Package 'Giotto'

October 18, 2020

```
Title Spatial Single-Cell Transcriptomics Toolbox
Version 1.0.3
Maintainer Ruben Dries <rubendries@gmail.com>
Description Toolbox to process, analyze and visualize spatial single-cell expression data.
License GPL-3 | file LICENSE
Encoding UTF-8
LazyData true
URL https://rubd.github.io/Giotto/, https://github.com/RubD/Giotto
BugReports https://github.com/RubD/Giotto/issues
RoxygenNote 7.1.1
Depends base (>= 3.5.0),
      utils (>= 3.5.0),
      R (>= 3.5.0)
Imports ClusterR,
      ComplexHeatmap (>= 1.20.0),
      cowplot (>= 0.9.4),
      data.table (>= 1.12.2),
      dbscan (>= 1.1-3),
      deldir,
      dendextend (>= 1.13.0),
      devtools,
      farver (>= 2.0.3),
      fitdistrplus,
      ggalluvial (>= 0.9.1),
      ggplot2 (>= 3.1.1),
      ggdendro,
      ggraph,
      grDevices,
      graphics,
      igraph (>= 1.2.4.1),
      irlba,
      If a (>= 1.12.0),
      limma,
      Matrix,
      magick,
      magrittr,
```

2 R topics documented:

```
matrixStats (>= 0.55.0),
   methods,
   plotly,
   parallel,
   \frac{1}{2} qvalue (>= 2.14.1),
   RColorBrewer (>= 1.1-2),
   Rcpp,
   reshape2,
   reticulate (>= 1.14),
   Rfast,
   Rtsne (>= 0.15),
   rlang (>= 0.4.3),
   R.utils,
   scales (>= 1.0.0),
   uwot (>= 0.0.0.9010)
Suggests Biobase,
   biomaRt,
   circlize,
   FactoMineR,
   factoextra,
   geometry,
   ggforce,
   ggrepel,
   htmlwidgets,
   jackstraw,
   knitr,
   MAST,
   multinet (>= 3.0.2),
   png,
   quadprog,
   rmarkdown,
   RTriangle (>= 1.6-0.10),
   scran (>= 1.10.1),
   SingleCellExperiment,
   smfishHmrf,
   SPARK,
   tiff,
   trendsceek
biocViews
VignetteBuilder knitr
LinkingTo Rcpp,
   RcppArmadillo
R topics documented:
     9
```

addGeneStatistics
addGiottoImage
addGiottoImageToSpatPlot
addHMRF
addNetworkLayout
addStatistics
adjustGiottoMatrix
anndataToGiotto
annotateGiotto
annotateSpatialGrid
annotateSpatialNetwork
binSpect
binSpectMulti
binSpectSingle
calculateHVG
calculateMetaTable
calculateMetaTableCells
cellProximityBarplot
cellProximityEnrichment
cellProximityHeatmap
cellProximityNetwork
cellProximitySpatPlot
cellProximitySpatPlot2D
cellProximitySpatPlot3D
cellProximityVisPlot
changeGiottoInstructions
changeImageBg
checkGiottoEnvironment
clusterCells
clusterSpatialCorGenes
=6
combineICG
combineInteractionChangedGenes
combineMetadata
convertEnsemblToGeneSymbol
createCrossSection
createGiottoImage
createGiottoInstructions
createGiottoObject
createGiottoVisiumObject
createMetagenes
createNearestNetwork
createSpatialDefaultGrid
createSpatialDelaunayNetwork
createSpatialEnrich
createSpatialGrid
createSpatialKNNnetwork
createSpatialNetwork

4

create_crossSection_object	7
crossSectionGenePlot	8
crossSectionGenePlot3D	9
crossSectionPlot	0
crossSectionPlot3D	1
detectSpatialCorGenes	2
detectSpatialPatterns	3
dimCellPlot	4
dimCellPlot2D	6
dimGenePlot	9
dimGenePlot2D	0
dimGenePlot3D	3
dimPlot	5
dimPlot2D	7
dimPlot3D	0
doHclust	2
doHMRF	
doKmeans	
doLeidenCluster	
doLeidenSubCluster	
doLouvainCluster	
doLouvainSubCluster	
doRandomWalkCluster	
doSNNCluster	
estimateImageBg	
exportGiottoViewer	
exprCellCellcom	
fDataDT	
filterCellProximityGenes	
filterCombinations	
filterCPG	
filterDistributions	
filterGiotto	
filterICG	
filterInteractionChangedGenes	
findCellProximityGenes	
findCPG	
findGiniMarkers	
findGiniMarkers one vs all	
findICG	
findInteractionChangedGenes	
findMarkers	
findMarkers_one_vs_all	
findMastMarkers	
findMastMarkers_one_vs_all	
findNetworkNeighbors	
findScranMarkers_one_vs_all	
get10Xmatrix	
get10Xmatrix_h5	
getClusterSimilarity	
getDendrogramSplits	3

getDistinctColors	
getGiottoImage	
getSpatialDataset	
giotto-class	
heatmSpatialCorGenes	136
hyperGeometricEnrich	137
insertCrossSectionGenePlot3D	138
insertCrossSectionSpatPlot3D	139
installGiottoEnvironment	140
jackstrawPlot	141
loadHMRF	143
makeSignMatrixPAGE	143
makeSignMatrixRank	
mean_giotto	
mergeClusters	
mini_giotto_3D	
mini_giotto_multi_cell	
mini_giotto_single_cell	
normalizeGiotto	
PAGEEnrich	
pDataDT	
plotCCcomDotplot	
plotCCcomHeatmap	
plotCellProximityGenes	
plotCombineCCcom	
plotCombineCellCellCommunication	
plotCombineCellProximityGenes	
plotCombineCPG	
plotCombineICG	
plotCombineInteractionChangedGenes	
plotCPG	
plotGiottoImage	
plotHeatmap	
plotICG	
plotInteractionChangedGenes	
plotMetaDataCellsHeatmap	
plotMetaDataHeatmap	
plotPCA	
plotPCA_2D	173
plotPCA_3D	175
plotRankSpatvsExpr	176
plotRecovery	177
plotRecovery_sub	178
plotStatDelaunayNetwork	178
plotTSNE	179
plotTSNE_2D	181
plotTSNE_3D	
plotUMAP	
plotUMAP_2D	
plotUMAP_3D	
processGiotto	
rankEnrich	

6

rankSpatialCorGroups	
readExprMatrix	
readGiottoInstructions	
removeCellAnnotation	
removeGeneAnnotation	
removeGiottoEnvironment	
replaceGiottoInstructions	. 195
rowMeans_giotto	
rowSums_giotto	
runDWLSDeconv	. 197
runHyperGeometricEnrich	. 197
runPAGEEnrich	. 198
runPAGEEnrich_OLD	. 200
runPatternSimulation	. 201
runPCA	. 203
runRankEnrich	. 204
runSpatialDeconv	. 205
runSpatialEnrich	. 206
runtSNE	. 208
runUMAP	
screePlot	
selectPatternGenes	
show, giotto-method	
showClusterDendrogram	
showClusterHeatmap	
showGiottoImageNames	
showGiottoInstructions	
showGrids	
showNetworks	
showPattern	
showPattern2D	
showPattern3D	
showPatternGenes	
showProcessingSteps	
showSaveParameters	
showSpatialCorGenes	
signPCA	
silhouetteRank	
silhouetteRankTest	
simulateOneGenePatternGiottoObject	
spark	
spatCellCellcom	
spatCellPlot	
spatCellPlot2D	
spatDimCellPlot	
spatDimCellPlot2D	
spatDimGenePlot	
spatDimGenePlot2D	
spatDimGenePlot3D	
spatDimPlot	
spatDimPlot2D	
spatDimPlot3D	
UDW	. 200

addCellIntMetadata 7

Index		297
	writeHMRFresults	295
	violinPlot	294
	viewHMRFresults3D	293
	viewHMRFresults2D	292
	viewHMRFresults	292
	updateGiottoImage	291
	t_giotto	290
	trendSceek	290
	subsetGiottoLocs	288
	subsetGiotto	288
	subClusterCells	286
	stitchTileCoordinates	286
	stitchFieldCoordinates	285
	specificCellCellcommunicationScores	283
	spatPlot3D	280
	spatPlot2D	277
	spatPlot	274
	spatNetwDistributionsKneighbors	274
	spatNetwDistributionsDistance	273
	spatNetwDistributions	272
	spatialDE	271
	spatialAEH	270
	spatGenePlot3D	267
	spatGenePlot2D	265
	spatGenePlot	263

 ${\it add} {\it CellIntMetadata}$

add Cell Int Metadata

Description

Creates an additional metadata column with information about interacting and non-interacting cell types of the selected cell-cell interaction.

```
addCellIntMetadata(
  gobject,
  spatial_network = "spatial_network",
  cluster_column,
  cell_interaction,
  name = "select_int",
  return_gobject = TRUE
)
```

8 addCellMetadata

Arguments

```
gobject giotto object

spatial_network

name of spatial network to use

cluster_column column of cell types

cell_interaction

cell-cell interaction to use

name

name for the new metadata column

return_gobject return an updated giotto object
```

Details

This function will create an additional metadata column which selects interacting cell types for a specific cell-cell interaction. For example, if you want to color interacting astrocytes and oligodendrocytes it will create a new metadata column with the values "select_astrocytes", "select_oligodendrocytes", "other_astrocytes", "other_oligodendrocytes" and "other". Where "other" is all other cell types found within the selected cell type column.

Value

Giotto object

addCellMetadata

addCellMetadata

Description

adds cell metadata to the giotto object

Usage

```
addCellMetadata(
  gobject,
  new_metadata,
  vector_name = NULL,
  by_column = FALSE,
  column_cell_ID = NULL)
```

Arguments

gobject giotto object

new_metadata new cell metadata to use (data.table, data.frame, ...)
vector_name (optional) custom name if you provide a single vector

by_column merge metadata based on cell_ID column in pDataDT (default = FALSE)

column_cell_ID column name of new metadata to use if by_column = TRUE

addCellStatistics 9

Details

You can add additional cell metadata in two manners:

• 1. Provide a data.table or data.frame with cell annotations in the same order as the cell_ID column in pDataDT(gobject)

• 2. Provide a data.table or data.frame with cell annotations and specificy which column contains the cell IDs, these cell IDs need to match with the cell_ID column in pDataDT(gobject)

Value

giotto object

 ${\tt addCellStatistics}$

addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to cell metadata:

- nr_genes: Denotes in how many genes are detected per cell
- perc_genes: Denotes what percentage of genes is detected per cell
- total_expr: Shows the total sum of gene expression per cell

Value

```
giotto object if return_gobject = TRUE
```

10 addGenesPerc

Examples

```
data(mini_giotto_single_cell)
updated_giotto_object = addCellStatistics(mini_giotto_single_cell)
```

addGeneMetadata

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F, column_gene_ID = NULL)
```

Arguments

```
gobject giotto object
new_metadata new metadata to use
```

by_column merge metadata based on gene_ID column in fDataDT column_gene_ID column name of new metadata to use if by_column = TRUE

Details

You can add additional gene metadata in two manners: 1. Provide a data.table or data.frame with gene annotations in the same order as the gene_ID column in fDataDT(gobject) 2. Provide a data.table or data.frame with gene annotations and specificy which column contains the gene IDs, these gene IDs need to match with the gene_ID column in fDataDT(gobject)

Value

giotto object

 $add {\tt GenesPerc}$

addGenesPerc

Description

calculates the total percentage of (normalized) counts for a subset of selected genes

```
addGenesPerc(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  vector_name = "gene_perc",
  return_gobject = TRUE
)
```

addGeneStatistics 11

Arguments

```
gobject giotto object
expression_values
expression values to use
genes vector of selected genes
vector_name column name as seen in pDataDT()
return_gobject boolean: return giotto object (default = TRUE)
```

Value

giotto object if return_gobject = TRUE, else a vector with

Examples

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

12 addGiottoImage

Details

This function will add the following statistics to gene metadata:

- nr_cells: Denotes in how many cells the gene is detected
- per_cells: Denotes in what percentage of cells the gene is detected
- total_expr: Shows the total sum of gene expression in all cells
- mean_expr: Average gene expression in all cells
- mean_expr_det: Average gene expression in cells with detectable levels of the gene

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
data(mini_giotto_single_cell)
updated_giotto_object = addGeneStatistics(mini_giotto_single_cell)
```

addGiottoImage

addGiottoImage

Description

Adds giotto image objects to your giotto object

Usage

```
addGiottoImage(gobject, images)
```

Arguments

gobject giotto object

images list of giotto image objects, see createGiottoImage

Value

an updated Giotto object with access to the list of images

```
add {\tt GiottoImageToSpatPlot}
```

add Giot to Image To Spat Plot

Description

Add a giotto image to a spatial ggplot object post creation

Usage

```
addGiottoImageToSpatPlot(spatpl = NULL, gimage = NULL)
```

Arguments

spatpl a spatial ggplot object

gimage a giotto image, see createGiottoImage

Value

an updated spatial ggplot object

addHMRF addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL, hmrf_name = NULL)
```

Arguments

gobject giotto object

 $\label{eq:hmrf} HMRF \ output \ from \ do HMRF()$

k number of domains

hmrf_name specify a custom name

Value

giotto object

14 addNetworkLayout

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a selected nearest neighbor network

Usage

```
addNetworkLayout(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_type = c("drl"),
  options_list = NULL,
  layout_name = "layout",
  return_gobject = TRUE
)
```

Arguments

Details

This function creates layout coordinates based on the provided kNN or sNN. Currently only the force-directed graph layout "drl", see layout_with_drl, is implemented. This provides an alternative to tSNE or UMAP based visualizations.

Value

giotto object with updated layout for selected NN network

addStatistics 15

 ${\tt addStatistics}$

addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

detection_threshold

detection threshold to consider a gene detected

return_gobject boolean: return giotto object (default = TRUE)
```

Details

See addGeneStatistics and addCellStatistics

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
data(mini_giotto_single_cell)
updated_giotto_object = addStatistics(mini_giotto_single_cell)
```

adjustGiottoMatrix

adjust Giot to Matrix

Description

Adjust expression values to account for known batch effects or technological covariates.

16 anndataToGiotto

Usage

```
adjustGiottoMatrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  batch_columns = NULL,
  covariate_columns = NULL,
  return_gobject = TRUE,
  update_slot = c("custom")
)
```

Arguments

Details

This function implements the removeBatchEffect function to remove known batch effects and to adjust expression values according to provided covariates.

Value

giotto object

Examples

```
data(mini_giotto_single_cell)
adjust_gobject = adjustGiottoMatrix(mini_giotto_single_cell)
```

 $ann data To {\tt Giotto}$

anndata To Giotto

Description

Converts a spatial anndata (e.g. scanpy) .h5ad file into a Giotto object

```
anndataToGiotto(
  anndata_path,
  metadata_cols = c("total_counts", "pct_counts_mt"),
  instructions = NULL,
  ...
)
```

annotateGiotto 17

Arguments

```
anndata_path path to the .h5ad file
metadata_cols metadata columns to include
instructions giotto instructions
... additional parameters to createGiottoObject
```

Details

Function in beta. Converts a .h5ad file into a Giotto object.

Value

Giotto object

annotateGiotto

annotateGiotto

Description

Converts cluster results into a user provided annotation.

Usage

```
annotateGiotto(
  gobject,
  annotation_vector = NULL,
  cluster_column = NULL,
  name = "cell_types"
)
```

Arguments

Details

You need to specifify which (cluster) column you want to annotate and you need to provide an annotation vector like this:

- 1. identify the cell type of each cluster
- 2. create a vector of these cell types, e.g. cell_types = c('T-cell', 'B-cell', 'Stromal')
- 3. provide original cluster names to previous vector, e.g. names(cell_types) = c(2, 1, 3)

Value

giotto object

18 annotateSpatialGrid

Examples

 $annotate Spatial Grid \qquad annotate Spatial Grid$

Description

annotate spatial grid with cell ID and cell metadata (optional)

Usage

```
annotateSpatialGrid(
  gobject,
  spatial_grid_name = "spatial_grid",
  cluster_columns = NULL
)
```

Arguments

Value

annotated spatial grid data.table

```
annotate Spatial Network
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(
  gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column,
  create_full_network = F
)
```

Arguments

Value

annotated network in data.table format

binSpect

binSpect

Description

Previously: binGetSpatialGenes. BinSpect (Binary Spatial Extraction of genes) is a fast computational method that identifies genes with a spatially coherent expression pattern.

```
binSpect(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  spatial_network_k = NULL,
  reduce_network = FALSE,
  kmeans_algo = c("kmeans", "kmeans_arma", "kmeans_arma_subset"),
```

20 binSpect

```
nstart = 3,
      iter_max = 10,
      extreme_nr = 50,
      sample_nr = 50,
      percentage_rank = 30,
      do_fisher_test = TRUE,
      adjust_method = "fdr",
      calc_hub = FALSE,
      hub_min_int = 3,
      get_av_expr = TRUE,
      get_high_expr = TRUE,
      implementation = c("data.table", "simple", "matrix"),
      group_size = "automatic",
      do_parallel = TRUE,
      cores = NA,
      verbose = T,
      knn_params = NULL,
      set.seed = NULL,
      bin_matrix = NULL,
      summarize = c("p.value", "adj.p.value")
    )
Arguments
                     giotto object
    gobject
   bin_method
                     method to binarize gene expression
    expression_values
                     expression values to use
                     only select a subset of genes to test
    subset_genes
    spatial_network_name
                     name of spatial network to use (default = 'spatial_network')
    spatial_network_k
                     different k's for a spatial kNN to evaluate
    reduce_network default uses the full network
                     kmeans algorithm to use (kmeans, kmeans_arma, kmeans_arma_subset)
   kmeans_algo
                     kmeans: nstart parameter
    nstart
    iter_max
                     kmeans: iter.max parameter
    extreme_nr
                     number of top and bottom cells (see details)
                     total number of cells to sample (see details)
    sample_nr
    percentage_rank
                     percentage of top cells for binarization
    do_fisher_test perform fisher test
                     p-value adjusted method to use (see p.adjust)
    adjust_method
    calc_hub
                     calculate the number of hub cells
   hub_min_int
                     minimum number of cell-cell interactions for a hub cell
    get_av_expr
                     calculate the average expression per gene of the high expressing cells
                     calculate the number of high expressing cells per gene
    get_high_expr
```

binSpect 21

implementation enrichment implementation (data.table, simple, matrix) group_size number of genes to process together with data.table implementation (default = automatic) run calculations in parallel with mclapply do_parallel cores number of cores to use if do_parallel = TRUE be verbose verbose knn_params list of parameters to create spatial kNN network set.seed set a seed before kmeans binarization bin_matrix a binarized matrix, when provided it will skip the binarization process summarize summarize the p-values or adjusted p-values

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates
- 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Three different kmeans algorithmes have been implemented:

- 1. kmeans: default, see kmeans
- 2. kmeans_arma: from ClusterR, see KMeans_arma
- 3. kmeans_arma_subst: from ClusterR, see KMeans_arma, but random subsetting the vector for each gene to increase speed. Change extreme_nr and sample_nr for control.

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- Average expression of each gene within high expressing cells
- Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) can accelerate the speed. The simple implementation is usually faster, but lacks the possibility to run in parallel and to calculate hub cells. The data.table implementation might be more appropriate for large datasets by setting the group_size (number of genes) parameter to divide the workload.

Value

data.table with results (see details)

22 binSpectMulti

binSpectMulti

binSpectMulti

Description

binSpect for multiple spatial kNN networks

Usage

```
binSpectMulti(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_k = c(5, 10, 20),
  reduce_network = FALSE,
  kmeans_algo = c("kmeans", "kmeans_arma", "kmeans_arma_subset"),
  nstart = 3,
  iter_max = 10,
  extreme_nr = 50,
  sample_nr = 50,
  percentage_rank = c(10, 30),
  do_fisher_test = TRUE,
  adjust_method = "fdr",
  calc_hub = FALSE,
  hub_min_int = 3,
  get_av_expr = TRUE,
  get_high_expr = TRUE,
  implementation = c("data.table", "simple", "matrix"),
  group_size = "automatic",
  do_parallel = TRUE,
  cores = NA,
  verbose = T,
  knn_params = NULL,
  set.seed = NULL,
  summarize = c("adj.p.value", "p.value")
)
```

Arguments

```
gobject giotto object

bin_method method to binarize gene expression

expression_values

expression values to use

subset_genes only select a subset of genes to test

spatial_network_k

different k's for a spatial kNN to evaluate

reduce_network default uses the full network

kmeans_algo kmeans algorithm to use (kmeans, kmeans_arma, kmeans_arma_subset)
```

binSpectMulti 23

nstart kmeans: nstart parameter iter_max kmeans: iter.max parameter

extreme_nr number of top and bottom cells (see details)
sample_nr total number of cells to sample (see details)

percentage_rank

percentage of top cells for binarization

do_fisher_test perform fisher test

adjust_method p-value adjusted method to use (see p.adjust)

calc_hub calculate the number of hub cells

hub_min_int minimum number of cell-cell interactions for a hub cell

get_av_expr calculate the average expression per gene of the high expressing cells

get_high_expr calculate the number of high expressing cells per gene implementation enrichment implementation (data.table, simple, matrix)

group_size number of genes to process together with data.table implementation (default =

automatic)

do_parallel run calculations in parallel with mclapply cores number of cores to use if do_parallel = TRUE

verbose be verbose

knn_params list of parameters to create spatial kNN network

set. seed set a seed before kmeans binarization

summarize summarize the p-values or adjusted p-values

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates
- 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Three different kmeans algorithmes have been implemented:

- 1. kmeans: default, see kmeans
- 2. kmeans_arma: from ClusterR, see KMeans_arma
- 3. kmeans_arma_subst: from ClusterR, see KMeans_arma, but random subsetting the vector for each gene to increase speed. Change extreme_nr and sample_nr for control.

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- Average expression of each gene within high expressing cells

24 binSpectSingle

• Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) can accelerate the speed. The simple implementation is usually faster, but lacks the possibility to run in parallel and to calculate hub cells. The data.table implementation might be more appropriate for large datasets by setting the group_size (number of genes) parameter to divide the workload.

Value

data.table with results (see details)

binSpectSingle

binSpectSingle

Description

binSpect for a single spatial network

```
binSpectSingle(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  reduce_network = FALSE,
  kmeans_algo = c("kmeans", "kmeans_arma", "kmeans_arma_subset"),
  nstart = 3,
  iter_max = 10,
  extreme_nr = 50,
  sample_nr = 50,
  percentage_rank = 30,
  do_fisher_test = TRUE,
  adjust\_method = "fdr",
  calc_hub = FALSE,
  hub_min_int = 3,
  get_av_expr = TRUE,
  get_high_expr = TRUE,
  implementation = c("data.table", "simple", "matrix"),
  group_size = "automatic",
  do_parallel = TRUE,
  cores = NA,
  verbose = T,
  set.seed = NULL,
  bin_matrix = NULL
)
```

binSpectSingle 25

Arguments

gobject giotto object

bin_method method to binarize gene expression

expression_values

expression values to use

subset_genes only select a subset of genes to test

spatial_network_name

name of spatial network to use (default = 'spatial_network')

reduce_network default uses the full network

kmeans_algo kmeans algorithm to use (kmeans, kmeans_arma, kmeans_arma_subset)

nstart kmeans: nstart parameter iter_max kmeans: iter.max parameter

extreme_nr number of top and bottom cells (see details)
sample_nr total number of cells to sample (see details)

percentage_rank

percentage of top cells for binarization

do_fisher_test perform fisher test

adjust_method p-value adjusted method to use (see p.adjust)

calc_hub calculate the number of hub cells

hub_min_int minimum number of cell-cell interactions for a hub cell

get_av_expr calculate the average expression per gene of the high expressing cells

get_high_expr calculate the number of high expressing cells per gene implementation enrichment implementation (data.table, simple, matrix)

group_size number of genes to process together with data.table implementation (default =

automatic)

do_parallel run calculations in parallel with mclapply cores number of cores to use if do_parallel = TRUE

verbose be verbose

set.seed set a seed before kmeans binarization

bin_matrix a binarized matrix, when provided it will skip the binarization process

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates
- 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Three different kmeans algorithmes have been implemented:

26 calculateHVG

- 1. kmeans: default, see kmeans
- 2. kmeans_arma: from ClusterR, see KMeans_arma
- 3. kmeans_arma_subst: from ClusterR, see KMeans_arma, but random subsetting the vector for each gene to increase speed. Change extreme_nr and sample_nr for control.

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- Average expression of each gene within high expressing cells
- Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) can accelerate the speed. The simple implementation is usually faster, but lacks the possibility to run in parallel and to calculate hub cells. The data.table implementation might be more appropriate for large datasets by setting the group_size (number of genes) parameter to divide the workload.

Value

data.table with results (see details)

calculateHVG

calculateHVG

Description

compute highly variable genes

```
calculateHVG(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
 method = c("cov_groups", "cov_loess"),
 reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
 nr_expression_groups = 20,
 zscore_threshold = 1.5,
 HVGname = "hvg",
  difference_in_cov = 0.1,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "HVGplot",
  return_gobject = TRUE
)
```

calculateHVG 27

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
method
                  method to calculate highly variable genes
reverse_log_scale
                  reverse log-scale of expression values (default = FALSE)
logbase
                  if reverse_log_scale is TRUE, which log base was used?
expression_threshold
                  expression threshold to consider a gene detected
nr_expression_groups
                  number of expression groups for cov_groups
zscore_threshold
                  zscore to select hvg for cov_groups
HVGname
                  name for highly variable genes in cell metadata
difference_in_cov
                  minimum difference in coefficient of variance required
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Currently we provide 2 ways to calculate highly variable genes:

return_gobject boolean: return giotto object (default = TRUE)

1. high coeff of variance (COV) within groups:

First genes are binned (*nr_expression_groups*) into average expression groups and the COV for each gene is converted into a z-score within each bin. Genes with a z-score higher than the threshold (*zscore_threshold*) are considered highly variable.

2. high COV based on loess regression prediction:

A predicted COV is calculated for each gene using loess regression (COV~log(mean expression)) Genes that show a higher than predicted COV (difference_in_cov) are considered highly variable.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

Examples

```
data(mini_giotto_single_cell) # loads existing Giotto object
# update a giotto object
mini_giotto_single_cell <- calculateHVG(gobject = mini_giotto_single_cell,</pre>
```

28 calculateMetaTable

calculateMetaTable

calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

calculateMetaTableCells 29

```
calculateMetaTableCells
```

calculateMetaTableCells

Description

calculates the average metadata values for one or more (combined) annotation columns.

Usage

```
calculateMetaTableCells(
  gobject,
  value_cols = NULL,
  metadata_cols = NULL,
  spat_enr_names = NULL
)
```

Arguments

```
gobject giotto object
value_cols metadata or enrichment value columns to use
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names which spatial enrichment results to include
```

Value

data.table with average metadata values per (combined) annotation

```
cellProximityBarplot cellProximityBarplot
```

Description

Create barplot from cell-cell proximity scores

```
cellProximityBarplot(
  gobject,
  CPscore,
  min_orig_ints = 5,
  min_sim_ints = 5,
  p_val = 0.05,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityBarplot"
)
```

Arguments

gobject giotto object CPscore, output from cellProximityEnrichment() **CPscore** min_orig_ints filter on minimum original cell-cell interactions filter on minimum simulated cell-cell interactions min_sim_ints p_val p-value show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot barplot

