Proyecto Final Análisis de Supervivencia

Análisis de Supervivencia para fallas de motor

Víctor Samayoa - 175750 Saúl Caballero - 133930 Delia Del Águila - 167188

1. Introducción

La base de datos se obtuvo en la competencia de desafío de pronóstico en la Conferencia Internacional sobre pronóstico y gestión de la salud ¹. El objetivo de la competencia era estimar en qué momento y bajo qué condiciones un motor falla.

La base de datos contiene información acerca de los motores en cada unidad de tiempo medida. La última unidad medida representa cuando el motor se le dio mantemiento o hasta la última unidad medida de tiempo para el motor (datos censurados). Para representar que cada motor inicia con diferentes grados de desgaste inicial y variación de fabricación se tienen tres diferentes variables de configuración inicial y 21 medidas de sensores en cada ciclo.

El motor funciona de manera regular al inicio de cada serie de tiempo y comienza a degradarse en algún momento durante la serie. El objetivo es estimar la función de supervivencia para el tiempo de fallo de los motores y ver en cuanto afectan las distintas mediciones de los sensores sobre el tiempo de fallo.

2. Análisis de Datos

Nuestra base de datos cuenta con 75,738 registros correspondientes a 436 motores, donde cada registro corresponde a un ciclo de un motor en específico e incluye las configuraciones iniciales del ciclo así como las mediciones de los sensores.

Contamos con 50 % de censura por la derecha, donde si el motor no tiene censura su último registro será del último ciclo antes de mantenimiento. En la siguiente gráfica podemos observar la distribución del tiempo en que cada motor está en funcionamiento o en qué ciclo se detuvieron las mediciones, es decir en qué ciclo la censura comenzó.

¹https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Fig. Ciclos en funcionamiento hasta mantenimiento

Para el caso de motores sin censura, en la siguiente gráfica podemos observar la distribución del tiempo en que cada motor está en funcionamiento y en qué ciclo es mandado a mantenimiento dada una falla.

Fig. Ciclos en funcionamiento hasta censura

Nuestra base de datos también incluye 3 configuraciones que hacen los operadores al inicio de cada ciclo. Cada configuración tiene un rango distinto. La siguiente gráfica muestra de ejemplo al motor e5 y de las distintas configuraciones definidas en cada ciclo.

Fig. Configuraciones por ciclo para motor e5

Cada configuración tiene mediciones en la siguiente escala:

■ Configuración 1: De 0 a 42.1

■ Configuración 2: De 0 a 0.842

■ Configuración 3: Valores discretos de 0 a 100 con saltos de 20 puntos

Fig. Boxplot para las configuraciones de cada ciclo

Además contamos con las lecturas de 21 sensores en cada ciclo. La siguiente gráfica muestra de nuevo el ejemplo del motor e5 pero con las distintas lecturas de los sensores en cada ciclo.

Fig. Lectura de sensores por ciclo para motor e5

En general cada sensor tiene mediciones en la siguiente escala:

- Sensor 16: Cuenta con dos valores 0.02 y 0.03
- Sensor 10: De 0.93 a 1.3
- Sensores 5, 6 y 15: De 3.91 a 21.61
- Sensores 11, 20 y 21: De 6.124 a 48.39
- Sensor 19: Cuenta con sólo dos valores 84.93 y 100
- Sensores 1, 2, 7 y 12: De 129.2 a 644.4
- Sensor 17: Con valores enteros entre 303 y 398
- Sensores 3 y 4: De 1029 a 1615
- Sensores 8 y 13: De 1915 a 2391
- Sensor 18: Con valores enteros entre 1915 y 2388
- Sensores 9 y 14: De 7852 a 9217

Fig. Boxplot para todas las lecturas de sensores

A continuación se muestran las densidades de los valores que toman cada uno de los sensores en los datos observados. Se logra apreciar que existen sensores que tienen una densidad prácticamente idéntica como son los sensores 3 y 9, así como los sensores 20 y 21.

Dado lo anterior se analizó la correlación entre las mediciones de los sensores para determinar cuáles están altamente correlacionados y retirar dichas variables dentro de los modelos de vida acelerada.

