HOMEWORK 3

Table of Contents

Imatges Originals	
Selecció de regió d'Interés	2
Detecció de fons	3
Funció de thresh-holding	4
Càlcul de Percentatge de Greix	5
Càlcul de percentatge de greix amb diferents mètodes	6
MÈTODE 1 - Selecció manual amb histograma	. 6
MÈTODE 2 - Selecció automàtica amb Otsu	12
MÈTODE 3 - Selecció automàtica amb Pun	17
MÈTODE 4 - Selecció automàtica amb Riddler i Calvard	23
Taules comparativa de percentatge de greix	28
Taula comparativa de tresholds	. 29

Imatges Originals

```
close all; clc; clear all

f=dir('*.bmp');
files={f.name};
names = convertCharsToStrings(files);
for k=1:numel(names)
    names(k) = erase(names(k),".bmp");
end
im_or=cell(1,14);
for k=1:numel(files)
    im_or{k}=imread(files{k});
end

figure, subplot(1,3,1), imshow(im_or{12}), title('Chuleton 1');
subplot(1,3,2), imshow(im_or{13}), title('Chuleton 2');
subplot(1,3,3), imshow(im_or{14}), title('Chuleton 3');
sgtitle('Originals');
```

Originals

Chuleton 1

Chuleton 2

Chuleton 3

Selecció de regió d'Interés

Retallem manualment les imatges mitjançant la eina "imcrop". Nota: al guardar les imatges desde matlab s'ha canviat el format a .tif, i s'ha afegit un "padding" blanc que hem eliminat.

```
%for k=1:numel(im)
% figure, imshow(im{k}), title('Chuleton 1');
% imcrop
%end

f=dir('*.tif');
files={f.name};
im_crop=cell(1,14);
for k=1:numel(files)
   imtemp=imread(files{k});
   im_crop{k}=imtemp(4:end-3,4:end-3,1);
end

figure, subplot(1,3,1), imshow(im_crop{12}), title('Chuleton 1');
subplot(1,3,2), imshow(im_crop{13}), title('Chuleton 2');
subplot(1,3,3), imshow(im_crop{14}), title('Chuleton 3');
sgtitle('Imatges retallades');
```

Imatges retallades

Detecció de fons

Fons

Funció de thresh-holding

```
% Hem decidit pintar el greix en blanc, la carn en negre i el fons en gris
% per facilitar la visualització dels resultats.

function im_res = greixcarn(im,thr,im_bg)
    im_res_l = imbinarize(im,thr);
    im_res_l = im_res_l & im_bg;
    im_res = uint8(im_res_l)*255 + uint8(~im_bg)*128;
end

greixcarn1 = greixcarn(im_crop{12},0.6,fons(im_crop{12}));
figure, subplot(1,3,1), imshow(greixcarn1), title('Chuleton 1');
greixcarn2 = greixcarn(im_crop{13},0.6,fons(im_crop{13}));
subplot(1,3,2), imshow(greixcarn2), title('Chuleton 2');
greixcarn3 = greixcarn(im_crop{14},0.6,fons(im_crop{14}));
subplot(1,3,3), imshow(greixcarn3), title('Chuleton 3');
sgtitle('Tresholding');
```

Tresholding

Chuleton 1

Chuleton 3

Càlcul de Percentatge de Greix

```
% pre: im es la sortida de la funció greixcarn(...)
function percent = percentgreix(im)
    [N, ~] = histcounts(im, 3);
    greix = N(3);
    carn = N(1);
    percent = double(greix/(carn+greix))*100;
end

display(percentgreix(greixcarn1));
display(percentgreix(greixcarn2));
display(percentgreix(greixcarn3));

37.4493

38.7101

19.6658
```

