考场教室

任课教师

袮

. ₹

宇 শ

ङ

电子科技大学 2021-2022 学年第二学期 期中考试

考试科目: <u>半导体物理 A</u> 考试形式: <u>闭卷</u> 考试日期: <u>2022</u> 年 <u>4</u> 月 <u>27</u> 日 本试卷由 四 部分构成, 共 9 页。考试时长: 95 分钟 注: 可使用非存储功能的计算 器

成绩构成比例:平时成绩_35%,期末_65%

题号	_	=	三	四	合计
得分					

得 分

- 一、选择题(共30分。每空仅有唯一答案;每空1分)
- 1. 硅的晶格结构是(),能带结构是()。
 - A. 金刚石型 B. 闪锌矿型

 - C. 间接禁带型 D. 直接禁带型。

答案: A C

- 2. 由两种()原子的()立方,沿立方的体对角线错开其长度的 1/4 套构而成的晶体结 构称为闪锌矿型结构。

- A. 相同 B. 不同 C. 面心 D. 体心

答案 B C

- 3. 在 N 型半导体中,随着温度的升高,本征载流子浓度 n_i (); 室温下,在 N 型半导 体中, 当掺杂浓度从 1×10^{15} cm⁻³ 增加为 2×10^{15} cm⁻³, 忽略禁带宽度的变化, 本征载流); 平衡空穴浓度 *p*₀ ()。 子浓度 *n*_i(
- A. 增加 B. 减小 C. 不变

答案: A C B

- 4. 室温条件下硅材料杂质全电离浓度上限数量级为() cm⁻³。
- A. 10¹⁰ B. 10¹⁵ C. 10¹⁷ D. 10¹⁹

答案: C

5. 有 3 个锗样品, 其掺杂情况分别是: 甲含硼和磷各 2×10^{17} cm⁻³; 乙含砷 1×10^{17} cm⁻³; 丙含磷 2×10¹⁵ cm⁻³。室温下,这些样品的电导率由高到低的顺序是(),多子迁移率 由低到高的顺序是(),平衡少子浓度由高到低的顺序是()。

	A. 甲	乙丙	B.	甲丙乙	C. 乙戸	j甲	D. 丙乙甲		
	答案:	C	A B						
6.	对 Si 7	材料而	言,在足	够强电场下	载流子迁	多率显著隋	K 低,是因为]载流子与晶格发	生了
()	。对 C	iaAs 材料ī	而言,负微分) 电导是由	于电子发生	Ė(),	迁移率()。
	A. 光	学波散	[射;	B. 声学波	散射;	C. 电离:	杂质散射;	D. 谷间散射	
	E. 变	大		F. 变小		G. 不变			
	答案:	A	D F						
7.	$N_{\rm D} > N$	A的补	偿半导体	因以()导电为三	三而成为()半导	体。	
	A. 空:	穴	B.	电子	C. p 彗	Ã	D. n 型	E. 本征	
	答案:	В	D						
8.	对掺碳	紫浓度	为 1×10 ¹⁴	cm-3 的硅材	料而言,是	丰散射主要	曲()	决定,迁移率随	温度
升	高而 (); 对掺磷	浓度为5×	10 ¹⁸ cm ⁻³ 的	样品,当活	温度升高时,	电离杂质的散射	概率
(), 晶柱	各振动的散	(射概率(), 载	流子迁移率	<u>K</u> (),		
	A. 电i	离杂质	散射	B. 晶构	8振动散射	C. 3	增大	D. 减小	
	E. 先 ⁵	曾大再	减小	F. 先减	小再增大				
	答案]	B, D, I), C, E						
9.	较高掺	多杂的	Si 在 GaA	s 中是()。				
	A. 施	主		B. 受	主	C. 两性	上杂质		
	答案:	C							
10	. 单位	能量间]隔内的量	子态数称为	()				
	A. 能	量密度	В.	量子密度	C. 岁	念密度	D. 电流	密度	
	答案:	C							
11	. 电子	的漂移	电流的方	向,与()相同。				
	A. 电	子流密	度的方向	B. 电子	扩散方向。	C. 电子浓度	度梯度方向	D. 电场方向	
	答案:	D							
12	. 若某	材料电	阻率随温	度升高而单	调下降,记	亥材料是().		
	A. 本	征半	导体 B. 杂	·质半导体 (C. 金属	导体 D. 简	前并半导体		
	答案:	A							
13	. p 型半	兰导体	的电阻率日	由()电-	导率决定,	()X	寸电阻率的贡	〔献可以忽略 。	
	A. 多·	子				B. 少子			
	答案:	A	В						

