False discovery proportion control by permutations

Proving properties of SAM

Jesse Hemerik, Jelle Goeman

Radboud university medical center, The Netherlands

80 Years After Bonferroni

Radboudumc

Main message

- SAM ("Significance Analysis of Microarrays") is a useful method for FDP estimation
- First paper about SAM (2001) cited 10,000 times
- SAM is only heuristic
- We provide exact conf. statements about FDP

FDP

We test hypotheses $H_1, ..., H_m$

$$R := \{1 \le i \le m : H_i \text{ is rejected}\}\$$

 $\mathcal{N} := \{1 \le i \le m : H_i \text{ is true}\}\$

 $V := \# \mathcal{N} \cap R$ number of false positives

$$FDP := \frac{V}{\#R}$$

Setting of SAM

- Hypotheses $H_1, ..., H_m$
- Data X with any distribution
- Test statistics $T_1(X), ..., T_m(X)$
- G a finite group of transformations from and to the range of X
- Joint distr. of the $T_i(gX)$ with $i \in \mathcal{N}$, $g \in G$, is invariant under all transformations in G of the data X.

Output of SAM

- 1 User chooses a rejection region $D \subset \mathbb{R}$
- **2** SAM rejects the H_i with $T_i \in D$ and provides \widehat{FDP}

SAM's calculation of \widehat{FDP}

- 2 For each permutation g_j , calculate $\#R(g_jX) = \#\{1 \le i \le m : T_i(g_jX) \in D\}$
- **3** $\widehat{V} := \text{median of the values } \#R(g_jX), \ 1 \leq j \leq w$
- $\widehat{FDP} := \frac{\widehat{V}}{\#R}$

$$\widehat{\mathit{FDP}}' := \widehat{\mathit{FDP}} \cdot \widehat{\pi}_0 \qquad (\pi_0 = \frac{\#\mathcal{N}}{m})$$

Part 2: our results

Results on \widehat{FDP}

Proven: \widehat{FDP} is a median-controlling estimator of FDP, i.e.

$$P(FDP \le \widehat{FDP}) \ge \frac{1}{2}.$$

$$\widehat{\mathit{FDP}}' = \widehat{\mathit{FDP}} \cdot \widehat{\pi}_0$$
 is not

Generalization

Choose:

- for each T_i any rejection region $D_i \subset \mathbb{R}$
- $\bullet \ \ \mathsf{some} \ \alpha \in [\mathsf{0},\mathsf{1}]$

We provide:

a $(1 - \alpha)100\%$ -confidence upper bound \overline{FDP} for the FDP:

$$P(FDP \le \overline{FDP}) \ge 1 - \alpha$$

Calculation of upper bound

The $(1-\alpha)100\%$ -confidence upper bound is

$$\overline{FDP} := \frac{\overline{V}}{\# R},$$

where \overline{V} is the $(1-\alpha)$ -quantile of the values $\#R(g_jX),\ 1\leq j\leq w$

Recall permutation test:

- Consider:
 - data X with any distribution
 - a group G of transformations from and to the range of X
 - a test statistic T(X)
- H_0 : $X \stackrel{d}{=} gX$ for all $g \in G$.
- Let

$$T^{(1)} \leq ... \leq T^{(\#G)}$$

be the sorted values T(gX), $g \in G$.

• Then $P(T(X) > T^{(\lceil (1-\alpha) \cdot \#G \rceil)}) \leq \alpha$.

Proof upper bound

To show: $P(V > \overline{V}) \le \alpha$.

Proof: Let $V^{1-\alpha}$ be the $(1-\alpha)$ -quantile of the values

$$\#\mathcal{N}\cap R(g_jX), \quad 1\leq j\leq w.$$

By permutation principle:

$$P(\#\mathcal{N}\cap R(X)>V^{1-\alpha})\leq \alpha.$$

Finally note that
$$V^{1-\alpha} \leq \overline{V}$$
.

Conservativeness (1)

• By permutation principle the $(1-\alpha)$ -quantile of the values

$$\#\mathcal{N} \cap R(g_jX), \quad 1 \leq j \leq w,$$

is a $(1 - \alpha)$ -upper bound for V.

• But we don't know \mathcal{N} , so use the $(1-\alpha)$ -quantile of the values

$$\#R(g_jX), \quad 1 \leq j \leq w.$$

• So real error rate can be much smaller than α .

Conservativeness (2)

When there are many false hypotheses, \widehat{FDP} is conservative

SAM software therefore uses $\widehat{\mathit{FDP}}' := \widehat{\mathit{FDP}} \cdot \widehat{\pi}_0$

Unknown properties. It's not median-unbiased

We want to decrease the bound without losing the property $P(FDP \le \overline{FDP}) \ge 1 - \alpha$

Better upper bound

Let *E* be the event that $V \leq V^{1-\alpha}$. Thus $P(E) \geq 1 - \alpha$.

