Shitcoin Protocol

Didactic Cryptocoin design.

Import packages

Needs["ProgressMapping`", FileNameJoin[{NotebookDirectory[], "ProgressMapping.wl"}]];

Cryptography functions

Description:

We provide a brief introduction to finite fields. For further information, see Chapter 3 of Koblitz [52], or the books by McEliece [61] and Lidl and Niederreitter [59].

A *finite field* consists of a finite set of elements F together with two binary operations on F, called addition and multiplication, that satisfy certain arithmetic properties. The *order* of a finite field is the number of elements in the field. There exists a finite field of order q if and only if q is a prime power. If q is a prime power, then there is essentially only one finite field of order q; this field is denoted by \mathbb{F}_q . There are, however, many ways of representing the elements of \mathbb{F}_q . Some representations may lead to more efficient implementations of the field arithmetic in hardware or in software.

If $q=p^m$ where p is a prime and m is a positive integer, then p is called the *characteristic* of \mathbb{F}_q and m is called the *extension degree* of \mathbb{F}_q . Most standards which specify the elliptic curve cryptographic techniques restrict the order of the underlying finite field to be an odd prime (q=p) or a power of 2 $(q=2^m)$. In §3.1, we describe the elements and the operations of the finite field \mathbb{F}_p . In §3.2, elements and the operations of the finite field \mathbb{F}_{2^m} are described, together with two methods for representing the field elements: *polynomial basis representations* and *normal basis representations*.

3.1 The Finite Field \mathbb{F}_p

Let p be a prime number. The finite field \mathbb{F}_p , called a *prime field*, is comprised of the set of integers $\{0, 1, 2, \dots, p-1\}$ with the following arithmetic operations:

- Addition: If $a, b \in \mathbb{F}_p$, then a + b = r, where r is the remainder when a + b is divided by p and $0 \le r \le p 1$. This is known as addition modulo p.
- MULTIPLICATION: If $a, b \in \mathbb{F}_p$, then $a \cdot b = s$, where s is the remainder when $a \cdot b$ is divided by p and $0 \le s \le p-1$. This is known as multiplication modulo p.
- Inversion: If a is a non-zero element in \mathbb{F}_p , the *inverse* of a modulo p, denoted a^{-1} , is the unique integer $c \in \mathbb{F}_p$ for which $a \cdot c = 1$.

Example 1. (The finite field \mathbb{F}_{23}) The elements of \mathbb{F}_{23} are $\{0,1,2,\ldots,22\}$. Examples of the arithmetic operations in \mathbb{F}_{23} are: (i) 12+20=9; (ii) $8\cdot 9=3$; and (iii) $8^{-1}=3$.

In[1]:

Algebra on arrows direction

$$y^{2} = x^{3} + ax + b$$
La feddiente de la recta \overline{PQ} es
$$M = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} = \frac{y_{Q} - y_{P}}{\chi_{Q} - \chi_{P}}$$

$$y - y_{P} + m(x - x_{P})$$
Se puede obtainer la solución fora χ_{R} ignalando los terminos
$$y - m\chi_{Q} + \chi_{P} + \chi_{R} = y - \chi_{P} - \chi_{Q}$$

$$y - m\chi_{Q} + \chi_{P} + \chi_{R} + \chi_{P} + \chi_{R} = y - \chi_{P} - \chi_{Q}$$
Al sustituir $\chi_{R} = m(\chi_{P} - \chi_{P}) - y_{P}$

$$\chi_{Q}^{3} - m^{2}\chi_{Q}^{3} - 2md\chi_{Q}^{3} + a\chi_{Q} + b = 0$$

$$\chi_{Q}^{3} - m^{2}\chi_{Q}^{3} - 2md\chi_{Q}^{3} + a\chi_{Q}^{3} + a\chi_{Q}^{3} = 0$$

$$\chi_{Q}^{3} - m^{2}\chi_{Q}^{3} - 2md\chi_{Q}^{3} + a\chi_{Q}^{3} = 0$$
(1)

Caso limite cuando Q se aproxima infinitesimalmente a P

La rendiente de la recta tangente a P

se obtiene derivando
$$y(x)$$

$$\Rightarrow y'(x) = \frac{d}{dx} \sqrt{x^3 + ax + b} = \frac{2x^2 + a}{2\sqrt{x^3 + ax + b}}$$

