Lecture 2: The SVM classifier

C19 Machine Learning

Hilary 2013

A. Zisserman

- Review of linear classifiers
 - Linear separability
 - Perceptron
- Support Vector Machine (SVM) classifier
 - Wide margin
 - Cost function
 - Slack variables
 - · Loss functions revisited

Binary Classification

Given training data (\mathbf{x}_i,y_i) for $i=1\ldots N$, with $\mathbf{x}_i\in\mathbb{R}^d$ and $y_i\in\{-1,1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i) \begin{cases} \ge 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

Linear separability

linearly separable

not linearly separable

Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- in 2D the discriminant is a line
- W is the normal to the line, and b the bias
- W is known as the weight vector

Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

• in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to `carry' the training data

For a linear classifier, the training data is used to learn **w** and then discarded

Only **w** is needed for classifying new data

Reminder: The Perceptron Classifier

Given linearly separable data \mathbf{x}_i labelled into two categories $y_i = \{-1,1\}$, find a weight vector \mathbf{w} such that the discriminant function

$$f(\mathbf{x}_i) = \mathbf{w}^\top \mathbf{x}_i + b$$

separates the categories for i = 1, .., N

how can we find this separating hyperplane?

The Perceptron Algorithm

Write classifier as $f(\mathbf{x}_i) = \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}_i + w_0 = \mathbf{w}^{\top} \mathbf{x}_i$ where $\mathbf{w} = (\tilde{\mathbf{w}}, w_0), \mathbf{x}_i = (\tilde{\mathbf{x}}_i, 1)$

- Initialize $\mathbf{w} = 0$
- Cycle though the data points { x_i, y_i }
 - ullet if $old x_i$ is misclassified then $old w \leftarrow old w + lpha \operatorname{sign}(f(old x_i)) old x_i$
- Until all the data is correctly classified

For example in 2D

- Initialize $\mathbf{w} = 0$
- Cycle though the data points { x_i, y_i }
 - ullet if $old x_i$ is misclassified then $old w \leftarrow old w + lpha \, ext{sign}(f(old x_i)) \, old x_i$
- Until all the data is correctly classified

after update

NB after convergence $\mathbf{w} = \sum_{i}^{N} \alpha_{i} \mathbf{x}_{i}$

Perceptron example

- if the data is linearly separable, then the algorithm will converge
- convergence can be slow ...
- separating line close to training data
- we would prefer a larger margin for generalization

What is the best w?

• maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine

SVM - sketch derivation

- Since $\mathbf{w}^{\top}\mathbf{x} + b = 0$ and $c(\mathbf{w}^{\top}\mathbf{x} + b) = 0$ define the same plane, we have the freedom to choose the normalization of \mathbf{w}
- Choose normalization such that $\mathbf{w}^{\top}\mathbf{x}_{+}+b=+1$ and $\mathbf{w}^{\top}\mathbf{x}_{-}+b=-1$ for the positive and negative support vectors respectively
- Then the margin is given by

$$\frac{\mathbf{w}}{||\mathbf{w}||} \cdot (\mathbf{x}_{+} - \mathbf{x}_{-}) = \frac{\mathbf{w}^{\top} (\mathbf{x}_{+} - \mathbf{x}_{-})}{||\mathbf{w}||} = \frac{2}{||\mathbf{w}||}$$

Support Vector Machine

SVM – Optimization

• Learning the SVM can be formulated as an optimization:

$$\max_{\mathbf{w}} \frac{2}{||\mathbf{w}||} \text{ subject to } \mathbf{w}^{\top} \mathbf{x}_i + b \overset{\geq}{\leq} 1 \quad \text{if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1 \dots N$$

Or equivalently

$$\min_{\mathbf{w}} ||\mathbf{w}||^2$$
 subject to $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \geq 1$ for $i = 1 \dots N$

 This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

SVM - Geometric Algorithm

- Compute the convex hull of the positive points, and the convex hull of the negative points
- For each pair of points, one on positive hull and the other on the negative hull, compute the margin
- Choose the largest margin

How to find the maximum margin?

Geometric SVM Ex I

Geometric SVM Ex II

Linear separability again: What is the best w?

• the points can be linearly separated but there is a very narrow margin

• but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

Introduce "slack" variables

"Soft" margin solution

The optimization problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

subject to

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

- ullet Every constraint can be satisfied if ξ_i is sufficiently large
- ullet C is a regularization parameter:
 - small C allows constraints to be easily ignored ightarrow large margin
 - large C makes constraints hard to ignore \rightarrow narrow margin
 - $-C=\infty$ enforces all constraints: hard margin
- ullet This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

- data is linearly separable
- but only with a narrow margin

C = Infinity hard margin

Comment Window

SVM (L1) by Sequential Minimal Optimizer
Kernel: linear (-), C: Inf
Kernel evaluations: 971
Number of Support Vectors: 3
Margin: 0.0966
Training error: 0.00%

C = 10 soft margin

Application: Pedestrian detection in Computer Vision

Objective: detect (localize) standing humans in an image

• cf face detection with a sliding window classifier

- reduces object detection to binary classification
- does an image window contain a person or not?

Method: the HOG detector

Training data and features

Positive data – 1208 positive window examples

• Negative data – 1218 negative window examples (initially)

Feature: histogram of oriented gradients (HOG)

image

dominant direction

orientation

- tile window into 8 x 8 pixel cells
- each cell represented by HOG

Feature vector dimension = 16×8 (for tiling) $\times 8$ (orientations) = 1024

Averaged examples

Algorithm

Training (Learning)

• Represent each example window by a HOG feature vector

• Train a SVM classifier

Testing (Detection)

• Sliding window classifier

$$f(x) = \mathbf{w}^{\top} \mathbf{x} + b$$

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

Slide from Deva Ramanan

What do negative weights mean?

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg (avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan

Optimization

Learning an SVM has been formulated as a constrained optimization problem over ${\bf w}$ and ${\boldsymbol \xi}$

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_i^N \xi_i \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b\right) \geq 1 - \xi_i \text{ for } i = 1 \dots N$$

The constraint $y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \geq 1 - \xi_i$, can be written more concisely as

$$y_i f(\mathbf{x}_i) \ge 1 - \xi_i$$

which, together with $\xi_i \geq 0$, is equivalent to

$$\xi_i = \max(0, 1 - y_i f(\mathbf{x}_i))$$

Hence the learning problem is equivalent to the unconstrained optimization problem over $\ensuremath{\mathbf{w}}$

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$
regularization loss function

Loss function

Loss functions

- ullet SVM uses "hinge" loss $\max\left(0,1-y_if(\mathbf{x}_i)
 ight)$
- an approximation to the 0-1 loss

Background reading and more ...

• Next lecture – see that the SVM can be expressed as a sum over the support vectors:

$$f(x) = \sum_i {\color{blue}\alpha_i y_i(\mathbf{x}_i}^{\top}\mathbf{x}) + b$$
 support vectors

- On web page: http://www.robots.ox.ac.uk/~az/lectures/ml
- links to SVM tutorials and video lectures
- MATLAB SVM demo