Лабораторна робота №_5

ДОСЛІДЖЕННЯ ТЕХНОЛОГІЙ СЕГМЕНТАЦІЇ ТА КЛАСТЕРИЗАЦІЇ ЦИФРОВИХ ЗОБРАЖЕНЬ ДЛЯ ЗАДАЧ COMPUTER VISION

Мета роботи:

дослідити принципи та особливості практичного застосування технологій сегментації та кластеризації цифрових зображень для задач Computer Vision з використанням спеціалізованих програмних бібліотек.

I. SKILLS, які прокачуємо.

- 1. Робота із цифровими зображеннями: завантаження цифрового зображення; ініціалізація матриці растра; аналіз цифрового зображення (якість, контент); фільтрація; визначення та аналіз гістограми яскравості.
- 2. Покращення якості цифрових зображень: корекція кольору; фільтрація; корекція гістограми яскравості.
- 3. Аналіз цифрового зображення методами об'єктової кластеризації та сегментації з використанням методів та технологій машинного навчання (Machine Learning (ML)): k-means (k-середніх); Support Vector Machine (машина опорних векторів); k-nearest neighbors (найближчих сусідів); ієрархічна кластеризація;
- 4. Визначення геометричних ознак об'єктів на цифрових зображеннях методом векторизації побудова контуру.
 - 5. Ідентифікація об'єктів на цифрових зображеннях за геометричними ознаками.
- 6. R&D процеси для ідентифікації об'єктів на цифрових зображеннях за геометрічними ознаками визначення переліку та змісту конвеєру процесів: покращення якості векторизація ідентифікація.
- 7. Розробка програмних скриптів з реалізацією технологічних етапів Computer Vision: покращення якості векторизація ідентифікація.
- 8. Робота із бібліотеками: для Machine Learning Scikit-learn, scipy; для Computer Vision Pillow, OpenCV; для обробки і візуалізації даних Numpy, pandas, matplotlib..
 - 9. Візуалізація результатів досліджень.
 - 10. Верифікація розроблених скриптових реалізацій.

П. Корисні ресурси.

Матеріали Лекцій № 8, 9, 10, 11 курсу «Технології Computer Vision»

Навчально-методичний комплекс дисципліни:

https://drive.google.com/drive/folders/10qVipTF4nzyQzoKIBxBINiNG1hcuxTpk?usp=sharing https://classroom.google.com/c/NjE4NjE1NDM4NjU5?cjc=66wyc3d

Література:

- 1. Sebastian Raska, Vahid Mirjalili. Python and machine learning [https://github.com/rasbt/python-machine-learning-book-3rd-edition]
- 2. Jan Erik Solem Programming Computer Vision with Python
- 3. Ranjay Krishna Computer Vision: Foundations and Applications
- 3. Shapiro L. Computer Vision
- 4. Gonzalez, R. Digital Image Processing

Корисні ресурси / бібліотеки:

https://www.kaggle.com/

https://github.com/PacktPublishing/Artificial-Intelligence-with-Python

https://scapy.net/

https://developers.google.com/optimization

https://www.tensorflow.org/

https://scikit-learn.org/stable/modules/sgd.html#regression

https://keras.io/ https://opencv.org/

III. Завдання.

Реалізація проекту триває та спрямовано на збільшення функціональності програмної компоненти

Лабораторія провідної ІТ-компанії реалізує масштабний проект розробки універсальної платформи з цифрової обробки зображень для задач Computer Vision. Платформа передбачає розташування back-end компоненти на власному хмарному сервері з наданням повноважень користувачам заздалегідь адаптованого front-end функціоналу універсальної платформи. Цим формується унікальна для потреб замовника ERP система з технологіями Computer Vision

Замовниками ресурсів платформи є: державні та комерційні компанії, що розробляють медичне обладнання з діагностування захворювань за візуальною інформацією; автоматизації аграрного бізнесу в аспекті обліку посівних територій за даними з БПЛА; візуального контролю безпекових заходів на об'єктах критичної інфраструктури: аеропорти, торгівельно-розважальні центри, житлові комплекси тощо.

Завдання (task) наступних двох тижнів (time interval).

Розробити програмний скрипт, що забезпечує цифрову обробку зображень для розрізнення та ідентифікації обраних об'єктів на цифровому знімку земної поверхні з низькою роздільною здатністю за цифровими зображеннями відкритих джерел даних дистанційного зондування Землі (ДЗЗ) із космосу.

