PoCS Assignment 6

P. Alexander Burnham
October 8, 2018

 $PoCS\ Assignment\ github\ repo:\ https://github.com/alexburn17/BurnhamPoCS$

Worked with: Yu Han, Edison & Kewang

Problem 1:

a)

Step 1: set up problem

$$p^{2}(1-p) = 1, 1, 1, 0$$
 and $(l = 3)$

$$(1-p)p(1-p)p^2(1-p)p^3(1-p)\dots p^n(1-p)$$

Step 2: factor out (1-p)

$$(1-p)(p+p^2+p^3...p^n)=1$$

this is infinite series...

$$(1-p)\left(\frac{1}{1-p}\right) = 1$$

simplify:

$$p(l) = p^{(l-1)}(1-p)$$

b)

Step 1: set up problem

$$E = (1 - p)[(1 + 2)(p + 3)(p^{2} + 4)...]$$

Step 2: multiply by p

$$PE = (1 - p)[(p + 2p^2 + 3p^3...]$$

Step 3: factor out (1-p) to show infinite series

$$(1-p)E = (1-p)[(p+p^2+p^3...p^n)]$$

simplify...

$$E = \left(\frac{1}{1-p}\right)$$

As p goes to 1, E goes to infinity making p=1 the giant component.

Problem 2:

p' is the probability that there is percolation in a single triangle There are three cases where two nodes in the triangle are trees There is one case where all nodes are trees

In notation....

$$p' = 3p^2(1-p) + p^3$$

p becomes p_c and simplify

$$p_c = 3p_c^2 - 2p_c^3$$

Problem 3:

 $\mathbf{a})$

S_avg as a function of p for varying L

b)

As L increases, the accuracy (lack of stochasticity or variance) increases. The curve tends to smooth out. The estimate for p_c is 0.59 which is the inflection point on the most accurate curve (L=200).

Problem 4:

a)

In the case of p=p_c_, the distribution looks to be fairly normal with an N of 1000 b)

For p_c_/2 (well below), the distribution is skewed right with a small range of values (p=0.05-0.25). For p_c_ + (1 - p_c_)/2 (well above), the distribution is skewed left and values have a larger range and the

higher frequency area is on larger values of p.

Problem 5:

a)

K_max by N

b)

K_max theoretical by N

Based on a theoretical k_mean estimation of kmeanTher = $((gamma-1)/(gamma-2))*N^((2-gamma)/(gamma-1))$, my theoretical value and empirical values do no match up. The slope of the theoretical value is half that of the estimate and negative. The one I calculated by sampling a powerlaw distribution has a positive slope of around 2. This makes sense as the max k should increase as the sample size increases. However, my derivation of the theoretical max k has a negative slope of -1 This does not make sense and leads me to believe that my model is correct and the theoretical values are incorrect. K_max should increase as N increases as this increase in N gives higher probability of capturing a large K. The theretical value looks like it is flipped about the y axis as the spacing of the points is simaler. However, te change from 5/2 to 3/2 makes sense as the lower scaling exponant should allow for larger values to be selected more frequently driving the m_max values up.