Infant growth trajectories and dyslipidemia in adolescence

Ann Von Holle

Department of Epidemiology

January 16, 2017

2 Specific Aims

3 Approach

4 Strengths and Limitations

5 Public Health Implications

CVD and lipids

- \square CVD is a chronic disease
- \square Primary modifiable risk factors
- ☐ lipid description

Developmental Origins of Health and Disease

Significance and Innovation

☐ Repeated animal and human studies have shown that postnatal growth is associated with the later development of adverse cardiovascular risk factors like low HDL-C levels.

	Author	Year published	Direction of growth with increase in HDL-C	2+ observations in change measure	Non- European sample?
1	Corvalan	2009	+		✓
2	Ekelund	2007	+		
3	Howe	2010	-		
4	Kajantie	2008	+		
5	Leunissen	2009	_		
6	Oostvogels	2014	-		
7	Tzoulaki	2010	+	✓	

Postnatal growth as an environmental cue

☐ Find a good figure demonstrating growth as an environmental cue.

Aims

Overall: - Investigate the association between postnatal growth trajectories and lipids in adolescence - Contemporary Chilean birth cohort with monthly measures of weight in the first year of life - High quality clinical measures of cardiovascular disease risk factors.

☐ Will investigate postnatal growth trajectories for weight-for-length, weight and length outcome measures.

Specific Aims

0000

Significance and Innovation

What do growth trajectories look like for infants from 0 to 12 months and what are some significant predictors?

Aim 1 Characterize individual growth trajectories in the first year of life and replicate predictors of growth using external validation with an independent sample.

We expect to replicate previous findings¹ indicating a positive association between:

- 1. Maternal characteristics such as pre-pregnancy BMI, height and age with trajectory size.
- 2. Maternal education and trajectory velocity.

¹Pizzi C: Cole TJ: Richiardi L; dos-Santos-Silva I; Corvalan C; De Stavola B. Prenatal Influences on Size; Velocity and Tempo of Infant Growth: Findings from Three Contemporary Cohorts. PLoS ONE. 2014 Feb 27;9(2):e90291...

Aim 2

Are there any specific types of postnatal growth trajectories associated with dyslipidemia?

Aim 2 Examine the association between postnatal growth trajectories and HDL-C levels.

Based on prior evidence we expect

- 1. Infants with steeper growth trajectories to associate with adverse HDL-C levels in adolescence.
- 2. Males will show a stronger association between size, tempo and velocity measures than females.

Aim 3

SITAR method

Latent growth mixture models (LGMM)

Strengths and Limitation

- ☐ Strengths
- ☐ Limitations

Implications

- ☐ Point 1
- ☐ Point 2