

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
H04N 5/232

(11) International Publication Number: WO 96/02106
(43) International Publication Date: 25 January 1996 (25.01.96)

(21) International Application Number: PCT/GB95/01626

(22) International Filing Date: 10 July 1995 (10.07.95)

(30) Priority Data: 9413870.8

9 July 1994 (09.07.94)

(.94) GB

(71) Applicant (for all designated States except US): VISION 1 IN-TERNATIONAL LIMITED [GB/GB]; Broughton, Biggar ML12 6HQ (GB).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): VELLACOTT, Oliver, Richard [GB/GB]; Galavale House, Broughton, Biggar ML12 6HQ (GB).
- (74) Agent: MURGITROYD & COMPANY; Chartered Patent Agents, 373 Scotland Street, Glasgow G5 8QA (GB).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: DIGITALLY NETWORKED VIDEO CAMERA

PHYSICAL CONFIGURATION.

(57) Abstract

A self-contained, digitally networked video camera comprises a housing (30) enclosing a camera module having video image sensor means (36) adapted to generate a video signal, signal processing means (38), including a video signal processor (VSP) which receives a digital video signal from the camera module and a multi-tasking RISC processor, adapted to compress and/or analyse said video signal and to output a digital data signal, and digital interface input/output means (42, 44), such as PCMCIA cards adapted to transmit said digital data signal to an external, digital communications network in accordance with a predetermined communications protocol, such as TCP/IP. The camera may be connected directly to a digital communications network, such as a LAN or WAN, for the transmission of compressed, digital video signals and/or associated data directly to host PC's connected to the network. Audio signals may also be processed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belanus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhsten	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
C7.	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	U2	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		- ,	•••	

1

DIGITALLY NETWORKED VIDEO CAMERA

Ŧ		
2		'.
3	Thi	s invention relates to improvements in video camera
4	appa	aratus. More particularly, the invention relates to
5	vid	eo cameras adapted for direct connection to digital
6 .	com	munications networks, and to video cameras which can
7	ana	lyse what they see and/or hear and which can
8	inte	erface directly to digital networks.
9		
10	In 1	this field it is already known that:
11 .		
12	1	Cameras can be interfaced to digital networks via
13		PC's or separate dedicated control units (see, for
14		example, GB-A-2231753; US-A-5237408; WO-A-
15		90/09717).
16		
17	2	Videophones can interface directly to some digital
18		networks (WAN - Wide Area Networks) but are unable
19		to perform image analysis or audio analysis for
20		the purpose of detecting specific events and
21		moreover cannot interface directly to Local Area
22		Networks (LAN).
23		•
24	3	Analysis of images has been carried out within a
25		camera unit (such systems are available from, for
26		example, VLSI Vision Limited of Edinburgh, UK;
27		Intelligent Camera, Image Inspection Limited of
28		Epsom, UK; and MAPP/LAP, IVP, Linkoping, Sweden)

1	but never in conjunction with the ability to
2	interface directly to digital networks.
3	
4	Known cameras and systems of these types have the
5	disadvantages that:
6	·
7	1 It is often impractical and not cost effective to
8	use a PC or separate control unit to allow a
9	camera to interface to LAN/WAN. This is
10	especially true in circumstances where a PC would
11	not usually be present such as in remote
12	surveillance applications: eg construction site
13	monitoring.
14	
15	2 Existing surveillance cameras, by transmitting
16	video in analogue form, are severely restricted
17	in quality of transmission and recording,
18	automation of surveillance operations,
19	restrictions on network topologies, ability to
20	cross-reference to other events whose occurrence
21	is reported digitally.
22	
23	3 Existing cameras which can perform image analysis
24	cannot transmit images and the results of analysis
25	over digital networks, thus severely restricting
26	interpretation of results and integration of
27	cameras with existing digital systems.
28	
29	Use of digital cameras is almost exclusively oriented
30	around PC's and workstations. The requirement for a
31	host PC for capturing and transmitting video is
32	circumvented by this invention. This is achieved by
33	the integration of the hardware and software previously
34	provided by the combination of a camera and separate
35	computer (PC) into a single, stand-alone surveillance
36	camera unit.

