

TEORÍA DE ALGORITMOS (75.29) Curso Buchwald - Genender

Trabajo Práctico 3

Fecha de entrega: 24/11/2023

• Gauler, Ian Benjamin, Padrón: 109437

■ Jauregui, Melina Belén, Padrón: 109524

■ Tourne Passarino, Patricio, Padrón: 108725

Índice

1. Introducción

El propósito de este informe radica en llevar a cabo un análisis de los distintos enfoques y diseños aplicados para abordar la problemática presentada por Scaloni. Este desafío se centra en la determinación del conjunto mínimo de jugadores, denotado como C, requerido para satisfacer las demandas de cada medio, asegurando al menos la presencia de un jugador favorito por cada uno. Es importante destacar que este problema se enmarca como un caso específico del 'Hitting Set Problem'. En consecuencia, a lo largo de este informe, se realizará una análisis de múltiples soluciones con el fin de resolver este último.

1.1. Información de la problemática

El enunciado propuesto, nos da la siguiente información:

- Scaloni tiene a su disposición el conjunto A de n=43 jugadores a_1, a_2, \ldots, a_{43} .
- Existen m medios, cada uno con un grupo de jugadores favorito B_1, B_2, \ldots, B_m , $(B_i \subseteq A \forall i)$
- Se quiere el subconjunto $C \subseteq A$ de menor tamaño tal que C tenga al menos un elemento de cada B_i (es decir, $C \cap B_i \neq \emptyset \forall i$).

2. Análisis de la complejidad del problema

El problema planteado por Scaloni es un caso específico del problema del Hitting-Set, cuya definición formal se presenta de la siguiente manera: dado un conjunto A compuesto por n elementos y m subconjuntos B_1, B_2, \ldots, B_m pertenecientes a A ($B_i \subseteq A \forall i \in \mathbb{N}_m$), se busca encontrar un conjunto $C \subseteq A$ tal que para cada subconjunto B_j , donde $B_j \subseteq A \forall j \in \mathbb{N}_m, C \cap B_j \neq \emptyset$.

Además de su formulación básica, el problema del Hitting-Set también presenta una versión de decisión: dada la colección de un conjunto A con n elementos y m subconjuntos B_1, B_2, \ldots, B_m ($B_i \subseteq A$ para todo i), junto con un parámetro numérico k, se plantea el interrogante sobre la existencia de un conjunto $C \subseteq A$ que cumpla con dos condiciones fundamentales:

- En primer lugar, que la cardinalidad de C sea menor o igual a k ($|C| \le k$)
- En segundo lugar, que para cada subconjunto B_j , la intersección entre C y B_j no sea vacía $(C \cap B_i \neq \emptyset)$ para todo j perteneciente al conjunto de números naturales hasta m.

Para realizar esta verificación, se llevan a cabo dos operaciones que definen la complejidad del proceso. La primera, relacionada con la verificación de la cardinalidad de C ($|C| \leq k$), tiene una complejidad constante O(1), ya que implica simplemente obtener el número de elementos en C y verificar que $|C| \leq k$. La segunda operación, que implica verificar la inclusión de al menos un elemento de C en cada conjunto B_j , presenta una complejidad de $O(n \times m)$. Esto se debe a que para cada conjunto B_j ($j \in \mathbb{N}_m$) (operación O(m)), se debe recorrer, en el peor de los casos, todo el conjunto C (O(n)) para verificar la pertenencia de al menos un elemento de este en B_j (operación con complejidad O(1) si tanto B_j como C se implementan como un 'set').

De esta manera, el problema del Hitting-Set se sitúa en la clase de complejidad NP debido a su capacidad de verificación en tiempo polinomial.

3. Hitting-Set Problem: Un Problema NP-Completo

La clasificación problema del Hitting-Set como NP-Completo se establece mediante la reducción polinómica de otros problemas ya catalogados como NP-Completo a este. En nuestro análisis, nos hemos propuesto abordar esta demostración de dos maneras diferentes:

- Reducción de Vertex Cover a Dominating-Set Problem → Reducción de Dominating-Set Problem a Hitting-Set Problem.
- Reducción de Set Cover a Hitting-Set Problem.

Es importante destacar que la pertenencia de Vertex Cover y Set Cover a NP-Completo fue demostrada en clases anteriores.

