Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 211.1 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E

657.01
657.00
656.99
656.97
656.96
0 20 40 60 80 100 120 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 11.86, tilsynelatende blå størrelseklass $m_B=13.65$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 4.66, tilsynelatende blå størrelseklass $m_B = 7.45$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=4.66,$ tilsynelatende

blå størrelseklass m_B = 6.45

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 11.86, tilsynelatende blå størrelseklass $m_B = 14.65$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.49 og store halvakse a=43.66 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.49 og store halvakse a=30.67 AU.

Filen 1F.txt

Ved bølgelengden 453.28 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 6.20 Tilsynelatende størrelsklasse m_V 6.00 5.80 5.60 5.40 20 ò 10 30 60 70 40 50 80

Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 6.80 solmasser, temperatur på 87.20 Kelvin og tetthet 3.40e-21 kg per kubikkmeter

Gass-sky B har masse på 11.80 solmasser, temperatur på 36.80 Kelvin og tetthet 4.47e-21 kg per kubikkmeter

Gass-sky C har masse på 7.60 solmasser, temperatur på 89.30 Kelvin og

tetthet 9.15e-21 kg per kubikkmeter

Gass-sky D har masse på 16.20 solmasser, temperatur på 20.00 Kelvin og tetthet 9.03e-21 kg per kubikkmeter

Gass-sky E har masse på 15.10 solmasser, temperatur på 11.80 Kelvin og tetthet 1.64e-20 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra hydrogenfusjon i sentrum

STJERNE B) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE C) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE D) stjerna har et degenerert heliumskall

STJERNE E) stjernas energi kommer fra Planck-stråling alene

Filen 1L.txt

Stjerne A har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 8.80

Stjerne B har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 4.63

Stjerne C har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 1.89

Stjerne D har spektralklasse F5 og visuell tilsynelatende størrelseklasse m_V

= 7.31

Stjerne E har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 8.23

Filen 1P.txt

90

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 1.052000000000000461853 AU.

Tangensiell hastighet er 30152.376437293016351759 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.550 AU.

Kometens avstand fra jorda i punkt 2 er r2=8.435 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=15.857.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9340 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00039 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=1100.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9894 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 531.30 nm.

Filen 4A.txt

Stjernas masse er 3.08 solmasser.

Stjernas radius er 0.59 solradier.

Filen 4C.png

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 13.26 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.83 solmasser.

r-koordinaten til det innerste romskipet er r $=8.70~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=16.67~\mathrm{km}.$