Реберные раскраски

C — множество цветов Реберная раскраска: $c: E \to C$ (красим ребра). Раскраска c правильная, если $c(e) \neq c(e')$ для всяких смежных ребер e, e'.

Иными словами, для каждого цвета множество ребер, раскрашенных в данный цвет — это паросочетание.

Реберные раскраски

Theorem 1 (Кенига о раскраске ребер)

В двудольном графе $G = (V_1, V_2, E)$ существует правильная раскраска ребер в D цветов, где D — наибольшая степень вершины.

Доказательство. Индукция по наименьшей степени вершины d, от больших к меньшим.

Базис: d=D, т.е. D-регулярный граф. Покажем, что он удовлетворяет условию теоремы Холла:

- lacktriangle всякое множество $U_1\subseteq V_1$ соединено со своими соседками из V_2 ровно $D|U_1|$ ребрами,
- так как у каждой соседки степень тоже D, этих соседок всего не менее чем $\frac{D|U_1|}{D} = |U_1|$.

По теореме Холла есть совершенное паросочетание.

Удаляем ребра паросочетания, остается (D-1)-регулярный двудольный граф, в нем опять есть совершенное паросочетание, и т.д.

Полученные D непересекающихся паросочетаний образуют искомую раскраску ребер G.

Реберные раскраски

Шаг индукции: d < D. Пусть $G = (V_1, V_2, E)$ — граф.

- ightharpoonup Строим копию этого графа: $G' = (V_1', V_2', E')$.
- lacktriangle Эти два графа объединяются в граф $G'' = (V_1 \cup V_2', V_2 \cup V_1', E \cup E' \cup E_0)$, где E_0 содержит по ребру (v,v') для каждой вершины $v \in V_1 \cup V_2$ степени d.

В $G^{\prime\prime}$ наибольшая степень вершины D, а наименьшая d+1.

По предположению индукции его ребра красятся.

Из его раскраски извлекается раскраска ребер G.