## ÉCOLE NATIONALE SUPÉRIEURE DE TECHNIQUES AVANCÉES



## Projet de Fin d'Études

effectué à

L'Unité de Mathématiques Appliquées de l'ENSTA ParisTech du 29/06/2015 au 28/11/2015

par

## Kirill Brodt promotion 2015

## Comparaison de méthodes numériques pour résoudre les équations de Maxwell avec une singularité

Rapport non confidentiel

encadré par

**Patrick Ciarlet** 

#### Résumé

On résout dans la première partie les équations stationnaires de Maxwell dans un domaine dite damier ou "checkerboard" borné de  $\mathbb{R}^d$ , d=2,3 avec une solution singulière. Pour prendre en compte la contrainte sur la divergence du champ, on utilise deux techniques, le multiplicateur de Lagrange et la pénalisation. La deuxième a été déjà examinée pour des champs réguliers et le choix du paramètre de régularisation  $\alpha \leq h^2$ . On étudie ici le cas des champs singulières et leur comportement avec les choix différentes du paramètre de régularisation en utilisant des éléments finis d'arêtes. Les résultas numériques nous montrent que le choix  $\alpha \leq h$  se révèle meilleur pour ces problèmes. Dans la deuxième partie on résout le problème électrique aux valeurs propres. Pour prendre en compte la même contrainte et pour suprimer les valeurs propres parasites on décompose l'espace  $\mathbf{H}_0(\mathbf{rot},\Omega)$  à deux espaces orthogonaux. On introduit un opérateur de projection dans un espace à divergence nulle et on modifie le problème en utilisant cet opérateur.

**Mots-clés :** Les équations de Maxwell, solution singulière, problèmes mixtes, pénalisation, éléments finis nodaux, éléments finis d'arêtes, valeurs propres, opérateur de projection

#### Remerciements

Je tiens à remercier dans un premier temps, toute l'équipe pédagogique de l'ENSTA ParisTech et les intervenants professionnels responsables de la formation, pour avoir assuré la partie théorique de celle-ci.

Je remercie toute l'équipe des relations internationales pour de m'avoir accueilli au sein de l'ENSTA, à savoir Madame Cécile Vigouroux qui s'est occupée avec la bourse pendant mes études à l'ENSTA et aussi pour bureaucratie de mon séjour en France.

Je remercie Madame Chen Corine qui s'est occupée avec la bourse de stage, qui m'a permis de poursuivre mon stage dans les meilleures conditions.

Je remercie également Monsieur Patrick Ciarlet pour l'aide et les conseils concernant les missions évoquées dans ce rapport, qu'il m'a apporté lors des différents suivis.

Je remercie Mademoiselle Marina Osintseva pour me soutenir moralement pendant tout mon stage.

Finalement, je remercie toute ma famille pour qu'elle me donne la vie dans ce monde exquise et étonnant. Merci.

## Table des matières

| 1  | Equ              | ations de Maxwell en deux dimensions avec une solution singulière          | 1  |
|----|------------------|----------------------------------------------------------------------------|----|
|    | $1.\overline{1}$ | Equation pour le potentiel                                                 | 1  |
|    | 1.2              | Passage aux équations stationnaires de Maxwell                             | 3  |
|    |                  | 1.2.1 Multiplicateur de Lagrange                                           | 4  |
|    |                  | 1.2.2 Pénalisation                                                         | 5  |
|    | 1.3              | Comparaison                                                                | 8  |
|    | 1.4              | Adaptation de maillage                                                     | 10 |
|    |                  | 1.4.1 Potentiel                                                            | 10 |
|    |                  | 1.4.2 Multiplicateur de Lagrange                                           | 11 |
|    |                  | 1.4.3 Pénalisation                                                         | 12 |
|    |                  | 1.4.4 Comparaison                                                          | 14 |
|    | 1.5              | Résumé                                                                     | 15 |
| 2  | Equ              | ations de Maxwell en trois dimensions avec une solution singulière         | 16 |
|    | 2.1              | •                                                                          | 16 |
|    |                  | 2.1.1 Multiplicateur de Lagrange                                           | 16 |
|    |                  | 2.1.2 Pénalisation                                                         | 17 |
|    | 2.2              | Comparaison                                                                | 22 |
|    | 2.3              | Résumé                                                                     | 24 |
| 3  | Prol             | olème aux valeurs propres des équations de Maxwell                         | 25 |
|    | 3.1              | Problème électrique aux valeurs propres                                    | 25 |
|    | 3.2              | Décomposition orthogonale de l'espace $\mathbf{H}_0(\mathbf{rot}, \Omega)$ | 26 |
|    | 3.3              | Discrétisation et la forme matricielle d'opérateur de projection           | 26 |
|    | 3.4              | Tests numériques                                                           | 29 |
|    | 3.5              | Résumé                                                                     | 30 |
| Bi | blioº            | raphie                                                                     | 32 |

#### Introduction

Cette monographie est en partie la suite du sujet de Projet de Recherche [1], [2] et elle est consacré à la résolution numérique des équations de Maxwell dont la solution est singulière en utilisant la méthode des éléments finis d'arêtes.

Dans le premier chapitre on commence par la résolution d'équation elliptique du seconde ordre en deux dimensions avec un coefficient discontinu dans une géométrie dite damier ou "checkerboard" pour le potentiel qui est singulier. C'est-à-dire, il appartient à l'espace de Sobolev  $H^{1+\lambda}(\Omega)$  avec  $\lambda \in ]0, 1/2[$ . On va discrétiser ce problème par des éléments finis nodaux de type Lagrange  $P_k$  d'ordre k. Dans ce cas la vitesse de convergence ne dépend pas d'ordre des éléments finis  $P_k$  est ègale à  $\lambda$  en norme H<sup>1</sup> [3, théorème 3.16] et  $2\lambda$  en norme L<sup>2</sup>. On passe ensuite, grâce au potentiel, aux équations stationnaires de Maxwell dont la solution est aussi singulière. La difficulté de ces équations est d'approcher numériquement un champ qui vérifie la loi de Gauss. Il existe nombreuses techniques pour prendre en compte cette contrainte, cependant on examinera ici les deux, à savoir la méthode classique d'un point selle, consistant en l'introduction du multiplicateur de Lagrange[4, chapitre 2] et la méthode de pénalisation développée par P. Ciarlet, H. Wu et J. Zou dans l'article [5], où il n'y a aucun besoin de point selle et qui permet de calculer plus rapidement et plus efficacement les champs électromagnétiques par rapport à la première. Les auteurs ont examiné un problème avec  $\lambda > 1/2$  et un choix du paramètre de régularisation  $\alpha=h_{min}^2$ , par contre, dans cette monographie on variera ce paramètre et on obtiendra numériquement que le choix  $\alpha = h_{min}$  se révèle meilleur. Ensuite on étudiera la convergence sur des maillages uniformes et on obtient l'ordre de convergence  $\lambda$  pour les approximations d'ordre 1 et 2. On va également l'étudier sur des maillages adaptés et on va les comparer.

Dans le deuxième chapitre on refera toute la démarche de premier chapitre, mais en trois dimensions. La seule différence sera la présence de charges dans le domaine, qui entraîne certaines modifications dans la technique de pénalisation, consistant en deux étapes. La première est de résoudre un problème scalaire et la deuxième est de résoudre un problème vectorielle mais sans point selle.

Dans le troisième chapitre on examinera le problème aux valeurs propres des équations de Maxwell pour le champ électrique. La difficulté est encore en fois la prise en compte de la loi de Gauss. On proposera de faire une projection sur un espace à divergence nulle où on n'a pas besoin de prendre en compte la contrainte et, de plus, cette projection nous permettra d'éviter des valeurs propres nulles associés aux gradients (champs à rotationnel nul).

## **Chapitre 1**

# **Equations de Maxwell en deux dimensions avec une solution singulière**

### 1.1 Equation pour le potentiel

Soit  $\Omega$  un domaine convexe borné de  $\mathbb{R}^2$  à frontière "suffisamment régulière". On s'intéresse à résoudre l'équation scalaire elliptique du seconde ordre avec un coefficient discontinu dont la solution est singulière, c'est-à-dire elle appartient à l'espace de Sobolev  $\mathrm{H}^{1+\lambda}(\Omega)$  avec  $\lambda \in ]0, ^1/_2[$ . Dans ce cas la convergence de la méthode des éléments finis de type Lagrange  $P_k$  a la vitesse  $2\lambda$  en norme  $\mathrm{L}^2(\Omega)$  et  $\lambda$  en norme  $\mathrm{H}^1(\Omega)$  et ne dépend pas d'ordre des éléments finis  $P_k$  quel que soit k. L'objectif de cette section est d'abord trouver la solution singulière exacte et puis réaliser des expériences numériques et étudier la convergence.

Mettons-nous en quête de la solution singulière exacte de notre système. On considère l'équation suivante  $-\operatorname{div}(\sigma\nabla\phi)=0$  pour le potentiel  $\phi\in H^1(\Omega)$  dans le domaine carré  $\Omega=]-a,a[^2$  de  $\mathbb{R}^2$  avec a>0, divisé en quatre sous-carrés  $\Omega_i$ , où  $\sigma$  est une fonction constante par morceaux. On note  $\sigma_i=\sigma|_{\Omega_i}$ . Soit  $\sigma_i=D>1$  dans  $\Omega_1\cup\Omega_3$  et  $\sigma_i=1$  dans  $\Omega_2\cup\Omega_4$ . On va chercher la solution  $\phi_{sing}$  en coordonnées polaires sous la forme

$$\phi_{sing}(r,\theta) = r^{\lambda}(c\cos\lambda\theta + s\sin\lambda\theta),$$

où  $\lambda$  est paramètre réel et c et s sont des fonctions constants par morceaux dépendant de D. La restriction  $\phi_i = \phi_{sing}|_{\Omega_i}$  est dans  $\mathrm{H}^1(\Omega_i)$  et vérifie évidemment l'équation  $-\operatorname{div}\left(\sigma_i\nabla\phi_i\right) = -\sigma_i\Delta\phi_i = 0$  dans  $\Omega_i$ . Pour que la fonction  $\phi_{sing}$  appartienne à  $\mathrm{H}^1(\Omega)$  et vérifie div  $(\sigma\nabla\phi_{sing}) = 0$  dans tout  $\Omega$ , il suffit que le saut  $[\phi_{sing}]_\Gamma$  et le saut normal  $[\sigma\frac{\partial\phi_{sing}}{\partial n}]_\Gamma$  soient égaux à 0 à la traversée de l'interface  $\Gamma = \bigcap_i\overline{\Omega}_i$ , où n est le vecteur unitaire à  $\partial\Omega$  dirigé à l'éxterieur. En outre, pour simplifier les calculs des fonctions c et s, nous supposons que la solution est antisymetrique par rapport de l'axe  $\theta = \pi/4$  et symétrique par rapport de l'axe  $\theta = \pi/4$ . D'après le théorème 1.2.18 du livre de Grisvard [6, p. 7] la fonction  $\phi_{sing}$  obtenue appartient à l'espace  $\mathrm{H}^{1+\lambda}(\Omega)$  avec  $\lambda \in ]0, 1/2[$ .

On s'interesse maintenant à résoudre le problème suivant pour le potentiel scalaire  $\phi$ 

$$(\mathscr{P}_{sing}) \quad \middle| \begin{array}{l} \text{Trouver } \phi \in H^1(\Omega) \text{ telle que} \\ -\operatorname{div} (\sigma \nabla \phi) &= 0 \quad (\Omega), \\ \phi &= \phi_{sing} \quad (\partial \Omega), \end{array}$$

avec la solution unique  $\phi_{sing}$ . On passe à la formulation variationnelle équivalente

$$(\mathscr{P}_{sing,V}) egin{array}{ccc} \operatorname{Trouver} \phi \in V \ ext{telle que} \ a(\phi,\psi) &= 0 & \forall \psi \in V^0, \ \phi &= \phi_{sing} & (\partial \Omega), \end{array}$$

où les espaces  $V = H^1(\Omega)$ ,  $V^0 = H^1_0(\Omega)$  et la forme bilinéaire  $a(\phi, \psi) = \int_{\Omega} \sigma \nabla \phi \cdot \nabla \psi$ . Ce problème est bien posé grâce au théorème de Lax-Milgram, puisque la forme a est continue et coercive sur V [7].

