

MODUL II KONSEP & MANAJEMEN BASIS DATA LINGKUNGAN & ARSITEKTUR BASIS DATA

Disarikan dari Connoly, Thomas & Carolyn Begg, 2015, Database Systems: A Practical Approach to Design, Implementation, and Management, 6th ed, Chapter 1-3

Prodi Informatika Universitas Sanata Dharma

Capaian Pembelajaran Pokok Bahasan

Mahasiswa memahami konsep, struktur, dan arsitektur sistem basisdata

Basis Data

- Basis data:
 - kumpulan data yang secara logis terkait satu sama lain dan digunakan bersama oleh banyak pemakai, serta dirancang untuk memenuhi kebutuhan informasi banyak pemakai dalam suatu organisasi.
- Data yang terkait secara logis berisi informasi dalam organisasi/domain masalah yang terdiri atas entitas, atribut, dan hubungannya
- Selain data, terdapat juga metadata yang berisi deskripsi data.

Database Management System (DBMS)

- Sistem manajemen basis data (Database Management System/DBMS):
 - sistem perangkat lunak komersial yang digunakan untuk membuat, merawat dan menyediakan akses terkendali atas basisdata dan repository. Contoh: Oracle, Foxpro, dsb
- Program aplikasi (basisdata):
 - program komputer yang berinteraksi dengan basisdata dengan melakukan request (perintah SQL) ke DBMS

Komponen Lingkungan DBMS

Ilustrasi Database Management System

PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo)

PrivateOwner (ownerNo, fName, IName, address, telNo)

Client (clientNo, fName, IName, address, telNo, prefType, maxRent)

Lease (leaseNo, propertyNo, clientNo, paymentMethod, deposit, paid, rentStart, rentF nish)

Arsitektur Basis Data (Tiga-Level ANSI-SPARC)

Arsitektur Basis Data (Tiga-Level ANSI-SPARC)

- Level eksternal (external level)
 - View database milik pengguna
 - Menggambarkan sebagian basisdata yang relevan dengan kebutuhan pengguna
- Level konseptual (conceptual level)
 - Kumpulan view dari basisdata
 - Menggambarkan data apa saja yang tersimpan dalam basisdata dan hubungan antar data tersebut.
- □ Level internal (*Internal Level*)
 - Representasi fisikal basisdata dalam komputer
 - Menggambarkan bagaimana data disimpan dalam basisdata

Tujuan Arsitektur Tiga Level

- Semua pengguna dapat mengakses data yang sama
- View dari seorang pengguna tidak terpengaruh perubahan view dari pengguna yang lain
- Pengguna tidak perlu tahu secara detil simpanan fisik basisdata
- DBA (Data Base Administrator) harus dapat mengubah struktur simpanan basisdata tanpa mempengaruhi view pengguna.
- Struktur Internal basisdata tidak boleh terpengaruh oleh aspek fisikal simpanan data.
- DBA harus dapat mengubah struktur konseptual basidata tanpa mempengaruhi semua pengguna.

Perbedaan Tiga Level Arsitektur ANSI-SPARC

Independensi Data

- Independensi data logikal
 - kekebalan skema eksternal terhadap perubahan yang dilakukan di skema konseptual
 - Jika skema konseptual berubah (misal karena penambahan/penghapusan entitas), maka tidak boleh mengakibatkan perubahan skema eksternal atau perubahan program aplikasi

Independensi Data

- Independensi data fisikal
 - kekebalan perubahan skema konseptual terhadap perubahan skema internal
 - Jika skema internal berubah (misal karena perubahan organisasi file, perubahan struktur simpanan data/alat penyimpanan), maka tidak boleh mempengaruhi skema konseptual/skema eksternal

Independensi Data dan Arsitektur Tiga-Level ANSI-SPARC

Peran dalam Lingkungan Basisdata

Data Administrator (DA):

 Bertanggungjawab atas manajemen data (perencanaan, pengembangan, perawatan standar, prosedur, kebijakan, dan rancangan logikal/konseptual

Database Administrator (DBA):

 Bertanggungjawab atas realisasi fisikal basisdata (rancangan fisikal, implementasi, keamanan, integritas, perawatan sistem operasional, kinerja aplikasi)

Database Designers (Logical dan Physical):

Bertanggungjawab atas rancangan logikal dan rancangan fisikal basisdata

Peran dalam Lingkungan Basisdata

Application Programmers:

 Bertanggungjawab atas pembuatan program aplikasi yang memanfaatkan basisdata yang ada.