```
cellProximityEnrichment
```

cellProximityEnrichment

Description

Compute cell-cell interaction enrichment (observed vs expected)

cellProximityHeatmap 31

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by reshuffling the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

```
cellProximityHeatmap cellProximityHeatmap
```

Description

Create heatmap from cell-cell proximity scores

```
cellProximityHeatmap(
  gobject,
  CPscore,
  scale = T,
  order_cell_types = T,
  color_breaks = NULL,
  color_names = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

Arguments

```
gobject
                  giotto object
                  CPscore, output from cellProximityEnrichment()
CPscore
scale
                  scale cell-cell proximity interaction scores
order_cell_types
                  order cell types based on enrichment correlation
                  numerical vector of length 3 to represent min, mean and maximum
color_breaks
                  character color vector of length 3
color_names
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot heatmap

```
cell Proximity Network \qquad cell Proximity Network
```

Description

Create network from cell-cell proximity scores

```
cellProximityNetwork(
  gobject,
  CPscore,
  remove_self_edges = FALSE,
  self_loop_strength = 0.1,
  color_depletion = "lightgreen",
  color_enrichment = "red",
  rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5),
  layout = c("Fruchterman", "DrL", "Kamada-Kawai"),
  only_show_enrichment_edges = F,
  edge_width_range = c(0.1, 2),
  node_size = 4,
  node_text_size = 6,
```

cellProximityNetwork 33

```
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "cellProximityNetwork"
)
```

Arguments

```
giotto object
gobject
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
edge_weight_range_depletion
                  numerical vector of length 2 to rescale depleted edge weights
edge_weight_range_enrichment
                  numerical vector of length 2 to rescale enriched edge weights
                  layout algorithm to use to draw nodes and edges
layout
only_show_enrichment_edges
                  show only the enriched pairwise scores
edge_width_range
                  range of edge width
                  size of nodes
node_size
node_text_size size of node labels
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

```
igraph plot
```

cellProximitySpatPlot cellProximitySpatPlot

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot(gobject, ...)
```

Arguments

```
gobject
                 giotto object
                  Arguments passed on to cellProximitySpatPlot2D
                  interaction_name cell-cell interaction name
                 cluster_column cluster column with cell clusters
                  sdimx x-axis dimension name (default = 'sdimx')
                 sdimy y-axis dimension name (default = 'sdimy')
                 cell_color color for cells (see details)
                 cell_color_code named vector with colors
                 color_as_factor convert color column to factor
                 show_other_cells decide if show cells not in network
                 show_network show spatial network of selected cells
                 show_other_network show spatial network of not selected cells
                 network_color color of spatial network
                 spatial_network_name name of spatial network to use
                 show_grid show spatial grid
                 grid_color color of spatial grid
                 spatial_grid_name name of spatial grid to use
                 coord_fix_ratio fix ratio between x and y-axis
                 show_legend show legend
                 point_size_select size of selected points
                 point_select_border_col border color of selected points
                 point_select_border_stroke stroke size of selected points
                 point_size_other size of other points
                 point_alpha_other opacity of other points
                 point_other_border_col border color of other points
                 point_other_border_stroke stroke size of other points
                 show_plot show plots
                 return_plot return ggplot object
                 save_plot directly save the plot [boolean]
                 save_param list of saving parameters from all_plots_save_function
                 default_save_name default save name for saving, don't change, change save_name
                      in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

cellProximitySpatPlot2D and cellProximitySpatPlot3D for 3D

```
cellProximitySpatPlot2D
```

cellProximitySpatPlot2D

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

```
cellProximitySpatPlot2D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
```

```
default_save_name = "cellProximitySpatPlot2D"
)
```

Arguments

show_plot

return_plot

show plots

return ggplot object

giotto object gobject interaction_name cell-cell interaction name cluster_column cluster column with cell clusters sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') color for cells (see details) cell_color cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show_network show spatial network of selected cells show_other_network show spatial network of not selected cells network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis show_legend show legend point_size_select size of selected points point_select_border_col border color of selected points point_select_border_stroke stroke size of selected points point_size_other size of other points point_alpha_other opacity of other points point_other_border_col border color of other points point_other_border_stroke stroke size of other points

Details

Description of parameters.

Value

ggplot

```
cell Proximity SpatPlot 3D \\ cell Proximity SpatPlot 2D
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

```
cellProximitySpatPlot3D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = T,
  show_network = T,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 4,
  point_size_other = 2,
  point_alpha_other = 0.5,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_{ticks} = NULL,
  show_plot = NA,
```

```
return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "cellProximitySpatPlot3D",
)
```

Arguments

show_plot

show plots

```
giotto object
gobject
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show spatial network of selected cells
show_other_network
                  show spatial network of not selected cells
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
point_size_other
                  size of other points
point_alpha_other
                  opacity of other points
                  scale of axis
axis_scale
custom_ratio
                  custom ratio of axes
                  ticks on x-axis
x_ticks
y_ticks
                  ticks on y-axis
z_ticks
                  ticks on z-axis
```

cellProximityVisPlot 39

Details

Description of parameters.

Value

plotly

```
cell Proximity VisPlot \quad \textit{cellProximityVisPlot}
```

Description

Visualize cell-cell interactions according to spatial coordinates

```
cellProximityVisPlot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
```

40 cellProximityVisPlot

```
point_other_border_stroke = 0.01,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      plot_method = c("ggplot", "plotly"),
    )
Arguments
    gobject
                     giotto object
    interaction_name
                     cell-cell interaction name
    cluster_column cluster column with cell clusters
                     x-axis dimension name (default = 'sdimx')
    sdimx
    sdimy
                     y-axis dimension name (default = 'sdimy')
    sdimz
                     z-axis dimension name (default = 'sdimz')
    cell_color
                     color for cells (see details)
    cell_color_code
                     named vector with colors
    color_as_factor
                     convert color column to factor
    show_other_cells
                     show not selected cells
    show_network
                     show underlying spatial network
    show_other_network
                     show underlying spatial network of other cells
                     color of spatial network
    network_color
    spatial_network_name
                     name of spatial network to use
                     show spatial grid
    show_grid
                     color of spatial grid
    grid_color
    spatial_grid_name
                     name of spatial grid to use
    coord_fix_ratio
                     fix ratio between x and y-axis
    show_legend
                     show legend
   point_size_select
                     size of selected points
   point_select_border_col
                     border color of selected points
    point_select_border_stroke
                     stroke size of selected points
   point_size_other
```

size of other points

```
point_alpha_other
                 alpha of other points
point_other_border_col
                 border color of other points
point_other_border_stroke
                 stroke size of other points
axis_scale
                 scale of axis
                 custom ratio of scales
custom_ratio
x_ticks
                 x ticks
y_ticks
                 y ticks
z_ticks
                 z ticks
plot_method
                 method to plot
                 additional parameters
```

Details

Description of parameters.

Value

ggplot or plotly

 ${\tt change} {\tt GiottoInstructions}$

changeGiottoInstructions

Description

Function to change one or more instructions from giotto object

Usage

```
changeGiottoInstructions(
  gobject,
  params = NULL,
  new_values = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
params parameter(s) to change
new_values new value(s) for parameter(s)
```

return_gobject (boolean) return giotto object

Value

giotto object with one or more changed instructions

42 checkGiottoEnvironment

changeImageBg changeImageBg

Description

Function to change the background color of a magick image plot to another color

Usage

```
changeImageBg(
  mg_object,
  bg_color,
  perc_range = 10,
  new_color = "#FFFFFF",
  new_name = NULL
)
```

Arguments

mg_object magick image or giotto image object bg_color estimated current background color

perc_range range around estimated background color to include (percentage)

new_color new background color

new_name change name of Giotto image

Value

magick image or giotto image object with updated background color

 ${\tt checkGiottoEnvironment}$

checkGiottoEnvironment

Description

checkGiottoEnvironment

Usage

```
checkGiottoEnvironment(verbose = TRUE)
```

Arguments

verbose be verbose

Details

Checks if a miniconda giotto environment can be found. Can be installed with installGiottoEnvironment.

clusterCells 43

clusterCells

clusterCells

Description

cluster cells using a variety of different methods

```
clusterCells(
  gobject,
 cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
    "sNNclust", "kmeans", "hierarchical"),
  name = "cluster_name",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  pyth_leid_resolution = 1,
  pyth_leid_weight_col = "weight",
  pyth_leid_part_type = c("RBConfigurationVertexPartition",
    "ModularityVertexPartition"),
  pyth_leid_init_memb = NULL,
  pyth_leid_iterations = 1000,
  pyth_louv_resolution = 1,
  pyth_louv_weight_col = NULL,
  python_louv_random = F,
  python_path = NULL,
  louvain_gamma = 1,
  louvain\_omega = 1,
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  sNNclust_k = 20,
  sNNclust_eps = 4,
  sNNclust_minPts = 16,
  borderPoints = TRUE,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  km_{centers} = 10,
  km_iter_max = 100,
  km_nstart = 1000,
  km_algorithm = "Hartigan-Wong",
 hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  hc_k = 10,
  hc_h = NULL,
  return_gobject = TRUE,
```

44 clusterCells

```
set_seed = T,
seed_number = 1234
)
```

Arguments

giotto object gobject cluster_method community cluster method to use name for new clustering result name nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name pyth_leid_resolution resolution for leiden pyth_leid_weight_col column to use for weights pyth_leid_part_type partition type to use pyth_leid_init_memb initial membership pyth_leid_iterations number of iterations pyth_louv_resolution resolution for louvain pyth_louv_weight_col python louvain param: weight column python_louv_random python louvain param: random python_path specify specific path to python if required louvain param: gamma or resolution louvain_gamma louvain_omega louvain param: omega walk_steps randomwalk: number of steps walk_clusters randomwalk: number of clusters randomwalk: weight column walk_weights SNNclust: k neighbors to use sNNclust_k SNNclust: epsilon sNNclust_eps sNNclust_minPts SNNclust: min points borderPoints SNNclust: border points expression_values expression values to use genes_to_use = NULL. dim_reduction_to_use dimension reduction to use dim_reduction_name

name of reduction 'pca',

clusterSpatialCorGenes

45

```
dimensions_to_use
```

dimensions to use

distance_method

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Wrapper for the different clustering methods.

Value

giotto object with new clusters appended to cell metadata

See Also

 $\label{lem:cluster_doLouvainCluster_multinet} do Louvain Cluster_community, do Louvain Cluster_multinet, do Louvain Cluster, do Random Walk Cluster, do SNN Cluster, do Kmeans, do H clust Cluster, do Louvain Cluster, do Louva$

```
clusterSpatialCorGenes
```

cluster Spatial Cor Genes

Description

Cluster based on spatially correlated genes

```
clusterSpatialCorGenes(
   spatCorObject,
   name = "spat_clus",
   hclust_method = "ward.D",
   k = 10,
   return_obj = TRUE
)
```

46 colSums_giotto

Arguments

spatCorObject spatial correlation object

name name for spatial clustering results
hclust_method method for hierarchical clustering
k number of clusters to extract

return_obj return spatial correlation object (spatCorObject)

Value

spatCorObject or cluster results

colMeans_giotto colMeans_giotto

Description

colMeans function that works with multiple matrix representations

Usage

```
colMeans_giotto(mymatrix)
```

Arguments

mymatrix matrix object

Value

numeric vector

 $colSums_giotto$ $colSums_giotto$

Description

colSums function that works with multiple matrix representations

Usage

```
colSums_giotto(mymatrix)
```

Arguments

mymatrix matrix object

Value

numeric vector

combCCcom 47

combCCcom combCCcom

Description

Combine spatial and expression based cell-cell communication data.tables

Usage

```
combCCcom(
  spatialCC,
  exprCC,
  min_lig_nr = 3,
  min_rec_nr = 3,
  min_padj_value = 1,
  min_log2fc = 0,
  min_av_diff = 0,
  detailed = FALSE
)
```

Arguments

```
spatialCC spatial cell-cell communication scores

exprCC expression cell-cell communication scores

min_lig_nr minimum number of ligand cells

min_rec_nr minimum number of receptor cells

min_padj_value minimum adjusted p-value

min_log2fc minimum log2 fold-change

min_av_diff minimum average expression difference

detailed detailed option used with spatCellCellcom (default = FALSE)
```

Value

combined data.table with spatial and expression communication data

```
combine {\tt CellProximity Genes} \\ combine {\tt CellProximity Genes}
```

Description

Combine ICG scores in a pairwise manner.

```
combineCellProximityGenes(...)
```

48 combineCPG

Arguments

... Arguments passed on to combineInteractionChangedGenes

cpg0bject ICG (interaction changed gene) score object

selected_ints subset of selected cell-cell interactions (optional)

selected_genes subset of selected genes (optional)

specific_genes_1 specific geneset combo (need to position match specific genes 2)

specific_genes_2 specific geneset combo (need to position match specific_genes_1)

min_cells minimum number of target cell type

min_int_cells minimum number of interacting cell type

min_fdr minimum adjusted p-value

min_spat_diff minimum absolute spatial expression difference

min_log2_fc minimum absolute log2 fold-change

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE

verbose verbose

See Also

combineInteractionChangedGenes

combineCPG

combineCPG

Description

Combine ICG scores in a pairwise manner.

Usage

combineCPG(...)

Arguments

... Arguments passed on to combineICG

cpg0bject ICG (interaction changed gene) score object

selected_ints subset of selected cell-cell interactions (optional)

selected_genes subset of selected genes (optional)

specific_genes_1 specific geneset combo (need to position match specific_genes_2)

specific_genes_2 specific geneset combo (need to position match specific_genes_1)

min_cells minimum number of target cell type

min_int_cells minimum number of interacting cell type

min_fdr minimum adjusted p-value

min_spat_diff minimum absolute spatial expression difference

min_log2_fc minimum absolute log2 fold-change

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE

verbose verbose

combineICG 49

See Also

combineICG

combineICG

combineICG

Description

Combine ICG scores in a pairwise manner.

Usage

```
combineICG(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

```
cpgObject
                  ICG (interaction changed gene) score object
                  subset of selected cell-cell interactions (optional)
selected_ints
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
min_int_cells
                  minimum number of interacting cell type
                  minimum adjusted p-value
min_fdr
min_spat_diff
                  minimum absolute spatial expression difference
                  minimum absolute log2 fold-change
min_log2_fc
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
verbose
                  verbose
```

Value

cpgObject that contains the filtered differential gene scores

```
{\tt combineInteractionChangedGenes}
```

combine Interaction Changed Genes

Description

Combine ICG scores in a pairwise manner.

Usage

```
combineInteractionChangedGenes(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

```
cpgObject
                  ICG (interaction changed gene) score object
selected_ints
                  subset of selected cell-cell interactions (optional)
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
                  minimum number of target cell type
min_cells
min_int_cells
                  minimum number of interacting cell type
min_fdr
                  minimum adjusted p-value
min_spat_diff
                  minimum absolute spatial expression difference
                  minimum absolute log2 fold-change
min_log2_fc
                  run calculations in parallel with mclapply
do_parallel
cores
                  number of cores to use if do_parallel = TRUE
verbose
                  verbose
```

Value

cpgObject that contains the filtered differential gene scores

combineMetadata 51

combine Metadata

Description

This function combines the cell metadata with spatial locations and enrichment results from runSpatialEnrich

Usage

```
combineMetadata(gobject, spat_enr_names = NULL)
```

Arguments

```
gobject Giotto object
spat_enr_names names of spatial enrichment results to include
```

Value

Extended cell metadata in data.table format.

```
convertEnsemblToGeneSymbol
```

convert Ensembl To Gene Symbol

Description

This function convert ensembl gene IDs from a matrix to official gene symbols

Usage

```
convertEnsemblToGeneSymbol(matrix, species = c("mouse", "human"))
```

Arguments

matrix an expression matrix with ensembl gene IDs as rownames

species species to use for gene symbol conversion

Details

This function requires that the biomaRt library is installed

Value

expression matrix with gene symbols as rownames

52 createCrossSection

createCrossSection

createCrossSection

Description

Create a virtual 2D cross section.

Usage

```
createCrossSection(
  gobject.
 name = "cross_section",
  spatial_network_name = "Delaunay_network",
  thickness_unit = c("cell", "natural"),
  slice_thickness = 2,
  cell_distance_estimate_method = "mean",
  extend_ratio = 0.2,
 method = c("equation", "3 points", "point and norm vector",
    "point and two plane vectors"),
  equation = NULL,
  point1 = NULL,
  point2 = NULL,
  point3 = NULL,
 normVector = NULL,
 planeVector1 = NULL,
 planeVector2 = NULL,
 mesh\_grid\_n = 20,
  return_gobject = TRUE
)
```

Arguments

gobject giotto object name name of cress section object. (default = cross_section) spatial_network_name name of spatial network object. (default = Delaunay_network) thickness_unit unit of the virtual section thickness. If "cell", average size of the observed cells is used as length unit. If "natural", the unit of cell location coordinates is used.(default = cell)slice_thickness thickness of slice. default = 2 ${\tt cell_distance_estimate_method}$ method to estimate average distance between neighboring cells. (default = mean) deciding the span of the cross section meshgrid, as a ratio of extension compared extend_ratio to the borders of the vitural tissue section. (default = 0.2) method method to define the cross section plane. If equation, the plane is defined by a four element numerical vector (equation) in the form of c(A,B,C,D), corresponding to a plane with equation Ax+By+Cz=D. If 3 points, the plane is define

by the coordinates of 3 points, as given by point1, point2, and point3. If point

createGiottoImage 53

	and norm vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of one norm vector (normVector) to the plane. If point and two plane vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of two vectors (planeVector1, planeVector2) in the plane. (default = equation)
equation	equation required by method "equation".equations needs to be a numerical vector of length 4, in the form of $c(A,B,C,D)$, which defines plane $Ax+By+Cz=D$.
point1	coordinates of the first point required by method "3 points", "point and norm vector", and "point and two plane vectors".
point2	coordinates of the second point required by method "3 points"
point3	coordinates of the third point required by method "3 points"
normVector	coordinates of the norm vector required by method "point and norm vector"
planeVector1	coordinates of the first plane vector required by method "point and two plane vectors"
planeVector2	coordinates of the second plane vector required by method "point and two plane vectors"
mesh_grid_n	numer of meshgrid lines to generate along both directions for the cross section plane.
return_gobject	boolean: return giotto object (default = TRUE)

Details

Creates a virtual 2D cross section object for a given spatial network object. The users need to provide the definition of the cross section plane (see method).

Value

giotto object with updated spatial network slot

createGiottoImage

Description

Creates a giotto image that can be added to a Giotto object and/or used to add an image to the spatial plotting functions

```
createGiottoImage(
  gobject = NULL,
  spatial_locs = NULL,
  mg_object,
  name = "image",
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0
)
```

54 createGiottoInstructions

Arguments

```
gobject
                  giotto object
spatial_locs
                  spatial locations (alternative if giobject = NULL)
                  magick image object
mg_object
name
                  name for the image
                  adjustment of the maximum x-value to align the image
xmax_adj
xmin_adj
                  adjustment of the minimum x-value to align the image
                  adjustment of the maximum y-value to align the image
ymax_adj
                  adjustment of the minimum y-value to align the image
ymin_adj
```

Value

a giotto image object

createGiottoInstructions

createGiottoInstructions

Description

Function to set global instructions for giotto functions

Usage

```
createGiottoInstructions(
  python_path = NULL,
  show_plot = NULL,
  return_plot = NULL,
  save_plot = NULL,
  save_dir = NULL,
  plot_format = NULL,
  dpi = NULL,
  units = NULL,
  height = NULL,
  width = NULL,
  is_docker = FALSE
)
```

Arguments

```
path to python binary to use
show_plot print plot to console, default = TRUE
return_plot return plot as object, default = TRUE
save_plot automatically save plot, dafault = FALSE
save_dir path to directory where to save plots
plot_format format of plots (defaults to png)
dpi resolution for raster images
```

createGiottoObject 55

```
units units of format (defaults to in)
height height of plots
width width of plots
is_docker using docker implementation of Giotto (defaults to FALSE)
```

Value

named vector with giotto instructions

See Also

More online information can be found here https://rubd.github.io/Giotto_site/articles/instructions_and_plotting.html

Description

Function to create a giotto object

Usage

```
createGiottoObject(
  raw_exprs,
  spatial_locs = NULL,
  norm_expr = NULL,
  norm_scaled_expr = NULL,
  custom_expr = NULL,
  cell_metadata = NULL,
  gene_metadata = NULL,
  spatial_network = NULL,
  spatial_network_name = NULL,
  spatial_grid = NULL,
  spatial_grid_name = NULL,
  spatial_enrichment = NULL,
  spatial_enrichment_name = NULL,
  dimension_reduction = NULL,
  nn_network = NULL,
  images = NULL,
  offset_file = NULL,
  instructions = NULL,
  cores = NA
)
```

Arguments

```
raw_exprs matrix with raw expression counts [required]
spatial_locs data.table or data.frame with coordinates for cell centroids
norm_expr normalized expression values
```

56 createGiottoObject

```
norm_scaled_expr
                  scaled expression values
                  custom expression values
custom_expr
                  cell annotation metadata
cell_metadata
gene_metadata
                  gene annotation metadata
spatial_network
                  list of spatial network(s)
spatial_network_name
                  list of spatial network name(s)
                  list of spatial grid(s)
spatial_grid
spatial_grid_name
                  list of spatial grid name(s)
spatial_enrichment
                  list of spatial enrichment score(s) for each spatial region
spatial_enrichment_name
                  list of spatial enrichment name(s)
dimension_reduction
                  list of dimension reduction(s)
                  list of nearest neighbor network(s)
nn_network
                  list of images
images
offset_file
                  file used to stitch fields together (optional)
instructions
                  list of instructions or output result from createGiottoInstructions
                  how many cores or threads to use to read data if paths are provided
cores
```

Details

[**Requirements**] To create a giotto object you need to provide at least a matrix with genes as row names and cells as column names. This matrix can be provided as a base matrix, sparse Matrix, data.frame, data.table or as a path to any of those. To include spatial information about cells (or regions) you need to provide a matrix, data.table or data.frame (or path to them) with coordinates for all spatial dimensions. This can be 2D (x and y) or 3D (x, y, x). The row order for the cell coordinates should be the same as the column order for the provided expression data.

[Instructions] Additionally an instruction file, generated manually or with createGiottoInstructions can be provided to instructions, if not a default instruction file will be created for the Giotto object.

[Multiple fields] In case a dataset consists of multiple fields, like seqFISH+ for example, an offset file can be provided to stitch the different fields together. stitchFieldCoordinates can be used to generate such an offset file.

[**Processed data**] Processed count data, such as normalized data, can be provided using one of the different expression slots (norm_expr, norm_scaled_expr, custom_expr).

[Metadata] Cell and gene metadata can be provided using the cell and gene metadata slots. This data can also be added afterwards using the addGeneMetadata or addCellMetadata functions.

[Other information] Additional information can be provided through the appropriate slots:

- · spatial networks
- · spatial girds
- spatial enrichments
- · dimensions reductions
- nearest neighbours networks
- · images

Value

```
giotto object
```

```
createGiottoVisiumObject
```

createGiottoVisiumObject

Description

creates Giotto object directly from a 10X visium folder

Usage

```
createGiottoVisiumObject(
  visium_dir = NULL,
  expr_data = c("raw", "filter"),
 gene_column_index = 1,
 h5_visium_path = NULL,
 h5_gene_ids = c("symbols", "ensembl"),
 h5_tissue_positions_path = NULL,
 h5_image_png_path = NULL,
 png_name = NULL,
  xmax_adj = 0,
  xmin_adj = 0,
 ymax_adj = 0,
  ymin_adj = 0,
  instructions = NULL,
  cores = NA,
  verbose = TRUE
```

Arguments

```
visium_dir
                  path to the 10X visium directory [required]
                  raw or filtered data (see details)
expr_data
gene_column_index
                  which column index to select (see details)
h5_visium_path path to visium 10X .h5 file
h5_gene_ids
                  gene names as symbols (default) or ensemble gene ids
h5_tissue_positions_path
                  path to tissue locations (.csv file)
h5_image_png_path
                  path to tissue .png file (optional)
png_name
                  select name of png to use (see details)
                  adjustment of the maximum x-value to align the image
xmax_adj
                  adjustment of the minimum x-value to align the image
xmin_adj
                  adjustment of the maximum y-value to align the image
ymax_adj
                  adjustment of the minimum y-value to align the image
ymin_adj
instructions
                  list of instructions or output result from createGiottoInstructions
                  how many cores or threads to use to read data if paths are provided
cores
```

58 createMetagenes

Details

If starting from a Visium 10X directory:

expr_data: raw will take expression data from raw_feature_bc_matrix and filter from filtered_feature_bc_matrix

- gene_column_index: which gene identifiers (names) to use if there are multiple columns (e.g. ensemble and gene symbol)
- png_name: by default the first png will be selected, provide the png name to override this (e.g. myimage.png)

If starting from a Visium 10X .h5 file

- h5_visium_path: full path to .h5 file: /your/path/to/visium_file.h5
- h5_tissue_positions_path: full path to spatial locations file: /you/path/to/tissue_positions_list.csv
- h5_image_png_path: full path to png: /your/path/to/images/tissue_lowres_image.png

Value

giotto object

createMetagenes

createMetagenes

Description

This function creates an average metagene for gene clusters.

Usage

```
createMetagenes(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  gene_clusters,
  name = "metagene",
  return_gobject = TRUE
)
```

Arguments

```
gobject Giotto object
expression_values
expression values to use
gene_clusters numerical vector with genes as names
name name of the metagene results
return_gobject return giotto object
```

Details

```
An example for the 'gene_clusters' could be like this: cluster_vector = c(1, 1, 2, 2); names(cluster_vector) = c('geneA', 'geneB', 'geneC', 'geneD')
```

createNearestNetwork 59

Value

giotto object

Examples

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour (NN) network

```
createNearestNetwork(
  gobject,
  type = c("sNN", "kNN"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  genes_to_use = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  name = "sNN.pca",
  return_gobject = TRUE,
  k = 30,
  minimum_shared = 5,
  top_shared = 3,
  verbose = T,
  ...
)
```

60 createNearestNetwork

Arguments

 $\begin{array}{ll} \text{gobject} & \text{giotto object} \\ \text{type} & \text{sNN or kNN} \end{array}$

dim_reduction_to_use

dimension reduction method to use

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

genes_to_use if dim_reduction_to_use = NULL, which genes to use

expression_values

expression values to use

name arbitrary name for NN network

return_gobject boolean: return giotto object (default = TRUE)

k number of k neighbors to use minimum_shared minimum shared neighbors

top_shared keep at ...
verbose be verbose

... additional parameters for kNN and sNN functions from dbscan

Details

This function creates a k-nearest neighbour (kNN) or shared nearest neighbour (sNN) network based on the provided dimension reduction space. To run it directly on the gene expression matrix set $dim_reduction_to_use = NULL$.

See also kNN and sNN for more information about how the networks are created.

Output for kNN:

• from: cell ID for source cell

• to: cell_ID for target cell

• distance: distance between cells

• weight: weight = 1/(1 + distance)

Output for sNN:

• from: cell_ID for source cell

• to: cell_ID for target cell

• distance: distance between cells

• weight: 1/(1 + distance)

• shared: number of shared neighbours

• rank: ranking of pairwise cell neighbours

For sNN networks two additional parameters can be set:

- minimum_shared: minimum number of shared neighbours needed
- top_shared: keep this number of the top shared neighbours, irrespective of minimum_shared setting

Value

giotto object with updated NN network

Examples

createSpatialDefaultGrid

createSpatialDefaultGrid

Description

Create a spatial grid using the default method

Usage

```
createSpatialDefaultGrid(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialDelaunayNetwork
```

createSpatialDelaunayNetwork

Description

Create a spatial Delaunay network based on cell centroid physical distances.

Usage

```
createSpatialDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  name = "Delaunay_network",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  verbose = T,
  return_gobject = TRUE,
  ...
)
```

Arguments

gobject giotto object

method package to use to create a Delaunay network

dimensions which spatial dimensions to use. Use "sdimx" (spatial dimension x), "sdimy",

"sdimz" respectively to refer to X (or the 1st), Y (or the 2nd) and Z(or the 3rd)

dimension, see details. (default = all)

name for spatial network (default = 'delaunay_network')

maximum_distance

distance cuttof for Delaunay neighbors to consider. If "auto", "upper wisker" value of the distance vector between neighbors is used; see the boxplotgraphics

documentation for more details.(default = "auto")

minimum_k minimum number of neighbours if maximum_distance != NULL

options (geometry) String containing extra control options for the underlying Qhull

command; see the Qhull documentation (../doc/qhull/html/qdelaun.html) for the

available options. (default = 'Pp', do not report precision problems)

Y (RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh bound-

ary.

j (RTriangle) If TRUE jettisons vertices that are not part of the final triangulation

from the output.

S (RTriangle) Specifies the maximum number of added Steiner points.

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

... Other additional parameters

createSpatialEnrich 63

Details

Creates a spatial Delaunay network as explained in delaunayn (default), deldir, or triangulate.

Value

giotto object with updated spatial network slot

createSpatialEnrich createSpatialEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using an enrichment test.

Usage

```
createSpatialEnrich(...)
```

Arguments

```
Arguments passed on to runSpatialEnrich
. . .
                  gobject Giotto object
                  enrich_method method for gene signature enrichment calculation
                  sign_matrix Matrix of signature genes for each cell type / process
                  expression_values expression values to use
                  reverse_log_scale reverse expression values from log scale
                  min_overlap_genes minimum number of overlapping genes in sign_matrix
                      required to calculate enrichment (PAGE)
                  logbase log base to use if reverse_log_scale = TRUE
                  p_value calculate p-value (default = FALSE)
                  n_times (page/rank) number of permutation iterations to calculate p-value
                  rbp_p (rank) fractional binarization threshold (default = 0.99)
                  num_agg (rank) number of top genes to aggregate (default = 100)
                  max\_block number of lines to process together (default = 20e6)
                  top_percentage (hyper) percentage of cells that will be considered to have
                      gene expression with matrix binarization
                  output_enrichment how to return enrichment output
                  name to give to spatial enrichment results, default = PAGE
                  verbose be verbose
                  return_gobject return giotto object
```

See Also

runSpatialEnrich

64 createSpatialGrid

Description

Create a spatial grid using the default method

Usage

```
createSpatialGrid(
  gobject,
  name = NULL,
  method = c("default"),
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

name name for spatial grid

method method to create a spatial grid

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

• default method: createSpatialDefaultGrid

Value

giotto object with updated spatial grid slot

```
createSpatialKNNnetwork
```

createSpatialKNNnetwork

Description

Create a spatial knn network.

