Атака со связанными ключами на один из шифров сети Фейстеля

Исаев К.М. Руководитель: Кирюхин В.А.

Базовая кафедра №252 - компьютерной безопасности Институт исскусственного интеллекта МИРЭА - Российский технологический университет

23 января 2024 г.

Задачи

- Обзор существующих вариантов дифференциального метода криптоанализа
- Построение дифференциальных путей шифра Khazad
- В Разработка атак на шифр
- Определение сложности разработанных атак

Основные работы

В. А. Кирюхин, Атака методом бумеранга на связанных ключах на 5 раундов шифра Кузнечик, *Обозрение прикладной промышленной математики*, 26(3), 2019

Описание шифра Khazad

- Khazad инволюционный блочный LSX шифр
- Стандартное количество раундов 8
- Блок 64 бит
- Ключ 128 бит

Раундовое преобразование:

- Х сложение по модулю с раундовым ключом
- S параллельное применение фиксированной байтовой подстановки
- L линейное преобразование MDS, разностный коэффициент рассеивания $\mathcal{B}=9$

4-раундовый Khazad

Число раундов шифрования - 4 из 8 Число раундов развертки ключа - 3 и используем части мастер-ключа в шифровании

$$\begin{split} \textit{E}(\textit{P}) &= \textit{X}[\textit{K}^4] \textit{S} \textit{X}[\textit{K}^3] \textit{L} \textit{S} \textit{X}[\textit{K}^2] \textit{L} \textit{S} \textit{X}[\textit{K}^1] \textit{L} \textit{S} \textit{X}[\textit{K}^0](\textit{P}) \\ \textit{K}^0, \textit{K}^1, \textit{K}^i &= \textit{K}^{i-2} \oplus \textit{L} \textit{S}(\textit{K}^{i-1}), \textit{i} \in \overline{2,5} \end{split}$$

4-раундовый Khazad

_			_		_		
	_		_	_	_	_	
<u>#</u>	#	<u>+</u>	<u>+</u>	₩	<u>+</u>	<u>+</u>	<u>+</u>
S	S	S	S	S	S	S	S
L							
			_	_	_	_	
\oplus							
S	S	S	S	S	S	S	S
L							
\oplus	\oplus						
-	\Box	\Box	\Box	\oplus	\oplus	\oplus	\oplus
			_		_	_	
S			_		⊕ S	_	Ť
S			_		_	_	Ť
S			_		_	_	Ť
	S	S	S	S	_	S	S
	S	S	S	S	S	S	S
	S	S	S	S	S	S	S
<u></u>	S ⊕	S	S I	S	S	S	S
<u>⊕</u>	S ⊕	S ⊕	S I	S ⊕	S	S ⊕	S ⊕

Классическая модель

Модель связанных ключей

Известно некоторое отношение между ключами.

Атака: бумеранг

Делим процесс шифрования на три части:

$$\textit{E}(\textit{\textbf{P}}) = \textit{\textbf{X}}[\textit{\textbf{K}}^4] \textit{\textbf{S}} \textit{\textbf{X}}[\textit{\textbf{K}}^3] \textit{\textbf{L}} \circ \textit{\textbf{S}} \circ \textit{\textbf{X}}[\textit{\textbf{K}}^2] \textit{\textbf{L}} \textit{\textbf{S}} \textit{\textbf{X}}[\textit{\textbf{K}}^1] \textit{\textbf{L}} \textit{\textbf{S}} \textit{\textbf{X}}[\textit{\textbf{K}}^0](\textit{\textbf{P}})$$

Атака: бумеранг

Особенности дифференциальных путей

- Вниз идём на связанных ключах
- Вверх сначала идём на несвязанных ключах
- Потом снова перепрыгиваем в дифф. путь на связанных ключах через s-box switch

Атака: распространение разностей сверху-вниз

Выберем:

$$\Delta \mathcal{K}_0 = 0,$$
 $\Delta \mathcal{K}_1 = \kappa$ - однобайтовая

Ключи связаны!

