

Introduction

Ce projet a été réalisé :

- o Dans le cadre de la formation DATA ANALYST d'OpenClassRooms
- Avec l'aide/support de M. César Clavé (Mentor Openclassrooms)
- o Contexte → Société spécialisée dans les énergies renouvelables (*Enercoop*)
- o Mission → Mettre en adéquation l'offre et la demande en électricité des utilisateurs.
- o **Proposition** → Conception de Modèles Holt-Winters & SARIMA

Sources Données

- Consommation Electrique → RTE France (réseau de Transport de l'électricité)
- DJU (correct effet meteo) → Cegibat

Sommaire

- □ Introduction (remerciements)
- Data Import Analyse descriptive
 - Consommation Electrique ARA (2014-2019)
 - Données DJU (Cegibat)
 - Synthèse chiffrée, choix périmètre
- ☐ Correction de l'effet de T°
 - Régression Linéaire avec data DJU sur data conso
 - Visualisation superposée Avant/Après
- Désaisonnalisation Consommation MA
 - Décomposition Data en : Tendance, Saisonnalité, Résidus
 - Correction avec Moyennes Mobiles
 - Visualisation superposée Avant/Après
- ☐ Prévision Consommation Méthode Holt Winters
 - Présentation Méthode
 - Application Analyse à posteriori
 - Evaluation/Performance du Modèle de Prédiction (HT)
- ☐ Prévision Consommation Méthode SARIMA
 - Présentation Méthode
 - Application Analyse à posteriori
 - Evaluation/Performance du Modèle de Prédiction (SARIMA)
- □ Conclusion / Questions
- □ Annexes

Data Import - Analyse descriptive

1^{er} **Contrôle visuel** (rapide) **(re)Mise en forme** de données

Nettoyage données (en Python) «Cleaning» détaillé dans un notebook jupyter

DataSet Principal → ara(0) (consommation électrique)

Filtre Région Auvergne Rhône-Alpes 5 années ½ 2014-01 → 2019-05 (65 Mois)

C53	- 100 m / C	fi Auvergne-Rhône-Alpe		
all A	- 8	C.	D	N
1 Mois	Qualité	10000000	Production totale	Carried State Carrier
79 2013-03	Données définitives	Auvergne-Hhöne-Alpes	1112	
92 2013-04	Données définitives	Auvergne Rhône Alpes	1053	
105 2013-05	Données définitives	Auvergne-Rhöne-Alpes	1145	
118 2013-06	Données définitives	Auvergne Rhöne-Alpes	975	
131 2013-07 144 2013-08	Données définitives Données définitives	Auvergne Rhöne-Alpes	915	
157 2013-08	Données définitives	Auvergne-Rhône-Alpes Auvergne-Rhône-Alpes	823	
170 2013-09	Données définitives	Auvergne-Rhöne-Alpes	887	
183 2013-10	Données définitives	Auvergne-Rhône-Alpes	1031	
196 2013-11	Données définitives	Auvergne-Rhône-Alpes	1226	
209 2014-01	Données définitives	Auvergne-Rhône-Alpes	1300	
222 2014-02	Données définitives	Auvergne-Rhône-Alpes	1137	
235 2014-03	Données définitives	Auvergrie-Rhône-Alpes	1082	
249 2014-04	Données définitives	Auvergne-Rhône-Alpes	914	
261 2014-05	Données définitives	Auvergne-Rhône-Alpes	944	
274 2014 06	Données définitives	Auvergne-Rhöne-Alpes	870	
287 2014-07	Opposées définithous	Austrona Phôna Almas	947	

65 non-null object

65 non-null object

dtypes: datetime64[ns](1), int64(1), object(2)

65 rows × 4 columns

annee

Data Import - Analyse descriptive

Calcul des DJU

Le degré jour est une valeur représentative de l'écart entre la T° moyenne d'une journée et un seuil de température préétabli (18 °C dans le cas des DJU ou Degré Jour Unifié).

Sommés sur une période, ils permettent de calculer les besoins de chauffage et de climatisation d'un bâtiment.

