A posteriori error estimates and stopping criteria for a two-phase flow with nonlinear complementarity constraints

Ibtihel Ben Gharbia, Jad Dabaghi, Vincent Martin, Martin Vohralík

Inria Paris & Université Paris-Est

SIAM Conference on Mathematical & Computational Issues in the Geosciences, March 13th 2019

Outline

Introduction

- Introduction
- 2 Model problem and its discretization
- A posteriori analysis
- Mumerical experiments
- Conclusion

Introduction

Storage of radioactive wastes

Model: System of PDE's with complementarity constraints

$$\partial_t \boldsymbol{U} + \mathcal{A}(\boldsymbol{U}) = 0$$

$$\mathcal{K}(\boldsymbol{U}) \geq 0, \ \mathcal{G}(\boldsymbol{U}) \geq 0, \ \mathcal{K}(\boldsymbol{U}) \cdot \mathcal{G}(\boldsymbol{U}) = 0.$$

Space/Time discretisation

$$S^{n}(\boldsymbol{U}_{h}^{n}) = 0$$

$$\mathcal{K}(\boldsymbol{U}_{h}^{n}) \geq 0 \ \mathcal{G}(\boldsymbol{U}_{h}^{n}) \geq 0 \ \mathcal{K}(\boldsymbol{U}_{h}^{n}) \cdot \mathcal{G}(\boldsymbol{U}_{h}^{n}) = 0$$

Resolution: semismooth Newton

$$\mathbb{A}^{n,k-1}\boldsymbol{U}_h^{n,k,i} = \boldsymbol{B}^{n,k-1} - \boldsymbol{R}^{n,k,i}$$

Storage of radioactive wastes

Model: System of PDE's with complementarity constraints

$$\partial_t \mathbf{U} + \mathcal{A}(\mathbf{U}) = 0$$

 $\mathcal{K}(\mathbf{U}) \ge 0, \ \mathcal{G}(\mathbf{U}) \ge 0, \ \mathcal{K}(\mathbf{U}) \cdot \mathcal{G}(\mathbf{U}) = 0.$

Space/Time discretisation

$$S^{n}(\boldsymbol{U}_{h}^{n}) = 0$$

$$\mathcal{K}(\boldsymbol{U}_{h}^{n}) \geq 0 \ \mathcal{G}(\boldsymbol{U}_{h}^{n}) \geq 0 \ \mathcal{K}(\boldsymbol{U}_{h}^{n}) \cdot \mathcal{G}(\boldsymbol{U}_{h}^{n}) = 0$$

Resolution: semismooth Newton

$$\mathbb{A}^{n,k-1}\boldsymbol{U}_h^{n,k,i}=\boldsymbol{B}^{n,k-1}-\boldsymbol{R}^{n,k,i}$$

⇒ A posteriori error estimates

Can we estimate each error components (discretization, linearization, algebraic)?

Can we reduce the computational cost?

- Introduction
- 2 Model problem and its discretization
- A posteriori analysis
- Numerical experiments
- Conclusion

Compositional two-phase flow with phase transition

$$\left\{ \begin{array}{l} \partial_t \textit{I}_w + \boldsymbol{\nabla} \cdot \boldsymbol{\Phi}_w = \textit{Q}_w, & \textbf{Unknowns:} \textit{S}^l, \textit{P}^l, \chi_h^l \\ \partial_t \textit{I}_h + \boldsymbol{\nabla} \cdot \boldsymbol{\Phi}_h = \textit{Q}_h, \\ \mathcal{K}(\textit{S}^l) \geq 0, \; \mathcal{G}(\textit{S}^l, \textit{P}^l, \chi_h^l) \geq 0, \; \mathcal{K}(\textit{S}^l) \cdot \mathcal{G}(\textit{S}^l, \textit{P}^l, \chi_h^l) = 0 \end{array} \right.$$

Amount of components: $I_w := \phi \rho_w^l S^l$, $I_h := \phi \rho_h^l S^l + \phi \rho_h^g S^g$

Fluxes:
$$\Phi_w := \rho_w^l \mathbf{q}^l - \mathbf{J}_h^l$$
, $\Phi_h := \rho_h^l \mathbf{q}^l + \rho_h^g \mathbf{q}^g + \mathbf{J}_h^l$

Capillary pressure: $P^{g} := P^{l} + P_{cp}(S^{l})$

Algebraic closure:
$$S^l + S^g = 1$$
, $\chi_h^l + \chi_w^l = 1$, $\chi_h^g = 1$

Boundary conditions: $\Phi_{w} \cdot \boldsymbol{n}_{O} = 0$, $\Phi_{h} \cdot \boldsymbol{n}_{O} = 0$.

Discretization by the finite volume method

Numerical solution:

$$m{U}^n := (m{U}_K^n)_{K \in \mathcal{T}_h}, \qquad m{U}_K^n := (S_K^n, P_K^n, \chi_K^n) \quad \text{one value per cell and time step}$$

Time discretization: Consider: $t_0 = 0 < t_1 < \cdots < t_{N_t} = t_F$.

$$\partial_t^n v_K := \frac{v_K^n - v_K^{n-1}}{\Delta t_n}$$

Space discretization: \mathcal{T}_h a superadmissible family of conforming simplicial meshes of the space domain Ω . Number of cells: $N_{\rm sp}$

$$(\nabla v \cdot \mathbf{n}_{K,\sigma}, 1)_{\sigma} := |\sigma| \frac{v_L - v_K}{d_{\kappa_I}} \ \sigma = \overline{K} \cap \overline{L},$$

$$S_{\mathrm{w},K}^n(\boldsymbol{U}^n) := |K| \partial_t^n I_{\mathrm{w},K} + \sum_{\sigma \in \mathcal{E}_K} F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) - |K| Q_{\mathrm{w},K}^n = 0,$$

Total flux

$$F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) := \rho_{\mathrm{w}}^{\mathrm{l}}(\mathfrak{M}^{\mathrm{l}})_{\sigma}^{n}(\psi^{\mathrm{l}})_{\sigma}^{n} - (\mathrm{j}_{\mathrm{h}}^{\mathrm{l}})_{\sigma}^{n} \quad \sigma \in \mathcal{E}_{K}^{\mathrm{int}} \quad \overline{\sigma} = \overline{K} \cap \overline{L}.$$

$$S_{h,K}^n(\boldsymbol{U}^n) := |K|\partial_t^n I_{h,K} + \sum_{\sigma \in \mathcal{E}_K} F_{h,K,\sigma}(\boldsymbol{U}^n) - |K|Q_{h,K}^n = 0,$$

$$F_{h,K,\sigma}(\textbf{\textit{U}}^n) := \beta^l \chi_\sigma^n(\mathfrak{M}^l)_\sigma^n(\psi^l)_\sigma^n + (\psi^g)_\sigma^n(\mathfrak{M}^g)_\sigma^n(\rho^g)_\sigma^n + (j_h^l)_\sigma^n, \quad \sigma \in \mathcal{E}_K^{int} \quad \overline{\sigma} = \overline{K} \cap \overline{L}$$

$$S_{c,K}^n(\boldsymbol{U}_h^n)=0$$

Discretization of the water equation

000000

$$\mathcal{S}^n_{\mathrm{w},K}(oldsymbol{\mathcal{U}}^n) := |K|\partial_t^n l_{\mathrm{w},K} + \sum_{\sigma \in \mathcal{E}_K} F_{\mathrm{w},K,\sigma}(oldsymbol{\mathcal{U}}^n) - |K|Q_{\mathrm{w},K}^n = 0,$$

