### Sistemas Operacionais

Definição, conceitos e histórico dos sistemas operacionais

Profa Ms. Adriane Ap. Loper

- Unidade de Ensino: 1
- Competência da Unidade: Definição, conceitos e histórico dos sistemas operacionais.
- Resumo: Apresentar a composição de sistemas operacionais.
- Palavras-chave: Hardware; software; alocação de recursos; gerenciamento.
- Título da Teleaula: Introdução aos sistemas operacionais
- Teleaula nº: 1

#### Contextualização

Vamos apresentar, avaliar e escolher, um sistema operacional que atenda às necessidades de uma empresa de consultoria acadêmica, de pequeno porte, cujo modelo de negócio é baseado em orientação escolar? Como manter-se conectada à internet todo o tempo, compartilhar recursos de rede interna cabeada e sem fio; duas impressoras e uma copiadora? Em parceria com as escolas da cidade, precisará implantar um S.O que permita a instalação dos aplicativos para envio e recebimento de materiais e informações sobre a evolução dos alunos?

#### Contextualização

Resolveremos todos esses requisitos conhecendo Sistemas Operacionais!

Vamos entender o que esse software nos permite fazer?

Iniciamos agora um novo e muito interessante aprendizado!

#### Conceitos

## Introdução a Sistemas operacionais

#### Trabalho em camadas do Sistema Operacional



Camadas são módulos que contêm uma responsabilidade específica para executar as responsabilidades desse *software*.





#### Definição / função do Sistema Operacional

Sistema operacional(S.O) é um conjunto de rotinas executado pelo processador, de forma semelhante aos programas dos usuários.

Funções dos Sistemas Operacionais

- Gerência de processos
- •Gerência de memória
- •Gerência de Dispositivos de E/S (ou I/O)
- Sistema de Arquivos
- Suporte a Redes
- •Interface com usuário ,...

#### Gerenciamento de recursos

"Cabe, ao sistema operacional servir de interface entre os usuários e os recursos disponíveis no sistema computacional, tornando esta comunicação transparente, além de permitir um trabalho mais eficiente e com menores chances de erros" (MACHADO; MAIA, 2013, p. 4).

Os sistemas operacionais também são responsáveis por gerenciar os recursos das máquinas. Ex.: compartilhamento de uma impressora, um usuário usando em seu computador um editor de texto, a internet e também uma calculadora.

#### Kernel e microkernel

Comandos interpretados pelas máquinas binário (0 ou 1), todos os comandos, ações e operações exercidas precisam ser codificados, para que a máquina possa processar e exibir o resultado dessa ação.

O programa do sistema operacional responsável por essa tarefa é o interpretador de comandos. Assim que o usuário inicia sua sessão de trabalho, o interpretador recebe esses comandos e faz uma chamada de sistema, sendo o núcleo do sistema operacional, também chamado de Kernel.



Fonte: Adaptado de Oliveira et al. (2010, p. 26)

#### Estrutura do S.O

Kernel (núcleo) - Função

 Gerência de recursos de hardware e do sistema como: realizar o controle e tratamento de interrupções e exceções, criar e eliminar processos e threads, sincronizar a comunicação entre eles, bem como escalonar e controlá-los.

#### **Drivers**

-Módulos usados para acessar os dispositivos físicos



Fonte: Adaptado de Oliveira et al. (2010, p. 26)

#### Resolução da SP

Qual sistema operacional consegue atender à necessidade de processamento, armazenamento e compartilhamento de recursos de que essa empresa de consultoria necessita?



#### **Conceitos**

Tipos de sistemas operacionais:

Monoprogramáveis,

Multiprogramáveis e

Multiprocessamento

#### **Tipos de Sistemas Operacionais**



#### S. O. Monoprogramáveis/Monotarefa

- ✓ Todos os recursos da máquina uma única tarefa;
- ✓ Processador ocioso, por exemplo, se o usuário estivesse digitando um dado;
- √ Não utilizava todos os recursos de memória;
- ✓ Periféricos, por não haver a preocupação de compartilhar dispositivos de entrada e saída, ficavam também dedicados a um único usuário

#### S.O multiprogramáveis/multitarefa monousuário

✓ Um usuário realizando várias tarefas ao mesmo tempo, como editar um texto, usar a internet, imprimir um documento. Exemplos desses são os computadores pessoais e ainda as estações de trabalho.

#### S.O multiprogramáveis/multitarefa multiusuário

Compartilhamento de recursos dispositivos de entrada e saída;

Sistemas Multiusuário:

- a) *batch*, utilizam o processador de forma otimizada o tempo de resposta é maior,
- b) de tempo compartilhado, dividem o processamento das tarefas por fatia de tempo;
- c) tempo real o processador é utilizado pelo tempo necessário à execução do programa.

