To'lqinning tarqalish yo'nalishidagi chiziqda joylashgan ikki nuqtalar tebranishlarining fazalar farqi 2π ga teng. Agar nuqtalar orasidagi masofa 5 m ga teng bo'lsa, to'lqin uzunligi qanday (m) bo'ladi?

1

2

*****5

6

He₂⁴ qanday zarra?

Ogʻir zarra

Yengil zarra

Elementar zarra

*alfa zarra

Tovush manbaidan toʻlqin uzunligi 3 m boʻlgan toʻlqinlar tarqalmoqda. x1=3 m vax2=9 m koordinatali nuqtalarning tebranishlari fazalar farqi nimaga teng?

π

 3π

 $*4\pi$

 2π

Difraksion panjara nima?

*Bir tekislikda yotgan navbatlashib keluvchi tirqish va toʻsiqlar tizimi

Bir tekislikda yotgan navbatlashib keluvchi tirqishlar tizimi

Fazoda navbatlashib keluvchi tirqish va toʻsiqlar tizimi

Barcha javoblar toʻgʻri

Difraksion panjara doimiysi nima?

*Tirqish va toʻsiqlar kengliklari yigʻindisi d

Tirqishlar yigʻindisi

To'siqlar kengligi

Toʻgʻri javob berilmagan

de-Broyl toʻlqin uzunligi ifodasini toping.

```
*h/p=h/m*v
h/k=h/2m
h/m=h/nm
h/pc=h/c
Tovush manbaidan toʻlqin uzunligi 7 m boʻlgan toʻlqinlar tarqalmoqda.
x<sub>1</sub>=12 m va x<sub>2</sub>=16 m koordinatali nuqtalarning
tebranishlari fazalar farqi nimaga teng?
*1.1 π
1\pi
8\pi/5
6π
Interferensiya bu....
*Ikki kogerent toʻlqinlarning qoʻshilishida natijaviy toʻlqin amplitudasining
kuchayishi yoki susayishi;
Ikki toʻlqinlarning qoʻshilishida natijaviy toʻlqin amplitudasining kuchayishi yoki
susayishi;
Ikki toʻlqinlarning qoʻshilishida natijaviy toʻlqin amplitudasining kuchayishi;
Ikki kogerent toʻlqinlarning qoʻshilishida natijaviy toʻlqin amplitudasining
kuchayishi.
Interferensiya xodisasi yorugʻlikning qanday tabiatini xarakterlaydi?
*Toʻlqin xususiyatini
Korpuskulyar xususiyatini
Toʻlqin va korpuskulyar xususiyatini
Barcha javoblar toʻgʻri
To'lqin uzunligi \lambda, fazalar farqi \pi/3 bo'lganida, interferensiyalanayotgan
ikkita kogerent nurlarning vo'llar farqini toping.
λ
\lambda/2
*\lambda/6
```

 $\lambda/8$

Qanday radioaktivliklar mavjud?

Har xil

Uch xil radioaktivlik mavjud

Bir xil radioaktivlik mavjud

*Sun'iy va tabiiy.

Interferensiya xodisasi yorugʻlikning qanday tabiatini xarakterlaydi?

*Toʻlqin xususiyatini

Korpuskulyar xususiyatini

Toʻlqin va korpuskulyar xususiyatini

Barcha javoblar toʻgʻri

Yorugʻlik kattaliklar qanday asboblarda oʻrganiladi?

*Fotometrlar

Galvanometrlar

Voltmetrlar

Fetorezistirlar

Interferension refraktometrlar qanday maqsadlarda ishlatiladi?

*Moddalar sindirish koʻrsatkichini tashqi ta'sirdan kichik oʻzgarishlarini oʻlchashda

Toʻlqin uzunligini aniqlashda

Spektr tarkibini aniqlashda

Toʻgʻri javob berilmagan

Foton nima?

*Elektromagnit maydon kvanti

Kuchli ta'sirga ega bo'lgan kvant

Kuchsiz ta'sirga ega bo'lgan kvant

Zaryadsiz zarra

Interferensiya xosil boʻlish sharti qanday?

*Toʻlqinlar kogerent boʻlishi kerak

xar xil toʻlqin boʻlishi kerak

Fazalar farqi oʻzgarmas boʻlgan

Chastotalari teng boʻlgan

Bornning II – postulati qaysi javobda toʻgʻri ta'riflangan?

Turg'un xolatlardagi atomlarda aylanma orbita bo'ylab

xarakatlanayotgan elektronlarning impuls momenti

*h shartni qanotlantiruvchi kvantlangan qiymatlarga ega boʻladi.

Turg'un bo'lmagan xolatlarda atomlar kvantlanadi

Plankning kvantlar gʻoyasiga binoan jismlarning nurlanish energiyasini yutish va chiqarish jarayoni qanday sodir boʻladi?

*Uzlukli.

Toʻgʻri chiziqli.

Uzluksiz

Panjaraviy.

Qanday toʻlqinlar kogerent toʻlqinlar deyiladi?

Bir xil toʻlqin uzunlikdagi toʻlqinlar

Bir xil chastotadagi toʻlqinlar

Bir xil chastotali va bir xil fazadagi toʻlqinlar

*Bir xil chastotali va domiy fazalar farqiga ega boʻlgan toʻlqinlar

Yorug'lik difraktsiya xodisasi nima.

