

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

23 NOV 2004

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
11. Dezember 2003 (11.12.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/101912 A1

(51) Internationale Patentklassifikation⁷: **C04B 41/87, 41/89**

(21) Internationales Aktenzeichen: **PCT/DE03/01741**

(22) Internationales Anmeldedatum:
28. Mai 2003 (28.05.2003)

(25) Einreichungssprache: **Deutsch**

(26) Veröffentlichungssprache: **Deutsch**

(30) Angaben zur Priorität:
102 24 110.4 29. Mai 2002 (29.05.2002) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **ERLUS BAUSTOFFWERKE AG [DE/DE]; Hauptstrasse 106, 84088 Neufahrn (DE).**

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **THIERAUF, Axel [DE/DE]; Eichenstr. 15, 84066 Mallersdorf-Pfaffenberg (DE). BAUER, Frederike [DE/DE]; Bergstr. 22, 93170 Bruckhardwald (DE). GAST, Eduard [DE/DE]; Marktplatz 27, 84559 Krüihburg (DE).**

(74) Anwalt: **WALCHER, Armin; Louis, Pöhlau, Lohrentz, Postfach 30 55, 90014 Nürnberg (DE).**

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, IIR, IU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L, I, K, I, R, L, S, I, T, LU, I, V, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, T, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

— *vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen*

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) **Title:** CERAMIC MOULDED BODY COMPRISING A PHOTOCATALYTIC COATING AND METHOD FOR PRODUCING THE SAME

(54) **Bezeichnung:** KERAMISCHE FORMKÖRPER MIT PHOTOKATALYTISCHEM BESCHICHTUNG UND VERFAHREN ZUR HERSTELLUNG DESSELBEN

(57) **Abstract:** The invention relates to a ceramic moulded body, namely a roof tile, a brick, a clinker or a facade wall, consisting of an oxide ceramic base material and comprising a surface which self-cleans by means of water-sprinkling or percolation. Said moulded body has a porous, oxide ceramic coating which is photocatalytically active and has a specific surface of between approximately 25 m²/g and approximately 200 m²/g, preferably between approximately 40 m²/g and approximately 150 m²/g. The invention also relates to a method for producing one such ordinary ceramic moulded body.

(57) **Zusammenfassung:** Die Erfindung betrifft einen keramischen Formkörper, nämlich einen Dachziegel, Ziegel, Klinker oder eine Fassadenwand aus oxidkeramischem Basismaterial mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche, wobei der Formkörper eine poröse oxidkeramische Beschichtung aufweist, wobei die Beschichtung photo katalytisch aktiv ist und eine spezifische Oberfläche in einem Bereich von etwa 25 M²/g bis etwa 200 M²/g, vorzugsweise von etwa 40 M²/g bis etwa 150 M²/g, aufweist. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines solchen grobkeramischen Formkörpers.

WO 03/101912 A1

5 **Keramischer Formkörper mit photokatalytischer Beschichtung und
Verfahren zur Herstellung desselben**

Die Erfindung betrifft einen keramischen Formkörper aus oxidkeramischem
Basismaterial mit bei Beregnung oder Berieselung mit Wasser selbstreinigender
10 Oberfläche sowie ein Verfahren zur Herstellung desselben.

Aus der EP 0 590 477 B1 ist ein Baumaterial bekannt, das beispielsweise ein
Außenwandmaterial oder Dachmaterial sein kann, wobei auf der Oberfläche
des Baumaterials ein dünner Metalloxidfilm mit photokatalytischer Wirkung
15 aufgebracht ist. Der Metalloxidfilm wird bevorzugt mittels Sol-Gel-Verfahren
aufgebracht. Bevorzugt wird unter Verwendung von Titandioxidsol ein
Titandioxid-Dünnfilmbaumaterial hergestellt. Der aus der EP 0 590 477 B1
bekannte dünne Metalloxidfilm weist desodorierende
Antischimmeleigenschaften auf.

20 Der aus der EP 0 590 477 B1 bekannte Metalloxidfilm weist aufgrund seiner
filmartigen Struktur eine kleine Oberfläche und mithin eine niedrige katalytische
Aktivität auf.

Aus der DE 199 11 738 A1 ist ein mit Fe^{3+} -Ionen dotierter Titandioxid-
25 Photokatalysator bekannt, der einen zu den Fe^{3+} -Ionen äquimolaren oder
annähernd äquimolaren Gehalt an fünfwertigen Ionen aufweist. Der aus der DE
199 11 738 A1 bekannte, mit Fe^{3+} -Ionen dotierte Titandioxid-Photokatalysator
wird über Sol-Gel-Verfahren hergestellt.

Aus der EP 0 909 747 A1 ist ein Verfahren zur Erzeugung einer Selbstreinigungseigenschaft von Oberflächen, insbesondere der Oberfläche von Dachziegeln, bei Beregnung oder Berieselung mit Wasser bekannt. Die Oberfläche weist hydrophobe Erhebungen mit einer Höhe von 5 bis 200 µm in 5 verteilter Form auf. Zur Erzeugung dieser Erhebungen wird eine Oberfläche mit einer Dispersion von Pulverpartikeln aus inertem Material in einer Siloxan-Lösung benetzt und das Siloxan anschließend ausgehärtet. Das aus der EP 0 909 747 A1 bekannte Verfahren erlaubt die Herstellung eines grobkeramischen Körpers, der eine Oberfläche aufweist, an der Schmutzpartikel schlecht haften 10 können. Der aus der EP 0 909 747 A1 bekannte keramische Körper verfügt über keinerlei katalytische Aktivität.

Aus der WO 01/79141 A1 ist ein weiteres Verfahren zur Erzeugung einer Selbstreinigungseigenschaft einer Oberfläche sowie ein mit diesem Verfahren 15 hergestellter Gegenstand bekannt. Gemäß diesem Verfahren wird auf eine Oberfläche mittels eines Sol-Gel-Verfahrens eine metallorganische Verbindung des Titanoxids aufgetragen, die Oberfläche getrocknet und anschließend bei höherer Temperatur getempert. Die Oberfläche der Titanoxidschicht kann nachfolgend hydrophobiert werden.

20 Aufgabe der Erfindung ist es, einen grobkeramischen Formkörper, insbesondere Dachbaustoffe, Fassadenplatten und Vormauersteine bereitzustellen, der eine verbesserte Selbstreinigungskraft und eine verbesserte Stabilität, wie beispielsweise verbesserte Abriebbeständigkeit, aufweist.

25 Eine weitere Aufgabe ist es, ein Verfahren zur Herstellung eines solchen verbesserten grobkeramischen Formkörpers anzugeben.

30 Die der Erfindung zugrunde liegende Aufgabe wird durch einen keramischen Formkörper, nämlich ein Dachziegel, Ziegel, Klinker, Vormauerstein,

Fassadenplatte oder eine Fassadenwand aus oxidkeramischem Basismaterial mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche, wobei der Formkörper eine poröse oxidkeramische Beschichtung aufweist, wobei die Beschichtung photokatalytisch aktiv ist und eine spezifische

5 Oberfläche in einem Bereich von etwa $25 \text{ m}^2/\text{g}$ bis etwa $200 \text{ m}^2/\text{g}$, vorzugsweise von etwa $40 \text{ m}^2/\text{g}$ bis etwa $150 \text{ m}^2/\text{g}$, aufweist, gelöst.

Bevorzugte Weiterbildungen des keramischen Formkörpers sind in den abhängigen Ansprüchen 2 bis 33 angegeben.

10

Die Aufgabe wird weiterhin gelöst durch ein Verfahren zur Herstellung eines grobkeramischen Formkörpers aus oxidkeramischem Basismaterial mit Kapillargefüge und mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche, wobei der Formkörper eine photokatalytisch

15 aktive, poröse oxidkeramische Beschichtung mit einer spezifischen Oberfläche in einem Bereich von etwa $25 \text{ m}^2/\text{g}$ bis etwa $200 \text{ m}^2/\text{g}$, vorzugsweise von etwa $40 \text{ m}^2/\text{g}$ bis etwa $150 \text{ m}^2/\text{g}$, aufweist und die poröse oxidkeramische Beschichtung auf der Oberfläche und in den Porenöffnungen sowie den freien Flächen des Kapillargefüges nahe der Oberfläche im Innern des

20 grobkeramischen Formkörpers aufgebracht ist,

wobei das Verfahren die folgenden Schritte umfasst:

(a) Mischen von photokatalytisch aktivem, oxidkeramischem Pulver, anorganischem Stabilisierungsmittel sowie einer Flüssigphase unter Bereitstellung einer Suspension,

25 (b) Aufbringen der in Schritt (a) hergestellten Suspension auf das oxidkeramische Basismaterial unter Ausbildung einer Schicht,

(c) Härt(en) der in Schritt (b) bereitgestellten Schicht unter Ausbildung einer photokatalytisch aktiven, porösen oxidkeramischen Beschichtung.

Bevorzugte Weiterbildungen dieses Verfahrens sind in den abhängigen Patentansprüchen 35 bis 61 angegeben.

Der gemäß dem erfindungsgemäß Verfahren hergestellte grobkeramische

5 Formkörper weist eine sehr geeignete Porosität und Stabilität auf.

Im Unterschied zu den im Stand der Technik bevorzugt verwendeten Sol-Gel-Verfahren zur Herstellung von Beschichtungen wird erfindungsgemäß eine Suspension von photokatalytisch aktivem, oxidkeramischem Pulver mit weiteren

10 Komponenten auf einem oxidkeramischen Basismaterial aufgetragen. Die photokatalytisch aktiven, oxidkeramischen Partikel bzw. das photokatalytisch aktive, oxidkeramische Pulver weisen bzw. weist eine hohe Porosität, d.h. spezifische Oberfläche auf. Es kommt mithin nicht zur Ausbildung eines Films, sondern zur Ausbildung einer porösen Struktur mit großer spezifischer

15 Oberfläche.

Die unter Verwendung von Sol-Gel-Verfahren auf Substraten verschiedenster Art hergestellten Beschichtungen aus Titanoxid sind dichte, geschlossene und optisch transparente Filme. Eine Grobkeramik wie beispielsweise ein

20 Dachziegel weist eine spezifische Oberfläche von kleiner als $1 \text{ m}^2/\text{g}$ auf. Folglich weist eine unter Verwendung eines Sol-Gel-Verfahrens auf einem Dachziegel aufgebrachte TiO_2 -Beschichtung ebenfalls eine spezifische Oberfläche von weniger als $1 \text{ m}^2/\text{g}$ auf.

25 Die gemäß der vorliegenden Erfindung hergestellten mit einer photokatalytisch aktiven Beschichtung versehenen Grobkeramiken weisen eine ungleich höhere spezifische Oberfläche in einem Bereich von etwa $25 \text{ m}^2/\text{g}$ bis etwa $200 \text{ m}^2/\text{g}$ auf.

