International Rectifier

Data Sheet No. PD60139J

IR2105

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- 5V Schmitt-triggered input logic
- Cross-conduction prevention logic
- Internally set deadtime
- High side output in phase with input
- Match propagation delay for both channels

Description

The IR2105 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts.

HALF BRIDGE DRIVER

Product Summary

Voffset	600V max.
I _O +/-	130 mA / 270 mA
Vout	10 - 20V
t _{on/off} (typ.)	680 & 150 ns
Deadtime (typ.)	520 ns

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units	
V _B	High side floating absolute voltage		-0.3	625		
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3		
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3		
Vcc	Low side and logic fixed supply voltage		-0.3	25	V	
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3		
V _{IN}	Logic input voltage		-0.3	V _{CC} + 0.3		
dV _s /dt	Allowable offset supply voltage transient		_	50	V/ns	
PD	Package power dissipation @ T _A ≤ +25°C	(8 Lead DIP)	_	1.0	144	
		(8 Lead SOIC)	_	0.625	W	
Rth _{JA}	Thermal resistance, junction to ambient	(8 Lead DIP)	_	125	°C/W	
		(8 Lead SOIC)	_	200	C/ VV	
TJ	Junction temperature		_	150		
T _S	Storage temperature		-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		_	300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply absolute voltage	V _S + 10	V _S + 20	
٧s	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	
Vcc	Low side and logic fixed supply voltage	10	20	V
V _{LO}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage	0	V _{CC}	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	680	820		V _S = 0V
toff	Turn-off propagation delay	_	150	220		V _S = 600V
t _r	Turn-on rise time	_	100	170		
t _f	Turn-off fall time	_	50	90	ns	
DT	Deadtime, LS turn-off to HS turn-on &	400	520	650		
	HS turn-on to LS turn-off					
MT	Delay matching, HS & LS turn-on/off		_	60		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" (HO) & Logic "0" (LO) Input Voltage	3	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" (HO) & Logic "1" (LO) Input Voltage	_	_	0.8	V	V _{CC} = 10V to 20V
VoH	High Level Output Voltage, V _{BIAS} - V _O	_	_	100	mV	I _O = 0A
V _{OL}	Low Level Output Voltage, VO	_	_	100	IIIV	I _O = 0A
I _{LK}	Offset Supply Leakage Current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} Supply Current	_	30	55		V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} Supply Current	_	150	270	μΑ	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" Input Bias Current	_	3	10		V _{IN} = 5V
I _{IN-}	Logic "0" Input Bias Current	_	_	1		V _{IN} = 0V
Vccuv+	V _{CC} Supply Undervoltage Positive Going	8	8.9	9.8		
	Threshold				V	
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going Threshold	7.4	8.2	9	V	
I _{O+}	Output High Short Circuit Pulsed Current	130	210	_		V _O = 0V
					. mA	PW ≤ 10 µs
I _O -	Output Low Short Circuit Pulsed Current	270	360	_		V _O = 15V
						PW ≤ 10 μs

IR2105 International TOR Rectifier

Functional Block Diagram

Lead Definitions

2000 P 01111110110			
Le	ead		
Symbol	Description		
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO		
VB	High side floating supply		
НО	High side gate drive output		
Vs	High side floating supply return		
Vcc	Low side and logic fixed supply		
LO	Low side gate drive output		
COM	Low side return		

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Deadtime Waveform Definitions

Figure 4. Delay Matching Waveform Definitions

Figure 6A. Turn-On Time vs Temperature

Figure 6B. Turn-On Time vs Voltage

Figure 7A. Turn-Off Time vs Temperature

Figure 7B. Turn-Off Time vs Voltage

Figure 9A. Turn-On Rise Time vs Temperature

Figure 9B. Turn-On Rise Time vs Voltage

Figure 10A. Turn Off Fall Time vs Temperature

Figure 11A. Deadtime vs Temperature

Figure12A. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Temperature

Figure 10B. Turn Off Fall Time vs Voltage

Figure 11B. Deadtime vs Voltage

Figure 12B. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Voltage

Figure 13A. Logic "0"(HO) & Logic "1"(LO) Input Voltage vs Temperature

Figure 14A. High Level Output vs Temperature

Figure 15A. Low Level Output vs Temperature

Figure 13B. Logic "0"(HO) & Logic "1"(LO)
Input Voltage vs Voltage

Figure 14B. High Level Output vs Voltage

Figure 15B. Low Level Output vs Voltage

Figure 16A. Offset Supply Current vs Temperature

Figure 16B. Offset Supply Current vs Voltage

Figure 17A. VBS Supply Current vs Temperature

Figure 17B. VBS Supply Current vs Voltage

Figure 18A. Vcc Supply Current vs Temperature

Figure 18B. Vcc Supply Current vs Voltage

Figure 19A. Logic "1" Input Current vs Temperature

Figure 20A. Logic "0" Input Current vs Temperature

Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature

Figure 19B. Logic "1" Input Current vs Voltage

Figure 20B. Logic "0" Input Current vs Voltage

Figure 21B. Vcc UndervoltageThreshold (-) vs Temperature

IR2105 International TOR Rectifier

Figure 22A. Output Source Current

Figure 23A. Output Sink Current vs Temperature

Temperature (°C)

75

100

-50

12

-25

Figure 22B. Output Source Current vs Voltage

Figure 23B. Output Sink Current vs Voltage

International

IOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086
IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong
Kong Tel: (852) 2803-7380

Data and specifications subject to change without notice. 11/29/99