Càlcul de percentatge de greix amb diferents mètodes

```
% Implementació amb funcions de grau superior (HOF)
function resultats = resultats(imatges,f,names)
    resultats = zeros(2,numel(imatges));
    for k=1:numel(imatges)
        im = imatges{k};
        % Separem la chuleta del fons
        im_bg = fons(im);
        chuleta = im(im_bg);
        % Binaritzem només la chuleta
        thr = f(chuleta);
        res = greixcarn(im,thr,im_bg);
        resultats(1,k) = percentgreix(res);
        resultats(2,k) = thr;
        figure, imshow(res),
        title(strcat(names(k), " - " , num2str(resultats(1,k)), "% greix"));
    end
end
```

MÈTODE 1 - Selecció manual amb histograma

Veient l'histograma hem interpretat que té 3 modes: la primera (~25) representa el fons de la imatge, la segona (~125) representa la carn i la tercera (~200) representa el greix. Per tant, escollim el threshhold 175 (aquests resultats probablement variarien segons el chuletón usat).

```
close all;
figure, histogram(im_crop{12}), title('Histograma Chuletón 12');
thr_manual = @(~) double(175/255);
SEL_MAN = resultats(im_crop,thr_manual,names);
```


F1019flb - 47.7721% greix

F1031flb - 47.5532% greix

F1051flb - 46.7439% greix

F1053flb - 21.4745% greix

F1059flb - 19.0871% greix

F1064flb - 10.8028% greix

F1079flb - 18.4657% greix

F1083flb - 14.1958% greix

F1096flb - 15.5007% greix

F1097flb - 18.4643% greix

F1101flb - 21.6966% greix

F1102flb - 23.8117% greix

MÈTODE 2 - Selecció automàtica amb Otsu

close all;
otsu = @graythresh;
SEL_OTSU = resultats(im_crop,otsu,names);

F1019flb - 33.1669% greix

F1031flb - 37.6681% greix

F1051flb - 33.7914% greix

F1053flb - 35.5471% greix

F1059flb - 28.5218% greix

F1064flb - 26.4325% greix

F1079flb - 31.0819% greix

F1083flb - 27.6496% greix

F1096flb - 28.7751% greix

F1097flb - 29.1708% greix

F1101flb - 33.3261% greix

F1102flb - 27.7028% greix

MÈTODE 3 - Selecció automàtica amb Pun

```
% Calcul del llindar amb el coeficient anisotropic de Pun
function treshold = pun(im)
    %im = im .* uint8(fons(im));
    [histogram, ~] = imhist(im);
    histogram(1) = 0;
   percentages = histogram/sum(histogram);
    acumulated = 0;
    initialTreshold = 1;
    % El llindar inicial serà aquell continqui con a mínim la meitat dels
    % pixels de la imatge.
    while acumulated < 0.5 && initialTreshold < 256
        acumulated = acumulated + percentages(initialTreshold);
        initialTreshold = initialTreshold + 1;
    end
    % Càlcul del coefiecient anisotropic
    div = 0;
    % Afegim un petit número per evitar infinits en els logaritmes
    epsilon = 0.000001;
    for i = 1:size(percentages)
        if(percentages(i) ~= 0)
            div = div + percentages(i) * log2(percentages(i));
        else
            div=div+(epsilon+percentages(i))*log2(percentages(i)+epsilon);
        end
    end
    num = 0;
    for i = 1:initialTreshold
        if(percentages(i) ~= 0)
            num = num + percentages(i) * log2(percentages(i));
        else
            num=num+(epsilon+percentages(i))*log2(percentages(i)+epsilon);
        end
    end
```

