Լ. Ս. ԱԹԱՆԱՍՅԱՆ, Վ. Ֆ. ԲՈԻՏՈԻՋՈՎ, Ս. Բ. ԿԱԴՈՄՑԵՎ, Է. Տ. ՊՈՁՆՅԱԿ, Ի. Ի. ՅՈԻԴԻՆԱ

ԵՐԿՐԱՉԱՓՈՒԹՅՈՒՆ

Դասագիրք միջին դպրոցի 8–րդ դասարանի համար

Յաստատված է 33 կրթության և գիտության նախարարության կողմից՝ որպես դասագիրք հանրակրթական դպրոցի համար

Թարգմանված է ռուսերեն 15–րդ հրատարակությունից

Переводное издание выпущено в свет по лицензионному договору N 3/19-11 между ОАО "Издательство "Просвещение"" и ООО "Зантак—97"

Թարգմանությունը լույս է տեսել «Իզդատելստվո «Պրոսվեշչենիե»» ԲԲԸ և «Ջանգակ–97» ՍՊԸ միջև կնքված N 3/19–11 արտոնագրային պայմանագրի համաձայն

Москва "Просвещение" 2005 Երևան «Զանգակ» 2012 ጓ\$ባ 373.167.1:514 (075) ዓሆባ 22.151 g 72 ৮. 894

Դասագիրքը համապատասխանեցված է առարկայական ծրագրին

Թարգմանությունը, փոխադրումը և լրացումը՝ U. t. Յակոբյանի

В переводном издании § 5 в главе V, § 6 и § 8 в главе VI, § 3 в главе VII добавлены переводчиком и за содержание этих параграфов авторский коллектив не несет ответственности.

Թարգմանված հրատարակության գլուխ V–ում § 5–ը, գլուխ VI–ում § 6–ը և § 8–ը, գլուխ VII–ում § 3–ը ավելացվել են թարգմանչի կողմից, որոնց բովանդակության համար հեղինակային խումբը պատասխանատվություն չի կրում։

երկրաչափություն – 8: ե 894 Դասագիոթ հանուսևոթ

Դասագիրք հանրակրթ. դպր. 8–րդ դաս. համար/ L. Ս. Աթանասյան, Վ. Ֆ. Բուտուզով, Ս. Բ. Կադոմցև և ուրիշներ :/.— Եր.: «Ջանգակ», 2012.— 144 էջ:

Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина

ГЕОМЕТРИЯ

Учебник для 8-го класса (на армянском языке) Ереван "Зангак" 2012

Экземпляры переводного издания подлежат распространению только в пределах территории действия лицензионного договора N3/19-11. Данное издание подлежит распространению только на территории Армянской Республики и среди армянских диаспор на территории других стран.

Թարգմանության լույս տեսած օրինակները ենթակա են տարածման միայն N3/19—11 արտոնագրային պայմանագրի գործողության տարածքում։ Սույն իրատարակությունը ենթակա է տարածման միայն Յայաստանի Յանրապետության տարածքում և հայկական սփյուռքում։

ISBN 978-993968-025-5

© Издательство «Просвещение», 1990 © «Ձանգակ–97» ՍՊԸ, թարգման., 2012

Все права защищены Բոլոր իրավունքները պաշտպանված են

ԳԼՈՒԽ V

Քառանկյուններ

§**1**

ԲԱԶՄԱՆԿՅՈԻՆՆԵՐ

1. Բազմանկյուն

Դիտարկենք մի պատկեր, որը կազմված է AB, BC, CD, ..., EF, FA հատվածներից այնպես, որ կից հատվածները, այսինքն՝ AB և BC, BC և CD, ..., FA և AB հատվածները, չեն գտնվում մի ուղղի վրա, իսկ ոչ կից հատվածները ընդհանուր կետ չունեն։ Այդպիսի պատկերը կոչվում է բազմանկյուն (նկ. 1): A, B, C, ... E, F կետերը կոչվում են բազմանկյան գագաթներ, իսկ AB, BC, CD, ..., EF հատվածները՝ կողմեր։ Բոլոր կողմերի երկարությունների գումարը կոչվում է բազմանկյան պարագիծ։

n գագաթ ունեցող բազմանկյունն անվանում են n–uնկյուն։ Այն ունի n կողմ։ Բազմանկյան օրինակ է եռանկյունը։ Նկար 2–nւմ պատկերված են ABCD քա-nանկյունը և $A_1A_2A_3A_4A_5A_6$ վեցանկյունը։ Նկար 3–nւմ պատկերված պատկերը բազմանկյուն չէ, քանի որ C_1C_5 և C_2C_3 (ինչպես նաև C_3C_4 և C_1C_5) ոչ կից հատվածներն ունեն ընդհանուր կետ։

Բազմանկյան մի կողմին պատկանող երկու գագաթները կոչվում են *հարևան գագաթներ։* Երկու ոչ *հարևան* գագաթները միացնող հատվածը կոչվում է բազմանկյան *անկյունագիծ:*

Յուրաքանչյուր բազմանկյուն հարթությունը տրոհում է երկու մասի, որոնցից մեկը կոչվում է բազմանկյան ներքին տիրույթ, իսկ մյուսը՝ արտաքին տիրույթ։ Նկար 4–ում բազմանկյունների ներքին տիրույթները ստվերագծված են։ Բազմանկյան և նրա ներքին տիրույթի միավորում հանդիսացող պատկերը ևս անվանվում է բազմանկյուն։

uı)

բ) Նկ. 6

2. Ուռուցիկ բազմանկյուն

Բազմանկյունը կոչվում է ուռուցիկ, եթե այն ընկած է իր ցանկացած երկու հարևան գագաթներով անցնող ուղղի մի կողմում։ Նկար 5–ում պատկերված F_1 բազմանկյունը ուռուցիկ է, իսկ F_2 բազմանկյունը ուռուցիկ չէ։

Դիտենք 6(ա) նկարում պատկերված ուռուցիկ n—անկ-յունը։ Անկյուններ $A_nA_1A_2$ —ը, $A_1A_2A_3$ —ը, ..., $A_{n-1}A_nA_1$ —ը կոչվում են այդ բազմանկյան *անկյուններ։* Գտնենք դրանց գումարը։ Դրա համար A_1 գագաթը անկյունագծերով միացևենք մյուս գագաթներին։ Արդյունքում ստացվում են n-2 հատ եռանկյուններ (նկ. 6(բ))։ Այդ եռանկյունների անկյուների գումարը հավասար է n—անկյուն բազմանկյան անկյունների գումարին։ Գիտենք, որ յուրաքանչյուր եռանկյան անկյունների գումարի գումարը 180° է, ուստի՝ $A_1A_2A_3...A_n$ բազմանկյան անկյունների գումարը, այն է՝ n-2 եռանկյունների անկյունների գումարը, հավասար է $(n-2)\cdot 180^\circ$:

Այսպիսով՝ $n_1n_1gh_1$ n_2 անկյան անկյունների գումարը $(n-2)\cdot 180^\circ$ ξ :

Ուռուցիկ բազմանկյունը, որի բոլոր կողմերը հավասար են, և բոլոր անկյունները հավասար են, կոչվում է կանոնավոր բազմանկյուն։ Կանոնավոր բազմանկյան օրինակ է հավասարակողմ եռանկյունը։

3. Քառանկյուն

Յուրաքանչյուր քառանկյուն ունի չորս գագաթ, չորս անկյուն, չորս կողմ և երկու անկյունագիծ (նկ. 7): Քառանկյան երկու ոչ կից կողմերը կոչվում են հանդիպակաց են կոչվում նաև քառանկյան երկու ոչ հարևան գագաթները (նմանապես անկյունները)։

Քառանկյունները լինում են ուռուցիկ և ոչ ուռուցիկ: 7(ա) նկարում պատկերվածը ուռուցիկ քառանկյուն է, իսկ 7(բ) նկարում պատկերվածը՝ ոչ ուռուցիկ։

Ուռուցիկ քառանկյան յուրաքանչյուր անկյունագիծ քառ– անկյունը տրոհում է երկու եռանկյան։ Ոչ ուռուցիկ քառանկ– յան անկյունագծերից մեկը ևս քառանկյունը տրոհում է երկու եռանկյան (տե՛ս A_1A_3 անկյունագիծը *նկ. 7(p)):*

Քանի որ ուռուցիկ ո–անկյան անկյունների գումարը որոշվում է $(n-2)\cdot 180^\circ$ արտահայտությամբ, ուրեմն՝ ուռուցիկ քառանկյան անկյունների գումարը 360° է:

Հարցեր և խնդիրներ

- 1. Գծագրեք ուռուցիկ հնգանկյուն և վեցանկյուն։ Բազմանկյուններից յուրաքանչյուրում որևէ գագաթից տարեք բոլոր անկյունագծերը։ Տարված անկյունագծերով քանի՞ եռանկյան է տրոհվում բազմանկյուններից յուրաքանչյուրը։
- 2. Գտեք անկյունների գումարը. ա) ուռուցիկ հնգանկյան, բ) ուռուցիկ վեցանկյան, գ) ուռուցիկ տասնանկյան։
- 3. Գտեք ուռուցիկ քառանկյան անկյունները, եթե դրանք իրար հավասար են։
- 4. Տրված է հավասար անկյուններով հնգանկյուն։ Գտեք այդ անկյունները։
- 5. Քանի՞ կողմ ունի ուռուցիկ բազմանկյունը, եթե նրա անկյունների գումարը 540° է։
- 6. Գտեք ուռուցիկ քառանկյան անկյունները, եթե նրա երեք անկյունները իրար հավասար են, իսկ չորրորդ անկյունը դրանցից յուրաքանչյուրից փոքր է 40°–ով։
- 7. Գտեք ուռուցիկ քառանկյան անկյունները, եթե դրանցից մեկը մյուսներից մեծ է համապատասիանաբար 10°–ով, 20°–ով և 30°–ով։
- 8. Գրեք ուռուցիկ քառանկյան անկյունները, եթե դրանք համեմատական են 1, 2, 4, 5 թվերին։
- 9. Գտեք ուռուցիկ հնգանկյան անկյունները, եթե դրանք համեմատական են 2, 3, 4, 5, 6, թվերին։
- 10. Քանի՞ կողմ ունի ուռուցիկ բազմանկյունը, որի յուրաբանչյուր անկյունը հավասար է՝ ա) 90°, բ) 60°, գ) 120°, դ) 108°:
- 11. Գտե՛ք քառանկյան կողմերը, եթե նրա պարագիծը 8 սմ է, իսկ կողմերից մեկը մյուս կողմերից մեծ է համապատասխանաբար 3 մմ–ով, 4 մմ–ով և 5 մմ–ով։
- 12. Գտեք քառանկյան կողմերը, եթե նրա պարագիծը

- 66 սմ է, առաջին կողմը երկրորդից մեծ է 8 սմ–ով և նույնքանով փոքր է երրորդից, իսկ չորրորդը երեք անգամ մեծ է երկրորդից։
- 13. Գտեք ABCD ուռուցիկ քառանկյան A, B և C անկլունները, եթե $\angle A = \angle B = \angle C$ և $\angle D = 135^\circ$:
- 14. ABCDE ուռուցիկ հնգանկյան B գագաթով տարված անկյունագծերը հավասար են։ Հայտնի է, որ $\angle ABE = \angle CBD$ և $\angle BEA = \angle BDC$ ։ Ապացուցեք, որ ABDE և BEDC քառանկյունների պարագծերը հավասար են։

อกเจนาเกนจะอ

4. Զուգահեռագիծ

Սահմանում

Զուգահեռագիծ կոչվում է այն քառանկյունը, որի հանդիպակաց կողմերը զույգ առ զույգ զուգահեռ են։

Նկար 8–ում պատկերված է ABCD զուգահեռագիծը. $AB \parallel CD$, $AD \parallel BC$ ։ Զուգահեռագիծը ուռուցիկ քառանկյուն է (տե՛ս խնդիր 28-p):

Ուսումնասիրենք զուգահեռագծի մի քանի հատկություն։

1º. Զուգահեռագծի հանդիպակաց կողմերը հավասար են, և հանդիպակաց անկյունները հավասար են։

Դիտարկենք ABCD զուգահեռագիծը (նկ. 9): AC անկյունագծով այն տրոհվում է երկու՝ ABC և ADC եռանկյուների։ Այդ եռանկյունների մեջ AC կողմը ընդհաներ, որոնք առաջանում են համապատասխանաբար AB և CD, BC և AD զուգահեռ ուղիղները AC հատողով հատելիս։ Ուրեմն՝ ABC և ADC եռանկյունները հավասար են։ Ուստի՝ AB = CD, AD = BC, և AB = AD: Այնուհետև, օգտվելով AD և ADC և անկյունների հավասարությունից, ստանում ենք. ADC և ADC եռանկունների հավասարությունից, ստանում

2º. Զուգահեռագծի անկյունագծերը հատման կետով կիսվում են։

Նկ. 8

Նկ. 9

Նկ. 10

Դիցուք՝ ABCD զուգահեռագծի AC և BD անկյունագծերի հատման կետը O-ն է (նկ. 10): AOB և COD եռանկյունները հավասար են՝ ըստ կողմի և նրան առընթեր անկյունների (AB = CD՝ որպես զուգահեռագծի հանդիպակաց կողմեր, $\angle 1 = \angle 2$ և $\angle 3 = \angle 4$, որպես խաչադիր անկյուններ, որոնք առաջանում են AB և CD զուգահեռ ուղիղները համապատասխանաբար AC և BD հատողներով հատելիս)։ Ուրեմն՝ AO = OC և OB = OD, որն էլ պահանջվում էր ապացուցել։

Զուգահեռագծի բոլոր քննարկված հատկությունները յուսաբանված են նկար 11–ում։

Նկ. 11

5. Զուգահեռագծի հայտանիշները

Դիտարկենք զուգահեռագծի երեք հայտանիշ։

1⁰. Եթե քառանկյան երկու կողմերը հավասար են և զուգահեռ, ապա այդ քառանկյունը զուգահեռագիծ է։

Դիցուք՝ ABCD քառանկյան AB և CD կողմերը զուգահեռ են և AB = CD (նկ. 9)։ Տանենք AC անկյունագիծը, որը զուգահեռագիծը տրոհում է երկու՝ ABC և CDA եռանկյունների։ Այդ եռանկյունները հավասար են՝ ըստ երկու կողմի և նրանցով կազմված անկյան (AC–ն ընդհանուր կողմ է, ըստ պայմանի՝ AB = CD, որպես խաչադիր անկյուններ՝ $\angle 1 = \angle 2$ որոնք առաջանում են AB և CD զուգահեռ ուղիղները AC հատողով հատելիս)։ Հետևաբար՝ $\angle 3 = \angle 4$ ։ Բայց անկյուններ 3–ը և 4–ը խաչադիր են, որոնք առաջանում են AD և BC ուղիղները AC հատողով հատելիս։ Դրանից հետևում է, որ $AD \parallel BC$ ։ Այսպիսով՝ ABCD քառանկյան հանդիպակաց կողմերը զույգ առ զույգ զուգահեռ են։ Ըստ սահմանման՝ այդ քառանկյունը՝ ABCD–ն, զուգահեռագիծ է։

2º. Եթե քառանկյան հանդիպակաց կողմերը զույգ առ զույգ հավասար են, ապա այդ քառանկյունը զուգահեռագիծ է։

Տվյալ ABCD քառանկյան մեջ տանենք AC անկյունագիծը։ Քառանկյունը տրոհվում է երկու՝ ABC և CDA եռանկյունների (տե՛ս նկ. 9)։ Այդ եռանկյունները, ըստ երեք կողմի, հավասար են (AC-ն ընդհանուր կողմ է, իսկ ըստ

պայմանի՝ AB = CD և BC = DA)։ Ուրեմն՝ $\angle 1 = \angle 2$ ։ Այստերից հետևում է, որ $AB \parallel CD$ ։ Ստացվեց, որ AB = CD և $AB \parallel CD$, ուստի ըստ զուգահեռագծի 1–ին հայտանիշի՝ ABCD քառանկյունը զուգահեռագիծ է։

3°. Եթե քառանկյան անկյունագծերը հատվում և հատման կետով կիսվում են, ապա այդ քառանկյունը զուգահեռագիծ է։

Դիտարկենք ABCD քառանկյունը, որում AC և BD անկյունագծերը O կետում հատվում և այդ կետով կիսվում են (տես ևկ. 10): AOB և COD եռանկյունները հավասար են՝ ըստ եռանկյունների հավասարության առաջին հայտանիշի (ըստ պայմանի՝ AO = OC, BO = OD, որպես հակադիր անկյուններ՝ $\angle AOB = \angle COD$)։ Ուստի՝ AB = CD և $\angle 1 = \angle 2$:

Անկյուններ 1–ի և 2–ի հավասարությունից հետևում է, որ $AB \parallel CD$: Այսպիսով՝ ABCD քառանկյան AB և CD հանդիպակաց կողմերը հավասար են և զուգահեռ։ Ուրեմն, ըստ առաջին հայտանիշի, ABCD քառանկյունը զուգահեռագիծ է։

Խնդիրներ

- 15. Ապացուցեք, որ ABCD ուռուցիկ քառանկյունը զուգահեռագիծ է, եթե՝ ա) $\angle BAC = \angle ACD$ և $\angle BCA = \angle DAC$, բ) $AB \parallel CD$, $\angle A = \angle C$:
- 16. Զուգահեռագծի պարագիծը 48 սմ է։ Գտեք զուգահեռագծի կողմերը, եթե՝ ա) կողմերից մեկը մյուսից մեծ է 3 սմ–ով, բ) երկու կողմի տարբերությունը 7 սմ է, գ) կողմերից մեկը երկու անգամ մեծ է մյուսից։
- 17. ABCD զուգահեռագծի պարագիծը 50 սմ է, $\angle C = 30^\circ$, իսկ CD ուղղին տարված BH ուղղահայացր 6,5 սմ է։ Գտեք զուգահեռագծի կողմերը։
- 18. Զուգահեռագծի անկյուններից մեկը 40° է։ Գտեք մնացած անկյունները։
- 19. ABCD քառանկյան մեջ $AB \parallel CD$, $BC \parallel AD$, O–ն անկյունագծերի հատման կետն է: AOD եռանկյան պարագիծը 25 սմ է, AC = 16 սմ, BD = 14 սմ։ Գտեք BC կողմը։
- 20. ABCD քառանկյան մեջ AB = CD և $AB \parallel CD$, $\angle CBD = 15^{\circ}$ ։ Գտեք $\angle BDA$ –ն։

- 21. ABCD ուռուցիկ քառանկյան մեջ AB = CD, $\angle B = 70^\circ$, $\angle BCA = 60^\circ$, $\angle ACD = 50^\circ$ ։ Ապացուցեք, որ BC = AD:
- 22. Զուգահեռագծի անկյունագիծը երկու կից կողմերի հետ կազմում է համապատասխանաբար 25°–ի և 35°–ի անկյուններ։ Գտեք զուգահեռագծի անկունները։
- 23. Գտեք զուգահեռագծի անկյունները, եթե դրանցից երկուսի գումարը 100° է։
- **24.** ABCD զուգահեռագծի A անկյան կիսորդը K կետում հատում է BC կողմը։ Գտեք այդ զուգահեռագծի պարագիծը, եթե BK = 15 սմ, KC = 9 սմ։
- 25. Զուգահեռագծի կողմը անկյուններից մեկի կիսորդի հետ հատման կետով տրոհվում է 7 սմ և 14 սմ երկարությամբ հատվածների։ Գտեք այդ զուգահեռագծի պարագիծը։
- 26. Գտեք ABCD զուգահեռագծի անկյունները, եթե՝ ա) $\angle A = 84^\circ$, р) $\angle A \angle B = 55^\circ$, q) $\angle A + \angle C = 142^\circ$, η) $\angle A = 2\angle B$, ե) $\angle CAD = 16^\circ$, $\angle ACD = 37^\circ$:
- **27.** MNPQ զուգահեռագծի մեջ տարված է MQ ուղղին ուղղահայաց՝ NH–ը, ընդ որում՝ H կետը գտնվում է MQ կողմի վրա։ Գտեք զուգահեռագծի կողմերը և անկյունները, եթե հայտնի է, որ MH = 3 սմ, HQ = 5 սմ, $\angle MNH = 30$ °:
- 28. Ապացուցեք, որ զուգահեռագիծն ուռուցիկ քառանկյուն է։

Լուծում։ Դիտարկենք ABCD զուգահեռագիծը (տե՛ս նկ. 8) և ապացուցենք, որ այն ընկած է իր ցանկացած երկու հարևան գագաթներով անցնող ուղղի մի կողմում։ Դիտենք, օրինակ, AB ուղիղը։ Քանի որ AB || CD, ապա CD հատվածը և AB ուղիղը ընդհանուր կետ չունեն։ Նշանակում է՝ CD հատվածը գտնվում է AB ուղղի մի կողմում։ Բայց այդ դեպքում BC և AD հատվածները ևս կգտնվեն AB ուղղի նույն կողմում։ Այսպիսով՝ ABCD զուգահեռագիծը գտնվում է AB ուղղի մի կողմում։

29. ABCD զուգահեռագծի մեջ $AB \neq BC$ և $\angle A$ –ն սուր է։ Այդ զուգահեռագծի B և D գագաթներից տարված են AC ուղղին ուղղահայացներ՝ BK–ն և DM–ը։ Ապացուցեք, որ BMDK քառանկյունը զուգահեռագիծ է։

- 30. ABCD քառանկյան AB, BC, CD և DA կողմերի վրա նշված են համապատասխանաբար M, N, P և Q կե-տերն այնպես, որ AM = CP, BN = DQ, BM = DP, NC = QA: Ապացուցեք, որ ABCD-ն և MNPQ-ն զուգահեռագիծ են:
- 31. ABCD զուգահեռագծի անկյունագծերը հատվում են O կետում։ Ապացուցեք, որ $A_1B_1C_1D_1$ քառանկ–յունը, որի գագաթները OA, OB, OC և OD հատվածների միջնակետերն են, զուգահեռագիծ է։
- 32. ABCD զուգահեռագծի BD անկյունագծի վրա P և Q կետերը նշված են այնպես, որ PB = QD: Ապացուցեք, որ APCQ քառանկյունը զուգահեռագիծ է:

ԹԱԼԵՍԻ ԹԵՈՐԵՄԸ։ ՍԵՂԱՆ

6. Եռանկյան միջին գիծը

Սահմանում

Եռանկյան երկու կողմերի միջնակետերը միացնող հատվածը կոչվում է եռանկյան միջին գիծ։

Եռանկյան միջին գծի հատկությունն ուսումնասիրելու համար նախ յուծենք մի կարևոր խնդիր։

խ և դ ի ր ։ Կամայական ABC եռանկյան AB կողմի M միջնակետով տարված է BC կողմին զուգահեռ ուղիղ։ Այդ ուղիղը N կետում հատում է AC կողմը։ Ապացուցել, որ AN = NC։

L ուծում: Տրված ABC եռանկյան C զազաթով տանենք AB ուղղին զուգահեռ ուղիղ և MN ուղղի հետ նրա հատման կետը նշանակենք D (նկ. 12)։ Ստացված MBCD քառանկյան հանդիպակաց կողմերը զույգ առ զույգ զուգահեռ են, այսինքն՝ MBCD—ն զուգահեռագիծ է: Քանի որ, ըստ պայմանի, AM = MB, իսկ MB = CD (որպես զուգահեռագծի հանդիպակաց կողմեր), ապա AM = CD։ Ստացվում է, որ AMN և NCD եռանկյունները հավասարեն՝ ըստ կողմի և նրան առընթեր անկյունների ($\angle 1 = \angle 2$ և $\angle 3 = \angle 4$, որպես խաչադիր անկյուններ, որոնք առա-

Նկ. 12

ջանում են AB և CD զուգահեռ ուղիղները, համապատասխանաբար, AC և MD հատողներով հատելիս)։ Այստեղից հետևում է, որ AN = NC, ինչը և պահանջվում էր ապացուցել։

Այժմ քննության առնենք ստացված MN հատվածը։ Նախ պարզ է, որ MN–ը համընկնում է ABC եռանկյան միջին գծի հետ (M–ը և N–ը համապատասխանաբար AB և AC կողմերի միջնակետերն են)։ Քանի որ MN–ը գտնվում է BC–ին զուգահեռ MD ուղղի վրա, ապա $MN \parallel BC$ ։ Միաժամանակ ունենք, որ $\Delta AMN = \Delta NCD$, ուստի MN = ND։ Այսինքն՝ $MN = \frac{1}{2} MD$ ։ Բայց քանի որ MD = BC (որպես զուգահեռագծի հանդիպակաց կողմեր), ուրեմն՝ $MN = \frac{1}{2} BC$:

Ստացվեց, որ *ABC* եռանկյան *MN* միջին գիծը զուգահեռ է *BC* կողմին և հավասար է նրա կեսին։ Նույնը կարելի է ասել ցանկացած եռանկյան յուրաքանչյուր միջին գծի մասին։

Այսպիսով՝ եռանկյան միջին գիծը զուգահեռ է նրա կողմերից մեկին և հավասար է այդ կողմի կեսին։

7. Թայեսի թեորեմը

Այժմ ապացուցենք մի թեորեմ, որը վերաբերում է հատվածը հավասար մասերի բաժանման խնդրին և կոչվում է հին հույն գիտնական Թալեսի անունով (Թալես Միլեթացի, մ.թ.ա. մոտ 625–547 թթ.)։

Թեորեմ։ Եթե երկու ուղիղներից մեկի վրա հաջորդաբար տեղադրվեն մի քանի հավասար հատվածներ և նրանց ծայրակետերով տարվեն զուգահեռ ուղիղներ, որոնք հատեն երկրորդ ուղիղը, ապա երկրորդ ուղղի վրա անջատվում են միմյանց հավասար հատվածներ։

Ապացուցում։ Դիցուք՝ l_1 ուղղի վրա տեղադրված են A_1A_2 , A_2A_3 , A_3A_4 , ... հավասար հատվածները և նրանց ծայրակետերով, այն է՝ A_1 , A_2 , A_3 , ... կետերով տարված են զուգահեռ ուղիղներ, որոնք l_2 ուղիղը հատում են B_1 , B_2 , B_3 , ... կետերում (նկ. 13)։ Պահանջվում է ապացուցել, որ

 B_1B_2 , B_2B_3 , B_3B_4 , ... հատվածները միմյանց հավասար են։ Ապացուցենք, օրինակ, որ $B_1B_2=B_2B_3$:

Նախ դիտարկենք այն դեպքը, երք l_1 և l_2 ուղիղները զուգահեռ են *(նկ. 13(ա))։* Այս դեպքում ստացված $A_1B_1B_2A_2$ և $A_2B_2B_3A_3$ պատկերները զուգահեռագծեր են, քանի որ նրանց հանդիպակաց կողմերը զույգ առ զույգ զուգահեռ են։ Հետևաբար՝ $A_1A_2=B_1B_2$ և $A_2A_3=B_2B_3$ ։ Բայց քանի որ $A_1A_2=A_2A_3$, ուրեմն՝ $B_1B_2=B_2B_3$:

Այժմ դիտարկենք այն դեպքը, երբ l_1 և l_2 ուղիղները զուգահեռ չեն։ B_1 կետով տանենք l_1 ուղղին զուգահեռ l ուղիղը (նկ. l3(p))։ Այն հատում է A_2B_2 և A_3B_3 ուղիղները ինչ–որ C և D կետերում։ Քանի որ $A_1A_2=A_2A_3$, ապա ըստ նախորդ դեպքի ապացույցի՝ $B_1C=CD$ ։ Այժմ դիտենք B_1DB_3 եռանկյունը, որի մեջ $B_1C=CD$ և CB_2 || DB_3 ։ Դրանից հետևում է, որ $B_1B_2=B_2B_3$ (տե՛ս 6-րդ կետր)։ Նույն ձևով ապացուցվում են, որ $B_2B_3=B_3B_4$ և այլն։ Թեորեմն ապացուցված է։

8. Սեղան

Սեղան կոչվում է այն քառանկյունը, որի երկու կողմերը զուգահեռ են, իսկ մյուս երկու կողմերը զուգահեռ չեն։

Զուգահեռ կողմերը կոչվում են սեղանի *հիմքեր,* իսկ երկու մյուս կողմերը՝ *սրունքներ (նկ. 14):*

Սեղանը կոչվում է *հավասարասրուն,* եթե նրա սրունքները հավասար են *(նկ. 15(ա))։* Սեղանը, որի որևէ անկյունն ուղիղ է, կոչվում է *ուղղանկյուն սեղան (նկ. 15(բ))։*

Սեղանի սրունքների միջնակետերը միացնող հատվածր կոչվում է սեղանի *միջին գիծ։*

Թեորեմ։ Սեղանի միջին գիծը զուգահեռ է հիմքերին և հավասար է նրանց կիսագումարին։

Ապացուցում։ Դիցուք՝ ABCD–ն տրված սեղան է, որի հիմքերն են BC–ն և AD–ն (U, 16), իսկ EF–ը նրա միջին գիծն է, այսինքն՝ AE = EB և DF = FC։ Պահանջվում է ապացուցել, որ $EF \parallel AD \parallel BC$ և $EF = \frac{1}{2}$ (BC + AD):

B գագաթով և CD սրունքի F միջնակետով տանենք ուղիղ։ Այն հատում է AD ուղիղը ինչ–որ Q կետում։ FBC և

Նկ. 14

Նկ. 13

բ) Նկ. 15

FQD եռանկյունները հավասար են՝ ըստ կողմի և նրան առընթեր երկու անկյան (ըստ պայմանի՝ FC = FD, $\angle BFC = \angle QFD$ ՝ որպես հակադիր անկյուններ, $\angle FCB = \angle FDQ$ ՝ որպես խաչադիր անկյուններ, որոնք առաջանում են BC և AD զուգահեռ ուղիղները CD հատորով հատելիս)։ Ուրեմն՝ DQ = CB:

Այժմ դիտենք ABQ եռանկյունը: EF–ը նրա միջին գիծն է, ուստի՝ $EF \parallel AQ$ և $EF = \frac{1}{2} \quad AQ$: Բայց AQ և AD ուղիղները համընկնում են, իսկ AQ = AD + DQ = AD + BC: Այստեղից հետևում է, որ $EF \parallel AD \parallel BC$ և $EF = \frac{1}{2} \quad (BC + AD)$: Թեորեմն ապացուցված է:

- 33. Եռանկյան կողմերը հավասար են 6 սմ, 8 սմ, 10 սմ։ Գտեք այն եռանկյան պարագիծը, որի կողմերը տրված եռանկյան միջին գծերն են։
- 34. Ապացուցեք, որ եռանկյան գագաթները հավասարահեռ են նրա որևէ միջին գիծն ընդգրկող ուղղից։
- 35. Ապացուցեք, որ ուռուցիկ քառանկյան կողմերի միջնակետերը գուգահեռացծի գագաթներ են։
- 36. Ուոուցիկ քառանկյան անկյունագծերը հավասար են 12 մ և 16 մ։ Գտեք այն քառանկյան կողմերը, որի գագաթները տրված քառանկյան կողմերի միջնակետերն են։
- 37 Քառանկյան անկյունագծերը հավասար են *m*–ի և *n*–ի։ Գտեք այն քառանկյան պարագիծը, որի գագաթները տրված քառանկյան կողմերի միջնակետերն են։
- 38. Գտեք AD և BC հիմքերով սեղանի B և D անկյուն-ները, եթե $\angle A = 36^{\circ}$, $\angle C = 117^{\circ}$:
- 39. Ապացուցեք, որ հավասարասրուն սեղանի յուրաքանչյուր հիմքին առընթեր անկյունները հավասար են։
- 40. Հավասարասրուն սեղանի մեծ հիմքը 4 մ է, սրունքը՝ 2 մ, իսկ դրանց կազմած անկյունը՝ 60°։ Գտեք սեղանի փոքր հիմքը։
- 41. Գտեք հավասարասրուն սեղանի անկյունները, եթե հայտնի է, որ սեղանի երկու անկյունների տարբերությունը 40° է։

- 42. Սեղանի հիմքերը հարաբերում են, ինչպես 2:3, իսկ միջին գիծր 10 սմ է։ Գտեք սեղանի հիմքերը։
- 43. *M* և *N* կետերը գտնվում են տրված ուղղի մի կողմում, և նրանց հեռավորությունները այդ ուղղից հավասար են 10 սմ և 22 սմ։ Գտեք *MN* հատվածի միջնակետի հեռավորությունը այդ ուղղից։
- 44. Հավասարասրուն սեղանի բութ անկյան գագաթից նրա մեծ հիմքին տարված ուղղահայացն այդ հիմքը տրոհում է 6 սմ և 30 սմ երկարությամբ հատվածների։ Գտեք սեղանի փոքր հիմքը և միջին գիծը։
- 45. Սեղանի սրունքներից մեկը բաժանված է երեք հավասար հատվածների։ Այդ բաժանման կետերից տարված են մյուս սրունքին միացնող հատվածներ, որոնք զուգահեռ են սեղանի հիմքերին։ Գտեք այդ հատվածների երկարությունները, եթե սեղանի հիմքերը հավասար են 2 սմ և 5 սմ։
- 46. Տրված ուղղի տարբեր կողմերում տրված են *M* և *N* կետերը, որոնց հեռավորությունները այդ ուղղից հավասար են 10 սմ և 6 սմ։ Գտեք *MN* հատվածի միջնակետի հեռավորությունը տրված ուղղից։
- 47. Ապացուցեք, որ սեղանը հավասարասրուն է, եթե՝ ա) հիմքին առընթեր անկյունները հավասար են, բ) անկյունագծերը հավասար են։
- 48. Ապացուցեք, որ հավասարասրուն սեղանի ձև ունեցող միատեսակ սալիկներով կարելի է այնպես երեսպատել սալահատակը, որ լրիվությամբ ծածկի տակ ներառվի հարթության մաս հանդիսացող ցանկացած հարթակ։
- 49. Ուղղանկյուն սեղանի մեջ սուր անկյունը 45° է։ Փոքր սրունքը և փոքր հիմքը 10–ական սմ են։ Գտեք սեղանի մեծ հիմքը։
- 50. Ուղղանկյուն սեղանի հիմքերն են a և b, անկյունևերից մեկը՝ α: Գտեք՝ ω) սեղանի մեծ սրունքը, եթե a=4 սմ, b=7 սմ, $α=60^\circ$, p) սեղանի փոքր սրունքը, եթե a=10 սմ, b=15 սմ, $α=45^\circ$:

ՈԻՂՂԱՆԿՅՈԻՆ, ՇԵՂԱՆԿՅՈԻՆ, ՔԱՌԱԿՈՒՍԻ

9. Ուղղանկյուն

Ուղղանկյուն կոչվում է այն զուգահեռագիծը, որի **բոլոր անկլուններն ուղիղ են։** Նկատենք, որ ուղղանկլունը կարող է դիտվել որպես զուգահեռագիծ, այսինքն՝ այն օժտված է զուգահեռագծի բոլոր հատկություններով։ Դրանք են՝ ուղղանկյան հանդիպակաց կողմերը հավասար են, անկլունագծերը հատման կետով կիսվում են։

Ուսումնասիրենք ուղղանկյան առանձնահատկությունը։

Ուղղանկյան անկյունագծերը հավասար են։

Իսկապես, դիտենք նկար 17–ր, որում պատկերված ABCD ուղղանկյան անկյունագծերն են AC–ն և BD–ն: ACD և DBA ուղղանկյուն եռանկյունները հավասար են՝ ըստ երկու էջի (CD = BA, AD-ն ընդհանուր էջ է)։ Դրանից հետևում է, որ AC և BD ներքնաձիգները հավասար են՝ AC = BD, husp to when the square the square AC = BD, husp to when the square AC = BD, husp to when AC = BD, husp to which AC = BD, husp to when AC = BD, has the AC = BD, husp to when AC = BD, husp to when AC = BD, has the AC = BD, has t

Ապացուցենք հակադարձ պնդումը *(ուղղանկյան հայ*ւրանիշր)։

եթե զուգահեռագծի անկլունագծերը հավասար են, ապա այդ զուգահեռագիծը ուղղանկյուն է։

Դիզուը՝ ABCD զուգահեռագծի AC և BD անկլունագծերր հավասար են *(տե՛ս նկ. 17)։ ABD* և *DCA* եռանկյունները hավասար են՝ րստ երեք կողմի (AB = DC, BD = CA, AD-ն րնդհանուր կողմ է)։ Դրանից հետևում է, որ $\angle A = \angle D$: Քանի որ ցուգահեռագծի հանդիպակաց անկյունները hավասար են, ապա $\angle A = \angle C$, $\angle D = \angle B$: Ալսպիսով՝ $\angle A = \angle B = \angle C = \angle D$: Aniquhamuqhon ninniqhi pumuliyլուն է, ուրեմն՝ $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$:

 $\angle L$ $\angle L$ ABCD-ն ուղղանկլուն է։

Նկ. 17

Նկ. 18

ը) Քառակուսու հատկությունները

Նկ. 19

10. Շեղանկյուն և քառակուսի

Շեղանկյուն կոչվում է այն զուգահեռագիծը, որի բոլոր կողմերը հավասար են։ Նկատենք, որ շեղանկյունը կարող է դիտվել որպես զուգահեռագիծ, այսինքն՝ այն օժտված է զուգահեռագծի բոլոր հատկություններով։

Ուսումնասիրենք շեղանկյան առանձնահատկությունը։

Շեղանկյան անկյունագծերը փոխուղղահայաց են և կիսում են շեղանկյան անկյունները։

Դիտարկենք ABCD շեղանկյունը (նկ. 18)։ Պահանջվում է ապացուցել, որ $AC\perp BD$, և անկյունագծերից յուրաքանչ-յուրը կիսում է շեղանկյան հանդիպակաց անկյունները։ Ապացուցենք, օրինակ, որ $\angle BAC = \angle DAC$:

Ըստ շեղանկյան սահմանման՝ AB = AD, ուստի BAD եռանկյունը հավասարասրուն է։ Քանի որ շեղանկյունը զուգահեռագիծ է, ապա նրա անկյունագծերը հատման O կետով կիսվում են։ Հետևաբար՝ AO–ն BAD հավասարասրուն եռանկյան միջնագիծ է և, ուրեմն, նաև կիսորդ է և բարձրություն։ Այսինքն՝ $AC \perp BD$ և $\angle BAC = \angle DAC$, ինչը և պահանջվում էր ապացուցել։

Քառակուսի կոչվում է այն ուղղանկյունը, որի բոլոր կողմերը հավասար են։ Քանի որ ուղղանկյունը զուգահեռագիծ է, ապա քառակուսին ևս զուգահեռագիծ է. այնպիսի զուգահեռագիծ, որի բոլոր կողմերը հավասար են, այսինքն՝ նաև շեղանկյուն է։ Դրանցից հետևում է, որ քառակուսին օժտված է ինչպես ուղղանկյան, այնպես էլ շեղանկյան բոլոր հատկություններով։

Ձևակերպենք քառակուսու հիմնական հատկությունները.