DJU base 18°d'un Jour J

 $= 18 - [(T^{\circ}max - T^{\circ}min) / 2]$

CONSTATATION:

DJU plus importants en hiver qu'en été

Données d'entrée

Station météo	LYON-BRON (69)		
Usage	Chauffage		
Méthode de calcul	Météo		
Température de référence	18°C		
Date de début	31/12/2011		
Date de fin	30/05/2019		

Résultats

	Jan	Fév	Mar	Avr	Mai	Jun	Jui	Aoû	Sep	Oct	Nov	Déc	Total
2019	445,9	308,7	237,6	170,4	106,6	-0	0	0	0	0	0	0	1.269,2
2018	301,4	430,4	291,8	97,8	47,2	0,3	0	1,5	13,3	122,8	264,9	355,7	1 926,9
2017	532,2	271,1	205,4	180,8	80,7	3,7	1,3	2	49,1	110	328,5	409,8	2 174,3
2016	344	319,4	318,4	176,8	93,7	8,3	4,4	0,3	14,5	191,2	283,1	466,4	2 220,3
2015	419,5	393,2	276,1	143,4	49,1	0	0	0	50,2	188,6	249,5	289,7	2 059,1
2014	334,1	290,1	244,4	134,1	82,9	-3	8,8	3,7	20,2	73,7	222,8	393,9	1 811,5
2013	453,1	452,7	327,6	190,4	150,9	30,8	0	1,2	27,1	88,1	337,5	412,8	2 472
2012	409	517,9	215,6	191,2	68,4	9.6	5,6	2,6	40,5	122	266,8	380,7	2 229,7

Data Import - Analyse descriptive

Calcul des DJU

DataSet complémentaire -> dju

Filtre Station LYON
5 années ½ 2014-01 → 2019-05 (65 Mois)

Station de relevé Dju choisie

→ Ville de LYON

(Essais avec Evian, Clermont, Chambéry)

	index	annee	mois	dju_mois	dju_value
0	24	2014	Janv	2014-01	474.700
1	25	2014	Fevr	2014-02	410.700
***	66.			314	***
63	87	2019	Avr	2019-04	293.700
64	88	2019	Mai	2019-05	260.700

Correction de l'effet de la température (T°)

... sur la consommation (du au chauffage électrique par exemple) Correction des données de consommation à l'aide

→ d'une régression linéaire

$$CONSO = \alpha + \beta.\,DJU_{(Value)} + \epsilon_{(Residus)}$$

Outils (librairies) → statsmodels

		OLS Re	gressi	Lon Re				
Dep. Varial			nso	R-sqi	Jared:		0.947	
Model:			OLS	Adj.	R-squared:		0.946	
Method:		Least Squa	ares	F-st	atistic:		1123.	
Date:		Wed, 11 Sep 2019		Prob	(F-statisti	c):	7.12e-4	
Time:		15:15	:35	Log-I	ikelihood:		-439.62	
No. Observa	ations:		65	AIC:			883.2	
Df Residuals:		63		BIC:			887.6	
Df Model:			1					
Covariance	Type:	nonrot	oust					
	coe	f std err		t	P> t	[0.025	0.975]	
dju value	5.860	3 0,175	33.	518	0.000	5.511	6.210	
intercept	4582.720	0 40.557	112.	994	0.000	4501.673	4663.767	

Vérification → scikit-learn

Var.Expliquée : $R^2 = 94.69$ (%) Coefficients : $\alpha = [5.86033664]$ $\beta = 4582.7200207488595$

Le **coefficient R²** explique la corrélation entre les deux séries :

→ Corrélation démontrée R² = 0,946

Correction de l'effet de la température (T°)

ARA2 - Nouvelle Série Corrigée de l'effet de Température (T°)

En retirant la composante β . DJU(Value) pour ne conserver que le modèle de régression linéaire, on obtient la courbe rouge ci-dessous:

Ara2 Conso_ctp Consommation électrique corrigée de l'effet de Température T°

Désaisonnalisation Consommation - MA

Après correction de l'effet de T°, on utilisera la méthode :

→ Moyennes Mobiles (moving average)

Avant de passer à cette opération, il est intéressant d'observer les différentes composantes de la Série ARA2 Utilisation de la fonction → seasonal_decompose de la librairie « statsmodel »

from statsmodels.tsa.seasonal import seasonal_decompose
decomp_ara2_add = seasonal_decompose(ara2, model='additive', freq=12)

Annexes → Modèle Additif / Multiplicatif

Données brutes

Tendance (estimation croissante)

Saisonnalité (mesures espacées De 12mois)

Résidus

Bruit blanc, après retrait de la saisonnalité et de la Tendance. Partie des variables qui ne sont pas expliquées par les 2 premières.

