

TIMETABLING IN TRANSPORTATION

Introduction

- ❑ In transportation industry planning and scheduling problems abound.
- ❑ Variety is due to many models of transportation, e.g., shipping, airlines and railroads.
- ❑ The equipment and resources involved:
 - ships and ports,
 - planes and airports,
 - trains, tracks and railway stations,
- ❑ have different characteristics, costs and planning horizons.

João Miguel da Costa Sousa

489

Tanker scheduling

- ❑ Companies have usually *company-owned* and *chartered* ships.
- ❑ Objective is typically to minimize the total cost of transporting all cargoes.
 - n is the number of cargoes to be transported
 - T is the number of company-owned tanks
 - p is the number of ports
- ❑ S_i is the set of all possible schedules for ship i

João Miguel da Costa Sousa

490

Tanker scheduling

- ❑ Schedule l for ship i , $l \in S_i$, is represented by:

$$\begin{matrix} a_{i1}^l \\ a_{i2}^l \\ \vdots \\ a_{in}^l \end{matrix}$$
- ❑ a_{ij}^l is 1 if under schedule l ship i transports cargo j
- ❑ c_i^l is incremental cost of operating a company-owned ship i versus keeping it idle over planning horizon

João Miguel da Costa Sousa

491

Tanker scheduling

- ❑ c_j^* is the amount to be paid to transport cargo j on a chartered ship.
- ❑ Amount of money saved by operating ship i according to schedule l :

$$\pi_i^l = \sum_{j=1}^n a_{ij}^l c_j^* - c_i^l$$
- ❑ Decision variable x_i^l is 1 if ship i follows schedule l .

João Miguel da Costa Sousa

492

IP Tanker Scheduling Problem

$$\begin{aligned} & \text{maximize} \quad \sum_{i=1}^T \sum_{l \in S_i} \pi_i^l x_i^l \\ & \text{subject to} \\ & \quad \sum_{i=1}^T \sum_{l \in S_i} a_{ij}^l x_i^l \leq 1 \quad j = 1, \dots, n \\ & \quad \text{Each cargo can be assigned to at most one tanker} \\ & \quad \sum_{l \in S_i} x_i^l \leq 1 \quad i = 1, \dots, T \\ & \quad \text{Each tanker can be assigned to at most one schedule} \\ & \quad x_i^l \in \{0, 1\} \quad l \in S_i, \quad i = 1, \dots, T \end{aligned}$$

João Miguel da Costa Sousa

493

Tanker Scheduling Problem

- This problem is known as the **set-packing problem**.
- It is solved by a branch-and-bound algorithm.
- First, a collection of candidate schedules must be generated for each ship in the fleet.
- Upper and lower bounds must be defined.

João Miguel da Costa Sousa

494

Example 11.2.1

- Three ships and 12 cargoes. 15 feasible schedules:

	$a_{1j}^1 a_{1j}^2 a_{1j}^3 a_{1j}^4 a_{1j}^5$	$a_{2j}^1 a_{2j}^2 a_{2j}^3 a_{2j}^4 a_{2j}^5$	$a_{3j}^1 a_{3j}^2 a_{3j}^3 a_{3j}^4 a_{3j}^5$	
1	1 1 0 0 1 1	0 1 0 0 0	0 0 0 0 1 0	
2	1 0 1 0 0 0	1 0 0 0 0	0 1 0 1 1 1	
3	0 0 1 0 1 1	0 0 0 1 1	0 0 0 0 0 0	
4	0 1 1 1 1 0	1 0 1 0 0	0 0 0 0 0 0	
5	1 1 1 0 0 0	0 0 0 1 0	0 0 1 0 1 1	
6	0 0 0 0 1 1	0 1 0 0 1	1 0 0 0 0 0	
7	0 0 0 0 0 0	0 0 1 1 0	0 0 0 0 0 1	
8	0 1 0 0 0 0	1 0 1 1 1	0 0 0 0 0 0	
9	0 0 1 0 0 0	0 1 0 0 1	1 1 1 0 0 0	
10	0 0 1 0 0 0	1 0 0 0 0	1 1 0 0 0 0	
11	0 0 0 0 0 0	0 1 1 0 0	0 1 1 1 0 0	
12	0 0 0 0 1 0	0 0 0 0 0	1 0 1 1 1 1	
		Ship 1	Ship 2	Ship 3