$$= \frac{2x^2 + a}{2y(x)}$$
Y evaluando en x_f

Y la oferación suma está doda for

$$\Rightarrow x_f = \frac{2x^2 + a}{2y_f}$$

$$\Rightarrow x_f = \frac{2x^2 - 2x_f}{2y_f}$$

Implementation:

```
EllipticCurveEvaluate[x_, a_, b_] := \sqrt{x^3 + ax + b};
In[64]:=
        EllipticCurvePointQ[{x_, y_}, a_, b_, p_] := Block[{lhs, rhs},
           1hs = Mod[y^2, p];
           rhs = Mod[x^3 + ax + b, p];
```

```
lhs == rhs
  ];
EllipticCurveAdd[{px_, py_}, {qx_, qy_}] := Block[{m, rx, ry},
   If [px == qx, Return [\infty]];
   m = \frac{qy - py}{}:
   rx = m^2 - px - qx;
   ry = m(px - rx) - py;
   \{rx, ry\}
  ];
EllipticCurveAdd[\{px_, py_\}, \{qx_, qy_\}, p_] := Block[\{snum, sden, s, rx, ry\},
   If [px = qx \mid | ! CoprimeQ[qx - px, p], Return[\infty]];
   snum = Mod[qy - py, p];
   sden = ModularInverse[qx - px, p];
   s = Mod[snum * sden, p];
   rx = Mod[s^2 - px - qx, p];
   ry = Mod[s(px - rx) - py, p];
   {rx, ry}
  ];
EllipticCurveDouble[{px_, py_}, a_] := Block[{m, rx, ry},
   m = \frac{3 px^2 + a}{2 py};
   rx = m^2 - 2px;
   ry = m(px - rx) - py;
   {rx, ry}
EllipticCurveDouble[{px_, py_}, a_, p_] := Block[{snum, sden, s, rx, ry},
   snum = Mod[3px^2 + a, p];
   If [py = 0 \mid | ! CoprimeQ[2 py, p], Return[\infty]];
   sden = ModularInverse[2 py, p];
   s = Mod[snum * sden, p];
   rx = Mod[s^2 - 2px, p];
   ry = Mod[s(px - rx) - py, p];
   \{rx, ry\}
  ];
ComputeCyclicGroup[G_, a_, p_] := Block[{G2},
   G2 = EllipticCurveDouble[G, a, p];
   Prepend[NestWhileList[EllipticCurveAdd[G, #, p] &, G2, # =! = ∞ &], G]
MultiplicationPath[G_, a_, p_, k_] := Block[{G2},
   G2 = EllipticCurveDouble[G, a, p];
   Prepend[NestList[EllipticCurveAdd[G, #, p] &, G2, k - 2], G]
MultiplyBasePoint[G_, a_, p_, k_] := Block[{kBinary, P},
   kBinary = Drop[IntegerDigits[k, 2], 1];
   P = G;
   Do [
    P = EllipticCurveDouble[P, a, p];
```

Example operations

```
In[38]:= k = 5;
    a = 2;
    p = 17;

In[41]:= G = {5, 1};

In[43]:= G2 = EllipticCurveDouble[G, a, p]
Out[43]= {6, 3}

In[44]:= G3 = EllipticCurveAdd[G, G2, p]
Out[44]= {10, 6}

In[45]:= MultiplyBasePoint[G, a, p, 10]
Out[45]= {7, 11}
```

Curves over the Reals Field

```
In[*]:= a = 2;
     b = 2;
     ContourPlot[y^2 == x^3 + a x + b, \{x, -10, 10\}, \{y, -10, 10\},
      PlotTheme → "Monochrome",
      Frame → True,
      BaseStyle → FontSize → 14,
      GridLines → Automatic,
      FrameLabel \rightarrow {Style["x", 15], Style["y", 15]}
           10 🖯
            5
            0
Out[ • ]=
           -5
          –10 ∟
                                      0
             -10
                          -5
                                                  5
                                                              10
                                      Χ
```

```
In[205]:= a = 0;
       b = 7;
       ContourPlot[y^2 == x^3 + a x + b, \{x, -10, 10\}, \{y, -10, 10\},
        PlotTheme → "Monochrome",
        Frame → True,
        BaseStyle → FontSize → 14,
        GridLines → Automatic,
        FrameLabel \rightarrow {Style["x", 15], Style["y", 15]}
             10
              5
              0
Out[207]=
             -5
           -10<sub>-</sub>
               -10
                            -5
                                         0
                                                     5
                                                                 10
                                         Х
In[219]:= G = {2, N@EllipticCurveEvaluate[2, a, b]}
Out[219]= \{2, 3.87298\}
In[220]:= G2 = EllipticCurveDouble[G, a]
Out[220]= \{-1.6, 1.70411\}
In[226]:= G3 = EllipticCurveAdd[G, G2]
Out[226]= \{-0.037037, -2.64574\}
In[227]:= G4 = EllipticCurveAdd[G, G3]
Out[227]= \{8.27769, -23.9622\}
In[228]:= G5 = EllipticCurveAdd[G, G4]
Out[228]= \{9.38258, 28.8613\}
```

Curves over Finite Field

-20

-10

0

Х

10

-30 -30

```
CalculateCurvePoints[a_, b_, p_] := Flatten[ProgressTable[
If[EllipticCurvePointQ[{x, y}, a, b, p], {x, y}, Nothing], {x, 0, p}, {y, 0, p}], 1];
```

20

30

```
F<sub>17</sub>

In[99]:= k = 5;
a = 2;
b = 2;
p = 17;
G = {5, 1};
```

```
In[105]:= GGroup = ComputeCyclicGroup[G, a, p];
                                                                                                     Thread [Range [Length [GGroup]] → GGroup]
\texttt{Out[106]=} \  \  \{\textbf{1}\rightarrow\{\textbf{5},\,\textbf{1}\}\,\textbf{,}\ \ \textbf{2}\rightarrow\{\textbf{6},\,\textbf{3}\}\,\textbf{,}\ \ \textbf{3}\rightarrow\{\textbf{10},\,\textbf{6}\}\,\textbf{,}\ \ \textbf{4}\rightarrow\{\textbf{3},\,\textbf{1}\}\,\textbf{,}\ \ \textbf{5}\rightarrow\{\textbf{9},\,\textbf{16}\}\,\textbf{,}\ \ \textbf{6}\rightarrow\{\textbf{16},\,\textbf{13}\}\,\textbf{,}\ \ \textbf{7}\rightarrow\{\textbf{0},\,\textbf{6}\}\,\textbf{,}\ \ \textbf{6}\rightarrow\{\textbf{10},\,\textbf{10}\}\,\textbf{,}\ \ \textbf{10},\,\textbf{10}\}\,\textbf{,}\ \ \textbf{10}\rightarrow\{\textbf{10},\,\textbf{10}\}\,\textbf{,}\ \ \textbf{10}\rightarrow\{\textbf{10},\,\textbf{10},\,\textbf{10}\}\,\textbf{,}\ \ \textbf{10}\rightarrow\{\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{10},\,\textbf{
                                                                                                                    8 \rightarrow \{13\text{, }7\}\text{, }9 \rightarrow \{7\text{, }6\}\text{, }10 \rightarrow \{7\text{, }11\}\text{, }11 \rightarrow \{13\text{, }10\}\text{, }12 \rightarrow \{0\text{, }11\}\text{, }13 \rightarrow \{16\text{, }4\}\text{, }10 \rightarrow \{
                                                                                                                    14 \rightarrow {9, 1}, 15 \rightarrow {3, 16}, 16 \rightarrow {10, 11}, 17 \rightarrow {6, 14}, 18 \rightarrow {5, 16}, 19 \rightarrow \infty}
         In[109]:= curveSet = CalculateCurvePoints[a, b, p];
                                                                                                     ListPlot[curveSet,
                                                                                                                    AspectRatio → 1,
                                                                                                                    PlotTheme → "Monochrome",
                                                                                                                    Frame → True,
                                                                                                                    BaseStyle → FontSize → 14,
                                                                                                                    GridLines → Automatic,
                                                                                                                      FrameLabel \rightarrow {Style["x", 15], Style["y", 15]}
                                                                                                        ]
                                                                                                                                                                    10
                                                                                                                    >
Out[110]=
                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    15
```

