

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

Enhanced Chemotaxis of T-Lymphocytes from 825T Allele Carriers

FIG. 8

FIG. 9

Time to AIDS

AIDS is defined as AIDS-defining disorders or CD4 count < 200

FIG. 10

Event: CD4 Cell Count Below 200 per μl

FIG. 11

Event: Lowest CD4 Cell Count

FIG. 12

Event: Time to maximum HIV Virus Load

Virus Copy Number determined by Quantitative PCR

FIG. 13

FIG. 14

Potential Structures of G β 3 and G β 3s / G β 3s-2

FIG. 15

FIG. 16

ß3-original sequence of Levine. The exons are underlined alternately. The area which is omitted by cryptic splice as bold-faced.

- 1 gggtcgATGG GGGAGATGGA GCAACTGCGT CAGGAAGCGG AGCAGCTCAA GAAGCAGATT Start-ATG EXON 3 after Ansari-Lari Nucleotide 1-6 seem not to be affected
- 61 <u>GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG</u>
 /Beginning EXON 4 /EXON 5 Beginning
 => ENDE 1 KLON ANSARI
- 121 <u>GTGGTGGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT</u> EXON 5
- 181 TACGCCATGC ACTGGGCCAC TGATTCTAAG CTGCTGGTAA GTGCCTCGCA AGATGGGAAG EXON 5 / Beginning EXON 6
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC EXON 6 / EXON 7
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC EXON 7
- 361 AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG EXON 7
- 421 <u>CTTTCTGCTC ACACAG</u>GTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG EXON 7 /EXON 8
- 481 ACCAGCTCGG GGGACACCAC GTG<u>TGCCTTG TGGGACATTG AGACTGGGCA GCAGAAGACT</u>
 EXON 8 /EXON 9
 cryptic SPLICING
- 541 GTATTTGTGG GACACACGGG TGACTGCATG AGCCTGGCTG TGTCTCCTGA CTTCAATCTC
 EXON 9
 cryptic SPLICING
- 601 TTCATTTCGG GGGCCTGTGA TGCCAGTGCC AAGCTCTGGG ATGTGCGAGA GGGGACCTGC
 EXON 9
 cryptic SPLICING /
- 661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCC<u>A TCTGT</u>TTCTT CCCCAATGGA EXON 9 / Beginning EXON 10
- 721 GAGGCCATCT GCACGGGCTC GGATGACGCT TCCTGCCGCT TGTTTGACCT GCGGGCAGAC EXON 10

FIG. 17(cont.)

- 781 CAGGAGCTGA TCTGCTTCTC CCACGAGAGC ATCATCTGCG GCATCACGTC CGTGGCCTTC EXON 10 Polymorphism site acgtc tgt
- 841 TCCCTCAGTG GCCGCCTACT ATTCGCTGGC TACGACGACT TCAACTGCAA TGTCTGGGAC EXON 10
- 901 TCCATGAAGT CTGAGCGTGT GG<u>GCATCCTC TCTGGCCACG ATAACAGGGT GAGCTGCCTG</u>
 EXON 10 /Beginning EXON 11
- 961 GGAGTCACAG CTGACGGGAT GGCTGTGGCC ACAGGTTCCT GGGACAGCTT CCTCAAAATC EXON 11
- 1021 <u>TGGAACTGAg gaggetggag aaagggaagt ggaaggeagt gaacacactc agcagccccc</u>
 EXON 11
 End of Open Reading Frame
- 1081 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag EXON 11
- 1141 <u>ctttctctt tgagggcagt ggggagcatg ggactgtgcc tttgggaggc agcatcaggg</u> EXON 11
- 1201 <u>acacagggge aaagaactge cecateteet eccatggeet teceteecea eagteeteae</u> EXON 11
- 1261 <u>agectetece ttaatgagea aggaeaacet geceetecee agecetttge aggeeeagea</u> EXON 11
- 1321 <u>gacttgagtc tgaggcccca ggccctagga ttcctcccc agagccacta cctttgtcca</u> EXON 11

"Ban Polymorphismus" tetggeacta eta

- 1381 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcacca ctagggtcct EXON 11
- 1441 ggccctcttc ttattcatgc tttctccttt ttctaccttt ttttctctcc taagacacct EXON 11
- 1501 <u>gcaataaagt gtagcaccct ggt</u> EXON 11 POLY A SITE