3

The benefits of this are (a) the cost reduction through 1 2 not requiring a PC to be present and (b) the flexibility achieved by enabling image input to digital 3 networks from locations where PC's cannot be used. 4 6 This, combined with the ability to automatically 7 analyse the acquired video and/or audio, within the camera and in real time, allows the automation of a 8 wide range of visual/audio tasks via remote control 9 over digital networks. 10 11 12 In accordance with the present invention there is 13 provided a video camera comprising a housing enclosing 14 video image sensor means adapted to generate a video 15 signal, signal processing means adapted to process said 16 video signal and to output a digital data signal, and 17 digital interface input/output means adapted to 18 transmit said digital data signal to an external, 19 digital communications network in accordance with a 20 predetermined communications protocol. 21 22 Preferably, said signal processing means includes a 23 video signal processor (VSP) adapted to perform real-24 time image compression and/or image analysis on said 25 video signal. 26 27 Preferably also, said signal processing means further 28 includes microprocessor means adapted to supervise 29 operation of said VSP and data input/output via said 30 interface means. 31 32 Most preferably, said microprocessor means comprises a 33 multi-tasking RISC processor. 34 35 Preferably also, said VSP has first memory means 36 associated therewith. Suitably, said first memory means

WO 96/02106

PCT/GB95/01626

1	comprises dynamic random access memory.
2	
3	Preferably also, said microprocessor means has second
4	memory means associated therewith. Suitably, said
5	second memory means comprises static random access
6	memory.
7	
8	Preferably also, said communications protocol is
9	TCP/IP.
10	
11	Preferably also, said interface means comprises at
12	least one PCMCIA card.
13	
14	Preferably also, the camera further includes audio
15	sensor means, said signal processing means being
16	further adapted to process audio signals generated by
17	said audio sensor means.
18	
19	While further modifications and improvements may be
20	made without departing from the scope of this
21	invention, the following is a description of one or
22	more examples of the invention, with reference to the
23	accompanying drawings in which:
24	
25	Fig. 1 is a schematic illustration of a video
26	camera in accordance with the invention
27	connected to a digital network such as a LAN
28	or WAN;
29	
30	Fig. 2 is a schematic block diagram
31	illustrating the hardware architecture of the
32	camera of Fig. 1;
33	
34	Fig. 3 is a schematic illustration of the one
35	example of the physical configuration of the
36	camera of Fig. 1; and

1	Fig. 4 is a schematic block diagram
2	illustrating the software architecture of the
3	camera of Fig. 1.
4	
5	The invention relates to a camera which can interface
6	directly to digital networks (such as Local Area
7	Networks (LAN's) or Wide Area Networks (WAN's)) and
8	which can carry out real time image compression and
9	analysis. Via the LAN/WAN it can communicate to one o
10	more PC control stations where the compressed video ca
11	be decompressed and displayed and the results of the
12	image analysis viewed and/or recorded in a database.
13	
14	Fig. 1 illustrates an example of such an arrangement,
15	in which one or more cameras 10 are connected directly
16	to the network 12, to which there are also connected
17	one or more host PC's 14. The camera 10 digitises,
18	compresses and analyses video images of a subject 16,
19	and the images and/or associated analysis results are
20	transmitted via the network 12 for display and/or
21	recordal on the host PC 14.
22	
23	The hardware architecture of the camera 10 is
24	illustrated in block-diagram form in Fig. 2. As seen
25	in Fig. 2, the digitally-networked camera combines a
26	colour camera 18, including an image sensor and,
27	optionally, audio microphone, with a high performance
28	Video Signal Processor (VSP) 20 and a RISC processor
29	22. The output video/audio signals from the camera 18
30	are input to the VSP 20, which is connected to the
31	RISC processor 22. The processor 22 is in turn
32	connected to network interface hardware 24. Both the
33	VSP 20 and RISC processor 22 have memory means
34	associated therewith. In this example, dynamic random
35	access memory (DRAM) 26 is connected to the VSP 20 and
36	static random access memory (SRAM) and programmable