*Yorug'likning to'siqlarni aylanib o'tish xodisasi

Yorug'likning tarqalish xodisasi

Yorug'likning sochilish xodisasi

Yorug'likning qaytish xodisasi

To'lqin fronti sirtida yotgan barcha ikkilamchi manbalar bir-biriga nisbatan kogerentdir – bu kimlarning prinsipi.

Gyuygens

*Gyuygens - Frenel

Frenel

Nuyuton

Qachon yorug'lik to'lqinlari difraksiyasini kuzatish mumkin.
*To'siqlar o'lchami 10 ⁻⁶ -10 ⁻⁷ m bo'lganda
To'siqlar o'lchami 1-10 m bo'lganda
To'siqlar o'lchami 10 ⁻² -10 ⁻³ m bo'lganda
To'siqlar o'lchamiga bog'liq emas
Yig'iladigan nurlar difraksiyasi kimning difraksiyasi.
+Fraungofer
Frenel
Gyuygens - Frenel
Nuyuton
Parallel nurlar difraksiyasi kimning difraksiyasi.
*Fraungofer
Frenel
Gyuygens - Frenel
Nuyuton
Difraksiya natijasida ekranda olinadigan jadalliklar taqsimoti nima deyiladi.
*Difraksiyaviy spektr
Difraksion maksimum
Difraksion minimum
Difraksion panjara
Tirqish oq nur bilan yoritilganda markaziy maksimum qanday rangda bo'ladi.
Sariq
Qizil
*Oq

Difraksiyaviy panjara deb nimaga aytiladi.

To'siqlardan iborat bo'lgan optik asbob

Yashil

*Bir tekislikda yotgan va bir xil qalinlikdagi tiniq bo'lmagan oraliqlar bilan bo'lingan, teng qalinlikli parallel tirqishlardir Tirqishlardan iborat bo'lgan optik asbob Yorug'lik nirini qaytaruvchi asbob Difraksiyaviy panjara doimiysi nimaga teng. *d=a+b d=a-b d=ab d=a/bDispersiya hodisasini kim qachon aniqlagan. 1900 yil Nuyuton *1666 yil Nuyuton 1600 yil Frenel 1699 yil Guygenis Sindirish ko'rsatkichini υ yorug'lik (λ to'lqin uzunlikdagi) chastotasiga bog'liqligini yorug'likning deb ataladi. Nuqtalar o'rniga to'g'risini qo'ying. Difraksiyasi *Dispersiyasi Interferensiyasi Qutublanishi Prizmaning sindirish ko'rsatkichi katta bo'lsa, prizmada nurning og'ishi qanday bo'ladi. *Katta bo'ladi Kichik bo'ladi Nur og'maydi Nur o'tmaydi Dispersiya necha xil bo'ladi. 3 xil

*2 xi1

```
1 xil
4 xil
Dispersiyaning elektron nazariyasi kimga tegishli.
*Lorensga
Nuyutonga
Arximedga
Kulonga
Normal dispersiya deb ...... aytiladi. Nuqtalar o'rniga to'g'risini qo'ying.
To'lqin uzunligi oshishi bilan sindirish ko'rsatkichini oshib borishiga
*To'lqin uzunligi oshishi bilan sindirish ko'rsatkichini kamayib borishiga
To'lqin uzunligi kamayishi bilan sindirish ko'rsatkichini oshib borishiga
Prizmaning sindirish ko'rsatkichini oshib borishiga
Dispersiya ifodasini belgilang.
*n=n(\omega)
\lambda = n(t)
d=a/b
d=a+b
Moddada yorug'lik to'lqini tarqalayotganda uning energiyasining kamayishi
hodisasiga ......deb ataladi. Nuqtalar o'rniga to'g'risini qo'ying.
*Yorug'likning yutilishi
Yorug'likning sochilishi
Yorug'likning qaytishi
Yorug'likning dispersiyasi
Yorug'lik to'lqinining ko'ndalanglik xususiyati namoyon bo'ladigan to'lqin
optikasi hodisalari majmuasi nima deyiladi.
*Yorug'likning qutublanishi
Yorug'likning dispersiyasi
```

Yorug'likning sochilishi

Yorug'lik difraksiyasi

Chiziqli qutublangan yoki yassi qutublangan yorug'lik......

*Yorug'lik nuri o'tadigan tekislikning faqat bittasida tebranadigan yorug'lik vektoridir

Yorug'lik nuri o'tadigan tekislikning barchasida tebranadigan yorug'lik vektoridir

Yorug'lik nuri tushadigan tekislikdir

Yorug'lik to'lqinining ko'ndalanglik xususiyatidir

Yorugʻlikning qutublanishi nima?

Yorugʻlikning rangga ajralishi

*Yorugʻlikning bitta tekislikda tebranishi

Yorugʻlikning yoʻnalishini oʻzgartirishi

Yorugʻlikning tezligining kamayishi

Qutublanish hodisasi qaysi toʻlqinlarga xos?

Mexanik toʻlqinlar

*Elektromagnit toʻlqinlar

Har qanday toʻlqinga

Faqat suv toʻlqinlariga

Quyidagi vositalardan qaysi biri yorugʻlikni qutublay oladi?

Suv

Oyna

*Polaroid

Termometr

Yorugʻlik qutublanishi hodisasi qayerda koʻproq kuzatiladi?