- Vertex Cover https://youtu.be/i8qhWUMC50U?t=5100
- Set Cover https://youtu.be/ZvXVKWyBryg?t=8707

3.1. Reducción Vertex Cover a Hitting-Set Problem

3.1.1. Reducción Vertex Cover a Dominating-Set Problem

- Vertex Cover: Dado un grafo G = (V, E), donde V es un conjunto de vértices y E es un conjunto de aristas, un Vertex Cover de G es un conjunto $C \subseteq V$ tal que para cada arista (u, v) en E, al menos uno de los extremos, u o v, pertence al conjunto C.
- Dominating Set: Dado un grafo G, se busca un conjunto mínimo de vértices C tal que, para todo vértice $v \in G$, esté contenido en C o existe al menos un vértice en C adyacente de v.

La reducción Vertex-Cover \leq_p Dominating-Set consta en lo siguiente: Dado del grafo G con n vértices y m aristas del problema Vertex Cover, para cada par de vértices adyacentes (v, w), se agregan ambos al grafo G' (del problema Dominating Set) junto a su arista y se agrega un tercer vértice auxiliar vw, adyacente a los otros dos. A será el conjunto de vértices auxiliares.

Luego, del conjunto V' de k vértices solución de Dominating Set, se debe agregar a V (solución de Vertex Cover) todos los vértices de V' que no estén en el conjunto de auxiliares y, para cada vértice en $V' \cap A$ se agrega a V cualquiera de sus adyacentes. La primera parte de la reducción es O(m) y la segunda es $O(k), k \leq n$, por lo que la complejidad total es O(m+k), que es polinomial.

Vertex-Cover \leq_p Dominating-Set

Ejemplos:

Figura 1: Ejemplo de reducción de Vertex-Cover a Dominating-Set

Si ahora, queremos un Vertex-Cover de hasta 3 vértices (k = 3), luego la solución proporcionada por Dominating Set puede ser la siguiente:

Figura 2: Ejemplo de reducción de Vertex-Cover a Dominating-Set

Notar que el conjunto solución de Dominating-Set $V' = \{CA, A, D\}$ incluye un vértice que pertenece al conjunto de auxiliares $CA \in A$. Por ello, se debe agregar a V cualquiera de sus adyacentes, en este caso C.

3.1.2. Reducción Dominating-Set a Hitting-Set

La reducción Dominating-Set \leq_p Hitting-Set consta en lo siguiente: Dado un grafo G de n vértices del problema Dominating Set, para cada vértice v_i , se construye un grupo B_i con él mismo y todos sus vértices adyacentes. Esto tiene un costo temporal de $O(N \times E)$, ya que para cada vértice v_i se deben obtener los vértices adyacentes a v_i y crear los conjuntos B_i por cada uno de ellos. De esta manera, realizamos operaciones polinomiales para transformar nuestro problema de Dominating-Set a Hitting-Set.

A su vez, esta reducción se caracteriza por ser de equivalencia simple ya que el resultado devuelto por el algoritmo de Hitting Set coincide directamente con los resultados esperados por el algoritmo de Dominating Set. Como consecuencia, no es necesario realizar operaciones adicionales o suplementarias para obtener el resultado deseado.

Dominating-Set \leq_p Hitting-Set

Ejemplos:

Figura 3: Ejemplo 1 de reducción de Dominating-Set a Hitting Set

Figura 4: Ejemplo 2 de reducción de Dominating-Set a Hitting Set

Figura 5: Ejemplo 3 de reducción de Dominating-Set a Hitting Set

En los tres casos analizados, se evidencia que la solución derivada del problema Hitting-Set representa la solución óptima para el Dominating-Set.

3.1.3. Reducción Vertex Cover a Hitting-Set Problem

Finalmente:

Vertex-Cover
$$\leq_p$$
 Dominating-Set \Longrightarrow Vertex-Cover \leq_p Hitting-Set \Longrightarrow Hitting-Set \in NP-Completo

3.2. Reducción Set-Cover a Hitting-Set

■ Set-Cover: Dado un conjunto finito U y una familia $S = S_1, S_2, ..., S_n$ de subconjuntos de U, el problema de Set Cover consiste en identificar el menor número de conjuntos cuya unión aún contiene todos los elementos del universo.

La reducción Set-Cover \leq_p Hitting-Set consta en lo siguiente: Para cada elemento e_i del universo U del problema Set-Cover, se crea un conjunto E_i en el cual sus elementos van a ser cada S_i en el cual está incluido.

El análisis de la complejidad del problema del Set Cover se establece en $O(n \times u)$, donde n representa la cantidad de subconjuntos en S y u la cantidad de elementos presentes en el universo. Este costo surge de la necesidad de recorrer cada subconjunto S_i en la familia S y sus elementos correspondientes, operación que, en el peor de los casos, implica recorrer conjuntos de igual tamaño al universo. Luego, en cada subconjunto nuevo E_i proveniente del elemento e_i se le agrega el S_i donde está incluido, siendo esta una operación constante.

