

Protocolos

OSI (Open Systems Interconnection

- 1. Se debe crear una capa en donde se requiera un nivel diferente de abstracción.
- 2. Cada capa debe realizar una función bien definida.
- 3. La función de cada capa se debe elegir teniendo en cuenta la definición de protocolos estandarizados internacionalmente
- 4. Es necesario elegir los límites de las capas de modo que se minimice el flujo de información a través de las interfaces.
- 5. La cantidad de capas debe ser suficiente como para no tener que agrupar funciones distintas en la misma capa; además, debe ser lo bastante pequeña como para que la arquitectura no se vuelva inmanejable.

Modelo de Capas

- Reduce la complejidad
- Estandariza las interfaces
- Facilita el diseño modular
- Asegura la interoperabilidad de la tecnología
- Acelera la evolución
- Facilita el diagnóstico de fallas, y la identificación y la resolución del problema
- Simplifica la enseñanza y el aprendizaje

OSI (Open Systems Interconnection)

1.4 Tanenbaum.Capítulo 1 y 3.Cisco

Unidades de Datos por Capa

Suite de Protocolos TCP/

Aplicación	HTTP DNS DHCP FTP	ACSE ROSE TRSE SESE	AFP	NDS	
Transporte	TCP UDP	TP0 TP1 ATP AEP TP2 NBP RTMP		SPX	
Internet	IPv4 IPv6 ICMPv4 ICMPv6	CONP/CMNS CLNP/CLNS	AARP	IPX	
Acceso a la red	Ethernet PPP Frame Relay ATM WLAN				

- Una suite de protocolos es un grupo de protocolos que trabajan en forma conjunta para proporcionar servicios integrales de comunicación de red. Las suites de protocolos pueden estar especificadas por una organización de estandarización o pueden ser desarrolladas por un proveedor.
- La suite de protocolos TCP/IP es un estándar abierto, lo que significa que estos protocolos están disponibles para el público sin cargo, y cualquier proveedor puede implementar estos protocolos en su hardware o software.

TCP/IP (Transfer Control Protocol/Internet Protocol)

La primera red de conmutación de paquetes, antecesora de Internet actual, fue la red Advanced Research Projects Agency Network (ARPANET), que tuvo su origen en 1969 al conectar PC centrales en cuatro ubicaciones. ARPANET fue fundada por el Departamento de Defensa de los Estados Unidos para que se utilice en universidades y en laboratorios de investigación.

Suite de Protocolos TCP/

La suite de protocolos TCP/IP se implementa como una pila de TCP/IP tanto en los hosts emisores como en los hosts receptores para proporcionar una entrega completa de las aplicaciones a través de la red. Los protocolos Ethernet se utilizan para transmitir el paquete IP a través de un medio físico que utiliza la LAN.

Suite de Protocolos TCP/IP

La suite de protocolos TCP/IP se implementa como una pila de TCP/IP tanto en los hosts emisores como en los hosts receptores para proporcionar una entrega completa de las aplicaciones a través de la red. Los protocolos Ethernet se utilizan para transmitir el paquete IP a través de un medio físico que utiliza la LAN.

- La capa física se relaciona con la transmisión de bits puros a través de un canal de transmisión. Los aspectos de diseño tienen que ver con la acción de asegurarse que cuando uno de los lados envíe un bit 1 el otro lado lo reciba como un bit 1, no como un bit 0.
- La principal tarea de la capa de enlace de datos es transformar un medio de transmisión puro en una línea que esté libre de errores de transmisión. Enmascara los errores reales, de manera que la capa de red no los vea. Para lograr esta tarea, el emisor divide los datos de entrada en tramas de datos (por lo genera, de algunos cientos o miles de bytes) y transmite las tramas en forma secuencial. Si el servicio es confiable, para confirmar la recepción correcta de cada trama, el receptor devuelve una trama de confirmación de recepción. Otra cuestión que surge en la capa de enlace de datos (y en la mayoría de las capas superiores) es cómo evitar que un transmisor rápido inunde de datos a un receptor lento. Tal vez sea necesario algún mecanismo de regulación de tráfico para notificar al transmisor cuando el receptor puede aceptar más datos.
- Las redes de difusión tienen una consideración adicional en la capa de enlace de datos: cómo controlar el acceso al canal compartido. Una subcapa especial de la capa de enlace de datos, conocida como subcapa de control de acceso al medio, es la que se encarga de este problema

Modulación de señales

OSI-TCP/IP

Capa Física

Medios de TX

- Medios Guiados
 - Cobre
 - ► Fibra Óptica
 - Coaxial
 - ??
- No Guiados
 - ▶ Transmisión Inalámbrica

Par Trenzado

- Interferencia EMI
- Transmisión Analógica y Digital
- Aislamiento independiente.
- En comparación menor distancia, transmisión y costos
- ► RJ45