Х

```
In[111]:= ListPlot[{curveSet, GGroup},
       AspectRatio → 1,
       Joined → {False, True},
       PlotTheme → "Monochrome",
       Frame → True,
       BaseStyle \rightarrow FontSize \rightarrow 14,
       GridLines → Automatic,
       FrameLabel \rightarrow {Style["x", 15], Style["y", 15]},
       PlotLabel \rightarrow "{5,1}"
      ]
                                      {5,1}
```


F₄₂₁

```
ln[112]:= p = 421;
      curveSet = CalculateCurvePoints[a, b, p];
      ListPlot[curveSet,
       AspectRatio → 1,
       PlotTheme → "Monochrome",
       Frame → True,
       BaseStyle → FontSize → 14,
       GridLines → Automatic,
       FrameLabel \rightarrow {Style["x", 15], Style["y", 15]}
      ]
           300
          200
Out[114]=
           100
               0
                         100
                                    200
                                               300
                                                         400
                                      Х
```

In[53]:= GGroup = ComputeCyclicGroup[{6, 183}, a, p];

```
In[54]:= ListPlot[{curveSet, GGroup},
       AspectRatio → 1,
       Joined → {False, True},
       PlotTheme → "Monochrome",
       Frame → True,
       BaseStyle \rightarrow FontSize \rightarrow 14,
       GridLines \rightarrow Automatic,
       FrameLabel \rightarrow {Style["x", 15], Style["y", 15]}
      ]
           400
           300
           200
Out[54]=
           100
              0
                0
                          100
                                       200
                                                   300
                                                               400
                                         Х
```

ECDSA signature and verification

Desciption:

ECDSA Sign

The ECDSA signing algorithm (RFC 6979) takes as input a message msg + a private key privKey and produces as output a signature, which consists of pair of integers $\{r, s\}$. The ECDSA signing algorithm is based on the ElGamal signature scheme and works as follows (with minor simplifications):

- 1. Calculate the message hash, using a cryptographic hash function like SHA-256: h = hash(msq)
- 2. Generate securely a **random** number **k** in the range [1..**n**-1]
 - In case of deterministic-ECDSA, the value k is HMAC-derived from h + privKey (see RFC 6979)
- 3. Calculate the random point R = k * G and take its x-coordinate: r = R.x
- 4. Calculate the signature proof: $\mathbf{s} = k^{-1} * (h + r * privKey) \pmod{n}$
 - \circ The modular inverse $k^{-1} \pmod n$ is an integer, such that $k*k^{-1} \equiv 1 \pmod n$
- 5. Return the **signature** { **r**, **s**}.

The calculated **signature** $\{r, s\}$ is a pair of integers, each in the range [1...n-1]. It encodes the random point R = K * G, along with a proof s, confirming that the signer knows the message h and the private key *privKey*. The proof *s* is by idea verifiable using the corresponding *pubKey*.

ECDSA signatures are 2 times longer than the signer's private key for the curve used during the signing process. For example, for 256-bit elliptic curves (like secp256k1) the ECDSA signature is 512 bits (64 bytes) and for 521-bit curves (like secp521r1) the signature is 1042 bits.

ECDSA Verify Signature

The algorithm to verify a ECDSA signature takes as input the signed message $msg + the signature \{r, s\}$ produced from the signing algorithm + the public key pubKey, corresponding to the signer's private key. The output is boolean value: valid or invalid signature. The ECDSA signature verify algorithm works as follows (with minor simplifications):

- 1. Calculate the message hash, with the same cryptographic hash function used during the signing: h = hash(msg)
- 2. Calculate the modular inverse of the signature proof: $s1 = s^{-1} \pmod{n}$
- 3. Recover the random point used during the signing: R' = (h * s1) * G + (r * s1) * pubKey
- 4. Take from R'its x-coordinate: r'= R'.x
- 5. Calculate the signature validation **result** by comparing whether r' == r

The general idea of the signature verification is to recover the point R'using the public key and check whether it is same point R, generated randomly during the signing process.

How Does it Work?

The **ECDSA signature** $\{r, s\}$ has the following simple explanation:

- The signing signing encodes a random point R (represented by its x-coordinate only) through ellipticcurve transformations using the private key privKey and the message hash h into a number s, which is the **proof** that the message signer knows the private key **privKey**. The signature $\{r, s\}$ cannot reveal the private key due to the difficulty of the ECDLP problem.
- The **signature verification** decodes the proof number s from the signature back to its original point R, using the public key pubKey and the message hash h and compares the x-coordinate of the recovered R with the r value from the signature.

The Math behind the ECDSA Sign / Verify

Read this section only if you like math. Most developer may skip it.

How does the above sign / verify scheme work? It is not obvious, but let's play a bit with the equations.

