Graph Theory

 ${\rm Jeremy\ Le-UNSW\ MATH}5425\ 25T1$

Contents

1	Introduction		
	1.1	Definitions	3
	1.2	The Degree of a Vertex	
		1.2.1 Some Special Graphs	
	1.3	Paths and Cycles	
	1.4	Connectivity	
	1.5	Trees and Forests	7
2	Matchings and Hamilton Cycles		
	2.1	Matchings in Bipartite Graphs	g
	2.2	Hamilton Cycles	
	2.3	Matchings in General Graphs	
3	The	e Probabilistic Method	13
4	Gra	aph Colourings	16
	4.1	Vertex Colourings	16

Introduction

1.1 Definitions

A graph G = (V, E) is a set V of vertices and a set E of unordered pairs of distinct vertices, called edges. Write vw or $\{v, w\}$ for the edge joining v and w, and say that v and w are **neighbours** or that they are adjacent.

In these notes, unless otherwise stated, graphs are:

- finite: $|V| \in \mathbb{N}$.
- labelled: vertices are distinguishable, usually $V = [n] := \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.
- undirected: edges are unordered pairs of vertices.
- simple: no loops $\{v, v\}$ or multiple edges (since E is not a multiset).

A graph G with vertex set $\{v_1, \ldots, v_n\}$ has adjacency matrix $A(G) = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } v_i v_j \in E, \\ 0 & \text{otherwise.} \end{cases}$$

A(G) is a **symmetric** $n \times n$ 0-1 matrix with zero diagonal.

The **trivial graph** has at most one vertex. Hence it has no edges.

A **subgraph** of a graph G = (V, E) is a graph H = (W, F) such that $W \subseteq V$ and $F \subseteq E$.

We say that H is an **induced subgraph** if for all $v, w \in W$ if $vw \in E(G)$ then $vw \in E(H)$. Write H = G[W], and say that H is the subgraph of G induced by the vertex set W.

The number of **vertices** of G, written |G| = |V(G)|, is called the *order* of G. The number of **edges** of G, sometimes written |G| = |E(G)|, is called the *size* of G.

Two graphs G = (V, E) and H = (W, F) are **isomorphic** if there exists a bijection $\phi : V \to W$ such that $\phi(v)\phi(w) \in F$ if and only if $vw \in E$. The map ϕ is called a graph isomorphism or isomorphism.

1.2 The Degree of a Vertex

If $v \in e$ where v is a vertex and e is an edge, then we say that e is incident with v. The **degree** $d_G(v)$ of vertex v in a graph G is the number of edges of G which are incident with v. A vertex of degree 0 is an isolated vertex.

Let $N_G(v)$ be the set of all **neighbours** of v in G, then d(v) = |N(v)|.

Lemma 1.2.1 (The Handshaking Lemma). In any graph, G = (V, E),

$$\sum_{v \in V} d(v) = 2|E|.$$

Let $\delta(G) = \min_{v \in V} d(v)$ be the minimum degree in G, and $\Delta(G) = \max_{v \in V} d(v)$ be the maximum degree in G.

1.2.1 Some Special Graphs

A graph is k-partite if there exists a partition of its vertex set

$$V = V_1 \cup V_2 \cup \cdots V_k$$

into k nonempty disjoint subsets (parts) such that there are no edges between vertices in the same part.

The **complete graph** on r vertices, denoted K_r , has all $\binom{r}{2}$ edges present. The **complete bipartite** graph K_r , s has r vertices in one part of the vertex bipartition, s vertices in the other, and all rs present.

A graph is **regular** if every vertex has the same degree. If every vertex of a graph has degree d then we say that the graph is d-regular.

The **complement** of a graph G is the graph $\bar{G} = (V, \bar{E})$ where $vw \in \bar{E}$ if and only if $vw \notin E$. Note that \bar{K}_n is the graph with n vertices and no edges.

If G = (V, E) and $X \subset V$ then G - X denotes the graph obtained from G by deleting all vertices in X and all edges which are incident with vertices in X. If $F \subseteq E$ then G - F denotes the graph (V, E - F) obtained from G by deleting the edges in F.

1.3 Paths and Cycles

A walk in the graph G is a sequence of vertices $v_0v_1v_2\cdots v_k$ such that $v_iv_{i+1}\in E$ for $i=0,1,\ldots,k-1$. The length of this walk is k. The walk is closed if $v_0=v_k$.

An **Euler tour** is a *closed walk* in a graph which uses every edge precisely once. A graph is Eulerian if it has an Euler tour.

Theorem 1.3.1 (Euler, 1736). A connected graph is Eulerian if and only if every vertex has even degree.

A walk is a **path** if it does not visit any vertex more than once. A path is a sequence of *disinct* vertices, with subsequence vertices joined by an edge. A path $v_0v_1...v_k$ with k edges is called a k-path and has length k.

If $k \geq 3$ and $P = v_0 v_1 \cdots v_{k-1}$ is a path of length k-1 then $C = P + v_0 v_{k-1}$ is a **cycle** of length k, also called a k-cycle. It is a closed walk which visits no internal vertex more than once.

