SCALABLE AND FLEXIBLE PERSONALIZED POLLING PLATFORM

ΑΛΕΞΑΝΔΡΟΣ ΦΩΤΙΟΣ ΝΤΟΓΡΑΜΑΤΖΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΟΥΣΙΑΣΗΣ

- Βασικές Λειτουργίες & Πολιτική Λειτουργίας ενός συνηθισμένου Polling App
- Παρουσίαση μεθόδων βελτιστοποίησης λειτουργιών του polling app μας
- Σελίδες Πλατφόρμας
- Τεχνολογίες Λογισμικού
- Βάση Δεδομένων Εφαρμογής
- Αποτελέσματα Πειραμάτων & Συμπεράσματα
- Demo
- Προτάσεις Βελτίωσης

TI EINAI ENA POLLING APP;

- Δημιουργία δημοσκοπήσεων
- Απάντηση στις ερωτήσεις των δημοσκοπήσεων.
- Προβολή αποτελεσμάτων δημοσκοπήσεων

ΠΟΛΙΤΙΚΗ POLLING APP

- Βασικά στοιχεία της:
 - > Ο δημιουργός της δημοσκόπησης ορίζει την ημερομηνία ολοκλήρωσής της.
 - Οι χρήστες πρέπει να απαντήσουν σε όλες τις ερωτήσεις της.
- Δεν είναι βέλτιστη:
 - > Υπαρξη ερωτήσεων με ξεκάθαρο αποτέλεσμα πριν την ολοκλήρωση της δημοσκόπησης
 - > Χρησιμοποίηση πολλών αποθηκευτικών χώρων
 - > Καθυστέρηση ολοκλήρωσης κάποιων δημοσκοπήσεων

- Διόρθωση ατελειών υπάρχουσας πολιτικής:
 - A. Early Stopping με υπολογισμό διαστημάτων εμπιστοσύνης απαντήσεων μιας ερώτησης (Μέθοδος Α)
 - B. A/B testing με Group Sequential Design (Μέθοδος Β)
- Έλεγχος αποτελεσμάτων δημοσκοπήσεων και αφαίρεση ερωτήσεων με ξεκάθαρο αποτέλεσμα από τα ερωτηματολόγια τους.

EARLY STOPPING

- Η δυνατότητα προώρου τερματισμού ενός πειράματος, όταν ισχύουν κάποιες συγκεκριμένες στατιστικές συνθήκες.
- Χρησιμοποιείται σε πάρα πολλές πειραματικές διαδικασίες όλων των επιστημονικών πεδίων
- Χρησιμοποιείται γιατί:
 - 1. Σε πολλές έρευνες, είναι επιθυμητό να βρεθεί το βέλτιστο αποτέλεσμα στο μικρότερο δυνατό χρόνο
 - 2. Μπορεί να περιορίσει μεγάλο κόστος συλλογής δειγμάτων.

A.EARLY STOPPING ΜΕ ΥΠΟΛΟΓΙΣΜΟ Δ.Ε

- 1. Υπολογισμός Δ.Ε όλων των απαντήσεων μιας ερώτησης με επίπεδο εμπιστοσύνης 95%
- 2. Σε περίπτωση που τα διαστήματα αυτά δεν κάνουν overlap, έχει διαμορφωθεί ένα ξεκάθαρο αποτέλεσμα για αυτή την ερώτηση και μπορεί να αφαιρεθεί από το ερωτηματολόγιο της δημοσκόπησης της.

ΠΑΡΑΔΕΙΓΜΑ ΧΡΗΣΗΣ ΤΗΣ ΜΕΘΟΔΟΥ

A/B TESTING ME GROUP SEQUENTIAL DESIGN

- Μέθοδος σύγκρισης δύο διαφορετικών μορφών ενός πειράματος ώστε να αποφανθούμε ποιο από τα δύο δίνει καλύτερα αποτελέσματα.
- Έχει τα παρακάτω πλεονεκτήματα:
 - ✓ Απλοποιεί τις διαδικασίες τροποποίησης πειραμάτων και με αυτό τον τρόπο βοηθάει τους ερευνητές να φτάσουν σε ένα επιθυμητό αποτέλεσμα πιο εύκολα.
 - ✓ Παράλληλη εκτέλεση πειραμάτων με χρήση διαφορετικών εκδόσεων του αρχικού πειράματος.

