

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 07 SEP. 2004

Pour le Directeur général de l'Institut national de la propriété industrielle
Le Chef du Département des brevets

Martine PLANCHE

DOCUMENT DE PRIORITE

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA
RÈGLE 17.1.a) OU b)

SIEGE
INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE
26 bis, rue de Saint Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

BREVET D'INVENTION CERTIFICAT D'UTILITE

26bis, rue de Saint-Pétersbourg
75800 Paris Cédex 08
Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI
REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES: N° D'ENREGISTREMENT NATIONAL: DÉPARTEMENT DE DÉPÔT: DATE DE DÉPÔT:	Sylvie MELLUL-BENDELAC L'AIR LIQUIDE 75 quai d'Orsay 75007 PARIS France
Vos références pour ce dossier: S6322 SMB/MR	

1 NATURE DE LA DEMANDE		
Demande de brevet		
2 TITRE DE L'INVENTION		
PROCEDE DE TREMPE PAR GAZ METTANT EN OEUVRE UNE INSTALLATION DE RECYCLAGE		
3 DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE	Pays ou organisation:	Date
4-1 DEMANDEUR		
Nom	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE	
Suivi par	MELLUL-BENDELAC Sylvie	
Rue	75 quai d'Orsay	
Code postal et ville	75007 PARIS	
Pays	France	
Nationalité	France	
Forme juridique	Société anonyme	
N° SIREN	552 096 281	
Code APE-NAF	241A	
N° de téléphone	01 40 62 57 53	
N° de télécopie	01 40 62 56 95	
Courrier électronique	sylvie.mellul-bendelac@airliquide.com	

5A MANDATAIRE					
Nom Prénom Qualité Cabinet ou Société Rue Code postal et ville N° de téléphone N° de télécopie Courrier électronique	MELLUL-BENDELAC Sylvie Liste spéciale; Pouvoir général: 10568 L'AIR LIQUIDE 75 quai d'Orsay 75007 PARIS 01 40 62 57 53 01 40 62 56 95 sylvie.mellul-bendelac@airliquide.com				
6 DOCUMENTS ET FICHIERS JOINTS		Fichier électronique	Pages	Détails	
Texte du brevet Dessins	textebrevet.pdf dessins.pdf	15 3		D 12, R 2, AB 1 page 3, figures 4, Abrégé: page 1, Fig.1	
7 MODE DE PAIEMENT					
Mode de paiement Numéro du compte client	Prélèvement du compte courant 516				
8 RAPPORT DE RECHERCHE					
Etablissement immédiat					
9 REDEVANCES JOINTES		Devise	Taux	Quantité	Montant à payer
062 Dépôt 063 Rapport de recherche (R.R.)	Total à acquitter	EURO	0,00	1.00	0,00
		EURO	320.00	1.00	320.00
		EURO			320.00

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, L' Air Liquide SA, S.Mellul-Bendelac
Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES
PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

Demande de brevet : X

Demande de CU :

DATE DE RECEPTION	21 août 2003	
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X Dépôt sur support CD:
N° D'ENREGISTREMENT NATIONAL ATTRIBUE PAR L'INPI	0350441	
Vos références pour ce dossier	S6322 SMB/MR	

DEMANDEUR

Nom ou dénomination sociale	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE
Nombre de demandeur(s)	1
Pays	FR

TITRE DE L'INVENTION

PROCEDE DE TREMPE PAR GAZ METTANT EN OEUVRE UNE INSTALLATION DE RECYCLAGE

DOCUMENTS ENVOYES

package-data.xml	Requetefr.PDF	fee-sheet.xml
Design.PDF	ValidLog.PDF	textebrevet.pdf
FR-office-specific-info.xml	application-body.xml	request.xml
dessins.pdf	indication-bio-deposit.xml	

EFFECTUE PAR

Effectué par:	S.Mellul-Bendelac
Date et heure de réception électronique:	21 août 2003 15:36:59
Empreinte officielle du dépôt	62:CC:89:2B:7B:89:A4:6B:59:AA:90:1D:D5:D5:A0:57:D5:6C:BB:14

/ INPI PARIS, Section Dépôt /

SIEGE SOCIAL
 INSTITUT 26 bis, rue de Saint Petersbourg
 NATIONAL DE 75800 PARIS cedex 08
 LA PROPRIETE Téléphone : 01 53 04 53 04
 INDUSTRIELLE Télécopie : 01 42 93 59 30

La présente invention concerne une méthode et une installation de recyclage d'un gaz ou mélange de gaz utilisé dans une opération de trempe gazeuse.

