Multiple Regression Model Selection in MLR

Model Selection

- Having a large number of independent variables/predictors, decide which of them to include in the model.
- This is the problem of model selection, and it is a difficult one.
- Good model selection rests on this basic principle known as Occam's razor:
 "The best scientific model is the simplest model that explains the observed data."
- In terms of linear models, Occam's razor implies the Principle of Parsimony:
 "A model should contain the smallest number of variables necessary to fit the data."
- Models that include only the variables needed to fit the data are called parsimonious models. Much of the practical work of multiple regression involves the development of parsimonious models.
- Adding a new variable to a model can substantially change the coefficients of the variables already in the model.

Model Selection

- GOAL: Find a model that explains as much variability in Y as possible with the smallest number of predictors.
- NOTE: Models with fewer variables support the principle of parsimony, are easier to interpret and cheaper to use.
- STEP1: Consider only those predictors that should have some effect on the response- work with the expert in the application area.
- STEP 2: Use a predictor/model selection procedure.
 - "Stepwise procedure" use partial F-tests to decide about a predictor,
 - Use an overall measure of model quality. For example R² or MSE.

Stepwise Procedures

- Forward selection;
- Backward elimination;
- Stepwise regression.

Characteristics of stepwise procedures

- All are based on partial F-tests,
- All are automated in stat software,
- Reasonable for large number of possible predictors,
- Do not consider all possible models,
- Use user specified criteria for adding/deleting a predictor from the model.

Forward selection

- START: Intercept only model
- Add variables to the model one at a time. Once "in" a variable stays in the model.
- STEP 1. Consider all models with 1 predictor
 - Compute partial F-tests (or t-tests) for model coefficients.
 - The variable with highest significant F-statistic (or t-stat) stays in the model, say xi.
- STEP 2. Consider all models with xi and one additional predictor
 - Compute partial F-tests (or t-tests) for model coefficients.
 - The variable with highest significant F-statistic (or t-stat) stays in the model, say xj.
- ETC.
- STOP when can not add any variables. Resulting model called "best"

Criteria for adding a predictor "highest significant F/t statistic"

- SIGNIFICANT: p-value less than significance level or F stat larger than specified value Fo.
- Fo chosen large for many tests, so Fo must be large for many values of df, often Fo=4 because $F_{1, v. 0.05} \approx 4$ for many values of v.
- HIGHEST: consider only significant predictors, add the one with the largest F statistic.
- REMEMBER: For partial F-tests about β_i 's: $F = t^2$. So, you can also use values of the t-stat to make the decisions. Usually F stats are used in all packages.

Backward elimination

- Similar idea to forward selection.
- START: A model with ALL predictors.
 - Remove variables from the model one at a time.
 - Once remove a variable from the model, it stays out of the model.
- STEP 1: Consider all models with one variable removed.
 - Compute partial F-tests (or t-tests) for model coefficients.
 - Eliminate the variable with the smallest F-statistic (or t-stat) out of those with F stat smaller than a specified value F*.
- STEP 2. Consider all models with second variable removed. Predictor removed in step 1 stays out.
 - Compute partial F-tests (or t-tests) for model coefficients.
 - Eliminate the variable with the smallest F-statistic (or t-stat) out of those with F stat smaller than a specified value F*.
- ETC.
- STOP when can not remove any variables. Resulting model called "best"

Criteria for eliminating a predictor

- "Smallest F/t stat among those smaller than Fo"
- "Smaller than Fo": Fo chosen as a critical value for significance test or a specified value that is "small" for many tests. Again, often Fo=4 because $F_{1, v, 0.05} \approx 4$ for many values of v.
- SMALLEST: consider only predictors with F< Fo. Eliminate one with smallest F among them.

Stepwise regression

- Combines forward selection and backward elimination.
- START: with a model
- FS step: Add a predictor
- BE step: Examine variables previously in the model for possible elimination.
- ETC.
- STOP: when nothing to add.
- In stepwise regression we may replace one variable with several predictors or vice verse'a.

Overall measures of model quality

- Adjusted R²: R_a²
- PRESS statistic
- Mallows Cp statistic
- S or S² (Mean squared error)
- These measures of fit can be used to compare all 2k models with k available predictors.
- They can be used to compare models with different number of predictors
- Drawback: They are practical if the number of predictors k is not very large.

Adjusted R²: R_a²

- R_a² is R² adjusted for the number of explanatory variables
- Problem with R²: add a predictor to a MLR model, then R² increases and SSE decreases no matter how little explanatory power that predictor has!
- Solution: Look at $R^2 = 1 SSE/SSy$ (SSy=SST/n-1) and replace SSE by MSE=SSE/(n-p) and SSy by Sy², get adjusted R^2 :

$$R_a^2 = 1 - \frac{SSE/(n-p)}{SSy/(n-1)} = 1 - \frac{MSE}{S_Y^2} = 1 - \underbrace{n-1}_{n-p} \underbrace{SSE}_{S_Y^2}$$
 Independent of the model n-p decreases, so (n-1)/(n-p) increases

Adjusted R²

•
$$R_a^2 = 1 - \frac{n-1}{n-p} \frac{SSE}{S_Y^2}$$

- If we add a predictor, then (n-1)/(n-p) increases, and SSE decreases or SSE/SSy decreases.
- If predictor has little explanatory power, then
 - SSE/SSy decreases "a little"
 - Decrease in SSE/SSy can be offset by increase in (n-1)/(n-p) ending in
 - Little change in R_a²

Thus, R_a² is useful for comparing models with different numbers of predictors.

