1. Find the shortest path from node A to every other router in the network. Illustrate the SPT using Dijkstra algorithm (Show them the steps (Table) similar to chart #27 of the Routing Algorithm charts posted)

Answer:

2. Apply the Bellman ford algorithm (Distance Vector) to the following network.

Info at	Distance to Node				
node	Α	В	С	D	Ε
Α	0	7	∞	∞	1
В	7	0	1	∞	8
С	∞	1	0	2	∞
D	∞	∞	2	0	2
E	1	8	∞	2	0

Example of iteration: Router D send his DV to E

Info at	Distance to Node				
node	Α	В	С	D	Е
Α	0	7	∞	∞	1
В	7	0	1	∞	8
С	∞	1	0	2	∞
D	∞	∞	2	0	2
E	1	8	4	2	0

Example of iteration: Router B sends his DV to A

Example of iteration: Router E sends his updated DV (i.e. after the first iteration) to A

The final DV is table is shown below

Info at	Distance to Node				
node	Α	В	С	D	Ε
Α	0	6	5	3	1
В	6	0	1	3	5
С	5	1	0	2	4
D	3	3	2	0	2
E	1	5	4	2	0

If link between A and E fails

- \bullet A marks distance to E as ∞ , and tells B
- \bullet E marks distance to A as ∞ , and tells B and D
- B and D recompute routes and tell C, E and E
- etc... until converge

Info	Distance to Node				
at node	Α	В	С	D	Ε
Α	0	7	8	10	12
В	7	0	1	3	5
С	8	1	0	2	4
D	10	3	2	0	2
E	12	5	4	2	0