De esta manera, realizamos operaciones polinomiales para transformar nuestro problema de Set-Cover a Hitting-Set. Además, al igual que la reducción de Dominating Set a Hitting Set, esta reducción se caracteriza por ser de equivalencia simple ya que el resultado devuelto por el algoritmo de Hitting Set coincide directamente con los resultados esperados por el algoritmo de Set-Cover.

Dominating-Set \leq_p Hitting-Set

3.2.1. Ejemplos:

Set-Cover V={S1,S2}	Hitting-Set V'={S1,S2}
S1={e1,e2,e4} S2={e1,e3,e4} S3={e1,e4} S4={e2,e3,e4}	E1={S1,S2,S3} E2= {S1,S4} E3={S2,S4} E4={S1,S2,S3,S4}
	Solución => {S1,S2}

Figura 6: Ejemplo 1 de reducción de Set-Cover a Hitting Set

Set-Cover	Hitting-Set
V={S1,S3}	V'={S1,S3}
S1={e1,e3}	E1={S1,S2,S4}
S2={e1}	E2= {S3,S4}
S3={e2,e4}	E3={S1}
S4={e1,e2,e4}	E4={S3,S4}
	Solución => {S1,S3}

Figura 7: Ejemplo 2 de reducción de Set-Cover a Hitting Set

Al igual que la reducción de Dominating-Set a Hitting-Set, en los dos casos analizados, se evidencia que la solución derivada del problema Hitting-Set representa la solución óptima para el problema de Set-Cover.

4. Solución por backtracking

Para poder plantear el álgoritmo de backtracing procedimos a seguir el esquema proporcionado por la cátedra:

- 1. Probamos si la solución parcial es solución y es mejor que la actual entontrada:
 - a) Si lo es, actualizamos la solución actual y la devolvemos.
 - b) Si no lo es, avanzamos si puedo.

- 2. Probamos si la solución parcial es potencial solución óptima.
 - a) Si no lo es, retrocedemos y volvemos a punto 3) de la recursión anterior.
 - b) Si lo es, llamamos recursivamente y seguimos en el punto 1) de la recursión siguiente.
- 3. Proseguimos explorando la solución parcial llamando recursivamente.

Para la solución por backtracking consideramos relevantes las siguientes variables:

- Los subconjuntos B_i .
- Solución parcial.
- La solución actual óptima.
- El índice (i_b) del subconjunto B_i en cuestión.

En cada instancia recursiva del algoritmo, se inicia con la evaluación del índice i_b para verificar si coincide con la cantidad total de subconjuntos B. Se emplea esta medida para garantizar la presencia de al menos un jugador de cada conjunto incluido en la solución parcial. En caso de ser igual y si la cardinalidad de la solución parcial es inferior a la solución actual, esta es considerada la nueva solución óptima (actual).

En caso contrario, se procede a descartar la solución parcial únicamente si su cardinalidad es mayor o igual que el de la solución actual. En este escenario, se implementa la técnica de backtracking, regresando al llamado anterior y desechando la exploración de esta rama de solución.

En el caso específico en el que la solución parcial no es compatible pero aún puede representar una solución óptima potencial, se lleva a cabo una verificación adicional. Se examina el subconjunto B_i (donde $i=i_b$) para garantizar la inclusión de al menos un jugador en la solución final. Si este requisito no se cumple, se procede a evaluar individualmente la inclusión de cada jugador presente en B_i para determinar cuál de ellos conduce a la obtención de la solución óptima.

Además, se implementó una poda adicional de gran alcance. En esta etapa, donde se examina cada jugador para determinar cuál contribuye a la solución óptima, solo se exploran aquellos que no han sido considerados previamente por los conjuntos B_j donde $j < b_i$. Esta última poda se tuvo en cuenta considerando lo siguiente: Suponiendo que se tiene $B_i = \{e_1, e_2\}$ en nivel i_b , si ya se evaluaron las alternativas con e_1 , no tiene sentido revisar luego las alternativas en los conjuntos B_k , $k > i_b$ con e_2 que incluyan e_1 porque:

