Deep Learning Based System for Detection of Retinal Diseases

Capstone Project Proposal

Submitted by:

(101903217) **Arshdeep Singh**

(101903212) Himanshu Mahajan

(101917089) Abhey Kumar Singla

(101903544) Hitesh Garg

BE Third Year- COE

CPG No. 235

Under the Mentorship of

Dr. Nitigya Sambyal

Assistant Professor

Computer Science and Engineering Department

Thapar Institute of Engineering and Technology, Patiala

January-June, 2022

TABLE OF CONTENTS

S.No.	About	Page
1.	Mentor Consent Form	3
2.	Project Overview	4
3.	Problem Statement	4
4.	Need Analysis	5
5.	Literature Survey	6
6.	Objectives	10
7.	Methodology	10
8.	Project Outcomes & Individual Roles	11
9.	Work Plan	12
10.	Course Subjects	12
11.	References	13

Mentor Consent Form

I hereby agree to be the mentor of the following Capstone Project Team

Project Title:	Ref. Williams	
Roll No	Name	Signatures
101917089	Abhey Kumar Singla	Abhey
101903217	Arshdeep Singh	LESHDEEP SINGH
101903212	Himanshu Mahajan	Minaultoheja
101903544	Hitesh Garg	Mitesh

NAME of Mentor: Dr. Nitigya Sambyal

SIGNATURE of Mentor: Nitigya Sawbyal.

Problem Statement

Diabetes is a metabolic disease that causes high blood sugar. This in turn causes damage to retina resulting in irreversible vision loss. In this project we have proposed a deep learning based system for detection of eye diseases. This system will assist the medical experts and will allow early detection of eye diseases to control and possibly prevent irreversible vision loss.

Project Overview

Nowadays every one in six people suffers from diabetes. High blood sugar can lead to many conditions including eye problems. The most common eye diseases are diabetic retinopathy, macular edema, glaucoma etc. The timely detection of these eye diseases is necessary to prevent irreversible vision loss.

Traditionally, the detection of eye disease is done by ophthalmologist who basically inspects the patient's retina for abnormalities like micoraneurysms, hard exudates, cotton wool spots etc. However due to unavailability of medical expert or errors in manual inspection the detection of disease may get delayed which then may result in vision loss.

To overcome the drawbacks of manual system, we have proposed a convolution neural network based automatic detection of eye diseases. A CNN can automatically look at a patient's retina image and determine the severity of disease in the patient. The focus of the model will be towards severity detection of the disease like diabetic retinopathy, macular edema etc. The model will be trained using fundus image set and will determine the severity of the diseases from healthy to most damaged retina

This automated process can reduce a lot of time, thereby screening the process of treating DR at a large scale. To make the project available to everybody in a way that is quick, free of cost, and hassle-free, the DL model is hosted as a free service on a website, which is made with CSS, JS, HTML etc. Such a system will help in highly accurate mass screening of patient's retina and can even assist doctor for disease detection.

Need Analysis

Diabetic eye diseases of the retina impacts sufferers with diabetes mellitus. Among them Diabetic Retinopathy is by far the primary cause of blindness in human beings between the ages of 20-64 [1, p. 112]. Indexed amongst WHO's top ten list of priority eye diseases, it's a tremendously omitted micro-vascular problem in developing international locations, particularly India, where most number of type 2 Diabetes Mellitus sufferers are dwelling. Macular edema rarely causes a permanent loss of vision and can usually be easily treated, but the recovery is often a slow, gradual process. Though the condition is typically not considered serious, it can be a sign or symptom of a more serious health problem that may need to be addressed. The damage caused by glaucoma can't be reversed. But treatment and regular checkups can help slow or prevent vision loss, especially if you catch the disease in its early stages

The probability of developing DR or other eyes diseases is related to the period of the ailment. Type 2 diabetes has an insidious onset and may get overlooked for years. As a result, patients may additionally already have DR, Macular edema or Glaucoma at the time of diagnosis. Type 1 diabetics, then again, when diagnosed early in the course of their disease, usually do not expand to retinopathy until years after the prognosis [2, p. 1].

