This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification 6:		(11) International Publication Number: WO 96/10413
A61K 38/00, 39/385, 45/00, 45/05, C07K 7/00, 14/00, 14/82	A1	(43) International Publication Date: 11 April 1996 (11.04.96)
(21) International Application Number: PCT/US (22) International Filing Date: 27 September 1995 (patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU,
 (30) Priority Data: 08/315,961 30 September 1994 (30.09.9) (71) Applicant: LUDWIG INSTITUTE FOR CANCE SEARCH [CH/US]; 1345 Avenue of the American York, NY 10105 (US). (72) Inventors: VAN DER BRUGGEN, Pierre; UCL 7459 Hippocrate 74, B-1200 Brussels (BE). BOON-FAThierry; UCL 7459, Avenue Hippocrate 74, B-1200 (BE). VAN DEN EYNDE, Benoit; UCL 7459 Hippocrate 74, B-1200 Brussels (BE). 	CER R cas, No O, Aven ALLEU O Brusse	w lee R. les
(74) Agent: HANSON, Norman, D.; Felfe & Lynch, 8 Avenue, New York, NY 10022 (US).	805 Th	rd

(54) Title: COMPOSITIONS CONTAINING TUMOR REJECTION ANTIGEN PRECURSORS OR TUMOR REJECTION ANTIGENS, AND AN ADJUVANT AND/OR GROWTH FACTOR

(57) Abstract

Compositions with improved immunogenic effect are disclosed. The compositions contain one or more peptides which, when complexed with a cell surface molecule, such as an MHC, HLA or B cell receptor, provoke an immune response. The compositions contain adjuvants such as saponins, which potentiate the immune response. Especially preferred are compositions which stimulate cytolytic T cell responses, such as peptides which satisfy criteria for MHC binding, such as peptides derived from tumor rejection antigen precursors, including MAGE, BAGE, and GAGE derived peptides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Carneroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	· MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

5

COMPOSITIONS CONTAINING TUMOR REJECTION ANTIGEN PRECURSORS OR TUMOR REJECTION ANTIGENS, AND AN ADJUVANT AND/OR GROWTH FACTOR

10

15

20

RELATED APPLICATIONS

This application is a continuation in part of all of the following applications, each of which discuss the provocation of cytolytic T cells in the presence of complexing tumor rejection antigens and MHC/HLA molecules: PCT application PCT/US92/04354 (designating the United States); Serial No. 938,334, filed August 31, 1992; Serial No. 008,446, filed January 22, 1993; Serial No. 54,714, filed April 28, 1993; Serial No. 203,054, filed February 28, 1994; Serial No. 233,305, filed April 26, 1994; Serial No. 195,186, filed February 14, 1994; Serial No. 196,630, filed February 15, 1994; Serial No. 32,978, filed March 18, 1993; Serial Nos. 217,186; 217,187; and 217,188, all of which were filed on March 24, 1994; Serial No. 190,411, filed on April 1, 1994 and Serial No. 253,503, filed June 3, 1994.

25

30

35

40

FIELD OF THE INVENTION

This invention relates to compositions useful in the generation of an immune response against the classes of molecules referred to as tumor rejection antigen precursors ("TRAPS") and tumor rejection antigens ("TRAS"). The immune response includes, inter alia, the production of antibodies against the TRAPs and TRAs, as well as T cells specific for complexes of TRA and major histocompatibility molecules ("MHCS"). Such T cells and antibodies may be generated, e.g., in a mouse, rat, rabbit, sheep, goat or other non-human animal, and then used in diagnostic methods to identify tumor presence. The compositions may also be used, therapeutically, via administration to a subject afflicted with a cancerous condition or one where cell transformation has taken place, such as melanoma or dysplastic nevi, to provoke an

10

15

20

25

30

35

40

2

immune response against tumors, cancer cells, and transformed cells.

BACKGROUND AND PRIOR ART

The study of the recognition or lack of recognition of cancer cells by a host organism has proceeded in many different directions. Understanding of the field presumes some understanding of both basic immunology and oncology.

Early research on mouse tumors revealed that these displayed molecules which led to rejection of tumor cells when transplanted into syngeneic animals. These molecules are "recognized" by T-cells in the recipient animal, and provoke a cytolytic T-cell response with lysis of the transplanted This evidence was first obtained with tumors induced in vitro by chemical carcinogens, such as methylcholanthrene. The antigens expressed by the tumors and which elicited the Tcell response were found to be different for each tumor. Prehn, et al., J. Natl. Canc. Inst. 18: 769-778 (1957); Klein et al., Cancer Res. 20: 1561-1572 (1960); Gross, Cancer Res. 3: 326-333 (1943), Basombrio, Cancer Res. 30: 2458-2462 (1970) for general teachings on inducing tumors with chemical carcinogens and differences in cell surface antigens. class of antigens has come to be known as "tumor specific transplantation antigens" "TSTAs". or Following observation of the presentation of such antigens when induced by chemical carcinogens, similar results were obtained when tumors were induced in vitro via ultraviolet radiation. See Kripke, J. Natl. Canc. Inst. 53: 333-1336 (1974).

While T-cell mediated immune responses were observed for the types of tumor described <u>supra</u>, spontaneous tumors were thought to be generally non-immunogenic. These were therefore believed not to present antigens which provoked a response to the tumor in the tumor carrying subject. See Hewitt, et al., Brit. J. Cancer 33: 241-259 (1976).

The family of tum antig n presenting cell lines are immunogenic variants obtained by mutagenesis of mouse tumor cells or cell lines, as described by Boon et al., J. Exp. Med.

152: 1184-1193 (1980), the disclosure of which is incorporated by reference. To elaborate, tum antigens are obtained by mutating tumor cells which do not generate an immune response in syngeneic mice and will form tumors (i.e., "tum" cells). When these tum cells are mutagenized, they are rejected by syngeneic mice, and fail to form tumors (thus "tum"). See Boon et al., Proc. Natl. Acad. Sci. USA 74: 272 (1977), the disclosure of which is incorporated by reference. Many tumor types have been shown to exhibit this phenomenon. See, e.g., Frost et al., Cancer Res. 43: 125 (1983).

It appears that tum variants fail to form progressive tumors because they elicit an immune rejection process. evidence in favor of this hypothesis includes the ability of "tum" variants of tumors, i.e., those which do not normally form tumors, to do so in mice with immune systems suppressed by sublethal irradiation, Van Pel et al., Proc. Natl, Acad. Sci. USA 76: 5282-5285 (1979); and the observation that intraperitoneally injected tum cells of mastocytoma P815 multiply exponentially for 12-15 days, and then are eliminated in only a few days in the midst of an influx of lymphocytes and macrophages (Uyttenhove et al., J. Exp. Med. 152: 1175-1183 (1980)). Further evidence includes the observation that mice acquire an immune memory which permits them to resist subsequent challenge to the same tum variant, even when immunosuppressive amounts of radiation are administered with the following challenge of cells (Boon et al., Proc. Natl, Acad. Sci. USA 74: 272-275 (1977); Van Pel et al., supra; Later research found that when Uyttenhove et al., supra). spontaneous tumors were subjected to mutagenesis, immunogenic variants were produced which did generate a response. these variants were able to elicit an immune protective response against the original tumor. See Van Pel et al., J. Exp. Med. 157: 1992-2001 (1983). Thus, it has been shown that it is possible to elicit presentation of a so-called "tumor rejection antigen" in a tumor which is a target for syngeneic rejection response. Similar results have been obtained when foreign genes have been transfected

5

10

15

20

25

30

35

spontaneous tumors. See Fearson et al., Cancer Res. 48: 2975-1980 (1988) in this regard.

A class of antigens has been recognized which are presented on the surface of tumor cells and are recognized by cytotoxic T cells, leading to lysis. This class of antigens will be referred to as "tumor rejection antigens" or "TRAs" TRAs may or may not elicit antibody responses. The extent to which these antigens have been studied, has been via cytolytic T cell characterization studies in vitro i.e., the study of the identification of the antigen by a particular cytolytic T cell ("CTL" hereafter) subset. proliferates upon recognition of the presented tumor rejection antigen, and the cells presenting the antigen are lysed. Characterization studies have identified CTL clones which specifically lyse cells expressing the antigens. Examples of this work may be found in Levy et al., Adv. Cancer Res. 24: 1-59 (1977); Boon et al., J. Exp. Med. 152: 1184-1193 (1980); Brunner et al., J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982); Palladino et al., Canc. Res. 47: 5074-5079 (1987). This type of analysis is required for other types of antigens recognized by CTLs, including major histocompatibility antigens, the male specific H-Y antigens, and a class of antigens, referred to as "tum-" antigens, and discussed herein.

A tumor exemplary of the subject matter described <u>supra</u> is known as P815. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988); Szikora et al., EMBO J 9: 1041-1050 (1990), and Sibille et al., J. Exp. Med. 172: 35-45 (1990), the disclosures of which are incorporated by reference. The P815 tumor is a mastocytoma, induced in a DBA/2 mouse with methylcholanthrene and cultured as both an in vitro tumor and a cell line. The P815 line has generated many tum variants following mutagenesis, including variants referred to as P91A (DePlaen, <u>supra</u>), 35B (Szikora, <u>supra</u>), and P198 (Sibille, <u>supra</u>). In contrast to tumor rejection antigens - and this is a key distinction - the tum antigens are only present after

5

10

15

20

25

30

35

the tumor cells are mutagenized. Tumor rejection antigens are present on cells of a given tumor without mutagenesis. Hence, with reference to the literature, a cell line can be tum', such as the line referred to as "P1", and can be provoked to produce tum variants. Since the tum phenotype differs from that of the parent cell line, one expects a difference in the DNA of tum cell lines as compared to their tum parental lines, and this difference can be exploited to locate the gene of interest in tum cells. As a result, it was found that genes of tum variants such as P91A, 35B and P198 differ from their normal alleles by point mutations in the coding regions of the gene. See Szikora and Sibille, supra, and Lurquin et al., Cell 58: 293-303 (1989). This has proved not to be the case with the TRAs of this invention. These papers also ... demonstrated that peptides derived from the tum antigen are presented by the Ld molecule for recognition by CTLs. P91A is presented by Ld, P35 by Dd and P198 by Kd.

Prior patent applications PCT/US92/04354, U.S. Serial No. 807,043; 764,364; 728,838 and 705,702, all of which are incorporated by reference and U.S. Patent No. 5,342,774, describe inventions involving, inter alia, genes and other nucleic acid molecules which code for various TRAPs, which are in turn processed to tumor rejection antigen, or "TRAS". SEQ ID NOS: 1-26 which are a part of the subject application present sequences of genes coding for various TRAPs, and the TRA referred to hereafter as MZ2E, which is derived from MAGE-1 TRAP (SEQ ID NO: 26).

The genes are useful as a source for the isolated and purified tumor rejection antigen precursor and the TRA themselves, either of which can be used as an agent for treating the cancer for which the antigen is a "marker", as well as in various diagnostic and surveillance approaches to oncology, discussed <u>infra</u>. It is known, for example, that tum cells can be used to generate CTLs which lyse cells presenting different tum antigens as well as tum cells. See, e.g., Maryanski et al., Eur. J. Immunol 12: 401 (1982); and van den Eynde et al., Modern Trends in Leukemia IX (June

5

.0

15

20

25

30

35

10

15

20

25

30

35

1990), the disclosures of which are incorporated by reference. The tumor rejection antigen precursor may be expressed in cells transfected by the gene, and then used to generate an immune response against a tumor of interest.

In the parallel case of human neoplasms, it has been observed that autologous mixed lymphocyte-tumor cell cultures ("MLTC" hereafter) frequently generate responder lymphocytes which lyse autologous tumor cells and do not lyse natural autologous EBV-transformed B cells, killer targets, autologous fibroblasts (see Anichini et al., Immunol. Today 8: This response has been particularly well 385-389 (1987)). studied for melanomas, and MLTC have been carried out either with peripheral blood cells or with tumor infiltrating Examples of the literature in this lymphocytes. including Knuth et al., Proc. Natl. Acad. Sci. USA 86: 2804-2802 (1984); Mukherji et al., J. Exp. Med. 158: 240 (1983); Hérin et all, Int. J. Canc. 39: 390-396 (1987); Topalian et al, J. Clin. Oncol 6: 839-853 (1988). Stable cytolytic T cell clones have been derived from MLTC responder cells, and these clones are specific for the tumor cells. See Mukherji et al., <u>supra</u>, Hérin et all, <u>supra</u>, Knuth et al., <u>supra</u>. The antigens recognized on tumor cells by these autologous CTLs do not appear to represent a cultural artifact, since they are found on tumor cells in vivo. Topalian et al., supra; Degiovanni et 20: 1865-1868 J. Immunol. (1990).observations, coupled with the techniques used herein to isolate the genes for specific murine tumor rejection antigen precursors, have led to the isolation of nucleic acid sequences coding for tumor rejection antigen precursors of TRAs presented on human tumors. It is now possible to isolate the nucleic acid sequences which code for tumor rejection antigen precursors, including, but not being limited to those most characteristic of a particular tumor, with ramifications that are described infra.

Additional work has focused upon the presentation of TRAs by the class of molecules known as major histocompatibility complexes, or "MHCs". Human forms of these molecules are

"human leukocyte antigens" or "HLAs". This work has resulted several unexpected discoveries regarding the field. Specifically in U.S. patent application Serial Number 938,334, now U.S. Patent No. _____ the disclosure of which is incorporated by reference, nonapeptides are taught which are presented by the HLA-Al molecule. The reference teaches that given the known specificity of particular peptides for particular HLA molecules, one should expect particular peptides to bind one HLA molecule. These peptides, presented herein as SEQ ID NOS: 27-34 are also presented in Traversari et al., J. Exp. Med. 176: 1453-1457 (1992). This is important, because different individuals possess different HLA phenotypes. As a result, while identification of particular peptides or of particular motifs, and the peptides which are members thereof, as being partners for a specific HLA molecule has diagnostic and therapeutic ramifications, these are only relevant for individuals with that particular HLA phenotype. " There is a need for further work in the area, because cellular abnormalities are not restricted to one particular phenotype, and targeted therapy requires some knowledge of the phenotype of the abnormal cells at issue.

In U.S. Patent Application Serial Number 008,446, filed January 22, 1993 and incorporated by reference, the fact that the MAGE-1 expression product is processed to a second TRA is disclosed. This second TRA is presented by HLA-Cw* 1601 molecules. The disclosure shows that a given TRAP can yield a plurality of TRAS.

In U.S. Patent Application Serial Number 994,928, filed December 22, 1992, and incorporated by reference herein, tyrosinase is described as a tumor rejection antigen precursor. This is a well known molecule as per Kwon, U.S. Patent No. 4,898,814. This reference discloses that a molecule which is produced by some normal cells (e.g., melanocytes), is processed in tumor cells to yield a tumor rejection antigen that is presented by HLA-A2 molecules. The peptide presented thereby is described in U.S. Application Serial No. 54,714, filed April 28, 1993. SEQ ID NO: 35 sets

5

10

15

20

25

30

35

8

forth this peptide. Additional tyrosinase derived peptides presented by HLA molecules are set forth in Serial Nos. 203,054, and 233,305 filed February 28, 1994 and April 26, 1994 and incorporated by reference (SEQ ID NOS: 36-41).

Other peptides which are TRAs are described in additional patent applications. U.S. Patent Application Serial No. 1994, and 195,186, filed February 14, incorporated by reference herein, sets forth three peptides (SEQ ID NOS: 42-44 herein), which are derived from MAGE-1 and which complex with Serial No. 196,630, filed February 15, 1994, HLA-Cw 1601. discloses an unrelated tumor rejection antigen precursor, the so-called "BAGE" gene, and peptides derived therefrom, which are processed and then presented by HLA-Cw 1601. set forth as SEQ ID NOS: 45-48, and this application is incorporated by reference. SEQ ID NO: 48 is the tumor rejection antigen. Additional coding sequences for a tumor rejection antigen precursor are set forth in Serial No. 32,978, filed March 18, 1993 and incorporated by reference. These are included herein as SEQ ID NOS: 49 and 50. extended sequence for this gene is set forth in Serial No. 272,351, filed July 8, 1994 incorporated by reference, and is SEO ID NO: 51. In Serial No. 96,039, filed July 22, 1993, the sequence of tumor rejection antigen precursor GAGE is set See SEQ ID NO: 52 for this information.

A series of peptides which provoke lysis by cytolytic T cells when presented by MHC molecules are set forth in Serial No. 217,186, Serial No. 08/217,188, and Serial No. 217,187, all filed on March 24, 1994, and all of which are incorporated reference herein. The first of these applications discloses MAGE-3 derived peptides presented by HLA-A2. These are repeated here as SEQ ID peptides are of interest. NOS: 53-57. The second application presents 11 sequences derived from MAGE-2, believed to complex with HLA-A2.1 molecules (SEQ ID NOS: 58-68). The last of these applications discloses two additional peptides (SEQ ID NOS: 69 and 70) derived from MAGE-3 which complex to HLA-A2. Serial No. 190,411, filed April 1, 1994 and incorporated by reference,

40

5

10

15

20

25

30

1.17

144

, (<u>*)</u>,

5

10

15

20

25

30

35

40

9

sets forth three peptides (SEQ ID NO: 71-73), derived from MAGE-1, which are immunogenic in that they provoke production of antibodies in a host animal to which they have been Seial No. 253,503, filed June 3, 1994 and administered. incorporated by reference, teaches a further tumor rejection antigen precursor gene (SEQ ID NO:74), and a peptide, derived therefrom (SEQ ID NO:75), whch is presented by HLA-B44 Further in the application of Coulie, Ikeda and Boon-Falleur, filed concurrently, a sequence coding for a tumor rejection antigen precursor known as DAGE (SEQ ID NO:76) DAGE is found almost universally on tumor is set forth. cells, and only on testis cells with respect to normal cell This makes it especially useful for cancer diagnosis and in the applications disclosed herein. The above listing should not be presumed to be exhaustive of the TRAP. and TRA literature, but is presented to show its diversity and. the fact that these materials not only provoke T cellproliferation, but also stimulate production of antibodies. It is well known that antibody producing cells can be used as: source to produce hybridomas, which in turn produce Thus, when the term "antibodies" is monoclonal antibodies. used herein, it encompasses both polyclonal and monoclonal antibodies.

The parent applications to the present case, including Serial No. 142,368 and Serial No. 190,411, both discuss the usefulness of combining TRAPs or TRAS with various materials as adjuvants, to produce vaccines, immunogenic compositions, etc. Adjuvants, broadly defined, are substances which promote immune responses. Frequently, the adjuvant of choice if Freund's complete adjuvant, or killed B. pertussis organisms, used in combination with alum precipitated antigen. A general discussion of adjuvants is provided in Goding, Monoclonal Antibodies: Principles & Practice (Second edition, 1986), at pages 61-63, which are incorporated by reference herein. Goding notes, however, that when the antigen of interest is of low molecular weight, or is poorly immunogenic, coupling to an immunogenic carrier is recommended. Such molecules, according

10

to <u>Goding</u>, generally have molecular weights below about 1000. Among the carriers suggested by <u>Goding</u>, at page 283, are keyhole limpet hemocyanin, bovine serum albumin, ovalbumin, and fowl immunoglobulin.

What is problematic about such carriers, however, is that frequently they are also immunogenic themselves. Thus, the immune response may be a general one, with part, most, or all of it being directed against the carrier molecule rather than the immunogen itself.

Exemplary of developments in the art as they relate to adjuvants is U.S. Patent No. 5,057,540 to Kensil, et al, the disclosure of which is incorporated by reference herein. Kensil et al disclose the preparation of various saponin extracts, which are useful as adjuvants in immunogenic As natural products, the extracts are not compositions. Kensil, et al do provide a complete and completely defined. enabling disclosure for how various extracts, including QA-7, QA-19, and QA-21 (also referred to as QS-21) are prepared. Experiments are set forth in which bovine serum albumin ("BSA") was combined with various extracts (examples 8 and 9), and where feline leukemia virus recombinant glycoprotein "gp7OR∆ was tested, following absorption to aluminum hydroxide The two immunogens tested, however, are expected to be immunogenic in their own right (gp70RA has a molecular 70 kd, and serum albumin has about the same molecular weight). No experiments were carried out at all on molecules which should, per se, be considered to be poorly or even non-immunogenic, and thus would be expected to require the use of alum absorption or the use of haptenic carriers for provocation of a response.

In PCT Application W09219758, which corresponds to defensive publication 7697275, which is incorporated by reference herein, an adjuvant referred to as "MTP-MF59" is disclosed. This adjuvant is used in connection with a Plasmodium falciparum protein, "Pfs-25-B". This combination is described as a transmission blocking vaccine. The P. falciparum protein is itself large enough to be immunogenic.

40

5

10

15

20

25

30

Thus, none of the art shows that the improved adjuvants can be used in combination with presumptively non-immunogenic proteins and peptides to yield immunologically effective compositions. This is especially true for TRAP and TRA molecules, as outlined supra.

It has now been found, surprisingly, that compositions comprising tumor rejection antigen precursors or tumor rejection antigens can be made which, when administered to a subject animal, provoke an immunogenic response. In especially preferred embodiments the immunogenic portion of the composition consists of TRAP or, more preferably TRA molecules, of one or more types, and an adjuvant. Especially preferred are compositions where the adjuvant is QS21, as is disclosed in the Kensil, et al patent, incorporated by reference supra.

The immunogens of this invention consist of TRAPs or TRAs, meaning that they do not include haptens, carriers, precipitated alum, or any of the materials normally associated with materials which are or are expected to be poorly immunogenic. In especially preferred embodiments, the compositions consist essentially of the immunogen and the adjuvant.

The invention is described in greater detail in the disclosure which follows.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

30 Example

5

10

15

20

25

35

40

The following example demonstrates the use of peptide MZ2E (SEQ ID NO: 26) in connection with adjuvant QS-21. It is to be understood, however, that one may routinely substitute proteins or peptides (the first component of the composition) and adjuvants (the second component of the composition). The unexpected effect of the combination of MZ2E and QS21 should occur in the alternate combinations, i.e., when other peptides are used.

Subjects tested are patients with stage IV melanoma or high risk stage III malignant melanoma. Stage IV patients have a median survival time of one year following diagnosis,

12

e extra year or a

and only a 15% chance of long-term survival (Balch, et al, Cutaneous Melanoma, J.b. Lippincott, Philadelphia, 1992). The standard therapy for these patients includes treatment with decarbazine or drug combinations with decarbazine; however, response rates only range from 8-25%, and there is no evidence of the treatment extending survival. Balch et al, supra. Patients with high risk Stage III melanoma (pT4 thick truncal primary tumors or extremity melanomas, with five or more positive regional lymph nodes) have a median survival of 1-2 years following onset, and a 19% chance of long term survival.

Balch, et al, supra.

Twelve patients are used in the study, all of whom have either Stage IV or high risk Stage III malignant melanoma in accordance with the criteria provided <u>supra</u>, confirmed by review of histology.

The patients fulfil the following additional criteria:

- (i) complete recovery from surgery;
- (ii) no chemotherapy or immunotherapy, within the four weeks preceding immunization;
- (iii) expected survival of at least three months;
- (iv) Karnofsky Performance Status of 60 or more;
- (v) Laboratory results as follows:

granulocytes ≥ 2,500/min³

lymphocytes ≥ 700/min³

platelets ≥ 100,000/min³

serum creatinine ≤ 2.0 mg/100 ml

serum bilirubin ≤ 2.0 mg/100 ml

- (vi) for MZ2E immunization, patients are positive for HLA-A1;
- (vii) for MZ2E immunization, the patients' tumors express
 MAGE-1;
- (viii) they be over 19 years old and be capable of giving informed consent in writing.

Any potential subjects who satisfy any of the following criteria are excluded:

(i) clinically significant heart disease;

20

25

30

13

(ii) other serious illness, such as active infection requiring antibiotics, or bleeding disorders;

- (iii) treatment with antihistamines, N-SAIDS, or corticosteroids;
- (iv) immunodeficiency, splenectomy, or radiation therapy
 to the spleen;
- (v) pregnancy or lactation;
- (vi) women of childbearing age who do not use effective methods of contraception.

All subjects are treated as outpatients. They are immunized, subcutaneously, with MZ2E (30 ug or 300 ug) and QS21 (100 ug), in 0.3 ml phosphate buffered saline, pH 7.4. Six patients receive 30 ug of peptide, and six receive 300 ug. The first injection is into the deltoid region of the anterior aspect of the thigh, and the site of injection is changed with follow up injections. No injections are given into limbs where draining lymph nodes have been surgically removed or irradiated.

Injections are given at day 1, and then at days 8, 15, 22, and 57. Patients are monitored over a course of 12 weeks, unless intervention is required (as determined by the investigator). Any patients who show stabilization or tumor response remain in the study until disease progression is evidenced. Patients may also be removed from the study or receive different doses of the peptide, if toxicity reactions are observed.

The patients show response as follows. In a complete response, all signs, symptoms, biochemical and imaging evidence of tumor disappear for a period of at least 30 days. In a partial response, there is a decrease in size of all measurable tumors of at least 50% of the sum of products of the greatest and perpendicular diameters for at least 30 days, without the appearance of new lesions or progression of any new lesions. In a minor response, there is a decrease in size of all measurable tumors of at least 25% of the sum of products of greatest and perpendicular diameters, for at least 30 days, without appearance of new lesions or progression of

5

10

15

20

25

30

35

14

الرجيا اليال فالأنجام المتحاج المالومها الماينيس معمد التم

any lesion. In stable disease, there is a change of less than 25% of the sum of products of greatest and perpendicular diameters, for at least 30 days, without the appearance of new lesions or progression of lesions. In progression of the disease, there is appearance of new tumors, or an increase in the size of measurable tumors of at least 50% of the sum of the product of greatest and perpendicular diameter.

