Throughout, let \mathscr{C} be an abelian category.

1. Preliminaries

Definition 1. A full subcategory, \mathscr{A} , of \mathscr{C} is called a Serre (or épaisse/thick/dense) subcategory if for any short exact sequence

$$0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$$

of \mathscr{C} , X is an object of \mathscr{A} if and only if both X' and X" are.

Definition 2. Let X be an object of \mathscr{C} . For two subobjects $i_1: X_1 \to X$ and $i_2: X_2 \to X$ denote by $X_1 \cap X_2$ the fibered product

$$\begin{array}{ccc} X_1 \cap X_2 & \xrightarrow{x_2'} & X_1 \\ \downarrow x_1' & & \downarrow i_1 \\ X_2 & \xrightarrow{i_2} & X \end{array}$$

and denote by $X_1 + X_2$ the fibered coproduct

$$X_1 \cap X_2 \xrightarrow{i_2'} X_1$$

$$\downarrow^{i_1'} \qquad \downarrow^{u_1}$$

$$X_2 \xrightarrow{u_2} X_1 + X_2.$$

These are both subobjects of X and endow the subobjects of X with lattice structure under the relation

$$X_1 \leq X_2$$

if there exists a monomorphism making the diagram

$$X_1 \xrightarrow{\exists 1} X_2$$
 $X_1 \xrightarrow{i_1} X_2$

commute.

Remark 1. Alternatively, one can construct $X_1 + X_2$ as the image of the morphism s below

Definition 3. We say that a subobject, X', of an object, X, is an \mathscr{A} -subobject of X if X' is an object of \mathscr{A} . We say that an \mathscr{A} -subobject, X', is maximal if for every \mathscr{A} -subobject X'' we have a commutative diagram

If X has no non-zero $\mathscr A$ subobjects, then we say that X is $\mathscr A$ -torsionfree.

Proposition 1. Let X and Y be objects of \mathscr{C} . The collection of pairs of subobjects (X', Y') such that X/X' and Y' are objects of \mathscr{A} is directed by the relation

$$(X', Y') \le (X'', Y'')$$

if $X'' \leq X'$ and $Y' \leq Y''x$.

Moreover, the system of Abelian groups

$$\operatorname{Hom}_{\mathscr{C}}(X',Y/Y')$$

induced by pairs (X',Y') above is a directed system with morphisms

$$\operatorname{Hom}_{\mathscr{C}}(X',Y/Y') \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X'',Y'')$$

$$(X' \to Y/Y') \longmapsto (X'' \to X' \to Y/Y' \to Y/Y'')$$

whenever $(X', Y') \leq (X'', Y'')$.

Definition 4. Define the quotient category, \mathscr{C}/\mathscr{A} , to be the category with objects the objects of \mathscr{C} and morphisms

$$\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(X,Y) = \operatorname{colim}_{(X',Y')} \operatorname{Hom}_{\mathscr{C}}(X',Y/Y').$$

Let $\pi: \mathscr{C} \to \mathscr{C}/\mathscr{A}$ be the canonical projection functor, defined by $\pi(X) = X$ and sending a morphism $f: X \to Y$ to its image, $\pi(f)$, in the colimit.

Lemma 1. The quotient category, \mathscr{C}/\mathscr{A} , is an additive category and π is an additive functor.

Lemma 2. Let $f: X \to Y$ be a morphism of \mathscr{C} . We have a factorization of f

$$X \xrightarrow{f} Y$$

$$\downarrow f(X)$$

and an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

Then

- (i) $\pi(f) = 0$ if and only if f(X) is an object of \mathscr{A} ,
- (ii) $\pi(f)$ is a monomorphism if and only if K is an object of \mathscr{A} , and
- (iii) $\pi(f)$ is an epimorphism if and only if C is an object of \mathscr{A} .

Lemma 3. For any morphism $f: X \to Y$ of \mathscr{C} , we have an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

The morphism $\pi(f)$ has a kernel and a cokernel,

$$0 \longrightarrow \mathcal{K} \xrightarrow{\ker \pi(f)} \pi(X) \xrightarrow{\pi(f)} \pi(Y) \xrightarrow{\operatorname{coker} \pi(f)} \mathcal{C} \longrightarrow 0.$$

Moreover, $\pi(\ker f)$ induces an isomorphism $\pi(K) \cong \mathcal{K}$ and $\pi(\operatorname{coker} f)$ induces an isomorphism $\pi(C) \cong \mathcal{C}$.

Lemma 4. Given an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

of \mathscr{C} , f is an isomorphism if and only if K and C are both objects of \mathscr{A} .

Proposition 2. The quotient category \mathscr{C}/\mathscr{A} is an abelian category and π is an exact functor.

2. The Section Functor

Lemma 5. If X is an object of \mathcal{C} , then the following are equivalent.

