参赛队号:

2021年(第七届)全国大学生统计建模大赛

参赛学校: 中北大学 数字农业驱动农业高质量发展效果测度研究 ——基于动态 SYS-GMM 模型 参赛队员: 段高静、渠琳莉、朱禹宣 吴青龙、朱美峰

目录

摘要	I
Abstract	II
一、引言	1
(一)研究背景	1
(二)研究意义	2
(三) 文献综述	2
二、数字农业发展水平测度分析	3
(一) 指标体系构建	3
(二)数字农业水平的测算——熵权 TOPSIS 法	4
(三)数字农业发展水平评价结果	6
(四)数字农业发展水平区域空间差异	7
三、农业高质量发展水平测度分析	10
(一) 指标体系构建	10
(二)农业高质量发展水平的测算——CRITIC 法	11
(三)农业高质量发展水平评价结果	12
(四)农业高质量发展水平区域空间差异	14
四、数字农业与农业高质量发展的实证	17
(一) 模型构建	17
(二) 变量选取	18
(三)静态回归分析	18
(四) 系统 SYS-GMM 动态回归分析	17
(五)门槛效应分析	20
五、结论与建议	17
参考文献	23
附录	24
致谢	28

表目录

表	1	数字农业发展水平评价指标体系4
表	2	数字农业发展水平测评结果6
表	3	数字农业发展水平分类情况8
表	4	不同指标的发展水平情况10
表	5	农业高质量发展水平评价指标体系10
表	6	全国农业高质量发展水平评价结果13
表	7	全国农业高质量发展水平各系统结果13
表	8	各省(区、市)高质量发展水平测度结果14
表	9	农业高质量发展分类情况16
表	10	固定效应模型和随机效应模型估计18
表	11	系统 GMM 动态回归分析19
表	12	门槛效应检验结果20
表	13	门槛估计结果20
表	14	门槛估计模型参数估计结果21
		图目录
		шни
图	1	数字农业系统聚类谱系图8
图	2	农业高质量发展水平指数趋势13
图	3	农业高质量发展系统聚类谱系图16

摘要

"数据"作为新型生产要素促进产业的转型升级,有效拉动了我国经济的快速增长,数字化作为农业高质量发展的必经之路,受到了大量学者的关注和研究,本文旨在通过分析数字农业对农业高质量发展的作用机制,为提高数字农业水平提出可行性建议,以加速释放数字技术对农业高质量发展的促进作用。

首先,对数字农业发展水平进行测度并探索其时空变化规律。本文利用熵权 TOPSIS方法从农业信息化的基础、服务及效益三个方面对数字农业水平进行测 算,探索其时空分布特征及作用机制。结果表明,数字农业发展在空间上呈现极 大的不平衡态势。

其次,本文从资源利用、环境友好、生态保护、农村发展四个维度基于CRITIC 权重法构建农业高质量发展评价体系,分析其发展的时空差异及规律。发现我国农业高质量发展水平近似呈线性增长,各子系统发展相对协调一致;且在2019年我国农业高质量发展水平呈现"东强、西弱、中平"的空间分布格局。

最后,使用动态SYS-GMM方法和门槛模型探究数字农业与农业高质量发展的关系。结果显示,数字农业驱动农业高质量发展,且该驱动作用呈现非线性特征,即当数字农业发展水平高于特定的门槛值时,其对农业高质量发展的促进作用将大幅提高。

为缩小全国数字农业发展水平差距,有效促进农业的高质量发展,应对中西部地区坚决落实、其他地区持续推进以下政策:加强农村信息化建设财政支持,督促数字农业项目的建设进程;完善农村信息化基础设施建设,提高农村居民信息化服务;鼓励农业信息化技术创新,探索新科技在农业领域的应用;支持农村电商的大力发展,开拓农业销售新渠道等。

关键词:数字农业发展;农业高质量发展;动态 SYS-GMM 分析;熵权 TOPSIS;时空差异

Abstract

"Date" as new production elements to promote industrial tranformation and upgrading, effectively boost the rapid growth of the economy in our country, the agricultural high quality digital as the path of development, has been a large number of scholars attention and research, this paper aims to through the analysis of the mechanism of action of digital agriculture in agricultural high quality development, put forward feasible Suggestions for improve the level of digital agriculture, In order to accelerate the release of digital technology to promote the development of high quality agriculture.

Firstly, the development level of digital agriculture is measured and its temporal and spatial change rules are explored. In this paper, the entropy-weighted TOPSIS method was used to measure the level of digital agriculture from three aspects of the foundation, service and benefit of agricultural informatization, and to explore its spatiotemporal distribution characteristics and action mechanism. The results show that the development of digital agriculture presents a great imbalance in space.

Secondly, this paper constructs an evaluation system of high-quality agricultural development based on CRITIC weight method from four dimensions of resource utilization, environmental friendliness, ecological protection and rural development, and analyzes the temporal and spatial differences and rules of its development. It is found that the high quality development level of agriculture in China is approximately

linear, and the development of each subsystem is relatively consistent. In 2019, China's agricultural high-quality development level showed a spatial distribution pattern of "strong in the east, weak in the west and moderate".

Finally, the dynamic SYS-GMM method and threshold model were used to explore the relationship between digital agriculture and high-quality agricultural development. Results show that the new kinetic data driven high quality development of agriculture, and the driving role has nonlinear characteristics, That is, when the development level of digital agriculture is higher than a certain threshold, the promotion effect of Digital Agriculture on high-quality development of agriculture will be greatly enhanced.

In order to narrow the gap in the development level of digital agriculture nationwide and effectively promote the high-quality development of agriculture, the central and western regions should firmly implement the following policies, while other regions should continue to promote the following policies: strengthen financial support for the construction of rural informatization supervise the construction process of digital agriculture projects; Improve rural information infrastructure const-ruction, improve rural residents information services; Encouraging the innovation of agricultural information technology, exploring the application of new science and technology in the agricultural field; We will support the vigorous development of rural e-commerce and open up new channels for agricultural sales.

Key words: Digital agricultural development; High-quality agricultural

development; Dynamic SYS-GMM analysis; Entropy TOPSIS; Time and space differences

一、引言

(一) 研究背景

务农重本,国之大纲,近年来我国十分重视农业的发展。目前我国农业正处于转型跨越阶段,粗放型农业经济的增长并没有发生根本性的改变,农业生产效率低下问题仍然突出,其中,最主要的问题在于,农业数字化与农业生产严重脱节,二者的良性互动关系尚未形成,如何更好的将数字技术融入到农业现代化发展中,这是值得思考的问题。而近年来,中央一号文件也高度重视农业的现代化发展,在2021年提出要"发展智慧农业,建立农业农村大数据体系,推动新一代信息技术与农业生产经营深度融合"。基于此,本次研究将焦点放在数字农业与数字农业对农业高质量发展的影响上。

中国农业信息网显示,数字农业是指将遥感、地理信息系统、全球定位系统、计算机技术、通信和网络技术、自动化技术等高新技术与地理学、农学、生态学、植物生理学、土壤学等基础学科有机地结合起来的农业科学;它在农业生产过程中对农作物、土壤从宏观到微观进行实时监测,以实现对农作物生长和发育状况、病虫害发生状况、水肥状况以及相应的环境信息进行定期获取,生成动态空间信息系统,对农业生产中的现象、过程进行模拟,并通过试验验证模拟结果来指导生产。通过借鉴学者们的现有研究,可以将数字农业理解为以计算机技术、全球定位系统、人工智能和遥感技术为基础,以通讯和网络技术为纽带,由海量农业信息组成的多分辨度、多尺度、多时空的,在生产、加工、销售、机械操控、经营管理等多个关键环节实现数字信息化的现代高科技农业发展模式。