The foregoing example demonstrates a composition comprising an amount of a tumor rejection antigen, i.e., MZ2E, and an adjuvant, i.e., QS21, and the use of the composition in the <u>in vivo</u> treatment of cancer (i.e., melanoma). The tumor rejection antigen is used in an amount sufficient to provoke an immune response against tumor cells which present it on their surface.

The compositions of the invention comprise any tumor rejection antigen precursor ("TRAP") or tumor rejection antigen ("TRA"), in combination with a pharmaceutically acceptable adjuvant. Preferred embodiments of the invention utilize the TRAPs and TRAs discussed supra and set forth in SEQ ID NO: 65, as well as the adjuvants described in the Background section.

As will be seen from the foregoing discussion, important aspect of the invention is stimulation proliferation of T cells. This can be an initial stimulation or an augmentation of a prior stimulation. In particular, it is desirable to stimulate cytolytic T cells which present peptides, such as the TRAs described herein, on their The cytolytic T cells recognize these complexes of and peptide, bind thereto via their receptor, They also lyse the recognized cells. proliferate. response can be used not only in vivo, but in vitro, as it is established that cytolytic T cells specific particular complexes of MHC and peptide are present in the blood of subjects who have experienced cell transformation. By contacting a blood sample of individuals in vitro with the peptide of interest and cells which present the MHC molecule of interest, any cytolytic T cells in the blood sample will

40

5

10

15

20

25

30

والمراجيل والمساولين والمنطح الماموا المسا

5

10

15

20

25

30

35

40

15

expand, i.e., proliferate. This proliferation an be measured via any of the well known assays designed therefor. Especially preferred are the radioactive chromium (51Cr) release assay, and the measurement of release of tumor necrosis factor (TNF).

The compositions are also useful as stimulators of B cell proliferation, or antibody production. Again, it is well known that B cells produce antibodies, and the size of their targets are well within the sizes of the tumor rejection antigens, and certainly the tumor rejection antigen precursors. As with T cells, the stimulation may be "ab initio", or an augmentation of a prior response, in vitro or in vivo.

The amount of TRAP or TRA used will vary, depending upon the purpose of the immunization and the subject to which it is administered. For example, in the case of generating murine antibodies which can then be used, e.g., to diagnose for the presence of cancer cells presenting a TRA, the amount of protein or peptide may be less than that used in a course of: in vivo therapy, such as that described in the example, supra... In general, a preferred dose can range from about 1 ug to about 750 ug of protein or peptide per dose. In a preferred embodiment, the range is from about 10 ug to about 500 ug. Most preferably, anywhere from about 30 ug to about 300 ug per Of course, in the context of the dose may be used. therapeutic aspect of the invention, the investigator will modify the dose, as a six month old infant will require dosing different from a full grown man, e.g. administration may vary, with preferred forms being oral, subcutaneous, intramuscular, intravenous and intraperitoneal adminstration.

The choice of TRAP or TRA protein or peptide in the composition will depend upon parameters determinable by the artisan. It is art recognized, for example, that different TRAs are presented by the various MHC molecules. As such, if a subject is typed, using well known techniques, as presenting HLA-A2 molecules on the surface of tumor cells, one will use

a TRA presented by HLA-A2 molecules rather than one presented by, e.g., HLA-Cw 1601. Similarly, using techniques such as polymerase chain reaction ("PCR"), lysis studies, and other assay methodologies which are well known in the art, one can determine which tumor rejection antigen precursor gene or genes are being expressed by a subject patient. This will lead to the decision as to what protein or peptide to use. Again, by way of example, if a subject's tumor cells are expressing MAGE-3 but not MAGE-1, the peptide used in immunization should be derived from MAGE-3, and not MAGE-1.

While the molecules discussed herein are referred to as "tumor" rejection antigens and "tumor" rejection antigen precursors, it is intended that their use, in a therapeutic and also a diagnostic context, extends beyond cancer per se. The art is familiar with pathological conditions, such as displastic nevis, which are not cancer per se, but where the cells of the afflicted individuals are in fact characterized by transformation. Any and all such conditions are within the intended ambit of the invention.

Other aspects of the invention will be clear to the skilled artisan and need not be reiterated here.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

5

10

15

20

25

5

10

15

20

25

30

35

40

(1) GENERAL	INFORMATION:
-------------	--------------

- (i) APPLICANTS: Boon-Falleur, Thierry; van den Eynde, Benôit; van der Bruggen, Pierre
- (ii) TITLE OF INVENTION: COMPOSITIONSCONTAININGTUMORREJECTION ANTIGEN PRECURSORS OR TUMOR REJECTION ANTIGENS, AND AN ADJUVANT AND/OR GROWTH FACTOR
- (iii) NUMBER OF SEQUENCES: 76
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Felfe & Lynch
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York City
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 - (B) COMPUTER: IBM PS/2
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/315,961
 - (B) FILING DATE: 30-SEPTEMBER-1994
 - (C) CLASSIFICATION: 435
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US92/04354
 - (B) FILING DATE: 22-MAY-1992
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/938,334
 - (B) FILING DATE: 31-AUGUST-1992
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/008,446
 - (B) FILING DATE: 22-JANUARY-1993
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/054,714
 - (B) FILING DATE: 28-APRIL-1993

SUBSTITUTE SHEET (RULE 26)

5	(VII) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/203,054
	(B) FILING DATE: 28-FEBRUARY-1994
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/233,305
10	(B) FILING DATE: 26-APRIL-1994
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/195,186
	(B) FILING DATE: 14-FEBRUARY-1994
	(vii) PRIOR APPLICATION DATA:
15	(A) APPLICATION NUMBER: 08/196,630
	(B) FILING DATE: 15-FEBRUARY-1994
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/032,978
	(B) FILING DATE: 18-MARCH-1993
20	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/217,186
	(B) FILING DATE: 24-MARCH-1994
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/217,187
25	(B) FILING DATE: 24-MARCH-1994
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/217,188
	(B) FILING DATE: 24-MARCH-1994
	(vii) PRIOR APPLICATION DATA:
30	(A) APPLICATION NUMBER: 08/190,411
	(B) FILING DATE: 1-APRIL-1994
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/253,503
	(B) FILING DATE: 3-JUNE-1994
35	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: Hanson, Norman D.
	(B) REGISTRATION NUMBER: 30,946
	(C) REFERENCE/DOCKET NUMBER: LUD 5370
	(ix) TELECOMMUNICATION INFORMATION:
40	(A) TELEPHONE: (212) 688-9200
	(B) TELEFAX: (212) 838-3884

5	(2) INFORMATION FOR SEQUENCE ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	•
	(A) LENGTH: 462 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
ì O	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT GAAGATCCTG	60
15	ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCATCCCT CAGCCAATGA GCTTACTGTT 1	.20
	CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG 1	.80
	CTTGTGAATT TGTACCCTTT CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC 2	40
	CCCCCTCCCA CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT 3	300
	AGAACTETTE EGGAGGAAGG AGGGAGGACE CECECETTT GETETECAG CATGEATTGT 3	160
20	GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG CTAGCTTGCG ACTCTACTCT	120
	TATCTTAACT TAGCTCGGCT TCCTGCTGGT ACCCTTTGTG CC 4	162
	(2) INFORMATION FOR SEQUENCE ID NO: 2:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 675 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
		48
35	Met Ser Asp Asn Lys Lys Pro Asp Lys Ala His Ser Gly Ser Gly Gly	
	5 10 15	
	GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG TAC TCC CTG GAA	96
	Asp Gly Asp Gly Asn Arg Cys Asn Leu Leu His Arg Tyr Ser Leu Glu	
• • •	20 25 30	
40		44
	Glu Ile Leu Pro Tyr Leu Gly Trp Leu Val Phe Ala Val Val Thr Thr	

5			35					40					45				
	AGT	TTT	CTG	GCG	стс	CAG	ATG	TTC	ATA	GAC	GCC	CTT	TAT	GAG	GAG	CAG	192
	Ser	Phe	Leu	Ala	Leu	Gln	Met	Phe	lle	Asp	Ala	Leu	Tyr	Glu	Glu	Gln	
		50					55					60					
	TAT	GAA	AGG	GAT	GTG	GCC	TGG	ATA	GCC	AGG	CAA	AGC	AAG	CGC	ATG	TCC	240
10	Tyr	Glu	Arg	Asp	Va 1	Ala	Trp	I le	Ala	Arg	Gln	Ser	Lys	Arg	Met	Ser	
	65					70					75					80	
					GAT												288
	Ser	Val	Asp	Glu	Asp	Glu	Asp	Asp	Glu	Asp	Asp	Glu	Asp	Asp		Tyr	
					85					90					95		
15					GAC												336
	Asp	Asp	Glu	Asp	Asp	Asp	Asp	Asp		Phe	Tyr	Asp	Asp		Asp	Asp	
				100					105					110			
		-			TTG												384
	Glu	Glu		Glu	Leu	Glu	Asn		Met	Asp	Asp	Glu		Glu	Asp	Glu	
20			115					120		CCT	000	004	125	C 4 C	C A A	ATC	422
					ATG												432
	Ala			Glu	Met	Ser		GIU	met	ыу	АТА		Ala	6 IU	GIU	meı	
	207	130		CCT	AAC	TOT	135	TCT	CIT	ССТ	CCC	140	CAT	TTA	ACC	AAC	480
0.5					Asn												460
25	145		ыу	Ald	ASII	150	MIA	Cys	Vai	rio	155	1113	1113	Leu	M 9	160	
			GTG	AAG	TGT		ΔTG	ΔΤΤ	ΤΔΤ	TTC		CAC	GAC	ССТ	AAT		528
					Cys												020
	MSII	u i u	· •a·	Lys	165		1100	1.0	, , ,	170		5	тор		175		
30	CTG	GTO	י זרז	ΔΤΔ	CCA		AAC	ССТ	AAG	_		ATG	GAG	TGT			576
30					Pro												
				180					185					190			
	GAA	AA I	r GCT			GAG	GTT	GCA	ATG	GAA	GAG	GAA	GAA	GAA	GAA	GAG	624
					Glu												
35			195					200				210					
	GAG	GA(GAA	GAG	GAA	ATO	GGA	AA(CCG	GAT	GGC	TTC	TCA	CCT	672
																Pro	
	220					225					230					235	
	TA	~															675

21

5		
	(2) INFORMATION FOR SEQUENCE ID NO: 3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 228 base pairs	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
15		
13	GCATGCAGTT GCAAAGCCCA GAAGAAAGAA ATGGACAGCG GAAGAAGTGG TIGTTTTTT	60
	TTCCCCTTCA TTAATTTTCT AGTTTTTAGT AATCCAGAAA ATTTGATTTT GTTCTAAAGT	120
	TCATTATGCA AAGATGTCAC CAACAGACTT CTGACTGCAT GGTGAACTTT CATATGATAC	180
	ATAGGATTAC ACTTGTACCT GTTAAAAATA AAAGTTTGAC TTGCATAC	228
20		
	(2) INFORMATION FOR SEQUENCE ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1365 base pairs	
25	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	•
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
30		
	ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT 50	
	GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCATCCCT 100	
	CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG 150	
	AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCTTT 200	
35	CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCTCCCA 250	
	CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT 300	
	AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT GCTCTCCCAG 350	
	CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG 400	
	CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCTGCTGGT 450	
40	ACCCTTTGTG CC 462	

SUBSTITUTE SHEET (RULE 26)

ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA

5	GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG	546
	TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC	588
	TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC	630
	ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC	672
	TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG	714
10	GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC GAC GAC	756
	GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT	798
	GAG GAA GAA TTG GAG AAC CTG ATG GAT GAA TCA GAA	840
	GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA	882
	GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC TGT GTT CCT	924
15	GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG AT	966
	TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG	1008
	AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT	1050
	GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG	1092
	GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC TTC TCA CCT	1134
20	TAG	1137
	GCATGCAGTT GCAAAGCCCA GAAGAAAGAA ATGGACAGCG GAAGAAGTGG	1187
	TTGTTTTTT TTCCCCTTCA TTAATTTTCT AGTTTTTAGT AATCCAGAAA	1237
	ATTTGATTTT GTTCTAAAGT TCATTATGCA AAGATGTCAC CAACAGACTT	1287
	CTGACTGCAT GGTGAACTTT CATATGATAC ATAGGATTAC ACTTGTACCT	1337
25	GTTAAAAATA AAAGTTTGAC TTGCATAC	1365
	(A) INCORMATION COR SECRENCE ID NO. 5.	
	(2) INFORMATION FOR SEQUENCE ID NO: 5: (i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 4698 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: genomic DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	(XI) SEQUENCE DESCRIPTION: SEQ 15 NOT ST	
	ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT	50
	GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCATCCCT	100
40	CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG	150
	AAGTITIGCA AGTICCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCTTT	200

23

5	CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCTCCCA	250
	CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT	300
	AGAACTETTE CGGAGGAAGG AGGGAGGACE CCCCCCTTT GCTCTCCCAG	350
	CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG	400
	CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCTGCTGGT	450
10	ACCCTTTGTG CC	462
	ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA	504
	GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG	546
	TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC	588
	TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC	630
15	ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC	672
	TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG	714
	GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC GAC GAC	756
	GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT	798
	GAG GAA GAA TTG GAG AAC CTG ATG GAT GAA TCA GAA	840
20	GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA	882
	GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC T	916
	GTGAGTAACC CGTGGTCTTT ACTCTAGATT CAGGTGGGGT GCATTCTTTA	966
	CTCTTGCCCA CATCTGTAGT AAAGACCACA TTTTGGTTGG GGGTCATTGC	1016
	TGGAGCCATT CCTGGCTCTC CTGTCCACGC CTATCCCCGC TCCTCCCATC	1066
25	CCCCACTCCT TGCTCCGCTC TCTTTCCTTT TCCCACCTTG CCTCTGGAGC	1116
	TTCAGTCCAT CCTGCTCTGC TCCCTTTCCC CTTTGCTCTC CTTGCTCCCC	1166
	TCCCCCTCGG CTCAACTTTT CGTGCCTTCT GCTCTCTGAT CCCCACCCTC	1216
	TTCAGGCTTC CCCATTTGCT CCTCTCCCGA AACCCTCCCC TTCCTGTTCC	1266
	CCTTTTCGCG CCTTTTCTTT CCTGCTCCCC TCCCCCTCCC TATTTACCTT	1316
30	TCACCAGCTT TGCTCTCCCT GCTCCCCTCC CCCTTTTGCA CCTTTTCTTT	1366
	TCCTGCTCCC CTCCCCTCC CCTCCCTGTT TACCCTTCAC CGCTTTTCCT	1416
	CTACCTGCTT CCCTCCCCT TGCTGCTCCC TCCCTATTTG CATTTTCGGG	1466
	TGCTCCTCCC TCCCCCTCCC CCTCCCTCCC TATTTGCATT TTCGGGTGCT	1516
	CCTCCCTCCC CCTCCCCAGG CCTTTTTTTT TTTTTTTTTT	1566
35	TIGGTTTTTC GAGACAGGGT TICTCTTTGT ATCCCTGGCT GTCCTGGCAC	1616
	TCACTCTGTA GACCAGGCTG GCCTCAAACT CAGAAATCTG CCTGCCTCTG	1666
	CCTCCCAAAT GCTGGGATTA AAGGCTTGCA CCAGGACTGC CCCAGTGCAG	1716
	GCCTTTCTTT TTTCTCCTCT CTGGTCTCCC TAATCCCTTT TCTGCATGTT	1766
	AACTCCCCTT TTGGCACCTT TCCTTTACAG GACCCCCTCC CCCTCCCTGT	1816
40	TTCCCTTCCG GCACCCTTCC TAGCCCTGCT CTGTTCCCTC TCCCTGCTCC	1866
,	CCTCCCCCTC TTTGCTCGAC TTTTAGCAGC CTTACCTCTC CCTGCTTTCT	1916

SUBSTITUTE SHEET (RULE 26)

24

5	GCCCCGTTCC CCTTTTTTGT GCCTTTCCTC CTGGCTCCCC TCCACCTTCC	1966
	AGCTCACCTT TTTGTTTGTT TGGTTGTTTG GTTGTTTGGT TTGCTTTTTT	2016
	TITTITTT GCACCTIGTT TTCCAAGATC CCCCTCCCCC TCCGGCTTCC	2066
	CCTCTGTGTG CCTTTCCTGT TCCCTCCCC TCGCTGGCTC CCCCTCCCT	2116
	TCTGCCTTTC CTGTCCCTGC TCCCTTCTCT GCTAACCTTT TAATGCCTTT	2166
10	CTTTTCTAGA CTCCCCCCTC CAGGCTTGCT GTTTGCTTCT GTGCACTTTT	2216
	CCTGACCCTG CTCCCCTTCC CCTCCCAGCT CCCCCCTCTT TTCCCACCTC	2266
	CCTTTCTCCA GCCTGTCACC CCTCCTTCTC TCCTCTGT TTCTCCCACT	2316
	TECTGETTEE TITACCECTT CECTETEET ACTETEETE CTGEETGETG	2366
	GACTTCCTCT CCAGCCGCCC AGTTCCCTGC AGTCCTGGAG TCTTTCCTGC	2416
15	CTCTCTGTCC ATCACTTCCC CCTAGTTTCA CTTCCCTTTC ACTCTCCCCT	2466
4	ATGTGTCTCT CTTCCTATCT ATCCCTTCCT TTCTGTCCCC TCTCCTCTGT	2516
	CCATCACCTC TCTCCTCCCT TCCCTTTCCT CTCTCTTCCA TTTTCTTCCA	2566
	CCTGCTTCTT TACCCTGCCT CTCCCATTGC CCTCTTACCT TTATGCCCAT	2616
	TCCATGTCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTTCC	2666
20	ATTICCCTCT TICTCCCTTA GCCTCTTCTT CCTCTTCTCT TGTATCTCCC	2716
	TTCCCTTTGC TTCTCCCTCC TCCTTTCCCC TTCCCCTATG CCCTCTACTC	2766
	TACTTGATCT TCTCTCCTCT CCACATACCC TTTTTCCTTT CCACCCTGCC	2816
	CTTTGTCCCC AGACCCTACA GTATCCTGTG CACAGGAAGT GGGAGGTGCC	2866
	ATCAACAACA AGGAGGCAAG AAACAGAGCA AAATCCCAAA ATCAGCAGGA	2916
25	AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC	2966
	AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT	3016
	CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG	3066
	CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA	3116
	GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG	3166
30	TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA	3216 3266
	GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT	3316
	TTGCTAAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG	3355
	GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT	3396
35	AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT	3438
33	ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA	3480
	AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA	3522
	GAG GAG GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC	3564
	TTC TCA CCT TAG	3576
40	GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA	3626
	GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA	3676

SUBSTITUTE SHEET (RULE 26)

5	TCTTTTTACA	TTAATAAGTA	TTAAATTAAT	CCAGTATACA	GTTTTAAGAA	3726
	CCCTAAGTTA	AACAGAAGTC	AATGATGTCT	AGATGCCTGT	TCTTTAGATT	3776
	GTAGTGAGAC	TACTTACTAC	AGATGAGAAG	TTGTTAGACT	CGGGAGTAGA	3826
	GACCAGTAAA	AGATCATGCA	GTGAAATGTG	GCCATGGAAA	TCGCATATTG	3876
	TTCTTATAGT	ACCTTTGAGA	CAGCTGATAA	CAGCTGACAA	AAATAAGTGT	3926
10	TTCAAGAAAG	ATCACACGCC	ATGGTTCACA	TGCAAATTAT	TATTTTGTCG	3976
	TTCTGATTTT	TTTCATTTCT	AGACCTGTGG	TTTTAAAGAG	ATGAAAATCT	4026
	CTTAAAATTT	CCTTCATCTT	TAATTITCCT	TAACTTTAGT	TTTTTTCACT	4076
	TAGAATTCAA	TTCAAATTCT	TAATTCAATC	TTAATTTTTA	GATTTCTTAA	4126
	AATGTTTTTT	AAAAAAAATG	CAAATCTCAT	TTTTAAGAGA	TGAAAGCAGA	4176
15	GTAACTGGGG	GGCTTAGGGA	ATCTGTAGGG	TTGCGGTATA	GCAATAGGGA	4226
	GTTCTGGTCT	CTGAGAAGCA	GTCAGAGAGA	ATGGAAAACC	AGGCCCTTGC	4276
	CAGTAGGTTA	GTGAGGTTGA	TATGATCAGA	TTATGGACAC	TCTCCAAATC	4326
	ATAAATACTC	TAACAGCTAA	GGATCTCTGA	GGGAAACACA	ACAGGGAAAT	4376
	ATTTTAGTTT	CTCCTTGAGA	AACAATGACA	AGACATAAAA	TTGGCAAGAA	4426
20	AGTCAGGAGT	GTATTCTAAT	AAGTGTTGCT	TATCTCTTAT	TTTCTTCTAC	4476
	AGTTGC AAA G	CCCAGAAGAA	AGAAATGGAC	AGCGGAAGAA	GTGGTTGTTT	4526
	TTTTTTCCCC	TTCATTAATT	TTCTAGTTTT	TAGTAATCCA	GAAAATTTGA	4576
	TTTTGTTCTA	AAGTTCATTA	TGCAAAGATG	TCACCAACAG	ACTTCTGACT	4626
	GCATGGTGAA	CTTTCATATG	ATACATAGGA	TTACACTTGT	ACCTGTTAAA	4676
25	AATAAAAGTT	TGACTTGCAT	AC ·			4698

(2) INFORMATION FOR SEQUENCE ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Leu Pro Tyr Leu Gly Trp Leu Val Phe

_

40

35

5	(2) INFORMATION FOR SEQUENCE ID NO. 7.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2419 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GGATCCAGGC CCTGCCAGGA AAAATATAAG GGCCCTGCGT GAGAACAGAG	50
15	GGGGTCATCC ACTGCATGAG AGTGGGGATG TCACAGAGTC CAGCCCACCC	100
	TCCTGGTAGC ACTGAGAAGC CAGGGCTGTG CTTGCGGTCT GCACCCTGAG	150
	GGCCCGTGGA TTCCTCTTCC TGGAGCTCCA GGAACCAGGC AGTGAGGCCT	200
	TGGTCTGAGA CAGTATCCTC AGGTCACAGA GCAGAGGATG CACAGGGTGT	250
20	GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
20	CAGGACACAT AGGACTCCAC AGAGTCTGGC CTCACCTCCC TACTGTCAGT	350
	CCTGTAGAAT CGACCTCTGC TGGCCGGCTG TACCCTGAGT ACCCTCTCAC	400
	TTCCTCCTTC AGGTTTTCAG GGGACAGGCC AACCCAGAGG ACAGGATTCC	450
	CTGGAGGCCA CAGAGGAGCA CCAAGGAGAA GATCTGTAAG TAGGCCTTTG	500
25	TTAGAGTCTC CAAGGTTCAG TTCTCAGCTG AGGCCTCTCA CACACTCCCT	550
23	CICICCCAG GCCIGIGGGI CITCATIGCC CAGCICCIGC CCACACICCI	600
	GCCTGCTGCC CTGACGAGAG TCATCATGTC TCTTGAGCAG AGGAGTCTGC	650
	ACTGCAAGCC TGAGGAAGCC CTTGAGGCCC AACAAGAGGC CCTGGGCCTG	700
	GTGTGTGTGC AGGCTGCCAC CTCCTCCTCC TCTCCTCTGG TCCTGGGCAC	750
30	CCTGGAGGAG GTGCCCACTG CTGGGTCAAC AGATCCTCCC CAGAGTCCTC	800
	AGGGAGCCTC CGCCTTTCCC ACTACCATCA ACTTCACTCG ACAGAGGCAA	850
	CCCAGTGAGG GTTCCAGCAG CCGTGAAGAG GAGGGGCCAA GCACCTCTTG	900
	TATCCTGGAG TCCTTGTTCC GAGCAGTAAT CACTAAGAAG GTGGCTGATT	950
	TGGTTGGTTT TCTGCTCCTC AAATATCGAG CCAGGGAGCC AGTCACAAAG	1000
35	GCAGAAATGC TGGAGAGTGT CATCAAAAAT TACAAGCACT GTTTTCCTGA	1050
	GATCTTCGGC AAAGCCTCTG AGTCCTTGCA GCTGGTCTTT GGCATTGACG	1100
	TGAAGGAAGC AGACCCCACC GGCCACTCCT ATGTCCTTGT CACCTGCCTA	1150
	GGTCTCTCCT ATGATGGCCT GCTGGGTGAT AATCAGATCA TGCCCAAGAC	1200
	AGGETTECTG ATAATTGTEE TGGTEATGAT TGEAATGGAG GGEGGEEATG	1250
40	CTCCTGAGGA GGAAATCTGG GAGGAGCTGA GTGTGATGGA GGTGTATGAT	1300

