ECE 313 Additional Note

概率质量函数(PMF)与典型离散分布例子

概率质量函数 (PMF, Probability Mass Function) 用于描述离散随机变量取某个具体值的概率。

设 X 是一个定义在可数样本空间 $S\subseteq\mathbb{R}$ 上的离散随机变量,则其概率质量函数为:

$$f_X(x) = egin{cases} \Pr(X = x), & x \in S \ \ 0, & x \in \mathbb{R} \setminus S \end{cases}$$

PMF 的定义覆盖整个实数域,对于不属于状态空间 S 的值,概率为 0。

伯努利分布(Bernoulli Distribution)

场景

一次试验只有两个结果:成功(1)或失败(0)。

参数

• p: 成功的概率

1 − p: 失败的概率

表达式

$$p_X(x) = egin{cases} p, & x=1 \ 1-p, & x=0 \end{cases}$$

示例

抛一枚硬币(正面为1,反面为0):

• 如果硬币公平,则 p = 0.5,有:

$$p_X(x) = egin{cases} rac{1}{2}, & x \in \{0,1\} \ 0, & ext{otherwise} \end{cases}$$

二项分布(Binomial Distribution)

场景

进行 n 次相同的伯努利试验,每次成功概率为 p,记录成功次数。

参数

n: 实验次数

• p: 每次实验成功的概率

表达式

若 $X \sim \operatorname{Bin}(n,p)$,则:

$$\Pr(X=k) = inom{n}{k} p^k (1-p)^{n-k}, \quad k=0,1,\dots,n$$

示例

抛 4 次硬币,每次成功概率为 $p=\frac{1}{4}$:

•
$$Pr(X=0) = \binom{4}{0} p^0 (1-p)^4$$

•
$$\Pr(X=1) = \binom{4}{1} p^1 (1-p)^3$$

•
$$\Pr(X=2) = \binom{4}{2} p^2 (1-p)^2$$

几何分布(Geometric Distribution)

场景

在一系列伯努利试验中,直到第一次成功所需的试验次数。

参数

• p: 每次成功的概率

表达式

$$Pr(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, 3, \dots$$

示例

假设某项任务每次完成的概率为 p=0.2,则第一次成功发生在第 3 次的概率为:

$$\Pr(X=3) = (1 - 0.2)^2 \cdot 0.2 = 0.64 \cdot 0.2 = 0.128$$

无限支持的离散分布示例

设有一个随机变量 X,其可能结果为所有正整数,且概率呈指数下降:

表达式

$$\Pr(X=i)=rac{1}{2^i}, \quad i=1,2,3,\ldots$$

这是一个无限离散分布,但它的总概率仍满足归一性:

$$\sum_{i=1}^{\infty} \frac{1}{2^i} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

说明即便结果是无限多的,只要概率收敛,总概率仍然为 1。

超几何分布(Hyper-geometric Distribution)

场景

超几何分布描述的是:**从有限总体中不放回地抽取样本**时,某种类型元素出现的次数的分布。

例如:

- 总体中有 N 个元素,其中有 K 个是"成功"类型(比如红球),N-K 个是"失败"类型(比如蓝球)。
- 从中抽取 n 个元素,**不放回**。
- 记 X 为抽到的"成功"类型(红球)个数,则 X 就服从超几何分布。

参数

- N: 总体大小(如所有球的总数)
- K: 总体中"成功"元素的数量
- n: 抽样次数(样本量)
- k: 感兴趣的成功次数

概率质量函数(PMF)

$$\Pr(X=k) = rac{inom{K}{k}inom{N-K}{n-k}}{inom{N}{n}}, \quad \max(0,n-(N-K)) \leq k \leq \min(K,n)$$

其中:

- $\binom{K}{k}$ 表示从 K 个成功中选 k 个的方法数。
- $\binom{k}{n-K}$ 表示从失败的 N-K 个中选剩下的 n-k 个。 $\binom{N}{n}$ 是从 N 个总体中抽取 n 个样本的总方法数。

示例

假设有一个装有 20 个球的盒子:

- 其中有7个是红球(成功),13个是蓝球(失败)
- 从中不放回地抽取 5 个球

问:抽到恰好 2 个红球的概率是多少?

代入公式得:

$$\Pr(X=2) = rac{inom{7}{2}inom{13}{3}}{inom{20}{5}} = rac{21 \cdot 286}{15504} pprox 0.387$$

超几何分布 vs 二项分布

特点	超几何分布	二项分布
抽样方式	不放回	放回(或独立)
总体规模	有限且固定(N)	无需考虑总体
试验独立性	不独立(抽一个影响另一个)	独立
应用场景	抽牌、彩票、无放回抽签等	抛硬币、重复实验等

应用场景举例

- 从一堆零件中随机抽样检测不良品数量;
- 抽牌时计算抽到特定花色的概率;
- 抽奖游戏中中奖概率分析。

总结

分布类型	变量取值	参数	概率质量函数表达式
伯努利分布	$\{0, 1\}$	p	$\Pr(X=x)=p^x(1-p)^{1-x}$
二项分布	$0,1,\ldots,n$	n, p	$\Pr(X=k)=inom{n}{k}p^k(1-p)^{n-k}$
几何分布	$1,2,3,\ldots$	p	$\Pr(X=k) = (1-p)^{k-1}p$
无限离散分布	正整数	无	$\Pr(X=i)=rac{1}{2^i}$