	T568B		T568A	
Pin en jack	Color del cable	Par	Color del cable	Par
1	Blanco - naranja	2	Blanco - verde	3
2	Naranja	2	Verde	3
3	Blanco - verde	3	Blanco - naranja	2
4 Azul		1	Azul 1	
5	Blanco - azul 1		Blanco - azul	1
6	Verde	3	Naranja	2
7 Blanco - café		4	Blanco - café	4
8	8 café 4		café	4

Blanco Naranja Naranja Blanco Verde Azul Blanco Azul Verde Blanco Marrón Marrón Norma T568B

Blanco Verde Verde Blanco Naranja Azul Blanco Azul Naranja Blanco Marrón Marrón Norma T568A

Señal - Ruido

Coaxial

Componentes de un Cable Coaxial

Componentes de un Cable Coaxial con Mensajero

- Interferencia EMI
- Transmisión Analógica y Digital
- Telefonía a larga distancia antes, ahora FO.
- TV por Cable.
- Redes de Área Local

Comparativa de medios principales en LAN

Identificador estándar cable	Tipo	Longitud máxima recomendada sin regeneración	Ancho de banda máximo teórico	Velocidad máxima teórica	Compatibilidad RJ45	Aplicación típica
UTP CAT1	UTP	100 metros	400 KHz	20 Kbps	No	No utilizado en la actualidad
UTP CAT 2	UTP	100 metros	2 MHz	4 Mbps	No	No utilizado en la actualidad
UTP CAT 3	UTP	100 metros	16 MHz	10 Mbps	No	Cables telefónicos
UTP CAT 4	UTP	100 metros	20 MHz	16 Mbps	Sí	Raramente usado
UTP CAT 5	UTP	100 metros	100 MHz	100 Mbps	Sí	LAN Convencional
STP/FTP CAT 5e	UTP	100 metros	100 MHz	100 Mbps	Sí	LAN Convencional
FTP CAT 6	UTP	100 metros	250 MHz	1 Gbps	Sí	LAN Gigabit Ethernet
FTP CAT 7	UTP/STP/FTP	100 metros	600 MHz	10 Gbps	Sí	LAN Gigabit Ethernet
Identificador estándar WiFi	Señal portadora	Longitud máxima recomendada sin regeneración	Tecnología MIMO	Velocidad máxima teórica	Compatibilidad	Aplicación típica
802.11a	A nalógica a 5 GHz	26 metros	No	20 Mbps	802.11n	No utilizado en la actualidad
802.11b	A nalógica a 2,4GHz	50 metros	No	11 Mbps	802.11g y 802.11n	LAN
802.11g	A nalógica a 2,4GHz	50 metros	No	54 Mbps	802.11b y 802.11n	LAN
802.11n	A nalógica a 2,4GHz	250 metros	Sí	600 Mbps	802.11a, 802.11b y 802.11g	LAN ALTA VELOCIDAD

Espectro electromagnético

Espectro electromagnético. Longitud de onda (λ) en metros.

https://www.submarinecablemap.com/#/landingpoint/unqui-costa-rica

Core 62.5 μm Spot Size 100 μm

Redes y Comunicación de Datos, Juan José Morales H.

Fibra Óptica

- Inmune a RFI y EMI
- Utiliza el ángulo de refracción para contenerse.
- Altas tasas de transmisión (+50Gbps)
- Grandes distancias sin repetidores (100 Km o 1500 Km).
- Menor tamaño y peso.
- Atenuación menor.
- WDM(FDM)vsTDM

https://community.fs.com/blog/difference-blaser-light-source-and-led-light-source.htm

- Microondas Terrestres:
 - Transmisores Parabólicos:
 - $d = 7,14\sqrt{Kh}$
 - d=distancia de separación entre antenas.
 - ▶ h=altura de la antena en metros.
 - K=factor de corrección por curvatura de tierra(generalmente 4/3)
 - ▶ 2 GHZ a 40GHZ.
 - ► Telecomunicaciones a larga distancia en puntos poco accesibles enlaces LAN.
 - Requieren perfecta alineación.
 - Atenuación por lluvias en bandas superiores a 10 GHZ.
 - Interferencias RFI.

Microondas por Satélites

- Retransmisor de Microondas.
- Transpondedores: Recibe en una frecuencia(Canal Ascendente) y Transmite en otra (Canal Descendente).
- Arthur C. Clarke (1945 escritor de ciencia ficción).

