DINAMIEKO PROGRAMIRANJE

- PROBLEM: uspo teoliti sličnost DNA dva organizma

- razmotati polinuklestidhe lance grastene ad 4 vrste muklestida

+ - adening

T - timin S

c - citozin ?

9 - granin S

odgovor: koliko je dugačak najolulji zajednički podniz?

(3)

G G C T T T A

roblem:

Za dana 2 niza

treba pronači zajednički podniz od X i Y tako da je njegova duljina najveća.

skraćeno: LCS - engl. longest common subsequence

ringer:

$$X = \langle A, C, T, T, C, A, q \rangle$$

$$Y = \langle G, A, C, T, C, A, G, T \rangle$$

$$U = \langle G, G, C, T, T, T \rangle$$

$$LCS(X, Y) = \langle A, C, T, C, A, q \rangle$$

$$LCS(X, Y) = \langle A, C, T, C, A, q \rangle$$

Naivno rješevje:

- proyeriti svaki podniz od X je li poolniz od Y - uzeti najdulji

+1gontam.

kvaj za svaki Vrati Z

Složemost algoritma???

m=|X| , n=|Y|

Koliko ima podnitova d X?
2^m podnitova

Koliko "kosta" provjeca je 11 S podskup od Y

O(n)

Odgavor: O(n2m)

1×1,141 ≈ 12650000 (Kromosom 5)

Broj atoma u svemiru: 1080

ldėja: - koristiti tehniku dinamičkog programinauja
- riješenje potproblema koristiti ta rješenje problema

Oznake:

 $X_i = \langle x_1, \dots, x_i \rangle$ prefike od X $Y_i = \langle y_1, \dots, y_i \rangle$ -11 -11 Y $\mathcal{E}[i_1j_1] := lcs(X_i, Y_j)$ $\mathcal{E}[m, n] := lcs(X_i, Y_j)$

$$Z_5 = LCS(X_6, Y_6)$$

akyniak:

2011 (o optimalnej podstrukturi LCS problema)

eka su $X = (x_1, \dots, x_m)$ i $Y = (y_1, \dots, y_m)$ nizori i $Z = (z_1, \dots, z_k)$ lo koji LCS od X i Y . Tada vrijede syedeće tvrolvýe:

- 1. Ako je Xm=Xm'n onda je Zk=Xn=Xm ... Zk-1 = LCS(Xm-1, Yn-1)
- 2. Neka je xm + yn. Ako je Zk + xm. onda je Z= LCS (Xm-1, Y)
- 3. Neka je xm tyn. Ako je zk tyn owola je Z= LCS (X, Yn-1)

coiz. (Leiserson, Rivest, Stein 2nd edition, 351, str)

Interpretacija teorema:

Xm = Yn Xm & yn >> Ze & Yn Z= LCS (Xm-1, Yn-1) Zk + Xm Z= CCS(X, Yny) xm dodati na kvaj nita Zk-1 Z = LCS(Xm-1,Y) typienji će biti poolniz dulpi , ako je i=0, ili; 11,j>0 Xi=43

C[i,j] = { c[i-1, j-1] + 1 max(c[i,j-1], c[i-1,j]) 120,00 xi+yi

najprije jemo izračunati dubjinu najdužeg zajed nickog podniza

LCS-LENGTH (XIY) me X. length r ← Y. length for i < 1 to m Jo Ktijo]←O

end for Sor je 1 to n do plois) e o end for

for it is to m do for j + 1 to W do if Xi = Ji then [[i-1,j-1] +1 b[i,i] = "~" else it p[i-1,i] 2 p[i,j-1] then flis] + pli-1, i)