FIG. 18

Sequence with two polymorphisms (Numbering after the Levine sequence)

antastas	ameratura	connection	compound	amantma	mannantt	60
gggtogatgg	gggagatgga	gcaactgogt	caggaagcgg	agcagctcaa	gaagcagatt	
gcagatgcca	ggæægctg	tgctgacgtt	actctggcag	agctggtgtc	tggcctagag	120
gtggtgggac	gagtocagat	oggaogogg	oggaogttaa	ggggacacct	ggocægatt	180
tacgccatgc	actgggccac	tgattctaag	ctgctggtaa	gtgcctcgca	agatgggaag	240
ctgatogtgt	gggacagcta	caccaccaac	aaggtgcacg	ccatcccact	gogctoctoc	300
tgggtcatga	cctgtgccta	tgcccatca	gggaactttg	tggcatgtgg	ggggctggac	360
acatgtgtt	ocatctacaa	octcaaatoc	ogtgagggca	atgtcaaggt	cagoogggag	420
ctttctgctc	acacaggtta	tctctcctgc	tgccgcttcc	tggatgacaa	caatattgtg	480
accagctogg	gggacaccac	gtgtgccttg	tgggacattg	agactgggca	gcagaagact	540
gtatttgtgg	gacacaoggg	tgactgcatg	agcctggctg	tgtctcctga	cttcaatctc	600
ttcatttcgg	gggoctgtga	tgccagtgcc	ægctctggg	atgtgcgaga	ggggacctgc	660
ogtcagactt	tcactggcca	ogagtoggac	atcaaogoca	tctgtttctt	ccccaatgga	720
gaggocatct	gcacgggctc	ggatgacgct	toctgoogct	tgtttgacct	gogggcagac	780
caggagctga	tetgettete	ccacgagagc	atcatctgog	gcatcacgtc	t gtggccttc	840
tooctcagtg	gccgcctact	attogctggc	tacgacgact	tcaactgcaa	tgtctgggac	900
tocatgaagt	ctgagogtgt	gggcatoctc	tctggcacg	ataacagggt	gagetgeetg	960
ggagtcacag	ctgacgggat	ggctgtggcc	acaggttoct	gggacagctt	octoaaatc	1020
tggaactgag	geggetggeg	ææggægt	ggæggcægt	geacacactc	agcagcccc	1080
tgcccgaccc	catctcattc	aggtgt toto	ttctatattc	ogggtgccat	toccactaag	1140
ctttctcctt	tgagggcagt	ggggagcatg	ggactgtgcc	tttgggaggc	agcatcaggg	1200
acacaggggc	æægææctgc	cocatctcct	cocatggcct	tooctoocca	cagtoctcac	1260
agoctctocc	ttaatgagca	aggacaacct	goooctoooc	agccctttgc	aggoocagca	1320
gacttgagtc	tgaggccca	ggccctagga	ttcctcccc	agagocacta	cctttgtcca	1380
tctggcacta	ctaggcctgg	gtggtatagg	gogtttggcc	ctgtgactat	ggctctggca	1440
ocactagggt	cctggccctc	ttcttattca	tgctttctcc	tttttctacc	ttttttctc	1500
toctaagaca	octgoaataa	agtgtagcac	cctggt			1536

FIG. 19

Nucleic acid sequence of cDNA of Gß3 and description of the deletion in Gß3 and Gß3s-2. Numbering referenced to the cDNA of Levine et al.(Levine, M.A., Smallwood, P.M., Moen, P.T., Jr., Helman, L.J., and Ahn, T.G. Molecular cloning of ß3 subunit, a third form of the G protein beta-subunit polypeptide. *Proc.Natl.Acad.Sci. USA* 87(6):2329-2333, 1990) Here numbering does not begin with start codon ATG, but 6 nucleotides earlier in the 5' area.

