Esercitazione

"Indirizzamento IP" "Frammentazione IP"

Esercizio 1 (1)

- Si identifichi la classe a cui appartengono i seguenti indirizzi IP
 - 11100101 01011110 01101110 00110011
 - 101.123.5.45
 - 231.201.5.45 III O
 - 128.23.45.4 **IO... B**
 - 192.168.20.3 IIO **८**
 - 193.242.100.255 11 o ... **△**

Esercizio 1 (2)

La classe di un indirizzo è identificata dalla posizione del primo "0":

11100101 01011110 01101110 00110011	→ Classe D
--	------------

■ 101.123.5.45
$$\rightarrow$$
 01100101.x.x.x \rightarrow Classe A

■ 231.201.5.45
$$\rightarrow$$
 11100111.x.x.x \rightarrow Classe D

■ 192.168.20.3
$$\rightarrow$$
 11000000.x.x.x \rightarrow Classe C

■ 193.242.100.255
$$\rightarrow$$
 11000001.x.x.x \rightarrow Classe C

Esercizio 2 (1)

 Partendo dalla maschera di sottorete di un indirizzo di classe C

e operando su questa con Subnetting avente maschera fissa, quante sotto-reti si possono ottenere?

Esercizio 2 (2)

Partendo dalla maschera assegnata si possono ottenere

Masche	ra	Sottoreti	# host
255.255.255.0	0000000	1	256-2= 254 host
255.255.255.128	10000000	2	128-2=126 host
255.255.255.192	11000000	4	64-2=62 host
255.255.255.224	11100000	8	32-2=30 host
255.255.255.240	11110000	16	16-2=14 host
255.255.255.248	11111000	32	8-2=4 host
255.255.255.292	11111100	64	4-2=2 host
255.255.255.254	11111110	128	2-2=0 host

Nell'ultimo caso l'RFC 3021 definisce di maschere di 31 bit per indirizzare 2 interfacce su collegamenti punto-punto

Esercizio 3 (1)

- Data la rete in figura, definire un possibile schema di indirizzamento utilizzando la tecnica del subnetting con maschera fissa a partire da indirizzi di classe C
- Calcolare l'efficienza di uso degli indirizzi nella soluzione trovata

7.×.7.0 /25 (PL-NET) X. X. X. 0 /24 (WS-NET) y. y. x. 128/25 (X-NET-1) X.X.X. 0/27 1×. x. x. 32/27 - x.x.x.64/27 (X-NET-2) x.x.x.96/27 x. x. x. 0/24 x.x.x.128/27 (LINK 1) + . x . x . 160/27 (LINK 2) x.x.x.192/27 (LINK3)

Esercizio 3 (2)

- Le sotto-reti che occorre indirizzare sono 7 (anche i link sono sotto-reti) quindi la Sub_Net_ID sarà lunga 3 bit
- A partire da un indirizzo di classe C, con 3 bit utilizzati per il subnetting, rimangono 5 bit di Host_ID che possono indirizzare al più 2⁵-2=30 host in ogni sotto-rete
- Poiché una rete ha un numero di host superiore a 30, con un singolo indirizzo di classe C non è possibile definire uno schema di indirizzamento
- Si devono utilizzare due indirizzi di classe C

Esercizio 3 (3)

Ad esempio, utilizzando 195.68.1.0/24 e 195.68.2.0/24, un possibile schema di indirizzamento è il seguente

Esercizio 4 (1)

Considerando la rete dell'esercizio 3, utilizzando il subnetting con maschere di lunghezza variabile, definire uno schema di indirizzamento che utilizzi un solo indirizzo di classe C

195.168.1.0/24

195.168.1.0/26

195.168.1.0/25 (
$$2^{\frac{3}{2}}$$
: 128)

195.168.1.128/27 (WS-NET 20 M)

195.168.1.160/27 (\times -NET-1 20 M)

195.168.1.192/27 (\times -NET-1 10 M)

195.168.1.224/27 (195.168.1.232/29 L2

195.168.1.224/27 (195.168.1.232/29 L2

195.168.1.740/29 L3

128 + 128 - 8 = 948

$$\rho = \frac{156}{248} = 0.63$$

Esercizio 4 (2)

Partendo dalla rete con numero di interfacce maggiore, occorre definire la maschera che consenta l'indirizzamento del minimo numero di host (potenza di 2) che sia maggiore del numero di host della rete

Rete	Indirizzi necessari	Interfacce allocate	Bit maschera	Indirizzo della rete
pc-net	100	128	25	195.168.1.0/25
ws-net	20	32	27	195.168.1.128/27
x-net-1	20	32	27	195.168.1.160/27
x-net-2	10	16	28	195.168.1.192/28
link-1	2	4	30	195.168.1.208/30
link-2	2	4	30	195.168.1.212/30
link-3	2	4	30	195.168.1.216/30
Totali	152	220		

