# MATH 255 Formula Sheet

## **Definitions**

## Differential Equation

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

## **Ordinary Differential Equation**

Derivatives are taken w.r.t. the same independent variable.

#### Order

The order of the highest derivative that appears.

### Linear Differential Equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f(t)$$

Only linear combination of unknown and its derivatives.

#### First Order ODEs

$$y'(t) = f(t, y(t))$$

Integration: y'(t) = f(t)

$$y(t) = \int f(t) \, dt$$

**Separable Equations:** y'(t) = g(t)h(y)

$$\int \frac{dy}{h(t)} = \int g(t) \, dt$$

Integrating Factor: y' + p(t)y = q(t) (linear)

$$r(t) = e^{\int p(t) \, dt}$$

$$[r(t)y]' = r(t)q(t)$$

$$y = \frac{1}{r(t)} \left( \int r(t)q(t) dt \right)$$

## Picard's Theorem: y' = f(t, y).

If f(t,y) is continuous near  $(t_0,y_0)$  and  $\frac{\partial f}{\partial y}$  exists and is continuous near  $(t_0, y_0)$ , then a solution exists locally and is unique.

Autonomous Equation: y' = f(y)

Critical points at y' = f(y) = 0.





## **Application: Mixing**

Q: amount of salt

s: inflow concentration

r: flow rate

V: volume

$$Q' = rs - \frac{r}{V}Q$$
$$Q(t) = sV + (Q_0 - sV)e^{-\frac{r}{V}t}$$

Euler's Method: y' = f(t, y)

$$y(t+h) \approx y(t) + hf(t,y)$$

#### Second Order Linear ODEs

$$y'' + p(t)y' + q(t)y = g(t)$$
$$L[y] = g(t)$$

Homogeneous: L[y] = 0

If  $y_1$  and  $y_2$  are solutions, then  $y = C_1y_1 + C_2y_2$  is also a solution.

Reduction of Order:  $y_1$  solves y'' + p(t)y' + q(t)y = 0Try  $y_2(t) = v(t)y_1(t)$ .

$$y_2(t) = y_1(t) \int \frac{e^{-\int p(t) dt}}{(y_1(t))^2} dt$$

Constant Coefficient 2LODE: ay'' + by' + cy = 0

Try  $y = e^{rt}$ :

$$ar^2 + br + c = 0$$

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x} \qquad r_1 \neq r_2$$
  

$$y = (C_1 + C_2 x) e^{r_x} \qquad r_1 = r_2$$
  

$$y = C_1 e^{\alpha x} \cos(\beta x) + C_2 e^{\alpha x} \sin(\beta x) \qquad r_1, r_2 = \alpha \pm i\beta$$

Nonhogeneous:  $L[y] = g(t) \neq 0$ 

$$y = y_c + y_p$$

where  $y_c$  solves the homogeneous equation and  $y_p$  is a particular solution.

Undetermined Coefficients: L[y] = g(t)

s = 0, 1, or 2 so  $y_c$  and  $y_n$  are linearly independent.

| g(t)                                      | $y_p$                             |
|-------------------------------------------|-----------------------------------|
| $P_n(t) = a_0 t^n + \dots + a_n$          | $t^s(A_0t^n+\cdots+A_n)$          |
| $e^{\alpha t}$                            | $t^s A e^{\alpha t}$              |
| $\sin(\beta t) \text{ or } \cos(\beta t)$ | $A\cos(\beta t) + B\sin(\beta t)$ |

Variation of Parameters: L[y] = g(t)

Try  $y_p = u_1 y_1 + u_2 y_2$ .

$$\begin{cases} u_1'y_1 + u_2'y_2 = 0 \\ u_1'y_1' + u_2'y_2' = g(t) \end{cases}$$

## Applications of 2LODE

#### **Mechanical Oscillations**

$$mx'' + cx' + kx = F(t), \quad \omega_0 = \sqrt{\frac{k}{m}}$$

Undamped forced:  $mx'' + kx = F_0 \cos(\omega t)$ :

$$x_c = C_1 \cos(\omega t) + C_2 \sin(\omega t)$$

$$x_p = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos(\omega t) \quad (\omega \neq \omega_0)$$
$$x_p = \frac{F_0}{2m\omega} t \sin(\omega t) \quad (\omega = \omega_0)$$

