Language Design and Data Provenance

Val TannenUniversity of Pennsylvania

Collaborators

T of T award TJ Green RelationalAI

Grigoris Karvounarakis RelationalAI

G of PODS paper TJ

ORCHESTRA Zack Ives University of Pennsylvania

TJ, Grigoris

Other core papers Nate Foster Cornell University

Yael Amsterdamer Bar-Ilan University

Daniel Deutch Tel Aviv University

Tova Milo Tel Aviv University

Sudeepa Roy Duke University

Yuval Moskovitch Tel Aviv University

Recent work Erich Grädel RWTH Aachen

Much gratitude Peter Buneman University of Edinburgh

Provenance?

Provenance is about

- trust: propagate it from inputs to outputs
- diagnostics: faulty outputs come from where?
- (repairs): fix inputs to fix outputs (reverse provenance analysis).

(Binary) Trust with Cat Victims

^{*} Sue and Val are noted zoologists.

^{**} Zack is a noted *computational* zoologist

Confidence Scores (non-binary trust)

Sue's notes

cat	mouse	0.9
cat	rat	0.9

Zack

cat	gray	0.72
cat	red	0.09

Val's notes

mouse	gray	0.6
mouse	red	0.1
rat	gray	0.8

$$0.72 = \max(0.9 \times 0.8, 0.9 \times 0.6)$$

$$0.09 = 0.9 \times 0.1$$

A Simple Model for Data Pricing

Sue's notes

cat	mouse	\$10
cat	rat	\$10

Zack

cat	gray	\$16
cat	red	\$11

Val's notes

mouse	gray	\$6
mouse	red	\$1
rat	gray	\$8

$$16 = min(10 + 8, 10 + 6)$$

 $11 = 10 + 1$

Computation? Expressed in a Query Language

Sue's notes

computation

Zack

cat gray cat red

Val's notes

mouse	gray
mouse	red
rat	gray

$$Zack(x,z) :- Sue(x,y)$$
, $Val(y,z)$

Zack = $\{ (u.\#pred, v.\#color) \mid u \in Sue, v \in Val, u.\#prey=v.\#animal \}$

Do it once and use it repeatedly: provenance

Label (annotate) input items abstractly with **provenance tokens**.

Provenance tracking: propagate **expressions** (involving tokens)

(to annotate intermediate data and, finally, outputs)

Based on query language design, track two distinct ways of using data items by computation primitives:

- jointly (this alone is basically like keeping a log)
- alternatively (doing both is essential; think trust)

Input-output compositional; Modular (in the primitives)

Later, we want to **evaluate** the provenance expressions to obtain binary trust, confidence scores, data prices, etc.

Algebraic interpretation for RDB

Set X of provenance tokens.

Space of annotations, provenance expressions Prov(X)

Prov(*X*)-relations:

every tuple is annotated with some element from Prov(X).

Binary operations on Prov(X):

- corresponds to joint use (join, cartesian product),
- + corresponds to alternative use (union and projection).

Special annotations:

"Absent" tuples are annotated with 0.

1 is a "neutral" annotation (data we do not track).

K-Relational algebra

Algebraic laws of $(\text{Prov}(X), +, \cdot, 0, 1)$? More generally, for annotations from a structure $(K, +, \cdot, 0, 1)$?

K-relations. Generalize RA+ to (positive) K-relational algebra.

Desired optimization equivalences of K- relational algebra iff $(K, +, \cdot, 0, 1)$ is a **commutative semiring**.

```
Generalizes SPJU or UCQ or non-rec. Datalog set semantics (\mathbb{B}, \vee, \wedge, \perp, \top) bag semantics (\mathbb{N}, +, \cdot, 0, 1) c-table-semantics [IL84] (BoolExp(X), \vee, \wedge, \perp, \top) event table semantics [FR97,Z97] (\mathcal{P}(\Omega), \cup, \cap, \emptyset, \Omega)
```

What is a commutative semiring?

An algebraic structure $(K, +, \cdot, 0, 1)$ where:

- K is the domain
- + is associative, commutative, with 0 identity
- is associative, with 1 identity
- distributes over +
- $a \cdot 0 = 0 \cdot a = 0$

is also commutative

Unlike ring, no requirement for inverses to +

semiring

Provenance: abstract semiring annotation

Sue's notes

Val's notes

mouse	gray	r
mouse	red	S
rat	gray	t

Keep $X=\{p,q,r,s,t\}$ abstract.

Diagnostic for wrong answers; Deletion propagation.

