Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Given the following PROLOG predicate definition **f(integer, integer)**, with the flow model (i, o):

```
f(1, 1):-!.

f(K,X):-K1 is K-1, \underline{f(K1,Y)}, Y>1, !, K2 is K1-1, X is K2.

f(K,X):-K1 is K-1, \underline{f(K1,Y)}, Y>0.5, !, X is Y.

f(K,X):-K1 is K-1, \underline{f(K1,Y)}, X is Y-1.
```

Rewrite the definition in order to avoid the recursive call **f(J,V)** in all clauses. Do NOT redefine the predicate. Justify your answer.

B. Write a PROLOG program that generates the list or all arrangements of \mathbf{k} elements from a list of integer numbers, for which the product of the elements is less than a value \mathbf{V} given. Write the mathematical models and flow models for the predicates used. For example, for the list [1, 2, 3], \mathbf{k} =2 and \mathbf{V} =7 \Rightarrow [[1,2],[2,1],[1,3],[3,1],[2,3],[3,2]] (not necessarily in this order).

C. Given a nonlinear list, write a Lisp function to return the list with all occurrences of the element **e** replaced by the value **e1**. **A MAP function shall be used.**

Example a) if the list is (1 (2 A (3 A)) (A)), e is A and e1 is B => (1 (2 B (3 B)) (B))

b) if the list is (1 (2 (3))) and **e** is A = (1 (2 (3)))