

¿Cuál crees que es la probabilidad de que llueva mañana?

¿Sabrías dar un grado de certeza a dicha afirmación?

Autoaprendizaje

Recursos asincrónicos

- ¿Revisaste los recursos de la semana 1 (Guía y desafío)?
- ¿Tienes dudas sobre alguno de ellos?

Ideas fuerza

La probabilidad
nos permite
cuantificar la
posibilidad
ocurrencia de un
suceso, es decir,
el resultado de
un experimento
aleatorio

Podemos calcular
la probabilidad de
un suceso
dividiendo la
cantidad de casos
favorables por la
cantidad de casos
posibles totales del
experimento, lo que
se conoce como
Regla de Laplace

Llamamos
probabilidad
condicional de un
suceso a la
probabilidad de que
este ocurra, si e
sabe que además
ocurre otro. Si las
probabilidades no
se modifican, los
sucesos son
independientes.

El teorema de
Bayes nos permite
calcular la
probabilidad de un
suceso a posteriori,
es decir, la
probabilidad de que
haya ocurrido si se
conoce otro
resultado posterior
a él.

/* Definiciones de probabilidad */

Introducción a la probabilidad

Definiciones y ejemplos

01	Experimento aleatorio	experimento en el que influye el azar. Es decir, no es posible determinar a priori un resultado en particular.
02	Espacio muestral	conjunto de posibles resultados individuales de un experimento aleatorio.
03	Suceso o evento	subconjunto del espacio muestral.
04	Probabilidad de un suceso	corresponde al cociente entre la cardinalidad del suceso, y la cardinalidad del espacio muestral

Introducción a la probabilidad

Definiciones y ejemplos

- La probabilidad de un suceso es un número entre 0 y 1.
- Un suceso seguro tiene probabilidad igual a 1; un suceso imposible tiene probabilidad 0
- Se define la **unión** de dos sucesos como la ocurrencia de uno **o** el otro. Podemos calcular su probabilidad como:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Si los sucesos son **disjuntos**, la probabilidad de la intersección es igual a cero y pueden simplemente sumarse.

• Se llama **complemento** de un suceso a todo lo que no pertenece a él ("no A"). Se tiene que:

$$P(\overline{A}) = P(A^C) = 1 - P(A)$$

/*Probabilidad teórica y experimental*/

Probabilidad teórica y experimental Diferencias

Utilizamos la **probabilidad teórica** cuando conocemos exactamente un experimento, es decir, conocemos perfectamente su espacio muestral.

En ocasiones, solo podemos tener un número limitado de registros y sin posibilidad de saber si son todos. Empleamos, en este caso, la **probabilidad experimental** o **frecuentista**.

{desafío}

/*Probabilidad condicional*/

Consideremos nuevamente nuestra ruleta, y el experimento correspondiente a lanzarla dos veces seguidas y anotar el color en cada ocasión.

Vamos a representar este experimento en un **diagrama de árbol**: a partir de un punto inicial se establecen **ramas**, que finalizan en **nodos** que corresponden a resultados posibles.

Diagrama de árbol simplificado

Diagrama de árbol simplificado

- ¿Cuál es la probabilidad de que salga un número en amarillo?
- ¿Cuál es la probabilidad de que salga un número en amarillo en la segunda tirada, si se sabe que en la primera salió amarillo?

{desafío} latam_

Definición

Dados dos sucesos A y B, se llama **probabilidad condicionada de A, dado B**, a la probabilidad de ocurrencia del suceso A si se sabe que ya ha ocurrido el suceso B. Se anota P(A / B), y tenemos que:

$$P(A|B) = \frac{P(AyB)}{P(B)}$$

Dependencia e independencia

Considerando la fórmula anterior, podemos reescribir como:

$$P(A / B) * P(B) = P(A y B)$$

- Decimos que A es independiente de B si la ocurrencia de B no modifica la probabilidad de A, o no influye en ella. Por ende, P(A / B) = PA y con ello P(A y B) = P(A) * P(B)
- En caso contrario, A y B son dependientes entre sí.

Caso inverso

Podemos hacernos ahora la pregunta inversa: si se sabe que el número que salió es par, ¿cuál es la probabilidad de que sea en un sector amarillo?

