Audit Fee-ver

Team 6

Chan Hoi Yan Chua Xin Ni Goh Sze Pei, Cheryl Heng Wei Shin Ong Ken Jin

Introduction

Before we dive into our data analysis, let us learn more about what Audit Fees are.

Brief Context: What are Audit Fees?

Audit Fees are costs incurred by companies to pay public accounting firms to audit the company's financial statements.

Importance

May influence an <u>auditor's independence</u>

Eg. Auditors may be pressured to reduce inappropriately the extent of work performed to reduce fees

To safeguard against threats to auditor's independence, disclosure of nature of services provided and extent of fees charged is advised (though not mandatory)

Time-consuming to manually calculate audit fees

Without our model

With our model

Content Page

Data Explore & Clean

Overview on how we pre-processed the dataset

analysis

Exploratory Data Analysis Regressio analysis

Key variables identified that are correlated to Audit Fees

Classification Tree analysis

Key trends identified by the decision tree **Summary**

Summing up all our analysis for a recommendation

Data Preprocessing

Overview on how we preprocessed the dataset

Understanding Raw data

38,200 observations5504 companies12 industries7 years

51 variables

Character Variable

FFI12_desc, busdesc

Numerical Variable cid, datadate, fyear, fyr, act, at, capx, ceq, che, cogs, dlc, dltt, dp, dvc, emp, gdwl, ib, intan, intano, invt, lct, lt, ni, oancf, oiadp, ppegt, ppent, re, rect, sale, sstk, txdb

Taking a closer look at our data

- Audit fees are closely correlated with emp, at, BIG4, intan
- Not correlated with the types of industry, auop

Telcm has the highest Mean Audit Fees

Disclaimer: We cleaned the entire dataset but for the sake of brevity, we will only show the cleaning methods for the variables we used.

1) Replacing with company average

Before

CID	sale	total liabilities	inventory
001	NA	900	450
001	300	560	NA
001	910	NA	140
002	840	200	110

CID	sale	total liabilities	inventory
001	605	900	450
001	300	560	295
001	910	730	140
002	840	200	110

After

Assumption

- Condition of a company is roughly about the same each year
- Some things just don't change over time
- eg. similar capital structures over time

- Employee count (Emp)
 Inventories (invt)
- Net income (ni)
- Sales value (sale)
- Current Liabilities (lct)
- Short Term debt (dlc)
- Long-term debt (dltt)
- Retained Earnings (re)

Disclaimer: We cleaned the entire dataset but for the sake of brevity, we will only show the cleaning methods for the variables we used.

2) Replacing with industry average of similar sized companies

Eg.

Assumption

- Replacing with pure industry average would disregard size of data
- Hence, used variables such as at and sales as proxies to group similar sized companies in the same industry together

- Employee count (Emp)
- Inventories (Invt)
- Gross PPE (Ppegt)
- Short Term debt (Dlc)
- Retained Earnings (re)

Disclaimer: We cleaned the entire dataset but for the sake of brevity, we will only show the cleaning methods for the variables we used.

3) Calculate with Industry Avg Ratio

Assumption

 Since some rules of the financial statement, like current assets cannot be more than total assets, cannot be violated, we used a relevant industry avg ratio to calculate the
 NAs

- Current liabilities (lct) used $\frac{lct}{lt}$
- Retained earnings (re) used $\frac{re}{ni}$
- Current assets (act) used $\frac{act}{at}$

Disclaimer: We cleaned the entire dataset but for the sake of brevity, we will only show the cleaning methods for the variables we used.

4) Completing the Accounting Equation

Eg. Since

Assets = Equity + Liability

Also used this method to calculate new variables!

