

PHYIR2 – Laboratoire de Physique

Laboratoire nº 3 mini-projet

Objectifs d'apprentissage

À l'issue de cette séance de laboratoire les étudiants seront capables :

ightharpoonup de réaliser un diviseur de tension à partir de spécifications : les tensions d'entrée et de sortie, la résistance de charge et les puissances maximales que peuvent dissipées les résistances.

1 Laboratoire nº 3: mini-projet

1.1 Introduction

L'objectif de cette séance est de réaliser, sur base de spécifications, un diviseur de tension qui alimentera une résistance de charge. Au cours de sa réalisation, vous serez amenés à faire des approximations et des compromis. Chacun de vos choix doit être justifié.

1.1.1 Prérequis

Vos notes de cours sur le diviseur de tension.

1.1.2 Objectifs de la séance de laboratoire nº 3

▷ de réaliser un diviseur de tension à partir de spécifications : les tensions d'entrée et de sortie, la résistance de charge et les puissances maximales que peuvent dissipées les résistances.

1.2 Matériel

- ▶ Une alimentation continue.
- ▶ Un jeu de résistances.
- ▷ Des câbles de connexion.
- ▶ Un « breadboard » (une platine d'expérimentation).

1.3 Énoncé du mini-projet

Soit le circuit diviseur de tension ci-dessous connecté à une résistance de charge R_{ch} .

Sur base des spécifications suivantes :

- $\triangleright U_e = 9 V$
- $\triangleright U_s = 3 V$
- $\triangleright R_{ch} = 10, 47$ ou 100 $k\Omega$ (la valeur de R_{ch} vous sera communiquée par votre enseignant)
- $\triangleright P_{max}$ pour chacune des résistances $(R_1, R_2 \text{ et } R_{ch})$ est de 0, 25 W

Choisissez les valeurs des résistances R_1 et R_2 pour obtenir :

- \triangleright une tension de sortie $U_s=3~V$ à vide (lorsque le circuit n'est pas connecté à la résistance de charge R_{ch})
- \triangleright une tension de sortie $U_s = 3 V$, avec une tolérance de 10%, lorsque le circuit est connecté à la résistance de charge R_{ch})

Réalisez votre montage hors-tension et appelez votre enseignant pour justifier vos choix et faire vérifier votre montage avant sa mise sous tension.

1.4 Mesures

Mesurez à l'aide du multimètre, les valeurs de :

- $\triangleright I_1, I_2 \text{ et } I_{ch}$
- $\triangleright U_e$ et U_s

Portez vos mesures dans la feuille de travail Excel que vous avez téléchargé de poési.

1.5 Questions

Expliquez les points suivant dans le rapport :

- \triangleright Justifiez par calcul et à l'aide des lois, théorèmes et principes physiques vus au cours de physique, vos choix pour R_1 et R_2 .
- \triangleright Calculez théoriquement les valeurs des courants I_1 , I_2 , I_{ch} et de la tension U_s . Comparez les aux résultats de vos mesures expérimentales.