2

4

$$P(A) = 3/5$$
 $P(R) = 2/5$ $P(P) = 2/5$ $P(I) = 3/5$ $P(A y P) = 1/5$ $P(P) = 2/5$

Caso inverso

Podemos hacernos ahora la pregunta inversa: si se sabe que el número que salió es par, ¿cuál es la probabilidad de que sea en un sector amarillo?

$$P(A y P) = 1/5$$

$$P(P) = 2/5$$

$$P(A|P) = \frac{P(AyP)}{P(P)}$$

$$= \frac{\frac{1}{5}}{\frac{2}{5}}$$

$$= \frac{1}{2}$$

/* Teorema de Bayes*/

Probabilidad "a posteriori"

Supongamos que tenemos una prueba médica para detectar una enfermedad. De acuerdo a estudios, la probabilidad de que la prueba dé resultado positivo al ser aplicada a una persona enferma es del 90%, y del 5% si se aplica a personas sanas. Por otra parte, la probabilidad de que un individuo seleccionado al azar tenga la enfermedad es del 3%

Probabilidad "a posteriori"

- la probabilidad de que la prueba dé resultado positivo al ser aplicada a una persona enferma es del 90%, y del 5% si se aplica a personas sanas.
- la probabilidad de que un individuo seleccionado al azar tenga la enfermedad es del 3%

Definimos los sucesos

A: estar enfermo B: test positivo A^C: estar sano B^C: test negativo

y tenemos:

$$P(B \mid A) = 0.9$$

 $P(B \mid A^{C}) = 0.05$
 $P(A) = 0.97$ $P(A^{C}) = 0.03$

Falsos positivos y negativos

- Falso positivo: Si un paciente da positivo en el test, ¿cuál es la probabilidad de que esté sano, realmente? → P(A^C / B)
- Falso positivo: Si un paciente da negativo en el test, ¿cuál es la probabilidad de que esté enfermo, realmente? →P(A / B^C)

Falsos positivos y negativos

$$P(B y A) = 0.03 * 0.9$$

= 0.027

$$P(B^{C} y A) = 0.03 * 0.1$$

= 0.003

$$P(B y A^{C}) = 0.05 * 0.97$$

= 0.0485

$$P(B^{C} y A^{C}) = 0.95 * 0.97$$

= 0.9215

$$P(B) = P(B y A) + P(B y A^{C})$$

= 0,03 * 0,9 + 0,05 * 0,97
= 0,027 + 0,0485
= 0,0755

$$P(B \mid A) = 0.9 \qquad P(B \mid A^{C}) = 0.05 \\ P(A) = 0.97 \qquad P(A^{C}) = 0.03 \\ P(B) = 0.0755 \qquad P(B^{C}) = 0.9245 \\ P(A \mid B) = 0.027 \qquad P(B^{C} \mid A) = 0.003 \qquad P(B \mid A^{C}) = 0.0485 \qquad P(B^{C} \mid A^{C}) = 0.9215 \\ P(B) = 0.0755 \qquad P(B^{C}) = 0.9245$$

Falso positivo:

$$P(A^{C} / B) = P(A^{C} y B)/P(B)$$

= 0,0485 / 0,0755
= 0,6424

Falso negativo:

$$P(A / B^{C}) = P(A y B^{C})/P(B^{C})$$

= 0,003 / 0,9245
= 0,003244997

¿Qué es más grave: un falso positivo, o un falso negativo?

{desafío} latam_

El falso positivo puede ser verificado (de hecho, lo es), mientras que un falso negativo es una situación de evidente riesgo.

¡Manos a la obra! -Probabilidades con Python

Probabilidades con Python

Vamos a calcular algunas probabilidades utilizando datos de DataFrames, en Python Para esto, abre tu propio archivo de Jupyter y sigue las instrucciones de tu profesor. A continuación, aprenderemos:

- 1. Cálculo de probabilidades con Pyhton caso general
- 2. Probabilidad de sucesos compuestos
- 3. Probabilidad condicional

Desafío Estadística descriptiva y probabilidades (Parte II)

Desafío

"Estadística descriptiva y probabilidades (parte II)"

- ¿Leíste el desafío de esta semana? ¿Comprendes bien lo que se solicita en cada caso?
- ¿Hay contenidos que necesitas repasar antes de comenzar este desafío?
- ¿Necesitas algún ejemplo o indicación para alguna pregunta o requerimiento específico?

- Variables Aleatorias, Discretas y Continuas.
- Ley de los grandes números.

