Which Abelian Surfaces are Products of Elliptic Curves?

Frans Oort

In general an abelian surface is not the product of two elliptic curves, e.g. it may even be not isogenous with a product of elliptic curves, cf. [3], p. 93; [9], Remark (4.3); [4]; [13], last lines of p. 528. But even if the surface is isogenous with a product of elliptic curves, it need not be isomorphic with such a product. For example let E_1 and E_2 be two non-isogenous elliptic curves, and $N = \mathbb{Z}/q$ a subgroup scheme of $E_1 \times E_2$ not contained in either one of the factors; then $(E_1 \times E_2)/N$ is not isomorphic with the product of two elliptic curves. Another example is the following: let E be a supersingular elliptic curve over a field k of characteristic p, choose

such that

 $(i,j): \alpha_p \to E \times E$ $(\alpha_p \xrightarrow{i} {}_{F} E \xrightarrow{j^{-1}} \alpha_p) = \frac{i}{j} \in k \cong \operatorname{End}_k(\alpha_p)$ $\frac{i}{i} \notin F_{p^2};$

has the property

here $_FE = \text{Ker}(F: E \to E^{(p)})$; then $X = (E \times E)/(i, j) (\alpha_p)$ can be shown not to be isomorphic with a product of elliptic curves (X is a "Barsotti extension" of E/α_p by E, cf. [7], 15.7). In this note we show that this last example is the "only obstruction" for a supersingular abelian variety not to be isomorphic with a product of elliptic curves.

All fields in consideration will be of characteristic p > 0; for any such field we write α_p for the kernel of F on G_a , the additive linear group. We abbreviate abelian variety by AV, and supersingular by ss (i.e. $\hat{X} \sim (G_{1,1})^g$, cf. below, or cf. [9], Section 4).

I thank Mr. T. Shioda for asking a question concerning abelian surfaces in characteristic p, which induced me to prove the results of this note.

Notation 1 (cf. [9], 4.4). Let k be an algebraically closed field, X an AV (= abelian variety) over k,

a(X): = dim_k Hom(α_p , X).

Theorem 2. Let k be an algebraically closed field, X and AV over k, dim X = g, and suppose

a(X) = g;

then there exist ss elliptic curves E_1, \ldots, E_g over k and an isomorphism

$$X \cong E_1 \times \ldots \times E_a$$
.

Remark 3. If $X \cong \Pi E_i$, with E_i ss, then $a(X) = \dim X$; hence for a ss AV this condition is necessary and sufficient for the AV to be isomorphic with a product of elliptic curves. In the example above $a(E \times E/(i,j)(\alpha_p)) = 1$ if $ij^{-1} \notin F_{p^2}$.

First we note that the fact $a(X) = \dim(X)$ implies X is ss: let $\sum G_{n_1, m_1}$ be the isogeny type of the formal group \hat{X} of X (notation of [5]); the fact

$$a(X) \leq \Sigma_i \min(n_i, m_i)$$

(cf. [7], 15.8) has been proved by Poletti (cf. [10]); because a(X) = g, the group scheme μ_p cannot be embedded in X, thus $G_{1,0}$ is not contained in \hat{X} , and

$$\hat{X} \sim (G_{1,1})^h + \Sigma_j (G_{s_j,t_j} + G_{t_j,s_j})$$

with $1 \le s_j < t_j$ (cf. [5], Theorem 4.1); thus

$$a(X) \leq h + \sum 2s_j$$
, $h + \sum (s_j + t_j) = g$,

which proves h = g,

$$\hat{X} \sim (G_{1-1})^g,$$

i.e. X is ss.

By [9], Theorem (4.2) this implies X is isogenous over k with a product of ss elliptic curves; now we are going to show X in fact is isomorphic with such a product iff $a(X) = \dim X$.

Proof, first step. If g = 2, and a(X) = 2, then X is purely inseparably isogenous with a product of two elliptic curves. In fact by what is said above, there exist E_1 , E_2 and an isogeny

$$\varphi: E_1 \times E_2 \to X$$
.

Suppose q is a prime number, $q \neq p = \operatorname{char}(k)$, and suppose the kernel of φ contains a point of order q, i.e.

 $\mathbf{Z}/q = N \in \operatorname{Ker}(\varphi)$.

If $N \subset E_1 \times 0$, then

$$(E_1 \times E_2 \rightarrow (E_1/N) \times E_2 \xrightarrow{\varphi'} X) = \varphi$$
.