Usage

```
createSpatialKNNnetwork(
  gobject,
  method = "dbscan",
  dimensions = "all",
  name = "knn_network",
  k = 4,
  maximum_distance = NULL,
  minimum_k = 0,
  verbose = F,
  return_gobject = TRUE,
  ...
)
```

Arguments

gobject

```
method method to create kNN network

dimensions which spatial dimensions to use (default = all)

name name for spatial network (default = 'spatial_network')

k number of nearest neighbors based on physical distance

maximum_distance

distance cuttof for nearest neighbors to consider for kNN network

minimum_k minimum nearest neighbours if maximum_distance != NULL

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)
```

Value

giotto object with updated spatial network slot

giotto object

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

additional arguments to the selected method function

maximum_distance: to create a network based on maximum distance only, you also need to set k to a very high value, e.g. k = 100

66 createSpatialNetwork

```
create Spatial Network \\ create Spatial Network
```

giotto object

Description

Create a spatial network based on cell centroid physical distances.

Usage

```
createSpatialNetwork(
  gobject,
  name = NULL,
  dimensions = "all",
  method = c("Delaunay", "kNN"),
delaunay_method = c("deldir", "delaunayn_geometry", "RTriangle"),
maximum_distance_delaunay = "auto",
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  minimum_k = 0,
  knn_method = "dbscan",
  k = 4,
  maximum_distance_knn = NULL,
  verbose = F,
  return_gobject = TRUE,
)
```

Arguments

gobject

name name for spatial network (default = 'spatial_network')		
dimensions which spatial dimensions to use (default = all)		
method which method to use to create a spatial network. (default = Delaunay)		
delaunay_method		
Delaunay method to use		
maximum_distance_delaunay		
distance cuttof for nearest neighbors to consider for Delaunay network		
options (geometry) String containing extra control options for the underlying Qhu command; see the Qhull documentation (/doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems)		
Y (RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh bound ary.		
j (RTriangle) If TRUE jettisons vertices that are not part of the final triangulation from the output.		
S (RTriangle) Specifies the maximum number of added Steiner points.		
minimum_k minimum nearest neigbhours if maximum_distance != NULL		

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. For Delaunay method, neighbors will be decided by delaunay triangulation and a maximum distance criteria. For kNN method, number of neighbors can be determined by k, or maximum distance from each cell with or without setting a minimum k for each cell.

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

Value

giotto object with updated spatial network slot

Description

create a crossSection object

```
create_crossSection_object(
 name = NULL,
 method = NULL,
  thickness_unit = NULL,
  slice_thickness = NULL,
  cell_distance_estimate_method = NULL,
  extend_ratio = NULL,
 plane_equation = NULL,
 mesh_grid_n = NULL,
 mesh_obj = NULL,
 cell_subset = NULL,
  cell_subset_spatial_locations = NULL,
  cell_subset_projection_locations = NULL,
  cell_subset_projection_PCA = NULL,
  cell_subset_projection_coords = NULL
)
```

68 crossSectionGenePlot

Arguments

```
name
                  name of cress section object. (default = cross_sectino)
method
                  method to define the cross section plane.
thickness_unit unit of the virtual section thickness. If "cell", average size of the observed
                  cells is used as length unit. If "natural", the unit of cell location coordinates
                  is used.(default = cell)
slice_thickness
                  thickness of slice
cell_distance_estimate_method
                  method to estimate average distance between neighboring cells. (default = mean)
extend_ratio
                  deciding the span of the cross section meshgrid, as a ratio of extension compared
                  to the borders of the vitural tissue section. (default = 0.2)
plane_equation a numerical vector of length 4, in the form of c(A,B,C,D), which defines plane
                  Ax+By+Cz=D.
                  numer of meshgrid lines to generate along both directions for the cross section
mesh_grid_n
mesh_obj
                  object that stores the cross section meshgrid information.
cell_subset
                  cells selected by the cross section
cell_subset_spatial_locations
                  locations of cells selected by the cross section
cell_subset_projection_locations
                  3D projection coordinates of selected cells onto the cross section plane
cell_subset_projection_PCA
                  pca of projection coordinates
cell_subset_projection_coords
                  2D PCA coordinates of selected cells in the cross section plane
```

 ${\tt crossSectionGenePlot} \quad {\it crossSectionGenePlot}$

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

```
crossSectionGenePlot(
  gobject = NULL,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionGenePlot",
  ...
)
```

crossSectionGenePlot3D 69

Arguments

```
gobject giotto object

crossSection_obj

crossSection object

name name of virtual cross section to use

spatial_network_name

name of spatial network to use

default_save_name

default save name for saving, don't change, change save_name in save_param

parameters for spatGenePlot2D
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D and spatGenePlot2D
```

```
crossSectionGenePlot3D
```

crossSectionGenePlot3D

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
crossSectionGenePlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSectionGenePlot3D",
   ...
)
```

Arguments

70 crossSectionPlot

Details

Description of parameters.

Value

ggplot

crossSectionPlot

cross Section Plot

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionPlot",
   ...
)
```

Arguments

Details

Description of parameters.

crossSectionPlot3D 71

Value

ggplot

See Also

crossSectionPlot

 ${\tt crossSectionPlot3D}$

cross Section Plot 3D

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  show_other_cells = T,
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSection3D",
  ...
)
```

Arguments

Details

Description of parameters.

Value

ggplot

detectSpatialCorGenes detectSpatialCorGenes

Description

Detect genes that are spatially correlated

Usage

```
detectSpatialCorGenes(
  gobject,
  method = c("grid", "network"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  network_smoothing = NULL,
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  cor_method = c("pearson", "kendall", "spearman")
)
```

Arguments

```
gobject
                  giotto object
method
                  method to use for spatial averaging
expression_values
                  gene expression values to use
subset_genes
                  subset of genes to use
spatial_network_name
                  name of spatial network to use
network_smoothing
                  smoothing factor beteen 0 and 1 (default: automatic)
spatial_grid_name
                  name of spatial grid to use
min_cells_per_grid
                  minimum number of cells to consider a grid
cor_method
                  correlation method
```

Details

For method = network, it expects a fully connected spatial network. You can make sure to create a fully connected network by setting $minimal_k > 0$ in the createSpatialNetwork function.

- 1. grid-averaging: average gene expression values within a predefined spatial grid
- 2. network-averaging: smoothens the gene expression matrix by averaging the expression within one cell by using the neighbours within the predefined spatial network. b is a smoothening factor that defaults to 1 1/k, where k is the median number of k-neighbors in the selected spatial network. Setting b = 0 means no smoothing and b = 1 means no contribution from its own expression.

The spatCorObject can be further explored with showSpatialCorGenes()

detectSpatialPatterns 73

Value

```
returns a spatial correlation object: "spatCorObject"
```

See Also

```
showSpatialCorGenes
```

```
detectSpatialPatterns detectSpatialPatterns
```

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  scale_unit = F,
  ncp = 100,
  show_plot = T,
  PC_zscore = 1.5
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
spatial_grid_name
                  name of spatial grid to use (default = 'spatial_grid')
min_cells_per_grid
                  minimum number of cells in a grid to be considered
scale_unit
                  scale features
                  number of principal components to calculate
ncp
                  show plots
show_plot
PC_zscore
                  minimum z-score of variance explained by a PC
```

Details

Steps to identify spatial patterns:

- 1. average gene expression for cells within a grid, see createSpatialGrid
- 2. perform PCA on the average grid expression profiles
- 3. convert variance of principlal components (PCs) to z-scores and select PCs based on a z-score threshold

74 dimCellPlot

Value

spatial pattern object 'spatPatObj'

dimCellPlot

dimCellPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimCellPlot(gobject, ...)
```

Arguments

```
gobject
                 giotto object
                  Arguments passed on to dimCellPlot2D
. . .
                 dim_reduction_to_use dimension reduction to use
                 dim_reduction_name dimension reduction name
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 cell_annotation_values numeric cell annotation columns
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell color code named vector with colors for cell annotation values
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                  select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                  show_center_label plot label of selected clusters
                 center_point_size size of center points
                 center_point_border_col border color of center points
                 center_point_border_stroke border stroke size of center points
                 label_size size of labels
                 label_fontface font of labels
                 edge_alpha column to use for alpha of the edges
```

point_shape point with border or not (border or no_border)

dimCellPlot 75

```
point_size size of point (cell)
point_alpha transparancy of dim. reduction points
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save param
```

Details

Description of parameters. For 3D plots see dimCellPlot2D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot2D()

Examples

76 dimCellPlot2D

dimCellPlot2D

dimCellPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot2D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
```

dimCellPlot2D 77

```
cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimCellPlot2D"
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
                     dimension to use on y-axis
    dim2_to_use
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color_code
                     named vector with colors for cell annotation values
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
```

78 dimCellPlot2D

```
center_point_border_col
                  border color of center points
center_point_border_stroke
                  border stroke size of center points
label_size
                  size of labels
label_fontface font of labels
                  column to use for alpha of the edges
edge_alpha
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_alpha
                  transparancy of dim. reduction points
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
                  size of axis text
axis_text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot()

dimGenePlot 79

Examples

dimGenePlot

dimGenePlot

Description

Visualize gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot(...)
```

Arguments

```
Arguments passed on to dimGenePlot2D
. . .
                 gobject giotto object
                 expression_values gene expression values to use
                 genes genes to show
                 dim_reduction_to_use dimension reduction to use
                 dim_reduction_name dimension reduction name
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 network_color color of NN network
                 edge_alpha column to use for alpha of the edges
                 scale_alpha_with_expression scale expression with ggplot alpha parameter
                 point_shape point with border or not (border or no_border)
                 point_size size of point (cell)
                 point_alpha transparancy of points
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 point_border_col color of border around points
```

80 dimGenePlot2D

```
point_border_stroke stroke size of border around points
show_legend show legend
legend_text size of legend text
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot3D()

Examples

```
data(mini_giotto_single_cell)
all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
dimGenePlot(mini_giotto_single_cell, genes = selected_genes, point_size = 3)
```

dimGenePlot2D

dimGenePlot2D

Description

Visualize gene expression according to dimension reduction coordinates

dimGenePlot2D 81

Usage

```
dimGenePlot2D(
     gobject,
     expression_values = c("normalized", "scaled", "custom"),
     genes = NULL,
     dim_reduction_to_use = "umap",
     dim_reduction_name = "umap",
     dim1_to_use = 1,
     dim2\_to\_use = 2,
     show_NN_network = F,
     nn_network_to_use = "sNN",
     network_name = "sNN.pca",
     network_color = "lightgray",
     edge_alpha = NULL,
     scale_alpha_with_expression = FALSE,
     point_shape = c("border", "no_border"),
     point_size = 1,
     point_alpha = 1,
     cell_color_gradient = c("blue", "white", "red"),
     gradient_midpoint = NULL,
     gradient_limits = NULL,
     point_border_col = "black",
     point_border_stroke = 0.1,
     show_legend = T,
     legend_text = 8,
     background_color = "white",
     axis_text = 8,
     axis_title = 8,
     cow_n_col = 2,
     cow_rel_h = 1,
     cow_rel_w = 1,
     cow_align = "h",
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "dimGenePlot2D"
Arguments
   gobject
                   giotto object
   expression_values
                   gene expression values to use
   genes
                   genes to show
   dim_reduction_to_use
```

dimension reduction to use

dimension reduction name

dimension to use on x-axis

dimension to use on y-axis

dim_reduction_name

dim1_to_use

dim2_to_use

82 dimGenePlot2D

```
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
network_color
                 color of NN network
edge_alpha
                 column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
point_shape
                 point with border or not (border or no_border)
point_size
                 size of point (cell)
point_alpha
                 transparancy of points
cell_color_gradient
                 vector with 3 colors for numeric data
gradient_midpoint
                 midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
                 show legend
show_legend
legend_text
                 size of legend text
background_color
                 color of plot background
                 size of axis text
axis_text
axis_title
                 size of axis title
cow_n_col
                 cowplot param: how many columns
cow_rel_h
                 cowplot param: relative height
cow_rel_w
                 cowplot param: relative width
                 cowplot param: how to align
cow_align
show_plot
                 show plots
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
save_param
                 list of saving parameters, see showSaveParameters
default_save_name
                 default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

dimGenePlot3D 83

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot3D(), dimGenePlot()

Examples

```
data(mini_giotto_single_cell)
all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
dimGenePlot2D(mini_giotto_single_cell, genes = selected_genes, point_size = 3)
```

dimGenePlot3D

dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
dimGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  edge_alpha = NULL,
  point_size = 2,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
```

84 dimGenePlot3D

```
default_save_name = "dimGenePlot3D"
Arguments
                     giotto object
    gobject
    expression_values
                     gene expression values to use
    genes
                     genes to show
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
                     dimension to use on y-axis
    dim2_to_use
    dim3_to_use
                     dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    network_color
                     color of NN network
    cluster_column cluster column to select groups
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    edge_alpha
                     column to use for alpha of the edges
    point_size
                     size of point (cell)
    genes_high_color
                      color for high expression levels
    genes_mid_color
                     color for medium expression levels
    genes_low_color
                     color for low expression levels
    show_legend
                     show legend
    show_plot
                     show plots
    return_plot
                     return ggplot object
                     directly save the plot [boolean]
    save_plot
                     list of saving parameters, see showSaveParameters
    save_param
    default_save_name
```

default save name for saving, don't change, change save_name in save_param

dimPlot 85

Details

Description of parameters.

Value

ggplot

See Also

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot()

dimPlot

dimPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot(...)
```

Arguments

Arguments passed on to dimPlot2D gobject giotto object group_by create multiple plots based on cell annotation column group_by_subset subset the group_by factor column dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color paramselect_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells

86 dimPlot

```
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see dimPlot3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plot
```

Examples

```
data(mini_giotto_single_cell)
dimPlot(mini_giotto_single_cell)
dimPlot(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

dimPlot2D 87

dimPlot2D

dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot2D(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
```

88 dimPlot2D

```
axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimPlot2D"
    )
Arguments
    gobject
                     giotto object
    group_by
                     create multiple plots based on cell annotation column
    group_by_subset
                     subset the group_by factor column
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
```

color of not selected cells

dimPlot2D 89

```
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
center_point_border_col
                  border color of center points
{\tt center\_point\_border\_stroke}
                  border stroke size of center points
label_size
                  size of labels
label_fontface font of labels
                  column to use for alpha of the edges
edge_alpha
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_alpha
                  transparancy of point
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

90 dimPlot3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
data(mini_giotto_single_cell)
dimPlot2D(mini_giotto_single_cell)
dimPlot2D(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

dimPlot3D

dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot3D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  spat_enr_names = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 3,
  show_plot = NA,
```

dimPlot3D 91

```
return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dim3D"
Arguments
    gobject
                      giotto object
    dim_reduction_to_use
                      dimension reduction to use
    dim_reduction_name
                      dimension reduction name
    dim1_to_use
                      dimension to use on x-axis
    dim2_to_use
                      dimension to use on y-axis
    dim3_to_use
                      dimension to use on z-axis
    spat_enr_names names of spatial enrichment results to include
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
    select_cells
                      select subset of cells based on cell IDs
    show_other_cells
                      display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
                      size of not selected cells
    show_NN_network
                      show underlying NN network
    nn_network_to_use
                      type of NN network to use (kNN vs sNN)
                      name of NN network to use, if show_NN_network = TRUE
    network_name
    color_as_factor
                      convert color column to factor
                      color for cells (see details)
    cell_color
    cell_color_code
                      named vector with colors
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    edge_alpha
                      column to use for alpha of the edges
    point_size
                      size of point (cell)
    show_plot
                      show plot
```

return_plot

return ggplot object

92 doHclust

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

doHclust

doHclust

Description

cluster cells using hierarchical clustering algorithm

```
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL,
  name = "hclust",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

doHclust 93

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
genes_to_use
                 subset of genes to use
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
agglomeration_method
                 agglomeration method for hclust
                 number of final clusters
                 cut hierarchical tree at height = h
h
name
                 name for hierarchical clustering
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

hclust

Examples

```
data(mini_giotto_single_cell)
mini_giotto_single_cell = doHclust(mini_giotto_single_cell, k = 4, name = 'hier_clus')
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'hier_clus', point_size = 3)
```

94 doHMRF

doHMRF

doHMRF

Description

Run HMRF

Usage

```
doHMRF(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "Delaunay_network",
  spatial_genes = NULL,
  spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
  dim_reduction_to_use = NULL,
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  seed = 100,
  name = "test",
  k = 10,
  betas = c(0, 2, 50),
  tolerance = 1e-10,
  zscore = c("none", "rowcol", "colrow"),
  numinit = 100,
  python_path = NULL,
  output_folder = NULL,
  overwrite_output = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
{\tt spatial\_network\_name}
                  name of spatial network to use for HMRF
                  spatial genes to use for HMRF
spatial_genes
spatial_dimensions
                  select spatial dimensions to use, default is all possible dimensions
dim_reduction_to_use
                  use another dimension reduction set as input
dim_reduction_name
                  name of dimension reduction set to use
dimensions_to_use
                  number of dimensions to use as input
                  seed to fix random number generator (for creating initialization of HMRF) (-1 if
seed
                  no fixing)
                  name of HMRF run
name
```

doKmeans 95

```
k
                  number of HMRF domains
betas
                  betas to test for. three numbers: start_beta, beta_increment, num_betas e.g. c(0,
                  2.0, 50)
tolerance
                  tolerance
zscore
                  zscore
numinit
                  number of initializations
                  python path to use
python_path
                  output folder to save results
output_folder
overwrite_output
                  overwrite output folder
```

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

doKmeans doKmeans

Description

cluster cells using kmeans algorithm

```
doKmeans(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  centers = 10,
  iter_max = 100,
  nstart = 1000,
  algorithm = "Hartigan-Wong",
  name = "kmeans",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

96 doKmeans

Arguments

gobject giotto object

expression_values

expression values to use

genes_to_use subset of genes to use

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimensions reduction name

 $dimensions_to_use$

dimensions to use

distance_method

distance method

centers number of final clusters

iter_max kmeans maximum iterations

nstart kmeans nstart

algorithm kmeans algorithm

name name for kmeans clustering

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

kmeans

Examples

```
data(mini_giotto_single_cell)
mini_giotto_single_cell = doKmeans(mini_giotto_single_cell, centers = 4, name = 'kmeans_clus')
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'kmeans_clus', point_size = 3)
```

doLeidenCluster 97

doLeidenCluster doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(
  gobject,
  name = "leiden_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = "weight",
  partition_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  init_membership = NULL,
  n_iterations = 1000,
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

Arguments

gobject giotto object name for cluster name nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use python_path specify specific path to python if required resolution resolution weight_col weight column to use for edges partition_type The type of partition to use for optimisation. init_membership initial membership of cells for the partition n_iterations number of interations to run the Leiden algorithm. If the number of iterations is negative, the Leiden algorithm is run until an iteration in which there was no improvement. return_gobject boolean: return giotto object (default = TRUE) set_seed set seed seed_number number for seed

98 doLeidenSubCluster

Details

This function is a wrapper for the Leiden algorithm implemented in python, which can detect communities in graphs of millions of nodes (cells), as long as they can fit in memory. See the https://leidenalg.readthedocs.io/en/stable/index.htmlreadthedocs page for more information.

Partition types available and information:

- RBConfigurationVertexPartition: Implements Reichardt and Bornholdt's Potts model with a configuration null model. This quality function is well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
- Modularity Vertex Partition: Implements modularity. This quality function is well-defined only for positive edge weights. It does *not* use the resolution parameter

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

doLeidenSubCluster

doLeidenSubCluster

Description

Further subcluster cells using a NN-network and the Leiden algorithm

```
doLeidenSubCluster(
  gobject,
 name = "sub_pleiden_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
    "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  resolution = 0.5,
 n_{iterations} = 500,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

doLeidenSubCluster 99

Arguments

gobject giotto object

name name for new clustering result cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution of Leiden clustering

n_iterations number of interations to run the Leiden algorithm.

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

 ${\tt network_name} \qquad {\tt name} \ of \ NN \ network \ to \ use$

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Leiden algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Leiden clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLeidenCluster

100 doLouvainCluster

doLouvainCluster

doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(
  gobject,
  version = c("community", "multinet"),
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  louv_random = F,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
)
```

Arguments

```
gobject
                  giotto object
                  implemented version of Louvain clustering to use
version
                  name for cluster
name
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use
python_path
                  [community] specify specific path to python if required
resolution
                  [community] resolution
                  weight column name
weight_col
gamma
                  [multinet] Resolution parameter for modularity in the generalized louvain method.
                  [multinet] Inter-layer weight parameter in the generalized louvain method
omega
                  [community] Will randomize the node evaluation order and the community eval-
louv_random
                  uation order to get different partitions at each call
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
                  additional parameters
```

doLouvainSubCluster 101

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object with new clusters appended to cell metadata

See Also

doLouvainCluster_community and doLouvainCluster_multinet

doLouvainSubCluster doLouvainSubCluster

Description

subcluster cells using a NN-network and the Louvain algorithm

Usage

```
doLouvainSubCluster(
  gobject,
  name = "sub_louvain_clus",
  version = c("community", "multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
    "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  gamma = 1,
  omega = 1,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

Arguments

```
gobject giotto object

name name for new clustering result

version version of Louvain algorithm to use
```

102 doLouvainSubCluster

cluster_column cluster column to subcluster
selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork resolution resolution for community algorithm

gamma gamma omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

 $\verb|return_gobject|| boolean: return giotto object (default = TRUE)$

verbose verbose

Details

This function performs subclustering using the Louvain algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet and doLouvainCluster_community

doRandomWalkCluster 103

 $do Random Walk Cluster \qquad do Random Walk Cluster$

Description

Cluster cells using a random walk approach.

Usage

```
doRandomWalkCluster(
  gobject,
  name = "random_walk_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

```
giotto object
gobject
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
walk_steps
                 number of walking steps
walk_clusters
                 number of final clusters
                 cluster column defining the walk weights
walk_weights
return_gobject boolean: return giotto object (default = TRUE)
set\_seed
                 set seed
seed_number
                 number for seed
```

Details

See cluster_walktrap function from the igraph package in R for more information.

Value

giotto object with new clusters appended to cell metadata

104 doSNNCluster

doSNNCluster doSNNCluster

Description

Cluster cells using a SNN cluster approach.

Usage

```
doSNNCluster(
  gobject,
  name = "sNN_clus",
  nn_network_to_use = "kNN",
  network_name = "kNN.pca",
  k = 20,
  eps = 4,
  minPts = 16,
  borderPoints = TRUE,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

gobject giotto object name name for cluster

nn_network_to_use

type of NN network to use (only works on kNN)

 ${\tt network_name} \qquad {\tt name} \ of \ kNN \ network \ to \ use$

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See sNNclust from dbscan package

Value

giotto object with new clusters appended to cell metadata

estimateImageBg 105

estimateImageBg

estimateImageBg

Description

helps to estimate which color is the background color of your plot

Usage

```
estimateImageBg(mg_object, top_color_range = 1:50)
```

Arguments

```
mg_object magick image or Giotto image object top_color_range top possible background colors to return
```

Value

vector of pixel color frequencies and an associated barplot

exportGiottoViewer

exportGiottoViewer

Description

compute highly variable genes

```
exportGiottoViewer(
  gobject,
  output_directory = NULL,
  spat_enr_names = NULL,
  factor_annotations = NULL,
  numeric_annotations = NULL,
  dim_reductions,
  dim_reduction_names,
  expression_values = c("scaled", "normalized", "custom"),
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  expression_rounding = 2,
  overwrite_dir = T,
  verbose = T
```

106 exportGiottoViewer

Arguments

```
gobject
                  giotto object
output_directory
                  directory where to save the files
spat_enr_names spatial enrichment results to include for annotations
factor_annotations
                  giotto cell annotations to view as factor
numeric_annotations
                  giotto cell annotations to view as numeric
dim_reductions high level dimension reductions to view
dim_reduction_names
                  specific dimension reduction names
expression_values
                  expression values to use in Viewer
dim_red_rounding
                  numerical indicating how to round the coordinates
dim_red_rescale
                  numericals to rescale the coordinates
expression_rounding
                  numerical indicating how to round the expression data
                  overwrite files in the directory if it already existed
overwrite_dir
verbose
                  be verbose
```

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function. To include enrichment results from createSpatialEnrich include the provided spatial enrichment name (default PAGE or rank) and add the gene signature names (.e.g cell types) to the numeric annotations parameter.

Value

writes the necessary output to use in Giotto Viewer

Examples

```
## Not run:
data(mini_giotto_single_cell)
exportGiottoViewer(mini_giotto_single_cell)
## End(Not run)
```

exprCellCellcom 107

exprCellCellcom exprCellCellcom

Description

Cell-Cell communication scores based on expression only

Usage

Arguments

```
giotto object to use
gobject
cluster_column cluster column with cell type information
random_iter
                  number of iterations
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
detailed
                  provide more detailed information (random variance and z-score)
                  which method to adjust p-values
adjust_method
                  adjust multiple hypotheses at the cell or gene level
adjust_target
                  set seed for random simulations (default = TRUE)
set_seed
seed_number
                  seed number
verbose
                  verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values, without considering the spatial position of cells. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on expression only

fDataDT

fDataDT

Description

show gene metadata

Usage

fDataDT(gobject)

Arguments

gobject

giotto object

Value

data.table with gene metadata

Examples

```
data(mini_giotto_single_cell) # loads existing Giotto object
fDataDT(mini_giotto_single_cell)
```

filterCellProximityGenes

filter Cell Proximity Genes

Description

Filter Interaction Changed Gene scores.

