Introduction to Machine Learning

Logistic Regression

Mingchen Gao

September 26, 2022

Outline

Contents

1	Gen	nerative vs. Discriminative Models	1	
2	Log	istic Regression	2	
3	Logistic Regression - Training		3	
	3.1	Using Gradient Descent for Learning Weights	4	
	3.2	Using Newton's Method	4	
	3.3	Regularization with Logistic Regression	ļ	
	3.4	Handling Multiple Classes	ţ	

1 Generative vs. Discriminative Models

• Probabilistic classification task:

$$p(Y = benign | \mathbf{X} = \mathbf{x}), p(Y = malicious | \mathbf{X} = \mathbf{x})$$

• How do you estimate $p(y|\mathbf{x})$?

$$p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$

- Two step approach Estimate generative model and then posterior for y (Naïve Bayes)
- Solving a more general problem [2, 1]
- Why not directly model $p(y|\mathbf{x})$? Discriminative approach

Generative models

- 1. Naive Bayes
- 2. Gaussian Discriminate Analysis
- 3. Gaussian Mixture Model
- 4. Hidden Markov Model
- 5. Generative Adversarial Network (GAN)

Discriminative Models

- 1. Linear Regression
- 2. Logistic Regression
- 3. Support Vector Machine (SVM)
- 4. Neural Networks
- 5. Random Forests

2 Logistic Regression

- $y|\mathbf{x}$ is a *Bernoulli* distribution with parameter $\theta = sigmoid(\mathbf{w}^{\top}\mathbf{x})$
- When a new input \mathbf{x}^* arrives, we toss a coin which has $sigmoid(\mathbf{w}^{\top}\mathbf{x}^*)$ as the probability of heads
- If outcome is heads, the predicted class is 1 else 0
- Learns a linear boundary

Learning Task for Logistic Regression

Given training examples $\langle \mathbf{x}_i, y_i \rangle_{i=1}^D$, learn **w**

Bayesian Interpretation

- Directly model $p(y|\mathbf{x})$ $(y \in \{0,1\})$
- $p(y|\mathbf{x}) \sim Bernoulli(\theta = sigmoid(\mathbf{w}^{\top}\mathbf{x}))$

Geometric Interpretation

- Use regression to predict discrete values
- Squash output to [0, 1] using sigmoid function
- Output less than 0.5 is one class and greater than 0.5 is the other

3 Logistic Regression - Training

- MLE Approach
- Assume that $y \in \{0, 1\}$
- What is the likelihood for a bernoulli sample?

- If
$$y_i = 1$$
, $p(y_i) = \theta_i = \frac{1}{1 + exp(-\mathbf{w}^{\top}\mathbf{x}_i)}$

- If
$$y_i = 0$$
, $p(y_i) = 1 - \theta_i = \frac{1}{1 + exp(\mathbf{w}^{\top} \mathbf{x}_i)}$

– In general,
$$p(y_i) = \theta_i^{y_i} (1 - \theta_i)^{1-y_i}$$

Negative Log-likelihood (NLL)

$$NLL(\mathbf{w}) = -\sum_{i=1}^{N} y_i \log \theta_i - (1 - y_i) \log (1 - \theta_i)$$

• No closed form solution for maximizing log-likelihood/or minimizing negative log-likelihood

To understand why there is no closed form solution for maximizing the log-likelihood, we first differentiate $NLL(\mathbf{w})$ with respect to \mathbf{w} . We make use of the useful result for sigmoid:

$$\frac{d\theta_i}{d\mathbf{w}} = \theta_i (1 - \theta_i) \mathbf{x}_i$$

Using this result we obtain:

$$\frac{d}{d\mathbf{w}}NLL(\mathbf{w}) = -\sum_{i=1}^{N} \frac{y_i}{\theta_i} \theta_i (1 - \theta_i) \mathbf{x}_i - \frac{(1 - y_i)}{1 - \theta_i} \theta_i (1 - \theta_i) \mathbf{x}_i$$

$$= -\sum_{i=1}^{N} (y_i (1 - \theta_i) - (1 - y_i) \theta_i) \mathbf{x}_i$$

$$= \sum_{i=1}^{N} (\theta_i - y_i) \mathbf{x}_i$$

Obviously, given that θ_i is a non-linear function of **w**, a closed form solution is not possible.

3.1 Using Gradient Descent for Learning Weights

- Compute gradient of LL with respect to w
- A convex function of w with a unique global maximum

$$\frac{d}{d\mathbf{w}}NLL(\mathbf{w}) = \sum_{i=1}^{N} (\theta_i - y_i)\mathbf{x}_i$$

• Update rule:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \frac{d}{d\mathbf{w}_k} LL(\mathbf{w}_k)$$

3.2 Using Newton's Method

- Setting η is sometimes tricky
- Too large incorrect results
- Too small slow convergence

• Another way to speed up convergence:

Newton's Method

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \mathbf{H}_k^{-1} \frac{d}{d\mathbf{w}_k} NLL(\mathbf{w}_k)$$

- Hessian or **H** is the second order derivative of the objective function
- Newton's method belong to the family of second order optimization algorithms
- For logistic regression, the Hessian is:

$$H = -\sum_{i} \theta_{i} (1 - \theta_{i}) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$$

3.3 Regularization with Logistic Regression

- Overfitting is an issue, especially with large number of features
- Add a Gaussian prior $\sim \mathcal{N}(\mathbf{0}, \tau^2)$ (Or a regularization penalty)
- Easy to incorporate in the gradient descent based approach

$$NLL'(\mathbf{w}) = NLL(\mathbf{w}) + \frac{1}{2}\lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$\frac{d}{d\mathbf{w}}NLL'(\mathbf{w}) = \frac{d}{d\mathbf{w}}NLL(\mathbf{w}) + \lambda\mathbf{w}$$
$$H' = H + \lambda I$$

where I is the identity matrix.

3.4 Handling Multiple Classes

- One vs. Rest and One vs. Other
- $p(y|\mathbf{x}) \sim Multinoulli(\boldsymbol{\theta})$
- Multinoulli parameter vector $\boldsymbol{\theta}$ is defined as:

$$\theta_j = \frac{exp(\mathbf{w}_j^{\top} \mathbf{x})}{\sum_{k=1}^{C} exp(\mathbf{w}_k^{\top} \mathbf{x})}$$

• Multiclass logistic regression has C weight vectors to learn

References

Murphy Book Chapter 10

References

- [1] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, *NIPS*, pages 841–848. MIT Press, 2001.
- [2] V. Vapnik. Statistical learning theory. Wiley, 1998.