ΛΕΙΤΟΥΡΓΙΑ A/B TESTING

- 1. Συλλογή Δεδομένων
- 2. Προσδιορισμός Στόχων
- 3. Καταγραφή Υποθέσεων
- 4. Δημιουργία Παραλλαγών
- 5. Εκτέλεση Πειράματος
- 6. Ανάλυση Δεδομένων

B. GROUP SEQUENTIAL DESIGN (ΑΚΟΛΟΥΘΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΟΜΑΔΑΣ)

- Η προσέγγιση αυτή χρησιμοποιείται κυρίως σε κλινικές δοκιμές.
- Στηρίζεται στην υπόθεση ότι ο στατιστικός έλεγχος που γίνεται είναι κανονικά κατανεμημένος.
- Συνιστά μια μορφή ελέγχου που τσεκάρει σε κάθε βήμα αν το συνολικό ποσοστό των false positive στοιχείων είναι κάτω από ένα κατώφλι α (επίπεδο σημαντικότητας).

GROUP SEQUENTIAL DESIGN: ΔΟΚΙΜΗ ΦΑΡΜΑΚΟΥ

- 1 νέο φάρμακο πρόκειται να δοκιμαστείς σε 1700 ασθενείς για 30 ημέρες
- Μελέτη επίδρασης φαρμάκων:{+,-}
- Μέγιστο ποσοστό λανθασμένης θετικής επίδρασης $a = \sum_{i=1}^{30} a_i = 0.05$
- Έλεγχος Αποτελεσμάτων R=2 φορές
- Υπολογίζονται για κάθε έλεγχο το p_+, n_+, p_-, n_- και βρίσκουμε το $z_{score} = \frac{|p_+ p_-|}{\sqrt{\frac{p_+(1-p_+)}{n_+} + \frac{p_-(1-p_-)}{n_-}}}$
 - δίνει μια ιδέα πόσο μακριά είναι κάποιο σημείο ενός dataset από το MO των σημείων του ίδιου dataset.
- Ελέγχεται αν το z_{score} είναι πάνω από ένα κατώφλι Β.

GROUP SEQUENTIAL DESIGN: ΔΟΚΙΜΗ ΦΑΡΜΑΚΟΥ

- Τρεις δημοφιλείς μέθοδοι υπολογισμού των κατωφλιών αυτών είναι οι Pocock, O'Brien-Fleming και Haybittle-Peto.
- Ανάλογα με τη μέθοδο ,επίπεδο σημαντικότητας α και το R, οι τιμές των κατωφλιών διαφοροποιούνται
- Αν σε όλους τους ελέγχους το z_{score} είναι μεγαλύτερο από το αντίστοιχο κατώφλι, ο έλεγχος δοκιμής του φαρμάκου ολοκληρώνεται

HAPAMETPOI GROUP SEQUENTIAL DESIGN

- Μέγεθος δείγματος Ν: ορίστηκε εμπειρικά 160 γιατί στα πειράματα που έγιναν οι ψήφοι συλλέγονταν με μικρή συχνότητα
- Το πλήθος τον ελέγχων R-ορίστηκε εμπειρικά 2
- Επίπεδο σημαντικότητας α=0,05
- Μέθοδος προσδιορισμού κατωφλιών z_{score} :χρησιμοποιήθηκε η Pocock διότι ήταν η πιο απλή και χρησιμοποιεί το ίδιο α για όλους τους ελέγχους.
 - Με αυτή τη μέθοδο για α=0,05 & R=2 B=2,1783

ΑΛΓΟΡΙΘΜΟΣ GROUP SEQUENTIAL DESIGN

- 1. Για κάθε ερώτηση, μαζεύονται οι τελευταίες Ν ψήφοι.
- 2. Αυτές οι ψήφοι χωρίζονται σε R σύνολα από n=N/R ψήφους.
- 3. Για κάθε ένα από αυτά τα σύνολα, υπολογίζεται για κάθε απάντηση το πλήθος και το ποσοστό των ψήφων της.
- 4. Σε κάθε έλεγχο i κατά την εκτέλεση του πειράματος, για κάθε ζεύγος απαντήσεων, υπολογίζεται το z_{score} .
- 5. Αν όλα τα z_{score} μεγαλύτερα από τα αντίστοιχα κατώφλια B_i τότε έχει διαμορφωθεί ξεκάθαρο αποτέλεσμα για την ερώτηση.

