Generative AI for Data Science

Structure

- 1. What is Generative AI?
- 2. How can you use it?
- 3. Going Beyond ChatGPT: API & Functions
- 4. Langchain & Beyond: Using LLMs in Applications
- 5. Shortcomings
- 6. Further Reading

The notebook to replicate this lecture's tutorials can be found in today's "Challenge" on Kitt.

1. What is Generative AI?

Some of the largest players in Generative Al right now

Gen Al is an umbrella term

- Model is trained
- (Optional) Model fine-tuned
- Inference is run
- Images, text, sound

2. How can you use it?

The simplest (and most widely known) way to interact with high-quality generative AI is through ChatGPT:

- Trained on a vast amount of data
- 175+ billion trained parameters
- 700,000 dollars inference/ day (on top of 2-5 million dollars estimated cost for each training)

Pre-trained vs fine-tuning vs from-scratch

Prompt engineering:

Some key points:

- Using role-playing
- Being specific in the task
- Highlighting inputs and specifying outputs
- "Zero-shot" vs "few-shot"
- Using Chain-of-thought prompting

3. Going beyond ChatGPT

The OpenAl API

import openai

```
# Set your OpenAl API key
openai_api_key = 'api-key-here'
```

Initialize the OpenAI API client openai_api_key = openai_api_key

```
# Prompt for the AI model
prompt = "Translate the following English text to French: 'Hello, how are you?'"
# Make a request to the API to generate text
response = openai.chat.completions.create(
  model="gpt-3.5-turbo", # Use the engine of your choice
  messages = [{"role": "user", "content": prompt}],
  max tokens = 50
response.choices[0].message.content
System prompts
# Prompt for the AI model
prompt = "Give instructions to cook vegetable samosas"
# Make a request to the API to generate text
response = openai.chat.completions.create(
  model="gpt-3.5-turbo", # Use the engine of your choice
  messages = [{"role": "system", "content": "You are a sassy culinary instructor that gives sarcastic
replies"},
         {"role": "user", "content": prompt}],
  max tokens = 50
response.choices[0].message.content
Function calling: Imagine a function we might write
def get_current_weather(location, unit):
  ### A request is made to an API with a specific format
  ### returns some result
completion = openai.chat.completions.create(
  model="gpt-4",
  messages=[{"role": "user", "content": "I'm interested in the weather in Bozeman. I'm old-school so
like it in F?"}],
  functions=[
     "name": "get current weather",
    "description": "Get the current weather in a given location",
    "parameters": {
```

```
"type": "object",
    "properties": {
        "location": {
            "type": "string",
            "description": "The city with its accompanying state, e.g. San Francisco, CA",
        },
        "unit": {"type": "string",
            "enum": ["celsius", "fahrenheit"]},
      },
      "required": ["location"],
    },
}

completion_choices[0].message.function_call.arguments
```

A practical example

```
import pandas as pd
import ison
df =
pd.read_csv("https://wagon-public-datasets.s3.amazonaws.com/deep_learning_datasets/results.csv"
df["date"] = pd.to_datetime(df["date"])
completion = openai.chat.completions.create(
  model="gpt-4",
  messages=[{"role": "user", "content": "Tell me about matches that took place in Italy between 1980
up until the end of the 20th century"}],
  functions=[
     "name": "get matches",
     "description": "Return the rows in a DataFrame about women's football games which satisfy the
criteria"
     "parameters": {
       "type": "object",
       "properties": {
          "country": {
            "type": "string",
            "description": "The name of the country the matches took place e.g. France or China",
          },
```

```
"start_year": {
             "type": "number",
             "description": "The year to begin filtering from e.g. 1956",
          "end_year": {
             "type": "number",
             "description": "The year to end filtering on e.g. 2005"}
       },
       "required": ["location", "start_year", "end_year"],
     },
  }
function_call="auto",
args = json.loads(completion.choices[0].message.function_call.arguments)
print(args)
def matches_finder(country: str, start_year: int, end_year: int):
  return df.loc[
     (df["country"] == country) &
     (start_year <= df["date"].dt.year) &
     (df["date"].dt.year <= end_year)
matches_finder(**args)
```

4. Langchain and Beyond:

How can I work with larger amounts of data?

