1 Regulární jazyky

- Regulární jazyky jsou rozpoznávány přesně konečnými automaty
- Ke každému FA M existuje ekvivalentní FA M' s totální přechodovou funkcí (pomocí zadefinování výlevky)
- Synchronní paralelní zpracování je také konzervativní rozšíření (oba automaty by však ale měly mít totální přechodovou fci kvůli omezení "zadrhnutí")

Pumping Lemma (vedení důkazu)

- 1. Buď $n \in \mathbb{N}$ a slovo w patří do L. (Najdu si slovo w tak, aby to pro mě bylo co nejlehčí, většinou půjdu po $a^n b^n$, nebo tak něco)
- 2. Slovo w rozdělíme na 3 části x, y a z tak, že $|xy| \le n$ a $|y| \ge 1$.
- 3. # Nyní chytře zvolíme 3 části tak, abych pomocí nějakého čísla následným umocněním části y vyběhl mimo jazyk.
- 4. Pro $i = (nějaké číslo a) dostáváme (vyčíslit <math>\rightarrow) xy^az$.
- 5. # Součty mocnin nevyhovují zadání \rightarrow profit.

Myhillova-Nerodova věta

L je regulární \Leftrightarrow L je sjednocením některých tříd rozkladu $\Sigma^*/_{\sim}$, kde \sim je nějaká pravá kongruence s konečným indexem \Leftrightarrow index \sim_L je konečný

- ~ je pravá kongruence $\stackrel{\text{def}}{\Longleftrightarrow}$ ~ je ekvivalence a $\forall x,y,z\in\Sigma^*:x\sim y\Rightarrow xz\sim yz$
- index je počet tříd ekvivalence
- minimální DFA odpovídá \sim_L

Vedení důkazu

- 1. Nechť \sim je pravá kongruence s konečným indexem k taková, že L je sjednocením některých tříd rozkladu $\Sigma^*/_{\sim}$. (Mám k tříd, vezmu k+1 slov \Rightarrow Dirichletův princip)
- 2. Pak alespoň 2 ze slov w, v. . . musí být v relaci \sim .
- 3. Tedy existují i, j taková, že $0 \le i < j \le k$ a musí platit $w^i \sim v^j$.
- 4. Protože ~ je pravá kongruence, pak $w^i.w^i \sim v^j.w^i$ (dopočítám mocniny \Rightarrow spor.)

Alg. pro eliminaci nedosažitelných stavů

Procházím stav po stavu a pokud existuje přechod o jeden dál, tak daný stav přidám do výstupní množiny a posunu se dál. Končím, jakmile v jednom kroku nic nepřidám.