(1) Given a short exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} Z \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0$$

with K and C objects of \mathcal{A} , then the canonical morphism

$$h_X(f) \colon h_X(Y) \to h_X(Z)$$

is an isomorphism,

(2) X is \mathcal{A} -torsionfree and any short exact sequence

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{\operatorname{coker} f}{\longrightarrow} C \longrightarrow 0$$

with C an object of $\mathscr A$ splits, and

(3) For any object Y of \mathscr{C} , $\pi:\mathscr{C}\to\mathscr{C}/\mathscr{A}$ induces an isomorphism

$$\operatorname{Hom}_{\mathscr{C}}(Y,X) \cong \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$
.

Proof. (1) \implies (2). Given an \mathscr{A} -subobject $i: X' \to X$, then we have the short exact sequence

$$0 \longrightarrow X' \stackrel{i}{\longrightarrow} X \xrightarrow{\operatorname{coker} i} X/X' \longrightarrow 0$$

both X' and 0 are objects of \mathscr{A} , hence an isomorphism

$$h_X(\operatorname{coker} i) \colon \operatorname{Hom}_{\mathscr{C}}(X/X',X) \to \operatorname{Hom}_{\mathscr{C}}(X,X)$$

which implies that coker i is monic. Therefore coker $i \circ i = 0$ implies i = 0.

Now, if we let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{p}{\longrightarrow} C \longrightarrow 0$$

be a short exact sequence with C an object of \mathscr{A} , then the isomorphism

$$h_X(f) \colon \operatorname{Hom}_{\mathscr{C}}(Y,X) \to \operatorname{Hom}_{\mathscr{C}}(X,X)$$

yields a section $s: Y \to X$ of f, so the sequence splits.

(2) \Longrightarrow (3). Let Y be an object of \mathscr{C} . Given a morphism $f:\pi(Y)\to\pi(X)$, we lift to a morphism $f'\colon Y'\to X/X'$ with Y/Y' and X' objects of \mathscr{A} . Since we have assumed that X has no non-trivial \mathscr{A} -subobjects, it follows that X/X'=X. By dualizing the relevant theorems on fiber products, this gives the commutative diagram with exact rows

$$0 \longrightarrow Y' \stackrel{j}{\longrightarrow} Y \stackrel{\operatorname{coker} j}{\longrightarrow} Y/Y' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f''} \qquad \downarrow^{\exists !h}$$

$$0 \longrightarrow X \stackrel{i}{\longrightarrow} Y \coprod_{Y'} X \stackrel{\operatorname{coker} i}{\longrightarrow} (Y \coprod_{Y'} X) / X \longrightarrow 0$$

and with h an isomorphism. Since Y/Y' was assumed to be an object of \mathscr{A} , so too is $(Y\coprod_{Y'}X)/X$ and thus there exists a section $s:Y\coprod_{Y'}X\to X$ of i so that

$$f' = id_X \circ f' = s \circ i \circ f' = s \circ f'' \circ j.$$

By commutativity of the diagram

$$\operatorname{Hom}_{\mathscr{C}}(Y,X) \xrightarrow{-\circ j} \operatorname{Hom}_{\mathscr{C}}(Y',X)$$

$$\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$

we see that $\pi(s \circ f'') = f$ and thus

$$\operatorname{Hom}_{\mathscr{C}}(Y,X) \to \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$

is surjective. For injectivity, suppose that $f: Y \to X$ satisfies $\pi(f) = 0$. Then f(Y) is an object of \mathscr{A} and from the short exact sequence

$$0 \longrightarrow f(Y) \xrightarrow{\operatorname{im} f} X \xrightarrow{\operatorname{coker} f} C \longrightarrow 0$$

we see that im f = 0. Therefore $f = \text{im } f \circ \text{coim } f = 0$, as desired.

$$(3) \implies (1)$$
. Let

$$0 \longrightarrow K \stackrel{i}{\longrightarrow} Z \stackrel{f}{\longrightarrow} Y \stackrel{p}{\longrightarrow} C \longrightarrow 0$$

be an exact sequence with K and C objects of \mathscr{A} . We have the commutative diagram

$$Z \qquad \qquad \operatorname{Hom}_{\mathscr{C}}(Y,X) \longrightarrow \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$

$$\downarrow^{f} \qquad \qquad \downarrow^{h_{X}(f)} \qquad \qquad \downarrow^{h_{\pi(X)}(\pi(f))}$$

$$Y \qquad \qquad \operatorname{Hom}_{\mathscr{C}}(Z,X) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Z),\pi(X))$$

with $h_{\pi(X)}(\pi(f))$ an isomorphism because $\pi(f)$ is. Therefore $h_X(f)$ is an isomorphism, as desired.

Definition 5. (i) If X is an object of $\mathscr C$ satisfying any of the conditions in Lemma 5, then we say that X is $\mathscr A$ -closed.

