

Database Systems

Lecture 9 – Cont. Machine Learning for Data Analytics

Dr. T. Akilan takilan@lakeheadu.ca

Welcome back

- ☐ Project Stage 2 Investigation
- ☐ Assignment 1

This Session

- Taking the missed cosine similarity
- Quick recap on Regression
 - Linear regression
 - o Goodness-of-Fit R²
- Classification
 - Logistic regression (recap)
 - Maximum likelihood estimation
- Evaluation metrics
 - o ROC
 - o AUC

Logistic Regression - Recap

- It uses sigmoid or logistic function to represent the occurrence of an event.
- E.g., input variables: $X = \{x_1, x_2, ..., x_p\}$ occurrence of an event: y
- Probability of the event, y:

$$p(y|X;\beta) = \sigma(z) = \frac{e^z}{1+e^z},$$

z - a linear function of the independent predictors of X.

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} \cong X \cdot \beta$$
.
 β_i 's - a set of parameters

- Advantage over linear regression:
 - $0 \le \sigma(z) \le 1$

- How do we estimate the best parameter β ?
 - \circ Consider an objective function, $J(\beta)$
 - Apply an optimizer (min or max) accordingly

Logistic Regression - Objective Function

model

- From linear regression what we know: $J(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left[h_{\beta}(x_i) y_i \right]^2$
- Change the model to sigmoid function: $J(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{e^z}{1 + e^z} y_i \right]^2$; $z = h_{\beta}(x_i)$

Logistic Regression: Maximum Likelihood Estimator

- The sigmoid classifier is fit through **learning** the best values for the parameters β by **maximizing** the **log** (joint) **conditional likelihood** probabilities of the two classes.
- Given training sample $\langle x_i | y_i \rangle$ and assume y can only take two values of 0 or 1, the log conditional likelihood is:

$$log(p_i) \leftarrow if y_i = 1$$
 and $log(1 - p_i) \leftarrow if y_i = 0$.

Note: $p_i = p(y = 1 | x_i; \beta)$, i.e., probability function of y=1 given x_i parameterized by β .

Then total log conditional likelihood (LCL):

$$LCL = \sum_{i:y_i=1} \log p_i + \sum_{i:y_i=0} \log (1-p_i)$$
 sum of the log conditional likelihood, by grouping together, the positive and negative training samples

Logistic Regression: MLE Cont.

Unifying the individual class likelihood (!):

$$l(\beta) = \sum_{i=1}^{n} y_i \cdot log(p(x_i)) + (1 - y_i) \cdot log(1 - p(x_i))$$

Note: it is equivalent to previous eq. since, if $y_i = 1$ (true), then $1 - y_i = 0$

• Now, let's substitute the expression for $p(y|x; \beta)$:

$$l(\beta) = \sum_{\substack{i=1\\n}}^{n} y_i \cdot log\left(\frac{1}{1 + e^{-\beta_i X_i}}\right) + (1 - y_i) \cdot log\left(1 - \frac{1}{1 + e^{-\beta_i X_i}}\right)$$
$$l(\beta) = \sum_{\substack{i=1\\n}}^{n} y_i \cdot log\left(\frac{1}{1 + e^{-\beta_i X_i}}\right) + (1 - y_i) \cdot log\left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}}\right)$$

Why Logistic Regression: MLE Cont.

•
$$l(\beta) = \sum_{i=1}^{n} y_i \cdot log\left(\frac{1}{1 + e^{-\beta_i X_i}}\right) + (1 - y_i) \cdot log\left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}}\right) \leftarrow \text{from previous slide}$$

• Now, take y_i common term:

$$l(\beta) = \sum_{i=1}^{n} y_i \left[log \left(\frac{1}{1 + e^{-\beta_i X_i}} \right) - log \left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}} \right) \right] + log \left(\frac{e^{-\beta_i X_i}}{1 + e^{-\beta_i X_i}} \right)$$

• Further simplify:

$$l(\beta) = \sum_{i=1}^{n} y_{i} \left[log(e^{\beta_{i}X_{i}}) \right] + log\left(\frac{e^{-\beta_{i}X_{i}}}{1 + e^{-\beta_{i}X_{i}}} \right) = \sum_{i=1}^{n} y_{i}\beta X_{i} + log\left(\frac{1}{1 + e^{\beta_{i}X_{i}}} \right)$$

$$l(\beta) = \sum_{i=1}^{n} y_i \beta X_i - log(1 + e^{\beta_i X_i})$$

• Optimal β'_{j} s: Find via maximizing the objective function $\rightarrow \max_{\beta} l(\beta)$

Logistic Regression: Maximum Likelihood Estimator Cont.