- 1. Para que eso tenga sentido, $e_1, e_2 \in C$ debe ser una alternativa superior que $e_1 \in C \land e_2 \notin C$ y $e_2 \in C \land e_1 \notin C$.
- 2. Si e_2 ya se estaba teniendo en cuenta en un nivel anterior B_j , $j < b_i$, ya se consideró $e_1, e_2 \in C$, por lo cual incluso en B_i no tiene sentido que se considere e_2 (ni antes e_1 ; ya había un jugador en B_i incluido en C).
- 3. La consideración de que $e_1, e_2 \in C$ es una opción mejor ya fue abordada al analizar e_1 . Esto implica que ya se habría encontrado un conjunto que incluya a e_2 sin además ningún otro elemento incluido en la solución parcial. Para que $e_1, e_2 \in C$ sea una mejor alternativa, al menos un conjunto $B_k, k > i_b$ debe contener a e_2 . Esto demuestra que esta alternativa ya fue contemplada al evaluar e_1 en B_i .

A continuación, incluimos el código principal del algoritmo.

```
def backtracking_HSP(b_array: list, sol_parcial: set, sol_actual, i_b, propuestos:
    set):
    if i_b >= len(b_array):
        if sol_actual == None or len(sol_parcial) < len(sol_actual):
            return sol_parcial.copy()
    return sol_actual
</pre>
```



```
if sol_actual != None and len(sol_parcial) >= len(sol_actual):
           return sol_actual
9
      if esta_incluido(b_array[i_b], sol_parcial):
10
           return backtracking_HSP(b_array, sol_parcial, sol_actual, i_b+1, propuestos
12
      propuestos_b_array = set()
13
14
      for jugador in b_array[i_b]:
           if jugador in propuestos:
16
17
               continue
           sol_parcial.add(jugador)
           propuestos.add(jugador)
19
20
           propuestos_b_array.add(jugador)
           sol_actual = backtracking_HSP(
              b_array, sol_parcial, sol_actual, i_b+1, propuestos)
23
           sol_parcial.remove(jugador)
24
25
      propuestos.difference_update(propuestos_b_array)
26
      return sol_actual
```

5. Solución por Programación Lineal

5.1. Programación Lineal Entera

También se puede reducir Hitting-Set Problem a Programación Lineal Entera de la siguiente manera:

- 1. Para cada elemento e_i del universo $U = \{e_1, e_2, \dots, e_n\}$, se crea una variable y_i que puede tomar los valores 0 o 1.
- 2. Se define una función $f_j = \sum_{i|e_i \in S_j} y_i$ para cada conjunto S_j , y se establece una restricción que acota a f_j en el rango $1 \le f_j \le |S_j|$.
- 3. El objetivo radica en minimizar la función $f = \sum_{i=0}^{n} y_i$.

Luego, el conjunto solución C será

$$C = \{ e_i \in U \mid y_i = 1 \}$$

La complejidad de esta reducción es $O(m \times b)$, con b el cardinal del conjunto más grande, ya que se debe recorrer todos los subconjuntos B_i y, por cada uno, recorrer cada elemento. Este proceso es polinomial, y la complejidad de Programación Lineal Entera es exponencial.

Hitting-Set \leq_p Programación Lineal Entera

El codigo de la reducción es el siguiente:

```
problem = pulp.LpProblem("Scaloni", pulp.LpMinimize)
dic_jugadores = {}

for periodista in range(len(b_array)):
    set_p = set()
    for jugador in b_array[periodista]:
        y = None
        if jugador in dic_jugadores:
            y = dic_jugadores[jugador]
        else:
        y = pulp.LpVariable(f"y_{jugador}", cat=pulp.LpBinary)
```



```
dic_jugadores[jugador] = y
               set_p.add(y)
13
14
           p = pulp.lpSum(set_p)
16
           problem += p >= 1
           problem += p <= len(set_p)</pre>
18
       z = pulp.lpSum(dic_jugadores.values())
19
       problem += z
20
21
       pulp.LpSolverDefault.msg = 0
22
23
       problem.solve()
       # Obtener jugadores seleccionados
25
26
       jugadores_seleccionados = [
           jugador for jugador, valor in dic_jugadores.items() if pulp.value(valor) >
      return jugadores_seleccionados
29
```

5.2. Aproximación por Programación Lineal Continua

Otra estrategia para abordar la solución del Hitting-Set Problem implica el enfoque de la Programación Lineal continua. Esta aproximación se asemeja a la reducción previamente descrita, con la distinción fundamental de que las variables y_i pueden asumir valores reales dentro del intervalo 0 a 1.

Posteriormente, para toda variable y_i que en la solución del problema de Programación Lineal tengan un valor que exceda el umbral del 1/b, siendo b el cardinal máximo de todos los conjuntos S_i , se incluye e_i a la solución final C del Hitting-Set Problem.

