Upper Bound: Suppose $E \subset \mathbb{R}$ and $w \in E$. w is an upper bound of E if $x \leq w$ for all $x \in E$.

Lower Bound: Suppose $E \subset \mathbb{R}$ and $w \in E$. w is a lower bound of E if $x \geq w$ for all $x \in E$.

Bounded Above: A subset is said to be bounded above it has at least one upper bound.

Bounded Below: A subset is said to be bounded below if it has at least one lower bound.

Least Upper Bound (LUB): A real number w is said to be the least upper bound of a subset $E \subset \mathbb{R}$ if

- 1. w is an upper bound of E
- 2. for all y < w, there exists $x \in E$ with x > y

Greatest Lower Bound (GLB): A real number w is said to be the greatest lower bound of a subset $E \subset \mathbb{R}$ if

- 1. w is a lower bound of E
- 2. for all y > w, there exists $x \in E$ with x < y

Sequence: A sequence in \mathbb{R} is a function defined on \mathbb{N} with values in \mathbb{R} (denoted as: $\{x_n\} = \{x_1, x_2, \dots\}$)

Subsequence: A subsequence of (x_n) is a sequence (y_k) where for some sequence $\{n_k\}$ in \mathbb{N} with $n_1 < n_2 < \dots$, there is $\lim y_k = x_{n_k}$

Limit of a Sequence: $\lim(x_n) = x$ if for any $\varepsilon > 0$, there exists $\mathbb{N} \in \mathbb{R}$ such that $|x_n - x| < \varepsilon$ for all $n \ge \mathbb{N}$

Convergent: (x_n) is convergent if $\lim x_n = x$

Cauchy Sequence: (x_n) is said to be a Cauchy sequence if for any $\varepsilon > 0$, there exists \mathbb{N} such that $|x_n - x_k| < \varepsilon$ for all $n, k \ge \mathbb{N}$.

Limit of a Function: If for any $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \varepsilon$ for all x with $|x - a| < \delta$ then $\lim_{x \to a} f(x) = L$.

Continuity (sequential): A function $f: E \to \mathbb{R}$ is continuous for all $x \in E$ if (x_n) is a sequence in E with $\lim x_n = x$ then $\lim f(x_n) = f(x)$.

Continuity $(\varepsilon - \delta)$: A function $f : E \to \mathbb{R}$ is continuous if for every $x \in E$ and for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(u)-f(x)| < \varepsilon$ for all $u \in E$ with $|u-x| < \delta$.

Intermediate Value Theorem: Let I be any interval in \mathbb{R} . Suppose $f: I \to \mathbb{R}$, f continuous, $a, b \in I$ and a < b. If y is in between f(a) and f(b), then there is at least one $c \in I$ with f(c) = y.

Function Bounded Above: $f: E \to \mathbb{R}$ is bounded above on E if there exists M such that $f(x) \leq M$ for all $x \in E$.

Function Bounded Below: $f: E \to \mathbb{R}$ is bounded below on E if there exists m such that $f(x) \geq m$ for all $x \in E$.

Extreme Value Theorem: Suppose f is continuous on [a, b]. Then f has a min and max on [a, b].

Derivative of $f: \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$

Local Maximum: f has a local maximum at x = a if there is some $\delta > 0$ such that $f(x) \le f(a)$ for all x with $|x - a| < \delta$.

Local Minimum: f has a local minimum at x = a if there is some $\delta > 0$ such that $f(x) \ge f(a)$ for all x with $|x - a| < \delta$.

Rolle's Theorem: If f'(x) exists on [a, b], f continuous on [a, b] and f(a) = f(b), then f'(c) = 0 for some c in [a, b].

Mean Value Theorem: Suppose f is "nice" on [a,b]. Then there exists a c with $\frac{f(b)-f(a)}{b-a}=f'(c)$

Continuity: A function $f: E \to \mathbb{R}$ is continuous if for all $x \in E$ and all $\varepsilon > 0$, there exists $\delta(x, \varepsilon)$ with $|f(u) - f(x)| < \varepsilon$ for all $u \in E$ with $|x - u| < \delta$.

Uniform Continuity: A function f: $E \to \mathbb{R}$ is uniformly continuous if for all $\varepsilon > 0$ there exists (a single) $\delta(\varepsilon)$ such that $|f(u) - f(x)| < \varepsilon$ for all $x, u \in E$ with $|x-u| < \delta$. (δ does not depend on x.)

Partition: A partition of the interval [a,b] with a < b is a finite subset $P \subset [a,b]$ such that $a \in P$ and $b \in P$ and is written as: $P = \{x_0, x_1, \dots, x_n\}$ where $a = x_0 < x_1 < x_1 < x_2 < x_2 < x_2 < x_3 < x_3 < x_4 < x_4 < x_4 < x_5 <$ $\cdots < x_n = b$

Lower Sum: $L(f, P) = \sum_{k=1}^{n} m_k \Delta x_k$ where $m_k = \text{glb}\{f(x) : x \in I_k\}$

Upper Sum: $U(f, P) = \sum_{k=1}^{n} M_k \Delta x_k$ where $M_k = \text{lub}\{f(x) : x \in I_k\}$

Lower Integral: $\underline{\int} = \int_a^b f(x) dx =$ $\operatorname{glb}\{U(f,p): p \in P\}$ (bounded above by if $\lim S_n = S$ where S_n are partial sums and M(b-a)

Upper Integral: $\overline{\int} = \overline{\int_a^b} f(x) dx =$ $lub\{L(f,p): p \in P\}$ (bounded below by -M(b-a)

Riemann Integrable: A continuous function f is Riemann integrable if U(f, P) – $L(f,P)<\varepsilon.$

Integrable: If $\int f = \overline{\int} f$, then f is integrable on [a, b]

 $f_n \to f$: For every $x \in E$ and $\varepsilon > 0$, there exists $N(\varepsilon, x)$ such that $|f_n(x) - f(x)| < \varepsilon$, all $n \geq N$, then f_n converges to f.

 $f_n \stackrel{\longrightarrow}{\to} f$: If for every $\varepsilon > 0$, there exists (a single) $N(\varepsilon)$ such that for every $x \in E$, $|f_n(x) - f(x)| < \varepsilon$ for all $n \geq N$ then f_n converges uniformly to f.

Sum of Infinite Series: $\sum_{k=1}^{\infty} a_k = S$ $S_n = \lim_{k=1}^n a_k.$