2. kontrolná písomka (22. 11. 2007)

1. príklad. Pomocou metódy sémantických tabiel zistite, či formula je tautológia, kontradikcia, alebo len splniteľná

$$(p \Rightarrow (q \land r)) \Rightarrow (\neg p \lor q) \land (\neg p \lor r)$$

2. príklad. Pomocou metódy sémantických tabiel zistite, či formula je tautológia $(\forall x)(P(x)\Rightarrow Q(x))\Rightarrow ((\forall x)P(x)\vee (\exists x)Q(x))$

3. príklad.

(1. časť) Výrok v prirodzenom jazyku prepíšte do formuly predikátovej logiky, vykonajte operáciu negácie nad formulou, upravte pomocou štandardných zákonov predikátovej logiky, na záver prepíšte výsledok do prirodzeného jazyka

Niekto hovorí po nemecky a niekto nehovorí po nemecky.

(2. časť) Dokážte, že pravidlo usudzovania (reductio ad absurdum) je korektné

$$\begin{array}{c|c}
p \Rightarrow q \\
p \Rightarrow \neg q \\
\hline
\neg p
\end{array}$$

4. príklad.

Definujme interpretáciu \mathcal{I} nad univerzom prirodzených čísel $U = \{0,1,2,3,...\}$, kde predikáty a funkcie majú túto interpretáciu:

- (1) predikát P(x) "x je deliteľné 2"
- (2) predikát Q(x), x je deliteľné 3"
- (3) funkcia "nasledovník" f(x)=x+1
- (4) funkcia "súčet" g(x,y)=x+y

Pomocou tejto interpretácie preložte do prirodzeného jazyka tieto formuly predikátovej logiky a rozhodnite, či takto získaný výrok je pravdivý:

$$(\alpha) \ \forall x \Big[P(x) \Rightarrow \neg P(f(x)) \Big]$$

$$(\beta) \ \forall x \ \forall y \Big[P(x) \land P(y) \Rightarrow P(g(x,y)) \Big]$$

$$(\gamma) \ \forall x \ \forall y \Big[Q(x) \land Q(y) \Rightarrow P(g(x,y)) \Big]$$

(\delta)
$$\forall x \forall y \Big[\big(P(x) \land P(y) \big) \lor \big(\neg P(x) \land \neg P(y) \big) \Rightarrow P\big(g(x,y) \big) \Big]$$

5. príklad.

Falzifikujte predpoklad tautologičnosti formuly. Zvoľte takú interpretáciu, aby ste dokázali, že formula nie je tautológia

1

$$(\forall x (P(x) \lor Q(x))) \Rightarrow (\forall x P(x) \lor \forall x Q(x))$$

Riešenie

1. príklad. Pomocou metódy sémantických tabiel zistite, či formula je tautológia, kontradikcia, alebo len splniteľná

Pretože každá vetva sémantického tabla je uzavretá, potom formula je tautológia.

2. príklad. Pomocou metódy sémantických tabiel zistite, či formula je tautológia $(\forall x)(P(x)\Rightarrow Q(x))\Rightarrow ((\forall x)P(x)\vee (\exists x)Q(x))$

Pretože jedna vetva je otvorená, formula nie je tautológia. Pre lepšie pochopenie tohto výsledku zvolíme si túto interpretáciu: pre ľubovolné univerzum U predikát $P(x)\equiv 0$ a predikát $Q(x)\equiv 0$, potom formula je nepravdivá.

3. príklad.

(1. časť) Výrok v prirodzenom jazyku prepíšte do formuly predikátovej logiky, vykonajte operáciu negácie nad formulou, upravte pomocou štandardných zákonov predikátovej logiky, na záver prepíšte výsledok do prirodzeného jazyka

Niekto hovorí po nemecky a niekto nehovorí po nemecky.

$$((\exists x) nem(x)) \land ((\exists x) \neg nem(x))$$
$$((\forall x) \neg nem(x)) \lor ((\forall x) nem(x))$$

Každý nehovorí po nemecky alebo každý hovorí po nemecky.