6

read only memory (PROM, preferably Flash EPROM) 28 is 1 2 connected to the RISC processor 22. The colour camera 18 may be of the type including an 4 5 image sensor which directly outputs a digital video 6 signal, or may have an analogue sensor output with 7 separate analogue to digital conversion, or analogue to 8 digital conversion means may be incorporated between an 9 analogue camera and the VSP 20. In any case, the input 10 to the VSP 20 is a digital video signal. The same 11 applies to audio signals from the camera 18, if 12 applicable. 13 14 The VSP 20 supports real time image compression and 15 also acts as a highly parallel ALU for real time image 16 analysis. The RISC processor 22 supports a 17 multitasking operating system with built-in networking 18 and communications support, and also supervises the VSP 19 External input/output (i/o) is via the network 20 interface hardware 24; suitably, for example, via two 21 PCMCIA slots, allowing easy interfacing to LAN, WAN, 22 ISDN, wireless communications and mass storage devices. 23 It will be appreciated that digital network interfaces 24 may be provided by means other than PCMCIA-type 25 devices. 26 27 The camera also includes a proprietary digital gate 28 array (not shown), which implements bus bridges between 29 the major functional units of the architecture and 30 contributes to the high integration and low cost of the 31 camera unit. 32 33 This entire functionality is integrated within a single 34 camera unit. Fig. 3 shows an example of the physical 35 configuration of such a unit. In Fig. 3, a housing 30 36 supports the camera optics 32 and encloses the image

7

sensor 34 and associated electronics 36 of the camera 18: a motherboard 38 mounting the VSP 20, RISC 2 processor 22, DRAM 26, SRAM 28 and other associated 3 electronic components; a power supply unit 40; network 4 interface hardware such as type II and type III PCMCIA 5 cards 42, 44; and, possibly, additional, optional 6 audio/video hardware 46. It will be understood that 7 8 the illustrated physical configuration is given by way of example only and may be varied while still 9 maintaining the essential functionality of the 10 invention. 11 12 The RISC processor 22 supervises the execution of image 13 14 processing and/or compression functions performed by the VSP 20. The RISC processor 22 also supports a 15 real-time operating system (RTOS). The software 16 architecture of the camera is illustrated 17 schematically in Fig 4. This allows genuine 18 multitasking, which is essential in the environment. 19 In parallel, the RISC processor 22 supervises video 20 capture, compression, image processing, audio capture 21 22 and analysis, and PCMCIA i/o. Context switches must be accomplished within a guaranteed time for this to be 23 effective. Normal multitasking facilities are 24 25 provided, such as message passing, mailboxes, preemptive/round-robin/time-slice scheduling, interrupt 26 27 handling, etc. 28 29 Various communication protocol stacks may be supported 30 by the RTOS. Preferably, TCP/IP is implemented as the high level network communications protocol. 31 allows each camera to be assigned a unique internet 32 address and simplifies communications between cameras, 33 and between cameras and host PC's, across multiple 34 35 heterogeneous networks. 36

BNSDOCID: <WO__9602106A1_I_>

8

1	The advantages of the invention and/or the ways in
2	which the disadvantages of previously known
3	arrangements are overcome, include the following.
4	
5	1. General
6	
7	The Digitally-networked Camera is designed for real
8	time video capture, compression, analysis and
9	transmission in circumstances where it is either
10	impractical or not cost effective to use a host PC.
11	Since the camera operates stand-alone it can be plugged
12	directly into computer networks or deployed remotely in
13	the field using wireless communications.
14	
15	2. Security & Surveillance
16	
17	The digitally-networked camera contains the total
18	functionality required for analogue-networked
19	surveillance systems to migrate to digitally-networked
20	systems. Real-time video/audio compression allows
21	continuous transmission over existing LAN's without
22	significant degradation in LAN performance.
23	
24	Since the Digitally-networked Camera performs real time
25	image processing, specific events can be detected and
26	reported to personnel. This will dramatically raise
27	the effectiveness of surveillance. The audio option
28	can be used to assist in detection of certain security
29	events including shrieks, breaking of glass, etc.
30	
31	Thus, the invention allows semi-automation of security
32	surveillance systems. This has the potential to
33	significantly improve the cost-effectiveness of such
34	systems.
35	

