1 Trivial example 1

Consider the graph

where A is located at (0,1), B is located at (0,-1) and C is located at (h,0). Denote the distance from A or B to C by l. The supplies are $s_A = (1,0)$, $s_B = (0,1)$ and $s_C = (-1,-1)$. Consider the trivial cost function c(x,y) = |x+y| where x,y are the amounts of (signed) flow. Then

$$\partial c(0,0) = \operatorname{conv} \{(1,1), (-1,-1), (1,-1), (-1,1)\}\$$

or with inequalities $\partial c(0,0) = \{z : |e_i^T z| \le 1 \,\forall i\}$. Obviously, an optimal flow is

$$f = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

An optimal dual solution is $\phi_A = (l, l)$, $\phi_B = (l, l)$ and $\phi_C = (0, 0)$. It can be easily checked that this satisfies all constraints. The derivative of ϕ is

$$D\phi = \begin{pmatrix} -l/h & 0 \\ -l/h & 0 \end{pmatrix}.$$

We now check whether $D\phi$ meets the constraints, i.e. if $||e_i^T D\phi|| \le 1$. We see that $||e_i^T D\phi|| = l/h > 1$ for all i. This is maybe surprising, as the flow f is globally optimal (with respect to all possible graph topologies).

Observation 1 Even if the global optimum is found, the dual constraints might not be satisfied.

Since $e_i^T D\phi = (-l/h, 0)$, this suggests that we should add an edge parallel to (1,0) to the graph. We get:

The optimal flow stays the same

$$f = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

and we get optimal duals $\phi_A = (l, l)$, $\phi_B = (l, l)$, $\phi_C = (0, 0)$, $\phi_D = (h, h)$. One can again directly check that all constraints are satisfied. To see if $D\phi$ is feasible, by symmetry it suffices to consider the triangle DCA. Here,

$$D\phi = \begin{pmatrix} -1 & l-h \\ -1 & l-h \end{pmatrix}.$$

Then $||e_i^T D\phi||^2 = ||(-1, l-h)||^2 = 1 + (l-h)^2 > 1$, so the dual solution is still not feasible.

2 Shortest path example

Consider

With supply 1 at A und -1 at D. An optimal solution is

$$f = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

(where edges are ordered lexicographically). An optimal dual solution is $\phi_A=2$, $\phi_B=1, \ \phi_C=1, \ \phi_D=0$. In the triangle $BDC, \ D\phi=(-1-1)$ which suggests an edge in the (1,1)-direction. In the triangle $ABC, \ D\phi=(-1-1)$ as well. Hence, we refine the traingulation and get

The optimal flow now is

$$f_{AE} = f_{ED} = 1$$

with duals $\phi_A = \sqrt{2}$, $\phi_B = 1/\sqrt{2}$, $\phi_C = 1/\sqrt{2}$, $\phi_D = 0$, $\phi_E = 1/\sqrt{2}$. This is obviously the "correct" optimal solution. Consider now $D\phi$ on all 4 triangles. In ABE, $D\phi = (-1/\sqrt{2}, -1/\sqrt{2})$ which has norm 1. By symmetry, this also holds for all other triangles. Hence in this example we indeed terminate with the optimal solution after one refinement.