

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

PROGRAMA DEL CURSO INTRODUCCION A LA PROGRAMACION Y COMPUTADORAS 1

CODIGO:	770	CREDITOS:	4
	Ciencias y		Desarrollo
ESCUELA:	Sistemas	AREA:	de Software
	34 Créditos		771
PRERREQUISITO:	103	POSTREQUISITO:	796
CATEGORIA:	Obligatorio	SECCION:	
HORAS POR SEMANA		HORAS POR SEMANA	
DEL CURSO:	4	DE LABORATORIO:	2
DIAS QUE SE IMPARTE EL	Martes		
CURSO:	Jueves	DIAS DE LABORATORIO	Sábado
		HORARIO DE	
HORARIO DEL CURSO:		LABORATORIO:	

DESCRIPCIÓN DEL CURSO

El curso es el acercamiento inicial del estudiante de la carrera de sistemas, a la programación mediante el uso de disciplinas y metodologías especializadas. El curso se fundamenta en el concepto de algoritmo para la resolución de problemas de programación, enfatizando el uso del paradigma orientado a objetos. Se introducen conceptos básicos de UML como guía para el diseño de sistemas orientados a objetos. Se acerca al estudiante al conocimiento de los principales algoritmos de búsquedas y ordenamientos. Se cubre una parte importante de las estructuras de datos, los tipos de datos abstractos. Asimismo, el estudiante conocerá el lenguaje Java como el lenguaje oficial de programación del curso.

OBJETIVOS GENERALES

Lograr que el estudiante adquiera la habilidad de programar y los conocimientos básicos de la programación utilizando el paradigma orientado a objetos.

METODOLOGÍA

El desarrollo del curso se apoyará en la lectura constante de documentos y publicaciones sobre los temas que el docente facilitará para cada tema, además de la investigación personal y grupal sobre diferentes temas específicos abordados en cada unidad. Se espera que las sesiones de clase sean para difusión y ampliación de tales trabajos. Clases magistrales y lecturas concisas.

EVALUACIÓN DEL RENDIMIENTO ACADÉMICO:

Según el Reglamento General de Evaluación y Promoción del Estudiante de la Universidad de San Carlos de Guatemala, la zona tiene valor de 75 puntos, la nota mínima de promoción es de 61 puntos y la zona mínima para optar a examen final es de 36 puntos.

Del 100% de la nota final, se distribuye en actividades de evaluacion de la siguiente manera:

Procedimiento	Instrumento de Evaluación	Ponderación
Asignación por tema	Tres examenes parciales (10% c/u)	30%
	Tareas e investigación, Cortos	5%
	Laboratorio	40%
Total de la zona		75%
Total de la zona Evaluación final		75% 25%

CONTENIDO PROGRAMÁTICO

Primera Unidad

Introducción

- 1.1 Conceptos computacionales
 - 1.1.1 Computadora
 - 1.1.2 Hardware
 - 1.1.3 Firmware
 - 1.1.4 Software
- 1.2 Organización

- 1.2.1 CPU
- 1.2.2 Memoria principal
- 1.2.3 Memoria secundaria
- 1.2.4 Dispositivos E/S
- 1.2.5 Periféricos
- 1.3 Lenguajes de programación
 - 1.3.1 Lenguaje de máquina
 - 1.3.2 Lenguajes de bajo nivel
 - 1.3.3 Lenguajes de alto nivel
- 1.4 Resolución de problemas computacionales
 - 1.4.1 Análisis del problema
 - 1.4.2 Diseño del algoritmo
 - 1.4.3 Codificación
 - 1.4.4 Compilación y ejecución
 - 1.4.5 Verificación y depuración
 - 1.4.6 Documentación

Segunda Unidad

Metodología orientada a objetos

- 2.1 Concepto de abstracción y clasificación
- 2.2 Clases y objetos
- 2.3 Mensajes y métodos
- 2.4 El principio el encapsulamiento
- 2.5 Los miembros de una clase
 - 2.5.1 Atributos

- 2.5.2 Métodos (operaciones)
- 2.5.3 Constructores y destructores
- 2.6 Modificadores de visibilidad
 - 2.6.1 Privado
 - 2.6.2 Público
 - 2.6.3 Protegido
- 2.7 Relaciones entre clases y objetos
 - 2.7.1 Asociación
 - 2.7.2 Agregación y composición
 - 2.7.3 Herencia (simple y múltiple)
- 2.8 Polimorfismo
 - 2.8.1 Sobrecarga de métodos
 - 2.8.2 Virtualización
- 2.9 Construcciones abstractas
 - 2.9.1 Clase abstracta
 - 2.9.2 Interfase
- 2.10 Conceptos avanzados
 - 2.10.1 Miembros estáticos (static) y miembros de instancia
 - 2.10.2 Referencia "this"
 - 2.10.3 Clases paramétricas (plantilla de clases).
- 2.11 Principios básicos de UML (diagrama de clases)
 - 2.11.1 Definición de clases y sus relaciones
 - 2.11.2 Ámbito de las propiedades, Métodos
 - 2.11.3 Diseño de programas
- 2.11.4 Asociaciones y restricciones, clases de asociaciones, Multiplicidad, Dependencia

