Modelo de flujo multifásico y transporte multicomponente en medios porosos

Martín A. Díaz-Viera

Mexican Petroleum Institute mdiazv@imp.mx

Posgrado del Instituto Mexicano del Petróleo

9 de marzo de 2023

Modelo de flujo multifásico y transporte multicomponente en medios porosos

Martín A. Díaz-Viera

Mexican Petroleum Institute mdiazv@imp.mx

Posgrado del Instituto Mexicano del Petróleo

9 de marzo de 2023

Contenido I

- Introducción
 - Antecedentes
 - Motivación
 - Objetivo
- Modelo de Flujo y Transporte
 - Modelo Conceptual
 - Modelo Matemático
 - Modelo Numérico
 - Modelo Computacional
- 3 Simulación de Experimentos de Recuperación
 - Secundaria por Inyección de Agua
 - Mejorada por inyección de microorganismos y nutrientes
- 4 Conclusiones
 - Discusión de los resultados

Contenido II

- Trabajo en curso y futuro
- Referencias

Antecedentes

- Los yacimientos petroleros en su etapa inicial de explotación producen empleando sólo la presión natural del mismo (recuperación primaria).
- En su etapa de madurez pierden energía por lo que requieren que se les inyecte gas o agua con el fin de incrementar o sostener la presión del yacimiento (recuperación secundaria)
- Cuando los yacimientos no producen usando los métodos de recuperación primaria o secundaria se recurre a otros métodos más sofisticados como son la inyección de vapor, químicos, microrganismos, etc. (recuperación terciaria o mejorada)
- La mayoría de los campos petroleros en México están entrando en esta tercera etapa.

Motivación

- Para el diseño óptimo de métodos de recuperación mejorada de hidrocarburos se requiere realizar un numero de pruebas a nivel de laboratorio en condiciones controladas que permitan comprender cuales son los mecanismos particulares de recuperacion para un método de recuperacion mejorada dado y un yacimiento especifico.
- Estas pruebas de laboratorio son muy sofisticadas, costosas y mayormente no representativas de toda la variedad de fenómenos involucrados.
- Por lo que una adecuada modelación de las pruebas de laboratorio contribuiría de manera decisiva en la interpretación de los mecanismos de recuperación y en la obtencion de los parámetros relevantes para la implementación de procesos de recuperación mejorada a escala de pozo y/o yacimiento.

Objetivo

- En la presente plática presentaremos un modelo de flujo y transporte en medios porosos para la simulación de experimentos de recuperación mejorada a condiciones de laboratorio
- Desde el punto de vista metodológico mostraremos las etapas de desarrollo del modelo (conceptual, matemático, numérico y computacional)
- Para ilustrar este procedimiento usaremos como ejemplo un modelo desarrollado para simular el método de recuperación mejorada via microbiana (MEOR)

Aodelo Conceptual Aodelo Matemático Aodelo Numérico Aodelo Computacional

Metodología

El procedimiento para el desarrollo de un modelo comprende a grosso modo cuatro etapas:

- Modelo Conceptual: Se establecen todas las hipótesis, supuestos, condiciones, alcances y limitaciones que debe satisfacer el modelo.
- Modelo Matemático: Se realiza la formulación del modelo matemático en términos de ecuaciones de manera que satisfaga los requerimientos del Modelo Conceptual.
- Modelo Numérico: Se eligen los métodos numéricos más adecuados desde el punto de vista de eficiencia y desempeño para la solución del Modelo Matemático.
- Modelo Computacional: Para la realización del Modelo Numérico se requiere de su implantación computacional.

- Se consideran cuatro fases: **Agua** $(\alpha = W)$, fluida $(\mathbf{v}^W \neq \mathbf{0})$; **Aceite** $(\alpha = O)$, petróleo líquido $(\mathbf{v}^O \neq \mathbf{v}^W)$, **Biopelícula** $(\alpha = B)$ y **Sólida** $(\alpha = S)$, ambas estáticas $(\mathbf{v}^B = \mathbf{v}^S = \mathbf{0})$.
- Hay cinco componentes: **agua** $(\gamma = w)$ sólo en la fase agua, **aceite** $(\gamma = o)$ sólo en la fase aceite, **roca** $(\gamma = r)$ sólo en la fase sólida, **microorganismos** $(\gamma = m)$ repartidos entre la fase agua (planctónicos) y la fase biopelícula (sésiles), y **nutrientes** $(\gamma = n)$ también repartidos entre la fase agua (fluyentes) y la fase sólida (adsorbidos).
- No existe ningún tipo de discontinuidad en las propiedades del sistema.
- La roca (matriz porosa) y los fluidos son ligeramente compresibles.

