PSS_PetlaRegulacji_Smieja final

Generated by Doxygen 1.9.7

1	Hierarchical Index	1
	1.1 Class Hierarchy	1
2	Class Index	3
	2.1 Class List	3
3	File Index	5
•	3.1 File List	5
4	Class Documentation	7
	4.1 Comp_Concrete Class Reference	7
	4.1.1 Detailed Description	7
	4.1.2 Member Function Documentation	8
	4.1.2.1 simulate()	8
	4.2 Comp_Gen Class Reference	8
	4.2.1 Detailed Description	8
	4.2.2 Member Function Documentation	8
	4.2.2.1 simulate()	8
	4.3 Compon_Loop Class Reference	9
	4.3.1 Detailed Description	9
	4.3.2 Member Function Documentation	9
	4.3.2.1 simulate()	9
	4.4 Composite_Loop Class Reference	10
	4.4.1 Detailed Description	11
	4.4.2 Member Function Documentation	11
	4.4.2.1 add_pararell()	11
	4.4.2.2 add_series()	11
	4.4.2.3 remove_pararell()	11
	4.4.2.4 remove_series()	11
	4.4.2.5 simulate()	11
	4.4.2.6 simulate_pararell()	12
	4.4.2.7 simulate_series()	12
	4.5 Dec_sinus Class Reference	12
	4.5.1 Detailed Description	13
	4.5.2 Member Function Documentation	13
	4.5.2.1 simulate()	13
	4.6 Dec_square Class Reference	13
	4.6.1 Detailed Description	14
	4.6.2 Member Function Documentation	14
	4.6.2.1 simulate()	14
	4.7 Dec_triangle Class Reference	15
	4.7.1 Detailed Description	15
	4.7.2 Member Function Documentation	16

4.7.2.1 simulate()	16
4.8 Decorator Class Reference	16
4.8.1 Detailed Description	17
4.8.2 Member Function Documentation	17
4.8.2.1 simulate()	17
4.9 Leaf_ARX Class Reference	17
4.9.1 Detailed Description	18
4.9.2 Constructor & Destructor Documentation	18
4.9.2.1 Leaf_ARX()	18
4.9.3 Member Function Documentation	19
4.9.3.1 simulate()	19
4.10 PD Class Reference	19
4.10.1 Detailed Description	20
4.10.2 Constructor & Destructor Documentation	20
4.10.2.1 PD()	20
4.10.3 Member Function Documentation	20
4.10.3.1 simulate()	20
4.11 PI Class Reference	21
4.11.1 Detailed Description	21
4.11.2 Constructor & Destructor Documentation	21
4.11.2.1 PI()	21
4.11.3 Member Function Documentation	22
4.11.3.1 simulate()	22
4.12 PID Class Reference	22
4.12.1 Detailed Description	23
4.12.2 Constructor & Destructor Documentation	23
4.12.2.1 PID()	23
4.12.3 Member Function Documentation	24
4.12.3.1 calc_deriv()	24
4.12.3.2 calc_error()	24
4.12.3.3 calc_integr()	24
4.12.3.4 calc_prop()	24
4.12.3.5 set_setPoint()	24
4.12.3.6 simulate()	25
4.13 SISO Class Reference	25
4.13.1 Detailed Description	25
5 File Documentation	27
5.1 comp_concrete/comp_concrete.hpp File Reference	
5.1.1 Detailed Description	
5.2 comp_concrete.hpp	
5.3 compon_loop/compon_loop.hpp File Reference	

5.3.1 Detailed Description	28
5.4 compon_loop.hpp	29
5.5 composite_loop/composite_loop.cpp File Reference	29
5.5.1 Detailed Description	29
5.6 composite_loop/composite_loop.hpp File Reference	30
5.6.1 Detailed Description	30
5.7 composite_loop.hpp	30
5.8 decorator.hpp	31
5.9 gen/gen.hpp File Reference	31
5.9.1 Detailed Description	31
5.10 gen.hpp	32
5.11 leaf_arx/leaf_arx.cpp File Reference	32
5.11.1 Detailed Description	32
5.12 leaf_arx/leaf_arx.hpp File Reference	33
5.12.1 Detailed Description	33
5.13 leaf_arx.hpp	33
5.14 main.cpp File Reference	34
5.14.1 Detailed Description	34
5.14.2 Function Documentation	35
5.14.2.1 main()	35
5.15 pd/pd.cpp File Reference	35
5.15.1 Detailed Description	35
5.16 pd.hpp	35
5.17 pi/pi.cpp File Reference	36
5.17.1 Detailed Description	36
5.18 pi/pi.hpp File Reference	36
5.18.1 Detailed Description	36
5.19 pi.hpp	37
5.20 pid/pid.cpp File Reference	37
5.20.1 Detailed Description	37
5.21 pid.hpp	38
5.22 sinus/sinus.cpp File Reference	38
5.22.1 Detailed Description	38
5.23 sinus/sinus.hpp File Reference	38
5.23.1 Detailed Description	39
5.24 sinus.hpp	39
5.25 siso.hpp	39
5.26 square/square.cpp File Reference	40
5.26.1 Detailed Description	40
5.27 square/square.hpp File Reference	40
5.27.1 Detailed Description	40
5.28 square.hpp	41

5.29 triangle/triangle.cpp File Reference	41
5.29.1 Detailed Description	41
5.30 triangle/triangle.hpp File Reference	41
5.30.1 Detailed Description	42
5.31 triangle.hpp	42
Index	40