If $N \not\subset E_1 \times 0$, then we construct an isomorphism $i: E_3 \xrightarrow{\sim} E_2$, and a commutative diagram

$$\begin{array}{c}
N \hookrightarrow E_1 \times E_2 \\
\uparrow (u, i); \\
E_3
\end{array}$$

in that case

$$\begin{pmatrix} id & u \\ 0 & i \end{pmatrix} : E_1 \times E_3 \stackrel{\sim}{\longrightarrow} E_1 \times E_2 ,$$

and

$$(E_1 \times E_2 \cong E_1 \times E_3 \to E_1 \times (E_3/N) \xrightarrow{\varphi'} X) = \varphi$$
.

Thus induction on the separable degree of φ then concludes the proof of the first step.

The construction of u can be done as follows. Because $q \neq p$, and $k = \overline{k}$,

$$_{a}E_{i}$$
: = Ker $(q:E_{i}\rightarrow E_{i})\cong (\mathbb{Z}/q)\times (\mathbb{Z}/q)$.

Because E_1 and E_2 are supersingular, and because $k = \overline{k}$,

$$H:=\operatorname{Hom}_{k}(E_{2},E_{1})\cong \mathbb{Z}^{4}$$

 $(E_1 \text{ and } E_2 \text{ are supersingular, hence isogenous over } \overline{k}, \text{ and } H \text{ is torsion free over } \overline{k}$ $\operatorname{End}_k(E_1)$; note that $\operatorname{End}_k(E_i)$ is free of rank 4 over Z; for references, cf. below). Suppose $h \in H$ has the property

$$({}_{a}E_{2} \rightarrow E_{2} \xrightarrow{h} E_{1}) = 0$$

then $Ker(h) \supset_q E_2$, thus $h \in q$. H. This shows that

$$\operatorname{Ker}(\varrho: H \to \operatorname{Hom}({}_{q}E_{2}, {}_{q}E_{1})) = q \cdot H,$$

thus $\varrho(H) = H/q \cdot H = \mathbb{Z}^4/q \cdot \mathbb{Z}^4$, and because

$$\operatorname{Hom}\left({}_{a}E_{2},{}_{a}E_{1}\right)\cong\left(\mathbf{Z}/q\right)^{4},$$

this shows ϱ to be surjective. Let

$$v_i := (\mathbf{Z}/q = N \rightarrow E_1 \times E_2 \rightarrow E_i)$$
;

because v_2 is injective, we can construct a commutative diagram

$$\mathbf{Z}/q = N \xrightarrow{v_2}_{q} E_2 \cong (\mathbf{Z}/q) \times (\mathbf{Z}/q);$$

$$\downarrow v_1/w$$

$$\downarrow v_1/w$$

$$\downarrow (\mathbf{Z}/q) \times (\mathbf{Z}/q) \cong {}_{a}E_1$$

$$(\mathbf{Z}/q) \times (\mathbf{Z}/q) \cong {}_{\mathbf{q}}E_1$$

thus $E_3 = E_2$, $u \in H$ with $\varrho(u) = w$ has the desired property

$$N \in (u, id) (E_3) \subset E_1 \times E_2$$
,

which proves the first step by what is said above.

The next step in the proof will be the inseparable case with g = 2, it will be based on the same idea as the first step; beforehand we recall some facts we need:

Some Facts and Notations 4. As before we denote by k an algebraically closed field (of characteristic p > 0); by K_i we denote the field with p^i elements, $K_i = F_{p^i}$. Note:

(4.1) There exists a ss elliptic curve E defined over $K_1 = F_p$ which has all its endomorphisms defined over K_2 . Take the case $\beta = 0$ of [13], Theorem (4.1.5): then $\pi = \pm \sqrt{-p}$, and E defined over K_1 with Weil number π has the property

$$\operatorname{End}_{K_2}(E) \cong \mathbb{Z}^4$$

 $(\cong as abelian groups).$

All isogenies in consideration will be over $k = \overline{k}$, and we write E instead of $E \otimes k$ or $E \otimes K_i$.

(4.2) Let E_1 be a ss elliptic curve; then there exist separable isogenies

$$E \rightarrow E_1$$
 and $E_1 \rightarrow E$.

In fact any two ss elliptic curves are isogenous over $\overline{F_p}$ (cf. [13], p. 538), so we can choose an isogeny (with E as in 4.1)

$$d: E \rightarrow E_1$$
;

suppose the inseparable degree of d equals p^{j} , then d can be factored

$$(E \xrightarrow{F^j} E^{(p^j)} \xrightarrow{d'} E_1) = d,$$

with d' separable; because E is defined over the prime field K_1 , we know $E^{(p)} \cong E$, thus $E^{(p^j)} \cong E$ (isomorphisms even over K_1), thus $d': E \to E_1$ is a separable isogeny. The degree n of d' is not divisible by p (because E has no points of order p and d' is separable), thus d'' defined by

$$(E \xrightarrow{d'} E_1 \xrightarrow{d''} E) = n \cdot id_E$$

is separable, which proves (4.2).

