

Multi-Arm Bandits

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

October 28, 2022

Overview

- Introduction to Bandit Problem
- 2 Naive Approaches
- 3 Optimism in the Face of Uncertainty
- Thompson Sampling

Introduction to Bandit Problem

Multi Arm Bandit

▶ Learning Problem : Which arm is the best ?

▶ **Decision Problem :** Which arm to pull next?

Multi Arm Bandit: Setting

- \blacktriangleright There are K arms to pull and there are N rounds
- ▶ The agent can pull any of the K arms in each round $t \in \{0, 1, \dots, N\}$
- \triangleright On pulling arm a, the agent gets a random reward r_a sampled from a distribution (independent of previous choices and rewards)
- ▶ Goal is to find an algorithm that maximizes the sum of rewards obtained by pulling arm (in expectation)

Bandit Problems – Motivations

- ▶ Managing exploration-exploitation trade-off
- ▶ Baby reinforcement learning
- ▶ Lots of appliations in online learning

Example: Music Recommendation

Music Recommendation

Objective maximize the sum of ratings

▶ Decision Problem : Which song to play next ?

Example: Clinical Trial

▶ Decision Problem: Which treatment to be given for next patient? Or Which line of treatment is best?

Example: Dynamic Pricing

- ▶ Seller has a commodity to sell in market
- \triangleright N possible discrete prices
- ▶ Observation : Sale or no sale for offered price
- ▶ Explore different prices or pick the best performing prices so far

Other Applications

- ▶ Ad Placement
- ► A/B Testing
- ▶ Network Routing
- ▶ Game Tree Search

Multi Arm Bandit : Formulation

- ▶ A multi-arm bandit is defined as a tuple $\langle A, \mathcal{R} \rangle$
- \triangleright < A > is the set of arms available
- $ightharpoonup \mathcal{R}^a(r) = \mathbb{P}(r|a)$ is the unknown of distribution of rewards of arm a
- ▶ At each step t the agent selects an action $a_t \in \mathcal{A}$ and gets a reward $r_t \sim \mathcal{R}^{a_t}$
- ▶ The goal is to maximise cumulative reward $\sum_{t=1}^{N} r_t$

Regret Minimization

- ▶ The goal is to maximize cumulative reward $\sum_{t=1}^{N} r_t$
- ▶ Define the action value function Q(a) to be the mean reward for action a i.e. $Q(a) = \mathbb{E}(r|a)$
- ightharpoonup The optimal value V^* is

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

▶ The regret is the lost opportunity at one step

$$l_t = \mathbb{E}[V^* - r_t] = V^* - \mathbb{E}[r_t]$$

► Total regret is the total opportunity loss

$$L_N = \mathbb{E}\left[\sum_{t=1}^N \left(V^* - r_t\right)\right] = NV^* - \mathbb{E}\left[\sum_{t=1}^N r_t\right]$$

 \blacktriangleright Maximize cumulative reward \equiv Minimize total regret

Regret Minimization: Alternative Formulation

- ▶ Let the **count** $N_t(a)$ be the number of times arm a is pulled upto time t $(N_t(a) \equiv \sum_{i=1}^t \mathbb{1}_{A_a=a})$
- ▶ Let Δ_a be the **gap** between optimal reward (from optimal action a^*) and reward of arm a

$$\Delta_a = V^* - Q(a)$$

▶ Regret is a function of gaps and counts given as

$$L_{N} = \mathbb{E}\left[\sum_{t=1}^{N} (V^{*} - r_{t})\right] = \mathbb{E}\left[\sum_{t=1}^{N} \Delta_{A_{t}}\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^{N} \sum_{a \in A} \mathbb{1}_{A_{t}=a} \Delta_{a}\right] = \sum_{a \in A} \Delta_{a} \mathbb{E}\left(N_{N}(a)\right)$$

► A good algorithm ensures small counts for large gaps

Linear or Sub-Linear Regret

- ▶ Algorithms that explore forever have total linear regret
- ► Algorithms that never explore have total linear regret
- ▶ Question : Is it possible for develop algorithms have sub-linear regret ?