An edge which joins two vertices of a cycle C, but which is not an edge of C, is called a **chord**. An **induced cycle** is a cycle which has no chords.

Proposition 1.3.2. Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, if $\delta(G) \geq 2$.

Proof. Let $P = x_0 x_1 \dots x_k$ be the longest path in G. By maximality of P, all neighbours of x_k lie on P. Hence $\delta(G) \leq d(x_k) \leq k = |\{x_0, x_1, \dots, x_{k-1}\}|$, which proves the first statement. Let x_i be the smallest-indexed neighbour of x_k in P. Then $C = x_k x_i x_{i+1} \dots x_{k-1} x_k$ is a cycle of length $\geq \delta(G) + 1$ because C contains $d(x_k) \geq \delta(G)$ neighbours of x_k as well as x_k .

The minimum length of a cycle in G is the girth of G, denoted by q(G).

Given $x, y \in V$, let $d_G(x, y)$ be the length of a shortest path from x to y in G, called the **distance** from x to y in G. Set $d_G(x, y) = \infty$ if no such path exists.

We say that G is **connected** if $d_G(x, y)$ is finite for all $x, y \in V$.

Let the **diameter** of G be $diam(G) = \max_{x,y \in V} d_G(x,y)$.

Proposition 1.3.3. Every graph G which contains a cycle satisfies $g(G) \leq 2 \operatorname{diam}(G) + 1$.

Proof. Let C be a shortst cycle in G, so |C| = g(G). For a contradiction, assume $g(G) \ge 2 \operatorname{diam}(G) + 2$.

Choose vertices x, y on C with $d_C(x, y) \ge \operatorname{diam}(G) + 1$. In G the distance $d_G(x, y)$ is strictly smaller, so any shortest path P from x to y in G is not a subgraph of C. But using P together with the shorter arc of C from x to y gives a closed walk of length < |C|. This closed walk contains a shorter cycle than C which is a contradiction.

1.4 Connectivity

A maximal connected subgraph of G is called a **component** (or **connected component**) of G.

Proposition 1.4.1. The vertices of a connected graph can be labelled v_1, v_2, \ldots, v_n such that $G_n = G$ and $G_i = G[v_1, \ldots, v_i]$ is connected for all i.

Proof. Choose v_1 arbitrarily. Now suppose that we have labelled v_1, \ldots, v_i such that $G_j = G[v_1, \ldots, v_j]$ is connected for all $j = 1, \ldots, i$.

If i < n then $G_i \neq G$, so there exists some $v_j \in \{v_1, \ldots, v_i\}$ with a $w \notin \{v_1, \ldots, v_i\}$ in G. (Otherwise $G_i \neq G$ is a component of G, impossible as G is connected.) Let $v_{i+1} = w$, then $G_{i+1} = G[v_1, \ldots, v_{i+1}]$ is connected. This completes the proof, by induction.

Let $A, B \subseteq V$ be sets of vertices. An (A, B)-path in G is a path $P = x_0 x_1 \cdots x_k$ such that

$$P \cap A = \{x_0\}, \quad P \cap B = \{x_k\}.$$

Let $A, B \subseteq V$ and let $X \subseteq V \cup E$ be a set of vertices and edges. We say that X separates A and B in G if every (A, B)-path in G contains a vertex or edge from X.

Note that we do not assume that A and B are disjoint and if X separates A and B then $A \cap B \subseteq X$. We say that X separates two vertices a, b if $a, b \notin X$ and X separates the sets $\{a\}, \{b\}$.

More generally, we say that X separates G, and call X a **separating set** for G, if X separates two vertices of G. That is, X separates G if there exist distinct vertices $a, b \notin X$ such that X separates a and b.

If $X = \{x\}$ is a separating set for G, where $x \in V$, then we say that x is a **cut vertex**.

If $e \in E$ and G - e has more components than G then e is a **bridge**.

The unordered pair (A, B) is a **separation** of G if $A \cup B = V$ and G has no edge between A - B and B - A. The second conditions says that $A \cap B$ separates A from B in G. If both A - B and B - A are nonempty then the separation is **proper**. The order of the separation is $|A \cap B|$.

Definition. Let $k \in \mathbb{N}$. The graph G is **k-connected** if |G| > k and G - X is connected for all subsets $X \subseteq V$ with |X| < k.

The **connectivity** $\kappa(G)$ of G is defined by

$$\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}.$$

So, $\kappa(G) = 0$ iff G is trivial or G is disconnected. Also, $\kappa(K_n) = n - 1$ for all positive integers n.

Definition. Let $\ell \in \mathbb{N}$ and let G be a graph with $|G| \geq 2$. If G - F is connected for all $F \subseteq E$ with $|F| < \ell$ then G is ℓ -edge-connected.

The **edge connectivity** $\lambda(G)$ is defined by

$$\lambda(G) = \max\{\ell : G \text{ is } \ell\text{-edge-connected}\}.$$

Proposition 1.4.2. If $|G| \ge 2$ then $\kappa(G) \le \lambda(G) \le \delta(G)$.

