AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- a railway switch element made from high-alloy steel, in which at least one alloy element has a content equal to at least 5% by weight, and a length of rail made from medium-alloy steel, directly welded to one another by a weld without deposition of metal flash welding and forging, wherein the length of rail is formed from a medium-alloy low-carbon steel in which the carbon content is less than 0.55% by weight and which is a bainitic steel.
- 2. (previously presented) The stretch of rail as claimed in Claim 1, wherein the length of rail is formed from a medium-alloy low-carbon steel in which the carbon content is less than 0.5% by weight.

(cancelled)

4. (previously presented) The stretch of rail as claimed in Claim 1, wherein the bainitic medium-alloy low-carbon steel is without carbide.

- 5. (currently amended) The stretch of rail as claimed in claim 1, wherein the medium-alloy low-carbon steel forming the length of rail has the following composition by weight:
 - 0.05% to 0.50% of carbon;
 0.5% to 2.5% of manganese;
 0.6% to 3% of silicon or aluminium aluminum;
 0.25% to 3.1% of chromium; and
 0% to 0.9% of molybdenum.
- 6. (currently amended) The stretch of rail as claimed in Claim 5, wherein the medium-alloy low-carbon steel forming the length of rail has a composition defined below:

0.28% to 0.36% of carbon;

1.40% to 1.70% of manganese;

at most 0.03% of phosphorus;

0.01% to 0.03% of sulphur sulfur;

at most 0.005% of aluminium aluminum;

1% to 1.40% of silicon;

0.40% to 0.60% of chromium;

0.08% to 0.20% of molybdenum;

at most 0.04% of titanium; and

at most 0.004% of boron.

7. (previously presented) The stretch of rail as claimed in claim 1, wherein the railway switch element made from high-alloy steel comprises 12% to 14% by weight of manganese.

8. (cancelled)

- 9. (previously presented) The stretch of rail as claimed in claim 1, wherein there is no heat treatment after the welding of the railway switch element and the length of rail.
- 10. (previously presented) The stretch of rail as claimed in claim 1, wherein the switch element made from the high-alloy steel has a hardness between 170 and 230 HB.
- 11. (previously presented) The stretch of rail as claimed in claim 6, wherein the medium-alloy low-carbon steel has a hardness between 350 and 390 HB.
- 12. (currently amended) A stretch of rail comprising:

 a railway switch element made from high-alloy steel, in
 which at least one alloy element has a content equal to at least
 5% by weight, and
- a length of rail made from medium-alloy steel, directly connected to the railway switch element by $\frac{a-weld}{a-weld}$ without deposition of metal flash welding and forging, wherein

the length of rail made of medium-alloy steel consists essentially of a medium-alloy low-carbon steel in which the carbon content is less than 0.55% by weight and said medium-alloy low-carbon steel is bainitic.

- 13. (currently amended) The stretch of rail as claimed in claim 12, wherein the bainitic medium-alloy low-carbon steel forming the length of rail has the following composition by weight:
 - 0.05% to 0.50% of carbon;
 - 0.5% to 2.5% of manganese;
 - 0.6% to 3% of silicon or aluminium aluminum;
 - 0.25% to 3.1% of chromium; and
 - 0% to 0.9% of molybdenum.
- 14. (currently amended) The stretch of rail as claimed in Claim 12, wherein the bainitic medium-alloy low-carbon steel forming the length of rail has a composition defined below:
 - 0.28% to 0.36% of carbon;
 - 1.40% to 1.70% of manganese;
 - at most 0.03% of phosphorus;
 - 0.01% to 0.03% of sulphur sulfur;
 - at most 0.005% of aluminium aluminum;
 - 1% to 1.40% of silicon;
 - 0.40% to 0.60% of chromium;

0.08% to 0.20% of molybdenum; at most 0.04% of titanium; and at most 0.004% of boron.

15. (currently amended) A stretch of rail, comprising:

a railway switch element made from high-alloy steel, in
which at least one alloy element has a content equal to at least
5% by weight; and

a length of rail made from medium-alloy steel, the railway switch element and the length of rail being directly welded to one another by a weld without deposition of metal flash welding and forging, wherein the length of rail is formed from a medium-alloy low-carbon steel in which a carbon content is less than 0.55% by weight and which is a carbide-free bainitic steel.

16. (currently amended) The stretch of rail as claimed in claim 15, wherein the carbide-free bainitic medium-alloy low-carbon steel forming the length of rail has a following composition by weight:

0.05% to 0.50% of carbon;

0.5% to 2.5% of manganese;

0.6% to 3% of silicon or aluminium aluminum;

0.25% to 3.1% of chromium; and

0% to 0.9% of molybdenum.

17. (currently amended) The stretch of rail as claimed in claim 15, wherein the carbide-free bainitic medium-alloy low-carbon steel forming the length of rail has a composition defined below:

0.28% to 0.36% of carbon;

1.40% to 1.70% of manganese;

at most 0.03% of phosphorus;

0.01% to 0.03% of sulphur sulfur;

at most 0.005% of aluminium aluminum;

1% to 1.40% of silicon;

0.40% to 0.60% of chromium;

0.08% to 0.20% of molybdenum;

at most 0.04% of titanium; and

at most 0.004% of boron.

- 18. (previously presented) The stretch of rail as claimed in claim 15, wherein the switch element made from the high-alloy steel has a hardness between 170 and 230 HB.
- 19. (previously presented) The stretch of rail as claimed in claim 6, wherein the medium-alloy low-carbon steel has a hardness between 350 and 390 HB.

20. (cancelled)

21. (previously presented) The stretch of rail as claimed in claim 15, wherein there is no heat treatment after the welding of the railway switch element and the length of rail.