E.g.,
$$r=s=0$$

Provenance propagation through language operations

Sue

cat	mouse	p
cat	rat	q

Val

mouse	gray	r
mouse	red	S
rat	gray	t

JOIN

cat	mouse	gray	p·r
cat	mouse	red	p·s
cat	rat	gray	q·t

PROJECT

cat	gray	$p \cdot r + q \cdot t$
cat	red	p·s

Provenance polynomials

 $(\mathbb{N}[X], +, \cdot, 0, 1)$ is the commutative semiring freely generated by X (universality property involving homomorphisms)

Provenance polynomials are PTIME-computable (data complexity). (query complexity depends on language and representation)

ORCHESTRA provenance (graph representation) about 30% overhead

Monomials correspond to logical derivations (proof trees in non-rec. Datalog)

Provenance reading of polynomails:

output tuple has provenance $2r^2 + rs$

three derivations of the tuple - two of them use r, twice,

- the third uses *r* and *s*, once each

Specialize provenance for confidence scores

Sue's notes

cat	mouse	0.9
cat	rat	0.9

Zack(x,z):-Sue(x,y),Val(y,z)

Zack

cat	gray	0.72
cat	red	0.09

Val's notes

mouse	gray	0.6
mouse	red	0.1
rat	gray	0.8

 $V = ([0,1], \max, \cdot, 0, 1)$ the Viterbi semiring

$$f: X \to [0,1]$$
 $f(p)=f(q)=0.9$ $f(r)=0.6$ $f(s)=0.1$ $f(t)=0.8$

$$eval(f): \mathbb{N}[X] \rightarrow \mathbb{V}$$
 $eval(f)(pr+qt)=0.72$ $eval(f)(ps)=0.09$

Some application semirings

```
(\mathbb{B}, \wedge, \vee, \top, \perp) binary trust
(\mathbb{N}, +, \cdot, 0, 1) multiplicity (number of derivations)
(A, min, max, 0, Pub) access control
\mathbb{V} = ([0,1], \max, \cdot, 0, 1) Viterbi semiring (MPE) confidence scores
\mathbb{T} = ([0, \infty], \min, +, \infty, 0)
                  tropical semiring (shortest paths) data pricing
\mathbb{F} = ([0,1], \max, \min, 0, 1) "fuzzy logic" semiring
```

Two kinds of semirings in this framework

Provenance semirings, e.g.,

```
(\mathbb{N}[X], +, \cdot, 0, 1) provenance polynomials [GKT07] (Why(X), \cup, \cup, \emptyset, \{\emptyset\}) witness why-provenance [BKT01]
```

Application semirings, e.g.,

```
(A, min, max, 0, Pub) access control [FGT08] \mathbb{V} = ([0,1], \max, \cdot, 0, 1) Viterbi semiring (MPE) [GKIT07]
```

Provenance specialization relies on

- Provenance semirings are freely generated by provenance tokens
- Query commutation with semiring homomorphisms

Query commutation with homomorphisms

query in QL homomorphism $h: K_1 \rightarrow K_2$

QL = RA+, Datalog [GKT07] and extensions [FGT08, GP10, ADT11a, T13, DMT15, GUKFC16, T17]

K-Nested Relational Calculus

K-sets. Every element of the set is annotated with some $k \in K$. where $(K, +, \cdot, 0, 1)$ is a commutative semiring.

Map
$$f$$
 on S { $f(x) | x \in S$ }

If x is annotated by k then the annotation of f(x) is multiplied by k.

K-sets also form a commutative semiring. This gives annotations for

"FlatMap"
$$g$$
 on S $\bigcup \{ g(x) \mid x \in S \}$

A Hierarchy of Provenance Semirings [G09, DMRT14]

A menagerie of provenance semirings

(Which(X), \cup , \cup^* , \emptyset , \emptyset^*) sets of contributing tuples "Lineage" (1) [CWW00]

(Why(X), \cup , \emptyset , { \emptyset }) sets of sets of ... Witness why-provenance [BKT01]

(PosBool(X), \land , \lor , \top , \bot) minimal sets of sets of... Minimal witness whyprovenance [BKT01] also "Lineage" (2) used in probabilistic dbs [SORK11]

(Trio(X), +, ·, 0, 1) bags of sets of ... "Lineage" (3) [BDHT08,G09]

($\mathbb{B}[X],+,\cdot,0,1$) sets of bags of ... Boolean coeff. polynomials [G09]

(Sorp(X),+, ·, 0, 1) minimal sets of bags of ... absorptive polynomials [DMRT14]

($\mathbb{N}[X]$, +, ·, 0, 1) bags of bags of... universal provenance polynomials [GKT07]

Further aspects of the framework

Extension to tree data (Nested Relational Calculus, structural recursion on trees, unordered XQuery) [FGT08]

Study of CQ/UCQ on provenance-annotated relations [G09]

Extension to aggregates (poly-size overhead) [ADT11a]

Poly-size provenance for Datalog (circuits; PosBool(X), Sorp(X)...) [DMRT14]

Extension to data-dependent finite state processes [DMT15]

Connections to semiring monad [FGT08, T13]

to semimodules [ADT11a]

to tensor products [ADT11a, DMT15]

Provenance for aggregation

Desiderata

- 1. Compatibility with set/bag semantics
- 2. Fundamental property (commutation with homomorphisms)
- 3. Poly-size overhead! $1+2+4+...+2^{n-1} \Rightarrow 2^n \text{ results}$

Solution inspired by (semi) linear algebra

(K-Rel, \cup , \emptyset) is a K-semimodule with the singletons as basis.