……光……

……题

14. 直接复合中,小注入的半导体当温度和掺杂一定的时候,()越高,寿命就越短。

A. 电导率

- B. 禁带宽度 C. 费米能级 D. 复合中心能级

答案 A

※ 15. 电子陷阱存在于 ()型半导体中,其主要导电载流子为 ()。

A. N

- B. P C. 电子 D. 空穴

答案: B D

得 分

二、简答题(每小题12分,共24分)

16. (12 分) 试比较半导体中浅能级杂质和深能级杂质对其电学参数的 影响,并说明它们在实践中的不同应用。

答:

- (1) 在常温下浅能级杂质全电离,可显著地改变载流子的浓度,从而影响半导体材料 的电导率。(3分)
- (2) 深能级杂质在常温下较难电离,和浅能级杂质相比掺杂也较低,不显著载流子的 · 浓度,但在半导体中可以起有效的复合中心或陷阱作用,对载流子的复合作用很强。(3分)
 - (3) 在实际的应用中,通过浅能级杂质调节载流子的浓度、电阻率,改变材料的导电 类型。(3分)
 - (4) 而通过深能级杂质提供有效的复合中心,提高器件的开关速度。(3分)

17. (12分) 画出平衡状态下中等掺杂硅的电阻率随温度的变化情况,并解释原因。

答: 电阻率随温度变化图像如下:

解释原因

- ① 低温弱电离区: 杂质电离使 $n\uparrow$; 电离杂质为主, $T\uparrow$, $\mu\uparrow$, 电阻率 \downarrow . (3分)
- ② 全电离区: n 不变化; 晶格散射为主, $T \uparrow$, $\mu \downarrow$, 电阻率 \uparrow . (3分)
- ③ 本征区:本证载流子导电为主, n_i 随温度迅速升高, μ 缓慢降低, 电阻率单调下降. (3 分)

得 分

三、证明题 (共 10 分)

18. (10 分)假定室温下某半导体掺杂施主杂质全电离,施主杂质浓度分布从表面到体内随深度 x 呈指数分布: $N_D(x) = N_0 \exp(-ax)$ 。证明热平衡该样品的内部电场大小与掺杂浓度 N_D 及深度 x 无关。

证明:

当杂质完全电离时, 电子浓度分布 $n(x) = N_D(x) = N_0 \exp(-ax)$ 。(2分)

漂移电流 $J_{drf} = q n(x) \mu_n E(x)$ (2 分)

扩散电流 $J_{\text{diff}} = qD_{\text{n}}[dn(x)/dx] = qD_{\text{n}} \cdot n(x)(-a)$ (2 分)

热平衡时上述电流之和应为零, $J_{drf} + J_{diff} = 0$,即 $q n(x) \mu_n E(x) + q D_n \cdot n(x) (-a) = 0$ (2 分)

故内建电场 $E(x) = D_n / \mu_n a = k_0 T / q \cdot a$, 即与掺杂浓度 N_D 和深度 x 无关。(2 分)

得 分

四、计算题与综合题(共 36 分)