(ii) A morphism $X \to Y$ is an \mathscr{A} -envelope if in the exact sequence

$$0 \longrightarrow K \longrightarrow X \longrightarrow Y \longrightarrow C \longrightarrow 0$$

Y is \mathscr{A} -closed, and both K and C are objects of \mathscr{A} .

Lemma 6. If X has a maximal \mathscr{A} -subobject, $X_{\mathscr{A}}$, then $X/X_{\mathscr{A}}$ is \mathscr{A} -torsionfree.

Proof. Let $j: Y \to X/X_{\mathscr{A}}$ be a monic with Y an object of \mathscr{A} . We have the commutative diagram

with h an isomorphism, and h' monic, hence an isomorphism. The top row gives us the short exact sequence

$$0 \longrightarrow K \xrightarrow{\ker p'} X \times_{X/X_{\mathscr{A}}} Y \xrightarrow{p'} Y \xrightarrow{\operatorname{coker} p'} 0$$

with K and Y objects of \mathscr{A} , hence $X \times_{X/X_{\mathscr{A}}} Y$ is also an object of \mathscr{A} . By maximality of $X_{\mathscr{A}}$, i' factors through i uniquely,

and so we see

$$j \circ p' = p \circ i = p \circ (i \circ i'') = (p \circ i) \circ i'' = 0$$

implies, because p' is epic, that j=0. Therefore $X/X_{\mathscr{A}}$ is \mathscr{A} -torsionfree, as desired.

Lemma 7. If \mathscr{C} is such that every object of \mathscr{C} has a maximal \mathscr{A} -subobject and every \mathscr{A} -torsionfree object has a monomorphism to an \mathscr{A} -closed object, then every object of \mathscr{C} has an \mathscr{A} -envelope.

Proof. Let X be an object of $\mathscr C$ and let $X_{\mathscr A}$ be its maximal $\mathscr A$ -subobject, so we have the short exact sequence

$$0 \longrightarrow X_{\mathscr{A}} \stackrel{i}{\longrightarrow} X \stackrel{p}{\longrightarrow} X/X_{\mathscr{A}} \longrightarrow 0.$$

By assumption, there exists an \mathcal{A} -closed object Y and a short exact sequence

$$0 \longrightarrow X/X_{\mathscr{A}} \stackrel{j}{\longrightarrow} Y \stackrel{q}{\longrightarrow} C \longrightarrow 0$$

from which we construct the pullback

$$0 \longrightarrow K \xrightarrow{\ker q'} q^{-1}(C_{\mathscr{A}}) \xrightarrow{q'} C_{\mathscr{A}} \longrightarrow 0$$

$$\downarrow^{\exists!h} \qquad \downarrow^{k'} \qquad \downarrow^{k}$$

$$0 \longrightarrow X/X_{\mathscr{A}} \xrightarrow{j} Y \xrightarrow{q} C \longrightarrow 0,$$

with h an isomorphism. Then from the short exact sequence

$$0 \longrightarrow X/X_{\mathscr{A}} \cong K \xrightarrow{\ker q'} q^{-1}(C_{\mathscr{A}}) \xrightarrow{q'} C_{\mathscr{A}} \longrightarrow 0$$

it suffices to show that $q^{-1}(C_{\mathscr{A}})$ is \mathscr{A} -closed.

It's clear that $q^{-1}(C_{\mathscr{A}})$ is \mathscr{A} -torsionfree because it is a subobject of the \mathscr{A} -closed object Y. If we have any short exact sequence

$$0 \longrightarrow q^{-1}(C_{\mathscr{A}}) \stackrel{s}{\longrightarrow} A \stackrel{\operatorname{coker} s}{\longrightarrow} B \longrightarrow 0$$

with B an object of \mathscr{A} , then by Lemma 1 there is a unique morphism $\varphi:A\to Y$ such that

$$k' = \varphi \circ s = h_Y(s)(\varphi).$$

Now we have the commutative diagram

from which we see that

$$k' \circ id_{q^{-1}(C_{\mathscr{A}})} = k' = \varphi \circ s = (k' \circ r) \circ s = k'(\circ r \circ s)$$

and thus $r \circ s = id_{q^{-1}(C_{\mathscr{A}})}$. Therefore $q^{-1}(C_{\mathscr{A}})$ is \mathscr{A} -closed by Lemma 5.2, as desired.

Lemma 8. If $\pi: \mathscr{C} \to \mathscr{C}/\mathscr{A}$ has a right adjoint, $\omega: \mathscr{C}/\mathscr{A} \to \mathscr{C}$, then

- (1) for each object Y of \mathscr{C} , $\omega \pi(Y)$ is \mathscr{A} -closed,
- (2) for Y an object of \mathscr{C} , the morphism $\eta_{\pi(Y)}: \pi\omega\pi(Y) \to \pi(Y)$ is an isomorphism, and
- (3) ω is fully faithful.