Total flux

$$F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) := \rho_{\mathrm{w}}^{\mathrm{l}}(\mathfrak{M}^{\mathrm{l}})_{\sigma}^{n}(\psi^{\mathrm{l}})_{\sigma}^{n} - (\mathrm{j}_{\mathrm{h}}^{\mathrm{l}})_{\sigma}^{n} \quad \sigma \in \mathcal{E}_{K}^{\mathrm{int}} \quad \overline{\sigma} = \overline{K} \cap \overline{L}.$$

Discretization of the hydrogen equation

$$\mathcal{S}_{\mathrm{h},\mathcal{K}}^{n}(\boldsymbol{U}^{n}):=|\mathcal{K}|\partial_{t}^{n}\mathit{I}_{\mathrm{h},\mathcal{K}}+\sum_{\sigma\in\mathcal{E}_{\mathcal{K}}}\mathit{F}_{\mathrm{h},\mathcal{K},\sigma}(\boldsymbol{U}^{n})-|\mathcal{K}|Q_{\mathrm{h},\mathrm{K}}^{n}=0,$$

Total flux

$$\textit{\textbf{F}}_{h,\textit{\textbf{K}},\sigma}(\textit{\textbf{U}}^n) := \beta^l \chi_\sigma^n(\mathfrak{M}^l)_\sigma^n(\psi^l)_\sigma^n + (\psi^g)_\sigma^n(\mathfrak{M}^g)_\sigma^n(\rho^g)_\sigma^n + (j_h^l)_\sigma^n, \quad \sigma \in \mathcal{E}_{\textit{\textbf{K}}}^{int} \quad \overline{\sigma} = \overline{\textit{\textbf{K}}} \cap \overline{\textit{\textbf{L}}}.$$

$$S_{c,K}^n(\boldsymbol{U}_h^n)=0$$

Discretization of the water equation

$$S_{\mathrm{w},K}^n(\boldsymbol{U}^n) := |K| \partial_t^n I_{\mathrm{w},K} + \sum_{\sigma \in \mathcal{E}_K} F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) - |K| Q_{\mathrm{w},K}^n = 0,$$

Total flux

$$\mathcal{F}_{\mathrm{w},\mathcal{K},\sigma}(oldsymbol{\mathcal{U}}^n) :=
ho_{\mathrm{w}}^{\mathrm{l}}(\mathfrak{M}^{\mathrm{l}})_{\sigma}^n(\psi^{\mathrm{l}})_{\sigma}^n - (\mathrm{j}_{\mathrm{h}}^{\mathrm{l}})_{\sigma}^n \quad \sigma \in \mathcal{E}_{\mathcal{K}}^{\mathrm{int}} \quad \overline{\sigma} = \overline{\mathcal{K}} \cap \overline{\mathcal{L}}.$$

Discretization of the hydrogen equation

$$S_{\mathrm{h},K}^n(oldsymbol{\mathcal{U}}^n) := |K| \partial_t^n I_{\mathrm{h},K} + \sum_{\sigma \in \mathcal{E}_K} F_{\mathrm{h},K,\sigma}(oldsymbol{\mathcal{U}}^n) - |K| Q_{\mathrm{h},K}^n = 0,$$

Total flux

$$F_{h,K,\sigma}(\textbf{\textit{U}}^n) := \beta^l \chi_\sigma^n(\mathfrak{M}^l)_\sigma^n(\psi^l)_\sigma^n + (\psi^g)_\sigma^n(\mathfrak{M}^g)_\sigma^n(\rho^g)_\sigma^n + (j_h^l)_\sigma^n, \quad \sigma \in \mathcal{E}_K^{int} \quad \overline{\sigma} = \overline{K} \cap \overline{L}.$$

At each time step, for each components, we obtain the nonlinear system of algebraic equations

$$S_{c,K}^n(\boldsymbol{U}_h^n)=0$$

Discretization of the nonlinear complementarity constraints

$$\mathcal{K}(oldsymbol{U}_K^n) := 1 - S_K^n \quad \mathcal{G}(oldsymbol{U}_K^n) := H(P_K^n + P_{\operatorname{cp}}(S_K^n)) - eta^1 \chi_K^n$$

The discretization reads

Introduction

$$S_{c,K}^n(\mathbf{U}_h^n) = 0$$

 $\mathcal{K}(\mathbf{U}_K^n) \ge 0, \quad \mathcal{G}(\mathbf{U}_K^n) \ge 0, \quad \mathcal{K}(\mathbf{U}_K^n) \cdot \mathcal{G}(\mathbf{U}_K^n) = 0$

Discrete complementarity problem

Discretization of the nonlinear complementarity constraints

$$\mathcal{K}(\boldsymbol{U}_K^n) := 1 - S_K^n \quad \mathcal{G}(\boldsymbol{U}_K^n) := H(P_K^n + P_{\mathrm{cp}}(S_K^n)) - \beta^1 \chi_K^n$$

A posteriori analysis

The discretization reads

Introduction

$$egin{aligned} S_{c,K}^n(oldsymbol{U}_h^n) &= 0 \ \mathcal{K}(oldsymbol{U}_K^n) &\geq 0, \quad \mathcal{G}(oldsymbol{U}_K^n) \geq 0, \quad \mathcal{K}(oldsymbol{U}_K^n) \cdot \mathcal{G}(oldsymbol{U}_K^n) &= 0 \end{aligned}$$

Can we reformulate the complementarity constraints?

Semismoothness

To reformulate the discrete constraints:

Definition (C-function)

$$\forall (\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^{N_{\mathrm{sp}}} imes \mathbb{R}^{N_{\mathrm{sp}}}, \ f(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \geq 0, \ \boldsymbol{b} \geq 0, \ \boldsymbol{a} \cdot \boldsymbol{b} = 0$$

min-function: $min(\mathbf{a}, \mathbf{b}) = 0 \iff \mathbf{a} \ge 0, \ \mathbf{b} \ge 0, \ \mathbf{a} \cdot \mathbf{b} = 0.$

Application: complementarity constraints for the two-phase model

$$\underbrace{1 - S_K^n}_{\mathcal{K}(S_K^n)} \ge 0 \qquad \underbrace{H(P_K^n + P_{\mathrm{cp}}(S_K^n)) - \beta^1 \chi_K^n}_{\mathcal{G}(P_K^n, S_K^n, \chi_K^n)} \ge 0$$

