

THE PARTY OF THE P

Section . Section

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU-OF STANDARDS-1963-A

AD A 1 4 0 2 7 6

United States Department of Agriculture

Forest Service

Forest Products Laboratory

Research Note FPL-02

Comparison of Wood Preservatives in Stake Tests (1983 Progress Report)

This document has been approved for public release and sale; its distribution is unlimited.

OTIC FILE COPY

84 04 18 003

ABSTRACT

This report covers test stake results primarily from southern pine sapwood 2 by 4 by 18 inches in size, treated by pressure and nonpressure processes, and installed by the Forest Products Laboratory and cooperators in our decay and termite exposure sites at various times since 1938 at Saucier, Miss., Madison, Wis., Bogalusa, La., Lake Charles, La., Jacksonville, Fla., and the Canal Zone, Panama. Also included in the tests at Saucier, Miss., are smaller pine stakes and those of treated and untreated plywood, particle-board, modified woods, laminated paper plastic, pine infected with Trichoderma mold, plus other selected wood species such as oak, Douglas-fir, and Engelmann spruce.

Southern pine untreated control stakes have had an average life of about 1 year in the Canal Zone, 1.8 to 3.6 years in Mississippi, Florida, and Louisiana, and about 6 years in Wisconsin. Superficial treatments by 3-minute dipping and brushing with preservatives such as coal-tar creosote and petroleum oils containing copper naphthenate, zinc napthenate, phenyl mercury oleate, and pentachlorophenol have added a few months to 4 years to the life of the untreated stakes. When appropriate retentions are used, the creosote, pentachlorophenol, and selected waterborne salt preservatives are giving excellent service.

United States Department of Agriculture

Forest Service

Forest Products Laboratory¹

Research Note FPL-02

December 1983

Comparison of Wood Preservatives in Stake Tests² (1983 Progress Report)

By

L. R. Gjovik, Research Specialist Wood Preservation andD. I. Gutzmer, Physical Science Technician

INTRODUCTION

The results of an international termite exposure $test^{\frac{3}{2}}$ have indicated that pine sapwood stakes 2 by 4 by 18 inches furnish an effective means for testing the protection provided against decay and termite attack by various wood preservatives. The Forest Products Laboratory during late 1938, in

 $[\]underline{1}/$ Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

 $[\]frac{2}{1}$ This note is a continuation of progress reports by the same title issued periodically from 1950 to 1962 as Forest Products Laboratory Report No. 1761 and as USDA Forest Service Research Note FPL-02 since 1963.

^{3/} Hunt, G. M., and Snyder, T. E. An International Termite Exposure Test. Proceedings of the American Wood-Preservers' Association, 1930, p. 318-334. Annual progress reports published in the above Proceedings each year from 1930 to 1949, again in 1952, 1956, and 1957 (final report).

cooperation with others, treated test stakes of southern pine sapwood with several preservatives for installation at the Harrison Experimental Forest at Saucier, Miss. Replicate sets were treated for installations at Madison, Wis., Bogalusa, La., Jacksonville, Fla., and the Canal Zone, Panama. Since 1938, additional preservatives have been added to these tests, principally at the Saucier, Miss., station. Also installed at that station, so their decay and termite resistance could be studied, were stakes of treated and untreated modified-wood products, such as plywood, impreg, compreg, staypak, papreg, laminated acetylated wood, cyanoethylated wood, that with thiamine destroyed, chemically modified wood, wood infected with Trichoderma mold, embedded fiberboard (western hemlock strands in portland cement), and particleboard.

In 1967 an installation including 11 standard wood preservatives was made in cooperation with the Wood Products Insect Laboratory, Gulfport, Miss., at Lake Charles, La., in an area infested by the destructive Formosan termite (Coptotermes formosanus), and for comparison at the Harrison Experimental Forest.

Stake tests are useful for screening out ineffective materials. They can be used to advantage as a means of further exploring the preservative properties of materials that show promise in laboratory toxicity tests. The limitations of these somewhat accelerated field tests must be recognized, however, by those who wish to make use of them. They should not be considered as a substitute for actual service tests on full-size products such as ties, poles, or posts. Furthermore, the results obtained in stake tests are applicable only under the set of conditions existing in the particular test. Factors such as exposure conditions, preservative retentions, preservative distribution, heartwood volume, and size (surface area in relation to total volume) all tend to influence the performance of treated wood. With small stakes, these factors are much different from those when treated products are used under actual service conditions.

This publication is a progress report on the condition of the modified-wood products and stakes, treated with the various preservatives and oils, at the time of the 1981 and 1982 inspections. The tests at Panama were completed with the final inspection in January 1956. Those at Jacksonville were terminated in December 1960 and those at Bogalusa in December 1958. The tests in Wisconsin and Mississippi were completed with the final inspection in October and December 1963, respectively. The tests in Lake Charles were completed with the final inspection in December 1979. Progress reports showing the condition of the test stakes in 1947, and during the years 1949 to 1969, 1971, 1973, 1975, 1977, 1979, and 1981 were prepared previously. 2/,4/

ACCOUNT OF THE PARTY OF THE PAR

^{4/} Blew, J. O. Comparison of Wood Preservatives in Stake Tests. Proceedings of the American Wood-Preservers' Association, 1948, p. 88-119.

PRESERVATIVES AND MODIFIED-WOOD PRODUCTS TESTED

Table 1 lists preservatives and other products tested, and refers to existing preservative specifications in cases in which specifications had been issued. Table 1 also refers to tables 2 through 66 in this report, in which test data on the various materials appear. Formulations of treating solutions and descriptions of the various test materials are generally given in these tables. More complete information as to the source and composition of the various materials can, in most cases, be furnished upon request to the Forest Products Laboratory.

SELECTION AND TREATMENT OF STAKES

The second secon

The stakes of modified wood, with one or two exceptions, were 4 by 18 inches with variable thicknesses. The wood stakes were, for the most part, 2- by 4-inch (nominal) by 18-inch southern pine, uniformly seasoned, surfaced four sides, and selected, as far as possible, for freedom from heartwood, wane, objectionable knots, and other visible defects. Five installations included stakes of smaller size for comparison (tables 6, 35, 37, 42, 45, 54, 56, 57, and 59). The stakes, before treatment, were identified by a number, either stamped on the ends or marked with lumber crayon.

All preservative treatments were by pressure impregnation unless otherwise indicated in the tables. Waterborne preservatives, unless otherwise noted in the tables, were applied by the full-cell process, while preservative oils were applied by either empty-cell or full-cell methods (toluene dilution), depending upon the retentions required. Complete penetration is desirable and is usually noted in the pressure treatment used. For this reason heartwood material was avoided in the southern pine stakes unless specially noted (tables 5 and 51). In most cases, preservative retentions were computed for individual stakes from the difference in weight before and after treatment. Surplus preservative was permitted to drain from the stakes before the final weights were taken. After past experience or exploratory treatments had indicated the correct treating schedule or the treating-solution concentration necessary to produce a desired preservative retention, twenty 2- by 4-inch stakes were treated for each test variable, from which 10 acceptable stakes were selected for installation. By discarding those stakes with retentions higher or lower than that desired, the 10 stakes selected by this procedure were usually found to have preservative retentions within 10 percent of that desired. The stakes not acceptable for the test provided material for checking preservative penetrations. For stakes treated in liquefied petroleum gas (tables 42 and 45) it was impracticable to follow this general procedure. The stakes installed were treated at a commercial plant during the presence of a Laboratory representative and retentions were determined from the analysis of either sections of test stakes or from extra matched stakes included for that purpose.

The test stakes were usually identified by a numbered metal tag nailed (riveted in the case of thin modified-wood products) to the wide face approximately 2 inches from the top of the stake.

INSTALLATION AND INSPECTION OF STAKES

The stakes at Madison, Wis., and Saucier, Miss., were installed in plots by the randomized-block method. $\frac{5}{}$ The stakes were set in the ground in an upright position with about half of their length (9 in.) in the ground. The soil in the plot at the Harrison Experimental Forest, Saucier, Miss., is Poarch fine sandy loam, with 5 to 12 percent slope, a pH of 4.85, and with an annual rainfall of 62 inches. That area was cleared of trees, mostly scrub oak and gallberry with a few longleaf and slash pine, before the stakes were installed, and the ground cover is now mostly wire grass. The Madison, Wis. plot, until late 1956, was located in an area of clay loam soil partially shaded by various hardwood trees and sumac. In October 1956, it was necessary to move the stakes to a new test plot near Madison with similar soil, but without overstory of trees or shrubs. The soil at Bogalusa, La., is sandy loam, and that at Jacksonville, Fla., is sandy. Both plots are partially shaded. The plot at Lake Charles, La., was located on an open area partially covered with broom sedge and marsh grass. The top 10 inches of soil is sandy with some streaks of clay, below which is a heavy muck and a high water table.

The 1970 and 1974 inspections at Lake Charles, La., and the final inspection of stakes installed at the Canal Zone during January 1956 were made by representatives of the Wood Products Insect Laboratory, Gulfport, Miss., and the Forest Products Laboratory. The final inspections of the stakes at Jacksonville and Bogalusa were made in 1960 and 1962, respectively, by representatives of the Chapman Chemical Company and the Forest Products Laboratory. The Madison and Saucier installations were inspected by representatives from the Forest Products Laboratory.

In these inspections, the stakes were removed individually, scraped off to facilitate inspection, examined, and then returned to their original place unless their condition indicated removal. Following the examination, the stakes were given a numerical and a letter rating according to decay and termite attack, as follows:

Decay

- 1, no decay
- 2, slightly soft or suspicious
- 3, partial or limited decay
- 4, severe decay
- 5, removed because of $\frac{6}{}$

Termite attack

- A, no attack
- B, nibbles or trails
- C, limited attack (penetration)
- D, heavy attack
- E, removed because of termite attack of

^{5/} Fisher, R. A., and Yates, F. Statistical Tables for Agricultural and Medical Research. London. 99 p. 1938.

^{6/ 50} pct or more of cross section destroyed.

In tables 2 through 58, stakes listed as "Good" had an inspection rating of one of the following: 1A, 1B, 2A, or 2B. Stakes listed as "Serviceable but showing some decay" had one of the following inspection ratings: 3A, 3B, 4A, or 4B. Those listed as "Serviceable but showing some termite attack" were so classified on the basis of a field rating of: 1C, 2C, 1D, or 2D. Stakes listed as "Serviceable but showing some decay and termite attack" were given one of the following ratings: 3C, 3D, 4C, or 4D. Under the foregoing system of classification, stakes showing limited and heavy decay, termite attack, or both are grouped together. Undue emphasis is often placed upon this classification, in which the stakes show some deterioration but are not necessarily in serious condition. In making comparisons between preservatives, therefore, only the stakes actually destroyed should be considered.

For stakes classified as "Destroyed by decay fungi and termites," both forms of deterioration must be rated at least with bad decay or heavy attack ("4" or "D") in the inspection. In other words, a stake rated in the inspection as 3E would be considered as destroyed by termites rather than by decay and termites, while one rated as 5C would be considered as destroyed by decay fungi. The system used in the tables for classifying the destroyed stakes therefore emphasizes the major factor or factors responsible for damage, but it ignores those that may have been noted but that have not seriously contributed to the destruction. In estimating service life prior to 100 percent removal of stakes it has been noted that the average life is approximately at the time when 60 percent of the stakes in a group have been removed.

The foregoing system of classification is considered well suited to the requirements of tests rated on the basis of visual examination. Such methods of examination do not appear to warrant the use of elaborate or precise methods of rating or classification.

Tables 2 through 66 show the condition of the test stakes at the most recent inspection. Table 67 is a summary of results obtained in Mississippi on 2- by 4-inch pine stakes treated with wood preservatives that are in general use.

SUMMARY OF RESULTS

THE PARTY WAS A STATE OF THE ST

The results of the tests thus far can be summarized as follows:

Southern Pine and Plywood Stakes

Untreated stakes.—The untreated 2- by 4-inch southern pine sapwood stakes have had an average life of approximately 1 year in the Canal Zone, Panama, 1.8 to 3.6 years at Saucier, Miss., Bogalusa, La., and Jacksonville, Fla., and 4 to 6 years at Madison, Wis. At Lake Charles, La., 90 percent of the untreated control stakes were destroyed by Formosan termites giving an average service life of 2.3 years. Untreated 3/4-inch pine sapwood stakes in Mississippi have had an average life of 1.4 to 2.1 years.

The untreated Douglas-fir plywood stakes installed at Saucier, Miss., have had an average life of about 1 to 4 years. Those glued with phenolic and urea-resin glues have lasted somewhat longer than those glued with casein glue, which have had an average life of 1 year. The stakes cut from Douglas-fir lumber and of thickness similar to that of the plywood have had an average life of slightly more than 2 years. Untreated plywood stakes of yellow birch, sweetgum, and tangile have had an average life of less than 2 years.

Untreated plywood stakes of Engelmann spruce heartwood have had an average life of 2.6 years and untreated Douglas-fir heartwood plywood stakes gave an average life of 3.2 years. Southern pine plywood stakes that contained about equal amounts of heartwood and sapwood have had an average life of 2.8 years.

Pressure-treated stakes. -- In the newer installations, and in those with the more effective preservatives, only a limited number of stakes have thus far been removed, and the average life of stakes pressure treated with various preservatives cannot yet be determined. Estimates on average life were made for preservatives with significant failures at the time of the termination of several installations (see tables 2, 3, 4, 5, 8, 12, 18, 38, and 47). In the Canal Zone, stakes treated with several retentions of chromated zinc arsenate were destroyed during the 15-1/3 years of exposure. Stakes with 0.22 pound per cubic foot (pcf) (oxide basis) of the preservative had an average life of 9.2 years, while those with approximately 0.69 pcf (oxide basis) had an average life of 15.3 years. Stakes treated with chromated zinc arsenate to retentions of 0.22 to 0.70 pcf (oxide basis) had 78 to 100 percent failures in Wisconsin after 41-1/2 years, while in Mississippi failures have been noted only with the lower retentions (table 4; see similar comparison in table 20). This may be attributed to the presence of arsenic-tolerant fungi at the Wisconsin test area.

THE REAL PROPERTY.

Stakes treated with retentions of from 0.30 to 0.63 pcf (oxide basis) of chromated zinc chloride lasted, on an average, about 5 to 7 years in Panama, 14 to 20 years in Mississippi, 9 to 12 years in Louisiana, 14 to 17 years in Florida, and 17 to 18 years in Wisconsin. In Panama, stakes treated with fluor chrome arsenate phenol with average retentions of 0.12 to 0.19 pcf (oxide basis) had an average life of about 3 to 6 years. With stakes treated to 0.37 pcf (oxide basis) the average life in Panama was 14 years. In Mississippi, stakes treated with 0.12, 0.19, and 0.37 pcf (oxide basis) of fluor chrome arsenate phenol had an average life of about 10, 18, and 24 years, respectively. Stakes in Wisconsin treated with similar retentions of that preservative had an average life of 14 to 16 years (table 2).

Of the waterborne preservatives in test (31 to 36 yrs in Mississippi), the formulations containing either copper and arsenic (ammoniacal copper arsenate, table 14) or copper, chromium, and arsenic (chromated copper arsenate, tables 15 and 20) are better performers with no failures with retentions of 0.29 pcf (oxide basis) or higher. Again the overall performance of the arsenic containing preservatives (table 20) is better in Mississippi than in Wisconsin.

Stakes treated with ammoniacal copper borate to retentions of 0.16 and 0.22 pcf (oxide basis) had 44 and 20 percent failure, respectively, in Mississippi after 7 years of service. The ammoniacal copper arsenate-treated stakes, on the other hand, show 4 percent failure at the 0.16 pcf retention level for the same exposure period (table 52).

Results thus far on installations of pentachlorophenol with similar retentions (approximately 0.2 pcf) and with different hydrocarbon solvents (tables 17, 42, and 45) show better performance with solutions containing the heavy solvents such as heavy gas oil, lube oil extract (table 17), No. 4 aromatic oil (table 22), and AWPA P9 heavy petroleum solvent (tables 42 and 45) than with volatile liquid petroleum gas (LPG) or light oils such as Stoddard solvent (mineral spirits) (tables 17 and 42). Preservatives such as rosin amine-D-pentachlorophenate (tables 22 and 23), tributyltin oxide (tables 36 and 41), and copper-8-quinolinolate (tables 38 and 43) also show better performance with the heavy petroleum solvent than with the light Stoddard solvent (mineral spirits). The above-mentioned heavy petroleum solvents have the following properties:

PARKETS AREAST MANAGE NAMED AND ASSESSED SAFERED STATES AND ASSESSED

				Penta	D	istill	ation
Petroleum oils	API gravity 60° F	Flash point (PMCC)	Viscosity SUS at 100° F	solvency at 75° F	IBP	50 per- cent	EP
		(°F)		(Pct)		- (°F)	
Heavy gas oil,							
No. 101	8.3	345	167.4	20-22	600	700	734
Lube oil							
extract	5.1	295	196.4	28-30	440	696	736
AWPA P9, heavy	23.8	225	38.4	15	480	538	647
No. 4 aromatic	6.8	230	72.6	10+	458	592	Cracked (85 pct)

Pentachlorophenol retentions of 0.38 pcf and less are showing deterioration on the 3/4-inch stakes after 6 years of service in Mississippi. The stakes treated to retentions of 0.34, 0.38, and 0.50 pcf of a water-soluble form of copper-8-quinolinolate gave service lives of 3.3, 3.8, and 4.6 years, respectively. The stakes treated to retentions of 0.94 to 1.84 pcf of copper-8-quinolinolate are showing 20 to 60 percent failure (table 54).

Coal-tar creosotes installed in Mississippi during 1940 and 1941 (tables 4, 5, and 6) have shown better performance than those installed in 1948 (tables 18 and 19). In the latter installation, 10 coal-tar creosotes with a retention of approximately 8 pcf showed only a few serviceable stakes after 20 years and the average life was determined or estimated at 14 to 21 years. Creosotes installed earlier showed 60 to 70 percent failures in 40-1/2 to 41-1/2 years for similar retention.

Stakes pressure treated with the fire-retarding formulation containing ammonium phosphate and ammonium sulfate lasted, on an average, only 2 to 3 years in Mississippi. With these ammonium salts plus borax and boric acid, the stakes installed in 1943 lasted on the average about 4 years. The fire-retarding formulation with borax and boric acid alone has provided protection against decay and termites for an average of about 6 years (table 13). The addition of zinc chloride and chromium compounds to combinations of boron and ammonium salts in fire retardants improves protection against decay fungi and termites (table 25). An exterior-type fire retardant containing urea, dicyandiamide, formaldehyde, and phosphoric acid in 2- by 4- by 18-inch stakes is showing 10 and 90 percent failure for retentions of 6.0 and 9.5 pcf, respectively. All failures have been caused by termites (table 53).

Douglas-fir plywood stakes treated with 6 and 12 pcf of coal-tar creosote have performed somewhat better in Mississippi than those treated with 26 pcf of 1.1 or 2.25 percent pentachlorophenol in light solvent (table 8).

The results of stake tests in Mississippi show copper naphthenate is providing greater protection than zinc naphthenate with similar retentions (table 7).

Stakes pressure treated with various concentrations of phenyl mercury oleate in naphtha have lasted from 5 to 9 years in Mississippi. This chemical alone did not perform as well as did a proprietary product containing a water repellent (table 17).

Rosin amine-D-pentachlorophenate in Stoddard solvent is performing less satisfactorily than is pentachlorophenol with that solvent and similar retentions. Naval stores products such as rosin oil, oleo resin, and drop liquor concentrate with petroleum solvents appear to have limited value as preservatives but are improved by the addition of pentachlorophenol. Urea (table 10) has also shown limited protection. Stakes pressure treated with 5.8 pcf had an average life of 9.1 years in Mississippi. Other products showing limited preservative value in the retentions used are acrylonitrile (cyanoethylation), ammonium hydroxide (thiamine destruction), amyl phenyl acetate, capric acid, copper-8-quinolinolate (in Stoddard solvent), diamyl phenol, DDT, dodecyl amine, nickel stearate, and tributyltin oxide (in Stoddard solvent).

An indication of the influence of size of test stakes can be noted in table 6. With a coal-tar creosote retention of approximately 8 pcf, 1/2-inch-square stakes have been destroyed in 21-1/2 years with an average life of 17 years, 1-inch-square stakes have been destroyed in 39-1/2 years with an average life of 23.5 years, 1-1/2-inch-square stakes have been destroyed in 33-1/2 years with an average life of 26.6 years, and 2- by 4-inch stakes show 60 percent failure after 39-1/2 years.

It is interesting to note that aspen particleboard treated with chromated copper arsenate is showing less degradation than those stakes treated with pentachlorophe. I in light solvents. Stakes treated to 0.22, 0.40, and 0.82 pcf retention of penta showed failures of 100, 60, and 20 percent, respectively, while only the low retention (0.26 pcf) of chromated copper

arsenate showed 10 percent failure (table 49). Untreated stakes of aspen particleboard show an average life of 2.0 years.

Nonpressure-treated stakes.--Southern pine stakes and Douglas-fir plywood stakes treated by superficial applications, such as brushing and brief dipping in coal-tar creosote and solutions of pentachlorophenol, copper naphthenate, zinc naphthenate, and phenyl mercury oleate, have, in general, lasted 1 to 4 years longer than the untreated control stakes. However, stakes dipped for 15 minutes in coal-tar creosote had a life of about 8 years in Mississippi.

For the plywood stakes in which the veneer was treated by dipping or long soaking in the preservatives before gluing, the results have generally been more favorable than for plywood similarly treated after gluing. Stakes soaked 18 hours in solutions of pentachlorophenol or mixtures of chlorinated phenols have lasted 5 to 10 years in the Canal Zone. In the United States, the stakes soaked 18 hours in these solutions lasted 8 to 16 years. Douglas-fir plywood stakes treated by brushing, dipping, and 18-hour soaking in chloro-2-phenylphenol solution, however, have lasted only a few months longer than the untreated plywood control stakes. Douglas-fir plywood stakes treated by soaking 18 hours in pentachlorophenol solution had a life of 5 years, while those similarly treated with coal-tar creosote have an estimated average of 24 years.

Pine stakes treated by soaking in urea solution have lasted about 1 to 1-1/2 years longer than the control stakes in Mississippi, while those similarly treated with urea-formaldehyde solution have lasted about 3 to 4 years longer than the controls.

Pine stakes with higher retentions of copper chromate and with copper arsenate applied by double-diffusion have continued to perform well after 40 years in Mississippi. Failures thus far, however, are attributed to poor penetration of the preservative (table 9).

Modified-Wood Stakes

Plywood stakes impregnated with phenolic resin (impreg) and impregnated and compressed (compreg) have been considerably more resistant to decay and termite attack than untreated plywood of the same species. Plywood stakes with a low resin content had an average life of approximately 7 years and those with a high resin content lasted 12 years. In Douglas-fir plywood stakes with phenolic-resin-impregnated faces and untreated cores, an average life of about 3.5 years has been obtained, and somewhat better results have been noted when the edges of the plywood have been protected with a phenolic-resin coating. Southern pine 2- by 4-inch stakes impregnated with a low resin content had an average life of 12 years while those with a higher content of phenolic resin have lasted somewhat longer.

Laminated paper plastic made with phenolic resin has shown limited resistance to decay and termite attack, with the life of the stakes averaging about 6 to 8 years. Heat-stabilized birch and maple plywood (staypak)

stakes have lasted about 4 to 6 years. The staypak with veneer of 1/16-inch thickness has performed better than that with 1/8-inch veneer, presumably since the thinner veneer permits a better distribution of the phenolic-resin adhesive in the plywood.

Acetylated birch (laminated veneer) has had reasonably good resistance to decay and termite attack with an average life of 17.5 years in Mississippi. Deterioration is due primarily to decay fungi.

Butylene oxide stakes treated to 17 to 22 percent weight gain had an average life of 4.2 years, and those treated to 37 to 40 percent weight gain are showing attack after 8 years. Forty-seven percent of the butylene oxide stakes treated to 31 percent weight gain are showing attack and 13 percent have failed after 4 years of service. Propylene oxide-modified stakes are showing various degrees of degradation from 0 to 100 percent failure depending on the chemical loading (table 50). Three-quarter-inch stakes treated with butylene oxide to 33.2 percent weight gain had 60 percent failure after 3 years of service.

NOTE

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

Crankcase oils may contain chlorinated naphthalenes, which have been reported to contribute to "X-disease" (hyperkeratosis) in cattle. These oils are therefore not recommended for preservative treatment of wood with which cattle may come in contact.

Haterials	Existing specification or AWPA reference	Table No.
enicals		
Acid copper chromate	Fed. Spec. TT-W-546; AWPA P5	15, 16, 46, 47
Acrylonitrile	••	36
Aldrin		41
Ammoniacal copper arsenate	Fed. Spec. TT-W-549; AWPA P5	14, 47, 51, 52,55
Ammoniacal copper borate	••	52
Ammoniacal copper zinc arsenate	••	62 36
Ammonium hydroxide		36 13
Ammonium sulfate-phosphate	Navy Spec. 51C38	14
Amyl phenyl acetate	••	
Basic zinc chloride		26
Basilit UA	••	30
Boliden salt S-25		24
Borax-boric acid	Navy Spec. 51C38	13
Capric acid	••	14
Chloro-2-phenylphenol	••	5, 8
Chromated copper arsenate	Fed. Spec. TT-W-550 Type I;	15, 47
	AWPA PS; AWPA PS, Type A	1-
Chromated copper arsenate	Fed. Spec. TT-W-550 Type II;	20, 47
Chromated copper arsenate	AWPA P5, Type B Fed. Spec. TT-W-550 Type III;	48, 49, 51, 55, 57
Curometed cobber araemete	AWPA PS, Type C	
Chromated copper fluoride (CFK)		59
Chromated zinc arsenate	Formerly in Fed. Spec. TT-W-538; AWPA P5	4, 24
ob	Fed. Spec. TT-W-551; AWPA P5	2, 16, 25, 35, 47
Chromated zinc chloride Chromated zinc chloride, copperized	Formerly in Fed. Spec. TT-W-562;	31
on the shipped (TD)	AWPA P10, Type B	25
Chromated zinc chloride (FR)	AWPA Proc. 1941; pp. 23-31	9
Copper arsenate	AWPA Proc. 1941; pp. 23-31	9
Copper chromate Copper-chrome boron (CB)	U.S. Patent No. 3,007,844	46
Copper-chrome-phosphorus	••	48
Copper formate	••	34
Copper naphthenate	AWPA P8	7, 12, 16, 17, 29
Copper-8-quinolinolate	AWPA P8	38, 43, 54, 61
Creosote, coal-tar	Fed. Spec. TT-C-645; AWPA P1	4, 5, 6, 8, 16, 17 18, 19, 20, 31, 35, 47, 63, 66
Grands conleter (English)		18, 19
Creosote, coal-tar (English) Creosote, coal-tar (low temperature)	••	28
Creosote, coal-tar (Texas lignite)	••	32
Creosote-coal tar solution	Fed. Spec. TT-C-650; AWPA P2	18, 47
Creosote-petroleum solution	Fed. Spec. TT-W-568	18, 47
Creosote toluene	•-	6
Diami abasal	••	14
Diamyl phenol Dichloro-diphenyl-trichloroethane (DDT)		14
	••	41
Dieldrin Dodecyl amine	••	14
Drop-liquor concentrate	••	27
		53
Fire retardants Fire retardants	AWPA P10	25
Fluor chrome arsenate phenol	Fed. Spec. TT-W-535, Type A;	2, 33, 37, 47, 49
Fluor chrome arsenate phenol	Fed. Spec. TT-W-535, Type B;	47
	AWPA PS	5, 17, 27
Fuel oils		=