#### Múltiplos Processadores

Utilizam duas ou mais CPUs trabalhando em conjunto.

Uma máquina pode executar vários programas simultaneamente e, além disso, que o seu processamento pode ser dividido entre os processadores. Desse modo, esses sistemas são muito utilizados para processamento de imagens e desenvolvimento aeroespacial.

Vantagens: escalabilidade, disponibilidade, balanceamento de carga.

#### Resolução da SP

Elabore uma análise que vise diferenciar os tipos de sistemas operacionais e quais são as características de *hardware* e *software* que podem ser adicionados e executados nesses sistemas.

Para escolhermos o S.O, devemos analisar:

Processador: gerencia o sistema

- unidade de controle (UC): gerencia as atividades dos componentes do computador como gravação de dados e localização de instruções;
- unidade lógica e aritmética (ULA): realiza operações lógicas e aritméticas;
- registradores: armazenam dados temporário;
- controlador de instruções (CI): contém o endereço da próxima instrução para o processador executar;
- apontador da pilha (AP) ou *stack pointer* (SP): refere-se às instruções que estão no topo da pilha de



execução. Contém o seu endereço na memória;

- registrador de instruções (RI): armazena a instrução que será decodificada pelo processador.
- registrador de status ou program staus word
   (PSW):armazena informações sobre os processos em execução;
- ciclo de busca e instruções do processador:
- 1. Busca na memória principal o endereço CI e armazena RI.
- 2. Atualiza o CI com o endereço da próxima instrução.



- 3. Decodifica a instrução do RI.
- 4. Busca operando em memória.
- 5. Busca instrução decodificada e reinicia o processo.



Fonte: Adaptado de Machado e Maia (2013, p. 23)

#### Interação

# Compreenderam todos os aspectos necessários para a escolha de um S.O?

#### **Conceitos**

## Características dos S.O multiprogramáveis

#### Definições

Para auxiliar na proposta de sistema operacional que será apresentada à empresa com que estamos trabalhando, agora o objetivo está em relacionar os conteúdos necessários para realizar a gerência do processador e explicar de que forma o processador trata as informações de instruções que são interrompidas e como ocorre o tratamento das exceções.

#### Recursos de Memória

Os recursos de processamento e de memória são essenciais para o bom funcionamento do sistema operacional:

| Recursos           | Descrição                                                                                                                                                                                                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Memória principal  | Acesso pelo endereço que é registrado pelo MAR ( <i>memory address register</i> ). Através desse, a unidade de controle, saberá onde alocar os dados e a sua disponibilidade (endereço 0 ao endereço 2n -1).                                                                                                               |
| Memória cache      | Utilizada para minimizar a diferença entre a velocidade do processador e a da leitura dos dados na memória principal. Ela é pequena, porém muito veloz, pois armazena uma parte do conteúdo da memória principal e é acessada primeiro pelo processador. Quanto menor a cache, mais rápido será o acesso ao dado. Volátil. |
| Memória secundária | Não volátil e armazena programas e dados a um custo baixo de processamento e alta capacidade de armazenamento.                                                                                                                                                                                                             |

Fonte: Adaptado de Machado e Maia (2013)

#### Gerenciamento de recursos

- ✓ Dispositivos de entrada e saída;
- ✓ Barramento;
- ✓ Pipelining;
- ✓ Arquiteturas RISC e CISC;
- ✓ Software;
- ✓ Tradutor;
- ✓ Interpretador;
- ✓ Linker;
- ✓ Loader;
- ✓ Depurador

#### Sistemas Operacionais Multiprogramáveis

Vários programas podem ser instalados e executados de forma que os processos se tornam concorrentes, ou seja, sequencialmente executados. Quando há a solicitação de uma tarefa de entrada e saída, os programas revezam o processador. Na concorrência, o computador executará imediatamente a instrução seguinte àquela que foi interrompida. Dessa forma, mantém-se o nível de processamento sem perdas notáveis ao usuário em termos de tempo e execução de tarefas. (MACHADO; MAIA, 2013).



#### Interrupção

Ela não depende de um processo em execução, e sim ocorre em função de um evento externo ao programa que está em uso. Isso torna possível a implementação de concorrência entre os processos, que é a característica principal dos sistemas multiprogramáveis, sincronizando as tarefas e sua execução com as operações dos usuários e também o controle dos dispositivos.

#### Exceção

É diretamente ligada ao programa, ou seja, é um evento ocorrido em função do processamento do programa e, por isso, também, síncrona. Um exemplo comum é o de *overflow*, que ocorre quando há uma divisão por zero e não foi previsto um tratamento no código-fonte do programa. Com isso, o sistema operacional entende que uma instrução do programa gerou um erro lógico ao ser executada, e esse problema ocorrerá todas as vezes em que o programa for executado, portanto a solução é prever esse tipo de erro e incluir o tratamento das exceções no próprio programa.