- No existe difusión, es decir que τ(x, t) ≡ 0, para todas las fases.
- El medio está completamente saturado, es decir, las fases llenan completamente todo el medio.
- Las fases fluidas están separadas en los poros.
- Se considera que todas las fases están en equilibrio termodinámico.
- Aunque para el estado inicial el medio poroso se considerará homogéneo ($\phi = const$) e isotrópico ($\mathbf{k} = k\mathbf{l}$) se permite la variación de la porosidad y la permeabilidad debido a fenómenos como el taponamiento/destaponamiento (adsorción/desorción).

• Se considera que el flujo de los (*microorganismos y nutrientes*) siguen la ley de Fick: $\boldsymbol{\tau}_{\gamma}^{W}(\mathbf{x},t) = \phi S^{W} \mathbf{D}_{\gamma}^{W} \cdot \nabla c_{\gamma}^{W}$; $\gamma = m, n$, donde

$$\left(D_{\gamma}^{W}\right)_{ij} = (\alpha_{T})_{\gamma}^{W} \left| \mathbf{v}^{W} \right| \delta_{ij} + \left((\alpha_{L})_{\gamma}^{W} - (\alpha_{T})_{\gamma}^{W} \right) \frac{\mathbf{v}_{i}^{W} \mathbf{v}_{j}^{W}}{\left| \mathbf{v}^{W} \right|} + \tau (D_{d})_{\gamma}^{W} \delta_{ij}$$

- Los microorganismos y el nutriente interactúan biológicamente entre sí con una cinética de crecimiento tipo Monod
- Los microorganismos y el nutriente interactúan físico-químicamente con el medio poroso, suponiendo adsorción lineal y desorción lineal condicional

Fase (α)	Comp. (γ)	Prop. Intensiva $\left(\psi_{\gamma}^{lpha} ight)$
Agua $(\alpha = W)$	Agua $(\gamma = w)$	$\phi S^W ho_w^W$
	Microorg. $(\gamma = m)$	$\phi S^W c_m^W$
	Nutrientes $(\gamma = n)$	$\phi S^W c_n^W$
Aceite $(\alpha = 0)$	$Aceite(\gamma = o)$	$\phi S^{O} \rho_{o}^{O}$
Biopelícula ($\alpha = B$)	Microorg. $(\gamma = m)$	$c_m^B \equiv \rho_m \sigma$
Sólida ($\alpha = S$)	Roca $(\gamma = r)$	$ ho_{r_b}^{\mathcal{S}} \equiv (1 - \phi) \rho_{r_p}^{\mathcal{S}}$
	Nutrientes $(\gamma = n)$	$c_n^S \equiv \rho_{r_b}^S \hat{c}_n^S$

Cuadro 1: Propiedades intensivas asociadas a la masa por fases y componentes.

Modelo Matemático

- A partir del Modelo Conceptual se deriva el Modelo Matemático. En este caso se aplicará la Formulación Axiomática de la Mecánica de los Sistemas Continuos.
- Esta formulación adopta un enfoque macroscópico, cuya premisa fundamental consiste en considerar que un sistema continuo llena todo el espacio que ocupa.
- Los sistemas continuos están constituidos por conjuntos de partículas a los que se les llama cuerpos.
- En los sistemas continuos se trabaja con los promedios de sus propiedades físicas y existe un volumen elemental representativo, para el cual se calculan y son válidos los promedios de dichas propiedades.

Figura 1: Esquema de un cuerpo material B(t) con frontera $\partial B(t)$, donde \vec{n} es su vector normal externo. La superficie de discontinuidad $\Sigma(t)$ tiene vector normal \vec{n}_{Σ} y se mueve con velocidad \vec{v}_{Σ} .