else
$$p(i,j) \leftarrow "\uparrow"$$

$$\frac{else}{p(i,j)} \leftarrow p(i,j-1)$$

$$\frac{end}{b} = \frac{b(i,j)}{b} \leftarrow "\leftarrow"$$

$$\frac{end}{b} = \frac{b(i,j)}{b} \leftarrow ||f||$$

X/7	15	4	A	G	T	0.	A·	9.1	T
	0	0	0	0	0	0	0	0	0
A	.0	O	1/80)	-1 <	-11	-1	1 4	-14	- 1
C·	0	Q	1	14/	- 2	2	-2<	- 2	- 2
T	0	0	1	12/1	31	-3	-34	-3	3
T	0	0	10	12	13/1	3	3	3	4
C	0	0	0	2	3	1/2	-4	4	-4
Δ	0	0	1	2	3	4	5	+5	- 5
9	0	1	1	2	3	14	15	W	4/6

tekonstrukcija najduljeg zajedničkog podniza

l'ijeme itursavanja: LCS-LENGTH - O(mn)

PRINT-LCS - O(m+n)

- LCE primjer optimizacijskog problema
- optimizacijski problem srako ijejenje ima pristruženu vrijednost ci j je promaći rjejenje s najvećom | najmanj vrijednostu
- dinamičko programiranje koristimo u rješavanju uglavnom optimizacijskih problema
- Kyuini koraci:
 - 1. Okarakterizirati strukturu optimalnog yesenja
 - 2. Rekuzivno definirati vrijednost optimalnog ijsenja
 - 3. krazumati vrijednost optimalnog rješenja (koristeći bottom-up pristup)
 - 4. Rekonstruirati optimalno rješenje na osnovu izračumatih insormacija

Pringer (LCS)

- 1. Teorem o optimalnoj podstrukturi LCS problema
- 2. Rekurzivna relacija za ratunanje optimalne vrijednosti
- 3, LCS-LENGTH algoritam i tablica
- 4. PRINT-ICS algoritam (i tablica)

```
Problem:
```

ulaz: niz metria A1,..., An , næ N &a koje je definiran produkt A1 A2---- An

itlat: itratumeti produkt AIA2--- An konistici
najmanji mognici broj operacija množenja skalara

- asocipetionost umo Zenja matrica: $(A_1 (A_2 (A_3 A_4)))$ $(A_1 (A_2 A_3) A_4))$ $((A_1 A_2) (A_3 A_4))$ $((A_1 (A_2 A_3) A_4)$ $((A_1 A_2) A_3) A_4)$

- motimo de raspored tagrada ima utjecaj na broj operacija Primjer:

A1 × A2 × A3

10×100 100 ×5 5×50

dva nacina: ((A1 Az) Az)

 $(A_1 \times A_2)$ $10 \cdot 100 \cdot 5 = 5000$ $(A_1 \times A_2) \times A_3$ $10 \times 5 \times 5000$

10.5.50 = 2500

Ukupno: 7500 op.

A1 (A2 A3)

$$(A_2 \times A_3)$$

 $100 \times 5 \cdot 50 = 25000$

An x (Az x Az)

10.100,50 = 50000

Ukupno: 75000 op

Eæklynček: prvi pristup je 10 puta brži.

Inake:

An Az Au Poxpa Paxpz - - - pn-1 x pn

matrica Ai Ima dimenzija

voj natlicitih nacina postavljanje zagrada

(A1--- Ax) (Ax+1 An)
broj natina (x) broj natina
ovdje

k=1,---, u-1

 $P(n) = \begin{cases} 1 & n=1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) & n \ge 2 \end{cases}$ (A₁)

Može se pokazeti de je P(n) € S2(2") (D.Z).

Brute-force metodo ne prolozi ?

Struktura optimalnog postavljanja zagrada

Rekurzija:

m [in] + minimalan broj skal množenja za računanje produkta Ai Aj 1 si sj s n

rjetenje (ono sto trazimo) je ma, n)

i=j =) Ai--Ai => M[i,i] = 0 (ci ≤ u

i < j =) Ai --- Aj = m[i, i] = m[i, ie] + m[k+1,j] + pi-1 Pk pj

Pi-1 x Pk Pg

Pi-1 Pk Pj op.