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Comp_Gen	8
Comp_Concrete	7
Decorator	
Dec_sinus	12
Dec_square	
Dec_triangle	15
SISO	25
Compon_Loop	9
Composite_Loop	10
Leaf_ARX	17
PD	19
PID	22
PI	21
PID	22

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Comp_C	concrete	
	Class of concrete component (basic input) for generator decorator	7
Comp_G	de n	
	Class of generator decorator component	8
Compon	_Loop	
	The base Component class declares common operations for composites and leafs	9
Compos	ite_Loop	
	Class od control loop composite in a Composite (structural design pattern)	10
Dec_sin	us	
	Class of sinus decorator for input generator	12
Dec_squ	uare	
	Class of square decorator for input generator	13
Dec_tria	ngle	
	Class of triangle decorator for input generator	15
Decorate	or	
	Class of generator basic-decorator	16
Leaf_AF	XX	
	Class of an ARX object (leaf) in a Composite (structural design pattern)	17
PD		
	Class for PD controller	19
PI		
	Class for PI controller	21
PID		
	Class for PID controller	22
SISO		
	Basic class for SISO objects	25

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

main.cpp	
Program for testing simulation closed control loop for: generator - PID controller - SISO compos-	
ite	34
comp_concrete/comp_concrete.hpp	
Class of concrete component (basic input) for generator decorator	27
compon_loop/compon_loop.hpp	
Class of control loop component in a Composite (structural design pattern)	28
composite_loop/composite_loop.cpp	
Class of control loop composite in a Composite (structural design pattern)	29
composite_loop/composite_loop.hpp	
Class od control loop composite in a Composite (structural design pattern)	30
decorator/decorator.hpp	31
gen/gen.hpp	31
leaf_arx/leaf_arx.cpp	
Class of a leaf object in a Composite (structural design pattern)	32
leaf_arx/leaf_arx.hpp	
Class of an ARX object (leaf) in a Composite (structural design pattern)	33
pd/pd.cpp	35
pd/pd.hpp	35
pi/pi.cpp	36
pi/pi.hpp	36
pid/pid.cpp	37
pid/pid.hpp	38
sinus/sinus.cpp	38
sinus/sinus.hpp	
Class of sinus decorator for input generator	38
siso/siso.hpp	39
square/square.cpp	40
square/square.hpp	
Class of square decorator for input generator	40
triangle/triangle.cpp	41
triangle/triangle.hpp	
Class of triangle decorator for input generator	41

6 File Index

Chapter 4

Class Documentation

4.1 Comp_Concrete Class Reference

class of concrete component (basic input) for generator decorator

#include <comp_concrete.hpp>

Inheritance diagram for Comp_Concrete:

Public Member Functions

- Comp_Concrete (double value)
- double simulate () override
- virtual double simulate ()=0

Private Attributes

• double m_value

4.1.1 Detailed Description

class of concrete component (basic input) for generator decorator

4.1.2 Member Function Documentation

4.1.2.1 simulate()

```
double Comp_Concrete::simulate ( ) [inline], [override], [virtual]
```

Implements Comp_Gen.

The documentation for this class was generated from the following file:

• comp_concrete/comp_concrete.hpp

4.2 Comp_Gen Class Reference

class of generator decorator component

```
#include <gen.hpp>
```

Inheritance diagram for Comp_Gen:

Public Member Functions

• virtual double simulate ()=0

4.2.1 Detailed Description

class of generator decorator component

4.2.2 Member Function Documentation

4.2.2.1 simulate()

```
virtual double Comp_Gen::simulate ( ) [pure virtual]
```

Implemented in Dec_sinus, Dec_square, and Dec_triangle.

The documentation for this class was generated from the following file:

gen/gen.hpp

4.3 Compon Loop Class Reference

The base Component class declares common operations for composites and leafs.

```
#include <compon_loop.hpp>
```

Inheritance diagram for Compon Loop:

Public Member Functions

- virtual void add_series (SISO *component)=0
- virtual void add pararell (SISO *component)=0
- virtual void remove_series (SISO *component)=0
- virtual void remove_pararell (SISO *component)=0
- virtual double simulate (double input)=0
- virtual double **simulate_series** (double input)=0
- virtual double **simulate_pararell** (double input)=0
- virtual double **simulate** (double x)=0

4.3.1 Detailed Description

The base Component class declares common operations for composites and leafs.

4.3.2 Member Function Documentation

4.3.2.1 simulate()

Implements SISO.

The documentation for this class was generated from the following file:

compon_loop/compon_loop.hpp

4.4 Composite Loop Class Reference

class od control loop composite in a Composite (structural design pattern)

```
#include <composite_loop.hpp>
```

Inheritance diagram for Composite Loop:

Public Member Functions

- void add_series (SISO *component) override
- void add_pararell (SISO *component) override
- void remove_series (SISO *component) override
- void remove_pararell (SISO *component) override
- virtual double simulate (double input) override
- double simulate_pararell (double input) override
- double simulate_series (double input) override
- virtual void add_series (SISO *component)=0
- virtual void add_pararell (SISO *component)=0
- virtual void remove_series (SISO *component)=0
- virtual void remove_pararell (SISO *component)=0
- virtual double simulate (double input)=0
- virtual double simulate_series (double input)=0
- virtual double **simulate_pararell** (double input)=0
- virtual double **simulate** (double x)=0