Damped forced:  $mx'' + cx' + kx = F_0 \cos(\omega t)$ : Let  $\rho = \frac{c}{2m}$ . Call  $x_p = x_{sp}$  (steady periodic). Practical resonance: maximum amplitude of  $x_{sp}$ .

$$\omega = \sqrt{\omega^2 - 2\rho^2}$$
 or  $\omega = 0$ 

## Laplace Transform

#### Definition

$$\mathcal{L}\left\{f(t)\right\} = F(s) := \int_0^\infty e^{-st} f(t) \, dt$$

$$\mathcal{L}\left\{f + g\right\} = \mathcal{L}\left\{f\right\} + \mathcal{L}\left\{g\right\} \text{ and } \mathcal{L}\left\{cf\right\} = c\mathcal{L}\left\{f\right\}$$

$$\mathcal{L}\left\{fg\right\} \neq \mathcal{L}\left\{f\right\} \mathcal{L}\left\{g\right\}$$

## Common Laplace Transforms

| -             |                                         |  |  |  |
|---------------|-----------------------------------------|--|--|--|
| f(t)          | $\mathcal{L}\left\{f(t)\right\} = F(s)$ |  |  |  |
| c             | $\frac{c}{s}$ , $s > 0$                 |  |  |  |
| $t^n$         | $\frac{n!}{s^{n+1}},  s > 0$            |  |  |  |
| $e^{-at}$     | $\frac{1}{s+a}$ , $s > -a$              |  |  |  |
| $\sin(at)$    | $\frac{a}{s^2 + a^2},  s > 0$           |  |  |  |
| $\cos(at)$    | $\frac{s}{s^2 + a^2},  s > 0$           |  |  |  |
| $\sinh(at)$   | $\frac{a}{s^2 - a^2},  s >  a $         |  |  |  |
| $\cosh(at)$   | $\frac{s}{s^2 - a^2},  s >  a $         |  |  |  |
| $e^{-at}f(t)$ | F(s+a)                                  |  |  |  |

#### Laplace Transform of Derivatives

| f(t)         | $\mathcal{L}\left\{f(t)\right\} = F(s)$                                                   |
|--------------|-------------------------------------------------------------------------------------------|
| g'(t)        | $s\mathcal{L}\left\{g(t)\right\} - g(0)$                                                  |
| g''(t)       | $s^2 \mathcal{L}\left\{g(t)\right\} - sg(0) - g'(0)$                                      |
| g'''(t)      | $s^3 \mathcal{L} \{g(t)\} - s^2 g(0) - sg'(0) - g''(0)$                                   |
| $g^{(n)}(t)$ | $s^{n}\mathcal{L}\left\{g(t)\right\} - s^{n-1}g(0) - s^{n-2}g'(0) - \dots - g^{(n-1)}(0)$ |

#### Solving ODEs

- 1. Laplace transform both sides
- 2. Plug in initial condition
- 3. Solve for  $X(s) = \mathcal{L}\{x(t)\}\$
- 4.  $\mathcal{L}\{x(t)\} = \mathcal{L}^{-1}\{X(s)\}$

#### Convolution

$$\mathcal{L}^{-1}\{F(s)G(s)\} = f * g = \int_0^t f(\tau)g(t-\tau)d\tau \quad (t \ge 0)$$

## Linear System of ODEs

$$\vec{x}' = A(t)\vec{x}(t) + \vec{f}(t) \quad \Leftrightarrow \quad \vec{x}' = P\vec{x} + \vec{f}$$

## Homogeneous

$$\vec{x} = c_1 \vec{x}_1 + c_2 \vec{x}_2 + \dots + c_n \vec{x}_n$$

$$X(t) = \begin{bmatrix} | & | & | \\ \vec{x}_1 & \vec{x}_2 & \dots & \vec{x}_n \\ | & | & | \end{bmatrix}$$
 (fundamental matrix)
$$\vec{x} = X\vec{c}$$

