BRAC UNIVERSITY
FALL-2020
CSE 230
ASSINGMENT 1

HAME: MD. BOKHTIAR RAHMAN JUBORAZ

SECTION: 05

ID: 20304139

DATE: 28.11, 2020

Finding Coefficient of nt in the squestion expension of $(2n^2 + \frac{1}{n})^{29}$.

We know,

$$\frac{1}{(n+1)} = {}^{n}C_{n} a^{n+p} n^{n}$$

$$= {}^{20}C_{n} (2n^{2})^{20-n} (\frac{1}{n})^{n}$$

$$= {}^{20}C_{n} 2^{20-n} n^{87-3n-n}$$

$$= {}^{20}C_{n} 2^{20-n} n^{47-4n} - --(i)$$

According to the question:

$$87-4m = 47$$

Replacing
$$n=10$$
 in (i).

 $209 \frac{20-10}{20-10}$
 $29_{c_{10}} \frac{20-10}{10}$
 $29_{c_{10}} \frac{20-10}{10}$
 1.05×10^{13}

Floreding to the question?

24c₂(yu)¹⁹(
$$\frac{2}{y}$$
) = $37c_2$ y³⁵($\frac{1}{3}$)

=> $440 \frac{y^{38}}{y^{12}} = 74 y^{35}$

=> $440 y^{36} = 74 y^{35}$

Answer to the question no.03

Finding the coefficient of 24 in the expension of (23+32+1)6

$$= (1+32+23) (32)^4$$

Finding coefficient of 24 in expression of (23+32+1)6

let, p+q+r=6, p=0, q=4, r=2

01 x4 1 x 2! (23) 6 32) A

 $= \frac{.6 \times 5 \times 4!}{2! \times 4!} + 812^4$

= 1215 2⁴ --- @

Agains 6: $\frac{c!}{1! \times 4! \times 4!} (2^3)^1 (32)^1 (1)^4 [p=1, q=1, p=4]$ $= \frac{6 \times 5 \times 4!}{4!} \times 3(2^{3+1})$ $= 902^4 - (2)$

2+2)> 121524 +9024 = 130524.

So, 24,5 coefficient = 1305 (Am)

Finding to coefficient of a b's or in the expansion of [370a+285b+99e] M.

let p=5, q=63, p=2, p+q+r=11

Now, 111 (370a) (2856) (90e) r

 $=\frac{11!}{5!3!2!}(370)^5(285)^3(99)^{12}a^5b^3e^{11}$

= 4.36 × 2028 as 63c

So, The coefficient of asbac is 4756×10

A.36×10²⁹

(Ans.)

Number of Baltie countries, n n (B) = 3.

Number of Scandinavian Countries n(5) = 5

Humber of North American Countries, n(N.1) = 3.

Number of ways 3 countries can be travelled &

n(5)	n (B)	n (N)	Total + ways
501	301	301	5 x 3 x 3 = 45
502	300	30,	16X1X3 = 30
Teg	3co	300	10 x 10
502	301	300	30
5c1	312	nes	15
5c1	300	302	. 15 .

Total number of ways (45+30+10+30+15+15) = 145 (Am).

Ammen to the question no. 057

Given,

(Ams).

Given: $\left\{\frac{1}{4}, \frac{2}{10}, \frac{4}{28}, \frac{8}{82}, \frac{16}{244}, \frac{32}{730}\right\}$

Set of numerators of the functions

 $A = \{1, 2, 4, 8, 16, 32\}.$

=> A == { 2°, 2', 2°, 23, 24, 25}

Set of denominators of the function:

B= 14,10,29,82,244, 730}.

= $\{4, (4-0)\times3, (10-4)\times3\}, (28-10)\times3, (82-28)\times3, \\ *(244-84)\times3\}.$

From the given explanation we can determine a set builden mathod to eapness the set of

 $a,b \mid a \in R$, $n \in N$ $a \ge 0$ and $a_n = 2^{n-1}$ b > s and $b_n = (b_{(n-1)} b_{(n-2)}) \times 3$

(Ann.)

n-2/25-n ln(n+3) (our) 2 x 10 5 x (c-1) Mon regative values for radical: ·25-ar >0 1-11 10年十一小 => N 6 25 heres Mon regodine values for radical so Again, Undefined points pot: 2005 Positive values for log; ln (n+3)? so lon lan (nots) M+3>0 1.M7-3.

Go, the domain of the function of
$$\left(-3, -\frac{5}{2}\right) \cup \left(-\frac{5}{2}, 5\right)$$

Griven, f(n) = 4n - 5, g(n) = 7n + 1Let, $a,b \in \mathbb{R}$, $a \neq b$

Thun,
$$f(g(a)) = f(g(b))$$

 $\Rightarrow A(g(a)) = 5 = A(g(b)) = 5$
 $\Rightarrow A(fart) = 5 = A(fbrt) = 5$
 $\Rightarrow 24(28art) = 24brt1$
 $\Rightarrow 24art1 = 24brt1$

60, fig(m) is injective (Ans)

let the nondom number be a.

The number given from Alice to Bob = n The number given knom Bob to Canal: 9m The number given from Canal to David = on 5+ (3 xm)

According to the question &

=> 9n= 15+9n

=> 0 = 15, Not om eligible value.

60, It is impossible for bavid to determine Alicie's number if the number he gets from Canal is 3.
(Ans).