On Estimating Mean Rewards

- ▶ We consider algorithms that estimate $\hat{Q}_t(a) \approx Q(a)$
- ▶ The sample estimate $\hat{Q}(a)$ is estimated via Monte-Carlo simulations

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{\tau=1}^t r_\tau \mathbb{1}(A_\tau = a)$$

Naive Approaches

Greedy Algorithm

▶ At any time t, a greedy algorithm selects the action with highest $\hat{Q}_t(a)$, i.e.

$$a_t^* = \operatorname*{arg\,max}_{a \in \mathcal{A}} \hat{Q}_t(a)$$

- ▶ Greedy algorithm can lock into a sub-optimal arm forever
- ightharpoonup \Longrightarrow Greedy has linear total regret

Explore Then Commit

Algorithm Explore then Commit

- 1: Let K be the number of arms; N be the total rounds; Initialize M
- 2: **for** $m = 1, 2, \dots M$ **do**
- 3: **for** $a = 1, 2, \dots, K$ **do**
- 4: Pull arm a; Observe reward r_a ; Compute mean reward $\hat{Q}(a)$ for arm a;
- 5: end for
- 6: end for
- 7: **for** $i = MK + 1, \dots, N$ **do**
- 8: Pull the arm with the best mean reward [i.e. $a^* = \arg \max_a \hat{Q}(a)$]
- 9: end for

Question: Which parts of the algorithm explores and which part exploits?

Explore Then Commit

Algorithm Explore then Commit

1: Let K be the number of arms; N be the total rounds; Initialize M

Exploration Phase

- 2: **for** $m = 1, 2, \dots M$ **do**
- 3: **for** $a = 1, 2, \dots, K$ **do**
- 4: Pull arm a; Observe reward r_a ; Compute mean reward $\hat{Q}(a)$ for arm a;
- 5: end for
- 6: end for

Exploitation Phase

- 7: **for** $t = MK + 1, \dots, N$ **do**
- 8: Pull the arm with the best mean reward [i.e. $a^* = \arg \max_a \hat{Q}(a)$]
- 9: end for

Question: Why do we expect this algorithm to work?

Law of Large Numbers

- \blacktriangleright Suppose X_1, X_2, \cdots are independent samples of a random variable X having mean μ
- ▶ Denote empirical mean of m samples by $\hat{\mu}_m$ defined as

$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m X_i$$

- ▶ Weak law of large numbers states that $\hat{\mu}_m \to \mu$ in probability as $m \to \infty$
- ▶ Strong law of large numbers states that $\hat{\mu}_m \to \mu$ almost surely as $m \to \infty$

Explore and Commit: Analysis

- \blacktriangleright At round m, upon pulling arm a, the agent gets a random reward $r_m^a \sim \mathcal{R}^a$
- ▶ After M rounds, we have $\hat{Q}(a)$ as the empirical mean reward for pulling arm a

$$\hat{Q}(a) = \frac{1}{m} \sum_{i=1}^{m} r_m^a$$

$$\hat{Q}(a) \to Q(a)$$

as the number of rounds gets large

Question: Is there a shortcoming to ETC?

ETC does not use the experience generated after the initial explore phase

Greedy Approach

Algorithm Greedy Algorithm

- 1: Let K be the number of arms; N be the total rounds; Initialize M
- 2: **for** $m = 1, 2, \dots M$ **do**
- 3: **for** $a = 1, 2, \dots, K$ **do**
- 4: Pull arm a; Observe reward r_a ; Compute mean reward $\hat{Q}(a)$ for arm a;
- 5: **end for**
- 6: end for
- 7: **for** $t = MK + 1, \dots, N$ **do**
- 8: Pull the arm with the **current** best mean reward [i.e. $a^* = \arg \max_a \hat{Q}(a)$]
- 9: Update the mean observed rewards with the latest observation
- 10: **end for**

Question: Will this work well? Can we improve exploration?