Yorugʻlik havoda tarqalganda

*Yorugʻlik sirtga urilib akslanganda

Yorugʻlik vakuumda tarqalganda

Yorugʻlik diffuziyalanganda

Yorugʻlik toʻlqinlarining qanday tebranishlari boʻladi?

Faqat gorizontal

Faqat vertikal

*Har qanday yoʻnalishda

Toʻgʻri chiziqli

Qutublangan yorugʻlik nimadan farq qiladi?

*Unda faqat bir yoʻnalishda tebranish mavjud

Uning rangi oʻzgaradi

Uning tezligi ortadi

U issiqlik chiqaradi

Quyosh koʻzoynaklarida qaysi hodisadan foydalaniladi?

Sinish

Tarqalish

*Qutublanish

Yorugʻlik toʻlqinlari qanday toʻlqinlar turkumiga kiradi?

Bo'shliq to'lqinlar

Harakat toʻlqinlari

*Elektromagnit toʻlqinlar

Koʻzga koʻrinmas toʻlqinlar

Outublanish hodisasini koʻrish uchun nima kerak?

Ko'zoynak

Mikroskop

Polaroid filtr

Ultrabinafsha nur

Yorugʻlikning qutublanishi natijasida qanday oʻzgarish boʻladi?

Yorugʻlik tezligi kamayadi

Yorugʻlik tarqaladi

Yorugʻlikning faqat ma'lum yoʻnalishdagi tebranishi qoladi

Yorugʻlik yoʻqoladi

Kvant optikasi nimani o'rganadi?

Yorugʻlikning tarqalishini

*Yorugʻlikning kvant xossalarini

Yorugʻlikning sinishini

Koʻz tuzilishini

Yorugʻlik kvanti qanday nomlanadi?

Elektron

Proton

Neutron

*Foton

Foton qanday zarracha?

Massasiz va zaryadsiz

Massali va manfiy zaryadli

Massali va musbat zaryadli

Neytron kabi

Fotoeffekt hodisasini kim tushuntirib berdi?

Nyuton

Faradey

*Eynshteyn

Galiley

Fotonning energiyasi nimaga bogʻliq?

Yorugʻlik intensivligiga

Toʻlqin uzunligiga

Yorugʻlik rangi

*Toʻlqin chastotasiga

Foton energiyasi formulasi qanday?

 $E = mc^2$

*E = hv

 $E = F \cdot d$

 $E = mv^2$

h bu formuladagi qanday doimiy?

Nyuton doimiysi

*Plank doimiysi

Faradey doimiysi

Guk doimiysi

Fotoeffektda elektronlarning ajralib chiqishi uchun foton qanday boʻlishi kerak?

Juda sekin

Yashil rangda

*Yetarlicha energiyaga ega bo'lgan

Har qanday holatda

Kvant optikada yorugʻlik qanday tasvirlanadi?

Faqat toʻlqin sifatida

Faqat zarracha sifatida

*Ikkalasining aralashmasi sifatida (dual xossa)

Nur chiziqlari sifatida

Fotoeffekt hodisasi nimani isbotlaydi?

Yorugʻlikning toʻlqin xossasini

*Yorugʻlikning zarraviy xossasini

Yorugʻlik sinishini

Yorugʻlikning tarqalishini

Atomlarning chiziqli spektri deganda nima tushuniladi?

Yorugʻlikning tarqalish spektri

Faqat infraqizil toʻlqinlar

*Atom tomonidan chiqarilgan alohida toʻlqin uzunliklariga ega chiziqlar Yomgʻirda hosil boʻlgan kamalak

Chiziqli spektrlar qanday hosil bo'ladi?

Yorugʻlik sinishi natijasida

*Atomdagi elektronlar yuqori darajadan past darajaga oʻtganda

Faqat lazer yordamida

Issiqlik ta'sirida atom parchalanganda

Spektr nima?

Yorugʻlikning yutilishi

Yorugʻlikning quyuqlashishi

*Yorugʻlikning ranglarga ajralishi Yorugʻlik tezligining oshishi

Chiziqli spektrlar eng koʻp kimyo yoki fizikaning qaysi sohasida qoʻllaniladi?

Termodinamika

*Spektroskopiya

Elektronika

Akustika

Vodorod atomining chiziqli spektrlari kim tomonidan oʻrganilgan?

Nyuton

*Bor

Galiley

Mendeleyev

Atomdagi elektron yuqori energiyali holatdan past holatga oʻtganda nima sodir boʻladi?

Atom parchalanadi

*Foton chiqariladi

Proton hosil boʻladi

Elektron yoʻqoladi

Har bir kimyoviy element oʻziga xos chiziqli spektrga ega. Bu nimani anglatadi?

Barcha elementlar bir xil spektrga ega

Har bir element faqat oq nur chiqaradi

*Elementni spektr orqali aniqlash mumkin

Spektr elementdan mustaqil

Spektroskop nima?

Elektron mikroskop turi

Yorugʻlikni soʻruvchi asbob

Spektrlarni tahlil qiluvchi asbob

Tovushni kuchaytiruvchi qurilma

Chiziqli spektrlarda koʻrinadigan chiziqlar nimani bildiradi?

Atom massasini

Issiqlik darajasini

*Ma'lum energiyali fotonlar chiqarilishini

Atomlar sonini

Quyosh nuri chiziqli spektr hosil qiladimi?

*Yoʻq, u uzluksiz spektr beradi

Faqat qishda

Fagat maxsus sharoitda

Faqat qizil chiziq bo'ladi

Qattiq jism deganda nima tushuniladi?