- **ա)** Քառակուսու բոլոր անկյունները ուղիղ են (նկ. 19(ա)),
- **բ)** Քառակուսու անկյունագծերը հավասար են, փոխուղղահայաց են, հայսման կետով կիսվում են և կիսում են քառակուսու անկյունները (նկ. 19(բ)):

11. Առանցքային և կենտրոնային համաչափություններ

Ա. Առանցքային համաչափություն։ Երկու՝ A և A_1 կետերը կոչվում են a ուղղի նկատմամբ համաչափ, եթե a ուղիղն ուղղահայաց է AA_1 հատվածին և անցնում է նրա միջնակետով (նկ. 20(u))։ a ուղղի յուրաքանչյուր կետ համաչափ է համարվում ինքն իրեն։ 20(p) նկարում M և M_1 , N և N_1 կետերը համաչափ են b ուղղի նկատմամբ, իսկ P կետը այդ ուղղի նկատմամբ համաչափ է ինքն իրեն։

Պատկերը կոչվում է a ուղղի նկատմամբ համաչափ, եթե այդ պատկերի յուրաքանչյուր կետի՝ a ուղղի նկատմամբ համաչափ կետը ևս պատկանում է այդ պատկերին։ a ուղի- ղը կոչվում է պատկերի համաչափության առանցք։ Նաև ասում են, որ պատկերն օժտված է առանցքային համաչափությամբ։

Բերենք պատկերների օրինակներ, որոնք օժտված են առանցքային համաչափությամբ (նկ. 21)։ Չփռված անկյունն ունի համաչափության մեկ առանցք. դա այն ուղիղն է, որն ընդգրկում է տվյալ անկյան կիսորդը։ Հավասարասրուն (բայց ոչ հավասարակողմ) եռանկյունը ևս ունի համաչափության մեկ առանցք, իսկ հավասարակողմ եռանկյունը՝ համաչափության երեք առանցք։ Ուղղանկյունը և շեղանկյունը, որոնք քառակուսի չեն, ունեն համաչափության երկուական առանցքներ, իսկ քառակուսին՝ համաչափության չորս առանցք։ Շրջանագիծն ունի անվերջ թվով համաչափության առանցքներ. կենտրոնով անցնող յուրաքանչյուր ուղիղ շրջանագծի համաչափության առանցք է։

Կան այնպիսի պատկերներ, որոնք առհասարակ համաչափության առանցք չունեն։ Այդպիսի պատկերներից է ուղղանկյուն և շեղանկյուն չհանդիսացող զուգահեռագիծը, ինչպես նաև տարակողմ եռանկյունը։

Բ. Կենտրոնային համաչափություն։ Երկու՝ A և A_1 կետերը կոչվում են O կետի նկատմամբ համաչափ, եթե O–ն AA_1 հատվածի միջնակետն է (նկ. 22(u))։ Համարվում է, որ O կետը համաչափ է ինքն իրեն։ 22(p) նկարում M և M_1 , N և N_1 կետերը համաչափ են O կետի նկատմամբ, իսկ P և Q կետերը այդ կետի նկատմամբ համաչափ չեն։

Պատկերը կոչվում է O կետի նկատմամբ համաչափ, եթե այդ պատկերի կետերից յուրաքանչյուրի՝ O կետի նկատ-

Առանցքային համաչափությամբ օժւրված պարկերներ

Նկ. 21

Նկ. 22

Նկ. 22

Նկ. 23

Կենւրրոնային համաչափությամբ օժւղված պարկերներ

Նկ. 24

Նկ. 25

մամբ համաչափ կետը ևս պատկանում է այդ նույն պատկերին։ *O* կետը կոչվում է պատկերի *համաչափության կենպորոնա-յին համաչափությամբ։* Կենտրոնային համաչափությամբ օժտված պատկերների օրինակներ են շրջանագիծը և զուգահեռագիծը *(նկ. 23)։* Շրջանագծի համաչափության կենտրոնը շրջանագծի կենտրոնն է, իսկ զուգահեռագծի համաչափության կենտրոնը շրջանագծի կենտրոնն է, իսկ զուգահեռագծի համաչափության կենտրոնը՝ նրա անկյունագծերի հատման կետը։ Ուղիղը ևս օժտված է կենտրոնային համաչափությամբ։ Ի տարբերություն շրջանագծի և զուգահեռագծի, որոնցից յուրաքանչյուրն ունի համաչափության մեկ կենտրոն, ուղղի համար դրանք անվերջ շատ են. ուղղի ցանկացած կետ նրա համաչափության կենտրոնն է։ Համաչափության կենտրոն չունեցող պատկերի օրինակ է եռանկյունը։

Առանցքային կամ կենտրոնային համաչափությամբ են օժտված մեր շրջակա աշխարհի առարկաներից շատերի պատկերները հարթության վրա։ Օրինակ՝ ծառերի տերևներից և ծաղիկների պսակաթերթերից շատերը համաչափ են միջին ցողունի նկատմամբ (նկ. 24):

Համաչափությունն ունի գեղագիտական և կիրառական նշանակություն։ Այն մեզ հաձախ է հանդիպում արվեստում, ձարտարապետության մեջ, տեխնիկայում, կենցաղում։ Այսպես՝ շենքերից շատերի ձակատները նախագծվում են՝ ըստ առանցքային համաչափության (նկ. 25)։ Մեծ մասամբ առանցքի կամ կենտրոնի նկատմամբ համաչափ են արվում գորգերի, գործվածքների, պաստառների նախշերը։ Համաչափ են շատ սարքավորումների բազմաթիվ մանրակներ, որոնք լայն կիրառություն ունեն տեխնիկայում և արտադրության մեջ։

Հարցեր և խնդիրներ

- 51. Ապացուցեք, որ այն զուգահեռագիծը, որի անկլուններից մեկր ուղիղ է, ուղղանկյուն է։
- 52. Ապացուցեք, որ եթե քառանկյան բոլոր անկյունները ուղիդ են, ապա քառանկյունը ուղղանկյուն է։
- 53. Ապացուցեք, որ եթե զուգահեռագծի բոլոր անկլունները հավասար են, ապա այն ուղղանկյուն է։
- **54.** *ABCD* ուղղանկյան անկյունագծերը հատվում են *O* կետում։ $\angle COD = 60^{\circ}$, CD = 10 սմ։ Գտեք ուղղանկյան անկյունագծերը։

- 55. Գտեք *ABCD* ուղղանկյան պարագիծը, եթե *A* անկյան կիսորդը տրոհում է՝ ա) *BC* կողմը 45,6 սմ և 7,85 սմ երկարությամբ հատվածների, բ) *DC* կողմը 2,7 դմ և 4,5 դմ երկարությամբ հատվածների։
- 56. ABCD ուղղանկյան անկյունագծերը հատվում են *O* կետում։ Ապացուցեք, որ AOD և AOB եռանկյունները հավասարասրուն են։
- 57. ABCD ուղղանկյան անկյունագծերը հատվում են O կետում։ Գտեք AOB եռանկյան պարագիծը, եթե $\angle CAD = 30^{\circ}$, AC = 12 սմ։
- 58. Ապացուցեք, որ ուղղանկյուն եռանկյան ներքնաձիգին տարված միջնագիծը հավասար է ներքնաձիգի կեսին։
- 59. ABCD ກເຖຖແມ່ນເງເພີ ເພີ່ນເງເນີເພີ່ ເພື່ອ O ໄປເພົ້າເປັນ E-ໃນ AB ໄຖການໃ ເປັນ ໄຖ້ວນເພີ່ນເປັນ E, $\angle BAC = 50^{\circ}$: Գտեք $\angle AOE$ -ໃນ:
- 60. MPKH ուղղանկյան անկյունագծերը հատվում են O կետում։ OA հատվածը MOP եռանկյան բարձրությունն է, $\angle AOP = 15^{\circ}$ ։ Գտեք $\angle OHK$ –ն։
- 61. Ուղղանկյան անկյունագծերի հատման կետի հեռավորությունը մեծ կողմից 4 սմ է, իսկ փոքր կողմից՝ 6 սմ։ Գտեք ուղղանկյան պարագիծը։
- 62. Ուղղանկյան անկյուններից մեկի կիսորդը ուղղանկյան կողմը բաժանում է երկու հավասար հատվածների։ Գտեք ուղղանկյան պարագիծը, եթե նրա փոքր կողմը 10 սմ է։
- 63. Շեղանկյան անկյունագծերից մեկը հավասար է կողմին։ Գտեք՝ ա) շեղանկյան անկյունները, բ) այն անկյունները, որոնք կազմում են շեղանկյան անկյունագծերը նրա կողմերի հետ։
- 64. Գտեք ABCD շեղանկյան պարագիծը, եթե $\angle B = 60^{\circ}, AC = 10,5$ ամ։
- 65. Գտեք այն անկյունները, որոնք կազմում են շեղանկյան անկյունագծերը նրա կողմի հետ, եթե հայտնի է, որ շեղանկյան անկյուններից մեկը 45° է։
- 66. Ապացուցեք, որ զուգահեռագիծը շեղանկյուն է, եթե՝ ա) նրա անկյունագծերը փոխուղղահայաց են, բ) զուգահեռագծի անկյունագծերը նրա անկյունևների կիսորդ են։
- 67. ABCD շեղանկյան մեջ ∠B = 120°: Անկյունագծերը hատվում են O կետում: BC կողմը 10 սմ է։ Գտեք BD անկյունագիծը։

- 68. Շեղանկյան գագաթներից մեկով նրա հանդիպակաց անկյունը կազմող կողմերին տարված ուղղահայացները կազմում են 30°–ի անկյուն, ընդ որում՝ դրանցից յուրաքանչյուրի երկարությունը 5 սմ է։ Գտեք շեղանկյան կողմը։
- 69. Քառակուսու անկյունագծերի հատման կետից մինչև կողմերը եղած հեռավորությունների գումարը 20 սմ է։ Գտեք քառակուսու պարագիծը։
- 70. Քառակուսու պարագիծը 80 սմ է։ Որքա՞ն է քառակուսու անկյունագծի միջնակետի հեռավորությունը նրա կողմից։
- 71. Ապացուցեք, որ եթե շեղանկյան մի անկյունը ուղիղ է, ապա այդ շեղանկյունը քառակուսի է:
- 72. Քառակուսի՞ է արդյոք քառանկյունը, եթե նրա անկյունագծերը՝ ա) հավասար են և փոխուղղահայաց, բ) փոխուղղահայաց են և ունեն ընդհանուր միջնակետ, գ) հավասար են, փոխուղղահայաց են և ունեն ընդհանուր միջնակետ։
- 73. Ուղղանկյուն եռանկյան ուղիղ անկյան կիսորդի և ներքնաձիգի հատման կետով տարված են էջերին զուգահեռ ուղիղներ։ Ապացուցեք, որ առաջացած քառանկյունը քառակուսի է։
- 74. Համաչափության քանի՞ առանցք ունի՝ ա) հատվածր, բ) ուղիդը, գ) Ճառագայթը։
- 75. Հետևյալ տառերից որո՞նք ունեն համաչափության առանցք.
 - ш) U, Ծ, U, П, S, 8, Ф, О, р) A, B, E, С, П, О, М, Н, К:
- 76. Ապացուցեք, որ ուղղանկյան հանդիպակաց կողմերի միջնակետերով անցնող ուղիղը նրա համաչափության առանցքն է։
- 77. Ապացուցեք, որ հավասարասրուն եռանկյան հիմքին տարված կիսորդն ընդգրկող ուղիղը նրա համաչափության առանցքն է։
- 78. Ունի՞, արդյոք, համաչափության կենտրոն՝ ա) հատվածը, բ) Ճառագայթը, գ) հատվող ուղիղների զույգր, դ) քառակուսին։
- 79. Հետևյալ տառերից որո՞նք ունեն համաչափության կենտրոն.
 - ω) U, C, S, 3, Φ, 0, Φ, p) A, B, M, H, K, X, Φ:

ԿԱՌՈՒՑՄԱՆ ԽՆԴԻՐՆԵՐԻ ԼՈՒԾՈՒՄԸ

Նկարագրենք մի ընթացակարգ, որով սովորաբար լուծում են կառուցման խնդիրները՝ կարկինի և քանոնի օգնությամբ։ Այն կազմված է չորս մասից։

- 1) Խնդրի լուծման եղանակի հայտնաբերում՝ որոնելի տարրերի և խնդրի տվյալների միջև կապերի բացահայտման միջոցով։ Այս մասը կոչվում է *խնդրի վերլուծություն։* Վերլուծությունը հնարավորություն է տալիս կազմելու խնդրի լուծման պլան։
- 2) Կառուցման կատարումը՝ ըստ նշված պլանի։
- 3) *Ապացուցումն* այն բանի, որ կառուցված պատկերը բավարարում է խնդրի պայմաններին։
- 4) Խնդրի *հետազոտում*, այն է՝ պարզել, թե արդյոք ցանկացած տվյալների դեպքում խնդիրը լուծում ունի. եթե այո, ապա քանի լուծում։

Այն դեպքերում, երբ խնդիրը բավականաչափ պարզ է, առանձին մասերը, օրինակ՝ վերլուծությունը կամ հետազոտումը, բաց են թողնվում։ Հիշեք, որ մենք այդպես էինք վարվում 7–րդ դասարանում։

Այժմ նկարագրված քայլերը ցուցադրենք օրինակով։
Խնդիր։ Կառուցել զուգահեռագիծ՝ երկու կից կողմերով
և անկյունագծերից մեկով։

Լուծում։ Նախ Ճշտենք, թե ինչպես պետք է հասկանալ այս խնդիրը։ Տրված են երեք հատված՝ M_1N_1 , M_2N_2 , M_3N_3 (նկ. 26(w))։ Պահանջվում է կառուցել այնպիսի ABCD զուգահեռագիծ, որի կից կողմերը, ասենք՝ AB–ն և BC–ն, հավասար լինեն համապատասխանաբար M_1N_1 և M_2N_2 հատվածներին, իսկ անկյունագծերից մեկը, օրինակ՝ BD–ն, հավասար լինի M_3N_3 հատվածին։

Խնդիրը լուծենք ըստ վերոհիշյալ ընթացակարգի։

Վերլուծություն։ Ենթադրենք, թե ABCD որոնելի զուգահեռագիծը կառուցված է (iu). 26(p): Մենք տեսնում ենք, որ BAD եռանկյան կողմերը հավասար են տրված M_1N_1 , M_2N_2 և M_3N_3 հատվածներին։ Այս հանգամանքը մեզ հուշում է խնդրի լուծման հետևյալ ուղին. անհրաժեշտ է նախ կառուցել ABD եռանկյունը՝ իր երեք կողմերով, իսկ այնուհետև լրացնել նրա կառուցումը մինչև ABCD զուգահեռագիծը։

Կառուցում։ Կառուցենք ABD եռանկյունն այնպես, որ նրա AB, AD և BD կողմերը հավասարվեն համապատասխանաբար M_1N_1 , M_2N_2 և M_3N_3 հատվածներին (իսկ թե ինչպես անել դա, մենք արդեն գիտենք 7–րդ դասարանից)։

Այնուհետև B կետով տանենք ուղիղ՝ զուգահեռ AD–ին, և D կետով երկրորդ ուղիղը՝ զուգահեռ AB–ին (զուգահեռ ուղիղներ տանելը ևս գիտենք 7–րդ դասարանից)։

Կառուցված այդ ուղիղների հատման կետը նշանակենք *C* տառով *(նկ. 26(գ)): ABCD* քառանկյունը որոնելի զուգահեռագիծն է:

Ապացուցում։ Ըստ կառուցման՝ $AB \parallel CD$ և $BC \parallel AD$, ուստի՝ ABCD–ն զուգահեռագիծ է։ Զուգահեռագծի կից կողմերը և անկյունագիծը համապատասխանաբար հավասար են տրված M_1N_1 , M_2N_2 և M_3N_3 հատվածներին՝ նույնպես ըստ կառուցման։ Այսպիսով՝ ABCD զուգահեռագիծը որոնելին է։

Հետազոտում։ Պարզ է, որ եթե տրված երեք՝ M_1N_1 , M_2N_2 և M_3N_3 հատվածներով կարելի է կառուցել ABD եռանկյուն, որի կողմերը հավասար լինեն այդ հատվածներին, ապա կարելի կլինի կառուցել նաև զուգահեռագիծ։ Սակայն ABD եռանկյուն կառուցել միշտ չէ, որ կարելի է։ Եթե տրված հատվածներից որևէ մեկը մեծ կամ հավասար լինի մյուս երկուսի գումարին, ապա ABD եռանկյուն, հետևաբար նաև ABCD զուգահեռագիծ կառուցելը հնարավոր չէ։

Փորձեք ինքնուրույն ապացուցել, որ եթե խնդիրն ունի լուծում, ապա այդ լուծումը միակն է։

Կառուցման խնդիրներ

- 80. Կառուցեք զուգահեռագիծ՝ ա) երկու կից կողմերով և նրանցով կազմված անկյունով, բ) երկու անկյունագծերով և դրանցով կազմված անկյունով։
- 81. Կառուցեք զուգահեռագիծ՝ ա) նրա մեծ կողմով, փոքր անկյունագծով և դրանցով կազմված անկյունով, բ) երկու անկյունագծով և մեծ կողմով։
- 82. Կառուցեք ուղղանկյուն սեղան՝ ա) փոքր հիմքով և սրունքներով, բ) փոքր անկյունագծով, մեծ հիմքով և մեծ սրունքով։
- 83. Տրված են մի ուղղի վրա չզտնվող երեք կետ՝ *A, B, C:* Կառուցեք զուգահեռագիծ այնպես, որ նրա երեք գագաթները համընկնեն տրված կետերին։ Այդպիսի քանի՞ զուգահեռագիծ կարելի է կառուցել։

84. Տրված AB հատվածը բաժանեք ո հավասար մասերի։ Lուծում։ Տանենք AX Ճառագալթ, որը չի գտնվում AB ուղղի վրա։ Նրա վրա A կետից հաջոր– դաբար տեղադրենք ո հատ հավասար hատվածներ՝ AA_1 , A_1A_2 , ..., $A_{n-1}A_n$ (նկ. 27), այսինքն՝ այնքան թվով հավասար հատվածներ, որքան մասի անհրաժեշտ է բաժանել AB հատվածը (uկ. 27–nւմ n = 5)։ Տանենք $A_n B$ հատվածը (A_n –ը վերջին հատվածի ծայրակետն է)։ Այնուհետև $A_1, A_2, ..., A_{n-1}$ կետերով տանենք $A_n B$ ուղղին զուգահեռ ուղիդներ։ Այս ուղիդները AB հատվածր հատում են B_1 , B_2 , ..., B_{n-1} կետերում, որոնք, ըստ Թայեսի թեորեմի, AB հատվածը բաժանում են n հատ հավասար hատվածներ<u>ի</u>։

- 86. Կառուցեք շեղանկյուն՝ ա) անկյունով և այդ անկյան գագաթով անցնող անկյունագծով, բ) անկյունագծով և նրա հանդիպակաց անկյունով։
- 87. Կառուցեք շեղանկյուն՝ ա) կողմով և անկյունագծով, բ) երկու անկյունագծով։
- 88. Կառուցեք քառակուսի՝ ա) կողմով, բ) անկյունագծով։
- 89. Կառուցեք ուղղանկյուն՝ ա) երկու կից կողմերով, բ) կողմով և անկյունագծով, գ) անկյունագծով և անկյունագծերի կազմած անկյունով։

Նկ. 27

բ) Նկ. 28

12. Տարածական պատկերներ

Ուսումնասիրենք իրականության մեջ հաձախ հանդիպող այնպիսի պատկերներ, որոնց պատկանող ոչ բոլոր կետերն են գտնվում մի հարթության վրա։ Օրինակ՝ ձեր դասագիրքը ինչ ձևով էլ փորձեք տեղավորել սեղանի հարթության վրա, միևնույնն է, սեղանի հարթությունը չի կարող ընդգրկել դասագրքի բոլոր կետերը։ Երկրաչափական պատկերը, որի բոլոր կետերը չեն կարող գտնվել մի հարթության վրա, ընդունված է անվանել *ւրարածական պատկեր (մարմին)։* Նկար 28–ում պատկերված են երկրաչափական մարմիններ, որոնց մասին դուք ունեք նախնական պատկերացումներ։ Դրանք են ուղդանկյունանիստր *(նկ. 28(ա))* և բուրգր *(նկ. 28(բ))։* Տարածության մեջ այդ մարմինները սահմանափակված են *մակերևույթով*, որը կազմված է միայն բազմանկյուններից։ Ալդպիսի մարմինները կոչվում են *բազմանիստեր։* Հաձախակի հանդիպող բազմանիստի օրինակ է ուղղանկյունանիստր (տե՛ս նկ. 28(ա)), որի բոլոր նիստերը ուղղանկլուններ են։

Բազմանիստի մակերևույթը կազմող բազմանկյունները կոչվում են *նիստեր,* դրանց կողմերը՝ բազմանիստի *կողեր,* իսկ գագաթները՝ բազմանիստի *գագաթներ։*

Ծանոթություն։ Տարածական պատկերները գծագրելու համար պահանջվում են որոշակի հմտություններ։ Բանն այն է, որ գծագրի վրա կարող ենք պատկերել մարմնի միայն «ստվերը», քանի որ տարածական մարմինը հարթ թղթի վրա չի տեղավորվում։

Այսպիսով՝ տարածական պատկերները գծագրելու համար անհրաժեշտ է առաջնորդվել մի քանի կանոննե– րով։ Թվարկենք դրանցից մի քանիսը։

- **ա.** Եթե մարմինը դիտելիս նրա որևէ գիծը ծածկված է և չի երևում, ապա այդ գիծը գծագրի վրա նշվում է *ընդիատ գծերով։* Օրինակ՝ *AB* հատվածը նկար 28–ում չի երևում։
- **բ.** Տարածական մարմնի գծապատկերի վրա համե-

մատվող հատվածների և հատկապես անկյունների չափերը կարող են չպահպանվել։ Օրինակ՝ $28(\mathbf{w})$ նկարում պատկերված ուղղանկյունանիստի, ասենք, A_1B_1 կողը պատկերված է թեքված դիրքից. նրա երկարությունը կարող է ավելի փոքր թվալ, քան AA_1 կողինը։ Նմանապես BAD անկյունը, թեն ուղիղ անկյուն է, սակայն նկարում երևում է իբրև սուր անկյուն։

գ. Զուգահեռ ուղիղները միշտ *պատկերվում են զուգահեռ*՝ անկախ պատկերման դիրքից։ Օրինակ՝ $28(\mathbf{w})$ նկարում $AD \parallel BC$, $DC \parallel D_1C_1$ և այլն։

13. Զուգահեռանիստ

Զուգահեռանիստը այն բազմանիստն է, որի մակերևույթի բոլոր բազմանկյունները ցուգահեռաgoth to (by. 29, into bul 28(m) blump, npp bu gniguht*ուսնիստի գծապատկեր է)։* Զուգահեռանիստի բոլոր նիստերը զուգահեռագծեր են։ Յուրաքանչյուր զուգահեռանիստ ունի 6 նիստ։ 28(ա) նկարում դիտարկենք, օրինակ՝ AA_1B_1B և DD_1C_1C նիստերը։ Դրանք չունեն րնդհանուր գագաթ (չունեն նաև ընդհանուր կող) և կոչվում են *հանդիպակաց նիստեր։* Հանդիպակաց նիստեnhg thuniun, onhumu ABCD-Aեն ցուցահեռանիստի *հիմքեր*, իսկ մյուսները՝ *կողմնա*– *յին նիստեր։* Զուգահեռանիստն ունի չորս կողմնային նիստ։ Զուգահեռանիստն ունի 12 կող, լուրաքանչլուր կողը միաժամանակ գտնվում է երկու նիստերի վրա։ Զուգահեռանիստի լուրաքանչյուր գագաթ միաժամանակ գագաթ է նրա երեք նիստերի համար։ Զուգահեռանիստն ունի 8 գագաթ։

Զուգահեռանիստի գագաթները կոչվում են *հանդի-պակաց*, եթե դրանք չեն գտնվում նույն նիստի վրա։ Այդպիսի գագաթ են A–ն և $C_{\rm I}$ –ը, B–ն և $D_{\rm I}$ –ը, D–ն և $B_{\rm I}$ –ը, C–ն և $A_{\rm I}$ –ը։ Զուգահեռանիստի հանդիպակաց գագաթևերը միացնող հատվածները կոչվում են *անկյունա-գծեր*։ Զուգահեռանիստի հանդիպակաց գագաթների զույգերը չորսն են, այսինքն՝ զուգահեռանիստն ունի չորս անկյունագիծ։

Նկ. 29

Մենք գիտենք, որ զուգահեռագծի անկյունագծերը հատվում և հատման կետով կիսվում են։ Պարզվում է, որ համանման հատկությամբ են օժտված նաև զուգահեռաենիստի անկյունագծերը, այսինքն՝ զուգահեռանիստի բոլոր չորս անկյունագծերը հատվում են մի կետում և հատման կետով կիսվում են։

14. Ուղղանկյունանիստ և խորանարդ

Այն զուգահեռանիստը, որի բոլոր նիստերը ուղղանկյուններ են, կոչվում է ուղղանկյունանիստ (տե՛ս նկ. 28(ա))։ Ուղղանկյունանիստի տեսք ունեն տուփերը, արկղերը, սենյակներից շատերը և այլն։ Զուգահեռանիստի տարրերին համանման՝ ուղղանկյունանիստը ևս ունի 6 նիստ, 12 կող, 8 գագաթ և 4 անկյունագիծ։

Մենք գիտենք, որ ուղղանկյան անկյունագծերը հավասար են։ Պարզվում է, որ համանման հատկությամբ օժտված են նաև ուղղանկյունանիստի անկյունագծերը, այսինքն՝ ուղղանկյունանիստի բոլոր չորս անկյունագծերը հավասար են։

Այն ուղղանկյունանիստը, որի բոլոր կողերը հավասար են, կոչվում է խորանարդ։

Այսպիսով` խորանարդի բոլոր նիստերը քառակուսիներ են։ Այսինքն՝ խորանարդի մակերևույթը կազմված է *վեզ* հավասար քառակուսիներից¹։

15. Պրիզմա (հատվածակողմ)

Դիտենք նկար 30–ը։ Նրանում պատկերված են բազմանիստեր, որոնց մակերևույթը կազմված է երկու հավասար բազմանկյուններից, իսկ մյուս բոլոր նիստերը ուղղանկյուններ են։ $30(\mathbf{w})$ նկարում ABC և $A_1B_1C_1$ եռանկյունները հավասար են, և AA_1B_1B , AA_1C_1C , BB_1C_1C քառանկյուններից յուրաքանչյուրը ուղղանկյուն է։ $30(\mathbf{p})$ նկարում հավասար բազմանկյուններն են ABCDE–ն և $A_1B_1C_1D_1E_1$ –ը, իսկ մյուս պատկերները՝ AA_1B_1B –ն,

¹ Ուշագրավ է հեղոկյալ փասորը. նկարի ունենոսլով խորանոսրդի միանձնան վեց նիարեր (երեսներ) ունենոսլը՝ նախորդ դարերոսք դասագրված հայերեն դառագրքերում խորանարդն անվանել են վեցերես, որի ցայրուն օրինակ է գաղը:

 $BB_1C_1C_-$ ն, $CC_1D_1D_-$ ն, $DD_1E_1E_-$ ն և $EE_1A_1A_-$ ն, ուղղանկյուններ են։ Այդպիսի մարմինները կոչվում են *ուղիղ պրիզմա։* Այդ երկու հավասար բազմանկյունները կոչվում են պրիզմայի *հիմքեր,* իսկ մյուս նիստերը, այսինքն ուղղանկյունները՝ *կողմնային նիստեր։* Յուրաքանչյուր կողմնային նիստի երկու հանդիպակաց կողերը գտնվում են հիմքերի վրա, իսկ մյուս երկու կողերը միացնում են հիմքերի գագաթները։ Այդ կողերը կոչվում են *կողմնային կողեր։*

Ըստ հիմքի բազմանկյան՝ պրիզման կարող է լինել եռանկյուն պրիզմա (նկ. 30(ա)), քառանկյուն պրիզմա (նկ. 28(ա)), հնգանկյուն պրիզմա (նկ. 30(բ)) և այլն։ Դի-տարկվում են նաև թեք *պրիզմաներ,* որոնց կողմնային նիստերը զուգահեռագծեր են։

Պրիզման նշանակելու համար հերթականությամբ թվարկում են նրա հիմքերի գագաթները։ Օրինակ՝ 30(p) նկարում պատկերված է $ABCDEA_1B_1C_1D_1E_1$ պրիզման։

n–անկյուն պրիզման ունի 3n կող, 2n գագաթ, n+2 նիստ, ընդ որում՝ նիստերից 2–ը հիմքերն են, իսկ n–ը՝ կողմնային նիստերը։

Պարզվում է, որ պրիզմայի բոլոր կողմնային կողերը միմյանց հավասար են (իսկ նրանց ընդգրկող ուղիղները չեն հատվում)։

բ) Նկ. 30

16. Բուրգ

Բուրգի մասին դուք նախնական պատկերա-ցումներ ունեք, կարդացել և դիտել եք հաղորդումներ՝ նվիրված հին աշխարհի յոթ հրաշալիքներից մեկին՝ Եգիպտական բուրգերին։ Իսկ ինչպե՞ս ստանանք բուրգը՝ որպես երկրաչափական մարմին։

31(ա) նկարում պատկերված է քառանկյուն բուրգ։ Նրա մակերևույթը կազմված է *ABCD* քառանկյունից և *EAB, EBC, ECD, EDA* եռանկյուններից, որոնք ունեն *E* ընդհանուր գագաթ։ 31(բ) նկարում պատկերված է եռանկյուն բուրգ, որը կոչվում է նաև *քառանիստ։* Բուրգն այն բազմանիստն է, որի մակերևույթը կազմված է որևէ բազմանկյունից (դա կոչվում է *հիմք*) և ընդհանուր գագաթունեցող եռանկյուններից, որոնց ընդհանուր գագաթի

բ) Նկ. 31

հանդիպակաց կողմերը տվյալ բազմանկյան (հիմքի) կողմերն են։ Այդ եռանկյունները կոչվում են բուրգի կողմեսային նիարեր, դրանց ընդհանուր գագաթը՝ բուրգի գագաթներին միացնող հատվածները կոչվում են կողմնային կողևը, իսկ գագաթի հանդիպակաց կողմերը՝ հիմքի կողեր։

Բուրգը, կախված հիմքի բազմանկյան կողմերի թվից, կոչվում է եռանկյուն բուրգ (նկ. 31(բ)), քառանկյուն բուրգ (նկ. 31(ա)), հնգանկյուն բուրգ և այլն։ Բուրգը նշանակելու համար սկզբում գրվում է գագաթի տառը, այնուհետև՝ հիմքի բազմանկյան գագաթների տառերը։ Նկար 31–ում պատկերված բուրգերը նշանակվում են EABCD և DABC:

n—անկյուն բուրգն ունի 2n կող, որոնցից n—ը հիմքի կողեր են, n—ը՝ կողմնային կողեր։ Այդպիսի բուրգն ունի n+1 գագաթ և n+1 նիստ, ընդ որում՝ նիստերից մեկը հիմքն է, իսկ n—ը կողմնային նիստերն են։

Առանձնահատուկ է եռանկյուն բուրգը. նրա հիմքը ևս եռանկյուն է, այսինքն՝ նրա մակերևույթը կազմված է չորս եռանկյուններից։ 31(p) նկարում պատկերված եռանկյուն բուրգի հիմքը ABC եռանկյունն է, բուրգի գագաթը՝ D–ն։ Այդ նույն բուրգը կարելի է դիտել այլ դիրքից ևս. օրինակ, եթե որպես հիմք դիտենք BDC եռանկյունը, ապա ABCD բուրգի գագաթը A–ն է։

Հարցեր և խնդիրներ

- 90. $ABCDA_1B_1C_1D_1$ զուգահեռանիստի մեջ գտեք՝ ա) B_1C_1 –ը և DC–ն, եթե BC=5 սմ, $A_1B_1=4$ սմ, ը) զուգահեռանիստի BC, CD, CC_1 կողերը, եթե AB=a, $AA_1=b$, AD=c:
- 91. Գտեք վեցանկյուն պրիզմայի կողերի, գագաթների, նիստերի թվերը։
- 92. Կարո՞ղ է պրիզմայի կողերի թիվը լինել՝ ա) 13, p) 14, q) 18։ Պատասխանը հիմնավորեք։
- 93 Կարո՞ղ է պրիզմայի նիստերի թիվը լինել՝ ա) 13, բ) 14, գ) 18։ Պատասխանը հիմնավորեք։

- 94. Ի՞նչ բազմանկյուն է պրիզմայի հիմքը, եթե պրիզման ունի՝ ա) 18 կող, բ) 24 կող, գ) 9 նիստ։
- 95. 48 սմ երկարությամբ մետաղաձողը բաժանել են հավասար մասերի և այդ մասերն ընդունելով որպես կողեր՝ պատրաստել են խորանարդ։ Գտեք այդ խորանարդի կողի երկարությունը։
- 96. Խորանարդի նիստերից մեկի պարագիծը 32 սմ է։ Գտեք այդ խորանարդի բոլոր կողերի երկարությունների գումարը։
- 97. Խորանարդի ներսում վերցված է *M* կետը և այն հատվածներով միացված է խորանարդի բոլոր գագաթներին։ Գտեք այն բուրգերի քանակը, որոնց գագաթր *M* կետն է։
- 98. Վեցանկյուն պրիզմայի ներսում վերցված է *M* կետը, և այն հատվածներով միացված է պրիզմայի բոլոր գագաթներին։ Գտեք այն բուրգերի քանակը, որոնց գագաթը *M* կետն է։ Ինչպիսի՞ բուրգեր են ստացվել և յուրաքանչյուրից քանի՞ հատ։
- 99. Գտեք 8–անկյուն բուրգի կողերի, նիստերի և գագաթների թվերը։
- 100. Ինչպե՞ս է կոչվում բուրգը, եթե այն ունի՝ ա) 13 նիստ, բ) 10 գագաթ, գ) 12 կող։
- 101. Կարո՞ղ է լինել այնպիսի բուրգ, որն ունի՝ ա) 9 նիստ, բ) 9 կող։ Պատասխանը հիմնավորեք։
- 102. Քառանկյուն բուրգի հիմքը 64 սմ պարագծով քառակուսի է, իսկ կողմնային նիստերը հավասարակողմ եռանկյուններ են։ Գտեք բուրգի կողմնային կողերը։
- 103. Եռանկյուն բուրգի կողմնային նիստերը ընդհանուր գագաթ ունեցող հավասարասրուն ուղղանկուն եռանկյուններ են։ Ապացուցեք, որ բուրգի հիմքը հավասարակողմ եռանկյուն է։

ԳԼՈՒԽ V-Ի ԿՐԿՆՈՒԹՅԱՆ ՀԱՐՑԵՐ

- 1. Բացատրեք, թե որ պատկերն է կոչվում բազմանկյուն։ Ի՞նչ են բազմանկյան գագաթը, կողմերը, անկյունագծերը և պարագիծը։
- 2. Ո՞ր բազմանկյուններն են կոչվում ուռուցիկ։ Բացատրեք, թե որ անկյուններն են կոչվում ուռուցիկ բազմանկյան անկյուններ։
- 3. Արտածեք բանաձև ուռուցիկ *ո*–անկյան անկյուն– ների գումարը հաշվելու համար։
- 4. Գծագրեք քառանկյուն և ցույց տվեք նրա անկյուև նագծերը, հանդիպակաց կողմերը, հանդիպակաց գագաթները և անկյունները։
- 5. Ինչի՞ է հավասար ուռուցիկ քառանկյան անկյունների գումարը։
- 6. Սահմանեք զուգահեռագիծը։ Զուգահեռագիծը արդլոք ուռուցի՞կ քառանկլուն է։
- 7. Ապացուցեք, որ զուգահեռագծի հանդիպակաց կողմերը հավասար են, և հանդիպակաց անկյուն–ները հավասար են։
- 8. Ապացուցեք, որ զուգահեռագծի անկյունագծերը հատման կետով կիսվում են։
- 9. Ձևակերպեք և ապացուցեք զուգահեռագծի հայտանիշները։
- 10. Ի՞նչ է եռանկյան միջին գիծը։ Ձևակերպեք և ապացուցեք եռանկյան միջին գծի հատկությունը։
- 11. Ձևակերպեք Թալեսի թեորեմը։ Ինչպե՞ս են տրված հատվածը բաժանում տրված թվով հավասար մասերի։
- 12. Ո՞ր քառանկյունն է կոչվում սեղան։ Ինչպե՞ս են կոչվում սեղանի կողմերը։
- 13. Ո՞ր սեղանն է կոչվում հավասարասրուն, ո՞րը՝ ուղդանկյուն սեղան։
- 14. Ի՞նչ է սեղանի միջին գիծը։ Ձևակերպեք և ապացուցեք թեորեմ սեղանի միջին գծի մասին։
- 15. Ո՞ր քառանկյունն է կոչվում ուղղանկյուն։ Ապացուցեք, որ ուղղանկյան անկյունագծերը հավասարեն։
- 16. Ապացուցեք, որ եթե զուգահեռագծի անկյունագծերը հավասար են, ապա այն ուղղանկյուն է։

- 17. Ո՞ր քառանկյունն է կոչվում շեղանկյուն։ Ապացուցեք, որ շեղանկյան անկյունագծերը փոխուղղահայաց են և կիսում են շեղանկյան անկյունները։
- 18. Ո՞ր քառանկյունն է կոչվում քառակուսի։ Ձևակերպեք քառակուսու հիմնական հատկությունները։
- Ո՞ր երկու կետերն են կոչվում տրված ուղղի նկատմամբ համաչափ։
- 20. Ո՞ր պատկերն է կոչվում տրված ուղղի նկատմամբ համաչափ։
- 21. Ո՞ր երկու կետերն են կոչվում տրված կետի նկատմամբ համաչափ։
- 22. Ո՞ր պատկերն է կոչվում համաչափ տրված կետի նկատմամբ։
- 23. Բերեք պատկերների օրինակներ, որոնք օժտված են՝ ա) առանցքային համաչափությամբ, բ) կենտրոնային համաչափությամբ, գ) առանցքային և կենտրոնային համաչափությամբ։
- 24. Բերեք պատկերների օրինակներ, որոնք ունեն համաչափության՝ ա) մեկ առանցք, բ) երկու առանցք, գ) երկուսից շատ առանցքներ, դ) մեկ կենտրոն, ե) մեկից շատ կենտրոններ։
- 25. Նկարագրեք, թե ինչ պատկեր է բազմանիստը, բերեք բազմանիստի օրինակ և նշեք նրա նիստերը, կողերը, գագաթները։
- 26. Բացատրեք, թե ինչ կանոններից եք օգտվում տարածական պատկերները գծագրելիս։
- 27. Նկարագրեք, թե ինչ է զուգահեռանիստը։ Քանի՞ նիստ, քանի՞ կող և քանի՞ գագաթ ունի զուգահեռանիստը։
- 28. Նկարագրեք, թե ինչ են ուղղանկյունանիստը և խորանարդը։ Ինչպիսի՞ նիստերից է կազմված խորանարդի մակերևույթը։
- 29. Նկարագրեք, թե ինչ է պրիզման։ Քանի՞ կող, քանի՞ նիստ, քանի՞ գագաթ ունի *n*–անկյան պրիզման։
- 30. Նկարագրեք, թե ինչ է բուրգը։ Ի՞նչ են բուրգի կողմնային նիստերը։ Քանի՞ կող և քանի՞ գագաթ ունի *n*–անկյուն բուրգը։

Լրացուցիչ խնդիրներ

- 104. Ապացուցեք, որ եթե ուռուցիկ քառանկյան ոչ բոլոր անկյուններն են իրար հավասար, ապա դրանցից գոնե մեկը բութ է։
- 105. ABCD զուգահեռագծի պարագիծը 46 սմ է, իսկ AB = 14 սմ։ Զուգահեռագծի ո՞ր կողմն է հատում A անկյան կիսորդը։ Գտեք այն հատվածները, որոնք առաջանում են այդ հատման դեպքում։
- 106. Զուգահեռագծի կողմերը հավասար են 10 սմ և 3 սմ։ Մեծ կողմին առընթեր անկյունների կիսորդները հանդիպակաց կողմը տրոհում են երեք հատվածի։ Գտեք այդ հատվածները։
- 107. Հավասարասրուն եռանկյան հիմքի կամայական կետով տարված են եռանկյան սրունքներին զուգահեռ ուղիղներ։ Ապացուցեք, որ ստացված քառանկյան պարագիծը հավասար է տրված եռանկյան սրունքների գումարին։
- 108. Անհավասար կից կողմեր ունեցող զուգահեռագծի մեջ տարված են անկյունների կիսորդները։ Ապա-ցուցեք, որ նրանց հատումից առաջանում է ուղղանկյուն։
- 109. Ապացուցեք, որ ուռուցիկ քառանկյունը զուգահեռագիծ է, եթե նրա երկու կից կողմերից յուրաքանչյուրին առրնթեր անկյունների գումարը 180° է։
- 110. Ապացուցեք, որ ուռուցիկ քառանկյունը զուգահեռագիծ է, եթե նրա հանդիպակաց անկյունները զույգ առ զույգ հավասար են։
- 111. K կետը ABC եռանկյան AM միջնագծի միջնակետն է։ BK ուղիղը D կետում հատում է AC կողմը։ Ապացուցեք, որ $AD=\frac{1}{3}AC$:
- 112. *M* և *N* կետերը *ABCD* զուգահեռագծի *AD* և *BC* կողմերի միջնակետերն են։ Ապացուցեք, որ *AN* և *MC* ուղիղները *BD* անկյունագիծը բաժանում են երեք հավասար մասի։

- 113. ABCD շեղանկյան B գագաթից տարված են AD և DC ուղիղներին ուղղահայացներ՝ BK-ն և BM-ը։ Ապացուցեք, որ BD Ճառագայթը KBM անկյան կիսորդն է։
- 114. Ապացուցեք, որ շեղանկյան անկյունագծերի հատման կետր հավասարահեռ է նրա կողմերից։
- 115. Ապացուցեք, որ եռանկյան գագաթը հանդիպակաց կողմի կամայական կետին միացնող հատվածի միջ-նակետը գտնվում է այն հատվածի վրա, որի ծայրակետերը մյուս երկու կողմերի միջնակետերն են։
- 116. ABCD քառակուսու AC անկյունագիծը 18,4 սմ է։
 A կետով անցնող և AC ուղղին ուղղահայաց ուղիղը հատում է BC և CD ուղիղները համապատասխանաբար M և N կետերում։ Գտեք MN-ը։
- 117. ABCD քառակուսու AC անկյունագծի վրա M կետով ար վերցված է այնպես, որ AM = AB: M կետով տարված է AC ուղղին ուղղահայաց ուղիղ, որը BC–ն հատում է H կետում։ Ապացուցեք, որ BH = HM = MC:
- 118. AD մեծ հիմքով ABCD սեղանի AC անկյունագիծը ուղղահայաց է CD սրունքին։ $\angle BAC = \angle CAD$ ։ Գտեք AD–ն, եթե սեղանի պարագիծը 20 սմ է, իսկ $\angle D = 60^\circ$ ։
- 119. Սեղանի հիմքերից մեկին առընթեր անկյունների գումարը 90° է։ Ապացուցեք, որ սեղանի հիմքերի տարբերությունը կրկնակի մեծ է դրանց միջնակետերը միացնող հատվածից։
- 120. Ապացուցեք, որ զուգահեռագծի անկյունագծերի հատման կետը նրա համաչափության կենտրոնն է։
- **121.** Համաչափության քանի՞ կենտրոն ունի զուգահեռ ուղիղների զույգը։
- 122*. Ապացուցեք, որ եթե պատկերն ունի համաչափության երկու փոխուղղահայաց առանցքներ, ապա դրանց հատման կետը այդ պատկերի համաչափության կենտրոնն է։

Նկ. 32

ԳԼՈՒԽ VI **Շրջանագիծ**

§1 เนาา บารบนุนธรกุน นุบุยบกา

17. Երկու կետերով անցնող շրջանագիծ

Շրջանագիծը և նրա մի քանի հատկությունները դուք արդեն ուսումնասիրել եք 7–րդ դասարանում։ Հիշենք, որ շրջանագիծն այն երկրաչափական պատկերն է, որը կազմված է հարթության բոլոր այն կետերից, որոնք գտնվում են տրված կետից տրված հեռավորության վրա։ Տրված կետը շրջանագծի կենտրոնն է, իսկ տրված հեռավորությունը հավասար է շառավիղի երկարությանը։

Նշենք, որ շրջանագիծը որոշելու կամ կառուցելու համար կարևոր է որոշել նրա կենտրոնը և շառավիղը։

Պարզաբանենք այն հարցը, թե կարող ենք արդյոք ստանալ շրջանագիծ, եթե տրված են երկու կետ, որոն– ցով այն անցնում է։

Նախ հիշենք հատվածի միջնուղղահայացի հատկությունը (հատվածին միջնուղղահայաց կառուցելը դուք գիտեք 7–րդ դասարանի դասընթացից)։ Հատվածի միջնուղղահայացի յուրաքանչյուր կետ հավասարահեռ է այդ հատվածի ծայրակետերից։ Այժմ մենք ցույց տանք, որ տեղի ունի նաև հակադարձ պնդումը, այն է՝ հատվածի ծայրակետերից հավասարահեռ յուրաքանչյուր կետ գտնվում է այդ հատվածի միջնուղղահայացի վրա։

Դիտենք կամայական O կետ, որը հավասարահեռ է AB հատվածի ծայրակետերից. OA = OB (նկ. 33)։ Դիցուք՝ M–ը AB հատվածի միջնակետն է, և այդ կետով անցնող m ուղիղը ուղղահայաց է AB–ին։ Ցույց տանք, որ O կետը գտնվում է m ուղղի վրա։

Նկ. 33

Եթե O կետը գտնվում է AB ուղղի վրա, և AO = OB, ապա պարզ է, որ O կետը համընկնում է M կետին և, ուրեմն, գտնվում է m ուղղի վրա։ Եթե O կետը չի գտնվում AB ուղղի վրա, ապա A, B և O կետերով կարելի է կառուցել եռանկյուն։ Դիտենք AOB հավասարասրուն եռանկյունը (AO = OB), որի AB հիմքին տարված միջնագիծը OM—ն է։ Հետևաբար՝ OM հատվածը նաև բարձրություն է. $OM \perp AB$ ։ Ըստ ուղղին տրված կետով անցնող ուղղահայացի միակության՝ MO ուղիղը և m ուղիղը համընկնում են, այսինքն՝ O կետը գտնվում է m միջնուղղահայացի վրա։

Այժմ վերադառնանք մեր սկզբնական խնդրին։ Եթե տրված են երկու՝ *A* և *B* կետեր, ապա այդ ծայրակետերով *AB* հատվածի միջնուղղահայացի վրա վերցված յուրաքանչյուր կետ կարող է դիտվել որպես մի շրջանագծի կենտրոն, որն անցնում է այդ երկու կետերով։ Բայց քանի որ հատվածի միջնուղղահայացի վրա գտնվում են անվերջ քանակով կետեր, ուրեմն տրված երկու կետերով անցնող շրջանագծերի քանակը ևս անվերջ է։

18. Լարի միջնակետով անցնող շառավիղը

Պարզաբանենք հաձախակի կիրառություն ունեցող մի հարց. միմյանց նկատմամբ ինչպե՞ս են դասավորված շրջանագծի՝ տրամագիծ չհանդիսացող լարը և նրա միջնակետով անցնող շառավիղը։

Դիցուք՝ O կենտրոնով շրջանագծի OC շառավիղն անցնում է AB լարի M միջնակետով (uu, 34): Քանի որ շրջանագիծն անցնում է AB հատվածի ծայրակետերով, ապա շրջանագծի O կենտրոնը գտնվում է AB հատվածի միջնուղղահայացի վրա։ Դրանից հետևում է, որ OM ուղիղը, ուրեմն նաև OC շառավիղը ուղղահայաց է AB լարին։ Նմանապես կարելի է ցույց տալ, որ եթե OC շառավիղը ուղղահայաց է AB լարին և նրա հետ հատվում է M կետում, ապա M–ը AB հատվածի միջնակետն է։

Այսպիսով՝ ա) լարի միջնակետով անցնող շառավիղը ուղղահայաց է այդ լարին, բ) լարը հատող և նրան ուղղահայաց շառավիղն անցնում է այդ լարի միջնակետով։

19. Շրջանագծի որոշումը երեք կետերով

Պարզաբանենք, թե ինչպես է որոշվում այն շրջանագիծը, որն անցնում է տրված երեք կետերով։ Հարցն այն է թե կարելի է արդյոք, շրջանագիծ տանել երեք կետերի ցանկացած դասավորության դեպքում։

Դիցուք՝ տրված են երեք՝ A, B և C կետեր, և պահանջվում է գտնել այնպիսի O կետ, որը հավասարահեռ է այդերեք կետերից։ Դա նույնն է, որ գտնենք այնպիսի O կետ, որը կարող է դիտվել որպես այդ երեք կետերով անցնող շրջանագծի կենտրոն։

Մենք արդեն գիտենք, որ A և B կետերով անցնող յուրաքանչյուր շրջանագծի կենտրոնը գտնվում է AB հատվածի m միջնուղղահայացի վրա։ Նմանապես BC հատվածի n միջնուղղահայացի վրա է գտնվում B և C կետերով անցնող յուրաքանչյուր շրջանագծի կենտրոնը։ Ուրեմն՝ որպեսզի շրջանագիծն անցնի A, B և C կետերով, նրա կենտրոնը միաժամանակ գտնվելու է ինչպես m, այնպես էլ n ուղղի վրա։

Քննարկենք երկու դեպք.