Td = dltt+dlc

Te = ceq+re

Common Ordinary Equity = Total Assets – Total Liabilities

Assumption

 The variables in the dataset satisfies all the logical rules of financial statements

- Common Ordinary Equity (ceq)
- [NEW] Total debt (td)
- [NEW] Total Equity (te)

Created Dummy variables for FFI12_desc

- Converted variable [ffi12_desc] into dummy variable for each industry.
- 12 additional variables are added

FFI12_descBusEq	FFI12_descChems	FFI12_descDurbl	FFI12_descEnrgy	FFI12_descHlth	FFI12_descManuf	FFI12_descMoney	FFI12_descNoDur	FFI12_descOther	FFI12_descShops	FFI12_descTelcm	FFI12_descUtils
0	C) (0	0	C	C	0)	. 0	0	
0	C) (0	0	C	C	0) 1	. 0	0	
0	C) (0	0	C	C	0)	. 0	0	
0	C) (0	0	C	C	0)	. 0	0	
0	C) (0	0	C	C	0)	. 0	0	
0	C) (0	0	C	C	0) 1	. 0	0	
0	C) (0	0	C	C	0)	. 0	0	
0	C) (0	0	1	C	0) (0	0	

Explanation

- FFI12_desc given as a character variable
- However, the dataset cannot be regressed with character variables, so we converted them to numeric form

Methodology Overview

Linear Regression

Identify Key Variables that Correlate to Audit Fees

With the myriad of tasks involved in an Audit Engagement, our group has hypothesized 6 key factors that affect Audit Fees

Source(s): Academy of Accounting and Financial Studies

Breaking down how each identified factor and its proxies affects Audit Fees, we further included 2 additional variables...

Factors	Rationale
Status of Audit Firm	Big 4 firms charge higher audit fees due to their reputation and expertise in conducting higher quality audits
2 Industry Type	Due to the differential in complexities between industries, simple industries such as retail can expect to have lower fees than complicated industries (i.e. manufacturing)
3 Client's Size	The larger the client's size, the higher the audit fees due to the large amounts of financial data that has to be audited
Client's Complexity	More complex firms offering a wide variety of products and services will be harder to audit and hence charged higher fees
5 Client's Profitability	Clients with track record of low profitability has higher probability to manage earnings, more complex audit procedures required to detect risk, incurring higher fees
6 Client's Risk	Clients with higher inherent risk require larger extent of audit procedures to reduce detection risk, incurring higher fees.

We further identified two variables:

- 1) Amt. of Intangibles
- 2) Auditor Opinion

Valuation for intangible impairment assessment adds complexity for audit disclosures.

We further assume that a poor auditor opinion would positively correlate to a firm's level of risk.

...evaluation of the proxy variables led to 6 removals due to statistically insignificant results and low R² value

Identified Variables										
No. of Employees	Fortune 1000	Intangible Assets	Big 4 Status	Inventory % of Total Assets	PPE % of Total Assets					
Total Assets	Industry	Debt-to-Equity	Current Ratio	Profit Margin	Auditor Opinion					

Chosen Variables			Rejected '	/ariables			
No. of Employees	Fortune 1000 Debt-to-Equity Current Ratio		Debt-to-Equity Current Ratio		PPE % of Total Assets		
Total Assets	Industry			Profit Margin	Auditor Opinion		
Intangible Assets	Big 4 Status	Since p-value for Debt-to-Equity and Current Ratio are 0.552 and 0.086					
To be considered	d for final model	respectively, the insignifican		R ² valu	e < 1%		

A strong right skew was observed for the 3 variables, resulting in the use of a log function to satisfy the linearity assumption...

...using a log function for the 3 variables results in better linearity between the variables and the log function of Audit Fees

Minute differences between the hypothesized regression model against the variable selection models

Hypothesized Model

Residual standard error: 0.5672 on 15939 degrees of freedom Multiple R-squared: 0.8442, Adjusted R-squared: 0.8441 F-statistic: 5399 on 16 and 15939 DF, p-value: < 2.2e-16

Forward Selection

Residual standard error: 0.5672 on 15939 degrees of freedom Multiple R-squared: 0.8442, Adjusted R-squared: 0.8441 F-statistic: 5399 on 16 and 15939 DF, p-value: < 2.2e-16

Backward Elimination

Residual standard error: 0.5672 on 15939 degrees of freedom Multiple R-squared: 0.8442, Adjusted R-squared: 0.8441 F-statistic: 5399 on 16 and 15939 DF, p-value: < 2.2e-16

Stepwise Regression

Residual standard error: 0.5672 on 15939 degrees of freedom Multiple R-squared: 0.8442, Adjusted R-squared: 0.8441 F-statistic: 5399 on 16 and 15939 DF, p-value: < 2.2e-16 Across the methods, we observed that no variables were removed and hence, resulting in negligible differences between the variable selection models.

Therefore, we conclude that the model is a good predictor even without the machine learning approach.