Let E_2 and E_1 be elliptic curves. We write

$$_{F}E_{i}$$
: = Ker $(F:E_{i} \rightarrow E_{i}^{(p)})$

(thus $_{\mathbf{F}}E_{i} \cong \alpha_{p}$ iff E_{i} is ss). We write $\mathrm{Hom} = \mathrm{Hom}_{k}$; the inclusions

$$_{F}E_{i} \hookrightarrow _{p}E_{i} \hookrightarrow E_{i}$$

define restriction homomorphisms:

$$\varrho: H: = \operatorname{Hom}(E_2, E_1) \rightarrow H_p: = \operatorname{Hom}(_p E_2, _p E_1)$$

and

$$r: H_p \rightarrow H_F: = \operatorname{Hom}(_F E_2, _F E_1).$$

Lemma 5. Suppose E_1 and E_2 are ss, and $k = \overline{k}$, then

$$r(\varrho(H)) = r(H_p).$$

Proof. We choose E as in (4.1), and we take separable isogenies

$$x: E_2 \rightarrow E$$
, $y: E \rightarrow E_1$;

composition with x and y yields a homomorphism

$$y?x: \operatorname{Hom}_{k}(E, E) \rightarrow H = \operatorname{Hom}_{k}(E_{2}, E_{1}).$$

Thus we arrive at a commutative diagram

$$A := \operatorname{Hom}_{K_{2}}(E, E) \longrightarrow \operatorname{Hom}_{k}(E, E) \xrightarrow{y?x} H$$

$$\downarrow \varrho \qquad \qquad \qquad \downarrow \varrho$$

$$A_{p} := \operatorname{Hom}_{K_{2}}(_{p}E, _{p}E) \longrightarrow \operatorname{Hom}_{k}(_{p}E, _{p}E) \longrightarrow H_{p}$$

$$\downarrow r \qquad \qquad \downarrow r$$

$$A_{F} := \operatorname{Hom}_{K_{2}}(_{F}E, _{F}E) \xrightarrow{a} \operatorname{Hom}_{k}(_{F}E, _{F}E) \xrightarrow{b} H_{F}.$$

We note the following facts. The homomorphism a is injective (if $z \in {}_{F}A$, and $z \otimes k = a(z) = 0$, then z = 0). The homomorphism b is bijective (x and y are separable, hence

$$x|_F E_2 : _F E_2 \xrightarrow{\sim} _F E$$
,

and the same for $y|_F E$). By the choice of E, cf. (4.1), we know A is a free abelian group of rank 4. We claim

 $|r(\varrho(A))| = p^2$

First note Ker $(\varrho: A \to A_p) = p \cdot A$ (same arguments as used in the first step), thus

$$\varrho(A) = A/p \cdot A \cong (\mathbb{Z}/p)^4$$
.

Next note that

$$|A_p| = p^4$$
 and $r(A_p) = A_F$;

in fact, for $_{p}E$ we have an exact sequence

$$0 \rightarrow_F E \rightarrow_p E \rightarrow_p E/_F E \rightarrow 0$$
,

thus an injection

$$\operatorname{Ker}(r:A_{p}\to A_{F})\to \operatorname{Hom}_{K_{2}}(({_{p}E/_{F}E}),{_{F}E});$$

because

$$_{p}E/_{F}E \cong \alpha_{p} \cong _{F}E$$
 and $\operatorname{Hom}_{K_{2}}(\alpha_{p}, \alpha_{p}) \cong K_{2}$,

we conclude that the kernel of r has at most $|K_2| = p^2$ elements, A_p contains $\varrho(A)$, thus $r(A_p)$ has at least p^2 elements, and $r(A_p) \subset A_F \cong K_2$, thus

$$|A_p| = p^4$$
, $\varrho(A) = A_p$, $r(\varrho(A)) = r(A_p) = A_F$.

