Suites numériques

1 Définition et mode de génération.

1.1 Définition et notations.

Définition 1

Une **suite** numérique est une fonction définie sur l'ensemble des entiers naturels (sauf eventuellement quelques premiers entiers) à valeurs dans l'ensemble des rééls.

Exemple 2

- **1.** Soit $u : \mathbb{N} \to \mathbb{R}$, $n \mapsto (-1)^n$. On appelle termes de la suite (u_n) les images successives des entiers par u. On les note u_n au lieu de u(n). $u_0 = 1$, u(1) = -1, u(2) = 1...
- 2. Soit (v_n) la suite définie par la formule $v_n = \frac{1}{n}$. v_n n'est définie qu'à partir de n = 1.
- 3. Soit (w_n) la suite définie par la formule $w_n = \sqrt{n-7}$. w_n n'est définie qu'à partir de n=7.

1.2 Définition explicite d'une suite.

Définition 3

Une suite numérique peut être définie par la donnée d'une formule **explicite** qui permet de calculer directement chaque terme u_n à l'aide de n.

Exemple 4

Les suites de l'exemple 2. Pour toute fonction $f:[a,+\infty[\to\mathbb{R},$ on peut définir la suite $(u_n)_{n\geq a}$ par $u_n=f(n)$.

1.3 Définition d'une suite par récurrence.

Théorème 5

Une suite numérique peut être définie par la donnée d'un premier terme et d'une relation, dite de **récurrence**, qui permet de calculer un terme à partir du précédent.

Exemple 6

- 1. Soit (u_n) la suite définie par récurrence par : $u_0 = 3$ et pour tout entier n, $u_{n+1} = 2u_n 1$. $u_1 = 2u_0 1 = 2 \times 3 1 = 5$, $u_2 = 2u_1 1 = 2 \times 5 1 = 9$. On ne peut pas calculer directement u_n à partir de n. Par exemple, pour calculer u_{100} , il faut calculer tous les termes qui précèdent.
- **2.** Pour toute fonction $g: I \subset \mathbb{R} \to I \subset \mathbb{R}$ et $x \in I$, on peut définir la suite (u_n) par $u_0 = x$ et $u_{n+1} = g(u_n)$.

2 Suites arithmétiques.

Définition 7

Une suite est **arithmétique** lorsque l'on passe d'un terme au suivant en ajoutant toujours le même nombre appelé la **raison**.

Autrement dit, une suite $(u_n)_{n\geq p}$ est arithmétique de raison r si et seulement si pour tout entier $n\geq p$, $u_{n+1}=u_n+r$.

Exemple 8

- 1. La suite des entiers 0, 1, 2, 3, ... est arithmétique de raison 1.
- 2. La suite des entiers pairs 0, 2, 4, 6, ... est arithmétique de raison 2.
- 3. la suite des entiers impairs 1, 3, 5, 7, ... est arithmétique de raison 2.
- 4. la suite des multiples de 5, 0, 5, 10, 15, ... est arithmétique de raison 5.
- 5. la suite definie par $u_n = 7n + 4$ pour tout entier n. En effet, $u_{n+1} = 7(n+1) + 4 = 7n + 7 + 4 = 7n + 4 + 7 = u_n + 7$. u_n est arithmétique de raison 7.

Théorème 9 (Formes explicites d'une suite arithmétique)

Soit $(u_n)_{n\geq p}$ une suite arithmétique, pour tout couple d'entiers (n,p), $u_n=u_p+(n-p)r$.

3 Suites géométriques.

Définition 10

Une suite est **géométrique** lorsque l'on passe d'un terme au suivant en multipliant toujours par le même nombre (non nul) appelé la **raison**.

Autrement dit, une suite $(u_n)_{n\geq p}$ est géométrique de raison q si et seulement si pour tout entier $n\geq p,\,u_{n+1}=u_n\times q.$

Exemple 11

- 1. La suite des puissances de 2, 1, 2, 4, 8, 16, ... est géométrique de raison 2.
- 2. La suite des puissances de -1, $u_n = (-1)^n : 1, -1, 1, -1, 1, \dots$ de raison -1.
- 3. la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout entier n par $v_n = -5 \times 7^n$. $v_{n+1} = -5(7)^{n+1} = -5(7)^n \times 7 = v_n \times 7$ et v_n est géométrique de raison 7.

Théorème 12 (Formes explicites d'une suite géométrique)

Soit $(u_n)_{n\geq p}$ une suite géométrique, pour tout couple d'entiers (n,p), $u_n=u_p\times q^{n-p}$.

4 Sens de variations.

Définition 13

Soit $(u_n)_{n>k}$ une suite numérique.