Private Attributes

- double m_input
- double m_out_pararell
- std::list< SISO * > m_children_pararell
- std::list< SISO * > m_children_series

4.4.1 Detailed Description

class od control loop composite in a Composite (structural design pattern)

The Composite class represents the complex components that may have children. In "normal" control loop are 3 available components: main control loop object (tree), group of Leaf_ARX objects in pararell (branch), group of Leaf_ARX objects in series (branch). Each group of ARX objects (branches) can have few Leaf_ARX objects (leafs). There is also one PID controller (leaf for tree), that is the first element of the control loop

If in storage goes new group (branch), then it should be operated by add_series(), remove_series(). It's because main SISO is simulated by simulating groups in series Output can be calculated by simulate() or simulate_series() - it doesn't matter

4.4.2 Member Function Documentation

4.4.2.1 add_pararell()

4.4.2.2 add series()

Implements Compon Loop.

4.4.2.3 remove pararell()

Implements Compon_Loop.

4.4.2.4 remove_series()

Implements Compon_Loop.

4.4.2.5 simulate()

Implements Compon_Loop.

4.4.2.6 simulate_pararell()

Implements Compon_Loop.

4.4.2.7 simulate_series()

Implements Compon_Loop.

The documentation for this class was generated from the following files:

- composite_loop/composite_loop.hpp
- composite_loop/composite_loop.cpp

4.5 Dec sinus Class Reference

class of sinus decorator for input generator

```
#include <sinus.hpp>
```

Inheritance diagram for Dec_sinus:

Public Member Functions

- Dec_sinus (Comp_Gen *generator, double amplitude, double period)
- double simulate () override

return value - initial input decorated by sinus generator

Public Member Functions inherited from Decorator

- **Decorator** (Comp_Gen *generator)
- double generate () override
- Decorator (Comp_Gen *generator)
- double simulate () override
- virtual double simulate ()=0

Private Attributes

- double m_amplitude
- · double m_period
- double m_time
- double output

Additional Inherited Members

Protected Attributes inherited from Decorator

• Comp_Gen * m_generator

4.5.1 Detailed Description

class of sinus decorator for input generator

4.5.2 Member Function Documentation

4.5.2.1 simulate()

```
double Dec_sinus::simulate ( ) [override], [virtual]
```

return value - initial input decorated by sinus generator

Returns

double

Implements Comp_Gen.

The documentation for this class was generated from the following files:

- sinus/sinus.hpp
- sinus/sinus.cpp

4.6 Dec_square Class Reference

class of square decorator for input generator

```
#include <square.hpp>
```

Inheritance diagram for Dec_square:

Public Member Functions

- **Dec_square** (Comp_Gen *generator, double amplitude, double period)
- double simulate () override

return value - initial input decorated by square generator

Public Member Functions inherited from Decorator

- **Decorator** (Comp_Gen *generator)
- double generate () override
- Decorator (Comp_Gen *generator)
- double simulate () override
- virtual double simulate ()=0

Private Attributes

- double m_amplitude
- double m_period
- · double m_time
- double output

Additional Inherited Members

Protected Attributes inherited from Decorator

• Comp_Gen * m_generator

4.6.1 Detailed Description

class of square decorator for input generator

4.6.2 Member Function Documentation

4.6.2.1 simulate()

```
double Dec_square::simulate ( ) [override], [virtual]
```

return value - initial input decorated by square generator

Returns

double

Implements Comp_Gen.

The documentation for this class was generated from the following files:

- square/square.hpp
- square/square.cpp

4.7 Dec_triangle Class Reference

class of triangle decorator for input generator

```
#include <triangle.hpp>
```

Inheritance diagram for Dec_triangle:

Public Member Functions

- Dec_triangle (Comp_Gen *generator, double amplitude, double period)
- · double simulate () override

return value - initial input decorated by triangle generator

Public Member Functions inherited from Decorator

- Decorator (Comp_Gen *generator)
- double generate () override
- Decorator (Comp_Gen *generator)
- double simulate () override
- virtual double simulate ()=0

Private Attributes

- double m_amplitude
- double m_period
- double m_time
- double output
- double prev_output

Additional Inherited Members

Protected Attributes inherited from Decorator

• Comp_Gen * m_generator

4.7.1 Detailed Description

class of triangle decorator for input generator

4.7.2 Member Function Documentation

4.7.2.1 simulate()

```
double Dec_triangle::simulate ( ) [override], [virtual]
```

return value - initial input decorated by triangle generator

Returns

double

Implements Comp_Gen.

The documentation for this class was generated from the following files:

- triangle/triangle.hpp
- · triangle/triangle.cpp

4.8 Decorator Class Reference

class of generator basic-decorator

```
#include <gen.hpp>
```

Inheritance diagram for Decorator:

Public Member Functions

- Decorator (Comp_Gen *generator)
- double generate () override
- Decorator (Comp_Gen *generator)
- double simulate () override
- virtual double simulate ()=0

Protected Attributes

• Comp_Gen * m_generator

4.8.1 Detailed Description

class of generator basic-decorator

4.8.2 Member Function Documentation

4.8.2.1 simulate()

```
double Decorator::simulate ( ) [inline], [override], [virtual]
Implements Comp_Gen.
```

The documentation for this class was generated from the following files:

- · decorator/decorator.hpp
- gen/gen.hpp

4.9 Leaf_ARX Class Reference

class of an ARX object (leaf) in a Composite (structural design pattern)

```
#include <leaf_arx.hpp>
```