Diese außerordentlich hohe spezifische Oberfläche wird erfindungsgemäß erreicht, indem auf das zu beschichtende Substrat Partikel, beispielsweise partikuläres TiO_2 , aufgebracht werden. Bei Aufbringung von partikulärem TiO_2 wird - im Unterschied zur Aufbringung von TiO_2 mittels Gel-Sol-Verfahren - kein geschlossener Film, sondern eine texturierte Beschichtung oder Struktur mit großer spezifischer Oberfläche aufgebracht. Des weiteren trägt die Porosität der beispielsweise verwendeten TiO_2 -Partikel auch wesentlich zu der hohen spezifischen Oberfläche der porösen, oxidkeramischen Beschichtung der erfindungsgemäßen Keramik bzw. Grobkeramik bei.

10 Im Falle einer mit TiO_2 -Partikeln erfindungsgemäß beschichteten Grobkeramik, beispielsweise einem Dachziegel, führen die TiO_2 -Partikel auf der Oberfläche der Grobkeramik zu einer Lichtstreuung, die sich im sichtbaren Bereich dadurch bemerkbar macht, daß die Grobkeramik ein bläulich/violettes Irisieren aufweist.

15 Dieser optische Effekt ist vermutlich auf den Tyndall-Effekt zurückzuführen. Das heißt, der rote Farbton einer gebrannten Grobkeramik, beispielsweise eines Ton-Dachziegels, wird für einen Betrachter mehr in Richtung dunkelrot bzw. braunrot verschoben.

20 Die ausgebildete Struktur ist eine hochporöse Struktur, d.h. die spezifische Oberfläche der katalytisch aktiven, porösen oxidkeramischen Beschichtung liegt in einem Bereich von $25 \text{ m}^2/\text{g}$ bis $200 \text{ m}^2/\text{g}$, weiter bevorzugt in einem Bereich von etwa $40 \text{ m}^2/\text{g}$ bis etwa $150 \text{ m}^2/\text{g}$. Weiter bevorzugt liegt die spezifische Oberfläche in einem Bereich von $40 \text{ m}^2/\text{g}$ bis etwa $100 \text{ m}^2/\text{g}$.

25 Die katalytisch aktive, poröse oxidkeramische Beschichtung ist sowohl auf der Oberfläche der Keramik bzw. Grobkeramik als auch in dem Kapillargefüge aufgebracht. Das heißt, die Porenöffnungen und die freien Flächen in den Kapillarröhren sind mit der katalytisch aktiven, porösen oxidkeramischen

30 Beschichtung versehen. Die Beschichtung ist dabei vorzugsweise bis zu einer

Tiefe von etwa 1 mm in dem unmittelbar unter der Oberfläche des grobkeramischen Formkörpers liegenden Kapillargefüge, vorzugsweise in gleichmäßiger Verteilung der Partikelgrößen und Partikelarten aufgebracht. Vorzugsweise erfolgt das Aufbringen der Beschichtung bis zu einer Tiefe von

5 etwa 1 mm, ggf. weiter vorzugsweise bis zu einer Tiefe von 2 mm. Die Tiefe ist dabei in vertikaler Richtung, bezogen auf die Oberfläche des Formkörpers, in das Innere des Formkörpers angegeben.

Gemäß einer bevorzugten Weiterbildung ist der freie Atmungsquerschnitt des

10 keramischen bzw. grobkeramischen Formkörpers durch die aufgebrachte poröse oxidkeramische Beschichtung um weniger als 10 %, vorzugsweise weniger als 5 %, bezogen auf den freien Atmungsquerschnitt eines nicht beschichteten keramischen bzw. grobkeramischen Formkörpers, herabgesetzt.

15 Weiter bevorzugt ist der freie Atmungsquerschnitt um weniger als etwa 2 %, noch weiter bevorzugt um weniger als etwa 1 %, herabgesetzt.

Der mittlere Durchmesser der Poren bzw. Kapillaren einer Grobkeramik liegt üblicherweise in einem Bereich von 0,1 µm bis 5 µm, vorzugsweise 0,1 µm bis

20 0,3 µm.

Die Keramik, d.h. der Dachziegel, Ziegel, Klinker, Vormauerstein, Fassadenplatte oder die Fassadenwand, bzw. die über das erfindungsgemäße Verfahren hergestellte Grobkeramik weist mithin äußerst vorteilhaft eine

25 photokatalytisch aktive Beschichtung in der Porenstruktur auf, so dass in den Poren abgelagerte Verunreinigungen wirksam oxidiert und nachfolgend bei Beregnung oder Berieselung leicht abgespült werden .

Da die Porenstruktur der Grobkeramik durch die aufgebrachte Beschichtung nicht wesentlich verengt wird, können die Schmutzpartikel ohne weiteres aus den Poren herausgespült werden.

- 5 Die erfindungsgemäße Grobkeramik zeigt mithin auch nach längerem Gebrauch, insbesondere unter natürlichen Umwelt- und Bewitterungsbedingungen, aufgrund der verbesserten Selbstreinigungseigenschaft eine sauberes und attraktives Aussehen.
- 10 Mit einer spezifischen Oberfläche von etwa 50 m²/g wird eine sehr zufriedenstellende katalytische Aktivität der aufgebrachten oxidkeramischen Beschichtung erhalten. Dabei liegt die mittlere Schichtdicke der oxidkeramischen Beschichtung vorzugsweise in einem Bereich von etwa 50 nm bis etwa 50 µm, weiter bevorzugt von etwa 100 nm bis etwa 1 µm. Dabei ist die
- 15 Schicht nicht nur in den Poren bzw. Kapillaren der Oberfläche, sondern auch auf der Oberfläche des grobkeramischen Formkörpers ausgebildet. Auf diese Weise können partiell Schichtdicken der oxidkeramischen Beschichtung ausgebildet sein, die größer als der mittlere Durchmesser der Poren bzw. Kapillaren sind, die üblicherweise in einem Bereich von 0,1 µm bis 5 µm liegen.
- 20 Mit einer Schichtdicke von etwa 1 µm wird eine sehr zufriedenstellende katalytische Aktivität erhalten.

Mit der erfindungsgemäßen photokatalytisch aktiven, porösen oxidkeramischen Beschichtung werden auf dem grobkeramischen Formkörper sich ablagernde(r) bzw. einlagernde(r) Schimmel, Pilzhyphen, Pflanzenwuchs, beispielsweise Moos, Algen etc., bakterielle Verunreinigungen etc., photochemisch abgebaut und entfernt. Die photokatalytische Aktivität der porösen oxidkeramischen Beschichtung ist bei Umgebungstemperatur ausreichend, um die genannten Stoffe bzw. Verunreinigungen zu oxidieren und somit abzubauen. Die oxidierten 30 Substanzen weisen ein verminderteres Haftungsvermögen auf und werden bei

Beregnung bzw. Berieselung mit Wasser leicht von der Oberfläche des erfindungsgemäßen Formkörpers abgespült.

Es wird vermutet, dass die photokatalytisch aktive Beschichtung zum einen

5 unmittelbar auf die organischen Verunreinigungen oxidativ einwirken kann. Zum anderen wird angenommen, dass die oxidative Wirkung der photokatalytisch aktiven Beschichtung mittelbar durch die Erzeugung von Sauerstoff-Radikalen erfolgt, die nachfolgend die Verschmutzungsstoffe bzw. Verunreinigungen oxidieren und mithin abbauen.

10 Die Selbstreinigungswirkung des erfindungsgemäßen keramischen Formkörpers bzw. des über das erfindungsgemäße Verfahren hergestellte grobkeramischen Formkörpers kann weiter gesteigert werden, wenn unter der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung eine

15 Oberflächenstruktur mit Erhebungen bzw. Vertiefungen angeordnet ist und/oder wenn die photokatalytisch aktive, poröse oxidkeramische Beschichtung selbst eine Oberflächenstruktur mit Erhebungen und Vertiefungen aufweist.

Es hat sich gezeigt, dass grobkeramische Oberflächenstrukturen mit

20 Erhebungen, vorzugsweise mit einer vorgegebenen Verteilungsdichte, über eine überraschende Selbstreinigungseigenschaft verfügen. Die Erhebungen können weiterhin hydrophobiert sein, so dass die Anhaftung von hydrophilen Verschmutzungsstoffen bzw. Verunreinigungen weiter stark verringert wird.

25 Die Erhebungen können durch Aufbringung von partikulärem Material auf dem oxidkeramischen Basismaterial gebildet werden. Als partikuläres Material wird hierbei vorzugsweise temperaturbeständiges, gemahlenes Material verwendet, das vorzugsweise aus der Gruppe ausgewählt wird, die aus gemahlenem Gestein, Schamotte, Ton, Minerale, Keramikpulver wie SiC, Glas,

30 Glasschamotte und Mischungen davon bestehen.

Unter temperaturbeständigem Material wird im Sinne der Erfindung verstanden, dass das Material bei einer Temperatur von vorzugsweise bis zu 1100°C, weiter bevorzugt bis zu 600°C, nicht erreicht.

5

Selbstverständlich kann als partikuläres Material auch TiO₂, Al₂O₃, SiO₂ und/oder Ce₂O₃ verwendet werden. Dabei haben sich Partikel mit einer Größe in einem Bereich von bis zu 1500 nm, vorzugsweise von etwa 5 nm bis etwa 700 nm, als sehr geeignet erwiesen. Weiterhin ist ein Partikelgrößenbereich von

10 etwa 5 nm bis etwa 25 bis 50 nm sehr bevorzugt.

Bevorzugt ist, dass die Erhebungen bzw. Vertiefungen Höhen bzw. Tiefen in einem Bereich von bis zu 1500 nm, vorzugsweise von etwa 5 nm bis etwa 700 nm, weiter bevorzugt von etwa 5 nm bis etwa 25 bis 50 nm, aufweisen. Somit

15 können die Erhebungen auch unter Aggregation oder Agglomeration von kleineren Partikeln gebildet werden.

Das partikuläre Material kann hierbei unter Verwendung von Haftmitteln an dem oxidkeramischen Basismaterial fixiert werden. Beispielsweise können als

20 Haftmittel Polysiloxane verwendet werden, die das partikuläre Material zum einen an der Oberfläche des oxidkeramischen Basismaterials fixieren und zum anderen die hergestellte Beschichtung mit einer superhydrophoben Oberfläche versehen. Das Haftmittel, beispielsweise das Polysiloxan, wird im Schritt (a) des erfindungsgemäßen Verfahren bei der Herstellung der Suspension zugesetzt.

25 Sofern die Hydrophobierung der Oberfläche der Beschichtung erhalten bleiben soll, darf in diesem Fall das Härteln in Schritt (c) nicht bei einer Temperatur von mehr als 300°C erfolgen. Wird die Temperatur über 300°C erhöht, kann es zu einer thermischen Zersetzung des Polysiloxans und zum Abbau der superhydrophoben Oberfläche auf der photokatalytisch aktiven, porösen

30 oxidkeramischen Beschichtung kommen.

