Practica 6. Naive Bayes

DRA. CONSUELO VARINIA GARCÍA MENDOZA

Especificaciones

- En equipo de máximo 3 integrantes
- Los dataset utilizados para esta práctica serán iris.csv y emails.csv
 - En el dataset *emails.csv*
 - La primera columna indica el id del correo
 - La última columna indica si el correo es spam o no
 - El resto de las columnas son las palabras más comunes en todos los correos
 - En el dataset iris.csv
 - Las primeras 4 columnas son las características de las instancias
 - La última columna es la clase
- Utilizando ambos dataset realiza lo siguiente:
 - Carga el dataset
 - Crea un conjunto de entrenamiento del 70% de las instancias y el conjunto de pruebas con el 30%(set random_state = 0)
- Utilizando el conjunto de entrenamiento crea un conjunto de validación con 3 pliegues

Especificaciones

- Utilizando el conjunto de validación realiza lo siguiente con cada pliegue:
 - Utiliza Naive Bayes con distribución normal para entrenar y prueba el modelo en cada pliegue
 - Determina la exactitud de cada pliegue
 - Determina el promedio de exactitud de los 3 pliegues
 - Utiliza Multinomial con distribución normal para entrenar y prueba el modelo en cada pliegue
 - Determina la exactitud de cada pliegue
 - Determina el promedio de exactitud de los 3 pliegues

Evidencias

- Código fuente
- Un PDF con la siguiente información:
 - Tabla con los resultados

Dataset	Clasificador	Exactitud promedio de los 3 pliegues	Exactitud obtenida con el conjunto de prueba (30%)
emails.csv	Gaussiano		
emails.csv	Multinomial		
iris.csv	Gaussiano		
iris.csv	Multinomial		

Evidencias

- Reporte de clasificación y matriz de confusión del conjunto de entrenamiento(70%) de los dataset (iris y email) con Gauss y Mulinomial (4 reportes de entrenamiento)
- Reporte de clasificación y matriz de confusión del conjunto de prueba(30%) de los dataset (iris y email) con Gauss y Mulinomial (4 reportes de prueba)
- Conclusiones generales de la práctica mencionando las dificultades encontradas y propuestas para mejorar los resultados obtenidos

		PREDICTION true false		
LITY	true	8	b	
REA	fallse	С		

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

accuracy: "what percent of the prediction were correct?"	(+)
accuracy. What percent of the prediction were correct:	(2+b+e+3)
precision: "what percent of positive predictions were correct?"	(1)
precision. What percent of positive predictions were correct?	(+ to)
recall: "what percent of positive cases were caught?"	(•)
lecan. What percent of positive cases were caught:	(<u>++b</u>)