

DATA CHALLENGE INTRODUCTION

Giles Strong

INTRODUCTION TO THE TASK

- Britain's oldest city, Colchester, was founded by the Romans around 40AD as a barracks on the site of a Celtic stronghold
- Throughout the 2nd & 3rd centuries, the city expanded, eventually becoming a colonia -- an extension of the city of Rome
- Roman landmarks remain to this day, with more discoveries still being made
- Whilst performing some construction, workers uncovered indications of ruined walls in a site that was previously thought to be empty
- You have been brought in to scan the site using muon tomography and to map out the locations of the walls to help aid the archeologists

Example of Roman walls in Colchester, credits Maria, CC-BY-SA 3.0

TOMOGRAPHY VIA MULTIPLE SCATTERING

- Muon tomography allows us to infer the material composition of unknown volumes of space
- Cosmic muons are scattered by materials in the volume according to their radiation-length $(X_0 [m])$ of the material
 - Radiation-length = average distance between scatterings
- By using detectors, we can measure muons above and below volume
 - The changes in trajectory provide information on material composition

 $\begin{array}{ll} \text{High X}_0 = \text{low} & \text{Low X}_0 = \text{high} \\ \text{scattering} & \text{scattering} \end{array}$

X₀ = average distance between scatterings

DETECTOR

40m

- The detector setup used here is quite unrealistic
 - It assumes that a detector panel may be placed underground, directly under the passive volume
 - The simulated detector is very large (40×40m), but this is for simulation convenience; a smaller detector could be used and placed in several spots to create a combined scan
- The detector consists of two layers (Im height), placed above and below the volume
 - Each layer contains 4 equally spaced panels
 - Each panel records muon positions with an xy resolution of 0.1 mm

PASSIVE VOLUME

- The passive volume is a 10x10x10m cube
 - It is subdivided into 1000 voxels, each IxIxIm in size
- Each voxel can either be soil (X0=~0.26m) or wall ($X0 = \sim 0.08 \text{m}$)
 - The amount of muon scattering depends on the voxel X0, and scales as sqrt(distance/X0)/momentum
 - Muon momentum will always be IGeV, but the distance depends on the incoming angle

COMPLETE VOLUME SETUP: ZX

COMPLETE VOLUME SETUP: XY

TRACK FITTING

- Fit linear trajectories to the hits
- Can then compute variables about the muon scattering, e.g.:
 - Incoming and outgoing angles
 - Changes in trajectory

POCA INFERENCE

- PoCA method assigns the entirety of the muon scattering to a single voxel
- The voxel is chosen by extrapolating trajectories inside the passive volume to find the Point of Closest Approach
- X0 predicted by inverting the scattering model to get X0 as a function of total scattering, and then averaging over many muons
- We made a slight modification: X0
 predictions are applied to every voxel, but
 in an average weighted by the probability
 of the scattering having occurred there
 - Computed using the uncertainty on the PoCA location
 - This provides a dense set of voxelwise X0 predictions

Block of lead $(X_0 = 0.005612m)$ Surrounded by beryllium $(X_0 = 0.3528m)$ **Predictions highly** biased to underestimate X₀ Lead block clearly visible but high z uncertainty in scatter location causes 'ghosting' above and below

TARGET

- The passive volumes are randomly generated to simulate stone walls buried underground
 - Each volume contains at least one wall, surrounded by soil
- All walls in a given sample begin on the same z position, but can vary in height
 - The starting z position of the walls can vary between samples

DATASET

- A sample is created by scanning a newly generated passive volume:
 - 10,000 muons are recorded
 - Incoming angle and initial xy position can vary
 - Momentum is fixed at IGeV
 - The scanning process uses the PoCA inference method described on slide 9
 - This results in a biased PoCA image of voxelwise X0 predictions (float32)
 - The target is a map of the wall voxels (int, 0 = soil, I = wall)
- Approximately 100k labelled samples are provided along with 30k unlabelled testing samples
 - Your task is to provide predictions on the unlabelled sample

METRIC

- Both predictions and targets will be a voxelwise 0 or 1
- Performance evaluated using the "intersection-over-union" (IOU) metric
 - Intersection is number of wall voxels correctly predicted to be wall
 - Union is the sum of the number of voxels that are either predicted to be wall or are actually wall
- Behaviour:
 - Predicting all walls gets high intersection but also high union = low IOU
 - Predicting no walls gets zero intersectionzero IOU
 - Accurate wall predictions get high intersection and low union = high IOU
 - IOU is between 0 and 1, and higher values mean better performance

STARTER PACK

- Starter notebook covers:
 - Loading the data and viewing the data
 - Applying a simple threshold-based approach
 - Evaluating performance using the intersection-over-union metric
 - Creating a submission with predictions for the test data
- Threshold method: prediction based solely on X0 values:
 - X0 below threshold, predict wall
 - X0 above threshold, predict soil
 - Optimise thresholds by maximising the IOU

Left: predictions using the optimised threshold

Resulting IOU is 0.63

SUBMISSIONS

- Submissions must be uploaded in HDF5 format to https://cernbox.cern.ch/index.php/s/ylsOYg9q7hc
 Rk4I
 - Format must be a (sample, z, x, y) matrix of integer values stored in a dataset called 'preds'
 - Submissions not in this format will be ignored
 - Order of predictions must be the same as the samples in the testing dataset
 - The starter pack contains instructions on how to do this
 - File names should include your name and an optional ID number for the submission
 - In case of multiple submissions, I will use the one with the highest ID number
 - Files without a person's name will be ignored
- Deadline is 23:59:59 CEST on 22/09/04

- Submissions can be made anytime before the deadline
- Multiple submissions are ok
 - Final results will be based on the latest submission
- Every Friday I will announce results of performance on a random subsample of the test data using everyone's latest submissions.
 - I will also let anyone know if their submission format was invalid
- The final results will be computed using the remaining samples from the test dataset