La trempe gazeuse des aciers ayant subit au préalable un traitement thermique sous vide (chauffage avant trempe, recuit, revenu...) ou thermochimique (cémentation, carbonitruration...) est généralement réalisée avec un gaz sous pression, préférentiellement entre 4 et 20 bars. Le gaz peut contenir de l'azote, de l'air, de l'argon, de l'hélium ou tout autre gaz ou mélange gazeux industriel.

Les améliorations apportées ces dernières années aux procédés de refroidissement rapide des aciers ont essentiellement consisté en l'utilisation de fluides aux meilleures propriétés d'échange de chaleur telles que l'Hélium et l'Hydrogène, de mélanges d'un gaz inerte avec un gaz plus léger (N_2-H_2 , N_2-He , ...), en l'augmentation des pressions de gaz et des vitesses de circulation dans l'enceinte sous pression. Les technologies des cellules de trempe ont été améliorées en parallèle : augmentation des pressions de fonctionnement, de la capacité des échangeurs de chaleur, etc.

Certains gaz et mélanges de gaz coûteux tels que l'hélium nécessitent l'utilisation de systèmes de récupération de gaz permettant de transférer et de recycler le gaz utilisé lors d'une trempe, afin de pouvoir l'utiliser lors de la trempe suivante.

Les systèmes de recyclage couramment utilisés nécessitent généralement la présence des appareils suivants :

- un ou plusieurs compresseur(s) ;
- une pompe à vide lorsque des taux de récupération de gaz élevés sont recherchés (pour évacuer la cellule de trempe en deçà de la pression atmosphérique);
- des moyens de purification/séparation des gaz ;
- des capacités de stockage des gaz qui doivent éventuellement être utilisés.

compresseurs à pistons (secs ou bien lubrifiés), comportant éventuellement un étage de compression à vis. Le coût de tels appareils, qui est fortement lié au débit nécessaire, représente une partie importante du coût de l'installation de recyclage.

5 - concernant la pompe à vide : une pompe à vide ne fournit pas un débit constant en fonction du temps et de la pression en son entrée; il se pose donc un problème d'adaptation entre le débit fourni par la pompe à vide et le débit admis en entrée du compresseur.

10 - concernant les moyens de purification des gaz : ceux-ci rendent généralement l'installation plus complexe ; en outre, les moyens classiques de séparation des gaz nécessitent de comprimer le gaz, soit à l'aide d'une unité de compression séparée (voir par exemple le document US2002/0104589A1), soit en mobilisant le compresseur cité plus haut utilisé pour la re-compression et le transfert du gaz.

15 - immobilisation de la cellule de trempe : la cellule de trempe est immobilisée par le procédé de recyclage pendant une partie importante de son cycle de fonctionnement et est alors indisponible dans son rôle de refroidissement d'une charge. Cela conduit à devoir sur-dimensionner le débit des éléments moteurs (compresseur, pompe à vide) de façon à atteindre des temps de cycle améliorés.

20

La présente invention vise à apporter une amélioration aux problèmes techniques ci-dessus listés, en proposant une nouvelle architecture de système de recyclage du gaz de trempe, permettant une utilisation plus efficace des équipements mis en œuvre, et en particulier des moyens de récupération et 25 compression du gaz, dans le cadre de la trempe de pièces métalliques dans un gaz à haute pression à la suite d'un traitement thermique sous vide.

Comme décrit plus en détails ci-après la présente invention permet en effet de :

30 - réduire les temps de transfert du gaz et le temps du cycle de récupération, pour un taux de récupération identique par rapport à une installation utilisant des équipements de compression et de pompage dimensionnés pour les mêmes débits et donc notamment diminuer le temps de récupération visible par la cellule de trempe ;

- utiliser des équipements de compression et de pompage de débits plus faibles en dimension par rapport à une installation conventionnelle assurant les mêmes performances en temps de transfert ;
- maintenir le niveau de pureté souhaité sans nécessiter l'utilisation de moyens d'épuration de gaz ;
- mettre en œuvre des mélanges de gaz avec des consommations de gaz optimisées ;

