Si Vi es Imp de G

$$\chi_{i} = [dim(Vi) \times x, x, ...]$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \chi_{i} \rangle = \frac{1}{|\mathcal{M}|} |\mathcal{M}| \cdot dim(Vi) \rangle$$

$$\langle \chi_{i} \chi_{i} \chi_{i} \chi_{i} \chi_{i} \chi_{$$

Problema: Desciba las meps de 54 (table de cinctres) Ejericios: Calcula la tabla de chan de 55 y dan alguna construcción de todas las meps.						
tjericis: Calcula la tabla de Chas de 35 y dan						
John costrucias ac tours las meps.						
Sabres que k < [# Clase, de conjugación]						
_	1	6	3	8	6	
	e	(12)	(12)(34)	(123)	(1234)	
tr	1	1	1	1	1	
Sgn	1	-	1	1	_1	
Ĭ.	3	1	<u> </u>	0	1	
rg. oll.	3	_	-1		-\	
V	2	0	(2)	- (0	
			\			
	χ	J = (4, 2, C	10)]			
Sea W = (C1 C2, C7 C4) S4 N W por permtraciót						
$\frac{1}{ a } \sum_{q \in q} \overline{x_{w}(q)} \times x_{w}(q)$ $(x_{w}, x_{w}) = \frac{1}{24} (.16 + 6 \cdot 2^{2} + 8 \cdot 1^{2}) = 2 = a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2}$						
	< x "	$\langle \chi \rangle = \frac{1}{24}$	(,16 + 6.2	+8.1)=	とまる、十0	2 + - + 4=

La vinica posibilidad es 2=1+3

Spr (e, tezte, tea) (W es ma copia de la trivia) U= (e, tezte, tea) es ma mep de 54 de dousor $\chi_{11} = \chi_{w} - \chi_{wi} = (3, 1, -1, 0, -1)$ $\left(\chi_{u} \chi_{u} \right) = \frac{1}{24} \left(\frac{3^{2}}{3} + 6 \cdot 1^{2} + 3 \cdot (-1)^{2} + 80^{3} + 6 \cdot (-1)^{2} \right)$

$$=\frac{1}{29}\left(9+6+3+6\right)=\frac{24}{29}=1$$
[ugo Ues medicible.

$$|S_{4}| = 24 = 1^{2} + 1^{2} + 3^{2} + dum(V_{0})^{2} + dul(V_{0})^{2} +$$