GGGAGGGAGC ACAGTGCCTA TGGGGAGCCC AGGAAGCTGC TCACCCAAGA

5	TTTGGTGCAG	GAAAAGTACC	TGGAGTACGG	CAGGTGCCGG	ACAGTGATCC	1400
	CGCACGCTAT	GAGTTCCTGT	GGGGTCCAAG	GGCCCTCGCT	GAAACCAGCT	1450
	ATGTGAAAGT	CCTTGAGTAT	GTGATCAAGG	TCAGTGCAAG	AGTTCGCTTT	1500
	TTCTTCCCAT	CCCTGCGTGA	AGCAGCTTTG	AGAGAGGAGG	AAGAGGGAGT	1550
	CTGAGCATGA	GTTGCAGCCA	AGGCCAGTGG	GAGGGGGACT	GGGCCAGTGC	1600
ιo	ACCTTCCAGG	GCCGCGTCCA	GCAGCTTCCC	CTGCCTCGTG	TGACATGAGG	1650
	CCCATTCTTC	ACTCTGAAGA	GAGCGGTCAG	TGTTCTCAGT	AGTAGGTTTC	1700
	TGTTCTATTG	GGTGACTTGG	AGATTTATCT	TTGTTCTCTT	TTGGAATTGT	1750
	TCAAATGTTT	TTTTTTAAGG	GATGGTTGAA	TGAACTTCAG	CATCCAAGTT	1800
	TATGAATGAC	AGCAGTCACA	CAGTTCTGTG	TATATAGTTT	AAGGGTAAGA	1850
15	GTCTTGTGTT	TTATTCAGAT	TGGGAAATCC	ATTCTATTTT	GTGAATTGGG	1900
	ATAATAACAG	CAGTGGAATA	AGTACTTAGA	AATGTGAAAA	ATGAGCAGTA	1950
	AAATAGATGA	GATAAAGAAC	TAAAGAAATT	AAGAGATAGT	CAATTCTTGC	2000
	CTTATACCTC	AGTCTATTCT	GTAAAATTTT	TAAAGATATA	TGCATACCTG	2050
	GATTTCCTTG	GCTTCTTTGA	GAATGTAAGA	GAAATTAAAT	CTGAATAAAG	2100
20	AATTCTTCCT	GTTCACTGGC	TCTTTTCTTC	TCCATGCACT	GAGCATCTGC	2150
	TTTTTGGAAG	GCCCTGGGTT	AGTAGTGGAG	ATGCTAAGGT	AAGCCAGACT	2200
	CATACCCACC	CATAGGGTCG	TAGAGTCTAG	GAGCTGCAGT	CACGTAATCG	2250
	AGGTGGCAAG	ATGTCCTCTA	AAGATGTAGG	GAAAAGTGAG	AGAGGGGTGA	2300
	GGGTGTGGGG	CTCCGGGTGA	GAGTGGTGGA	GTGTCAATGC	CCTGAGCTGG	2350
25	GGCATTTTGG	GCTTTGGGAA	ACTGCAGTTC	CTTCTGGGGG	AGCTGATTGT	2400
	AATGATCTTG	GGTGGATCC				2419

30 (2) INFORMATION FOR SEQUENCE ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5674 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-1 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

40

	•					
5	CCCGGGGCAC	CACTGGCATC	CCTCCCCCTA	CCACCCCAA	TCCCTCCCTT	50
	TACGCCACCC	ATCCAAACAT	CTTCACGCTC	ACCCCCAGCC	CAAGCCAGGC	100
	AGAATCCGGT	TCCACCCCTG	CTCTCAACCC	AGGGAAGCCC	AGGTGCCCAG	150
	ATGTGACGCC	ACTGACTTGA	${\bf GCATTAGTGG}$	TTAGAGAGAA	GCGAGGTTTT	200
	CGGTCTGAGG	GGCGGCTTGA	GATCGGTGGA	GGGAAGCGGG	CCCAGCTCTG	250
10	TAAGGAGGCA	AGGTGACATG	CTGAGGGAGG	ACTGAGGACC	CACTTACCCC	300
	AGATAGAGGA	CCCCAAATAA	TCCCTTCATG	CCAGTCCTGG	ACCATCTGGT	350
	GGTGGACTTC	TCAGGCTGGG	CCACCCCCAG	CCCCCTTGCT	GCTTAAACCA	400
	CTGGGGACTC	GAAGTCAGAG	CTCCGTGTGA	TCAGGGAAGG	GCTGCTTAGG	450
	AGAGGGCAGC	GTCCAGGCTC	TGCCAGACAT	CATGCTCAGG	ATTCTCAAGG	500
15	AGGGCTGAGG	GTCCCTAAGA	CCCCACTCCC	GTGACCCAAC	CCCCACTCCA	550
	ATGCTCACTC	CCGTGACCCA	ACCCCCTCTT	CATTGTCATT	CCAACCCCCA	600
	CCCCACATCC	CCCACCCCAT	CCCTCAACCC	TGATGCCCAT	CCGCCCAGCC	650
	ATTCCACCCT	CACCCCCACC	CCCACCCCCA	CGCCCACTCC	CACCCCCACC	700
	CAGGCAGGAT	CCGGTTCCCG	CCAGGAAACA	TCCGGGTGCC	CGGATGTGAC	750
20	GCCACTGACT	TGCGCATTGT	GGGGCAGAGA	GAAGCGAGGT	TTCCATTCTG	800
	AGGGACGGCG	TAGAGTTCGG	CCGAAGGAAC	CTGACCCAGG	CTCTGTGAGG	850
	AGGCAAGGTG	AGAGGCTGAG	GGAGGACTGA	GGACCCCGCC	ACTCCAAATA	900
	GAGAGCCCCA	AATATTCCAG	CCCCGCCCTT	GCTGCCAGCC	CTGGCCCACC	950
	CGCGGGAAGA	CGTCTCAGCC	TGGGCTGCCC	CCAGACCCCT	GCTCCAAAAG	1000
25	CCTTGAGAGA	CACCAGGTTC	TTCTCCCCAA	GCTCTGGAAT	CAGAGGTTGC	1050
	TGTGACCAGG	GCAGGACTGG	TTAGGAGAGG	GCAGGGCACA	GGCTCTGCCA	1100
	GGCATCAAGA	TCAGCACCCA	AGAGGGAGGG	CTGTGGGCCC	CCAAGACTGC	1150
	ACTCCAATCC	CCACTCCCAC	CCCATTCGCA	TTCCCATTCC	CCACCCAACC	1200
	CCCATCTCCT	CAGCTACACC	TCCACCCCCA	TCCCTACTCC	TACTCCGTCA	1250
30	CCTGACCACC	CACCCTCCAGC	CCCAGCACCA	GCCCCAACCC	TTCTGCCACC	1300
	TCACCCTCAC	TGCCCCCAAC	CCCACCCTCA	TCTCTCTCAT	GTGCCCCACT	1350
	CCCATCGCCT	CCCCCATTCT	GGCAGAATCC	GGTTTGCCCC	TGCTCTCAAC	1400
	CCAGGGAAG	CCTGGTAGGC	CCGATGTGAA	ACCACTGACT	TGAACCTCAC	1450
	AGATCTGAGA	A GAAGCCAGGT	TCATTTAATO	GTTCTGAGGG	GCGGCTTGAG	1500
35	ATCCACTGAC	G GGGAGTGGTT	TTAGGCTCT	TGAGGAGGCA	AGGTGAGATG	1550
	CTGAGGGAGG	G ACTGAGGAGG	CACACACCC	AGGTAGATGG	CCCCAAAATG	1600
					CAGGACAGAT	1650
					TAACCCACAG	1700
		•			GGTCAGGAGA	
40					TAGGGTCAGG	1800
	ACCCTGGGA	G GGAACTGAG	GTTCCCCAC	CACACCTGT	TCCTCATCTC	1850

5	CACCGCCACC	CCACTCACAT	TCCCATACCT	ACCCCCTACC	CCCAACCTCA	1900
	TCTTGTCAGA	ATCCCTGCTG	TCAACCCACG	GAAGCCACGG	GAATGGCGGC	1950
	CAGGCACTCG	GATCTTGACG	TCCCCATCCA	GGGTCTGATG	GAGGGAAGGG	2000
	GCTTGAACAG	GGCCTCAGGG	GAGCAGAGGG	AGGGCCCTAC	TGCGAGATGA	2050
	GGGAGGCCTC	AGAGGACCCA	GCACCCTAGG	ACACCGCACC	CCTGTCTGAG	2100
.0	ACTGAGGCTG	CCACTTCTGG	CCTCAAGAAT	CAGAACGATG	GGGACTCAGA	2150
	TTGCATGGGG	GTGGGACCCA	GGCCTGCAAG	GCTTACGCGG	AGGAAGAGGA	2200
	GGGAGGACTC	AGGGGACCTT	GGAATCCAGA	TCAGTGTGGA	CCTCGGCCCT	2250
	GAGAGGTCCA	GGGCACGGTG	GCCACATATG	GCCCATATTT	CCTGCATCTT	2300
	TGAGGTGACA	GGACAGAGCT	GTGGTCTGAG	AAGTGGGGCC	TCAGGTCAAC	2350
۱5	AGAGGGAGGA	GTTCCAGGAT	CCATATGGCC	CAAGATGTGC	CCCCTTCATG	2400
	AGGACTGGGG	ATATCCCCGG	CTCAGAAAGA	AGGGACTCCA	CACAGTCTGG	2450
	CTGTCCCCTT	TTAGTAGCTC	TAGGGGGACC	AGATCAGGGA	TGGCGGTATG	2500
	TTCCATTCTC	ACTTGTACCA	CAGGCAGGAA	GTTGGGGGC	CCTCAGGGAG	2550
	ATGGGGTCTT	GGGGTAAAGG	GGGGATGTCT	ACTCATGTCA	GGGAATTGGG	2600
20	GGTTGAGGAA	GCACAGGCGC	TGGCAGGAAT	AAAGATGAGT	GAGACAGACA	2650
	AGGCTATTGG	AATCCACACC	CCAGAACCAA	AGGGGTCAGC	CCTGGACACC	2700
	TCACCCAGGA	TGTGGCTTCT	TTTTCACTCC	TGTTTCCAGA	TCTGGGGCAG	2750
	GTGAGGACCT	CATTCTCAGA	GGGTGACTCA	GGTCAACGTA	GGGACCCCCA	2800
	TCTGGTCTAA	AGACAGAGCG	GTCCCAGGAT	CTGCCATGCG	TTCGGGTGAG	2850
25	GAACATGAGG	GAGGACTGAG	GGTACCCCAG	GACCAGAACA	CTGAGGGAGA	2900
	CTGCACAGAA	ATCAGCCCTG	CCCCTGCTGT	CACCCCAGAG	AGCATGGGCT	2950
	GGGCCGTCTG	CCGAGGTCCT	TCCGTTATCC	TGGGATCATT	GATGTCAGGG	3000
	ACGGGGAGGC	CTTGGTCTGA	GAAGGCTGCG	CTCAGGTCAG	TAGAGGGAGC	3050
	GTCCCAGGCC	CTGCCAGGAG	TCAAGGTGAG	GACCAAGCGG	GCACCTCACC	3100
30		TAATTCCAAT				3150
	AAGGACCTAG	GCACGTGTGG	CCAGATGTTT	GTCCCCTCCT	GTCCTTCCAT	3200
	TCCTTATCAT	GGATGTGAAC	TCTTGATTTG	GATTTCTCAG	ACCAGCAAAA	3250
					TGCGTGAGAA	
					GAGTCCAGCC	3350
35					GGTCTGCACC	3400
					CAGGCAGTGA	3450
					GGATGCACAG	3500
					GGGCCCCACC	3550
•					CTCCCTACTG	3600
40					TGAGTACCCT	3650
	CTCACTTCC	CCTTCAGGTT	TTCAGGGGAC	AGGCCAACCC	AGAGGACAGG	3700

5	ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC	3750
	CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC	3800
	TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA	3850
	CTCCTGCCTG CTGCCCTGAC GAGAGTCATC	3880
	ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA	3922
10	GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG	3964
	CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC	4006
	CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG	4048
	AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC	4090
	ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA	4132
15	GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC	4174
	CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT TTT	4216
	CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA	4258
	GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT	4300
	CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CAG CTG GTC	4342
20	TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC	4384
,	TAT GTC CTT GTC ACC TGC CTA GGT CTC TCC TAT GAT GGC CTG	4426
	CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATA	4468
	ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC CAT GCT CCT	4510
	GAG GAG GAA ATC TGG GAG GAG CTG AGT GTG ATG GAG GTG TAT	4552
25	GAT GGG AGG GAG CAC AGT GCC TAT GGG GAG CCC AGG AAG CTG	4594
	CTC ACC CAA GAT TTG GTG CAG GAA AAG TAC CTG GAG TAC GGC	4636
	AGG TGC CGG ACA GTG ATC CCG CAC GCT ATG AGT TCC TGT GGG	4678
	GTC CAA GGG CCC TCG CTG AAA CCA GCT ATG TGA	4711
	AAGTCCTTGA GTATGTGATC AAGGTCAGTG CAAGAGTTC	4750
30	GCTTTTTCTT CCCATCCCTG CGTGAAGCAG CTTTGAGAGA GGAGGAAGAG	4800
	GGAGTCTGAG CATGAGTTGC AGCCAAGGCC AGTGGGAGGG GGACTGGGCC	4850
	AGTGCACCTT CCAGGGCCGC GTCCAGCAGC TTCCCCTGCC TCGTGTGACA	4900
	TGAGGCCCAT TCTTCACTCT GAAGAGAGCG GTCAGTGTTC TCAGTAGTAG	4950
	GTTTCTGTTC TATTGGGTGA CTTGGAGATT TATCTTTGTT CTCTTTTGGA	5000.
35	ATTGTTCAAA TGTTTTTTT TAAGGGATGG TTGAATGAAC TTCAGCATCC	5050
	AAGTTTATGA ATGACAGCAG TCACACAGTT CTGTGTATAT AGTTTAAGGG	5100
	TAAGAGTCTT GTGTTTTATT CAGATTGGGA AATCCATTCT ATTTTGTGAA	5150
	TTGGGATAAT AACAGCAGTG GAATAAGTAC TTAGAAATGT GAAAAATGAG	5200
	CAGTAAAATA GATGAGATAA AGAACTAAAG AAATTAAGAG ATAGTCAATT.	5250
40	CTTGCCTTAT ACCTCAGTCT ATTCTGTAAA ATTTTTAAAG ATATATGCAT	5300
	ACCTGGATTT CCTTGGCTTC TTTGAGAATG TAAGAGAAAT TAAATCTGAA	5350

31

5	TAAAGAATTC	TTCCTGTTCA	CTGGCTCTTT	TCTTCTCCAT	GCACTGAGCA	5400
	TCTGCTTTTT	GGAAGGCCCT	GGGTTAGTAG	TGGAGATGCT	AAGGTAAGCC	5450
	AGACTCATAC	CCACCCATAG	GGTCGTAGAG	TCTAGGAGCT	GCAGTCACGT	5500
	AATCGAGGTG	GCAAGATGTC	CTCTAAAGAT	GTAGGGAAAA	GTGAGAGAGG	5550
	GGTGAGGGTG	TGGGGCTCCG	GGTGAGAGTG	GTGGAGTGTC	AATGCCCTGA	5600
10	GCTGGGGCAT	TTTGGGCTTT	GGGAAACTGC	AGTTCCTTCT	GGGGGAGCTG	5650
	ATTGTAATGA	TCTTGGGTGG	ATCC			5674

(2) INFORMATION FOR SEQUENCE ID NO: 9:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4157 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (ix) FEATURE:
 - (A) NAME/KEY: MAGE-2 gene
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

25						
	CCCATCCAGA	TCCCCATCCG	GGCAGAATCC	GGTTCCACCC	TTGCCGTGAA	50
	CCCAGGGAAG	TCACGGGCCC	GGATGTGACG	CCACTGACTT	GCACATTGGA	100
	GGTCAGAGGA	CAGCGAGATT	CTCGCCCTGA	GCAACGGCCT	GACGTCGGCG	150
	GAGGGAAGCA	GGCGCAGGCT	CCGTGAGGAG	GCAAGGTAAG	ACGCCGAGGG	200
30	AGGACTGAGG	CGGGCCTCAC	CCCAGACAGA	GGGCCCCCAA	TTAATCCAGC	250
	GCTGCCTCTG	CTGCCGGGCC	TGGACCACCC	TGCAGGGGAA	GACTTCTCAG	300
	GCTCAGTCGC	CACCACCTCA	CCCCGCCACC	CCCCGCCGCT	TTAACCGCAG	350
	GGAACTCTGG	CGTAAGAGCT	TTGTGTGACC	AGGGCAGGGC	TGGTTAGAAG	400
	TGCTCAGGGC	CCAGACTCAG	CCAGGAATCA	AGGTCAGGAC	CCCAAGAGGG	450
35	GACTGAGGGC	AACCCACCCC	CTACCCTCAC	TACCAATCCC	ATCCCCCAAC	500
	ACCAACCCCA	CCCCCATCCC	TCAAACACCA	ACCCCACCCC	CAAACCCCAT	550
	TCCCATCTCC	TCCCCCACCA	CCATCCTGGC	AGAATCCGGC	TTTGCCCCTG	600
	CAATCAACCC	ACGGAAGCTC	CGGGAATGGC	GGCCAAGCAC	GCGGATCCTG	650
	ACGTTCACAT	GTACGGCTAA	GGGAGGGAAG	GGGTTGGGTC	TCGTGAGTAT	700
40	GGCCTTTGGG	ATGCAGAGGA	AGGGCCCAGG	CCTCCTGGAA	GACAGTGGAG	750
	TCCTTAGGGG	ACCCAGCATG	CCAGGACAGG	GGGCCCACTG	TACCCCTGTC	800

SUBSTITUTE SHEET (RULE 26)

5	TCAAACTGAG CCACCTTTTC ATTCAGCCGA GGGAATCCTA GGGATGCAGA	850
	CCCACTTCAG GGGGTTGGGG CCCAGCCTGC GAGGAGTCAA GGGGAGGAAG	900
	AAGAGGAGG ACTGAGGGGA CCTTGGAGTC CAGATCAGTG GCAACCTTGG	950
	GCTGGGGGAT CCTGGGCACA GTGGCCGAAT GTGCCCCGTG CTCATTGCAC	1000
	CTTCAGGGTG ACAGAGAGTT GAGGGCTGTG GTCTGAGGGC TGGGACTTCA	1050
10	GGTCAGCAGA GGGAGGAATC CCAGGATCTG CCGGACCCAA GGTGTGCCCC	1100
	CTTCATGAGG ACTCCCCATA CCCCCGGCCC AGAAAGAAGG GATGCCACAG	1150
	AGTCTGGAAG TAAATTGTTC TTAGCTCTGG GGGAACCTGA TCAGGGATGG	1200
	CCCTAAGTGA CAATCTCATT TGTACCACAG GCAGGAGGTT GGGGAACCCT	1250
	CAGGGAGATA AGGTGTTGGT GTAAAGAGGA GCTGTCTGCT CATTTCAGGG	1300
15	GGTTCCCCCT TGAGAAAGGG CAGTCCCTGG CAGGAGTAAA GATGAGTAAC	1350
	CCACAGGAGG CCATCATAAC GTTCACCCTA GAACCAAAGG GGTCAGCCCT	1400
	GGACAACGCA CGTGGGGTAA CAGGATGTGG CCCCTCCTCA CTTGTCTTTC	1450
	CAGATCTCAG GGAGTTGATG ACCTTGTTTT CAGAAGGTGA CTCAGTCAAC	1500
	ACAGGGGCCC CTCTGGTCGA CAGATGCAGT GGTTCTAGGA TCTGCCAAGC	1550
20	ATCCAGGTGG AGAGCCTGAG GTAGGATTGA GGGTACCCCT GGGCCAGAAT	1600
	GCAGCAAGGG GGCCCCATAG AAATCTGCCC TGCCCCTGCG GTTACTTCAG	1650
	AGACCCTGGG CAGGGCTGTC AGCTGAAGTC CCTCCATTAT CTGGGATCTT	1700
	TGATGTCAGG GAAGGGGAGG CCTTGGTCTG AAGGGGCTGG AGTCAGGTCA	1750
	GTAGAGGGAG GGTCTCAGGC CCTGCCAGGA GTGGACGTGA GGACCAAGCG	1800
25	GACTOGTOAC COAGGACACO TGGACTOCAA TGAATTTGAC ATCTCTCGTT	1850
	GTCCTTCGCG GAGGACCTGG TCACGTATGG CCAGATGTGG GTCCCCTCTA	1900
	TCTCCTTCTG TACCATATCA GGGATGTGAG TTCTTGACAT GAGAGATTCT	1950
	CAAGCCAGCA AAAGGGTGGG ATTAGGCCCT ACAAGGAGAA AGGTGAGGGC	2000
	CCTGAGTGAG CACAGAGGGG ACCCTCCACC CAAGTAGAGT GGGGACCTCA	2050
30	CGGAGTCTGG CCAACCCTGC TGAGACTTCT GGGAATCCGT GGCTGTGCTT	2100
	GCAGTCTGCA CACTGAAGGC CCGTGCATTC CTCTCCCAGG AATCAGGAGC	2150
	TCCAGGAACC AGGCAGTGAG GCCTTGGTCT GAGTCAGTGC CTCAGGTCAC	2200
	AGAGCAGAGG GGACGCAGAC AGTGCCAACA CTGAAGGTTT GCCTGGAATG	2250
	CACACCAAGG GCCCCACCCG CCCAGAACAA ATGGGACTCC AGAGGGCCTG	2300
35	GCCTCACCCT CCCTATTCTC AGTCCTGCAG CCTGAGCATG TGCTGGCCGG	2350
	CTGTACCCTG AGGTGCCCTC CCACTTCCTC CTTCAGGTTC TGAGGGGGAC	2400
	AGGCTGACAA GTAGGACCCG AGGCACTGGA GGAGCATTGA AGGAGAAGAT	2450
	CTGTAAGTAA GCCTTTGTCA GAGCCTCCAA GGTTCAGTTC AGTTCTCACC	2500
	TAAGGCCTCA CACACGCTCC TICTCTCCCC AGGCCTGTGG GTCTTCATTG	2550
40	CCCAGCTCCT GCCCGCACTC CTGCCTGCTG CCCTGACCAG AGTCATC	2597
	ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	2639
	·	

PCT/US95/12463

5	•	GGC	CTT	GAG	GCC	CGA	GGA	GAG	GCC	CTG	GGC	CTG	GTG	GGT	GCG	2681
	-	CAG	GCT	CCT	GCT	ACT	GAG	GAG	CAG	CAG	ACC	GCT	TCT	TCC	TCT	2723
		TCT	ACT	CTA	GTG	GAA	GTT	ACC	CTG	GGG	GAG	GTG	CCT	GCT	GCC	2765
		GAC	TCA	CCG	AGT	CCT	CCC	CAC	AGT	CCT	CAG	GGA	GCC	TCC	AGC	2807
		TTC	TCG	ACT	ACC	ATC	AAC	TAC	ACT	CTT	TGG	AGA	CAA	TCC	GAT	2849
10		GAG	GGC	TCC	AGC	AAC	CAA	GAA	GAG	GAG	GGG	CCA	AGA	ATG	TTT	2891
		CCC	GAC	CTG	GAG	TCC	GAG	TTC	CAA	GCA	GCA	ATC	AGT	AGG	AAG	2933
		ATG	GTT	GAG	TTG	GTT	CAT	TTT	CTG	CTC	CTC	AAG	TAT	CGA	GCC	2975
		AGG	GAG	CCG	GTC	ACA	AAG	GCA	GAA	ATG	CTG	GAG	AGT	GTC	CTC	3017
		AGA	AAT	TGC	CAG	GAC	TTC	TTT	CCC	GTG	ATC	TTC	AGC	AAA	GCC	3059
15		TCC	GAG	TAC	TTG	CAG	CTG	GTC	TTT	GGC	ATC	GAG	GTG	GTG	GAA	3101
		GTG	GTC	CCC	ATC	AGC	CAC	TTG	TAC	ATC	CTT	GTC	ACC	TGC	CTG	3143
		GGC	CTC	TCC	TAC	GAT	GGC	CTG	CTG	GGC	GAC	AAT	CAG	GTC	ATG	3185
		CCC	AAG	ACA	GGC	CTC	CTG	ATA	ATC	GTC	CTG	GCC	ATA	ATC	GCA	3227
		ATA	GAG	GGC	GAC	TGT	GCC	CCT	GAG	GAG	AAA	ATC	TGG	GAG	GAG	3269
20		CTG	AGT	ATG	TTG	GAG	GTG	TTT	GAG	GGG	AGG	GAG	GAC	AGT	GTC	3311
		TTC	GCA	CAT	CCC	AGG	AAG	CTG	CTC	ATG	CAA	GAT	CTG	GTG	CAG	3353
		GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	GTG	CCC	GGC	AGT	GAT	CCT	3395
		GCA	TGC	TAC	GAG	TTC	CTG	TGG	GGT	CCA	AGG	GCC	CTC	ATT	GAA	3437
		ACC	AGC	TAT	GTG	AAA	GTC	CTG	CAC	CAT	ACA	CTA	AAG	ATC	GGT	3479
25		GGA	GAA	CCT	CAC	ATT	TCC	TAC	CCA	CCC	CTG	CAT	GAA	CGG	GCT	3521
		TTG	AGA	GAG	GGA	GAA	GAG	TGA								3542
		GTC	TCAG	CAC	ATGT	TGCA	GC C	AGGG	CCAG	T GG	GAGG	GGGT	CTG	GGCC	AGT	3592
		GCA	CCTT	CCA	GGGC	CCCA	TC C	ATTA	GCTT	C CA	CTGC	CTCG	TGT	GATA	TGA	3642
								AGAG								3692
30		TTT	CTGT	TCT	GTTG	GATG	AC T	TTGA	GATT	T AT	CTTT	CTTT	CCT	GTTG	GAA	3742
		TTG	TTCA	TAA	GTTC	CTTT	TA A	CAAA	TGGT	T GG	ATGA	ACTT	CAG	CATC	CAA	3792
		GTT	TATG	TAA	GACA	GTAG	TC A	CACA	TAGT	G CT	GTTT	ATAT	AGT	TTAG	GGG	3842
		TAA	GAGT	CCT	GTTT	TTTA	TT C	AGAT	TGGG	AA AA	TCCA	TTCC	ATT	TTGT	GAG	3892
								GGAA								3942
35								TACA								3992
								TATGT								4042
								AGAAA								4092
		TCA	CTG	CTC	ATTT	CTTT	AC C	CATTO	ACTO	A GC	CATCT	GCTC	TGI	GGAA	AGGC	4142
		CCT	GGTA	AGTA	GTGG	iG										4157