10 L'installation de recyclage selon la présente invention est positionnée entre la cellule de trempe (V1 sur la figure 1 ci-dessous) et le ballon tampon (V2 sur la figure 1 ci-dessous) traditionnellement présent dans des installations de trempe gazeuse, elle comprend les éléments suivants :

- une ligne principale reliant la cellule V1 à la capacité V2 en passant par un groupe de compression/surpression comprenant un ou plusieurs compresseurs ou surpresseurs en parallèle (système à deux compresseurs C1 et C2 à piston sur la figure 1) ;
- un ballon de stockage intermédiaire V3 apte à alimenter le groupe de compression (préférentiellement situé en dérivation par rapport à la ligne principale) ;
- selon un mode préféré de mise en œuvre de l'invention que l'on détaillera en détails plus loin dans la présente demande, la présence d'un gazomètre ou ballon gonflable (V4), également préférentiellement en dérivation par rapport à la ligne principale (une pompe à vide P1 refoulant soit vers un événement, soit vers le ballon V4) ;
- selon un mode avantageux de mise en œuvre de l'invention elle comprend, dans le cas de l'utilisation pour la trempe d'un mélange de gaz, un mélangeur basse pression alimentant le groupe de compression en mélange à basse pression (M1) ;

Le volume V3 permet une vidange partielle rapide de la cellule de trempe par un moyen d'équilibrage de pression cardialement connecté entre les deux volumes...
... et une vidange partielle du ballon V4 lorsque la pression dans la cellule de trempe...
... est suffisamment élevée pour déclencher l'ouverture de la valve de vidange V5.

Comme on va le voir plus loin la capacité V3 est en tout état de cause un élément clé de l'invention par le gain de temps qu'elle permet durant le recyclage puisque l'on peut s'occuper du gaz contenu dans V3 pendant que V1 est en fonctionnement. En effet, pendant les phases où la cellule de trempe V1 est 5 mobilisée par exemple dans le déroulement du procédé de trempe gazeuse ou encore lors des transferts de charges, le gaz stocké dans la capacité V3 peut être transféré et re-comprimé vers la capacité tampon V2.

Cette immobilisation de V1 est liée à :

- la durée d'utilisation du gaz sous pression dans la cellule V1 pour la 10 trempe elle même ;
- la durée de chargement et de déchargement de la cellule V1.

La durée cumulée d'immobilisation peut être estimée à un minimum de 5 minutes, ce qui représente, par exemple pour des cycles de 20 minutes, un gain de temps de 25%.

15 En résumé après une opération de trempe on vide la cellule en récupérant au moins une partie du gaz (par exemple 95 %) :

- au travers de un ou plusieurs cycles de remplissage V3/vidange vers V2 comme décrit ci-dessus;
- le cas échéant une partie du contenu de V1 est rejetée à l'air libre.

20 Comme on va le voir ci-dessous, pour vider la cellule V1 au delà de la pression atmosphérique, il va être nécessaire de faire intervenir une pompe à vide et c'est ici qu'intervient très avantageusement le ballon V4.

L'utilisation de la capacité V4 peut en effet être résumée ainsi : lorsque 25 l'on souhaite pouvoir transférer et re-comprimer le gaz avec un taux de récupération élevé (typiquement supérieur à 95%), i.e descendre en dessous de la pression atmosphérique dans la cellule V1, il est nécessaire de récupérer le gaz de la cellule de trempe V1 sous vide. Il faut souligner que de tels taux de récupération élevés (supérieurs à 95 % voire > 97%) sont en général recherchés dans le cas des gaz de trempe onéreux tels qu'à base d'hélium (pour des raisons 30 économiques bien compréhensibles).

Or, une pompe à vide ne fournit pas un débit de gaz constant alors que les compresseurs utilisés fonctionnent à débit constant ; il se pose donc un problème d'adaptation entre les débits de travail du compresseur et de la pompe à vide si ces deux types d'éléments étaient en connexion directe.

La capacité V4 représentée sur la figure est un ballon gonflable, à la pression atmosphérique. La pompe à vide P1 remplit plus ou moins complètement V4 avec du gaz en provenance de V1, V4 étant déconnectée de l'unité de compression, puis l'unité de compression vide V4 dans V2, V4 étant à 5 ce moment là déconnectée de la pompe P1.

