Course: Cryptography and Network Security Code: CS-34310 Branch: M.C.A - 4th Semester

Lecture – 4: Introduction to Cryptography Mathematics – Part-2

Faculty & Coordinator : Dr. J Sathish Kumar (JSK)

Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology Allahabad,

Prayagraj-211004

Inverses

- When we are working in modular arithmetic, we often need to find the inverse of a number relative to an operation.
- We are normally looking for an additive inverse (relative to an addition operation) or a multiplicative inverse (relative to a multiplication operation).

Additive Inverses

• In Z_n, two numbers a and b are additive inverses of each other if

$$a + b \equiv 0 \pmod{n}$$

In modular arithmetic, each integer has an additive inverse. The sum of an integer and its additive inverse is congruent to 0 modulo n.

Additive Inverses

- Find all additive inverse pairs in Z_{10} .
- Solution
 - The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5).

• In Z_n , two numbers a and b are the multiplicative inverse of each other if,

$$a \times b \equiv 1 \pmod{n}$$

In modular arithmetic, an integer may or may not have a multiplicative inverse.

When it does, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.

- Find the multiplicative inverse of 8 in Z_{10} .
 - There is no multiplicative inverse because gcd $(10, 8) = 2 \neq 1$.
 - In other words, we cannot find any number between 0 and 9 such that when multiplied by 8, the result is congruent to 1.
- Find all multiplicative inverses in Z_{10} .
 - There are only three pairs: (1, 1), (3, 7) and (9, 9).
 - The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse.

- Find all multiplicative inverse pairs in Z_{11} .
- Solution
 - We have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), and (10, 10).

- The extended Euclidean algorithm finds the multiplicative inverses of b in Z_n when n and b are given and gcd (n, b) = 1.
- The multiplicative inverse of b is the value of t after being mapped to Z_n .
- If the multiplicative inverse of b exists, gcd (n, b) must be 1.

$$(s \times n) + (b \times t) = 1$$

```
(s \times n + b \times t) \mod n = 1 \mod n

[(s \times n) \mod n] + [(b \times t) \mod n] = 1 \mod n

0 + [(b \times t) \mod n] = 1

(b \times t) \mod n = 1 \rightarrow This means t is the multiplicative inverse of b in Z_n
```


while $(r_2 > 0)$ $q \leftarrow r_1 / r_2;$ $r \leftarrow r_1 - q \times r_2$; $t \leftarrow t_1 - q \times t_2$; $t_1 \leftarrow t_2; \quad t_2 \leftarrow t;$ if $(r_1 = 1)$ then $b^{-1} \leftarrow t_1$

a. Process

b. Algorithm

Using extended Euclidean algorithm to find multiplicative inverse

Find the multiplicative inverse of 11 in Z₂₆.

Solution

q	r_I	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	-7
3	3	1	0	5 -7	26
	1	0		-7 26	

The gcd (26, 11) is 1; the inverse of 11 is -7 or 19.

• Find the multiplicative inverse of 23 in Z_{100} .

Solution

q	r_{I}	r_2	r	t_{I}	t_2	t
4	100	23	8	0	1	-4
2	23	8	7	1	-4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

The gcd (100, 23) is 1; the inverse of 23 is -13 or 87.

• Find the inverse of 12 in Z_{26} .

Solution

q	r_I	r_2	r	t_1	t_2	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

The gcd (26, 12) is 2; the inverse does not exist.

Addition and Multiplication Tables

Addition and multiplication table for Z₁₀

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	m,	4	5	6	7	8	9	0
2	2	ო	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	ო
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Addition Table in Z₁₀

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	q	W	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	0	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Multiplication Table in \mathbf{Z}_{10}

Different Sets

• Some Z_n and Z_n * sets

$$\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\mathbf{Z}_6^* = \{1, 5\}$$

$$\mathbf{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10}^* = \{1, 3, 7, 9\}$$

We need to use Zn when additive inverses are needed; we need to use Zn* when multiplicative inverses are needed.

Two More Sets

- Cryptography often uses two more sets: Z_p and Z_p^* .
- The modulus in these two sets is a primenumber.

$$Z_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

 $Z_{13} * = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$