Bei der vorliegenden Erfindung ist es jedoch nicht notwendig, Haftmittel zur Fixierung von partikulärem Material, beispielsweise von photokatalytisch aktiven, oxidkeramischen Partikeln, zu verwenden. Die Partikel können auch

5 durch eine sinterähnliche Verbindung mit dem oxidkeramischen Basismaterial verbunden werden. Beispielsweise können die Partikel in Form einer Suspension auf das oxidkeramische Basismaterial aufgebracht und nachfolgend das Ganze auf eine Temperatur von etwa 200°C bis 500°C, vorzugsweise etwa 300°C, erwärmt werden. Die Partikel werden hierdurch

10 zuverlässig an der Grobkeramik oder Keramik befestigt.

Bei einem Brennen des grobkeramischen Formkörpers, das üblicherweise in einem Bereich von mehr als 300°C bis etwa 1100°C durchgeführt wird, wird das zur Erzeugung von Erhebungen verwendete partikuläre Material mit einer

15 Temperatur beaufschlagt, die zu einem oberflächlichen Erweichen der Partikeloberflächen führt, so dass sich eine sinterähnliche Verbindung zwischen dem partikulären Material und dem oxidkeramischen Basismaterial ausbildet. Hierbei können beispielsweise auch die Sintertemperatur absenkende Flussmittel zugesetzt werden.

20 Dem Fachmann sind aus den EP 0 909 747, EP 00 115 701 und EP 1 095 923 verschiedenartige Möglichkeiten zur Befestigung von partikulärem Material auf einer keramischen Oberfläche bekannt. Die Inhalte der EP 0 909 747, EP 00 115 701 und EP 1 095 923 werden hiermit unter Bezugnahme aufgenommen.

25 Vorzugsweise werden zur Bildung der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung photokatalytisch aktive, oxidkeramische Materialien verwendet, die aus der Gruppe ausgewählt werden, die aus TiO₂, Al₂O₃, SiO₂, Ce₂O₃ und Mischungen davon besteht.

30

Gemäß einer weiteren bevorzugten Ausführungsform können die vorgenannten photokatalytisch aktiven, oxidkeramischen Materialien auch in dem oxidkeramischen Basiskörper enthalten sein.

- 5 Gemäß einer bevorzugten Ausführungsform umfasst das photokatalytisch aktive, oxidkeramische Material in der Beschichtung und/oder in dem oxidkeramischen Basismaterial TiO_2 oder Al_2O_3 , wahlweise in Kombination mit weiteren oxidkeramischen Materialien. Als sehr geeignet haben sich beispielsweise Mischungen aus Titandioxid und Siliziumdioxid, Titandioxid und
- 10 Aluminiumoxid, Aluminiumoxid und Siliziumdioxid als auch aus Titandioxid, Aluminiumoxid und Siliziumdioxid erwiesen.

Als Titandioxid wird hierbei vorzugsweise Titandioxid mit Anatas-Struktur verwendet. Als Aluminiumoxid wird bevorzugt Aluminiumoxid C verwendet, das 15 kristallographisch der δ -Gruppe zuzuordnen ist und über eine starke oxidations-katalytische Wirkung verfügt.

Geeignetes Aluminiumoxid C ist bei der Degussa AG, Deutschland, erhältlich. Beispielsweise hat sich AEROSIL COK 84, eine Mischung von 84 % AEROSIL 20 200 und 16 % Aluminiumoxid C, als sehr verwendbar bei der vorliegenden Erfindung erwiesen.

Bei Verwendung von TiO_2 in der oxidkeramischen Beschichtung ist bevorzugt, dass das TiO_2 wenigstens teilweise in der Anatas-Struktur, vorzugsweise zu 25 wenigstens 40 Gew.-%, bevorzugt zu wenigstens 70 Gew.-%, weiter bevorzugt zu wenigstens 80 Gew.-%, bezogen auf die Gesamtmenge an TiO_2 , vorliegt.

Als sehr geeignet hat sich TiO_2 erwiesen, das in einer Mischung aus etwa 70 - 100 Gew.-% Anatas bzw. etwa 30 – 0 Gew.-% Rutil vorliegt.

Gemäß einer weiteren bevorzugten Weiterbildung der Erfindung liegt das TiO₂ zu etwa 100 % in der Anatas-Struktur vor.

Vorzugsweise wird das bei der vorliegenden Erfindung verwendete TiO₂ durch

5 Flammenhydrolyse von TiCl₄ als hochdisperses TiO₂ erhalten, welches vorzugsweise eine Partikelgröße von etwa 15 nm bis 30 nm, vorzugsweise 21 nm aufweist.

Beispielsweise kann hierfür das unter der Bezeichnung Titandioxid P 25 von der

10 Degussa AG, Deutschland erhältliche Titandioxid verwendet werden, das aus einem Anteil von 70 % Anatasform und 30 % Rutil besteht. Äußerst vorteilhaft absorbiert Titandioxid in der Anatasform UV-Licht mit Wellenlängen von kleiner als 385 nm. Rutil absorbiert UV-Licht mit einer Wellenlänge von kleiner als 415 nm.

15

Eine mit TiO₂-Partikeln beschichtete Oberfläche einer erfindungsgemäßen Grobkeramik, vorzugsweise eines Dachziegels, weist nach 15-stündiger Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht, was etwa 30 % der solaren Bestrahlungsstärke an einem klaren Sommertag entspricht, eine

20 superhydrophile Oberfläche auf.

Ein Maß für die Superhydrophilie ist der Kontaktwinkel eines Wassertropfens mit einem definierten Volumen (hier 10 µl). Dieser Tropfen wird mit der zu untersuchenden Oberfläche in Kontakt gebracht und im zeitlichen Abstand von

25 einer Sekunde fotografiert. Anschließend wird für jede Aufnahme sowohl der linke als auch der rechte Kontaktwinkel zwischen Tropfen und Oberfläche berechnet. Die nachfolgenden Werte sind jeweils der Mittelwert zwischen den errechneten Kontaktwinkeln.

Zunächst wurden für einen Vergleichsdachziegel ohne TiO₂-Partikel-Beschichtung und zwei erfindungsgemäßen Dachziegeln A und B die Kontaktwinkel ermittelt. Nachfolgend wurden die drei Dachziegel für 15 Stunden mit 1 mW/cm² UV-A Schwarzlicht bestrahlt. Die jeweils bestimmten

5 Kontaktwinkel sind in Tabelle 1 angegeben:

Tabelle 1: Kontaktwinkel

Dachziegel	Kontaktwinkel nach 0 h Bestrahlung	Kontaktwinkel nach 15 h Bestrahlung
Erf.-gem. Dachziegel A	19,2°	4,0°
Erf.-gem. Dachziegel B	18,4°	< 4,0°
Vergleichs-Dachziegel	29,8°	27,3°

Nach einer Bestrahlungszeit von 15 Stunden wurden die erfindungsgemäßen
10 Dachziegel A und B über einen Zeitraum von 30 Tagen unter Dunkelheit
aufbewahrt. Die nach 30 Tagen Dunkelheit bestimmten Kontaktwinkel sind in
Tabelle 2 angegeben:

Tabelle 2: Kontaktwinkel nach 30 Tagen Dunkelheit

Dachziegel	Kontaktwinkel nach 30 Tagen Dunkelheit
Erf.-gem. Dachziegel A	17,1°
Erf.-gem. Dachziegel B	13,6°

15 Nach 30 Tagen Dunkelheit wurden die erfindungsgemäßen Dachziegel A und B
für einen Zeitraum von 3 Stunden erneut mit 1 mW/cm² UV-A Schwarzlicht
bestrahlt. Die im Anschluss an die Bestrahlung gemessenen Kontaktwinkel sind
in Tabelle 3 angegeben.

Tabelle 3: Kontaktwinkel nach erneuter Bestrahlung für 3 Stunden

Dachziegel	Kontaktwinkel nach erneuter Bestrahlung für 3 h
Erf.-gem. Dachziegel A	6,7°
Erf.-gem. Dachziegel B	7,3°

Die in Tabelle 1 angegebenen Daten zeigen, daß die mit TiO₂-Partikeln beschichteten erfindungsgemäßen Dachziegel nach Bestrahlung mit UV-Licht

5 eine äußerst hydrophile bzw. superhydrophile Oberfläche aufweisen. Die hydrophilen Eigenschaften verschlechtern sich, was an einer Zunahme des Kontaktwinkels erkennbar ist, wenn die Dachziegel über einen längeren Zeitraum in Dunkelheit gelagert werden (siehe Tabelle 2). Aus Tabelle 3 ist ersichtlich, daß die superhydrophile Eigenschaft bereits nach kurzzeitiger

10 Bestrahlung mit UV-Licht, die in etwa einer Stunde in der Frühlingssonne entspricht, wieder zurückkehrt. Superhydrophile Oberflächen können leicht mit Wasser, beispielsweise Regenwasser, gereinigt werden.

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt der

15 Kontaktwinkel eines 10 µl Wassertropfens auf einer erfindungsgemäßen Grobkeramik ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht vorzugsweise weniger als 6° bis 7°, vorzugsweise weniger als 5°, weiter bevorzugt weniger als 4°.

20 Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt der Kontaktwinkel eines 10 µl Wassertropfens auf einer erfindungsgemäßen Grobkeramik ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht und 30 Tagen Dunkelheit vorzugsweise weniger als 20°, vorzugsweise weniger als 18°, weiter bevorzugt

25 weniger als 14°.

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt der Kontaktwinkel eines 10 µl Wassertropfens auf einer erfindungsgemäßen Grobkeramik ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² und 30 Tagen Dunkelheit und erneuter Bestrahlung

5 mit vorzugsweise 1 mW/cm² UV-A Schwarzlicht für drei Stunden weniger als 8, vorzugsweise weniger als 7°.

Die photokatalytische Aktivität kann dabei nach mehreren Verfahren bestimmt werden.

10

1. Abbau von Methanol zu Formaldehyd

Die Bestimmung der photokatalytischen Aktivität erfolgt bei diesem Verfahren in Anlehnung an das in GIT Labor-Fachzeitschrift 12/99, Seiten 1318 bis 1320 beschriebenen Verfahren, wobei Methanol zu Formaldehyd oxidiert wird.

Hierbei wird eine Materialprobe von einem Dachziegel entnommen und mit Methanol in Kontakt gebracht. Die Materialprobe wurde für 7 Minuten mit UV-Licht (Quecksilberhochdrucklampe, Heraeus) mit einer Wellenlänge von 300 bis 20 400 nm bestrahlt, um die Umwandlung von Methanol zu Formaldehyd zu katalysieren.

