### Bioconductor raport laboratorium 5

1. Pobranie danych z mikromacierzy GSE144803.

Macierz zawiera informacje dot. celów molekularnych i sieci wynikających ze zwiększonego TNFα. Zmierzono w tym celu metylację DNA i ekspresję genów w 40 liniach pierwotnych komórek śródbłonka ludzkiej żyły pępowinowej przed i 24 godziny po stymulacji TNFα za pomocą mikromacierzy.

```
library(limma)
BiocManager::install("GEOquery")
library(GEOquery)
library(ggplot2)

#pobieranie danych
gset <- getGEO("GSE144803", GSEMatrix =TRUE, AnnotGPL=TRUE)
gset
gset03 = gset[[1]]
gset03
mat <- exprs(gset03)
dim(mat)</pre>
```

```
$GSE144803_series_matrix.txt.gz
ExpressionSet (storageMode: lockedEnvironment)
assayData: 18937 features, 78 samples
element names: exprs
protocolData: none
phenoData
sampleNames: GSM4296720 GSM4296721 ... GSM4296797 (78 total)
varLabels: title geo_accession ... treatment:ch1 (44 total)
varMetadata: labelDescription
featureData
featureNames: ILMN_1343291 ILMN_1343295 ... ILMN_3311165
(18937 total)
fvarLabels: ID Gene title ... Platform_SEQUENCE (22 total)
fvarMetadata: Column Description labelDescription
experimentData: use 'experimentData(object)'
pubMedIds: 32231389
```

A tak wygląda fragment mikromacierzy:

```
GSM4296720 GSM4296721 GSM4296722 GSM4296723 GSM4296724 GSM4296725
ILMN_1343291 14.870319 15.065775 15.041156 15.012113 15.012113 15.065775
ILMN_1343295 14.326195 14.028760 14.199296 14.151259 14.022646 14.063554
ILMN_1651228 13.270349 12.901141 13.153037 13.226300 13.027299 12.840103
ILMN_1651229 7.918348 7.696063 7.696872 8.132745 7.943268 8.631420
ILMN_1651237 9.215925 9.286814 9.079180 8.215255 9.286814 7.656293
ILMN_1651254 11.384897 11.221559 12.208966 12.096507 12.210331 10.734974
ILMN_1651259 7.087428 6.985500 6.835640 6.088711 6.811951 6.113700
```

2. Usunięcie próbek azjatyckich i próbek z błędnie oznaczoną płcią oraz tworzenie macierzy z projektem eksperymentu

```
design_model<- data.frame(treat = gset03$`treatment:ch1`, sex = gset03$`pedsex:ch1`, sample = gset03$`promocell lot number:ch1`)
design_model$treat[design_model$treat=="treated with TNFa, 24 hours"] = "T"
design_model$treat[design_model$treat=="untreated"] = "uT"
design_model$sex[design_model$sex=="male"] = "M"
design_model$sex[design_model$sex=="female"] = "F"</pre>
```

Fragment macierzy z projektem eksperymentu:

|    | treat | sex | sample    |
|----|-------|-----|-----------|
| 1  | uΤ    | М   | 1042604   |
| 2  | Т     | М   | 1042604   |
| 3  | uΤ    | F   | 4042202   |
| 4  | Т     | F   | 4042202   |
| 5  | uΤ    | M   | 4031408   |
| 6  | Т     | M   | 4031408   |
| 7  | uΤ    | M   | 1090201.1 |
| 8  | Т     | M   | 1090201.1 |
| 9  | uΤ    | F   | 1080802   |
| 10 | Т     | F   | 1080802   |
| 11 | uT    | F   | 3091802   |

Wykrywanie błędnie przypisanych płci za pomocą pomiaru ekspresji genów XIST i RPS4Y1:



```
wrong_sex = c("GSM4296733","GSM4296767", "GSM4296732", "GSM4296766")
correct_sex = which(is.na(match(sml, wrong_sex)))
gset03 = gset03[,correct_sex]
sml = sml[correct_sex]
```

Analogicznie powtórzono tworzenie macierzy z projektem eksperymentu aby wyłączyć z dalszej analizy próbki z błędnie przypisaną płcią.

