

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/656,280	09/08/2003	Tatsuya Niimi	242548US2	7137
22850	7590	07/07/2008	EXAMINER	
OBLON, SPIVAK, MCCLELLAND MAIER & NEUSTADT, P.C.			DOE, JANIS L	
1940 DUKE STREET			ART UNIT	PAPER NUMBER
ALEXANDRIA, VA 22314			1795	
			NOTIFICATION DATE	DELIVERY MODE
			07/07/2008	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

patentdocket@oblon.com
oblonpat@oblon.com
jgardner@oblon.com

Office Action Summary	Application No.	Applicant(s)	
	10/656,280	NIIMI ET AL.	
	Examiner	Art Unit	
	Janis L. Dote	1795	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 08 February 2008.

2a) This action is **FINAL**. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-15 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1-15 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date _____.

4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____.

5) Notice of Informal Patent Application

6) Other: _____.

Art Unit: 1795

1. The examiner acknowledges the amendments to claims 1, 5, and 14 filed on Feb. 8, 2008. Claims 1-15 are pending.

2. The examiner notes that the "Listing of claims" filed on Feb. 8, 2008, does not comply with 37 CFR 1.121. That "Listing" improperly labels claim 1 as "Previously Presented." Claim 1 should be labeled as "Currently Amended" because it includes "markings" that indicate addition and deletion of text.

Nonetheless, in the interest of compact prosecution, the "Listing of claims" filed on Feb. 8, 2008, has been entered and replaces all prior versions and listings of claims in the instant application.

If claim 1 is not amended, in reply to this office action, applicants should file a proper "listing of claims" that labels that claim as "Previously Presented."

3. Applicants' election without traverse of the invention of Group I, claims 1-15, in the reply filed on Nov. 14, 2005, is acknowledged.

4. The objection to claim 14 set forth in the office action mailed on Nov. 8, 2007, paragraph 6, has been withdrawn in response to the amendment to claim 14 filed on Feb. 8, 2008.

Art Unit: 1795

5. The examiner notes that the instant specification at page 20, lines 13-18, defines the term "proximal charging system charging member" recited in instant claim 12 as "a charging member which is not brought into contact with but proximal to the surface of the photoconductor so as to have a gap of 200 μm or less between the surface of a photoconductor and the surface of the charging member."

6. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.

7. Claims 1, 2, 5, 7, 8, 10, 11, 13, and 15 are rejected under 35 U.S.C. 102(e) as being anticipated by, or in the alternative, under 35 U.S.C. 103(a) as obvious over US 6,853,823 (Sugino), as evidenced by applicants' admissions at page 3, line 10, to page 4, line 10, and page 10, lines 12-13 (applicants' admission 1).

Sugino discloses an image forming apparatus and a process cartridge that meet the apparatus and the process cartridge structural limitations recited in the instant claims. The image forming apparatus comprises a photoreceptor **1**, a charger **3**, a light irradiator **5**, an image developer **6**, and a transfer device **10, 11**. Fig. 3, and col. 10, line 53, to col. 11,

line 15. Sugino further teaches an image forming apparatus comprising a plurality of image forming units, each comprising a photoreceptor **101**, a charger, a light irradiator, an image developer, a cleaner, and a transfer device **102**. Fig. 5 and col. 12, lines 34-43. Sugino also teaches a process cartridge that comprises a photoreceptor with a charger, an image irradiator, or an image developer. See reference claim 9. Sugino teaches that the charger can be a charging roller, which meets the charger limitation recited in instant claims 11 and 13. Col. 10, lines 60-61. Sugino teaches that the light irradiator can emit a write light having a resolution of 600 dpi, 1,200 dpi, or 2,400 dpi. Col. 17, lines 25-27; and col. 19, lines 24-26. The Sugino photoreceptor comprises a conductive support, a charge generation layer, a charge transport layer disposed on the charge generation layer, and a protective layer. Example 1 at cols. 16-17. The charge transport layer is formed using tetrahydrofuran, a non-halogen solvent, which meets the solvent limitations recited in instant claims 7 and 8. The protective layer comprises alumina fine particles, which meet the protective layer limitations recited in instant claim 5. The charge generation layer comprises titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern having a maximum peak at a Bragg angle of

Art Unit: 1795

27.2°, a lowest peak at 7.3°, peaks at 9.4°, 9.6°, and 24°, no peaks between 7.4° and 9.3°, and no peak at 26.3°. Fig. 7; and example 1. The location of the peaks at angles 7.3°, 9.4°, 9.6°, 24°, and 27.2° were determined by measuring the positions of the peaks with a ruler and interpolating the positions on the x-axis scale in Fig. 7. The X-ray diffraction pattern meets the peak location limitations recited in instant claims 1 and 2.

Sugino does not disclose that the X-ray diffraction was obtained with the Cu-K α wavelength of 1.542 Å. However, as discussed above, the Sugino X-ray diffraction pattern meets the peak location limitations recited in instant claims 1 and 2. Accordingly, it is reasonable to presume that the X-ray diffraction pattern disclosed in Sugino was determined with Cu-K α X-ray radiation having the Cu-K α wavelength of 1.542 Å as recited in the instant claims. The burden is on applicants to prove otherwise. In re Fitzgerald, 205 USPQ 594 (CCPA 1980).

Sugino does not expressly describe its image developer **6** being "configured to" develop a latent electrostatic image formed on the photoreceptor within 200 msec after the surface of the photoreceptor is exposed by its light irradiator **5** as recited in instant claim 1. Nor does Sugino expressly describe its light irradiator **5** being "configured to irradiate" a write light to the surface of the photoreceptor with an exposure

energy of 5 erg/cm² or less as recited in instant claim 1.

However, for the reasons discussed supra, the apparatus and the process cartridge disclosed by Sugino meet all of the structural limitations and compositional limitations recited in the instant claims. The recitations of how much energy is provided by the light irradiator and of how fast the apparatus develops a latent electrostatic image after light exposure do not distinguish the structural elements in the instantly claimed apparatus and process cartridge from those in the apparatus and process cartridge disclosed by the cited prior art. "Claims directed to an apparatus must be distinguished from the prior art in terms of structure rather than function." MPEP 2114 and cases cited therein. "A claim containing a 'recitation with respect to the manner in which a claimed apparatus is intended to be employed does not differentiate the claimed apparatus from a prior art apparatus' if the prior art apparatus teaches all the structural limitations of the claim." MPEP 2114, citing Ex parte Masham, 2 USPQ2d 1647 (Bd. Pat. App. & Inter. 1987).