Proof. (1) Given an exact sequence

$$0 \longrightarrow K \longrightarrow Z \stackrel{f}{\longrightarrow} Y \longrightarrow C \longrightarrow 0$$

with K and C objects of \mathscr{A} , we have that $\pi(f)$ is an isomorphism and hence $h_{\pi(Y)}(\pi(f))$ is also an isomorphism. From the adjunction we get the commutative diagram

$$\operatorname{Hom}_{\mathscr{C}}(X,\omega\pi(Y)) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X),\pi(Y))$$

$$\downarrow^{h_{\omega\pi(Y)}(f)} \qquad \qquad \downarrow^{h_{\pi(Y)}(\pi(f))}$$

$$\operatorname{Hom}_{\mathscr{C}}(Z,\omega\pi(Y)) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Z),\pi(Y))$$

which shows that $h_{\pi(Y)}\pi(F)$ is an isomorphism. Therefore $\omega\pi(Y)$ is \mathscr{A} -closed by part 1 of Lemma 5.

(2) We have the commutative diagram

$$\operatorname{Hom}_{\mathscr{C}}(\omega\pi(Y),\omega\pi(Y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi\omega\pi(Y),\pi\omega\pi(Y))$$

$$\stackrel{\sim}{\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi\omega\pi(Y),\pi(Y))}$$

since for any morphism $f: \omega \pi(Y) \to \omega \pi(Y)$, the image under the adjunction isomorphism is just $\eta_{\pi(Y)} \circ \pi(f)$. This immediately implies that $h_{\pi\omega\pi(Y)}(\eta_{\pi(Y)})$ is an isomorphism, and hence so is $\eta_{\pi(Y)}$.

(3) Since ω being fully faithful is equivalent to η being a natural isomorphism, this is a consequence of the definition of \mathscr{C}/\mathscr{A} . Indeed, every object of \mathscr{C}/\mathscr{A} is $\pi(X)$ for some object X of \mathscr{C} , and the result follows.

Theorem 1. The following are equivalent.

- (1) $\pi: \mathscr{C} \to \mathscr{C}/\mathscr{A}$ has a right adjoint, and
- (2) Every object of $\mathscr A$ has a maximal $\mathscr A$ -subobject and every $\mathscr A$ -torsionfree object has a monomorphism into an $\mathscr A$ -closed object.

Proof. First assume that π has a right adjoint, $\omega \colon \mathscr{C}/\mathscr{A} \to \mathscr{C}$, and let Y be an object of \mathscr{C} . There are then two natural transformations of adjunction, $\varepsilon \colon \mathrm{id}_{\mathscr{C}} \to \omega \pi$ and $\eta \colon \pi \omega \to \mathrm{id}_{\mathscr{C}/\mathscr{A}}$, the latter being an isomorphism by Lemma 8. It follows from the commutative diagram

$$\pi(Y) \xrightarrow{\pi(\varepsilon_Y)} \pi\omega\pi(Y)$$

$$\downarrow^{\eta_{\pi(Y)}} \pi(Y)$$

that $\pi(\varepsilon_Y) = \eta_{\pi(Y)}^{-1}$ is an isomorphism, whence in the short exact sequence

$$0 \longrightarrow K \longrightarrow Y \stackrel{\varepsilon_Y}{\longrightarrow} \omega \pi(Y) \longrightarrow C \longrightarrow 0$$

both K and C are objects of \mathscr{A} . We show that K is the desired subobject. Indeed, let $j: Y' \to Y$ be a subobject of Y with Y' and object of \mathscr{A} . We have the commutative diagram

$$Y' \xrightarrow{\varepsilon_Y \circ j} \omega \pi(Y)$$

$$coim(\varepsilon_Y \circ j) \qquad im(\varepsilon_Y \circ j)$$

$$\varepsilon_Y(Y')$$

and we note that because $\omega \pi(Y)$ is \mathscr{A} -closed and $\varepsilon_Y(Y') \cong Y'/(Y' \cap K)$ is an object of \mathscr{A} , the monic im $(\varepsilon_Y \circ j)$ is zero. Therefore by the kernel diagram

we see that j' is monic, and K is maximal, as desired.

Conversely, assume that every object of \mathscr{C} has a maximal \mathscr{A} -subobject and every \mathscr{A} -torsionfree object has a monomorphism into an \mathscr{A} -closed object. Let Y be an object of \mathscr{C} . By Lemma 7, Y has an \mathscr{A} -envelope $Y \to E$. Hence $\pi(Y) \cong \pi(E)$ and by the natural isomorphisms

$$\operatorname{Hom}_{\mathscr{C}}(\,\underline{\ },E) \cong \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\,\underline{\ }),\pi(E)) \cong \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\,\underline{\ }),\pi(Y)),$$

the presheaf $\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\cdot),\pi(Y))$ on \mathscr{C} is representable. Therefore π admits a right adjoint.

Definition 6. If π has a right adjoint, then we say that \mathscr{A} is a localizing subcategory.