• Esta formulación consiste básicamente en establecer las correspondencias biunívocas entre las propiedades extensivas E(t) (son las integrales de volumen de las propiedades intensivas, por ejemplo la masa) y las propiedades intensivas $\psi(\mathbf{x},t)$ (propiedades físicas por unidad de volumen, por ejemplo la densidad de masa), las cuales se relacionan mediante la siguiente integral de volumen:

$$E(t) \equiv \int_{B(t)} \psi(\mathbf{x}, t) d\mathbf{x}, \qquad (1)$$

Ecuación de balance global

$$\frac{dE(t)}{dt} = \int_{B(t)} g(\mathbf{x}, t) d\mathbf{x} + \int_{\Sigma(t)} g_{\Sigma}(\mathbf{x}, t) d\mathbf{x} + \int_{\partial B(t)} \tau(\mathbf{x}, t) \cdot \mathbf{n} d\mathbf{x}$$
(2)

donde $g(\mathbf{x},t)$ – fuente en B(t); $g_{\Sigma}(\mathbf{x},t)$ – fuente en la discontinuidad $\Sigma(t)$; y $\tau(\mathbf{x},t)$ – flujo de ψ a través $\partial B(t)$.

Ecuaciones de balance local

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{v}) = \mathbf{g} + \nabla \cdot \boldsymbol{\tau}; \quad \forall \mathbf{x} \in B(t)$$
 (3)

$$\llbracket \psi \left(\mathbf{v} - \mathbf{v}_{\Sigma} \right) - \boldsymbol{\tau} \rrbracket \cdot \mathbf{n}_{\Sigma} = g_{\Sigma}; \quad \forall \mathbf{x} \in \Sigma (t), \tag{4}$$

donde [f] es el salto de la función f en $\Sigma(t)$

- El procedimiento anterior hay que realizarlo para cada componente en cada fase, resultando tantas ecuaciones como componentes se tengan por fases.
- Posteriormente, se especifican las leyes constitutivas que estén ligadas con la naturaleza del problema, como por ejemplo: la ley de Darcy y la de Fick. Estas relaciones permiten ligar a las propiedades intensivas de interés entre sí y definir sus términos fuente y de flujo, además se añaden tantas relaciones como sean necesarias para que el sistema de ecuaciones esté determinado.
- Finalmente, el modelo se completa al especificar suficientes condiciones iniciales y de frontera de manera que el problema resultante sea bien planteado, es decir que posea solución única.

17 / 55

Modelo de Flujo Bifásico

Ecuación de presión

$$-\nabla \cdot \left\{ \lambda \mathbf{k} \cdot \nabla p^{O} - \left(\lambda^{W} \frac{dp_{c}^{OW}}{dS^{W}} \right) \mathbf{k} \cdot \nabla S^{W} \right\} - \nabla \cdot \left\{ \left(\lambda^{O} \rho^{O} + \lambda^{W} \rho^{W} \right) \gamma \mathbf{k} \cdot \nabla z \right\} = q^{O} + q^{W} - \frac{\partial \phi}{\partial t}$$
(5)

Ecuación de saturación

$$\phi \frac{\partial S^{W}}{\partial t} - \nabla \cdot \left\{ \lambda^{W} \mathbf{k} \cdot \nabla p^{O} - \left(\lambda^{W} \frac{dp_{c}^{OW}}{dS^{W}} \right) \mathbf{k} \cdot \nabla S^{W} \right\} - \nabla \cdot \left\{ \left(\lambda^{W} \rho^{W} \gamma \right) \mathbf{k} \cdot \nabla z \right\} + \left(\frac{\partial \phi}{\partial t} \right) S^{W} = q^{W}$$
 (6)

Modelo de Flujo Bifásico

Velocidades de las fases

$$\mathbf{u}^{W} = -\lambda f^{W} \mathbf{k} \cdot \nabla p^{O} + \lambda f^{W} \left(\frac{dp_{c}^{OW}}{dS^{W}} \right) \mathbf{k} \cdot \nabla S^{W} - \lambda f^{W} \rho^{W} \gamma \mathbf{k} \cdot \nabla z;$$

$$\mathbf{u}^{O} = -\lambda f^{O} \mathbf{k} \cdot \nabla p^{O} - \lambda f^{O} \rho^{O} \gamma \mathbf{k} \cdot \nabla z;$$
(7)

