Hilary Term 2007

A. Zisserman

- Maximum likelihood estimation (MLE)
 - Likelihood function, information matrix
- Least Squares estimation
 - Total least squares
 - · General least squares
 - Regularization
- Maximum a Posteriori estimation (MAP)
 - Posterior density via Bayes' rule
 - Confidence regions

Maximum Likelihood Estimation

$$\min_{a,b} \sum_{i}^{n} (y_i - (ax_i + b))^2$$

In the line fitting (linear regression) example the estimate of the line parameters θ involved two steps:

- 1. Write down the likelihood function expressing the probability of the data \mathbf{z} given the parameters $\boldsymbol{\theta}$
- 2. Maximize the likelihood to determine θ

i.e. choose the value of θ so as to make the data as likely as possible.

Note, the solution does not depend on the variance σ^2 of the noise

Example application: Navigation

Take multiple measurements of beacons to improve location estimates

The Likelihood function

More formally, the likelihood is defined as

$$\mathcal{L}(\theta) = p(\mathbf{z}|\theta)$$

• the likelihood is the conditional probability of obtaining measurements $z = (z_1, z_2, ..., z_n)$ given that the true value is θ

Note, in general

- The likelihood is a function of θ , but it is **not** a probability distribution over θ , and its integral with respect to θ does not (necessarily) equal one.
- It would be incorrect to refer to this as "the likelihood of the data".

Given observations z and a likelihood function $\mathcal{L}(\theta)$, the Maximum Likelihood estimate of θ is the value of θ which maximizes the likelihood function

$$\hat{\theta} = \arg \max_{\theta} \mathcal{L}(\theta)$$

Example: Gaussian Sensors

Likelihood is a Gaussian response in 2D for true value $\theta = x$

$$p(\mathbf{z}|\mathbf{x}) = \frac{1}{C} \exp\left\{-\frac{1}{2}(\mathbf{z} - \mathbf{x})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{z} - \mathbf{x})\right\}$$

$$\mathcal{L}(\theta) = p(\mathbf{z}|\theta)$$

Now, look at several problems involving combining multiple measurements from Gaussian sensors

MLE Example 1

Suppose we have two independent sonar measurements (z_1, z_2) of position x, and the sensor error may be modelled as $p(z_i|\theta) = N(\theta, \sigma^2)$, determine the MLE of x.

Solution

Since the sensors are independent the likelihood is

$$\mathcal{L}(x) = p(z_1, z_2 | x) = p(z_1 | x) p(z_2 | x)$$

and since the sensors are Gaussian

$$\mathcal{L}(x) \sim e^{-\frac{(z_1-x)^2}{2\sigma^2} \times e^{-\frac{(z_2-x)^2}{2\sigma^2}} = e^{-\frac{(z_1-x)^2+(z_2-x)^2}{2\sigma^2}}$$
 ignore irrelevant normalization constants

$$\mathcal{L}(x) \sim e^{-\frac{(z_1 - x)^2 + (z_2 - x)^2}{2\sigma^2}}$$

$$- \ln \mathcal{L}(x) = \frac{((z_1 - x)^2 + (z_2 - x)^2)/(2\sigma^2)}{= \frac{(2x^2 - 2x(z_1 + z_2) + z_1^2 + z_2^2)}{(2\sigma^2)}}$$

$$= \frac{(x - \bar{x})^2}{(\sigma^2)} + c(z_1, z_2)$$

$$\mathcal{L}(x) \sim e^{-\frac{(x - \bar{x})^2}{\sigma^2}} \quad \text{with} \quad \bar{\mathbf{x}} = \frac{z_1 + z_2}{2}$$

Note

- the likelihood is a Gaussian
- the variance is reduced (cf the original sensor variance)

Maximum likelihood estimate of x

$$\hat{\mathbf{x}} = \arg\max_{x} \mathcal{L}(x)$$

negative log likelihood

$$-\ln \mathcal{L}(x) = (x - \bar{x})^2/(\sigma^2) + c(z_1, z_2)$$

$$\mathsf{ML} \ \ \hat{\mathbf{x}} = \arg\min_{x} \{-\ln \mathcal{L}(x)\}$$

Compute min by differentiating wrt x

$$\frac{d\{-\ln \mathcal{L}(x)\}}{dx} = 2(x-\bar{x})/(\sigma^2) = 0$$

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} = \frac{z_1 + z_2}{2}$$

MLE Example 2: Gaussian fusion with different variances

Suppose we have two independent sonar measurements (z_1, z_2) of position x, and the sensor error may be modelled as $p(z_1|\theta) = N(\theta, \sigma^2_1)$ and $p(z_2|\theta) = N(\theta, \sigma^2_2)$, determine the MLE of x.

