Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ОТЧЕТ

по Лабораторной работе № 4

«Запросы на выборку и модификацию данных. Представления. Работа с индексами»

по дисциплине «Проектирование и реализация баз данных»

Обучающиеся Дедкова Анастасия Викторовна Факультет прикладной информатики Группа К3240 Направление подготовки 09.03.03 Прикладная информатика Образовательная программа Мобильные и сетевые технологии 2023 Преподаватель Говорова Марина Михайловна

> Санкт-Петербург 2024/2025

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 Выполнение	4
1.1 Схема базы данных (ЛР 3)	4
1.2 Запросы к базе данных	4
1.3 Создание представлений	12
1.4 Запросы на модификацию данных	14
1.5 Создание индексов	18
ЗАКЛЮЧЕНИЕ	25
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

ВВЕДЕНИЕ

Цель работы – овладеть практическими навыками создания представлений и запросов на выборку данных к базе данных PostgreSQL, использования подзапросов при модификации данных и индексов.

Практическое задание:

- создать запросы и представления на выборку данных к базе данных
 PostgreSQL (согласно индивидуальному заданию лабораторной работы №2,
 часть 2 и 3),
- составить 3 запроса на модификацию данных (INSERT, UPDATE,
 DELETE) с использованием подзапросов,
- изучить графическое представление запросов и просмотреть историю запросов,
- создать простой и составной индексы для двух произвольных запросов и сравнить время выполнения запросов без индексов и с индексами.
 Для получения плана запроса использовать команду EXPLAIN.

1 Выполнение

1.1 Схема базы данных (ЛР 3)

Результат лабораторной работы 3 на схеме логической модели базы данных, сгенерированной в Generate ERD(рисунок 1).

Рисунок 1 – Схема логической модели базы данных, сгенерированная в Generate ERD [1]

1.2 Запросы к базе данных

Индивидуальное задание 2, согласно варианту 7 лабораторной работы 2. Создать запросы:

вывести все номера групп и программы, где количество слушателей меньше 10,

SELECT g.group_number, p.program_name

FROM courses_scheme.groups g

JOIN courses_scheme.programs p ON g.program_id = p.program_id

JOIN courses_scheme.current_students cs ON g.group_id = cs.group_id

GROUP BY g.group_number, p.program_name
HAVING COUNT(cs.curr_stud_id) < 10;
На рисунке 2 результат выполнения SQL команды.

Рисунок 2 – Результат выполнения запроса

 вывести список преподавателей с указанием количества программ, где они преподавали за истекший учебный год,

SELECT t.teacher id,

t.last name | ' ' | t.name middlename AS teacher name,

COUNT(DISTINCT p.program_id) AS program_count

FROM courses_scheme.teachers t

JOIN courses scheme.teacher discipline td ON t.teacher id = td.teacher id

JOIN courses_scheme.program_discipline pd ON td.discipline_id = pd.discipline_id

JOIN courses_scheme.programs p ON pd.program_id = p.program_id

JOIN courses_scheme.groups g ON p.program_id = g.program_id

WHERE g.start_date >= '2023-09-01' AND g.end_date <= '2024-06-30'

GROUP BY t.teacher_id, teacher_name

ORDER BY program_count DESC;

На рисунке 3 результат выполнения SQL команды.

Рисунок 3 – Результат выполнения запроса

Так как база знаний создана с декабря 2024 года, за прошлый учебный год результат выполнения запроса пустой, сделаем запрос за текущий учебный год. Результат на рисунке 4.