NAMES AND TO A SECOND ASSESSED ASSESSED ASSESSED BUSINESS SURFASSES TO ASSESSED ASSE

Table 1. -- Index to materials tested--continued

Reptadecyltrimethyltetra-hydropyrimidine (HTP)	Materials	Existing specification or AWPA reference	Table No.
(HTF) EFP (copper oxide and chlorophenol) Lignite-tar extracts	hemicalscontinued		
RP (copper oxide and chlorophenol)	Heptadecyltrimethyltetra-hydropyrimidine (HTP)	••	44
Lightle-tar extracts		••	35
Minalith AMPA Plo, Type C 25	Lignite-tar extracts		
Minalith Mickel-chromium-arsenic salt AMPA P10, Type C 25 Mickel-sterate 15 Oleo resin 27 Paraffin 32 Pentachlorophenol Fed. Spec. TT-W-570; AWPA P8 5, 8, 12, 16, 17, 22 23, 27, 29, 31, 33 41, 42, 43, 44 47, 49, 54, 58, 64 Fetroleum oils (various types) 17, 18, 21, 23, 45 Petroleum oils (various types) 12 Phenyl mercury oleate 12 Pyresote AWPA P10, Type D 25 Rosin amine D copper acetate complex 27 Rosin amine D pentachlorophenate 22, 23 Rosin amine D pentachlorophenate 22, 23 Sodium pentachlorophenate 22, 27 Sodium pentachlorophenate 22, 23 Sodium tetrachlorophenate 25 Tetrachlorophenol 25 Toluene 25 Tetrachlorophenol 20 Zinc chloride 20 Zinc chloride	Mercuric chloride		12
Mickel-chromium-arsenic salt	Minelith	AMPA PIG Tyme C	
Mickel-sterate	Nickel-chronium-argenic salt	• • •	
Paraffin			
Pentschlorophenol Fed. Spec. TT-W-570; AWPA P8 S, 8, 12, 16, 17, 22 23, 27, 29, 31, 33 33, 41, 42, 43, 45 47, 49, 54, 58, 66 61, 63, 64, 65 17, 18, 21, 23, 45 Phenyl mercury oleate 12 Phenyl mercury oleate 27 Phenyl mercury oleate Phenyl mercury oleate Phenyl mercury oleate Phenyl mercury oleate Phenyl mercury ol			
Pentschlorophenol Fed. Spec. TT-W-570; AWPA P8 S, 8, 12, 16, 17, 22 23, 27, 29, 31, 33 33, 41, 42, 43, 45 47, 49, 54, 58, 66 61, 63, 64, 65 17, 18, 21, 23, 45 Phenyl mercury oleate 12 Phenyl mercury oleate 27 Phenyl mercury oleate Phenyl mercury oleate Phenyl mercury oleate Phenyl mercury oleate Phenyl mercury ol	Paraffin		22
23, 27, 29, 31, 32, 33, 41, 42, 43, 44, 47, 49, 54, 58, 66, 61, 63, 64, 65		Fed Care SM 11 520, AIMA DA	
Petroleum oils (various types)		red. Spec. IT-W-5/U; AWPA P8	23, 27, 29, 31, 32, 33, 41, 42, 43, 45, 47, 49, 54, 58, 60,
Phenyl mercury oleate	Petroleum oils (various types)		
Pyresote	Phenyl mercury oleate	••	
Rosin amine D pentachlorophenate 22, 23 27	Pyresote	AWPA P10, Type D	
Rosin amine D pentachlorophenate 22, 23 27	Rosin amine D copper acetate complex	••	27
Sodium pentachlorophenate	Rosin amine D pentachlorophenate		
Sodium tetrachlorophenate	Rosin oil		-
Sodium tetrachlorophenate	Sodium pentachlorophenate	••	2. 5
Tetrachlorophenol	Sodium tetrachlorophenate		
Toluene Tributyltin oxide 36, 41, 61 Urea 10 Zinc-arsenate-chromium salts 20 Zinc chloride Zinc naphthenate 7, 8 diffied woods, particleboard, plywood, and paper plastic Acetylated wood Butylene oxide U.S. Patent No. 3,985,921 Embedded fiberboard Epichlorohydrin Heat-stabilized wood (staypak) Laminated paper plastic (papreg) Impreg and compreg Hold-infected wood Particleboard Particleboard Propylene oxide U.S. Patent No. 3,985,921 3 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50 6 6 6 7 8 10 20 21 24 20 25 27 28 29 20 29 20 20 20 20 20 21 40 20 20 21 40 20 20 21 40 20 20 21 40 20 21 40 21 21 22 24 20 25 26 27 28 28 29 20 21 40 21 21 21 22 24 25 26 27 28 28 29 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 40 21 21 21 21 22 24 25 26 26 27 28 29 20 21 20 20		••	— — — — — — — — — — — — — — — — — — —
Tributyltin oxide 36, 41, 61 Urea 10 Zinc-arsenate-chromium salts 20 Zinc chloride 2, 4, 20, 26 Zinc naphthenate 7, 8 diffied woods, particleboard, plywood, and paper plastic Acetylated wood 14 Butylene oxide U.S. Patent No. 3,985,921 50, 56 Cyanoethylated wood 36 Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 11 Impreg and compreg 3 Mold-infected wood 49 Plywood 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50			
Zinc-arsenate-chromium salts 20 Zinc chloride 2, 4, 20, 26 Zinc naphthenate 7, 8 diffied woods, particleboard, plywood, and paper plastic Acetylated wood 14 Butylene oxide U.S. Patent No. 3,985,921 50, 56 Cyanocthylated wood 36 Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 11 Impreg and compreg 3 Hold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50			
Zinc-arsenate-chromium salts 20 Zinc chloride 2, 4, 20, 26 Zinc naphthenate 7, 8 diffied woods, particleboard, plywood, and paper plastic Acetylated wood 14 Butylene oxide U.S. Patent No. 3,985,921 50, 56 Cyanocthylated wood 36 Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 11 Impreg and compreg 3 Hold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50	Urea		10
Zinc chloride Zinc naphthenate 7, 8 diffied woods, particleboard, plywood, and paper plastic Acetylated wood Acetylated wood Butylene oxide Cyanocthylated wood Embedded fiberboard Embedded fiberboard Epichlorohydrin Heat-stabilized wood (staypak) Laminated paper plastic (papreg) Impreg and compreg Hold-infected wood Particleboard Propylene oxide U.S. Patent No. 3,985,921 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 2, 4, 20, 26 7, 8 24 25 36 Embedded wood 31 31 Particleboard 49 Plywood Propylene oxide U.S. Patent No. 3,985,921 50			• •
Zinc naphthenate 7, 8 dified woods, particleboard, plywood, and paper plastic Acetylated wood 14 Butylene oxide U.S. Patent No. 3,985,921 50, 56 Cyanocthylated wood 36 Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 11 Impreg and compreg 3 Mold-infected wood 31 Particleboard 49 Plywood 49 Propylene oxide U.S. Patent No. 3,985,921 50			
Acetylated wood Butylene oxide U.S. Patent No. 3,985,921 50, 56 Cyanocthylated wood Embedded fiberboard Epichlorohydrin Heat-stabilized wood (staypak) Laminated paper plastic (papreg) 11 Impreg and compreg Hold-infected wood Particleboard Propylene oxide U.S. Patent No. 3,985,921 50 14 14 15 10 10 10 10 10 10 10 10 10 10 10 10 10			
Butylene oxide U.S. Patent No. 3,985,921 50, 56 Cyanocthylated wood 36 Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 3 Impreg and compreg 3 Hold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50	dified woods, particleboard, plywood, an	d paper plastic	
Butylene oxide U.S. Patent No. 3,985,921 50, 56 Cyanocthylated wood 36 Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 3 Impreg and compreg 3 Hold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50	Acetylated wood	••	14
Cyanocthylated wood 36 Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 3 Impreg and compreg 31 Hold-infected wood 49 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50		U.S. Patent No. 3.985.921	- ·
Embedded fiberboard 40 Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 3 Hold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50		***************************************	. *
Epichlorohydrin 50 Heat-stabilized wood (staypak) 11 Laminated paper plastic (papreg) 11 Impreg and compreg 3 Mold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50		••	- -
Heat-stabilized wood (staypak)			· ·
Laminated paper plastic (papers)	Heat-stabilized wood (stawnsh)		
Mold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50			
Mold-infected wood 31 Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50	Impres and compres		4
Particleboard 49 Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50			
Plywood 3, 8, 16, 33, 51 Propylene oxide U.S. Patent No. 3,985,921 50			
Propylene oxide U.S. Patent No. 3,985,921 50			
Mad MIT Thinks deal and	Wood with thismine destroyed	U.S. Fatent NO. 3,983,921	50 36

Table 2.--Condition of southern pine stabes (2 x 4 in. meminal x 18 in.), treated with chlorinated phonols and with fluor chrome arounded phonol--Type A, zinc chloride, and chromated zinc chloride, after 15 to 25 years of service. Stakes placed in test at Barro Colorado Island, Const Zone, September 1938; Begaluse, La., December 1939; Jecksonville, Fla., Jennery 1939; Harrison Experimental Forest, Soutier, Hiss., December 1938; and Hadison, Vis., November 1939 (Plot 2)

											es late i				
	•	No.	tention of sa	alto ⁴	Nuo-			eviceable leving see		De	stroyed b	<u> </u>			
Preservative	Loca- tion	Hipiano	Hestieum	Average	in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack	Tot	tol pred	Average life
			· · • <u>Psf</u> · ·				• • • •	• • • •	<u>Pct</u>	• • • •			Hun- ber	Pss	<u>Yr</u>
Sodium ponta-	Conel	0.24	0.20	0.26	10							100	10	100	6.9
chlorophenote	Le.	.24	. 20	. 26	10	••	••	••		10		90	10	100	9.2
	Flo.	.25	. 26	. 26	•			••		11		89	•	100	14.2
	Hiss.	.24	. 28	. 26	10		••	••		10	20	70	10	100	11.9 12.5
	Wis.	. 24	. 28	. 26	10		••	••		100			10	100	12.5
	Conel	.45	.54	.50	10		••			••	20	80	10	100	11.2
	Le.	.45	.53	.49	10		••			30		70	10	100	10.7
	Flo.	.46	.55	.50	10	••			20		••	80		80	22.04
	Mies.	.44	.54	.49	10					10	••	90	10	100	19.4
	Wis.	.44	.53	. 49	10					100	••		10	100	16.4
	Conel	.69	.81	. 75	10		••	••		10	20	70	10	100	11.7
	Le.	.69	.85	.75	10	••	••	••		10		90	10	100	
	Flo.	.66	.82	.74	10		••	••	40	10		50	6	60	22.04
	Mine.	.69	.84	.76	10		••	••	••	40		60	10	100	21.6
	Wie.	A7	.81	. 76	10			••	••	100			10	100	21.0
					10		••	••	••	••	10	90	10	100	14.3
	Cone l Le .	. 92 . 93	1.06 1.00	.96 .99	10		••	••	••	10	10	90	10	100	16.2
	71a.	.93	1.00	.90	10			••	60	10	••	30	- 4	40	
	Mico.	.93	1.00	.97	10	••	••		••	20	••	80	10	100	25.0
	Wis.	. 86	1.01	. 90	10	••	••		••	100	••	••	10	100	23.4
					16	••	••	••			60	40	10	100	4.8
Sodium tetro- chlorophomote	Cone l Le .	. 24 . 23	. 27 . 27	. 25 . 25	10			••	*-	20		80	10	100	8.1
40101-0-1	Zla.	.23	.20	.23	7	••	••	••		22		78	.,	100	11.3
	Man.	.23	.27	.25	10	••		••			10	90	10	100	10.7
	Vis.	. 24	.27	. 25	10	••	••	••	••	100	••	••	10	100	11.4
										••	20	•	10	100	9.9
	Const	0.47	0.36	0.51	10	••				30	**	70	10	100	10.9
	Le .	.46	. 95	.50	16 10			••	••		••	100	10	100	15.3
	Fla.	.47	. 36	.51	10	••		••	••	••		100	10	100	15.1
	Mise . Vic.	. 46 . 47	. 56 . 35	. 52 . 50	10	••	••			100		••	10	100	14.5
		. •••											10	100	13.1
	Comel	. 70	. 83	. 76	10	••			••	••	••	100 70	10	190	11.9
	Lo.	.71	.83	. 77	10	••			••	30	11	29		100	16.7
	Pla.	.48	.83	. 76	•	••			••			100	10	100	19.7
	Miss.	. 66 . 67	. 82 . 6 1	. 75 . 75	10	••		••	••	100		•••	•	100	16.7
	WLo.	.07		. 73	•										
Fluor chross	Conel	16 (0.11)	.22 (0.14)		10		••	••	••	••	100	••	10	190	2.9
00000000	Le.	. 19 (-12)	.22 (.14) .20 (.12)		••	••		••	50		50	10	100	9.6 13.9
phonolType A	fle.	.18 (.11)	.21 (-13					••		50 10		50 40	10 10	100	10.2
•	Mes.	.16 (-11)				••	••	••	••	100	50		10	100	13.6
	Wie.	.13 (.00)	.22 (.14) .20 (.12)	10	••	••	•••							
	Consi	.26 (.17)	. 33 (.20	.30 (.19)	10	••	••	••	••		30	70	10	100	6.4
	<u>.</u>	.20 (.17	.32 (.20) .30 (.19)	10			••	••	20	••		10	100	
	Pla.	.29 (.16	.32 (.20) .30 (.19)				••	••	100			10	100	
	Miss.	.29 (.18	32 (.29) .30 (.19)				••	••	10	••	90	10 10	100	
	Wie.	.27 (-17)	.30 (-19	28 (-17)	10	••	••	••	••	100	••	••	14	140	14.3
	Cone 1	.53 (.33	.66 (.41	.40 (.37)	10	••	••	••	••	40		60	10	100	
	La.	.56 (35				••	••	••	••	50	••	50	10	100	
	<u>714.</u>	.57 (1 .65 (.40	.61 (.36)	10	••	••	••	••	100	••	••	10	100	
		.5	.65 (.40	61 (.36	10	••	••	••	••	60	••	40	10	100	
	Mies.	.5	68 (42	.65 (.40	10	••	••	••		100	••	••	10	100	16.0

Secretary reserve accepted and animals appeared accepted animals and animals animals and animals animals and animals animals and animals and animals and animals and animals animals animals animals animals and animals animals animals animals and animals animals animals animals and animals anima

(Page 1 of 2)

Table 2.--Condition of southern pine stakes (2 m 4 in. maminal m 18 in.), treated with chlorinated phenols and with fluor chrome arsenate phenol--Type A, mine chloride, and chromated mine chloride, after 15 to 25 years of service. Stakes placed in test at Borro Colorode Island, Canal Zone, September 1938; Bogalusa, Lo., December 1939; Jacksonville, Fla., January 1939; Hermison Emperimental Perest, Soucier, Hiss., December 1938; and Hadison, Vis., November 1939 (Plot 2)--continued

									codition	of stal	ies late i	n 1963			
		-	tention of sa	lea [®]	Nuo-			rviceable		D.	stroyed l	y			
Preservative	Loca- tion	Histous	Mexicon	Average	in test	Good	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite attack	Tot		Averag life
		••••	<u>Pef</u>						<u>Pet</u> -				Nun-	Pct	Āt
Sodium ponta-	Conel	0.52	0.55	0.54	10			••	••		30	70	10	100	8.7
chlorophonote and	La.	.46	.53	.49	10			••	••			100	10	100	13.3
sedium chloride	Fla.	.48	.54	. 50	10		••	••	50	10		40	5	50	••
sector catelias	Miss.	. 46	.53	. 49	10			••	••			100	10	100	16.3
	Vis.	.46	.53	.50	10	••		••	••	100			10	100	16.8
Zinc chloride	Conel	.44 (0.26)	.53 (0.32)	.47 (0.28)	10	••					30	70	10	100	3.9
	Le.	.45 (.27)		.50 (.30)	10		••			30		70	10	100	6.1
	Pla.	.45 (.27)		.49 (.29)	10				**	20	••	80	10	100	12.9
	Miss.	.45 (.27)			10	••			••	40 100	••	60	10 10	100	15.4 18.2
	Vic.	.45 (.27)	.53 (.32)	.49 (.29)	10			••	••	100	••	••	10	100	16.2
	Cenel	.70 (.42)	.82 (.49)	.76 (.45)	10	••						100	10	100	3.9
	Le.	.70 (.42)		.74 (.44)	10	••				40		60	10	100	12.1
	Fla.	.71 (.42)			10	••				40		60	10	100	13.5
	Miss.	.70 (.42)			10		••			20	10	70	10	100	16.7
	Vie.	.65 (.39)	.87 (.52)	.75 (.45)	•	••		••		100		••	•	100	18.9
	Conel	.94 (.56)			10				••		40	60	10	100	4.0
	Le .	.94 (.56)			10					70		30	10	100	11.6
	Fla.	.95 (.57)			10				••	20		80	10	100	15.4
	Miss. Vis.	.94 (.56) .93 (.56)			10 10		••		••	10 100		90	10 10	100	17.3
	WIE.	.93 (.34)	1.13 ()	1.02 (.01)											.,
	Conel	1.40 (.84)			10		••		••		10	90	10	100	7.3
	Le.	1.44 (.86)			10		••		••	40 20		60 80	10 10	100	11.1 15.7
	Fla. Hiss.	1.41 (.84)			10 10			••		20 60		44	10	100	17.9
	Wis.	1.36 (.81)			10	••		••		100	••	==	10	100	18.7
								••		••		100	10	100	
Chromotod zinc chloride	Conel La.	0.45 (0.28) .46 (.28)	0.55 (0.34) .55 (.34)	0.49 (0.30) .49 (.30)	16 10				••	40	10	50	10	100	4.9 8.6
catestas	Fle.	.45 (.28)	.53 (.33)	.49 (.30)		••	••	••	••	25		75		100	14.3
	Miss.	.45 (.28)	.55 (.34)	.49 (.30)	10	••		••		30	10	60	10	100	14.2
	Wis.	.43 (.26)	.53 (.33)	.47 (.29)	10	••		••		100			10	100	16.9
	Camel	.70 (.43)	.61 (.50)	.76 (.47)	10	••					••	100	10	100	7.2
	La.	.70 (.43)	.80 (.49)	.76 (.47)	10	••				40	••	60	10	100	10.6
	Fle.	.73 (.45)	.81 (.50)	.77 (.47)	•	••				11		89	•	100	14.3
	Hiss.	.72 (.44)	.81 (.50)	.76 (.47)	10			••		40		60	10	100	20.2
	Wie.	.70 (.43)	.86 (.53)	.80 (.49)	10	••	••	••	••	100	••	••	10	100	14.7
	Canal	.95 (.54)		1.02 (.63)	10	•-	••		••	10		90	10	100	6.6
	Le.	.93 (.57)		1.00 (.62)	10	••		••		40		60	10	100	11.9,
	Fla.	.96 (.59)		1.02 (.63)	10	••		••	10	20	••	70	9	90	17.0
	Miss. Vis.	.96 (.59)	1.09 (.67)		10 10					50 100	••	50	10 10	100	20.1 18.2
	410.		/4/	·· va (. •3)	•-										10.2
Untreated controls	Conel			••	10			••			100		10	100	0.7
	Le.	••		••	10				**	20	20	60	10	100	2.9
	P1 -				10						10	-	1.0	100	
	Fla. Nice.	••	••	••	10 10	••	••		••		10 60	90 40	10	100	2.8 2.9

A Rotention values in parentheses are based on preservative oxides.

(Page 2 of 2)

b 10 stokes were originally installed at each test station. This number has since been reduced either because of failure to locate the stakes at the time of the inspection or because of demaps by fire.

[©] Final inspection at Canal Zone, January 1956; at Louisiana, December 1958; at Florida, December 1960; at Wisconsin, October 1963; and at Mississippi, December 1963.

Estimpte based on percentage of stakes remaining after final inspection

^{*} Retention values based on sedium pentachlorophonate only. Sedium chloride added was equal to 20 pct of weight of sedium pentachlorophonate in solution.

Table 3.--Condition of the plywood stakes and resin-impregnated stakes, set Jenuary 1940 on the Harrison Experimental Forest, Sourier, Hiss., after about 27 years of service (Flot 3)

						Condi	tion of s	takes Je	nuary 196	7			
			Approxi-	Hun-			iceable showing	De	stroyed b	y			
Group No.	Stake No.	Treetment	mate average	ber in		-	**			Termite attack	Tot read		Average Life
			retention	test	Good	Decay	Termite attack and decay		Termite attack	and decay fungi		=	
			Pef					<u>Pct</u>	· • • •		Nun- ber	Pct	Āī
			PLYM	×00*									
1	1-1-40 to 1-10-40	Each ply impregnated with a 50 pct aqueous solution of phonolic rosin, slowly dried, and cured for 1 day at 220° F. Bonded with phonolic-rosin film.	10			••	••	38		62		100	12.4
2	2-1-40 to 2-10-40	Same as group 1 except that a 25 pct solution was used.	5	10		**		60	••	40	10	100	6.8
3	3-1-40 to 3-10-40	Face plies impregnated as in group 1 and bonded to an untrested core with phenolic-resin film.	106	10		••		••	100		10 ^c	100	3.3
•	4-1-40 to 4-10-40	Face plies impregnated as in group 2 and bonded to an untrested core with phonolic-resin film.	56	10			••	••	100		10 ^c		3.5
5	5-1-40 to 5-10-40	Some as group 2 except that edges of specianus were given a protective treat- ment by dipping in a phonolic resin containing 15 pct alcohol.	10 ^b	10		••		30	70		10 ^c	100	4.9
•	6-1-40 to 6-10-40	Same as group 4 except that edges were protected as in group 5.	sb	•	••	••		22	45	33	9 ^c	100	9.3
7	7-1-40 to 7-10-40	Untrested plies bonded with phenolic- resin film.	••	10					70	30	10	100	1.9
•	8-1-40 to 8-10-46	Untreated plies bonded with hot-press uree resin.	••	10	••				70	30	10	100	1.9
•	9-1-40 to 9-10-40	Untreated plies bonded with casein glue (FPL formula 48)	••	10					90	10	104	100	1.0
10	10-1-40 to 10-10-40	Untreated plies (yellow birch) bonded with phenolic-resin film.	••	10				10	30	60	10	100	1.9
11	11-1-40 to 11-10-40	Untrested controlssolid wood (1/4 by 4 by 18 in.).	••	10		••			80	20	10	100	2.4
			STAKES (I MPREG)*								
12	12-1-40 to 12-10-40	Impregnated same as group 1.	10	10		10	10	50		30		80	19.5 ^f
13	13-1-40 to 13-10-40	Impregnated same as group 2.	5	10	••		••	50		50	10	100	11.7
14	14-1-40 to 14-10-40	Controlsuntrested.	••	10			••	•-	20	80	10	100	2.7
		core	RESSED PLYS	(OOO)	OHPRE	;) ⁸							
15	15-1-40 to 15-3-40	Soughs-firall plies impregnated as in group 1, dried and assembled without the use of glue on a hot press at 330° F and 1,000 pounds pressure per square inch.	10	3	100	••	••	••	••				
	15-4-40 to 15-6-40	Yellow-poplarall plies impregnated and compressed the same as for Douglas-fir.	10	3				33		67	3	100	19.5

Specimens in groups 1 to 9 are 3-ply Douglas-fir; in group 10, yellow birch. They are 1/4 x 4 x 18 in. in size and made of 1/16-in. faces and a 1/8-in. core. Specimens in group 11 are solid Douglas-fir, 1/4 x 4 x 18 in. in size.

D increase based on treated faces.

^f Doterioration principally in cores.

d Some separation of plies had also occurred.

Specimens are southern pine sepwood, 2×4 (nominal) $\times 18$ in. in size

Based on estimated life of 2 remaining states.

⁸ Specimens of both Douglas-fir and yellow-poplar mode of 15-1/16-in. plies, compressed to a thickness of 3/8 in. Size of apecimens 3/8 x 4 x 14 in.

NOTE--Stabes remaining after the 1952 inspection were taken up and reset in the same general area

ondition of southern pine stakes (2 x 4 in. meminal x 18 in.) treated with chromated zinc argumente (Bolidon selts), zinc chloride, and coal-tar crossate after 15 to 41-1/2 years of service. Stakes placed in test at Nedison, Wis., September 1940; Harrison Emperimental Ferent, Saucier, Miss., June 1940; and Barro Colorado Island, Canal Zone, September 1940 (Plot 4)

						C	edition (of stakes	December	1961				
		Ave	erage	Burker			rvicosble		N	etroyed l	77			
Preservative	Loca- tion	Oil	Dry salt	in test	Good	Docay	Termite attack	Becey and termite attack		Termite attack	Docay fungi and termite attack	Tota		Averag life
···		!	<u> Pcf</u>				• • • •	· · · Pct				haber	Pet	Ye
Zine chloride	Wis.	••	0.50 (.30)	10	••		••	••	100		••	10	100	14.8
	Mise.		.50 (.30)	10		••	••		60		40	10 10	100	14.2
	Conel	••	.49 (.29)	10	••	••	••		••	••	100	10	100	3.0
	Wis.		1.03 (.61)	10			••		100	••		10	100	19.8
	Miss. Comel	••	1.02 (.61) 1.01 (.60)	10 10		••		••	60	10	30 100	10 10	100	14.4
	Comes	•••	1.01 (.00)	10			••				100		100	3.0
	Vis.	••	1.51 (.90)	10			••		100	••		10	100	22.3
	Mico.	••	1.51 (.90)	10		**		••	60		40 100	10 10	100	18.1 4.5
	Cenel	••	1.49 (.89)	10	••				••	••	100	10	100	4.3
Chromated minc	Wie.		.33 (.22)	10	••	••	••		100	••		10	100	19.6
armenate (Bolidea	Hiss.		.33 (.22)	10			••		30	••	70	10	100	33.0
salts) ^C	Conel		.33 (.22)	10		••	••	••		••	100	10	100	9.2
	Wis.	••	.44 (.29)	10					100	••	••	10	100	26.5
	Mies.		.44 (.29)	•	••	••		22	11	••	67	7	78	
	Conel	••	.44 (.29)	10	••				30	10	60	10	100	11.6
	Vis.	••	.60 (.40)	10		10		••	90			•	90	
	Hiss.		.58 (.38)	10			••	80	10		10	2	20	
	Casel		.58 (.38)	10	••		••	••	60	40	••	10	100	14.6
	Wie.	••	.78 (.52)	10		10			90		••	•	90	
	Miss.	••	.78 (.52)	10		••	••	100		••	••		••	
	Comel	••	.76 (.52)	10	••		••		100	••	••	10	100	15.1
	Wis.	••	1.66 (.70)	•		22	••	••	78	••		7	78	••
	Miss.	••	1.06 (.70)	10			••	100						••
	Comel	••	1.05 (.69)	10			••	••	100	••	••	10	100	15.3
Cool-ter creesets	Vie.	4.3	•-	10		20	••	••	80		••			••
	Mise.	4.2		10				**	60	••	40	10	100	17.8
	Casal	4.3	••	10			••	••	40	••	60	10	100	13.4
	Wa.	8.0	••	•		89	••	••	11	••	••	1	11	••
	Hiee.	8.0	••	10			••	40	30	••	30	ě	60	19.2
	Casel	8.0	••	10		60		10	30	••	••	3	30	19
	Wia.	11.8		•	22	78	••			••	••	••	••	••
	Hiss.	11.8	••	10				•	10	••	10	2	20	183
	Conel	11.8		10		60			40	••		4	40	18
	Wie.	16.3		10	40	60	••		••	••	••	••	••	••
	Hiss.	16.5	••	10		••		100				••	••	
	Conel	16.5	••	10		90	••	10			••	••		
	Wis.		••	10			••	••	100			10	100	12.4
	Miss.	1.8° 1.8° 1.8°	••	10	••		••		10	30	60	10	100	7.7
	Conel	1.80	••	10	••		••	••	••	80	20	10	100	4.8
	Wie.	.71	••	10	••	••		••	100	••	••	10	100	8.4
	Miss.	.71 £	••	10	••			••	100	50	50	10	100	4.2
	Cocol	. 76 2		10	••			••		90	10	10	100	2.5
Managara and action	Via.	••		10		••			100					6.2
Untreated controls	Wiss.			10				••	100	50	50	10 10	100	2.2
				10						90				

CONTROL TO SERVICE CONTROL OF THE PROPERTY OF

Betimete bosed upon percentage of stables remaining after final inspection.

15-min dip at room temperature.

Brush treatment, 2 costs.

able 5.--Candition of sauthern pine stakes (2 x 4 in. naminal x 18 in.), treated with chlorinated phenols and coal-tar crossote, after
15 to 41 years of service. Stakes placed in test at Barre Colorado Isiand, Canal Zose, February 1961; Bagalusa, La.,
Harch 1961; Jacksonwille, Fla., Harch 1961; and Harrison Experimental Forest, Saucier, Hiss., February 1961 (Plot 5)

									fstakes						
_	Loca-		rtontion o		Han- ber			erviceable			stroyed b		Tar	tel	Average
Preservative	tion	Hinima	Heniaus		in Leat	Cont	Becay	Termite attack	Decay and termite attack		Termite attack	Docay fungi and termite attack		eved	life
			- <u>Pef</u> -			••			<u>Pet</u> -	• • • •			Hun- ber	Pet	Yr
odium pentachlorophenate	Conel	0.23	0.27	0.25	10	••	••		••		60	40	16	100	6.4
•	la.	-23	.26	.25	10			••	••	10	••	***	10	100	10.0
	Fla.	.23	.26	.25	•			••	••	••	••	100	9	100	14.5
	Miss.	.23	. 26	. 25	10	••		••	••	20	••	80	10	100	16.9
	Consi	-31	.34	. 33	10		••				10	90	10	100	10.9
	La.	.31	. 34	. 33	10		••					100	10	100	10.4
	Fla.	- 32	.34 .34	.33	10		••	••	••		12	88		100	16.3
	Miss.	-31	. 34	. 33			••	••	••	20		80	10	100	19.5
	Conel	.47	.55	.51	10	••		••			20	80	10	100	12.9
	ie. Fle.	-48	.54	.51	10	~-	••	••	••		••	100	10	100	15.5 ₄ 21.0 ⁴
	Miss.	.47 .47	.54 .55	. 50 .51	10 10	••			50	10	••	50 90	5 10	50 100	
		.47	. 33	.31					••	10	••	70	10	100	21.3
	Conel	. 73	.81	. 77	10			••	••	50	20	30	10	100	14.3
	Le.	. 72	.82	. 77				••	50		••	50	4	50	14.3 22.0 27.0
	Fla. Miss.	. 72 . 72	.83 .83	.77 .77	10 10				80 10	••		20 100	2 10	20 100	27.0° 26.2
				•••	••						•••	100	10	100	20.2
	Conel	. 92	1.09	.99	10	••	••		••	70		36	10	100	14.2 ₄ 23.0 ⁴
	Le.	.92	1.09	.99	7			••	57	••	••	43	3	43	23.0
	Fla. Miss.	.91 .93	1.10 1.06	.99 .99	10	••			100 30	30		40	,	70	
		. 73		. **					,			40	,	70	
dium pontachlorophenate	Cone l	.41	.47	.44	10			••			20	80	10	100	11.1
and sodium chromate; chamical ratio	Le.	-41	.47	.44	16	••	•-		••		••	100	10	100	15.6 _d 20.3 ^d
3.24:1	Fle. Nice.	.40 .48	.47 .47	.44 .44	10	~*			44			56 100	5 10	56 100	20.3
3.24.5			.47					••	••	••	••	100	10	100	23.0
dies pontechlorophonate	Canal	.54	.62	.58	10	••	••	••	••	••	••	100	10	100	12.8
and boras	La.	.54	.62	.56	•		••	••		11	••			100	11.4
1:0.76 chemical ratio	Fla.	.53	. 62	.57				••	••	••	•-	100	i	100	17.9
	Miss.	.54	.61	.58	10	••				20		80	10	100	21.0
1:2 chemical retie	Conel	.71	.80	. 75	10	••	••	••	••	••	••	100	10	100	12.2
	Le.	.71	.81	. 75	ie			••		10	••	90	10	100	9.9
	Fla.	. 72	. 82	. 76	10	••	••	••		••		100	10	100	12.9
	Mico.	.71	. 80	. 75	10	••			••		••	100	10	100	18.8
1:1.52 chemical ratio	Come i	. 78	.00	.83	10	**	••	••	••	50		50	10		
	La.	.77	.86	.83	10	••		••	••	30	••	70	10	100	13.0 10.0
	Fla.	. 79	. 86	.82	9	••						100	•	100	16.7
	Nico.	. 79	.87	.83	10		••	••	••	••		100	10	100	18.9
1:3 chemical ratio	Conel	.91	1.06	.98	10			••	••			100	10	100	11.5
	Le.	.90	1.07	.98	10	••	••	••	••	10	••	90	10	100	9.0
	Fla.	.92	1.05	. 98	10		••	••	••			100	10	100	13.2
	Miss.	.92	1.06	. 96	10			••	••	10	••	90	10	100	16.1
1:2.27 chemical ratio	Conel	1.00	1.19	1.09	to.	••			••						
	Lo.	1.01	1.16	1.09	10					20		100 80	10 10	100	12.7
	Fla.	1.01	1.16	1.09	10						••	100	10	100	15.6
	Miss.	1.01	1.16	1.00	10		••		••		••	100	10	100	18.6
1:1.50 chemical ratio	Conni	1.17	1.32	1.25	10										
	Le.	1.17	1.32	1.25	10	••		••	••	10	••	90 100	10 10	100	12.8
	Fie	1.17	1.32	1.25	10			••	20	10	••	70	10	80	14.6 ₄ 16.5