- 1. *A*, *B* և *C* կետերը գտնվում են մի ուղղի վրա։ Այս դեպքում *m* և *n* ուղիղները զուգահեռ են՝ որպես միևնույն ուղղին ուղղահայաց ուղիղներ։ Այն, որ *m* և *n* ուղիղները չեն հատվում, նշանակում է, որ գոյություն չունի այնպիսի կետ, որը հավասարահեռ է մի ուղղի վրա գտնվող երեք՝ *A*, *B*, *C* կետերից։ Իսկ դրանից հետևում է, որ այդպիսի *A*, *B* և *C* կետերը չեն կարող գտնվել մի շրջանագծի վրա։
- 2. *A*, *B* և *C* կետերը մի ուղղի վրա չեն գտնվում։ Այս դեպքում *m* և *n* ուղիղները հատվում են ինչ–որ մի *O* կետում, և *OA* = *OB*, *OB* = *OC* (նկ. 35)։ Օգտվելով վերոհիշյալ հավասարություններից՝ ստանում ենք, որ *OA* = *OC*։ Այսինքն՝ *O* կետը հավասարահեռ է նաև *A* և *C* կետերից, ուստի *O* կետը գտնվում է *AC* հատվածի *p* միջնուղղահայացի վրա ևս։ Հենց *O* կետն էլ այն շրջանագծի կենտրոնն է, որն անցնում է *A*, *B* և *C* կետերով։

Այսպիսով՝ *ա) մի ուղղի վրա գտնվող երեք կետերով* շրջանագիծ չի անցնում, բ) մի ուղղի վրա չգտնվող երեք կե–

Նկ. 35

պերով անցնում է մի շրջանագիծ, որի կենդրոնը այդ կեպերը միացնող հապվածներից որևէ երկուսի միջնուղղահայացների հատման կետն է։

Բերված դատողություններից օգտվելով՝ կարող ենք նկարագրել, թե ինչպես կառուցել մի ուղղի վրա չգտնվող երեք կետերով անցնող շրջանագիծ։ Դրա համար անհրաժեշտ է՝ ա) տանել այդ կետերը միացնող հատվածներից որևէ երկուսը, բ) կառուցել այդ հատվածների միջնուղոահայացները և գտնել դրանց հատման կետը (շրջանագծի կենտրոնը), գ) կարկինի ծայրակետը դնել կենտրոնի վրա, տալ բացվածք՝ կենտրոնից մինչև տրված կետերից որևէ մեկի հեռավորության չափով և գծել շրջանագիծը։

Խնդիրներ

- 126. Ապացուցեք, որ հատվածի ծայրակետերով անցնող շրջանագծի կենտրոնը գտնվում է այդ հատվածի համաչափության առանցքի վրա։
- **127.** Ապացուցեք, որ շրջանագծի կենտրոնից ելնող ձառագայթը շրջանագիծը հատում է մեկ կետում։
- 128. Կառուցեք տրված շառավիղով շրջանագիծ, որն անցնի տրված երկու կետերով։ Այդպիսի քանի՞ շրջանագիծ է հնարավոր կառուցել։ Խնդիրն արդ-յոք մի՞շտ լուծում ունի։
- 129. Տրված ուղղի վրա գտեք այն կետը, որը հավասարահեռ է տրված երկու կետերից։ Դիտարկեք բոլոր հնարավոր դեպքերը։
- 130. Տրված է մի շրջանագծի վրա գտնվող երեք կետ։ Ապացուցեք, որ այդ կետերը չեն գտնվում մի ուղղի վրա։
- 131. Պարզաբանեք, թե հատվածի և կետի ինչպիսի՞ դասավորության դեպքում է հնարավոր տանել շրջանագիծ, որն անցնի տվյալ կետով և հատվածի ծայրակետերով։
- 132. Նկարագրեք չորս կետերի դասավորության որևէ դեպք, երբ այդ կետերով անցնող շրջանագիծ՝ ա) գոյություն ունի, բ) գոյություն չունի։

- 133. *AB* հատվածի *A* ծայրակետը գտնվում է *O* կենտրոնով շրջանագծի վրա։ Հայտնի է, որ *OAB* անկյունը փոքր է *OBA* անկյունից։ Ապացուցեք, որ *B* կետը չի գտնվում այդ շրջանագծի վրա։
- **134.** *AB* հատվածը *O* կենտրոնով շրջանագծի տրամագիծն է, իսկ *AC*–ն և *BC*–ն այդ շրջանագծի հավասար լարեր են։ Գտեք *AOC* անկյունը։
- 135. O կենտրոնով շրջանագծի A կետով տարված են AB տրամագիծը և AC լարը։ Գտեք BC լարը, եթե հայտնի է, որ OK = 4 ամ, որտեղ K–ն AC լարի միջնակետն է։
- 136. *A, B* և *C* կետերով անցնող շրջանագծի կենտրոնը *AB* հատվածի միջնակետն է։ Ապացուցեք, որ *ACB* անկյունը ուղիղ է։
- 137. *A, B* և *C* կետերով անցնող շրջանագծի կենտրոնը *AB* հատվածի միջնակետն է։ Գտեք *ABC* անկյունը, եթե *AC* լարի երկարությունը հավասար է շրջանագծի շառավիղին։
- 138. Ապացուցեք, որ մի ուղղի վրա գտնվող երեք կամ ավելի կետերով շրջանագիծ չի անցնում։

§2 ՇՐՋԱՆԱԳՇԻ ՇՈՇԱՓՈՂ

p)

Նկ. 36

20. Շրջանագծի և ուղղի փոխադարձ դասավորությունը

Պարզաբանենք, թե քանի ընդհանուր կետ կարող են ունենալ շրջանագիծը և ուղիղը՝ կախված նրանց փոխդասավորությունից։

Պարզ է, որ եթե ուղիղն անցնում է շրջանագծի կենտրոնով, ապա այն շրջանագիծը հատում է երկու կետում, այն է՝ տվյալ ուղղի վրա գտնվող տրամագծի ծայրակետերում։

Դիցուք՝ p ուղիղը չի անցնում r շառավիղով շրջանագծի O կենտրոնով։ Տանենք p ուղղին OH ուղղահայացը և այդ ուղղահայացի երկարությունը, այն է՝ O կենտրոնից p ուղղի հեռավորությունը, նշանակենք d (նկ. 36)։ Ուղղի և շրջանագծի փոխադարձ դասավորությունը ուսումնասիրենք՝ համեմատելով d–ն և r–ը։ Դիտարկենք երեք դեպք։

1. d < r: Այս դեպքում p ուղղին O կետից տարված OH ուղղահայացը փոքր է r–ից։ Մյուս կողմից՝ նույն O կետից p ուղղին կարելի է տանել d–ից մեծ ցանկացած երկարությամբ թեքեր։ Ուրեմն՝ կարող ենք պատկերացնել, որ գոյություն ունի այնպիսի OA թեք, որի երկարությունը r է։ Իսկ դա նշանակում է, որ A կետը գտնվում է շրջանագծի վրա։ Բայց շրջանագծի վրա է գտնվում նաև A կետի համաչափ B կետը՝ OH առանցքի նկատմամբ (կարող եք համոզվել, որ եթե HB = HA, ապա OHB և OHA ուղղանկյուն եռանկյունները հավասար են, և, ուրեմն, OB = OA = r):

Ապացուցենք, որ p ուղիղը և տրված շրջանագիծը, նշված A և B կետերից բացի, ուրիշ ընդհանուր կետեր չունեն։ Եթե ենթադրենք, որ դրանք ունեն ևս մեկ այլ ընդհանուր C կետ, ապա կստացվի, որ O կետը գտնվում է AC հատվածի միջնուղղահայացի վրա։ Իսկ դրանից կհետևի, որ O կետից p ուղղին հնարավոր է տանել երկու ուղղահայաց, որը հնարավոր չէ։

Այսպիսով՝ եթե շրջանագծի կենտրոնից մինչև ուղիղը եղած հեռավորությունը փոբր է շրջանագծի շառավիղից (d < r), ապա այդ ուղիղը և շրջանագիծն ունեն երկու ընդհանուր կետեր։ Այդպիսի ուղիղը կոչվում է շրջանագծին հատող։

2. d = r: Այս դեպքում OH = r, այսինքն՝ H կետը գտնվում է շրջանագծի վրա, և, ուրեմն, այն շրջանագծի և ուղղի ընդհանուր կետ է (uu, 36(p)): p ուղիղը և շրջանագիծը այլ ընդհանուր կետ չունեն։ Ուղղի՝ H-ից տարբեր յուրաքանչյուր M կետի համար OM > OH = r (OH ուղղահայացը փոքր է OM թեքից)։ Հետևաբար՝ M կետր շրջանագծի վրա չի գտնվում։

Այսպիսով՝ եթե շրջանագծի կենտրոնից մինչև ուղիղը եղած հեռավորությունը հավասար է շրջանագծի շառավիղին, ապա ուղիղը և շրջանագիծն ունեն միայն մեկ ընդհանուր կետ։

 $3. \ d > r$. Այս դեպքում OH > r, ուրեմն՝ p ուղղի ցանկացած M կետի համար $OM \ge OH > r$ (նկ. 36(q))։ < ետևաբար՝ M կետը շրջանագծի վրա չի գտնվում։

Այսպիսով՝ եթե շրջանագծի կենտրոնից մինչև ուղիղը եղած հեռավորությունը մեծ է շրջանագծի շառավիղից, ապա այդ ուղիղը և շրջանագիծը ընդհանուր կետ չունեն։

21. Շրջանագծի շոշափող

Մենք պարզաբանեցինք, որ ուղիղը և շրջանագիծը կարող են ունենալ մեկ կամ երկու ընդհանուր կետ, կարող են նաև չունենալ որևէ ընդհանուր կետ։ Ուղիղը, որը շրջանագծի հետ ունի միայն մեկ ընդհանուր կետ, կոչվում է այդ շրջանագծի շոշափող, իսկ նրանց ընդհանուր կետը կոչվում է ուղղի և շրջանագծի շոշափման կետ։ Նկար 37–ում p ուղիղը O կենտրոնով շրջանագծի շոշափող է, իսկ A–ն՝ շոշափման կետ։

Ապացուցենք թեորեմ շոշափողի հատկության մասին։

Թեորեմ։ Շրջանագծի շոշափողն ուղղահայաց է շոշափման կետով տարված շառավիդին։

Նկ. 37

Նկ. 38

Ապացուցում։ Դիցուք՝ p–ն O կենտրոնով շրջանագծի շոշափողն է, իսկ A–ն՝ շոշափման կետը (*տե՞ս նկ. 37*)։ Ապացուցենք, որ p շոշափողը ուղղահայաց է OA շառավիղին։

ենթադրենք այդպես չէ։ Այդ դեպքում *OA*–ն կլինի *p* ուղղին տարված թեք։ Քանի որ *O* կետից *p* ուղղին տարված ուղղահայացը փոքր է *OA* թեքից, ապա ստացվում է, որ շրջանագծի *O* կենտրոնի հեռավորությունը *p* ուղղից ավելի փոքր է, քան շառավիղը։ Հետևաբար՝ *p* ուղիղը և շրջանագիծը կունենան երկու ընդհանուր կետեր։ Բայց դա հակասում է պայմանին, ըստ որի՝ *p* ուղիղը շոշափող է։ Այսպիսով՝ *p* ուղիղը ուղղահայաց է *OA* շառավիղին։ Թեորեմն ապացուցված է։

Դիտարկենք *O* կենտրոնով շրջանագծի երկու շոշափողներ, որոնք անցնում են *A* կետով և շրջանագիծը շոշափում են *B* և *C* կետերում (նկ. 38): AB և AC հատվածերն անվանենք *A կետից տարված շոշափողների հատվածներ*։ Դրանք օժտված են հետևյալ հատկությամբ, որը բխում է ապացուցված թեորեմից։

Միևնույն կետից շրջանագծին տարված երկու շոշափողների հատվածները հավասար են և կազմում են հավասար անկյուններ այն ուղղի հետ, որն անցնում է այդ կետով և շրջանագծի կենտրոնով։

Այս պնդումն ապացուցելու համար դիտենք նկար 38–ը։ Ըստ շոշափողի մասին թեորեմի՝ անկյուններ 1–ը և 2–ը ուղիղ են, ուրեմն՝ ABO և ACO եռանկյունները ուղղանկյուն եռանկյուն են։ Դրանք հավասար եռանկյուներ են, քանի որ ունեն OA ընդհանուր ներքնաձիգ և OB և OC հավասար էջեր։ Հետևաբար՝ AB = AC, և $\angle 3 = \angle 4$, ինչը և պահանջվում էր ապացուցել։

Այժմ ապացուցենք շոշափողի հատկության մասին թեորեմի հակադարձ թեորեմը *(շոշափողի հայդանիշը)։*

Թեորեմ։ Եթե ուղիղն անցնում է շառավիղի՝ շրջանագծի վրա գտնվող ծայրակետով և ուղղահայաց է այդ շառավիղին, ապա այն շոշափող է։

Ապացուցում։ Թեորեմի պայմանից հետևում է, որ այդ շառավիղը շրջանագծի կենտրոնից տվյալ ուղղին տարված ուղղահայացն է։ Ուրեմն շրջանագծի կենտրոնից մինչև այդ ուղիղը եղած հեռավորությունը հավասար է շառավիղին։ Հետևաբար՝ շրջանագիծը և այդ ուղիղը ունեն միայն մեկ ընդհանուր կետ։ Բայց դա հենց նշանակում է, որ տվյալ ուղիղը շրջանագծի շոշափող է։ Թեորեմն ապացուցված է։

Այս թեորեմի հիման վրա լուծվում են շոշափողի կառուցման խնդիրները։ Լուծենք այդպիսի խնդիրներից մեկը։

Խնդիր։ *O* կենտրոնով շրջանագծի վրա տրված *A* կետով տանել այդ շրջանագծի շոշափող։

Լուծում։ Տանենք OA ուղիղը, իսկ այնուհետև կառուցենք p ուղիղը, որն անցնում է A կետով և ուղղահայաց է OA ուղղին։ Ըստ շոշափողի հայտանիշի՝ p ուղիղը որոնելի շոշափողն է։

Խնդիրներ

- 139. Դիցուք՝ d–ն r շառավիղով շրջանագծի կենտրոնի հեռավորությունն է p ուղղից։ Ինչպե՞ս են միմյանց նկատմամբ դասավորված շրջանագիծը և p ուղի-ղը, եթե՝ ա) r=16 սմ, d=12 սմ, p) r=5 սմ, d=4,2 սմ, զ) r=7,2 դմ, d=3,7 դմ, դ) r=8 սմ, d=1,2 դմ, ե) r=5 սմ, d=50 մմ։
- **140.** *A* կետի և շրջանագծի կենտրոնի հեռավորությունը փոքր է շրջանագծի շառավիղից։ Ապացուցեք, որ *A* կետով անցնող յուրաքանչյուր ուղիղ այդ շրջանագծի հատող է։
- 141. ABC եռանկյան մեջ AB = 10 սմ, $\angle C = 90^\circ$, $\angle B = 30^\circ$:

 Պահանջվում է տանել A կենտրոնով շրջանագիծ։

 Ինչպիսի՞ն պետք է լինի այդ շրջանագծի շառավիդը, որպեսզի BC ուղիդը՝ ա) շոշափի շրջանագիծը,
 բ) շրջանագծի հետ չունենա ընդհանուր կետ,
 - գ) շրջանագծի հետ ունենա ընդհանուր կետեր։
- 142. Տրված է *ABCD* քառակուսին, որի անկյունագիծը 6 սմ է։ Տանել շրջանագիծ, որի կենտրոնը լինի *A*–ն։ Ի՞նչ երկարություն պետք է ունենա շրջանագծի շառավիղը, որպեսզի *BD* անկյունագիծն ընդգրկող ուղիղը լինի՝ ա) շրջանագծի շոշափող, բ) շրջանագծի հատող։

- 143. *AB* և *CD* հատվածները *O* կենտրոնով շրջանագծի տրամագծեր են։ Հաշվեք *AOD* եռանկյան պարագի- ծր, եթե հայտնի է, որ *CB* = 13 սմ, *AB* = 16 սմ։
- 144. *O* կենտրոնով շրջանագծի *OM* շառավիղն անցնում է *AB* լարի միջնակետով։ Ապացուցեք, որ շրջանագծի *M* կետով տարված շոշափողը զուգահեռ է *AB* լարին։
- 145. Շրջանագծի *A* կետով տարված են շոշափող և շաոավիղին հավասար լար։ Գտեք դրանց կազմած անկյունը։
- 146. Շրջանագծի շառավիղին հավասար *AB* լարի ծայրակետերով տարված են այդ շրջանագծի շոշափողներ, որոնք հատվում են *C* կետում։ Գտեք *ABC* եռանկյան անկյունները։
- 147. AB տրամագծի և AC լարի կազմած անկյունը 30° է: C կետով տարված է շրջանագծի շոշափող, որը AB ուղիղը հատում է D կետում։ Ապացուցեք, որ ACD եռանկյունը հավասարասրուն է:
- 148. AB ուղիղը B կետում շոշափում է O կենտրոնով և r=1,5 սմ շառավիղով շրջանագիծը։ Գտեք ABO եռանկյան անկյունները, եթե AO=3 սմ։
- 149. Տրված է *O* կենտրոնով և 4,5 սմ շառավիղով շրջանագիծ: *A* կետն այնպիսին է, որ *AO* = 9 սմ։ A կետով տարված են այդ շրջանագծի երկու շոշափողներ։ Գտեք դրանց կազմած անկյունը։
- 150. AB-ն և AC-ն O կենտրոնով շրջանագծին A կետից տարված շոշափողների հատվածներն են։ Գտեք BAC անկյունը, եթե AO հատվածի միջնակետը գտնվում է այդ շրջանագծի վրա։
- **151.** MA և MB ուղիղները A և B կետերում շոշափում են O կենտրոնով շրջանագիծը։ C կետը O կետի համաչափն է B կետի նկատմամբ։ Ապացուցեք, որ $\angle AMC = 3\angle BMC$:
- 152. Տրված շրջանագծի AB տրամագծի ծայրակետերից տարված են AA_1 և BB_1 ուղղահայացներ շրջանագծի այն շոշափողին, որն ուղղահայաց չէ այդ AB

- տրամագծին։ Ապացուցեք, որ շոշափման կետը A_1B_1 հատվածի միջնակետն է։
- 153. Տրված է 10 սմ շառավիղով շրջանագիծ և մի կետ, որի հեռավորությունը շրջանագծի կենտրոնից 3 սմ է։ Գտեք այդ կետից մինչև շրջանագծի կետերը եղած ամենամեծ և ամենափոքր հեռավորությունները։ Հիմնավորեք պատասխանը։
- 154. ABC եռանկյան B անկյունն ուղիղ է։ Ապացուցեք, որ՝ ա) BC ուղիղը A կենտրոնով և AB շառավիղով շրջանագծի շոշափող է, բ) AB ուղիղը C կենտրոնով և CB շառավիղով շրջանագծի շոշափող է, գ) AC ուղիղը B կենտրոնով և BA, BC շառավիղներով շրջանագծերի շոշափող չէ։
- 155. Կառուցեք շրջանագծի շոշափող, որը՝ ա) զուգահեռ է տրված ուղղին, բ) ուղղահայաց է տրված ուղղին։

M O B U4. 39

 $\cup ALB = \angle AOB$

գ) Նկ. 40

<u>p</u>)

22. Շրջանագծի աղեղի աստիձանային չափր

Շրջանագծի վրա նշենք երկու կետ՝ A–ն և B–ն։ Դրանք շրջանագիծը տրոհում են երկու աղեղի։ Այդ աղեղները տարբերելու համար նրանցից յուրաքանչյուրի վրա նշենք միջանկյալ կետ, օրինակ՝ L–ը և M–ը (uկ. 39)։ Աղեղները նշանակվում են այսպես՝ $\cup ALB$ և $\cup AMB$ ։ Երբեմն նշանակվում են նաև առանց միջանկյալ տառի՝ $\cup AB$ (երբ պարզ է լինում, թե խոսքը աղեղներից որի մասին է)։

Աղեղը կոչվում է *կիսաշրջանագիծ*, եթե նրա ծայրերը միացնող հատվածը այդ շրջանագծի տրամագիծ է: 40(ա) նկարում պատկերված են երկու կիսաշրջանագիծ, որոնցից մեկը նշագծված է կապույտ գծով։

Անկյունը, որի գագաթը շրջանագծի կենտրոնն է, կոչվում է նրա *կենտրոնային անկյուն*։ Դիցուք՝ O կենտրոնով շրջանագծի կենտրոնային անկյան կողմերը շրջանագիծը հատում են A և B կետերում։ AOB կենտրոնային անկյանը համապատասխանում են A և B ծայրերով երկու աղեղ (uu, 40)։ Եթե $\angle AOB$ –ն փոված է, ապա նրան համապատասխանում են երկու կիսաշրջանագիծ (uu, 40(u))։ Եթե $\angle AOB$ –ն չփոված է, ապա ասում են, որ այդ անկյան ներսում ընկած AB աղեղը *փոքր է կիսաշրջանագծից*։ 4O(p) նկարում այդ աղեղը նշագծված է կապույտ գծով։ A և B ծայրերով մյուս աղեղի մասին ասում են, որ այն մեծ է *կիսաշրջանագծից (աղեղ ALB–ն՝ 4O(q) նկարում)*։

Շրջանագծի աղեղը կարելի է չափել աստիձաններով։ Եթե O կենտրոնով շրջանագծի AB աղեղը փոքր է կիսաշրջանագծից կամ կիսաշրջանագիծ է, ապա համարվում է, որ նրա աստիձանային չափը հավասար է AOB կենտրոնային անկյան աստիձանային չափին (տե՛ս նկ. 40(ա,ր))։ Իսկ եթե AB աղեղը մեծ է կիսաշրջանագծից, ապա համարվում է, որ նրա աստիձանային չափը հավասար է 360°- ∠AOB (տես նկ. 40(գ)):

Այստեղից հետևում է, որ շրջանագծի՝ ընդհանուր ծայրեր ունեցող երկու աղեղների աստիձանային չափերի գումարը 360° է։

Ինչպես AB աղեղի (ALB աղեղի) աստիձանային չափը, այնպես էլ AB աղեղը (ALB աղեղը) նշանակվում են նույն $\cup AB$ ($\cup ALB$) պայմանանշանով։

Նկար 41–ում CAB աղեղի աստիձանային չափը հավասար է 145°։ Սովորաբար համառոտ ասում են՝ CAB աղեղը հավասար է 145° կամ պարզապես՝ CAB աղեղը 145° է, և գրում են՝ $\cup CAB = 145^\circ$ ։ Այդ նույն նկարում $\cup ADB = 360^\circ - 115^\circ = 245^\circ$, $\cup CDB = 360^\circ - 145^\circ = 215^\circ$, $\cup DB = 180^\circ$:

Նկ. 41

23. Թեորեմ ներգծյալ անկյան մասին

Այն անկյունը, որի գագաթը գտնվում է շրջանագծի վրա, իսկ կողմերը հատում են այդ շրջանագիծը, կոչվում է ներգծյալ անկյուն։

Նկար 42–ում *ABC* անկյունը ներգծյալ է։ *AMC* աղեղն ընկած է այդ անկյան ներսում։ Այդպիսի դեպքերում ասում են, որ *ABC* ներգծյալ անկյունը հենվում է *AMC* աղեղի վրա։ Ապացուցենք թեորեմ ներգծյալ անկյան մասսին։

Թեորեմ։ Ներգծյալ անկյունը չափվում է այն աղեղի կեսով, որի վրա նա հենվում է։

Ապացուցում։ Դիցուք՝ $\angle ABC$ –ն O կենտրոնով շրջանագծի ներգծյալ անկյուն է, որը հենվում է AC աղեղի վրա *(նկ. 43):* Ապացուցենք, որ $\angle ABC = \frac{1}{2} \cup AC$:

Դիտարկենք *BO* Ճառագայթի՝ *ABC* անկյան նկատմամբ դասավորության հնարավոր երեք դեպք։

1. BO Ճառագայթը համընկնում է ABC եռանկյան կողմերից մեկին, օրինակ՝ BC կողմին (նկ. 43(ա))։ Այս դեպքում AC աղեղը փոքր է կիսաշրջանագծից, ուրեմն՝

Նկ. 42

Նկ. 44

Նկ. 43

Նկ. 45

 $\angle AOC = \cup AC$ ։ Քանի որ AOC անկյունը AOB հավասարասրուն եռանկյան արտաքին անկյուն է, ապա $\angle AOC = \angle 1 + \angle 2$ ։ Բայց անկյուններ 1–ը և 2–ը հավասարասրուն եռանկյան հիմքին առընթեր անկյուններ են և, ուրեմն, հավասար են. $\angle 1 = \angle 2$ ։ Այսպիսով՝ $\angle AOC = \angle 1 + \angle 2 = 2 \cdot \angle 1$, որտեղից հետևում է,

$$nn \ 2 \cdot \angle 1 = \bigcup AC \ \text{lym} \ \angle ABC = \angle 1 = \frac{1}{2} \bigcup AC.$$

2. BO Ճառագայթը ABC անկյունը տրոհում է երկու անկյան։ Այս դեպքում BO Ճառագայթը ինչ–որ D կետում հատում է AC աղեղը (նկ. 43(p))։ D կետը տրոհում է AC աղեղը երկու աղեղի՝ $\cup AD$ –ի և $\cup DC$ –ի։ Ըստ ապացուցված 1–ին դեպքի՝

$$\angle ABD = \frac{1}{2} \cup AD \text{ lt } \angle DBC = \frac{1}{2} \cup DC.$$

Այս հավասարությունները անդամ առ անդամ գումարելով՝ ստացվում է.

$$\angle ABD + \angle DBC = \frac{1}{2} \cup AD + \frac{1}{2} \cup DC$$

$$|\text{quul } \angle ABC = \frac{1}{2} \cup AC$$

3. BD Ճառագայթը չի տրոհում ACB անկյունը երկու անկյան և չի համընկնում այդ անկյան որևէ կողմին։ Այս դեպքի համար ապացուցումը կատարեք ինք-նուրույն (օգտվեք 43(գ) նկարից)։

Հետևանք 1. Միևնույն աղեղին հենված ներգծյալ անկյունները հավասար են *(նկ. 44)։*

Հետևանք 2. Կիսաշրջանագծին հենված ներգծյալ անկյունը ուղիղ է (նկ. 45)։

Խնդիրներ

- 156. Գծագրեք O կենտրոնով շրջանագիծ և նրա վրա նշեք A կետը: AB լարը կառուցեք այնպես, որ՝ ա) $\angle AOB = 60^{\circ}$, բ) $\angle AOB = 90^{\circ}$,
 - q) $\angle AOB = 120^{\circ}$, η) $\angle AOB = 180^{\circ}$:
- 157. O կենտրոնով շրջանագծի շառավիղը 16 ամ է։ Գտեք AB լարը, եթե՝ ա) $\angle AOB = 60^{\circ}$, p) $\angle AOB = 180^{\circ}$:

- 158. *O* կենտրոնով շրջանագծի *AB* և *CD* լարերը հավասար են։ ա) Ապացուցեք, որ *A* և *B* ծայրերով երկու աղեղները համապատասխանաբար հավասար են *C* և *D* ծայրերով երկու աղեղներին։ բ) Գտեք *C* և *D* ծայրերով աղեղները, եթե ∠*AOB* = 112°:
- 159. AB կիսաշրջանագծի վրա վերցված են C և D կետերն այնպես, որ $\cup AC = 57^{\circ}$, $\cup BD = 63^{\circ}$ ։ Գտեք CD լարը, եթե շրջանագծի շառավիղը 12 սմ է։
- 160. Գտեք ABC ներգծյալ անկյունը, եթե AC աղեղը, որի վրա այն հենվում է, հավասար է՝ ա) 48°, p) 57°,
 q) 90°, դ) 124°, ե) 180°:
- 161. Ըստ նկար 46–ի տվյալների՝ գտեք x–ր։
- **162.** *AOB* կենտրոնային անկյունը 30°–ով մեծ է *AB* աղեղին հենված ներգծյալ անկյունից։ Գտեք այդ անկյուներից յուրաքանչյուրը։
- 163. AB լարը ձգում է 115°–ի հավասար աղեղ, իսկ AC լարը՝ 43°–ի աղեղ։ Գտեք BAC անկյունը։
- 164. Շրջանագիծը *A* և *B* կետերով տրոհվում է երկու աղեղի, որոնց աստիձանային չափերը հարաբերում են, ինչպես 6 : 4։ Գտեք այդ աղեղների աստիձանային չափերը։
- 165. *A* և *B* կետերը շրջանագիծը տրոհում են երկու աղեղի, որոնցից փոքրը 140° է, իսկ մեծը *M* կետով տրոհված է 6 ։ 5 հարաբերությամբ՝ հաշված *A* կետից։ Գտեք *BAM* անկյունը։
- 166. A, B և C կետերը գտնվում են O կենտրոնով շրջանագծի վրա։ Գտեք ABC անկյունը, եթե $\angle AOC = 146^\circ$, իսկ B և O կետերը գտնվում են AC ուղղի միևնույն կողմում։
- 167. A, B և C կետերը գտնվում են O կենտրոնով շրջանագծի վրա։ Գտեք ABC անկյունը, եթե $\angle AOC = 164^\circ$, իսկ B և O կետերը գտնվում են AC ուղղի տարբեր կողմերում։
- 168. O կենտրոնով շրջանագծի AB աղեղը 90° է։ Գտեք O կետի հեռավորությունը AB լարից, եթե AB = 24 սմ։

- 169. *O* կենտրոնով շրջանագծի *AB* աղեղը 120° է։ Գտեք *O* կետի հեռավորությունը *AB* լարից, եթե շրջանագծի շառավիդը 20 սմ է։
- 170. AB–ն և AC–ն շրջանագծի լարեր են: $\angle BAC = 70^\circ$, $\cup AB = 120^\circ$: Գտեք AC աղեղի աստիձանային չափր:
- 171. Շրջանագծում տարված են *AB* տրամագիծը և *AC* լարը։ Գտեք *BAC* անկյունը, եթե կիսաշրջանագիծը *C*կետով տրոհվում է *AC* և *CB* աղեղների, որոնց աստիՃանային չափերը հարաբերում են, ինչպես 7 ։ 2։
- 172. Շրջանագծի AB և CD լարերը հատվում են E կետում։ Գտեք BEC անկյունը, եթե $\cup AD = 54^\circ$, $\cup BC = 70^\circ$:
- 173. *AB*–ն շրջանագծի տրամագիծն է։ Շրջանագծի վրա վերցված է *C* կետն այնպես, որ *BC* լարը հավասար է շրջանագծի շառավիղին։ Գտեք *ABC* եռանկյան անկյունները։
- 174. A կետով տարված են շրջանագծին AB շոշափողը (B–ն շոշափման կետն է) և AD հատողը, որն անցնում է նաև O կենտրոնով (D–ն շրջանագծի կետ է, ընդ որում՝ O–ն գտնվում է A և D կետերի միջև)։ Գտեք $\angle BAD$ –ն և $\angle ADB$ –ն, եթե $\cup BD = 110^{\circ}20'$:
- 175. Ապացուցեք, որ շրջանագծի՝ զուգահեռ լարերի միջև առնված աղեղների աստիձանային չափերը հավասար են։
- 176. Շրջանից դուրս վերցված կետից այդ շրջանագծին տարված են երկու հատող, որոնց կազմած անկ-յունը 32° է։ Շրջանագծի՝ այդ անկյան կողմերի միջև առնված աղեղներից մեծը հավասար է 100°։ Գտեք փոքր աղեղը։
- 177. Գտեք շրջանից դուրս վերցված կետից այդ շրջանագծին տարված երկու հատողներով կազմված սուր անկյունը, եթե շրջանագծի՝ հատողների միջև առնված աղեղները հավասար են 140° և 52°:
- 178. AC հատվածը շրջանագծի տրամագիծ է, AB–ն՝ լար, MA–ն՝ շոշափող, և MAB անկյունը սուր է։ Ապացուցեք, որ $\angle MAB = \angle ACB$:

- 179. AM ուղիղը շրջանագծի շոշափող է, իսկ AB–ն՝ այդ շրջանագծի լար։ Ապացուցեք, որ MAB անկյունը չափվում է MAB անկյան ներսում առնված AB աղեղի կեսով։
- 180. ABC եռանկյան գագաթները գտնվում են շրջանագծի վրա։ Ապացուցեք, որ եթե AB–ն շրջանագծի տրամագիծ է, ապա $\angle C > \angle A$ և $\angle C > \angle B$ ։
- 181. Տրված են մի հատված և մի անկյուն։ Կառուցեք շրջանագիծն այնպես, որ այդ հատվածը լինի նրա այն լարը, որի ձգած աղեղի աստիձանային չափը հավասար է տրված անկյանը։
- 182. Կառուցեք տրված շրջանագծի շոշափողը, որն անցնում է այդ շրջանից դուրս տրված կետով։

<u>Լուծում</u>։ Դիցուք՝ տրված են *O* կենտրոնով շրջա– նագիծը և շրջանից դուրս գտնվող A կետր։ Ենթադրենք, որ խնդիրը լուծված է, և AB-ն որոնելի շոշափողն է (նկ. 47)։ Քանի որ AB ուղիդը ուղղահայաց է OB շառավիդին, ապա խնդրի լուծումը հանգում է շրջանագծի այն *B* կետի կառուցմանը, որի համար $\angle ABO$ –ն ուղիղ է։ Այդ կետր կարելի է կառուցել հետևյալ կերպ. տանում ենք OA հատվածը և որոշում նրա O_1 միջնակետը։ Ալնուհետև կառուցում ենք O_1 կենտրոնով և O_1A շառավիդով շրջանագիծը։ Այդ շրջանագիծը տրված շրջանագծի հետ հատվում է երկու՝ B և B_1 կե– տերում։ AB–ն և A_1B_1 –ր որոնելի շոշափող– ներն են, քանի որ $AB\bot OB$ և $AB_1\bot OB_1$: Իս– կապես՝ *ABO* և *AB*₁*O* անկլուններից լուրա– քանչյուրը O_1 կենտրոնով շրջանագծի ներգծյալ անկյուն է, որը հենվում է կիսաշրջանագծի վրա։ Ակներև է, որ խնդիրն ունի երկու լուծում։

Նկ. 47

24. Անկյան կիսորդի և հատվածի միջ-նուղղահայացի հատկությունները

Ապացուցենք թեորեմ անկյան կիսորդի մասին։

Թեորեմ։ Չփոված անկյան կիսորդի յուրաքանչյուր կետ հավասարահեռ է անկյան կողմերից¹։ Հակադարձը՝ անկյան ներսում գտնվող և նրա կողմերից հավասարահեռ յուրաքանչյուր կետ գտնվում է այդ անկյան կիսորդի վրա։

Ապացուցում։ 1. BAC անկյան կիսորդի վրա վերցնենք կամայական M կետ, տանենք AB և AC ուղիղներին ուղղահայացներ՝ MK–ն և ML–ը։ Ապացուցենք, որ MK = ML (նկ. 48):

Դիտարկենք AMK և AML ուղղանկյուն եռանկյունները։ Այդ եռանկյունները, ըստ ներքնաձիգի և սուր անկյան, հավասար են (AM–ը ընդհանուր ներքնաձիգ է, ըստ պայմանի՝ $\angle 1 = \angle 2$)։ Հետևաբար՝ MK = ML:

2. Դիցուք՝ M կետը գտնվում է BAC անկյան ներսում և հավասարահեռ է AB և AC կողմերից։ Ապացուցենք, որ AM Ճառագայթը BAC անկյան կիսորդն է (U4. AB):

Տանենք AB և AC ուղիղներին ուղղահայացներ՝ MK–ն և ML–ը։ AKM և ALM ուղղանկյուն եռանկյունների AM ներքնաձիգը ընդհանուր է, իսկ MK և ML էջերը, ըստ պայմանի, հավասար են։ Ուրեմն՝ այդ եռանկյունները հավասար են, հետևաբար՝ $\angle 1 = \angle 2$ ։ Իսկ դա նշանակում է, որ AM Ճառագայթը BAC անկյան կիսորդն է։ Թեորեմն ապացուցված է։

Հետևանք։ Եռանկյան կիսորդները հատվում են մի կետում։

Իրոք, O տառով նշանակենք ABC եռանկյան AA_1 և BB_1 կիսորդների հատման կետր և այդ կետիզ տանենք OK,

Նկ. 48

 $A = 1 \\ M \\ L$ C

¹ Այսինքն՝ հավասարահեռ է անկյան կողմերն ընդգրկող ուղիղներից։

OL և OM ուղղահայացները համապատասխանաբար AB, BC և CA ուղիդներին (նկ. 49)։ Ըստ անկյան կիսորդի hատկության՝ OK = OM և OK = OL: Հետևաբար՝ OM = OL, ինչը նշանակում է, որ *O* կետը հավասարահեռ է *ABC* եռանկյան CA և CB կողմերից։ Ուրեմն՝ այդ կետր գտնվում է CC₁ կիսորդի վրա։ Հետևաբար՝ ABC եռանկյան երեք կիսորդն էլ հատվում են նույն O կետում, ինչը և պահանջվում էր ապացուցել։

Ինչպես գիտենք, *հատվածի միջնուղղահայաց* կոչվում է այն ուղիդը, որն անցնում է հատվածի միջնակետով և ուղղահայաց է նրան։ Նկար 50–ում պատկերված a ուղի– որ AB հատվածի միջնուղղահայացն է։ Յուրաքանչյուր հատվածի միջնուրդահայացը միակն է։

Մենք արդեն գիտենք հատվածի միջնուղղահայացի հատկությունը *(տե՛ս 17–րդ կետր)*, ըստ որի՝ հատվածի միջնուղղահայացի լուրաքանչյուր կետ հավասարապես է հեռազված այդ հատվածի ծայրակետերից *(տես ևկ. 51):* Ճշմարիտ է նաև հակադարձր. լուրաքանչյուր կետ, որ հավասարահեռ է հատվածի ծայրակետերից, գտնվում է ալդ հատվածի միջնուղղահալացի վրա։

Օգտվելով հատվածի միջնուղղահայացի հատկությունից՝ կարող ենք կատարել մի կարևոր եզրակացություն. եռանկյան կողմերի միջնուղղահայացները հատվում են մի կետում։

Իրոք, O տառով նշանակենք ABC եռանկյան AB և BC կողմերի m և n միջնուղղահայացների հատման կետր (նկ. 52, քանի որ AB և BC ուղիղները հատվում են, ուրեմն hunnylnu hunnylnu hunnylnu hunnylnu hunnylnu hunnylnuhայացի հատկության՝ OB = OA և OB = OC: Ուրեմն՝ OA = OC, husp upunuluni ξ , np O- ι huduuunuunuutu ξ հեռազված AC հատվածի ծայրակետերից։ Հետևաբար՝ այն գտնվում է այդ հատվածի միջնուղղահայացի՝ p–ի վրա։ Այսպիսով՝ ABC եռանկյան կողմերի բոլոր երեք՝ m, n և p միջնուղղահայացները հատվում են միևնույն O կե– տում։

Նկ. 49

Նկ. 50

uu)

Նկ. 51

Նկ. 52

Նկ. 53

25. Թեորեմ եռանկյան բարձրությունների հատման կետի մասին

Մենք ապացուցել ենք, որ եռանկյան կողմերի միջնուղղահայացները հատվում են մի կետում։ Մի կետում են հատվում նաև կիսորդները։ Պարզվում է, որ նույնպիսի հատկություն ունեն նաև եռանկյան բարձրությունները։

Թեորեմ։ Եռանկյան բարձրությունները (կամ նրանց շարունակությունները) հատվում են մի կետում։

Ապացուցում։ Դիտարկենք կամայական ABC եռանկյուն և ապացուցենք, որ նրա բարձրություններն ընդգրկող AA_1 , BB_1 և CC_1 ուղիղները հատվում են մի կետում (նկ. 53):

ABC եռանկյան յուրաքանչյուր զագաթից տանենք հանդիպակաց կողմին զուգահեռ ուղիղ։ Ստացվում է $A_2B_2C_2$ եռանկյունը։ A, B և C կետերը ստացված եռանկյան կողմերի միջնակետերն են։ Իսկապես, $AB = A_2C$ և $AB = CB_2$, որպես ABA_2C և $ABCB_2$ զուգահեռագծերի հանդիպակաց կողմեր։ Ուստի՝ $A_2C = CB_2$ ։ Նույն ձևով՝ $C_2A = AB_2$ և $C_2B = BA_2$ ։ Բացի այդ, ինչպես հետևում է կառուցումից, $CC_1 \perp A_2B_2$, $AA_1 \perp B_2C_2$ և $BB_1 \perp A_2C_2$ ։ Այսպիսով՝ AA_1 , BB_1 և CC_1 ուղիղները $A_2B_2C_2$ եռանկյան կողմերի միջնուղղահայացներն են։ Հետևաբար՝ դրանք հատվում են մի կետում։ Թեորեմն ապացուցված է։

26. Եռանկյան միջնագծերի հատման կետը

Պարզվում է, որ եռանկյան միջնագծերն օժտված են բացառիկ հատկությամբ։ Այդ հատկությանը հանգամանորեն կանդրադառնանք հետագայում, միայն նշենք, որ յուրաքանչյուր եռանկյան երեք միջնագիծը հատվում են մի կետում։

Դիցուք՝ ABC եռանկյան մեջ AA_1 և CC_1 միջնագծերը հատվում են M կետում (նկ. 54)։ Ապացուցենք, որ այդ M կետով անցնող BB_1 հատվածր եռանկյան երրորդ միջնա-

