代数学Ⅰ計算練習ドリル

担当:大矢 浩徳 (OYA Hironori)

以下では,

とする.

•
$$\mathfrak{S}_n = \left\{ \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix} \middle| i_1, i_2, \dots, i_n$$
は $1, 2, \dots, n$ の並べ替え $\right\}$ を n 次対称群,
• $D_n = \{e, \sigma, \sigma^2, \dots, \sigma^{n-1}, \tau, \sigma\tau, \sigma^2\tau, \dots, \sigma^{n-1}\tau\}$ を n 次 2 面体群,ただし $\sigma^n = e, \tau^2 = e, \tau\sigma = \sigma^{-1}\tau$

問題.以下の元を括弧内で指定した形に直せ.

$$(7)$$
 \mathfrak{S}_5 の元 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix}$. [$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ a_1 & a_2 & a_3 & a_4 & a_5 \end{pmatrix}$ の形]

$$(8)$$
 \mathfrak{S}_5 の元 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix}$. 【 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ a_1 & a_2 & a_3 & a_4 & a_5 \end{pmatrix}$ の形】

(6)
$$(\mathbb{Z}/18\mathbb{Z})^{\times}$$
 \mathcal{O}_{π} $[25]_{18}$. $[n]_{18}, 0 \leq n \leq 17$ \mathcal{O}_{π}]

(7) \mathfrak{S}_{5} \mathcal{O}_{π} $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix}$ \cdot $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix}$. $\begin{bmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \end{pmatrix}$ \mathcal{O}_{π}]

(8) \mathfrak{S}_{5} \mathcal{O}_{π} $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix}$ \cdot $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix}$. $\begin{bmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \end{pmatrix}$ \mathcal{O}_{π}]

(9) \mathfrak{S}_{4} \mathcal{O}_{π} $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ \cdot $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$ \cdot $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$. $\begin{bmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ a_{1} & a_{2} & a_{3} & a_{4} \end{pmatrix}$ \mathcal{O}_{π}]

(10)
$$\mathfrak{S}_6$$
 の元 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 5 & 6 & 3 \end{pmatrix}^{-1}$. [$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \end{pmatrix}$ の形]

(10)
$$\mathfrak{S}_{6}$$
 \mathfrak{O} $\overline{\pi}$ $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 5 & 6 & 3 \end{pmatrix}^{-1}$. [$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \end{pmatrix}$ \mathfrak{O} \mathbb{R}]

(11) \mathfrak{S}_{8} \mathfrak{O} $\overline{\pi}$ $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 8 & 1 & 5 & 6 & 7 & 3 & 2 \end{pmatrix}^{-1}$. [$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} \end{pmatrix}$ \mathfrak{O} \mathbb{R}]

(12) \mathfrak{S}_{4} \mathfrak{O} $\overline{\pi}$ $\begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \end{pmatrix}^{-1}$. [$\begin{pmatrix} 1 & 2 & 3 & 4 \\ a_{1} & a_{2} & a_{3} & a_{4} \end{pmatrix}$ \mathfrak{O} \mathfrak{R}]

(12)
$$\mathfrak{S}_4$$
 の元 $\left(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}\right)^{-1}$. $\left[\begin{pmatrix} 1 & 2 & 3 & 4 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}$ の形]

(13)
$$D_8$$
 の元 $\sigma^{-2}\sigma^4\sigma^{10}$. σ^m . あるいは $\sigma^m\tau$ (0 < m < 7) の形 (13)

(16)
$$D_6$$
 の元 $(\sigma^4 \tau)^{-1}$. 【 σ^m , あるいは $\sigma^m \tau$ $(0 < m < 5)$ の形】

解答.

- $(1) [3]_{16}$
- $(2) [10]_{12}$
- $(3) [2]_{21}$
- $(4) [5]_{24}$
- $(5) [11]_{16}$
- $(6) [13]_{18}$

- $\begin{pmatrix}
 3 & 2 & 1 & 4 & 5 \\
 4 & 1 & 3 & 2
 \end{pmatrix}$ $(10) \begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 \\
 2 & 3 & 6 & 1 & 4 & 5
 \end{pmatrix}$ $(11) \begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 3 & 8 & 7 & 1 & 4 & 5 & 6 & 2
 \end{pmatrix}$ $(12) \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 3 & 1 & 2 & 4
 \end{pmatrix}$ $(13) \sigma^4$
- (13) σ^4
- (14) $\sigma^2 \tau$
- (15) $\sigma^3 \tau$
- (16) $\sigma^4 \tau$
- (17) $\sigma^3 \tau$
- (18) e