

Honest-but-Curious Nets:

Sensitive Attributes of Private Inputs can be Secretly Coded into the Classifiers' Outputs

Mohammad Malekzadeh, Anastasia Borovykh and Deniz Gündüz

mmalekzadeh.github.io

abrvkh.github.io

imperial.ac.uk/people/d.gunduz

Imperial College London

Acknowledgments:

- European Research Council (ERC) Starting Grant BEACON (no. 677854)
- UK EPSRC Grant within the CHIST-ERA program (no. EP/T023600/1)
- J.P. Morgan A.I. Research Award 2019

Overview

Overview

We show **how** the **output** of a classifier (e.g., a neural network) can secretly carry **sensitive** information about its **input.**

Our work challenges the privacy protection offered via edge/on-device or encrypted/multi-party approaches that hide the input and only release the output.

The Problem Setting

Server (Machine Learning Service Provider)

At inference time (aka test time)

2

• **X**: user's private sample

Face image wikipedia.org/wiki/Roya_Mahboob

Retinal Vessel
Coyner, Aaron S., et al. (2021)
arXiv:2109.13845

Chest X-Ray
Banerjee, Imon, et al. (2021)
arXiv:2107.10356

, speech, text, sensors, ...

2

- X : user's private sample
- f and g are two unknown ground-truth functions.
- y = f(x): a target attribute ... users wish to **release** to the server
- s = g(x): a sensitive attribute ... users wish to keep it private

Face image wikipedia.org/wiki/Roya_Mahboob

Retinal Vessel
Coyner, Aaron S., et al. (2021)
arXiv:2109.13845

Chest X-Ray
Banerjee, Imon, et al. (2021)
arXiv:2107.10356

, speech, text, sensors, ...

8

- **X** : user's private sample
- f and g are two unknown **ground-truth** functions.
- y = f(x): a target attribute ... users wish to **release** to the server
- s = g(x): a sensitive attribute ... users wish to **keep** it private

y : age s : race

y : disorder

s: race

, speech, text, sensors, ...

y : disease

s: race

- Server provides a pre-trained classifier
- $\mathcal{F}(\mathbf{x})$: a classifier that approximates $y = f(\mathbf{x})$

User-Server Interaction Models

Non-Encrypted Cloud Computing

- \mathcal{F} is hosted in the cloud
- Server observes the private data

Split Computing

•
$$\mathcal{F} = \mathcal{F}^2 \left(\mathcal{F}^1(\mathbf{x}) \right)$$

- Server only observes the output of \mathcal{F}^1 .
- But Server still can infer sensitive attributes.

No Server?

• Then who gives us the service!

- Encrypted Cloud Computing

- On-Device/Edge Computing

- Current solutions
- Server only observes the output

- Encrypted Cloud Computing

- On-Device/Edge Computing

Our Main Question

Can Server infer a **sensitive** attribute of private input from the **target** output?

Especially, for **uncorrelated** attributes e.g., **gender** and **race**

An Example

Two **Uncorrelated** Attributes

To predict the **race** from the **output** of a binary **gender** classifier

Two **Uncorrelated** Attributes

To predict the **race** from the **output** of a binary **gender** classifier

UTKFace Dataset (Zhang, Zhifei, et al. CVPR 2017)

random guess

y : gender {male 52%, female 48% } s: race { white 42% , non-white 58%}

ROC curves of a "**standard**" classifier [four convolutional layers + two fully-connected layers]

^{*} a classifier that is trained only using the "cross-entropy loss function" for the target attribute.

Our Question

To predict the race from the output of a binary gender classifier

Initial Answer:

If \mathcal{F} is a **standard*** classifier, then "**No**".

Our new Question

To predict the **race** from the **output** of a binary **gender** classifier **What if the classifier is not "standard"?**

Honest But Curious (HBC) Classifiers

- \triangleright **Honesty:** \hat{y} accurately estimates the target attribute.
- \triangleright **Curiosity**: \hat{y} also reveals a sensitive attribute.

ROC curves of a "HBC" classifier

^{*} a classifier that is trained only using the "cross-entropy loss function" for the target attribute.