Dadas las correlaciones mostradas se decide dejar solamente una variable de aquellos pares que tengan una correlación arriba 0.90. De esta forma las variables finales son:

- Sensor 01
- Sensor 03
- Sensor 08
- Sensor 13
- Sensor 18

Quedando así la siguiente matriz de correlaciones:

3. Análisis inferencial

3.1. Estimador Kaplan Meier

Se procede a obtener el estimador Kaplan Meier para la función de supervivencia y mostrar la estimación no paramétrica de la función de supervivencia. La función de supervivencia con el estimador de Kaplan Meier se comporta de la siguiente forma:

Ahora procedemos a comparar la estimación de la función de supervivencia con modelos parámetricos para determinar si es posible utilizar algún modelo paramétrico.

Comparación con el modelo Exponencial: Este modelo será el que se ajuste menos a nuestra función de supervivencia

Comparación con el modelo Weibull:

Comparación con el modelo Lognormal:

Comparación con el modelo Loglogistico:

3.2. Modelos de vida acelerada

Con base en las gráficas anteriores, obsevamos que el estimador de la función de supervivencia se ajusta tanto a un modelo lognormal como loglogistico.

Cuadro 1: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	5.305	0.044	119.378	0.000
Configuración 1	-0.003	0.003	-0.780	0.435
Configuración 2	0.275	0.178	1.549	0.121
Configuración 2	0.000	0.001	-0.886	0.376

Cuadro 1: Resultados del modelo de regresión (continued)

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Log(scale)	-2.123	0.053	-39.808	0.000

Cuadro 2: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	6.435	27.282	0.236	0.814
Sensor 01	0.005	0.059	0.088	0.930
Sensor 03	-0.009	0.002	-4.276	0.000
Sensor 08	0.067	0.036	1.853	0.064
Sensor 13	-0.005	0.023	-0.215	0.830
Sensor 18	-0.057	0.023	-2.452	0.014
Log(scale)	-2.123	0.054	-39.378	0.000

Cuadro 3: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	5.297	0.043	122.392	0.000
Configuración 1	-0.003	0.003	-0.935	0.350
Configuración 2	0.301	0.179	1.685	0.092
Configuración 2	0.000	0.001	-0.530	0.596
Log(scale)	-1.573	0.046	-33.836	0.000

Cuadro 4: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	7.552	25.476	0.296	0.767
Sensor 01	0.003	0.055	0.057	0.954
Sensor 03	-0.009	0.002	-4.471	0.000
Sensor 08	0.081	0.035	2.297	0.022
Sensor 13	-0.006	0.022	-0.280	0.779
Sensor 18	-0.070	0.023	-3.027	0.002
Log(scale)	-1.582	0.047	-33.582	0.000

4. Apéndice

4.1. Análisis de Datos

Contamos con 75,738 registros de ciclos de motores

```
## [1] 75738
```

No tenemos registros con NA's

```
## # A tibble: 0 x 27
## # ... with 27 variables: id <chr>, ciclo <int>, conf_1 <dbl>,
## # conf_2 <dbl>, conf_3 <dbl>, sensor_01 <dbl>, sensor_02 <dbl>,
## # sensor_03 <dbl>, sensor_04 <dbl>, sensor_05 <dbl>, sensor_06 <dbl>,
## # sensor_07 <dbl>, sensor_08 <dbl>, sensor_09 <dbl>, sensor_10 <dbl>,
## # sensor_11 <dbl>, sensor_12 <dbl>, sensor_13 <dbl>, sensor_14 <dbl>,
## # sensor_15 <dbl>, sensor_16 <dbl>, sensor_17 <int>, sensor_18 <int>,
## # sensor_19 <dbl>, sensor_20 <dbl>, sensor_21 <dbl>, delta <int>
```

Tampoco tenemos registros duplicados

```
## # A tibble: 0 x 27
## # ... with 27 variables: id <chr>, ciclo <int>, conf_1 <dbl>,
## # conf_2 <dbl>, conf_3 <dbl>, sensor_01 <dbl>, sensor_02 <dbl>,
## # sensor_03 <dbl>, sensor_04 <dbl>, sensor_05 <dbl>, sensor_06 <dbl>,
## # sensor_07 <dbl>, sensor_08 <dbl>, sensor_09 <dbl>, sensor_10 <dbl>,
## # sensor_11 <dbl>, sensor_12 <dbl>, sensor_13 <dbl>, sensor_14 <dbl>,
## # sensor_15 <dbl>, sensor_16 <dbl>, sensor_17 <int>, sensor_18 <int>,
## # sensor_19 <dbl>, sensor_20 <dbl>, sensor_21 <dbl>, delta <int>
```