End Users (awam dan lanjut):

- Pengguna basisdata
- Awam: tidak menyadari adanya DBMS, mengakses BD melalui program aplikasi
- Lanjut: mempunyai kemampuan untuk melakukan kueri menggunakan SQL atau membuat program aplikasi sendiri

Database Language

- Data Definition Language (DDL)
 - Memungkinan DBA atau pengguna untuk mendeskripsikan dan memberi nama entitas, atribut, dan hubungan-hubungan yang diperlukan dalam suatu aplikasi
 - Memuat juga informasi tentang integritas dan kendala keamanan data (security constraints) yang relevan
- □ Data Manipulation Language (DML)
 - Menyediakan operasi-operasi dasar untuk memanipulasi data yang tersimpan dalam basisdata
- □ Fourth Generation Languages (4GLs):
 - 4GL adl Bahasa pemrograman yang lebih dekat ke Bahasa manusia daripada Bahasa pemrograman tingkat tinggi spt Java atau C++
 - SQL adalah salah satu contoh 4GL

Tipe DML

- Procedural DML
 - Memungkinkan pengguna untuk memberitahu sistem bagaimana cara memanipulasi data
 - Biasanya ditanam (embedded) di dalam Bahasa pemrograman tingkat tinggi
 - Model data network & hierarchical biasanya termasuk procedural DML.
- Non-Procedural DML
 - Memungkinkan pengguna untuk menyatakan data apa yang dibutuhkan, dan bukan bagaimana cara membaca data tersebut
 - Contoh: SQL, QBE

Model Data (Data Model)

Koleksi terintegrasi dari konsep tentang deskripsi data, hubungan antar data, dan kendala terhadap data dalam suatu organisasi

- Model data memuat :
 - bagian struktural
 - Bagian manipulatif
 - Mungkin juga memuat sekumpulan aturan integritas

Model Data

- Tujuan
 - Untuk merepresentasikan data dengan cara yang dapat dimengerti
- Kategori model data meliputi :
 - Berbasis obyek (Object-based)
 - Berbasis record (Record-based)
 - Fisikal (Physical)

Model Data

- Model Data Berbasis Obyek
 - Hubungan antar entitas (Entity-Relationship)
 - Semantik
 - Fungsional
 - Berorientasi Obyek (Object-Oriented).
- Model Data Berbasis Record
 - Model Data Relasional
 - Model Data Network
 - Model Data Hirarkikal
- Model Data Fisikal

Sejarah Sistem Basisdata

- First-generation
 - Hierarchical dan Network
- Second generation
 - Relasional
- ☐ Third generation
 - Object-Relational
 - Object-Oriented

Model Data Relasional

Branch

branchNo	street	city	postCode	
B005	22 Deer Rd	London	SW1 4EH	
B007	16 Argyll St	Aberdeen	AB2 3SU	
B003	163 Main St	Glasgow	G11 9QX	
B004	32 Manse Rd	Bristol	BS99 1NZ	
B002	56 Clover Dr	London	NW10 6EU	

Staff

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	M	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	M	24-Mar-58	18000	B003
SA9	Mary	Howe	Assistant	F	19-Feb-70	9000	B007
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003
SL41	Julie	Lee	Assistant	F	13-Jun-65	9000	B005

Model Data Network

Model Data Hirarkikal

Pemodelan Konseptual

- Skema konseptual adalah inti dari suatu sistem yang mendukung seluruh view pengguna.
- Harus merepresentasikan secara lengkap dan akurat kebutuhan data dari organisasi
- Pemodelan konseptual adalah proses pembuatan model penggunaan informasi yang independen terhadap detil implementasi
- Hasil dari pemodelan konseptual adalah model data konseptual
- Contoh
 - Model ER SPPK Penghitungan Biaya Diklat

Pemodelan Konseptual

Arsitektur Multi-User DBMS

- Teleprocessing
- □ File-server
- Client-server
- Web Service
- □ SOA
- Distributed DBMS
- Cloud Computing

Teleprocessing

- Arsitektur tradisional
- Satu mainframe dengan sejumlah terminal yang terhubung dengannya
- □ Trend saat ini adalah *downsizing*

File-Server

- File-server terhubung ke beberapa workstations dalam suatu jaringan
- Basisdata tersimpan dalam file-server.
- DBMS dan aplikasi berjalan dalam setiap workstation.
- Kelemahan:
 - Mengakibatkan padatnya lalulintas jaringan
 - Terdapat duplikat (copy) DBMS dalam setiap workstation.
 - Kontrol terhadap konkurensi, pemulihan (recovery) dan integritas data lebih kompleks