الماسين والمناوة والمستنفية والالا

5	(2) INFORMATION FOR SEQUENCE ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 662 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: MAGE-21 gene	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
15		
	GGATCCCCAT GGATCCAGGA AGAATCCAGT TCCACCCCTG CTGTGAACCC	50
	AGGGAAGTCA CGGGGCCGGA TGTGACGCCA CTGACTTGCG CGTTGGAGGT	100
	CAGAGAACAG CGAGATTCTC GCCCTGAGCA ACGGCCTGAC GTCGGCGGAG	150
20	GGAAGCAGGC GCAGGCTCCG TGAGGAGGCA AGGTAAGATG CCGAGGGAGG	200
	ACTGAGGCGG GCCTCACCCC AGACAGAGGG CCCCCAATAA TCCAGCGCTG	250
	CCTCTGCTGC CAGGCCTGGA CCACCCTGCA GGGGAAGACT TCTCAGGCTC	300
	AGTCGCCACC ACCTCACCCC GCCACCCCC GCCGCTTTAA CCGCAGGGAA	350
	CTCTGGTGTA AGAGCTTTGT GTGACCAGGG CAGGGCTGGT TAGAAGTGCT	400
25	CAGGGCCCAG ACTCAGCCAG GAATCAAGGT CAGGACCCCA AGAGGGGACT	450
	GAGGGTAACC CCCCGCACC CCCACCACCA TTCCCATCCC CCAACACCAA	500
	CCCCACCCC ATCCCCCAAC ACCAAACCCA CCACCATCGC TCAAACATCA	550
	ACGGCACCCC CAAACCCCGA TTCCCATCCC CACCCATCCT GGCAGAATCG	600
	GAGCTTTGCC CCTGCAATCA ACCCACGGAA GCTCCGGGAA TGGCGGCCAA	650
30	GCACGCGGAT CC	662
	(a) ANEODMATAON FOR CEOUTINGS ID NO. 11.	
	(2) INFORMATION FOR SEQUENCE ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 1640 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(C) STRANDEDNESS: STRIPTE (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA to mRNA	
	•	
40	(ix) FEATURE:	

(A) NAME/KEY: cDNA MAGE-3

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

	GCCG	CGAG	GG A	AGCC	GGCC	C AC	GCTC	GGTG	AGG	AGGC	AAG	GTTC	TGAG	GG	50
	GACA	AGGC1	GA (CTGG	AGGA	C CA	AGAGG	CCCC	CGG	AGGA	AGCA	CTGA	AGG	AGA	100
10	AGAT	CTGC	CA	TGGG	тстс	C AT	TGCC	CAGO	TCC	TGC	CAC	ACTO	CCGC	CCT	150
	GTTC	CCCT	GA (CAGA	GTCA	AT C									171
	ATG	CCT	CTT	GAG	CAG	AGG	AGT	CAG	CAC	TGC	AAG	CCT	GAA	GAA	213
	GGC	CTT	GAG	GCC	CGA	GGA	GAG	GCC	CTG	GGC	CTG	GTG	GGT	GCG	255
	CAG	GCT	CCT	GCT	ACT	GAG	GAG	CAG	GAG	GCT	GCC	TCC	TCC	TCT	297
15	TCT	ACT	CTA	GTT	GAA	GTC	ACC	CTG	GGG	GAG	GTG	CCT	GCT	GCC	339
	GAG	TCA	CCA	GAT	CCT	ccc	CAG	AGT	CCT	CAG	GGA	GCC	TCC	AGC	381
	CTC	CCC	ACT	ACC	ATG	AAC	TAC	CCT	CTC	TGG	AGC	CAA	TCC	TAT	423
	GAG	GAC	TCC	AGC	AAC	CAA	GAA	GAG	GAG	GGG	CCA	AGC	ACC	TTC	465
	CCT	GAC	CTG	GAG	TCC	GAG	TTC	CAA	GCA	GCA	CTC	AGT	AGG	AAG	507
20	GTG	GCC	GAG	TTG	GTT	CAT	TTT	CTG	CTC	CTC	AAG	TAT	CGA	GCC	549
	AGG	GAG	CCG	GTC	ACA	AAG	GCA	GAA	ATG	CTG	GGG	AGT	GTC	GTC	591
	GGA	AAT	TGG	CAG	TAT	TTC	TTT	CCT	GTG	ATC	TTC	AGC	AAA	GCT	633
	TCC	AGT	TCC	TTG	CAG	CTG	GTC	TTT	GGC	ATC	GAG	CTG	ATG	GAA	675
	GTG	GAC	ccc	ATC	GGC	CAC	TTG	TAC	ATC	TTT	GCC	ACC	TGC	CTG	717
25	GGC	CTC	TCC	TAC	GAT	GGC	CTG	CTG	GGT	GAC	AAT	CAG	ATC	ATG	759
	CCC	AAG	GCA	GGC	CTC	CTG	ATA	ATC	GTC	CTG	GCC	ATA	ATC	GCA	801
	AGA	GAG	GGC	GAC	TGT	GCC	CCT	GAG	GAG	AAA	ATC	TGG	GAG	GAG	843
	CTG	AGT	GTG	TTA	GAG	GTG	TTT	GAG	GGG	AGG	GAA	GAC	AGT	ATG	885
	TTG	GGG	GAT	CCC	AAG	AAG	CTG	CTC	ACC	CAA	CAT	TTC	GTG	CAG	927
30	GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	GTC	CCC	GGC	AGT	GAT	CCT	969
	GCA	TGT	TAT	GAA	TTC	CTG	TGG	GGT	CCA	AGG	GCC	CTC	GTT	GAA	1011
	ACC	AGC	TAT	GTG	AAA	GTC	CTG	CAC	CAT	ATG	GTA	AAG	ATC	AGT	1053
	GGA	GGA	CCT	CAC	ATT	TCC	TAC	CCA	CCC	CTG	CAT	GAG	TGG	GTT	1095
	TTG	AGA	GAG	GGG	GAA	GAG	TGA								1116
35	GTC	TGAG	CAC	GAGT	TGCA	GC C	AGGG	CCAG	T GG	GAGG	GGGT	CTG	GGCC	AGT	1166
	GCA	CCTT	CCG	GGGC	CGCA	TC C	CTTA	GTTT	C CA	CTGC	CTCC	TGT	GACG	TGA	1216
	GGC	CCAT	TCT	TCAC	TCTT	TG A	AGCG	AGCA	G TC	AGCA	TTCT	TAG	TAGT	GGG	1266
	TTT	CTGT	TCT	GTTG	GATG	AC T	TTGA	GATT	A TT	CTTT	GTTT	CCT	GTTG	GAG	1316
	TTG	TTCA	AAT	GTTC	CTTT	TA A	CGGA	TGGT	T GA	ATGA	GCGT	CAG	CATC	CAG	1366
40	GTT	TATG	AAT	GACA	GTAG	TC A	CACA	TAGT	G CT	GTTT	ATAT	AGT	TTAG	GAG	1416
	TAA	GAGT	CTT	GttT	TTTA	CT C	AAAT	TgGG	A AA	TCCA	TTCC	ATT	TTGT	GAA	1466

PCT/US95/12463 WO 96/10413

	36	
5	TIGIGACATA ATAATAGCAG TGGTAAAAGT ATTTGCTTAA AATTGTGAGC	1516
	GAATTAGCAA TAACATACAT GAGATAACTC AAGAAATCAA AAGATAGTTG	1566
	ATTCTTGCCT TGTACCTCAA TCTATTCTGT AAAATTAAAC AAATATGCAA	1616
	ACCAGGATTT CCTTGACTTC TTTG	1640
10		
	(2) INFORMATION FOR SEQUENCE ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 943 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: MAGE-31 gene	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
	7222862222 T2728282 T22822270 ACATOLOGO COCCASCT	50
	GGATCCTCCA CCCCAGTAGA GTGGGGACCT CACAGAGTCT GGCCAACCCT	100
	CCTGACAGTT CTGGGAATCC GTGGCTGCGT TTGCTGTCTG CACATTGGGG GCCCGTGGAT TCCTCTCCCA GGAATCAGGA GCTCCAGGAA CAAGGCAGTG	150
25		200
	AGGACTTGGT CTGAGGCAGT GTCCTCAGGT CACAGAGTAG AGGGGGCTCA GATAGTGCCA ACGGTGAAGG TTTGCCTTGG ATTCAAACCA AGGGCCCCAC	250
	CTGCCCCAGA ACACATGGAC TCCAGAGCGC CTGGCCTCAC CCTCAATACT	300
	TTCAGTCCTG CAGCCTCAGC ATGCGCTGGC CGGATGTACC CTGAGGTGCC	350
2.0	CTCTCACTTC CTCCTTCAGG TTCTGAGGGG ACAGGCTGAC CTGGAGGACC	400
30	AGAGGCCCCC GGAGGAGCAC TGAAGGAGAA GATCTGTAAG TAAGCCTTTG	450
	TTAGAGCCTC CAAGGTTCCA TTCAGTACTC AGCTGAGGTC TCTCACATGC	500
	TCCCTCTCTC CCCAGGCCAG TGGGTCTCCA TTGCCCAGCT CCTGCCCACA	550
	CTCCCGCCTG TTGCCCTGAC CAGAGTCATC	580
35	ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	622
•	GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GTG GGT GCG	664
	CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCT	706
	TCT AGT GTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCC	748
	GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC AGC	790
40	CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC CAA TCC TAT	832
	GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGC ACC TTC	874

916

943

37

CCT GAC CTG GAG TCT GAG TTC CAA GCA GCA CTC AGT AGG AAG

GTG GCC AAG TTG GTT CAT TTT CTG CTC

10	2) INFORMATION FOR SEQUENCE ID NO: 13:	
	(i) SEQUENCE CHARACTERISTICS:	• .
	(A) LENGTH: 2531 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: MAGE-4 gene	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
20		
	GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT GAACACAGTG	50
	GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCCTACCC	100
	TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACCCTAAG	150
25	GGCCCATGGA TTCCTCTCT AGGAGCTCCA GGAACAAGGC AGTGAGGCCT	200
	TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGATG CACAGGCTGT	250
	GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
	CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCATCAAT	350
	CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG TGCTCTCTCA	400 450
30	CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGATTCCC TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCCTTTGT	500
	TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCTCCCTC	550
	TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC TGCACTCTTG	600
	CCTGCTGCCC TGACCAGAGT CATC	624
2.5	ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	666
35	GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GGT GCA	708
	CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT GCC TCC	750
	TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CCT GCT	792
	GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GCC TCT	834
40	GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG CAA CCC	876
40	AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AGC ACC	918
	The did do. 100 has had only and and did do.	

	•													
5	TCG CCT	GAC	GCA (GAG	TCC	TTG	TTC	CGA	GAA	GCA	CTC	AGT	AAC	960
	AAG GTG	GAT	GAG	TTG	GCT	CAT	TTT	CTG	CTC	CGC	AAG	TAT	CGA	1002
	GCC AAG	GAG	CTG	GTC	ACA	AAG	GCA	GAA	ATG	CTG	GAG	AGA	GTC	1044
	ATC AAA	AAT	TAC	AAG	CGC	TGC	TTT	CCT	GTG	ATC	TTC	GGC	AAA	1086
	GCC TCC	GAG	TCC	CTG	AAG	ATG	ATC	TTT	GGC	ATT	GAC	GTG	AAG	1128
10	GAA GTG													1170
	CTG GGC													1212
	TTT CCC	AAG	ACA	GGC	CTT	CTG	ATA	ATC	GTC	CTG	GGC	ACA	ATT	1254
	GCA ATG													
	GAG CTG	GGT	GTG	ATG	GGG	GTG	TAT	GAT	GGG	AGG	GAG	CAC	ACT	1338
15	GTC TAT	GGG	GAG	CCC	AGG	AAA	CTG	CTC	ACC	CAA	GAT	TGG	GTG	1380
	CAG GAA													
	CCT GCG	CGC	TAT	GAG	TTC	CTG	TGG	GGT	CCA	AGG	GCT	CTG	GCT	1464
	GAA ACC													1506
	AAT GCA	AGA	GTT	CGC	ATT	GCC	TAC	CCA	TCC	CTG	CGT	GAA	GCA	1548
20	GCT TTG													1578
	GCATGAG													
	ATCTAAC													
	CATTCTT													
	TCTATT													
25	GTTGAA													
	TTATGA													1878
	AGTCTT													1928
	GGACAT													1978
	GAAATA													
30	GTCTAT													2078
	CTTCGT													
	ACTGGC													2178
	AGGATT													2228
	GGGTAT													2278
35	CCTCTA													2328
	GAGAGT													
	AACTGC													2428
	AGGGCC													2478
	TCTGAG	CAGT	TCCT	TTG	TGA	CAAT	GGAT	GA A	CAGA	GAGG.	A GC	CTCT	ACCT	2528
40	GGG													2531

39

5

10

(0)	THEODMATION FOR SEQUENCE ID NO. 14.
(2)	INFORMATION FOR SEQUENCE ID NO: 14:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 2531 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(ix) FEATURE:
	(A) NAME/KEY: MAGE-41 gene
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

	GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT GAACACAGTG	50
20	GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCCTACCC	100
	TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACCCTAAG	150
	GGCCCATGGA TTCCTCTCCT AGGAGCTCCA GGAACAAGGC AGTGAGGCCT	200
	TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGATG CACAGGCTGT	250
	GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
25	CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCATCAAT	350
	CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG TGCTCTCTCA	400
	CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGATTCCC	450
	TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCCTTTGT	500
	TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCTCCCTC	550
30	TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC TGCACTCTTG	600
	CCTGCTGCCC TGAGCAGAGT CATC	624
	ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	666
	GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GTG GGT GCG	708
	CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT GTC TCC	750
35	TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CCT GCT	792
	GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GCC TCT	834
	GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG CAA CCC	876
	AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AGC ACC	918
•	TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA CTC AGT AAC	960
40	AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC AAG TAT CGA	1002
	GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG GAG AGA GTC	1044

5	ATC /	AAA	AAT	TAC	AAG	CGC	TGC	TTT	CCT	GTG	ATC	TTC	GGC	AAA	1086
	GCC -	тсс	GAG	TCC	CTG	AAG	ATG	ATC	TTT	GGC	ATT	GAC	GTG	AAG	1128
	GAA	GTG	GAC	CCC	ACC	AGC	AAC	ACC	TAC	ACC	CTT	GTC	ACC	TGC	1170
	CTG	GGC	CTT	TCC	TAT	GAT	GGC	CTG	CTG	GGT	AAT	AAT	CAG	ATC	1212
	TTT	CCC	AAG	ACA	GGC	CTT	CTG	ATA	ATC	GTC	CTG	GGC	ACA	ATT	1254
10	GCA	ATG	GAG	GGC	GAC	AGC	GCC	TCT	GAG	GAG	GAA	ATC	TGG	GAG	1296
	GAG	CTG	GGT	GTG	ATG	GGG	GTG	TAT	GAT	GGG	AGG	GAG	CAC	ACT	1338
	GTC	TAT	GGG	GAG	ССС	AGG	AAA	CTG	CTC	ACC	CAA	GAT	TGG	GTG	1380
	CAG	GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	GTA	CCC	GGC	AGT	AAT	1422
	CCT	GCG	CGC	TAT	GAG	TTC	CTG	TGG	GGT	CCA	AGG	GCT	CTG	GCT	1464
15	GAA	ACC	AGC	TAT	GTG	AAA	GTC	CTG	GAG	CAT	GTG	GTC	AGG	GTC	1506
	AAT	GCA	AGA	GTT	CGC	ATT	GCC	TAC	CCA	TCC	CTG	CGT	GAA	GCA	1548
	GCT	TTG	TTA	GAG	GAG	GAA	GAG	GGA	${\tt GTC}$	TGA			•		1578
	GCAT	GAGT	TTG (CAGC	CAGG	GC T	GTGG	GGAA	G GG	GCAG	GGCT	GGG	CCAG	TGC	1628
	ATCT	AACA	AGC (CCTG	TGCA	GC A	GCTT	CCCT	r GC	CTCG	TGTA	ACA	TGAG	GCC	1678
20	CATT	CTTO	CAC	TCTG	TTTG	AA G	AAAA	TAGT	C AG	TGTT	CTTA	GTA	GTGG	GTT	1728
	TCTA	TTT	TGT	TGGA	TGAC	TT G	GAGA	TTTA	T CT	CTGT	TTCC	TTT	TACA	ATT	1778
	GTTG	AAA	TGT	TCCT	TTTA	AT G	GATG	GTTG	A AT	TAAC	TTCA	GCA	TCCA	AGT	1828
	TTAT	GAA	TCG	TAGT	TAAC	GT A	TATT	GCTG	TA	ATAT.	AGTT	TAG	GAGT	AAG	1878
	AGTO	TTG	TTT	TTTA	TTCA	GA T	TGGG	AAAT	C CG	TTCT	ATTT	TGT	GAAT	TTG	1928
25	GGAC	ATA	ATA	ACAG	CAGT	GG A	GTAA	GTAT	T TA	GAAG	TGTG	AAT	TCAC	CGT	1978
	GAAA	TAG	GTG	AGAT	AAAT	TA A	AAGA	TACT	T AA	TTCC	CGCC	TTA	TGCC	TCA	2028
	GTCT	TATT	CTG	TAAA	ATTT	AA A	ATA	TATA	T GC	ATAC	CTGG	ATT	TCCT	TGG	2078
	CTTC	CGTG	AAT	GTAA	GAGA	AA T	TAAA	TCTG	A AT	AAAT	AATT	CTT	TCTG	TTA	2128
	ACT	GCT	CAT	TTCT	TCTC	TA T	GCAC	TGAG	C AT	CTGC	TCTG	TGG	AAGG	CCC	2178
30							AGGG								2228
							CGCGG								2278
							AGTAA								2328
							гссст								2378
							SATCT								2428
35							AGAGG								2478
	TCT	GAGC	GGT	TCCT	TTGT	GA (CAATG	GATG	A AC	CAGAG	AGGA	GCC	TCTA	CCT	2528
	CCC														2531

5	(2)	IN	IFORI	MATIC	N FC	OR SE	EQUEN	ICE I	D NO): 15	:				:
	(i) SEQUENCE CHARACTERISTICS:														
				(A)	LENG	TH:	106	58 ba	se p	airs	;				
				(B)	TYPE	:	nuc	leic	acid	i					
				(C)	STRA	ANDEC	DNESS	S: si	ing le	•					
LO				(D)	TOPO	LOGY	/:]	linea	r						
		(-	ii) l	MOLEC	ULE	TYPE	Ξ: σ	DNA	to n	nRNA					
		(-	ix)	FEATL	JRE:										
				(A)	NAME	KEY	Y: 0	DNA	MAGE	-4					
		()	ki)	SEQUE	ENCE	DESC	CRIP	FION:	SE	Q IC	NO:	15:	:		
15															
	G	GGG	CCA	AGC	ACC	TCG	CCT	GAC	GCA	GAG	TCC	TTG	TTC	CGA	40
				AGT											82
				TAT											124
20				AGA											166
				GGC											208
				GTG											250
				ACC											292
				CAG											334
25				ACA											376
				TGG											418
				CAC											460
•				TGG											
				AGT											544
30				CTG		,									586
				AGG											628
				GAA											670 720
				TTGC											770
				AGCC											820
35				TGTT											870
				TGTT											920
				TCGT											970
				TTTT											1020
40				ATAA											1068
~; ∪	110	・ロロハし	α	$\sim 1 \sim 1$	UNUL	, tu 1	Juriu	.,514			1			_	

5	(2) INFORMATION FOR SEQUENCE ID NO: 16:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2226 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: MAGE-5 gene	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
15		
	GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT GAGCACAGAG	50
	GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC CAGCCTACCC	100
	TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT GCACCCTGAG	150
	GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC ACTGAGGCCT	200
20	TGGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA TGCAGACGTC	250
	TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT GGCCCCCATC	300
	GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC CTCTCTACTG	350
	TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT GAGGTGCCCT	400
	CTCACTITIT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA GGATCACCAG	450
25	GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC AAAGGAGAAG	500
	ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT TTTTAGCTGA	550 600
	GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC TCCATTGCCC	644
	AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT CGTC ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	686
	CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC CTG CTG	728
30	GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG CCT CCG CCA	770
	TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC AAT CCA TTA	812
	AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA GCA CCT CCC	854
	CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA GTA AGA AGG	896
35	TGG CTG ACT TGA	908
33	TTCATTTTCT GCTCCTCAAG TATTAAGTCA AGGAGCTGGT CACAAAGGCA	958
	GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT TTCCTGAGAT	1008
	CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC ATTGACGTGA	1058
	AGGAAGCGGA CCCCACCAGC AACACCTACA CCCTTGTCAC CTGCCTGGGA	1108
40	CTCCTATGAT GGCCTGCTGG TTGATAATAA TCAGATCATG CCCAAGACGG	1158
	GCCTCCTGAT AATCGTCTTG GGCATGATTG CAATGGAGGG CAAATGCGTC	1208

5	CCTGAGGAGA	AAATCTGGGA	GGAGCTGAGT	GTGATGAAGG	TGTATGTTGG	1258
	GAGGGAGCAC	AGTGTCTGTG	GGGAGCCCAG	GAAGCTGCTC	ACCCAAGATT	1308
	TGGTGCAGGA	AAACTACCTG	GAGTACCGGC	AGGTGCCCAG	CAGTGATCCC	1358
	ATATGCTATG	AGTTACTGTG	GGGTCCAAGG	GCACTCGCTG	CTTGAAAGTA	1408
	CTGGAGCACG	TGGTCAGGGT	CAATGCAAGA	GTTCTCATTT	CCTACCCATC	1458
10	CCTGCGTGAA	GCAGCTTTGA	GAGAGGAGGA	AGAGGGAGTC	TGAGCATGAG	1508
	CTGCAGCCAG	GGCCACTGCG	AGGGGGGCTG	GGCCAGTGCA	CCTTCCAGGG	1558
	CTCCGTCCAG	TAGTTTCCCC	TGCCTTAATG	TGACATGAGG	CCCATTCTTC	1608
	TCTCTTTGAA	GAGAGCAGTC	AACATTCTTA	GTAGTGGGTT	TCTGTTCTAT	1658
	TGGATGACTT	TGAGATTTGT	CTTTGTTTCC	TTTTGGAATT	GTTCAAATGT	1708
15	TTCTTTTAAT	GGGTGGTTGA	ATGAACTTCA	GCATTCAAAT	TTATGAATGA	1758
	CAGTAGTCAC	ACATAGTGCT	GTTTATATAG	TTTAGGAGTA	AGAGTCTTGT	1808
	TTTTTATTCA	GATTGGGAAA	TCCATTCCAT	TTTGTGAATT	GGGACATAGT	1858
	TACAGCAGTG	GAATAAGTAT	TCATTTAGAA	ATGTGAATGA	GCAGTAAAAC	1908
	TGATGACATA	AAGAAATTAA	AAGATATTTA	ATTCTTGCTT	ATACTCAGTC	1958
20	TATTCGGTAA	AATTTTTTT	AAAAAATGTG	CATACCTGGA	TTTCCTTGGC	2008
	TTCTTTGAGA	ATGTAAGACA	AATTAAATCT	GAATAAATCA	TTCTCCCTGT	2058
	TCACTGGCTC	ATTTATTCTC	TATGCACTGA	GCATTTGCTC	TGTGGAAGGC	2108
	CCTGGGTTAA	TAGTGGAGAT	GCTAAGGTAA	GCCAGACTCA	CCCCTACCCA	2158
	CAGGGTAGTA	AAGTCTAGGA	GCAGCAGTCA	TATAATTAAG	GTGGAGAGAT	2208
25	GCCCTCTAAG	ATGTAGAG	•			2226

- (2) INFORMATION FOR SEQUENCE ID NO: 17:
- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2305 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-51 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