On passe maintenant à la discrétisation du problème  $(\mathscr{P}_{sing,V})$ . Soit  $\mathcal{T}_h$  une triangulation régulière du domaine  $\Omega$ , telle que  $\overline{\Omega} = \bigcup_i K_i$ ,  $K_i \in \mathcal{T}_h$ . On note  $h_i$  le diamètre d'un triangle  $K_i$  et  $h = h_{max} = \max_i h_i$  et  $h_{min} = \min_i h_i$ . Introduisons un sous-espace  $V_h \subset V$  de dimension fini, dim  $V_h = N < \infty$ . On reformule le problème variationnel dans l'espace discret  $V_h$ 

$$(\mathscr{P}^{h}_{sing,V}) \quad \begin{vmatrix} \text{Trouver } \phi_h \in V_h \text{ telle que} \\ a(\phi_h, \psi_h) = 0 & \forall \psi_h \in V_h^0, \\ \phi_h = \phi_{sing} & (\partial \Omega), \end{vmatrix}$$

où  $V_h^0 = V_h \cap H_0^1(\Omega)$ . Lorsque l'espace  $V_h$  est fermé dans V, la forme a reste continue et coercive sur  $V_h$  et le problème discret est donc bien posé [7, p. 50].

Pour ce problème on va utiliser des éléments finis nodaux de type Lagrange  $P_k$  avec k=1,2. Dans ce cas, lorsque la solution  $\phi$  appartient à  $\mathrm{H}^{1+\lambda}(\Omega)$  avec  $\lambda\in]0, 1/2[$  on a les estimations suivantes  $||\phi-\phi_h||_{\mathrm{H}^1(\Omega)}\lesssim h^\lambda$  et  $||\phi-\phi_h||_{\mathrm{L}^2(\Omega)}\lesssim h^{2\lambda}$  quel que soit l'ordre des éléments finis  $P_k$ . On peut trouver ces résultats, par exemple, dans [3, p. 120].

Les cas-tests sont implémentés avec le paramètre  $\lambda$  égal à 0.45 ou 0.15 et les fonctions c et s sont choisis comme

pour assurer les conditions de continuité sur  $\phi$  et son flux normal.

Nous allons étudier la convergence de la solution discrète  $\phi_h$  vers la solution exacte  $\phi$  sur les maillages uniformes. On va varier le pas  $^1$  h du maillage et calculer les erreurs relatives  $\epsilon_h^0(\phi) = \frac{||\phi - \phi_h||_{\mathrm{L}^2(\Omega)}}{||\phi||_{\mathrm{L}^2(\Omega)}}$  et  $\epsilon_h^1(\phi) = \frac{||\phi - \phi_h||_{\mathrm{H}^1(\Omega)}}{||\phi||_{\mathrm{H}^1(\Omega)}}$ . Nous représentons sur la figure ci-dessous les évolutions des erreurs relatives en fonctions du pas h en échelle logarithmique avec les éléments finis  $P_1$  et  $P_2$ . Ici et dans la suite les cas-tests sont implémentés à l'aide de logiciel FreeFem++[8] $^2$ .

<sup>1.</sup> plus précisément  $h \sim (N_T)^{-1/2}$ , où  $N_T$  est le nombre des triangles du maillage.

<sup>2.</sup> Tous les calculs sont faits sur l'ordinateur : Core i5-4200U CPU @ 1.6GHz et 6 Go de RAM en utilisant le solveur direct de bibliothèque UMFPACK.



D'abord on remarque que l'ordre de convergence ne dépend pas de l'ordre des éléments finis. Il en est de même de l'ordre de l'erreur. On voit bien que l'ordre de convergence avec  $\lambda=0.45$  est  $2\lambda=0.9$  en norme  $L^2$  et un peu moins que  $\lambda$  en norme  $H^1$ . Par contre, pour  $\lambda=0.15$  l'ordre de convergence est un peu plus  $2\lambda=0.3$  en norme  $L^2$  et  $\lambda$  en norme  $H^1$ , ce qui est tout à fait compatible avec la théorie.

### 1.2 Passage aux équations stationnaires de Maxwell

A partir du potentiel  $\phi$ , on peut passer aux équations stationnaires de Maxwell en deux dimensions, à savoir on prend  $E = \sigma \operatorname{rot} \phi$  et on a immédiatement rot E = 0, car rot  $\sigma \operatorname{rot} \phi = -\operatorname{div} \sigma \nabla \phi = 0$  et donc  $\operatorname{rot} \operatorname{rot} E = 0$  dans  $\Omega$ . De plus  $\operatorname{div} \sigma^{-1}E = 0$  dans  $\Omega$ . Dans ce cas le champ E appartient à l'espace  $\operatorname{H}^{\lambda}(\Omega)$ . Les équations stationnaires de Maxwell s'écrivent donc de façon suivantes

$$(\mathcal{E}_{sing}) \quad \begin{vmatrix} \mathbf{rot} \, \mathbf{rot} E & = & 0 & (\Omega), \\ \operatorname{div} \sigma^{-1} E & = & 0 & (\Omega), \\ E.\tau & = & g & (\partial\Omega), \end{vmatrix}$$

où  $\tau$  est un vecteur tangent à  $\partial\Omega$  et tel que  $(n,\tau)$  forme une base orthonormale et la source g est calculée à partir de la solution exacte E.

La difficulté de modelisation numérique des équations de Maxwell est d'approcher le champ E qui vérifie loi de Gausse, autrement dit d'avoir div  $\sigma^{-1}E_h=\rho$ . Il existe nombreuse méthodes de prendre en compte cette contrainte, cepenant dans cette section on va examiner les deux, la méthode classique d'un point selle, consistant en l'introduction du multiplicateur de Lagrange [4, chapitre 2] et la méthode apparue récemment de pénalisation, où il n'y a aucun besoin de point selle et qui permet de calculer plus rapidement et plus efficacement les champs électromagnétiques par rapport à la première [5].

#### 1.2.1 Multiplicateur de Lagrange

On commence par le multiplicateur de Lagrange. Cette méthode consiste en l'introduction du multiplicateur artificiel  $\sigma^{-1}\nabla p$  dans la première équation du système ( $\mathscr{E}_{sing}$ ) pour aboutir à

$$(\mathscr{E}\mathscr{M}_{sing}) \quad \begin{vmatrix} \operatorname{rot} \operatorname{rot} E + \sigma^{-1} \nabla p & = & 0 & (\Omega), \\ \operatorname{div} \sigma^{-1} E & = & 0 & (\Omega), \\ E.\tau & = & g & (\partial \Omega). \end{vmatrix}$$

On se place maintenant dans l'espace du champ électrique  $\mathbf{X} = \mathbf{H}(\mathrm{rot},\Omega)$  et on passe à la formulation variationnelle dite *mixte*, avec des fonctions-test dans  $\mathbf{X}^0 = \mathbf{H}_0(\mathrm{rot},\Omega)$  et dans  $\mathbf{V}^0 = \mathbf{H}_0^1(\Omega)$  pour le multiplicateur

$$(\mathscr{EM}_{sing,V}) \quad \begin{vmatrix} \operatorname{Trouver}(\boldsymbol{E}, p) \in \mathbf{X} \times \mathbf{V}^0 \text{ telle que} \\ a(\boldsymbol{E}, \boldsymbol{v}) + b(\boldsymbol{v}, p) &= 0 \quad \forall \boldsymbol{v} \in \mathbf{X}^0, \\ b(\boldsymbol{E}, q) &= 0 \quad \forall q \in \mathbf{V}^0, \\ \boldsymbol{E}.\boldsymbol{\tau} &= g \quad (\partial \Omega), \end{vmatrix}$$

où les formes bilinéaires  $a(E,v)=\int_{\Omega} \operatorname{rot} E$  rot v et  $b(v,p)=\int_{\Omega} \sigma^{-1}v.\nabla p$ . Gràce à la séquence exacte  $q\in H^1_0(\Omega)$ , alors  $\nabla q\in H_0(\operatorname{rot},\Omega)$ , on prend la fonction-test  $v=\nabla p$  dans la première égalité de  $(\mathscr{E}\mathscr{M}_{sing,V})$  et on arrive à  $\int_{\Omega} \sigma^{-1} |\nabla p|^2 = 0$ . Sachant que  $\sigma^{-1} \geq \sigma_{min}^{-1} > 0$  presque partout, on en conclut que  $\nabla p = 0$ , et le multiplicateur est constant dans  $\Omega$ . S'annulant sur la frontière  $\partial\Omega$ , il est nul. Nous avons montré que si E est solution de  $(\mathscr{E}_{sing})$ , alors (E,0) résolve le problème mixte  $(\mathscr{E}\mathscr{M}_{sing,V})$ . La réciproque est également vérifie, car la forme a est coersive sur le noyau et la forme b vérifie la condition inf-sup. Donc le problème mixte est bien posé [4, théorème 2.1].

On discrétise maintenant le problème ( $\mathscr{EM}_{sing,V}$ ). Considérons deux sous-espaces  $\mathbf{X}_h \subset \mathbf{X}$  et  $\mathbf{V}_h \subset \mathbf{V}$  de dimensions finis et on introduit le problème mixte approché associé à ( $\mathscr{EM}_{sing,V}$ )

$$(\mathscr{EM}^h_{sing,V}) \quad \begin{vmatrix} \operatorname{Trouver}(E_h, p_h) \in \mathbf{X}_h \times \operatorname{V}_h^0 \text{ telle que} \\ a(E_h, v_h) + b(v_h, p_h) &= 0 \quad \forall v_h \in \mathbf{X}_h^0, \\ b(E_h, q_h) &= 0 \quad \forall q_h \in \operatorname{V}_h^0, \\ E_h.\tau &= g \quad (\partial\Omega), \end{vmatrix}$$

où 
$$\mathbf{X}_h^0 = \mathbf{X}_h \cap \mathbf{H}_0(\mathrm{rot}, \Omega)$$
.

On va prendre comme les espaces  $\mathbf{X}_h$  et  $\mathbf{X}_h^0$  des éléments finis d'arêtes de type Raviart-Thomas  $\mathcal{R}_k$  [4, p. 109] et comme  $\mathbf{V}_h^0$  des éléments finis nodaux de type Lagrange  $P_k$ , avec k=1,2. L'espace  $\mathbf{X}_h$  ont la propriété fondamentale d'être à composantes tangentielles localisées sur les frontières des éléments géométriques. Il est ainsi capable de forcer implicitement les conditions de continuité tangentielle du champ électrique E à la traversée des interfaces. Plus précisément, les moments  $M_e(v) = \int_e v.t$  jouent de rôle des degrés de liberté, où e est une arête d'un triangle E0 et E1 vecteur unitaire dans la direction de E2. Donc chaque fonction E3 est définie par ces moments uniquement qui représentent rien d'autre qu'une valeur composante tangente dans la direction d'arête. Pour prendre en compte la condition aux limites on force ces degrés de liberté à E3.

Comme on a préservé la propriété de séquence exacte au niveau discret, on peut utiliser  $v_h = \nabla p_h$  comme la fonction-test et en conclure que  $p_h = 0$  dans  $\Omega$ . Sous quelques

conditions supplémentaires comme condition inf-sup discrète uniforme, on peut établir que le problème discrète  $(\mathscr{EM}^h_{sing,V})$  est bien posé [4, théorème 2.12].

Nous allons étudier la convergence de la solution discrète  $E_h$  vers la solution exacte E sur les maillages uniformes. On va varier le pas h du maillage et on calcule l'erreur relative  $\epsilon_h^0(E) = \frac{||E-E_h||_{L^2(\Omega)}}{||E||_{L^2(\Omega)}}$ . Nous représentons sur la figure ci-dessous les évolutions des erreurs relatives en fonctions du pas h en échelle logarithmique avec les éléments finis  $\mathcal{R}_k - P_k$  avec k = 1, 2. Avec notre choix de E on a forcément rot E = 0 et la norme du rot  $E_h$  en  $L^2$  est toujours d'ordre  $< 10^{-10}$  et cela est aussi vrai pour le multiplicateur de Lagrange  $p_h$  et nous n'affichons donc pas les erreurs de ceux-ci.