The discretization reads

$$egin{aligned} S_{c,K}^n(oldsymbol{U}_h^n) &= 0 \ \min\left(1-S_K^n, H(P_K^n+P_{ ext{cp}}(S_K^n)) - eta^1\chi_K^n
ight) = 0 \end{aligned}$$

Conclusion

Semismoothness

To reformulate the discrete constraints:

Model problem and its discretization

Definition (C-function)

$$\forall (\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^{N_{sp}} \times \mathbb{R}^{N_{sp}}, \ f(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \geq 0, \ \boldsymbol{b} \geq 0, \ \boldsymbol{a} \cdot \boldsymbol{b} = 0$$

min-function: min $(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} > 0, \ \boldsymbol{b} > 0, \ \boldsymbol{a} \cdot \boldsymbol{b} = 0.$

Application: complementarity constraints for the two-phase model

$$\underbrace{1 - S_K^n}_{\mathcal{K}(S_K^n)} \ge 0 \quad \underbrace{\mathcal{H}(P_K^n + P_{\mathrm{cp}}(S_K^n)) - \beta^l \chi_K^n}_{\mathcal{G}(P_K^n, S_K^n, \chi_K^n)} \ge 0$$

The discretization reads

$$S_{c,K}^n(\mathbf{U}_h^n) = 0$$

 $\min \left(1 - S_K^n, H(P_K^n + P_{cp}(S_K^n)) - \beta^1 \chi_K^n\right) = 0$

To reformulate the discrete constraints:

Definition (C-function)

Introduction

$$\forall (\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^{N_{\mathrm{sp}}} imes \mathbb{R}^{N_{\mathrm{sp}}}, \ f(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \geq 0, \ \boldsymbol{b} \geq 0, \ \boldsymbol{a} \cdot \boldsymbol{b} = 0$$

min-function: min $(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} > 0, \ \boldsymbol{b} > 0, \ \boldsymbol{a} \cdot \boldsymbol{b} = 0.$

Application: complementarity constraints for the two-phase model

$$\underbrace{1 - S_K^n}_{\mathcal{K}(S_K^n)} \ge 0 \quad \underbrace{\mathcal{H}(P_K^n + P_{\mathrm{cp}}(S_K^n)) - \beta^l \chi_K^n}_{\mathcal{G}(P_K^n, S_K^n, \chi_K^n)} \ge 0$$

The discretization reads

$$egin{aligned} S_{c,K}^n(oldsymbol{U}_h^n) &= 0 \ \min\left(1-S_K^n, H(P_K^n+P_{ ext{cp}}(S_K^n)) - eta^{ ext{l}}\chi_K^n
ight) &= 0 \end{aligned}$$

Semismooth Newton linearization: Given an initial guess $U^{n,0} \in \mathbb{R}^{3N_{sp}}$. consider:

$$\mathbb{A}^{n,k-1} U^{n,k} = B^{n,k-1},$$

Inexact Semismooth Newton linearization: We use an iterative algebraic solver at the semismooth Newton step k > 1, starting from an initial guess $U^{n,k,0}$ generating a sequence $(U^{n,k,i})_{i>1}$ satisfying

$$\mathbb{A}^{n,k-1} U^{n,k,i} = B^{n,k-1} - R^{n,k,i}$$

Inexact semismooth Newton method

Semismooth Newton linearization: Given an initial guess $U^{n,0} \in \mathbb{R}^{3N_{sp}}$, consider:

$$\mathbb{A}^{n,k-1} U^{n,k} = B^{n,k-1},$$

Inexact Semismooth Newton linearization: We use an iterative algebraic solver at the semismooth Newton step $k \ge 1$, starting from an initial guess $\boldsymbol{U}^{n,k,0}$ generating a sequence $(\boldsymbol{U}^{n,k,i})_{i\ge 1}$ satisfying

$$\mathbb{A}^{n,k-1} U^{n,k,i} = B^{n,k-1} - R^{n,k,i}$$

Can we estimate the discretization error?

Can we estimate the semismooth linearization error?

Can we estimate the iterative algebraic error?

Outline

Introduction

- A posteriori analysis

Weak solution

$$X := L^2((0, t_F); H^1(\Omega)),$$

$$Y:=H^1((0,t_F);L^2(\Omega)), \quad \widehat{Y}:=H^1((0,t_F);L^\infty(\Omega)),$$

$$Z := \{ v \in L^2((0, t_F); L^\infty(\Omega)), v \ge 0 \text{ on } \Omega \times (0, t_F) \}.$$

$$S^{l} \in \widehat{Y}$$
 1- $S^{l} \in Z$ Ley Ley $P^{l} \in X$ $v^{l} \in X$

$$(\Phi_{\mathbf{w}}, \Phi_{\mathbf{b}}) \in [L^2((0, t_{\mathbf{E}}); \mathbf{H}(\operatorname{div}, \Omega))]^2$$
.

$$\int_{0}^{t_{\mathrm{F}}} \left(\partial_{t} I_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{d}t - \int_{0}^{t_{\mathrm{F}}} \left(\mathbf{\Phi}_{c}, \nabla \varphi\right)_{\Omega}(t) \, \mathrm{d}t = \int_{0}^{t_{\mathrm{F}}} \left(Q_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{d}t \quad \forall \varphi \in X,$$

$$\int_{-\Gamma}^{\Gamma} \left(\lambda - \left(1 - S^{\mathsf{I}}\right), H[P^{\mathsf{I}} + P_{\mathsf{cp}}(S^{\mathsf{I}})] - \beta^{\mathsf{I}} \chi_{\mathsf{h}}^{\mathsf{I}}\right)_{\mathsf{Q}}(t) \, \mathrm{d}t \geq 0 \quad \forall \lambda \in Z$$

$$\|\varphi\|_X^2 := \sum_{n=1}^{N_t} \|\varphi\|_{X_n}^2 \ \mathrm{dt}, \ \|\varphi\|_{X_n} := \int_{I_n} \sum_{K \in \mathcal{T}_h} \|\varphi\|_{X,K}^2 \ \mathrm{dt}, \ \|\varphi\|_{X,K}^2 := \varepsilon h_K^{-2} \left\|\varphi\right\|_K^2 + \left\|\nabla\varphi\right\|_K^2$$

Conclusion

Weak solution

$$X := L^2((0, t_F); H^1(\Omega)),$$

$$Y := H^1((0, t_F); L^2(\Omega)), \quad \widehat{Y} := H^1((0, t_F); L^{\infty}(\Omega)),$$

$$Z := \{ v \in L^2((0, t_F); L^{\infty}(\Omega)), v \ge 0 \text{ on } \Omega \times (0, t_F) \}.$$

