Završni ispit

1. Zadatak (6 bodova)

Neka je zadan n/1 sustav s r=0. Vrijednosti su:

	1	2	3	4	5	6	7
t_e	9	8	6	9	1	2	6
d	15	8	26	30	1 33	11	27

- a) Odrediti sve rasporede poslova kojim se prema Mooreovom algoritmu minimizira broj poslova koji kasne.
- b) Koje pravilo maksimizira vrijeme čekanja (CT_q)? Objasniti.

2. Zadatak (7 bodova)

Dinamičkim programiranjem odrediti optimalan raspored poslova za n/1, r=0 problem:

ako je trošak posla i jednak vremenu boravka posla u sustavu (CT_i) pomnoženom s pripadnim koeficijentom w_i , a cilj je optimizirati ukupan trošak svih poslova. Osim toga, zahtjev je da trebaju biti zadovoljene sljedeće relacije između poslova: $1 \to 4$, $2 \to 3$, pri čemu relacija $i \to j$ znaci da posao j može započeti tek kad je posao i gotov.

3. Zadatak (6 bodova)

Razmatra se n/3 sustav sr=0. Svi poslovi se na strojevima obavljaju u redoslijedu $M1 \to M2 \to M3$. Vremena obrade su zadana:

	M1	M2	M3
1	10	4	8
2	12	2	6
3	8	2	10
4	7	4	9
5	13	1	1

- a) Za svaki stroj odrediti optimalan raspored izvođenja poslova na njemu tako da se minimizira ukupno vrijeme procesiranja svih poslova (M)
- b) Nacrtati Ganttov graf za slučaj a)

4. Zadatak (9 bodova)

Zadan je job-shop sustav s tri stroja: A, B i C. Poslovi J_1 i J_2 dostupni su od trenutka r=0, a posao J_3 od trenutka r=3. Vremena izvođenja su:

	1. operacija	2. operacija	3. operacija
J_1	3 (A)	5 (B)	7 (C)
J_2	7 (A)	6(C)	4(B)
J_3	6 (B)	4 (C)	2(A)

- a) Rasporediti poslove prema pravilu LWRK, u slučaju izjednačenja koristiti SPT. Nacrtati pripadni Ganttov dijagram.
- b) Napraviti prvu iteraciju shifting-bottleneck procedure.

5. Zadatak (7 bodova)

Zadan je sustav od dvije serijski povezane radne stanice: $1\to 2$. Srednja stopa dolazaka je $r_a=0.5h^{-1}$, uz $c_a^2=2$. Vremena procesiranja su:

Stanica	$t_e[h]$	c_e^2
1	1.6	0.75
2	1.7	2.00

- a) Izračunati CT, WIP, TH za svaku stanicu
- b) Kako na parametre iz a) utječe povećanje r_a ?
- c) Ako povećamo stopu na $r_a = 0.55h^{-1}$, na koliko se treba smanjiti c_e^2 stanice koja je usko grlo da CT sustava ostane jednak kao u a)?

Auditorne PPS
20. siječnja 2017. 20:14

14pit - samo- drugi dio- bez CONWIP-a

 $\emptyset \quad N \land \quad r = 0$

a) min broj poslova koji kasne (Moore alg.)

1;li vise
rijsenje

1. Lorak EDD

L> završio u 19 or trebao n 15 KASNII

2 romate EDD nova selveuca

2-6-5-5 izbaciti jertooise najoheze
$$\frac{9}{2}$$
8-10-16-22-31
$$A = \{1,4\} \quad B = \{\text{su} \mid A\}$$
KASNI!

3, horde EDD

$$9 - 6 - 3 - 5 - 5$$
 niti golna ne kousni!

Rasporedi:

M9M

auditorne Page 1

minimodni WIP, CT, CT us > shortest processing time

Longest processing time

Ozadatale

1	1	2	3	4
te	10	1	5	20
\sim	2	1	2	1

i= CT; · ω; Minimizirotti brøj poslova koji kosne dinamičkim programiranjem

iteracije

1) 2	٨	2
cr=out	٧O	1 -> kaola posao- izlazi iz sustavo
5	٨ .	1 -> kaola posao- izlazi iz sustave 2 -> zad nji posao- u skupu 2 (1-0).1 -> trožak posla
rasporeal	1	2
, 2 (?)	(10-0)-2	(1-0).1 -> trosak posta
C(2/?)	0	0
C(2)	20	1 -> min (20+0, 1+0) =1

2) shapoui velicine 2 posla

7	[1,2]	{1,4}	[2,3]	
out	10+1	10+20	145	
5	2 1 1	4	3 12/	-> radigi posao-
raspored	1,2 2,1	1,1	2,3 8,2	1 - 1 - 1 - 2 - 2 - 2 -
g(i)	11 22	30	(6·ω3)=12	_s trosak zadnjeg posla
0(3/3)	20 1	20	G(3,)=1	_ optimali trosak bez radugg
6(7)	20+11/22+1	(6)	$(\widehat{13})$	
	23			
	2 Prosle			
	Lablice			

3) 3 posla

٥) ١	J. 1803.00C	
[1,5	٧, 2, ١	13 23795
2	(1,2,3)	(1,2,43
at	10+1+5	10+1+20
ζ,	1 1/2/13	1 2 1 4
raspored	*1 *3	1,4,2 * 4
&(?)	16.2 16.2	
CC2/5)) / 13 / / 23	50 23
	(45) 55	81 (54)

4) >	{ 1, 2,3	, 43	
out	36		
8	3	4	
raspored	* 3	* 4	
g(;)	36.2	36	
GLZ~{)	54	45	
6(3)	12.6	(81)	

rospored:

3 Zadatak N13 m1 -> m2 -> m3

flow shop m=3 ista selevenca na svalcom stroju

radovolèno svojstvodominantnosti:

 $mae(mz) \leq min(m_1)$ ili $min(m_3)$

Primier:	
- 1 my 1 m2	
1 (2) 5	
2 0 10	
3 1	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
JA. 2. (1,)3.	
3-1-2 -4	
SPT na my "SPT na m	u (1 u 2

zadatale 4.

01)

Stroj A -> J1 -> J2-> J3

B -> J1 -> J3-> J2 M=29

C -> J1 -> 3 -> J3

b) A B w=20 n=20

c c-24 odalsive se u prov

odalsive se u prvoj iteracije shift ing bottlenecka