36 3. Traffic monitoring

9

The Digitally-networked Camera can be programmed to 1 analyse traffic speeds, congestion, vehicle 2 numberplates, etc and can directly report these 3 statistics and/or compressed video to a control centre via a WAN, eg an ISDN/phone line. 5 6 7 Video-Conferencing 9 The Digitally-networked Camera can participate in PCbased video conferences, transmitting compressed video 10 from locations where PC's cannot be used, such as 11 12 construction sites (wireless LAN) and factory shop floors. 13 14 15 5. Industrial Inspection & Process Control 16 The invention allows automation of industrial 17 18 inspection, integrated with existing LAN's for-19 communication of inspection results to controller PC's -20 -and-control of cameras from PC's. 21 22 6. Miscellaneous 23 24 The wide range of PCMCIA cards available allows a diverse range of applications to be addressed. 25 26 example, to match images captured remotely with the 27 location at which they were captured it is possible to 28 use a GPS receiver card to let the camera get a fix on 29 the position of capture. This might be combined with a 30 cellular comms card to transmit the picture+location 31 immediately back to base. 32 33 Improvements and modifications may be incorporated 34 without departing from the scope of the invention as 35 defined in the Claims appended hereto.

1 Claims

2

- A video camera comprising a housing enclosing
- 4 video image sensor means adapted to generate a video
- 5 signal, signal processing means adapted to process said
- 6 video signal and to output a digital data signal, and
- 7 digital interface input/output means adapted to
- 8 transmit said digital data signal to an external,
- 9 digital communications network in accordance with a
- 10 predetermined communications protocol.

11

- 12 2. A video camera as claimed in Claim 1, wherein
- 13 said signal processing means includes a video signal
- 14 processor (VSP) adapted to perform real-time image
- 15 compression and/or image analysis on said video signal.

16

- 17 3. A video camera as claimed in Claim 2, wherein
- 18 said signal processing means further includes
- 19 microprocessor means adapted to supervise operation of
- 20 said VSP and data input/output via said interface
- 21 means.

22

- 4. A video camera as claimed in Claim 3, wherein said
- 24 microprocessor means comprises a multi-tasking RISC
- 25 processor.

26

- 27 5. A video camera as claimed in Claim 2, wherein said
- VSP has first memory means associated therewith.

29

- 30 6. A video camera as claimed in Claim 5, wherein said
- 31 first memory means comprises dynamic random access
- 32 memory.

- A video camera as claimed in Claim 3, wherein said
- 35 microprocessor means has second memory means associated
- 36 therewith.

11

1	8. A video camera as claimed in Claim 7, wherein said
2	second memory means comprises static random access
3	memory and programmable read only memory.
4	
5	9. A video camera as claimed in Claim 1, wherein
6	said communications protocol is TCP/IP.
7	,
8	10. A video camera as claimed in Claim 1, wherein said
9	interface means comprises at least one PCMCIA card.
10	
11	11 A video camera as claimed in Claim 1 further

11 11. A video camera as claimed in Claim 1, further 12 including audio sensor means, wherein said signal 13 processing means is further adapted to process audio

14 signals generated by said audio sensor means.

Fig. 1 THE CAMERA INTERFACES DIRECTLY TO LAN/WAN AND THEREBY CAN OPERATE UNDER CONTROL OF ONE OR MORE ATTACHED PCs/WORKSTATIONS.

Fig. 2 HARDWARE ARCHITECTURE OF INVENTION ALLOWING CAMERA UNIT TO ATTACH DIRECTLY TO DIGITAL NETWORKS.

Fig. 3 PHYSICAL CONFIGURATION.

Fig. 4 SOFTWARE ARCHITECTURE OF CAMERA, ALLOWING IMAGE ANALYSIS IN CONJUNCTION WITH IMAGE COMPRESSION AND TRANSMISSION OVER DIGITAL NETWORK.

SUBSTITUTE SHEET (RULE 26)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.