գիծն է։ Դրա համար նախ ցույց տանք, որ BB_1 հատվածր ABC եռանկյան C_1A_1 միջին գիծը հատում է նրա F միջնա– կետում, այսինքն՝ ապացուցենք, որ $C_1F = FA_1$: AB կողմի C_1 միջնակետով տանենք AA_1 –ին զուգահեռ C_1E հատվածր։ Ըստ Թայեսի թեորեմի՝ BE = EM։ Դրանից հետևում է, որ $EA_1 \parallel MC$ (BCM եռանկյան մեջ EA_1 –ր միջին գիծ է)։ Ստացվեց, որ C_1EA_1M քառանկյան հանդիպակաց կողմե– րր զույգ առ զույգ զուգահեռ են, և, ուրեմն, այն զուգահեռագիծ է։ Քանի որ F կետր այդ զուգահեռագծի անկլունագծերի հատման կետն է, ապա $C_1F = FA_1$ ։ Այժմ դիտարկենք ABB_1 և CBB_1 եռանկյունները, որոնց մեջ C_1F –ը և A_1F –ր համապատասխանաբար միջին գիծ են։ Ստանում ենք՝ $AB_1 = 2C_1F = 2FA_1 = B_1C$, այսինքն՝ $AB_1 = B_1C$: Այսպիսով՝ M կետով անցնող BB_1 հատվածր, իրոք, համրնկնում է ABC եռանկյան B գագաթով անցնող միջնագծի հետ։ Հետևաբար՝ *M* կետում հատվում են այդ եռանկյան բոլոր միջնագծերը։

Ամփոփենք ստացված փաստերը։ Յուրաքանչյուր եռանկյան հետ առնչվում են չորս կետ. միջնագծերի հատման կետը, կիսորդների հատման կետը, կողմերի միջնուղղահայացների հատման կետը և բարձրությունների (կամ նրանց շարունակությունների) հատման կետը։ Այս չորս կետերը կոչվում են *եռանկյան նշանավոր կետեր*։

Նկ. 54

Խնդիրներ

- 183. Չփոված *O* անկյան կիսորդի *M* կետից տարված են այդ անկյան կողմերին ուղղահայացներ՝ *MA*–ն և *MB*–ն։ Ապացուցեք, որ *AB*⊥*OM:*
- 184. *O* անկյան կողմերը շոշափում են երկու այն շրջանագծերից յուրաքանչյուրին, որոնք A կետում ունեն ընդհանուր շոշափող։ Ապացուցեք, որ այդ շրջանագծերի կենտրոնները գտնվում են *OA* ուղղի վրա։
- 185. A անկյան կողմերը շոշափում են O կենտրոնով և 5 սմ շառավիղով շրջանագիծը։ Գտեք AO–ն, եթե $\angle A = 60^{\circ}$ ։

- 186. ABC եռանկյան B և C գագաթներին հարակից արտաքին անկյունների կիսորդները հատվում են O կետում։ Ապացուցեք, որ O կետը կենտրոն է մի շրջանագծի, որին շոշափում են AB, BC և AC ուղիղները։
- 187. ABC եռանկյան AA_1 և BB_1 կիսորդները հատվում են M կետում։ Գտեք ACM և BCM անկյունները, եթե՝ ա) $\angle AMB = 136^\circ$, p) $\angle AMB = 111^\circ$:
- 188. ABC եռանկյան BC կողմի միջնուղղահայացը D կետում հատում է AC կողմը։ Գտեք՝ ա) AD–ն և CD–ն, եթե BD=5 սմ, AC=8,5 սմ, բ) AC–ն, եթե BD=11,4 սմ, AD=3,2 սմ։
- 189. ABC եռանկյան AB և AC կողմերի միջնուղղահայացները հատում են BC կողմը D կետում։ Ապացուցեք, որ՝ ա) D–ն BC կողմի միջնակետն է, ր) $\angle A = \angle B + \angle C$:
- 190. *ABC* հավասարասրուն եռանկյան *AB* կողմի միջնուղղահայացը *BC* կողմը հատում է *E* կետում։
 Գտեք եռանկյան *AC* հիմքը, եթե *AEC* եռանկյան պարագիծը 27 սմ է, իսկ *AB* = 18 սմ։
- 191. ABC և ABD հավասարասրուն եռանկյուններն ունեն ընդհանուր հիմք՝ AB–ն։ Ապացուցեք, որ CD ուղիղն անցնում է AB հատվածի միջնակետով։
- 192. Ապացուցեք, որ եթե *ABC* եռանկյան *AB* և *AC* կողմերը հավասար չեն, ապա եռանկյան *AM* միջնագիծը բարձրություն չէ։
- 193. *ABC* հավասարասրուն եռանկյան *AB* հիմքին առընթեր անկյունների կիսորդները հատվում են *M* կետում։ Ապացուցեք, որ *CM* և *AB* ուղիղները փոխուղղահայաց են։
- 194. *ABC* հավասարասրուն եռանկյան սրունքներին տարված AA_1 և BB_1 բարձրությունները հատվում են *M* կետում։ Ապացուցեք, որ *MC* ուղիղը *AB* հատվածի միջնուղղահայացն է։
- 195. Կառուցեք տրված հատվածի միջնուղղահայացը։

Լուծում։ Դիցուք՝ AB–ն տրված հատվածն է։ Կառու-ցենք AB շառավիղով երկու շրջանագիծ, որոնց կենտրոններն են A և B կետերը (նկ. 55)։ Այդ շրջանագծերը հատվում են երկու՝ M_1 և M_2 կետերում։ AM_1 , AM_2 , BM_1 և BM_2 հատվածները իրար հավասար են՝ որպես այդ շրջանագծերի շառավիղներ։

Տանենք M_1M_2 ուղիղը։ Նկատի ունենանք, որ M_1 և M_2 կետերը հավասարահեռ են AB հատվածի ծայրակետերից։ Ուստի՝ դրանք գտնվում են AB հատվածի միջնուղղահայացի վրա։ Հետևաբար՝ M_1M_2 ուղիղը AB հատվածի որոնելի միջնուղ-դահայացն է։

- 196. Տրված են *a* ուղիղը և նրա միևնույն կողմում գտնվող *A*, *B* կետերը։ *a* ուղղի վրա կառուցեք այնպիսի *M* կետ, որը հավասարահեռ է *A* և *B* կետերից։
- 197. Տրված են մի անկյուն և մի հատված։ Անկյան ներսում կառուցեք այն կետը, որը հավասարահեռ է տվյալ անկյան կողմերից և տրված հատվածի ծայրակետերից։
- 198. Կառուցեք այն եռանկյունը, որի կողմերի միջնակետերը տրված են։

Նկ. 55

§5 บะกจอ่อนเ ๒๔ นกรนจอ่อนเ อักฉนุบนจอยก

Նկ. 56

Նկ. 57

27. Ներգծյալ շրջանագիծ

Եթե բազմանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ բազմանկյանը *ներգծյալ*, իսկ բազմանկյունը՝ այդ շրջանագծին *արդագծյալ*։ Նկար 56–ում *EFMN* քառանկյունը արտագծված է *O* կենտրոնով շրջանագծին, մինչդեռ *DKMN* քառանկյունը այդ շրջանագծին արտագծյալ չէ, քանի որ *DK* կողմը չի շոշափում շրջանագիծը։ Նկար 57–ում *ABC* եռանկյունը արտագծված է *O* կենտրոնով շրջանագծին։

Ապացուցենք թեորեմ եռանկյանը ներգծյալ շրջանագծի մասին։

Թեորեմ։ Ցանկացած եռանկյանը կարելի է ներգծել շրջանագիծ։

Ապացուցում։ Դիտարկենք կամայական ABC եռանկ-յուն և O տառով նշանակենք նրա կիսորդների հատման կետը։ O կետից տանենք OK, OL և OM ուղղահայացները համապատասխանաբար, AB, BC և CA կողմերին (uկ. 57)։ Քանի որ O կետը հավասարապես է հեռացված ABC եռանկյան կողմերից, ապա OK = OL = OM։ Ուստի՝ O կենտրոնով և OK շառավիղով շրջանագիծն անցնում է K, L և M կետերով։ ABC եռանկյան կողմերը K, L, M կետերում շոշափում են այդ շրջանագիծը, քանի որ դրանք ուղղահայաց են OK, OL և OM շառավիղներին։ Ուրեմն՝ O կենտրոնով և OK շառավիղով շրջանագիծը ABC եռանկյանը ներգծյալ է։ OL եռանկյանը ապացուցված է։

Պարզաբանում։ 1. Նշենք, որ եռանկյանը կարելի է ներգծել միայն մեկ շրջանագիծ։ Իրոք, ենթադրենք, թե եռանկյանը կարելի է ներգծել երկու շրջանագիծ։ Այդ դեպքում շրջանագծերից յուրաքանչյուրի կենտրոնը հա-

վասարապես է հեռացված եռանկյան կողմերից և, ուրեմն, համընկնում է եռանկյան կիսորդների հատման O կետին։ Յուրաքանչյուրի շառավիղը հավասար է O կետի՝ եռանկյան կողմերից ունեցած հեռավորությանը։ Հետևաբար՝ այդ շրջանագծերը համընկնում են։

2. Ի տարբերություն եռանկյունների, որ կարելի է շրջանագիծ ներգծել բոլորին, քառանկյուններից ոչ բոլորին է հնարավոր ներգծել շրջանագիծ։ Դիտարկենք, օրինակ, ուղղանկյուն, որի կից կողմերը անհավասար են, այսինքն՝ այն քառակուսի չէ։ Ակներն է, որ այդպիսի ուղղանկյան մեջ հնարավոր է «տեղավորել» միայն նրա երեք կողմը շոշափող շրջանագիծ (նկ. 58(ш)), բայց միաժամանակ չորս կողմը շոշափող շրջանագիծ «տեղավորելն» անհնար է։ Այլ խոսքով՝ անհնար է այդպիսի ուղղանկյանը ներգծել շրջանագիծ։ Եթե քառանկյանը կարելի է շրջանագիծ ներգծել, ապա նրա կողմերն ունեն մի կարևոր հատկություն։ Այն է՝ ցանկացած արտագծյալ քառանկյան հանդիպակաց կողմերի զումարները հավասար են։

Այս հատկությունը հեշտ է բացահայտվում, եթե, օգտվելով $58(\mathbf{p})$ նկարից, շոշափողների միմյանց հավասար հատվածները նշանակենք նույն տառով։ Իրոք, AB+CD=a+b+c+d, BC+AD=a+b+c+d, ուստի՝ AB+CD=BC+AD:

Պարզվում է, որ Ճշմարիտ է նաև հակադարձ պնդումը. եթե ուռուցիկ քառանկյան հանդիպակաց կողմերի գումար-ները հավասար են, ապա նրան կարելի է ներգծել շրջանագրծ (տե՛ս ինդիր 276–ը):

uı)

ք) Նկ. 58

28. Արտագծյալ շրջանագիծ

Եթե բազմանկյան բոլոր գագաթները գտնվում են շրջանագծի վրա, ապա շրջանագիծը կոչվում է այդ բազմանկյանը *արդագծյալ*, իսկ բազմանկյունը՝ այդ շրջանագծին *ներգծյալ*։ Նկար 59–ում *ABCD* քառանկյունը ներգծված է *O* կենտրոնով շրջանագծին, մինչդեռ *AECD* քառանկյունը այդ շրջանագծին ներգծյալ չէ, քանի որ

Նկ. 60

նրա E գագաթը շրջանագծի վրա չի գտնվում։ Նկար 60–ում ABC եռանկյունը ներգծված է O կենտրոնով շրջանագծին։

Ապացուցենք թեորեմ եռանկյան արտագծյալ շրջանագծի մասին։

Թեորեմ։ Ցանկացած եռանկյանը կարելի է արտագծել շրջանագիծ։

Ապացուցում։ Այս թեորեմի ապացուցումը մենք, փաստորեն, կատարել ենք (տես 19–րդ կետը)։ Դիտարկենք կամայական ABC եռանկյուն։ Նրա A, B և C գագաթները չեն գտնվում մի ուղղի վրա։ Ըստ երեք կետով շրջանագծի որոշման՝ այդ A, B և C կետերով կարելի է տանել շրջանագիծ, ընդ որում՝ միայն մեկը։ Հետևաբար՝ ABC եռանկյանը կարելի է արտագծել շրջանագծի կենտրոնը նրա կողմերի միջնուղղահայացների հատման կետն է, որը հավասարահեռ է եռանկյան գագաթներից։ Նրա շառավիղը հավասար է այդ կետի՝ եռանկյան որևէ գագաթից ունեցած հեռավորությանը։ Իսկ եռանկյան գագաթներից հավասարահեռ կետը համընկնում է նրա կողմերի միջնուղղահայացների հատման կետին։ Թեորեմն ապագուցված է։

Պարզաբանում։ Ի տարբերություն եռանկյունների, որոնց բոլորին կարելի է շրջանագիծ արտագծել, քառանկյուններից ոչ բոլորին է հնարավոր արտագծել շրջանագիծ։

Օրինակ՝ շեղանկյանը շրջանագիծ արտագծել հնարավոր չէ, եթե, իհարկե, շեղանկյունը քառակուսի չէ (բացատրեք ինքնուրույն)։

եթե քառանկյանը կարելի է շրջանագիծ արտագծել, ապա նրա անկյուններն ունեն մի կարևոր հատկություն։ Այն է՝ ցանկացած ներգծյալ քառանկյան հանդիպակաց անկյունների գումարը 180° է։

Այս հատկությունը հեշտ է ապացուցվում, եթե, օգտվելով նկար 61–ից, կիրառենք ներգծյալ անկլունների մասին

թեորեմը։ Իրոք,
$$\angle A = \frac{1}{2} \cup BCD$$
, $\angle C = \frac{1}{2} \cup BAD$,

հետևաբար՝

$$\angle A + \angle C = \frac{1}{2} \left(\cup BCD + \cup BAD \right) = \frac{1}{2} \cdot 360^{\circ} = 180^{\circ}$$
:

Պարզվում է, որ ձշմարիտ է նաև հակադարձ պնդումը. եթե քառանկյան հանդիպակաց անկյունների գումարը 180 ° է, ապա այդ քառանկյանը կարելի է արտագծել շրջանագիծ (տե՛ս խնդիր 280–ր)։

Նկ. 61

Խնդիրներ

- 199. Ապացուցեք, որ հավասարակողմ եռանկյան ներգծյալ և արտագծյալ շրջանագծերի կենտրոնները համընկնում են։
- **200.** Հավասարակողմ եռանկյան ներգծյալ շրջանագծի շառավիղը r է։ Ապացուցեք, որ այդ եռանկյան արտագծյալ շրջանագծի շառավիղը 2r է։
- 201. Եռանկյան ներգծյալ և արտագծյալ շրջանագծերի կենտրոնները համընկնում են։ Կարո՞ղ է արդյոք այդ եռանկյունը հավասարակողմ չլինել։ Պատասխանը հիմնավորեք։
- 202. Ներգծյալ շրջանագծի շոշափման կետում հավասարասրուն եռանկյան սրունքը տրոհվում է 3 սմ և 4 սմ երկարությամբ հատվածների՝ հաշված հիմքից։ Գտեք այդ եռանկյան պարագիծը։
- 203. Գտեք 6 սմ և 8 սմ էջերով և 10 սմ ներքնաձիգով ուղղանկյուն եռանկյանը ներգծած շրջանագծի շա-ռավիղը (տե՛ս հաջորդ համարի խնդիրը)։
- **204.** Ապացուցեք, որ a և b էջեր և c ներքնաձիգ ունեցող ուղղանկյուն եռանկյանը ներգծած շրջանագծի շառավիղը հավասար է $\frac{1}{2}$ (a + b c):

Lուծում։ Դիցուք՝ *ABC*–ն *C* ուղիղ անկյունով ուղղանկյուն եռանկյուն է, *O*–ն ներգծյալ շրջանագծի կենտրոնն է, իսկ *M*–ը, *N*–ը և

K–ն շոշափման կետերն են (նկ. 62)։ Նկատենք, որ ONCK–ն քառակուսի է, որի կողմը հավասար է որոնելի r շառավիդին։ Յուրաքանչյուր անկյան գագաթը հավասարապես է հեռացված իր կողմերի և շրջանագծի շոշափման կետերից։ Այսպիսով՝ CK = CN = r, BN = BM = a - r, AK = AM = b - r։ Մյուս կողմից՝ AB = AM + MB, այսինքն՝ b - r + a - r = c։ Լուծելով ստացված հավասարումը r անհայտի նկատմամբ՝ ստանում ենք. $r = \frac{1}{2}$ (a + b - c)։

- 205. Ուղղանկյուն եռանկյան ներքնաձիգը 13 սմ է, իսկ էջերի գումարը՝ 17 սմ։ Գտեք եռանկյան ներգծյալ շրջանագծի շառավիղը։
- 206. Ուղղանկյուն եռանկյան ներքնաձիգը 15 սմ է, իսկ պարագիծը՝ 36 սմ։ Գտեք այդ եռանկյան ներգծյալ շրջանագծի շառավիդը։
- 207. O–ն ABC եռանկյան ներգծյալ շրջանագծի կենտրոնն է։ Գտեք $\angle AOC$ –ն, եթե $\angle ABC = 80^\circ$:
- **208.** ABC եռանկյան մեջ $\angle C = 120^\circ$, AC = BC = a։ Գտեք այդ եռանկյան արտագծյալ շրջանագծի շառավիղը։
- 209. Շրջանագծին արտագծած հավասարասրուն սեղանի հիմքերը հավասար են 2 սմ և 8 սմ։ Գտեք սեղանի պարագիծը։
- 210. Շրջանագծին արտագծած հավասարասրուն սեղանի հիմքերից մեկը հավասար է մյուսի եռապատիկին, իսկ սեղանի սրունքը 8 սմ է։ Գտեք սեղանի հիմքերը։
- 211. Գտեք շրջանագծին արտագծած հավասարասրուն սեղանի կողմերը, եթե նրա պարագիծը 40 սմ է, իսկ հիմքերից մեկը 4 անգամ փոքր է մյուսից։
- 212. Հավասարասրուն սեղանին ներգծած է շրջանագիծ։ Այդ սեղանի պարագիծը 60 սմ է։ Գտեք նրա սրունքը։
- 213. Հավասարասրուն սեղանի սրունքը 8 սմ է, իսկ փոքր հիմքին առընթեր անկյունների գումարը՝ 300°։ Գտեք այդ սեղանին ներգծած շրջանագծի շառավիղը։

- 214. Ապացուցեք, որ եթե զուգահեռագծին կարելի է ներգծել շրջանագիծ, ապա այդ զուգահեռագիծը շեղանկյուն է։
- 215. Ապացուցեք, որ ցանկացած շեղանկյանը կարելի է ներգծել շրջանագիծ։
- 216. Գծագրեք երեք եռանկյուն՝ սուրանկյուն, բութանկյուն և ուղղանկյուն։ Դրանց յուրաքանչյուրի համար կառուցեք արտագծյալ շրջանագիծ։
- **217.** Շրջանագծին ներգծած է ABC եռանկյունն այնպես, որ AB–ն տրամագիծ է։ Գտեք եռանկյան անկյունները, եթե՝ ա) $\cup BC = 134^\circ$, p) $\cup AC = 70^\circ$:
- 218. Շրջանագծին ներգծված է BC հիմքով ABC հավասարասրուն եռանկյունը։ Գտեք եռանկյան անկրուները, եթե $\cup BC = 102^{\circ}$ ։
- 219. Ուղղանկյուն եռանկյանը արտագծված է շրջանագիծ։ Ապացուցեք, որ նրա կենտրոնը ներքնաձիգի միջնակետն է։
- **220.** ABC եռանկյանը արտագծված է շրջանագիծ։ Գտեք այդ շրջանագծի շառավիղը, եթե AC = 24 սմ, $\angle A = 60^{\circ}$, $\angle B = 30^{\circ}$:
- 221. Ապացուցեք, որ կարելի է շրջանագիծ արտագծել՝ ա) ցանկացած ուղղանկյանը, բ) ցանկացած հավասարասրուն սեղանին։
- **222.** Ապացուցեք, որ եթե սեղանին կարելի է արտագծել շրջանագիծ, ապա սեղանը հավասարասրուն է։
- 223. Շրջանագծին ներգծած է ABCD քառանկյունը, որի մեջ $\angle A = 104^\circ$ և $\angle B = 71^\circ$ ։ Գտեք անկյուններ C–ն և D–ն։
- **224.** Արդյոք կարելի՞ է տրված ABCD քառանկյանը արտագծել շրջանագիծ, եթե՝ ա) $\angle A = 64^{\circ}$, $\angle B = 95^{\circ}$, $\angle C = 106^{\circ}$, p) $\angle A = 72^{\circ}$, $\angle B = 69^{\circ}$, $\angle D = 111^{\circ}$, q) $\angle A = 90^{\circ}$, $\angle C = 90^{\circ}$, $\angle D = 80^{\circ}$, η) $\angle A = 2\alpha$, $\angle B = 5\alpha$, $\angle C = 7\alpha$, $\angle D = 4\alpha$:

§6 ԿԵՏԵՐԻ ԵՐԿՐԱՉԱՓԱԿԱՆ ՏԵՂԸ

29. Երկու շրջանագծերի փոխադարձ դասավորությունը

Հարթության վրա պատկերված երկու շրջանագծերի փոխադարձ դասավորությունը կախված է նրանց կենտրոնների հեռավորությունից և շառավիղների երկարություններից։ Դիտարկենք հնարավոր դեպքերը։

Նկ. 63

 $O_1O_2=R+r$

ա) Նկ. 64 կիետևեր, որ A կետի՝ O_1O_2 ուղղի նկատմամբ համաչափ կետը ևս կգտնվեր շրջանագծի վրա, իսկ դա կնշանակեր, որ այդ շրջանագծերն ունեն երկու ընդհանուր կետեր։

64(բ) նկարում պատկերված է A ընդհանուր կետ ունե– ցող երկու՝ O_1 և O_2 կենտրոններով շրջանագծերի դասա– վորության մեկ այլ դիրք։ Այս դեպքում շրջանագծերի կենտրոնների O_1O_2 հեռավորությունը հավասար է O_1A և O_2A շառավիղների տարբերությանը:

Եթե երկու շրջանագծեր ունեն մեկ ընդհանուր կետ, ապա այդ կետում շառավիղներին տարված ուղղահալացները համընկնում են։ Ուրեմն՝ ընդհանուր կետում այդ շրջանագծերն ունեն ընդհանուր շոշափող։ Նման դեպքերում ասում են նաև, որ *շրջանագծերն* իրար *շոշա*– *փում են*, ընդ որում՝ նկար 64(ա)–ի դեպքում ասում են՝ շոշափում դրսից (կամ՝ արտաքին շոշափում), իսկ նկար 64(բ)–ի դեպքում՝ *շոշափում ներսից* (կամ՝ *ներքին շոշա– փում*)։ Դրսից շոշափման դեպքում շրջանագծերի կենտ– րոններն ընկած են նրանց ընդհանուր շոշափողի տար– բեր կողմերում, իսկ ներսից շոշափման դեպքում՝ միևնույն կողմում։

գ. Երկու շրջանագծեր կարող են ընդհանուր կետ չունենալ *(նկ. 65)։*

Այսպիսի դասավորության համար նույնպես հնարա– վոր է երկու դեպք։ $65(\mathbf{w})$ նկարում O_1 և O_2 կենտրոններով շրջանագծերը չունեն ընդհանուր կետ. նրանց կենտրոն– ների հեռավորությունը մեծ է շառավիդների գումարից. $O_1O_2 > O_1A + O_2B$:

65(p) նկարում O_1 և O_2 կենտրոններով շրջանագծերը նույնպես չունեն ընդհանուր կետ. նրանց կենտրոնների հեռավորությունը փոքր է, քան շառավիղներից մեծը։ Ավելին՝ այս դեպքում շրջանագծերի կենտրոնների հե– ոավորությունն ավելի փոքր է, քան մեծ և փոքր շառա– վիղների տարբերությունը (փորձեք հիմնավորել ինքնուրույն)։

Ընդհանուր կետ չունեցող երկու շրջանագծեր մասնավո**րապես կարող են լինել համակենտրոն**, այսինքն՝ նրանց կենտրոնները համընկնում են, բայց շառավիղները հա-

Նկ. 66

վասար չեն (նկ. 66)։ Այդ շրջանագծերից փոքր շառավիղ ունեցողն ընկած է մեծ շառավիղով շրջանի մեջ։ Դրանցից երկրորդի յուրաքանչյուր շառավիղ առաջին շրջանագծի հետ ունի ընդհանուր կետ, իսկ շրջանագծերը ընդհանուր կետ չունեն։ Օրինակ՝ նկար 66–ում *OB* շառավիղը առաջին շրջանագծի հետ հատվում է *C* կետում։

Այսպիսով՝ երկու շրջանագծերը կարող են ունենալ երկու ընդհանուր կետեր, մեկ ընդհանուր կետ կամ չունենալ ոչ մի ընդհանուր կետ։

30. Կետերի երկրաչափական տեղը

Այժմ նկարագրենք կառուցման խնդիրներ լուծելու մի նոր եղանակ։ Այն լայնորեն կիրառվում է այնպիսի խնդիրներ լուծելիս, որոնցում անհրաժեշտ է գտնել կետեր, որոնք բավարարում են երկու կամ ավելի պայմանների։ Այդ եղանակը նկարագրենք հետևյալ օրինակով։

խնդիր։ Կառուցել եռանկյունը՝ ըստ տրված կողմի, դրան իջեցրած բարձրության և հանդիպակաց անկյան։

Լուծում։ Դիցուք՝ տրված են երկու հատված՝ a–ն և h–ը, և մի անկյուն՝ α –ն։ a երկարությամբ հատվածը որոնելի եռանկյան կողմերից մեկն է, h–ը՝ այդ կողմին տարված բարձրությունը, իսկ α –ն հավասար է a կողմի հանդիպակաց անկյանը։

Որևէ դիրքով կառուցենք a հատվածը՝ որպես եռանկյան BC կողմ։ Ուրեմն՝ որոնելի եռանկյան B և C գագաթեները հայտնի են, մնում է գտնել A գագաթի տեղը։ Դրա համար խնդիրը մասնատենք երկու խնդրի՝ յուրաքանչյուր դեպքում նկատի առնելով մյուս երկու պայմաններից մեկը։

Որպեսզի որոնելի եռանկյունն ունենա h բարձրություն, նրա a կողմին հանդիպակաց A գագաթը պետք է գտնվի այդ կողմից h հեռավորության վրա։ Այդպիսի գագաթ կարող են լինել բազմաթիվ կետեր, որոնք կազմում

են կետերի երկրաչափական տեղ 2 . այն ներկայացնում է BC–ին զուգահեռ, նրանից h հեռավորություն ունեցող ուղիղ (զուգահեռ ուղիղները երկուսն են, բայց կարելի է բավարարվել դրանցից մեկով)։

Այժմ «աչքաթող» անենք խնդրի՝ բարձրությանը վերաբերող տվյալը և դիտենք միայն մյուս տվյալը, որը վերաբերում է հանդիպակաց անկյանը։

 α մեծությամբ A անկյունը կարելի է դիտել որպես մի ներգծյալ անկյուն, որը հենվում է B և C ծայրերով աղեղի վրա, ընդ որում՝ $\cup BC = 2\alpha$ ։ Բայց այդ աղեղի վրա հենված ներգծյալ անկյունը ոչ թե մեկն է, այլ դրանց գագաթները կազմում են կետերի երկրաչափական տեղ, որը շրջանագծի աղեղ է։ Նկատենք, որ այդ շրջանագծի կենտրոնը կարելի է որոշել՝ կառուցելով BC հիմքով հավասարասրուն եռանկյուն, որի սրունքների կազմած անկյունը հավասար է 2α (այդ սրունքները կլինեն շառավիղներ)։

Այսպիսով՝ որոնելի ABC եռանկյան A գագաթը միաժամանակ գտնվելու է կետերի երկրաչափական տեղերից թե՛ մեկի և թե՛ մյուսի վրա։ Այսինքն՝ A գագաթը գտնվելու է ինչպես a–ին զուգահեռ տարված ուղղի, այնպես էլ կառուցված շրջանագծի վրա։ Այդ ուղղի և շրջանագծի հատման կետն էլ կլինի եռանկյան A գագաթը։ Եթե ուղիղը և շրջանագիծը ունեն երկու հատման կետ, ապա գոյություն ունի խնդրի պայմաններին բավարարող երկու լուծում։ Իսկ եթե դրանք հատման կետ չունեն, ապա խնդիրը լուծում չունի։

Այսպիսով՝ կետերի երկրաչափական տեղերը գտնելու եղանակով խնդիրներ լուծելու համար անհրաժեշտ է նախ կառուցել խնդրի առանձին պայմաններին բավարարող կետերի երկրաչափական տեղերը, ապա որոշել դրանց ընդհանուր կետերը։ Լուծման այս եղանակը դուք արդեն կիրառել եք բազմաթիվ խնդիրներ լուծելիս, ինչպես, օրինակ՝ տրված երեք կողմով եռանկյունը կառուցելիս։ Այնտեղ, կարկինին տալով կողմի երկարությանը հավասար բաց-

² Կ*եւդւերի երկրաչափական տեղ կամ կետերի բազմություն* կոչվում է այն պատկերը, որը բաղկացած է այն բոլոր կետերից, որոնք օժտված են որոշակի հատկությամբ։

վածք, շրջանագծի աղեղ կառուցելիս, փաստորեն, գտնում եք եռանկյան գագաթ հանդիսացող կետերի երկրաչափական տեղը։

31. Պատկերացում էլիպսի մասին

Դիտարկենք մի պատկեր, որը գծագրվում է հետևյալ կերպ։ Գծագրական տախտակի վրա ամրացնենք երկու քորոց, որոնց կապված է թել, որի երկարությունը մեծ է քորոցների հեռավորությունից։ Այնուհետև մատիտի ծայրով ձգենք թելը և գծագրական թղթի վրա տեղաշարժենք այնպես, որ մատիտի ծայրը շարունակ հպվի թղթին, և միաժամանակ թելը ձգված մնա, ինչպես ցույց է տրված նկար 67–ում։ Այդ ձևով ստացվում է մի պատկեր, որը կոչվում է *էլիպս։* Եթե նկատի ունենանք, որ կապված թելի երկարությունը հաստատուն է, ապա կարող ենք ասել, որ էլիպսի բոլոր կետերի համար քորոցներից ունեցած հեռավորությունների գումարը նույնպես հաստատուն է (այդ հեռավորությունների գումարը հավասար է ձգված թելի երկարությանը)։

Նկատենք, որ Էլիպս ստանալու համար նշված հեռավորությունների հաստատուն գումարը պետք է մեծ լինի տրված երկու կետերի (կիզակետերի) հեռավորությունից։

Դժվար չէ համոզվել, որ էլիպսը համաչափ պատկեր է։ Մասնավորապես F_1 և F_2 կետերով անցնող ուղիղը էլիպսի համաչափության առանցք է։ Դրա հետ մեկտեղ այն ուղիղը, որը F_1F_2 հատվածի միջնուղղահայացն է, նույնպես համաչափության առանցք է։ Այդ երկու ուղիղևերի O հատման կետը էլիպսի համաչափության կենտրոնն է, որին համախ անվանում են նաև **էլիպսի կենտրոն** (տենս իսնդիր 287–ը)։

Էլիպսը մեկ այլ ձևով կարելի է պատկերացնել որպես

Նկ. 67

Նկ. 68

տրամագծի նկատմամբ սեղմված շրջանագիծ։ Ավելի ակնառու պատկերացնելու համար նկատենք, որ երբ շրջանագիծը դիտում ենք անկյան տակ, ապա այն երևում է էլիպսաձև։ Դրանում դուք կարող եք համոզվել նաև, եթե հարթ մակերևույթի վրա դիտեք թեք դիրքով պահված շրջանի ստվերը։

Ելիպս հանդիպում է բազմազան իրադրություններում։ Այսպես՝ հարթ տեղանքում ավտոմեքենայի ցոլարձակ լապտերի մոտակա լույսը միացնելիս լուսավորվում է այդ տեղանքի մի մասը, որի եզրագիծը էլիպսաձև է։ Հայտնի է, որ Երկիր մոլորակը ձվաձև է. բևեռների ուղղությամբ այն սեղմված է հասարակածի համեմատությամբ մոտավորապես 42 կմ–ով։ Այդ իսկ պատձառով միջօրեականները ոչ թե շրջանագիծ են, այլ էլիպս։ Ուշագրավ է նաև այն, որ Արեգակնային համակարգի յուրաքանչյուր մոլորակ, այդ թվում նաև Երկիրը, Արեգակի շուրջ պտտվում է էլիպսաձև ուղեծրով, ընդ որում՝ Արեգակը գտնվում է այդ էլիպսի կիզակետերից մեկում։

Էլիպսն օժտված է օպտիկական և այլ հետաքրքիր հատկություններով, որոնք դուք կուսումնասիրեք հետագայում։

Խնդիրներ

- **225.** Տրված են երկու՝ A և B կետեր։ Գտեք այն C կետերի երկրաչափական տեղը, որոնց համար $AC \perp CB$:
- 226. Գտեք այն կետերի երկրաչափական տեղը, որոնք հավասարահեռ են երկու հատվող շրջանագծերի ընդհանուր կետերից։
- 227. Տրված է *O* կետը *a* ուղղի վրա։ Գտեք այն կետերի երկրաչափական տեղը, որոնց *a* ուղղից ունեցած հեռավորությունը երկու անգամ փոքր է *O* կետից ունեցած հեռավորությունից։
- 228. Կառուցեք արտաքին շոշափում ունեցող երկու շրջանագիծ։ Երրորդ շրջանագիծը կառուցեք այնպես, որ այն հատի և՛ առաջին, և՛ երկրորդ շրջանագիծը, և բոլոր շրջանագծերի կենտրոնները գտնվեն մի ուղղի վրա։

- 229. Կառուցեք շրջանագիծ, եթե տրված են նրա լարը և այդ լարի ծայրակետերով աղեղներից մեկի աստիձանային չափը։
- 230. Կառուցեք շրջանագիծ, եթե տրված են երկու կետ, որոնք այդ շրջանագծին արտագծած շեղանկյան հանդիպակաց կողմերի շոշափման կետերն են։
- 231. Կառուցեք շրջանագիծ, եթե տրված են երկու կետ, որոնք այդ շրջանագծին արտագծած քառակուսու կից կողմերի շոշափման կետերն են։
- 232. Կառուցեք եռանկյուն՝ նրա տրված մի կողմով և այդ կողմին տարված միջնագծով ու բարձրությունով:
- 233. Կառուցեք եռանկյունը՝ նրա տրված մի կողմով, նրա հանդիպակաց անկյունով և այդ կողմին տարված միջնագծով։
- 234. Տրված են էլիպսը և նրա կիզակետերից մեկը։ Քանոնի և կարկինի օգնությամբ կառուցեք մյուս կիզակետը։
- 235*. Տրված են էլիպսը և նրա համաչափության երկու առանցքները։ Կարկինի օգնությամբ կառուցեք նրա կիզակետերը։

ԿԱՆՈՆԱՎՈՐ ԲԱԶՄԱՆԿՅՈԻՆՆԵՐ

32. Կանոնավոր բազմանկյուն

Կանոնավոր բազմանկյուն կոչվում է այն ուռուցիկ բազմանկյունը, որի բոլոր անկյունները հավասար են, և բոլոր կողմերը հավասար են։

Կանոնավոր բազմանկյունների օրինակներ են հավասարակողմ եռանկյունը և քառակուսին։ Նկար 69–ում պատկերված են կանոնավոր հնգանկյուն, յոթանկյուն և ութանկյուն։

Արտածենք կանոնավոր n–անկյան α_n անկյունը հաշվելու բանաձևը։ Այդպիսի n–անկյուն բազմանկյան բոլոր անկյունների գումարը հավասար է $(n-2)\cdot 180^\circ$ ։ Քանի որ նրա բոլոր անկյունները հավասար են, ուստի՝

$$\alpha_n = \frac{(n-2)}{n} \cdot 180^{\circ}$$

Նկ. 69

33. Կանոնավոր բազմանկյանը արտագծած շրջանագիծ

Հիշենք, որ շրջանագիծը կոչվում է բազմանկյանն արտագծյալ, եթե բազմանկյան բոլոր գագաթները գտնվում են այդ շրջանագծի վրա։ Ապացուցենք թեորեմ կանոնավոր բազմանկյանն արտագծած շրջանագծի մասին։

Թեորեմ։ Ցանկացած կանոնավոր բազմանկյանը կարելի է արտագծել շրջանագիծ, ընդ որում՝ միայն մեկը։

Ապացուցում։ Դիցուք՝ $A_1A_2A_3...A_n$ –ը կանոնավոր բազմանկյուն է, O–ն A_1 և A_2 անկյունների կիսորդների

Նկ. 70

հատման կետն է *(նկ. 70)։* O կետը հատվածներով միացնենք բազմանկյան մյուս գագաթներին և ապացուցենք, որ $OA_1 = OA_2 = \ldots = OA_n$ ։ Քանի որ $\angle A_1 = \angle A_2$, ապա $\angle 1 = \angle 3$, ուստի A_1A_2O եռանկյունը հավասարասրուն է և, հետևաբար, $OA_1 = OA_2$ ։ Եռանկյուններ A_1A_2O -ն և A_3A_2O -ն հավասար են՝ ըստ երկու կողմի և դրանց կազմած անկյան $(A_1A_2 = A_3A_2, A_2O$ -ն ընդհանուր կողմ է, և $\angle 3 = \angle 4$)։ Հետևաբար՝ $OA_3 = OA_1$ ։ Համանման ձևով կարելի է ապացուցել, որ $OA_4 = OA_2$, $OA_5 = OA_3$ և այլն։

Այսպիսով՝ $OA_1 = OA_2 = \dots = OA_n$, այսինքն՝ O կետը հավասարահեռ է բազմանկյան բոլոր գագաթներից։ Ուստի՝ O կենտրոնով և OA_1 շառավիղով շրջանագիծը բազմանկյանը արտագծյալ շրջանագիծ է։

Այժմ ապացուցենք, որ արտագծյալ շրջանագիծը միայն մեկն է։ Դիտարկենք բազմանկյան որևէ երեք գագաթ, ասենք՝ A_1 –ը, A_2 –ը, A_3 –ը։ Քանի որ երեք կետերով անցնում է միայն մեկ շրջանագիծ, ապա $A_1A_2...A_n$ բազմանկյանը կարելի է արտագծել միայն մեկ շրջանագիծ։ Թեորեմն ապացուցված է։

34. Կանոնավոր բազմանկյանը ներգծած շրջանագիծ

Հիշենք, որ շրջանագիծը կոչվում է բազմանկյանը ներգծած, եթե բազմանկյան բոլոր կողմերը շոշափում են այդ շրջանագիծը։ Ապացուցենք թեորեմ կանոնավոր բազմանկյանը ներգծած շրջանագծի մասին։

Թեորեմ։ Ցանկացած կանոնավոր բազմանկյանը կարելի է ներգծել շրջանագիծ, ընդ որում՝ միայն մեկը։

Ապացուցում։ Դիցուք՝ $A_1A_2...A_n$ –ը կանոնավոր բազմանկյուն է, O–ն նրա արտագծյալ շրջանագծի կենտրոնն է (նկ. 71)։ Նախորդ թեորեմի ապա–

ցուցման ընթացքում մենք բացահայտեցինք, որ $\triangle OA_1A_2 = \triangle OA_2A_3 = \dots = \triangle OA_nA_1$: Ուստի այդ եռանկյուների՝ O գագաթից տարված բարձրությունները հավասար են. $OH_1 = OH_2 = \dots = OH_n$: Այստեղից հետևում է, որ O կենտրոնով և OH_1 շառավիղով շրջանագիծն անցնում է $H_1,\ H_2,\dots,H_n$ կետերով, և այդ կետերից յուրաքանչյուրով տարված շառավիղն ուղղահայաց է բազմանկյան կողմին: Հետևաբար՝ այդ շրջանագիծը շոշափում է բազմանկյան կողմերը։ Իսկ դա նշանակում է, որ այդ շրջանագիծը ներգծյալ է բազմանկյանը։

Այժմ ապացուցենք, որ ներգծյալ շրջանագիծը միայն մեկն է։

Ենթադրենք, թե O կենտրոնով և OH_1 շառավիղով շրջանագծից բացի կա ևս մեկ այլ շրջանագիծ, որը ներգծյալ է $A_1A_2...A_n$ բազմանկյանը։ Այդ դեպքում նրա O_1 կենտրոնը հավասարահեռ է բազմանկյան կողմերից, այսինքն՝ O_1 կետը գտնվում է բազմանկյան յուրաքանչյուր անկյան կիսորդի վրա։ Իսկ դրանից հետևում է, որ այն համընկնում է այդ կիսորդների հատման O կետին։ Այդ շրջանագծի շառավիղը հավասար է O կետից մինչն բազմանկյան կողմերը եղած հեռավորությանը, այսինքն՝ այն հավասար է OH_1 –ին։ Այսպիսով՝ ենթադրվող երկրորդ շրջանագիծը համընկնում է առաջին շրջանագծին։ OH_1

- **Հետևանք 1**. Կանոնավոր բազմանկյան ներգծյալ շրջանագիծը բազմանկյան կողմերը շոշափում է նրանց միջնակետում։
- Հետևանք 2. Կանոնավոր բազմանկյան արտագծյալ շրջանագծի կենտրոնը համընկնում է այդ բազմանկյան ներգծյալ շրջանագծի կենտրոնին։

Այդ կետը կոչվում է կանոնավոր բազմանկյան կենորըոն։

A_1 A_3 A_4 A_5 A_5 A_5

Նկ. 72

35. Կանոնավոր բազմանկյունների կառուցումը

Որոշ կանոնավոր բազմանկյունների համար դիտարկենք քանոնի և կարկինի օգնությամբ կառուցևան եղանակներ։ Կանոնավոր եռանկյան և կանոնավոր քառանկյան, այսինքն՝ քառակուսու կառուցումները դիտարկել ենք ավելի վաղ։ n>4 դեպքում կանոնավոր n—անկյուն կառուցելու համար սովորաբար օգտագործում են բազմանկյանն արտագծած շրջանագիծը։

խնդիր 1. Կառուցել կանոնավոր վեցանկյուն, որի կողմր հավասար է տրված հատվածին։

Լուծում։ Խնդիրը լուծելու համար օգտվում ենք այն փաստից, որ կանոնավոր վեցանկյան կողմը հավասար է նրա արտագծյալ շրջանագծի շառավիղին։ Իսկապես, արտագծյալ շրջանագծի կենտրոնից կանոնավոր վեցանկլան գագաթներին տարված շառավիղները այդ կողմերի հետ կազմում են եռանկլուններ, որոնցից լուրաքանչլուրը հավասարակողմ է։ Այդ փաստի շնորհիվ խնդիրը հեշտությամբ լուծվում է։ Դիզուք՝ PQ-ն տրված հատվածն է։ Կառուցենք PQ շառավիղով շրջանագիծ և նրա վրա նշենք կամայական A_1 կետը *(նկ. 72)։* Այնուհետև չփոխելով կարկինի բացվածքը՝ այդ շրջանագծի վրա կառուցում ենք A_2 , A_3 , A_4 , A_5 , A_6 կետերն այնպես, որ տե– ηի ունենան $A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6$ hավասարությունները։ Կառուցված կետերը հաջորդաբար միացնենք հատվածներով։ Ստանում ենք որոնելի $A_1A_2A_3A_4A_5A_6$ կանոնավոր վեցանկլունը:

Կանոնավոր բազմանկյուններ կառուցելիս հաձախ օգտագործվում է հետևյալ խնդիրը։

խնդիր 2. Տրված է կանոնավոր ո–անկյուն։ Կառուցել կանոնավոր 2ո–անկյուն։

Լուծում։ Դիցուք՝ $A_1A_2...A_n$ –ը տրված կանոնավոր n–անկյունն է։ Նրան արտագծենք շրջանագիծ։ Դրա համար կառուցենք A_1 և A_2 անկյունների կիսորդները և O տառով նշանակենք նրանց հատման կետը։ Այնուհետև տանենք O կենտրոնով և OA_1 շառավիղով շրջանագիծ (տեն նկ. 70):

