Univariate and Multivariate Analysis

Getting into Relationships

Prof. Bisbee

Seoul National University

Slides Updated: 2024-07-16

Univariate Analysis

- 1. Definitions and scope
- 2. Opening and defining the data
- 3. Variable classes
- 4. Univariate description

BREAK

1. Multivariate

Definition

- Uni + variate
 - One + variable
 - Analysis of one variable

Scope

- How to analyze a single variable?
- How to think scientifically?
 - Typically, scientific theories concern more than one variable
 - I.e., education + wages; gender + voting
 - What might be a theory about education in isolation?
- Is there no point to univariate analysis?

Univariate Analysis is **ESSENTIAL**

- Both from a practical data perspective...
 - Informs how we "wrangle" the data
- ...and from a scientific theory perspective
 - Generates hypotheses

Set-up and Load Data

• As always, create your topic folder first

• Open R via RStudio and require(tidyverse)

```
require(tidyverse)
```

Load data from github

```
nba <-
read_rds('https://github.com/jbisbee1/ISP_Data_Science_2024/raw/main/da</pre>
```

Introducing the data

Data on every NBA player active in the 2018-2019 season

Name	Definition
namePlayer	Player name
idPlayer	Unique player id
slugSeason	Season start and end
numberPlayerSeason	Which season for this player
isRookie	Rookie season, true or false
slugTeam	Team short name
idTeam	Unique team id
gp	Games Played
•••	•••

Thinking like a scientist

- What questions do we have? What hypotheses might we want answered?
- Overwhelming? Let's start simpler
- Total points (pts)
 - What does this measure?
 - What kind of variable is it?

```
glimpse(nba %>% select(pts))
```

```
## Rows: 530
## Columns: 1
## $ pts <dbl> 1727, 17, 1108, 165, 729, 37, 211, 32, 108, 7,...
```

Thinking like a scientist

- How can we analyze a single variable?
- Want to summarize it somehow
 - For example, look at the mean() and the median()

Thinking like a scientist

• Or we could summarise the overall distribution with summary()

```
summary(nba$pts)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 115.0 419.0 516.2 759.5 2818.0
```

- In English:
 - There is at least one player who didn't score at all (Min.)
 - At least one player scored 2,818 points (Max.)
 - 25% of players scored less than 115 points (1st Qu.)
 - 25% of players scored more than ???
- What does a decimal mean here?

- We could try and remember all these statements
- Or we could just visualize the data

```
nba %>%
  ggplot(aes(x = pts)) +
  geom_histogram()
```


- Plotting the histogram reveals some things!
 - There are **MANY** players who didn't score any points
 - There are VERY FEW who scored many
- We can combine the substantive interpretation with the visualization by plotting vertical lines for the quartiles
 - A "quartile" is 25% increments
 - A "decile" is 10% increments, a "quantile" is 20% increments
 - A "percentile" is 1% increments

```
nba %>%
  ggplot(aes(x = pts)) +
  geom_histogram() +
  geom_vline(xintercept = quantile(nba$pts,c(.25,.5,.75)))
```


We can save and update plots using the object assignment operator < -

```
p <- nba %>%
  ggplot(aes(x = pts)) +
  geom_histogram()

p <- p + geom_vline(xintercept =
  quantile(nba$pts,c(.25,.5,.75)),linetype = 'dashed',color = 'red')

p <- p + xlab('Total Points') + ylab('Number of Players')

p <- p + theme(panel.background = element_rect(fill = 'white'))

p <- p + labs(title = 'Points by Players',subtitle = '2018-2019 NBA Season')</pre>
```

р

Visualization informs science

- Looking at the data can help generate research questions, theories, and hypotheses
 - Question: Why do some players not score any points?
 - **Theory:** Players need minutes to score points.
 - **Hypothesis:** The number of points a player scores should be positively correlated with their minutes.

Univariate Description

- Testing this hypothesis comes later
- For now, let's also describe the minutes variable

```
summary(nba$minutes)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.0 322.8 1069.0 1121.6 1836.5 3028.0
```

- At minimum, every player played at least 1 minute
- Does the distribution of this variable look similar to the points?

```
nba %>%
  ggplot(aes(x = minutes)) +
  geom_histogram(alpha = .3) +
  geom_vline(xintercept = quantile(nba$minutes,c(.25,.5,.75))) +
  labs(title = 'Minutes by Players',subtitle = '2018-2019 NBA
Season',x = 'Minutes Played',y = 'Number of Players')
```


Other Variables

• Thus far, pts and minutes are both dbl

```
glimpse(nba %>% select(pts,minutes))
```

What about other variable types?

