

Tema 9 MANEJO DE ACTUADORES

Actuadores

- Permiten convertir un estado lógico en una manipulación mecánica
- Pueden ser discretos (ON-OFF) o contínuos
- Los principales son:
 - Relevadores
 - Solenoides
 - Motores
 - Piezo-eléctricos

Actuadores

- Permiten convertir un estado lógico en una manipulación mecánica
- Pueden ser discretos (ON-OFF) o contínuos
- Los principales son:
 - Relevadores
 - Solenoides
 - Motores (CD-CA)
 - Piezo-eléctricos

Relevadores

- Es un interruptor mecánico controlado por corriente.
- Permite manejar niveles de corrientes y voltajes superiores a las que puede manejar de forma directa el microcontrolador.
- Nos brinda "aislamiento" eléctrico entre nuestro circuito y el circuito de aplicación.
- Los relevadores de alta capacidad de corriente se les llama "contactores"

Relevadores

Estructura del relevador

Tipos por aplicación.

- Signal Relays: Corrientes en los contactos menores a 2Amps
- Power Relays: Corrientes en los contactos superiores a los 2amps.
- Contactors: Corrientes en los contactos superiores a los 20amps.
- Entre mayor sea la corriente en los contactos, más grandes son, mayor cantidad de corriente se requiere para activarlos.

Parámetros básicos

http://www.sunhold.com/upload/prd1/107-3.pdf

Parámetros básicos

COIL RATING (at 20°c)

	NOMINAL VOLTAGE (VDC)	COIL RESISTANCE (11)(±10%)	POWER CONSUMPT -ION(W)	NOMINAL CURRENT (mA)(±10%)	PULL IN VOLTAGE (VDC)	DROP OUT VOLTAGE (VDC)	MAX ALLOWABLE VOLTAGE (VDC)	
	3V	20 n		150.0mA		10% MIN.	130%	
D	5V	56₽		89.3mA	707 MAV			
	6V	80 n	0.45W	75.0mA				
	9V	180 ₽] 0.45#	50.0mA	70% MAX.	10% MIIN.	130%	
	12V	320 n]	37.5mA				
	24V	1280 ₽		18.8mA				

CONTACT RATING

Item	3A
Rated Carrying Current	DC24V 3A
	DC30V 1A
	AC120V 2A
Max. Allowable Current	3A
Max. Allowable Voltage	AC 120V
	DC 60V
Max. Current (continual)	3A
Min. Load	DC1V 1mA
Contact Material	Ag alloy

Parámetros básicos

Aplicación típica

Driver

- Convertir los niveles lógicos de baja capacidad de corriente en una señal con la potencia suficiente para manejar la bobina del relevador.
- Provee las protecciones necesarias para evitar que transitorios se acoplen a circuitos sensibles.

Driver Típico BJT

$$R1 = (Vinput-Vbe)/Ibase$$

hfe
$$(2N2222) = 100$$

$$Vsat = 0.2V$$

$$Vbe = 0.7V$$

Vinput = Voh (etapa anterior)

Driver Típico

- Ejemplo: Relay Sunhold 12V, Rcoil = 320ohms.
- Icoil = (12-0.2V)/320ohms = 36.8mA
- Ibase = 36.8/100 = 0.368mA
- R1(max) = (5-0.7)/0.638mA = 11.6Kohms
- Margen de seguridad, utilizar un valor con base a la capacidad de corriente de la etapa anterior.

Acoplamiento del driver a PIC18

- En los puertos del PIC18, el estado despues de reset es alta impedancia.
- La base del transistor al quedar en alta impedancia puede ser activada por ruido inducido.
- Se recomienda colocar una resistencia de base a tierra para minimizar la suceptibilidad al ruido

Acoplamiento recomendado para PIC18

Consideraciones de Q1

- La corriente que puede soportar Ic
- La potencia que puede disipar (Icoil * Vsat)
- La variación de hfe contra la corriente de carga.
- La variación de hfe contra temperatura
- El voltaje Vce máximo

Consideraciones del relevador

Item Type	3A
Contact Resistance	50mΩ Max. (initial value)
Operate Time	5msec Max.
Release Time	5msec Max.
Dielectric Strength	
between coil & contact	AC1500V (1min)
between contact	AC1000V (1min)
Insulation Resistance	100Mn Min.(DC500V)
Operating Ambient Temperature	−30°C ~ +75°C
Humidity	35 to 85% RH
Vibration Resistance	10G (10~55Hz)(Dual amplitude:1.5mm)
Shock Resistance	10G
Life Expectancy	
Mechanically	10,000,000 ops. Min. (1800 ops./h)
Electrically	10,000,000 ops. Min. (1800 ops./h) 100,000 ops. Min. (1200 ops./h)
Weight	3.5g(about)

Consideraciones del relevador

- Ciertas cargas altamente inductivas pueden generar arqueo en las terminales.
- El arqueo daña las terminales y las chispas genera emisión electromagnética.
- Cargas como el tugsteno, pueden dañar el contacto porque su resistencia es muy baja cuando la carga está fría.
- Existen relevadores especializados para diferentes tipos de cargas

Relevadores "Latcheados"

- Conservan el estado de actuación
- Solamente se requiere de un pulso para encenderlo y uno para apagarlo.
- Son ideales para sistemas con restricciones de potencia.