Theorem 1.4.3 (Mader, 1973). Let k be a positive integer. Every graph G with average degree at least 4k has a (k+1)-connected subgraph H with

$$\frac{|E(H)|}{|V(H)|} > \frac{|E(G)|}{|V(G)|} - k.$$

Proof. We write |G| instead of |V(G)|. Let $\gamma = \frac{|E(G)|}{|G|} \ge 2k$. Consider subgraphs G' of G which satisfy:

$$|G'| \ge 2k$$
 and $|E(G')| > \gamma(|G'| - k)$. (1.1)

such graphs G' exists as G satisfies 1.1. (Average degree of G is $\frac{2|E(G)|}{|G|} \geq 4k$, so

$$|G| \ge 4k$$
 and $\gamma(|G| - k) = |E(G)| \frac{(|G| - k)}{|G|} < |E(G)|$.)

Now let H be a subgraph of G of smallest order which satisfies 1.1. We continue the proof by proving three claims.

Claim 1. If G' satisfies 1.1 then |G'| > 2k.

Proof. If G' satisfies 1.1 and |G'| = 2k then $|E(G')| > \gamma(|G'| - k) \ge 2k^2 > {|G'| \choose 2}$, contradiction.

Claim 2. $S(H) > \gamma$.

Proof. For a contradiction, suppose that $S(H) \leq \gamma$. Let G' be obtained from H by deleting a vertex of degree $\leq \gamma$. Then |G'| < |H| and G' satisfies 1.1, which is a contradiction. To see this, check:

$$|G'| = |H| - 1 \ge 2k$$
, by Claim 1, and $|E(G')| \ge |E(H)| - \gamma > \gamma(|H| - k - 1)$, as H satisfies 1.1 $= \gamma(|G'| - k)$.

Hence $S(H) > \gamma$. It follows that $|H| \ge \gamma$. Thus,

$$\frac{|E(H)|}{|H|} > \frac{\gamma(|H| - k)}{|H|}.$$
 (as H satisfies 1.1)

Claim 3. H is (k+1)-connected.

Proof. By Claim 1, $|H| \ge 2k + 1 \ge k + 2$ as $k \ge 1$. So H is large enough. For a contradiction, suppose that H is not (k+1)-connected. Then H has a proper separation $\{U_1, U_2\}$ of order at most k.

Let $H_i = H[U_i]$ for i = 1, 2. Since any vertex $v \in U_1 - U_2$ has $d_H(v) \ge S(H) > \gamma$ (by Claim 2), and all neighbours of v in H belong to H_1 , we have $|H_1| \ge \gamma \ge 2k$. Similarly, $|H_2| \ge 2k$. By minimality of H, neither H_1 nor H_2 satisfies 1.1. Hence $|E(H_i)| \le \gamma(|H_i| - k)$ for i = 1, 2. But then

$$|E(H)| \le |E(H_1)| + |E(H_2)|$$

$$\le \gamma(|H_1| + |H_2| - 2k)$$

$$\le \gamma(|H| - k),$$
 (by inclusion-exclusion)

since $|U_1 \cup U_2| \le k$. This contradicts 1.1 for H. So H is (k+1)-connected, completing the proof of Claim 3 and of the theorem.

1.5 Trees and Forests

A graph with no cycles is a **forest** (also called an acyclic graph). A connected graph with no cycles is a **tree**.

Theorem 1.5.1. The following are equivalent for a graph T:

- (i) T is a tree;
- (ii) Any two vertices of T are linked by a unique path in T;
- (iii) T is minimally connected: that is, T is connected but T-e is disconnected for every $e \in E(T)$;

(iv) T is maximally acyclic: that is, T is acyclic but T + xy has a cycle for any two nonadjacent vertices x, y in T.

Corollary 1.5.2. If G is connected then G has a spanning tree.

Corollary 1.5.3. The vertices of a tree can be labelled as v_1, \ldots, v_n so that for $i \geq 2$, vertex v_i has a unique neighbour in $\{v_1, \ldots, v_{i-1}\}$.

Proof. We use the labelling from Proposition 1.4.1. This labels the vertices of a given tree G as v_1, \ldots, v_n such that $G[v_1, \ldots, v_n]$ is connected. Let $i \geq 1$ then $G[v_1, \ldots, v_i]$ is a tree. Note $G[v_1, \ldots, v_{i+1}]$ is connected by Proposition 1.4.1, so v_{i+1} has at least one neighbour in $G[v_1, \ldots, v_i]$. For a contradiction, suppose that v_{i+1} has two neighbours z and w in $G[v_1, \ldots, v_i]$. There is a (unique)

For a contradiction, suppose that v_{i+1} has two neighbours z and w in $G[v_1, \ldots, v_i]$. There is a (unique) path P in $G[v_1, \ldots, v_i]$ between z and w, and this path does not visit v_{i+1} . Hence $P \cup \{zv_{i+1}, wv_{i+1}\}$ is a cycle in G, contradiction.