Inheritance diagram for Leaf_ARX:

Public Types

- using **vector** = std::vector< double >
- using **state** = std::deque< double >

Public Member Functions

- Leaf_ARX (const vector &a, const vector &b, unsigned k=0, double evar=0.0)
 Construct a new ARX object.
- double simulate (double input) override
- void save (const std::string &path)

Public Member Functions inherited from Composite_Loop

- void add_series (SISO *component) override
- · void add pararell (SISO *component) override
- void remove_series (SISO *component) override
- void remove pararell (SISO *component) override
- virtual double simulate (double input) override
- · double simulate pararell (double input) override
- · double simulate series (double input) override
- virtual void add_series (SISO *component)=0
- virtual void add_pararell (SISO *component)=0
- virtual void remove_series (SISO *component)=0
- virtual void remove_pararell (SISO *component)=0
- virtual double simulate (double input)=0
- virtual double simulate_series (double input)=0
- virtual double simulate pararell (double input)=0
- virtual double simulate (double x)=0

Private Member Functions

- void create_states ()
- · void update_state (state &state, double new state)

Private Attributes

- vector m a
- · vector m_b
- state m_x
- state m_y
- double m_evar
- unsigned m k
- unsigned m_x_depth
- unsigned m_y_depth

4.9.1 Detailed Description

class of an ARX object (leaf) in a Composite (structural design pattern)

Few Leaf_ARX objects can be grouped in pararell or in series. All of the ARX groups (composites) make one SISO object, which can be inserted into contorl loop with input generator and PID controller

4.9.2 Constructor & Destructor Documentation

4.9.2.1 Leaf ARX()

```
Leaf_ARX::Leaf_ARX ( const vector & a, const vector & b, unsigned k = 0, double evar = 0.0)
```

Construct a new ARX object.

4.10 PD Class Reference 19

Parameters

а	coef's of A polynomial (denominator)
b	coef's of B polynomial (numerator)
k	delay
evar	white noise variation

4.9.3 Member Function Documentation

4.9.3.1 simulate()

Reimplemented from Composite_Loop.

The documentation for this class was generated from the following files:

- leaf_arx/leaf_arx.hpp
- leaf_arx/leaf_arx.cpp

4.10 PD Class Reference

class for PD controller

```
#include <pd.hpp>
```

Inheritance diagram for PD:

Public Member Functions

- PD (double min=0.0, double max=100.0, double dt=0.1, double kp=1.0, double kd=0.05)
 Construct a new PD::PD object.
- virtual double simulate (double pv) override
- virtual double calc_error (double pv, double set_point)
- virtual double calc_prop (double error)
- virtual double calc_deriv (double error)
- virtual void **set_setPoint** (double sp)
- virtual double simulate (double x)=0

Private Attributes

- double set_point
- double m_min
- double m max
- double m_dt
- double m_Kp
- double **m_Ki**
- double m_Kd
- double integral_temp
- double prev_error

4.10.1 Detailed Description

class for PD controller

4.10.2 Constructor & Destructor Documentation

4.10.2.1 PD()

```
PD::PD (  \mbox{double } \min = 0.0, \\ \mbox{double } \max = 100.0, \\ \mbox{double } dt = 0.1, \\ \mbox{double } kp = 1.0, \\ \mbox{double } kd = 0.05 \mbox{)}
```

Construct a new PD::PD object.

Parameters

min	minimum controller output
max	maximum controller output
dt	time step
kp	proportional coef
kd	derivative coef

4.10.3 Member Function Documentation

4.10.3.1 simulate()

```
double PD::simulate ( \label{eq:constraint} \mbox{double } pv \; ) \quad \mbox{[override], [virtual]}
```

Implements SISO.

The documentation for this class was generated from the following files:

- pd/pd.hpp
- pd/pd.cpp

4.11 PI Class Reference 21

4.11 PI Class Reference

class for PI controller

```
#include <pi.hpp>
```

Inheritance diagram for PI:

Public Member Functions

- PI (double min=0.0, double max=100.0, double dt=0.1, double kp=1.0, double ki=0.5)
 Construct a new PI::PI object.
- virtual double simulate (double pv) override
- virtual double calc_error (double pv, double set_point)
- virtual double calc_prop (double error)
- virtual double calc_integr (double error)
- virtual void set_setPoint (double sp)
- virtual double simulate (double x)=0

Private Attributes

- double set_point
- double m_min
- double m_max
- double m_dt
- double m_Kp
- double **m_Ki**
- double m_Kd
- double integral_temp

4.11.1 Detailed Description

class for PI controller

4.11.2 Constructor & Destructor Documentation

4.11.2.1 PI()

```
PI::PI (  \begin{tabular}{lll} $\operatorname{double}\ min = 0.0, \\ $\operatorname{double}\ max = 100.0, \\ $\operatorname{double}\ dt = 0.1, \\ $\operatorname{double}\ kp = 1.0, \\ $\operatorname{double}\ ki = 0.5\ ) \end{tabular}
```

Construct a new PI::PI object.

Parameters

min	minimum controller output
max	maximum controller output
dt	time step
kp	proportional coef
ki	integral coef

4.11.3 Member Function Documentation

4.11.3.1 simulate()

Implements SISO.