Even though technological improvements, powerful treatments are available nowadays to prevent the extreme tiers, the wide variety of trained ophthalmologists capable of diagnosing retinal scans and the supply of desirable medical treatment facilities are still massively outnumbered by the global burden of problem. Globally, an expected 422 million adults were suffering from diabetes in 2014, in comparison to 108 million in 1980. The global incidence of diabetes has almost doubled since 1980, growing from 4.7% to 8.5% in the adult population [3, p.6]. The increasing prevalence of diabetes along with the growing incidence of blindness due to diabetes is anticipated to propel the market growth over the forecast period.

Traditionally, the classification of DR involves weighting numerous features and then locating such features. This is highly time-consuming for clinicians. Retinal photograph with medical interpretations is a widely accepted screening tool for DR. Computers can obtain quicker classifications once trained. Automated grading of DR has potential benefits such as increasing efficiency, reproducibility, reducing barriers to access, and improving patient outcomes by providing early detection and treatment. This does not absolve the doctor from his duty but merely provides a second opinion. Thus, to maximize the clinical utility of automated grading, an algorithm to detect DR is required. The project also enables patients to get checked for DR remotely. This can be vital in times when in-person evaluation cannot be done or is not preferred [25]. Also – as the general problem being solved here is that of image processing of blood vessels – by making a few changes to the project's CNN model, we should be able to detect various other diseases involving blood vessel abnormalities, like blood clots, brain aneurysms, and abnormal blood vessel knots.

Literature Survey

S.	Name	Paper Title	Authors	Model/Technolo	Dataset	Findings
NO	and Roll			gy		
	no.					
1.	Arshdeep	Computer-	Yung-Hui Li ,	DCNN, SVM	Kaggle	This paper
	Singh	Assisted	Nai-Ning Yeh,	classifier	Dataset	presents a
	10190321	Diagnosis for	Shih-Jen Chen,			novel
	7	Diabetic	and Yu-Chien			algorithm
		Retinopathy	Chung			based on
		Based on				DCNN used
		Fundus				for the
		Images Using				automated
		Deep				detection of
		Convolutional				DR. Unlike the
		Neural				traditional
		Network				DCNN
		[5]				approach, the
						commonly
						used max -
						pooling layers
						is replaced
						with fractional
						max-pooling.
2.		Deep Learning	Borys	Deep learning,	EyePACs,	Automated
		Approach to	Tymchenko, Phil	Deep CNN,	2015	deep-learning
		Diabetic	ip	multi-target		based method
		Retinopathy	Marchenko, Dmi	learning, ordinal		for stage
		Detection	try Spodarets	regression,		detection of
		[6]		classification		DR by single
						photography of
						the human
						fundus
3.		Iris – Diabetic	Noel J Philip ,	CNN, transfer	Kaggle	Use of CNNs
		Retinopathy	Romi Roji ,	learning,	dataset of	on colour
		Detection	Rosme Jose ,	GoogLeNet,	35,000	fundus images

			Software	Rehna Cherian,	AlexNet,	images	to diagnose DR
			[7]	Dr. Arun K.S	ImageNet	with 4-class	staging.
						labels	
						(normal, mild,	
						moderate,	
						severe).	
-	4.	Abhey	Retinopathy	Emily Frith, Paul	CNN	Data from the	Brief
		Kumar	and Mortality	D Loprinzi		2005–2008	explanation on
		Singla				National	CNN, pooling
		10191708	[8]			Health and	layers and
		9				Nutrition	convolutional
						Examination	layers.
						Survey were	
						used to	
						identify 4,777	
						adults with	
						complete data	
						regarding	
						screening for	
						nonproliferati	
						ve retinopathy	
						using Early	
						Treatment	
						Diabetic	
						Retinopathy	
						Study grading	
						criteria	
	5.		Microaneurys	Noushin	CNN	Retinopathy	In this paper,
			m detection in	Eftekhari,		Online	an approach for
			fundus images	Hamid-Reza		Challenge	automatic MA
			using a	Pourreza,		dataset and E-	detection in
			twostep	Mojtaba		Ophtha-MA	retinal images
			convolutional	Masoudi,		dataset	based on deep-
			neural network	Kamaledin			learning CNN
			[10]	Ghiasi-Shirazi &			is developed to
				Ehsan Saeedi			address the
L		1			ı		

