CS2102 Part 2

L7: PL/pgSQL
Statement Level Interface
Call Level Interface
Functions
Variables & Control Flows
Procedures
Cursor
L8: Trigger
Trigger Timing, Return Values
Trigger Level
Trigger Condition
Deferred Triggers
Multiple Triggers - Order of Triggers
L9: Functional Dependencies
Normal Forms
Update Anomalies
Delete Anomalies
Insertion Anomalies
Functional Dependencies Basics
Armstrong's Axioms
Additional Rules
Closure
Superkeys
Keys
Tips on finding keys
Prime Attributes
L10: Boyce-Codd Normal Form (BCNF)
Non-trivial and Decomposed FD
BCNF Check
Simplified BNCF Check
Decomposition (Normalisation)
Decomposition with Implicit FD
Lossless Join Decomposition
L11: 3NF
Dependency Preservation
3NF Check
Minimal Basis (aka Minimal Cover)
Conditions

L7: PL/pgSQL

Statement Level Interface

- 1. write a program that mixes host language with SQL.
- 2. preprocess the program using a preprocessor.
- 3. compile the program into an executable code.

```
void main() {
```

```
EXEC SQL BEGIN DECLARE SECTION;
char name[30]; int mark;
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT @localhost USER john;

// some code that assigns values to
// name and mark.

EXEC SQL INSERT INTO
Scores (Name, Mark) VALUES (:name, :mark);

EXEC SQL DISCONNECT;

Disconnect
```

Fixed SQL query, i.e. static SQL

```
void main() {
                                                       Declaration
   EXEC SOL BEGIN DECLARE SECTION:
     char *query; char name[30]; int mark;
   EXEC SQL END DECLARE SECTION;
                                                       Connection
   EXEC SQL CONNECT @localhost USER john;
   // some code that assigns values to
                                                       Host language
   // name and mark
   // assign any SQL statement to the query,
   // the query may include name and/or mark.
                                                       Query execution
   EXEC SQL EXECUTE IMMEDIATE :query;
                                                       Disconnect
   EXEC SQL DISCONNECT;
}
```

Dynamic SQL generates queries at runtime

Call Level Interface

- 1. write in host language only
 - Need to load a library that provides APIs to access the DB, e.g., libpq, psqlODBC, JDBC, ODBC, etc.
- 2. compile the program into an executable code

```
void main() {
                                                       Declaration
   char *query; char name[30]; int mark;
                                                       Connection
   connection C("dbname = testdb user = postgres \
     password = test hostaddr = 127.0.0.1 \
     port = 5432");
   // assign any SQL statement to the query,
                                                       Query execution
   // the query may include name and/or mark.
   work W(C);
   W.exec(query);
   W.commit();
                                                       Disconnect
   C.disconnect();
}
```

Functions

returns a value

```
Function parameters
                                           Function name
                                                                      and type, if any
                          CREATE OR REPLACE FUNCTION <name>
 General Syntax
                                                                                     <type>:
                            (<param> <type>, <param> <type>, ...)
                                                                                     - all data types in SQL.
                          RETURNS <type> AS $$ \times
                                                                                     - a tuple/a set of tuples.
          Return type
                                                          Enclosed within
                                                                                     - custom tuples.
                                                          dollar-quote or '
                                                                                     - triggers.
                            code goes here>
                                                                                     - etc.
         Main body of
                                               The language used
         the function
                                                  by the code
                          $$ LANGUAGE sql;
CREATE OR REPLACE FUNCTION convert(Mark INT)
                                                              Call the function
RETURNS CHAR(1) AS $$
                                                           SELECT convert(66);
  SELECT CASE
                                                           SELECT * FROM convert(66);
      WHEN Mark >= 70 THEN 'A'
      WHEN Mark >= 60 THEN 'B'
      WHEN Mark >= 50 THEN 'C'
                                                             Flash Quiz: How to use this for all records in "Scores"?
      ELSE 'F'
  END:
$$ LANGUAGE sql;
                                                           SELECT ... FROM Scores;
```

```
-- BASIC EXAMPLE USAGE
SELECT Name, convert(Mark) FROM Scores;
SELECT Name
FROM Scores WHERE convert(Mark) = 'B';
-- RETURN A TUPLE
CREATE OR REPLACE FUNCTION GradeStudent (Grade CHAR(1))
RETURNS Scores AS $$
SELECT *
FROM Scores
WHERE convert(Mark) = Grade;
$$ LANGUAGE sql;
-- RETURNS A SET OF TUPLES
CREATE OR REPLACE FUNCTION GradeStudents (Grade CHAR(1))
RETURNS SETOF Scores AS $$ ...
$$ LANGUAGE sql;
-- RETURNS A SET OF CUSTOMISED TUPLES
CREATE OR REPLACE FUNCTION GradeStudents (Grade CHAR(1))
RETURNS SETOF RECORD AS $$ ...
$$ LANGUAGE sql;
-- SIMPLIFY PARAMS FOR CUSTOM TUPLES
CREATE OR REPLACE FUNCTION CountGradeStudents()
RETURNS TABLE(MARK CHAR(1), COUNT INT) AS $$
SELECT convert(Mark), count(*)
FROM scores
GROUP BY convert(Mark);
```

```
$$ LANGUAGE sql;

SELECT CountGradeStudents();

-- RETURNS VOID

CREATE OR REPLACE FUNCTION AddGradeAttr()
RETURNS VOID AS $$

ALTER TABLE Scores
ADD COLUMN IF NOT EXISTS Grade CHAR(1) DEFAULT NULL;
UPDATE Scores SET Grade = convert(Mark);

SELECT * FROM Scores;

$$ LANGUAGE sql;

SELECT AddGradeAttr();
```