•
$$l(\beta) = \sum_{i=1}^{n} y_i \beta X_i - log(1 + e^{\beta_i X_i})$$

- Now, we choose values of β that make this equation as large as possible: $\beta = \arg \max l(\beta)$
- Maximizing involves derivatives over multiple iterations.
- E.g., stochastic gradient ascent:

$$\beta_j := \beta_j + \lambda \frac{\partial}{\partial \beta_j} LCL \qquad l(\beta)$$

Logistic Regression: Diagnostics

What we know:

- \circ Sigmoid classifier is to assign class labels based on the predicted probability, $\sigma(z)$.
- \circ E.g., a customer can be classified with the label called "Churn" if $\sigma(z) \geq \tau$ (a high probability).
- \circ Otherwise, i.e., $\sigma(z) < \tau$ a "Remain" label is assigned to the customer.
- Of Generally, $\tau = 0.5$ is used as the **default threshold** to distinguish between any two class labels.

• Application specific τ :

- o to avoid false positives (e.g., predict *Churn* when actually the customer will *Remain*)
- o to avoid false negatives (e.g., predict *Remain* when the customer will actually *Churn*).

• How do we set an application specific τ :

- Using ROC graph, we can find it.
- A ROC graph is a 2D plot that summarizes a classifier performance over various threshold values with false positive rate on the x axis against true positive rate on the y axis

Logistic Regression: Diagnostics - Receiver Operating Characteristic (ROC) Curve

 Let, binary class labels: C and !C, where "!C" denotes "not C"

		Ŷ		
		С	!C	
Y	С	TP	FN	= # of actual Positives
	!C	(FP	TN	= # of actual Negatives

• True Positive Rate $(TPR) = \frac{\text{# of true positives}}{\text{# of actual positives}}$

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

• False Positive Rate $(FPR) = \frac{\text{# of false positives}}{\text{# of actual negatives}}$

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR$$

Logistic Regression: Diagnostics – ROC Graph Construction - Example

• Scores were generated by $\sigma(z)$ on a testing set consist of 100 positives (p) and 100 negatives (n) samples.

- True class: {p, n}
- Prediction: {Y, N}
- Pick a generated score as threshold and compute:
 - Confusion matrix

$$\circ \mathsf{FPR} = \frac{\mathsf{FP}}{\mathsf{N}}$$

$$\circ \mathsf{TPR} = \frac{\mathsf{TP}}{\mathsf{P}}$$

Repeat

Logistic Regression: Diagnostics – Setting the Threshold

- Default setting: $\tau = 0.5$
 - \circ TPR = 0.56 and a FPR = 0.08.
 - √ 56% of customers who will churn are correctly classified with 'Churn'
 - ✓ 8% of the customers who will remain as customers are improperly labeled as 'Churn'.
- Is it good enough?
 - O What is the purpose?
 - Do you want to take a proactive step to stop churning customers?

- \circ Need to correctly classify more churning customers, then the τ should be lowered.
- \circ E.g., application-specific setting: $\tau = 0.15$
 - √ TPR = 0.91and FPR = 0.29
 - ✓ 91% of the customers who will churn are correctly identified,
 - ✓ Cost misclassifying 29% of the customers who will remain are classified as 'Churn'

Logistic Regression: Diagnostics – Compute AUC on ROC Graph

- AUC a useful metric that computes the area under the ROC graph to pick the best model for the same classification problem (E.g., logistic regression vs random forest)
- A preferred classifier:

E.g., Classifier -

- to have a low FPR and a high TPR.
- o Going from **left to right** on the **FPR** axis, an appropriate classifier should have the **TPR** rapidly approach values close to 1, with only a small change in FPR (δ_{fpr}) .
- The closer the curve tracks along the vertical axis and approaches the upper-left hand of the plot, i.e., near the point (0,1), the better the model/classifier.

Logistic Regression: AUC for Classifier Comparison

- **AUC is useful when a single number** is needed to summarize performance of the classifiers.
- **Skewed data:** using accuracy as a single performance metric is a poor **choice** and misleading
- E.g., a dataset that has 93% negative and 7% positive samples.

Model	Accuracy (%)	AUC
Classification Tree	91.8 ± 0.0	0.614 ± 0.014
Logistic Regression	93.0 ± 0.1	0.574 ± 0.023
k-Nearest Neighbor	93.0 ± 0.0	0.537 ± 0.015
Naive Bayes	76.5 ± 0.6	0.632 ± 0.019

Summary

Linear regression

 Nature: The outcome variable is a continuous unbounded value:

$$-\infty \leq h_{\beta}(x_i) \leq +\infty$$

- Application: Predicting real value of a response variable. E.g., modeling the relationship between age and education to income.
- **Objective function:** Ordinary least square (OLS)
- Optimizer: Gradient Decent

Logistic regression

 Nature: The outcome variable is continuous bounded value:

$$0 \le \sigma(z) \le 1$$

- Application: Predict the likelihood of an outcome based on the input variables. E.g., financial status identification, like wealthy or **poor**, based on a person's income.
- Objective function: log conditional likelihood (LCL)
- Optimizer: maximum likelihood estimator (MLE), like Gradient Ascent.

Assignment 1

• Let's move on to assignment 1 discussion

References

[1] Data Science for Business, by Foster Provost and Tom Fawcett, First Edition, ISBN: 978-1-449-36132-7

[2] Jiawei Han, Micheline Kamber, & Jian Pei, Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann, ISBN: 978-0-12-381479-1