Rekurzivna relacija:

 $m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min \{ m[i,k] + m[k+1,j] + pi-1pkpj \}, & \text{if } i \leq j \end{cases}$ $i \leq k \leq j$

oznaka: neka je stilj = k takav da je
mtilj = mtilk]it mtk+1,j]+ pi-1) pk pj vili vij

```
pristup kao kad (SC-a. tabularizacija (bottom-up)
· broj moženja ovisi samo o dimenzipama
             P = < Po, 121, ---, Pw p. lentyth = 4+1
  MATRIX - CHAIN - ORDER (P)
                                  Ai --- Aj
                                                  dulgino
  n 

p. length - 1
                                  Pin ---- Pj
                                    ima ih j- 11-1) = j-1+1
  for i < 1 to n
        M[i,i] + 0
                                   Ai ---- Ai+l-1
 for l = 2 +0 u
     for i + 1 +0 n-1+1
        j ← i+l-1
             m[ij] = 0
            for kei to j-1
               9 = m[i,k] + m[k+1,j] + Pi-1 Pk Pj
               if g < m [is]
                   mtiji) = 2
                       S[iji] = k
                end if
     end for
end for
 return m, s
```

1	b	15750	7875	9375	11875	15/25
2		0			7125	
3	1		0	456	2500	1375
4		X		0	1000	3500
T		1			0	5000
6	1					b

i/d	1	12	3	19	5	8
1	×	*	1	3	3	3
2	129	×	2	3	3	3
3			X	3	3	3
4				×	4	8
5					X	*
6						X

$$m[1,3] = m[1]$$

$$m[1,1] + m[2,3] + p_0p_0p_3 = 0 : 2625 + 5250 = (875)$$

$$m[1,3] = min \begin{cases} m[1,1] + m[2,3] + p_0p_0p_3 = 0 : 2625 + 5250 = (875) \\ m[1,2] + m[3,3] + p_0p_2p_3 = 15750 + 0 + 1250 \\ = 18000 \end{cases}$$

$$s[1,3] = 1$$

Konstrukcija optimalnog rjesenja:

PRINT-OPTIMAL- PARENS (S, i, i)

else print "("

enol is

/rijeme izvršavanja:

MATRIX-CHAIN-DRDER:

3 for pettie

$$T(n) = \sum_{l=2}^{n} \sum_{i=1}^{n-l+l} \frac{i+l-2}{k \in i} \quad \theta(i) = O(n^3)$$

prostorna složemost: 0(u2)

Ratustrimo rekurtivan pristup (nije tabulerizacija)


```
RECURSIVE - MATRIX-CHAIN (PIi)
    if i== i
      return o
    w [i,j] e w
    for keits j-1
          9 = RECURSIVE- MATRIX- CHAIXI (pii,k)
            + RECURSIVE - MATRIX - CHAIN ( P, E+1, j)
            + Pi-1 DK Pj
          if 9 < m [i,j]
        m [iij] = 9
  return m [i,j]
                                      RECURSIVE - MATRIX - CHAIN (SDR)
 Vrijeme izvisavanja: (doma meste)
 T(1) 2 1
 T(n) \geq 1 + \sum_{i=1}^{n-1} \left(T(k) + T(n-k) + 1\right)
    ekvivelentus
   T(n) z 2 = T(i) + n (stable rekurzije + metoda
                                                 supstitucije)
                  Protp: T(n) = S(2")
                                               T(n) > 2"-1, ner
Baze: T(1) 221-1 = 20=1
Pretpostavka: T(k) \ge 2^{k-1}, k \le m, 1
Konek: T(n+1) \ge 2 \ge T(i) + n+1
```

-ukoliko "pamtimo" vješenje pot problema koji se preklapaju dolazimo obo pristupa koji se zove memoizacija

Memorzep - Matrix - CHAIN (p)

$$n \in p$$
. length -1

for $i \in 1$ to n

for $j \in 1$ to n
 $m \in p$. $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$

for keitoj-1

return m [iii]

Vrijane izvisavanje: O(43) ??? (analiza D.Z)