

NEW YORK UNIVERSITY

INSTITUTE OF MATHEMATICAL SCIENCES

COPY NO.

IMM-NYU 211
MAY 1954

25 Waverly Place, New York 3, N.Y.

NEW YORK UNIVERSITY
INSTITUTE OF
MATHEMATICAL SCIENCES

A Theoretical Comparison of the Efficiencies of Two Classical Methods and a Monte Carlo Method for Computing One Component of the Solution of a Set of Linear Algebraic Equations

J. H. CURTISS

Research in the Field of Probability,
Statistics, and Numerical Analysis
(Monte Carlo Method)

TECHNICAL REPORT NO. III

CONTRACT NO. DA-30-069-ORD-1257
RAD PROJECT NO. TB2-0001 (1089)

PREPARED UNDER THE SPONSORSHIP OF
ARMY OFFICE OF ORDNANCE RESEARCH

RECEIVED
INSTITUTE OF MATHEMATICAL SCIENCES LIBRARY
25 Waverly Place, New York 3, N.Y.
MAY 1954

IMM-NYU 211
May 1954

A THEORETICAL COMPARISON OF THE EFFICIENCIES
OF TWO CLASSICAL METHODS AND A MONTE CARLO METHOD
FOR COMPUTING ONE COMPONENT OF THE SOLUTION
OF A SET OF LINEAR ALGEBRAIC EQUATIONS

by

J. H. Curtiss

Based on an invited address given on March 17, 1954
at a Symposium on Monte Carlo Methods sponsored by
the Aeronautical Research Laboratory, Wright Air
Development Center, and conducted by the Statistical
Laboratory, University of Florida, at Gainesville,
Florida.

Contract No. DA-30-069-ORD-1257
RAD Project No. TB2-0001 (1089)

Research in the field of Probability,
Statistics, and Numerical Analysis
(Monte Carlo Method)

Technical Report No. 3

This report represents results obtained at the
Institute of Mathematical Sciences, New York University,
under the sponsorship of the Army Office of Ordnance
Research.

New York, 1954

1920-1921
1921-1922
1922-1923
1923-1924
1924-1925
1925-1926
1926-1927
1927-1928
1928-1929
1929-1930
1930-1931
1931-1932
1932-1933
1933-1934
1934-1935
1935-1936
1936-1937
1937-1938
1938-1939
1939-1940
1940-1941
1941-1942
1942-1943
1943-1944
1944-1945
1945-1946
1946-1947
1947-1948
1948-1949
1949-1950
1950-1951
1951-1952
1952-1953
1953-1954
1954-1955
1955-1956
1956-1957
1957-1958
1958-1959
1959-1960
1960-1961
1961-1962
1962-1963
1963-1964
1964-1965
1965-1966
1966-1967
1967-1968
1968-1969
1969-1970
1970-1971
1971-1972
1972-1973
1973-1974
1974-1975
1975-1976
1976-1977
1977-1978
1978-1979
1979-1980
1980-1981
1981-1982
1982-1983
1983-1984
1984-1985
1985-1986
1986-1987
1987-1988
1988-1989
1989-1990
1990-1991
1991-1992
1992-1993
1993-1994
1994-1995
1995-1996
1996-1997
1997-1998
1998-1999
1999-2000
2000-2001
2001-2002
2002-2003
2003-2004
2004-2005
2005-2006
2006-2007
2007-2008
2008-2009
2009-2010
2010-2011
2011-2012
2012-2013
2013-2014
2014-2015
2015-2016
2016-2017
2017-2018
2018-2019
2019-2020
2020-2021
2021-2022
2022-2023
2023-2024
2024-2025
2025-2026
2026-2027
2027-2028
2028-2029
2029-2030
2030-2031
2031-2032
2032-2033
2033-2034
2034-2035
2035-2036
2036-2037
2037-2038
2038-2039
2039-2040
2040-2041
2041-2042
2042-2043
2043-2044
2044-2045
2045-2046
2046-2047
2047-2048
2048-2049
2049-2050
2050-2051
2051-2052
2052-2053
2053-2054
2054-2055
2055-2056
2056-2057
2057-2058
2058-2059
2059-2060
2060-2061
2061-2062
2062-2063
2063-2064
2064-2065
2065-2066
2066-2067
2067-2068
2068-2069
2069-2070
2070-2071
2071-2072
2072-2073
2073-2074
2074-2075
2075-2076
2076-2077
2077-2078
2078-2079
2079-2080
2080-2081
2081-2082
2082-2083
2083-2084
2084-2085
2085-2086
2086-2087
2087-2088
2088-2089
2089-2090
2090-2091
2091-2092
2092-2093
2093-2094
2094-2095
2095-2096
2096-2097
2097-2098
2098-2099
2099-20100
20100-20101
20101-20102
20102-20103
20103-20104
20104-20105
20105-20106
20106-20107
20107-20108
20108-20109
20109-20110
20110-20111
20111-20112
20112-20113
20113-20114
20114-20115
20115-20116
20116-20117
20117-20118
20118-20119
20119-20120
20120-20121
20121-20122
20122-20123
20123-20124
20124-20125
20125-20126
20126-20127
20127-20128
20128-20129
20129-20130
20130-20131
20131-20132
20132-20133
20133-20134
20134-20135
20135-20136
20136-20137
20137-20138
20138-20139
20139-20140
20140-20141
20141-20142
20142-20143
20143-20144
20144-20145
20145-20146
20146-20147
20147-20148
20148-20149
20149-20150
20150-20151
20151-20152
20152-20153
20153-20154
20154-20155
20155-20156
20156-20157
20157-20158
20158-20159
20159-20160
20160-20161
20161-20162
20162-20163
20163-20164
20164-20165
20165-20166
20166-20167
20167-20168
20168-20169
20169-20170
20170-20171
20171-20172
20172-20173
20173-20174
20174-20175
20175-20176
20176-20177
20177-20178
20178-20179
20179-20180
20180-20181
20181-20182
20182-20183
20183-20184
20184-20185
20185-20186
20186-20187
20187-20188
20188-20189
20189-20190
20190-20191
20191-20192
20192-20193
20193-20194
20194-20195
20195-20196
20196-20197
20197-20198
20198-20199
20199-20200
20200-20201
20201-20202
20202-20203
20203-20204
20204-20205
20205-20206
20206-20207
20207-20208
20208-20209
20209-20210
20210-20211
20211-20212
20212-20213
20213-20214
20214-20215
20215-20216
20216-20217
20217-20218
20218-20219
20219-20220
20220-20221
20221-20222
20222-20223
20223-20224
20224-20225
20225-20226
20226-20227
20227-20228
20228-20229
20229-20230
20230-20231
20231-20232
20232-20233
20233-20234
20234-20235
20235-20236
20236-20237
20237-20238
20238-20239
20239-20240
20240-20241
20241-20242
20242-20243
20243-20244
20244-20245
20245-20246
20246-20247
20247-20248
20248-20249
20249-20250
20250-20251
20251-20252
20252-20253
20253-20254
20254-20255
20255-20256
20256-20257
20257-20258
20258-20259
20259-20260
20260-20261
20261-20262
20262-20263
20263-20264
20264-20265
20265-20266
20266-20267
20267-20268
20268-20269
20269-20270
20270-20271
20271-20272
20272-20273
20273-20274
20274-20275
20275-20276
20276-20277
20277-20278
20278-20279
20279-20280
20280-20281
20281-20282
20282-20283
20283-20284
20284-20285
20285-20286
20286-20287
20287-20288
20288-20289
20289-20290
20290-20291
20291-20292
20292-20293
20293-20294
20294-20295
20295-20296
20296-20297
20297-20298
20298-20299
20299-202100
202100-202101
202101-202102
202102-202103
202103-202104
202104-202105
202105-202106
202106-202107
202107-202108
202108-202109
202109-202110
202110-202111
202111-202112
202112-202113
202113-202114
202114-202115
202115-202116
202116-202117
202117-202118
202118-202119
202119-202120
202120-202121
202121-202122
202122-202123
202123-202124
202124-202125
202125-202126
202126-202127
202127-202128
202128-202129
202129-202130
202130-202131
202131-202132
202132-202133
202133-202134
202134-202135
202135-202136
202136-202137
202137-202138
202138-202139
202139-202140
202140-202141
202141-202142
202142-202143
202143-202144
202144-202145
202145-202146
202146-202147
202147-202148
202148-202149
202149-202150
202150-202151
202151-202152
202152-202153
202153-202154
202154-202155
202155-202156
202156-202157
202157-202158
202158-202159
202159-202160
202160-202161
202161-202162
202162-202163
202163-202164
202164-202165
202165-202166
202166-202167
202167-202168
202168-202169
202169-202170
202170-202171
202171-202172
202172-202173
202173-202174
202174-202175
202175-202176
202176-202177
202177-202178
202178-202179
202179-202180
202180-202181
202181-202182
202182-202183
202183-202184
202184-202185
202185-202186
202186-202187
202187-202188
202188-202189
202189-202190
202190-202191
202191-202192
202192-202193
202193-202194
202194-202195
202195-202196
202196-202197
202197-202198
202198-202199
202199-202200
202200-202201
202201-202202
202202-202203
202203-202204
202204-202205
202205-202206
202206-202207
202207-202208
202208-202209
202209-202210
202210-202211
202211-202212
202212-202213
202213-202214
202214-202215
202215-202216
202216-202217
202217-202218
202218-202219
202219-202220
202220-202221
202221-202222
202222-202223
202223-202224
202224-202225
202225-202226
202226-202227
202227-202228
202228-202229
202229-202230
202230-202231
202231-202232
202232-202233
202233-202234
202234-202235
202235-202236
202236-202237
202237-202238
202238-202239
202239-202240
202240-202241
202241-202242
202242-202243
202243-202244
202244-202245
202245-202246
202246-202247
202247-202248
202248-202249
202249-202250
202250-202251
202251-202252
202252-202253
202253-202254
202254-202255
202255-202256
202256-202257
202257-202258
202258-202259
202259-202260
202260-202261
202261-202262
202262-202263
202263-202264
202264-202265
202265-202266
202266-202267
202267-202268
202268-202269
202269-202270
202270-202271
202271-202272
202272-202273
202273-202274
202274-202275
202275-202276
202276-202277
202277-202278
202278-202279
202279-202280
202280-202281
202281-202282
202282-202283
202283-202284
202284-202285
202285-202286
202286-202287
202287-202288
202288-202289
202289-202290
202290-202291
202291-202292
202292-202293
202293-202294
202294-202295
202295-202296
202296-202297
202297-202298
202298-202299
202299-202300
202300-202301
202301-202302
202302-202303
202303-202304
202304-202305
202305-202306
202306-202307
202307-202308
202308-202309
202309-202310
202310-202311
202311-202312
202312-202313
202313-202314
202314-202315
202315-202316
202316-202317
202317-202318
202318-202319
202319-202320
202320-202321
202321-202322
202322-202323
202323-202324
202324-202325
202325-202326
202326-202327
202327-202328
202328-202329
202329-202330
202330-202331
202331-202332
202332-202333
202333-202334
202334-202335
202335-202336
202336-202337
202337-202338
202338-202339
202339-202340
202340-202341
202341-202342
202342-202343
202343-202344
202344-202345
202345-202346
202346-202347
202347-202348
202348-202349
202349-202350
202350-202351
202351-202352
202352-202353
202353-202354
202354-202355
202355-202356
202356-202357
202357-202358
202358-202359
202359-202360
202360-202361
202361-202362
202362-202363
202363-202364
202364-202365
202365-202366
202366-202367
202367-202368
202368-202369
202369-202370
202370-202371
202371-202372
202372-202373
202373-202374
202374-202375
202375-202376
202376-202377
202377-202378
202378-202379
202379-202380
202380-202381
202381-202382
202382-202383
202383-202384
202384-202385
202385-202386
202386-202387
202387-202388
202388-202389
202389-202390
202390-202391
202391-202392
202392-202393
202393-202394
202394-202395
202395-202396
202396-202397
202397-202398
202398-202399
202399-202400
202400-202401
202401-202402
202402-202403
202403-202404
202404-202405
202405-202406
202406-202407
202407-202408
202408-202409
202409-202410
202410-202411
202411-202412
202412-202413
202413-202414
202414-202415
202415-202416
202416-202417
202417-202418
202418-202419
202419-202420
202420-202421
202421-202422
202422-202423
202423-202424
202424-202425
202425-202426
202426-202427
202427-202428
202428-202429
202429-202430
202430-202431
202431-202432
202432-202433
202433-202434
202434-202435
202435-202436
202436-202437
202437-202438
202438-202439
202439-202440
202440-202441
202441-202442
202442-202443
202443-202444
202444-202445
202445-202446
202446-202447
202447-202448
202448-202449
202449-202450
202450-202451
202451-202452
202452-202453
202453-202454
202454-202455
202455-202456
202456-202457
202457-202458
202458-202459
202459-202460
202460-202461
202461-202462
202462-202463
202463-202464
202464-202465
202465-202466
202466-202467
202467-202468
202468-202469
202469-202470
202470-202471
202471-202472
202472-202473
202473-202474
202474-202475
202475-202476
202476-202477
202477-202478
202478-202479
202479-202480
202480-202481
202481-202482
202482-202483
202483-202484
202484-202485
202485-202486
202486-202487
202487-202488
202488-202489
202489-202490
202490-202491
202491-202492
202492-202493
202493-202494
202494-202495
202495-202496
202496-202497
202497-202498
202498-202499
202499-202500
202500-202501
202501-202502
202502-202503
202503-202504
202504-202505
202505-202506
202506-202507
202507-202508
202508-202509
202509-202510
202510-202511
202511-202512
202512-202513
202513-202514
202514-202515
202515-202516
202516-202517
202517-202518
202518-202519
202519-202520
202520-202521
202521-202522
202522-202523
202523-202524
202524-202525
202525-202526
202526-202527
202527-202528
202528-202529
202529-202530
202530-202531
202531-202532
202532-202533
202533-202534
202534-202535
202535-202536
202536-202537
202537-202538
202538-202539
202539-202540
202540-202541
202541-202542
202542-202543
202543-202544
202544-202545
202545-202546
202546-202547
202547-202548
202548-202549
202549-202550
202550-202551
202551-202552
202552-202553
202553-202554
202554-202555
202555-202556
202556-202557
202557-202558
202558-202559
202559-202560
202560-202561
202561-202562
202562-202563
202563-202564
202564-202565
202565-202566
202566-202567
202567-202568
202568-202569
202569-202570
202570-202571
202571-202572
202572-202573
202573-202574
202574-202575
202575-202576
202576-202577
202577-202578
202578-202579
202579-202580
202580-202581
202581-202582
202582-202583
202583-202584
202584-202585
202585-202586
202586-202587
202587-202588
202588-202589
202589-202590
202590-202591
202591-202592
202592-202593
202593-202594
202594-202595
202595-202596
202596-202597
202597-202598
202598-202599
202599-202600
202600-202601
202601-202602
20