Nach der Bestrahlung wurde aus dem Überstand ein Aliquot entnommen und mit 3-Methyl-2-benzothiazolinonhydrazon-Hydrochlorid-Hydrat 25 (Reaktionslösung) versetzt und für 100 Minuten bei Zimmertemperatur geschüttelt. Nach Derivatisierung des Formaldehyds mit dem Farbstoff wurde die Konzentration des Derivats mit einem UV-VIS-Spektrometer (Absorptionsbande bei 635 nm), d.h. die Dämpfung bestimmt. Die Dämpfung ist ein Maß für die photokatalytische Aktivität des Probenkörpers.

30

Eine Blindmessung wurde mit einer Probe eines unbeschichteten Dachziegels durchgeführt, um Effekte zweiter Ordnung, wie Abbaureaktionen durch eingelagerte Verunreinigungen, auszuschließen.

- 5 Sämtliche Materialproben weisen eine identische Reaktionsfläche auf. Durch Vergleichsuntersuchung verschiedener Materialproben mit der gleichen Reaktionsfläche und der gleichen Methanolkonzentration kann eine Eichung erfolgen.
- 10 Die Differenzbildung der erhaltenen Messwerte, d.h. Messwert Dämpfung der Materialprobe mit partikulärer TiO₂-Beschichtung abzüglich des Messwertes der Vergleichsprobe ohne partikuläre TiO₂-Beschichtung, ergibt einen Wert, der ein direktes Maß für die photokatalytische Aktivität der Materialprobe mit der partikulären TiO₂-Beschichtung ist.
- 15 Zu Vergleichszwecken wurde die Beschichtung Aktiv Clean auf eine Glasscheibe nach dem Toto-Verfahren aufgebracht. Die Dämpfung der Reaktionslösung lag bei 0,085 bis 0,109.
- 20 Gemäß einer bevorzugten Ausführungsform der Erfindung führt der erfindungsgemäße Formkörper bei der Reaktionslösung zu einer Dämpfung von 0,020 bis 0,500, vorzugsweise von 0,100 bis 0,250, weiter vorzugsweise von 0,110 bis 0,150.
- 25 2. Abbau von Methylenblau

Bei diesem Verfahren zur Bestimmung der photokatalytischen Aktivität wird die Abbaurate von Methylenblau in Lösung bestimmt.

Zunächst werden Materialproben von Dachziegeln mit einer Adsorptionslösung von 0,02 mM Methylenblau (in Wasser) in Kontakt gebracht und die so behandelten Materialproben für 12 Stunden in Dunkelheit verwahrt. Die Absorptionsspektren werden vor und nach der 12-stündigen Dunkelphase bei 5 einer Wellenlänge von 663 nm gemessen.

Nachfolgend wird die Adsorptionslösung durch eine 0,01 mM Methylenblaulösung (in Wasser) ersetzt und das Ganze für drei Stunden mit 1 mW/cm² UV-A Schwarzlicht bestrahlt. Die bestrahlte Fläche sind 10,75 cm² und 10 das bestrahlte Volumen der Methylenblaulösung sind 30 ml. Über den Bestrahlungszeitraum (3 Stunden) wurde alle 20 Minuten ein Aliquot entnommen und der Absorptionswert bei einer Wellenlänge von 663 nm bestimmt. Unter Verwendung einer Eichkurve (Absorptionswerte von Lösungen mit bekannter Methylenblaukonzentrationen) lässt sich die Abbaurate von 15 Methylenblau bestimmen (Steigung der Meßkurve in einem Methylenblaukonzentration-gegen-Bestrahlungszeit-Diagramm).

Aufgrund der großen inneren Oberfläche der Dachziegel wurden die Materialproben während der Adsorption als auch während der Bestrahlung 20 konstant feucht gehalten, um ein Aufsaugen der Methylenblaulösungen zu vermeiden.

Zu Vergleichszwecken wurden die Versuche mit unbeschichteten Materialproben durchgeführt.

25

Aus dem Photonenfluß ($\lambda=350$ nm; 10,75 cm² bestrahlte Fläche; 1 mW/cm²) von $1,13 \times 10^{-4}$ mol Photonenenergie/h lässt sich die Photoneneffizienz ξ berechnen:

30 ξ [%] = Abbaurate [mol/h] / Photonenfluß [mol Photonenenergie/h]

Von dem erhaltenen Wert wird, um Adsorptionseffekte auszuschließen, ein Korrekturfaktor subtrahiert. Der Korrekturfaktor wird bestimmt, indem - nach der 12-stündigen Adsorptionszeit mit der 0,02 mM Methylenblaulösung) – die

5 Materialprobe für drei Stunden mit 0,01 mM Methylenblaulösung in Dunkelheit in Kontakt gebracht wird. Am Ende dieser dreistündigen Inkubation wird der Absorptionswert bei 663 nm bestimmt, der ein Maß für den Abbau von Methylenblau durch Sekundärreaktionen ist. Dieser Wert stellt den Korrekturfaktor dar, der umgerechnet in eine fiktive Photoneneffizienz, von der 10 oben berechneten Photoneneffizienz subtrahiert wird.

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt die - aus dem photokatalytisch induzierten Methylenblau-Abbau - berechnete Photoneneffizienz bei der erfindungsgemäßen Grobkeramik wenigstens 0,015 15 %, vorzugsweise wenigstens 0,02 %, weiter vorzugsweise wenigstens 0,03 %, noch weiter bevorzugt wenigstens 0,04 %.

3. Abbau von Methylstearat

20 Auf Materialproben von erfindungsgemäßen Dachziegeln und Vergleichsziegeln wurde eine definierte Menge einer 10 mM Methylstearat / n-Hexan-Lösung aufgebracht und für 17 Stunden mit 1 mW/cm² UV-A Schwarzlicht bestrahlt.

Nach Abschluss der Bestrahlung wurde das auf den Materialproben verbliebene 25 Methylstearat mit einem definierten Volumen von 5 ml n-Hexan abgewaschen und mittels Gaschromatographie (FID) bestimmt und quantifiziert. Aus diesem Wert lässt sich die Abbaurate in mol/h berechnen.

Bei einem Photonenfluß ($\lambda=350$ nm, 36 cm² bestrahlte Fläche, 1mW/cm²) von 30 $3,78 \times 10^4$ mol Photonenenergie/h lässt sich in Verbindung mit der bestimmten

Abbaurate in Entsprechung zu dem Methylenabbau (siehe oben Punkt 2) die Photoneneffizienz ξ berechnen. Eine Korrektur der erhaltenen Werte ist nicht notwendig, da bei dem Vergleichsprobenmaterial (Dachziegel ohne TiO_2 -Beschichtung) kein Abbau von Methylstearat erfolgte.

5

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt die - aus dem photokatalytisch induzierten Methylstearat-Abbau - berechnete Photoneneffizienz bei der erfindungsgemäßen Grobkeramik wenigstens 0,05 %, vorzugsweise wenigstens 0,06 %, weiter vorzugsweise wenigstens 0,07 %, 10 noch weiter bevorzugt wenigstens 0,08 %, bevorzugt 0,10 %.

Es hat sich gezeigt, dass die Selbstreinigungseigenschaft der Oberfläche deutlich verbessert werden kann, wenn die photokatalytisch aktive, poröse oxidkeramische Beschichtung mit einer hydrophoben, vorzugsweise 15 superhydrophoben Oberfläche versehen wird. Die oxidierten organischen Verschmutzungsstoffe werden noch leichter durch Beregnung oder Berieselung mit Wasser von der Oberfläche heruntergespült.

Unter hydrophober Oberfläche wird in dem Sinne der Erfindung eine Oberfläche 20 verstanden, die im allgemeinen wasserabstoßend ist.

Gemäß einer bevorzugten Weiterbildung weist der erfindungsgemäße grobkeramische Formkörper eine superhydrophobe Oberfläche auf.

Unter einer superhydrophoben Oberfläche wird im Sinne der Erfindung eine 25 Oberfläche mit einem Kontakt- oder Randwinkel von wenigstens 140° für Wasser verstanden. Der Randwinkel kann an einem auf eine Oberfläche gegebenen Wassertropfen mit einem Volumen von 10 μl auf herkömmliche Art und Weise bestimmt werden.

30

Vorzugsweise beträgt der Kontakt- oder Randwinkel wenigstens 150°, weiter bevorzugt 160°, noch weiter bevorzugt wenigstens 170°.

Die photokatalytisch aktive, poröse oxidkeramische Beschichtung kann unter

- 5 Verwendung von einer oder mehreren Verbindungen mit geradkettigen und/oder verzweigtkettigen aromatischen und/oder aliphatischen Kohlenwasserstoffresten mit funktionellen Gruppen hydrophobiert werden, wobei die funktionellen Gruppen aus Amin, Thiol, Carboxylgruppe, Alkohol, Disulfid, Aldehyd, Sulfonat, Ester, Ether oder Mischungen davon ausgewählt
- 10 werden. Vorzugsweise werden Silikonöl, Aminöle, Silikonharz, z.B. Alkylpolysiloxane, Alkoxy siloxane, Alkalisiliconate, Erdalkalisiliconate, Silan-Siloxan-Gemische, Aminosäuren oder Gemische davon verwendet.

Vorzugsweise kann die Beschichtung aus Ormoceren, Polysiloxan, Alkylsilan und/oder Fluorsilan, vorzugsweise in Mischung mit SiO_2 , gebildet sein. Die gerad- und/oder verzweigtkettigen Kohlenwasserstoffreste bestehen vorzugsweise aus 1 bis 30 C-Atomen, weiter bevorzugt 6 bis 24 C-Atomen, bspw. 16 bis 18 C-Atomen.

- 20 Vorzugsweise wird eine Mischung aus Alkalisiliconaten und/oder Erdalkalisiliconaten in Wasser aufgebracht, wobei Alkali aus der Gruppe ausgewählt wird, die aus Li, Na, K und Gemischen davon besteht. Erdalkali werden vorzugsweise aus der Gruppe ausgewählt, die aus Be, Mg, Ca, Sr, Ba und Gemischen davon besteht. Bevorzugte Verdünnungen von Alkali- oder
- 25 Erdalkali-Siliconat zu Wasser liegen im Bereich von 1 : 100 bis 1 : 600 (Gew./Gew.), weiter bevorzugt sind Verdünnungen von 1 : 250 bis 1 : 350 (Gew./Gew.).

Für die Bereitstellung einer superhydrophoben Oberfläche kann eine Mischung

- 30 aus Partikeln, z.B. SiO_2 , und Hydrophobierungsmittel, z.B. Fluorsilan,

aufgebracht werden. Diese Superhydrophobierung verstärkt äußerst vorteilhaft die Selbstreinigungseigenschaft des erfindungsgemäßen Formkörpers.