ΣΕΛΙΔΕΣ ΤΗΣ ΠΛΑΤΦΟΡΜΑΣ

- Αρχική Σελίδα
- Σελίδα Δημιουργίας Δημοσκόπησης
- Σελίδα Προσθήκης Ερωτήσεων στη Δημοσκόπηση
- Σελίδα Ολοκλήρωσης Δημιουργίας poll
- Σελίδα Αναζήτησης Δημοσκοπήσεων
- Σελίδα Προβολής Αποτελεσμάτων Αναζήτησης
- Σελίδα Προβολής Αποτελεσμάτων Δημοσκοπήσεων
- Σελίδα Προβολής ερωτηματολογίου δημοσκόπησης
- Σελίδα Επιτυχημένης Κατάθεσης Απαντήσεων ερωτηματολογίου

ΤΕΧΝΟΛΟΓΙΕΣ ΛΟΓΙΣΜΙΚΟΥ

DATABASE ENGINE

FRONT-END

ΤΕΧΝΟΛΟΓΙΕΣ ΛΟΓΙΣΜΙΚΟΥ

- BACK-END: Django αποτελεί ένα Python Web framework το οποίο ακολουθεί το αρχιτεκτονικό πρότυπο model-template-view
- Πλεονεκτήματα αυτού του framework:
 - ✓ Γρήγορη ανάπτυξη
 - ✓ Αυτόματη δημιουργία μοντέλων που αντιστοιχούν στους πίνακες της βάσης δεδομένων
 - ✓ Εύκολο migration dbs
 - ✓ Ένα ισχυρό ενσωματωμένο σύστημα προτύπων (Powerful built-in template system)
 - ✓ Ένα ισχυρό cache framework ιδανικό για δυναμικές ιστοσελίδες
 - ✓ Διασφαλίζει την ασφάλεια της εφαρμογή
 - ✓ Exceedingly scalable

ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΕΦΑΡΜΟΓΗΣ

ПЕІРАМАТА

- Στόχος τους η σύγκριση της αποτελεσματικότητας και της ταχύτητας των 2 μεθόδων
- Φτιάχτηκαν δύο δημοσκοπήσεις:
 - Α. 1 ερώτηση με 2 απαντήσεις
 - Β. 1 ερώτηση με 3 απαντήσεις
- Η διάρκεια τους ήταν μία εβδομάδα
- Κάθε ημέρα, ψήφιζαν 160 άτομα
- Σε κάθε προσομοίωση οι ψήφοι επιλέγονταν από μια διαφορετική κατανομή.
- Για κάθε προσομοίωση έγιναν δοκιμές και με τις δύο μεθόδους.

ПЕІРАМАТА

ΚΑΤΑΝΟΜΕΣ ΑΠΑΝΤΗΣΕΩΝ	
ΔΗΜΟΣΚΟΠΗΣΗ Α	ΔΗΜΟΣΚΟΠΗΣΗ Β
A: 52%, B:48%	A:42% ,B: 33%, Γ:25%
A: 55%, B:45%	Α:48% , Β:35%, Γ:17%
A: 58% , B:42%	A:51% ,B:41% ,Γ:8%
A:61% , B:39%	Α:60% , Β:20%, Γ:10%

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΙΡΑΜΑΤΩΝ Α ΔΗΜΟΣΚΟΠΗΣΗΣ

- Ξεκάθαρο αποτέλεσμα με λιγότερες ψήφους η μέθοδος Α.
- Όσο πιο ομοιόμορφη η κατανομή απαντήσεων τόσο περισσότερες ψήφοι χρειάζεται να κατατεθούν για να εντοπιστεί ένα ξεκάθαρο αποτέλεσμα.
- Όσο πιο ομοιόμορφη η κατανομή απαντήσεων μεγαλύτερες διαφορές στο πλήθος των ψήφων ανάμεσα στις 2 μεθόδους