Corollary 1.5.4. A connected graph with n vertices is a tree if and only if it has n-1 edges.

Proof. Suppose that G is a tree on n vertices. The result is true when n = 1. Now suppose the result is true when n = k. Let G be a tree on k + 1 vertices. Let G be a leaf in G (e.g. take an end vertex of a longest path in G.) Then G - v is a tree on K vertices, so G - v has K - 1 edges (inductive hypothesis). Therefore G has K edges as K has degree 1. This concluses the proof, by induction.

Conversely, suppose that G is connected with n vertices and n-1 edges. Then G contains a spanning tree H, by an earlier corollary. Then H has exactly n-1 edges, since it is a tree on n vertices. Hence H=G, so G is a tree.

Corollary 1.5.5. If T is a tree and G is any graph with $\delta(G) \geq |T| - 1$ then G has a subgraph isomorphic to T.

Matchings and Hamilton Cycles

Two edges in a graph are called **independent** if they have no vertices in common. A set M of pairwise independent edges in a graph is called a **matching**.

Given G = (V, E) and $U \subseteq V$, say that $M \subseteq E$ is a **matching of U** if M is matching and every vertex in U is incident with an edge of M. We say that the vertices in U are matched by M, and t hat the vertices not incident with any edge of M are **unmatched**.

A matching M is a **maximal matching** of G if $M \cup \{e\}$ is not a matching for any $e \in E - M$. A **maximum matching** of G is a matching of G such that no set of edges with size greater than |M| is

A maximum matching of G is a matching of G such that no set of edges with size greater than |M| is a matching.

A **perfect matching** of G is a matching of G which matches every vertex of G. Note: a perfect matching is a 1-regular spanning subgraph of G also called a **1-factor** of G.

A k-factor is a k-regular spanning subgraph. A **2-factor** in a graph is the union of disjoint cycles which covers all the vertices.

2.1 Matchings in Bipartite Graphs

Let G = (V, E) be a bipartite graph with vertex bipartition $V = A \cup B$. Here A, B are nonempty disjoint sets. We use the convention that all vertices called a, a', a'', \ldots belong to A and similarly for B.

Let M be matching in G. A path in G which starts at an *unmatched* vertex of A and contains, alternately, edges from E-M and from M, is called an **alternating path** with respect to M.

If an alternating path P ends in an unmatched vertex of B then it is called an **augmenting path**.

Definition 2.1.1. A set $U \subseteq V$ is a **cover** (or **vertex cover**) of G if every edge of G is incident with a vertex in U.

Theorem 2.1.2 (König, 1931). Let G be a bipartite graph. The size of a maximum matching in G is equal to the size of the minimum vertex cover of G.

Proof. Let \hat{U} be a cover in G and let M be a maximum matching. Then $|\hat{U}| \geq |M|$ as we must cover every edge of M. Hence it suffices to construct a cover U of G with |U| = |M|.

We build U be choosing one vertex from each edge of M to place into U, as follows:

• If $ab \in M$ and some alternating path in G with respect to M ends in b. Then put b into U otherwise put a into U.

Let $ab \in E$. If $ab \in M$ then $a \in U$ or $b \in U$ by definition of U. Now assume $abb \notin M$. Since M is maximum, there exists $a'b' \in M$ with a = a' or b = b'. If a is unmatched in M then b = b' for some $a'b' \in M$. Hence ab is an alternating path ending in b = b', so we chose b' to go into U from the edge $a'b' \in M$. So the edge ab is covered by U in this case.

Hence we assume that a=a' for some $a'b' \in M$. If $a=a' \in U$ then we are done. Otherwise $b' \in U$, so there is an alternating path P ending in b'. Then $P=a_1b_1a_2b_2...b'$, and we have three cases:

- (i) P does not include a or b. Then $Pab = a_1 a_2 \dots b'ab$ is an alternating path in G with respect to M. By maximality of M, b is matched or else we have an augmenting path. Hence $b \in U$ as b is the chosen vertex from its matching edge.
- (ii) If b is on P before a, or $b \in P$ and $a \notin P$, then $P = a_1b_1a_2...b...b'$. Then we let $P' = a_1b_1...b$. This is an alternating path ending in b, so finish proof as case above.
- (iii) If a is on P before b, or $a \in P$ and $b \notin P$. Then $P = a_1b_1 \dots a_rb_r \dots b'$ and we take $P' = a_1b_1 \dots ab$. This is an alternating path ending in b, so finish proof as case above.

This proves U is a cover of G and since |U| = |M|, this completes the proof.

For a subset $S \subseteq A$, let $N(S) = \bigcup_{v \in S} N(v)$ be the set of vertices in B which are neighbours of some vertex in S.