Durant le fonctionnement de la pompe à vide et le remplissage du ballon V4, les compresseurs sont par exemple disponibles pour recomprimer directement le gaz contenu dans V3 et alimenter V2. Lorsque V4 est plein, les compresseurs re-compriment le gaz à partir de V4 pour alimenter V2. Ceci 10 permet d'avoir un débit constant en débit d'aspiration du compresseur et donc de gagner du temps. Les compresseurs sont ainsi toujours à une pression d'entrée correspondant à la pression atmosphérique ou légèrement supérieure à la pression atmosphérique.

Le ballon V4 permet donc de dissocier les étapes de pompage et de 15 recompression puisque pompe à vide et compresseurs ne sont jamais en ligne directe. Ainsi, chaque équipement (pompe à vide, unité de compression) est utilisé dans ses conditions de fonctionnement nominales.

En d'autres termes si le ballon V4 n'était pas présent, P1 enverrait directement le gaz en provenance de V1 vers le groupe de 20 compresseurs/surpresseurs, or le débit fourni par la pompe P1 dépend de la pression dans la cellule (qui varie) donc le compresseur en aval subit lui aussi des variations de pressions.

On l'aura compris à la lecture de ce qui précède, on procède alors, selon le taux de récupération que l'on veut atteindre, à plusieurs cycles de remplissage 25 de V4, vidange de V4, jusqu'à obtenir une pression acceptable dans la cellule V1 (typiquement 100 mbars absolus à titre illustratif).

On l'a compris, pendant que V4 se remplit, V3 est disponible pour alimenter le compresseur à partir du gaz qu'il contient et donc la capacité V2.

Normalement apparaîtront également à l'homme du métier, la volonté de V3 et

de gaz de trempe sous pression, raccordés à cette cellule, les moyens de fourniture de gaz comprenant une capacité tampon adaptée pour contenir du gaz de trempe, caractérisé en ce que l'on procède, après une opération de trempe, au recyclage de tout ou partie du gaz contenu dans la cellule de la façon suivante :

- on dispose d'une ligne principale reliant la cellule à la dite capacité tampon en passant par un groupe de compression ou surpression comprenant un ou plusieurs compresseurs ou surpresseurs en parallèle ;
- on dispose d'un premier ballon de stockage intermédiaire apte à recevoir du gaz de trempe en provenance de la cellule et à alimenter le groupe de compression ;
- on procède, après une opération de trempe, à une ou plusieurs opérations de vidange partielle du contenu de la cellule dans le premier ballon de stockage intermédiaire par un équilibrage de pression partiel ou complet entre les deux volumes de la cellule et du premier ballon de stockage intermédiaire ;
- on procède au transfert du gaz stocké dans ledit premier ballon de stockage intermédiaire vers la capacité tampon (V2) en passant par le groupe de compression/surpression ;
- 20 - on rejète le cas échéant une partie du contenu de la cellule à l'air libre.

Le procédé selon l'invention pourra par ailleurs comporter une ou plusieurs des caractéristiques suivantes :

- on procède audit transfert du gaz stocké dans ledit premier ballon de stockage intermédiaire vers la capacité tampon pendant une phase où la cellule de trempe est immobilisée dans le déroulement du procédé de trempe gazeuse ou durant des transferts de charges.
- on dispose d'un ballon gonflable, apte à recevoir du gaz en provenance de la cellule au travers d'une pompe à vide, pompe à vide apte à refouler soit vers un événement soit vers ledit ballon gonflable et en ce que l'on utilise le ballon gonflable de la façon suivante : on procède, après ladite une ou plusieurs opérations de vidange partielle du contenu de la cellule dans le premier ballon de stockage intermédiaire, afin de descendre en dessous de la pression

atmosphérique dans la cellule, à une ou plusieurs opérations de transfert du gaz contenu dans la cellule dans le ballon gonflable de la façon suivante :

- on récupère dans le ballon gonflable du gaz contenu dans la cellule à l'aide de la pompe à vide, le ballon gonflable étant déconnecté de l'unité 5 de compression, puis

- on procède à la vidange du gaz contenu dans le ballon gonflable à l'aide de l'unité de compression/suppression, le ballon gonflable étant déconnecté de la pompe à vide (P1).

