DLBの幻視

「隣の庭木に力士が登っているんです」

親切な隣人が木を切り倒してくれた後, 幻の力士は消失

数力月後...

「自宅の庭の納屋の軒に死んだ犬が沢山ぶら下がってみえるの...」

三十分前の回診で≤教授が

『あなたが見ているのは幻覚です』などと言っていたが

幻視の定義

✓ Esquirol (1817) 以来, 幻覚と錯覚は区別される

幻覚:「対象なき知覚」 → 幻視:何もないところに何かを見る

錯覚:知覚の変容,歪み →錯視:実在の対象を異なるものとして見る

✓ Cutting (1997) による幻覚の定義

対応する事象なしに物/事が現前すること (= 偽対象の現前)

パレイドリア 幻視のような錯視のような現象

pareidolia = para (誤った) + eidolon/eidos (像)

幻視

パレイドリア

(風景)パレイドリア・テスト

Uchiyama M, et al. Brain 2012

(風景)パレイドリア・テスト

ベンチ: Gist 木, 影: Detail/background

DLBの幻視:何がみえるか?病識は?

Symptom	N
Hallucinations and related symptoms	. 78
Hallucination of people	65
Feeling of presence	23
Hallucination of animals/insects	29
Hallucination of objects	18
Elementary hallucination	8
Metamorphopsia	2
Auditory hallucination	8
Cenesthopathy	2

	(n = 39)
People	37
Animals	18
Objects	5
Children	4
Insects	2
Fire	1
Birds	1

Psychopathological Features	
of Visual Hallucinations	DLB (n = 38)
Complete forms	33 (87%)
Moving	29 (76%)
Insight	
Partial	14 (37%)
None	24 (63%)
Heard to speak or make a	19 (51%)
noise	
Detailed	33 (87%)
Normal size	32 (84%)
Lilliputian	4 (11%)
Enlarged	1 (3%)
Small and normal images	1 (3%)
concurrently	
Diurnal pattern	
Mainly evening	(21%)
Mainly night	(11%)
No diurnal pattern	(66%)

(ノイズ)パレイドリア・テスト

ROC(34 DLB vs 34 AD)感度 71%; 特異度 80%AUCパレイドリア 0.80; NPI幻覚 0.79; 変動 0.75施行時間約5分幻視との相関 r=0.6

(ノイズ)パレイドリア・テスト 信号検出理論解析

Yokoi K, et al. Neuropsychologia 2014

Discriminability (d')

DLB, 3.1 \pm 0.3 AD, 4.0 \pm 0.2 Ctrl, 4.8 \pm 0.1

Criterion/bias (C)

DLB, -0.2 \pm 0.1 AD, 0.3 \pm 0.1 Ctrl, 0.1 \pm 0.1

幻視/パレイドリアの病識(現実感)

横井香代子ほか. 神経心理学2015

なんであんなところにずっ とお婆さんがいるのかしら. 寒いのに…

(ドネペジル服用後)

あそこに見えるのは私の眼の錯覚です.

私の勘違いでした.

Contents lists available at ScienceDirect

Parkinsonism and Related Disorders

journal homepage: www.elsevier.com/locate/parkreldis

Defining visual illusions in Parkinson's disease: Kinetopsia and object misidentification illusions

Yoshiyuki Nishio^{a,*}, Kayoko Yokoi^{a,b}, Kazumi Hirayama^{a,b}, Toshiyuki Ishioka^{a,c}, Yoshiyuki Hosokai^{a,d}, Miyeong Gang^a, Makoto Uchiyama^{a,e}, Toru Baba^a, Kyoko Suzuki^a, Atsushi Takeda^f, Etsuro Mori^a

93名のPD患者

Kinetopsia

「糸〈ずが動いて見える」 「電気の傘が動いて見える」 「壁の模様が動いて見える」

Object misidentification

「小さなゴミが虫にみえる」 「物陰が人に見える」 「天井に水のしみが見える」

Nishio Y, et al. Parkinsonism Relat Disord 2018.