Usage

```
filterCellProximityGenes(...)
```

Arguments

... Arguments passed on to findICG

gobject giotto object
expression_values expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name name of spatial network to use
minimum_unique_cells minimum number of target cells required
minimum_unique_int_cells minimum number of interacting cells required
diff_test which differential expression test
mean_method method to use to calculate the mean

filterCombinations 109

offset offset value to use when calculating log2 ratio
adjust_method which method to adjust p-values
nr_permutations number of permutations if diff_test = permutation
exclude_selected_cells_from_test exclude interacting cells other cells
do_parallel run calculations in parallel with mclapply
cores number of cores to use if do_parallel = TRUE
set_seed set a seed for reproducibility
seed_number seed number

See Also

findICG

filterCombinations

filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(
 gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
 expression_thresholds = c(1, 2),
 gene_det_in_min_cells = c(5, 50),
 min_det_genes_per_cell = c(200, 400),
  scale_x_axis = "identity",
 x_axis_offset = 0,
  scale_y_axis = "identity",
 y_axis_offset = 0,
  show_plot = TRUE,
 return_plot = FALSE,
  save_plot = NA,
 save_param = list(),
 default_save_name = "filterCombinations"
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_thresholds

all thresholds to consider a gene expressed

gene_det_in_min_cells

minimum number of cells that should express a gene to consider that gene further
```

110 filterCPG

```
min_det_genes_per_cell
                  minimum number of expressed genes per cell to consider that cell further
                  ggplot transformation for x-axis (e.g. log2)
scale_x_axis
x_axis_offset
                  x-axis offset to be used together with the scaling transformation
scale_y_axis
                  ggplot transformation for y-axis (e.g. log2)
y_axis_offset
                  y-axis offset to be used together with the scaling transformation
show_plot
                  show plot
return_plot
                  return only ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

Examples

```
data(mini_giotto_single_cell)
# assess the effect of multiple filter criteria
filterCombinations(mini_giotto_single_cell,
gene_det_in_min_cells = c(2, 4, 8),
min_det_genes_per_cell = c(5, 10, 20))
```

filterCPG filterCPG

Description

Filter Interaction Changed Gene scores.

```
filterCPG(...)
```

filterDistributions 111

Arguments

```
... Arguments passed on to filterICG

cpgObject ICG (interaction changed gene) score object

min_cells minimum number of source cell type

min_cells_expr minimum expression level for source cell type

min_int_cells minimum number of interacting neighbor cell type

min_int_cells_expr minimum expression level for interacting neighbor cell

type

min_fdr minimum adjusted p-value

min_spat_diff minimum absolute spatial expression difference

min_log2_fc minimum log2 fold-change

min_zscore minimum z-score change

zscores_column calculate z-scores over cell types or genes

direction differential expression directions to keep
```

See Also

filterICG

filterDistributions filterDistributions

Description

show gene or cell distribution after filtering on expression threshold

```
filterDistributions(
 gobject,
 expression_values = c("raw", "normalized", "scaled", "custom"),
 expression_threshold = 1,
 detection = c("genes", "cells"),
 plot_type = c("histogram", "violin"),
 nr_bins = 30,
 fill_color = "lightblue",
  scale_axis = "identity",
 axis_offset = 0,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "filterDistributions"
)
```

112 filterGiotto

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
                  consider genes or cells
detection
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
axis_offset
                  offset to be used together with the scaling transformation
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot object

Examples

```
data(mini_giotto_single_cell)

# distribution plot of genes
filterDistributions(mini_giotto_single_cell, detection = 'genes')

# distribution plot of cells
filterDistributions(mini_giotto_single_cell, detection = 'cells')
```

filterGiotto

filterGiotto

Description

filter Giotto object based on expression threshold

```
filterGiotto(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
   gene_det_in_min_cells = 100,
   min_det_genes_per_cell = 100,
  verbose = F
)
```

filterICG 113

Arguments

```
gobject giotto object
expression_values
expression values to use
expression_threshold
threshold to consider a gene expressed
gene_det_in_min_cells
minimum # of cells that need to express a gene
min_det_genes_per_cell
minimum # of genes that need to be detected in a cell
verbose verbose
```

Details

The function filterCombinations can be used to explore the effect of different parameter values.

Value

giotto object

Examples

filterICG

filterICG

Description

Filter Interaction Changed Gene scores.

```
filterICG(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

Arguments

```
cpgObject
                 ICG (interaction changed gene) score object
min_cells
                 minimum number of source cell type
min_cells_expr minimum expression level for source cell type
min_int_cells
                 minimum number of interacting neighbor cell type
min_int_cells_expr
                 minimum expression level for interacting neighbor cell type
min_fdr
                 minimum adjusted p-value
min_spat_diff
                 minimum absolute spatial expression difference
                 minimum log2 fold-change
min_log2_fc
min_zscore
                 minimum z-score change
zscores_column calculate z-scores over cell types or genes
direction
                 differential expression directions to keep
```

Value

cpgObject that contains the filtered differential gene scores

```
filterInteractionChangedGenes
```

filterInteractionChangedGenes

Description

Filter Interaction Changed Gene scores.

```
filterInteractionChangedGenes(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

Arguments

cpgObject ICG (interaction changed gene) score object min_cells minimum number of source cell type min_cells_expr minimum expression level for source cell type min_int_cells minimum number of interacting neighbor cell type min_int_cells_expr minimum expression level for interacting neighbor cell type min_fdr minimum adjusted p-value minimum absolute spatial expression difference min_spat_diff minimum log2 fold-change min_log2_fc minimum z-score change min_zscore zscores_column calculate z-scores over cell types or genes direction differential expression directions to keep

Value

cpgObject that contains the filtered differential gene scores

findCellProximityGenes

findCellProximityGenes

Description

Identifies cell-to-cell Interaction Changed Genes (ICG), i.e. genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCellProximityGenes(...)
```

Arguments

Arguments passed on to findInteractionChangedGenes
gobject giotto object
expression_values expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name name of spatial network to use
minimum_unique_cells minimum number of target cells required
minimum_unique_int_cells minimum number of interacting cells required
diff_test which differential expression test
mean_method method to use to calculate the mean
offset offset value to use when calculating log2 ratio
adjust_method which method to adjust p-values
nr_permutations number of permutations if diff_test = permutation

116 findCPG

exclude_selected_cells_from_test exclude interacting cells other cells do_parallel run calculations in parallel with mclapply cores number of cores to use if do_parallel = TRUE set_seed set a seed for reproducibility seed_number seed number

See Also

 ${\tt findInteractionChangedGenes}$

findCPG

findCPG

Description

Identifies cell-to-cell Interaction Changed Genes (ICG), i.e. genes that are differentially expressed due to proximity to other cell types.

Usage

findCPG(...)

Arguments

... Arguments passed on to findICG

gobject giotto object expression_values expression values to use selected_genes subset of selected genes (optional) cluster_column name of column to use for cell types spatial_network_name name of spatial network to use minimum_unique_cells minimum number of target cells required minimum_unique_int_cells minimum number of interacting cells required diff_test which differential expression test mean_method method to use to calculate the mean offset offset value to use when calculating log2 ratio adjust_method which method to adjust p-values nr_permutations number of permutations if diff_test = permutation exclude_selected_cells_from_test exclude interacting cells other cells do_parallel run calculations in parallel with mclapply cores number of cores to use if do_parallel = TRUE set_seed set a seed for reproducibility seed_number seed number

See Also

findICG

findGiniMarkers 117

findGiniMarkers findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

Usage

```
findGiniMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.2,
  min_det_gini_score = 0.2,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 5
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
group_2
                  group 2 cluster IDs from cluster_column for pairwise comparison
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter on minimum gini coefficient for detection
detection_threshold
                  detection threshold for gene expression
                  rank scores for both detection and expression to include
rank_score
                  minimum number of top genes to return
min_genes
```

Details

Detection of marker genes using the <a href="https://en.wikipedia.org/wiki/Gini_coefficientginic

- 1. calculate average expression per cluster
- 2. calculate detection fraction per cluster

- 3. calculate gini-coefficient for av. expression values over all clusters
- 4. calculate gini-coefficient for detection fractions over all clusters
- 5. convert gini-scores to rank scores
- 6. for each gene create combined score = detection rank x expression rank x expr gini-coefficient x detection gini-coefficient
- 7. for each gene sort on expression and detection rank and combined score

As a results "top gini" genes are genes that are very selectivily expressed in a specific cluster, however not always expressed in all cells of that cluster. In other words highly specific, but not necessarily sensitive at the single-cell level.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

```
find {\it GiniMarkers\_one\_vs\_all} \\ {\it find GiniMarkers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters in a one vs all manner based on gini detection and expression scores.

```
findGiniMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 4,
  verbose = TRUE
)
```

findICG 119

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
min_expr_gini_score
                  filter on minimum gini coefficient on expression
min_det_gini_score
                  filter on minimum gini coefficient on detection
detection_threshold
                  detection threshold for gene expression
                  rank scores for both detection and expression to include
rank_score
                  minimum number of top genes to return
min_genes
verbose
                  be verbose
```

Value

data.table with marker genes

See Also

findGiniMarkers

Examples

 ${\tt findICG} \hspace{1cm} \textit{findICG}$

Description

Identifies cell-to-cell Interaction Changed Genes (ICG), i.e. genes that are differentially expressed due to proximity to other cell types.

```
findICG(
  gobject,
  expression_values = "normalized",
  selected_genes = NULL,
  cluster_column,
  spatial_network_name = "Delaunay_network",
```

120 findICG

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name
                  name of spatial network to use
minimum_unique_cells
                  minimum number of target cells required
minimum_unique_int_cells
                  minimum number of interacting cells required
diff_test
                  which differential expression test
mean_method
                  method to use to calculate the mean
offset
                  offset value to use when calculating log2 ratio
                  which method to adjust p-values
adjust_method
nr_permutations
                  number of permutations if diff_test = permutation
exclude_selected_cells_from_test
                  exclude interacting cells other cells
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
                  set a seed for reproducibility
set_seed
seed_number
                  seed number
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type

- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif_int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

findInteractionChangedGenes

findInteractionChangedGenes

Description

Identifies cell-to-cell Interaction Changed Genes (ICG), i.e. genes that are differentially expressed due to proximity to other cell types.#'

```
findInteractionChangedGenes(
  gobject.
  expression_values = "normalized",
  selected_genes = NULL,
  cluster_column,
  spatial_network_name = "Delaunay_network",
 minimum_unique_cells = 1,
 minimum_unique_int_cells = 1,
 diff_test = c("permutation", "limma", "t.test", "wilcox"),
 mean_method = c("arithmic", "geometric"),
 offset = 0.1,
 adjust_method = c("bonferroni", "BH", "holm", "hochberg", "hommel", "BY", "fdr",
    "none"),
 nr_permutations = 1000,
 exclude_selected_cells_from_test = T,
 do_parallel = TRUE,
 cores = NA,
  set_seed = TRUE,
  seed_number = 1234
)
```

Arguments

gobject giotto object expression_values expression values to use selected_genes subset of selected genes (optional) cluster_column name of column to use for cell types spatial_network_name name of spatial network to use minimum_unique_cells minimum number of target cells required minimum_unique_int_cells minimum number of interacting cells required diff_test which differential expression test mean_method method to use to calculate the mean offset offset value to use when calculating log2 ratio adjust_method which method to adjust p-values nr_permutations number of permutations if diff_test = permutation exclude_selected_cells_from_test exclude interacting cells other cells run calculations in parallel with mclapply do_parallel number of cores to use if do_parallel = TRUE cores set a seed for reproducibility set_seed seed number seed_number

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif_int: cell-cell interaction

findMarkers 123

Value

cpgObject that contains the Interaction Changed differential gene scores

findMarkers

findMarkers

Description

Identify marker genes for selected clusters.

Usage

```
findMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column = NULL,
  method = c("scran", "gini", "mast"),
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min\_genes = 4,
  group_1_name = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
method
                  method to use to detect differentially expressed genes
subset_clusters
                  selection of clusters to compare
group_1
                  group 1 cluster IDs from cluster_column for pairwise comparison
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
```

```
rank_score gini: rank scores to include

min_genes minimum number of top genes to return (for gini)

group_1_name mast: custom name for group_1 clusters

group_2_name mast: custom name for group_2 clusters

adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)

... additional parameters for the findMarkers function in scran or zlm function in MAST
```

Details

Wrapper for all individual functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

findScranMarkers, findGiniMarkers and findMastMarkers

```
findMarkers_one_vs_all findMarkers_one_vs_all
```

Description

Identify marker genes for all clusters in a one vs all manner.

```
findMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  method = c("scran", "gini", "mast"),
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  adjust_columns = NULL,
  verbose = TRUE,
)
```

findMastMarkers 125

Arguments

gobject giotto object

expression_values

gene expression values to use

cluster_column clusters to use

subset_clusters

selection of clusters to compare

method method to use to detect differentially expressed genes

pval scran & mast: filter on minimal p-value

logFC scan & mast: filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

min_expr_gini_score

gini: filter on minimum gini coefficient for expression

min_det_gini_score

gini: filter minimum gini coefficient for detection

detection_threshold

gini: detection threshold for gene expression

rank_score gini: rank scores to include

 $adjust_columns \quad mast: \ column \ in \ pDataDT \ to \ adjust \ for \ (e.g. \ detection \ rate)$

verbose be verbose

... additional parameters for the findMarkers function in scran or zlm function in

MAST

Details

Wrapper for all one vs all functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

 $find Scran Markers_one_vs_all, find Gini Markers_one_vs_all \ and \ find Mast Marke$

findMastMarkers findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

126 findMastMarkers

Usage

```
findMastMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
  verbose = FALSE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
group_1
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1_name
                  custom name for group_1 clusters
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
                  custom name for group_2 clusters
group_2_name
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
                  be verbose
verbose
                  additional parameters for the zlm function in MAST
. . .
```

Details

This is a minimal convenience wrapper around the zlm from the MAST package to detect differentially expressed genes. Caution: with large datasets MAST might take a long time to run and finish

Value

data.table with marker genes

Examples

```
\label{lem:cone_vs_all} find \textit{MastMarkers\_one\_vs\_all} \\ find \textit{MastMarkers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters in a one vs all manner based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  adjust_columns = NULL,
  pval = 0.001,
  logFC = 1,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
                  filter on minimal p-value
pval
logFC
                  filter on logFC
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
verbose
                  be verbose
                  additional parameters for the zlm function in MAST
```

Value

data.table with marker genes

See Also

findMastMarkers

Examples

findNetworkNeighbors findNetworkNeighbors

Description

Find the spatial neighbors for a selected group of cells within the selected spatial network.

Usage

```
findNetworkNeighbors(
  gobject,
  spatial_network_name,
  source_cell_ids = NULL,
  name = "nb_cells"
)
```

Arguments

Value

data.table

Examples

findScranMarkers 129

findScranMarkers findScranMarkers

Description

Identify marker genes for all or selected clusters based on scran's implementation of findMarkers.

Usage

```
findScranMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  verbose = FALSE,
  ...
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
subset_clusters
selection of clusters to compare
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
verbose be verbose (default = FALSE)
... additional parameters for the findMarkers function in scran
```

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package. To perform differential expression between cluster groups you need to specificy cluster IDs to the

Value

data.table with marker genes

parameters group_1 and group_2.

Examples

```
group_2 = 2)
```

```
\label{lem:findScranMarkers_one_vs_all} findScranMarkers\_one\_vs\_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

Usage

```
findScranMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  subset of clusters to use
                  filter on minimal p-value
pval
logFC
                  filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
verbose
                  be verbose
                  additional parameters for the findMarkers function in scran
```

Value

data.table with marker genes

See Also

findScranMarkers

get10Xmatrix 131

Examples

get10Xmatrix

get10Xmatrix

Description

This function creates an expression matrix from a 10X structured folder

Usage

```
get10Xmatrix(path_to_data, gene_column_index = 1)
```

Arguments

```
path_to_data path to the 10X folder gene_column_index which column from the features or genes .tsv file to use for row ids
```

Details

A typical 10X folder is named raw_feature_bc_matrix or raw_feature_bc_matrix and it has 3 files:

- barcodes.tsv(.gz)
- features.tsv(.gz) or genes.tsv(.gz)
- matrix.mtx(.gz)

By default the first column of the features or genes .tsv file will be used, however if multiple annotations are provided (e.g. ensembl gene ids and gene symbols) the user can select another column.

Value

sparse expression matrix from 10X

132 getClusterSimilarity

```
get10Xmatrix_h5
```

Description

This function creates an expression matrix from a 10X h5 file path

Usage

```
get10Xmatrix_h5(path_to_data, gene_ids = c("symbols", "ensembl"))
```

Arguments

```
path_to_data path to the 10X .h5 file
gene_ids use gene symbols (default) or ensembl ids for the gene expression matrix
```

Details

If the .h5 10x file has multiple modalities (e.g. RNA and protein), multiple matrices will be returned

Value

(list of) sparse expression matrix from 10X

```
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

```
getClusterSimilarity(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman")
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

getDendrogramSplits 133

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

getDendrogramSplits getDendrogramSplits

Description

Split dendrogram at each node and keep the leave (label) information..

Usage

```
getDendrogramSplits(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  show_dend = TRUE,
  verbose = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
                  distance method to use for hierarchical clustering
distance
h
                  height of horizontal lines to plot
                  color of horizontal lines
h_color
                  show dendrogram
show_dend
verbose
                  be verbose
```

134 getGiottoImage

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

```
data("mini_giotto_single_cell")
splits = getDendrogramSplits(mini_giotto_single_cell, cluster_column = 'leiden_clus')
```

getDistinctColors

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

```
getDistinctColors(n)
```

Arguments

n

number of colors wanted

Value

number of distinct colors

getGiottoImage

getGiottoImage

Description

```
get get a giotto image from a giotto object
```

Usage

```
getGiottoImage(gobject, image_name)
```

Arguments

gobject giotto object

image_name name of giotto image showGiottoImageNames

getSpatialDataset 135

Value

```
a giotto image
```

getSpatialDataset
getSpatialDataset

Description

This package will automatically download the spatial locations and expression matrix for the chosen dataset. These files are already in the right format to create a Giotto object. If wget is installed on your machine, you can add 'method = wget' to the parameters to download files faster.

Usage

```
getSpatialDataset(
  dataset = c("ST_OB1", "ST_OB2", "codex_spleen", "cycif_PDAC", "starmap_3D_cortex",
        "osmfish_SS_cortex", "merfish_preoptic", "seqfish_SS_cortex", "seqfish_OB",
        "slideseq_cerebellum"),
        directory = getwd(),
        ...
)
```

Arguments

dataset dataset to download
directory directory to save the data to
... additional parameters to download.file

giotto-class

S4 giotto Class

Description

Framework of giotto object to store and work with spatial expression data

Slots

```
raw_exprs raw expression counts

norm_expr normalized expression counts

norm_scaled_expr normalized and scaled expression counts

custom_expr custom normalized counts

spatial_locs spatial location coordinates for cells

cell_metadata metadata for cells

gene_metadata metadata for genes

cell_ID unique cell IDs

gene_ID unique gene IDs
```

```
spatial_network spatial network in data.table/data.frame format spatial_grid spatial grid in data.table/data.frame format spatial_enrichment slot to save spatial enrichment-like results dimension_reduction slot to save dimension reduction coordinates nn_network nearest neighbor network in igraph format images slot to store giotto images parameters slot to save parameters that have been used instructions slot for global function instructions offset_file offset file used to stitch together image fields OS_platform Operating System to run Giotto analysis on
```

heatmSpatialCorGenes heatmSpatialCorGenes

Description

Create heatmap of spatially correlated genes

Usage

```
heatmSpatialCorGenes(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_cluster_annot = TRUE,
  show_row_dend = T,
  show_column_dend = F,
  show_row_names = F,
  show_column_names = F,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "heatmSpatialCorGenes",
  ...
)
```

Arguments

```
gobject giotto object
spatCorObject spatial correlation object
use_clus_name name of clusters to visualize (from clusterSpatialCorGenes())
show_cluster_annot
show_row_dend show row dendrogram
show_column_dend
show column dendrogram
```

hyperGeometricEnrich 137

```
show_row_names show row names
show_column_names
```

show column names

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

... additional parameters to the Heatmap function from ComplexHeatmap

Value

Heatmap generated by ComplexHeatmap

hyperGeometricEnrich hyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test

Usage

```
hyperGeometricEnrich(...)
```

Arguments

... Arguments passed on to runHyperGeometricEnrich

gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values expression values to use

reverse_log_scale reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

top_percentage percentage of cells that will be considered to have gene ex-

pression with matrix binarization

output_enrichment how to return enrichment output

p_value calculate p-values (boolean, default = FALSE)

name to give to spatial enrichment results, default = rank

return_gobject return giotto object

See Also

runHyperGeometricEnrich

```
insert {\tt CrossSectionGenePlot3D} \\ insert {\tt CrossSectionGenePlot3D}
```

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
insertCrossSectionGenePlot3D(
 gobject,
 crossSection_obj = NULL,
 name = NULL,
 spatial_network_name = "Delaunay_network",
 mesh_grid_color = "#1f77b4",
 mesh_grid_width = 3,
 mesh_grid_style = "dot",
 sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_other_cells = F,
 axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spatGenePlot3D_with_cross_section",
)
```

Arguments

```
gobject
                  giotto object
crossSection_obj
                  cross section object as alternative input. default = NULL.
                  name of virtual cross section to use
name
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimy')
```

```
show_other_cells
                  display not selected cells
axis_scale
                  axis_scale
custom_ratio
                  custom_ratio
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for spatGenePlot3D
. . .
```

Details

Description of parameters.

Value

ggplot

```
insert {\tt CrossSectionSpatPlot3D} \\ insert {\tt CrossSectionSpatPlot3D}
```

Description

Visualize the meshgrid lines of cross section together with cells

```
insertCrossSectionSpatPlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  mesh_grid_color = "#1f77b4",
  mesh_grid_width = 3,
  mesh_grid_style = "dot",
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_other_cells = F,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  default_save_name = "spat3D_with_cross_section",
)
```

140 installGiottoEnvironment

Arguments

```
gobject
                  giotto object
crossSection_obj
                  cross section object as alternative input. default = NULL.
                  name of virtual cross section to use
name
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimy')
show_other_cells
                  display not selected cells
axis_scale
                  axis_scale
custom_ratio
                  custom ratio
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for spatPlot3D
. . .
```

Details

Description of parameters.

Value

ggplot

installGiottoEnvironment

install Giot to Environment

Description

Installs a giotto environment

jackstrawPlot 141

Arguments

Details

This function will install a local giotto environment using the miniconda system as implemented by reticulate. Once this giotto environment is installed it will be automatically detected when you run the Giotto toolbox. If you want to use your own python path then you can set the python_path in the createGiottoInstructions and provide the instructions to the createGiottoObject function.

Value

installs a giotto environment using the reticulate miniconda system

Examples

```
## Not run:

# this command will install r-miniconda
# and a giotto environment with all necessary python modules
installGiottoEnvironment()

## End(Not run)
```

jackstrawPlot

jackstrawPlot

Description

identify significant prinicipal components (PCs)

```
jackstrawPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  genes_to_use = NULL,
  center = FALSE,
  scale_unit = FALSE,
  ncp = 20,
  ylim = c(0, 1),
  iter = 10,
  threshold = 0.01,
```

142 jackstrawPlot

```
verbose = TRUE,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "jackstrawPlot"
)
```

Arguments

gobject giotto object
expression_values

expression values to use

reduction cells or genes

genes_to_use subset of genes to use for PCA

center center data before PCA scale_unit scale features before PCA

ncp number of principal components to calculate

ylim y-axis limits on jackstraw plot
iter number of interations for jackstraw
threshold p-value threshold to call a PC significant
verbose show progress of jackstraw method

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

Value

ggplot object for jackstraw method

Examples

```
data(mini_giotto_single_cell)
# jackstraw package is required to run
jackstrawPlot(mini_giotto_single_cell, ncp = 10)
```

loadHMRF 143

loadHMRF

loadHMRF

Description

load previous HMRF

Usage

```
loadHMRF(
  name_used = "test",
  output_folder_used,
  k_used = 10,
  betas_used,
  python_path_used
)
```

Arguments

```
name_used name of HMRF that was run
output_folder_used
output folder that was used
k_used number of HMRF domains that was tested
betas_used betas that were tested
python_path_used
python path that was used
```

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

makeSignMatrixPAGE

makeSignMatrixPAGE

Description

Function to convert a list of signature genes (e.g. for cell types or processes) into a binary matrix format that can be used with the PAGE enrichment option. Each cell type or process should have a vector of cell-type or process specific genes. These vectors need to be combined into a list (sign_list). The names of the cell types or processes that are provided in the list need to be given (sign_names).

```
makeSignMatrixPAGE(sign_names, sign_list)
```

144 makeSignMatrixRank

Arguments

```
sign_names vector with names for each provided gene signature sign_list list of genes (signature)
```

Value

matrix

See Also

PAGEEnrich

 ${\it make Sign Matrix Rank}$

make Sign Matrix Rank

Description

Function to convert a single-cell count matrix and a corresponding single-cell cluster vector into a rank matrix that can be used with the Rank enrichment option.

Usage

```
makeSignMatrixRank(
   sc_matrix,
   sc_cluster_ids,
   ties_method = c("random", "max"),
   gobject = NULL
)
```

Arguments

sc_matrix matrix of single-cell RNAseq expression data

sc_cluster_ids vector of cluster ids
ties_method how to handle rank ties

gobject if giotto object is given then only genes present in both datasets will be consid-

ered

Value

matrix

See Also

rankEnrich

mean_giotto 145

 $mean_giotto$

 $mean_giotto$

Description

mean function that works with multiple matrix representations

Usage

```
mean_giotto(x, ...)
```

Arguments

x vector

... additional parameters

Value

numeric

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

```
mergeClusters(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  new_cluster_name = "merged_cluster",
  min_cor_score = 0.8,
  max_group_size = 20,
  force_min_group_size = 10,
  max_sim_clusters = 10,
  return_gobject = TRUE,
  verbose = TRUE
)
```

146 mergeClusters

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
new_cluster_name
                  new name for merged clusters
                  min correlation score to merge pairwise clusters
min_cor_score
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
max_sim_clusters
                  maximum number of clusters to potentially merge to reach force_min_group_size
return_gobject return giotto object
                  be verbose
verbose
```

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value. The force_min_group_size might not always be reached if clusters have already been merged before A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

Examples

mini_giotto_3D 147

mini_giotto_3D

mini Giotto object for spatial single-cell 3D data

Description

Mini Giotto object created from the STARmap data.