- 1 gggtcgATGG GGGAGATGGA GCAACTGCGT CAGGAAGCGG AGCAGCTCAA GAAGCAGATT Start-ATG EXON 3 Nucleotide 1-6 seem not to be affected
- 61 <u>GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG</u>
 /Beginn EXON 4 /EXON 5 Beginning
- 121 GTGGTGGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT EXON 5
- 181 TACGCCATGC ACTGGGCCAC TGATTCTAAG CTGCTGGTAA GTGCCTCGCA AGATGGGAAG EXON 5 / Beginning EXON 6
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC EXON 6 / EXON 7
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC EXON 7
- 361 <u>AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG</u> EXON 7
- 421 CTTTCTGCTC ACACAGGTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG EXON 7 /EXON 8

Deletion bei G3s

- 481 ACCAGCTCGG GGGACACCAC GTGTGCCTTG TGGGACATTG AGACTGGGCA GCAGAAGACT
 EXON 8 /EXON 9
- 541 GTATTTGTGG GACACACGGG TGACTGCATG AGCCTGGCTG TGTCTCCTGA CTTCAATCTC

 EXON 9
- EXON 9
- | Deletion in G33s2 |
 661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCC<u>A TCTGT</u>TTCTT CCCCAATGGA |
 EXON 9 | Beginn EXON 10 |
 Intron dazwischen 1607 bp

FIG. 19(cont.)

	2. 13 (001)					
	Deletion in	G33s2				
721	GAGGCCATCT (ECACGGGCTC	GGATGACGCT	TOCTGCCGCT	TGTTTGACCT	GOGGGCAGAC
	EXON 10					
781	CAGGAGCTGA	гстесттстс	CCACGAGAGC	ATCATCTGCG	GCATCACGTC	CGTGGCCTTC
	EXON 10		polymo	orphism site	e agto	tgt
841	TCCCTCAGTG (EXON 10	3CCGCCTACT	ATTOGCTGGC	TACGACGACT	TCAACTGCAA	TGTCTGGGAC
901	TCCATGAAGT (CTGAGCGTGT	GGGCATCCTC	TCTGGCCACG	ATAACAGGGT	GAGCTGCCTG
	EXON 10	/E	Beginning E	XON 11 (Inti	ron dazw. 98	39 bp)
961	GGAGTCACAG (CTGACGGGAT	GGCTGTGGCC	ACAGGTTCCT	GGGACAGCTT	CCTCAAAATC
	EXON 11					
1021	TGGAACTGAg (gaggetggag	aaagggaagt	ggaaggcagt	gaacacactc	agcagccccc
	EXON 11					
	End	of Open Re	eading Frame	e B3-3		
1081	tgcccgaccc c EXON 11	catctcattc	<u>aggtgttete</u>	ttctatattc	cgggtgccat	tcccactaag
1141	ctttctcctt	taaaaacaat	gagagata	agactatacc	tttaggaggc	agcatcaggg
	EXON 11					
1201	acacagggc a	asansactac	cocatotoot	cocatagost	tecetecce	cartecteae
1201	EXON 11	aaayaac tyc	Cocatotoct	cccatggcct	tocctocca	caytecteac
1001						
1201	agcctctccc 1	<u>LLaa Lgagca</u>	aggacaacct	gcccctcccc	agccctttgc	aggcccagca
1321	gacttgagtc 1	tgaggcccca	ggccctagga	ttcctccccc	agagccacta	cctttgtcca
	EXON 11				C1423	ĒŢ.
					tctggcadta	cta
1381	ggcctgggtg g	gtatagggcg	tttggccctg	tgactatggc	tctggcacca	ctagggtcct
	- X(E/) 7 7					

- 1441 ggccctcttc ttattcatgc tttctccttt ttctaccttt ttttctctcc taagacacct EXON 11
- 1501 <u>gcaataaagt gtagcaccct ggt</u>
 EXON 11 POLY A SITE

FIG. 20

Amino acid sequence of GB3s-2 (Combined production)

48												gag Glu 5				
96		_	_		_	_	_	_	_			gcc Ala	_	_		_
												cta Leu				
	_			_	_			_	_	_		gga Gly			_	
	atc Ile 75											ctg Leu				
288	_	_			_			_				tac Tyr 80	_	_		-
	gtg Val						_		_	_		atg Met	_			
	tcc Ser				Tyr					Asn		ctg Leu				
	ggt Gly			_		Leu			_	_	Lys	gtc Val				
	_		Val				_	Asp	_		_	tgc Cys 145	Cys			

FIG. 20(cont.)

ggg Gly									528
act Thr									576
cct Pro								gcc Ala	624
ctc Leu									672
gag Glu 225								cgc Arg	720
cta Leu								tcc Ser	768
aag Lys									816
tgc Cys									864
 gac Asp 290	_				•				894