Variables & Control Flows

```
CREATE OR REPLACE FUNCTION splitMarks
(IN name1 VARCHAR(20), IN name2 VARCHAR(20))
RETURNS TABLE(Mark1 INT, Mark2 INT)
AS $$
DECLARE
 temp INT := 0;
BEGIN
 /* two ways of assignment */
 SELECT mark INTO mark1 FROM Scores WHERE name = name1;
 SELECT mark INTO mark2 FROM Scores WHERE name = name2;
 temp := (mark1 + mark2) / 2;
 /* if else */
 IF temp > 60 THEN
   temp := temp / 2;
 ELSIF temp > 50 THEN
   temp := temp - 20;
 ELSE temp := temp - 10;
 END IF;
 /* while loop */
 WHILE temp > 30 LOOP
   temp := temp / 2;
 END LOOP;
 /* while (true) { if (temp < 30) break; ... } */
   EXIT WHEN temp < 30;
   temp := temp / 2;
 END LOOP;
  FOREACH d IN ARRAY denoms LOOP
   temp := temp / d;
```

```
END LOOP;

UPDATE Scores
SET mark = temp
WHERE name = name1 OR name = name2;

RETURN QUERY SELECT mark1, mark2;
END;
$$ LANGUAGE plpgsql;
```

Procedures

no return value


```
CREATE OR REPLACE PROCEDURE AddGradeAttr()
AS $$
ALTER TABLE Scores
ADD COLUMN IF NOT EXISTS Grade CHAR(1) DEFAULT NULL;
SELECT * FROM Scores; $$ LANGUAGE sql;

CALL AddGradeAttr();
```

Cursor

· access each individual row returned by a SELECT statement

```
-- Cursor movement

FETCH curs INTO r;

FETCH NEXT FROM curs INTO r;

-- other variants

FETCH PRIOR FROM curs INTO r; -- Fetch from previous row

FETCH FIRST FROM curs INTO r;

FETCH LAST FROM curs INTO r;

FETCH ABSOLUTE 3 FROM curs INTO r;

FETCH RELATIVE -2 FROM curs INTO r;

FETCH [PRIOR | FIRST | LAST | ABSOLUTE n | RELATIVE n] [FROM] <cursor> INTO <var>
```

```
MOVE [PRIOR | FIRST | LAST | ABSOLUTE n | RELATIVE n] [FROM] <cursor>; [UPDATE | DELETE]  ... WHERE CURRENT OF curs;
```


curs	Rank	Symbol	Changes
curs	1	втс	-6%
curs	3	DOGE	-6%
curs	4	ZIL	-7%
curs	5	XMR	-8%
	6	SHIB	-8%
	8	LTC	-7%
	9	XRP	-7%
	10	BNB	-6%

```
-- e.g. first 3 consecuvtive coins that are down by more than 5%
CREATE OR REPLACE FUNCTION consCryptosDown (IN n INT)
RETURNS TABLE(rank INT, sym CHAR(4))
AS $$
DECLARE
  curs CURSOR FOR (SELECT * FROM cryptosRank WHERE changes < -5);</pre>
  r1 RECORD;
  r2 RECORD;
BEGIN
  OPEN curs;
  L00P
    FETCH curs INTO r1;
    EXIT WHEN NOT FOUND;
    FETCH RELATIVE (n-1) FROM curs INTO r2;
    EXIT WHEN NOT FOUND;
    IF r2.rank - r1.rank = n-1 THEN
      MOVE RELATIVE -(n) FROM curs;
      FOR c IN 1..n LOOP
        FETCH curs INTO r1;
        rank := r1.rank;
        sym := r1.symbol;
        RETURN NEXT;
      END LOOP;
      CLOSE curs;
      RETURN;
    END IF;
    MOVE RELATIVE -(n-1) FROM curs;
  END LOOP;
  CLOSE curs;
```

```
END;
$$ LANGUAGE plpgsql;
```