35

GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT GAGCACAGAG

5	GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC CAGCCTACCC	100
	TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT GCACCCTGAG	150
	GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC ACTGAGGCCT	200
	TGGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA TGCAGACGTC	250
	TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT GGCCCCCATC	300
10	GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC CTCTCTACTG	350
	TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT GAGGTGCCCT	400
	CTCACTITTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA GGATCACCAG	450
	GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC AAAGGAGAAG	500
	ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT TTTTAGCTGA	550
15	GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC TCCATTGCCC	600
	AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT CGTC	644
	ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	686
	GGC CTT GAC ACC CAA GAA GAG CCC TGG GCC TGG TGG GTG TGC	728
	AGG CTG CCA CTA CTG AGG AGC AGG AGG CTG TGT CCT CCT	770
20	CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC CTG CTG	812
	GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG CCT CCG CCA	854
	TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC AAT CCA TTA	896
	AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA GCA CCT CCC	938
	CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA GTA AGA AGG	980
25	TGG CTG ACT TGA	992
	TICATITICI GCICCICAAG TATTAAGICA AGGAGCCGGI CACAAAGGCA	1042
	GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT TTCCTGAGAT	1092
	CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC ATTGACGTGA	1142
	AGGAAGEGGA CCCCACCAGE AACACETACA CECTTGTCAE ETGEETGGGA	1192
30	CTCCTATGAT GGCCTGGTGG TTTAATCAGA TCATGCCCAA GACGGGCCTC	1242
	CTGATAATCG TCTTGGGCAT GATTGCAATG GAGGGCAAAT GCGTCCCTGA	1292
	GGAGAAAATC TGGGAGGAGC TGGGTGTGAT GAAGGTGTAT GTTGGGAGGG	1342
	AGCACAGTGT CTGTGGGGAG CCCAGGAAGC TGCTCACCCA AGATTTGGTG	1392
	CAGGAAAACT ACCTGGAGTA CCGCAGGTGC CCAGCAGTGA TCCCATATGC	1442
35	TATGAGTTAC TGTGGGGTCC AAGGGCACTC GCTGCTTGAA AGTACTGGAG	1492
	CACGTGGTCA GGGTCAATGC AAGAGTTCTC ATTTCCTACC CATCCCTGCA	1542
	TGAAGCAGCT TTGAGAGAGG AGGAAGAGGG AGTCTGAGCA TGAGCTGCAG	1592
	CCAGGGCCAC TGCGAGGGGG GCTGGGCCAG TGCACCTTCC AGGGCTCCGT	1642
	CCAGTAGTTT CCCCTGCCTT AATGTGACAT GAGGCCCATT CTTCTCTT	1692
40	TGAAGAGAGC AGTCAACATT CTTAGTAGTG GGTTTCTGTT CTATTGGATG	1742
	ACTITGAGAT TIGTCTTTGT TICCTTTTGG AATTGTTCAA ATGTTCCTTT	1792

5	TAATGGGTGG	TTGAATGAAC	TTCAGCATTC	AAATTTATGA	ATGACAGTAG	1842
	TCACACATAG	TGCTGTTTAT	ATAGTTTAGG	AGTAAGAGTC	TTGTTTTTTA	1892
	TTCAGATTGG	GAAATCCATT	CCATTTTGTG	AATTGGGACA	TAGTTACAGC	1942
	AGTGGAATAA	GTATTCATTT	AGAAATGTGA	ATGAGCAGTA	AAACTGATGA	1992
	GATAAAGAAA	TTAAAAGATA	TTTAATTCTT	GCCTTATACT	CAGTCTATTC	2042
10	GGTAAAATTT	TTTTTTAAAA	ATGTGCATAC	CTGGATTTCC	TTGGCTTCTT	2092
	TGAGAATGTA	AGACAAATTA	AATCTGAATA	AATCATTCTC	CCTGTTCACT	2142
	GGCTCATTTA	TTCTCTATGC	ACTGAGCATT	TGCTCTGTGG	AAGGCCCTGG	2192
	GTTAATAGTG	GAGATGCTAA	GGTAAGCCAG	ACTCACCCCT	ACCCACAGGG	2242
	TAGTAAAGTC	TAGGAGCAGC	AGTCATATAA	TTAAGGTGGA	GAGATGCCCT	2292
15	CTAAGATGTA	GAG				2305

(2) INFORMATION FOR SEQUENCE ID NO: 18:

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 225 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-6 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

30															
	TAT	TTC	TTT	CCT	GTG	ATC	TTC	AGC	AAA	GCT	TCC	GAT	TCC	TTG	42
	CAG	CTG	GTC	TTT	GGC	ATC	GAG	CTG	ATG	GAA	GTG	GAC	CCC	ATC	84
	GGC	CAC	GTG	TAC	ATC	TTT	GCC	ACC	TGC	CTG	GGC	CTC	TCC	TAC	126
	GAT	GGÇ	CTG	CTG	GGT	GAC	AAT	CAG	ATC	ATG	CCC	AGG	ACA	GGC	168
35	TTC	CTG	ATA	ATC	ATC	CTG	GCC	ATA	ATC	GCA	AGA	GAG	GGC	GAC	210
	TGT	GCC	CCT	GAG	GAG										225

- (2) INFORMATION FOR SEQUENCE ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:

40

5	(A) LENGTH: 1947 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
10	(ix) FEATURE:
	(A) NAME/KEY: MAGE-7 gene
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

15	TGAATGGACA ACAAGGGCCC CACACTCCCC AGAACACAAG GGACTCCAGA	50
	GAGCCCAGCC TCACCTTCCC TACTGTCAGT CCTGCAGCCT CAGCCTCTGC	100
	TGGCCGGCTG TACCCTGAGG TGCCCTCTCA CTTCCTCCTT CAGGTTCTCA	150
	GCGGACAGGC CGGCCAGGAG GTCAGAAGCC CCAGGAGGCC CCAGAGGAGC	200
	ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT	250
20	GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG	300
	GTTCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA	350
	CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG	400
	GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG	450
	GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTTCA CTCTGATTGA	500
25	AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA	550
	GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA	600
	GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC	650
	TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA	685
	ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT	727
30	ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA	769
	GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT	811
	GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC	853
	ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA	895
	CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC	937
35	AGA GCA TGC CCG AGA CCG GCC TTC TGA	964
	TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG	1014
	GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT	1064
•	TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC	1114
	TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT	1164
40	CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG	1214
	AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG	1264

CAATTGCCCA GCTCCGGCCC ACACTCTCCT GCTGCCCTGA CCTGAGTCAT

450

451

C

5	ATG CTT CTT GGG CAG AAG AGT CAG CGC TAC AAG GCT GAG GAA	493
	GGC CTT CAG GCC CAA GGA GAG GCA CCA GGG CTT ATG GAT GTG	535
	CAG ATT CCC ACA GCT GAG GAG CAG AAG GCT GCA TCC TCC	577
	TCT ACT CTG ATC ATG GGA ACC CTT GAG GAG GTG ACT GAT TCT	619
	GGG TCA CCA AGT CCT CCC CAG AGT CCT GAG GGT GCC TCC TCT	661
10	TCC CTG ACT GTC ACC GAC AGC ACT CTG TGG AGC CAA TCC GAT	703
	GAG GGT TCC AGC AGC AAT GAA GAG GAG GGG CCA AGC ACC TCC	745
	CCG GAC CCA GCT CAC CTG GAG TCC CTG TTC CGG GAA GCA CTT	787
	GAT GAG AAA GTG GCT GAG TTA GTT CGT TTC CTG CTC CGC AAA	829
	TAT CAA ATT AAG GAG CCG GTC ACA AAG GCA GAA ATG CTT GAG	871
15	AGT GTC ATC AAA AAT TAC AAG AAC CAC TTT CCT GAT ATC TTC	913
	AGC AAA GCC TCT GAG TGC ATG CAG GTG ATC TTT GGC ATT GAT	955
	GTG AAG GAA GTG GAC CCT GCC GGC CAC TCC TAC ATC CTT GTC	997
	ACC TGC CTG GGC CTC TCC TAT GAT GGC CTG CTG GGT GAT GAT	1039
	CAG AGT ACG CCC AAG ACC GGC CTC CTG ATA ATC GTC CTG GGC	1081
20	ATG ATC TTA ATG GAG GGC AGC CGC GCC CCG GAG GAG GCA ATC	1123
	TGG GAA GCA TTG AGT GTG ATG GGG GCT GTA TGA	1156
	TGGGAGGGAG CACAGTGTCT ATTGGAAGCT CAGGAAGCTG CTCACCCAAG	1206
	AGTGGGTGCA GGAGAACTAC CTGGAGTACC GCCAGGCGCC CGGCAGTGAT	1256
	CCTGTGCGCT ACGAGTTCCT GTGGGGTCCA AGGGCCCTTG CTGAAACCAG	1306
25	CTATGTGAAA GTCCTGGAGC ATGTGGTCAG GGTCAATGCA AGAGTTCGCA	1356
	TITCCTACCC ATCCCTGCAT GAAGAGGCTT TGGGAGAGGA GAAAGGAGTT	1406
	TGAGCAGGAG TTGCAGCTAG GGCCAGTGGG GCAGGTTGTG GGAGGGCCTG	1456
	GGCCAGTGCA CGTTCCAGGG CCACATCCAC CACTTTCCCT GCTCTGTTAC	1506
	ATGAGGCCCA TTCTTCACTC TGTGTTTGAA GAGAGCAGTC ACAGTTCTCA	1556
30	GTAGTGGGGA GCATGTTGGG TGTGAGGGAA CACAGTGTGG ACCATCTCTC	1606
	AGTTCCTGTT CTATTGGGCG ATTTGGAGGT TTATCTTTGT TTCCTTTTGG	1656
	AATTGTTCCA ATGTTCCTTC TAATGGATGG TGTAATGAAC TTCAACATTC	1706
	ATTTTATGTA TGACAGTAGA CAGACTTACT GCTTTTTATA TAGTTTAGGA	1756
	GTAAGAGTCT TGCTTTTCAT TTATACTGGG AAACCCATGT TATTTCTTGA	1806
3.5	ATTC	1810

(2) INFORMATION FOR SEQUENCE ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1412 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

49

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: MAGE-9 gene	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	TCTGAGACAG TGTCCTCAGG TCGCAGAGCA GAGGAGACCC AGGCAGTGTC	50
	AGCAGTGAAG GTGAAGTGTT CACCCTGAAT GTGCACCAAG GGCCCCACCT	100
	GCCCCAGCAC ACATGGGACC CCATAGCACC TGGCCCCATT CCCCCTACTG	150
15	TCACTCATAG AGCCTTGATC TCTGCAGGCT AGCTGCACGC TGAGTAGCCC	200
	TCTCACTTCC TCCCTCAGGT TCTCGGGACA GGCTAACCAG GAGGACAGGA	250
	GCCCCAAGAG GCCCCAGAGC AGCACTGACG AAGACCTGTA AGTCAGCCTT	300
	TGTTAGAACC TCCAAGGTTC GGTTCTCAGC TGAAGTCTCT CACACACTCC	350
	CTCTCTCCCC AGGCCTGTGG GTCTCCATCG CCCAGCTCCT GCCCACGCTC	400
20	CTGACTGCTG CCCTGACCAG AGTCATC	427
	ATG TCT CTC GAG CAG AGG AGT CCG CAC TGC AAG CCT GAT GAA	469
	GAC CTT GAA GCC CAA GGA GAG GAC TTG GGC CTG ATG GGT GCA	511
	CAG GAA CCC ACA GGC GAG GAG GAG ACT ACC TCC TCT	553
	GAC AGC AAG GAG GAG GTG TCT GCT GCT GGG TCA TCA AGT	595
25	CCT CCC CAG AGT CCT CAG GGA GGC GCT TCC TCC TCC ATT TCC	637
	GTC TAC TAC ACT TTA TGG AGC CAA TTC GAT GAG GGC TCC AGC	679
	AGT CAA GAA GAG GAA GAG CCA AGC TCC TCG GTC GAC CCA GCT	721
	CAG CTG GAG TTC ATG TTC CAA GAA GCA CTG AAA TTG AAG GTG	763
	GCT GAG TTG GTT CAT TTC CTG CTC CAC AAA TAT CGA GTC AAG	805
30	GAG CCG GTC ACA AAG GCA GAA ATG CTG GAG AGC GTC ATC AAA	847
	AAT TAC AAG CGC TAC TTT CCT GTG ATC TTC GGC AAA GCC TCC	889
	GAG TTC ATG CAG GTG ATC TTT GGC ACT GAT GTG AAG GAG GTG	931
	GAC CCC GCC GGC CAC TCC TAC ATC CTT GTC ACT GCT CTT GGC	973
	CTC TCG TGC GAT AGC ATG CTG GGT GAT GGT CAT AGC ATG CCC	1015
35	AAG GCC GCC CTC CTG ATC ATT GTC CTG GGT GTG ATC CTA ACC	1057
	AAA GAC AAC TGC GCC CCT GAA GAG GTT ATC TGG GAA GCG TTG	1099
	AGT GTG ATG GGG GTG TAT GTT GGG AAG GAG CAC ATG TTC TAC	1141
•	GGG GAG CCC AGG AAG CTG CTC ACC CAA GAT TGG GTG CAG GAA	1183
•	AAC TAC CTG GAG TAC CGG CAG GTG CCC GGC AGT GAT CCT GCG	1225
40	CAC TAC GAG TTC CTG TGG GGT TCC AAG GCC CAC GCT GAA ACC	1267
	AGC TAT GAG AAG GTC ATA AAT TAT TTG GTC ATG CTC AAT GCA	1309

5	AGA GAG CCC ATC TGC TAC CCA TCC CTT TAT GAA GAG GTT TTG	1351
	GGA GAG GAG CAA GAG GGA GTC TGA	1375
	GCACCAGCCG CAGCCGGGGC CAAAGTTTGT GGGGTCA	1412
10	(2) INFORMATION FOR SEQUENCE ID NO: 22:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 920 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: MAGE-10 gene	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
20		
	ACCTGCTCCA GGACAAAGTG GACCCCACTG CATCAGCTCC ACCTACCCTA	50
	CTGTCAGTCC TGGAGCCTTG GCCTCTGCCG GCTGCATCCT GAGGAGCCAT	100
	CTCTCACTTC CTTCTTCAGG TTCTCAGGGG ACAGGGAGAG CAAGAGGTCA	150
25	AGAGCTGTGG GACACCACAG AGCAGCACTG AAGGAGAAGA CCTGTAAGTT	200
	GGCCTTTGTT AGAACCTCCA GGGTGTGGTT CTCAGCTGTG GCCACTTACA	250
	CCCTCCCTCT CTCCCCAGGC CTGTGGGTCC CCATCGCCCA AGTCCTGCCC	300
	ACACTCCCAC CTGCTACCCT GATCAGAGTC ATC	333
	ATG CCT CGA GCT CCA AAG CGT CAG CGC TGC ATG CCT GAA GAA	375
30	GAT CTT CAA TCC CAA AGT GAG ACA CAG GGC CTC GAG GGT GCA	417
	CAG GCT CCC CTG GCT GTG GAG GAG GAT GCT TCA TCA TCC ACT	459
	TCC ACC AGC TCC TCT TTT CCA TCC TCT TTT CCC TCC TC	501
	TCT TCC TCC TCC TCC TGC TAT CCT CTA ATA CCA AGC ACC	543
	CCA GAG GAG GTT TCT GCT GAT GAT GAG ACA CCA AAT CCT CCC	585
35	CAG AGT GCT CAG ATA GCC TGC TCC TCC CCC TCG GTC GTT GCT	627
	TCC CTT CCA TTA GAT CAA TCT GAT GAG GGC TCC AGC AGC CAA	669
	AAG GAG GAG AGT CCA AGC ACC CTA CAG GTC CTG CCA GAC AGT	711
	GAG TCT TTA CCC AGA AGT GAG ATA GAT GAA AAG GTG ACT GAT	753 705
	TTG GTG CAG TTT CTG CTC TTC AAG TAT CAA ATG AAG GAG CCG	795
40	ATC ACA AAG GCA GAA ATA CTG GAG AGT GTC ATA AAA AAT TAT	837
	GAA GAC CAC TTC CCT TTG TTG TTT AGT GAA GCC TCC GAG TGC	879

51

ATG CTG CTG GTC TTT GGC ATT GAT GTA AAG GAA GTG GAT CC 920

	(2) INFORMATION FOR SEQUENCE ID NO: 23:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1107 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: MAGE-11 gene	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
20		
	AGAGAACAGG CCAACCTGGA GGACAGGAGT CCCAGGAGAA CCCAGAGGAT	50
	CACTGGAGGA GAACAAGTGT AAGTAGGCCT TTGTTAGATT CTCCATGGTT	100
	CATATCTCAT CTGAGTCTGT TCTCACGCTC CCTCTCTCCC CAGGCTGTGG	150
	GGCCCCATCA CCCAGATATT TCCCACAGTT CGGCCTGCTG ACCTAACCAG	200
25	AGTCATCATG CCTCTTGAGC AAAGAAGTCA GCACTGCAAG CCTGAGGAAG	250
	CCTTCAGGCC CAAGAAGAAG ACCTGGGCCT GGTGGGTGCA CAGGCTCTCC	300
	AAGCTGAGGA GCAGGAGGCT GCCTTCTTCT CCTCTACTCT GAATGTGGGC	350
	ACTCTAGAGG AGTTGCCTGC TGCTGAGTCA CCAAGTCCTC CCCAGAGTCC	400
	TCAGGAAGAG TCCTTCTCTC CCACTGCCAT GGATGCCATC TTTGGGAGCC	450
30	TATCTGATGA GGGCTCTGGC AGCCAAGAAA AGGAGGGGCC AAGTACCTCG	500
	CCTGACCTGA TAGACCCTGA GTCCTTTTCC CAAGATATAC TACATGACAA	550
	GATAATTGAT TTGGTTCATT TATTCTCCGC AAGTATCGAG TCAAGGGGCT	600
	GATCACAAAG GCAGAA	616
	ATG CTG GGG AGT GTC ATC AAA AAT TAT GAG GAC TAC TTT CCT	658
35	GAG ATA TTT AGG GAA GCC TCT GTA TGC ATG CAA CTG CTC TTT	700
	GGC ATT GAT GTG AAG GAA GTG GAC CCC ACT AGC CAC TCC TAT	742
	GTC CTT GTC ACC TCC CTC AAC CTC TCT TAT GAT GGC ATA CAG	784
	TGT AAT GAG CAG AGC ATG CCC AAG TCT GGC CTC CTG ATA ATA	826
	GTC CTG GGT GTA ATC TTC ATG GAG GGG AAC TGC ATC CCT GAA	868
40	GAG GTT ATG TGG GAA GTC CTG AGC ATT ATG GGG GTG TAT GCT	910
	GGA AGG GAG CAC TTC CTC TTT GGG GAG CCC AAG AGG CTC CTT	952

5	ACC CAA AAT TGG GTG CAG GAA AAG TAC CTG GTG TAC CGG CAG	994
	GTG CCC GGC ACT GAT CCT GCA TGC TAT GAG TTC CTG TGG GGT	1036
	CCA AGG GCC CAC GCT GAG ACC AGC AAG ATG AAA GTT CTT GAG	1078
	TAC ATA GCC AAT GCG AGG GAT CC	1107
10		
	(2) INFORMATION FOR SEQUENCE ID NO: 24:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2150 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(ix) FEATURE:	
	(A) NAME/KEY: smage-I	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
	TCTGTCTGCA TATGCCTCCA CTTGTGTGTA GCAGTCTCAA ATGGATCTCT	50
	CTCTACAGAC CTCTGTCTGT GTCTGGCACC CTAAGTGGCT TTGCATGGGC	100
25	ACAGGTTTCT GCCCCTGCAT GGAGCTTAAA TAGATCTTTC TCCACAGGCC	150
	TATACCCCTG CATTGTAAGT TTAAGTGGCT TTATGTGGAT ACAGGTCTCT	200
	GCCCTTGTAT GCAGGCCTAA GTTTTTCTGT CTGCTTAACC CCTCCAAGTG	250
	AAGCTAGTGA AAGATCTAAC CCACTTTTGG AAGTCTGAAA CTAGACTTTT	300
	ATGCAGTGGC CTAACAAGTT TTAATTTCTT CCACAGGGTT TGCAGAAAAG	350
30	AGCTTGATCC ACGAGTTCAG AAGTCCTGGT ATGTTCCTAG AAAG	394
	ATG TTC TCC TGG AAA GCT TCA AAA GCC AGG TCT CCA TTA AGT	436
	CCA AGG TAT TCT CTA CCT GGT AGT ACA GAG GTA CTT ACA GGT	478
	TGT CAT TCT TAT CCT TCC AGA TTC CTG TCT GCC AGC TCT TTT	520
	ACT TCA GCC CTG AGC ACA GTC AAC ATG CCT AGG GGT CAA AAG	562
35	AGT AAG ACC CGC TCC CGT GCA AAA CGA CAG CAG TCA CGC AGG	604
	GAG GTT CCA GTA GTT CAG CCC ACT GCA GAG GAA GCA GGG TCT	646
	TCT CCT GTT GAC CAG AGT GCT GGG TCC AGC TTC CCT GGT GGT	688
	TCT GCT CCT CAG GGT GTG AAA ACC CCT GGA TCT TTT GGT GCA	730
	GGT GTA TCC TGC ACA GGC TCT GGT ATA GGT GGT AGA AAT GCT	772
40	GCT GTC CTG CCT GAT ACA AAA AGT TCA GAT GGC ACC CAG GCA	814
	GGG ACT TCC ATT CAG CAC ACA CTG AAA GAT CCT ATC ATG AGG	856

5	AAG GCT AGT GTG CTG ATA GAA TTC CTG CTA GAT AAA TTT AAG	898
	ATG AAA GAA GCA GTT ACA AGG AGT GAA ATG CTG GCA GTA GTT	940
	AAC AAG AAG TAT AAG GAG CAA TTC CCT GAG ATC CTC AGG AGA	982
	ACT TOT GOA CGC CTA GAA TTA GTC TTT GGT CTT GAG TTG AAG	1024
	GAA ATT GAT CCC AGC ACT CAT TCC TAT TTG CTG GTA GGC AAA	1066
10	CTG GGT CTT TCC ACT GAG GGA AGT TTG AGT AGT AAC TGG GGG	1108
	TTG CCT AGG ACA GGT CTC CTA ATG TCT GTC CTA GGT GTG ATC	1150
	TTC ATG AAG GGT AAC CGT GCC ACT GAG CAA GAG GTC TGG CAA	1192
	TTT CTG CAT GGA GTG GGG GTA TAT GCT GGG AAG AAG CAC TTG	1234
	ATC TTT GGC GAG CCT GAG GAG TTT ATA AGA GAT GTA GTG CGG	1276
15	GAA AAT TAC CTG GAG TAC CGC CAG GTA CCT GGC AGT GAT CCC	1318
	CCA AGC TAT GAG TTC CTG TGG GGA CCC AGA GCC CAT GCT GAA	1360
	ACA ACC AAG ATG AAA GTC CTG GAA GTT TTA GCT AAA GTC AAT	1402
	GGC ACA GTC CCT AGT GCC TTC CCT AAT CTC TAC CAG TTG GCT	1444
	CTT AGA GAT CAG GCA GGA GGG GTG CCA AGA AGG AGA GTT CAA	1486
20	GGC AAG GGT GTT CAT TCC AAG GCC CCA TCC CAA AAG TCC TCT	1528
	AAC ATG TAG	1537
	TTGAGTCTGT TCTGTTGTGT TTGAAAAACA GTCAGGCTCC TAATCAGTAG	1587
	AGAGTTCATA GCCTACCAGA ACCAACATGC ATCCATTCTT GGCCTGTTAT	1637
	ACATTAGTAG AATGGAGGCT ATTTTTGTTA CTTTTCAAAT GTTTGTTTAA	1687
25	CTAAACAGTG CTTTTTGCCA TGCTTCTTGT TAACTGCATA AAGAGGTAAC	1737
	TGTCACTTGT CAGATTAGGA CTTGTTTTGT TATTTGCAAC AAACTGGAAA	1787
	ACATTATTTT GTTTTTACTA AAACATTGTG TAACATTGCA TTGGAGAAGG	1837
	GATTGTCATG GCAATGTGAT ATCATACAGT GGTGAAACAA CAGTGAAGTG	1887
	GGAAAGTTTA TATTGTTAAT TTTGAAAATT TTATGAGTGT GATTGCTGTA	1937
30	TACTTTTTC TTTTTTGTAT AATGCTAAGT GAAATAAAGT TGGATTTGAT	1987
	GACTTTACTC AAATTCATTA GAAAGTAAAT CGTAAAACTC TATTACTTTA	2037
	TTATTTTCTT CAATTATGAA TTAAGCATTG GTTATCTGGA AGTTTCTCCA	2087
	GTAGCACAGG ATCTAGTATG AAATGTATCT AGTATAGGCA CTGACAGTGA	2137
	GTTATCAGAG TCT	2150
35		

(2) INFORMATION FOR SEQUENCE ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2099 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

PCT/US95/12463

5 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(ix) FEATURE:

WO 96/10413

(A) NAME/KEY: smage-II

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

54

	ACCTTATTGG	GTCTGTCTGC	ATATGCCTCC	ACTIGTGTGT	AGCAGTCTCA	50
	AATGGATCTC	TCTCTACAGA	CCTCTGTCTG	TGTCTGGCAC	CCTAAGTGGC	100
	TTTGCATGGG	CACAGGTTTC	TGCCCCTGCA	TGGAGCTTAA	ATAGATCTTT	150
15	CTCCACAGGC	CTATACCCCT	${\tt GCATTGTAAG}$	TTTAAGTGGC	TTTATGTGGA	200
	TACAGGTCTC	TGCCCTTGTA	TGCAGGCCTA	AGTTTTTCTG	TCTGCTTAGC	250
	CCCTCCAAGT	GAAGCTAGTG	AAAGATCTAA	CCCACTTTTG	GAAGTCTGAA	300
	ACTAGACTTT	TATGCAGTGG	CCTAACAAGT	TTTAATTTCT	TCCACAGGGT	350
	TTGCAGAAAA	GAGCTTGATC	CACGAGTTCG	GAAGTCCTGG	TATGTTCCTA	400
20	GAAAGATGTT	CTCCTGGAAA	GCTTCAAAAG	CCAGGTCTCC	ATTAAGTCCA	450
	AGGTATTCTC	TACCTGGTAG	TACAGAGGTA	CTTACAGGTT	GTCATTCTTA	500
	TCTTTCCAGA	TTCCTGTCTG	CCAGCTCTTT	TACTTCAGCC	CTGAGCACAG	550
	TCAACATGCC	TAGGGGTCAA	AAGAGTAAGA	CCCGCTCCCG	TGCAAAACGA	600
	CAGCAGTCAC	GCAGGGAGGT	TCCAGTAGTT	CAGCCCACTG	CAGAGGAAGC	650
25	AGGGTCTTCT	CCTGTTGACC	AGAGTGCTGG	GTCCAGCTTC	CCTGGTGGTT	700
	CTGCTCCTCA	GGGTGTGAAA	ACCCCTGGAT	CTTTTGGTGC	AGGTGTATCC	750
	TGCACAGGCT	CTGGTATAGG	TGGTAGAAAT	GCTGCTGTCC	TGCCTGATAC	800
	AAAAAGTTCA	GATGGCACCC	AGGCAGGGAC	TTCCATTCAG	CACACACTGA	850
	AAGATCCTAT	CATGAGGAAG	GCTAGTGTGC	TGATAGAATT	CCTGCTAGAT	900
30	AAGTTTAAGA	TGAAAGAAGC	AGTTACAAGG	AGTGAAATGC	TGGCAGTAGT	950
	TAACAAGAAG	TATAAGGAGC	AATTCCCTGA	GATCCTCAGG	AGAACTTCTG	1000
	CACGCCTAGA	ATTAGTCTTT	GGTCTTGAGT	TGAAGGAAAT	TGATCCCAGC	1050
	ACTCATTCCT	ATTTGCTGGT	AGGCAAACTG	GGTCTTTCCA	CTGAGGGAAG	1100
	TTTGAGTAGT	AACTGGGGGT	TGCCTAGGAC	AGGTCTCCTA	ATGTCTGTCC	1150
35	TAGGTGTGAT	CTTCATGAAG	GGTAACCGTG	CCACTGAGCA	AGAGGTCTGG	1200
	CAATTTCTGC	ATGGAGTGGG	GGTATATGCT	GGGAAGAAGC	ACTTGATCTT	1250
	TGGCGAGCCT	GAGGAGTTTA	TAAGAGATGT	AGTGCGGGAA	AATTACCTGG	1300
	AGTACCGCCA	GGTACCTGGC	AGTGATCCCC	CAAGCTATGA	GTTCCTGTGG	1350
	GGACCCAGAG	CCCATGCTGA	AACAACCAAG	ATGAAAGTCC	TGGAAGTTTT	1400
40	AGCTAAAGT	AATGGCACAG	TCCCTAGTGC	CTTCCCTAAT	CTCTACCAGT	1450
	TGGCTCTTAC	AGATCAGGCA	GGAGGGGTGC	CAAGAAGGAG	AGTTCAAGGC	1500

5	AAGGGTGTTC	ATTCCAAGGC	CCCATCCCAA	AAGTCCTCTA	ACATGTAGTT	1550
	GAGTCTGTTC	TGTTGTGTTT	GAAAAACAGT	CAGGCTCCTA	ATCAGTAGAG	1600
	AGTTCATAGC	CTACCAGAAC	CAACATGCAT	CCATTCTTGG	CCTGTTATAC	1650
	ATTAGTAGAA	TGGAGGCTAT	TTTTGTTACT	TTTCAAATGT	TTGTTTAACT	1700
	AAACAGTGCT	TTTTGCCATG	CTTCTTGTTA	ACTGCATAAA	GAGGTAACTG	1750
10	TCACTTGTCA	GATTAGGACT	TGTTTTGTTA	TTTGCAACAA	ACTGGAAAAC	1800
	ATTATTTTGT	TTTTACTAAA	ACATTGTGTA	ACATTGCATT	GGAGAAGGGA	1850
	TTGTCATGGC	AATGTGATAT	CATACAGTGG	TGAAACAACA	GTGAAGTGGG	1900
	AAAGTTTATA	TTGTTAGTTT	TGAAAATTTT	ATGAGTGTGA	TTGCTGTATA	1950
	стттттстт	TTTTGTATAA	TGCTAAGTGA	AATAAAGTTG	GATTTGATGA	2000
15	CTTTACTCAA	ATTCATTAGA	AAGTAAAT CA	TAAAACTCTA	TTACTTTATT	2050
	ATTTTCTTCA	ATTATTAATT	AAGCATTGGT	TATCTGGAAG	TTTCTCCAG	2099

(2) INFORMATION FOR SEQUENCE ID NO: 26:

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Glu Ala Asp Pro Thr Gly His Ser Tyr

5

30

35

25

- (2) INFORMATION FOR SEQUENCE ID NO: 27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acids
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

40 Glu Val Val Pro Ile Ser His Leu Tyr

5

SUBSTITUTE SHEET (RULE 26)

5	
	(2) INFORMATION FOR SEQUENCE ID NO: 28:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 9 amino acids
	(B) TYPE: amino acids
10	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:
	Glu Val Val Arg Ile Gly His Leu Tyr
15	5
	(2) INFORMATION FOR SEQUENCE ID NO: 29:
	(i) SEQUENCE CHARACTERISTICS:
20	(A) LENGTH: 9 amino acids
20	(B) TYPE: amino acids
	(D) TOPOLOGY: linear
·	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:
25	
	Glu Val Asp Pro Ile Gly His Leu Tyr
	5
30	(2) INFORMATION FOR SEQUENCE ID NO: 30:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 9 amino acids
	(B) TYPE: amino acids

Gly Val Asp Pro Ala Ser Asn Thr Tyr

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

(ii) MOLECULE TYPE: protein

5

40

INFORMATION FOR SEQUENCE ID NO: 31: 5 (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acids (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31: Glu Val Asp Pro Thr Ser Asn Thr Tyr 5 15 INFORMATION FOR SEQUENCE ID NO: 32: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids 20 (B) TYPE: amino acids (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: Glu Ala Asp Pro Thr Ser Asn Thr Tyr 25 5 INFORMATION FOR SEQUENCE ID NO: 33: (2) (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 9 amino acids (B) TYPE: amino acids (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33: 35 Glu Ala Asp Pro Thr Ser Asn Thr Tyr

5

INFORMATION FOR SEQUENCE ID NO: 34: (2) 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acids (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34: Glu Val Asp Pro Ile Gly His Val Tyr 15 INFORMATION FOR SEQ ID NO: 35: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acid residues (B) TYPE: amino acid 20 (D) TOPOLOGY: single (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35: Tyr Met Asn Gly Thr Met Ser Gln Val 5 25 INFORMATION FOR SEQ ID NO: 36: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acid residues 30 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: 35 Met Leu Leu Ala Val Leu Tyr Cys Leu Leu 5 10

(2) INFORMATION FOR SEQ ID NO: 37: 5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

Met Leu Leu Ala Val Leu Tyr Cys Leu

15

20

10

- INFORMATION FOR SEQ ID NO: 38: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

Leu Leu Ala Val Leu Tyr Cys Leu Leu

25

- INFORMATION FOR SEQ ID NO: 39: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acid residues
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

35

30

Ser Glu Ile Trp Arg Asp Ile Asp Phe Ala His Glu Ala 5 10

(2) INFORMATION FOR SEQ ID NO: 40: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acid residues (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40: 10 Ser Glu Ile Trp Arg Asp Ile Asp Phe Ala 10 15 INFORMATION FOR SEQ ID NO: 41: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acid residues (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41: Ser Glu Ile Trp Arg Asp Ile Asp Phe 25 (2) INFORMATION FOR SEQ ID NO: 42: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acid residues 30 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42: 35 Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu Thr Gln Asp Leu 15 5 10

5 (2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu 5 10

15

10

- (2) INFORMATION FOR SEQ ID NO: 44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

Ser Ala Tyr Gly Glu Pro Arg Lys Leu

25

20

5

- (2) INFORMATION FOR SEQ ID NO: 45:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1032 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

35

40

30

CGCCAATTTA GGGTCTCCGG TATCTCCCGC TGAGCTGCTC TGTTCCCGGC TTAGAGGACC 60
AGGAGAAGGG GGAGCTGGAG GCTGGAGCCT GTAACACCGT GGCTCGTCTC ACTCTGGATG 120
GTGGTGGCAA CAGAGATGGC AGCGCAGCTG GAGTGTTAGG AGGGCGGCCT GAGCGGTAGG 180
AGTGGGGCTG GAGCAGTAAG ATGGCGGCCA GAGCGGTTTT TCTGGCATTG TCTGCCCAGC 240
TGCTCCAAGC CAGGCTGATG AAGGAGGAGT CCCCTGTGGT GAGCTGGAGG TTGGAGCCTG 300

5	AAGACGGCAC AGCTCTGTGC TTCATCTTCT GAGGTTGTGG CAGCCACGGT GATGGAGACG	360
	GCAGCTCAAC AGGAGCAATA GGAGGAGATG GAGTTTCACT GTGTCAGCCA GGATGGTCTC	420
	GATCTCCTGA CCTCGTGATC CGCCCGCCTT GGCCTTCCAA AGTGCCGAGA TTACAGCGAT	480
	GTGCATTTTG TAAGCACTTT GGAGCCACTA TCAAATGCTG TGAAGAGAAA TGTACCCAGA	540
	TGTATCATTA TCCTTGTGCT GCAGGAGCCG GCTCCTTTCA GGATTTCAGT CACATCTTCC	600
10	TGCTTTGTCC AGAACACATT GACCAAGCTC CTGAAAGATG TAAGTTTACT ACGCATAGAC	660
	TTTTAAACTT CAACCAATGT ATTTACTGAA AATAACAAAT GTTGTAAATT CCCTGAGTGT	720
	TATTCTACTT GTATTAAAAG GTAATAATAC ATAATCATTA AAATCTGAGG GATCATTGCC	
	AGAGATTGTT GGGGAGGGAA ATGTTATCAA CGGTTTCATT GAAATTAAAT GTTATCAACG	840
	GTTTCATTGA AATTAAATCC AAAAAGTTAT TTCCTCAGAA AAATCAAATA AAGTTTGCAT	
15	GTTTTTTATT CTTAAAACAT TTTAAAAACC ACTGTAGAAT GATGTAAATA GGGACTGTGC	960
	AGTATTTCTG ACATATACTA TAAAATTATT AAAAAGTCAA TCAGTATTCA ACATCTTTTA	1020
	CACTAAAAAG CC	1032
	(2) INFORMATION FOR SEQ ID NO: 46:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22 amino acid residues	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
25		
	Met Ala Ala Arg Ala Val Phe Leu Ala Leu Ser Ala Gln Leu Leu Gln	
	5 10 15	
	Ala Arg Leu Met Lys Glu	
	20	
30		
	(2) INFORMATION FOR SEQ ID NO: 47:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 16 amino acid residues	
35	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
	Met Ala Ala Arg Ala Val Phe Leu Ala Leu Ser Ala Gln Leu Leu Gln	
40	5 10 15	

5	(2)	INF	ORMAT	ON FO	OR SE	Q IC	NO:	48:								
		(i)	SEQUE	NCE (CHARA	ACTER	ISTI	cs:								***
			(A	LENG	STH:	9 a	mino	aci	d re	sidu	es					÷
			(B)	TYPE	E: a	mino	aci	d								
			(D	TOP	OLOGY	/: 1	inea	r								
10		(xi) SEQ	JENCE	DESC	CRIP1	ION:	SE	Q ID	NO:	48:					
	Ala A	Ala A	rg Ala	a Val	Phe	Leu	Ala	Leu								
				5												
15																
	(2)		ORMAT			•			:							
		(i)	SEQU													
			(A) LEN	GTH:	354	bas	se pa	irs							
			•) TYP												
20			•) STR				_	le							
			•) TOP												
		(xi) SEQ	JENCE	DES	CR IP	rion:	: SE	EQ IC) NO:	49:					
25	ATG (CGA A	AGA GA	A GAT	GCT	CAC	TTC	ATC	TAT	GGT	TAC	CCC	AAG	AAG	GGG	48
	Met f	Pro A	Arg Gl	u Asp	Ala	His	Phe	Ile	Tyr	Gly	Tyr	Pro	Lys	Lys	Gly	
				5		•			10					15		
	GAC (GGC C	CAC TC	T TAC	ACC	ACG	GCT	GAA	GAG	GCC	GCT	GGG	ATC	GGC	ATC	96
30	His (Gly H	lis Se	r Tyr	Thr	Thr	Ala	Glu	Glu	Ala	Ala	Gly	I le	Gly	He	
		_	2					25					30			•
							TT4	CTO	CTC	ATC	000	TOT	TOO	TAT	TOT	144
			GTG AT													144
2.5	Leu	inr v	/al Il	e Leu	ыу	vai	40		ieu	1 16	ч	45	ırp	ıyr	cys	
35			35				40					45				
	AGA	AGA (CGA AA	T GGA	TAC	AGA	GCC	TTG	ATG	GAT	AAA	AGT	стт	CAT	GTT	192
	Arg	Arg A	Arg As	n Gly	Tyr	Arg	Ala	Leu	Met	Asp	Lys	Ser	Leu	His	Val	
	-	5 0	4			55					60					
40																
	GGC	ACT (CAA TO	T GCC	TTA	ACA	AGA	AGA	TGC	CCA	CAA	GAA	GGG	TTT	GAT	240

WO 96/10413 PCT/US95/12463

64

5	G 1 y 65	Thr	Gln	Cys	Ala	Leu 70	Thr	Arg	Arg	Cys	Pro 75	Gln	Glu	Gly	Phe	Asp 80	
	CAT	CGG	GAC	AGC	AAA	GTG	TCT	CTT	CAA	GAG	AAA	AAC	TGT	GAA	CCT	GTG	288
	His	Arg	Asp	Ser	Lys	Val	Ser	Leu	Gln	Glu	Lys	Asn	Cys	Glu	Pro	Va 1	
10					85					90					95		
	GTT	ССС	AAT	GCT	CCA	ССТ	GCT	TAT	GAG	AAA	СТС	тст	GCA	GAA	CAG	TCA	336
	Va 1	Pro	Asn	Ala	Pro	Pro	Ala	Tyr	Glu	Lys	Leu	Ser	Ala	Glu	Gln	Ser	
				100					105					110			
15																•	
	CCA	CCA	CCT	TAT	TCA	CCT											354
	Pro	Pro	Pro	Tyr	Ser	Pro											
			115														
20	(2)	T (NEODI	MATT	ON E	00 C	רט זי	D NO	. EA								
	(2)						_	D NO RIST		•							
		(1) 3	-				6 ba		airc							
				, ,				eic .	•	u 11 3							
25				• •				S:		le							
23				, ,		OLOG		line									
		(xi)					TION		EQ I	D NO	: 50	:				
	TCT	TCAT	ACA	CGCG	GCCA	GC C	AGCA	GACA	G AG	GACT	CTCA	TTA	AGGA	AGG	TGTC	CTGTGC	60
30	CCT	GACC	CTA	CAAG	ATGC	CA A	GAGA	AGAT	G CT	CACT	TCAT	CTA	TGGT	TAC	CCCA	AGAAGG	120
	GGC	ACGG	CCA	стст	TACA	CC. A	CGGC	TGAA	C AG	GCCG	CTGG	GAT	CGGC	ATC	CTGA	CAGTGA	180
	TCC	TGGG	AGT	CTTA	CTGC	TC A	TCGG	CTGT	T GG	TATT	GTAG	AAG	ACGA	AAT	GGAT	ACAGAG	240
	CCT	TGAT	GGA	TAAA	AGTC	TT C	ATGT	TGGC	A CT	CAAT	GTGC	CTT	AACA	AGA	AGAT	GCCCAC	300
	AAG	AAGG	GTT	TGAT	CATC	GG G	ACAG	CAAA	G TG	TCTC	TTCA	AGA	GAAA	AAC	TGTG	AACCTG	360
35	TGG	TTCC	CAA	TGCT	GCAG	GT G	CTTA	TGAG	A AA	CTCT	CTGC	AGA	ACAG	TCA	GGAC	CACCTT	420
																ACACTT	
																AATGCA	
																CTAATC	
	ATG	TGAG	GAA	ATGA	TGAG	AA A	TATI	TAAAT	T GG	GAAA	ACTO	CAT	CAAT	AAA	TGTT	GCAAAT	660
40	GCA	TAGT	AAA	AAAA	LAA												

10

15

- (2) INFORMATION FOR SEQ ID NO: 51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13585 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (D) OTHER INFORMATION: at positions 9421-9456, the "Ns" refer to an unsequenced portion of
 - from 4.7 to 5.3 kilobases
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

20 CCGTCAGAAA TCTAAACCCG TGACTATCAT GGGACTCAAA ACCAGCCCAA AAAATAAGTC 60 AAAACGATTA AGAGCCAGAG AAGCAGTCTT CATACACGCG GCCAGCCAGC AGACAGAGGA 120 CTCTCATTAA GGAAGGTAAG AGCGTTGCCT TCTCGCCATA ATCATAGTCC TCTTCTCCCA 180 GAATAGGATT TGGGAAATTC TGGCTAAGTC CTCTGCCTAC CCTCATTGCC CCGCTGATGT 240 GTGACATCAA CAGAATTTCT CCGCAACGTT TGTCAGTCTC CAACCTCAGA GGGCTCACAA 300 AGCCTCCTCC TGAATCCTCT CTCAGTCCTC CAACACTACC AAGAAGAAAA GCAATTATTC 25 AGGATGGCAT CTTGCTGGGG AGAAGCAGCC TCCCTGAGGT AGATGTGTTC TCCTGTCACT 420 TAAAGAACCA CTTCTCCTGG TCTGAGTAGT AAGAGGCGCA TTTGCTGTTG CTGCACCATT 480 TGCCAAGGCT CTGAGTTTGA GGTATGGGAT GTATTAAAAC AATTTAATGA AGAATTAAGA 540 TTCCATTCTG TCATTTTGAA CACAGGGTTC AGTCCTATAT TATTCACTTG AGAGGACTGG 600 TGAGTTTGAC TTTCATTTCT TTTTTACAAC TGGGAAGGGC AAATTACACA TAAAATGTCC 660 30 CAGTGGAAAG GGGTCATGTG TCGAAATCCC CACTCTTCTG TCTCACCTCT CCCTGTTGTT 720 TTAAACTGGG GCTCATTAAT ATAATTCTAT GGGGATCACA CCTTTGAAAT TCATGAGGAC 780 AGTAAGAGAG CAGAAAAATA CACAATAATA AGGAAAGGAG CTTCCATTAT TGGTTTTTAA 840 TGAGCGTACT TGAATTACGG CCACTGCaGT TTATGGATAT TTTTTGTTGT TCATTTGTAT 900 35 GTGTTATAGT TAGAAAAAAA AAGAATCCTA GCCAAGGGAC TTGAACCAGA GAGAAGCAGA 960 AATTGACTTA AGTAGGAAGG GAAACACATT ATTAGATAAA GTCAGGTCCT GGGCTTCCTC 1020 GGCTTGTTTT GGGTGGAGTG CCTGGGGACA GGCTGAAGCC CCTGTGTGGG GTGGTTTCCT 1080 TTGCTGAAAA GCTGGGCTGG AAGATGTTGT GCTCAGTGCT CAACCTCATG CACCCTCGCG 1140 AGGCACAGGC AACGGGTGCT CTGGGAAACA CACGTTATGT ATCATAGCCT CTGTTTGTCT 1200 GTGGGATTGA TATCCAATAA TAACTTTGGA GAAAAATAAC TCCTCTTATT TTGTTAGCCA 40 1260 CAGCCCTGGG CCAGGGAAGG TGGAGAATCA GTGAAAATGC ATTTTGTTTG TTTCTCTAGA 1320

5	AGTTTATGGT GCAGAGTCAA ATTGAAGGCA AATGAGGAAT ATTITICAT TAAATAATAA	1380
	CTCAACTTGC AAGTCTTTTT TGCTTTTGTT TGTAGTTTCT TCTTTGAACT TAATTTTCAG	1440
	TTAGTAGGAG GGGTTAGAAA CCTGAGCTAT TGCTAAAGCC CTTGATATGA ATGAAAGAAG	1500
	CAGGTGCAAA TCCCCTCACA GAGAGAAACC AAAGGGTCCT GGCTATGGAT ATTGGTCACC	1560
	TAGTCAGGAT GCTGTTGTGG GTCTTTATGA GATGATGAAT AGGGTGGCTT TGGATGCATT	1620
10	AATGATATTT ACATGCTCCT TCTGTTAGTG TCCTGTGCCC TGACCCTACA AGATGCCAAG	1680
	AGAAGATGCT CACTTCATCT ATGGTTACCC CAAGAAGGGG CACGGCCACT CTTACACCAC	1740
	GGCTGAAGAG TAAGTTCAAA ACCAGACCCA GCAGGGCTTC CAGTTTGCCG TTTGCTGACA	1800
	CAGCCTGCTG ACTTCCACCA GTACATGCCT GCTCGTAAAT CTCCCTAGTG TTTATCTCCC	1860
	CAGACAGTAA CATCCCTGGC AACAAGGGGA GGAGATTCTG TGCTTCTATA AGGGGCTCAG	1920
15	TCAAGCTTCT CTGAGGCCAA ACAGGCAGGA AGATGGGAAT GGTATAAGGT TGGATCTTGC	1980
	CATTTTTGGG TGCACTTTTG ACTATTGGGT CTTATCTGTA GGTTCCCAAG TGGAAAAACA	2040
	TCTGTTCAGG ATCACAATGC CTCTCTCCTC AATCCTTGTT CTGTCTCCTC CACTCAAATT	2100
	CCTGAAGGTG GTTTGCAGAC AGAATAAAAG TGAGTTGCCA AGGAGCCAGT AAGGATGACG	2160
	GGCAGGTGTG TGTGACTCAG CCCACAGCCA GACTCGAGAG GAAGATGGAG GTCACAGCCT	2220
20	TTGCAGTATA ACTTTATCCT AAGGAAAGAC ATTGGGTTTT ATGAGTGAAT TAAAAATAAG	2280
	TATTTATATG ATTAAGCATT TCTAAATGCT AAGCATTGTA TACTGGCGTG AGACACTGTT	2340
	TTTATCTTTG AAAAAACTCA CAACTTAGTG GGAGAGTTAG GCATGAGATT AATTTCAGCA	2400
	AATGTAAGTG CGGTAATGAA AACCCAGAGG CTGCAGGGAC ATACTCTGTA TGTGCTGGGA	2460
	GTGGGAAAGG GACATACTCT GTACGTGCTG GGTGGCAGGG GCAGGGGAGG CCCCACCCTC	2520
25	TGCGTGGGAC TGTAACAGGA CAACACCCTC TTATGTGGTC TGTCCAGAAC TCCCTGTGAA	2580
	CCTGCTCTTT CTTTGGAAAG AGCTGTTGAA CAATCTTTGT TAACAGTCAA CCGCAGGACC	2640
	AGCAAGATGT AAAGCCCAAC AAAGGCACTG AGGAAGAGTT CAGGAAGACA GCATTTCCTC	2700
•	AGAAGACCCT GGTATAGGAT CCTCTAATAT CCCTGGCCAA TTGGAGATGA GGGCGGCGGT	2760
	ATCCTCTCAG AAAATGTCCT GACAGCAAAA ACATACTCTT TGAGGGAGGG GAGCCCATTG	2820
30	CCCGTGCTAT TAGTTAGGGT ATCGTTTCAG CTTGTGTATA ATCACTCAAC AGACTCTTTA	2880
	AAATATACTT TTATGTCTCG TGTAAAAATT CAAGAGTAAA GAGTTCAAGG CCTGTTCGTT	2940
	TTCTTCTTGC TGGTTACTCC CTTGGGATCG TCACTTTTGT CCCCATGGCT GAAGATGTTG	3000
	TGCCATCACC TCCACATCTT GCCAACAGAA AGCAGGAGGT GAAGGAGAGG CTAGGACCAT	3060
	TCCTTTCAAG GGGCACACGT CACTTCTGCT TATTGCTCCA CCCCCGCCCC CCGCCCGTG	3120
35	GCACCCACCC TGGTGGTATC ATTCTTGCTG TGTTGTAAAT GAAGAAAGGT TTAGAGAAAT	3180
	TAGGAAATGT GTGGCCAGAC ATGGTGGCGC TGGGATTTAA ATCCAGGTCT GTTTGCCTCC	3240
	AGAGTCCATG CTCTTAAGTG TTATGCTGCA GGCCAGCAGA GGCAAATATT TGCACAATCC	3300
	CATCCGACGA GAGGCTAGGG CAGAGGTCAG TATCTCTCAG TGTGAAGCTG GAGGCTGATG	3360
	CTAGTCAGCT CAGTAGGCCG AAAGTGGAGT TGTCCTTTGC CATGTAGGGC CATCATGCCC	3420
40	AGCTGGGGAA CCTCATAGCC AGGTGTACCC ACAACCTGAA CAAGGTAACT TTCAGGGTCT	3480
	AGTCAGGAAG AAACCAACTA GATGGTTCAA CATAGAGACT TTAATATAAG AAGCTGGTTA	3540