我国数字经济持续保持高位运行,数据新动能已在有效拉动我国经济的高质量发展中凸显出乘数效应,农业作为国家的第一产业,在国民经济中发挥着不可或缺的作用,随着数字化时代的到来,农业数字化成为实现农业高质量发展的必

经之路,也是各国农业发展的必然趋势。我国作为农业大国,加快数字农业建设力度,以"数据"作为新型生产要素,助推我国农业的高质量发展,是现代农业的战略性工程,同时也将成为我国农业发展的转折点;数字技术在农业方面的应用将加速对传统农业各领域、各环节的全方位、全角度、全链条的数字化改造,提高全要素生产率,释放数字技术对农业发展的放大、叠加、倍增作用,为农业高质量发展增添新动能。

大量学者研究表明,数字化可以促进农业高质量的发展,例如李铜山、王艳蕊(2021年)的研究指出^[1],农业生产、加工、销售、机械和经营管理等全方位的数字信息化极大推动了我国农业的发展。同时,政府出台系列政策助推数字农业发展,2018年中共中央印发《国务院关于实施乡村振兴战略的意见》指出,要优化农业从业者结构,加快建设知识型、技能型、创新型农业经营者队伍。

(二) 研究意义

通过对 2015—2019 年我国大陆 31 个省(区、市)农业发展水平的测度研究, 探索数字农业与农业高质量发展之间的联系,为推进农业发展提出可行性建议。

- 1. 探究数字农业发展的影响因素及程度,从影响程度较大的指标入手,为促进数字农业发展提出具体可行的建议;
- 2. 分析对比中国数字农业发展水平在时空上的差异,结合分析结果因地制 宜提出实质性促发展建议,从差距较大的指标入手,缩小各地发展差距;
- 3. 探究数字农业对农业高质量发展的影响程度,对相关性较大的指标加以 重视,从而为农业的高质量发展建言献策。

(三) 文献综述

数字化可以推动农业实现高质量发展。唐红涛、李胜楠(2020年)在研究

中指出^[2],数字农业作为全球科技与产业革新的核心力量,与经济高质量发展理念的内在要求高度契合,成为重塑农村经济结构、提升农业生产效率、赋能农民动力变革的主导因素;刘元胜(2020年)表明^[3],我国农业处于转型升级的关键时期,促进数字经济与农业发展深度融合,是加快实现农业现代化的有效举措,也是高质量推进农业供给侧结构性改革的有效抓手。

现有研究中存在大量和农业发展相关的评价指标体系。陈康、韩俊英(2020年)^[4]基于农业信息化基础、农业信息化服务和农业信息化效益三方面构建陕西农业信息化评价指标体系;许恒、宋微(2021年)^[5]基于资源利用、环境友好、生态保护和农村发展四个方面构建农业高质量发展评价指标体系。

不同学者采用多样化的方法对指标体系进行测度研究。陶长琪、徐莱(2021年) [6] 采用熵权 TOPSIS 法对我国创新要素配置水平进行测度研究;姜启波、谭清美(2020年) [7] 根据 CRITIC 权重法对我国高质量发展水平进行测度研究;李季刚、马俊(2021年) [8] 使用系统 GMM 方法和门槛模型对乡村振兴与数字普惠金融之间的关系进行实证研究。

二、数字农业发展水平测度分析

(一) 指标体系构建

本文参考陈康、韩俊英(2020年)^[4]的方法,利用农业信息化发展水平代表数字农业发展指标;从农业信息化基础、农业信息化服务及农业信息化效益3个方面分别选取农村居民家固定电话数(X1)、农村居民家移动电话数(X2)、农村居民家庭平均电视机拥有量(X3)、农户宽带接入用户(X4)、农林水支出(X5)、农村居民家计算机数量(X6)、网上零售额(X7)、电信和其他信息传输服务业就业人员占就业人数比例(X8)、农村居民平均人均可支配收入(X9)及农业气象观测站(X10)作为解释变量对数字农业发展水平进行测度研究。

表 1 数字农业发展水平评价指标体系

综合系统	子系统	具体测算指标	权重均值
	农业信息化基础	农村居民家固定电话数(部/百人)	0.09200
	(0.25616)	农村居民家移动电话数(部/百户)	0.04090
		农村居民家庭平均电视机拥有量(台/百户)	0.12326
农业	农业信息化服务	农户宽带接入用户(万户)	0.11646
信息化	(0.45394)	农林水支出(亿元)	0.05294
发展		农村居民家计算机数量(台/百户)	0.04776
水平		网上零售额 (亿元)	0. 23678
	农业信息化效益	电信和其他信息传输服务业就业人员占就业	0.17086
	(0.28992)	人数比例(%)	
		农村居民平均人均可支配收入(元)	0.07104
		农业气象观测站(个)	0.04802

本文通过 2016—2020 年国家统计局官网发布的《国家统计年鉴》,选取 2015—2019 年 5 年间我国大陆 31 个省(区、市)的指标数据对全国数字农业发展水平进行分析。对于原始数据缺失值,采用线性插值法进行处理。

(二) 数字农业水平的测算——熵权 TOPSIS 法

熵权 TOPSIS 法。熵权法是基于指标数据的离散程度,判定指标所携带的信息量,进而确定指标权重,离散程度越大,信息量越大,指标权重越大,该方法能有效解决多指标变量间的信息重叠问题。TOPSIS 法通过对各观测对象与最优对象和最劣对象的相对距离进行测算排序,从而得到对各观测对象的相对优劣评价。

本文利用熵权 TOPSIS 法测算数字农业整体发展水平,既可避免因主观赋权造成的权重臆断,又能有效判断各观测对象的相对优劣,使数字农业发展视阙下不同维度发展水平的测算结果更加客观可靠。本文参考陶长琪、徐茉(2021年)经济高质量发展视阙下中国创新要素配置水平的测度方法,具体实施步骤如下:

(1) 各指标的无量纲化处理。

本文所选指标均为正向指标,统一采用如下处理公式:

$$Z_{ir} = \frac{X_{ir} - \min\{X_{1r}, ..., X_{nr}\}}{\max\{X_{1r}, ..., X_{nr}\} - \min\{X_{1r}, ..., X_{nr}\}}$$
(1)

其中, X_{ir} 和 Z_{ir} 表示第 i 个对象 r 个指标的初始化数值和处理后数值,n 表示对象个数,

 $\min\{X_{lr},...,X_{nr}\}$ 和 $\max\{X_{lr},...,X_{nr}\}$ 表示所有对象第 \mathbf{r} 个指标中的最小值和最大值。

(2) 计算各指标的信息熵:

$$E_{r} = -k \sum_{i=1}^{n} \left(Z_{ir} / \sum_{i=1}^{n} Z_{ir} \right) \ln(Z_{ir} / \sum_{i=1}^{n} Z_{ir})$$
(2)

其中, $k=1/\ln n$, E_r 表示第 r 个指标的信息熵。

(3) 获取各指标的权重值:

$$W_r = (1 - E_r) / \sum_{i=1}^{R} E_r$$
 (3)

其中,R 表示指标总数, W_r 表示第 r 个指标的权重值。

(4) 得到各指标加权指数:

$$Q_{ir} = W_r \times Z_{ir} \tag{4}$$

其中, Q_{ir} 表示第 i 个对象 r 个指标的加权指数。

(5)确定各观测对象与最优对象、最劣对象的距离 D_i^g D_i^b

$$D_i^g = \sqrt{\sum_{r=1}^R (Q_{ir}^g - Q_{ir})^2}$$
 (5)

$$D_i^b = \sqrt{\sum_{r=1}^R (Q_{ir} - Q_{ir}^b)^2}$$
 (6)