Solution

Again, as the sensors are independent

$$\mathcal{L}(x) = p(z_1, z_2|x) = p(z_1|x) p(z_2|x)$$

$$\mathcal{L}(x) \sim e^{-\frac{(z_1 - x)^2}{2\sigma_1^2}} \times e^{-\frac{(z_2 - x)^2}{2\sigma_2^2}}$$

The negative log likelihood is then:

$$-\ln \mathcal{L}(x) = \frac{1}{2} \left[\sigma_1^{-2} (z_1 - x)^2 + \sigma_2^{-2} (z_2 - x)^2 \right] + \text{const}$$

$$= \frac{1}{2} \left[(\sigma_1^{-2} + \sigma_2^{-2}) x^2 - 2(\sigma_1^{-2} z_1 + \sigma_2^{-2} z_2) x \right] + \text{const}$$

$$= \frac{1}{2} (\sigma_1^{-2} + \sigma_2^{-2}) \left[x - \frac{\sigma_1^{-2} z_1 + \sigma_2^{-2} z_2}{\sigma_1^{-2} + \sigma_2^{-2}} \right]^2 + \text{const}$$

which is maximised w.r.t. x when

$$x_{\text{MLE}} = \frac{\sigma_1^{-2}z_1 + \sigma_2^{-2}z_2}{\sigma_1^{-2} + \sigma_2^{-2}}$$

e.g. if the sensors are: $p(z_1|x) \sim N(x,10^2)$ $p(z_2|x) \sim N(x,20^2)$

Suppose we obtain sensor readings of $z_1 = 130, z_2 = 170$.

$$\hat{x}_{\text{MLE}} = \frac{130/10^2 + 170/20^2}{1/10^2 + 1/20^2} = 138.0$$

• the ML estimate is closer to the more confident measurement

The Information Matrix

We have seen that for two independent Normal variables:

• information weighted mean

$$\hat{x} = \frac{\sigma_1^{-2}z_1 + \sigma_2^{-2}z_2}{\sigma_1^{-2} + \sigma_2^{-2}}$$

• additivity of statistical information

$$\sigma_x^{-2} = \sigma_1^{-2} + \sigma_2^{-2}$$

(like the parallel resistors formula)

This motivates the definition of the information matrix $S=\Sigma^{-1}$

$$S_x = S_{z_1} + S_{z_2}$$

In 2D with
$$\mathbf{z} = (z_x, z_y)^{\top}$$

$$S_x = \Sigma_x^{-1} = S_{\mathbf{z}_1} + S_{\mathbf{z}_2}$$

$$\hat{\mathbf{x}} = \mathbf{\Sigma}_x \left(S_{\mathbf{z}_1} \mathbf{z}_1 + S_{\mathbf{z}_2} \mathbf{z}_2 \right)$$

If
$$\Sigma = \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{bmatrix}$$
 then $S = \begin{bmatrix} 1/\sigma_x^2 & 0 \\ 0 & 1/\sigma_y^2 \end{bmatrix}$

- ullet large covariance o uncertainty, lack of information
- \bullet small covariance \to some confidence, or strong information

A singular covariance matrix implies "infinite" or "perfect" information.

