- 1. Utilizar exclusivamente árbores semánticas para:
 - a) Probar que $\{(p \land q) \lor r, r \to s\} \models (p \lor s)$ é un argumento válido.
 - $b) \ \ \text{Decidir se} \ [(p \vee r) \wedge (\neg p \vee r)] \to q \vee r \quad \text{ou} \quad \neg q \to [(\neg p \to p) \to (p \to q)] \ \text{son tautolox} \\ \text{(as. }$
 - Se algunha delas non o é, obter da correspondente árbore semántica unha asignación de valores de verdade para p, q e r nas que tome valor falso.
 (0.75 ptos.)
- 2. Sexa B(x) o predicado x entende o conxunto baleiro, e A(x) o predicado x aproba. Transcribir literalmente á linguaxe de predicados as seguintes mensaxes que circularon polo grupo de whatsapp o curso pasado:
 - a) Ninguén aproba sen entender o conxunto baleiro.
 - b) Hai alguén que non aproba porque non entende o conxunto baleiro.
 - c) Non todo o alumnado entende o conxunto baleiro porque hai quen suspende.
 - d) Se non entendes o conxunto baleiro, non aprobas.

(1 pto.)

3. Para a túa conta de cocalc.com estás dubidando entre os seguintes passwords:

pa\$\$word_c0c4lc, pi=3.1416, MarioBros, S3amH?5s2, d1\$cr3t4, M@em@iks, 4f0ut3z4

Indica, en cada un dos casos seguintes, que candidatos cumpren a condición correspondente.

- a) Ademais de letras, ou teñen algún número, ou teñen caracteres especiais.
- b) Se teñen caracteres especiais, non teñen letras maiúsculas.
- c) Teñen lonxitude superior a 7, conteñen algunha letra maiúscula, algún número e algún caracter especial. (0.75 ptos.)

- \boxtimes Cada elemento de A ten unha única imaxe en B
- $oxed{\boxtimes}$ Todo elemento de B é imaxe de, polo menos, un elemento de A
- $\hfill \square$ Todo elemento de B é imaxe dun único elemento de A

(0.75 ptos.)

- 5. a) Demostrar que a fórmula $\forall x (P(x) \to Q(x)) \to [\forall x P(x) \to \forall x Q(x)]$, onde $P \in Q$ son predicados unarios, é válida en calquera universo.
 - b) Interpretar P e Q nun universo U tal que $[\forall x P(x) \rightarrow \forall x Q(x)] \rightarrow \forall x (P(x) \rightarrow Q(x))$ sexa falsa. (0.75 ptos.)
- 6. a) Usar a figura da dereita para conxecturar o valor de s(n), definido por

$$s(n) \coloneqq \sum_{i=1}^n i$$

b) Probar por indución matemática que a conxectura é certa para todo $n \geq 1.$

resta l	/4 do valor do apartado; unha resposta en	branco non suma nin resta.
a) A	solución da desigualdade $\left \frac{2x^2-3}{14}\right \le \frac{1}{2}$ é:	
10	$\mathbb{Q}[-\sqrt{5},\sqrt{5}].$	\square $[-\sqrt{2},\sqrt{2}]$
С	$(-\infty, -\sqrt{5}] \cup [\sqrt{5}, +\infty).$	ningunha das anteriores.
d	a recta $4x + 3y - 18 = 0$.	ntrada na orixe de radio 2 que está máis pret
	$\left(\frac{6}{5},\frac{8}{5}\right)$. *	(2,0), -
O R	$(\frac{8}{5}, \frac{6}{5}).$	ningunha das anteriores.
c) U	sando as indentidades trigonométricas, dec	fuce o valor de $\cos^2\left(\frac{5\pi}{12}\right) = \cos^2\left(\frac{\pi}{6} + \frac{\pi}{4}\right)$:
	$\frac{(\sqrt{3}-1)^2}{2}.$	$\square \frac{\sqrt{3}-1}{2}$
0	$\frac{(\sqrt{3}-1)^2}{8}$.	ningunha das anteriores.
d) (If the lim $\frac{1}{x \to 0} = \frac{1}{\sin x} - \frac{1}{x}$ is	
/ 12	g o	
]1	ningunha das auteriores.
e) () polinomio de interpolación da función $f(z)$	
10	$\int x^2 - 9x + 8.$	$ -\frac{x^2}{6} + \frac{3x}{2} - \frac{4}{3}.$
		ningunha das auteriores.
J) O) valor da pendente da curva $x \operatorname{sen} y + x^3 =$	$\operatorname{arctg}(e^y) + x - \frac{\pi}{4}$ no punto (1,0) e:
	₹ -4.	□ 2.
/ [] 0. ▼	ningunba das anteriores.
g) () polinomio e Taylor de grao 2 arredor de a	$x_0 = 0$ da función $y = \frac{\sec x}{x - \pi}$ é:
B		$\mathbb{E}\left[-\frac{x}{\pi} + \frac{x^2}{2\pi^2}\right].$
-	$\frac{x}{x} - \frac{x^2}{x}$.	ningunha das anteriores.
Na.	न न≖	(4,2 panto

7. No seguinte test, marca a única resposta correcta en cada apartado. Cada resposta incorrecta

 Indica os pasos necesarios para calcular a altura do triángulo isósceles de área máxima inscrito nunha circunferencia de radio 12. (0,8 puntos)