CS224W Homework 3

Due: November 14, 2024

1 GNNs as MLP of eigenvectors [20 points]

1.1 Batch Node Update [2 points]

Consider the update for Graph Isomorphism Network:

$$\mathbf{x}_{v}^{(l+1)} = \mathtt{MLP}\left(\left(1 + \epsilon\right)\mathbf{x}_{v}^{(l)} + \sum_{u \in \mathcal{N}(v)} \mathbf{x}_{u}^{(l)}\right),\tag{1}$$

where $\mathbf{x}_v^{(l)} \in \mathbb{R}^{d_l}$ is the embedding of node v at layer l. Let $\mathbf{X}^{(l)} \in \mathbb{R}^{N \times d_l}$ be a matrix containing the embeddings of all the nodes in the graph, i.e., $\mathbf{X}^{(l)}$ [:, v] = $\mathbf{x}_v^{(l)}$. Also, let $\mathbf{A} \in \{0,1\}^{N \times N}$ represent the adjacency matrix of the graph. Write down the update of $\mathbf{X}^{(l+1)}$ as a function of $\mathbf{X}^{(l)}$ and \mathbf{A} .

★ Solution ★

$$\mathbf{X}^{(l+1)} = \mathtt{MLP}\left(\left(\left(1+\epsilon\right)\mathbf{I} + \mathbf{A}\right)\mathbf{X}^{(l)}\right)$$

1.2 Single Layer MLP [2 points]

Assume that MLP () represents a single layer MLP with no bias term. Write down the update of $\mathbf{X}^{(l+1)}$ as a function of $\mathbf{X}^{(l)}$ and \mathbf{A} , and the trainable parameters $\mathbf{W}^{(l)}$ of layer l.

★ Solution ★

$$\mathbf{X}^{(l+1)} = \sigma \left((\mathbf{A} + (1+\epsilon) \mathbf{I}) \mathbf{X}^{(l)} \mathbf{W}^{(l)} \right)$$

1.3 Eigenvector Extension [4 points]

Let $\{\lambda_n, \mathbf{v}_n\}_{n=1}^N$ represent the eigenvalues and eigenvectors of the graph adjacency. Then we can write $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$, where $\mathbf{V} \in \mathbb{R}^{N \times N}$ is the matrix of eigenvectors with $\mathbf{V}[:, n] = \mathbf{v}_n$ and $\mathbf{\Lambda} \in \mathbb{R}^{N \times N}$ is the diagonal matrix of eigenvalues with $\mathbf{\Lambda}[n, n] = \lambda_n$. Show that

$$\mathbf{X}^{(l+1)} = \sigma\left(\mathbf{V}\hat{\mathbf{W}}^{(l)}\right), \quad \hat{\mathbf{W}}^{(l)}\left[n, j\right] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}[i, j] \langle \mathbf{v}_n, \mathbf{X}^{(l)}\left[:, i\right] \rangle,$$

where $\langle \cdot \rangle$ denotes the dot product. Hint: Use the fact that the eigenvectors are orthonormal. Next, show that each feature across all nodes, $\mathbf{X}^{(l+1)}[:,i]$, can be expressed as a linear combination of eigenvectors, followed by a pointwise nonlinearity.

★ Solution ★

$$\hat{\mathbf{W}}^{(l)}[n,j] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}[i,j] \langle \mathbf{v}_n, \mathbf{X}^{(l)}[:,i] \rangle$$

$$= (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \langle \mathbf{v}_n, \mathbf{X}^{(l)}[:,i] \rangle \mathbf{W}^{(l)}[i,j]$$

$$= (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \left(\mathbf{v}_n^{\mathbf{T}} \mathbf{X}^{(l)}[:,i] \right) \mathbf{W}^{(l)}[i,j]$$

$$= (\lambda_n + 1 + \epsilon) \mathbf{v}_n^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}[:,j]$$

$$\hat{\mathbf{W}}^{(l)}[n,:] = (\lambda_n + 1 + \epsilon) \mathbf{v}_n^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$\hat{\mathbf{W}}^{(l)} = (\Lambda + (1 + \epsilon)) \mathbf{V}^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{V}\Lambda + \mathbf{V}(1 + \epsilon)) \mathbf{V}^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{V}\Lambda + \mathbf{V}(1 + \epsilon)) \mathbf{V}^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{V}\Lambda \mathbf{V}^{\mathbf{T}} + \mathbf{V}\mathbf{V}^{\mathbf{T}}(1 + \epsilon)) \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{A} + (1 + \epsilon) \mathbf{I}) \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$\sigma(\mathbf{V}\hat{\mathbf{W}}) = \sigma \left((\mathbf{A} + (1 + \epsilon) \mathbf{I}) \mathbf{X}^{(l)} \mathbf{W}^{(l)} \right) = \mathbf{X}^{(l+1)}$$