The greedy algorithm is unlikely to explore during the exploitation phase

The ϵ - Greedy Approach

Algorithm ϵ - Greedy Algorithm

- 1: Let K be the number of arms; N be the total rounds; Initialize M and choose $\epsilon \in (0,1)$ small
- 2: **for** $m = 1, 2, \dots M$ **do** 3: **for** $a = 1, 2, \dots, K$ **do**
- 4: Pull arm k; Observe reward r_a ; Compute mean reward $\hat{Q}(a)$ for arm a;
- 5: **end for**
- 6: end for
- 7: **for** $t = MK + 1, \dots, N$ **do**
- 8: With probability 1ϵ , pull the arm with the **current** best mean reward [i.e. $a^* = \arg\max_a \hat{Q}(a)$], else play another arm uniformly at random
- 9: Update the mean observed rewards with the latest observation
- 10: **end for**

Quesiton: Do you see possible drawback?

The ϵ -greedy algorithm explores forever. Also, has total linear regret.

Optimistic Initialization

- ▶ **Idea**: Initialise Q(a) for all actions to high value
- ▶ Update action value by incremental Monte-Carlo evaluation; Let $a \in \mathcal{A}$ be the arm pulled at round t, Then,

$$\hat{Q}_t(a) = \hat{Q}_{t-1}(a) + \frac{1}{N_t(a)} \left(r_t - \hat{Q}_{t-1} \right)$$

where $r_t \sim \mathcal{R}^a$ is the reward obtained at round t

- ► Encourages systematic exploration early on
- ▶ Locking onto sub-optimal arm is a possibility
- ► Greedy + optimistic initialization has linear total regret
- \triangleright ϵ Greedy + optimistic initialization has linear total regret

The ϵ - Greedy with Decay Approach

Algorithm ϵ - Greedy with Decay Algorithm

- 1: Let K be the number of arms; N be the total rounds; Initialize M and choose $\epsilon \in (0,1)$ small and choose a small decay rate $r \in (0,1)$
- 2: **for** $m = 1, 2, \dots M$ **do**
- 3: for $a = 1, 2, \cdots, K$ do
- Pull arm a; Observe reward r_a ; Compute mean reward $\hat{Q}(a)$ for arm a; 4:
- 5. end for
- 6: end for
- 7: **for** $t = MK + 1, \dots, N$ **do**
- 8: With probability $1 - \epsilon$, pull the arm with the **current** best mean reward [i.e. $a^* =$ $\arg \max_{a} \hat{Q}(a)$, else play another arm uniformly at random
- 9: Update the mean observed rewards with the latest observation
- Reduce ϵ by fraction r10:
- 11: end for

Certain choices of decay schedule can achieve lograthmic asymptotic total regret

Optimism in the Face of Uncertainty

Optimism in the Face of Uncertainty

- ▶ Which arm (among the three) should we choose at next round?
- ▶ Optimism in the Face of Uncertainty ⇒ pick the arm that we are most uncertain about
- ▶ The more uncertain we are about the action-value of an arm, the more we should explore that action; as it could turn out to be the best action

Upper Confidence Bound

 \blacktriangleright Estimate an upper confidence $\hat{U}_t(a)$ for action a at time t such that

$$Q(a) \le \hat{Q}_t(a) + \hat{U}_t(a)$$

- The upper confidence bound depends on the number of times an arm a has been pulled so far
 - ★ Small $N_t(a) \Longrightarrow \text{Large } \hat{U}_t(a)$ ★ Large $N_t(a) \Longrightarrow \text{Small } \hat{U}_t(a)$
- Select action a, at time t, that maximizes

$$a_t = \arg\max_{a} \left[\hat{Q}_{t-1}(a) + \hat{U}_{t-1}(a) \right]$$

Hoeffding's inequality provides a way to arrive at the formulation for $\hat{U}_t(a)$

