Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра	Систем управления и информатики	Группа_	P4235
1 / 11		10 —	

ЛАБОРАТОРНАЯ РАБОТА №5

по курсу: «Адаптивное и робастное управление нелинейными системами»

Параметризация модели объекта управления

Вариант №2

Авторы работы:	Антонов Е.С., Артемов К.А.
Преподаватель:	Герасимов Д.Н.
« <u>19</u> » сентября 2017 г.	
Работа выполнена с оценкой	
Дата защиты «» 2017 г.	

Санкт-Петербург 2017 г.

1 Цель работы

Освоение способа параметрического представления выходной переменной и вектора состояния линейной модели объекта.

2 Теоретические сведения

Параметризацией модели объекта называется представление его выходной переменной (или вектора состояния) в виде линейной регрессионной модели, т.е. в виде произведения вектора (матрицы) постоянных параметров и вектора (матрицы) известных функций:

$$y = \theta^T \omega,$$
 или $x = \sum_{i=1}^{n+m+1} \theta_i \xi_i,$ (1)

где θ — вектор постоянных параметров, ω — вектор известных функций, θ_i — компоненты вектора постоянных параметров, $\xi_n \in \mathbb{R}^n$ — измеряемые вектора.

3 Исходные данные

Варианту №2 соответствует следующий набор исходных данных:

$$a_1 = 2$$
, $a_0 = 1$, $b_1 = 1$, $b_0 = 3$, $k_1 = \sqrt{0.02}$, $k_0 = 0.01$, $u = \sin t + 0.5\cos 2t$ (2)

4 Результаты расчетов и моделирования

4.1 Построение модели исходного объекта

Модель рассматриваемого объекта в форме ВСВ:

$$\dot{x} = Ax + bu,\tag{3}$$

$$y = Cx, (4)$$

где

$$A = \begin{bmatrix} -a_1 & 1 \\ -a_0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$
 (5)

Соответствующие ей начальные условия $\{x_1(0), x_2(0)\}$ связаны с начальными условиями $\{y(0), \dot{y}(0)\}$ следующими выражениями

$$x_1(0) = y(0), (6)$$

$$\dot{x}_1(0) = \dot{y}(0) = -a_1 y(0) + x_2(0) + b_1 \underbrace{u(0)}_{-0} \quad \Rightarrow \quad x_2(0) = \dot{y}(0) + a_1 y(0) \tag{7}$$

4.2 Параметризация относительно выходной переменной

Модель рассматриваемого объекта в форме ВСВ:

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_1 \dot{u} + b_0 u \tag{8}$$

После применения к правой и левой частям этого уравнения оператора

$$H(s) = \frac{1}{K(s)},\tag{9}$$

где $K(s) = s^2 + k_1 s + k_0$ и некоторого количества алгебраических преобразований достигается следующий результат:

$$\frac{1}{K(s)}[\ddot{y} + a_1\dot{y} + a_0y] = \frac{1}{K(s)}[b_1\dot{u} + b_0u]$$
(10)

$$\frac{1}{K(s)}[\ddot{y}] + a_1 \frac{1}{K(s)}[\dot{y}] + a_0 \frac{1}{K(s)}[y] = b_1 \frac{1}{K(s)}[\dot{u}] + b_0 \frac{1}{K(s)}[u]$$
(11)

$$\frac{s^2}{K(s)}[y] + a_1 \frac{s}{K(s)}[y] + a_0 \frac{1}{K(s)}[y] = b_1 \frac{s}{K(s)}[u] + b_0 \frac{1}{K(s)}[u]$$
(12)

$$\frac{s^2 \pm (k_1 s + k_0)}{K(s)}[y] = -a_1 \frac{s}{K(s)}[y] - a_0 \frac{1}{K(s)}[y] + b_1 \frac{s}{K(s)}[u] + b_0 \frac{1}{K(s)}[u]$$
(13)

$$y = \frac{k_1 s + k_0}{K(s)} [y] - a_1 \frac{s}{K(s)} [y] - a_0 \frac{1}{K(s)} [y] + b_1 \frac{s}{K(s)} [u] + b_0 \frac{1}{K(s)} [u]$$
(14)

$$y = (k_1 - a_1) \underbrace{\frac{s}{K(s)}[y]}_{\xi_2} + (k_0 - a_0) \underbrace{\frac{1}{K(s)}[y]}_{\xi_1} + b_1 \underbrace{\frac{s}{K(s)}[u]}_{\nu_2} + b_0 \underbrace{\frac{1}{K(s)}[u]}_{\nu_1}$$
(15)

$$y = \theta^T \omega, \tag{16}$$

где

$$\theta^{T} = \begin{bmatrix} k_{1} - a_{1} & k_{0} - a_{0} & b_{1} & b_{0} \end{bmatrix}, \qquad \omega^{T} = \begin{bmatrix} \xi_{2} & \xi_{1} & \nu_{2} & \nu_{1} \end{bmatrix}$$
 (17)

Схема моделирования, проверяющая работоспособность полученной регрессионной модели, и результаты ее запуска показаны на рисунках 1 и 2.

Формирование входного воздействия

Сохранение результатов

Рисунок 1 — Схема моделирования, применяемая для проверки работы регрессионной модели.

Рисунок 2 — Графики выходных сигналов моделей ОУ при y(0) = 1 и $\dot{y}(0) = -1$.

4.3 Параметризация относительно вектора состояния

После применения к уравнению (3) матричной передаточной функции

$$\Phi(s) = (sI - A_0)^{-1},\tag{18}$$

где

$$A_0 = \begin{bmatrix} -k_1 & 1\\ -k_0 & 0 \end{bmatrix},\tag{19}$$

достигается следующий результат:

$$\Phi(s)[\dot{x}] = \Phi(s)A[x] + \Phi(s)b[u], \tag{20}$$

$$\Phi(s)(sI \pm A_0)[x] = \Phi(s)A[x] + \Phi(s)b[u], \tag{21}$$

$$x = \Phi(s)(A - A_0)[x] + \Phi(s)b[u], \tag{22}$$

$$x = \Phi(s) \begin{bmatrix} k_1 - a_1 \\ k_0 - a_0 \end{bmatrix} [y] + \Phi(s) \begin{bmatrix} b_1 \\ b_0 \end{bmatrix} [u], \tag{23}$$

$$x = \sum_{j=0}^{1} \theta_{2-j} \Phi(s) e_{2-j}[y] + \sum_{j=0}^{1} \theta_{4-j} \Phi(s) e_{2-j}[u], \tag{24}$$

где
$$e_i^T = [0 \ 0 \ \dots \ 0 \ \underbrace{1}_{i-th} \ 0 \ \dots \ 0].$$

В заключение отметим, что, например,

$$x = \Phi(s)e_i[y]$$
 \Leftrightarrow
$$\begin{cases} \dot{x} = A_0x + e_iy \\ x = Ix \end{cases}$$
 (25)

Схема моделирования, проверяющая работоспособность полученной регрессионной модели, и результаты ее запуска показаны на рисунках 3 и 4.

5 Выводы по работе

В результате проделанной работы для заданного объекта управления были построены его параметризованные представления относительно выходной переменной и вектора состояния. Обе регрессионные модели оказались способными в точности воспроизводить происходящие в объекте движения спустя некоторое время, требующееся для протекания в них некоторых переходных процессов (см. рисунки 2 и 4).

Рисунок 3 — Схема моделирования, применяемая для проверки работы регрессионной модели.

Рисунок 4 — Графики выходных сигналов моделей ОУ при $x_1(0) = 2$ и $x_2(0) = 4$.