CS207 Design and Analysis of Algorithms

Sajith Gopalan

Indian Institute of Technology Guwahati sajith@iitg.ac.in

January 30, 2022

Dynamic Programming

Dynamic Programming

▶ Particularly useful for optimization problems. Solution space. Constraints. Many feasible solutions, each of which satisfies the constraints, and has a value. We wish to find one feasible solution that minimises (maximizes) value.

► Steps:

- ► Formulate the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution, typically in a bottom-up fashion
- ► Construct an optimal solution from computed information
- Works particularly when the following properties hold:
 - ▶ Optimal Substructure: an optimal solution to the problem contains within it optimal solutions to subproblems
 - Overlapping subproblems: recursive algorithm for the problem solves the same subproblems repeatedly

Matrix multiplication chain

- Consider matrices A_1 , A_2 , A_3 , A_4 and A_5 of dimensions 7×1 , 1×3 , 3×5 , 5×6 , and 6×4 respectively
- ▶ Then the product $A_1A_2A_3A_4A_5$ is defined
- ▶ Matrix multiplication is associative; $(A_1A_2)A_3 = A_1(A_2A_3)$; so parenthesization does not affect the result
- However parenthesization can affect the time complexity
- A $p \times q$ matrix and a $q \times r$ matrix can be multiplied using pqr scalar multiplications in a triple-for-loop
- ▶ If $A_1(((A_2A_3)A_4)A_5)$ is the prenthesization used, then it takes 1*3*5+1*5*6+1*6*4+7*1*4=15+30+24+28=97 scalar multiplications
- ▶ If $((((A_1A_2)A_3)A_4)A_5)$ is the prenthesization used, then it takes 7*1*3+7*3*5+7*5*6+7*6*4=21 + 105 + 210 + 168 = 504 scalar multiplications

Matrix multiplication chain

- ▶ Given is a sequence p_0, p_1, \ldots, p_n of positive integers, where $p_{i-1} \times p_i$ is the dimension of matrix A_i
- ▶ Find the parenthesization that will minimize the number of scalar multiplications needed to compute $A_1 ... A_n$
- ► This is an optimization problem
- ▶ It is not feasible to look at every possible parenthesization
- ► The number of possible parenthesizations can be obtained using the following recurrence relation:

$$P(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 1 \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{if } n > 1 \end{array} \right\}$$

Matrix multiplication chain

- ▶ It is easy to see that P(n + 1) = C(n), the *n*-th Catalan number
- ► Recall,

$$C(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 0 \\ \sum_{k=0}^{n-1} C(k)C(n-k-1) & \text{if } n > 1 \end{array} \right\}$$

- ▶ But $C(n) = \frac{1}{n+1} {2n \choose n} = \omega(2^n)$
- ▶ It is not feasible to look at every possible parenthesization

Matrix multiplication chain: Recursive formulation

- ▶ Suppose m[i,j] is the minimum number of scalar multiplications needed to compute $A_i ... A_j$
- ► As $A_i ... A_i = A_i$, m[i, i] = 0, for $1 \le i \le n$
- ▶ For $1 \le i < j \le n$,

$$m[i,j] = \min_{i \le k < j} m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

- ▶ If we choose to split $A_i ... A_j$ into $(A_i ... A_k)$ and $(A_{k+1} ... A_j)$, then we must minimize the number of scalar multiplications needed to compute either and add it to the cost of computing the final product.
- ► The last involves multiplying a $p_{i-1} \times p_k$ matrix with a $p_k \times p_j$ matrix, and so takes $p_{i-1}p_kp_j$ scalar multiplications
- ▶ To compute m[i,j], m-values must be known for pairs that are closer than j-i to each other

Iterative Matrix Multiplication Chain

```
m[1\ldots n,1\ldots n] and s[1\ldots n,1\ldots n] are global arrays
```

Algorithm 1 $\mathsf{IMMC}(p, n)$

```
1: Initialize m to zero at the diagonals and \infty everywhere else
2: for d = 1 to n - 1 do
   for i = 1 to n - d do
3:
   i = i + d:
5: for k = i to i - 1 do
          t = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
6:
          if (t < m[i, j]) then
7:
            m[i,j] = t; s[i,j] = k
8:
          end if
9:
        end for
10:
11:
      end for
12: end for
```

$$\langle p_0, p_1, p_2, p_3, p_4, p_5 \rangle = \langle 7, 1, 3, 5, 6, 4 \rangle$$

	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

$$m[1,2] = 7 * 1 * 3 = 21$$

$$m[2,3] = 1 * 3 * 5 = 15$$

$$m[3,4] = 3*5*6 = 90$$

$$m[4,5] = 5 * 6 * 4 = 120$$

$$\langle p_0, p_1, p_2, p_3, p_4, p_5 \rangle = \langle 7, 1, 3, 5, 6, 4 \rangle$$

	1	2	3	4	5
1	0	21			
2		0	15		
3			0	90	
4				0	120
5					0

- ► $m[1,3] = \min\{m[1,2] + 7 * 3 * 5, m[2,3] + 7 * 1 * 5\} = 50,$ s[1,3] = 1
- ► $m[2,4] = \min\{m[2,3] + 1 * 5 * 6, m[3,4] + 1 * 3 * 6\} = 45,$ s[2,4] = 3
- ► $m[3,5] = min\{m[3,4] + 3*6*4, m[4,5] + 3*5*4\} = 162,$ s[3,5] = 4

$$\langle p_0, p_1, p_2, p_3, p_4, p_5 \rangle = \langle 7, 1, 3, 5, 6, 4 \rangle$$

	1	2	3	4	5
1	0	21	50		
2		0	15	45	
3			0	90	162
4				0	120
5					0

$$m[1,4] = \min\{m[1,1] + m[2,4] + 7 * 1 * 6,$$

$$m[1,2] + m[3,4] + 7 * 3 * 6,$$

$$m[1,3] + m[4,4] + 7 * 5 * 6\} = 87$$

$$s[1,4] = 1$$

$$m[2,5] = \min\{m[2,2] + m[3,5] + 1 * 3 * 4,$$

$$m[2,3] + m[4,5] + 1 * 5 * 4,$$

$$m[2,4] + m[5,5] + 1 * 6 * 4\} = 69$$

$$s[2,5] = 4$$

$$\langle p_0, p_1, p_2, p_3, p_4, p_5 \rangle = \langle 7, 1, 3, 5, 6, 4 \rangle$$

	1	2	3	4	5
1	0	21	50	87	
2		0	15	45	69
3			0	90	162
4				0	120
5					0

$$m[1,5] = \min\{m[1,1] + m[2,5] + 7 * 1 * 4,$$

$$m[1,2] + m[3,5] + 7 * 3 * 4,$$

$$m[1,3] + m[4,5] + 7 * 5 * 4,$$

$$m[1,4] + m[5,5] + 7 * 6 * 4\} = 97$$

$$s[1,5] = 1$$

$$\langle p_0, p_1, p_2, p_3, p_4, p_5 \rangle = \langle 7, 1, 3, 5, 6, 4 \rangle$$

	1	2	3	4	5
1	0	21	50	87	97
2		0	15	45	69
3			0	90	162
4				0	120
5					0

Analysis

- ► IMMC runs in $O(n^3)$ time
- ▶ It can be shown that it runs in $\Theta(n^3)$ time: Exercise!