) (0.4/1) [(0.6)/(0.7)/(0.4/1)]
- 8) P(A) -> P(B) = &(011), (01), (02,1)((03,1), (0.4,1), (0.5,04), (0.5,04), (0.6,07), (0.7,07), (0.7,07), (0.8,07), (0.8,07), (0.7,07)
- 13) Using Lukusichicz implication

 I (1, 1)= min (1, 1-a+b)

 R= 1, [1 09]

 nz [08]

 nz [08]

B' = {(4,0.9) (42,07)3

Voing compensational rules of influence

MB(41) = Sup min [MB(X), MB(4,41)]

xex

max (min (6,611), (6,9,1) min (0,7,1)}

= 0.9

14) In this case

Mg1(21): Sup min [Mg(5) MR(4)] 2 mgx [min (0.9,1), min (0.7,0.9) 3=0.9

Ma'(1/2) = 80% min [MB(G), MF(1/2 (Y))] = 0.9

Ma' (213) 2 sup min [MB(4) (MB(43/4)) = 09

Henre & is A = o[x110.9] (x210.9) (83,0.9) 3

15) A= Z (M, p.5) (N2, 156 23,0.6) 3

B= 2(4,011),(42,10.4)3

2:5(3,102), L32101)}

I(a,b) = of 1 i) a < b
i) a < b
i) a < b

R, - 81 92

71, [1 0'4]

72 [1 0'4]

12 [1 0'4]

R2 = 81 [0.2 1]

R32 3, 32

)11 [1 0.4]

>12 [1 0.4]

>13 [1 0.4]

$$\hat{R}_{10} \hat{R}_{1} = \frac{31}{100} \begin{bmatrix} 1 & 0.4 \\ 1 & 0.4 \\ 1 & 0.4 \end{bmatrix}$$

This generalized hypothetical syllogism holds.

(2) i) (a15) => c

a 1	b	a16	<u> </u>	a"5=> C
0	0	0	1	1
0	1/2	Y2	[.	1
0	(((\
112	0	1/2	1/2	1
1/2	1/2	1/2	1/2	1
1-2	Ţ	ſ	1/2	1/2
1	1/2	l	Ø	0
(1	ſ	0	0

in (a vb) => (a 1 b)

0 1	L	V 1	\wedge	(a > b) (a > b)
9	0	\circ	0	I
0	1/2	0	1/2	1/2
0	1	0	1	0
1/2	0	0	42	1/2
112	1/2	1/2	1/2)
1/2	\ (1/2	1	Y2
ſ	0	0	1	О
,	11.	1/2	1	1/2
,	1/2	\ / -		
1	1	1	1	

018) + sue = {(0,0,03), (0,0,0), (0.7,0.8), (0.8,0.9), (0.9,0.9), (0.9,0.9), (0.1))}

Edse: {(0,1), (0,1,0.9), (0,5,0.8), (0,7,0.6), (0,4,0.2), (0,5,0.1))

Not true = True = 5 (0,1) ((0,1), (0,12,1), (0,3,1), (0,4,1), (0,5,0-7), (0,6,0.4), (0,7,0.2), (0.8,0.1), (0,9,0.1), (1,0.9)}

peither tone nor - (Tone 1 False)

Tru v Falze ~ & (0,11) (0,11,0,7) (0,7,0,8), (0,3,0,6), (0,4,0-2), (0,9,0,9),

Heither true nor Julie = (Thu V False) =

d (0,10,1) (0,5,0,7) (0,3,0,4) (0,4) (0,4) (0,2) (0,2) (0,6,0,4) (6,7,0.2) (0,8,0,1) (0,0,1) (1,0,9) 3

Very true 2 Thu - False = the 1 False False = of (0.1, 0.1) (0.2,0.2) (0.3,0.4) (0.4,0.8) (0.5,0.9), (0.6,1) (0.7,1) (08,1) (09,1) (1,1) 3