Assumption (Weak formulation)

$$S^l \in \widehat{Y}, \quad 1 - S^l \in Z, \quad I_w \in Y, \quad I_h \in Y, \quad P^l \in X, \quad \chi_h^l \in X,$$

$$(\mathbf{\Phi}_{\mathrm{w}},\mathbf{\Phi}_{\mathrm{h}})\in \left[L^{2}((0,t_{\mathrm{F}});\mathbf{H}(\mathrm{div},\Omega))\right]^{2},$$

$$\int_{0}^{t_{\mathrm{F}}} \left(\partial_{t} I_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{d}t - \int_{0}^{t_{\mathrm{F}}} \left(\boldsymbol{\Phi}_{c}, \boldsymbol{\nabla}\varphi\right)_{\Omega}(t) \, \mathrm{d}t = \int_{0}^{t_{\mathrm{F}}} \left(\boldsymbol{Q}_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{d}t \quad \forall \varphi \in \boldsymbol{X},$$

$$\int_{0}^{t_{\mathrm{F}}} \left(\lambda - \left(1 - S^{\mathrm{I}}\right), H[P^{\mathrm{I}} + P_{\mathrm{cp}}(S^{\mathrm{I}})] - \beta^{\mathrm{I}} \chi_{\mathrm{h}}^{\mathrm{I}}\right)_{\Omega}(t) \, \mathrm{d}t \geq 0 \quad \forall \lambda \in Z,$$

the initial condition holds.

$$\left\|\varphi\right\|_{X}^{2}:=\sum_{n=1}^{N_{t}}\left\|\varphi\right\|_{X_{n}}^{2}\,\mathrm{d}t,\ \left\|\varphi\right\|_{X_{n}}:=\int_{I_{n}}\sum_{K\in\mathcal{T}_{h}}\left\|\varphi\right\|_{X,K}^{2}\,\mathrm{d}t,\ \left\|\varphi\right\|_{X,K}^{2}:=\varepsilon h_{K}^{-2}\left\|\varphi\right\|_{K}^{2}+\left\|\nabla\varphi\right\|_{K}^{2}$$

Weak solution

$$X := L^2((0, t_{\rm F}); H^1(\Omega)),$$

$$Y := H^{1}((0, t_{F}); L^{2}(\Omega)), \quad \widehat{Y} := H^{1}((0, t_{F}); L^{\infty}(\Omega)),$$

$$Z := \left\{ v \in L^{2}((0, t_{F}); L^{\infty}(\Omega)), \quad v \geq 0 \text{ on } \Omega \times (0, t_{F}) \right\}.$$

Assumption (Weak formulation)

$$S^l \in \widehat{Y}, \quad 1 - S^l \in Z, \quad I_w \in Y, \quad I_h \in Y, \quad P^l \in X, \quad \chi_h^l \in X,$$

$$(\Phi_{\mathrm{w}},\Phi_{\mathrm{h}})\in \left[L^2((0,t_{\mathrm{F}});\mathsf{H}(\mathrm{div},\Omega))
ight]^2,$$

$$\int_{0}^{t_{\mathrm{F}}} \left(\partial_{t} \mathit{I}_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{d} t - \int_{0}^{t_{\mathrm{F}}} \left(\Phi_{c}, \nabla \varphi\right)_{\Omega}(t) \, \mathrm{d} t = \int_{0}^{t_{\mathrm{F}}} \left(Q_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{d} t \quad \forall \varphi \in X,$$

 $\int_{0}^{4^{t}}\left(\lambda-\left(1-S^{l}\right),H[P^{l}+P_{\mathrm{cp}}(S^{l})]-\beta^{l}\chi_{\mathrm{h}}^{l}\right)_{\Omega}(t)\,\mathrm{d}t\geq0\quad\forall\lambda\in\mathcal{Z},$ the initial condition holds.

$$\|\varphi\|_{X}^{2}:=\sum_{n=1}^{N_{t}}\|\varphi\|_{X_{n}}^{2} \ \mathrm{dt}, \ \|\varphi\|_{X_{n}}:=\int_{I_{n}}\sum_{K\in\mathcal{T}_{k}}\|\varphi\|_{X,K}^{2} \ \mathrm{dt}, \ \|\varphi\|_{X,K}^{2}:=\varepsilon h_{K}^{-2} \ \|\varphi\|_{K}^{2}+\|\boldsymbol{\nabla}\varphi\|_{K}^{2}$$

Approximate solution

$$S_K^{n,k,i} \in \mathbb{P}_0^d(\mathcal{T}_h) \quad P_K^{n,k,i} \in \mathbb{P}_0^d(\mathcal{T}_h) \quad \chi_K^{n,k,i} \in \mathbb{P}_0^d(\mathcal{T}_h)$$

The discrete liquid pressure and discrete molar fraction do not belong to $H^1(\Omega)$ We construct a conforming solution:

Space-time functions:

$$S_{h_{\mathcal{T}}}^{n,k,i} \in Y, \quad P_{h_{\mathcal{T}}}^{n,k,i} \in \mathbb{P}_2^d(\mathcal{T}_h) \not\in X, \quad \chi_{h_{\mathcal{T}}}^{n,k,i} \in \mathbb{P}_2^d(\mathcal{T}_h) \not\in X$$

$$\tilde{P}_{h\tau}^{n,k,i} \in \mathbb{P}_2^{c}(\mathcal{T}_h) \in X,
\tilde{\chi}_{h\tau}^{n,k,i} \in \mathbb{P}_2^{c}(\mathcal{T}_h) \in X.$$

Dual norm of the residual for the components

$$\left\|\mathcal{R}_{c}(S_{h\tau}^{n,k,i},P_{h\tau}^{n,k,i},\chi_{h\tau}^{n,k,i})\right\|_{X_{h}'}:=\sup_{\substack{\varphi\in X_{n}\\\|\varphi\|_{V}=1}}\int_{I_{n}}\left(Q_{c}-\partial_{t}I_{c,h\tau}^{n,k,i},\varphi\right)_{\Omega}(t)+\left(\Phi_{c,h\tau}^{n,k,i},\nabla\varphi\right)_{\Omega}(t)\,\mathrm{d}t$$

$$\mathcal{R}_{e}(S_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i}, \chi_{h\tau}^{n,k,i}) := \int_{I} \left(1 - S_{h\tau}^{n,k,i}, H\left[P_{h\tau}^{n,k,i} + P_{cp}(S_{h\tau}^{n,k,i})\right] - \beta^{l} \chi_{h\tau}^{n,k,i} \right)_{\Omega}(t) dt$$

$$\mathcal{N}_{P}(P_{h_{T}}^{n,k,i}) := \inf_{\delta_{1} \in X_{n}} \left\{ \sum_{c \in \{n,k\}} \int_{I_{n}} \left\| \underline{\mathbf{K}} \frac{k_{r}^{l}(S_{h_{T}}^{n,k,i})}{\mu^{l}} \rho_{c}^{l} \nabla \left(P_{h_{T}}^{n,k,i} - \delta_{l}\right)(t) \right\|^{2} dt \right\}^{\frac{1}{2}}$$

$$\mathcal{N}_{\chi}(\chi_{h\tau}^{n,k,i}) := \inf_{\theta \in X_n} \left\{ \int_{I_n} \left\| -\phi M_h S_{h\tau}^{n,k,i} \left(\frac{\rho_{\mathrm{w}}^1}{M_{\mathrm{w}}} + \frac{\beta^1}{M_h} \chi_{h\tau}^{n,k,i} \right) D_h^1 \nabla \left(\chi_{h\tau}^{n,k,i} - \theta \right) (t) \right\|^2 dt \right\}^{\frac{1}{2}}$$

