Solution de la série 1

Exercice 1. L'agent préfère la voiture au bus car la différence du trajet est inférieure à 5 min, et la voiture est plus confortable. De même il préfère le bus au métro, mais il préfère le métro à la voiture, car la différence du temps du trajet est supérieur à 5 min d'où la relation est non transitive, donc pas rationnelle.

Exercice 2. Rappelons qu'un ensemble X est dénombrable si on peut définir une fonction bijective $\varphi: N \to X$ où N est l'ensemble des entiers naturels.

On va le faire par récurrence sur le cardinal de l'ensemble X

Si le cardinal de X noté Card x est égal à 1 et \geq une relation de préférence rationnelle définie sur X, on prend alors tout simplement $\mu: X = \{x\} \to \mathbb{R}$, u(x) = 0 et comme qu'il n'existe qu'un seul élément alors \geq_u coïncidera avec la relation de préférence rationnelle \geq de manière triviale.

On suppose que la construction est toujours possible à l'ordre n et le démontre à l'ordre n+1.

Donc on suppose $\operatorname{Card} X = n+1$ et soit \geq la relation de préférence rationnelle définie sur X, on pose $X = \{x_1, x_2, \dots, x_{n+1}\}$. Par hypothèse de récurrence on peut définir l'application $\mu: \check{X} \to R$ qui coïncide avec la relation \geq définie sur X, où $\check{X} = \{x_1, x_2, \dots, x_n\}$. Onpeut alors distinguer deux sous-ensembles de \check{X} :

 $\overline{X} = \{x \in \widecheck{X}: x \ge x_{n+1}\}$ et $\underline{X} = \{x \in \widecheck{X}: x_{n+1} \ge x\}$, par complétude nous avons $\overline{X} \cup \underline{X} = \widecheck{X}$. Alors il y'a trois cas qui peuvent se présenter :

 1^{er} cas : $\overline{X} = \emptyset$ dans ce cas tous les éléments de \widecheck{X} sont moins préférés à x_{n+1} . Et donc on peut poser $\mu(x_{n+1}) = \max_{i=1,\dots,n} \mu(x_i) + 1$ et par construction μ ainsi défini coïncidera avec la relation \geq .

 $2^{\text{ième}}$ cas : $\underline{X} = \emptyset$ dans ce cas tous les éléments \check{X} sont mieux préférés à x_{n+1} , donc de même on peut poser $\mu(x_{n+1}) = \min_{i=1,\dots,n} \mu(x_i) - 1$.

Exercice 3 (jeu de la tirelire):

1/2	0	100
0	(0,0)	(-25,75)
100	(75,-25)	(50,50)

1) La stratégie 100 domine la stratégie 0 strictement pour chacun des deux joueurs, un équilibre en dominance est le profil (100,100).

Exercice 4

1 2	B_1	B_2	B_3
A_1	(10,10)	(4,9)	(4,11)
A_2	(5,6)	(8,3)	(3,4)
A_3	(4,0)	(8,1)	(5,3)

1 2	B_1	B_3
A_1	(10,10)	(4,11)
A_2	(5,6)	(3,4)
A_3	(4,0)	(5,3)

1 2	B_1	B_3
A_1	(10,10)	(4,11)
A_3	(4,0)	(5,3)

1 2	B_3
A_1	(4,11)
A_3	(5,3)

L'équilibre obtenu par ESSD est (A_3, B_3)

Exercice 5

1 2	G	D
Н	(0,0)	(2,2)
В	(10,11)	(-1,0)

- 1) Il n'existe pas de stratégies dominantes
- 2) (B,G) ou (H,D).(Le dernier est plus probable)

Exercice 6

- 1) Le nombre de stratégies est non-fini donc c'est impossible.
- 2) d) aucune car:

1 n'est pas dominante $u_1(1,s_2)= \begin{cases} 1 & si \ s_2=0 \\ 0 & sinon \end{cases}$ donc il suffit de prendre un contre exemple : $u_1(1,0.25) < u_1(0.5,0.25)$. (de même pour le joueur 2)

La stratégie 0 n'est pas dominante non plus car c'est clair $u_1(0,s_2)=0$

La stratégie 0.5 non plus $u_1(0.5, s_2) \ge u_1(s_1, s_2)$ contre exemple $u_1(0.5, 0.3) < (0.7, 0.3)$.

Donc elle n'est pas dominante.

Montrer que ce jeu ne possède pas de stratégies dominantes.

Exercice 7

1) oui par l'absurde si un joueur possède deux stratégies dominantes $s_i{}'$, $s_i{}'$ on aura :

$$u_i(s_i^{'},s_{-i}) > u_i(s_i^{"},s_{-i}) \text{ et } u_i(s_i^{"},s_{-i}) > u_i(s_i^{'},s_{-i}) \text{ donc impossible.}$$

2)

1/2	С	Т
С	(1,1)	(0,1)
Т	(1,0)	(0,0)

Ce jeu ne possède ni de stratégies dominantes ni faiblement ni strictement, on voit que dans ce jeu le fait de regarder horizontalement le problème rend les stratégies équivalentes.

Exercice 8 : Enchères au second prix (Enchères de Vickrey)

- 1) L'ensemble des stratégies est non fini vu les différents prix que chacun des joueurs est en droit de proposer.
- 2) Oui le jeu possède une solution en appliquant les notions de dominances : en effet on peut prouver que la stratégie $b_i=v_i$ pour un joueur i est faiblement dominante comme on va le voir en dessous :

Pour le prouver nous allons calculer le gain pour $b_i = v_i$, $b_i > v_i$, $etb_i < v_i$ et les comparer (bien sûr) comme dans une matrice on compare vis-à-vis du même profil adversaire je les mettrai en bleu et rouge pour que vous puissiez comprendre:

•
$$b_i = v_i$$

 $\Rightarrow y > v_i$ et donc $u_i(v_i, y) = 0$
 $\Rightarrow y < v_i u_i(v_i, y) = v_i - y > 0$

•
$$b_i < v_i$$

• $y > v_i \Rightarrow y > b_i \Rightarrow u_i(b_i, y) = 0$
• $y < v_i \Rightarrow \begin{cases} y < b_i < v_i \Rightarrow u_i(b_i, y) = v_i - y > 0 \\ b_i < y < v_i \Rightarrow u_i(b_i, y) = 0 \end{cases}$

•
$$b_i > v_i$$

$$y > v_i \Rightarrow \begin{cases} y > b_i > v_i \Rightarrow u_i(b_i, y) = 0 \\ b_i > y > v_i \Rightarrow u_i(b_i, y) = v_i - y < 0 \text{ "perte"} \end{cases}$$

$$y < v_i \Rightarrow y < b_i \Rightarrow u_i(b_i, y) = v_i - y > 0$$

Donc par comparaison la meilleure stratégie du joueur est de prendre $b_i=v_i$ donc il sera obligé de donner son estime réelle de la valeur de l'objet et en quelque sorte d'être honnête.