

QM/MM modelling of enzyme reactions *Wrap-up*

Marc W. van der Kamp

CCPBioSim tutorial workshop, Bristol, 24 May 2019

Chorismate mutase reaction

Claisen rearrangement reaction, modelled by following R

Transition state stabilisation – AM1

Transition state stabilisation – B3LYP

Enzyme vs. solution

	Exp	B3LYP/MM
Solution	20.7 ± 0.4	17.4 ± 1.9
Enzyme	12.7 ± 0.4	11.3 ± 1.8

Solution

-10-

K TS stabilisation vs. conformational effects

Chorismate is bound in conformation B ('TS like'), whereas A is global minimum in solution

- Better TS stabilization in enzyme than in water (4.2 kcal/mol vs 1.3 kcal/mol) = 2.9 kcal/mol
- Substrate compression/strain contributes 2.2 kcal/mol (positioning of carboxylates); + 0.6 kcal/mol (shorter C-C distance)
- Binding of reactive pseudo-diaxial conf. contributes ~1.5-3 kcal/mol
- All these effects are probably due to TS complementarity

Enzyme vs. solution

Role of active site residues (incl. Arg90)

Electrostatic stabilization energy (kcal mol⁻¹)*

(KCai moi ¹)		
Full enzyme	9.9 (2.4)	
Arg90	6.0 (0.8)	
Arg7	3.1 (0.5)	
Glu78	2.1 (0.3)	
Cys75	1.3 (0.3)	
Tyr108	1.1 (0.2)	
Arg116	1.0 (0.9)	
Phe57	0.8 (0.3)	
Arg63	-0.6 (0.5)	

^{*}From B3LYP/6-31(d)//MM calculations

Chorismate mutase: high-level QM

Hartree-Fock 28.3 (2.1)

B3LYP 10.2 (1.8)

LMP2 9.5 (1.0)

LCCSD(T0) 13.1 (1.1)

Experiment 12.7

Entropic contribution

(compare AM1 PES vs. FES)

Calc. 2.5

Exp. 2.7

QM/MM reaction modelling in enzymes

Van der Kamp, Mulholland (2013) Biochem 52: 2708

Planning a QM/MM study

- Choice of QM method
- Choice of MM force field (incl. MM parameters for QM atoms)
- Partitioning into QM and MM regions (covalent boundaries?)
- Type of simulation (QM/MM MD, QM/MM minimization)
- Testing against model system / higher level QM
- Choice of software...

Others...

ChemShell (esp. for DFT & high-level QM/MM)

material: https://sites.google.com/site/qmmmworkshop2017/

¹Melo *et al.* Nature Methods 2018, doi: 10.1038/nmeth.4638 ²Lagardère *et al.* Chem Sci 2018, doi: 10.1039/C7SC04531J