Lecture 23

Protein-protein Docking

Protein-protein Docking

Computational Methods in Proteins

Protein-Protein Docking

Ab initio **Protein-protein docking** is the determination of the molecular structure of *complexes* formed by two or more proteins without the need for *experimental* measurement.

Definition of Protein Surface

- Roll the probe over the protein molecule using NACCESS program to compute the accessible surface area (ASA) (also called as SASA – surface accessible surface area)
- If an atom's accessible surface area (ASA) is more that 0.1 Å² then that is define as surface atom.

Definition of Protein Interface Area

- The surface area where two protein molecules interacts during complex formation is called as the interface region.
- If an atom loses its ASA by more than 0.1 Å² then we call that as an interface atom. The total loss of ASA by all the interface atoms are the interface area.
- Sometimes, we take the average for interface area to call it as interface area per protein molecule.
- · How to compute identify interface atoms? How to compute interface area?
 - Run the NACCESS on individual protein molecules
 - Run the NACCESS on the protein complex
 - Identify the atoms that loses its ASA by more than 0.1 Å²

Definition of Protein Interface Area

Protein Interaction

➤ Identify the interacting surface for two given protein molecules.

■ To model the protein complex structure formed out of two protein molecules – protein-protein docking

Measuring the correctness of protein docking

➤ Identify the interacting surface for two given protein molecules.

Assume the larger docking unit is receptor and smaller docking unit is ligand.

LRMSD:

RMSD between two ligand molecules after aligning receptor molecules.

IRMSD:

RMSD between the interface atoms of two ligand molecules after aligning receptor molecules.

Fnat score:

Parentage of interface residues correctly identified as interface residues.

Lecture 24-26

Protein-protein Docking

Docking Strategy

Generation methods

- Tagline "Higher the decoys; better the possibility of having a hit"
- How many is good?
- Move to discrete space

Generation methods

On an average some brute force method can generate $\sim 10^7$ decoys.

Generation methods

On an average some brute force method can generate $\sim 10^7$ decoys.

Assuming processing of each decoy takes 1 sec; total processing time \sim 115 days.

Fast Fourier Technique

 $\overline{a}_{l,m,n} = \begin{cases} 1 & \text{on the surface of the molecule} \\ \rho & \text{inside the molecule} \\ 0 & \text{outside the molecule,} \end{cases}$

and

 $\overline{b}_{l,m,n} = \begin{cases} 1 & \text{on the surface of the molecule} \\ \delta & \text{inside the molecule} \\ 0 & \text{outside the molecule,} \end{cases}$

Fast Fourier Technique

$$\overline{c}_{\alpha,\beta,\gamma} = \frac{1}{N^3} \sum_{o=1}^{N} \sum_{p=1}^{N} \sum_{q=1}^{N} \exp[2\pi i(o\alpha + p\beta + q\gamma)/N] \cdot C_{o,p,q}$$

Katchalski-Katzir et al, (1992) PNAS

Docking Strategy

Scoring methods

Ab initio scoring

Contact Area Contact Packing Non-bonded interactions Solvation Energy Etc.

Template based

Ab initio method

- ➤ Interface area (IA)
- ➤ Normalized interface packing (NIP)
- ➤ Normalized surface complementarity (NSc)
- ➤ Non-bonded energy (NE):

$$NE = \sum_{i < j}^{atoms} \left(\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}} + \frac{q_{i}q_{j}}{4\Pi \varepsilon R_{ij}} \right)$$

Solvation energy (SE):*

$$SE = \sum_{\text{interface atoms}} \Delta \sigma(\text{Atom Type}) \times \Delta \text{ASA}$$

Packing at interfaces

Interface packing = Actual Volume/Enclosed Volume

Interface packing is divided by interface area to get **Normalized** interface packing (*NIP*)

Surface complementarity

Surface complementarity is divided by interface area to get **Normalized surface complemenarity** (*NSc*)

NSc and NIP at protein interface*

Correlation coefficient of NIP and NSc is +0.95