Chapter 22

Singular Value Decomposition and Polar Form

22.1 Properties of $f^* \circ f$

In this section we assume that we are dealing with real Euclidean spaces. Let $f: E \to E$ be any linear map. In general, it may not be possible to diagonalize f. We show that every linear map can be diagonalized if we are willing to use two orthonormal bases. This is the celebrated $singular\ value\ decomposition\ (SVD)$. A close cousin of the SVD is the $polar\ form$ of a linear map, which shows how a linear map can be decomposed into its purely rotational component (perhaps with a flip) and its purely stretching part.

The key observation is that $f^* \circ f$ is self-adjoint since

$$\langle (f^*\circ f)(u),v\rangle = \langle f(u),f(v)\rangle = \langle u,(f^*\circ f)(v)\rangle.$$

Similarly, $f \circ f^*$ is self-adjoint.

The fact that $f^* \circ f$ and $f \circ f^*$ are self-adjoint is very important, because by Theorem 17.8, it implies that $f^* \circ f$ and $f \circ f^*$ can be diagonalized and that they have real eigenvalues. In fact, these eigenvalues are all nonnegative as shown in the following proposition.

Proposition 22.1. The eigenvalues of $f^* \circ f$ and $f \circ f^*$ are nonnegative.

Proof. If u is an eigenvector of $f^* \circ f$ for the eigenvalue λ , then

$$\langle (f^* \circ f)(u), u \rangle = \langle f(u), f(u) \rangle$$

and

$$\langle (f^* \circ f)(u), u \rangle = \lambda \langle u, u \rangle,$$

and thus

$$\lambda \langle u, u \rangle = \langle f(u), f(u) \rangle,$$

which implies that $\lambda \geq 0$, since $\langle -, - \rangle$ is positive definite. A similar proof applies to $f \circ f^*$.