Dual norm of the residual for the components

$$\left\|\mathcal{R}_{c}(S_{h au}^{n,k,i},P_{h au}^{n,k,i},\chi_{h au}^{n,k,i})
ight\|_{\mathcal{X}_{h}'}:=\sup_{\substack{arphi\in\mathcal{X}_{n}\ \|arphi\|_{\mathbf{V}}=1}}\int_{I_{n}}\left(Q_{c}-\partial_{t}I_{c,h au}^{n,k,i},arphi
ight)_{\Omega}(t)+\left(\Phi_{c,h au}^{n,k,i},ar{\mathbf{
abla}}arphi
ight)_{\Omega}(t)\,\mathrm{d}t$$

Residual for the constraints

$$\mathcal{R}_{e}(S_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i}, \chi_{h\tau}^{n,k,i}) := \int_{I_{e}} \left(1 - S_{h\tau}^{n,k,i}, H\left[P_{h\tau}^{n,k,i} + P_{cp}(S_{h\tau}^{n,k,i})\right] - \beta^{l} \chi_{h\tau}^{n,k,i}\right)_{\Omega}(t) dt$$

$$\mathcal{N}_{P}(P_{h\tau}^{n,k,i}) := \inf_{\delta_{1} \in \mathcal{X}_{n}} \left\{ \sum_{c \in \{n,k\}} \int_{I_{n}} \left\| \underline{\mathbf{K}} \frac{k_{\mathrm{r}}^{\mathrm{l}}(S_{h\tau}^{n,k,i})}{\mu^{\mathrm{l}}} \rho_{c}^{\mathrm{l}} \nabla \left(P_{h\tau}^{n,k,i} - \delta_{\mathrm{l}}\right)(t) \right\|^{2} dt \right\}^{\frac{1}{2}}$$

$$\mathcal{N}_{\chi}(\chi_{h\tau}^{n,k,i}) := \inf_{\theta \in X_n} \left\{ \int_{I_n} \left\| -\phi M_{\mathrm{h}} S_{h\tau}^{n,k,i} \left(\frac{\rho_{\mathrm{w}}^1}{M_{\mathrm{w}}} + \frac{\beta^1}{M_{\mathrm{h}}} \chi_{h\tau}^{n,k,i} \right) D_{\mathrm{h}}^1 \nabla \left(\chi_{h\tau}^{n,k,i} - \theta \right) (t) \right\|^2 \right. \mathrm{d}t \right\}^{\frac{1}{2}}$$

Dual norm of the residual for the components

$$\left\|\mathcal{R}_c(S_{h au}^{n,k,i},P_{h au}^{n,k,i},\chi_{h au}^{n,k,i})
ight\|_{X_h'}:=\sup_{\substack{arphi\in X_n\ \|arphi\|_{\mathbf{x}_c}=1}}\int_{I_n}\left(Q_c-\partial_t I_{c,h au}^{n,k,i},arphi
ight)_{\Omega}(t)+\left(\Phi_{c,h au}^{n,k,i},
ablaarphi
ight)_{\Omega}(t)\,\mathrm{d}t$$

Residual for the constraints

$$\mathcal{R}_{e}(S_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i}, \chi_{h\tau}^{n,k,i}) := \int_{I_{n}} \left(1 - S_{h\tau}^{n,k,i}, H\left[P_{h\tau}^{n,k,i} + P_{cp}(S_{h\tau}^{n,k,i})\right] - \beta^{l} \chi_{h\tau}^{n,k,i} \right)_{\Omega}(t) dt$$

Error measure for the nonconformity of the pressure

$$\mathcal{N}_{P}(P_{h\tau}^{n,k,i}) := \inf_{\delta_{l} \in \mathcal{X}_{n}} \left\{ \sum_{C \in \{\mathbf{y},\mathbf{h}\}} \int_{I_{n}} \left\| \underline{\mathbf{K}} \frac{k_{\mathbf{r}}^{l}(S_{h\tau}^{n,k,i})}{\mu^{l}} \rho_{c}^{l} \nabla \left(P_{h\tau}^{n,k,i} - \delta_{l}\right)(t) \right\|^{2} dt \right\}^{\frac{1}{2}}$$

$$\mathcal{N}_{\chi}(\chi_{h\tau}^{n,k,i}) := \inf_{\theta \in X_n} \left\{ \int_{I_n} \left\| -\phi M_h \mathcal{S}_{h\tau}^{n,k,i} \left(\frac{\rho_{\mathrm{w}}^l}{M_{\mathrm{w}}} + \frac{\beta^l}{M_h} \chi_{h\tau}^{n,k,i} \right) D_h^l \nabla \left(\chi_{h\tau}^{n,k,i} - \theta \right) (t) \right\|^2 dt \right\}^{\frac{1}{2}}$$

Dual norm of the residual for the components

$$\left\|\mathcal{R}_{c}(S_{h\tau}^{n,k,i},P_{h\tau}^{n,k,i},\chi_{h\tau}^{n,k,i})\right\|_{X_{h}'}:=\sup_{\substack{\varphi\in X_{n}\\\|\varphi\|_{c}=1}}\int_{I_{n}}\left(Q_{c}-\partial_{t}I_{c,h\tau}^{n,k,i},\varphi\right)_{\Omega}(t)+\left(\Phi_{c,h\tau}^{n,k,i},\nabla\varphi\right)_{\Omega}(t)\,\mathrm{d}t$$

Residual for the constraints

$\mathcal{R}_{\mathrm{e}}(S_{h\tau}^{n,k,i},P_{h\tau}^{n,k,i},\chi_{h\tau}^{n,k,i}) := \int_{I} \left(1 - S_{h\tau}^{n,k,i},H\left[P_{h\tau}^{n,k,i} + P_{\mathrm{cp}}(S_{h\tau}^{n,k,i})\right] - \beta^{\mathrm{l}}\chi_{h\tau}^{n,k,i}\right)_{\Omega}(t) \,\mathrm{d}t$ Error measure for the nonconformity of the pressure

$$\mathcal{N}_{P}(P_{h\tau}^{n,k,i}) := \inf_{\delta_{l} \in \mathcal{X}_{n}} \left\{ \sum_{c \in \{\mathbf{w},\mathbf{h}\}} \int_{I_{n}} \left\| \underline{\mathbf{K}} \frac{k_{l}^{l}(S_{h\tau}^{n,k,i})}{\mu^{l}} \rho_{c}^{l} \nabla \left(P_{h\tau}^{n,k,i} - \delta_{l}\right)(t) \right\|^{2} dt \right\}^{\frac{1}{2}}$$