Hoeffding's Inequality

Theorem

Let X_1, \ldots, X_t be i.i.d. (independent and identically distributed) random variables and they are all bounded by the interval [0,1]. The sample mean is $\overline{X}_t = \frac{1}{t} \sum_{\tau=1}^t X_{\tau}$. Then for u > 0, we have,

$$\mathbb{P}[\mathbb{E}[X] > \overline{X}_t + u] \le e^{-2tu^2}$$

▶ We will apply Hoeffding's inequality to the rewards of the bandit

$$\mathbb{P}[Q(a) > \hat{Q}_t(a) + \hat{U}_t(a)] \le e^{-2N_t(a)\hat{U}_t(a)^2}$$

Calculating Upper Confidence Bound

- \triangleright Pick a probability p that true value exceeds UCB
- ▶ Now solve for $\hat{U}_t(a)$ by setting

$$p = e^{-2N_t(a)\hat{U}_t(a)^2}$$

then,

$$\hat{U}_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

- ▶ Reduce p as t^{-4} as we observe more rewards
- \blacktriangleright Ensures optimal action selection asymptotically (as $t \to \infty$)

$$\hat{U}_t(a) = \sqrt{\frac{2\log t}{N_t(a)}}$$

UCB1 Algorithm

Algorithm UCB1 Algorithm

- 1: Let K be the number of arms;
- 2: **for** $a = 1, 2, \dots, K$ **do**
- 3: Pull arm a; Observe reward r_a ; Compute mean reward $\hat{Q}(a)$ for arm a;
- 4: end for
- 5: **for** $t = K + 1, \dots, N$ **do**
- 6: Pull arm a such that

$$a_t = \underset{a}{\operatorname{arg\,max}} \left[\underbrace{\hat{Q}_t(a)}_{\text{Exploitation}} + \underbrace{\sqrt{\frac{2\log t}{N_t(a)}}}_{\text{Exploration}} \right]$$

- 7: Update the mean observed rewards and UCB coefficient of the arm chosen
- 8: end for

Assumptions Matter

- \blacktriangleright So far we have made no assumptions about the reward distribution $\mathcal R$ (except bound on rewards)
- ▶ Neccessary to make assumptions; Strong assumptions, when made the right way, lead to better algorithms
- ► Examples :
 - ★ Bernoulli
 - ★ Gaussian with unknown mean and unit variance
 - ★ Many more ...

Bayesian Bandits

- \triangleright So far we have made no assumptions about the reward distribution \mathcal{R} (except bound on rewards)
- ▶ Bayesian bandits exploit prior knowledge of rewards, $p[\mathcal{R}]$
- They compute posterior distribution of rewards $p[\mathcal{R}|h_t]$ where $h_t = \{a_1, r_1, \dots, a_{t-1}, r_{t-1}\}$
- ▶ Use posterior to guide exploration (Bayesian UCB, probability matching)
- ▶ Better performance if prior knowledge is accurate

Bayesian UCB

- ► Assume reward distribution is Gaussian
 - \star Reward of every arm is given by $\mathcal{N}(\mu_a, \sigma_a)$
- \blacktriangleright Upon pulling arm a, observe reward r_a ; Compute posterior using Baye's law
- ▶ Pick arm a that maximizes standard deviation of $\hat{Q}_t(a)$

$$a_t = \operatorname*{arg\,max}_{a} \left[\underbrace{\mu_{t,a}}_{\text{Exploitation}} + \underbrace{\sqrt{\frac{c\sigma_{t,a}}{N_t(a)}}}_{\text{Exploration}} \right]$$

Thompson Sampling

Bernoulli Bandits

- Consider a Bernoulli bandit
 - \bigstar Each one of the K machines has a probability θ_k of providing a reward to the player

Let us consider a single Bernoulli bandit with probability θ of obtaining a reward

