ESO209A: Tutorial 3 (Week 3: 11-18 Aug 2021. Based on Lectures 4 and 5)

- 1. For any two vectors **a** and **b**, prove the following properties for an orthogonal tensor Q:
 - a. $(\mathbf{Q} \cdot \mathbf{a}) \cdot (\mathbf{Q} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$.
 - b. $(\mathbf{Q} \cdot \mathbf{a}) \times (\mathbf{Q} \cdot \mathbf{b}) = \lambda \mathbf{Q} \cdot (\mathbf{a} \times \mathbf{b})$ with λ being the real principal value of \mathbf{Q} .
- 2. With $\hat{\bf n}$ a unit vector and 1 the identity tensor, let $Q = 1 2\hat{\bf n} \otimes \hat{\bf n}$.
 - a. Show that Q is an orthogonal tensor.
 - b. Calculate the principal values and vectors of Q.
 - c. Take a vector $\mathbf{a} = \hat{\mathbf{e}}_1 + 2\hat{\mathbf{e}}_2 + 3\hat{\mathbf{e}}_3$, evaluate $\mathbf{Q} \cdot \mathbf{a}$ and describe the action of \mathbf{Q} on \mathbf{a} by drawing sketches of \mathbf{a} and $\mathbf{Q} \cdot \mathbf{a}$. Let $\hat{\mathbf{n}} = \frac{1}{\sqrt{3}}(\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2 + \hat{\mathbf{e}}_3)$.
- 3. Consider the cube in the right figure. Two CS are given: the global CS
 - $\left\{ \mathcal{E}_{0}, O, \hat{\mathbf{E}}_{i} \right\}$, and the CS $\left\{ \mathcal{B}, G, \hat{\mathbf{e}}_{i} \right\}$ which is fixed to the cube. Initially the cube which is located so that $\mathbf{r}_{G/C} = \hat{\mathbf{E}}_{1} + 2\hat{\mathbf{E}}_{2} + 3\hat{\mathbf{E}}_{3}$. The cube is now rotated about the $\hat{\mathbf{e}}_{3}$ in a counterclockwise direction by an angle $\theta = 30^{\circ}$. Do the following:

b. Use R to find the location of the origin O in the CS $\{\mathcal{B}, G, \hat{\mathbf{e}}_i\}$ after the cube's rotation, i.e. $[\mathbf{r}_{O/G}]_{\mathcal{B}}$.

4. The matrix of moment of the *inertia tensor* \mathbf{I} of a thin circular disc of mass m and radius R (see figure below) about its center of mass G in the principal (also called

body fixed) CS $\{\mathcal{B}, G, \hat{\mathbf{e}}_i\}$ is given by $[\mathbf{I}]_{\mathcal{B}} = \frac{mR^2}{4} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Determine the

matrix of \mathbf{I} in the global CS $\{\mathcal{G}, G, \hat{\mathbf{E}}_i\}$. Note: $\hat{\mathbf{E}}_3$ and $\hat{\mathbf{e}}_3$ are aligned.

5. The latitude λ and longitude θ of a point on the Earth's surface are shown in the figure on the right. These angles are used in navigation systems to define the

downward direction $\hat{\mathbf{e}}_3$, the northerly direction $\hat{\mathbf{e}}_1$ and the easterly direction $\hat{\mathbf{e}}_2$. We define the Earth-fixed CS $\left\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i\right\}$ and the navigation CS $\left\{\mathscr{N}, G, \hat{\mathbf{e}}_i\right\}$.

b. When $\lambda = 30^{\circ}$ and $\theta = 60^{\circ}$ find the single angle of rotation and the axis of rotation corresponding to the rotation R.

6. A plate inscribed with letter P is initially positioned in YZ-plane, called A, as shown in the figure below. In this position the body-fixed CS $\{\mathcal{B}, O, \hat{\mathbf{e}}_i\}$ and the CS $\{\mathcal{B}_1, O, \hat{\mathbf{E}}_i\}$ are aligned. The plate is first rotated about its side ad, along $-\hat{\mathbf{E}}_3$ by 180° such that the body-fixed CS is now given by $\{\mathcal{B}', O, \hat{\mathbf{e}}_i\}$. Subsequently, the plate is rotated about $\hat{\mathbf{E}}_2$ by 90° so as to acquire position B as shown. In this position the body-fixed CS is given by $\{\mathcal{B}'', O, \hat{\mathbf{e}}_i\}$. We define this orientation of body-fixed CS as $\{\mathcal{E}_2, O, \hat{\mathbf{E}}_i\}$. Determine the matrix of rotation tensor R in both \mathcal{E}_1 and \mathcal{E}_2 in going from $\{\mathcal{E}_1, O, \hat{\mathbf{E}}_i\}$ to $\{\mathcal{E}_2, O, \hat{\mathbf{E}}_i\}$. This can be done in two ways: (i) multiplying the rotation tensors R_1 and R_2 in a specific order, or (ii) directly writing R between $\{\mathcal{E}_1, O, \hat{\mathbf{E}}_i\}$ and $\{\mathcal{E}_2, O, \hat{\mathbf{E}}_i\}$ using Euler's theorem. Use both methods to check the correctness of your calculations.

