SAS PROJECT REPORT

Sarvesh Sairam Naik

Data Analysis I

Importing the dataset.

Obs	ID	Gender	Age	Customer Type	Type of Travel	Class	Flight Distance	Departure Delay	Arrival Delay	Departure and Arrival Time Conve	Ease of Online Booking	Checkin Service	Online Boarding		Onboard Service	Seat Comfort	Leg Room Service	Cleanliness	Food and Drink	In-flight Service	In-flight Wifi Service	In-flight Entertainment	Baggage Handling	Satisfaction
1	1	Male	48	First-time	Business	Business	821	2	5	3	3	4	3	3	3	5	2	5	5	5	3	5	5	Neutral or Dissatisfied
2	2	Female	35	Returning	Business	Business	821	26	39	2	2	3	5	2	5	4	5	5	3	5	2	5	5	Satisfied
3	3	Male	41	Returning	Business	Business	853	0	0	4	4	4	5	4	3	5	3	5	5	3	4	3	3	Satisfied
4	4	Male	50	Returning	Business	Business	1905	0	0	2	2	3	4	2	5	5	5	4	4	5	2	5	5	Satisfied
5	5	Female	49	Returning	Business	Business	3470	0	1	3	3	3	5	3	3	4	4	5	4	3	3	3	3	Satisfied

About the dataset :Customer satisfaction scores from 120,000+ airline passengers, including additional information about each passenger, their flight, and type of travel, as well as ther evaluation of different factors like cleanliness, comfort, service, and overall experience.

Which percentage of airline passengers are satisfied? Does it vary by customer type? What about type of travel?

Satisfaction Percentage by Overall

The FREQ Procedure

	1110 111111	Troccaure		
Satisfaction	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Neutral or Dissatisfied	73452	56.55	73452	56.55
Satisfied	56428	43.45	129880	100.00

 Obs
 COUNT
 PERCENT

 1
 73452
 56.5537

 2
 56428
 43.4463

From the tables shown above we can infer that about 73452 that is 56.5537% of airline customers are Neutral or Dissatisfied with the overall service. And remaining 56428 or 43.4463% of the customers are satisfied by the overall service.

Satisfaction Percentage by Customer Type

The FREQ Procedure

Frequency Percent Row Pct Col Pct

	C	ustomer Type	
Satisfaction	First-time	Returning	Total
Neutral or Dissatisfied	18080	55372	73452
	13.92	42.63	56.55
	24.61	75.39	
	76.03	52.19	
Satisfied	5700	50728	56428
	4.39	39.06	43.45
	10.10	89.90	
	23.97	47.81	
Total	23780	106100	129880
	18.31	81.69	100.00

Obs	Customer Type	COUNT	PERCENT
1	First-time	18080	13.9205
2	Returning	55372	42.6332
3	First-time	5700	4.3887
4	Returning	50728	39.0576

We can infer from the dataset that about First-time customers who account to about 13.9205% and Returning customers who account to 42.6332% in the dataset are Neutral/Dissatisfied with the service. Very low in number 5700 of First-time customers were satisfied with the service. And, Returning about 50728 (39.0576%) of customers were satisfied with the service. Notably, First-time customers show a higher proportion of Neutral/Dissatisfied responses, while Returning customers exhibit a more favorable satisfaction rate.

Satisfaction Percentage by Class of Travel

The FREQ Procedure

Obs Customer Type COUNT PERCENT

Frequency Percent Row Pct Col Pct

Table of Si	atisfaction by C							
	Class							
Satisfaction	Business	Economy	Total					
Neutral or Dissatisfied	18994	54458	73452					
	14.62	41.93	56.55					
	25.86	74.14						
	30.56	80.42						
Satisfied	43166	13262	56428					
	33.24	10.21	43.45					
	76.50	23.50						
	69.44	19.58						
Total	62160	67720	129880					
	47.86	52.14	100.00					

Satisfaction Percentage by Class of Travel

Obs	Class	COUNT	PERCENT
1	Business	18994	14.6243
2	Economy	54458	41.9295
3	Business	43166	33.2353
4	Economy	13262	10.2110

It is observed that 18994 cutomers flying Business class and 54458 customers flying Economy are Neutral/Dissatisfied with the service. And, 43166 Business and 13262 Economy flyers were satisfied with the service of the airline. Business class flyers display a higher satisfaction rate (43.17%) compared to Economy class flyers (13.26%). These findings emphasize the need for improvements to enhance customer satisfaction, particularly among First-time customers and Economy class flyers.