 $\mathcal{N}_{\chi}(\chi_{h\tau}^{n,k,i}) := \inf_{\theta \in \mathcal{X}_n} \left\{ \int_{I_n} \left\| -\phi M_{h} S_{h\tau}^{n,k,i} \left(\frac{\rho_{\mathrm{w}}^{\mathrm{l}}}{M_{\mathrm{w}}} + \frac{\beta^{\mathrm{l}}}{M_{h}} \chi_{h\tau}^{n,k,i} \right) D_{\mathrm{h}}^{\mathrm{l}} \nabla \left(\chi_{h\tau}^{n,k,i} - \theta \right) (t) \right\|^{2} dt \right\}^{\frac{1}{2}}$

$$\mathcal{N}^{n,k,i} := \left\{ \sum_{c \in \mathcal{C}} \left\| \mathcal{R}_c(S_{h_\tau}^{n,k,i}, P_{h_\tau}^{n,k,i}, \chi_{h_\tau}^{n,k,i}) \right\|_{X_n'}^2 \right\}^{\frac{1}{2}} + \left\{ \sum_{\rho \in \mathcal{P}} \mathcal{N}_\rho^2 + \mathcal{N}_\chi^2 \right\}^{\frac{1}{2}} + \mathcal{R}_e(S_{h_\tau}^{n,k,i}, P_{h_\tau}^{n,k,i}, \chi_{h_\tau}^{n,k,i})$$

Theorem

Introduction

$$\mathcal{N}^{n,k,i} \leq \eta_{\mathrm{disc}}^{n,k,i} + \eta_{\mathrm{lin}}^{n,k,i} + \eta_{\mathrm{alg}}^{n,k,i}$$

How do we construct each error estimators?

Component flux reconstructions

The finite volume scheme provides

$$|K|\partial_t^n I_{c,K} + \sum_{\sigma \in \mathcal{E}_K} F_{c,K,\sigma}(\boldsymbol{U}^n) = |K|Q_{c,K}^n$$

Inexact semismooth linearization

$$\frac{|\mathcal{K}|}{\Delta t} \left[I_{c,\mathcal{K}} \left(\boldsymbol{U}^{n,k-1} \right) - I_{c,\mathcal{K}}^{n-1} + \mathcal{L}_{c,\mathcal{K}}^{n,k,i} \right] + \sum_{\sigma \in \mathcal{E}_{iit}^{int}} \mathcal{F}_{c,\mathcal{K},\sigma}^{n,k,i} - |\mathcal{K}| Q_{c,\mathcal{K}}^{n} + \boldsymbol{R}_{c,\mathcal{K}}^{n,k,i} = 0$$

Linear perturbation in the accumulation

$$\mathcal{L}_{c,K}^{n,k,i} := \sum_{K' \in \mathcal{T}_c} \frac{|K|}{\Delta t} \frac{\partial I_{c,K}^n}{\partial \boldsymbol{U}_{K'}^n} (\boldsymbol{U}_{K'}^{n,k-1}) \left[\boldsymbol{U}_{K'}^{n,k,i} - \boldsymbol{U}_{K'}^{n,k-1} \right]$$

Linearized component flux

$$\mathcal{F}_{c,K,\sigma}^{n,k,i} := \sum_{K' \in \mathcal{T}} \frac{\partial F_{c,K,\sigma}}{\partial \boldsymbol{U}_{K'}^{n}} \left(\boldsymbol{U}^{n,k-1}\right) \left[\boldsymbol{U}_{K'}^{n,k,i} - \boldsymbol{U}_{K'}^{n,k-1}\right] + F_{c,K,\sigma} \left(\boldsymbol{U}^{n,k-1}\right)$$

$$\left(\Theta_{c,h,\mathrm{disc}}^{n,k,i}\cdot\boldsymbol{n}_{K},1\right)_{\sigma}:=F_{c,K,\sigma}\left(\boldsymbol{U}^{n,k,i}\right)\quad\forall K\in\mathcal{T}_{h}$$

A posteriori analysis

000000000

Linearization error flux reconstruction:

$$\left(\boldsymbol{\Theta}_{c,h,\mathrm{lin}}^{n,k,i}\cdot\boldsymbol{n}_{K},1\right)_{\sigma}:=\mathcal{F}_{c,K,\sigma}^{n,k,i}-F_{c,K,\sigma}\left(\boldsymbol{U}^{n,k,i}\right)\quad\forall K\in\mathcal{T}_{h}$$

Algebraic error flux reconstruction:

$$\Theta_{c,h,\mathrm{alg}}^{\textit{n,k,i},\nu} := \Theta_{c,h,\mathrm{disc}}^{\textit{n,k,i}+\nu} + \Theta_{c,h,\mathrm{lin}}^{\textit{n,k,i}+\nu} - \left(\Theta_{c,h,\mathrm{disc}}^{\textit{n,k,i}} + \Theta_{c,h,\mathrm{lin}}^{\textit{n,k,i}}\right) \quad \forall \textit{K} \in \mathcal{T}_{\textit{h}}$$

Total flux reconstruction:

Introduction

$$\Theta_{c,h}^{n,k,i,\nu} := \Theta_{c,h,\mathrm{disc}}^{n,k,i} + \Theta_{c,h,\mathrm{lin}}^{n,k,i} + \Theta_{c,h,\mathrm{alg}}^{n,k,i,\nu} \in \mathbf{H}(\mathrm{div},\Omega)$$

Conclusion

Error estimators

$$\bullet \ \partial_t I_c + \nabla \cdot \Theta_{c,h}^{n,k,i,\nu} \neq Q_c \quad \Theta_{c,h}^{n,k,i,\nu} \neq \Phi_{c,h\tau}^{n,k,i}(t^n)$$

$$\bullet \ 1 - S_{h\tau}^{n,k,i} \ngeq 0 \quad H \left[P_{h\tau}^{n,k,i} + P_{cp} \left(S_{h\tau}^{n,k,i} \right) \right] - \beta^{l} \chi_{h\tau}^{n,k,i} \ngeq 0$$

•
$$P_{h\tau}^{n,k,i} \notin X$$
 $\chi_{h\tau}^{n,k,i} \notin X$

$$\eta_{\mathrm{R},K,c}^{n,k,i,\nu} := \min \left\{ C_{\mathrm{PW}}, \varepsilon^{-\frac{1}{2}} \right\} h_K \left\| Q_{c,h}^n - \frac{l_{c,K}(\boldsymbol{U}^{n,k-1}) - l_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i}}{\tau_n} - \boldsymbol{\nabla} \cdot \boldsymbol{\Theta}_{c,h}^{n,k,i} \right\|_K$$

$$\eta_{\mathrm{F},K,c}^{n,k,i,\nu}(t) := \left\| \Theta_{c,h}^{n,k,i,\nu} - \Phi_{c,h\tau}^{n,k,i}(t) \right\|_{K}$$

$$\eta_{P,K,pos}^{n,k,i}(t) := \left(\left\{ 1 - S_{h_{\tau}}^{n,k,i} \right\}^{+}, \left\{ H \left[P_{h_{\tau}}^{n,k,i} + P_{cp} \left(S_{h_{\tau}}^{n,k,i} \right) \right] - \beta^{1} \chi_{h_{\tau}}^{n,k,i} \right\}^{+} \right)_{K}(t)$$