## Nonhomogeneous

$$\vec{x} = \vec{x}_c + \vec{x}_p = X\vec{c} + \vec{x}_p$$

## Eigenvalue Method

Eigenvalue:  $det(A - \lambda I) = 0$ 

Eigenvector:  $(A - \lambda I)\vec{v} = 0$ 

Solution to  $\vec{x}' = P\vec{x}$ :

$$\vec{x} = c_1 \vec{v}_1 e^{\lambda_1 t} + c_2 \vec{v}_2 e^{\lambda_2 t} + \dots + c_n \vec{v}_n e^{\lambda_n t}$$

If complex eigenpair  $\vec{x}_1 = \vec{v}_1 e^{\lambda_1 t}$ ,  $\vec{x}_2 = \overline{\vec{v}_1}$ :

• Use  $c_1\Re(\vec{x}_1) + c_2\Im(\vec{x}_1)$ 

#### Vector Field Behaviour

| $\lambda_1$ | $\lambda_2$ | behaviour             | stability |
|-------------|-------------|-----------------------|-----------|
| +           | +           | source                | unstable  |
| _           | _           | $\operatorname{sink}$ | stable    |
| +           | _           | saddle                | unstable  |

| λ                 | behaviour     | stability |
|-------------------|---------------|-----------|
| $\pm bi$          | center        | ellipses  |
| $a \pm bi, a > 0$ | spiral source | unstable  |
| $a \pm bi, a < 0$ | spiral sink   | stable    |

### Multiple Eigenvalues

Generalized eigenvectors:

$$(A - \lambda I)\vec{v}_1 = \vec{v}_0 \implies \vec{x}_1 = \vec{v}_1 e^{\lambda t}$$

$$(A - \lambda I)\vec{v}_2 = \vec{v}_1 \implies \vec{x}_2 = (\vec{v}_2 + \vec{v}_1 t)e^{\lambda t}$$

$$(A - \lambda I)\vec{v}_k = \vec{v}_{k-1} \implies \vec{x}_k = \left(\sum_{i=0}^{k-1} \vec{v}_{k-i} \frac{t^i}{i!}\right)e^{\lambda t}$$

## Nonlinear System of ODEs

## Autonomous systems

$$\frac{d}{dt} \underbrace{\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix} f(x,y) \\ g(x,y) \end{bmatrix}}_{F(\vec{x})}$$

Critical points:  $F(\vec{x}_0) = 0$ .

#### Linearization

Suppose  $\vec{p} = (x_0, y_0)$  is a critical point. Let  $u = x - x_0$  and  $v = y - y_0$ . Linearized system:

$$\begin{bmatrix} u \\ v \end{bmatrix}' = \mathbf{J}_{\vec{p}} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f_x & f_y \\ g_x & g_y \end{bmatrix}_{\vec{p}} \begin{bmatrix} u \\ v \end{bmatrix}$$

"Almost linear" - good approximation when:

- $(x_0, y_0)$  is isolated
- $\bullet$  Jacobian is invertible  $\Leftrightarrow 0$  is not an eigenvalue

#### Classification

Refer to Vector Field Behaviour. Center behaviour is unclear because Jacobian of nonlinear system will vary.

#### Conservative Equation

$$x'' + f(x) = 0$$

Associated conservative system:

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} y \\ -f(x) \end{bmatrix}$$

Energy function E(x, y):

$$E(x,y) = \frac{1}{2}y^2 + \int_0^x f(u) \, du$$

For any solution, E(x,y) is constant.

#### Miscellaneous Formulas

#### **Partial Fractions**

$$\frac{P(x)}{(x-r_1)(x-r_2)\cdots(x-r_n)} = \frac{A_1}{x-r_1} + \frac{A_2}{x-r_2} + \dots + \frac{A_n}{x-r_n}$$
$$(x-r)^m \text{ corresponds to } \frac{A_1}{x-r} + \frac{A_2}{(x-r)^2} + \dots + \frac{A_m}{(x-r)^m}$$
$$ax^2 + bx + c \text{ corresponds to } \frac{Ax+B}{ax^2+bx+c}$$

## **Identities and Derivatives**

#### Trig

$$\cos(2x) = \cos^2 x - \sin^2 x \quad \sin(2x) = 2\sin x \cos x$$
$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

#### **Derivatives**

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx} \cot x = \frac{1}{x}$$

$$\frac{d}{dx} \cot x = \frac{1}{x}$$