L'invention sera mieux comprise à la lecture de la description qui va 10 suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :

- la Figure 1 est une représentation schématique d'une installation permettant la mise en œuvre de l'invention ;

- la figure 2 fournit le résultat de simulations du taux de pollution limite 15 (teneur dans le gaz recyclé depuis V2 et réutilisé dans la cellule de trempe) en fonction du taux de récupération de gaz pour différents niveaux de pollution initiale dans le gaz de trempe récupéré de la cellule V1.

- la figure 3 fournit un exemple de recyclage selon l'invention avec 20 l'évolution des pressions dans les capacités V1, V2, V3 au cours du cycle de trempe et de re-compression du gaz.

----- la figure 4 fournit le détail de l'évolution des pressions des capacités V1 et V3 durant les étapes 4 et 5 du tableau 1 (sensiblement entre 21 et 25 mn).

On reconnaît sur la figure 1 tous les éléments que l'on a déjà abondamment décrits et référencés dans ce qui précède et notamment la cellule V1, la capacité tampon V2, le groupe de compression à pistons comprenant deux compresseurs en parallèle C1 et C2, le ballon de stockage intermédiaire V3 25 apte à alimenter le groupe de compression et situé en dérivation par rapport à la ligne principale, le ballon gonflable V4, également en dérivation par rapport à la ligne principale. ~~Etat sous la pression de 1 atm et température de 20°C. Il est donc~~

prévue afin d'évacuer vers l'extérieur lorsqu'on le souhaite une partie du gaz extrait de V1.

Ceci on l'a bien compris selon le taux de récupération de gaz que l'on souhaite atteindre : une partie sera recyclée dans le procédé une partie sera évacuée vers l'extérieur. Par exemple, on peut choisir d'évacuer le gaz extrait de V1 lorsque la pression dans V1 devient inférieure à un seuil pré-défini que l'on définit comme la pression de reprise en fonction du taux de récupération choisi.

Comme déjà signalé plus haut, selon un mode avantageux de mise en œuvre de l'invention, l'installation comprend, dans le cas de l'utilisation pour la trempe d'un mélange de gaz (on a illustré sur la figure le cas d'un mélange CO₂-hélium), un mélangeur basse pression (M1) alimentant le groupe de compression en mélange à basse pression.

En effet, dans le cas de l'utilisation d'un gaz de trempe qui est un mélange de gaz, il est préférable, afin de synthétiser un mélange homogène, d'employer un appareil dédié à la synthèse du mélange (mélangeur), et non d'effectuer un appoint de façon séquentielle.

Le mélange peut être synthétisé à une pression plus ou moins élevée.

Avantageusement, il est proposé ici de synthétiser le mélange à basse pression (inférieure à 10 bar) et de recomprimer ce mélange à l'aide du groupe de compression/surpression afin de pouvoir vider au maximum les stockages de gaz. En effet, une unité de mélange fonctionne à une pression d'alimentation déterminée. Un mélangeur haute pression, c'est-à-dire à haute pression d'alimentation, permettra de se passer de l'emploi d'un compresseur pour alimenter la capacité haute pression en gaz neuf. En revanche, un système de mélange basse pression permet d'utiliser les stockages de gaz peuvent être utilisés tant que la pression desdits stockages reste supérieure à la pression d'alimentation. Le résiduel de gaz consommé non utilisé restant dans les stockages de gaz sera donc plus faible, d'où des coûts d'exploitation plus faibles. Le système de récupération de gaz décrit comporte nécessairement un compresseur, il est donc plus favorable de réaliser le mélange à basse pression. On utilise ainsi le groupe de compression du système de recyclage de gaz pour réaliser l'appoint en gaz frais.

L'emploi d'un mélangeur haute pression peut permettre de synthétiser directement le mélange sans nécessiter l'utilisation du groupe de compression.

Dans le cas de l'utilisation de mélanges, il est tout particulièrement recommandé d'effectuer un contrôle de la composition du gaz par un analyseur (comme c'est le cas sur la figure) pour suivre et adapter la composition du mélange pendant le recyclage en cas de fuite préférentielle de l'un des composants 5 pendant le cycle de trempe et/ou de recyclage.

A titre illustratif, plusieurs types d'analyse sont possibles parmi lesquels on peut citer :

- les constituants principaux du mélange ;
- les polluants représentatifs d'une fuite (tel oxygène, azote) ;
- 10 - les polluants liés au procédé : tel H_2O , CO, N_2 , ou hydrocarbures, résiduels du procédé de traitement thermique précédant l'opération de trempe.

