4.2.4 Characterizing Acoustic Radiation Force Impulse Imaging

In order to fully understand the suitability of using ARFI imaging to detect and monitor deep tissue injuries, 1 model of unlesioned tissue and 4 general models of deep tissue injury lesions were modelled. Each model was investigated over a range of parameters in order to determine the relationship between the detection sensitivity and the various parameters that were studied. The unlesioned model was used to investigate the general effects of acoustic radiation force impulse forces in soft tissue. The investigated lesionous models included a hard-boundaried spherical lesion embedded in a homogeneous soft tissue domain, a lesion with blurred boundaries that "fades" into the homogeneous soft tissue background, a cluster of small lesions which together comprise a greater lesionous region, and a lesion with MRI-acquired geometry [67] embedded in geometry obtained from a Visible Human slice [126]. Schematics of the four investigated models are given in 4.2.

In order to characterize ARFI imaging, ranges of parameters pertinent to each investigated model were studied. The parameters relating to general soft tissue response to acoustic body loads included: the ARFI interrogation frequency used to excite the tissue with acoustic radiation force; the transducer width which applies the acoustic radiation force to the tissue; the number of pulse cycles (loading time) applied by the transducer; and the pressure applied by the transducer. The lesionous models investigated yet more parameters including: lesion depth; lesion diameter; lesion relative stiffness ratio; lesion blur radius; the number of tightly-packed lesions in a clustered lesion model; the radii of the individual tightly-packed lesions in a clustered lesion model;