$$\eta_{\text{NC},K,l,c}^{n,k,i}(t) := \left\| \underline{\mathbf{K}} \frac{\mathbf{K}_{\text{r}}^{\text{l}}(S_{h\tau}^{n,k,i})}{\mu^{\text{l}}} \rho_{c}^{\text{l}} \nabla \left(P_{h\tau}^{n,k,i} - \tilde{P}_{h\tau}^{n,k,i} \right) (t) \right\|_{K}$$

$$\eta_{\mathrm{NC},K,\chi}^{n,k,i}(t) := \left\| -\phi \mathit{M}_{\mathrm{h}} \mathcal{S}_{\mathit{h}\tau}^{n,k,i} \left(\frac{\rho_{\mathrm{w}}^{\mathrm{l}}}{\mathit{M}_{\mathrm{w}}} + \frac{\beta^{\mathrm{l}}}{\mathit{M}_{\mathrm{h}}} \chi_{\mathit{h}\tau}^{n,k,i} \right) \mathit{D}_{\mathrm{h}}^{\mathrm{l}} \nabla \left(\chi_{\mathit{h}\tau}^{n,k,i} - \tilde{\chi}_{\mathit{h}\tau}^{n,k,i} \right) (t) \right\|_{\mathit{K}}$$

•
$$\partial_t I_c + \nabla \cdot \Theta_{c,h}^{n,k,i,\nu} \neq Q_c$$
 $\Theta_{c,h}^{n,k,i,\nu} \neq \Phi_{c,h\tau}^{n,k,i}(t^n)$

• 1 -
$$S_{h\tau}^{n,k,i} \ngeq 0$$
 $H\left[P_{h\tau}^{n,k,i} + P_{cp}\left(S_{h\tau}^{n,k,i}\right)\right] - \beta^{l}\chi_{h\tau}^{n,k,i} \ngeq 0$

• $P_{h_{-}}^{n,k,i} \notin X$ $\chi_{h_{-}}^{n,k,i} \notin X$

Discretization estimator

$$\eta_{\mathrm{R},K,c}^{n,k,i,\nu} := \min \left\{ C_{\mathrm{PW}}, \varepsilon^{-\frac{1}{2}} \right\} h_{K} \left\| Q_{c,h}^{n} - \frac{I_{c,K}(\boldsymbol{U}^{n,k-1}) - I_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i}}{\tau_{n}} - \nabla \cdot \Theta_{c,h}^{n,k,i} \right\|_{K}$$

$$\eta_{\mathsf{F},\mathsf{K},\mathsf{c}}^{\mathsf{n},\mathsf{k},\mathsf{i},\boldsymbol{\nu}}(t) := \left\| \Theta_{\mathsf{c},\mathsf{h}}^{\mathsf{n},\mathsf{k},\mathsf{i},\boldsymbol{\nu}} - \Phi_{\mathsf{c},\mathsf{h}\tau}^{\mathsf{n},\mathsf{k},\mathsf{i}}(t) \right\|_{\mathsf{K}}$$

$$\eta_{P,K,pos}^{n,k,i}(t) := \left(\left\{1 - S_{h\tau}^{n,k,i}\right\}^+, \left\{H\left[P_{h\tau}^{n,k,i} + P_{cp}\left(S_{h\tau}^{n,k,i}\right)\right] - \beta^l \chi_{h\tau}^{n,k,i}\right\}^+\right)_K(t)$$

$$\eta_{ ext{NC},\mathcal{K}, ext{l},c}^{ ext{n,k,i}}(t) := \left\| \underline{\mathbf{K}} \frac{k_{ ext{r}}^{ ext{l}}(S_{ ext{h} au}^{ ext{n,k,i}})}{\mu^{ ext{l}}}
ho_{c}^{ ext{l}} \mathbf{
abla} \left(P_{ ext{h} au}^{ ext{n,k,i}} - \tilde{P}_{ ext{h} au}^{ ext{n,k,i}}
ight)(t)
ight\|_{\mathbf{K}}$$

$$\eta_{\text{NC},K,\chi}^{n,k,i}(t) := \left\| -\phi M_{\text{h}} S_{h\tau}^{n,k,i} \left(\frac{\rho_{\text{w}}^{\text{l}}}{M_{\text{w}}} + \frac{\beta^{\text{l}}}{M_{\text{h}}} \chi_{h\tau}^{n,k,i} \right) D_{\text{h}}^{\text{l}} \nabla \left(\chi_{h\tau}^{n,k,i} - \tilde{\chi}_{h\tau}^{n,k,i} \right) (t) \right\|_{K}$$

Linearization estimator

$$\eta_{\text{lin},K,c}^{n,k,i} := \left\| \boldsymbol{\Theta}_{c,h,\text{lin}}^{n,k,i} \right\|_{K}
\eta_{\text{NA},K,c}^{n,k,i} := \varepsilon^{-\frac{1}{2}} h_{K} (\tau_{n})^{-1} \left\| I_{c,K} (\boldsymbol{U}^{n,k,i}) - I_{c,K} (\boldsymbol{U}^{n,k-1}) - \mathcal{L}_{c,K}^{n,k,i} \right\|_{K}
\eta_{P,K,\text{neg}}^{n,k,i}(t) := \left(\left\{ 1 - S_{h\tau}^{n,k,i} \right\}^{-}, \left\{ H \left[P_{h\tau}^{n,k,i} + P_{\text{cp}} \left(S_{h\tau}^{n,k,i} \right) \right] - \beta^{1} \chi_{h\tau}^{n,k,i} \right\}^{-} \right)_{K} (t)$$

Algebraic estimator

$$\eta_{\text{alg},K,c}^{n,k,i} := \left\| \Theta_{c,h,\text{alg}}^{n,k,i,\nu} \right\|_{K}
\eta_{\text{rem},K,c}^{n,k,i,\nu} := h_{K}|K|^{-1}\varepsilon^{-\frac{1}{2}} \left\| \mathbf{R}_{c,K}^{n,k,i+\nu} \right\|_{K}$$

Remark

$$\eta_{\text{lin}}^{n,k,i} o 0$$
 $\eta_{\text{alg}}^{n,k,i} o 0$ when $k,i o \infty$

Linearization estimator

$$\eta_{\text{lin},K,c}^{n,k,i} := \left\| \boldsymbol{\Theta}_{c,h,\text{lin}}^{n,k,i} \right\|_{K}
\eta_{\text{NA},K,c}^{n,k,i} := \varepsilon^{-\frac{1}{2}} h_{K} (\tau_{n})^{-1} \left\| I_{c,K} (\boldsymbol{U}^{n,k,i}) - I_{c,K} (\boldsymbol{U}^{n,k-1}) - \mathcal{L}_{c,K}^{n,k,i} \right\|_{K}
\eta_{P,K,\text{neg}}^{n,k,i}(t) := \left(\left\{ 1 - S_{h\tau}^{n,k,i} \right\}^{-}, \left\{ H \left[P_{h\tau}^{n,k,i} + P_{\text{cp}} \left(S_{h\tau}^{n,k,i} \right) \right] - \beta^{l} \chi_{h\tau}^{n,k,i} \right\}^{-} \right)_{K} (t)$$