Атака: вероятность коллизии

$$Pr(X[K^2]LSX[K^1]LSX[K^0](P) \oplus X[\widetilde{K^2}]LSX[\widetilde{K^1}]LSX[K^0](P) = 0) \ge 2^{-7}$$

Атака: распространение разностей снизу-вверх

Ключи здесь не связаны!

$$\nabla = LX[K^3]SX[K^4](Z) \oplus LX[K^3]SX[K^4](Q),$$

$$\tilde{\nabla} = LX[K^3]SX[K^4](\tilde{Z}) \oplus LX[K^3]SX[K^4](\tilde{Q}),$$

$$Pr(\nabla = \tilde{\nabla}) > 2^{-7}.$$

Атака: sbox switch

$$D = X[K^2]LSX[K^1]LSX[K^0](P),$$

 $Pr(S(S(D) \oplus \nabla) \oplus S(S(D \oplus 0) \oplus \nabla) = 0) = 1.$

Дифф. путь на связанных ключах в напр. вверх

Построение множества ключей K_0

 ΔY - однобайтовая разность после первого L-преобразования.

$$S(W \oplus K^0) \oplus S(\tilde{W} \oplus K^0) = L(\Delta Y)$$

Перебираем все 255 значений ΔY и решаем уравнение относительно K^0 . В среднем для каждого такого уравнения будет одно решение.

Ложные ключи встретятся один раз.

Истинный ключ встретится два раза.

Трудоёмкость атаки

Параметр	Оценка		
Связанные ключи	2		
8-байтовых блоков памяти(K^0)	$2^{22} = \mathbf{p}^{-1} \cdot 2 \cdot 255 \cdot 2^{-1}$		
Операций доступа к памяти	$2^{25} = \mathbf{p}^{-1} \cdot 2 \cdot 255 \cdot 8$		
Пар ОТ/ШТ	$2^{17} = \mathbf{p}^{-1} \cdot 2 \cdot 4$		

Чтобы ознакомиться с программной реализацией:

5-раундовый Khazad

Платим вероятностью $p \le 2^{-5}$ за коллизию в 3 раунде.

Дифф. путь на несвязанных ключах вверх

Далее на пути атаки стоит s-box switch.

S-box switch

$$D = X[K^3]LSX[K^2]LSX[K^1]LSX[K^0](P), \Delta = \Delta K_3,$$

$$Pr(S(S(D) \oplus \nabla) \oplus S(S(D \oplus \Delta) \oplus \nabla) = \Delta) \leq 2^{-40}.$$

21 / 25

Дифф. путь на связанных ключах вверх

Трудоёмкость

Далее схема атаки совпадает с атакой на 4 раунда. Как итог получили заметное ухудшение вероятности с оценкой в лучшем случае 2^{-50} .

Параметр	Оценка		
Связанные ключи	2		
8-байтовых блоков памяти(K^0)	$2^{58} = \mathbf{p}^{-1} \cdot 2 \cdot 255 \cdot 2^{-1}$		
Операций доступа к памяти	$2^{61} = \mathbf{p}^{-1} \cdot 2 \cdot 255 \cdot 8$		
Пар ОТ/ШТ	$2^{53} = \mathbf{p}^{-1} \cdot 2 \cdot 4$		

Однако, это позволяет нам соптимизировать полный перебор в атаке [A New Attack Against Khazad]. Такая комбинация атак позволяет восстановить обе части мастер-ключа и имеет суммарную сложность по времени $2^{61}+2^{28}\approx 2^{61}$ вместо 2^{64+28} и по данным $2^{58}+2^8\approx 2^{58}$ вместо полного словаря размером 2^{64} , что является серьёзным улучшением.

Результаты

- Атака со связанными ключами на 4 раунда шифра Khazad с модифицированной ключевой развёрткой, её программная реализация, оценка трудоёмкости.
- Теоретическая атака со связанными ключами на 5 раундов шифра Khazad с модифицированной ключевой развёрткой, её комбинация с уже существующей атакой в данной модели, оценка трудоёмкости.

Спасибо за внимание!