ERRATA FOR IMM-NYU 211

- p. 5, line 11. For " $\sum_x^s a_k$," read " $\sum_1^s a_k$ ".
- p. 11, line 10. For "it cannot be singular," read "then $I - H$ cannot be singular".
- p. 13, last line before footnote. For "vector," read "vectors".
- p. 14, formula (2.7). In first line, delete numeral 1 below first plus sign in third member of the equation.
In second line, delete comma and " $N = 1, 2, \dots$ ".
- p. 26, line 2. Number this formula as (3.4).
- p. 27, formula (3.5). Close parentheses after $||H||$ but before exponent 2 in denominator.
- p. 27, line 13. Insert " $P = [|h_{ij}|]$ " before "therefore".
- p. 28, line 1. Delete " $P = [|h_{ij}|]$ ".
- p. 28, formula (3.7). For $||\rho||$, read $||P||$ in last two members of the inequality.
- p. 35, line 13. For "number", read "numbers".
- p. 35, line 5 from bottom. Delete "of".
- p. 38, formula (4.6). For " $2||\sigma||^2$ ", read " $2||\rho||^2$ ".
- p. 38, line 2 and line 3 from bottom. Delete "with high probability (specifically, a probability of 95%)".
- p. 41, line 10. Insert " $i =$ " before " i_o ".
- p. 41, line 11. For "i-th", read " i_o -th".
- p. 41, line 12. For "i-th", read " i_o -th".
- p. 41, line 17. For "element", read "component".

10. $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 11. $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 12. $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

1. *Leucosia* *leucostoma* *lutea* *luteola*

ERRATA FOR IMM-NYU 211 (cont.)

- p. 42, line 10 ff. Delete paragraph beginning "Now the key..."
- p. 42, line 15. Insert "from formulas (5.1), (5.2), and (5.3)" before "that".
- p. 44, Note (c). Change " 10^{-10} " to " 10^{10} " in second line.
- p. 48, formula (6.4). Insert " ξ_N " after " H_O ".
- p. 54, line 3. In third member of inequality, change " H_O^{N-1} " to " $H_O^{s^N-1}$ ".

A THEORETICAL COMPARISON OF THE EFFICIENCIES
OF TWO CLASSICAL METHODS AND A MONTE CARLO METHOD
FOR COMPUTING ONE COMPONENT OF THE SOLUTION
OF A SET OF LINEAR ALGEBRAIC EQUATIONS

J. H. Curtiss

Summary. In this paper a basis is established for a theoretical comparison of the amount of work required by three widely different methods of calculating (to a given accuracy) one component of the solution of a set of simultaneous linear algebraic equations. The equations are assumed to be in the form $\xi = H\xi + \gamma$, where γ is a given n -dimensional vector and H is a given $n \times n$ real matrix. The amount of work is measured by the number of multiplications required under the most unfavorable conditions. The three methods are (a) the Gauss elimination method, (b) the particular stationary linear iterative method defined by the recursion formula $\xi_{N+1} = H\xi_N + \gamma$, $N = 0, 1, 2, \dots$, and (c) a Monte Carlo method which consists essentially of a statistical process for estimating the iterates of H . The amount of work required by the first method is proportional to n^3 , where n is the order of the matrix H . The amount of work required by the second method to achieve a predetermined accuracy is given by an expression of the form $kn^2 + n$, where k is ordinarily fairly large. The amount

of work required by the Monte Carlo method is given by an expression of the form $n^2 + n + b$, where b is ordinarily a very large number. If no preliminary preparations aimed at reducing b are made, then the amount of work for the Monte Carlo method is given by an expression of the form $n + b$.

The result of this varying dependence on the dimensionality of the problem is that the Monte Carlo method is theoretically more efficient than the other two methods for sufficiently large values of n . The value of n at which one method becomes more efficient than the other depends on the accuracy with which the solution is to be computed.

Upper bounds, which are actually attained in special cases, are derived in this paper for the amount of work required by the iterative and the stochastic methods. From these, break-even points on the range of the dimensionality n are calculated which serve at least as indications of the intervals of values of n which are favorable for each of the three methods. A table in Section 5 gives the favorable numerical intervals of n for various typical specifications of the problem.

A feature of the presentation is the development of a new minimum-variance arrangement of the Monte Carlo method for solving linear equations, which exploits in a

simple way an initial estimate of the solution to reduce variance. The construction of the Monte Carlo method will be found in Section 3. In Section 6, this Monte Carlo arrangement is adapted to the problem of inverting a matrix. Section 6 also contains derivations and comparisons of certain general linear and polynomial iterative methods for matrix inversion.

1. Introduction. Many of the problems of numerical analysis to which Monte Carlo methods have been applied belong to the following general type: A rule is given whereby each one of a set of real or complex numbers a_1, a_2, \dots can be computed. It is required to compute the sum of the series $a_1 + a_2 + \dots$. (The series may be finite or infinite.)

The standard method of stochastic estimation ("Monte Carlo" method) for this type of problem consists in selecting numbers z_k and p_k , $k = 1, 2, \dots$, such that $z_k p_k = a_k$, $p_k \geq 0$, $\sum_k p_k = 1$. Then a random variable J is set up with the probability distribution given by $\Pr(J = k) = p_k$, $k = 1, 2, \dots$. The random variable z_J will obviously have a theoretical mean value equal to the sum of the series $a_1 + a_2 + \dots$. The statistic

$$\bar{z}_v = \frac{z_{J_1} + z_{J_2} + \dots + z_{J_v}}{v}$$

where J_1, J_2, \dots are independent replicas of J , furnishes an estimator of the mean value of z_J (that is, of the solution of the problem) which has various well-known optimum statistical properties.

It is hard for some classically trained numerical analysts to see how Monte Carlo methods can ever be advantageous in such a problem. A somewhat over-simplified

version of their reasoning might go as follows. Let s
 $\sum_1^s a_k$ be chosen so that gives a satisfactory approximation
to the sum of the series. (If the series is finite, let
 s be the number of terms.) Since each observed value of
 z_j conditionally estimates just one of the numbers a_k ,
there will have to be at least as many terms in the sum-
mation for \bar{Z}_y as in $\sum_1^s a_k$. Indeed, because of statistical
fluctuations it will probably be necessary to make very
many more observations on z_j than there are terms in the
finite approximation $\sum_1^s a_k$, and even then, \bar{Z}_y will probably
not be as good as $\sum_1^s a_k$. This means that the count of
additions alone will be very much greater for the stochastic
approximation than for the straightforward method of solu-
tion; and then too, there is the trouble of setting up the
 z_k 's and p_k 's in advance, and of determining stochastically,
over and over again, the value of J to use in the obser-
vations.

The case against this argument can very conveniently
be stated in terms of a specific problem which is funda-
mental to this paper. It is the problem of calculating
the i -th component of the vector $K^{N+1}\theta$, where K denotes
the $2n \times 2n$ matrix $[k_{ij}]$ and θ is the $2n$ -dimensional vector
 (t_1, \dots, t_{2n}) . The i -th element of $K^{N+1}\theta$, which we write
as $[K^{N+1}\theta]_i$, is the sum of $(2n)^{N+1}$ terms of the type
 $k_{i_1 i_2 \dots i_{N+1}} t_{i_{N+1}}$. The stochastic estimation*

*See Curtiss [3]. (The square brackets refer to the
references at the end of the paper.)

is accomplished by selecting numbers z_{ij} and p_{ij} ,
 $i, j = 1, \dots, 2n$, such that $z_{ij}p_{ij} = k_{ij}$, with $p_{ij} \geq 0$,
 $\sum_j p_{ij} = 1$ for all i . Then a family of random variables
 $J_0, J_1, J_2, \dots, J_{N+1}$ is set up in such a way that it repre-
sents a Markov process (or "random walk") with states
(resting places) designated by $1, 2, \dots, 2n$ and with station-
ary transition probabilities. The specification of the
joint probability distribution is accomplished by assigning
an arbitrary distribution to J_0 (but with $\Pr(J_0=i) \neq 0$),
and thereafter using the equations* $\Pr(J_{k+1}=j | J_k=i) = p_{ij}$,
 $i, j = 1, \dots, 2n$. Finally, a random variable

$$Z = Z_{J_0 J_1 \dots J_{N+1}} = z_{J_0 J_1} z_{J_1 J_2} \dots z_{J_N J_{N+1}} t_{J_N + 1}$$

is set up. It is now easily seen from the definition of
mean value in probability theory, that**
 $E(Z | J_0=i) = K^{N+1} e]_i$. We use $(Z_1 + \dots + Z_v)/v$ as the esti-
mator of $K^{N+1} e]_i$, where Z_1, \dots, Z_v denote v independent
determinations of Z .