Classification Tree

Supplement Regression & Identify New Variables

Classification Tree: Methodology

The primary objective of the classification tree is to **cross check** against the identified variables from regression & **identify new variables**, if any.

Steps

Rationale

Converted continuous variable [AUDIT_FEES] into a discrete variable via binary variable [high_AUDIT_FEES], where 1 = audit fees are above mean, 0 = audit fees are below mean

Classification tree requires the dependent variable to be a discrete variable

Ran the classification tree

2

Classification Tree 1: Mean

Classification Tree 1 confirmed that emp and at should be included in the final model.

Classification Tree: Further Analysis

Classification Tree 2: 25th percentile

Classification Tree 2 confirmed that BIG4 should be included in the final model. Since CR was rejected earlier due to its high p value, it will not be included in the final model.

Classification Tree 3: 50th percentile (median)

Classification Tree 3 confirmed that intan should be included in the final model.

Classification Tree 4: 75th percentile

Classification Tree 4 did not identify any new variables.

Classification Tree 5: Presence of Audit Fees

cp = 0.01824 for 7 levels of split

Classification Tree 5 shortlisted **mv_crsp** as additional factors affecting the <u>presence</u> of audit fees...

Classification Tree 5: Presence of Audit Fees

Accuracy statistics

- o Accuracy: 0.8156
- o Sensitivity: 0.9083
- Specificity: 0.6280
- o Balanced Accuracy: 0.7682
- o Area under the curve: 0.8148

We further hypothesise that they are related to <u>magnitude</u> of Audit Fees too.

Summary

Round Up Findings & Propose a Model for Businesses

Final Regression Model

Total Assets

Higher Total Assets implies a larger firm with larger audit scope, increasing audit fees.

Coefficient: 0.339378

Market Value of Shareholders' Equity

Lower Shareholders Equity puts more pressure on management to perform, increasing Inherent Risk. Need to increase extent of Audit Procedures to reduce Detection Risk.

Coefficient: -0.043591

Fortune 1000?

Companies listed on the Fortune 1000 list tend to be large and subject to greater scrutiny. Auditors' scope is wider, hence increasing audit fees.

Coefficient: 0.083755

Firms from different industries vary in audit fees in both direction and magnitude. E.g. negatively correlated with Money Industry

Intangible Assets

Higher Intangible Assets may be related to higher complexity of business operations. This implies a more complex audit, thereby increasing audit fees.

Coefficient: 0.063934

No. of Employees

A higher number of employees is related to larger companies, hence larger audit scope.

Coefficient: 0.173545

Big 4 Audit Firm?

Big 4 firms tend to charge a higher fee compared to smaller, boutique firms.

Coefficient: 0.750331

Final Regression Model Results

RMSE	0.5652
Adjusted R ²	0.8462
MAPE	3.2724
VIF	All <10
Significant? (p-value < 0.05)	Yes

WebTool for Auditors!

https://hengweishin.wixsite.com/auditfees

Audit Fees Factors

Fortune 1000?

Text Analysis Results

If these words are in the business description of the company, the company is likely to have higher audit fees

Breakdown of industries with busdesc in Top 10 words of High Audit Fees

Might be due to the higher complexity of these industries. i.e. there are many stages to their production; many factors to look at

Text Analysis Results

Text Analysis Results

If these words are in the business description of the company, the company is likely to have lower audit fees