MLE Example 3: Gaussian fusion with 2D sensors

Suppose we have two independent 2D vision measurements (\mathbf{z}_1 , \mathbf{z}_2) of position **x**, and the sensor error may be modelled as $p(\mathbf{z}_1|\theta) = N(\theta, \Sigma_1)$ and $p(\mathbf{z}_2|\theta) = N(\theta, \Sigma_2)$, determine the MLE of **x**, where

$$\mathbf{z}_1 = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \ \ \Sigma_1 = \left[\begin{array}{c} 1 & 0 \\ 0 & 4 \end{array} \right] \quad \text{and} \ \mathbf{z}_2 = \left(\begin{array}{c} 2 \\ -1 \end{array} \right) \ \ \Sigma_2 = \left[\begin{array}{c} 4 & 0 \\ 0 & 1 \end{array} \right]$$

Solution

Again, the sensors are independent so we sum their information

$$\Sigma_x^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 0.25 \end{bmatrix} + \begin{bmatrix} 0.25 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1.25 & 0 \\ 0 & 1.25 \end{bmatrix}$$

$$\hat{\mathbf{x}} = \mathbf{\Sigma}_x (S_{\mathbf{z}_1} \mathbf{z}_1 + S_{\mathbf{z}_2} \mathbf{z}_2)$$

$$= \begin{bmatrix} 0.8 & 0 \\ 0 & 0.8 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.25 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{bmatrix} 0.25 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}) = \begin{pmatrix} 1.2 \\ -0.6 \end{pmatrix}$$

$$\mathcal{L}(\mathbf{x}) = p(\mathbf{z}_1|\mathbf{x}) \, p(\mathbf{z}_2|\mathbf{x})$$

Line fitting with errors in both coordinates

Suppose points are measured from a true line $\tilde{y} = a\tilde{x} + b$ with errors as

$$x_i = \tilde{x}_i + v_i \quad v_i \sim N(0, \sigma^2)$$

 $y_i = \tilde{y}_i + w_i \quad w_i \sim N(0, \sigma^2)$

In the case of linear regression, the ML estimate gave the cost function

$$\min_{a,b} \sum_{i}^{n} (y_i - (ax_i + b))^2$$

$$\max_{a,b} \sum_{i}^{n} (y_i - (ax_i + b))^2$$

In the case of errors in both coordinates, the ML cost function is

$$\min_{a,b} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \text{ subject to } \hat{y}_i = a\hat{x}_i + b$$

i.e. it is necessary also to estimate (predict) corrected points (\hat{x}_i, \hat{y}_i)

$$\min_{a,b} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \text{ subject to } \hat{y}_i = a\hat{x}_i + b$$

This estimator is called total least squares, or orthogonal regression

Solution [exercise - non-examinable]

- line passes through centroid of the points $\mu = \sum_{i=1}^{n} \mathbf{x}_{i}$
- line direction is parallel to the eigenvector of the covariance matrix corresponding to the least eigenvalue $\Sigma = \sum_{i}^{n} \left[(\mathbf{x}_i \boldsymbol{\mu})(\mathbf{x}_i \boldsymbol{\mu})^\top \right]$

Application: Estimating Geometric Transformations

The line estimation problem is equivalent to estimating a 1D affine transformation from noisy point correspondences

$$\begin{cases} x_i' \leftrightarrow x_i \end{cases}$$

$$x' = \alpha x + \beta$$

Can also compute the ML estimate of 2D transformations

Reminder: Plane Projective transformation

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

or $\mathbf{x}' = H\mathbf{x}$, where H is a 3 \times 3 non-singular homogeneous matrix.

- A projective transformation is also called a ``homography" and a ``collineation".
- H has 8 degrees of freedom.
- It can be estimated from 4 or more point correpondences

Maximum Likelihood estimation of homography H

If the measurement error is Gaussian, then the ML estimate of H and the corrected correspondences $\{\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'\}$ is given by minimizing

$$\mathcal{C} = \sum\limits_{i} d^{2}(\hat{\mathbf{x}}_{i}, \mathbf{x}_{i}) + d^{2}(\hat{\mathbf{x}}'_{i}, \mathbf{x}'_{i}) \qquad \text{subject to} \qquad \hat{\mathbf{x}}_{i} = \hat{\mathbf{H}}\hat{\mathbf{x}}'_{i}, \forall i$$

Cost function minimization:

- for 2D affine transformations there is a matrix solution (non-examinable)
- for 2D projective transformation, minimize numerically using e.g. non-linear gradient descent

e.g. Camera rotating about its centre

Example: Building panoramic mosaics

4 frames from a sequence of 30

The camera rotates (and zooms) with fixed centre

Example: Building panoramic mosaics

30 frames

The camera rotates (and zooms) with fixed centre

Homography between two frames

ML estimate of homography from these 100s of point correspondences

Choice of mosaic frame

Choose central image as reference

This produces the classic "bow-tie" mosaic.