Altitude (km) 35,786			GEO
15,000	Upper Van Alle	A A	MEO
5,000	Lower Van Alle	AAA	LEO
0	Earth Surface		

A Comparison

	GEO (Geostationary)	MEO (Medium- Earth Orbit)	LEO (Low-Earth Orbit)
Altitude	35,800 km	18,000 km	750 km
Orbital period	24 hrs	6 hrs	90 mins
RTT	270 ms	35-85ms	1-7ms
Recent developmen t	VSAT 1962, Telstar		Iridium 1990 (66) Globalstar (48) Teledesic 2005 (30)
Application	Satellite TV	24 GPS	Internet, data, voice, paging, navigation

Banda	Enlace descendente	Enlace ascendente	Ancho de banda	Problemas
L	1.5 GHz	1.6 GHz	15 MHz	Bajo ancho de banda; saturada
S	1.9 GHz	2.2 GHz	70 MHz	Bajo ancho de banda; saturada
С	4.0 GHz	6.0 GHz	500 MHz	Interferencia terrestre
Ku	11 GHz	14 GHz	500 MHz	Lluvia
Ка	20 GHz	30 GHz	3500 MHz	Lluvia, costo del equipo

Ondas de radios

- Omnidireccionales (no requieren parabólicas, ni plataforma).
- 3 kHZ a 300 GHz.
- VHF y parte de UHF incluye radio FM así como Televisión UHF y VHF.
- Aplicaciones de redes.
- El ruido de multitrayectorias afecta.

- Infrarrojos
 - ► TX—RX: totalmente alineados.
 - No traspasan paredes.
 - Más seguros.
 - ▶ No se necesitan permisos en esas bandas.

Topologías de Redes Física vs Lógica

Topologías de Redes

Normalización y Estándares "de facto" "de jure"

- Telecomunicaciones:
 - ► ITU(Unión Internacional de Telecomunicaciones)
 - Radiocomunicaciones (ITU-R)
 - ► Telecomunicaciones (ITU-T) V.90 V.24(RS-232)
 - Desarrollo (ITU-D)
- Estándares Internacionales:
 - ► ISO: ANSI(Estados Unidos), BSI(Gran Bretaña), AFNOR(Francia)
 - ► IEEE: Instituto de Ingeniero Eléctricos y Electrónicos(802.x)
- Estándares de Internet:
 - IAB(Consejo de Actividades de Internet).
 - RFCs(solicitudes de comentarios): Informes técnicos; Comunicación entre IAB y Comunidad Implementadora.
 www.ietf.org/rfc

ANSI: American National Standards Institute. Organización Privada sin fines de lucro fundada en 1918, la cual administra y coordina el sistema de estandarización voluntaria del sector privado de los Estados Unidos.

EIA: Electronics Industry Association. Fundada en 1924. Desarrolla normas y publicaciones sobre las principales áreas técnicas: los componentes electrónicos, electrónica del consumidor, información electrónica, y telecomunicaciones.

TIA: Telecommunications Industry Association. Fundada en 1985 después del rompimiento del monopolio de AT&T. Desarrolla normas de cableado industrial voluntario para muchos productos de las telecomunicaciones y tiene más de 70 normas preestablecidas.

- •ISO: International Standards Organization. Organización no gubernamental creada en 1947 a nivel Mundial, de cuerpos de normas nacionales, con más de 140 países.
- •IEEE: Instituto de Ingenieros Eléctricos y de Electrónica. Principalmente responsable por las especificaciones de redes de área local como 802.3 Ethernet,802.5 TokenRing, ATM y las normas de GigabitEthernet

Cableado Estructurado

ANSI/TIA/EIA-568-B

Cableado de Telecomunicaciones en Edificios Comerciales. (Cómo instalar el Cableado)

- **–TIA/EIA 568-B1** Requerimientos generales
- -TIA/EIA 568-B2 Componentes de cableado mediante par trenzado balanceado
- -TIA/EIA 568-B3 Componentes de cableado, Fibra óptica

ANSI/TIA/EIA-569-A

Normas de Recorridos y Espacios de Telecomunicaciones en Edificios Comerciales (**Cómo enrutar el cableado**)

ANSI/TIA/EIA-570-A

Normas de Infraestructura Residencial de Telecomunicaciones

ANSI/TIA/EIA-606-A

Normas de Administración de Infraestructura de Telecomunicaciones en Edificios Comerciales

ANSI/TIA/EIA-607

Requerimientos para instalaciones de sistemas de puesta a tierra de Telecomunicaciones en Edificios Comerciales.

ANSI/TIA/EIA-758

Norma Cliente-Propietario de cableado de Planta Externa de Telecomunicaciones.

Cableado Estructurado

- 1. Área de trabajo.
- 2. Toma de equipos
- 3. Cableado Horizontal
- 4. Armario de telecomunicacione s (racks, closet).
- 5. Cableado vertical.

