Homework 5

Due on Monday 13th before midnight - Recitation Tuesday 4th at 9:00am

1. Show that the second-price auction is an application of the VCG mechanism.

Solution:

Second-price auction with n players:

- Let X be the set of possible outcomes. There are *n* + 1 outcomes, i.e., sell the item to one of the *n* bidders or not sell the item.
- Let b_i be agent i's bid.
- Agent i wins the auction if $b_i > \max_{i \neq 1} b_i$ and pays $\max_{i \neq 1} b_i$

If in outcome $x \in X$ agent i wins the auction, her valuation is $v_i(x) = b_i$ and if in outcome $x' \in X$ agent i does not win the auction, her valuation is $v_i(x) = 0$

In the VCG mechanism, the outcome is obtained by maximizing the sum of valuations, i.e.,

$$x^* = \arg\max_{x \in X} \sum_{i=1}^n v_i(x),$$

that is, the outcome is that in which the highest bidder wins the auction.

Moreover, if agent i wins, she pays

$$t_i = \underbrace{\sum_{j \neq i} v_j(x_{-i}^*)}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{did} \\ \text{not participate} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{others if } i \ \text{wins} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{others if } i \ \text{wins} \end{subarray}}} = \underbrace{\max_{j \neq i} b_j - 0}_{\begin{subarray}{c} \text{second highest bid} \\ \text{second highest bid} \end{subarray}}_{\begin{subarray}{c} \text{total value of} \\ \text{second highest bid} \end{subarray}}_{\begin{subarray}{c} \text{second highest bid} \end{subarray}}_{\begin{subarray}{c} \text{second hig$$

and if agent i does not win, she pays

$$t_i = \sum_{j\neq i} \nu_j(x_{-i}^*) - \sum_{j\neq i} \nu_j(x^*) = 0$$

Thus, the second-price auction is an application of the VCG mechanism.

 ${f 2.}$ Suppose a bridge costs 13 to build ${f 1}$ and that the valuation of the bridge by the four individuals is given by

- (a) Apply the pivot mechanism to decide whether or not the bridge is built, and the taxes (negative or positive) levied on the individuals; and the surplus (if any) collected by the government.
- (b) Now suppose the bridge cost is 11. Answer the questions in part (a) again.

Solution

(a) If the bridge costs 13, an equal split would mean that each individual would pay 13/4.

The bridge will not be built since the sum of net valuation is -1.

(b) If the bridge costs 11, an equal split would mean that each individual would pay 11/4.

Individual
 1
 2
 3
 4

 Net valuation

$$\frac{9}{4}$$
 $\frac{5}{4}$
 $-\frac{7}{4}$
 $-\frac{3}{4}$

 Valuations\{i\}
 $-\frac{5}{4}$
 $-\frac{1}{4}$
 $\frac{11}{4}$
 $\frac{7}{4}$

 Pivot
 YES
 YES
 NO
 NO

 Taxes
 $\frac{5}{4}$
 $\frac{1}{4}$
 0
 0

The bridge is built since the sum of net valuation is 1 and the surplus of the government is 6/4.

¹1 unit of money here represents \$10,000

3. Suppose there are equal portions of low-ability (t=1) and high-ability (t=2) workers. The productivity of a worker of type t=1,2 is given by $\eta_t(e)=2te$, where e is the education level. The utility of wage w and education e to a student of type t is $u_t(w,e)=4\sqrt{w}-\frac{2e}{t}$. Find the Rothschild-Stiglitz equilibrium.

Solution

Low ability workers choose the optimal contract along their productivity line ($w = 2e_L$)

$$\max_{e_{\rm L}} \quad 4\sqrt{2e_{\rm L}} - 2e_{\rm L}$$

so the first order condition is

$$4(2e_{\rm L})^{-\frac{1}{2}} - 2 = 0 \Rightarrow e_{\rm L}^* = 2 \Rightarrow w_{\rm L}^* = 4.$$

Let us now find the minimum education level for the high ability required for a separating equilibrium to exist, i.e., the intersection between the indifference curve of the low ability workers that maximize their utility with the productivity line of the high ability workers.

$$u_{\rm L}(w_{\rm L}^*,e_{\rm L}^*) = 4 \quad \& \quad w = 4e \quad \Rightarrow \quad 4\sqrt{e} - e - 2 = 0 \quad \Rightarrow \quad \underline{\rm e} = \begin{cases} 0.343 \, < \, e_{\rm L}^* & \text{$\not $} \\ 11.65 & \text{$\checkmark$} \end{cases}$$

The high ability workers choose the optimal contract along their productivity line

$$\max_{e_{\rm H}} \quad 4\sqrt{4e_{\rm H}} - e_{\rm H}$$

so the first order condition is

$$8(4e_{\rm L})^{-\frac{1}{2}} - 1 = 0 \Rightarrow e_{\rm H}^* = 16 > \underline{e} \Rightarrow w_{\rm H}^* = 64.$$

Thus, we have find a Rothschild-Stiglitz equilibrium where low ability workers choose the contract $(e_L^*=2,w_L^*=4)$ and the high ability workers choose the contract $(e_H^*=16,w_H^*=64)$.

Draw the grap!!