Theorem 2.1.3 (Hall, 1935). Let G be a bipartite graph. Then G contains a matching of A if and only if

$$|N(S)| \ge |S|$$
 for all $S \subseteq A$. (2.1)

Proof. We have that this condition is necessary. Now suppose that (2.1) holds. For a contradiction, suppose that G has no matching of A. Then König's Theorem (Theorem 2.1.2) says that G has a cover U with |U| < |A|. Suppose that $U = A' \cup B'$ with $A' \subseteq A$ and $B' \subseteq B$. Then |A'| + |B'| = |U| < |A|, so |B'| < |A| - |A'| = |A - A'|. Since U is a cover, G has no edges from A - A' to B - B'. Hence $N(A - A') \subseteq B'$, and so $|N(A - A')| \le |B'| < |A - A'|$. This contradicts Hall's condition 2.1 for S = A - A'. Hence G contains a matching of A.

Corollary 2.1.4. Let G be a bipartite graph and $d \in \mathbb{N}$. If $|N(S)| \ge |S| - d$ for all $S \subseteq A$ then G has a matching of size |A| - d.

Proof. Add d new vertices to B and join each of them by an edge to each vertex of A. Then for all $S \subseteq A$, in the new graph G', $|N_{G'}(S)| \ge |S| - d + d = |S|$. Hall's condition is satisfied in G'. Therefore there is a matching M in G' which matches all of A. At least |A| - d edges in M are edges of G.

Corollary 2.1.5. If G is a k-regular bipartite graph then G has a perfect matching.

Proof. Assume $k \ge 1$. Since G is k-regular, |E(G) = k|A| = k|B|, so |A| = |B|. Hence it suffices to prove that G contains a matching of A. Every set $S \subseteq A$ is joined to N(S) by a total of k|S| edges. These edges are a subset of the k|N(S)| edges incident with |N(S)|. Hence $k|S| \le k|N(S)|$

and diving by k shows that Hall's condition holds. Thus, G has a matching of A.

Corollary 2.1.6. Every regular graph of positive even degree has a 2-factor.

Proof. Let G be any 2k-regular graph, $k \geq 1$. Without loss of generality, suppose that G is connected (or apply this argument to each component). By Theorem 1.3.1, G has an Euler tour $v_0v_1 \ldots v_{l-1}v_l$ where $v_l = v_0, e_i = v_iv_{i+1} \in E(G)$ using each edge exactly once.

Replace each vertex $v \in V$ with a pair of vertices v^-, v^+ , and replace every edge $e_i = v_i v_{i+1}$ by the edge $v_i^+ v_{i+1}^-$. The resulting graph G' is a k-regular bipartite graph. Hence by Corollary 2.1.5, G' has a perfect matching (1-factor). Collapse every vertex pair (v^-, v^+) back into a single vertex v, for all $v \in V$. The 1-factor of G' becomes a 2-factor of G.

2.2 Hamilton Cycles

A **Hamilton cycle** is a connected 2-factor. That is, it is a cycle which includes every vertex.

Say G is **Hamiltonian** if it contains a Hamilton cycle. A Hamiltonian graph G must be connected with minimum degree $\delta(G) \geq 2$.

Theorem 2.2.1 (Dirac, 1952). Every graph with $n \ge 3$ vertices and with minimum degree at least n/2 has a Hamilton cycle.

Proof. Let G be a graph with minimum degree $\geq n/2$ and $n \geq 3$ vertices. Then G is connected, as otherwise the degree of any vertex in the smaller component must be < n/2. Let $P = x_0 \dots x_k$ be a longest path in G. by maximality, all neighbours of x_0 and x_k lie on P. So at least n/2 of the vertices x_0, \dots, x_{k-1} are adjacent to x_k and at least n/2 of these same vertices satisfy $x_0x_{i+1} \in E(G)$. By the pigeonhole principle, as k < n, there exists $i \in \{0, \dots, k-1\}$ with $x_0x_{i+1}, x_ix_k \in E(G)$. This gives a cycle $x_0x_1 \dots x_ix_k \dots x_{i+1}x_0$. We claim this is a Hamilton cycle. If not then, as G is connected, there is some $u \notin C$ with a neighbour $v \in C$. Then we can start at u, go to v then go around v (in some direction) and stop just before we reach v again (i.e. stop at v and v and v aparts which is longer than v contradiction.

2.3 Matchings in General Graphs

Given a graph G, let C_G be the set of its components and let q(G) denote the number of odd components (connected components having an odd number of vertices).

Theorem 2.3.1 (Tutte, 1947). A graph G has a perfect matching if and only if

$$q(G-S) \le |S|$$
 for all $S \subseteq V(G)$. (2.2)

Proof. We have seen that the condition (2.2) is necessary: if G has a perfect matching then (2.2) holds. Now suppose that G has no perfect matching. We want to find a "bad" set S_0 which fails condition (2.2). If |G| is odd then, $S_0 = \emptyset$ is bad. So assume |G| is even.

Claim 1. If G' is obtained from G by adding edges and $S_0 \subseteq V$ is bad for G' then S_0 is bad for G.

Proof. If S_0 bad for G' then $q(G - S_0) > |S_0|$. But each odd component of G' - S is a disjoint union of components of G - S, at least one of which must be odd. So $q(G - S) \ge q(G' - S)$.

Hence by Claim 1, we can assume that G has no perfect matching but adding any edge to G gives a graph G' which has a perfect matching.