Corollary 1. Assume that π has a right adjoint, $\omega \colon \mathscr{C}/\mathscr{A} \to \mathscr{C}$. Then

- (1) \mathscr{A} -envelopes are unique up to unique isomorphism,
- (2) for every object X of \mathscr{C} , $\omega \pi(X) \cong E$, where $X \to E$ is an \mathscr{A} -envelope of X,

Proof. (1) By the proof of Theorem 1, an \mathscr{A} -envelope of an object Y of \mathscr{C} represents the presheaf $\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\,{}_{-}),Y)$ and thus is unique up to unique isomorphism.

(2) This is immediate from Yoneda's Lemma.

Lemma 9. Assume that \mathscr{A} is a localizing subcategory, X, Y, objects of \mathscr{C} , $X_{\mathscr{A}}$, $Y_{\mathscr{A}}$, their maximal \mathscr{A} -subobjects. A morphism $f: X \to Y$ induces a morphism

and the morphism $\pi(f)$ is an essential extension if and only if h is.

Proof. We first note that $\pi(p)$ and $\pi(h)$ are isomorphisms, hence essential extensions, so

$$\pi(f) = \pi(q)^{-1} \circ \pi(h) \circ \pi(p)$$

is an essential extension if and only if $\pi(h)$ is. Hence it suffices to assume that $X_{\mathscr{A}} = Y_{\mathscr{A}} = 0$ and h = f. Assume first that $\pi(f)$ is an essential extension. Given a subobject $k: Y' \to Y$ we get the pullback

$$\pi(Y' \times_Y X) \xrightarrow{\pi(k')} \pi(X)$$

$$\downarrow^{\pi(f')} \qquad \downarrow^{\pi(f)}$$

$$\pi(Y') \xrightarrow{\pi(k)} \pi(Y)$$

because π is exact. We note that so long as Y' is not an object of \mathscr{A} , $\pi(Y')$ is not zero. Since Y was assumed to be \mathscr{A} -torsionfree, this is equivalent to Y' being non-zero. Therefore $\pi(Y' \times_Y X)$ is non-zero whenever Y' is non-zero because $\pi(f)$ is essential and hence so is $Y' \times_Y X$.

Conversely, assume that f is an essential extension. Given $i:\pi(Z)\to\pi(Y)$ a non-zero subobject, we may lift to a morphism

$$0 \longrightarrow K \xrightarrow{\ker j} Z' \xrightarrow{j} Y$$

with Z/Z' and K objects of $\mathscr A$ since k is monic and Y has no non-zero $\mathscr A$ -subobjects. Since f is an essential extension we have the non-zero pullback

$$Z'/K \times_Y X \xrightarrow{k} X$$

$$\downarrow^{f'} \qquad \qquad \downarrow^{f}$$

$$Z/K \xrightarrow{\operatorname{im} j} Y$$

As K is an object of \mathscr{A} , the short exact sequence

$$0 \longrightarrow K \xrightarrow{\ker j} Z' \xrightarrow{\operatorname{coim} j} Z'/K \longrightarrow 0$$

gives the isomorphism

$$\pi(Z'/K) \cong \pi(Z') \cong \pi(Z).$$

Therefore

$$\pi(Z'/K \times_Y X) \cong \pi(Z'/K) \times_{\pi(Y)} \pi(X) \cong \pi(Z) \times_{\pi(Y)} \pi(X)$$

is non-zero, as desired.

Lemma 10. If Q is an \mathscr{A} -closed injective, then $\pi(Q)$ is injective.

Proof. Given a short exact sequence

$$0 \longrightarrow \pi(Q) \xrightarrow{s} \pi(X) \xrightarrow{\operatorname{coker} s} \pi(X/Q) \longrightarrow 0$$

it is enough to show that s is a section; that is there exists a morphism $r : \pi(X) \to \pi(Q)$ such that $r \circ s = \mathrm{id}_{\pi(Q)}$. We can lift s to a morphism

$$0 \longrightarrow K \xrightarrow{\ker t} Q' \xrightarrow{t} X/X'$$

with K, Q/Q', and X' objects of \mathscr{A} . Since we have assumed that Q is \mathscr{A} -closed, the diagram

$$K \xrightarrow{\ker t} Q' \xrightarrow{i} Q$$

commutes and thus we see that $\ker t = 0$ because i is a monomorphism. Since Q was assumed to be injective, we have the lift

$$0 \longrightarrow Q' \xrightarrow{t} X/X'$$

$$\downarrow^{i}_{Q}$$

$$= Q.$$

If we let $q: X \to X/X'$ be the canonical projection, then we have the diagram

$$\pi(Q') \xrightarrow{\pi(t)} \pi(X/X')$$

$$\pi(i) \downarrow \qquad \qquad \uparrow \pi(q)$$

$$\pi(Q) \xrightarrow{s} \pi(X)$$

with $\pi(i)$ and $\pi(q)$ isormorphisms, the top left triangle commutative, and the outer square commutative. Therefore

$$\mathrm{id}_{\pi(O)} \circ \pi(i) = \pi(i) = \pi(r) \circ \pi(t) = \pi(r) \circ \pi(q) \circ s \circ \pi(i)$$

implies, because $\pi(i)$ is an isomorphism, that

$$(\pi(r) \circ \pi(q)) \circ s = \mathrm{id}_{\pi(Q)},$$

as desired.