# 3. Normalizacja danych

Limma służy do analizy różnicowej, a nie bezwzględnego pomiaru, (porównujemy posiomy poszczególnych genów między próbkami, a nie między sobą w danej próbce), dlatego nie trzeba się przejmować czynnikami, które są różne dla genów, ale identyczne dla próbek, takimi jak np. długość poszczególnych transkryptów. Normalizacja ma zminimalizować wpływ czynników zaburzających indywidualne próbki.

W limmie dostępna jest funkcja, która normalizuje dane dla różnych eksperymentów (mikromacierzy), w taki sposób, aby rozkład intensywności świecenia był taki sam dla wszystkich mikromacierzy

```
#normalizacja
exprs(gset03) <- normalizeBetweenArrays(exprs(gset03), method="quantile")
gset03@featureData@data$`id`=gset03@featureData@data$`GeneSybol`
```

4. Analiza ekspresji różnicowej poprzez zastosowanie modelu liniowego z pakietu Limma

Narzędzie określa, czy różnica w średnim poziomie ekspresji jest większa niż oczekiwana przez przypadek. Model liniowy będzie przeprowadzał test hipotezy zerowej (zakładającej że nie ma różnicy w ekspresji genów).

Zanim przystąpiono do konkretnej analizy wskazującej które geny konkretnie charakteryzują się ekspresją różnicową w zależności od porównania sporządzono dwa poniższe wykresy w oparciu o cały zbiór danych:

```
#### WYRESY MDS ####
#wykress calego zbioru danych|
plotMDS(gset03, labels=design_model$sex, col=ifelse(design_model$sex=="F","green","purple"))
plotMDS(gset03, labels=design_model$treat, col=ifelse(design_model$treat=="T","green","purple"))
```

a. Badanie różnicy ogólnej między próbkami w zależności od płci (brak wyraźnych różnic):







Widać wyraźną różnicę między próbkami co sygnalizuje, że ekspresja różnicowa jest obecna w badanym eksperymencie.

Eksperyment, zaprojektowano na kilka sposobów, m. in tak, że zawierał próbki sparowane – przed i po traktowaniu TNF. Taki eksperyment wymagał nieco innego podejścia. Poniżej przedstawiono wyniki analizy ekspresji różnicowej w zależności od 4 porównań.

a. Badanie ekspresji różnicowej tylko próbek kontrolnych (nietraktowanych) między kobietami i mężczyznami:

```
untreated_idx = which(design_model$treat == 'uT')
gset03_untreated <- gset03[, untreated_idx]
design_model_untreated <- design_model[untreated_idx, ]</pre>
```

```
#kontrolne men vs women - 1 metoda
design_matrix_control <- model.matrix(~design_model_untreated$sex)
colnames(design_matrix_control) <- c("intercept","M")
design_matrix_control</pre>
```

plotMDS(gset03\_untreated)
plotMDS(gset03\_untreated, labels=design\_model\_untreated\$sex, col=ifelse(design\_model\_untreated\$sex=="F","green","purple"), main="Men vs women (control)")

```
#### WYRESY VOLCANO ####
volcanoplot(fit, coef='M', highlight=9, names=fit$genes$`Gene symbol`, main="Men vs women (control)")
```

