Description of the cross-correlation functions in Fig. 5C

Zhengyang Liu (Dated: July 1, 2021)

The 3 cross-correlation functions in Fig. 5C in the main text are described below.

FIG. 1. Figure 5C in main text.

 C_1 is the cross-correlation function between local density fluctuation δN and kinetic energy E. C_1 shown in Fig. 5C is an average over 1000 single frame correlation C'_1 , and C'_1 is defined as

$$C_1' = \frac{\langle (\delta N - \overline{\delta N})(E - \overline{E}) \rangle}{\sigma_{\delta N} \sigma_E} \tag{1}$$

 C_2 is the cross-correlation function between local density fluctuation δN and divergence of bacterial flux $\nabla \cdot (n\boldsymbol{v})$. C_3 is the cross-correlation function between local density N and local velocity (magnitude) v. C_2' and C_3' are single frame correlations similar to C_1' , and are defined as

$$C_2' = \frac{\langle (\delta N - \overline{\delta N})(\nabla \cdot (n\boldsymbol{v}) - \overline{\nabla \cdot (n\boldsymbol{v})}) \rangle}{\sigma_{\delta N} \sigma_{\nabla \cdot (n\boldsymbol{v})}}$$
(2)

$$C_3' = \frac{\langle (N - \overline{N})(v - \overline{v}) \rangle}{\sigma_N \sigma_v} \tag{3}$$

 \overline{A} indicates the mean of variable A, σ_A indicates the standard deviation of A, and $\langle A \rangle$ denotes the average of A over all the positions.