The various possible values of $k_{i_1 i_2} k_{i_2 i_3} \dots k_{i_N i_{N+1}} t_{i_{N+1}}$
correspond to the values of a_k in the previous more general

* By $\Pr(z|b)$ we mean the conditional probability of the event a , given that the event b has occurred.

** By $E(x|a)$, we mean the mean value of the conditional distribution of the random variable X , given that the event a has occurred.

formulation. Let us think of these possible values as renumbered in a linear and serial order, using a single index k . There will be $s = (2n)^{N+1}$ such numbers. (They may not be all distinct.) Then the $(2n)^{N+1}$ correspondingly renumbered products $p_{i_1 i_2 \dots i_N i_{N+1}}$ play the role of p_1, p_2, \dots, p_s in the previous formulation, and the various possible values of the vector random variable $\underline{J} = (J_0, J_1, \dots, J_{N+1})$ correspond to the values of J in the previous formulation.

It now begins to be evident that our formulation of the general summation problem at the beginning of the section was deceptively over-simplified. In a multi-dimensional summation problem, the following two factors may come into play on the side of a Monte Carlo method of solution:

(a) If the calculation of each a_k is a complicated one, it may be possible to arrange things so that the calculation of each observation on z_j is very much simpler than the calculation of the corresponding term a_j . This will in particular be the case if the calculation of each a_k involves the formation of a continued product, because then part of the work of calculating the product can be sidestepped in the stochastic process by using the multiplicative law of probabilities.

(b) Some of the numbers a_k in the finite approximation to $\sum a_k$ may be very unimportant and need not be represented in the statistical estimator at all. The stochastic estimation process, if properly set up, will automatically take care of this by making the appearance of the representative of a non-essential term a very rare event.

We add here, more or less as an aside, the remark that when the calculation of each particular z_j is much simpler than that of the corresponding a_j , then the problem of the accumulation of round-off errors may not be nearly as serious for the stochastic method as it is in the direct computation.

All of these factors favoring the Monte Carlo method are present in the case of the problem $K^{N+1}e_j$ and in the related problem of solving systems of linear algebraic equations. The factor (a) is usually particularly in evidence in numerical problems of stochastic origin, and indeed it is in such problems that the Monte Carlo Method has had its chief successes. Matrix problems can always be thrown into a form in which they are numerically equivalent to problems with a stochastic pedigree. We shall exploit that fact in the present paper to obtain a favorable environment for the comparisons to be made.

But we cannot conclude this introduction without making a remark which is on the negative side as far as

Monte Carlo methods are concerned. It certainly would seem that whenever Monte Carlo methods appear to advantage in summation problems, factor (b) above must be playing an important role, because otherwise the criticism regarding the necessary number of addition operations required for any reasonable degree of accuracy in the Monte Carlo approach would be valid. But if that is so, why cannot a deterministic method be devised which will ignore the unimportant terms and be even more efficient? The author suspects that what we now need is a more highly developed deterministic theory of quadrature and of linear computation in many dimensions. When this becomes available, the Monte Carlo method may, at least for matrix problems, lose the very modest advantages which will be claimed for it in this paper.

2. The numerical problem and its non-stochastic solution.

Throughout the paper we shall continue to denote matrices by capital letters and their elements by the corresponding lower case letters; thus, for example, $H = [h_{ij}]$. We represent vectors by lower case Greek letters and their components by the corresponding Roman letters; thus for example, $\xi = (x_1, x_2, \dots, x_n)$. We shall also find it convenient occasionally to designate the elements of a matrix by double subscripts affixed to the symbol for the matrix (thus, H_{ij} or $[(I-H)^{-1}H^2]_{ij}$). Furthermore we shall frequently

designate the components of a vector by a similar subscript notation (thus $\xi = (\xi)_1, \xi_2, \dots, \xi_n$). All vectors will be real and n-dimensional and all matrices will have only real elements.

By $\|H\|$ we shall mean $\max_i \sum_j |h_{ij}|$, and by $\|\xi\|$, we shall mean $\max_i |\xi_i|$. It is obvious that $\|H\xi\| \leq \|H\| \|\xi\|$ and that $\|A+B\| \leq \|A\| + \|B\|$. It is well-known* that $\|AB\| \leq \|A\| \|B\|$; therefore, by induction, $\|H^N\| \leq \|H\|^N$.

The numerical problem with which we shall be mainly concerned is that of solving the linear system

$$(2.1) \quad A\xi = \eta,$$

for ξ , where A is a given non-singular $n \times n$ matrix and η is a given vector. We assume that this system has been thrown into the form

$$(2.2) \quad \xi = H\xi + \gamma,$$

where $H = [h_{ij}]$ is an $n \times n$ matrix with the property that

$$(2.3) \quad \|H\| = \max_i \sum_j |h_{ij}| < 1.$$

*See for example Courant and Hilbert [1], p. 16, footnote.

It is beyond the scope of this paper to give an extended discussion of the methods of passing from (2.1) to (2.2), but a few general remarks on the subject are in order at this point. In the first place, it is always theoretically possible to transform the problem represented by (2.1) in this manner. Indeed, let H be any matrix whatsoever with the property (2.3). (For instance, let $H = dI$, where I is the unit matrix and d is a scalar lying between 0 and 1.) It is known that if H satisfies (2.3), it cannot be singular*. Let M be defined by the equation $I - MA = H$. This says that $M = (I-H)A^{-1}$. Therefore M cannot be singular. The system

$$\xi = H\xi + M\eta = (I-MA)\xi + M\eta ,$$

is just the same as the system

$$MA\xi = M\eta ,$$

and since M is non-singular, this system is precisely equivalent (2.1).

But in practice it is not feasible to set up an arbitrary H satisfying (2.3), and then to determine M as

*O. Taussky-Todd, [9].

above. The reason is that the formula $M = (I-H)A^{-1}$ presupposes a knowledge of A^{-1} , and in the presence of this the original problem becomes trivial. Thus it is natural to think of M as being chosen first, the choice being made in such a way that $I - MA = H$ has suitable properties. There are a number of different procedures in the literature of linear computation for arriving at an appropriate choice of M . For example, if A has dominant diagonal - that is, if $|a_{ii}| > \sum_{j \neq i}^n |a_{ij}|$, $i = 1, \dots, n$, - then M can be chosen as the inverse of the principal diagonal matrix whose principal diagonal is that of A . This will obviously insure that $\|H\| < 1$ ^{*}.

There are numerous non-stochastic methods of solving (2.1)^{**}. We shall here restrict our considerations mainly to a class of methods known as linear iterative processes. An effective Monte Carlo method for the problem (2.1) can be based on this type of process, as we presently shall see.

The general stationary linear iterative process for solving (2.1) is arrived at by throwing (2.1) into an equivalent form which has the appearance of (2.2), but with H restricted only by the requirement that its eigenvalues all lie in the unit circle. An initial estimate ξ_0 of the

^{*}Further discussion will be found in any good treatise on numerical analysis which deals with iterative methods of solving linear equations. See for example Householder [7] and Milne [8]. See Forsythe [6] for further references.

^{**} See previous footnote for references.

solution is made, and successive approximations ξ_1, ξ_2, \dots , are then defined by

$$(2.4) \quad \xi_{N+1} = H\xi_N + \gamma, \quad N = 0, 1, 2, \dots .$$

If ξ_∞ denotes the solution of the equations (2.2), then clearly, since $\xi_\infty = H\xi_\infty + \gamma$,

$$\begin{aligned} (2.5) \quad \xi_\infty - \xi_N &= H(\xi_\infty - \xi_{N-1}) \\ &= H^2(\xi_\infty - \xi_{N-1}) \\ &= H^N(\xi_\infty - \xi_0) . \end{aligned}$$

Thus the condition for convergence for any starting vector ξ_0 is that $\lim_{N \rightarrow \infty} H^N = 0$. The well-known necessary and sufficient condition [7] for $\lim_{N \rightarrow \infty} H^N = 0$ is that all the eigenvalues of H should lie in the unit circle, which explains the requirement on H imposed earlier in this paragraph.

But in the present discussion, we go one step beyond this requirement and insist that $\|H\| < 1$. Since $\|H^N\| \leq \|H\|^N$, this condition will certainly insure that $H^N \rightarrow 0$.

For purposes of error analysis* it is advantageous now to introduce the residual vector

*By error in this paper, we shall always mean truncation error or statistical error or both at once. There will be no study of round-off error, nor of the effect of miscellaneous arithmetical mistakes.

$$(2.6) \quad \begin{aligned} \rho_N &= \gamma - (I-H)\xi_N , \\ &= H\xi_N + \gamma - \xi_N = \xi_{N+1} - \xi_N, \quad N = 0, 1, 2, \dots \end{aligned}$$

The vectors ρ_N are of course always computable at any stage in the iterative solution. If $\xi_N \rightarrow \xi_\infty = (I-H)^{-1}\gamma$, then obviously $\rho_N \rightarrow 0$. The converse is also true, because $(I-H)^{-1}\rho_N = \xi_\infty - \xi_N$. Thus ρ_N , or $\|\rho_N\|$, are logical measures of the error in the N -th approximation to the solution. It is to be noted from (2.4) and (2.6) that

$$(2.7) \quad \begin{aligned} \rho_N &= \xi_{N+1} - \xi_N = (H\xi_N + \gamma) - (H\xi_{N-1} + \gamma) \\ &= H(\xi_N - \xi_{N-1}) = H\rho_{N-1} , \quad N = 1, 2, \dots \\ &= \dots = H^N \rho_0 . \end{aligned}$$

From (2.6) and (2.7) it follows that the successive approximations ξ_N generated by (2.4) can theoretically also be generated in the following manner: Select ξ_0 as before, and compute ρ_0 from the definition of residual vector, $\rho_0 = \gamma - (I-H)\xi_0$. Then conduct the iterations by means of the pair of formulas

$$(2.8) \quad \xi_{N+1} = \xi_N + \rho_N , \quad N = 0, 1, \dots ,$$

$$(2.9) \quad \rho_{N+1} = H\rho_N , \quad N = 0, 1, \dots .$$

We note that by back substitution, we find that

$$(2.10) \quad \xi_{N+1} = \xi_0 + \rho_0 + \rho_1 + \dots + \rho_N = \xi_0 + (I + H + \dots + H^N) \rho_0 .$$

In actual practice, the customary running check on the accuracy of the solution consists in computing $\|\rho_N\|$ from time to time to see how small it is. The iterations are stopped when $\|\rho_N\|$ reaches a predetermined order of smallness. If (2.4) were used for the iterations, the computation of ρ_N would be done by using the formula $\rho_N = \xi_{N+1} - \xi_N$. If (2.8) and (2.9) were to be used, it would be advisable to compute test values of $\|\rho_N\|$ from the definition of ρ_N (that is, from the formula $\rho_N = \gamma - (I-H)\xi_N$), rather than to accept the values of $\|\rho_N\|$ given by (2.9). We shall come back to this point in a moment.

