Практическое занятие 4. Прямая на плоскости

Теоретические сведения

1 еоретическ	Теоретические сведения					
	Точкой и направляющим вектором	Двумя точками	Точкой и вектором нормали			
	\vec{j} M_0 \vec{r} d \vec{r}	$ \frac{\vec{j}}{\vec{i}} = \frac{M_2 M}{\vec{r}} d $	\vec{j} \vec{m}			
	$ec{r_0} = x_0 ec{i} + y_0 ec{j} \ M_0 \left(x_0, y_0 ight)$ $ec{s} = s_x ec{i} + s_y ec{j}$, $ec{s}$ - направляющий вектор $ec{r} = x ec{i} + y ec{j} \ M \left(x, y ight)$	$\vec{r}_{1} = x_{1}\vec{i} + y_{1}\vec{j} M_{1}(x_{1}, y_{1})$ $\vec{r}_{2} = x_{2}\vec{i} + y_{2}\vec{j} M_{2}(x_{2}, y_{2})$ $\vec{r} = x\vec{i} + y\vec{j} M(x, y)$	$ec{n} = Aec{i} + Bec{j}$ $ec{n}$ — вектор нормали $ec{r} = xec{i} + yec{j}$ $M\left(x,y ight)$			
Векторные уравнения	$\vec{r} = \vec{r_0} + t \cdot \vec{s}$	$\vec{r} = \vec{r_1} + t\left(\vec{r_2} - \vec{r_1}\right)$	$\left(\vec{r} - \vec{r_0}\right) \cdot \vec{n} = 0$			
Уравнения в координатах	Параметрические уравнения прямой $ \begin{cases} x = x_0 + ts_x \\ y = y_0 + ts_y \end{cases} $ Уравнение прямой с определителем $ \begin{vmatrix} x - x_0 & y - y_0 \\ s_x & s_y \end{vmatrix} = 0 $ Каноническое уравнение прямой $ \frac{x - x_0}{s_0} = \frac{y - y_0}{s_0} $	$\begin{vmatrix} x - x_1 & y - y_1 \\ x_2 - x_1 & y_2 - y_1 \end{vmatrix} = 0$ $\frac{x - x_1}{x_1} = \frac{y - y_1}{x_2 - y_1}$	$A(x-x_0)+B(y-y_0)=0$			
	S_x S_y	$\frac{1}{x_2 - x_1} = \frac{y_1}{y_2 - y_1}$				

Уравнение с угловым коэффициентом	Уравнение прямой в отрезках $\frac{x}{a} + \frac{y}{b} = 1$ здесь a и b – отрезки, отсекаемые прямой на осях Ox и Oy .	Общее уравнение прямой $Ax + By + C = 0$ $\vec{s} = (-B, A) - $ направляющий вектор $\vec{n} = (A, B) - $ вектор нормали
Геометрический смысл знака трехчлена $Ax + By + C$ Если в аффинной системе координат прямая d задана уравнением $Ax + By + C = 0$, то полуплоскости с границей d определяются неравенствами $Ax + By + C > 0$, $Ax + By + C < 0$.	Нормальное уравнение прямой: $x\cos\alpha + y\sin\alpha - p = 0$, α – угол между осью абсцисс и вектором нормали, p – расстояние от начала координат до прямой, $\mu = \pm \frac{1}{\sqrt{A^2 + B^2}}$ — нормирующий множитель, применяемый к общему уравнению прямой $Ax + By + C = 0$, знак берется противоположный знаку C	

Особенности расположения прямой относительно системы координат, если некоторые из чисел A, B и C равны нулю ($A^2 + B^2 \neq 0$).

1. $C = 0 \Leftrightarrow d : Ax + By = 0 \Leftrightarrow O \in d$.

2. $A = 0 \Rightarrow d : By + C = 0 \Rightarrow$ $\Rightarrow \vec{s} = (-B, 0), \vec{i} = (1, 0) \Rightarrow$ $\vec{s} \parallel \vec{i} \Rightarrow d \parallel Ox$.

3. $B = 0 \Rightarrow d : Ax + C = 0 \Rightarrow$. $\Rightarrow \vec{s} (0, A), \vec{j} = (0, 1) \Rightarrow \vec{s} \parallel \vec{j} \Rightarrow d \parallel Oy$ 4. $A = C = 0 \Rightarrow d : y = 0 \Rightarrow d = Ox$.

5. $B = C = 0 \Rightarrow d : x = 0 \Rightarrow d = Oy$.

Взаимное расположение прямых $d_1: A_1x + B_1y + C_1 = 0 \text{ и}$ прямых коэффициенты не равны нулю, то $d_2: A_2x + B_2y + C = 0$ 1. $d_1 = d_2 \Leftrightarrow A_2 = \lambda A_1 \text{ , } B_2 = \lambda B_1 \text{ , } C_2 = \lambda C_1$ 2. $d_1 \parallel d_2 \Leftrightarrow A_2 = \lambda A_1 \text{ , } B_2 = \lambda B_1 \text{ , } C_2 = \lambda C_1$ 3. $d_1 \text{ и } d_2 \text{ пересекаются} \Leftrightarrow A_2 = \lambda A_1 \text{ , } B_2 \neq \lambda B_1$ Чтобы найти точку пересечения надо решить систему $A_1x + B_1y + C_1 = 0,$ 3. $d_1 \text{ и } d_2 \text{ пересекаются} \Leftrightarrow A_2 = \lambda A_1 \text{ , } B_2 \neq \lambda B_1$