General Linear Least Squares

$$\min_{a,b} \sum_{i} (y_i - ax_i - b)^2$$

Write the residuals as an n-vector

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots \\ x_n & 1 \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\mathbf{w} = \mathbf{y} - H\theta$$

H is a n x 2 matrix

Then the sum of squared residuals becomes

$$\mathbf{w}^{\top}\mathbf{w} = (\mathbf{y} - H\theta)^{\top}(\mathbf{y} - H\theta)$$

We want to minimize this w.r.t. θ

$$\frac{d}{d\theta}(y - H\theta)^{\top}(y - H\theta) = 2H^{\top}(y - H\theta) = 0$$

$$\mathsf{H}^{\!\top}\mathsf{H}\boldsymbol{\theta} = \mathsf{H}^{\!\top}\mathbf{y}$$

$$\theta = (\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1} \mathbf{H}^{\mathsf{T}} \mathbf{y} = \mathbf{H}^{\mathsf{+}} \mathbf{y}$$

$$\begin{bmatrix} \mathbf{H}^{\mathsf{T}}\mathbf{H} & \mathbf{H}^{\mathsf{T}}\mathbf{y} & \mathbf{H}^{\mathsf{T}}\mathbf{y}$$

Summary

- ullet If the generative model is linear $\, {f y} = {f H} {m heta} \,$
- ullet then the ML solution for Gaussian noise is $heta=\mathsf{H}^+\,\mathrm{y}$
- where the matrix $H^+ = (H^T H)^{-1} H^T$ is the pseudo-inverse of H

Generalization I: multi-linear regression

$$y_i = \theta_2 x_i + \theta_1 z_i + \theta_0 + w_i$$

$$\mathsf{H} = \left[\begin{array}{cccc} x_1 & z_1 & 1 \\ x_2 & z_2 & 1 \\ \vdots & & & \\ x_n & z_n & 1 \end{array} \right] \qquad \boldsymbol{\theta} = (\mathsf{H}^{\!\top} \mathsf{H})^{-1} \mathsf{H}^{\!\top} \mathsf{y}$$

Mo re general still with basis functions $\phi_{j}(x)$

$$y_i = \sum_j \theta_j \phi_j (x_i) + w_i$$

Generalization II: regression with basis functions

$$y_i = \sum_j \theta_j \phi_j(x_i) + w_i$$

for example, quadratic regression

$$y_i = \theta_2 (x_i)^2 + \theta_1 (x_i) + \theta_0 + w_i$$

$$\mathsf{H} = \begin{bmatrix} \phi_2(x_1) & \phi_1(x_1) & 1 \\ \phi_2(x_2) & \phi_1(x_2) & 1 \\ \vdots & \vdots & \vdots \\ \phi_2(x_n) & \phi_1(x_n) & 1 \end{bmatrix} = \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_n^2 & x_n & 1 \end{bmatrix}$$

- what is the correct function to fit ?
- how is the quality of the estimate assessed?

Summary point

We have seen:

• An estimator is a function f(z) which computes an estimate

$$\widehat{\theta} = f(\mathbf{z})$$

for the parameters θ from measurements $z = (z_1, z_2, \dots z_n)$

• The Maximum Likelihood estimator is

$$\hat{\theta} = \arg \max_{\theta} p(\mathbf{z}|\theta)$$

Now, we will compute the posterior, and hence the Maximum a Posteriori (MAP) estimator

Bayes' rule and the Posterior distribution

Suppose we have

- $p(z|\theta)$ the conditional density of the sensor(s)
- ullet additionally p(heta), a prior density of heta the parameter to be estimated.