SELECT t.teacher_id,

t.last_name | ' ' | t.name_middlename AS teacher_name,

COUNT(DISTINCT p.program id) AS program count

FROM courses scheme.teachers t

JOIN courses_scheme.teacher_discipline td ON t.teacher_id = td.teacher_id

JOIN courses_scheme.program_discipline pd ON td.discipline_id = pd.discipline_id

JOIN courses_scheme.programs p ON pd.program_id = p.program_id JOIN courses_scheme.groups g ON p.program_id = g.program_id WHERE g.start_date >= '2024-09-01' AND g.end_date <= '2025-06-30' GROUP BY t.teacher_id, teacher_name ORDER BY program count DESC;

= +		1 3 1 √ 5 0L	
	teacher_id [PK] integer	teacher_name text	program_count bigint
1	24	Малинин Алексей Ильич	2
2	10	Павлова Елена Николаевна	2
3	3	Зайцева Екатерина Петровна	1
4	7	Крылов Денис Сергеевич	1
5	8	Бурова Софья Александровна	1
6	9	Михайлов Кирилл Игоревич	1
7	11	Федосеева Дарья Павловна	1
8	12	Прохоров Илья Олегович	1
9	18	Орлова Ксения Андреевна	1
10	1	Терехова Мария Ивановна	1
11	27	Андреева Милена Кирилловна	1
12	2 2 Королёв Максим Сергеевич		1

Рисунок 4 – Результат выполнения запроса

```
    вывести список преподавателей, которые не проводят занятия на
третьей паре ни в один из дней недели,
```

```
SELECT t.teacher_id, t.last_name, t.name_middlename
FROM courses_scheme.teachers t
WHERE NOT EXISTS (
    SELECT 1
    FROM courses_scheme.classes c
    WHERE c.teacher_id = t.teacher_id
    AND c.class_number = '3'
)
ORDER BY t.teacher_id;
```

На рисунке 5 результат выполнения SQL команды.

Рисунок 5 – Результат выполнения запроса

вывести список свободных лекционных аудиторий на ближайший понедельник,

SELECT r.room_id, r.room_number FROM courses scheme.rooms r

```
WHERE r.room_type = 'лекционная'

AND r.room_id NOT IN (

SELECT c.room_id

FROM courses_scheme.classes c

WHERE c.class_date = '2025-05-19'
)

ORDER BY r.room_number;

На рисунке 6 результат выполнения SQL команды.
```


Рисунок 6 – Результат выполнения запроса

вычислить общее количество обучающихся по каждой программе за последний год,

SELECT p.program_name, COUNT(s.curr_stud_id) AS student_count FROM courses_scheme.current_students s

JOIN courses_scheme.groups g ON s.group_id = g.group_id

JOIN courses scheme.programs p ON g.program id = p.program id

WHERE s.date_start_edu BETWEEN '2024-09-01' AND '2025-06-30' GROUP BY p.program_name;

На рисунке 7 результат выполнения SQL команды.

Рисунок 7 – Результат выполнения запроса

 вычислить среднюю загруженность компьютерных классов в неделю за последний месяц (в часах),

SELECT

ROUND((COUNT(*)::numeric / 4 / COUNT(DISTINCT c.room_id)) * 1.5,

2) AS avg_load_hours_per_room

FROM

courses scheme.classes c

JOIN

courses scheme.rooms r ON c.room id = r.room id

WHERE

r.room_type = 'компьютерная'

AND c.class_status = 'Yes'
AND c.class_date BETWEEN '2025-04-01' AND '2025-04-28';
На рисунке 8 результат выполнения SQL команды.

Рисунок 8 – Результат выполнения запроса

– найти самые популярные программы за последние 3 года.

SQL команда:

SELECT

p.program_name,

COUNT(DISTINCT cs. student id) AS students count

FROM

courses scheme.programs p

JOIN

courses_scheme.groups g ON p.program_id = g.program_id

JOIN

courses_scheme.current_students cs ON g.group_id = cs.group_id

WHERE

cs.date_start_edu >= CURRENT_DATE - INTERVAL '3 years'

GROUP BY

p.program_name

ORDER BY

students count DESC;

На рисунке 9 результат выполнения SQL команды.

Рисунок 9 – Результат выполнения запроса

1.3 Создание представлений.

