- **Exercise 1.** (i) Let A be a commutative ring. Describe the set of scheme morphisms Spec $A \to (\mathbb{A}^n 0)$ in terms of elements of A.
- (ii) Let X be a scheme. Describe the set of scheme morphisms $X \to (\mathbb{A}^n 0)$ in terms of global sections of \mathcal{O}_X .

Exercise 2. Let X be a scheme of finite type over a field k.

- (i) Show that a point of X is closed if and only if its residue field is a finite extension of k.
- (ii) Show that closed points are dense in X.
- (iii) Give an example of a scheme where closed points are not dense.

Exercise 3. Let k be an algebraically closed field.

- (i) Let S be an \mathbb{N} -graded ring, generated by elements of degree one. Describe the set of closed points of Proj S in terms of ideals of S.
- (ii) Let $(x_0, \ldots, x_n) \in k^{n+1} 0$. Find a homogeneous prime ideal \mathfrak{p} of $k[T_0, \ldots, T_n]$ such that $V(\mathfrak{p})(k) \subset \mathbb{A}^{n+1}(k)$ is identified with

$$\{(\lambda x_0, \dots, \lambda x_n) | \lambda \in k\} \subset k^{n+1}.$$

(iii) Let \mathfrak{p} be a closed point of \mathbb{P}_k^n . We view \mathfrak{p} as an ideal of $k[T_0, \ldots, T_n]$. Show that we can find $(x_0, \ldots, x_n) \in k^{n+1} - 0$ such that

$$V(\mathfrak{p})(k) = \{(\lambda x_0, \dots, \lambda x_n) | \lambda \in k\} \subset \mathbb{A}^{n+1}(k).$$

(iv) Deduce a bijection between $\mathbb{P}^n(k)$ and the set of lines in k^{n+1} containing 0.