ECE 2331 - Programming Assignment 3

The Kessel Run

The problem

Your job is to create an algorithm that can plot a course through a black hole cluster. You will load a series of black hole positions and masses:

$$X = [x_1, x_2, x_3, \dots, x_N]$$

$$Y = [y_1, y_2, y_3, \dots, y_N]$$

$$M = [m_1, m_2, m_3, \dots, m_N]$$

where (x_i,y_i) is the position of gravity well i and m_i is its mass. These black holes will be placed on a 20x20 parsec plane with the origin at the center: ($[-10,10] \times [-10,10]$). The starting point p_0 can be anywhere along a 10 parsec line centered at the bottom of the playing field:

$$p_0 = (p_x, p_y)$$
, where $p_x \in [-5, 5]$ and $p_y = -10$.

The starting velocity $v(t_0) = v_0$ is given by the direction vector \overline{v}_0 with magnitude $|v_0|$:

$$v_0 = |v_0| \cdot \overline{v_0}$$

The starting trajectory $\overline{v_0}$ is specified by a normal distribution with a standard deviation of $\frac{\pi}{4}$ radians from the positive *y*-axis: [0,1]. The initial state of the playing field is shown in the following figure:

Software

Your software will compute the shortest path through the black hole cluster and return the optimal start point p_0 and velocity v_0 to make the trip. This optimal start state will be estimated using a Monte-Carlo simulation. Each start state will be tested using a physically-based model of the black hole cluster using an explicit Runge-Kutta integration method (ex. Euler's method).

Output

You are required to use Matlab, and may use any functions available in the standard distribution. Turn your program in as a single *.m file. Display the following using a scatter plot:

- The gravity well positions (files of positions will be provided)
- The shortest path found as a color-mapped curve (blue = start, red = end)
- The longest path found as a color-mapped curve (blue = start, red = end)

Write your code to perform the following functions:

For each Monte-Carlo sample-----

- 1. Select a starting position $p(t_0) = p_0$ for your ship
 - a. The start position is a randomly selected position at y = -10 and $x \in [-5, 5]$
 - b. Draw the random position from a uniform distribution
- 2. Select a starting velocity $v(t_0) = v_0 = |v_0| \cdot \overline{v_0}$
 - a. The orientation vector $\overline{v_0}$ is a normalized trajectory from the start point
 - i. Select $\overline{v_0}$ to be pointing outward from p_0
 - ii. Draw this trajectory from a normal distribution with a standard deviation of $\frac{\pi}{4}$
 - iii. The mean of this distribution is along the y-axis: usually expressed as $\theta = \frac{\pi}{2}$ in polar coordinates
 - b. The scalar magnitude $|v_0|$ is the starting speed of your ship relative to the start point
 - i. Select $|v_0| \in [2, 5]$
 - ii. Draw this random speed from a uniform distribution
- 3. Simulate the passage of the ship
 - a. For each time step
 - i. Determine the force incident on the ship (see below)
 - 1. Terminate if the maximum net acceleration exceeds $||a(t)||_2 = 4$
 - ii. Update the ship's velocity using an explicit method (ex. Euler's method)
 - iii. Update the ship's position using an explicit method (ex. Euler's method)
 - 1. Terminate (successfully) if the ship reaches its destination: y > 10

System of Differential Equations

In step (3), you are solving for the ship position as a function of time p(t) using the following system of differential equations:

$$\frac{dp}{dt} = v(t)$$

$$\frac{dv}{dt} = a(t)$$

$$\sum_{i=1}^{N} F_i = m_S \cdot a(t)$$

The net force F applies an acceleration to your ship. The net force applied is the sum of forces applied by all black holes. The force applied by a black hole is proportional to the distance between your ship and the black hole. The vector from your ship and a black hole is given by:

$$r_i = p_s - (x_i, y_i)$$

where p_s is the position of your ship and i is the index of the black hole. The distance between your ship and the black hole is $|r_i|$, where the vector magnitude is given by the Euclidean norm:

$$|b| = \sqrt{b_x^2 + b_y^2}$$

The force that a single black hole applies to your ship is:

$$F_i = \frac{r_i}{|r_i|} \cdot \frac{m_s m_i}{|r_i|^2} = \frac{r_i m_s m_i}{|r_i|^3}$$

Where m_s is the mass of your ship and m_i is the mass of the *i*th black hole. Therefore, the force applied by all of the black holes is given by:

$$F = -\sum_{i=1}^{N} \frac{r_i m_s m_i}{|r_i|^3}$$

Programming Assignment 4 – Runge-Kutta Methods (Matlab)

Name		
Correct result		/30
shortest path found	/ 20	
longest path found	/10	
Physics		/ 25
evaluation of force	/10	
force in differential equations	/5	
comments and readability	/10	
Euler Integration		/ 45
correct formulas for velocity	/10	
correct formulas for position	/ 15	
code is correct / robust	/10	
comments and readability	/ 10	
Total		/ 100