## Fragment powstałej tabeli:

| *            | ID ‡         | Gene.title                                                 | Gene.symbol ‡ | Gene.ID | ogFC ‡     | AveExpr ‡ |            | P.Value ‡    | adj.P.Val 🕏  | в \$      |
|--------------|--------------|------------------------------------------------------------|---------------|---------|------------|-----------|------------|--------------|--------------|-----------|
| ILMN_1783142 | ILMN_1783142 | ribosomal protein S4, Y-linked 1                           | RPS4Y1        | 6192    | 7.5889751  | 8.816090  | 95.810275  | 1.540999e-44 | 2.918189e-40 | 47.948960 |
| ILMN_1670821 | ILMN_1670821 |                                                            |               |         | 3.6258389  | 6.739525  | 36.355505  | 9.822095e-30 | 9.300051e-26 | 41.682031 |
| ILMN_1764573 | ILMN_1764573 | X inactive specific transcript (non-protein coding)        | XIST          | 7503    | -2.9581137 | 8.779583  | -25.182677 | 2.856712e-24 | 1.803252e-20 | 36.202951 |
| ILMN_1710136 | ILMN_1710136 | pseudouridine 5'-phosphatase                               | PUDP          | 8226    | -0.7999157 | 9.506138  | -10.786538 | 9.156546e-13 | 4.334938e-09 | 17.755520 |
| ILMN_2166831 | ILMN_2166831 | ribosomal protein S4, X-linked                             | RPS4X         | 6191    | -0.5088463 | 13.386089 | -9.517245  | 2.576462e-11 | 9.758092e-08 | 14.917507 |
| ILMN_1786834 | ILMN_1786834 | protein kinase, X-linked                                   | PRKX          | 5613    | -0.6611060 | 8.052382  | -8.655968  | 2.793071e-10 | 8.815398e-07 | 12.844475 |
| ILMN_1687484 | ILMN_1687484 | zinc finger protein, X-linked                              | ZFX           | 7543    | -0.6386167 | 7.255622  | -7.955046  | 2.079105e-09 | 5.624573e-06 | 11.072750 |
| ILMN_1773868 | ILMN_1773868 | zinc finger CCCH-type, RNA binding motif and serine/argini | ZRSR2         | 8233    | -0.6383575 | 9.216288  | -7.039792  | 3.101602e-08 | 7.341879e-05 | 8.656173  |
| ILMN_1684956 | ILMN_1684956 | arylsulfatase D                                            | ARSD          | 414     | -0.8643304 | 6.223895  | -6.003082  | 7.189382e-07 | 1.512726e-03 | 5.810607  |
| ILMN_1794392 | ILMN_1794392 | DEAD-box helicase 3, X-linked                              | DDX3X         | 1654    | -0.3404041 | 11.675901 | -5.420694  | 4.274547e-06 | 7.522838e-03 | 4.185682  |

Fragment logFC (fold change) jest to logarytm różnicy zmian opisujący różnicę w ekpresji. Dane posortowano od najniższego p-value.

Następnie sporządzono plot MDS, aby zobaczyć jak w obrębie próbek kontrolnych różnią się miedzy sobą próbki kobiece i męskie:

### Men vs Women (control)



W przypadku różnic spodziewane byłoby, żeby próbki kobiet i mężczyzn akumulowały się w 2 grupach (klastrach). W tym przypadku raczej nie można wykryć znacznych różnic między próbkami męskimi i damskimi. Widać jedynie, że kilka próbek damskich nieco odstaje od wszystkich innych.

Volcano plot prezentuje różnice w ekpresji genów między kobietami i mężczyznami:

## Men vs Women (control)



Tutaj również nie ma wyraźnych zmian, poza kilkoma odstającymi genami (których część z resztą była użyta do usunięcia próbek z niepoprawnie oznaczoną płcią – RPS4Y o XIST.

b. Badanie ekspresji różnicowej tylko próbek traktowanych TNF między kobietami i mężczyznami:

```
treated_idx = which(design_model$treat == 'T')
gset03_treated <- gset03[, treated_idx]
design_model_treated <- design_model[treated_idx, ]

#traktowane men vs women - 1 metoda
design_matrix_treated <- model.matrix(~design_model_treated$sex)
colnames(design_matrix_treated) <- c("Intercept","M")</pre>
```

design\_matrix\_treated



| logFC <sup>‡</sup> | AveExpr ‡ | t ‡        | P.Value ‡    | adj.P.Val ‡  | в ‡       |
|--------------------|-----------|------------|--------------|--------------|-----------|
| 7.3628181          | 8.851326  | 71.876495  | 5.623324e-40 | 1.064889e-35 | 40.590390 |
| 3.6233499          | 6.726806  | 33.530570  | 1.986685e-28 | 1.881092e-24 | 36.048178 |
| -2.8534197         | 8.697048  | -26.095081 | 1.017039e-24 | 6.419888e-21 | 33.098745 |
| -0.8423843         | 9.488897  | -13.064474 | 4.146435e-15 | 1.963026e-11 | 20.766320 |
| -0.5571012         | 13.276586 | -12.087313 | 3.982197e-14 | 1.508217e-10 | 19.138376 |
| -0.4737567         | 13.711578 | -8.741893  | 2.281412e-10 | 7.200517e-07 | 12.412226 |
| -0.5883137         | 9.246482  | -8.017596  | 1.792792e-09 | 4.850014e-06 | 10.710618 |
| -0.6120468         | 7.334897  | -7.722300  | 4.228433e-09 | 1.000923e-05 | 9.993065  |
| -0.6390957         | 8.000223  | -7.352445  | 1.254943e-08 | 2.640539e-05 | 9.076101  |
| -0.6924868         | 11.929828 | -5.876001  | 1.078013e-06 | 2.041433e-03 | 5.250587  |