Խնդիրը լուծելու համար բավական է կիսել A_1A_2 , A_2A_3 , ..., A_nA_1 աղեղները և բաժանման այդ B_1 , B_2 , ..., B_n կետերը հատվածներով միացնել համապատասխան աղեղի ծայրակետերին (նկ. 73–ում n=6): B_1 , B_2 , ..., B_n կետերի կառուցման համար կարելի է օգտվել նաև տվյալ n–անկյան կողմերի միջնուղղահայացներից։

Նկար 73–ում այդ եղանակով կառուցված է կանոնավոր տասներկուանկյուն՝ $A_1B_1A_2B_2...A_6B_6$ –ը:

Նշված եղանակը կիրառելով՝ կարելի է քանոնի և կարկինի օգնությամբ կառուցել մի շարք կանոնավոր բազմանկյուններ, եթե արդեն կառուցված է դրանցից մեկը։ Օրինակ՝ կառուցելով կանոնավոր քառանկյունը, այսինքն՝ քառակուսին, և օգտվելով խնդիր 2–ից՝ կարելի է կառուցել կանոնավոր ութանկյուն, այնուհետև՝ կանոնավոր տասնվեցանկյուն և, առհասարակ, կանոնավոր 2^k —անկյուն, որտեղ k–ն 2–ից մեծ կամայական ամբողջ թիվ է։

Ծանոթություն։ Դիտարկված օրինակները ցույց են տալիս, որ կանոնավոր բազմանկյուններից շատերը կարելի է կառուցել քանոնի և կարկինի օգնությամբ։ Սակայն պարզվում է, որ ոչ բոլոր կանոնավոր բազմանկունների համար է հնարավոր այդպիսի կառուցումը։ Ապացուցված է, որ, օրինակ, կարկինի և քանոնի միջոցով կանոնավոր յոթանկյուն չի կարող կառուցվել։ Հետաքրքրական է, որ կանոնավոր տասնյոթանկյունը այդ գործիքներով կարելի է կառուցել։

Հարցեր և խնդիրներ

- 236. Ճշմարի՞տ է արդյոք հետևյալ պնդումը. ա) յուրաքանչյուր կանոնավոր բազմանկյուն ուռուցիկ բազմանկյուն է, բ) ցանկացած ուռուցիկ բազմանկյուն կանոնավոր բազմանկյուն է։ Պատասխանը հիմնավորեք։
- 237. Հետևյալ պնդումներից որո՞նք են Ճշմարիտ. ա) բազմանկյունը կանոնավոր է, եթե այն ուռուցիկ է, և նրա

Նկ. 73

- բոլոր կողմերը հավասար են, բ) եռանկյունը կանոնավոր է, եթե նրա բոլոր անկյունները հավասար են, գ) ցանկացած հավասարակողմ եռանկյուն կանոնավոր եռանկյուն է, դ) հավասար կողմերով յուրաքանչյուր քառանկյուն կանոնավոր քառանկուն է։ Պատասխանր հիմնավորեք։
- **238.** Ապացուցեք, որ յուրաքանչյուր կանոնավոր քառանկյուն քառակուսի է։
- 239. Գտեք կանոնավոր n–անկյան անկյունները, եթե՝ ա) n = 3, p) n = 5, q) n = 6, դ) n = 10, ե) n = 18:
- 240. Ինչի՞ է հավասար կանոնավոր *ո*–անկյան արտաքին անկյունների գումարը, եթե յուրաքանչյուր գագաթում վերցված է մեկական արտաքին անկյուն։
- 241. Քանի՞ կողմ ունի կանոնավոր բազմանկյունը, եթե նրա յուրաքանչյուր անկյունը հավասար է՝ ա) 60°, բ) 90°, գ) 135°, դ) 150°:
- 242. Քանի՞ կողմ ունի կանոնավոր ներգծյալ բազմանկյունը, եթե արտագծյալ շրջանագծի աղեղը, որ ձգվում է նրա կողմով, հավասար է՝ ա) 60°, բ) 30°, գ) 90°, դ) 36°, ե) 18°, զ) 72°:
- 243. Քանի՞ կողմ ունի կանոնավոր բազմանկյունը, եթե արտաքին անկյուններից յուրաքանչյուրը հավա-սար է՝ ա) 36°, բ) 24°:
- 244. Կանոնավոր բազմանկյանն արտագծած է շրջանագիծ, որի շառավիղը հավասար է R–ի։ Բազմանկյան կենտրոնը նրա կողմերից հեռացված է $\frac{R}{2}$ –ի չափով։ Ինչի՞ է հավասար այդ բազմանկյան կողմերի թիվը։
- **245.** Ապացուցեք, որ *ABCDE* կանոնավոր հնգանկյան *AC* և *AD* անկյունագծերը *BAE* անկյունը տրոհում են երեք հավասար մասերի։
- 246. Ապացուցեք, որ կանոնավոր բազմանկյան ցանկացած երկու կողմերի միջնուղղահայացները կա՛մ հատվում են, կա՛մ համընկնում։

- 247. Ապացուցեք, որ կանոնավոր բազմանկյան ցանկացած երկու անկյան կիսորդներն ընդգրկող ուղիղները կա՛մ հատվում են, կա՛մ համընկնում։
- 248. Շրջանագծին արտագծած է քառակուսի և ներգծած է կանոնավոր վեցանկյուն։ Գտեք քառակուսու պարագիծը, եթե վեցանկյան պարագիծը 48 սմ է։
- 249. Տրված շրջանագծին կարկինով և քանոնով ներգծեք՝ ա) կանոնավոր վեցանկյուն, բ) կանոնավոր եռանկյուն, գ) քառակուսի, դ) կանոնավոր ութանկյուն։
- 250. Տրված շրջանագծին կարկինով և քանոնով ներգծեք կանոնավոր տասներկուանկյուն։

§8 ՊԱՏԿԵՐԱՑՈՒՄ ԳԼԱՆԻ, ԿՈՆԻ ԵՎ ԳՆԴԻ ՄԱՍԻՆ

36. Պատկերացում գլանի մասին

Ծանոթանանք տարածական այնպիսի մարմինների, որոնց մեջ շրջանագիծը նրա մաս է և ունի կարևոր դեր։ Մեր շրջակայքում և տեխնիկայում հաձախ հանդիպող այդպիսի մարմին է գլանը։ Գլանի տեսք ունեն, օրինակ՝ խողովակները։ Յուրաքանչյուր գլան մակերևույթում ունի երկու շրջան, որոնց շառավիղները հավասար են (նկ. 74)։ Կարելի է գլան ստանալ հետևյալ կերպ։ Վերցնենք որևէ ուղղանկյուն, օրինակ՝ AA_1O_1O ուղղանկյունը, և այն պտտենք OO_1 կողմի շուրջ։ Ընդունենք, որ այդ ընթացքում ուղղանկյան անկյունները և կողմերի երկարությունները չեն փոխվում։ Այդ պտտումից առաջանում է տարածական մի մարմին, որը կոչվում է գլան (այն կոչվում է նաև ուղիղ շրջանային գլան)։ Շրջանների O և O_1 կենտրոններով անցնող ուղիղը կոչվում է *գլանի առանցը։*

Նկ. 74

OA և O_1A_1 հատվածները պտտելիս գծում են O և O_1 կենտրոններով շրջաններ, որոնք կոչվում են գլանի hhū-php, իսկ դրանց շառավիղները՝ գլանի php գլանի php հետ ունի ընդհանուր մաս, որը կոչվում է php գլանի php առանցքային հատույթը ուղղանկյուն է, որի հանդիպակաց կողմերից երկուսը հիմքերի շրջանագծերի տրամագծեր են։ Այդպիսի ուղղանկյան տրամագիծ չհանդիսացող կողմերը կոչվում են գլանի php ph

Գլանի ծնորդները միմյանց հավասար են։

Իրոք, քանի որ $AA_1 = OO_1$, $CC_1 = OO_1$ (որպես ուղղանկյունների հանդիպակաց կողմեր), ապա $AA_1 = CC_1$: Այսպիսով՝ գլանի ծնորդները հավասար են նրա հիմքերի շրջանների կենտրոնների հեռավորությանը և, ուրեմն, միմյանց հավասար են։

Գլանը որոշելու համար կարևոր է իմանալ նրա հիմ– քերի շրջանների շառավիղը և կենտրոնների հեռավորու– թյունը (կամ ծնորդի երկարությունը)։

37. Պատկերացում կոնի մասին

Մենք գիտենք, որ եթե ուղղանկյունը պտտում ենք կողմերից մեկի շուրջը, առաջանում է գլան։ Այժմ պատկերացնենք մի մարմին, որն առաջանում է ուղղանկյուն եռանկյունն իր էջերից մեկի շուրջը պտտելիս։ Այդ ձևով ստացված մարմինը կոչվում է *կոն։* Նկար 75–ում պատկերված է մի կոն, որն ստացվում է, երբ *AOM* ուղղանկյուն եռանկյունը պտտվում է *MO* էջի շուրջը։ Պտտման ընթացքում *OA* էջը առաջացնում է շրջան, որի կենտրոնը *O* կետն է։ *O* կենտրոնով և *OA* շառավիղով շրջանը կոչվում է այդ *կոնի հիմք*, իսկ *M* կետերին միացնող հատվածները (*MA*–ն, *MA*₁–ը, *MA*₂–ը և այլն) կոչվում են *կոնի ծնորդներ։*

Նկ. 75

Նկատենք, որ պտտման ընթացքում *AOM* եռանկյան անկյունները և կողմերի երկարությունները չեն փոխվում։ Դրանից հետևում է, որ **կոնի բոլոր ծնորդներն իրար հավասար են։**

Կոնի գագաթով և հիմքի կենտրոնով անցնող ուղիդը (MO ուղիղը նկ. 75–ում) կոչվում է կոնի առանցք։ Կոնի առանցքը պարունակող հարթության և կոնի ընդհանուր մասը եռանկյուն է. այն կոչվում է առանցքային հատույթ (նկ. 76–ում առանցքային հատույթը ստվերագծված է)։ Այդ եռանկյան կողմերից երկուսը կոնի ծնորդներն են և, ուրեմն, հավասար են, իսկ երրորդ կողմը հիմքի տրամագիծն է։

Այսպիսով՝ կոնի առանցքային հատույթը հավասարասրուն եռանկյուն է, ընդ որում՝ առանցքով տարված բոլոր հատույթներն իրար հավասար են։

Նկ. 76

38. Պատկերացում գնդի մասին

Գունդը մեր շրջակալքում հաձախակի հանդիպող տարածական մարմին է։ Գունդը սահմանափակված է գնդային մակերևույթով (գնդոյորտով)։ Գնդային մակերևույթ կոչվում է տարածական այն պատկերը, որը կազմված է տարածության բոլոր այն կետերից, որոնք տրված կետից ունեն տրված հեռավորությունը (նկ. 77(ա))։ Ալդ կետր կոչվում է գնդի կենտրոն, իսկ կենտրոնը մակերևույթի կետին միացնող հատվածը՝ շառավիղ։ 77(բ) նկարում O կենտրոնով գնդի շառավիղներ են OA, OB, OC, OD հատվածները։ Գնդալին մակերևույթի երկու կետերը միացնող հատվածը, որն անցնում է նրա կենտրոնով, կոչվում է *դրամացիծ։* Տրամագիծը հավասար է երկու շաոավիղի։ Գնդալին մակերևույթ կարելի է ստանալ պտտման միջոցով։ Դրա համար անհրաժեշտ է կիսաշրջանագիծը պտտել տրամագծի շուրջը (նկ. 77(բ))։ Իսկ եթե տրամագծի շուրջը պտտենք կիսաշրջանը, ապա կառաջանա գունդ։

Գնդի կենտրոնը պարունակող հարթության և գնդային մակերևույթի ընդհանուր մասը կազմված է տվյալ հարթության բոլոր այն կետերից, որոնք հավասարահեռ

են կենտրոնից։ Այն շրջանագիծ է։ Պարզվում է, որ գնդային մակերևույթի երկու կետ պարունակող հարթության և այդ մակերևույթի ընդհանուր մասը ևս շրջանագիծ է։ Դրանցից մեծագույն շառավիղ ունեցողները այն շրջանագծերն են, որոնց կենտրոնը համընկնում է գնդի կենտրոնին։

Գունդը որոշելու համար կարևոր է իմանալ նրա շառավիդը, իսկ որոշ դեպքերում՝ նաև կենտրոնի տեղը։ Գնդաձև մարմիններ հաձախ հանդիպում են ոչ միայն մեր շրջակալքում և տեխնիկալում, այլև տիեզերքում։ Երկնակամարում դուք ամեն օր տեսնում եք ալդպիսի մարմիններ, որոնցից ամենապալծառ երևացողներն են Արեգակը և Լուսինը։ Նշենք, որ Երկիրը ևս մոտավորապես գնդաձև է, որի համար էլ նրան հաձախ անվանում են նաև երկրագունդ։ Երկրագնդի մեծ շրջանագծի շառավիղը մոտավորապես հավասար է 6380 կմ։ Իսկ որպես մեծ շրջանագիծ է ծառալում նրա *հասարակածը*, ինչը ձեզ ծանոթ է աշխարհագրությունից։ Ինչպես գիտեք, *միջօրեականները* երկրագնդի կենտրոնով անցնող հարթության և գնդոլորտի հատումից առաջացած պատկերներ են։ Ինչ վերաբերում է *զուգահեռականներին*, դրանք ևս շրջանագծեր են, սակայն ունեն համեմատաբար ավելի փոքր շառավիղներ։

Հարցեր և խնդիրներ

- 251. Գլանի առանցքային հատույթը քառակուսի է։ Գտեք գլանի ծնորդի և շառավիղի երկարություն-ների հարաբերությունը։
- 252. Գլանի առանցքային հատույթը 40 սմ պարագծով մի ուղղանկյուն է, որի անկյունագծերը փոխուղղահայաց են։ Գտեք գլանի շառավիղը։
- 253. Գլանի առանցքային հատույթը մի ուղղանկյուն է, որի անկյունագիծը ծնորդ հանդիսացող կողմի հետ կազմում է 60°–ի անկյուն։ Գտեք այդ անկյունագիծը, եթե գյանի ծնորդի երկարությունը 6 սմ է։

- 254. Գլանաձև բաժակը կիսով չափ լցված է թեյով։ Գոլորշիանալուց հետո թեյի հետքը մնացել էր բաժակի պատերին։ Երկրաչափական ի՞նչ պատկեր է այդ հետքը։ Համեմատեք այդ պատկերը բաժակում եղած այլ պատկերների հետ։
- 255. Գլանաձև ցիստեոնի մի մասը լցված է հեղուկով։ Ի՞նչ պատկեր է հեղուկի մակերևույթը։ Դիտարկեք ցիստեոնի տեղադրման երկու դեպք՝ ուղղաձիգ և հորիզոնական։
- 256. 30° անկյուն ունեցող ուղղանկյուն եռանկյունը պտտվում է մեծ էջի շուրջը։ Գտեք պտտումից առաջացած կոնի ծնորդը, եթե այդ կոնի շառավիղը 15 սմ է։
- 257. Կոնի առանցքային հատույթը 12 սմ կողմով հավասարակողմ եռանկյուն է։ Որոշեք այդ կոնի շառավիղն ու ծնորդը։
- 258. Կոնի առանցքային հատույթը հավասարասրուն ուղղանկյուն եռանկյուն է, որի ներքնաձիգը 20 սմ է։ Գտեք այդ կոնի շառավիղը։
- 259. Նկարագրեք այն մարմինը, որն առաջանում է ուղղանկյուն եռանկյունը ներքնաձիգի շուրջը պտտելիս։
- 260. Նկարագրեք այն մարմինը, որն առաջանում է, երբ ուղղանկյուն սեղանը պտտում ենք. ա) մեծ հիմքի շուրջը, բ) փոքր հիմքի շուրջը։
- 261. Գնդաձև ակվարիումի մի մասը լցված է ջրով։ Ի՞նչ պատկեր է ջրի մակերևույթը։ Ո՞ր դեպքում ձկները կունենան ջրի մակերևույթին մոտ լողալու ավելի երկար ուղղագիծ Ճանապարհի տեղամաս։
- 262. Գտեք այն գնդային մակերևույթի մեծ շրջանագծի շառավիղը, որն ստացվում է 12 սմ տրամագծով կիսաշրջանագիծը այդ տրամագծի շուրջը պտտելիս։
- 263. Ի՞նչ կարող եք ասել 7 սմ տրամագծով երկու գնդային մակերևույթների փոխադարձ դասավորության մասին, եթե նրանց կենտրոնների հեռավորությունը՝ ա) 8 սմ է, բ) 4 սմ է, գ) 7 սմ է, դ) փոքր է 7 սմ–ից, ե) մեծ է 9 սմ–ից։

Ծանոթություն։ Երկու գնդային մակերևույթների փոխադարձ դասավորությունը կարող է լինել՝ 1) ընդհանուր կետ չունեն, 2) ունեն միայն մեկ ընդհանուր կետ, 3) ունեն ընդհանուր կետեր։

264. Գնդային մակերևույթի մեծ շրջանագծի վրա երեք կետեր նշված են այնպես, որ այդ շրջանագիծը բաժանված է երեք հավասար աղեղների։ Ապացուցեք, որ այդ կետերը հավասարակողմ եռանկյան գագաթներ են։

ԳԼՈՒԽ VI-Ի ԿՐԿՆՈՒԹՅԱՆ ՀԱՐՑԵՐ

- 1. Պարզաբանեք երկու կետով անցնող շրջանագիծը որոշելու հարցը։
- Ինչպե՞ս է որոշվում շրջանագիծն իր երեք կետերով:
- 3. Հետազոտեք ուղղի և շրջանագծի փոխադարձ դասավորությունը՝ համեմատելով շրջանագծի շառավիղը և կենտրոնից մինչև ուղիղը եղած հեռավորությունը։ Ձևակերպեք ստացված արդյունքը։
- 4. Ո՞ր ուղիդն է կոչվում շրջանագծին հատող։
- 5. Ո՞ր ուղիղն է կոչվում շրջանագծի շոշափող։ Ո՞ր կետն է կոչվում շրջանագծի և ուղղի շոշափման կետ։
- 6. Ձևակերպեք և ապացուցեք թեորեմ շոշափողի հատկության մասին։
- 7. Ապացուցեք, որ մի կետից շրջանագծին տարված շոշափողի հատվածները հավասար են, և դրանք կազմում են հավասար անկյուններ այն ուղղի հետ, որն անցնում է այդ կետով ու շրջանագծի կենտրոնով։
- 8. Ձևակերպեք և ապացուցեք շոշափողի հատկության մասին թեորեմի հակադարձ թեորեմը:
- 9. Պարզաբանեք, թե տրված շրջանագծի վրա տրված կետով ինչպես տանել շոշափող այդ շրջաևագծին։
- 10. Ո՞ր անկյունն է կոչվում շրջանագծի կենտրոնային անկյուն։
- 11. Պարզաբանեք, թե որ աղեղն է կոչվում կիսաշրջանագիծ։ Ո՞ր աղեղն է կիսաշրջանագծից փոքր, և ո՞րը՝ կիսաշրջանագծից մեծ։
- 12. Ինչպե՞ս է որոշվում աղեղի աստիձանային չափը։ Ինչպե՞ս է այն նշանակվում։
- 13. Ո՞ր անկյունն է կոչվում ներգծյալ։ Ձևակերպեք և ապացուցեք թեորեմ ներգծյալ անկյան մասին։
- 14. Ապացուցեք, որ միևնույն աղեղի վրա հենված ներգծյալ անկյունները հավասար են։
- 15. Ապացուցեք, որ կիսաշրջանագծի վրա հենված ներգծյալ անկյունը ուղիղ է։

- 2ևակերպեք և ապացուցեք թեորեմ անկյան կիսորդի մասին:
- 17. Ապացուցեք, որ եռանկյան կիսորդները հատվում են մի կետում։
- 18. Ո՞ր հատվածն է կոչվում հատվածի միջնուղղահայաց։ Վերհիշեք հատվածի միջնուղղահայացի հատկությունը։
- 19. Ապացուցեք, որ եռանկյան կողմերի միջնուղղահայացները հատվում են մի կետում։
- 20. Ձևակերպեք և ապացուցեք թեորեմ եռանկյան բարձրությունների հատման մասին։
- 21. Ձևակերպեք եռանկյան միջնագծերի հատման կետի մասին պնդումը։
- 22. Ո՞ր շրջանագիծն է կոչվում բազմանկյանը ներգծյալ։ Ո՞ր բազմանկյունն է կոչվում շրջանագծին արտագծյալ։
- 23. Ձևակերպեք և ապացուցեք թեորեմ եռանկյան ներգծյալ շրջանագծի մասին։ Քանի՞ շրջանագիծ կարելի է ներգծել տրված եռանկյանը։
- 24. Ի՞նչ հատկություն ունեն շրջանագծին արտագծված քառանկյան կողմերը։
- 25. Ո՞ր շրջանագիծն է կոչվում բազմանկյանը արտագծյալ։ Ո՞ր բազմանկյունն է կոչվում շրջանագծին ներգծյալ։
- 26. Ձևակերպեք և ապացուցեք թեորեմ եռանկյան արտագծյալ շրջանագծի մասին։ Քանի՞ շրջանագիծ է հնարավոր արտագծել եռանկյանը։
- 27. Ի՞նչ հատկություն ունեն շրջանագծին ներգծած քառանկյան անկյունները։
- 28. Պարզաբանեք երկու շրջանագծերի փոխադարձ դասավորության դեպքերը՝ կախված նրանց շառավիղներից և կենտրոնների հեռավորությունից։
- 29. Նկարագրեք, թե ինչ է էլիպսը, բերեք օրինակներ։ Ցույց տվեք էլիպսի համաչափության առանցքները և կենտրոնը։
- 30. Ո՞ր բազմանկյունն է կոչվում կանոնավոր։ Բերեք կանոնավոր բազմանկյունների օրինակներ։
- 31. Արտածեք կանոնավոր *ո*–անկյան անկյունը հաշվելու բանաձևը։
- 32. Ձևակերպեք և ապացուցեք թեորեմ կանոնավոր բազմանկյանն արտագծած շրջանագծի մասին:
- 33. Ձևակերպեք և ապացուցեք թեորեմ կանոնավոր բազմանկյանը ներգծած շրջանագծի մասին։

- 34. Նկարագրեք, թե ինչպես կարելի է ստանալ գլան։ Ի՞նչ է գլանի առանցքային հատույթը։
- 35. Նկարագրեք, թե ինչպես կարելի է ստանալ կոն։ Ի՞նչ է կոնի առանցքային հատույթը։
- 36. Ի՞նչ է գնդային մակերևույթը։ Ինչպե՞ս կարելի է ստանալ գնդային մակերևույթ։ Ի՞նչ են մեծ շրջանագծերը։

Լրացուցիչ խնդիրներ

- 265. Ապացուցեք, որ շրջանագծի՝ տրամագիծ չհանդիսացող լարի ծայրակետերով տարված շոշափողները հատվում են։
- 266. AB և AC ուղիղները B և C կետերում շոշափում են O կենտրոնով շրջանագիծը։ BC աղեղի կամայական X կետով տարված է այդ շրջանագծին շոշափող, որը M և N կետերում հատում է AB և AC հատվածները։ Ապացուցեք, որ AMN եռանկյան պարագիծը և MON անկյան մեծությունը կախված չեն BC աղեղի վրա X կետի ընտրությունից։
- **267*.** Երկու շրջանագծեր ունեն ընդհանուր կետ՝ *M*–ը, և այդ կետում ընդհանուր շոշափող։ *AB* ուղիղը շոշափում է շրջանագծերից մեկը *A* կետում, իսկ մյուսը՝ *B* կետում։ Ապացուցեք, որ *M* կետը գտնվում է *AB* տրամագծով շրջանագծի վրա։
- **268.** Շրջանագծի AA_1 տրամագիծը ուղղահայաց է BB_1 լարին։ Ապացուցեք, որ կիսաշրջանագծից փոքր AB և AB_1 աղեղների աստիձանային չափերը հավասար են։
- **269.** A, B, C և D կետերը գտնվում են շրջանագծի վրա: Ապացուցեք, որ եթե $\cup AB = \cup CD$, ապա AB = CD:
- **270.** *AB* հատվածը շրջանագծի տրամագիծ է, իսկ *BC* և *AD* լարերը զուգահեռ են։ Ապացուցեք, որ *CD* լարը տրամագիծ է։

Նկ. 78

271. Ըստ նկար 78–ի տվյալների՝ ապացուցեք, որ $\angle AMB = \frac{1}{2}(\ \cup CLD + \cup AKB):$

Լուծում։ Տանենք BC լարը։ Քանի որ $\angle AMB$ –ն BMC եռանկյան արտաքին անկյուն է, ապա $\angle AMB = \angle 1 + \angle 2$ ։ Ըստ ներգծյալ անկյան մասին թեորեմի՝

$$\angle 1 = \frac{1}{2} \cup CLD, \ \angle 2 = \frac{1}{2} \cup AKB$$
:

Հետևաբար՝ ∠ $AMB = \frac{1}{2} (∪CLD + ∪AKB)$:

- 272. Շրջանից դուրս վերցրած կետով տարված են այդ շրջանագծի երկու հատող։ Ապացուցեք, որ դրանց կազմած անկյունը չափվում է այն աղեղների աստիձանային չափերի կիսատարբերությամբ, որոնք առնված են հատողների միջև։
- 273. Կարո՞ղ է արդյոք տարակողմ եռանկյան գագաթը գտնվել եռանկյան կողմերից մեկի միջնուղղահայացի վրա։ Պատասխանը հիմնավորեք։
- **274.** Ապացուցեք, որ եթե ուղղանկյանը կարելի է շրջանագիծ ներգծել, ապա այն քառակուսի է:
- 275. Ապացուցեք, որ եթե սեղանի հիմքերն ընդգրկող ուղիղները շոշափում են շրջանագիծը, և շոշափման կետերը գտնվում են հիմքերի վրա, ապա սեղանի միջին գիծն անցնում է շրջանագծի կենտրոնով։
- 276. Ապացուցեք, որ եթե ուռուցիկ քառանկյան հանդիպակաց կողմերի գումարները հավասար են, ապա այդ քառանկյանը կարելի է ներգծել շրջանագիծ։

Lուծում։ Դիցուք՝ ABCD ուռուցիկ քառանկյան մեջ AB + CD = BC + AD (1)

A և B անկյունների կիսորդների հատման O կետը հավասարապես է հեռացված AD, AB և BC կողմերից։ Ուրեմն՝ O կենտրոնով կարելի է տանել շրջանագիծ, որին շոշափում են այդ երեք կողմերը (նկ. 79(ա))։ Ապացուցենք, որ CD կողմը ևս շոշա-

փում է այդ շրջանագիծը, և դա կնշանակի, որ տվյալ շրջանագիծը քառանկյանը ներգծյալ է։

ենթադրենք հակառակը. *CD* ուղիղը կա՛մ ընդհաևուր կետ չունի շրջանագծի հետ, կա՛մ հատում է շրջանագիծը։

Քննության առնենք առաջին դեպքը (նկ. 79(p))։ Տանենք C_1D_1 շոշափողը, որը զուգահեռ է CD–ին (C_1 –ը և D_1 –ը այդ շոշափողի հատման կետերն են BC և AD կողմերի հետ)։ Քանի որ ABC_1D_1 –ը շրջանագծին արտագծյալ քառանկյուն է, ապա ըստ նրա կողմերի հատկության՝

$$AB + C_1D_1 = BC_1 + AD_1$$
 (2)

Բայց $BC_1 = BC - C_1C$, $AD_1 = AD - D_1D$: Հետևա-բար՝ (2) հավասարությունից ստանում ենք.

$$C_1D_1 + C_1C + D_1D = BC + AD - AB$$

Այս հավասարության աջ մասը, հաշվի առնելով (1) հավասարությունը, հավասար է *CD:* Այսպիսով՝ հանգում ենք հետևյալ հավասարությանը.

$$C_1D_1 + C_1C + D_1D = CD$$

Ստացվում է, որ C_1CDD_1 քառանկյան կողմերից մեկը հավասար է մյուս երեք կողմերի գումարին։ Իսկ դա լինել չի կարող, և, հետևաբար, մեր ենթադրությունը սխալ է։

Նույն եղանակով ապացուցվում է նաև, որ *CD* ուղիղը չի կարող լինել շրջանագծին հատող։ Հետևաբար՝ *CD*–ն շոշափում է շրջանագիծը, ինչը և պահանջվում էր ապացուցել։

- 277. Եռանկյանն արտագծած շրջանագծի կենտրոնը գտնվում է միջնագծի վրա։ Ապացուցեք, որ այդ եռանկյունը հավասարասրուն է կամ ուղղանկյուն։
- 278. Հավասարասրուն եռանկյանը ներգծած է O_1 կենտրոնով շրջանագիծ, և արտագծած է O_2 կենտրոնով շրջանագիծ։ Ապացուցեք, որ O_1 և O_2 կենտրոնները գտնվում են եռանկյան հիմքի միջնուղղահայացի վրա։
- 279. Ապացուցեք, որ եթե շեղանկյանը կարելի է արտագծել շրջանագիծ, ապա այդ շեղանկյունը քառակուսի է։

Նև. 79

ш)

ր) Նկ. 80

280. Ապացուցեք, որ եթե քառանկյան հանդիպակաց անկյունների գումարը 180° է, ապա այդ քառանկյանը կարելի է արտագծել շրջանագիծ։

Լուծում։ Դիցուք՝ ABCD քառանկյան մեջ $\angle A + \angle C = 180^{\circ}$ (1)

Քառանկյան գագաթներից երեքով՝ A–ով, B–ով և D–ով, տանենք շրջանագիծ (iկ. 80(u))։ Ապացուցենք, որ այն անցնում է նաև C գագաթով, և դրանից կհետևի, որ այդ շրջանագիծն արտագծված է ABCD քառանկյանը։

Ենթադրենք՝ այդպես չէ։ Այդ դեպքում *C* գագաթն ընկած կլինի կա՛մ շրջանի ներսում, կա՛մ նրանից դուրս։ Քննության առնենք առաջին դեպքը *(նկ. 80(բ))։*

Այս դեպքում
$$\angle C = \frac{1}{2} \left(\cup DAB + \cup EF \right)$$
 (տե՛ս

խնդիր 271–ը), հետևաբար՝ $\angle C > \frac{1}{2} \cup DAB$:

Այսպիսով՝ ստացվում է, որ $\angle A + \angle C > 180^\circ$ ։ Իսկ դա հակասում է (1) պայմանին, և, ուրեմն, մեր են-թադրությունը սխալ է։

Նույն եղանակով ապացուցվում է նաև, որ C գագաթը չի կարող ընկած լինել շրջանից դուրս (խնդիր 272)։ Հետևաբար՝ C գագաթը գտնվում է շրջանագծի վրա, ինչը պահանջվում էր ապացուցել։

- 281. *A* և *B* կետերից տարված են *AOB* անկյան կողմերին ուղղահայաց ուղիղներ, որոնք հատվում են անկյան ներսում գտնվող *C* կետում։ Ապացուցեք, որ *ACBO* քառանկյանը կարելի է արտագծել շրջանագիծ։
- 282. Ապացուցեք, որ սեղանի անկյունների կիսորդների հատումից ստացված ուռուցիկ քառանկյանը կարելի է արտագծել շրջանագիծ։

- 283. *ABC* ուղղանկյուն եռանկյան մեջ *AC* կողմի *M* կե-տից տարված է *AB* ներքնաձիգին ուղղահայաց՝ *MH*–ը։ Ապացուցեք, որ *MHC* և *MBC* անկյունները հավասար են։
- 284. Ապացուցեք, որ եթե զուգահեռագծին կարելի է և՛ ներգծել, և՛ արտագծել շրջանագիծ, ապա այդ զուգահեռագիծը քառակուսի է։
- 285. Տրված են *a* ուղիղը, նրա վրա *A* կետը և նրա վրա չգտնվող *B* կետը։ Կառուցեք շրջանագիծ, որն անցևի *B* կետով և *a* ուղիղը շոշափի *A* կետում։
- 286. Տրված են երկու զուգահեռ ուղիղներ և մի կետ, որը չի գտնվում դրանցից ոչ մեկի վրա։ Կառուցեք այդ կետով անցնող շրջանագիծ, որին այդ ուղիղեները լինեն շոշափող։
- **287.** Ապացուցեք, որ F_1 և F_2 կիզակետեր ունեցող էլիպ-սի յուրաքանչյուր կետի՝ F_1F_2 հատվածի միջնակետի նկատմամբ համաչափ կետը պատկանում է էլիպսին։

Լուծում։ Դիցուք՝ M–ը էլիպսի կամայական կետ է, և M_1 –ը նրա համաչափ կետն է F_1F_2 հատվածի O միջնակետի նկատմամբ (uu, 81): Ունենք՝ $F_1O = F_2O, MO = M_1O$: M և M_1 կետերը հատվածներով միացնենք F_1 և F_2 կիզակետերին և ցույց տանք, որ $MF_1 + MF_2 = M_1F_1 + M_1F_2$, որից էլ, ըստ էլիպսի սահմանման, կբխի, որ M_1 կետր ևս պատկանում է էլիպսին:

Դիտարկենք այն դեպքը, երբ M կետը չի գտնվում F_1F_2 առանցքի վրա։ Նկատենք, որ $MF_1M_1F_2$ քառանկյունը զուգահեռագիծ է՝ ըստ զուգահեռագծի երրորդ հայտանիշի։

Ուրեմն՝ նրա հանդիպակաց կողմերը հավասար են. $MF_1=M_1F_2$ և $MF_2=M_1F_1$, որից հետևում է, որ $M_1F_1+M_1F_2=MF_1+MF_2$:

Այս հավասարությունը տեղի ունի նաև այն դեպքում, երբ M կետը ընկած է F_1F_2 առանցքի վրա (հիմնավորե՛ք ինքնուրույն):

Նկ. 81

- **288.** Ապացուցեք, որ F_1 և F_2 կիզակետեր ունեցող էլիպ-սի յուրաքանչյուր կետի՝ F_1F_2 առանցքի նկատմամբ համաչափ կետը պատկանում է էլիպսին։
- 289. Քանի՞ կողմ ունի այն կանոնավոր բազմանկյունը, որի արտաքին անկյուններից մեկը հավասար է՝ ա) 18°, բ) 40°, գ) 72°, դ) 60°:
- 290. Գտեք $A_1A_2A_3A_4A_5A_6$ կանոնավոր վեցանկյան պարագիծը, եթե $A_1A_4=2,24$ մ։
- 291*. Կառուցեք կանոնավոր ութանկյուն, որի կողմը հավասար է տրված հատվածին։
- 292*. Տրված շրջանագծին արտագծեք՝ ա) կանոնավոր եռանկյուն, բ) կանոնավոր վեցանկյուն։
- 293. Տրված շրջանագծին արտագծեք՝ ա) կանոնավոր քառանկյուն, բ) կանոնավոր ութանկյուն։

ԳԼՈՒԽ VII Մ<mark>ակերես</mark>

բԱՁՄԱՆԿՅԱՆ ՄԱԿԵՐԵՍԸ

39. Բազմանկյան մակերեսի հասկացությունը

«Մակերես» հասկացությունը մեզ ծանոթ է ամենօրյա փորձից։ Բոլորն էլ հասկանում են այն խոսքի իմաստը, երբ ասվում է՝ սենյակի մակերեսը տասնվեց քառակուսի մետր է, այգու հողակտորի մակերեսը ութ ար է և այլն։ Այժմ մենք կդիտարկենք հարցեր, որոնք վերաբերում են բազմանկյունների մակերեսներին։

Կարելի է ասել՝ բազմանկյան մակերեսը հարթության այն մասի մեծությունն է, որ գրավում է այդ բազմանկյունը։ Մակերեսներ չափելու համար ընտրվում է չափման միավոր, և դա համանման է հատվածների երկարությունների չափմանը։ Որպես մակերեսների չափման միավոր է ընդունվում այն քառակուսին, որի կողմը հավասար է հատվածների չափման միավորին։ Այսպես, եթե իբրև հատվածների չափման միավոր ընդունվում է սանտիմետրը, ապա որպես մակերեսների չափման միավոր է ծառայում 1 սմ կողմով քառակուսին։ Այդպիսի քառակուսին կոչվում է քառակուսի սանտիմետրը և նշանակվում է ամ 2։ Նույն կերպ որոշվում է քառակուսի մեդորը (մ 2), քառակուսի միլիմեդորը (մ 10) և այլն։

Մակերեսների չափման ընտրված միավորի դեպքում յուրաքանչյուր բազմանկյան մակերեսն արտահայտվում է դրական թվով։ Այդ թիվը ցույց է տալիս, թե տվյալ բազմանկյան մեջ քանի անգամ են տեղավորվում ընտրված միավորն ու նրա մասերը։ Օրինակ՝ 82(ա) նկարում պատկերված է ուղղանկյուն, որի մեջ քառակուսի սան-

 $S=6uu^2$

uı)

p)

q)

Նկ. 82

տիմետրը տեղավորվում է Ճիշտ 6 անգամ։ Դա նշանակում է, որ ուղղանկյան մակերեսը հավասար է 6 սմ²: 82(բ) նկարում պատկերված ABCD սեղանի մեջ քառակուսի սանտիմետրը տեղավորվում է երկու անգամ, բայց սեղանից մնում է մի մաս՝ CDE եռանկյունը, որի մեջ քառակուսի սանտիմետրը ամբողջությամբ չի տեդավորվում։ Այդ եռանկյան մակերեսը չափելու համար հարկավոր է օգտագործել քառակուսի սանտիմետրի մասերը, օրինակ՝ քառակուսի միլիմետրը, որը կազմում է քառակուսի սանտիմետրի 0,01 մասը։ Դա ցույց է տրված 82(գ) նկարում, որտեղ քառակուսի սանտիմետրը տրոհված է 100 քառակուսի միլիմետրի (այդ և 82(դ) նկարները ավելի դիտողական դարձնելու նպատակով պատկերված են խոշորացված մասշտաբներով)։ 82(դ) նկարում երևում է, որ CDE եռանկյան մեջ քառակուսի միլիմետրը տեղավորվում է 14 անգամ, բայց մնում է եռանկյան այնպիսի մաս, որի մեջ քառակուսի միլիմետրը ամբողջությամբ չի տեղավորվում (նկարի վրա այդ մասը ստվերագծված է)։ Հետևաբար՝ կարելի է ասել, որ ABCD սեղանի մակերեսը մոտավորապես 2,14 սմ² է։ *CDE* եռանկյան մնացած մասը կարեյի է չափել քառակուսի սանտիմետրի ավելի փոքր մասերի օգնությամբ. այդ դեպքում ստացվում է սեղանի մակերեսի ավելի Ճշգրիտ արժեք։

Չափման նկարագրված ընթացքը կարելի է երկար շարունակել, սակայն գործնականում դա այնքան էլ հարմար չէ։ Սովորաբար չափում են բազմանկյունների հետ կապված որոշ հատվածները միայն, իսկ հետո մակերեսը հաշվում են որոշակի բանաձևերով։ Այդ բանաձևերի արտածումը հիմնվում է մակերեսների այն հատկությունների վրա, որոնք մենք հիմա կդիտարկենք։

Սկզբից նշենք, որ եթե երկու բազմանկյուններ հավասար են, ապա մակերեսների չափման միավորն ու նրա մասերը այդ բազմանկյունների մեջ տեղավորվում են նույնքան անգամ, այսինքն՝ տեղի ունի հետևյալ հատկությունը.

1^o. Հավասար բազմանկյունների մակերեսները հավասար են։ Այնուհետև դիտարկենք բազմանկյուն, որը կազմված է մի քանի բազմանկյուններից (այս դեպքում ենթադրում ենք, որ այդ բազմանկյուններից ցանկացած երկուսը չունեն ընդհանուր մաս. տե՛ս նկ. 83)։ Ակնհայտ է, որ հարթության այն մասի մեծությունը, որ գրավում է ամբողջ բազմանկյունը, հարթության այն մասերի մեծությունների գումարն է, որ գրավել են նրա բաղադրիչ բազմանկյունները։

Ալսպիսով՝

- 2º. Եթե բազմանկյունը կազմված է մի քանի բազմանկյուններից, ապա նրա մակերեսը հավասար է այդ բազմանկյունների մակերեսների գումարին։
- 1º և 2º հատկությունները *մակերեսների հիմնական հատկություններն են։* <իշենք, որ համանման հատկություններով օժտված են նաև հատվածների երկարությունները։

Այս հատկությունների հետ մեկտեղ անհրաժեշտ է իմանալ մակերեսների ևս մեկ հատկություն.