"Standard" vs. "HBC" classifiers

- Same
 - Model
 - Dataset
 - Initialization
 - Hyperparameters

 The only difference is the training procedure!

Methodology

Notation

- $(\delta^{y} - \delta^{s})$ -HBC
 - $-\delta^{y} \in [0,1]$: the accuracy for the **target** attribute
 - $-\delta^{s} \in [0,1]$: the accuracy for the **sensitive** attribute

A Synthetic 2-d Dataset

Two **uncorrelated** labels each having two classes: {0, 1}

– y

_ 5

 Samples of each label are linearly separable

Linear Classifier 1

 $(\delta^y - - \delta^s)$ -HBC Logistic Regression

$$\delta^{y} = 1$$
$$\delta^{s} = 0.5$$

Perfect Honesty

No Curiosity

Linear Classifier 2

 $(\delta^{y} - - \delta^{s})$ -HBC Logistic Regression

$$\delta^{\mathbf{y}} = 0.5$$

 $\delta^{s} = 1$

No Honesty

Perfect Curiosity

Linear Classifier 3

 $(\delta^{y} - - \delta^{s})$ -HBC Logistic Regression

$$\delta^{\mathbf{y}} = 0.75$$

$$\delta^{\rm s} = 0.75$$

Weak Honesty

Weak Curiosity

Initial Observation

A **linear** classifier cannot become both **honest** and **curious** at the same time.

What if we double the capacity?

What if we double the capacity?

We get the Perfect Honesty & Curiosity

New Observation

The combination of two linear classifiers can become both honest and curious at the same time.

Expanding the Idea

- What if we cannot use an arbitrary architecture (like prev. example)?
- Given any classifier ${m {\mathcal F}}$, can we **train** it such that at **inference** time:
 - 1. \mathcal{F} be honest, like a standard classifier for y,
 - 2. \mathcal{F} be **curious**, like as a standard classifier for S,
 - 3. \mathcal{F} cannot be easily distinguished from a **standard** classifier? Even if users have full-access white-box view of \mathcal{F} .

We Introduce Two Solutions

- (1) Regularized: for binary S
- (2) Parameterized: for categorical S

1) Regularized: for binary attributes

ArgMax vs. Entopy

A.
$$\hat{y} = [0.95, 0.05]$$
: $argmax(\hat{y}) = 0$, $H(\hat{y}) = 0.29$

B.
$$\hat{y} = [0.75, 0.25]$$
: $argmax(\hat{y}) = 0$, $H(\hat{y}) = 0.81$

entropy
$$\rightarrow H(\hat{y}) = \sum_{i} \widehat{y_i} \log \widehat{y_i}$$

Exploiting the Entropy

Training Loss

Maximize/minimize the entropy for s

$$\mathcal{L}^{b} = -\beta^{y} \sum_{i=0}^{Y-1} y_{i} \log \hat{y}_{i} - \beta^{s} \left(\mathbb{I}_{(s=0)} \left(\sum_{i=0}^{Y-1} \hat{y}_{i} \log \hat{y}_{i} \right) - \mathbb{I}_{(s=1)} \left(\sum_{i=0}^{Y-1} \hat{y}_{i} \log \hat{y}_{i} \right) \right)$$

Typical cross-entropy for y

Exploiting the Entropy

Training Loss

Maximize/minimize the entropy for s

The threshold is decided via a validation set

$$\mathcal{L}^{b} = -\beta^{y} \sum_{i=0}^{Y-1} y_{i} \log \hat{y}_{i} - \beta^{s} \left(\mathbb{I}_{(s=0)} \left(\sum_{i=0}^{Y-1} \hat{y}_{i} \log \hat{y}_{i} \right) - \mathbb{I}_{(s=1)} \left(\sum_{i=0}^{Y-1} \hat{y}_{i} \log \hat{y}_{i} \right) \right)$$

Typical cross-entropy for y

Inference

$$\mathbf{y} = \operatorname{argmax}(\hat{\mathbf{y}})$$
 $\mathbf{s} = \begin{cases} 0, & \text{if } \mathsf{H}(\hat{\mathbf{y}}) \leq \tau \\ 1, & \text{otherwise} \end{cases}$