Luego, el conjunto solución C será

$$C = \left\{ e_i \in U \mid y_i \ge \frac{1}{b} \right\}$$

Por la mismas consideraciones aplicadas en la reducción de la Programación Lineal Entera, la complejidad asociada a la reducción de Hitting Set a Programación Lineal Continua es de $O(m \times b)$. Sin embargo, la complejidad de Programación Lineal Continua es $O(n^9)$ lo cual es polinomial, a diferencia de la Entera.

El codigo de la reducción es el siguiente:

```
def hitting_set_pl_continua(b_array):
      problem = pulp.LpProblem("Scaloni", pulp.LpMinimize)
      dic_jugadores = {}
      # obtenemos b = "la cantidad de jugadores que pide el periodista mas mufa"
      b = 0
      for periodista in b_array:
          if len(periodista) > b:
               b = len(periodista)
      for periodista in range(len(b_array)):
           dic_p = set()
          for jugador in b_array[periodista]:
13
14
               y = None
               if jugador in dic_jugadores:
                   y = dic_jugadores[jugador]
16
17
                   y = pulp.LpVariable(
18
                       f"y_{jugador}", lowBound=0, upBound=1, cat=pulp.LpContinuous)
19
20
                   dic_jugadores[jugador] = y
               dic_p.add(y)
21
          p = pulp.lpSum(dic_p)
```



```
problem += p >= 1
25
           problem += p <= len(dic_p)
26
      z = pulp.lpSum(dic_jugadores.values())
27
29
      pulp.LpSolverDefault.msg = 0
30
31
       problem.solve()
32
       jugadores_seleccionados = [
33
           jugador for jugador, variable in dic_jugadores.items() if pulp.value(
34
       variable) > 1/b]
      return jugadores_seleccionados
36
```

Con el objetivo de evaluar qué tan buena aproximación es la Programación Lineal Continua respecto a la Programación Lineal Entera, se propuso el siguiente escenario que resalta las diferencias entre las soluciones obtenidas por ambos algorítmos:

Consideremos dos conjuntos que representan medios diferentes, denominados S_1 y S_2 . Estos conjuntos se componen de la siguiente manera:

- 1. S_1 con tamaño b, expresado como $S_1 = \{x_1, x_2, ..., x_{b-1}, x_b\}$
- 2. S_2 con tamaño b-1, representado como $S_2=\{x_1,x_2,...,x_{b-1}\}$

En el contexto de Programación Lineal Continua (PLC), una solución posible puede ser la asignación $x_1 = x_2 = \dots = x_{b-1} = 1/(b-1)$ y $x_b = 0$.

En esta situación, dado que $\frac{1}{b} < \frac{1}{b-1}$, las variables del S_2 , al ser redondeadas, resultarían en 1, siendo todas incluidas en la solución final.

Por otro lado, la solución proporcionada por la Programación Lineal Entera (PLE), que representa la solución óptima, presentaría, por ejemplo, la siguiente asignación de valores: $x_1 = 1$ y $x_2 = \dots = x_b = 0$.

No obstante, al obtenerse una aproximación mediante PLC que establece $x_1 = x_2 = ... = x_{b-1} = 1$ se deriva la siguiente relación de aproximación: $r(A) = \frac{A(I)}{z(I)} = \frac{b-1}{1}$

En consecuencia, b-1, se establece como una cota superior de la aproximación.

6. Aproximación por Greedy

Proponemos dos aproximaciones extra.

6.1. Máximo por grupo

Este enfoque realiza un cálculo de la frecuencia con la que cada jugador aparece en los m subconjuntos B. Posteriormente, procede a recorrer cada uno de estos subconjuntos y, si la solución parcial propuesta no incluye ningún jugador presente en un subconjunto dado, se incluye en esta solución al jugador que tiene la mayor frecuencia de apariciones dentro de dicho subconjunto.

