

TRABALHO DE GRADUAÇÃO

RISC-V SiMPLE

Arthur de Matos Beggs

Brasília, dezembro de 2018

UNIVERSIDADE DE BRASILIA

Faculdade de Tecnologia Curso de Graduação em Engenharia de Controle e Automação

TRABALHO DE GRADUAÇÃO

RISC-V SiMPLE

Arthur de Matos Beggs

Relatório submetido como requisito parcial de obtenção de grau de Engenheiro de Controle e Automação

Banca Exa	ımınadora
Prof. Marcus Vinicius Lamar, CIC/UnB Orientador	
Prof. Ricardo Pezzuol Jacobi, CIC/UnB Co-Orientador	

Brasília, dezembro de 2018

FICHA CATALOGRÁFICA

ARTHUR, DE MATOS BEGGS

RISC-V SiMPLE,

[Distrito Federal] 2018.

x, 101p., 297 mm (FT/UnB, Engenheiro, Controle e Automação, 2018). Trabalho de Graduação

- Universidade de Brasília. Faculdade de Tecnologia.

1. RISC-V 2. ???

I. Mecatrônica/FT/UnB II. Título (Série)

REFERÊNCIA BIBLIOGRÁFICA

BEGGS, ARTHUR DE MATOS, (2018). RISC-V SiMPLE. Trabalho de Graduação em Engenharia de Controle e Automação, Publicação FT.TG-n°022, Faculdade de Tecnologia, Universidade de Brasília, Brasília, DF, 101p.

CESSÃO DE DIREITOS

AUTOR: Arthur de Matos Beggs

TÍTULO DO TRABALHO DE GRADUAÇÃO: RISC-V SIMPLE.

GRAU: Engenheiro ANO: 2018

É concedida à Universidade de Brasília permissão para reproduzir cópias deste Trabalho de Graduação e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desse Trabalho de Graduação pode ser reproduzida sem autorização por escrito do autor.

Arthur de Matos Beggs

SHCGN 703 Bl G Nº 120, Asa Norte

70730-707 Brasília — DF — Brasil.

	Dedicatória
Dedico ao pato de borracha especialista em TI que sempre me códigos.	ajuda a depurar meus
	Arthur de Matos Beggs

Agradecimentos

A grade cimentos!

Arthur de Matos Beggs

Resumo!

Palavras Chave: RISC-V

ABSTRACT

Abstract!

Keywords: RISC-V

SUMÁRIO

1	Introdução		
	1.1	Motivação	1
	1.2	Por que RISC-V?	1
2	Espec	cificação	3
	2.1	Conjunto de Instruções I	4
	2.2	Extensão M	4
	2.3	Extensão F	4
	2.4	Barramento Avalon	4
	2.5	Arquitetura Privilegiada	4
3	Imple	ementação	5
4	Conc	lusões	6
	4.1	Perspectivas Futuras	6
RI	EFERÍ	ÈNCIAS BIBLIOGRÁFICAS	7
Ar	iexos.		8
Ι	Desci	rição do conteúdo do CD	9
II	Progr	ramas utilizados	10

LISTA DE FIGURAS

0.1	D: 1-	::		1- DICC V	C:MIDI I	- 1
Z. I	плаятата па	тистоатоппенна	-iimicicio o	10 KJSU-V	SIMPLE.	 - 4
	Diagrama aa	TITLE COLL GUILOCCUI C	difference of	10 1010 0 1	O11111 111.	 _

LISTA DE TABELAS

LISTA DE SÍMBOLOS

Siglas

BSD	Distribuição de Software de Berkeley - Berkeley Software Distribution
CSR	Registradores de Controle e Estado - Control and Status Registers
FPGA	Arranjo de Portas Programáveis em Campo - Field Programmable Gate Array
hart	hardware thread
ISA	Arquitetura do Conjunto de Instruções - Instruction Set Architecture
MIPS	${\bf Microprocessador~sem~Est\'agios~Intertravados~de~{\it Pipeline~-~Microprocessor}}$
	without Interlocked Pipeline Stages
OAC	Organização e Arquitetura de Computadores
RISC	Computador com Conjunto de Instruções Reduzido - $Reduced\ Instruction\ Set$
	Computer
SiMPLE	Ambiente de Aprendizado Uniciclo, Multiciclo e Pipeline - Single-cycle Mul-
	ticycle Pipeline Learning Environment

Introdução

1.1 Motivação

O mercado de trabalho está a cada dia mais exigente, sempre buscando profissionais que conheçam as melhores e mais recentes ferramentas disponíveis. Além disso, muitos universitários se sentem desestimulados ao estudarem assuntos desatualizados e com baixa possibilidade de aproveitamento do conteúdo no mercado de trabalho. Isso alimenta o desinteresse pelos temas abordados e, em muitos casos, leva à evasão escolar. Assim, é importante renovar as matérias com novas tecnologias e tendências de mercado sempre que possível, a fim de instigar o interesse dos discentes e formar profissionais mais capacitados e preparados para as demandas da atualidade.

