z5173405 JIE MEI

Question 2

According to the question, we will apply the Karatsuba trick algorithm. Note that using substitution $y=x^{100}$ reduce P(x) to $P(y)=A_0+A_1y+A_2y^2$. The degree of $P^2(y)$ is 4. So, the uniquely determine C(y) need 5 of its values. We will evaluate P(y) at 5 values of its argument x, assuming x=-2,-1,0,1,2. Then we will get coefficients from these 5 values, by solving the corresponding system of linear equation in coefficients $C_0, \dots C_4$. Thus, we solve the system $\{\sum_{j=0}^4 c_j i^j = C(i): -2 \le i \le 2\}$. Finally, we will form the polynomial $C(j) = c_0 + c_1 x \dots + c_4 x^4$ with thus obtained c_j and finally substitute back y with x^{100} obtaining C(x) = P(x) * P(x)