Et encore un fois on remarque que l'ordre de convergence ne dépend pas de l'ordre des éléments finis. Il en est de même pour l'ordre de l'erreur. On voit bien que le pente coïncide avec  $\lambda$  dans le premier cas et un peu moins  $\lambda$  dans le deuxième. Cependant l'erreur est trop grande (d'ordre  $10^{-0.4} \approx 0.4$ ) pour  $\lambda = 0.15$ !

#### 1.2.2 Pénalisation

On voit maintenant la deuxième méthode de la pénalisation proposée dans l'article [5]. L'idée est simple et consiste à annuler la divergence discrète de  $\sigma^{-1}E_h$ . Plus précisément, on passe à la formulation variationnelle discrète de  $(\mathcal{E}_{sing})$  avec certaine modification

$$(\mathscr{E}\mathscr{P}^h_{sing,V}) egin{array}{c} \operatorname{Trouver} E_h \in \mathbf{X}_h ext{ tel que} \ a_{lpha}(E_h,v_h) = 0 & orall v_h \in \mathbf{X}_h^0, \ E_h. au = g & (\partial\Omega), \end{array}$$

où la forme bilinéaire  $a_{\alpha}(E,v)=\int_{\Omega}\operatorname{rot} E\operatorname{rot} v+\alpha(h)\int_{\Omega}\sigma^{-1}E.v$  et le paramètre  $\alpha(h)>0$ . Dans l'article les auteurs ont obtenu une condition pour  $\alpha$  telle que la perturbation ajoutée n'influence pas à l'ordre de convergence du champ  $E_h$ . Malgré du choix des auteurs de paramètre  $\alpha\lesssim h^2$ , on va ici choisir  $\alpha\lesssim h^{\lambda}$  ce qui n'ajoute aussi pas des erreurs à l'approximation  $E_h$ .

Comme d'habitude, on choisit comme espace discrète  $\mathbf{X}_h$  des éléments finis d'arêtes de type Thomas-Raviart  $\mathcal{R}_k$ , avec k=1,2. Le problème ( $\mathscr{E}\mathscr{P}^h_{sing,V}$ ) est bien posé, lorsque  $a_\alpha$  est coercive dans  $\mathbf{X}_h$ .

Ci-dessous on va étudier trois cas : on varie  $\alpha$  à h fixé, on varie h à  $\alpha$  fixé et, finalement, on varie les deux h et  $\alpha$ .

à h fixé Commençons par le premier cas. D'abord on fixe le pas h du maillage et on va varier le paramètre  $\alpha$  et calculer les erreurs relatives  ${}^3\varepsilon_h^0(E)$ ,  $\varepsilon_h^0({\rm rot}\,E)$  et  $\varepsilon_h^{\rm rot}(E)$ . Nous représentons sur la figure ci-dessous les évolutions des erreurs relatives en fonctions du paramètre  $\alpha$  en échelle logarithmique pour h=0.008 avec l'approximation  $\mathcal{R}_1$ .

Convergence avec  $\lambda = 0.45$  à h fixé Convergence avec  $\lambda = 0.15$  à h fixé



On remarque que  $\epsilon_h^0(\operatorname{rot} E)$  dépend linéairement du paramètre  $\alpha$  en échelle logarithmique. Pour cette raison on peux jouer avec le paramètre  $\alpha$  de manière à ce que l'erreur du rotationnel du champ  $E_h$  soit petite et n'influence pas la norme complète. On voit encore que  $\epsilon_h^{\mathrm{rot}}(E)$  et  $\epsilon_h^0(E)$  restent pareils pour  $\alpha \leq 10^{-1}$ .

<u>à  $\alpha$  fixé</u> On fixe maintenant le paramètre  $\alpha$  et on va varier le pas h du maillage et calculer les erreurs relatives. Nous représentons sur la figure ci-dessous les évolutions des erreurs relatives en fonctions du pas h en échelle logarithmique pour  $\alpha=10^{-2}$  avec l'approximation  $\mathcal{R}_1$ .

Convergence avec  $\lambda = 0.45$  à  $\alpha$  fixé Convergence avec  $\lambda = 0.15$  à  $\alpha$  fixé



Même si la norme  $||\cdot||_{\mathbf{H}(\mathrm{rot},\Omega)}$  de l'erreur diminue, on voit ici que la norme  $||\operatorname{rot} E_h||_{L^2(\Omega)}$  ne varie pas et cela pourra donc poser les problèmes lorsque le pas h devient plus petit.

3. où 
$$\epsilon_h^{\mathrm{rot}}(E) = \frac{||E - E_h||_{\mathbf{H}(\mathrm{rot},\Omega)}}{||E||_{\mathbf{H}(\mathrm{rot},\Omega)}}$$
 l'erreur relative complète dans  $\mathbf{H}(\mathrm{rot},\Omega)$  et  $\epsilon_h^0(\mathrm{rot}\,E) = \frac{||\operatorname{rot}\,E_h||_{\mathsf{L}^2(\Omega)}}{||E||_{\mathbf{H}(\mathrm{rot},\Omega)}}$ .

 $\underline{\alpha = \alpha(h)}$  On est finalement dans le troisième cas. On va maintenant choisir le paramétre  $\alpha$  qui vérifie une condition du type  $\alpha \lesssim h^{\lambda}$ , par exemple, le premier choix est  $\alpha = h^{\lambda}_{max} = h^{\lambda}$  et le deuxième est  $\alpha = h^{\lambda}_{min}$ . Nous représentons sur la figure ci-dessous les évolutions des erreurs relatives en fonctions du pas h en échelle logarithmique avec les éléments finis  $\mathcal{R}_1$ .





Comme on a vu dans le premier cas  $\epsilon_h^0(\operatorname{rot} E)$  dépend linéairement du paramètre  $\alpha$  en échelle logarithmique. Avec notre choix du paramètre  $\alpha = h^{\lambda}$  on constate que la pente de la convergence du rotationnel du  $E_h$  est égale à  $\lambda$  lorsque  $\lambda = 0.45$ . Par contre, pour  $\lambda = 0.15$  on voit que la pente est  $2\lambda$  et ce reste la question ouverte. Pour améliorer l'erreur on choisit comme paramètre  $\alpha = h_{min}^{\lambda}$ .

On va regarder maintenant qu'est-ce-que passera avec l'approximation  $\mathcal{R}_2$ 



L'erreur  $\epsilon_h^0(\operatorname{rot} E)$  reste identique que avec l'approximation  $\mathcal{R}_1$  et ne dépende pas d'ordre de l'approximation. Bien que l'ordre de convergence soit  $\lambda$  cela poserra des problèmes lorsque l'ordre de l'approximation k devient plus grand. Il s'en suit que le paramètre  $\alpha$  doit en dépendre. Néanmoins on prend  $\alpha = h_{min}^{\lambda}$  pour les deux approximations  $\mathcal{R}_1$  et  $\mathcal{R}_2$ , car cela ne contribue pas significativement à l'erreur  $\epsilon_h^{\mathrm{rot}}(E)$  en deux dimensions (ce qui n'est pas vrai en trois dimensions!).

### 1.3 Comparaison

Maintenant on a tous pour comparer les différentes méthodes. Nous rassemblons sur une figure (ci-dessous) les convergences des erreurs relatives pour le champ E en norme  $L^2$  de toutes les méthodes, car les erreurs sur le rotationnel du champ sont suffisamment petites par rapport les aux autres pour ne pas contribuer aux erreurs totales.



On remarque que le champ obtenu par le potentiel ( $E_h = \sigma \operatorname{rot} \phi_h$ ) a l'erreur relative la plus grande. Les champs obtenus par l'introduction du multiplicateur de Lagrange et

par la méthode de la pénalisation avec le choix du paramètre  $\alpha = h_{min}^{\lambda}$  ont d'erreurs relatives identiques, par contre avec l'approximation  $\mathcal{R}_2$  on peux aller plus loin avec la pénalisation que avec le multiplicateur, et l'avantage de la pénalisation ne se réduit pas à cela! On gagne encore en stockage et en temps du calcul. Ci-dessous nous représentons le stockage (degré de liberté de l'approximation) et le temps du calcul en secondes (ici on a le temps d'assemblage des matrices plus le temps de résolution du système linéaire)  $^4$ .



On voit bien que les tailles du problème sont comparables avec le multiplicateur et sans lui, par contre les temps sont très différents. La pénalisation est jusqu'à trois fois plus rapide, quand la taille augmente et sans la perte de précision!

Pour chaque approximation on représente ci-dessous les tableaux avec le nombre de degrés de liberté (DOF), éléments non-nuls de la matrice (NNZ), l'erreur relative  $\epsilon_h^{\rm rot}(E)$  pour  $\lambda=0.45$  et le temps de résolution de système linéaires (CPU). Chaque ligne correspond au même pas h.

<sup>4.</sup> en pratique le temps d'assemblage est beaucoup plus que le temps de résolution.

| $\mathcal{R}_1-P_1$                                                                              |                                                               |                                                                                                                              |                                           |            | $\mathcal{R}_1$                    |                                               |                                                                                                                      |                                                                      |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Dof                                                                                              | ΝNΖ                                                           | $\epsilon_h^{ m rot}(\pmb{E})$                                                                                               | CPU                                       |            | Dof                                | NNZ                                           | $\epsilon_h^{ m rot}(\pmb{E})$                                                                                       | CPU                                                                  |
| 493                                                                                              | 5,359                                                         | $2.60_{-1}$                                                                                                                  | 0.014                                     | _          | 359                                | 1,715                                         | $2.64_{-1}$                                                                                                          | 0                                                                    |
| 1,993                                                                                            | 22,309                                                        | $1.94_{-1}$                                                                                                                  | 0.001                                     |            | 1,474                              | 7,210                                         | $1.97_{-1}$                                                                                                          | 0                                                                    |
| <i>7,</i> 741                                                                                    | 87,811                                                        | $1.44_{-1}$                                                                                                                  | 0.006                                     |            | 5,765                              | 28,505                                        | $1.46_{-1}$                                                                                                          | 0.002                                                                |
| 30,633                                                                                           | 349,869                                                       | $1.06_{-1}$                                                                                                                  | 0.033                                     |            | 22,894                             | 113,830                                       | $1.07_{-1}$                                                                                                          | 0.007                                                                |
| 120,585                                                                                          | 1,381,917                                                     | $7.80_{-2}$                                                                                                                  | 0.158                                     |            | 90,278                             | 450,110                                       | $7.90_{-2}$                                                                                                          | 0.038                                                                |
| 483,725                                                                                          | 5,553,227                                                     | $5.70_{-2}$                                                                                                                  | 0.888                                     |            | 362,473                            | 1,809,805                                     | $5.77_{-2}$                                                                                                          | 0.142                                                                |
| $\frac{nnz}{dof} \approx 11.5  \frac{dof(\mathcal{R}_1 - P_1)}{dof(\mathcal{R}_1)} \approx 1.33$ |                                                               |                                                                                                                              | _                                         |            | $rac{nnz}{dof} pprox$             | 5                                             |                                                                                                                      |                                                                      |
|                                                                                                  |                                                               |                                                                                                                              |                                           |            |                                    |                                               |                                                                                                                      |                                                                      |
|                                                                                                  | $\mathcal{R}_2 - F$                                           | 2                                                                                                                            |                                           |            |                                    | $\mathcal{R}_2$                               |                                                                                                                      |                                                                      |
| Dof                                                                                              | $\mathcal{R}_2$ — $F$<br>nn $Z$                               |                                                                                                                              | CPU                                       | _          | Dof                                | $\mathcal{R}_2$<br>NN $Z$                     | $\mathbf{Z} = \epsilon_h^{\mathrm{rot}}(\mathbf{E})$                                                                 | ) CPU                                                                |
| Dof<br>1,663                                                                                     | _                                                             | _                                                                                                                            | CPU 0.002                                 | - <u>-</u> | Dof<br>1,170                       | _                                             | 11 .                                                                                                                 | ·                                                                    |
|                                                                                                  | NNZ                                                           | $\epsilon_h^{\rm rot}(E)$                                                                                                    |                                           |            |                                    | NNZ                                           | 3 1.51_                                                                                                              | 0.001                                                                |
| 1,663                                                                                            | 36,415                                                        | $\frac{-\epsilon_h^{\rm rot}(E)}{1.44_{-1}}$                                                                                 | 0.002                                     |            | 1,170                              | NNZ<br>13,188                                 | 3 1.51_<br>3 1.11_                                                                                                   | 0.001<br>0.002                                                       |
| 1,663<br>6,853                                                                                   | 36,415<br>152,965                                             | $ \frac{\epsilon_h^{\text{rot}}(E)}{1.44_{-1}} \\ 1.06_{-1} $                                                                | 0.002<br>0.009                            |            | 1,170<br>4,860                     | NNZ<br>13,188<br>55,608                       | 3 1.51_<br>3 1.11_<br>3 8.14_                                                                                        | 0.001<br>0.002<br>0.007                                              |
| 1,663<br>6,853<br>26,851<br>106,733<br>421,085                                                   | NNZ<br>36,415<br>152,965<br>604,531<br>2,413,645<br>9,543,229 | $ \begin{array}{c} e_h^{\text{rot}}(E) \\ \hline 1.44_{-1} \\ 1.06_{-1} \\ 7.84_{-2} \\ 5.75_{-2} \\ 4.23_{-2} \end{array} $ | 0.002<br>0.009<br>0.042<br>0.212<br>0.993 |            | 1,170<br>4,860<br>19,110           | NNZ<br>13,188<br>55,608<br>220,140            | 3 1.51 <sub>-1</sub><br>3 1.11 <sub>-1</sub><br>3 8.14 <sub>-2</sub><br>3 5.96 <sub>-2</sub>                         | $ \begin{array}{cccc} 0.001 \\ 0.002 \\ 0.007 \\ 0.026 \end{array} $ |
| 1,663<br>6,853<br>26,851<br>106,733                                                              | NNZ<br>36,415<br>152,965<br>604,531<br>2,413,645              | $ \begin{array}{c} e_h^{\text{rot}}(E) \\ \hline 1.44_{-1} \\ 1.06_{-1} \\ 7.84_{-2} \\ 5.75_{-2} \end{array} $              | 0.002<br>0.009<br>0.042<br>0.212<br>0.993 |            | 1,170<br>4,860<br>19,110<br>76,100 | NNZ<br>13,188<br>55,608<br>220,140<br>879,688 | 3 1.51 <sub>-1</sub><br>3 1.11 <sub>-1</sub><br>0 8.14 <sub>-2</sub><br>3 5.96 <sub>-2</sub><br>5 4.38 <sub>-2</sub> | 0.001<br>0.002<br>0.007<br>0.026<br>0.123                            |