Algebraic estimator

$$\eta_{\text{alg},K,c}^{n,k,i} := \left\| \Theta_{c,n,\text{alg}}^{n,k,i,\nu} \right\|_{K}
\eta_{\text{rem},K,c}^{n,k,i,\nu} := h_{K}|K|^{-1} \varepsilon^{-\frac{1}{2}} \left\| \mathbf{R}_{c,K}^{n,k,i+\nu} \right\|_{K}$$

Remark

$$\eta_{\text{lin}}^{n,k,i} \to 0$$
 $\eta_{\text{alg}}^{n,k,i} \to 0$ when $k,i \to \infty$

Linearization estimator

$$\eta_{\text{lin},K,c}^{n,k,i} := \left\| \boldsymbol{\Theta}_{c,h,\text{lin}}^{n,k,i} \right\|_{K}
\eta_{\text{NA},K,c}^{n,k,i} := \varepsilon^{-\frac{1}{2}} h_{K} (\tau_{n})^{-1} \left\| l_{c,K}(\boldsymbol{U}^{n,k,i}) - l_{c,K}(\boldsymbol{U}^{n,k-1}) - \mathcal{L}_{c,K}^{n,k,i} \right\|_{K}
\eta_{P,K,\text{neg}}^{n,k,i}(t) := \left(\left\{ 1 - S_{h\tau}^{n,k,i} \right\}^{-}, \left\{ H \left[P_{h\tau}^{n,k,i} + P_{\text{cp}} \left(S_{h\tau}^{n,k,i} \right) \right] - \beta^{l} \chi_{h\tau}^{n,k,i} \right\}^{-} \right)_{K}(t)$$

Algebraic estimator

$$\eta_{\text{alg},K,c}^{n,k,i} := \left\| \Theta_{c,h,\text{alg}}^{n,k,i,\nu} \right\|_{K}
\eta_{\text{rem},K,c}^{n,k,i,\nu} := h_{K}|K|^{-1} \varepsilon^{-\frac{1}{2}} \left\| \mathbf{R}_{c,K}^{n,k,i+\nu} \right\|_{K}$$

Remark

$$\eta_{\mathrm{lin}}^{n,k,i} o 0 \quad \eta_{\mathrm{alg}}^{n,k,i} o 0 \quad \text{when} \quad k,i o \infty$$

Adaptivity

Algorithm 1 Adaptive inexact semismooth Newton algorithm

```
Choose an initial vector \boldsymbol{U}^{n,0}
Initialization (semismooth Newton):
U^{n-1} \in \mathbb{R}^{3N_{\rm sp}}, (k = 0)
Do
  k = k + 1
  Compute \mathbb{A}^{n,k-1} \in \mathbb{R}^{3N_{sp},3N_{sp}}. \mathbf{B}^{n,k-1} \in \mathbb{R}^{3N_{sp}}
  Consider the system of linear algebraic equations \mathbb{A}^{n,k-1} \mathbf{U}^{n,k} = \mathbf{B}^{n,k-1}
  Initialization (linear solver): Define U^{n,k,0} = U^{n,k-1}, (i = 0) as
   initial guess for the linear solver
   Do
      i = i + 1
      Compute Residual: \mathbf{R}^{n,k,i} = \mathbf{B}^{n,k-1} - \mathbb{A}^{n,k-1} \mathbf{U}^{n,k,i}
      Compute estimators
```

While $\left| \eta_{\mathrm{alg}}^{n,k,i} \geq \gamma_{\mathrm{alg}} \max \left\{ \eta_{\mathrm{disc}}^{n,k,i}, \eta_{\mathrm{lin}}^{n,k,i} \right\} \right|$

While $\eta_{\rm lin}^{\it n,k,i} \geq \gamma_{\rm lin} \eta_{\rm disc}^{\it n,k,i}$ End

Outline

Introduction

- Introduction
- 2 Model problem and its discretization
- A posteriori analysis
- Numerical experiments
- Conclusion

Numerical experiments

Introduction

 Ω : one-dimensional core with length L = 200m.

Semismooth solver: Newton-min

Iterative algebraic solver: GMRES.

Time step: $\Delta t = 5000$ years,

Number of cells: $N_{\rm sp} = 1000$,

Final simulation time: $t_F = 5 \times 10^5$ years.

Gas injection

Liquid

Numerical solution $t = 1.05 \times 10^5$ years

Violation of the complementarity constraints

Numerical experiments 0000000

Phase transition estimator

Remark

This estimator detects the error caused by the appearance of the gas phase whenever the gas spreads throughout the domain.

Overall performance $\gamma_{ m lin} = \gamma_{ m alg} = 10^{-3}$

Accuracy $\gamma_{\rm lin} = \gamma_{\rm alg} = 10^{-3}$

$$t = 1.05 \times 10^5 \text{ years}$$

$$t = 3.5 \times 10^{5} \text{ years}$$

Complements: Newton-Fischer-Burmeister

$$[f_{FB}(\boldsymbol{a}, \boldsymbol{b})]_I = \sqrt{\boldsymbol{a}_I^2 + \boldsymbol{b}_I^2} - (\boldsymbol{a}_I + \boldsymbol{b}_I) \quad I = 1, \dots, N_{sp}.$$

$(\gamma_{ m alg},\gamma_{ m lin})$	Cumulated number of Newton–Fischer–Burmeister iterations	Cumulated number of GMRES iterations
$(10^{-1}, 10^{-1})$	100	428
$ \begin{array}{c} (10^{-1}, 10^{-1}) \\ (10^{-3}, 10^{-3}) \\ (10^{-3}, 10^{-6}) \\ (10^{-6}, 10^{-3}) \end{array} $	119	751
$(10^{-3}, 10^{-6})$	482	2074
$(10^{-6}, 10^{-3})$	117	1694
Exact resolution	757	10089

- Adaptive inexact Newton–Fischer–Burmeister is faster than exact Newton-Fischer-Burmeister. It saves roughly 90% of the iterations
- Adaptive inexact Newton-min is faster than Adaptive inexact Newton–Fischer–Burmeister. It saves roughly 40% of the iterations.

Outline

Introduction

- Introduction
- 2 Model problem and its discretization
- A posteriori analysis
- Mumerical experiments
- Conclusion

Conclusion

- We devised for a two-phase flow problem with phase appearance and disappearance an a posteriori error estimate between the exact and approximate solution
- We treat a wide class of semismooth Newton methods
- This estimate distinguishes the error components

Ongoing work:

- Devise space-time adaptivity
- extension to multiphase compositional flow with several phase transitions

I. BEN GHARBIA, J. DABAGHI, V. MARTIN, AND M. VOHRALÍK, A posteriori error estimates and adaptive stopping criteria for a compositional two-phase flow with nonlinear complementarity constraints. HAL Preprint 01919067, submitted for publication, 2018

Thank you for your attention!

