

Optimal Object Categorization Under Application Specific Conditions

Submitted for Doctoral Consortium of VISIGRAPP 2014

PhD - candidate:

Steven Puttemans – EAVISE, KU Leuven

Supervisors:

- Toon Goedemé EAVISE, KU Leuven
- Tinne Tuytelaars VISICS, KU Leuven

Steven Puttemans

- Research assistant at EAVISE
 - Embedded Artificially intelligent VISion Engineering
 - Research group that focusses on industry introduced problems that can be solved by computer vision algorithms and artificial intelligence.
- PhD student
 - Background = MSc Engineering (Electronics) + MSc Artificial Intelligence
 - Subject = optimal object categorization under application specific object and scene constraints.
 - Focussing on a new object categorization framework
 - Using an innovative active learning strategy
- Current research project: IWT-TETRA TOBCAT
 - Industrial applications of object categorization techniques
 - Technology transfer from academia to industry

EAVISE – a small introduction

- Research goal
 - Translating state-of-the-art image processing algorithms and artificial intelligence techniques to solutions for industry-specific application problems
 - Implementing advanced image processing on embedded systems
 - Optimize vision algorithms to real-time performance
- Trying to focus on the valley of death

Goal of PhD research

- State-of-the-art object categorization algorithms focus on:
 - Increasing complexity, making it robust to as much variation as possible that can occur in the scene
 - $_{\circ}$ In the wild detections are the main goal
 - \circ Artificially created datasets \rightarrow eg. Pascal VOC challenge

Table 1: Comparison of robustness against degrees of freedom of existing object categorization algorithms. (Illumin. = Illumination differences / Locati. = Location of objects / Scale = Scale changes / Orient. = Orientation of objects / Occlu. = Occlusions / Clutt. = Clutter in scene / I.C.V. = Intra-class variability)

Technique	Example	Degrees of freedom						
		Illumin.	Locati.	Scale	Orient.	Occlu.	Clutt.	I.C.V.
NCC - based pattern matching	(Lewis, 1995)	X	X	_	_	_	_	_
Edge - based pattern matching	(Hsieh et al., 1997)	X	X	X	X	_	_	_
Global moment invariants for recognition	(Mindru et al., 2004)	X	X	X	X	_	_	_
Object recognition with local keypoints	(Bay et al., 2006)	X	X	X	X	X	X	_
Object categorization algorithms	(Gall and Lempitsky, 2009)	X	X	X	_	X	X	X
Industrial Applications	_	_	_	_	X	X	_	X

Goal of PhD research

• However, is this really what we expect in industrial applications?

Definition of applications interesting for our research

- <u>DEFINITION</u>: applications where vision-based detection of objects is needed and which are subjected to:
- (1) A large **intra class variability**. The objects can change within the same class in shape, colour, texture, ...
- (2) The fact that some of the **application specific knowledge** can be transformed into constraints for the algorithm, like a constant scale, lighting conditions, background, ...

Main purpose/goals of this PhD

The purpose of this PhD study is threefolded:

- 1. We try to achieve a detection rate of 99,9% or even higher
- 2. We try to reach a minimal manual intervention by the user by smartly selecting the training samples using active learning
- 3. We focus on real time processing using CPU and GPU optimalizations whenever possible

Why do we want to perform this PhD research?

- 1. Academic $\leftarrow \rightarrow$ Industrial
- 2. Continuous evolution in object detection techniques
- Integration of knowledge rather than pre- and postprocessing
- 4. Known forms of variation can be abused!
- 5. Current detection rate is not always high enough

5 Reasons for the PhD study

Contrast between academic – industrial research

- Online test benches contain weird data sets
- Eg. Pascal VOC challenge

Figure 1: Examples of typical object categorization test classes used in academic research: chairs, bikes, airplanes, dogs and children.

Figure 2: Examples of industrial object categorization applications: robot picking and object counting of natural products.

2. Clear evolution

- 1. More and more variation is encapsulated
- 2. But is this really necessary to reach in the wild super performance?

5 Reasons for the PhD study

- 3. Integrating knowledge in existing frameworks
 - Scene and object knowledge needs to be exploited!
 - Already some examples \rightarrow ChnFtrs framework of Dollár
- 4. Focusing on 4 forms of variation
 - Lighting, color and texture
 - Orientation and rotation
 - Scale and position
 - Background clutter and occlusion
- 5. Detection rate is far not enough for the industry
 - → whish= 99,9% or higher

- Use application specific knowledge during model training for achieving an optimal detector model.
 - Inspired by the ChnFtrs framework (Piotr Dollàr)
 - From many possible feature channels, select the usefull ones
 - Boosting (bv. AdaBoost) to select features which give highest success rate

Split research in blocks

WP1: Integrating the variation in model training and detection

WP2: Using an innovative active learning strategy for minimal manual input

WP3: Optimize the code through GPU/CPU

> WP1: Integrating the variation in model training and detection

Figuur 8: [Links] Voorbeeld van een schaal-locatie lookup-functie voor de dodehoekcamera van een vrachtwagen [Rechts] Voorbeeld van een gefragmenteerde schaalpyramide.

Figuur 10: Textuurvariatie op basis van het Fourier powerspectrum van een sinaasappel en een aardbei.

Figuur 11: Voorbeeld van achtergrondvariatie en occlusie in (a) academische cases en (b) industriële cases

Figuur 12: Voorbeeld van rotatienormalisatie door gebruik te maken van de dominante gradiënt techniek.

WP2: Using an innovative active learning strategy for minimal manual input

- ✓ Reduce the needed training data set (pos & neg samples)
- ✓ Iteratively annotate a small set
- ✓ Select new examples smartly using the constraints

- WP3: Optimize the code through GPU/CPU
 - Extra functionality means extra processing time
 - Real time processing is essential for the industry
 - Using parallel approaches and multicore systems
 - Using general purpose GPU's based on the CUDA or OpenCL architecture

Based on the OpenCV implementation of the Viola & Jones object detection framework

Dummy examples like cookie or candy detector

- But also more 'industrial' inspired tests where done
 - ✓ Detection of objects in aerial imagery

✓ Detection of persons in 360° panoramic views

- > But also more 'industrial' inspired tests where done
 - ✓ Detection of micro organisms under a microscope
 - ✓ Detection of filth in a grainery machine
 - ✓ Detection of strawberries

- > But also more 'industrial' inspired tests where done
 - ✓ Detection of flower buds to decide on price category and type
 - Detection and picking of bell peppers

- > But also more 'industrial' inspired tests where done
 - ✓ Detection of walking aids and elderly people for fall risk detection
 - ✓ Detection of traffic threads and dangerous situations

Questions

Thank you very much for your attention.

Any questions, suggestions or remarks?