Nuestro archivo cuenta con 29 columnas:

- ID: El identificador único por motor
- Ciclo: Indica de qué ciclo son las leturas pertenecientes a la motor indicada en el campo "ID"
- Conf_[n]: Con n = 1,2,3. Configuración hecha por el operador al inicio del ciclo de la motor
- Sensor_[m]: Con m = 1, 2, ..., 21. Lectura de sensores
- Delta: Indica si los registros contienen censura (0) o no (1)

```
## $ sensor 03 <dbl> 1499.45, 1584.55, 1368.17, 1488.44, 1354.48, 1480.46...
## $ sensor 04 <dbl> 1309.95, 1403.96, 1122.49, 1249.18, 1124.32, 1258.90...
## $ sensor_05 <dbl> 10.52, 14.62, 5.48, 9.35, 3.91, 9.35, 3.91, 14.62, 1...
## $ sensor 06 <dbl> 15.49, 21.61, 8.00, 13.65, 5.71, 13.65, 5.71, 21.61,...
## $ sensor 07 <dbl> 394.88, 553.67, 194.93, 334.82, 138.24, 334.51, 139....
## $ sensor 08 <dbl> 2318.87, 2388.01, 2222.86, 2323.85, 2211.80, 2323.94...
## $ sensor 09 <dbl> 8770.20, 9045.76, 8343.91, 8721.53, 8314.56, 8711.44...
## $ sensor 10 <dbl> 1.26, 1.30, 1.02, 1.08, 1.02, 1.08, 1.02, 1.30, 1.30...
## $ sensor 11 <dbl> 45.40, 47.29, 41.92, 44.26, 41.79, 44.40, 42.09, 47....
## $ sensor 12 <dbl> 372.15, 521.81, 183.26, 314.84, 130.44, 315.36, 130....
## $ sensor_13 <dbl> 2388.13, 2388.15, 2387.95, 2388.07, 2387.89, 2388.05...
## $ sensor 14 <dbl> 8120.83, 8132.87, 8063.84, 8052.30, 8083.67, 8053.17...
## $ sensor 15 <dbl> 8.6216, 8.3907, 9.3557, 9.2231, 9.2986, 9.2276, 9.37...
## $ sensor 16 <dbl> 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.03, 0.03...
## $ sensor_17 <int> 368, 391, 334, 364, 330, 364, 331, 391, 392, 330, 30...
## $ sensor 18 <int> 2319, 2388, 2223, 2324, 2212, 2324, 2212, 2388, 2388...
## $ sensor 19 <dbl> 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100....
## $ sensor 20 <dbl> 28.58, 38.99, 14.83, 24.42, 10.99, 24.44, 10.53, 38....
## $ sensor_21 <dbl> 17.1735, 23.3619, 8.8555, 14.7832, 6.4025, 14.7019, ...
## $ delta
```

Analizando cada variable.

ID: Nuestra base cuenta con registros de 436 motores

[1] 436

Delta: De las 436 motores, el 50% (218) cuenta con censura a la derecha y el otro 50% de motores tiene datos exactos

```
## maquinas
## 1 218
```

Ciclo: Analizando solo los datos exactos vemos que la cantidad minima de ciclos es 128 y la máxima es 357, además su distribución está sesgada a la derecha alrededor de 209 ciclos

```
##
                        ciclos
       maquina
##
                    Min.
                            :128.000000
    е1
               1
##
    e10
               1
                    1st Qu.:177.000000
##
    e100
               1
                    Median: 209.500000
               1
##
    e101
                    Mean
                            :210.633028
##
    e102
               1
                    3rd Qu.:236.000000
##
    e103
               1
                    Max.
                            :357.000000
##
    (Other):212
```


Veamos que como es esperado las maquinas con censura tienen una cantidad de ciclos menor a la de los registros sin censura

```
##
     [>] 2 distinct states appear in the data:
##
         1 = 0
         2 = 1
##
     [>] state coding:
##
            [alphabet]
                          [label]
                                     [long label]
##
##
         1
             0
                           0
                                      censura
##
         2
             1
                           1
                                      funcionando
##
     [>] 436 sequences in the data set
##
     [>] min/max sequence length: 364/364
218 seq. (n=218), sorted
                                              218 seq. (n=218), sorted
       134
                                                     134
       58
                                                     58
       ciclo_1 ciclo_137 ciclo_290
                                                      ciclo_1 ciclo_137 ciclo_290
 censura
  funcionando
```

Conf_[n]: Los operadores realizan tres configuraciones antes de cada ciclo.