3[°]. Քառակուսու մակերեսը հավասար է նրա կողմի քառակուսուն։

Այս հատկության հակիրձ ձևակերպումը պետք է հասկանալ այսպես. եթե քառակուսու կողմը հատվածների չափման ընտրված միավորով արտահայտվում է a թվով, ապա այդ քառակուսու մակերեսն արտահայտվում է a^2 թվով։ Նկար 84–ում պատկերված է 2,1 սմ կողմով քառակուսի։ Այն կազմված է չորս քառակուսի սանտիմետրից և քառասունմեկ քառակուսի միլիմետրից։ Այսպիսով՝ այդ քառակուսու մակերեսը հավասար է 4,41 սմ², որն էլ հավասար է նրա կողմի քառակուսուն. 4,41 = $(2,1)^2$:

3º պնդման ապացուցումը բերված է հաջորդ կետում։

Նկ. 84

uu)

 $a_n + \frac{1}{10^n}$

Նկ. 85

40.* Քառակուսու մակերեսը

Ապացուցենք, որ a կողմով քառակուսու S մակերեսը հավասար է a^2 ։

Սկսենք այն դեպքից, երբ $a=\frac{1}{n}$, որտեղ n–ը ամբողջ թիվ է։ Վերցնենք 1 կողմով քառակուսի և այն տրոհենք n^2 հատ հավասար քառակուսիների այնպես, ինչպես ցույց է տրված $85(\mathbf{w})$ նկարում (այս նկարում n=5)։ Քանի որ մեծ քառակուսու մակերեսը հավասար է 1–ի, ուրեմն փոքր քառակուսիներից յուրաքանչյուրի մակերեսը հավասար է $\frac{1}{n^2}$: Յուրաքանչյուր փոքր քառակուսու կողմը հավասար է $\frac{1}{n}$ –ի, այսինքն՝ a–ի։

Ujumhund'
$$S = \frac{1}{n^2} = \left(\frac{1}{n}\right)^2 = a^2$$
: (1)

Այժմ ենթադրենք, որ a թիվը վերջավոր տասնորդական կոտորակ է և ստորակետից հետո պարունակում է nնիշ (a–ն կարող է լինել մասնավորապես նաև ամբողջ թիվ, որի համար n=0)։ Այդ դեպքում $m=a\cdot 10^n$ թիվը ամբողջ թիվ է։ a կողմով քառակուսին տրոհենք m^2 հատ հավասար քառակուսիների այնպես, ինչպես ցույց է տրված 85(ք) նկարում (այս նկարում m=7)։ Այդ դեպքում տրված քառակուսու յուրաքանչյուր կողմը տրոհվում է mհավասար մասերի, և, ուրեմն, փոքր քառակուսիներից յուրաքանչյուրի կողմը հավասար է՝ $\frac{a}{m}=\frac{a}{a\cdot 10^n}=\frac{1}{10^n}$:

Ըստ (1) բանաձևի՝ յուրաքանչյուր փոքր քառակուսու մակերեսը հավասար է $\left(\frac{1}{10^n}\right)^2$:

Հետևաբար՝ տրված քառակուսու S մակերեսը հավասար է.

$$m^{2} \cdot \left(\frac{1}{10^{n}}\right)^{2} = \left(\frac{m}{10^{n}}\right)^{2} = \left(\frac{a \cdot 10^{n}}{10^{n}}\right)^{2} = a^{2}$$

Վերջապես՝ ենթադրենք, որ a թիվը անվերջ տասնորդական կոտորակ է։ Դիտարկենք այնպիսի $a_{\rm n}$ թիվ, որն ստացվում է a թվից, եթե նրա ստորակետից հետո (n+1)–րդից սկսած բոլոր թվանշանները դեն ենք գցում։ Քանի որ a թիվը $a_{\rm n}$ –ից տարբերվում է ոչ ավելի, քան $\frac{1}{10^n}$ –ը, ապա $a_{\rm n} \le a \le a_{\rm n} + \frac{1}{10^n}$ ։ Այստեղից՝

$$a_n^2 \le a^2 \le \left(a_n + \frac{1}{10^n}\right)^2$$
 (2)

Պարզ է, որ տրված քառակուսու S մակերեսը եզրափակված է $a_{\rm n}$ կողմով քառակուսու և $a_{\rm n}+\frac{1}{10^n}$ կողմով քառակուսու և $a_{\rm n}+\frac{1}{10^n}$ կողմով քառակուսու մակերեսների միջև (նկ. 85(q)), այսինքն՝ $a_{\rm n}^2$ և $\left(a_{\rm n}+\frac{1}{10^n}\right)^2$ մեծությունների միջև.

$$a_n^2 \le S \le \left(a_n + \frac{1}{10^n}\right)^2$$
 (3)

Այժմ պատկերացնենք, որ n թիվը անսահմանափակորեն մեծացնում ենք։ Այդ ընթացքում $\frac{1}{10^n}$ թիվը կդառնա որքան ուզեք փոքր։ Ուրեմն՝ $\left(a_n + \frac{1}{10^n}\right)^2$ թիվը a_n^2 թվից կտարբերվի որքան ուզեք փոքր չափով։ Հետևաբար՝ (2) և (3) անհավասարություններից բխում է, որ S թիվը որքան ուզեք քիչ կտարբերվի a^2 թվից։ Դրանից հետևում է, որ նրանք հավասար են. $S = a^2$, ինչն էլ պահանջվում էր ապացուցել։

41. Ուղղանկյան մակերեսը

Թեորեմ։ Ուղղանկյան մակերեսը հավասար է նրա կից կողմերի արտադրյալին։

uı)

ր) Նկ. 86 Ապացուցում։ Դիտարկենք a, b կողմերով և S մակերեսով ուղղանկյունը (u, b): Ապացուցենք, որ S = ab:

Ուղղանկյունը լրացնենք այնպես, մինչև ստացվի a+b կողմով քառակուսի, ինչպես ցույց է տրված 86(բ) նկարում։ Ըստ $3^{\rm o}$ հատկության` այդ քառակուսու մակերեսը հավասար է $(a+b)^2$ ։ Մյուս կողմից` այդ քառակուսին կազմված է S մակերեսով տրված ուղղանկյունից, նրան հավասար և, ուրեմն, նույնպես S մակերեսով մեկ այլ ուղղանկյունից (ըստ մակերեսների $1^{\rm o}$ հատկության) և a^2 ու b^2 մակերեսներով երկու քառակուսուց (ըստ մակերեսների $3^{\rm o}$ հատկության)։

Ըստ մակերեսների 2⁰ հատկության՝

$$(a + b)^2 = a^2 + b^2 + S + S$$
 \quad

$$a^2 + 2ab + b^2 = a^2 + b^2 + 2S$$
:

Այստեղից ստացվում ξ ՝ S=ab։ Թեորեմն ապացուցված ξ ։

Հարցեր և խնդիրներ

- 294. Թղթից կտրեք երկու հավասար ուղղանկյուն եռանկյուններ և դրանցով կազմեք՝ ա) հավասարասրուն եռանկյուն, բ) ուղղանկյուն, գ) ուղղանկյուն չհանդիսացող զուգահեռագիծ։ Համեմատեք ստացված պատկերների մակերեսները։
- 295. Գծագրեք քառակուսի և այն ընդունեք որպես մակերեսների չափման միավոր։ Այնուհետև գծագրեք՝ ա) քառակուսի, որի մակերեսն արտահայտող թիվը 4 է, բ) քառակուսի չհանդիսացող ուղղանկյուն, որի մակերեսն արտահայտող թիվը 4 է, գ) եռանկրուն, որի մակերեսն արտահայտող թիվը 2 է։
- **296.** Գծագրեք ABCD զուգահեռագիծ և նշեք այնպիսի M կետ, որը համաչափ է D կետին C կետի նկատմամբ։ Ապացուցեք, որ $S_{ABCD} = S_{AMD}$:

- 297. ABCD ուղղանկյան AD կողմի վրա կառուցված է ADE եռանկյուն այնպես, որ նրա AE և DE կողմերը BC հատվածը հատում են M և N կետերում, ընդ որում՝ M կետը AE հատվածի միջնակետն է։ Ապա-ցուցեք, որ $S_{ABCD} = S_{ADE}$:
- 298. Գտեք քառակուսու մակերեսը, եթե նրա կողմը hավասար է՝ ա) 1,2 սմ, բ) $\frac{3}{4}$ դմ, գ) $3\frac{1}{3}$ մ։
- **299.** Որոշեք այն քառակուսու կողմը, որի մակերեսը հավասար է՝ ա) 16 սմ², բ) 25 դմ², գ) 2,25 մ²։
- 300. Քառակուսու մակերեսը 24սմ² է։ Այդ քառակուսու մակերեսն արտահայտեք՝ ա) քառակուսի միլի-մետրով, բ) քառակուսի դեցիմետրով։
- 301. Ինչպե՞ս կփոփոխվի քառակուսու մակերեսը, եթե նրա կողմերը՝ ա) մեծացվեն 3 անգամ, բ) փոքրացվեն 2 անգամ։
- 302. Քանի՞ անգամ պետք է մեծացնել քառակուսու կողմը, որպեսզի նրա մակերեսը մեծանա 36 անգամ։
- 303. Դիցուք՝ ուղղանկյան կից կողմերն են a–ն և b–ն, իսկ մակերեսը՝ S–ը։ Գտեք՝ ա) S–ր, եթե a=8,5 սմ, b=3,2 սմ, բ) S–ը, եթե $a=\frac{2}{3}$ սմ, b=1,2 սմ, գ) b–ն, եթե a=32 սմ, S=684 սմ 2 , դ) a–ն, եթե b=4,5 դմ, S=1215 սմ 2 ։
- 304. Ինչպե՞ս կփոփոխվի ուղղանկյան մակերեսը, եթե՝ ա) հանդիպակաց կողմերի զույգերից մեկը մե- ծացնեն 2 անգամ, բ) կողմերից յուրաքանչյուրը մեծացնեն 2 անգամ, գ) հանդիպակաց կողմերի զույգերից մեկը մեծացնեն 2 անգամ, իսկ մյուսը փոքրացնեն 2 անգամ։
- 305. Ուղղանկյան կից կողմերը հարաբերում են, ինչպես 4 : 3, իսկ նրա պարագիծը 28 սմ է։ Գտեք այդ ուղղանկյան մակերեսը։
- 306. Ուղղանկյան կողմերից մեկը 12 սմ է, իսկ մակերեսը՝ 96 սմ²։ Գտեք այդ ուղղանկյան պարագիծը։

- 307. Քառակուսու պարագիծը 32 սմ է, իսկ ուղղանկյան կողմերից մեկը՝ 45 սմ։ Գտեք այդ ուղղանկյան մյուս կողմը, եթե հայտնի է, որ նրա և քառակուսու մակերեսները հավասար են։
- 308. Տրված է ABCD քառակուսին: AD Ճառագայթի վրա վերցված է M կետն այնպես, որ $\angle AMB = 30^\circ$, և BM = 20 սմ։ Գտեք այդ քառակուսու մակերեսը։
- 309. ABCD ուղղանկյան A անկյան կիսորդը BC կողմը հատում է K կետում։ Հայտնի է, որ BK = 5 սմ, KC = 7 սմ։ Գտեք այդ ուղղանկյան մակերեսը։
- 310. *ABCD* ուղղանկյան *A* և *D* անկյունների կիսորդները *BC* կողմի հետ հատվում են միևնույն *M* կետում։ Գտեք այդ ուղղանկյան մակերեսը, եթե հայտնի է, որ նրա պարագիծը 42 սմ է։
- 311. Անհրաժեշտ է սենյակի՝ 5,5 մ և 6 մ կողմերով ուղղանկյունաձև հատակը ծածկել մանրահատակով։ Դրա համար քանի՞ մանրատախտակ կպահանջվի, եթե այդ տախտակներից յուրաքանչյուրն ունի 30 սմ երկարությամբ և 5 սմ լայնությամբ ուղղանկյան ձև։
- 312. 15 սմ կողմով քառակուսաձև քանի՞ սալիկ կպահանջվի, որպեսզի երեսպատվի 3 մ և 2,7 մ կողմերով ուղղանկյունաձև պատը։
- 313. Հավասար ցանկապատերով հողակտորներից մեկն ունի քառակուսու, իսկ մյուսը՝ այնպիսի ուղղանկյան ձև, որի երկարությունը 20 մ է, լայնությունը՝ 10 մ։ Ո՞ր հողակտորի մակերեսն է ավելի մեծ և ինչքանո՞վ։

§2 อกาจและกนจอก, ธกนบนอนบ ธน บธานบก บนุนธกรบบริกั

42. Զուգահեռագծի մակերեսը

Պայմանավորվենք զուգահեռագծի կողմերից մեկն անվանել *հիմք,* իսկ դրա հանդիպակաց կողմի ցանկացած կետից այդ հիմքն ընդգրկող ուղղին տարված ուղղահայացր՝ նրա *բարձրություն:*

Թեորեմ։ Զուգահեռագծի մակերեսը հավասար է նրա հիմքի և բարձրության արտադրյային։

Ապացուցում։ Դիտարկենք S մակերեսով ABCD զուգահեռագիծը։ Որպես հիմք ընդունենք AD կողմը և տանենք բարձրություններ՝ BH–ը և CK–ն (Uկ. 87)։ Պահանջվում է ապացուցել, որ $S=AD\cdot BH$:

Նախ ապացուցենք, որ HBCK ուղղանկյան մակերեսը նույնպես հավասար է S-ի։ ABCK սեղանը կազմված է ABCD ցուգահեռագծից և DCK եռանկյունից։ Մյուս կողմից՝ այն կազմված է HBCK ուղղանկյունից և ABH եռանկյունից։ Բայց DCK և ABH ուղղանկյուն եռանկյունները հավասար են՝ ըստ ներքնաձիգի և սուր անկյան (նրանց AB և CD ներքնաձիգները՝ որպես զուգահեռագծի հանդիպակաց կողմեր, հավասար են, իսկ անկլուններ 1–ր և 2–ր հավասար են որպես համապատասխան անկյուններ, որոնք առաջանում են AB և CD ցուգահեռ ուղիղները AD-ով հատելիս)։ Ուրեմն՝ այդ եռանկյունների մակերեսները հավասար են։ Հետևաբար՝ ABCD զուգահեռագծի և HBCK ուղղանկյան մակերեսները նույնպես հավասար են։ Այսինքն՝ HBCK ուղղանկյան մակերեup S է։ Ըստ ուղղանկյան մակերեսի մասին թեորեմի՝ $S = BC \cdot BH$: Fung puth np BC = AD, where $S = AD \cdot BH$: Թեորեմն ապացուցված է։

43. Եռանկյան մակերեսը

Եռանկյան կողմերից մեկը հաձախ անվանում են նրա *հիմք։* Եթե հիմքն ընտրված է, ապա ասելով «բարձրություն»՝ հասկանում են եռանկյան այն բարձրությունը, որ տարված է այդ հիմքին։

> Թեորեմ։ Եռանկյան մակերեսը հավասար է հիմքի և բարձրության արտադրյալի կեսին։

Ապացուցում։ Դիցուք՝ *S*–ը *ABC* եռանկյան մակերեսն է *(նկ. 88)։* Որպես եռանկյան հիմք ընդունենք *AB* կողմը և տանենք *CH* բարձրությունը։ Ապացուցենք, որ

$$S = \frac{1}{2} AB \cdot CH$$
:

ABC եռանկյունը լրացնենք՝ կառուցելով ABCD զուգահեռագիծ, ինչպես ցույց է տրված նկար 88–ում։ ABC և DCB եռանկյունները հավասար են՝ ըստ երեք կողմի (BC–ն նրանց ընդհանուր կողմ է, AB = CD և AC = BD, որպես ABDC զուգահեռագծի հանդիպակաց կողմեր)։ Հետևաբար՝ ABC եռանկյան S մակերեսը հավասար է ABDC զուգահեռագծի մակերեսի կեսին։ Այսինքն՝ $S = \frac{1}{2} AB \cdot CH$: Թեորեմն ապացուցված է։

Հետևանք 1. Ուղղանկյուն եռանկյան մակերեսը հավասար է նրա էջերի արտադրյայի կեսին։

հետևանք 2. Եթե երկու եռանկյան բարձրությունները հավասար են, ապա նրանց մակերեսները հարաբերում են ինչպես հիմքերը։

Օգտվելով հետևանք 2–ից՝ ապացուցենք թեորեմ մե– կական հավասար անկյուն ունեցող եռանկյունների մա– կերեսների հարաբերության մասին։

> Թեորեմ։ Եթե եռանկյուններից մեկի անկյունը հավասար է մյուսի անկյանը, ապա այդ եռանկյունների մակերեսները հարաբերում են, ինչպես հավասար անկյուն կազմող կողմերի արտադոլայները։

Ապացուցում։ Դիցուք՝ S–ը և S_1 –ը ABC և $A_1B_1C_1$ եռանկյունների մակերեսներն են, և նրանց մեջ $\angle A = \angle A_1$ (նկ. 89(u)):

Ապացուցեք, որ
$$\frac{S}{S_1} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1}$$
:

 $A_1B_1C_1$ եռանկյունը վերադրենք ABC եռանկյանն այնպես, որ A_1 և A զագաթները համընկնեն, իսկ A_1B_1 և A_1C_1 կող- մերը վերադրվեն, համապատասխանաբար, AB և AC Ճառագայթների վրա $(ul,\ 89(p))$: ABC և AB_1C եռանկ- յուններն ունեն ընդհանուր բարձրություն՝ CH-ը։ Ուրեմն՝ $\frac{S}{S_{AB_1C}} = \frac{AB}{AB_1}$ (ըստ հետևանք 2-ի): AB_1C և

 AB_1C_1 եռանկյունները նույնպես ունեն ընդհանուր բարձրություն՝ B_1H_1 –ը։ Ուրեմն՝ $\dfrac{S_{AB_1C}}{S_{AB_1C_1}}=\dfrac{AC}{AC_1}$ ։ Բազմապատկելով այս երկու հավասարությունները՝ ստաց-

Unid to
$$\frac{S}{S_{AB,C_1}} = \frac{AB \cdot AC}{AB_1 \cdot AC_1}$$
 und $\frac{S}{S_1} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1}$

S A B C_1 A_1 B_1 B_1 C_1 C_1

բ) Նկ. 89

Թեորեմն ապացուցված է։

44. Սեղանի մակերեսը

Կամայական բազմանկյան մակերեսը հաշվելու համար սովորաբար բազմանկյունը տրոհում են եռանկ-յունների և գտնում են եռանկյուններից յուրաքանչյուրի մակերեսը։ Այդ եռանկյունների մակերեսների գումարը հավասար է տրված բազմանկյան մակերեսին (նկ. 90)։ Օգտվելով այդ հնարքից՝ արտածենք սեղանի մակերեսը հաշվելու բանաձևը։ Պայմանավորվենք՝ սեղանի բարձ-րություն անվանել այն ուղղահայացը, որը սեղանի հիմ-քերից մեկի կամայական կետից տարվում է մյուս հիմքն ընդգրկող ուղղին։ Նկար 91–ում BH հատվածը (ինչպես նաև DH₁ հատվածը) ABCD սեղանի բարձրություն է։

Նկ. 90

Նկ. 91

Թեորեմ։ Սեղանի մակերեսը հավասար է նրա հիմքերի կիսագումարի և բարձրության արտադրյալին։

Ապացուցում։ Դիտարկենք *ABCD* սեղանը, որի հիմքերն են *AD*–ն և *BC*–ն, բարձրությունը՝ *BH*–ը, իսկ մակերեսը՝ *S*–ր *(Ակ. 91)*։

Ապացուցենք, որ
$$S = \frac{1}{2}(AD + BC) \cdot BH$$
:

BD անկյունագիծը սեղանը տրոհում է երկու՝ ABD և BDC եռանկյունների։ Ուրեմն՝ $S=S_{ABD}+S_{BDC}$ ։ AD և BH հատվածներն ընդունենք որպես ABD եռանկյան հիմք և բարձրություն, իսկ BC և DH_1 հատվածները՝ որպես BDC եռանկյան հիմք և բարձրություն։ Այդ դեպքում $S_{ABD}=\frac{1}{2}AD\cdot BH$, $S_{BDC}=\frac{1}{2}BC\cdot DH_1$ ։ Քանի որ $DH_1=BH$,

uuqu
$$S_{BDC} = \frac{1}{2}BC \cdot BH$$
:

Այսպիսով՝

$$S = \frac{1}{2}AD \cdot BH + \frac{1}{2}BC \cdot BH = \frac{1}{2}(AD + BC) \cdot BH :$$

Թեորեմն ապացուցված է։

Խնդիրներ

- 315. Զուգահեռագծի անկյունագիծը 13 սմ է և ուղղահայաց է զուգահեռագծի այն կողմին, որը 12 սմ է։ Գտեք զուգահեռագծի մակերեսը։
- 316. Զուգահեռագծի կից կողմերը հավասար են 12 սմ և 13 սմ, իսկ սուր անկյունը 30° է։ Գտեք զուգահեռագծի մակերեսը։

- 317. Շեղանկյան կողմը 6 սմ է, իսկ անկյուններից մեկը՝ 150°։ Գտեք շեղանկյան մակերեսը։
- 318. Զուգահեռագծի կողմը 8,1 սմ է, իսկ 14 սմ–ի հավասար անկյունագիծը նրա հետ կազմում է 30° անկյուն։ Գտեք զուգահեռագծի մակերեսը։
- 319. Դիցուք՝ a–ն և b–ն զուգահեռագծի կից կողմերն են, իսկ h_1 –ը և h_2 –ը՝ բարձրությունները։ Գտեք՝ ա) h_2 –ը, եթե a=18սմ, b=30սմ, h_1 =6սմ, $h_2>h_1$, բ) h_1 –ը, եթե a=10 սմ, b=15 սմ, $h_2=6$ սմ, $h_2>h_1$, գ) h_1 –ը և h_2 –ր, եթե մակերեսը՝ S=54 սմ², a=4,5 սմ, b=6 սմ։
- 320. Զուգահեռագծի սուր անկյունը 30° է, իսկ բութ անկյան գագաթից տարված բարձրությունները հավասար են 2 սմ և 3 սմ։ Գտեք զուգահեռագծի մակերեսը։
- **321.** Գտեք զուգահեռագծի անկյունները, եթե նրա մակերեսր 40 ամ² է, իսկ կողմերը՝ 10 ամ և 8 ամ։
- 322. Գտեք զուգահեռագծի անկյունները, եթե նրա մակերեսը 20 սմ² է, իսկ բութ անկյան գագաթից կողևերից մեկին տարված բարձրությունը այդ կողմը տրոհում է 2 սմ և 8 սմ երկարությամբ հատվածների՝ սկսած սուր անկյան գագաթից։
- 323. ABCD զուգահեռագծի B անկյունը բութ է: AD կողմի շարունակության վրա՝ D կետից դեպի աջ
 նշված է E կետն այնպես, որ $\angle ECD = 60^\circ$, $\angle CED = 90^\circ$, AB = 4սմ, AD = 10 սմ։ Գտեք զուգահեռագծի մակերեսը։
- 324. MPKT qnıquhtnuqðh MT կnnuh վրш uzվшð tE կtmp, $\angle PEM = 90^{\circ}$, $\angle EPT = 45^{\circ}$, ME = 4 uu, ET=7 uu: Գտեթ qnıquhtnuqðh uultntun:
- 325. Որոշեք զուգահեռագծի պարագիծը, եթե նրա կից կողմերի տարբերությունը 10 սմ է, իսկ բարձրությունները հարաբերում են, ինչպես 3 : 5:
- 326. Զուգահեռագծի անկյունագիծը հավասար է նրա կողմին։ Գտեք զուգահեռագծի մակերեսը, եթե նրա մեծ կողմը 15,2 սմ է, իսկ անկյուններից մեկը՝ 45°։

- 327. Քառակուսին և քառակուսի չհանդիսացող շեղանկյունն ունեն հավասար պարագծեր։ Համեմատեք այդ պատկերների մակերեսները։
- 328. Համեմատեք ուղղանկյան և զուգահեռագծի մակերեսները, եթե նրանք ունեն հավասար հիմքեր և հավասար պարագծեր։
- 329. Դիցուք՝ a–ն եռանկյան հիմքն է, h–ը՝ բարձրությունը, իսկ S–ը՝ մակերեսը։ Գտեք՝ ա) S–ը, եթե a=7 սմ, h=11 սմ, р) h–ը, եթե a=14 սմ, S=37.8 սմ 2 , գ) a–ն, եթե $S=h^2$, h=2 սմ։
- 330. *ABC* եռանկյան *AB* և *BC* կողմերը համապատասխանաբար 16 սմ և 22 սմ են։ Գտեք *BC* կողմին տարված բարձրությունը, եթե *AB* կողմին տարված բարձրությունը 11 սմ է։
- 331. Եռանկյան երկու կողմերն են 7,5 ամ և 3,2 ամ։ Դրանghg մեծին տարված բարձրությունը 2,4 ամ է։ Գտեք տոված կողմերից փոթրին տարված բարձրությունը։
- 332. Գտեք ուղղանկյուն եռանկյան մակերեսը, եթե նրա էջերն են՝ ա) 4 սմ և 11 սմ, բ)12 սմ և 3 դմ։
- 333. Ուղղանկյուն եռանկյան էջերից մեկը 14 սմ է, իսկ անկյուններից մեկը՝ 45°։ Գտեք եռանկյան մակերեսը։
- 334. Երկու եռանկյան բարձրությունները հավասար են, իսկ նրանցից մեկի հիմքը երկու անգամ փոքր է մյուսի հիմքից։ Գտեք այդ եռանկյունների մակերեսների հարաբերությունը։
- 335. ABC եռանկյան մեջ $\angle C = 135^{\circ}$, AC = 6 դմ, իսկ BD բարձրությունը 2 դմ է։ Գտեք ABD եռանկյան մակերեսը։
- 336. Գտեք 10 սմ ներքնաձիգով հավասարասրուն ուղդանկյուն եռանկյան մակերեսը։
- 337. ABCD ուղղանկյան BD անկյունագիծը 12 սմ է։
 B գագաթի հեռավորությունը AC ուղղից հավասար է 4 սմ։ Գտեք ABC եռանկյան մակերեսը։
- 338. Համեմատեք այն երկու եռանկյունների մակերեսները, որոնց տրոհվում է տրված եռանկյունն իր միջնագծով։

- 339. *ABC* եռանկյան *AB* կողմի վրա վերցված *M* կետը հատվածով միացված է *C* գագաթին։ Հայտնի է, որ *AB* = 18 սմ, *AM* = 12 սմ։ Գտեք *ABC* և *AMC* եռանկ-յունների մակերեսների հարաբերությունը։
- 340. *ABC* եռանկյան *AB* և *AC* կողմերի վրա վերցված են համապատասխանաբար *M* և *N* կետերն այնպես, որ *AB* = 2*AM*, *AC* = 3*AN*։ Գտեք *ABC* և *AMN* եռանկյուների մակերեսների հարաբերությունը։
- 341. Գծեք *ABC* եռանկյուն։ *A* գագաթով տարեք երեք այնպիսի ուղիղներ, որ դրանք եռանկյունը տրոհեն չորս միմյանց հավասար մակերեսով եռանկյունների։
- 342. Ապացուցեք, որ շեղանկյան մակերեսը հավասար է անկյունագծերի արտադրյալի կեսին։ Հաշվեք շեղանկյան մակերեսը, եթե նրա անկյունագծերը հավասար են՝ ա) 3,2 դմ և 14 սմ, բ) 4,6 դմ և 2 դմ։
- 343. Շեղանկյան անկյունագծերից մեկը *m* մ է, իսկ մակերեսը՝ 27*m* մ²։ Գտեք շեղանկյան մյուս անկյունագիծը։
- 344. Ուռուցիկ քառանկյան անկյունագծերը փոխուղղահայաց են։ Ապացուցեք, որ այդ քառանկյան մակերեսը հավասար է անկյունագծերի արտադրյալի կեսին։
- 345. Գտեք AD և BC հիմքերով ABCD սեղանի մակերեսը, եթե՝ ա) AD=21 սմ, BC=17 սմ, BH բարձրությունը P սմ է, P0 P0 ամ, P0 ամ, P0 ամ, P0 ամ, P0 ամ, P0 ամ, P1 ամ։ P1 ամ։ P1 ամ։ P2 ամ, P3 ամ։ P4 ամ։ P5 ամ, P5 ամ, P5 ամ։
- **346.** *ABCD* սեղանի *AD* և *BC* հիմքերը համապատասխանաբար 10 սմ և 8 սմ են։ *ACD* եռանկյան մակերեսը 30 սմ² է։ Գտեք սեղանի մակերեսը։
- 347. Ուղղանկյուն սեղանի մակերեսը 30 սմ² է, պարագիծը՝ 28 սմ, իսկ փոքր սրունքը՝ 3 սմ։ Գտեք սեղանի մեծ սրունքը։
- 348. Հավասարասրուն սեղանի պարագիծը 32 սմ է, սրունքը՝ 5 սմ, իսկ մակերեսը՝ 44 սմ²։ Գտեք սեղանի բարձրությունը։

- 349. Գտեք այն ուղղանկյուն սեղանի մակերեսը, որի փոքր կողմերը 6 սմ են, իսկ մեծ անկյունը՝ 135°:
- 350. Հավասարասրուն սեղանի բութ անկյունը 135° է, իսկ այդ անկյան գագաթից տարված բարձրությունը մեծ հիմքը տրոհում է 1,4 սմ և 3,4 սմ հատկածների։ Գտեք սեղանի մակերեսը։
- 351. Սեղանի հիմքերը հարաբերում են, ինչպես 5 : 3: Փոքր հիմքի միջնակետը մեծ հիմքի ծայրակետերին միացնելուց ստացված եռանկյան մակերեսը 15 սմ² է։ Հաշվեք սեղանի մակերեսը։ Արդյոք կփոխվե՞ր խնդրի պատասխանը, եթե պայմանում փոքր հիմքի միջնակետի փոխարեն վերցվեր նրա կամալական կետը։

45. Խորանարդի մակերևույթի մակերեսը

Հիշենք, որ խորանարդն այն ուղղանկյունանիստն է, որի բոլոր կողերը հավասար են։ Խորանարդի մակերևույթը կազմված է վեց նիստից, որոնցից յուրաքանչյուրը քառակուսի է (նկ. 92)։ Եթե խորանարդի կողն ունի a երկարություն, ապա յուրաքանչյուր նիստի մակերեսը հավասար է a^2 ։ Ուրեմն՝ խորանարդի բոլոր նիստերի մակերեսների գումարը հավասար է $6a^2$, որն էլ կլինի խորանարդի մակերևույթի մակերեսը։

Այսպիսով՝ խորանարդի մակերևույթի մակերեսը հաշվվում է $S=6a^2$ բանաձևով։

46. Ուղղանկյունանիստի մակերևույթի մակերեսը

Հիշենք, որ ուղղանկյունանիստն ունի վեց նիստ, որոնցից լուրաքանչյուրն ուղղանկյուն է։

Այդ նիստերը զույգ առ զույգ հավասար են. դրանք հանդիպակաց նիստերն են, որոնք չունեն ընդհանուր գագաթ։ Հանդիպակաց նիստերից երկուսը, օրինակ՝ ABCD և $A_1B_1C_1D_1$ ուղղանկյունները, դիտվում են որպես հիմքեր, իսկ մյուս չորս նիստերը՝ որպես կողմնային նիստեր (նկ. 93):

Ուղղանկյունանիստի կողմնային նիստերի մակերեսների գումարը անվանում են *կողմնային մակերևույթի մակե*րես։ Ուղղանկյունանիստի լրիվ մակերևույթի մակերեսը նրա բոլոր նիստերի մակերեսների գումարն է։

Այսպիսով՝ ուղղանկյունանիստի լրիվ մակերևույթի $S_{
m lphd}$ մակերեսը արտահայտվում է հետևյալ բանաձևով.

$$S_{\text{lphd}} = S_{\text{lnnd}} + 2S_{\text{hhdp}}$$
 (1) S_{lnnd} ը կողմնային մակերևույթի մակերեսն է, իսկ S_{hhdp} ը՝ հիմքի մակերեսը։

Դիցուք՝ ուղղանկյունանիստի միևնույն, օրինակ, A գագաթը պարունակող կողերի երկարություններն են՝ $AD=a,\ AB=b,\ AA_1=c$ ։ Այդ դեպքում, օգտվելով ուղղանկյան մակերեսի հաշվման բանաձևից, ստանում ենք.

$$S_{ABCD} = ab$$
, $S_{AA_1D_1D} = ac$, $S_{AA_1B_1B} = bc$

Հաշվի առնելով, որ հանդիպակաց նիստերը հավասար են, ստանում ենք ուղղանկյունանիստի լրիվ մակերևույթի մակերեսի բանաձևը.

$$S_{linhul} = 2ac + 2bc + 2ab \tag{2}$$

եթե ABCD ուղղանկյունն ընդունում ենք որպես ուղղանկյունանիստի հիմք, ապա հեշտ է տեսնել, որ $S_{\mathrm{hhմp}}=ab$ ։ Այդ դեպքում կողմնային մակերևույթի մակերեսը, այսինքն՝ հիմք չհանդիսացող նիստերի մակերեսների գումարը, հաշվվում է հետևյալ բանաձևով.

$$S_{\parallel n\eta \cdot \vec{\mathbf{u}}} = 2ac + 2bc \tag{3}$$

(3) բանաձևը գրենք $S_{\text{կողմ}} = (2a + 2b)c$ տեսքով։ Նկատենք, որ 2a + 2b արտահայտությունը ներկայացնում է ուղղանկյունանիստի հիմքի, այն է՝ ABCD ուղղանկյան պարագիծն է, իսկ c–ն կողմնային կողն է։

Այսպիսով՝ ուղղանկյունանիստի կողմնային մակերևույթի մակերեսը հավասար է ուղղանկյունանիստի հիմքի պարագծի և կողմնային կողի արտադրյալին։

Նկ. 93

- 352. Գտեք խորանարդի մակերևույթի մակերեսը, եթե նրա կողը հավասար է՝ ա) 2,1 սմ, բ) 3,5 մ։
- **353.** Գտեք այն խորանարդի նիստի մակերեսը, որի մակերևույթի մակերեսը հավասար է՝ ա) 24 ամ², բ) 150 դմ²։ Կարո՞ղ եք գտնել այդ խորանարդի կողը։
- 354. Քանի՞ անգամ կմեծանա խորանարդի մակերևույթի մակերեսը, եթե՝ ա) նրա յուրաքանչյուր կողը մեծացնեն 4 անգամ, բ) նրա յուրաքանչյուր նիստի մակերեսը մեծացնեն 4 անգամ։
- 355. Սկզբից խորանարդի յուրաքանչյուր կողը մեծացրին 3 անգամ, իսկ հետո յուրաքանչյուր նիստի մակերեսը փոքրացրին 6 անգամ։ Մեծացա՞վ, թե՞ փոքրացավ խորանարդի մակերևույթի մակերեսը։
- 356. Ուղղանկյունանիստի հիմքը a=6 սմ և b=7 սմ կից կողմերով ուղղանկյուն է, իսկ կողմնային կողը՝ c=8 սմ։ Գտեք այդ ուղղանկյունանիստի՝ ա) հիմքի մակերեսը, բ) կողմնային մակերևույթի մակերեսր, գ) լրիվ մակերևույթի մակերեսը։
- 357. Ուղղանկյունանիստի հիմքը 24 սմ պարագծով քառակուսի է, իսկ կողմնային կողը հավասար է 5,5 սմ։ Գտեք այդ ուղղանկյունանիստի՝ ա) կողմնային մակերևույթի մակերեսը, բ) լրիվ մակերևույթի մակերեսը։
- 358. Ուղղանկյունանիստի հիմքը 8 սմ կողմով քառակուսի է, իսկ կողմնային մակերևույթի մակերեսը հավասար է 112 սմ²։ Գտեք ուղղանկյունանիստի կողմնային կողը և լրիվ մակերևույթի մակերեսը։
- 359. Ուղղանկյունանիստի հիմքը 3 սմ և 5 սմ կից կողմերով ուղղանկյուն է։ Գտեք ուղղանկյունանիստի կողմնային մակերևույթի մակերեսը, եթե հայտնի է, որ նրա փոքր կողմնային նիստը քառակուսի է։
- 360. Ուղղանկյունանիստի հիմքի կողմերից մեկը 12 սմ է, իսկ պարագիծը՝ 40 սմ։ Գտեք նրա կողմնային կողը, եթե հայտնի է, որ լրիվ մակերևույթի մակերեսր հավասար է 592 սմ²։

- 361. Արկղն ունի 3,5 դմ կողմով խորանարդի ձև։ Որքա՞ն նրբատախտակ է անհրաժեշտ այդ արկղը պատրաստելու համար։
- 362. Ուղղանկյունանիստի ձև ունեցող սենյակի չափսերն են՝ երկարությունը՝ 6 մ, լայնությունը՝ 4 մ, բարձրությունը՝ 3 մ։ Գտեք սենյակի՝ ա) հատակի մակերեսը, բ) պատերի մակերեսը։
- 363. 3 մ բարձրություն ունեցող սենյակի ուղղանկյունաձև հատակն ունի 5 մ և 4,5 մ չափսեր։ Առնվազն քանի՞ փաթեթ պաստառ է հարկավոր այդ սենյակի պատերը լրիվ պաստառապատելու համար, եթե յուրաքանչյուր փաթեթ ունի 9,5 մ² մակերես (դուռը և պատուհանը անտեսել)։
- 364. 20 մ երկարությամբ, 10 մ լայնությամբ և 2 մ բարձրությամբ ուղղանկյունանիստի ձև ունեցող ջրավազանի հատակը և պատերը անհրաժեշտ է սալապատել։ Սալիկներից յուրաքանչյուրն ունի 2 դմ կողմով քառակուսու ձև։ Քանի՞ այդպիսի սալիկ է հարկավոր։
- 365. Ի՞նչ չափսեր պետք է ունենա ուղղանկյունաձև ստվարաթուղթը, որպեսզի նրանից կարողանաք առանց թափոնի պատրաստել 7 սմ կողմով խորանարդ, որի յուրաքանչյուր նիստը լինի առանց կցոնի։

§**4**

ՊՅՈԻԹԱԳՈՐԱՍԻ ԹԵՈՐԵՄԸ

uı)

բ) Նև. 94

47. Պյութագորասի թեորեմը

Դեռ հին ժամանակներից բացահայտվել է մի նշանավոր առնչություն ուղղանկյուն եռանկյան ներքնա-ձիգի և էջերի միջև։ Թեորեմը, որ հաստատում է այդ առնչությունը, կոչվում է Պյութագորասի թեորեմ։ Դա երկրաչափության կարևոր թեորեմներից մեկն է, և մենք այն կապացուցենք՝ օգտվելով բազմանկյունների մակերեսների հատկություններից։

Թեորեմ։ Ուղղանկյուն եռանկյան ներքնաձիգի քառակուսին հավասար է էջերի քառակուսիների գումարին։

Ապացուցում։ Դիտարկենք a, b էջերով և c ներքնաձիգով ուղղանկյուն եռանկյունը *(նկ. 94(ա)):* Ապացուցենք, որ $c^2 = a^2 + b^2$:

եռանկյունը լրացնենք այնպես, մինչև կառուցվի a+b կողմով քառակուսի, ինչպես ցույց է տրված 94(բ) նկարում։ Այդ քառակուսու S մակերեսը հավասար է $(a+b)^2$ ։ Մյուս կողմից՝ այդ քառակուսին կազմված է c կողմով մի քառակուսուց և չորս հավասար եռանկյուններից, որոնցից յուրաքանչյուրի մակերեսը

$$\frac{1}{2}$$
 ab $ξ$: Πιρτωθίν $S = 4 \cdot \frac{1}{2}$ $ab + c^2 = 2ab + c^2$: Այսպիսով՝

$$(a+b)^2=2ab+c^2$$
, որտեղից՝ $c^2=a^2+b^2$ ։ Թեորեմն ապացուցված է։

Ուշագրավ է Պյութագորասի թեորեմի պատմությունը։ Այդ թեորեմը թեև կապվում է Պյութագորասի անվան հետ, սակայն այն հայտնի է եղել նախքան Պյութագորասը։ Բաբելոնյան բնագրերում Պյութագորասից դեռևս 1200 տարի առաջ հիշատակվել է այդ թեորեմը։

Հնարավոր է, որ դրա ապացուցումը այն ժամանակներում չեն իմացել, իսկ ներքնաձիգի և էջերի միջև առնչությունը բացահայտվել է զուտ փորձնական եղանակով՝ չափումների հիման վրա։ Այդ փաստերին վերաբերող Ճշգրիտ տեղեկություններ չեն պահպանվել։ Որոշ պատմաբաններ կարծում են, որ այդ նշանավոր թեորեմն ապացուցել են Պլութագորասի հետևորդները և այն անվանել իրենց մեծ ուսուցչի պատվին։ Թերևս հնարավոր է, որ այդ թեորեմի ապացուցումը գտել է հենց ինքը՝ Պլութագորասը։ Այդ մասին պահպանվել է մի հին ավանդություն, ըստ որի՝ Պյութագորասն իր հայտնագործության պատվին աստվածներին զոհ է մատուցել մի մեծ ցուլ, իսկ ըստ այլ վկալությունների՝ նույնիսկ հարլուր ցուլ։ Հետագա դարերի ընթացքում գտել են Պլութագորասի թեորեմի տարբեր ապացուցումներ։ Ներկայումս դրանց քանակն անցնում է հարլուրից։ Մենք արդեն ծանոթ ենք այդ ապացուցումներից մեկին, իսկ հաջորդ դասարանում կծանոթանանք մեկ այլ ապացուցման ևս։ Անցյալի մեծ մտածողներից ու գրողներից շատերն անդրադարձել են այդ նշանավոր թեորեմին և դրան են նվիրել իրենց տողերը։

Պյութագորաս (մ.թ.ա VI դարի հույն գիւրնական)

48. Պյութագորասի թեորեմի հակադարձ թեորեմը

Թեորեմ։ Եթե եռանկյան մի կողմի քառակուսին հավասար է մյուս երկու կողմերի քառակուսիների գումարին, ապա այդ եռանկյունը ուղղանկյուն եռանկյուն է։

Ապացուցում։ Դիցուք՝ ABC եռանկյան մեջ $AB^2 = AC^2 + BC^2$ ։ Ապացուցենք, որ C անկյունն ուղիղ է։ Դիտարկենք C_1 ուղիղ անկյունով այն $A_1B_1C_1$ ուղղանկյուն եռանկյունը, որի համար $A_1C_1 = AC$ և $B_1C_1 = BC$ ։ Ըստ Պյութագորասի թեորեմի՝ $A_1B_1^2 = A_1C_1^2 + B_1C_1^2$, ուրեմն՝ $A_1B_1^2 = AC^2 + BC^2$:

Սակայն ըստ թեորեմի պայմանի՝ $AC^2 + BC^2 = AB^2$ ։ Հետևաբար՝ $A_1B_1^2 = AB^2$, որից եզրակացնում ենք, որ $A_1B_1=AB$ ։ Այսպիսով՝ ABC և $A_1B_1C_1$ եռանկյունները, ըստ երեք կողմի, հավասար են։ Ուրեմն՝ $\angle C = \angle C_1$, այսինքն՝ ABC եռանկյան C անկյունն ուղիղ է։ Թեորեմն ապացուցված է։

Ըստ Պյութագորասի թեորեմի հակադարձ թեորեմի՝ 3, 4 և 5 կողմերով եռանկյունը ուղղանկյուն եռանկյուն է. $5^2 = 3^2 + 4^2$ ։ Ուղղանկյուն եռանկյուն է նաև 5, 12, 13 կողմերով, 8, 15, 17 կողմերով և 7, 24, 25 կողմերով եռանկյուններից յուրաքանչյուրը (բացատրեք, թե ինչու)։ Ուղղանկյուն եռանկյունները, որոնց կողմերն արտահայտվում են ամբողջ թվերով, կոչվում են այրութագորյան եռանկյուններ։ Կարելի է ապացուցել, որ այդպիսի եռանկյունների a, b էջերը և c ներքնաձիգը արտահայտվում են հետևյալ բանաձևերով. $a = 2m \cdot n$, $b = m^2 - n^2$, $c = m^2 + n^2$, որտեղ m–ը և n–ը կամայական բնական թվեր են, m > n:

3, 4 և 5 կողմերով եռանկյունը հաձախ անվանում են նաև *եզիպտական եռանկյուն*. այն հայտնի է եղել դեռևս հին եգիպտացիներին։ Ուղիղ անկյուն կառուցելու համար եգիպտացիները պարանի վրա կատարել են նշումներ այնպես, որ դրանցով պարանը տրոհվի 12 հավասար մասերի։ Այնուհետև կապելով պարանի ծայրերը՝ գետնի վրա ձողերի օգնությամբ այն ձգել են 3, 4 և 5 կողմերով եռանկյան տեսքով։ Այդ դեպքում 3 և 4 երկարությամբ կողմերը կազմում են ուղիղ անկյուն։

Խնդիրներ

- 366. Գտեք ուղղանկյուն եռանկյան ներքնաձիգը՝ ըստ տրված a և b էջերի. ա) $a=6,\ b=8,\ {\rm p})$ $a=5,\ b=12,\ {\rm q})$ $a=\frac{3}{7}$, $b=\frac{4}{7}$, ${\rm q})$ $a=1,\ b=\sqrt{3}$:
- 367. Ուղղանկյուն եռանկյան էջերն են a–ն և b–ն, իսկ ներքնաձիգը՝ c–ն։ Գտեք b–ն, եթե՝ ա) $a=12,\ c=13,$ p) $a=9,\ c=15,\ q)$ $a=2,\ c=\sqrt{5},\ \eta)$ $a=6,\ c=2b$:
- 368. Գտեք c ներքնաձիգով ուղղանկյուն եռանկյան 60° –ի անկյան հանդիպակաց էջը։
- 369. ABCD ուղղանկյան մեջ գտեք՝ ա) AD-ն, եթե AB = 5, AC = 13, բ) BC-ն, եթե CD = 1,5, AC = 2,5, գ) CD-ն, եթե BD = 17, BC = 15:

- 370. Հավասարասրուն եռանկյան սրունքը 17 սմ է, իսկ հիմքը՝ 16 սմ։ Գտեք հիմքին տարված բարձրությունը։
- 371. Գտեք՝ ա) հավասարակողմ եռանկյան բարձրությունը, եթե նրա կողմը 6 սմ է, բ) հավասարակողմ եռանկյան կողմը, եթե նրա բարձրությունը 4 սմ է։
- 372. Քառակուսու անկյունագիծը 20 սմ է։ Գտեք նրա կողմը։
- 373. Ապացուցեք, որ հավասարակողմ եռանկյան մակերեսը հաշվվում է $S = \frac{a^2\sqrt{3}}{4}$ բանաձևով, որտեղ a–ն եռանկյան կողմն է։ Գտեք հավասարակողմ եռանկյան մակերեսը, եթե նրա կողմը հավասար է՝ ա) 4 սմ, p) 1,2 սմ, q) $2\sqrt{2}$ սմ։
- 374. Գտեք հավասարասրուն եռանկյան սրունքը և մակերեսը, եթե՝ ա) հիմքը 12 սմ է, իսկ հիմքին տարված բարձրությունը՝ 8 սմ, բ) հիմքը 18 սմ է, իսկ նրա հանդիպակաց անկյունը՝ 120°, գ) այն ուղղանկյուն եռանկյուն է, որի ներքնաձիգին տարված բարձրությունը 7 սմ է։
- 375. Ուղղանկյուն եռանկյան էջերն են a–ն և b–ն։ Գտեք ներքնաձիգին տարված բարձրությունը, եթե՝ ա) a = 5, b = 12, p) a = 12, b = 16:
- 376. Գտեք 10 սմ, 10 սմ, 12 սմ կողմերով եռանկյան բարձրությունները։
- 377. Գտեք շեղանկյան կողմը և մակերեսը, եթե նրա անկյունագծերը 10 սմ և 24 սմ են։
- 378. Շեղանկյան կողմը 10 սմ է, իսկ անկյունագծերից մեկը՝ 12 սմ։ Գտնել այդ շեղանկյան մյուս անկյունագիծը և մակերեսը։
- 379. Գտեք AB և CD հիմքերով ABCD սեղանի մակերեսը, եթե՝ ա) AB = 10 սմ, BC = DA = 13 սմ, CD = 20 սմ, р) $\angle C = \angle D = 60^{\circ}$, AB = BC = 8 սմ, զ) $\angle C = \angle D = 45^{\circ}$, AB = 6 սմ, $BC = 9\sqrt{2}$ սմ։

- 380. Ուղղանկյուն սեղանի հիմքերը 9 սմ և 18 սմ են, իսկ մեծ սրունքը՝ 15 սմ։ Գտեք սեղանի մակերեսը։
- 381. ABC եռանկյան CD բարձրության D հիմքը գտնվում է AB կողմի վրա, ընդ որում՝ AD = BC։ Գտեք AC–ն, եթե AB = 3, իսկ $CD = \sqrt{3}$:
- 382. Զուգահեռագծի անկյունագծերից մեկը նաև նրա բարձրությունն է։ Գտեք այդ բարձրությունը, եթե զուգահեռագծի պարագիծը 50 սմ է, իսկ կից կող-մերի տարբերությունը՝ 1 սմ։
- **383.** Պարզեք, թե արդյոք ուղղանկյուն եռանկյուն է այն եռանկյունը, որի կողմերն արտահայտվում են հետևյալ թվերով. ա) 6, 8, 10, բ) 5, 6, 7, գ) 9, 12, 15, դ) 10, 24, 26, ե) 3, 4, 6, զ) 11, 9, 13, է) 15, 20, 25։ Պատասխանր հիմնավորեք։
- 384. Գտեք եռանկյան փոքր բարձրությունը, եթե նրա կողմերն են՝ ա) 24 սմ, 25 սմ, 7 սմ, բ) 15 սմ, 17 սմ, 8 սմ։
- 385. Եռանկյան երկու կողմերն են 30 սմ և 25 սմ, իսկ երրորդ կողմին տարված բարձրությունը՝ 24 սմ։ Գտեք երրորդ կողմը։
- 386. Որոշեք եռանկյան անկյունները, եթե նրա կողմերն են՝ ա) 1, 1, $\sqrt{2}$, p) 1, $\sqrt{3}$, 2:
- 387. Հավասարասրուն սեղանի անկյունագիծը 25 սմ է, իսկ բարձրությունը՝ 15 սմ։ Գտեք սեղանի մակերեսը։
- 388. Տրված է այնպիսի ABC եռանկյուն, որ $AB=\sqrt{2}$, BC=2, իսկ AC կողմի վրա նշված է M կետն այնպես, որ AM=1, BM=1: Գտեք $\angle ABC$ –ն:

ุนกบวกเอลกาบบราก กานนบนลกาบ ราย เกนบนลนบ นกาบราก ธน นบนลกาบบราก บาณธน

49. Ուղղանկյուն եռանկյան սուր անկյան սինուսը, կոսինուսը և տանգենսը

Դիտարկենք C ուղիղ անկյունով ABC ուղղանկյուն եռանկյունը (նկ. 95): Այդ եռանկյան համար BC–ն A անկյան դիմացի էջ է, իսկ AC–ն՝ A անկյանը կից էջ։

Ուղղանկյուն եռանկյան սուր անկյան սինուս կոչվում է այդ անկյան դիմացի էջի հարաբերությունը ներքնաձիգին ³։

Ուղղանկյուն եռանկյան սուր անկյան կոսինուս կոչվում է այդ անկյան կից էջի հարաբերությունը ներքնաձիգին։

Ուղղանկյուն եռանկյան սուր անկյան տանգենս կոչվում է այդ անկյան դիմացի էջի հարաբերությունը կից էջին։

 α անկյան սինուսը, կոսինուսը և տանգենսը նշանակ– վում են $\sin \alpha$, $\cos \alpha$, $t g \alpha$ պայմանանշաններով (կարդաց– վում են՝ «սինուս ալֆա», «կոսինուս ալֆա», «տանգենս այֆա»)։

Նկար 95-ում՝

$$\sin A = \frac{BC}{AB} \tag{1}$$

$$\cos A = \frac{AC}{AB} \tag{2}$$

$$tgA = \frac{BC}{AC}$$
 (3)

$$\frac{\sin A}{\cos A} = \frac{BC}{AB} \cdot \frac{AB}{AC} = \frac{BC}{AC}$$
:

Համեմատելով (3) բանաձևի հետ՝ որոշում ենք.

$$tgA = \frac{\sin A}{\cos A},\tag{4}$$

³ Երկու հատվածների հարաբերություն ենք անվանում նրանց երկա– րությունների հարաբերությունը։

Նկ. 96

այսինքն՝ <mark>անկյան տանգենսը հավասար է այդ նույն անկ</mark>յան սինուսի և կոսինուսի հարաբերությանը։

Ապացուցենք, որ եթե մի ուղղանկյուն եռանկյան սուր անկյունը հավասար է մեկ այլ ուղղանկյուն եռանկյան սուր անկյանը, ապա այդ անկյունների սինուսները հավասար են, այդ անկյունների կոսինուսները հավասար են, այդ անկյունների տանգենսները հավասար են։

Դիցուք՝ $\triangle ABC$ –ն և $\triangle A_1B_1C_1$ –ը ուղղանկյուն եռանկյուններ են, որոնց ուղիղ անկյուններն են C–ն և C_1 –ը, իսկ հավասար սուր անկյուններն են A–ն և A_1 –ը, հետևաբար նաև B–ն և B_1 –ը (նկ. 96): ABC և $A_1B_1C_1$ եռանկյունների հավար օգտվենք հավասար անկյուն ունեցող եռանկյունների մակերեսների հարաբերության մասին թեորեմից։

Ստանում ենք.

$$\frac{S_{ABC}}{S_{A,B,C_1}} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1}, \text{ nrwhy } S_{ABC} = \frac{1}{2}\,AC \cdot BC,$$

$$S_{A_1B_1C_1} = \frac{1}{2} A_1C_1 \cdot B_1C_1$$

Ուրեմն՝
$$\frac{\frac{1}{2}AC \cdot BC}{\frac{1}{2}A_1C_1 \cdot B_1C_1} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1}, \quad \text{որտեղից umug-}$$

ψηιώ
$$+$$
 $\frac{BC}{AB} = \frac{B_1C_1}{A_1B_1}$, which is $\sin A = \sin A_1$:

Համանման ձևով ստացվում է $\frac{AC}{AB} = \frac{A_1C_1}{A_1B_1}$, այսինքն՝

 $\cos A = \cos A_1$, և օգտվելով (4) հավասարությունից՝ ստացվում է նաև, որ $\operatorname{tg} A = \operatorname{tg} A_1$:

Այժմ ապացուցենք
$$\sin^2 A + \cos^2 A = 1$$
 (5) հավասարությունը։

(1) և (2) բանաձևերից ստացվում է.

$$\sin^2 A + \cos^2 A = \frac{BC^2}{AB^2} + \frac{AC^2}{AB^2} = \frac{BC^2 + AC^2}{AB^2}$$

Ըստ Պյութագորասի թեորեմի՝ $BC^2 + AC^2 = AB^2$, ուրեմն՝ $\sin^2 A + \cos^2 A = 1$: (5) հավասարությանը անվանում են *եռանկյունաչափական հիմնական նույնություն:*

50. Սինուսի, կոսինուսի և տանգենսի արժեքները 30°, 45° և 60° անկյուն- ների համար

Նախ գտնենք սինուսի, կոսինուսի և տանգենսի արժեքները 30° և 60° անկյունների համար։ Դրա համար դիտարկենք C ուղիղ անկյունով ABC ուղղանկյուն եռանկյունը, որում $\angle A = 30^\circ$, $\angle B = 60^\circ$ (նկ. 97)։ Քանի որ 30° –ի անկյան դիմացի էջը հավասար է ներքնաձիգի կե-

սին, ապա
$$\frac{BC}{AB} = \frac{1}{2}$$
 : Բայց $\frac{BC}{AB} = \sin A = \sin 30^\circ$:
Մյուս կողմից՝ $\frac{BC}{AB} = \cos B = \cos 60^\circ$: Այսպիսով՝ $\sin 30^\circ = \frac{1}{2}$, $\cos 60^\circ = \frac{1}{2}$: Եռանկյունաչափական հիմնական նույնությունից ստանում ենք.

Ըստ (4) բանաձևի՝ գտնում ենք.

$$tg30^{\circ} = \frac{\sin 30^{\circ}}{\cos 30^{\circ}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}, \ tg60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \sqrt{3}:$$

Այժմ գտնենք $\sin 45^{\circ}$ –ը, $\cos 45^{\circ}$ –ը և $tg 45^{\circ}$ –ը։ Դրա համար դիտարկենք C ուղիղ անկյունով ABC հավասարասրուն ուղղանկյուն եռանկյունը (նկ. 98)։ Այս եռանկյան մեջ AC = BC, $\angle A = \angle B = 45^{\circ}$ ։ Ըստ Պյութագորասի թեորեմի՝ $AB^2 = AC^2 + BC^2 = 2AC^2 = 2BC^2$ ։

Այստեղից՝
$$AC = BC = \frac{AB}{\sqrt{2}}$$
:

Նկ. 97

Հետևաբար՝

$$\sin 45^{\circ} = \sin A = \frac{BC}{AB} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},$$

 $\cos 45^{\circ} = \cos A = \frac{AC}{AB} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},$
 $tg45^{\circ} = tgA = \frac{BC}{AC} = 1$

Կազմենք $\sin\alpha$ –ի, $\cos\alpha$ –ի, $tg\alpha$ –ի արժեքների աղյուսա– կր 30°, 45°, 60° անկյուններին հավասար α –ի համար։

α	30°	45°	60°
sinα	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cosα	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tgα	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

30°-ից, 45°-ից և 60°-ից տարբեր սուր անկյունների համար սինուսի, կոսինուսի և տանգենսի արժեքները գտնում են հատուկ աղյուսակների կամ հաշվիչ մեքենաերի օգնությամբ։

51. Առնչություններ ուղղանկյուն եռանկյան կողմերի և անկյունների միջև

Գրառումները պարզեցնելու նպատակով C ուղիղ անկյունով ABC եռանկյան կողմերը նշանակենք փոքրատառերով (տե՛ս նկ. 95). AB = c, BC = a, AC = b:

Օգտվենք (1) և (2) բանաձևերից.

$$\frac{a}{c} = \sin A, \frac{b}{c} = \cos A,$$
 որտեղից ստանում ենք.

$$a = c \cdot \sin A$$
, $b = c \cdot \cos A$:

Նույն կերպ ստանում ենք՝ $a = c \cdot \cos B$, $b = c \cdot \sin B$: Ալսպիսով՝ ուղղանկյուն եռանկյան էջը հավասար է ներք-

նաձիգին՝ բազմապատկած այդ էջի դիմացի անկյան սինուսով կամ այդ էջին կից անկյան կոսինուսով։

Օգտվենք (3) բանաձևից՝ $\frac{a}{b} = tgA$, որտեղից ստա-

նում ենք՝ $a = b \cdot tgA$ ։ Նույն կերպ ստանում ենք՝ $b = a \cdot tgB$:

Այսինքն՝ ուղղանկյուն եռանկյան էջը հավասար է մյուս էջին՝ բազմապատկած առաջին էջի դիմացի անկյան տանգենսով։

Նշված առնչությունները թույլ են տալիս լուծել ուղ– ղանկյուն եռանկյունները, այսինքն՝ ուղղանկյուն եռանկ– յան մի քանի հայտնի տարրերի միջոցով գտնել մյուս տարրերը։ Բերենք մի օրինակ։

խնդիր։ Ուղղանկյուն եռանկյան մեջ հայտնի են էջը՝ a = 12, և այդ էջին կից անկյունը՝ $B = 36^{\circ}$ ։ Գտնել եռանկյան անհայտ էջը, ներքնաձիգը և անկյունը։

Լուծում։ $b=a\cdot \mathrm{tg}B=12\,\mathrm{tg}36^\circ$ ։ $a=c\cdot \cos B$, որտեդից՝ $c=\frac{a}{\cos B}=\frac{12}{\cos 36^\circ}$ ։ Անհրաժեշտության դեպքում,

հատկապես գործնական խնդիրներ լուծելիս աղյուսակից կարող ենք գտնել $tg36^{\circ}$ –ը և $cos36^{\circ}$ –ը։ Սակայն մենք այստեղ կբավարարվենք $tg36^{\circ}$ և $cos36^{\circ}$ գրառումերով՝ հաշվի առնելով, որ դրանք որոշակի թվեր են: $\angle A = 90^{\circ} - \angle B = 90^{\circ} - 36^{\circ} = 54^{\circ}$:

Հարցեր և խնդիրներ

- 389. Գտեք C ուղիղ անկյունով ABC եռանկյան A և B անկյունների սինուսը, կոսինուսը և տանգեն-սը, եթե՝ ա) BC=8, AB=17, բ) BC=21, AC=20, գ) BC=1, AC=2, η) AC=24, AB=25:
- 390. Hunnighp α whishing, thet ω is d and d are d and d and d are d are d and d are d are d and d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d and d are d are d and d are d are d and d are d are d are d and d are d are d are d and d are d and d are d and d are d a
- **391.** Գաեք՝ ա) $\sin\alpha$ –ն և $tg\alpha$ –ն, եթե $\cos\alpha = \frac{1}{2}$, μ) $\sin\alpha$ –ն

l $tg\alpha$ -ù, təb $cos \alpha = \frac{2}{3}$, q) $cos \alpha$ -ù l $tg\alpha$ -ù, təb $sin \alpha = \frac{\sqrt{3}}{2}$, η) $cos \alpha$ -ù l $tg\alpha$ -ù, təb $sin \alpha = \frac{1}{4}$:

- 392. Ուղղանկյուն եռանկյան էջերից մեկը հավասար է *b*, իսկ նրա դիմացի անկյունը՝ β: ա) *b*–ի և β–ի միջո–ցով արտահայտեք ներքնաձիգը, մյուս էջը և դրա դիմացի անկյունը, բ) գտեք դրանց արժեքները, եթե *b* = 10 սմ, β= 50°:
- 393. Կամայական ուղղանկյուն եռանկյան սուր անկյան սինուսի արժեքը փոքր է 1–իզ։ Բազատրեք, թե ինչու։
- 394. Կարո՞ղ է 1–ից մեծ արժեք ունենալ ուղղանկյուն եռանկյան սուր անկյան՝ ա) կոսինուսը, բ) տան-գենսը։ Պատասխանը հիմնավորեք։
- 395. Ապացուցեք, որ եթե C ուղիղ անկյունով ABC ուղղանկյուն եռանկյան մեջ $\angle A < \angle B$, ապա՝ ա) $\sin A < \sin B$, p) $\cos A > \cos B$, q) tgA < tgB:
- 396. Ուղղանկյուն եռանկյան ներքնաձիգը հավասար է c, իսկ սուր անկյուններից մեկը՝ α ։ Մյուս սուր անկյունը և էջերը արտահայտեք c–ով և α –ով։ Գտեք դրանց արժեքը, եթե c = 24 սմ, և α = 35°:
- 397. Հավասարասրուն եռանկյան հիմքին առընթեր անկյունը հավասար է α, իսկ հիմքը՝ *b*։ Գտեք այդ եռանկյան՝ ա) սրունքը, բ) հիմքին իջեցրած բարձրությունը։
- 398. Զուգահեռագծի փոքր կողմը հավասար է *b*, իսկ սուր անկյունը՝ α։ Գտեք զուգահեռագծի մեծ հիմքին տարած բարձրությունը։
- 399. Հավասարասրուն սեղանի հիմքերը հավասար են 2 սմ և 6 սմ, իսկ մեծ հիմքին առընթեր անկյունը հավասար է α։ Գտեք սեղանի բարձրությունը և սրունքը։
- 400. ԽՃուղու լիցքը վերին մասում ունի 60 մ լայնություն։ Որքա՞ն է նրա լայնությունը ստորին մասում,

եթե լանջերի թեքությունը հորիզոնի նկատմամբ 60° է, իսկ լիցքի բարձրությունը՝ 12 մ *(նկ. 99)։*

- **401.** Գտեք շեղանկյան անկյունները, եթե նրա անկյունագծերը հավասար են $2\sqrt{3}$ սմ և 2սմ։
- **402.** Ուղղանկյան կողմերը հավասար են 3 սմ և $\sqrt{3}$ սմ։ Գտեք ուղղանկյան անկյունագծի կազմած անկրունները կողմերի հետ։
- **403.** *ABCD* զուգահեռագծի *AD* կողմը 12 սմ է, իսկ *BAD* անկյունը՝ 48°։ Գտեք զուգահեռագծի մակերեսը, եթե նրա *BD* անկյունագիծն ուղղահայաց է *AB* կողմին։
- 404. Ուղղանկյան անկյունագծերի կազմած անկյուններից մեկը հավասար է 68°։ Գտեք ուղղանկյան կողմերը, եթե նրա անկյունագիծը հավասար է 60 սմ։

Նկ. 99

ԳԼՈՒԽ VII-Ի ԿՐԿՆՈՒԹՅԱՆ ՀԱՐՑԵՐ

- 1. Նկարագրեք, թե ինչպես են չափում բազմանկյունների մակերեսները։
- 2. Ձևակերպեք բազմանկյունների մակերեսների հիմնական հատկությունները։
- 3. Ձևակերպեք և ապացուցեք ուղղանկյան մակերեսի մասին թեորեմը։
- 4. Ձևակերպեք և ապացուցեք զուգահեռագծի մակերեսի հաշվման մասին թեորեմը:
- 5. Ձևակերպեք և ապացուցեք եռանկյան մակերեսի հաշվման մասին թեորեմը։ Ինչպե՞ս հաշվել տրված Էջերով ուղղանկյուն եռանկյան մակերեսը։
- 6. Ձևակերպեք և ապացուցեք թեորեմ հավասար անկյուն ունեցող երկու եռանկյունների մակերես– ների հարաբերության մասին։
- 7. Ձևակերպեք և ապացուցեք սեղանի մակերեսի հաշվման մասին թեորեմը։
- 8. Ինչպե՞ս հաշվել տրված կողմով խորանարդի մակերևույթի մակերեսը։
- 9. Պարզաբանեք, թե ինչպես են հաշվում ուղղանկյունանիստի լրիվ և կողմնային մակերևույթների մակերեսները։

- 10. Ձևակերպեք և ապացուցեք Պլութագորասի թեորեմը։
- 11. Ձևակերպեք և ապացուցեք Պյութագորասի թեորեմի հակադարձ թեորեմը։
- 12. Ո՞ր եռանկյուններն են կոչվում պյութագորյան։ Բերրեք այդպիսի եռանկյան օրինակներ։
- 13. Ի՞նչն է կոչվում ուղղանկյուն եռանկյան սուր անկյան սինուս, կոսինուս, տանգենս։
- 14. Ապացուցեք, որ եթե մի ուղղանկյուն եռանկյան սուր անկյունը հավասար է մյուս ուղղանկյուն եռանկյան սուր անկյանը, ապա այդ անկյունների սինուսները հավասար են, կոսինուսները հավասար են, տանգենսները հավասար են։
- 15. Ո՞ր հավասարությունն են անվանում եռանկյունաչափական հիմնական նույնություն։
- 16. Ինչի՞ են հավասար սինուսի, կոսինուսի և տանգենսի արժեքները 30°, 45°, 60° անկյունների դեպքում։ Բացատրեք, թե ինչպես են գտնում այդ արժեքները։

Լրացուցիչ խնդիրներ

- 405. Ապացուցեք, որ հավասարասրուն ուղղանկյուն եռանկյան էջի վրա կառուցված քառակուսու մակերեսը կրկնակի մեծ է, քան ներքնաձիգին տարված բարձրության վրա կառուցված քառակուսու մակերեսը։
- 406. Հողամասի մակերեսը 27 հա է։ Այդ մակերեսն արտահայտեք՝ ա) քառակուսի մետրերով, բ) քառակուսի կիլոմետրերով։
- 407. Զուգահեռագծի բարձրություններն են 5 ամ և 4 ամ, իսկ պարագիծը՝ 42 ամ։ Գտեք զուգահեռագծի մակերեսը։
- 408. Գտեք զուգահեռագծի պարագիծը, եթե նրա մակերեսը 24 սմ² է, իսկ անկյունագծերի հատման կետի հեռավորությունը կողմերից հավասար է 2 սմ և 3 սմ։
- 409. Զուգահեռագծի փոքր կողմը 29 սմ է։ Անկյունագծերի հատման կետից մեծ կողմին տարված ուղղահայացը այդ կողմը տրոհում է 33 սմ և 12 սմ հատվածների։ Գտեք զուգահեռագծի մակերեսը։
- 410. Ապացուցեք, որ *a* և *b* կողմեր ունեցող բոլոր եռանկյուններից ամենամեծ մակերեսն ունի այն եռանկյունը, որի այդ կողմերը ուղղահայաց են։

- 411. Քառակուսու գագաթով ինչպե՞ս տանել երկու ուղիղ, որ քառակուսին բաժանվի հավասար մակերես ունեցող երեք պատկերների։
- 412*. Մի եռանկյան յուրաքանչյուր կողմը մեծ է մյուս եռանկյան ցանկացած կողմից։ Արդյոք դրանից հետևու՞մ է, որ առաջին եռանկյան մակերեսը մեծ է երկրորդի մակերեսից։
- 413*. Ապացուցեք, որ հավասարասրուն եռանկյան հիմքի վրա գտնվող կետի՝ սրունքից ունեցած հեռավորությունների գումարը կախված չէ այդ կետի դիրքից։
- 414. Ապացուցեք, որ հավասարակողմ եռանկյան ներսում գտնվող կետի՝ կողմերից ունեցած հեռավորությունների գումարը կախված չէ այդ կետի դիրքից։
- 415*. ABC եռանկյան BC կողմի վրա վերցրած D կետից տարված են մյուս երկու կողմերին զուգահեռ ուղիղներ, որոնք այդ AB և AC կողմերը հատում են, համապատասխանաբար, E և F կետերում։ Ապացուցեք, որ CDE և BDF եռանկյուններն ունեն հավասար մակերես։
- 416. AB և CD սրունքներով ABCD սեղանի անկյունագծերը հատվում են O կետում։ ա) Համեմատեք ABD և ACD եռանկյունների մակերեսները։ բ) Համեմատեք ABO և CDO եռանկյունների մակերեսները։ գ) Ապացուցեք, որ $OA \cdot OB = OC \cdot OD$:
- 417. Շեղանկյան անկյունագծերը հավասար են 18 մ և 24 մ։ Գտեք շեղանկյան պարագիծը և զուգահեռ կողմերի միջև հեռավորությունը։
- 418. Շեղանկյան մակերեսը 540 սմ² է, իսկ անկյուևագծերից մեկը՝ 4,5 դմ։ Գտեք անկյունագծերի հատման կետի հեռավորությունը շեղանկյան կողմերից։
- 419. Գտեք հավասարասրուն եռանկյան մակերեսը, եթե՝ ա) նրա սրունքը 20 սմ է, իսկ հիմքին առընթեր անկյունը՝ 30°, բ) սրունքին տարված բարձրությունը 6 սմ է և հիմքի հետ կազմում է 45° անկյուն։
- **420.** *ABC* եռանկյան *BC* կողմը 34 սմ է։ Այդ կողմի միջ-նակետից *AC* ուղղին տարված *MN* ուղղահայացը *AC* կողմը տրոհում է երկու՝ *AN* = 25 սմ և *NC* = 15 սմ հատվածների։ Գտեք *ABC* եռանկյան մակերեսը։

- **421.** Գտեք *ABCD* քառանկյան մակերեսը, եթե AB = 5 սմ, BC = 13 սմ, CD = 9 սմ, DA = 15 սմ, AC = 12 սմ։
- 422. Գտեք հավասարասրուն սեղանի մակերեսը, եթե՝ ա) նրա փոքր հիմքը 18 սմ է, բարձրությունը՝ 9 սմ, իսկ սուր անկյունը՝ 45°, բ) նրա հիմքերը 16 սմ և 30 սմ են, իսկ անկյունագծերը փոխուղղահայաց են։
- **423.** Գտեք հավասարասրուն սեղանի մակերեսը, եթե նրա բարձրությունը *h* է, իսկ անկյունագծերը փոխուդղահայաց են։
- 424 Հավասարասրուն սեղանի անկյունագծերը փոխուղղահայաց են, իսկ նրա հիմքերի գումարը 2*a* է։ Գտեք սեղանի մակերեսը։
- **425.** Ապացուցեք, որ եթե ABCD քառանկյան անկյունագծերը փոխուղղահայաց են, ապա $AD^2 + BC^2 = AB^2 + CD^2$:
- **426.** AD = 17 սմ՝ BC = 5 սմ հիմքերով և AB = 10 սմ սրունքով ABCD հավասարասրուն սեղանի B գագաթով տարված է մի ուղիղ, որը կիսում է AC անկյունագիծը, իսկ AD հիմքը հատում է M կետում։ Գտեք BDM եռանկյան մակերեսը։
- 427. *a* կողմով երկու քառակուսի ունեն մի ընդհանուր գագաթ, ընդ որում՝ նրանցից մեկի կողմը գտնվում է մյուսի անկյունագծի վրա։ Գտեք այդ քառակուսիների ընդհանուր մասի մակերեսը։
- **428.** Խորանարդի մի նիստի անկյունագիծը *a* է։ Գտեք այդ խորանարդի մակերևույթի մակերեսը։
- 429. Ուղղանկյունանիստի հիմքը *a* կողմով քառակուսի է, իսկ կողմնային նիստերից յուրաքանչյուրի անկյունագիծը հիմքի կողի հետ կազմում է 60° անկյուն։ Գտեք ուղղանկյունանիստի կողմնային մակերևույթի մակերեսը։
- 430. Գտեք այն ուղղանկյունանիստի լրիվ մակերևույթի մակերեսը, որի նույն գագաթով անցնող կողերն ունեն *a*, 2*a* և 3*a* երկարություններ։
- 431. ABC հավասարասրուն եռանկյան մեջ AB=AC=b, $\angle A=30^\circ$ ։ Գտեք BE և AD բարձրությունները, ինչպես նաև AE, EC, BC հատվածները։

Հաշվարկիչի օգնությամբ լուծելու խնդիրներ

- 432. Զուգահեռագծի հիմքը 11,735 մ է, իսկ բարձրությունը հիմքից փոքր է 3,485 մ–ով։ Գտեք զուգահեռագծի մակերեսը պահանջվող Ճշգրտությամբ՝ ա) մինչև 0,001 մ², բ) մինչև 0,01մ², գ) մինչև 0,1մ²։
- 433. ABC եռանկյան մեջ AB = 6,52 սմ, AC = 4,47սմ, իսկ $A_1B_1C_1$ եռանկյան մեջ $A_1B_1 = 5,27$ սմ, $A_1C_1 = 2,12$ սմ, ընդ որում՝ $\angle A = \angle A_1$ ։ Գտեք ABC և $A_1B_1C_1$ եռանկյունների մակերեսների հարաբերությունը՝ մինչև 0,01 Ճշգրտությամբ։
- 434. Սեղանի հիմքերը հավասար են 1,17 դմ և 3,58 դմ, իսկ բարձրությունը՝ 2,33 դմ։ Գտեք սեղանի մակերեսը՝ մինչև 0,01 դմ² Ճշգրտությամբ։
- 435. Ուղղանկյան մակերեսը 17,635 սմ² է, իսկ կողմերից մեկը՝ 5,28 սմ։ Գտեք կից կողմը տրված Ճշգրտությամբ՝ ա) մինչև 0,01 սմ, բ) մինչև 0,1 սմ։
- 436. Եռանկյան երկու կողմերը հավասար են 5,62 մ և 7,19 մ, իսկ դրանցից առաջինին տարված բարձրությունը՝ 4,35 մ։ Գտեք երկրորդ կողմին տարված բարձրությունը՝ մինչև 1 սմ ձշգրտությամբ։
- **437*.** Ուղղանկյան a և b կողմերը չափվել են մինչև 0,1 սմ Ճշգրտությամբ։ Օգտվելով այդ չափումներից՝ կարելի՞ է արդյոք ուղղանկյան S մակերեսը հաշվել մինչև 1 սմ² Ճշգրտությամբ, եթե չափման արդյունքում ստացվել են՝ ա) a=2,5 սմ, b=1,7 սմ, p) a=3,2 սմ, b=2,5 սմ, q) a=5,6 սմ, q0 սմ, q
- 438. Ուղղանկյուն եռանկյան էջերը հավասար են 7,25 ամ և 3,67 ամ։ Գտեք ներքնաձիգը՝ մինչև 0,01 ամ ձշգրտությամբ։
- 439. Ուղղանկյուն եռանկյան ներքնաձիգը 11,2 դմ է, իսկ էջերից մեկը երեք անգամ փոքր է ներքնաձիգից։ Գտեք մյուս էջը՝ ա) մինչև 1 սմ Ճշգրտությամբ, բ) մինչև 0,1 սմ Ճշգրտությամբ։
- 440*. Ուղղանկյուն եռանկյան a և b էջերը չափել են մինչև 0,1 սմ Ճշգրտությամբ և ստացել հետևյալ արդյունքները. $a\approx 3,5$ սմ, $b\approx 4,8$ սմ։ Օգտվելով չափման այդ արդյունքներից՝ կարելի՞ է արդյոք ներքնաձիգը հաշվել՝ ա) մինչև 0,1 սմ Ճշգրտությամբ, բ) մինչև 0,2 սմ Ճշգրտությամբ։

ԴԺՎԱՐԻՆ ԽՆԴԻՐՆԵՐ

V գլխի վերաբերյալ

- 441. Տրված է $A_1A_2A_3A_4A_5A_6$ վեցանկյունը, որի բոլոր անկյունները հավասար են։ Ապացուցեք, որ $A_1A_2 A_4A_5 = A_5A_6 A_2A_3 = A_3A_4 A_6A_1$:
- 442. a_1 , a_2 , a_3 , a_4 , a_5 և a_6 դրական թվերը բավարարում են $a_1-a_4=a_5-a_2=a_3-a_6$ պայմաններին։ Ապացուցեք, որ գոյություն ունի $A_1A_2A_3A_4A_5A_6$ ուռուցիկ վեցանկյուն, որի բոլոր անկյունները հավասար են, ընդ որում՝ $A_1A_2=a_1$, $A_2A_3=a_2$, $A_3A_4=a_3$, $A_4A_5=a_4$, $A_5A_6=a_5$, $A_6A_1=a_6$:
- 443. Ապացուցեք, որ կամայական ուռուցիկ քառանկյան ձև ունեցող միատեսակ սալիկներով կարելի է այնպես երեսպատել սալահատակը, որ ամբողջությամբ ծածկի տակ ներառվի հարթության մաս հանդիսացող ցանկացած հարթակ։
- 444. Ապացուցեք, որ ուռուցիկ քառանկյան անկյունագծերը հատվում են։
- 445. Ապացուցեք, որ ցանկացած ուռուցիկ քառանկյան որևէ երկու հանդիպակաց գագաթները գտնվում են մյուս երկու գագաթներով անցնող ուղղի տարբեր կողմերում։
- 446. AC հիմքով ABC հավասարասրուն եռանկյան մեջ տարված է AD կիսորդը։ D կետով անցնում է AD–ին ուղղահայաց ուղիղ, որը E կետում հատում է AC ուղիղը։ B և D կետերից AC ուղղին տարված ուղղահայացների հիմքերն են M–ը և K–ն։ Գտեք MK–ն, եթե AE = a:
- 447. Ապացուցեք, որ եռանկյան երեք միջնագծերի գումարը փոքր է պարագծից, բայց մեծ է կիսապարագծից։
- 448. Ուռուցիկ քառանկյան անկյունագծերը այն տրոհում են չորս այնպիսի եռանկյունների, որոնց պարագծերը հավասար են։ Ապացուցեք, որ այդ քառանկյունը շեղանկյուն է։
- 449. Գտեք այն հատվածների միջնակետերի բազմությունը, որոնք տրված կետը միացնում են այդ կետով չանցնող՝ տրված ուղղի բոլոր կետերին։
- 450. Ապացուցեք, որ հավասարասրուն սեղանի հիմքերի միջնակետով անցնող ուղիղն ուղղահայաց է հիմքերին։ Ձևակերպեք և ապացուցեք հակադարձ պնդումը։

- 451. Ուղղանկյան բոլոր անկյունների կիսորդները հատվելիս առաջանում է քառանկյուն։ Ապացուցեք, որ այդ քառանկյունը քառակուսի է։
- 452. Զուգահեռագծի կողմերից յուրաքանչյուրի վրա՝ զուգահեռագծից դուրս, կառուցված է քառակուսի, և նշված է դրա անկյունագծերի հատման կետը։ Ապացուցեք, որ այդ բոլոր կետերը քառակուսու գագաթներ են։
- **453.** ABCD քառակուսու CD կողմի վրա նշված է M կետը։ BAM անկյան կիսորդը K կետում հատում է BC կողմը։ Ապացուցեք, որ AM = BK + DM։
- **454.** Նկար 100–ում պատկերված են երեք քառակուսի։ Գտեք ∠*BAE* + ∠*CAE* + ∠*DAE* գումարը։
- **455.** ABCD քառակուսու ներսում վերցված է M կետն այնպես, որ $\angle MAB = 60^{\circ}$, $\angle MCD = 15^{\circ}$ ։ Գտեք $\angle MBC$ –ն։
- 456. ABC եռանկյան կողմերի վրա՝ եռանկյունից դուրս, կառուցված են BCDE, ACTM, BAHK քառակուսիները, իսկ հետո՝ TCDQ և EBKP զուգահեռագծերը։ Ապացուցեք, որ APQ–ն հավասարասրուն ուղղանկյուն եռանկյուն է։
- 457. Կառուցեք հավասարասրուն սեղան՝ ըստ հիմքերի և անկյունագծերի։
- 458. Ապացուցեք, որ եթե եռանկյունն ունի՝ ա) համաչափության առանցք, ապա այն հավասարասրուն է, բ) համաչափության մեկից ավելի առանցքներ, ապա այն հավասարակողմ է։
- 459. Ապացուցեք, որ եթե ուռուցիկ քառանկյան հանդիպակաց կողմերը զուգահեռ չեն, ապա նրանց կիսագումարը մեծ է մյուս երկու հանդիպակաց կողմերի միջնակետերը միացնող հատվածից։
- 460. Ապացուցեք, որ եթե ուռուցիկ քառանկյան հանդիպակաց կողմերի միջնակետերի հեռավորությունների գումարը հավասար է նրա կիսապարագծին, ապա այդ քառանկյունը զուգահեռագիծ է։
- 461. Ապացուցեք, որ եթե ուռուցիկ քառանկյան երկու հանդիպակաց կողմերի միջնակետերը միացնող հատվածը հավասար է մյուս երկու կողմերի կիսագումարին, ապա այդ քառանկյունը սեղան է կամ զուգահեռագիծ։

VI գլխի վերաբերյալ

Նկ. 101

- 462. Երկու շրջանագծեր ունեն միակ ընդհանուր M կետ։ Այդ կետով տարված են երկու հատողներ, որոնք շրջանագծերից մեկը հատում են A և A_1 կետերում, իսկ մյուսը՝ B և B_1 կետերում։ Ապացուցեք, որ $AA_1 \parallel BB_1$:
- 463. B_1 և C_1 կետերը AB և AC աղեղների միջնակետերն են (iնկ. 101)։ Ապացուցեք, որ AM = AN։
- **464.** O_1 և O_2 կենտրոններով երկու շրջանագծերի հատման A կետով տարված է ուղիղ, որը շրջանագծերից մեկը հատում է B, իսկ մյուսը՝ C կետում։ Ապացուցեք, որ BC հատվածը մեծագույն կլինի այն դեպքում, երբ այն զուգահեռ լինի O_1O_2 ուղղին։
- 465. AB հատվածը O կենտրոնով շրջանագծի տրամագիծ է։ Շրջանագծի յուրաքանչյուր OM շառավիղի վրա O կետից տեղադրված է հատված, որի երկարությունը հավասար է M ծայրակետի և AB ուղղի միջև եղած հեռավորությանը։ Գտեք այդ ձևով կառուցված հատվածների ծայրակետերի բազմությունը։
- 466. Դիցուք՝ ABC եռանկյան բարձրություններն ընդգրկող ուղիղների հատման կետը H-ն է, իսկ A'-ը, B'-ը, C'-ը կետեր են, որոնք BC, CA, AB ուղիղների նկատմամբ համաչափ են H կետին։ Ապացուցեք, որ A', B', C' կետերը գտնվում են ABC եռանկյան արտագծյալ շրջանագծի վրա։
- 467. ABC եռանկյան B գագաթից տարված են BH բարձրությունը և B անկյան կիսորդը։ Այդ կիսորդը E կետում հատում է եռանկյան արտագծյալ շրջանագիծը, որի կենտրոնը O-ն է։ Ապացուցեք, որ BE Ճառագայթր OBH անկյան կիսորդն է։
- 468. ABC հավասարակողմ եռանկյան արտագծյալ շրջանագծի կամայական X կետ հատվածներով միացված է եռանկյան գագաթներին։ Ապացուցեք, որ AX, BX և CX հատվածներից մեկը հավասար է մյուս երկուսի գումարին։
- 469. Կառուցեք տրված երկու շրջանագծերի ընդհանուր շոշափողը։
- 470. Տրված են O կենտրոնով շրջանագիծը, M կետը և P_1Q_1 , P_2Q_2 հատվածները։ Կառուցեք այնպիսի p ուղիղ, որ շրջանագիծը նրանից անջատի P_1Q_1 –ին հավասար լար, և M կետի հեռավորությունը p ուղ- դից հավասար լինի P_2Q_2 –ին։

VII գլխի վերաբերյալ

- 471. ABCD զուգահեռագծի ներսում գտնվող M կետով տարված են նրա կողմերին զուգահեռ ուղիղներ, որոնք AB, BC, CD և DA կողմերը հատում են, համապատասխանաբար, P, Q, R և T կետերում։ Ապացուցեք, որ եթե M կետն ընկած է AC անկյունագծի վրա, ապա MPBQ և MRDT զուգահեռագծերի մակերեսները հավասար են, և հակադարձը՝ եթե MPBQ և MRDT զուգահեռագծերի մակերեսները հավասար են, և հակադարձը՝ ևթի MPBQ և MRDT զուգահեռագծերի մակերեսները հավասար են, ապա M կետն ընկած է AC անկյունագծի վրա։
- 472. ABCD զուգահեռագծի AB, BC, CD և DA կողմերի միջնակետերն են, համապատասխանաբար, P, Q, R և T կետերը։ Ապացուցեք, որ AQ, BR, CT և DP ուղիրների հատումից առաջանում է զուգահեռագիծ։ Գտեք այդ և ABCD զուգահեռագծերի մակերեսների հարաբերությունը։
- 473. Ապացուցեք, որ սեղանի մակերեսը հավասար է սրունքներից մեկի և այն ուղղահայացի արտադրյալին, որը մյուս սրունքի միջնակետից տարված է առաջին սրունքն ընդգրկող ուղղին։
- 474. Սեղանի փոքր հիմքի ծայրակետերով տարված են երկու զուգահեռ ուղիղներ, որոնք հատում են մեծ հիմքը։ Սեղանի անկյունագծերը և այդ ուղիղները տրոհում են սեղանը յոթ եռանկյան և մեկ հնգանկյան։ Ապացուցեք, որ հնգանկյան մակերեսը հավասար է այն երեք եռանկյունների մակերեսների գումարին, որոնք հարակից են սրունքներին և փոքր հիմքին։
- 475. ABCD զուգահեռագծի AB կողմը B կետից շարունակված է BE հատվածով, իսկ AD կողմը D կետից՝ DK հատվածով։ ED և KB հատվածները հատվում են O կետում։ Ապացուցեք, որ ABOD և CEOK քառանկյունների մակերեսները հավասար են։
- 476. ABCD ուռուցիկ քառանկյան AB և CD կողմերի K և M միջնակետերը KD, KC, MA և MB հատվածներով միացված են քառանկյան գագաթներին։ Ապացուցեք, որ այդ հատվածների միջև ընդգրկված քառանկյան մակերեսը հավասար է այն երկու եռանկյունների մակերեսների գումարին, որոնք հարակից են AD և BC կողմերին։

- 477. A կետն ընկած է 60° –ի անկյան ներսում։ a–ն և b–ն A կետի հեռավորություններն են անկյան կողմե–րից։ Գտեք A կետի հեռավորությունը անկյան գագաթից։
- 478. ABC եռանկյան AB կողմը A կետից շարունակված է AC–ին հավասար AD հատվածով։ BA և BC Ճառագայթների վրա վերցված են K և M կետերն այնպես, որ BDM և BCK եռանկյունների մակերեսները հավասար են։ Գտեք BKM անկյունը, եթե $\angle BAC = \alpha$:
- 479. ABCD ուղղանկյան ներսում վերցված է M կետը։ Հայտնի է, որ MB = a, MC = b և MD = c. Գտեք MA–ն։
- 480. Տարված է *ABC* եռանկյան *BD* բարձրությունը։ *KA* հատվածն ուղղահայաց է *AB*–ին և հավասար է *DC*–ին, իսկ *CM* հատվածն ուղղահայաց է *BC*–ին և հավասար է *AD*–ին։ Ապացուցեք, որ *MB* և *KB* հատվածները հավասար են։
- 481. C ուղիղ անկյունով ABC ուղղանկյուն եռանկյան ներսում վերցված է O կետն այնպես, որ $S_{\mathrm{OAB}} = S_{\mathrm{OAC}} = S_{\mathrm{OBC}}$ ։ Ապացուցեք, որ $OA^2 + OB^2 = 5 \cdot OC^2$:
- 482. Ուղղանկյուն եռանկյան ներքնաձիգը այնպիսի քառակուսու կողմ է, որը չի ծածկում այդ եռանկյունը։ Գտեք այդ քառակուսու անկյունագծերի հատման կետի հեռավորությունը եռանկյան ուղիղ անկյան գագաթից, եթե նրա էջերի գումարը *a* է։
- 483. EFG եռանկյան կողմերը համապատասխանաբար հավասար են ABC եռանկյան միջնագծերին։ Ապացուցեք, որ $\frac{S_{EFG}}{S_{ABC}} = \frac{3}{4}$:
- 484. Ապացուցեք, որ եթե ներգծյալ քառանկյան անկյունագծերը փոխուղղահայաց են, ապա քառանկյան հանդիպակաց կողմերի քառակուսիների գումարը հավասար է արտագծված շրջանագծի տրամագծի քառակուսուն։
- 485. Շրջանագծի ներսում տրված է մի կետ։ Կառուցեք այդ կետով անցնող այն լարը, որն այդ կետով անցնող բոլոր լարերից փոքրագույնն է։