Désaisonnalisation Consommation - MA

Graphe **Autocorrélation** pour retrouver la saisonnalité. La corrélation maximale positive obtenue est sur 12 mois. Avec le Lag exprimé en unité « mensuelle ».

Utilisation de cette corrélation maxi de 12 mois avec *Pandas.Rolling*→ Moyenne glissante sur cette période (12mois)

```
# Tail-rolling average transform
rolling = ara2.rolling(window=12, center=True)
ma12 = rolling.mean()
```


Désaisonnalisation Consommation - MA

Donc on estime ici que la désaisonnalisation a été efficace car on retrouve la décomposition de la tendance vue avec la fonction précédente (seasonal_decompose).

seasonal_decompose

Prévision Consommation - Holt Winters / SARIMA

Préambule

→ Notion de *Stationnarité*

Un processus Xt sera considéré (faiblement) Stationnaire si

- son Espérance(moyenne arith.) $\mu\mu$ est constante dans le temps : $\mathbb{E}(Xt)=\mu$, $\forall t\in\mathbb{Z}$
- ses Autocovariances sont constantes dans le temps : $\forall (t,h) \in \mathbb{Z}$, Cov(Xt,Xt-h) ne dépend que de l'intervalle séparant les 2 instants h , pas de l'instant t

Pour vérifier qu'une Série est Stationnaire :

→ Test de *Dickey-Fuller*

Hypothèse Nulle H0 : la série n'est pas stationnaire au seuil de Risque de 1ère espèce α =5%

→ Etude des *autocorrélations* (simples et partielles)

Exemple de Séries non-stationnaire **Topologies** **Topologi

Test adfuller (statsmodel)

Contrôle stationnarité ARAO - série origine

La série **est stationnaire** au seuil de risque **α=5%**

```
) Is the ARA0 data stationary ? P_{value} = 0.0 Test statistic = -7.725 P_{value} = 0.000 Critical values : 1\%: -3.560242358792829 - \text{The Times Series ARA0 data is stationary with 99% confidence} \\ 5\%: -2.9178502070837 - \text{The Times Series ARA0 data is stationary with 95% confidence} \\ 10\%: -2.5967964150943397 - \text{The Times Series ARA0 data is stationary with 96% confidence}
```

Contrôle stationnarité ARA2 - série corrigée (T°)

La série **n'est pas** stationnaire au seuil de risque **α=5%**

Prévision Consommation - Méthode Holt Winters

→ La Méthode *Holt-Winters*

Effectue des « lissages » exponentiels sur séries TP. Elle utilise 3 paramètres :

- o α: avec lequel on va pondérer les valeurs de la série (lissage de la moyenne)
- o β: avec lequel on va pondérer les valeurs de tendance de la série
- ο γ: avec lequel on va pondérer les valeurs de la saisonnalité

Détermination optimale de α , β et γ avec le package « *exponentials smoothing* » (lib. statsmodels)

```
from statsmodels.tsa.api import ExponentialSmoothing
les = ExponentialSmoothing(np.asarray(ara2['conso_ctp']), trend=None, seasonal=None).fit()
les_pred = les.forecast(12)
les = ExponentialSmoothing(np.asarray(ara2['conso_ctp']), trend='add', seasonal=None).fit()
les_pred = les.forecast(12)
```