(Page 1 of 3)

Table 5.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with chlorinated phenols and coal-tar creosote, after
15 to 41 years of service. Stakes placed in test at Barro Colorado Island, Canal Zone, February 1941; Bogaluss, La.,
Harch 1941; Jacksonville, Fla., Harch 1941; and Harrison Experimental Forest, Saucier, Hiss., February 1941 (Plot 5)--continued

CHANGE OF THE STREET

								adition o							
Preservative	Loca-		tention (Mum- ber			erviceable loving som		De	stroyed 1		To	tel	Average
	tion		Meximum		in test ^b	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack		oved	life
			• <u>Pcf</u> -					• • • •	<u>Pct</u> -				Hum- ber	Pct	Ϋ́r
5 pct pentachlorophemol	Cenel	4.0	5.4	4.7	10					40		60	10	100	13.0
in fuel oil ^e	La.	4.0	5.4	4.8	10				••	••		100	10	100	16.6 20.0
	Pla. Miss.	4.0 4.2	5.6 5.4	4.8 4.7	10 10				40			60 100	6 10	100	20.0 ⁴ 21.0
	Camal	8.6	10.5	9.6	10	••				30		70	10	100	
	La.	8.4	10.9	9.6	• 7				57	30		43	3	43	14.4 23.0
	Fla.	8.8	10.5	9.6	ġ	••			67	••	••	33	3	33	24.04
	Hiss.	8.6	10.5	9.6	10	••				10		90	10	100	27.2
	Cenal	14.0	16.5	15.3	10				40	10		50	6	60	15.0 ⁴
	La.	14.2	16.3	15.3	7	••			100						••
	Fla. Miss.	14.2 14.0	16.3 16.3	15.3 15.3	10				100 70	20		10	3		
									70	20		10	3	30	
	Canal	18.6	21.5	20.1	10		••		100						
	La. Fla.	18.2 18.2	21.7 21.7	20.1 20.1	7				100					••	
	Hiss.	18.2	21.9	20.0	10		22		78 90			10	1	10	
3 pct pentachlorophenol	Canal	4.2	5.8	4.9	10					20		80	10	100	12.6
+ 2 pct chloro-2-	La.	4.4	5.8	4.9	10							100	10	100	14.2
phonylphonol in fuel oil	Fla.	4.4	5.8	4.9	9	••			22			78	7	78	14.2 20.0
	Miss.	4.2	5.8	4.9	10				••			100	10	100	19.2
	Canal	9.1	10.9	10.0	10			••		50		50	10	100	13.7 24.74
	La. Fla.	9.1 8.9	10.9 11.0	10.0 10.0	6				67		••	33	2	33	24.7
	Miss.	8.9	11.0	10.0	10				75 	10		25 90	2 10	25 1 00	25.3 ⁴ 24.4
3 pct pastachlorophesol	Cenel	14.2	16.3												
+ 2 pct chlore-2-	La.	13.8	16.3	15.4 15.3	10 6				10 100	10	••	80	•	90	12.0 ⁴
phonylphonol in	Flo.	13.8	16.3	15.3	•				100						
fuel oil ^e con.	Hiss.	14.4	16.1	15.3	10				30	30		40	7	70	
Cool-ter cressete, grade 1	Canal	3.5	6.7	4.7	10				10	90	••		_		12.0 ^d
	La.	3.3	6.7	4.7	6		••	••	33			67	•	90 67	22.04
	Flo. Miss.	3.3	6.5	4.7	9				33	33		34	ě	67	19.04
		3.5	6.5	4.6	10	•-			••	40		60	10	100	21.3
	Canal La.	8.4	11.6	10.0	10		60		20	10		10	2	20	20.0d
	Fla.	8.6 8.6	11.2 11.4	10.0 10.0	.4	~-			75			25	1	25	26.6
	Miss.	8.4	11.4	10.0	10 10		••		90 30	10 40		30	1 7	10 70	••
	Canal	13.5	15.4	14.4	10	10							•		
	La.	13.5	15.9	14.5	6	50	90 16	17	17				••		
	Fla.	13.5	15.9	14.5	•	22	56		22						••
	Hiss.	13.3	16.1	14.5	10	10	••	••	90		••	••			
wel oil ^e	Canal	8.2	11.9	9.9	10						60	40	10	100	
	La.	8.4	11.7	9.8	10					40		60	10	100	5.9 8.4
	Fla. Miss.	8.2 8.2	11.7 11.7	9.8 9.8	8 10					12 20	 10	84 70		100	9.7
	Canal	18.2	21.0									70	10	100	6.3
	Lanai La.	18.2	21.0	19.4 19.4	10 10	••					30	70	10	100	7.8
					40			••		50		50	10	100	11.9
	Fla. Hiss.	18.2 18.0	21.4	19.4	9	~-						100	10	100	12.6

(Page 2 of 3)

Table 5.--Condition of southern pine stakes (2 x 4 in. nominal x 16 in.), treated with chlorinated phenols and coal-ter creesote, after
15 to 41 years of service. Stakes placed in test at Barro Colorado Island, Canal Zone, February 1941; Bogaluse, Le.,
Harch 1941; Jacksonville, Fla., Harch 1941; and Harrison Experimental Forest, Soucier, Hiss., February 1941 (Plot 5)--continued

								ndition (of stakes	Decemb	r 1961				
	Loca-		testion o		Non-			rviceable		De	stroyed b	7	Tel	1	Averag
Preservative	tion	P	eservativ	**	ber							Decay		naeg en t	life
		Hisimo	Meximum	Average	test	Good	Decay	Termite attack	and termite attack		Termite attack	fungi and termite attack			
			- Pef -				• • • •		• - <u>Pct</u> •				Hum-	Pct	Ĭŗ
5 pet pentachlorophesol in	Conel	0.5	1.4	0.8	10	••	••	••		••	90	10	10	100	2.7
fuel oil" and naphtha:	La.	.5	1.2		10			••		30		70	10	100	4.2
3-minute din	Tla.	.5	1.2	.8			••			12		86		100	5.0
	Hiss.	.\$	1.2	.8	10	••	••		••	10	20	70	10	100	3.2
18-hour seeking	Const	2.1	2.6	2.4	10	••			••	••		100	10	100	9.1
	Lo.	2.1	2.8	2.4	•			••	••	33		67	•	100	8.4
	71a. Nise.	2.1 1.9	3. 0 3. 0	2.4 2.4	10 10							100 100	10 10	100	11.9 12.9
		_		-									••		
pet postochlorophosol in	Conel Le.	.7	1.2 1.2	.9	10 10					••	100	••	10 10	100	3.3
coybean oil, neghthe and	710.	. 5 .5	1.4	.9	7		••			50	14	50 86	7	100	4.0
fuel oil: ^{e,f} 3-minute dip	Miss.	:7	1.2	.,	10						60	46	10	100	4.9
18-hour seaking	Conel	2.3	3.7	2.6	10			••				100	10	100	10.4
· ·	Lo.	2.1	3.9	2.8	10	••	••			30	••	70	10	100	7.6
	Fle.	2.3	3.2	2.7	10		••		••		••	100	10	100	12.2
	Miss.	2.3	3.5	2.6	10	••		•-	••		••	100	10	100	16.3
18-bour seeking ⁸	Conel	1.1	3.0	2.3	10	••	••	••	••		30	70	10	100	7.0
	La.	1.8	2.6	2.3	10	••		••		20		80	10	100	6.3
	7le.	1.8	2.8	2.3			••		••	12		88		100	9.8
	Mise.	1.1	2.8	2.2	10					10	10	80	10	100	11.9
) pet postochlorophosol + 2 pet	Conel	.9	1.6	1.2	10			••	**		100		10	100	2.3
chlore-2-phonylphonel in	Le.	.9	1.6	1.2	10	••				40		60	10	100	4.1
naghthe and fuel oil:	fie.	.7	1.6	1.2	16	••	••			10	10	80	10	100	5.0
3-minute dip	Mico.	.5	1.8	1.2	10	•-		••	••	20	20	60	10	100	5.3
18-hour seeking	Conel	2.5	4.0	3.1	10	••				••	10	90	10	100	9.0
	Lo.	2.5	4.0	3.1	10	••				10		90	10	100	7.2
	Pla.	2.3	3.9	3.1			••		••	12		88		100	10.8
	Hise.	2.6	4.4	3.1	10		••	••	••		••	100	10	100	13.6
3 pet pautochlorophonol + 2 pet		.5	.9		10	••	••		••		90	10	10	100	1.6
chlore-2-phosplphosel in	Lo.	.5	.9	.7	10		••	••		30		70	10	100	3.9
solvent of 80 pet pineral	7la.	.5	.•		10			••	••	20	10	70	10	100	2.6
opirits and 30 pet moisture repellent: 3-minute dip	Miss.	.\$.9	.8	10		••	••	••	20	30	50	10	100	3.6
18-hour seeking	Conel	2.1	5.8	3.4	10		••	••		••	90	10	10	100	4.8
	La.	2.3	4.6	3.4	10				••	••		100	10	100	9.2
	Plo. Mico.	2.3 2.3	4.9 5.1	3.4 3.4	10 10					20 20	10	80 70	10 10	100	9.6 12.7
Natrosted controls	Canal		••		10		••		••		100		10	100	1.2
emriadres complain	Le.				10			••	••	50	20	30	10	100	2.2
	Pla.	••	••	••	10	••	••			10	20	70	10	100	1.8
												, •	•••		

⁶ Second upon weight of dry chemical for sedium pentachlorephenote slone or mined with other chemicals and on weight of solution for other treetments. Values for stakes originally installed.

(Page 2 of 3)

b 10 states were originally installed in test. This number has since been reduced either because of failure to locate the states at the time of the inspection or because of damage by fire.

^e Final inspection at Comel Zone, January 1936; at Jacksonville, December 1960; and at Degaluse, December 1962.

⁴ Satisate based upon percentage states remaining after final inspection.

^{*} Purchased and reported earlier as No. 2 fuel oil but has since been found to have a distillation range lower than that for typical No. 2 fuel oils.

f dolvent contained 1 port sepheon oil and 9 ports such of fuel oil and naphths by volume.

Startings costs and some beartwood.

Table 6.--Condition of southern pine stakes of different sizes, treated with coal-tar creosote, toluene, and creosote-toluene mixtures, after 40-1/2 years of service. Stakes placed in test on the Marrison Experimental Forest Saucier, Miss., May 1941 (Plot 6)

					8	Condition of stakes December 1981	f stakes	December	1981				
					3	Serviceable but	Det.	ă	Destroyed by				
	Other Se selection	Average	i i		2	shoving some				300	Total	19	Average
		retention	= = = = = = = = = = = = = = = = = = = =	8	Decay	Termite	Decay and termite attack	Decay fungi	Termite attack	fungi endite etteck	removed	p & A	116
	i		<u> </u>				- <u>F</u>			•		길	N.
Coal-tar creosote	1/2 by 1/2 by 18	9.0	• •	: :	1 8	: 1	: 1	2 9	: :	25	• 5	8 5	17.1
	1-1/2 by 1-1/2 by 18		2 2	:	;	:	: :	3	:	3	2	8	26.6
	22	3.3	2	:	;	:	:	9	:	8	9	8	24.9
	11	7.8	2	:	;	:	3	70	:	\$	•	3	;
	2 by 4 (mominel) by 18	13.2	2	:	;	:	2	9	:	2	8	2	:
Toluene	2 by 4 (mominel) by 18	29.5	2	:	;	:	:	:	8	:	92	8	2.1
Coal-tar creceote: 11.25 pct by weight in toluene	2 by 4 (mominal) by 18	3.4	2	:	;	:	:	8	;	92	9	8	19.1
25.2 pct by weight in toluene	2 by 4 (nominal) by 18	8.1	9	:	:	:	2	2	:	91	ч	20	;
39.0 pct by weight in toluene	2 by 4 (nominal) by 18	12.6	9	9	;	:	8	:	:	:	:	:	:

* Creosote only.

Table 7.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with copper ambithenate and zinc ambithenate, after about 40 years of service. Stakes placed in test at Hadison, Wis., October 1941, and on Harrison Experimental Forest, Saucier, Hiss., February 1942 (Plot 7)

STATE STATES SECRETARION SECRE

						3	Condition of stakes December 1961	f stakes	Decemb	r 1961				
•	(- -	Average	23		31	Serviceable but showing some	Ĭ.	2	Destroyed by		Į		Average
	Trestant	8	of solution	<u> </u>	9	Decay	Termite	Becay and termite atteck	Decay fungi	Termite attack				116
			겓					- 1 2					ᆁ	#
Zinc maphthemate solution 17 pct (2 pct zinc metal)	Brush, one cost	Miss. Vis.	3.	22	::	::	::	::	; <u>\$</u>	2:	2:	22	88	6.9
	Dipped, 3 min	Mas.		22	::	::	::	::	: 8	3;	3;	22	88	2.2
l pet (0.12 pet zinc metal)	Pressure	Miss.	9.9	22	::	::	::	::	28	::	3:	22	88	18.9
2.5 pct (0.29 pct zinc metal)	Presente	Miss. Vis.	10.3 9.8	22	::	::	::	::	38	::	3:	22	88	15.0
5.0 pct (0.59 pct zinc metal)	Presente	Mas. Vis.	10.2	22	::	::	::	::	38	::	\$:	22	88	13.5
7.5 pct (0.88 pct zinc metal)	Pressure	MI.	10.4	<u>•</u> •	::	: 3	::	::	32	::	31	2 -	82	.: :
Copper maphthemate solution 17.5 pct (2 pct copper metal)	Brush, one coat	Miss.	ń.	22	::	::	::	::	88	3 !	\$:	22	88	9.7
	Dipped, 3 min	Miss. Vis.	~ •	22	::	::	::	::	: 8	3:	3:	22	88	9.5
1 pct (0.11 pct copper metal)	Presente	Mar.	10.3	<u>•</u> •	::	::	::	::	88	::	9 :	2 -	88	25.5 25.5
2.5 pct (0.29 pct copper metal)	Pressure	Miss. Vis.	10.2	01 04 04	11	; 3	::	::	33	::	3:	5 c	88	21.6
5.0 pct (0.57 pct copper metal)	Pressure	### ## ##	9.00	9 .	::	: 3	::	::	83	::	2:	5 v	83	27.2
7.5 pct (0.86 pct copper metal)	Pressure	##	9.0	9 . •	::	: 5	11	2:	32	::	2:	• ~	22	::
Untreated controls	:	Miss.	::	22	::	::	::	::	1 8	8:	02 :-	22	8 8	1.8

Average retention based on 9 stakes.

b 10 stakes were originally installed. This number has been reduced for causes other than decay or insect attack.

Table 8.--Condition of treated five-ply exterior Douglas-fir plywood stakes (approximately 1/2 x 4 x 18 in.) at final inspection after approximately 22 years of exposure. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., in February 1942 (Plot 8)

			}	!	3	Condition of stakes December 1963	stakes)e cempe	r 1963				
		Pet ent in a	1		3 4	Serviceable but	pat E	ă	Destroyed by	1			
Preservative	Treatment	preservative (average)	test test	800	Becay	Termite attack	Decay and termite attack	Decay fungi	Termite	Decay fungi and termite attack	Total removed		Average life
		Pef					티				الخ	회	¥I
Coal-tar creosote	Brush, one coat Dipped, 3 min Soaked, 18 hr Pressure Pressure	041 1.5 041 1.9 041 5.6 041 5.9	2222	:::::	11018	11117	. : 47 20 20 20 20 20	27 27 27 27 27 27 27 27 27 27 27 27 27 2	28:::	13821	88401	86781	6.2 2.6.2 27.0 17.0
Pentachlorophemol solution ^C 5 pct	Brush, o Dipped,			::	::	::	::	5 5	33	30	7 8 8	88	9.6 9.6
1.11 pet 2.25 pet	Sosked, 18 hr Pressure Pressure	Solution 3.2 Solution 26.3 Solution 26.3	222	:::	:::	:::	! : ន	~ 2 2 ~	¥: ^	323	ಜ್ಞ ಜ್ಞ	385	5.0 19.0 19.0
Zinc naphthemate solution ^f 4.8 pct (0.55 pct zinc) 1.11 pct (0.13 pct zinc) 2.25 pct (0.25 pct zinc)	Brush, one cost Dipped, 3 min Sosked, 18 hr Pressure	Solution .7 Solution 1.1 Solution 3.0 Solution 25.5	2222	:::::	:::::	:::::	11111	55455	30 20 20 20 20	64.336 67.336	22222	20000	2.2 2.3 5.3 5.3
Chloro-2-phenylphenol solution ^f 5 pct	Brush, one cost Dipped, 3 min Soaked, 18 hr	Solution .9 Solution 1.1 Solution 2.9	222	:::	:::	:::	1:1	13 0 10 13 0 10	S S S	30 62	222	888	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Untreated controls	:	:	8	:	:	:	;	2	£3	37	30	8	1.8

a Of the 30 panels tested for each treatment there were 3 sets of 10 specimens. Each set was selected from material contributed by different manufacturer.

Estimate based on condition of stakes at final inspection.

C Solvent contained I part pine oil and 12 parts Stoddard-type solvent by volume.

d 2 stakes showed some delamination.

i stake showed some delamination.

f Stoddard-type solvent used.

NOTE: The stakes remaining in test after the 1950 inspection were taken up and reset in the same general area.

Table 9.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with copper arsenate and copper chromate by the double-diffusion process, after about 40 years of service. Stakes placed in test on the Marrison Experimental Forest, Saucier, Hiss., February 1942 (Plot 9)

							Condition of	f stakes	stakes December 1981	181		
	Calc	Calculated retention of chemical*, b	on of chemics	11 0 ,0	į		Served Conhile		Destroyed by			
Treatment	Copper	Chromium as Na ₂ CrO ₄	Arsenic as Me ₂ HAsO ₄	Total	1 4 2	8	but aboring some	oving Termite fungi	y Tornite ii attack	Decay fungi and termite ettack	Total	Average 14fe
								되				A)
6-day soak in 10.6 pct copper sulfate solution plus:												
6-day soak in 9.8 pct sodium armemate solution	0.66 (0.33)	:	0.59 (0.36)	0.59 (0.36) 1.25 (0.69)	2	8	:	:	:	:	:	
12-day soak is 9.8 pct sodium arsemate solution	.66 (.33)	ŧ	.75 (.46)	1.41 (.79)	91	8	:	:	:	:	;	:
12-day soak is 11.8 pct sodium chromete solution	.66 (.33)	2.58 (1.59)	:	3.24 (1.92)	91	8	:	:	:	:	:	:
3-day sosk in 10.6 pct copper sulfate solution plus:												
6-day soak in 9.8 pct sodium arsemate solution	.88 (.44)	ţ	.55 (.34)	1.43 (.78)	92	90	:	;	:	:	;	:
6-day soak in 11.8 pct sodium chromete solution	.88 (.44)	1.57 (.97)	;	2.45 (1.41)	91	8	;	:	01	:	1 10	1
3-day soak im 5.3 pct copper sulface solution plus:												
6-day soak in 4.9 pct sodium arsenate solution	.31 (.15)	:	(01.) 71.	.48 (.25)	01	100	:	:	:	:	:	
6-day soak in 5.9 pct sodium chromate solution	.31 (.15)	.50 (.31)	i	.81 (.46)	01	8	:	e :	;	20	. \$0	!
Untreated controls	:	:	:	;	9	:	:	;	. 50	8	10 100	1.9

a Retentions based on chemical analyses made on 2 stakes treated in each charge with those placed in test.

b Retention values in parentheses are oxides (CuO - CrO $_3$ - As $_2^{\rm O}{_5}$).

Table 10.--Condition of ures-treated southern pine stakes (2 x 4 in. nominal x 18 in.) after about 11 to 16-1/2 years of service. Stakes placed in test on the Harrison Experimental Forest, Saurier, Hiss., February 1942 and Decamber 1946, and at Madison, Wis., April 1942 (Plot 10)

						Condition of stakes late in 1956	stakes	lete in 1	958			
		Total	Average				4	Destroyed by				
Trestment	Lion Lion	of ures or solids	of ures or or solids	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	908	Serviceable but showing	Decay fungi	Termite attack	Pecay fingsi track	Total removed		Average 11fe
		31	2		:		Pet -	•	:		피	취
		÷		TSE	INSTALLED 1942	1942						
2 days' sosking	Miss.	4.7	3.4	9	:	;	ł	9	8	9	8	3.4
	Vis.	4.7	3.4	91	:	;	8	:	:	2	8	9 .1
4 deys' sosking	Mas.	6.9	8.0	2	:	;	:	8	2	9	8	3.3
	Vie.	6.9	9.0	91	;	:	8	:	:	2	8	9.0
6 days' soaking	Miss.	10.2	7.4	9	:	:	:	92	2	9	8	2.9
	¥e.	10.2	7.4	91	:	;	8	:	ŀ	2	8	6.0
B, (thermosetting)	Miss.	9.9	7.1	2	:	;	1	92	2	2	8	4.5
2 deys' socking	%	6.6	1.1	91	:	:	8	:	ì	2	8	12.5
B, (thermosetting)	Miss.	11.2	8 .3	9	:	:	ł	:	961	2	8	5.1
4 days' sosking	Wis.	11.2	:	91	ŀ	:	8	:	ŀ	2	8	13.1
B, (thermosetting)	Miss.	11.7	4.	9	:	:	:	9	8	2	8	9.6
6 deys' soaking	418	11.7	•	2	ŀ	1	8	ł	;	2	9	15.2
Untreeted controls	His.	:	:	2	;	:	:	2	2	2	8	1.0
	Wie.	:	:	9	:	;	9	:	:	2	8	4 .8
				INCI	INSTALLED 1946	9961						
Ures resin,												
pressure	Máss.	:	9.8	2	:	:	2	;	2	2	90	7.7
										I		

Calculated total retention of urea or solids for 22 stakes.

Presting solution made up to 1.15 parts of ures to 1.00 part of water by weight.

^C Solution made up of 380 parts urea, 344 parts of 37 pct formaldehyde solution, 231 parts of water, 6 parts of sodium hydroxide, and 39 parts of borax by weight.

d Treated with buffered urea-formalin mix (2 to 1 formaldebyde-urea ratio) at a resin solids content of 30 pct.

Table 11.--Condition of high-strength laminated paper plastic (papreg) stakes (1/8 x 4 x 14 in.) and heat-stabilized plywood (staypak) stakes (4 x 18 in.) of several thicknesses after 7 to 8 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss. (Plot 11)

					lition ecembe				
		Nun-		De	stroy	ed by-			A
Stake number	Composition	ber in test	Dec fur	•	Ten	nite nck	Deca fung and termi attac	i l ite	Average life
			Num- ber	Pct	Num- ber	Pct	Nun- ber	Pct	Yr
4.7 pct volatile matter 11 to 20 31.6 pct phenolic resin* + 2 pct harden 4.4 pct volatile matter 21 to 30 41.0 pct phenolic resin* + 2 pct harden 4.6 pct volatile matter 31 to 40 37.0 pct phenolic resin* + 2 pct harden 4.7 pct volatile matter with surface sheets using 42.6 pct phenolic resin, 4.6 pct volatile matter 41 to 50 37.0 pct phenolic resin* + 0.5 pct olei acid, 4.7 pct volatile matter HEAT-STABILIZED PLYWOOD (STABILIZED PLYWOOD) 19-1 and 20 plies 1/16-in. birch bonded with phenolic resin and compressed to thic ness of 1/2 in.; specific gravity 1.3	insta	LLED I	ECEMI	ER 2,	1942				
1 to 10	37.0 pct phenolic resin + 2 pct hardener, 4.7 pct volatile matter	10	7	70			3	30	7.4
11 to 20	31.6 pct phenolic resin + 2 pct hardener, 4.4 pct volatile matter	10	3	30	1	10	6	60	5.6
21 to 30	41.0 pct phenolic resin ^a + 2 pct hardener, 4.6 pct volatile matter	10	7	70			3	30	8.0
31 to 40	37.0 pct phenolic resin ^a + 2 pct hardener, 4.7 pct volatile matter with surface sheets using 42.6 pct phenolic resin, ^a								
	4.6 pct volatile matter ^b	10	7	70			3	30	7.2
41 to 50	37.0 pct phenolic resin ^a + 0.5 pct oleic acid, 4.7 pct volatile matter	10	4	40	1	10	5	50	7.6
	HEAT-STABILIZED PLYWOOD (STAYP	AK)II	istalle	រាប ជា	Æ 4,	1943			
	20 plies 1/16-in. birch bonded with phenolic resin and compressed to thickness of 1/2 in.; specific gravity 1.37	2	•-		1	50	1	50	4.5
	HEAT-STABILIZED PLYWOOD (STAYPAK)INS1	CALLED	DECE	BER 6	, 194	3		
S-1 to S-5	32 plies 1/16-in. birch bonded with phenolic resin and compressed to thickness of 1 in. specific gravity 1.33	5	2	40		••	3 ^c	60	6.0
21-1 to 21-5	10 plies 1/8-in. maple bonded with phenolic resin and compressed to thickness of 5/8 in.; specific gravity 1.36	5				••	5	100	4.3

Alcohol-soluble.

b Single surface sheet on each side, coated side out.

^C Heavy swelling at edges due to moisture absorption.

Table 12.--Candition of southern pine stabes (2 x 4 in. naminal x 18 in.), treated with phemyl mercury electe, pestachlorophemol copper nephthemate, and mercuric chloride, at final inspection after 20 years of service. Stabes placed in test becamber 1943 on the Marrison Experimental Ferest, Soucier, Miss. (Plot 12)

					{		Sales Personal and the Contract of the Contrac	1	18				
		Average	j			Servicesble but	ž	ă	Destroyed by-				
Preservative	Treatment	retention	į	•	3	shoving seme				1	100		Parage 11 fe
		e julie	5	3	Decay	Termite etteck	Property of the party of the pa	Person February Cartesian	Termite attack	jiji			
		Z			:		된			:	温温	돼	ᆈ
Pannyl marcusy cleate (percentage in amplita solvent)													
0.4	Yearls 64p	3 .1	2	:	:	:	:	: :	2	8	2:	2	9,0
~ .~	10-br cosking Presente	88 5	229	:::	:::	:::	:::	2 ; 3	R2 :	382	222		
•		:	:					}	;	: ;	: :		
	19-br sosting Pressure	 	22	::	::	::	::	2:	22	32	22	<u> </u>	4 . e.
i ui	Pressure	11.8	2	:	:	:	:	:	*	2	2	ž	6.2
~	18-hr seeking	3.	:	:	:	:	:	:	3	3	2	2	8.4
	Pressure Pressure	2.3	22	::	::	::	::	::	3 3	23	2 2	ĔĬ	2.5
٩		*	:	:	:	:	:	:	3	3	2	ă	•
4.	18-br sooking	18 ;	22	: :	:	:	:	::	3	2:	2:	2	8.9
	Prosoure Prosoure	2.5	22	::	::	: :	::	2 ;	; :	2 2	==	B	7.7
Pustachloruphonol (5.0 pct in pinn-oil nephtha (1:12) solvent)	Prescure	12.10	2	:	:	:	3	2	:	3	•	3	%
Copper maphibemate (0.5 pet copper metal in maphiba solvent)	Preseure	13.10	2	:	:	:	2	2	:	2	•	8	3
Mercuric chloride (1.0 pct in water)	3-min 41p	.014 (4ey solt)	2	:	:	:	:	:	3	2	2	ğ	;
	10-br seeking	.072 (dry selt)	2	:	:	:	:	:	*	8	•	Ĭ	7.5
Untrested centrols	:	:	2	:	:	:	:	:	3	3	2	š	2.0

Solution contained 16 pct solids as a water repellent.

NOTE: The stakes remaining in test ofter the 1952 imprection were taken up and reset in the same general area.

Batimate based on percentage stabes remaining after final impection.

fire-retardant chemicals, after 7 years of service. Stakes placed in test December 1943 on the Harrison Experimental Forest, Saucier, Hiss., and inspected December 1950 (Plot 13) Table 13.---Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with

			Conc	dition	Condition of stakes December 1950		
	Retention	Mumber	ă	stroy	Destroyed by		
Treating chemicals	of dry salt	in	Termite	9 1	Decay fungi and termite attack	ungi mite	Average 11fe
	Pcf		Number	Pet	Number	Pet	Yr
Amonium sulfate, 78 parts; amonium phosphate, 19 parts; and sodium	3.01	10	v	20	'n	20	2.4
dichromate, 3 parts (by weight)	6.17	10	9	8	4	3	3.4
Amonium phosphate, 10 parts; amonium sulfate, 60 parts; borax, 10 parts; and boric acid. 20 parts (hy weight)	2.98	9 9	s) c	20	I O 6	20	3.9
Borax, 60 parts; and boric acid,	3.01	2 9	N M	2 %	o ~	8 6	6.0
40 parts (by weight)	6.29	10	•	3	4	9	6.5
Untreated controls	;	10	7	20	60	80	2.2
				ļ			

Table 16.--Condition of southern pine segmend stahes (2 x 6 in. neminal x 18 in.), treated with various chanicals, and of laminated scetylated yellow birth segmend stakes (0.4 x 3-1/2 x 15-3/4 in.), after 37 years of service. Stakes placed in test on the Harrison Experimental Forest, Soutier, Nies., Becamber 1944 (Plot 14)

				1	Condition	of stakes	December	1961				
	Average	Namber			erviceable			estroyed b	y			
Procesvative ⁸	retention of preservative or dry solt	in test	Good	Becay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	Pecay fungi and termite attack	Tot.		Averag life
	Psf		•••			<u>Pct</u> -				ber ber	Pet	Ţt
				PIN	STATES					•		
Amoniocol copper arsenste (Ped. Spec. TT-V-549) (percentage in solution)												
0.612 (0.59) ^b	0.25 (.24)	10	••	10		40	50			5	50	
1.29 (1.24)	.53 (.51)	10	30	60		10						
2.57 (2.48)	1.00 (.97)	10	100		**			••				••
3.21 (3.10)	1.29 (1.25)	10	100			••		••		••		
Amyl phemyl acetate (percentage in Stoddard solvent)												
0.37	. 10	10		••			••		100	10	100	6.7
.93	.25	10			*-				100	10	100	8.5
1.85	.50	10		••	••			40	60	10	100	10.0
Capric acid (percentage in Stoddard solvent)												
0.37	. 10	10					10	30	60	10	100	5.0
.93 1.84	.25 .50	10 10	••	••	••		10	20 10	70 90	· 10 10	100	5.3 5.5
Diamyl phenol (percentage in Stoddard solvent)												
0.37	. 10	10					••	10	90	10	100	5.0 0.4
.90	. 25	10	••	••				10	90 90	10 10	100	11.4
1.76	.51	30		••	••	••		10	70	10	100	18.4
DDT (Dichloro-diphosyl- trichloroethone) (percentage in Stoddard												
solvest) 1.25	. 35	10	••				100	••		10	100	7.1
2.7	.74	10		••			70		30	10	100	9.0
Bodecyl emine (percentage in Stodderd solvent)								•	80	10	100	5.4
0.37	. 10	10						20	100	10	100	5.1
.93	. 25	10				••	••	10	90	10	100	6.6
1.85	.50	10								••		
			P	IN STATE	IScon tim	red .						
Hichel steerste (percentage in coel-ter maphths)					••		10		90	10	100	5.0
0.33	. 10	10 10			••	••	30		70	10	100	4.9
.93 1. 8 5	.27 .52	10			••		10	10	80	10	100	5.
Untrested controls	••	10				••		40	60	10	100	2.
AMPERAPOR CAMPERATE		•-	Ye	LION BIR	CI (LANINA	TED) ^C						
									10	10	100	17.
Acetylated	••	10	••	••			90	••	10			
									70	10	100	2.

