GR5702 Exploratory Data Analysis and Visualization

Prof. Joyce Robbins

Today's Agenda (1/26/17)

- Announcements
 - Final Project
 - Homework http://flowingdata.com
 - DataCamp http://datacamp.com
- Grammar of Graphics / ggplot2

One dimensional data

- individual desirable distribution / group
- range
- summary statistics
- skewness
- frequency
- gaps
- outliers

stripchart(OrchardSprays)

Strip charts

Strip plot (ggplot2)

```
library(ggplot2)
x <- rnorm(100)
ggplot(data.frame(x), aes(x, y = factor("N(0,1)"))) +
    geom_point(size = 4, color = "green")</pre>
```


Strip plot (ggplot2) w/ alpha

```
ggplot(data.frame(x), aes(x, y = factor("N(0,1)"))) +
    geom_point(size = 4, color = "green", alpha = .2)
```


Strip plot (ggplot2) w/ alpha, shape, stroke

```
ggplot(data.frame(x), aes(x, y = factor("N(0,1)"))) +
    geom_point(size = 4, color = "green", alpha = .2, shape
    stroke = 2)
```


Strip plot (ggplot2) w/ jitter

Strip plot (ggplot2) w/ jitter, alpha, fill, rug

Dot plot

```
x <- rnorm(100)
ggplot(data.frame(x), aes(x, y = factor("N(0,1)"))) +
    geom_dotplot()</pre>
```

`stat_bindot()` using `bins = 30`. Pick better value wi

Woven rug plot

Woven rug code

Cleveland Dot Plot

see: ClevelandDotPlot.html

Histograms with discrete data

```
n <- rep(1:7, c(5,10,15,20,15,10,5))
hist(n, col = "lightblue", xlab = "right closed")</pre>
```

Histogram of n

hist(n, col = "lightblue", right = FALSE, xlab = "right open

Histogram of n


```
summary(factor(n))
```

```
## 1 2 3 4 5 6 7
## 5 10 15 20 15 10 5
```

Histogram (ggplot2)

```
df <- data.frame(n)
ggplot(df, aes(x = n)) + geom_histogram() + scale_x_conting
## `stat_bin()` using `bins = 30`. Pick better value with</pre>
```


Histograms with discrete data, 5 bins

Histogram

```
ggplot(df, aes(x = GDP)) + geom_histogram() +
    ggtitle ("GDP")
```


`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Families Exhibitions Histogram

Families Exhibitions Histogram

Test Score Data

Fewer bins

Density histogram

Relative Frequency Histogram with unequal bin (or class) widths

Creating a histogram with unequal class widths

Class	Frequency	RelFreq	ClassWidth	Density	
< 5	4435	0.046	5	0.009	
5-9	4072	0.042	5	0.008	
10-14	3999	0.041	5	0.008	
15-19	4977	0.051	5	0.010	
20-24	8316	0.086	5	0.017	
25-34	19317	0.199	10	0.020	
35-44	16380	0.169	10	0.017	
45-54	14077	0.145	10	0.014	
55-59	5467	0.056	5	0.011	
60-64	4148	0.043	5	0.009	
65-74	6350	0.065	10	0.007	
75-84	3781	0.039	10	0.004	
85+	1767	0.018	15	0.001	

Cumulative Frequency Histogram

Drawing a Cumulative Frequency Histogram

Class	Freq	CumulativeFreq
300-400		
400-500	4	5
500-600	5	10
600-700	4	14
700-800	4	18

Cumulative Frequency Histogram

Morningside Heights 1-bedroom apt. prices (in 1000s)

```
prices <- c(379, 425, 450, 450, 499, 529, 535, 535, 545, 599, 665, 675, 699, 699, 725, 725, 745, 799)
```

Stem and leaf plot

```
signif(prices, 2)
   [1] 380 420 450 450 500 530 540 540 540 600 660 680 700
##
## [18] 800
stem(prices)
##
     The decimal point is 2 digit(s) to the right of the |
##
##
     3 | 8
##
##
        355
     5 | 03445
##
         078
##
     7 | 00335
##
     8 | 0
##
```

Five number summary

- 1. minimum
- 2. 1st quartile
- 3. middle number (median)
- 4. 3rd quantile
- 5. maximum

```
quantile(prices)
```

```
## 0% 25% 50% 75% 100%
## 379.0 506.5 572.0 699.0 799.0
```

Quantile Methods

```
q <- matrix(,nrow = 9, ncol = 5)
for (i in 1:9) q[i,] <- quantile(gdp, type = i)
q <- data.frame(q)
colnames(q) = c("min", "Q1", "med", "Q3", "max")</pre>
```

min	Q1	med	Q3	max	
244.1965	1586.780	5583.616	14357.41	105447.1	
244.1965	1586.780	5583.616	14357.41	105447.1	
244.1965	1586.780	5583.616	14342.52	105447.1	
244.1965	1562.097	5557.696	14346.25	105447.1	
244.1965	1600.384	5583.616	14353.69	105447.1	
244.1965	1586.780	5583.616	14357.41	105447.1	
244.1965	1613.989	5583.616	14349.97	105447.1	
244.1965	1595.850	5583.616	14354.93	105447.1	
244.1965	1596.983	5583.616	14354.62	105447.1	

Box plot

Multiple box plots