L8: Trigger

Trigger Timing, Return Values

- BEFORE INSERT/UPDATE/DELETE
 - Occurs before the action has modified the database
 - Return value affects the action (if RETURN NULL), no action performed; RETURN
 OLD is same as RETURN NULL for INSERT if OLD is not initialised)

```
CREATE TRIGGER for_Elise_trigger
BEFORE INSERT ON Scores
FOR EACH ROW EXECUTE FUNCTION for_Elise_func();

CREATE OR REPLACE FUNCTION for_Elise_func()
RETURNS TRIGGER AS $$
BEGIN

IF (NEW.Name = 'Elise') THEN NEW.Mark := 100;
END IF;
RETURN OLD; -- same as RETURN NULL
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION for_Elise_func()
RETURNS TRIGGER AS $$ BEGIN
OLD.Name := 'Haha';
OLD.Mame := O;
RETURN OLD; -- ('Haha', O) will be inserted
END;
$$ LANGUAGE plpgsql;
```

- AFTER INSERT/UPDATE/DELETE
 - Occurs after the action has modified the database
 - Return value does not matter
- INSTEAD OF INSERT/UPDATE/DELETE
 - Occurs in place of the specified action (only applicable for views)

- only allowed on row-level
- Returning NULL will cause all operations (including other triggers) to be ignored;
- Returning non-null value means proceed as normal

```
CREATE TRIGGER update_max_trigger
INSTEAD OF UPDATE ON Max_Score
FOR EACH ROW EXECUTE FUNCTION update_max_func();

CREATE OR REPLACE FUNCTION update_max_func()
RETURNS TRIGGER AS $$
BEGIN
   UPDATE Scores
   SET Mark = NEW.Mark
   WHERE Name = OLD.Name;

RETURN NEW;
END;
$$ LANGUAGE plpgsql;
```

Trigger Level

- FOR EACH ROW
 - Calls the trigger function for each tuple involved in the statement
- FOR EACH STATEMENT
 - Calls the trigger function once for the whole statement
 - Note: at statement level, return value does not matter
 - RETURN NULL would not make the database omit the subsequent operations
 - For subsequent operations to be omitted, raise exception
- Caveats
 - INSTEAD OF is only allowed on the row level
 - NEW and OLD are not defined for the statement level

Trigger Condition

Move conditionals to the trigger rather than the trigger function

No select in when

- No old in WHEN for INSERT
- No NEW in WHEN for DELETE
- No when for instead of

```
CREATE TRIGGER trigger
BEFORE INSERT ON table
FOR EACH ROW
WHEN (condition)
EXECUTE FUNCTION func();
-- e.g.
CREATE TRIGGER for_Elise_trigger
BEFORE INSERT ON Scores
FOR EACH ROW EXECUTE FUNCTION for_Elise_func();
CREATE OR REPLACE FUNCTION for_Elise_func()
RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.Name = 'Elise') THEN
   NEW.Mark := 100;
 END IF;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;
-- this trigger function only cares about the case when NEW.Name = 'Elise' => too many
checks if most entries are not 'Elise'
CREATE TRIGGER for_Elise_trigger
BEFORE INSERT ON Scores
FOR EACH ROW
WHEN (NEW.Name = 'Elise')
EXECUTE FUNCTION for_Elise_func();
CREATE OR REPLACE FUNCTION for_Elise_func()
RETURNS TRIGGER AS $$
BEGIN
 NEW.Mark := 100;
 RETURN NEW;
$$ LANGUAGE plpgsql;
```

Deferred Triggers

Only works with AFTER and FOR EACH ROW

```
CREATE CONSTRAINT TRIGGER trigger_name
AFTER INSERT ON table_name
DEFERRABLE INITIALLY DEFERRED
FOR EACH ROW
EXECUTE FUNCTION func();
BEGIN TRANSACTION;
COMMIT; -- trigger activated
CREATE CONSTRAINT TRIGGER bal_check_trigger
AFTER INSERT OR UPDATE OR DELETE ON Account
DEFERRABLE INITIALLY IMMEDIATE -- trigger is not deferred by default
FOR EACH ROW
EXECUTE FUNCTION bal_check_func();
BEGIN TRANSACTION;
SET CONSTRAINTS bal_check_trigger DEFERRED; -- defer
UPDATE Account
SET Bal = Bal -100
WHERE AID = 1;
UPDATE Account
SET Bal = Bal + 100
WHERE AID = 2;
COMMIT;
```

