MATEMATIK

Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa

Chalmers tekniska högskola Tentamen Datum: 131019 kl. 08.30–12.30 Telefonvakt: Richard Lärkäng

0703-088304

(3p)

(3p)

MVE275 Linjär algebra AT

Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper. Fyll i omslaget ordentligt.

För godkänt på tentan krävs 25 poäng på tentamens första del (godkäntdelen) Bonuspoäng från duggor 2013 räknas med, men maximal poäng på denna del är 32.

För godkänt på kursen skall också Matlabmomentet vara godkänt.

För betyg 4 eller 5 krävs dessutom 33 resp. 42 poäng sammanlagt på tentamens två delar.

Lösningar läggs ut på kursens webbsida 19/10 eftermiddag. Resultat meddelas via Ladok senast tre veckor efter tentamenstillfället. Granskning alla vardagar utom onsdag 9-13, MV:s exp.

Del 1: Godkäntdelen

- 1. Denna uppgift finns på separat blad på vilket lösningar och svar skall skrivas. Detta blad inlämnas tillsammans med övriga lösningar. (14p)
- 2. Låt

$$A = \left[\begin{array}{ccccc} 3 & 0 & 3 & -6 & 3 \\ 2 & -2 & -2 & -10 & 3 \\ 5 & 4 & 13 & 2 & 1 \end{array} \right].$$

- (a) Bestäm allmänna lösningen till ekvationen $A\mathbf{x} = \mathbf{0}$. (3p)
- (b) Bestäm en bas för $\operatorname{Col} A$, och ange rank A.
- 3. Låt A vara matrisen

$$A = \left[\begin{array}{rrr} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{array} \right].$$

- (a) Egenvärdena till A är 2 och 9. Bestäm tre linjärt oberoende egenvektorer till A. (4p)
- (b) Bestäm lösningen till systemet av differentialekvationer

$$\begin{cases} x'_1(t) = 4x_1(t) - x_2(t) + 6x_3(t) \\ x'_2(t) = 2x_1(t) + x_2(t) + 6x_3(t) \\ x'_3(t) = 2x_1(t) - x_2(t) + 8x_3(t). \end{cases}$$

som uppfyller att $\mathbf{x}(0) = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^t$.

- 4. Låt W vara delrummet i \mathbb{R}^4 som spänns upp av $\mathbf{v}_1 = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^t$, $\mathbf{v}_2 = \begin{bmatrix} -1 & -5 & 2 & -3 \end{bmatrix}^t$ och $\mathbf{v}_3 = \begin{bmatrix} -1 & -4 & 3 & -4 \end{bmatrix}^t$.
 - (a) Bestäm en ortogonalbas för W. (3p)
 - (b) Skriv vektorn $\mathbf{x} = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^t$ som en summa av vektorer $\mathbf{x} = \mathbf{y} + \mathbf{z}$ där \mathbf{y} ligger i W^{\perp} . (3p)

Del 2: Överbetygsdelen

Poäng på dessa uppgifter kan inte räknas in för att nå godkäntgränsen. Normalt krävs för poäng på uppgift att man redovisat en fullständig lösningsgång, som i princip lett, eller åtminstone skulle kunnat leda, till målet.

5. (a) Låt \mathbb{P}_2 och \mathbb{P}_3 vara vektorrummen av polynom av grad högst 2 respektive 3, och låt D och I vara de linjära avbildningarna $D: \mathbb{P}_3 \to \mathbb{P}_2$ och $I: \mathbb{P}_2 \to \mathbb{P}_3$ definierade av

$$D(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2 \text{ och } I(a_0 + a_1x + a_2x^2) = a_0x + \frac{a_1}{2}x^2 + \frac{a_2}{3}x^3$$

(så att D är derivering och I är integrering från 0 till x). Bestäm matriserna för avbildningarna D och I relativt standardbaserna $\{1, x, x^2\}$ och $\{1, x, x^2, x^3\}$ för \mathbb{P}_2 respektive \mathbb{P}_3 .

(b) Förklara med hjälp av matriserna från (a) att (2p)

$$I(D(a_0 + a_1x + a_2x^2 + a_3x^3)) = a_1x + a_2x^2 + a_3x^3$$

och att

$$D(I(a_0 + a_1x + a_2x^2)) = a_0 + a_1x + a_2x^2.$$

(Det som efterfrågas är alltså hur man ser detta från matriserna för D och I, inte uträkningar som visar att formlerna gäller).

- (c) Låt \mathcal{B}_2 vara basen $\{1, 2t-1, t^2-2t\}$ för \mathbb{P}_2 och \mathcal{B}_3 vara basen $\{1, 2t-1, t^2-2t, t^3-3t^2\}$ (2p) för \mathbb{P}_3 . Bestäm matrisen för D relativt baserna \mathcal{B}_3 och \mathcal{B}_2 .
- **6**. (a) Om A är en $n \times n$ matris och ekvationen $A\mathbf{x} = \mathbf{b}$ har mer än en lösning för något \mathbf{b} i \mathbb{R}^n , kan då kolonnerna i A spänna upp \mathbb{R}^n ? Förklara varför, eller varför inte?
 - (b) Antag att E och F är två $n \times n$ matriser sådana att $EF = I_n$. Förklara varför FE = EF.
- 7. (a) Definiera nollrummet, Nul A, till en matris A. Antag att A är en $m \times n$ matris. Vad skall k vara för att Nul A skall vara ett underrum till \mathbb{R}^k ? Bevisa att för det valet av k, så är Nul A ett underrum till \mathbb{R}^k .
 - (b) Formulera och bevisa *Rang-satsen*. (3p)