Furthermore, according to Sugino, its image forming apparatus and tandem full color image forming apparatus are "high-speed printing" apparatuses that provide simultaneously "high-quality image production and high durability." Col. 2, lines 63-67, and col. 3, lines 58-63. According to the instant

Art Unit: 1795

specification, the characteristic time in speedup monochrome electrophotographic apparatuses known in the art from a "writing portion," i.e., exposure from the light irradiator in the apparatus, to a "development portion," i.e., development of the latent image with a toner, is "about 200 msec at the longest." See the instant specification, the paragraph bridging pages 3 and 4. Thus, the time between light writing and development of "within 200 msec" recited in instant claim 1 appears to be characteristic of the state of art as of the filing date of the instant application. The instant specification further discloses that in tandem full-color electrophotographic apparatuses, where the photoconductors have a diameter of 30 μm and the copying speed reaches 30 sheets/min or greater, "the time between exposure and development can be set only equal to or less than that of the monochrome electrophotographic apparatus." Page 4, lines 2-10. Thus, a person having ordinary skill in the art would have reasonably expected that the time from exposure to development in "speedup" image forming apparatuses based on the state of the art, such as those taught by Sugino, is at most 200 msec.

Moreover, according to the instant specification at page 10, lines 12-13, its image forming apparatus provides "stable images free of line thickening even after repeated use

Art Unit: 1795

at high speed." As discussed above, the Sugino image forming apparatuses meet all the structural and compositional limitations recited in the instant claims. Sugino teaches that its image forming apparatuses are "high-speed printing" apparatuses that provide "high-quality image production." According to Sugino, when an image forming apparatus comprises its photoreceptor in example 1 and images are formed with a writing light of 600 dpi resolution, that apparatus provides 500,000 "good" images. See example 1 and Table 1, example 1. Thus, because the Sugino image forming apparatus meets all the recited structural and compositional limitations of the instant claims and provides 500,000 "good" images of 600 dpi, i.e., stable images after repeated use, it is reasonable to presume that its light irradiator provides an exposure energy as recited in instant claim 1. The burden is on applicants to show otherwise.

8. US 2003/0104295 (Niimi'295) has an effective US filing date of Mar. 22, 2002, and was published on Jun. 5, 2003. Both dates are prior to the US filing date, Sep. 8, 2003, of the instant specification. Thus, Niimi'295 qualifies as prior art under 35 U.S.C. 102(a), as well as under 35 U.S.C. 102(e). Accordingly, Niimi'295 qualifies as prior art under 35 U.S.C. 103(c).

Art Unit: 1795

9. Claims 1, 2, and 4-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Niimi'295, as evidenced by applicants' admissions at page 3, line 10, to page 4, line 10 (applicants' admission 2), Japanese Patent 2000-319538 (JP'538), as evidenced by Ladd et al., Structure Determination by X-ray Diffraction, p. 426 (Ladd), combined with US 2001/0022343 (Sakai). See the USPTO English-language translation of JP'538 for cites.

Niimi'295 discloses an image forming apparatus and a process cartridge. The image forming apparatus comprises a photoreceptor **6**, a charger **8**, a light irradiator **10**, an image developer **11**, and a transfer device **15**. Fig. 5 and paragraphs 0115, 0116, and 0122. Niimi'295 further teaches an image forming apparatus comprising a plurality of image forming units, each comprising a photoreceptor, a charger, a light irradiator, an image developer, and a transfer device. Fig. 10 and paragraphs 0127-0128. Niimi'295 also teaches a process cartridge that comprises a photoreceptor with a charger, an image irradiator, an image developer, and a cleaner. Fig. 7 and paragraph 0126. Niimi'295 teaches that the charger can be a contact charging system, such as a contact charging roller, as recited in instant claim 11, or a non-contact proximal charging system as recited in instant claims 12 and 13.

Paragraphs 0117-0118. Niimi'295 also teaches that an alternating superimposed voltage can be applied to the charger, which meets the charger limitation recited in instant claim 14.

Paragraph 0119.

Niimi'295 exemplifies a photoreceptor comprising a conductive support, a charge generation layer, a charge transport layer disposed on the charge generation layer, and three protective layers. See example 14 at pages 24-26. All three protective layers comprise α -alumina fine particles having a resistivity of $2.5 \times 10^{12} \Omega \cdot \text{cm}$, which meets the protective layer limitations recited in instant claims 5 and 6. Niimi'295 further discloses that the three protective layers can comprise a charge transferring polycarbonate having a side-chain comprising a triarylamine structure; and that they are formed using non-halogen solvents such as tetrahydrofuran and cyclohexanone. See example 7 at pages 21-22, and example 14. Because the first and second protective layers comprise the charge transferring polycarbonate, the layers are characterizable as charge transport layers and therefore meet the charge transport layer limitations recited in instant claims 4, 7, and 8. Niimi'295 also teaches that the conductive support can be an anodized surface as recited in instant claim 9. Paragraphs 0047-0048. The charge generation layer

comprises titanyl phthalocyanine crystals dispersed in a binder resin. The titanyl phthalocyanine crystals exhibit an X-ray diffraction pattern having a maximum peak at a Bragg angle of 27.2° , a lowest peak at 7.3° , peaks at 9.4° , 9.6° , and 24° , no peaks between 7.4° and 9.3° , and no peak at 26.3° . See Fig. 8. The location of the peaks at angles 7.3° , 9.4° , 9.6° , 24° , and 27.2° were determined by measuring the positions of the peaks with a ruler and interpolating the positions on the x-axis scale in Fig. 8. The X-ray diffraction pattern meets the peak location limitations recited in instant claims 1 and 2.

Niimi'295 does not disclose that the X-ray diffraction was obtained with the Cu-K α wavelength of 1.542 Å. However, as discussed above, the Niimi'295 X-ray diffraction pattern meets the peak location limitations recited in instant claims 1 and 2. Accordingly, it is reasonable to presume that the X-ray diffraction pattern disclosed in Niimi'295 was determined with Cu-K α X-ray radiation having a wavelength of 1.542 Å as recited in the instant claims. The burden is on applicants to prove otherwise. Fitzgerald, supra.

Niimi'295 does not disclose that its light irradiator is "configured to irradiate a write light having a resolution of 600 dpi or greater" as recited in instant claim 1.

Sakai discloses a multi-beam scanning device to imagewise irradiate the charged photoconductor to form a latent electrostatic latent image. The multi-beam scanning device comprises a semiconductor laser (i.e., a laser diode) array **112** and a rotary polygonal mirror **152**. Fig. 6, paragraph 0131. The writing density of the multi-beam scanning device is 1200 dpi and the laser beam has a beam spot diameter of 30 μm .