All stabes except laminated vellow birch were pressure treated

Amonaicel copper arounds solution and retestion figures in percentages are emides (CuO and Ma_2O_3).

^{*} Proposed from 6-ply, perallel-laminated, acetylated 1/16-in. vencor glued with hot-proces phenolic resin. Average acetyl contents are heard many avendry weight of wood. Untracted controls proposed from untracted vencor.

NOTE: The stabes remaining in test after the 1952 inspection were reset in the some general area.

Table 15.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with acid copper chromate, chromated copper aromate type I, and mickel-aromaic-chromium salts, after 36 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., December 1945 (Plot 15)

				Conditi	Condition of stakes December 1961	Pecesie.	ır 1961			
•		Ĭ		Service	Servicesble but	8	Destroyed by			
Freefrative	retention	4 5	3	Decay Termite	Becay fite and ch termite attack		Termite attack		<u> </u>	T C
	2				124				회	**
Acid copper chromate (Fed. Spec. TT-W-546)	0.26 (0.13) .52 (.26) .75 (.37)	222	::2		: 8 :	223	%!!	\$2;	544	ğ: 1
Chromated copper arsenate type I (Fed. Spec. TT-W-550)	.26 .36 .38 .38 .38 .38	222	: 88	:::	22: :2:	:::	2::	3 ::	~!:	111
Hickel-aromaic-chromium salte (mickel salfate (MiNO ₆ · 6M ₂ O), 5.5 parte; sodium aromate (MaNAO ₆ · 12M ₂ O), 4.0 parts; aromaic acid (M ₂ AoO ₆), 1.5 parts; and sodium dichromate (Mo ₂ Cr ₂ O ₇ · 2M ₂ O), 3.0 parts)	.26 (.16) .50 (.32) .77 (.50)	222	:::	:::	: 2 5	2::	#2:	3 2:	9 8 97	•
Untrested controls	:	2		:	:	2	2	3	5 5	3.2

Detention values in perentheses based on preservative exides.

Table 16. .-Capition of claims of Buglas-fir plywood, treated with across) used preservatives, either before or ofter gluing of the vessor, after 35 years of corvier. States placed to test Benegher 1946 on the Special Superioratel Percet, Saurier, Mas. (Plat 16)

								edities (of stabes	Bereate	r 1980				
		Pip		Average	Bug-			tatespi		-	atroped t	y ···			
Prosorvative	Treoloret	Heater of plice	Voncer thirk- ares	retestion of	in test	teed	Becay	Tomite attack	Boroy and termite attech		Termite attack	Boray fungi and tempite attack	foto		Averag Life
			le:	KI		• •			· · Pet ·				tute:	Pet	Ĭī.
	_		PLW	1900 FROM VERTER 1	MEATER	-	E 61411								
eal-ter tressets	Processes	13	1/16	40.9	10	100		••	••	••	••	••	••	••	••
	Mosting and I-br rold both	,	1/8 1/8	39.9 12.6	10	100	••		••	10	30	70	10	100	10.
	Cold seables, 24 br Cold seables, 24 br	13	1/14	12.9 6.4	10	••	••	••	100 100	••	••		••		••
	Dipping, 10 per Dipping, 10 per	13	1/16	5.1 6.6		••	•••	••	100	••	••		••		••
pper aughthemate,	Processor	13	1/16	15.5	,	••	11	••			••		••	••	••
(2 prt capper	Pressure	7	1/6	10.2	10	30	20	••	50	••	••	••	••		
metal in conjetor maghtha	Hosting and 1-hr rold both	"	1/6 1/16	6.7 10.1	10 10	10	**	••	90 30	10	••	••		10	••
•	Cold seeking, 24 br Dipping, 10 sec	13	1/8	6.3	10 10	36	••	••	66 188	20	••	••		30	••
	Dipping, 10 sec	';	1/6	2.6	10	••	••	::	30	40		30	7	70	
aterhloregheesi ,	Pressure	13	1/16	21.4	10	••		••	100	••	••	••	•:	=	••
5 pet in No. 2 furt oil	Pressure Booting and 1-hr cold both	,	1/6 1/8	18.2 10.3	10 10	••		••	90 30	10		10 30	2 5	30 30	••
	Cold seeking, 24 hr Cold seeking, 24 hr	13	1/16	7.4 4.8	10	••	••	••	70	10 10	10	10	2 16	20	23.
	Disping, 10 sec	13	1/16	4.9	10	••	••	••	20	30	••	¥	•	80	
	Dipping, 10 sec	,	1/0	1.0	10		••	••		10	••		10	100	15.
remoted giar chloride	Pressure	13	1/16	1.02° (0.62) 1.06° { .65	7 10		••	••	**	••		14 68	10 10	14	25
	Steeping, 26 br	7 13	1/0	.98 (.66) 1.07 (.65)	10	••	••	••	100	••	50	10	10	100	10.
	Steeping, 24 hr	13	1/19	1.04 (1.13)	'n	••	::	••	100	••		••	••	••	
	Steeping, 34 br Steeping, 34 br	,	1/8"	.50 (.36) 1.30 (.79)	10	••	••	••		10	10 20	90 76	10	100	17. 23.
	Dispine, 10 sec	13	1/14	.61 (0.37)	10	••			••	30	10	•	10	100	22 ·
	Disping, 10 sec Disping, 10 sec	13	1/16 1/8	.46 (.40) .35 (.21)	10 10	••	••	••	••	10	20	**	10	100	10.
id repper chromate		13	1/16	.76 (.36)	98	33	••	22	44	••	••	••	••	••	••
	Pressure Hosting and 1-br cold bath	;	1/6	.79 (.39) 1.07 (.53)	10	**		22 10	11 60	30 33	••	10	3	22 30	
	Stroping, 24 hr Stroping, 24 hr	13 13	1/16"	.80 (.44) 1.79 (.94)	10 10	100	••	••	10	••	••	••	••	••	
	Stooping, 36 hr	7	1/8	.34 (.27)		79		,,	••	11	••		1	11	••
	Steeping, 24 hr Dipping, 10 sec	, 13	1/8 1/16	1.32 .65) .67 .43)	10	80	•:	! ••	10 70	30	••	••	-;	30	
	Bapping, I'	ij	1/16	.01 (.30) .27 (11)	10	••	••	••	70	30	••		3	30 100	18.
	Dipping, 10 ser Dipping, 10 ser	;	1/6	38 (19)	10		••		•••	30	10		10	100	22.
				PLT1000 174.20	AFTER	- GLUIN	8								
wi-ter cresser	Procesure	•	1/8	19.6	10	100	••	••	••	••	••	••	••		
	Not both, I br, and cold both, I br	5	1/8	2.0	10	••	••	••	100	••	••	••	••	••	
	Cold seeking, 34 br Dipping, 10 ser	3	1/6 1/8	3.3 1.0	100	••	••	••		20	30 50	30 30	10	100	
gger neghthenote,	Pressure	5	1/8	2.9	10	••	••	••	20	44	10	39			
(2 pet capper aptel) in cool-ter	Not both, 1 br, and cold both, 1 br		1/8	1.2	10	••	••	••	••	4	••		10	100	12
asphibo	Cold seeking, 24 br Disping, 10 ser	•	1/6	1.1	10	••	••	••	••	34 44	••	34 4	10	100	
		•				••	••	••	44	29	••		4		•••
atochloraphonol, 5 pet in No. 3	Pressure Not both, I br, and cold		1/8	12.5	10								_		
feel oil	both, i hr Cold seeking, 24 hr	3	1/0 1/0	2.1 2.0	10 10	••	••	••	••	20	40 10	66 78	10 10	100	
	Dipping, 10 ser	5	1/6	.7	10		••	••	••	10	20	70	10	100	7.
compted sinc	Processor	5	1/0	.42° (.36)	10	••	••	••	••	44	••	••	10	100	
chloride	Steeping, 24 hr Dipping, 18 occ	3	1/8 1/8	.35 (.21) .03 (.02)	10 10		••	::	::	10	39 40	ü	10	100	
		,	1/8	.46 (.23)	10	20			30	20	••	30	5	50	
id comer chespote															_
id copper chromate	Pressure Steeping, 24 hr	5	1/0	.20 (.14)	10	••	••	••	••	10	4	30	16 18	100	
rid copper chromate	Steeping, 24 hr Dipping, 10 sec			.26 (.14) .66 (.63)			••	••	••	10	4	30 30	16 10		.

Pigened gland with hot-press phonolic-rosis adhesise

SACRETARY CONTRACTOR SACRETARY SECRETARY SECRETARY

Dolls or dry solt absorbed by 21- a 26-in. plywood poset. States were cut from plywood posets after treatment, and all edges exposed during were dipped in the preservative before installation of the states.

Establica values in perentheers based on preservative suidre.

⁴ Vencor booted in depor and then subserged for 1 hr in unbooted preservetive

^{*} Americals values.

Yearer Lebeled prior to drying.

^{# 2} specimens delaminated and were eliminated from test

Table 17.--Capition of southern pine states (2 m 4 neginal m 18 in.), treated with various patroloum eile, postachlerophenol solution, capition, c

				Ce	edition (f stabes	Docambo	r 1962				
		m						stroyed b	7			
Loca- tion	Average retention	in test	Good	Bocoy	Tormite stack	Docey and termite attack			Decay fungi and termite attack			Averag life
	5:1			• • • •		<u>Pet</u>		• • • • •		Num-	Pct	¥1
Miss. Le.	4.1 4.1	10 10	••	••			10	 20	90 80	10 10	100 100	2.4 2.9
Miss. Lo	4.0 4.0	10 10			••		10 10	20 20	70 - 70	10 10	100 100	2.2 2.8
Miss. Lo.	4.1 4.0	10 10			:-		10 70	10	80 30	10 10	100 100	4.4 4.1
Miss. Lo.	4.2 4.2	10 10					30	10	90 70	10 10	100 100	3.5 4.6
Miss. Lo.	4.8 4.0	10 10		••	••		20 80	20	60 20	10 10	100 100	4.8 4.6
Hiss. La.	4.0 4.0	10 10		::	••	••	40 60		60 40	10 10	100	7.6 7.7 14.6
Lo. Nico.	8.0 12.0	10 10	••	10	••	50	26 40	••	20 60	10	100	17.1
Miss.	4.2	10			••	••	90		10	10	100	7.1 6.5
Hiee.	4.2	10		••			80 90		20 10	10 10	100 100	5.8 5.5
Miss.	4.1	10 10	••				50 60		50 40	10 10	100 100	6.7 6.0
Hiss. La.	4.6	19 10			••	••	60 80	••	40 20	10 10	100 100	6.5 5.9
Miss. Le.	4.0 4.0	10 10	••	••	••	 60	106 40	••		10 4		12.9
Hiss. Lo. Hiss.	7.9 7.9 12.1	10 9 10	10	33	••	67 80	10				10	
Hiss.	4.1	10	••	••		••	100	••		10	100	12.0
10.	4.2	•	••		-	•5			••	•	3,	
Miss. Le.	4.2 4.2	10 10			••		10		100 90	10 10	100 100	10.9 8.5
Nice. Le.	4.0 4.0	10 10	••				10 20		90 80	10 10		13.7 0.6
Mies. Lo.	4.0 3.8	10 10	••	••	••	20	10	10	80 80	10		
Niso. Lo.	4.0 4.0	10 10		••			20 10	••	80 90	10 10		
Miss. Le.	4.1 4.1	10 10			••	50	10	••	90 30	10 3		
Micc. Lo.	4.1 4.1	10 8	••			80	12	••	100	10 1	12	
Hiss. Lo. Hiss.	6.0 7.9 12.0	10 8 10	••	12	••	64 29	20 		 60	10	-	
	Miss. La. Miss.	Pcf	Prf	Prf	Name	Hiss. 4.0 10 Hiss. 4.0 10 Hiss. 12.0 10 Hiss. 12.0 10 Hiss. 12.0 10 Hiss. 12.0 10 Hiss. 12.0 10		Location Location	Prime	Lace		

(Page 1 of 2)

Table 17.--Condition of neathern pine stable (2 x 4 seminal x 16 is.), treated with various patrolous oils, postechlorephonel solution, copper neghthenate solutions, coel-tar crossots, and mixtures of those preservatives, after about 34-1/2 years of service. Stables placed in test on the Marrison Experimental Perest, Sourier, Hiss., and at Degalues, Lo., April 1946 (Plot 30)--continued

				_	C4	edition (of stakes	Becomb	or 1962				
	_		Hunber			rviceeble		34	etroped b	7			
Oil or procervative	Loca- tion	Average	ia test	Good	Bocay	Temite stack	Becay and termite attack		Tormite attack	Secon fungi and termite attock		tel oved	Averag
		pt		• •			· - Ect ·				Bar-	Pes	Ţſ
rtified petroloum eths and mintures:centimed													
Ho. 300 feel oil (Whot Coast) with 8 pet pentochlorophonel	Mes. Lo.	4. 0 4.1	10 8	••	12	••	51	80 12	••	20 25	10	100 37	14.6
No. 400 fuel oil (West Coast) with 5 pet postochlorephonol	Mies. Le.	4.2 4.2	16		••	••	 22	40 22	••	60 56	10	100 78	13.9 12.5
Light gos oil (Hid-United States) with 5 pet postochlorophosol	Hiss. Le.	4.0 4.2	10 10	••	••	••	 50		••	100 50	16 5	100	15.6
leaver No. 3 blood (50-50 tapped crude recidual and recycled evertand gas	Moo.	4.0	10	••	••	••		70	••	30	30	100	19.5
eil) with 5 pet pentachlorephonol	Le.	4.0	7	••	••	**	86	14		20	•	14	
bovy gas oil (Mid-United States) with 5 pet postochlorophesel	Mies. Ls.	4.1 4.1	:		12		67 88		••	33	3	33	
	Miss.	7.9	10			••	80	20		••	2	20	
	Lo.	7.9	6		33		67		••	••			
	Hies. Lo.	12.0 12.0	10 5	60	10	••	80 40	10	••		1	10	
who oil entract (Tease) with 5 pet pentachlorophosol	Miss. Lo.	4.2 4.2	10			••	30 100	60		10	7	70	
Stalytic gas-base oil (Nost Coset) with topper naphthomate (0.5 pct copper metal)	Mice. Le.	4.2 4.2	10 10		10	••	 60	70 10	10	20 20	10 3	100 30	14.3
Malytic gos-base oil (West Coest) with	Mine	4.4						75			_		
copper maphthomote (0.75 pet copper metal)	Le.	4.2	i	13	13	••	62	12	**	25	1	100	17.4
Mi-ter creesete	Hiss. Lo.	4.1 4.1	10	••			••	70	••	30	10	100	14.2
enlates consists to any and anything			10			•-	50	40	•-	10	3	50	
col-ter crossote, 50 pct, and catalytic gos-base oil (West Coast) with 5 pct postochlorophessi, 50 pct by volume	Miss. Lo.	4.1 4.1	10		••		62	50	••	50 36	10	100 36	16.2
enl-ter crossote, 30 pct, and catalytic	Mico.	4.2	10			••		90		10			
gas-base oil (West Coast) with copper taghthomate (0.5 pct copper motel) 30 pct by volume	Lo.	4.3	10	••	••		90	10	••		10 1	100	18.1
mel-ter crossote, 25 pet, and estalytic	Miss.	4.1	10	••	••	••	••	90		10	10	100	14.6
gan-base oil (Mest Coast) with copper taphthomate (0.75 pct copper metal), 75 pct by volume	Lo.	4.2	•		••	••	50	36		iž	4	50	••
otalytic gas-base oil (West Coast) with 3 pct postachlorophonol, 50 pct, and estalytic gas-base oil (West Coast) with copper asphthasate (0.5 pct copper motal), 50 pct by volume	Miss. La.	4.2 4.2	10		••		10 100	20	10	60	.:	90	••
rested controls	Mice.	••	10 10	••	••	••	••	20	20	40	10	180	2.2

[&]quot; 10 states were originally installed at each test station. This number has since been reduced because of failure to locate the states at the original failure to locate the states at

(Page 2 of 2)

Final inspection at Bonaluse, Herenher 1942

^{*} Setimate based on percentage of stables commissing after finel inspection.

Table 16.--Condition of southern pine stabse (2 x 4 in. naminal x 18 in.), treated with various coal-tar crossotes and crossote solutions, after shout 34 years of service. Stabse placed in test at Hadison, Wis., October 1948, and on the Harrison Experimental Porest, Section, Miss., December 1948 (Plot 34)

						MILION OF	f stakes !	oceans.	r, 1962				
•	_	Average	Husber			erviceable		_	otroped t	7			
Procervative	Locotion	retention	in toot	Cond	Bocoy	Tomite etteck	Bocay and termite attack	Becoy fungi	Termite attack	Becay fungi and termite attack		tal oved	Arereg
		isi .					<u>Pes</u> -				ler ber	Pes	<u>Yr</u>
Conl-ter crossets													
Low resides, straight run	Miles.	8.0	10			••	-	40			_		17.8 ^b
_	Wie.	8.0	10		76	**	30	4		10	7	76 36	17.6
Hedium residue, straight rum	Mies.	8.0	10								•		
	Wie.	8.0	10		10	••	10	90 18		•-			18.8 ⁶
			•••		-			14	••	••	1	10	
High residue, streight rem Hise. 7.8 10 20 20 60 6 60 60 60 60 60 60 60 60 60 60 60 60 6		6	60	20.3 ^b									
	••												
	_												
		70	19.46										
	Vio.	8.2 8.2	10							••	4	40	21.3
	410 .	•.2	10	••	90			10	••	••	1	10	
Low in ter ocide and	Wies.	8.0	10				30	40	••	10	,	-	18.96
asphthologe	Vio.	8.0	10		100				••			70	14.7
Low resides, low in ter acids	Mine.	8.0											
and neghthologe	Wis.	8.0	10 10		10 70		20	50	••	20	7	70	19.26
					74	••		30		**	3	30	
High residue, low in ter ecide	Mise.	8.2	10		10	••	30	70	••	10		-	20.0 ^b
and naphthologe	Wis.	8.1	10	10	90	••							20.0
Seglish vertical retert	Mies.	8.0					_						
	We.	8.0	10 10	20		••	30	60		10	7	70	18.9 ^b
B		0.0			-	••	••	**	••	**		••	
English cohe even	Mar.	7.9	10					70		30	10	100	
	Vie.	7.9	10	•-	40			•			7	4	13.6
English cohe even, 50 pct, and	Mine.	8.1	10								•		
English vertical recort,	Vie.	8. i	10	10	•		10	**	••	50	9	90	16.9b
50 pct by volume									••	••		••	**
ledium recides, lew im ter ecide	-												
and nephtholone, 70 pct, and	Mies. Vie.	8.1 8.1	10		20		10	70		••	7	70	20.4 ^b
coal ter, 30 pet by volume	410.	•. 1	10	••	100		••	••		••			
bdium recidne, low in ter ecide		_											
and nephtholone, 70 pct, and	Ries. Vie.	8.1	10		10	**	20	70	••	••	7	79	19.6 ^b
petrolous oil (Mysming residuel) 30 pct by volume	440.	8.1	10	~~	•	••		20	••	•-	ž	20	~~
otrolous oil (Myoning residuel)	Mies.	8.1	10	_									
	Wie.	0. 1 0. 1	10		••	••		90	••	10	10	100	3.4
			••				••	100		**	10	100	14.8
streeted controls	Nico.	••	10			••	••	10	10				_
	Wie.		10			••		100	10	80		100	1.9 5.6

Finel inspection in Riscinsippi, Movember 1968.

TERSOSSIST VERSOSSIS INVESTOR

[&]quot;Estimate based on percentage of atabas remaining after final inspection.

Table 19.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with English coke oven and vertical retort coal-tar creosotes, after about 34 years of service. Stakes placed in test at the Marrison Experimental Forest, Saucier, Miss., December 1948 (Plot 25)

Company Company Sections Systems Systems

				Co	ndition o	Condition of stakes December 1982	December	r 1982				
		1		Se	Serviceable but	but	De	Destroyed by	y			
Dreservative	Average	rent in			snowing some				Pecar	Total	7	Average
	retention	test	bood	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	fungi and termite attack	removed	p .	life
	Pcf		:	1	1	Pct -		•	1 1	Ner Der	Pet	H.
Coal-tar creosote	5.3	10	ļ	ł	:	70	09	:	70	∞	80	:
sogies verical retort	10.1	10	;	10	ŧ	07	07	:	10	S	20	:
	15.0	10	;	;	10	06	1	:	;	:	1	:
English coke	4.7	10	i	i	1	;	80	ţ	20	10	100	16.3
	10.1	10	;	:	!	30	09	10	:	7	20	1
	14.8	10	;	ŧ	;	30	20	:	20	^	20	:
Untreated controls	:	10	:	:	•	:	;	•	100	10	100	1.9

Table 20.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with ginc-arsenic chromium and chromated copper arsenate salts, after about 32 years of service. Stakes placed in test at Hadison, Vis., November 1949, and on the Marrison Experimental Forest, Saucier, Hiss., December 1949 (Plot 28)

					C	adition (of stakes	Decemb	r 1981				
		•	Number			rvicesble		De	stroyed t	·y	_		
Preservative	location	Average retention	in test	Good	Decay	Termite attack	Docay and termite attack	Decay fungi	Termite attack	Decay fungi and termite attack		tel oved	Average life
		<u>Pcf</u>					P.L -				Hun- ber	Pct	Āī
Zinc-arassic-chronium salt (\$-32)	Vis.	(0.96)	10		90		••	10			1	10	••
	Miss.	(.96)	10	20	20		60		••	••	•-	••	
	Vis.	(.74)	10		70		••	30			3	30	••
	Miss.	(.72)	10	••	20		80		••	••			
	Vie.	(.50)	10		10		••	90	••		•	90	
bromoted copper proceets, type []	Miss.	(.50)	10	••	10		90						••
	Vie.	(.35)	10	••				100	••	••	10	100	18.5
	Nice.	(.35)	10				100	••					
	Vis.	(.22)	10	••	10			90		••	•	90	
	Miss.	(.22)	10				80			20	2	20	
Chromated comer arassate, type []	Via.	(1.03) ^b	10	90	10		••		••	••	••		
(Fed. Spec. TT-W-550)	Miss.	(1.04)	10	100	••		••					••	
	Wie.	(.78)	10	100	••						••	••	••
	Miss.	(.79)	•	100									
	Via.	(.52)	•	22	78				••			••	
	Miss.	(.52)	10	100							••		
	Wis.	(.37)	10	••	100		••		••				••
	Hies.	(.37)	10	90			10						••
	Vis.	(.26)	10		100				••				••
	Miss.	(.26)	10	10	30		60			••	••		
Zinc chloride	Via.	1.03 (.61)	10		••		••	100	••	••	10	100	12.8
	Miss.	1.04 (.62)	10		••		••	20		80	10	100	16.9
Coal-tar crossots	Via.	3.4	10		30	••	••	10	••		1	10	••
	Hiss.	8.3	10				80	10	••	10	2	20	
Untreated controls	Via.	••	10	••		••	••	100			10	100	7.0
	Miss.	••	10			••		10	30	60	10	100	2.8

 $^{^{\}rm s}$ ZnO, 97 parts; ${\rm CrO}_3,\ 170$ parts; and ${\rm As}_2{\rm O}_5,\ 213$ parts.

Retention figures in perentheses are based on preservative exides

Table 21. -- Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with two fortified aromatic petroleum oils, after about 32 years of service. Stakes placed in test at the Marrison Experimental Forest, Saucier, Hiss. December 1949 (Plot 26)

CONTRACT CONTRACTOR CONTRACT CONTRACT CONTRACT CONTRACTOR

				Cor	Condition of stakes December 1981	stakes	December	r 1981				
				Se	Serviceable but	but	ă	Destroyed by	1			
Presention	Average	August 4		ă S	snowing some				Peceu	Total	18	Average
	retention	test	boo	Decay	Termite	Decay and termite	Decay	Termite	fungi and termite	renoved	ved	life
	Pef					<u>Pct</u> -	1	•	1	Mus	Pct	Mr.
Standard wood	3.7	10	:	;	ł	;	70	10	20	10	8	7.3
preservative	8.2	10	ŀ	:	:	20	10	10	3	60	80	:
	11.7	10	:	ł	:	90	9	:	30	•	70	ł
Wood preservative	4.0	10	;	;	:	:	70	:	8	10	9	11.6
No. 51746-R	8 .0	91	ł	;	:	20	. 20	ł	9	••	2	:
	12.1	10	:	:	ł	9	10	:	20	•	8	:
Untrested controls	:	10	:	:	:	:	i	30	02	01	100	2.2
					!							

Reported to be a mixture of heavy petroleum cresylic acids, an aromatic solvent, and copper naphthenate equivalent to 0.3 pct copper metal.

Reported to be a mixture of petroleum cresylic acids, aromatic oils, and 1.0 pct pentachlorophenol.

Table 22.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with oil solutions of rosin amine D pentachlorophenate and pentachlorophenol, after about 32 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., December 1949 (Plot 27)

				ဦ	dition o	Condition of stakes December 1981	Decembe	r 1981				
				Se.	Serviceable but	but	å	Destroyed by				
Preservative	Average retention	Number in test	Poog	4	d showing some	Decay	Decay	Termite	Decay	Total removed		Average life
				Decay	Termite attack	and termite attack	fungi	attack	and termite attack			
	Jeg Jeg	i i				- Pet				Mus	Pet	뷝
Rosin smine D pentachlorophenate, 5 pct, in Stoddard solvent	6.0 7.9 11.8	000	:::	:::	111	:::	:::	1 : 5	80 100 100	222	0000	3.8 9.1 5.5
Rosin smire D pentachlorophenate, 5 pct; and paraffin wax, 2 pct, in Stoddard solvent	8.0 8.0	010	: :	: :	11	: :	1 9	1. 20	0 6	10	100	4.5
Rosin amine D pentachlorophenate, 5 pct; paraffin wax, 2 pct; and pentalyn H, 10 pct, in Stoddard solvent	4.80 0.0	000	11	: 1	: :	; ;	30	30	04 40	0 0	100	8.0
Rosin amine D pentachlorophenate, 5 pct, in No. 4 aromatic oil	4.0 7.6 12.3	000	:::	:::	:::	1 1 9	20 00	:::	9 1 2 0 1	5000	001 000 000 000 000	12.7
Pentachlorophenol, 5 pct; and pine oil, 5 pct, in Stoddard solvent	8.0	10	::	::	: :	::	::	::	100	9	100	9.5 15.5
Pentachlorophenol, 5 pct; pine oil, 5 pct; paraffin wax, 2 pct; and pentalyn H, 10 pct, in Stoddard solvent	7.8	10	::	::	1 1	: :	20	0 1	0.00	0 0	100	12.8
Pentachlorophenol, 5 pct, in No. 4 aromatic oil	8.2	2 2	::	: :	::	0 07	9 %	::	200	6 6	3 8	: :
Untreated controls	:	10	:	:	:	;	1	30	07	02	100	2.3

Table 23.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with rosin amine D pentachloro-phenate and pentachlorophenol in petroleum oil (Wyoming residual), after about 30 years of service. Stakes placed in test at the Marrison Experimental Forest, Saucier, Miss., March 1952 (Plot 34)

				S	Condition of	f stakes December 1981	December	1981				
				Se	Serviceable but	but	De	Destroyed by	, A	(
Preservative	Average	Number in test	Poog	Decay	Termite y attack te	Decay and termite	Decay fungi	Termite attack	Decay fungi and termite	Total removed		Average life
	Pcf		1			attack Pct -				Num	Pet	Yr
Rosin amine D penta-	0.4	10	ł	:	;	20	20	;	30	∞	80	:
chlorophenate 5 pct, in petroleum oil	8.0	10	:	;	;	07	07	ţ	20	•	09	:
(Wyoming residual)	12.7	10	0	10	;	07	20	ţ	20	4	07	1
Pentachlorophenol 5 pct	0.4	01	;	;	;	01	20	ŧ	07	٥	90	ł
in petroleum oil (Wyoming residual)	8.0	10	;	i	10	70	70	ŧ	:	7	50	•
	11.7	10	07	:	;	09	;	:	;	:	1	;
Petroleum oil (Wyoming	7.7	10	1	;	;	10	70	:	50	•	06	;
residual)	12.2	10	:	;	;	30	70	;	į	1	92	;
Untreated controls	;	10	:	1	;	:	;	20	080	01	100	2.0

Table 24.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with two Boliden salt formulations, after about 30 years of service. Stakes placed in test at the Harrison Experimental Forest, Saucier, Hiss., March 1952 (Plot 33)

				Cond	ition of	Condition of stakes December 1981	ember 19	18			
	Average	Number	}	Š	Serviceable but	but	Destroyed by	ed by	•		
Preservative	retention (approprie	in	•	Š	snowing some			1	IOCAL		Average
	**************************************	test	P009	Decay	Termite attack	Decay and termite attack	Termite	fungi and termite attack			y 4 4
	Pcf					- P.			Number	닯	기
Chromated zinc arsenate (H, AsO, ,	0.22 (0.11)	91	;	:	:	20	91	2	••	2	;
The Court of the C	.38 (.20)	01	;	:	;	100	;	:	:	;	:
so parts; ma_naso4, 21 parts	.77 (.40)	10	;	2	:	8	:	ŀ	:	;	;
${ m Na}_2{ m Cr}_2{ m O}_7$ " ${ m H}_2{ m O}_4$ 16 parts; and ${ m AnSO}_4$, 43 parts)	1.01 (.53)	c 10	9	1	:	8	:	:	:	ł	ł
Boliden salts S-25 (CrO,,	(.30)	9	:	20	01	0,	:	:	;	;	;
	(.50)	2	3	20	;	20	:	:	;	:	:
2n la marte: and	(32)	2	3	01	;	ŀ	:	:	:	:	:
As ₂ 0 ₅ , 49 parts)	(1.01)	9	8	:	:	;	:	:	:	:	:
Untreated controls	:	10	1	ŀ	:	;	70	8	2	100	1.8

Retention values in parentheses are based on preservative oxides.

b Retentions are shown on an anhydrous basis, and figures should be increased approximately 26 pct to obtain values as computed in AWPA Standard P5-55.

