Grafos 2-conexo

Ronald Mas, Angel Ramirez

10 de julio de 2020

Contenido

- Grafos 2-conexo
- Operaciones en grafos
- Grafos libre de triángulos

2-Conectividad

Definición

Un grafo G se llama k-vértice conexo si tiene como mínimo k+1 vértices y permanece conexo después de suprimir cualquier conjunto de k-1 vértices.

Observaciones:

- Diremos que un grafo *G* es 2-conexo en vez de decir que un grafo *G* es 2-vértice conexo.
- Es decir, un grafo G se llama 2-conexo si tiene como mínimo 3 vértices y al suprimir cualquier vértice se tiene un grafo conexo.
- Un grafo 2- conexo es también conexo.

Ejemplo: El siguiente grafo no es 2-conexo ya que el suprimir el vértice v se genera un grafo no conexo.

Operaciones en grafos

Definición

Sea G = (V, E) un grafo. Definamos algunas operaciones en grafos:

1) Eliminación de una arista:

$$G - e = (V, E \setminus \{e\}),$$

donde $e \in E(G)$.

2) Adición de una nueva arista:

$$G + \overline{e} = (V, E \cup {\overline{e}}),$$

donde
$$\overline{e} \in \binom{V}{2} \setminus E$$
.

Continua las Operaciones en grafos

Definición

3) Eliminación de un vértice:

$$G - v = (V \setminus \{v\}, \{e \in E : v \notin e\}),$$

donde $v \in V(G)$ (al eliminar el vértice se eliminan también todas las aristas que lo contienen).

4) Subdivisión de una arista:

$$G \%e = (V \cup \{z\}, (E \setminus \{\{x,y\}\}) \cup \{\{x,z\}, \{z,y\}\})$$

donde $e = \{x, y\} \in E(G)$ y $z \notin V(G)$ es un nuevo vértice (se coloca un nuevo vértice z en la arista $\{x, y\}$).

Ejemplos:

Dado un grafo G = (V, E) veamos algunas operaciones:

Teorema

Un grafo G es 2-conexo si y sólo si para cualquier par de vértices de G existe un ciclo en G conteniendo estos dos vértices.

Prueba:

- \Leftarrow) Como cualquier par de vértices $v, v' \in V(G)$ pertenecen a un ciclo en común entonces existen dos caminos que no contienen vértices comunes excepto los vértices finales y así v y v' no caen en distintos componentes al eliminar un solo vértice.
- \Rightarrow) Ejercicio.

Proposición

Un grafo G es 2-conexo si y sólo si cualquier subdivisión de G es 2-conexo.

Prueba:

Es suficiente probar que, para todo $e \in E(G)$, G es 2-conexo si y sólo si G %e es 2-conexo. Veamos sólo la vuelta, si $v \in V(G)$ entonces G - v es conexo si y sólo si (G %e) - v es conexo, por tanto si G % es 2-conexo entonces G también es 2-conexo.

Caracterización de grafos 2-conexo

Teorema

Un grafo G es 2-conexo si y sólo si este puede ser creado de un triángulo (K_3) por una secuencia de subdivisiones y adición de aristas.

Ejemplo: Veamos como generar el grafo G.

Grafos libres de triángulos

Sea G un grafo simple con |V(G)| = n, si |E(G)| = k entonces

$$0 \le k \le \binom{n}{2}$$
.

Es bien sabido que todo grafo simple con n vértices es isomorfo a K_n , analicemos la siguiente interrogante:

¿ Cuántas aristas como máximo puede tener un grafo simple G con n vértices libre de triángulos?

Casos particulares

Sea T(n) el número máximo de aristas que puede tener un grafo G libre de triángulos con n vértices. Luego se tiene que:

- T(1) = 0.
- T(2) = 1.
- T(3) = 2.
- T(4) = 4, $(G \simeq C_4)$.
- T(5) = 6. En efecto como muestra el dibujo:

Teorema

Para todo número natural n se tiene que $T(n) = [\frac{n^2}{4}]$.

Teorema

Para todo número natural n cada grafo libre de triángulo con la máxima cantidad de aristas es isomorfo a el grafo $K_{a,b}$ con $a = \llbracket \frac{n}{2} \rrbracket$ y $b = n - \llbracket \frac{n}{2} \rrbracket$

Ejemplo: Para un grafo G = (V, E) libre de triángulos con |V(G)| = n = 5 se tiene que a = 2 y b = 3, por tanto:

Teorema

Sea G=(V,E) un grafo libre de triángulos. Entonces existe una partición de V en dos subconjuntos X y Y tal que para todo vértice $x \in V$ se tiene que $\deg_G(x) \leq \deg_{K_{|X|,|Y|}}(x)$.

Este teorema permite probar de manera rápida que

$$T(n) = [\![\frac{n^2}{4}]\!].$$

En efecto, si |X| = a y |Y| = b se tiene por el teorema anterior que:

$$\mid E(G) \mid \leq \mid E(K_{a,b}) \mid$$

con a+b=n, luego como deseamos maximizar a.b se tiene: $a.b=a(n-a)=-a^2+an$, es decir el máximo valor del producto e obtiene cuando $a=\frac{n}{2}$. Luego

$$\mid E(G) \mid \leq \frac{n^2}{4}.$$

Por tanto $T(n) = [\frac{n^2}{4}]$.