QualiApp360 APLICACIÓN PARA EVALUAR LA

CALIDAD DE LOS VÍDEOS 360

Alumna: Estefanía Escudero Tutor: Miguel Garcia Pineda

Trabajo Final de Grado Ing. Multimedia - ETSE UV

ÍNDICE

Introducción

Estado del arte

Crítica al estado del arte

Propuesta

Diseño

Resultados

Conclusiones

Vídeo demo

INTRODUCCIÓN

- Vídeos de 360 grados como entretenimiento virtual en auge.
 - Revolución del entorno de visualización de multimedia.
- Evaluación de calidad de vídeo.
 - Mejorar la experiencia de los usuarios.
- Problemas de transmisión.
 - Peso de los archivos.

Fuente: 360rize

ESTADO DEL ARTE I

Aplicaciones existentes para la VQA

- BVQM
 - Programa con interfaz.
 - Solo para vídeos 2D.
 - Reporte en formato csv.
 - Posibilidad de evaluar la calidad de los vídeos en lote.

ESTADO DEL ARTE II

Aplicaciones existentes para la VQA

- 360tools
 - o Proyecto sin interfaz.
 - Uso desde terminal.
 - Incluye las siguientes métricas:
 PSNR, S-PSNR, WS-PSNR, CPP-PSNR

```
** Visual Studio 2019 Developer PowerShell v16.11.1

** Copyright (c) 2021 Microsoft Corporation

** Space of the properties of the proper
```

CRÍTICA AL ESTADO DEL ARTE

Problemas de las herramientas de evaluación de vídeos 360°:

- Sin interfaz.
 - Ejecución por comandos en terminal.
 - No es intuitivo para un usuario promedio.
- Poca información si se comete un error.
- Requiere alto conocimiento en informática del usuario.
 - o Incluso en el ámbito de la evaluación de calidad.

PROPUESTA DE SOLUCIÓN

Intefaz

Interfaz visualmente agradable e intuitiva para el usuario.

Ventanas emergentes que avisan de errores.

Barra de progreso.

Métricas

Métricas para vídeos 2D:

- PSNR
- SSIM
- MSSIM

Métricas para vídeos 360°:

- VMAF 360°
- S-PSNR
 - Spherical PSNR
- WS-PSNR
 - Weighted spherical PSNR

Resultados

Muestra de los resultados en distintos formatos.

- CSV
- Gráfica

Permite trabajar posteriormente con los resultados obtenidos.

DISEÑO I

- Interfaz organizada en una sola ventana.
- Bloques diferenciados.
 - Entrada y salida.
- Disminución de errores.
 - Ejecución lineal.
- Recuperabilidad.
 - Mensajes emergentes.
- Facilidad aprendizaje.
 - Manual de usuario.

