

Sistemas Numéricos CIC0004 - Algoritmos e Programação de Computadores

Prof. Dr. Vinícius Ruela Pereira Borges

viniciusrpb@unb.br

Brasília-DF, 2018

Roteiro

- Introdução
- Bases numéricas
 - O Binária
 - ② Decimal
 - 4 Hexadecimal
 - Octal
- Conversão entre bases numéricas
- Operações aritméticas no sistema binário

Introdução

- Um dispositivo eletrônico armazena e transfere informações internamente sob forma eletrônica;
- Geralmente reconhecem...
 - dois estados físicos distintos
 - podem ser produzidos pela eletricidade, pela polaridade magnética ou luz refletida.
- Sabem dizer se um interruptor está ligado ou desligado!

Introdução

- O computador reconhece dois tipos de informações:
 - a presença de energia;
 - a ausência de energia
- Deve-se considerar duas grandezas tratadas por um sistema de computador:
 - Analógica
 - Digital

Introdução: Sinais Analógico e Digital

Sinal Analógico:

- de natureza contínua, é um sinal elétrico de infinitos valores de tensão e correntes
- é uma grandeza continuamente variável

• Sinal Digital:

- de natureza discreta, trabalha com dois níveis de sinal, baixo e alto
- Representam dados por meio de dígitos

Introdução: Sinais Analógico e Digital

• Sinal analógico e digital

Sistema digital

- Computadores manipulam números
 - Dados são numericamente representados e assim processados
 - Informação é codificada internamente através de um código numérico
- Qual o código mais comum?
 - Sistema binário

Sistema Binário

- Os dois estados possíveis utilizados pelo computador
 - 0 desligado
 - **1** ligado
- Qual o código mais comum?
 - Sistema binário

Sistema Binário

- O bit é a menor unidade de informação para representar dados utilizada pelo computador.
 - Bit ("BInary digiT") menor unidade de informação de um computador
 - Byte ("BinarY TErm") ligado
- Assim, o sistema binário (base 2) é composto por **dois** algarismos: **0** e **1**.
- Exemplos:

$$(1010)_2$$
 $(10)_2$ $(10010101)_2$

Sistema Decimal

- Sistema decimal (base 10) é o utilizado no nosso dia-a-dia
- Importante para as áreas de técnicas digitais e informática
- Composto por 10 algarismos possíveis: 0, 1, 2, 3, 4, 5, 6,
 7, 8 e 9.

Sistema Decimal

- Considerar o sistema posicional:
 - Para cada posição à esquerda, o peso vai ser 10 vezes maior do que a posição à direita

$$534 = 5 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$$
$$= 500 + 30 + 4$$

- Dígito mais significativo (MSD): é o dígito posicionado mais à esquerda
 - 5
- Dígito menos significativo (LSD): é o dígito posicionado mais à direita
 - 4

Sistema Hexadecimal

- Sistema hexadecimal (base 16) é o utilizado nos sistemas computacionais modernos
- Alternativa extremamente viável em relação ao sistema binário
- Representação é comumente empregada em...
 - ... projetos computacionais para hardware e software
 - microprocessadores
 - mapeamento de memória
- Composto por 16 algarismos possíveis: 0, 1, 2, 3, 4, 5, 6,
 7, 8, 9, A, B, C, D, E e F.

Sistema Octal

- Sistema hexadecimal (base 8) é pouco utilizado, sendo reconhecido mais como um sistema intermediário entre o binário e o decimal
- Composto por 8 algarismos possíveis: 0, 1, 2, 3, 4, 5, 6 e 7
- Exemplos:

$$(17)_8$$
 $(245)_8$ $(101010)_8$

Sistemas numéricos

Tabela de conversão entre bases

Decimal	Octal	Binário	Hexadecimal
0	0	0	0
1	1	1	1
2	2	10	2
3	3	11	3
4	4	100	4
5	5	101	5
6	6	110	6
7	7	111	7
8	10	1000	8
9	11	1001	9

Sistemas numéricos

10	12	1010	A
11	13	1011	В
12	14	1100	С
13	15	1101	D
14	16	1110	Е
15	17	1111	F
16	20	10000	10
17	21	10001	11
:	:	:	· :

