

Engenharia de Software 1 (ES1) (1001530)

Aula 7: Modelagem de Estados (Notação e Aplicação em Nível de Análise)

Prof. Fabiano Cutigi Ferrari 2º semestre de 2022

Recados Iniciais

• Mantenham seus e-mails atualizados no Moodle.

Notas Iniciais

ufere

- Preparado com base nos materiais a seguir*:
 - Slides disponibilizados em conjunto com o livro
 - Eduardo BEZERRA: Princípios de Análise e Projeto de Sistemas com UML, 3ª ed., Campus/Elsevier (2015).

 Notas de aula e slides elaborados pelo professor, e outros materiais disponíveis na Web

^{*} Notas de rodapé ajudam a identificar os slides produzidos por Bezerra (2015).

Roteiro

- Introdução
- Diagramas de transição de estados
- Identificação dos elementos de um diagrama de estados
- Modelagem de estados no processo de desenvolvimento

Exemplos Iniciais O que queremos representar?

Fonte: https://slideplayer.com.br/slide/50270/1/images/2/Diagrama+de+M%C3%A1quina+de+Estados+%E2%80%93+EXEMPLO+1%3A+objeto+Telefone.jpg

Exemplos Iniciais O que queremos representar?

Fonte: http://www.facom.ufu.br/~abdala/DAS5312/Diagrama%20de%20Estados.pdf

Fonte: https://engsis.files.wordpress.com/2011/06/maquina-de-estados-ligar-vec3adculo.jpg

Introdução

- Objetos do mundo real se encontram em <u>estados</u> particulares a cada momento.
 - uma jarra está cheia de líquido
 - uma pessoa está <u>cansada</u>.
- Da mesma forma, cada objeto participante de um sistema de software orientado a objetos se encontra em um <u>estado particular</u>.
- Um objeto muda de estado quando acontece algum <u>evento</u> interno ou externo ao sistema.
- Durante a <u>transição</u> de um estado para outro, um objeto realiza determinadas ações dentro do sistema.
- Quando um objeto transita de um estado para outro, significa que o sistema no qual ele está inserido também está mudando de estado.

Diagrama de transição de estados

Diagrama de transição de estado

- Através da análise das transições entre estados dos objetos de um sistema de software, podem-se prever todas as possíveis operações realizadas, em função de eventos que possam ocorrer.
- O diagrama da UML que é utilizado para realizar esta análise é o diagrama de transição de estado (DTE).
- A UML tem um conjunto rico de notações para desenhar um DTE.
 - •Estados
 - Transições
 - •Evento
 - •Ação
 - ·Atividade
 - Estados aninhados (ou subestados, ou estados compostos)
 - Fstados concorrentes

Estado

- Situação na vida de um objeto em que ele satisfaz a alguma condição ou realiza alguma atividade. Caracteriza-se pelos valores dos atributos e (ou) pelas ligações com outros objetos.
 - O atributo reservado deste objeto livro tem valor verdadeiro.
 - Uma conta bancária passa para o *vermelho* quando o seu saldo fica *negativo*.
 - Um professor está *licenciado* quando não está ministrando curso algum durante o semestre.
 - Um tanque está na reserva quando nível de óleo está abaixo de 20%.
 - Um pedido está atendido quando todos os seus itens estão atendidos.
- Estados podem ser vistos como uma abstração dos atributos e associações de um objeto.

Estado Inicial e Final

- O <u>estado inicial</u> indica o estado de um objeto quando ele é criado. Só pode haver <u>um estado inicial</u> em um DTE.
 - •Essa restrição serve para definir a partir de que ponto um DTE deve começar a ser lido.
- O <u>estado final</u> indica o fim do ciclo de vida de um objeto.
 - ·É opcional e pode haver mais de um estado final em um DTE.
- Notação da UML para estados:

Transições

- Os estados estão associados a outros pelas <u>transições</u>.
- Uma transição é mostrada como uma linha conectando estados, com uma seta apontando para um dos estados.
 - <u>Auto-transição</u> é um transição que conecta um estado a ele próprio.
- Quando uma transição entre estados ocorre, diz-se que a transição foi disparada.
- Uma transição pode ser rotulada com uma expressão da seguinte forma:

evento (lista-parâmetros) [guarda] / ação

Eventos

- Uma transição possui um evento associado.
- Um evento é algo que acontece em algum ponto no tempo e que pode modificar o estado de um objeto:
 - Pedido realizado
 - Fatura paga
 - · Cheque devolvido
- Os eventos relevantes a um sistema de software podem ser classificados em nos seguintes tipos:
 - · Evento de chamada: recebimento de uma mensagem de outro objeto.
 - Evento temporal: passagem de um intervalo de tempo predefinido.
 - Evento de mudança: uma condição que se torna verdadeira.

