Distributed Systems

José Orlando Pereira

HASLab / Departamento de Informática Universidade do Minho

Goals

- Discover what is true in a distributed system:
 - For an external observer: "It works!"
 - From within the system: "I'm done!"

More goals

- Build intuition on distributed systems
- Programming concurrent servers:
 - Multi-threaded
 - Event-driven

An analogy...

- Variables:
 x position
 t time
- 2) Observations: t=t1, x=x1 t=t2, x=x2

3) Observations can be generalized by an equation with a common format: x=x0+vt

- Consider just messages sent and messages received
- Alternatives:
 - Messages received = messages sent
 - Messages received ⊆ messages sent
 - Any messages received
- Does it work?

- Interesting case: Messages received is a subset of messages sent
- Consider an hypothetical solution:

Does the last message matter?

- It doesn't matter:
 - It can be lost
 - The sender has already decided

• And now, does the next message matter?

- We discover that no distributed program can solve the problem
- Consequences:
 - How to draw money from an ATM? See <u>Transactional Distributed Systems</u>
 - How to fly an airplane with redundant controllers? See Fault Tolerance
- How to generalize the approach?

Case study: Trading system

- Input: offer to buy or sell something
- No output until a suitable buyer/seller pair is found
 - The trading system never holds stock
- Output: confirmation

Case study: Trading system

What matters:

- We don't buy/sell more than what has been offered/requested
- If there are sellers and buyers for at least k
 items, eventually k items are sold and bought
- If multiple buyers/sellers are competing, make sure no one is left behind
- What doesn't matter:
 - How the server is implemented
 - If there is a server at all...

•