### Men vs Women (treated)



Otrzymano podobne wyniki jak powyżej, co oznacza że wpływ traktowania TNF na ekspresję genów nie jest zależny od płci. W dodatku fragmenty tabel z najbardziej różnymi pod względem ekspresji genów oraz volcano ploty dla tych dwóch analiz są niemal identyczne, ponieważ największą zmiennością charakteryzują się geny w ogólności specyficzne dla danej płci. Widać to po ID genów na volcano plocie, czy też w tabeli – gdzie wszystkie geny są X lub Y linked. Być może należałoby te geny usunąć i wówczas przeprowadzić analizę ponownie?

Po podaniu do funkcji toptable 100 genów, a następnie posortowaniu od największego p-value (max - 3.390765e-03) otrzymano następujące przykładowe geny

| ID ‡         | Gene.title                                                   | Gene.symbol ‡ | Gene.ID ‡ |
|--------------|--------------------------------------------------------------|---------------|-----------|
| ILMN_3238058 | mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-gluco   | MGAT5         | 4249      |
| ILMN_2331197 | PAX3 and PAX7 binding protein 1                              | PAXBP1        | 94104     |
| ILMN_1777318 | chromosome 9 open reading frame 64                           | C9orf64       | 84267     |
| ILMN_2394161 | ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 | ST8SIA4       | 7903      |
| ILMN_1665717 | eukaryotic translation initiation factor 2 subunit gamma     | EIF2S3        | 1968      |
| ILMN_1655935 | adenylate cyclase 7                                          | ADCY7         | 113       |
| ILMN_1729680 |                                                              |               |           |
| ILMN_1716397 | layilin                                                      | LAYN          | 143903    |

traktowane

| ID *         | Gene.title *                                          | Gene.symbol * | Gene.ID * |
|--------------|-------------------------------------------------------|---------------|-----------|
| ILMN_3244405 |                                                       |               |           |
| ILMN_1794512 | ADP-ribosylarginine hydrolase                         | ADPRH         | 141       |
| ILMN_1695946 | TMF1-regulated nuclear protein 1                      | TRNP1         | 388610    |
| ILMN_1791896 | estrogen receptor binding site associated, antigen, 9 | EBAG9         | 9166      |
| ILMN_1754130 | tripartite motif containing 52                        | TRIM52        | 84851     |
| ILMN_1704431 |                                                       |               |           |
| ILMN_1688318 |                                                       |               |           |
| ILMN_1794492 | homeobox C6                                           | HOXC6         | 3223      |

Kontrolne

W ten sposób widać przykłady genów różniących się ekspresją między płciami w zależności od traktowania bądź nie, lecz te zmiany są bardzo małe.

c. Badanie ekspresji różnicowej tylko u mężczyzn między próbkami traktowanymi i kontrolnymi:

```
man_idx = which(design_model$sex == 'M')
gset03_male <- gset03[, man_idx]
exprs(gset03_male)
design_model_male <- design_model[man_idx, ]
design_model_male</pre>
```

```
#tylko meżczyżni sparowani (tnf male vs control male)
Treat_men <- factor(design_model_male$treat, levels=c("uT","T"))
Sample_man <- factor(design_model_male$sample)
Sample_man
design_matrix_men_paired <- model.matrix(~Sample_man+Treat_men)
design_matrix_men_paired</pre>
```