The documentation for this class was generated from the following files:

- pi/pi.hpp
- pi/pi.cpp

4.12 PID Class Reference

class for PID controller

```
#include <pid.hpp>
```

Inheritance diagram for PID:

Public Member Functions

- PID (double min=0.0, double max=100.0, double dt=0.1, double kp=1.0, double ki=0.5, double kd=0.05)

 Construct a new PID::PID object.
- double calc_error (double pv, double set_point) override
- double calc_prop (double error) override
- double calc_integr (double error) override
- double calc_deriv (double error) override
- void set_setPoint (double sp) override
- double simulate (double pv) override

4.12 PID Class Reference 23

Public Member Functions inherited from PD

- PD (double min=0.0, double max=100.0, double dt=0.1, double kp=1.0, double kd=0.05)
 - Construct a new PD::PD object.
- virtual double simulate (double pv) override
- virtual double **calc_error** (double pv, double set_point)
- virtual double calc_prop (double error)
- virtual double calc_deriv (double error)
- virtual void set_setPoint (double sp)
- virtual double simulate (double x)=0

Public Member Functions inherited from Pl

- PI (double min=0.0, double max=100.0, double dt=0.1, double kp=1.0, double ki=0.5)
 Construct a new PI::PI object.
- virtual double simulate (double pv) override
- virtual double calc_error (double pv, double set_point)
- virtual double calc_prop (double error)
- virtual double calc_integr (double error)
- virtual void set_setPoint (double sp)

Private Attributes

- · double set point
- double m min
- double m_max
- double m dt
- double m_Kp
- double **m_Ki**
- double m_Kd
- double integral_temp
- double prev_error

4.12.1 Detailed Description

class for PID controller

4.12.2 Constructor & Destructor Documentation

4.12.2.1 PID()

```
PID::PID (  \mbox{double } \min = 0.0, \\ \mbox{double } \max = 100.0, \\ \mbox{double } dt = 0.1, \\ \mbox{double } kp = 1.0, \\ \mbox{double } ki = 0.5, \\ \mbox{double } kd = 0.05 \mbox{)}
```

Construct a new PID::PID object.

Parameters

min	minimum controller output
max	maximum controller output
dt	time step
kp	proportional coef
ki	integral coef
kd	derivative coef

4.12.3 Member Function Documentation

4.12.3.1 calc_deriv()

Reimplemented from PD.

4.12.3.2 calc_error()

Reimplemented from PD.

4.12.3.3 calc_integr()

Reimplemented from PI.

4.12.3.4 calc_prop()

Reimplemented from PD.

4.12.3.5 set_setPoint()

Reimplemented from PD.

4.13 SISO Class Reference 25

4.12.3.6 simulate()

```
double PID::simulate ( \label{eq:constraint} \mbox{double } pv \; ) \quad \mbox{[override], [virtual]}
```

Reimplemented from PD.

The documentation for this class was generated from the following files:

- pid/pid.hpp
- pid/pid.cpp

4.13 SISO Class Reference

basic class for SISO objects

```
#include <siso.hpp>
```

Inheritance diagram for SISO:

Public Member Functions

• virtual double simulate (double x)=0

4.13.1 Detailed Description

basic class for SISO objects

The documentation for this class was generated from the following file:

· siso/siso.hpp

Chapter 5

File Documentation

5.1 comp_concrete/comp_concrete.hpp File Reference

class of concrete component (basic input) for generator decorator

```
#include "../gen/gen.hpp"
```

Classes

• class Comp_Concrete

class of concrete component (basic input) for generator decorator

5.1.1 Detailed Description

class of concrete component (basic input) for generator decorator

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

Copyright (c) 2023

28 File Documentation

5.2 comp_concrete.hpp

Go to the documentation of this file.

```
00011 #ifndef COMP_CONCRETE_H
00012 #define COMP_CONCRETE_H
00013
00014 #include "../gen/gen.hpp"
00015
00020 class Comp_Concrete: public Comp_Gen
00022 public:
00023
         Comp_Concrete(double value) : m_value(value) {}
00024
         ~Comp_Concrete() = default;
00025
        double simulate() override { return m_value; }
00028 private:
00029
         double m_value;
00030 };
00031
00032 #endif
```

5.3 compon_loop/compon_loop.hpp File Reference

class of control loop component in a Composite (structural design pattern)

```
#include <algorithm>
#include <iostream>
#include "../siso/siso.hpp"
```

Classes

· class Compon_Loop

The base Component class declares common operations for composites and leafs.

5.3.1 Detailed Description

class of control loop component in a Composite (structural design pattern)

Author

Pawel Smieja

Version

0.1

Date

2023-06-04

Copyright

Copyright (c) 2023

5.4 compon_loop.hpp 29

5.4 compon_loop.hpp

Go to the documentation of this file.

```
00001
00011 #ifndef COMPON_LOOP_H
00012 #define COMPON_LOOP_H
00014 #include <algorithm>
00015 #include <iostream>
00016 #include "../siso/siso.hpp"
00017
00022 class Compon_Loop : public SISO
00024 public:
00025
         virtual ~Compon_Loop() = default;
          // add new component
00026
          virtual void add_series(SISO *component) = 0;
virtual void add_pararell(SISO *component) = 0;
00027
00028
           // remove component
00030
          virtual void remove_series(SISO *component) = 0;
00031
          virtual void remove_pararell(SISO *component) = 0;
00032
00033
          // get output of the component/leaf
00034
          virtual double simulate(double input) = 0;
00035
          // for component, where leafs are in series
          virtual double simulate_series(double input) = 0;
00037
          // for component, where leafs are in pararell
00038
          virtual double simulate_pararell(double input) = 0;
00039 };
00040
00041 #endif
```

5.5 composite_loop/composite_loop.cpp File Reference

class of control loop composite in a Composite (structural design pattern).

```
#include "composite_loop.hpp"
#include <iostream>
```

5.5.1 Detailed Description

class of control loop composite in a Composite (structural design pattern).