Usage

```
data(mini_giotto_3D)
```

Format

An object of class "giotto"; see createGiottoObject.

References

```
Wang et al. (2018) Science (PubMed)
```

Examples

```
data(mini_giotto_3D)
## Not run: spatPlot3D(mini_giotto_3D, cell_color = 'cell_types', point_size = 5)
```

```
mini_giotto_multi_cell
```

mini Giotto object for spatial multi-cell resolution data

Description

Mini Giotto object created from the Brain Visium 10X data.

Usage

```
data(mini_giotto_multi_cell)
```

Format

An object of class "giotto"; see createGiottoObject.

References

10 Genomics Visium technology (10xgenomics)

Examples

```
data(mini_giotto_multi_cell)
## Not run: spatPlot(mini_giotto_multi_cell, cell_color = 'cell_types', point_size = 5)
```

148 normalizeGiotto

```
mini_giotto_single_cell
```

mini Giotto object for spatial single-cell resolution data

Description

Mini Giotto object created from the seqFISH+ data.

Usage

```
data(mini_giotto_single_cell)
```

Format

An object of class "giotto"; see createGiottoObject.

References

```
Eng et al. (2019) Nature (PubMed)
```

Examples

```
data(mini_giotto_single_cell)
## Not run: spatPlot2D(mini_giotto_single_cell,cell_color = 'cell_types', point_size = 5)
```

normalizeGiotto

normalizeGiotto

Description

fast normalize and/or scale expresion values of Giotto object

```
normalizeGiotto(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  log_offset = 1,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
)
```

normalizeGiotto 149

Arguments

gobject giotto object

norm_methods normalization method to use
library_size_norm

normalize cells by library size

scalefactor scale factor to use after library size normalization
log_norm transform values to log-scale
log_offset offset value to add to expression matrix, default = 1

logbase log base to use to log normalize expression values scale_genes z-score genes over all cells scale_cells z-score cells over all genes scale_order order to scale genes and cells

verbose be verbose

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:
 - 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
 - 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

```
data(mini_giotto_single_cell)
norm_gobject = normalizeGiotto(mini_giotto_single_cell)
```

pDataDT

PAGEEnrich

PAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
PAGEEnrich(...)
```

Arguments

... Arguments passed on to runPAGEEnrich

gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values expression values to use

min_overlap_genes minimum number of overlapping genes in sign_matrix required to calculate enrichment

reverse_log_scale reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

output_enrichment how to return enrichment output

p_value calculate p-values (boolean, default = FALSE)

include_depletion calculate both enrichment and depletion

n_times number of permutations to calculate for p_value

 max_block number of lines to process together (default = 20e6)

name to give to spatial enrichment results, default = PAGE

verbose be verbose

return_gobject return giotto object

See Also

runPAGEEnrich

pDataDT

pDataDT

Description

show cell metadata

Usage

pDataDT(gobject)

Arguments

gobject

giotto object

plotCCcomDotplot 151

Value

data.table with cell metadata

Examples

```
data(mini_giotto_single_cell) # loads existing Giotto object
pDataDT(mini_giotto_single_cell)
```

 $\verb|plotCCcomDotplot|$

plot CC com Dot plot

Description

Plots dotplot for ligand-receptor communication scores in cell-cell interactions

Usage

```
plotCCcomDotplot(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  cluster_on = c("PI", "LR_expr", "log2fc"),
  cor_method = c("pearson", "kendall", "spearman"),
 aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
    "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomDotplot"
```

```
gobject
                  giotto object
comScores
                  communinication scores from exprCellCellcom or spatCellCellcom
selected_LR
                  selected ligand-receptor combinations
selected_cell_LR
                  selected cell-cell combinations for ligand-receptor combinations
show_LR_names
                  show ligand-receptor names
show_cell_LR_names
                  show cell-cell names
                  values to use for clustering of cell-cell and ligand-receptor pairs
cluster_on
cor_method
                  correlation method used for clustering
aggl_method
                  agglomeration method used by hclust
```

152 plotCCcomHeatmap

```
show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

plotCCcomHeatmap plotCCcomHeatmap

Description

Plots heatmap for ligand-receptor communication scores in cell-cell interactions

Usage

```
plotCCcomHeatmap(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  show = c("PI", "LR_expr", "log2fc"),
  cor_method = c("pearson", "kendall", "spearman"),
  aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
        "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomHeatmap"
)
```

```
gobject giotto object

comScores communinication scores from exprCellCellcom or spatCellCellcom

selected_LR selected ligand-receptor combinations

selected_cell_LR selected cell-cell combinations for ligand-receptor combinations

show_LR_names show ligand-receptor names

show_cell_LR_names show cell-cell names

show values to show on heatmap
```

```
cor_method correlation method used for clustering

aggl_method agglomeration method used by hclust

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

```
plotCellProximityGenes
```

plotCellProximityGenes

Description

Create visualization for cell proximity gene scores

```
plotCellProximityGenes(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCellProximityGenes"
```

154 plotCombineCCcom

Arguments

gobject giotto object cpgObject ICG (interaction changed gene) score object method plotting method to use min_cells minimum number of source cell type min_cells_expr minimum expression level for source cell type minimum number of interacting neighbor cell type min_int_cells min_int_cells_expr minimum expression level for interacting neighbor cell type min_fdr minimum adjusted p-value minimum absolute spatial expression difference min_spat_diff minimum log2 fold-change min_log2_fc minimum z-score change min_zscore zscores_column calculate z-scores over cell types or genes differential expression directions to keep direction cell_color_code vector of colors with cell types as names show_plot show plots return_plot return plotting object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plot

plotCombineCCcom plotCombineCCcom

Description

Create visualization for combined (pairwise) cell proximity gene scores

```
plotCombineCCcom(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
```

```
facet_scales = "fixed",
facet_ncol = length(selected_LR),
facet_nrow = length(selected_cell_LR),
colors = c("#9932CC", "#FF8C00"),
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCombineCCcom")
```

Arguments

```
gobject
                  giotto object
{\sf combCCcom}
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
                  return plotting object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

```
plot {\tt Combine Cell Cell Communication} \\ plot {\tt Combine Cell Cell Communication} \\
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCellCellCommunication(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCellCellCommunication"
)
```

Arguments

```
gobject
                  giotto object
combCCcom
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
{\tt detail\_plot}
                  show detailed info in both interacting cell types
                  show a simplified plot
simple_plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
                  vector with two colors to use
colors
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

```
plot {\tt Combine Cell Proximity Genes} \\ plot {\tt Combine Cell Proximity Genes}
```

Description

Create visualization for combined (pairwise) ICG scores

Usage

```
plotCombineCellProximityGenes(...)
```

Arguments

Arguments passed on to plotCombineInteractionChangedGenes . . . gobject giotto object combCpgObject ICGscores, output from combineInteractionChangedGenes() selected_interactions interactions to show selected_gene_to_gene pairwise gene combinations to show detail_plot show detailed info in both interacting cell types simple_plot show a simplified plot simple_plot_facet facet on interactions or genes with simple plot facet_scales ggplot facet scales paramter facet_ncol ggplot facet ncol parameter facet_nrow ggplot facet nrow parameter colors vector with two colors to use show_plot show plots return_plot return plotting object save_plot directly save the plot [boolean] save_param list of saving parameters from all_plots_save_function default_save_name default save name for saving, don't change, change save_name in save_param

See Also

 $\verb|plotCombineInteractionChangedGenes||$

plotCombineCPG plotCombineCPG

Description

Create visualization for combined (pairwise) ICG scores

```
plotCombineCPG(...)
```

158 plotCombineICG

Arguments

```
Arguments passed on to plotCombineICG
gobject giotto object
combCpgObject ICGscores, output from combineInteractionChangedGenes()
selected_interactions interactions to show
selected_gene_to_gene pairwise gene combinations to show
detail_plot show detailed info in both interacting cell types
simple_plot show a simplified plot
simple_plot_facet facet on interactions or genes with simple plot
facet_scales ggplot facet scales paramter
facet_ncol ggplot facet ncol parameter
facet_nrow ggplot facet nrow parameter
colors vector with two colors to use
show_plot show plots
return_plot return plotting object
save_plot directly save the plot [boolean]
save_param list of saving parameters from all_plots_save_function
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

See Also

plotCombineICG

plotCombineICG

plotCombineICG

Description

Create visualization for combined (pairwise) ICG scores

```
plotCombineICG(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
```

```
save_param = list(),
  default_save_name = "plotCombineICG"
)
```

Arguments

```
gobject
                  giotto object
combCpgObject
                  ICGscores, output from combineInteractionChangedGenes()
selected_interactions
                  interactions to show
selected_gene_to_gene
                  pairwise gene combinations to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
                  show plots
show_plot
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

```
plot {\tt Combine Interaction Changed Genes} \\ plot {\tt Combine Interaction Changed Genes}
```

Description

Create visualization for combined (pairwise) ICG scores

```
plotCombineInteractionChangedGenes(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
```

```
simple_plot = F,
simple_plot_facet = c("interaction", "genes"),
facet_scales = "fixed",
facet_ncol = length(selected_gene_to_gene),
facet_nrow = length(selected_interactions),
colors = c("#9932CC", "#FF8C00"),
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCombineICG"
)
```

Arguments

```
gobject
                 giotto object
                 ICGscores, output from combineInteractionChangedGenes()
combCpgObject
selected_interactions
                 interactions to show
selected_gene_to_gene
                 pairwise gene combinations to show
detail_plot
                 show detailed info in both interacting cell types
simple_plot
                 show a simplified plot
simple_plot_facet
                 facet on interactions or genes with simple plot
facet_scales
                 ggplot facet scales paramter
                 ggplot facet ncol parameter
facet_ncol
                 ggplot facet nrow parameter
facet_nrow
colors
                 vector with two colors to use
show_plot
                 show plots
return_plot
                 return plotting object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

plotCPG 161

plotCPG plotCPG

Description

Create visualization for cell proximity gene scores

Usage

```
plotCPG(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 5,
  min_cells_expr = 1,
  min_int_cells = 3,
  min_int_cells_expr = 1,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCPG"
```

```
giotto object
gobject
cpgObject
                 ICG (interaction changed gene) score object
method
                 plotting method to use
min_cells
                 minimum number of source cell type
min_cells_expr minimum expression level for source cell type
                 minimum number of interacting neighbor cell type
min_int_cells
min_int_cells_expr
                 minimum expression level for interacting neighbor cell type
                 minimum adjusted p-value
min_fdr
min_spat_diff
                 minimum absolute spatial expression difference
min_log2_fc
                 minimum log2 fold-change
min_zscore
                 minimum z-score change
zscores_column calculate z-scores over cell types or genes
```

162 plotHeatmap

direction differential expression directions to keep

cell_color_code

vector of colors with cell types as names

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plot

plotGiottoImage

plotGiottoImage

Description

get plot a giotto image from a giotto object

Usage

```
plotGiottoImage(gobject, image_name)
```

Arguments

gobject giotto object

image_name name of giotto image showGiottoImageNames

Value

plot

plotHeatmap

plotHeatmap

Description

Creates heatmap for genes and clusters.

plotHeatmap 163

Usage

```
plotHeatmap(
     gobject,
     expression_values = c("normalized", "scaled", "custom"),
     genes,
     cluster_column = NULL,
     cluster_order = c("size", "correlation", "custom"),
     cluster_custom_order = NULL,
     cluster_color_code = NULL,
     cluster_cor_method = "pearson",
     cluster_hclust_method = "ward.D",
     gene_order = c("correlation", "custom"),
     gene_custom_order = NULL,
     gene_cor_method = "pearson",
     gene_hclust_method = "complete",
     show_values = c("rescaled", "z-scaled", "original"),
     size_vertical_lines = 1.1,
     gradient_colors = c("blue", "yellow", "red"),
     gene_label_selection = NULL,
     axis_text_y_size = NULL,
     legend_nrows = 1,
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "plotHeatmap"
   )
Arguments
   gobject
                    giotto object
   expression_values
                    expression values to use
   genes
                    genes to use
   cluster_column name of column to use for clusters
   cluster_order
                    method to determine cluster order
   cluster_custom_order
                    custom order for clusters
   cluster_color_code
                    color code for clusters
   cluster_cor_method
                    method for cluster correlation
   cluster_hclust_method
                    method for hierarchical clustering of clusters
   gene_order
                    method to determine gene order
   gene_custom_order
                    custom order for genes
   gene_cor_method
```

method for gene correlation

164 plotHeatmap

```
gene_hclust_method
                  method for hierarchical clustering of genes
show_values
                  which values to show on heatmap
size_vertical_lines
                  sizes for vertical lines
gradient_colors
                  colors for heatmap gradient
gene_label_selection
                  subset of genes to show on y-axis
axis_text_y_size
                  size for y-axis text
legend_nrows
                  number of rows for the cluster legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name
```

Details

If you want to display many genes there are 2 ways to proceed:

- 1. set axis_text_y_size to a really small value and show all genes
- 2. provide a subset of genes to display to gene_label_selection

Value

ggplot

Examples

plotICG 165

plotICG plotICG

Description

Create barplot to visualize interaction changed genes

Usage

```
plotICG(
  gobject,
  cpgObject,
  source_type,
  source_markers,
  ICG_genes,
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotICG"
)
```

Arguments

```
gobject
                  giotto object
cpgObject
                  ICG (interaction changed gene) score object
                  cell type of the source cell
source_type
source_markers markers for the source cell type
                  named character vector of ICG genes
ICG_genes
cell_color_code
                  cell color code for the interacting cell types
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

```
plotInteraction {\tt Changed Genes} \\ plotInteraction {\tt Changed Genes} \\
```

Description

Create barplot to visualize interaction changed genes

Usage

```
plotInteractionChangedGenes(
   gobject,
   cpgObject,
   source_type,
   source_markers,
   ICG_genes,
   cell_color_code = NULL,
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotInteractionChangedGenes")
```

Arguments

```
gobject
                  giotto object
                  ICG (interaction changed gene) score object
cpgObject
                  cell type of the source cell
source_type
source_markers markers for the source cell type
ICG_genes
                  named character vector of ICG genes
cell_color_code
                  cell color code for the interacting cell types
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

Description

Creates heatmap for numeric cell metadata within aggregated clusters.

Usage

```
plotMetaDataCellsHeatmap(
  gobject,
  metadata_cols = NULL,
  spat_enr_names = NULL,
  value_cols = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_values_order = NULL,
  values_cor_method = "pearson",
  values_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 8,
  x_{text_angle} = 45,
  y_{text_size} = 8,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataCellsHeatmap"
)
```

```
gobject giotto object

metadata_cols annotation columns found in pDataDT(gobject)

spat_enr_names spatial enrichment results to include

value_cols value columns to use

first_meta_col if more than 1 metadata column, select the x-axis factor

second_meta_col

if more than 1 metadata column, select the facetting factor

show_values which values to show on heatmap

custom_cluster_order

custom cluster order (default = NULL)
```

```
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
custom_values_order
                  custom values order (default = NULL)
values_cor_method
                  correlation method for values
values\_cluster\_method
                  hierarchical cluster method for the values
midpoint
                  midpoint of show_values
x_text_size
                  size of x-axis text
x_text_angle
                  angle of x-axis text
                  size of y-axis text
y_text_size
strip_text_size
                  size of strip text
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
```

Details

Creates heatmap for the average values of selected value columns in the different annotation groups.

default save name for saving, don't change, change save_name in save_param

Value

ggplot or data.table

See Also

plotMetaDataHeatmap for gene expression instead of numeric cell annotation data.

plotMetaDataHeatmap

Description

Creates heatmap for genes within aggregated clusters.

plotMetaDataHeatmap 169

Usage

clus_cor_method

clus_cluster_method

custom_gene_order

gene_cor_method

```
plotMetaDataHeatmap(
     gobject,
      expression_values = c("normalized", "scaled", "custom"),
     metadata_cols = NULL,
      selected_genes = NULL,
      first_meta_col = NULL,
      second_meta_col = NULL,
      show_values = c("zscores", "original", "zscores_rescaled"),
      custom_cluster_order = NULL,
      clus_cor_method = "pearson",
      clus_cluster_method = "complete",
     custom_gene_order = NULL,
      gene_cor_method = "pearson",
      gene_cluster_method = "complete",
      gradient_color = c("blue", "white", "red"),
     gradient_midpoint = 0,
      gradient_limits = NULL,
      x_{text_size} = 10,
     x_{text_angle} = 45,
     y_{text_size} = 10,
      strip_text_size = 8,
      show_plot = NA,
     return_plot = NA,
      save_plot = NA,
     save_param = list(),
     default_save_name = "plotMetaDataHeatmap"
   )
Arguments
   gobject
                    giotto object
   expression_values
                    expression values to use
   metadata_cols annotation columns found in pDataDT(gobject)
   selected_genes subset of genes to use
   first_meta_col if more than 1 metadata column, select the x-axis factor
    second_meta_col
                    if more than 1 metadata column, select the facetting factor
   show_values
                    which values to show on heatmap
   custom_cluster_order
                    custom cluster order (default = NULL)
```

correlation method for clusters

correlation method for genes

hierarchical cluster method for the clusters

custom gene order (default = NULL)

```
gene_cluster_method
                  hierarchical cluster method for the genes
gradient_color vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
x_text_size
                  size of x-axis text
x_text_angle
                  angle of x-axis text
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name
```

Details

Creates heatmap for the average expression of selected genes in the different annotation/cluster groups. Calculation of cluster or gene order is done on the provided expression values, but visualization is by default on the z-scores. Other options are the original values or z-scores rescaled per gene (-1 to 1).

Value

ggplot or data.table

See Also

plotMetaDataCellsHeatmap for numeric cell annotation instead of gene expression.

Examples

plotPCA 171

plotPCA plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, dim_reduction_name = "pca", default_save_name = "PCA", ...)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot2D
. . .
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                  show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                  center_point_border_col border color of center points
                 center_point_border_stroke border stroke size of center points
                 label_size size of labels
                 label_fontface font of labels
```

172 plotPCA

```
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
data(mini_giotto_single_cell)
plotPCA(mini_giotto_single_cell)
plotPCA(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

plotPCA_2D 173

plotPCA_2D

plotPCA_2D

Description

Short wrapper for PCA visualization

Usage

```
plotPCA_2D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_2D",
   ...
)
```

```
giotto object
gobject
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                  select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
```

plotPCA_2D

```
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
data(mini_giotto_single_cell)
plotPCA_2D(mini_giotto_single_cell)
plotPCA_2D(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

plotPCA_3D 175

plotPCA_3D plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

Usage

```
plotPCA_3D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_3D",
)
```

```
giotto object
gobject
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
```

176 plotRankSpatvsExpr

```
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_2D(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotRankSpatvsExpr plotRankSpatvsExpr
```

Description

Plots dotplot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRankSpatvsExpr(
 gobject,
 combCC,
 expr_rnk_column = "LR_expr_rnk",
  spat_rnk_column = "LR_spat_rnk",
 midpoint = 10,
 size\_range = c(0.01, 1.5),
 xlims = NULL,
 ylims = NULL,
 selected_ranks = c(1, 10, 20),
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "plotRankSpatvsExpr"
)
```

```
gobject giotto object

combCC combined communinication scores from combCCcom

expr_rnk_column

column with expression rank information to use

spat_rnk_column

column with spatial rank information to use
```

plotRecovery 177

```
midpoint
                  midpoint of colors
                  size ranges of dotplot
size_range
xlims
                  x-limits, numerical vector of 2
ylims
                  y-limits, numerical vector of 2
selected_ranks numerical vector, will be used to print out the percentage of top spatial ranks are
                  recovered
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

plotRecovery plotRecovery

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery(
   gobject,
   combCC,
   expr_rnk_column = "exprPI_rnk",
   spat_rnk_column = "spatPI_rnk",
   ground_truth = c("spatial", "expression"),
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotRecovery"
)
```

```
gobject giotto object

combCC combined communinication scores from combCCcom
expr_rnk_column

column with expression rank information to use
spat_rnk_column

column with spatial rank information to use
ground_truth what to consider as ground truth (default: spatial)
```

```
show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

plotRecovery_sub plotRecovery_sub

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery_sub(combCC, first_col = "LR_expr_rnk", second_col = "LR_spat_rnk")
```

Arguments

combCC combined communinication scores from combCCcom

first_col first column to use second_col second column to use

plotStatDelaunayNetwork

plotStatDelaunayNetwork

Description

Plots network statistics for a Delaunay network..

```
plotStatDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
```

plotTSNE 179

```
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotStatDelaunayNetwork",
...
)
```

Arguments

gobject giotto object

method package to use to create a Delaunay network

dimensions which spatial dimensions to use (maximum 2 dimensions)

maximum_distance

distance cuttof for Delaunay neighbors to consider

minimum_k minimum neighbours if maximum_distance != NULL

options (geometry) String containing extra control options for the underlying Qhull

command; see the Qhull documentation (../doc/qhull/html/qdelaun.html) for the

available options. (default = 'Pp', do not report precision problems)

Y (RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh bound-

ary.

j (RTriangle) If TRUE jettisons vertices that are not part of the final triangulation

from the output.

S (RTriangle) Specifies the maximum number of added Steiner points.

show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

... Other parameters

Value

giotto object with updated spatial network slot

plotTSNE plotTSNE

Description

Short wrapper for tSNE visualization

```
plotTSNE(gobject, dim_reduction_name = "tsne", default_save_name = "tSNE", ...)
```

180 plotTSNE

```
gobject
                 giotto object
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                  Arguments passed on to dimPlot2D
. . .
                  group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                  spat_enr_names names of spatial enrichment results to include
                  show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                  select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                  other_point_size size of not selected cells
                  show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                  center_point_size size of center points
                  center_point_border_col border color of center points
                  center_point_border_stroke border stroke size of center points
                 label_size size of labels
                 label_fontface font of labels
                  edge_alpha column to use for alpha of the edges
                 point_shape point with border or not (border or no_border)
                 point_size size of point (cell)
                 point_alpha transparancy of point
                 point_border_col color of border around points
                 point_border_stroke stroke size of border around points
                 title title for plot, defaults to cell_color parameter
                  show_legend show legend
                 legend_text size of legend text
                 legend_symbol_size size of legend symbols
                 background_color color of plot background
```

plotTSNE_2D 181

```
axis_text size of axis text

axis_title size of axis title

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height

cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA_3D(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
data(mini_giotto_single_cell)
plotTSNE(mini_giotto_single_cell)
plotTSNE(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

plotTSNE_2D

plotTSNE_2D

Description

Short wrapper for tSNE visualization

```
plotTSNE_2D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D",
   ...
)
```

182 plotTSNE_2D

Arguments

gobject giotto object dim_reduction_name name of TSNE default_save_name default save name of TSNE plot Arguments passed on to dimPlot2D . . . group_by create multiple plots based on cell annotation column group_by_subset subset the group_by factor column dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color paramselect_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_shape point with border or not (border or no_border) point_size size of point (cell) point_alpha transparancy of point point_border_col color of border around points point_border_stroke stroke size of border around points title title for plot, defaults to cell_color parameter show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background

plotTSNE_3D 183

```
axis_text size of axis text

axis_title size of axis title

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height

cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
data(mini_giotto_single_cell)
plotTSNE_2D(mini_giotto_single_cell)
plotTSNE_2D(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

plotTSNE_3D

plotTSNE_3D

Description

Visualize cells according to dimension reduction coordinates

```
plotTSNE_3D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "TSNE_3D",
   ...
)
```

184 plotTSNE_3D

Arguments

```
gobject
                  giotto object
dim_reduction_name
                  name of TSNE
default_save_name
                  default save name of TSNE plot
                  Arguments passed on to dimPlot3D
                  dim1_to_use dimension to use on x-axis
                  dim2_to_use dimension to use on y-axis
                  dim3_to_use dimension to use on z-axis
                  spat_enr_names names of spatial enrichment results to include
                  show_NN_network show underlying NN network
                  nn\_network\_to\_use \ type \ of \ NN \ network \ to \ use \ (kNN \ vs \ sNN)
                  network_name name of NN network to use, if show_NN_network = TRUE
                  cell_color color for cells (see details)
                  color_as_factor convert color column to factor
                  cell_color_code named vector with colors
                  select_cell_groups select subset of cells/clusters based on cell_color param-
                  select_cells select subset of cells based on cell IDs
                  show_other_cells display not selected cells
                  other_cell_color color of not selected cells
                  other_point_size size of not selected cells
                  show_cluster_center plot center of selected clusters
                  show_center_label plot label of selected clusters
                  center_point_size size of center points
                  label_size size of labels
                  edge_alpha column to use for alpha of the edges
                  point_size size of point (cell)
                  show_plot show plot
                  return_plot return ggplot object
                  save_plot directly save the plot [boolean]
                  save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

plotUMAP 185

plotUMAP plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, dim_reduction_name = "umap", default_save_name = "UMAP", ...)
```

Arguments

```
gobject
                 giotto object
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                  show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 center_point_border_col border color of center points
                 center_point_border_stroke border stroke size of center points
                 label_size size of labels
                 label_fontface font of labels
```

186 plotUMAP

```
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D()
```

Examples

```
data(mini_giotto_single_cell)
plotUMAP(mini_giotto_single_cell)
plotUMAP(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

plotUMAP_2D 187

plotUMAP_2D

plotUMAP_2D

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP_2D(
  gobject,
  dim_reduction_name = "umap";
  default_save_name = "UMAP_2D",
)
```

Arguments

```
giotto object
gobject
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                  select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
```

188 plotUMAP_2D

```
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_3D(), plotUMAP()
```

Examples

```
data(mini_giotto_single_cell)
plotUMAP_2D(mini_giotto_single_cell)
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

plotUMAP_3D 189

plotUMAP_3D plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotUMAP_3D(
  gobject,
  dim_reduction_name = "umap"
  default_save_name = "UMAP_3D",
)
```

Arguments

```
giotto object
gobject
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
```

190 processGiotto

```
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP()
```

processGiotto

processGiotto

Description

Wrapper for the different Giotto object processing functions

Usage

```
processGiotto(
  gobject,
  filter_params = list(),
  norm_params = list(),
  stat_params = list(),
  adjust_params = list(),
  verbose = TRUE
)
```

Arguments

```
gobject giotto object

filter_params additional parameters to filterGiotto

norm_params additional parameters to normalizeGiotto

stat_params additional parameters to addStatistics

adjust_params additional parameters to adjustGiottoMatrix

verbose be verbose (default is TRUE)
```

Details

See filterGiotto, normalizeGiotto, addStatistics and adjustGiottoMatrix for more information about the different parameters in each step. If you do not provide them it will use the default values.