Claim 2. S is a bad set for G if and only if all components of G - S are complete and every vertex in S is adjacent to all other vertices in G.

Proof. For proof, call the second half of the claim (*). If S is bad for G but does satisfy (*) then we can add an edge to G to get a graph G' with S still bad for G'. This contradicts our assumption on the maximality of G. Conversely suppose S satisfies (*) but S is not bad. Then we can form a perfect matching since |G| is even. This is a contradiction as G has no perfect matching. Hence S is bad.

Define $S_0 = \{v \in V : d_G(v) = n - 1\}$ to be the set of all vertices v in G which are adjacent to every other vertex $w \neq v$.

Claim 3. S_0 is bad.

Proof. We need to show that S_0 satisfies (*). For a contradiction, suppose that S_0 does not satisfy (*). Then $G - S_0$ has a component K which is not complete. Let $a, a' \in V(K)$ with $aa' \notin E(G)$. Fix a shortest path from a to a' in K which starts $abc \dots a'$. Such a path has length ≥ 2 and $ac \notin E(G)$. Note $b \in K$, so $b \in S_0$, so there is some $d \in V$ with $bd \notin E$. By maximality of G, there is a perfect matching M_1 in G + ac and a perfect matching M_2 in G + bd. Take a maximal path P in G, starting at d with an edge from M_1 , and taking alternately edges from M_1 and M_2 . Say $P = d \dots v$.

- If the last edge of P is in M_1 then v = b or we could extend P. Let C = P + bd (cycle in G + bd).
- If the last edge of P is in M_2 then $v \in \{a, c\}$ as the M_1 edge incident with v must be ac. Let C be the cycle $d \dots vbd$.

In each case, C is an alternating (even length) cycle in G + bd which contains bd. Form M'_2 from M_2 by replacing $M_2 \cap C$ by $C - M_2$. This gives a perfect matching of G, contradiction. Hence S_0 satisfies (*), so Claim 3 holds and the proof is complete.

Corollary 2.3.2 (Petersen, 1891). Every bridge cubic (3-regular) graph has a perfect matching.

Proof. Let G be a bridgeless cubic graph. We prove that G satisfies Tutte's condition. Let $S \subseteq V(G)$ be given and consider an odd component C of G - S. The sum of the degrees of vertices in C is 3|C|, which is an odd number. Every edge with both end vertices in C contributes an even number to this sum. Hence the number of edges from C to S is odd.

As G has no bridge, there must be at least 3 edges from S to G. Therefore the number of edges from S to G-S is at least 3q(G-S). But the number of edges from S to G-S is bounded above by the sum of the degrees of vertices in S, which is 3|S| as G is cubic. Hence $3q(G-S) \le \#$ edges from S to $G-S \le 3|S|$ and thus $q(G-S) \le |S|$. Therefore by Tutte's Theorem, G has a perfect matching.

The Probabilistic Method

This chapter assumes knowledge of elementary probability knowledge. Content from first year is sufficient.

Example 3.0.1. Let Ω be the set of all graphs on the vertex set $\{1, 2, ..., n\}$. Then $|\Omega| = 2^{\binom{n}{2}}$. Define $\pi(G) = 2^{\binom{n}{2}}$ for all $G \in \Omega$. This is the *uniform model of random graphs*.

Lemma 3.0.2. The expected number of edges in a uniformly chosen graph on the vertex set $\{1, 2, \dots n\}$ is $\frac{1}{2} \binom{n}{2}$.

Proof. (From Definition) For $0 \le m \le \binom{n}{2} = N$, there $\binom{N}{m}$ are exactly of graphs on vertex set $\{1, \ldots, n\}$ with m edges. Let X be the number of edges in the random graph. Then

$$EX = \sum_{m=0}^{N} \Pr(X = m) \cdot m$$

$$= \sum_{m=0}^{N} \frac{\binom{N}{m}}{2^{N}} \cdot m$$

$$= \frac{N}{2^{N}} \sum_{m=1}^{N} \frac{(N-1)!}{(m-1)!(N-m)!}$$

$$= \frac{N}{2^{N}} \sum_{j=0}^{N-1} \binom{N-1}{j}$$

$$= \frac{N}{2^{N}} 2^{N-1}$$

$$= \frac{N}{2} = \frac{1}{2} \binom{n}{2}.$$
(by the binomal theorem)
$$= \frac{N}{2} = \frac{1}{2} \binom{n}{2}.$$

Let $A \subseteq \Omega$ be an event. The indicator variable I_A for $A \subseteq \Omega$ is

$$I_A(z) = \begin{cases} 1 & \text{if } z \in A \\ 0 & \text{otherwise.} \end{cases}$$

Definition 3.0.3 (Linearity of Expectation). Let X_1, \ldots, X_k be random variables on Ω and let $c_1, \ldots, c_k \in \mathbb{R}$. Define the random variable $X = c_1 X_1 + \cdots + c_k X_k$. Then

$$\mathbb{E}[X] = c_1 \mathbb{E}[X_1] + c_2 \mathbb{E}[X_2] + \dots + c_k \mathbb{E}[X_k].$$

