Problem set-4 for MA1201

Prepared by Dr. Asit Saha

Lecture-13: Class Problems: (Method of variation parameters)

1. Solve: $\frac{d^2y}{dx^2} + y = \csc x$. Ans: $y = c_1 \cos x + c_2 \sin x - x \cos x + \sin x \log |\sin x|$.

2. Solve: $\frac{d^2y}{dx^2} + 4y = \tan 2x$. Ans: $y = c_1 \cos 2x + c_2 \sin 2x - \frac{1}{4} \cos 2x \log |\sec 2x + \tan 2x|$.

3. Solve: $\frac{d^2y}{dx^2} + y = \sec x$.

Homework:

1. Solve: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = e^x \tan x$.

2. Solve: $\frac{d^2y}{dx^2} + y = \tan x$.

Lecture-14: Class Problems: (Cauchy-Euler's homogeneous linear equation)

1. Solve: $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x$.

2. Solve: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2$. Ans: $y = c_1 x^{-1} + c_2 x^4 - \frac{1}{6} x^2$. 3. Solve: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = 2 \log x$. Ans: $y = c_1 x^{-1} + c_2 x^4 - \frac{1}{2} \log x + \frac{3}{8}$.

Homework:

1. Solve: $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2$. Ans: $y = c_1 x^2 + c_2 x^3 - (\log x) x^2$.

2. *Solve: $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$.

Lecture-15: Class Problems: (Simultaneous Linear differential equations)

1. Solve: $\frac{\frac{dx}{dt} + y = \sin t}{\frac{dy}{dt} + x = \cos t}$ 2. Solve: $\frac{\frac{dx}{dt} - 2y = t}{\frac{dy}{dt} + 2x = 0}$ Ans: $x=c_1e^t+c_2e^{-t}$ $y=\sin t-c_1e^t+c_2e^{-t}$.

Homework:

1. Solve: $\frac{\frac{dx}{dt} + y = \sin t}{\frac{dy}{dt} + x = \cos t}$ given that x = 2, y = 0, when t = 0.

Ans: $x = \frac{1}{2}(e^{-t} - e^t)$, $y = \sin t + \frac{1}{2}(e^t + e^{-t})$.

2. Solve: $\frac{dx}{dt} + 2x + 3y = 0$

Lecture-16: Class Problems: (Laplace transforms)

1. Define Laplace transform of a function f(t). Using the same, find the Laplace transform of following functions:

i) $f(t) = e^{2t}$, $t \ge 0$, ii) $f(t) = \begin{cases} \frac{t}{2}, & 0 < t < 2 \\ 1, & t > 2 \end{cases}$, iii) $f(t) = \begin{cases} e^t & 0 < t < 1 \\ 1, & t > 1 \end{cases}$.

Homework:

1. Define Laplace transform of a function f(t). Using the same, find the Laplace transform of following functions:

i) $f(t) = Sin(2t), t \ge 0.$

ii) f(t) = Sinh(2t), t > 0.

*iii) $f(t) = |t - 1| + |t + 1|, t \ge 0.$

Problems for Remedial Class:

1. Solve: $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 4y = \sin(3 \log x)$.

2. Solve by the method of variation parameters: $\frac{d^2y}{dx^2} + 9y = cosec 3x$.

3. Using the definition, find the Laplace transform of $f(t) = t + |t - 2|, t \ge 0$.