Tipos Mais Comuns de Eventos

Evento de chamada

• Corresponde ao envio de uma mensagem ao objeto (invocação de um método).

Evento temporal

- Corresponde à passagem de um intervalo de tempo predefinido.
 - O objeto pode interpretar a passagem de um certo intervalo de tempo como sendo um evento.
- É especificado com a cláusula **after** seguida de um parâmetro que especifica um intervalo de tempo.
 - after(30 segundos): indica que a transição será disparada 30 segundos após o objeto ter entrado no estado atual.

Tipos Mais Comuns de Eventos (cont.)

Evento de mudança

- Corresponde a uma condição que se torna verdadeira.
- É representado por um predicado utilizando-se a cláusula when.
 - when(saldo > 0): significa que a transição é disparada quando o valor do atributo saldo for positivo.
- Eventos temporais também podem ser definidos utilizando-se a cláusula when.
 - •when(data = 13/07/2002)
 - •when(horário = 00:00h)

Exemplo (Conta Bancária)

Departamento de Computação

Exemplo (Conta Bancária)

Guarda (ou Condição de Guarda)

- É uma expressão de valor lógico (predicado) que condiciona o disparo de uma transição.
- A transição correspondente é disparada se e somente se o evento associado ocorre e a condição de guarda é verdadeira.
 - <u>Uma transição que não possui condição de guarda é</u> <u>sempre disparada quando o evento ocorre.</u>
- A condição de guarda pode ser definida utilizando-se parâmetros passados no evento e também atributos e referências a ligações da classe em questão.

Ações

- Ao transitar de um estado para outro, um objeto pode realizar uma ou mais <u>ações</u>.
- Uma ação é uma expressão definida em termo dos atributos, operações, associações da classe. Parâmetros do evento também podem ser utilizados.
- A ação associada a uma transição é executada se e somente se a transição for disparada.

Ponto de Junção

- Pode ser que o <u>próximo estado</u> de um objeto <u>varie</u> de acordo com uma condição.
 - Se o valor da condição for <u>verdadeiro</u>, o objeto vai para um estado E1; se o valor for falso (<u>else</u>), o objeto vai para outro estado E2.
 - É como se a transição tivesse bifurcações, e cada transição de saída da bifurcação tivesse uma condição de guarda.
- Essa situação pode ser representada em um DTE através de um <u>ponto de junção</u>.
- De uma forma geral, pode haver um número ilimitado de transições saindo de um ponto de junção.

Ponto de Junção - Caso Genérico

Cláusulas

- No compartimento adicional de um retângulo de estado podem-se especificar ações ou atividades a serem executadas.
- Sintaxe geral:

evento / [ação | atividade]

· Há três cláusulas predefinidas: entry, exit, do

Cláusula entry

- Especifica uma ação a ser realizada no momento em que o objeto entra em um estado.
- A ação desta cláusula é <u>sempre executada</u>, independentemente do estado do qual o objeto veio.
 - É como se a ação especificada estivesse associada a todas as transições de <u>entrada no estado</u>.

Cláusula exit

- <u>Serve para declarar ações</u> que são executadas sempre que o objeto <u>sai</u> de um estado.
- É sempre executada, independentemente do estado para o qual o objeto vai.
 - É como se a ação especificada estivesse associada a todas as transições de <u>saída do estado</u>.

Exemplo: Cláusulas entry / exit

Digitando senha

entry/definirEco(cInvisivel)

caractere(c)/tratarCaractere(c)

ajuda/exibirAjuda(invisível)

exit/definirEco(cVisivel)

Transições Internas

 Representam um tipo de transição que não dispara ações de entrada ou de saída.

Exemplo: Transição Interna

Princípios de Análise e Projeto de Sistemas com UML - 3ª edição

Atividades

- Semelhante a uma ação, uma <u>atividade</u> é algo que deve ser executado.
- No entanto, uma atividade <u>pode ser interrompida</u> (uma ação não pode).
 - Por exemplo, enquanto a atividade estiver em execução, pode acontecer um evento que a interrompa.
- Outra diferença: <u>uma atividade sempre está associada a um</u> <u>estado</u> (enquanto uma ação está associada a uma transição).