Definition 3.0.4 (Markov's Inequality). SUppose that $X : \Omega \to [0, \infty)$ is a nonnegative random variable on Ω and let k > 0. Then

$$\Pr(X \ge k) \le \frac{\mathbb{E}[X]}{k}.$$

In particular, if X is a nonnegative integer-valued random variable then

$$\Pr(X \neq 0) \leq \mathbb{E}[X].$$

Let $k \geq 2$ be an integer. Events A_1, \ldots, A_k in Ω are **mutually independent** if for all $j, \ell_1, \ldots, \ell_j$ with $2 \leq j \leq k$ and $1 \leq \ell_1 < \ell_2 < \cdots < \ell_j \leq k$,

$$\Pr\left(\bigcap_{i=1}^{j} A_{\ell_i}\right) = \prod_{i=1}^{j} \Pr(A_{\ell_i}).$$

Lemma 3.0.5. Let Ω be the set of all subsets of some given set S, where |S| = n. Define a random set $X \subseteq S$ by setting $\Pr(x \in X) = \frac{1}{2}$, independently for each $x \in S$. Then $\Pr(X = A) = 2^{-n}$ for all $A \subseteq S$, so this gives the uniform probability space on Ω .

Proof. Fix $A \subseteq \Omega$. Then

$$\Pr(X = A) = \prod_{x \in A} \Pr(\text{heads}) \cdot \prod_{x \notin A} \Pr(\text{tails})$$
 (using independence)
$$= \left(\frac{1}{2}\right)^{|A|} \cdot \left(\frac{1}{2}\right)^{n-|A|}$$

$$= \left(\frac{1}{2}\right)^{n} = 2^{-n}$$

as claimed.

Theorem 3.0.6 (Alon & Spencer, Theorem 2.2.1). Let G be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least m/2 edges.

Proof. Let Ω be the set of all subsets of V(G). Then $|\Omega| = 2^n$. Consider the uniform probability space on Ω . Let $A \subseteq V$ be a randomly chosen element of Ω and define B = V - A. Call $xy \in E(G)$ a crossing edge if exactly one of x, y belongs to A. Let X be the number of crossing edges. Finally, for each edge $e \in E(G)$ define the indicator variable

$$X_e = \begin{cases} 1 & \text{if } e \text{ is a crossing edge,} \\ 0 & \text{otherwise.} \end{cases}$$

Then $X = \sum_{e \in E(G)} X_e$. For any $e = xy \in E(G)$, we have,

$$\Pr(x \in A \text{ and } y \notin A) = \Pr(x \in A) \Pr(y \in A)$$
 (using independence)
= $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Therefore

$$\mathbb{E}X_e = \Pr((x \in A \text{ and } y \notin A) \text{ or } (x \notin A \text{ and } y \in A))$$

$$= \Pr(x \in A \text{ and } y \notin A) + \Pr(x \notin A \text{ and } y \in A)$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$
(events are disjoint)

Hence, by linearity of expectation,

$$\mathbb{E}X = \sum_{e \in E(G)} \mathbb{E}X_e = \frac{m}{2}.$$

Thus there exists a fixed set $A_0 \subseteq V(G)$ which has at least $\frac{m}{2}$ crossing edges. The corresponding bipartition $(A_0, V(G) - A_0)$ defines a bipartite subgraph consisting of the $\geq \frac{m}{2}$ crossing edges. \square

An **independent set** in a graph G is a subset $U \subseteq V$ such that if $v, w \in U$ then $vw \in E(G)$. Let $\alpha(G)$ be the size of a maximum independent set in G, called the **independence number**.

Theorem 3.0.7. Let G have n vertices and nd/2 edges, where $d \ge 1$. Then $\alpha(G) \ge \frac{n}{25T1d}$. Note d, is the average degree of G.

Proof. Define the random subset $S \subseteq V(G)$ by $\Pr(v \in S) = p$, independently for all $v \in V$. Here $p \in [0,1]$ which we will fix later.

Let X = |S| and let Y be the number of edges of G with both endvertices in S. Then $\mathbb{E}X = pn$. For $e \in E(G)$ let Y_e be the indicator variable for the event $e \subseteq S$. Then for every $e = xy \in E(G)$,

$$\mathbb{E}Y_e = \Pr(x \in S \text{ and } y \in S)$$

$$= \Pr(x \in S) \cdot \Pr(y \in S)$$

$$= p^2.$$
 (by independence)

Therefore, by linearity of expectation and the fact that $Y = \sum_{e \in E(G)}$ we have

$$\mathbb{E}Y = \sum_{e \in E(G)} \mathbb{E}Y_e = \frac{nd}{2}p^2.$$

By linearity of expectation,

$$\mathbb{E}(X - Y) = \mathbb{E}X - \mathbb{E}Y = pn - p^2 \frac{nd}{2}.$$

Want to choose p to maximise this, so $p = \frac{1}{d}$ and $p \in [0,1]$. Substituting gives $\mathbb{E}(X - Y) = \frac{n}{2d}$. Hence there exists a fixed set $S_0 \subseteq V(G)$ with $|S_0| - (\# \text{ edges in } S_0) \ge \frac{n}{2d}$. Delete one vertex from each edge within S_0 to give a set S^* of at least $\frac{n}{2d}$ vertices which is an independent set. \square

Graph Colourings

A vertex colouring of a graph G = (V, E) is a function $c : V \to S$ such that $c(u) \neq c(v)$ whenever $uv \in E$. Here S is the set of available colours, usually $S = \{1, 2, ..., k\}$ for some positive integer k.