Har doim harakatda boʻlgan modda

*Shakli va hajmi oʻzgarmaydigan modda

Havoda suzuvchi modda

Suv holatidagi modda

Qattiq jismdagi zarralar qanday joylashgan bo'ladi?

Erkin harakatda

Tartibsiz

*Juda zich va tartibli

Suv ichida

Qattiq jismning kristall tuzilmasi nimani bildiradi?

Toʻlqinlar shaklida joylashgan

Tashqi kuchlar ta'sirida parchalanadi

*Zarralari muayyan tartibda joylashgan

Ichida suyuqlik bor

Kristall moddalarga misol keltiring:

Havo

Shisha

*Tuz

Suv bugʻi

Amorf modda deganda nima tushuniladi?

Suvli modda

*Tartibli tuzilishga ega boʻlmagan qattiq jism

Gazsimon holatdagi modda

Metall

Quyidagi moddalardan qaysi biri amorf hisoblanadi?

Tuz

Olmos

Muz

*Shisha

Qattiq jismning elastikligi nima?

Issiqlik oʻtkazuvchanligi

Elektr yurituvchanligi

*Tashqi kuch olib tashlanganda dastlabki holatga qaytish qobiliyati Massasining ortishi

Qattiq jismlar issiqlik ta'sirida qanday harakat qiladi?

Soviydi

Hajmi kamayadi

*Kengayadi

Suvga aylanadi

Qattiq jismlar fizikasi nimani oʻrganadi?

Suyuqliklarning oqimini

Gazlarning bosimini

*Qattiq jismlarning ichki tuzilmasi va fizik xossalarini

Faqat haroratni

Qattiq jismning mustahkamligi nimaga bogʻliq?

Rangiga

Elektr zaryadiga

*Ichki tuzilmasi va bogʻlanish kuchlariga

Hajmiga

Yarim o'tkazgichlar nima?

Elektr tokini umuman o'tkazmaydi

Har doim tokni yaxshi o'tkazadi

*Ba'zi sharoitlarda tok o'tkazadigan modda

Faqat sovuqda ishlaydi

Xususiy yarim o'tkazgich deganda nima tushuniladi?

Maxsus aralashmalar bilan boyitilgan modda

Tarkibida begona atomlar boʻlgan modda

*Faqat toza holatdagi yarim o'tkazgich

Elektr o'tkazmaydigan material

Qaysi elementlar xususiy yarim o'tkazgichlarga misol bo'la oladi?

Vodorod va kislorod

Temir va mis

*Germaniy va kremniy

Simob va rux

Xususiy yarim o'tkazgichlarning elektr o'tkazuvchanligi nima ta'sirida ortadi?

Sovutganda

Yorugʻlik tushganda

Tashqi bosim oshganda

*Harorat oshganda

Yarim o'tkazgichlarda tok qanday tashiladi?

Faqat elektronlar orqali

*Elektron va teshiklar orqali

Faqat protonlar orqali

Suv molekulalari orqali

Xususiy yarim o'tkazgichda elektronlar qayerdan paydo bo'ladi?

Metall qatlami orqali

*Valensiya zonasidan oʻtish orqali

Magnit maydon orqali

Tashqi zaryaddan

Kremniy va germaniyda energiya bo'shlig'i (gap) qanday?

Juda katta

Yoʻq

*Kichik

Cheksiz

Tabiiy (xususiy) yarim o'tkazgichlar qaysi holatda elektr o'tkazmaydi?

*Juda past haroratda

Yorugʻlik tushganda

Kuchli magnit maydon boʻlsa

Yuqori bosimda

Xususiy yarim o'tkazgichlar o'zgarishsiz ishlashi uchun nima kerak?

Haroratni oshirish

Qattiq magnit maydon berish

*Doimiy toza holatda saqlash

Unga mis qoʻshish

Xususiy yarim o'tkazgichlarda o'tkazuvchanlikning o'sishi qanday hodisa hisoblanadi?

Elektron ionlanishi

Iste'mol kuchi

*Termik uygʻotilish

Elektromagnit tebranish

Kirishmali yarim o'tkazgich nima?

Faqat metall aralashmasidan tayyorlangan jism

Faqat magnit xossalarga ega modda

*Tarkibiga begona atomlar qoʻshilgan yarim o'tkazgich

Suvda eriydigan modda

Kirishma modda qanday maqsadda qo'shiladi?

Massani oshirish uchun

Rangini o'zgartirish uchun

*Elektr o'tkazuvchanlikni oshirish uchun

Qaynatish uchun

N-tipli yarim o'tkazgich qanday hosil bo'ladi?

*Donor aralashmalar qoʻshilganda

Hech qanday aralashma qoʻshilmaganda

Qizdirilganda

Kislorod qoʻshilganda

Donor atomlar qanday zaryadli bo'ladi?

*Musbat zaryadli

Manfiy zaryadli

Neytral

Zaryadsiz

P-tipli yarim o'tkazgich nima orqali hosil bo'ladi?

Donorlar orqali

Suv molekulalari orqali

*Akseptor atomlar orqali

Yorugʻlik ta'siri orqali

Akseptor atomlar qanday zaryadga ega boʻladi?

Ijobiy

*Manfiy

Zaryadsiz

Har doim neytron

N-tipli yarim o'tkazgichda asosiy zaryad tashuvchilar kim?