Cláusula do

- <u>Usada para definir alguma atividade a ser executada</u> quando o objeto passa para um determinado estado.
- Ao contrário da cláusula entry, <u>serve para especificar uma</u> <u>atividade</u>, em vez de uma ação.
- É útil para disparar transições de forma automática.
 - Nesse caso, a transição não tem um evento nem uma guarda associada.
 - Quando a atividade é concluída, a transição ocorre <u>automaticamente</u>.

Exemplo: Cláusula do, Atividade e Transição automática

OBS: a inexistência de um evento na transição Estado2 -> Estado3 indica que a transição ocorrerá automaticamente quando a atividade2 for finalizada

Outros Exemplos

Estados Aninhados (ou Subestados)

- São partes de um <u>estado composto</u>.
- São usados para <u>simplificar</u> máquinas complexas de estados simples.
 - Mostram que alguns estados são possíveis apenas dentro de um determinado contexto (o estado confinado).
- · Podem ser aninhados em qualquer nível.

Estados Aninhados: Exemplos

Fonte: http://www.cin.ufpe.br/~gta/rup-vc/core.base_rup/guidances/guidelines/statechart_diagram_640B5D0B.html#Internal%20Transitions

Estados Aninhados

Fonte: https://engsis.files.wordpress.com/2011/06/maquina-de-estados-ligar-vec3adculo.jpg

Identificação dos elementos de um diagrama de estados

Identificação de elementos do DTE

- Um bom ponto de partida para identificar eventos é a descrição dos <u>casos de uso</u>.
- Os eventos encontrados na descrição dos casos de uso são externos ao sistema.
 - •Contudo, uma transição pode também ser disparada por um evento interno ao sistema.
- De uma forma geral, cada operação com visibilidade pública de uma classe pode ser vista como um evento em potencial.

Identificação de elementos do DTE

 Uma outra fonte para identificação de eventos associados a transições é analisar as regras de negócio.

"Um cliente do banco não pode retirar mais de R\$ 1.000 por dia de sua conta".

"Os pedidos para um cliente não especial devem ser pagos antecipadamente".

"O número máximo de alunos por curso é igual a 30".

Para quais classes construímos o DTE?

- · Os diagramas de estados são desenhados por classe.
 - Desvantagem: dificuldade na visualização do estado do sistema como um todo.
 - Essa desvantagem é parcialmente compensada pelos diagramas de interação.
- Nem todas as classes de um sistema precisam de um DTE.
 - Somente classes que exibem um comportamento dinâmico relevante.
 - Objetos cujo histórico precisa ser rastreado pelo sistema são típicos para se construir um diagrama de estados.

Procedimento para construção de um DTE

- 1) Identifique os estados relevantes para a classe.
- 2) Identifique os eventos relevantes. Para cada evento, identifique qual a transição que ele ocasiona.
- 3) Para cada estado: identifique as transições possíveis quando um evento ocorre.
- 4) Para cada estado, identifique os eventos internos e ações correspondentes.
- 5) Para cada transição, verifique se há fatores que influenciam no seu disparo (definição de condições de guarda e ações).
- 6) Para cada condição de guarda e para cada ação, identifique os atributos e ligações que estão envolvidos.
- 7) Defina o estado inicial e os eventuais estados finais.
- 8) Desenhe o DTE.

Modelagem de estados no processo de desenvolvimento

Modelagem de Estados no PDS

- A construção de um DTE frequentemente leva à descoberta de novos atributos para uma classe
 - principalmente atributos para servirem de <u>abstrações para</u> <u>estados</u>.
- Além disso, este processo de construção permite identificar novas operações na classe.
 - · Os objetos precisam reagir aos eventos que eles recebem.
- Essas novas propriedades <u>devem ser adicionadas</u> ao modelo de classes.

Referências

- BEZERRA, E.: Princípios de Análise e Projeto de Sistemas com UML, 3ª edição, Campus -Elsevier, 2015.
- http://www.cin.ufpe.br/~gta/rup-vc/ core.base_rup/guidances/guidelines/ statechart_diagram_640B5D0B.html#Internal %20Transitions