| ID ‡         | Gene.title \$                              | Gene.symbol ‡ | Gene.ID ‡ | logFC ‡   | AveExpr ‡ | t ‡       | P.Value ‡    | adj.P.Val ‡  | В \$     |
|--------------|--------------------------------------------|---------------|-----------|-----------|-----------|-----------|--------------|--------------|----------|
| ILMN_1776181 | baculoviral IAP repeat containing 3        | BIRC3         | 330       | 4.676057  | 7.440015  | 26.63222  | 3.151391e-15 | 3.733637e-11 | 24.65383 |
| ILMN_2384237 | signal transducing adaptor family member 2 | STAP2         | 55620     | 2.548344  | 7.139731  | 25.78483  | 5.372281e-15 | 3.733637e-11 | 24.18926 |
| ILMN_1802653 | Epstein-Barr virus induced 3               | EBI3          | 10148     | 5.472828  | 7.705158  | 25.63475  | 5.914829e-15 | 3.733637e-11 | 24.10492 |
| ILMN_2376205 | lymphotoxin beta                           | LTB           | 4050      | 6.355775  | 8.530611  | 23.16590  | 3.124962e-14 | 1.420572e-10 | 22.62113 |
| ILMN_1758895 | cathepsin K                                | CTSK          | 1513      | 3.474327  | 9.475108  | 22.90928  | 3.750785e-14 | 1.420572e-10 | 22.45572 |
| ILMN_1686109 | C-C motif chemokine ligand 23              | CCL23         | 6368      | -2.984588 | 7.758801  | -22.24113 | 6.088504e-14 | 1.921633e-10 | 22.01435 |
| ILMN_1678841 | ubiquitin D                                | UBD           | 10537     | 7.180099  | 8.602603  | 21.79576  | 8.473644e-14 | 2.292363e-10 | 21.71123 |
| ILMN_1712545 | S100 calcium binding protein A3            | S100A3        | 6274      | 3.854126  | 7.152084  | 21.56854  | 1.005476e-13 | 2.380088e-10 | 21.55374 |
| ILMN_1651316 | CD69 molecule                              | CD69          | 969       | 3.017106  | 6.885629  | 21.03862  | 1.508476e-13 | 3.065209e-10 | 21.17875 |
| ILMN_1740609 |                                            |               |           | -2.728471 | 9.916430  | -20.94778 | 1.618635e-13 | 3.065209e-10 | 21.11336 |

```
##wykresy dla sparowanych##
plotMDS(gset03_male, col=ifelse(design_model_male$treat=="T","red","blue"), main="Treat vs untreat (man)")
plotMDS(gset03_male, labels=design_model_male$treat, col=ifelse(design_model_male$treat=="T","red","blue"), main="Treat vs untreat (man)")
```

```
logFC <- coef(fit)[, "Treat_ment"]
logFC
volcanoplot(fit, coef="Treat_ment", main="Treated vs Untreated (man)", col = ifelse((logFC > 1) | (logFC < -1), "red", "black"), pch = 19, cex = 0.6)</pre>
```



Od razu widać różnicę między próbkami kontrolnymi oraz traktowanymi.



Także widoczne różnice na volcano plocie – jest obecna ekspresja różnicowa.

```
### VEN DIAGRAM ###
results <- decideTests(fit)
r <- summary(results)
r[,'Treat_menT']
|</pre>
```







Również można przedstawić geny za pomocą mapy ciepła:

Tutaj wyciągnięto geny o zadanym progu lfc i pvalue (było ich 268) i przedstaiono poniżej:



d. Badanie ekspresji różnicowej tylko u kobiet między próbkami traktowanymi i kontrolnymi:

```
woman_idx = which(design_model$sex == 'F')
gset03_female <- gset03[, woman_idx]
design_model_female <- design_model[woman_idx, ]
design_model_female</pre>
```

```
plotMDS(gset03_female, col=ifelse(design_model_female$treat=="T","red","blue"), main="Treat vs untreat (women)")
plotMDS(gset03_female, labels=design_model_female$treat, col=ifelse(design_model_female$treat=="T","red","blue"), main="Treat vs untreat (women)")
```

```
logFC <- coef(fit)[, "Treat_womenT"]
volcanoplot(fit, coef="Treat_womenT", main="Treated vs Untreated (women)", col = ifelse((logFC > 1) | (logFC < -1), "red", "black"), pch = 19, cex = 0.6)
```