- ightharpoonup Suppose R be the random variable that denotes the outcome of pulling the arm of a bandit
 - \bigstar $\mathbb{P}(R=1) = \theta$ and $\mathbb{P}(R=0) = 1 \theta$
 - ★ The probability mass function can be written as

$$\mathbb{P}(R=r) = \theta^r (1-\theta)^{1-r}$$

 \star The expected reward after one round is given by $\mathbb{E}(R) = \theta$

Frequentist vs Bayesian Approach

Let R_1, R_2, \dots, R_n be outcomes of n rounds of pulling the bandit arm

- ▶ Frequentist approach: Estimate the fixed but unknown parameter θ using the average of R_1, \dots, R_n for large n
- ▶ Bayesian approach: Treat θ as an uncertain parameter, and estimate its distribution from the data $D_n = \{R_1, \dots, R_n\}$ by computing the posterior distribution using Baye's formula

$$\mathbb{P}(\theta|D_n) = \frac{\mathbb{P}(D_n|\theta) \cdot \eta(\theta)}{\mathbb{P}(D)}$$

where $\eta(\theta)$ is a suitable prior distribution on θ

A suitable prior distribution for a Bernoulli bandit is uniform prior

Choice of Initial Prior

▶ Suppose we take a uniform prior, then,

$$\mathbb{P}(\theta|D_n) = \underbrace{c\theta^{S_n}(1-\theta)^{n-S_n}}_{\text{Beta Distribution}}$$

with $S_n = R_1 + R_2 + \dots + R_n$

▶ The posterior $c\theta^{S_n}(1-\theta)^{n-S_n}$ is of the form that resembles Beta distribution with parameters α and γ given by

$$\beta_{\alpha,\gamma}(\theta) = \frac{\Gamma(\alpha + \gamma)}{\Gamma(\alpha)\Gamma(\gamma)} \theta^{\alpha - 1} \cdot (1 - \theta)^{\gamma - 1}$$

- ▶ Note that $\beta_{1,1}$ is a uniform distribution
- ▶ Initialize the Beta parameters α and β such that prior is uniform
 - \star $\alpha = 1$ and $\gamma = 1$; we expect the reward probability to be 50% (uniform prior)
 - \star $\alpha = 9000$ and $\gamma = 1000$; we strongly believe that the reward probability is 90% (not a recommended choice for prior)

Posterior Updates of Beta Distribution

- ▶ Assuming uniform prior, after n rounds, we have, $\theta|D_n \sim \beta_{S_n+1,n-S_n+1}$
- ► Recursive posterior updates :

$$\star$$
 If $\theta|D_n \sim \beta_{\alpha_n,\gamma_n}$ then $\theta|D_{n+1} \sim \beta_{\alpha_{n+1},\gamma_{n+1}}$ with

$$\begin{array}{rcl} \alpha_{n+1} & = & \alpha_n + R_{n+1} \\ \gamma_{n+1} & = & \gamma_n + (1 - R_{n+1}) \end{array}$$

Thompson Sampling: Algorithm

Algorithm Thompson Sampling Algorithm

- 1: Let K be the number of arms;
- 2: **for** $t = 1, \dots, N$ **do**
- 3: **for** $a = 1, 2, \dots K$ **do**
- 4: Sample θ_t^a from its posterior; $\theta_t^a \sim \beta_{\alpha_t^a, \gamma_t^a}$
- 5: end for
- 6: Play the arm $a^* = \arg \max_a \theta_t^a$ and observe the reward R_t
- 7: Update the posterior of the chosen arm by updating the parameters of the corresponding Beta distribution

$$\alpha_{t+1}^{a^*} = \alpha_t^{a^*} + R_t$$

$$\gamma_{t+1}^{a^*} = \gamma_t^{a^*} + (1 - R_t)$$

8: end for

Closing Remarks

- ▶ Information state space approach involves modelling the arm selection problem as an MDP with state comprising of history (h_t) of past decisions and rewards. Subsequently, use model free RL or Bayesian RL to solve the MDP
- ► There are other variants of bandit problems that include **Best arm identification**, **PAC** and **Contextual Bandits**
 - \star PAC: find an arm within ϵ of the best arm with probability at least $1-\delta$
- ► The exploration techniques mentioned here can easily be extended to full reinforcement learning setting