D'après ces tableaux on voit que l'on obtient les erreurs identiques avec même pas h en utilisant ces deux méthodes, cependant la pénalisation consume plus moins des ressources calculatoires.

### 1.4 Adaptation de maillage

Dans cette section on va étudier la convergence dans le cas du maillage adapté a posteriori. On va utiliser la stratégie classique d'adaptation de maillage [7, p. 91]. On fixe d'abord le maillage  $\mathcal{T}_h^0$  uniforme avec un certain pas h. Pour n>0, chaque maillage  $\mathcal{T}_h^n$  sera obtenu à partir du maillage  $\mathcal{T}_h^{n-1}$  à l'aide d'adaptation de la solution obtenue sur le maillage  $\mathcal{T}_h^{n-1}$  pour n>0. Ci-dessous nous comparons le cas d'adaptation du maillage avec les maillages uniformes que nous avons utilisés précédemment.

#### 1.4.1 Potentiel

Commençons par le potentiel. On ne représente que l'erreur  $\epsilon_h^0(\phi)$  dans les figures ci-dessous. Dans la première ligne on a l'approximation  $P_1$  et dans la deuxième l'approximation  $P_2$ . Rappelons que le pas h est maintenant défini comme  $(N_T)^{-1/2}$ , où  $N_T$  est le nombre des triangles du maillage.



On peut réaliser 8-9 adaptations du maillage uniforme initial et puis chaque démarche ultérieure d'adaptation détériore la structure du maillage. On voit que l'ordre de convergence est plus grand et que l'erreur est plus petite que dans le cas du maillage uniforme. De plus, avec le même pas  $h=10^{-2}$  l'erreur sur le maillage adapté est plus petite de 1 ordre que sur le maillage uniforme, par exemple, pour  $\lambda=0.45$  et l'approximation  $P_1$  on a  $10^{-3}$  contre  $10^{-2}$ .

#### 1.4.2 Multiplicateur de Lagrange

Comparons maintenant la convergence avec le multiplicateur de Lagrange. Comme habitude dans la première ligne de la figure ci-dessous on a les approximations  $\mathcal{R}_1 - P_1$  et dans la deuxième on a l'approximation  $\mathcal{R}_2 - P_2$ .



Dans ce cas on ne gagne pas trop en l'ordre d'erreur, par contre on peut l'atteindre plus vite.

#### 1.4.3 Pénalisation

Finalement nous sommes arrivés à la méthode de pénalisation. Dans le cas du maillage uniforme on a pris comme le paramètre  $\alpha = h_{min}^{\lambda}$  qui est suffit pour que l'erreur sur le rotationnel ne contribue pas significativement à l'erreur totale sur champ. Dans ce cas on va analyser les erreurs  $\epsilon_h^0(E)$  et  $\epsilon_h^0(\text{rot }E)$  avec choix différents du paramètre  $\alpha$ . Dans les figures ci-dessous nous représentons la convergence de  $E_h$  et rot  $E_h$  avec  $\alpha = h_{min}^{\lambda}$ ,  $\alpha = h_{min}^{2\lambda}$  et  $\alpha = h_{min}^{2}$  en utilisant l'approximation  $\mathcal{R}_k$  ( $\mathcal{R}_1$  dans la première ligne,  $\mathcal{R}_2$  pour la deuxième).



On voit que les erreurs  $\epsilon_h^0(E)$  avec les paramètres différents restent quasi-identiques. Par contre, comme il fallait bien s'y attendre, les erreurs  $\epsilon_h^0(\operatorname{rot} E)$  dépend d' $\alpha$ . A la lecture des résultats, il est préférable de choisir  $\alpha=h_{min}^{2\lambda}$  pour des raisons de précision et de nombre des niveaux d'adaptations.

Comparons maintenant la convergence de la méthode de pénalisation avec  $\alpha = h_{min}^{2\lambda}$ . Dans la première ligne de la figure ci-dessous on a l'approximation  $\mathcal{R}_1$  et dans la deuxième on a l'approximation  $\mathcal{R}_2$ .



#### 1.4.4 Comparaison

Pour chaque approximation on représente ci-dessous les tableaux avec le nombre de degrés de liberté (DOF), éléments non-nuls de la matrice (NNZ), l'erreur relative  $\epsilon_h^{\rm rot}(E)$  pour  $\lambda=0.45$  et le temps de résolution de système linéaires  $^5$  (CPU). Chaque ligne correspond au même pas h.

|                                                                                              | $\mathcal{R}_1 - \mathit{P}_1$ |                                |       |   | ${\cal R}$ | .1     |                                |       |
|----------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|-------|---|------------|--------|--------------------------------|-------|
| Dof                                                                                          | ΝΝΖ                            | $\epsilon_h^{\mathrm{rot}}(E)$ | CPU   | _ | Dof        | NNZ    | $\epsilon_h^{ m rot}(\pmb{E})$ | CPU   |
| ,                                                                                            | 10,692                         | -                              |       |   | 705        | 3,435  | 1.73_1                         | 0     |
| 2,608                                                                                        | 23,447                         | $1.20_{-1}$                    | 0.002 |   | 1,546      | 7,624  | $1.16_{-1}$                    | 0     |
| 7,088                                                                                        | 64,516                         | $7.57_{-2}$                    | 0.005 |   | 4,584      | 22,776 | $7.00_{-2}$                    | 0.001 |
| 18,179                                                                                       | 166,416                        | $5.04_{-2}$                    | 0.014 | _ | 11,409     | 56,889 | $4.91_{-2}$                    | 0.004 |
| $\frac{nnz}{dof} \approx 9  \frac{dof(\mathcal{R}_1 - P_1)}{dof(\mathcal{R}_1)} \approx 1.6$ |                                |                                |       |   | nnz<br>dof | ≈ 5    |                                |       |

<sup>5.</sup> le temps d'assemblage est plus petit que 1 seconde dans tout les cas.

1.5. Résumé 15

| $\mathcal{R}_2 - \mathit{P}_2$                                                                  |         |                          | $\mathcal{R}_2$ |   |                           |         |                          |       |
|-------------------------------------------------------------------------------------------------|---------|--------------------------|-----------------|---|---------------------------|---------|--------------------------|-------|
| Dof                                                                                             | ΝNΖ     | $\epsilon_h^{ m rot}(E)$ | CPU             | _ | Dof                       | NNZ     | $\epsilon_h^{ m rot}(E)$ | CPU   |
| 2,774                                                                                           | 47,620  | $7.41_{-2}$              | 0.003           |   | 1,498                     | 17,060  | $7.46_{-2}$              | 0.001 |
| 5,810                                                                                           | 101,092 | $3.94_{-2}$              | 0.006           |   | 3,242                     | 37,252  | $3.93_{-2}$              | 0.001 |
| 11,516                                                                                          | 201,652 | $2.02_{-2}$              | 0.012           |   | 6,784                     | 78,272  | $1.97_{-2}^{-1}$         | 0.002 |
| 25,160                                                                                          | 442,450 | $1.13_{-2}$              | 0.032           | _ | 13,410                    | 155,076 | $1.19_{-2}$              | 0.008 |
| $\frac{nnz}{dof} \approx 17.5  \frac{dof(\mathcal{R}_2 - P_2)}{dof(\mathcal{R}_2)} \approx 1.7$ |         |                          | •               |   | $\frac{nnz}{dof} \approx$ | 11.5    |                          |       |

D'après ces tableaux on voit que l'on obtient les erreurs identiques avec même pas h en utilisant ces deux méthodes, cependant la pénalisation consume plus moins des ressources calculatoires.

#### 1.5 Résumé

Nous avons réalisé l'étude numérique de la résolution des équations stationnaires de Maxwell en deux dimensions avec une solution singulière. On a résolu ce problème par deux approches : par le potentiel  $\phi$  avec les éléments nodaux et le calcul direct du champ E avec les éléments d'arêtes. Dans la première approche on a obtenu que le potentiel approché  $\phi_h$  converge avec l'ordre  $2\lambda$  en norme  $L^2$  et un peu moins que  $\lambda$ en norme H<sup>1</sup> vers  $\phi$ . Cependant le champ, calculé par  $E_h = \sigma \operatorname{rot} \phi_h$ , a une précision mauvaise par rapport au calcul direct du champ (la deuxième approche). Dans la deuxième approche il fait prendre en compte la contrainte de la divergence nulle. Pour cela on a utilisé deux méthodes : l'introduction du multiplicateur de Lagrange et la méthode de la pénalisation. Dans le premier cas on a obtenu que le champ  $E_h$  converge avec l'ordre  $\lambda$  en norme  $\mathbf{H}(\text{rot})$  en utilisant les approximations  $\mathcal{R}_k - P_k$  de premier et deuxième ordre. Dans la deuxième méthode de pénalisation, en faisant varier le paramètre de la régularisation  $\alpha$ , on a obtenu que l'erreur du rotationnel du champ  $E_h$ dépend linéairement en échelle logarithmique du paramètre  $\alpha$  à pas fixé, autrement dit rot  $E_h$  converge avec l'ordre de l'exposant d' $\alpha$  en norme L<sup>2</sup> pour les approximations  $\mathcal{R}_k$ . De même à pas h varié et à  $\alpha$  fixé l'erreur  $\epsilon_h^0(\operatorname{rot} E)$  ne change pas. Pour ces raisons on a choisi comme le paramètre  $\alpha = h_{min}^{\lambda}$  (sur les maillages uniformes) pour obtenir l'ordre de la convergence au moins  $\lambda$ . Cependant l'erreur  $\epsilon_h^0(\operatorname{rot} E)$  reste identique et ne dépend pas de l'ordre d'approximation  $\mathcal{R}_k$ , mais pour le problème bidimensionnel elle est suffisamment petite pour ne pas contribuer à l'erreur totale  $\epsilon_h^{\rm rot}(E)$ .