Paragraph 0137. The writing density of 1200 dpi meets the resolution limitations recited in instant claim 1. According to Sakai, the multi-beam scanning device "effectively reduces the variations of the beam spots on the scanned surface to a smallest possible level so that the multi-beam scanning is carried out with accurate beam spot diameter so as to create good quality reproduced image." Sakai discloses that in conventional multi-beam scanning devices, the divergence angle of the laser beams emitted by the semiconductor laser array is liable to variations that cause the degradation of the quality of a reproduced image. Paragraph 0009.

It would have been obvious for a person having ordinary skill in the art to use the Sakai multi-beam scanning device as the light irradiator in the apparatus or the process cartridge disclosed by Niimi'295. That person would have had a reasonable expectation of successfully obtaining an image forming apparatus

Art Unit: 1795

and a process cartridge that provide good quality reproduced images having a resolution of 1200 dpi.

The cited prior art does not expressly describe an image developer "configured to" develop a latent electrostatic image formed on the surface of the photoreceptor within 200 msec after the surface of the photoreceptor is exposed by the light irradiator as recited in instant claim 1. Nor does cited prior art expressly describe a light irradiator "configured to" irradiate a write light on the surface of the photoreceptor with an exposure energy of 5 erg/cm² or less as recited in instant claim 1.

However, said recitations are merely functional language describing how the apparatus functions. For the reasons discussed supra, the apparatuses and process cartridge rendered obvious over the combined teachings of the prior art meet all of the structural and compositional limitations recited in the instant claims. The functional recitations do not distinguish the structural elements in the instantly claimed apparatus and process cartridge from those in the apparatuses and process cartridge rendered obvious over the cited prior art.

Furthermore, according to Niimi'295, by using its image forming apparatuses and process cartridge, "high speed printing is possible . . . high qualities images can be formed steadily

Art Unit: 1795

even after repeated use." Paragraph 0023. According to the instant specification, the characteristic time in known speedup monochrome electrophotographic apparatuses from a "writing portion," i.e., exposure from the light irradiator in the apparatus, to a "development portion," i.e., development of the latent image with a toner, is "about 200 msec at the longest." See the instant specification, the paragraph bridging pages 3 and 4. Thus, the time between exposure and development of "within 200 msec" recited in instant claim 1 appears to be characteristic of the state of the art as of the filing date of the instant application. The instant specification further discloses that in tandem full-color electrophotographic apparatuses, where the photoconductors have a diameter of 30 μm and the copying speed reaches 30 sheets/min or greater, "the time between exposure and development can be set only equal to or less than that of the monochrome electrophotographic apparatus." Page 4, lines 2-10. Thus, a person having ordinary skill in the art would have reasonably expected that the time from exposure to development in speedup image forming apparatuses based on the state of the art, such as those taught by Niimi'295, is at most 200 msec.

Moreover, as discussed above, Niimi'295 teaches a photoreceptor that meets all the structural and compositional

limitations recited in the instant claims. In addition, in example 14 of Niimi'295, a semiconductor laser of 780 nm is used as the light source for image exposure. JP'538 exemplifies a photoreceptor comprising a charge generation layer comprising titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern that is similar to that of the Niimi'295 titanyl phthalocyanine crystals and that meets the peak locations recited in instant claims 1 and 2. The JP'538 X-ray diffraction pattern has a maximum peak at a Bragg angle of $27.2^\circ \pm 0.2^\circ$ and a lowest peak at an angle of 7.3° , when a specific X-ray of Cu-K α having a wavelength of 1.514 Å irradiates the titanyl phthalocyanine pigment. Translation, paragraph 0012, and example 1 in paragraphs 0047-0052 and in Table 1, and Fig. 5. JP'538 teaches that there are no peaks between Bragg angles 7.4° and 9.4° . Translation, paragraph 0012. The interval between the peaks meets the limitation of "not having a peak within the range of from 7.4 to 9.3° " recited in instant claim 1. The diffraction spectrum further has a peak at 9.5° , a peak at 9.7° , a peak at 24° , and no peak at 26.3° . See Fig. 5. The peaks at 27.2° , 7.3° , 9.5° , 9.7° , and 24° , and no peak at 26.3° meet the limitations in the "X-ray diffraction spectrum" recited in instant claims 1 and 2. The locations of the peaks at angles 9.5° , 9.7° , and 24° were determined by measuring the positions of

the peaks with a ruler and correlating the positions with the x-axis in Fig. 5. (The JP'538 reported wavelength of 1.514 Å appears to be a typographical error. The "Cu-K α wavelength" of 1.514 Å does not appear to exist. It is well known that the Cu-K α spectra line is a doublet consisting of α 1 (λ = 1.5405) and α 2 (λ = 1.5443). The weighted mean K α line is 1.542 Å, which is the value normally used in Cu-K α X-ray diffraction. See Ladd, p. 426. Accordingly, because JP'538 teaches using the X-ray of Cu-K α and that Cu-K α is known in the art to have mean wavelength of 1.542 Å, it is reasonable to presume that the X-ray diffraction spectrum disclosed in JP'538 is determined with Cu-K α having a wavelength of 1.542 Å. The burden is on applicants to prove otherwise. Fitzgerald, supra.) According to JP'538, the light exposure energy at a wavelength of 780 nm required to reduce the surface potential of the photoreceptor 15 seconds after charging is 0.20 μ J/cm², i.e., 2 erg/cm². See Table 3 at page 29 and the accompanying text. The light exposure energy of 2 erg/cm² is within the range of "5 erg/cm² or less" recited in instant claim 1. Accordingly, because the Niimi'295 photoreceptor comprises titanyl phthalocyanine crystals that appear to exhibit a X-ray diffraction pattern that is similar to that of JP'538, it is reasonable to presume that the photosensitivity of the Niimi'295 photoreceptor would also

be similar to that in JP'538. The burden is on applicants to prove otherwise.

Thus, it would have obvious for a person having ordinary skill in the art to minimize, through routine experimentation, the light exposure energy in the image forming apparatus rendered obvious over the combined teachings of Niimi'295 and Sakai such that the light exposure is within the range of 5 erg/cm² or less as recited in instant claim 1. The "motivation" to minimize the light exposure energy is the common technological desire to maximize the efficient use of energy in processes and apparatuses.

