

High Q Linear Controlled Variable Replacement Sheet Capacitor Using Translinear Amplifier 7/10 Sibrai, A., et al, 10/764,914 DEC 22 2006 BATE TRADEN Translinear Amplifier **VDD** C-MOS Switch Capacitor**VCO** *≩R*1 Tr-Amp 1 Vtune Sw 1 Cap 1 varCap*₹R2* Tr-Amp 2Sw 2 Cap 2 Rз Tr-Amp 3Sw 3 Cap 3 $\begin{cases} R_{n-1} \end{cases}$ Tr-Amp n-1Sw n-1 Cap n-1 R_n Tr-Amp nSw n*₹R0* Cap nC-Ref-OutFIG.9 CutOffC-Hi CtlCutOff Hi

FIG. 10b