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΙΡΑΜΑΤΩΝ Α ΔΗΜΟΣΚΟΠΗΣΗΣ

- Ξεκάθαρο αποτέλεσμα σε μικρότερο χρόνο η μέθοδος Α.
- Όσο πιο ομοιόμορφη η κατανομή απαντήσεων τόσο περισσότερος χρόνο χρειάζονται για να εντοπίσουν ένα ξεκάθαρο αποτέλεσμα.
- Όσο πιο ομοιόμορφη η κατανομή απαντήσεων μεγαλύτερες διαφορές στους χρόνους ολοκλήρωσης ανάμεσα στις δύο μεθόδους.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΙΡΑΜΑΤΩΝ Β ΔΗΜΟΣΚΟΠΗΣΗΣ

- Παρόμοια αποτελέσματα με αυτά της διαφάνειας 24. Εξαίρεση: 2η προσομοίωση
- Μ.Ο μείωσης πλήθους χρηστών για Α μέθοδο: 68%
- Μ.Ο μείωσης πλήθους χρηστών για Β
 μέθοδο: 42%

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΙΡΑΜΑΤΩΝ Β ΔΗΜΟΣΚΟΠΗΣΗΣ

- Παρόμοια αποτελέσματα με αυτά της διαφάνειας 25. Εξαίρεση: 2^η προσομοίωση.
- Οι μέθοδοι δεν εγγυόνται την εύρεση ξεκάθαρου αποτελέσματος.
- Μικρότερη p εντοπισμού ξεκάθαρου αποτελέσματα σε μικρό χρονικό διάστημα με περιορισμένες ψήφους.

ΓΕΝΙΚΟΤΕΡΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΜΕΘΟΔΟ Α

- Μη αλληλεπικαλυπτόμενα δ.ε με μικρό αριθμό ψήφων: καλή εκτίμηση για την κατάταξη των απαντήσεων & όχι ακριβή εκτίμηση ποσοστών τους.
- Περισσότερες ψήφοι: πιο στενά δ.ε των απαντήσεων της
 - > Μεγαλύτερη p μη ύπαρξης αλληλοεπικαλύψεων
 - > καλή εκτίμηση για την κατάταξη των απαντήσεων & καλή εκτίμηση ποσοστών τους.
- Μεγαλύτερος ο αριθμός απαντήσεων: μεγαλύτερη p ύπαρξης αλληλοεπικαλύψεων στα δ.ε, ακόμη και με μεγάλο πλήθος ψήφων
- Όσο μεγαλύτερος ο αριθμός των ερωτήσεων ενός poll τόσο πιο δύσκολο είναι να ολοκληρωθεί πριν από το end_date του.

ΓΕΝΙΚΟΤΕΡΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΜΕΘΟΔΟ Β

- Η επιλογή του R εξαρτάται άμεσα από το πλήθος των διαθέσιμων δειγμάτων.
- Με η μικρό: μικρότερο ρ όλα τα z_{score} σε όλους τους ελέγχους μεγαλύτερα από το αντίστοιχο κατώφλι Β.
- Όσο μεγαλύτερο η τόσες περισσότερες κατανομές απαντήσεων υπάρχουν για τις οποίες όλα τα z_{score} είναι μεγαλύτερα από το κατώφλι Β.
- Μεγαλύτερο R:μεγαλύτερη αξιοπιστία των αποτελεσμάτων
- Όσο μεγαλύτερος ο αριθμός των ερωτήσεων ενός poll τόσο πιο δύσκολο είναι να ολοκληρωθεί πριν από το end_date του.

DEMO

- Δημιουργία Δημοσκόπησης
- Αναζήτηση & Απάντηση σε δημοσκοπήσεις
- Early stopping με δ.ε
- Early stopping με group sequential design

ΒΕΛΤΙΩΣΕΙΣ & ΠΡΟΣΘΗΚΕΣ

- Βελτίωση UI εφαρμογής
- Προσθήκη μενού βοήθειας
- Προσθήκη ενός recommendation system που θα προτείνει στους χρήστες δημοσκοπήσεις που μπορεί να τους ενδιαφέρουν (απαιτεί προσθήκη registration & login)
- Μελέτη λειτουργίας group sequential design για διαφορετικές τιμές του significance level α.
- Μελέτη λειτουργίας group sequential design με χρησιμοποίηση διαφορετικών μεθόδων για των υπολογισμών των κατωφλιών