Protonlar

Teshiklar

*Elektronlar

Neytronlar

P-tipli yarim o'tkazgichda asosiy zaryad tashuvchilar kim?

Elektronlar

Protonlar

*Teshiklar

Kvarklar

Kirishmali yarim o'tkazgichlar qaysi qurilmalarda keng qo'llaniladi?

Magnitlar va transformatorlarda

*Quyosh panellarida, diod va tranzistorlarda

Radiatorlarda

Muzlatkichlarda

Qanday jarayon kirishma atomlari bilan bogʻliq boʻlib, oʻtkazuvchanlikni oshiradi?

Atomlarning parchalanishi

*Elektron va teshiklar sonining ortishi

Yadro reaksiyasi

Suyuqlanish

Kontakt hodisasi nima?

Ikki jism bir-biriga tegsa elektr zaryadi yoʻqoladi

Turli materiallar yuzasida zaryadlarning taqsimlanishi

*Ikki xil material bir-biriga tekkanda yuzaga keladigan elektr hodisasi

Zaryadlarning neytrallanishi

Metall va yarim o'tkazgich orasidagi kontaktda qanday hodisa yuz beradi?

Termik portlash

*Elektronlar oqimi yuzaga keladi

Faol zaryadlar parchalanadi

Yorugʻlik tarqaladi

P-N o'tish kontakti deb nimaga aytiladi?

Haroratni o'lchash moslamasi

*P-tip va N-tip yarim o'tkazgichlarning tutashgan sohasi

Zich kristall panjara

Izolyatorlar oʻzaro qoʻshilgan zona

P-N oʻtishda asosiy zaryad tashuvchilar nima boʻladi?

Faqat elektronlar

Faqat protonlar

*Elektron va teshiklar

Neytronlar

Kontakt potensial farqi nimadan hosil boʻladi?

Yorugʻlik ta'sirida

*Har xil materiallarning elektron ishga chiqarish funksiyasi farqidan

Tok oʻtmasligidan
Gaz bosimidan
Kontakt potensial
*Volt bilan
Metr hilan

ali qanday oʻlchanadi?

Kilogramm bilan

Kelvinda

Kontakt zonasi deb nimaga aytiladi?

Elektronlar to 'planuvchi joy

*P-tip va N-tip yarim o'tkazgich orasidagi o'tish sohasi

Fagat P-tip soha

Tok manbai joylashgan joy

Diod qurilmasi qanday hodisaga asoslangan?

Termik kengayish

*P-N o'tish va kontakt hodisasi

Magnit maydon

Yorugʻlik sochilishi

P-N o'tishda kontakt bo'shlig'i qanday hosil bo'ladi?

O'tkazuvchanlikning oshishi bilan

*Zaryad tashuvchilarning diffuziyasi natijasida

Harorat koʻtarilishi bilan

Tok yoʻqolganda

Kontakt hodisasi qanday qurilmada qo'llanilmaydi?

Diodda

Tranzistorda

*Lampa (naychada)

Fotodiodda

Kontakt potensial to'siq nima?

Elektronlarning yuqori darajaga oʻtishi

Zaryad tashuvchilarning to'planish zonasi

*P-N o'tishda yuzaga keladigan kuchlanish to'siq

Qizdirilganda materialning suyuqlanishi

Tranzistorda nechta kontakt zonasi mavjud?

1

*****2

3

Kontakt hodisasi sababli qanday kuchlar yuzaga keladi?

Issiqlik kuchlari

Gravitatsion kuchlar

*Elektr kuchlar

Mexanik kuchlar

Kontakt hodisasi qaysi fizik qonunga asoslanadi?

Nyuton qonuni

Kichkina zarralarning harakati qonuni

Termodinamik tenglama

*Elektron energiya va diffuziya qonunlariga

Kontakt hodisasi oʻrganiladigan soha qanday ataladi?

Termodinamika

Optika

*Yarim o'tkazgichlar fizikasi

Suv fizikasi

Atom yadrosida qanday zarralar mavjud?

Faqat elektronlar

Faqat protonlar

*Protonlar va neytronlar

Elektronlar va fotonlar

Proton qanday zaryadga ega?

Manfiy

*Musbat

Zaryadsiz

Ikki zaryadli

Neytron qanday zaryadga ega?

Musbat

Manfiy

*Zaryadsiz

Har doim musbat

Atom yadrosining massasi asosan nimaga bogʻliq?

Elektron massasiga

Faqat protonlarga

*Yadrodagi zarrachalar massasiga

Atom massasiga

Atom raqami nimani bildiradi?

Neytronlar soni

Elektronlar soni

*Protonlar soni

Massaning foizi

Yadro zaryadi kim tomonidan belgilanadi?

Elektronlar

*Protonlar

Neytronlar

Kvarklar

Massa soni qanday aniqlanadi?

Proton – neytron

Proton + elektron

*Proton + neytron

Elektron + neytron

Izotoplar nima?

*Protonlar soni teng, neytronlar soni har xil boʻlgan atomlar Har xil elementlar Elektronlar soni ortiqcha boʻlgan atomlar

Zaryadsiz atomlar

Yadro kuchlari qanday kuchlar turiga kiradi?

Elektr

Gravitatsion

*Kuchli yadro kuchlari

Issiqlik kuchlari

Alfa zarracha tarkibida nima bor?