 $\coprod_{r} Q_{ir}^{g} = \max \{Q_{1r}, ..., Q_{nr}\}, Q_{ir}^{b} = \max \{Q_{1r}, ..., Q_{nr}\}$

(6) 判定各观测对象与理想对象的相对接近程度 C_i :

$$C_i = \frac{D_i^b}{D_i^g + D_i^b} \tag{7}$$

(三) 数字农业发展水平评价结果

表 2 数字农业发展水平测评结果

	2015		16		成 <u>水 1 映</u> 017		2018	2	019
省份	得分	得分	增长率	得分	增长率	得分	增长率	得分	增长率
北京	1.61	1.49	-7. 78%	1.43	-3.86%	1. 3	-9.29%	1.24	-4.53%
天津	-0.19	-0.16	-13. 45 %	-0.17	2. 91%	-0.21	28.72%	-0.2	-8.54%
河北	0.1	0.14	44.95%	0.08	-46.11%	0.08	6.41%	0.05	-42.18%
山西	-0.49	-0.54	9.94%	-0.54	-0.52%	-0.56	3.42%	-0.58	4.38%
内蒙 古	-0.4	-0.41	3. 74%	-0.43	2. 77%	-0.45	4.74%	-0.49	9.73%
辽宁	-0.09	-0.11	23.94%	-0.18	57.55%	-0.27	54. 58%	-0.34	24. 40%
吉林	-0.25	-0.3	22. 19%	-0.33	10.81%	-0.38	13.61%	-0.42	11.94%
黑龙 江	-0.32	-0.33	5. 35%	-0.34	3. 11%	-0.38	10.75%	-0.39	3.82%
上海	0.89	1.09	21.81%	1.1	1.35%	1.03	-6.44%	0.99	-4.14%
江苏	1.37	1.35	-1.61%	1.31	-2.82%	1.24	-5.76%	1.11	-10.66%
浙江	1.57	1.53	-2.88%	1.54	0.79%	1.56	1.59%	1.51	-3.22%
安徽	-0.18	-0.18	1.32%	-0.13	-27.02%	0.03	-119.82%	0.02	-18.94%
福建	0.46	0.34	-24.8%	0.34	0.54%	0.33	-4.44%	0.36	9.05%
江西	-0.18	-0.22	27. 26%	-0.21	-7.23%	-0.18	-14.02%	-0.19	5.83%
山东	0.26	0.25	-4.42%	0.24	-2.75%	0.23	-4. 29%	0.21	-8.57%
河南	0.02	0.05	224.3%	0.08	54.43%	0.09	4. 76%	0.09	4. 43%
湖北	-0.02	-0.06	172.1%	-0.05	-7.93%	0.06	-210. 20%	0.06	9.98%
湖南	-0.22	-0.21	-5.74%	-0.17	-20.04%	-0.08	-53.60%	-0.08	0.55%
广东	1.67	1.66	-0.45%	1.66	-0.10%	1.65	-0.82%	1.75	6. 27%
广西	-0.38	-0.39	2.45%	-0.35	-9.89%	-0.34	-5.12%	-0.32	-5.44%
海南	-0.62	-0.59	-4.81%	-0.59	0.17%	-0.58	-1.83%	-0.56	-2.97%
重庆	-0.4	-0.38	-4.96%	-0.36	-6.50%	-0.32	-11.87%	-0.31	-1.35%
四川	0.26	0.35	36. 48%	0.42	18.00%	0.32	-24.00%	0.46	44.08%
贵州	-0.66	-0.6	-8.38%	-0.58	-3.77%	-0.62	6.63%	-0.56	-10.03%
云南	-0.59	-0.57	-3.12%	-0.58	2.66%	-0.48	-18.65%	-0.44	-7. 26%
西藏	-0.96	-0.9	-6.01%	-0.85	-5.60%	-0.71	-17. 16%	-0.62	-12.58%
陕西	-0.17	-0.13	-21.1%	-0.17	33.15%	-0.29	64.46%	-0.31	9.62%
甘肃	-0.55	-0 . 52	-5. 57%	-0.48	-7.15%	-0.35	-28.40%	-0.4	14. 93%
青海	-0.57	-0.59	3.39%	-0.59	-0.16%	-0.62	6.26%	-0.57	-8.93%
宁夏	-0.54	-0.63	15. 20%	-0.66	5. 49%	-0.68	3.51%	-0.69	0.79%
新疆	-0.44	-0.42	-5.33%	-0.44	5. 93%	-0.43	-3.14%	-0.38	-11.73%

测评结果综合分析

全国整体数字农业发展水平小幅度提升,测评得分年均值由 2015 年的 -0.000322581 上升至 2019 年的 0,年均增长率达到 1.71%,整体呈缓慢的增长 态势;值得注意的是,2015 至 2017 年数字农业发展迅猛,但增长率有所下降,由 2016 年的 15.93%下降至 2017 年的 1.56%,而 2018 年数字农业发展遭遇停滞,该年数字农业发展年增长率为-10.63%,测评得分也下降至-0.000322581,2019 年数字农业发展有所进步,但增长速度仍较缓。除此之外,一直以来不同地区数字农业发展程度有所不同,全国数字农业发展整体呈现极大的不平衡态势,浙江和广东两个地区数字农业发展水平远高于全国数字农业发展的平均水平,然而西藏和宁夏两个地区的数字农业发展水平远低于全国数字农业发展的平均水平;值得一提的是,尽管各地数字农业发展水平增速有所不同,但是信息化在农业领域的应用并没有改变地方数字农业水平在全国的排名,即全国数字农业发展呈稳定态势。

数字农业发展依托于大数据、信息化、智能化等先进技术在农业领域的应用,但是因为农业发展涉及到天气、土壤、水分等一系列不确定因素,导致先进科技在农业领域的应用受到制约,不同于其他领域的封闭环境,农业领域诸多不确定因素的开放式环境使得数字农业的发展越来越走向瓶颈,这也是各地数字农业发展水平增速缓慢,甚至出现停滞状况的原因。

(四) 数字新农业发展水平区域空间差异

为进一步观察地区之间的差异,了解不同地区的发展特征,本文采用系统聚类法,对 2019 年我国大陆 31 个省(区、市)数字农业发展水平情况进行分类分析,结果如图 1、表 3 所示。

图 1 系统聚类谱系图

表 3 数字农业发展水平分类情况

发展水平	省份
高水平	广东
中上等水平	浙江、江苏
中下等水平	北京、上海
	天津、河北、山西、内蒙古、辽宁、吉林、黑龙江、安徽、福建、
较低水平	江西、山东、河南、湖北、湖南、广西、海南、重庆、四川、贵
	州、云南、西藏、陕西、甘肃、青海、宁夏、新疆

第一类:数字农业发展高水平地区。这一类地区为广东。大陆 31 个省(区、市)中,浙江有 6 项指标位于排名前 5;其中网上零售额指标位于全国第 1 水平,电信和其他信息传输服务业就业人员占就业人数比例居 31 个省(区、市)第 2;

由此可知,农业信息化服务对数字农业发展的影响作用更为显著,即电商行业的 发展可以极大促进数字农业的发展。

第二类:数字农业发展中上等水平。这一类地区有浙江和江苏。江苏有5项指标、浙江有6项指标均位于全国排名前5;其中这2个省份的农村居民家庭平均电视机拥有量、网上零售额、电信和其他信息传输服务业就业人员占就业人数比例、农村居民平均人均可支配收入这4项指标均位于全国排名前5,除此之外,浙江的农村居民家庭平均电视机拥有量、农村居民家计算机数量为31个省(区、市)的前2,江苏的农户宽带接入用户指标和北京的农村居民家计算机数量指标均居全国第1;由此可知,在这些中上等发展水平省份中,在注重电商发展的同时,也比较注重农村互联网的覆盖率,即农村整体信息化水平的提高可以促进数字农业的发展。