Lissage Exponentiel Simple

Lissage Exponentiel Double

Prévision Consommation - Méthode Holt Winters

Méthode Holt-Winters Triple Lissage Exponentiel

Analyse a Posteriori Contrôle Prédiction VS 12 derniers Mois Observés (Réels)

w/o Damping

RMSE₁= 1230,18 MAPE₁ = 17,65% AIC₁ = 627,58 BIC₁ = 659,10

Damped

 $RMSE_2 = 1230,18$ $MAPE_2 = 17,65\%$ $AIC_2 = 627,58$ $BIC_2 = 659,10$

Estimateurs

AIC (critère d'Akaïke)
BIC (critère de Schwartz)

$$egin{aligned} ext{AIC}(p,q) &= \ln\!\left(\widehat{\sigma}^2
ight) + 2\,rac{p+q}{T}\;, \ ext{BIC}(p,q) &= \ln\!\left(\widehat{\sigma}^2
ight) + (p+q)\,rac{\ln\!\left(T
ight)}{T} \end{aligned}$$

$$\begin{aligned} \text{RMSE} &= \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(x_{t} - \widehat{x}_{t} \right)^{2}} \\ \text{MAPE} &= \frac{1}{T} \sum_{t=1}^{T} \left| \frac{x_{t} - \widehat{x}_{t}}{x_{t}} \right|. \end{aligned}$$

Prévision Consommation - Méthode Holt Winters

Evaluation de notre modèle de Prédiction :

En retirant de la Série Originelle ARAO la série générée par Holt-Winters, on obtient les *résidus*, qui eux, « normalement » devront être décorrélés des notions de saisonnalité et de tendance. Ce sont des stochastiques.

Test Shapiro-Wilk (normalité des résidus) Problème

Ici, l'hypothèse de normalité est remise en cause **→** *p-value faible (0,01) < 5%*

```
from scipy.stats import shapiro
 hw resid = test['conso'] - pred
 print("TEST Shapiro P-value = ", shapiro(hw_resid)[1])
TEST Shapiro P-value = 0.010640964843332767
```


Test Box-Ljung (Blancheur des Résidus - Reste saisonnier ?) Problème

Rejet de l'hypothèse nulle H0 d'indépendance des résidus.

 \rightarrow Les p value < 5%

```
from ljungbox import *
h, pV, Q, cV = lbqtest(hw_resid, range(1, 10), alpha=0.1)
print ('lag p-value
                              Q c-value rejectH0')
for i in range(len(h)):
                                          %s" % (i+1, pV[i], Q[i], cV[i], str(h[i])))
   print ("%-2d %10.3f %10.3f %10.3f
     p-value
                           c-value
                                     rejectH0
                             2.786
                 14.848
                 31.084
                             4.685
                 45.005
                             6.251
                             7.779
                 56.988
                                        True
                 57.125
                             9.236
                 57.125
                            10.645
                 57.125
                            12.017
                                        True
                 57.125
                            13.362
                                        True
                 57.125
                            14.684
```


→ Méthode **SARIMA** (**S**easonal **A**uto **R**egressive **I**ntegrated **M**oving **A**verage)

GENERALITES

SARIMA est utilisé pour les séries non stationnaires

Ce modèle permet d'identifier les tendances et la saisonnalité.

Le SARIMA se compose d'autres modèles de prévision :

o **AR** Modèle Autorégressif

o **MA** Modèle des moyennes mobiles

o **ARIMA** Modèle pour séries non stationnaires

(i = integrated, d = différenciation)

o **SARIMA** Modèle pour séries non stationnaires

PROCEDURE

- Stationnarisation (éventuellement)
 → DickeyFuller, ACF, PACF
- 2) Identification de modèles potentiels
- 3) Estimation / Vérification des modèles
- 4) Choix définitif du modèle
- 5) Prévision / Analyse a posteriori
- 6) Etudes des Résidus

Modèle SARIMA → Configuration

Nécessite la sélection d'hyperparamètres pour la tendance et les éléments saisonniers de la série.

Composantes Tendancielles (non saisonnières) 3 éléments de tendance doivent être configurés. Les mêmes que pour le modèle ARIMA :

- (p) l'ordre AR (autorégressif)
- (*d*) le degré de différenciation
- (q) I'ordre MA (moving average moyenne mobile)

Composantes Saisonnières

4 éléments « saisonniers » qui ne font pas partie de l'ARIMA doivent être configurés :

- (P) I'ordre AR saisonnier
- (D) le degré de différenciation saisonnier
- (*Q*) I'ordre MA saisonnier
- (*m*) Le nombre de pas « timestep » pour 1 seule période saisonnière (12 ici)

SARIMA(p,d,q)(P,D,Q)m

Python Fonction SARIMAX (librairie Statsmodels)

statsmodels.tsa.statespace.sarimax.SARIMAX

o Contrôle Stationnarité

La sortie ACF de la série ARAO présente une décroissance lente vers 0, ce qui traduit un problème de non-stationnarité.