2 elektron

1 proton

*2 proton va 2 neytron

1 neytron va 1 proton

Beta minus zarracha bu —

Proton

*Elektron

Foton

Neytron

Gamma nurlanish nima?

Zaryadli zarracha oqimi

Toʻlqin emas

*Elektromagnit toʻlqin

Alfa zarralar oqimi

Radioaktivlik bu —

Atomlarning elektromagnit sochilishi

Zarralarning yorugʻlik chiqarishi

*Atomm yadrosining o'z-o'zidan parchalanish hodisasi

Atomning yong'in bilan reaksiyasi

Uran yadrosi boʻlinishida qanday zarracha chiqadi?

Elektron

Foton

*Neytron

Proton

Zanjirli yadroviy reaksiyada nimadan koʻp hosil boʻladi?

Issiqlik va yorugʻlik

*Neytronlar

Elektronlar

Suv bugʻi

Yadro energiyasi qanday olinadi?

Faqat kimyoviy reaksiyadan

Elektron to'qnashuvlardan

*Yadro boʻlinish yoki birikishidan

Suv bugʻidan

Termoyadro reaksiyasi bu —

Sovitish orqali yadro parchalanishi

Yadro parchalanmasi

*Kichik yadrolarning birikishi

Yadro zaryadining yoʻqolishi

Quyoshda qanday yadro reaksiyasi sodir bo'ladi?

Faqat bo'linish

Elektron sochilishi

*Termoyadro birikish

Uran parchalanishi

Radiatsiya deganda nima tushuniladi?

Issiqlik nurlanishi

Yorugʻlik nurlari

*Radioaktiv zarrachalar va toʻlqinlar

Oddiy elektromagnit toʻlqinlar

Atom bombasi qanday reaksiya asosida ishlaydi?

Termik reaktsiya

*Yadro boʻlinishi

Elektr reaktsiyasi

Oksidlanish

Neytronni kim kashf qilgan?

Röntgen

*Chadwick

Einstein

Rutherford

Protonni kim ochgan?

Dalton

Chadwick

*Rutherford

Bohr

Alfa nurlanish zaryadi qanday?

*Musbat

Manfiy

Zaryadsiz

Ikkilik

Yadro parchalanishidan hosil boʻlgan issiqlik nima uchun ishlatiladi?

Yoritish uchun

Issiqlik almashinuvi

*Elektr energiyasi olish

Gaz ishlab chiqarish

Radiatsiyadan himoya vositalariga misol?

Paxta kiyim

Plastik o'rama

*Qoʻrgʻoshin ekran

Yogʻoch devor

Yadro bo'linishining zararsiz turi qayerda ishlatiladi?

Avtomobilda

*Elektr stansiyalarida Telefonlarda Radiopriyomnikda Izobarlar deganda nima tushuniladi? *Massasi teng, protonlar soni har xil boʻlgan atomlar Zaryadi teng bo'lgan modda Har xil elementlar Neytronlar soni teng bo'lgan modda Parchalanish energiyasi nima? Atom massasining kamayishi Kimyoviy reaksiya energiyasi *Yadro ajralishida ajralgan energiya Issiqlik almashinuvi energiyasi Beta plus zarracha bu — Elektron *Antielektron (pozitron) Neytron Kvark Fission bu — *Yadro boʻlinishi Yadro birikishi Elektron o'tishi Energiya yutilishi 1) Agar difraksion panjaradan o'tishda kuzatilayotgan maximumning maksimal tartib ragami 3 ga teng bo'lsa, maximumlar sonini toping. 3 #7 5 9 ++++ 2) Oq yorugʻlik shisha prizmaga tushirilmoqda. Shishadan oʻtgan nur necha xil rangga ajraladi? 5 #7 9

```
3
++++
3)
Elektromagnit toʻlqinlar shkalasidan olingan quyidagi nurlarning qaysi birini
toʻlqin uzunligi eng katta?
Sariq
Binafsha
Yashil
#Qizil
++++
4)
Elektromagnit toʻlqinlar shkalasidan olingan quyidagi nurlarning qaysi birini
chastotasi eng katta?
Sariq
#Binafsha
Yashil
Qizil
++++
5)
Toʻrtta talaba laboratoriya ishida nisbiy xatolikni turlicha aniqladi. Bularning qaysi
birining natijasi qoniqarsiz deb hisoblanadi?
1
3
5
#7
++++
```

```
Istemolchidagi kuchlanish tushuvi 35 V. Agar bu istemolchining elektr qarshiligi
50 Ω bo'lsa, undagi tok kuchi (A) ni aniqlang. I = U/R
0,1
0,5
0,9
#0,7
++++
7)
So'nuvchi tebranishlarning davri T = 3 s, so'nishning logarifmik dekrementi \theta =
2,1, boshlang'ich fazasi esa nolda teng. So'nish koeffitsentini toping.
0,3
0,5
#0,7
0,9
++++
8)
So'nuvchi tebranishlarning tenglamasi x = 0.5 \text{ e}^{(-0.7t)} \cos(3\pi t + 7) \text{ ko'rinishda}
bo'lsa, tebranishning boshlang'ich fazasini (rad) toping.
3
5
#7
9
++++
9)
So'nuvchi tebranishlarning tenglamasi x = 0.5 \text{ e}^{(-0.7t)} \cos (1.4\pi t + 7) \text{ ko'rinishda}
bo'lsa, tebranishning chastotasini toping.
0,3
0,5
#0,7
0,9
++++
```

10) So'nuvchi tebranishlarning tenglamasi $x = 0.07 \text{ e}^{(-0.7t)} \cos (1.4\pi t + 7) \text{ (m)}$ koʻrinishda boʻlsa, tebranishning boshlangʻich amplitudasini toping. 3 5 #7 9 ++++ 11) Moddaning nisbiy dielektrik singdiruvchanligi 24,5 ga va nisbiy magnit kirituvchanligi 2 ga teng boʻlsa, bu moddaning optik zichligini toping. 3 5 #7 9 ++++ 12) Yorugʻlikning biror shaffof muhitdagi tezligi 4,3×10⁷ m/s boʻlsa, bu muhitning

optik zichligini toping.

