Youzhang Sun 1005982830 sunyou

Problem 1
a) Consider vectors $\vec{v}_1 \cdots \vec{v}_k$ is a vectorspace V over F. They are linearly dependent if there exists $c_1 \cdots c_k \in F$ so that $c_1 \vec{v}_1 + \cdots + c_k \vec{v}_k = \vec{0}$ and $(c_1, c_2, \cdots, c_k) \neq (0, 0, \cdots, 0)$, $k \in \mathbb{N}$

b) An isomorphism between vector space V and W over IF is a

bljective function T: V -> W

(Inear transformation)

I affirm that I did not give / receive any unauthorized help on this exam and that all submitted work is my own

Jul / R

Easyfii

```
Problem 2
                                if \{\vec{u}, \vec{v}\}\ are dependent, then \exists x, y \in F s.t (x \neq 0 \text{ or } y \neq 0)
and x\vec{u} + y\vec{v} = 0
         a) True
                                Then choose \alpha = -\frac{y}{x}, and \vec{u} = \alpha \vec{v}
                               Subspaces are still vector space, for any subspace V, define LT T: V -> V
          b) True
                               \overrightarrow{\nabla} \mapsto \overrightarrow{\nabla}
Then the subspace is the image of T
                              dim(P_3(\mathbf{C})) = 4, means its basis has 4 elements

All spanning set thus need to have at least 4 elements

(proved in class), so no list of 3 polynomial can span

P(\mathbf{C})
        c) True
                              By rank-nullty theorem, dim(IR5) - dim(ker(T)) + dim(Img(T))

Since T is surjective: dim(IR5)=5 = dim(ker(T)) + dim(V)
        1) True
                              Since dim(ker(T)) > 0: dim(V) = 5 - dim(ker(T))
```

< 5-0=5

Problem 3

a) Define $T:R' \rightarrow IR^2$ $[a,b] \longmapsto [a-b,a-b]$ Then im(T) = span([1,1])ker(T) = span([1,1])

b) Suppose \mathbb{C}^3 is over the Held \mathbb{C} Then $\left[\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right]$ and $\left[\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right]$ are both basis of \mathbb{C}^3 , and they are clearly not equal

() Choose $U \subseteq \mathbb{C}^2$ where $U = \{[a,0] \mid a \in \mathbb{Z} \text{ (integer)}\}$ Then $\forall \vec{u}, \vec{v} \in U$ $\vec{u} = [a,0] \vec{v} = [b,0]$ $\vec{u} + \vec{v} = [a+b,0] \in U$ $(a+b \in \mathbb{Z})$ and choose $-\vec{u} = [-a,0] \in U$ $\vec{u} + -\vec{u} = \vec{0}$

But U is not closed under salar multiple since $\forall \vec{u} \in U$ and $r \in \mathbb{C} \setminus \mathbb{Z}$, $r \vec{u} \not\in U$

d) IR is a vectorspace of dimension 1 over IR

span (IR) = IR, and |IR| = \omega

So IR is an infinite spanning set of a finite dimension vector

space IR

Problem 4 a) $T \circ S(e^{SX}) = T(S(e^{SX})) = T(Se^{SX})$ We cannot calculate $T(5e^{5x})$ because $5e^{5x} \notin span(e^{2x}, e^{3x}, 1)$ So we cannot break dow T(5esx) into a LC of T(e2x), T(e3x) and T(1), thus we don't have enough information b) $S \circ T(2+3e^{2x}) = S(T(2+3e^{2x})) = S(2T(1)+3T(e^{2x}))$ [Inearlty] = $5(2(0)+3(\chi^2))$ [substitud] $= 5 (3x^1)$ = 6x [by def of S(f)-f'] c) We know T maps all constant function and function of 0 to 0 And $\forall f(x) = \alpha x$ where α is a constant, $S(f) = \alpha$ (a constant) $\forall g(x) = b$ where b is a constant, S(g) = 0So choose f(x)=X, g(x)=1, then span (f,g)=P, $T\circ S$ $(span(f,g))=\{\vec{0}\}$ since $\dim(P_r)=1$, so $\dim(\ker(T\circ S))$ is at least 2Since span (e^{2x} , e^{3x} , 1) \neq (e^{∞} , so there could exist more elements in e^{∞} that gets mapped to 0 (example, if we map e^{∞}) to 0) 40 dm (ker (70S)) ≥ 2

Problem 5

a) 0 WTS $W \neq \emptyset$ The function p(x)=0 is in all possible vector spaces of functions, and $p(x)=0 \Rightarrow p(1)=0$, so the 0 function is in WThus $W \neq \emptyset$

© WTS W is closed under addition

Let $f, g \in W$ be arbitrary

By def of W, f(1) = g(1) = 0 (f+g)(1) = f(1) + g(1) [def of f'' +] = 0 + 0

So (fig) is in W by det So W is closed under t

3 WTS W is closed under scalar mutuple

Let f & W, r & IF be anythory

(rf)(1) = r · f(1) I by def of function goalor mutuple]