Lemma 11. If $i: X \to E$ is an injective envelope and X is \mathscr{A} -torsionfree, then E is \mathscr{A} -closed and the morphism $\pi(i): \pi(X) \to \pi(E)$ is an injective envelope.

Proof. Since E is injective, every short exact sequence

$$0 \longrightarrow E \longrightarrow A \longrightarrow B \longrightarrow 0$$

splits. To see that E is \mathscr{A} -closed, it then suffices by Lemma 5.2 to show that E is \mathscr{A} -torsionfree. Given an \mathscr{A} -subobject $j: E' \to E$, we have the pullback

$$E' \times_E X \xrightarrow{j'} X$$

$$\downarrow^{i'} \qquad \qquad \downarrow^{i}$$

$$E' \xrightarrow{j} E$$

and the morphism i' gives $E' \times_E X$ E-subobject structure, hence is an object of \mathscr{A} . Since X is \mathscr{A} -torsionfree by assumption, $E' \times_E X = 0$ and thus E' is also zero because i is essential.

By Lemma 10 we see that $\pi(E)$ is injective, so it remains to show that $\pi(i)$ is essential. To see this, we note that the assumption \mathscr{A} is a localizing subcategory in Lemma 9 was only used to produce maximal \mathscr{A} -subobjects, and hence the same argument shows that $\pi(i)$ is essential. Therefore $\pi(i)$ is an injective envelope.

Proposition 3. Assume that \mathscr{A} is a localizing subcategory. If \mathscr{C} has injective envelopes, then

- (i) \mathscr{C}/\mathscr{A} has injective envelopes,
- (ii) Every injective object of \mathscr{C}/\mathscr{A} is isomorphic to $\pi(Q)$ for some \mathscr{A} -closed injective, Q, and
- (iii) Every injective object Q of $\mathscr C$ is isomorphic to $E \oplus \omega(Q_2)$, where $Q_{\mathscr A} \to E$ is an injective envelope of the maximal $\mathscr A$ -subobject of Q and Q_2 is an injective object of $\mathscr C/\mathscr A$.

Proof. (i) Given an object $\pi(X)$ of \mathscr{C}/\mathscr{A} , let $X_{\mathscr{A}}$ be the maximal \mathscr{A} -subobject of X. Since \mathscr{C} has injective envelopes and $X/X_{\mathscr{A}}$ is \mathscr{A} -torsionfree, an injective envelope $X/X_{\mathscr{A}} \to E$ gives the injective envelope

$$\pi(X) \cong \pi(X/X_{\mathscr{A}}) \to \pi(E)$$

by Lemma 11.

- (ii) Given an injective object $\pi(Q)$ of \mathscr{C}/\mathscr{A} , $\omega\pi(Q)$ is \mathscr{A} -closed by Lemma 8.1 and is injective because π is exact. Therefore by Lemma 8.3, $\pi(Q) \cong \pi(\omega\pi(Q))$.
- (iii) Let Q be an injective object of \mathscr{C} , let $i: Q_{\mathscr{A}} \to Q$ be its maximal \mathscr{A} -subobject, and let $j: Q_{\mathscr{A}} \to E$ be an injective envelope. Since Q is injective we have the lift

$$0 \longrightarrow Q_{\mathscr{A}} \xrightarrow{j} E$$

$$\downarrow^{i}_{\mathbb{R}} \xrightarrow{\exists k}$$

with k a monomorphism because j is essential and $\ker(k \circ j) = \ker i = 0$. Because E is injective we get the split exact sequence

$$0 \longrightarrow E \stackrel{k}{\longleftrightarrow} Q \stackrel{p}{\longleftrightarrow} Q/E \longrightarrow 0$$

so we need only show that Q/E is an \mathscr{A} -closed injective, for then $\pi(Q/E)$ is injective by Lemma 10, and $Q/E \cong \omega \pi(Q/E)$.

The fact that Q/E is injective follows from the fact that both Q and E are injective. Thus every monomorphism out of Q/E splits, so by Lemma 5.2 it is enough to show that Q/E is \mathscr{A} -torsionfree. Given an \mathscr{A} -subobject $\varphi \colon X \to E$, the fact that $Q/Q_{\mathscr{A}}$ is \mathscr{A} -torsionfree gives the kernel diagram

Therefore

$$\varphi = \mathrm{id}_{Q/E} \circ \varphi = p \circ s \circ \varphi = p \circ i \circ h = p \circ k \circ j \circ h = 0,$$

as desired.