Other Variabes

glimpse(nba)

```
## Rows: 530
## Columns: 37
## $ namePlayer
                         <chr> "LaMarcus Aldridge", "Quincy Ac...
## $ idPlayer
                         <dbl> 200746, 203112, 203500, 203518,...
## $ slugSeason
                         <chr> "2018-19", "2018-19", "2018-19"...
## $ numberPlayerSeason <dbl> 12, 6, 5, 2, 1, 0, 0, 0, 0, ...
## $ isRookie
                         <lgl> FALSE, FALSE, FALSE, FALSE, FAL...
                         <chr> "SAS", "PHX", "OKC", "OKC", "MI...
## $ slugTeam
## $ idTeam
                         <dbl> 1610612759, 1610612756, 1610612...
## $ gp
                         <dbl> 81, 10, 80, 31, 82, 10, 38, 19,...
## $ gs
                         <dbl> 81, 0, 80, 2, 28, 1, 2, 3, 1, 0...
                         <dbl> 684, 4, 481, 56, 280, 13, 67, 1...
## $ fgm
                         <dbl> 1319, 18, 809, 157, 486, 39, 17...
## $ fga
## $ pctFG
                         <dbl> 0.519, 0.222, 0.595, 0.357, 0.5...
                         <dbl> 10, 2, 0, 41, 3, 3, 32, 6, 25, ...
## $ fg3m
## $ fg3a
                         <dbl> 42, 15, 2, 127, 15, 12, 99, 23,...
## $ pctFG3
                         <dbl> 0.2380952, 0.1333333, 0.0000000...
                         <dbl> 0.847, 0.700, 0.500, 0.923, 0.7...
## $ pctFT
                         <dbl> 674, 2, 481, 15, 277, 10, 35, 5...
## $ fg2m
                         <dbl> 1277, 3, 807, 30, 471, 27, 79, ...
## $ fg2a
```

- Already introduced you to dbl, fct, chr and int
- Taking a step back: Outside R, data science uses "categorical" variables
 - 1. Mutually exclusive: observations can only be in one category
 - 2. Exhaustive: every observation is assigned to a category
- For example, isRookie
 - 1. Mutually exclusive: Players are either in their rookie season in 2018-2019, or are not
 - 2. Exhaustive: these categories define every player in the data

- Categorical variables can be divided into the following sub-types
- **Ordered:** There is a sensible order (i.e., education)
 - Should be arranged intuitively (i.e., LTHS, HS Degree, Some coll, etc.)
 - To summarize, calculate the proportions for each category.
 - If there are too many categories, use the "mode"

- Categorical variables can be divided into the following sub-types
- Ordered, Binary: An ordered categorical variable with just two levels
 - Should be arranged in intuitive order (i.e., is not a rookie / is a rookie)
 - To summarize, just convert to a [0,1] number and take the mean

- Categorical variables can be divided into the following sub-types
- **Unordered**: No sensible order of categories (i.e., major degree)
 - Order by most commonly occurring categories
 - As before, use the mode for too many categories

- Categorical variables can be divided into the following sub-types
- Unordered, Binary: No sensible order and only two levels (i.e., edible)

- Categorical variables are meaningfully different from continuous variables
 - Continuous variables are ordered and can theoretically be divided into arbitrarily small measures
 - Technically can be defined as either interval or ratio variables
 - In practice, we rarely worry about this distinction, but we **DO** care about continuous versus categorical variables

- fct is a class that is unique to R
 - Meant for ordered categorical variables
 - fct stores the order and assigns a numeric value + a definition
 - Most of the time, better to store as a chr (but not always)

Variables

- R may store categorical variables as chr, fct, lgl, int, or even dbl
- Continuous variables typically stored as int or dbl
- Up to the data scientist to look at the data and determine
- Simple process
 - 1. Look at a few observations and make a guess about the variable type
 - 2. Create a plot or table based on that guess
 - 3. If the result is sensible, proceed. OTW go back to #1.

In Practice

- Let's look at field goals (fgm)
- What type of variable should this be?
 - Technically not continuous, since it can't be divided into fractions (i.e., what is 35.5 field goals?)
 - But we typically don't care about this distinction
 - We just want to make sure it is not a categorical variable (i.e., less than 20 FGs, 20-40 FGs...etc. would be categorical)
- To check, follow the process!