#7

 ≈ 9

 ≈ 11

 ≈ 5

++++

13)

Ikki xil manbadan chiqayotgan kogerent toʻlqinlar qoʻshilishi natijasida interferensiya qaysi soxada maximumga erishadi? yopiq soxada

```
erkin soxada
ochiq soxa
#ikki xil manbadan kogerent toʻlqinlar chiqmaydi
++++
```

14)

Gʻaltak ipni quvoshlik kunda yerga yaqinlashtirilganda soya hosil boʻladi. Uni yerdan yuqoriga koʻtarila boshlaganda soya xiralashadi va asta sekin koʻrinmay qoladi. Bunga sabab nima?
#yorugʻlik difraksiyasi
yorugʻlikning qaytishi
yorugʻlik interferensiyasi
yorugʻlik dispersiyasi

15)

Ikki kogerent toʻlqinlarning qoʻshilishi natijasida ayrim soxalarda maximumga va ayrim soxalarda minimumga erishish xodisasi deyiladi. Nuqtalar oʻrnini toʻgʻri toʻldiruvchi javobni toping.

yorugʻlik difraksiyasi yorugʻlikning qaytishi #yorugʻlik interferensiyasi yorugʻlik dispersiyasi ++++

16)

Chelak tubida tanga yotibdi. Chelakka suv quyilganda tanganing koʻrinishi yuqoriroqqa koʻriladi. Bunga sabab nima? yorugʻlik difraksiyasi #yorugʻlikning sinishi yorugʻlik interferensiyasi yorugʻlik dispersiyasi ++++

```
17)
```

```
Osmonda kamalak nimaning xisobiga xosil boʻladi?
yorugʻlik difraksiyasi
yorugʻlikning sinishi
yorugʻlik interferensiyasi
#yorugʻlik dispersiyasi
++++
18)
Agar yarim o'tkazgich elektr tokini asosan elektronlar xisobiga o'tkazsa bu qanday
turdagi yarim oʻtkazgich xisoblanadi?
#donorli
akseptorli
neytronli
plazmali
++++
19)
Agar yarim oʻtkazgich elektr tokini asosan kovaklar xisobiga oʻtkazsa bu qanday
turdagi yarim oʻtkazgich xisoblanadi?
donorli
#akseptorli
neytronli
plazmali
++++
20)
Gazing kuchli ionlashgan xolatiga nima deyiladi?
donor
akseptor
neytron
#plazma
++++
```

21)

Agar tebranish sin yoki cos qonuniga boʻysunsa bunday tebranishlarga deyiladi. Nuqtalar oʻrnini toʻgʻri mazmunda toʻldiring. erkin tebranish #garmonik tebranish majburiy tebranish mexanik tebranish +++++

22)

Agar tebranish davriy tashqi ta'sir xisobiga sodir boʻlsa bunday tebranishlarga deyiladi. Nuqtalar oʻrnini toʻgʻri mazmunda toʻldiring. erkin tebranish garmonik tebranish #majburiy tebranish mexanik tebranish +++++

23)

Agar tebranish boshlang'ich tashqi ta'sir xisobiga sodir bo'lsa, bunday tebranishlarga deyiladi. Nuqtalar o'rnini to'g'ri mazmunda to'ldiring.

#erkin tebranish

garmonik tebranish

majburiy tebranish

mexanik tebranish

++++

24)

Davriy takrorlanadigan harakatlarga deyiladi. Nuqtalar oʻrnini toʻgʻri mazmunda toʻldiring.

```
erkin tebranish
garmonik tebranish
majburiy tebranish
#mexanik tebranish
++++
25)
Matematik mayatnikning uzunligi 16 marta ortsa, uning tebranish davri qanday
o'zgaradi?
#4 marta ortadi
3 marta kamayadi
oʻzgarmaydi
aniqlab boʻlmaydi
++++
26)
Prujinali mayatnikdagi yukning massasi 16 marta kamayca, uning tebranish
chastotasi qanday o'zgaradi?
#4 marta ortadi
3 marta kamayadi
oʻzgarmaydi
aniqlab boʻlmaydi
++++
27)
Quyidagilar orasidan qaysi biri ortiqcha?
Difraksiva
Qutblanish
```

```
Interferensiya
#Yorug'lik kuchi
++++
28)
Bog'lanish energiyasi 63 J bo'lishi uchun zarraning massasi qancha (pikogramm)
boʻlishi kerak?
3
5
#7
9
++++
29)
Fokus masofasi 10,5 sm boʻlgan yigʻuvchi linzadan 21 sm masofaga
joylashtirilgan buyumning xaqiqiy tasviri linzadan qanday masofada (sm) xosil
bo'ladi?
15
19
#21
25
++++
30)
Mendeleyev davriy jadvalining 51-tartib raqamida surma joylashgan boʻlib, undagi
nuklonlar soni 121 ga teng. Bu elementdagi neytronlar sonini toping.
65
27
#70
++++
31)
```