Alice in Wonderland syndrome

A systematic review

Jan Dirk Blom, MD, PhD

No. of times (%) described in the literature ($N = 169$)
9 (5.3)
34 (20.1)
15 (8.9)
-
2 (1.2)
76 (45.0)
99 (58.6)
7 (4.1)
3 (1.8)
11 (6.5)
_
1 (0.6)
3 (1.8)

Condition	No. of case reports (%) in total group (N = 166)	
Infectious diseases	38 (22.9)	
Coxsackie B1 virus encephalitis	2 (1.2)	
Cytomegalovirus	1 (0.6)	
Epstein-Barr virus encephalitis (mononucleosis infectiosa)	26 (15.7)	
Influenza A virus encephalitis	3 (1.8)	
Lyme neuroborreliosis	1 (0.6)	
Paroxysmal neurologic disorders	51 (30.7)	
Epilepsy	5 (3.0)	
Headache with neurologic deficits and CSF lymphocytosis	1 (0.6)	
Migraine	45 (27.1)	
Psychiatric disorders	6 (3.6)	
Depressive disorder	2 (1.2)	
Derealization/depersonalization disorder	1 (0.6)	
Misidentification syndrome	1 (0.6)	
Schizophrenia	1 (0.6)	
Schizoaffective disorder	1 (0.6)	
Medication	10 (6.0)	
5-HT ₂ antagonist	1 (0.6)	
Dextromethorphan	1 (0.6)	

偏頭痛の視覚症状と 後方皮質機能の状態変化

Dahlem MA & Chronicle EP. Prog Neurobiol 2004

アセチルコリンの異常とパレイドリアの関係

アセチルコリンと睡眠・覚醒

Neurotransmitter	Wakefulness	NREM sleep	REM sleep
Acetylcholine	$\uparrow \uparrow$	_	$\uparrow \uparrow$
Monoamines	$\uparrow \uparrow$	↑	_
Orexin/Hypocretin	$\uparrow \uparrow$	_	_
MCH	_	_	$\uparrow \uparrow$
VLPO/MNPO	_	$\uparrow \uparrow$	$\uparrow \uparrow$

PMP-PET (AChE)

Irmak SO & de Lecea L. Sleep 2014 ; Kotagal V, et al. Ann Neurol 2012

アセチルコリンの解剖と生理

Thiele A. Ann Rev Neurosci 2013

Channel ^a	Receptor-channel effec	ct ^b	Cellular effects ^c	References	
K+ channels	•		•	•	
K _M	M1-type → closure		Depolarization, reduction of spike frequency adaptation, increased excitability, improved integration properties of EPSP and IPSP, increased spontaneous activity	Brown 2010, McCormick & Prince 1986, McCormick & Williamson 1989, Womble & Moises 1992	
K _{leak}	$M1$ -type \rightarrow closure		Increased input resistance of cells; inputs to distal parts of the dendritic tree are more likely to impact on integration at the axon hillock	Womble & Moises 1992	
K _{sAHP}	M1-type → closure		Reduced afterhyperpolarization, reduced spike frequency adaptation	Ghamari-Langroudi & Bourque 2004, McCormick et al. 1993	
KIR2	M1-type → closure		Depolarization (reduced hyperpolarization)	Carr & Surmeier 2007	
SK _{Ca}	M1-type → opening		Transient hyperpolarization, possibly increased response reliability	Gulledge et al. 2007, Gulledge & Stuart 2005	
SK _{Ca}	$M1$ -type \rightarrow reduced sensitivity of SK_{Ca} to Ca^{2+} , reduced likelihood of opening		Reduced transient hyperpolarization, increased Ca ²⁺ transients through NMDA receptors and increased synaptic potentials and facilitation of long-term potentiation	Buchanan et al. 2010, Giessel & Sabatini 2010	
GIRK/KIR	M2-type → opening		Neurons remain at relatively hyperpolarized level	Brown 2010	
Ca ²⁺ channels	•		•	•	
L-type	M2-type → inhibition/closus	re	Reduced ability of Ca ²⁺ to trigger intracellular processes	Biscoe & Straughan 1966	
P/Q, and N- type	e M2-type → inhibition/closure M1-type → inhibition/closure		Reduced transmitter release, reduced action potential prolongation, and reduced afterhyperpolarization	Allen 1999, Allen & Brown 1993, Biscoe & Straughan 1966, Hasselmo & Bower 1992, Tedford & Zampon 2006	
T-type $M1$ -type \rightarrow closure $M3/M5 \rightarrow$ activation			Altered rhythmic rebound burst firing and spindle waves associated with slow-wave sleep in thalamic reticular and relay neurons Altered dendritic integration and Ca ²⁺ spiking in hippocampal pyramidal cells	Christie et al. 1995, Navaroli et al. 2012	
Nonspecific cation	n channels				
TRPC channel $(Ca^{2+} dependent)$ M1-type \rightarrow opening		Slow afterdepolarization	Haj-Dahmane & Andrade 1998, Yan et al. 2009		
Ca ²⁺ -independent nonspecific cation	$M1$ -type \rightarrow opening		Slow afterdepolarization	Egorov et al. 2003	
Channel ^a	Receptor-channel effect ^b		Cellular effects ^c	References	
Na+ channels					
Wa+ channel M2-type → reduced and slowed inactivation Persists PKC pathways (possibly (Carri			rent Na ⁺ currents. Important role in aronized activity in the striatum illo-Reid et al. 2009). Reduced Na ⁺ nts by PKC pathway	Chen et al. 2005, Ma et al. 1997	

