

Stochastic Processes

Random Vectors, Sequences of Random Variables, $\lim\inf, \lim\sup,$ \lim of Sequences of Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

17 January 2025

Dedication

Figure: Kalyanapuram Rangachari Parthasarathy (1936-2023).

Random Vectors and Sequences of Random Variables

Two Random Variables - Bivariate Random Vector

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$, we say $(X,Y):\Omega\to\mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

$$\mathcal{E} = \left\{ (-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R} \right\}.$$

• Consider the special class of semi-infinite rectangles in \mathbb{R}^2 , given by

$$\mathcal{E} = \left\{ (-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R} \right\}.$$

• $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathcal{E})$

$$\mathcal{E} = \left\{ (-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R} \right\}.$$

- $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathcal{E})$
- Other example sets in $\mathscr{B}(\mathbb{R}^2)$:

$$\mathcal{E} = \left\{ (-\infty, \mathbf{x}] \times (-\infty, \mathbf{y}] : \mathbf{x}, \mathbf{y} \in \mathbb{R} \right\}.$$

- $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathcal{E})$
- Other example sets in $\mathscr{B}(\mathbb{R}^2)$:

$$(-\infty,x]\times\mathbb{R}$$
, $(-\infty,x)\times\mathbb{R}$, $[x,\infty)\times\mathbb{R}$, $(x,\infty)\times\mathbb{R}$, $x\in\mathbb{R}$

$$\mathcal{E} = \left\{ (-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R} \right\}.$$

- $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathcal{E})$
- Other example sets in $\mathscr{B}(\mathbb{R}^2)$:

$$- \ (-\infty,x] \times \mathbb{R}, \quad (-\infty,x) \times \mathbb{R}, \quad [x,\infty) \times \mathbb{R}, \quad (x,\infty) \times \mathbb{R}, \quad x \in \mathbb{R}$$

$$- \ \mathbb{R} \times (-\infty, \gamma], \quad \mathbb{R} \times (-\infty, \gamma), \quad \mathbb{R} \times [\gamma, \infty), \quad \mathbb{R} \times (\gamma, \infty), \quad \gamma \in \mathbb{R}$$

$$\mathcal{E} = \left\{ (-\infty, \mathbf{x}] \times (-\infty, \mathbf{y}] : \mathbf{x}, \mathbf{y} \in \mathbb{R} \right\}.$$

- $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathcal{E})$
- Other example sets in $\mathscr{B}(\mathbb{R}^2)$:
 - $(-\infty,x]\times\mathbb{R}$, $(-\infty,x)\times\mathbb{R}$, $[x,\infty)\times\mathbb{R}$, $(x,\infty)\times\mathbb{R}$, $x\in\mathbb{R}$
 - $\ \mathbb{R} \times (-\infty, \gamma], \quad \mathbb{R} \times (-\infty, \gamma), \quad \mathbb{R} \times [\gamma, \infty), \quad \mathbb{R} \times (\gamma, \infty), \quad \gamma \in \mathbb{R}$
 - $\mathbb{R} imes(a,b),$ $(a,b) imes\mathbb{R},$ $a,b\in\mathbb{R}$

$$\mathcal{E} = \left\{ (-\infty, \mathbf{x}] \times (-\infty, \mathbf{y}] : \mathbf{x}, \mathbf{y} \in \mathbb{R} \right\}.$$

- $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathcal{E})$
- Other example sets in $\mathscr{B}(\mathbb{R}^2)$:
 - $-(-\infty,x]\times\mathbb{R}, \quad (-\infty,x)\times\mathbb{R}, \quad [x,\infty)\times\mathbb{R}, \quad (x,\infty)\times\mathbb{R}, \quad x\in\mathbb{R}$
 - $\ \mathbb{R} \times (-\infty, \gamma], \quad \mathbb{R} \times (-\infty, \gamma), \quad \mathbb{R} \times [\gamma, \infty), \quad \mathbb{R} \times (\gamma, \infty), \quad \gamma \in \mathbb{R}$
 - $\mathbb{R} imes(a,b),$ $(a,b) imes\mathbb{R},$ $a,b\in\mathbb{R}$
 - (a,b) imes (c,d), $a,b,c,d\in \mathbb{R}$

$$\mathcal{E} = \left\{ (-\infty, \mathbf{x}] \times (-\infty, \mathbf{y}] : \mathbf{x}, \mathbf{y} \in \mathbb{R} \right\}.$$