C This stake group placed in test in August 1952.

Table 25.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with four fire-retardant formulations (AWPA P10-51), after about 30 years of service. Stakes placed in test on the Marrison Experimental Forest, Saucier, Miss., March 1952⁸ (Plot 35)

				3	Condition of stakes December 1981	f stakes	Decembe	1981				
				8	Serviceable but	a a	å	Destroyed by				
	Average	Mary .		4	showing some				Decay	Total		Average
Preservative	retention	E F	900	Decay	Termite attack	Decay and termite attack	Decay	Termite attack	fungi teration			. 1
	Pcf					- Joe	:					
	1.50 (0.92) ^b	01	;	:	2	2	8	:	8	•		:
(ZnCl., 80.4 parts:	2.91 (1.78)	2	:	;	3	;	2	9	22		_	:
Ma_Cr_20, 2H_20, 19.6 parts)	6.00 (3.67)	2	3	;	\$:	:	:	:	:	:	!
Chromated zinc chloride (FR)	1.53	91	;	;	:	;	8	2	S		_	16.5
(Chromated zinc chloride, 80 parts)	3.8	2	:	;	8	20	2	2	ጸ	'n	8	:
$\rm H_3 BO_3$, 10 parts; and $(\rm HH_4)_2 SO_4$, 10 parts)	90.9	2	2	:	2	:	:	:	!		:	:
400	1.50	. 2	:	1	:	:	:	2	2	101	90	3.6
((ME.) MPO. 10 parts: (MH.) 80.	3.00	2	:	:	:	;	;	2	2		2 :	
60 parts; Ma28,07, 10 parts; and M380, 20 parts)	6.13	9	:	:	:	1	8	2	2			9
	1.50	2	:	:	:	:	:	2	8	01	90	11.2
(2mc) 35 parts: (MM.)50	3.01	2	:	:	:	1	1	2	2			0
Ma_Cr_20, 2M_20, 5 perts)	6.26	9	:	:	:	2	20	2	3		2	:
Untreated controls	1	91	:	:	:	1	:	20	2	101	8	7.6

a In cooperation with Bureau of Ships, Department of the Havy.

b Retention values in perentheses based on preservative exides.

Table 26.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with basic zinc chloride and zinc chloride, after about 30 years of service. Stakes placed in test at the Harrison Experimental Forest, Saucier, Miss., March 1952 (Plot 32)

				ပ	Condition of stakes December 1981	fstakes	Decembe	r 1981				
1	•	Number		88	Serviceable but	but	ğ	Destroyed by	y			
Preservative	retention	in	P 00 9	Decay	Termite	Decay and termite	Decay	Decay Termite fungi attack	Decay fungi and termite	Total removed	1 P	Average life
	Pef					Pct -				Ner Je	Pet	뀖
Besic zinc	1.00	9	:	:	:	100	;	1	;	;	•	;
chloride	2.11	10	10	30	i	09	;	ţ	;	;	:	ŀ
	4.13) 0	80	i	:	70	ł	ł	;	;	;	i
Zinc chloride	1.02 (0.61) ^b	10	:	ł	;	10	10	ł	80	Φ.	96	:
Untreated controls	1	01	:	;	:	:	10	20	70	91	100	2.2

Pershall process. Compound intended as fire retardant with retentions of 3-1/2 to 4 pcf. Retentions of basic zinc chloride are expressed as weight of zinc oxide.

Retention value in parentheses based on preservative oxide ZnO.

Table 27.--Condition of southern pine stakes (2 x 4 in. seminal x 18 in.), treated with navel-stores products, after about 30 years of service. Stakes placed in test on the Harrison Experimental Forest, Sourier, Hiss., Harch 1952 (Plot 36)

				Co	editice •	d atabes	Bocoabe	r 1961				
					rviceable		De	stroyed b	7		_	•
Preservative	Average retention	Hugher in test	Good	Becay	Termite attack	Becoy and termite attack		Termite etteck	Bocay fungi and termite attack	Tota		Average life
	Pef					· · <u>Pes</u> ·			· • • •	Barber	<u>Pet</u>	Yr
	4.1	10	••	•-	••		30		70	10	100	6.8
sein oil and No. 2 fuel oil (2:7) ^a	5.0	10		••	••	••	•		40	10	100	5.8 9.3
	12.3	10	••	**			20	••	-	•		
pein eil and No. 2 furl eil (1:7)	4.0	10	••	•-	••	••	10		90	10	100	5.6 5.4
2017 011 WE TO: 5 100 011 (111)	8.0	10		••	••		50		50 60	10	100	8.6
	12.1	10		**	••		40		-			
mein oil and No. 2 fuel oil (1:7)	4.0	10	••	••			20		**	10	100	11.4
	8.0	10	••	••			20 10		**	10	30	14.1
with 2.96 pct pentachlorophenol	12.1	10	••			50	10					_
lo. 2 fuel oil	4.1	10				••	30	10	60	10	190	6.2
lo. 2 fuel oil with 2.92 pct ^a	4.0	10					10	••	90	10	100	11. 12.
pentechlorophenol	8.0	10		••			29	••	•• ••	10	44	
	12.3	10	••			40	••		•			
b. 2 fuel oil with 4.94 pct#	4.1	10				••	50		50	10	100	12.
pentachlorophonol	9.0	10,	••		••		40		64	10 3	100	13.
	12.0	9"			••	67	33			-		
hoden oil and Stoddard solvent (1:7) ^a with 3.21 pet ^a postochlorophosol	8.0	10		**	••	••	50	••	50	10	100	12.
										•	100	6.
Dies resin and No. 2 feel sil (2:7)	4.0	96	••					10	100	10	100	
	8.1	10		••	••		3	10	50 70	10	100	10
	12.2	10		•			-					
iles resin and Staddard solvent (1:7) ⁸ with 3.11 pet ⁸ pentachlorephonal	8.2	10	••	••		••	40	10	50	10	100	10
Prop liquor concentrate and Steddard solvent (1:7) with 2.99 pct pertolleroplanel	7.9	10		••	••	•-	20	••	80	10	100	
Olso resin and No. 2 furl oil (1:7)	4.1	10	••				50		50	10	100	
with 2.94 per pentachlorophenol	8.0	10		••			30 20	~~	70 70	10	100	
Aith 5'30 ber bencommendance	12.0	10	••	••		10	20			•		
Drop liquer concentrate and No. 2 fuel	4.0	10				••	10	••	90	10	100	
oil (2:7) ⁶	8.0	10	••			••	20	**	100	10 10	100	
e (1 (2:7)	12.0	10			••	••						_
Drop liquor concentrate and No. 2 fuel	4.0	10			••	••			100 76	10 10	100	
eil (1:7)° with 3.65 pct°	8.0	10			••		30		***	10	101	
postochlorophonol	12.0	10	••				-					
No. 2 fuel oil with 5 pet [®] rooin	4.1	10					50 50		50 50	10 10	100	
anias D copper acetate complex	8.0	10 10					37 48		40	10	101	
	12.1	14										
Untreeted controls		10					10	20	70	10	100	2

^{*} Betten and percentages on a weight boots.

b I stoke missing, eliminated from test.

Table 28.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with coal-tar creosotes from tars produced by low-temperature carbonization (Disco process), after 29 years of service. Stakes placed in test at the Harrison Experimental Forest, Saucier, Hiss., December 1952 (Plot 37)

	‡ 			Cor	dition o	Condition of stakes December 1981	Decembe	r 1981				
		1		Sei	Serviceable but	but	å	Destroyed by	y			
Preservative	Average	in			snowing some		ļ	; ;	Decev	Total	.	Average
	retention	test	Good	Decay	Termite	Decay and termite attack	Decay fungi	Termite attack	fungi and termite attack	e e e e e e e e e e e e e e e e e e e	P	i fe
	Pcf		•			- Pct -					길	\ X
Low-temperature coal-tar	5.0	10	;	:	;	06	2	:	:	92	;	i
acids present)	10.2	10	:	;	ł	100	:	:	:	:	i	:
	15.4	10	20	1	:	8	:	:	;	:	:	:
Low-temperature cosl-tar	9.0	10	:	:	;	9	70		9	•	9	ł
percentage of tar acids	8.6	92	:	:	;	100	:	1	;	:	1	:
	15.2	01	;	:	:	100	:	ŀ	:	;	;	:
Untreated controls	:	10	:	:	:	;	1	04	3	2	90	2.3

Toble 29.--Condition, after about 25-1/2 years of service, of southern pine states (2 x 6 in. naminal x 18 in.) treated with preservative cile and conditioned by vapor cleaning and steaming to remove residual solvents. States placed in test on the Harrison Experimental Forest, Saucier, Miss., April 1953⁸ (Plot 36)

			Ave	retestic											
	Condi-		befe	veights ore and	By seelysis 2 meeths			edition o							
Preservative	tioning	llus- ber		iter itment	ofter treat-			eviceable			etroyed b				
	ofter treetment	in test	Solu- tion	Peats- chloro- phenol or copper metal	ment; penta- chloro- phenol or copper metal	Good	Becay	Termite attack	Becay and termite attack		Termite attack	Becay (ungi and termite attack		tel prod	Average life
				<u>Pcf</u> -					<u>Pet</u> -				<u>Hua-</u>	<u>Pet</u>	Įt
Pentachlorophenol,	Hone ,	10	4.2	0.105	0.062		••	••		20	10	70	10	100	11.6
2.5 pct in light aromatic solvent	Steaming	10	4.2	. 105	.091	••	••	••		10	••	90	10	100	12.4
Pentachlorophenol, 2.5 pct in light aromatic solvent	Vapor cleaming	10	4.1	. 102	.069		••		••	10	10	80	10	100	11.3
Pentachlorophenol, 4.5 pet in light arometic solvent	Steening	10	4.4	. 200	. 139		••	••	••	30	••	70	10	100	10.6
Pentachlorophenol, 5 pct in light aromatic solvent	Vapor cleaning ^e	10	4.5	. 225	. 136	••	**		••	20	•-	•0	10	100	14.2
Pentachlorophenol, 5 pct in light	Hone Steaming	10 10	4.6 4.8	. 230 . 240	. 1 86 . 222					10 10		90 90	10 10	100 100	14.1 12.9
aromatic solvent Pentachlerophenol, 5 pct in light aromatic solvent	Vapor cleaning ^e	10	6.0	. 300	.173			••			••	10	10	100	12.3
Pentachlorophenol, 9.1 pct in light arometic selvent	Steening ⁴	10	4.4	.400	.319		••	••	20	10	••	70	•	•0	••
Pentachlorophenol, 10 pct in light aromatic solvent	Vepor cleening	10	6.0	.600	. 397	••	••		30		••	70	7	70	••
Pentachlorophenol,	Hone	10	6.2	. 310	. 121				••		••	100	10	100	16.5
5 pct in He. 2 fuel oil	Stooming Vapor cleaning	10 10	6.6 7.2	. 330 . 360	.146	••	•-		10	20 20	••	76 80	10	90 100	13.1
Copper supbthemate,	Hone Steeming	10 10	4.6	.023	.029				••	50 40	••	50	10	100	11.0
0.5 pct copper in light eromatic solvent	Vapor cleaning	10	4.5	.023	.018				••	40		60 60	10 10	100	12.0 11.8
Copper maphthemate, 0.59 pct copper in light aromatic solvent	Steaming	10	4.4	.026	.023			••	••	30	••	70	10	100	14.3
Copper maphthemate, 0.7 pet copper in light aromatic solvent	Vapor cleaning ^e	10	4.2	.029	.021	••	••	••	••	30	••	70	10	100	13.7
Untreated controls	••	10		••				••	••	••	60	40	10	100	2.4

In conservation with the Bureau of Shine, Donartment of the News,

Prior to conditioning.

Solution contained 5 pct enter gum (by weight) as a bloom preventative.

 $^{^{4}}$ 1 hr steaming with maximum temperature 259° F and 1 hr vocuum, following which steaming and vacuum periods were repeated.

^{4 1} hr heating in vapor of aromatic solvent with maximum temperature of 200° F, and 1 hr vacuum, following which vapor heating and vacuum periods were repeated.

Table 30.--Comdition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with Basilit UA, after about 27 years of service. Stakes placed in test at the Marrison Experimental Forest, Saucier, Hiss., December 1954 (Plot 40)

				ວ	Condition of stakes December 1981	f stakes	Decembe	r 1981				
		Number		% 4	Serviceable but	but	ä	Destroyed by	.y			
Preservative	retention	in test	6 000	Decay	Decay Termite	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite	Total		Average life
	Pcf					- Pct				Number Pct	Pct	ži
Besilit UA ⁸	0.25 (0.19) ^b	9	;	;	:	50	:	20	30	••	2	:
Basilit UAª	.53 (.39)	9	:	:	:	100	:	:	:	:	:	1
Besilit UA ²	.75 (.56)	9	;	ł	.	100	;	;	ŧ	:	:	;
Untreated controls	:	01	:	i	:	:	:	20	80	01	8	

Contains sodium fluoride, sodium dichromate, and sodium arsenate.

Retention values in parentheses based on preservative oxides.

Table 31.--Condition of southern pine stabes (2 x 4 in. naminal x 18 in.) of uninfected and <u>Trichedorms</u> weld-infected wood, treated with coel-tar crossote, pentachlorophenel solution, and copperised chromated sinc chloride, after about 27 years of service. Stabes placed in test on the Herrison Experimental Forest, Sourier, Hiss., December 1954 (Plot 41)

				Ce	redition (of stabos	Decembe	r 1961				
	_	Musher			eviceeble			etroyed b	7	9	. •	
Preservative	Average retention	in test	Good	Decay	Termite attack	Decey and termite attack		Termite attack	Docay fungi and termite attack	Teta		Average life
	Pel					<u>Pct</u> -				Humbo r	<u>Pet</u>	Ye
		STAIG	15 <i>7</i> 101	1 400D 1	ZTNOUT N	OLD IMPEC	PION					
Coal-tar cressote	3.9	10	••			40	50		10	6	60	
(high residue.	7.8	10		••		100				••		••
straight run)	12.2	10	20	20	••	60	••					••
Coal-tar creesete (lew	4.0	10			••	30	20		50	7	70	
residue, lew in tar	8.0	10	••	10		80			10	1	10	
acids and maphthalones)	12.4	10	50		•=	50					••	
Pentachlorophenol	4.2	10	••				10	20	70	10	100	16.7
(4.7 pct in No. 2	8.1	10				20	20		60	8	80	
fuel oil)	12.1	10				90			10	1	10	
Copperized chromated	0.34 (0.20) ⁸	10						20	80	10	100	16.6
ziac chloride	.73 (.45)	10				80	20			2	20	••
	1.15 (.71)	10			70	20		••	10	1	10	••
Untrested controls	•• '	10	••				••	60	40	10	100	2.1
	\$	TAKES FI	NOM WO	O INFE	TED VITE	TRICHODE	MA HOL	•				
Coel-ter creesete	4.0	10	••		••	20	40		40		80	••
(high residue,	8.0	10	•-	••		80	20			2	20	••
straight run)	12.0	10	10	10	••	70	10	••		1	10	
Coel-ter crossote	4.1	10		••	••	20	60		20		80	
(low residue, low in	8.0	10				70	10	••	20	3	30	••
ter acids and mapthalenes)	12.0	10	••	••	••	100			••	••	••	••
Pestachlorophesol	4.2	10			••	10	20	20	50	•	90	••
(4.7 pct in No. 2	7.8	10		••		20	10		70	i	80	
fuel oil)	11.9	10			••	80	10	••	10	2	20	
Copperised chromated	0.34 (0.20)	10	••			20	••	20	60	8	80	••
siac chloride	.74 (.45)	10	••	••	20	70	••		10	1	10	
	1.17 (.71)	10	10		70	20	••			••	••	
Untreated controls	••	••					10	30	60	10	100	2.5

 $^{^{\}rm a}$ Retention values in parentheses based on preservative oxides.

Stakes placed in test at the Marrison Experimental Forest, Saucier, Miss., December 1954 (Plot 42) Table 32.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with Texas lignite coal-tar creosote and with paraffin alone and fortified with pentachlorophenol, after 27 years of service.

				Co	ndition o	Condition of stakes December 1981	Decembe	r 1981				
		1		Se	Serviceable but	but	ă	Destroyed by) A			
Preservative	Average	ni ni			snowing some					Total	[5]	Average
	retention	test	bood	Decay	Termite attack	Decay and termite attack	Decay	Termite attack	fungi and termite	re en company	removed	life
	Pcf		•	•		- Pct				Ne le le	티	뉡
Texas lignite coal-tar	5.1	01	;	;	:	20	10	;	02	≪	80	;
creosote	8.6	01	;	;	:	80	;	;	20	8	20	;
	15.2	10	70	10	10	9	:	:	: :	:	: :	;
25 pct paraffin in aromatic volatile solvent (by weight)	25.9	01	;	:	;	1	10	10	80	10	100	18.4
5 pct pentachlorophenol plus 28.5 pct paraffin in aromatic volatile solvent (by weight)	26.3	0	01	;	:	06	:	:	:	;	:	;
Untrested controls	•	10	:	:	:	:	:	30	02	90	8	2.3

Table 33.--Condition of Douglas-fir, sweetgum, and tangile plywood stakes, treated with pentachlorephonol and with fluor chrome erasmate phonol type A, after about 26 years of service. Stakes placed in test on the Harrison Emperimental Perest, Sourier, Hiss., January 1956 (Plot 44)

Preservative Pres				
Preservative Pres				
PLYMOND FROM VENEER TREATED REFORE GLUIDS	_		otal novod	life
Bouglas-fir Peatschlorephonoid Peatschlorephonoid Cold seabed 6.3 10 22 70		Page 191		<u>I</u> r
Postschlorophono Cold cocked 6.3 10 30 70				
Postachlorophono Cold cooked 6.3 10 30 70		•	100	14.0
Second Personne Second		10		
Cold seabed				
Pestachlorophenol Sot and cold 15.1 10 30 70		10		
Tangile	10	10	100	7.4
Personal Presents Pressure 10.6 10 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10		100	
Sending Personne Pressure .55 (.34) 10	10	10	100	6.8
Pressure 9.6 10 20 80 70 70 70 70 70 70 70	10	10	100	10.4
Postachlorophenol Cold scaled .9 10 20 10 70				
Postachlorophenol Cold scaled .9 10 20 10 70	10	10	100	14.7
Personal Cold seabed 1.4 10 20 30	10		100	
Tongile Personne Pressure .66 (.37) 10 22 22 36	10	10	100	7.1
Postachiorophosol Pressure 10.6 10 70 30	•		100	
Tongile Pentachlorophonol Pressure 10.4 10 70 30 Floor chrome aromate phonol type A Pressure .66 (.37) 16 90 10	10	10	100	6.3
Tangile Pentachlerephonol Pressure 10.4 10 70 30 Fluor chrome arsenate phonol type A Pressure .60 (.37) 10 90 10	10	10	100	7.6
Fluor chrone arsenate phenol type A Pressure .60 (.37) 10 90 10	10	16	100	13.5
•				
UNTREATED CONTROL	10	10	200	15.0
Bouglas-fir 10 100	10	10	100	3.6
Sweetgan 10 10 10 80	10	10	100	1.4
Tangile 10 40 60	10	10	100	1.9

^{*} In cooperation with the Sureou of Shipe, Department of the Nevy.

CONTRACTOR CONTRACTOR OF THE PROPERTY CONTRACTOR CONTRACTOR

b Five percent solution conforming to HIL-W-18142 (SHIPS) specification 27 August 1954.

Consisted of heating in a vencer dryer and immersion in unbested preservative solution until desired retention was obtained.

d Retestion volues in perentheses are based on preservative emides.

^{*} One stake by soft-rot fungue.

NOTE: The stakes were of 5-ply vesser, 5/8 x 4 x 18 in., and cut from peacls 24 x 48 in. For item 10 the stakes were cut from the peacls and then treated. For other treated items the stakes were cut after treatment and the edges emposed in soving were brush coated with the preservative.

Table 34.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with copper formate, after about 25 years of service. Stakes placed in test at the Harrison Experimental Forest, Saucier, Miss., December 1956 (Plot 47)

				Condit	ion of st	Condition of stakes December 1981	mber 19	81			
Ġ	Average	Number		88 a	Serviceable but	but e	Destro by	Destroyed by	į	-	
FIGURALIVE	(copper)	in test	p 009	Decay	Termite	Decay and termite attack	Decay fungi	Decay fungi and termite	removed	Į.	Average life
	Pcf		•			Pet			Number	Pet	Yr
Copper formate	0.030	10	;		:	:	30	70	10	100	7.4
	090	10	;	:	:	80	20	;	7	70	:
	060.	10	:	:	ł	80	20	;	7	70	:
	.120	01	:	:	10	80	10	:	-	10	ł
Untreated controls	:	10	:	i	ł	;	:	100	10	100	3.4

Table 35.--Condition of southern pine stakes (2 x 4 in. and 3/4 x 3/4 in. nominal x 18 in.), treated with KP⁸ preservative, after about 23-1/2 to 24 years of service. Stakes placed in test at Hadison, Wis., Hay 1958, and on the Marrison Experimental Forest, Saucier, Hiss., December 1957 (Plot 48)

					Ce	adition o	of stakes	Decembe	er 1981				
			Number			rviceable		De	stroyed b	y			
Preservative	Location	Average retention	in test	Good	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite attack	-	tal oved	Average life
		Pcf					<u>Pct</u> -				Num- ber	Pct	<u>Yr</u>
			STAKES	3/4 1	NY 3/4 E	Y 18 INCH	ES						
(P ⁸ preservative	Miss.	0.09	9 b 8 b 9 b					56	31	33	9	100	9.5
	Miss.	.18	áb				38	50	•	12	5	62	7.3
	Miss.	. 28	g,b	11	11	11	34	33			3	33	••
	Miss.	.37	10	40	10	10	20	20			2	20	
hromated zinc chloride	Miss.	1.20 (0.73) ^C	9 ^b				11	11	67	11	8	89	
Goal-tar creosote	Hiss.	11.6	9	11	••	11	56	11		11	2	22	
Intreated Controls	Hiss.		10					40		60	10	100	2.1
			STAK	ES 2 E	Y 4 BY	18 INCHES							
P preservative	Niss.	.09	10,			••	20	50		30	8	80	••
	Vis.	.09	, 8 P		12			88			7	88	
	Miss.	. 19	10			••	70	30	••		3	30	
	Vis.	. 18	10		50	••		50			5	50	
	Miss.										_		
	Wis.	. 27 . 26	10	50	67	10	20	20			2	20	
	Miss.	. 26		11	6/			22			2	22	
	Vis.	.37	10 9b	80 33	67			20			2	20	
			_										
brometed time	Miss.	1.16 (.71)	10				50		••	50	5	50	
chloride	Wis.	1.21 (.74)	8"	25	12			63	••		5	63	
coal-tar creosote	Miss.	10.2	10	20	10	10	60						
	Vis.	10.2	10	40	60				*-				••
atreated controls	Hiss.	••	10					20	••	80	10	100	2.5
	Wis.		10					100	••		10	100	3.6

Copper oxide and chlorophenols.

CONTRACTOR CONTRACTOR

CONTRACTOR RECORDS BELLEVILLE FOR THE PROPERTY OF THE PROPERTY

b Specimens found broken and eliminated from test.

C Retention values in parentheses are based on preservative oxides.

Table 36. -- Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with tributyltin oxide, after 8 years on the Marrison Experimental Forest, Saucier, Miss., and of those of cyanoethylated wood and wood treated for destruction of thismine, after approximately 8 years in Mississippi and 9-1/2 years at Madison, Wis. Stakes placed in test in Mississippi in December 1958 and in Wisconsin in May 1959 (Plot 53)

					కి	Condition of stakes November 1968	f stakes	Novembe	r 1968				
			,		S.	Serviceable but	but	2	Destroyed by				
Preserva ive	Location	Average retention	in test	P 009	Decay	D Termite y attack te	Decay and termite	Decay fungi	Termite	Decay fungi and termite	Total removed		Average life
		Pef					Pot .				Num-	Ret	爿
Tributyltin oxide	Miss.	0.015 .030 .045	000	:::	:::	:::	: : :	: 2 2	2::	888	5 5 5	900	6.3 7.2 7.4
Stoddard solvent (controls)	Hiss.	7.1	10	:	;	;	ł	:	20	80	10	100	6.0
Acrylonitrile	Hiss. Vis. Hiss.	1.23 1.22 2.46 2.48	2222	::::	::::	1111	::::	100	2 2	8 8	5555	9 9 9 9	e. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
Ammonium hydroxide Untreated controls	Hiss. Hiss.	: ::	10 10	: ::	: ::	1 11	: ::	1 100	2 !!	100	0 00	100	3.5 3.6 4.0

a In Stoddard solvent.

b Used with ammonium hydroxide for cyanoethylation.

C Followed by steaming for thismine destruction.

Table 37.--Condition of southern pine stakes (2 x 4 in. nominal and 3/4 x 3/4 in. x 18 in.), treated with fluor chrome arsenate phenol type A (AWPA-P5 and modification), after about 22 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., December 1959 (Plot 55)

				တိ	Condition of stakes December 1981	fstakes	Decembe	r 1981				
		Ž		Š	Serviceable but	but	ă	Destroyed by	- 4			
	Average			#	showing some				Decay	Total		Average
Preservative	retention	in test	Good	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	fungi and termite attack	removed	9	1116
	Pcf					Pct -	1		1 1 6 1	Num-	<u>P</u> ct	뇠
		SI	STAIGS 2	BY	4 NOMINAL BY 18 INCHES	18 INCHE	s					
	0 35 (0 22)	٩	;	;	:	;	62	:	38	•	001	18.3
ohenol (Federal Special		9	;	;	;	20	9	:	20	∞	8	:
TT-W-535) (Type A)		9	:	;	:	96	10	:	:	-	2	;
	36 (22)	۵,	1	:	:	:	33	=======================================	26	Φ	100	16.7
phenol (Tune A)		9	:	:	;	;	8	;	20	92	100	17.5
(Hodified) ^C	.76 (.47)	01	;	:	1	07	20	:	01	•	9	:
Untreated controls	;	01	:	:	;	;	07	20	07	10	901	2.1
			STAKES	3/4 BY	1 3/4 BY 18	8 INCHES						
	36 (22)	٩	:	;	:	1	34	33	33	0	100	6.7
shonel (Federal Spec			;	:	:	:	26	33	::	6	9	11.8
TT-W-535) (Type A)	.77 (.48)	.	:	:	;	1	20	12	38	∞	100	16.5
The state of the s	37 (23)	91	ŀ	;	:	:	70	30	20	10	100	8.2
stadi carde asserte	_	9	;	;	:	1	70	9	07	2	100	11.6
(Modified)	.80 (.38)	6	;	1	:	:	26	=	33	6	100	15.3
Untreated controls	:	10	;	;	:	ł	30	70	20	10	100	1.4

Retention values in parentheses are based on preservative oxides.

b Stakes damaged mechanically and eliminated from test.

C Sodium pentachlorophenate substituted for dinitrophenol.

Table 38.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with copper-8-quinolinolate, after about 9 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., December 1959 (Plot 54)

	Average				Col	ndition o	Condition of stakes November 1968	Novembe	r 1968				
	retention	tion			Se	Serviceable but	but	å	Destroyed by				
4000		Copper-	Mumber		4	showing some					Total	[4	Average
	Solution	guino- lino-	test .	P 009	Decay	Termite attack	Decay and termite attack	Decay	Termite	fungi and termite	removed	P	life
	Pc	1		1		•	- Pct					빏	#
Copper-8 quinolinolate 0.1 pct in Stoddard solvent	6.6	0.010	92	;	1	:	:	92	:	96	9	100	5.3
.2 pct in Stoddard solvent	9.6	.020	01	:	:	:	;	70	10	02	10	100	4.2
.6 pct in Stoddard solvent	10.0	.060	2	:	;	:	10	9	:	8	•	8	5.6
1.2 pct in Stoddard solvent	10.2	. 123	9	;	:	:	90	3	:	93	•	8	7.8
.6 pct; paraffin, 2 pct; and Pentalyn-H, 10 pct in Stoddard solvent	10.1	.061	10	:	01	ł	20	92	:	:	^	02	•• ••
.6 pct; Dieldrin, 0.5 pct in Stoddard solvent	10.1	90.	91	;	ì	:	10	70	:	20	•	8	6.6
Untreated controls	•	:	10	:	;	:	:	;	20	2	9	8	2.2

^{*} Estimate based on percentage of stakes remaining after final inspection.

Table 39.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with blends of extracts from Texas lignite tar, after about 22 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., December 1960 (Plot 57)

				ပိ	Condition of stakes December 1982	f stakes	Decembe	r 1982				
		Mumber		Ser	Serviceable but	but 	8	Destroyed by			,	
Lignite-tar extracts	Average retention	in test	6000	Decay	Termite	Decay and termite attack	Decay fungi	Termite	Decay fungi and termite attack	Total removed	- P	Average life
	<u> </u>		;			- Pct -					킬	N.
Mexame-soluble residue, 25 pct; and	5.1	10	;	;	;	9	90	:	2	σ	8	;
bexane distillate, 75 pct (by weight)	10.0	2	;	;	:	2	: :	;	2 2	۰ ۵	2 2	:
	14.1	9	:	2	:	8	;	:	: :	;	1	;
High-boiling methanol solubles, 25 pct;	5.0	10	;	:	:	50	;	;	9	•	9	:
and bexane distillate, 75 pct (by	9.9	9	;	;	;	9	;	;	3 9	- (3 9	. !
weight)	15.2	2	30	;	:	2	:	ł	: ;	• :	: :	:
High-boiling methanol solubles, 10 pct;	5.1	9	;	:	:	;	01	;	9	90	90	4
bexame-soluble residue, 20 pct; and	10.1	2	9	;	;	92	;	:	70	7	20	;
bexame distillate, 70 pct (by weight)	14.7	92	9	2	:	2	:	:	: :	:	:	;
High-boiling methanol solubles, 20 pct;	5.2	91	ł	:	ŀ	20	20	:	90	•	9	:
hexane-solution residue, 10 pct; and	10.0	2	:	;	:	8	:	;	3 :	١,	; ;	;
bexane distillate, 70 pct (by weight)	15.2	2	20	:	90	3	;	:	1	:	;	;
Migh-boiling methanol solubles, 15 pct;	5.0	10	;	:	:	20	10	2	90	s.	9	;
and bexame distillate, 85 pct (by	10.2	2	;	:	2	2	: :	: :	2		2	;
weight)	14.9	01	30	9	1	3	;	:	: :	1	: :	;
High-boiling methanol solubles, 24.5 pct;	5.1	01	;	;	ł	20	20	:	9	ď	9	:
hexane distillate, 74.5 pct; and	6.6	2	:	;	;	8	: :	;	; ;	, ;	; ;	;
petroleum sulfonate (Morpel X-914), 1 pct (by weight)	15.0	01	70	:	:	2	:	:	:	;	:	:
Untrested controls	;	22	;	;	:	:	:	:	8	2	100	2.6

Table 40.--Condition of 1- x 4- x 18-in. stakes of embedded fiberboard and untreated Douglas-fir beartwood after 18 years of service. Stakes placed in test at the Harrison Experimental Forest, Saucier, Miss., December 1960 (Plot 58)

			8	ondition	Condition of stakes November 1978	Novembe	r 1978				
;	Number		s Se	Serviceable but	but e	å	Destroyed by	y			
Material	in test	роод	Decay	Termite	Decay and termite attack	Decay fungi	Decay Termite fungi attack	Decay fungi and termite	Total removed	red red	Average life
		1			Pct -				Number Pct	Pet	Yr
Embedded fiberboard ^a	q6	;	:	į	:	100°	1	;	6	9	1 6
Douglas-fir heartwood	10	:	:	;	:	70	10	50	10	100	3.0

Western hemlock strands in portland cement.

b Stake missing and eliminated from test.

c Failures attributed mainly to the effect of moisture.

