Red Black Trees

Red Black Trees

Colored Nodes Definition

- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive **red** nodes.
- All root-to-external-node paths have the same number of **black** nodes

Red Black Trees

Colored Edges Definition

- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of **black** pointers.

Example Red-Black Tree

• The height of a red black tree that has n (internal) nodes is between $log_2(n+1)$ and $2log_2(n+1)$.

How can we prove this?

• Start with a red black tree whose height is h; collapse all red nodes into their parent black nodes to get a tree whose node-degrees are between 2 and 4, height is $\geq h/2$, and all external nodes are at the same level.

- Let h' >= h/2 be the height of the collapsed tree.
- Internal nodes of collapsed tree have degree between 2 and 4.
- Number of internal nodes in collapsed tree $>= 2^{h'}-1$.
- So, $n >= 2^{h'}-1$
- So, $h \le 2 \log_2 (n+1)$

• At most O(1) rotation and O(log n) color flips per insert/delete.

• Red-black trees are a clever binary representation of 2-3-4 trees.

Insert

- The new node is inserted just like binary search tree → color to have red-black tree property
- New node color options.
 - Black node => one root-to-external-node path has an extra black node (black pointer).
 - Hard to remedy.
 - Red node => one root-to-external-node path may have two consecutive red nodes (pointers).
 - May be remedied by color flips and/or a rotation.

Classification Of 2 Red Nodes/Pointers

- XYz
 - \blacksquare X => relationship between gp and pp.
 - pp left child of $gp \Rightarrow X = L$.
 - \blacksquare Y => relationship between pp and p.
 - p left child of pp \Rightarrow Y = L.
 - z = b (black) if d = null or a black node.
 - z = r (red) if d is a red node.

XYr

• Color flip.

- Move p, pp, and gp up two levels.
- Continue rebalancing.

LLb

• Rotate.

- Done!
- Same as LL rotation of AVL tree.

LRb

• Rotate.

- Done!
- Same as LR rotation of AVL tree.
- RRb and RLb are symmetric.

Delete

- First delete like unbalanced binary search tree.
 - We need to consider only case 0 (node with 0 child) and case 1 (node with 1 child) as case 2 reduces to case 0 or 1.
- If red node deleted, no rebalancing needed.
- If black node deleted, a subtree becomes one black pointer (node) deficient.

Delete A Black Leaf

• Delete 8.

Delete A Black Leaf

- y is root of deficient subtree.
- py is parent of y.

Delete A Black Degree 1 Node

- Delete 45.
- y is root of deficient subtree.

• If y is a red node, make it black.

Now, no subtree is deficient. Done!

- y is a black root (there is no py).
- Entire tree is deficient. Done!

• y is black but not the root (there is a py).

- Xcn
 - y is right child of py \Rightarrow X = R.
 - Pointer to v is black $\Rightarrow c = b$.
 - v has 1 red child \Rightarrow n = 1.

Rb0 (case 1, py is black)

- Color change.
- Now, py is root of deficient subtree.
- Continue!

Rb0 (case 2, py is red)

- Color change.
- Deficiency eliminated.
- Done!

Rb1 (case 1: v's left child red)

- LL rotation.
- Deficiency eliminated.
- Done!

Rb1 (case 2 : v's right child red)

- Deficiency eliminated.
- Done!

Done!

Rr(n)

• n = # of red children of v' s right child w.

Rr(0)

- LL rotation.
- Done!

Rr(1) (case 1: w's left child red)

- LR rotation.
- Deficiency eliminated.
- Done!

Rr(1) (case 2:: w's right child red)

- Rotation.
- Deficiency eliminated.
- Done!

Red-Black Trees—Again

- rank(x) = # black pointers on path from x to an external node.
- Same as #black nodes (excluding x) from x to an external node.
- rank(external node) = 0.

An Example

Join(S,m,B)

- Input
 - Dictionary S of pairs with small keys.
 - Dictionary B of pairs with big keys.
 - An additional pair m.
 - All keys in S are smaller than m.key.
 - All keys in B are bigger than m.key.
- Output
 - A dictionary that contains all pairs in S and B plus the pair m.
 - Dictionaries S and B may be destroyed.

Join Binary Search Trees

• O(1) time.

Join Red-black Trees

• When rank(S) = rank(B), use binary search tree method.

• rank(root) = rank(S) + 1 = rank(B) + 1.

rank(S) > rank(B)

• Follow right child pointers from root of S to first node

x whose rank equals rank(B).

rank(S) > rank(B)

• If there are now 2 consecutive red pointers/nodes, perform bottom-up rebalancing beginning at m.

- Follow left child pointers from root of B to first node x whose rank equals rank(S).
- Similar to case when rank(S) > rank(B).

Split(k)

- Inverse of join.
- Obtain
 - S ... dictionary of pairs with key $\leq k$.
 - B ... dictionary of pairs with key > k.
 - $m \dots pair with key = k (if present).$

- Previous strategy does not split a red-black tree into two red-black trees.
- Must do a search for m followed by a traceback to the root.
- During the traceback use the join operation to construct S and B.

$$B = g$$

$$\mathbf{B} = \mathbf{g}$$

$$S = f$$
 $B = g$

$$S = join(e, E, S)$$

$$\mathbf{B} = \mathbf{g}$$

$$S = join(e, E, S)$$

$$B = join(B, D, d)$$

$$S = join(e, E, S)$$

$$B = join(B, D, d)$$

$$S = join(c, C, S)$$

$$S = join(e, E, S)$$

$$B = join(B, D, d)$$

$$S = join(c, C, S)$$

$$\mathbf{B} = \mathrm{join}(\mathbf{B}, \mathbf{B}, \mathbf{b})$$

$$\mathbf{B} = \mathbf{g}$$

$$S = join(e, E, S)$$

$$B = join(B, D, d)$$

$$S = join(c, C, S)$$

$$B = join(B, B, b)$$

$$S = join(a, A, S)$$

Complexity Of Split

• O(log n)