The equation behind the recovering of the point R', calculated during the signature verification, can be transformed by replacing the pubKey with privKey * G as follows:

```
R' = (h * s1) * G + (r * s1) * pubKey =
 = (h * s1) * G + (r * s1) * privKey *G =
 = (h + r* privKey) * s1 * G
```

If we take the number $s = k^{-1} * (h + r * privKey) \pmod{n}$, calculated during the signing process, we can calculate $s1 = s^{-1} \pmod{n}$ like this:

```
s1 = s^{-1} \pmod{n} =
= (k^{-1} * (h + r * privKey))^{-1} \pmod{n} =
= k * (h + r * privKey)^{-1} \pmod{n}
```

Now, replace s1 in the point R'.

```
R' = (h + r * privKey) * s1 * G =
= (h + r * privKey) * k * (h + r * privKey)^{-1} \pmod{n} *G =
= k * G
```

The final step is to compare the point R' (decoded by the pubKey) with the point R (encoded by the *privKey*). The algorithm in fact compares only the x-coordinates of R' and R the integers r' and r.

It is expected that r' = r if the signature is **valid** and $r' \neq r$ if the signature or the message or the public key is incorrect.

Implementation:

```
ECDSASign[G_, a_, p_, m_, k_, hash_, privateKey_] := Block[{x, y, r, s},
In[11]:=
           {x, y} = MultiplyBasePoint[G, a, p, k];
           r = x;
           s = Mod[ModularInverse[k, m] * (hash + r * privateKey), m];
           {r, s}
         ];
       ECDSASignHex[{hexGx_, hexGy_}, aHex_, pHex_, mHex_, kHex_, hashHex_, privateKeyHex_] :=
         Block[{Gx, Gy, a, p, m, k, hash, privateKey, r, s},
          Gx = FromDigits[hexGx, 16];
          Gy = FromDigits[hexGy, 16];
           a = FromDigits[aHex, 16];
           p = FromDigits[pHex, 16];
          m = FromDigits[mHex, 16];
           k = FromDigits[kHex, 16];
           hash = FromDigits[hashHex, 16];
           privateKey = FromDigits[privateKeyHex, 16];
           {r, s} = ECDSASign[{Gx, Gy}, a, p, m, k, hash, privateKey];
          ToHex[r, 64] <> ToHex[s, 64]
       ECDSAValidate[G_, a_, p_, m_, {r_, s_}, hash_, publicKey_] := Block[{w, u1, u2, X},
          If[r < 1 || r > m - 1, Return[False]];
          If[s < 1 || s > m - 1, Return[False]];
          w = ModularInverse[s, m];
          u1 = Mod[hash * w, m];
          u2 = Mod[r*w, m];
          X = EllipticCurveAdd[
             MultiplyBasePoint[G, a, p, u1], MultiplyBasePoint[publicKey, a, p, u2], p];
          Mod[First[X], m] == r
         ];
       ECDSAValidateHex[{hexGx , hexGy }, aHex , pHex ,
          mHex_, signature_, hashHex_, {publicKeyXHex_, publicKeyYHex_}] :=
         Block[{rHex, sHex, Gx, Gy, a, p, m, r, s, hash, publicKeyX, publicKeyY},
           {rHex, sHex} = StringPartition[signature, 64];
          Gx = FromDigits[hexGx, 16];
          Gy = FromDigits[hexGy, 16];
          a = FromDigits[aHex, 16];
           p = FromDigits[pHex, 16];
          m = FromDigits[mHex, 16];
           r = FromDigits[rHex, 16];
           s = FromDigits[sHex, 16];
           hash = FromDigits[hashHex, 16];
           publicKeyX = FromDigits[publicKeyXHex, 16];
           publicKeyY = FromDigits[publicKeyYHex, 16];
           ECDSAValidate[{Gx, Gy}, a, p, m, {r, s}, hash, {publicKeyX, publicKeyY}]
         ];
```

Example:

```
ln[115]:= a = 1;
       b = 4;
       p = 23;
       G = \{0, 2\};
       m = Length[ComputeCyclicGroup[G, a, p]];
In[120]:= privateKey = 5
Out[120]= 5
In[121]:= publicKey = MultiplyBasePoint[G, a, p, privateKey]
Out[121]= \{7, 20\}
 In[*]:= messageHash = 17;
 In[*]:= {r, s} = ECDSASign[G, a, p, m, k, messageHash, privateKey]
 Out[\sigma]= \{18, 11\}
 ln[*]:= ECDSAValidate[G, a, p, m, {r, s}, messageHash, publicKey]
 Out[ • ]= True
```

Visualization:

```
In[125]:= path = MultiplicationPath[G, a, p, privateKey]
Out[125]= \{\{0, 2\}, \{13, 12\}, \{11, 9\}, \{1, 12\}, \{7, 20\}\}
In[123]:= curveSet = CalculateCurvePoints[a, b, p];
```

```
In[127]:= ListPlot[{curveSet, path},
        AspectRatio → 1,
        Joined → {False, True},
        PlotTheme → "Monochrome",
        Frame → True,
        BaseStyle → FontSize → 14,
        GridLines → Automatic,
        FrameLabel \rightarrow {Style["x", 15], Style["y", 15]}
       ]
           20
           15
           10
Out[127]=
            5
                         5
                                   10
              0
                                             15
                                                        20
                                       Χ
```

Network simulation

secp256k1 parameters

```
G = { "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
   "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8"};
```

Key Generation

The **ECDSA key-pair** consists of:

- private key (integer): privKey • public key (EC point): pubKey = privKey * G
- The **private key** is generated as a **random integer** in the range [0...n-1]. The public key **pubKey** is a point on the elliptic curve, calculated by the EC point multiplication: pubKey = privKey * G (the private key, multiplied by the generator point G).

```
ToHex[n_, pad_ : 64] := IntegerString[n, 16, pad];
In[15]:=
       Concatenate[l_] := Apply[Join, 1];
       GenerateNodes[G_, a_, m_, n_] :=
         Block[{mdec, privateKeys, publicKeys, privateKeysPadded, publicKeysPadded},
          mdec = FromDigits[m, 16];
           privateKeys = Table[ToHex[RandomInteger[{2, mdec - 1}], 64], n];
          publicKeys = Map[StringJoin[MultiplyBasePointHex[G, a, m, #]] &, privateKeys];
          MapThread[<|"PublicKey" → #1, "PrivateKey" → #2|> &, {publicKeys, privateKeys}]
         ];
```

```
In[145]:= networkNodes = GenerateNodes[G, a, p, 10]
Out[145]= \{\langle | PublicKey \rightarrow \rangle
          936864b882a618a25708fd32e3287cac10d289a27b22cd130d3042e8e25e05cf74ea37cdd13550a4c2ce4
              2c6d0e222d3410c4a00ddd932261e8e3b8ccd65a68f, PrivateKey \rightarrow
          39629ecaccd9f717c1f515f7415f5d13ca2468be1de6c6966ce21f3af4c8029f|\rangle, \langle | PublicKey \rightarrow
          61249a16b3f56e3db642e5ca162beb0b64c3bee9e8768902c1482f6580e25de7a26590bb8cb37bbb4eb1f
              dc9a49d3e645a5ca480101030c732609033ccbc2b8b, PrivateKey \rightarrow
          1946334d1e5cd7bb60a83ee3b6170eab392be71a862d56e5c7ef72a4db647101\mid\rangle, \langlePublicKey \rightarrow
          5e6ac138d7041676c8cceaf562f5de44071aeddf90cf18e393b4288efdb8bb08048a73fee8baf07e577fd
              2d99588749360dd0c46ad953967cf6775232a0ea8be, PrivateKey →
          05dd2f218f631dafc92c8e8042501a9084de22a8495030f32012c695ee78fe76 \rangle, \langle PublicKey \rightarrow
          8eb2357242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03f81de9376940dac7b6e6092ce7d
              54250b70e6b5282f605a9a81803005f2703c8734ed2, PrivateKey →
          401d188c3823c4612c94312684d1b5627ab22bd2f29279f86565d41c00608a0 \mid \rangle, \langle \mid PublicKey \rightarrow \rangle
          8fdefc4cf847de6659a79c1641fa801aef8310b7b493cd5c810b4c3b5d58a99f43a298d156d9b71ee7b45
             84c5c79e89dace77d4b96d1e6634c9fcdcd289b2b0c, PrivateKey →
          9fda40e27f6d01d9b428d9467621ee76970478c4582fc27d0ed89561a0ff82cd\mid\rangle, \langlePublicKey\rightarrow
          dded0656896dbaef475215738f5120b0f477c8f3110a65f5b30dedcb684ce600987642476c187fb88bef7
             02061cb2a5aa78426f92397d4b59f290de923dd1ddc, PrivateKey \rightarrow
          bf5fda59b79d949beb61d292235de6288b733bd2bd6b0856e76e992e24568b3f\mid, \langle PublicKey \rightarrow
          24203ad958810688c6690f64b2ab410aa246b2fc00cd26565ac503604562e87173227191b2b54eb2abf86
              bd0711e77ffb74f7d371531f8b121e54e7ad3591569, PrivateKey \rightarrow
          be8e3c235f19007081120a6f697ca8db0fb6eeb1e85996c775b797f6a784f7df\mid \rangle, \langle \mid  PublicKey \rightarrow
          9bcfa371088022e83287d55892844fb08284bb5e402123e1bc608c7ab4dbf664cab4065c5bec6a127fb6c
              e11c3a8424f038aeff5a799a6b725362eb23e2459d2, PrivateKey \rightarrow
          94698ebc7e686035d1cf40c503e15622bb4a0d9c82d7a2e40a09e3a5e69327a9e8fd48281d666dcde3165
              2a9392fae483b02b620ae9ea634f8151bbb3428f42b, PrivateKey \rightarrow
          f983987749daa34f40f20be9e8c30dd58916760ee8eab3934589f1389d326ee0 <math>\rangle, \langle PublicKey \rightarrow
          6798e006757a961c3394d90c1b1ab8fedce2ab563b68d8d17f65a729fa9aae25433e4d34f661f30e5206a
              f049e154aa6018470f707969dba926605cc14c5e4bd,
```

PrivateKey → c91bf857ddc61c2fdb4c1934e2a9ef4797f652f907a3b79ea4da204b935575fd | > }