Hoje, a disciplina de Organização e Arquitetura de Computadores é ministrada utilizando a arquitetura *MIPS32*. Apesar da arquitetura *MIPS32* ainda ter grande força no meio acadêmico (em boa parte devido a sua simplicidade e extensa bibliografia), sua aplicação na indústria tem diminuído consideravelmente na última década.

Embora a curva de aprendizagem de linguagens Assembly de alguns processadores RISC seja relativamente baixa para quem já conhece o Assembly MIPS32, aprender uma arquitetura atual traz o benefício de conhecer o estado da arte da organização e arquitetura de computadores.

Para a proposta de modernização da disciplina, foi escolhida a *ISA RISC-V* desenvolvida na Divisão de Ciência da Computação da Universidade da Califórnia, Berkeley.

1.2 Por que RISC-V?

A ISA RISC-V (lê-se "risk-five") é uma arquitetura open source com licença BSD, o que permite o seu livre uso para quaisquer fins, sem distinção de se o trabalho possui código-fonte aberto ou proprietário. Tal característica possibilita que grandes fabricantes utilizem a arquitetura para criar seus produtos, mantendo a proteção de propriedade intelectual sobre seus métodos de implementação e quaisquer subconjuntos de instruções não-standard que as empresas venham a desenvolver, o que estimula investimentos em pesquisa e desenvolvimento.

Empresas como Google, IBM, AMD, Nvidia, Hewlett Packard, Microsoft, Oracle, Qualcomm e Western Digital são algumas das fundadoras e investidoras da *RISC-V Foundation*, órgão responsável pela governança da arquitetura. Isso demonstra o interesse das gigantes do mercado no sucesso e disseminação da arquitetura.

A licença também permite que qualquer indivíduo produza, distribua e até mesmo comercialize sua própria implementação da arquitetura sem ter que arcar com *royalties*, sendo ideal para pesquisas acadêmicas, *startups* e até mesmo *hobbyistas*.

O conjunto de instruções foi desenvolvido tendo em mente seu uso em diversas escalas: sistemas embarcados, *smartphones*, computadores pessoais, servidores e supercomputadores, o que permitirá maior reuso de *software* e maior integração de *hardware*.

Outro fator que estimula o uso do RISC-V é a modernização dos livros didáticos. A nova versão do livro utilizado em OAC, Organização e Projeto de Computadores, de David Patterson e John Hennessy, utiliza a ISA RISC-V.

Além disso, com a promessa de se tornar uma das arquiteturas mais utilizadas nos próximos anos, utilizar o RISC-V como arquitetura da disciplina de OAC se mostra a escolha ideal no momento.

Especificação

O projeto RISC-V SiMPLE (Single-cycle Multicycle Pipeline Learning Environment) consiste no desenvolvimento de um processador com conjunto de instruções RISC-V, sintetizável em FPGA e com hardware descrito em Verilog. A microarquitetura implementada nesse trabalho é uniciclo, escalar, em ordem, com um único hart e com caminho de dados de 64 bits. Trabalhos futuros utilizarão a estrutura altamente configurável e modularizada do projeto para desenvolver as versões em microarquiteturas multiciclo e pipeline.

O processador contém o conjunto de instruções I (para operações com inteiros, sendo o único módulo com implementação mandatória pela arquitetura) e as extensões standard M (para multiplicação e divisão de inteiros) e F (para ponto flutuante com precisão simples conforme o padrão IEEE 754 com revisão de 2008). O projeto não implementa as extensões D (ponto-flutuante de precisão dupla) e A (operações atômicas de sincronização), e com isso o soft core desenvolvido não pode ser definido como de propósito geral, G (que deve conter os módulos I, M, A, F e D). Assim, pela nomenclatura da arquitetura, o processador desenvolvido é um RV64IMF.

O projeto contempla traps, interrupções, exceções, CSRs, chamadas de sistema e outras funcionalidades de nível privilegiado da arquitetura.

O soft core possui barramento Avalon para se comunicar com os periféricos das plataformas de desenvolvimento. O projeto foi desenvolvido utilizando a placa DE2-115 com FPGA Altera Cyclone e permite a fácil adaptação para outras placas da Altera.

2.1 Conjunto de Instruções I

Figura 2.1: Diagrama da microarquitetura uniciclo do RISC-V SiMPLE.

- 2.2 Extensão M
- 2.3 Extensão F
- 2.4 Barramento Avalon
- 2.5 Arquitetura Privilegiada

Implementação

Conclusões

Concluir

4.1 Perspectivas Futuras

Perspectivas futuras

REFERÊNCIAS BIBLIOGRÁFICAS

ANEXOS

I. DESCRIÇÃO DO CONTEÚDO DO CD

Descrever CD.

II. PROGRAMAS UTILIZADOS

Quais programas foram utilizados?