Gemäß einer weiteren bevorzugten Ausführungsform weist die

5 superhydrophobe Oberfläche Erhebungen auf. Diese Erhebungen können bei Aufbringung des Hydrophobierungsmittels erzeugt werden, indem dem Hydrophobierungsmittel partikuläres Material zugemischt wird und diese Mischung nachfolgend auf die photokatalytisch aktive, poröse oxidkeramische Beschichtung aufgebracht wird.

10

Wenn die Oberfläche mit den vorstehend angegebenen Hydrophobierungsmitteln hydrophobiert ist, darf die Temperatur nicht über 300°C erhöht werden, da es dann zu der bereits oben erwähnten thermischen Zersetzung der Hydrophobierungsmittel kommen kann.

15

Im Sinne der Erfindung erfolgt daher ein Härt(en) durch Brennen nur dann, wenn noch keine hydrophobe Oberfläche auf der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung aufgebracht wurde. Wurde Polysiloxan als Haftmittel verwendet und nachfolgend der Formkörper durch Brennen gehärtet, 20 muss regelmäßig die Oberfläche noch einmal hydrophobiert werden, wenn eine hydrophobe Oberfläche auf der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung bereitgestellt werden soll.

25 Vorzugsweise liegt der grobkeramische Formkörper als Dachziegel, Ziegel, Klinker oder Fassadenwand vor.

Bei der erfindungsgemäßen Herstellung eines grobkeramischen Formkörpers liegt das in Schritt (a) verwendete photokatalytisch aktive, oxidkeramische Pulver vorzugsweise in einer nanodispersen Form vor. Hierbei hat sich der 30 Partikelgrößenbereich des oxidkeramischen Pulvers in einem Bereich von 5 nm

bis etwa 100 nm, weiter bevorzugt von etwa 10 nm bis etwa 50 nm, als sehr geeignet erwiesen.

Zur Herstellung des erfindungsgemäßen grobkeramischen Formkörpers wird

5 aus oxidkeramischem Pulver, anorganischem Stabilisierungsmittel sowie einer Flüssigphase unter Mischen eine bevorzugt homogene Suspension bereitgestellt. Diese Suspension kann in einer gewünschten Schichtdicke auf das oxidkeramische Basismaterial aufgebracht werden.

10 Die Suspension kann beispielsweise durch Gießen, Streichen, Sprühen, Schleudern, etc. auf das oxidkeramische Basismaterial aufgebracht werden. Selbstverständlich kann das oxidkeramische Basismaterial auch in die Suspension eingetaucht werden.

15 Vorzugsweise wird die Suspension in einer solchen Schichtdicke aufgebracht, dass nach dem Trocknen und/oder Brennen ein grobkeramischer Formkörper mit einer photokatalytisch aktiven, porösen oxidkeramischen Beschichtung in einer Dicke von etwa 50 nm bis etwa 50 µm, vorzugsweise etwa 100 nm bis etwa 1 µm, erhalten wird.

20 Dabei bildet sich die Schicht nicht nur in den Poren bzw. Kapillaren der Oberfläche, sondern auch auf der Oberfläche des grobkeramischen Formkörpers aus. Auf diese Weise können partiell Schichtdicken der oxidkeramischen Beschichtung ausgebildet sein, die größer als der mittlere Durchmesser der Poren bzw. Kapillaren sind, die üblicherweise in einem Bereich von 0,1 µm bis 5 µm liegen.

Bei dem oxidkeramischen Basismaterial kann es sich um einen Grünkörper (ungebranntes Keramikmaterial) oder um vorgebranntes oder gebranntes Keramikmaterial handeln. Das oxidkeramische Basismaterial weist

vorzugsweise ein Wasseraufnahmevermögen von > 1%, vorzugsweise von 2 bis 12% auf.

Das in Schritt (a) verwendete anorganische Stabilisierungsmittel stabilisiert die 5 photokatalytisch aktiven, oxidkeramischen Pulverpartikel in der Suspension, so dass die photokatalytisch aktiven, oxidkeramischen Pulverpartikel nicht ausfallen.

Vorzugsweise wird als anorganisches Stabilisierungsmittel SiO_2 , SnO_2 , $\gamma\text{-Al}_2\text{O}_3$, 10 ZrO_2 oder Gemische davon verwendet.

Das anorganische Stabilisierungsmittel verringert die Agglomerationsneigung der photokatalytisch aktiven, oxidkeramischen Pulverpartikel bzw. Partikel in der Suspension. Dies ermöglicht eine gleichmäßige Aufbringung und Verteilung 15 der Pulverpartikel auf der Oberfläche einer Grobkeramik oder Keramik. Aufgrund der verringerten Agglomeratbildung kommt es letztendlich zu einer erhöhten photokatalytischen Aktivität der Beschichtung nach Aufbringung auf das oxidkeramische Basismaterial.

20 Das Brennen der in Schritt (b) bereitgestellten Schicht kann zum einen durch Brennen des Formkörpers in einem Brennofen oder in einer Brennkammer bei einer Temperatur von mehr als 300 °C bis etwa 1100 °C erfolgen. Weiterhin erfolgt das Brennen vorzugsweise in einem Temperaturbereich von etwa 700 °C bis etwa 1100 °C.

25 Das Trocknen erfolgt bei einer wesentlich tieferen Temperatur als das Brennen. Das Trocknen erfolgt üblicherweise in einem Temperaturbereich von 50 °C bis 300 °C, vorzugsweise von 80 °C bis 100 °C. In diesem Temperaturbereich wird eine aufgebrachte superhydrophobe Beschichtung nicht zerstört bzw. abgebaut.

Bei der optionalen Verwendung von Haftmittel bei Schritt (a) wird der Suspension vorzugsweise Polysiloxan zugesetzt, das die Haftung des oxidkeramischen Pulvers an dem oxidkeramischen Basismaterial unterstützt. Polysiloxan führt neben seiner Haftwirkung auch zu einer Hydrophobierung der

- 5 Struktur. Darüber hinaus bewirkt das Zusetzen von Haftmittel, wie beispielsweise Polysiloxan, auch eine Erhöhung der Viskosität der in Schritt (a) des erfindungsgemäßen Verfahrens hergestellten Suspension. Somit muss bei einem Zusetzen von Haftmittel zu der Suspension in Schritt (a) nicht notwendigerweise ein Stellmittel zugegeben werden. Die unter Verwendung von
- 10 Haftmittel eingestellte Viskosität kann ausreichen, so dass in Schritt (b) die Suspension auf dem oxidkeramischen Basismaterial unter Ausbildung einer Schicht aufgebracht werden kann.

Als Flüssigphase werden vorzugsweise wässrige Lösungen und/oder Wasser enthaltende Lösungen verwendet. Weiter bevorzugt wird als Flüssigphase Wasser verwendet.

Bei einer weiteren erfindungsgemäßen Ausgestaltung des Verfahrens kann der in Schritt (a) hergestellten Suspension auch partikuläres Material zugesetzt werden. Bei dieser Verfahrensvariante werden in einem Schritt die für den Selbstreinigungseffekt der Oberfläche vorteilhaften Erhebungen als auch die katalytisch aktive, poröse oxidkeramische Beschichtung ausgebildet.

Bei einem gemäß dieser Verfahrensvariante hergestellten grobkeramischen Formkörper liegt dann kein getrennter Schichtaufbau aus Schicht mit Erhebungen und darüber angeordneter katalytisch aktiver, poröser oxidkeramischer Beschichtung vor. Vielmehr liegen die unter Verwendung von partikulärem Material hergestellten Erhebungen und die photokatalytisch aktiven oxidkeramischen Komponenten im wesentlichen nebeneinander bzw. 30 miteinander innig vermischt vor.

Wahlweise kann dieser Suspension dann auch noch ein Hydrophobierungsmittel zugegeben werden, so dass die Superhydrophobierung der oxidkeramischen Oberfläche in dem gleichen Verfahrensschritt erfolgt.

5

Eine Superhydrophobierung wird erhalten, wenn die Oberfläche hydrophobiert ist und gleichzeitig Erhebungen und Vertiefungen, die beispielsweise unter Zusatz von partikulärem Material erzeugt sind, umfaßt.

10 Bei dieser Verfahrensvariante darf das Härteln dann nur durch Trocknen erfolgen, damit keine thermische Zersetzung der hydrophoben Oberfläche eintritt.

15 Selbstverständlich ist es auch möglich, zunächst auf dem oxidkeramischen Basismaterial das oben genannte partikuläre Material zur Erzeugung von Erhebungen aufzubringen und mittels Haftmittel und/oder Sinterung an der Oberfläche des keramischen Basismaterials zu fixieren, diese so bereitgestellte, Erhebungen aufweisende Oberfläche unter Verwendung des erfindungsgemäßen Verfahrens mit einer photokatalytisch aktiven, porösen 20 oxidkeramischen Beschichtung zu versehen und gegebenenfalls nachfolgend eine superhydrophobe Oberfläche auf der photokatalytisch aktiven Beschichtung zu erzeugen.

25 Als Hydrophobierungsmittel werden vorzugsweise anorganisch-organische Hybridmoleküle wie beispielsweise Siloxane, insbesondere Polysiloxane, verwendet. Weiterhin haben sich als Hydrophobierungsmittel Ormcere, Alkylsilane und/oder Fluorsilane als geeignet erwiesen.

Selbstverständlich können aber auch andere Hydrophobierungsmittel, beispielsweise Alkali- oder Erdalkalisiliconate, verwendet werden, wie sie beispielsweise oben angegeben sind.

- 5 Die Hydrophobierungsmittel können durch ein geeignetes Verfahren, beispielsweise Sprühen, Gießen, Schleudern, Bestreuen etc. aufgebracht werden. Beispielsweise kann unter Verwendung einer, bevorzugt wässrigen, Flüssigphase zunächst eine Hydrophobierungslösung oder -suspension hergestellt werden. Dieser Hydrophobierungslösung oder -suspension können 10 wahlweise noch partikuläre Materialien zugesetzt werden, wenn in der superhydrophoben Oberfläche Erhebungen erzeugt werden sollen. Diese Hydrophobierungslösung oder -suspension kann dann auf die oben beschriebene herkömmliche Art und Weise aufgebracht werden.

- 15 Unter einer superhydrophoben Oberfläche wird im Sinne der Erfindung eine superhydrophobe Schicht verstanden, wobei der Randwinkel für Wasser wenigstens 140° , vorzugsweise 160° , weiter bevorzugt 170° , beträgt.

- 20 Weiterhin kann nach Aufbringung der in Schritt (a) hergestellten Suspension auf das oxidkeramische Basismaterial vor dem Brennen auch ein Vortrocknungsschritt durchgeführt werden. Bei diesem Vortrocknungsschritt kann die Flüssigphase, vorzugsweise Wasser, durch Verflüchtigung entfernt werden. Dies kann beispielsweise durch Erwärmung, beispielsweise in einem Umluftofen oder Strahlungsofen erfolgen. Selbstverständlich können auch 25 andere Trocknungsverfahren, beispielsweise Mikrowellentechnik, verwendet werden.