Exploiting the Entropy

Training Loss

Maximize/minimize the entropy for s

The threshold is decided via a validation set

$$\mathcal{L}^{b} = -\beta^{y} \sum_{i=0}^{Y-1} y_{i} \log \hat{y}_{i} - \beta^{s} \left(\mathbb{I}_{(s=0)} \left(\sum_{i=0}^{Y-1} \hat{y}_{i} \log \hat{y}_{i} \right) - \mathbb{I}_{(s=1)} \left(\sum_{i=0}^{Y-1} \hat{y}_{i} \log \hat{y}_{i} \right) \right)$$

Typical cross-entropy for y

Inference

$$\mathbf{y} = \operatorname{argmax}(\hat{\mathbf{y}})$$
 $\mathbf{s} = \begin{cases} 0, & \text{if } \mathsf{H}(\hat{\mathbf{y}}) \leq \tau \\ 1, & \text{otherwise} \end{cases}$

2) Parameterized: for general attributes

Based on **information bottleneck principle** and using **variational approximation** of conditional entropies.

Based on **information bottleneck principle** and using **variational approximation** of conditional entropies.

$$\min_{(\mathbf{x},y,s)\leftarrow\mathcal{D},\;\mathcal{F}\in\mathbb{F},\;\hat{\mathbf{y}}\leftarrow\mathcal{F}(\mathbf{x}),\hat{\mathbf{s}}=\mathcal{G}(\hat{\mathbf{y}})}\left[\mathcal{H}=\beta^{x}\mathsf{H}(\hat{\mathbf{y}})+\beta^{y}\mathsf{H}(y|\hat{\mathbf{y}})+\beta^{s}\mathsf{H}(s|\hat{\mathbf{y}})\right]$$

Experimental Results

CelebA Dataset (Liu, Ziwei, et al. ICCV 2015)

у	Smile			
S	MouthOpen	Makeup	Male	WavyHair
MI(y, s)	0.231	0.024	0.015	0.003
Easiness(s)	93.4%	89.0%	97.7%	77.3%

CelebA Dataset (Liu, Ziwei, et al. ICCV 2015)

у	Smile							
S	MouthOpen		Makeup		Male		WavyHair	
MI (y, s)	0.231		0.024		0.015		0.003	
Easiness(s)	93.	93.4% 89.0%		97.7%		77.3%		
Model	δ ^y %	δ5%	δ ^y %	δ ^s %	δ ^y %	δ ^s %	δ ^y %	δ ^s %
standard	92.1	79.6	92.1	68.2	92.1	61.0	92.1	57.9
HBC (R)	91.7	91.2	91.6	96.0	91.6	96.0	91.7	73.5
HBC (P)	91.8	93.4	92.3	97.2	92.3	97.2	92.1	76.7

Parameterized Method

age

Y = 3

Y = 4

Y = 5

S = 2 gender

Model		
standard		
HBC (Raw)		
HBC (Soft)		

δ ^y %	δ <mark>s</mark> %
85.5	56.0
85.8	89.1
85.7	83.5

 $softmax(\hat{y}) = softmax(\hat{y} + a)$ for all a

Vulnerability to Knowledge Distillation

$$\mathcal{L}^{KL} = \sum_{i=1}^{Y} \hat{\mathbf{y}}_{i}^{Teacher} \log \left(\hat{\mathbf{y}}_{i}^{Teacher} / \hat{\mathbf{y}}_{i}^{Student} \right)$$

CelebA Dataset (Liu, Ziwei, et al. ICCV 2015)

у	Smile							
S	MouthOpen		Makeup		Male		WavyHair	
Model	δ ^y %	δ <mark>s</mark> %	δ ^y %	δ <mark>s</mark> %	δ ^y %	δ ^s %	δ ^y %	δ <mark>s</mark> %
Teacher	90.1	89.1	90.7	85.2	90.2	92.7	92.0	61.1
Student	90.3	88.1	91.0	82.6	90.2	91.6	91.8	59.7

