PROJECT 6: Multi-Objective Bayesian Optimization for Transparent Electromagnetic Interference Shielding with Thin-Film Structures

Jungtaek Kim (Team Leader), Mingxuan Li, Oliver Hinder, and Paul W. Leu

Electromagnetic Interference Shielding

- Protect a device from radio-frequency interference.
- Transparency is required for specific applications such as spacecraft windows.

Problem Formulation

- Simple thin-film structures are used for electromagnetic interference shielding.
- Transmittance and shielding effectiveness are considered as objectives being optimized.
- Material and thickness for each layer is selected by Bayesian optimization.

Multi-Objective Bayesian Optimization

$$\mathbf{x}^* = rg \max(f_{ ext{trans}}(\mathbf{x}), f_{ ext{effec}}(\mathbf{x}))$$

- Since two objectives are black-box, multi-objective Bayesian optimization is employed.
- Random scalarization for both acquisition functions are used for multi-objective Bayesian optimization.

Search Space

- Material choices
 - Ag, Al, Al2O3, Cr, Ni, Pd, Si3N4, SiO2, Ti, TiN, TiO2, W
- Thickness range
 - [5, 20] nm

Bayesian Optimization Setting

- Gaussian processes with the Matérn 5/2 kernel
- Expected improvement

$$a_{ ext{trans}} + rac{w_{ ext{effec}}}{w_{ ext{trans}}} a_{ ext{effec}}$$

Two-layer system

Four-layer system

Six-layer system

Eight-layer system

Thank you!