magnit
na tekis
magnit magnit

```
33
++++
35)
Induktivligi 2 H boʻlgan gʻaltakda oʻzinduksiya EYUKning qiymati 56 V boʻlishi
uchun gʻaltakdan oʻtayotgan tokning oʻzgarish tezligi qanday boʻlishi kerak?
#28
10
30
32
++++
36)
Radiusi 2π (sm) bo'lgan g'altakdan 3,5 A tok o'tmoqda. G'altak ichiga magnit
singdiruvchanligi 20 boʻlgan ferromagnit oʻzagi kiritilsa, gʻaltak ichidagi magnit
maydon induksiyasi (mKT) qanday boʻladi? Galtakdagi oʻramlar soni 150 ga teng.
#7
11
97
13
++++
37)
Son jihatdan magnit maydon oqimining oʻzgarish tezligiga teng boʻlgan fizik
kattalik bu .... Nuqtalar oʻrnini toʻgʻri mazmunda toʻldiring.
Kattalik
Magnit oqimi
Bosim
#Induksion EYUK
++++
```

magnit induksiyasi B (mT) aniqlansin. #56 65 71 43 ++++ 39) I = 7 A tok oqayotgan ingichka xalqa markazidagi magnit induksiya (mKT) topilsin. Halqaning radiusi $r = 5\pi$ sm. #28 17 19 23 ++++ 40) Toʻgʻri cheksiz uzun oʻtkazgichdan I = 7 A tok oqmoqda. Oʻtkazgichdan r = 5 sm uzoqlikda turgan nuqtadagi magnit induksiya B (mKT) aniqlansin. #28 27 33 35 ++++41) Musbat zaryadga magnit maydon tomonidan ta'sir qiluvchi Lorens kuchi yoʻnalishini qaysi qonun asosida aniqlanadi? #chap qo'l qonuni o'ng qo'l qonuni Nyuton qonuni Gey-Lyussak qonuni ++++

Magnit maydonning kuchlanganligi H = $140/\pi$ kA/m. Vakuumda shu maydonning

42)

Magnit maydonida joylashtirilgan tokli oʻtkazgichga maydon tomonidan ta'sir qiluvchi Amper kuchi yoʻnalishi qaysi qonun asosida aniqlanadi?

#chap qo'l qonuni

o'ng qo'l qonuni

Nyuton qonuni

Gey-Lyussak qonuni

++++

43)

Oʻtkazgichdagi tok kuchi 3,5 marta ortib, tekshirilayotgan masofa 2 marta kamaytirildi. Bu nuqtadagi magnit maydon induksiyasi avvalgisidan qanday farq qiladi?

#7 marta ortadi

5 marta kamayadi

3 marta ortadi

9 marta kamayadi

++++

44)

Magnit maydonidagi konturga ta'sir qiluvchi kuchlar momenti 63 mNm bu maydonning magnit induksiyasi 9 mT boʻlsa kontur momentini (Ampm 2) toping.

#7

9

11

13

++++

45)

Agar nuqtaning tebranish amplitudasi A = 7 sm, tebranayotgan nuqtaning maksimal tezligi umax = 30 sm/s, va boshlang'ich fazasi $\varphi = 10^{\circ}$ bo'lsa, nuqtaning

```
garmonik tebranish xarakat tenglamasini yozing.
```

```
\label{eq:x} \begin{split} & \#x = 0.7 \, \cos{(2t + \pi/18)}, \, m \\ & x = 0.15 \, \cos{(2t + \pi/15)}, \, m \\ & x = 0.13 \, \cos{(2t + \pi/8)}, \, m \\ & x = 0.15 \, \cos{(3t + \pi/6)}, \, m \\ & + + + + \end{split}
```

46)

Moddiy nuqta A = 70 sm amplituda va T = 5 s davr bilan garmonik tebranish xarakat qilmoqda. Moddiy nuqtaning maksimal tezlanishini (mm/s²) aniqlang. π ² = 10 deb xisoblansin.

#112

45

107

97

++++

47)

Bir xil yoʻnalish va bir xil davrga ega boʻlgan ikki garmonik tebranishlar $A_1=40$ sm va $A_2=80$ sm amplitudalarga ega boʻlib, fazalar farqi $\phi=45^\circ$ ga teng. Natijaviy tebranish amplitudasini aniqlang.

#112

123

45

89

++++

48)

Bir xil T=4 s davr va bir xil amplitudalar A=5 sm ga ega boʻlgan bir xil yoʻnalishdagi ikki garmonik tebranishlarning fazalar farqi $\pi/4$ ga teng. Agar tebranishlardan birining boshlangʻich fazasi 0 ga teng boʻlsa, tebranishlarning qoʻshilishidan xosil boʻlgan natijaviy tebranishning xarakat tenglamasini yozing.

$$\#x = 9,24 \cos(\pi t/2 + \pi/8), \text{ sm}$$

$$x = 9.2 \cos (\pi t/5 + \pi/3), sm$$

$$x = 9,25 \cos (\pi t/6 + \pi/7)$$
, sm ++++