Quiz, 6 questions

1 point

1

A country, called *Simpleland*, has a language with a small vocabulary of just "the", "on", "and", "go", "round", "bus", and "wheels". For a word count vector with indices ordered as the words appear above, what is the word count vector for a document that simply says "the wheels on the bus go round and round."

Please enter the vector of counts as follows: If the counts were ["the"=1, "on"=3, "and"=2, "go"=1, "round"=2, "bus"=1, "wheels"=1], enter 1321211.

Enter answer here

Quiz, 6 questions 2.

In *Simpleland*, a reader is enjoying a document with a representation: [1 3 2 1 2 1 1]. Which of the following articles would you recommend to this reader next?

- [7021001]
- [1700201]
- [1000712]
- [0200711]

1 point

3.

A corpus in *Simpleland* has 99 articles. If you pick one article and perform **1-nearest neighbor search** to find the closest article to this query article, how many times must you compute the similarity between two articles?

- 98
- 98*2 = 196
- 98/2 = 49
- (98)^2
- 99

Quiz, 6 questions 4.

For the TF-IDF representation, does the relative importance of words in a document depend on the base of the logarithm used? For example, take the words "bus" and "wheels" in a particular document. Is the ratio between the TF-IDF values for "bus" and "wheels" different when computed using log base 2 versus log base 10?

	en the TF-IDF values for " <i>bus</i> " and " <i>wheels</i> " different computed using log base 2 versus log base 10?
	Yes
	No
1 point 5. Which <i>apply</i>)	of the following statements are true? (<i>Check all that</i>
	Deciding whether an email is <i>spam</i> or <i>not spam</i> using the text of the email and some <i>spam / not spam</i> labels is a supervised learning problem.
	iabels is a supervised rearring problem.
	Dividing emails into two groups based on the text of each email is a supervised learning problem.

Quiz, 6 questions 6.

Which of the following pictures represents the **best** k-means solution? (*Squares represent observations, plus signs are cluster centers, and colors indicate assignments of observations to cluster centers.*)

estions	Learn more about Coursera's Honor Code	<u> </u>
	Rahul kumar	
	Culturalit Ourie	
	Submit Quiz	