Aquí, \mathbf{u}^{α} representa la velocidad de Darcy

$$\mathbf{u}^{\alpha} = -\frac{k_{r}^{\alpha}}{\mu^{\alpha}}\mathbf{k} \cdot (\nabla p^{\alpha} + \rho^{\alpha} \gamma \nabla z); \alpha = O, W$$
 (8)

donde $\phi-$ porosidad y **k**- tensor de permeabilidad absoluta, $S^{\alpha}-$ saturación, $\mu^{\alpha}-$ viscosidad, $\rho^{\alpha}-$ densidad, $p^{\alpha}-$ presión, $k_r^{\alpha}-$ permeabilidad relativa, y $q^{\alpha}-$ término fuente, para cada fase $\alpha=O,W,~\gamma-$ aceleración de la gravedad, $p_c^{OW}-$ presión capilar aceite-agua y z- coordenada vertical.

Modelo de Transporte Multicomponente

Ecuación de microorganismos planctónicos (en agua)

$$\frac{\partial \phi S^{W} c_{m}^{W}}{\partial t} + \nabla \cdot \left[c_{m}^{W} \mathbf{u}^{W} - \phi S^{W} \mathbf{D}_{m}^{W} \cdot \nabla c_{m}^{W} \right] \\
= (\mu - k_{d} - k_{a}) \phi S^{W} c_{m}^{W} + k_{r} \rho_{m} (\sigma - \sigma_{irr}) \tag{9}$$

Ecuación de microorganismos sésiles (en biopelícula)

$$\frac{\partial \rho_{m} \sigma}{\partial t} = (\mu - k_{d}) \rho_{m} \sigma + k_{a} \phi S^{W} c_{m}^{W} - k_{r} \rho_{m} (\sigma - \sigma_{irr}) \quad (10)$$

• Ecuación de nutrientes (total)

$$\frac{\partial \left(\phi S^{W} + \rho_{r_{b}}^{S} h\right) c_{n}^{W}}{\partial t} + \nabla \cdot \left(c_{n}^{W} \mathbf{u}^{W} - \phi S^{W} \mathbf{D}_{n}^{W} \cdot \nabla c_{n}^{W}\right) \\
= -\frac{\mu}{Y_{m/n}} \left(\phi S^{W} c_{m}^{W} + \rho_{m} \sigma\right) \tag{11}$$

Modelo de Transporte Multicomponente

• Cinética de crecimiento tipo Monod:

$$\mu = \mu_{\text{max}} \frac{c_n^W}{K_{m/n} + c_n^W} \tag{12}$$

donde μ_{max} — tasa máxima de crecimiento, $K_{m/n}$ — const. de afinidad, c_{γ}^{α} — conc. del componente γ en la fase α , k_d — tasa de decaimiento de células, k_a — tasa de adsorción de micoorganismos, k_r — tasa de desorción de microorganismos, ρ_m — dens. de microorganismos, σ — frac. de volumen poroso ocupado por biomasa, σ_{irr} — frac. de volumen poroso ocupado irreversiblemente por biomasa, $Y_{m/n}$ — coef. de producción, \hat{c}_n^S — conc. de nutriente adsorbido en la fase sólida, $h\equiv \frac{\partial \hat{c}_n^S}{\partial c_n^W}$ — isoterma de adsorción de nutrientes.

Relaciones complementarias

 Modificación de la porosidad: En el modelo se toma en cuenta la modificación de la porosidad debido a los procesos de taponamiento y destaponamiento mediante la siguiente expresión:

$$\phi = \phi_0 - \sigma \tag{13}$$

 Modificación de la permeabilidad absoluta: Mientras que la modificación de la permeabilidad absoluta se considera en función de la porosidad mediante la ecuación de Carman-Kozeny [4]:

$$k = k_0 \frac{(1 - \phi_0)^2}{\phi_0^3} \frac{\phi^3}{(1 - \phi)^2} \tag{14}$$

Condiciones iniciales y de frontera

Condiciones iniciales

$$p^{O}(t_{0}) = p_{0}^{O}, \ S^{W}(t_{0}) = S_{0}^{W}; c_{m}^{W}(t_{0}) = c_{m0}^{W}, \ \sigma(t_{0}) = \sigma_{0}, \ c_{n}^{W}(t_{0}) = c_{n0}^{W};$$
(15)