Corollary 2. Assume that \mathscr{A} is a localizing subcategory and that \mathscr{C} has injective envelopes. If the injective envelope of an object of \mathscr{A} is a morphism of \mathscr{A} , then

- (i) the maximal subobject of an injective is injective and thus the \mathscr{A} -envelope of an injective, Q, is $Q \to Q/Q_{\mathscr{A}}$, where $Q_{\mathscr{A}}$ is the maximal \mathscr{A} -subobject,
- (ii) π preserves injectives, and

Proof. (i) Let Q be an injective object of $\mathscr C$ and $i: Q_\mathscr A \to Q$ its maximal $\mathscr A$ -subobject. Given an injective envelope $j: Q_\mathscr A \to E$, we have the lift

$$0 \longrightarrow Q_{\mathscr{A}} \xrightarrow{j} E$$

$$\downarrow^{i}_{\mathbb{R}} \\ Q$$

with k a monomorphism because j is essential. Since E is assumed to be an object of \mathcal{A} , k factors through i uniquely,

So we see that

$$k \circ j \circ \varphi = i \circ \varphi = k = k \circ id_E$$

implies that $j \circ \varphi = id_E$ and

$$i \circ \varphi \circ j = k \circ j = i = i \circ id_{Q_{\mathscr{A}}}$$

implies $\varphi \circ j = id_{Q_{\mathscr{A}}}$. Hence φ is an isomorphism. Therefore by Proposition 3 we have the short exact sequence

$$0 \longrightarrow Q_{\mathscr{A}} \longrightarrow Q_{\mathscr{A}} \oplus Q/Q_{\mathscr{A}} \longrightarrow Q/Q_{\mathscr{A}} \longrightarrow 0$$

and $Q/Q_{\mathscr{A}}$ is \mathscr{A} -closed, as desired.

(ii) If Q is an injective object of \mathscr{C} , then by the above $Q/Q_{\mathscr{A}}$ is \mathscr{A} -closed and hence $\pi(Q) \cong \pi(Q/Q_{\mathscr{A}})$ is injective by Lemma 10.

Remark 2. When A is a right Noetherian N-graded ring, $\mathscr{C} = \operatorname{Gr} - A$, and $\mathscr{A} = \operatorname{Tors}$, then \mathscr{A} is closed under essential extensions and hence under injective envelopes. In particular, every injective module, Q, decomposes as $\tau(Q) \oplus Q/\tau(Q)$ with $Q/\tau(Q)$ an \mathscr{A} -closed object, and $\omega \pi(Q) \cong Q/\tau(Q)$.

3. Cohomology

Corollary 3. Assume that \mathscr{A} is a localizing subcategory and that \mathscr{C} has injective envelopes. If the injective envelope of an object of \mathscr{A} is a morphism of \mathscr{A} , then for objects X and Y of \mathscr{C}

$$\operatorname{Ext}^i_{\mathscr{C}/\mathscr{A}}\left(\pi(X),\pi(Y)\right)\cong R^i\operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Y)\right).$$

Proof. Take an injective resolution

$$Q: 0 \longrightarrow Y = Q^0 \xrightarrow{d^0} Q^1 \xrightarrow{d^1} \cdots$$

of Y. By Corollary 2.ii, $\pi(Q)$ is an injective resolution of $\pi(Y)$. Using the natural transformation $\varepsilon \colon id_{\mathscr{C}} \to \omega \pi$ we have for each n an isomorphism of adjunction

$$\Phi^n : \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X), \pi(Q^n)) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X, \omega\pi(Q^n))$$

$$\varphi \longmapsto \omega(\varphi) \circ \varepsilon_X$$

and so we get an isomorphism of chain complexes

$$\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(\pi(X),\pi(Q^{\cdot})\right):0\longrightarrow \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(\pi(X),\pi(Y)\right)^{h^{\pi(X)}(\pi(d^{0}))}\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(\pi(X),\pi(Q^{1})\right)^{h^{\pi(X)}(\pi(d^{1}))}\cdots \downarrow_{\Phi^{0}} \downarrow_{\Phi^{1}} \operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Q^{\cdot})\right):0\longrightarrow \operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Y)\right)\xrightarrow{h^{X}(\omega\pi(d^{0}))}\operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Q^{1})\right)\xrightarrow{h^{X}(\omega\pi(d^{1}))}\cdots$$

since for $\varphi \in \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X), Q^n)$ we have

$$h^X(\omega\pi(d^n)) \circ \Phi^n(\varphi) = \omega\pi(d^n) \circ \omega(\varphi) \circ \varepsilon_X = \omega(\pi(d^n) \circ \varphi) \circ \varepsilon_X = \Phi^{n+1} \circ h^X(\pi(d^n))(\varphi).$$

Therefore

$$\operatorname{Ext}_{\mathscr{C}/\mathscr{A}}^{i}\left(\pi(X),\pi(Y)\right)\cong H^{i}\left(\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(\pi(X),\pi(Q^{\cdot})\right)\right)\cong H^{i}\left(\operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Q^{\cdot})\right)\right)\cong R^{i}\operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Y)\right)$$

From here on, let A be a right Noetherian \mathbb{N} -graded algebra over a commutative Noetherian ring k, $\mathscr{C} = \operatorname{Gr} - A$, $\mathscr{A} = \operatorname{Tors}$, $\mathscr{C}/\mathscr{A} = \operatorname{QGr} - A$.