Arsitektur File-Server

Traditional Two-Tier Client-Server

- Client (tier 1) mengelola antarmuka pengguna (user interface) dan menjalankan aplikasi
- Server (tier 2) menyimpan basisdata dan DBMS.
- Kelebihan:
 - Akses yang lebih luas terhadap basisdata yang ada
 - Kinerja meningkat
 - Dapat mengurangi biaya hardware
 - Mengurangi biaya komunikasi
 - Konsistensi meningkat

Traditional Two-Tier Client-Server

Sumber: Connoly & Begg (2015)

Traditional Two-Tier Client-Server

Three-Tier Client-Server

- Dalam arsitektur 2-tier, sisi klien (Client side) menghadapi 2 masalah yang menghambat aplikasi berskala enterprise (mencakup seluruh organisasi yang cukup besar)
 - 'Fat' client: membutuhkan sumberdaya yang memadai bagi komputer sisi klien agar program dapat berjalan efektif
 - Membutuhkan biaya overhead yang signifikan di sisi klien.
- Tahun 1995, diusulkan konsep three layers yang masing-masing bisa berjalan pada platform yang berbeda

Three-Tier Client-Server

Keuntungan:

- 'Thin' client: membutuhkan biaya hardware yang lebih murah
- Perawatan aplikasi terpusat
- Mudah untuk memodifikasi atau mengubah suatu tier tanpa mempengaruhi yang lain
- Memisahkan logika bisnis dari fungsi basisdata dan memudahkan implementasi penyeimbangan beban kerja (load balancing)
- Lebih mudah dipetakan ke lingkungan web

Three-Tier Client-Server

Transaction Processing Monitors

Program yang mengendalikan transfer data antara klien dan server untuk menjamin lingkungan yang konsisten, terutama untuk Online Transaction Processing (OLTP).

TPM sebagai *middle tier* dari *3-tier* client-server

Web Services

- Sebuah sistem perangkat lunak yg dirancang untuk mendukung interoperabilitas interaksi mesin ke mesin melalui jaringan internet.
- Kunci: menggunakan teknologi & standar yang diterima banyak pihak (contoh: XML, WSDL, SOAP, UDDI)

Service-Oriented Architectures (SOA)

 Suatu arsitektur software yang berpusat pada bisnis (business-centric) untuk membangun aplikasi yang mengimplementasikan proses bisnis sebagai kumpulan servis yang relevan bagi pelanggan. Sumber: Connoly & Begg (2015)

Figure 3.10 (a) Traditional IT architecture for three business processes; (b) service-oriented architecture that splits the processes into a number of reusable services.

Distributed DBMS

- Distributed database:
 sekumpulan data bersama
 (beserta deskripsinya) yang secara
 logis berkaitan satu sama lain,
 dan secara fisik terdistribusi pada
 suatu jaringan computer
- Distributed DBMS: sistem perangkat lunak yang memfasilitasi pengelolaan distributed database dan membuatnya menjadi transparan bagi pengguna

Data Warehouse

• Sekumpulan view data korporasi yang terintegrasi dan berasal dari berbagai sumber data operasional yang terpisah-pisah serta end-user yang mampu mendukung query yang simple maupun yang kompleks untuk membantu pengambilan keputusan

Cloud Computing

Suatu model yang memfasilitasi akses melalui jaringan komputer dari manapun secara nyaman, berdasar kebutuhan terhadap sumberdaya komputring yang dapat dikonfigurasi (misal networks, servers, storage, applications, dan services) dan disediakan secara cepat dengan manajemen pengelolaan yang minimum atau melalui layanan penyedia jasa yang ditetapkan NIST

Berbagai Arsitektur Cloud Computing

Keuntungan DBMS

- Mengendalikan redundansi data
- Menjamin konsistensi data
- Menghasilkan informasi yang lebih banyak dari jumlah data yang sama
- Memungkinkan pemakaian data secara bersama (data sharing)
- Meningkatkan integritas data
- Meningkatkan keamanan data
- Mendorong standarisasi
- Bisa lebih hemat dibandingkan jika menggunakan filebased system

Keuntungan DBMS

- Menyeimbangkan kebutuhan yang bertentangan
- Meningkatkan aksesibilitas dan respon data
- Meningkatkan produktifitas
- Meningkatkan perawatan melalui independensi data
- Meningkatkan konkurensi (keserempakan)
- Meningkatkan layanan backup dan recovery

Kelemahan DBMS

- Kompleksitas
- Ukuran
- Biaya DBMS
- Biaya tambahan untuk hardware
- Biaya konversi
- Kinerja (yang mungkin lebih lambat dibanding filebased system)
- Memberikan dampak kegagalan yang lebih besar

Wisdom of the Day

Lakukanlah segala sesuatunya dengan gembira

Maka hasilnya akan menggembirakan hati...

300