- 30 Der Vortrocknungsschritt hat sich als vorteilhaft erwiesen, um eine Rißbildung bzw. ein Reißen der aus der Suspension entstehenden Beschichtung beim Brennen zu vermeiden.

Nach dem Brennen kann dann eine superhydrophobe Oberfläche auf die vorstehend beschriebene Art und Weise aufgebracht werden.

- 5 Nach dem Brennschritt und der gegebenenfalls durchgeföhrten Hydrophobierung kann bei einer bevorzugten Ausführungsform eine Nachbehandlung der hergestellten photokatalytisch aktiven, porösen oxidkeramischen Beschichtung durchgeföhr werden. Die Nachbehandlung erfolgt durch Einstrahlung von Laserlicht, NIR- oder UV-Licht. Durch diese
- 10 Nachbehandlung kann die Haftung zwischen der photokatalytisch aktiven Beschichtung und dem oxidkeramischen Basismaterial verbessert werden.

Es hat sich gezeigt, dass der erfindungsgemäße grobkeramische Formkörper neben einer verbesserten Selbstreinigungseigenschaft eine verbesserte

- 15 mechanische Stabilität besitzt. Äußerst vorteilhaft haftet die katalytisch aktive, poröse oxidkeramische Beschichtung mit gegebenenfalls superhydrophober Oberfläche sehr fest und zuverlässig an bzw. in dem grobkeramischen Basismaterial. Somit wird diese Beschichtung, wenn sie beispielsweise auf Dachziegeln aufgebracht ist, nicht bei einem Begehen des Daches abgerieben
- 20 oder zerstört. Insbesondere ist die in den Poren bzw. dem Kapillargefüge aufgebrachte Beschichtung vor mechanischen Einwirkungen zuverlässig geschützt.

Patentansprüche

1. Keramischer Formkörper, nämlich ein Dachziegel, Ziegel, Klinker oder
10 eine Fassadenwand aus oxidkeramischem Basismaterial mit bei
Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche,
d a d u r c h g e k e n n z e i c h n e t,
dass der Formkörper eine poröse oxidkeramische Beschichtung
aufweist, wobei die Beschichtung photokatalytisch aktiv ist und eine
15 spezifische Oberfläche in einem Bereich von etwa $25 \text{ m}^2/\text{g}$ bis etwa $200 \text{ m}^2/\text{g}$, vorzugsweise von etwa $40 \text{ m}^2/\text{g}$ bis etwa $150 \text{ m}^2/\text{g}$, aufweist.
2. Keramischer Formkörper nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t,
20 dass das oxidkeramische Basismaterial ein Kapillargefüge aufweist und
die poröse oxidkeramische Beschichtung auf der Oberfläche und in den
Porenöffnungen sowie den freien Flächen des Kapillargefüges nahe der
Oberfläche im Innern des keramischen Formkörpers aufgebracht ist.
- 25 3. Keramischer Formkörper nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t,
dass die Porenöffnungen intergranular und/oder intragranular
ausgebildet sind.

4. Keramischer Formkörper nach einem der Ansprüche 1 bis 3,
d a d u r c h g e k e n n z e i c h n e t,
dass der freie Atmungsquerschnitt des keramischen Formkörpers durch
die aufgebrachte poröse oxidkeramische Beschichtung um weniger als
5 10 %, vorzugsweise weniger als 5 %, bezogen auf den freien
Atmungsquerschnitt eines nicht beschichteten keramischen
Formkörpers, herabgesetzt ist.
5. Keramischer Formkörper nach einem der Ansprüche 1 bis 4,
10 d a d u r c h g e k e n n z e i c h n e t,
dass die poröse oxidkeramische Beschichtung bis zu einer Tiefe von 1
mm, vorzugsweise bis zu einer Tiefe von 2 mm, gemessen in vertikaler
Richtung von der Oberfläche des keramischen Formkörpers, in dem
keramischen Formkörper aufgebracht ist.
- 15 6. Keramischer Formkörper nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass die Beschichtung eine spezifische Oberfläche in einem Bereich von
etwa 40 m²/g bis etwa 100 m²/g aufweist.
- 20 7. Keramischer Formkörper nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass die mittlere Schichtdicke der Beschichtung in einem Bereich von
etwa 50 nm bis etwa 50 µm, vorzugsweise von etwa 100 nm bis etwa 1
25 µm, liegt.
8. Keramischer Formkörper nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass zwischen oxidkeramischem Basismaterial und photokatalytisch
30 aktiver, poröser oxidkeramischer Beschichtung wenigstens eine Schicht

mit Erhebungen angeordnet ist, das oxidkeramische Basismaterial Erhebungen aufweist und/oder die photokatalytisch aktive, poröse oxidkeramische Beschichtung als Schicht mit Erhebungen ausgebildet ist.

5

9. Keramischer Formkörper nach Anspruch 8,
d a d u r c h g e k e n n z e i c h n e t,
dass die Erhebungen durch an dem oxidkeramischen Basismaterial fixiertes partikuläres Material gebildet sind.
10. Keramischer Formkörper nach Anspruch 9,
d a d u r c h g e k e n n z e i c h n e t,
dass das partikuläre Material temperaturbeständiges gemahlenes Material ist, das vorzugsweise aus der Gruppe ausgewählt wird, die aus gemahlenem Gestein, Schamotte, Ton, Minerale, Keramikpulver wie SiC, Glas, Glasschamotte und Mischungen davon besteht.
11. Keramischer Formkörper nach Anspruch 9 oder 10,
d a d u r c h g e k e n n z e i c h n e t,
20 dass die Größe der Partikel und/oder der Erhebungen in einem Bereich von bis zu 1500 nm, vorzugsweise von etwa 5 nm bis etwa 700 nm, weiter vorzugsweise von etwa 5 nm bis etwa 25 bis 50 nm, liegt bzw. liegen.
- 25 12. Keramischer Formkörper nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass die photokatalytisch aktive, poröse oxidkeramische Beschichtung photokatalytisch aktive, oxidkeramische Materialien umfasst, die aus der Gruppe ausgewählt werden, die aus TiO₂, Al₂O₃, SiO₂, Ce₂O₃ und

Mischungen davon besteht.

13. Keramischer Formkörper nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
5 dass das oxidkeramische Basismaterial des Formkörpers
photokatalytisch aktive, oxidkeramische Materialien enthält, die aus der
Gruppe ausgewählt werden, die aus TiO_2 , Al_2O_3 , SiO_2 , Ce_2O_3 und
Mischungen davon besteht.
- 10 14. Keramischer Formkörper nach einem der Ansprüche 12 oder 13,
d a d u r c h g e k e n n z e i c h n e t,
dass das photokatalytisch aktive, oxidkeramische Material eine
durchschnittliche Partikelgröße im Bereich von etwa 5 nm bis etwa 100
nm, vorzugsweise von etwa 10 nm bis etwa 50 nm, aufweist.
15
15. Keramischer Formkörper nach einem der Ansprüche 12 bis 14,
d a d u r c h g e k e n n z e i c h n e t,
dass das in der photokatalytisch aktiven, porösen oxidkeramischen
Beschichtung und/oder in dem oxidkeramischen Basismaterial
20 enthaltene TiO_2 wenigstens teilweise, vorzugsweise zu wenigstens 40
Gew.-%, bezogen auf die Gesamtmenge an TiO_2 , in der Anatas-Struktur
vorliegt.
- 25 16. Keramischer Formkörper nach Anspruch 15,
d a d u r c h g e k e n n z e i c h n e t,
dass das in der photokatalytisch aktiven, porösen oxidkeramischen
Beschichtung und/oder in dem oxidkeramischen Basismaterial
enthaltene TiO_2 zu wenigstens 70 Gew.-%, bezogen auf die
Gesamtmenge an TiO_2 , in der Anatas-Struktur vorliegt.

17. Keramischer Formkörper nach einem der Ansprüche 14 bis 16,
d a d u r c h g e k e n n z e i c h n e t,
dass das TiO₂ in einer Mischung aus etwa 70 bis 100 Gew.-% Anatas
und etwa 30 bis 0 Gew.-% Rutil vorliegt.
5
18. Keramischer Formkörper nach einem der Ansprüche 14 bis 16,
d a d u r c h g e k e n n z e i c h n e t,
dass das TiO₂ zu etwa 100 Gew.-% in der Anatas-Struktur vorliegt.
- 10 19. Keramischer Formkörper nach einem der Ansprüche 1 bis 18,
d a d u r c h g e k e n n z e i c h n e t,
dass der Kontaktwinkel eines 10 µl Wassertropfens auf der porösen
oxidkeramischen Beschichtung ohne hydrophobe Nachbeschichtung
nach 15 Stunden Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht weniger
15 als 6° bis 7°, vorzugsweise weniger als 5°, weiter bevorzugt weniger als
4°, beträgt.
- 20 20. Keramischer Formkörper nach einem der Ansprüche 1 bis 19,
d a d u r c h g e k e n n z e i c h n e t,
dass der Kontaktwinkel eines 10 µl Wassertropfens auf der porösen
oxidkeramischen Beschichtung ohne hydrophobe Nachbeschichtung
nach 15 Stunden Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht und 30
Tagen Dunkelheit weniger als 20°, vorzugsweise weniger als 18°, weiter
bevorzugt weniger als 14° beträgt.
25
21. Keramischer Formkörper nach einem der Ansprüche 1 bis 20,
d a d u r c h g e k e n n z e i c h n e t,
dass der Kontaktwinkel eines 10 µl Wassertropfens auf der porösen
oxidkeramischen Beschichtung ohne hydrophobe Nachbeschichtung
30 nach 15 Stunden Bestrahlung mit 1 mW/cm² und 30 Tagen Dunkelheit

und erneuter Bestrahlung mit vorzugsweise 1 mW/cm² UV-A Schwarzlicht für drei Stunden weniger als 8°, vorzugsweise weniger als 7° beträgt.