Author

Pawel Smieja

Version

0.1

Date

2023-06-01

Copyright

Copyright (c) 2023

30 File Documentation

5.6 composite_loop/composite_loop.hpp File Reference

class od control loop composite in a Composite (structural design pattern)

```
#include "../compon_loop/compon_loop.hpp"
#include <list>
```

Classes

· class Composite_Loop

class od control loop composite in a Composite (structural design pattern)

5.6.1 Detailed Description

class od control loop composite in a Composite (structural design pattern)

Author

Pawel Smieja

Version

0.1

Date

2023-06-01

Copyright

Copyright (c) 2023

5.7 composite_loop.hpp

Go to the documentation of this file.

```
00011 #ifndef COMPOSITE_LOOP_H
00012 #define COMPOSITE_LOOP_H
00013
00014 #include "../compon_loop/compon_loop.hpp"
00015 #include <list>
00016
00033 class Composite_Loop : virtual public Compon_Loop
00034 {
00035 public:
00036
          // add new component
00037
          void add_series(SISO *component) override
00038
00039
              m_children_series.push_back(component);
00040
00041
00042
          void add_pararell(SISO *component) override
00043
              m_children_pararell.push_back(component);
00044
          // remove component
```

5.8 decorator.hpp 31

```
void remove_series(SISO *component) override { m_children_series.remove(component); }
00047
           void remove_pararell(SISO *component) override { m_children_pararell.remove(component); }
00048
00049
           \ensuremath{//} get output of the component
          virtual double simulate(double input) override;
// for siso composite, where leafs are in pararell
00050
00051
          double simulate_pararell(double input) override;
00053
           // for siso composite, where leafs are in series
00054
          double simulate_series(double input) override;
00055
00056 private:
00057
          double m_input, m_out_pararell;
00058
00059
          std::list<SISO *> m_children_pararell;
00060
          std::list<SISO *> m_children_series;
00061 };
00062
00063 #endif
```

5.8 decorator.hpp

```
00001 #ifndef DECORATOR_H
00002 #define DECORATOR_H
00003
00004 //#include "../gen/gen.hpp"
00005
00006 class Decorator : public Comp_Gen
00007 {
00008 public:
00009
       Decorator(Comp_Gen *generator) : m_generator(generator) {}
00010
         ~Decorator() = default;
00011
00012
         double generate() override
00013
             return m_generator->generate();
00015
00016
00017 protected:
00018
         Comp_Gen *m_generator;
00019 };
00020
00021 #endif
```

5.9 gen/gen.hpp File Reference

Classes

· class Comp_Gen

class of generator decorator component

class Decorator

class of generator basic-decorator

5.9.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

5.10 gen.hpp

Go to the documentation of this file.

```
00001
00011 #ifndef GEN_H
00012 #define GEN_H
00013
00018 class Comp_Gen
00019 {
00020 public:
00021 virtual ~Comp_Gen() = default;
        virtual double simulate() = 0;
00022
00023 };
00024
00029 class Decorator : public Comp_Gen
00030 {
00031 public:
      00034
00035
        double simulate() override
00036
00037
            return m_generator->simulate();
00038
00039
00040 protected:
00041
        Comp_Gen *m_generator;
00042 };
00043
00044 #endif
```

5.11 leaf_arx/leaf_arx.cpp File Reference

class of a leaf object in a Composite (structural design pattern).

```
#include "leaf_arx.hpp"
#include <numeric>
#include <fstream>
```

5.11.1 Detailed Description

class of a leaf object in a Composite (structural design pattern).

Author

Pawel Smieja

Version

0.1

Date

2023-06-01

Copyright

5.12 leaf_arx/leaf_arx.hpp File Reference

class of an ARX object (leaf) in a Composite (structural design pattern)

```
#include "../composite_loop/composite_loop.hpp"
#include <vector>
#include <deque>
#include <string>
```

Classes

· class Leaf_ARX

class of an ARX object (leaf) in a Composite (structural design pattern)

5.12.1 Detailed Description

class of an ARX object (leaf) in a Composite (structural design pattern)

Author

Pawel Smieja

Version

0.1

Date

2023-06-01

Copyright

Copyright (c) 2023

5.13 leaf_arx.hpp

Go to the documentation of this file.

```
00001
00011 #ifndef LEAF_ARX_H
00012 #define LEAF_ARX_H
00013
00014 #include "../composite_loop/composite_loop.hpp"
00015 #include <vector>
00016 #include <deque>
00017 #include <string>
00018
00029 class Leaf_ARX : public Composite_Loop
00030 {
00031 public:
00032
       using vector = std::vector<double>;
00033
         using state = std::deque<double>;
00034
00043
        Leaf_ARX(const vector &a, const vector &b, unsigned k = 0, double evar = 0.0);
         ~Leaf_ARX() = default;
```

```
00046
          // simulate output of the ARX object
00047
          double simulate (double input) override;
00048
         // save current parameters to a CSV file
00049
         void save (const std::string &path);
00050
00051 private:
00052
         vector m_a, m_b;
00053
          state m_x, m_y;
00054
         double m_evar;
00055
         unsigned m_k, m_x_depth, m_y_depth;
00056
00057
          void create_states();
00058
          void update_state(state &state, double new_state);
00059 };
00060
00061 #endif
```