- $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathcal{E})$
- Other example sets in $\mathscr{B}(\mathbb{R}^2)$:
 - $-(-\infty,x]\times\mathbb{R}, \quad (-\infty,x)\times\mathbb{R}, \quad [x,\infty)\times\mathbb{R}, \quad (x,\infty)\times\mathbb{R}, \quad x\in\mathbb{R}$
 - $\ \mathbb{R} \times (-\infty, \gamma], \quad \mathbb{R} \times (-\infty, \gamma), \quad \mathbb{R} \times [\gamma, \infty), \quad \mathbb{R} \times (\gamma, \infty), \quad \gamma \in \mathbb{R}$
 - $-\mathbb{R}\times(a,b), \quad (a,b)\times\mathbb{R}, \quad a,b\in\mathbb{R}$
 - $(a,b) \times (c,d), \quad a,b,c,d \in \mathbb{R}$
 - Circle of radius r centered at the origin, r > 0

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $x \in \mathbb{R}$, setting $B = (-\infty, x] \times \mathbb{R}$, we get

$$(X,Y)^{-1}((-\infty,x]\times\mathbb{R})=$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$, we say $(X,Y):\Omega\to\mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $x \in \mathbb{R}$, setting $B = (-\infty, x] \times \mathbb{R}$, we get

$$(X,Y)^{-1}\big((-\infty,x]\times\mathbb{R}\big)=\{X\leq x\}\cap\{Y\in\mathbb{R}\}=$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $x \in \mathbb{R}$, setting $B = (-\infty, x] \times \mathbb{R}$, we get

$$(X, Y)^{-1}((-\infty, x] \times \mathbb{R}) = \{X \le x\} \cap \{Y \in \mathbb{R}\} = \{X \le x\}$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $x \in \mathbb{R}$, setting $B = (-\infty, x] \times \mathbb{R}$, we get

$$(X,Y)^{-1}((-\infty,x]\times\mathbb{R})=\{X\leq x\}\cap\{Y\in\mathbb{R}\}=\{X\leq x\}\in\mathscr{F}$$

Thus, X is a random variable w.r.t. \mathscr{F}

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $y \in \mathbb{R}$, setting $B = \mathbb{R} \times (-\infty, y]$, we get

$$(X,Y)^{-1}(\mathbb{R}\times(-\infty,\gamma])=$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $y \in \mathbb{R}$, setting $B = \mathbb{R} \times (-\infty, y]$, we get

$$(X,Y)^{-1}(\mathbb{R}\times(-\infty,\gamma])=\{X\in\mathbb{R}\}\cap\{Y\leq\gamma\}=$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $y \in \mathbb{R}$, setting $B = \mathbb{R} \times (-\infty, y]$, we get

$$(X,Y)^{-1}(\mathbb{R}\times(-\infty,\gamma])=\{X\in\mathbb{R}\}\cap\{Y\leq\gamma\}=\{Y\leq\gamma\}$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

• For each $y \in \mathbb{R}$, setting $B = \mathbb{R} \times (-\infty, y]$, we get

$$(X,Y)^{-1}(\mathbb{R}\times(-\infty,\gamma])=\{X\in\mathbb{R}\}\cap\{Y\leq\gamma\}=\{Y\leq\gamma\}\in\mathscr{F}$$

Thus, Y is a random variable w.r.t. \mathscr{F}

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

Implication

(X, Y) random vector \implies X RV, Y RV

Is the other side implication also true?

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$, we say $(X,Y):\Omega\to\mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

Implication

(X, Y) random vector \implies X RV, Y RV

Is the other side implication also true? YES!

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

Implication

$$(X, Y)$$
 random vector \implies X RV, Y RV

Is the other side implication also true? YES!

$$X \text{ RV, } Y \text{ RV} \implies (X, Y)^{-1}(B) \in \mathscr{F} \ \forall B \in \mathcal{E} \implies (X, Y)^{-1}(B) \in \mathscr{F} \ \forall B \in \sigma(\mathcal{E})$$

Bivariate Random Vector Simplified

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$, we say $(X,Y):\Omega\to\mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(\mathbf{X},\mathbf{Y})^{-1}(\mathbf{B}) = \{\omega \in \Omega : \big(\mathbf{X}(\omega),\mathbf{Y}(\omega)\big) \in \mathbf{B}\} \in \mathscr{F} \qquad \forall \mathbf{B} \in \mathscr{B}(\mathbb{R}^2).$$

Equivalent Definition of Bivariate Random Vector

(X, Y) is a random vector if

$$(X,Y)^{-1}((-\infty,x]\times(-\infty,y])=\{X\leq x\}\cap\{Y\leq y\}\in\mathscr{F}\qquad \forall x,y\in\mathbb{R}.$$

Bivariate Random Vector Simplified

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Bivariate Random Vector)

Given two functions $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, we say $(X,Y): \Omega \to \mathbb{R}^2$ is a bivariate random vector with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

Equivalent Definition of Bivariate Random Vector

(X, Y) is a random vector if

$$(X,Y)^{-1}((-\infty,x]\times(-\infty,y]) = \{X < x\} \cap \{Y < y\} \in \mathscr{F} \qquad \forall x,y \in \mathbb{R}.$$