Thus the image $\operatorname{bar} \varrho(A)$ has p^2 elements. Clearly

$$\operatorname{bar} \varrho(A) \subset r\varrho(H) \subset r(H_p)$$
,

and now we show:

$$|r(H_p)| = p^2.$$

This we prove with the help of Dieudonné modules (cf. [5], and [2], V.1.4). Consider the ring $\mathfrak{E}:=W[F,V]$, where W is the ring of infinite Witt vectors over k, and F and V satisfy the well known relations; the Dieudonné modules of ${}_{p}E_{2}$ and ${}_{p}E_{1}$ are isomorphic with $M_{2}:=\mathfrak{E}/\mathfrak{E}(F-V,p)$, the Dieudonné modules of ${}_{F}E_{2}$ and ${}_{F}E_{1}$ are isomorphic with $M_{1}:=\mathfrak{E}/\mathfrak{E}(F-V,F)$, and

$$H_{p} = \operatorname{Hom}_{k}(_{p}E_{2}, _{p}E_{1}) \cong \operatorname{End}_{\mathfrak{E}}(M_{2})$$

$$\downarrow r \qquad \qquad \downarrow r$$

$$H_{F} = \operatorname{Hom}_{k}(_{F}E_{2}, _{F}E_{1}) \cong \operatorname{End}_{\mathfrak{E}}(M_{1});$$

denote by $e = 1 \mod \mathfrak{E}(F - V, p)$, which is a generator for the \mathfrak{E} -module M_2 . Any element of M_2 can be written uniquely in the form (a + bF).e, with $a, b \in k$. Suppose $f \in \operatorname{End}_{\mathfrak{E}}(M_2)$;

$$f(e) = (a + bF) \cdot e ;$$

then

$$0 = f((F - V) \cdot e) = (F - V)(a + bF) \cdot e = (a^{p} - a^{p^{-1}}) \text{ Fe},$$

thus $a^p = a^{p^{-1}}$, i.e. $a \in K_2$. Thus

$$H_p \cong \{(a,b)|a \in K_2, b \in k\}$$

and

$$r(H_p) \cong \{a | a \in K_2\}$$
;

this proves

$$|r(H_p)|=p^2.$$

By what is said before, this shows the equality stated in the lemma. Q.E.D Remark. The notation H_p is slightly misleading: note that $A_p = A/p \cdot A$, and H_p contains $H/p \cdot H$, but $H_p \neq \varrho(H) = H/p \cdot H$.

Proof, second step. The case g = 2. By the first step we may assume there exists an isogeny

 $\varphi: E_1 \times E_2 \to X$

which is purely inseparable. If $_{F}\mathrm{Ker}(\varphi)$ equals $_{F}E_{1}\times _{F}E_{2}$ we can factor

$$(E_1 \times E_2 \longrightarrow E_1^{(p)} \times E_2^{(p)} = E_1 \times E_2/_F \operatorname{Ker}(\varphi) \xrightarrow{\varphi'} X) = \varphi$$
;

repeating this process we end at a situation where $\varphi: E_1 \times E_2 \to X$ has the property

$$N:=_{F}\ker(\varphi)\cong\alpha_{p}$$
.

If $N \subset E_1 \times 0 \subset E_1 \times E_2$, then

$$(E_1 \times E_2 \longrightarrow (E_1/N) \times E_2 \xrightarrow{\varphi'} X) = \varphi.$$

If $N \not\in E_1 \times 0$, we claim there exist E_3 and $u: E_3 \longrightarrow E_1$, $i: E_3 \xrightarrow{\sim} E_2$ exactly as in the first step; if so we can factor

$$(E_1 \times E_2 \cong E_1 \times E_3 \longrightarrow E_1 \times (E_3/N) \xrightarrow{\varphi'} X) = \varphi ,$$

and induction on the degree of φ' concludes the proof of the second step; thus it remains to construct $u: E_3 \to E_1$ as indicated.

$$_{F}$$
Ker $(\varphi) = N = \alpha_{p} + \text{Ker}(\varphi)$,

then

$$L:=\mathrm{Ker}(F^2:\mathrm{Ker}(\varphi)\to\mathrm{Ker}(\varphi)^{(p^2)})$$

is a group scheme of rank p^2 , and

$$u_2$$
: = $(L \rightarrow \operatorname{Ker} \varphi \rightarrow E_1 \times E_2 \rightarrow E_2)$

is monomorphic because $N \rightarrow F_2$, and N is the only proper non-trivial subgroup scheme of L; thus in this case

$$L_{\frac{\sim}{w_2}-p}E_2 \hookrightarrow E_2.$$

If

$$v_1 := (N \to_F E_1 \times_F E_2 \to_F E_1)$$

equals zero, we can choose $(u: E_2 = E_3 \rightarrow E_1) = 0$; if $v_1 \neq 0$, then v_1 is an isomorphism between N and $_FE_1$, and

$$u_1:=(L\to E_1\times E_2\to E_1)$$

defines an isomorphism

$$u_1|L=w_1:L\xrightarrow{\sim}_n E_1$$
.

Thus

and by Lemma 5 we conclude the existence of $u: E_2 \to E_1$ with $u|_F E_2 = v_1 v_2^{-1}$, i.e.

The last case to consider in this step is $N \not\subset E_1 \times 0$, thus $v_2: N \xrightarrow{\sim}_F E_2$, and $N = \text{Ker } \varphi$.