- Condiciones de frontera
 - Entrada

$$\mathbf{u}^{O} \cdot \mathbf{n} = \mathbf{u}^{W} \cdot \mathbf{n} = \mathbf{u}_{in}^{W} \cdot \mathbf{n};$$

$$-\left[c_{\gamma}^{W}\mathbf{u}_{in}^{W} - \phi S^{W}\mathbf{D}_{\gamma}^{W} \cdot \nabla c_{\gamma}^{W}\right] \cdot \mathbf{n} = c_{\gamma_{in}}^{W}\mathbf{u}_{in}^{W} \cdot \mathbf{n}, \ \gamma = m, n;$$
(16)

Salida

$$p^{O} = p^{O}_{out}, \ \frac{\partial S^{W}}{\partial \mathbf{n}} = 0; \frac{\partial c^{W}_{\gamma}}{\partial \mathbf{n}} = 0, \ \gamma = m, n;$$
 (17)

Modelo Conceptual Modelo Matemático Modelo Numérico Modelo Computacional

Modelo Numérico

- Consiste en seleccionar los métodos numéricos más adecuados desde el punto de vista de eficiencia y precisión para la solución del Modelo Matemático establecido.
- Como el problema resultante es en todo caso un sistema de ecuaciones diferenciales parciales no lineales, se requeriría de los siguientes métodos numéricos:
 - Métodos de discretización de las EDP en espacio y tiempo (FVM, FDM, FEM)
 - Métodos de linealización del tipo de Newton-Raphson
 - Métodos para resolver el sistema de ecuaciones algebraicas lineales resultantes (directos o iterativos)
 - Métodos óptimos de construcción de mallas

Modelo Conceptual Modelo Matemático Modelo Numérico Modelo Computaciona

Modelo Numérico de Flujo y Transporte

- Para las derivadas temporales se usa una discretización en Diferencias Finitas de segundo orden hacia atrás resultando un esquema completamente implícito en el tiempo.
- Mientras que para los operadores resultantes en derivadas espaciales se aplica la formulación estándar del Método de Elemento Finito de tipo Galerkin, donde para las funciones bases y de peso se usaron polinomios cuadráticos de Lagrange.
- La malla que se usa es regular con elementos triangulares en 2D y tetraedros en 3D.

Modelo Conceptual Modelo Matemático Modelo Numérico Modelo Computaciona

Modelo Numérico

- Para la linealización del sistema de ecuaciones se usa el método iterativo de Newton-Raphson.
- Para la solución del sistema de ecuaciones algebraicas resultantes se usa el método directo LU para matrices no simétricas y ralas.
- El esquema de acoplamiento entre ambos modelos es secuencial iterativo:
 - se resuelve el modelo de flujo y se obtienen: saturaciones, presiones y velocidades de las fases,
 - 2 se resuelve el modelo de transporte y se obtienen: concentraciones de las componentes,
 - 3 se modifican las porosidades y permeabilidades, y se itera.

Modelo Conceptual Modelo Matemático Modelo Numérico Modelo Computacional

Modelo Computacional

- Una vez establecido todo el esquema numérico para la solución del Modelo Matemático se requiere su implantación computacional.
- La implantación computacional del modelo numérico de flujo y transporte fue realizada en el software COMSOL Multiphysics [7] usando el modo de PDE en la forma de coeficientes para el análisis dependiente del tiempo.

Experimento desplazamiento aceite por inyección de agua

- Primeramente se realiza la recuperación de aceite mediante el desplazamiento por inundación de agua.
- Se considera un núcleo de arenisca Berea de 0,25m de longitud y 0,04m de diámetro colocado en posición vertical, con porosidad homogénea (0,2295) y tensor de permeabilidades isotrópico (k = 326md),
- Inicialmente es saturado con aceite,
- Se inyecta agua a una tasa de un pie por día $(3.53E 6m \cdot s^{-1})$ por el extremo inferior,
- Presión constante (10kPa) a la salida durante 200 horas.
- Los datos son tomados de (Hoteit & Firoozabadi, 2008 [8] y Chang et al, 1991 [5]).

Dominio y mallado del medio poroso (núcleo)

Figura 2: Número de elementos: 1,702, grados de libertad: 6,232, tiempo de ejecución: 170.179 seg,en una PC con CPU Intel Core2 Duo @2.66 GHz, 4Gb de RAM @1.97 GHz.

