What is claim d is:

	1. A process for forming a trench-gate power MOSFET,
	comprising the steps of:
5	forming a trench deep into a drift layer of a first
	conductivity type above a substrate of said first
	conductivity type;
	forming a first oxide on a surface of said trench;
	depositing a nitride on a surface of said first oxide;
10	forming a second oxide filled in said trench;
	etching said second oxide for leaving a thick oxide at a
	bottom of said trench;
	etching said nitride for remaining a part of said nitride
	at said bottom of said trench;
15	forming a gate oxide on a sidewall of said trench;
	forming a gate conductor filled in said trench;
	forming a well region of a second conductivity type
	opposite to said first conductivity type adjacent to
	said sidewall of said trench;
20	forming a source region of said first conductivity type on
	said well region;
	forming an insulator for covering on said gate conductor
	and a surface of said source region; and
	depositing a metal for electrically connecting said source
25	region with said well region.

- 2. A process according to claim 1, further comprising etching said first oxide after said step of etching said nitride.
- 3. A process according to claim 1, further comprising forming a third oxide on said nitride and thick oxide before said step of forming a gate conductor.
- 4. A process according to claim 1, further comprising etching said first oxide before said step of forming a gate oxide.

15

20

25

5. A process according to claim 1, wherein said step of etching said second oxide for leaving a thick oxide on a bottom of said trench comprises the steps of:

etching said second oxide for removing said second oxide from said sidewall of said trench;

coating a photoresist on said second oxide remained at said bottom of said trench;

etching said second oxide not covered by said photoresist; and

removing said photoresist for remaining said thick oxide at said bottom of said trench.

6. A process for forming a trench lateral power MOSFET with a trench bottom drain contact, comprising the steps

of:

	forming a tremen on a substrate of a mot conductivity
	type;
	doping a bottom of said trench for forming a drain region
5	of a second conductivity type opposite to said first
	conductivity type;
	forming a first oxide on a surface of said trench;
	depositing a nitride on said first oxide;
	filling a second oxide in said trench;
10	etching said second oxide for forming a thick oxide at a
	bottom of said trench;
	etching said nitride for leaving a part of said nitride
	remained at said bottom of said trench;
	forming a gate oxide;
15	forming a gate conductor;
	etching said second oxide, nitride and first oxide for
	exposing a surface of said drain region;
	forming a source region of said second conductivity type
	on a surface of said substrate outside said trench;
20	forming a drain contact region on said exposed surface
	of said drain region;
	depositing an insulator for covering on said gate
	conductor;
	forming a drain conductor electrically connected to said
25	drain contact region; and

depositing a metal for forming electrodes.

- 7. A process according to claim 6, further comprising etching said drain region after said step of doping a bottom of said trench for forming a drain region for said trench more deeper into said substrate.
- 8. A process according to claim 6, further comprising etching said first oxide after said step of etching said nitride.
- 9. A process according to claim 8, further comprising oxidation after said step of etching said first oxide.
- 10. A process according to claim 6, further comprising etching said first oxide before said step of forming a gate oxide.
- 11. A process according to claim 6, further comprising forming a contact region of said first conductivity type adjacent to said source region.

12. A process according to claim 6, wherein said step of etching said second oxide for forming a thick oxide at a bottom of said trench comprises the steps of:

etching said second oxide for removing said second oxide from said sidewall of said trench;

20

5

10

15

- coating a photoresist on said second oxide remained at said bottom of said trench;
- etching said second oxide not covered by said photoresist; and
- removing said photoresist for remaining said thick oxide at said bottom of said trench.

5