2007.12 IC Compiler Hierarchical Flow Update

Shoukyou Wang

Agenda

- ➢ICC Hierarchical Flow Overview
- Design Planning
- Block Implementation
- Top Level Implementation
- Lab

ICC Hierarchical Methodology

ICC Hierarchical Methodology

Hierarchical Design Database Management

Agenda

- ICC Hierarchical Flow Overview
- Design Planning
- Block Implementation
- Top Level Implementation
- Lab


```
Read Netlist / Design Constraints
Initialize Floorplan
Virtual Flat Placement
Plan Group Shaping
VF Placement / Refinement
Power Network Synthesis /Analysis
Prototype Route
```

```
create mw lib
open mw lib
read verilog to cel $netlist file
set tlu plus files
read sdc $sdc file
read io constraints io.tdf
initialize_floorplan
set fp_placement_strategy
report fp placement strategy
create fp placement
create plan group
shape fp blocks
Create_fp_plan_group padding
create fp placement
connect pg nets
set_fp_rail_constraints
#set_fp_block_ring_constraints
#set fp rail region constraints
synthesize fp rail
Commit fp rail
#preroute standard cells
set parameter-name readPlanGroup-value 1
route_fp_proto
```



```
report timing
set dont touch placement (hard macro list)
optimize fp timing
set fp pin constraints-allow feedthroughs [off|on] ...
report fp pin constraints
set parameter-name readPlanGroup-value 1
route global
analyze_fp_routing -finalize
extract rc
report timing
check fp timing environment
allocate fp budgets
commit fp plan groups
check fp pin assignment
check fp pin alignment
place_fp_pins
save mw cel-hierarchy
split mw lib
```


- Use read_verilog_to_cel to read verilog netlist
 - Use uniquify_fp_mw_cel for non-uniquified netlist
- optimize_fp_timing does virtual route based optimization
- Use plan group aware routing to improve top level congestion analysis set_parameter -name readPlanGroup -value 1
- Pin assignment (pin cutting) decides pin location based on intersection of global routes and plan group boundaries (pin cutting)
 - Incremental pin assignment allowed after commit hierarchy
- Do not proceed to pin assignment before solving congestion issues
 - Routing based pin assignment can take long runtime and generate poor result on congested designs
- Use save_mw_cel -hierarchical to save all the open cells

Feedthrough Generation

- Additional steps needed if feedthrough is involved in ICC hierarchical flow
 - Check feedthrough candidates before pin assignment
 - Use analyze_fp_routing
 - Buffer feedthrough nets after pin cutting

```
set fpopt_env_feedthru_buf true optimize_fp_timing
```

- Check design for feedthrough connections before ICC implementation
 - Use check_design and search for "LINT-29" "LINT-31" warnings
- Control optimization commands to insert buffer on feedthrough nets
 - set_fix_multiple_port_nets –all

Agenda

- ICC Hierarchical Flow Overview
- Design Planning
- Block Implementation
- Top Level Implementation
- Lab

ICC Block Implementation


```
open_mw_cel
set_tlu_plus_file
check design
set fix multiple port nets-all
remove_sdc
read_sdc
remove_propagated_clock [all_clocks]
set_dont_touch_placement { hard_macro_list }
set_pnet_options
set ideal network [all fanout-flat-clock tree]
place_opt
clock_opt-only_cts-no_clock_route
remove_ideal_network [all_fanout -flat -clock_tree]
set fix hold [all clocks]
clock opt-only psyn-no clock route
route_group -all_clock_nets
set si options
set_route_options
route opt
save mw cel
create_ilm -keep_parasitic -keep_full_clock_tree
create_macro_fram
```


ICC Block Implementation

ICC Block Implementation

- Fix hold time violations after CTS
- Use set_si_option to turn on SI options before route_opt
- Use create_ilm -include_xtalk -keep_full_clock_tree
 to store SI information and local clock tree in ILM
- create_ilm directly saves ILM, no need to use save_mw_cel (since 2007.03)
- Block level flow follows ICC-RM

Agenda

- ICC Hierarchical Flow Overview
- Design Planning
- Block Implementation
- ➤Top Level Implementation
- Lab

ICC Top Level Implementation


```
set_mw_lib_reference {list block_cel_libs ref_libs}
open mw cel
change macro view
remove sdc
read sdc top.sdc
#propagate constraints
remove_propagated_clock [all_clocks]
set_dont_touch_placement {hard_macro_list}
set pnet options
set ideal network [all fanout-flat-clock tree]
place opt
set clock tree options-top mode true
clock_opt-only_cts-no_clock_route
remove_ideal_network [all_fanout -flat -clock_tree]
set fix hold [all clocks]
clock opt-only psyn-no clock route
route group-all clock nets
set si options
set_route_options
route opt-xtalk reduction
save_mw_cel
```


ICC Top Level Implementation

ICC Top Level Implementation

- Use ILM/FRAM to represent softmacro in top level
- Top level design loads ILM automatically if ILM is in the reference libraries (since 2007.03)
- No need to do propagate_ilm (since 2007.03)
- Additional SDC constraints can be merged into chip level SDC by using propapate_constraints
- Use "top" mode CTS

Clock Handling

- Clock defined on ILM ports may cause issues in downstream flow steps (Until 2007.03-SP3)
 - Define clock on leaf cell pins
- Fail to propagate up same clock constraints from different ILMs (Until 2007.03-SP3)
 - Create and apply full chip SDC
- CTS does not work on clock nets coming out of ILM (don't touch attribute)
 - Adjust clock tree structure to avoid clock sub tree driven by ILM
 - Disable feedthrough generation for clock pin assignment
- CTS does not support clocks defined inside ILM
 - Do not include PLL module in soft macro

2007.12 Hierarchical Flow Projects

CTS

- A-2007.12-cts-005 Support ILM clock definition and CTS exceptions
 Production
- A-2007.12-cts-007 Hierarchical Clock Planning Production
- A-2007.12-cts-024 Mark Clock Tree (Phase I) Production

ILM

- A-2007.12-hierarchy-001 Feed-thru support for ILM Production
- A-2007.12-hierarchy-002 Support Nested ILM Production
- A-2007.12-hierarchy-003 Support ILM for non place and route blocks Beta
- A-2007.12-hierarchy-005 Compact ILM Production

Agenda

- ICC Hierarchical Flow Overview
- Design Planning
- Block Implementation
- Top Level Implementation
- **≻**Lab

Lab

- Testcase: ORCA
 - 54k Inst
 - 41 Hard Macros
 - 3 Soft Macros
 - PCI_TOP
 - RISC_CORE
 - SDRAM_TOP
 - 6 routing layers

Lab Flow

- Hier flow automation based on ICC-RM/ICC-DP-RM
 - Chip Level Design Planning
 - ICC-DP-RM plus Hierarchical DP features
 - Block Implementation
 - ICC-RM plus ILM/FRAM generation
 - Top Level Impelmentation
 - ICC-RM with ILM/FRAM setting
- Data
 - /remote/cae791/hier_flow_lab/ICC_Hier_Lab_2007.03_SP2.tar

Lab Flow

- Phase 1: ICC DP at Top level
 - cd phase_1
 - make dp
- Phase 2: ICC Block Implementation
 - cd phase_2
 - cd PCI_TOP/RISC_CORE/SDRAM_TOP
 - make ic
- Phase 3: ICC Top Level Implementation
 - cd phase_3
 - make ic

SYNOPSYS®

Predictable Success

