It's Increasingly Clear

Recall that a sequence s_n is increasing if $s_{n+1} \ge s_n$ for all n. Similarly, s_n is decreasing if $s_{n+1} \le s_n$ for all n.

1. Let $a_n = \frac{n}{n+1}$ for $n = 1, 2, 3, \ldots$ Show a_n is increasing by demonstrating that $\frac{a_{n+1}}{a_n} \ge 1$ for all n.

2. Let $b_n = \frac{n-2}{n+1}$ for $n = 1, 2, 3, \ldots$ Explain the danger in using the method of the previous problem to show that b_n is increasing. Instead, prove b_n is increasing by demonstrating that $b_{n+1} - b_n \ge 0$ for all n.

3. Let $c_n = \frac{n^2 + 1}{n^3}$. Use calculus to prove c_n is decreasing. Hint: $c_n = f(n)$ for $f(x) = \frac{x^2 + 1}{x^3}$.