Table 41.--Condition of southern pine stakes (2 m 4 in. nominal m 18 in.), treated with tributyltin omide and pentachlorophenol solutions with heavy and light petroleum solvents and with and without the addition of Dieldrin and Aldrin, after about 22 years of service. Stakes placed in test on the Marrison Experimental Forest, Saucier, Hiss., December 1960 (Plot 56)

				Co	edition o	f stakes	Decembe	r 1982				
		WL			rviceable		De	stroyed b	y			
Preservative	Average retestion	Number in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack	Tot rema		Average life
	Pef			• • • •		<u>Pet</u> -				Hun- ber	Pet	ŢĽ
		801	UTION	VITE (TODDARD 1	OLVENT						
ributyltin oxide, 0.3 pct;						••	90	••	10	10	100	4.9
and Dieldrim, 0.3 pct ributyltim oxide, 0.6 pct;	8.0	10	••				90	••	10	10	100	6.9
and Dieldrin, 0.3 pct ributyltin oside, 0.3 pct;	8.0	10		••				••	10	10	100	4.6
and Aldrin, 0.3 pct	8.0	10				••	90		10	10	100	7.0
ributyltin ozido 0.3 pet	8.2	10			••		80	, ••	20	10	100	4.5 7.0
0.6 pct	7.9	10	••	••	••		50	••	50	10	100	7.0
ributyltin exide, 0.3 pct; Dieldrin, 0.3 pct; and water repellent, 4.7 pct ributyltin exide, 0.3 pct;	8.0	10	••	••	••		100	••	••	10	100	6.9
Aldria, 0.3 pct; and water repellent, 4.7 pct	8.0	10	••				70		30	10	100	5.3
Meldria, 0.6 pet	8.0	10	••	••			90	••	10	10	100	4.0
Postachlorophonol, 5 pct; pino oil, 5 pct; and water repellent, 4.7 pct Postachlorophonol, 5 pct; pino oil, 5 pct; Dieldrin,	8.0	10	••	••	••	100	••	••	••	••	••	••
0.3 pct; and water repellent, 4.7 pct	8.0	10	••	••		100		•-	••			
bter repellent, 4.7 pct	8.0	10		••	*-		80	••	20	10	100	4.
entechlorophonol, 5 pct; pine eil, 5 pct; Dieldrin, 0.3 pct; stabilizer wex, 2 pct; and water repellent, 4.7 pct	8.0 2 01.1	10 UTIONS V	 ITN NR/	 NY PETI	 Noleum so	100 LVEST (AM	 PA P9)	••		••	••	••
ributyltin onide, 0.3 pct;						•						
and Dioldrin, 0.3 pet	8.0	10		••		50	50	••	••	5	50	••
ributyltin omide, 0.6 pct; and Dieldrin, 0.3 pct	8.0	10	••	••	••	40	30	••	44	6	60	••
Pributyltia oside	8.0	10		••	••	30	30	••	40	7	70	••
0.3 pet 0.6 pet	8.0	10	**	**	••	50		••	50	5	30	
Pentachlorophonol, 5 pct	8.0	10		**	••	100	••	••	••	••		••
Pentachlorophonol, 5 pct; and stabilizer wax, 2 pct	7.7	10	10	••	••	80	10	••		1	10	
Petroloum solvent controls	8.0	10			••	60	••		40	4	40	••
			UNI	THEATED	CONTROLS	ľ						
leae	••	10	••		••	••	70	••	30	10	100	3.

		Am	-	etica			c	edition o	of staboo	Documbo	r 1961				
			reight		Non-			erviceeble			atroped t	7			
Preservative	Loca- ties	Solu- tion	Posta- chloro- phonol	enely- eie, posto- chlore- phosel	ber in teet	Good	Docay	Termite	Decay and termite attack		Termite atteck	Bacay fungi and termite attack		tol sved	Average life
		• • •	<u>Pel</u> -				• • • •		• • <u>Pet</u> •				Hear: ber	Pet	Yr
				STANDS 2	. 57 4	mont Ethe	L W 16	INCHES							
Pentochlorephonol in liquefied	Mine.			0.14	10				20			*		*	
petroloum gas		••	••	. 19	10				10	10		70		40	
			••	. 19. . 34. . 58	10			••	100				••	••	
Solutions with AMPA P9 (heavy petrolous solvent) Pontochlorophesol				.36	10		••	••	100	••	••			••	••
3.5 pct (by weight)		3.0	0.11	. 14	10		••	••				20	2	20	
		4.5	. 19	.22	10		••	••	100						
4.2 pct (by weight)		6.8													
vic pri (by wright)		16.0	.29 .67	.32 .69	10 10	99			100 10						
				1-0	•••	,,			••						
Solutions with Stoddard solvent Pontachlorophonol, 4.0 pct;	ŧ.	3.6	.14	. 14	••										
peraffin, 2 pet; and Pentalyn-H, 10 pet (by weight)		4.6	.18	.18	10		••			10		100	10	100 100	13.8 16.1
Pontochlorophonol, 5 pct; paraffin, 2 pct; and Pontalyn-H, 10 pct (by weight)		7.6 13.5	.38 .67	.39 .70	10 10	20	10	••	100 70		••		••		
Untrocted controls		**	••	••	10					30	30	40	10	100	2.1
				STATES	3/4 [FF 3/4	57 17 E	INCHES							
Pentechlorephenel in liquefied	Mins.	••	••	. 15°	10					40		**			
petrolous gos	Wie.	••	••	.15°		-				100		60	10 15	100 100	5.5 10.0
, , -	Mae.			. 19 ^C	Take Fee				••	50		50	ï	100	4.6
	Wie.	••		.19°	142					100		••	14	100	12.4
	Wis.	••	••		.,34					22 100	11	67	•	100	12.0
	Miss.		••	.44°						36	12	50	13	100 100	13.9 15.1
	We.		••	.48°	•		30			50			5	50	
Solutions with MPA 29 (heavy	Mins.	3.2	.13	••	.4			••	••	11					
petroleum solvent)	Wis.	3.3	. 16		34				••	100	••	89	9	100	14.6
Pontachlorophonol, 4.2 pct	Mico.	3.8	. 16		10,				10	10	10	70	•	90	16.7
(by weight)	Wie.	3.9	. 16		10,	••			••	100		••	í	100	16.1
	Mine. Wie.	3.7	.24		- 5		••	••	25	••		75	3	75	**
		5.5	.23	••	7		14	••	••	86		••	6	86	••
	Mine.	16.7	.70	••	,4	44	36	••				••	••		
	Wie.	17.2	. 72		4		75		••	25		••	1	25	••
Solutions in Staddard solvent				•											
Pentochlorophonol, 4.0 pet;	Hice.	3.5	. 14	••	94 11	••	••	••	••	45	10	45	•	100	5.6
poroffin, 2 pet; and Pontalyn-H, 10 pet (by	Wie.	3.0	- 12		117				••	100			11	100	11.4
weight)	Mico. Wio.	3.9	. 16 . 16	••	134	••	••	••	••	30	••	70	10	100	4.9
_						•-				100		••	13	160	10.8
Postochlorophonol, 5.0 pet;	Miss.	6.4	. 32	••	94			••	12	22		66	•	88	••
poroffia, 2.0 pct; and Poutalyn-H, 10 pct (by	Vie. Hise.	6.6	.33	••	14				••	100			14	100	14.6
weight)	mae. Vie.	14.4 14.6	.72 .73		14 6 11		82	••	63		**	17	1	17	
Motreeted controls	Mise.			••	10	•-	**			18	30		2	18	
	Vie.	••			15	••	••			100	30	30	10 15	100	1.5 4.6

From the enalysis of composite scaple of cross-section vafors taken at midpoint from ten 2- x 4- x 10-in. stakes and matched to the taken treated for installation. Since retestions were not determined for individual test stakes, entre stakes were not treated to provide lection, according to retestions, for the test installation.

C Based on employees by Bell Telephone Laboratories of 2-in, sections cut adjacent to the test stabes.

Table 43.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with copper-8-quisolinolate and pentachlorophenol in heavy petroleum solvent, after 18 years of service. Stakes placed in test on the Marrison Experimental Porest, Saucier, Miss., December 1963 (Plot 62)

					2	Condition of stakes December 1981	f stakes	Decembe	r 1981				
	Avera	Average retention	3		8	Serviceable but	þat	8	Destroyed by	<u>.</u> پ			
Preservative	Solu- tion	Copper-8- quimolimolate or penta- chlorophenol	in the state of th	P 009	Decay	Termite by attack te	Decay and termite	Decay	Termite	Decay fungi and termite	Total removed		Average
		Pef					Pet -			PETOCK .	Musber	티	#
Solutions with heavy petroleum solvent (AMPA P9): Copper-8-													
quinclinotate 0.15 pct	4.6	0.014	2	:	:	:	8	:	:	2	-	01	:
0.3 pct	10.1	. 030	9	:	;	:	90	;	ł	:	;	ł	:
0.6 pct	9.9	.059	2	:	;	:	100	:	:	:	:	:	:
1.2 pct	10.3	.124	9	8	;	9	3	ŀ	:	;	:	:	:
Pentachlorophenol	10.6	.54	9	3	:	8	98	;	i	:	1	i	:
Petroleum solvent controls	8.5	:	91	;	;	:	9	:	01	8	4	3	:
Untreated controls	;	:	91	:	;	:	:	20	i	2	10	8	2.9

Table 44.--Condition of southers pine stakes (2 x 4 in. nominal x 18 in.), treated with heptadecyltrimethyl-tetrahydropyrimidine (HTP) in No. 2 fuel oil, after about 18 years of service. Stakes placed in test at the Harrison Experimental Forest, Saucier, Hiss., December 1963 (Plot 63)

ACCORAGE MASSESSES STANGED STANDARDS ACCORDED

					S	ndition o	Condition of stakes December 1981	Decembe	r 1981	,			
	Average	age tion	Number		Š	Serviceable but	but	å	Destroyed by				
Preservative	Solu- tion	E	in test	poog	Decay	Decay Termite	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite	Total removed	~ 5	Average life
	- Pcf -						<u>Pct</u>				Number		비
HTP, 2.5 pct, in No. 2 fuel oil	6.0	0.150	91	:	:	•	20	:	ŧ	2	••	2	:
HTP, 5 pct, in No. 2 fuel oil	8.1	997	01	:	:	;	100	;	.	:	:	:	1
HTP, 5 pct, in No. 2 fuel oil	10.0	86 7.	9	ŧ	i	1	100		:	1	:	:	:
Untreated controls	;	;	10	:	:	:	100	:	ŧ	100	91	8	2.3

Table 45.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in. and 3/4 x 3/4 x 16 in.) treated with pentachlorophenol in liquefied petroleum gas and in heavy petroleum solvent, after about 18 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., December 1963 (Plot 61)

					Co	edition o	f stakes	Decembe	r 1981				
	Ave: retes		Nun-			erviceable lowing som		De	stroyed t	y			
Preservative	Solution	Penta- chloro- phenol	ber in test	Good	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite attack		tal oved	Average life
	<u>P</u> c	<u>:f</u>					<u>Pct</u> -				Num- ber	Pct	<u>Yr</u>
				S	TAKES 2	BY 4 INC	MES						
Pentachlorophenol in liquefied petroleum gas		0.34 ^a .49 ^a .65 ^a .39 ^a ,c	10 10 10 10		 		60 100 100 100	10 	 	30 	 	40 	••
Pentachlorophenol, 5 pct im heavy petroleum oil	10.6	.53 ^d	10	50	••	10	40	••			••		
Meavy petroleum oil	8.0		10		••	••	40	20		40	6	60	
Untreated controls			10			••		20		80	10	100	2.5
				S 1	AKES 3/	4 BY 3/4	Inch						
Pentachlorophenol in liquefied petroleum gas	 	.34 ^a .40 ^a .59 ^a .70 ^a	10 8° 8°		••	 	25 22	70 75 50 45	••	30 25 25 33	10 8 6 7	100 100 75 78	8.6 7.2
Pentachlorophenol, 5 pct in heavy petroleum oil	10.8	.54 ⁴	*e	12	••		63	12		12	2	24	
Heavy petroleum oil	8.3		8ª		••			75	25		8	100	6.6
Untreated controls	••		10					50	10	40	10	100	1.4

 $^{^{\}mathbf{a}}$ By X-ray analysis of samples from pieces from which stakes were cut.

b With cosolvent of isopropyl ether.

C Treated in commercial charge with poles and crossarms.

d Computed.

Stake mechanically damaged and eliminated from test.

Table 46 .-- Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with copper-chrome-boron and acid copper chromate preservatives, after approximately 16 years of service. Stakes installed during January 1967 on the Marrison Experimental Forest, Saucier, Miss. (Plot 66)

				သိ	Condition of stakes December 1982	f stakes	Decembe	r 1982		!		
		X Les		es 1	Serviceable but	but	å	Destroyed by				
Preservative	Average	ber			snowing some					Total	7	Average
	retention	in test	p 009	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	fungi and termite	removed	Pea	life
	Pcf		•			Pct -					회	X
Copper-chrome-boron (CB) (0.25 (0.13)	01	;	;	:	:	02	;	99	2	90	9.
(a product of	.30 (.16)	2	:	:	;	:	3	:	9	2	8	6.4
Dr. Wolman, GmbH,	(16.) 09.	2	;	:	;	;	8	;	91	2	90	· · ·
Sinzheim, Germany,	1.11 (.58)	2	:	;	:	2	8	:	;	•	6	:
covered by U.S. patent	1.24 (.65)	9	:	20	;	3	20	:	70	•	3	:
No. 3,007,844)	1.64 (.86)	2	8	9	:	9	91	:	2	~	20	:
Acid copper chromate	.30 (.14)	2	;	:	:	;	90	;	;	01	90	6.1
(AWPA PS-68)	.60 (.29)	2	:	:	1	:	90	:	:	2	8	9.
Untreated controls	;	9	;	:	;	:	01	;	8	9	8	2.6

A Retention values in parentheses based on preservative oxides.

Table 47.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with 11 standard wood preservatives, after about 15 years of service. Stakes placed in test in Hovember 1967 at Lake Charles, La., in an area infeated by Fermosan termites, and on the Harrison Experimental Forest, Saucier, Hiss. (Plot 67)

						Ce	adition o	f stakes	Decembe	r 1982*				
				Nuo-			rviceable		De	stroyed b	y			
Preservative	MPA stendard	Loca- tion	Average retention	ber in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack	Tota		Average life
· · · · · · · · · · · · · · · · · · ·			<u>Pcf</u>			• • • •		<u>Pct</u> -				liun- ber	Pct	<u>Ā</u> r
O	P1-65	Lo.	4.9	10	10	10		80				••		••
Creesete, ceal-tar	71-65	-	10.2 15.0	10 10	90 100	10								••
		Mias.	5.1	10		30		70				••	••	••
		11149.	9.7	10	80	••	••	20						
			15.4	10	100		••		••	••	••	•••		
Creesete-cest-ter	P2-48	Le.	4.7	10	30	10	••	60						••
solution (70-30)	•		9.9 14.9	10 10	100 100							••		••
			-	•							••	1	10	••
		Hies.	3.9	10 10	10 100	10		70	10			-:		
			10.6 16.7	10	100					••	•-	**	••	••
		•-	5.8	10	40	10	••	40		••	10	1	10	••
Creente-petroleum solution (50-50)	P3-67	Lo.	12.1	10	90	10			••	••	**			••
94(SCI40 (30-34)			18.3	10	100	••				. • •		••		••
		Mies.	6.0	10	10	20		70			••	••		
			12.1 18.5	10 10	90 100	10	••				••			
			•								••			
Pontachlerophonel,	26-64	Lo,	5.8	10 10	40 90	10		50 10		••	••	••	••	••
5 pct in beavy petroleum	eed 29-67		9.9 15.1	10	190	••	••			••	••			•-
		Nies.	7.0	10			••	100				••		••
Postochlorophonol, 5 pct in heavy petroleumcom- tinued		*******	9.5 14.6	10 10	40 100	••	20	40	••	••	**		••	
Acid copper	P5-68	La.	.50 (0.25)	10				10	20	60	10 10	9	90 10	
cptomere.			1.00 (.50) 1.49 (.74)	10				50 30						••
		Hiss.	.51 (.25)	10	40	••			50		10	6	60	
		miss.	1.01 (.50)	10	60				40 20			4 2	40 20	
			1.54 (.76)	10	70	10	•••					_	_	
Ammoniacel copper	P5-68	La.	.25 (.24)					20 90	50		20	7	70	
arsenate			.46 (.44) .67 (.63)					60			••	••		
) 10	30	10		40	20	, -		2	20	
		Hiss.	26 (.25) .48 (.45)					••	10			1	10	
			.70 (.66) 10	100			••	••	•		*-		
Chromoted copper	P5-68	La.	.40 (.23					40			10	1	19	
arsenate type A			.76 (.44) 10				10	**			•••		
· · · · · · · · · · · · · · · · · · ·			1.11 (.64) 10	100	•						_	-)
		Hiss) 10				••	20			2	20	
			.76 (.44		9. 9 (

(Page 1 of 2)

Table 47.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with 11 standard wood preservatives, after about 15 years of service. Stakes placed in test in November 1967 at Lake Charles, La., in an area infested by Formosan termites, and on the Harrison Experimental Forest, Saucier, Miss. (Plot 67)--continued

							Co	ndition (of stakes	Decembe	er 1982ª				
					Nun-			rviceable		De	stroyed b	y	_		
Preservative	AMPA standard	Loca- tion		rage ention	ber in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack		tal oved	Average life
			<u>P</u> c	ī			 .	· •	<u>Pct</u> -				Num- ber	Pct	<u>Yr</u>
Chromated copper	P5-68	Le.	. 25	(0.23)	10	10	30		50			10	1	10	••
arsenate type B			.44	(.40)	10	70	20		10						
••			-65	(.59)	10	90	10		••						
		Miss.	.25	(.23)	10	70	10			20			2	20	
			.42	(.38)	10	100						••			
			.61	(.55)	10	100			•-						
bromated zinc	P5-68	Le.	. 76	(.46)	10						80	20	10	100	6.0
chloride			1.02	(.62)	10					10	60	30	10	100	7.2
			1.50	(.92)	9		••		••	10	60	20	9	100	9.4
		Miss.	. 76	(.46)	10		••		40	10		50	6	60	
			1.02	(.62)	10				60	30		10	4	40	
			1.57	(.96)	10	10		10	40	30		10	4	40	••
fluor chrome	P5-68	La.	. 35	(.22)	10		10		50		20	20	4	40	13.4°
armenate			. 50	(.31)	10				60		10	30	4	40	13.8 ^C
phenol type A			1.11	(.69)	10		20		70	10			1	10	
		Miss.	. 35	(.22)	10				60	30	••	10	4	40	••
			.51	(.31)	10		20		50	30			3	30	
			1.16	(.72)	10	40	10	20	30						
luor chrome	P5-68	Le.	. 35	(0.21)	10				60		10	30	4	40	13.4°
arsenate			.50	(.30)	10	~-			90			10	1	10	
phenol type B			1.12	(.68)	10	20		10	60	10			1	10	
		Miss.	. 35	(.21)	10	10			60	20	10		3	30	
			.51	(.30)	10	10	10		70	10			1	10	
			1.19	(.72)	10	70	30			••					
ntreated controls		La.			10					10	90		10	100	2.3
		Miss.	·		10					30	20	50	10	100	2.0

Final inspection at Lake Charles, La., December 1979.

(Page 2 of 2)

b Retention values in parentheses are based on preservative oxides.

^C Estimate based on percentage of stakes remaining after final inspection.

d Stake damaged by falling tree eliminated from test.

Table 48. --Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with copper-chrome-phosphorus and chromated copper arsenate type III preservatives, after about 11 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., December 1971, and Madison, Wis., May 1972 (Plot 68)

AND THE PROPERTY OF THE PROPER

					3	Condition of stakes December 1982	f stakes	Decembe	г 1982				
			9		S.	Serviceable but	but	ă	Destroyed by	y			
Preservative	Loca- tion	Average retention	in test	. poog	Becay	showing some	Decay and termite	Decay	Termite attack	Decay fungi and termite	Total removed		Average life
		Pcf			} :		- Pct -	1			Num-	긺	¥I
Copper-chrame-phosphorus	Hiss.	0.26	9	3	9	í	10	9	:	ł	4	9	;
	Vis.	.27	2	8	3	;	:	8	:	;	m	30	;
	Hiss.	94.	2	9	2	:	10	2	i	!	7	70	:
	Hiss.	.75	2	2	9	:	70	:	:	:	:	;	:
	Vis.	. 74	2	20	20	:	;	:	:	;	:	;	;
	Miss.	1.50	91	2	10	:	9	!	:	:	:	:	:
Chromated copper arsenate two III (Ped. Spec.													
TT-W-550)	Hiss.	. 20°	01	8	2	:	ŀ	1	:	!	;	:	:
•	Vis.	. 20°	2	8	;	:	;	:	:	;	:	:	:
	Miss.	9	2	8	;	:	i	;	;	;	;	;	:
	Vis.	04.	91	8	ł	;	;	:	:	;	:	;	:
	Miss.	9	2	901	;	;	:	:	;	!	i	:	:
	Vis.	909.	9	8	2	:	:	;	:	:	;	:	:
Untreated controls	Miss.	:	;	;	:	:	;	10	;	8	2	8	2.9
	Wis.	:	0	:	01	:	:	8	;	;	∞	88	;

Betention based on Osmose Company's analysis of preservative oxides.

b Retention based on preservative oxides.

C 10 stakes originally installed, eliminated stakes removed for causes other than decay or insect attack.

Table 49. --Condition of stakes of aspen particleboard (3/4 x 4 x 18 in.), treated with chromated copper arsenate type III, fluor chrome arsenate phenol type A, and pentachlorophenol in ethanol or mineral spirits, after 9-1/2 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., May 1973 (Plot 70)

					Condition of stakes December 1982	f stakes I	Secember	1982				
	Average	1		S	Serviceable but	þut	Ā	Destroved by				
•	retention based on	Ner Der		4	showing some	1				Total		Average
reservative	preser- vative oxides	in test	Good	Decay	Termite	Decay and termite attack	Decay fungi	Termite	fungi fungi and termite attack	removed		life
						Pct -				Man-	띪	붜
	5	NKES TREA	VTED BEFO	RE FABRI	FLAKES TREATED BEFORE FABRICATION INTO PARTICLEBOARD ^b	O PARTICLE	:BOARD ^b					
Chromated copper arsenate		10	30	30	;	07	;	;	;	;	;	;
type III (Fed. Spec. TT-W-550)	3	2	8	20	ŀ	1	:	1	;	:	:	;
	.80	10	100	1	:	:	:	1	:	:	:	:
Fluor chrome arsenate phenol type A	25.	10	;	;	:	:	8	1	91	01	100	5.7
(Fed. Spec. TT-W-535)	.50	10	!	;	;	20	20	:	9	œ	80	:
Pentachlorophenol	.25	10	:	i	:	01	07	:	20	0	06	:
(Fed. Spec. TT-W-570)	07.	2	:	:	:	50	3	1	07	∞	80	!
in ethanol	.80	9	†	;	;	9	30	:	2	4	9	:
			PRESSURE	-TREATED	PRESSURE-TREATED PARTICLEBOARD	OARD						
Chromated copper arsenate	.26	01	02	;	:	70	10	;	;	1	10	:
type III (Fed. Spec. IT-W-550)	17.	2	100	:	:	:	!	:	:	:	;	:
	.84	01	100	:	:	:	:	1	;	:	:	ł
Fluor chrome arsenate phenol type A	.26	10	;	;	;	;	70	1	8	01	100	7.3
(Fed. Spec. IT-W-535)	. 54	10	10	;	:	20	07	:	:	4	9	:
Pentachlorophenol	.22	10	;	;	ł	;	70	;	30	01	100	5.4
(Fed. Spec. TT-W-570)	04.	2	:	:	!	07	9	;	:	9	9	ł
<pre>5 pct in mineral spirits and 4 pct pine oil</pre>	.82	10	:	;	;	80	70	:	:	7	70	:
Untreated controls	;	10	:	;	;	:	10	10	980	0.	100	2.0

Density 40 pcf.

b Flakes sprayed with predetermined amount of preservative solution while being tumbled in screen.

Table 50.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with propylene oxide, butylene oxide, and epichlorohydrin/propylene oxide combinations, after 4 and 8 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., October 31, 1974 and September 1978 (Plot 71)

				ŏ	ondition	Condition of stakes December 1982	December	1982				
	Acer			Sei	Serviceable but	but	ρ	Destroyed by	•			
Nontoxic	loading	per I		sh	showing some				Decay	Total	a,	Average
preservatives	Weight add on	in test	Poog	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	fungi and termite attack	removed	P .	116
	Pct					Pct -		1	•	Num-	Pct	Ϋ́
Propylene oxide	15-27	3.2	: :	: :	: :	33	: :	: :	100	7 7	100	2.0
Butylene	17-22	2.5	: 5	; ;	3.5		; ;	: :	100	۲ :	100	4.2
ox 1 de	316	SI	3	1	3 1	47	13	;	:	7	13	:
Epichlorohydrin, 1 part; propylene oxide, 2 parts	10	per per	: :	; ;	; ;	100	; ;	::	100	; -	100	; ;
Controls	;	9	;	•	:	;	33	:	67	•	100	2.9

Butylene oxide treated stakes installed in Mississippi, September 1978.

The data presented in this table is part of a larger study under the guidance of R. H. Rowell.