(X, Y) random vector $\iff X$ is RV, Y is RV

Probability Law of a Bivariate Random Vector

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Joint Probability Law of a Bivariate Random Vector

Given two random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} , their joint probability law $\mathbb{P}_{X,Y}:\mathscr{B}(\mathbb{R}^2)\to[0,1]$, is the probability measure defined as

$$\mathbb{P}_{ extbf{X}, extbf{Y}}(extbf{B}) = \mathbb{P}(\{\omega \in \Omega : ig(X(\omega), Y(\omega)ig) \in B\}), \qquad B \in \mathscr{B}(\mathbb{R}^2).$$

$$\mathbb{P}_{X,Y}(B) = \mathbb{P}((X,Y)^{-1}(B)) \quad orall B \in \mathscr{B}(\mathbb{R}^2)$$

Joint CDF of Two Random Variables

$$\textbf{\textit{F}}_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y]) = \mathbb{P}(\{X\leq x\}\cap\{Y\leq y\}),\quad x,y\in\mathbb{R}$$

Definition (Joint CDF)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Given random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ with respect to \mathscr{F} , their joint CDF $F_{X,Y}:\mathbb{R}^2\to[0,1]$ is defined as

$$F_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x] \times (-\infty,y]) = \mathbb{P}(\{X \le x\} \cap \{Y \le y\}), \qquad x,y \in \mathbb{R}.$$

Joint CDF ←→ **Joint Probability Law**

• If we know $\mathbb{P}_{X,Y} = {\mathbb{P}_{X,Y}(B) : B \in \mathscr{B}(\mathbb{R}^2)}$, then we can extract the CDF $F_{X,Y} : \mathbb{R}^2 \to [0,1]$ by using the formula

$$F_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y]), \qquad x,y\in\mathbb{R}.$$

• Given the joint CDF $F_{X,Y}: \mathbb{R}^2 \to [0,1]$, let

$$\mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y])=F_{X,Y}(x,y), \qquad x,y\in\mathbb{R}.$$

Then, by Caratheodory's extension theorem, there exists a unique extension of $\mathbb{P}_{X,Y}$ to all Borel subsets of \mathbb{R}^2

Higher Dimensional Random Vectors

Fix a measurable space (Ω, \mathscr{F}) . Fix $n \in \mathbb{N}$.

Definition (Random Vector)

Given random variables X_1, \ldots, X_n defined with respect to \mathscr{F} , we say $(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ is a random vector with respect to \mathscr{F} if

$$(X_1,\ldots,X_n)^{-1}(B)=\{\omega\in\Omega:(X_1(\omega),\ldots,X_n(\omega))\in B\}\in\mathscr{F}\qquad\forall B\in\mathscr{B}(\mathbb{R}^n).$$

$$(X_1,\ldots,X_n)$$
 (Ω,\mathscr{F})
 (X_1,\ldots,X_n)
 $(X_1,\ldots,X_n)^{-1}(B)$
 $(X_1,\ldots,X_n)^{-1}(B) \in \mathscr{F}$

Understanding $\mathscr{B}(\mathbb{R}^n)$ for n > 2

$$\mathcal{E} = \left\{ (-\infty, x_1] \times \cdots \times (-\infty, x_n] : x_1, \dots, x_n \in \mathbb{R} \right\}.$$

Understanding $\mathscr{B}(\mathbb{R}^n)$ for n > 2

$$\mathcal{E} = \left\{ (-\infty, x_1] \times \cdots \times (-\infty, x_n] : x_1, \dots, x_n \in \mathbb{R} \right\}.$$

•
$$\mathscr{B}(\mathbb{R}^n) = \sigma(\mathcal{E})$$

Higher Dimensional Random Vectors

Fix a measurable space (Ω, \mathscr{F}) . Fix $n \in \mathbb{N}$.

Definition (Random Vector)

Given random variables X_1, \ldots, X_n defined with respect to \mathscr{F} , we say

 $(X_1,\ldots,X_n):\Omega\to\mathbb{R}^n$ is a random vector with respect to \mathscr{F} if

$$(X_1,\ldots,X_n)^{-1}(B)=\{\omega\in\Omega: \big(X_1(\omega),\ldots,X_n(\omega)\big)\in B\}\in\mathscr{F}\qquad \forall B\in\mathscr{B}(\mathbb{R}^n).$$

Equivalently, (X_1, \ldots, X_n) is a random vector if

$$(X_1,\ldots,X_n)^{-1}((-\infty,x_1]\times\cdots\times(-\infty,x_n])=$$

Higher Dimensional Random Vectors

Fix a measurable space (Ω, \mathscr{F}) . Fix $n \in \mathbb{N}$.

