Die Türme von Hanoi mit variabler Platzanzahl

Heidelberger Schülersymposium 2019

13.05.2019

Einleitung

Türme von Hanoi

Es gibt n Scheiben und k Plätze, wobei zu Beginn alle Scheiben auf dem ersten Platz liegen.

Ziel des Spieles ist es, alle Scheiben auf den letzte Platz zu stapeln.

- In jedem Zug wird die oberste Scheibe eines Platzes bewegt
- Es darf nie eine größere Scheibe auf eine kleinere Scheibe gelegt werden

Anfangskonfiguration

Nach Zug 1 - Endkonfiguration

Anfangskonfiguration

Nach Zug 2 - Zwischenturmkonfiguration

Nach Zug 3 - Endkonfiguration

Anfangskonfiguration

Nach $\overline{\text{Zug } 1}$

Nach $\overline{Z}ug 2$

Nach Zug 4 - Zwischenturmkonfiguration

Nach Zug 7 - Endkonfiguration

Gesetzmäßigkeit

Definition

M(n, k) := minimale Zugzahl bei n Scheiben und k Plätzen

Scheiben	Benötigte Züge
1	1
2	3
3	7

Tabelle: Zugzahl bei 3 Plätzen

Vermutung:

$$M(n,3)=2^n-1$$

Anfangskonfiguration

Nach $\overline{Z}ug 2$

Nach $\overline{Z}ug7$

Was haben wir bisher gemacht?

- 3 Scheiben vom ersten auf den zweiten Platz bewegt
- Benötigte Züge: 7

Interessant!

Im Prinzip ist das genau das, was wir bei 3 Scheiben gemacht haben:

- 3 Scheiben von einem Platz auf einen anderen bewegt
- Benötigte Züge: 7

Nach Zug 8 - Zwischenturmkonfiguration

Nach Zug 15 - Endkonfiguration

Warum ist das so?

Beweis.

Induktionsanfang: (n = 1) $M(1,3) = 2^1 - 1 = 1$ Induktionsannahme: (n = k) $M(k,3) = 2^k - 1$ Induktionsschritt: (n = k + 1)

- Bewege k Scheiben von Platz 1 auf Platz 2
- Bewege die größte Scheibe von Platz 1 auf Platz 3
- Bewege k Scheiben von Platz 2 auf Platz 3

Das benötigt insgesamt M(k,3) + 1 + M(k,3) Züge. Wir können aufgrund der Induktionsannahme $M(k,3) = 2^k - 1$ annehmen.

$$M(k+1,3) = 2 * M(k,3) + 1 = 2 * (2^{k} - 1) + 1 = 2^{k+1} - 1$$

Anfangskonfiguration

Nach Zug 9 - Zwischenturmkonfiguration

Nach Zug 17 - Endkonfiguration

Strategie

Wie gehen wir nun bei 4 oder mehr Plätzen vor?

- Wir stapeln einige Scheiben von Platz 1 auf Platz 2.
- Wir stapeln einige Scheiben von Platz 1 auf Platz 3.
- ...
- Wir stapeln einige Scheiben von Platz 1 auf Platz k-1.
- Wir stapeln die größte Scheibe um.
- Wir stapeln die Scheiben von Platz k-1 auf Platz k.
-
- Wir stapeln die Scheiben von Platz 3 auf Platz k.
- Wir stapeln die Scheiben von Platz 2 auf Platz k.

Kryptographie

- Wir verschlüsseln den Text "Langer Text "
- Dazu wählen wir 4 Parameter: n, k, step und movecount

Beispiel

$$n = 7$$
, $k = 4$, $step = 4$, $movecount = 15$

Anfangskonfiguration

Nach $\overline{Z}ug 6$

Nach $\overline{Z}ug7$

Nach Zug 13 - Zwischenturmkonfiguration

- Wir verschlüsseln den Text "Langer Text"
- Dazu wählen wir 4 Parameter: n, k, step und movecount
- Dann verschlüsseln wir die ersten n Zeichen, indem wir eine Konfiguration mit k Plätzen movecount Züge weit lösen

Beispiel

- n = 7, k = 4, step = 4, movecount = 15
- Nach der ersten Runde erhalten wir folgenden Text: "ner aLg"+ "Text"= "ner aLgText"
- Nun gehen wir in diesem Text step nach rechts und führen die gleiche Prozedur wieder durch: "ner aLgText"

Anfangskonfiguration

Nach $\overline{Z}ug 6$

Nach $\overline{Z}ug7$

Nach Zug 13 - Zwischenturmkonfiguration

- Wir verschlüsseln den Text "Langer Text"
- Dazu wählen wir 4 Parameter: n, k, step und movecount
- Dann verschlüsseln wir die ersten n Zeichen, indem wir eine Konfiguration mit k Plätzen movecount Züge weit lösen
- Nun nehmen wir ab dem step+1-ten Zeichen wieder n Zeichen und lösen eine Konfiguration mit k Plätzen movecount Züge weit

Beispiel

- n = 7, k = 4, step = 4, movecount = 15
- Nach der zweiten Runde erhalten wir folgenden Text: "ner "+ "gextLaT"= "ner gextLaT"

Vielen Dank für ihre Aufmerksamkeit