1. ¹Show that state $|\psi\rangle_{RA}$ as defined in (5.3), is a purification of the density operator ρ_A , with a spectral decomposition as given in (5.2)

proof. We proceed to compute $Tr_R\{|\psi\rangle\langle\psi|_{RA}\}$ as follows:

$$Tr_R\{|\psi\rangle\langle\psi|_{RA}\} = Tr_R\{(\sum_x \sqrt{p_X(x)} |x\rangle_R |x\rangle_A)(\sum_x \sqrt{p_X(x)} |x\rangle_R |x\rangle_A)^{\dagger}\} \quad (1)$$

Evaluating the 'daggered' term,

$$Tr_R\{|\psi\rangle\langle\psi|_{RA}\} = Tr_R\{(\sum_x p_X(x)|xx\rangle_{RA}\langle xx|_{RA})\}$$
 (2)

Now, before we take the partial trace of the bracketed expression, refer to the alternate notion of the partial trace operator as described in exercise (4.3.9) in Wilde. Re-expressing the tensor product^a,

$$Tr_{R}\left\{\sum_{x} p_{X}(x) |x\rangle_{R} \langle x|_{R} \otimes |x\rangle_{A} \langle x|_{A}\right\} = \sum_{x} p_{X}(x) \langle x|x\rangle_{R} |x\rangle \langle x|_{A}$$
 (3)

which leaves us with the desired expression:

$$\sum_{x} p_X(x) \langle x | x \rangle_R | x \rangle \langle x |_A = \rho_A \tag{4}$$

 a this overall procedure described in **4.3.9** saves a lot of time and effort – add it to the toolbox.

2. (Cannonical Purification) Let ρ_A be a density operator and let $\sqrt{\rho_A}$ be its unique positive semidefinite square root. We define the cannonical purification of ρ_A as follows:

$$(I_R \otimes \sqrt{\rho_A}) |\Gamma\rangle_{RA} \tag{5}$$

where $|\Gamma\rangle_{RA}$ is the maximally unnormalized vector from (3.233).² Show that (5.4) is a purification of ρ_A

¹https://arxiv.org/pdf/1106.1445 (the copy of Wilde we are using)

²Recall exercise (3.7.12) in Wilde, the transpose trick or ricochet – didn't use it here but helpful to know

proof. Spectrally decomposing $\rho_A = \sum_x p_X(x) |x\rangle \langle x|_A$, where $\{|x\rangle_A\}$ forms an O.N eigenbasis over \mathcal{H}_A . Then, $\sqrt{\rho_A} = \sum_x \sqrt{p_X(x)} |x\rangle \langle x|_A$. Take the orthonormal basis over \mathcal{H}_R , denoting it by $\{|x\rangle_R\}$. Then the unnormalized maximally entangled vector ${}^a|\Gamma\rangle_{RA} = \sum_x |x\rangle_R |x\rangle_A$. Now, all we have left to do is compute $(I_R \otimes \sqrt{\rho_A}(|\Gamma\rangle_{RA}))(I_R \otimes \sqrt{\rho_A})^{\dagger} |\Gamma\rangle_{RA}$ and trace over \mathcal{H}_R .

$$(I_R \otimes \sqrt{\rho_A}) |\Gamma\rangle_{RA} = (I_R \otimes \sum_x \sqrt{p_X(x)} |x\rangle_A \langle x|_A) \sum_{x'} |x'\rangle_R |x'\rangle_A$$
 (6)

$$(I_R \otimes \sum_x \sqrt{p_X(x)} |x\rangle_A \langle x|_A) \sum_{x'} |x'\rangle_R |x'\rangle_A = \sum_x |x\rangle_R \otimes \sqrt{p_X(x)} |x\rangle_A \qquad (7)$$

since the only non-vanishing terms are when x' = x. $(I_R \otimes \sqrt{\rho_A}(|\Gamma\rangle_{RA}))(I_R \otimes \sqrt{\rho_A})^{\dagger} |\Gamma\rangle_{RA}$ and trace over $\mathcal{H}_{\mathcal{R}}$ is then

$$\sum_{x} |x\rangle \langle x|_{R} \otimes p_{X}(x) |x\rangle \langle x|_{A}$$
 (8)

Tracing out R gives us the following:

$$\sum_{x} \langle x | x \rangle_{R} p_{X}(x) | x \rangle \langle x |_{A} = \sum_{x} p_{X}(x) | x \rangle \langle x |_{A} = \rho_{A}, \tag{9}$$

as desired.

Link to the template used

 $[^]a \rm https://physics.stack exchange.com/questions/267293/does-the-entanglement-depend-on-the-basis$

^bhttps://quantumcomputing.stackexchange.com/questions/9242/maximally-entangled-state-definition-and-orthonormal-basis-of-maximally-entangl