# **Simplex Integration**

By Domain Subdivision

## Inhaltsverzeichnis

| I. | Theory                                                 | 3        |
|----|--------------------------------------------------------|----------|
| 1. | Problem 1.1. Ansatz functions                          | <b>3</b> |
| 2. | Element Description                                    | 4        |
| 3. | Simplex Integration in n = 2  3.1. Simplex Integration | <b>5</b> |
|    | 3.3 Simplex Subdivision                                | 6        |

I Theory

1 Problem

## Teil I.

## **Theory**

### 1. Problem

Total Energy in the System:

$$\Pi = \int_{\Omega} g(\phi)\psi(u) d\Omega + \frac{G_c}{2l} \int_{\Omega} \phi^2 + l^2 \nabla \phi \cdot \nabla \phi d\Omega \rightarrow \min$$
 [1.1]

**Degradation Function** 

$$g(\phi) = \left(1 - \phi^2\right)^2 + k \tag{1.2}$$

mit

k ... being a small but finite scalar such as 10 6

G<sub>c</sub> ... critical energy release rate, material parameter

l ... width of phase field

 $\psi(u)$ ...strain energy density function

u ... displacement function

φ ... phase field parameter, ansatz function discussed below

 $\nabla \phi$  ... gradient of phase field parameter

$$\delta_{\mathbf{u}}\Pi = \int_{\Omega} g(\phi)\sigma(\mathbf{u})\frac{\partial \varepsilon}{\partial \mathbf{u}} \,\delta\mathbf{u} = 0 \tag{1.3}$$

$$\delta_{\varphi}\Pi = \int_{\Omega} 2(\varphi - 1) \, \delta\varphi \psi(\mathbf{u}) \, d\Omega + \frac{G_c}{l} \int_{\Omega} \varphi \, \delta\varphi + l^2 \nabla\varphi \cdot \nabla \, \delta\varphi \, d\Omega = 0 \qquad [1.4]$$

#### 1.1. Ansatz functions

$$u = \sum_{i} N_{i} u_{i} + \sum_{i} N_{i} F \alpha_{i}$$
 [1.5]

mit

N<sub>i</sub> ... are quadratic lagrange (standard) shape functions for tetrahedrons

 $U_i = u_i, a_i \dots$  are nodal degrees of freedom for displacement function

F ... is an enrichment function (sigmoid like, depends on  $\phi$ , later)

$$f_{base} = \sum_{i} N_{i} \phi_{i}$$
 [1.6]

$$\zeta = \frac{f_{\text{base}}}{\sqrt[4]{f_{\text{base}}^2 + k_{\text{res}}}}$$
[1.7]

mit

 $k_{reg}$  ... small but finite parameter

$$\phi = \exp(-\varsigma) \tag{1.8}$$

$$\phi = \exp(-\frac{\zeta}{1}) \tag{1.9}$$

we need to be able to integrate the residual vectors and the stiffness matrices efficiently and accurately

$$\delta_{\mathbf{U}_{i}}\Pi = \int_{\Omega} g(\phi)\sigma(\mathbf{u})\frac{\partial \varepsilon}{\partial \mathbf{u}} \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{U}} d\Omega \cdot \delta \mathbf{U}_{i}$$
 [1.10]

$$\delta_{\varphi_i} \Pi = \int_{\Omega} 2(\varphi - 1) \frac{\partial \varphi}{\partial \varphi_i} \psi(u) \, d\Omega \, \delta \varphi_i + \frac{G_c}{l} \int_{\Omega} \varphi \frac{\partial \varphi}{\partial \varphi_i} + l^2 \nabla \varphi \cdot \frac{\partial \nabla \varphi}{\partial \varphi_i} \, d\Omega \, \delta \varphi_i = 0 \ [1.11]$$

$$\Delta_{U_{i}} \delta_{U_{i}} \Pi = U_{i} \cdot \int_{\Omega} g(\phi) \frac{\partial \varepsilon}{\partial U_{i}} \cdot \mathbb{C} \cdot \frac{\partial \varepsilon}{\partial U_{i}} d\Omega \cdot \delta U_{i}$$
 [1.12]

$$\begin{split} \Delta_{\varphi_{j}}\,\delta_{\varphi_{i}}\Pi &= \varphi_{j} \int_{\Omega} 2\left(\frac{\partial\varphi}{\partial\varphi_{i}}\right)^{2}\psi(u)\,d\Omega\,\delta\varphi_{i} + \varphi_{j} \int_{\Omega} 2(\varphi-1)\frac{\partial^{2}\varphi}{\partial\varphi_{i}}\varphi(u)\,d\Omega\,\delta\varphi_{i} \quad [1.13] \\ &+ \varphi_{j}\frac{G_{c}}{l} \int_{\Omega} \frac{\partial\varphi}{\partial\varphi_{i}} + \frac{\partial^{2}\varphi}{\partial\varphi_{i}} + l^{2}\frac{\partial\nabla\varphi}{\partial\varphi_{j}} \cdot \frac{\partial\nabla\varphi}{\partial\varphi_{i}} + l^{2}\nabla\varphi \cdot \frac{\partial^{2}\nabla\varphi}{\partial\varphi_{i}^{2}}\,d\Omega\,\delta\varphi_{i} \end{split} \tag{1.13}$$