The Process: #1 Look

```
nba %>%
  select(namePlayer,slugTeam,fgm) %>%
  arrange(-fgm)
```

```
## # A tibble: 530 × 3
##
      namePlayer
                             slugTeam
                                         fgm
     <chr>>
                             <chr>>
                                       <dh1>
##
   1 James Harden
                             HOU
                                         843
##
   2 Bradley Beal
                             WAS
                                         764
   3 Kemba Walker
##
                             CHA
                                         731
##
   4 Giannis Antetokounmpo MIL
                                         721
   5 Kevin Durant
                                         721
##
                             GSW
##
                             OKC
                                         707
   6 Paul George
   7 Nikola Vucevic
##
                             ORI
                                         701
##
  8 LaMarcus Aldridge
                             SAS
                                         684
    9 Damian Lillard
##
                             POR
                                         681
                                         681
  10 Karl-Anthony Towns
                             MIN
## # i 520 more rows
```

The Process: #2 Create

```
nba %>%
  ggplot(aes(x = fgm)) +
  geom_density()
```


The Process: #3 Evaluate

- Looks like a continuous variable to me!
- Summarize it!

```
## # A tibble: 1 × 2
## mean_fg med_fg
## <dbl> <dbl>
## 1 191. 157
```

- mean() is more easily understood, but more sensitive to outliers
- median() is harder to explain to a general audience, but more sensible when there are outliers

Other Variables: Use the process!

- What kind of variable is field goal percentage?
- Follow the process!

INSERT CODE HERE

Another example

- Player age
- What kind of variable do we think this might be?
 - Continuous? It is ordered and divisible to arbitrary fractions! (Just ask any 6 and three quarters year old)
 - But is it also useful to think of it as a categorical? In the context of NBA players, there aren't many categories!
- Time for the process!

The Process: #1 Look

```
nba %>%
  select(namePlayer,agePlayer) %>%
  arrange(-agePlayer)
```

```
## # A tibble: 530 × 2
##
     namePlayer agePlayer
   <chr>
                        <db1>
##
  1 Vince Carter
                           42
##
  2 Dirk Nowitzki
                          41
##
  3 Jamal Crawford
                        39
##
  4 Udonis Haslem
                          39
## 5 Pau Gasol
                          38
##
   6 Kyle Korver
                          38
  7 Jose Calderon
##
                        37
##
  8 Tony Parker
                          37
   9 Dwyane Wade
##
                          37
## 10 Channing Frye
                           36
## # i 520 more rows
```

The Process: #2 Create

```
nba %>%
  ggplot(aes(x = agePlayer)) +
  geom_density()
```


The Process: #2 Create

```
nba %>%
  ggplot(aes(x = factor(agePlayer))) +
  geom_bar(stat = 'count')
```


The Process: #2 Create

The Process: #3 Evaluate

```
quantile(nba$agePlayer,c(.1,.25,.5,.75,.9,.95))
```

```
## 10% 25% 50% 75% 90% 95%
## 21 23 26 29 32 34
```

Some more examples!

- Which of these variables is an unordered categorical variable?
- Follow the process and calculate which category in this variable is the most commonly occurring

INSERT CODE HERE

Career Prior to NBA (org)

 If you chose this as your unordered categorical variable, you probably saw something like the following in step #1 of the process

```
nba %>%
count(org) %>%
arrange(-n)
```

```
\# A tibble: 68 \times 2
##
      org
                                <int>
##
      <fct>
    1 <NA>
##
                                  157
##
   2 Other
                                   85
   3 Kentucky
                                   25
##
##
   4 Duke
                                   17
   5 California-Los Angeles
                                   15
##
##
    6 Kansas
                                   11
   7 Arizona
##
                                   10
##
  8 Texas
                                   10
    9 North Carolina
##
  10 Michigan
                                    8
     i 58 more rows
```

Career Prior to NBA (org)

- The most commonly occurring categories are NA and Other!
- Wrangle some data and re-calculate

```
nba %>%
  filter(!is.na(org)) %>%
  filter(org != 'Other') %>%
  count(org) %>%
  arrange(-n)
```

```
## # A tibble: 66 × 2
##
      org
##
      <fct>
                               <int>
   1 Kentucky
##
                                  25
    2 Duke
                                  17
##
   3 California-Los Angeles
                                  15
##
##
    4 Kansas
                                  11
##
   5 Arizona
                                  10
##
    6 Texas
                                  10
##
   7 North Carolina
##
    8 Michigan
##
    9 Villanova
```