An a priori truncation error analysis, made with the purpose of estimating the number of iterations which will be required to achieve a given accuracy, can be conducted either in terms of ρ_N or in terms of the error vector $\xi_\infty - \xi_N$. If the size of $\|\rho_N\|$ is to be the criterion, then we use (2.7) to obtain the very simple estimate

$$(2.11) \quad \|\rho_N\| \leq \|H\|^N \|\rho_0\| .$$

But if the deviation of ξ_N from ξ_∞ seems to be a more appropriate or convenient measure of the truncation error, then we

use the fact that $(I-H)^{-1}\rho_0 = \xi_\infty - \xi_0$. Substituting this into (2.5), we find that

$$(2.12) \quad \xi_\infty - \xi_N = H^N(I-H)^{-1}\rho_0.$$

Since $(I-H)^{-1} = I + H + H^2 + \dots$, it follows that
 $\| (I-H)^{-1} \| \leq \| I \| + \| H \| + \| H \|^2 + \dots = (1 - \| H \|)^{-1}$. Therefore

$$(2.13) \quad \| \xi_\infty - \xi_N \| \leq \frac{\| H \|^N}{1 - \| H \|} \| \rho_0 \|.$$

It is perhaps worthwhile to point out here, by way of an aside, that the inequalities (2.11) and (2.13) hold for any one of the various matrix and vector norms in common use*, and not just for the norm $\| H \| = \max_i \sum_j |h_{ij}|$. We are using this particular norm here because of a special application it has to the Monte Carlo method, which will be brought out in the next section.

The iterative formulas (2.8) and (2.9) are (so to speak) homogeneous, and therefore look easier to use than (2.4). But (2.8) and (2.9) have the great disadvantage of being not self-correcting in case a mistake is made at one stage, whereas (2.4) does have this property. Suppose for example that for

*See Householder [7], pp. 38-44.

some N , p_{N+1} is mistakenly computed as a zero vector in using (2.9). Then since all subsequent vectors p_N will equal zero, it is obvious from (2.10) that ξ_N will be irretrievably wrong. But if a mistake is made in computing ξ_{N+1} by (2.4), the subsequent effect is like starting over again with another ξ_0 .

Therefore we are not proposing (2.8) and (2.9) as a practical substitute for (2.4) for a non-stochastic numerical solution of the problem $\xi = H\xi + \gamma$. Our real purpose in introducing the alternative iteration formulas was to develop the representation of ξ_N given by formula (2.10). This representation seems to be an advantageous one upon which to construct a Monte Carlo solution, as we shall see in the next section.

It is not without interest, however, to point out that if the amount of work involved in a computing job is measured in any sensible way, it theoretically requires no more work to use (2.8) and (2.9) up to a predetermined value of N than to use (2.4). This assumes that check values of p_N will not have to be computed from the definition of residual vector from time to time in the use of (2.8) and (2.9). In this paper, we shall measure amount of work by merely counting up the number of multiplications required under the worst conditions, assuming no zero or unit elements. Additions and subtractions will be ignored. A division or reciprocation will count as a single multiplication. To arrive at ξ_N by (2.4), starting with ξ_0 , requires n^2 multiplications per iteration, or Nn^2 in all. To arrive

at ξ_N by (2.8) and (2.9) without computing any intermediate or final check values of ρ_N takes n^2 multiplications for ρ_o , and thereafter $(N-1)n^2$ multiplications for each iterative determination of ρ_N . So once again the count is Nn^2 .

Actually, in later sections we are going to set up an error analysis which implies that ρ_o will always have to be computed. The use of (2.4) will be tacitly assumed, so n^2 extra multiplications will have to be added to the total count.

3. Stochastic solution of the problems. It should be apparent from the foregoing section that even if one restricts oneself to the class of stationary linear iterative processes, there is literally an uncountably infinite number of methods for solving the problem $A\xi = \eta$, corresponding to the different possible choices of H or N . An even more disconcerting fact than this was implicit in the discussion in the foregoing section. It can be expressed in the form of a theorem: "Given any one way of solving $A\xi = \eta$, there is always a much better way." For given any one H , a happier choice of H from the standpoint of the error analyses given by (2.11) and (2.12) always exists.

Under such circumstances it is evident that some strict ground rules are required if meaningful comparisons are to be made between methods. This statement applies even to comparisons within very special classes of classical methods, and it is especially relevant when an utterly unorthodox method such as the Monte Carlo Method is to be brought into the picture.

We propose then to adhere to the following set of rules:

(1) It will be assumed that the problem is given in the form $\xi = H\xi + \gamma$, with $\|H\| < 1$.

(2) The primary comparison will be between a Monte Carlo Method for solving $\xi = H\xi + \gamma$ and a stationary linear iterative method of the type described in the preceding section. Both methods will be based on the particular H given in (1). The linear iterative method will be defined by the recursion relations $\xi_{N+1} = H\xi_N + \gamma$, $N = 0, 1, \dots$, or alternatively, by the formula

$$(3.1) \quad \xi_N = \xi_0 + (I + H + \dots + H^{N-1})\rho_0 ,$$

where ξ_0 is the initial estimate and ρ_0 is the initial residual vector (see equation 2.10). The Monte Carlo Method will consist in effect of a statistical estimation of

$$(3.2) \quad \xi_\infty = \xi_0 + (I + H + H^2 + \dots) \rho_0 ,$$

using the same H , same ξ_0 , and same ρ_0 as in (3.1).

(3) No speculation will be permitted as to the existence of a better H on which to base either the stochastic or the non-stochastic method.

(4) The measure of approximation used in the case of the iterative method will be $\|\xi_\infty - \xi_N\|$. The measure of approximation used in the stochastic method will be $|\xi_\infty]_i - \bar{z}_v|$,

where $\xi_{\infty i}$ denotes the i -th component of the solution vector ξ_{∞} , and \bar{Z}_v is its statistical estimator, based on a sample of size v .

(5) To furnish some contact with the large family of alternative methods of solving $\xi = H\xi + \eta$, a simple direct method of solution will be brought into the comparison. For simplicity, it will be assumed that this direct method gives the exact solution. Round-off error will be ignored. The direct method which we select is the Gauss Elimination method, because for present purposes it seems to be as good as any other and better than most.

(6) As previously stated in Section 2, the amount of work required for a computation will be measured only by the number of multiplications required in the worst cases, counting a reciprocation or division as one multiplication. In counting multiplications, the possibility of unit or zero factors is not taken into account.

(7) It will be assumed that the problem is to find only one component of the solution of $\xi = H\xi + \gamma$.

It is recognized freely that the last restriction on the comparison is a strange one. It is made because the question of efficient Monte Carlo estimation of all components of the solution simultaneously has not yet been adequately investigated. Of course, separate statistically independent estimations can be made for each of the n components of the solution. This would multiply the measure of work which we

shall derive for the Monte Carlo method^{*} by a factor of n . At the same time, for a given sample size v , the probability that all estimations fall within preassigned limits of error, will be smaller than it is for the estimation of a single component^{**}. Therefore v should be correspondingly increased. But it is almost surely inefficient to use separate independent estimators for each component of the solution. It seems intuitively clear that data obtained in the course of estimating one component should be used again for other components^{***}.

With these preliminary comments out of the way, we proceed to set up the Monte Carlo estimation of $\xi_{\infty}]_i$.

The standard method of estimating $K^{N+1}\theta]_i$, where $K = [k_{ij}]$ is a given $2n \times 2n$ matrix and $\theta = (t_1, \dots, t_{2n})$ is a $2n$ -dimensional vector, has already been described in Section 1. Here we recapitulate it briefly. Numbers z_{ij} and p_{ij} , $i, j=1, \dots, 2n$, are chosen such that $z_{ij}p_{ij} = k_{ij}$, with $p_{ij} \geq 0$, $\sum_j p_{ij} = 1$. A Markov process with states $1, 2, \dots, 2n$, and with the matrix $[p_{ij}]$ as its matrix of transition probabilities is set up.

^{*}That is, the measure of the work for the purely stochastic part of the solution. This is represented by the third quantity in the sum on the right side of (4.5), or of (4.6), in Section 4, below.

^{**}The question involved here is that of the distribution of the extreme absolute value of n normally distributed independent random variables with zero means and differing variances.

^{***}The re-use of samples to estimate various components simultaneously is discussed briefly in [4].

Let J_0, J_1, \dots, J be a family of random variables which represent the process, in the sense that $\Pr(J_{k+1}=j|J_k=i) = p_{ij}$, $i, j = 1, \dots, 2n$. The random variable $Z = z_{J_0 J_1} z_{J_1 J_2} \cdots z_{J_N J_{N+1}} t_{J_{N+1}}$ has the property that $E(Z|J_0=i) = K^{N+1}\theta_i$.

Consider now the $2n \times 2n$ matrix

$$(3.3) \quad K = \begin{bmatrix} H & I \\ \vdots & \vdots \\ 0 & I \end{bmatrix},$$

and the vector

$$(3.4) \quad \theta = \begin{bmatrix} 0 \\ \vdots \\ \rho_0 \end{bmatrix},$$

where H is the matrix of the equation $\xi = H\xi + \gamma$, I is the $n \times n$ unit matrix, and ρ_0 is the residual vector corresponding to the initial estimate ξ_0 of the solution of these equations. (That is, $\rho_0 = \gamma - (I-H)\xi_0$.) Then it is easily shown that

$$K^{N+1} = \begin{bmatrix} H^{N+1} & I+H+\dots+H^N \\ \vdots & \vdots \\ 0 & I \end{bmatrix}.$$

Therefore,

$$K^{N+1}\theta = \begin{bmatrix} (I+H+\dots+H^N)\rho_0 \\ \vdots \\ \rho_0 \end{bmatrix}.$$

Our Monte Carlo solution of the equations $\xi = H\xi + \gamma$ consists of statistically estimating the i -th component of this vector $K^{N+1}\theta$, adding this statistical estimate to $\xi_0]_i$, and with reference to (2.10) or (3.1), using this sum to approximate thereby the i -th component of the solution vector ξ_∞ . More specifically, we set up the numbers z_{ij} and p_{ij} for the special matrix K appearing in (3.3). For each sample random walk, represented by a determination of the vector random variable J_0, J_1, \dots, J_{N+1} , made with $J_0 = i$, we compute the statistic

$$\xi_0]_i + Z = \xi_0]_i + z_{J_0 J_1} z_{J_1 J_2} \cdots z_{J_N J_{N+1}} t_{J_{N+1}},$$

in which $t_{J_{N+1}}$ is the J_{N+1} -th component of the vector θ given given by (3.4). The conditional mean value of this statistic, given that $J_0 = i$, is $\xi_0]_i + (I + H + \dots + H^N) p_0]_i$, or $\xi_{N+1}]_i$.

The statistical estimation of ξ_{N+1} is accomplished by taking the average of v independent determinations of the random variable $\xi_0]_i + Z$, which we denote by $\xi_0]_i + Z_1, \xi_0]_i + Z_2, \dots, \xi_0]_i + Z_v$. This average takes the form

$$\bar{Z}_v = \xi_0]_i + \frac{Z_1 + Z_2 + \dots + Z_v}{v}.$$

Of course, \bar{Z}_v directly estimates or approximates $\xi_{N+1}]_i$ and not the solution component $\xi_\infty]_i$. But we now

eliminate the truncation error completely from consideration in the Monte Carlo solution by assuming that N , although finite, is so large that $\|\xi_{\infty} - \xi_{N+1}\|$ is completely negligible. From (2.12) it is obvious that this can always be done. For all practical purposes then, \bar{Z}_v will be an estimator directly of

$$\xi_{\infty}]_i = \lim_{N \rightarrow \infty} K^N \theta]_i = \xi_o]_i + (I + H + H^2 + \dots) \rho_o]_i .$$

This is the i -th component of the vector which appears in (3.2).

