Monotónní funkce a derivace

Monotónní funkce = rostoucí, klesajcí, neklesající, nerostoucí...

Věta

Nechť funkce f má v každém bodě intervalu (a,b) derivaci, která je navíc ve všech bodech onoho intervalu kladná / záporná / nezáporná / nekladná. Pak je f na tomto intervalu rostoucí / klesající / neklesající / nerostoucí. Je-li f definovaná a spojitá i v bodech a nebo b nebo obou, pak závěr platí i pro intervaly $\langle a;b\rangle$ nebo $\langle a;b\rangle$ nebo $\langle a;b\rangle$.

Funkce může být na nějakém intervalu např. rostoucí a přitom tam mít nulovou derivaci; např $f(x) = x^3$:

Použití

- "Typicky" půjde definiční obor *f* rozdělit na intervaly, ve kterých bude funkce rostoucí či klesající.
- To zjistíme tak, že zjišťujeme znaménko derivace.

Klíčová věta o extrémech

Věta

Má-li funkce f v bodě $x_0 \in \mathbb{R}$ (neostré) lokální maximum či minimum a existuje-li derivace $f'(x_0)$, potom $f'(x_0) = 0$.

Např. funkce $f(x) = x^2$ má v nule minimum a derivace tam existuje; vskutku tedy $f'(0) = 2 \cdot 0 = 0$.

Co NEplatí I

Neplatí!

Funkce má v x_0 lokální extrém \Rightarrow má tam nulovou derivaci.

f(x) = |x| má v nule minimum, ovšem derivace tam vůbec neexistuje.

Co NEplatí II

Neplatí!

Funkce má v x_0 nulovou derivaci \Rightarrow má tam lokální extrém.

 $f(x) = x^3$ má v nule nulovou derivaci, ovšem není tam minimum ani maximum.

Typické použití

Máme nějakou funkci f.

- Spočteme její derivaci.
- Nalezneme nulové body derivace, tzv. stacionární body či též body podezřelé z extrému (řešíme rovnici f'(x) = 0).
- Rozhodneme, které z těchto bodů jsou opravdu extrémy a jaké extrémy to jsou.
- (Nějak naložíme s body, ve který derivace neexistuje.)

Jak poznat extrémy

Jak poznat, které ze stacionárních bodů (tj. nulových bodů derivace) jsou opravdu extrémy?

Věta

Pokud

- existuje derivace funkce f na nějakém okolí bodu $x_0 \in \mathbb{R}$,
- je $f'(x_0) = 0$,
- v x_0 derivace "mění znaménko", tj. na nějakém prstencovém pravém okolí je derivace jen kladná a na nějakém prstencovém levém okolí je jen záporná (nebo naopak),

tak má f v x_0 lokální extrém; je to lokální maximum, pokud je derivace vlevo kladná a vpravo záporná, a lokální minimum, pokud je vlevo záporná a vpravo kladná.