rankEnrich 191

Value

```
giotto object
```

Examples

rankEnrich

rankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
rankEnrich(...)
```

Arguments

... Arguments passed on to runRankEnrich

gobject Giotto object
sign_matrix Matrix of signature genes for each cell type / process
expression_values expression values to use
reverse_log_scale reverse expression values from log scale
logbase log base to use if reverse_log_scale = TRUE
output_enrichment how to return enrichment output
ties_method how to handle rank ties
p_value calculate p-values (boolean, default = FALSE)
n_times number of permutations to calculate for p_value
rbp_p fractional binarization threshold (default = 0.99)
num_agg number of top genes to aggregate (default = 100)
name to give to spatial enrichment results, default = rank
return_gobject return giotto object

See Also

runRankEnrich

192 readExprMatrix

```
rank Spatial Cor Groups rank Spatial Cor Groups
```

Description

Rank spatial correlated clusters according to correlation structure

Usage

```
rankSpatialCorGroups(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_plot = NA,
  return_plot = FALSE,
  save_plot = NA,
  save_param = list(),
  default_save_name = "rankSpatialCorGroups"
)
```

Arguments

```
gobject
                  giotto object
                  spatial correlation object
spatCorObject
use_clus_name
                  name of clusters to visualize (from clusterSpatialCorGenes())
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

data.table with positive (within group) and negative (outside group) scores

```
readExprMatrix readExprMatrix
```

Description

Function to read an expression matrix into a sparse matrix.

```
readExprMatrix(path, cores = NA, transpose = FALSE)
```

readGiottoInstructions 193

Arguments

path path to the expression matrix

cores number of cores to use

transpose transpose matrix

Details

The expression matrix needs to have both unique column names and row names

Value

sparse matrix

 ${\tt readGiottoInstructions}$

readGiottoInstrunctions

Description

Retrieves the instruction associated with the provided parameter

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

 $giot to\ object\ or\ result\ from\ create Giot to Instructions ()$

param parameter to retrieve

Value

specific parameter

remove Cell Annotation remove Cell Annotation

Description

removes cell annotation of giotto object

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

194 removeGeneAnnotation

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

```
if return_gobject = FALSE, it will return the cell metadata
```

Value

giotto object

Examples

removeGeneAnnotation removeGeneAnnotation

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

```
if return_gobject = FALSE, it will return the gene metadata
```

Value

giotto object

removeGiottoEnvironment 195

Examples

removeGiottoEnvironment

removeGiottoEnvironment

Description

removeGiottoEnvironment

Usage

```
removeGiottoEnvironment(verbose = TRUE)
```

Arguments

verbose be verbose

Details

Removes a previously installed giotto environment. See installGiottoEnvironment.

```
replaceGiottoInstructions
```

replace Giot to Instructions

Description

Function to replace all instructions from giotto object

Usage

```
replaceGiottoInstructions(gobject, instructions = NULL)
```

Arguments

gobject giotto object

instructions new instructions (e.g. result from createGiottoInstructions)

Value

giotto object with replaces instructions

rowSums_giotto

rowMeans_giotto

rowMeans_giotto

Description

rowMeans function that works with multiple matrix representations

Usage

```
rowMeans_giotto(mymatrix)
```

Arguments

mymatrix

matrix object

Value

numeric vector

rowSums_giotto

rowSums_giotto

Description

rowSums function that works with multiple matrix representations

Usage

```
rowSums_giotto(mymatrix)
```

Arguments

mymatrix

matrix object

Value

numeric vector

runDWLSDeconv 197

runDWLSDeconv

runDWLSDeconv

Description

Function to perform DWLS deconvolution based on single cell expression data

Usage

```
runDWLSDeconv(
  gobject,
  expression_values = c("normalized"),
  logbase = 2,
  cluster_column = "leiden_clus",
  sign_matrix,
  n_cell = 50,
  cutoff = 2,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

logbase base used for log normalization
cluster_column name of cluster column
sign_matrix sig matrix for deconvolution
n_cell number of cells per spot
cutoff cut off (default = 2)
```

name name to give to spatial deconvolution results, default = DWLS

return_gobject return giotto object

Value

giotto object or deconvolution results

```
\verb"runHyperGeometricEnrich"
```

run Hyper Geometric Enrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

198 runPAGEEnrich

Usage

```
runHyperGeometricEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  top_percentage = 5,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

gobject Giotto object sign_matrix Matrix of signature genes for each cell type / process expression_values expression values to use reverse_log_scale reverse expression values from log scale log base to use if reverse_log_scale = TRUE logbase top_percentage percentage of cells that will be considered to have gene expression with matrix binarization output_enrichment how to return enrichment output calculate p-values (boolean, default = FALSE) p_value to give to spatial enrichment results, default = rank name return_gobject return giotto object

Details

The enrichment score is calculated based on the p-value from the hypergeometric test, -log10(p-value).

Value

data.table with enrichment results

runPAGEEnrich runPAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

runPAGEEnrich 199

Usage

```
runPAGEEnrich(
      gobject,
      sign_matrix,
      expression_values = c("normalized", "scaled", "custom"),
      min_overlap_genes = 5,
      reverse_log_scale = TRUE,
      logbase = 2,
      output_enrichment = c("original", "zscore"),
      p_value = FALSE,
      include_depletion = FALSE,
      n_{times} = 1000,
      max_block = 2e+07,
      name = NULL,
      verbose = TRUE,
      return_gobject = TRUE
    )
Arguments
   gobject
                     Giotto object
    sign_matrix
                     Matrix of signature genes for each cell type / process
    expression_values
                     expression values to use
   min_overlap_genes
                     minimum number of overlapping genes in sign matrix required to calculate en-
    reverse_log_scale
                     reverse expression values from log scale
    logbase
                     log base to use if reverse_log_scale = TRUE
    output_enrichment
                     how to return enrichment output
                     calculate p-values (boolean, default = FALSE)
    p_value
    include_depletion
                     calculate both enrichment and depletion
   n_times
                     number of permutations to calculate for p_value
   max_block
                     number of lines to process together (default = 20e6)
```

Details

name

verbose

sign_matrix: a binary matrix with genes as row names and cell-types as column names. Alternatively a list of signature genes can be provided to makeSignMatrixPAGE, which will create the matrix for you.

to give to spatial enrichment results, default = PAGE

be verbose

return_gobject return giotto object

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm\ \ mu)*m^(1/2))/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

See Also

```
make Sign Matrix PAGE
```

runPAGEEnrich_OLD

runPAGEEnrich_OLD

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
runPAGEEnrich_OLD(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  n_times = 1000,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

gobject

```
sign_matrix
                  Matrix of signature genes for each cell type / process
expression_values
                  expression values to use
reverse_log_scale
                  reverse expression values from log scale
                  log base to use if reverse_log_scale = TRUE
logbase
output_enrichment
                  how to return enrichment output
                  calculate p-values (boolean, default = FALSE)
p_value
                  number of permutations to calculate for p_value
n_times
                  to give to spatial enrichment results, default = PAGE
name
return_gobject return giotto object
```

Giotto object

runPatternSimulation 201

Details

sign_matrix: a binary matrix with genes as row names and cell-types as column names. Alternatively a list of signature genes can be provided to makeSignMatrixPAGE, which will create the matrix for you.

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm\ mu)*m^(1/2))/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

See Also

makeSignMatrixPAGE

runPatternSimulation runPatternSimulation

Description

Creates a known spatial pattern for selected genes one-by-one and runs the different spatial gene detection tests

```
runPatternSimulation(
 gobject,
 pattern_name = "pattern",
  pattern_colors = c(`in` = "green", out = "red"),
 pattern_cell_ids = NULL,
  gene_names = NULL,
  spatial\_probs = c(0.5, 1),
  reps = 2,
  spatial_network_name = "kNN_network",
  spat_methods = c("binSpect_single", "binSpect_multi", "spatialDE", "spark",
    "silhouetteRank"),
  spat_methods_params = list(NA, NA, NA, NA, NA),
 spat_methods_names = c("binSpect_single", "binSpect_multi", "spatialDE", "spark",
    "silhouetteRank"),
  scalefactor = 6000,
  save_plot = T,
  save_raw = T,
  save_norm = T,
  save_dir = "~"
 max_col = 4,
 height = 7,
 width = 7,
  run_simulations = TRUE,
```

202 runPatternSimulation

```
)
```

Arguments

giotto object gobject name of spatial pattern pattern_name pattern_colors 2 color vector for the spatial pattern pattern_cell_ids cell ids that make up the spatial pattern selected genes gene_names spatial_probs probabilities to test for a high expressing gene value to be part of the spatial pattern number of random simulation repetitions reps spatial_network_name which spatial network to use for binSpectSingle spat_methods vector of spatial methods to test spat_methods_params list of parameters list for each element in the vector of spatial methods to test spat_methods_names name for each element in the vector of spatial elements to test scalefactor library size scaling factor when re-normalizing dataset save_plot save intermediate random simulation plots or not save the raw expression matrix of the simulation save_raw save the normalized expression matrix of the simulation save_norm save_dir directory to save results to maximum number of columns for final plots max_col height height of final plots width width of final plots run_simulations run simulations (default = TRUE)

additional parameters for renormalization

Value

data.table with results

runPCA 203

runPCA runPCA

Description

runs a Principal Component Analysis

Usage

```
runPCA(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 name = "pca",
 genes_to_use = "hvg";
 return_gobject = TRUE,
 center = TRUE,
  scale_unit = TRUE,
 ncp = 100,
 method = c("irlba", "factominer"),
 rev = FALSE,
  set_seed = TRUE,
  seed_number = 1234,
 verbose = TRUE,
)
```

Arguments

gobject

verbose

. . .

expression_values expression values to use cells or genes reduction arbitrary name for PCA run name subset of genes to use for PCA genes_to_use return_gobject boolean: return giotto object (default = TRUE) center center data first (default = TRUE) scale_unit scale features before PCA (default = TRUE) number of principal components to calculate ncp method which implementation to use rev do a reverse PCA use of seed set_seed seed_number seed number to use

verbosity of the function

additional parameters for PCA (see details)

giotto object

204 runRankEnrich

Details

See prcomp_irlba and PCA for more information about other parameters.

- genes_to_use = NULL: will use all genes from the selected matrix
- genes_to_use = <hvg name>: can be used to select a column name of highly variable genes, created by (see calculateHVG)
- genes_to_use = c('geneA', 'geneB', ...): will use all manually provided genes

Value

giotto object with updated PCA dimension recuction

Examples

runRankEnrich

runRankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

```
runRankEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "raw", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  ties_method = c("random", "max"),
  p_value = FALSE,
  n_times = 1000,
  rbp_p = 0.99,
  num_agg = 100,
  name = NULL,
  return_gobject = TRUE
)
```

runSpatialDeconv 205

Arguments

gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

output_enrichment

how to return enrichment output

ties_method how to handle rank ties

 $\begin{array}{lll} \textbf{p_value} & \text{calculate p-values (boolean, default = FALSE)} \\ \textbf{n_times} & \text{number of permutations to calculate for p_value} \\ \textbf{rbp_p} & \text{fractional binarization threshold (default = 0.99)} \\ \textbf{num_agg} & \text{number of top genes to aggregate (default = 100)} \\ \textbf{name} & \text{to give to spatial enrichment results, default = rank} \\ \end{array}$

return_gobject return giotto object

Details

sign_matrix: a rank-fold matrix with genes as row names and cell-types as column names. Alternatively a scRNA-seq matrix and vector with clusters can be provided to makeSignMatrixRank, which will create the matrix for you.

First a new rank is calculated as $R = (R1*R2)^{n}(1/2)$, where R1 is the rank of fold-change for each gene in each spot and R2 is the rank of each marker in each cell type. The Rank-Biased Precision is then calculated as: RBP = $(1 - 0.99) * (0.99)^{n}(R - 1)$ and the final enrichment score is then calculated as the sum of top 100 RBPs.

Value

data.table with enrichment results

See Also

makeSignMatrixRank

runSpatialDeconv runSpatialDeconv

Description

Function to perform deconvolution based on single cell expression data

206 runSpatialEnrich

Usage

```
runSpatialDeconv(
  gobject,
  deconv_method = c("DWLS"),
  expression_values = c("normalized"),
  logbase = 2,
  cluster_column = "leiden_clus",
  sign_matrix,
  n_cell = 50,
  cutoff = 2,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject
                  giotto object
                  method to use for deconvolution
deconv_method
expression_values
                  expression values to use
logbase
                  base used for log normalization
cluster_column name of cluster column
                  signature matrix for deconvolution
sign_matrix
n_cell
                  number of cells per spot
cutoff
                  cut off (default = 2)
                  name to give to spatial deconvolution results
name
```

Value

giotto object or deconvolution results

return_gobject return giotto object

 $run Spatial Enrich \\ run Spatial Enrich$

Description

Function to calculate gene signature enrichment scores per spatial position using an enrichment test.

```
runSpatialEnrich(
  gobject,
  enrich_method = c("PAGE", "rank", "hypergeometric"),
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  min_overlap_genes = 5,
  reverse_log_scale = TRUE,
```

runSpatialEnrich 207

```
logbase = 2,
p_value = FALSE,
n_times = 1000,
rbp_p = 0.99,
num_agg = 100,
max_block = 2e+07,
top_percentage = 5,
output_enrichment = c("original", "zscore"),
name = NULL,
verbose = TRUE,
return_gobject = TRUE
```

Giotto object

Arguments

gobject

method for gene signature enrichment calculation enrich_method sign_matrix Matrix of signature genes for each cell type / process expression_values expression values to use min_overlap_genes minimum number of overlapping genes in sign_matrix required to calculate enrichment (PAGE) reverse_log_scale reverse expression values from log scale logbase log base to use if reverse_log_scale = TRUE calculate p-value (default = FALSE) p_value (page/rank) number of permutation iterations to calculate p-value n_times (rank) fractional binarization threshold (default = 0.99) rbp_p (rank) number of top genes to aggregate (default = 100) num_agg \max_block number of lines to process together (default = 20e6) (hyper) percentage of cells that will be considered to have gene expression with top_percentage matrix binarization output_enrichment how to return enrichment output

to give to spatial enrichment results, default = PAGE

Details

name

verbose

For details see the individual functions:

return_gobject return giotto object

be verbose

PAGE: runPAGEEnrichRank: runRankEnrich

• Hypergeometric: runHyperGeometricEnrich

Value

Giotto object or enrichment results if return_gobject = FALSE

208 runtSNE

runtSNE runtSNE

Description

run tSNE

Usage

```
runtSNE(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 dim_reduction_to_use = "pca",
 dim_reduction_name = "pca",
 dimensions_to_use = 1:10,
 name = "tsne",
  genes_to_use = NULL,
  return_gobject = TRUE,
 dims = 2,
 perplexity = 30,
  theta = 0.5,
 do_PCA_first = F,
  set_seed = T,
  seed_number = 1234,
  verbose = TRUE,
)
```

Arguments

do_PCA_first

```
gobject
                 giotto object
expression_values
                 expression values to use
                 cells or genes
reduction
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for tSNE run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
dims
                 tSNE param: number of dimensions to return
                 tSNE param: perplexity
perplexity
theta
                 tSNE param: theta
```

tSNE param: do PCA before tSNE (default = FALSE)

runUMAP 209

```
set_seed use of seed
seed_number seed number to use
verbose verbosity of the function
... additional tSNE parameters
```

Details

See Rtsne for more information about these and other parameters.

- Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple tSNE results can be stored by changing the name of the analysis

Value

giotto object with updated tSNE dimension recuction

Examples

runUMAP

runUMAP

Description

run UMAP

```
runUMAP(
   gobject,
   expression_values = c("normalized", "scaled", "custom"),
   reduction = c("cells", "genes"),
   dim_reduction_to_use = "pca",
   dim_reduction_name = "pca",
   dimensions_to_use = 1:10,
   name = "umap",
   genes_to_use = NULL,
```

210 runUMAP

```
return_gobject = TRUE,
n_neighbors = 40,
n_components = 2,
n_epochs = 400,
min_dist = 0.01,
n_threads = NA,
spread = 5,
set_seed = TRUE,
seed_number = 1234,
verbose = T,
...
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 cells or genes
reduction
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for UMAP run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
n_neighbors
                 UMAP param: number of neighbors
n_components
                 UMAP param: number of components
n_epochs
                 UMAP param: number of epochs
min_dist
                 UMAP param: minimum distance
                 UMAP param: threads/cores to use
n_threads
spread
                 UMAP param: spread
set_seed
                 use of seed
seed_number
                 seed number to use
verbose
                 verbosity of function
                 additional UMAP parameters
. . .
```

Details

See umap for more information about these and other parameters.

- Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple UMAP results can be stored by changing the *name* of the analysis

screePlot 211

Value

giotto object with updated UMAP dimension recuction

Examples

screePlot

screePlot

Description

identify significant prinicipal components (PCs) using an screeplot (a.k.a. elbowplot)

Usage

```
screePlot(
  gobject,
  name = "pca",
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  method = c("irlba", "factominer"),
  rev = FALSE,
  genes_to_use = NULL,
  center = F,
  scale_unit = F,
  ncp = 100,
  ylim = c(0, 20),
  verbose = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "screePlot",
)
```

Arguments

```
gobject giotto object

name name of PCA object if available

expression_values

expression values to use
```

212 selectPatternGenes

reduction cells or genes

method which implementation to use

rev do a reverse PCA

genes_to_use subset of genes to use for PCA

center center data before PCA
scale_unit scale features before PCA

ncp number of principal components to calculate

ylim y-axis limits on scree plot

verbose verobsity show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

... additional arguments to pca function, see runPCA

Details

Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a 'elbow method'). Screeplot will use an available pca object, based on the parameter 'name', or it will create it if it's

not available (see runPCA)

Value

ggplot object for scree method

Examples

```
data(mini_giotto_single_cell)
screePlot(mini_giotto_single_cell, ncp = 10)
```

selectPatternGenes selectPatternGenes

Description

Select genes correlated with spatial patterns

show,giotto-method 213

Usage

```
selectPatternGenes(
  spatPatObj,
  dimensions = 1:5,
  top_pos_genes = 10,
  top_neg_genes = 10,
  min_pos_cor = 0.5,
  min_neg_cor = -0.5,
  return_top_selection = FALSE
)
```

Arguments

spatPatObj Output from detectSpatialPatterns
dimensions dimensions to identify correlated genes for.
top_pos_genes Top positively correlated genes.
top_neg_genes Top negatively correlated genes.
min_pos_cor Minimum positive correlation score to include a gene.
min_neg_cor Minimum negative correlation score to include a gene.
return_top_selection
only return selection based on correlation criteria (boolean)

Details

Description.

Value

Data.table with genes associated with selected dimension (PC).

show, giotto-method show method for giotto class

Description

show method for giotto class

Usage

```
## S4 method for signature 'giotto'
show(object)
```

Arguments

object giotto object

 $show Cluster Dendrogram \quad show Cluster Dendrogram \quad$

Description

Creates dendrogram for selected clusters.

Usage

```
showClusterDendrogram(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  rotate = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterDendrogram",
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
h
                  height of horizontal lines to plot
h_color
                  color of horizontal lines
                  rotate dendrogram 90 degrees
rotate
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for ggdendrogram()
```

Details

Expression correlation dendrogram for selected clusters.

showClusterHeatmap 215

Value

ggplot

Examples

showClusterHeatmap

showClusterHeatmap

Description

Creates heatmap based on identified clusters

Usage

```
showClusterHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = "all",
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterHeatmap",
  ...
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes vector of genes to use, default to 'all'
cluster_column name of column to use for clusters
cor correlation score to calculate distance
distance distance method to use for hierarchical clustering
show_plot show plot
```

Details

Correlation heatmap of selected clusters.

Value

ggplot

Examples

 $show Giot to Image Names \\ show Giot to Image Names \\$

Description

Prints the available giotto images that are attached to the Giotto object

Usage

```
showGiottoImageNames(gobject, verbose = TRUE)
```

Arguments

gobject a giotto object verbose verbosity of function

Value

a vector of giotto image names attached to the giotto object

showGiottoInstructions 217

showGiottoInstructions

showGiottoInstructions

Description

Function to display all instructions from giotto object

Usage

```
showGiottoInstructions(gobject)
```

Arguments

gobject

giotto object

Value

named vector with giotto instructions

showGrids

showGrids

Description

Prints the available spatial grids that are attached to the Giotto object

Usage

```
showGrids(gobject, verbose = TRUE)
```

Arguments

gobject

a giotto object

verbose

verbosity of function#'

Value

vector

218 showPattern

showNetworks showNetworks

Description

Prints the available spatial networks that are attached to the Giotto object

Usage

```
showNetworks(gobject, verbose = TRUE)
```

Arguments

gobject a giotto object

verbose verbosity of function#'

Value

vector

showPattern showPattern

Description

show patterns for 2D spatial data

Usage

```
showPattern(gobject, spatPatObj, ...)
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

... Arguments passed on to showPattern2D

dimension dimension to plot trim Trim ends of the PC values.

background_color background color for plot

grid_border_color color for grid
show_legend show legend of ggplot

point_size size of points
show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name default save name for saving, don't change, change save_name in save_param

showPattern2D 219

Value

ggplot

See Also

showPattern2D

showPattern2D

showPattern2D

Description

show patterns for 2D spatial data

Usage

```
showPattern2D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPattern2D")
```

Arguments

```
gobject
                  giotto object
spatPatObj
                  Output from detectSpatialPatterns
                  dimension to plot
dimension
                  Trim ends of the PC values.
background_color
                  background color for plot
grid_border_color
                  color for grid
                  show legend of ggplot
show_legend
                  size of points
point_size
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
```

default save name for saving, don't change, change save_name in save_param

220 showPattern3D

Value

ggplot

showPattern3D

showPattern3D

Description

show patterns for 3D spatial data

Usage

```
showPattern3D(
 gobject,
  spatPatObj,
 dimension = 1,
  trim = c(0.02, 0.98),
 background_color = "white",
 grid_border_color = "grey",
  show_legend = T,
 point_size = 1,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showPattern3D"
)
```

```
gobject
                  giotto object
spatPatObj
                  Output from detectSpatialPatterns
dimension
                  dimension to plot
trim
                  Trim ends of the PC values.
background_color
                  background color for plot
grid_border_color
                  color for grid
show_legend
                  show legend of plot
point_size
                  adjust the point size
axis_scale
                  scale the axis
custom_ratio
                  cutomize the scale of the axis
x_ticks
                  the tick number of x_axis
```

showPatternGenes 221

```
y_ticks the tick number of y_axis

z_ticks the tick number of z_axis

show_plot show plot

return_plot return plot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

plotly

showPatternGenes showPatternGenes

Description

show genes correlated with spatial patterns

Usage

```
showPatternGenes(
  gobject,
  spatPatObj,
  dimension = 1,
  top_pos_genes = 5,
  top_neg_genes = 5,
  point_size = 1,
  return_DT = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPatternGenes"
)
```

```
gobject
                  giotto object
spatPatObj
                  Output from detectSpatialPatterns
                  dimension to plot genes for.
dimension
                  Top positively correlated genes.
top_pos_genes
                  Top negatively correlated genes.
top_neg_genes
point_size
                  size of points
                  if TRUE, it will return the data.table used to generate the plots
return_DT
show_plot
                  show plot
```

222 showSaveParameters

```
return_plot return ggplot object
```

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

showProcessingSteps showProcessingSteps

Description

shows the sequential processing steps that were performed on a Giotto object in a summarized format

Usage

```
showProcessingSteps(gobject)
```

Arguments

gobject giotto object

Value

list of processing steps and names

Examples

```
data(mini_giotto_single_cell)
showProcessingSteps(mini_giotto_single_cell)
```

 $\verb|showSaveParameters||$

showSaveParameters

Description

 $Description\ of\ Giot to\ saving\ options,\ links\ to\ \verb"all_plots_save_function"$

Usage

```
showSaveParameters()
```

Value

Instruction on how to use the automatic plot saving options within Giotto

showSpatialCorGenes 223

Examples

```
showSaveParameters()
```

showSpatialCorGenes

showSpatialCorGenes

Description

Shows and filters spatially correlated genes

Usage

```
showSpatialCorGenes(
   spatCorObject,
   use_clus_name = NULL,
   selected_clusters = NULL,
   genes = NULL,
   min_spat_cor = 0.5,
   min_expr_cor = NULL,
   min_cor_diff = NULL,
   min_rank_diff = NULL,
   show_top_genes = NULL
)
```

Arguments

```
spatCorObject
                      spatial correlation object
                      cluster information to show
use_clus_name
selected_clusters
                      subset of clusters to show
genes
                      subset of genes to show
                      filter on minimum spatial correlation
min_spat_cor
min_expr_cor
                      filter on minimum single-cell expression correlation
min_cor_diff
                      filter on minimum correlation difference (spatial vs expression)
min_rank_diff
                      filter on minimum correlation rank difference (spatial vs expression)
show\_top\_genes \hspace{0.2in} show \hspace{0.2in} top \hspace{0.2in} genes \hspace{0.2in} per \hspace{0.2in} gene \hspace{0.2in}
```

Value

data.table with filtered information

224 signPCA

signPCA signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(
 gobject,
 name = "pca",
 method = c("screeplot", "jackstraw"),
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 pca_method = c("irlba", "factominer"),
  rev = FALSE,
  genes_to_use = NULL,
  center = T,
  scale_unit = T,
 ncp = 50,
  scree_ylim = c(0, 10),
  jack_iter = 10,
  jack_threshold = 0.01,
  jack_ylim = c(0, 1),
  verbose = TRUE,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "signPCA"
)
```

Arguments

gobject

name of PCA object if available name method to use to identify significant PCs method expression_values expression values to use reduction cells or genes pca_method which implementation to use do a reverse PCA rev subset of genes to use for PCA genes_to_use center center data before PCA scale features before PCA scale_unit number of principal components to calculate ncp y-axis limits on scree plot scree_ylim

giotto object

silhouetteRank 225

```
jack_iter
                  number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
                  y-axis limits on jackstraw plot
jack_ylim
verbose
                  verbosity
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Two different methods can be used to assess the number of relevant or significant prinicipal components (PC's).

- 1. Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a. 'elbow method').
- 2. The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

silhouetteRank silhouetteRank

Description

Previously: calculate_spatial_genes_python. This method computes a silhouette score per gene based on the spatial distribution of two partitions of cells (expressed L1, and non-expressed L0). Here, rather than L2 Euclidean norm, it uses a rank-transformed, exponentially weighted function to represent the local physical distance between two cells. New multi aggregator implementation can be found at silhouetteRankTest

Usage

```
silhouetteRank(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean",
  subset_genes = NULL,
  rbp_p = 0.95,
  examine_top = 0.3,
  python_path = NULL
)
```

226 silhouetteRankTest

Arguments

```
gobject giotto object
expression_values
expression values to use

metric distance metric to use

subset_genes only run on this subset of genes
rbp_p fractional binarization threshold
examine_top top fraction to evaluate with silhouette
python_path specify specific path to python if required
```

Value

data.table with spatial scores

silhouetteRankTest silhouetteRankTest

Description

Multi parameter aggregator version of silhouetteRank

Usage

```
silhouetteRankTest(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  overwrite_input_bin = TRUE,
  rbp_ps = c(0.95, 0.99),
  examine_tops = c(0.005, 0.01, 0.05, 0.1, 0.3),
  matrix_type = "dissim",
  num_core = 4,
  parallel_path = "/usr/bin",
  output = NULL,
  query_sizes = 10L,
  verbose = FALSE
)
```