WO 96/10413 PCT/US95/12463

67

5	AACAGGCATG GGACTGAGAC TGAGGAGGCA AAGAAGGCAT CGGGGCAACC AAGGCTGTAC	3600
	CCACAGAATG CTGCTTCTAC CCCCGTGTCT GGGGTAACAA ACGGAAGGGT GAGGCCATCA	3660
	GGACCTAGAG TTGGGAGGAG GGACGCCACA GAAATGGGAC CCAGATCTCT AAGGAGAGAT	3720
	TTTTGTTTGG CTGGTTCTGG TGTCTCAAGA GCTTAGAAGT GAGGGGCATG AATCAAATAC	3780
	TCAGGCCTCT GAGGTCAGCC AGTGCTCTGC TGGGGAGGGG CATAATGAAG CTGGCTCTGA	3840
10	CAATGCCGGA AAACGAGCTG GTGCTTGGCA TATACAGACA ATGTGAGCAT TGCTGGGGTG	3900
	ATCCTGACAG GAGCCAGAAG CACACTGGAA GGAGCTGCTC CTTCTTGATG CCCCAGGTTT	3960
	GTAGGCACCC TCTAGAGTAC TCTAATGGGA GCCAGTGGGC AAAGGAGAAG TGGCATTTGC	4020
	AGAGTCCAGT CCCAGCATCA CAGAGCAGAG CATAGAAAGG TAGGTTTGGA GAAGAGGGAC	4080
	AATGGCTTAA TAAAGGGCAA AGGGGGTTAT GACCACTATC ATGTGAAGGA ACCCCTTGAC	4140
15	TGAAGGCACA AGCTTTCTGT GTCTTGCAAC CTGAATGACG TGCATAAGCA GGGTCAGGTG	4200
	GGTTATCTGA CATTTTCCTT GAGAACAAGA GGGAGCCTCT GGATTCCAGC ACAAAAGAAA	4260
	AATACCCACT CAACCCGTAT GCGTGGGAGC TATCCTTTAA AGAGAAAGTA ATTCCTTTTG	4320
	ACATTTTGCT GTCTGTAGAA GGGTCAGATG GCCAAAGCTT CCAGCACAAT GAAACACTTA	4380
	ACTTCAGTCT GTGAGTGTAG GAACCCCTGA ATACATGGAA CATCATCATC TTGTGCAGGT	4440
20	ACTGAAGGAG ATCGGTCCAG AAAATAAGTA ACTGCACATG GCCACCAATG TCAAAAGTCA	4500
	TTCCTCTCAT GAAAAGTCCC TGCCCCCATT GCTGTTTGTT TAAATAGGTG GGATGGAGGT	4560
	AGGGGAATGG GGCCATCTTC TTTTTTTTT TTTAATTTTT TTGCATAAAA TCCAGATCCT	4620
	GCACAATGGG GCAATCTTCA TTAAAACAAT GCATCCCTAA GATCTGAGAA TATTTATCCT	4680
	TCTCACAATT GTGCCAGCAG GTGGAATGAA GAAGAATGAT GCAAAATAAG TTCCCACATC	4740
25	CAGCCAAGAA GGACTACATA CCTGCTTTGG GTATTATGTA TCCCTTTGAA ACCTCAGTGG	4800
	AGAGCAGTTC TCACAGTTGG GTGGACACAA GTCATCCATG GAACTTGTTA AAATGCAGAT	4860
	TTCTAGGTGC TGCCACCTAA GAGGCTGATT GGGTAGGCCA GGGGTGGAGT CCTATGATCT	4920
	GCACCTTAAC GTGCATCTCA GGTGATTCTG CTGCAGGTGG TATTTGGAAG ACACTCTGAG	4980
	GCGCCCTGCC AAGCTGGGCA GTGGGTTCTT CCAATGTGTC AGGCATACCC TGGTGCTTTT	5040
30	CGCTCTCAGT CACTTGGGCA TGTTGTGAGT ACCACGTGAC CATGCATAAA GTGCTGTAAC	5100
	AGAGCTCTGT CTGTGTCAAG ATATTCAAGT GGACGCCACA GGGTAAAATG AGAGCACAGG	5160
	CATGTTGGGA GTTGAATCAG CTGCCTTCAG TCACGAGAAC ACACTGAACA CTCCTTGTGA	5220
	CAGCTTCAGT TCAGGAAAGA GTGACTCTGC AGGAAAAGCA CTGGCCTGGG AGACCTGGAT	5280
	CTGGCCCAAA TTCTGGTGCT CACTTGCTTG GTCTCCCGTT CCAGTTGCTG TGAATGTTGG	5340
35	TTCTGCCACT TGCTGGTTGT GCAGCCCTGG GCACTTGACC AGCATAATGT CAGCTGTAAA	5400
	ATGAACATCA TTCCTAACTC CGAGGACTGT GGTTAGGATG AAATAAAAGC ATATATGTGG	5460
	GGGTGCCTAG CCCAGTGCCT GGCACAAATT GGTGCTCAAT GAATGGTAGT CACTATGGTT	5520
	ATGGTAATGT TGATGAATCT TCATAGGTCT CAGCTTCCTG ATCTATAAAG CGGGTGGACT	5580
	GACCTACATA AGTCAGAGTT TCCATCTAGC ACTGTCATCC CATGGTTCGC TCTATCCTGT	5640
40	TTGGAGACGG ACAGGATAAG CTTGATGTCT CCTCAGCCTT GAGACAGAAG TTGTCCAGTA	5700

... [3²],

5	GATGGTACTG AGCAAAAGTC TCTCCAGCAG AAGCCTTAGT TAAACCTTGC TTCTCCTGTA	5760
	GCTGCTCAGT CTCTTGTAAG TCACTCAGCT CTGCAGAAAC TTTCTTAGCG AGTTGACAAC	5820
	CACAGATAAC AGAGTCAGTT CTGTCGATTT TGATCATGCT GTGATCAGGC AGATGTTAGC	5880
	TAATTGATGA TGCTTGCCCG GAGTGAACAG CTCCAGGCCC TGTTTCCAGG GTCTTTGTGG	5940
	TAACTITGTG GTAACTGTAA TGCTTCCCAG GGGTCACTGA ACACAGGGCC CAAGAGGCTG	6000
10	GTGTAGACCC CCAGATTGGC ACCCTGCTGC TTAGACAAGA TCCTTCTCAA TAAGTAATGC	6060
	CATAGCTTTG CTGTAGGTTC AGCCCAGACA CTTCTCCCTA GGGCTGCAAG GAGCAAAGCG	6120
	GGGAGTTTAG GGAAGGGAGG GCACGAACAT AATTGAGACG GATTCAGGTT CAAATCCAGC	6180
	CTCTGTTTTG TGCTAGCTCT GTATGATCAC CAGCGAGTCA TGTATCCTCT GCCTTTTATT	6240
	TCCTCTTCTG TGAAAATAGG GGATGATAAA TTGTGTCTAC CCTCCAGTGT TGATGTGAGA	6300
15	ATTGAATAAG CTAATGAATG TTTAGCACAG CACCTGGCTT TTAGTAGATG AGTCAGTGTT	6360
	AATTTCTATT TTCTCTTTGT GGGCTGAGTT GGAGAAAATG TTTTAAAACA GCCTGATGAG	6420
	AAGAAAAGAT AATTTAGCCC CAATAAATAC ATTGTCCACA TAAAGACAGT TACTATGGCA	6480
	CTTCTCATAC CTGGAACTTG GGTGCCTGGG CCATGCAATT AGCAGAGTTC CTGTGGGCAC	6540
	ACACTTGAGA GGCTCCTAAA GACCTGGGTT AGATCCAGGT GCTGGAGGCC TGGTGGGGTG	6600
20	CCAGTGTGGG AGGTGGGAAA CTACTTGGAC ACTGGGAGAT GCTGCTCTGG GTCGTCAAAG	6660
	TCCATATGAA GAGGAAGACT GATTTATGCT TCATCATAAT GTAGAACAAT GTTTCAATGA	6720
	CAAAGTGGAT TTGTCTATCT CTTGGGCCAG GCCGCTGGGA TCGGCATCCT GACAGTGATC	6780
	CTGGGAGTCT TACTGCTCAT CGGCTGTTGG TATTGTAGAA GACGAAATGG ATACAGAGCC	6840
	TTGATGGTTG GTAAAGTTCC CACTGCTGAA ATCCCTCCAA GTCCAGGGCC CTCTTTCCAG	6900
25	TTCTTTCCTC TGAATCTCTG GAGAGTCAGA TAATTGCCTC ATTATAACCT TCAGCTCTGA	6960
	TICCGGCTIC TGATGCCTCT TITGCTACAT TGTACTITGG CAACTCTACC TITGCCTCTG	7020
	CTCAGGCATG AACCTCAACC AGGAACTTGC CCTGTGTCTT AGTCTGTGAT TATAACATAA	7080
	TACGAGAGAC TGTAATTTAT AAATAAATGA AATTCATTTG GTTTACAGTT GGGAGGCTGG	7140
	GAACTCCAAG ATCTAGGGGC CACACCTGGT GAGGACTTCT TGCTGTGTCA TATCATAGTG	7200
30	GAAGGCATCA CATGGGCAAG GGAGTGAGAG AGCAAGAGGG AGCTGAACTC ATTTTTTTT	7260
	TTTCTTGAAA CAGGAAATCC TGGGATGGAG CGCAGTGGTG ATCATGAGTC ACTGTAGCCT	7320
	TGACCTCCTG GGCTCAAGCC ATCCTCCTGT CTCAGCCTCC AGAGTAGCTG GGACCACAGG	7380
	CACGTGCCAC CACACCGGCT AATTAAAAAA AAACTTTTTT TTGTAGAGAC GAGGTCCCAC	7440
	TATGTTGCCC TAGGCTGGTC TCAAACTCCT GGGCTAAAGT GATCCTGCCT CGGCCTCCCA	7500
35	AAGTGTTGGG ACTACAAGTG TGAAACACTC CACATATGGC CCAAACTCAC TTTTATAACC	7560
	AACCTACTTT TGCAATAACA AACACACTCC TGCAATAACA CAATTAATCC ATTCGATGAG	7620
	GACAGAGCCC TTGTAACTTA ATCGACCTCT TAAAAGTCCT GCCTGTTACC ATTGTTGCAT	7680
	TGGGGATTAG GTTTCCAATA CACGAATTTT GGGGGACACA TTCAAACTAT AGCACCTGTC	7740
	TCTTTGGTTC TACTCATAGC AGACTTGGGT ACCTGGATGT TGTGTGTAGC TAAGCACTGA	7800
40	CGGTTTATAG GGCACAGGGG AAGGGGTTTG AGGTTCCCTT ATAGCAAACA GGAGTATATT	7860
	AGACACCTCA GGTTTTACCA CTTCTGGGAA TTCTTGCTGG TTCTGTTACT CCACTTTGTG	7920

0

:5

10

35

ACCTGCTCTT CCTACTTTTC TTCTTCACCC CTTTCCTCAC TGGTTACCTG TGAATTCCAA	7980
GTTCTTCTGA CTCTACACTA AGCATCCCAG GATATCATCA GTGCGATGAG GAAACCATCC	8040
TTCCTGCATC AGCACAAAGG GTCACTTGTG TGTTTTTTAA CAGGCTGCAT CCTTCTTAGA	8100
TGGCCAAAGG TTTTAATAGT ATTTTTTCT TCTTTACCCA AATATGCAGG AAGCTAACAC	8160
AATTACACAA TCCAATCTTC TGGTACCAGT ATCCTCCATG AATGGGAAAC ATCAACTGAG	8220
TTTATAAGCT ATAAAAATTA CAGGTTTCAG CAATCTTGCT TAAAGCCAGG TAGCACTTCA	8280
GCACTTCAGC ACCCGAAGCA TTCTCCATAG ATCTCGCTGT CTCTCTTTCT TGTTATTACA	8340
GATCTGAAAG CTTTTCAGGT TGATGCATAA TGGAAAAAAA GTATCTTTCC AAAAGATGTT	8400
GGAAAGTCCC ATTCTCATTC AGCAAGCACT TCATTTAGAG GAAAAGGTCC TGTGAAAGAG	8460
AGGAGGGTTG GTGTGGGGTG GGGATTGAAG CTTGGCAAGC TGATAAGGAG AAGGTGAGAG	8520
ATACAACTCT GGATTCTTTC CCTCTTTGCC AAGAAACTTG GGCAGTCTCA TGTCTCATGT	8580
CTCCTGTTCC CCAATGTCTT TCCAGAGCAT AAATACAAAT ACAAACCATC AAAGGCAAGT	8640
CAAGTCTGGG GGCTGACACA CCCACCGAGC ATAGCCCTCT AGTGTGCTGA CATCTAGTGG	8700
GAAGGAGGAG GAGTTGATGA ATCTGAACAA GACTCCAATA TTGGAGGAAA TACTTGAGGA	8760
AAGCCTTGGG TTAGAAAGTT AGGGATAGAA TTCCTGCTCA TACGGCTGTC CACAACAGGT	8820
TAGTAGGGGA GGACTTTAAT CTCTGCCATA GAACTCCATT TGTAACTCTA GCATGGGGTT	8880
ATGACATTGC CTTGTAATTG GCTATTTACT TTTTGCCTCT TCGACCCCTC CGCTTTCCCC	8940
TATGTATGAA CCACAACAGA GAATATTTCT AACTCATCTT CATATCTCCA GTGCCTAGCA	9000
CAGTGCCTGG TACATGGTAG TCACTCAATT GTGTTGCATT AGGACTTGGT CCCATTGTCT	9060
GCCATTGAGT TGCTTGGAGA CTAGAATTCA ACTTCTCCAA GATTCACTAG CTCTATTTTA	9120
CACCCAGACA TGTTGGAAAT CTGTGATGTA ACACAATGTA TATCCATTTT TATTTAATAC	9180
ATATTTTCTT CTATATTTTG ATTTCATTAT ATATTTGTAT ATCAAAAACA AAATGTTTAG	9240
TCTTTCAAGA AGTAAAGCTA TACAAACTCA ATATGTTGGT ACTCATTTCC TAACTATAAT	9300
TATTAGTTTG ATCCTATTGA ACACAAATGC AGTAATTTTT CTTTTCTGCT TCAATGCTCT	9360
CATCTTAAAT TCATTTAATT GAAAAATAAC AGAGAGTCTT AATGTCATGT GCTCAGACAC	9420
TNNNNNNNN NNNNNNNNN NNNNNNNNN NNNNNNGAGT GCAGTGGTAT GATCTGGGCT	9480
CACTGCAAGC TCTGCCTCCT GGGTTCATGC CATTCTCCTG ACTCAGCCTC CCAAGTAGCT	9540
GGGACTACAG GTGCCCGCTA CCATGCCTGG CTAATTTTTT GTATTTATAG TAGAGATGTC	9600
ATTTCACTGT GTTAGCCAGG ATGGTCTCAA TCTCCTGACC TCGTGATCCA CACGCCTTGA	9660
CCTCCCAAAG TGCTGCGATT ACAGGTGTGA GCCACCGTGC CCGGCCTTAT ACTTCTTTTT	9720
TACTTTTTTT CAGTGGTTTC CCTAGAGTTT GCAACATACA TTTACAACTA ATTCAAATCC	9780
ACTITICAAAT AACACTATAC CATTICATAG GCATTATGAG TATCTTAAAA TAATCCTAAT	9840
TCCTTCCTCC TGTAAACTAA AAACAAAATC CTAAATCCTC CAAACAACTG AATGGACCCC	9900
CTCTTCACCA AGGGGACCCC AGGGAAACCT GAAAAACTGA GTGTTGGCCA TGACGGGAAG	9960
GGAGGTGAGA GATGCTCATT ATACTCCCTC CCTTTTAGAG TTTTAGGTAC AACTGACCAG	10020

5	CATTAATTTT AAAATAGAGA TTACAGGACT GACAGAATGA ACTCTTTGTG GCAATATCAA	10080
	ATTAGGAACA AGACAATGCA AGGAAAGGGT TAAATCATGC CCTTCAAACC ATAAAAAAAT	10140
	TTTTTTTTAA TTAACCCCAT ATAATGTGGT ATACTTTCCA AACTGACTCT GGTATAGCAT	10200
	CACATGACAG ATTGCAGACT CCCTTACCTT AAGCATTCCT TTATACTGAC TTCAAGTCTT	10260
	AAGACAGAGC TGAACTCTTT CAACCAGCTG CTAACTAAAG AATACCTAAA ACCCACCTGT	10320
10	GACTTGTAAG TCTCTGCTTT GCCATGTCCT GCCTTTTCAG GCTGACCCAA TGTATACCTT	10380
	CCGTGTATTG ATTTATGATT TTTACCTACA ATTCCTGTCT TCCTGAAACA TATAAAACCA	10440
	AATCATAACC CAACCACCTC AGGCACACTT TCTCAGGACC TCTTGAGACT ATTCTCCCGG	10500
	CCATGGTCAT TCATATCGGC ACAGAATGAA ACCTCTTTAA AATATTTTGC AGTTTTTTTC	10560
	TTTCTGTTAA CATTCCTTTC CCTTGTATCA TTGCTGTTAT TAATTTCAAG TATATATAAG	10620
15	CATACCTAAT TAAATACATT GTTGCTATTA TTCATTTTTG AACAAACTAT TATCTGTTAA	10680
	ATCAACTAAG AATAAGACAA ATATGTTGGG TGCAGTGGTG CATGCCTATA GTCTCAGCTA	10740
•	CTCAGAGGCT GAGGCAGGAG GATTGCTTGA GCTCAGGAGT TTAAGACCAG CCTAGGCAAC	10800
	TTAGCAAGAT CATGTCTCTT AAAAAAAAAA AAAGAAAGAA AGAAAAAACAA AGTTTTAGGA	10860
	GGCTGAGGCA GGAGTATCAC TTGAACCCAG GACGCAGAGG TTGCAGTGAG CCGAGATCGT	10920
20	GCCATTATAC TCCAGCCTGG GCAACAGAGT GAGACTCTGT CTCAAAAAAA AAAAAGAAAA	10980
	GAAAAGAAAA GAAAAAAAA GTTTTTATTT TACCTTCACT TATTCCTTCT TGGATGTTCT	11040
	TCCTTTATGT AGGTACAAGG TTCTGACCTA TGTTATTTTC TTTTTCTCTA AAGAACTTCA	11100
	AAAGTTTCCT GCAAGGCAGG TCTACTGGCA ATGAATTCCC TCAATTTTTG CTTGACAAAG	11160
	TCTTTATTTC TGCTTCACTA TTGATGGATA ATTTCACAAG AGTGTTCCTT TTGTAGATTC	11220
25	ACTETTETTA TECTTECETT CAGAAATATT CTTTGACCAA CTATTGGGTE CCAGGTACTG	11280
	CACTAGAGCT TTACTTCTAG TTAATTCCCA CAGCAATTCT GAGAGGTAGG TAGGTATTAT	11340
	ATTCCTAGAT GCAAACTCAG AATTCAGAAG GTAAAGTGAT GAGACTGAAG GCACACAGCA	11400
	AGTAAGTGGC AGAACCTAGA TTAAAACTCA TTCTTAAAAC TTTGGCTTCC TTCTCTTTTC	11460
	TTTAATGGAT TCAGTTACTT CTTCTCACCC ACTCACCTTT ATCAATTTAC ATTTCAGATA	11520
30	AAAGTCTTCA TGTTGGCANC TCAATGTGCC TTAACAAGAA GATGCCCACA AGAAGGGTTT	11580
	GATCATCGGG ACAGCAAAGT GTCTCTTCAA GAGAAAAACT GTGAACCTGT GGTAGGTTAA	11640
	GATCCTTCAT AAGGGTATTT TCATGAATGG CTGTTTTTAA CTCAAGTGAA TACAATTATT	11700
	TCCATTTAAA AAGCAAGGAC AATGTGAATG TACTCATTGC CACTGAACTA TATACACCTA	11760
	AAAATGGTTA AAATGGCAAC TTTTATGTGT ATTTTATGAG AATAAAAAAT AAATAATAAT	11820
35	AAAAAACAAG GGAAGTACAG ATATTTTCTT AATTGTGTTG TCACATACCC AGTGTTTCCA	11880
	GGGTCAATAA TGAGAGCCCT ACATGTAAGA TTCAAAGGAA GAATTTAGTC CTGGATACAA	
	TATTCTTTTA TGTTTTTAGT TATATTTGCC TTTTTAATGG ATGCAGATAT ATACAGAGGG	12000
	AAGGGATAAA GTACCTATTA TTTATTGTAT AGAGCTGTGC TGTCTGATGG CTTAGCCACT	12060
	AGTCACATGG TGCTATTGAA CACTTAAAAC ACAGGAGTTT GAAATAAGCA TGTATTATAA	
40	TACATATCAT ATTTCAAAAA TATTAGTATG TAGAAAAGAA GATAAATGGT TCATTAATGA	12180
	TTTTTATATT GATTCACCTT GAAATAAATA TTCTGAAAAT ATTAGGTTAA ACAAAATATT	12240

5	TTAAGATTAA	TTTTACATGT	TTCTTCTTTT	AAATGTAGCT	ACTAGAAATT	TTAAAATTAC	12300
	ATATGGCTGG	GCATGGTGGC	TCACACCTGT	AATCCCAGCA	CTTCGGGAGG	CCGAGGTGGG	% ,12360
	TGGATCACCT	GATCTCAGGA	GCTCGAGACC	AGCCTGGCAA	ACATGGTGAA	ATCCTATCTT	12420
	TACTAAAAAT	ACAAAAATTA	GCCAAGCGTG	GTGGTGCATG	CCTGTAATCC	CAGCTACTTG	12480
	GGACGCTGAG	GCAGGAGAAT	CACTTGAACC	CGGGAGGTGG	AGGTTGCAGT	GAGCCGAGAT	12540
10	AGTGCCACTG	CACTCCAGCC	TGGGAGACAA	GAGCAAAACT	CCATCTCAAA	AATAAATAAA	12600
	TAAAATAAAA	TTACATAAGT	GGCTTGTACC	ATATTTCTAT	TGGACAGCAC	TAGTACATAT	12660
	ACAACACAGC	ATAATGGTTG	AGAGCACTGA	CTCTGGAGCC	AAATTACTGT	GTTTGATTCT	12720
	TAGCTCCACA	ACTTACTAGT	TGTGTGACCA	TGGGCAAGCG	AGTTAACCTC	TCTGTGCCCC	12780
	AGTTTCCCAT	TCTGTAACAT	GAAAATAATA	AAAACACTCC	CCAGAATTGT	TGTGAGCATT	12840
15	AAATGAAGCC	CTGACACATT	TGTTCTGGAT	ACAATATCCT	CTTGTTTTAT	ATTTGGTAGT	12900
	ATCAATGTGC	CTTTAGACAC	AATTACAACG	ATCTCTGTGG	TAAAGATGCA	ATGTATATGG	12960
	TGTCTATAAA	TAGCATTCAA	TGATTCGTTA	GTTAGGGCTT	GAGACTTTTA	CTGTCATGGA	13020
	AAATCTAGGT	ATAGCTAAGC	TTTTGAGATT	TTGGGAACTC	CTTAACCCTA	TTTTTCTCTA	13080
	CTCTTGCCCC	CAACAATCAG	CCTATATACT	TGTGAAATTT	AACAATTACT	TCACTGGGCA	13140
20	GAAATTATAT	GGGAACACTT	AGAAATTTCA	GTCCACAGGG	AAAGTATAAA	TATGTTAACT	13200
	ATTTTAACTT	AATCCCTTCC	TAGAAACACA	TACACTGTTG	CCAAGCCCAT	ATTCTCCCTT	13260
	TCTTGTTCTC	ACAGTTCCCA	ATGCTCCACC	TGCTTATGAG	AAACTCTCTG	CAGAACAGTC	13320
-	ACCACCACCT	TATTCACCTT	AAGAGCCAGC	GAGACACCTG	AGACATGCTG	AAATTATTTC	13380
	TCTCACACTT	TTGCTTGAAT	TTAATACAGA	CATCTAATGT	TCTCCTTTGG	AATGGTGTAG	13440
25	GAAAAATGCA	AGCCATCTCT	AATAATAAGT	CAGTGTTAAA	ATTTTAGTAG	GTCCGCTAGC	13500
	AGTACTAATC	ATGTGAGGAA	ATGATGAGAA	ATATTAAATT	GGGAAAACTC	CATCAATAAA	
	TGTTGCAATG	CATGATAAAA	AAAAA				13585

- P

- (2) INFORMATION FOR SEQUENCE ID NO: 52:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 648 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

35

40

30

AGCTGCCGTC CGGACTCTTT TTCCTCTACT GAGATTCATC TGTGTGAAAT ATGAGTTGGC 60
GAGGAAGATC GACCTATCGG CCTAGACCAA GACGCTACGT AGAGCCTCCT GAAATGATTG 120
GGCCTATGCG GCCCGAGCAG TTCAGTGATG AAGTGGAACC AGCAACACCT GAAGAAGGGG 180
AACCAGCAAC TCAACGTCAG GATCCTGCAG CTGCTCAGGA GGGAGAGGAT GAGGGAGCAT 240
CTGCAGGTCA AGGGCCGAAG CCTGAAGCTG ATAGCCAGGA ACAGGGTCAC CCACAGACTG 300