Enfin, nous constatons que la méthode de la pénalisation avec le choix du paramètre  $\alpha = h_{min}^{\lambda}$  nous donne l'ordre de la convergence  $\lambda$  pour le champ  $E_h$  en norme  $L^2$  et en norme  $\mathbf{H}(\mathrm{rot})$  et la même précision que la méthode de point selle, mais qu'en outre elle est plus performante que cette dernière du point de vue du calcul numérique (nombre d'inconnues, temps calcul).

### **Chapitre 2**

## Equations de Maxwell en trois dimensions avec une solution singulière

### 2.1 Equations de Maxwell

Dans cette section on va résoudre les équations stationnaires de Maxwell qu'avant mais en trois dimensions. A la différence des équations dans le chapitre précédent on va les résoudre en présence de charges, c'est-à-dire que le champ E doit vérifie div  $\sigma E = \rho$  avec une certaine fonction  $\rho \in L^2(\Omega)$ . Soit  $\Omega$  domaine borné de  $\mathbb{R}^3$  obtenu à partir du domaine bidimensionnel du chapitre précédent avec un prolongement en direction de l'axe OZ, autrement dit  $\Omega = ]-a,a[^2\times]0,a[,a>0$ . On a donc

$$(\mathscr{E}) \quad \begin{array}{|l|l|} \text{Trouver } E \in \mathbf{H}(\mathbf{rot}, \Omega) \text{ telle que} \\ \mathbf{rot} \, \mathbf{rot} \, E & = & 0 & (\Omega), \\ \operatorname{div} \sigma E & = & \rho & (\Omega), \\ E \times n & = & g & (\partial \Omega), \end{array}$$

avec certaine fonction à valeurs vectorielles  $g \in L^2(\partial\Omega)$  à valeurs tangentielles et une fonction scaliare  $\rho \in L^2(\Omega)$ .

On utilise la fonction  $\Phi$  obtenue dans le chapitre précedent pour trouver la solution exacte du problème  $(\mathscr{E})$ . On prend  $E = \nabla \Psi$ , où la fonction  $\Psi = \Phi f$  avec f ne dépendant que de z. On a évidemment que  $\operatorname{rot} E = \operatorname{rot} \nabla \Psi = 0$  et  $\operatorname{div} \sigma E = f \operatorname{div}_{2d} \sigma \nabla_{2d} \Phi + \sigma \Phi \frac{\partial^2 f}{\partial z^2}$ . Le premier terme est égal à 0. Et on prend donc comme la fonction  $\rho = \sigma \Phi \frac{\partial^2 f}{\partial z^2} \in L^2(\Omega)$ , car  $\sigma \in L^\infty(\Omega)$  et  $\Omega$  est un domaine borné.

#### 2.1.1 Multiplicateur de Lagrange

On omet les détails décrits en premier chapitre et on passe directement à la formulation variationnelle discrète

$$(\mathscr{EM}_{V}^{h}) \quad \begin{vmatrix} \text{Trouver } (\boldsymbol{E}_{h}, p_{h}) \in \boldsymbol{X}_{h} \times \boldsymbol{V}_{h}^{0} \text{ telle que} \\ a(\boldsymbol{E}_{h}, \boldsymbol{v}_{h}) + b(\boldsymbol{v}_{h}, p_{h}) &= 0 \quad \forall \boldsymbol{v}_{h} \in \boldsymbol{X}_{h}^{0}, \\ b(\boldsymbol{E}_{h}, q_{h}) &= l(q_{h}) \quad \forall q_{h} \in \boldsymbol{V}_{h}^{0}, \\ \boldsymbol{E}_{h} \times \boldsymbol{n} &= \boldsymbol{g} \quad (\partial \Omega), \end{vmatrix}$$

où les formes bilinéaires  $a(E_h, v_h) = \int_{\Omega} \mathbf{rot} \, E_h \cdot \mathbf{rot} \, v_h$ ,  $b(v, p) = \int_{\Omega} \sigma v_h \cdot \nabla p_h$  et la forme linéaire  $l(q_h) = -\int_{\Omega} \rho q_h$ . On prend comme les espaces  $\mathbf{X}_h$  et  $\mathbf{X}_h^0$  les éléments finis d'arêtes de type Nédélec  $\mathcal{N}_k$  en trois dimensions et comme d'habitude les éléments finis nodaux de type Lagrange  $P_k$  pour l'espace de multiplicateurs  $V_h^0$ , avec k = 1, 2.

Ci-dessous on représente la convergence du champ  $E_h$  et **rot**  $E_h$  avec l'approximation  $\mathcal{N}_1 - P_1$ .





Pour tous  $\lambda$  on voit que l'erreur  $\epsilon_h^0(\mathbf{rot}\,E)$  converge plus vite que  $\epsilon_h^0(E)$  et donc elle ne contribuera pas significativement à l'erreur totale  $\epsilon_h^{\mathbf{rot}}(E)$ . On trouve l'ordre de convergence  $1/2 + \lambda$  pour  $E_h$  en norme  $\mathbf{L}^2$ .

#### 2.1.2 Pénalisation

La démarche dans la section 1.2.2 du chapitre précédent ne fonctionne pas en présence de charges. Les auteurs de [5] ont proposé l'approximation suivante

$$(\mathscr{E}\mathscr{P}_{V}^{h}) egin{array}{c} \operatorname{Trouver} \pmb{E}_{h} \in \pmb{\mathsf{X}}_{h} \ \operatorname{tel} \ \operatorname{que} \ a_{lpha}(\pmb{E}_{h},\pmb{v}_{h}) &= lpha(h)(\sigma 
abla \chi_{h},\pmb{v}_{h}) & orall \pmb{v}_{h} \in \pmb{\mathsf{X}}_{h}^{0}, \ \pmb{E}_{h} \times \pmb{n} &= \pmb{g} \ (\partial \Omega), \end{array}$$

K. Brodt/UMA Rapport non confidentiel avec la forme bilinéaire  $a_{\alpha}(E_h, v_h) = \int_{\Omega} \mathbf{rot} \, E_h$ .  $\mathbf{rot} \, v_h + \alpha(h) \int_{\Omega} \sigma E_h . v_h$  où le paramètre  $\alpha(h) > 0$  dépend que de h et la fonction  $\chi_h$  est la solution du problème

$$(\mathscr{X}_{V}^{h}) \quad \middle| \begin{array}{l} \text{Trouver } \chi_{h} \in V_{h}^{0} \text{ telle que} \\ \int_{\Omega} \sigma \nabla \chi_{h}. \nabla \psi_{h} = -\int_{\Omega} \rho \psi_{h} \quad \forall \psi_{h} \in V_{h}^{0}. \end{array}$$

Comme dans le cas du multiplicateur de Lagrange on discrétise les espaces  $\mathbf{X}_h$  et  $\mathbf{X}_h^0$  avec les éléments finis d'arêtes de type Nédélec  $\mathcal{N}_k$  et l'espace  $\mathbf{V}_h^0$  avec les éléments finis nodaux de type Lagrange  $P_k$ , avec k=1,2.

On représente ci-dessous les résultats de convergence du champ  $E_h$  et  ${\bf rot}\,E_h$  pour  $\alpha=h_{min}^{\lambda}$  avec l'approximation  $\mathcal{N}_1$ .



Pour  $\lambda=0.45$  on voit que la pente de  $\epsilon_h^0({\bf rot}\,E)$  est plus petite que la pente de  $\epsilon_h^0(E)$  est cela peut poser des problèmes lorsque le pas h devient plus petit. Pour  $\lambda=0.15$  l'erreur est trop grande et donc le choix  $\alpha=h_{min}^{\lambda}$  ne convient pas dans ce cas. On va donc essayer avec  $\alpha=h_{min}^{2\lambda}$ .



On voit ici que pour  $\lambda=0.45$  tous est bon, par contre pour  $\lambda=0.15$  ce ne convient pas encore. On essaie avec  $\alpha=h_{min}^{\lambda+^1/2}$  et  $\alpha=h_{min}$ . On n'affiche pas les résultats pour  $\lambda=0.45$ , car ils sont peu distincts de  $\alpha=h_{min}^{2\lambda}$ .



Avec le choix  $\alpha = h_{min}^{\lambda+1/2}$  la vitesse de convergence de  $\epsilon_h^0(\mathbf{rot}\,E)$  est identique à  $\epsilon_h^0(E)$ , mais elle contribue l'erreur à totale  $\epsilon_h^{\mathbf{rot}}(E)$ . Avec  $\alpha = h_{min}$  on obtient qu'est-ce-qu'on veut! Est-ce-qu'il suffit ce choix d' $\alpha$  pour  $\lambda = 0.05$ ? Ci-dessous on représente les convergences avec les choix différents du paramètre  $\alpha$ .



K. Brodt/UMA Rapport non confidentiel

A la lecture des résultats et si on est capable de calculer sur des maillages fins en trois dimensions, le choix du paramètre  $\alpha = h_{min}$  est suffit pour ne pas contribuer à l'erreur totale du champ  $E_h$  avec l'approximation  $\mathcal{N}_1$ . Par contre, si on est limité, il est préférable de choisir  $\alpha = h_{min}^2$ .

On passe maintenant à l'approximation  $\mathcal{N}_2$ . On représente ci-dessous les résultats obtenus avec le différent choix de paramètre  $\alpha$ .





K. Brodt/UMA Rapport non confidentiel







K. Brodt/UMA Rapport non confidentiel



Pour  $\lambda=0.45$  le choix différent du paramètre  $\alpha$  n'influence pas à l'erreur totale  $\epsilon_h^{{\bf rot}}(E)$  à partir  ${\rm d}'\alpha=h_{min}^{\lambda}$ . La pente de  $\epsilon_h^0({\bf rot}\,E)$  est plus grande que  $\epsilon_h^0(E)$  et donc avec les maillages plus fins on attend que l'erreur  $\epsilon_h^0({\bf rot}\,E)$  deviendra plus petit que l'erreur  $\epsilon_h^0(E)$ . Par contre, pour  $\lambda=0.15$  le choix du paramètre  $\alpha=h_{min}^{\lambda}$  et  $\alpha=h_{min}^{2\lambda}$  ne convient pas. Aussi à la lecture des résultats on voit qu'à partir  $\alpha=h_{min}^{\lambda+1/2}$  la pente de l'erreur  $\epsilon_h^0({\bf rot}\,E)$  est plus grande que  $\epsilon_h^0(E)$  et la diminution ultérieure de paramètre  $\alpha$  n'influence pas à l'erreur totale de champ E. On constate donc pour les deux cas que le choix du paramètre  $\alpha=h_{min}$  se révèle meilleur.

## 2.2 Comparaison

Ci-dessous on représente une comparaison des deux méthodes. On n'affiche que la convergence d'erreur  $\epsilon_h^0(E)$  avec les approximations  $\mathcal{N}_1 - P_1$  pour le problème point selle et  $\mathcal{N}_1$  et  $\mathcal{N}_2$  pour la pénalisation avec paramètre  $\alpha = h_{min}$ .



Pour premier ordre on obtient que l'erreur relatives sont identiques avec l'approximation  $\mathcal{N}_1 - P_1$  et avec  $\mathcal{N}_1$ . L'ordre de convergence égal à  $0.94 \approx {}^1/{}_2 + \lambda$  pour  $\lambda = 0.45$  et  $0.7 \approx {}^1/{}_2 + \lambda$  pour  $\lambda = 0.15$ . Pour le deuxième ordre d'approximation  $\mathcal{N}_2$  on obtient l'ordre de convergence 1.3 pour  $\lambda = 0.45$  ce qui est plus grand que avec premier ordre, par contre, on a l'inverse pour  $\lambda = 0.15$  où on obtient l'ordre 0.37 plus petit que avec premier ordre 0.7. Toutefois danstous les cas l'erreur avec  $\mathcal{N}_2$  est plus petite que celle avec  $\mathcal{N}_1$ .

