- **6.3** No, if there were some generator $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ we have that $(a,b)^n = (na,nb)$ but there is no possible power $n \in \mathbb{Z}$ such that $(a,b-1) = (na,nb) = (a,b)^n$ since a=na implies that n=1 but then $nb \neq b-1$.
- **6.5** For any element $(a,b) \in A \times B$ we have $(a,b) \circ (a^{-1},b^{-1}) = (e_a,e_b)$, and $(a^{-1},b^{-1}) \in A \times B$ since, A,B are groups. Therefore every element has an inverse. We already know the operations are associative since crossing two associative operations is an associative operation, and finally we know $A \times B$ is closed under these operations since we just apply the operations component wise and A,B are closed under their respective operation. Therefore $A \times B$ is a subgroup of $G \times H$
 - **6.10** We have

$$\{(0,0)\},\langle(1,0)\rangle,\langle(1,1)\rangle,\langle(0,1)\rangle,\langle(0,2)\rangle,\langle(1,2)\rangle$$

For a total of 6 subgroups

- **6.12** (i). If a generator of G, H is g, h respectively, then a generator of $G \times H$ is (g, h) for any element $(a, b) \in G \times H$ since G, H are cyclic we know there is some n, m such that $(a, b) = (g^n, b^m)$,
 - 13.10
 - 13.11
 - 13.16
 - 13.20
 - 13.25