Homework 1

Jakub Senko, Štefan Uherčík

13. marca 2014

Príklad 1

Nech $X=[x_1,x_2,x_3,\ldots,x_n]$ je pole cisel a plati ze $\forall x,y\in X:x\neq y.$ Kazdemu $x_i\in X$ je priradene cislo w_i , pre ktore plati:

$$w_i > 0$$

$$\sum_{i=0}^{n} w_i = 1 \tag{0.1}$$

 $Optimalny \ prvok$ postupnosti je cislo x_k pre ktore plati:

$$\sum_{x_i < x_k} w_i < \frac{1}{2}$$

$$\sum_{x_i > x_k} w_i \le \frac{1}{2}$$

$$(0.2)$$

Problemom je navrh algoritmu ktory riesi najdenie optimalneho prvku s casovou zlozitostou $\Theta(n)$ a poskytnutie dokazu jeho korektnosti a zlozitosti.

Navrhovane riesenie je modifikovany algoritmus $Quick\ Select\ ktory$ riesi problem najdenia medianu v poli cisel. Tento algoritmus ma obecne zlozitost $\mathcal{O}(n^2)$ pri nevhodnej volbe pivota, avsak pomocou procedury $Median\ of\ Medians$ je mozne najst dostatocne dobry pivot na to, aby mal algoritmus vzdy linearnu zlozitost. $Quick\ Select$ je popisany v nasledujucom texte iba neformalne, s odkazom na relevantne zdroje s dokazom zlozitosti. Zadana uloha je vyriesena ukazanim redukcie problemu najdenia optimalneho prvku na

problem rieseny algoritmom $Quick\ Select\ +\ Median\ of\ Medians\ [?]$ a dokazom ze tato procedura je vykonatelna v konstantom case. Vysledna zlozitost je teda $\mathcal{O}(n)$.

Quick Select

```
while true do user \leftarrow beer end while
```

Quick Select bezi v $\mathcal{O}(n^2)$.

QSMoM:

- 1. Rozdel A do skupin po 5 prvkov, zotried kazdu skupinu O(n)
- 2. C je pole tychto medianov tychto skupin O(1)
- 3. pivot = QSMoM(C, n/5)
- 4. Rozdel A podla pivota, pozicia pivota je j
- 5. ak i=j konci
- 6. rekurzuj do jedneho zo subpoli

Redukcia: vyber pivot a spocitaj sumu na oboch stranach a rekurzuj do vacsej strany $[x_1, x_2, ..., x_j, x_{j+1}, ...x_n]$ pokial je suma na jednej strane vacsia ako 1/2, hladany prvok bude na tej strane + este si treba pametat sucet druhej strany

0.1 Example of List (3*ITEMIZE)

- First item in a list
 - First item in a list
 - * First item in a list
 - * Second item in a list
 - Second item in a list
- $\bullet\,$ Second item in a list

0.2 Example of List (enumerate)

- 1. First item in a list
- 2. Second item in a list
- 3. Third item in a list

 ${\it «««< Updated upstream}$

Tvrdenie 1: Ľubovoľná postupnosť n operácií INSERT a MIN-ALL má zložitosť O(n).

Uvažujme prirodzené čísla n,k a l, pre ktoré platí n=k+l (n vyjadruje počet operácií)

$$l = \begin{cases} \frac{n}{2} & \text{ak } n \text{ je párne} \\ \frac{n-1}{2} & \text{ak } n \text{ is nepárne} \end{cases}$$

$$l = \begin{cases} \frac{n}{2} & \text{ak } n \text{ je párne} \\ \frac{n-1}{2} + 1 & \text{ak } n \text{ is nepárne} \end{cases}$$

Uvažujme k oprácií INSERT, každá z týchto operácií vloží do zoznamu rovnaké prirodzené číslo z. Po poslednej z týchto operácií bude mať zoznam dĺžku k.

Cena týchto operácií dohromady je k.

Po týchto operáciách nasleduje l operácií MIN-ALL. Všetky čísla v zozname sú rovnaké, teda všetky čísla v ňom sú minimálne. Znamená to, že pri žiadnom z volaní operácie MIN-ALL sa dĺžka zoznamu nezmení.

Cena týchto operácií bude

$$l*k = \begin{cases} \frac{n}{2} * \frac{n}{2} = \frac{n^2}{4} & \text{ak } n \text{ je párne} \\ \frac{n-1}{2} * (\frac{n}{2}+1) = \frac{n^2}{4} + \frac{n}{4} - \frac{1}{2} & \text{ak } n \text{ is nepárne} \end{cases}$$

Z predošlého tvrdenia vyplýva, že špecifikovaná postupnosť operácií bude minimimálne v zložitostnej triede O(n), teda tvrdenie **neplatí**.

Tvrdenie 2: Ľubovoľná postupnosť n operácií INSERT a MIN-ONE má zložitosť O(n). Príklad riešime pomocou metódy účtov, kredity pre jednotliv0 operácie stanovíme nasledovne

Operácia	Cena	Kredit
INSERT	1	2
MIN-ONE	S	1

Platí, že vždy počas výpočtu je veľkosť zoznamu rovná počtu kreditov na účte, teda počet kreditov nikdy nebude menší ako 0. Celkový kredit po vykonaní n operácií bude menší alebo rovný 2n, teda tvrdenie **platí**.

Tvrdenie 3: Ľubovoľná postupnosť n operácií INSERT a DELETE má zložitosť O(n).

Uvažujme prirodzené čísla n,k a l, pre ktoré platí n=k+l (n vyjadruje počet operácií Hodnotu čísel k a l stanovíme rovnako, ako pri tvrdení 1.

Uvažujme k oprácií INSERT, každá z týchto operácií vloží do zoznamu rovnaké prirodzené číslo z. Po poslednej z týchto operácií bude mať zoznam dĺžku k.

Cena týchto operácií dohromady je k.

Po týchto operáciách nasleduje l operácií DELETE(y), pričom platí, že y \neq z. To má za dôsledok, že po žiadnej z týchto operácií sa dĺžka zoznamu nezmení. Cena týchto operácií bude rovnaká, ako v tvrdení 1. Tvrdenie preto **neplatí**.

Tvrdenie 4: Ľubovoľná postupnosť n operácií INSERT a DELETE taká, že pri každom volaní sa operácia DELETE volá s iným parametrom i, má zložitosť má zložitosť O(n).

Uvažujme prirodzené čísla n,k a l, pre ktoré platí n=k+l (n vyjadruje počet operácií). Hodnotu čísel k a l stanovíme rovnako, ako pri tvrdení 1.

Uvažujme k oprácií INSERT, každá z týchto operácií vloží do zoznamu rovnaké prirodzené číslo z. Po poslednej z týchto operácií bude mať zoznam dĺžku k.

Cena týchto operácií dohromady je k.

Špecifikujeme množinu M o veľkosti l, v ktorej sa nachádzajú prirodzené čísla odližné od z. Vykonáme l operácií DELETE, pričom pri každej jej volaní predložíme ako parameter iný prvok z množiny M. To bude mať za následok, že veľkosť zoznamu sa nezmení. Cena týchto operácií bude rovnaká, ako v tvrdení 1. Tvrdenie preto **neplatí**.

LITERATÚRA

- [1] BLUM, Manuel, Robert W. FLOYD, Vaughan PRATT, Ronald L. RIVEST a Robert E. TARJAN. Time bounds for selection. Journal of Computer and System Sciences. 1973, vol. 7, issue 4, s. 448-461. DOI: 10.1016/S0022-0000(73)80033-9. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0022000073800339
- $[2] \ http://moonflare.com/code/select/select.pdf$