We shall now discuss the choice of the numbers z_{ij} and p_{ij} with reference to the special matrix K now under consideration. Obviously it is necessary to choose z_{ij} and p_{ij} so that $z_{ij}p_{ij} = h_{ij}$, $i, j = 1, \dots, n$, and $\sum_{i=1}^n p_{i,i+n} = 1$. Moreover, for $i > n$, $z_{ij}p_{ij} = 1$ if $i = j$ and otherwise $z_{ij}p_{ij} = 0$.

Within these limitations, there are of course an infinite number of possible choices of the numbers z_{ij} and p_{ij} . It seems likely from evidence of various types that an optimum choice, or at least a near-optimum choice, in the present instance consists in letting $p_{ij} = |h_{ij}|$, $i, j = 1, \dots, n$, $p_{ij} = 0$, $i = 1, \dots, n$, $j = n+1, n+2, \dots, n+i-1, n+i+1, \dots, 2n$, $p_{ij} = 0$, $i > n$, $j \neq i$ and $p_{i,i+n} = 1 - \sum_{j=1}^n p_{ij}$, $i = 1, \dots, n$, $p_{ij} = 1$, $i > n$. We must defer a complete discussion of this choice of the number p_{ij} to another paper which is now under preparation.

It is to be noticed that $\sum_{j=1}^n p_{ij} \leq \|H\| < 1$, $i = 1, \dots, n$.

With this choice of the numbers p_{ij} it follows that
 $i, j = 1, \dots, n$,
 $z_{ij} = \pm 1$ and $z_{i,i+n} = 1/p_{i,i+n}$ for $i = 1, \dots, n$. We henceforth
 shall usually drop the subscript on ρ_0 and write $\rho = (r_1, \dots, r_n)$.

Then

$$(3.3) \quad Z = z_{J_0 J_1} z_{J_1 J_2} \cdots z_{J_N J_{N+1}} t_{J_{N+1}}$$

$$= \begin{cases} 0 & , \quad J_{N+1} = 1, 2, \dots, n \\ \frac{r_J}{\frac{p_J}{N^*-1}, \frac{n+J}{N^*-1}} & , \quad J_{N+1} = n+1, \dots, 2n \end{cases}$$

where N^* is the "duration" of the random walk represented by J_0, J_1, \dots ; that is, N^* is the number of times a state in the first n states is visited before any state in the last n states is visited*. (The present set-up of the Markov process makes the last n states play the rôle of absorbing states.)

*

We shall here count in the first state - the state from which the random walk starts - in computing N^* . Thus if 4 non-absorbing states are visited including the starting point and then absorption takes place, then $N^* = 4$, and J_3 is the last one of the J 's taking on one of the values 1, 2, ..., n , and J_4 is equal to $n + J_3$. This convention concerning N^* is adopted so as to conform with the definition given in Curtiss, [3], and so as to simplify later formulas slightly.

It is to be noted at this point that

$$\begin{aligned}|z| &\leq \frac{\|\rho\|}{\min_i p_{i,i+n}} = \frac{\|\rho\|}{1 - \max_i \sum_{j=1}^n p_{ij}} \\&= \frac{\|\rho\|}{1 - \|H\|}.\end{aligned}$$

This means that $E(z^2 | J_0 = i)$ exists and is uniformly bounded for all values of N .

Let v denote the conditional variance of the random variable Z , relative to the hypothesis that $H_0 = i$. This is a measure of dispersion of Z defined by $v = E\{(Z - E(Z))^2 | J_0 = i\} = E(z^2 | J_0 = i) - (\xi_{i_0})_1^2$. It is necessary for later developments to obtain an appraisal of v . The explicit formula for v is known*, but in the present situation a rough method of appraisal which bypasses the formula will give just as good a bound for v as can be obtained from the explicit formula for v .

The rough method is this. Given any random variable X distributed on the interval $(-a, a)$, it obviously follows from the definition of mean value that $E(X^2) \leq E(a^2) = a^2$ and $E(X - E(X))^2 \leq a^2 - [E(X)]^2$. Thus the highest value that the variance of such a random variable can have is a^2 . But if

* See [3], p. 223.

the random variable has a uniform distribution on this interval, direct computation reveals that the variance is only $a^2/3$. If the distribution is somewhat bell-shaped, the variance may be much less, with zero as the greatest lower bound. Therefore, as a rough approximation, we shall in the present instance take the variance to be not greater than $a^2/2$. That is, our appraisal of v will be

$$(3.5) \quad v \leq \frac{1}{2} \frac{\|P\|^2}{(1 - \|H\|^2)} ,$$

where the right side is obtained by referring to (3.4)^{*}.

Another appraisal which will be needed relates to the mean value of the duration N^* . It is known^{**} that

$$E(N^* | J_0 = i) = \sum_{j=1}^n (I + P + P^2 + \dots + P^N)_{ij} .$$

Therefore,

$$\begin{aligned} E(N^* | J_0 = i) &\leq \max_i \sum_{j=1}^n (I + P + P^2 + \dots)_{ij} \\ &\leq \|I\| + \|P\| + \|P\|^2 + \dots \\ &= \frac{1}{1 - \|P\|} , \end{aligned}$$

^{*}If the reader prefers to work with a bound which is one hundred per cent certain not to be exceeded, he will have to comb through the remaining calculations in this paper and replace the factor $1/2$ by unity wherever (3.5) is used. There are enough safety factors in our estimates, insofar as avoiding the favoring of the Monte Carlo method is concerned, so that this ought to be unnecessary.

^{**}See Curtiss [3], p. 226.

where $P = [p_{ij}]$. This formula holds good for any Markov process with absorbing states and with stationary transition probabilities given by a matrix such as P . In the present case, $P = [|h_{ij}|]$, so our upper bound for the mean deviation is

$$(3.6) \quad E(N^* | J_0 = i) \leq \frac{1}{1 - \|H\|} .$$

It should be noted that (3.6) becomes an equality if the sum of the elements of the i -th row of $P = [|h_{ij}|]$ is constant for $i = 1, \dots, n$.

Incidentally, the reason for using the matrix norm $\max_i \sum_j |h_{ij}|$ instead of one of the other norms should now be apparent. The natural appraisals for both v and the mean duration seem to involve this particular norm.

The conditional variance of N^* , given that $J_0 = i$, has the following bound* in the case $N = \infty$:

$$(3.7) \quad \text{Var}(N^* | J_0 = i) \leq \frac{2}{1 - \|\rho\|} - \left\{ 1 + E(N^* | J_0 = i) \right\} E(N^* | J_0 = i) \\ < \frac{2}{1 - \|\rho\|} - \left\{ E(N^* | J_0 = i) \right\}^2 .$$

In view of certain safety factors in this formula, we shall accept the following simpler heuristic appraisal of the variance, obtained by discarding the second term in the third

*See Curtiss [3], p. 226.

member of (3.7) and halving the first term:

$$(3.8) \quad \text{Var } (N^* | J_0 = i) \leq \frac{1}{1 - \|H\|} .$$

Thus our appraisal of the conditional variance of the duration is identical with our appraisal of the conditional mean value of the duration.

In concluding this section, we shall make two general remarks about the Monte Carlo method for solving $\xi = H\xi + \gamma$ developed above.

In the first place, one of the desirable features of any Monte Carlo solution is to achieve an arrangement whereby the more that is known about the solution of the problem in advance, the smaller the variance of the statistical estimator is, with zero variance attained in the presence of full knowledge of the solution. Such an arrangement has been achieved in the present case. If the solution is known in advance, then $\rho_0 = \rho = 0$, and consequently $v = 0$. The inequality (3.5) gives a bound for v which depends on the square of the norm of the zero-th residual vector, and thus the better the initial estimate or guess is, the smaller the variance is*.

In the second place, our Monte Carlo solution has an automatic self-correction feature similar to that of the

* Another minimum variance Monte Carlo solution of the problem $A\xi = \eta$ is presented in Curtiss [3], pp. 227-231. The present arrangement seems to be simpler and somewhat easier to use in practice.

iterative method based on (2.4). If an error is made in computing the Z for any one sample walk, this erroneous Z merely is incorporated into the average of a great many other realizations of the same random variable, and its effect will ordinarily be negligible.

4. The a priori estimation of the required amount of work.

In the fourth of the ground rules stated at the beginning of Section 3, we announced that the measure of approximation to be used in the case of the iterative method would be

$\|\xi_\infty - \xi_N\|$, and in the case of the stochastic method, it would be $|\xi_\infty]_i - \bar{Z}_v|$. We shall now state more explicitly just how we are going to use these measures of approximation.

The general idea is that in each case, the computation is to proceed until the approximate solution is suitably close to the exact solution, and the definition of "suitably close" used in each case will be comparable. Specifically, given a small number $d > 0$, we propose that the iterations in the non-stochastic method shall be carried on until finally $\|\xi_\infty - \xi_N\| < d$, and we propose that the sampling of the Markov process shall be continued until finally $|\xi_\infty]_i - \bar{Z}_v| < d$.

But the vector ξ_∞ is unknown. We must therefore translate our measures of error into terms of the data of the problem and the initial estimate ξ_0 . To achieve a theoretical rather than empirical comparison, we shall restrict ourselves entirely to an a priori error analysis.

The error analysis and consequent appraisal of the amount of work required to achieve a given accuracy, is of necessity carried out very differently in the case of the two methods. In the case of the non-stochastic method, we base the analysis on the inequality (2.13). With an eye on this inequality, we seek the lowest value of N such that

$$\frac{\|H\|^N}{1 - \|H\|} \|\rho\| < d .$$

Taking logarithms of both sides, we find that the required value of N is

$$(4.1) \quad N_0 = 1 + \left[\frac{\log \frac{d}{\|\rho\|} + \log(1 - \|H\|)}{\log \|H\|} \right] ,$$

where the square bracket here means "largest integer in". (The logarithms can be taken to any convenient base, as for example, 10.)

We must therefore carry out N_0 iterations of the recursion formula $\xi_{N+1} = H\xi_N + \gamma$. As pointed out at the end of Section 2, each iteration counts as n^2 multiplications. However, since we have set ourselves the peculiar problem of finding only one component of the solution vector, the last iteration (in which ξ_{N_0} is computed from ξ_{N_0-1}) can be abbreviated to just n multiplications. The formula for N_0 involves $\|\rho\|$, and it seems reasonable to suppose therefore that in using this error

analysis in practice, $\rho = \rho_0$ would always be computed at the outset. This would take n^2 more multiplications. Thus the grand total of the number of multiplications required a priori to achieve the inequality $\|\xi_\infty - \xi_N\| < d$ is

$$(4.2) \quad m = (N_0 - 1)n^2 + n + n^2 \\ = n^2 + n + n^2 \left[\frac{\log \frac{d}{\|\rho\|} + \log(1 - \|H\|)}{\log \|H\|} \right] .$$

We now attack the analogous problem for the stochastic method.

The statistical estimator \bar{Z}_v is given by the formula

$$\bar{Z}_v = \xi_0]_i + \frac{z_1 + z_2 + \dots + z_v}{v},$$

where z_1, z_2, \dots, z_v are v mutually independent determinations of the random variable which appears in the right member of (3.3). The mean value of \bar{Z}_v is $\xi_\infty]_i$ for all practical purposes. It will not be possible to adjust v so as to assure ourselves a priori, given any $d > 0$ however small, that \bar{Z}_v will deviate from its mean value by less than d . We must therefore have recourse to the theory of statistical estimation.