DISEÑO II

Gráficas

DISEÑO III

Archivos .csv

A B	C D	Ε	F	4 A	В		A	В	C	D	Е	
MSSIM score			1	SSIM score		1 v	maf_rb_v0.6	.3/vmaf_rb	_v0.6.3.pkl			
[(0.9352865459337856, 0.9656528720533811, 0.9782366591512762, 0.0)] 2 [0.9839886978934393]						2 0	2 G1BikingToWork_3840x2160_fps23_976.yuv					
[(0.9344269520180086, 0.9669472776272614, 0.9792716326913248, 0.0)] 3 [0.9844614292828849]						3 G1BikingToWork_ERP_3840x2160_fps23_976_qp42_1855k.mp4						
[(0.932900249064933, 0.965624	5066444092, 0.978845	54596032404, 0.0)]	4	[0.983838120	2624427]	4	/I-VMAF: 70.9	9078				
[(0.9317532405479375, 0.96360	35320768839, 0.97639	913737541781, 0.0)]	5	[0.982222027	76959499]	5	878.109					
[(0.9005599912318532, 0.93388	55171830942, 0. <mark>94</mark> 688	355014028542, 0.0)]	6	[0.955899170	00118331]	6	80.774					
[(0.9302914037383891, 0.96394	75465774331, 0.97614	135809403326, 0.0)]	7	[0.981772380	02231727]	7	790.299					
[(0.9335184776264079, 0.96490	30360643304, 0.97567	779185984666, 0.0)]	8	[0.982428893	39338717]	8	790.973					
[(0.9286221962125607, 0.96451	9915626124, 0.975416	57873735355, 0.0)]	9	[0.981797336	52438325]	9	735.705					
[(0.9287847895708103, 0.96482	30447848595, 0.97553	345550930185, 0.0)]	10	[0.982120326	51582901]	10	727.034					
[(0.8864022569649879, 0.91993	42911126375, 0.93170	001015872969, 0.0)]	11	[0.942319150	7541147]	11	710.503					
[(0.9272027742583893, 0.96344	65244354098, 0.97415	595026167574, 0.0)]	12	[0.980924235	9634073]	12	700.078					
[(0.9291225157765537, 0.96412	577682 <mark>4</mark> 993, 0.974660	09788091685, 0.0)]	13	[0.981567142	22784092]	13	717.994					
[(0.9316333009071981, 0.96244	24199524307, 0.97 1 47	770823657538, 0.0)]	14	[0.979933118	30044235]	14	716.616					
[(0.9278993736608785, 0.96569	87490398208, 0.97513	382262649811, 0.0)]	15	[0.982158332	29496053]	15	717.125					
[(0.9250342859095199, 0.96330	23600946949, 0.96903	391931265279, 0.0)]	16	[0.978826856	59994305]	16	719.087					
7 [(0.9246181569528718, 0.96099	6253209530 <mark>4</mark> , 0.97084	17142947311, 0.0)]	17	[0.978951191	1415895]	17	751.257					
[(0.926949935700209, 0.964223	9814279256, 0.974389	95807330927, 0.0)]	18	[0.981364519	90758346]	18	73.963					
[(0.9264027754193712, 0.96364	32673267061, 0.97409	980750301019, 0.0)]	19	[0.981017752	20585528]	19	727.234					
[(0.9332350133401021, 0.96269	73233046952, 0.97217	752408995397, 0.0)]	20	[0.979666469	97268671]	20	750.207					
[(0.9064388715844761, 0.93881	16573588193, 0.94638	396643699646, 0.0)]	21	[0.961132574	11398505]	21	74.657					
[(0.9278869032606786, 0.96487	69927081756, 0.97493	338228336257, 0.0)]	22	[0.981378095	54510917]	22	750.859					
[(0.9304867580862284, 0.96273	85992732413, 0.9727	122593629535, 0.0)]	23	[0.979889352	21648433]	23	737.288					
4 [(0.9277680581 <mark>1</mark> 06306, 0.964 <mark>3</mark> 4	61522214297, 0.97438	3909133333494, 0.0)]	24	[0.980736429	93604897]	24	763.033					

RESULTADOS I

Pruebas y comparación

PSNR, SSIM, MSSIM, WS-PSNR

- Comprobación por cada frame.
- Obtención rápida de resultados.
- PSNR: Poco fiable.

S-PSNR

- Comprobación en puntos de esfera.
 - Fichero con 655362 puntos.
- Obtención lenta de resultados.
- De las más fiables.

VMAF 360°

- Comprobación por modelos y celdas de cada frame.
 - 15 celdas por defecto.
- Tiempo moderado de evaluación.
- De las más fiables.

RESULTADOS II

Estimación de tiempo

CONCLUSIONES

♠ Ámbito 360°

Sector muy actual en el que queda mucho por investigar.

Los usuarios demandan más calidad y más interacción.

En un futuro se volverá una tecnología del día a día.

QualiApp360

Requisitos completados:

Incluir las métricas seleccionadas.

Definir una interfaz simple e intuitiva.

Posibilidad de exportar los resultados para su posterior uso.

Gracias

https://github.com/faniaesc/qualiapp360