Cableado Estructurado

- No se permiten puentes, derivaciones y empalmes a lo largo de todo el trayecto del cableado.
- •Se debe considerar su proximidad con el cableado eléctrico que genera altos niveles de interferencia electromagnética (motores, elevadores, transformadores, etc.) y cuyas limitaciones se encuentran en el estándar ANSI/EIA/TIA 569.
- •La máxima longitud permitida independientemente del tipo de medio de Tx utilizado es 100m = 90 m + 3 m usuario + 7 m patchpannel.

La Atenuación es un parámetro importante del cable de par trenzado. Se expresa normalmente en dB(decibeles) y expresa la perdida de amplitud de la señal a lo largo del cable.

Pruebas necesarias

- Longitud
- Mapa de cableado
- Atenuación
- NEXT
- ACR
- Perdidas de Retorno*

- PS-NEXT
- EL-FEXT *
- PS-ELFEXT *
- Retardo
- Retardo diferencial

Dispositivos de Capa 1

Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.

Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos

Dispositivos de Capa 2

NIC: Dispositivo de Capa 2

Las NIC se consideran dispositivos de Capa 2 debido a que cada NIC individual en cualquier lugar del mundo lleva un nombre codificado único, denominado dirección de Control de acceso al medio (MAC).

SWITCH

- Cuando un "switch" no conoce la dirección MAC de destino envía la trama por todos sus puertos, al igual que un HUB. Cuando hay más de un ordenador conectado a un puerto de un "switch" este aprende sus direcciones MAC y cuando se envían información entre ellos no la propaga al resto de la red, a esto se llama filtrado.
- El "switch" almacena la trama antes de reenviarla. Tiene una serie de métodos, para saber hacia dónde va la información. Uno de ellos consiste en recibir los 6 primeros bytes de una trama que contienen la dirección MAC y a partir de aquí ya empezar a enviar al destinatario. Y no permite descartar paquetes defectuosos. También permite adaptar velocidades de distintos dispositivos de una forma más cómoda.
- Un "switch" moderno también suele tener lo que se llama "Auto-Negotation", es decir, negocia con los dispositivos que se conectan a él la velocidad de funcionamiento, 10 megabit ó 100, así como si se funcionara en modo "full-duplex" o "half-duplex"

Capa de Enlace de Datos

Formateo de datos para la transmisión

La capa de enlace de datos realiza dos servicios básicos:

- Permite a las capas superiores acceder a los medios usando técnicas como tramas.
- Controla cómo se ubican los datos en los medios y cómo se reciben desde los medios usando técnicas como el control de acceso a los medios y la detección de errores.

Capa de Enlace

Protocolo de Resolución de Direcciones

DIRECCIÓN MAC

MAC son las siglas de Media Access Control y se refiere al control de acceso al medio físico. Está formada por 48 bits que se suelen representar mediante dígitos hexadecimales, es un identificador único de una tarjeta de red, como una especie de huella digital para este tipo de dispositivos de hardware. También, son conocidas como direcciones físicas.

Por ejemplo, una dirección MAC podría ser

F0:E1:D2:C3:B4:A5.

Capa de Enlace

- Separar la capa de enlace de datos en subcapas permite a un tipo de trama definida por la capa superior acceder a diferentes tipos de medios definidos por la capa inferior.
- Las dos subcapas comunes de LAN son:
 - ➤ Control de enlace lógico: el control de enlace lógico (LLC) coloca información en la trama que identifica qué protocolo de capa de red está usando la trama. Esta información permite que varios
 - protocolos de la Capa 3, tales como IP e IPX, utilicen la misma interfaz de red y los mismos medios.
 - ➤ Control de acceso al medio: el control de acceso a los medios (MAC) proporciona a la capa de enlace de datos el direccionamiento y la delimitación de datos de acuerdo con los requisitos de señalización física del medio y al tipo de protocolo de capa de enlace de datos en uso.

Dominios de Colisión y Dominios de Broadcast

Dispositivos de Capa 3

Router: Dispositivo de Capa 3

ROUTER

- Función: La determinación de la ruta para que el tráfico vaya a través de una nube de red tiene lugar en la capa de red (capa 3).
- Evaluar las rutas disponi-bles a un destino concreto y establecer el proceso de manipulación adecuado de un paque-te (eva-lúan las rutas de red).
- Dicha capa utiliza la tabla de enrutamiento IP para enviar paquetes desde la red de origen hasta la red de destino.

ENRUTAMIENTO

- Es el proceso que emplea un router para reenviar paquetes hacia la red de destino. Un router toma decisiones en base a la dirección IP de destino del paquete.
- Para tomar la decisión correcta, los routers deben aprender la dirección de las redes remotas. En esta se encuentra:
- Enrutamiento dinámico, la direc-ción de las redes remotas se obtiene de otros routers.
- Enrutamiento estático, es un administrador de red el que configura esta información de forma manual.

Dominios de Colisión y Dominios de Broadcast

Switches y Router

Redes y Comunicación de Datos, Juan José Morales H.