GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2021

Subject Code:3170720 Date:29/12/2021

Subject Name:Information security

Time:10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS 03

- **Q.1** (a) Define the following terms:
 - (i) Non-repudiation (ii) Data integrity (iii) Confidentiality
 - **(b)** Distinguish between passive and active security attacks? Define the type 04 of Security attack in each of the following cases:
 - (i) A student breaks into a professor's office to obtain a copy of the next day's test.
 - (ii) A student gives a check for \$10 to buy a used book. Later she finds that the check was cashed for \$100.
 - (iii) A student sends hundreds of e-mails per day to another student using a phony return e-mail address.
 - (c) List and explain various block cipher modes of operation with the help of **07** diagram.
- Q.2(a) What is the purpose of S-boxes in DES? Explain the avalanche effect. 03
 - (b) Construct a Playfair matrix with the key "engineering". And encrypt the 04 message "test this Balloon".
 - Let K = 133457799BBCDFF1 be the key in hexadecimal. Derive K1 the 07 first round sub key using a single round version of DES.

Permuted Choice One (PC-1) Permuted Choice Two (PC-2)

49 41 33 58 50 42 34 26 18 2 59 51 43 27 10 35 19 3 60 52 44 11 36 39 23 63 55 47 31 15 54 38 | 30 | 22 7 62 46 45 29 14 6 61 53 37 5 21 13 28 20 12

15 6 21	10	22	4.0		
	10	23	19	12	4
26 8 16	7	27	20	13	2
41 52 31	37	47	55	30	40
51 45 33	48	44	49	39	56
34 53 46	42	50	36	29	32

OR

- (c) Let M = 3243F6A8885A308D313198A2E0370734 be the plain text message and K=2B7E151628AED2A6ABF7158809CF4F3C be the key in hexadecimal. Perform the following operation using AES.
 - (a) Add round key.
 - (b) Shift row transformation on output of (a)
- What is a nonce? What is the difference between a session key and a 03 Q.3 (a) master key?

1

07

	(b)	Differentiate between hashing and encryption. What are the practical applications of hashing?	04
	(c)	Explain Diffie Hellman key exchange algorithm with example.	07
		OR	
Q.3	(a)	What is public key cryptography? What are the principal elements of a public-key cryptosystem?	03
	(b)	• • • • •	04
	(c)	What do you mean by key distribution? Give at least one method for key distribution with proper illustration.	07
Q.4	(a) (b) (c)	Explain the triple DES scheme with two keys. Differentiate between Conventional encryption and Public-key encryption. Discuss X.509 Certificates.	03 04 07
	(C)	Discuss A.309 Certificates.	U1
		OR	
Q.4	(a) (b) (c)	Why not Double DES? What is a meet-in-the-middle attack? Discuss message digest generation using SHA-512. What is message authentication code? What is the difference between a Message authentication code and a one-way hash function? Write the basic uses of Message authentication code.	03 04 07
Q.5	(a)	Encrypt the message "Asymmetric key cryptography is fun" using Transposition cipher with key (3,2,6,1,5,4)	03
	(b)		04
	(c)	Discuss generic model of digital signature process.	07
		OR	
Q.5	(a)	Using the Viennese cipher, encrypt the word "explanation" using the key leg.	03
	(b)	Discuss four general categories of schemes for the distribution of public keys.	04
	(c)	Explain Kerberos in detail.	07

Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2022

Su	b	jec	t	Code	:31	7072	0	Date:10/06/2022
	_	_			_	_	_	

Subject Name:Information security

Time:02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
 Figures to the right indicate full marks.

		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)	Define the following terms:	03
	(b)	(i) Security Attack (ii) Security Services (iii) Security Mechanism	04
	(b)	Answer following questions. (i) 15 parties want to exchange messages securely using symmetric key	04
		encryption algorithm. The number of distinct key values required	
		will be	
		(ii) 15 parties want to exchange messages securely using asymmetric	
		key encryption algorithm. The number of distinct key values	
		required will be	
		(iii) Total number of s-box used in DES is	
		(iv) How many AES rounds are required for 128-bit key size?	
	(c)	List and explain various types of attacks on encrypted message.	07
Q.2	(a)	Encrypt the message "CORONA" using Hill Cipher with key $\begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}$	03
	(b)	Discuss different techniques for public-key distribution.	04
	(c)	Elaborate DES encryption with neat sketches.	07
		OR	
	(c)	Elaborate AES encryption with neat sketches.	07
Q.3	(a)	Discuss Meet-in-the-Middle Attack.	03
	(b)	Discuss Cipher Block Chaining (CBC) modes of operation with the help	04
	` ′	of diagram.	
	(c)	What is KDC? With the help of diagram explain how KDC do key	07
		distribution.	
0.2	(a)	OR Discuss Man-in-the-Middle Attack.	02
Q.3	(a) (b)	Discuss Cipher Feedback (CFB) block cipher modes of operation with the	03 04
	(0)	help of diagram.	V -
	(c)	Discuss briefly the working of KERBEROS authentication protocol.	07
0.4	()	D 11 4 WYDGTZDECDWNDGOIWOWGW II	0.2
Q.4	(a)	Decipher the message "KBSTZPEGBWNDGQHWQWC" Using	03
	(b)	Vigenere cipher with key "confidential" Explain the following properties of hash function	04
	(U)	(i) One way property	V -1
		(ii) Weak collision resistance	
	(c)	P and Q are two prime numbers. P=17, and Q=31. Take public key E=7.	07
		If plain text value is 2, then what will be the private key and cipher text	
		value according to RSA algorithm? Explain in detail.	

Q.4	(a)	Encrypt the message "WE ARE DISCOVERED FLEE AT ONCE"	03
	(3.)	using Rail fence cipher with rail = 3	0.4
	(b)	Explain the triple DES scheme with two keys and write about proposed attacks on 3DES	04
	(c)	For Diffie-Hellman algorithm, two publically known numbers are prime number 23 and primitive root (g) of it is 9. A selects the random integer 4 and B selects 3. Compute the public key of A and B. Also compute common secret key.	07
Q.5	(a)	Define the following terms: (i) Cryptography (ii) Cryptanalysis (iii) Brute-force attack	03
	(b)		04
	` /	<u>-</u>	07
	(c)	Discuss Secure Hash Algorithm (SHA)	U/
		OR	
Q.5	(a)	Illustrate variety of ways in which MAC code can be used to provide Message authentication.	03
	(b)	Consider ElGamal cryptosystem in Z_{17} with generator 6. If the message	04
	()	is 13 and the randomness chosen is 10, then find the ciphertext computed	
		using the public key 7.	
	(c)	Discuss X.509 authentication service.	07
	(2)	Discussification service.	0,