In[133]:=

Transaction[sender_, receiver_, units_] := <|</pre>

"Sender" → sender, "Receiver" → receiver, "Units" → units|>;

```
SimulateTransactions[networkNodes_, n_] := Block[{transactors},
           transactors =
            Take [Partition [RandomSample [networkNodes [[All, "PublicKey"]]], 2], n];
           Map[Transaction[First[#], Last[#], ToHex[RandomInteger[{1, 255}], 2]] &,
            transactors]
          ];
       TransactionBlock[transactions_, prevBlockSignature_] :=
          prevBlockSignature <> StringJoin[Concatenate[Map[Values, transactions]]];
       RandomNonceHex[m_] := IntegerString[RandomInteger[{1, FromDigits[m, 16]}], 16];
       MineBlock[G_, a_, p_, m_, hash_, privateKey_, difficulty_ : 2] :=
          Block[{i, signature, leadingDigits},
           i = 1;
           signature = "11";
           leadingDigits = StringJoin[ConstantArray["0", difficulty]];
           While [StringTake [signature, 2] # leadingDigits,
            signature = ECDSASignHex[G, a, p, m, RandomNonceHex[m], hash, privateKey];
            i++;
           ];
           {i, signature}
          ];
In[146]:= transactions = SimulateTransactions[networkNodes, 3]
Out[146]= \{ \langle | Sender \rightarrow 
          94698ebc7e686035d1cf40c503e15622bb4a0d9c82d7a2e40a09e3a5e69327a9e8fd48281d666dcde3165
              2a9392fae483b02b620ae9ea634f8151bbb3428f42b, Receiver \rightarrow
          8eb2357242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03f81de9376940dac7b6e6092ce7d
             54250b70e6b5282f605a9a81803005f2703c8734ed2, Units \rightarrow 6d\mid), \langle\mid Sender \rightarrow
          5e6ac138d7041676c8cceaf562f5de44071aeddf90cf18e393b4288efdb8bb08048a73fee8baf07e577fd
              2d99588749360dd0c46ad953967cf6775232a0ea8be, Receiver \rightarrow
          dded0656896dbaef475215738f5120b0f477c8f3110a65f5b30dedcb684ce600987642476c187fb88bef7
             02061cb2a5aa78426f92397d4b59f290de923dd1ddc, Units \rightarrow e0 | \rangle , \langle Sender \rightarrow
          9bcfa371088022e83287d55892844fb08284bb5e402123e1bc608c7ab4dbf664cab4065c5bec6a127fb6c
              e11c3a8424f038aeff5a799a6b725362eb23e2459d2, Receiver \rightarrow
          61249a16b3f56e3db642e5ca162beb0b64c3bee9e8768902c1482f6580e25de7a26590bb8cb37bbb4eb1f
             dc9a49d3e645a5ca480101030c732609033ccbc2b8b, Units \rightarrow 0d |\rangle
```

```
ln[151]:= block = TransactionBlock[transactions, ToHex[0, 128]]
8ebc7e686035d1cf40c503e15622bb4a0d9c82d7a2e40a09e3a5e69327a9e8fd48281d666dcde31652a939
         2fae483b02b620ae9ea634f8151bbb3428f42b8eb2357242224513080b264505b3a68d4db1dc36e1cfe0a
         50f0bd90a03f81de9376940dac7b6e6092ce7d54250b70e6b5282f605a9a81803005f2703c8734ed26d5e
         6ac138d7041676c8cceaf562f5de44071aeddf90cf18e393b4288efdb8bb08048a73fee8baf07e577fd2d
         99588749360dd0c46ad953967cf6775232a0ea8bedded0656896dbaef475215738f5120b0f477c8f3110a
         65f5b30dedcb684ce600987642476c187fb88bef702061cb2a5aa78426f92397d4b59f290de923dd1ddce
         09bcfa371088022e83287d55892844fb08284bb5e402123e1bc608c7ab4dbf664cab4065c5bec6a127fb6
         ce11c3a8424f038aeff5a799a6b725362eb23e2459d261249a16b3f56e3db642e5ca162beb0b64c3bee9e
         8768902c1482f6580e25de7a26590bb8cb37bbb4eb1fdc9a49d3e645a5ca480101030c732609033ccbc2b
         8b0d
In[152]:= hash = Hash[block, "SHA256", "HexString"]
Out/152|= 2d61c71a084e1f019be8695470bd70e17da372ae80df9b3ffc247560923c7531
      Simulation of nodes
       AddRewardToBlock[transactions_, publicKey_] := Append[
In[158]:=
          transactions, <|"Sender" → ToHex[0, 128], "Receiver" → publicKey, "Units" → "01"|>];
       SimulateNode[prevBlockSignature_, transactions_, privateKey_, publicKey_,
          {G_, a_, p_, m_}] := Block[{transactionsWithReward, block, hash, publicKeyParts},
          transactionsWithReward = AddRewardToBlock[RandomSample[transactions], publicKey];
          block = TransactionBlock[transactionsWithReward, prevBlockSignature];
          hash = Hash[block, "SHA256", "HexString"];
          publicKeyParts = StringPartition[publicKey, 64];
          {block, publicKeyParts, MineBlock[G, a, p, m, hash, privateKey, 2]}
         ];
 In[165]:= nodesSimulation = ProgressMap[SimulateNode[ToHex[0, 128], transactions,
```

#["PrivateKey"], #["PublicKey"], {G, a, p, m}] &, networkNodes];

In[166]:= firstMine = First[MinimalBy[nodesSimulation[[All, 3]], First]];

