Chapter-9

Stack and Subroutines

9.1 STACK

The stack in an 8085 microcomputer system can be described as a set of memory locations in the R/W memory, specified by programmer in main memory. The beginning of the stack is defined in program by using the instruction LXI SP, 16-bit memory address of a stack.

INSTRUCTIONS

<u>Opcode</u>	<u>Operand</u>
LXI PUSH PUSH PUSH PUSH	SP, 16-bit memory address of a stack Rp B D H
PUSH	PSW

<u>Opcode</u>	<u>Operan</u>			
POP	Rp			
POP	В			
POP	D			
POP	Н			
POP	PSW			

9.2 **SUBROUTNE**

A subroutine is a group of instructions written separately from main program to perform a function that occurs repeatedly in the main program. A subroutine is like a procedure or function of a high-level language and it is called using the instruction CALL 16-bit memory address of a subroutine.

INSTRUCTIONS

<u>Opcode</u>	<u>Operand</u>
CALL RET	16-bit memory address of a subroutine

9.21 Illustrative Program: <u>Traffic Signal Controller</u>

PROBLEM SATEMENT

Write a program to provide the given on/off time to three traffic lights (Green, Yellow, and Red) and two pedestrian signs (WALK and DON'T WALK). The signal lights and signs are turned on/off the data bits of an output port as shown below:

Data Bits	On Time
D0	15 seconds
D2	5 seconds
D4	20 seconds
D6	15 seconds
D7	25 seconds
	D0 D2 D4 D6

PROBLEM ANALYSIS

	<u>DON'T</u>									
<u>Time</u>	WALK	<u>WALK</u>		Red		<u>Yellow</u>	•	Gre	<u>een</u>	<u>Hex</u>
0 (15)	D ₇	D_6	D_5	D_4	D_3	D_2	D_1	D_0		
[*] 15	0	1	0	0	0	0	0	1	=	41H
(5)	1	0	0	0	0	1	0	0	=	84H
↓ (20) 40	1	0	0	1	0	0	0	0	=	90H

FIGURE 9.13

PROGRAM

LXI SP, XX99H

START: MVI A, 41H

OUT PORT#

MVI B, 0FH CALL DELAY

MVI A, 84H OUT PORT#

MVI B, 05H CALL DELAY

MVI A, 90H OUT PORT#

MVI B, 14H CALL DELAY

JMP STATR

DELAY: PUSH D

PUSH PSW

SECOND: LXI D, COUNT

CALL DELAY

LOOP: DCX D

MOV A,D

ORAE

JNZ LOOP

DCR B

JNZ SECOND

POP PSW

POP D

RET