#### Operações de entrada e saída

Eram controladas por um conjunto de instruções de entrada e saída, nos primeiros sistemas computacionais. Posteriormente, foi desenvolvido o controlador ou interface, que realiza essas operações de reconhecer os comandos e solicitações advindas dos dispositivos e que precisam se comunicar com o hardware e com o software.

Processador se comunica com o controlador ou interface. São dois os tipos de controladores: E/S controlada por programa e E/S controlada por interrupção.

#### E/S controlado por programa -Pooling

E/S controlado por programa, o processador fica aguardando e testando o estado dos dispositivos de entrada e saída até terminar a operação de E/S. Essa ação do processador é conhecida como *busy wait*, e esse tipo de controlador deixa o processador ocioso. Assim que se inicia a transferência dos dados, o processador é liberado e fará a verificação de tempos em tempos para saber o estado dos dispositivos de entrada e saída, que é o pooling.

#### E/S controlado por interrupção, DMA

Consiste na liberação do processador para executar outras tarefas, assim que ele realiza a execução de um comando de leitura e gravação. Pode gerar uma sobrecarga no processador, o que reduz a sua eficiência. Para tratar a possível perda de eficiência do processador, no caso de esse realizar muitas intervenções de controle de E/S, foi desenvolvida a técnica DMA (*Direct Memory Access*), que permite a transferência de dados diretamente da memória principal para os dispositivos de E/S, e vice-versa, sem que o processador participe dessa operação

#### Técnica de buffering

Ela é responsável por fazer a transmissão dos dados dos dispositivos de entrada e saída para a memória principal, a partir do uso de registradores para fazer esse transporte. O dado será sempre transferido primeiramente ao *buffer*, que permitirá o acesso à informação, que deverá ser imediatamente processada.

O buffer ainda permite que existam vários registros armazenados e ainda não lidos, e esses podem variar em tamanho de acordo com o tipo de informação que deverá ser lida pelo processador.

#### Resolução da SP

Verifique se os S.O multiprogramáveis atendem às necessidades de *softwares*, hardwares e compartilhamento de recursos na consultoria.

Há dois tipos de tratamento de interrupção: o vetor de interrupção e um registrador de *status*. O vetor de interrupção tem como objetivo guardar o endereço em que está o conjunto de instruções que foram executadas para tratar o evento. Já o registrador de *status* armazena qual foi o tipo de evento ocorrido e, então, para cada tipo de evento, há a sua respectiva rotina de tratamento.

Processos que ocorrem para tratar a interrupção:

1. Processador recebe sinalização de ocorrência do evento.

- 2. Processador encerra a execução da instrução que está efetuando no momento e interrompe o processamento das instruções daquele determinado programa.
- 3. Os registradores do tipo PC, ou seja, de contagem de instruções, são acionados para guardar tais instruções.
- 4. Processador verifica a qual rotina o evento está associado e busca no registrador a informação para execução.
- 5. O tratamento de interrupções é salvo e entra na pilha de controle do programa.

- 6. A rotina de tratamento é executada.
- 7. Em seguida, as informações que foram salvas nos registradores de uso geral são restauradas, para que o processador continue a execução das instruções do programa que foi interrompido, exatamente do ponto que parou.

Esses podem ser considerados fatores fundamentais na escolha de um sistema operacional, pois não prejudicam o processamento de informações que estejam sendo executadas paralelamente em outros programas.



Fonte: Machado e Maia (2013, p. 39)

#### Conceitos

# Exemplos de S.O: Unix e Windows

#### **Processo**

O conceito de processamento mudou quando se tornou possível compartilhar recursos de processador e memória de forma concorrente e simultânea para executar o que passou a se chamar: processo. Processos são softwares que executam alguma ação e que podem ser controlados de alguma maneira, seja pelo usuário, pelo aplicativo correspondente ou pelo sistema operacional.

#### **Thread**

Foi necessário estabelecer um mecanismo de controle de estados do processo, que recebeu o nome de *thread*. Ela controla os estados do processo que deverá ser executado: criação, espera, execução, transição, pronto, *standby* e terminado.

#### Unix

Um processo no Unix é formado por duas estruturas de dados: a estrutura do processo (proc estructure) e a área do usuário (user área ou u area).

A estrutura do processo, que contém o seu contexto de software, deve ficar sempre residente na memória principal, enquanto a área do usuário pode ser retirada da memória, sendo necessária apenas quando o processo é executado" (MACHADO; MAIA, 2013, p. 24).