A k-colouring of G is a colouring $c: V \to \{1, 2, ..., k\}$. Often we want the smallest value of k for which a k-colouring of G exists. This smallest value of k is called the **chromatic number** of G, denoted $\chi(G)$.

If $\chi(G) = k$ then G is said to be k-chromatic.

If $\chi(G) \leq k$ then G is said to be k-colourable.

The set of all vertices in G with a given colour under c is called a **colour class**. Each colour class is an independent set. k-colouring is a partition of V(G) into k independent sets.

A clique in a graph G is a complete subgraph of G. The order of the largest clique in G is called the clique number of G, denoted $\omega(G)$.

Fact: $\chi(G) \ge \omega(G)$ and $\chi(G) \ge n/\alpha(G)$.

An **edge colouring** of G is a map $c: E \to S$ such that $c(e) \neq c(f)$ whenever e and f share an endvertex. If $S = \{1, 2, ..., k\}$ then c is a k-edge-colouring and G is k-edge-colourable.

Let $\chi'(G)$ be the smallest positive integer k for which G is k-edge-colourable. We call $\chi'(G)$ the **chromatic** index of G.

A colour class in an edge colouring is a matching of G. Hence an edge colouring displays E(G) as a union of disjoint matchings.

The **line graph**, denoted L(G), has vertex set E(G) and $e, f \in E(G)$ form an edge of L(G) if and only if e, f share an endvertex in G. Every edge-colouring of G is a vertex colour of L(G) and vice-versa. So $\chi'(G) = \chi(L(G))$.

4.1 Vertex Colourings

Proposition 4.1.1. If graph G has m edges then $\chi(G) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}}$.

Proof. Fix a k-colouring of G with $k=\chi(G)$ colours. Then G has at least one edge between any two distinct colour classes, or we could merge them to give a colouring of G with $\leq k-1$ colours. Hence $m \geq {k \choose 2} = \frac{1}{2}(k)(k-1)$ then solve for k to complete the proof.

Greedy Algorithm Given a graph G, fix an ordering v_1, v_2, \ldots, v_n on the vertices of G and colour them one by one in this order using the first available colour (least positive integer) as you go along. Since v_i has at most $\Delta(G)$ neighbours, this produces a k-colouring of G with $k \leq \Delta(G)+1 \implies \chi(G) \leq \Delta(G)+1$.

Fact: $\chi(G) = \Delta(G) + 1$ if G is a complete graph or an odd cycle.

Theorem 4.1.2 (Brooks, 1941). Let G be a connected graph. If G is neither complete nor a n odd cycle then $\chi(G) \leq \Delta(G)$.

Proof. We give a proof by Mariusz Zajac (2018). First an observation. Let G be a graph with maximum degree $\Delta(G) \leq k$, where $\{1,\ldots,k\}$ will be our set of colours. Suppose that G is partially coloured. Let $P = v_1 v_2 \ldots v_j$ be a path in G such that all vertices of P are uncoloured. Then we can colour vertices $v_1, v_2, \ldots, v_{j-1}$ in this order, since at the moment that we colour $v_i (1 \leq i \leq j-1)$, we know that v_i has an uncoloured neighbour v_{i+1} , and hence at most $\Delta - 1$ neighbours. Call this procedure PATHCOLOUR $(v_1, v_2, \ldots, v_{j-1}; v_j)$. Note that this procedure colours v_1, \ldots, v_{j-1} but it leaves v_j uncoloured. In particular, if j = 1 then PATHCOLOUR (v_1) leaves the graph unchanged.

Theorem. (Restatement of Brooks Theorem) Let $k \geq 3$ be an integer and let G be a graph with $\Delta(G) \leq k$. If G does not contain K_{k+1} as a subgraph then G is k-colourable.

Before proving this new version, we show that it implies Theorem 4.1.2. Assume that "new version" is true. Suppose that G is a connected graph and take $\Delta(G) = k \geq 3$ colours. Hence G is not an odd cycle as $\Delta(G) \geq 3$. Also suppose that G is not complete, so $G \neq K_{\Delta(G)+1}$. But since G has maximum degree $\Delta(G)$, G contains $K_{\Delta(G)+1}$ as a subgraph if and only if $G = K_{\Delta(G)+1}$. Therefore G satisfies the conditions of "new version" with $k = \Delta(G)$. Applying this result, we conclude that G is $\Delta(G)$ -colourable. Therefore $\chi(G) \leq \Delta(G)$. Hence we obtain Brooks Theorem as a corollary to "new version".