Consider the exact commutative diagram

Because a(X) = 2, we know

thus we can choose

$$_{F}X \cong \alpha_{p} \times \alpha_{p}$$
,
 $\alpha_{p} = L' \hookrightarrow_{F}X$

so that

 $\pi | L' : L' \xrightarrow{\sim} {}_{F}(E_{2}/N) ;$

we define

$$L:=\varphi^{-1}(L')\subset E_1\times E_2.$$

We show $_FL \neq L$; in fact suppose we would have $_FL = L$, then $L = _F(E_1 \times E_2)$, because $L \subset E_1 \times E_2$ and rank $(L) = p^2$, thus $L \cap E_1 \neq 0$, thus $\varphi(L \cap E_1) \neq 0$ (because $\varphi|E_1$ is monomorphic); this contradicts $E_1 \cap \varphi L = E_1 \cap L' = 0$. Thus $_FL \neq L$, and we conclude N is the only non-trivial proper subgroup scheme of L; now we conclude as before: if

$$v_1:=(N \rightarrow_F E_1 \times_F E_2 \rightarrow_F E_1)=0$$

we choose u = 0; if $v_1 \neq 0$, then

$$w_1:=(L\to_p E_1\times_p E_2\to E_1)$$

is an isomorphism and we construct u as before. This concludes the proof of the second step.

From these proofs we conclude the following corollary:

Proposition 6. Let E_1 and E_4 be elliptic curves fitting into an exact sequence

$$0 \rightarrow E_1 \rightarrow X \rightarrow E_4 \rightarrow 0 \; ; \tag{*}$$

suppose a(X) = 2; then this sequence splits.

Proof. By a result of Serre (cf. [11], 5.3, Lemma 7; [12], 7.4, Proposition 4) we know that every element of $\operatorname{Ext}(E_4, E_1)$ is a torsion element, thus there exists an integer m such that

$$m \cdot id : E_4 \rightarrow E_4$$

splits the extension (*):

$$0 \longrightarrow E_{1} \longrightarrow X \longrightarrow E_{4} \longrightarrow 0$$

$$\parallel \qquad \uparrow \qquad m \cdot id$$

$$0 \longrightarrow E_{1} \longrightarrow Y \longrightarrow E_{4} \longrightarrow 0$$

$$\uparrow \qquad \uparrow$$

$$I := {}_{m}E_{4}$$

We factor $m \cdot id: E_4 \rightarrow E_4$ in the following way:

$$m \cdot id = (E_4 = D_0 \rightarrow D_1 \rightarrow \cdots \rightarrow D_j \xrightarrow{f_j} D_{j+1} \rightarrow \cdots \rightarrow D_t = E_4),$$

such that the degree of each f_j is a prime number (thus t equals twice the number of prime factors in m), and there exist some j_0 with f_j separable for $j \le j_0$ and f_{j_0} inseparable for $j > j_0$, i.e. $D_{j_0} = E_4/I_{\text{sep}}$. Induction assumption: for $0 \le j < t$,

$$(*) \ 0 \longrightarrow E_1 \longrightarrow X \longrightarrow E_4 \longrightarrow 0$$

$$\| \qquad \uparrow \qquad \uparrow$$

$$(*_{j+1}) \ 0 \longrightarrow E_1 \longrightarrow X_{j+1} \longrightarrow D_{j+1} \longrightarrow 0$$

$$\| \qquad \uparrow \qquad \uparrow$$

$$(*_j) \ 0 \longrightarrow E_1 \longrightarrow X_j \longrightarrow D_j \longrightarrow 0,$$

$$\uparrow \qquad \uparrow$$

$$I_j := \operatorname{Ker}(f_j)$$

the extension $(*_j)$ splits; here $D_{j+1} \to E_4 = D_t$ is defined as the composite map of f_{t-1}, \ldots, f_{j+1} , and $(*_{j+1})$ and $(*_j)$ are defined by pulling back (*). From this induction assumption we are going to deduce that the morphism $g_j: D_j \to X_j$ which splits $(*_j)$ can be chosen in such a way that

if that is proved
$$I_j \subset g_j(D_j) ;$$

$$g_i(D_i)/I_i \subset X_{i+1} = X_i/I_i$$

is a section for $X_{j+1} \to D_{j+1} = D_j/\text{Ker}(f_j)$ which establishes the induction step: $(*_{j+1})$ splits. In order to construct g_j we look at the proofs of the first and the second step. If $j \leq j_0$, then $\text{Ker}(f_j) \cong (\mathbb{Z}/q)$ for some prime number $q \neq p$; we can apply the first step with $D_j = E_2$, and construct