João Miguel da Costa Sousa

495

Problem data

- If cargo is transported by a charter, cost is:

1	2	3	4	5	6	7	8	9	10	11	12
1429	1323	1208	512	2173	2217	1775	1885	2468	1928	1634	741

- Operating costs of tankers for each schedule:

Schedule l	1	2	3	4	5
tanker 1	5658	5033	2722	3505	3996
tanker 2	4019	6914	4693	7910	6868
tanker 3	5829	5588	8284	3338	4715

João Miguel da Costa Sousa

496

Formulation of IP problem

- Profits of each schedule can be computed:

Schedule l	1	2	3	4	5
tanker 1	-733	1465	1466	1394	858
tanker 2	1629	834	1113	-869	910
tanker 3	1525	1765	-1268	1789	1297

João Miguel da Costa Sousa

497

Formulation of IP problem

subject to

$$\begin{aligned}
 & x_1^1 + x_1^4 + x_1^5 + x_2^2 + x_2^5 \leq 1 \\
 & x_1^1 + x_2^1 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^5 \leq 1 \\
 & x_1^1 + x_1^2 + x_1^3 + x_1^4 \leq 1 \\
 & x_1^2 + x_1^3 + x_1^4 + x_1^5 \leq 1 \\
 & x_1^2 + x_1^3 + x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_1^3 + x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_1^1 + x_1^2 + x_1^3 + x_1^4 + x_1^5 \leq 1 \\
 & x_1^1 + x_1^2 + x_1^3 + x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_1^2 + x_1^3 + x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_1^3 + x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1 \\
 & x_1^4 + x_1^5 + x_2^2 + x_2^3 + x_2^4 + x_2^5 \leq 1
 \end{aligned}$$

João Miguel da Costa Sousa

 $x_i^l \in \{0,1\}$

498

Initial upper bound

- Initial upper bound can be obtained by solving the linear relaxation of the IP, i.e., allowing x_i^l to assume values between 0 and 1.

▪ The solution is $x_1^2 = x_1^3 = x_1^5 = 1/3$, $x_2^1 = x_2^4 = 1/3$, $x_3^1 = 1/3$, $x_3^4 = 2/3$.

- The value of this solution (upper bound) is 3810.33.

□ (See [tree](#) of branch-and-bound problem).

□ Optimal solution: $x_1^3 = 1$, $x_3^4 = 1$. Ship 2 is idle and cargoes 5, 6, 7, 8 and 10 are transported by charters. Optimal value: 3255.

João Miguel da Costa Sousa

499

Branch and bound tree

João Miguel da Costa Sousa

500

Airline routing and scheduling

- ❑ Problem: construct a daily schedule for a heterogeneous aircraft fleet.
 - ❑ Two parts:
 - determine sequence of flight legs (routing)
 - determining exact times of start and finish (scheduling)
 - ❑ Customer demands (profit) can be estimated from past experience and marketing research.
 - ❑ Additional constraints: number of planes, restrictions at airports, required connection flights, etc.

João Miguel da Costa Sousa

501

Formulation of the problem

- ❑ L is the set of flight legs
 - ❑ T is the number of different aircraft types
 - ❑ m_i is the number of available aircrafts of type i .
 - ❑ Total number of aircrafts is $\sum_{i=1}^T m_i$
 - ❑ L_i is the set of flight legs that can be flown by an aircraft of type i .
 - ❑ S_i is the set of feasible schedules for aircraft of type i .
It includes the empty schedule (0).

João Miguel da Costa Sousa

502

Formulation of the problem

- ❑ π_{ij} is profit generated by covering flight leg j with aircraft of type i .
 - ❑ For each schedule $l \in S_i$ the total anticipated profit is:
$$\pi'_i = \sum_{j=1}^n \pi_{ij} a'_{ij}$$
 - ❑ where a'_{ij} is 1 if schedule l covers leg j and 0 otherwise.
 - ❑ If an aircraft is assigned to an empty schedule the profit is π_i^0 , which can be positive or negative.