Multiple Triggers - Order of Triggers

- · Order based on trigger timing and level:
 - BEFORE statement-level trigger
 - BEFORE row-level triggers
 - AFTER row-level triggers
 - AFTER statement-level triggers
- Within each type:
 - Alphabetical order
 - Output of the previous trigger could affect the next
 - o If previous (BEFORE) trigger returns NULL: subsequent triggers will not run

```
/* BREAK INTO CASES DEPENDING ON TABLE OPERATOR */
CREATE OR REPLACE FUNCTION scores_log2_func()
```

```
RETURNS TRIGGER AS $$
 IF (TG_OP = 'INSERT') THEN
   INSERT INTO Scores_Log2 SELECT NEW.Name, 'Insert', CURRENT_DATE;
   RETURN NEW;
 ELSEIF (TG_OP = 'DELETE') THEN
   INSERT INTO Scores_Log2 SELECT OLD.Name, 'Delete', CURRENT_DATE;
   RETURN OLD;
 ELSEIF (TG_OP = 'UPDATE') THEN
   INSERT INTO Scores_Log2 SELECT NEW.Name, 'Update', CURRENT_DATE;
   RETURN NEW;
 END IF;
END;
$$ LANGUAGE plpgsql;
CREATE TRIGGER scores_log2_trigger
AFTER INSERT OR DELETE OR UPDATE ON Scores
FOR EACH ROW EXECUTE FUNCTION scores_log2_func();
-- TG_TABLE_NAME: the name of table that caused the trigger invocation
```

L9: Functional Dependencies

Normal Forms

def: minimum requirements to reduce data redundancy and improve data integrity

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

redundancy: ALICE is stored twice

Update Anomalies

update one record of ALICE but forgot to update the other

Delete Anomalies

 e.g. Bob no longer uses a phone but cannot remove his phone number (phone num is primary key attribute which cannot be NULL)

Insertion Anomalies

- e.g. wants to insert Name = Cathy, NRIC = 9394, HomeAddress = YiShun
- no phone number, cannot insert

Functional Dependencies Basics

def: $A_1A_2...A_m \to B_1B_2...B_n$ if whenever two objects have the same values on $A_1A_2...A_m$, they always have the same values on $B_1B_2...B_n$

- similar to function definition in math
- e.g. NRIC → Name: if two tuples have the same NRIC value, then they have the same Name

Example: Purchase(CustomerID, ProductID, ShopID, Price, Date)

- requirement: no two customers buy the same product
 - ProductID → CustomerID
- requirement: No two shops sell the same product on the same date
 - ProductID, Date → ShopID
- requirement: No shop should sell the same product to the same customer on the same date at two different prices
 - CustomerID, ProductID, ShopID, Date → Price

Armstrong's Axioms

Axiom of Reflexivity

ABCD → ABC

Axiom of Augmentation

• if A → B, then AC → BC

Axiom of Transitivity

• If A → B and B → C then A → C

Additional Rules

Rule of Decomposition

• If $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$

Rule of Union

• If $A \rightarrow B$ and $A \rightarrow C$, then $A \rightarrow BC$

Example working:

1.	a → b	(given)
2.	c→d	(given)
3.	ac → bc	(augmentation of (1) with c)
4.	bc → bd	(augmentation of (2) with b)
5.	ac → bd	(transitivity of (2) and (3))

Closure

- ullet Let $S=A_1,A_2,...,A_3$ be a set of attributes
- ullet The closure of S is the set of attributes that can be decided by $A_1,A_2,...,A_n$
 - 1. Initialise the closure to $\{A_1,A_2,...,A_3\}$
 - 2. If there is an FD: $A_i, A_j, ...A_m \to B$, s.t. $A_i, A_j, ...A_m$ are all in the closure, then put B into the closure
 - 3. Repeat step 2 until we cannot find any new attribute to put into the closure
- Notation: $\{A_1,A_2,...,A_k\}^+$
- e.g. Given A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E
 - $\circ \{A\} + = \{A,B,C,D,E\}$
 - $\circ \{B\} + = \{B,C,D,E\}$
 - \circ {D}+ = {D, E}
 - ∘ {E}+ = {E}
- To prove that $X \to Y$ holds, we only need to show that $\{X\}$ + contains Y

Superkeys

Definition: a set of attributes in a table that decides all other attributes

Keys

Definition: minimal superkey, i.e. if we remove any attribute from the superkey, it will not be a superkey anymore

Algorithm for finding keys:

- Consider every subset of attributes in T:
 - A, B, C, ..., AB, BC, CA, ..., ABC, ...
- Derive the closure of each subset:
 - {A}+, {B}+, {C}+, ..., {AB}+, {BC}+, {AC}+, ..., {ABC}+, ...
- Identify all superkeys based on the closures
- Identify all keys from the superkeys

- A table R(A, B, C), with $A \rightarrow B$, $B \rightarrow C$
- Steps for finding keys:
 - Consider every subset of attributes in T:
 - A, B, C, AB, BC, CA, ABC
 - Derive the closure of each subset:
 - {A}+={ABC}, {B}+={BC}, {C}+={C}
 - {AB}+={ABC}, {BC}+={BC}, {AC}+={ABC}, {ABC}+={ABC}
 - Identify all superkeys based on the closures
 - A, AB, AC, ABC
 - Identify all keys from the superkeys
 - .

Tips on finding keys

- 1. Check the smallest attribute sets first
- 2. Find attributes that do not appear in the RHS of any FD ⇒ these attributes must be in every key
 - A table R(A, B, C, D, E)
 - AB \rightarrow C, C \rightarrow B, BC \rightarrow D, CD \rightarrow E
 - A must be in every key
 - Compute the closures:

 - {AC}+ = {ACBDE}
 - \Box {AD}⁺ = {AD}, {AE}⁺ = {AE}
 - Keys: AB, AC

Prime Attributes

Attributes that appear in a key

L10: Boyce-Codd Normal Form (BCNF)

if every non-trivial and decomposed FD has a superkey as its LHS

Non-trivial and Decomposed FD

- non-trivial: attribute does not appear on both LHS and RHS
- decomposed: RHS has only one attribute

Derivation

- 1. Compute the closure of all subsets
- 2. For each closure, remove the trivial attributes
- 3. Derive non-trivial and decomposed FDs from each closure

e.g.
$$R(A, B, C)$$
 with $A \rightarrow B, B \rightarrow A, B \rightarrow C$ given

- Key: A, B
- for each of the above FD, the LHS is a superkey, hence R satisfies/is in BCNF

BCNF Check

- 1. Compute the closure of each attribute subset
- 2. Derive the keys of R (using closures)
- 3. Derive all non-trivial and decomposed FDs on R (using closures)
- 4. Check the non-trivial and decomposed FDs to see if they satisfy the BCNF requirement
- 5. If all of them satisfy the requirement, then R is in BCNF

R(A, B, C, D) with FDs $AB \rightarrow C$, $C \rightarrow D$, and $D \rightarrow A$

- 2. Derive the keys of R: AB, BC, BD
- 3. Derive the non-trivial and decomposed FDs on R

- $[BC]^+ = {ABCD}, {BD}^+ = {ABCD}, {CD}^+ = {ACD}$
- $| {ABC}^{+} = {ABD}^{+} = {BCD}^{+} = {ABCD}$
- {ACD} = {ACD}
- {ABCD} = {ABCD}

R(A, B, C, D) with FDs AB \rightarrow C, C \rightarrow D, and D \rightarrow A

- 2. Derive the keys of R: AB, BC, BD
- 3. Derive the non-trivial and decomposed FDs on R
- \Box C \rightarrow A, C \rightarrow D, D \rightarrow A
- □ AB→C, AB→D, AC→D

Not in BCNF

- □ BC \rightarrow A, BC \rightarrow D, BD \rightarrow A, BD \rightarrow C, CD \rightarrow A
- □ ABC→D, ABD→C, BCD→A
- 4. For each non-trivial and decomposed FD, check whether its left hand side is a super-key

Simplified BNCF Check

- we have a violation of BCNF, iff we have a closure that satisfies the "more but not all" condition
- 1. Compute the closure of each attribute subset
- 2. Check if there is a closure $\{A_1,A_2,...,A_k\}^+$ such that
 - the closure contains some attribute not in $\{A_1,A_2,...,A_k\}$
 - the closure does not contain all attributes in the table
 - i.e. "more but not all" closure
 - if such a closure exists, then R is NOT in BCNF

R(A, B, C, D) with FDs $B \rightarrow C, B \rightarrow D$

- □ Compute the closure of each attribute subset
 - $\{A\}^+ = \{A\}, \{B\}^+ = \{BCD\}, \{C\}^+ = \{C\}, \{D\}^+ = \{D\}$
- □ {B}⁺= {BCD} stratifies the "more but not all" property
- So it indicates a violation of BCNF

R(A, B, C, D) with FDs A \rightarrow B, B \rightarrow C, C \rightarrow D, and D \rightarrow A