10. Claim 3 is rejected under 35 U.S.C. 103(a) as being unpatentable over Niimi'295 combined with Sakai, as evidenced by applicants' admission 2, JP'538, and Ladd, as applied to claim 1 above, further combined with Japanese Patent 11-140337 (JP'337), as evidenced by Ladd. See the USPTO English-language translations of JP'538 and JP'337 for cites.

The claim is rejected for the reasons set forth in the office action mailed on Nov. 8, 2007, paragraph 11, which is incorporated herein by reference.

11. Claims 1, 2, 5-8, 10, 11, and 13-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over US 2002/0076633 A1 (Niimi'633), as evidenced by applicants' admission 2, JP'538, and Ladd, combined with Sakai. See the USPTO translation of JP'538 for cites.

Niimi'633 discloses an image forming apparatus that comprises a photoreceptor **1**, a charger **8**, a light irradiator **10**, an image developer **11**, and a transfer device **15a**, **15b**. Fig. 3 paragraphs 0061 and 0300-0305. Niimi'633 further teaches an image forming apparatus comprising a plurality of image forming units, each comprising a photoreceptor, a charger, a light irradiator, an image developer, a cleaner, and a transfer device. Fig. 7 and paragraphs 0320-0324. Niimi'633 teaches that the charger can be a contact charging system, such as a contact charging roller, as recited in instant claim 11. Paragraph 0302 and Fig. 3, reference label **8**. Because the contact charging roller is in contact with the photoconductor, it meets the charger limitation recited in instant claim 13 that the gap between the charging member and the photoconductor is "200 μ m or less." Niimi'633 also teaches that an alternating superimposed voltage can be applied to the charger, which meets the charger limitation recited in instant claim 14.

Paragraph 0302.

Niimi'633 exemplifies a photoreceptor comprising an aluminum conductive drum, a charge generation layer, a charge transport layer disposed on the charge generation layer, and a protective layer. See example 28 at pages 32-33. The protective layer comprises particulate alumina having a specific resistivity of $2.5 \times 10^{12} \Omega \cdot \text{cm}$, which meets the protective layer limitations recited in instant claims 5 and 6. The charge generation layer comprises titanyl phthalocyanine crystals dispersed in a binder resin. The charge generation layer comprises titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern having a maximum peak at a Bragg angle ($2\theta \pm 0.2^\circ$) of 27.2° , a lowest peak at 7.3° , peaks at 9.4° , 9.6° , and 24° , no peaks between 7.4° and 9.3° , and no peak at 26.3° . The diffraction pattern is obtained by irradiating the titanyl phthalocyanine with an X-ray of Cu-K α having a wavelength of "1.541 Å." Paragraph 0151; Fig. 6; and example 28 at pages 32-33. The location of the peaks at angles 7.3° , 9.4° , 9.6° , and 24° were determined by measuring the positions of the peaks with a ruler and interpolating the positions on the x-axis scale in Fig. 6. The titanyl phthalocyanine meets the phthalocyanine limitations recited in instant claims 1 and 2.

Niimi'633 further teaches that the charge transport layer can be formed from a non-halogen solvent, such as

Art Unit: 1795

tetrahydrofuran or dioxane, which meets the solvent limitations recited in instant claims 7 and 8. Paragraph 0173 and example 1 in paragraphs 0364-0367.

Niimi' 633 does not disclose that its light irradiator is "configured to irradiate a write light having a resolution of 600 dpi or greater" as recited in the instant claims.

Sakai discloses a multi-beam scanning device to imagewise irradiate the charged photoconductor to form a latent electrostatic latent image. The multi-beam scanning device comprises a semiconductor laser (or laser diode) array **112** and a rotary polygonal mirror **152**. The scanning device provides a writing density of 1200 dpi and the laser beam has a beam spot diameter of 30 μ m. The discussion of Sakai in paragraph 9 above is incorporated herein by reference.

It would have been obvious for a person having ordinary skill in the art to use the Sakai multi-beam scanning device as the light irradiator in the apparatus disclosed by Niimi' 633. That person would have had a reasonable expectation of successfully obtaining an image forming apparatus that provides good quality reproduced images having a resolution of 1200 dpi.

The cited prior art does not expressly describe an image developer "configured to" develop a latent electrostatic image formed on the surface of the photoreceptor within 200 msec after

Art Unit: 1795

the surface of the photoreceptor is exposed by the light irradiator as recited in instant claim 1. Nor does cited prior art expressly describe a light irradiator "configured to" irradiate a write light on the surface of the photoreceptor with an exposure energy of 5 erg/cm² or less as recited in instant claim 1.

However, said recitations are merely functional language describing how the apparatus functions. For the reasons discussed supra, the apparatuses and process cartridge rendered obvious over the combined teachings of the prior art meet all of the structural and compositional limitations recited in the instant claims. The functional recitations do not distinguish the structural elements in the instantly claimed apparatus and process cartridge from those in the apparatuses and process cartridge rendered obvious over the cited prior art.

Furthermore, according to the instant specification, the characteristic time in known speedup monochrome electrophotographic apparatuses from a "writing portion," i.e., exposure from the light irradiator in the apparatus, to a "development portion," i.e., development of the latent image with a toner, is "about 200 msec at the longest." See the instant specification, the paragraph bridging pages 3 and 4. Thus, the time between exposure and development of "within

Art Unit: 1795

200 msec" recited in instant claim 1 appears to be characteristic of the state of the art as of the filing date of the instant application. The instant specification further discloses that in tandem full-color electrophotographic apparatuses, where the photoconductors have a diameter of 30 μ m and the copying speed reaches 30 sheets/min or greater, "the time between exposure and development can be set only equal to or less than that of the monochrome electrophotographic apparatus." Page 4, lines 2-10. Thus, a person having ordinary skill in the art would have reasonably expected that the time from exposure to development in speedup image forming apparatuses based on the state of the art, such as those taught by Niimi'633, is at most 200 msec.

Moreover, as discussed above, the Niimi'633 teaches a photoreceptor that meets all the structural and compositional limitations recited in the instant claims. In addition, in example 28 of Niimi'633, a laser diode having a wavelength of 780 nm is used as the light source for image exposure. Niimi'633, paragraph 0491. JP'538 exemplifies a photoreceptor comprising a charge generation layer comprising titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern that is similar to that of the Niimi'633 titanyl phthalocyanine crystals and that meets the peak locations

recited in instant claims 1 and 2. The discussion of JP'538 and Ladd in paragraph 9 are incorporated herein by reference. As discussed in paragraph 9 above, according to JP'538, the light exposure energy at a wavelength of 780 nm required to reduce the surface potential of the photoreceptor 15 seconds after charging is $0.20 \mu\text{J}/\text{cm}^2$, i.e., $2 \text{ erg}/\text{cm}^2$. The light exposure energy of $2 \text{ erg}/\text{cm}^2$ is within the range of "5 erg/cm^2 or less" recited in instant claim 1. Accordingly, because Niimi'633 photoreceptor comprises titanyl phthalocyanine crystals that appear to exhibit a X-ray diffraction pattern that is similar to that of JP'538, it is reasonable to presume that the photosensitivity of the Niimi'633 photoreceptor would also be similar to that in JP'538. The burden is on applicants to prove otherwise.