| ID ‡         | Gene.title                                       | Gene.symbol ‡ | Gene.ID | logFC <sup>‡</sup> | AveExpr ‡ | t ‡       | P.Value ‡    | adj.P.Val ‡  | в ‡      |
|--------------|--------------------------------------------------|---------------|---------|--------------------|-----------|-----------|--------------|--------------|----------|
| ILMN_1760688 | sterile alpha motif domain containing 14         | SAMD14        | 201191  | 1.4993540          | 8.708446  | 20.16795  | 5.103985e-16 | 6.639955e-12 | 26.56580 |
| ILMN_1802653 | Epstein-Barr virus induced 3                     | EBI3          | 10148   | 5.2343833          | 7.744329  | 19.87338  | 7.012679e-16 | 6.639955e-12 | 26.26721 |
| ILMN_1758895 | cathepsin K                                      | CTSK          | 1513    | 3.4185986          | 9.744032  | 19.03596  | 1.771550e-15 | 8.402702e-12 | 25.39183 |
| ILMN_1690473 | NFKB inhibitor beta                              | NFKBIB        | 4793    | 1.0483350          | 7.530420  | 18.97165  | 1.905067e-15 | 8.402702e-12 | 25.32292 |
| ILMN_1710495 | papilin, proteoglycan like sulfated glycoprotein | PAPLN         | 89932   | 2.9790957          | 7.713345  | 18.83742  | 2.218594e-15 | 8.402702e-12 | 25.17832 |
| ILMN_1769299 | myotubularin related protein 11                  | MTMR11        | 10903   | 1.3900613          | 9.072642  | 18.65979  | 2.718256e-15 | 8.579268e-12 | 24.98529 |
| ILMN_1659960 | interleukin 4 induced 1                          | IL4I1         | 259307  | 3.5038166          | 7.510727  | 18.36859  | 3.806325e-15 | 1.005627e-11 | 24.66469 |
| ILMN_1704500 | signal transducing adaptor family member 2       | STAP2         | 55620   | 2.1509785          | 6.634019  |           | 4.248306e-15 |              |          |
| ILMN_1657631 | signal transducing adaptor family member 2       | STAP2         | 55620   | 2,2652108          | 7,479465  | 17,91494  |              | 1.366075e-11 |          |
| ILMN_1700306 | OCIA domain containing 2                         | OCIAD2        | 132299  | 0.9698983          | 12,277176 |           | 9.809691e-15 |              |          |
| ILMN_1651429 | selenoprotein M                                  | SELM          | 140606  | 2.0409030          | 10.112636 | 16.68899  |              | 4.982757e-11 |          |
| ILMN_2115135 | microseminoprotein, prostate associated          | MSMP          | 692094  |                    |           |           |              |              |          |
| ILMN_2384237 | signal transducing adaptor family member 2       | STAP2         | 55620   | -2.0842788         | 9.264278  | -16.59323 |              | 4.982757e-11 |          |
| ILMN_2328666 | CD83 molecule                                    | CD83          | 9308    | 2.2989393          | 7.055981  | 16.56482  | 3.420596e-14 | 4.982757e-11 | 22.55584 |
| ILMN_2368530 | interleukin 32                                   | IL32          | 9235    | 2.8462067          | 6.310964  | 16.35408  | 4.479985e-14 | 6.059820e-11 | 22.29472 |
| ILMN_1804332 | G protein-coupled receptor 137                   | GPR137        | 56834   | 2.9129955          | 11.413481 | 16.18207  | 5.595897e-14 | 6.586483e-11 | 22.07916 |
| ILMN_1778010 | interleukin 32                                   | IL32          | 9235    | 0.8824125          | 11.282385 | 16.15553  | 5.792344e-14 | 6.586483e-11 | 22.04569 |
| ILMN_1778401 | major histocompatibility complex, class I, B     | HLA-B         | 3106    | 2.9988130          | 9.924174  | 16.11550  | 6.102213e-14 | 6.586483e-11 | 21.99514 |



## Treat vs untreat (women)



# Treated vs Untreated (women)









Ponownie obserwujemy zajście ekspresji różnicowej w zależności od traktowania TNF.

Wyniki ogólnie są dość zbliżone w porównaniu do wyników dla mężczyzn. Dla kobiet ogólnie wykryto więcej genów ulegającej ekspresji zróżnicowanej (ok. 900). Natomiast jeśli chodzi o logarytmy zmiany FC (wykresy volcano) to wyglądają one bardzo podobnie.

Patrząc na fragmenty tebli z najbardziej różnicowymi genami, częściowo się one pokrywają u mężczyzn i u kobiet, ale widać, że np. gen który u kobiet uległ najbardziej różnicowej ekspresji jest nieobecny w najbardziej różnicowych genach u mężczyzn.