アセチルコリンと新皮質の興奮性・細胞間相関性

Constantinople CM & Bruno RM, Neuron 2011; Minces V, et al. PNAS 2017

アセチルコリンと新皮質の興奮性・細胞間相関性

アセチルコリンによる新皮質の状態コントロール

レビー小体型認知症 パーキンソン病

局在関連性でんかん 直接電気刺激

西尾慶之. Brain Nerve 2018

幻覚体験における現実感

実体意識性 sense/feeling of presence (Jaspers, 1913)「誰かが自分の近く/ 背後にいる」とありありと感じる体験 (カール・ヤスパース 『精神病理学総論』)

❖ 現実感 sense/feeling of veridicality (Hy, 1973)
幻覚の主たる病理は知覚体験そのものあるのではなく、
偽対象の現実感にある。

(アンリ・エー『幻覚』)

動き/空間の錯覚から偽対象の現前へ

	キネトプシア	通過幻覚	実体意識性	パレイドリア	(人物の) 幻視
偽対象	なし	あり	あり	あり	あり
偽対象の 現実感	なし				

Capgras妄想と feeling of (un)familiarity

私の眼の前に 女性がいる

彼女の 物理的特徴は ヨーコとそれと 全〈同じだ 彼女には ヨーコの持つ 親近感と同じもの を感じる

彼女は 私の妻の ヨーコである

人物の幻視と実体意識性 Feeling of presence

✓ 100名中23名のDLB患者 に実体意識性あり

	Factor 1	Factor 2	Factor 3	Factor 4
人物の幻視	0.05	-0.07	0.27	0.72
動物・虫の幻視	-0.16	-0.00	0.66	-0.09
物の幻視	-0.02	-0.06	0.70	0.15
単純幻視	-0.01	-0.09	0.50	-0.52
実体意識性	-0.06	0.05	-0.05	0.59
人物の誤認	0.73	-0.01	-0.14	0.08
場所の誤認	0.52	0.24	0.08	0.09
Capgras症候群	0.61	-0.23	-0.14	-0.21
幻の同居人	0.63	0.32	-0.16	-0.25

初期統合失調症

Heightened awareness/distractibility 気付き亢進 Aberrant motivational salience

- ✓ 「些細で重要でない物音に注意が向くようになりました」
- ✓ 「風景や音が以前とは異なった鋭敏さを帯びるようになりました」
- ✓ 「感覚が生き生きとし、物事が明瞭に感じられるようになりました」
- ✓「頭や手など,自分の肉体の存在を意識してしまいます」

幻視・パレイドリアと実態意識性 Aberrant feeling of presence

幻覚の主たる病理は知覚体験そのものあるのではなく, 偽対象の実在性/現実性の感覚にある. (アンリ・エー『幻覚!』)

Aberrant feeling of presence

EXPLANATION? REASONING?

陰性気分とパレイドリア

Watanabe H, et al. PLoS One 2018

Predictive coding model of psychosis?

The generative model of the world is slowly built through **statistical learning process** in the **neocortex**.

Teaching signals from the subcortical structures