Порядок організаційних дій та функціонал програмного скрипта:

- 1. Обрати район спостереження та об'єкти ідентифікації однакові за оперативними та високоточними джерелами даних ДЗЗ див. табл.
- 2. Отримати цифрові растрові знімки обраного району земної поверхні з оперативних та високоточних джерел даних ДЗЗ із збереженням їх у файлі відповідного типу.
- 3. За допомогою програмного скрипта провести кольорову корекцію та / або фільтрацію даних ДЗЗ від оперативних та високоточних джерел відносно об'єкта ідентифікації.
- 4. Реалізувати програмно кольорову кластерізацію покращених в п.3 зображень об'єкта ідентифікації на даних ДЗЗ від оперативних та високоточних джерел.
- 5. Здійснити сегментацію кластеризованих в п.4 цифрових зображень від оперативних та високоточних джерел даних ДЗЗ із виділенням контуру об'єкта ідентифікації.
- 6. Шляхом візуального та / або програмного порівняння контурів обраних об'єктів векторизованих зображень від оперативних та високоточних джерел даних ДЗЗ здійснити ідентифікацію цих об'єктів.

Вимоги та обмеження:

Об'єктами для ідентифікації можуть бути площадні або точкові об'єкти: лісові насадження, вирубки лісів, водойми, площі ерозії поверхні Землі, сільськогосподарські угіддя, посівні площі, будівлі, автівки, техногенні / критичні об'єкти.

Ідентифікація – полягає у встановленні лінгвістичної назви об'єкта та здійснюється за геометрією контура.

Всі процеси обробки повинні бути спрямовані та реалізовані відносно об'єкта ідентифікації.

Порядок, зміст, методи і технології етапів обробки цифрового зображення, вказаних у $\pi.3,4,5-\epsilon$ результатами обгрунтованих власних R&D досліджень, відносно обраних на даних ДЗЗ об'єктів та спрямовані на головний результат — об'єктова ідентифікація.

Дозволяється змінювати джерела оперативних та еталонних даних ДЗЗ за власним обгрунтованим рішення.

Варіант (місяц народження)	Джерела даних ДЗЗ	Технічні умови
1-6	1. Оперативні: https://apps.sentinel-hub.com/eo-browser/?zoom=14⪫=52.04212&lng=29.27444&themeId=WILDFIRES-NORMAL-MODE&visualizationUrl=https%3A%2F%2Fservices.sentinel-hub.com%2Fogc%2Fwms%2Faae18701-6b25-4001-8b2a-b98a1b3806c1&datasetId=S2L2A&fromTime=2022-03-16T20%3A00%3A00.000Z&toTime=2022-03-16T23%3A59%3A59.999Z&layerId=1 FALSE-COLOR 2. Високоточні: https://www.google.com.ua/maps	Район спостереження — обрати самостійно. Об'єкти ідентифікації — обрати самостійно. Дата оперативних даних — обрати самостійно. Метод і технологія кластеризації / сегментації — повинні забезпечувати можливість розрізнення та ідентифікацію обраних об'єктів спостереження.
7-12	1. Оперативні: https://livingatlas2.arcgis.com/landsatexplorer/ 2. Високоточні: https://www.bing.com/maps	Район спостереження — обрати самостійно. Об'єкти ідентифікації — обрати самостійно. Дата оперативних даних — обрати самостійно. Метод і технологія сегментації / кластеризації — повинні забезпечувати можливість розрізнення та ідентифікацію обраних об'єктів спостереження.

Розподіл балів за рівнем складності.

- I максимально 7 балів, функціонал скрипта реалізовано у повному обсязі, п.6 технічних вимог (ідентифікація об'єкта) реалізовано шляхом візуального порівняння контурів.
- II максимально 9 балів, функціонал скрипта реалізовано у повному обсязі, п.6 технічних вимог (ідентифікація об'єкта) реалізовано шляхом програмного порівняння контурів.

Альтернативні ресурси для отримання цифрових знімків

https://www.kaggle.com/

https://www.sentinel-hub.com/

https://livingatlas2.arcgis.com/landsatexplorer/

https://www.bing.com/maps

https://unitar.org/maps/map/3525

https://mapcarta.com/Map

Приклади реалізації, див. Лекцій № 8, 9, 10, 11 курсу «Технології Computer Vision».

