The distributive property states that a(b+c)=ab+ac, for all $a,b,c\in\mathbb{R}$.

The equivalence class of a is [a].

The set A is defined to be $\{1, 2, 3\}$.

The movie tickets costs \$11.50.

$$2\left(\frac{1}{x^2 - 1}\right)$$

$$2\left[\frac{1}{x^2 - 1}\right]$$

$$2\left\{\frac{1}{x^2 - 1}\right\}$$

$$2\left\langle\frac{1}{x^2 - 1}\right\rangle$$

$$2\left|\frac{1}{x^2 - 1}\right|$$

$$\frac{dy}{dx}\Big|_{x=1}$$

$$\left(\frac{1}{1 + \left(\frac{1}{1+x}\right)}\right)$$

Tables:

	x	1	2	3	4	5
ſ	f(x)	10	11	12	13	14

x	1	2	3	4	5
f(x)	$\frac{1}{2}$	11	12	13	14

Table 1: These values represent the function f(x).

Table 2: The relationship between f and f'.

f(x)	f'(x)
x > 0	The function $f(x)$ is increasing.

Arrays:

$$5x^2 - 9 = x + 3 \tag{1}$$

$$5x^2 - x - 12 = 0 (2)$$

$$5x^{2} - 9 = x + 3$$
$$5x^{2} - x - 12 = 0$$
$$= 12 + x - 5x^{2}$$