KADI SARVA VISHWA VIDHYALAYA

LDRP INSTITUTE OF TECHNOLOGY & RESEARCH, GANDHINAGAR

B.E. Semester-II

MID-SEM EXAMINATION

Date: 04/03/2014 Subject Name: Basic Electrical Engineering Max. Marks: 30 Instructions: Branch: EE/ME/IT/AUTO Time: 12:00 to 01:30					
			,	ons are compulsory	
			,	the right indicate full marks.	
			,	ntific calculator is permitted	
2.50	early, the options you attempt along with its respective question number. t page of main supplementary for rough work				
J) Ose the las	t page of main supplementary for rough work				
Q.1 (a)	Fill in the blanks	[5]			
1					
2	Tesla is unit of				
3	The charge on an electron is known to be 1.6 x 10 ⁻¹⁹ coulomb. In a				
	circuit the current flowing is 1 A electrons will be flowing				
4	through the circuit in a second.				
4	The power consumed by a pure inductance connected to A.C. source is				
5	Coulomb's law is given by F=KQ ₁ Q ₂ /d ² where K is a constant having				
	value of				
(b)	State and explain Kirchhoff's voltage and current laws.	[5]			
Q.2 (a)	Derive an expression for the instantaneous value of alternating	[5]			
a >	sinusoidal e.m.f.				
(b)	Define any five of the following terms: (1) Phase, (2) Phase Sequence,	[5]			
	(3) Form Factor, (4) R.M.S value, (5) Average value, (6) Peak Factor, (7) Electric Flux Density.				
	OR				
(a)	Give the comparison between electrical and magnetic circuit.	[5]			
	A coil is wound uniformly with 300 turns over a steel ring of relative	[5]			
(~)	permeability 900 having a mean diameter of 20 cm. The steel ring is	[-]			
	made of a bar having cross section of diameter 2 cm. If the coil has a				
	resistance of 50 ohms and is connected to 250 V d.c. supply, calculate				
	(i) mmf (ii) field intensity in the ring (iii) reluctance of the magnetic				
	path, (iv) flux				

Q.3 Attempt any Two

- 1 With necessary diagram derive the formula for star to delta transformation
- 2 Explain effect of temperature on resistance of: (i) Pure metals (ii) Alloys (iii) insulators, Semiconductors & Alloys. Explain temperature co-efficient of material.
- 3 Derive expressions for impedance, power factor and current for an R-L series circuit when an a.c. voltage is applied to it. Draw also the phasor diagram and waveform
- 4 An alternating e.m.f. is represented by e= 200sin 314t V. Determine : (i) Maximum value (ii) frequency (iii) time period (iv) angular frequency.

KADI SARVA VISHWAVIDHYALAYA LDRP-ITR, GANDHINAGAR

BE 1st SEMESTER (EC/CE/ CIVIL) Mid Semester Exam (Reg. /ATKT) - 2014

Subject Code: - CC102

Subject Name: - BASIC ELECTRICAL ENGINEERING

Date:-10/10/2014

Time:-02:00 pm to 03:30 pm

Total Marks:-30

Instructions:

- 1. Answer each section in separate Answer sheet.
- 2. Use of Scientific Calculator is permitted.
- 3. All questions are Compulsory.
- 4. Indicate clearly, the options you attempt along with its respective question number.
- 5. Use the last page of main supplementary for rough work.
- Q-1 [A] Define & Explain the following:

[05]

- 1. Form factor 2. Dielectric strength 3. Flux density 4. EMF 5. Lenz law
- [B] Obtain expression for Delta to Star conversion.

[05]

Q-2 [A] Derive the expression for charging of capacitor.

[05]

[B] A capacitor of $50\mu F$ is in series with $100~\Omega$ resistor. This branch is suddenly connected across a 100~V dc supply. Find (i) Time constant of the circuit (ii) initial current (iii) voltage across the resistor after 6 m sec.

OR

- Q-2 [A] Explain the phenomenon of generation of Alternating Voltages and currents and derive [05] expression for it with suitable diagrams.
 - [B] Find the rms value, average value and form factor for the full wave rectified sine wave [05] shown in Figure. 1

Figure: 1

Q-3 [A] Explain Faraday's law of electromagnetic Induction.

[05]

[B] Compare electric circuit and magnetic circuit by their similarities and dissimilarities.

[05]

OR

Q-3 [A] 1. State & Explain Kirchhoff's Point Law & Kirchhoff's Mesh Law.

[02]

2. Find equivalent resistance between terminals A and B of the circuit shown in Figure:2 [03] Also find the current flowing through each resistance.

Figure: 2

[B] A circuit of 5 resistors and 3 batteries (see figure: 3); the connecting wires have all a negligible resistance. The values for R₁, R₂, R₃, and R4 & R₅ are 10 Ω, 30 Ω, 50 Ω, 70 Ω and 100 Ω, respectively. The batteries have a negligible internal resistance; their voltages V₁, V₂, & V₃ are 12 V, 24 V, and 36 V, respectively.

Calculate the current (magnitude and direction) through all the resistors.

-----Use your brains, Have patience, Think hard, write well & Best of Luck-----