Homework 1 solutions

Exercise 1 Find the distance between the points (-2, 1, -5) and (4, -1, -1).

Solution: The distance formula yields

$$d = \sqrt{(-2-4)^2 + (1-(-1))^2 + (-5-(-1))^2} = \sqrt{56}$$

Exercise 2 Initial and terminal points are given, (6,2,0), (3,-3,8), respectively.

- (a) Sketch the directed line segment.
- (b) Find the component form of the vector.
- (c) Write the vector using standard unit vector notation.
- (d) Sketch the vector with its initial point at the origin.

Solution:

- (a) See class notes for similar problem.
- (b) v = (3, -3, 8) (6, 2, 0) = (-3, -5, 8).
- (c) v = -3i 5j + 8k.
- (d) See class notes for similar problem.

Exercise 3 Use vectors to determine whether the points (5,-4,7), (8,-5,5) and (11,6,3) are collinear.

Solution: Taking the point (5, -4, 7) as our base-point, we may define vectors

$$u = (8, -5, -5) - (5, -4, 7) = (3, -1, -12)$$

 $v = (11, 6, 3) - (5, -4, 7) = (6, 10, -4)$

A direct comparison between corresponding coordinates shows that these vectors are not scalar multiples of each other, hence the three given points are not collinear.

Exercise 4 You are given points P = (2,-1,3), Q = (0,5,1), R = (5,5,0). Let u be the vector from P to Q, v be the vector from P to R. Find

(a) the component forms of u and v

- (b) $u \cdot v$
- (c) $v \cdot v$.

Solution:

(a) The vectors u and v are

$$u = (0,5,1) - (2,-1,3) = (-2,6,-2)$$

 $v = (5,5,0) - (2,-1,3) = (3,6,-3)$

(b)
$$u \cdot v = (-2, 6, -2) \cdot (3, 6, -3) = (-2) \cdot 3 + 6 \cdot 6 + (-2) \cdot (-3) = 36.$$

(c)
$$v \cdot v = (3, 6, -3) \cdot (3, 6, -3) = 3^2 + 6^2 + (-3)^2 = 54$$

Exercise 5 Find the angle between the vectors $\mathbf{u} = (1,0,-3)$ and $\mathbf{v} = (2,-2,1)$

- (a) in radians;
- (b) in degrees.

Solution: The angle between two vectors may be computed by means of the formula

$$u \cdot v = ||u|| ||v|| \cos(\theta).$$

Using the given values of u and v, we find

$$\cos(\theta) = \frac{1 \cdot 2 + 0 \cdot (-2) + (-3) \cdot 1}{\sqrt{1^2 + 0^2 + (-3)^2} \sqrt{2^2 + (-2)^2 + 1^2}}$$
$$= -\frac{1}{3\sqrt{10}}$$

We find the values of the angle by using the arc-cosine function:

- (a) 1.676 radians
- (b) 96.05°

Exercise 6 You are given vectors $\mathbf{u} = (1,-1,1)$, $\mathbf{v} = (2,0,2)$. Find

- (a) the projection of u onto v;
- (b) the vector component of u orthogonal to v.

Solution:

(a) Recall that the norm of the projection vector is given by

$$\|\text{proj}(u, v)\| = \frac{u \cdot v}{\|v\|}$$

$$= \frac{1 \cdot 2 + (-1) \cdot 0 + 1 \cdot 2}{\sqrt{2^2 + 0^2 + 2^2}}$$

$$= \frac{4}{2\sqrt{2}}$$

$$= \sqrt{2}$$

It follows that the projection vector is

$$\operatorname{proj}(u, v) = \frac{\sqrt{2}}{\|v\|} v$$
$$= \frac{\sqrt{2}}{2\sqrt{2}} (2, 0, 2)$$
$$= (1, 0, 1)$$

(b) The complement vector w is defined by the equation

$$\operatorname{proj}(u, v) + w = u.$$

Using the given value of u and the value we found for the projection on part (a), we conclude

$$w = (1, -1, 1) - (1, 0, 1) = (0, -1, 0).$$

Exercise 7 You are given vectors $\mathbf{u} = (0,2,1), \mathbf{v} = (1,-3,4)$. Find

- (a) $u \times v$;
- (b) $v \times u$;
- (c) $v \times v$.

Solution:

(a) We will use the determinants in this part:

$$u \times v = \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} i + \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix} j + \begin{vmatrix} 0 & 2 \\ 1 & -3 \end{vmatrix} k$$

= $(2 \cdot 4 - 1 \cdot (-3))i - (0 \cdot 4 - 1 \cdot 1)j + (0 \cdot (-3) - 1 \cdot 2)k$
= $11i + j - 2k$

(b) In this case we will use multiplication rules for i, j and k

$$v \times u = (i - 3j + 4k) \times (2j + k)$$

= $2i \times j - 6j \times j + 8k \times j + i \times k - 3j \times k + 4k \times k$
= $2k - 8i - j - 3i$
= $-11i - j + 2k$

(c) As we saw in class, the cross product between a vector and itself is 0.

Exercise 8 You are given points (-1,4,3), (8,10,5). Find sets of

- (a) parametric equations, and
- (b) symmetric equations.

for the line that passes through the points (write the direction numbers as integers).

Solution:

(a) A parametric equation can be found by describing a base-point and a direction vector. We will choose (-1,4,3) as our base point. The difference

$$u = (8, 10, 5) - (-1, 4, 3) = (9, 6, 2)$$

serves a direction vector. The parametric equation with this data is

$$(x, y, z) = (-1, 4, 3) + \lambda(9, 6, 2)$$

= $(-1 + 9\lambda, 4 + 6\lambda, 3 + 2\lambda)$.

(b) Emphasizing the parameter λ in the equations found on part (a), we find

$$\lambda = \frac{x-1}{9},$$

$$\lambda = \frac{y-4}{6},$$

$$\lambda = \frac{z-3}{2}.$$

This yields the symmetric equations:

$$\frac{x-1}{9} = \frac{y-4}{6} = \frac{z-3}{2}$$

Exercise 9 Find a set of parametric equations for the line that passes though the point (1,2,3) and is parallel to the line given by x=y=z.

Solution: A direction vector for the line x = y = z can be found by choosing two points

on the line and finding their difference, e.g.

$$v = (1, 1, 1) - (0, 0, 0) = (1, 1, 1).$$

We can thus express the parametric equations for the desired line as

$$(x, y, z) = (1, 2, 3) + \lambda(1, 1, 1).$$

Exercise 10 Find the equation of the plane that passes through the point (-2, 3, 1) and is perpendicular to n = 3i - j + k.

Solution: The general form of the equation of a plane perpendicular to n = 3i - j + k takes the form

$$3x - y + z = D.$$

To find D, we substitute the coordinates of the point (-2, 3, 1):

$$3 \cdot (-2) - 3 + 1 = D$$
,

hence the equation for the plane is

$$3x - y + z = -8.$$