On effectue donc une 1ère Différenciation (*I-B*) en tendance.

On effectue donc une Différenciation en saisonnalité $(I-B^{12})$.

ara0_dif_1_12 = ara0_dif1 - ara0_dif1.shift(12)

- Détermination Termes manquants (p, q, P, D,Q)m
- o Création d'un algorithme de recherche des meilleures combinaisons possibles pour les termes AR & MA.
- o Limitation → Valeurs [0 ou 1]

```
# Creation d'un DataFrame vide pour recupérer les resultats
# des meilleurs estimations de paramètres de modèles SARIMA
# selon la valeur du critère d'Akaike : AIC value
# Plus la valeur est faible, meilleur le modèle est.
    for param_seasonal in seasonal_pdq:
                      = pd.Series(str(param))
           sarima_p2 = pd.Series(str(param_seasonal))
           mod = sm.tsa.statespace.SARIMAX(np.asarray(ara8['conso']),
                                           order=param, seasonal_order=param_seasonal,
                                           enforce_invertibility=False)
           results
                        mod.fit()
                        pd.Series(results.aic)
                        pd.Series(results.bic)
                        pd.concat([sarima_pl, sarima_p2, aic_value, bic_value], axis=1)
           ligne.columns = ['SARIMA_p1', 'SARIMA_p2', 'AIC_Value', 'BIC_Value']
                        - dfsarima.append(ligne, ignore_index - True)
           dfsarima
           continue
dfsarima = dfsarima.sort_values(by="AIC_Value").reset_index(drop=True)
pd.options.display.max_rows=18
dfsarima.head(10)
```

```
p=0, q=1
P=1, D=1, Q=1
m=12
```

	SARIMA_p1	SARIMA_p2	AIC_Value	BIC_Value		
0	(0, 1, 1)	(1, 1, 1, 12)	761.614	769.419		
1	(0, 1, 1)	(1, 1, 0, 12)	763.497	769.351		
2	(1, 1, 1)	(1, 1, 0, 12)	763.586	771.391		
3	(1, 1, 1)	(0, 1, 1, 12)	764.534	772,339		
4	(0, 1, 1)	(0, 1, 1, 12)	765.221	771.075		
5	(1, 1, 0)	(1, 1, 1, 12)	769.939	777.744		
6	(0, 1, 0)	(1, 1, 1, 12)	771.138	776.992		
7	(1, 1, 1)	(1, 1, 1, 12)	773.986	783,743		

Modèle *SARIMA* choisi → (0,1,1) (1,1,1)12

d = 1

	anno en recono en espera	a transport of the	Statespace	Model F	esult	5	no anno est una e	
********			*********	******	****	**********	********	
Dep. Varia	ble:			y	No.	Observations:		65
Model:	SAR	MAX(0, 1,	1)x(1, 1, 1	, 12)	Log	Likelihood		-376.887
Date:			Thu, 12 Sep	2019	AIC			761.614
Time:			19:	16:18	BIC			769.419
Sample:					HQIC			764.686
F-1000 700 F-1000				- 65	10000			
Covariance	Type:			opg				
********				******	*****			
	coef	std err	z	P		[8.825	0.975]	
me.L1	-1.2520	0.119	-10.545	0.	666	-1.485	-1.019	
						-8.928		
ma.5.L12	-8.4315	8.343	+1.257	θ.	209	-1.104	0.241	
signa2	5.121e+04	9567.134	5.352	θ.	999	3.25e+04	7e+04	
		*******		*****	****	*********		****
Ljung-Box	(Q):		31.24	Jarque	-Bere	(JB):		3.34
Prob(Q):			0.84	Prob()	B):			0.19
Heterosked	lasticity (H)		0.89	Skew:				0.34
Prob(H) (t	wo-sided):		0.81	Kurtos	is:			4.84
	**********		**********	******	****	****	******	****
Warnings:								
[1] Covari	ance matrix :	calculated	using the o	outer pr	oduct	of gradients	(complex-	step).
Retard : p	-value		Period Constant			ARTON PROPERTY.		
6 : 8.9548	86085573103							
12 : 0.940	211841290871							
18 : 0.894	568416168534	3						
24 : 0.912	288629871383	7						
30 : 0,928	621778812726	7						
36 : 0.940	393960888215	9						