- 5 22. Keramischer Formkörper nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass die Beschichtung eine superhydrophobe Oberfläche aufweist.
- 10 23. Grobkeramischer Keramischer Formkörper nach Anspruch 22,
d a d u r c h g e k e n n z e i c h n e t,
dass die superhydrophobe Oberfläche unter Verwendung von einer oder
mehrerer Verbindungen mit geradkettigen oder verzweigtkettigen
aromatischen und/oder aliphatischen Kohlenwasserstoffresten mit
funktionellen Gruppen, wobei die funktionellen Gruppen aus Amin, Thiol,
15 Carboxylgruppe, Alkohol, Disulfid, Aldehyd, Sulfonat, Ester, Ether oder
Mischungen davon ausgewählt sind, bereitgestellt ist.
- 20 24. Keramischer Formkörper nach Anspruch 23,
d a d u r c h g e k e n n z e i c h n e t,
daß die superhydrophobe Oberfläche unter Verwendung von
Verbindungen, die aus der Gruppe ausgewählt werden, die aus Silikonöl,
Aminöle, Silikonharz, z.B. Alkylpolysiloxane, Alkoxy siloxane,
Alkalisiliconate, Erdalkalisiliconate, Silan-Siloxan-Gemische,
Aminosäuren und Gemische davon besteht, bereitgestellt ist.
- 25 25. Keramischer Formkörper nach Anspruch 22,
d a d u r c h g e k e n n z e i c h n e t,
dass die superhydrophobe Oberfläche der Beschichtung unter
Verwendung von Ormoceren, Polysiloxan, Alkylsilan und/oder Fluorsilan,

vorzugsweise in Kombination mit SiO_2 , bereitgestellt ist.

26. Keramischer Formkörper nach Anspruch 22,
d a d u r c h g e k e n n z e i c h n e t,
5 dass die superhydrophobe Oberfläche unter Verwendung einer Lösung
von Alkalisiliconaten in Wasser, wobei Alkali aus der Gruppe, die aus
Lithium, Natrium, Kalium und Gemischen davon besteht, ausgewählt
wird, aufgebracht ist.
- 10 27. Keramischer Formkörper nach einem der Ansprüche 22 bis 26,
d a d u r c h g e k e n n z e i c h n e t,
dass die superhydrophobe Oberfläche einen Kontakt- oder Randwinkel
von wenigstens 140° für Wasser aufweist.
- 15 28. Keramischer Formkörper nach einem der Ansprüche 22 bis 27,
d a d u r c h g e k e n n z e i c h n e t,
dass die superhydrophobe Oberfläche einen Kontakt- oder Randwinkel
von wenigstens 150° für Wasser aufweist, vorzugsweise von wenigstens
160°, noch weiter bevorzugt von wenigstens 170°.
- 20 29. Keramischer Formkörper nach Anspruch 26,
d a d u r c h g e k e n n z e i c h n e t,
dass die Lösung von Alkalisiliconaten in Wasser ein
Verdünnungsverhältnis von 1 : 100 bis 1 : 600 (Gew./Gew.),
25 vorzugsweise ein Verdünnungsverhältnis von 1 : 250 bis 1 : 350
(Gew./Gew.) aufweist.
- 30 30. Keramischer Formkörper nach einem der Ansprüche 22 bis 29,
d a d u r c h g e k e n n z e i c h n e t,
dass die superhydrophobe Oberfläche der Beschichtung Erhebungen

aufweist.

31. Keramischer Formkörper nach Anspruch 30,
d a d u r c h g e k e n n z e i c h n e t,
5 dass die Erhebungen der superhydrophoben Oberfläche unter
Verwendung von partikulärem Material erzeugt sind.
32. Keramischer Formkörper nach Anspruch 22,
d a d u r c h g e k e n n z e i c h n e t,
10 dass die superhydrophobe Oberfläche unter Verwendung einer
Mischung aus Partikeln, beispielsweise SiO_2 , und
Hydrophobierungsmittel, beispielsweise Fluorsilan, aufgebracht ist.
33. Keramischer Formkörper nach einem der Ansprüche 1 bis 32,
15 d a d u r c h g e k e n n z e i c h n e t,
dass die aus photokatalytisch induziertem Methylenblau-Abbau
berechnete Photoneneffizienz bei der porösen oxidkeramischen
Beschichtung wenigstens 0,015 %, vorzugsweise wenigstens 0,02 %,
20 weiter vorzugsweise wenigstens 0,03 %, noch weiter bevorzugt
wenigstens 0,04 % beträgt.
34. Verfahren zur Herstellung eines grobkeramischen Formkörpers,
vorzugsweise aus oxidkeramischem Basismaterial mit Kapillargefüge
und mit bei Beregnung oder Berieselung mit Wasser selbstreinigender
25 Oberfläche, wobei der Formkörper eine photokatalytisch aktive, poröse
oxidkeramische Beschichtung mit einer spezifischen Oberfläche in einem
Bereich von etwa $25 \text{ m}^2/\text{g}$ bis etwa $200 \text{ m}^2/\text{g}$, vorzugsweise von etwa $40 \text{ m}^2/\text{g}$ bis etwa $150 \text{ m}^2/\text{g}$, aufweist und die poröse oxidkeramische
Beschichtung auf der Oberfläche und in den Porenöffnungen sowie den
30 freien Flächen des Kapillargefüges nahe der Oberfläche im Innern des

grobkeramischen Formkörpers aufgebracht ist,
wobei das Verfahren die folgenden Schritte umfasst:
(a) Mischen von photokatalytisch aktivem, oxidkeramischem Pulver,
anorganischem Stabilisierungsmittel sowie einer Flüssigphase unter
5 Bereitstellung einer Suspension,
(b) Aufbringen der in Schritt (a) hergestellten Suspension auf das
oxidkeramische Basismaterial unter Ausbildung einer Schicht,
(c) Härt(en) der in Schritt (b) bereitgestellten Schicht unter Ausbildung
einer photokatalytisch aktiven, porösen oxidkeramischen Beschichtung.

10

35. Verfahren nach Anspruch 34 ,
d a d u r c h g e k e n n z e i c h n e t ,
dass auf das oxidkeramische Basismaterial in einem vorgelagerten
Schritt wenigstens eine Schicht mit Erhebungen aufgebracht wird und
15 dass die in Schritt (a) hergestellte Suspension auf das mit einer Schicht
mit Erhebungen versehene oxidkeramische Basismaterial aufgebracht
und nachfolgend im Schritt (c) gehärtet wird.
36. Verfahren nach einem der Anspruch 34 oder 35,
20 d a d u r c h g e k e n n z e i c h n e t ,
dass im Schritt (a) zusätzlich partikuläres Material zugemischt wird.
37. Verfahren nach Anspruch 35 oder 36,
d a d u r c h g e k e n n z e i c h n e t ,
25 dass Erhebungen durch Fixieren von partikulärem Material auf dem
oxidkeramischen Basismaterial gebildet werden.
38. Verfahren nach Anspruch 36 oder 37,
d a d u r c h g e k e n n z e i c h n e t ,
30 dass das partikuläre Material temperaturbeständiges gemahlenes

Material ist, das vorzugsweise aus der Gruppe ausgewählt wird, die aus gemahlenem Gestein, Schamotte, Ton, Minerale, Keramikpulver wie SiC, Glas, Glasschamotte und Mischungen davon besteht.

5 39. Verfahren nach einem der Ansprüche 36 bis 38,
d a d u r c h g e k e n n z e i c h n e t,
dass die mittlere Partikelgröße des partikulären Materials in einem
Bereich bis zu etwa 1500 nm, vorzugsweise von etwa 5 nm bis 700 nm,
weiter vorzugsweise etwa von etwa 5 nm bis etwa 25 bis 50 nm, liegt.

10 40. Verfahren nach einem der Ansprüche 34 bis 39,
d a d u r c h g e k e n n z e i c h n e t,
dass das in Schritt (a) verwendete anorganische Stabilisierungsmittel die
photokatalytisch aktiven, oxidkeramischen Pulverpartikel in der
15 Suspension stabilisiert, so dass die photokatalytisch aktiven,
oxidkeramischen Pulverpartikel nicht ausfallen und/oder nicht
agglomerieren.

20 41. Verfahren nach einem der Anspruch 40,
d a d u r c h g e k e n n z e i c h n e t,
dass als anorganisches Stabilisierungsmittel SiO_2 , SnO_2 , $\gamma\text{-Al}_2\text{O}_3$, ZrO_2
oder Gemische davon verwendet werden.

25 42. Verfahren nach einem der Ansprüche 34 bis 41,
d a d u r c h g e k e n n z e i c h n e t,
dass der Suspension in Schritt (a) Haftmittel, vorzugsweise Polysiloxan,
zugesetzt wird.

30 43. Verfahren nach einem der Ansprüche 34 bis 42,
d a d u r c h g e k e n n z e i c h n e t,

dass in Schritt (a) als Flüssigphase Wasser oder ein wässriges oder Wasser enthaltendes Medium verwendet wird.

44. Verfahren nach einem der Ansprüche 34 bis 43,
5 d a d u r c h g e k e n n z e i c h n e t,
 dass die Haftung zwischen photokatalytisch aktiver Beschichtung und
 oxidkeramischem Basismaterial verbessert wird, indem die in Schritt (c)
 hergestellte photokatalytisch aktive, poröse oxidkeramische
 Beschichtung mit Laserlicht, NIR- oder UV-Licht bestrahlt wird.
10
45. Verfahren nach einem der Ansprüche 34 bis 44,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das in Schritt (a) verwendete photokatalytisch aktive,
 oxidkeramische Pulver Materialien umfasst, die aus der Gruppe
15 ausgewählt werden, die aus TiO_2 , Al_2O_3 , SiO_2 , Ce_2O_3 und Mischungen
 davon besteht.
46. Verfahren nach einem der Ansprüche 34 bis 45,
 d a d u r c h g e k e n n z e i c h n e t,
20 dass in dem oxidkeramischen Basismaterial des Formkörpers
 photokatalytisch aktive, oxidkeramische Materialien enthalten sind, die
 aus der Gruppe ausgewählt werden, die aus TiO_2 , Al_2O_3 , SiO_2 , Ce_2O_3
 und Mischungen davon besteht.
- 25 47. Verfahren nach einem der Ansprüche 34 bis 46 ,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das in Schritt (a) verwendete photokatalytisch aktive,
 oxidkeramische Pulver Partikel im Bereich von etwa 5 nm bis etwa 100
 nm, vorzugsweise von etwa 10 nm bis etwa 50 nm, umfasst.
30

48. Verfahren nach einem der Ansprüche 45 bis 47,
dadurch gekennzeichnet,
dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver
und/oder in dem oxidkeramischen Basismaterial enthaltene TiO_2
5 wenigstens teilweise, vorzugsweise zu wenigstens 40 Gew.-%, bezogen
auf die Gesamtmenge an TiO_2 , in der Anatas-Struktur vorliegt.
49. Verfahren nach einem der Ansprüche 45 bis 48,
dadurch gekennzeichnet,
10 dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver
und/oder in dem oxidkeramischen Basismaterial enthaltene TiO_2 zu
wenigstens 70 bis 100 Gew.-%, bezogen auf die Gesamtmenge an TiO_2 ,
in der Anatas-Struktur vorliegt.
- 15 50. Verfahren nach einem der Ansprüche 45 bis 49 ,
dadurch gekennzeichnet,
dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver
und/oder in dem oxidkeramischen Basismaterial enthaltene TiO_2 in einer
Mischung aus etwa 70 bis 100 Gew.-% Anatas und etwa 30 bis 0 Gew.-
20 % Rutil vorliegt.
51. Verfahren nach einem der Ansprüche 45 bis 50,
dadurch gekennzeichnet,
dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver
25 und/oder in dem oxidkeramischen Basismaterial enthaltene TiO_2 zu
etwa 100 Gew.-%, bezogen auf die Gesamtmenge an TiO_2 , in der
Anatas-Struktur vorliegt.
52. Verfahren nach einem der Ansprüche 34 bis 51,
30 dadurch gekennzeichnet,

dass die in Schritt (b) bereitgestellte Schicht in Schritt (c) durch Trocknen bei einer Temperatur von bis zu 300°C und/oder durch Brennen bei einer Temperatur von mehr als 300°C bis etwa 1100°C gehärtet wird.