Table 51.--Condition of southern pine, Douglas-fir, and Engelmann spruce heartwood stakes, treated with ammoniacal copper arsenate and chromated copper arsenate, after about 7 years of service. Stakes placed in test at Madison, Wis., May 1976, and on the Harrison Experimental Forest, Saucier, Miss., December 1975 (Plot 72)

					Co	ndition o	f stakes	Decembe	r 1982				
	•	•	Num-		-	rviceable		De	stroyed b	y		•	4
Preservative	Loca- tion	Average retention	ber in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack		tal oved	Average life
		Pcf					<u>Pct</u> -				Num- ber	Pct	<u>Yr</u>
		SOUTHER	N PINE	a,b 2-	BY 4-1	NCH NOMIN	IAL BY 18-	INCH U	INCISED				
Chromated copper	Miss.	0.23	10	100			••						
arsenate type III	Wis.	. 14	10	100									
	Hiss.	. 28	10	100		••		••					
	Wis.	. 19	10	100									
	Miss.	.47	10	100	••								••
	Wis.	. 30	10	100									••
None	Miss.		10				40	20		40	6	60	
	Wis.		10	80	20	••							••
		SOUTHER	N PINE	*,b 2-	BY 4-1	NCH NOHIN	IAL BY 18-	INCH I	CISED				
Chromated copper	Miss.	. 27	10	100									
arsenate type III	Wis.	. 19	10	100									
	Miss.	.47	10	100									
	Wis.	. 30	10	100									
	Miss.	.61	10	100									
	Wis.	.37	10	100		•-	**						
		SO	UTHERN	PINE	3/4- B	¥ 3-1/2-	BY 18-INC	H PLYWO	OD				
Chrometed copper	Miss.	. 39	10	100									
arsenate type III	Wis.	. 38	10	100									
	Miss.	.80	10 9d	100	••								
	Wis.	. 78	9"	100									
	Hiss.	1.21	10 9d	100									
	Wis.	1.17	9-	100									
None	Miss.		10 9d				••	10	10	80	10	100	2.8
	Wis.		y		11	••		89			8	89	
Chromated copper	Miss.	. 36 f	10	90	10								••
arsenate type III	Wis.	.36 f	10	100									
011111111111111111111111111111111111111	Miss.	741	10	100									
	Wis.	741	10	100	••								
	Hiss.	1.62f	10	100									••
	Wis.	1.62 ^f	10	100									••
Manager and account	Miss	. 36 f	10	100									
Chromated copper arsenate type III ⁸	Hiss. Vis.		10 10	100 100									
ersenera taba um.	Wiss.		10	100									
		741											
	Wis.	.74f 1.62f	10 10	100				••	••	••			

(Page 1 of 6)

Table 51.--Condition of southern pine, Douglas-fir, and Engelmann spruce heartwood stakes, treated with ammoniacal copper arsenate and chromated copper arsenate, after about 7 years of service. Stakes placed in test at Madison, Wis., May 1976, and on the Harrison Experimental Forest, Saucier, Miss., December 1975 (Plot 72)--continued

					Co	endition o	of stakes	Decembe	r 1982				
_	Loca-	Average	Num- ber			rviceable lowing som		De	stroyed b		Tot	al	Average
Preservative	tion	retention	in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack	reak	oved	life
		Pcf					<u>Pct</u>				Num- ber	Pct	Yr
		SOUTHERN	PINE	,b ₂₋	BY 4-11	ICH NOMINA	L BY 18-1	INCH UNI	NCISED				
Ammoniacal copper	Miss.	0.11	10	100						••			
arsenate	Wis.	. 07	10	100									
	Miss.	. 30	10	90			10						
	Wis.	. 16	10	100		••							
	Miss.	.42	10	100									
	Wis.	. 26	10	100		••							••
		SOUTHER	N PINE	a,b 2-	BY 4-1	NCH NOMI)	AL BY 18-	-INCH IN	CISED				
Ammoniacal copper	Miss.	. 14	10	100									
arsenate	Wis.	.07	10	100									
	Miss.	. 30	10	100									
	Wis.	. 15	10	100									
	Miss.	.65	10	100									
	Wis.	. 39	10	100									
		sot	JTHERN	PIME [®]	3/4- BY	7 3-1/2- I	BY 18-INC	H PLYWOO	00				
Ammoniacal copper	Miss.	. 39	10	100									
arsenate ^C	Wis.	. 38	10	100									
Sistners	Miss.	.80	10	100									••
	Wis.	. 79	10	100									
	Miss.	1.19	10 9d	100									
	Wis.	1.15	9-	100					••				
	M1	.38f	••	100		••							
Ammoniacal copper	Miss. Wis.	.38f .38f	10 10	100		••							
arsenate ^e	Wiss.	.30 f	10	100									
	Wis.	.77 f 1.08 f	10	100									
	Miss.	1 08 f	10	100									
	Vis.	1.08f	10	100			••					••	
			••									_	- -
Ammoniacal copper	Miss.	.38 f	10	100									
• • •	Wis.	.38 _£ .38 _£ .77 _£ .77 _£	10	100		••							
arsenate ⁸	Miss.	.772	10	100									••
	Wis.	.77 [£]	10	100									
	Miss.	1.08	10	100									
	Wis.	1.08°	10	100								••	

Table 51.--Condition of southern pine, Douglas-fir, and Engelmann spruce heartwood stakes, treated with ammoniacal copper arsenate and chromated copper arsenate, after about 7 years of service. Stakes placed in test at Madison, Wis., May 1976, and on the Harrison Experimental Forest, Saucier, Miss., December 1975 (Plot 72)--continued

					Co	ndition o	f stakes	Decembe	r 1982				
	_	_	Nun-			rviceable		De	stroyed b	y			
Preservative	Loca- tion	Average retention	ber in test	Good	Decay	Termite attack	Decay and termite attack	,	Termite attack	Decay fungi and termite attack		tal oved	Average life
		<u>Pcf</u>					<u>Pct</u> -				Num- ber	<u>Pct</u>	Yr
		DOUGL	AS-FIR	2- BY	4-INCH	MOMINAL	BY 18-INC	H UNINC	:ISED				
Chromated copper	Miss.	0.66	10	100		••				••	•-		••
arsenate type III	Wis.	.55	10	100									
	Miss.	1.24	10	100									
	Wis.	. 82	10	100						••			
	Miss.	1.62	10	100									
	Wis.	1.41	10	100									
None	Miss.		10				••	10	10	80	10	100	3.7
	Wis.		10	60	40					••			
		DOUGL	AS-FIR	2- BY	- BY 4-INCH NOMINAL BY 18-INCH INCISED								
Chromated copper	Miss.	.66	10	100		••							
arsenate type III	Wis.	.56	10	100									••
	Miss.	1.28	10	100							••		
	Wis.	.96	10	100									
	Miss.	1.88	10	100									
	Wis.	1.28	10	100	••	••							
		מ	OUGLAS	-FIR 3	/4- BY	3-1/2- BY	18-INCH	PLYWOOD	,				
Chromated copper	Miss.	.62	10	100									
arsenate type IIIC	Wis.	.62	10	100									
	Hiss.	1.25	10	100									
	Wis.	1.22	10	100									
	Miss.	1.88	10	100	••								••
	Wis.	1.83	10	100				••					
None	Miss.		10 9 d	100		•-		20	20	60	10	100	3.2
	Wis.	••			22			78			7	78	
Chromated copper	Miss.	. 60 f	9ª	100						••	••		
arsenate type III	Wis.	401	10	100									
	Miss.	1 77	9	100	••								
	Wis.	1.22	10	100					••	••			
	Miss.	1.22f 1.82f	10	100		••	••						
	Wis.	1.82 f	10	100		••	••			••			
Chromated copper	Miss.	.60 ^f	10	100									
arsenate type III	Wis.	40	10	100		••							
type 111	Miss.	1 22	10	100					••				
	Wis.	1.22 f 1.82 f 1.82 f	10 d	100		••							
	Miss.	1.82	10	100			••						
	Wis.	1.82 ^f	10	100	••		••						

CHARLES AND RECORDED TO SECURIOR SECURI

(Page 3 of 6)

Table 51.--Condition of southern pine, Douglas-fir, and Engelmann spruce heartwood stakes, treated with ammoniacal copper arsenate and chromated copper arsenate, after about 7 years of service. Stakes placed in test at Madison, Wis., May 1976, and on the Harrison Experimental Forest, Saucier, Miss., December 1975 (Plot 72)--continued

					Co	ndition o	f stakes	Decembe	r 1980				
		A	Num-			rviceable		De	stroyed b	y	Tot	1	Averag
Preservative	Loca- tion	Average retention	ber in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack		oved	life
		<u>Pcf</u>					<u>Pct</u> -				<u>Num-</u> ber	Pct	<u>Yr</u>
		DOUGI	AS-FIR	2- BY	4-INCE	NOMINAL	BY 18-INC	CH UNING	ISED				
Ammoniacal copper	Miss.	0.70	10	100									
arsenate	Wis.	.61	10	100									
	Miss.	1.42	10	100									
	Wis.	1.29	10	100									
	Miss.	2.14	10,	100									
	Wis.	1.95	94	100		••							
		DOUG	las-fi	R 2- E	Y 4-INC	H NOMINAL	. BY 18-IN	ICH INC	SED				
Ammoniacal copper	Miss.	. 70	10	100									
arsenate	Wis.	. 62	10	100									
	Miss.	1.41	. 10	100									
	Wis.	1.26	10	100									
	Miss.	2.17	10	100	••								
	Wis.	2.00	10	100			••						
		Wis. .62 10 100											
Agmoniscal copper	Miss.	.63	10	100									
areemate ^C	Wis.	.62	10	100									
a tacavece	Miss.	1.30	10,	100									
	Wis.	1.27	P6.	100									
	Miss.	1.97	10	100									
	Wis.	1.93	10	100						••			
Asmoniacal copper	Miss.	.64 ^f .64 ^f	10	100									
arsemate [®]	Vis.	.04	9	100									
	Miss. Vis.	1.30 f	10 9d	100 100									
	Wiss.	1.30 1.98	10.	100									
	Wis.	1.98	104	100									
	win.		7	100									
Ammoniacal copper	Miss.	.64 2	10	100		••							
	Vie.	.64 f 1.30 f	10	100						••			
ersemate ^{\$}	Miss.	1.30	10	100								••	
	Wis.	1.30	10	100									
	Miss.	1.98	10	100		••							
				100									

(Page 4 of 6)

Table 51.--Condition of southern, pine Douglas-fir and Engelmann spruce beartwood stakes, treated with ammoniacal copper arsenate and chromated copper arsenate, after about 7 years of service. Stakes placed in test at Madison, Wis., May 1976, and on the Harrison Experimental Forest, Saucier, Miss., December 1975 (Plot 72)--continued

					Ce	mdition o	of stakes	Decembe	r 1982				
_	Loca-	Average	Num- ber			rviceable nowing som		De	estroyed b	y	Tot	1	Average
Preservative	tion	retention	in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack		oved	life
		<u>Pcf</u>					<u>Pct</u> -				Num- ber	Pct	<u>Yr</u>
		engelman	IN SPRI	CE 2-	BY 4-IN	ICH NOMINA	L BY 18-1	INCH UNI	NCISED				
Chromated copper	Miss.	0.31	10	100									
arsenate type III	Wis.	.21	9	100									
••	Miss.	.50	10	90	10								
	Wis.	.40	10	100									
	Miss.	.64	10	100									
	Wis.	. 48	10	100									
None	Hiss.		10		••			10	10	80	10	100	3.3
	Wis.		10		80		••	20			2	20	
	ENGELMANN SPRUCE 2- BY 4-INCH NOMINAL BY 18-INCH INCISED 1 copper Miss40 10 100												
Chromated copper													
arsenate type III													
			10										
				• • •			••						
	Wis.	. 86	10	100								••	
		ENGE	LHAM	SPRUCE	3/4- B	Y 3-1/2-	BY 18-INC	H PLYWO	00				
Chromated copper	Miss.	.71	10 9 d	100									••
arsenate type III	Wis.	. 70	96	100									
	Miss.	1.38	10	100									•-
	Wis.	1.34	10	100	••								
	Miss.	2.03	10	100									•-
	Wis.	1.82	10	100									
None	Miss. Vis.		10 4					10	20	70	10	100	2.6
	W1S.		•		**	••		100			8	100	5.1
Chromated copper	Miss.	.54 ^f .54 ^f 1.25 ^g	10	100									
arsenate type III	Wis.	.54f	9	49	11								
	Hiss.	1.25	10	100									
	Wis.	1.25	10	100						••			
	Miss.	1.76	10	100			••						
	Wis.	1.25 f 1.76 f 1.76 f	10	100									
Chromated corner	Miss.	E4f	10	100			••						
Chromated copper arsenate type III	Wis.	.5 <u>7</u> f	10	100									
ermenate type III	Miss.	.54f .54f 1.25f 1.25f 1.76f	10.	100	••					••			
	Vis.	1.25	.04	100						••	••		
	Miss.	1.76	10	100									
	Wis.	1.76 [£]	ه و	100									

(Page 5 of 6)

Table 51.--Condition of southern pine, Douglas-fir, and Engelmann spruce heartwood stakes, treated with ammoniscal copper arsenate and chromated copper arsenate, after about 7 years of service. Stakes placed in test at Hadison, Wis., Hay 1976, and on the Harrison Experimental Forest, Saucier, Miss., December 1975 (Plot 72)--continued

					Co	ndition o	f stakes	Decembe	er 1 98 2				
_	Loca-	Average	Num- ber			rviceable lowing som		De	estroyed b	y			4
Preservative	tion	retention	in test	Good	Decay	Termite etteck	Decay and termite attack		Termite attack	Decay fungi and termite attack		tel oved	Averag life
		Pcf		• •			<u>Pct</u> -		• • • • •	• • • •	Nun- ber	Pct	Ĭſ
		engelhan	M SPRL	ICE 2-	BY 4-IN	CH NOMINA	L BY 18-1	INCH UNI	INC I SED				
Ammoniacal copper	Miss.	0.26	10	100				••	••	••			
arsenate	Wis.	. 20	10	100			••	••	••	••			
	Miss.	.63	10	100					••				
	Wis.	.50	10	100		••							
	Miss.	1.03	10	100									
	Wis.	. 75	10	100		**							
		engelma	M SPR	UCE 2-	BY 4-1	NCM NONIN	AL BY 18-	INCH IN	CISED				
Ammoniacal copper	Miss.	.42	10	100									
arsenate	Wis.	. 30	10	100	••	••					••		••
	Miss.	.97	10.	100	••							••	••
	Wis.	.81	94	100						••			
	Miss.	1.41	10	100									
	Wis.	1.61	10	100		••	••						
		ENGE	LHANN	SPRUCE	3/4- B	Y 3-1/2-	BY 18-INC	M PLYMO	00				
Ammoniacal copper	Miss.	. 70	10	100						••		••	
arsenate ^C	Wis.	.68	10	100									
	Miss.	1.42	10	100	••								••
	Wis.	1.35	10	100				••	••				
	Miss.	2.14	10	100	*-	••	••	••		••	••		
	Wis.	2.08	10	100					••				••
Ammoniacal copper	Miss.	.65 f	10	90		10		••	••	••	••	••	
•••	Vis.	481	10	100	••		••	••	••	••			
arsenate ^e	Miss.	1 201	10	100		••				••	••		
	Vis.	1 20 ¹	94	100									
	Miss.		10	100					••		•-	•-	
	Wis.	2.02f	10	100					••	••	••		
Ammoniacal copper	Miss.	.65 f .65 f	10	100	••				••	••	••	••	
arsenate	Wis.	.65 2	10	100			••	••		••			••
arsenate"	Miss.	1.29 f 1.29 f 2.02 f	10	100			••		••				••
	Wis.	1.29 E	10	100						••			••
	Miss. Vis.	2.02 ^x 2.02 ^f	10 10	100 100						••			

Some southern pine contained a small amount of sapwood, and the southern pine plywood was mixed beartwood and map.

(Page 6 of 6)

b Resin content of the southern pine ranged from 0.87 to 27.4 percent.

 $^{^{\}rm C}$ Treated as 3/4- x 3-1/2- x 18-inch stakes.

^{4 10} stakes originally installed, eliminations were for causes other than decay or insect attack.

Stakes cut from treated 2- x 4-foot panel.

f Retention-by-weight of panels from which stakes were cut.

⁸ Stakes cut from treated 2- x 4-foot panel, all cut surfaces given a liberal brush coet of a 4.5 percent solution of the preservative the panels were treated with.

Table 52.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with ammoniacal copper borate and ammoniacal copper arsenate, after about 7 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., December 1975 (Plot 73)

TOTAL STREET, STREET,

				ರ	Condition of stakes December 1982	f stakes	Decembe	r 1982				
	Average	New Y		ž ž	Serviceable but	but e	8	Destroyed by	y			
	retention	test	poog	Decay	Termite	Decay and termite	Decay fungi	Termite	Decay fungi and termite	Total		Average Life
	Pcf					- Pct -					la la	*
Ammoniacal copper borate	1.33	25	100	:	;							
	99.	25	100	:	: :	:	:	;	;	;	:	:
	94.	25	96	•	:	!	:	;	;	;	;	;
	.32	77	96	•	;	}	: `	1	;	:	:	:
	.22	25	26	16	:	, a	3 (:	;	-	4	!
	. 16	22	25	4	;	• ;	7 7	: :	; ;	2 [20 70	: ;
Amoniacal copper arsenate	1.35	25	100	:	;	ļ				•	;	
	99.		100	;	;	: 1	ŀ	!	1	;	;	:
	. 47		100	;	;	; ;	:	:	;	:	;	:
	.33		100	ţ	;	; ;	;	t •	:	:	;	:
	.23		100	;	•	}	:	:	;	:	;	ŀ
	. 16		95	;	;	4	. 4	: :	: :	۱ -	; `	;
Untreated controls	;	17	:	:	;	:		ć	;		4	:
							י	**	ς .	7	90	3.0

a Retention based on preservative oxides.

The data presented in this table is part of a study under investigation by B. R. Johnson.

Table 53.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with fire-retardant chemicals, after about 6-1/2 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., May 1976 (Plot 74)

				Ç	Condition of stakes December 1982	f stakes	December	1982				
		Num		Se	Serviceable but	but	Der	Destroyed by	y			
	Average	ber			snowing some				Ne Cell	Total	7	Average
Frescrative	retention	test test	600 G	Decay	Termite attack	Decay and termite attack	Decay	Decay Termite fungi attack	fungi and termite attack	removed	ved	life
	Pef			1	•	Pct -	1		1	Num- ber	Pct	H
UDFP ^a fire retardant	2.8	10	10	:	06	:	:	:	;	ł	;	1
	0.9	10	:	;	07	20	;	10	;	-	10	;
	9.5	10	;	;	ł	10	1	06	:	6	8	:
Untreated controls	•	10	:	!	t g	:	10	:	96	10	100	2.5

Reported to contain ures, dicyandiamide, formaldehyde, and phosphoric acid.

Table 54.--Condition of southern pine stakes (2 x 4 in. and 3/4 x 3/4 in. nominal x 18 in.), treated with penta-chlorophenol in light cycle oil and copper-8-quinolimolate, after 6 years of mervice. Stakes placed in test on the Marrison Experimental Forest, Saucier, Hiss., December 1976 (Plot 75)

	:			Con	dition o	Condition of stakes December 1962	Decembe	r 1982				
				Ser	Serviceable but	but	å	Destroyed by				
Preservative	Average retention	in test	p oog	Decay	Termite y attack te at	Decay and termite attack	Decay	Termite	Decay fungi and termite	Total removed		Average life
	Pcf					- Pcc				i i	피	1
			2- BY	1 4- BY	4- BY 18-INCH STAKES	STAIRS						
Pentachlorophenol	0.48	91	8	;	:	91	:	:	:	:	:	;
Copper-8-quinolimolate	1.12	10	1	:	:	8	;	:	1	;	:	;
Untreated controls	:	91	:	;	ł	:	8	2	20	2	100	2.5
			3/4- BY	r 3/4- BY	7 18-INCH	I STAKES						
Pentachlorophenol	0.21	91	3	:	01	20	:	:	;	;	:	;
	.31	2	3	2	2	20	;	:	:	:	:	;
	Ħ. 5	2 2	೪ ಕ	9 ¦	9 :	2 ;	: :	: :	: ;	: :	: :	; ;
	.67	2	8	:	:	:	:	:	:	:		;
Copper-8-quinolinolate	0.34	4	:	:	:	:	12	77	3	•	8	3.3
	.38	2	:	:	:	:	೫	30	9	2	8	3.8
		2	:	:	:	;	70	10	20	2	8	9. 7
	3 6.	<u>ئ</u>	:	:	:	3	50	20	20	•	9	;
		9	;	:	;	2	=	;	11	7	22	;
	2.3	oʻ	:	;	:	2	2	;	:	~	2	;
	1.84	3	1	:	;	78	==	:	=	~	22	;
Untreated controls	;	-	i	12	:	22	8 8	12	20	•	100	7.7

^{*} Copper-8-quinolinelate is a water-soluble form that contains 1.07 percent copper metal (PQ-8).

b 10 stakes originally installed, eliminations were for mechanical damage or causes other than decay or insect sttack.

Table 55.--Condition of southern pine and Douglas-fir comply stakes (2 x 4 in. nominal x 18 in.), treated with chromated copper arsenate and ammoniacal copper arsenate, after about 4 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., November 1978 (Plot 78)

				CC	Condition of stakes December 1982	f stakes	Decembe	r 1982				
	Average	1		S 1	Serviceable but	but	검	Destroyed by	y			
Preservative	based on	in and		20	snowing some				1000	Total	-	Average
	preservative oxides	test	Good	Decay	Termite attack	Decay and termite	Decay fungi	Termite attack	fungi and termite attack	removed	P	life
	Pcf		•		•	Pct -	1	1		Number	Pet	뇠
				S	SOUTHERN PINE	NE						
Chromated copper	•	:										
arsenate type iii	0.25 14:	2 2	3 9	: :	: :	: :		: :	; ;	: :	: :	: :
	11.	10	100	:	:	;	;	;	:	1	;	1
Untreated controls	;	10	1	:	:	;	02	:	30	10	100	5.6
				H	DOUGLAS-FIR	α.						
Chromated copper	ž	:	9									
TIT STATE CARE TIT	09 :	2 2	8 8	: :	: :	: :	: :	: :	: :	: :	: :	: :
Ammoniacal copper												
arsenate	.25	10	100	ł	;	:	;	:	;	;	:	;
	.39	2	100	;	;	1	ŧ	;	1	:	1	:
	.63	10	100	:	:	:	:	:	:	:	:	:
Untreated controls	:	10	:	:	;	:	100	:	:	10	100	3.5

Table 56.--Condition of southern pine stakes (3/4 x 3/4 in. nominal x 18 inch) treated with butylene oxide, after 3 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., December 1979 (Plot 79)

				ပိ	ndition o	Condition of stakes December 1982	December	1982				
	Average	į		Se	Serviceable but	but put	De	Destroyed by)			
Preservative	Weight add on	t t	600d	Decay		Decay Termite and attack termite	Decay	Decay Termite fungi attack	Decay fungi and termite	Total		Average life
	St.					Pet				Num- Pct ber	킯	밁
Butylene oxide	33.2	50	10	91	'n	15	3	:	:	12	9	1
Untreated	:	01	!	;	. 1	:	99	1	70	10	100	1.9

The data presented in this table is part of a larger study under the guidance of R. M. Rowell

Table 57.--Condition of southern pine stakes (2 x 4 in. nominal x 16 in. and 3/4 x 3/4 x 16 in.) treated with chromated copper arsenate type C using conventional full-cell (FC) process and Hississippi State University (HBU process--ampty cell), after 2-1/2 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., April 1980 (Flot 80)

				-	BOTFTON C	f stakes	Decembe	r 1982				
	Average	Num- ber	-		rviceable		De	stroyed b	7	Tot	•	
Preservative	retention	in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack	remo		Average life
	<u>Pcf</u>		• •			<u>Pct</u> -				Hum-	Pct	<u>Yr</u>
		2	- BY	- BY 18	-INCH STA	ACES						
Chromated copper arsenate type C												
Full cell	0.14	10	100					••				
	.28	10	100					••				
	.40	10	100	••		••						
	.62	10	100						••	••	••	
	. 79	10	100							••		
	•	3/4	- BY 3	3/4- BY	18-INCH S	TAKES						
	14		***									
	. 14 . 28	10 10	100 100									••
	. 40	10	100								••	
	.61	10	100					••			•-	
	.82	10	100									
		2	- BY 4	- BY 18	-INCH STA	KRS						
8												
Empty cell	. 15*	10	100									
	. 26 . 33	10	100									
	. 33 . 59	10 10	100 100					••			~-	
	.39 .78	10	100									
		-										
		3/4	- BY 3	/4- BY	18-INCH S	TAKES						
	. 14 ^b	10	100			••						
	.28	10	100		••	••	••	••	••	••		••
	.40	10	100		••							
	.61	10	100						••			••
	.82	10	100									
		2	- BY 4	- BY 18	-INCH STA	KRS						
Untreated controls		10				10	10	••	80	9	90	••
		3/4	- BY 3	/4- BY	18-INCH S	TAKES						
	••	10	10			••	40		50	9	90	

 $[\]stackrel{a}{b}$ The retentions are based on chemical analysis after treatment. The retentions are estimates based on the full cell treatments.

たいから (種類を含めて)のです。 かいかん かんかん しんないのかない

には、大きななな。このではないとのであった。このではないは、このではないのであった。このではないないであった。このではないないでは、このではないない。このでは、このでは、このでは、このでは、このでは、

Table 58.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with pentachlorophenol in P9 oil diluted with mineral spirits and water dispersible pentachlorophenol after 2-1/2 years of service. Stake placed in test on the Harrison Experimental Forest, Saucier, Hiss., June 1980

				3	Condition of stakes December 1982	of stakes	December	1987				
							13000	7067				
Preservet	Average	Neg-		s ts	Serviceable but showing some	but e	Dest	Destroyed by				
	retention	in test	poog	Decay	Termite	Decay and termite	Decay T fungi a	Termite attack	Decay fungi and termite	Total removed		Average life
	Pcf		:			- Pct -			42	Num-	Pct	Yr
Water-dispersible pentachlorophenol	0.09	10	10	:	10	80	:	;	;	per]	١
	. 35 . 35	2 2 2	e e e	2	: 0	02 01 01		: :	::	:::	: : :	: : :
	. 74	10	8 8	2 ;	!	2 2	1 1	: :	::	: :	: :	: :
Penta P9 in mineral spirits	.09	9999	07 100 100 100	2 : : :	2:::	0 : : :	:::	111	:::	1::	:::	;;;
Untreated controls	0	10	;	ł	;	50	50	30	30	; ∞	: 08	: ;
		1									•	

Data presented in this table are part of a study under investigation by R. C. DeGroot.

Table 59.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in. and 2.5 x 5.0 cm x 50 cm), treated with chromated copper fluoride (CFK), after 2-1/2 years of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., June 1980 (Plot 82)

				និ	ndition o	Condition of stakes December 1982	Decembe	r 1982				
	Average			Se	Serviceable but	but	Ž	Destroyed by				
	retention	Number		ġ.	showing some				Decay	Total		Average
Preservative	based on preservative oxides	in test	Good	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	fungi and termite attack	removed	9	3111
	Pef					- Pet		,	1	Number	PC	¥
		ż	- BY 4-	BY 18-	2- BY 4- BY 18-INCH STAKES	TS						
							1	1	;	;	;	:
(FTK)	0.28	10	8	i	•	:	•	;)			
Curomated copper tracting (cr.)	3		9	;	:	;	!	;	;	i	:	:
	۲	2 9	2	;	:	:	;	;	:	!	;	1
	1.57	2	3 8	1	:	:	:	;	:	;	1	:
Untrested controls	:	10	:	:	•	;	01	;	96	10	90	1.9
		7	.5- x S	.0 ×	2.5- x 5.0- x 50-cm STAKES	ŒS						
	;	:	ş	Ş	1	2	;	:	;	;	;	;
Chromated copper fluoride (CFK)	R :	2 :	2 9	2		; ;	;	;	;	;	1	:
	.62	2 (3 8	}	:	91	:	;	:	;	1	;
	1.26	2	3 5	}	' †	: :	:	;	!	;	;	;
	1.69	2	8	•	;							
Untreated controls	:	10	ŀ	:	:	:	:	70	80	10	100	1.6
											i	

Data presented in this table is part of a study under investigation by R. C. DeGroot.

Table 60.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with water-dispersible pentachlorophenol, after 1-1/2 years of service. Stakes placed in test at the Harrison Experimental Forest, Saucier, Miss., May 1981 (Plot 83)

				'								
				ဒိ	Condition of stakes December 1982	fstakes	Decembe	r 1982				
,		Num		Se	Serviceable but	but	ğ	Destroyed by				
Preservative	Average retention	ber in	-		0				Decay	Total		Average
		test	000	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	fungi and termite attack			1116
	Pcf		•			- Pct -				Num-	Pet	Y.
Water-dispersible										ł		
pentachlorophenol	0.10	10	70	10	01	07	1	;	;	;	į	i
	. 18	20	80	!	;	20	;	;	;			!
	.43	2	100	:	:	;	;	;	;	; ;	,	;
	78 .	10	100	1	i	;	ł	;	: :	; ;	: ;	:
	1.76	10	100	;	:	;	;	;	;	:	: :	: :
Untreated controls	0	10	10	:	10	09	10	;	10	8	20	;

Data presented in this table are part of a study under investigation by $\mathtt{k}.$ C. DeGroot,

Table 61.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with eight water-based formulations of wood preservatives and with Cu-8-quinolinolate and pentachlorophenol in toluene, after 1 year of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., December 1981 (Plot 84)

		Active	Num-			rviceable		De	stroyed b	y			
Preservative	Average retention	ingre- dient	ber in test	Good	Decay	Termite	Decay and termite attack		Termite attack	Decay fungi and termite attack	Tot remo		Average life
	<u>Pc</u>	<u>f</u>					<u>Pct</u> -				Num- ber	Pct	<u>Y r</u>
Didecyl dimethyl ammonium	0.19	0.10	10	100									
chloride, 50.0 pct	.41	. 21	10	100									
	. 60	. 30	10	100									
	. 78	. 39	10	100									
Coco dimethyl benzyl ammonium	.45	. 06	10	100									
chlorides, 9.8 pct + 3.8 pct	. 8 1	. 11	10	100		••							
copper as metal	1.19	. 16	10	100									
	1.61	. 22	10	100									
Didecyl dimethyl ammonium	. 40	.11	10	100									
chloride, 20.0 pct, and	.81	. 21	10	100									
6.3 pct copper as the metal	1.21	. 32	10	100									
	1.60	. 42	10	100									
Dimethyl cocommine 2-ethyl	. 30	.08	10	70	30								
hexoate, 20.0 pct, copper	.61	. 16	10	80	20								
2-ethyl hexoate, 21.0 pct	.90	. 24	10	80	20								
(3.8 pct metallic copper)	1.21	. 32	10	100									
Copper 2-ethyl hexoate, 35.0 pct	.40	: <i>;</i>	10	90	10								
(6.3 pct metallic copper)	. 80	. 33	10	90				10			1	10	
• •	1.20	50	10	100									
	1.61	. 66	10	100						••			
Pentachlorophenol, 21.9 pct, and	. 82	. 20	10	100									
2.4 pct other chlorophenols	1.66	.40	10	100									
	3.23	. 78	10	100									••
	4.12	1.00	10	100			••			••			
Pentachlorophenol, 27.6 pct, and	. 65	. 20	10	100									
3.1 pct other chlorophenols	1.30	. 40	10	100	••	••							
3.1 per outer entoropaenoro	2.60	.80	10	100									
	3.27	1.00	10	100									
Tri-n-butyl tin oxide 9.5 pct,													
dimethyl benzyl ammonium	. 40	. 20	10	100									
chloride, 20 pct, and dimethyl	.81	. 40	10	100									
ethyl benzyl ammonium	1.21	. 60	10	100									
chloride, 20 pct	1.63	. 81	10	100	••								
Diluted in toluene													
Conner-Brauinolinolate	1.50	.01	10	90		10							
Copper-8-quinolinolate, 0.675 pct (0.12 pct metallic	2.96	.02	10	100					••				
copper)	8.75	.06	10	100									
· • • · · · · ·	17.50	. 12	10	100									
Bentaghlausahana) 6.3 act	2.86	•	10	100			•						
Pentachlorophenol, 6.3 pct, and other chlorophenols, 0.7 pct,	2.80 5.73	. 2 . 4	10	100									
in No. 2 diesel fuel	11.44	.8	10	100									
	14.29	1.00	10	100		••							

Data presented in this table are part of a study under investigation by ${\tt R.}\ {\tt C.}\ {\tt DeGroot.}$

Table 62.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with ammoniscal copper zinc arsenate (ACZA), after 1 year of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., December 1981 (Plot 85)

				Co	edition o	f stakes	Decembe	r 1982				
		Nue-			rviceable		De	stroyed b	y			
Preservative	Average retention	ber in test	Good	Decay	Termite attack	Decay and termite	Decay fungi	Termite attack	Decay fungi and termite	Tot resc		Average life
	Pef					Pct			attack	Num- ber	Pct	<u>Yr</u>
Ammoniscal copper zinc arsenate	0.10 .25	10 10	100 100									
	.40	10 10	100		••							
	1.22	10	100		••	••						
Untreated controls	0	10			30	60	••	10		1	10	

Table 63.--Condition of southern pine stakes (2 x 4 in. nomina) x 18 in.), treated with water-based emulsions of pentachlorophenol and creosote, after 1/2 year of service. Stakes placed in test on the Marrison Experimental Forest, Saucier, Hiss., Hay 1982 (Plot 86)

						Co	ndition (of stakes	Decembe	r 1982				
	Aver	ago reton	tion	Nun-			rviceable		De	stroyed b	y-+	=		A
Preservative	Solution	Penta- chloro- phenol	Creosote	ber in test	Good	Decay	Termite attack	Decay and termite attack		Termite attack	Decay fungi and termite attack	Tot remo		Average life
		<u>Pcf</u> -				• • • •		<u>Pct</u>				Num- ber	Pct	Yr
Emulsified pentachlorophenol- creosote														
Pentachlorophenol														
17.90 pct Other chloro-	0.50	0.10	0.10	10	100							•-		
phenols 2.10 pct P-1 creosote	1.02	. 20	. 20	10	100	••	••	••						
20.0 pct	2.00	.40	.40	10	100									
	2.98	. 60	. 60	10	100									
	4.00	. 80	. 80	10	100		••						••	
Pentachlorophenol														
21.76 pct Other chlorophenols	. 40	. 10	.04	10	100	••								
2.56 pct P-1 creosote	.84	.21	.08	10	100	••			••		••			
10.0 pct	1.65	.43	. 16	10	100									
	2.49	.62	. 25	10	100									
	3.29	. 62	. 33	10	100				••					
Untrested control				10	40		30	20	10			1	10	••

Data presented in this table are part of a study under investigation by R. C. DeGroot.