5	CTGCAGGTCA AGGGCCGAAG CCTGAAGCTG ATAGCCAGGA ACAGGGTCAC CCACAGACTG	300
	GGTGTGAGTG TGAAGATGGT CCTGATGGGC AGGAGATGGA CCCGCCAAAT CCAGAGGAGG	360
	TGAAAACGCC TGAAGAAGAG ATGAGGTCTC ACTATGTTGC CCAGACTGGG ATTCTCTGGC	420
	TTTTAATGAA CAATTGCTTC TTAAATCTTT CCCCACGGAA ACCTTGAGTG ACTGAAATAT	480
	CAAATGGCGA GAGACCGTTT AGTTCCTATC ATCTGTGGCA TGTGAAGGGC AATCACAGTG	540
10	TTAAAAGAAG ACATGCTGAA ATGTTGCAGG CTGCTCCTAT GTTGGAAAAT TCTTCATTGA	600
	AGTTCTCCCA ATAAAGCTTT ACAGCCTTCT GCAAAGAAAA AAAAAAAA	648
	(2) INFORMATION FOR SEQUENCE ID NO: 53:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 9 amino acid residues	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
	Ala Leu Ser Arg Lys Val Ala Glu Leu	
	5	
25	(2) INFORMATION FOR SEQUENCE ID NO: 54:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acid residues	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 34.	
	Phe Leu Trp Gly Pro Arg Ala Leu Val	
35	5	
	(2) INFORMATION FOR SEQUENCE ID NO: 55:	
	(i) SEQUENCE CHARACTERISTICS:	

SUBSTITUTE SHEET (RULE 26)

(A) LENGTH: 10 amino acid residues

(B) TYPE: amino acid

10

(D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55: Thr Leu Val Glu Val Thr Leu Gly Glu Val 5 10

(2) INFORMATION FOR SEQUENCE ID NO: 56:

> (i) **SEQUENCE CHARACTERISTICS:**

(A) LENGTH: 10 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

20

Ala Leu Ser Arg Lys Val Ala Glu Leu Val 5 10

25

30

40

15

(2) INFORMATION FOR SEQUENCE ID NO: 57:

> **SEQUENCE CHARACTERISTICS:** (i)

> > (A) LENGTH: 10 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57

Ala Leu Val Glu Thr Ser Tyr Val Lys Val

10 35

> (2) INFORMATION FOR SEQUENCE ID NO: 58:

> > (i) SEQUENCE CHARACTERISTICS:

> > > (A) LENGTH: 11 amino acid residues

SUBSTITUTE SHEET (RULE 26)

5	(B) TYPE: amino acid(D) TOPOLOGY: linear(ii) MOLECULE TYPE: protein(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:
10	Ser Thr Leu Val Glu Val Thr Leu Gly Glu Val 1 5 10
15	(2) INFORMATION FOR SEQUENCE ID NO: 59:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 9 amino acid residues
20	(B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:
25	Leu Val Glu Val Thr Leu Gly Glu Val 1 5
30	(2) INFORMATION FOR SEQUENCE ID NO: 60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acid residues (B) TYPE: amino acid
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: Lys Met Val Glu Leu Val His Phe Leu 1 5
4.0	

SUBSTITUTE SHEET (RULE 26)

INFORMATION FOR SEQUENCE ID NO: 61:

(2)

5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acid residues (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61: 10 Val Ile Phe Ser Lys Ala Ser Glu Tyr Leu 1 5 10 15 (2) INFORMATION FOR SEQUENCE ID NO: 62: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acid residues (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62: Tyr Leu Gln Leu Val Phe Gly Ile Glu Val 25 1 10 INFORMATION FOR SEQUENCE ID NO: 63: (2) (i) **SEQUENCE CHARACTERISTICS:** 30 (A) LENGTH: 9 amino acid residues (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63: Gln Leu Val Phe Gly Ile Glu Val Val 1 5 (2) INFORMATION FOR SEQUENCE ID NO: 64: 40 SEQUENCE CHARACTERISTICS: (i)

(A) LENGTH: 11 amino acid residues 5 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64: 10 Gln Leu Val Phe Gly Ile Glu Val Val Glu Val 10 5 1 15 (2) INFORMATION FOR SEQUENCE ID NO: 65: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 9 amino acid residues (B) TYPE: amino acid 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65: Ile Ile Val Leu Ala Ile Ile Ala Ile 5 1 25 INFORMATION FOR SEQUENCE ID NO: 66: (2) SEQUENCE CHARACTERISTICS: (i) 30 (A) LENGTH: 11 amino acid residues (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66: 35 Lys Ile Trp Glu Glu Leu Ser Met Leu Glu Val 1 .

INFORMATION FOR SEQUENCE ID NO: 67: (2) 5 **SEQUENCE CHARACTERISTICS:** (i) (A) LENGTH: 10 amino acid residues (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: Ala Leu Ile Glu Thr Ser Tyr Val Lys Val 5 10 1 15 INFORMATION FOR SEQUENCE ID NO: 68: (2) **SEQUENCE CHARACTERISTICS:** (i) (A) LENGTH: 10 amino acid residues 20 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68: 25 Leu Ile Glu Thr Ser Tyr Val Lys Val Leu 1 5 10 30 (2) INFORMATION FOR SEQUENCE ID NO: 69: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 9 amino acids (B) TYPE: amino acids (D) TOPOLOGY linear 35 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: M3-195.203 OR SEQ ID NO: 69: Ile Met Pro Lys Ala Gly Leu Leu Ile 5 40

5 INFORMATION FOR SEQUENCE ID NO: 70: (2) SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 9 amino acids (B) TYPE: amino acids (D) TOPOLOGY linear 10 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: M3-220.228 OR SEQ ID NO: 70: Lys Ile Trp Glu Glu Leu Ser Val Leu 5 15 INFORMATION FOR SEQUENCE ID NO: 71: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acid residues 20 amino acid (B) TYPE: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71: 25 Ile Asn Phe Thr Arg Gln Arg Gln Pro Ser Glu Gly Ser Ser 10 5 30 INFORMATION FOR SEQUENCE ID NO: 72: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acid residues (B) TYPE: amino acid (D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72: Leu Phe Arg Ala Val Ile Thr Lys Lys Val Ala Asp 10 5 40

5	(2) INFORMATION FOR SEQUENCE ID NO: 73:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 12 amino acid residues	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
	Asp Val Lys Glu Ala Asp Pro Thr Gly His Ser Tyr	
15	5 10	
	(a) INCORMATION FOR CEO TO NO. 74	
	(2) INFORMATION FOR SEQ ID NO: 74 (i) SEQUENCE CHARACTERISTICS:	
•		
20	(A) LENGTH: 1896 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74	
25	(XI) Sequence Second Victoria	
20		
	GCGGCGGTGG CGGAGGCGGA CACATTGGCG TGAGACCTGG GAGTACGTTG TGCCAAATCA	60
	TTGCCACTTG CCACATGAGT GTAAATGATG GCGGATGCAA GTATGTCCTC TGCCGATGGG	120
	AAAAGCGATT ATGGCCTGCG AAGGTGACAG CCATTATTCT GTAACTTCAG GACTTAGAAA	180
30	TGACTTTCGG GTGACAAGTA AAATCTTGAT CAGGAGATAC CTAGGATTTG CTTCAGTGAA	240
	ATAATTGAGC CAGAACACGG TTGGCACTGA TTCTCGTTCC CCATTTAATG GGGTTTTGGT	300
	CTAGTGCTTC CAAGGTTACA CTTCCAGAAA TGTCTTTTTT TTTTCACACT AAAAAAAAAA	360
	AAAAGAATCA GCTGTAAAAA GGCATGTAAG GCTGTAACTC AAGGAAAGAT CTGGCAAGCA	420
	GCCCTGTGAT AGTAAATTAT GGTCGTGTTC AGGGAATGCT TTCCAGCAAT TCAGTAGACA	480
35	GTGCTCAGCT GCAATGCAAA AGCCCAGGTC CTTGTCTTTG TCTGCCACTG GCCTCTCATG	540
	CCTCAGTTTC CCCATCTGTG AAACAATGGG GATTGGACCA AATATCTGAA ATCCCATGGT	600
	TATAGGCCTT CAGGATTACC TGCTGCATTT GTGCTAAAGT TTGCCACTGT TTCTCACTGT	660
	CAGCTGTTGT AATAACAAGG ATTTTCTTTT GTTTTAAATG TAGGTTTTGG CCCGAACCGC	720
	GACTTCAACA AAAAATAAGA GAAGAAAGGA ATATTTTCTA GCTGTGCAAA TCCTCTCCCT	780
40	AGAGGAAAAG TTAATTGTTG TGTTGTTTTA ATACTGTTTT TTCCCGTGTA GATTTCTGAT	840
	ACTICAATCC CCTACTCCCC CAAAACAGTT GAAGCCCAGC CCACTCTTAA TGGGCTTATT	900

5	CACCATTTGT	GTAATTCATT	AATGCTCATA	ATAACCTCAT	GAGAAAGCAA	CTAGTTTGAT	960
	TTTATGTCAG	TTTGGAAGCT	GAAGATCCAA	ACGAGGCATT	CTGTGAGATC	TATGGAGAGA	1020
	TTGGTACAAA	CACTGAATAC	ATGTAAATTA	TACTCAGGGT	AGACCCTATT	TGTGGTTAAA	1080
	ATAGGGATAT	TTCCTTTTTT	TTTTTTTTT	TTTTGACTGT	TTCTTAATCA	GTGCCATGCC	1140
	AGGAAAATAG	GGATGTTTCC	TTCCCAGAGA	TCTGTGTGTC	TTTTTTCAGA	AACGTCTGTG	1200
10	ACAGGCCCAT	CAATTTTGAA	ATATTTGGTT	TTTGAGCCTG	TCACTCTAAA	CCAGCGTTTA	1260
	ACGTTCAAAA	GGCAAATAAC	TGATGACCAG	GCGGCACATT	GTTCTGCTCC	GTGAGTGTCT	1320
	GGCACTGGGA	AAGGTGTAGA	TTGTCTAGAA	TGACAGCAAT	TCCGACGCCC	CAGTCAGTCC	1380
	TGCGTGATTG	TGGCGAGGGC	GCGTCTGGCA	CCGGGAAGGT	GTAGATCATC	TAGAATGACG	1440
	GCGATTCCGA	${\tt CGCCCCGGTC}$	AGTCCTGCGT	GATTGGCGAG	GGTGCATCTG	TCGTGAGAAT	1500
15	TCCCAGTTCT	GAAGAGAGCA	AGGAGACTGA	TCCCGCGTAG	TCCAAGGCAT	TGGCTCCCCT	1560
	GTTGCTCTTC	${\tt CTTGTGGAGC}$	TCCCCCTGCC	CCACTCCCTC	CTGCCTGCAT	CTTCAGAGCT	1620
	GCCTCTGAAG	CTCGCTTGGT	CCCTAGCTCA	CACTTTCCCT	GCGGCTGGGA	AGGTAATTGA	1680
	ATACTCGAGT	TTAAAAGGAA	AGCACATCCT	TTTAAACCAA	AACACACCTG	CTGGGCTGTA	1740
	AACAGCTTTT	AGTGACATTA	CCATCTACTC	TGAAAATCTA	ACAAAGGAGT	GATTTGTGCA	1800
20	GTTGAAAGTA	GGATTTGCTT	CATAAAAGTC	ACAATTTGAA	TTCATTTTTG	CTTTTAAATC	1860
	CAGCCAACCT	TTTCTGTCTT	AAAAGGAAAA	AAAAA			1896

(2) INFORMATION FOR SEQUENCE ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

Glu Glu Lys Leu Ile Val Val Leu Phe

5

35

30

25

(2) INFORMATION FOR SEQUENCE ID NO: 76:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1554 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

5				(D)	TOPO	LOGY	': 1	inea	ır								
		(-	ii)	MOLE	CULE	TYP	E:	nu	ıclei	ic ac	id						
		(·	ix)	FEA1	URE:												
				(A)	NAME	KEY	':	DA	IGE								
				(D)	OTHE	RIN	IFOR M	IATIO	N:	Xaa	is	Arg	when	V	is C	or A	or Gly
10										wher	י ער	is G					
		()	(i) S	SEQUE	NCE	DESC	RIPT	ION:	SEC) ID	NO:	76:					+
								•••							100	074	
															AGC		48
15		Leu	Arg	Pro	_	Asn	Pro	Ser	Val		ыу	Pro	Glu	Ala	Ser	Leu	
	1				5					10					15		
	AGT	TTC	cec	ΔΔΔ	ΔTG	CΔΔ	CGA	ΔGG	CGT	TTG	CGG	GGT	TCC	ATT	CAG	AGC	≆96
															Gln		1.,
20		רו ש	THE	20	Met	a ra	n g	/··· 9	25	LCu	· 9	u.,	J C.	30	•	00.	
20				20													
	CGA	TAC	ATC	AGC	ATG	AGT	GTG	TGG	ACA	AGC	CCA	CGG	AGA	стт	GTG	GAG	144
															Va 1		
		•	35					40					45				
25					٠												
	CTG	GCA	GGG	CAG	AGC	CTG	CTG	AAG	GAT	GAG	GCC	CTG	GCC	ATT	GCC	GCC	192
	Leu	Ala	Gly	Gln	Ser	Leu	Leu	Lys	Asp	Glu	Ala	Leu	Ala	Ile	Ala	Ala	
		50					55					60					
30															GCA		240
	Leu	Glu	Leu	Leu	Pro	Arg	Glu	Leu	Phe	Pro	Pro	Leu	Phe	Met	Ala	Ala	
	65					70					75					80	
																700	200
															GCC		288
35	Phe	Asp	Gly	Arg		Ser	Gin	ihr	Leu		Ala	met	vaı	GIT	Ala	ırp	
					85					90					95		
	ccc	TTO	. ACC	TCC	CTC	CCT	רדר	CCA	GTC	רדנ	ΔΤΩ	ΔΔΩ	CCV	CAA	CAT	СТТ	336
															His		550
4.0	F170	riie	: (1111	100		FIO	Leu	u.iy	105		iiie (LJS	~ · · ·	110			
40				100					103						•		

5	CAC	CTG	GAG	ACC	TTC	AAA	GCT	GTG	CTT	GAT	GGA	CTT	GAT	GTG	СТС	CTT	384
	His	Leu	G lu 115	Thr	Phe	Lys	Ala	Va 1 120	Leu	Asp	Gly	Leu	Asp 125	Val	Leu	Leu	
10					CGC Arg												432
		130					135					140					
	CGG	AAG	AAC	TCT	CAT	CAG	GAC	TTC	TGG	ACT	GTA	TGG	TCT	GGA	AAC	AGG	480
15	Arg 145	Lys	Asn	Ser	His	G l n 150	Asp	Phe	Trp	Thr	Va 1 155	Trp	Ser	Gly	Asn	Arg 160	
	GCC	AGT	CTG	TAC	TCA	ттт	CCA	GAG	CCA	GAA	GCA	GCT	CAG	ССС	ATG	ACA	528
	Ala	Ser	Leu	Tyr	Ser 165	Phe	Pro	G1u	Pro	G lu 170	Ala	Ala	Gln	Pro	Met 175	Thr	
20					0.7.4		OOT	TT0	400	A.C.A	CAC	CCA	CAC	CAC	ccc	TTC	576
					GTA Val												3/0
	Lys	Lys	ni y	180		Nab	u 1 j	Lea	185	-		,		190			
25	ATT	CCA	GTA	GAG	GTG	СТС	GTA	GAC	CTG	TTC	СТС	AAG	GAA	GGT	GCC	TGT	624
	Ile	Pro	Val 195		Val	Leu	Val	Asp 200		Phe	Leu	Lys	G 1u 205		Ala	Cys	
	GAT	GAA	V TTG	TTC	тсс	TAC	стс	ATT	GAG	AGA	GTG	AAG	CGA	AAG	AAA	AAT	672
30	Asp	G10 210		. Phe	e Ser	Tyr	Leu 215		Glu	Arg	y Val	L y s		Lys	. Lys	Asn	
	GTA	CTA	A CGO	CTO	TGC	: TG1	r AAG	AAG	сте	AAG	AT1	TT	r gc <i>a</i>	A ATO	CCC	ATG	720
	Val	Lei	ı Arç	g Lei	ı Cys	Cys	Lys	Lys	Leu	Lys	: Ile	Phe	e Ala	. Met	: Pro	Met	
35	225	i				230)				235	5				240	
																GAA	768
	Gli	n Ası	p Il	e Ly	s Me1 24!		e Lei	ı Ly:	s Met	t Va` 250		n Le	u Ası	p Sei	r Ile 255	e Glu S	
40	GA ⁻	T TT	G GA	A GT			T AC	C TG	G AA	G CT	A CC	C AC	C TT	G GC	G AA/	A TTT	816

WO 96/10413 PCT/US95/12463

5	Asp	Leu	Glu	Va 1 260	Thr	Cys	Thr	Trp	Lys 265	Leu	Pro	Thr	Leu	A1a 270	Lys	Phe	
	TCT	CCT	TAC	CTG	GGC	CAG	ATG	ATT	AAT	CTG	CGT	AGA	СТС	СТС	СТС	TCC	864
	Ser	Pro	_	Leu	Gly	Gln	Met		Asn	Leu	Arg	Arg		Leu	Leu	Ser	
10			275					280					285				
	CAC	ATC	CAT	GCA	тст	TCC	TAC	ATT	TCC	CCG	GAG	AAG	GAA	GAG	AGT	ATA	912
	His	Ile	His	Ala	Ser	Ser	Tyr	Ile	Ser	Pro	Glu	Lys	Glu	Glu	Ser	I је	
		290			•		295					300					
15	TCG	ררר	AGT	TCA	ССТ	CTC	AGT	TCC	TCA	GTC	TCC	AGT	CCC	TCC	AGG	CTC	960
							Ser										900
	305					310					315			J	3	320	
20							TTT										1008
	Ser	Met	Trp	Thr	Leu 325	Tyr	Phe	Ser	Leu	G Iu 330	Ala	Ala	irp	lhr	G In 335	Leu	
					323					330					333		
	стс	AGG	CAC	GTG	ATG	AAC	ССС	TTG	GAA	ACC	стс	TCA	ATA	ACT	AAC	TGC	1056
25	Leu	Arg	His	Va 1	Met	Asn	Phe	Leu	Glu	Thr	Leu	Ser	Пe	Thr	Asn	Cys	
				340					345					350			
	cee	СТТ	TCG	GΔΔ	GGG	GAT	GTG	ΔTG	CAT	CTG	TCC	CAG	ΔGT	ccc	A GC	GTC	1104
							Val										1104
30	,		355		•	·		360					365				
							AGT										1152
	5er	370	Leu	2er	vai	ren	Ser	Leu	ser	ыу	vai	380	Leu	ınr	ASP	vai	
35		3,0					3,0					,					
	AGT	CCC	GAG	ССС	СТС	CAA	GCT	CTG	CTG	GAG	AGA	GCC	TCT	GCC	ACC	СТС	1200
	Ser	Pro	Glu	Pro	Leu	Gln	Ala	Leu	Leu	G1u	_	Ala	Ser	Ala	Thr		
	385					390					395					400	
40	CAG	GAC	CTG	GTC	TTT	GAT	GAG	TGT	GGG	ATC	ACG	GAT	GAT	CAG	СТС	CTT	1248
							Glu										

5			405			410	•	4 15
						TCC CAG CT		
	Ala Leu	ı Leu Pr 42		eu Ser	425	Ser Gln Le	430	Leu ser
10			T TCC A1	יר דרר	ATA TCT	GCC TTG CA	G AGT CTC	CTG CAG 1344
	Phe ly	435	in Ser I	ie ser	440	Ala Leu Gl	445	Lea a iii
15	CAC CT	C ATC GO	G CTG A	GC AAT	CTG ACC	CAC GTG CT	G TAT CCT	GTC CCC 1392
						His Val Le		
	45			455			50	
						ACC CTC CA		
20	Leu G1	u Ser T	yr Glu A	sp Ile	His Gly	Thr Leu H	is Leu Glu	
	465		4	70		475		480
	GCC TA	T CTG C	AT GCC A	GG CTC	AGG GAG	TTG CTG T	GT GAG TTG	GGG CGG 1488
						ı Leu Leu C		
25	Ĭ		485			490		495
	CCC AC	C ATG G	TC TGG C	TT AGT	GCA AC	C CCT GTC C	TC ACT GTG	GGG ACA 1536
•						r Pro Val L		
			00		50		510	
30	•							
	GAA C	CT TCT #	TG ACC	CGG				1554
	Glu P	ro Ser M	et Thr	Arg				
		515						

1/2

V.

, .- eg

We claim:

- 1. Composition of matter comprising:
- (i) a tumor rejection antigen precursor or a tumor rejection antigen, and at least one of:
- (ii) a pharmaceutically acceptable adjuvant, and a T or B cell growth factor.
- 2. The composition of matter of claim 1, wherein said tumor rejection antigen precursor is a MAGE protein.
- 3. The composition of matter of claim 1, wherein said tumor rejection antigen precursor is a BAGE protein.
- 4. The composition of matter of claim 1, wherein said tumor rejection antigen precursor is a GAGE protein.
- 5. The composition of claim 1, wherein said tumor rejection antigen is derived from a MAGE protein.
- 6. The composition of matter of claim 5, wherein said MAGE protein is MAGE-1, MAGE-2, or MAGE-3.
- 7. The composition of matter of claim 6, wherein said tumor rejection antigen consists of one of SEQ ID NO: 1 through SEQ ID NO: 5.
- 8. The composition of matter of claim 1, wherein said pharmaceutically acceptable adjuvant is a substantially pure saponin derived from <u>Quillaja saponaria</u>.
- 9. The composition of matter of claim 8, wherein said substantially pure saponin is selected from the group consisting of QA-7, QA-21, QA-17, and QA-18.
- 10. The composition of matter of claim 1, wherein said pharmaceutically acceptable adjuvant is MTP-MF59.

- 11. Method for stimulating an immune response in a subject comprising administering the composition of matter of claim 1 to said subject in an amount sufficient to provoke an immune response to said tumor rejection antigen precursor or tumor rejection antigen.
- 12. The method of claim 11, wherein said immune response comprises proliferation of T cells specific for complexes of said tumor rejection antigen and a major histocompatibility complex molecule to which said tumor rejection antigen binds.
- 13. The method of claim 11, wherein said T cells are cytolytic T cells.
- 14. The method of claim 11, wherein said immune response comprises production of antibodies against said tumor rejection antigen precursor or tumor rejection antigen.
 - 15. The composition of claim 1, in intravenous form.
- 16. The composition of claim 1, in the form of a liposome.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/12463

IPC(6) US CL According t	IPC(6) :A61K 38/00, 39/385, 45/00, 45/05; C07K 7/00, 14/00, 14/82 US CL :424/185.1, 193.1, 277.1; 530/300, 350, 395, 868 According to International Patent Classification (IPC) or to both national classification and IPC									
	LDS SEARCHED ocumentation searched (classification system followed)	hy classification symbols)								
	424/185.1, 193.1, 277.1; 530/300, 350, 395, 868	oy cassineation symbols)								
Documentat	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched							
Examiner	's tumor rejection file references									
	data base consulted during the international search (na ed Patent System and DIALOG (file = BIOCHEM	•	•							
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.							
A	US, A, 5,342,774 (BOON ET AL)	30 August 1994.	1-16							
A, P	US, A, 5,405,940 (BOON ET AL.)	11 April 1995.	1-16							
A, E	US, A, 5,462,871 (BOON-FALLE 1995.	EUR ET AL) 31 October	1-16							
Y	Problems (ed.) "Vaccines: New Approaches To Immunological Problems", published 1992 by Butterworth-Heinemann (Stoneham, MA), pages 431-449, see entire document.									
Y	Vaccine, Volume 11, Issue 3, iss "Adjuvants - a balance between to pages 293-306, see entire docume	exicity and adjuvanticity",	1-16							
X Funt	her documents are listed in the continuation of Box C	. See patent family annex.								
'A' do	pecial categories of cited documents: pourment defining the general state of the art which is not considered	*T" later document published after the inte date and not in conflict with the applic principle or theory underlying the inv	stion but cited to understand the							
	be part of particular relevance rlier document published on or after the international filing date	"X" document of particular relevance; the								
·L· do	ocument which may throw doubts on priority claim(s) or which is	when the document is taken alone	•							
.O. 90	cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means To' document referring to an oral disclosure, use, exhibition or other means To' document referring to an oral disclosure, use, exhibition or other means To' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art									
	ocument published prior to the international filing date but later than e priority date claimed	*&* document member of the same patent	family							
	actual completion of the international search	Date of mailing of the international sea	rch report							
03 JANU	JARY 1996	09 FEB 1996								
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer THOMAS CUNNINGHAM										
Facsimile N		Telephone No. (703) 308-0196	V							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/12463

	<u></u>		
C (Continue	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
Y	Immunology Today, Volume 14, No. 6, issued 1993, Hadden, "Immunostimulants", pages 275-280, see entire document.		1-16
		·	
			-
			·
		·	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*