Автоматическая сегментация речевого сигнала

П. А. Холявин

p.kholyavin@spbu.ru

28.11.2024

Методы сегментации

- 1. С опорой на транскрипцию (forced alignment)
- 2. Без опоры на транскрипцию

- 1. По правилам
- 2. Статистические

Автоматическое определение взрывных

Признаки:

- 1. Общая энергия
- 2. Энергия выше 3 кГц
- 3. Spectral flatness

С шагом 1 мс, окно 5 мс

FIG. 1. Portion of the speech wave form s(n) (top panel), the associated three-dimensional feature vector, $\mathbf{x}(n)$ (middle panel), and the desired output y(n) bottom panel marking the times of the closure-burst transition.

Автоматическое определение взрывных

Алгоритмы:

А. Сумма разностей первого и второго признака

В. Оптимальный (обученный) оператор с двумя признаками

С. -//- с тремя признаками

FIG. 2. ROC curves for detection of stop consonants using three different algorithms described in text.

Классификация фрикативных

Классификация фрикативных

Признаки для определения звонкости:

LOWG – энергия до 1 кГц

LOWE – отношение энергий частот до 1.5 кГц и от 3 кГц

DUP – длительность глухого участка

FIG. 5. Voicing detection in prevocalic fricatives.

Munich Automatic Segmentation System

С опорой на орфографию:

- 1. G2P
- 2. WORDVAR построение графа произносительных вариантов

Munich Automatic Segmentation System

С опорой на орфографию:

3. Алгоритм Витерби (поиск наиболее вероятного пути через граф)

Montreal Forced Aligner

Kaldi

Признаки:

13 MFCC до 8 кГц + дельта и дельта-дельта, окно 25 мс, шаг 10 мс

Обучение:

- 1. Монофонные GMM-модели (40 итераций, 20 из них с пересчётом границ)
- 2. Трифонные GMM-модели (35 итераций, 15 с пересчётом)

Уточнение границ после НММ

- 1. На основе спектральных признаков
- 2. С помощью SVM
- 3. С помощью нейронных сетей

...

Моделирование границ

Использование фонетической сегментации:

Table 2. Agreement percentages for different tolerances (in ms), for systems using or not using manual segmentation for training monophone HMMs.

	<10	<20	<30	<40	<50
Segmentation not used for training	70.20	89.98	95.74	97.88	98.92
Segmentation used for training	73.23	91.85	96.45	98.17	99.05

Моделирование границ

Figure 1: 1-state HMM. The one state HMM is a special 1-state model for the boundaries when the transition probabilities $a_{11} = 0$ and $a_{12} = 1$.

Моделирование границ

Table 4. Agreement percentages for different tolerances (in ms), for systems using monophone HMMs, monophone HMMs and boundary models, triphone HMMs, and triphone HMMs and boundary models.

	<10	<20	<30	<40	<50
Monophones	73.23	91.85	96.45	98.17	99.05
Monophones & Bo.	77.44	93.92	97.43	98.78	99.35
Triphones	74.93	92.37	96.72	98.33	99.09
Triphones & Bo.	78.09	93.85	97.37	98.72	99.37

Использование Wav2Vec2

Table 1. Evaluation results of text-dependent alignment

			1		0
Model	P	R	F1	R-val	Overlap
FAVE	0.57	0.59	0.58	0.64	74.3%
MFA-Libris	0.61	0.61	0.61	0.67	73.5%
MFA	0.62	0.63	0.63	0.68	75.0%
Gentle	0.49	0.46	0.48	0.56	67.7%
WebMAUS	0.70	0.70	0.70	0.75	78.8%
W2V2-FC-20ms-Libris	0.49	0.47	0.48	0.56	73.8%
W2V2-FC-10ms-Libris	0.57	0.54	0.55	0.62	76.4%
W2V2-FC-32k-Libris	0.66	0.63	0.64	0.69	79.3%
W2V2-FS-20ms	0.47	0.49	0.48	0.55	71.6%
W2V2-FS-10ms	0.68	0.68	0.68	0.73	80.4%
W2V2-FS-32k	0.63	0.65	0.64	0.69	79.3%
Pretrained G2P converter					
W2V2-FS-20ms	0.40	0.42	0.41	0.49	65.1%
W2V2-FS-10ms	0.56	0.58	0.57	0.63	72.5
W2V2-FC-32k-Libris	0.58	0.57	0.58	0.64	73.0%
Phone set adaptation (TIMIT	-61)				
W2V2-FS-20ms	0.49	0.53	0.51	0.57	70.5%
W2V2-FS-10ms	0.66	0.70	0.68	0.72	79.7 %

Использование Wav2Vec2

Table 2. Evaluation results of text-independent alignment

				0
P	R	F1	R-val	Overlap
0.31	0.29	0.30	0.42	43.9%
0.31	0.30	0.31	0.42	46.6%
P-FS				
0.40	0.42	0.41	0.48	64.2%
0.56	0.58	0.57	0.63	71.5%
0.57	0.57	0.57	0.64	72.2%
s 0.57	0.59	0.58	0.63	72.7%
s 0.55	0.58	0.56	0.62	72.5%
0.60	0.63	0.61	0.66	74.3%
	0.31 0.31 0.40 0.56 0.57 0.57	0.31 0.29 0.31 0.30 8-FS 0.40 0.42 0.56 0.58 0.57 0.57 8 0.57 0.59 8 0.55 0.58	0.31 0.29 0.30 0.31 0.30 0.31 0.40 0.42 0.41 0.56 0.58 0.57 0.57 0.57 0.57	0.31 0.29 0.30 0.42 0.31 0.30 0.31 0.42 0.40 0.42 0.41 0.48 0.56 0.58 0.57 0.63 0.57 0.57 0.57 0.64 0.58 0.57 0.59 0.58 0.63 0.59 0.58 0.56 0.62

Спасибо за внимание!

