تمرين. 1

السونار جهاز استشعار يتكون من مجس يحتــوي علـــي باعــث E و مستقبل R للموجات فوق الصوتية ، و يستعمل في الملاحة البحرية لمعرفة عمق المياه إذ بفضله تستطيع السفن الاقتراب من السواحل بكل اطمئنان. لتحديد عمق المياه، ترسل باخرة بواسطة الباعث E إشارات فوق صوتية دورية جيبية نحو قعر البحر ، و بعد اصطدامها بالقعر ينعكس جزء منها ليتم التقاطه من طرف المستقبل R (انظر الشكل 1 أسفله) الأشعة المنمذجة لاتجاه و منحى الانتشار مائلة قليلا بالنسبة للاتجاه الرأسي .

- اعط تعریف موجة میکانیکیة متوالیة.
- هل الموجة الصوتية طولية أم مستتعرضة ؟
- 🔞 نستعمل موجات فوق صوتية ترددها N=200 kHz تنتشر في ماء $V_{eau} = 1500 \text{ m.s}^{-1}$ البحر بسرعة
 - أ- أحسب الدور T وطول الموجة λ للموجة الصوتية.
 - → انطلاقا من الرسم التذبذبي حدد قيمة المدة Δ t
 - نعتبر أن الموجات فوق الصوتية تتبع مسارا رأسيا.
 - d و العمق d بدلالة Δ و العمق d أحسب قيمة d

تمرین.2

لتعيين سرعة انتشار الموجات الصوتية في الهواء ننجز التركيب التجريبي الممثل أسفله.

- . d_1 يفصل بين الميكرفونين R_1 و R_2 مسافة
- يمثل الرسمان التذبذبيان الممثلان في الشكل2 تغييرات التسوتر بسين مربطي كل ميكروفون بالنسبة للمسافة d_1 =41 cm .
 - الحساسية الأفقية للمدخلين هي: 0,1ms/div.

- 1 اعط تعريف طول الموجة λ و الدور T.
- 🛭 اذكر الفرق بين الموجة الميكانيكية الطولية والموجة الميكانيكية المستعرضة. RFDWANF NAAIA
 - اختر الجواب الصحيح من بين مايأتى:
 - 🕶 الموجات الصوتية و فوق الصوتية موجات مستعرضة.
 - الموجات فوق الصوتية مسموعة من طرف الإنسان.
 - يتغير تردد الموجات الصوتية بتغير وسط الانتشار.
 - تنتشر الموجات الصوتية في الفراغ و الأوساط المادية. تنتشر الموجة الصوتية في وسط ثلاثي البعد.
 - أثناء انتشار موجة ميكانيكية، تنتقل الطاقة فقط.
 - ♦ عين قيمة الدور T للموجات الصوتية و استنتج ترددها N.
- نزيج الميكروفون R₁ أفقيا إلى أن يصبح الرسمان التذبذبيان من جديد $d_2=61,5$ cm و R_2 و R_1 على توافق في الطور فتكون المسافة بين R_1 و R_2
 - أ- حدد قيمة λ طول الموجة للموجة الصوتية. ب- استنتج V سرعة انتشار الموجات الصوتية في الهواء.

تمرین.3

غالبا ما تحدث الزلازل التي تقع في أعماق المحيطات ظاهرة طبيعية تدعى تسونامي، و هي عبارة عن موجات تنتشر على سطح المحيط لتصل إلى الشواطئ بطاقة عالية و مدمرة.

PR: NAAIA REDWANE

ندمذ ج ظاهرة تسونامي بموجة ميكانيكية متوالية دورية تنتشر على سطح الماء بسرعة $V=\sqrt{h.g}$ ي في الماء بسرعة $V=\sqrt{h.g}$ تتعلق مع عمق الخيط h وفق العلاقة مع عمق الخيط حالة المياه القليلة العمق مع طول الموجة $h \gg \lambda$. حيث الرمز $\lambda \gg h$ عثل طول الموجة و $\mu \approx 0$ شدة مجال الثقالة.

- نعطي: g=10m.s-2 و h=6000 m في هذا الجزء من المحيط.
 - علل أن الموجات التي تنتشر على سطح المحيط مستعرضة.
- باستعمال التحليل البعدي، بين أن المعادلة $V = \sqrt{g \cdot h}$ متجانسة Qثم احسب السرعة V في هذا الجزء من المحيط.
- 🕄 علما أن المدة الزمنية بين ذروتين متتاليتين هي T=18 min ، أوجد طول الموجة λ.
- في حالة $\lambda\gg h$ ، يبقى تردد موجات التسونامي ثابتا خلال انتشارها نحو الشاطئ. كيف يتغير طول الموجة لم عند الاقتراب من الشاطئ ؟
- تمر موجة تسونامی بین جزیرتین A و B یفصل بینهما مضیق عرضه d=100 km. نعتبر أن عنق المحيط يبقى ثابتا و أن موجة تسونامي مستقيمية طول موجتها \ \ \ \ \ 120 km . انظر الشكل.
- أ- هل تحقق شرط حدوث ظاهرة حيود موجة تسونامي؟ علل جوابك. ب- في حالة حدوث الحيود:
 - → أعط، معللا جوابك، طول الموجة ٨.
 - 🕶 احسب زاوية الحيود θ .

لمرين. 4. لتحديد سرعة انتشار موجة ميكانيكية طول حبل، طلب أستاذ الفيزياء لتحديد سرعة انتشار موجة ميكانيكية طول حبل، طلب أستاذ الفيزياء من أحد التلاميذ إحداث تشوه عند طرف حبل أفقي، و في نفس الوقت طلب من تلميذة أن تصور شريط فيديو لمظهر الحبل بواسطة كاميرا رقمية مضبوطة على التقاط 25 صورة في الثانية. م وضع مسطرة (R) طوفا 1m لضبط سلم قياس الطول. تكلف الأستاذ بمعالجة الشريط و باستخراج مختلف الصور للحبل مستعينا ببرنم معلوماتي مناسب، ثم اختار الصورتين رقم 8 و رقم 12 قصد الدراسة و الاستثمار (الشكل أسفله).

انقل الجواب الصحيح.

- المدة الزمنية الزمنية Δt الفاصلة بين اللحظتين اللتين التقطت فهما الصورتان رقم 8 و رقم 12 هي:
 - $\Delta t=0,16 s \ll$ Δ t=0,12 s \ll
 - $\Delta t=0.24 s \ll$ Δ t=0,20 s \ll
 - ❷ المسافة المقطوعة خلال المدة الزمنية Δ t هي:
 - d=0,50 m 🗷 d=2 cm €
 - d=1,50 cm 🗷 d=1,00 m 🗷
 - 📵 سرعة انتشار الموجة هي :
 - V=6,25 m.s⁻¹ & V=5,10 m.s-1 &
 - V=10,50 m.s-1 & V=7,30 m.s-1 📈
 - قعبير استطالة نقطة M من الحبل بدلالة استطالة المنبع S هو:
 - $y_M(t) = y_S(t \tau) \approx$ $y_M(t) = y_S(t + \tau) \approx$
 - $y_M(t) = y_S(t-2. \tau) \ll$ $y_{M}(t)=y_{S}(\tau - t) \ll$