

Understanding Polymorphism.

Semester: I / II						
INTRODUCTION TO PYTHON PROGRAMMING						
Category: Programming Language Course						
(Common to all Programs)						
(Theory & Practice)						
Course Code	:	AI115IA/AI125IA	-	CIE	:	100 Marks
Credits: L:T:P	:	2:0:1		SEE	:	100 Marks
Total Hours	:	28L+28P	_	SEE Duration	:	03 Hours

|: | 28L+28P Unit – I 05 Hrs Getting Started: Introducing Python, Setting Up Python in windows, Setting Up Python in other Operating Systems, introducing IDLE. Types, Variable, and Simple I/O: Using Quotes with Strings, Concatenating and Repeating Strings, Working with Numbers, Understanding the Variable, Getting User Input, Converting Values Unit – II 05 Hrs Branching, While Loops, and Program Planning: Using the If statement, Using the else Clause, Using the elif clause, creating while Loops, Avoiding Infinite Loops, Creating Intentional infinite Loops, Using Compound Conditions. Unit – III For Loops, Strings, and Tuples: Using for Loops, counting with the For Loops, Using Sequence Operators and Functions with Strings, Indexing Strings, Slicing the Strings, Creating the Tuple, Using Tuple. Lists and Dictionaries: Using Lists, Using List Methods, understanding when to use the tuple instead of Lists Unit - IV 06 Hrs Functions: Creating Functions, Using Parameters and Return Values, Using Keyword Arguments and Default Parameters Values, Using Global Variables and Constants. Files and Exceptions: Reading from Text Files, Writing to Text Files, Handling Exceptions. Unit - V 06 Hrs Software Objects: Defining a Class, Defining Method, Instantiating an Object, invoking a Methods, Using Constructor, Using Class Attributes and Static Methods, Understanding Object Encapsulation. **Object-Oriented Programming:** Using Inheritance to Create New Classes, creating a Base Class, inheriting from

Course Outcomes: After completing the course, the students will be able to			
CO1	Apply fundamental knowledge of computing to solve multi-disciplinary problems. (PO1)		
CO2	Identify the problems in various engineering domains and solve them using different concepts of Python		
	programming. (PO2)		
CO3	Design a solution using Python programming to address some of the concerns related to SDG. (PO3)		
CO4	Demonstrate the use of modern tools by exhibiting teamwork and effective communication skills.		
	(PO8, PO9)		

a Base Class, extending a Derived Class, Using the Derived Class, extending a Class through Inheritance,

Reference Books			
1	Michael Dawson, Python programming for the absolute beginner, 3 rd Edition, CENGAGE,		
	ISBN-13:978-93-86668-00-4, ISBN-10: 93-86668-00-9, 2010.		
2	John V. Guttag. Introduction to Computation and Programming using Python, The MIT Press,		
	Cambridge, Massachusetts, London, ISBN: 978-0-262-51963-2, 2013		
3	Mark Summerfield, Programming in Python 3: A Complete Introduction to the Python Language, 2 nd		
	Edition, ISBN-13: 978-0-321-68056-3, ISBN-10: 0-321-68056-1.		
4	Paul Gries, Jennifer Campbell, Jason Montojo, Practical Programming: An Introduction to Computer		
	Science Using Python 3.6, 3 rd Edition, The Pragmatic Bookshelf, ISBN-13: 978-1-6805026-8-8, 2017.		

5	Mark Lutz, Learning Python, 5 th Edition, 2013, Oreilly Media, ISBN: 978-1-449-35573-9.
6	Burkhard A. Meier, Python GUI Programming Cookbook, Packt Publishing, 2015,
	ISBN 978-1-78528-375-8.

Laboratory Experiments			
	PART-A		
1	Introductory Lab-Installation and Working with the Sample Programs		
2	Write a program to find the largest prime factor of a given integer		
3	Write a program to find the height of the ball thrown by a basketball player.		
4	Write a program to find the Golden ratio.		
5	Read a paragraph from the user and count the number of words, and frequency of Words appearing, and search for the specific word.		
6	Consider a sequence of numbers with some missing values. Write a python program for inserting the missing values and remove some of the values from the sequence. Also, add a few more values to the existing sequence.		
7	Create an Employee 'Employee' Database using dictionaries and perform the insert, search and display operations.		
8	Implement Set and Tuple Operations		
9	Create a text file called my_file.txt with some content, capitalize the first letter of every word, and print the content of the file in reverse order.		
PROGRAMMING ASSIGNMENT			
Design (SDG)	and develop a python GUI application connected to interested Sustainable Development Goals		

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH L.	AB)
#	COMPONENTS	MARKS
1	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	10
2	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). THREE tests will be conducted (Two regular tests and one optional improvement test). Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS.	30
3	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) ADDING UPTO 30 MARKS .	30
4	LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS	30
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)				
Q. NO.	. CONTENTS			
	PART A			
1	Objective type questions covering entire syllabus	10		
	PART B			
	(Maximum of TWO Sub-divisions only)			
2	Unit – I: (Compulsory)	14		
3 & 4	Unit – II: Question 3 or 4	14		
5 & 6	Unit – III: Question 5 or 6	14		
7 & 8	Unit – IV: Question 7 or 8	14		
9 & 10	Unit – V: Question 9 or 10	14		
11	Lab Component (Compulsory)	20		
MAXIMUM MARKS FOR THE SEE THEORY				

