Analysis: The Equation

Test set 1 (Visible)

For the first test set, notice that the maximum value of \mathbf{k} is 127. This is because each $\mathbf{A_i}$ is at most 100, so the leading digit of $\mathbf{A_i}$ is at most $2^6 = 64$. If $\mathbf{k} \ge 128$, then the leading digit of \mathbf{k} is at least $2^7 = 128$, meaning that $(\mathbf{A_i} \times \mathbf{k}) \ge 128 > \mathbf{M}$.

Hence, we can compute the answer by checking each value of \mathbf{k} less than 128 and finding the largest one which produces a sum less than \mathbf{M} .

Test set 2 (Hidden)

For the second test set, the reasoning above tells us that $\mathbf{k} < 2^{50}$, which is too big for us to check every value.

Instead, notice that each bit of k only affects a single bit of each A_i . We can use this property to compute each bit of k separately.

For each $1 \le i \le 50$, define ones(i) to be the number of rules $\mathbf{A_i}$ with the i-th bit (numbered starting from the least significant bit) equal to 1. Likewise, define zeroes(i) to be the number of rules with the i-th bit equal to 0. Then we can re-write the sum:

$$\Sigma_{1 \le j \le N} A_j \text{ xor } k$$

as:

$$\Sigma_{i:i-th \text{ bit of } \mathbf{k} \text{ is } 1} 2^i \times zeroes(i) + \Sigma_{i:i-th \text{ bit of } \mathbf{k} \text{ is } 0} 2^i \times ones(i)$$

Note that we can minimize this sum by choosing the *i*-th bit of **k** to be 1 if $ones(i) \ge zeroes(i)$, or 0 otherwise. Define f(j) to be the minimum value of the above sum over all bits $i \le j$. We can use f(j) to determine if a feasible value of **k** exists for the lowest j bits, which lets us solve this problem greedily. The greedy solution is as follows: starting from the most significant bit i, check if we can set it to be one (by adding cost of setting this bit to one and f(i-1)). If this value is less than or equal to **m**, there exists a feasible **k** with the i-th bit set to one. Since we want to set to maximize **k**, it is optimal for us to set this bit to 1. Otherwise, if the sum is larger than **m**, set the bit to zero. Then iterate by decreasing **m** by the cost at the current bit and checking the next most significant bit (i-1). In this way, we are able to find the largest feasible **k**. If f(i) is precomputed, the runtime of this algorithm is $O(\mathbf{N}\log(\max(\mathbf{A_i})))$.

Note that since $\mathbf{A_i} \le 10^{15}$ and $\mathbf{N} \le 1000$, the maximum sum is a little more than 10^{18} , so using 64-bit integers is sufficient for this problem.