Physics 4271 HW 2

Duncan Wilkie

10 February 2023

Problem 1. *Calculate the minimum energy required to be over the Coulomb barrier for:*

- 1. p + p,
- 2. $p + {}^{12}C$,
- 3. ${}^{4}\text{He} + {}^{208}\text{Pb}.$

Problem 2. The cross section for charged-particle reactions is proportional to the probability of tunneling through the Coulomb barrier given by the Gamow factor, which haas a convenient approximation:

$$e^{-2\pi\eta} = e^{-2\pi ZZZ_1Z_2}e^2/\hbar\nu = e^{-31.287Z_1Z_2}\sqrt{\mu/E}$$

where μ is the reduced mass in amu and E is the center-of-mass energy in keV. For the 3 cases you considered above, calculate the Gamow factor for an energy that is one-quarter the barrier energy you found in problem 1.,

Problem 3. A 2 MeV beam of protons bombards a 16 O target and the differential cross section is measured to be 0.094 b/sr at a lab angle of 167° .

- 1. What is the expected cross section if you assume Rutherford scattering?
- 2. What is the calculated Mott cross section?
- 3. How do your answers to (a) and (b) differ from the measured cross section and why might they be different?

Problem 4. Assume that ¹⁹⁷ Au is made from a solid, uniform sphere of nuclear material with a radius of $R = 1.2 \,\mathrm{fm} \cdot A^{1/3}$. Calculate the form factor F(q).

Problem 5. Show that the mean-square charge radius of a uniformly charged sphere is $\langle r^2 \rangle = 3R^2/5$.

Problem 6. A nuclear charge distribution more realistic than the uniformly charged distribution is the Fermi distribution, $\rho(r) = \frac{\rho_0}{1+\exp\left[(r-c)/a\right]}$. Find the value of a if t=2.3 fm

Problem 7 (Bonus). Evaluate $\langle r^2 \rangle$ for the Fermi distribution in Problem 6.