```
gobject giotto object
expression_values
expression values to use
subset_genes only run on this subset of genes
overwrite_input_bin
overwrite input bin
rbp_ps fractional binarization thresholds
examine_tops top fractions to evaluate with silhouette
```

```
matrix_type type of matrix
num_core number of cores to use
parallel_path path to GNU parallel function
output output directory
query_sizes size of query
verbose be verbose
```

Value

data.table with spatial scores

```
simulate One Gene Pattern Giotto Object \\ simulate One Gene Pattern Giotto Object
```

Description

Create a simulated spatial pattern for one selected gnee

Usage

```
simulateOneGenePatternGiottoObject(
  gobject,
  pattern_name = "pattern",
  pattern_cell_ids = NULL,
  gene_name = NULL,
  spatial_prob = 0.95,
  gradient_direction = NULL,
  show_pattern = TRUE,
  pattern_colors = c(`in` = "green", out = "red"),
  ...
)
```

Arguments

```
giotto object
gobject
pattern_name
                  name of spatial pattern
pattern_cell_ids
                  cell ids that make up the spatial pattern
                  selected gene
gene_name
spatial_prob
                  probability for a high expressing gene value to be part of the spatial pattern
gradient_direction
                  direction of gradient
                  show the discrete spatial pattern
show_pattern
pattern_colors 2 color vector for the spatial pattern
                  additional parameters for (re-)normalizing
. . .
```

Value

Reprocessed Giotto object for which one gene has a forced spatial pattern

228 spark

Description

Compute spatially expressed genes with SPARK method

Usage

```
spark(
  gobject,
  percentage = 0.1,
  min_count = 10,
  expression_values = "raw",
  num_core = 5,
  covariates = NULL,
  return_object = c("data.table", "spark"),
  ...
)
```

Arguments

```
gobject
                  giotto object
percentage
                  The percentage of cells that are expressed for analysis
min_count
                  minimum number of counts for a gene to be included
expression_values
                  type of values to use (raw by default)
                  number of cores to use
num_core
                  The covariates in experiments, i.e. confounding factors/batch effect. Column
covariates
                  name of giotto cell metadata.
                  type of result to return (data.table or spark object)
return_object
                  Additional parameters to the spark.vc function
```

Details

This function is a wrapper for the method implemented in the SPARK package:

- 1. CreateSPARKObject create a SPARK object from a Giotto object
- 2. spark.vc Fits the count-based spatial model to estimate the parameters, see spark.vc for additional parameters
- 3. spark.test Testing multiple kernel matrices

Value

data.table with SPARK spatial genes results or the SPARK object

spatCellCellcom 229

spatCellCellcom spatCellCellcom

Description

Spatial Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
spatCellCellcom(
 gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column = "cell_types",
 random_iter = 1000,
  gene_set_1,
  gene_set_2,
  log2FC_addendum = 0.1,
 min_observations = 2,
 detailed = FALSE,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
 do_parallel = TRUE,
  cores = NA,
  set_seed = TRUE,
 seed_number = 1234,
  verbose = c("a little", "a lot", "none")
```

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
detailed
                  provide more detailed information (random variance and z-score)
                  which method to adjust p-values
adjust_method
adjust_target
                  adjust multiple hypotheses at the cell or gene level
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
```

230 spatCellCellcom

set_seed set a seed for reproducibility

seed_number seed number

verbose verbose

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother..

- LR_comb:Pair of ligand and receptor
- lig_cell_type: cell type to assess expression level of ligand
- lig_expr: average expression of ligand in lig_cell_type
- · ligand: ligand name
- rec_cell_type: cell type to assess expression level of receptor
- rec_expr: average expression of receptor in rec_cell_type
- receptor: receptor name
- LR_expr: combined average ligand and receptor expression
- lig_nr: total number of cells from lig_cell_type that spatially interact with cells from rec_cell_type
- rec_nr: total number of cells from rec_cell_type that spatially interact with cells from lig_cell_type
- rand_expr: average combined ligand and receptor expression from random spatial permutations
- av_diff: average difference between LR_expr and rand_expr over all random spatial permutations
- sd_diff: (optional) standard deviation of the difference between LR_expr and rand_expr over all random spatial permutations
- z_score: (optinal) z-score
- log2fc: log2 fold-change (LR_expr/rand_expr)
- pvalue: p-value
- LR_cell_comb: cell type pair combination
- p.adj: adjusted p-value
- PI: significanc score: log2fc * -log10(p.adj)

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

spatCellPlot 231

spatCellPlot

spatCellPlot

Description

Visualize cells according to spatial coordinates

Usage

```
spatCellPlot(...)
```

```
Arguments passed on to spatCellPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
spat_enr_names names of spatial enrichment results to include
cell_annotation_values numeric cell annotation columns
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
select_cells select subset of cells based on cell IDs
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of spatial points
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
show_network show underlying spatial network
spatial_network_name name of spatial network to use
network_color color of spatial network
network_alpha alpha of spatial network
show_grid show spatial grid
spatial_grid_name name of spatial grid to use
```

232 spatCellPlot

```
grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size point size of not selected cells
other_cells_alpha alpha of not selected cells
coord_fix_ratio fix ratio between x and y-axis
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot2D()

Examples

```
cell_annotation_values = c('1','2'))
```

spatCellPlot2D

spatCellPlot2D

Description

Visualize cells according to spatial coordinates

Usage

```
spatCellPlot2D(
 gobject,
 show_image = F,
  gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_annotation_values = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border", "voronoi"),
 point_size = 3,
 point_alpha = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
 show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  show_legend = T,
```

```
legend_text = 8,
 legend_symbol_size = 1,
 background_color = "white",
  vor_border_color = "white",
  vor_max_radius = 200,
  vor_alpha = 1,
 axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spatCellPlot2D"
)
```

```
giotto object
gobject
                  show a tissue background image
show_image
                  a giotto image
gimage
image_name
                  name of a giotto image
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimv
spat_enr_names names of spatial enrichment results to include
cell_annotation_values
                  numeric cell annotation columns
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
                  shape of points (border, no_border or voronoi)
point_shape
point_size
                  size of point (cell)
point_alpha
                  transparancy of spatial points
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
```

show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use color of spatial network network_color network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use color of spatial grid grid_color show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols

background_color color of plot background

vor_border_color

border colorr for voronoi plot

vor_max_radius maximum radius for voronoi 'cells' vor_alpha transparancy of voronoi 'cells'

axis_text size of axis text axis_title size of axis title

cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

Details

Description of parameters.

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot()

Examples

spatDimCellPlot

spatDimCellPlot

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

Usage

```
spatDimCellPlot(...)
```

Arguments

Arguments passed on to spatDimCellPlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image plot_alignment direction to align plot spat_enr_names names of spatial enrichment results to include cell_annotation_values numeric cell annotation columns dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis sdimx = spatial dimension to use on x-axissdimy = spatial dimension to use on y-axis cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color paramselect cells select subset of cells based on cell IDs dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_alpha transparancy of dim. reduction points dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no_border or voronoi) spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the spatial center points spat_center_point_border_col border color of the spatial center points spat_center_point_border_stroke stroke size of the spatial center points spat_label_size size of the center label spat_label_fontface font of the center label

```
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
nn_network_name name of NN network to use, if show_NN_network = TRUE
dim_edge_alpha column to use for alpha of the edges
spat_show_network show spatial network
spatial_network_name name of spatial network to use
spat_network_color color of spatial network
spat_network_alpha alpha of spatial network
spat_show_grid show spatial grid
spatial_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
coord_fix_ratio ratio for coordinates
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
{\tt default\_save\_name} \ \ default \ save \ name \ for \ saving, \ don't \ change, \ change \ save\_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot2D()

Examples

spatDimCellPlot2D

spatDimCellPlot2D

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

Usage

```
spatDimCellPlot2D(
 gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
  plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy"
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
  dim_point_alpha = 1,
  dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_shape = c("border", "no_border", "voronoi"),
  spat_point_size = 1,
```

```
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold",
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "black",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
nn_network_name = "sNN.pca",
dim_edge_alpha = 0.5,
spat_show_network = F,
spatial_network_name = "Delaunay_network",
spat_network_color = "red",
spat_network_alpha = 0.5,
spat_show_grid = F,
spatial_grid_name = "spatial_grid",
spat_grid_color = "green",
show_other_cells = TRUE,
other_cell_color = "grey";
dim_other_point_size = 0.5,
spat_other_point_size = 0.5,
spat_other_cells_alpha = 0.5,
show_legend = T,
legend_text = 8,
legend_symbol_size = 1,
dim_background_color = "white",
spat_background_color = "white",
vor_border_color = "white",
vor_max_radius = 200,
vor_alpha = 1,
axis_text = 8,
axis_title = 8,
coord_fix_ratio = NULL,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
```

```
default_save_name = "spatDimCellPlot2D"
)
```

Arguments

giotto object gobject show_image show a tissue background image gimage a giotto image image_name name of a giotto image plot_alignment direction to align plot spat_enr_names names of spatial enrichment results to include cell_annotation_values numeric cell annotation columns dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis sdimx = spatial dimension to use on x-axis = spatial dimension to use on y-axis sdimy cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select cells select subset of cells based on cell IDs dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_alpha transparancy of dim. reduction points dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no_border or voronoi) spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col

border color of spatial points

spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the spatial center points spat_center_point_border_col border color of the spatial center points spat_center_point_border_stroke stroke size of the spatial center points spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network spat_network_alpha alpha of spatial network spat_show_grid show spatial grid spatial_grid_name name of spatial grid to use

spat_grid_color

color of spatial grid

```
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
dim_other_point_size
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
dim_background_color
                  background color of points in dim. reduction space
spat_background_color
                  background color of spatial points
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
coord_fix_ratio
                  ratio for coordinates
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot()

244 spatDimGenePlot

Examples

spatDimGenePlot

spatDimGenePlot

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot(...)
```

```
Arguments passed on to spatDimGenePlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
expression_values gene expression values to use
plot_alignment direction to align plot
genes genes to show
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
dim_point_shape dim reduction points with border or not (border or no_border)
dim_point_size dim reduction plot: point size
dim_point_alpha transparancy of dim. reduction points
dim_point_border_col color of border around points
dim_point_border_stroke stroke size of border around points
show_NN_network show underlying NN network
show_spatial_network show underlying spatial netwok
nn_network_to_use type of NN network to use (kNN vs sNN)
```

spatDimGenePlot 245

```
network_name name of NN network to use, if show NN network = TRUE
dim_network_color color of NN network
dim_edge_alpha dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression scale expression with ggplot alpha parameter
sdimx spatial x-axis dimension name (default = 'sdimx')
sdimy spatial y-axis dimension name (default = 'sdimy')
spatial_network_name name of spatial network to use
spatial_network_color color of spatial network
show_spatial_grid show spatial grid
grid_color color of spatial grid
spatial_grid_name name of spatial grid to use
spat_point_shape spatial points with border or not (border or no_border)
spat_point_size spatial plot: point size
spat_point_alpha transparancy of spatial points
spat_point_border_col color of border around points
spat_point_border_stroke stroke size of border around points
spat_edge_alpha edge alpha
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
show_legend show legend
legend_text size of legend text
dim_background_color color of plot background for dimension plot
spat_background_color color of plot background for spatial plot
vor_border_color border colorr for voronoi plot
vor max radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

246 spatDimGenePlot2D

See Also

```
spatDimGenePlot3D
```

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot3D()

Examples

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot2D(
 gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
  genes,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_alpha = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
 dim_network_color = "gray",
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 dim_edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  sdimx = "sdimx",
  sdimy = "sdimy",
```

spatDimGenePlot2D 247

```
spatial_network_name = "Delaunay_network",
spatial_network_color = NULL,
show_spatial_grid = F,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
spat_point_shape = c("border", "no_border", "voronoi"),
spat_point_size = 1,
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
spat_edge_alpha = NULL,
cell_color_gradient = c("blue", "white", "red"),
gradient_midpoint = NULL,
gradient_limits = NULL,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_legend = T,
legend_text = 8,
dim_background_color = "white",
spat_background_color = "white",
vor_border_color = "white",
vor_max_radius = 200,
vor_alpha = 1,
axis_text = 8,
axis_title = 8,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatDimGenePlot2D"
```

```
giotto object
gobject
show_image
                 show a tissue background image
gimage
                 a giotto image
image_name
                 name of a giotto image
expression_values
                 gene expression values to use
plot_alignment direction to align plot
                 genes to show
genes
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
```

dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size dim reduction plot: point size dim_point_alpha transparancy of dim. reduction points dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network show_spatial_network show underlying spatial netwok dim_network_color color of NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name dim_edge_alpha dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter sdimx spatial x-axis dimension name (default = 'sdimx') sdimy spatial y-axis dimension name (default = 'sdimy') spatial_network_name name of spatial network to use spatial_network_color color of spatial network show_spatial_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use spat_point_shape spatial points with border or not (border or no_border) spat_point_size spatial plot: point size spat_point_alpha transparancy of spatial points spat_point_border_col color of border around points spat_point_border_stroke stroke size of border around points spat_edge_alpha edge alpha cell_color_gradient vector with 3 colors for numeric data

spatDimGenePlot2D 249

```
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_legend
                  show legend
legend_text
                  size of legend text
dim_background_color
                  color of plot background for dimension plot
spat_background_color
                  color of plot background for spatial plot
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
                  show plots
show_plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot3D(), spatDimGenePlot()

Examples

250 spatDimGenePlot3D

spatDimGenePlot3D

spatDimGenePlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot3D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
 genes,
 cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
  show_NN_network = FALSE,
 nn_network_to_use = "sNN",
 nn_network_color = "lightgrey",
  nn_network_alpha = 0.5,
 network_name = "sNN.pca",
 label_size = 16,
  genes_low_color = "blue",
  genes_mid_color = "white",
 genes_high_color = "red",
 dim_point_size = 3,
  show_spatial_network = FALSE,
  spatial_network_name = "Delaunay_network",
  spatial_network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = FALSE,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
```

spatDimGenePlot3D 251

```
y_ticks = NULL,
      z_ticks = NULL,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot3D"
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
    dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    sdimx
                     spatial dimension to use on x-axis
    sdimy
                     spatial dimension to use on y-axis
    sdimz
                     spatial dimension to use on z-axis
                     genes to show
    genes
    cluster_column cluster column to select groups
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    nn_network_color
                     color of NN network
    nn_network_alpha
                     alpha of NN network
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    label_size
                     size of labels
    genes_low_color
                     color for low expression levels
```

252 spatDimGenePlot3D

```
genes_mid_color
                  color for medium expression levels
genes_high_color
                  color for high expression levels
dim_point_size dim reduction plot: point size
show_spatial_network
                  show spatial network (boolean)
spatial_network_name
                  name of spatial network to use
spatial_network_color
                  color of spatial network
spatial_network_alpha
                  alpha of spatial network
show_spatial_grid
                  show spatial grid (boolean)
spatial_grid_name
                  name of spatial grid to use
spatial_grid_color
                  color of spatial grid
spatial_grid_alpha
                  alpha of spatial grid
spatial_point_size
                  spatial plot: point size
legend_text_size
                  size of legend
axis_scale
                  the way to scale the axis
custom_ratio
                  customize the scale of the plot
                  set the number of ticks on the x-axis
x_ticks
                  set the number of ticks on the y-axis
y_ticks
z_ticks
                  set the number of ticks on the z-axis
                  show plots
show_plot
return_plot
                  return plotly object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

plotly

See Also

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot()

spatDimPlot

spatDimPlot

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

Usage

```
spatDimPlot(...)
```

Arguments

```
Arguments passed on to spatDimPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
plot_alignment direction to align plot
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
sdimx = spatial dimension to use on x-axis
sdimy = spatial dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
cell_color color for cells (see details)
color_as_factor convert color column to factor
cell_color_code named vector with colors
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
    eter
select_cells select subset of cells based on cell IDs
dim_point_shape point with border or not (border or no_border)
dim_point_size size of points in dim. reduction space
dim_point_alpha transparancy of point in dim. reduction space
dim_point_border_col border color of points in dim. reduction space
dim_point_border_stroke border stroke of points in dim. reduction space
spat_point_shape shape of points (border, no_border or voronoi)
spat_point_size size of spatial points
spat_point_alpha transparancy of spatial points
spat_point_border_col border color of spatial points
spat_point_border_stroke border stroke of spatial points
dim_show_cluster_center show the center of each cluster
```

```
dim_show_center_label provide a label for each cluster
dim_center_point_size size of the center point
dim_center_point_border_col border color of center point
dim_center_point_border_stroke stroke size of center point
dim_label_size size of the center label
dim_label_fontface font of the center label
spat_show_cluster_center show the center of each cluster
spat_show_center_label provide a label for each cluster
spat_center_point_size size of the center point
spat_center_point_border_col border color of spatial center points
spat_center_point_border_stroke border strike size of spatial center points
spat_label_size size of the center label
spat_label_fontface font of the center label
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show NN network = TRUE
nn_network_alpha column to use for alpha of the edges
show_spatial_network show spatial network
spat_network_name name of spatial network to use
spat_network_color color of spatial network
spat_network_alpha alpha of spatial network
show_spatial_grid show spatial grid
spat_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
dim_show_legend show legend of dimension reduction plot
spat_show_legend show legend of spatial plot
legend_text size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot2D and spatDimPlot3D for 3D visualization.
```

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot3D()

Examples

spatDimPlot2D

spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

Usage

```
spatDimPlot2D(
 gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
```

```
dim_point_shape = c("border", "no_border"),
dim_point_size = 1,
dim_point_alpha = 1,
dim_point_border_col = "black",
dim_point_border_stroke = 0.1,
spat_point_shape = c("border", "no_border", "voronoi"),
spat_point_size = 1,
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold",
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "blue",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
nn_network_alpha = 0.05,
show_spatial_network = F,
spat_network_name = "Delaunay_network",
spat_network_color = "blue",
spat_network_alpha = 0.5,
show_spatial_grid = F,
spat_grid_name = "spatial_grid",
spat_grid_color = "blue",
show_other_cells = T,
other_cell_color = "lightgrey",
dim_other_point_size = 1,
spat_other_point_size = 1,
spat_other_cells_alpha = 0.5,
dim\_show\_legend = F,
spat_show_legend = F,
legend_text = 8,
legend_symbol_size = 1,
dim_background_color = "white",
spat_background_color = "white",
vor_border_color = "white",
vor_max_radius = 200,
vor_alpha = 1,
axis_text = 8,
axis_title = 8,
show_plot = NA,
```

```
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatDimPlot2D"
)
```

Arguments

gobject giotto object show a tissue background image show_image a giotto image gimage image_name name of a giotto image plot_alignment direction to align plot dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis sdimx = spatial dimension to use on x-axis sdimy = spatial dimension to use on y-axis spat_enr_names names of spatial enrichment results to include color for cells (see details) cell_color color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_shape point with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_alpha transparancy of point in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no_border or voronoi)

spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_center_point_border_col border color of spatial center points spat_center_point_border_stroke border strike size of spatial center points spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network

> type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE

nn_network_alpha

network_name

nn_network_to_use

column to use for alpha of the edges

show spatial network spat_network_name

show_spatial_network

name of spatial network to use

spat_network_color

color of spatial network

```
spat_network_alpha
                  alpha of spatial network
show_spatial_grid
                  show spatial grid
spat_grid_name name of spatial grid to use
spat_grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
dim_other_point_size
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
dim_show_legend
                  show legend of dimension reduction plot
spat_show_legend
                  show legend of spatial plot
                  size of legend text
legend_text
legend_symbol_size
                  size of legend symbols
dim_background_color
                  background color of points in dim. reduction space
spat_background_color
                  background color of spatial points
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot3D
```

Other spatial and dimension reduction visualizations: spatDimPlot3D(), spatDimPlot()

Examples

spatDimPlot3D

spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
spatDimPlot3D(
 gobject,
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = 3,
  sdimx = "sdimx",
  sdimy = "sdimy"
  sdimz = "sdimz",
  spat_enr_names = NULL,
  show_NN_network = FALSE,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 nn_network_color = "lightgray",
 nn_network_alpha = 0.5,
  show_cluster_center = F,
  show_center_label = T,
 center_point_size = 4,
 label_size = 16,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
```

```
dim_point_size = 3,
      show_spatial_network = F,
      spatial_network_name = "Delaunay_network",
      spatial_network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      axis_scale = c("cube", "real", "custom"),
     custom_ratio = NULL,
      x_ticks = NULL,
     y_ticks = NULL,
     z_ticks = NULL,
      legend_text_size = 12,
      show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "spatDimPlot3D"
   )
Arguments
   gobject
                    giotto object
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
                    dimension to use on y-axis
   dim2_to_use
   dim3_to_use
                    dimension to use on z-axis
                    = spatial dimension to use on x-axis
   sdimx
                    = spatial dimension to use on y-axis
   sdimy
                    = spatial dimension to use on z-axis
   sdimz
   spat_enr_names names of spatial enrichment results to include
    show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
   network_name
                    name of NN network to use, if show_NN_network = TRUE
   nn_network_color
                    color of nn network
   nn_network_alpha
                    column to use for alpha of the edges
   show_cluster_center
```

show the center of each cluster

show_center_label provide a label for each cluster center_point_size size of the center point label_size size of the center label select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells color for cells (see details) cell_color color_as_factor convert color column to factor cell_color_code named vector with colors dim_point_size size of points in dim. reduction space show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_color color of spatial network spatial_network_alpha alpha of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid spatial_grid_alpha alpha of spatial grid spatial_point_size size of spatial points the way to scale the axis axis_scale customize the scale of the plot custom_ratio x_ticks set the number of ticks on the x-axis y_ticks set the number of ticks on the y-axis set the number of ticks on the z-axis z_ticks

legend_text_size

show_plot

size of legend

show plot

spatGenePlot 263

```
return_plot return ggplot object
```

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

plotly

See Also

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot()

spatGenePlot spatGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot(...)
```

Arguments

```
Arguments passed on to spatGenePlot2D
. . .
                 gobject giotto object
                 show_image show a tissue background image
                 gimage a giotto image
                 image_name name of a giotto image
                 sdimx x-axis dimension name (default = 'sdimx')
                 sdimy y-axis dimension name (default = 'sdimy')
                 expression_values gene expression values to use
                 genes genes to show
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 show_network show underlying spatial network
                 network_color color of spatial network
                 spatial_network_name name of spatial network to use
                 edge_alpha alpha of edge
                 show_grid show spatial grid
```

264 spatGenePlot

```
grid_color color of spatial grid
spatial_grid_name name of spatial grid to use
midpoint expression midpoint
scale_alpha_with_expression scale expression with ggplot alpha parameter
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of points
point_border_col color of border around points
point_border_stroke stroke size of border around points
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
legend_text size of legend text
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D and spatGenePlot2D

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot3D()
```

Examples

```
data(mini_giotto_single_cell)

all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
spatGenePlot(mini_giotto_single_cell, genes = selected_genes, point_size = 3)
```

spatGenePlot2D 265

spatGenePlot2D

spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot2D(
 gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy",
  expression_values = c("normalized", "scaled", "custom"),
 genes,
  cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 show_network = F,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
  edge_alpha = NULL,
 show\_grid = F,
 grid_color = NULL,
  spatial_grid_name = "spatial_grid",
 midpoint = 0,
  scale_alpha_with_expression = FALSE,
 point_shape = c("border", "no_border", "voronoi"),
  point_size = 1,
 point_alpha = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_legend = T,
 legend_text = 8,
 background_color = "white",
 vor_border_color = "white",
  vor_alpha = 1,
  vor_max_radius = 200,
 axis_text = 8,
 axis_title = 8,
 cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
```

266 spatGenePlot2D

```
default_save_name = "spatGenePlot2D"
)
```

Arguments

gobject giotto object

show_image show a tissue background image

gimage a giotto image

image_name name of a giotto image

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')

expression_values

gene expression values to use

genes genes to show

cell_color_gradient

vector with 3 colors for numeric data

gradient_midpoint

midpoint for color gradient

gradient_limits

vector with lower and upper limits

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

edge_alpha alpha of edge show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_shape shape of points (border, no_border or voronoi)

point_alpha transparancy of points

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

legend_text size of legend text

background_color

color of plot background

vor_border_color

border colorr for voronoi plot

spatGenePlot3D 267

```
vor_alpha
                  transparancy of voronoi 'cells'
vor_max_radius maximum radius for voronoi 'cells'
axis_text
                  size of axis text
                  size of axis title
axis_title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D
```

Other spatial gene expression visualizations: spatGenePlot3D(), spatGenePlot()

Examples

```
data(mini_giotto_single_cell)
all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
spatGenePlot2D(mini_giotto_single_cell, genes = selected_genes, point_size = 3)
```

spatGenePlot3D spatGenePlot3D

Description

Visualize cells and gene expression according to spatial coordinates

268 spatGenePlot3D

Usage

```
spatGenePlot3D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
  genes,
  show_network = FALSE,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
 edge_alpha = NULL,
 cluster_column = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 genes_high_color = NULL,
 genes_mid_color = "white",
 genes_low_color = "blue",
  show_grid = FALSE,
  spatial_grid_name = "spatial_grid",
  point_size = 2,
  show_legend = TRUE,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot3D"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
genes
                  genes to show
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
edge_alpha
                  alpha of edges
cluster_column cluster column to select groups
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
```

spatGenePlot3D 269

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

 $other_point_size$

size of not selected cells

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

show_grid show spatial grid

spatial_grid_name

name of spatial grid to use

point_size size of point (cell)

show_legend show legend

axis_scale the way to scale the axis

custom_ratio customize the scale of the plot

x_ticks set the number of ticks on the x-axis
y_ticks set the number of ticks on the y-axis
z_ticks set the number of ticks on the z-axis

show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

See Also

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot()

270 spatialAEH

spatialAEH

spatialAEH

Description

Compute spatial variable genes with spatialDE method

Usage

```
spatialAEH(
  gobject = NULL,
  SpatialDE_results = NULL,
  name_pattern = "AEH_patterns",
  expression_values = c("raw", "normalized", "scaled", "custom"),
  pattern_num = 6,
  l = 1.05,
  python_path = NULL,
  return_gobject = TRUE
)
```

Arguments

Details

This function is a wrapper for the SpatialAEH method implemented in the ...

Value

An updated giotto object

spatialDE 271

spatialDE	spatialDE
spatialDE	spati

Description

Compute spatial variable genes with spatialDE method

Usage

```
spatialDE(
  gobject = NULL,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "SpatialDE"
)
```

Arguments

```
gobject
                  Giotto object
expression_values
                  gene expression values to use
size
                  size of plot
color
                  low/medium/high color scheme for plot
sig_alpha
                  alpha value for significance
unsig_alpha
                  alpha value for unsignificance
                  specify specific path to python if required
python_path
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function is a wrapper for the SpatialDE method implemented in the ...

