LSINF1121 ALGORITHMIQUE ET STRUCTURES DE DONNÉES

TP1: COMPLEXITÉS, PILES, FILES ET LISTES

QUESTION 1.1.1: QU'EST-CE QU'UN TYPE ABSTRAIT DE DONNÉES?

En informatique, un type abstrait est une spécification mathématique d'un ensemble de données et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'abstrait ce type de données car il correspond à un cahier des charges qu'une structure de données doit ensuite implémenter.

DE QUOI SE RAPPROCHE LE PLUS UN TYPE ABSTRAIT DE DONNÉE EN JAVA?

- Une classe
- Un objet
- Une interface
- Une structure
- Un type primitif

Woodap

QUESTION 1.1.2

Comment implémenter une pile (stack) avec une liste simplement chaînée, où les opérations se font en fin de liste?

QUELLE EST LA COMPLEXITÉ DE CETTE IMPLÉMENTATION?

```
\mathcal{O}(1) \sim 1 \qquad \Omega(1) \qquad \Theta(1)
```

 $\mathcal{O}(n) \sim n \qquad \Omega(n) \qquad \Theta(n)$

Woodap

QUESTION 1.1.3: QUELLES SONT LES IMPLÉMENTATIONS POSSIBLES POUR UNE PILE?

Question ouverte, parce que je suis un fou.

Woodap

Pourquoi java.util.Stack est-il implémenté via un tableau?

	Liste chainée	Tableau		
Push	O(1)	O(n) ?		
Рор	O(1)	O(n) ?		
n push	O(n)	O(n^2)?		
n pop	O(n)	O(n^2)?		

Pourquoi java.util.Stack est-il implémenté via un tableau?

	Liste chainée	Tableau	
Push	O(1)	O(1) Sauf redim. O(n)	
Рор	O(1)	O(1) Sauf redim. O(n)	
n push	O(n)	O(n^2)?	
n pop	O(n)	O(n^2)?	

On double la taille du tableau quand on atteint la limite.

Sur n push, on fait donc un resize à ces positions:

- **)** 1
- **2**
- **\(\right)** 4
- 8
- ▶ 16
- ...
- h

Combien de redim.?

$$\sum_{i=0}^{\log_2 n} \frac{n}{2^i}$$

Pourquoi java.util.Stack est-il implémenté via un tableau?

	Liste chainée	Tableau
Push	O(1)	O(1) Sauf redim. O(n)
Рор	O(1)	O(1) Sauf redim. O(n)
n push	O(n)	O(n^2)?
n pop	O(n)	O(n^2)?

On double la taille du tableau quand on atteint la limite.

Sur n push, on fait donc un resize à ces positions:

- **)** 1
- **2**
- **+** 4
- 8
- ▶ 16
- ...
- h

Combien de redim.?

$$\sum_{i=0}^{\log_2 n} \frac{n}{2^i} < 2n \in \mathcal{O}(n)$$

Pourquoi java.util.Stack est-il implémenté via un tableau?

	Liste	T 1 1	On double la taille du tableau quand on atteint la limite.			
	chainée	Tableau	Sur n push, on fait donc un resize à ces positions:			
Push	O(1)	O(1) Sauf redim. O(n)	1 2 1 COMPLEXITÉS			
Pop	Pop O(1) Sauf rec	O(1) Sauf redim. O(n)	AMORTIES n			
n push	O(n)	O(n)	Combien de redim.? $\log_2 n$			
n pop	O(n)	O(n)	$\sum_{i=0}^{3} \frac{n}{2^i} < 2n \in \mathcal{O}(n)$			

Pourquoi java.util.Stack est-il implémenté via un tableau?

	Liste chainée	Tableau	
Push	O(1)	O(1) Sauf redim. O(n)	
Рор	O(1)	O(1) Sauf redim. O(n)	
n push	O(n)	O(n) (amorti)	
n pop	O(n)	O(n) (amorti)	

Même complexités, pourquoi ce choix d'implémentation?

QUESTION 1.1.4: PILE AVEC DEUX FILES

Any ideas?

QUESTION 1.1.5: ITÉRATEURS

-> Code

Le livre utilises la notation ~ (tilde). On utilise dans d'autres cours les notations O, Omega et Theta.

Quelle est la différence entre ces différentes classes de complexités?

Ceci est une fonction qui compte le nombre d'opérations en fonction de n

$$f(n) \in \mathcal{O}(g(n)) \iff \exists k \in \mathbb{R}^+, n_0 \in \mathbb{N} \quad \text{t.q.} \quad f(n) \le k \cdot g(n) \quad \forall n \ge n_0$$

$$f(x) = 2\sin(x) + 2$$
$$g(x) = x$$

$$2\sin(x) + 2 \in \mathcal{O}(x)$$

$$f(n) \in \mathcal{O}(g(n)) \iff \exists k \in \mathbb{R}^+, n_0 \in \mathbb{N} \quad \text{t.q.} \quad f(n) \le k \cdot g(n) \quad \forall n \ge n_0$$

$$f(n) \in \Omega(g(n)) \iff \exists k \in \mathbb{R}^+, n_0 \in \mathbb{N} \text{ t.q. } \mathbf{k} \cdot \mathbf{f}(\mathbf{n}) \ge \mathbf{g}(\mathbf{n}) \quad \forall n \ge n_0$$

$$f(n) \in \Theta(g(n)) \iff \exists k_0, k_1 \in \mathbb{R}^+, n_0 \in \mathbb{N} \quad \text{t.q.} \quad \mathbf{k_0} \cdot \mathbf{g}(\mathbf{n}) \le \mathbf{f}(\mathbf{n}) \le \mathbf{k_1} \cdot \mathbf{g}(\mathbf{n}) \quad \forall n \ge n_0$$

$$f(n) \in \mathcal{O}(g(n)) \iff \exists k \in \mathbb{R}^+, n_0 \in \mathbb{N} \quad \text{t.q.} \quad f(n) \le k \cdot g(n) \quad \forall n \ge n_0$$

$$f(n) \in \Omega(g(n)) \iff \exists k \in \mathbb{R}^+, n_0 \in \mathbb{N} \text{ t.q. } \mathbf{k} \cdot \mathbf{f}(\mathbf{n}) \ge \mathbf{g}(\mathbf{n}) \quad \forall n \ge n_0$$

$$f(n) \in \Theta(g(n)) \iff \exists k_0, k_1 \in \mathbb{R}^+, n_0 \in \mathbb{N} \quad \text{t.q.} \quad \mathbf{k_0} \cdot \mathbf{g}(\mathbf{n}) \le \mathbf{f}(\mathbf{n}) \le \mathbf{k_1} \cdot \mathbf{g}(\mathbf{n}) \quad \forall n \ge n_0$$

$$f(n) \sim g(n) \qquad \iff \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

PLEINS DE QUESTIONS SUR WOOCLAP

Courage, c'est ici que ça se complique.

Woclap

QUESTION 1.1.7: DOUBLING RATIO TEST

Si
$$f(n) \sim an^b \log n$$
 alors $\frac{f(2n)}{f(n)} \sim 2^b$

QUESTION 1.1.7: DOUBLING RATIO TEST

n	1000	2000	4000	8000	16000	32000	64000
T(n)	0	0	0.1	0.3	1.3	5.1	20.5
Ratio précédent		~1	~1	~3	4.3	3.92	4.01