Thus, it would have obvious for a person having ordinary skill in the art to minimize, through routine experimentation, the light exposure energy in the image forming apparatus rendered obvious over the combined teachings of Niimi'633 and Sakai such that the light exposure is within the range of $5 \text{ erg}/\text{cm}^2$ or less as recited in instant claim 1. The "motivation" to minimize the light exposure energy is the common technological desire to maximize the efficient use of energy in processes and apparatuses.

12. Claim 3 is rejected under 35 U.S.C. 103(a) as being unpatentable over Niimi'633, as evidenced by applicants' admission 2, JP'538, and Ladd, combined with Sakai, as applied to claim 1 above, further combined with JP'337, as evidenced by Ladd. See the USPTO translations of JP'538 and JP'337 for cites.

The claim is rejected for the reasons set forth in the office action mailed on Nov. 8, 2007, paragraph 13, which is incorporated herein by reference.

13. Claim 4 is rejected under 35 U.S.C. 103(a) as being unpatentable over Niimi'633, as evidenced by applicants' admission 2, JP'538, and Ladd, combined with Sakai, as applied to claim 1 above, further combined with US 2002/0051654 (Niimi'654). See the USPTO translation of JP'538 for cites.

The claim is rejected for the reasons set forth in the office action mailed on Nov. 8, 2007, paragraph 14, which are incorporated herein by reference.

14. Claim 9 is rejected under 35 U.S.C. 103(a) as being unpatentable over Niimi'633, as evidenced by applicants' admission 2, JP'538, and Ladd, combined with Sakai, as applied

to claim 1 above, further combined with US 6,120,955 (Tokutake). See the USPTO translation of JP'538 for cites.

The claim is rejected for the reasons set forth in the office action mailed on Nov. 8, 2007, paragraph 15, which are incorporated herein by reference.

15. Claims 12 and 13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Niimi'633, as evidenced by applicants' admission 2, JP'538, and Ladd, combined with Sakai, as applied to claim 1 above, further combined with Niimi'654. See the USPTO translation of JP'538 for cites.

The claims are rejected for the reasons discussed in the office action mailed on Mar. 9, 2006, paragraph 26, which are incorporated herein by reference.

16. Applicants' arguments filed on Feb. 8, 2008, as applicable to the prior art rejections set forth in paragraphs 7 and 9-15 above have been fully considered but they are not persuasive.

Applicants assert that the claim language "a light irradiator, configured to irradiate a write light with an exposure energy of 5 erg/cm² or less . . . is a structural limitation because this feature recites an apparatus structurally configured to irradiate a write light with an

Art Unit: 1795

exposure energy of 5 erg/cm² or less." Applicants submit that the phrase "configured to" imparts a structural limitation, citing In re Venezia. Applicants further assert that the office action fails to show that the prior art light irradiator is "structurally configured to irradiate a write light with an exposure energy of 5 erg/cm² or less" as recited in instant claim 1.

Applicants' assertions are not persuasive. Unlike Venezia, instant claim 1 does not recite that the light irradiator is configured or "adapted to" be fitted over or to be fixed to another component. How a component is adapted to be fitted over or fixed to another component depends on how the structure of that component relates to the structure of the other component. Under such circumstances, it is reasonable to attribute "structural limitations" to the term "adapted to." Here, however, the recitation "light irradiate configured to irradiate a write light . . . with an exposure energy of 5 erg/cm² or less" in instant claim 1 does not impart any structure as to how the light irradiator is structurally related to the other named apparatus components. Rather, the recitation merely recites how the light irradiator is intended to be employed. As discussed in the above rejections, the prior art light irradiators, namely those in Sugino and Sakai, provide a write light having a

Art Unit: 1795

resolution of 600 dpi or greater as recited in instant claim 1.

As discussed in paragraph 9, the Sakai multi-beam scanning device comprises a semiconductor laser (or laser diode) array.

The Sugino light irradiator at col. 19, lines 24-26, described in paragraph 7 above, is identified as that in a modified digital copier IMAGIO MF6550 that is equipped with an optical system capable of writing equivalent to 1,200 dpi and 2,400 dpi from Ricoh Company, Ltd. As noted in Sugino at col. 2, lines 17-19, the "so-called digital electrophotographic method writing an electrostatic latent image" uses an LD (laser diode) or LED. Applicants have not pointed to any claimed structural feature of the light irradiator that differs from those taught by the cited prior art. Applicants have not provided any evidence to show that the prior art light irradiators do not or are not capable of irradiating a write light with "an exposure energy of 5 erg/cm² or less" as recited in instant claim 1.

Accordingly, the recitation "configured to irradiate a write light . . . with an exposure energy of 5 erg/cm² or less" does not distinguish the structural elements in the instantly claimed apparatus and process cartridge from those in the apparatuses and process cartridges disclosed by or rendered obvious over teachings in the cited prior art.

Furthermore, for the reasons discussed in the rejection

over Sugino in paragraph 7 above, it appears that the light irradiator in the Sugino image forming apparatus is capable of providing an exposure energy as recited in instant claim 1. The reference's image forming apparatus and photoreceptor meet the other limitations of the apparatus and photoreceptor claimed by applicants. The reference photoreceptor is therefore expected to have the same or similar photosensitivity. Thus, low irradiation energies would be expected to be useful. Applicants have not provided any objective evidence to show otherwise. In In re Swinehart, 169 USPQ 226 (CCPA 1971) (which was cited in applicants' response filed on Feb. 8, 2008), the court held that "it is elementary that the mere recitation of a newly discovered function or property, inherently possessed by things in the prior art, does not cause a claim drawn to those things to distinguish over the prior art . . . where the Patent Office has reason to believe that a functional limitation asserted to be critical for establishing novelty in the claimed subject matter may, in fact, be an inherent characteristic of the prior art, it possesses the authority to require that applicant to prove that the subject matter shown to be in the prior art does not possess the characteristic relied on." Swinehart, 229. Accordingly, the rejection over Sugino stands.