Breakdown of industries with busdesc in Top 10 words of High Audit Fees

Possible Areas for further analysis

To confirm robustness of our model

Feasibility

Audit fees to Total Assets Ratio

To give other variables a chance

Deep dive into other variables

Time-consuming as compared to the hypothesis approach

But data hard to measure and obtain

Appendix

Relevant Data / Further Explanations

Original Regression Model

```
Call:
lm(formula = AUDIT_FEES ~ emp + at + d_fortune + FFI12_descBusEq +
   FFI12_descChems + FFI12_descDurbl + FFI12_descEnrgy + FFI12_descHlth +
   FFI12 descManuf + FFI12 descMonev + FFI12 descNoDur + FFI12 descOther +
   FFI12 descShops + FFI12 descTelcm + FFI12 descUtils + BIG4 +
   intan. data = Audit_Reg)
Residuals:
     Min
               1Q Median
                                 3Q
-45092686 -1141402 -333491 270355 61913533
Coefficients: (1 not defined because of singularities)
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               2.921e+05 1.204e+05 2.425 0.015302 *
             1.566e+04 4.671e+02 33.530 < 2e-16 ***
emp
           2.067e+01 2.131e-01 96.979 < 2e-16 ***
at
d fortune 2.261e+06 7.175e+04 31.512 < 2e-16 ***
FFI12_descBusEq 4.341e+05 1.271e+05 3.415 0.000639 ***
FFI12_descChems 1.046e+06 1.824e+05 5.735 9.86e-09 ***
FFI12_descDurbl 8.708e+05 1.871e+05 4.653 3.29e-06 ***
FFI12 descEnray 4.927e+05 1.664e+05 2.961 0.003073 **
FFI12 descHlth -2.923e+05 1.295e+05 -2.257 0.024018 *
FFI12_descManuf 8.314e+05 1.375e+05 6.049 1.48e-09 ***
FFI12_descMoney 1.038e+05 1.214e+05 0.855 0.392485
FFI12_descNoDur 2.061e+05 1.648e+05 1.251 0.210946
FFI12 desc0ther 1.084e+04 1.313e+05 0.083 0.934194
FFI12_descShops -9.435e+05 1.397e+05 -6.754 1.47e-11 ***
FFI12 descTelcm -1.422e+06 2.055e+05 -6.919 4.66e-12 ***
FFI12_descUtils
                     NA NA NA
       1.748e+06 5.059e+04 34.546 < 2e-16 ***
BIG4
             2.239e+02 3.055e+00 73.304 < 2e-16 ***
intan
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3446000 on 22778 degrees of freedom
Multiple R-squared: 0.6091, Adjusted R-squared: 0.6088
F-statistic: 2218 on 16 and 22778 DF, p-value: < 2.2e-16
```

Log Regression Model

```
Call:
lm(formula = audit_fees_log ~ emp_log + at_log + d_fortune +
   FFI12 descBusEa + FFI12 descChems + FFI12 descDurbl + FFI12 descEnray +
   FFI12_descHlth + FFI12_descManuf + FFI12_descMonev + FFI12_descNoDur +
   FFI12_descOther + FFI12_descShops + FFI12_descTelcm + FFI12_descUtils +
   BIG4 + intan log. data = Audit train)
Residuals:
   Min
           10 Median
-3.1743 -0.3683 0.0011 0.3626 3.8337
Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.361520 0.032567 318.163 < 2e-16 ***
emp_log 0.152998 0.006194 24.701 < 2e-16 *** at_log 0.328688 0.003687 89.144 < 2e-16 ***
FFI12 descBusEq 0.601533 0.027574 21.815 < 2e-16 ***
FFI12_descChems 0.592246 0.037285 15.884 < 2e-16 ***
FFI12_descDurbl 0.484467 0.038452 12.599 < 2e-16 ***
FFI12_descEnrgy 0.408597 0.032886 12.425 < 2e-16 ***
FFI12_descHlth 0.596120 0.027826 21.423 < 2e-16 ***
FFI12_descManuf 0.600727 0.029116 20.632 < 2e-16 ***
FFI12_descNoDur 0.367825 0.034323 10.716 < 2e-16 ***
FFI12_descOther 0.310686 0.027597 11.258 < 2e-16 ***
FFI12_descShops 0.152942 0.029494 5.185 2.18e-07 ***
FFI12_descTelcm 0.383178 0.040722 9.410 < 2e-16 ***
FFI12 descUtils
                       NA NA
BIG4 0.732246 0.012125 60.392 < 2e-16 ***
intan_log
              Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5672 on 15939 degrees of freedom
Multiple R-squared: 0.8442. Adjusted R-squared: 0.8441
F-statistic: 5399 on 16 and 15939 DF. p-value: < 2.2e-16
```

