Применение геометрии многообразия симметричных положительно полуопределенных матриц в анализе данных головного мозга

Беляева Дарья, гр. 177 Научный руководитель: Бурнаев Е.В., к.ф.-м.н

 $M\Phi T \Pi (\Gamma Y)$

Факультет управления и прикладной математики Кафедра проблем передачи информации и анализа данных

Москва, 2017

Постановка задачи

- Рассмотреть существующие подходы к классификации СПО и СППО матриц
- Предложить эффективный алгоритм классификации СППО матриц

Классификация в касательном пространстве Существующие подходы

В пространстве СПО матриц возможно выполнить проекцию на касательное пространство:

Касательное пространство в точке P, S_i - касательный вектор к точке P и $\Gamma_i(t)$ - геодезическая между **Р** и **Р**_i

Классификация с помощью ядерных алгоритмов Существующие подходы

Гауссовское ядро

$$K(x_i, x_j) = exp\left(\frac{||x_i - x_j||^2}{2\sigma^2}\right) \tag{1}$$

Ядро на основе расстояний δ_{spd}

Пусть $\mathbf{s}_i, \mathbf{s}_j \in S(n)$

$$K_{spd}(\mathbf{s}_i, \mathbf{s}_j) = exp(-\gamma \delta_{spd}(\mathbf{s}_i, \mathbf{s}_j))$$
 (2)

Подход использован в работах [5], [4]

<u>Пред</u>ложенные методы

Существующий подход	Предложенный подход	
Проекция на касательное пространство	Снижение размерности Isomap [6] []	
	на СППО матрицах	
Ядерный SVM $+$ δ_{spd}	Ядерный SVM $+$ $\delta_{\textit{spsd}}$:	
	$K_{spsd}(\mathbf{s}_i, \mathbf{s}_j) = exp(-\gamma \delta_{spsd}(\mathbf{s}_i, \mathbf{s}_j))$	

$\delta_{ extit{spsd}}$ - длина геодезической

$$\delta_{spsd} = I^2(\gamma_{A \to B}) = ||\Theta||_F^2 + k||\log R_A^{-1} R_B^2 R_A^{-1}||_F^2$$
 (3)

Предложено в [3]

Магнитно-резонансная томография методы исследования мозга

MPT

Современный, более точный неинвазивный метод

- регистрирует электромагнитный отклик атомных ядер
- данные воспроизводимы
- реализует объемную регистрацию

Два типа MPT - диффузионная (структурная) и функциональная

Коннектомы

Методы исследования мозга

Коннектом - представление структурных или функциональных связей мозга в виде взвешенного неориентированного графа.

- вершины регионы мозга
- ребра структурные (физиологические) либо функциональные связи

Данные

База данных Alzheimer's Disease Neuroimaging Initiative.

- 228 пациентов
- 4 класса: NC (61), EMCI (77), LMCI (43), AD (50)
- Средний возраст пациентов: 72.9 ± 7.4 лет
- Итоговый коннектом содержит 68 вершин для каждого снимка

Коннектом - симметричная не определенная матрица. Применяем преобразование Лапласа [4]:

$$\boldsymbol{X}_i = \boldsymbol{D}_i^{-\frac{1}{2}} (\boldsymbol{D}_i - \boldsymbol{A}_i) \boldsymbol{D}_i^{-\frac{1}{2}},$$

где

$$\mathbf{D}_i|_{k,k} = \sum_{l} \mathbf{A}_i|_{k,l}$$

- Kernel SVM с матрицей L2 расстояний между матрицами
- Kernel SVM с матрицей логарифмированного евклидового расстояния между регуляризованными матрицами [4]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Данные классов AD и NC, спроецированные на двумерное пространство. Синий и красный цвета обозначают NC и AD группы соответственно.

Результаты

Результаты Эксперименты

Пара классов	SVM + L2	SVM + SPD	Isomap δ_{spsd}	$SVM + \delta_{spsd}$
(AD, NC)	77.2 ± 0.99	80 ± 0.54	81.6 ± 0.6	81.6 ± 0.7
(AD, LMCI)	65.5 ± 1.6	68.8 ± 0.81	67.8 ± 0.6	68.6 ± 1.4
(LMCI, EMCI)	44.7 ± 2.9	47.8 ± 2.4	34.1 ± 0.59	44.1 ± 2.2
(EMCI, NC)	50.4 ± 1.8	53.9 ± 1.6	53.8 ± 0.12	57.1 ± 1.5

Сравнительные результаты классификации всех четырех алгоритмов, рассматривавшихся в работе. Цветом выделены лучшие результаты для каждой пары классов. Метрика качества – ROC AUC

Результаты Эксперименты

Качество классификации как функция от параметра к.

Заключение

- Рассмотрены подходы к классификации СПО, СППО матриц
- Предложен более эффективный алгоритм классификации СППО матриц

Список литературы

Список литературы

- Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2012). Multiclass brain-computer interface classification by Riemannian geometry. IEEE Transactions on Biomedical Engineering, 59(4):920–928.
- Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2013). Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing, 112:172–178.
- [3] Bonnabel, S. and Sepulchre, R. (2008). Geometric distance and mean for positive semi-definite matrices of fixed rank. arXiv preprint arXiv:0807.4462.
- [4] Dodero, L., Minh, H. Q., San Biagio, M., Murino, V., and Sona, D. (2015). Kernel-based classification for brain connectivity graphs on the Riemannian manifold of positive definite matrices. In Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on, pages 42–45. IEEE.
- [5] Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M. (2013). Kernel methods on the riemannian manifold of symmetric positive definite matrices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 73–80.
- [6] Krivov, E. and Belyaev, M. (2016). Dimensionality reduction with isomap algorithm for EEG covariance matrices. In Brain-Computer Interfaces (BCI), 2016 4th International Winter Conference on, pages 1–4. IEEE.

Обозначения Математический аппарат

- $Sym(n) = s \in M(n) \mid s^T = s$ пространство всех симметричных матриц в M(n).
- S(n) множество всех симметричных положительно определенных (СПО) матриц размера $n \times n$.
- $S^+(n,p)$ множество всех симметричных положительно полуопределенных (СППО) матриц размера $n \times n$ и ранга $p \le n$.
- $T_p\mathcal{M}$ касательное пространство к многообразию \mathcal{M} в точке p.
- $V_{n,p}$ множество матриц размера $n \times p$ с ортонормальными столбцами: $U^T U = I_p$
- \circ O(n) ортогональная группа