Moreover, for the reasons discussed in paragraphs 9 and 11 above, it appears that the Niimi'295 photoreceptor and the Niimi'633 photoreceptor have photosensitivities similar to that in JP'538, i.e., 2 erg/cm², the light exposure energy at a wavelength of 780 nm required to reduce the surface potential of the photoreceptor 15 seconds after charging. For the reasons discussed in paragraphs 9 and 11, it would have been obvious to minimize, through routine experimentation, the light exposure energy in the image forming apparatuses rendered obvious over the combined teachings of Niimi'295 or Niimi'633 with Sakai, such that the light exposure is within the range of 5 erg/cm² or less as recited in instant claim 1.

In the response filed on Feb. 8, 2008, applicants assert that nowhere in Table 3 or the accompanying text in JP'538 does "JP'538 describe that 2 erg/cm² . . . is a chosen light exposure E to be used in forming a latent electrostatic image . . . there is no explanation in JP'538 of the significance of this value being listed." Applicants further assert that the office has not shown how the results in JP'538 can be used in Niimi'295 and Niimi'633 to achieve a light irradiator configured to irradiate a write light as recited in instant claim 1.

Applicants' assertions are not persuasive. First, as discussed above and in the rejections in paragraphs 9 and 11,

Art Unit: 1795

the light exposure value of 2 erg/cm² is related to the photosensitivity of the photoreceptor. It is well known in the electrophotographic arts that the "xerographic S (cm²/erg)" (also known as the photosensitivity) of a photoreceptor is "the reciprocal of the energy per unit area required to discharge the surface potential [of the photoreceptor] from an initial potential V_0 to an arbitrary potential, usually $V_0/2$." See Diamond, Handbook of Imaging Materials, the paragraph bridging pages 399 to 400. Furthermore, according to Diamond, the "xerographic sensitivity" is "frequently used to characterize the exposure dependence of the surface potential" of the photoreceptor. Diamond, the paragraph bridging pages 399 and 400. Also see US Patent No. 5,039,585 (Rule) at col. 10, lines 47-54, which describes measuring the electrophotographic sensitivity of the electrophotographic element, i.e., photoreceptor, in terms of "the amount of incident actinic radiant energy (expressed as ergs/cm²) needed to discharge the initial voltage down to the desired level." According to Rule, the "lower the amount of radiation needed to achieve the desired degree of discharge, the higher is the electrophotographic sensitivity of the element, and vice versa." In JP'538, Table 3 lists the values of $E_{1/2}$, the light exposure needed to reduce the photoreceptor's potential by one half, for the photoreceptors in

Art Unit: 1795

examples 13 to 18 and in comparative examples 25 to 27. In Table 3, the values of $E_{1/2}$ for the JP'548 photoreceptors range from 0.20 to 0.22 erg/cm², while the values for comparative examples 25 to 27 are 0.43, 0.35, and 0.23 erg/cm², respectively. JP'548 states that the photoreceptors of examples 13 to 18 have good photosensitivity. In other words, the smaller the value of $E_{1/2}$, the higher the photosensitivity of the photoreceptor. Thus, a person having ordinary skill in the art would have reasonably concluded that the more photosensitive to the irradiating light the photoreceptor is, the less light exposure energy is needed to discharge the surface potential of photoreceptor to a desired level to form an electrostatic latent image.

Second, as discussed above, for the reasons discussed in paragraphs 9 and 11 above, it appears that the Niimi'295 photoreceptor and the Niimi'633 photoreceptor have photosensitivities similar to that in JP'538. Applicants have not provided any objective evidence to show otherwise.

Applicants' assertion in the response filed on Feb. 8, 2008, that evaluations in JP'538 do not apply to Niimi'295, are not persuasive. The charging conditions in paragraph 0189 of Niimi'295, referred to by applicants, do not appear to be those used for charging the photoreceptor in example 14 in Niimi'295,

which comprises the charge generation titanyl phthalocyanine crystals that appear to be similar to those in JP'538. Rather, according to Niimi'295, those charging conditions in paragraph 0189 are used to charge the photoconductor in example 15 of Niimi'295, which comprises a bisazo charge generation material. See Niimi'295, paragraph 0188, which refers to example 18, which in turn refers to example 17, which refers to example 15.

Thus, as discussed above, for the reasons discussed in paragraphs 9 and 11, it would have been obvious to minimize, through routine experimentation, the light exposure energy in the image forming apparatuses rendered obvious over the combined teachings of Niimi'295 and Saki or of Niimi'633 and Sakai, such that the light exposure is within the range of 5 erg/cm² or less as recited in instant claim 1.

Accordingly, the rejections in paragraphs 7 and 9-15 stand.

17. Claims 1-15 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-37 of US Patent No. 7,029,810 B2 (Toda), as evidenced by applicants' admission 2, JP'538, and Ladd, in view of Sakai. See the USPTO translation of JP'538 for cites.

The claims are rejected for the reasons set forth in the office action mailed on Nov. 8, 2007, paragraph 18, which are incorporated herein by reference.

18. Claims 1-3, 5, 6 and 9-15 are provisionally rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1, 5-10, and 12-19 of copending Application No. 10/454,556 (Application'556), as evidenced by applicants' admission 2, JP'538, and Ladd, in view of Sakai. See the USPTO translation of JP'538 for cites.

The examiner notes that the reasons for rejection are based on the claims as amended in the response filed in Application'556 on Feb. 25, 2008.

The examiner also notes that according to USPTO records, a Notice of Allowability was mailed on Apr. 28. 2008, in Application'556.

Reference claim 14, which depends on reference claim 5, which in turn depends on reference claim 1 of Application'556, recites an image forming apparatus comprising at least one image forming unit that comprises a photoreceptor, a charger, a light irradiator, an image developer, and a transferer. The photoreceptor comprises an electroconductive substrate comprising a charge generation layer and a charge transport

layer disposed over the charge generation layer. The charge generation layer comprises titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern having a maximum peak at a Bragg angle ($2\theta \pm 0.2^\circ$) of 27.2° , a lowest peak at 7.3° , peaks at 9.4° , 9.6° , and 24.0° , no peaks between 7.3° and 9.4° , and no peak at 26.3° . The diffraction pattern is obtained by irradiating the titanyl phthalocyanine crystals with a Cu-K α X-ray having a wavelength of 1.542 Å. The titanyl phthalocyanine crystals have an average particle diameter of not greater than 0.2 µm. The titanyl phthalocyanine crystals meet the titanyl phthalocyanine crystals recited in instant claims 1-3. Reference claims 7 and 8, which depend from reference claim 5, require that the photoreceptor further comprise a protective layer disposed on the charge transport layer that meets the protective layer limitations recited in instant claims 5 and 6, respectively. Reference claim 12, which depends from reference claim 5, requires that the conductive substrate have an anodized film as recited in instant claim 9. Reference claim 15, which depends from reference claim 14, requires that the apparatus comprises a plurality of image forming units, which meets the apparatus limitation recited in instant claim 10. Reference claims 16 and 17, which depend on reference claim 14, require that the charger be a contact charger or a non-contact charger as recited

in instant claim 11 and in instant claims 12 and 13, respectively. Reference claim 18, which depends on reference claim 14, requires that an alternating superimposed voltage can be applied to the charger, which meets the charger limitation recited in instant claim 14. Reference claim 19, which also depends from reference claim 5, recites a process cartridge comprising said photoreceptor and at least one of a charger, a light irradiator, an image developer, a transferer, and a cleaner.