Forward

```
lm(formula = audit fees log ~ emp log + at log + d fortune +
    FFI12_descBusEq + FFI12_descChems + FFI12_descDurbl + FFI12_descEnrgy +
    FFI12_descHlth + FFI12_descManuf + FFI12_descMoney + FFI12_descNoDur +
   FFI12 descOther + FFI12 descShops + FFI12 descTelcm + BIG4 +
    intan_log, data = Audit_train)
Residuals:
   Min
            10 Median
-3.1743 -0.3683 0.0011 0.3626 3.8337
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               10.361520
                         0.032567 318.163 < 2e-16 ***
emp_log
                0.152998
                          0.006194 24.701 < 2e-16 ***
at_log
                0.328688
                         0.003687 89.144 < 2e-16 ***
d_fortune
                0.064816
                         0.015185
                                   4.268 1.98e-05 ***
FFI12 descBusEq 0.601533
                         0.027574 21.815 < 2e-16 ***
FFI12 descChems 0.592246
                         0.037285 15.884
                                           < 2e-16 ***
FFI12_descDurbl 0.484467
                         0.038452 12.599
                                           < 2e-16 ***
                         0.032886 12.425
FFI12_descEnrgy 0.408597
                                           < 2e-16 ***
                         0.027826 21.423 < 2e-16 ***
FFI12_descHlth 0.596120
FFI12_descManuf 0.600727
                         0.029116 20.632
                                           < 2e-16 ***
FFI12_descMoney -0.061057
                         0.024332 -2.509
                                            0.0121 *
FFI12 descNoDur 0.367825
                         0.034323 10.716 < 2e-16 ***
FFI12_descOther 0.310686
                         0.027597 11.258 < 2e-16 ***
FFI12_descShops 0.152942
                          0.029494
                                    5.185 2.18e-07 ***
FFI12 descTelcm 0.383178
                         0.040722 9.410 < 2e-16 ***
                          0.012125 60.392 < 2e-16 ***
BIG4
                0.732246
                         0.002341 26.206 < 2e-16 ***
intan_log
                0.061357
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.5672 on 15939 degrees of freedom
Multiple R-squared: 0.8442, Adjusted R-squared: 0.8441
F-statistic: 5399 on 16 and 15939 DF, p-value: < 2.2e-16
```

Backward

```
lm(formula = audit fees log \sim emp log + at log + d fortune +
    FFI12_descBusEa + FFI12_descChems + FFI12_descDurbl + FFI12_descEnrav +
    FFI12_descHlth + FFI12_descManuf + FFI12_descMoney + FFI12_descNoDur +
    FFI12 descOther + FFI12 descShops + FFI12 descTelcm + BIG4 +
    intan_log. data = Audit_train)
Residuals:
            10 Median
-3.1743 -0.3683 0.0011 0.3626 3.8337
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               10.361520 0.032567 318.163 < 2e-16 ***
                0.152998
                         0.006194 24.701 < 2e-16 ***
emp_loa
                0.328688
                         0.003687 89.144 < 2e-16 ***
at_log
d fortune
                0.064816
                          0.015185
                                    4.268 1.98e-05 ***
FFI12_descBusEq 0.601533 0.027574 21.815 < 2e-16 ***
FFI12_descChems 0.592246
                          0.037285 15.884
                                            < 2e-16 ***
FFI12_descDurbl 0.484467
                          0.038452 12.599 < 2e-16 ***
FFI12_descEnray 0.408597
                          0.032886 12.425 < 2e-16 ***
FFI12_descHlth 0.596120
                           0.027826 21.423 < 2e-16 ***
FFI12_descManuf 0.600727
                           0.029116 20.632 < 2e-16 ***
FFI12_descMonev -0.061057
                          0.024332 -2.509
                                            0.0121 *
FFI12_descNoDur 0.367825
                          0.034323 10.716 < 2e-16 ***
FFI12_descOther 0.310686
                           0.027597 11.258
                                            < 2e-16 ***
FFI12_descShops 0.152942
                           0.029494
                                    5.185 2.18e-07 ***
FFI12_descTelcm 0.383178
                           0.040722
                                    9.410 < 2e-16 ***
BIG4
                0.732246
                           0.012125 60.392 < 2e-16 ***
intan_log
                0.061357
                         0.002341 26.206 < 2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5672 on 15939 degrees of freedom
Multiple R-squared: 0.8442, Adjusted R-squared: 0.8441
F-statistic: 5399 on 16 and 15939 DF. p-value: < 2.2e-16
> Audit_Reg_Back_Pred <- predict(Audit_Reg_Back, Audit_test)
> accuracy(Audit_Reg_Back_Pred, Audit_test$audit_fees_log)
                         RMSE
Test set 0.003865102 0.5677058 0.4459143 -0.1492596 3.290417
```