Examining HBC models

The average entropy of HBC models

y: Age 3-classes: $\leq 20 \& 21-35 \& >35$

S: Race 3-classes: White & Asian & Others

Model			
standard			
HBC (raw)			

δ^{y}	δ ^s	Avg. Entropy
81.43	58.14	0.48
81.32	82.97	0.63

Without Compression
$$\beta^x = 0$$

$$\min_{(\mathbf{x}, y, s) \leftarrow \mathcal{D}, \ \mathcal{F} \in \mathbb{F}, \ \hat{\mathbf{y}} \leftarrow \mathcal{F}(\mathbf{x}), \hat{\mathbf{s}} = \mathcal{G}(\hat{\mathbf{y}})} \left[\mathcal{H} = \beta^x \mathsf{H}(\hat{\mathbf{y}}) + \beta^y \mathsf{H}(y|\hat{\mathbf{y}}) + \beta^s \mathsf{H}(s|\hat{\mathbf{y}}) \right]$$

The average entropy of HBC models

y: Age 3-classes: $\leq 20 \& 21-35 \& >35$

S: Race 3-classes: White & Asian & Others

Model standard		

δ^{y}	δ ^s	Avg. Entropy
81.43	58.14	0.48
81.32	82.97	0.63

δ^{y}	δ^{s}	Avg. Entropy
80.90	58.60	0.40
80.95	83.86	0.39

Without Compression $\beta^x = 0$

With Compression $\beta^x = 0.4$

$$\min_{(\mathbf{x},y,s)\leftarrow\mathcal{D},\ \mathcal{F}\in\mathbb{F},\ \hat{\mathbf{y}}\leftarrow\mathcal{F}(\mathbf{x}),\hat{\mathbf{s}}=\mathcal{G}(\hat{\mathbf{y}})}\left[\mathcal{H}=\overline{\beta^{x}\mathsf{H}(\hat{\mathbf{y}})}+\overline{\beta^{y}\mathsf{H}(y|\hat{\mathbf{y}})}+\overline{\beta^{s}\mathsf{H}(s|\hat{\mathbf{y}})}\right]$$

Pruning hurts both Honesty and Curiosity

y: Age 3-classes: $\leq 20 \& 21-35 \& >35$

s: Race 3-classes: White & Asian & Others

Pruning hurts both Honesty and Curiosity

- N% of parameters with the lowest L1-norm are set to zero at inference time.
- Thus, most of the parameters capture information related to both y and s.

Conclusion

- Encrypted Cloud Computing

- On-Device/Edge Computing

- Encrypted Cloud Computing

- On-Device/Edge Computing

If we do not trust a service provider, then even releasing the output is not completely safe!

Other Observations

- Overparameterized deep neural nets enable HBC nets.
- Releasing **Sigmoid** or **Softmax** is not sufficient
- Not easy to identify whether a model is **HBC** or not.
 - no general defense mechanism!
 - sensitive attribute must be known & a labelled dataset is required

Open Directions

- ☐ To improve or extend the **attack**:
 - 1. Encoding more than **one** sensitive attribute
 - 2. Applying the attack in collaborative or federated learning

Open Directions

- To improve or extend the attack:
 - 1. Inferring more than **one** sensitive attribute
 - 2. Applying the attack in **collaborative learning** settings
- To propose efficient defences:
 - 1. Examination methods finding "HBC" classifiers
 - 2. Inference-time methods for removing potential curiosities

Thank You

Honest-but-Curious Nets: Sensitive Attributes of Private Inputs can be Secretly Coded into the Classifiers' Outputs

Mohammad Malekzadeh, Anastasia Borovykh and Deniz Gündüz Code: https://github.com/mmalekzadeh/honest-but-curious-nets

Happy to hear from you: m.malekzadeh@imperial.ac.uk

Paper's Webpage

Imperial College London

Acknowledgments:

- European Research Council (ERC) Starting Grant BEACON (no. 677854)
 - UK EPSRC Grant within the CHIST-ERA program (no. EP/T023600/1)
 - J.P. Morgan A.I. Research Award 2019