The claims in Application'556 do not recite that the light irradiator is "configured to" irradiate a write light having a resolution of 600 dpi or greater as recited in instant claim 1.

Sakai discloses a multi-beam scanning device to imagewise irradiate the charged photoconductor to form a latent electrostatic latent image. The multi-beam scanning device comprises a semiconductor laser (or laser diode) array **112** and a rotary polygonal mirror **152**. The scanning device provides a writing density of 1200 dpi and the laser beam has a beam spot diameter of 30 μm . The discussion of Sakai in paragraph 9 above is incorporated herein by reference.

It would have been obvious for a person having ordinary skill in the art, in view of the subject matter recited in the claims of Application'556 and the teachings in Sakai, to use the

Sakai multi-beam scanning device as the light irradiator in the apparatus and process cartridge claimed in Application'556. That person would have had a reasonable expectation of successfully obtaining an image forming apparatus and a process cartridge that provide good quality reproduced images having a resolution of 1200 dpi.

The claims in Application'556 do not recite, and Sakai does not disclose an image developer "configured to" develop a latent electrostatic image formed on the surface of the photoreceptor within 200 msec after the surface of the photoreceptor is exposed by the light irradiator as recited in instant claim 1. Nor do Application'556 claims recite or Sakai disclose a light irradiator "configured to" irradiate a write light on the surface of the photoreceptor with an exposure energy of 5 erg/cm² or less as recited in instant claim 1.

However, said recitations are merely functional language describing how the apparatus functions. For the reasons discussed supra, the apparatus rendered obvious over the subject matter claimed in Application'556 combined with the teachings of Sakai meet all of the structural limitations recited in the instant claims. The functional recitations do not distinguish the structural elements in the instantly claimed apparatus from those in the apparatus rendered obvious over the subject matter

claimed in Application'556 combined with the teachings of Sakai.

Furthermore, based on the disclosure in the instant specification, the time between exposure and development of "within 200 msec" recited in instant claim 1 appears to be characteristic of the state of the art as of the filing date of the instant application. The discussion of the disclosure in the instant specification at pages 3 and 4 in paragraph 9 above is incorporated herein by reference. Thus, a person having ordinary skill in the art would have reasonably expected that the time from exposure to development in speedup image forming apparatuses based on the state of the art, such as those claimed in Application'556, is at most 200 msec.

Moreover, as discussed above, the photoreceptor claimed in Application'556 meets all the structural and compositional limitations recited in the instant claims. JP'538 exemplifies a photoreceptor comprising a charge generation layer comprising titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern that is similar to that of the claimed in Application'556 and meets the peak locations recited in instant claims 1 and 2. The discussions of JP'538 and Ladd in paragraph 9 are incorporated herein by reference. As discussed in paragraph 9 above, according to JP'538, the light exposure energy at a wavelength of 780 nm required to reduce the surface

potential of the photoreceptor 15 seconds after charging is 0.20 $\mu\text{J}/\text{cm}^2$, i.e., 2 erg/cm^2 . The light exposure energy of 2 erg/cm^2 is within the range of "5 erg/cm^2 or less" recited in instant claim 1. Accordingly, because the photoreceptor recited in the claims of Application'556 comprises titanyl phthalocyanine crystals that appear to exhibit a X-ray diffraction pattern that is similar to that of JP'538, it is reasonable to presume that the photosensitivity of the photoreceptor in Application'556 would also be similar to that in JP'538. The burden is on applicants to prove otherwise.

Thus, it would have obvious for a person having ordinary skill in the art to minimize, through routine experimentation, the light exposure energy in the image forming apparatuses rendered obvious over the subject matter claimed in Application'556 combined with teachings of Sakai such that the light exposure is within the range of 5 erg/cm^2 or less as recited in instant claim 1. The "motivation" to minimize the light exposure energy is the common technological desire to maximize the efficient use of energy in processes and apparatuses.

19. The examiner notes that US Application No. 10/944,614, cited in the office action mailed on Nov. 8, 2007, was issued as US Patent No. 7,371,491 B2 (Niimi'491) on May 13, 2008. Accordingly, the provisional rejection of claims 1-3, 5, 6, and 10-15 over the claims in Application No. 10/944,614 has been replaced with the following rejection.

20. Claims 1-3, 5, 6, and 10-15 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-28 of US Patent No. 7,371,491 B2 (Niimi'491), as evidenced by applicants' admission 2, JP'538, and Ladd, in view of Sakai. See the USPTO translation of JP'538 for cites.

Reference claim 22, which depends on reference claim 1 of Niimi'491, recites an image forming apparatus comprising at least one image forming unit that comprises a photoreceptor, a charger, a light irradiator, an image developer, and a transfer device. The photoreceptor comprises an electroconductive substrate comprising a photosensitive layer that comprises titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern having a maximum peak at a Bragg angle ($2\theta + 0.2^\circ$) of 27.2° , a lowest peak at 7.3° , peaks at 9.4° , 9.6° , and 24.0° , no peaks between 7.3° and 9.4° , and no peak at 26.3° .