R_{a²} and MSE

- Maximizing R_a^2 is equivalent to minimizing MSE= S^2 .
- MINITAB has a "best subsets" option for choosing "the best" model
- Best subsets algorithm uses R_a^2 as a measure of quality, thus it searches for a model with the largest R_a^2 (smallest MSE).
- The "best subsets" process works for at most 20 predictors.

PRESS Statistic

- PRESS- Prediction residuals Sum of Squares
- Prediction residual i: $e_{(i)} = Y_i \widehat{Y}_i$, where \widehat{Y}_i is the regression estimate of Y_i (ith fitted value) based on a regression equation computed WITHOUT the ith observation.
- $PRESS = \sum_{i=1}^{n} e_{(i)}^{2}$ is an estimate of the error of new predictions
- Minimizing PRESS means having a regression equation which produced the smallest error when making new predictions.
- In MINITAB: to get prediction errors $e_{(i)}$ we use leverage statistics hi:

$$e_{(i)}=\frac{e_i}{1-h_i},$$

where h_i =ith leverage statistic that can be reported as optional output (use Storage button).

Mallows Cp statistic

- Mallows Cp statistic is designed to achieve a good compromise between
 - Explaining as much variability in Y as possible by including all relevant predictors
 - Minimizing variance of the resulting estimates, that is minimizing s² by keeping the number of predictors small.

$$C_p = p + \frac{(n-p)(s_p^2 - \widehat{s^2})}{\widehat{s^2}},$$

p=number of predictors in the model,

 s_p^2 =MSE of a model with p predictors,

 $\widehat{s^2}$ ="best" estimate of the true error σ^2 usually estimated by the minimum MSE among ALL 2^k models.

As "best" model we choose one with the smallest Cp.

Cp is reported in MINITAB in the output of the "best subsets regression". NOTE: PRESS and Cp methods usually agree as to the "best" model.

THE CHOICE

- What if R_a^2 , PRESS, and Cp are very close for two models?
- The scientist/statistician must choose one model: Use common sense and be practical:
 - A model with less expensive predictors is more practical than a model with expensive predictors;
 - A model with a clear interpretation is better than one that is complex and difficult to interpret.
 - Etc.

Stepwise procedures versus overall quality based selection

- Overall quality selection:
 - (+) compares all models
 - (+) flexible selection criteria
 - (-) computationally expensive or impossible in practice for many predictors.

Generally we look at the overall quality measures when possible and practical.

Summary of model selection criteria based on overall quality measures

The coefficient of multiple determination.

$$R^2 = SSR/SS_Y$$

Choose models with high R². However, R² increases every time more predictors are added, regardless of their importance in predicting Y.

Adjusted R².

Adj
$$R^2 = 1 - (n-1)(1 - R^2)/(n-k-1)$$

Choose models with high adj. R². Better suited for model selection than R². It increases/decreases only when important/unimportant predictors are added to the model.

Residual mean square (mean square error).

$$MSE = SSE_k/(n-k-1)$$

Choose models with low MSE.

- Mallows' C_p statistic. Choose models with small C_p.
- PRESS statistic: choose models with small PRESS statistic.

Example of Model Selection-class data

Regression Analysis: y versus x1, x2

Forward Selection of Terms

 α to enter = 0.25

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value Regression 2 157.381 78.6904 99.59 0.000

x1 1 76.931 76.9311 97.37 0.000

x2 1 45.747 45.7471 57.90 0.000

Error 7 5.531 0.7901

Total 9 162.912

Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.888893 96.60% 95.63% 92.93%

Coefficients

Term Coef SE Coef T-Value P-Value VIF Constant 0.530 0.671 0.79 0.456 x1 2.766 0.280 9.87 0.000 1.05 x2 -2.117 0.278 -7.61 0.000 1.05

Regression Equation v = 0.530 + 2.766 x1 - 2.117 x2

Backward elimination-classdata

Regression Analysis: y versus x1, x2

Backward Elimination of Terms

Candidate terms: x1, x2

----Step 1-----

Coef P

Constant 0.530

x1 2.766 0.000

x2 -2.117 0.000

S 0.888893

R-sq 96.60%

R-sq(adj) 95.63%

R-sq(pred) 92.93%

Mallows' Cp 3.00

 α to remove = 0.1

Regression Equation

 $y = 0.530 + 2.766 \times 1 - 2.117 \times 2$

Best subsets regression: classdata

Best Subsets Regression: y versus x1, x2

Response is y

	R-Sq			R-Sq Mallows			ХX		
Vars	R-Sq	(adj)	PRESS	(pred)	Ср)	S	12	
1	68.5	64.6	69.8	57.2	58.9	2.53	317	X	
1	49.4	43.1	108.1	33.6	98.4	3.21	L06	X	
2	96.6	95.6	11.5	92.9	3.0	0.888	889	ХX	