Almost tour, not Julse = True v Fake

= 2 (011011) (0.2/2, 2) (13/24) (0.4, 6.5) (0.5/09) (0.6/1) (0.7/1) (0.8/1) (0.9/1) (1/1) 3

20) MRT (A/A) £0.8) = MA(2/1) = 0.9 MRT (A/A) (0.6) = MA(2/2) = 0.8 MRT (A/A) (0.5) = MA(2/5) = 0.5 MRT (A/A) (0.4) = MA(2/4) = 0.5

Haing Lukasiewicz Fuzzy Implication

I(a,b) = min(1, La+b)

MET (B/B)(b) = max & min(0.9, S(I(0.9, b)))

min (0.8, S(I(0.5, b)))

min (0.5, S(I(0.5, b)))

min (0.5, S(I(0.5, b)))

min (0.5, S(I(0.5, b)))

MB (y1) = MRT (B/B)(B(y1)) = 0.5

MB(y2) = MRT (B/B)(B(y2)) = 0.7

MB(y3) 2 MR+(B/B)(B(y3))= METB/B(0.6) = 0.8

B22(y1, p.5) (y2, 0.7) (y3, 0.8)3

B=A0E

31 32 33 34

31 [0 0.2 0.6 1] 0 41 [1 0.5 0 0]

52 0.5 1 0.5

53 30 30 34

Jos 231 3-31

Max 0,0.2/0/03 = 0.2

Max 0,0.2/0/03 = 0.2

Jro x= 4 13232

M(2,13-)=maxqmin(0,0), min(0,2,0.5), min(0,6,0,5) min(1,0)3 man {0,0.2,0.6,0.53=0.5

Jue y = 11 3 233

Max{0,0.2,0.6,0.5} = 0'6

Joe 2 2 11 3-34

M(21,34) = max&min(0,0) min(0,0) min(0,0,0) min(1))3

for λ=31, 3=3, μ(31,3,)= max2 min((1)) rwin (0:5,0:8) him (0.4,0) min (0.2,0) hin(9.0)) μαχ((,0:5,0,0)) = 1

94 0

ys Lo

0 000

0 0-8-1

η (1,31) = na 4 t rin ([10/8) min (0·5/1) min (0/4,0.8) min (0.2(0)) min (en)) max (0/8/0/5/0.4/0/0) = 0-8

M(81,33) = max 2 min (100) min (0.510) min (0.4,0.8), min (04,1) min (0.211) min (0,0.8)7

max{0,0,0,4,0,2,0}=0.4

M()1,134)=max & min ((10) min (0,5,0) min (0,4,0) nin (0,2,0,3) min (41)}

max & 0,0,0,-2,03 2 0-2

⇒8= {(1,17,(2,0,8)(3,0.5)(4,0.4)(5,0.2)}

@237 A-4 (100,0.5) (120,0.7) (170,0.8) (10,1)3 B-4 (10,0.6) (12,0.8) ((5,1)3

Let index of absorbive car for different combinations of mhage and toh speed is denoted by relation R.

$$\widehat{R} = 10 \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix} 0 \begin{bmatrix} 0.5 \\ 0.7 \\ 0.8 \end{bmatrix}$$

Thus mileage for most attractive car = 18 km/k^{-1} Top speed for most attractive wor = 160 km/h^{-1} 024) $\tilde{A} = \int (1,0.7)(2,0.4)(3,0.6)(4,0.5)(5,0.8)(6,0.2)3$

B-{(10.8) (210.2) (3,0.6) (4,0.6) (5,0.4) (6,0.1)]

i) Zadeh's Maximum

t(sui is A + yi is B) = ((-MA(Di)) V (MACKI) A MB(YA))

3) Groguel & Fuzzy Implication

$$t(x_i \text{ is } \widehat{A} \rightarrow y_j \text{ is } \widehat{B}) = \int I \quad \mu_{ACMi} \leq M_B(y_j)$$

$$\underbrace{M_B(y_i)}_{P_A(y_i)} \quad \text{otherwise}$$

$$B$$

bondusion is not same in cases.