(2. časť) Dokážte, že pravidlo usudzovania (reductio ad absurdum) je korektné

$$\begin{array}{c|c}
p \Rightarrow q \\
p \Rightarrow \neg q \\
\hline
\neg p
\end{array}$$

Pravidlo je korektné práve vtedy, ak formula $(p \Rightarrow q) \land (p \Rightarrow \neg q) \Rightarrow \neg p$ je tautológia, o čom sa môžeme ľahko presvedčiť pomocou tabuľkovej metódy alebo pomocou sémantických tabiel.

4. príklad.

Definujme interpretáciu \mathcal{I} nad univerzom prirodzených čísel $U = \{0,1,2,3,...\}$, kde predikáty a funkcie majú túto interpretáciu:

- (5) predikát P(x) "x je deliteľné 2"
- (6) predikát Q(x), x je deliteľné 3"
- (7) funkcia "nasledovník" f(x)=x+1
- (8) funkcia "súčet" g(x,y)=x+y

Pomocou tejto interpretácie preložte do prirodzeného jazyka tieto formuly predikátovej logiky a rozhodnite, či takto získaný výrok je pravdivý:

(a)
$$\forall x \lceil P(x) \Rightarrow \neg P(f(x)) \rceil$$

V prirodzenom jazyku: "každé číslo deliteľné 2 nemá nasledovníka deliteľného 2", pravdivý výrok.

$$(\beta) \ \forall x \ \forall y \Big[P(x) \land P(y) \Rightarrow P(g(x,y)) \Big]$$

V prirodzenom jazyku: "každé dve čísla deliteľné 2 majú súčet deliteľný 2", pravdivý výrok

$$(\gamma) \ \forall x \ \forall y \Big[Q(x) \land Q(y) \Rightarrow P(g(x,y)) \Big]$$

V prirodzenom jazyku: "každé dve čísla deliteľné 3 majú súčet deliteľný 2", neplatí pre 3 a 6, neplatný výrok.

(8)
$$\forall x \, \forall y \lceil (P(x) \land P(y)) \lor (\neg P(x) \land \neg P(y)) \Rightarrow P(g(x,y)) \rceil$$

V prirodzenom jazyku: "každé dve čísla, ktoré sú buď deliteľné 2 alebo nie sú deliteľné 2, majú súčet deliteľný 2", pravdivý výrok.

5. príklad.

Zvoľte takú interpretáciu, aby ste dokázali, že formula nie je tautológia $(\forall x (P(x) \lor Q(x))) \Rightarrow (\forall x P(x) \lor \forall x Q(x))$

Interpretácia:

univerzum $U = \{0,1,2,3,...\}$ je množina prirodzených čísel, predikát P(x) znamená "číslo x je párne číslo", predikát Q(x) znamená "číslo x je nepárne číslo"

Ak použijeme túto interpretáciu, potom jednotlivé podformuly majú tieto pravdivostné hodnoty:

Podformula $(\forall x (P(x) \lor Q(x)))$ v danej interpretácii má význam "každé prirodzené číslo je párne alebo nepárne", čo je pravdivý výrok, $val(\forall x (P(x) \lor Q(x))) = 1$.

Podformula $\forall x \, P(x)$ má význam "každé prirodzené číslo je párne", čo je nepravdivý výrok, $val(\forall x \, (P(x))) = 0$

Podformula $\forall x\,Q(x)$ má význam "každé prirodzené číslo je nepárne", čo je nepravdivý výrok, $val(\forall x\,(Q(x)))=0$.

Potom pravdivostná hodnota celej formuly je

$$val((\forall x (P(x) \lor Q(x))) \Rightarrow (\forall x P(x) \lor \forall x Q(x))) = (1 \Rightarrow 0 \lor 0) = 0$$

to znamená, že formula nie je tautológia.