AERO 4970/7970 - Computational Fluid Dynamics (CFD) :: Fall 2022

Class MWF, 1:00 - 1:50 pm, 201 Ramsay Hall

Instructor Dr. Nek Sharan, nsharan@auburn.edu

Office Hours Wednesday, 3:00 - 4:30 pm, 332 Davis Hall

https://auburn.zoom.us/j/3302840089

Course Description

This course will discuss finite-difference and finite-volume methods for solving partial differential equations of interest in fluid dynamics. Simplified (model) equations will be used to explain concepts before application to inviscid and viscous flows. Emphasis will be placed on developing scientific programming skills and analyzing numerical methods applicable to practical fluid flow problems. Some topics that will be covered include:

Figure 1 CFD simulation of the flow over a cylinder.

- Fluid flow conservation laws and model equations
- Finite-difference methods
 - o Order of accuracy: Taylor Series Expansion
 - o Discretization errors: Numerical dispersion and dissipation
 - o Numerical stability: Fourier Analysis
 - o Boundary treatment: Method of characteristics
- Unsteady flow computations
 - o Time-marching methods: Runge-Kutta schemes
 - o Time-space stability and convergence of ODEs
- Finite-volume methods
 - o Riemann problem for the Euler Equations
 - o Approximation of surface and volume integrals
 - o Boundary condition implementation and solution of linear systems
- Numerical methods for incompressible flow calculation
- Turbulent flow computation and modeling

Additional topics based on students' interest may be included.

Prerequisites

Undergraduate-level fluid mechanics, Basic calculus and differential equations, Introductory linear algebra, Some programming skills in a language of your choice

Grading

 $\begin{array}{ll} \mbox{Homework} & 40\% \\ \mbox{Midterm} & 25\% \\ \mbox{Final exam or project} & 35\% \end{array}$

Suggested Texts

B1: Lomax, Pulliam, & Zingg, Fundamentals of Computational Fluid Dynamics

B2: Moin, Fundamentals of Engineering Numerical Analysis

B3: Hirsch, Numerical Computation of Internal and External Flows

B4: Wendt, Computational Fluid Dynamics: An Introduction

B5: LeVeque, Finite Volume Methods for Hyperbolic Problems

B6: Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics

B7: Ferziger & Peric, Computational Methods for Fluid Dynamics

Homework Policy

- Typeset your homework or write neatly.
- Provide a main document with answers/figures/tables. Include all source code at the end of the document and reference programs/modules/functions as necessary.
- You may work together in study groups but you must provide comments/conclusions/code independently.
- Late homework policy: 20% off per day.

Honor code

It is assumed that the Auburn Academic Honesty Code will be followed at all times, including during completion of homework and during exams. For more details visit:

 $\underline{https://www.auburn.edu/academic/provost/academic-honesty/_assets/pdf/academic-honesty-code-20201028.pdf}$

Course Schedule: Tentative breakdown of the course schedule is provided below.

Class #	Date	Topics	Relevant Book Sections	HW/Exam Assignment	HW/Exam Due Dates		
1	17-Aug	Introduction & Syllabus					
2	19-Aug	Fluid flow	B1: Sections 2.1 – 2.5				
3	22-Aug	conservation laws		HW1			
	22 1145	and model equations		11 77 1			
4	24-Aug	Steps in a CFD calculation	B1: Section 1.2				
5	26-Aug	Finite-difference (FD) schemes	B1: Section 3.1				
6	29-Aug	Properties of a FD	B1: Sections 3.2 –				
7	31-Aug	scheme: Consistency and Accuracy	3.4		HW1 Due		
8	2-Sep	Properties of a FD		HW2			
		scheme: Conservation					
	5-Sep	Labor Day – No Classes					
9	7-Sep	Properties of a FD	B2: Sections 4.1 -				
10	9-Sep	scheme: Stability and convergence	4.3				
11	12-Sep	Stability with different	B2: Sections 4.4,		HW2 Due		
12	14-Sep	time integration methods	4.8-4.9	HW3			
13	16-Sep	Von Neumann Stability	B2: Sections 5.2 &				
14	19-Sep	Analysis	B3: Section 7.2				
15	21-Sep	Inviscid Flow: The Euler equations					
16	23-Sep	Classification of PDEs	B4: Chapter 4		HW3 Due		
	1						
17	26-Sep	Solving the Euler	D5. Costion 2.9	HW4			
17 18	26-Sep 28-Sep	Solving the Euler equations: Riemann Problem	B5: Section 3.8	HW4			
	_	equations: Riemann	B5: Section 3.8 B5: Section 4.1	HW4			
18	28-Sep	equations: Riemann Problem Finite-volume (FV) schemes	B5: Section 4.1 B5: Sections 4.9-	HW4			
18 19	28-Sep 30-Sep	equations: Riemann Problem Finite-volume (FV)	B5: Section 4.1	HW4	HW4 Due		

22	10-Oct	Roe's method	B6: Sections 11.1- 11.3	Mid-term (take home)			
23	12-Oct						
24	14-Oct	High-resolution methods	B5: Sections 6.4 - 6.11		Mid-term Due		
25	17-Oct						
26	19-Oct	Incompressible flow equations	B7: Section 1.7.1	HW5			
27	21-Oct	Solutions to the					
28	24-Oct	incompressible eqns.					
29	26-Oct	Numerical solutions to the incompressible flow equations	B7: Sections 7.1-7.3				
30	28-Oct				HW5 Due		
31	31-Oct						
32	2-Nov	Linear algebraic systems:	Da Cl. 10	Final exam/project			
33	4-Nov	Iterative methods	B3: Chapter 10				
34	7-Nov						
35	9-Nov	Pressure calculation	B7: Section 7.3				
36	11-Nov	Fractional-step methods	B7: Section 7.4.1				
37	14-Nov						
38	16-Nov	SIMPLE algorithm for incompressible flows	B7: Section 7.5				
39	18-Nov						
	21-Nov						
	23-Nov	Thanksgiving Break					
	25-Nov						
40	28-Nov	Turbulent flow simulations	B7: Chapter 9				
41	30-Nov						
42	2-Dec				Final exam due		