Este algorítmo sigue la técnica de diseño greedy al enfocarse en optimizar la solución global mediante la búsqueda de óptimos locales en cada subconjunto. Se prioriza la inclusión del jugador con la mayor frecuencia de aparición en situaciones donde la solución parcial no incluye a ningún jugador del subconjunto evaluado. Este método busca mejorar la solución global al introducir jugadores de acuerdo con su frecuencia de aparición en los subconjuntos, maximizando así la cobertura de conjuntos dentro de la solución propuesta.

```
def aproximacion_greedy_maximo_por_grupos(subconjuntos: list):
    """
    Obtiene la solucion por greedy.
```



```
param subconjuntos: subconjuntos de jugadores pedidos por cada prensa
      return: solucion
6
      # contamos la cantidad de apariciones de cada jugador por cada prensa
7
      apariciones = {}
      for subconjunto in subconjuntos: # O(len(subconjuntos)*len(subconjunto))
9
           for jugador in subconjunto:
               if jugador in apariciones:
                   apariciones[jugador] += 1
13
                   apariciones[jugador] = 1
14
      # ordenamos los subconjuntos por cantidad de apariciones de cada jugador
16
      # obtenemos la solucion mediante el optimo local
18
      solucion = set()
19
      for subconjunto in subconjuntos: # O(len(subconjuntos)*len(subconjunto))
20
21
           aparicion_max = None
           for jugador in subconjunto:
22
23
               if jugador in solucion:
                   aparicion_max = jugador
24
                   break
25
26
                   if aparicion_max is None or apariciones[jugador] > apariciones[
28
      aparicion_max]:
                       aparicion_max = jugador
29
30
           solucion.add(aparicion_max)
31
      return solucion
```

La primera operación tiene complejidad $O(b \times m)$, con b el cardinal máximo de jugadores por subconjunto y m la cantidad de subconjuntos totales. Con grupos más chicos, el algoritmo tiende a lineal (O(m)) y con grupos más grandes, a $O(b \times m)$. De la misma manera, la segunda operación tiene complejidad de $O(b \times m)$ ya que por cada subconjunto (O(m)) se deben recorrer todos sus jugadores para verificar si efectivamente están en la solución final (O(b)) y, en caso de que no esté ninguno, se debe encontrar el jugador con máximas apariciones O(1) (esta operación se va contemplando a medida que se verifica la anterior condición). De esta manera, la complejidad total es $O(2(b \times m)) = O(b \times m)$ y resulta polinomial.

6.2. Máximo global con recálculo

La segunda estrategia inicia de manera similar, llevando a cabo el cálculo de la frecuencia de aparición de cada jugador en los diferentes subconjuntos. Posteriormente, se procede a añadir a la solución el jugador que presenta la mayor cantidad de apariciones entre todos, y quita las apariciones de los subconjuntos que ya cubre al resto de los jugadores. Este proceso se repite sucesivamente hasta quedarse sin jugadores restantes o hasta que el jugador con la mayor frecuencia encontrada no tenga más apariciones restantes.

La técnica de diseño empleada en este algoritmo, al igual que el anterior explicado, se caracteriza por ser greedy, ya que busca optimizar la solución al priorizar la inclusión del jugador con la mayor frecuencia en cada iteración, hasta alcanzar la cobertura total de todos los subconjuntos.

```
def aproximacion_greedy_maximo_global_con_recalculo(subconjuntos: list):
    """
    Obtiene la solucion por greedy.
    param subconjuntos: subconjuntos de jugadores pedidos por cada prensa
    return: solucion
    """
    # contamos la cantidad de apariciones de cada jugador por cada prensa
    apariciones = {}
    # O(len(subconjuntos)*len(subconjunto))
    for index, subconjunto in enumerate(subconjuntos):
        for jugador in subconjunto:
            if jugador not in apariciones:
```



```
apariciones[jugador] = set()
13
               apariciones[jugador].add(index)
14
      # obtenemos la solucion mediante el optimo local
16
17
      solucion = set()
18
      while len(apariciones) != 0: # 0(len(jugadores)*len(subconjuntos)*len(
19
      subconjunto))
          jugador, index_subconjuntos = max(apariciones.items(
20
          ), key=lambda jugador_index_subconjuntos: len(jugador_index_subconjuntos
21
           apariciones.pop(jugador)
           if len(index_subconjuntos) == 0:
               break
24
25
          solucion.add(jugador)
          # O(len(subconjuntos)*len(subconjunto))
27
           for index_subconjunto in index_subconjuntos:
               for jugador_companiero_de_conjunto in subconjuntos[index_subconjunto]:
29
30
                   if jugador != jugador_companiero_de_conjunto:
                       apariciones[jugador_companiero_de_conjunto].remove(
31
                           index_subconjunto)
33
      return solucion
```