$$g_j(D_j) = E_3 \hookrightarrow E_1 \times E_2$$

containing $N = \text{Ker}(f_j)$. If $j > j_0$ and j < t - 1, then we choose

$$_{p}D_{i} \cong L := \operatorname{Ker}(D_{i} \xrightarrow{f_{j}} D_{i+1} \xrightarrow{f_{j+1}} D_{i+2}), D_{i} = E_{2}$$

and proceed as in step two, arriving at $Ker(f_j) \subset E_3 = :g_j(D_j)$. If $j > j_0$ and j = t - 1, then a(X) = 2 ensures the existence of $L \cong {}_p D_{t-1}$ with $I_{t-1} \subset L \subset X_{t-1}$, and we conclude again as in step two. This establishes the induction step, and the proposition is proved.

Corollary 7. Let $k = \overline{k}$, Let X be a ss abelian surface, with a(X) = 1; then X is an α_p -covering of a product of two elliptic curves, i.e. X/α_p is isomorphic with a product of two elliptic curves.

Corollary 8. Let E_1 , E_4 be ss elliptic curves over $k = \overline{k}$. The homomorphism

$$F: E_{\Delta}^{(p^{-1})} \rightarrow E_{\Delta}$$

induces the zero map

$$0 = F^* : \text{Ext}(E_4, E_1) \to \text{Ext}(E_4^{(p^{-1})}, E_1).$$

For any ss elliptic curve E_5 ,

$$\operatorname{Ext}(E_5, E_1) \cong k^+$$

Proof. We write $E_5 = E_4^{(p^{-1})}$. Because

$$\operatorname{Ext}(E_4, \alpha_p) \cong k^+$$

(cf. [7], II.14—2), we conclude

$$(D_{t-1} \rightarrow D_t = E_4) \cong (F: E_5 \rightarrow E_4),$$

and the arguments of the previous proof apply, thus proving the splitting of $(*_{t-1})$; thus $F^* = 0$. If E_5 is given, we choose E_4 with $E_5 = E_4^{(p^{-1})}$, because $F^* = 0$, and because Ext $(E_4, E_1) = 0$ (cf. [8]; [6], Theorem 2; here we use $k = \overline{k}$), the isomorphisms

$$\operatorname{Ext}(E_5, E_1) \stackrel{\sim}{\to} \operatorname{Ext}(\alpha_p, E_1) \stackrel{\sim}{=} k^+$$

results, which concludes the proof of the corollary.

Proof of Theorem 2, last step. If $g = 1 = \dim X$, then X is a ss elliptic curve. Suppose g > 1, and suppose the theorem to be proved in the case of AV of dimension equal to g - 1. If $a(X) = g = \dim X$, then X is ss as we have proved above, there exist a ss elliptic curve E_1 and an inclusion $E_1 \subset X$ (there exist an isogeny $E'_1 \times \ldots \times E'_g \to X$, with all E'_i ss, and let E_1 be the image in X of one of these factors). The exact sequence

$$0 \rightarrow E_1 \rightarrow X \rightarrow Y \rightarrow 0$$

yields an exact sequence

$$0 \rightarrow {}_{F}E_{1} \rightarrow {}_{F}X \rightarrow {}_{F}Y \rightarrow 0$$
.

Because $a(X) = \dim(X) = g$, we know

$$_{F}X\cong (\alpha_{p})^{g}$$
,

thus $a(Y) = g - 1 = \dim(Y)$. The induction hypothesis can be applied, i.e.

$$Y \cong E_2 \times \ldots \times E_g$$
, with E_i ss.

Consider the diagram

$$0 \longrightarrow E_{1} \longrightarrow Z_{i} \longrightarrow E_{i} \longrightarrow 0$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$0 \longrightarrow E_{1} \longrightarrow X \longrightarrow E_{2} \times \cdots \times E_{g} \longrightarrow 0$$

with exact rows, $2 \le i \le g$. It follows that $a(Z_i) = 2$ for all i, and by Proposition 6 this implies

$$0 = (Z_i) \in \operatorname{Ext}(E_i, E_1) ;$$

under the isomorphism

$$\operatorname{Ext}(Y = E_2 \times \ldots \times E_g, E_1) \cong \bigoplus_{i=2}^g \operatorname{Ext}(E_i, E_1)$$

the extension Z corresponds with

$$(Z_2, \ldots, Z_q) = (0, \ldots, 0)$$

thus

$$X \cong E_1 \times Y \cong E_1 \times E_2 \times \ldots \times E_a,$$

and Theorem 2 is proved

Remark 9. Let K be a field of characteristic p > 0, and G a commutative K-group scheme; we write

$$a_K(G) = \dim_K \operatorname{Hom}(\alpha_p, G);$$

let k be a field containing K; then

$$a_{\mathbf{K}}(G) \leq a_{\mathbf{k}}(G \otimes \mathbf{k})$$
;

equality holds if K is perfect. Equality holds if FG is unipotent, thus equality holds if G = X, an AV, and $a_K(G) = \dim(X)$. The equality does not hold e.g. if K is not perfect, $K = \overline{K}$, and G fits into a non-splitting exact sequence.

$$0 \rightarrow \mu_p \rightarrow G \rightarrow \alpha_p \rightarrow 0$$
.