Categorical: Unordered, Binary

- Which variable is an unordered binary categorical?
- Follow the process and summarize it

INSERT CODE HERE

Categorical: Unordered, Binary (idConference)

- Example of the default variable class (db1) not corresponding to the type of variable (unordered binary)
- Should wrangle into something better

```
nba <- nba %>%
  mutate(west_conference = ifelse(idConference == 1,1,0))
nba %>%
  summarise(propWest = mean(west_conference))
```

```
## # A tibble: 1 × 1
## propWest
## <dbl>
## 1 0.508
```

- Let's take a "conditional mean"
 - I.e., conditional on players going to Kentucky, how many points did NBA players score in the 2018-2019 season?
 - (Simpler is just to say "how many points did NBA players who went to Kentucky score?")
- Recall the group_by() command

```
nba %>%
  filter(!is.na(org)) %>%
  filter(org != 'Other') %>%
  group_by(org) %>%
  summarise(tot_pts = sum(pts,na.rm=T))
```

```
# A tibble: 66 \times 2
##
                               tot pts
      org
##
     <fct>
                                 <dh1>
   1 Anadolu Efes S.K.
                                  1270
##
   2 Arizona
                                  5467
##
   3 Baylor
                                   861
##
   4 Boston College
                                  1659
##
   5 Butler
                                  1255
##
  6 California
                                  1942
   7 California-Los Angeles
                                  9061
##
    8 Cincinnati
##
                                   531
    9 Colorado
##
                                  2367
  10 Connecticut
                                  3634
## # i 56 more rows
```

- Some non-college organizations snuck in there
 - Anadolu Efes S.K. is a professional Turkish basketball team

```
nba %>%
  filter(!is.na(org)) %>%
  filter(org != 'Other') %>%
  filter(!str_detect(org,"CB|KK|rytas|FC|B.C.|S.K.|Madrid")) %>%
  group_by(org) %>%
  summarise(tot_pts = sum(pts,na.rm=T))
```

```
## # A tibble: 57 × 2
##
                              tot pts
      org
                                 <dbl>
##
      <fct>
   1 Arizona
                                  5467
##
##
   2 Baylor
                                   861
##
   3 Boston College
                                 1659
##
   4 Butler
                                 1255
##
  5 California
                                 1942
##
   6 California-Los Angeles
                                  9061
   7 Cincinnati
##
                                  531
  8 Colorado
##
                                 2367
    9 Connecticut
                                 3634
  10 Creighton
                                  1230
##
  # i 47 more rows
```

Another Preview

- Do the same but for free throw percentage (pctFT)
- **NB**: should you summarise with sum() or mean()? Why?

INSERT CODE HERE

BREAK

Agenda

- 1. Mutivariate
- 2. What is "conditional"?
- 3. Understanding Trump support

Definition

- Multi + variate
 - Many + variables
 - Analysis of multiple variables
- When we analyze **multiple** variables, we are in the world of "conditional analysis"

What is conditional?

- Put simply: "conditional" means "depending on"
 - I.e., How does a variable of interest vary depending on some other variable?
 - \circ "Variable of interest": the **outcome** (or **dependent** variable Y)
 - \circ "Some other variable": the **predictor** (or **independent** variable X)
 - "Vary depending on": the relationship
- Mapping concepts into data science
 - The relationship between the outcome and the predictor

What is conditional?

- "Depending on" suggests a causal interpretation
 - High wages "depend on" education → education causes high wages
 - In theory, this is reasonable: students acquire skills in school which are valued by the labor market.
 - But the positive correlation between education and wages might also be "spurious"
 - Higher education AND higher wages are outcomes of some true cause (i.e., upbringing, SES, etc.)

NOTE: The logic for why a relationship might be spurious is itself CAUSAL.