## 2. Element Description

Shape Functions in barycentric coordinates

$$N_1(\xi_1, \xi_2, \xi_3) = \xi_1$$
 [2.1]

$$N_2(\xi_1, \xi_2, \xi_3) = \xi_2$$
 [2.2]

$$N_3(\xi_1, \xi_2, \xi_3) = \xi_3$$
 [2.3]

$$N_4(\xi_1, \xi_2, \xi_3) = 4\xi_1\xi_3$$
 [2.4]

$$N_{-}(\xi_{1}, \xi_{2}, \xi_{3}) = \tau \xi_{1} \xi_{3}$$

$$N_{-}(\xi_{1}, \xi_{2}, \xi_{3}) = A\xi_{1} \xi_{3}$$

$$[2.7]$$

$$N_5(\xi_1, \xi_2, \xi_3) = 4\xi_1 \xi_2$$
 [2.5]

$$N_6(\xi_1, \xi_2, \xi_3) = 4\xi_2 \xi_3$$
 [2.6]

Barycentric Interpolation Formula  $P: \mathbb{R}^3 \to \mathbb{R}^2$ 

$$P(\xi_1, \xi_2, \xi_3) = p_1 \xi_1 + p_2 \xi_2 + p_3 \xi_3$$
 [2.7]

 $mit \ p_i \in \mathbb{R}^2, \, \xi_i \in [0,1]$ 

*ξ*-η-Transformation

$$\xi_1 := 1 - \xi - \eta$$
 [2.8]

$$\xi_2 := \xi \tag{2.9}$$

$$\xi_3 := \eta \tag{2.10}$$

mit  $\xi \in [0, 1], \eta \in [0, 1]$ 

Es gilt:

$$T(\xi, \eta) = \begin{bmatrix} 1 - \xi - \eta \\ \xi \\ \eta \end{bmatrix}$$
 [2.11]

$$T^{-1}(\xi_1, \xi_2, \xi_3) = \xi_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \xi_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \xi_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 [2.12]

I Theory 5

3 Simplex Integration in n = 2

## 3. Simplex Integration in n = 2

#### 3.1. Simplex Integration

Characteristic points in barycentric coordinates



Domain of a Simplex  $\Delta$  can be decomposed into three disjunct subdomains:

$$\Delta = D_1 \cup D_2 \cup D_3 \tag{3.4}$$

Therefore the double-Integral

$$\iint_{\Delta} F d\Delta = \iint_{D_1} F dD_1 + \iint_{D_2} F dD_2 + \iint_{D_3} F dD_3$$
 [3.5]

Mapping functions from the  $[-1,1] \times [-1,1]$  X-Y-Unit Square

$$g_{1}(X) = \frac{X}{2} + \frac{1}{2}$$

$$g_{2}(X) = -\frac{X}{2} + \frac{1}{2}$$

$$\frac{\partial g_{1}}{\partial X} = \frac{1}{2}$$

$$g_{1}(Y) = \frac{Y}{2} + \frac{1}{2}$$

$$g_{2}(Y) = -\frac{Y}{2} + \frac{1}{2}$$

$$g_{2}(Y) = -\frac{Y}{2} + \frac{1}{2}$$

$$\frac{\partial g_{1}}{\partial Y} = \frac{1}{2}$$

$$g_{2}(Y) = -\frac{1}{2}$$

$$g_{3}(Y) = -\frac{1}{2}$$

to barycentric coordinates of the D<sub>1</sub>, D<sub>2</sub>, D<sub>3</sub> Quadrilaterials

$$\begin{split} C_{D_1}(X,Y) &= C_1 \cdot g_1(X)g_1(Y) + C_5 \cdot g_1(X)g_2(Y) + C_B \cdot g_2(X)g_2(Y) + C_4 \cdot g_2(X)g_1(Y) \\ & [3.10] \\ C_{D_2}(X,Y) &= C_2 \cdot g_1(X)g_1(Y) + C_6 \cdot g_1(X)g_2(Y) + C_B \cdot g_2(X)g_2(Y) + C_5 \cdot g_2(X)g_1(Y) \\ & [3.11] \\ C_{D_3}(X,Y) &= C_3 \cdot g_1(X)g_1(Y) + C_4 \cdot g_1(X)g_2(Y) + C_B \cdot g_2(X)g_2(Y) + C_6 \cdot g_2(X)g_1(Y) \\ & [3.12] \end{split}$$

#### 3.2. Integraltransformation

Simplex Integration in n = 2

### 3.3. Simplex Subdivision

The Integral over a parent Simplex  $\Delta_p$ , can be expressed as an Integral over 4 Child Simpleces  $\Delta_i$ :

$$\iint_{\Delta_p} F d\Delta_p = \iint_{\Delta_1} F d\Delta_1 + \iint_{\Delta_2} F d\Delta_2 + \iint_{\Delta_3} F d\Delta_3 + \iint_{\Delta_4} F d\Delta_4$$
 [3.13]

The Coordinates of a Child  $\Delta_i$  can be expressed in local-barycentric coordinates

 $\xi'_{i,1'},\,\xi'_{i,2'},\,\xi'_{i,3}$  The corresponding Transformation from the local coordinate System into the global is given by



$$T_{lg}(\xi'_{i,1}, \xi'_{i,2}, \xi'_{i,3}) = C_{i,1}\xi'_{i,1} + C_{i,2}\xi'_{i,2} + C_{i,3}\xi'_{i,3}$$
[3.14]

where  $C_{i,j}$  are the coordinates of the Verteces of the Child Simplex  $\Delta_i$ .