GW Data Analysis: China School 2019

Syllabus

This syllabus contains a list of major topics to be covered during the school along with a list of reference material. The aim of the school is to provide hands-on training in some of the main methods used in gravitational wave data analysis for ground and spaced-based detectors. A side-effect will be training in good coding and the use of collaborative tools for code development. The course is divided into 6 main topics, starting from an introductory level and ending at an advanced level.

Reading

- *Textbook*: Swarm intelligence methods for statistical regression, Soumya D. Mohanty, CRC press/Chapman & Hall (2018).
 - We will mainly use Appendix A and C, and Chapters 1, 4, and 5
 - If you are new to probability theory, it is highly recommended that you read
 Appendix A before Topic 3 starts
 - Reading Chapter 1 will help in understanding Topic 4 although not everything is covered in this chapter
 - Chapter 4 and 5 are essential for Topics 5 and 6
- Supplementary textbook:
 - Signal Processing for communications, Prandoni and Vetterli, Chapters 1 through
 - It is not essential to have this book but reading the chapters listed above will help understand the material in Topic 1 better.
- Additional material to be provided during the course

Course Plan

Lecture session	Lab session
	(Tentative; List of exercises likely to be
	adjusted and tuned during the course)
Introduction (1 lecture)	
Overview of Gravitational Wave Astronomy, its current status and future prospects	
1. The importance of data analysis in	 Meet and greet
GW astronomy	2. Logistics
Gravitational wave theory for data	a. Matlab
analysts	b. Textbook
3. Types of astrophysical sources of GWs	c. GitHub
a. Binary inspiral	3. Daily schedule

- b. Burst signals
- c. Continuous wave and stochastic signals
- 4. Gravitational wave detectors
 - a. Ground-based
 - b. Space-based
 - c. Pulsar timing array

Topic 1: Basic signal processing (2 lectures)

Signal processing concepts essential for understanding GW data analysis Recommended reading: Supplementary textbook, Chapters 1 through 5

- 1. Signal: Analog and digital
- 2. Fourier transform
- 3. Filtering
 - a. Convolution
 - b. Windowing
 - c. Linear time invariant systems
 - d. Transfer function and impulse response
 - e. Applications
- 4. Sampling theorem
 - a. Nyquist frequency
 - b. Aliasing
 - c. Anti-aliasing
- 5. Discrete Fourier Transform
 - a. Fast Fourier Transform
- 6. Digital filtering
 - a. FIR and IIR filters
 - b. Filter design
- 7. Geometrical picture
 - a. Vector space of signals
 - b. Basis transformation
 - c. Wavelet basis: Discrete Wavelet Transform
- 8. Time-frequency analysis

- 1. Generate
 - I. Sinusoidal signals
 - II. Sine-Gaussian signals
 - III. Linear and quadratic chirps
 - IV. Frequency modulated carriers
 - V. Amplitude modulated carriers
 - VI. AM-FM modulation
 - VII. Synthesize audio signals in Matlab
- 2. FFT:
 - I. Effect of window choices (Boxcar vs. Hamming) on FFT
 - II. Effect of aliasing
- 3. Basic lowpass, bandpass, and highpass filtering
- 4. Spectrograms

Topic 2: Gravitational Wave Strain Signal (1 lecture) From gravitational wave to the signal recorded by GW detectors

- 1. From GW to Strain (long-wavelength approximation)
 - a. Static detector
 - b. Antenna pattern functions
 - c. Network of static interferometric detectors
 - d. Moving and rigidly rotating detector
- 1. Antenna pattern functions in the detector frame for a 90 degree arm static interferometer
- Strain signal for a circular nonevolving binary in static interferometer
- 3. LISA orbit (rigid approximation)
- 4. LISA strain response (Michelson)

2. From strain to detector response	5. LISA strain response with Doppler	
·	shift	
Topic 3: Noise (1 lecture)		
Basic concepts in the mathematical theory of noise		
Recommended reading: Appendix A of Textbook		
 Random variables 	Generate noisy data containing	
2. Probability theory	signals from Topic 1 lab	
 a. Single random variable 	2. Use filtering to generate colored	
b. Multiple random variables	Gaussian noise	
3. Mathematical description of noise	3. Output of simple pendulum transfer	
a. Wide-sense stationarity	function to WGN input	
b. Gaussian noise	4. Generate colored noise with LIGO	
c. Power spectral density	design sensitivity	
i. White noise	5. Whiten noise floor of LIGO data	
ii. Colored noise	6. Notch filtering of line noise from	
4. Wiener-Khinchin theorem	whitened LIGO data	
a. Coloring		
b. Whitening		
5. Noise in GW detectors		
a. Sensitivity curves		
b. Technical noise		
i. Line noise		
ii. Glitches		

Topic 4: Detection and estimation of signals in noise (Chapter 1 of textbook) (2 lectures)

Fundamental concepts behind the techniques used for extracting GW signals from noisy detector data

1. Estimation

- a. Maximum Likelihood Estimation (MLE)
- b. MLE for Gaussian noise: Least-squares

iii. Non-stationarity

c. Cramer-Rao lower bound on estimation error

2. Detection

- a. Binary hypotheses
- b. False alarm and false dismissal
- c. Neyman-Pearson criterion and likelihood ratio test (LRT)
- d. Signal-to-noise ratio (SNR)
- e. Composite hypotheses
- f. Generalized Likelihood Ratio Test (GLRT)

- 1. Implement LRT for dc signal in WGN
 - a. Obtain distribution of LR under null and alternative hypotheses
- 2. Implement LRT for sinusoid with known parameters
- 3. Implement GLRT for sinusoid with unknown frequency, amplitude, and phase
- 4. Compares LRT and GLRT for same SNR and False alarm probability
- 5. Quadratic chirp in WGN
 - a. Normalize signal amplitude for a specified SNR
 - b. Make cross-sectional plots of fitness function

- 3. GLRT for Gaussian noise
 - a. Likelihood ratio test for sinusoid
 - GLRT for sinusoid of unknown amplitude, phase, and time of arrival
 - c. Matched filtering: GLRT for unknown time of arrival
- 4. Intrinsic and extrinsic parameters
- 5. The optimization challenge in GW data analysis
- 6. Beyond MLE and GLRT
 - a. Time-frequency analysis
 - b. Regularization
- 7. Issues in the analysis of real data

- 6. Quadratic chirp in simulated LIGO noise
 - a. Inject with specified SNR in colored noise
 - b. Implement LRT
- 7. LRT for LISA White Dwarf Binary in WGN

Topic 5: Particle Swarm Optimization (Chapter 4 & 5)

(1 lecture)

A highly effective technique for optimization over intrinsic parameters in GW data analysis problems

Required reading: Chapter 4 and 5 of textbook

- 1. Gbest PSO
- 2. Lbest PSO

Topic 6: Advanced topics in applications of PSO to GW data analysis problems (1 lecture)

- 1. Binary inspiral detection and estimation in network data
- 2. Tuning strategy

- 1. GLRT using PSO for quadratic chirp in WGN
- 2. GLRT using PSO for quadratic chirp in simulated LIGO noise
- 3. GLRT using PSO for white dwarf binary signal in WGN