

Atividade: A água continua subindo

Habilidades

LAF2 Compreender a taxa de variação como uma medida de covariação entre grandezas e utilizála para interpretar situações reais.

Para o professor

Objetivos específicos

OE1 Registrar em palavras diversas situações que são descritas por funções crescentes, especificando mudanças de comportamento.

Observações e recomendações

- Considere realizar essa atividade em grupo, principalmente em turmas maiores. Essa pode ser uma estratégia interessante para dar oportunidade para que os estudantes, em grupos, exponham suas impressões e argumentos.
- Após os estudantes realizarem as análises, discuta com eles sobre a necessidade de se ter uma maneira sistemática de diferenciar as diversas maneiras que se pode ter um gráfico crescente.
- Estimule-os a pensar em outras situações em que há variações similares ou situações análogas em que haja decrescimento.
- Certifique-se que todos os estudantes compreendem o significado de "vazão constante", isto é, que o volume de água por unidade de tempo que entra em cada um dos recipientes é constante.
- Aqui a palavra uniformemente deve ser interpretada a partir do senso comum: aquilo que não tem variação ou mudança. Mais adiante será apresentada uma definição precisa para o que devemos entender como crescimento/decrescimento uniforme.

Atividade

Parte I Suponha que os diversos reservatórios abaixo têm a mesma capacidade, a mesma altura e que em cada um deles a água entra a uma vazão constante. Analisando a forma de cada um dos reservatórios, descreva de que maneira a altura varia em função do tempo no início, meio e fim do processo. Use, quando necessário, as palavras **lentamente**, **rapidamente** e **uniformemente**. (Gravina, 1992, pp. 33-38)

OLIMPÍADA BRASILEIRA
DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Patrocínio:

Parte II Relacione a forma do pote com o gráfico da variação da altura em função do tempo de cada um deles.

b)

(1)

C)

d)

(11)

e)

f)

(|||)

Realização:

Patrocínio:

Solução:

Admitindo que a água entra a uma taxa constante em cada um dos recipientes, podemos descrever a maneira como a altura da coluna de água varia com o tempo da seguinte forma:

No início a coluna de água subirá rapidamente, no meio estará subindo mais lentamente e na parte final mais lentamente ainda.	(11)
No início a coluna de água subirá lentamente, no meio estará subindo mais rapidamente e na parte final mais rapidamente ainda.	(V)
A altura da água subirá de maneira uniforme, com velocidade constante	(∨I)
No início a altura de coluna subirá mais rapidamente, ficando cada vez mais lenta até chgar à metade do recipiente. Daí em diante, de maneira simétrica, voltará a acelerar.	(111)
No início a altura da coluna de água subirá lentamente, ficando cada vez mais rápida até chegar à metade do recipiente. Daí em diante, de maneira simétrica, voltará a descelerar.	(IV)
Comportamento similar ao anterior, contudo, as diferenças de velocidade não são tão perceptíveis. Pode funcionar como um "meio termo" entre o anterior e o cilíndro.	(1)