Pour chaque approximation on représente ci-dessous les tableaux avec le nombre de degrés de liberté (DOF), éléments non-nuls de la matrice (NNZ), l'erreur relative  $\epsilon_h^{\rm rot}(E)$  pour  $\lambda=0.45$  et le temps de résolution de système linéaires (CPU). Chaque ligne correspond au même pas h.

|                                                                                             | $\mathcal{N}_1$ – $\mathcal{N}_1$ | $P_1$                          |       |   |                           | $\mathcal{N}_1$ |                                |       |
|---------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|-------|---|---------------------------|-----------------|--------------------------------|-------|
| Dof                                                                                         | nnZ                               | $\epsilon_h^{ m rot}(\pmb{E})$ | CPU   |   | Dof                       | NNZ             | $\epsilon_h^{ m rot}(\pmb{E})$ | CPU   |
| 1,626                                                                                       | 34,652                            | $6.55_{-1}$                    | 0.003 | , | 1,186                     | 16,672          | $6.55_{-1}$                    | 0.001 |
| 14,331                                                                                      | 340,239                           | $3.09_{-1}$                    | 0.055 |   | 10,887                    | 167,427         | $3.09_{-1}$                    | 0.039 |
| 45,383                                                                                      | 1,112,348                         | $2.16_{-1}$                    | 0.339 |   | 34,913                    | 550,703         | $2.16_{-1}$                    | 0.186 |
| 109,282                                                                                     | 2,724,905                         | $1.62_{-1}$                    | 4.165 |   | 84,624                    | 1,353,504       | $1.62_{-1}$                    | 0.756 |
| $\frac{mnz}{dof} pprox 24.5  \frac{dof(\mathcal{R}_1 - P_1)}{dof(\mathcal{R}_1)} pprox 1.3$ |                                   |                                |       |   | $\frac{nnz}{dof} \approx$ | 15              |                                |       |

| $\mathcal{N}_2$          |           |                                |         |  |  |  |
|--------------------------|-----------|--------------------------------|---------|--|--|--|
| Dof                      | NNZ       | $\epsilon_h^{ m rot}(\pmb{E})$ | CPU     |  |  |  |
| 5,920                    | 232,568   | $4.10_{-1}$                    | 0.012   |  |  |  |
| 57,030                   | 2,381,820 | $9.71_{-2}$                    | 0.363   |  |  |  |
| 185,470                  | 7,874,420 | $5.78_{-2}$                    | 146.602 |  |  |  |
| $rac{nnz}{dof}pprox 40$ |           |                                |         |  |  |  |

D'après ces tableaux on voit que l'on obtient les erreurs identiques avec même pas h en utilisant ces deux méthodes, cependant la pénalisation consomme beaucoup moins de ressources calculatoires.

#### 2.3 Résumé

On a fait les expriences numèriques pour la résolution du problème stationnaire des équations de Maxwell en trois dimensions. On a utilisé deux méthodes, le multiplicateur de Lagrange et la pénalisation. Les deux méthodes nous donnent même ordre de convergence et le même l'ordre d'erreur avec premier ordre des éléments finis. Par contre. la pénalisation est plus efficace du point de vue du calcul numèruque (nombre d'inconnues, temps calcul) comme en deux dimensions. Par rapport du choix de paramètre de régularisation  $\alpha$ , les résultats numériques nous dictent qu'il doit dépendre de  $\lambda$  et vérifie les relations  $\alpha \lesssim h_{min}^{\lambda}$  pour  $\lambda = 0.45$  en utilisant leséléments finis  $\mathcal{N}_1$  et  $\alpha \lesssim h_{min}^{2\lambda}$  en  $\mathcal{N}_2$ . Pour  $\lambda$  plus petit on doit diminuer  $\alpha$  et prendre  $\alpha = h_{min}$ .

### **Chapitre 3**

### Problème aux valeurs propres des équations de Maxwell

Dans ce chapitre on examinera le problème aux valeurs propres pour le champ électrique E dans un domaine borné de  $\mathbb{R}^d$  avec d=2,3. Si l'on fait discrétisation de la condition sur la divergence du champ, par nature d'équation une valeur propre nulle  $\lambda$  correspond au champ non nul  $E=\nabla\phi$ . Lorsqu'on intéresse aux valeurs propres non nulles on doit se débarrasser en quelque sorte de tous champs scalaires  $\phi$  tels que  $E=\nabla\phi$ . L'idée consiste à projeter orthogonalement l'espace  $\mathbf{H}_0(\mathbf{rot},\Omega)$  sur l'espace des champs à divergence nulle qui n'ont pas une composante gradient. On remarque que cette projection nous de permet automatiquement prendre en compte la loi de Gauss.

## 3.1 Problème électrique aux valeurs propres

Soit  $\Omega$  un domaine borné de  $\mathbb{R}^d$  avec d=2,3 de frontière  $\partial\Omega$  connexe. Le problème aux valeurs propres pour le champ électrique s'écrit

$$(\mathcal{E}) \quad \begin{array}{|l|l|} \hline \text{Trouver } (E \neq 0, \lambda) \in \mathbf{X}^0 \times \mathbb{R} \text{ telle que} \\ \hline \mathbf{rot} \, \mu^{-1} \, \mathbf{rot} \, E &=& \lambda \varepsilon E & (\Omega), \\ \text{div } \varepsilon E &=& 0 & (\Omega), \\ E \times \mathbf{n} &=& 0 & (\partial \Omega), \\ \hline \end{array}$$

où l'espace  $\mathbf{X}^0 = \mathbf{H}_0(\mathbf{rot}, \Omega)$ ,  $\mu$  et  $\varepsilon$  sont les fonctions constantes par moreaux et telles que  $0 < \mu_{min} \le \mu \le \mu_{max} < \infty$ ,  $0 < \varepsilon_{min} \le \varepsilon \le \varepsilon_{max} < \infty$  et n un vecteur normal unité à la fronière  $\partial\Omega$  dirigé à l'extérieur du domaine  $\Omega$ .

*Remarque* 1. La condition div  $\varepsilon E=0$  dans  $\Omega$  est équivalente à  $(E,\nabla\phi)_{\varepsilon}\stackrel{def}{=}(\varepsilon E,\nabla\phi)=0$  pour tous  $\phi\in H^1_0(\Omega)$ , où  $(\cdot,\cdot)$  est un produit scalaire dans  $L^2(\Omega)$ .

On passe à la formulation variationnelle

$$(\mathscr{E}_{V,\lambda}) \quad \left| \begin{array}{l} \text{Trouver } (E \neq 0,\lambda) \in \mathbf{X}^0 \times \mathbb{R} \text{ telle que} \\ a_{\mu}(E,v) &= \lambda (E,v)_{\varepsilon} \quad \forall v \in \mathbf{X}^0, \\ (E,\nabla q)_{\varepsilon} &= 0 \qquad \forall q \in V^0, \end{array} \right.$$

où la forme bilinéaire est  $a_{\mu}(E, v) = \int_{\Omega} \mu^{-1} \operatorname{rot} E. \operatorname{rot} v$ , et  $V^0 = H_0^1(\Omega)$ .

## 3.2 Décomposition orthogonale de l'espace $H_0(rot, \Omega)$

Soit  $\lambda$  une valeur propre nulle. Alors, si E est la fonction propre du problème  $(\mathscr{E}_{V,\lambda})$ , on a  $E = \nabla \phi$  avec  $\phi \in V^0$  puisque  $\operatorname{rot} \mu^{-1} \operatorname{rot} E = 0$  [9], si  $(\nabla \phi, \nabla q)_{\varepsilon} = 0$  pour tous  $q \in V^0$ . Donc l'espace  $\nabla V^0 = \{v \in \mathbf{X}^0 : \exists \phi \in V^0 \text{ et } v = \nabla \phi\}$ , qui est bien un sous-espace de  $\mathbf{X}^0$  grâce à la séquence exacte, contient des fonctions propres E du problème  $(\mathscr{E}_{V,\lambda})$ , si  $(E, \nabla q)_{\varepsilon} = 0$  pour tous  $q \in V^0$ . Mais, si on suppose que  $(E = \nabla \phi, 0)$  avec  $\phi \in V^0$  est la solution du problème  $(\mathscr{E}_{V,\lambda})$ , on a forcement  $\phi = 0$  dans  $\Omega$ , car la condition  $(\nabla \phi, \nabla q)_{\varepsilon} = 0$  pour  $q = \phi \in V^0$  entraîne  $\phi = 0$ . Il n'y a donc pas de valeur propre nulle.

Pour cette raison on décompose l'espace  $\mathbf{X}^0$  à deux sous-espaces orthogonaux  $\nabla V^0$  et  $\mathbf{U}^0$ , où  $\mathbf{U}^0 = \{ \mathbf{u} \in \mathbf{X}^0 : (\mathbf{u}, \nabla q)_{\varepsilon} = 0 \, \forall q \in V^0 \}$ . On a donc  $\mathbf{X}^0 = \nabla V^0 \overset{\perp}{\oplus} \mathbf{U}^0$ . Cette décomposition est valable car l'espace  $\nabla V^0$  est fermé dans  $\mathbf{X}^0$  et l'espace  $\mathbf{U}^0 = (\nabla V^0)^{\perp}$ . Ce dernier espace  $\mathbf{U}^0$  contient les fonctions à  $\varepsilon$ -divergence nulle. On définit l'operateur de projection orthogonale  $\mathcal{P}_{\mathbf{U}}: \mathbf{X}^0 \to \mathbf{U}^0$ . Soit  $\mathbf{E} = \nabla \phi + \mathbf{u}$  avec  $\phi \in V^0$  et  $\mathbf{u} \in \mathbf{U}^0$ , donc  $\mathcal{P}_{\mathbf{U}}\mathbf{E} = \mathbf{u}$ .

Soit maintenant  $\lambda$  une valeur propre non nulle. Si  $E = \nabla \phi + u$  est la solution du problème  $(\mathscr{E}_{V,\lambda})$  on a toujours, d'après la contrainte  $(E,\nabla q)_{\varepsilon}=0\ \forall q\in V^0$ , que  $\phi=0$  dans  $\Omega$ . Donc on peut se placer dans la formulation variationnelle suivante

$$(\mathscr{U}_{V,\lambda}) \quad \middle| \begin{array}{l} \text{Trouver } (u \neq 0, \lambda) \in \mathbf{U}^0 \times \mathbb{R} \text{ telle que} \\ a_{\mu}(u, v) = \lambda(u, v)_{\varepsilon} \quad \forall v \in \mathbf{U}^0, \end{array}$$

ou bien

$$(\mathscr{PE}_{V,\lambda}) \quad \left| \begin{array}{l} \text{Trouver } (E,\lambda) \in \mathbf{X}^0 \times \mathbb{R} \text{ telle que } \mathcal{P}_{\mathbf{U}}E \neq 0 \\ a_{\mu}(E,v) = \lambda (\mathcal{P}_{\mathbf{U}}E,v)_{\varepsilon} \quad \forall v \in \mathbf{X}^0. \end{array} \right.$$

L'avantage de cette projection est, en premier lieu, à supprimer toutes les valeurs propres nulles ( $\lambda=0\Rightarrow E\in\nabla V^0\Rightarrow \mathcal{P}_UE=0$ ) et, en deuxième lieu, à éviter la contrainte sur la divergence du champ.

## 3.3 Discrétisation et la forme matricielle d'opérateur de projection

Soit  $X_h$  un sous-espace de  $H(rot, \Omega)$  de dimension fini. On passe maintenent à la formulation variationnelle discrète

$$(\mathscr{PE}_{V,\lambda}^h) \quad \left| \begin{array}{l} \text{Trouver } (E_h,\lambda_h) \in \mathbf{X}_h^0 \times \mathbb{R} \text{ telle que } \mathcal{P}_{\mathbf{U}_h}^h E_h \neq 0 \\ a_{\mu}(E_h,\boldsymbol{v}_h) = \lambda_h (\mathcal{P}_{\mathbf{U}_h}^h E_h,\boldsymbol{v}_h)_{\varepsilon} \quad \forall \boldsymbol{v}_h \in \mathbf{X}_h^0, \end{array} \right|$$

avec  $\mathbf{X}_h^0 = \mathbf{X}_h \cap \mathbf{H}_0(\mathbf{rot}, \Omega)$ . On prend comme l'espace  $\mathbf{X}_h$  un espace des éléments finis d'arêtes de type Raviart-Thomas en 2d ou Nédélec en 3d de premier ordre. De même, on choisit  $\mathbf{V}_h^0 = \mathbf{V}_h \cap \mathbf{H}_0^1(\Omega)$ , avec  $\mathbf{V}_h$  un espace d'éléments finis de Lagrange nodaux.