Use Bayes' rule to get the **posterior** density

$$p(\theta|z) = \frac{p(z|\theta)p(\theta)}{p(z)} = \frac{\text{likelihood} \times \text{prior}}{\text{normalizing factor}}$$

Example: posterior for uniform distributions

MAP Estimator

MAP Example: Gaussian fusion

Consider again two sensors modelled as independent normal distributions:

$$z_1 = \theta + w_1, \quad p(z_1|\theta) \sim N(\theta, \sigma_1^2)$$

 $z_2 = \theta + w_2, \quad p(z_2|\theta) \sim N(\theta, \sigma_2^2)$

so that the joint likelihood is

$$p(z_1, z_2 | \theta) = p(z_1 | \theta) \times p(z_2 | \theta)$$

Suppose in addition we have prior information that

$$p(\theta) \sim N(\theta_p, \sigma_p^2)$$

Then the posterior density is

$$p(\theta|z_1, z_2) \sim p(z_1, z_2|\theta) \times p(\theta)$$

The posterior is a Gaussian, and we can write down its mean and variance simply by adding statistical information:

$$p(\theta|z_1, z_2) \sim N(\mu_{\mathsf{pos}}, \sigma_{\mathsf{pos}}^2)$$

where

$$\sigma_{\text{pos}}^{-2} = \sigma_1^{-2} + \sigma_2^{-2} + \sigma_p^{-2}$$

$$\mu_{\text{pos}} = \frac{\sigma_1^{-2} z_1 + \sigma_2^{-2} z_2 + \sigma_p^{-2} \theta_p}{\sigma_1^{-2} + \sigma_2^{-2} + \sigma_p^{-2}} = \hat{\theta}_{\text{MAP}}$$

e.g. if the sensors are: $p(z_1|x) \sim N(x, 10^2), p(z_2|x) \sim N(x, 20^2)$, and the prior is $p(x) \sim N(150, 30^2)$.

Suppose we obtain sensor readings of $z_1 = 130, z_2 = 170$ then

$$\hat{x}_{\text{MAP}} = \frac{130/10^2 + 170/20^2 + 150/30^2}{1/10^2 + 1/20^2 + 1/30^2} = 139.0$$

$$\hat{\sigma}_{\text{pos}} = \frac{1}{\sqrt{1/10^2 + 1/20^2 + 1/30^2}} = 8.57$$

Matlab example

inc=1; t = [50:inc:250];

 $pz1 = normal(t, 130,10^2); pz2 = normal(t, 170,20^2); prx = normal(t, 150,30^2); posx = pz1 .* pz2 .* prx / (inc*(sum(pz1 .* pz2 .* prx))); plot(t,pz1,'r', t,pz2,'g', t,prx,'k:', t, posx, 'b');$

MAP vs MLE

For the posterior

$$\sigma_{\text{pos}}^{-2} = \sigma_1^{-2} + \sigma_2^{-2} + \sigma_p^{-2}$$
 $\hat{\theta}_{\text{MAP}} = \frac{\sigma_1^{-2} z_1 + \sigma_2^{-2} z_2 + \sigma_p^{-2} \theta_p}{\sigma_1^{-2} + \sigma_2^{-2} + \sigma_p^{-2}}$

Recall that for the likelihood

$$\sigma_{\mathsf{L}}^{-2} = \sigma_{1}^{-2} + \sigma_{2}^{-2}$$
 $\hat{\theta}_{\mathsf{MLE}} = \frac{\sigma_{1}^{-2}z_{1} + \sigma_{2}^{-2}z_{2}}{\sigma_{1}^{-2} + \sigma_{2}^{-2}}$

so

$$\sigma_{\text{pos}}^{-2} = \sigma_{\text{L}}^{-2} + \sigma_{p}^{-2} \qquad \widehat{\theta}_{\text{MAP}} = \frac{\sigma_{p}^{-2}\theta_{p} + \sigma_{\text{L}}^{-2}\widehat{\theta}_{\text{MLE}}}{\sigma_{p}^{-2} + \sigma_{\text{L}}^{-2}}$$

i.e. prior acts as an additional sensor

• Decrease in posterior variance relative to the prior and likelihood

$$\frac{1}{\sigma_{\text{pos}}^2} = \frac{1}{\sigma_{\text{L}}^2} + \frac{1}{\sigma_p^2}$$

e.g.

$$\sigma_{L} = \frac{1}{\sqrt{1/10^2 + 1/20^2}} = 8.94$$
 $\sigma_{p} = 30$ $\sigma_{pos} = \frac{1}{\sqrt{1/10^2 + 1/20^2 + 1/30^2}} = 8.57$

If $\sigma_p o \infty$ then $\sigma_{\mathsf{POS}} o \sigma_{\mathsf{L}}$ (prior is very uninformative)

• Effect of uniform prior ?