第三类:数字农业发展中下等水平。这一类地区为北京和上海。北京、上海的农村居民家固定电话数、农村居民家庭平均电视机拥有量、农村居民家计算机数量、网上零售额、电信和其他信息传输服务业就业人员占就业人数比例、农村居民平均人均可支配收入这6项指标均为于全国前5,其中上海的农村居民家固定电话数指标、农村居民平均人均可支配收入指标均位于我国大陆31个省(区、市)第1,北京的农村居民家计算机数量指标、电信和其他信息传输服务业就业人员占就业人数比例指标均位于大陆31个省(区、市)第1;由此可知,上述省份在数字农业发展中,更加注重农村信息化给数字农业发展带来的效益作用。

第四类:数字农业发展较低水平。这一类地区包括除前三类地区省市外的所有省份。这些省份的虽然有个别指标发展较为迅速,位于全国前列,但是绝大多数指标发展较为低下,其中尤以电商行业、邮电行业和农村互联网覆盖率的代表指标发展较为落后。

测评指标分析

农村居民家移动电话数和农业气象观测站两个指标中排名前 5 的省份整体数字农业发展水平都较低,说明这两项指标并不是影响数字农业发展的最重要因素;另外结合不同指标的发展水平情况来看,农业信息化服务发展水平越高,地区数字农业整体发展水平一定程度上越高;另外表征农村互联网覆盖率及销售信息化的指标对数字农业发展的影响更为显著。

农业信息化基础 农业信息化服务 农业信息化效益 指标排名 X1 X2 Х5 X6 X7 Х9 X10 Х3 X4 Х8 上海 甘肃 浙江 江苏 四川 北京 广东 上海 四川 1 北京 2 广东 贵州 浙江 新疆 北京 上海 山东 云南 浙江 浙江 3 浙江 宁夏 江苏 四川 山东 山东 上海 上海 北京 河南 4 天津 海南 北京 河北 河南 上海 江苏 江苏 天津 黑龙江 四川 5 云南 福建 广东 河北 浙江 江苏 内蒙古 江苏 北京

表 4 不同指标的发展水平情况

三、农业高质量发展水平测度分析

(一) 指标体系构建

本文参考许恒、宋微(2021年)湖南省绿色农业发展指标体系^[5],综合考虑数据科学性、全面性以及可获取原则,从资源利用、环境友好、生态保护、农村发展四个维度选取 8 项指标,构建农业高质量发展综合评价指标体系。

一级指标 及权重	二级指标及权重	单位	指标 属性	指标含义
	耕地保有量(0.1215)	千公顷	正向	当年耕地总数量
资源利用	灌溉能力(0.1396)	%	正向	提高有效灌溉面积
(0.3999)	单位耕地面积机械总动力 (0.1389)	千瓦/公顷	正向	提高农机利用水平
环境友好	单位耕地面积化肥使用量			
(0.0865)	(0.0865)	吨/公顷	逆向	降低化肥使用强度
生态保护	森林覆盖率(0.1237)	%	正向	提高生态保育度

表 5 农业高质量发展水平评价指标体系

(0.2511)	水土流失治理面积 (0.1274)	千公顷	正向	对水土流失的有效治理程度
农村发展	农民人均消费支出 (0.1356)	元	正向	保障农民生活质量
(0. 2625)	亩均粮食产量(0.1269)	吨/公顷	正向	提高粮食产量

本文数据采取了2015—2019年我国大陆31个省(区、市)的面板数据,数据主要来源于国家统计局官网发布的2016—2020年的《中国统计年鉴》,部分空缺数据通过插值法计算得出。

(二) 农业高质量发展水平的测算——CRITIC 法

1、指标标准化

指标一般分为正向指标和负向指标,为了排除由于不同单位或量级差别造成的阻碍,运用极差法对指标进行无量纲化处理。

正向指标:

$$x_{ij} = \frac{x_i - x_{\min}}{x_{\max} - x_{\min}}$$
 (8)

负向指标:

$$x_{ij} = \frac{x_{\text{max}} - x_j}{x_{\text{max}} - x_{\text{min}}} \tag{9}$$

式中X_i;是第i个指标第j项评价对象标准化后的数据

2. CRITIC权重法

CRITIC 法是依据评价指标的对比强度和冲突性进行的一种客观赋权。指标的对比强度用标准差表示,权重越高代表指标数值波动越大,用相关系数表征指标的冲突性,权重越低说明冲突越小。计算过程如下:

(1) 对各评价指标数据进行标准化处理后,得到客观向量矩阵:

$$x = \begin{pmatrix} x_{11} & \dots & x_{1j} \\ \vdots & \ddots & \vdots \\ x_{i1} & \dots & x_{ij} \end{pmatrix}$$
(10)

(2) 指标变异性

$$\overline{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} \tag{11}$$

$$S_{j} = \sqrt{\frac{\sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})^{2}}{n-1}}$$
 (12)

标准差越大表示该指标的数值差异越大,反映出的信息越多,该指标本身的评价强度也就越强,权重越大。

(3) 指标冲突性

$$R_{j} = \sum_{i=1}^{p} (1 - r_{ij}) \tag{13}$$

rij表示评价指标 i 和 j 之间的相关系数

使用相关系数来表示指标间的相关性,相关性越强,能体现的评价内容重复之处越多,对该指标的评价强度削弱程度越大,分配的权重减小。

(4) 信息量

$$C_{j} = S_{j} \sum_{i=1}^{p} (1 - r_{ij}) = S_{j} \times R_{j}$$
 (14)

G:越大,第 i 个评价指标在整个评价指标体系中的作用越大,权重越大。

(5) 客观权重

$$W_{j} = \frac{C_{j}}{\sum_{j=1}^{p} C_{j}}$$
 (15)

(三) 农业高质量发展水平评价结果

利用 matlab 求出权重如下:

表 6 全国农业高质量发展水平评价结果

	耕地保 有量	有效灌 溉率	单位耕 地面积 机械总 动力	单位耕 地面积 化肥使 用量	森林覆盖率	水土流失治理面积	农村居 民人均 可支配 收入	亩均粮食 产量
2015	0.1193	0.1395	0.1301	0.1090	0.1224	0.1250	0.1328	0.1219
2016	0.1222	0.1413	0.1464	0.0778	0. 1252	0.1282	0.1342	0. 1248
2017	0.1193	0.1386	0.1319	0.0736	0.1221	0.1254	0.1555	0.1336
2018	0.1224	0.1419	0.1409	0.0871	0. 1235	0.1284	0.1257	0.1302
2019	0.1244	0.1368	0. 1441	0.0851	0. 1255	0.1299	0.1299	0.1242
平均 权重	0. 1215	0. 1396	0.1389	0.0865	0. 1237	0. 1274	0.1356	0. 1269

其中,灌溉能力所占权重最大,其对农业高质量发展的影响相对较大,总体来看,2015-2019年各项指标的权重波动较小,较为平稳。

表 7 全国农业高质量发展水平各系统结果

	高质量发展	资源利用	环境友好	生态保护	农村发展
	水平指数	发展水平	发展水平	发展水平	水平
2015	11.3547	4. 2918	1.1503	2. 9398	2.9728
2016	11.8802	4.3110	1.6438	2.9404	2.9851
2017	11.9042	4. 2877	1.6594	2. 9515	3.0056
2018	12.1174	4. 2101	1.5755	3.0395	3. 2923
2019	10.8700	2. 9441	1. 5986	3. 0470	3. 2803

根据各子系统农业高质量发展结果,绘制其走势图如下:

农业高质量发展水平指数趋势

图 2 农业高质量发展水平指数趋势

从整体来看,农业高质量发展水平呈现上升趋势,但在 2019 年有所下降,因 指数相差不大,可以说农业高质量发展趋势近似地呈线性增长,环境友好、生态 保护、农村发展趋势递增,农村发展势头正足,随着政策的支持,各地积极制定 农业信息化发展规划,推动数字农业建设和发展,加大对资源的利用、环境的保 护力度,大力发展农村经济,我国的农业高质量发展水平将不断提升。

(四)农业高质量发展水平区域空间差异

为了分析我国大陆各省(区、市)农业高质量发展水平的差异,对其高质量发展水平进行了测度。

表 8 各省(区、市)高质量发展水平测度结果

农业高 质量发 展指数	资源利 用	环境友 好	生态保护	农村发 展
	0. 1631	0.0656	0. 0848	0. 1301
				0. 1603
0.4068	0. 1481	0.0468		0. 1189
0. 2431	0.0328	0.0681	0.0925	0.0496
0.4099	0.0765	0.0717	0. 1618	0.0999
0.3365	0.0535	0.0665	0. 1165	0.1000
0. 3369	0.0736	0.0616	0.0950	0.1066
0.4338	0.1260	0.0825	0. 1236	0.1017
0.3802	0.0657	0.0541	0.0576	0.2029
0.3923	0.1227	0.0275	0.0280	0.2140
0.4550	0.1030	0.0569	0.1398	0.1553
0.4029	0.1356	0.0409	0.0649	0.1615
0.3916	0.1071	0.0083	0.1570	0.1192
0.4493	0.0853	0.0560	0.1648	0.1432
0.4231	0.1793	0.0394	0.0619	0.1426
0.4029	0.1685	0.0053	0.0719	0.1572
0.4012	0.1009	0.0391	0. 1235	0.1377
0.4964	0.1770	0.0359	0.1229	0.1606
0.3570	0.0990	0.0000	0.1126	0.1454
0.3340	0.1000	0.0333	0.1346	0.0661
0. 2902	0.1083	0.0258	0.1052	0.0508
0. 3244	0.0573	0.0549	0.1082	0.1040
0.4350	0.0917	0.0609	0. 1571	0.1254
	质量发展指数 0. 4436 0. 3039 0. 4068 0. 2431 0. 4099 0. 3365 0. 3369 0. 4338 0. 3802 0. 3923 0. 4550 0. 4029 0. 3916 0. 4493 0. 4231 0. 4029 0. 4012 0. 4964 0. 3570 0. 3340 0. 2902 0. 3244	展指数 の、1631 0、4436 の、1631 0、3039 の、0728 0、4068 の、1481 0、2431 の、0328 0、4099 の、0765 0、3365 の、0535 0、3369 の、0736 0、4338 の、1260 0、3802 の、0657 0、3923 の、1227 0、4550 の、1030 0、4029 の、1356 0、3916 の、1071 0、4493 の、0853 0、4231 の、1793 0、4029 の、1685 0、4012 の、1009 0、4964 の、1770 0、3570 の、9990 0、3340 の、1000 0、2902 の、1083 0、3244 の、0573	展指数	原量发展指数

贵州	0.3142	0.0602	0.0776	0.1411	0.0355
云南	0.3566	0.0595	0.0612	0.1875	0.0484
西藏	0. 2472	0.1236	0.0862	0.0191	0.0183
陕西	0.3041	0.0609	0.0408	0.1459	0.0564
甘肃	0. 2493	0.0446	0.0814	0.0960	0.0273
青海	0. 1978	0.0615	0.0865	0.0134	0.0364
宁夏	0. 1863	0.0282	0.0647	0.0356	0.0579
新疆	0. 1643	0.0577	0.0427	0.0167	0.0472

1.2019年各省(区、市)高质量发展情况

由上表可以发现,2019年我国大陆各省(区、市)农业高质量发展水平分布在0.1643-0.4964范围内,均值为0.3506;其中湖南的农业发展水平最高(0.4964),浙江和江西分列2、3位,而新疆最低(0.1643),湖南农业高质量发展水平是新疆的3.02倍,这说明我国大陆各省(区、市)农业高质量发展水平空间差异非常明显。具体来看;在资源利用上,山东的情况最好,其次是湖南,而在环境友好方面,青海西藏等西部地区更胜一筹;在生态保护方面,云南居于首位,西部地区大多处于落后状态;在农村发展方面,江苏、上海等东部地区发展较好,而中西部地区发展较为缓慢,主要与地理条件有关,运输等问题是其发展缓慢的原因之一。

总体来看,东部地区的发展各方面均好于中西部地区发展(环境友好方面除外),因此,若要使中西部地区农业高质量发展,要在资源利用、生态保护、农村发展上下功夫,提高农业的生产效率与资源利用率注重农村的基础设施建设,从而将更多的农产品销往全国各地。

2. 2019年全国农业高质量发展水平省域空间差异聚类分析

利用系统聚类法,对我国的农业高质量高质量发展总体情况以及子系统情况,采用平均联接法进行聚类。

图 3 系统聚类图

得到聚类结果如下:

表 9 农业高质量发展分类情况

	た。 ・ ・ ・ ・ ・ ・ ・ ・ ・
类型	省份
明星型	北京、河北、江苏、安徽、福建、山东、河南、湖南、广东
领导者型	天津、上海
平庸型	山西、内蒙古、辽宁、吉林、黑龙江、浙江、江西、湖北、 广西、海南、重庆、四川、贵州、云南、陕西、甘肃
落后型	西藏、青海、宁夏、新疆

依据聚类结果,结合实际发展情况将大陆31个省(区、市)分为4种类型:明星型、领导者型、平庸型、落后型。明星型农业高质量发展水平明显高于其他地区,东部省(区、市)占77.8%,而中部和西部地区分别占22.2%和0%,这表明东部地区农业高质量发展水平整体层次高,是我国农业高质量发展的主要力量;在领导型中的上海和天津,均属于东部地区;在平庸型中,东、中和西部地区各省(区、市)分布相对均匀,说明东部农业高质量发展同样存在省域差异;而落后型主要集中在西部地区,从我国各省(区、市)农业高质量发展的类型及分布格局来看,我国高质量发展水平分布不均匀,地区差异较大,发展水平最高的均在东部,发展较好的只有小部分集中在中部,而发展水平低的都在西部,印证了我国"东强、西弱、中平"的发展情况。

四、数字农业与农业高质量发展的实证

(一)模型构建

为研究数字农业与农业高质量发展的关系,本文构建以下基准回归模型:

$$HP_{it} = \alpha_i + \beta_1 INF_{it} + \beta_2 EI_{it} + \beta_3 ME_{it} + \varepsilon_{it}$$
(16)

上式中,HP 表示农业高质量发展,INF 表示数字化水平,EI 、ME 表示控制变量,包括灌溉水平和机械化水平。 ε 表示误差项。

由于过去农业高质量发展水平会影响现在高质量发展水平,因此本文建立的如下动态面板模型:

$$HP_{it} = \alpha_0 + \beta_1 HP_{i,t-1} + \beta_2 INF_{it} + \beta_3 EI_{it} + \beta_4 ME_{it} + \varepsilon_{it}$$
 (17)

考虑到数字农业与农业高质量发展之间可能存在非线性相关关系,因此本文设定如下单一门槛模型:

$$HP_{it} = \alpha + \beta_1 INF_{it}(q_i \le r) + \beta_2 INF_{it}(q_i > r) + \beta_3 EI_{it} + \beta_4 ME_{it} + \varepsilon_{it}$$
(18)

其中, q 为门槛变量, r 是未知门槛值。

(二) 变量选取

- (1)被解释变量:农业高质量发展(HP)
- (2) 核心解释变量: 数字农业(INF)
- (3) 控制变量: 有效灌溉率(EI)、单位耕地面积农业机械总动力(ME)