Anor	nym kod	MVE275 Linjär algebra AT 131019	$rac{ ext{sid.nummer}}{1}$	Poäng
		de uppgifter skall korta lösningar redovisas, samt svar anges, på anvisad plats ar och svar på detta blad, och på anvisad plats, beaktas).	3	
(a)		en bas för $W=\mathrm{span}\{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\},$ där $\mathbf{w}_1=\begin{bmatrix}1&0&5\end{bmatrix}^t,$ $\mathbf{w}_2=\begin{bmatrix}2&0\\1&1&5\end{bmatrix}^t.$:	10] ^t	(3p)
(b)	Svar: Beräkna	inversen till matrisen		(3p)
(*)		$A = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 4 \\ 1 & 0 & 1 \end{array} \right]$		(°P)
	Lösning	:		
	Svar:			
(c)		$\mathbb{R}^3 \to \mathbb{R}^3$ vara en linjär avbildning så att	••••	(3p)
	T	$T(\mathbf{e}_1) = \mathbf{e}_1 - \mathbf{e}_2 + 3\mathbf{e}_3, T(\mathbf{e}_1 + \mathbf{e}_2) = 2\mathbf{e}_3 \text{ och } T(\mathbf{e}_1 - \mathbf{e}_3) = -\mathbf{e}_1 - \mathbf{e}_3,$		
	$\mathrm{d\ddot{a}r}\ \{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3,\mathbf{e}_4,\mathbf{e}_5,$	$\{ {\bf e}_2, {\bf e}_3 \}$ är standardbasen för ${\mathbb R}^3$. Bestäm $T({\bf e}_1 + {\bf e}_2 - {\bf e}_3)$.		

(d)	Skriv vektorn $\mathbf{v} = \begin{bmatrix} 3 & -5 \end{bmatrix}^t$ som en linjärkombination av vektorerna $\mathbf{u}_1 = \begin{bmatrix} 1 & -1 \end{bmatrix}^t$ och $\mathbf{u}_2 = \begin{bmatrix} 3 & -4 \end{bmatrix}^t$. Lösning:	(2p)
	Comm.	
(e)	Svar:	(2p)
	$A = \left[\begin{array}{cccc} -2 & 0 & 0 & 0 \\ 0 & -5 & 0 & 7 \\ 0 & -1 & 3 & 2 \\ 0 & -1 & 0 & 2 \end{array} \right]$	
	Lösning:	
(f)	Ge exempel på matriser A och B sådana att $AB=0$, men $A\neq 0$ och $B\neq 0$.	(2p)
	Lösning:	
	Svar:	

Liten ordlista över linjär algebra. Se också Glossary i kursboken där kortfattad förklaring av termerna ges.

Svenskt ord **Engelskt ord**

adjoint, adjugate adjunkt, adjungerad matris algoritm, räkneschema algorithm

angle vinkel

totalmatris, utvidgad matris augmented matrix

hjälp(ekvation), ibl. karakteristisk auxiliary (equation)

ekvation

backward (phase) bakåt (fas)

basic variable bunden (ofri) variabel, basvariabel,

basis bas belongs to tillhör change of basis basbyte

collinear (vectors) parallella (vektorer)

column kolonn column space kolonnrum

composition of linear

sammansatt linjär avbildning transformations

condition villkor

condition number konditionstal consistent system lösbart system constraint restriktion, villkor

dimension dimension distinct distinkta, olika domain definitionsmängd dot product skalärprodukt echelon (matrix) trappstegs(matris) eigenvalue, eigenvector egenvärde, egenvektor equivalent ekvivalent, likvärdig

framåt (fas) forward (phase) general solution allmän lösning homogeneous equation homogen ekvation

identity matrix enhets matris, identitets matris

ändligt (dimensionell)

if and only if om och endast om

bild image

inconsistent (system) olösbart (system) inner product skalärprodukt inverse, invertible invers, inverterbar kernel kärna, nollrum

minsta-kvadrat(-metoden) least-square (method)

finite (dimensional)

linear combination linjär kombination linearly (in)dependent linjärt (o)beroende

linjärt hölje linear span lower triangular undre triangulär

avbildning, transformation mapping

necessary (condition) nödvändigt (villkor)

nonsingular (matrix) inverterbar (matris), icke-singulär

nontrivial (solution) icke-trivial (lösning)

null space nollrum

injektiv (ev. en-entydig) one-to-one

surjektiv, på onto orthonormal ortonormerad

overdetermined system överbestämt system

värdemängd range

rank rang

radkanonisk matris, reducerad reduced echelon matrix

trappstegsmatris

radrum row space

satisfy satisfiera, uppfylla

set mängd

singular icke-inverterbar, singulär

solution lösning

solution set lösningsmängd span, linear span (linjärt) hölje

mängd som spänner upp, spanning set

uppspännande mängd

submatrix undermatris

subspace underrum, delrum sufficient condition tillräckligt villkor

trace spår

transfer matrix överföringsmatris

transformation transformation, avbildning

transpose transponat

underdetermined system underbestämt system entydigt bestämd unique enhetsvektor unit vector upper triangular övre triangulär

vektorrum, linjärt rum vector space

weight vikt

zero(vector) noll(vektor)