(Re-)Introducing the Data

- Using the Michigan exit poll data
- Download pre-wrangled data from GitHub and save to your data folder.
- require(tidyverse) and readRDS() the data to mi_ep object

```
require(tidyverse)
mi_ep <-
read_rds('https://github.com/jbisbee1/ISP_Data_Science_2024/raw/main/da</pre>
```

Some Light Data Science

- The "gender gap" in Trump support
- Theory: Trump has expressed sexist views against women. Therefore, women should be less likely to support him.
 - NOTE the causal assumptions in this theory!
- Analysis: compare support for Trump among men and women
- But first, some quick data wrangling

Conditional Means

```
## # A tibble: 4 × 4
    preschoice
##
                                  SEX
                                         n PctSupport
                                <dbl> <int>
##
    <chr>>
                                                <dbl>
  1 Donald Trump, the Republican
                                   1 247
                                                 0.21
## 2 Donald Trump, the Republican
                                    2 212 0.18
  3 Joe Biden, the Democrat
                                                 0.26
                                    1 304
## 4 Joe Biden, the Democrat
                                       419
                                                 0.35
```

- Results are consistent with the theory
 - NB: results do not prove the theory

Conditional Means

- However, note that these proportions are out of all voters.
- This isn't directly addressing the theory
 - We want to know the proportion of women who supported Trump

```
MI_final_small %>%
  count(preschoice,SEX) %>%
  group_by(SEX) %>%
  mutate(totGender = sum(n)) %>%
  mutate(pctSupport = n / totGender)
```

```
# A tibble: 4 \times 5
## # Groups: SEX [2]
    preschoice
##
                               SEX
                                       n totGender pctSupport
##
    <chr>>
                             <dbl> <int>
                                            <int>
                                                       <dh1>
  1 Donald Trump, the Republ...
                                              551
                                                       0.448
                                     247
                                   212
                                              631
  2 Donald Trump, the Republ...
                                                       0.336
                             1 304
  3 Joe Biden, the Democrat
                                              551
                                                       0.552
## 4 Joe Biden, the Democrat
                                     419
                                              631
                                                       0.664
```

Additional Theorizing

- The strength of the theorized relationship might vary by age
 - Younger women might be more offended by Trump's casual sexism
 - Older women might be more inured to Trump's casual sexism
- Theory: the "gender gap" will be larger among younger voters
 - (But also recognize that younger Americans are generally more progressive...meaning that **both** younger men and women are more offended by Trump's casual sexism!)

Two-Way Conditional Means

We could just subset with filter()

```
## # A tibble: 4 × 4
## # Groups: SEX [2]
      SEX preschoice
                                         n PctSupport
##
  <dbl> <chr>
                                     <int>
##
                                               <db1>
## 1
        1 Donald Trump, the Republican
                                                0.44
## 2 1 Joe Biden, the Democrat
                                          0.56
## 3 2 Donald Trump, the Republican
                                                0.06
        2 Joe Biden, the Democrat
## 4
                                        15
                                                0.94
```

Two-Way Conditional Means

Or we could add AGE10 to the group_by

```
MI_final_small %>%
  group_by(SEX, AGE10) %>%
  summarize(PctTrump = mean(TrumpVoter),.groups = 'drop') %>%
  mutate(PctTrump = round(PctTrump, digits =2))
```

```
## # A tibble: 22 × 3
##
       SEX AGE10 PctTrump
   <dbl> <dbl> <dbl> <dbl>
##
##
               1 0.44
              2 0.423 0.42
##
##
               4 0.24
##
               5 0.42
##
##
                  0.58
              7 0.54
##
##
               8
                  0.44
               9
##
                    0.39
##
              10
                    0.43
    i 12 more rows
```

Two-Way Conditional Means

A little hard to make comparisons

```
MI_final_small %>%
  group_by(SEX, AGE10) %>%
  summarize(PctTrump = mean(TrumpVoter),.groups = 'drop') %>%
  spread(SEX,PctTrump) %>% rename(Male = `1`,Female = `2`)
```

```
## # A tibble: 11 \times 3
   AGE10 Male Female
##
   <dbl> <dbl> <dbl> <dbl>
##
      1 0.438 0.0625
##
##
     2 0.417 0.0714
     3 0.423 0.308
##
     4 0.241 0.294
##
##
     5 0.419 0.484
     6 0.583 0.4
##
##
     7 0.537 0.367
     8 0.443 0.263
##
##
         9 0.395 0.311
##
      10 0.425 0.387
        NA 0.667 0.571
##
```

Introducing spread() & gather()

- Data in R is either "long" or "wide"
- Long: One column for a categorical label and multiple rows
 - I.e., For each age group, we have one **row** for men and one **row** for women
- Wide: Multiple columns for each categorical label and a single row
 - I.e., For each age group, we have one column for men and one column for women
- In R, we can switch between wide and long with two functions:
 - 1. spread() (or pivot_wider()): converts from long to wide
 - 2. gather() (or pivot_longer()): converts from wide to long

spread() and gather()