5.14 main.cpp File Reference

program for testing simulation closed control loop for: generator - PID controller - SISO composite

```
#include "compon_loop/compon_loop.hpp"
#include "composite_loop/composite_loop.hpp"
#include "pi/pi.hpp"
#include "pd/pd.hpp"
#include "pid/pid.hpp"
#include "leaf_arx/leaf_arx.hpp"
#include "comp_concrete/comp_concrete.hpp"
#include "square/square.hpp"
#include "sinus/sinus.hpp"
#include "triangle/triangle.hpp"
#include <iostream>
#include <iomanip>
```

Functions

• int main ()

program for testing simulation closed control loop for: generator - PID controller - SISO composite

5.14.1 Detailed Description

program for testing simulation closed control loop for: generator - PID controller - SISO composite

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

5.14.2 Function Documentation

5.14.2.1 main()

```
int main ( )
```

program for testing simulation closed control loop for: generator - PID controller - SISO composite

Returns

int

5.15 pd/pd.cpp File Reference

```
#include "pd.hpp"
#include <cmath>
```

5.15.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-10

Copyright

Copyright (c) 2023

5.16 pd.hpp

```
00001 #ifndef PD_H
00002 #define PD_H
00004 #include "../siso/siso.hpp"
00005
00010 class PD : virtual public {\tt SISO}
00011 {
00012 public:
00013
          PD (double min = 0.0, double max = 100.0, double dt = 0.1, double kp = 1.0, double kd = 0.05);
00014
           ~PD() = default;
00015
00016
          virtual double simulate(double pv) override;
00017
00018
          virtual double calc_error(double pv, double set_point);
          virtual double calc_prop(double error);
virtual double calc_deriv(double error);
00019
00020
00021
          virtual void set_setPoint(double sp);
00022
00023 private:
           double set_point, m_min, m_max, m_dt, m_Kp, m_Ki, m_Kd, integral_temp, prev_error;
00024
00025 };
00026
00027 #endif
```

5.17 pi/pi.cpp File Reference

```
#include "pi.hpp"
#include <cmath>
```

5.17.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-10

Copyright

Copyright (c) 2023

5.18 pi/pi.hpp File Reference

```
#include "../siso/siso.hpp"
```

Classes

• class PI

class for PI controller

5.18.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-10

Copyright

5.19 pi.hpp 37

5.19 pi.hpp

Go to the documentation of this file.

```
00001
00011 #ifndef PI_H
00012 #define PI_H
00013
00014 #include "../siso/siso.hpp"
00015
00020 class {\tt PI} : virtual public {\tt SISO}
00021 {
00021 (
00022 public:
00023 PI(
           PI (double min = 0.0, double max = 100.0, double dt = 0.1, double kp = 1.0, double ki = 0.5);
00024
           ~PI() = default;
00025
00026
           virtual double simulate(double pv) override;
00027
           virtual double calc_error(double pv, double set_point);
virtual double calc_prop(double error);
virtual double calc_integr(double error);
00028
00029
00030
00031
           virtual void set_setPoint(double sp);
00032
00033 private:
00034
           double set_point, m_min, m_max, m_dt, m_Kp, m_Ki, m_Kd, integral_temp;
00035 };
00036
00037 #endif
```

5.20 pid/pid.cpp File Reference

```
#include "pid.hpp"
#include <cmath>
```

5.20.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-10

Copyright

5.21 pid.hpp

```
00001 #ifndef PID_H
00002 #define PID_H
00003
00004 #include "../pd/pd.hpp"
00005 #include "../pi/pi.hpp"
00006
00011 class PID : public PD, public PI \,
00012 {
00013 public:
          PID(double min = 0.0, double max = 100.0, double dt = 0.1, double kp = 1.0, double ki = 0.5,
00014
     double kd = 0.05);
00015
          ~PID() = default;
00016
00017
          double calc_error(double pv, double set_point) override;
00018
          double calc_prop(double error) override;
00019
          double calc_integr(double error) override;
double calc_deriv(double error) override;
00020
00021
          void set_setPoint(double sp) override;
00022
          double simulate(double pv) override;
00023
00024 private:
          double set_point, m_min, m_max, m_dt, m_Kp, m_Ki, m_Kd, integral_temp, prev_error;
00025
00026 };
00027
00028 #endif
```

5.22 sinus/sinus.cpp File Reference

```
#include <cmath>
#include "sinus.hpp"
```

5.22.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

Copyright (c) 2023

5.23 sinus/sinus.hpp File Reference

class of sinus decorator for input generator

```
#include "../gen/gen.hpp"
```

5.24 sinus.hpp 39

Classes

class Dec_sinus

class of sinus decorator for input generator

5.23.1 Detailed Description

class of sinus decorator for input generator

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

Copyright (c) 2023

5.24 sinus.hpp

Go to the documentation of this file.

```
00001
00011 #ifndef DEC_SINUS_H
00012 #define DEC_SINUS_H
00013
00014 #include "../gen/gen.hpp"
00015
00020 class Dec_sinus : public Decorator
00021 {
00022 public:
00023
      Dec_sinus(Comp_Gen *generator, double amplitude, double period)
00024
              : Decorator(generator), m_amplitude(amplitude), m_period(period), m_time(0.0) {}
00025
         double simulate() override;
00026
00020
00027 private:
00028 doub
         double m_amplitude, m_period, m_time, output;
00029 };
00030
00031 #endif
```