Update to the prior

$$\widehat{\theta}_{\mathsf{MAP}} = \theta_p + \frac{\sigma_p^2}{\sigma_p^2 + \sigma_\mathsf{I}^2} \times \left(\widehat{\theta}_{\mathsf{MLE}} - \theta_p\right)$$

- If $\hat{\theta}_{\text{MLE}} = \theta_p$ then $\hat{\theta}_{\text{MAP}}$ is unchanged from the prior (but its variance is decreased)
- If $\sigma_{\rm L}$ is large compared to σ_p then $\widehat{\theta}_{\rm MAP} \approx \theta_p$ (noisy sensor)
- If σ_p is large compared to $\sigma_{\rm L}$ then $\widehat{\theta}_{\rm MAP} \approx \widehat{\theta}_{\rm MLE}$ (weak prior)

MAP Application 1: Berkeley traffic tracking system

Tracks cars by:

- computing corner features on each video frame
- tracking corners (2D) from frame to frame

Objective: estimate image corner position x(t)

Berkeley visual traffic monitoring system

Traffic by day and by night

Velocity measurement gate

Tracking Corners

Measurement error model: p(z|x)Prior information: p(x)measurement

Inference (posterior density): p(x|z)

Bayes rule:

$$p(x|z) \propto p(z|x)p(x)$$
.

Corners need **2D** Gaussians

Corner feature in 2D coordinates is a vector $\mathbf{x} = (x, y)^{\top}$. Suppose $x \sim N(0, \sigma_x^2), \ y \sim N(0, \sigma_y^2)$ then

$$p(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)\right\}$$

and the covariance matrix is

$$\Sigma = \left[\begin{array}{cc} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{array} \right]$$

Corner fusion in 2D

Given a vehicle at position ${\bf x}$ with prior distribution

$$N({\bf x}_0, P_0)$$

and a corner measurement

$$\mathbf{z} \sim N(\mathbf{x}, R)$$

Summing information:

$$S = P^{-1} = R^{-1} + P_0^{-1}$$

Information weighted mean:

$$\hat{\mathbf{x}} = P\left(R^{-1}\mathbf{z} + P_0^{-1}\mathbf{x}_0\right)$$

Corner fusion in 2D

Prior:

$$P_0 = \left(\begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array}\right)$$

$$\mathbf{x}_0 = \left(\begin{array}{c} -1\\ -1 \end{array}\right)$$

Likelihood:

$$R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{z} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$Isotropic$$
measurement error

$$P = \left(\begin{array}{cc} 0.64 & 0.09 \\ 0.09 & 0.73 \end{array}\right)$$

$$\mathbf{x} = \left(\begin{array}{c} 0.55\\1.37 \end{array}\right)$$

Where does the prior come from?

Use the posterior from the previous time step, "updated" to take account of the dynamics

$$\mathbf{x}_{t} - \mathbf{x}_{t-1} \sim \mathcal{N}\left(\left(\begin{array}{c} 0 \\ \mathbf{v} \end{array} \right), \sigma^{2} \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \right)$$

Iterate:

- prediction (posterior + dynamics) to give prior
- make measurement z
- fuse measurement and prior to give new posterior

Compute estimate and covariance for tracked corner

Prior:

Dynamics: Likelihood:

$$P_0 = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \qquad P_D = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.3 \end{pmatrix} \qquad R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$P_D = \left(\begin{array}{cc} 0.3 & 0\\ 0 & 0.3 \end{array}\right)$$

$$R = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

$$\hat{\mathbf{x}}_0 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
 $\mathbf{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\mathbf{z}_1 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$

$$\mathbf{v} = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

$$\mathbf{z}_1 = \left(\begin{array}{c} 6\\2 \end{array}\right)$$

$$\tilde{P}_1 = P_0 + P_D = \begin{pmatrix} 2.3 & 1.0 \\ 1.0 & 3.3 \end{pmatrix}; \quad \tilde{\mathbf{x}}_1 = \hat{\mathbf{x}}_0 + \mathbf{v} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

b) Fuse measurement
$$P_1 = (\tilde{P}_1^{-1} + R^{-1})^{-1} = \begin{pmatrix} 0.674 & 0.076 \\ 0.076 & 0.750 \end{pmatrix}$$

$$\hat{\mathbf{x}}_1 = P_1 \left(\tilde{P}_1^{-1} \tilde{\mathbf{x}}_1 + R^{-1} \mathbf{z}_1 \right) = \begin{pmatrix} 3.95 \\ 1.78 \end{pmatrix}$$

Berkeley tracker

In action ...

