Compte rendu TP3 – Régulation de pression : commande par retour d'état

Durant le TP les manipulations n'ont pas fonctionné dans ce compte rendu vous retrouverez donc seulement la préparation.

Mise en place du modèle d'état

Déterminons la représentation d'état :

$$F(s) = \frac{\Delta P(s)}{\Delta M(s)} = \frac{K}{1 + 0.6323s + 0.1001s^{2}}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

$$F(s) = \frac{b_{0} + b_{1}s + \dots + b_{m}s^{m}}{a_{0} + a_{1}s + \dots + a_{n-1}s^{n-1} + s^{n}} \qquad a_{n} = 1 \qquad m < n$$

Donc on utilise la forme compagne horizontale :

$$\partial_{0} = 1$$

$$21 = 0, 6323$$

$$\partial_{3} = 0, 1001$$

$$60 = k$$

$$A = \begin{bmatrix} 0 & 1 \\ \frac{20}{21} & -\frac{21}{21} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -9, 93 & -6, 316 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} \frac{b0}{22} & 0 \end{bmatrix} = \begin{bmatrix} \frac{k}{0, 1001} & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 1 \\ -9, 93 & -6, 316 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$$

$$Q = \begin{bmatrix} \frac{k}{0, 1001} & 0 \end{bmatrix} \approx 0$$

Conception du retour d'état

Cahier des charges 1

Le système corrigé doit être un système du second ordre avec les caractéristiques suivantes :

- Dépassement inférieur à 5%,
- Temps de réponse à 5% de 2s

Déterminons les polynômes caractéristiques

$$\int . I - (A - B L) = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 0 & 4 \\ -9,93 & -6,316 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \times (\ell_0 \ \ell_1)$$

$$(=) \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 0 & 4 \\ -9,93 & -6,316 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ \ell_0 & \ell_1 \end{bmatrix}$$

$$(=) \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -9,99 - \ell_0 & -6,316 - \ell_1 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ 9,99 + \ell_0 & 6,316 + \ell_1 + 5 \end{bmatrix}$$

$$\int e^{\frac{1}{2}} \left[S.I - (A-BL) \right] = \frac{1}{S \times (6,316+l1+s) - (-1) \times (9,99+l0)}$$

$$(5) \frac{1}{6,316s+l_{15}+s^{2}+3,99+l_{0}} = \frac{1}{s^{2}+s(6,316+l_{1})+9,99+l_{0}}$$

$$\int l_{0} = 0.9,99 = 4,58-9,39 = -5,41$$

$$l_{1} = 0.1-6,316 = 3-6,316 = -3,316$$

Déterminons les valeurs propres

$$\int_{\mathbb{C}} e^{+} \left(S. \underline{1} - (A - B.L) \right) = S^{2} + \alpha 1 S + \alpha 0 = S^{2} + 3 S + 4,58$$

$$\Delta = b^{2} - 4 \times 0 \times C = 3^{2} - 4 \times 1 \times 4,58 = 9 - 18,12 = -9,72$$

$$Z_{1} = \frac{b+j\sqrt{\Delta}}{2} = \frac{3+j\sqrt{5},525}{2} \approx 1,5-j1,525$$

$$Z_{2} = \frac{b-j\sqrt{\Delta}}{2\times 2} = \frac{3-j\sqrt{5},525}{2} \approx 1,5+j1,525$$

Cahier des charges 2

Le système corrigé doit être un système du second ordre avec les caractéristiques suivantes :

- Dépassement inférieur à 5%,
- Temps de réponse à 5% de 0.5s

$$t + s_{s} = 0,5s -) t + s_{s} = \frac{3}{\xi_{xw_{n}}}$$
 $vec = 0,7$
 $\omega_{n} = \frac{3}{\xi_{x}} = \frac{3}{0,7 \times 0,5} = 8/57 + 0/5$

Danc :

$$\frac{1}{\omega_n^2 + 2 \times 2 \times 2 \times 2 \times 2 \times 3} = \frac{1}{8,57^2 + 2 \times 9,7 \times 3,57 \times 5 + 5^2}$$

$$(=) \frac{1}{73,45+12s+s^2} - > 0 = 73,45$$

$$(1 = 12)$$

Déterminons les polynômes caractéristiques

$$S. I - (A - BL) = \begin{bmatrix} S & 0 \\ 0 & S \end{bmatrix} - \begin{bmatrix} 0 & 4 \\ -9,93 & -6,316 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \times (\ell_0 \ \ell_1)$$

$$(=) \begin{bmatrix} S & 0 \\ 0 & S \end{bmatrix} - \begin{bmatrix} 0 & 4 \\ -9,93 & -6,316 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ \ell_0 & \ell_1 \end{bmatrix}$$

$$(=) \begin{bmatrix} S & 0 \\ 0 & S \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -9,99 - \ell_0 & -6,316 - \ell_1 \end{bmatrix} = \begin{bmatrix} S & -4 \\ 9,99 + \ell_0 & 6,316 + \ell_1 + S \end{bmatrix}$$