Remark 10. Let K be a field, $k \supset \overline{K}$, and X an AV over K. Then $a_K(X) = \dim(X)$ is equivalent with $a_k(X) = \dim(X)$, but these conditions are not sufficient to ensure X is isomorphic over K with a product of elliptic curves (i.e. $k = \overline{k}$ is essential in Theorem 2):

Example (10.1). There exists an abelian surface X over K_1 with a(X) = 2 and X not isogenous over K_1 with a product of two elliptic curves over K_1 ; take

 $\pi = p^{\frac{1}{2}}$, this is the Weil number of an elementary abelian surface Z over $K_1 = F_p$ (cf. [13], bottom of p. 528); if a(Z) = 2, take X = Z; if a(Z) = 1, then $\alpha_p \in Z$ and $X := Z/\alpha_p$ is easily seen to have the property a(X) = 2.

Example (10.2). There exist an abelian surface X, two elliptic curves E_1 and E_2 , an isogeny $E_1 \times E_2 \to X$, all defined over K_2 , such that a(X) = 2, and X not K_2 -isomorphic with a product of two elliptic curves over K_2 . Choose a prime number p with $p \equiv 3 \pmod{4}$, Let $\beta_1 = 0$, $\beta_2 = 2p$, and consider two elliptic curves E_1 , respectively E_2 defined over $K_2 = F_{p2}$ defined by the Weil numbers π_1 , respectively π_2 which are zeros of $T_1^2 + p^2$, respectively $T_2^2 - 2p + p^2$ (cf. [13], Theorem 4.1, case (5), respectively (2)); the curves E_1 , E_2 correspond to different K_2 -isogeny classes; note that

$$(\pi_1 \mod 2)^2 = 1 = (\pi_2 \mod 2)^2$$
,

thus both curves contain a point of order 2 rational over K_2 ; use these points to obtain an embedding

$$Z/2 = N \rightarrow E_1 \times E_2$$
, $N \not\subset E_1 \times 0$, $N \not\subset 0 \times E_2$,

and define

$$X:=(E_1\times E_2)/N$$
;

suppose $X \cong E_3 \times E_4$ (\cong over K_2); E_1 is K_2 -isogenous with E_3 (or with E_4), in that case E_2 is not K_2 -isogenous with E_3 , thus $E_4 \cong X/E_1 = E_2/N$, and

$$(E_1 \times E_2 \to X)^{-1} (E_4)$$

contains an elliptic curve $E_5 \subset E_1 \times E_2$ with $E_5 \neq E_1 \times 0$ and $E_5 \neq 0 \times E_2$; thus E_5 is the graph of an isogeny between E_1 and E_2 , contradiction, thus $X \cong E_3 \times E_4$. Note that $E_1 \times E_2 \to X$ is separable, thus $a(X) = a(E_1 \times E_2) = 2$, and the example is established.

Note that if X is K-isogenous with $E_1 \times E_2$, such that E_1 and E_2 are K-isogenous and all endomorphisms defined over K (i.e. $\operatorname{End}_K(E_1) \cong \mathbb{Z}^4$), and a(X) = 2, then X is K-isomorphic with a product of two elliptic curves: $X/E_3 \cong E_4$ with $E_1 \sim E_3$, $E_2 \sim E_4$, and $\Gamma := \operatorname{Gal}(k = \overline{K}/K)$ acts trivially on $\operatorname{Hom}_k(E_4, E_3)$, thus

$$H^{1}(\Gamma, \text{Hom}_{k}(E_{4}, E_{3})) = \text{Hom}(\Gamma, \text{Hom}(E_{4}, E_{3})) = 0$$

which proves (cf. [6], Proposition on p. 437), that $\operatorname{Ext}_K(E_3, E_4)$ is a subgroup of $\operatorname{Ext}_k(E_3 \otimes k, E_4 \otimes k)$; moreover the extension splits over k, thus it splits over K. However:

Example (10.3). Let $K = K_2$, and E a ss elliptic curve over K_2 , such that

$$r\varrho: \operatorname{End}_K(E) \to F_p \subset \operatorname{End}_K(FE) \cong K$$