5 53. Verfahren nach Anspruch 52,
d a d u r c h g e k e n n z e i c h n e t ,
dass die in Schritt (b) bereitgestellte Schicht vor dem Brennen in Schritt
(c) durch Verflüchtigung der Flüssigphase wenigstens teilweise
vorgetrocknet wird.

10 54. Verfahren nach einem der Ansprüche 34 bis 53,
d a d u r c h g e k e n n z e i c h n e t ,
dass die in Schritt (c) gehärtete Beschichtung unter Bereitstellung einer
hydrophoben Oberfläche hydrophobiert oder superhydrophobiert wird.

15 55. Verfahren nach einem der Ansprüche 34 bis 54,
d a d u r c h g e k e n n z e i c h n e t ,
dass im Schritt (a) zusätzlich ein Hydrophobierungsmittel zugegeben
wird und die in Schritt (b) bereitgestellte Beschichtung im Schritt (c)
durch Trocknen bei einer Temperatur bis zu 300°C gehärtet wird.

20 56. Verfahren nach Anspruch 54,
d a d u r c h g e k e n n z e i c h n e t ,
dass zur Hydrophobierung ein anorganisch-organisches Hybridmolekül,
25 vorzugsweise eine Polysiloxanlösung oder eine Alkali- oder
Erdalkalisiliconatlösung, verwendet wird.

25 57. Verfahren nach Anspruch 54,
d a d u r c h g e k e n n z e i c h n e t ,
30 dass die superhydrophobe Oberfläche unter Verwendung einer oder

5 mehrerer Verbindungen mit geradkettigen oder verzweigtkettigen aromatischen und/oder aliphatischen Kohlenwasserstoffresten mit funktionellen Gruppen, wobei die funktionellen Gruppen aus Amin, Thiol, Carboxylgruppe, Alkohol, Disulfid, Aldehyd, Sulfonat, Ester, Ether oder Mischungen davon ausgewählt werden, bereitgestellt wird.

10 58. Verfahren nach Anspruch 57,
durch gekennzeichnet,
daß die superhydrophobe Oberfläche unter Verwendung von Verbindungen, die aus der Gruppe ausgewählt werden, die aus Silikonöl, Aminöle, Silikonharz, z.B. Alkylpolysiloxane, Alkoxy siloxane, Alkalisiliconate, Erdalkalisiliconat, Silan-Siloxan-Gemische, Aminosäuren und Gemischen davon, besteht, bereitgestellt wird.

15 59. Verfahren nach Anspruch 54,
durch gekennzeichnet,
dass die superhydrophobe Oberfläche unter Verwendung von Ormoceren, Polysiloxan, Alkylsilan und/oder Fluorsilan, vorzugsweise in Mischung mit SiO_2 , bereitgestellt wird.

20 60. Verfahren nach einem der Ansprüche 54 bis 59,
durch gekennzeichnet,
dass zur Erzeugung einer superhydrophoben Oberfläche mit Erhebungen bei der Hydrophobierung partikuläres Material zugesetzt wird.

25 61. Verfahren nach einem der Ansprüche 34 bis 60,
durch gekennzeichnet,
dass der grobkeramische Formkörper ein Dachziegel, Ziegel, Klinker oder eine Fassadenwand ist.

30

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/DE 03/01741A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C04B41/87 C04B41/89

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	FR 2 816 610 A (RHONE POULENC CHIMIE) 17 May 2002 (2002-05-17) claims examples — FR 2 788 707 A (RHONE POULENC CHIMIE) 28 July 2000 (2000-07-28) claims examples page 4, line 22 - line 25 — —/—	1-23,30, 31,33, 34, 36-53,61 1-31,33, 34, 36-59,61
X		

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

25 September 2003

Date of mailing of the International search report

13/10/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Rosenberger, J

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE 03/01741

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 44954 A (LEHAUT CORINNE ;SIMONET MICHEL (FR); TALPAERT XAVIER (FR); SAINT G) 10 September 1999 (1999-09-10) claims examples figures page 8, line 1 - line 2	1-22,25, 27,28, 30-34, 36-51, 59-61
X	WO 01 79141 A (ERLUS BAUSTOFFWERKE) 25 October 2001 (2001-10-25) cited in the application claims	1-61
A	EP 1 072 572 A (ERLUS BAUSTOFFWERKE) 31 January 2001 (2001-01-31) cited in the application the whole document	1-61
A	EP 1 095 923 A (ERLUS BAUSTOFFWERKE) 2 May 2001 (2001-05-02) cited in the application the whole document	1-61
A	ROSENBERGER J: "Herstellung und Charakterisierung von dünnen Bariumtitanatschichten" 1994 , SAARBRÜCKEN XP002255640 page 28	1-61

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE 03/01741

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
FR 2816610	A	17-05-2002		FR 2816610 A1 AU 2376802 A EP 1337594 A1 WO 0238682 A1	17-05-2002 21-05-2002 27-08-2003 16-05-2002
FR 2788707	A	28-07-2000		FR 2788707 A1 AT 230386 T AU 2114200 A DE 60001105 D1 EP 1153001 A1 ES 2189733 T3 WO 0044687 A1	28-07-2000 15-01-2003 18-08-2000 06-02-2003 14-11-2001 16-07-2003 03-08-2000
WO 9944954	A	10-09-1999		FR 2775696 A1 AU 3258899 A BR 9908509 A EP 1087916 A1 WO 9944954 A1 HU 0102680 A2 JP 2002505349 T PL 342761 A1 TR 200002575 T2 US 2003082367 A1 US 6465088 B1	10-09-1999 20-09-1999 12-12-2000 04-04-2001 10-09-1999 28-03-2002 19-02-2002 02-07-2001 21-11-2000 01-05-2003 15-10-2002
WO 0179141	A	25-10-2001		DE 10018458 A1 WO 0179141 A1	18-10-2001 25-10-2001
EP 1072572	A	31-01-2001		DE 19947524 A1 AT 235442 T CZ 20002725 A3 DE 50001530 D1 DK 1072572 T3 EP 1072572 A1	01-02-2001 15-04-2003 16-01-2002 30-04-2003 14-07-2003 31-01-2001
EP 1095923	A	02-05-2001		DE 19958321 A1 CZ 20003975 A3 EP 1095923 A2	03-05-2001 12-12-2001 02-05-2001

INTERNATIONALER RECHERCHENBERICHT

Internationale Aktenzeichen
PCT/DE 03/01741

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C04B41/87 C04B41/89

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C04B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, COMPENDEX

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	FR 2 816 610 A (RHONE POULENC CHIMIE) 17. Mai 2002 (2002-05-17) Ansprüche Beispiele ----	1-23,30, 31,33, 34, 36-53,61
X	FR 2 788 707 A (RHONE POULENC CHIMIE) 28. Juli 2000 (2000-07-28) Ansprüche Beispiele Seite 4, Zeile 22 - Zeile 25 ----	1-31,33, 34, 36-59,61
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die gezeigt ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfänderscher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfänderscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendeadatum des Internationalen Recherchenberichts
25. September 2003	13/10/2003
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Rosenberger, J

INTERNATIONALER RECHERCHENBERICHT

Internat. Aktenzeichen
PCT/DE 03/01741

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 99 44954 A (LEHAUT CORINNE ;SIMONET MICHEL (FR); TALPAERT XAVIER (FR); SAINT G) 10. September 1999 (1999-09-10) Ansprüche Beispiele Abbildungen Seite 8, Zeile 1 - Zeile 2 ----	1-22, 25, 27, 28, 30-34, 36-51, 59-61
X	WO 01 79141 A (ERLUS BAUSTOFFWERKE) 25. Oktober 2001 (2001-10-25) in der Anmeldung erwähnt Ansprüche ----	1-61
A	EP 1 072 572 A (ERLUS BAUSTOFFWERKE) 31. Januar 2001 (2001-01-31) in der Anmeldung erwähnt das ganze Dokument ----	1-61
A	EP 1 095 923 A (ERLUS BAUSTOFFWERKE) 2. Mai 2001 (2001-05-02) in der Anmeldung erwähnt das ganze Dokument ----	1-61
A	ROSENBERGER J: "Herstellung und Charakterisierung von dünnen Bariumtitanschichten" 1994 , SAARBRÜCKEN XP002255640 Seite 28 -----	1-61

INTERNATIONALER RECHERCHENBERICHT

Internationale Patentzeichen
PCT/DE 03/01741

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
FR 2816610	A	17-05-2002		FR 2816610 A1 AU 2376802 A EP 1337594 A1 WO 0238682 A1		17-05-2002 21-05-2002 27-08-2003 16-05-2002
FR 2788707	A	28-07-2000		FR 2788707 A1 AT 230386 T AU 2114200 A DE 60001105 D1 EP 1153001 A1 ES 2189733 T3 WO 0044687 A1		28-07-2000 15-01-2003 18-08-2000 06-02-2003 14-11-2001 16-07-2003 03-08-2000
WO 9944954	A	10-09-1999		FR 2775696 A1 AU 3258899 A BR 9908509 A EP 1087916 A1 WO 9944954 A1 HU 0102680 A2 JP 2002505349 T PL 342761 A1 TR 200002575 T2 US 2003082367 A1 US 6465088 B1		10-09-1999 20-09-1999 12-12-2000 04-04-2001 10-09-1999 28-03-2002 19-02-2002 02-07-2001 21-11-2000 01-05-2003 15-10-2002
WO 0179141	A	25-10-2001		DE 10018458 A1 WO 0179141 A1		18-10-2001 25-10-2001
EP 1072572	A	31-01-2001		DE 19947524 A1 AT 235442 T CZ 20002725 A3 DE 50001530 D1 DK 1072572 T3 EP 1072572 A1		01-02-2001 15-04-2003 16-01-2002 30-04-2003 14-07-2003 31-01-2001
EP 1095923	A	02-05-2001		DE 19958321 A1 CZ 20003975 A3 EP 1095923 A2		03-05-2001 12-12-2001 02-05-2001