In[167]:= firstMiner = FirstCase[nodesSimulation, { , , firstMine}];

```
In[168]:= newBlock = <|"TransactionBlock" → First[firstMiner],</pre>
        "Signature" -> Last[Last[firstMiner]], "PublicKey" → firstMiner[[2]]|>
Out[168]= ⟨| TransactionBlock →
        9bcfa371088022e83287d55892844fb08284bb5e402123e1bc608c7ab4dbf664cab4065c5bec6a127f
           b6ce11c3a8424f038aeff5a799a6b725362eb23e2459d261249a16b3f56e3db642e5ca162beb0b64c
           3bee9e8768902c1482f6580e25de7a26590bb8cb37bbb4eb1fdc9a49d3e645a5ca480101030c73260
           9033ccbc2b8b0d5e6ac138d7041676c8cceaf562f5de44071aeddf90cf18e393b4288efdb8bb08048
           a73fee8baf07e577fd2d99588749360dd0c46ad953967cf6775232a0ea8bedded0656896dbaef4752
           15738f5120b0f477c8f3110a65f5b30dedcb684ce600987642476c187fb88bef702061cb2a5aa7842
           6f92397d4b59f290de923dd1ddce094698ebc7e686035d1cf40c503e15622bb4a0d9c82d7a2e40a09
           e3a5e69327a9e8fd48281d666dcde31652a9392fae483b02b620ae9ea634f8151bbb3428f42b8eb23
           57242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03f81de9376940dac7b6e6092ce7d5
           0000000008eb2357242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03f81de9376940d
           ac7b6e6092ce7d54250b70e6b5282f605a9a81803005f2703c8734ed201, Signature \rightarrow
        007d7f5ee6e52b4f41d9d5229ec38ddf971db0af00a3c9c46c3115a90378f60ee9d2ee31e60358967b6fa2
           1a19f7069a5b28dec501d1fc42a7cdf69d98f770b9,
      PublicKey \rightarrow {8eb2357242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03f81de9,
         376940dac7b6e6092ce7d54250b70e6b5282f605a9a81803005f2703c8734ed2}
In[176]:= hash = Hash[newBlock["TransactionBlock"], "SHA256", "HexString"];
      signature = newBlock["Signature"];
     publicKey = newBlock["PublicKey"];
In[179]:= ECDSAValidateHex[G, a, p, m, signature, hash, publicKey]
Out[179]= True
     Iteration 2
In[180]:= transactions = SimulateTransactions[networkNodes, 3]
Out[180]= \{ \langle | Sender \rightarrow 
         8fdefc4cf847de6659a79c1641fa801aef8310b7b493cd5c810b4c3b5d58a99f43a298d156d9b71ee7b45
            84c5c79e89dace77d4b96d1e6634c9fcdcd289b2b0c, Receiver \rightarrow
         936864b882a618a25708fd32e3287cac10d289a27b22cd130d3042e8e25e05cf74ea37cdd13550a4c2ce4
            2c6d0e222d3410c4a00ddd932261e8e3b8ccd65a68f, Units \rightarrow ee \mid \rangle, \langle \mid Sender \rightarrow ee \mid \rangle
         6798e006757a961c3394d90c1b1ab8fedce2ab563b68d8d17f65a729fa9aae25433e4d34f661f30e5206a
            f049e154aa6018470f707969dba926605cc14c5e4bd, Receiver \rightarrow
         61249a16b3f56e3db642e5ca162beb0b64c3bee9e8768902c1482f6580e25de7a26590bb8cb37bbb4eb1f
            dc9a49d3e645a5ca480101030c732609033ccbc2b8b, Units \rightarrow 69 \mid \rangle , \langle Sender \rightarrow
         dded0656896dbaef475215738f5120b0f477c8f3110a65f5b30dedcb684ce600987642476c187fb88bef7
            02061cb2a5aa78426f92397d4b59f290de923dd1ddc, Receiver \rightarrow
         5e6ac138d7041676c8cceaf562f5de44071aeddf90cf18e393b4288efdb8bb08048a73fee8baf07e577fd
            2d99588749360dd0c46ad953967cf6775232a0ea8be, Units <math>\rightarrow 3a \mid \rangle
In[182]:= prevBlockSignature = newBlock["Signature"];
```

```
In[183]:= nodesSimulation = ProgressMap[SimulateNode[prevBlockSignature,
                     transactions, #["PrivateKey"], #["PublicKey"], {G, a, p, m}] &, networkNodes];
 In[184]:= firstMine = First[MinimalBy[nodesSimulation[[All, 3]], First]];
           firstMiner = FirstCase[nodesSimulation, {_, _, firstMine}];
           newBlock2 = <|"TransactionBlock" → First[firstMiner],</pre>
               "Signature" -> Last[Last[firstMiner]], "PublicKey" → firstMiner[[2]]|>
Out[186]= ⟨ TransactionBlock →
               007d7f5ee6e52b4f41d9d5229ec38ddf971db0af00a3c9c46c3115a90378f60ee9d2ee31e60358967b6fa2
                     1a19f7069a5b28dec501d1fc42a7cdf69d98f770b9dded0656896dbaef475215738f5120b0f477c8f
                     3110a65f5b30dedcb684ce600987642476c187fb88bef702061cb2a5aa78426f92397d4b59f290de9
                     23dd1ddc5e6ac138d7041676c8cceaf562f5de44071aeddf90cf18e393b4288efdb8bb08048a73fee
                     8baf07e577fd2d99588749360dd0c46ad953967cf6775232a0ea8be3a6798e006757a961c3394d90c
                     1b1ab8fedce2ab563b68d8d17f65a729fa9aae25433e4d34f661f30e5206af049e154aa6018470f70
                     7969dba926605cc14c5e4bd61249a16b3f56e3db642e5ca162beb0b64c3bee9e8768902c1482f6580
                     e25de7a26590bb8cb37bbb4eb1fdc9a49d3e645a5ca480101030c732609033ccbc2b8b698fdefc4cf
                     847de6659a79c1641fa801aef8310b7b493cd5c810b4c3b5d58a99f43a298d156d9b71ee7b4584c5c
                     79e89dace77d4b96d1e6634c9fcdcd289b2b0c936864b882a618a25708fd32e3287cac10d289a27b2
                     2cd130d3042e8e25e05cf74ea37cdd13550a4c2ce42c6d0e222d3410c4a00ddd932261e8e3b8ccd65
                     803005f2703c8734ed201, Signature \rightarrow
               00ade813fa79a3f34805c227c02df4b7ce02e8854b64c084735a1073cde85f99542cbdc161e9e14305ec2e
                     172b7fbdde80e48fc9de6cfe62b0e98112972408cd,
             PublicKey \rightarrow \{8eb2357242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03f81de9, and based on the property of 
                 376940dac7b6e6092ce7d54250b70e6b5282f605a9a81803005f2703c8734ed2} | >
          Iteration 3
 ln[187]:= transactions = SimulateTransactions[networkNodes, 3]
Out[187] = \{ \langle | Sender \rightarrow \} \}
                 8fdefc4cf847de6659a79c1641fa801aef8310b7b493cd5c810b4c3b5d58a99f43a298d156d9b71ee7b45
```

```
84c5c79e89dace77d4b96d1e6634c9fcdcd289b2b0c, Receiver \rightarrow
          61249a16b3f56e3db642e5ca162beb0b64c3bee9e8768902c1482f6580e25de7a26590bb8cb37bbb4eb1f
             dc9a49d3e645a5ca480101030c732609033ccbc2b8b, Units \rightarrow de \mid \rangle, \langle Sender \rightarrow
          936864b882a618a25708fd32e3287cac10d289a27b22cd130d3042e8e25e05cf74ea37cdd13550a4c2ce4
             2c6d0e222d3410c4a00ddd932261e8e3b8ccd65a68f, Receiver \rightarrow
          24203ad958810688c6690f64b2ab410aa246b2fc00cd26565ac503604562e87173227191b2b54eb2abf86
             bd0711e77ffb74f7d371531f8b121e54e7ad3591569, Units \rightarrow 08 \mid \rangle , \langle Sender \rightarrow
          9bcfa371088022e83287d55892844fb08284bb5e402123e1bc608c7ab4dbf664cab4065c5bec6a127fb6c
             e11c3a8424f038aeff5a799a6b725362eb23e2459d2, Receiver \rightarrow
          8eb2357242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03f81de9376940dac7b6e6092ce7d
             54250b70e6b5282f605a9a81803005f2703c8734ed2, Units \rightarrow f0 \mid \rangle 
In[188]:= prevBlockSignature = newBlock2["Signature"];
In[189]:= nodesSimulation = ProgressMap[SimulateNode[prevBlockSignature,
            transactions, #["PrivateKey"], #["PublicKey"], {G, a, p, m}] &, networkNodes];
```

```
In[190]:= firstMine = First[MinimalBy[nodesSimulation[[All, 3]], First]];
            firstMiner = FirstCase[nodesSimulation, {_, _, firstMine}];
            newBlock3 = <|"TransactionBlock" → First[firstMiner],</pre>
                 "Signature" -> Last[Last[firstMiner]], "PublicKey" → firstMiner[[2]]|>
Out[192]= ⟨| TransactionBlock →
                00ade813fa79a3f34805c227c02df4b7ce02e8854b64c084735a1073cde85f99542cbdc161e9e14305ec2e
                       172b7fbdde80e48fc9de6cfe62b0e98112972408cd8fdefc4cf847de6659a79c1641fa801aef8310b
                       7b493cd5c810b4c3b5d58a99f43a298d156d9b71ee7b4584c5c79e89dace77d4b96d1e6634c9fcdcd
                       289b2b0c61249a16b3f56e3db642e5ca162beb0b64c3bee9e8768902c1482f6580e25de7a26590bb8
                       cb37bbb4eb1fdc9a49d3e645a5ca480101030c732609033ccbc2b8bde9bcfa371088022e83287d558
                       92844fb08284bb5e402123e1bc608c7ab4dbf664cab4065c5bec6a127fb6ce11c3a8424f038aeff5a
                       799a6b725362eb23e2459d28eb2357242224513080b264505b3a68d4db1dc36e1cfe0a50f0bd90a03
                       f81de9376940dac7b6e6092ce7d54250b70e6b5282f605a9a81803005f2703c8734ed2f0936864b88:
                       2a618a25708fd32e3287cac10d289a27b22cd130d3042e8e25e05cf74ea37cdd13550a4c2ce42c6d0
                       e222d3410c4a00ddd932261e8e3b8ccd65a68f24203ad958810688c6690f64b2ab410aa246b2fc00c
                       d26565ac503604562e87173227191b2b54eb2abf86bd0711e77ffb74f7d371531f8b121e54e7ad359
                       20b0f477c8f3110a65f5b30dedcb684ce600987642476c187fb88bef702061cb2a5aa78426f92397d
                       4b59f290de923dd1ddc01, Signature →
                008bc9d3eee592ea92a36266258f39cf9a56e8b42b803685c93432738bce647d6123d9eb5d39c24eae1b7b
                       1877e859d39e22fbbef67e37a3289dad0c6d3a0c72,
              PublicKey \rightarrow \{dded0656896dbaef475215738f5120b0f477c8f3110a65f5b30dedcb684ce600, full angle of the property of
                   987642476c187fb88bef702061cb2a5aa78426f92397d4b59f290de923dd1ddc} | >
```