- u_n est **croissante** si pour tout entier $n \ge k$, $u_{n+1} \ge u_n$.
- u_n est **strictement croissante** si pour tout entier $n \ge k$, $u_{n+1} > u_n$.
- u_n est **décroissante** si pour tout entier $n \ge k$, $u_{n+1} \le u_n$.
- u_n est **strictement décroissante** si pour tout entier $n \ge k$, $u_{n+1} < u_n$.
- u_n est **constante** si pour tout entier $n \ge k$, $u_{n+1} = u_n$.

Une suite croissante ou décroissante est dite monotone.

Exemple 14

- 1. La suite des entiers impairs $u_n = 1 + 2n$ est strictement croissante. En effet, $u_{n+1} u_n = 1 + 2(n+1) (1+2n) = 2 > 0$
- 2. La suite des inverse $u_n = \frac{1}{n}$ avec (n > 0) est strictement décroissante. En effet, $u_{n+1} u_n = \frac{1}{n+1} \frac{1}{n} = \frac{n (n+1)}{n(n+1)} = \frac{-1}{n(n+1) < 0}$
- 3. La suite $u_n = (-1)^n$ n'est pas monotone car $u_0 = 1 > -1 = u_1 < 1 = u_2$

4.1 Sens de variation d'une suite arithmétique.

Théorème 15

Soit $(u_n)_{n\geq k}$ une suite arithmétique de raison r.

- Si r > 0 alors (u_n) est strictement croissante.
- Si r < 0 alors (u_n) est strictement décroissante.
- Si r = 0 alors (u_n) est constante.

Exemple 16

- 1. La suite (u_n) définie par $u_n = 1 + 3n$ est strictement croissante comme c'est une suite arithmétique de raison 3 > 0.
- 2. La suite (v_n) définie par $v_4=7$ et pour tout entier $n\geq 7$, $v_{n+1}=v_n-2$ est strictement décroissante comme suite arithmétique de raison r=-2<0.

4.2 Sens de variation d'une suite géometrique.

Théorème 17

Soit $(u_n)_{n \ge k}$ une suite géométrique de raison q.

- Si q > 1 et $u_k > 0$ alors (u_n) est strictement croissante.
- Si q > 1 et $u_k < 0$ alors (u_n) est strictement décroissante.
- Si q = 1 alors (u_n) est constante.
- Si 0 < q < 1 et $u_k > 0$ alors (u_n) est strictement décroissante.
- Si 0 < q < 1 et $u_k < 0$ alors (u_n) est strictement croissante.
- Si q < 0 et $u_k \neq 0$ alors (u_n) n'est pas monotone.

Exemple 18

1. La suite $(u_n)_{n\geq 0}$ définie par $u_n=4(\frac{2}{3})^n$ est strictement décroissante comme c'est une suite géométrique de premier terme 4>0 et de raison $0<\frac{2}{3}<1$.

- 2. La suite (v_n) définie par $v_4 = -2$ et pour tout entier $n \ge 5$, $v_{n+1} = v_n \times 3$ est strictement décroissante comme suite géométrique de premier terme -2 < 0 et de raison 3 > 1.
- 3. La suite $(w_n)_{n\geq 0}$ géométrique de raison -2 avec $w_0=3$ n'est pas monotone. En effet, w_0 . En effet, $w_0=3>-6=w_1< w_2=12$.

4.3 Sens de variation d'une suite définie de façon explicite.

Théorème 19

Soit $f:[k,+\infty[\to\mathbb{R} \text{ et } (u_n)_{n\geq k} \text{ la suite définie par } u_n=f(n).$

- Si f est (resp. strictement) croissante alors (u_n) est (resp. strictement) croissante.
- Si f est (resp. strictement) décroissante alors (u_n) est (resp. strictement) décroissante.

Exemple 20

La suite $(u_n)_{n\geq 1}$ définie par $u_n=\frac{1}{n^2}$ est strictement décroissante comme la fonction $f:]0,+\infty[,x\mapsto\frac{1}{x^2}$ est strictement décroissante.

Remarque 21

Ne pas confondre avec le cas d'une fonction définie par récurrence.

- La suite (u_n) défine explicitement par $u_n = 2n 1$ est strictement croissante comme la fonction $f: x \mapsto 2x 1$ est strictement croissante et $u_n = f(n)$.
- Mais la suite (v_n) définie par récurrence par $v_0 = 0$ et pour tout entier n, $v_{n+1} = f(v_n) = 2v_n 1$ n'est pas strictement croissante. En effet, $v_0 = 0$, $v_1 = -1$, $v_2 = 2(-1) 1 = -3$.