Symbols	Meanings
	the counter variables
i, j, l	the number of sampled instances in
,,,	SAMPLEVR
s	the counter of epochs
t	the counter of iterations in an epoch
i_t	the index of an instance $\langle x_{i_t}, y_{i_t} \rangle$ which is
	sampled randomly
α	the level of significance
ρ	$[-\rho,\rho]$ is the $(1-\alpha)$ -confidence interval
$\frac{\rho}{\delta}$	the rate of convergence
p	the number of dimensions
p $\omega, \tilde{\omega}, \omega_*$	ω_* is the optimum. ω is a parameter, and $\tilde{\omega}$
	is its snapshot
d, d_t	the variance, $d_t = \parallel \omega_t - \tilde{\omega}_t \parallel^2$
a_{ij}	the j_{th} entry of of d_i
b_{ij}	the j_{th} entry of of $\nabla f_i(\omega)$
$\gamma_t,\dot{\gamma_t}$	the update gradient, and $\dot{\gamma}_t$ is its estimation.
m_s, m	the epoch size, and m is a constant.
η	the constant learning rate
ϵ, ζ	the positive real numbers
•	the 2-norm of a vector
g,\dot{g}	the full gradient g and its estimation \dot{g}
ν	$\nu = \dot{g} - g$

Figure 1: Symbols used in the paper and their notations.

Symbol notations

The symbols used in the paper and their notations are presented in Figure 1.

Proofs

In order to make the proofs of the theorems in this paper easy to read, the assumptions are re-presented here.

Assumption 1. Each a function f_{i_t} with $i_t \in \{1, 2, ..., n\}$ in Equ. 1 is L-Liptchiz continuous, that is, $\| f_{i_t}(\omega_i) - f_{i_t}(\omega_j) \| \le L \| \omega_i - \omega_j \|$ holds for any two parameters ω_i and ω_j . Equivalently, we obtain:

$$f_{i_t}(\omega_i) \le f_{i_t}(\omega_j) + \nabla f_{i_t}(\omega_j)^{\mathrm{T}}(\omega_i - \omega_j) + \frac{L}{2} \parallel \omega_i - \omega_j \parallel^2$$
(1)

Assumption 2. The function F in Equ. 1 is μ -strongly convex, that is, for any two parameters ω_i and ω_j :

$$F(\omega_i) \ge F(\omega_j) + \nabla F(\omega_j)^{\mathrm{T}} (\omega_i - \omega_j) + \frac{\mu}{2} \parallel \omega_i - \omega_j \parallel^2 (2)$$

After that, all the proofs of the theorems presented in the main document are illustrated as follows:

Theorem 1. After t iterations in an epoch, the distance d_t holds that $d_t = \eta^2 \sum_{j=1}^p \left(\sum_{i=1}^t a_{ij}\right)^2$. Furthermore, d_t has an

upper bound such that $d_t \leq \eta^2 t^2 p\left(\frac{1}{tp}\sum_{i=1}^t\sum_{j=1}^p a_{ij}^2\right)$, and a lower bound such that $d_t \geq \eta^2 t^2 p\left(\frac{1}{tp}\sum_{i=1}^t\sum_{j=1}^p a_{ij}\right)^2$.

Proof.

$$d_{t} = \| \omega_{t} - \tilde{\omega} \|^{2} = \| \omega_{t-1} - \eta \gamma_{t-1} - \tilde{\omega} \|^{2}$$

$$= \| \omega_{0} - \tilde{\omega} - \sum_{i=1}^{t} \eta \gamma_{i} \|^{2} = \| - \sum_{i=1}^{t} \eta \gamma_{i} \|^{2}$$

$$= \eta^{2} \sum_{j=1}^{p} \left(\sum_{i=1}^{t} a_{ij} \right)^{2}$$
(3)

. Taking the expectation of i_{i_t} , $\mathbb{E}(\gamma_t) = \mathbb{E}(\nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\tilde{\omega}) + \nabla F(\tilde{\omega})) = \nabla F(\omega_t)$ holds, and we thus obtain the upper bound of the distance:

$$d_{t} = \eta^{2} t^{2} \sum_{j=1}^{p} \left(\frac{1}{t} \sum_{i=1}^{t} a_{ij} \right)^{2} \leq \eta^{2} t^{2} \sum_{j=1}^{p} \left(\frac{1}{t} \sum_{i=1}^{t} a_{ij}^{2} \right)$$

$$= \eta^{2} t \left(\sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij}^{2} \right) = \eta^{2} t^{2} p \left(\frac{1}{tp} \sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij}^{2} \right)$$
(4)