Индивидуальное задание 3, согласно варианту 7 лабораторной работы 2. Создать представление:

 для потенциальных слушателей, содержащее перечень специальностей, изучаемых на них дисциплин и количество часов,

CREATE OR REPLACE VIEW courses_scheme.program_discipline_hours AS

```
SELECT
```

```
p.program_id,
p.program_name,
d.discipline_id,
d.discipline_name,
(d.lecture_hours + d.practice_hours + d.lab_hours) AS total_hours
FROM
```

```
courses_scheme.programs p
JOIN
```

courses_scheme.program_discipline pd ON p.program_id = pd.program_id JOIN

courses_scheme.disciplines d ON pd.discipline_id = d.discipline_id

ORDER BY

p.program_name,
d.discipline name;

SELECT * FROM courses_scheme.program_discipline_hours;

На рисунке 10 результат выполнения SQL команды.

Рисунок 10 – Результат выполнения запроса

– общий доход по каждой программе за последний год.

CREATE OR REPLACE VIEW courses_scheme.program_income_last_year AS

SELECT

p.program_id,
p.program name,

COALESCE(p.price, 0) * COALESCE(COUNT(DISTINCT

cs.curr_stud_id), 0) AS total_income_last_year

FROM

courses_scheme.programs p

LEFT JOIN

```
courses_scheme.groups g ON p.program_id = g.program_id

LEFT JOIN

courses_scheme.current_students cs ON g.group_id = cs.group_id

AND cs.date_start_edu >= CURRENT_DATE - INTERVAL '1 year'

GROUP BY

p.program_id,

p.program_name,

p.price

ORDER BY

total income last year DESC;
```

На рисунке 11 результат выполнения SQL команды.

Рисунок 11 – Результат выполнения запроса

1.4 Запросы на модификацию данных

Составить 3 запроса на модификацию данных (INSERT, UPDATE, DELETE) с использованием подзапросов. Изучить графическое представление запросов и просмотреть историю запросов.

Создан запрос на добавление студента 331 в группу DA_1. На рисунке 12 выполнение запроса

SELECT

s.student_id,
st.last_name,
st.name_middlename,
s.status_edu

FROM courses scheme.current students s

JOIN courses_scheme."groups" g ON s.group_id = g.group_id

JOIN courses_scheme.students st ON s.student_id = st.student_id

WHERE g.group number = 'DA 1';

до выполнения запроса на модификацию данных

Рисунок 12 – Данные до выполнения запроса на модификацию.

Запрос на модификацию:

INSERT INTO courses_scheme.current_students (group_id, student id, status edu, date start edu)

```
SELECT
group_id,
331,
'студент',
start_date
FROM courses_scheme."groups"
WHERE group_number = 'DA_1'
AND NOT EXISTS (
SELECT 1 FROM courses_scheme.current_students
WHERE student_id = 331
AND group_id = courses_scheme."groups".group_id
)
LIMIT 1;
```

На рисунке 13 результат выполнения SQL команды.

	student_id integer	last_name character varying (30)	name_middlename character varying (40)	status_edu courses_scheme.status_type
9	257	Гаврилова	Лидия Григорьевна	студент
10	268	Князев	Тимур Фёдорович	студент
11	279	Николаева	Ирина Викторовна	студент
12	290	Громова	Милана Андреевна	студент
13	301	Андреев	Алексей Сергеевич	студент
14	312	Попов	Иван Алексеевич	студент
15	323	Иванова	Анна Павловна	студент
16	191	Ильина	Снежана Ильинична	в академическом отпуске
17	331	Дедкова	Анастасия Викторовна	студент

Рисунок 13 – Результат выполнения запроса

Создан запрос на изменение аудитории в расписании. Запись, которую будем изменять рисунок 14.

Рисунок 14 – Запись занятия до изменений

```
UPDATE courses_scheme.classes

SET room_id = 16

WHERE class_id = 4

AND EXISTS (

SELECT 1 FROM courses_scheme.classes WHERE class_id = 4

)

RETURNING class_id, room_id;

На рисунке 15 – результат изменения аудитории
```


Рисунок 15 — Запись занятия после изменений Создадим запрос для удаления студента из группы.

