Step-1

Given that to solve a rectangular system Ax = b, we replace A^{-1} (which does not exist) by $(A^TA)^{-1}A^T$ (which exists if A has independent columns). We have to show that this is a left inverse of A but not right inverse. On the left of A it gives the identity; on the right it gives the projection P.

Step-2

Since A has independent columns, that is, $A^{T}A = I$, we have

$$\left(A^{T}A\right)^{-1}A^{T}A$$
$$=I^{-1}I$$

$=I \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in [1]$

Step-3

And

$$A(A^{T}A)^{-1}A^{T}$$

$$= AA^{-1}(A^{T})^{-1}A^{T}$$

$$\neq I \ \hat{a} \in |\hat{a} \in (2)$$

Because A^{-1} does not exist, that is, $AA^{-1} \neq I$

Step-4

Hence from (1) and (2), $(A^T A)^{-1} A^T$ is a left inverse of A but not right inverse.

Since $A(A^TA)^{-1}A^T$ is a projection matrix, by (2), on the right of A, $(A^TA)^{-1}A^T$ gives the projection P.

Hence the required result is proved