, and the lower bound of the distance:

$$d_{t} = \eta^{2} p \left(\frac{1}{p} \sum_{j=1}^{p} \left(\sum_{i=1}^{t} a_{ij} \right)^{2} \right) \ge \eta^{2} p \left(\frac{1}{p} \sum_{j=1}^{p} \sum_{i=1}^{t} a_{ij} \right)^{2}$$

$$= \frac{\eta^{2}}{p} \left(\sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij} \right)^{2} = \eta^{2} t^{2} p \left(\frac{1}{tp} \sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij} \right)^{2}$$
(5)

Lemma 1. Given $\nu = \frac{1}{k} \sum_{t=1}^{k} \nabla f_{i_t}(\omega) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\omega)$, we obtain $\mathbb{E}_{i_t} \parallel \nu \parallel^2 \leq \frac{2(n-k)L^2}{nk}$.

Proof. Since f_{i_t} is L-Liptchiz continuous according to Assumption 1, we obtain $\parallel f_{i_t}(\omega_i) - f_{i_t}(\omega_j) \parallel \leq L \parallel \omega_i - \omega_j \parallel$. Thus, $\parallel \nabla f_{i_t}(\omega) \parallel \leq L$ holds for an arbitrary parameter ω . Without loss of generality, suppose that indices of the sampled k instances are $i_t \in \{1, 2, ..., k\}$.

$$\mathbb{E}_{i_{t}} \parallel \nu \parallel^{2} = \mathbb{E}_{i_{t}} \left(\parallel \frac{1}{k} \sum_{i=1}^{k} \nabla f_{i}(\omega) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\omega) \parallel^{2} \right) \\
= \frac{1}{(nk)^{2}} \mathbb{E}_{i_{t}} \parallel (n-k) \sum_{i=1}^{k} \nabla f_{i}(\omega) - k \sum_{i=k+1}^{n} \nabla f_{i}(\omega) \parallel^{2} \\
\leq \frac{2(n-k)^{2}}{(nk)^{2}} \sum_{i=1}^{k} \mathbb{E}_{i_{t}} \parallel \nabla f_{i}(\omega) \parallel^{2} + \frac{2k^{2}}{(nk)^{2}} \sum_{i=k+1}^{n} \mathbb{E}_{i_{t}} \parallel \nabla f_{i}(\omega) \parallel^{2} \\
\leq \frac{2(n-k)L^{2}}{nk} \tag{6}$$

Theorem 2. Given $\delta = \frac{1+4L\mu m\eta^2}{\mu m\eta(1-2\eta L)} < 1$ holds with $\frac{1}{12L}\left(1-\sqrt{\frac{\mu m-24L}{\mu m}}\right) < \eta < \frac{1}{12L}\left(1+\sqrt{\frac{\mu m-24L}{\mu m}}\right)$, samplevr makes the training loss converge as $\mathbb{E}_t[F(\tilde{\omega}_{s+1})-F(\omega_*)] \leq \delta \mathbb{E}_t[F(\tilde{\omega}_s)-F(\omega_*)] + \frac{4(n-k)L^2\eta}{1-2L\eta}$.

Proof. Construct an auxiliary function $h_i(\omega) = f_i(\omega) - f_i(\omega_*) - \nabla f_i(\omega_*)^{\mathrm{T}}(\omega - \omega_*)$, and $h_i(\omega_*) = \min h_i(\omega)$ holds because of $\nabla h_i(\omega_*) = 0$. Thus, $h_i(\omega_*) \leq \min_{\eta} [h_i(\omega - \eta \nabla h_i(\omega))]$ holds. According to Assumption 1, we obtain $h_i(\omega_*) \leq \min_{\eta} [h_i(\omega) - \eta \parallel \nabla h_i(\omega) \parallel^2 + \frac{1}{2}L\eta^2 \parallel \nabla h_i(\omega) \parallel^2] = h_i(\omega) - \frac{1}{2L} \parallel \nabla h_i(\omega) \parallel^2$. That is, $\parallel \nabla f_i(\omega) - \nabla f_i(\omega_*) \parallel^2 \leq 2L[f_i(\omega) - f_i(\omega_*) - \nabla f_i(\omega_*)^{\mathrm{T}}(\omega - \omega_*)]$. By summing this inequality over $i = \{1, 2, ..., n\}$, and using the fact that $\nabla F(\omega_*) = 0$, we obtain $\frac{1}{n} \sum_{i=1}^{n} \parallel \nabla f_i(\omega) - \nabla f_i(\omega_*) \parallel^2 \leq 2L[F(\omega) - F(\omega_*)]$. i_t is a random variable which is sampled from $\{1, 2, ..., n\}$ randomly. Taking the expectation of i_t , we obtain