# Sistemas de Arquivos para Windows

Quatro tipos de : CDFS (*CD-ROM File System*, que suporta formatos de CD e DVD), UDF (Universal Disk Format – CD e DVD), FAT (*File Allocation Table*), desenvolvido inicialmente para o MS-DOS e depois no Windows, com FAT16 e FAT32 e o NFTS (*NT File System*) utiliza esquema de organização de arquivos em estrutura de dados conhecida como árvore-B, e também oferece maior segurança.

Windows2000: Plug and Play e Active Directory.

## Sistemas de Arquivos para Unix

Não há uma definição de um tipo de sistema de arquivo especificamente porque esse trabalha de forma hierárquica nos diretórios. Então, é possível, com isso, criar vários diretórios e arquivos que, estão distribuídos entre as máquinas que compartilham recursos remotamente, o que torna viável uma implementação de sistema de arquivos que suporte o trabalho remoto. O Unix tem os seguintes sistemas de arquivos remotos: NFS (*Network File System*), RFS (*Remote File System*) e AFS (*Andrew File System*).

### Resolução da SP

Criar um quadro com as seguintes descrições:
Características técnicas, Como pode te ajudar e Valor da Licença

### **Características Windows 10**

| Características técnicas                                                                                                                                                                                                                                                                                                                                                | Como pode te ajudar                                                                                                                                                                                                                                                                                                                                    | Valor da licença                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| MS Windows 10 (todas as funcionalidades melhoradas) As especificações são: 1. Processor: 1 gigahertz (GHz) or faster processor or SoC 2. RAM: 1 gigabyte (GB) for 32-bit or 2 GB for 64-bit 3. Hard disk space: 16 GB for 32-bit OS 20 GB for 64-bit OS 4. Graphics card: DirectX 9 or later with WDDM 1.0 driver 5. Display: 800x600 6. Compatível a telas mult-touch. | Compatível com todas as versões anteriores. Retoma o Menu Iniciar. Mais estável e seguro do que as versões anteriores. Sua construção e avaliação conta com a participação de uma comunidade do Windows Insider. Proporciona melhor experiência em navegação web.  Capacidade de exibição em tela de até quatro aplicações utilizadas simultaneamente. | 1 e 8.1 atualizado;<br>• o valor médio de |

# Características versão Apache 2.0

| Características técnicas                                                                                                                                                                                                                                    | Como pode te ajudar                                                                                                                                                                                                                                                                                         | Valor da licença                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Apache versão 2.0 incorpora o OMI.</li> <li>OMI (Open Management Infraestructure)         <ul> <li>Padrões CIM / WBEM DMTF.</li> <li>desenvolvido em C;</li> <li>compatível praticamente com todas as versões Unix e Linux.</li> </ul> </li> </ol> | <ul> <li>Alto desempenho e portabilidade;</li> <li>pilha de gerenciamento de processos compatível com outros S.O;</li> <li>permite gerenciamento em nuvem;</li> <li>gerenciamento de memória e dispositivos de armazenamento;</li> <li>gerenciamento de servidor, dispositivos de rede e de E/S.</li> </ul> | <ul> <li>Free- distribuído por<br/>Apache.</li> <li>Para ver a licença,<br/>acesse: <a href="http://httpd.">http://httpd.</a><br/>apache.org/docs/2.2/pt-<br/>br/license.html&gt;.</li> </ul> |

# Interação

Banca: UPENET/IAUPE 2017 Órgão: UPE Prova: UPENET/IAUPE - 2017 - UPE

O software responsável pelo gerenciamento dos recursos do hardware para o usuário, a fim de que os softwares aplicativos não tenham que interagir diretamente com os dispositivos periféricos, é definido como

- a) compilador.
- b) driver.
- c) sistema operacional.
- d) drive.
- e) controlador.

Banca: CEPS-UFPA 2018 Órgão: UNIFESSPA Prova:

CEPS-UFPA - 2018 - UNIFESSPA

Sistema operacional é:

- a) um programa de computador que gera ferramentas de desenho para uma interface gráfica de usuário.
- b) um programa de computador que atualiza o hardware de forma automática enquanto suportado pelo fabricante.
- c) um dispositivo que virtualiza programas e hardwares de forma transparente para o usuário no cenário de nuvem.

- d) um dispositivo que se conecta no computador para instalação de programas e gerenciamento automático de dados e da memória virtual.
- e) um programa para gerenciar recursos do computador, provendo uma interface simplificada para o usuário manipular o hardware.

#### Conceitos

# Recapitulando

# Definições

- ✓ Sistema Operacional;
- ✓ Gerenciamento de recursos;
- ✓ Camadas do Sistema Operacional;
- ✓ Kernel e microkernel;
- ✓ Tipos de S.O : Monoprogramáveis,
   Multiprogramáveis e Multiprocessamento;
- ✓ Recursos do S.O;
- ✓ Interrupção;
- ✓ Exceção;
- ✓ Operações de E/S;
- ✓ Unix;
- ✓ Windows.