Déterminons les valeurs propres

$$\int_{C} e^{+} \left(S.I - (A - B.L) \right) = S^{2} + d \cdot 1 S + d \cdot 0 = S^{2} + 12S + 73,45$$

$$\Delta = b^{2} - 4x a \times C = 12^{2} - 4x 1 \times 73,46 = 144 - 293,84 = -149,84$$

$$Z_{1} = \frac{b + j \sqrt{\Delta}}{a} = \frac{12 + j \sqrt{-143,14}}{2} \stackrel{\wedge}{\sim} 6 - j \cdot 6,42$$

$$Z_{2} = \frac{b - j \sqrt{\Delta}}{2 \times a} = \frac{12 - j \sqrt{-143,14}}{2} \stackrel{\wedge}{\sim} 6 + j \cdot 6,42$$

Cahier des charges 3

Le système corrigé doit être avoir les valeurs propres suivantes :

- valeur propre de -2 +2i.
- valeur propre de -2 -2i.

Les valeurs propres correspondent aux racines de

$$\Delta = (2 e_{y} w_{n})^{2} - 4 \times 1 \times w_{n}^{2} = 4 e_{y}^{2} w_{n}^{2} - 4 w_{n}^{2}$$

$$\Delta = e_{y}^{2} (w_{n}^{2} - w_{n}^{2})$$

$$\Delta = \frac{-b - j \sqrt{b}}{2 \times 2} = \frac{-2 e_{y} w_{n} - j \sqrt{e_{x}^{2} - w_{n}^{2}}}{2} - e_{y} w_{n} - j \sqrt{e_{x}^{2} - w_{n}^{2}}$$

$$\Delta = \frac{-b - j \sqrt{b}}{2 \times 2} = \frac{-2 e_{y} w_{n} - j \sqrt{e_{x}^{2} - w_{n}^{2}}}{2}$$

$$\Delta = \frac{-b - j \sqrt{b}}{2 \times 2} = \frac{-2 e_{y} w_{n} - j \sqrt{e_{x}^{2} - w_{n}^{2}}}{2}$$

$$\Delta = \frac{-b - j \sqrt{b}}{2 \times 2} = \frac{-2 e_{y} w_{n} - j \sqrt{e_{x}^{2} - w_{n}^{2}}}{2}$$

On peut donc déterminer ζ, ωn et le dépassement

$$-\frac{\xi_{un}^{2} - \xi_{un}^{2}}{\xi_{un}^{2} - w_{n}^{2}} = 2$$

$$\int_{0 \text{ onc}} \frac{\xi_{un}^{2} - w_{n}^{2}}{\xi_{un}^{2}} = 2 \quad -\int_{0 \text{ ors}} \frac{\sqrt{2}}{2} \frac{x_{0}}{\sqrt{7}} = 2$$

$$\int_{0 \text{ ors}} \frac{\sqrt{2}}{2} \frac{x_{0}}{\sqrt{7}} = 2 \quad -\int_{0 \text{ ors}} \frac{\sqrt{2}}{2} \frac{x_{0}}{\sqrt{7}} = 2$$

$$\int_{0 \text{ ors}} \frac{\sqrt{2}}{2} \frac{x_{0}}{\sqrt{7}} = 2 \quad -\int_{0 \text{ ors}} \frac{\sqrt{2}}{2} \frac{x_{0}}{\sqrt{7}} = 2$$

$$\int_{0 \text{ ors}} \frac{\sqrt{7}}{\sqrt{7}} \frac{x_{0}}{\sqrt{7}} = 2 \quad -\int_{0 \text{ ors}} \frac{\sqrt{7}}{\sqrt{7}} \frac{x_{0}}{\sqrt{7}} = 2$$

D'après le calcul matriciel vue dans le cahier des charges précédent on peut déterminer les polynômes caractéristiques

$$l_0 = d_0 - 9,93 = 8,18 - 9,93 = -1,81$$

 $l_1 = d_1 - 6,316 = 9 - 6,316 = -2,316$