Missing Data: Introduction

David S. Rosenberg

NYU: CDS

February 3, 2021

Contents

Missing Data Example

Missing completely at random (MCAR)

Missing at random (MAR)

Missing Data Example

The Mayor's Survey: Setup

- A new mayor has grand plans to improve satisfaction level of residents.
- She'll try many interventions during her term to improve satisfaction.
- She needs a baseline estimate for satisfaction levels.
- She calls n = 100 randomly selected residents from the city and asks:
 - "Do you think the city government is doing a good job? (yes or no)"
- Many people don't answer, and many others hang up without responding (surprise!)...

Missing survey responses

- The mayor gets a 10% response rate to her survey.
- What can she do?
- Should she just take the average of the responses she gets?
- What about response bias?

Notation and Terminology

- Suppose every individual i has a response $Y_i \in \{0, 1\}$.
- But we only observe this response Y_i for 10% of those called.
- Let $R_i = \mathbb{1}[i \text{ responded}]$ be an indicator that we observe Y_i .
- We can write our observation for i as $(R_i, R_i Y_i)$.
- We get (0,0) if there's no response and $(1, Y_i)$ if there is a response.

Missing completely at random (MCAR)

Just taking the average

• Consider just taking the mean of the observed Y_i 's:

$$\hat{\mu}_{cc} = \frac{\sum_{i=1}^{n} R_i Y_i}{\sum_{i=1}^{n} R_i}$$

- Seems reasonable if whether a person responds is independent of their opinion.
- We'll formalize these intuitions, but first...
- Quick math question: can we compute $\mathbb{E}\hat{\mu}_{cc}$?

Just taking the average
$$\begin{split} & \bullet \text{ Cansider just taking the mean of the observed } Y \backslash v \\ & = \frac{\sum_{i=1}^{N} f_i Y_i^{i}}{\sum_{i=1}^{N} f_i Y_i^{i}} \\ & = \frac{\sum_{i=1}^{N} f_i Y_i^{i}}{\sum_{i=1}^{N} f_i Y_i^{i}} \\ & \bullet \text{ Some reasonable of whether a preson regards is independent of their epision.} \\ & \text{WWT Homolate in missions, list field.} \\ & \bullet \text{Quick math questions can we compute } \mathbb{E}[\mu_i] \end{aligned}$$

Hint: Is there some probability that the estimator is undefined? (e.g. is 0/0)?

Missing Completely at Random (MCAR)

- Response indicators: $R, R_1, \ldots, R_n \in \{0, 1\}$ are i.i.d. with $\mathbb{P}(R = 1) = \pi$.
- Satisfaction indicators: $Y, Y_1, ..., Y_n \in \{0, 1\}$ are i.i.d. with $\mu = \mathbb{E}Y$.

Definition (Missing completely at random (MCAR))

We say Y_1, \dots, Y_n are missing completely at random if Y_i and R_i are independent for each i.

Definition (Complete cases)

We'll refer to the observations pairs $(R_i, R_i Y_i)$ for which $R_i = 1$ as **complete cases**.

The complete case mean estimator

• The complete case mean estimator is defined as

$$\hat{\mu}_{cc} = \frac{\sum_{i=1}^{n} R_i Y_i}{\sum_{i=1}^{n} R_i}.$$

How does the complete case mean perform?

- Number of surveys: n = 100
- Response probability: $\mathbb{P}(R=1) = 0.1$.
- True probability of satisfaction: $\mathbb{P}(Y=1) = 0.75$.

☐How does the complete case mean perform?

- The green dots represent observed values of Y_i .
- The blue dots show the value of $\hat{\mu}_{cc}$ as n increases.
- The blue dots don't start at 0, but rather at the first green dot, since the estimator isn't defined until we have at least one observation.
- Note that the estimate remains unchanged between observations.
- The horizontal line shows the true expected value of the Y_i 's.

Complete Case Mean, MCAR: Properties

• The "complete case" mean estimator is defined as

$$\hat{\mu}_{cc} = \frac{\sum_{i=1}^{n} R_i Y_i}{\sum_{i=1}^{n} R_i} = \frac{\frac{1}{n} \sum_{i=1}^{n} R_i Y_i}{\frac{1}{n} \sum_{i=1}^{n} R_i}.$$

- Let $\mu = \mathbb{E} Y$ and $\pi = \mathbb{P}(R = 1)$.
- By the LLN, the numerator converges to $\mathbb{E}[RY] = \pi \mu$, by MCAR.
- By the LLN, the denominator converges to π .
- Thus $\hat{\mu}_{cc} \stackrel{P}{\rightarrow} \mu$.