##	conf_1	conf_2	conf_3
##	Min. : 0.00000	Min. :0.00000000	Min. : 0.0000000
##	1st Qu.:10.00460	1st Qu.:0.250700000	1st Qu.: 20.0000000
##	Median :25.00150	Median :0.70000000	Median : 40.0000000
##	Mean :24.03539	Mean :0.572033291	Mean : 49.0760252
##	3rd Qu.:41.99810	3rd Qu.:0.84000000	3rd Qu.: 80.0000000
##	Max. :42.00800	Max. :0.842000000	Max. :100.0000000

4.1.1. Sensores

##	sensor_01	sensor_02	sensor_03
##	Min. :445.000000	Min. :535.65000	Min. :1243.7800
##	1st Qu.:445.000000	1st Qu.:549.53000	1st Qu.:1352.2600
##	Median :462.540000	Median :555.90000	Median :1368.2600
##	Mean :472.829056	Mean :579.50579	Mean :1419.0798
##	3rd Qu.:491.190000	3rd Qu.:607.31000	3rd Qu.:1498.8900
##	Max. :518.670000	Max. :644.43000	Max. :1614.6600
##	sensor_04	sensor_05	sensor_06
##	Min. :1029.03000	Min. : 3.91000000	Min. : 5.7100000
##	1st Qu.:1123.15000	1st Qu.: 3.91000000	1st Qu.: 5.7200000
##	Median :1136.79000	Median : 7.05000000	Median : 9.0300000
##	Mean :1204.22289	Mean : 8.02377116	Mean :11.5878188
##	3rd Qu.:1306.23000	3rd Qu.:10.52000000	3rd Qu.:15.4900000
##	Max. :1442.36000	Max. :14.62000000	Max. :21.6100000
##	sensor_07	sensor_08	sensor_09
##	Min. :136.750000	Min. :1914.85000	Min. :7983.34000
##	1st Qu.:139.670000	1st Qu.:2211.86000	1st Qu.:8320.53000
##	Median :194.680000	Median :2223.04000	Median :8357.58500
##	Mean :282.326083	Mean :2228.45853	Mean :8522.12146
##	3rd Qu.:394.190000	3rd Qu.:2323.95000	3rd Qu.:8776.67000
##	Max. :555.720000	Max. :2388.36000	Max. :9216.83000
##	sensor_10	sensor_11	sensor_12
##	Min. :0.93000000	Min. :36.2100000	Min. :129.240000
##	1st Qu.:1.02000000	1st Qu.:41.9000000	1st Qu.:131.342500
##	Median :1.02000000	Median :42.3200000	Median :183.210000
##	Mean :1.09483733	Mean :42.9489359	Mean :265.801927
##	3rd Qu.:1.26000000	3rd Qu.:45.3400000	3rd Qu.:371.340000

```
Max.
##
           :1.30000000
                          Max.
                                  :48.3900000
                                                 Max.
                                                         :523.460000
##
      sensor 13
                             sensor 14
                                                   sensor 15
##
    Min.
            :2027.72000
                          Min.
                                  :7851.59000
                                                 Min.
                                                         : 8.3253000
##
    1st Qu.:2387.89000
                           1st Qu.:8061.43000
                                                 1st Qu.: 8.6711000
    Median: 2388.07000
                          Median:8081.05000
                                                 Median: 9.3098000
##
##
           :2334.32262
                          Mean
                                  :8064.84247
                                                 Mean
                                                         : 9.3260733
    Mean
    3rd Qu.:2388.15000
                           3rd Qu.:8126.18000
                                                 3rd Qu.: 9.3827000
##
    Max.
           :2390.74000
                                  :8274.88000
                                                         :11.0826000
##
                          Max.
                                                 Max.
##
      sensor 16
                               sensor 17
                                                      sensor 18
            :0.0200000000
                            Min.
                                    :303.000000
                                                   Min.
                                                           :1915.00000
##
    Min.
##
    1st Qu.:0.0200000000
                             1st Qu.:331.000000
                                                   1st Qu.:2212.00000
    Median :0.0200000000
                             Median :335.000000
                                                   Median :2223.00000
##
                                                           :2228.40759
                                    :348.066413
##
    Mean
            :0.0232538488
                             Mean
                                                   Mean
    3rd Qu.:0.0300000000
                             3rd Qu.:369.000000
                                                   3rd Qu.:2324.00000
##
            :0.0300000000
                                    :398.000000
                                                           :2388.00000
##
                                                   Max.
##
                                                    sensor 21
      sensor 19
                              sensor 20
    Min.
            : 84.9300000
                                   :10.1200000
                                                  Min.
                                                          : 6.124400
##
                            Min.
    1st Qu.:100.0000000
##
                            1st Qu.:10.8400000
                                                  1st Qu.: 6.504600
    Median :100.0000000
                           Median :14.8900000
                                                  Median: 8.928600
##
           : 97.7479963
                                   :20.7768272
##
    Mean
                           Mean
                                                  Mean
                                                          :12.466067
    3rd Qu.:100.0000000
                            3rd Qu.:28.4900000
##
                                                  3rd Qu.:17.095500
           :100.0000000
                                   :39.3300000
                                                          :23.591600
##
    Max.
                            Max.
                                                  Max.
```