29 / 55

Saturación de Agua

Figura 3: Evolución de la saturación de agua durante el experimento de inundación por agua para un período de tiempo de 200 horas.

Presión de Aceite

Figura 4: Evolución de la presión de aceite durante el experimento de inundación por agua para un período de tiempo de 200 horas.

Velocidad del Agua

Figura 5: Evolución de la velocidad del agua durante el experimento de inundación por agua para un período de tiempo de 200 horas.

Caída de presión del aceite

Figura 6: Evolución de la caída de presión del aceite durante el experimento de inundación por agua para un período de tiempo de 200 horas.

Recuperación de Aceite

Figura 7: Recuperación de aceite por inundación con agua para un período de tiempo de 200 horas.

Interpretación de Resultados

- Se forma de un frente de agua a través del medio poroso que desplaza al aceite, el cual se está recuperando en el extremo superior del núcleo,
- El frente de agua irrumpe en el extremo superior del núcleo poco antes de las dos horas,
- La velocidad presenta cierta inestabilidad numérica mientras el desplazamiento del frente de agua no irrumpe en el extremo de producción del núcleo,
- La curva de recuperación de aceite muestra el comportamiento típico de un proceso de recuperación donde el medio poroso es fuertemente mojable por agua,
- La recuperación de aceite alcanza un valor de 74 % aproximadamente.

Experimento de Inyección de agua con Microorganismos + Nutrientes

- La segunda parte del experimento consiste en inyectar de manera continua durante 24 horas a través de la fase agua un cultivo bacteriano y nutriente en el núcleo de arenisca Berea para evaluar la recuperación adicional que se obtiene debido a la actividad microbiana (MEOR).
- Los datos que se usan son tomados de (Chang et al, 1991 [5]).

Dominio y mallado del medio poroso (núcleo)

Figura 8: Número de elementos: 1,702, grados de libertad: 15,577, tiempo de ejecución: 216.906 seg,en una PC con CPU Intel Core2 Duo 02.66 GHz, 4Gb de RAM 01.97 GHz.

Saturación de Agua

Figura 9: Evolución de la saturación de agua durante el experimento de inundación por agua con microorganismos y nutrientes para un período de tiempo de 24 horas.

Presión de Aceite

Figura 10: Evolución de la presión de aceite durante el experimento de inundación por agua con microorganismos y nutrientes para un período de tiempo de 24 horas.

Velocidad del Agua

Figura 11: Evolución de la velocidad del agua durante el experimento de inundación por agua con microorganismos y nutrientes para un período de tiempo de 24 horas.

Caída de presión del aceite

Figura 12: Evolución de la caída de presión del aceite durante el experimento de inundación por agua con microorganismos y nutrientes para un período de tiempo de 24 horas.

41 / 55

Recuperación de Aceite

Figura 13: Recuperación de aceite por inundación con agua con microorganismos y nutrientes para un período de tiempo de 24 horas.

Concentraciones efluentes de microorganismos y nutrientes

Figura 14: Curvas de la concentración efluente de cultivo bacteriano (curva roja) y de nutriente (curva azul) para un período de tiempo de 24 horas.

Distribución de nutriente y microorganismos

Figura 15: Distribución espacio-temporal (cada hora) de nutriente (salientes de 40kg/m3) y microorganismos planctónicos (salientes de 30kg/m3).

Distribución de microorganismos sésiles

Figura 16: Distribución espacio-temporal (cada hora) de microorganismos sésiles.

Distribución en 3D de la porosidad

Figura 17: Distribución en 3D de la porosidad resultante del proceso de inyección de microorganismos y nutrientes para un tiempo de 24 horas.

Distribución en 3D de la permeabilidad

Figura 18: Distribución en 3D de la permeabilidad resultante del proceso de inyección de microorganismos y nutrientes para un tiempo de 24 horas.