Probably the easiest way to approach the question is to demand that a priori, the probability of a deviation of less than d shall be at or above some predetermined rather high

level. Specifically, we choose a small number p , and require that v shall be taken as the lowest value for which, a priori, the following inequality holds:

$$\Pr(|\xi_{\infty}|_i - \bar{Z}_v| < d) > 1 - 2p .$$

Now \bar{Z}_v is a constant plus the average of v independent, identically distributed random variables, each with a finite variance v . It therefore follows from a well-known result in probability theory called the Central Limit Theorem* that $(\bar{Z}_v - E(\bar{Z}_v))/v_v^{1/2}$ is approximately distributed according to the normal or Gaussian distribution, where v_v denotes the conditional variance of \bar{Z}_v , given that $J_o = i$. The approximation is ordinarily very good for $v > 100$, and in all of our subsequent applications of this theorem we shall be dealing with values of v much greater than this. At worst, the effect of a poor approximation would be merely to deceive us by a few one hundredths as to the value of the probability level p which is really in effect.

The variance of a constant plus a random variable is the same as the variance of the random variable alone. Therefore the variance v_v of \bar{Z}_v is equal to that of the average of v independent determinations of the random variable Z . A

*See e.g. [2], Chap. 17.

familiar formula of statistical theory* then states that $v_{\nu} = v/v$, where as in Section 3, v is the conditional variance of Z , given that $J_0 = i$.

Putting the above facts together, we have:

$$\begin{aligned}
 & \Pr(|\bar{Z}_{\infty}|_i - \bar{Z}_v| < d) \\
 &= \Pr\left(\frac{|E(\bar{Z}_v) - \bar{Z}_v|}{v_v^{1/2}} < \frac{d}{v_v^{1/2}}\right) \\
 &= \Pr\left(\frac{|E(\bar{Z}_v) - \bar{Z}_v|}{v_v^{1/2}} < \frac{dv^{1/2}}{v^{1/2}}\right) \\
 &\stackrel{?}{=} \int_{-dv^{1/2}/v^{1/2}}^{dv^{1/2}/v^{1/2}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \\
 &= 1 - 2 \int_{dv^{1/2}/v^{1/2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt .
 \end{aligned}$$

At this point we shall make an arbitrary decision about the level of certainty $1 - 2p$ which is to be demanded. If $x = 2$, then

$$2 \int_x^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = .0455 .$$

A level of certainty equal to $1 - 0.0455 = .9545$ seems more than adequate for present purposes, in view of various other safety factors which are embodied in our appraisals.

* See e.g. [2], p. 345.

Thus we are seeking the smallest value of v such that

$$\frac{dv^{1/2}}{v^{1/2}} > 2 .$$

This value of v is

$$(4.3) \quad v_0 = \left[\frac{4v}{d^2} \right] + 1 ,$$

where again [] means "largest integer in".

This is the number of independent sample realizations of the Markov process needed to achieve the demanded order of accuracy with a probability of at least 95.45 % .

To estimate the amount of work required to attain this level of accuracy, we must make some further assumptions as to how the Monte Carlo computations will be carried out. From (3.3), we see that each sample will (almost surely) involve computing some one of the numbers $r_i/p_{i,i+n}$, $i = 1, \dots, n$. It seems logical therefore to assume that these quantities will all be calculated in advance. It will require n^2 multiplications to compute p_0 , given ξ_0 , and thereafter it will require n multiplications to get the quotients $r_i/p_{i,i+n}$.

We must now come to an agreement as to how much work is involved in following each random walk J_0, J_1, \dots to absorption. It seems to be not unreasonable to assume that each step before absorption, and the step in which absorption takes place, always

requires the equivalent of one multiplication. Of course, after absorption takes place in one of the states numbered $n+1, n+2, \dots, 2n$, no more computations are required for the particular realization of the Markov process at hand, and a new independent sample is started. In other words, each complete random walk, represented by $J_0 > J_1 > J_2 > \dots > J_{N^*-1} > J_N^* = J_{N^*-1}^* + n$, will require N^* multiplications.

In ascribing to each step the equivalent of one multiplication, we have in mind the fact that to select the value of J_{k+1} , given J_k , a pseudo-random number will presumably be generated and certain comparison operations will have to be performed.

Putting these assumptions together, we find that the total amount of work required, measured in multiplications, is

$$(4.4) \quad n^2 + n + N_1^* + N_2^* + \dots + N_{v_o}^* ,$$

where $N_1^*, \dots, N_{v_o}^*$ are v_o independent determinations of the random variable N^* introduced in Section 3. This is a random variable whose (conditional) mean value is $n^2 + n + v_o E(N^* | J_o = i)$ and whose (conditional) variance is $v_o \text{Var}(N^* | J_o = i)$.

In Section 3 (e.g. 3.7) we arrived at an appraisal of the magnitude of $\text{Var}(N^* | J_o = i)$ which was just the same as our appraisal of the magnitude of $E(N^* | J_o = i)$. Interpreted very broadly, and giving our appraisals more credit for sharpness

than they probably deserve, this means that if the same problem, $\zeta = H\xi + \gamma$, were solved over and over by the Monte Carlo method, the amount of work could be expected to exhibit statistical fluctuations around its mean, of a magnitude as great as something like 2 or 3 times the square root of $v_o E(N^* | J_o = i)$.

Qualitatively speaking, we can state with some assurance that the amount of work required to achieve a given accuracy would vary greatly from trial to trial if the solution by Monte Carlo methods were to be carried out over and over. Due to the effect of the Central Limit Theorem as applied to (4.4) if the Monte Carlo solution were to be carried out over and over again, about half of the time the total amount of work (excluding preliminary preparations) would be less than $v_o E(N^* | J_o = i)$, and about half the time it would be more than this quantity. It would practically never be more than $v_o E(N^* | J_o = i) + 3\{v_o E(N^* | J_o = i)\}^{1/2}$.

These statistical fluctuations of the amount of work constitute just one more obstacle to a comparison between stochastic and non-stochastic methods of solution of linear equations. It seems logical, however, to settle on the mean value of the random variable in (4.4) as the most suitable representative of the amount of work in the stochastic method to use for comparison purposes, and this we shall do.

Our formula for the mean number of multiplications required a priori to assure that $|\xi_{\infty i} - \bar{\zeta}_v| < d$ is thus

$$(4.5) \quad n^2 + n + \left\{ \left[\frac{4v}{d^2} \right] + 1 \right\} E(N^* | J_0 = i).$$

Into this, we substitute the bounds given by (3.5) and (3.6), which are in terms of the data of the problem. We finally arrive at the formula

$$(4.6) \quad \bar{m} = n^2 + n + \frac{1}{1 - \|H\|} \left\{ 1 + \left[\frac{2\|\rho\|^2}{d^2(1 - \|H\|)^2} \right] \right\},$$

which is our basic estimate of the (mean) amount of work required in the Monte Carlo method.

5. Numerical comparisons. It will now be convenient to express the number d (which measures the desired closeness of approximation) as a percentage or fraction of the norm of the initial residual vector $\rho = \rho_0$. That is because $\|\rho\|$ and d appear in our formulas for amount of work only in a ratio. Thus we let

$$d = r \|\rho\|, \quad r > 0.$$

The goal of the non-stochastic iterative method can now be phrased as being to reduce $\|\xi_\infty - \xi_N\|$ until it becomes less than some suitably small multiple r of the largest element (in absolute value) of the initial residual vector. The goal of the stochastic method will be to reduce $|\xi_\infty|_i - \bar{z}_v|$ by repeated sampling until with high probability (specifically, a probability of 95 %), it too becomes less than the same small multiple r of the largest element of $\rho = \rho_0$.

With this agreement, we recapitulate our basic formulas for measuring the amount of work. The upper bound for the amount of work required in the non-stochastic iterative method is

$$(5.1) \quad m = n^2 + n + n^2 \left[\frac{\log r + \log(1-h)}{\log h} \right] ,$$

where $h = \|H\|$.

The upper bound for the mean amount of work required in the stochastic method is

$$(5.2) \quad \bar{m} = n^2 + n + \frac{1}{1-h} \left\{ 1 + \left[\frac{2}{r^2(1-h)^2} \right] \right\} ,$$

In each formula, the square brackets mean "largest integer in".

The quantity in braces in (5.2) represents v_0 , the total number of times the Markov process must be sampled.

Perhaps a more natural formulation of the goals of the iterative method and the Monte Carlo method from the purely theoretical point of view would be obtained if instead of requiring that the inequalities $\|\xi_\infty - \xi_N\| < r\|\rho_0\|$ and $|\xi_\infty|_i - \bar{z}_v | < r\|\rho_0\|$ shall hold (the latter with high probability), we required that the inequalities $\|\xi_\infty - \xi_N\| < r' \|\xi_\infty - \xi_0\|$ and $|\xi_\infty|_i - \bar{z}_v | < r' \|\xi_\infty - \xi_0\|$ shall hold for some specified $r' > 0$. These modified requirements lead to simpler estimates for the total amount of work. Proceeding in the spirit of our previous analysis, we use the relation

$$\|\xi_{\infty} - \xi_0\| = \|(I-H)^{-1} \rho_0\| \leq \frac{\|\rho_0\|}{1-h} ,$$

and rephrase the new requirements as follows:

$$\begin{aligned}\|\xi_{\infty} - \xi_N\| &< r' \frac{\|\rho_0\|}{1-h} , \\ |\xi_{\infty}|_i - \bar{z}_v | &< r' \frac{\|\rho_0\|}{1-h} .\end{aligned}$$

Substituting the right-hand members of these inequalities for d in (4.2) and (4.6) respectively, we get

$$m' = n^2 + n + n^2 \left[\frac{\log r'}{\log h} \right] ,$$

and

$$\bar{m} = n^2 + n + \frac{1}{1-h} \left\{ 1 + \left[\frac{2}{r'^2} \right] \right\} .$$

Of course in practice, $\|\xi_{\infty} - \xi_0\|$ is itself not computable before the solution is known, so the new requirements will always have to be translated into terms of $\|\rho_0\|$ and h , just as they were in the above theoretical error analysis. This essentially reduces the new set of requirements to the old ones, with an intermediate appraisal thrown into the picture. Therefore at the expense of a slight complication in our formulas, we choose to assume that the required degree of approximation is expressed in terms of a multiple of the computable quantity $\|\rho_0\|$ rather than in terms of a multiple of the non-computable quantity $\|\xi_{\infty} - \xi_0\|$.

In addition to the iterative and Monte Carlo methods of solving $\xi = H\xi + \gamma$, we promised in the ground rules in Section 3 that a non-iterative direct method will be brought into the comparison as a sort of standard of reference. The method we propose to consider is the Gauss Elimination Method*. It seems to be the particular direct method best adapted to the peculiar problem to which we have addressed ourselves; namely, that of computing just one component of the solution vector.

To apply it, we might proceed as follows: We are seeking $\xi_{\infty}]_i$, for some fixed i_0 . Permute the columns of $I-H$ and the components of ξ so that the i -th column of $I-H$ becomes the n -th one and the i -th component of ξ becomes the n -th one. Triangularize the (new) matrix $I-H$ as in the first part of the Gauss elimination method, always using leading row elements as pivots. At the end of the triangularization procedure, which requires approximately $n^3/3 + n^2$ multiplications**, the coefficient of the desired element is sitting out in the open, so to speak, at a vertex of a triangular array, with nothing but zeros for the other terms in its row. Of course at the same time γ must be suitably transformed.

It would require only about $(1/2)n^2$ more multiplications now to get the rest of the components of the solution, but for

*See for example Dwyer [5], Section 6.4.

**The exact count depends on the order in which the arithmetic operations are carried out.

present purposes we ignore the fact that a complete solution would lie so near at hand at this point.