						previous works
						problems such
						as imbalanced
						dataset and
						inaccurate
						MA-detection
6.	Hitesh	Automated	Carson Lam,	CNN	Kaggle	In this paper an
	Garg	Detection of	MD, Darvin Yi,		dataset of	automatic DR
	10190354	Diabetic	Margaret Guo,		35,000	grading system
	4	Retinopathy	and Tony		images with	capable of
		Using Deep	Lindsey		5-class labels	classifying
		Learning			(normal, mild,	images based
		[11]			moderate,	on disease
					severe, end	pathologies
					stage) and	from four
					Messidor-1	severity levels
					dataset of	is introduced.
					1,200 color	
					fundus images	
					with 4-class	
					labels	
					(normal, mild,	
					moderate,	
					severe)	
7.		Diabetic	Lifeng Qiao	DCNN	https://ieee-	This paper
		Retinopathy	, Ying Zhu		dataport.org	presents the
		Detection	, and Hui Zhou			Prognosis of
		Using				MA and early
		Prognosis of				diagnostics
		Microaneurys				system for
		m and Early				NPDR capable
		Diagnosis				of effectively
		System for				creating
		NonProliferati				DCNNs for the
		ve Diabetic				semantic
		Retinopathy				segmentation
			0			

		Based on Deep				of fundus
		Learning				images which
		Algorithms				can improve
		[12]				NPDR
						detection
						efficiency and
0	Himansh	A	District Comment	Data Jaiman	MEGGIDOD 2	accuracy.
8.		Automated	Rishab Gargeya,	Data driven	MESSIDOR 2	A fully data-
	u M 1 :	Identification	Theodore Leng	Deep Learning	and E-Ophtha	driven artificial
	Mahajan	of Diabetic		Algorithms	databases	intelligencebas
	10190321	Retinopathy				ed grading
	2	Using Deep				algorithm can
		Learning				be used to
		[13]				screen fundus
						photographs
						obtained from
						diabetic
						patients and to
						identify, with
						high reliability,
						which cases
						should be
						referred to an
						ophthalmologi
						st for further
						evaluation and
						treatment
9.		Deep Transfer	Nour Eldeen M.	CNN, ML, Deep	APTOS 2019	The AlexNet
		Learning	Khalifa,	transfer learning	dataset	model has
		models for	Mohamed Loey,			proven to be
		medical DR	Mohamed			most accurate
		detection	Hamed N. Taha,			in categorizing
		[9]	and Hamed Nasr			DR images,
			Eldin T.			with accuracy
			Mohamed			of 97.9%.

Objective

The main objectives of the project are as follow-

- 1. To study various models for eye disease detection.
- 2. To design and implement deep learning model for detection of eye diseases.
- 3. To analyse the performance of the proposed model and compare it with existing models in literature.
- 4. To design a deep learning based web application for the detection of eye diseases.

Methodology

Data Collection

In the project, fundus imageset will be used for detection of eye diseases. The dataset should be labelled for various eye diseases like diabetic retinopathy, macular edema etc.

Pre-processing of data

The fundus images will be pre-processed and cleaned. Further data augmentation will be employed for image instances. The images will be split into training and test ratio for training of model.

Model Design and implementation

A deep learning based model will be proposed for detection of various eye diseases. Further, the model will be analysed on various performance parameters like accuracy, sensitivity, precision etc.

Comparative analysis

The proposed model will be compared with existing models in literature on the basis of performance parameters like accuracy, precision, senstivity etc.

Web Application

A web application will be developed based on the proposed model. The web application will assist medical experts in automatic detection of eye diseases.

Project Outcomes

The main outcomes of the project are as follow-

- 1. A deep learning based model for detection of various eye diseases.
- 2. A web application that can assist ophthalmologists in detection of eye diseases.