João Miguel da Costa Sousa

503

Formulation

- ❑ P is the set of airports.
 - ❑ P_i is the subset that accommodate aircrafts of type i .
 - ❑ o_{ip}^l is 1 if the origin of schedule l is airport p .
 - ❑ d_{ip}^l is 1 if the final destination of schedule l is airport p .
 - ❑ Decision variable x_i^l is 1 if schedule l is assigned to an aircraft of type i .
 - ❑ Integer decision variable x_i^0 is the number of unused aircrafts of type i .

João Miguel da Costa Sousa

504

Daily Airline Routing and Scheduling

$$\begin{aligned}
& \text{maximize} && \sum_{i=1}^T \sum_{l \in S_i} \pi_i^l x_i^l \\
& \text{subject to} && \\
& \sum_{i=1}^T \sum_{l \in S_i} a_{ij}^l x_i^l = 1 & j \in L & \text{Each flight leg has to be covered exactly once.} \\
& \sum_{l \in S_i} x_i^l = m_i & i = 1, \dots, T & \text{Maximum number of aircrafts of each type that can be used} \\
& \sum_{l \in S_i} (d_{ip}^l - o_{ip}^l) x_i^l = 0 & i = 1, \dots, T, p \in P_i & \text{Flow conservation constraints at the end of the day at each airport for each aircraft type} \\
& x_i^l \in \{0, 1\} & l \in S_i, i = 1, \dots, T
\end{aligned}$$

João Miguel da Costa Sousa

505

Daily Airline Routing and Scheduling

- ❑ The problem is a **Set Partitioning Problem** with additional constraints.
- ❑ Algorithm to solve the problem is also a branch-and-bound algorithm, known as a branch-and-price algorithm.

João Miguel da Costa Sousa

506

Example 11.3.1

- ❑ Two types of planes, $T = 2$. $m_1 = 2$, $m_2 = 2$.
- ❑ Twelve flights to be flown between 4 airports:
 - $p = 1$: San Francisco (SFO)
 - $p = 2$: Los Angeles (LAX)
 - $p = 3$: New York (NYC)
 - $p = 4$: Seattle (SEA)

João Miguel da Costa Sousa

507

Train timetabling

- ❑ Most common problem: single, one way track linking two major stations with smaller stations in between.
- ❑ Time in minutes: 1 to q (in one day $q = 1440$).
- ❑ Link j connects station $j - 1$ to j .
- ❑ There are L consecutive links and $L+1$ stations (0 to L)
- ❑ T is the set of trains, and T_j is the set intending to pass link j .
- ❑ A train can overtake another only at a station.

João Miguel da Costa Sousa

508

Time-distance graphic

MULTIMODAL applied systems

509

Train timetabling

- ❑ Ideal timetable is determined by analyzing passenger behavior and preferences, but must satisfy track capacity constraints.
- ❑ There are preferred arrival and departure times at a station for each train.
- ❑ There is a cost (or revenue loss) associated with a deviation from the preferred arrival, stopping or departure times.

João Miguel da Costa Sousa

510

Train timetabling problem

- ❑ Formulated as a Mixed Integer Programming (MIP)
- ❑ For a single link the problem can be formulated as:
 - **Objective:** minimize the cost of deviating from preferred arrival, stopping or departure times.
 - Some **constraints:**
 - Least minimum time to traverse link j
 - Minimum amount of time stopping at a station i
 - Minimum headways between each link: there is a minimum amount of time between departures and arrivals at a station

João Miguel da Costa Sousa

511

Solution of train timetabling problem

- ❑ A railway system has a network of many links.
- ❑ Each single link can be solved by
 - branch-and-bound
 - a heuristic similar to the shifting bottleneck.
- ❑ **No optimality is guaranteed!**

➤ See Multi Model slides in the CD of Pinedo's book.

João Miguel da Costa Sousa

512