The elimination solution, as we said in Section 3, is assumed to be exact. No questions of approximation (which for large matrices in practice will indeed arise because of round-off error) will be considered here.

As indicated above, our formula for the amount of work in the direct solution is then

$$(5.3) \quad m_g = \frac{n^3}{3} + n^2 .$$

Now the key to our whole comparison is that (5.3) is a third degree polynomial in the order n of A and of H , and (5.1) is a second degree polynomial in the order n of A and H , and the term in \bar{m} in (5.2) which represents the strictly stochastic part of the solution is independent of the order of A and H .

It follows that with reasonable values of h and r , the direct method will be more economical for small values of n , the non-stochastic iterative method for intermediate values of n , and the Monte Carlo method for large values of n . The formulas for the break-even points, obtained by equating our estimates for the amount of work, are as follows:

The amount of work for the Gauss elimination method, as estimated by (5.3), is less than that for the stationary linear iterative method, as estimated by (5.1), for values of n in the interval

$$(5.4) \quad 1 \leq n < \frac{3a + (9a^2 + 12)^{1/2}}{2} ,$$

where

$$a = \left[\frac{\log r + \log (1-h)}{\log h} \right] .$$

It is greater than that for either the linear iterative method or the Monte Carlo method for values of n exceeding the right member of (5.4).

The amount of work, as estimated by (5.1), for the stationary linear iterative method is less than the mean amount of work for the Monte Carlo method, as estimated by (5.2), for values of n in the interval

$$(5.5) \quad 1 \leq n < \left(\frac{b}{a} \right)^{1/2} ,$$

where

$$b = \frac{1}{1-h} \left\{ 1 + \left[\frac{2}{r^2(1-h)^2} \right] \right\} .$$

It is greater than the mean amount of work for the Monte Carlo method for values of n exceeding the right member of (5.5).

In the accompanying table, we list the numerical values of these limits, together with some related quantities, for various typical values of r and h . In one case - that in which $h = 9/10$, $r = 1/10$ - the linear iterative method always requires (by our a priori estimates) more multiplications than some one or both

Table I

Favorable ranges of dimensionality for the Gauss elimination method, as determined by a priori analysis.

Note: The problem is to compute only one component of the solution of $\xi = H\xi + \gamma$.

Norm of H and reuse- ure of accuracy required.	$n = \frac{5}{10}, r = \frac{1}{10}$	$n = \frac{5}{10}, r = \frac{1}{100}$	$n = \frac{5}{10}, r = \frac{1}{1000}$	$n = \frac{9}{10}, r = \frac{1}{100}$	$n = \frac{9}{10}, r = \frac{1}{1000}$	$n = \frac{9}{10}, r = \frac{1}{10000}$	$n = \frac{9}{10}, r = \frac{1}{10000}$
Favorable range of dimensionality for Gauss elimination method.	$n \leq 12$	$n \leq 21$	$n \leq 33$	$n \leq 84$	$n \leq 195$	$n \leq 261$	$n \leq 720$
Favorable range of dimensionality for linear iterative method.	$13 \leq n \leq 20$	$22 \leq n \leq 51$	$34 \leq n \leq 1206$	(b)	$196 \leq n \leq 554$	$262 \leq n \leq 794$	$n \geq 721$
Favorable range of dimensionality for Monte Carlo method.	$n \geq 21$	$n \geq 52$	$n \geq 1207$	$n \geq 35$	$n \geq 55$	$n \geq 95$	(c)
Mean number of multiplications required by Monte Carlo method at be- ginning of favora- ble range.	2064	183, 258	17,458, 058	207, 320	20,308, 590	2,022, 996, 330	(c)
Approximate time to perform multipli- cation in row above (a).	3 sec.	4 min.	5 hrs.	4 min.	6 hrs.	563 hrs.	(c)

Notes: (a) Calculated at the rate of one millisecond per multiplication and rounded off to the next higher unit of time.

(b) The linear iterative method is never more favorable than both of the other two methods simultaneously in this case. For $n \leq 68$, it is more favorable than the Monte Carlo method.

For $n \geq 130$ it is more favorable than the elimination method.

(c) The Monte Carlo method does not become more favorable than the iterative method in this case until a ridiculously high dimensionality, of the order of 10^{-10} , is reached. At this dimensionality, it would take 10^{13} years to perform the Monte Carlo calculations.

of the other two methods. (We are referring to the mean amount as usual in the case of the Monte Carlo method.) The break-even dimensionality for the Monte Carlo method was computed in this case by equating (5.1) and (5.3).

It is important to notice that the measure of work for the Monte Carlo method will increase only as n^2 , and not as an^2 , ~~a > 1~~. The term n^2 in (5.2) represents the work required to prepare the vector ρ_0 before the stochastic estimation procedure is begun. If one is willing to content oneself with $\xi_0 = 0$ as the initial estimate, then no multiplications whatever are needed to find $\rho = \rho_0$, and the term n^2 in (5.2) drops out. Under the circumstances, the total mean amount of work required by the Monte Carlo method increases only as the first power of n . If we also decide not to calculate the numbers $r_i/p_{i,i+n}$ in advance, but only as needed in the sampling, then all direct formal dependence of the mean amount of work in the Monte Carlo method on n disappears.

The reader should be warned not to try to check the table for consistency by assuming that two stages of a reduction in the magnitude of $\|\xi_\infty - \xi_N\|$ by an amount $r\|\rho_0\|$, using the approximate solution of $\xi = H\xi + \gamma$ obtained in the first stage as the ξ_0 for the second stage, should theoretically require just the same amount of work as a one-stage reduction in $\|\xi_\infty - \xi_N\|$ by an amount of $r^2\|\rho_0\|$. Let N_0 be the number of iterations required by the first stage. The methods used

to compute the table would place N_o at the smallest value compatible with

$$(5.6) \quad \frac{N_o}{1-h} < r .$$

If N'_o is the number of iterations required to effect a one-stage reduction in $\|\xi_{\infty} - \xi_N\|$ by an amount $r^2 \|\rho_o\|$, the methods used to compute the table would place N'_o at the smallest value compatible with

$$\frac{N'_o}{1-h} < r^2 .$$

This inequality is the same as the following one:

$$\frac{N'_o/2}{1-h} < \frac{r}{(1-h)^{1/2}} .$$

Since $(1-h)^{1/2} < 1$, it follows by comparison with (5.6) that $N'_o/2 < N_o$.

It should also be pointed out that to perform a Monte Carlo approximation in two stages would require that all components of the solution vector must be estimated in the first stage, and not just one component. The reason is that to set up the random variable Z (see (3.3)) for the second stage of estimation, all the components of the initial residual vector for this stage must be available.

6. An analogous comparison for matrix inversion. If the problem is to solve $AX = I$, where A is a given $n \times n$ matrix, a suitable modification of (3.2) on which to construct a Monte Carlo solution is as follows:

$$(6.1) \quad X_{\infty} = A^{-1} = X_0 + (I + H_0 + H_0^2 + \dots) H_0 X_0 ,$$

where X_0 is an initial estimate of A^{-1} and $H_0 = I - X_0 A$. If X_0 is a reasonably good estimate of A^{-1} , then $\|H_0\| < 1$, and the infinite series in (6.1) converges. We assume that $\|H_0\| < 1$ throughout the remainder of this section.

We set up the numbers z_{ij} and p_{ij} in terms of the elements of H_0 exactly as in Section 3. Assuming that we are trying to approximate the (j,k) -th element of X_{∞} , we take as the ρ of formula (3.3), the k -th column of $H_0 X_0$. The statistical estimator will now be

$$\bar{z}_v = \xi_0]_i + \frac{z_1 + z_2 + \dots + z_v}{v} ,$$

where ξ_0 is the i -th column of X_0 .

The stationary linear iterative process which corresponds to (6.1) is given by the recursion formula

$$(6.2) \quad X_{N+1} = H_0 X_N + X_0, \quad N = 0, 1, \dots,$$

where X_N is the N -th approximation to A^{-1} . Obviously .

$$A^{-1} = H_O A^{-1} + X_O, \text{ so}$$

$$A^{-1} - X_N = H_O(A^{-1} - X_N) - 1 = \dots = H_O^N(A^{-1} - X_O),$$

This is the analogue of (2.5). Since $A^{-1} - X_O = (I-H)^{-1}H X_O$, we find that

$$(6.3) \quad A^{-1} - X_N = H_O^N(I-H_O)^{-1}H_O X_O.$$

This equation is the analogue of (2.12).

If we let ξ_N denote the k -th column of X_N , $N = 0, 1, \dots$, then the iterations defined by (6.2) give the following sequence of approximation to ξ_∞ , the k -th column of A^{-1} :

$$(6.4) \quad \xi_{N+1} = H_O N + \xi_O, \quad N = 0, 1, \dots$$

Also, from (6.3),

$$\xi_\infty - \xi_N = H_O^N(I-H_O)^{-1}\rho,$$

where ρ is the k -th column of $H_O X_O$. This equation is formally identical with (2.12). Moreover, from it we find that

$$(6.5) \quad \|\xi_\infty - \xi_N\| \leq \frac{\|H_O\|^N}{1 - \|H_O\|} \|\rho\|,$$

which is the same as (2.13).

If we now define our problem as that of insuring that $\|\xi_\infty - \xi_N\| < d$ in the non-stochastic method, and $|\xi_\infty|_i - \bar{z}_v| < d$ in the stochastic method, where $d > 0$ is preassigned, then the a priori error analyses become precisely the same as those given in Section 4. It requires n^3 multiplications to set up H_o , given X_o , and then n^2 more to find $\rho = H_o$. However, $H\xi_o$ will be used again in the non-stochastic method to pass from ξ_o to ξ_1 . The resulting formula for the total amount of work, including the preparatory work, becomes in the non-stochastic case,

$$(6.6) \quad m = n^3 + n + n^2 \left[\frac{\log r + \log (1-h)}{\log h} \right],$$

where $h = \|H_o\|$ and $r = d/\|\rho\|$. In the stochastic case it becomes

$$(6.7) \quad \bar{m} = n^3 + n^2 + n + \frac{1}{1-h} \left\{ 1 + \left[\frac{2}{r^2(1-h)^2} \right] \right\}.$$

The break-even point for the two methods is given by the formula $\{b/(a-1)\}^{1/2}$, where a and b have the same meaning as in Section 5. For values of n less than this quantity, the non-stochastic method requires less work than the stochastic method, and for values of n greater than this quantity, the stochastic method requires less work than the non-stochastic method.

In comparing these formulas with (5.1), (5.2) and (5.5) it should be remembered that in arriving at the earlier work-estimates (5.1) and (5.2) for the problem $A\xi = \eta$, we assumed that the H and the γ in the equivalent form $\xi = H\xi + \gamma$ were given, and so we did not count in work required to find them. Here we did count in the work required to find our H (denoted here by H_0). (The vector γ is here ξ_0 , and it comes free, so to speak.) The methods have therefore become nominally unfavorable as compared to the Gauss elimination method, which for the present problem (finding one component of the solution where ξ_k is the k -th column of I . of $A\xi = \xi_k$) would require rather less than $n^3/3 + n^2$ multiplications.

We can sidestep the n^3 multiplications required to get H_0 , by taking X_0 as a very simple matrix (maybe even $X_0 = I$ if $\|I-A\| < 1$). But we should state here that the real motivation for using a linear iterative method, or one of the many orthogonalization and gradient methods, for the problem $A\xi = \eta$, or the problem $AX = I$, in place of a straightforward elimination method, usually does not lie in a theoretical count of the number of operations required in the worst cases. It lies in the fact that A may have special properties (e.g., symmetry, or many zeros) which are not suitably exploited by the elimination methods. We are completely ignoring such considerations throughout this study. Another motivation sometimes is presented by the necessity of controlling round-off error. (The Monte Carlo method looks very good from this standpoint.)