Art Unit: 1795

The diffraction pattern is obtained by irradiating the titanyl phthalocyanine crystals with a Cu-K α X-ray having a wavelength of 1.542 Å. The titanyl phthalocyanine crystals have an average particle diameter of less than or equal to 0.25 μ m. The titanyl phthalocyanine crystals meet the titanyl phthalocyanine crystals recited in instant claims 1-3. Reference claim 2, which depends from reference claim 1, requires that photosensitive layer comprises a charge generation layer comprising the titanyl phthalocyanine crystals and a charge transport layer disposed over the charge generation layer, which meets the layer structure recited in instant claim 1. Reference claims 11-13, which depend from reference claim 1, recite that the photoreceptor further comprises a protective layer disposed on the charge transport layer that meets the protective layer limitations recited in instant claims 5 and 6. Reference claim 23, which depends from reference claim 22, requires that the apparatus comprise a plurality of image forming units, which meets the apparatus limitation recited in instant claim 10. Reference claims 24 and 25, which depend on reference claim 22, require that the charger be a contact charger or a non-contact charger as recited in instant claim 11 and in instant claims 12 and 13, respectively. Reference claim 26, which depends on reference claim 22, requires that an alternating superimposed

voltage can be applied to the charger, which meets the charger limitation recited in instant claim 14. Reference claim 27, which also depends from reference claim 22, recites a process cartridge comprising said photoreceptor, a cleaner, and at least one of a charger, a light irradiator, and an image developer.

The claims in Niimi'491 do not recite that the light irradiator is configured to irradiate a write light having a resolution of 600 dpi or greater as recited in instant claim 1.

Sakai discloses a multi-beam scanning device to imagewise irradiate the charged photoconductor to form a latent electrostatic latent image. The multi-beam scanning device comprises a semiconductor laser (or laser diode) array **112** and a rotary polygonal mirror **152**. The scanning device provides a writing density of 1200 dpi and the laser beam has a beam spot diameter of 30 μm . The discussion of Sakai in paragraph 9 above is incorporated herein by reference.

It would have been obvious for a person having ordinary skill in the art, in view of the subject matter recited in the claims of Niimi'491 and the teachings in Sakai, to use the Sakai multi-beam scanning device as the light irradiator in the apparatus and process cartridge claimed in Niimi'491. That person would have had a reasonable expectation of successfully obtaining an image forming apparatus and a process cartridge

that provide good quality reproduced images having a resolution of 1200 dpi.

The claims in Niimi'491 do not recite, and Sakai does not disclose an image developer "configured to" develop a latent electrostatic image formed on the surface of the photoreceptor within 200 msec after the surface of the photoreceptor is exposed by the light irradiator as recited in instant claim 1. Nor do Niimi'491 claims recite or Sakai disclose a light irradiator "configured to" irradiates a write light on the surface of the photoreceptor with an exposure energy of 5 erg/cm² or less as recited in instant claim 1.

However, said recitations are merely functional language describing how the apparatus functions. For the reasons discussed supra, the apparatus rendered obvious over the subject matter claimed in Niimi'491 combined with the teachings of Sakai meet all of the structural limitations recited in the instant claims. The functional recitations do not distinguish the structural elements in the instantly claimed apparatus from those in the apparatus rendered obvious over the subject matter claimed in Niimi'491 combined with the teachings of Sakai.

Furthermore, based on the disclosure in the instant specification, the time between exposure and development of "within 200 msec" recited in instant claim 1 appears to be

characteristic of the state of the art as of the filing date of the instant application. The discussion of the disclosure in the instant specification at pages 3 and 4 in paragraph 9 above is incorporated herein by reference. Thus, a person having ordinary skill in the art would have reasonably expected that the time from exposure to development in speedup image forming apparatuses based on the state of the art, such as those claimed in Niimi' 491, is at most 200 msec.

Moreover, as discussed above, the photoreceptor claimed in Niimi' 491 meets all the structural and compositional limitations recited in the instant claims. JP' 538 exemplifies a photoreceptor comprising a charge generation layer comprising titanyl phthalocyanine crystals that exhibit an X-ray diffraction pattern that is similar to that of the claimed in Niimi' 491 and meets the peak locations recited in instant claims 1 and 2. The discussions of JP' 538 and Ladd in paragraph 9 are incorporated herein by reference. As discussed in paragraph 9 above, according to JP' 538, the light exposure energy at a wavelength of 780 nm required to reduce the surface potential of the photoreceptor 15 seconds after charging is 0.20 $\mu\text{J}/\text{cm}^2$, i.e., 2 erg/cm^2 . The light exposure energy of 2 erg/cm^2 is within the range of "5 erg/cm^2 or less" recited in instant claim 1. Accordingly, because the photoreceptor recited

in the claims of Niimi'491 comprises titanyl phthalocyanine crystals that appear to exhibit a X-ray diffraction pattern that is similar to that of JP'538, it is reasonable to presume that the photosensitivity of the photoreceptor in Niimi'491 would also be similar to that in JP'538. The burden is on applicants to prove otherwise.

Thus, it would have obvious for a person having ordinary skill in the art to minimize, through routine experimentation, the light exposure energy in the image forming apparatuses rendered obvious over the subject matter claimed in Niimi'491 combined with teachings of Sakai such that the light exposure is within the range of 5 erg/cm² or less as recited in instant claim 1. The "motivation" to minimize the light exposure energy is the common technological desire to maximize the efficient use of energy in processes and apparatuses.

21. Applicants' arguments filed on Feb. 8, 2008, as applicable to the rejections in paragraphs 17, 18, and 20 above have been fully considered but they are not persuasive.

Applicants assert that a terminal disclaimer to Toda was submitted on Feb. 8, 2008, in compliance with 37 CFR 1.321 (c).

However, according to USPTO records, no terminal disclaimer was filed. Accordingly the rejection of claims 1-15 over the claims of Toda stand.

Applicants request that the provisional rejections over Application'556 and Application'614 "be held in abeyance until conditions are ripe for non-provisional double patenting rejection."

As noted in paragraph 20 above, the rejection over Application'614 is no longer provisional because the conflicting claims in Application'614 have been patented. Application'614 issued as US Patent No. 7,371,491 B2 (Niimi'491). As further noted in paragraph 18, a "Notice of Allowability" was mailed on Apr. 28, 2008, in Application'556. Prosecution in both applications is closed.

Accordingly, because no terminal disclaimers have been filed in the instant application, the rejections, non-provisional and provisional, set forth in paragraphs 17, 18, and 20 stand.

22. Applicants' amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL.** See MPEP § 706.07(a). Applicants are

Art Unit: 1795

reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

23. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Janis L. Dote whose telephone number is (571) 272-1382. The examiner can normally be reached Monday through Friday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mr. Mark Huff, can be reached on (571) 272-1385. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Any inquiry regarding papers not received regarding this communication or earlier communications should be directed to Supervisory Application Examiner Ms. Sandra Sewell, whose telephone number is (571) 272-1047.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/656,280
Art Unit: 1795

Page 47

/Janis L. Dote/
Primary Examiner, Art Unit 1795

JLD
Jun. 30 2008