Relations are the result of ∪-aggregation!

What if $(\mathbb{R}, +, 0)$ were a Prov(X)-semimodule?

 $(\mathbb{R}, +, 0)$ is not a Prov(X)-semimodule, but...

Tensor product construction

Embed a commutative monoid M (for sum, max or min) into a K-semimodule $K \otimes M$ (new values!)

Consistency: embedding should be faithful.

S-agg
$$a \quad x \otimes 20 + y \otimes 10 \qquad x + y$$

$$b \quad q \otimes 15 + r \otimes 10 + s \otimes 25 \qquad q + r + s$$

Negative information; non-monotone operations (difference)

Boolean expressions [IL84]. Limited.

Add a binary operation corresponding to difference m-semirings (common gen. of set and bag difference) [GP10] spm-semirings (OPTIONAL in SPARQL) [GUKFC16]

Encode difference by aggregation [ADT11a]

Different equational theories, different algebraic optimizations [ADT11b]

Still not clear how to track **negative information**. useful: non-answers (why not?), insertion propagation.

Logical model checking ("provenance of ... truth?") negation as duality (NNFs), logical games ongoing work with Grädel [T16, T17]

Current targets

ANALYTICS COMPUTATIONS

"Fine-grained provenance for linear algebra operators" Yan, T., Ives TaPP 16

DISTRIBUTED SYSTEMS/NETWORK PROVENANCE

"Time-aware provenance for distributed systems", Zhou, Ding, Haeberlen, Ives, Loo TaPP 11

"Diagnosing missing events in distributed systems with negative provenance", Wu, Zhao, Haeberlen, Zhou, Loo SIGCOMM 14

STATIC ANALYSIS OF SOFTWARE

"On abstraction refinement for program analyses in Datalog" **Zhang,** Mangal, Grigore, **Naik** PLDI 14

Framework references (I)

[GKT07]

"Provenance semirings" Green, Karvounarakis, Tannen PODS 07.

[GKIT07]

"Update exchange with mappings and provenance" Green, Karvounarakis, Ives, Tannen VLDB 07.

[FGT08]

"Annotated XML: queries and provenance" Foster, Green, Tannen PODS 08.

[G09]

"Containment of conjunctive queries on annotated relations" Green ICDT 09.

[GP10]

"On database query languages for K-relations", Geerts, Poggi J Appl. Logic 2010.

Framework references (II)

[ADT11a]

"Provenance for aggregate queries", Amsterdamer, Deutch, Tannen PODS 11.

[ADT11b]

"On the limitations of provenance for queries with difference", Amsterdamer, Deutch, Tannen TaPP 11

[T13]

"Provenance propagation in complex queries"

Tannen Buneman Festschrift 2013

[DMRT14]

"Circuits for Datalog provenance", Deutch, Milo, Roy, T. ICDT 14.

[DMT15]

"Provenance-based analysis of data-centric processes"

Deutch, Moskovitch, Tannen VLDB J. 2015

Framework references (III)

[GUKFC16]

"Algebraic structures for capturing the provenance of SPARQL queries" Geerts, Unger, Karvounarakis, Fundulaki, Christophides JACM 2016

[T16]

"About the provenance of truth" Tannen Simons Inst. Website 16 https://simons.berkeley.edu/talks/val-tannen-2016-12-09

[T17]

"Provenance analysis for FOL model checking" Tannen SIGLOG News 2017

[GT17a]

"The semiring framework for database provenance", Green, Tannen PODS 2017.

[GT17b]

"Semiring provenance for first-order model checking", Grädel, Tannen CoRR abs/1712.01980 (2017)

Other references

[IL84]

"Incomplete information in relational databases" Imieliński, Lipski JACM 1984

[FR97]

"A probabilistic relational algebra" Fuhr, Röllecke TOIS 1997

[Z97]

"Query evaluation in probabilistic relational databases" Zimányi DDS 1997

[CWW00]

"Tracing the lineage of view data in a warehousing environment" Cui, Widom, Wiener TODS 2000

[BKT01]

"Why and where: a characterization of data provenance" Buneman, Khanna, Tan

[BDHTW08]

"Databases with uncertainty and lineage" Benjelloun, Das Sarma, Halevy, Theobald, Widom VLDB J. 2008

[SORK11]

"Probabilistic databases" Suciu, Olteanu, Ré, Koch SLDM 2011