19. $(10\, \mathcal{H})$ 室温条件下对一均匀 n 型硅样品的表面注入少数载流子空穴,同时在样品上施加一个 $50\, \text{V/cm}$ 的电场,若电场力的作用下这些少数载流子在 $100\, \mu \text{s}$ 的时间内移动了 $1\, \text{cm}$,求少数载流子的漂移速度、迁

移率和扩散系数,请根据计算结果判断该半导体是杂质半导体还是本征半导体,说明原因。 室温下 k_0 T=0.026 eV。

解: 在电场作用下,少子漂移速度为:
$$v = \frac{1 \text{ cm}}{100 \text{ } \mu\text{s}} = 10^4 \text{ } \text{ cm/s}$$
 (2分)

迁移率为:
$$\mu = \frac{v}{E} = \frac{10^4 \, cm \, / \, s}{50 \, V \, / \, cm} = 200 \, cm^2 \, / \, (Vs)$$
 (3分)

扩散系数为:
$$D_p = \frac{k_0 T}{q} \mu = 0.026 \times 200 cm^2/s = 5.2 \ cm^2/s$$
 (3分)

计算迁移率小于本征半导体空穴迁移率 $500~cm^2/(Vs)$,因此为杂质半导体,电离杂质散射使得空穴迁移率降低。 (2分)

- 20. (10 分) 室温下在半导体 Si 材料中掺入施主杂质浓度 $N_{\rm D}=10^{16}\,{\rm cm}^{-3}$,受主杂质浓度 $N_{\rm A}=3\times10^{15}\,{\rm cm}^{-3}$;(已知 $n_{\rm i}=1.02\times10^{10}\,{\rm cm}^{-3}$, $N_{\rm c}=2.8\times10^{19}\,{\rm cm}^{-3}$, $k_0T=0.026\,{\rm eV}$)。
 - (1) 求多数、少数载流子浓度以及费米能级相对于导带底的位置;
- (2) 假设电子和空穴的迁移率分别为 1350 cm²/V·s 和 480 cm²/V·s ,在外加电场强度为 $10 \, \text{V/cm}$ 的电场作用下,求流过样品的电流密度。

 $n_0 = N_D - N_A = 10^{16} - 3$ 解: 多数、少数载流子浓度为: $n_0 = \frac{n_i^2}{n_i^2} = \frac{(1.02 \times 10^{10})^2}{1.02 \times 10^{10}}$

$$n_0 = N_D - N_A = 10^{16} - 3 \times 10^{15} = 7 \times 10^{15} cm^{-3}$$

$$p_0 = \frac{n_i^2}{n_0} = \frac{(1.02 \times 10^{10})^2}{7 \times 10^{15}} = 1.49 \times 10^4 cm^{-3}$$
(2 \(\frac{1}{12}\))

1)
$$n_0 = N_c e^{-\frac{E_c - E_F}{k_0 T}}$$
 (2 分)

$$\Rightarrow E_c - E_F = k_0 T \ln \frac{N_c}{n_0} = 0.026 \times \ln \frac{2.8 \times 10^{19}}{7 \times 10^{15}} = 0.215 eV \qquad (2 \%)$$

2)
$$\sigma = n_0 q \mu_n = 7 \times 10^{15} \times 1.6 \times 10^{-19} \times 1350 = 1.512$$
 S/cm (2 $\%$)

$$J = \sigma E = 1.512 \times 10 = 15.12 \text{ A/cm}^2$$
 (2 $\frac{1}{2}$)

- 21. (10分) 半导体样品室温下空穴浓度 p(x)为下图分段函数,已知空穴迁移率为 μ_p 。求:
 - (1) 无外加电场时空穴电流密度 $J_p(x)$ 的表达式;
 - (2) 若使净空穴电流为零,求所需电场的大小,方向如何?
 - (3) 若 $p(0)/p_0=10^4$, 求 x=0 和 x=W 之间的静电势差。

解:

(1) 无外加电场时的空穴电流密度 $J_p(x)$ 的表达式:

$$\begin{split} J_{p} &= -qD_{p} \frac{d\Delta p(x)}{dx} = -qD_{p} \frac{p_{0} - p\left(0\right)}{W} & 0 < x < W , \frac{D_{p}}{\mu_{n}} = \frac{k_{0}T}{q} \Rightarrow D_{p} = \mu_{n} \frac{k_{0}T}{q} & (2 \stackrel{\wedge}{\mathcal{D}}) \\ \\ J_{p} &= -\mu_{n}k_{0}T \frac{p_{0} - p\left(0\right)}{W} & 0 < x < W \\ \\ J_{p} &= 0 & x > W \end{split} \tag{2 \stackrel{\wedge}{\mathcal{D}}}$$

(2) 若使净空穴电流为零,则

$$J_{p} = p(x)q\mu_{p} |E| - qD_{p} \frac{dp(x)}{dx} = 0 \implies |E| = \frac{D_{p} \frac{dp(x)}{dx}}{p(x)\mu_{p}} = \frac{1}{p(x)} \frac{D_{p} dp(x)}{\mu_{p}}$$

$$\begin{cases} \frac{dp(x)}{dx} = \frac{p_{0} - p(0)}{W} = C & 0 < x < W \\ p(x) = p(0) + Cx & 0 < x < W \end{cases}$$
爰因斯坦关系
$$\frac{D_{p}}{\mu_{p}} = \frac{k_{0}T}{q} = 0.026V$$

$$|E| = \frac{1}{p(x)} \frac{D_{p}}{\mu_{p}} \frac{dp(x)}{dx} = \frac{0.026C}{p(0) + Cx} & 0 < x < W \end{cases}$$

$$|E| = 0 \quad x > W$$

所需电场方向向左 (1分)

(3) 若 $p(0) / p_0 = 10^4$, x = 0 和 x = W 之间的电位差为:

$$V = -\int_{0}^{W} |E| dx = -\int_{0}^{W} \frac{0.026C}{p(0) + Cx} dx$$
$$= -0.026 \times \left[\ln \frac{p_{0}}{p(0)} \right] = 0.24V$$
(2 \(\frac{1}{2}\))

22. (6分) 已知硅和 4H-碳化硅材料的重要物理参数如下表所示。

	禁带宽度 (eV)	饱和漂移速度 (10 ⁷ cm/s)	临界击穿电场 (MV/cm)	热导率 (W/cm·K)	受主杂质电离能 (meV)
Si	1.12	1	0.3	1.7	45
4H-SiC	3.26	2	3	4.9	191

综合《半导体物理 A》课程相关知识,试比较并解释 4H-碳化硅材料与硅材料在制作电子 器件的潜在优势或劣势。

答题要点: (每个参数 1.5 分, 任意答对 4 个给满分)

: _		
	物理参数	知识点 (概念/公式/能带图等)
1=()	禁带宽度	禁带宽度越大,相同温度下本征载流子浓度越低,则本征温度越高,
副		更有利于制作高温器件。4H-SiC 的禁带宽度对应的能量为紫外光,
		可用于制作紫外探测器的材料。此外,宽禁带半导体制成的可制作
K∏		具有抗辐照更好的器件,适用于航空航天领域所需的器件。
	饱和速度	4H-SiC 中的饱和漂移速度是 Si 中的两倍,因此具有更快的漂移速
		度,有利于制作高频/高速器件。
	临界击穿电场	4H-SiC 是 Si 的 10 倍,因此在高耐压器件方面有更好的应用。比如
:		制作大功率电力电子器件。
	热导率	4H-SiC 具有更大的热导率,因此其散热更好,有利于制作高温器
		件。
\vdots	受主杂质电离能	4H-SiC 受主杂质电离能更大,因此常温下 P 型 4H-SiC 可能存在显
		著的杂质非完全电离效应,导致载流子浓度远低于掺杂浓度,使得
		半导体电阻增加。
1117		半导体电阻增加。