

SIN5006 - Inteligência Computacional

Trabalho de avaliação da disciplina

10 sem 2025 - aluno Ivan F. Gancev (16298145)

Professora Patrícia R. Oliveira

Dados do artigo selecionado

Título: Stock Price Manipulation Detection using Variational Autoencoder and Recurrence Plots

Autores:

- Khaled Safa
 - Department of Computer Science, NTIC Faculty University of Constantine2, Abdelhamid Mehri, Constantine, Algeria
- Ammar Belatreche
 - Department of Computer and Information Sciences, Fac. of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, UK
- Salima Ouadfel
 - Department of Computer Science, NTIC Faculty University of Constantine2, Abdelhamid Mehri, Constantine, Algeria

Publicação: 2024 International Joint Conference on Neural Networks (IJCNN)

Link: https://doi.org/10.1109/IJCNN60899.2024.10650234

Objetivo do artigo

O mercado de ações demanda constante necessidade de aprimoramento dos mecanismos que identificam cenários de manipulação ilícitas em seus preços. Isso interfere diretamente na confiança dos investidores e atualizações de normas feitas por seus reguladores.

O artigo escolhido desenvolve um método de identificação de manipulações em preços de ações usando *Recurrence Plots* e *beta Variational Autoencoders*, usando redes neurais convolucionais. Este modelo demonstrou alta eficácia na identificação de manipulações usando dados do projeto LOBSTER, que reuniu dados oficiais da NASDAQ das empresas Amazon, Google, Intel, Microsoft e Apple.

Breve descrição das técnicas

Recurrence Plots

- Introduzido por Eckmann e outros em 1987
- É uma técnica avançada de análise de dados não lineares. É uma visualização (ou um gráfico) de uma matriz quadrada, na qual os elementos da matriz correspondem aos momentos em que um estado de um sistema dinâmico se repete.
- Tecnicamente, o RP revela todos os momentos em que a trajetória do espaço de fase do sistema dinâmico visita aproximadamente a mesma área no espaço de fase.
- Ref: http://www.recurrence-plot.tk/glance.php

Variational Autoencoder

- Por Diederik P. Kingma e Max Welling
- É um modelo gráfico probabilístico composto por uma rede de codificadores, uma rede de decodificadores e uma função de perda. O codificador mapeia os dados de entrada em uma distribuição com uma média e um desvio padrão, então a variável latente é amostrada. dessa média e desvio padrão e o decodificador aprende a reconstruir os dados através da representação oculta por backpropagation dos erros da função de perda.
- Ref: https://arxiv.org/pdf/1312.6114

Conjuntos de dados

O projeto LOBSTER (Limit Order Book System - The Efficient Reconstructor) possui um conjunto de dados contendo o **livro de ofertas** e o **histórico de ordens** de 5 ativos da bolsa de NASDAQ. Os dados do artigo são os de 10 nível de 21/jun/2012. Os ativos são:

Amazon: AMZN

Apple: AAPL

Google: GOOG

• Intel: INTC

Microsoft: MSFT

Ref: https://lobsterdata.com/info/DataSamples.php

Códigos-fonte

Os códigos-fonte usados no artigo não estão disponíveis

Estas Alassa Data

Resultados

O artigo faz um comparativo no final sobre a ingestão proposital de manipulações nos preços e compara os resultados de alarmes falsos e AUC (Area Under the Curve) que mostram resultados relevantes do modelo proposto pelo artigo. Os modelos comparados foram:

Adaptative Hidden Markov Model with Anomaly States (AHMMAS)

AII

 Kernel Principal Component Analysis (KPCA)/Multidimensional Kernel Density Estimation (MKDE)

AUC				False Alarm Rate			
	Proposed	AHMMAS	KPCA-		Proposed	AHMMAS	KPCA-
	approach		MKDE		approach		MKDE
APPLE	0.8500	0.5344	0.9206	APPLE	1.24	7.83	1.07
AMZN	0.8721	0.5152	0.9602	AMZN	1.58	9.22	1.22
MSFT	0.9145	0.6711	0.9143	MSFT	2.5	0.52	0.71
INTC	0.9376	0.5169	0.8732	INTC	1.32	1,15	0.54
GOOG	0.8805	0.5119	0.8996	GOOG	2.16	0.5	1.62

Ideia para o projeto

Etapa preliminar (30/abr):

Criar a implementação para Recurrence Plots com os dados usados no artigo

Apresentação final (18/jun):

- Criar a implementação para Variational Autoencoders para o mesmo conjunto de dados
- Comparar os resultados obtidos com os resultados demonstrados no artigo

Obrigado!