Definition 7. Define the graded modules

$$\underline{\operatorname{Hom}}_{\mathscr{C}}\left(M,N\right) = \bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{\mathscr{C}}\left(M,N[d]\right)$$

and

$$\underline{\operatorname{Hom}}_{\mathscr{C}/\mathscr{A}}\left(\pi(M),\pi(N)\right) = \bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{\mathscr{C}/A}\left(\pi(M),\pi(N)[d]\right).$$

Proposition 4. The right derived functors of $\underline{\mathrm{Hom}}_{\mathscr{C}}(M,N)$ and $\underline{\mathrm{Hom}}_{\mathscr{C}/\mathscr{A}}(\pi(M),\pi(N))$ are

$$\underline{\mathrm{Ext}}_{\mathscr{C}}^{i}\left(M,N\right) = \bigoplus_{d \in \mathbb{Z}} \mathrm{Ext}_{\mathscr{C}}^{i}\left(M,N[d]\right)$$

and

$$\underline{\mathrm{Ext}}^i_{\mathscr{C}/\mathscr{A}}\left(\pi(M),\pi(N)\right) = \bigoplus_{d \in \mathbb{Z}} \mathrm{Ext}^i_{\mathscr{C}/\mathscr{A}}\left(\pi(M),\pi(N)[d]\right).$$

Moreover, for Q an injective resolution of N,

$$\underline{\mathrm{Ext}}^i_{\mathscr{C}/\mathscr{A}}\left(\pi(M),\pi(N)\right) \cong H^i\left(\underline{\mathrm{Hom}}_{\mathscr{C}}\left(M,\omega\pi(Q^{\boldsymbol{\cdot}})\right)\right) \cong R^i\,\underline{\mathrm{Hom}}_{\mathscr{C}}\left(M,\omega\pi(N)\right).$$

Proof. The first is a consequence of the shift operator s being an autoequivalence of \mathscr{C} and cohomology being an additive functor. In particular, if Q is an injective resolution of N, then we have

$$H^{i}(\underline{\operatorname{Hom}}_{\mathscr{C}}\left(M,s^{d}(Q^{\cdot})\right) = H^{i}\left(\bigoplus_{d\in\mathbb{Z}}\operatorname{Hom}_{\mathscr{C}}\left(M,s^{d}(Q^{\cdot})\right)\right) \cong \bigoplus_{d\in\mathbb{Z}}H^{i}\left(\operatorname{Hom}_{\mathscr{C}}\left(M,s^{d}(Q^{\cdot})\right)\right) = \bigoplus_{d\in\mathbb{Z}}\operatorname{Ext}_{\mathscr{C}}^{i}\left(M,N[d]\right).$$

Similarly, for \mathscr{C}/\mathscr{A} we have

$$H^{i}(\underline{\operatorname{Hom}}_{\mathscr{C}/\mathscr{A}}\left(M,s^{d}(Q^{\cdot})\right)) = H^{i}\left(\bigoplus_{d\in\mathbb{Z}}\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(M,s^{d}(Q^{\cdot})\right)\right)$$

$$\cong \bigoplus_{d\in\mathbb{Z}}H^{i}\left(\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(M,s^{d}(Q^{\cdot})\right)\right)$$

$$= \bigoplus_{d\in\mathbb{Z}}\operatorname{Ext}_{\mathscr{C}/\mathscr{A}}^{i}\left(M,N[d]\right).$$

$$\cong \bigoplus_{d\in\mathbb{Z}}R^{i}\operatorname{Hom}_{\mathscr{C}}\left(M,\omega\pi(N)[d]\right).$$

$$\cong \bigoplus_{d\in\mathbb{Z}}H^{i}(\operatorname{Hom}_{\mathscr{C}}\left(M,\omega\pi(Q^{\cdot})[d]\right)$$

$$\cong H^{i}\left(\bigoplus_{d\in\mathbb{Z}}\operatorname{Hom}_{\mathscr{C}}\left(M,\omega\pi(Q^{\cdot})[d]\right)\right)$$

$$= H^{i}\left(\operatorname{Hom}_{\mathscr{C}}\left(M,\omega\pi(Q^{\cdot})\right)\right)$$