Example

- A distributed program P consists of a finite set P₁, ..., P_n of processes running on different processors and communicating via messages.
- Each process P_i generates a set E_i of events (including sending or receiving messages) that are executed according to a given ordering →_i

$$e_{i,0} \rightarrow_i e_{i,1} \rightarrow_i \dots e_{i,0} \rightarrow_i e_{i,m}$$

 What is the ordering associated with execution of P knowing that a message cannot be received before it is sent?

losé Ejadeiro – 2017/18

Example

- We define the execution ordering → of P as the transitive closure of:
 - For every $e, f \in E_i$, if $e \rightarrow_i f$ then $e \rightarrow f$
 - If m! is the event of sending the message m and m? is the event of receiving the message m, then $m! \rightarrow m?$

sé Fiadeiro – 2017/18

Example

- A global state of P consists of a set of events.
- A global state E is *consistent* if for every $e \in E$, if $f \rightarrow e$ then $f \in E$

That is, E is a set of events that contains all the events that precede them.

osé Fiadeiro — 2017/18

Lower and upper sets

- Let \leq be a partial ordering on a set A and $B \subseteq A$
 - B is said to be a lower set if, for every b∈B and a∈A,
 if a≤b then a∈B
 - B is said to be an upper set if, for every $b \in B$ and $a \in A$, if $a \ge b$ then $a \in B$
- Therefore, a global consistent state of a distributed program is a lower set of events.

osé Fiadeiro — 2017/18

Minimal and maximal elements

- Let \leq be a partial ordering on a set A and $a \in A$
 - a is said to be a minimal element of A if there is no $b \in A$ such that b < a.
 - a is said to be a maximal element of A if there is no $b \in A$ such that a < b.

sé Fiadeiro – 2017/18

Theorem

- Every finite nonempty subset of a poset has minimal elements and maximal elements.
- If a poset is finite and non-empty then it has minimal elements and maximal elements.

osé Fiadeiro – 2017/18

Proof

- Let $B=\{b_0, ..., b_{n-1}\}, n \ge 1$, and
 - $m_0=b_0$,
 - $m_k=b_k$ if $b_k < m_{k-1}$, otherwise $m_k=m_{k-1}$
- We have $m_{n-1} \le m_{n-2} \le ... \le m_0$. We prove by contradiction that m_{n-1} is a minimal element.
 - Suppose that $b_i < m_{n-1}$ for some i; because $m_0=b_0$ it follows that i>0.
 - Because $b_i < m_{n-1} \le m_i \le m_{i-1}$ it follows that $m_i = b_i$ which would imply $b_i < m_{n-1} \le b_i$

osé Fiadeiro – 2017/18

Greatest and least elements

- Let \leq be a partial ordering on a set A and $a \in A$
 - a is said to be a least element of A if for all $b \in A$ $a \le b$.
 - a is said to be a greatest element of A if for all $b \in A$ $b \le a$.
- If they exist, least and greatest elements are unique.

adeiro – 2017/18

Well-founded orderings

- We say that a partial ordering \leq on a set A is well-founded if and only if every non-empty subset $B \subseteq A$ has a minimal element.
- If ≤ is a total order (a chain), we say that the poset is well-ordered.
- Essentially, (A, \leq) is well-founded if there is no infinite descending sequence

$$\dots < a_3 < a_2 < a_1 < a_0$$

sé Fiadeiro – 2017/18

Examples

- (\mathcal{N}, \leq) is well-ordered.
- (\mathcal{Z}, \leq) is not well-ordered.
- Every finite poset is well-founded
- The lexicographic extension of a well-ordered chain is also well-ordered.

losé Fiadeiro – 2017/18

Question

- We are given a bag containing red, yellow, and blue chips.
 Over that bag, we execute the following procedure:
 - If only one chip remains, we remove it and terminate.
 - If there are two or more, we remove two at random and:
 - I. If one of the two is red, we keep them and execute the procedure again.
 - 2. If both are yellow, we put one yellow and five blue counters in the bag, and execute the procedure again.
 - 3. If one of the two is blue and the other is not red, we put ten red chips in the bag and execute the procedure again.
- Does this process terminate?

losé Fiadeiro — 2017/18

Answer

- We represent the state of the game/process the contents of the bag as a triple (y,b,r) of natural numbers where y is the number of yellow chips, b the number of blue chips, and r the number of red chips.
- Each step changes the state (y,b,r) to another state (y',b',r').
- We choose the lexicographic ordering over \mathcal{N}^3 to order the states.
- If we can prove that $(y',b',r') \le (y,b,r)$ then, given that the lexicographic ordering is well-founded, we conclude that execution terminates because there is no infinite descending chain.

Answer

- Consider then a state (y,b,r) such that y+b+r > 1, i.e. the execution hasn't terminated.
 - We remove two chips at random and:
 - I. If one of the two is red, we keep them.

In this case we move to the state (y,b,r-2) < (y,b,r)

2. If both are yellow, we put one yellow and five blue counters in the bag.

In this case we move to the state (y-1,b+5,r) < (y,b,r)

losé Fiadeiro – 2017/18

Answer

- Consider then a state (y,b,r) such that y+b+r > 1, i.e. the execution hasn't terminated.
 - We remove two chips at random and:
 - I. If one of the two is red, we keep them.

There are three possibilities

- The other chip is yellow. In this case, we move to the state (y-1,b,r-1) < (y,b,r)
- The other chip is blue. In this case, we move to the state (y,b-1,r-1) < (y,b,r)
- The other chip is red. In this case, we move to the state (y,b,r-2) < (y,b,r)

ORDERINGS - 4.4

CS1860 – Mathematical Structures

Answer

2. If both are yellow, we put one yellow and five blue counters in the bag.

In this case we move to the state (y-1,b+5,r) < (y,b,r)

3. If one of the two is blue and the other is not red, we put ten red chips in the bag.

There are two possibilities

- The two chips are blue. In this case, we move to the state (y,b-2,r+10) < (y,b,r)
- One of the chips is blue and the other is yellow. In this case, we move to the state (y-1,b-1,r+10) < (y,b,r)

