PoW vs PoS

High-level Comparison

Agenda

- Basic concepts
- Barriers to Entry
- Network Security
- Network Decentralization
- Resistance to Attacks
- Environment
- Summary

Agenda

- Basic concepts
- Barriers to Entry
- Network Security
- Network Decentralization
- Resistance to Attacks
- Environment
- Summary

Not Bitcoin vs Ethereum

Introduction

Consensus

- the mechanism that nodes use to determine the *true* state
- examples: Nakamoto Consensus (Chain-based), PBFT

Sybil resistance

- the mechanism that associates some cost to producing blocks
- o examples: PoW, PoS

Block producer selection

- the mechanism that determines who the next block producer is
- examples: PoW, PoS

Barriers to Entry (1/2)

- Mining hardware
 - exogenous
 - energy (unforgeable)
- Buying mining rigs (GPUs/ASICs)
 - no permission is required
 - o partial censorship possible
- Mining rig decay
 - o profits constantly decrease
 - need to sell coins to cover costs and update their hardware
 - coin distribution is increased
 - newcomers buy new/better rigs

Barriers to Entry (1/2)

- Mining hardware
 - exogenous
 - energy (unforgeable)
- Buying mining rigs (GPUs/ASICs)
 - o no permission is required
 - partial censorship possible
- Mining rig decay
 - profits constantly decrease
 - need to sell coins to cover costs and update their hardware
 - coin distribution is increased
 - newcomers buy new/better rigs

- Coins
 - endogenous
 - capital (software)
- Buying coins
 - indirect permission is required
 - full censorship possible
- Stake/Coins never decay
 - perfect ASICs
 - stakers can maintain advantage forever
- Is there a way for majority stakers to lose control of their stake?

Barriers to Entry (2/2)

- Can a user really mine?
 - very competitive
 - o requires initial hardware investment
- Miners
 - o companies will invest
 - o only a handful of users will mine

- Easier for professionals with large farms
 - 3 top mining pools have 50%+ hashrate
 - misconception: mining pools control the hashrate

Barriers to Entry (2/2)

- Can a user really mine?
 - very competitive
 - requires initial hardware investment
- Miners
 - companies will invest
 - only a handful of users will mine

- Easier for professionals with large farms
 - 3 top mining pools have 50%+ hashrate
 - misconception: mining pools control the hashrate

- Can a user really stake?
 - yes, easy and profitable
 - initial investment are the actual coins
- Stakers
 - both companies and users will stake
 - fair distribution %-wise

- Any user can stake even small amounts
 - o it is easy because stake is delegated
 - delegation centralizes considerably
 - user can redelegate elsewhere
 - not always possible!

Network Security

- Objective History
 - given multiple chains the *true* chain
 (history) can be determined objectively
 - most accumulated PoW chain; PoW requires computation and is thus thermodynamic
 - o incentive to choose a chain

Network Security

- Objective History
 - given multiple chains the *true* chain
 (history) can be determined objectively
 - most accumulated PoW chain; PoW requires computation and is thus thermodynamic
 - incentive to choose a chain

- Subjective History
 - given multiple chains the *true* chain (history) is subjective
 - trivial to sign a block so anyone can present multiple chains trivially
 - there is an incentive to sign in more than one chains; nothing-at-stake / costless simulation

Network Security (Solving Subjectivity)

- Short-range attacks
 - can be avoided by locking the deposit staked for a certain amount of blocks N
 - if signatures are detected for multiple chains then part of the deposit is slashed
 - validators are incentivised to be honest

Network Security (Solving Subjectivity)

- Long-range attacks
 - how long can *N* (for locking) be?
 - o what if we introduce checkpoints?
 - a state M blocks ago is considered final
 - as long as N >= M we are safe
 - but how do new nodes (or nodes offline for more than *M* blocks) know of the checkpoints?
 - ask a trusted entity

Network Security (summing up)

- Objective History
 - given multiple chains the *true* chain (history) can be determined objectively
 - most accumulated PoW chain
 - PoW requires computation and is thus thermodynamic

- Weakly Subjective History
- Short-range attacks
 - deposit+slashing
 - protected for *N* blocks
- Long-range attacks
 - checkpointing
 - online nodes are secured as above
 - new nodes or offline nodes (>N blocks)
 - ask a trusted entity for the last checkpoint

Complexity?

Complexity?

Network Decentralization

- Incentivizes geographical distribution of mining power
 - cheap remote electricity
 - wasted electricity
- Coins are more distributed
 - miners have to sell to stay competitive

- What if governments
 - seize a lot of rigs?
 - o buy a lot of rigs?
 - covertly use rigs of manufacturers?

Network Decentralization

- Incentivizes geographical distribution of mining power
 - cheap remote electricity
 - wasted electricity
- Coins are more distributed
 - miners have to sell to stay competitive

- What if governments
 - seize a lot of rigs?
 - o buy a lot of rigs?
 - covertly use rigs of manufacturers?

Coins are easier to centralize

- The majority of coins are created on network launch
 - concentration of wealth

- What if governments
 - o seize a lot of coins?
 - buy a lot of coins?
 - covertly use coins of exchanges?

Resistance to Attacks

- fault-tolerance
 - 50%
 - neutral/arbitrary block producer selection

- 51% attacks
 - hard to accumulate mining rigs in secret
 - time will render rigs useless

- bribery attacks
 - difficult / resources are wasted

- fault-tolerance
 - 50% with chain-based consensus
 - 33% with BFT-like consensus
 - a-priori knowledge of block producer node

- 51% attacks (and 34%)
 - easy to accumulate coins in secret
 - time is irrelevant.
 - stake to retain advantage
- bribery attacks
 - nothing-at-stake, using old keys
 - slashing is a solution to this
 - N/A to BFT-like consensus

Resistance to Attacks

- Sybil attacks
 - requires computation / energy / capital
- other attacks
 - selfish mining, censorship, eclipse attacks
- Application incentive attacks
 - N/A

- Sybil attacks
 - requires coins / capital
- other attacks
 - liveness denial, censorship, eclipse attacks, grinding attack
- Application incentive attacks
 - DeFi introduces a lot of incentives
 - what if lending % is higher than staking?
 - risk of reduced security?
 - Liquid staking to the rescue
 - what about the security implications of an 'intermediate' ?

Environment

- Requires significant energy
 - the more energy the more security
- But... but...
 - uses energy that would be wasted
 - uses cheap energy around the world
 - o gold uses much more energy
 - o banking sector uses even more energy
 - o ..

Environment

- Requires significant energy
 - the more energy the more security
- But... but...
 - uses energy that would be wasted
 - uses cheap energy around the world
 - o gold uses much more energy
 - banking sector uses even more energy
 - o ..

- Requires minimal energy
 - o energy is irrelevant to security

Summary

- more secure
 - objectivity / less susceptible to some attacks
 - o requires both capital and labor to attack
- more decentralized
 - miners are geographically distributed
 - less susceptible to covert control

- more profitable
 - anyone can stake profitably
- more scalable
 - PBFT-like PoS
- more environmentally friendly

Thank You

@kkarasavvas

Thessaloniki's Bitcoin and Blockchain Tech Meetup

https://www.meetup.com/BlockchainGreece-1/@Thess_Bitcoin

Python Bitcoin Library (FOSS)

https://github.com/karask/python-bitcoin-utils

Bitcoin Programming Book (CC)

https://github.com/karask/bitcoin-textbook