ՊԱՏԱՍԽԱՆՆԵՐ ԵՎ ՑՈԻՑՈԻՄՆԵՐ ԳԼՈԻԽ V

2. w) 540°, p) 720°, q) 1440°: 3. 90°: 4. 108°: 5. 5: 6. 100°, 100°, 100°, 60°: 7. 105°, 95°, 85°, 75°: 8. 30°, 60°, 120°, 150°: 9. 54°, 81°, 108°, 135°, 162°: 10. w) 2nnu, p) երեք, գ) վեզ, դ) հինգ։ 11. 23 մմ, 20 մմ, 19 մմ, 18 մմ։ 12. 15 սմ, 7 ud, 23 ud, 21 ud: 13. 75°: 16. w) 10,5 ud, 13,5 ud, p) 8,5 ud, 15,5 ud, q) 8 ud, 16 ud: 17. 13 ud, 12 ud, 13 ud, 12 ud: 18. 40°, 140°, 40°, 140°: 19. 10 uú: 22. 60°, 120°, 60°, 120°: 23. 50°, 130°, 50°, 130°: 24. 78 ud: 25. 56 ud hud 70 ud: 26. w) $\angle B = \angle D = 96^{\circ}$, $\angle C = 84^{\circ}$, p) $\angle A = \angle C = 117^{\circ}30'$, $\angle B = \angle D = 62^{\circ}30'$, q) $\angle A = \angle C = 71^{\circ}$, $\angle B = \angle D = 109^{\circ}$, η) $\angle A = \angle C = 120^{\circ}$, $\angle B = \angle D = 60^{\circ}$, $\exists A = \angle C = 53^{\circ}$, $\angle B = \angle D = 127^{\circ}$: 27. MN = PQ = 6 uú, NP = QM = 8 uú, $\angle M = \angle P = 60^{\circ}$, $\angle N = \angle Q = 120^{\circ}$: 29. 3niqnivi: \text{\text{uh}} ապացուցել, որ BK=DM: 30. Snignit: Օգտվել կետ 5-ի 2° հայտանիշից։ 31. *Ցուցում։* Օգտվել կետ 5–ի 3° հայտանիշից։ 32. *Ցուզում։* Օգտվել կետ 5–ի 2° հայտանի-2hq: 33. 12 ud: 36. 6 d, 8 d: 37. m + n: 40. 2 d: 41. 70°, 110°, 110°, 70°: 42. 8 uú, 12 uú: 43. 16 uú: 44. 24 uú, 30 uú: 45. 3 uú, 4 սմ։ 46. 2 սմ։ 48. *Յուցում։* Սայիկները կցել մեկը մյուսին այնպես, որ սրունքները հպվեն, և մի սայիկի փոքր հիմքն ու մլուսի մեծ հիմքը գտնվեն մի ուղղի վրա։ 49. 20 սմ։ 50. w) 6 ut, p) 5 ut: 54. 20 ut, 20 ut: 55. w) 198,1 ut 4 ut 122,6 ut, p) 23,4 դվ կավ 19,8 դվ: 57. 18 uվ: 59. 40°: 60. 75°: 61. 40 uվ: 62. 60 ud: 63. w) 60° l 120°, p) 30° l 60°: 64. 42 ud: 65. 22°30′ li 67°30′: 67. 10 ud: 68. 10 ud: 69. 40 ud: 70. 10 ud: 72. ա) Ոչ, բ) nչ, գ) այո։ 74. ա) Երկու, բ) անվերջ բազմությամբ. այդ ուղղին ուղղահայաց ցանկացած ուղիղ, ինչպես նաև այդ ուղիղը, գ) մեկ։ 78. ա) Ալո, բ) ոչ, գ) ալո, դ) ալո։ 83. Երեք։ 91. 18, 12, 8: 92. w) N₅, p) n₅, q) w₁n: 93. w) U₁n, p) w₁n, գ) ալո։ 94. ա) Վեցանկլուն բազմանկլուն, բ) ութանկլուն բազմանկյուն, գ) լոթանկյուն բազմանկյուն։ 95. 4 սմ։ 96. 96 սմ։ 97. 6: 98. 8: 2–ր վեզանկյուն բուրգ, 6–ր քառանկյուն բուրգ։ 99. 16, 9, 9: 100. ա) Տասներկուանկյուն բուրգ, բ) իննանկյուն բուրգ, գ) վեզանկյուն բուրգ։ 101. ա) Այո, բ) ոչ։ 102. 16 սմ։ 105. Հատում է CD կողմը, 9 սմ և 5 սմ։ 106. 3 ամ, 4 ամ, 3 ամ։ 108. *Յուցում։* Օգտվել 52 խնդրից։ 109. *Ցուզում։* Օգտվել ուռուցիկ քառանկյան անկյունների գումարի վերաբերյալ թեորեմից և 15(բ) խնդրից։ 111. *Ցու*ցում։ M կետով տանել BK ուղղին զուգահեռ ուղիղ և օգտ-

վել Թայեսի թեորեմից։ <u>112</u>. *Ցուցում։* Օգտվել Թայեսի թեորեմից։ <u>113</u>. *Ցուզում։* Սկզբում ապացուցել, $\triangle BKD = \triangle BMD$: 115. *Snignių*: Oginiti triutijiut thyti գծի հատկությունից։ 116. 36,8 սմ։ *Ցուցում։* Նկատել, որ AMC և ANC եռանկյունները հավասարասրուն են։ 117. Snignit: Uhgpnit www.gnigtl, np $\triangle ABH = \triangle AMH$: 118. 8 ամ։ 119. *Ցուզում։* Փոքր հիմքի միջնակետով տանել սրունքներին ցուգահեռներ և օգտվել «Ուղղանկյուն եռանկյան ներքնաձիգին տարված միջնագիծը հավասար է ներքնաձիգի կեսին» պնդումից։ 121. Անվերջ բազմությամբ։ 122^* . 3nւցում։ Դիցուք՝ <math>a–ն և b–ն պատկերի հա– մաչափության երկու փոխուղղահայաց առանցքներն են, և *Օ*–ն՝ դրանց հատման կետր։ Սկզբում ապացուցել, որ եթե Mև M_1 կետերը համաչափ են a ուղղի նկատմամբ, իսկ M_1 և M_2 կետերը՝ b ուղղի նկատմամբ, ապա M_1 –ը և M_2 –ը հա– մաչափ են *O* կետի նկատմամբ։ 123. 8: 124. ա) Ոչ, բ) ալո, գ) ոչ։

4LNHW VI

134. 90°: 135. 8 uú: 137. 30°: 141. w) r = 5, p) r < 5, q) r > 5: 142. w) 3, p)3-hq dtb: 143. 29 ud: 145. 30°: 146. 30°, 30°, 120°: 147. *Ցուցում։* Սկզբում ապացուցել, $\angle ADC = 30^{\circ}$: 148. $\angle A = 30^{\circ}$, $\angle O = 60^{\circ}$, $\angle B = 90^{\circ}$: 149. 60°: 150. 60°: 155. ա) *Ցուցում։* ա) Սկզբում կառուցեք շրջանա– գծի կենտրոնով անցնող և տրված ուղղին ուղղահայաց ուղիղ։ բ) O կենտրոնով տանել ուղղին ցուգահեռ։ 157. ա) 16 սմ, p) 32 ud: 159. 12 ud: 161. w) 64°, p) 175°, q) 34°, n) 105°: 162. 60° h 30° hmd 140° h 110°: 163. 101° hmd 36°: 165. 50°: 166. 73°: 167. 98°: 168. 12 ud: 169. 10 ud: 170. 100°: 171. 20°: 172. 62°: 173. 30°, 60°, 90°: 174. 20°20′, 34°50′: 176. 36°: 177. 44°: 179. *Ցուցում*։ Օգտվել 178 խնդրից։ 183. *Ցուցում։* Նախ ապացուցել, որ *AOB* եռանկյունը հավասարասրուն է։ 185. 10 ud: 187. w) 46° k 46° , p) 21° k 21° : 188. w) AD = 3.5 ud, CD = 5ud, p) AC = 14.6 ud: 190. 9 ud: 192. 3nignid: Ogundti հակասող ենթադրության մեթոդից։ 196. *Յուզում։* Օգտվել հատվածի միջնուղղահայացի վերաբերյալ թեորեմից։ 197. *Ցուցում:* Հաշվի առնել, որ որոնելի կետը գտնվում է տրված անկյան կիսորդի և տրված հատվածի միջնուդդահայացի վրա։ 202. 20 սմ։ 203. 2 սմ։ 205. 2 սմ։ 206. 3 ud: 207. 130°: 208. a: 209. 20 ud: 210. 4 ud, 12 ud: 211. 4 ud, 16 ud, 10 ud, 10 ud: 212. 15 ud: 213. 2 ud: 217. w) $\angle A = 67^{\circ}$, $\angle B = 23^{\circ}$, $\angle C = 90^{\circ}$, p) $\angle A = 55^{\circ}$, $\angle B = 35^{\circ}$, $\angle C = 90^{\circ}$: 218. $\angle A = 51^{\circ}$, $\angle B = \angle C = 64^{\circ}30'$: **222.** *Snignid*: Ogundti 47 (m) hunning: **223.** $\angle C = 76^{\circ}$, $\angle D = 109^{\circ}$: 224. ա) Ոչ, բ) ալո, գ) ալո, դ) ալո։ 236. ա) Ալո, բ) ոչ։ 237. p), q): 239. w) 60°, p) 108°, q) 120°, n) 144°, t) 160°: 240. 360°: 241. w) 3, p) 4, q) 8, n) 12: 242. w) 6, p) 12, q) 4, n) 10, ti) 20, q) 5: 243. ti) 10, p) 15: 244. 3: 246. 3nigniti: Օգտվել նրանից, որ կանոնավոր բազմանկյան ցանկացած կողմի միջնուրդահայացն անցնում է արտագծած շրջանագծի կենտրոնով։ 247. *Ցուցում։* Օգտվել նրանից, որ կանոնավոր բացմանկյան ցանկացած անկյան կիսորդն անցնում է ներգծած շրջանագծի կենտրոնով։ 249. դ) *Ցուցում։* Օգտվել 35 կետի 2–րդ խնդրից։ 251. 2:1: 252. 5 ud: 253. 12 ud: 256. 30 ud: 257. 6 ud, 12 ud: 258. 10 ամ։ 261. Շրջան։ Ջուրը լցված է կեսի չափով։ 262. 6 ամ։ 263. ա) Ընդհանուր կետ չունեն, բ) ունեն ընդհանուր կետեր, գ) ունեն միայն մեկ ընդհանուր կետ, դ) ունեն ընդհանուր կետեր, ե) ընդհանուր կետ չունեն։ 265. Ցուցում։ Օգտվել 179 խնդրից։ 266. *Ցուցում։* Նկատի ունենալ, որ րնդհանուր շոշափողի և AB ուղղի հատման կետն է։ Սկզբում ապացուցել, որ KA = KM = KB: 273. Ոչ: 277. 3ուցում: Օգտագործել այն կողմի միջնուղղահայացը, որին տարված է միջնագիծը։ 279. *Ցուցում։* Օգտվել ներգծված քաոանկյան անկյունների հատկությունից։ 281. *Ցուցում։* Օգտվել 280 խնդրից։ 282. *Յուցում:* Օգտվել 280 խնդրից։ 283. *Ցուցում։* Սկցբում ապացուցել, որ *MHBC* քառանկյանր կարելի է արտագծել շրջանագիծ։ 284. *Ցուցում:* Օգտ– վել 274 խնդրից։ 285. *Ցուզում։* Նախ կառուցել *AB* հատվա– ծին միջնուղղահայաց, ապա՝ *A* կետով *a* ուղղին ուղղահալաց: 289. ա) 20, բ) 9, գ) 5, դ) 6: 290. 6,72 ud: 291*. *Ցուցում։* Դիցուք՝ ABCDEFGH-ը որոնելի ութանկլունն է, իսկ *O*-ն՝ արտագծյալ շրջանագծի կենտրոնը։ Նախ կառուցել ABO եռանկյունը՝ նկատի ունենալով, որ AOB անկյունը 45° է։ 292*. *Ցուցում։* Նախ շրջանագծին ներգծել կանոնավոր եռանկլուն և վեցանկլուն։

4LNHW VII

296. *Յուցում։* Դիցուք՝ *O*–ն *AM* և *BC* հատվածների հատման կետն է։ Նախ ապացուցել *ABO* և *MCO* եռանկ–

յունների հավասարությունը։ 297. *Ցուցում։ BC* ուղղին տանել EF ուղղահայացը։ Նախ ապացուցել ABM և EFM, DCN և EFN եռանկյունների հավասարությունը։ 298. w) 1,44 u d^2 , p) $\frac{9}{16}$ ηd^2 , q) $11\frac{1}{9}$ d^2 : 299. w) 4 ud, p) 5 ηd , գ) 1,5 մ։ 300. ա) 2400 մմ², բ) 0,24 դմ²։ 301. ա) Կմեծանա 9 անգամ, բ) կփոքրանա 4 անգամ։ 302. 6 անգամ։ 303. w) 27,2 uú², p) $\frac{4}{5}$ uú², q) 1,375 դ) 27 սմ։ 304. ա) Կմեծանա երկու անգամ, բ) կմեծանա չորս անգամ, գ) չի փոփոխվի։ 305. 48 սմ²: 306. 40 սմ։ 307. $1\frac{19}{45}$ ud: 308. 100ud²: 309. 60 ud²: 310. 98 ud²: 311. 2200։ 312. 360։ 313. Քառակուսու ձև ունեցող հողամասի մակերեսը 25 մ 2 –ով մեծ է : 314. ա) 180 սմ 2 , բ) 4 սմ, q) 18 uú, n) a = 42: 315. 156 uú²: 316. 78 uú²: 317. 18 uú²: 318. 56,7 uu²: 319. w) 10 uu, p) 4 uu, q) 12 uu lu 9 uu: 320. 12 ud²: 321. 30°, 150°, 30°, 150°: 322. 45°, 135°, 45°, 135°: 323. 20 ud²: 324. 77 ud²: 325. 80 ud: 326. 115,52 ud²: 327. Քաոակուսու մակերեսը մեծ է։ 328. Ուղղանկյան մակերեսը մեծ է: 329. ա) 38,5 սմ², բ) 5,4 սմ, գ) 4 սմ։ 330. 8 սմ։ 331. 5,625 ud: 332. w) 22 ud², p) 1,8 nd²: 333. 98 ud²: 334. 1: 2: 335. 8 սմ²: 336. 25 սմ²: 337. 24 սմ²: 338. Եռանկլունների մակերեսները հավասար են: 339. 3 : 2: 340. 6 : 1: 341. 8m*զում։* Սկզբում *BC* կողմը բաժանել չորս հավասար մաuhh: 342. w) 224 uh², p) 4.6 hh²: 3nignih: 4mightarrowնել, որ շեղանկյան անկլունագծերը փոխուղղահայաց են։ 343. 54 d: 345. w) 133 ud², p) 24 ud², g) 72 ud²: 346. 54 ud²: 347. 5 ud: 348. 4 ud: 349. 54 ud²: 350. 4,76 ud²: 351. 24 ud²: Ոչ: 352. w) 26,46 ut², p) 73,5 t²: 353. w) 4 ut², p) 25 ηt²: 354. ա) 16 անգամ, բ) 4 անգամ։ 355. Մեծազավ։ 356. w) 42 uu², p) 208 uu², q) 292 uu²: 357. 132 uu², 204 uu²: 358. 3,5 ud, 240 ud²: 359. 48 ud²: 360. 10 ud: 362. ul) 24 d², 60 մ²: 363. 6 փաթեթ: 364. 8000: 365. 7 սմ x 42 սմ կամ 14 uմ x 21 uմ: 366. ա) 10, μ) 13, q) $\frac{5}{7}$, η) 2: 367. w) 5, p) 12, q) 1, η) $2\sqrt{3}$:

368.
$$\frac{c\sqrt{3}}{2}$$
: 369. w) 12, p) 2, q) 8: 370. 15 uú:

371. w)
$$3\sqrt{3}$$
 uú, p) $\frac{8\sqrt{3}}{3}$ uú: 372. $10\sqrt{2}$ uú: 373. w) $4\sqrt{3}$ uú²,

p)
$$0.36\sqrt{3}$$
 uti², q) $2\sqrt{3}$ uti²: 374. ut) 10 uti lt 48 uti²,

p)
$$6\sqrt{3}$$
 uư li $27\sqrt{3}$ uư, q) $7\sqrt{2}$ uư li 49 uư: 375 . w) $4\frac{8}{13}$,

378. 96 ut² li 16 utî: 379. ui) 180 ut², p)
$$48\sqrt{3}$$
 ut², q) 135 ut²:

380. 162 ud²: 381.
$$\sqrt{7}$$
: 382. 5 ud: 383. u) Ujn, p) n₅, q) ujn,

η) այո, ե) η_ξ, q) η_ξ, ξ) այո: 384. ա) 6,72 uú, μ)
$$7\frac{1}{17}$$
 uú:

385. 25 uu: 386. uu) 45°, 45°, 90°, p) 30°, 60°, 90°: 387. 300uu
2
:

388. 105°: 391. w)
$$\frac{\sqrt{3}}{2}$$
 k $\sqrt{3}$, p) $\frac{\sqrt{5}}{3}$ k $\frac{\sqrt{5}}{2}$, q) $\frac{1}{2}$ k $\sqrt{3}$

η)
$$\frac{\sqrt{15}}{4}$$
 lu $\frac{\sqrt{15}}{15}$: 392 w) $\frac{b}{\sin\beta}$, $\frac{b}{tg\beta}$ 90°- β, μ) ≈ 13,05 uul,

≈ 8,39 ud, 40°: 394. w) Nչ, p) wjn: 396. 90°-
$$\alpha$$
, $c \cdot \sin \alpha$,

$$c \cdot \cos \alpha$$
: 55°, ≈ 14 uul, ≈ 20 uul: 397. uu) $\frac{b}{2\cos \alpha}$, p) $\frac{b t g \alpha}{2}$:

398. bsinα: 400.
$$60 + 8\sqrt{3} \approx 74$$
 ul: 401. 60° , 120° , 60° lu 120° :

402. 60° \(\text{u} \) 30°: 403. 144
$$\sin 48^{\circ} \cos 48^{\circ} \approx 71,6 \ \text{u} \text{u}^{\circ}$$
:

404. 60 sin
$$34^{\circ} \approx 33.6$$
, 60 cos $34^{\circ} \approx 49.7$: 406. w) 270000 \mathfrak{t}^{2} .

p) 0,27
$$\mu$$
d²: 407. $46\frac{2}{3}$ μ d²: 408. 20 μ d: 409. 900 μ d²:

րի վրա վերցնել
$$M$$
 և N կետերն այնպես, որ $\frac{2}{2}$

$$BM = \frac{2}{3} BC$$
, $DN = \frac{2}{3} DC$, և տանել AM և AN ուղիղները։ 412*. Ոչ: $3nignil$: Համեմատել, օրինակ՝ 13, 13, 24 և 12, 12,

12 կողմերով եռանկյունների մակերեսները։ 413*. *Ցուցում։*

Միացնել հիմքի վրա գտնվող կետը հիմքին հանդիպակաց գագաթին և օգտվել նրանից, որ ստացված երկու

եռանկլունների մակերեսների գումարը հավասար է տր-

ված եռանկյան մակերեսին։ 414. *Ցուցում։* Խնդիրը լուծվում է 413* խնդրին համանման։ 415*. *Ցուցում։* Ապացուցել, որ լուրաքանչյուր եռանկյան մակերեսը հավասար է AEDF զուգահեռագծի մակերեսի կեսին։ 416. ա) և բ) եռանկյուննե– րի մակերեսները հավասար են։ գ) *Ցուցում։* Օգտվել բ) խնդրից և 43 կետի 2–րդ թեորեմից։ 417. 60 մ, 14,4 մ։ 418. ₁₀10 սմ։ 419. ut) $100\sqrt{3}$ utí², p) 18 utí²: 420. 320 utí²: 421. 84 utí²: 3nignutí: Սկզբում ապացուցել, որ ABC-ն և ACD-ն ուղղանկյուն եռանկլուններ են: 422. ա) 243 սմ 2 , բ) 529 սմ 2 : 423. h^2 : 424. a^2 : 426. 48 ut²: 427. $(\sqrt{2}-1)a^2$: 428. $3a^2$: 429. $4\sqrt{3}a^2$: 430. $22a^2$: 431. BE = $\frac{b}{2}$, AD = $\frac{b}{2}\sqrt{2+\sqrt{3}}$, AE = $\frac{b}{2}\sqrt{3}$, EC = $\frac{b}{2}(2-\sqrt{3})$, BC = $=b\sqrt{2-\sqrt{3}}$: 433. 2,61: 434. 5,53 ηd^2 : 435. w) 3,34 ud, p) 3,3 ud: 436. 3,40 d: 437*. w) Um, $S = (4 \pm 1)$ ud², p) wm, $S = (8 \pm 1)ud^2$, q) ns, puth nn 39,05 $ud^2 \le S \le 41,61ud^2$: 438. 8,13 ud: 439. w) 106 ud, p) 105,6 ud: 440*. w) Ns, pwùh nn 5,80 uứ ≤ c ≤ 6,08 uứ, p) min, $c = (5.9 \pm 0.2)$ uứ:

V գլխի վերաբերյալ

441. *Ցուցում։* Մեկրնդմեջ վեցանկյան կողմերը շարունակելով՝ ստանալ հավասարակողմ եռանկլուն։ **442**. *Ցուցում:* Նախ ապացուցել, որ $a_1 + a_2 + a_3 = a_3 + a_4 + a_5 = a_5 + a_4 + a_5 = a_5 + a_4 + a_5 = a_5 + a_5$ $= a_5 + a_6 + a_1$ ։ Այնուհետև կառուցել հավասարակողմ եռանկյուն, որի կողմը հավասար է $a_1 + a_2 + a_3$, և օգտվել 441 խնդրից։ 443. *Ցուցում։* Դիտարկել ինչպես ուռուցիկ, այնպես էլ ոչ ուռուցիկ քառանկյունների դեպքը. նրանցից չորս փայտասայիկով պատրաստել նոր սայիկ։ 444. *Ցուցում։* Դիցուք՝ *ABCD*–ն ուռուցիկ քառանկյուն է։ Նկա– տի ունենալ, որ C գագաթը գտնվում է BAD անկյան ներսում, այդ իսկ պատձառով AC ձառագայթն անցնում է այդ անկյան միջով և, հետևաբար, հատում է *BD* Ճառագայթը: Նմանապես դիտարկել BD ձառագայթը և ABC անկյունը։ 445. *Ցուցում։* Եթե տրված *ABCD* քառանկյունը ուռուցիկ է, ապա օգտվել 444 խնդրից։ Եթե ABCD-ն ուռուցիկ չէ, և, օրինակ, AB ուղիդը հատում է CD կողմը M կետում, ապա դիտարկել երկու դեպք. A–ն MB հատվածի կետ է, և B–ն AM հատվածի կետ է: 446. $\frac{a}{4}$: Ցուցում։ Դիցուք՝ P–ն DE և ABուղիղների հատման կետն է, $DO \parallel AC$ և $O \in AB$ ։ Նախ ապացուցել, որ APE-ն, AOD-ն և POD-ն հավասարասրուն եռանկլուններ են։ <u>447</u>. *Ցուզում։* Նախ ապացուցել $m_a < \frac{b+c}{2}$ և $m_a > \frac{a+b-c}{2}$ անհավասարությունները, որտեղ a–ն, b–ն, c–ն եռանկյան կողմերն են, m_a –ն՝ a կող– մին տարված միջնագիծը: 448. *Ցուցում:* Սկզբում ապացուցել, որ տրված քառանկյան անկյունագծերը հատման կետով կիսվում են։ 449. Տրված ուղղին ցուգահեռ ուղիդ։ 450. *Ցուցում:* Փոքր հիմքի միջնակետով տանել սրունըներին զուգահեռ ուղիդներ։ 451. *Ցուզում։* Նկատել, որ կիսորդների հատման կետերը ուղղանկյան գագաթներին միացնող հատվածներով ստացվում են ուղղանկլուն եռանկյուններ։ 452. 3ուցում։ Դիցուք՝ O_1 –ր, O_2 –ր, O_3 –ը, O₄–ր ABCD զուգահեռագծի AB, BC, CD և DA կողմերի վրա

կառուցված քառակուսիների անկլունագծերի հատման

կետերն են։ Սկզբում ապացուցել AO_1O_4 , BO_1O_2 , CO_2O_3 , DO_3O_4 եռանկյունների հավասարությունը։ 453. Snignit: AB Ճառագայթի վրա անջատել AM հատվածին հավասար AN hատվածը, տանել MN hատվածը և AMN եռանկյան NS բարձրությունը։ Այնուհետև ապացուցել, որ $\triangle ANS = \triangle MAD$ ly $\triangle AKB = \triangle NMS$: 454. 90°: 3nignit. Thցուք՝ D_1 կետր համաչափ է D կետին E կետի նկատմամբ։ Սկզբում ապազուցել, որ $\triangle ACD_1$ -ը հավասարասրուն ուղղանկլուն եռանկլուն է։ 455. 30°: *Ցուցում։ AM* Ճառագայթի վրա անջատել AK = AB հատվածը և դիտարկելով BKC եռանկլունը՝ ապացուցել, որ K կետը համընկնում է M կետին: 456. Snignit: Նախ ապացուցել, որ $\triangle BKP = \triangle ABC = \triangle CQT$: 457. *Snignid*: Twh ywnnigti hwվասարասրուն եռանկլուն, որի հիմքը հավասար է սեղանի հիմքերի գումարին, իսկ սրունքը՝ սեղանի անկյունագծին։ 458. ա) *Ցուզում։* Նախ ապացուցել, որ համաչափության առանցքը հատում է եռանկյան կողմերից մեկը։ 459. Ցուզում։ Դիցուք՝ MN-ը տրված ABCD ուռուցիկ քառանկլան AD և BC կողմերի միջնակետերը միացնող հատվածն է։ Նշել N կետի նկատմամբ D կետի համաչափ D_1 կետր և դիտարկել ABD_1 եռանկլունը։ 460. 3nւցում։Օգտվել 459 խնդրից։ 461. *Ցուցում։* Օգտվել 459 խնդրից։

VI գլխի վերաբերյալ

462. *Ցուզում:* Օգտագործել տրված շրջանագծերի M կետով տարված ընդհանուր շոշափողը։ 464. *Ցուցում։* O_1 և O_2 կետերից BC ուղղին տանել O_1H_1 և O_2H_2 ուղղահայացները և O_1H_1 ու O_2H_2 զուգահեռ ուղիդների միջև եղած հեռավորությունը համեմատել O_1O_2 հատվածի երկարության հետ։ 465. Դիցուք՝ CD-ն շրջանագծի AB տրամագծին ուղղահայաց տրամագիծ է։ Որոնելի կետերի բազմությունը բաղկացած է OC և OD հատվածների՝ որպես տրամագծերի վրա կառուցված երկու շրջանագծերից։ 466. *Ցուզում: A'* կետի արտագծլալ շրջանագծի վրա գտնապացուցելու համար նախ իիմնավորել՝ վելը $\angle A'CB = \angle BAA'$: 467. Snignit: Umh mymgnigh, np OE-h AC hատվածի միջնուդղահայացն է: 468. Ցուցում: Դիցուք՝ XC > XA և XC > XB: XC հատվածի վրա տեղադրել XA հատվածին հավասար XD հատվածը։ Հաշվի առնել, որ $\angle AXC = 60^\circ$, և ապացուցել AXB և ADC եռանկյունների հավասարությունը։ 470. 3nignul: Նախ կառուցել P_2Q_2 շառավիղով ու M կենտրոնով և O կենտրոնով OA շառավիղով երկու շրջանագիծ, որտեղ A–ն տրված շրջանագծի P_1Q_1 հատվածին հավասար որևէ լարի միջնակետն է։ Այնուհետև օգտվել 469 խնդրից։

VII գլխի վերաբերյալ

471. *Ցուցում։* Օգտվել *ABC* և *ADC*, *APM* և *ATM*, *MQC* և *MRC* եռանկյունների հավասարությունից։ Հակադարձ պնդումն ապացուցելու համար ենթադրել, որ *M* կետը գտնվում է *AC*–ի վրա, և ապացուցել, որ այդ դեպքում զուգահեռագծերի մակերեսները հավասար չեն։

472. $\frac{1}{5}$: 473. *Յուցում։* Դիցուք՝ MN–ը CD կողմի միջնակե–

տով AB–ին տարված ուղղահայացն է, իսկ MP–ն՝ միջին գիծը։ B կետով տանել AD–ին ուղղահայաց, դիտարկել MP և AB ներքնաձիգներով եռանկյունները և օգտվել հավասար անկյուն ունեցող եռանկյունների մակերեսների հարաբերության մասին թեորեմից։ 474. 3nւցում։ Նախ ապացուցել, որ զուգահեռագծի մակերեսը, որի կողմը սեղանի փոքր հիմքն է, հավասար է այն երկու եռանկյունների մակերեսների գումարին, որոնք հարակից են այդ հիմքին և սեղանի սրունքներին։ 475.~3nւցում։ Նախ ապացուցել, որ $S_{ABD}=S_{EDC}$ և $S_{BDK}=S_{CDK}$: 476.~3nւցում։ Ապացուցել, որ $S_{AKCM}=$

=
$$S_{\text{KBMD}} = \frac{1}{2}$$
 S_{ABCD} : 477. $2\sqrt{\frac{a^2 + ab + b^2}{3}}$: ອກເອກເປັ: Դիցուք՝

AB–ն և AD–ն տրված անկյան կողմերը պարունակող ուղիղներին ուղղահայացներն են, իսկ C–ն AB և OD ուղիղերի հատման կետն է։ Դիտարկել ADC և OBC ուղղանկ-յուն եռանկյունները։ 478. $\frac{\alpha}{2}$: 3nugnul: Նախ ապացուցել,

որ DCK և DCM եռանկյունների մակերեսները հավասար են, որիզ կհետևի $KM \mid\mid DC$ և $\angle BKM = \angle BDC$: 479. $\sqrt{a^2+c^2-b^2}$ ։ ${\it Snignul: M}$ կետով տանել ուղղանկ-

յան կողմերին զուգահեռ ուղիղներ և դիտարկել առաջացած ուղղանկյուն եռանկյունները։ 480.~3ուցում։ Դիցուք՝ AB=c,~BC=a,~BD=h։ Օգտագործելով Պյութագորասի թեորեմը՝ ապացուցել, որ $MB=\sqrt{a^2+c^2-h^2}$ և $KB=\sqrt{a^2+c^2-h^2}$ ։ 481.~3ուցում։ AC և CB կողմերին տանել OM և ON ուղղահայացները և ապացուցել, որ $OM=\frac{1}{3}$ $CB,~ON=\frac{1}{3}$ AC։ Այնուհետև օգտվել Պյութագորասի թեորեմից AOM,~BON~u COM եռանկյունների համար։ $482.~\frac{a}{\sqrt{2}}$ ։ 3ուցում։ Դիցուք՝

ABC–ն տրված եռանկյունն է, իսկ D–ն այն քառակուսու անկյունագծերի հատման կետն է, որը կառուցված է BC ներքնաձիգի վրա։ CA Ճառագայթի շարունակության վրա նշել E կետն այնպես, որ AE = CB, և E–ն միացնել D կետին։ Ցույց տալ, որ $\Delta EAD = \Delta DCB$ ։ 483. 3nugnւմ։ ABC եռանկյան միջնագծերից մեկի ծայրակետերից տանել մյուս միջնագծերին զուգահեռներ և օգտվել նրանից, որ առաջացած եռանկյունը հավասար է EFG եռանկյանը։ 484. 3nugnւմ։ Դիցուք՝ <math>ABCD–ն տրված քառանկյունն է։ Տանել BB_1 տրամագիծը և նախ ապացուցել, որ $AB_1 = CD$ ։ 485. 3nugnւմ։ Նախ ապացուցել, որ փոքրագույնը այն լարն է, որն ուղղահայաց է տրված կետով անցնող տրամագծին։

Թարգմանչի կողմից կատարված լրացումներ

```
Թեմաներ՝ գլուխ V-ի կետեր՝ 12, 13, 14, 15, 16 գլուխ VI-ի կետեր՝ 29, 30, 31, 36, 37, 38 գլուխ VII-ի կետեր՝ 45, 46 Խնդիրներ՝ 4-9, 14, 18-23, 33, 35-42, 44-46, 48-50, 53, 54, 59-62, 67-71, 80-82, 86-103, 123-138, 141-143, 148, 153, 164, 169-171, 173, 181, 198-201, 203-216, 220, 223-235, 251-264, 287, 288, 301, 302, 305-310, 313, 321-325, 333-337, 339-341, 343, 345-348, 351-365, 380, 385-388, 428-430
```

ԲՈՎԱՆԴԱԿՈՒԹՅՈՒՆ

ԳԼՈՒԽ V. Քառանկյուններ

§ 1. ԲԱԶՄԱՆԿՅՈՒՆՆԵՐ	
1. Բազմանկյուն	
2. Ուոուցիկ բազմանկյուն	
3. Քառանկյուն	
ζω[ιζα[ι α [ααιξ[ι[ιαα[ι	
§ 2. ԶՈՒԳԱՀԵՌԱԳԻԾ	6
4. Զուգահեռագիծ	6
5. Զուգահեռագծի հայտանիշները	
Խնդիրներ	8
§ 3. ԹԱԼԵՍԻ ԹԵՈՐԵՄԸ։ ՍԵՂԱՆ	10
6. Եռանկյան միջին գիծը	
7. Թալեսի թեորեմը	
8. Սեղան	
Խնդիրներ	13
§ 4. ՈՒՂՂԱՆԿՅՈՒՆ, ՇԵՂԱՆԿՅՈՒՆ, ՔԱՌԱԿՈՒՍՒ.	15
9. Ուղղանկլուն	IO
9. Ուղղասվյուս 10. Շեղանկլուն և քառակուսի	
10. Ծաղանգյուն և քառագուսը 11. Առանցքային և կենտրոնային	15
իամաչափություններ	16
Հարցեր և խնդիրներ	18
Կառուցման խնդիրների լուծումը	
Կառուցման խնդիրներ	
§ 5. ՊԱՏԿԵՐԱՅՈՒՄ ԲԱԶՄԱՆԻՍՏԵՐԻ ՄԱՍԻՆ	24
12. Տարածական պատկերներ	
13. Զուգահեռանիստ	
14. Ուղղանկյունանիստ և խորանարդ	26
15. Պրիզմա (հատվածակողմ)	26
16. Fnipq	27
Հարցեր և խնդիրներ	28
Գլուխ V–ի կրկնության հարցեր	30
<u> </u>	32
ԳԼՈՒԽ VI. Շրջանագիծ	
§ 1. <mark>ԼԱՐԻ ՄԻՋՆԱԿԵՏ</mark> ՈՎ ԱՆՑՆՈՂ ՇԱՌԱՎԻՂԸ	35
17. Երկու կետերով անցնող շրջանագիծ	
18. Լարի միջնակետով անցնող շառավիդը	36
19. Շրջանագծի որոշումը երեք կետերով	37
Խնդիրներ	38
§ 2. ՇՐՁԱՆԱԳԾԻ ՇՈՇԱՓՈՂ	40
20. Շրջանագծի և ուղղի փոխադարձ	40
դասավորությունը	
21. Շրջանագծի շոշափողԽնոհոներ	
	IJ

§ 3. ԿԵՆՏՐՈՆԱՅԻՆ ԵՎ ՆԵՐԳԾՅԱԼ	
ԱՆԿՅՈՒՆՆԵՐ	
22. Շրջանագծի աղեղի աստիձանային չափը	
23. Թեորեմ ներգծյալ անկյան մասին	
Խնդիրներ	48
§ 4. ԵՌԱՆԿՅԱՆ ՉՈՐՍ ՆՇԱՆԱՎՈՐ ԿԵՏԵՐԸ	
24. Անկյան կիսորդի և հատվածի միջնուղղա	
իատկությունները	52
25. Թեորեմ եռանկյան բարձրությունների	E 4
հատման կետի մասին 26. Եռանկյան միջնագծերի հատման կետր	
շo. Ծռանվյան կիչմագծների հանման կննվ։ Խնդիրներ	
1941[[[[144]]	
§ 5. ՆԵՐԳԾՅԱԼ ԵՎ ԱՐՏԱԳԾՅԱԼ	
ՇՐՋԱՆԱԳԾԵՐ	58
27. Ներգծյալ շրջանագիծ	
28. Արտագծյալ շրջանագիծ	
Խնդիրներ	
§ 6. ԿԵՏԵՐԻ ԵՐԿՐԱՉԱՓԱԿԱՆ ՏԵՂԸ	64
29. Երկու շրջանագծերի փոխադարձ	
դասավորությունը	
30. Կետերի երկրաչափական տեղը	
31. Պատկերացում էլիպսի մասին	
Խնդիրներ	09
§ 7. ԿԱՆՈՆԱՎՈՐ ԲԱԶՄԱՆԿՅՈՒՆՆԵՐ	71
32. Կանոնավոր բազմանկյուն	
33. Կանոնավոր բազմանկյանը արտագծած	
շրջանագիծ	
34. Կանոնավոր բազմանկյանը ներգծած	
շրջանագիծ	
35. Կանոնավոր բազմանկյունների կառուցում	
Հարցեր և խնդիրներ	75
§ 8. ՊԱՏԿԵՐԱՑՈՒՄ ԳԼԱՆԻ, ԿՈՆԻ	
ԵՎ ԳՆԴԻ ՄԱՍԻՆ	
36. Պատկերացում գլանի մասին 37. Պատկերացում կոնի մասին	
38. Պատկերացում գնդի մասին38.	
Հարցեր և խնդիրներ	
Taligati a faaifiliaati	
Գլուխ VI–ի կրկնության հարցեր	83
Լրացուցիչ խնդիրներ	85
. 5 5121 111 1	
ԳԼՈՒԽ VII. Մակերես	
ea allairiis Leilis Iriii Latua	04
§ 1. ԲԱԶՄԱՆԿՅԱՆ ՄԱԿԵՐԵՍԸ39. Բազմանկյան մակերեսի հասկացությունը	
39. Բազսասվյան սավերեսը ուսակացությունը 40.* Քառակուսու մակերեսը	
40. Քառավուսու սավսրսսը 41. Ուղղանկյան մակերեսը	
Հարզեր և խնդիրներ	

§ 2. ԶՈՒԳԱՀԵՌԱԳԾԻ, ԵՌԱՆԿՅԱՆ
ԵՎ ՍԵՂԱՆԻ ՄԱԿԵՐԵՍՆԵՐԸ 99
42. Զուգահեռագծի մակերեսը99
43. Եռանկյան մակերեսը100
44. Սեղանի մակերեսը
Ինդիրներ
§ 3. ԽՈՐԱՆԱՐԴԻ ԵՎ ՈՒՂՂԱՆԿՅՈՒՆԱՆԻՍՏԻ
ՄԱԿԵՐԵՎՈՒՅԹՆԵՐԻ ՄԱԿԵՐԵՍՆԵՐԸ106
45. Խորանարդի մակերևույթի մակերեսը106
46. Ուղղանկյունանիստի մակերևույթի մակերեսը107
Հարզեր և խնդիրներ
§ 4. ՊՅՈՒԹԱԳՈՐԱՍԻ ԹԵՈՐԵՄԸ 110
47. Պյութագորասի թեորեմը110
48. Պյութագորասի թեորեմի հակադարձ թեորեմը111
Խնդիրներ112
§ 5. ԱՌՆՉՈՒԹՅՈՒՆՆԵՐ ՈՒՂՂԱՆԿՅՈՒՆ
ԵՌԱՆԿՅԱՆ ԿՈՂՄԵՐԻ ԵՎ
ԱՆԿՅՈՒՆՆԵՐԻ ՄԻՋԵՎ 115
49. Ուղղանկյուն եռանկյան սուր
անկյան սինուսը, կոսինուսը և տանգենսը115
50. Սինուսի, կոսինուսի և տանգենսի
արժեքները 30 ° , 45 ° և 60 ° անկլունների
համար117
51. Առնչություններ ուղղանկյուն եռանկյան
կողմերի և անկյունների միջև118
Հարցեր և խնդիրներ119
Գլուխ VII–ի կրկնության հարցեր121
Լրացուցիչ խնդիրներ122
Հաշվարկիչի օգնությամբ լուծելու խնդիրներ125
Tangari ali ali ali ali ali ali ali ali ali al
ԴԺՎԱՐԻՆ ԽՆԴԻՐՆԵՐ126
V գլխի վերաբերյալ126
VI գլխի վերաբերյալ128
VII գլխի վերաբերյալ
iii i i i i i i i i i i i i i i i i i
ՊԱՏԱՍԽԱՆՆԵՐ ԵՎ ՑՈՒՑՈՒՄՆԵՐ 131

Լևոն Սերգելի Աթանասյան, Վայենտին Ֆլոդորի Բուտուգով, Սերգել Բորիսի Կադոմզև, Էդուարդ Հենրիկի Պոզնյակ, Իրինա Իգորի Յուդինա

ԵՐԿՐԱՉԱՓՈՒԹՅՈՒՆ

Դասագիրք հանրակրթական դպրոցի 8–րդ դասարանի համար

Թարգմանությունը՝ *Սարիբեկ Էլիբեկի Հակոբյանի*

Левон Сергеевич Атанасян, Валентин Федорович Бутузов, Сергей Борисович Кадомцев, Эдуард Генрихович Позняк, Ирина Игоревна Юдина

ГЕОМЕТРИЯ

Vчебник лля 8-го класса (на армянском языке) Ереван "Зангак" 2012

Перевод: Сарибека Элибековича Акопяна

Հրատարակչության տնօրեն՝ Գեղարվեստական խմբագիր՝ Վերստուգող սրբագրիչ՝ Համակարգչային ձևավորող՝ Համակարգչային մուտքագրող՝

Եմին Մկրտչյան Արա Բաղդասարլան Նվարդ Փարսադանյան Արևիկ Հակոբյան Գոհար Խաչատրլան

Տպագրությունը՝ օֆսեթ։ Չափսը՝ 70x100 1/16։ Թուղթը՝ օֆսեթ։ Տառատեսակը՝ «Մաշտոց Նոր»։ Ծավալը՝ 9 տպ. մամուլ, 11,7 պայմ. մամուլ, 31,6 հրատ. մամուլ։ Տպաքանակը՝ 35 750 օրինակ։ Պատվեր՝ N04/Հ-12

> Печать офсетная. Формат 70х100 1/16. Бумага офсетная. Гарнитура "Маштоц Нор". Печ. л. 9. Усл. л. 11,7. Уч.-изд. л. 31,6. Тираж 35 750 экземпляров. Заказ N04/<-12.

ՏՏ, 0051, Երևան, Կոմիտասի պող. 49/2, հեռ.՝ (+37410) 23 25 28 **Фири**` (+37410) 23 25 95, Ц. фпиф` info@zangak.am Էլ. կայքեր՝ www.zangak.am, www.book.am, www.dasagirq.am

ИЗДАТЕЛЬСТВО «ЗАНГАК»

РА, 0051, Ереван, пр. Комитаса 49/2, тел.: (+37410) 23 25 28 Факс: (+37410) 23 25 95, эл. почта: info@zangak.am Эл. сайты: www.zangak.am , www.book.am, www.dasagirq.am