Confidence regions

• To quantify confidence and uncertainty define a confidence region R about a point x (e.g. the mode) such that at a confidence level $c \le 1$

$$p(x \in R) = c$$

- we can then say (for example) there is a 99% probability that the true value is in R
- e.g. for a univariate normal distribution $N(\mu, \sigma^2)$

$$p(|x - \mu| < \sigma) \approx 0.67$$

 $p(|x - \mu| < 2\sigma) \approx 0.95$
 $p(|x - \mu| < 3\sigma) \approx 0.997$

• In 2D confidence regions are usually chosen as ellipses

For an n dimensional normal distribution with mean zero and covariance Σ , then

$$\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}$$

is distributed as a χ^2 -distribution on n degrees of freedom.

In 2D the region enclosed by the ellipse

$$\mathbf{x}^{\top} \mathbf{\Sigma}^{-1} \mathbf{x} = d^2$$

defines a confidence region

$$p(\chi_2^2 < d^2) = c$$

where c can be obtained from standard χ^2 tables (e.g. HLT) or com-

puted numerically.

d	confidence
1	39%
2	86%
3	99%

MAP Application 2: Image Restoration

Suppose sensor model is

$$z_i = u_i + w_i$$

where

$$u_i \in \{0, 1\}$$
 $w_i \sim N(0, \sigma^2)$

0

Then the likelihood is

$$p(\mathbf{z}|\mathbf{u}) \sim \prod_{i} e^{-(z_i - u_i)^2/(2\sigma^2)}$$

then the negative log of the posterior $p(\mathbf{u}|\mathbf{z})$ is

$$C = \sum_{i} (z_i - u_i)^2 + d(u_i - u_{i-1})^2 \qquad \hat{\mathbf{u}}_{\mathsf{MAP}} = \arg\min_{\mathbf{u}} C(\mathbf{u})$$
likelihood
prior

$$\hat{\mathbf{u}}_{\mathsf{MAP}} = \arg\min_{\mathbf{u}} C(\mathbf{u})$$

d = 10

Loss Functions

Example: hitting a target

Loss function
$$L(\hat{x},x) = \begin{cases} 1 & \text{if } |x-\hat{x}| > t \\ 0 & \text{if } |x-\hat{x}| < = t \end{cases}$$
 chosen value actual value
$$\widehat{L}(\hat{x}) = \int p(x|z)L(x,\hat{x}) \, dx$$
 Expected Loss $\widehat{L}(\hat{x}) = \int p(x|z)L(x,\hat{x}) \, dx$

Choose \widehat{x} to minimize expected loss $~\widehat{x} = \arg\min_{\widehat{x}} \int p(x|z) L(x,\widehat{x}) \; dx$

Example 1: squared loss function

$$L(x, \hat{x}) = (x - \hat{x})^2$$

this results in choosing the mean value

Sketch proof

$$\mu = \arg\min_{u} \int (x - u)^2 p(x) \, dx$$

Differentiate w.r.t. u

$$\int 2(u-x)p(x)\,dx = 0$$

Choose \widehat{x} to minimize expected loss $~\widehat{x} = \arg\min_{\widehat{x}} \int p(x|z) L(x,\widehat{x}) \; dx$

Example 2: absolute loss function

$$L(x,\hat{x}) = |x - \hat{x}|$$

this results in choosing the median value

$$x_{\text{med}} = \arg\min_{u} \int |x - u| p(x) \, dx$$

[proof: exercise]

Warning: MAP and change of parameterization

Problem:

• MAP finds maximum value of the posterior, but the posterior is a probability density

Solution:

• Loss functions correctly transform under change of coordinate (reparameterization)

Example of non-linear map: perspective projection