(三)静态回归分析

本文使用固定效应为体现估计方法的差异性和估计结果的稳健性,本文同时使用 FE 和 RE 对数字农业与农业高质量发展的关系进行静态回归分析。针对上述模型,使用豪斯曼检验对模型进行验证,检验统计量为 0.11, P 值为 0.9905,本文最终选择随机效应模型进行估计。

		被解释变	量(HP)	
变量	固定模型		····· 随机模型(RE)	
	(1)	(2)	(3)	(4)
THE	0.0879	0.0515	0.0880	0.0520
INF	(0.0103)	(0.0103)	(0.0103)	(0.0010)
D.T.		0.1115		0.1089
EI		(0.0278)		(0.0244)
ME		0.1121		0.1123
		(0.0244)		(0.0240)
_CONS	0.3750	0.2970	0.3750	0.2978
	(0.0070)	(0.0116)	(0.0084)	(0, 0111)
N	155	155	155	155

表 10 固定效应模型和随机效应模型估计

从上表可以看出,数字农业与农业高质量发展之间存在正相关关系,在加入解释变量 EI 和 MI,随机效应模型中核心解释变量的值在 0.05 至 0.29 之间,变化幅度较小。在所有控制变量中,灌溉水平和机械化水平均对农业高质量发展产生正效应,说明灌溉水平和机械化水平有助于农业高质量发展。

(四) 系统 SYS-GMM 动态回归分析

考虑到过去农业高质量发展水平会影响现在高质量发展水平,使用 SYS-GMM 从从农业信息化基础(INF1)、农业信息化服务(INF2)、农业信息化效应(INF3) 三个方面对数字农业不同维度对农业高质量发展产生的不同影响进行动态回归分析。

表 11 显示了将农业信息化基础、农业信息化服务、农业信息化效应等指标作为解释变量加入到模型后的动态回归分析结果。下表中的 AR (1) 与 AR (2) 的值表明一阶序列自相关显著而二阶序列自相关不显著,并且的 P 值均大于 0.1, 说明本文模型设定合理。

被解释变量 (HP) 变量 (2)(1)(3) (4)0.8672*** 0.8240*** 0.6844*** 0.6932*** LHP (0.0273)(0.0372) (0.0459)(0.0427) 0.2734*** INF1 (0.0164)0.0056 INF2 (0.0137)0.0276*** INF3 (0.0074)0.183*** INF (0.0215)0.0523*** 0.1025*** 0.1046*** 0.0725*** EΙ (0.0215) (0.0142) (0.0040) (0.0058)0.127*** 0.0596*** 0.0467*** 0.0532*** ME (0.0133)(0.0042)(0.0241)(0.0138)-0.7359*** -0.4879*** -0.4179*** -0.8479***CONS (0.0795)(0.1362)(0.0473)(0.5763)N 155 155 155 155 AR(1)0.0142 0.0123 0.0137 0.0172 AR (2) 0.2753 0.1536 0.2757 0.2376 Sargan (p值) 0.5433 0.3743 0.3565 0.3234

表 11 系统 GMM 动态回归分析

上述动态回归分析结果表明,数字农业对农业高质量发展有明显的促进作

用。随着数字农业的快速发展,地区的数字农业建设逐渐完善,对该地区的农业高质量发展有显著影响。

上述回归结果显示,农业信息化基础、农业信息化服务和农业信息化效应的 回归系数都通过了显著性检验,但农业信息化效应虽对农业高质量发展有影响,但效果不显著。因此,农业信息化基础和农业信息化服务是促进农业高质量发展 的重要因素。

(五) 门槛效应分析

基于上述静态回归分析与 SYS-GMM 动态回归分析,得出数字农业对农业高质量发展的正向促进作用,但静态回归分析与 SYS-GMM 动态回归的前提是数字农业与农业高质量发展的关系是线性的,为了保证回归分析的准确性,本文将以数字农业作为门槛变量,检验数字数字农业与农业高质量发展的关系是否具备门槛特征。

变量模型 F 统计量 Ρ值 10% 5% 1% 单一门槛 16.82 17.5734 24.3612 0.0464 13.9365 7.12 双重门槛 0. 5234 11. 9351 15.2194 18. 2743 三生门槛 0.5976 13.4871 17.0326 6.15 21.2951

表 12 门槛效应检验结果

单一门槛回归分析中,由于 P 值小于 0.05,因此接受原假设,存在单一门槛效应;双重门槛检验中, P 值大于 0.05,不存在双重门槛效应;三生门槛检验中, P 值大于 0.05,不存在三生门槛效应;从上述分析得出,数字农业与农业高质量发展之间存在非线性关系,根据下表的估计结果可得,数字农业的门槛值为0.1522。

表 13 门槛估计结果

门槛	估计值	95%置信区间
单一门槛	0. 1522	[0. 1503, 0. 1621]

表 14 的门槛模型的估计结果表明,当数字农业得分低于门槛值 0.1522 时, 在第一门槛区间内,数字农业对农业高质量发展存在正向影响作用。当数字农业 得分高于门槛值 0.1522 时,数字农业对农业高质量发展的影响系数为 0.3966 通过了显著性检验,说明在第二门槛区间,数字农业对农业高质量发展也存在正向影响作用,且重要程度加深。这说明数字农业对农业高质量发展的影响呈现非线性关系。

系数 95%置信区间 变量 标准误差 T 值 P>t [0.0070, 0.0892] ΕI 0.0513 0.0140 2.42 0.024 0.0283 2.37 0.021 [0.0172, 0.1348] ME 0.0712 INF≤0.1522 0.1726 0.0683 2.65 0.036 [0.0120, 0.2869] INF>0.1522 0.3966 5.38 [0.2156, 0.4584]0.0572 0.0011 -0.1547CONS -0.72[-0.479, 0.2646] 0.2146 0.416

表 14 门槛估计模型参数估计结果

五、结论与建议

本文首先构建省级数字农业的评价指标体系,使用熵权法客观测度了 2015—2019 年我国大陆 31 个省(区、市)农业高质量发展水平并对其进行比较分析,结果表明:各区域农业发展水平差异较大,其中西部和东北地区农业高质量发展水平较为落后。其次,本文在使用省级面板数据的基础上,通过使用动态 SYS-GMM 分析方法和建立门槛效应模型进行实证分析发现,数字农业与农业高质量发展之间存在非线性正相关关系。根据上述研究可以得到如下结论:

(1)数字农业中农业信息化基础和农业信息化服务对农业高质量发展的促进作用较为显著;(2)数字农业对农业高质量发展的影响呈现非线性特征,即当数字农业高于特定的门槛值时,对农业高质量发展的促进作用将大幅提高。

针对上述研究结果,本文提出如下五条政策建议:

(1)加强数字农业的建设,以数字化农业促进农业的高质量发展。农业数字化转型需要国家政策和农民内生动力的相辅相成;首先,各地牵头部门应积极响应国家相关的政策法规,在保证政策落实的同时,定期进行检查验收,以督促

数字农业项目的建设进程;其次,各部门要因地制宜,根据实地调研结果在可控范围作出调整,使数字农业更加具有地方特色;同时,要提前出台预测性防风险条例以防控风险,做到当风险来临时,将损失降至最低。

二是加强信息化服务建设,增加数字宽带、计算机的接入量。在农村地区加强数字化产品的宣传,拓宽农村居民对于计算机产品的接触面,促进数字农业在农村地区发展的广度和深度。另外,通过拓宽农户的网络信息来源,全面提高农户的数字化生产和销售,有助于帮助农户掌握更高效的种植方式与销售方向,提高农村地区各项农业资源的使用效率。