= r · 0

=0 [0 identity property]
So (rf) is in W by def
So W is closed under scalar mufty

W passed subspace test and is a subspace of Pem 15

b) It is not onto, since q(x)=1, $q \in P_m$, but $q \notin W$ since it doesn't have root at x=1So there does not exist $p \in W$, where T(p)=p=q, so T is not onto

1631.6

```
Problem 5
```

c) So we have
$$LC c_0 p_0 + C_1 p_1 + \cdots + C_m p_m = 0$$

 $WTS \exists (c_0 - \cdots c_m) \neq (0, \cdots, 0)$
List sys of equations that if $i < j$, degree $(p_i) < degree (p_j)$

$$C_{o}p_{o}'(1) + C_{i}p_{i}'(1) + \cdots + C_{m}p_{m}'(1) = 0$$

$$C_{o}p_{o}^{m}(1) + C_{i}p_{i}^{m}(1) + \cdots + C_{m}p_{m}(1) = 0$$

$$C_{o}p_{o}(1) + C_{i}p_{i}(1) + \cdots + C_{m}p_{m}(1) = 0$$

$$P_{o}'(1)$$
 $P_{o}'(1)$ $P_{m}'(1)$ C_{o} C_{o}

The matrix have m row m column, but I row is all 0, so it is equivalent to matrix of m-1 row and m column. From MATA22, we know such sys of equation has infinite solution, which means $\exists (c_0 \cdots c_m) \neq (0, \cdots, 0)$ where $\sum c_i p_i = 0$ and so $\{p_i\}_{i=0}^m$ is linearly dependent.

Problem 6 a) 5: T(d)=0 so des and s # ∀ v, w ∈ S relF $T(\vec{v}+\vec{w}) = T(\vec{v}+T(\vec{w}) - \vec{V}+\vec{w}$ so $\vec{V}+\vec{w} \in V$ [[Inearlty] T(rv) = r T(v) = rv so rv e/ [[Inearty] So 5 passed subspace test and is a subspace T(0)=0=-0 so 0 EA and A top YVWEA VELF $T(\overrightarrow{v}+\overrightarrow{w}) = T(\overrightarrow{v}) + T(\overrightarrow{w}) = -\overrightarrow{v} + -\overrightarrow{w} = -(\overrightarrow{v}+\overrightarrow{w})$ so $\overrightarrow{v}+\overrightarrow{w} \in A$ $T(r\vec{v}) = rT(\vec{v}) = r(-\vec{v}) = -(r\vec{v})$ so $r\vec{v} \in A$ [both Inearty] So A passes supspace test and is a subspace also b) Let ve/ Choose $\vec{u} = \vec{V} + \vec{T}(\vec{v})$, then $\vec{u} \in S$ since $\vec{T}(\vec{u}) = \vec{T}(\vec{V} + \vec{T}(\vec{V}))$ = T (V) + T (T(V)) = V + T(V) = U $\vec{W} = \vec{V} - 7(\vec{v})$ then $\vec{W} \in A$ shie $7(\vec{w}) \cdot 7(\vec{v} - 7(\vec{v}))$ = T(V) - T(T(V)) - - V - (- T(V)) =-V+T(V)=-W Since S.A are s.s, choose $\vec{x} = \vec{\pm}\vec{u}$, $\vec{y} = \vec{\pm}\vec{w}$, and $\vec{x} \in S$, $\vec{y} \in A$ $\vec{x} + \vec{y} = \frac{1}{2} (\vec{v} + T(\vec{v}) + \frac{1}{2} (\vec{v} - T(\vec{v})) = \frac{1}{2} (2\vec{v} + 2T(\vec{v})) = \vec{v}$ Since $1\neq -1$, $-\vec{v}\neq\vec{v}$, and there is no $\vec{v}\in V$ s.t $\vec{v}\in S$ $\land \vec{v}\in A$

So x+V=V is unique

70010

() Define T on two large to be reflection of the knot on one axis. Define $SY = \{ K \in K \mid T(K) = K \}$ SY then describe all tricolouring that are symmetric

Remark, T is linear since 2 symmetric knot layered on top is still symmetric

And SY is a subspace from part (a)

SY is clearly a finite subspace of all tricolouring. so it is also a finite vector space over finite Held.

By same reason from GHW2 Problem 4.3, |SY| = |IF|^m = 3^m for some m > 1

d) Define T_2 to be reflection over some axis as T, but then reflect another time at axis perpendicular to the axis used in T, then $DSY = \{ T \in K \mid T_2(T) = -K \}$ is similar to A from part A.

By part b, it means every $\overline{k} \in K$ can be described as a unique sum of element from SY and DSY.

Or, every tricolourly can be represented as 2 other tricolourly, where 1 is symmetric, and 1 is not symmetric, but looks the same after 2 perpendicular reflections.