Table 64.--Coudition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with pentachlorophenol emulsion and pentachlorophenol in P9 type A oil diluted with mineral spirits, after 1/2 year of service.

Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., May 1982 (Plot 87)

				Co	ndition o	f stakes	Decembe	r 1982				
		Num-			rviceable		De	stroyed b	y			
Preservative	Average retention	ber in test	Good	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite attack	Tot resc		Average life
	Pcf					<u>Pct</u> -				Num- ber	Pct	<u>Yr</u>
Emulsified pentachlorophenol	0.10	10	100									
	. 20	10	100									
	. 40	10	100		••							
	. 60	10	100									
	.80	10	100									
Pentachlorophenol in P9 oil												
and mineral spirits	. 10	10	100	••								
	.20	10	100					**				
Untreated controls		10	10		30	60						

Data presented in this table are part of a study under investigation by R. C. DeGroot.

Table 65.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.), treated with pentachlorophenol, tetrachlorophenol, and tetrachlorophenol plus copper oxide in water and associa, after 1/2 year of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Hiss., May 1982 (Plot 88)

				Ço	adition o	of stakes	Decembe	r 1982				
	_	Nun-			rviceable		De	stroyed b	y	_	_	
Preservative	Average retention	ber in test	Good	Decay	Termite attack	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite attack	Tot remo		Average life
	Pcf					<u>Pct</u> -				Num- ber	Pct	Ĭŗ
Pentachlorophenol in water												
and ammonia	0.13	10	90	10								
	. 26	10	100					~~				
	. 40	10	100	••								
	. 62	10	100									
	1.03	10	100									
	1.49	10	100						••			
Tetrachlorophenol and copper												
oxide in water and ammonia	. 12	10	100									
	. 25	10	100				••	**				
	.41	10	100									
	. 62	10	100									
	. 98	10	100									
Tetrachlorophenol in water												
and aumonia	. 25	10	100			••						
	. 40	10	100									
	. 60	10	100									
	1.02	10	100									
	1.52	10	100						••	••		
Untrested controls		10	60	20	10	10						••

Table 66.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in), treated with 2 percent sulfur in creosote, after 1/2 year of service. Stakes placed in test on the Harrison Experimental Forest, Saucier, Miss., May 1962 (Plot 89)

				ပိ	Condition of stakes December 1982	f stakes	Decembe	r 1982				}
		.		Se	Serviceable but	a t	å	Destroyed by				
Preservative	Average retention	test test	P 009	Becay	Termite	Decay and termite attack	Decay fungi	Termite attack	Decay fungi and termite	Total		Average life
	Pef					Pct -					피	
Coal tar creosote with 2 pct sulfur diluted in toluene	2.01	9 9	9 9	::	: :	::	::	: :	: :	: :	: :	: :
	6.28 9.20	222	888	: : :	:::	:::	:::	: : :	:::	:::	::::	:::
Untrested controls	:	01	2	2	20	:	;	ł	i	i	:	:

de de la place de la completa de la production de la production de la completa de la completa de la completa d

Table 67.--Summary of 2- by 4-inch-stake test results obtained in Mississippi with wood preservatives in general use

Preservative	Average retention	Data from table No.	Average life	Remarks
	Pcf		Yr	
Acid copper chromate (Fed. Spec.				
TT-W-546)	0.26 (0.13) ^a	15	11.6	
•	.30 (.14)	46	6.1	 .
	.51 (.25)	47		60 pct failed after 15 yr
	.52 (.26)	15		20 pct failed after 36 yr
	.60 (.29)	46	4.6	
	.75 (.37)	15		40 pct failed after 36 yr
	1.01 (.50)	47		40 pct failed after 15 yr
	1.54 (.76)	47		20 pct failed after 15 yr
mmoniacal copper arsenate (Fed.	.25 (.24)	14		50 pct failed after 37 yr
Spec. TT-W-549)	.26 (.25)	47		20 pct failed after 15 yr
	.53 (.51)	14		No failures after 37 yr
	1.00 (.97)	14		No failures after 37 yr
	1.29 (1.25)	14		No failures after 37 yr
Chromated copper arsenate	.26 (.15)	15		70 pct failed after 36 yr
Type I (Fed. Spec. TT-W-550)	.25 (.23)	47		20 pct failed after 15 yr
	.50 (.29)	15		No failures after 36 yr
	.78 (.44)	15		No failures after 36 yr
Type II (Fed. Spec. TT-W-550)	(.26)	20		No failures after 32 yr
	(.37)	20		No failures after 32 yr
	(.52)	20		No failures after 32 yr
	(.79)	20		No failures after 32 yr
	(1.04)	20		No failures after 32 yr
Chromated zinc arsenate (former Fed.	.22 (.11)	24		80 pct failed after 30 yr
Spec. TT-W-538)	.33 (.22)	4	33.0	70
	.44 (.29)	4		78 pct failed after 41-1/2
	.38 (.20)	24		No failures after 30 yr
	.77 (.40)	24		No failures after 30 yr
	1.01 (.53)	24		No failures after 30 yr
	.58 (.38) .78 (.52)	4		20 pct failed after 41-1/2
	to 1.06 (.70)	4		No failures after 41-1/2 yr
Chromated zinc chloride (Fed. Spec.	.49 (.30)	2	14.2	••
TT-W-551)	.76 (.47)	2	20.2	
	.76 (.46)	47 2	20.1	60 pct failed after 15 yr
	1.02 (.63)	47	20.1	40 pct failed after 15 yr
	1.02 (.62) 1.50 (.92)	25		80 pct failed after 30 yr
	1.50 (.92)	47		40 pct failed after 15 yr
	2.91 (1.78)	25		40 pct failed after 30 yr
	6.00 (3.67)	25		No failures after 30 yr
Copper-8-quinolinolate				
Stoddard solvent	.01	38	5.3	
	.02	38	4.2	
	.06	38	5.6	
	.06	38	7.8	
	. 12	38	7.8	••
Copper-8-quinolinolate				
AWPA P9 heavy petroleum	.014	43		10 pct failed after 18 yr
- ·	03	43		No failures after 18 yr
	. 059	43		No failures after 18 yr
	. 124	43	••	No failures after 18 yr

Table 67.--Summary of 2- by 4-inch-stake test results obtained in Mississippi with wood preservatives in general use--continued

Pef Yr	Preservative	Average retention	Data from table No.	Average life	Remarks
0.11 pct copper in No. 2 fuel oil 10.3 7 21.8		Pcf		Yr	
0.11 pct copper in No. 2 fuel oil 10.3 7 15.9 23 pct copper in No. 2 fuel oil 10.2 7 21.8 5.7 pct copper in No. 2 fuel oil 10.6 7 27.2 8 8.6 pct copper in No. 2 fuel oil 10.6 7 27.2 8 pct failed after 40 yr Creosote, coal-tar 3.3 6 24.9 8.0 pct failed after 40 yr Creosote, coal-tar 3.3 6 24.9 4.1 17 14.2 4.6 5 21.3 7.8 6 6 60 pct failed after 40-1/2 8.0 4 17.8 8.0 0 4 60 pct failed after 40-1/2 8.3 20 20 pct failed after 34 yr 10.0 5 70 pct failed after 41-1/2 13.2 6 20 pct failed after 40-1/2 13.2 6 20 pct failed after 40-1/2 14.5 5 5 No failures after 41-1/2 y Low residue, straight run 8.0 18 17.8 Medium residue, straight run 8.0 18 18.8 Medium residue, straight run 7.8 18 20.3 Medium residue Low in tar acids 8.1 18 20.3 Medium residue Low in tar acids 8.1 18 19.4 Low in aphthalene 8.2 18 21.3 Low in aphthalene 8.0 18 18.9 Low residue, low in tar acids and naphthalene 8.0 18 18.9 English vertical retort 8.0 18 18.9 English coke oven 4.7 19 16.3 Migh residue, low in tar acids and naphthalene 8.0 18 18.9 English coke oven 4.7 19 16.3 10.1 19 80 pct failed after 34 yr Fluor chrome arsenate phenol type A (Fed. Spec. TT-W-535) (Fed. Spec. TT-W-535) 33 (.19) 2 18.0 Pentachlorophenol (various solvents) Liquefied petroleum gas 144 42 80 pct failed after 22 yr	Copper naphthenate				
.29 pet copper in No. 2 fuel oil 10.2 7 21.8		10.3	7	15.9	
.57 pet copper in No. 2 fuel oil					
.86 pct copper in No. 2 fuel oil 9.6 7 80 pct failed after 40 yr Creosote, coal-tar 3.3 6 24.9 4.1 17 14.2 7.8 6 17 14.2 7.8 6 17 14.2 7.8 6 17 14.2 7.8 6 17 14.2 7.8 6 17 14.2 7.8 6 17 14.2 7.8 6 17 14.2 8.0 9ct failed after 40-1/2 8.3 20 20 pct failed after 41-1/2 8.3 20 20 pct failed after 41-1/2 13.2 6 20 pct failed after 41-1/2 13.2 6 20 pct failed after 41-1/2 13.2 6 20 pct failed after 41-1/2 14.5 5 5 No failures after 41 yr 16.5 4 No failures after 41 yr 16.5 4 No failures after 41-1/2 y Low residue, straight run 8.0 18 18.8 Hedium residue, straight run 7.8 18 20.3 Medium residue, straight run 8.0 18 18.8 High residue, low in tar acids and naphthalene 8.2 18 21.3 Low in tar acids and naphthalene 8.2 18 21.3 Low residue, low in tar acids and naphthalene 8.0 18 18.9 English vertical retort 5.3 19 80 pct failed after 34 yr 8.0 18 18.9 English coke oven 4.7 19 16.3 10.1 19 50 pct failed after 34 yr Finglish coke oven 4.7 19 16.3 10.1 19 70 pct failed after 34 yr Finglish coke oven 4.7 19 16.3 10.1 19 70 pct failed after 34 yr Finglish coke oven 4.7 19 18 13.6 10.1 19 70 pct failed after 34 yr Finglish coke oven 4.7 19 18 13.6 10.1 19 70 pct failed after 34 yr Finglish coke oven 4.7 19 18 13.6 10.1 19 70 pct failed after 34 yr Finglish coke oven 4.7 19 18 13.6 10.1 19 70 pct failed after 34 yr Finglish coke oven 8.0 18 13.9 80 pct failed after 20 yr Finglish coke oven 9.0 18 13.0 10.1 19 70 pct failed after 24 yr Finglish coke oven 9.0 18 13.0 10.1 19 80 pct failed after 20 yr Finglish coke oven 9.0 18 13.6 10.0 18 13.6 10.0 18 13.6					
4.1					80 pct failed after 40 yr
4.1	Creosote, coal-tar	3.3	6	24 Q	
4.2			_		
4.6 5 21.3 7.8 6 6 60 pct failed after 40-1/2 8.0 4 60 pct failed after 40-1/2 8.0 4 60 pct failed after 40-1/2 8.3 20 20 pct failed after 41-1/2 11.8 4 20 pct failed after 41-1/2 13.2 6 20 pct failed after 41-1/2 14.5 5 No failures after 41 yr 16.5 4 No failures after 41 yr 16.5 4 No failures after 41 yr 16.5 4 No failures after 41-1/2 y Low residue, straight run 8.0 18 18.8 Hedium residue, straight run 7.8 18 20.3 Hedium residue, straight run 8.0 18 18.8 High residue, straight run 8.0 18 18.9 Low in tar acids 8.1 18 19.4 Low in tar acids 8.2 18 21.3 Low in aphthalene 8.2 18 21.3 Low in tar acids and naphthalene 8.0 18 18.9 English vertical retort 5.3 19 80 pct failed after 34 yr 15.0 19 80 pct failed after 34 yr English coke oven 4.7 19 16.3 English coke oven 4.7 19 16.3 Top tailed after 34 yr 10.1 19 70 pct failed after 34 yr 11.8 13.6 7.9 18 13.6 10.1 19 70 pct failed after 34 yr 11.8 13.6 12.5 0.31 37 80 pct failed after 34 yr 13.5 0.22 37 18.3 14.8 13.6 15.0 137 80 pct failed after 34 yr 14.8 19 70 pct failed after 22 yr 15.0 137 80 pct failed after 22 yr 16.6 (.38) 2 24.1 17.5 (.31) 37 80 pct failed after 22 yr 18.6 (.38) 2 24.1 19 42 80 pct failed after 22 yr 20 entachlorophenol (various solvents) Liquefied petroleum gas 14 42 80 pct failed after 20-1/2 yr 21 49 42 80 pct failed after 20-1/2 yr 22 49 45 40 pct failed after 20-1/2 yr 23 44 45 40 pct failed after 18 yr No failures after 18 yr				_	
7.8 6 60 pct failed after 40-1/2 8.0 4 60 pct failed after 40-1/2 8.3 20 20 pct failed after 41-1/2 10.0 5 70 pct failed after 41-1/2 11.8 4 20 pct failed after 41-1/2 11.8 4 20 pct failed after 41-1/2 11.5 5 5 No failures after 40-1/2 14.5 5 5 No failures after 40-1/2 14.5 5 5 No failures after 41-1/2 y Low residue, straight run 8.0 18 17.8 Medium residue, straight run 7.8 18 20.3 High residue, straight run 7.8 18 20.3 Medium residue Low in tar acids Low in naphthalene 8.2 18 21.3 Low in tar acids and naphthalene 8.0 18 19.2 Low in tar acids and naphthalene 8.0 18 19.2 English vertical retort 5.3 19 80 pct failed after 34 yr 15.0 19 50 pct failed after 34 yr 15.0 19 No failures after 34 yr English coke oven 4.7 19 16.3 10.1 19 50 pct failed after 34 yr 15.0 19 No failures after 34 yr English coke oven 4.7 19 16.3 10.1 19 70 pct failed after 34 yr 15.0 19 70 pct failed after 34 yr Cloor chrome arsenate phenol type A 2 (0.12) 18.0 10.1 19 70 pct failed after 34 yr Cloor chrome arsenate phenol type A 2 (0.12) 37 18.3 10.1 19 70 pct failed after 34 yr Cloor chrome arsenate phenol type A 2 (0.12) 37 18.3 10.6 (.38) 2 24.1 10.7 (.74) 37 80 pct failed after 22 yr 10.6 (.38) 2 24.1 10.7 (.75) (.71) 37 80 pct failed after 22 yr 10.6 (.38) 2 24.1 10.7 (.76) (.76) (.77) 37 80 pct failed after 22 yr 10.1 34 42 80 pct failed after 20-1/2 yr 10.1 49 42 80 pct failed after 18 yr 10.1 49 42 80 pct failed after 18 yr 10.1 49 42 80 pct failed after 18 yr 10.1 49 42 80 pct failed after 18 yr 10.1 49 42 80 pct failed after 18 yr 10.1 49 42 80 pct failed after 18 yr 10.1 58 42 80 pct failed after 18 yr 10.1 58 42 80 pct failed after 18 yr 10.1 58 42 80 pct failed after 18 yr 10.1 58 42 80 pct failed after 18 yr 10.1 58 42 80 pct failed after 18 yr 10.1 58 42 80 pct failed after 18 yr 10.1 58 42 80 pct failed after 18 yr 10.1 58 4		. –			••
8.0					
8.3 20					
10.0 5 70 pct failed after 41 yr					
11.8					
13.2					
14.5 5 No failures after 61 yr					
16.5					
Medium residue, straight run		_			
Medium residue, straight run 8.0 18 18.8 High residue, straight run 7.8 18 20.3 Medium residue Low in tar acids 8.1 18 19.4 Low in naphthalene 8.2 18 21.3 Low in tar acids and naphthalene 8.0 18 18.9 Low residue, low in tar acids and naphthalene 8.0 18 19.2 High residue, low in tar acids and naphthalene 8.2 18 20.0 English vertical retort 5.3 19 80 pct failed after 34 yr 10.1 19 80 pct failed after 34 yr English coke oven 4.7 19 16.3 7.9 18 13.6 10.1 19 70 pct failed after 34 yr Pulcor chrome arsenate phenol type A 2 (0.12) ⁸ 2 10.2 (Fed. Spec. TT-W-535) 3 (.19) 2 18.0 .50 (.31) 37 80 p		16.5	4		No failures after 41-1/2 yr
Medium residue Section	Low residue, straight run	8.0	18	17.8	
Medium residue Low in tar acids	Medium residue, straight run	8.0	18	18.8	
Low in tar acids Low in naphthalene Low in naphthalene Low in naphthalene R.0 18 18.9 Low residue, low in tar acids and naphthalene R.0 18 19.2 High residue, low in tar acids and naphthalene R.0 18 19.2 High residue, low in tar acids and naphthalene R.2 18 20.0 English vertical retort R.0 18 18.9 R.0 18 19.2 Bo pct failed after 34 yr R.0 18 18.9 10.1 19 50 pct failed after 34 yr 15.0 19 No failures after 34 yr English coke oven R.7 19 16.3 10.1 19 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr Fluor chrome arsenate phenol type A (Fed. Spec. TT-W-535) R.3 (.19) 2 18.0 (Fed. Spec. TT-W-535) R.3 (.19) 2 18.0 80 pct failed after 22 yr 80 pct failed after 22 yr 80 pct failed after 22 yr 80 pct failed after 20-1/2 yr 81 42 80 pct failed after 20-1/2 yr 81 42 80 pct failed after 18 yr 84 45 86 pct failed after 18 yr 87 No failures after 18 yr 80 No failures after 18 yr 80 No failures after 18 yr 80 No failures after 20-1/2 yr 80 No fail	High residue, straight run	7.8	18	20.3	
Low in naphthalene Low in tar acids and naphthalene Root 18 18.9 Low residue, low in tar acids and naphthalene Root 18 19.2 High residue, low in tar acids and naphthalene Root 18 19.2 High residue, low in tar acids and naphthalene Root 18 19.2 English vertical retort Root 18 18.9 10.1 19 50 pct failed after 34 yr 15.0 19 No failures after 34 yr English coke oven Root 4.7 19 16.3 10.1 19 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr Fluor chrome arsenate phenol type A (Fed. Spec. TT-W-535) Root 131 37 80 pct failed after 22 yr 20 (.31) 37 80 pct failed after 22 yr 21 (.38) 2 24.1 22 (.38) 2 24.1 23 (.39) 3 80 pct failed after 22 yr 24 (.38) 2 24.1 25 (.31) 37 80 pct failed after 22 yr 26 (.38) 2 24.1 27 (.39) 37 80 pct failed after 22 yr 27 (.39) 42 80 pct failed after 20 yr 28 (.31) 34 42 80 pct failed after 20 yr 29 (.34) 42 80 pct failed after 20 yr 20 (.31) 34 42 80 pct failed after 20 yr 20 (.31) 34 42 80 pct failed after 20 yr 21 (.34) 45 40 pct failed after 18 yr 22 (.34) 45 40 pct failed after 18 yr 23 (.34) 45 40 pct failed after 18 yr 25 (.35) 63 (.34) 45 40 pct failed after 18 yr 25 (.36) 63 (.37) 63 (.39	Medium residue				
Low in tar acids and naphthalene 8.0 18 18.9 Low residue, low in tar acids and naphthalene 8.0 18 19.2 High residue, low in tar acids and naphthalene 8.2 18 20.0 English vertical retort 5.3 19 80 pct failed after 34 yr 8.0 18 18.9 10.1 19 50 pct failed after 34 yr 15.0 19 No failures after 34 yr 15.0 19 No failures after 34 yr 15.0 19 No failures after 34 yr 16.3 No failures after 34 yr 16.3 19 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr 16.1 19 70 pct failed after 34 yr 17.0 19 18.0 19 70 pct failed after 34 yr 18.0 19 70 pct failed after 34 yr 18.0 19 70 pct failed after 34 yr 19 18.0 18.0 19 18.0 19 18.0 19 18.0 19 18.	Low in tar acids	8.1	18	19.4	
Low in tar acids and naphthalene 8.0 18 18.9 Low residue, low in tar acids and naphthalene 8.0 18 19.2 High residue, low in tar acids and naphthalene 8.2 18 20.0 English vertical retort 5.3 19 80 pct failed after 34 yr 8.0 18 18.9 10.1 19 50 pct failed after 34 yr 15.0 19 No failures after 34 yr 15.0 19 No failures after 34 yr 15.0 19 No failures after 34 yr 16.1 19 70 pct failed after 34 yr 17.0 19 18 19 70 pct failed after 34 yr 18.0 19 18.0 18.0 19 18.0 19 18.0 19 18.0 18.0 18.0 19 18.0 19 18.0 18.0 19 18.0 18.0 18.0 19 18.0 18.0 19 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	Low in naphthalene	8.2	18	21.3	
## Residue, low in tar acids and naphthalene	Low in tar acids and naphthalene	8.0	18		
High residue, low in tar acids and naphthalene 8.2 18 20.0 English vertical retort 5.3 19 80 pct failed after 34 yr 8.0 18 18.9 50 pct failed after 34 yr 15.0 19 No failures after 34 yr 15.0 19 No failures after 34 yr 15.0 19 No failures after 34 yr 15.0 19 16.3 7.0 pct failed after 34 yr 10.1 19 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr 15.0 19 18.0 18.0 19 18.0 19 18.0 19 18.0 19 18.0 18.0 18.0 19 18.0 18.0 19 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0					
English vertical retort English vertical reto	naphthalene	8.0	18	19.2	
English vertical retort English tenglish vertical after 34 yr Pop tended after 34 yr English vertical retort English	High residue, low in tar acids and				
8.0	-	8.2	18	20.0	
8.0	English vertical retort	5.3	10		80 not failed after 34 yr
10.1	publish Activital record		-		oo pee failed after 54 yr
English coke oven 4.7 19 16.3 7.9 18 13.6 10.1 19 70 pct failed after 34 yr 14.8 19 (Fed. Spec. TT-W-535) 3 (.19) 3 (.19) 37 380 pct failed after 22 yr 61 (.38) 2 24.1 70 pct failed after 22 yr 61 (.38) 2 24.1 70 pct failed after 34 yr 18.3 19 2 10.2 19 18.0 18.0 19 18.0 19 18.0 18.0 19 18.0 19 18.0 19 18.0 18.0 19 18.0 18.0 19 18.0 18.0 18.0 19 18.0 18.0 18.0 19 18.0 18.0 18.0 19 18.0 18.0 18.0 19 18.0 18.0 18.0 19 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 1					50 not failed after 3/ um
7.9 18 13.6 70 pct failed after 34 yr 14.8 19 10.2 70 pct failed after 34 yr 15.5 (.21) 37 18.0 70 pct failed after 34 yr 15.5 (.22) 37 18.0 70 pct failed after 22 yr 15.5 (.21) 37 18.3 80 pct failed after 22 yr 15.5 (.21) 37 18.3 80 pct failed after 22 yr 15.5 (.47) 37 10 pct failed after 22 yr 15.5 (.47) 37 10 pct failed after 22 yr 15.5 (.47) 37 80 pct failed after 20-1/2 yr 15.5 19 10 10 10 10 10 10 10 10 10 10 10 10 10					
7.9 18 13.6 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr 14.8 19 70 pct failed after 34 yr 70 pct failed after 36 pct failed after 22 yr 70 pct failed after 22 yr 70 pct failed after 22 yr 70 pct failed after 20 pct 70 pct 70 pct failed after 20 pct 70 pc	English coke oven	4 7	19	16.3	
10.1	DISTANCE OF THE				
14.8 19					70 not failed after 3/ vm
(Fed. Spec. TT-W-535) .3 (.19) 2 18.035 (.22) 37 18.350 (.31) 37 80 pct failed after 22 yr .61 (.38) 2 24.175 (.47) 37 10 pct failed after 22 yr entachlorophenol (various solvents) Liquefied petroleum gas .14 42 80 pct failed after 20-1/2 .19 42 80 pct failed after 20-1/2 .34 42 No failures after 20-1/2 y .34 45 No failures after 18 yr .49 45 No failures after 18 yr .58 42 No failures after 20-1/2 y					
(Fed. Spec. TT-W-535) .3 (.19) 2 18.035 (.22) 37 18.350 (.31) 37 80 pct failed after 22 yr .61 (.38) 2 24.175 (.47) 37 10 pct failed after 22 yr Pentachlorophenol (various solvents) Liquefied petroleum gas .14 42 80 pct failed after 20-1/2 .19 42 80 pct failed after 20-1/2 .34 42 No failures after 20-1/2 y .34 45 No failures after 18 yr .49 45 No failures after 18 yr .58 42 No failures after 20-1/2 y	luor chrome arsenate phenol type A	.2 (0 12) ⁸	2	10.2	**
.35 (.22) 37 18.350 (.31) 37 80 pct failed after 22 yr .61 (.38) 2 24.175 (.47) 37 10 pct failed after 22 yr Pentachlorophenol (various solvents) Liquefied petroleum gas .14 42 80 pct failed after 20-1/2 .19 42 80 pct failed after 20-1/2 .34 42 No failures after 20-1/2 y .34 45 40 pct failed after 18 yr .49 45 No failures after 18 yr .49 45 No failures after 20-1/2 y .58 42 No failures after 20-1/2 y					
1.50 (.31) 37 80 pct failed after 22 yr	/ obeer in a goal				••
.61 (.38) 2 24.1		- · · · · · · · · · · · · · · · · · · ·			80 not failed after 22 ur
.75 (.47) 37 10 pct failed after 22 yr Tentachlorophenol (various solvents) Liquefied petroleum gas					oo pee farred after 22 yr
Liquefied petroleum gas .14 42 80 pct failed after 20-1/2 .19 42 80 pct failed after 20-1/2 .34 42 No failures after 20-1/2 y .34 45 40 pct failed after 18 yr .49 45 No failures after 18 yr .58 42 No failures after 20-1/2 y					10 pct failed after 22 yr
Liquefied petroleum gas .14 42 80 pct failed after 20-1/2 .19 42 80 pct failed after 20-1/2 .34 42 No failures after 20-1/2 y .34 45 40 pct failed after 18 yr .49 45 No failures after 18 yr .58 42 No failures after 20-1/2 y	entachlorophenol (various solvents)				
.19 42 80 pct failed after 20-1/2 .34 42 No failures after 20-1/2 y .34 45 40 pct failed after 18 yr .49 45 No failures after 18 yr .58 42 No failures after 20-1/2 y	Liquefied petroleum gas	. 14	42		80 pct failed after 20-1/2 v
.34 42 No failures after 20-1/2 y .34 45 40 pct failed after 18 yr .49 45 No failures after 18 yr .58 42 No failures after 20-1/2 y	F				
.34 45 40 pct failed after 18 yr .49 45 No failures after 18 yr .58 42 No failures after 20-1/2 y					
.49 45 No failures after 18 yr´ .58 42 No failures after 20-1/2 y					
.58 42 No failures after 20-1/2 y					
\cdot					
.03 45 no failures after 18 yr					
		. 03	45		no tallures after 18 yr

(Page 2 of 3)

Table 67.--Summary of 2- by 4-inch-stake test results obtained in Mississippi with wood preservatives in general use--continued

entachlorophenol (various solvents) ^b continued Stoddard solvent (mineral spirits)	Pcf .14 .18 .20 .20 .38 .40 .67	42 42 22 17 42 22	Yr 13.8 16.1 9.5	
(various solvents) Dcontinued	.18 .20 .20 .38 .40	42 22 17 42	16.1 9.5	
(various solvents) Dcontinued	.18 .20 .20 .38 .40	42 22 17 42	16.1 9.5	
	.18 .20 .20 .38 .40	42 22 17 42	16.1 9.5	
Stoddard solvent (mineral spilles)	.18 .20 .20 .38 .40	42 22 17 42	16.1 9.5	
	.20 .20 .38 .40	22 17 42		
	.20 .38 .40	17 42		**
	. 38 . 40	42	13.7	
	. 40			No failures after 20-1/2 yr
	.67		15.5	
		42		No failures after 20-1/2 yr
Heavy gas oil (Mid-United States)	. 20	17		3? pct failed after 34-1/2 yr
meavy gas off (into outlier boates)	.40	17		20 pct failed after 34-1/2 yr
	.60	17		10 pct failed after 34-1/2 yr
No. 4 aromatic oil (West Coast)	.21	22		90 pct failed after 32 yr
	. 41	22		30 pct failed after 32 yr
AWPA P9 (heavy petroleum)	.11	42		20 pct failed after 20-1/2 yr
• •	. 19	42		No failures after 20-1/2 yr
	. 29	42		No failures after 20-1/2 yr
	.53	45		No failures after 18 yr
	.67	42		No failures after 20-1/2 yr
fributyltin oxide	015	24	4 2	
Stoddard solvent	.015	36	6.3 4.5	
	.025 .030	41 36	7.2	
	.045	36	7.4	
	.047	41	7.0	
AWPA P9 (heavy petroleum)	.024	41		70 pct failed after 22 yr
min , y (nearly perioded)	.048	41		50 pct failed after 22 yr
Petroleum solvent controls	4.0	17	7.6	
	4.1	17	4.4	
	4.7	17	12.9	
	7.7	23		90 pct failed after 30 yr
	7.9	17		70 pct failed after 34-1/2 yr
	8.0	45		60 pct failed after 18 yr
	8.0	41		40 pct failed after 22 yr
	8.0	17	14.6	
	8.1	18	3.4	10 - 10 follow 5550 10 mm
	8.5	43		40 pct failed after 18 yr
	9.8	5	6.3	••
	12.0	17	17.1	10 pct failed after 34-1/2 yr
	12.1 19.4	17 5	9.1	TO per latter after 34-1/2 yi
Untreated stakes		Misc.	1.8	
A11000000			to	
			3.6	

 $^{^{\}mathbf{a}}$ Retention values in parentheses are based on preservative oxides.

(Page 3 of 3)

 $^{^{\}mathbf{b}}$ See tables 5 and 17 for pentachlorophenol in other solvents.

FILMED)

5-84