- We saw in the Transformers lecture how tricky it is to have large context windows (a.k.a. sequence length)
- ChatGPT and other models have ~32k tokens max

Does that mean that we can only ever work with documents <32k tokens <a>? We can use a Vector DataBase to store our embeddings <a>

We can use services like Open AI's embeddings API to convert large documents into vector representations and then store them ambedding-ada-002"

embedding = openai.embeddings.create(input=["""This is a simple embedding of a sentence"""], model=model)

How large are the embeddings we got? import numpy as np

np.array(embedding["data"][0]["embedding"]).shape

How can we go about tackling larger documents?

! wget -O book.pdf "https://greenteapress.com/thinkpython2/thinkpython2.pdf"

from langchain.document_loaders import PyPDFLoader

```
loader = PyPDFLoader("book.pdf")
```

data = loader.load()

```
print (f'You have {len(data)} documents in your data')
```

print (f"There are ~{np.mean([len(x.page_content) for x in data])} characters per document"")

How could we split our documents up?

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=400)

texts = text_splitter.split_documents(data)

Storing them in a Vector DataBase

from langchain.vectorstores import Chroma

from langchain_openai import OpenAlEmbeddings

embeddings = OpenAlEmbeddings(openai_api_key=api_key)

vector db = Chroma.from documents(texts, embeddings)

query = "How do I establish a Class?"
docs = vector_db.similarity_search(query, k = 5)

Can we go even further?

from langchain_openai import ChatOpenAl

from langchain.chains.question_answering import load_qa_chain

Ilm = ChatOpenAl(temperature=0, openai_api_key=api_key)
chain = load_qa_chain(llm, chain_type="map_reduce")

A note on <u>temperature</u> and on <u>"map_reduce"</u>! query = "How does the author recommend I keep studying after the book?" docs = vector_db.similarity_search(query, k=1)

chain.run(input_documents=docs, question=query)

Running LLMs locally/ privately

Why might you need to do this?

- Data privacy
- Fine-tuning on specific datasets

We can even download quantized (reduced) versions of very large models from <u>HuggingFace</u>

Why Quantize?

Assuming weights are stored in 32-bit float format:

```
1 model parameter = 4 bytes
```

1 billion parameters = 4 x 1,000,000,000 bytes = 4 GB (not even counting optimizer, gradient and activation info)

Many cutting edge models (Falcon, Llama, GPT 4) easily break 70 billion trainable parameters 🤯 output = Ilm("Q: How large is the earth's diameter? A: ", max_tokens=200, echo=True) output["choices"][0]["text"]

Running multi-modal models yourself (Colab recommended)

from diffusers import AutoPipelineForText2Image import torch

```
pipeline = AutoPipelineForText2Image.from_pretrained(
  "runwayml/stable-diffusion-v1-5",
  torch dtype=torch.float16,
  use safetensors=True
).to("cuda") # For use w/ a GPU in colab
```

```
prompt = "A Renaissance painting of the Eiffel tower"
pipeline(prompt, num_inference_steps=30).images[0]
```

5. Shortcomings

- Bias in the model
- Reliance on LLMs for labelling
- Reliability (even with the Functions API)
- Recency of data
- Confidence intervals (or lack thereof)
- More in Ethics & Al!

6. Further Reading

- OpenAl API Docs: Filled with code examples to use
- Andrew Ng's Prompt Engineering for Developers: Excellent, free 1-hour course
- Full list of Deeplearning.ai courses: Build on many of the use cases mentioned in this lecture
- RSS Data Science and Al Newsletter: Monthly updates on latest tools
- HuggingFace Blog Post on QLora