Motores de DC (tipo brushed)

• Es un dispositivo electromecánico que permite generar un movimiento circular

Parámetros de motores

Model	Operating Voltage	Rated Voltage	No Load Speed	No Load Current	Rated	Load	Rated Load Speed	Rated Load Current	Starting	Torque	Starting	Shaft
Model	(V)	(V)	(min ⁻¹)	(mA)	(gf·cm)	(mN·m)	(min ⁻¹)	(mA)	(gf·cm)	(mN·m)	Current Ler	(mm)
PAN14EE12AB	9 to 16	12.0	11050	70	50.0	4.9	9094	563	282.5	27.7	2857	a=11.5
PAN14EE12AA1	9 to 14.5	12.0	14974	116	50.0	4.9	12850	792	352.4	34.5	4878	a=11.5

Parámetros de motores

N(min-1) = RPM

Motores de DC (tipo brushed)

• Los motores pueden ser manejados con drivers similares a los del relevador.

PWM puede ser usado para controlar velocidad

Solenoides

• Es un dispositivo electromecánico que permite generar un movimiento lineal.

Solenoides

- Su manejo es idéntico a los relevadores sin embargo la resistencia de la bobina suele ser más baja.
- Tiene múltiples aplicaciones, una de las más populares es como elemento actuador en válvulas hidráulicas y neumáticas cuando se requiere un control tipo ON-OFF
- Son muy usados en la industria automotriz en válvulas y como actuador mecánico en general.

Solenoides

Solenoid Valve

Open Frame

Válvulas Solenoides

Especificaciones generales

*Resistance values are ± 10% at 25°C

Model Code	Part No.	Voltage	Duty Cycle	Power (W)	Resistance (Ω)*	Current (A)
L-22PL012D-C	F0411A	12VDC	Continuous	4	36.0	0.4
L-22PL012D-I	F0412A	12VDC	Intermittent	8.5	16.9	0.7
L-22PL024D-C	F0413A	24VDC	Continuous	4	144.0	0.2
L-22PL024D-I	F0414A	24VDC	Intermittent	8.5	68.0	0.4

Definition of Duty Cycles:

Continuous = indefinite activation; Intermittent = 1 minute ON and 3 minutes OFF; Pulse = 100 msec. ON and 900 msec. OFF Special order options: 6 to 48 Volts DC or AC; push-type configuration. Consult factory for other modifications.

Stroke (in.):	Sealed	1/16	1/8	1/4	3/8	1/2
Cont. Duty force	41 oz.	13 oz.	5 oz.	2 oz.	1 oz.	N/A
Int. Duty force	46 oz.	22 oz.	10 oz.	3 oz.	2 oz.	1 oz.

Typical force values when operated at 100% rated voltage at 25°C. Derating required for lower voltage and higher temperature.

Motores de Pasos (Bipolar)

Ventajas

- Fácil manejo (drive)
- Alta confiabilidad
- Posicionamiento preciso, minimiza requerimientos de retroalimentación.
- No genera errores rotacionales acumulativos
- Aplicaciones:
 - Medicina, Automotriz, Impresoras, Robótica.

Tipos (de imán permanente)

Manejo (Unipolar)

Manejo (Unipolar)

ULN2003A, ULN2003AI, ULN2004A, ULQ2003A, ULQ2004A

Conexión a un PIC18

Bobina se enciende con 0 lógico

Secuencia (Motor de 4 pasos)

		CW ROTATION					
		STEP1	STEP2	STEP3	STEP4		
RD0	A	1	0	0	0		
RD1	В	0	0	1	0		
RD2	C	0	0	0	1		
RD3	D	0	1	0	0		

Secuencia (Medios pasos)

					CW RO	TATION			
		STEP1	STEP2	STEP3	STEP4	STEP5	STEP6	STEP7	STEP8
RD0	Ā	1	1	0	0	0	0	0	1
RD1	B	0	0	0	1	1	1	0	0
RD2	c	0	0	0	0	0	1	1	1
RD3	D	0	1	1	1	0	0	0	0