Esercizio 4 (3)

195.168.1.0

Efficienza maschera variabile
$$\Rightarrow$$
 $\rho_v = \frac{152}{220} = 0.690$
Efficienza maschera fissa \Rightarrow $\rho_f = \frac{156}{416} = 0.375$

Esercizio 5 (1)

- Sia data la configurazione di rete in figura in cui le sottoreti A,B,C,D,E hanno rispettivamente nA=8, nB=20, nC=62, nD=60, nE=5 host
- Si chiede di:
 - indicare il numero totale di indirizzi necessari per la gestione della rete, compresi quelli necessari alla gestione del link punto-punto (si considerino anche gli indirizzi IP riservati)
 - Assegnare in modo contiguo, a partire dall'indirizzo di rete 195.200.33.0, gli indirizzi alle sottoreti A,B,C,D,E e indicare le maschere utilizzate

Esercizio 5 (2)

Il numero di indirizzi necessari per ciascuna rete è il seguente

```
Rete A: # ind. = 8 + 1 (router R1) + 2 = 10
Rete B: # ind. = 20 + 1 (router R1) + 2 = 23
Rete C: # ind. = 62 + 2 (router R1 e R2) + 2 = 66
Rete D: # ind. = 60 + 2 (router R3 e R4) + 2 = 64
Rete E: # ind. = 5 + 1 (router R4) + 2 = 8
```

Il numero totale di indirizzi è #ind_{tot}=17**6**

Link R2-R3 # ind. = 2 + 2 = 4

CHSSE C 195= 11000011 195.200.33.0/25 (66, 6) 195. 200.33.128/25 195.200.33.128/26 (64,D) 195.200.33.0/24 195. 200.33.192/27 (23,8) 195.200.33.192/26 195. 200.33. 224/27 / 195.200.33.274/28 (10,A) / 195.200.33.240/29 (8,E) 195.200.33.240/28 195.200.33.248/29 / 195.200.33.248/30 195.200.33.252/30

Esercizio 5 (3)

- Per ottimizzare l'uso degli indirizzi, è bene ordinare le reti secondo il numero di indirizzi necessario, quindi: C, D, B, A, E, link
- Occorre individuare la maschera che permette di allocare il minimo numero di indirizzi maggiore o uguale rispetto a quello necessario
- Si ottiene quindi

Subnet	Maschera	Bit	# Indirizzi	Indirizzo	Indirizzo
Subhei	Subhei Maschera		allocati	iniziale	finale
С	255.255.255.128	25	128	195.200.33.0	195.200.33.127
D	255.255.255.192	26	64	195.200.33.128	195.200.33.191
В	255.255.254	27	32	195.200.33.192	195.200.33.223
Α	255.255.255.240	28	16	195.200.33.224	195.200.33.239
Е	255.255.255.248	29	8	195.200.33.240	195.200.33.247
link	255.255.252	30	4	195.200.34.248	195.200.34.251

Esercizio 5 (4)

Schema assegnazione degli indirizzi

Subnet	Indirizzo	Arco di indirizzi	2 byte finali indirizzi
С	195.200.33.0/25	195.200.33.0	00100001.00000000
	195.200.33.0/25	195.200.33.127	00100001.01111111
D	195.200.33.128/26	195.200.33.128	00100001.10000000
D	195.200.33.120/20	195.200.33.191	00100001.10111111
В	195.200.33.192/27	195.200.33.192	00100010.11000000
В		195.200.33.223	00100010.11011111
Α	195.200.33.224/28	195.200.33.224	00100010.11100000
A		195.200.33.239	00100010.11101111
E	195.200.33.240/29	195.200.33.240	00100010.11110000
		195.200.33.247	00100010.11110111
link	195.200.33.248/30	195.200.33.248	00100010.11111000
IIIIK		195.200.33.251	00100010.11111011

Esercizio 5 (5)

Riepilogo

- Indirizzi allocati: 251
- Indirizzi assegnati (compresi dedicati): 175
- Indirizzo iniziale: 195.200.33.0
- Indirizzo finale: 195.200.33.251

Esercizio 6 (1)

- Si consideri l'assegnazione degli indirizzi effettuata nell'esercizio 5
- Si determinino le tabelle di routing dei router R1 e R2 (vedi schema in figura)
 - Per il next-hop si utilizzi il nome mnemonico del router successivo

	Routing Table Rx				
Dest Address	Dest Mask	Next hop			

Esercizio 10 (2)

Routing TableR1

Routing Table R1				
Dest Address	Dest Mask	Next hop		
195.200.33.0	255.255.255.128	local		
195.200.33.128	255.255.255.192	R2		
195.200.33.192	255.255.255.224	local		
195.200.33.224	255.255.255.240	local		
195.200.33.240	255.255.255.248	R2		
195.200.33.248	255.255.255.252	R2		
Default		R2		