It would also be possible to construct a Monte Carlo solution on the following rearrangement of (6.1):

$$X_{\infty} = A^{-1} = (I + H_0 + H_0^2 + \dots) X_0 .$$

The vector form of this equation is

$$\xi_{\infty} = (I + H_0 + H_0^2 + \dots) \xi_0 ,$$

where ξ_{∞} and ξ_0 have the same meaning as before. This procedure would avoid the necessity of calculating $H\xi_0$ in advance, and so the n^2 term would drop out of (6.7). The numbers z_{ij} and p_{ij} , and the random variables J_0, J_1, \dots would be set up as in Section 3, but in the random variable Z , the components of ρ would be replaced by those of ξ_0 , and the estimator $\bar{Z}_v, \xi_0]_i$ would be replaced by zero. With these changes, the estimate (3.5) of the variance of Z becomes

$$v \leq \frac{1}{2} \frac{\|\xi_0\|^2}{(1 - \|H_0\|)^2} ,$$

and formula (4.6) for the mean amount of work (now augmented by the calculation of H_0 but decreased by the amount of work previously necessary to calculate ρ) becomes

$$\bar{m} = n^3 + n + \frac{1}{1 - \|H_0\|} \left\{ 1 + \left[\frac{2\|\xi_0\|^2}{d^2(1 - \|H_0\|)^2} \right] \right\} .$$

The disadvantage of this arrangement is that it does not exploit the fact that v varies with the square of the norm of whatever vector is playing the role of the vector θ of Section 3. Therefore the goodness of the initial estimate is here made use of to reduce the statistical fluctuations and consequent mean amount of work only through the effect it has on the value of $1/(l - \|H_0\|)$.

These remarks suggest a more general comment which is perhaps the key to all the developments in this paper. The statistical part of the amount of work required by the Monte Carlo method to achieve a given accuracy in computing one element of a solution, is independent of the dimensionality of the problem. Other known methods vary as the square and cube of the dimensionality, and those which vary as the square do so with a proportionality constant much larger than unity. Therefore if one uses the Monte Carlo method, one can afford to make substantial preliminary preparations, involving an amount of work which varies even with the square of the dimensionality, if these preparations will substantially cut down the error in the subsequent statistical estimation procedure.

For the sake of completeness, we shall bring into the comparison a certain class of non-linear iterative processes for computing A^{-1} which theoretically converge much faster than the linear iterative process (6.2) for a given initial estimate x_0 . A typical member of the class is defined by the recursion

formula^{*}

$$(6.8) \quad X_{N+1} = (I + H_N^2 + H_N^4 + \dots + H_N^{s-1})X_N, \quad N = 0, 1, 2, \dots,$$

where $H_N = I - X_N A$, and s is some integer not less than 2. If $s = 2$, the formula becomes $S_{N+1} = (2I - X_N A)X_N$, which is mentioned in most textbooks on numerical analysis as an analogue of the Newton-Raphson method for finding the roots of non-linear single equations in scalars^{**}.

The clue to an a priori error analysis for (6.8) lies in observing that

$$\begin{aligned} H_N &= I - X_N A = I - (I + H_{N-1}^2 + H_{N-1}^4 + \dots + H_{N-1}^s)X_{N-1} A \\ &= I - (I + H_{N-1}^2 + \dots + H_{N-1}^s)(I - H_{N-1}) \\ &= H_{N-1}^s . \end{aligned}$$

Therefore by back substitution,

$$H_N = H_0^s .$$

^{*}Our presentation of these polynomial iteration procedures will be slightly different from that usually encountered in the literature, so as to line them up with (6.1) and (6.2). The usual presentation replaces our $H_N = I - X_N A$ by $I - AX_N$. A number of references relating to these methods, as well as to all other methods discussed in this paper, will be found in Forsythe [6].

^{**}See e.g., Householder [7], pp. 56-57.

Now $A^{-1} - X_N = (I - X_N A)A^{-1} = H_N A^{-1}$; and $X_O A = I - H_O$, so $A^{-1} = (I - H_O)^{-1} X_O$. From all this we obtain:

$$A^{-1} - X_N = H_O^{s^N} (I - H_O)^{-1} X_O = H_O^{N-1} (I - H_O)^{-1} H_O X_O .$$

This equation is the analogue of (6.3). From it we get in place of (6.5),

$$(6.9) \quad \| \xi_\infty - \xi_N \| \leq \frac{\| H_O \|^{s^N-1}}{1 - \| H_O \|} \| \rho \| ,$$

and this clearly represents a much faster rate of convergence than (6.5).

The difficulty is that each iteration of (6.8) requires $s n^3$ multiplications. Moreover in the special problem at hand — that of finding only one element of A^{-1} — the method does not appear to good advantage, because there seems to be no way to avoid computing all the elements of the matrix X_N each time, and not just the k -th column, as we did in the linear iterative method. In other words, there seems to be no direct analogue of the vector recursion formula (6.4) in the method given by (6.8).

The formula for the total amount of work required to make the right hand member of (6.9) less than $r \| \rho \|$, where $r > 0$ is preassigned, is as follows:

$$(6.10) \quad \text{sn}^3 + \text{sn}^3 \left[\frac{\log (1 + \frac{\log r + \log (1-h)}{\log h})}{\log s} \right]$$

where as usual, the square brackets means "largest integer in". and $h = \lfloor \frac{9}{10} \rfloor$.

A study of the maximum and minimum of this expression, considered as a function of s , reveals that $s = 2$ or $s = 3$ usually are the most advantageous values of s to use. For example, if $r = 10^{-3}$ and $h = 9/10$, then the formula (6.10) becomes

$$\text{sn}^3 \left(1 + \left[\frac{1.9465}{\log s} \right] \right) .$$

If $s = 2$, this equals $14n^3$. If $s = 3$, it equals $15n^3$. If $s = 4$, it equals $16n^3$. For higher values of s , the disadvantage becomes more pronounced.

With $r = 10^{-3}$, $h = 9/10$, $s = 2$, the amount of work required by the non-linear iterative method given by (6.4), as estimated from (6.10), is less than required by the linear method given by (6.4), as estimated from (6.6), for $n \leq 6$. It is greater for $n \geq 7$.

References

- [1] Courant, R., and Hilbert, D., Methoden der Mathematischen Physik, Berlin, 1931.
- [2] Cramer, H., Mathematical Methods of Statistics, Princeton, 1951.
- [3] Curtiss, J. H., "Monte Carlo" methods for the iteration of linear operators, Journal of Mathematics and Physics, vol. 32 (1954), pp. 209-232.
- [4] Curtiss, J. H., Sampling methods applied to differential and difference equations; Proceedings of a Seminar on Scientific Computation, held by the International Business Machines Corporation, Endicott, New York, November, 1949; pp. 87-109.
- [5] Dwyer, P. S., Linear Computations, New York, 1951.
- [6] Forsythe, G. E., Tentative Classification of Methods and Bibliography on Solving Systems of Linear Equations. In "Simultaneous Linear Equations and the Determination of Eigenvalues," National Bureau of Standards Applied Mathematics Series 29, Washington, 1953.
- [7] Householder, A. S., Principles of Numerical Analysis, New York, 1953.
- [8] Milne, W. E., Numerical Solution of Differential Equations, New York, 1953.
- [9] Taussky-Todd, O., A recurring theorem on determinants, American Mathematical Monthly, vol. 56 (1949), pp. 672-676.

OFFICE OF ORDNANCE RESEARCH

DISTRIBUTION LIST
FOR
TECHNICAL REPORTS

Office of Ordnance Research Box CH, Duke Station Durham, North Carolina	(10)	Commanding Officer Engineering Res. + Dev. Labs. Fort Belvoir, Virginia	(1)
Office, Chief of Ordnance Washington 25, D. C. Attn: CRDTB-PS	(1)	Commander U.S. Naval Proving Ground Dahlgren, Virginia	(1)
Commanding General White Sands Proving Ground Las Cruces, New Mexico	(1)	Chief, Bureau of Ordnance (AD3) Department of the Navy Washington 25, D. C.	(1)
Office of Naval Research Washington 25, D. C. Attn: Mathematics Branch	(1)	U.S. Naval Ordnance Laboratory White Oak, Silver Spring 19, Md. Attn: Library Division	(1)
Commanding General Aberdeen Proving Ground, Md. Attn: BRL	(2)	Director National Bureau of Standards Washington 25, D. C.	(1)
Commanding General Redstone Arsenal Huntsville, Alabama	(1)	Corona Laboratories National Bureau of Standards Corona, California	(1)
Commanding Officer Rock Island Arsenal Rock Island, Illinois	(1)	Commanding Officer Frankford Arsenal Bridesburg Station Philadelphia 37, Penna.	(1)
Commanding General Research and Engineering Command Army Chemical Center, Md.	(1)	Technical Information Service P.O. Box 62 Oak Ridge, Tennessee Attn: Reference Branch	(1)
Chief, Ordnance Development Div. National Bureau of Standards Washington 25, D. C.	(1)	Commanding Officer Signal Corps Engineering Lab. Fort Monmouth, New Jersey Attn: Director of Research	(1)
Commanding Officer Watertown Arsenal Watertown 72, Mass.		The Director Naval Research Laboratory Washington 25, D. C. Attn: Code 2021	(1)
Technical Reports Library SCEL, Evans Signal Corps Lab. Belmar, New Jersey	(1)	Chief, New York Ordnance District 180 Varick Street New York 14, N. Y.	(2)
Jet Propulsion Laboratory California Inst. of Technology 4800 Oak Grove Drive Pasadena 3, California	(1)		

DISTRIBUTION LIST (CONT.)

Director, Applied Physics Lab.
Johns Hopkins University
8621 Georgia Avenue
Silver Spring 19, Maryland (1)

Commanding General
Air University
Maxwell Air Force Base, Alabama
Attn: Air Univ. Library (1)

Canadian Joint Staff
1700 Massachusetts Ave., N.W.
Washington 6, D. C.
THRU: ORDGU-SE (1)

Commanding General
Air Res. + Dev. Command
P.O. Box 1395
Baltimore 3, Maryland
Attn: RDD (1)

Commanding General
Air Res. + Dev. Command
P.O. Box 1395
Baltimore 3, Maryland
Attn: RDR (1)

Armed Services Tech. Info. Agency
Document Service Center
Knott Building
Dayton 2, Ohio
Attn: DSC-SD (5)

Commander
U.S. Naval Ord. Test Station
Inyckern
China Lake, California
Attn: Technical Library (1)

U.S. Atomic Energy Commission
Document Library
19th + Constitution Ave.
Washington 25, D. C. (1)

Commanding General
Air Material Command
 Wright-Patterson Air Force Base
Dayton 2, Ohio
Attn: F. N. Budd, Chief Scientist
Flight Research Lab. (1)

Office of the Chief Signal Officer
Engineering + Technical Division
Engineering Control Branch
Room 28273, Pentagon Building
Washington 25, D. C.
Attn: SIGGD (1)

NAC for Aeronautics
1724 F Street, N.W.
Washington 25, D. C.
Attn: Mr. E. B. Jackson, Chief
Officer of Aeronautical
Intelligence (1)

Scientific Information Section
Research Branch
Research + Development Division
Office, Assistant Chief of
Staff, G-4
Department of the Army
Washington 25, D. C. (1)

Date Due

Manufactured in the United States for New York University Press
by the University's Office of Publications and Printing

