Physique - Mécanique

Durée: 1h

EXERCICE 1 : Trajectoire d'une mouche sur un disque en rotation

On considère une mouche qui se déplace sur un disque lui placé sur un tourne disque. La position de la mouche est repérée par le point M. La mouche a adopté un comportement un peu singulier dans la mesure où elle se déplace à vitesse constante, notée V_0 , et selon l'axe $\overrightarrow{e_r}$. A t=0 la mouche se trouve au point O.

On notera ω_0 la vitesse angulaire du tourne disque et d'après l'énoncé nous avons $\theta(t)=\omega_0 t$.

Pour répondre aux question nous utiliserons les repères $R(\vec{x}, \vec{y})$ et $R'(\overrightarrow{e_r}, \overrightarrow{e_\theta})$.

1. Montrez que dans le repère $R(\vec{x}, \vec{y})$, le vecteur position de la mouche s'écrit

$$\overrightarrow{OM} = \begin{bmatrix} V_0 t. \cos(\omega_0 t) \\ V_0 t. \sin(\omega_0 t) \end{bmatrix}$$

- 2. Calculez la vitesse du point M par rapport au repère $R(\vec{x}, \vec{y})$
- 3. Calculez l'accélération du point M par rapport au repère $R(\vec{x}, \vec{y})$

EXERCICE 2:

On s'intéresse au mouvement d'une pendule en 3D. Le pendule est constitué d'un fil inextensible de longueur l donc $\|\overrightarrow{OM}\|=l$. Une extrémité du fil est fixe (le point O) et à l'autre extrémité on trouve une masse ponctuelle m. En tournant autour de l'axe \overrightarrow{z} , le point M décrit un cône dont l'angle au sommet β est constant. Pour la suite on notera T la tension dans le fil.

Tous les résultats devront être exprimés avec les vecteurs de base du repère $R'(\overrightarrow{e_r}, \overrightarrow{e_\alpha}, \overrightarrow{e_z})$. Pour les calculs on pourra utiliser $\overrightarrow{u} = \frac{\overrightarrow{OM}}{\|\overrightarrow{OM}\|}$.

- 1. Donnez les expressions, sous forme de vecteurs, des forces qui agissent sur le point M.
- 2. Après avoir donné l'expression du vecteur position \overrightarrow{OM} , donnez l'expression de la vitesse de M dans le repère $R(\vec{x}, \vec{y}, \vec{z})$, puis son accélération toujours dans le repère $R(\vec{x}, \vec{y}, \vec{z})$.
- 3. Appliquez le principe fondamental de la dynamique et faire les projections pour les trois axes $\overrightarrow{e_r}, \overrightarrow{e_{r'}}, \overrightarrow{e_{r'}}, \overrightarrow{e_{r'}}$.
- 4. Que pouvez-vous dire de la vitesse de rotation $\dot{\alpha}$? En posant, $\dot{\alpha}=\omega$ et à partir des équations de l'équation 3, déterminez l'expression de ω . (Pour cela on éliminera la tension T des équations).