Routing TableR2

Routing Table R2				
Dest Address	Dest Mask	Next hop		
195.200.33.0	255.255.255.128	local		
195.200.33.128	255.255.255.192	R3		
195.200.33.192	255.255.255.224	R1		
195.200.33.224	255.255.255.240	R1		
195.200.33.240	255.255.255.248	R3		
195.200.33.248	255.255.255.252	local		
Default		R3		

Esercizio 7 (1)

- Si consideri una porzione di rete costituita da due sotto-reti (indicate brevemente con S₁ e S₂), da un Router che le interconnette e da due Host (A e B)
- La S₁ impiega frame aventi intestazione di dimensione costante uguale a H₁=30 byte e payload di dimensione costante L₁=80 byte
- La S_2 impiega frame aventi intestazione di dimensione costante uguale a H_2 =80 byte e payload di dimensione variabile con lunghezza massima di $L_{2,max}$ =400 byte
- Si consideri il trasferimento di pacchetti IP nella direzione Host A → Host B (direzione 1) e un pacchetto IP nella direzione Host B → Host A (direzione 2) considerando che entrambi i pacchetti hanno un'intestazione H_{IP}=24 byte e un campo Total Length (lunghezza complessiva del pacchetto) rispettivamente di 220 byte nella direzione 1 e 340 byte nella direzione 2
- Si chiede di:
 - con riferimento alla direzione 1, calcolare il numero di frammenti necessari a trasferire il pacchetto IP da estremo ad estremo e l'efficienza di trasferimento dei bit utili del pacchetto IP nell'attraversamento della S₂;
 - con riferimento alla direzione 2, calcolare il numero di frammenti necessari a trasferire il pacchetto IP da estremo ad estremo e l'efficienza di trasferimento dei bit utili del pacchetto IP nell'attraversamento della S₁

Esercizio 7 (2)

Direzione A→B

- Poiché L_{totAB}>L₁, un pacchetto emesso da A deve essere frammentato per il transito nella nella rete S1
- Poiché L_{2max}> L₁, non è necessaria un ulteriore frammentazione nella rete S2

Direzione B→A

- Poiché L_{totBA}<L_{2max}, non necessaria una frammentazione nella rete S2
- Poiché L_{totBA}> L₁, è invece necessaria una frammentazione nella rete S1

Esercizio 7 (3)

Direzione A→B, transito nella rete S1, mappa frammentazione

	Pacchetto IP	Header IP (24 byte)			ayload 96 byte)
Frame	Header 2-PDU (30 byte)		Payload (80 byte)		
#1	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)		FR 1 = 80 byte; Offset=0
#2	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)		FR 2 = 56 byte; Offset=56/8=7
#3	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)		FR 3 = 56 byte; Offset=112/8=14
#4	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (28 byte)	Padding (26 byte)	FR 4 = 28 byte; Offset=168/8=21

N.B: il campo Offset in un frammento indica il punto dell'area dati del pacchetto originale (espresso in multipli di 8 byte) in cui inizia la porzione di dati trasportata dal frammento

Esercizio 7 (3)

Direzione A→B, transito nella rete S2

Pacchetto IP

Header IP
(24 byte)

Payload
(56 byte)

Frame

Header 2-PDU
(80 byte)

Payload
(L2max=400 byte)

- Non è necessaria un'ulteriore frammentazione
- La frame trasferita nella rete S2 avrà lunghezza totale L_{frame2}=160 byte

Esercizio 7 (4)

Direzione B→A, transito nella rete S2

- Non è necessaria frammentazione
- La frame trasferita nella rete S2 avrà lunghezza totale L_{frame2}=420 byte

Esercizio 7 (5)

Frammentazione direzione B→A, transito nella rete S1

	Pacchetto IP	Header IP (24 byte)	Payload (316 byte)	
Frame	Header 2-PDU (30 byte)		Payload (L1=80 byte)	
#1	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 1 = 80 byte; Offset=0
#2	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 2 = 56 byte; Offset=56/8=7
#3	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 3 = 56 byte; Offset=112/8=14
#4	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 4 = 56 byte; Offset=168/8=21
#5	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 5 = 56 byte; Offset=168/8=21
#6	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload Padding (36 byte) (20 byte)	FR 6 = 36 byte; Offset=224/8=28

Esercizio proposto

- Un pacchetto IP con L=9000 byte di payload è frammentato per una MTU di lunghezza L_{MTU}=2400 byte.
- Supponendo che l'header IP sia sempre di dimensione H=160 byte:
- a) Calcolare il numero di frammenti
- b) Per ogni frammento indicare il numero di byte per lo header IP e per la parte dati, inoltre indicare esplicitamente il valore del campo Offset