

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIAS E TECNOLOGIA DA PARAÍBA BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

DETECTOR DE INCÊNDIO

ALLAN DOS SANTOS
AYRTON DANTAS
IASMIN SANTOS
MYRLLA LUCAS

1.0 - INTRODUÇÃO

A Internet das Coisas (IoT) descreve a rede de objetos físicos incorporados a sensores, software e outras tecnologias com o objetivo de conectar e trocar dados com outros dispositivos e sistemas pela internet.

O projeto utiliza destes conceitos de IoT para a criação de um sistema de detecção de incêndios, sendo uma aplicação residencial, composta por um firmware, um gateway, um servidor MQTT, um banco de dados e um aplicativo mobile.

Como a demanda por casas inteligentes cresce a cada ano, é de suma importância aplicações, que não somente auxiliem o dia a dia, mas também informem sobre o status da casa, nesse caso em relação a incêndio residencial. Além de que existe o crescimento alarmante de incêndios domésticos, com a mais diversas causas, a utilização desta aplicação poderá ajudar o trabalho dos bombeiros, já que a qualquer indício de elevação de temperatura ou detecção de gás, o aplicativo irá notificar os moradores, que poderão acionar as autoridades competentes.

2.0 - OBJETIVOS

2.1 - Geral

Criar um sistema de detecção de temperatura, umidade de chama e de gás, para que, com essas informações, seja possível detectar início de incêndios.

2.2 - Específicos

- Criar node loT para ler informações de temperatura,gás, umidade e de chama.
- Enviar dados do node loT para um gateway que converterá sinal wifi para wifi.
- Enviar dados do gateway para um broker em nuvem
- Criar um broker MQTT em nuvem
- Criar um banco de dados em nuvem para armazenar informações sobre os dados de temperatura, intensidade luminosa, umidade e se há chama.
- Criar aplicativo para usuário ver informações

- Mostrar histórico de temperatura, intensidade luminosa, umidade e se havia alguma chama.
- Mandar notificação para aplicativo quando há um possível incêndio.

3.0 - MATERIAIS E MÉTODOS

• ESP32

É uma placa de desenvolvimento com Wifi e Bluetooth. Ele faz parte do node de detecção de incêndio do projeto.

Especificações:

- Confiabilidade do teste: htol/htsl/uhast/tct/esd
- Protocolo wi-fi: 802.11 b/g/n (802.11n, acelerar até 150 mbps)
- A-MPDU e A-MSDU agregação, suporte 0.4 & micro; s guarda intervalo
- Faixa de frequência 2.4 ghz ~ 2.5 ghz
- Protocolo bluetooth: compatível com os padrões de bluetooth v4.2
 br/edr e ble
- Rádio bluetooth: receptor de nzif com-97 dbm sensibilidade, classe-1, classe-2 e classe-3 transmissores, afh
- Áudio bluetooth: cvsd e áudio sbc
- Interface do módulo: cartão sd, uart, spi, sdio, i2c, led pwm, motor pwm, i2s, ir, contador de pulso, gpio, sensor de toque capacitivo, adc, dac, relação automotivo de dois fios (twai®, compatível com iso11898-1)
- Sensor on-chip: sensor hall
- Flash spi integrado: 4 mb
- Tensão de funcionamento/tensão de alimentação: 3.0 v ~ 3.6 v

Raspberry Pi 4

É o gateway do projeto.

Especificações:

- Processador: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8)
 64-bit SoC @ 1.5GHz
- Memória: 4GB LPDDR4 2400 SDRAM
- Conectividade: Wifi 802.11ac Wireless, Bluetooth 5.0 e Gigabit Ethernet
- Portas: 2 USB 3.0 e 2 USB 2.0
- Pinagem: 40 pinos padrão da Raspberry Pi (compatível com placas anteriores)
- 2 saídas micro-HDMI (suporte 4K a 60fps)
- 2 MIPI DSI display
- 2 lane MIPI CSI camera
- Suporte H.265 (4kp60 decode) e H264 (1080p60 decode, 1080p30 encode)
- OpenGL ES 3.0 Graphics
- Slot Micro-SD Card
- Fonte: 5V DC via conexão USB-C ou 5V DC via GPIO (Mínimo 3 Amperes)
- Power over Ethernet (PoE) Enabled

Sensor de Umidade e Temperatura DHT11

Node de Detecção.

O sensor de umidade e temperatura utilizado foi o DHT11, ele é digital que usa um sensor de umidade capacitivo e um termistor para medir o ar circundante, e emite um sinal digital no pino de dados. Ele permite obter novas informações a cada 2 segundos.

Especificações:

- Modelo: DHT11
- Tensão de operação: 3-5VDC (5.5VDC máximo)
- Faixa de medição de umidade: 0 a 100% UR
- Faixa de medição de temperatura: -40° a +80°C
- Corrente: 2.5mA max durante uso, em stand by de 100uA a 150 uA
- Precisão de umidade de medição: ± 2.0% UR
- Precisão de medição de temperatura: ± 0.5 °C

• Resolução: 0.1

Tempo de resposta: 2s

Dimensões: 25 x 15.7mm (sem terminais)

Sensor de Chama

Node de Detecção.