(e.g. p=3, $\beta=p$, $\pi^2-3\pi+9=0$ corresponds to a curve E over F_9 (cf. [13], Theorem 4.1.3), $\operatorname{End}_K(E)$ is contained in $Z\left[\frac{1}{2}(1+\sqrt{-3})\right]$, thus any $\alpha\in\operatorname{End}_K(E)$ operates on the tangent space of E at zero by multiplication by an element of F_p). Choose two monomorphisms

$$i, j: \alpha_p \longrightarrow E, \frac{i}{j} = ({}_F E \xrightarrow{j^{-1}} \alpha_p \xrightarrow{i} {}_F E) = : x$$

with $x \notin \mathbf{F}_p$. Define

$$N:=(i,j)(\alpha_p), \quad X:=(E_1\times E_2)/N, \quad E_1=E=E_2.$$

We claim: a(X) = 2, and X is not isomorphic over $K = K_2$ with a product of two elliptic curves. The fact a(X) = 2 follows fron $x \in K_2$ (e.g.: over \overline{K} there exists $D \subset E_1 \times E_2$ containing N because ϱr (End_K(E)) = $K_2 \subset H_F$, cf. Lemma 5). Suppose

$$X \cong E_3 \times E_4$$
 (over K_2).

Because $q: E_1 \times E_2 \to X$ is a non-trivial extension $E_1 \times E_2/N \cong X$, at least one of the extensions

$$0 \rightarrow \alpha_p \rightarrow \overline{q}^1(E_a) \rightarrow E_a \rightarrow 0$$
 $a = 3, 4$

is non-split, thus $\overline{q}^1 E_3 = :D$ (or 3 replaced by 4) is an elliptic curve, containing N; the two projections $E_1 \times E_2 \to E_a$ yield homomorphisms

$$f, g: D \rightarrow E_1, E_2$$

which are non-zero and separable (because $_FD=N$, and $(N\to E_1\times E_2\to E)=i$ or =j); choose a natural number m, not divisable by p, so that a commutative diagram

exists, and

$$_{F}E \xrightarrow{m}_{F}E \xrightarrow{j^{-1}} N \xrightarrow{i}_{F}E$$

 $(f g')|_{F}E : (_{F}E_{2} \rightarrow _{F}D \rightarrow _{F}E_{1});$

equals

because g' and f are defined over $K = K_2$, we conclude

$$mx = m \cdot \frac{i}{j} = f g'|_{\mathbf{F}} \mathbf{E} = r\varrho(f g') \in \mathbf{F}_{p},$$

a contradiction with $x \notin F_p$, which shows that X is not isomorphic with a product of two elliptic curves over K_2 .

References

- 1. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hamburg 14, 197—272 (1941)
- 2. Demazure, M., Gabriel, P.: Groupes algébriques, I. Amsterdam: North-Holl. Publ. Cy. 1970
- 3. Honda, T.: Isogeny classes of abelian varieties over finite fields. Journ. Math. Soc. Japan 20, 83—95 (1968)
- 4. Lenstra, H. W. Jr., Oort, F.: Simple abelian varieties having a prescribed formal isogeny type. Journ. pure appl. algebra 4, 47—53 (1974)
- 5. Manin, Yu. I.: The theory of commutative formal groups over fields of finite characteristic. Russ. Math. Surveys 18, 1—80 (1963)
- 6. Milne, J.S.: The homological dimension of commutative group schemes over a perfect field. Journ. Algebra 16, 436—441 (1970)

- 7. Oort, F.: Commutative group schemes. Lect. Notes Math. 15, Berlin-Heidelberg-New York: Springer 1966
- 8. Oort, F., Oda, T.: Higher extensions of abelian varieties. Nagoya Math. J. 31, 81—88 (1968)
- 9. Oort, F.: Subvarieties of moduli spaces. Inventiones math. 24, 95—119 (1974)
- 10. Poletti, M.: Differentiali esatti di prima specie su varietà abeliane. Ann. Scuola norm. sup. Pisa, Sci. fis. mat. 21, 107—110 (1967)
- 11. Serre, J.-P.: Espaces fibrés algébriques. Sém. C. Chevalley 2, exp. 1 (1958)
- 12. Serre, J.-P.: Groupes proalgébriques. Publ. Math. No. 7, IHES, 1960
- 13. Waterhouse, W.C.: Abelian varieties over finite fields. Ann. sc. Ec. Norm. Sup. 2, 521—560 (1969)

F. Oort
Mathematisch Instituut
Roetersstraat 15
Amsterdam, The Netherlands

(Received June 19, 1974)