On conçoit également que l'installation peut comporter un automate de pilotage de l'installation, définissant notamment les séquences de remplissage et 15 de vidange des différents éléments constitutifs.

Les informations utilisées par l'automate peuvent être fournies par :

- des capteurs de température et de pression au niveau des différentes capacités V1, V2, V3, V4
- un capteur de remplissage du ballon V3
- 20 - un capteur de remplissage du ballon V4
- l'analyseur de gaz

L'automate, à partir de ces informations, peut commander :

- le basculement des vannes dirigeant le gaz vers une capacité ou une autre
- 25 - le réglage du mélangeur
- la mise en route ou l'arrêt du groupe de pompage etc...

Le tableau 1 ci-dessous illustre un cas concret, détaillant les différentes étapes et leurs durées.

Tableau 1 : Etapes du transfert et de la recompression du gaz de V1 vers V2

Etapes	de t= (min)	à t= (min)	Description
0	0	0.1	Remplissage de V1 pour la trempe
1	0.1	5.4	Trempe sous pression (en parallèle transfert de gaz de V3 vers V2)
2	5.4	5.5	Équilibrage V1-V3 (vidange partielle de V1)
3	5.5	20.9	Recompression à partir de V1 : le gaz, non équilibré entre V1 et V3, est envoyé dans V2 directement via le groupe de compression (jusque la pression atmosphérique)
4	20.9	23.7	Mise sous vide de V1 avec transfert du gaz vers V2; utilisation du ballon V4
5	23.7	25.0	Descente en vide de V1; gaz issu de V1 éventé (puisque taux de récupération différent de 100%)
6	25.0	35.0	Transfert de gaz de V3 vers V2 et mise à niveau de la pression dans V2 et attente; sortie de la charge trempée, entrée de la charge à tremper

Le temps gagné par rapport à une installation ne comprenant ni V3 ni V4 est compris entre 5 et 10 minutes, en fonction du temps nécessaire pour transférer les charges de pièces à traiter (étape 6).

5 Au cours des opérations successives de trempe et de récupération, le gaz de trempe s'enrichit en impuretés/polluants. Toutefois, ces impuretés sont diluées par l'appoint de gaz rendu nécessaire par la récupération incomplète du gaz de trempe. Le taux d'impuretés reste donc en deçà d'une limite supérieure dépendant à la fois des teneurs en polluants apportées à chaque cycle de trempe
10 et du taux de récupération du gaz, qui est directement lié à l'appoint de gaz apporté à chaque cycle. La figure 2 fournit le résultat de simulations de ce taux d'impuretés limite (teneur dans le gaz recyclé depuis V2 et réutilisé dans la cellule de trempe) en fonction du taux de récupération de gaz, pour différents niveaux de pollution initiale dans le gaz de trempe récupéré de la cellule V1 : une
15 courbe par niveau de pollution initial, en considérant les courbes depuis la plus haute dans la figure jusqu'à la plus basse elles correspondent respectivement à des teneurs de pollution initiale de 10, 20, 50, 100, 200, 500 et 1000 ppm.

Afin de maintenir constantes les propriétés de refroidissement du gaz, un taux de pollution de 5% reste tout à fait acceptable. On remarque par exemple
20 que l'ajout de 5% d'azote dans un mélange de CO₂ et d'hélium contenant 50% d'hélium se traduit par une diminution du flux thermique transféré par le gaz de 1.5% ; cette diminution est inobservable sur les propriétés finales des pièces traitées.

Dans le cas de traitements thermiques sous vide, le niveau d'impuretés ajoutées à chaque cycle ne dépasse pas 500 ppm. Un taux de récupération de 25 99% permet dans ce cas de maintenir un niveau de pureté suffisant, sans utiliser de moyens de séparation de gaz pour limiter la teneur en polluants.

La figure 3 fournit quand à elle un exemple de recyclage selon l'invention
- 10 -

La figure 4 fournit le détail (zoom) de l'évolution des pressions des capacités V1 et V3 entre 21 et 25 mn (sensiblement durant les étapes 4 et 5 du tableau 1). Elle permet de distinguer les différentes étapes d'utilisation simultanée de la pompe à vide pour vider V1 et du compresseur pour vider V3 et 5 les étapes de vidange du ballon gonflable à l'aide du compresseur (pressions V1 et V3 stables)

Les impuretés non gazeuses (eau, huile, poussières) sont supprimées à l'aide de filtres dédiés.