Stepwise

```
lm(formula = audit_fees_log ~ emp_log + at_log + d_fortune +
    FFI12_descBusEq + FFI12_descChems + FFI12_descDurbl + FFI12_descEnrqy +
    FFI12 descHlth + FFI12 descManuf + FFI12 descMonev + FFI12 descNoDur +
    FFI12_descOther + FFI12_descShops + FFI12_descTelcm + BIG4 +
    intan_log, data = Audit_train)
Residuals:
    Min
            10 Median
                            30
-3.1743 -0.3683 0.0011 0.3626 3.8337
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               10.361520 0.032567 318.163 < 2e-16 ***
emp_loa
                0.152998
                          0.006194 24.701 < 2e-16 ***
at_log
                0.328688
                          0.003687 89.144 < 2e-16 ***
d fortune
                0.064816
                          0.015185
                                    4.268 1.98e-05 ***
FFI12_descBusEq 0.601533
                          0.027574 21.815 < 2e-16 ***
FFI12_descChems 0.592246
                          0.037285 15.884 < 2e-16 ***
                          0.038452 12.599 < 2e-16 ***
FFI12_descDurbl 0.484467
FFI12_descEnrgy 0.408597
                          0.032886 12.425 < 2e-16 ***
FFI12_descHlth 0.596120
                          0.027826 21.423 < 2e-16 ***
FFI12_descManuf 0.600727
                          0.029116 20.632 < 2e-16 ***
FFI12_descMoney -0.061057
                          0.024332
                                    -2.509
                                            0.0121 *
FFI12 descNoDur 0.367825
                          0.034323
                                    10.716 < 2e-16 ***
FFI12_descOther 0.310686
                          0.027597 11.258 < 2e-16 ***
FFI12_descShops 0.152942
                          0.029494
                                    5.185 2.18e-07 ***
FFI12_descTelcm 0.383178
                         0.040722
                                    9.410 < 2e-16 ***
BIG4
                0.732246   0.012125   60.392   < 2e-16 ***
intan log
                0.061357 0.002341 26.206 < 2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5672 on 15939 degrees of freedom
Multiple R-squared: 0.8442. Adjusted R-squared: 0.8441
F-statistic: 5399 on 16 and 15939 DF, p-value: < 2.2e-16
> Audit Rea Stepwise Pred <- predict(Audit Rea Stepwise, Audit test)
> accuracy(Audit_Reg_Stepwise_Pred, Audit_test$audit_fees_log)
                         RMSE
                                   MAE
Test set 0.003865102 0.5677058 0.4459143 -0.1492596 3.290417
```

Big 4 Audit Fees as a Percentage of Total Revenue: Comparison of NAICS Sector to Russell 3000 Population

Text Analysis Methodology

<u>Preparing the data</u> library(superml)

cv = CountVectorizer\$new(remove_stopwords =
TRUE,

lowercase = TRUE, regex = " $/^[A-Za-z]+$ \$/", max df = 0.008)

cv_matrix = read_csv("data/word counts.csv")

Creates a dummy variable for each unique word in the busdesc column

	xylem [‡]	yacht [‡]	yale [‡]	yards [‡]	yellow [‡]	yelp [‡]	yew [‡]	yext [‡]	yield [‡]	york [‡] y	yc
ı	0	0	0	0	0	0	0	0	0	0	
ı	0	0	0	0	0	0	0	0	0	0	
ı	0	0	0	0	0	0	0	0	0	0	
ı	0	0	0	0	0	0	0	0	0	0	
ı	0	0	0	0	0	0	0	0	0	0	
ı	0	0	0	0	0	0	0	0	0	0	
,	0	0	0	0	0	0	0	0	0	0	
ı	0	0	0	0	0	0	0	0	0	0	
	-	_	-	_	-	-	-	-	_		

A snippet of the 3580 by 7830 dataframe 3580 business descriptions 7830 unique words <u>Utilized a technique called Naïve Bayes</u> library(naivebayes)

 $P(c \mid X) = P(x_1 \mid c) P(x_2 \mid c) \times \cdots \times P(x_n \mid c) P(c)$

Calculated this probability for each word in the vocab list

Text Analysis Results – Visualisation with R

