Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova Final - Algebra Linear Prof. Fernando R. L. Contreras

Aluno(a):

- 1. São sub-espaços vetoriais de C(I) os seguintes subconjuntos: $U = \{ f \in C(I) : f(t) = f(-t), \forall t \in \mathbb{R} \}$ e $V = \{ f \in C(I) : f(t) = -f(-t), \forall t \in \mathbb{R} \}$. Mostra que $C(I) = U \bigoplus V$.
- 2. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ uma transformação linear que dobra o comprimento do vetor u=(2,1) e triplica o comprimento do vetor v=(1,2), sem alterar as direções nem inverter os sentidos. Determinar T(x,y). Qual é a matriz equivalente do operador T na base $\{u,v\}$.
- 3. Verifique que o operador linear F do \mathbb{R}^3 dado por F(x,y,z)=(x+z,x-z,y) é um automorfismo. Determine F^{-1} .
- 4. Ortonormalizar a base $\beta = \{(1,1,1), (1,-1,1), (-1,0,1)\}$ do \mathbb{R}^3 , pelo processo de Gram-Schmidt, utilizando o produto interno usual do \mathbb{R}^3 .

Êxitos...!!!

Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova Final - Algebra Linear Prof. Fernando R. L. Contreras

Aluno(a):

- 1. São sub-espaços vetoriais de C(I) os seguintes subconjuntos: $U = \{ f \in C(I) : f(t) = f(-t), \forall t \in \mathbb{R} \}$ e $V = \{ f \in C(I) : f(t) = -f(-t), \forall t \in \mathbb{R} \}$. Mostra que $C(I) = U \bigoplus V$.
- 2. Seja $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ uma transformação linear que dobra o comprimento do vetor u = (2,1) e triplica o comprimento do vetor v = (1,2), sem alterar as direções nem inverter os sentidos. Determinar T(x,y). Qual é a matriz equivalente do operador T na base $\{u,v\}$.
- 3. Verifique que o operador linear F do \mathbb{R}^3 dado por F(x,y,z)=(x+z,x-z,y) é um automorfismo. Determine F^{-1} .
- 4. Ortonormalizar a base $\beta = \{(1,1,1), (1,-1,1), (-1,0,1)\}$ do \mathbb{R}^3 , pelo processo de Gram-Schmidt, utilizando o produto interno usual do \mathbb{R}^3 .

Êxitos...!!!