- spread([key],[value])
 - o key: variable containing categories to make into columns labels
 - value: variable containing values put into these new columns

spread() and gather()

- gather([key],[value],[columns])
 - key: name of **new column** that contains categories
 - value: values you want to put into this new column

pivot_wider()

- pivot_wider([names_from],[values_from])
 - names_from: variable containing categories to make into column labels
 - values_from: variable containing values put into these new columns

OR pivot_longer()

- pivot_longer([names_from],[values_from])
 - names_from: variable containing categories to make into column labels
 - values_from: variable containing values put into these new columns

spread()

```
MI_final_small %>%
  group_by(SEX, AGE10) %>%
  summarize(PctTrump = mean(TrumpVoter),.groups = 'drop') %>%
  spread(key = SEX,value = PctTrump,fill = NA) %>%
  rename(Male = `1`,Female = `2`)
```

```
## # A tibble: 11 × 3
##
     AGE10 Male Female
##
   <dbl> <dbl> <dbl> <dbl>
##
  1 1 0.438 0.0625
     2 0.417 0.0714
##
##
     3 0.423 0.308
##
     4 0.241 0.294
##
     5 0.419 0.484
##
     6 0.583 0.4
##
     7 0.537 0.367
     8 0.443 0.263
##
##
     9 0.395 0.311
        10 0.425 0.387
## 10
        NA 0.667 0.571
## 11
```

gather()

```
MI_final_small %>%
  group_by(SEX, AGE10) %>%
  summarize(PctTrump = mean(TrumpVoter),.groups = 'drop') %>%
  spread(key = SEX, value = PctTrump, fill = NA) %>%
  rename(Male = `1`, Female = `2`) %>%
  gather(SEX, PctTrump, -AGE10)
```

```
## # A tibble: 22 \times 3
##
  AGE10 SEX PctTrump
  <dbl> <dbl> <dbl>
##
    1 Male 0.438
##
##
     2 Male 0.417
##
    3 Male 0.423
##
    4 Male 0.241
     5 Male 0.419
##
##
    6 Male 0.583
  <u>7</u> 7 Male
##
              0.537
    8 Male 0.443
##
##
     9 Male
              0.395
## 10
       10 Male
                 0.425
## # i 12 more rows
```

Save Summary for Later Use

```
SexAge <- MI_final_small %>%
  group_by(SEX, AGE10) %>%
  summarize(PctTrump = mean(TrumpVoter),.groups = 'drop')
SexAge %>% filter(SEX == 2)
```

```
## # A tibble: 11 × 3
        SEX AGE10 PctTrump
##
   <dbl> <dbl> <dbl> <dbl>
##
##
                 1 0.0625
           2
          2 2 0.0714
2 3 0.308
2 4 0.294
2 5 0.484
                 2 0.0714
##
##
##
##
##
                      0.4
##
                      0.367
##
                  8
                      0.263
##
                 9 0.311
##
                10 0.387
##
                      0.571
                NA
```

- Want to know reason for voting for candidate by vote choice
 - Quality: 4 category unordered
 - preschoice: 2 category unordered
- Some light data wrangling

```
toplot <- mi_ep %>%
    select(Quality,preschoice,SEX) %>%
    filter(grepl('Biden|Trump',preschoice)) %>%
    drop_na() %>%
    filter(Quality != "[DON'T READ] Don't know/refused")
```


Can swap axes with coord_flip()

```
pReasonOverall + coord_flip()
```


• fill and position = "dodge" for **conditional** analysis

pReasonChoice

What about if we do this by SEX?

```
toplot %>%
    ggplot(aes(x= preschoice, fill = SEX)) +
    labs(y = "Number of Respondents",x = "",
        title = "Vote by Respondent Sex",fill = "Sex") +
    geom_bar(position="dodge") + coord_flip()
```

```
## Warning: The following aesthetics were dropped during statistical
## transformation: fill.
## i This can happen when ggplot fails to infer the correct
## grouping structure in the data.
## i Did you forget to specify a `group` aesthetic or to
## convert a numerical variable into a factor?
```


Be Attentive to class()

How is SEX stored in the data?

```
class(mi_ep$SEX)
```

```
## [1] "numeric"
```

Need to convert it to a character or factor

Be Attentive to class()

pVoteSex

• Why is this a bad visualization? Poorly labeled legend!