Interpretación de Resultados

- La recuperación adicional de aceite durante las 24 horas de la inyección de microorganismos y nutrientes es del orden de 0,2 %,
- En la BTC de microorganismos hay una pequeña meseta de casi 45 min a las 5 horas de inyección, la cual se iterpreta como un equilibrio dinámico entre el crecimiento/decaimiento y la adsorción/desorción de los microorganismos a lo largo del núcleo,
- Se establecen estados estacionarios: alrededor de las 6 horas prácticamente se han consumido por completo los nutrientes, mientras que alrededor de las 24 horas se alcanza un valor asintótico en la concentración de microorganismos,

Interpretación de Resultados

- Los microorganismos planctónicos y sésiles tienen valores máximos de concentración de $c_{pm}^w=48.85kg/m^3$ y $\sigma=1.09\,\%$ en 0.074m y 0.041m (aproximadamente 3/10 y 1/6 de la longitud del núcleo desde el lado de inyección), respectivamente,
- Esto se ve reflejado directamente en la modificación de la porosidad y consecuentemente de la permeabilidad, donde los mínimos de porosidad y permeabilidad se alcanzan en una zona alrededor de 0,05m.

Discusión de los resultados

- El objetivo principal que se persigue con el experimento numérico aquí presentado es verificar el acoplamiento de los modelos de flujo y de transporte desarrollados de manera independiente, de manera que se pudiera evaluar su desempeño numérico conjuntamente.
- Una dificultad que afrontamos para poder validar las implementaciones numéricas desarrolladas consiste en la carencia de ejemplos bien documentados con los cuales poder comparar los resultados.
- En particular, en este ejemplo estamos usando datos tomados de diferentes fuentes, principalmente los datos del problema de flujo corresponden a la escala de yacimiento, mientras que los datos del problema de transporte (microbiano y de nutrientes) corresponden a experimentos a escala de núcleo.

Discusión de los resultados

- No obstante se puede hacer una evaluación cualitativa de los resultados numéricos obtenidos del acoplamiento de los modelos de flujo y de transporte.
- Existe un ligero incremento en la presión de 5700 a 6170 Pa durante el proceso de inyección de microorganismos y nutrientes, lo cual está asociado con la modificación de la porosidad y consecuentemente de la permeabilidad debido al crecimiento de biomasa.
- Esto prueba el principio que permitiría usar la biomasa para redireccionar el flujo e incrementar la eficiencia de barrido del aceite en un medio poroso heterogéneo.

Discusión de los resultados

- Con respecto al porcentaje de recuperación adicional que se obtiene en esta etapa se puede observar que es muy pequeño, menor del 1 %, y no pudiera ser directamente atribuible a los efectos mecánicos debidos al crecimiento microbiano como es el incremento de la presión.
- Se debe hacer notar que en este ejemplo sólo se estudia el crecimiento de la biomasa.
- Para modelar otros efectos como son: la modificación de las μ, mojabilidad de la roca, de las curvas de k_r y de p_c debido a la acción de bioproductos (gases, polímeros, surfactantes, etc) se requiere investigar sus efectos sobre fluidos y rocas, para obtener relaciones que cuantifiquen las variaciones de propiedades petrofísicas y de fluidos en función de las concentraciones de los bioproductos.

Trabajo en curso y futuro

- Trabajo experimental a escala de núcleo y condiciones de laboratorio
- Trabajo experimental a escala de núcleo y condiciones de yacimiento
- Generalización del modelo para incorporar los efectos debido a la acción de bioproductos (gases, polímeros, surfactantes, etc)

Referencias

- M. B. Allen, I. Herrera and G. F. Pinder, Numerical modeling in science and engineering, John Wiley & Sons., USA, (1988).
- [2] Jacob Bear, Dynamics of fluids in porous media, Dover, USA, (1972).
- [3] R. Brooks and A. Corey, "Hydraulic Properties of Porous Media", of Colorado State University Hydrology Paper, 3, Colorado State University, (1964).
- [4] P. C. Carman, Flow of gases through porous media, Butterworth, London, (1956).
- [5] M. M. Chang, F. T-H. Chung, R. S. Bryant, H. W. Gao and T. E. Burchfield, "Modeling and laboratory investigation of microbial transport phenomena in porous media", SPE, 22845, 299-308, (1991).
- [6] Z. Chen, G. Huan and Y. Ma, Computational methods for multiphase flows in porous media, SIAM, USA, (2007).
- [7] COMSOL Multiphysics, Modeling Guide Version 3.4, COMSOL AB, USA, (2007).
- [8] Hoteit H., Firoozabadi A., Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures, Advances in Water Resources, 31, 56-73 (2008).

Discusión de los resultado Trabajo en curso y futuro Referencias

Muchas gracias por su paciencia

¿Preguntas, Comentarios?