F1011flb - 68.2526% greix

F1019flb - 96.2716% greix

F1031flb - 94.8331% greix

F1051flb - 96.2105% greix

F1053flb - 53.2097% greix

F1059flb - 70.2499% greix

F1064flb - 51.4136% greix

F1079flb - 64.626% greix

F1083flb - 56.583% greix

F1096flb - 59.2595% greix

F1097flb - 72.7834% greix

F1101flb - 66.8184% greix

F1102flb - 76.5466% greix

F1103flb - 37.3729% greix

MÈTODE 4 - Selecció automàtica amb Riddler i Calvard

```
%Mètode iteratiu de Riddler i Calvard
function treshold = ridncalv(im)
    % El llindar inicial és la mitjana de valors de grisos
    currentT = mean(im(:));
    upT = im(im > currentT);
    belowT = im(im <= currentT);</pre>
    umean = sum(upT)/size(upT,1);
    bmean = sum(belowT)/size(belowT,1);
    % El llindar posterior és la mitjana de la suma dels valors que estan
    % per sobre del llindar inicial i de la suma dels valors que estan per
    % sota de llindar inicial
    nextT = (umean + bmean)/2;
    maxIter = 1000;
    i = 1;
    error = 0.0001;
    % Iterem fins obtenir llindar que compleixi amb el marge de error
    while (abs(nextT - currentT) > error) && (i < maxIter)</pre>
        currentT = nextT;
        upT = im(im > currentT);
        belowT = im(im <= currentT);</pre>
        umean = sum(upT)/size(upT,1);
        bmean = sum(belowT)/size(belowT,1);
        nextT = (umean + bmean)/2;
        i = i + 1;
    treshold = currentT/256;
end
close all;
ridncalv = @ridncalv;
SEL_RNC = resultats(im_crop, ridncalv, names);
```

F1011flb - 29.5478% greix

F1019flb - 33.7255% greix

F1031flb - 38.3812% greix

F1051flb - 35.6503% greix

F1053flb - 35.9818% greix

F1059flb - 29.7965% greix

F1064flb - 27.1364% greix

F1079flb - 33.489% greix

F1083flb - 27.8547% greix

F1096flb - 29.4321% greix

F1097flb - 31.2407% greix

F1101flb - 33.665% greix

Taules comparativa de percentatge de greix

Manual	Otsu	Pun	Riddle&Calvard
20.119	29.265	68.253	29.548
47.772	33.167	96.272	33.725
47.553	37.668	94.833	38.381
46.744	33.791	96.211	35.65
21.474	35.547	53.21	35.982
	20.119 47.772 47.553 46.744	20.119 29.265 47.772 33.167 47.553 37.668 46.744 33.791	20.119 29.265 68.253 47.772 33.167 96.272 47.553 37.668 94.833 46.744 33.791 96.211

"F1059f1b"	19.087	28.522	70.25	29.797
"F1064flb"	10.803	26.433	51.414	27.136
"F1079flb"	18.466	31.082	64.626	33.489
"F1083flb"	14.196	27.65	56.583	27.855
"F1096flb"	15.501	28.775	59.26	29.432
"F1097f1b"	18.464	29.171	72.783	31.241
"F1101flb"	21.697	33.326	66.818	33.665
"F1102f1b"	23.812	27.703	76.547	28.49
"F1103flb"	5.5287	34.18	37.373	37.69

Taula comparativa de tresholds

```
T2 = table(names, SEL_MAN(:,2), SEL_OTSU(:,2), ...
    SEL_PUN(:,2), SEL_RNC(:,2), 'VariableNames', ...
    {'Imatge', 'Manual', 'Otsu', 'Pun', 'Riddle&Calvard'});
disp(T2)
```

Imatge	Manual	Otsu	Pun	Riddle&Calvard
"F1011f1b"	0.68627	0.61961	0.50989	0.61876
"F1019f1b"	0.68627	0.72941	0.50625	0.72887
"F1031f1b"	0.68627	0.73333	0.50983	0.72965
"F1051f1b"	0.68627	0.72549	0.51216	0.72095
"F1053f1b"	0.68627	0.58824	0.51452	0.58737
"F1059f1b"	0.68627	0.61569	0.50073	0.61292
"F1064flb"	0.68627	0.58431	0.53468	0.58376
"F1079flb"	0.68627	0.61961	0.52336	0.61251
"F1083flb"	0.68627	0.59216	0.51078	0.59097
"F1096flb"	0.68627	0.6	0.51087	0.59755
"F1097flb"	0.68627	0.61961	0.50906	0.61317
"F1101f1b"	0.68627	0.61961	0.52263	0.61801
"F1102f1b"	0.68627	0.6549	0.50112	0.65174
"F1103f1b"	0.68627	0.53333	0.53009	0.52906

Published with MATLAB® R2022b