To enhance the overall customer experience, the airline should prioritize addressing the concerns of First-time customers and Economy class flyers. Additionally, it is vital to maintain the high satisfaction levels among Returning customers and Business class flyers, as they currently represent the more satisfied customer segments.

We can see from the chart that passengers are not happy with the Inflight Wifi Service. The Food and Drink service can also be improved. The Inflight steward service has the highest average score and thus is positively affecting the satisfaction of the customers.

Is there any underlying relation between Arrival Delay, Departure Delay and Flight Distance?

Obs	_TYPE_	_FREQ_	Mean_Std	Std_Std
1	0	129880	1190.3163921	997.45247733

In summary, there is no strong linear relationship between Flight Distance and either Arrival Delay or Departure Delay. However, there is a very strong positive linear relationship between Arrival Delay and Departure Delay, indicating that they are closely related.

Is there any underlying relation between Arrival Delay, Departure Delay and Flight Distance?

_	Т	The CORR P	rocedure								
	3 Variables: Flight Distance Arrival Delay Departure Delay										
	Simple Statistics										
Variable		Mean	Std Dev	Minimum	Maximur						
Flight Distance	129880	1190	997.45248	154598293	31.00000	498					
Arrival Delay	129487	15.09113	38.46565	1954105	0	158					

Depa Delay		129880	14.71371	38.0	07113	19110	017	(0	1592
			Prob >	> r une		oefficients Rho=0 vations	s			
			Flight Dista	nce	Arriv	al Delay	De	parture De	lay	
	Fligh			0000		-0.00193			0240	
	Dista	nce	12	9880		0.4863 129487			3867 9880	
ľ	Arriv	al	-0.0	0193		1.00000		0.9	6529	
	Delay	7		4863 9487		129487			0001 9487	
	Depa			0240		0.96529			0000	
	Delay	7		3867 9880		<.0001 129487		12	9880	

In summary, there is no strong linear relationship between Flight Distance and either Arrival Delay or Departure Delay. However, there is a very strong positive linear relationship between Arrival Delay and Departure Delay, indicating that they are closely related.

Data Analysis II

1. Read the dataset erasmus.csv into SAS and call the resulting table erasmus, saving it in the s40840 library. The le contains column names onthe rst row, with the rst observation starting on the second row. You should ensure your code will overwrite any previous object of the same name.

a)Print the 1st 4 rows of the resulting erasmus table

		,				-	1		
Obs	academic_year	duration	nationality	gender	age	sending_country	sending_city	receiving_country	receiving_city
1	2014-2015	1	AT	Female	13	AT	Dornbirn	AT	Dornbirn

b)The duration variable is stored in months. by students of Irish nationality ('IE'). How dataset?

Obs	academic_year	duration	nationality	gender	age	sending_country	sending_city	receiving_country	receiving_city
2	2014-2015	1	AT	Female	14	AT	Dornbirn	AT	Dornbirn
3	2014-2015	1	AT	Female	15	AT	Dornbirn	AT	Dornbirn
4	2014-2015	1	AT	Male	14	AT	Dornbirn	AT	Dornbirn

Find the mean duration spent in the programme many students of Irish nationality are in the

Obs	nationality	mean_duration	_FREQ_	
1	IE	1.4148282098	2765	

As seen, the mean duration spent in programme by 2765 Irish students is around 43 days.

c) One student is older than all other participants. What is the age of this student? In what city did this student study? In what academic year did they start?Oldest Student Details

Obs	age_oldest	sending_city	academic_year		
1	80	Valencia	2018-2019		

The age of the student is 80. The student studied in Valencia. The student's academic year started in 2018.

d) Create a table of the nationality variable for students who are not from Ireland (that is, their nationality is not 'IE') and whose receiving city is Dublin. The tableshould be ordered from highest to lowest frequency. What is the most frequent nationality of non-Irish students who studied in Dublin?

