Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

1.

2.

3.

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น AHHIRU
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น AHHIRU
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น AJ TJ A

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

8.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HHI.
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HHI.
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HJ

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
0.
      BST tree2;
      tree2.insert('G');
1.
      tree2.insert('0');
2.
3.
      tree2.insert('I');
4.
      tree2.insert('N');
      tree2.insert('G');
5.
6.
      tree2.insert('M');
      tree2.insert('E');
7.
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น .	6	F	D	Ţ	6	Ν	M	R	TY
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น									
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	Ē	6	Μ	Ŋ	I	4	Τ	8	06

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


14 E M

5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
3.
      tree3.insert('B');
4.
      tree3.insert('C');
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
      tree3.insert('H');
9.
```

```
หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น A B L D E E C
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น A B L D E E C
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น C E D C B A

A A B L D E E C
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น C E D C B A

A A B L D E E C
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น C E D C B A

A A B L D E E C
```

8A B C D E F 6 H

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```

B D E F G H

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EF 6 H
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น H G F E

	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน
4	ุเนื่องจากอะไร (ขอสั้นๆ) D balance ชีวิเสบรัผบกล่า เพราบ ไพเลก ce จะต่อไปล้ามใกล้าน
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัน
	อย่างไร (ขอสั้นๆ) bu lunce เพราะ ใช้ เวลา การศักดังขอว่า เนาะ มีลำดับชัดไปชก)
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ) งลาเพา
10	ว. ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ)
	balunce 6ND - No cearch Noinvou vou noi un balance
	มแพน (พายพาพายอ