

Robot Vision

Visual Markers & Homography

Dr. Chen Feng

<u>cfeng@nyu.edu</u>

ROB-UY 3203, Spring 2024

Overview

- Fiducial markers
- Single-view geometry: Homography
 - Review of equation solving
 - Ax=b
 - Ax=0
- Camera calibration: Zhang's method
- Camera pose estimation: PnP problem

References

- Forsyth & Ponce 2011: Computer Vision: A Modern Approach
 - Section 1.2, 1.3, 12.1
- Szeliski 2011: Computer Vision: Algorithms And Applications
 - Section 6.3.1
- Corke 2011: Robotics, Vision, & Control
 - Section 11.2, 11.1
- Hartley & Zisserman 2003: Multiple View Geometry In Computer Vision
 - Section 2.3, 4.1, 4.4, 7.1, 7.2, 7.4
- Linear algebra:
 - Szeliski 2011: section A.1.1, A.1.2, A.1.3, A.2, A.2.1
 - Hartley & Zisserman 2003: A5.1, A5.2, A5.3

Modular sea base

Quadrotor identifies markers to land

Fiducial Markers: More Than QR Codes

Fiducial:

(Kato and Billinghurst 1999)

(Wagner et al. 2008)

(Olson 2011)

Natural:

(Lepetit and Fua 2005)

https://developer.vuforia.com/library/articles/ Solution/Natural-Features-and-Ratings

(Feng and Kamat 2013)

What Is an AprilTag?

How Is an AprilTag Detected?

Advantages of AprilTag

- Fast
 - >25Hz for 640x480 webcam Image on normal laptop
- Robust
 - Higher detection rate
 - Fewer false alarm
- Larger Range
 - Distance
 - View direction
 - Illumination

Max Detectable Distance		Marker Angle (degree)			
(m)		0	45	0	45
Marker Size (m²)	0.2 x 0.2	6.10	4.88	11.28	8.84
	0.3×0.3	8.23	7.01	14.94	11.58
	0.46 x 0.46	13.41	11.28	25.91	21.64
	0.6 x 0.6	19.51	16.46	34.44	30.48
Image Resolution		640 x 480		1280 x 960	
Focal Length		850 pixels		1731 pixels	
Processing Rate		20 Hz		5 Hz	

AprilTags Provide Point Correspondences

- Useful for many projective geometry applications
- E.g., Homography Estimation

Homography == Projective Transformation

Definition 2.9. A *projectivity* is an invertible mapping h from \mathbb{P}^2 to itself such that three points \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 lie on the same line if and only if $h(\mathbf{x}_1)$, $h(\mathbf{x}_2)$ and $h(\mathbf{x}_3)$ do.

- They all mean the same thing:
 - Homography
 - Projectivity
 - Collineation

Theorem 2.10. A mapping $h: \mathbb{P}^2 \to \mathbb{P}^2$ is a projectivity if and only if there exists a non-singular 3×3 matrix H such that for any point in \mathbb{P}^2 represented by a vector \mathbf{x} it is true that $h(\mathbf{x}) = H\mathbf{x}$.

Homography == Projective Transformation

Definition 2.11. Projective transformation. A planar projective transformation is a linear transformation on homogeneous 3-vectors represented by a non-singular 3×3 matrix:

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \tag{2.5}$$

or more briefly, x' = Hx.

Perspective Transformation ⊂ Homography

- One way to geometrically construct a homography between two planes:
 - Perspective transformation
 - i.e., taking photo of a plane
 - Any other real-life examples?

Real-life Example of Perspectivity

Homography vs. Perspectivity

homography

The composition of two (or more) perspectivities is a projectivity, but not, in general, a perspectivity

Which Is a Non-Perspective Homography?

Application of Perspective Homography

Another Application: Removing Perspective Distortion

Perspective Distortion

Removing Perspective Distortion via Estimating the Homography

- This could be used to create "Live Spot Map" from surveillance videos
 - Useful for indoor robotics applications

How to Estimate a Homography?

Estimating Homography: DLT

- 2D direct linear transformation (DLT) algorithm
- Find multiple X ↔ U correspondences (≥ 4) between a planar object and an image
- Each correspondence leads to 2 independent linear equations with homography as unknown parameters:

$$u(h_7x + h_8y + h_9) = h_1x + h_2y + h_3$$

$$v(h_7x + h_8y + h_9) = h_4x + h_5y + h_6$$

This leads to a homogeneous system of linear equations

$$xh_{1} + yh_{2} + h_{3} - uxh_{7} - uyh_{8} - uh_{9} = 0$$

$$xh_{4} + yh_{5} + h_{6} - vxh_{7} - vyh_{8} - vh_{9} = 0$$

$$\begin{bmatrix} x & y & 1 & -ux & -uy & -u \\ & x & y & 1 & -vx & -vy & -v \end{bmatrix} [h_{1} h_{2} h_{3} h_{4} h_{5} h_{6} h_{7} h_{8} h_{9}]^{T} = 0$$

$$Ah = 0$$

2D DLT Using Inhomogeneous Homography

• Set $h_9 = 1$, $\tilde{h} = [h_1, h_2, \dots, h_8]$

$$\begin{bmatrix} x & y & 1 & & -ux & -uy \\ & x & y & 1 & -vx & -vy \end{bmatrix} [h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8]^T = \begin{bmatrix} u \\ v \end{bmatrix}$$