Suppose E holds. Thus $V \leq V^{1-\alpha} \leq \overline{V}$. So among R there are no more than \overline{V} true hypotheses

Use this information to find better bound \overline{V}^1 Continue like this, finding $\overline{V}^1 \geq \overline{V}^2 \geq \overline{V}^3$...

Improved upper bound = $\min_i \overline{V}^i$

Part 3: Relation to closed testing

SAM bound >

Bound of iterative method $\min_i \overline{V}^i \geq$

Bound derived from closed testing procedure

General definition closed testing

Want to test each intersection hypothesis $H_I = \bigcap_{i \in I} H_i$, $I \subseteq \{1, ..., m\}$ such that $P(\text{no false positives}) \ge 1 - \alpha$

For each H_I , define a test of level α . (So $2^m - 1$ local tests)

C.t.procedure rejects all H_I with property that all H_J with $J \supseteq I$ are rejected by their local tests

Deriving upper bounds using c.t.p.

Write
$$\mathcal{X} = \{I \subseteq \{1, ..., m\}: H_I \text{ rejected by c.t.p.}\}$$

Let $K \subseteq \{1, ..., m\}$ be any set.

By Goeman and Solari (2011):

An upper bound to $\#\mathcal{N} \cap K$ is

$$\max\{\#I: I\subseteq K, I\not\in\mathcal{X}\}\vee 0.$$

With probability $\geq 1 - \alpha$ these bounds are valid uniformly over all $K \subseteq \{1, ..., m\}$.

Our c.t.p.

In the SAM context, recall

$$R(X) = \{1 \leq i \leq m : T_i(X) \in D_i\}.$$

For each H_I consider local test that rejects iff

$$\#I\cap R(X)>R_I^{(1-\alpha)},$$

where $R_I^{(1-\alpha)}$ is the $(1-\alpha)$ -quantile of the values $\#I\cap R(g_jX),\ 1\leq j\leq w$

Connection to our iterative method

Consider the c.t.p. based on these local tests.

Write R := R(X)

Upper bound for $V = R \cap \mathcal{N}$ is

$$\max\{\#I: I\subseteq R \text{ and } I\notin \mathcal{X}\}$$

$$= \dots = \dots \leq \dots = \overline{V}^1.$$

Using \overline{V}^1 , by analogous argument \overline{V}^2 follows, etc.

Uniform bounds

For every $K\subseteq\{1,...,m\}$ a (uniform) bound for $\#K\cap\mathcal{N}$ is $\max\{\#I:I\subseteq K\text{ and }I\not\in\mathcal{X}\}=...=...\leq...=...=$ $\min\{\#K,\#K\cap R^c+R_{K\cup R^c}^{(1-\alpha)}\}=:\overline{V}(K)$

Relation to iterative method

• An upper bound to $R \cap \mathcal{N}$ is

$$\max\{\overline{V}(K): K \subseteq R, \#K = \overline{V}(R)\} = \max\{\min\{\#K, R_{K \cup R^c}^{(1-\alpha)}\}: K \subseteq R, \#K = \overline{V}(R)\}.$$

But this is exactly \overline{V}^1 . Analogously $\overline{V}^2, \overline{V}^3, ...$ follow

• Likewise, for every $I \subseteq \{1,...,m\}$ we can improve $\overline{V}(I)$

Computational feasibility

- SAM bound \geq Bound of iterative method $\min_i \overline{V}^i \geq$ Bound from c.t.p.
- Iterative method faster than using c.t.p.
- But still computationally intensive
- \bullet \rightarrow Shortcut

Use of random permutations

Suppose we want to use only w permutations from G

Drawing with replacement: Take $g_1 := id$. Draw $g_2, ..., g_w$ with replacement from G

Drawing without replacement: Take $g_1 := id$. Draw $g_2, ..., g_w$ without replacement from $G \setminus \{id\}$

Conclusion

- Until now SAM was only heuristic
- We have proven properties of SAM and extended it to give confidence statements about the FDP
- We have improved SAM without losing coverage

References

First SAM paper:

Tusher, V.G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. *Proceedings of the National Academy of Sciences* **98** 5116-5121.

Rationale behind $\widehat{\pi}_0$:

Storey, J.D. et al. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *JRSS: Series B (Statistical Methodology)* **66** 187-205.

Details about ($\widehat{\pi}_0$ as used in) SAM R package samr.

Chu, G. et al. Significance Analysis of Microarrays: users guide and technical document.

Deriving FDP upper bounds using closed testing: Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research. *Statistical Science* **26** 584-597