First 8 trials

```
In[201]:= hash = Hash[block, "SHA256", "HexString"]
out[201]= a397a3076b6d92b723348b671be686c6d8fbcd19757ca8cda5fc272445895fad
 <code>m[∗]= signatures = Table[ECDSASignHex[G, a, p, m, ToHex[k, 64], hash, privateKey], {k, 2, 10}]</code>
 Out = { c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5530ba3f44d230db31a114b9:
          fac405628476fc487ab8812324438d4933af238ea,
       f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f93850de47cb04a677d8db98a
          cc82ecbef9402650f7278813b4bd5c8e7cf45e3a8,
       e493dbf1c10d80f3581e4904930b1404cc6c13900ee0758474fa94abe8c4cd13d0add5c9d2a78639972ee30
          b87758c09adee21d48e2b425d6710acf835221d19,
       2f8bde4d1a07209355b4a7250a5c5128e88b84bddc619ab7cba8d569b240efe46d7b6e78ebeb0059caf45c4
          2358fa715c7cf400bd8cef5949b7f125da76ca298,
       fff97bd5755eeea420453a14355235d382f6472f8568a18b2f057a1460297556396502ce141a28bdfd8eb78
          3dfca183ba8e999f8a13cff93cdc651679c8b8b85,
       5cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc6ff0117e33c9a8ebc2af7f6
          81fb5e371f46a655d2441ab40078bacc9ac32e824,
       2f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a0125525e7381636ed50a5c555
          84595223489c34f469204dfa774c3652b7f2bd652,
       acd484e2f0c7f65309ad178a9f559abde09796974c57e714c35f110dfc27ccbe6d8b4aec4af971c5270fc15
          8da2ef468f696d3c1bd6cdf471a9373d795e56afd,
       a0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c7c26d422b5b092c50792f36e
          3cf15db61781483957a206f90179c09c5c5ce42ba}
```