4.2. Tabla de Kaplan Meier

Cuadro 5: Tabla del estimador Kaplan Meier

					Intervalo de confianza	
Tiempo	Riesgo	Eventos	Censurado	Supervivencia	Inferior	Superior
15	436	0	1	1.000	NA	NA
16	435	0	1	1.000	NA	NA
23	434	0	1	1.000	NA	NA
25	433	0	1	1.000	NA	NA
26	432	0	1	1.000	NA	NA

Cuadro 5: Tabla del estimador Kaplan Meier (continued)

					Intervalo	de confianza
Tiempo	Riesgo	Eventos	Censurado	Supervivencia	Inferior	Superior
28	431	0	1	1.000	NA	NA
33	430	0	1	1.000	NA	NA
35	429	0	1	1.000	NA	NA
38	428	0	2	1.000	NA	NA
39	426	0	1	1.000	NA	NA
44	425	0	1	1.000	NA	NA
45	424	0	1	1.000	NA	NA
47	423	0	1	1.000	NA	NA
48	422	0	1	1.000	NA	NA
49	421	0	2	1.000	NA	NA
51	419	0	1	1.000	NA	NA
52	418	0	1	1.000	NA	NA
54	417	0	1	1.000	NA	NA
55	416	0	1	1.000	NA	NA
56	415	0	1	1.000	NA	NA
58	414	0	1	1.000	NA	NA
59	413	0	1	1.000	NA	NA
60	412	0	1	1.000	NA	NA
61	411	0	1	1.000	NA	NA
68	410	0	1	1.000	NA	NA
69	409	0	2	1.000	NA	NA
70	407	0	1	1.000	NA	NA
72	406	0	1	1.000	NA	NA
73	405	0	2	1.000	NA	NA
74	403	0	1	1.000	NA	NA
75	402	0	1	1.000	NA	NA
76	401	0	1	1.000	NA	NA
77	400	0	1	1.000	NA	NA
78	399	0	1	1.000	NA	NA
79	398	0	2	1.000	NA	NA
80	396	0	3	1.000	NA	NA
81	393	0	1	1.000	NA	NA
82	392	0	1	1.000	NA	NA
85	391	0	1	1.000	NA	NA
86	390	0	1	1.000	NA	NA
87	389	0	1	1.000	NA	NA
88	388	0	1	1.000	NA	NA
89	387	0	2	1.000	NA	NA
90	385	0	1	1.000	NA	NA

Cuadro 5: Tabla del estimador Kaplan Meier (continued)