- Solve by least square: $(A^TA)^{-1}A^Tb$
- Potential issues
 - What if $h_9 = 0$?
 - Does this happen often?

Solving Ax=b

- A: design matrix
 - shape: m x n
 - m>>n
 - Typically, full column-rank
- x: unknowns
 - shape: n x 1
- b: observed data
 - shape: m x 1
- Solve by least squares: x* = inv(A'A)A'b
 - Solving normal equation: A'Ax=A'b
 - Least squares residual:
 - Observed Predicted
 - b Ax*
 - Residual is usually not zero in real world problems!

Least squares solution x^*

Solving Ax=0

- A: data matrix
 - shape: m x n
 - m >> n
 - rank(A) = n when data contains noise: full column-rank
- x: unknowns
 - shape: n x 1
- Seek for an approximation instead of exact non-trivial solutions
- Add a constraint: ||x||=1
- Solve by SVD: A=UDV'
 - x*=last column of V, if diag(D) is descending order
 - diag(D): non-negative
 - called singular values

AprilTags Provide Point Correspondences

• Tags can help us calibrate our camera

Camera Calibration

- To find out intrinsic parameters of a camera
 - **Linear**: **K** =?
 - **Non-linear**: **d** =?
- Intrinsic parameter values are generally static
 - Only need to be calibrated once
 - Unless the camera has been shipped for long distances
- Why?
 - Reduce uncertainties/unknowns in the projection system
 - Improve accuracy
- How?
 - K and d can not be easily measured directly
 - Has to be solved using perspective projection equation indirectly

Calibration with a 2D Rig

Using 2D Calibration Rig

- 1. All markers on a same plane
- 2. Measure each marker's 2D position
- 3. Take multiple images
- 4. Solve by Zhang's method
- 5. Refine by bundle adjustment

Advantages

- Measuring 2D position is easy
- Easy to setup planar rig
 - Print it out
 - Use a flat screen

Z. Zhang, "A flexible new technique for camera calibration'", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.11, pages 1330–1334, 2000

AprilTags Provide Point Correspondences

Tags can also help us perform augmented reality

Augmented Reality (AR)

- AR = rendering virtual component on real images/videos
- AR can help robot and human to understand each other

- A key robot vision problem to realize AR:
 - Camera Pose Estimation
 - [R, t]?

https://youtu.be/8Y8Mlh7jhsY

- Then we can calculate where to draw on the image
 - $p \sim K[R,t]X$
 - p is the homogeneous coordinate of where you should draw

Homography Decomposition

1) Compute the \hat{R}_1 , \hat{R}_2 and \hat{t} in the following equation:

$$[\hat{R}_1 \ \hat{R}_2 \ \hat{t}] = K_c^{-1} H_w^c \tag{3}$$

Note that \hat{R}_1 , \hat{R}_2 and \hat{t} represent the first, second and third column of the computed matrix $K_c^{-1}H_w^c$.

2) Obtain the *U*, *V* matrix in SVD:

$$USV^T = [\hat{R_1} \ \hat{R_2} \ \hat{R_1} \times \hat{R_2}] \tag{4}$$

3) Calculate the refined R_w^c , t_w^c which satisfy the constraint of $R_1^T R_2 = 0$ and $||R_1|| = ||R_2|| = 1$ (R_1, R_2 represent the first and second column of R_w^c respectively):

$$R_w^c = U \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & det(UV^T) \end{bmatrix} V^T, \ t_w^c = \hat{t}/||\hat{R}_1||$$
 (5)

Perspective-n-point (PnP) Problem

 Solving PnP problem = Estimating a camera pose from 2D-to-3D correspondences

· A calibrated camera is an angular sensor

$$\bullet \widehat{x}_i = K^{-1}x_i / \|K^{-1}x_i\|$$

OpenCV provides the API

References for Next Week

- Hartley & Zisserman 2003:
 - Section 9.1, 9.2, 9.5, 9.6
- Corke 2011:
 - Section 14.2, 14.3
- Forsyth & Ponce 2011
 - Chapter 7
- Szeliski 2011:
 - Section 11.1, 12.2, 12.3