- Compute the closure for each subset of the attributes in R
 - $\{A\}^+ = \{ABCD\}, \{B\}^+ = \{ABCD\}, \{C\}^+ = \{ABCD\}, \{D\}^+ = \{ABCD\}$
 - The other closures are all {ABCD}
- There is no closure satisfying the "more but not all" property
- So there is no violation of BCNF

Decomposition (Normalisation)

- If a table has only two attributes, then it must be in BCNF
 - choose combination s.t. it results in fewer attributes during decomposition

- Input: a table R
- Find a subset X of the attributes in R, such that its closure {X}⁺ (i) contains more attributes than X does, but (ii) does not contain all attributes in R
- 2. Decompose R into two tables R_1 and R_2 , such that
 - R₁ contains all attributes in {X}⁺
 - R₂ contains all attributes in X as well as the attributes not in {X}⁺
- If R₁ is not in BCNF, further decompose R₁;
 If R₂ is not in BCNF, further decompose R₂

Decomposition with Implicit FD

Given: R(A, B, C, D, E) and A \rightarrow B, BC \rightarrow D

- 1. $\{A\}$ + = $\{A, B\}$ violates the "more but not all" property.
- 2. Decompose into R1(A, B) and R2(A, C, D, E)
 - a. R1 is in BCNF
- Derive the closures on R
 - a. enumerate the attribute subsets in R2
 - b. find the closure of the attribute subsets on R
 - c. project these closures onto R2, by removing irrelevant attributes

{AC}+ violates the "more but not all" property → decompose further

- R(A, B, C, D) with FDs BC \rightarrow D, D \rightarrow A, A \rightarrow B
- 1. Find a subset X of the attributes in R, such that its closure X^+ (i) contains more attributes than X, but (ii) does not contain all attributes in R
- A {A}⁺ = {A, B}
- 2. Decompose R into two tables $\rm R_1$ and $\rm R_2$, such that
 - R₁ contains all attributes in X⁺
 - R₂ contains all attributes in X as well as the attributes not in X⁺
- R₁(A, B), R₂(A, C, D)
- 3. Check if R₁ and R₂ are in BCNF
- R₁: Yes. R₂: No
- Further decompose R2

- R(A, B, C, D) with FDs BC \rightarrow D, D \rightarrow A, A \rightarrow B
- R₁(A, B), R₂(A, C, D)
- Further decompose R₂
- 1. Find a subset X of the attributes in R_2 , such that its closure X^+ (i) contains more attributes than X, but (ii) does not contain all attributes in R_2
- {A}+ = {A}, {C}+ = {C}, {D}+ = {A, D},
- 2. Decompose R₁ into two tables R₃ and R₄, such that
 - R₃ contains all attributes in X⁺
 - R₄ contains all attributes in X as well as the attributes not in X⁺
- R₃(A, D), R₄(C, D)
- 3. Check if R₃ and R₄ are in BCNF
- Yes. Final results: R₁(A, B), R₃(A, D), R₄(C, D)

Lossless Join Decomposition

- a decomposition guarantees lossless join whenever the common attribute in R1 and R2 constitute a superkey of R1 or R2
- A decomposition is lossless join if there exists a sequence of binary lossless-join decompositions that generates that decomposition.
 - o [Tut 9] Schema R(A, B, C, D, E) with FDs F = {AB → C, AC → D, E → ABCD} and decomposition {R1(A, B, C), R2(A, B, E), R3(A, C, D)}.
 - First, decompose R into R3(A,C,D) and R4(A,B,C,E). This is lossless because R3 \cap R4 = AC, and AC is a superkey of R3.
 - Next, decompose R4 into R1(A,B,C) and R2(A,B,E). This is also lossless because R1 \cap R2 = AB, and AB is a superkey of R1.
 - Therefore, {R1(A,B,C), R2(A,B,E), R3 (A,C,D)} is a lossless-join decomposition.

L11: 3NF

- A table satisfies 3NF, if and only if for every non-trivial and decomposed FD
 - Either the left hand side is a superkey
 - Or the RHS is a prime attribute (i.e., it appears in a key)

Dependency Preservation

- decomposition preserves all FDs, iff S and S' are equivalent
 - Every FD in S' can be derived from S
 - Every FD in S can be derived from S'
- $S = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
- S' = $\{A \rightarrow CD, E \rightarrow AH\}$
- Prove that S and S' are equivalent
- First, prove that S' can be derived from S
- □ Given S, we have $\{A\}^+ = \{ACD\}$, so $A \rightarrow CD$ is implied by S
 - □ Given S, we have $\{E\}^+ = \{EADHC\}$, so $E \rightarrow AH$ is implied by S
 - □ Hence, S' can be derived from S

