

STQ1NK80ZR-AP - STN1NK80Z STD1NK80Z - STD1NK80Z-1

N-CHANNEL 800V - 13 Ω - 1 A TO-92 /SOT-223/DPAK/IPAK Zener - Protected SuperMESH™ MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D	Pw
STQ1NK80ZR-AP	800 V	< 16 Ω	0.3 A	3 W
STN1NK80Z	800 V	< 16 Ω	0.25A	2.5 W
STD1NK80Z	800 V	< 16 Ω	1.0 A	45 W
STD1NK80Z-1	800 V	< 16 Ω	1.0 A	45 W

- TYPICAL $R_{DS}(on) = 13\Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- ESD IMPROVED CAPABILITY
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED

DESCRIPTION

The SuperMESH™ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOS-FETs including revolutionary MDmesh™ products.

APPLICATIONS

- AC ADAPTORS AND BATTERY CHARGERS
- SWITH MODE POWER SUPPLIES (SMPS)

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STQ1NK80ZR-AP	Q1NK80ZR	TO-92	AMMOPAK
STN1NK80Z	N1NK80Z	SOT-223	TAPE & REEL
STD1NK80ZT4	D1NK80Z	DPAK	TAPE & REEL
STD1NK80Z-1	D1NK80Z	IPAK	TUBE

Rev. 3

January 2006 1/15

Table 3: Absolute Maximum ratings

Symbol	Parameter		Value		Unit
		TO-92	SOT-223	DPAK/IPAK	
V _{DS}	Drain-source Voltage (V _{GS} = 0)		800		V
V_{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)		800		V
V _{GS}	Gate- source Voltage		± 30		V
I _D	Drain Current (continuous) at T _C = 25°C	0.3 0.25 1.0			Α
I _D	Drain Current (continuous) at T _C = 100°C	0.19 0.16 0.63			Α
I _{DM} (•)	Drain Current (pulsed)		5		Α
P _{TOT}	Total Dissipation at T _C = 25°C	3	2.5	45	W
	Derating Factor	0.025	0.02	0.36	W /°C
V _{ESD(G-S)}	Gate source ESD (HBM-C= 100pF, R= 1.5KΩ)	1000		V	
dv/dt (1)	Peak Diode Recovery voltage slope	4.5			V/ns
T _j T _{stg}	Operating Junction Temperature Storage Temperature			°C	

^(•) Pulse width limited by safe operating area

Table 4: Thermal Data

		TO-92	SOT-223	DPAK/IPAK	Unit
Rthj-case	Thermal Resistance Junction-case Max			2.78	°C/W
Rthj-amb(#)	Thermal Resistance Junction-ambient Max	120	50	100	°C/W
Rthj-lead	Thermal Resistance Junction-lead Max	40			°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	260		300	°C

^(#) When mounted on 1inch2 FR-4 BOARD, 2 oz Cu

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	1	Α
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	50	mJ

Table 6: GATE-SOURCE ZENER DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

Ay/.

⁽¹⁾ $I_{SD} \le 1$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le 640$

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 7: On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	800			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 50	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±10	μΑ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V, I_D = 0.5 A$		13	16	Ω

Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} = 15 \text{ V}, I_{D} = 0.5 \text{ A}$		0.8		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0$		160 26 6.7		pF pF pF
C _{oss eq.} (3)	Equivalent Output Capacitance	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 640V$		9.5		pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	V_{DD} = 400 V, I_D = 0.5 A R _G = 4.7 Ω V _{GS} = 10 V (see Figure 21)		8 30 22 55		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 640 \text{V}, I_D = 1.0 \text{ A}, V_{GS} = 10 \text{V} $ (see Figure 24)		7.7 1.4 4.5		nC nC nC

Table 9: Source Drain Diode

Symbol	symbol Parameter Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				1.0 5	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 1.0 A, V _{GS} = 0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 1.0 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 50 \text{ V, T}_j = 25^{\circ}\text{C}$ (see Figure 22)		365 802 4.4		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 1.0 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 50 \text{ V, T}_j = 150^{\circ}\text{C}$ (see Figure 22)		388 802.7 4.6		ns nC A

Note: 1. Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5 %.

^{2.} Pulse width limited by safe operating area.
3. Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS.

Figure 3: Safe Operating Area for SOT-223

Figure 4: Safe Operating Area for TO-92

Figure 5: Safe Operating Area for IPAK-DPAK

Figure 6: Thermal Impedance for SOT-223

Figure 7: Thermal Impedance for TO-92

Figure 8: Thermal Impedance for DPAK-IPAK

4/15

Figure 9: Output Characteristics

Figure 10: Transconductance

Figure 11: Gate Charge vs Gate-source Voltage

Figure 12: Transfer Characteristics

Figure 13: Static Drain-source On Resistance

Figure 14: Capacitance Variations

47/.

Figure 15: Normalized Gate Thereshold Voltage vs Temperature

Figure 16: Source-Drain Diode Forward Characteristics

Figure 17: Avalanche Energy vs Starting Tj

Figure 18: Normalized On Resistance vs Temperature

Figure 19: Normalized BVdss vs Temperature

6/15

Figure 20: Unclamped Inductive Load Test Circuit

Figure 21: Switching Times Test Circuit For Resistive Load

Figure 22: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 23: Unclamped Inductive Wafeform

Figure 24: Gate Charge Test Circuit

47/.

STQ1NK80ZR-AP - STN1NK80Z - STD1NK80Z - STD1NK80Z-1

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

8/15

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

TO-92 MECHANICAL DATA

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.32		4.95	0.170		0.194
b	0.36		0.51	0.014		0.020
D	4.45		4.95	0.175		0.194
E	3.30		3.94	0.130		0.155
е	2.41		2.67	0.094		0.105
e1	1.14		1.40	0.044		0.055
L	12.70		15.49	0.50		0.610
R	2.16		2.41	0.085		0.094
S1	0.92		1.52	0.036		0.060
W	0.41		0.56	0.016		0.022
V		5°			5°	

SOT-223 MECHANICAL DATA

DIM.		mm			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.80			0.071	
В	0.60	0.70	0.80	0.024	0.027	0.031	
B1	2.90	3.00	3.10	0.114	0.118	0.122	
С	0.24	0.26	0.32	0.009	0.010	0.013	
D	6.30	6.50	6.70	0.248	0.256	0.264	
е		2.30			0.090		
e1		4.60			0.181		
E	3.30	3.50	3.70	0.130	0.138	0.146	
Н	6.70	7.00	7.30	0.264	0.276	0.287	
V			10°			10°	
A1		0.02					

TO-252 (DPAK) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
Е	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

TO-251 (IPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
В3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

STQ1NK80ZR-AP - STN1NK80Z - STD1NK80Z - STD1NK80Z-1

Table 10: Revision History

Date	Revision	Description of Changes
08-Jun-2005	1	First Release
06-Sep-2005	2	Inserted Ecopack indication
16-Jan-2006	3	Corrected value on Table 3

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2006 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