La complejidad de la primera operación es $O(b \times m)$. La complejidad de la segunda es más dificil de acotar. La iteración del while len (apariciones) != 0: se detiene cuando todos los jugadores cuentan con 0 apariciones o recorrimos todos los jugadores. Llamaremos a esta cantidad $j \leq n$. Luego tenemos los dos for anidados que iteran por la cantidad de conjuntos a los que pertenece cada jugador y por todos los jugadores de cada conjunto. La primera, a la que llamaremos g está acotada superiormente por la cantidad de conjuntos m. Luego, la segunda está acotada por b, el cardinal máximo de los conjuntos. Esto resultaría en una complejidad $O(n \times m \times b)$. Sin embargo, es importante notar que el único caso en que j=n es cuando b=1, de complejidad $O(n \times m)$. A su vez, g no son independientes de b y m ya que, cuando más grandes son los conjuntos, a más conjuntos va a pertenecer cada jugador. Así, $g \propto^+ m$, $g \propto^+ b$, $g \propto^- n$. Por esto, la complejidad nunca alcanzaría $O(n \times m \times b)$.

7. Ejemplos

A continuación, compararemos los resultados obtenidos por nuestras dos aproximaciones Greedy en distintos ejemplos.

El primero, ilustrado en la fig. 8, es un caso feliz en el que los dos algoritmos obtienen el resultado óptimo.

Figura 8: Ejemplo 1

Figura 9: Ejemplo 1 resuelto por Máximo por grupo

Figura 10: Ejemplo 1 resuelto por Máximo global con recálculo

El segundo ejemplo (fig. 11) podemos observar en la fig. 12 que "Máximo por grupo", de menor complejidad, no encuentra la solución óptima, pero el "Máximo global con recálculo", en la fig. 13, si.

Figura 11: Ejemplo 2

Figura 12: Ejemplo 2 resuelto por Máximo por grupo

Figura 13: Ejemplo 2 resuelto por Máximo global con recálculo

Por último, en el ejemplo de la fig. 14, tanto "Máximo por grupo" (fig. 15) como "Máximo global con recálculo" (fig. 16) no llegan al la solución óptima.

Figura 14: Ejemplo 3

Figura 15: Ejemplo 3 resuelto por Máximo por grupo

Figura 16: Ejemplo 3 resuelto por Máximo global con recálculo

8. Mediciones

Para las mediciones, creamos subconjuntos de dos tipos distintos. Uno que lo llamamos jugadores y otro que lo llamamos abecedario. El primero contiene una lista con subconjuntos de jugadores de fútbol argentino, mientras que el segundo contiene una lista con subconjuntos de combinaciones de letras del abecedario. Esto debido a que queríamos obtener comportamientos menos repetitivos, ya que tenemos un máximo de 43 jugadores distintos, mientras que el abecedario tiene 26 letras, y en base a ellas, podemos hacer combinaciones de letras para generar nombres de distintos tamaños, los cuales se repetiran en menor medida. Con ello conseguimos obtener resultados más amplios (no es lo mismo un conjunto de 1 millón de elementos distintos con una solución de Hitting Set hasta de 43 elementos, a una solución con 1 millón de elementos distintos).

Además, notamos que los procesos de fondo del sistema nos generaba distorciones en los tiempos de ejecución de una misma muestra. Resolvimos este problema realizando varias mediciones para el mismo escenario de subconjuntos y tomando el promedio de los tiempos obtenidos. Esta estrategia nos permitió abordar otro problema significativo: el orden en el que se evalúan los jugadores en cada subconjunto adquiere una importancia relevante en el rendimiento final del algoritmo. Esto depende especialmente de la frecuencia con la que cada jugador aparece en los demás subconjuntos.

Asimismo, al definir arbitrariamente cada escenario, puede ocurrir que en una cantidad m de subconjuntos, los jugadores incluidos en cada uno sean considerablemente diferentes o poco comunes, lo que representa un caso desfavorable. En contraste, en una cantidad de conjuntos m+1, podría darse una situación mucho más favorable, con una mayor similitud entre los jugadores incluidos en cada conjunto. Esto puede llevar a una diferencia significativa en los tiempos de ejecu-

ción, a pesar de que la cantidad de conjuntos varíe en una sola unidad.

Siguiendo las estrategias explicadas, realizamos mediciones variando solamente la cantidad de subconjutos y comparando el tiempo de ejecución de los diferentes algorítmos analizados a lo largo del informe: Backtracking, algorítmo Greedy Máximo por grupo, algorítmo Greedy Máximo global con recálculo, Programación Lineal Entera y Programación Lineal Continua.

Al evaluar los algoritmos con orden teórico exponencial, Backtracking y Programación Lineal Entera, podemos corroborar a través de los gráficos una clara tendencia al aumento significativo en el tiempo de ejecución conforme se incrementa la cantidad de subconjuntos, en comparación con otros algoritmos, especialmente los que emplean el método Greedy.