5.25 siso.hpp

5.26 square/square.cpp File Reference

```
#include "square.hpp"
```

5.26.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

Copyright (c) 2023

5.27 square/square.hpp File Reference

class of square decorator for input generator

```
#include "../gen/gen.hpp"
```

Classes

• class Dec_square

class of square decorator for input generator

5.27.1 Detailed Description

class of square decorator for input generator

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

5.28 square.hpp 41

5.28 square.hpp

Go to the documentation of this file.

```
00001
00011 #ifndef DEC_SQUARE_H
00012 #define DEC_SQUARE_H
00014 #include "../gen/gen.hpp"
00015
00020 class Dec_square : public Decorator
00021 {
00022 public:
00023 Dec
        Dec_square(Comp_Gen *generator, double amplitude, double period)
               : Decorator(generator), m_amplitude(amplitude), m_period(period), m_time(0.0) {}
00025
        double simulate() override;
00026
00027 private:
00028
         double m_amplitude, m_period, m_time, output;
00029 };
00030
00031 #endif
```

5.29 triangle/triangle.cpp File Reference

```
#include <cmath>
#include "triangle.hpp"
```

5.29.1 Detailed Description

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

Copyright (c) 2023

5.30 triangle/triangle.hpp File Reference

class of triangle decorator for input generator

```
#include "../gen/gen.hpp"
```

Classes

• class Dec_triangle

class of triangle decorator for input generator

5.30.1 Detailed Description

class of triangle decorator for input generator

Author

Pawel Smieja

Version

0.1

Date

2023-05-31

Copyright

Copyright (c) 2023

5.31 triangle.hpp

Go to the documentation of this file.

```
00001
00011 #ifndef DEC_TRIANGLE_H
00012 #define DEC_TRIANGLE_H
00013
00014 #include "../gen/gen.hpp"
00015
00020 class Dec_triangle : public Decorator
00021 {
00022 public:
00023 Dec_triangle(Comp_Gen *generator, double amplitude, double period)
00024 : Decorator(generator), m_amplitude(amplitude), m_period(perio
                : Decorator(generator), m_amplitude(amplitude), m_period(period), m_time(0.0), output(0.0),
00026
00020
00027 private:
00028 doub
         double m_amplitude, m_period, m_time, output, prev_output;
00029 };
00030
00031 #endif
```

Index

```
add_pararell
                                                             main.cpp, 35
     Composite_Loop, 11
                                                        main.cpp, 34
add series
                                                             main, 35
     Composite_Loop, 11
                                                        PD, 19
calc deriv
                                                             PD, 20
     PID, 24
                                                             simulate, 20
calc_error
                                                        pd/pd.cpp, 35
     PID, 24
                                                        pd/pd.hpp, 35
calc_integr
                                                        PI, 21
     PID, 24
                                                             PI, 21
calc_prop
                                                             simulate, 22
     PID, 24
                                                        pi/pi.cpp, 36
Comp Concrete, 7
                                                        pi/pi.hpp, 36, 37
     simulate, 8
                                                        PID, 22
comp_concrete/comp_concrete.hpp, 27, 28
                                                             calc_deriv, 24
Comp_Gen, 8
                                                             calc error, 24
     simulate, 8
                                                             calc integr, 24
Compon Loop, 9
                                                             calc_prop, 24
     simulate, 9
                                                             PID, 23
compon_loop/compon_loop.hpp, 28, 29
                                                             set_setPoint, 24
Composite_Loop, 10
                                                             simulate, 24
     add pararell, 11
                                                        pid/pid.cpp, 37
     add_series, 11
                                                        pid/pid.hpp, 38
     remove_pararell, 11
                                                        remove_pararell
     remove series, 11
                                                             Composite_Loop, 11
     simulate, 11
                                                        remove series
     simulate_pararell, 11
                                                             Composite_Loop, 11
     simulate_series, 12
composite loop/composite loop.cpp, 29
                                                        set setPoint
composite_loop/composite_loop.hpp, 30
                                                             PID. 24
                                                        simulate
Dec_sinus, 12
                                                             Comp_Concrete, 8
     simulate, 13
                                                             Comp_Gen, 8
Dec_square, 13
                                                             Compon_Loop, 9
     simulate, 14
                                                             Composite_Loop, 11
Dec triangle, 15
     simulate. 16
                                                             Dec sinus, 13
Decorator, 16
                                                             Dec_square, 14
     simulate, 17
                                                             Dec_triangle, 16
                                                             Decorator, 17
decorator/decorator.hpp, 31
                                                             Leaf ARX, 19
gen/gen.hpp, 31, 32
                                                             PD, 20
                                                             PI, 22
Leaf ARX, 17
                                                             PID, 24
    Leaf ARX, 18
                                                        simulate pararell
     simulate, 19
                                                             Composite_Loop, 11
leaf_arx/leaf_arx.cpp, 32
                                                        simulate series
leaf_arx/leaf_arx.hpp, 33
                                                             Composite Loop, 12
                                                        sinus/sinus.cpp, 38
main
```

44 INDEX

```
sinus/sinus.hpp, 38, 39
SISO, 25
siso/siso.hpp, 39
square/square.cpp, 40
square/square.hpp, 40, 41
triangle/triangle.cpp, 41
triangle/triangle.hpp, 41, 42
```