Complete Case Mean, MCAR

• The "complete case" mean estimator is defined as

$$\hat{\mu}_{cc} = \frac{\sum_{i=1}^{n} R_i Y_i}{\sum_{i=1}^{n} R_i}$$

and it has a few oddities.

- When everything is missing, the estimator is 0/0, which is not defined.
- We can't even talk about whether it's biased, much less its variance.
- We could just define $\hat{\mu}_{cc} = 0$ when $R_1 = \cdots = R_n = 0$.
- Exercise: Show that doing this yields a biased estimator when n = 1.

Missing at random (MAR)

Missing at random (MAR)

- MCAR is a very strong assumption often blatantly not true.
- Most commonly we make an assumption called missing at random.
- Usually more defensible than MCAR.
- Requires introduction of a covariate X into the picture.

Missing at random (MAR)

- Assume we have additional information X_i about each individual i.
- Also assume that X_i is **never missing**.

Definition (Missing at random (MAR))

 Y_1, \ldots, Y_n are missing at random if, after observing X_i , R_i has no additional information about Y_i . More formally, R_i and Y_i are conditionally independent given X_i , which we'll denote by

$$R_i \perp \!\!\!\perp Y_i \mid X_i \quad \forall i = 1, \ldots, n.$$

Can't check it...

- There is no way to verify this MAR assumption, at least not without full data
- Nevertheless, this is the assumption that is most commonly made.

└─Missing at random (MAR)

ing at random (MAR)	
Assume we have additional information X_i about each individual i . Also assume that X_i is never missing:	
ition (Missing at random (MAR)) Y_n are missing at random if, after observing X_i , R_i has no additional information about where formally, R_i and Y_i are conditionally independent given X_i , which we'll denote by	
$R_i \perp \!\!\!\perp Y_i \mid X_i \forall i = 1,, n.$	
t check it There is no way to verify this MAR assumption, at least not without full data	

- Note that if X is independent of Y (i.e.X is fairly useless covariate), then we're back in the MCAR case.
- Full data, we'll learn on the next slide, is data with nothing missing.

More terminology and formalization

- The full data is the dataset we would observe if nothing were missing.
 - Denote that by $(X_1, Y_1), \ldots, (X_n, Y_n)$
- What we actually observe:

$$(X_1, R_1, R_1 Y_1), \ldots, (X_n, R_n, R_n Y_n)$$

- The complete data are the cases with observed Y (i.e. R=1)
 - Explains the terminology "complete case estimator"
- The incomplete data cases are cases with missing Y (i.e. R = 0)

The propensity score

• Key piece in the MAR setting is the model for missingness:

$$\mathbb{P}(R = 1 \mid X = x, Y = y) = \mathbb{P}(R = 1 \mid X = x) = \pi(x).$$

- This model can be fit in the usual way, using tools from statistics and ML.
- Logistic regression is a common approach.
- For most of this course, it will be reasonable to assume we know $\pi(x)$,
 - or can estimate it relatively well.
- The model for missingness goes by different names in different contexts.
- We will generally refer to it as the propensity score. [RR83]

How can the mayor use the propensity scores?

- Suppose the mayor has a probability of response for each individual.
 - e.g. She has built a model using historical response data.
- Each individual i potentially has probability $\pi(X_i)$ to respond.
- Is our previous complete case mean still a reasonable estimator?
- It gives too much weight to individuals who are more likely to respond.

3 basic approaches to the MAR problem

Likelihood methods missing data are latent variables, find or estimate MLE Imputation methods use X to impute Y, then proceed as with full data Inverse propensity weighting (IPW) just use complete cases, but weight by propensity

- Likelihood methods are general and elegant, but often difficult to apply
- We will focus on the imputation and IPW methods
- We will also look into "doubly robust" methods, which combine IPW and imputation

References

Resources

• Chapter 6 in Tsiatis's book *Semiparametric theory and missing data* gives a nice overview of the missing data problem. [Tsi06, Ch. 6].

References L

[RR83] Paul R. Rosenbaum and Donald B. Rubin, *The central role of the propensity score in observational studies for causal effects*, Biometrika **70** (1983), no. 1, 41–55.

[Tsi06] Anastasios A. Tsiatis, Semiparametric theory and missing data, Springer, 2006.