三是加强农村网络通讯设施建设,完善数字农业物质载体。首先,应当加强加强农村网络通讯设施建设,完善数字农业发展的硬件设施;其次,在农村大力推行数字支付体系,使得助农金融服务点得以覆盖全国;最后,在农村地区广泛普及智能手机,以更大程度上方便农村居民使用互联网通讯服务,提高农村地区数字服务的可获得性。

四是加强技术创新服务,对农业数字化转型给予支持。一方面要组建专家团队,加快攻克农业传感器、智能装备、GPS 定位追踪等技术难关的进程;另一方面要加大财政资金扶持力度,为数字农业建设配备充足的人力、物力和财力。

五是推进大数据与农业深度融合。将大数据、云计算、物联网等数字技术与农业农村经济活动深度联合,利用数字技术为农业安装上"智慧芯",催生"数字农业""互联网+农业"等新业态新模式^[8]。同时,大力推广农村电商,以全新的方式进行农产品销售,带动当地农业经济的发展,提高农民经济效益。

参考文献

- [1]李铜山,王艳蕊. 数字农业助推我国农业高质量发展研究[J]. 河南工业大学学报(社会科学版), 2021, 37(01):1-7.
- [2] 唐红涛,李胜楠. 数字经济赋能农村经济高质量发展的机制研究[J]. 科技智囊,2020(09):13-18.
- [3] 刘元胜. 农业数字化转型的效能分析及应对策略[J]. 经济纵横, 2020(07):106-113.
- [4]陈康, 韩俊英. 基于 PCA 分析的陕西农业信息化评价及可视化研究[J]. 热带农业工程, 2020, 44(01):55-58.
- [5]许恒,宋微.乡村振兴视域下农业绿色发展评价研究[J].学习与探索,2021(03):130-136.
- [6]陶长琪,徐茉.经济高质量发展视阈下中国创新要素配置水平的测度[J].数量经济技术经济研究,2021,38(03):3-22.
- [7]姜启波, 谭清美. 新时期我国高质量发展水平测度及空间差异研究——基于熵值 G2 与灰色关联 CRITIC 的变异系数组合赋权法[J]. 管理现代化, 2020, 40(05): 24-30.
- [8] 李季刚, 马俊. 数字普惠金融发展与乡村振兴关系的实证[J/OL]. 统计与决策:1-5[2021-05-04]. http://kns.cnki.net/kcms/detai1/42.1009. C. 20210425. 1330.002. html.
- [9] 周菊玲. 浅谈乡镇农经管理与数字经济的融合发展[J]. 南方农业,2019,13(32):89-90.

附录

```
matlab 代码
[n, m] = size(X);
delta = zeros(1, m);
c = zeros(1, m);
for j=1:m
   delta(j) = std(X(:, j));
   c(j) = size(X, 1) - sum(X(:, j));
end
C = delta.*c;
w = C. / (sum(C))
C为信息量,w为客观权重,delta标准差,c指标冲突性
Stata 代码
xtset region year
xtreg hq inf, fe//固定效应模型 (FE)
xtreg hq inf ei me, fe
xtreg hq inf, re
xtreg hq inf ei me, re//随机效应模型 (RE)
xtreg hq inf ei me, fe
est store fe_result
xtreg hq inf ei me, re
est store re result
hausman fe_result re_result//豪斯曼检验
```

//系统 GMM 动态回归

xtgls hq inf ei me, panels(cor) corr(ar1) igls iterate(300)
Xtthres hq thres(me) dthres(inf)//门槛效应分析

部分截图如下

固定效应模型 (FE)

. xtreg hq inf,fe

Fixed-effects (within) regression			Number of	obs	=	155	
Group variable: year			Number of	groups	=	5	
R-sq:				Obs per g	group:		
within =	0.3270				min	=	31
between =	0.0003				avg	=	31.0
overall =	0.3207				max	=	31
				F(1,149)		=	72.39
corr(u_i, Xb)	= 0.0000			Prob > F		=	0.0000
hq	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
inf	.0879992	.0103427	8.51	0.000	.067561	9	.1084364
_cons	.37501	.0070165	53.45	0.000	.361145	4	.3888747
sigma_u sigma_e	.01635867						
rho	.03388107	(fraction	of varia	nce due to	u_i)		
F test that al	l u_i=0: F(4,	, 149) = 1.0	9		Prob	>	F = 0.3651
F test that al		, 149) = 1.0	9		Prob	>	F = 0.3651
. xtreg hq inf	ei me,fe	5	9	Number of			
	ei me,fe (within) regr	5	9	Number of	obs	> = =	F = 0.3651 155 5
. xtreg hq inf Fixed-effects	ei me,fe (within) regr	5	9	Number of	obs groups	=	155
. xtreg hq inf Fixed-effects Group variable	ei me,fe (within) regr : year	5	9		obs groups	=	155
. xtreg hq inf Fixed-effects Group variable R-sq:	ei me,fe (within) regress year	5	9	Number of	obs groups	= =	155 5
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within =</pre>	ei me,fe (within) regress year 0.5270 0.6578	5	9	Number of	obs groups roup: min	= = =	155 5 31
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between =</pre>	ei me,fe (within) regress year 0.5270 0.6578	5	9	Number of Obs per g	obs groups roup: min avg	= = =	155 5 31 31.0
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between =</pre>	ei me,fe (within) regri: year 0.5270 0.6578 0.5292	5	9	Number of	obs groups roup: min avg	= = = =	155 5 31 31.0 31
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between = overall =</pre>	ei me,fe (within) regri: year 0.5270 0.6578 0.5292	5	g t	Number of Obs per g	obs groups roup: min avg max	= = = = = =	155 5 31 31.0 31 54.58
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between = overall = corr(u_i, Xb)</pre>	ei me,fe (within) regri: year 0.5270 0.6578 0.5292 = -0.0385	ression		Number of Obs per g F(3,147) Prob > F	obs groups roup: min avg max	= = = = = = =	155 5 31 31.0 31 54.58 0.0000
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between = overall =</pre>	ei me,fe (within) regress year 0.5270 0.6578 0.5292 = -0.0385	ression Std. Err.	t	Number of Obs per g F(3,147) Prob > F P> t	obs groups min avg max	= = = = = = = = = = = = = = = = = = =	155 5 31 31.0 31 54.58 0.0000
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between = overall = corr(u_i, Xb) hq inf</pre>	ei me,fe (within) regress year 0.5270 0.6578 0.5292 = -0.0385 Coef.	Std. Err.	t 5.00	Number of Obs per g F(3,147) Prob > F P> t 0.000	obs groups min avg max [95% Col.	= = = = = = = = = = = = = = = = = = =	155 5 31 31.0 31 54.58 0.0000 Interval]
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between = overall = corr(u_i, Xb) hq inf ei</pre>	ei me,fe (within) regress year 0.5270 0.6578 0.5292 = -0.0385 Coef. .0515196 .1115165	Std. Err. .0103006 .0277467	t 5.00 4.02	Number of Obs per g F(3,147) Prob > F P> t 0.000 0.000	F obs groups group: min avg max [95% Col .031163	= = = = = = = = = = = = = = = = = = =	155 5 31 31.0 31 54.58 0.0000 Interval] .0718759 .1663504
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between = overall = corr(u_i, Xb) hq inf ei me</pre>	ei me,fe (within) regress year 0.5270 0.6578 0.5292 = -0.0385 Coef. .0515196 .1115165 .1121458	Std. Err0103006 .0277467 .0243749	t 5.00 4.02 4.60	Number of Obs per g F(3,147) Prob > F P> t 0.000 0.000 0.000	95% Col031163: .056682: .063975	= = = = = = = = = = = = = = = = = = =	155 5 31 31.0 31 54.58 0.0000 Interval] .0718759 .1663504 .1603163
<pre>. xtreg hq inf Fixed-effects Group variable R-sq: within = between = overall = corr(u_i, Xb) hq inf ei me _cons</pre>	ei me,fe (within) regri: year 0.5270 0.6578 0.5292 = -0.0385 Coef0515196 .1115165 .1121458 .2970125	Std. Err0103006 .0277467 .0243749	t 5.00 4.02 4.60	Number of Obs per g F(3,147) Prob > F P> t 0.000 0.000 0.000	95% Col031163: .056682: .063975	= = = = = = = = = = = = = = = = = = =	155 5 31 31.0 31 54.58 0.0000 Interval] .0718759 .1663504 .1603163