La gráfica de nuestra implementación de Backtracking confirma su comportamiento exponencial, concordando con su cota teórica. Por otro lado, el algoritmo de Programación Lineal Entera, contrario a lo esperado, presenta una gráfica más cercana a una función lineal, asemejandose en tiempo de ejecución con el algorítmo de Programación Lineal Continua. Esto se debe a las optimizaciones implementadas en la librería pulp utilizada para su ejecución, las cuales reducen significativamente su tiempo de ejecución en comparación con su complejidad teórica. Es importante mencionar que la visualización de una curva exponencial en este algoritmo solo ocurre en situaciones donde las optimizaciones no influyen de manera considerable.

Por otro lado, podemos observar que la curva de Programación Lineal Continua se asemeja a una curva polinómica. De forma similar que en el caso de PLE, a pesar de que su cota teórica es un polinomio de grado 9, en la gráfica se puede observar una tendencia lineal. Esto es debido a las diversas optimizaciones que la bilbioteca implementa y la escala de la medición.

En el siguiente gráfico, se ilustra el grado de aproximación, variando b (fig.) y manteniendola constante (fig.). Para poder corroborar nuestra cota máxima de aproximación, hicimos variar el parámetro b en un intervalo [25, 30]. Como en la gráfica se puede observar que la peor aproximación es NUM_MAX , luego se comprueba que la cota máxima es efectivamente en cada escenario es b-1.

Por otra parte, al examinar los algoritmos que emplean la estrategia de diseño Greedy, se evidencia que ambos siguen una tendencia polinomial. En el primer gráfico (fig. ??), se observa una tendencia lineal. Esto se debe a que la variable b permanece constante para cada escenario, variando únicamente la cantidad de subconjuntos (m). En contraste, medida que se aumenta la cantidad de subconjuntos, se puede visualizar su tendencia polinómica no lineal, evidenciando la cota teórica (fig. ??).

Figura 17: Greedy: Medición de tiempos variando m.

Figura 18: Greedy: Medición de tiempos variando n.

Asimismo, se destaca una marcada diferencia en los tiempos de ejecución entre el algoritmo Greedy Máximo por Grupo y el algoritmo Greedy Máximo Global con Recálculo. El primero muestra una ejecución significativamente más rápida en todos los escenarios comparado con el segundo. Sin embargo, al analizar las soluciones obtenidas, se evidencia que el algoritmo Greedy Máximo

Global se acerca más a la solución óptima en todos los casos estudiados.

Es interesante observar como el factor de aproximación $r(A)=\frac{A(I)}{z(I)}$ varía respecto a m y a b. Para valores b pequeños constantes, que es donde los dos algorítmos Greedy tienden a performar peor, no se aprecia una tendencia clara respecto a la variación de m (fig. $\ref{fig. 27}$). Sin embargo, con m constante, se puede observar una tendencia inversamente proporcional entre r(A) y b (fig. $\ref{fig. 27}$). Esto se debe a que, con grupos más grandes, la probabilidad de que un elemento pertenezca a más de un grupo es mayor, llegando al punto de que exista uno o varios jugadores en la intersección de todos los conjuntos. Ambos algoritmos greedy obtienen siempre la solución óptima en este caso, por lo que $\lim_{b\to\infty} r(A)=1$.

Figura 19: Greedy: Relación entre r(A) y b para m constante.

Figura 20: Greedy: Relación entre r(A) y m para b constante.

Esta divergencia plantea una dificultad al momento de decidir cuál enfoque es más adecuado. Por un lado, el algoritmo por grupo se destaca por su eficiencia temporal, ofreciendo tiempos de ejecución notoriamente inferiores y, por otro lado, el enfoque global muestra una mayor aproximación a la solución óptima.

!!! INSERTAR GRAFICOS !!!

9. Conclusiones

Finalmente, consideramos que la solución más adecuada para abordar la problemática presentada por Scaloni sería a través del empleo de técnicas como Backtracking o Programación Lineal Entera, siempre y cuando el número de medios no sea excesivamente alto.

No obstante, en situaciones que involucren conjuntos de medios considerablemente extensos, las aproximaciones obtenidas a través de algoritmos como los métodos greedy o la Programación Lineal Continua pueden ofrecer una alternativa viable para obtener resultados en tiempos reducidos. Sin embargo, se debe tener en cuenta que, si bien estas soluciones pueden ser efectivas en términos de eficiencia computacional, pueden discrepar con la solución óptima.