Individual Roles

- 1. Abhey Kumar Singla[Team Leader]:
 - Documentation
 - Dataset Collection
 - Dataset Pre-processing
 - Model design and training.
- 2. Hitesh Garg:
 - Documentation
 - Dataset Collection
 - Dataset Pre-processing
 - Model design and training.
- 3. Arshdeep Singh:
 - Literature survey
 - Front-end and Back-end Development
 - Documentation
 - Database management.
- 4. Himanshu Mahajan:
 - Literature survey
 - Front-end and Back-end Development
 - Documentation
 - Database management.

Work Plan

Sr. No.	Activity	March			April			May	/		June			July			Aug	ust	I	Sept	embe	er	(Octob	er	Τ	No	vem	ber	[Decen	nber
31.140.	Activity	1 2 3	4	5	6 7	8	9	10 3	11 12	13	3 14 19	16	17	18 1	9 20	21	22	23 2	24	25 20	5 27	28	29	30	31 3	2 3	33	34 3	35 36	37	38	39 40
1	Literature Survey																															
2	Problem Selection																															
3	Dataset Selection																															
4	Dataset Preprocessing																															
5	Model Designing and Implementation																															
6	Comparative Analysis																															
7	Front end development																															
8	Back end development	·																														
9	Integration and Testing																															

Course Subjects

Subject Code	Subject Name	Description
UML501, UCS538	Machine Learning,	Deep learning and machine
	Data Science	learning models
UCS503	Software Engineering	■ To make SRS
UCS542	UI & UX Specialist	■ To deploy the model
UCS662	Test Automation	 Testing the final product

REFERENCES

- [1] Chaudhry S., "Pharmacotherapy in Obesity." IP International Journal of Comprehensive and Advanced Pharmacology, vol. 5(3), pp. 110-117, 2020.
- [2] Vislisel J., Oetting T., "Diabetic Retinopathy: From One Medical Student to Another.", EyeRounds.org, Sept. 1, 2010.
- [3] WHO, "Global report on diabetes." 2016.
- [4] Lee R., Wong T. Y., Sabanayagam C., "Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss." Eye and Vision, vol. 2(17), 2015.
- [5] Li Y-H., Yeh N-N., Chen S-J., Chung Y-C., "Computer-Assisted Diagnosis for Diabetic Retinopathy Based on Fundus Images Using Deep Convolutional Neural Network." Mobile Information Systems, 1-14.10.1155/2019/6142839, 2019.
- [6] Tymchenko B., Marchenko P., Spodarets D., "Deep Learning Approach to Diabetic Retinopathy Detection." 2020.
- [7] Philip N. J., Roji R., Jose R., Cherian R., S A. K., "Iris Diabetic Retinopathy Detection Software." International Journal of Engineering Research & Technology (IJERT), vol. 9(10), pp. 336-338, Oct. 2020.
- [8] Frith E., Loprinzi P. D., "Retinopathy and Mortality." Diabetes Spectrum, vol. 31(2), pp. 184-188, 2018.
- [9] Khalifa NEM, Loey M., Taha MHN, Mohamed HNET, "Deep Transfer Learning Models for Medical Diabetic Retinopathy Detection." Acta Inform Med., vol. 27(5), pp. 327-332, 2019.
- [10] Eftekhari N., Pourreza H-R., Masoudi M., Ghiasi-Shirazi K., "Microaneurysm detection in fundus images using a two-step convolutional neural network." BioMed Eng OnLine 18, 67, 2019.
- [11] Lam C., Linsdey T., Guo M., Yi D., "Automated Detection of Diabetic Retinopathy Using Deep Learning." AMIA Jt Summits Transl Sci Proc. 2018; 2017:147-155. Published May 18, 2018.
- [12] Qiao L., Zhu Y., Zhou H., "Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms." IEEE Access, pp. 1- 1.10.1109/ACCESS.2020.2993937, 2020.
- [13] Gargeya R., Leng T., "Automated Identification of Diabetic Retinopathy using Deep Learning." American Academy of Ophthalmology, vol. 124(7), pp. 962-969, 2017.