Transfer Learning

박성호 (neowizard2018@gmail.com)

전이학습 (Transfer Learning) (참고: https://youtu.be/r4nQgQkdOqM)

■ CNN 기반의 딥러닝 모델을 훈련시키려면 많은 양의 데이터가 필요하지만 큰 데이터셋을 얻는 것은 쉽지 않음. 이러한 현실적인 어려움을 해결한 것이 전이 학습인데, 전이 학습은 ImageNet처럼 아주 큰 데이터셋을 써서 <u>사전 학습 모델(pre-trained model)</u>의 가중치를 가져와 우리가 분석하려는 데이터에 맞게 보정해서 사용하는 것을 의미함

- 특징 추출기는 컨볼루션층과 풀링 층의 조합으로 구성되어 있으며 ImageNet 데이터에 대해 이미 학습되어 있음
- 분류기는 완전 연결 층(Dense) 조합으로 구성되며 이미지에 대한 정답을 분류하는 역할

전이학습 - TensorFlow 사전 학습 모델 (pre-trained model) 종류

모델 이름	파일 크기	1순위 정확률	5순위 정확률	매개변수 개수	층의 개수(깊이)
Xception	88MB	0.790	0.945	22,910,480	126
VGG16	528MB	0.713	0.901	138,357,544	23
VGG19	549MB	0.713	0.900	143,667,240	26
ResNet50	98MB	0.749	0.921	25,636,712	_
ResNet101	171MB	0.764	0.928	44,707,176	_
ResNet152	232MB	0.766	0.931	60,419,944	_
ResNet50V2	98MB	0.760	0.930	25,613,800	_
ResNet101V2	171MB	0.772	0.938	44,675,560	_
ResNet152V2	232MB	0.780	0.942	60,380,648	_
InceptionV3	92MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215MB	0,803	0.953	55,873,736	572
MobileNet	16MB	0.704	0.895	4,253,864	88
MobileNetV2	14MB	0.713	0.901	3,538,984	88
DenseNet121	33MB	0.750	0.923	8,062,504	121
DenseNet169	57MB	0.762	0.932	14,307,880	169
DenseNet201	80MB	0.773	0.936	20,242,984	201
NASNetMobile	23MB	0.744	0.919	5,326,716	_
NASNetLarge	343MB	0.825	0.960	88,949,818	_

pre-trained model (InceptionV3, MS ResNet50,....)

전이학습 - 파인튜닝 (fine tuning)

■ 파인 튜닝은 분석하려는 새로운 데이터에 잘 맞도록 ① 사전 학습 모델의 가중치 일부를 재학습 시키거나 또는 ② 모든 가중치를 처음부터 다시 학습시키는 방법. 즉 파인 튜닝은 새롭게 분석하려는 데이터에 맞게 모델 가중치를 조정하는 기법이며, GPU 사용이 필수임

Transfer Learning 사용법

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.applications import VGG16, ResNet50, MobileNet, InceptionV3
base_model = YGG16(weights='imagenet', include_top=False, input_shape=(240,240,3))
                                                                              새롭게 학습시킬
     사전학습에 사용된 데이터셋
                                                                              이미지 텐서 크기
                            include_top=False 사전학습 모델의 특징 추출기만 가져옴
                            include_top=True 사전학습 모델의 특징추출기와 분류기 모두 가져옴
# base model.trainable = False 설정하면. 파인튜닝 없음
model = Sequential()
model.add(base model)
```

```
model.add(Flatten())
model.add(Dense(64, activation='relu'))
                                                  새로운 분류기
model.add(Dropout(0.25))
                                              (user-defined classifier)
model.add(Dense(4, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
              optimizer=tf.keras.optimizers.Adam(2e-5),
              metrics=['accuracy'])
model.summary()
```