REVENDICATIONS

5 1. Procédé de trempe par gaz, du type où l'on dispose d'une cellule de trempe (V1) destinée à recevoir des objets à tremper à l'aide d'un gaz de trempe, et où l'on dispose de moyens de fourniture de gaz de trempe sous pression, raccordés à cette cellule, les moyens de fourniture de gaz comprenant une capacité tampon (V2) adaptée pour contenir du gaz de trempe, caractérisé en ce que l'on procède, après une opération de trempe, au recyclage de tout ou partie du gaz contenu dans la cellule (V1) de la façon suivante :

10 - on dispose d'une ligne principale reliant la cellule (V1) à la dite capacité tampon (V2) en passant par un groupe de compression ou surpression comprenant un ou plusieurs compresseurs/surpresseurs en parallèle (C1, C2) ;

- on dispose d'un premier ballon de stockage intermédiaire (V3) apte à recevoir du gaz de trempe en provenance de la cellule et à alimenter le groupe de compression/surpression ;

- on procède, après une opération de trempe, à une ou plusieurs opérations de vidange partielle du contenu de la cellule (V1) dans le premier ballon de stockage intermédiaire (V3) par un équilibrage de pression partiel ou complet entre les deux volumes de la cellule (V1) et du premier ballon de stockage intermédiaire ;

- on procède au transfert du gaz stocké dans ledit premier ballon de stockage intermédiaire (V3) vers la capacité tampon (V2) en passant par le groupe de compression/surpression ;

25 - on rejète le cas échéant une partie du contenu de la cellule (V1) à l'air libre.

4. Procédé de trempage par gaz selon la revendication 1, caractérisé

3. Procédé de trempe par gaz selon la revendication 1 ou 2, caractérisé en ce que l'on dispose d'un ballon gonflable (V4), apte à recevoir du gaz en provenance de la cellule (V1) au travers d'une pompe à vide (P1) apte à refouler soit vers un événement soit vers ledit ballon gonflable (V4) et en ce que l'on

5 utilise le ballon gonflable de la façon suivante : on procède, après ladite une ou plusieurs opérations de vidange partielle du contenu de la cellule (V1) dans le premier ballon de stockage intermédiaire (V3), afin de descendre en dessous de la pression atmosphérique dans la cellule (V1), à une ou plusieurs opérations de transfert du gaz contenu dans la cellule (V1) dans le ballon gonflable de la façon

10 suivante :

- on récupère dans le ballon gonflable (V4) de gaz contenu dans la cellule (V1) à l'aide de la pompe à vide (P1), le ballon gonflable (V4) étant déconnecté de l'unité de compression/surpression, puis
- on procède à la vidange du gaz contenu dans le ballon gonflable (V4) à

15 l'aide de l'unité de compression/surpression, le ballon gonflable (V4) étant déconnecté de la pompe à vide (P1).

Figure 1

Figure 2

Figure 3

BREVET D'INVENTION CERTIFICAT D'UTILITE

Désignation de l'inventeur

Vos références pour ce dossier	S6322 SMB/MR
N°D'ENREGISTREMENT NATIONAL	0380 561
TITRE DE L'INVENTION	
PROCEDE DE TREMPE PAR GAZ METTANT EN OEUVRE UNE INSTALLATION DE RECYCLAGE	
LE(S) DEMANDEUR(S) OU LE(S) MANDATAIRE(S):	
DESIGNE(NT) EN TANT QU'INVENTEUR(S):	
Inventeur 1	
Nom	CHAFFOTTE
Prénoms	Florent
Rue	109 rue Pierre Sémard
Code postal et ville	92320 CHATILLON
Société d'appartenance	
Inventeur 2	
Nom	BLANCHARD
Prénoms	Nicolas
Rue	129 allée de Beauregard
Code postal et ville	38340 VOREPPE
Société d'appartenance	
Inventeur 3	
Nom	DELOBEL
Prénoms	Olivier
Rue	1 rue de Dijon
Code postal et ville	75012 PARIS
Société d'appartenance	
Inventeur 4	
Nom	LEFEVRE
Prénoms	Linda
Rue	12 rue Sainte Famille
Code postal et ville	78000 VERSAILLES
Société d'appartenance	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, L' Air Liquide SA, S.Mellul-Bendelac

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES
PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.