1.

Class	0	1	2	3	4	5	6	7	8	9
Error rate	0	0	0.127 3	0.155 6	0.127 3	0.060 0	0.046 5	0.020 4	0.250 0	0.185 2

2. Total Error Rate=**0.094** as indicated in the results above.

The NN Classifier failed to perform because these images are similar to each other and in this case, we choose k=1, which is too small to classify them.

```
distance = zeros(5000, 500);
for i = 1:500
                        %%classify ImageTrain
   for j = 1:5000
      diff = imageTrain(:,:,j) - imageTest(:,:,i);
      square=diff.^2;
      add = sum(sum(square));
      d=sqrt(add);
      distance(j,i) = d;
   end
end
[dmin,index]=min(distance);
for i=1:500
   class(i)=labelTrain(index(i));
end
errorrate=zeros(1,10); %%calculate the error rate for each class
error=zeros(1,10);
for c=0:9
x=find(labelTest==c);
for j=1:length(x)
if class(x(j)) \sim = labelTest(x(j))
    error(c+1)=error(c+1)+1;
end
end
 errorrate(c+1)=error(c+1)/length(x);
end
totalerrorrate=sum(error)/500; %% calculate the total error rate
xlabel('Class')
ylabel('P(error|Class)')
counter=0;
                    %%plot the 5 misclassified images and their closest
images
for i=1:500
   if labelTest(i)~= class(i)
   subplot(1,2,1);
   imshow(imageTest(:,:,i));
    subplot(1,2,2);
   imshow(imageTrain(:,:,index(i)));
    counter=counter+1;
   if counter==5
       break
   end
    end
```