Soit  $\mathcal{T}_h$  une triangulation de demaine  $\Omega$ ,  $\overline{\Omega} = \bigcup_i K_i$ . On notera par n un nœud de triangulation  $\mathcal{T}_h$  et par  $e = \{m, n\}$  une arête. Soit  $\mathcal{N}$  un ensemble de nœuds n et  $\mathcal{E}$  d'arêtes e.  $|\mathcal{N}|$  et  $|\mathcal{E}|$  sont les cardinals. On définit un opérateur frontière  $\partial$  (voir [10])

qui prend une arête  $e = \{m, n\}$  et qui donne une somme n - m. Cet opérateur peut être représenté par une matrice  $\partial$  de dimension  $|\mathcal{N}| \times |\mathcal{E}|$ , qui est bien creux avec les coefficients 0, -1 ou 1. Par exemple, pour un triangle K avec les nœuds l, m, n et avec ces trois arêtes  $e_1 = \{l, m\}$ ,  $e_2 = \{m, n\}$  et  $e_3 = \{n, l\}$  on a  $\partial e_1 = -l + m$ ,  $\partial e_2 = -m + n$  et  $\partial e_3 = -n + l$  et la matrice  $\partial = \mathbb{G}^t$ , où

$$\mathbb{G} = (\mathbb{G}_{e,n}) = \begin{pmatrix} 1 & m & n \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}_{e_{2}}^{e_{1}}.$$

Soit  $\{w^e\}_e$  une base de  $\mathbf{X}_h$  et  $\{w^n\}_n$  une base de l'espace des éléments finis nodaux  $V_h$ . Donc pour toutes fonctions  $E_h \in \mathbf{X}_h$  et  $\phi_h \in V_h$  on a  $E_h = \sum_e M_e(E_h)w^e$  et  $\phi_h = \sum_n \alpha_n w^n$ , où  $M_e(E_h) = \int_e E_h.t$  un moment sur l'arête e qui joue un rôle degré de liberté d'espace  $\mathbf{X}_h$  et  $\alpha_n = \phi_h(n)$  une valeur de  $\phi_h$  au nœud n – degré de liberté d'espace  $V_h$ . On écrit les décompositions orthogonales discrètes  $\mathbf{X}_h = \nabla V_h^0 \stackrel{\perp}{\oplus} \mathbf{U}_h$  avec  $\mathbf{U}_h = \{v_h \in \mathbf{X}_h : (v_h, \nabla p_h)_e = 0, \forall p_h \in V_h^0\}$ , et  $\mathbf{X}_h^0 = \nabla V_h^0 \stackrel{\perp}{\oplus} \mathbf{U}_h^0$ , avec  $\mathbf{U}_h^0 = \{v_h \in \mathbf{X}_h^0 : (v_h, \nabla p_h)_e = 0, \forall p_h \in V_h^0\}$ . Dans notre cas  $E_h = \nabla \phi_h + u_h$  développe comme

$$\sum_{e} M_{e}(E_{h}) w^{e} = \sum_{n} \alpha_{n} \nabla w^{n} + \sum_{e} M_{e}(\mathbf{u}_{h}) w^{e}.$$

D'après le lemme 3.6 de l'article [10] on a  $\nabla w^n = \sum_e G_{e,n} w^e$  et alors

$$M_e(E_h) = \sum_n G_{e,n} \alpha_n + M_e(u_h) \quad \forall e \in \mathcal{E}_{\rangle},$$

où  $\mathcal{E}_i$  un ensemble des arêtes intérieures. De même on note  $\mathcal{N}_i$  un ensemble des sommets intérieurs. On récrit cette équation sous la forme vectorielle. On note les vecteurs

avec  $E_i = M_i(\mathbf{E}_h)$  et  $U_i = M_i(\mathbf{u}_h)$ . On a donc

$$\vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}.$$

On effectue le produit scalaire de  $E_h = \nabla \phi_h + u_h$  par  $v_h \in \nabla V_h$  et on obtient

$$(\mathbf{E}_h, \mathbf{v}_h)_{\varepsilon} = (\nabla \phi_h, \mathbf{v}_h)_{\varepsilon}.$$

Il existe une fonction  $q_h \in V_h$  telle que  $v_h = \nabla q_h$ . Puisque c'est valable pour toutes fonctions  $v_h$  on prend  $q_h = w^n$  et on a alors

$$(E_h, \nabla w^n)_{\varepsilon} = (\nabla \phi_h, \nabla w^n)_{\varepsilon} \quad \forall w^n.$$

K. Brodt/UMA Rapport non confidentiel Le terme à gauche est

$$(E_{h}, \nabla w^{n})_{\varepsilon} = \sum_{e} E_{e}(w^{e}, \nabla w^{n})_{\varepsilon} \qquad \operatorname{car} E_{h} = \sum_{e} E_{e}w^{e}$$

$$= \sum_{e} E_{e}(w^{e}, \sum_{e'} \mathbb{G}_{e',n} w^{e'})_{\varepsilon} \qquad \operatorname{car} \nabla w^{n} = \sum_{e'} \mathbb{G}_{e',n} w^{e'}$$

$$= \sum_{e'} \mathbb{G}_{e',n} \sum_{e} E_{e}(w^{e}, w^{e'})_{\varepsilon}$$

$$= \sum_{e'} \mathbb{G}_{e',n} (\mathbb{M}_{a}^{\varepsilon} \vec{E})_{e'} \qquad (\mathbb{M}_{a}^{\varepsilon})_{e',e} = (w^{e}, w^{e'})_{\varepsilon}$$

$$= (\mathbb{G}^{t} \mathbb{M}_{a}^{\varepsilon} \vec{E})_{n} \qquad \mathbb{G}_{e',n} = (\mathbb{G}^{t})_{n,e'}.$$

C'est-à-dire,  $(E_h, \nabla w^n)_{\varepsilon}$  est la  $n^{\text{ième}}$  composante de  $\mathbb{G}^t\mathbb{M}_a^{\varepsilon}\vec{E}$ , où  $\mathbb{M}_a^{\varepsilon}$  est la matrice de masse d'arêtes de taille  $|\mathcal{E}_i| \times |\mathcal{E}_i|$ .

De même, le terme à droite est

$$(\nabla \phi_h, \nabla w^n)_{\varepsilon} = \sum_{m} \alpha_m (\nabla w^m, \nabla w^n)_{\varepsilon} \qquad \text{car } \phi_h = \sum_{m} \alpha_m w^m$$

$$= \sum_{m} \alpha_m (\mathbb{K}_s^{\varepsilon})_{n,m} \qquad (\mathbb{K}_s^{\varepsilon})_{n,m} = (\nabla w^m, \nabla w^n)_{\varepsilon}$$

$$= (\mathbb{K}_s^{\varepsilon} \vec{\alpha})_{n,n}$$

où  $\mathbb{K}_s^{\varepsilon}$  matrice de rigidité nodale de taille  $|\mathcal{N}_i| \times |\mathcal{N}_i|$ .

Finalement, on a  $\mathbb{G}^t\mathbb{M}_a^{\varepsilon}\vec{E}=\mathbb{K}_s^{\varepsilon}\vec{\alpha}$ . Soit  $(\mathbb{K}_s^{\varepsilon})^{-1}$  une matrice inverse de  $\mathbb{K}_s^{\varepsilon}$ , donc  $\vec{\alpha}=(\mathbb{K}_s^{\varepsilon})^{-1}\mathbb{G}^t\mathbb{M}_a^{\varepsilon}\vec{E}$  ou bien pour  $\vec{U}=\vec{E}-\mathbb{G}\vec{\alpha}=(\mathbb{I}_d-\mathbb{G}(\mathbb{K}_s^{\varepsilon})^{-1}\mathbb{G}^t\mathbb{M}_a^{\varepsilon})\vec{E}$ . On a obtenu donc l'opérateur  $\mathcal{P}_{\mathbf{U}_h}^h$  sous la forme matricielle

$$\mathbb{P}^{\varepsilon} = \mathbb{I}_{d} - \mathbb{G}(\mathbb{K}_{s}^{\varepsilon})^{-1} \mathbb{G}^{t} \mathbb{M}_{a}^{\varepsilon}.$$

A la fin, on récrit le problème  $(\mathscr{PE}^h_{V,\lambda})$  sous la forme matricielle équivalente

$$(\mathbb{P}\mathbb{E}_{\lambda}) \quad \bigg| \begin{array}{l} \text{Trouver } (\vec{E}, \lambda_h) \in \mathbb{R}^{|\mathcal{E}_i|} \times \mathbb{R} \text{ telle que } \mathbb{P}^{\varepsilon} \vec{E} \neq 0 \\ \mathbb{K}_a^{\mu} \vec{E} = \lambda_h \mathbb{M}_a^{\varepsilon} \mathbb{P}^{\varepsilon} \vec{E}, \end{array}$$

où  $\mathbb{K}_a^{\mu}$  est la matrice de rigidité d'arêtes de taille  $|\mathcal{E}_i| \times |\mathcal{E}_i|$ ,  $(\mathbb{K}_a^{\mu})_{e'}^e = (\mathbf{rot} \, w^e, \mathbf{rot} \, w^{e'})_{\mu^{-1}}$ .

Les tests numériques nous montrent que les valeurs propres correspondant aux gradients  $\nabla \phi$  (ou  $G\vec{\alpha}$ ), où  $E = \nabla \phi + u$  (ou  $\vec{E} = G\vec{\alpha} + \vec{U}$ ), sont instables. Pour cette raison on stabilise le problème ( $\mathbb{PE}_{\lambda}$ ) en ajoutant le terme  $\gamma \mathbb{M}_a^{\varepsilon}$  avec  $\gamma > 0$  à gauche. On passe donc au problème

$$(\mathbb{P}\mathbb{E}_{\lambda}^{\gamma}) \quad \bigg| \begin{array}{l} \text{Trouver } (\vec{E},\lambda_h') \in \mathbb{R}^{|\mathcal{E}_i|} \times \mathbb{R} \text{ telle que } \mathbb{P}^{\varepsilon}\vec{E} \neq 0 \\ (\mathbb{K}_a^{\mu} + \gamma \mathbb{M}_a^{\varepsilon})\vec{E} = \lambda_h' \mathbb{M}_a^{\varepsilon} \mathbb{P}^{\varepsilon}\vec{E}. \end{array}$$

Pour obtenir les valeurs propres  $\lambda_h$  du problème  $(\mathbb{PE}_{\lambda})$  on soustrait naturellement  $\gamma$  de  $\lambda'_h$ , autrement dit  $\lambda'_h = \lambda_h + \gamma$ . Donc ces deux problèmes  $(\mathbb{PE}_{\lambda})$  et  $(\mathbb{PE}_{\lambda}^{\gamma})$  sont

