fGAN: General Framework of GAN

f-divergence

P and Q are two distributions. p(x) and q(x)are the probability of sampling x.

$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx \quad \text{f is convex} \\ f(1) = 0 \quad D_f(P||Q) \text{ evaluates the difference of P and Q}$$

If p(x) = q(x) for all x

$$f p(x) = q(x)$$
 for all x

$$D_f(P||Q) = \int_{x}^{x}$$

$$D_f(P||Q) = \int_{x} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$
lower bound, D to E check

Because f is convex
$$\geq f\left(\int\limits_{x}^{x}q(x)\frac{p(x)}{q(x)}dx\right)$$
 distributions, $D_{f}(P||Q)$ has the smallest value, where $D_{f}(P||Q)$

$$= f(1) = 0$$

$$q(x)$$
 for all x $=1$ smallest $D_f(P||Q) = \int\limits_X q(x) f\left(\frac{p(x)}{q(x)}\right) dx = 0$ 以達到最小的value $=0$

If P and Q are the same distributions,

smallest value, which is 0

f-divergence

$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx \qquad \text{f is convex}$$

$$f(1) = 0$$

f(x)帶不同的東西可以得到不同的divergence

$$f(x) = x log x$$

$$D_f(P||Q) = \int q(x) \frac{p(x)}{q(x)} log \left(\frac{p(x)}{q(x)}\right) dx = \int p(x) log \left(\frac{p(x)}{q(x)}\right) dx$$

$$f(x) = -logx$$

$$D_f(P||Q) = \int_{\mathcal{X}} q(x) \left(-\log\left(\frac{p(x)}{q(x)}\right) \right) dx = \int_{\mathcal{X}} q(x) \log\left(\frac{q(x)}{p(x)}\right) dx$$

Reverse KL

Chi Square

$$f(x) = (x-1)^2$$

 $D_f(P||Q) = \int q(x) \left(\frac{p(x)}{q(x)} - 1\right)^2 dx = \int \frac{(p(x) - q(x))^2}{q(x)} dx$

$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$
f is convex, f(1) = 0

$$f^{*}(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

$$f^{*}(t_{1}) = \max_{x \in dom(f)} \{xt_{1} - f(x)\}$$

$$x_{1}t_{1} - f(x_{1}) \bullet f^{*}(t_{1}) \qquad f^{*}(t_{2}) = \max_{x \in dom(f)} \{xt_{2} - f(x)\}$$

$$x_{2}t_{1} - f(x_{2}) \bullet \qquad \qquad x_{3}t_{2} - f(x_{3}) \bullet f^{*}(t_{2})$$

$$x_{2}t_{2} - f(x_{2}) \bullet \qquad \qquad x_{1}t_{2} - f(x_{1}) \bullet$$

$$t_{1} \qquad \qquad t_{2} \qquad t$$

$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$
f is convex, f(1) = 0

$$f^*(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

$$f^*(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

• (f*)* = f
$$f^*(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

$$\exists \text{Bliffithing} \text{Econjugate}$$

$$f(x) = x \log x \quad \longrightarrow \quad f^*(t) = exp(t-1)$$

$$f^*(t) = \max_{x \in dom(f)} \{xt - x \log x\}$$

$$g(x) = xt - x \log x \quad \text{Given t, find x maximizing } g(x)$$

$$t - \log x - 1 = 0 \quad x = exp(t-1)$$

$$f^*(t) = exp(t-1) \times t - exp(t-1) \times (t-1) = exp(t-1)$$

Connection with GAN

他們其實是互為conjugate

$$f^*(t) = \max_{x \in dom(f)} \{xt - f(x)\} \longrightarrow f(\underline{x}) = \max_{t \in dom(f^*)} \{\underline{x}t - f^*(t)\}$$

$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx \qquad \frac{p(x)}{q(x)}$$

$$= \int_x q(x) \left(\max_{t \in dom(f^*)} \left\{\frac{p(x)}{q(x)}t - f^*(\underline{t})\right\}\right) dx$$

$$\underset{\mathbb{R}}{\text{max}} = \max_{D} \int_x p(x) D(x) dx - \int_x q(x) f^*(D(x)) dx$$

找一個D幫我們解max problem,給他一個x幫我們找最大的t

D is a function whose input is x, and output is t

$$D_f(P||Q) \ge \int_{x} q(x) \left(\frac{p(x)}{q(x)} \underline{D(x)} - f^*(\underline{D(x)}) \right) dx$$

因為D的capacity是有限的,因此這一向只能成為一個lower bound

$$= \int_{\mathcal{X}} p(x)D(x)dx - \int_{\mathcal{X}} q(x)f^*(D(x))dx$$

找一個最好的D就可以去逼近f divergence

Connection with GAN

$$D_f(P_{data}||P_G) = \max_{D} \left\{ E_{x \sim P_{data}}[D(x)] - E_{x \sim P_G}[f^*(D(x))] \right\}$$

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2} \int p(x) - q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$ \frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx \int p(x) \pi \log \frac{p(x)}{\pi p(x)+(1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x)+(1-\pi)q(x)} dx \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4) $	$-(u+1)\log\frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Using the f-divergence you like ©

https://arxiv.org/pdf/1606.00709.pdf

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$-1 - \log(-t)$
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$(2-2\sqrt{1-t})$
Squared Hellinger	$\frac{t}{1-t}$
Jeffrey	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$ - $\log(2 - \exp(t))$
Jensen-Shannon	$-\log(2-\exp(t))$
Jensen-Shannon-weighted	$(1-\pi)\log\frac{1-\pi}{1-\pi e^{t/\pi}}$
GAN	$-\log(1-\exp(t))$

Mode Collapse

🜟 : real data

🜟 : generated data

generative distribution越來越小

Training with too many iterations

Mode Dropping

Generator switches mode during training

Generator at iteration t

Generator at iteration t+1

Generator at iteration t+2

BEGAN on CelebA

 P_{data}

Probability Density

Flaw in Optimization?

而JS比較接近這種

 $KL = \int P_{data} log \frac{P_{data}}{P_{G}} dx$

如果換成reverse KL會長這樣,會集中在某個mode

Reverse
$$KL = \int P_G \log \frac{P_G}{P_{data}} dx$$

 P_{data} 用maximum likelihood去minimize KL會長這樣 結果是在中間(差的),會比較模糊 反而不是在data sensitive的地方sample

Probability Density

Maximum likelihood (minimize $KL(P_{data}||P_G)$)

Minimize $KL(P_G||P_{data})$ (reverse KL)

train多個generator~~XD

Outlook: Ensemble

Train a set of generators: $\{G_1, G_2, \dots, G_N\}$ To generate an image

> Random pick a generator G_i Use G_i to generate the image

