Barème.

- Calculs : chaque question sur 2 point, total sur 28 points, ramené sur 5 points, +5%.
- Problèmes : exercice de TD sur 8 points, puis chaque question sur 4 points, total sur 144 points (V1) ou 116 points (V2), ramené sur 15 points, +80%.

Statistiques descriptives.

Soit
$$\varphi : \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right).$$

	Calculs	Problème V1	Problème V2	Note finale
Transformation	c	p_1	p_2	$\varphi\left(1,05\frac{5c}{28}+1,8\frac{15p_1}{144}+1,8\frac{15p_2}{116}\right)$
Note maximale	26	63	61	18,6
Note minimale	6	13	21	4,4
Moyenne	$\approx 14,40$	$\approx 38,04$	$\approx 40,07$	$\approx 10,70$
Écart-type	$\approx 5,13$	$\approx 12,84$	$\approx 9,84$	$\approx 3,07$
Premier quartile	10	28	35	8,65
Médiane	15	35	39	11
Troisième quartile	16,5	50	46	12,6

Remarques générales.

• Pour beaucoup, votre rédaction est claire et assez précise. C'est bien! L'étape suivante est de vous organiser pour en faire un peu plus : limiter la recherche et (surtout) la rédaction au brouillon au minimum, rédiger plus concisément.

Un exercice vu en TD (V1).

Ce que j'ai lu était dans l'ensemble correct, pour ceux qui ont tenté de le rédiger. Peu d'étudiants ont fait l'impasse dessus. C'est bien!

Tirages de boules dans une urne (V1).

La partie d'algèbre linéaire était assez élémentaire. Il était dommage de ne pas y répondre. Vous devez le repérer en lisant au préalable le sujet.

- 1) Reconnaître la loi uniforme permettait de se passer des calculs, et donc de gagner du temps.
 - Il est incohérent de trouver une variance nulle, ou pire... une 🙎 variance négative 🙎 .
- **4a)** On attendait une justification du type «si $B_k = i$, il y a k + 2 boules dans l'urne au moment du $k + 1^e$ tirage, dont i blanches, donc [...]».
 - Il n'y a pas «d'événement sachant un autre». La notation $[B_{k+1} = j \mid B_k = i]$ n'a aucun sens.
- **4b)** ($[B_k = i 1], [B_k = i]$) n'est pas un système complet d'événements. On travaille presque toujours avec le système complet d'événements associé à une variable aléatoire. La question **3)** était là pour ça.
- **6a)** On attendait des arguments formalisés : utilisation de la formule précédente ou formule des probabilités composées, par exemple.
 - Si β_k est l'événement «on tire une boule blanche à la k^e épreuve», ces événements ne sont pas mutuellement indépendants.
 - Une erreur vue plusieurs fois : $P_{[B_k=1]}(B_{k+1}=1)=P(\beta_{k+1})$. C'est faux!
- **6c)** Grande source d'erreurs : $P(X_{k+1} = 2) = (k+2)!a_{k+1}$, et non $P(X_{k+1} = 2) = (k+1)!a_{k+1}$...
- **6d)** Inutile de présenter l'analyse : il suffit de présenter A et B et de vérifier. Que de temps, de place, d'énergie perdus! Conclure par «donc $A = \dots$ et $B = \dots$ » est au mieux maladroit.

- 10b) Le piège a fait des victimes...
- 11a) Question cadeau. À repérer et à traiter impérativement.

Borne de Cramér-Rao (V2).

3) J'attendais une petite discussion sur le cas $x_1 = ... = x_n$. Il fallait expliquer le passage de \mathcal{L} à L (formellement, interdit dans le cas $p \in \{0, 1\}$).

Endomorphismes cycliques et dérivations (V2).

 $\alpha_0 \mathrm{Id}_E + \alpha_1 f + \cdots + \alpha_{p-1} f^{p-1}$ n'est pas un polynôme.

- 1) N'oubliez pas le caractère de sous-espace vectoriel, c'est la moitié de la question! Ceux qui voient le noyau de $g\mapsto f\circ g-g\circ f$ gagnent du temps.
- 2) C'était une simple application de la question précédente!
- **3)** En extrayant une base de $(f^k(a))_{k\in\mathbb{N}}$, il n'y a aucune raison d'obtenir une famille du type $(a, f(a), \dots, f^{p-1}(a))$.
- **10)** Il convenait d'expliciter $[P \circ (X + a)]'$.

Et vu qu'il me reste un peu de place, un peu de culture...