Tipos de secuencias

Table 1. Excitation sequences for different drive modes

Dobla la resolución pero torque no es uniforme

Ejemplo

- Implemente un programa para el circuito de la filmina 29 que haga lo siguiente
 - Utilice un motor de 4 pasos con manejo de 8 medios pasos
 - Cada vez que existe una transición negativa en el puerto RC0 (detectada por software) el motor produzca 100 giros a una velocidad de 600 revoluciones por minuto
 - Para control de tiempos, utilice una funcion llamada my_delay(int) cuyo argumento es un entero con una resolución de 0.5msec

Alternativa de solución

- Puerto RC0 entrada, RD0:RD3 salidas
- Definir en un arreglo la secuencia de valores requeridas en RD0:RD3 para producir una rotación
- Esperar la transición negativa en entrada RC0
- Generar un lazo con la cantidad de giro y dentro de ese lazo, otro para cada giro
- Dentro del lazo de giros, sacar uno a uno los valores requeridos para mover cada paso.
- Entre paso y paso deberá de existir una demora del valor requerido para producir la velocidad deseada

Alternativa de solución

- La velocidad deseada es de 600rpm (revoluciones por minuto...o vueltas por minuto)
- 600 rpm / 60 = 10 revoluciones por segundo
- El motor tiene 8 medios pasos
- Cada giro (8 medios pasos) dura entonces 1/10 segundo o 0.1
- Cada paso dura entonces 0.1/8 = 12.5msec
- El argumento de la función delay será de 12.5/.5 = 25


```
//Contiene las definiciones para el procesador especifico
#include<p18f45k22.h>
                            //Cantidad de vueltas
#define CTE GIROS 5
#define CTE TIEMPO PASO 25 //Delay entre pasos para tener velocidad 600rmp
#define CTE PASOS 8
                            //Cantidad de pasos
#define PUERTO ENTRADA PORTCbits.RC0
void init ports(void);  //Funcion que inicializa los puertos
void my delay(int);
                          //Rutina de delay resolucion 0.5msec
main(){
unsigned char pasos[8] = \{0x01,0x09,0x08,0x0A,0x02,0x04,0x05\}; //Secuencia
int i,j;
                            //Control de lazo
unsigned char lee salida; //Variable para manejo del puerto de salida
                            //RDO:RD3 Salidas, RC0 entrada
init ports();
while (1) {
    while((PUERTO ENTRADA));
                                    //En espera mientras sea uno
    while(!(PUERTO ENTRADA)); //Ya es cero, esperamos a que sea uno
    //Detectamos transicion positiva procedemos
    //Lazo de cantidad de giros
    for (i=0;i<CTE GIROS;i++) {</pre>
        //Lazo de pazos dentro de giros
        for (j=0;j<CTE PASOS;j++) {</pre>
            //Proceso de escritura a puerto que evita alterar parte alta
                                            //Leemos estado actual del puerto
            lee salida = PORTD;
            lee salida = lee salida & 0xF0; //Enmascaramos parte baja
            PORTD = lee salida | pasos[j]; //Modificar parte baja del puerto
            my delay(CTE TIEMPO PASO); //Tiempo entre pasos
        };
    }//lazo del giro
}//de while(1)
} //de main() TEMA 09 PIC 1.C
```


Motores de mayor resolución

Motores de mayor resolución

PartNumber	42M100B2U
DC Operating Voltage	12
Res Per Winding (Ohms)	75
Ind per Winding mH	36.7
Holding Torque mN*m/oz-in	49.4/7.0
Rotor Moment of Inertia (g*m²)	9.5E-4
Detent Torque mN*m/oz-in	11.3/1.60
Step Angle	3.6°
Step Angle Tolerance	±0.4
Steps per Rev	100
Max Operating Temp	100°C

	U	NIPOL/	NR.		
STEP	01	02	03	04	۱.
1	ON	OFF	ON	OFF	
2	DN	OFF	OFF	ON	R01A110N
3	OFF	ON	OFF	ON	1 5
4	OFF	ON	ON	0FF	3
- 1	ON	OFF	QN	OFF] ິ
	STEP 1 2 3 4	STEP 01 I 0N 2 0N 3 0FF 4 0FF	STEP 01 02 I	1 ON OFF ON 2 ON OFF OFF 3 OFF ON OFF 4 OFF ON ON	STEP D1 D2 D3 D4 I QN OFF ON OFF 2 QN OFF OFF ON 3 OFF ON OFF ON 4 OFF ON ON OFF

Secuencia "full step" para mover 3.6° Se requiren 100 para una revolución

Microstepping

- Permite multiplicar la resolución del motor subdiviendo cada paso en N posiciones.
- Consiste en generar campos cosenoidales en el estator utilizando valores de corrientes intermedios