1.4 GraphSAGE [4 points]

Perform the same analysis for the GraphSAGE update when the aggregation function is sum pooling. Recall that the GraphSAGE update function is

$$\begin{aligned} \mathbf{x}_{v}^{(l+1)} &= \sigma \left(\mathbf{W}^{(l)} \cdot \text{CONCAT} \left(\mathbf{x}_{v}^{(l)}, \mathbf{x}_{N(v)}^{(l)} \right) \right) \\ &= \sigma \left(\mathbf{W}_{1}^{(l)} \mathbf{x}_{v}^{(l)} + \mathbf{W}_{2}^{(l)} \text{AGG} \left(\mathbf{x}_{u}^{(l)}, \forall u \in N(v) \right) \right) \end{aligned}$$

★ Solution ★

$$\mathbf{X}^{(\mathbf{l+1})} = \sigma \left(\mathbf{X}^{(\mathbf{l})} \mathbf{W}_{\mathbf{1}}^{(\mathbf{l})} + \mathbf{A} \mathbf{X}^{(\mathbf{l})} \mathbf{W}_{\mathbf{2}}^{(\mathbf{l})} \right) = \sigma \left(\mathbf{V} \hat{\mathbf{W}} \right)$$

Where

$$\hat{\mathbf{W}}^{(l)}[n,j] = \sum_{i=1}^{d_l} (\mathbf{W}_{\mathbf{1}}^{(l)}[i,j] + \lambda_n \mathbf{W}_{\mathbf{2}}^{(l)}[i,j]) \langle \mathbf{v}_n, \mathbf{X}^{(l)}[:,i] \rangle$$

1.5 Eigendecomposition Analysis [8 points]

For graphs \mathcal{G} and $\hat{\mathcal{G}}$ instantiate the graph adjacencies in Numpy, PyTorch, or PyG, and compute their eigenvalue decompositions. What do you observe?

★ Solution ★

Both graphs have the same eigenvalue decompositions for the adjacency matrix.

Consider a GIN where all nodes start with the same initial color, i.e., $\mathbf{x}_v^{(0)} = 1$ for all nodes $v \in \mathcal{V}$. This setup is equivalent to having $\mathbf{X}^{(0)} = \mathbf{1}$, where $\mathbf{1}$ denotes the all-one vector. This is the initialization of the WL test. Using the equations in 1.3, derive the expression for $\mathbf{X}^{(1)}$.

★ Solution ★

$$\mathbf{X}^{(1)} = \sigma\left(\mathbf{V}\hat{\mathbf{W}}^{(0)}\right), \quad \hat{\mathbf{W}}^{(0)}\left[n, j\right] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}\left[i, j\right] \langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle,$$

Observe that each column $\mathbf{X}^{(1)}[:,j]$ is a linear combination of eigenvectors, followed by a pointwise nonlinearity. What is the weight associated with each eigenvector? What factors determine this weight?

★ Solution ★

The weight associated with the n-th eigenvector in the column j of the new ${\bf X}$ matrix is equal to:

$$\hat{\mathbf{W}}^{(0)}[n,j] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}[i,j] \langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle,$$

It is determined by the associated eigenvalue, the ϵ parameter, the weight associated with column j in the original layer, and the dot product $\langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle$.

Compute the dot product $\langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle$, for each eigenvector across both graphs. What do you observe?

★ Solution ★

The result for each corresponding eigenvector is the same across both graphs.

What does the previous result suggest about $\mathbf{X}^{(1)}$ for the graphs \mathcal{G} and $\hat{\mathcal{G}}$?

★ Solution ★

The result suggests that both graphs will have the same resulting $\mathbf{X}^{(1)}$ matrix.