- $S = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
- S' = $\{A \rightarrow CD, E \rightarrow AH\}$
- Prove that S and S' are equivalent
- Second, prove that S can be derived from S'
 - □ Given S', we have $\{A\}^+ = \{ACD\}$, so $A \rightarrow C$ is implied by S'
 - □ Given S', we have $\{AC\}^+ = \{ACD\}$, so $AC \rightarrow D$ is implied by
 - □ Given S', we have $\{E\}^+ = \{EADHC\}$, so $E \rightarrow AD$ and $E \rightarrow H$ are implied by S'
 - □ Hence, S can be derived from S'
- Schema R(A, B, C, D), with $A \rightarrow BCD$, $C \rightarrow D$
- Decomposition: R1(A, C), R2(A, B, D)
- Closures on R1:
- So we have A→C on R1
- Closures on R2:
- So we have $A \rightarrow BD$ on R2
- Given $A \rightarrow C$ and $A \rightarrow BD$, we have
- So C→D is not preserved by the decomposition

- Schema R(A, B, C, D, E), with AB \rightarrow C, AC \rightarrow D, E \rightarrow ABCD
- Decomposition: R1(A, B, C), R2(A, B, E), R2(A, C, D)
- Closures on R1:

 - $\{AB\}^+ = \{ABCD\}, \{AC\}^+ = \{ACD\}, \{BC\}^+ = \{BC\}$
- So we have AB→C on R1
- Closures on R2:

 - {AB}⁺ = {ABCD}
- So we have E→AB on R2
- Closures on R3:

 - ${A}^+ = {A}, {C}^+ = {C}, {D}^+ = {D}$ ${AC}^+ = {ACD}, {AD}^+ = {AD}, {CD}^+ = {CD}$
- So we have AC→D on R3
- Given AB \rightarrow C, E \rightarrow AB, and AC \rightarrow D, we have
- So all FDs on R (i.e., AB \rightarrow C, AC \rightarrow D, E \rightarrow ABCD) are preserved

3NF Check

- Compute the closure for each subset of the attributes in R
- 2. Derive the keys of R
- 3. For each closure $\{X_1, ..., X_k\}^+ = \{Y_1, ..., Y_m\}$, check if
 - {Y₁, ..., Y_m} does not contain all attributes, and
- 4. If such a closure does not exist, then R is in 3NF

```
    R(A, B, C, D) with FDs B → C, B → D
    2. Derive the keys of R keys: AB
    QA)<sup>+</sup>= {A}, {B}<sup>+</sup>= {BCD}, {C}<sup>+</sup>= {C}, {D}<sup>+</sup>= {D}
    QAB}<sup>+</sup>= {ABCD}, {AC}<sup>+</sup>= {AC}, {AD}<sup>+</sup>= {AD}
    QBC}<sup>+</sup>= {BCD}, {BD}<sup>+</sup>= {BCD}, {CD}<sup>+</sup>= {CD}
    QABC}<sup>+</sup>= {ABD}<sup>+</sup>= {ABCD}
    QABCD}<sup>+</sup>= {ABCD}
    QABCD]<sup>+</sup>= {ABCD}
    QABCD]<sup>+</sup>
```

Minimal Basis (aka Minimal Cover)

Conditions

- 1. Every FD in the minimal basis can be derived from S, and vice versa.
- 2. Every FD in the minimal basis is a non-trivial and decomposed FD.
- 3. No FD in the minimal basis is redundant.
 - if any FD is removed from M, then some FD in S cannot be derived from M
- 4. For each FD in the minimal basis, none of the attributes on the left hand side is redundant
 - if we remove an attribute from the LHS, then the resulting FD cannot be derived from the original set of FDs

Algorithm for Minimal Basis

- 1. Transform the FDs, so that each RHS contains only one attribute
- Remove redundant attributes on the LHS of each FD
- 3. Remove redundant FDs
 - Example: $S = \{A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
 - Step 1: Transform the FDs, so that each right hand side contains only one attribute
 - Result: $S = \{A \rightarrow B, A \rightarrow D, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
 - Reason:
 - Condition 2 for minimal basis:
 Each FD is a non-trivial and decomposed FD

- Step 2: Remove redundant attributes on the left hand side of each FD
- Both AB→C and BC→D have more than one attribute on the lhs
- Let's check AB→C first
- Is A redundant?
- If we remove A, then AB→C becomes B→C
- Whether this removal is OK depends on whether B→C is implied by S
 - ☐ If B→C is implied by S, then the removal of A is OK, since the removal does not add extraneous information into S
- Is B→C implied by S?
- Check: Given S, we have {B}+ = {B}, which does NOT contain C
- Therefore, B→C is not implied by S, and hence, A is NOT redundant
- Step 3: Remove redundant FDs
- Is A→B redundant?
- i.e., is A→B implied by other FDs in S?
- Let's check
- Without $A \rightarrow B$, we have $\{A \rightarrow D, A \rightarrow C, C \rightarrow D\}$
- Given those FDs, we have {A}+ = {ACD}, which does not contain B
- Therefore, A→B is not implied by the other FDs