F test that all $u_i=0$: F(4, 147) = 0.54

Prob > F = 0.7034

•

随机效应模型(RE)

. xtreg hq inf,re

Random-effects	GIS regress	ion				=	
Group variable: year				Number o	of groups		155 5
R-sq:				Obs per	group.		
within =	0.0000			ooo pe.	24	n =	31
between =	0.0000					g =	31.0
overall =					and the second	x =	31
				Wald chi	i2(1)	=	72.87
corr(u_i, X)	= 0 (assume	d)		Prob > c		=	0.0000
hq	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
inf	.0879992	.0103088	8.54	0.000	.06779	42	.1082041
_cons	.37501	.0084186	44.55	0.000	.35850	99	.3915102
sigma_u	.01051371						i.
sigma_e	.08735437						
The state of the s	.01427897	(fraction	of varia	nce due to	u i)		
. xtreg hq inf	ei me,re	•			.		455
The state of the s	ei me,re	ion	3 3 31	Number o	of obs	=	155 5
. xtreg hq inf Random-effects Group variable	ei me,re	ion	3 3 31	Number o	of groups		
. xtreg hq inf Random-effects Group variable R-sq:	ei me,re GLS regress:	ion			of groups group:	=	5
<pre>. xtreg hq inf Random-effects Group variable R-sq: within =</pre>	ei me,re GLS regress: year 0.5269	ion		Number o	of groups group: mi	= n =	5 31
. xtreg hq inf Random-effects Group variable R-sq: within = between =	ei me,re GLS regress: year 0.5269 0.6569	ion		Number o	of groups group: mi av	= n = g =	31 31.0
<pre>. xtreg hq inf Random-effects Group variable R-sq: within =</pre>	ei me,re GLS regress: year 0.5269 0.6569	ion		Number o	of groups group: mi av	= n =	5 31
. xtreg hq inf Random-effects Group variable R-sq: within = between =	ei me,re GLS regress: year 0.5269 0.6569	ion		Number o	of groups group: mi av ma:	= n = g = x =	31 31.0 31
. xtreg hq inf Random-effects Group variable R-sq: within = between =	ei me,re GLS regress: year 0.5269 0.6569			Number o	of groups group: mi av ma:	= n = g =	31 31.0
. xtreg hq inf Random-effects Group variable R-sq: within = between = overall =	ei me,re GLS regress: year 0.5269 0.6569		z	Number of Obs per	of groups group: mi av; ma: i2(3) chi2	= n = g = x = = = =	31 31.0 31 169.73
. xtreg hq inf Random-effects Group variable R-sq: within = between = overall = corr(u_i, X)	ei me,re GLS regress: E: year E: 0.5269 E: 0.6569 E: 0.5292 E: 0 (assumed	d) Std. Err.		Number of Obs per Wald chir Prob > of P> z	of groups group: min avg max i2(3) chi2	= n = g = x = = = = = onf.	31 31.0 31 169.73 0.0000 Interval]
. xtreg hq inf Random-effects Group variable R-sq: within = between = overall = corr(u_i, X) hq inf	ei me,re GLS regress: : year 0.5269 0.6569 0.5292 = 0 (assumed) Coef.	d) Std. Err. .0099745	5.22	Number of Obs per Wald chi Prob > of Obs per P> z 0.000	of groups group: min avg max i2(3) chi2 [95% Co	= n = g = x = = = = = = = = = = = = = = = =	31 31.0 31 169.73 0.0000 Interval]
. xtreg hq inf Random-effects Group variable R-sq: within = between = overall = corr(u_i, X) hq inf ei	ei me,re GLS regress: E: year 0.5269 0.6569 0.5292 = 0 (assumed) Coef. .05207 .1088857	Std. Err. .0099745 .0244449	5.22 4.45	Number of Obs per Wald chi Prob > c	of groups group: min avg max i2(3) chi2 [95% Colones of groups .032520 .060974	= n = g = x = = = = = = = = = = = = = = = =	31 31.0 31 169.73 0.0000 Interval] .0716197 .1567967
. xtreg hq inf Random-effects Group variable R-sq: within = between = overall = corr(u_i, X) hq inf	ei me,re GLS regress: : year 0.5269 0.6569 0.5292 = 0 (assumed) Coef.	d) Std. Err. .0099745	5.22	Number of Obs per Wald chi Prob > of Obs per P> z 0.000	of groups group: min avg max i2(3) chi2 [95% Co	= n = g = x = = = = = = = = = = = = = = = =	31 31.0 31 169.73 0.0000 Interval]
. xtreg hq inf Random-effects Group variable R-sq: within = between = overall = corr(u_i, X) hq inf ei me	ei me,re GLS regress: E: year 0.5269 0.6569 0.5292 = 0 (assumed) Coef. .05207 .1088857 .1122746	Std. Err0099745 .0244449 .0239055	5.22 4.45 4.70	Number of Obs per Wald chi Prob > 0 P> z 0.000 0.000	group: minav; ma: i2(3) chi2 [95% Colones of the co	= n = g = x = = = = = = = = = = = = = = = =	31 31.0 31 169.73 0.0000 Interval] .0716197 .1567967 .1591285
. xtreg hq inf Random-effects Group variable R-sq: within = between = overall = corr(u_i, X) hq inf ei me _cons	ei me,re GLS regress: year 0.5269 0.6569 0.5292 = 0 (assumed) Coef. .05207 .1088857 .1122746 .297841	Std. Err0099745 .0244449 .0239055	5.22 4.45 4.70	Number of Obs per Wald chi Prob > 0 P> z 0.000 0.000	group: minav; ma: i2(3) chi2 [95% Colones of the co	= n = g = x = = = = = = = = = = = = = = = =	31 31.0 31 169.73 0.0000 Interval] .0716197 .1567967 .1591285

•

豪斯曼检验

. hausman fe_result re_result

	Coeffi	cients —		
	(b) fe_result	(B) re_result	(b-B) Difference	<pre>sqrt(diag(V_b-V_B)) S.E.</pre>
inf	.0515196	.05207	0005504	.0025711
ei	.1115165	.1088857	.0026308	.0131274
me	.1121458	.1122746	0001288	.0047605

 ${\sf b}$ = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(3) =
$$(b-B)'[(V_b-V_B)^{-1}](b-B)$$

= 0.11

Prob>chi2 = 0.9905

致 谢

值此论文撰写完成之际,回顾写论文的过程,首先我要由衷地感谢我的队员。 从论文的选题、数据收集整理、模型构建到最后的论文撰写与修改,我们不断讨 论、分析、相互协作,在每个深夜里挑灯夜读不知疲惫。正是有了彼此的鼓励和 支持,有了集体的智慧,我们的论文才得以在规定时间内顺利完成。

同时我们还要感谢指导老师,感谢他们一直以来对我们的精心指导。在论文选题、梳理框架等环节,老师都为我们付出的宝贵时间和极大心血,为我们在编写论文的大方向上提供了宝贵的意见。当我们在研究中遇到棘手问题时,老师也耐心指导,让我们少走了很多弯路。在此衷心感谢指导老师对我们的无私帮助!