					Intervalo	de confianza
Tiempo	Riesgo	Eventos	Censurado	Supervivencia	Inferior	Superior
91	384	0	2	1.000	NA	NA
92	382	0	1	1.000	NA	NA
93	381	0	3	1.000	NA	NA
95	378	0	1	1.000	NA	NA
96	377	0	1	1.000	NA	NA
100	376	0	1	1.000	NA	NA
102	375	0	2	1.000	NA	NA
103	373	0	2	1.000	NA	NA
104	371	0	1	1.000	NA	NA
107	370	0	1	1.000	NA	NA
108	369	0	2	1.000	NA	NA
109	367	0	2	1.000	NA	NA
110	365	0	1	1.000	NA	NA
112	364	0	1	1.000	NA	NA
115	363	0	2	1.000	NA	NA
116	361	0	3	1.000	NA	NA
117	358	0	4	1.000	NA	NA
119	354	0	1	1.000	NA	NA
120	353	0	2	1.000	NA	NA
121	351	0	1	1.000	NA	NA
122	350	0	2	1.000	NA	NA
123	348	0	2	1.000	NA	NA
124	346	0	1	1.000	NA	NA
125	345	0	2	1.000	NA	NA
126	343	0	1	1.000	NA	NA
127	342	0	1	1.000	NA	NA
128	341	1	1	0.997	0.979	1.000
129	339	0	3	0.997	0.979	1.000
130	336	0	2	0.997	0.979	1.000
132	334	0	2	0.997	0.979	1.000
133	332	1	3	0.994	0.976	0.999
134	328	1	3	0.991	0.972	0.997
135	324	1	1	0.988	0.968	0.995
136	322	0	2	0.988	0.968	0.995
137	320	1	0	0.985	0.964	0.994
138	319	0	3	0.985	0.964	0.994
139	316	0	2	0.985	0.964	0.994
140	314	0	1	0.985	0.964	0.994
141	313	0	1	0.985	0.964	0.994

Cuadro 5: Tabla del estimador Kaplan Meier (continued)

					Intervalo	de confianza
Tiempo	Riesgo	Eventos	Censurado	Supervivencia	Inferior	Superior
142	312	0	1	0.985	0.964	0.994
143	311	1	1	0.982	0.960	0.992
144	309	0	1	0.982	0.960	0.992
145	308	1	2	0.979	0.955	0.990
147	305	6	1	0.959	0.931	0.976
148	298	0	2	0.959	0.931	0.976
149	296	2	2	0.953	0.923	0.971
150	292	3	4	0.943	0.911	0.964
151	285	1	1	0.940	0.907	0.961
152	283	1	2	0.936	0.903	0.959
153	280	1	1	0.933	0.899	0.956
154	278	2	3	0.926	0.891	0.950
155	273	1	1	0.923	0.887	0.948
156	271	1	1	0.920	0.883	0.945
157	269	2	2	0.913	0.875	0.939
159	265	2	2	0.906	0.867	0.934
160	261	4	0	0.892	0.851	0.922
161	257	2	0	0.885	0.843	0.916
162	255	1	0	0.882	0.839	0.913
163	254	1	2	0.878	0.836	0.910
164	251	1	1	0.875	0.832	0.907
165	249	0	1	0.875	0.832	0.907
166	248	0	1	0.875	0.832	0.907
167	247	2	3	0.867	0.824	0.901
168	242	1	2	0.864	0.820	0.898
169	239	1	2	0.860	0.816	0.895
170	236	2	0	0.853	0.807	0.889
171	234	1	0	0.849	0.803	0.885
172	233	1	0	0.846	0.799	0.882
173	232	1	0	0.842	0.795	0.879
174	231	3	1	0.831	0.783	0.869
175	227	2	1	0.824	0.775	0.863
176	224	1	1	0.820	0.771	0.860
177	222	4	2	0.805	0.755	0.846
178	216	4	1	0.790	0.739	0.833
179	211	0	1	0.790	0.739	0.833
181	210	2	4	0.783	0.731	0.826
182	204	2	1	0.775	0.722	0.819
183	201	0	1	0.775	0.722	0.819

Cuadro 5: Tabla del estimador Kaplan Meier (continued)