На рисунке 16 список студентов группы до выполнения запроса.

9	257	Гаврилова	Лидия Григорьевна	
10	000		лидия григорьевна	студент
	268	Князев	Тимур Фёдорович	студент
11	279	Николаева	Ирина Викторовна	студент
12	290	Громова	Милана Андреевна	студент
13	301	Андреев	Алексей Сергеевич	студент
14	312	Попов	Иван Алексеевич	студент
15	323	Иванова	Анна Павловна	студент
16	191	Ильина	Снежана Ильинична	в академическом отпуске
17	331	Дедкова	Анастасия Викторовна	студент

Рисунок 16 – Список группы DA_1 до удаления студента
DELETE FROM courses_scheme.current_students cs
WHERE student_id = 331
AND group_id = (

```
SELECT group id
        FROM courses scheme."groups"
        WHERE group_number = 'DA_1'
        LIMIT 1
      )
      AND EXISTS (
        SELECT 1 FROM courses scheme.current students
        WHERE student id = 331
        AND group id = (
        SELECT
                             FROM courses_scheme."groups"
                   group id
                                                               WHERE
group number = 'DA 1' LIMIT 1
        )
      );
```

На рисунке 17 результат выполнения SQL запроса.

	student_id integer	last_name character varying (30)	name_middlename character varying (40)	status_edu courses_scheme.status_type
9	257	Гаврилова	Лидия Григорьевна	студент
10	268	Князев	Тимур Фёдорович	студент
11	279	Николаева	Ирина Викторовна	студент
12	290	Громова	Милана Андреевна	студент
13	301	Андреев	Алексей Сергеевич	студент
14	312	Попов	Иван Алексеевич	студент
15	323	Иванова	Анна Павловна	студент
16	191	Ильина	Снежана Ильинична	в академическом отпуске
17	331	Дедкова	Анастасия Викторовна	студент

Рисунок 17 – Список группы DA_1 после удаления студента

1.5 Создание индексов

Выполним запрос 1 до создания индексов и зафиксируем время (рисунок 18).

Запрос 1:

EXPLAIN ANALYZE

SELECT g.group number, p.program name

FROM courses_scheme.groups g

JOIN courses_scheme.programs p ON g.program_id = p.program_id JOIN courses_scheme.current_students cs ON g.group_id =

cs.group_id

GROUP BY g.group_number, p.program_name HAVING COUNT(cs.curr_stud_id) < 10;

Рисунок 18 – План запроса 1 до создания индексов Создадим простой индекс для запроса 1.

CREATE INDEX idx_group_number ON courses_scheme.groups (group_number);

Рисунок 19 – План запроса 1 после создания простого индекса.

Время выполнения запроса до создания простого индекса 0,264 мс, после создания простого индекса по атрибуту group_number время выполнения запроса сократилось до 0,197 мс.

Удаление простого индекса для запроса 1:

DROP INDEX IF EXISTS courses_scheme.idx_group_number;

Создание составного индекса для запроса 1:

CREATE INDEX idx_group_program ON courses_scheme.groups(group_id, program id);

Выполнение запроса 1 после составления составного индекса (рисунок 20).

Рисунок 20 – План запроса 1 с составными индексами.

Время выполнения запроса до создания индекса 0,264 мс, после создания составного индекса по атрибутам group_id, program_id время выполнения запроса сократилось до 0,179 мс.

Удаление составного индекса для запроса 1:

```
DROP INDEX IF EXISTS courses_scheme.idx_group_program;
```

Запрос 2 на вывод номеров групп, из которых были отчислены студенты за период с января по май 2025 г.

```
Запрос 2:

EXPLAIN ANALYZE

SELECT DISTINCT

g.group_number,
g.group_id

FROM

courses_scheme.current_students cs

JOIN

courses_scheme."groups" g ON cs.group_id = g.group_id

WHERE

cs.status_edu = 'отчислен'
```

AND cs.date_start_edu BETWEEN '2025-01-01' AND '2025-05-01';

На рисунке 21 план запроса 2 до создания индексов.