Value

a list of data.frames with results and plot (optional)

272 spatNetwDistributions

```
spatNetwDistributions\ spatNetwDistributionsDistance
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributions(
  gobject,
  spatial_network_name = "spatial_network",
  distribution = c("distance", "k_neighbors"),
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributions"
)
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
                  show the distribution of cell-to-cell distance or number of k neighbors
distribution
                  number of binds to use for the histogram
hist_bins
test_distance_limit
                  effect of different distance threshold on k-neighbors
ncol
                  number of columns to visualize the histograms in
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Details

The **distance** option shows the spatial distance distribution for each nearest neighbor rank (1st, 2nd, 3th, ... neigbor). With this option the user can also test the effect of a distance limit on the spatial network. This distance limit can be used to remove neigbor cells that are considered to far away. The **k_neighbors** option shows the number of k neighbors distribution over all cells.

Value

```
ggplot plot
```

```
spat {\tt NetwDistributionsDistance} \\ spat {\tt NetwDistributionsDistance}
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributionsDistance(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsDistance")
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
hist_bins
                  number of binds to use for the histogram
test_distance_limit
                  effect of different distance threshold on k-neighbors
ncol
                  number of columns to visualize the histograms in
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

274 spatPlot

```
spat {\tt NetwDistributions} Kneighbors \\ spat {\tt NetwDistributions} Kneighbors
```

Description

This function returns a histogram displaying the number of k-neighbors distribution for each cell

Usage

```
spatNetwDistributionsKneighbors(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsKneighbors")
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
hist_bins
                  number of binds to use for the histogram
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

spatPlot spatPlot

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot(...)
```

spatPlot 275

Arguments

Arguments passed on to spatPlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image group_by create multiple plots based on cell annotation column group_by_subset subset the group_by factor column sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') spat_enr_names names of spatial enrichment results to include cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell color parameter select_cells select subset of cells based on cell IDs point_shape shape of points (border, no border or voronoi) point_size size of point (cell) point_alpha transparancy of point point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot

276 spatPlot

```
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot2D(), spatPlot3D()

Examples

```
data(mini_giotto_single_cell)
spatPlot(mini_giotto_single_cell)
spatPlot(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

spatPlot2D 277

spatPlot2D

spatPlot2D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
 group_by = NULL,
 group_by_subset = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border", "voronoi"),
 point_size = 3,
 point_alpha = 1,
 point_border_col = "black",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
```

278 spatPlot2D

```
title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  vor_border_color = "white",
  vor_max_radius = 200,
  vor_alpha = 1,
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "spatPlot2D"
)
```

Arguments

```
gobject
                  giotto object
                  show a tissue background image
show_image
                  a giotto image
gimage
                  name of a giotto image
image_name
                  create multiple plots based on cell annotation column
group_by
group_by_subset
                  subset the group_by factor column
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  shape of points (border, no_border or voronoi)
point_shape
point_size
                  size of point (cell)
```

spatPlot2D 279

point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points ${\tt center_point_border_stroke}$ border stroke size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use color of spatial network network_color alpha of spatial network network_alpha show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells'

transparancy of point

point_alpha

280 spatPlot3D

```
vor_alpha
                  transparancy of voronoi 'cells'
                  size of axis text
axis_text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
                  show plot
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot3D(), spatPlot()

Examples

```
data(mini_giotto_single_cell)
spatPlot2D(mini_giotto_single_cell)
spatPlot2D(mini_giotto_single_cell, cell_color = 'cell_types', point_size = 3)
```

spatPlot3D spatPlot3D

Description

Visualize cells according to spatial coordinates

spatPlot3D 281

Usage

```
spatPlot3D(
 gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz"
  spat_enr_names = NULL,
 point_size = 3,
 cell_color = NULL,
 cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 0.5,
 other_cell_alpha = 0.5,
 show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
  show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
 grid_alpha = 1,
  title = "",
  show_legend = T,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_{ticks} = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spat3D"
)
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
                  z-axis dimension name (default = 'sdimy')
sdimz
spat_enr_names names of spatial enrichment results to include
                  size of point (cell)
point_size
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
```

282 spatPlot3D

```
select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
other\_cell\_alpha
                  alpha of not selected cells
show_network
                  show underlying spatial network
spatial_network_name
                  name of spatial network to use
network_color
                  color of spatial network
                  opacity of spatial network
network_alpha
show_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
grid_color
                  color of spatial grid
grid_alpha
                  opacity of spatial grid
title
                  title of plot
                  show legend
show_legend
axis_scale
                  the way to scale the axis
custom_ratio
                  customize the scale of the plot
x_ticks
                  set the number of ticks on the x-axis
y_ticks
                  set the number of ticks on the y-axis
                  set the number of ticks on the z-axis
z_ticks
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
```

default save name for saving, don't change, change save_name in save_param

Value

ggplot

default_save_name

See Also

Other spatial visualizations: spatPlot2D(), spatPlot()

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
specificCellCellcommunicationScores(
  spatial_network_name = "Delaunay_network",
 cluster_column = "cell_types",
 random_iter = 100,
 cell_type_1 = "astrocyte",
  cell_type_2 = "endothelial",
 gene_set_1,
 gene_set_2,
  log2FC_addendum = 0.1,
 min_observations = 2,
 detailed = FALSE,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
  set_seed = FALSE,
  seed_number = 1234,
  verbose = T
)
```

Arguments

```
giotto object to use
gobject
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
random_iter
                  number of iterations
cell_type_1
                  first cell type
cell_type_2
                  second cell type
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
detailed
                  provide more detailed information (random variance and z-score)
                  which method to adjust p-values
adjust_method
```

adjust_target adjust multiple hypotheses at the cell or gene level

set_seed set a seed for reproducibility

seed_number seed number

verbose verbose

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.

- LR_comb:Pair of ligand and receptor
- lig_cell_type: cell type to assess expression level of ligand
- lig expr: average expression of ligand in lig cell type
- · ligand: ligand name
- rec_cell_type: cell type to assess expression level of receptor
- rec_expr: average expression of receptor in rec_cell_type
- · receptor: receptor name
- LR_expr: combined average ligand and receptor expression
- lig_nr: total number of cells from lig_cell_type that spatially interact with cells from rec_cell_type
- rec_nr: total number of cells from rec_cell_type that spatially interact with cells from lig_cell_type
- rand_expr: average combined ligand and receptor expression from random spatial permutations
- av_diff: average difference between LR_expr and rand_expr over all random spatial permutations
- sd_diff: (optional) standard deviation of the difference between LR_expr and rand_expr over all random spatial permutations
- z_score: (optinal) z-score
- log2fc: log2 fold-change (LR_expr/rand_expr)
- pvalue: p-value
- LR_cell_comb: cell type pair combination
- p.adj: adjusted p-value
- PI: significanc score: log2fc * -log10(p.adj)

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

stitchFieldCoordinates 285

```
stitchFieldCoordinates
```

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

Usage

```
stitchFieldCoordinates(
  location_file,
  offset_file,
  cumulate_offset_x = F,
  cumulate_offset_y = F,
  field_col = "Field of View",
  X_coord_col = "X",
  Y_coord_col = "Y",
  reverse_final_x = F,
  reverse_final_y = T
)
```

Arguments

```
location dataframe with X and Y coordinates
location_file
offset_file
                  dataframe that describes the offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
                  column that indicates the field within the location_file
field_col
                  column that indicates the x coordinates
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Stitching of fields:

- 1. have cell locations: at least 3 columns: field, X, Y
- 2. create offset file: offset file has 3 columns: field, x_offset, y_offset
- 3. create new cell location file by stitching original cell locations with stitchFieldCoordinates
- 4. provide new cell location file to createGiottoObject

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

286 subClusterCells

```
stitchTileCoordinates stitchTileCoordinates
```

Description

Helper function to stitch tile coordinates together to form one complete picture

Usage

```
stitchTileCoordinates(location_file, Xtilespan, Ytilespan)
```

Arguments

 $\begin{array}{ll} \mbox{location_file} & \mbox{location dataframe with } X \mbox{ and } Y \mbox{ coordinates} \\ \mbox{Xtilespan} & \mbox{numerical value specifying the width of each tile} \\ \mbox{Ytilespan} & \mbox{numerical value specifying the height of each tile} \\ \end{array}$

subClusterCells

subClusterCells

Description

subcluster cells

Usage

```
subClusterCells(
 gobject,
 name = "sub_clus",
 cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
 cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
    "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
 resolution = 1,
 n_{iterations} = 1000,
 gamma = 1,
 omega = 1,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 return_gobject = TRUE,
  verbose = T
)
```

subClusterCells 287

Arguments

gobject giotto object

name name for new clustering result

cluster_method clustering method to use

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution

n_iterations number of interations to run the Leiden algorithm.

gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

 ${\tt network_name} \quad \quad name \ of \ NN \ network \ to \ use$

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

 ${\tt doLouvainCluster_multinet}, {\tt doLouvainCluster_community} \ and \ @see also \ {\tt doLeidenCluster_community} \\$

288 subsetGiottoLocs

subsetGiotto

subsetGiotto

Description

subsets Giotto object including previous analyses.

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL, verbose = FALSE)
```

Arguments

```
gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep
verbose be verbose
```

Value

giotto object

Examples

subsetGiottoLocs

subsetGiottoLocs

Description

subsets Giotto object based on spatial locations

subsetGiottoLocs 289

Usage

```
subsetGiottoLocs(
  gobject,
  x_max = NULL,
  x_min = NULL,
  y_max = NULL,
  y_min = NULL,
  z_max = NULL,
  z_min = NULL,
  return_gobject = T,
  verbose = FALSE
)
```

Arguments

gobject	giotto object
x_max	maximum x-coordinate
x_min	minimum x-coordinate
y_max	maximum y-coordinate
y_min	minimum y-coordinate
z_max	maximum z-coordinate
z_min	minimum z-coordinate
return_gobject	return Giotto object
verbose	be verbose

Details

if return_gobject = FALSE, then a filtered combined metadata data.table will be returned

Value

giotto object

Examples

```
data(mini_giotto_single_cell)
# spatial plot
spatPlot(mini_giotto_single_cell)
# subset giotto object based on spatial locations
subset_obj = subsetGiottoLocs(mini_giotto_single_cell,
x_max = 1500, x_min = 1000,
y_max = -500, y_min = -1000)
# spatial plot of subset giotto object
spatPlot(subset_obj)
```

290 t_giotto

trendSceek trendSceek

Description

Compute spatial variable genes with trendsceek method

Usage

```
trendSceek(
  gobject,
  expression_values = c("normalized", "raw"),
  subset_genes = NULL,
  nrand = 100,
  ncores = 8,
  ...
)
```

Arguments

gobject Giotto object
expression_values
gene expression values to use
subset_genes subset of genes to run trendsceek on
nrand An integer specifying the number of random resamplings of the mark distribution as to create the null-distribution.
ncores An integer specifying the number of cores to be used by BiocParallel
... Additional parameters to the trendsceek_test function

Details

This function is a wrapper for the trendsceek_test method implemented in the trendsceek package

Value

data.frame with trendsceek spatial genes results

Description

t function that works with multiple matrix representations

Usage

```
t_giotto(mymatrix)
```

updateGiottoImage 291

Arguments

```
mymatrix matrix object
```

Value

transposed matrix

 $update {\tt GiottoImage}$

updateGiottoImage

Description

Updates the boundaries of a giotto image attached to a giotto object

Usage

```
updateGiottoImage(
  gobject,
  image_name,
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
image_name spatial locations

xmax_adj adjustment of the maximum x-value to align the image

xmin_adj adjustment of the minimum x-value to align the image

ymax_adj adjustment of the maximum y-value to align the image

ymin_adj adjustment of the minimum y-value to align the image

return_gobject return a giotto object
```

Value

```
a giotto object or an updated giotto image if return_gobject = F
```

292 viewHMRFresults2D

viewHMRFresults

viewHMRFresults

Description

View results from doHMRF.

Usage

```
viewHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = FALSE,
  ...
)
```

Arguments

```
gobject giotto object
```

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

third_dim 3D data (boolean)

... additional paramters (see details)

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D and spatPlot3D
```

viewHMRFresults2D

viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
viewHMRFresults2D(gobject, HMRFoutput, k = NULL, betas_to_view = NULL, ...)
```

viewHMRFresults3D 293

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... additional parameters to spatPlot2D()

Value

spatial plots with HMRF domains

See Also

spatPlot2D

viewHMRFresults3D

viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
viewHMRFresults3D(gobject, HMRFoutput, k = NULL, betas_to_view = NULL, ...)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... additional parameters to spatPlot3D()

Value

spatial plots with HMRF domains

See Also

spatPlot3D

294 violinPlot

violinPlot

violinPlot

Description

Creates violinplot for selected clusters

Usage

```
violinPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column,
  cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"),
  cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"),
  strip\_text = 7,
  axis_text_x_size = 10,
  axis_text_y_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "violinPlot"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  genes to plot
genes
cluster_column name of column to use for clusters
cluster_custom_order
                  custom order of clusters
color_violin
                  color violin according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
strip_text
                  size of strip text
\verb"axis_text_x_size"
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
show_plot
                  show plot
return_plot
                  return ggplot object
```

writeHMRFresults 295

Value

ggplot

Examples

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  print_command = F
)
```

Arguments

```
gobject giotto object
```

HMRF output From doHMRF

k k to write results for

betas_to_view results from different betas that you want to view

print_command see the python command

296 writeHMRFresults

Value

data.table with HMRF results for each \boldsymbol{b} and the selected \boldsymbol{k}

Index

•	
*Topic datasets	cellProximitySpatPlot3D, 35, 37
mini_giotto_3D, 147	cellProximityVisPlot, 39
<pre>mini_giotto_multi_cell, 147</pre>	changeGiottoInstructions,41
<pre>mini_giotto_single_cell, 148</pre>	changeImageBg, 42
*Topic giotto ,	checkGiottoEnvironment, 42
giotto-class, 135	cluster_walktrap, <i>103</i>
*Topic giotto	clusterCells, 43
createGiottoObject,55	clusterSpatialCorGenes,45
*Topic object	colMeans_giotto,46
giotto-class, 135	colSums_giotto,46
	combCCcom, 47, 176-178
addCellIntMetadata, 7	<pre>combineCellProximityGenes, 47</pre>
addCellMetadata, 8, 56	combineCPG, 48
addCellStatistics, 9, 15	combineICG, 48, 49, 49
addGeneMetadata, 10, 56	combineInteractionChangedGenes, 48, 50
addGenesPerc, 10	combineMetadata, 51
addGeneStatistics, 11, 15	convertEnsemblToGeneSymbol, 51
addGiottoImage, 12	create_crossSection_object, 67
addGiottoImageToSpatPlot, 13	createCrossSection, 52
addHMRF, 13	createGiottoImage, 12, 13, 53
addNetworkLayout, 14	createGiottoInstructions, 54, 56, 57, 141
addStatistics, 15, 190	createGiottoObject, 17, 55, 141, 147, 148,
adjustGiottoMatrix, 15, 190	285
adjustGiottoMatrix, 15, 190 all_plots_save_function, 27, 30, 32-34,	
all_plots_save_function, 27, 30, 32-34,	createGiottoVisiumObject,57
all_plots_save_function, 27, 30, 32-34, 37, 39, 110, 112, 139, 152-160, 162,	createGiottoVisiumObject, 57 createMetagenes, 58
all_plots_save_function, 27, 30, 32-34, 37, 39, 110, 112, 139, 152-160, 162, 165, 166, 177, 178, 222, 272-274	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 anndataToGiotto, 16	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 anndataToGiotto, 16 annotateGiotto, 17	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 anndataToGiotto, 16 annotateGiotto, 17 annotateSpatialGrid, 18	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 anndataToGiotto, 16 annotateGiotto, 17	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 annotateGiotto, 16 annotateGiotto, 17 annotateSpatialGrid, 18 annotateSpatialNetwork, 19	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 annotateGiotto, 16 annotateGiotto, 17 annotateSpatialGrid, 18 annotateSpatialNetwork, 19 binSpect, 19	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72
all_plots_save_function, 27, 30, 32–34,	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 annotateGiotto, 16 annotateGiotto, 17 annotateSpatialGrid, 18 annotateSpatialNetwork, 19 binSpect, 19	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 annotateGiotto, 16 annotateGiotto, 17 annotateSpatialGrid, 18 annotateSpatialNetwork, 19 binSpect, 19 binSpectMulti, 22 binSpectSingle, 24	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot, 70, 71
all_plots_save_function, 27, 30, 32–34,	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69
all_plots_save_function, 27, 30, 32–34,	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69 crossSectionPlot, 70, 71 crossSectionPlot3D, 71
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 annotateGiotto, 16 annotateSpatialGrid, 18 annotateSpatialNetwork, 19 binSpect, 19 binSpectMulti, 22 binSpectSingle, 24 calculateHVG, 26, 204, 209, 210 calculateMetaTable, 28 calculateMetaTableCells, 29	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69 crossSectionPlot, 70, 71 crossSectionPlot3D, 71 delaunayn, 63
all_plots_save_function, 27, 30, 32–34,	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69 crossSectionPlot, 70, 71 crossSectionPlot3D, 71 delaunayn, 63 deldir, 63
all_plots_save_function, 27, 30, 32–34, 37, 39, 110, 112, 139, 152–160, 162, 165, 166, 177, 178, 222, 272–274 anndataToGiotto, 16 annotateGiotto, 17 annotateSpatialGrid, 18 annotateSpatialNetwork, 19 binSpect, 19 binSpectMulti, 22 binSpectSingle, 24 calculateHVG, 26, 204, 209, 210 calculateMetaTable, 28 calculateMetaTableCells, 29 cellProximityBarplot, 29 cellProximityEnrichment, 30	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69 crossSectionPlot, 70, 71 crossSectionPlot3D, 71 delaunayn, 63 deldir, 63 detectSpatialCorGenes, 72
all_plots_save_function, 27, 30, 32–34,	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69 crossSectionPlot, 70, 71 crossSectionPlot3D, 71 delaunayn, 63 deldir, 63 detectSpatialCorGenes, 72 detectSpatialPatterns, 73
all_plots_save_function, 27, 30, 32–34,	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69 crossSectionPlot, 70, 71 crossSectionPlot3D, 71 delaunayn, 63 deldir, 63 detectSpatialCorGenes, 72 detectSpatialPatterns, 73 dimCellPlot, 74, 78
all_plots_save_function, 27, 30, 32–34,	createGiottoVisiumObject, 57 createMetagenes, 58 createNearestNetwork, 59 createSpatialDefaultGrid, 61, 64 createSpatialDelaunayNetwork, 62 createSpatialEnrich, 63, 106 createSpatialGrid, 64 createSpatialKNNnetwork, 65 createSpatialNetwork, 66, 72 crossSectionGenePlot, 68 crossSectionGenePlot3D, 69 crossSectionPlot, 70, 71 crossSectionPlot3D, 71 delaunayn, 63 deldir, 63 detectSpatialCorGenes, 72 detectSpatialPatterns, 73

298 INDEX

dimGenePlot2D, <i>79</i> , <i>80</i> , <i>80</i> , <i>85</i>	getDendrogramSplits, 133
dimGenePlot3D, <i>80</i> , <i>83</i> , 83	<pre>getDistinctColors, 134</pre>
dimPlot, 85, 90, 92, 172, 174, 176, 181, 183,	<pre>getGiottoImage, 134</pre>
184, 186, 188, 190	getSpatialDataset, 135
dimPlot2D, 85, 86, 87, 92, 171-174, 176,	giotto (giotto-class), 135
180–188, 190	giotto-class, 135
dimPlot3D, 78, 86, 89, 90, 90, 172, 174–176,	
181, 183, 184, 186, 188–190	hclust, 93
doHclust, <i>45</i> , 92	Heatmap, <i>137</i>
doHMRF, 94	heatmSpatialCorGenes, 136
doKmeans, 45, 95	hyperGeometricEnrich, 137
doLeidenCluster, <i>45</i> , 97, <i>99</i> , <i>287</i>	
doLeidenSubCluster,98	insertCrossSectionGenePlot3D, 138
doLouvainCluster, 45, 100	insertCrossSectionSpatPlot3D, 139
doLouvainCluster_community, 45, 101, 102,	installGiottoEnvironment, 42, 140, 195
287	Carlos Array Di et 141
doLouvainCluster_multinet, 45, 101, 102, 287	jackstrawPlot, 141
doLouvainSubCluster, 101	kmeans, 21, 23, 26, 96
doRandomWalkCluster, 45, 103	KMeans_arma, 21, 23, 26
doSNNCluster, <i>45</i> , 104	kNN, <i>60</i>
download.file, 135	
download.Tile, 155	layout_with_drl, 14
estimateImageBg, 105	loadHMRF, 143
exportGiottoViewer, 105	malasi maMatai aDASE 142 200 201
exprCellCellcom, 107, 151, 152	makeSignMatrixPAGE, 143, 200, 201
expr cerrcerrcoiii, 107, 131, 132	makeSignMatrixRank, 144, 205
fDataDT, 108	mean_giotto, 145
filterCellProximityGenes, 108	mergeClusters, 145
filterCombinations, 109, 113	mini_giotto_3D, 147
filterCPG, 110	mini_giotto_multi_cell, 147
filterDistributions, 111	mini_giotto_single_cell, 148
filterGiotto, 112, <i>190</i>	normalizeGiotto, 148, 190
filterICG, 111, 113	1101 1111121101110, 140, 170
filterInteractionChangedGenes, 114	p.adjust, 20, 23, 25
findCellProximityGenes, 115	PAGEEnrich, <i>144</i> , 150
findCPG, 116	PCA, 204
findGiniMarkers, 117, <i>119</i> , <i>124</i>	pDataDT, 18, 150
findGiniMarkers_one_vs_all, 118, 125	permutationPA, <i>142</i> , <i>225</i>
findICG, 108, 109, 116, 119	plotCCcomDotplot, 151
findInteractionChangedGenes, 115, 116,	plotCCcomHeatmap, 152
121	plotCellProximityGenes, 153
findMarkers, 123, <i>129</i>	plotCombineCCcom, 154
findMarkers_one_vs_all, 124	plotCombineCellCellCommunication, 155
findMastMarkers, <i>124</i> , 125, <i>127</i>	plotCombineCellProximityGenes, 157
findMastMarkers_one_vs_all, <i>125</i> , 127	plotCombineCPG, 157
findNetworkNeighbors, 128	plotCombineICG, 158, 158
findScranMarkers, <i>124</i> , 129, <i>130</i>	plotCombineInteractionChangedGenes,
findScranMarkers_one_vs_all, <i>125</i> , 130	157, 159
1 111d0C1 d1111d1 RC1 3_011C_V3_d11, 123, 130	plotCPG, 161
get10Xmatrix, 131	plotGiottoImage, 162
get10Xmatrix_h5, 132	plotHeatmap, 162
getClusterSimilarity, 132	plotICG, 165

INDEX 299

plotInteractionChangedGenes, 166	selectPatternGenes, 212
plotMetaDataCellsHeatmap, 167, 170	show,giotto-method,213
plotMetaDataHeatmap, 168, 168	showClusterDendrogram, 214
plotPCA, 86, 90, 92, 171, 174, 176, 181, 183,	showClusterHeatmap, 215
184, 186, 188, 190	showGiottoImageNames, 134, 162, 216
plotPCA_2D, 86, 90, 92, 172, 173, 176, 181,	<pre>showGiottoInstructions, 217</pre>
183, 184, 186, 188, 190	showGrids, <i>18</i> , 217
plotPCA_3D, 86, 90, 92, 172, 174, 175, 181,	showNetworks, 218
183, 184, 186, 188, 190	showPattern, 218
plotRankSpatvsExpr, 176	showPattern2D, 218, 219, 219
plotRecovery, 177	showPattern3D, 220
plotRecovery_sub, 178	showPatternGenes, 221
plotStatDelaunayNetwork, 178	showProcessingSteps, 222
plotTSNE, 86, 90, 92, 172, 174, 176, 179, 183,	showSaveParameters, 75, 78, 80, 82, 84, 86,
184, 186, 188, 190	89, 92, 137, 164, 168, 170, 172, 174
plotTSNE_2D, 86, 90, 92, 172, 174, 176, 181,	176, 179, 181, 183, 184, 186, 188,
181, 184, 186, 188, 190	190, 192, 214, 216, 218, 219, 221,
plotTSNE_3D, 86, 90, 92, 172, 174, 176, 181,	222, 222, 232, 236, 238, 243, 245,
183, 183, 186, 188, 190	249, 252, 254, 259, 263, 264, 267,
plotUMAP, 86, 90, 92, 172, 174, 176, 181, 183,	269, 271, 276, 280, 282, 295
184, 185, 188, 190	showSpatialCorGenes, 73, 223
plotUMAP_2D, 86, 90, 92, 172, 174, 176, 181,	signPCA, 224
183, 184, 186, 187, 190	silhouetteRank, 225, 226
plotUMAP_3D, 86, 90, 92, 172, 174, 176, 181,	silhouetteRankTest, 225, 226
183, 184, 186, 188, 189	simulateOneGenePatternGiottoObject,
prcomp_irlba, 204	227
processGiotto, 190	sNN, 60
. =	sNNclust, 104
rankEnrich, 144, 191	spark, 228
rankSpatialCorGroups, 192	spark.vc, 228
readExprMatrix, 192	spatCellCellcom, 47, 151, 152, 229
readGiottoInstructions, 193	spatCellPlot, 231, 236
removeBatchEffect, 16	spatCellPlot2D, 231, 232, 233
removeCellAnnotation, 193	spatDimCellPlot, 236, 243
removeGeneAnnotation, 194	spatDimCellPlot2D, 237, 238, 239
removeGiottoEnvironment, 195	spatDimGenePlot, 244, 249, 252
replaceGiottoInstructions, 195	spatDimGenePlot2D, 244, 246, 246, 252
rowMeans_giotto, 196	spatDimGenePlot3D, 246, 249, 250
rowSums_giotto, 196	spatDimPlot, 253, 260, 263
Rtsne, 209	spatDimPlot2D, 253, 255, 255, 263
runDWLSDeconv, 197	spatDimPlot3D, 255, 260, 260
runHyperGeometricEnrich, 137, 197, 207	spatGenePlot, 263, 267, 269
runPAGEEnrich, <i>150</i> , 198, <i>207</i>	
runPAGEEnrich_OLD, 200	spatGenePlot2D, 69, 263, 264, 265, 269
runPatternSimulation, 201	spatGenePlot3D, 69, 264, 267, 267
runPCA, 203, 212	spatialAEH, 270
runRankEnrich, <i>191</i> , 204, <i>207</i>	spatialDE, 270, 271
runSpatialDeconv, 205	spatNetwDistributions, 272
runSpatialEnrich, 51 , 63 , 206	spatNetwDistributionsDistance, 273
runtSNE, 208	spatNetwDistributionsKneighbors, 274
runUMAP, 209	spatPlot, 274, 280, 282
27 - 211	spatPlot2D, 275, 276, 277, 282, 292, 293
screePlot, 211	spatPlot3D, 276, 280, 280, 292, 293

300 INDEX

```
specificCellCellcommunicationScores,
stitchFieldCoordinates, 56, 285
\verb|stitchTileCoordinates|, 286|
subClusterCells, 286
subsetGiotto, 288
\verb|subsetGiottoLocs|, 288|
t_giotto, 290
\mathsf{trendSceek}, \textcolor{red}{290}
trendsceek_test, 290
triangulate, 63
umap, 210
{\tt updateGiottoImage, } \textcolor{red}{\textbf{291}}
viewHMRFresults, 292
viewHMRFresults2D, 292
viewHMRFresults3D, 293
violinPlot, 294
{\tt writeHMRFresults}, \underline{295}
zlm, 126
```