Conversão de qualquer base para decimal

• Para se converter um número nas bases 2, 8 ou 16 para a base 10, utiliza-se a seguinte equação:

$$N = d_{n-1}B^{n-1} + \dots + d_1B^1 + d_0B^0$$
 (1)

- em que:
 - \bullet N é o número em base decimal
 - ullet n é a posição do dígito no número
 - d_n é o dígito na posição n
 - $B \notin a$ base original. $B = \{2, 8, 16\}$

Exemplos

• 1010₂ para decimal:

$$N = d_{n-1}B^{n-1} + \dots + d_1B^1 + d_0B^0$$

$$N = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$N = 8 + 2$$

$$N = 10$$

Conversão de qualquer base para decimal

• Na ocorrência de ponto flutuante na base de origem, considerar para a parte inteira:

$$N = d_{n-1}B^{n-1} + \dots + d_1B^1 + d_0B^0$$

• e para a parte fracionária:

$$f = d_{-1}B^{-1} + d_{-2}B^{-2} + \dots + d_{-m}B^{-m}$$

- \bullet f é a parte fracionária do número em base decimal
- ullet m é a quantidade de dígitos na parte fracionária

Exemplos

• 1110, 101₂ para decimal:

$$c = d_{n-1}B^{n-1} + \dots + d_1B^1 + d_0B^0$$

$$c = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$c = 8 + 4 + 2$$

$$c = 14$$

• e para a parte fracionária

$$f = d_{-1}B^{-1} + d_{-2}B^{-2} + d_{-3}B^{-3}$$

$$f = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$f = 1 \times \frac{1}{2} + 0 \times \frac{1}{4} + 1 \times \frac{1}{8}$$

$$f = 0, 5 + 0 + 0, 125$$

$$f = 0, 625$$

Exemplos

• Somando-se as partes inteira e fracionária, tem-se que:

$$N = c + f$$

 $N = 14 + 0,625$
 $N = 14,625$

- Método das divisões sucessivas
 - Dividir o número em representação decimal pela base a ser convertida
 - Efetuar sucessivas divisões até o último quociente possível
 - O último quociente é o algarismo + significativo e todos os restos na ordem inversa às divisões

- Números fracionários: separar a parte fracionária da parte inteira
- Utilizar o método das divisões sucessivas na parte inteira e o método das multiplicações sucessivas na parte fracionária
- Exemplo: 86,375

- A parte fracionária:
- $0,375 \times 2 = 0,750$. 1° algarismo é 0.
- $0,750 \times 2 = 1,500$. 2° algarismo é 1.
- $0,500 \times 2 = 1,000$. 3° algarismo é 1.
- O processo é finalizado, pois a parte fracionária se torna nula!
- Resultado final da parte fracionária: $0,375=0,011_2$
- Juntando com a parte inteira: 1010110, 011₂

Conversão de sistema binário para octal

- Considerar que um número octal é representado por no máximo 3 bits!
- Analisar o número em representação binária, da direita para a esquerda, dividindo as sequências em grupos de 3 bits
- Converter o número binário representado por cada grupo para sua respectiva representação octal:

Conversão de sistema binário para hexadecimal

- Considerar que um número hexadecimal é representado por no máximo 4 bits!
- Analisar o número em representação binária, da direita para a esquerda, dividindo as sequências em grupos de 4 bits
- Converter o número binário representado por cada grupo para sua respectiva representação hexadecimal:

$$\begin{array}{cccc} 1101011_2 \rightarrow & 110 & & 1011 \\ & \downarrow & & \downarrow \\ & 6 & & B & \rightarrow 6B_{16} \end{array}$$

Conversão de sistema decimal para octal

• Dividir sucessivamente o número decimal por 8, aproveitando o resto da divisão para as próximas divisões, até se obter o valor 0 no dividendo.

$$78 = 116_8$$

Conversão de sistema decimal para hexadecimal

• Dividir sucessivamente o número decimal por 16, aproveitando o resto da divisão para as próximas divisões, até se obter o valor 0 no dividendo.

Bibliografia

- Ronald J. Tocci, "Sistemas Digitais Princípios e Aplicações", 10a edição, Ed. Pearson, 2012.
- William Stallings, "Arquitetura e Organização de Computadores", 5a edição, Ed. Pearson, 2005.