Propagation-Based Approximation

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Propagation-Based Approximation
 - 1. A simple example of Loopy Belief Propagation
 - 2. Cluster-graph belief propagation
 - 3. Properties of cluster graph belief propagation
 - 4. Analyzing convergence
 - 5. Constructing cluster graphs
 - 1. Pairwise Markov networks
 - 2. Bethe cluster graphs
 - 3. Beyond marginal probabilities
 - 6. Variational analysis
 - 7. Other entropy approximations
 - 8. Discussion

Propagation-Based Approximation

- These are methods that use exactly the same message propagation as in exact inference
 - However the propagation schemes use a generalpurpose cluster graph instead of clique trees

Cluster graph definition:

A data structure that provides a graphical flowchart of the factor manipulation process. Each *node* is a subset of variables. Each *edge* connects nodes. With nonempty intersection of scopes (called sepset)

Since constraints defining
A clique tree are crucial
for exact inference
Message propagation
Algorithms that use
cluster graphs will
generally not provide
correct answers

Srihari

A simple example

- Propagation-based approx. with a simple MN
 - To perform exact inference first reduce it to a tree
 - Inference involves passing messages over sepset $\{B,D\}$

- Cluster graph has loops- so not a tree; a loopy graph
 - Nevertheless apply belief-update algorithm Ctree-BU-calibrate
- Clusters are smaller than in Clique Tree
 - Therefore message passing steps are less expensive
 - But what are the results of this procedure?

Loopy Belief Propagation

Suppose we propagate messages

- in following order $\mu_{1,2}, \mu_{2,3}, \mu_{3,4}, \mu_{4,1}$
 - In the first message the cluster $\{A,B\}$ passes information to cluster $\{B,C\}$ through a marginal distribution on B
 - In final message $\mu_{4,1}$ information reaches original cluster
 - Suppose all potentials prefer consensus assignment,
 - i.e., $\mathcal{B}_1(a^0,b^0)$ and $\mathcal{B}_1(a^1,b^1)$ are much larger than $\mathcal{B}(a^1,b^0)$ and $\mathcal{B}_1(a^0,b^1)$ and similarly for other beliefs.
 - Thus if the message $\mu_{1,2}$ strengthens the belief that $B=b^1$ then the message $\mu_{2,3}$ will increase the belief in in $C=c^1$, etc
 - Once we go around the loop, message $\mu_{\text{4,1}}$ will strengthen the support in $A\!=\!a^{\text{1}}$
 - This will be incorporated into the cluster as independent evidence
 - If we continue to apply the same sequence of propagations $_{5}$ again, we will keep increasing the beliefs in the assignment $A\!=\!a^{1}$

Example run of Loopy Belief Propagation

- All potentials prefer consensus assignments over nonconsensus ones
- In each iteration, we perform message passing for all the edges in the cluster graph

Coding Theory and Loopy BP

- Sending messages over a noisy channel and recovering
- We wish to send a k-bit message $u_1, ... u_k$
- Encode the message using n bits $x_1,...x_n$
- Resulting in corrupted outputs $y_1,...,y_n$
- Task is to recover an estimate $\tilde{u}_1,...,\tilde{u}_k$ from $y_1,...,y_n$
- Message decoding can be formulated as a probabilistic inference task

Noise Models and Error Rate

- Outputs can be discrete or continuous
 - Different channels introduce different noise
 - Addition of Gaussian noise
 - Flip bits independently with some probability p
 - Noise is added in a correlated way
- Bit error rate
 - Probability that bit is decoded incorrectly
- Rate of a code
 - -k/n: ratio of no. of msg bits to no. of transmit bits
 - Repetition code: transmit each bit 3 times, decode by majority vote, has bit error rate p^3+3p^2
 - Shannon: for a given rate, max noise level tolerated while achieving a certain bit error rate

Two Examples of Codes

- A k=4, n=7 parity check code where every four message bits are sent along with three bits that encode parity checks
- A k=4, n=8 turbocode

BN formulation
With Belief propagation

Cluster Graph Belief Propagation

- Sum-Product BP in a Cluster Graph
 - **Procedure** *Cgraph-SP-Calibrate* (

```
\Phi, // Set of factors

U // Generalized cluster graph Φ
    Initialize-CGraph
    while graph is not calibrated
       Select (i-j) \in \mathcal{E}_{\mathcal{U}}
       \delta_{i \to j}(S_{i,j}) \leftarrow \text{SP-Message}(i,j)
   for each clique i
       \beta_i \leftarrow \psi_i \cdot \prod_{k \in \mathrm{Nb}_i} \delta_{k \to i}
    return \{\beta_i\}
Procedure Initialize-CGraph (
    \mathcal{U}
   for each cluster C_i
       \beta_i \leftarrow \prod_{\phi : \alpha(\phi)=i} \phi
    for each edge (i-j) \in \mathcal{E}_{\mathcal{U}}
       \delta_{i \to i} \leftarrow 1
       \delta_{i \to i} \leftarrow 1
Procedure SP-Message (
     i, // sending clique
   j // receiving clique
   \psi(\boldsymbol{C}_i) \leftarrow \psi_i \cdot \prod_{k \in (\mathrm{Nb}_i - \{j\})} \delta_{k \to i}
   	au(\mathbf{S}_{i,j}) \leftarrow \sum_{\mathbf{C}_i - \mathbf{S}_{i,j}} \psi(\mathbf{C}_i)
   return \tau(S_{i,i})
```

Cluster Graph Belief Propagation

- 4x4 two-dimensional grid network
- Generalized cluster graph for 3 x 3 network

Probabilistic Graphical Models

Cluster Graph for Pairwise Markov Network

- Potentials defined over nodes and edges
- For a 3x3 grid

Bethe Cluster Graph

- Generalizes pairwise clustering
- Bipartite graph; first layer of large clusters and second layer of univariate clusters

Use of Cluster Graphs

- Cluster graph belief propagation are a general purpose approximation inference method
- Can be used with trees of high width
- Many applications
 - Message decoding in communications
 - Predicting protein structure
 - Image segmentation
- Some Caveats: Need not converge, multiple optima