					Intervalo	de confianza
Tiempo	Riesgo	Eventos	Censurado	Supervivencia	Inferior	Superior
184	200	1	0	0.771	0.718	0.816
185	199	0	2	0.771	0.718	0.816
186	197	1	1	0.767	0.714	0.812
187	195	1	2	0.763	0.710	0.809
188	192	3	2	0.752	0.697	0.798
189	187	2	2	0.744	0.688	0.791
190	183	4	1	0.727	0.671	0.776
191	178	1	2	0.723	0.666	0.772
192	175	3	0	0.711	0.653	0.761
193	172	1	0	0.707	0.649	0.757
194	171	0	2	0.707	0.649	0.757
195	169	0	1	0.707	0.649	0.757
196	168	1	0	0.702	0.644	0.753
197	167	3	1	0.690	0.631	0.741
198	163	1	1	0.686	0.626	0.737
199	161	5	0	0.664	0.604	0.718
200	156	3	2	0.652	0.591	0.706
201	151	2	0	0.643	0.582	0.698
202	149	2	2	0.634	0.573	0.689
203	145	1	1	0.630	0.568	0.685
204	143	1	1	0.625	0.564	0.681
205	141	2	1	0.617	0.554	0.673
206	138	2	0	0.608	0.545	0.664
207	136	1	0	0.603	0.540	0.660
209	135	3	1	0.590	0.527	0.647
210	131	4	0	0.572	0.508	0.630
211	127	3	0	0.558	0.494	0.617
212	124	2	0	0.549	0.485	0.609
213	122	3	0	0.536	0.472	0.596
215	119	1	1	0.531	0.467	0.591
216	117	0	1	0.531	0.467	0.591
217	116	0	1	0.531	0.467	0.591
218	115	2	1	0.522	0.458	0.582
220	112	1	1	0.517	0.453	0.578
221	110	1	1	0.513	0.448	0.573
222	108	3	0	0.498	0.434	0.560
223	105	5	0	0.475	0.410	0.536
224	100	0	2	0.475	0.410	0.536
225	98	6	0	0.446	0.381	0.508

Cuadro 5: Tabla del estimador Kaplan Meier (continued)

					Intervalo de confianza	
Tiempo	Riesgo	Eventos	Censurado	Supervivencia	Inferior	Superior
226	92	3	0	0.431	0.367	0.494
227	89	3	0	0.417	0.353	0.479
228	86	5	0	0.392	0.329	0.455
229	81	2	0	0.383	0.320	0.445
230	79	1	0	0.378	0.315	0.440
231	78	2	0	0.368	0.306	0.431
232	76	2	0	0.358	0.296	0.421
233	74	2	0	0.349	0.287	0.411
234	72	1	1	0.344	0.282	0.406
235	70	1	0	0.339	0.278	0.401
236	69	2	1	0.329	0.268	0.391
237	66	2	0	0.319	0.259	0.381
238	64	1	1	0.314	0.254	0.376
241	62	2	0	0.304	0.245	0.366
242	60	4	1	0.284	0.226	0.345
243	55	1	0	0.279	0.221	0.339
245	54	1	0	0.273	0.216	0.334
246	53	3	0	0.258	0.201	0.318
248	50	0	2	0.258	0.201	0.318
249	48	2	1	0.247	0.192	0.307
252	45	1	0	0.242	0.186	0.301
253	44	1	0	0.236	0.181	0.295
254	43	2	0	0.225	0.171	0.284
255	41	2	0	0.214	0.161	0.272
256	39	0	1	0.214	0.161	0.272
258	38	1	1	0.209	0.156	0.267
259	36	1	0	0.203	0.151	0.260
260	35	1	1	0.197	0.146	0.254
263	33	3	0	0.179	0.129	0.236
264	30	1	0	0.173	0.124	0.229
272	29	1	0	0.167	0.119	0.223
275	28	0	1	0.167	0.119	0.223
276	27	1	0	0.161	0.113	0.216
277	26	5	0	0.130	0.086	0.183
278	21	3	0	0.111	0.071	0.162
280	18	0	1	0.111	0.071	0.162
281	17	1	0	0.105	0.065	0.155
283	16	1	0	0.098	0.060	0.148
284	15	2	0	0.085	0.050	0.133

Cuadro 5: Tabla del estimador Kaplan Meier (continued)

					Intervalo de confianza	
Tiempo	Riesgo	Eventos	Censurado	Supervivencia	Inferior	Superior
285	13	1	0	0.079	0.045	0.125
286	12	2	0	0.066	0.035	0.110
287	10	2	1	0.052	0.025	0.094
300	7	1	0	0.045	0.020	0.085
302	6	1	0	0.037	0.015	0.076
317	5	1	0	0.030	0.011	0.067
323	4	1	0	0.022	0.006	0.057
339	3	1	0	0.015	0.003	0.047
357	2	1	0	0.007	0.001	0.037
364	1	0	1	0.007	0.001	0.037