Definition (Random Vector)

Given random variables X_1, \ldots, X_n defined with respect to \mathscr{F} , we say

 $(X_1,\ldots,X_n):\Omega\to\mathbb{R}^n$ is a random vector with respect to \mathscr{F} if

$$(X_1,\ldots,X_n)^{-1}(B)=\{\omega\in\Omega: \big(X_1(\omega),\ldots,X_n(\omega)\big)\in B\}\in\mathscr{F}\qquad \forall B\in\mathscr{B}(\mathbb{R}^n).$$

Equivalently, (X_1, \ldots, X_n) is a random vector if

$$(X_1,\ldots,X_n)^{-1}((-\infty,x_1]\times\cdots\times(-\infty,x_n])=\bigcap_{i=1}^n\{X_i\leq x_i\}\in\mathscr{F}\qquad\forall x_1,\ldots,x_n\in\mathbb{R}.$$

 (X_1,\ldots,X_n) random vector $\iff X_1 \ \mathsf{RV} \ \ldots \ X_n \ \mathsf{RV}$

Probability Law of Random Vectors

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Probability Law of Random Vectors)

Given random variables X_1, \ldots, X_n defined with respect to \mathscr{F} , their joint probability law is the probability measure $\mathbb{P}_{X_1,\ldots,X_n}:\mathscr{B}(\mathbb{R}^n)\to [0,1]$ defined as

$$\mathbb{P}_{X_1,...,X_n}(B) = \mathbb{P}(\{\omega \in \Omega : \big(X_1(\omega),\ldots,X_n(\omega)\big) \in B\}), \qquad B \in \mathscr{B}(\mathbb{R}^n).$$

$$\mathbb{P}_{X_1,\ldots,X_n}(B) = \mathbb{P}((X_1,\ldots,X_n)^{-1}(B)) \quad \forall B \in \mathscr{B}(\mathbb{R}^n)$$

Joint CDF of Multiple Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Joint CDF)

Given random variables X_1, \ldots, X_n defined w.r.t. \mathscr{F} , their joint CDF $F_{X_1, \ldots, X_n} : \mathbb{R}^n \to [0, 1]$ is defined as

$$F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \mathbb{P}_{X_1,\ldots,X_n}((-\infty,x_1]\times\cdots\times(-\infty,x_n])$$

= \mathbb{P}

Joint CDF of Multiple Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Joint CDF)

Given random variables X_1, \ldots, X_n defined w.r.t. \mathscr{F} , their joint CDF $F_{X_1, \ldots, X_n} : \mathbb{R}^n \to [0, 1]$ is defined as

$$F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \mathbb{P}_{X_1,\ldots,X_n}((-\infty,x_1]\times\cdots\times(-\infty,x_n])$$

$$= \mathbb{P}\left(\bigcap_{i=1}^n \{X_i \leq x_i\}\right), \qquad x_1,\ldots,x_n \in \mathbb{R}.$$

Sequence of Random Variables

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Sequence of Random Variables)

A sequence of random variables is a collection $\{X_n\}_{n=1}^{\infty}$ such that

$$\forall n \in \mathbb{N}, \ \forall k_1, \dots, k_n \in \mathbb{N}, \qquad (X_{k_1}, \dots, X_{k_n}) \text{ is a random vector.}$$

Note

When an outcome $\omega \in \Omega$ results from the random experiment, the entire sequence $X_1(\omega), X_2(\omega), \ldots$ realizes at once.

Finite Dimensional Distributions

Fix a measurable space (Ω, \mathcal{F}) .

Definition (Sequence of Random Variables)

Consider a sequence of random variables $\{X_n\}_{n=1}^{\infty}$ w.r.t. \mathscr{F} . The collection

$$\left\{F_{X_{k_1},\ldots,X_{k_n}}(x_1,\ldots,x_n):n\in\mathbb{N},\ k_1,\ldots,k_n\in\mathbb{N},\ x_1,\ldots,x_n\in\mathbb{R}\right\}$$

is called the set of all finite-dimensional distributions of the sequence $\{X_n\}_{n=1}^{\infty}$.

lim inf, lim sup, lim of Sequence of Random Variables

lim inf of Sequence of Random Variables

Fix a measurable space (Ω, \mathscr{F}) .

Definition (lim inf of Sequence of Random Variables)

The limit infimum of a sequence of random variables $\{X_n\}_{n=1}^{\infty}$ defined w.r.t. \mathscr{F} is a function $X_{\star}: \Omega \to [-\infty, +\infty]$ such that

$$X_{\star}(\omega) = \sup_{n \geq 1} \inf_{k \geq n} X_k(\omega) \quad \forall \omega \in \Omega.$$

Notation: $\lim \inf_{n \to \infty} X_n$.