équivalents. En effet,

$$(\mathbb{K}_{a}^{\mu} + \gamma \mathbb{M}_{a}^{\varepsilon})\vec{E} = (\mathbb{K}_{a}^{\mu} + \gamma \mathbb{M}_{a}^{\varepsilon})(\mathbb{G}\vec{\alpha} + \vec{U}) \qquad \text{car } \vec{E} = \mathbb{G}\vec{\alpha} + \vec{U}$$

$$= \underbrace{\mathbb{K}_{a}^{\mu}\mathbb{G}\vec{\alpha} + \gamma \mathbb{M}_{a}^{\varepsilon}\mathbb{G}\vec{\alpha} + (\mathbb{K}_{a}^{\mu} + \gamma \mathbb{M}_{a}^{\varepsilon})\vec{U}}_{=0} \qquad \text{car } \mathbf{rot} \nabla \cdot = 0$$

$$= \lambda_{h}^{\prime}\mathbb{M}_{a}^{\varepsilon}\mathbb{P}^{\varepsilon}\vec{E} = (\lambda_{h} + \gamma)\mathbb{M}_{a}^{\varepsilon}\mathbb{P}^{\varepsilon}(\mathbb{G}\vec{\alpha} + \vec{U}) \qquad \text{car } \lambda_{h}^{\prime} = \lambda_{h} + \gamma$$

$$= (\lambda_{h} + \gamma)\mathbb{M}_{a}^{\varepsilon}\underbrace{\mathbb{P}^{\varepsilon}\mathbb{G}\vec{\alpha} + (\lambda_{h} + \gamma)\mathbb{M}_{a}^{\varepsilon}\underbrace{\mathbb{P}^{\varepsilon}\vec{U}}_{=\vec{U}} \qquad \text{car } \mathbb{P}^{\varepsilon} \text{ est une projection.}$$

On a donc

$$\gamma \mathbb{M}_{a}^{\varepsilon} \mathbb{G} \vec{\alpha} + \mathbb{K}_{a}^{\mu} \vec{U} + \gamma \mathbb{M}_{a}^{\varepsilon} \vec{U} = \lambda_{h} \mathbb{M}_{a}^{\varepsilon} \vec{U} + \gamma \mathbb{M}_{a}^{\varepsilon} \vec{U},$$

ou bien

$$\gamma \mathbb{M}_a^{\varepsilon} \mathbb{G} \vec{\alpha} + \mathbb{K}_a^{\mu} \vec{U} = \lambda_h \mathbb{M}_a^{\varepsilon} \vec{U}.$$

On effectue le produit scalaire dans  $\mathbb{R}^{|\mathcal{E}_i|}$ , noté  $(\cdot|\cdot)$ , par  $\mathbb{G}\vec{\alpha}$  et on obtient

$$\gamma(\mathbb{M}_{a}^{\varepsilon}\mathbb{G}\vec{\alpha}|\mathbb{G}\vec{\alpha}) + (\mathbb{K}_{a}^{\mu}\vec{U}|\mathbb{G}\vec{\alpha}) = \lambda_{h}(\mathbb{M}_{a}^{\varepsilon}\vec{U}|\mathbb{G}\vec{\alpha}).$$

Puisque la matrice  $\mathbb{K}_a^{\varepsilon}$  est symétrique et  $\mathbb{K}_a^{\mu}\mathbb{G} = 0$ , et les vecteurs  $\vec{U}$  et  $\mathbb{G}\vec{\alpha}$  sont orthogonaux, on a alors

$$\gamma(\mathbb{M}_a^{\varepsilon}\mathbb{G}\vec{\alpha}|\mathbb{G}\vec{\alpha}) = \gamma||\mathbb{G}\vec{\alpha}|| = 0 \Rightarrow \mathbb{G}\vec{\alpha} = 0.$$

Finalement, on a  $\vec{E} = \vec{U}$  et donc le problème ( $\mathbb{PE}_{\lambda}^{\gamma}$ ) devient

$$(\mathbb{K}_a^{\mu} + \gamma \mathbb{M}_a^{\varepsilon}) \vec{U} = (\lambda_h + \gamma) \mathbb{M}_a^{\varepsilon} \underbrace{\mathbb{P}^{\varepsilon} \vec{U}}_{=\vec{U}}$$

ou bien

$$\mathbb{K}_{a}^{\mu}\vec{U} = \lambda_{h}\mathbb{M}_{a}^{\varepsilon}\vec{U}$$

$$\mathbb{K}_{a}^{\mu}\mathbb{P}^{\varepsilon}\vec{E} = \lambda_{h}\mathbb{M}_{a}^{\varepsilon}\mathbb{P}^{\varepsilon}\vec{E}$$

$$\mathbb{K}_{a}^{\mu}\vec{E} = \lambda_{h}\mathbb{M}_{a}^{\varepsilon}\mathbb{P}^{\varepsilon}\vec{E}.$$

On utilise ici  $\mathbb{P}^{\varepsilon}\vec{E} = \vec{U}$  et le fait que  $\mathbb{K}_a^{\mu}\mathbb{G}\vec{\alpha} = 0$  ou la même chose  $\mathbb{K}_a^{\mu}(\mathbb{I}_d - \mathbb{P}^{\varepsilon})\vec{E} = 0$ .

#### 3.4 Tests numériques

Dans cette section on résout  $^1$  le problème  $(\mathbb{PE}^{\gamma}_{\lambda})$  avec  $\gamma=1$  en deux dimensions dans même géométrie damier comme dans le premier chapitre  $\Omega=]-1,1[^2\subset\mathbb{R}^2$ . On prends  $\varepsilon_1=\varepsilon_3=1$  dans  $\Omega_1\cup\Omega_3$  et  $\varepsilon=\varepsilon_2=\varepsilon_4=\sigma^{-1}$  avec  $\sigma>1$  dans  $\Omega_2\cup\Omega_4$  et  $\mu=1$  dans tout  $\Omega$ . On va utiliser les espaces discrets de type Raviart-Thomas de premier ordre  $\mathcal{R}_1$ . De plus on utilise des maillages non-uniformes et raffinés au point (0,0). Ci-dessous on répresente le maillage avec un pas h=0.2 et h=0.01 au point (0,0).

<sup>1.</sup> On utilise ici le logiciel Matlab



On prend  $\sigma=10$  et  $\sigma=100$  (ou  $\varepsilon=0.1$  et  $\varepsilon=0.01$ ). Dans ce cas la singularité du champ E est 0.39 et 0.127 respectivement, autrement dit  $E\in \mathbf{H}^{0.39}(\Omega)$  et  $E\in \mathbf{H}^{0.127}(\Omega)$ . Ci-dessous dans les tableaux on représente dix premières valeurs propres non-nulles. Dans la première colonne on a les valeurs propres "exacte"  $\lambda$ , obtenues d'après le site web  $^2$ . Dans la deuxième colonne on a les valeurs propres  $\lambda_h$  du problème ( $\mathbb{PE}_{\lambda}^{\gamma}$ ) avec l'opérateur de projection  $\mathbb{P}^{\varepsilon}$  et dans la troisième colonne on a l'erreur relative  $\frac{|\lambda-\lambda_h|}{|\lambda|}$ . Le nombre de degrés de liberté est égal à 1372 (ou  $|\mathcal{E}_i|=1372$ ). La dimension de l'espace  $\nabla V_h^0$  est égale à 445.

| $\sigma = 10  (\mathbf{H})$ | $\mathbf{I}^{0.39}$ ) |                                   | $\sigma = 100$ | $(\mathbf{H}^{0.127})$ |                                 |
|-----------------------------|-----------------------|-----------------------------------|----------------|------------------------|---------------------------------|
| λ                           | $\lambda_h$           | $ \lambda - \lambda_h / \lambda $ | λ              | $\lambda_h$            | $ \lambda-\lambda_h / \lambda $ |
| 4.534                       | 4.542                 | $1.854_{-3}$                      | 4.893          | 4.906                  | $2.663_{-3}$                    |
| 6.25                        | 6.116                 | $2.153_{-2}$                      | 7.207          | 7.238                  | $4.403_{-3}$                    |
| 7.037                       | 7.065                 | $4.031_{-3}$                      | 15.537         | 10.48                  | $3.255_{-1}$                    |
| 22.342                      | 22.258                | $3.738_{-3}$                      | 24.462         | 24.415                 | $1.949_{-3}$                    |
| 22.679                      | 22.741                | $2.744_{-3}$                      | 24.487         | 24.598                 | $4.517_{-3}$                    |
| 26.095                      | 26.064                | $1.208_{-3}$                      | 27.757         | 27.879                 | $4.391_{-3}$                    |
| 26.509                      | 26.666                | $5.914_{-3}$                      | 29.647         | 27.971                 | $5.651_{-2}$                    |
| 40.488                      | 40.514                | $6.461_{-4}$                      | 44.249         | 44.398                 | $3.361_{-3}$                    |
| 42.651                      | 42.697                | $1.090_{-3}$                      | 44.435         | 44.525                 | $2.028_{-3}$                    |
| 55.882                      | 55.332                | $9.845_{-3}$                      | 63.596         | 63.058                 | $8.462_{-3}$                    |

Pour  $\sigma=10$  on voit que la deuxième valeur propre  $\lambda_h=6.116$  ( $\lambda=6.25$ ) a l'erreur 2% par rapport aux toutes les autres qui ont moins que 1% d'erreur. Pour  $\sigma=100$  on voit que la troisième valeur propre  $\lambda_h=10.48$  ( $\lambda=15.537$ ) a l'erreur 32.5%, dû à très forte singularité de la solution au point (0,0).

#### 3.5 Résumé

La difficulté du problème aux valeurs propres des équations de Maxwell pour le champ électrique *E* est lié avec le fait que l'opérateur **rot** possède un noyau de dimension infinie. Dans ce cas les méthodes numériques habituelles nous donnent beaucoup de

<sup>2.</sup> https://perso.univ-rennes1.fr/monique.dauge/core/index.html

3.5. Résumé 31

valeurs propres nulles associées aux gradients de noyau. Dans ce chapitre on a construit un opérateur de projection orthogonale sur le complément orthogonal du noyau. On a reformulé le problème aux valeurs propres stable en utilisant cet opérateur de projection othogonale et on a supprimé toutes les valeurs propres nulles. Plus précisément on a les envoyé à l'infini. Cependent il reste un problème de l'inversion de la matrice de rigidité nodale  $\mathbb{K}_s^{\varepsilon}$ , présentant dans l'opérateur de projection  $\mathbb{P}^{\varepsilon} = \mathbb{I}_d - \mathbb{G}(\mathbb{K}_s^{\varepsilon})^{-1}\mathbb{G}^t\mathbb{M}_a^{\varepsilon}$ , où on peut continuer l'étude sur ce problème.

#### Bibliographie

- [1] K. Brodt, « Comparaison de méthodes numériques pour résoudre les équations de maxwell en deux dimensions », 2014.
- [2] —, « Comparaison de méthodes numériques pour résoudre les équations de maxwell en trois dimensions », 2015.
- [3] A. ERN et J.-L. GUERMOND, *Theory and practice of finite elements*, sér. Applied mathematical sciences. New York: Springer, 2004, ISBN: 0387205748. adresse: http://opac.inria.fr/record=b1122090.
- [4] É. BÉCACHE, P. CIARLET, C. HAZARD et E. LUNÉVILLE, La Méthode des Eléments Finis: De la Théorie à la Pratique. II. Compléments. Coll. Les Cours, Les Presses de l'ENSTA, 288 pages, nov. 2010.
- [5] P. CIARLET, H. WU et J. ZOU, « Edge element methods for maxwell's equations with strong convergence for gauss' laws », *SIAM J. Numer. Anal.*, t. 52, p. 779–807, 2014. DOI: 10.1137/120899856.
- [6] P. GRISVARD, Singularities in boundary value problems, sér. Recherches en mathématiques appliquées. Paris, Milan, Barcelone: Masson Berlin Heidelberg New York, 1992, ISBN: 3540554505. adresse: http://opac.inria.fr/record=b1076896.
- [7] P. CIARLET et E. LUNÉVILLE, La méthode des éléments finis : de la théorie à la pratique. I. Concepts généraux, sér. Les Cours. Paris : Les Presses de l'ENSTA, 2009, ENSTA : École Nationale Supérieure de Techniques Avancées, ISBN : 9782722509177. adresse : http://opac.inria.fr/record=b1130797.
- [8] F. HECHT, « New development in freefem++ », *J. Numer. Math.*, t. 20, n° 3-4, p. 251–265, 2012, ISSN: 1570-2820.
- [9] P. CIARLET, « Notes de cours sur les équations de maxwell », 2014.
- [10] F. RAPETTI et A. BOSSAVIT, «Whitney forms of higher degree », SIAM Journal on Numerical Analysis, t. 47, no 3, p. 2369–2386, juin 2009. DOI: 10.1137/070705489. adresse: https://hal-supelec.archives-ouvertes.fr/hal-00763881.