- Step 2: Remove redundant attributes on the left hand side of each FD
- Both AB→C and BC→D have more than one attribute on the lhs
- Let's check AB→C first
- Is B redundant?
- If we remove B, then AB→C becomes A→C
- Whether this is OK depends on whether A→C is implied by S
- Is A→C implied by S?
- Check: Given S, we have {A}+ = {ABCD}, which contains C
- Therefore, A→C is implied by S, and hence, B is redundant in AB→C
- Thus, we can simplify AB→C to A→C
- Result: $S = \{A \rightarrow B, A \rightarrow D, A \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
- Step 3: Remove redundant FDs
- Is A→D redundant?
- i.e., is A→D implied by other FDs in S?
- Let's check
- Without A \rightarrow D, we have $\{A\rightarrow B, A\rightarrow C, C\rightarrow D\}$
- Given those FDs, we have {A}⁺ = {ABCD}, which contains D
- Therefore, A→D is implied by the other FDs
- Hence, A→D is redundant and should be removed
- Result: $S = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$

3NF Decomposition Algorithm

RABCD

CD

A B C

- Given: A table R, and a set S of FDs
 - e.g., R(A, B, C, D) $S = \{A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
- Step 1: Derive a minimal basis of S
 - e.g., a minimal basis of S is {A→B, A→C, C→D}
- Step 2: In the minimal basis, combine the FDs whose left hand sides are the same
 - e.g., after combining A→B and A→C,
 we have {A→BC, C→D}
- Step 3: Create a table for each FD remained
- R₁(A, B, C), R₂(C, D)
- Step 4: If none of the tables contains a key of the original table R, create a table that contains a key of R (any key would do)

step 5: remove redundant tables, if any

- R(A, B, C, D, E), with $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$, $E \rightarrow C$
- Minimal basis: A→B, B→C, E→C, E→D
- Combine the FDs whose left hand sides are the same:
 A→B, B→C, E→CD
- For each FD, construct a table that contains all attributes in the FD:
 - R₁(A, B), R₂(B, C), R₃(C, D, E)
- Check if any of the tables contain a key for R; if not, then create a table that contains a key for R:
 - Key for R is {AE}, which is not contained in R₁, R₂, or R₃.
- Create another table R₄(A, E)
- Final result: R₁(A, B), R₂(B, C), R₃(C, D, E), R₄(A, E)
- Given: A table R, and a set S of FDs
 - e.g., R(A, B, C, D), $S = \{AB \rightarrow C, C \rightarrow A, B \rightarrow D\}$
- Step 1: Derive a minimal basis of S
 □ The minimal basis of S is {AB→C, C→A, B→D}
- Step 2: In the minimal basis, combine the FDs whose left hand sides are the same
 - Nothing to be combined
- Step 3: Create a table for each FD remained
 - R₁(A, B, C), R₂(C, A), R3(B, D)
- Step 4: If none of the tables contains a key of the original table R, create a table that contains a key of R (any key would do)
 - R₁(A, B, C) already contains AB, one of the keys of R
- Almost done... But do we need R₂? Everything in R₂ is already in R₁
- Answer: No
- Final decomposition: R₁(A, B, C), R₃(B, D)

	BCNF	3NF
defintion	if every non-trivial and decomposed FD's LHS is a superkey.	iff for every non-trivial and decomposed FD - Either the left hand side is a superkey - Or the RHS is a prime attribute (i.e., it appears in a key)
check	we have a violation of BCNF, iff we have a closure that satisfies the "more but not all" condition	iff we have a closure that satisfies the "more but not all" property and the extra attribute is not a prime attribute
decomposition	- recursively decompose into table with attributes in the closure {X}+ that violates BCNF and table with X and other attributes not in that closure If we have a table R(X, Y, Z) with {X}+ = {X, Y}, then decompose R into R1(X, Y) and R2(X, Z) until all tables are in BCNF	- only 1 split which divides the table into 2 or more parts
good properties	- no update/deletion/insertion anomalies - small redundancy - the original table can always be reconstructed from the decomposed tables (lossless join)	
bad properties	- FD may not be preserved	
	go for BCNF if we can find one BCNF decomposition that preservers all FDs, or if preserving all FDs are not important; else go for 3NF	more lenient than BCNF - satisfy BNCF → satisfy 3NF but not necessarily vice versa - violate 3NF → violate BCNF, but not necessarily vice versa