Este sensor pode ser usado para detectar fontes de chama ou outras fontes de calor que possuam tamanho de onda entre 760 a 1100 nm. Seu ângulo de detecção pode chegar a 60 graus e no meio de sua placa há um buraco onde se encaixa um parafuso com o objetivo de direcionar o sensor conforme desejado. Quando há fogo a saída do sensor fica em estado alto e quando não há detecção em estado baixo. Este limite pode ser ajustado através do potenciômetro presente no sensor que regulará a saída digital D0.

Especificações:

Tensão de Operação: 3,3-5v

Corrente de Saída: 15mA

Sensibilidade ajustável via potenciômetro

Saída Digital

• Fácil instalação

Led indicador para tensão

Led indicador para saída digital

Comparador LM393

Dimensões: 3,6x1,5 cm

Sensor de Gás Inflamável e fumaça MQ-2

Node de Detecção.

O Sensor de Gás MQ-2 é um módulo que baseado no sensor ZYMQ-2, sensor que é capaz de detectar gases/vapores de GLP (gás de cozinha), Metano, Propano, Butano, Hidrogênio, Álcool e fumaça de cigarro, detectando a concentração dessas substâncias no ar.

O Sensor MQ-2 possui uma boa concentração de detecção e é de uso prático e simplificado, já que ele trabalha com o comparador LM393. A sua tensão de operação é de 5V e seu consumo de corrente é baixo, facilitando muito o

trabalho com os mais diversos microcontroladores, como Arduino, Raspberry ou Pic, além de ter um excelente custo benefício para estudantes, hobbystas e profissionais iniciantes da área de eletrônica.

Especificações

Modelo: MQ-2

Comparador: LM393

 Detecção: GLP, Metano, Propano, Butano, Hidrogênio, Álcool, Gás Natural e outros inflamáveis.

Detecção de fumaça

Concentração de detecção: 300-10.000ppm

Tensão de operação: 5V

Sensibilidade ajustável via potenciômetro

• Saída Digital e Analógica

Led indicador para alimentação

Led indicador para saída digital

Dimensões: 32 x 20 x 15mm

Peso: 8g.

3.1 - Diagrama de Blocos

3.1.1 - Geral

3.1.2 - Node Sprinkle

3.1.3 - Node Detector de Incêndio

3.1.4 - Gateway

3.1.5 - Nuvem

4.0 - RESULTADOS

O projeto é um sistema de detecção de incêndio que utiliza dos conceitos de aplicações IOT, para seu desenvolvimento, com partes de hardware como sensores e microcontroladores e o software, sendo um aplicativo mobile. O sistema é dividido em 2 nodes sendo um detector de incêndio e um sprinkler , um gateway que usa o microcontrolador Raspberry Pi 4. O projeto também utiliza computação na nuvem, para fazer comunicação entre banco de dados e o backend.

4.1 - Nodes

O circuito tem como base uma placa microcontrolada com chip ESP32, conectada com 2 sensores e 1 módulo. Os sensores são de gás (MQ-2), de chama e o módulo de temperatura e umidade (DHT11). Estes sensores e o módulo são conectados em entradas com conversores analógico-digital. Os dados são enviados para o gateway utilizando conexão WIFI e protocolo MQTT.

4.2 - Gateway

O gateway como falado anteriormente usa a placa microcontroladora Raspberry Pi 4. Nele foi usado um broker para distribuir mensagens entre publicadores e inscritos entre os nodes. Também foi feito um pré-processamento de dados, já que é recebido uma string e ele retorna um número 0 se não tiver detectado o incêndio e 1 para incêndio detectado e manda essas informações para o software.

4.3 - Nuvem

Utilizamos vários serviços da computação em nuvem da Amazon, ou mais conhecida como AWS. Foram criadas duas instâncias do EC2 (Amazon Elastic Compute Cloud), uma para o broker que serve para receber informações enviadas do gateway e distribuir para a aplicação mobile e uma para rodar o servidor TOMCAT onde fica o backend do sistema mobile. Também foi criada uma instância do MySQL no RDS (Amazon Relational Database Service).

4.4 - Aplicativo

No aplicativo foram usadas as tecnologias Java/Spring para o backend e o React Native para o frontend. Pelo celular o usuário visualiza as informações da temperatura, umidade do ambiente, e também recebe uma notificação caso seja detectado incêndio.

5.0 - CONCLUSÕES

O objetivo geral de criar um sistema de detecção de incêndio foi alcançado, mas ao longo do desenvolvimento foram encontradas algumas adversidades, como peças queimadas, além da dificuldade de conexão com o gateway com o aplicativo mobile, para que fosse possível receber as notificações, tivemos problemas com a

conexão da internet do IFPB, não conseguimos fazer o gateway funcionar, pois a internet bloqueia algumas páginas, mas no caso foi em relação instância do AWS. Dessa forma, não foi possível rodar a aplicação por completo. Para trabalhos futuros é importante a melhoria do aplicativo, como criação de telas de login, logout, fazer uma interface mais intuitiva, também melhor desenvolvimento e compreendimento do gateway usando o microcontrolador Raspberry.