4) (A)
$$F_{spin}$$
 R_{70} $F_{frictin} = \mu mg$

To move F_{sping} \Rightarrow $F_{friction}$

(a) $R_{1} \times \gamma$ μmg

(b) $R_{1} \times \gamma$ μmg

(c) $R_{2} = \frac{1}{2} = \frac{1}{$

Fag=
$$R \frac{G'}{a^2} = 4.05E - 04N$$

Fag= $R \frac{Gq}{a^2} = 5.4E - 04N$

Fag= $R \frac{Gq}{b^2} = 5.4E - 04N$

F1 = $\sqrt{2} F_{aq}^2 = 7.368E - 04N$
 $\alpha = \pi - \frac{\pi}{4} = \frac{3\pi}{4} rad^2$

F2 = $\sqrt{F_{aa}} + F_{aq}^2 + 2.F_{aa}F_{aq} cosa$

= 3.825E - 04N

 $\beta = \frac{\pi}{2} \div 2 = \frac{\pi}{4} rad$

(1) (a)
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$
 (b) $T_2 = \frac{P_2 \cdot T_1}{P_1} = \frac{2.2 \times (43 + 273.15)}{2.5}$
= 278.212K

$$\frac{P_2}{T_2} = \frac{P_3}{T_{\text{ambient}}} = \frac{P_2 \cdot T_{\text{ambrent}}}{T_2} = \frac{2 \cdot 2 \times (-5 + 273.15)}{278.212}$$

$$= 2.12 \text{ bars}$$

b)
$$\frac{P_1}{T_1} = \frac{p'}{T'_{ambient}} = \frac{p'}{T_1} = \frac{p'}{T'_{ambient}} = \frac{2.5 \times (-7 + 273.15)}{43 + 273.15}$$

$$= \frac{2.105 \text{ bars}}{2.105 \text{ bars}}$$

c)
$$\frac{P_2V}{T_2} = \frac{P_3V'}{T_2} \stackrel{(=)}{(=)} V = 22.71 \quad \Delta V = 93 - 22.7 \\ = 20.31$$

$$P' = 2.105 \, bars$$
 $P_1 = 2.5 \, bars$
 $P_2 = 2.2 \, bars$
 $P_3 = 2.12 \, bars$
 $P_3 = 2.12 \, bars$
 $P_4 = 43 \, C$
 $P_2 = 2.78.212 \, K$
 $P_3 = 2.12 \, bars$
 $P_4 = 43 \, C$
 $P_2 = 2.78.212 \, K$
 $P_2 = 2.12 \, bars$
 $P_3 = 2.12 \, bars$

(2) a)
$$F_{N} = W$$
 (2) $P_{N} V_{ing} = P_{ice} V_{wg}$
(3) $V_{in} = P_{ie} = \frac{777}{863} \times 1000$
(4) $V_{in} = C.88$
(5) $V_{in} = C.88$
(6) $V_{in} = C.88$
(7) $V_{out} = (1 - C.88) \times 1000$
(8) $V_{vout} = 12 \times 1000$
(9) $V_{vout} = \frac{m_1}{m_2} \times 1000 = 847.3$

$$V_{rce} = \frac{m_1}{m_2} \times 10000 = 84$$

$$V_{arr} = 883 - 847.3$$

$$= 35.680$$