Frequency Table of Non-Irish Students Studying in Dublin

Obs	nationality	COUNT
1	UK	37
2	CZ	14
3	IT	14
4	BE	13
5	ES	11
6	NO	11
7	PL	11
8	AM	10
9	AT	9
10	DE	9
11	NL	8
12	EL	7
13	FR	6
14	AL	4
15	CA	4
16	HU	4

17	IS	4
Obs	nationality	COUNT
18	LU	4
19	RO	4
20	so	4
21	TR	4
22	FI	3
23	IN	3
24	NG	3
25	JM	2
26	LT	2
27	ZM	2
28	ZW	2
29	CL	1
30	GM	1
31	KR	1
32	RS	1
33	SK	1
34	US	1

The most frequent nationality of non-irish students who studied in Dublin are from UK count:37

e) In a single table, print the summary statistics for the age variable, divided into groups by both gender and academic year. Which cohort had the greatest mean age? Summary Statistics for Age by Gender and Academic Year

Obs	gender	academic_year	mean_age
1	Female	2018-2019	25.021495275
2	Undefined	2018-2019	24.971830986
3	Male	2016-2017	24.866618649
4	Female	2017-2018	24.864323315
5	Female	2016-2017	24.752730328
6	Male	2018-2019	24.740490718
7	Female	2019-2020	24.635437995
8	Male	2017-2018	24.525653437
9	Male	2015-2016	24.450853491
10	Male	2019-2020	24.433254318

11	Male	2014-2015	24.099001303
12	Female	2015-2016	24.065140346
13	Female	2014-2015	23.941220799
14	Undefined	2019-2020	21.932098765
15	Undefined	2017-2018	21.242424242
16	Undefined	2016-2017	20.712328767
17	Undefined	2015-2016	20.625
18	Undefined	2014-2015	18

As observed from the table, Female in academic year 2018-2019 have the greatest mean age -25.021495275

- 2. For this question, create a subset of the erasmus dataset which contains only those individuals whose receiving country is Ireland ('IE'). Call this subset erasmus2 and use this subset for all of the follwing parts
 - a) Conduct a univariate analysis of the age variable for those individuals in erasmus2. Write a short description of your findings, including key statistics and discussion of any plots produced.

	Obs	mean_age	max_age	median_age	min_age
--	-----	----------	---------	------------	---------

1	24.4084	69	20	13
---	---------	----	----	----

The average age of individuals in the dataset is around 24.41 years, with the age range spanning from 13 to 69 years. The median age of 20 years suggests that half of the individuals are younger than 20, and the other half are older.

As seen from the histogram, since the mean (24.41 years) is greater than the median (20 years), the age distribution is right-skewed. In a right-skewed distribution, the tail of the distribution extends more to the right, indicating that there are relatively more older individuals with ages farther from the mean. In this case, the maximum age (69 years) is causing the rightward tail in the distribution, pulling the mean higher than the median.

c) Conduct a hypothesis test to see if there is a statictically significant difference between the mean ages of female and male students, using as your sample data those students in erasmus2. State your hypotheses carefully, check all assumptions necessary, run your chosen test, comment on the resulting plots and state your conclusion clearly. Use a significance level of $\alpha = 0.01$.

The TTEST Procedure

Variable: age gender Method Mean Std Dev Std Err Minimum Maximum Female 1496 25.0909 10.6835 0.2762 13.0000 65.0000 0.2748 13.0000 69.0000 Male 1237 23.6257 9.6632 Diff (1-2) Pooled 1.4652 10.2343 0.3933 Diff (1-2) Satterthwaite 1.4652 0.3896 Method 99% CL Mean Std Dev 99% CL Std Dev gender Female 25.0909 24.3785 25.8033 10.6835 10.2015 11.2098 9.1858 10.1892 Male 23.6257 22.9169 24.3345 9.6632

Diff (1-2)	Poo	led	1.4	4652	0.451	14	2.47	790	10.	2343	9.88	89	10.6030
Diff (1-2)	Satt	erthwaite	1.4	4652	0.46	10	2.46	594					
		Method		Vari	ances		DF	t V	alue	Pr>	t		

Method	Variances	DF	t Value	$Pr \ge t $
Pooled	Equal	2731	3.73	0.0002
Satterthwa	ite Unequal	2709.1	3.76	0.0002

Equality of Variances								
	Method	Num DF	Den DF	F Value	Pr > F			
	Folded F	1495	1236	1.22	0.0002			

Here is a summary of the key findings:

- 1. Sample Sizes and Descriptive Statistics: For Female students: The sample size is 1496, with a mean age of 25.0909 years and a standard deviation of 10.6835 years. For Male students: The sample size is 1237, with a mean age of 23.6257 years and a standard deviation of 9.6632 years.
- 2. Difference in Means (Pooled and Satterthwaite): The difference in mean ages between Female and Male students is approximately 1.4652 years. The standard error of the difference is 0.3933 for the Pooledmethod and 0.3896 for the Satterthwaite method.
 - 3. Confidence Intervals: For Female students, the 99% confidence interval for the mean age is between 24.3785 and 25.8033 years. For Male students, the 99% confidence interval for the mean age is between 22.9169 and 24.3345 years. The 99% confidence interval for the difference in means (Pooled method) is between 0.4514 and 2.4790 years.
- 4. T-Test Results: The t-value for the t-test is approximately 3.73 for the Pooled method and 3.76 for the Satterthwaite method. The p-values for both t-tests are very small (less than 0.0002), indicating statistical significance at the α = 0.01 level.
 - 5. Equality of Variances: The test for equality of variances (Folded F-test) indicates that the variances of the age distributions for Female and Male students are statistically significantly different (p-value < 0.0002).

Conclusion:Based on the t-test results, we reject the null hypothesis that there is no statistically significant difference between the mean ages of Female and Male students in the 'erasmus2' subset. The data provide strong evidence to support the alternative hypothesis that there is a significant difference in the mean ages of Female and Male students. The confidence intervals for the mean ages of each group and the difference between the groups' means further confirm the significance of the findings. Additionally, the unequal variances suggest that the groups might have different age distributions.

Tasks demonstration

Statistics Task

The SAS Statistics Task provides a user-friendly interface to perform various statistical analyses on data. It offers a range of options to explore data, calculate summary statistics, Distribution Analysis, Correlation Analysis, Table Analysis and conduct tests.

1. Summary Statistics

Summary Statistics for Width

Obs	_TYPE_	_FREQ_	Mean_Std	Min_Std	Max_Std	P25_Std	P50_Std	P75_Std
1	0	159	4.41749	1.0476	8.142	3.3756	4.2485	5.589

Summary statistics are a fundamental aspect of data analysis, providing valuable insights into the distribution and characteristics of numerical variables. In this demonstration, we calculate summary statistics for the Width in the SASHELP.FISH dataset.

The output displays the summary statistics for the selected numerical variable in the SASHELP.FISH dataset. The computed statistics include the mean, standard deviation, minimum, maximum, and quartiles for each variable.

2. T-Test

The TTEST Procedure

3.7 1-1	1.1	337.	1.4

Species	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bream		34	626.0	206.6	35.4324	242.0	1000.0
Parkki		11	154.8	78.7551	23.7456	55.0000	300.0
Diff (1-2)	Pooled		471.2	184.9	64.1490		
Diff (1-2)	Satterthwaite		471.2		42.6533		

Species	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
Bream		626.0	553.9	698.1	206.6	166.6	271.9
Parkki		154.8	101.9	207.7	78.7551	55.0275	138.2
Diff (1-2)	Pooled	471.2	341.8	600.6	184.9	152.8	234.3
Diff (1-2)	Satterthwaite	471.2	385.1	557.3			

Method	Variances	DF	t Value	$Pr \geq t $	
Pooled	Equal	43	7.35	<.0001	
Satterthwaite	Unequal	41.605	11.05	<.0001	

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	33	10	6.88	0.0027			

The t-test output provides the results of the two-sample t-test between the Weight variable for the Bream and Parkki species. The t-test results include the means and standard deviations of both groups, the t-value, degrees of freedom, and p-value. In conclusion, the t-test results indicate a statistically significant difference in the mean weights of Bream and Parkki fish species. The species Bream tends to have a significantly higher mean weight compared to Parkki.

The SAS Statistics Task is a valuable tool that simplifies statistical analysis by providing a user-friendly interface. In this report, we demonstrated how to use the Statistics Task to compute summary statistics and conduct a t-test using the SASHELP.FISH dataset.

The task's functionality allows users to explore and analyze data efficiently, gaining valuable insights into their datasets and making informed decisions based on statistical findings.

The SAS Statistics Task's capabilities extend far beyond the examples presented in this report, making it a versatile tool for various statistical analyses. Users can leverage its power to perform Distribution Analysis, Correlation Analysis, Table Analysis, create informative visualizations, and gain deeper insights into their data.

By harnessing the capabilities of the SAS Statistics Task, analysts and researchers can make data-driven decisions with confidence.