2.11.5 Relaciones múltiples (asociativas) y reflexivas

Tercera Unidad

Programación modular y estructuras básicas

- 3.1 Secuencial y procedural: metodología Top-Down.
- 3.2 Variables: concepto, manipulación y asignación.
- 3.3 Tipos de datos (primitivos y construidos por el usuario)
- 3.4 Operadores aritméticos
- 3.5 Operadores relacionales y lógicos
- 3.6 Estructuras de control condicionales

3.6.2 En caso (switch / case)

- 3.7 Estructuras cíclicas (bucles, loops)
 - 3.7.1 Para (for)
 - 3.7.2 Mientras (while)
 - 3.7.3 Repetir Hasta (Repeat Until / do-while)
- 3.8 Las rutinas
 - 3.8.1 Procedimiento y función
 - 3.8.2 Entorno de las variables (alcance o ámbito)
 - 3.8.3 Los parámetros
 - 3.8.3.1 Por variables
 - 3.8.3.2 Por valor

3.8.4 El valor de retorno

- 3.9 Modularidad
 - 3.9.1 Segmentos por rutina
 - 3.9.2 Uso adecuado de prefijos
 - 3.9.3 Documentación interna
 - 3.9.4 Legibilidad y entendimiento
- 3.10 Recursividad

Cuarta Unidad

Programación orientada a objetos

- 4.1 Lenguaje Java (clases, atributos, métodos)
- 4.2 Constructor y destructor
- 4.3 Tipos de atributos
- 4.4 Operaciones (aritméticos, relacionales y lógicos)
- 4.5 Estructuras de control condicionales (if else, switch, ?:)
- 4.6 Estructuras cíclicas (for, while, do-while)
- 4.7 Tipos de accesos (public, private, protected)
- 4.8 Manejo de variables.
- 4.9 Métodos: funciones/procedimientos y recursividad.

Quinta Unidad

Estructuras algorítmicas

5.1 Arreglos vectoriales de datos

- 5.1.1 Conceptos: elementos, longitud, indexación, representación en memoria.
- 5.1.2 Arreglos bidimensionales (matrices): representación en memoria.
- 5.1.3 Arreglos n-dimensionales (multidimensionales).
- 5.1.4 Ejemplos, técnicas de acceso y recomendaciones.
- 5.2 Las cadenas de caracteres
 - 5.2.1 Concepto: diferencia con arreglos de caracteres.
 - 5.2.2 Cadenas estáticas (ej: String) y dinámicas (ej: StringBuffer).
 - 5.2.3 Operaciones y métodos.
- 5.3 Búsqueda de datos en arreglos
 - 5.3.1 Secuencial
 - 5.3.2 Binaria
- 5.4 Ordenamiento de datos en arreglos
 - 5.4.1 Burbuja
 - 5.4.2 Por inserción
 - 5.4.3 Por selección
 - 5.4.4 Quick Sort
- 5.5 La pila (Stack)
 - 5.5.1 Política de acceso a datos (LIFO) y operaciones.
- 5.6 La cola (Queue)
 - 5.6.1 Política de acceso a datos (FIFO) y operaciones.
 - 5.6.2 Representaciones: simple y circular.
- 5.7 El uso de Heap
 - 5.7.1 Asociación a la pila
 - 5.7.2 Tomar y devolver al heap
 - 5.7.3 Usos con las pilas y las colas

Sexta Unidad

Colecciones de datos

- 6.1 Los índices y el apuntador simple
 - 6.1.1 El apuntador subíndice
 - 6.1.2 Almacenamiento
 - 6.1.3 Ordenamiento
- 6.2 Los registros
 - 6.2.1 Concepto y definición por campos

Séptima Unidad

Flujos de bytes y manipulación de archivos

- 7.1 Concepto: modelo productor-consumidor y flujo (stream).
- 7.2 Tipos de flujos
- 7.3 Tipos de archivos
 - 7.3.1 Archivos de texto
 - 7.3.2 Archivos binarios
- 7.4 Operaciones básicas
 - 7.4.1 Abrir y cerrar
 - 7.4.2 Lectura, escritura y posicionamiento
 - 7.4.3 Localización del final del archivo

Octava Unidad

Los tipos de datos abstractos

- 8.1 Tipos de apuntadores (estáticos y dinámicos)
- 8.2 Listas simples

- 8.3 Listas doblemente encadenadas
- 8.4 Pilas usando listas
- 8.5 Colas usando listas
- 8.6 Listas ortogonales
- 8.7 Listas n-encadenadas

BIBLIOGRAFIA

JOYANES, L. y ZAHONERO, I. "Programación en Java 2 (algoritmos, estructura de datos y programación orientada a objetos)". España, McGraw-Hill / Interamericana de España, S. A. 2002, PP 725

BUDD, Timothy. "Introducción a la programación orientada a objetos", EUA, Addison-Wesley, Iberoamericana, S. A. 1994, PP. 409

OYANES, L. "Programación en Tubo Pascal Versiones 5.5, 6.0, y 7.0", (2da Edición), México, McGraw-Hill / Interamericana de España, S. A. 1995, PP. 914

Manuales de Referencia de Java, http://www.sun.com/java>.

Cualquier otro material (escrito o digital) entregado en clase