Coverage: Sampling, Aliasing, and DT Line Spectra

Problems

- (1) Complete the following with the continuous-time (CT) signal $x(t) = 5 \cos(4\pi t)$.
 - (a) Use MATLAB to plot x(t) over the time range $-1 \le t \le 1$. Include a copy of this plot in line with your work and include the MATLAB code that generates this plot. Reshape the window to obtain a plot that looks like the following aspect ratio.

- **(b)** Draw circles on the plot of x(t) to indicate the sample locations in both directions beginning at t = 0 for a sample rate $f_s = 20$ S/s (samples per second).
- (c) Write the equation for the discrete-time (DT) signal x[n] obtained by sampling x(t) in the form $x[n] = A\cos(\hat{\omega}_0 n + \varphi)$, where $\hat{\omega}_0$ is expressed as a positive-only value in the range $0 \le \hat{\omega}_0 \le \pi$. Hint: Remember that the process you use to express $\hat{\omega}_0$ in the proper range may also affect the sign of the phase angle φ .
- (d) State whether the CT signal is oversampled, undersampled, or Nyquist-sampled.
- (e) Use MATLAB to plot x[n] as a stem plot, using the stem function in the same fashion as the plot function over the range $-10 \le n \le 10$; include the MATLAB code that generates this plot.
- **(f)** Repeat (a) through (e) for $f_s = 10$ S/s.
- **(g)** Repeat (a) through (e) for $f_s = 5$ S/s.
- **(h)** Repeat (a) through (e) for $f_s = 4$ S/s.
- (i) Repeat (a) through (e) for $f_s = 3\frac{1}{3}$ S/s.
- (j) Repeat (a) through (e) for $f_s = 1\frac{2}{3}$ S/s.

- (k) One or more pairs of stem plots should look identical (except for a possible time shift). Which pair(s) of sampling rates are these? For each pair, which sampling rate was "guilty" of aliasing to make the two plots look identical?
- (2) Repeat problem (1) with the CT signal $x(t) = 5 \cos(4\pi t + \pi/4)$.
- **(3)** P-4.3
- **(4)** P-4.13