VI. Порядок виконання завдання лабораторної роботи.

- 4.1. Обрати завдання на лабораторну роботу за рівнем складності та відповідно до вказаного варіанту технічного завдання.
- 4.2. Реалізувати етап вибору / розробки / синтезу математичної моделі за якими здійснюватимуться обробка даних програмного скрипта.
- 4.3. Реалізувати етап архітектурного проектування (структурна схема /або/ діаграма класів /або/ блок-схема алгоритму). Здійснити опис функціонування результатів архітектурного проектування.

- 4.4. Розробити програму, що втілює розроблений алгоритм.
- 4.5. Провести тестування та верифікацію роботи програми
- 4.6. Реалізувати дослідження, що вказані в меті лабораторної роботи та сформувати висновки.
 - 4.7. Оформити звіт з лабораторної роботи та своєчасно представити його викладачеві.

V. Структура звіту з лабораторної роботи (див. Додаток 2).

- 5.1. Титульний аркуш, що містить інформацію: номер, тема, навчальна дисципліна, виконавець роботи, роботу прийняв.
 - 5.2. Мета і завдання лабораторної роботи.
 - 5.3. Результати виконання лабораторної роботи:
 - 5.3.1. Синтезована математична модель;
 - 5.3.2. Результати архітектурного проектування та їх опис;
 - 5.3.3. Опис структури проекту програми;
 - 5.3.4. Результати роботи програми відповідно до завдання (допускається у формі скриншотів);
 - 5.3.5. Програмний код, що забезпечує отримання результату (допускається у формі скриншотів).
 - 5.4. Висновки.
 - 5.5. Підпис виконавця, викладача, що прийняв роботу.
- 5.6. Звіт з лабораторної роботи оформлюється відповідно до вимог 3008:2015 «ЗВІТИ У СФЕРІ НАУКИ І ТЕХНІКИ. СТРУКТУРА ТА ПРАВИЛА ОФОРМЛЕННЯ.

Технічні вимоги до звіту: аркуш формату A4 шрифтом Times New Roman 12 pt через 1,0 інтервал. Поля: зверху - 2 см, знизу - 2 см, справа - 2 см, зліва - 2,5 см, абзац - 1,25 см.

VI. Звітність за лабораторну роботу.

Результатом виконання лабораторної роботи ϵ :

6.1. Звіт з лабораторної роботи в електронному вигляді. Файл звіту кодується за формою:

Прізвіще Ім'я (укр.) номер групи номер лр.*

- 6.2. Проект програми, що реалізує завдання лабораторної роботи, якій надається в формі архіву, як невід'ємний додаток звіту.
- 6.3. Оформлений звіт надається викладачеві в електронному вигляді кожним виконавцем індивідуально!

Своєчасним вважається надання звіту до початку заняття з наступної лабораторної роботи.

Оформлені звітні матеріали надсилаються за адресою:

kga46826@gmail.com

VII. Порядок оцінювання та захисту лабораторної роботи.

Максимальна кількість балів за лабораторні роботи (RЛ) за високим рівнем складає 81 бал, за середнім рівнем - 63 балів.

Загальний рейтинг за дисиипліною

				Juci	monn	прси	nunc	sa oa	Cyans	inoio			
	Лр	Лр	Лр	Лр	Лр	Лр	Лр	Лр	Лр	M	CY	Зал	Сумма+з
Звітність	1	2	3	4	5	6	7	8	9	K	MA	iκ	алік
Високий													
рівень	9	9	9	9	9	9	9	9	9	9	90	10	100
Середній													
рівень	7	7	7	7	7	7	7	7	7	9	72	10	82

Розподіл балів за виконання лабораторних робіт.

- 7.1. Якість / повнота оформлення протоколу з лабораторної роботи 1 бал.
- 7.2. Сво ϵ часний захист роботи 1 бал.
- 7.3. Повнота аналізу отриманих результатів 1 бал.
- 7.4. Якість та повнота виконання технічних умов завдання, функціональність розробленої технічної продукції (програмного скрипта) -4 бали.
 - 7.5. Рівень теоретичної підготовки 2 бали.
- *** Для умов дистанційного навчання бали за теоретичну підготовленість (n.7.4) можуть нараховуватись за результатами аналізу вмісту протоколу з лабораторної роботи.
- *** Для умов військового стану— своєчасність захисту лабораторної роботи (п.7.2)—не застосовується а додається до п.7.4.

професор кафедри

О. Писарчук