Méthode SARIMA

Prédiction avec

Modèle (0,1,1)(1,1,1)12

SARIMA - Analyse a Posteriori Contrôle Prédiction VS 12 derniers Mois Observés (Réels)

SARIMA Meilleur Modèle → Modèle (0,1,1)(1,1,1)12

SARIMA_p1	SARIMA_p2	AIC_Value	BIC_Value
(0, 1, 1)	(1, 1, 0, 12)	598.434	603.500
(1, 1, 1)	(1, 1, 0, 12)	598.931	605.686
(1, 1, 0)	(1, 1, 0, 12)	607.589	612.656

Résultats Holt-Winters

 $RMSE_2 = 1230,18$ $MAPE_2 = 17,65\%$ $AIC_2 = 627,58$ $BIC_2 = 659,10$

Résultats SARIMA

RMSE= 223,08 MAPE = 2,84% AIC = 598,43 BIC = 603,50

Evaluation de notre modèle de Prédiction SARIMA → Test des RESIDUS

Test Shapiro-Wilk (normalité des résidus)

Hypothèse de normalité validé au seuil de 5%

Mais attention tout de même

→ p-value = 0,1222 > 5%

Test Box-Ljung (Blancheur des Résidus - Reste saisonnier ?) **Problème**

Rejet de l'hypothèse nulle H0 d'indépendance des résidus.

→ Les p_value < 5%

```
from ljungbox import *
h, pV, Q, cV = lbqtest(sarima_resid, range(1, 10), alpha=0.1)
                              Q c-value rejectH0')
print ('lag p-value
for i in range(len(h)):
    print ("%-2d %10.3f %10.3f %10.3f
                                          %s" % (i+1, pV[i], Q[i], cV[i], str(h[i])))
                          c-value
    p-value
                                    rejectH0
      0.000
                13.068
                            2.706
                                       True
      0.000
                22.187
                            4.605
                                       True
      0.000
                29.182
                            6.251
      0.000
                35.710
                            7.779
                                       True
      0.000
                41.568
                            9.236
                                       True
      0.000
                41.568
                           10.645
                                       True
      0.000
                41.568
                           12.017
                                       True
       0.000
                41.568
                           13.362
                                       True
       0.000
                41,568
                           14.684
```


<u>Projet 9</u> Prédictions demande Electricité

→ Le modèle *SARIMA* présenté semble le plus approprié pour établir notre prédiction de consommation électrique

Merci de votre attention!

Pour plus d'informations, vous pouvez me contacter en suivant le lien directement ci-dessous

frederic.boissy@gmail.com

Annexes - Modélisations « add » & « mult »

Ces modèles relèvent de la Statistique Descriptive.

Ils ne font intervenir que de manière sous-jacente le calcul des probabilités et consistent à supposer que l'observation de la série à la date t est une fonction du temps t et d'une variable ϵt centrée faisant office d'erreur au modèle, représentant la différence entre la réalité et le modèle proposé.

Soient:

Xt, la série temporelle,

Zt, la composante tendancielle,

St, la composante saisonnière,

 ϵt , le résidu, erreur ou écart du modèle

MODELE ADDITIF

 $Xt = Zt + St + \epsilon t$

t variant $de \ \acute{U} \ t = 1 \dots \grave{a} \ T, T+1, \dots$

Figure 6 - Modèle additif. Amplitude constante autour de la tendance

MODELE MULTIPLICATIF

 $Xt = Zt(1+St)(1+\epsilon t)$

t variant $de \ U \ t = 1 \dots a \ T, T+1, \dots$

Figure 7 - Modèle multiplicatif. Amplitude proportionnelle à la tendance