 $\begin{cases} A_2 x + B_2 y + C_2 = 0. \end{cases}$

Метрические задачи

Расстояние от точки до прямой	Угол между прямыми		
$M_0(x_0,y_0),$	$d_1: A_1 x + B_1 y + C_1 = 0 $ и	$d_1: y = k_1 x + b_1 $ и	
d: Ax + By + C = 0	$d_2: A_2 x + B_2 y + C = 0, d_1 \parallel d_2$	$d_2: y = k_2 x + b_2, \ d_1 \not \mid d_2.$	
$\rho(M_0, d) = \frac{ Ax_0 + By_0 + C }{\sqrt{A^2 + B^2}}$	$\cos\left(d_{1}, d_{2}\right) = \frac{A_{1}A_{2} + B_{1}B_{2}}{\sqrt{A_{1}^{2} + B_{1}^{2}}\sqrt{A_{2}^{2} + B_{2}^{2}}}$	$tg(d_1, d_2) = \frac{k_2 - k_1}{1 + k_1 k_2}$	
	$\sin\left(d_{1}, d_{2}\right) = \frac{A_{1}B_{2} - A_{2}B_{1}}{\sqrt{A_{1}^{2} + B_{1}^{2}}\sqrt{A_{2}^{2} + B_{2}^{2}}}$		
	$tg(d_1, d_2) = \frac{A_1B_2 - A_2B_1}{A_1A_2 + B_1B_2}$		
	Условие перпендикулярности прямых		
	$d_1 \perp d_2 \Leftrightarrow A_1 A_2 + B_1 B_2 = 0$	$d_1 \perp d_2 \Leftrightarrow 1 + k_1 k_2 = 0$	

Задачи

- **1.** Дана прямая 9x 12y + 10 = 0. Написать для этой прямой: а) вектор нормали; б) направляющий вектор; в) угловой коэффициент; г) нормальное уравнение; д) уравнение с угловым коэффициентом; е) уравнение в отрезках; ё) параметрические уравнения.
- **2.** Составить уравнение прямой, если известно, что основание перпендикуляра, опущенного из начала координат на эту прямую точка P(2,3). (2x + 3y 13 = 0)
- **3.** Найти уравнение прямой, проходящей через начало координат, если известно, что нормальный вектор этой прямой имеет одинаковые координаты. $\langle x + y = 0 \rangle$
- **4.** Найти длину перпендикуляра, проведенного из начала координат, к прямой, проходящей через точки $M_1\left(2,\frac{15}{2}\right)$ и $M_2(-4,3)$, и угол между осью Ox и этим перпендикуляром. $\left(-\frac{3}{5}\right)$ \\
- **5.** Провести прямую на расстоянии d=3 от точки P(-2,4) параллельно прямой 5x+12y+2=0 (5x+12y+1=0) 5x+12y-77=0
- **6.** Найти расстояние между прямыми 4x + 3y 4 = 0 и 8x + 6y + 3 = 0.
- 7. (A-485) Вывести формулу для вычисления расстояния между параллельными прямыми $Ax + By + C_1 = 0$ и $Ax + By + C_2 = 0$. Пользуясь полученной формулой, определить расстояние между прямыми:

а)
$$3x + 4y - 18 = 0$$
 и $3x + 4y - 43 = 0$; б) $x + y - 6 = 0$ и $2x + 2y - 3 = 0$. \\5; $\frac{9\sqrt{2}}{2}$

- **9.** (А-481) Написать уравнение окружности с центром в точке P(6,-3) и касающейся прямой 3x-4y-15=0. $\setminus (x-6)^2+(y+3)^2=9\setminus$
- **11.** (A-412) Определить координаты точки, симметричной точке M(2,-5) относительно прямой 2x + 8y 15 = 0. \\((5,7)\\

- 12. (А-373) Написать уравнение прямой:
 - · а) проходящей через точки A (-1, 1) и B (2, 5);
 - б) проходящей через начало координат и точку А (2, 5);
 - в) проходящей через точку А (2, -6) и параллельной вектору $p\{1, -1\};$
 - г) отсекающей на осях координат отрезки $a=3,\ b=-2;$
 - д) проходящей через точку A (3, 5) и параллельной оси Ox; е) проходящей через точку B (—1, 2) и параллельной оси Oy;
 - 'ж) проходящей через точку A (1, -5) и параллельной прямой x - 3y + 1 = 0;
 - з) проходящей через точку А (2, 2) и параллельной прямой х + +y=0.

\\a)
$$4x - 3y + 7 = 0$$
, 6) $5x - 2y = 0$, B) $x + y + 4 = 0$, F) $\frac{x}{3} - \frac{y}{2} = 1$, A) $y - 5 = 0$,

e)
$$x + 1 = 0$$
, ж) $x - 3y - 16 = 0$, 3) $x + y - 4 = 0$.\\

- 13. (А-418) Исследовать, как расположены относительно осей координат следующие прямые:
- a) 2x 3y = 0;b) 3x y + 1 = 0;c) 3y + 1 = 0;d) x + 2y = 0;e) 6x = 0.

- 14. (А-419) Исследовать взаимное расположение следующих пар прямых и в случае пересечения определить координаты общей точки

 - a) x + y 3 = 0 и 2x 2y 6 = 0; 6) x + 2y + 1 = 0 и x + 2y + 3 = 0;
 - B) $\frac{\sqrt{3}}{2}x 3y + \sqrt{3} = 0$ и $x 2\sqrt{3}y + 2 = 0$;

 - r) y = 3 H x + y = 0;n) x + y + 1 = 0 H x + y 1 = 0;e) x = 0 H x + 3 = 0;

 - ж) $\sqrt{5}x 3y + 1 = 0$ и $\frac{5}{3}x \sqrt{5}y + \frac{\sqrt{5}}{3} = 0$.
 - \setminus а) пересекаются в точке M(3,0), б) параллельны, в) совпадают,
 - г) пересекаются в точке M(-3,3), д) параллельны, е) параллельны, ж) совпадают\\