

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОУПРУГОГО РАЗРУШЕНИЯ ХРУПКОГО МАТЕРИАЛА

Студент	ФН2-52Б		А.И. Токарев	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Руководитель курсовой работы			М.П. Галанин	
у поводито	vib it, peoboli paootis	(Подпись, дата)	<u>(И.О. Фамилия)</u>	

2021 г.

Содержание

Введение	3
1. Постановка задачи	3
1.1. Тензор малых деформаций Коши	3
Заключение	6
Список литературы	7

Введение 3

Введение

1. Постановка задачи

1.1. Тензор малых деформаций Коши

Под действием внешних сил в твердом теле возникают деформации, иными словам – изменение его формы и объема. Если разбить тело на систему точек $X_i(x_1 \dots x_n)$, а также задать радиус-вектор $\vec{r}_i = \vec{r}(X_i) = \vec{r}(x_1 \dots x_n)$ для каждой из них, причем

$$r_i = \left[\sum_{k=1}^n (x_j - 0)^2\right]^{\frac{1}{2}} = \left[\sum_{k=1}^n x_j^2\right]^{\frac{1}{2}},$$

то деформацию \vec{u} (вектор деформации, вектор смещения)[1] тела в каждой точке можно определить, как разницу между положением до и после приложения силы:

$$\vec{u}(u_1 \dots u_n) = \vec{r}(X_i') - \vec{r}(X_i) = \vec{r}' - \vec{r}$$
 (1)

Рассмотрим две соседние бесконечно близкие точки, тогда разность расстояния между ними до начала процесса деформации задается величиной dX, а после – dX'. Воспользовавшись определением вектора деформации (1) получим

$$dX' = dX + du \Rightarrow dx'_k = dx_k + du_k$$

а расстояния dl и dl' между заданными точками до и после деформации соответственно вычисляются по определению:

$$dl = \left[\sum_{k=1}^{n} (dx_k)^2\right]^{\frac{1}{2}}$$

$$dl' = \left[\sum_{k=1}^{n} (dx_k')^2\right]^{\frac{1}{2}} = \left[\sum_{k=1}^{n} (dx_k + du_k)^2\right]^{\frac{1}{2}}$$

По определению полного дифференциала $du_k = \sum_{l=1}^n \frac{\partial u_k}{\partial x_l} dx_l$. Дадим конкретный физический смысл полученной величине.

Пусть $x_1=x,\,x_2=y,\,x_3=z,\,$ а координаты вектора смещения зададим, как $u=u(u_1,u_2,u_3),\,$ тогда

$$du_{1} = \frac{\partial u_{1}}{\partial x}dx + \frac{\partial u_{1}}{\partial y}dy + \frac{\partial u_{1}}{\partial z}dz = \Delta_{11}dx + \Delta_{12}dy + \Delta_{13}dz$$

$$du_{2} = \frac{\partial u_{2}}{\partial x}dx + \frac{\partial u_{2}}{\partial y}dy + \frac{\partial u_{2}}{\partial z}dz = \Delta_{21}dx + \Delta_{22}dy + \Delta_{23}dz$$

$$du_{3} = \frac{\partial u_{3}}{\partial x}dx + \frac{\partial u_{3}}{\partial y}dy + \frac{\partial u_{3}}{\partial z}dz = \Delta_{31}dx + \Delta_{22}dy + \Delta_{33}dz$$

Пусть деформация происходит только в направлении x, тогда dy=dz=0, тогда

$$du_1 = \frac{\partial u_1}{\partial x} dx = \Delta_{11} dx$$
$$du_2 = \frac{\partial u_2}{\partial x} dx = \Delta_{21} dx$$
$$du_3 = \frac{\partial u_3}{\partial x} dx = \Delta_{31} dx$$

Величина Δ_{11} — это растяжение (сжатие) отрезка dx, спроецированного на ось x. Аналогичным образом определяются Δ_{22}, Δ_{33} растяжения (сжатия) вдоль осей y, z

Компоненты Δ_{21} , Δ_{31} определяют поворот параллельно оси x: в первом случае — вокруг оси z в сторону y (против часовой стрелки), а во втором — вокруг оси y в сторону оси z (против часовой стрелки).

Если деформация происходит по всем направлениям, то Δ_{12} определяет поворот параллельно оси y вокруг оси z в направлении x (по часовой стрелке), а Δ_{13} – вокруг оси y в направлении оси x (по часовой стрелке). Компоненты Δ_{23}, Δ_{32} определяют повороты вокруг оси x: в первом случае – в направлении оси y (по часовой стрелке), во втором – в направлении z (против часовой стрелки). Пример деформации приведен на рис. 1

Рис. 1. Процесс деформации

Используя все проделанные раннее рассуждения, преобразуем элемент расстояния $(dl')^2$ к виду:

$$(dl')^{2} = (dl)^{2} + 2\sum_{k=1}^{n} dx_{k} du_{k} + \sum_{j=1}^{n} (du_{k})^{2} = (dl_{i})^{2} + 2\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{\partial u_{k}}{\partial x_{l}} dx_{l} dx_{k} + \sum_{k=1}^{n} \sum_{l=1}^{n} \left(\frac{\partial u_{k}}{\partial x_{l}} dx_{l}\right)^{2}$$

Запишем в более лаконичном виде:

$$(dl')^2 = (dl)^2 + 2\frac{\partial u_k}{\partial x_l} dx_l dx_k + \left(\frac{\partial u_k}{\partial x_l} dx_k^i\right)^2$$
 (2)

При малых деформациях третьим слагаемым можно пренебречь в силу его большего порядка малости.

Заключение 6

Во втором слагаемом индексы j,k являются немыми, поэтому его можно записать в симметричном виде

$$\frac{\partial u_k}{\partial x_l} dx_l dx_k = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right) dx_l dx_k = \varepsilon_{kl} dx_l dx_k, \tag{3}$$

где ε_{kl} – составляющая тензора деформаций в точке X.

В предположении существования аддитивного разложения компонент тензора деформаций Коши запишем:

$$\varepsilon_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right) = \varepsilon_{kl}^e + \varepsilon_{kl}^0, \quad k, l = 1, 2, 3,$$

где ε_{kl}^e – компоненты упругой состовляющей тензора деформаций, а ε_{kl}^0 – компоненты тенхора неупругих деформаций среду (в нашем случае температурные деформации).

Термоупругость описывает деформации при неравномерном нагреве деформируемых тел. Термоупругое тело обладает хотя бы одним естественным состоянием, в котором отсутствуют напряжения и деформации, при том температура во всех точках одинакова. Свяжем это состояние с начальной температурой тела T_0 . При нагреве или охлаждении в теле возникают температурные деформации, описываемые тензором с компонентами ε_{kl}^0 :

$$\epsilon_{kl}^0 = \alpha_{kl}^T \Delta T \Rightarrow \epsilon_{kl}^0 \sim \alpha_{kl}^T,$$

где $\mathbf{\alpha}_{kl}^T$ – компоненты тензора теплового расширения.

Заключение

Список литературы