Рисунок 21 – План запроса 2 до создания индексов

Создание простого индекса для запроса 2:

CREATE INDEX idx_status_edu ON courses_scheme.current_students (status_edu);

На рисунке 22 план запроса 2 после создания простого индекса.

Время выполнения запроса до создания индекса 0,197 мс, после создания простого индекса по атрибуту status_edu время выполнения запроса сократилось до 0,091 мс.

Рисунок 22 – План запроса 2 после создания простого индекса.

Удаление простого индекса для запроса 2:

DROP INDEX IF EXISTS courses scheme.idx status edu;

Создание простого частичного индекса для запроса 2:

CREATE INDEX idx_status_date_partial ON

courses scheme.current students (date start edu)

WHERE status edu = 'отчислен';

План запроса после создания простого частичного индекса для запроса 2 (рисунок 23).

Время выполнения запроса до создания индекса 0,197 мс, после создания простого частичного индекса по атрибуту date_start_edu время выполнения запроса сократилось до 0,082 мс.

Рисунок 23 – План запроса 2 после создания простого частичного индекса.

Удаление простого частичного индекса для запроса 2:

DROP INDEX IF EXISTS courses scheme.idx status date partial;

Создание составного индекса для запроса 2:

CREATE INDEX idx_status_date_start ON courses_scheme.current_students (status_edu, date_start_edu);

План запроса 2 после создания составного индекса на рисунке 24.

Рисунок 24 – План запроса 2 после создания составного индекса.

Время выполнения запроса до создания индекса 0,197 мс, после создания составного индекса по атрибутам status_edu, date_start_edu время выполнения запроса сократилось до 0,071 мс.

Удаление составного индекса для запроса 2:

DROP INDEX IF EXISTS courses scheme.idx status date start;

Правильное применение индексов помогает увеличить скорость выполнения запросов к базе данных, индексы имеет смысл применять для самых частых запросов, подбирая тип индекса и атрибуты, для которых он будет создан, под конкретный запрос, исходя из оптимального соотношения параметров времени выполнения запроса и размера созданного индекса.

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы была успешно достигнута цель — овладение практическими навыками создания представлений и запросов на выборку данных к базе данных PostgreSQL, использования подзапросов при модификации данных и индексов. Работа включала следующие ключевые этапы:

- 1) создание запросов на выборку данных, что позволило эффективно извлекать информацию из базы данных на основе различных критериев,
- 2) создание подзапросов для модификации данных (INSERT, UPDATE, DELETE), что обеспечило освоение принципов работы с подзапросами в реальных задачах,
- 3) создание представлений, что позволило организовать удобный доступ к данным для их агрегации и дальнейшего использования,
- 4) изучение графического представления запросов и анализ истории запросов, что улучшило управление запросами и их производительность,

5) создание индексов для двух произвольных запросов, что позволило улучшить производительность запросов и сравнить время выполнения с индексами и без них.

Результат лабораторной работы подтверждает освоение работы с инструментом Query Tool в pgAdmin 4, что позволило не только выполнять запросы, но и эффективно анализировать их выполнение.

Выводы: В результате выполнения лабораторной работы были приобретены важные практические навыки в работе с базой данных PostgreSQL, включая создание и модификацию запросов, работу с представлениями и индексами. Также была получена практика в оптимизации запросов для повышения производительности и работе с большими объемами данных. Эти навыки являются необходимыми для эффективного управления данными и создания масштабируемых информационных систем.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Схема логической модели базы данных, сгенерированной в Generate ERD – URL:

 $\frac{https://drive.google.com/file/d/1VgOtZzphInmDvkbinfkXhg52vFYwghQa/view?u}{sp=sharing}$