$$\mathbb{E}_{i_t}(\parallel \nabla f_{i_t}(\omega) - \nabla f_{i_t}(\omega_*) \parallel^2)$$

$$= \frac{1}{n} \sum_{i=1}^n \parallel \nabla f_i(\omega) - \nabla f_i(\omega_*) \parallel^2$$

$$\leq 2L[F(\omega) - F(\omega_*)]$$
(7)

 $\mathbb{E}_{i_{t}} \parallel \dot{\gamma}_{t} \parallel^{2} = \mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\omega_{t}) - \nabla f_{i_{t}}(\tilde{\omega}_{s}) + \nabla F(\tilde{\omega}_{s}) + \nu \parallel^{2}$ $\leq 2\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\omega_{t}) - \nabla f_{i_{t}}(\omega_{*}) \parallel^{2} +$ $2\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\tilde{\omega}_{s}) - \nabla f_{i_{t}}(\omega_{*}) - \nabla F(\tilde{\omega}_{s}) - \nu \parallel^{2}$ $\leq 2\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\omega_{t}) - \nabla f_{i_{t}}(\omega_{*}) \parallel^{2} +$ $4\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\tilde{\omega}_{s}) - \nabla f_{i_{t}}(\omega_{*}) - \nabla F(\tilde{\omega}_{s}) \parallel^{2} + 4\mathbb{E}_{i_{t}} \parallel \nu \parallel^{2}$ $\leq 2\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\omega_{t}) - \nabla f_{i_{t}}(\omega_{*}) \parallel^{2} + 4\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\tilde{\omega}_{s}) - \nabla f_{i_{t}}(\omega_{*})$ $-\mathbb{E}_{i_{t}} \left(\nabla f_{i_{t}}(\tilde{\omega}_{s}) - \nabla f_{i_{t}}(\omega_{*}) \right) \parallel^{2} + \frac{8(n-k)L^{2}}{nk}$ $\leq 2\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\tilde{\omega}_{s}) - \nabla f_{i_{t}}(\omega_{*}) \parallel^{2} +$ $4\mathbb{E}_{i_{t}} \parallel \nabla f_{i_{t}}(\tilde{\omega}_{s}) - \nabla f_{i_{t}}(\omega_{*}) \parallel^{2} + \frac{8(n-k)L^{2}}{nk}$ $\leq 4L[F(\omega_{t}) - F(\omega_{*})] + 8L[F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{8(n-k)L^{2}}{nk}$ (8)

. The third inequality uses Lemma 1, the fourth inequality uses $\mathbb{E}[\xi - \mathbb{E}\xi]^2 \leq \mathbb{E}\xi^2$, and the fifth inequality uses (7). Therefore, we obtain

$$\begin{split} &\mathbb{E}_{i_t} \parallel \omega_{t+1} - \omega_* \parallel^2 \\ &= \parallel \omega_t - \omega_* \parallel^2 - 2\eta(\omega_t - \omega_*)^{\mathrm{T}} \mathbb{E}_{i_t} \dot{\gamma}_t + \eta^2 \mathbb{E}_{i_t} \parallel \dot{\gamma}_t \parallel^2 \\ &\leq \parallel \omega_t - \omega_* \parallel^2 - 2\eta(\omega_t - \omega_*)^{\mathrm{T}} \nabla F(\omega_t) + \\ &\eta^2 \left(4L[F(\omega_t) - F(\omega_*)] + 8L[F(\tilde{\omega}_s) - F(\omega_*)] + \frac{8(n-k)L^2}{nk} \right) \\ &\leq \parallel \omega_t - \omega_* \parallel^2 - 2\eta(F(\omega_t) - F(\omega_*)) + \\ &\eta^2 \left(4L[F(\omega_t) - F(\omega_*)] + 8L[F(\tilde{\omega}_s) - F(\omega_*)] + \frac{8(n-k)L^2}{nk} \right) \\ &= \parallel \omega_t - \omega_* \parallel^2 - 2\eta(1 - 2\eta L)[F(\omega_t) - F(\omega_*)] + \\ &8L\eta^2 [F(\tilde{\omega}_s) - F(\omega_*)] + \frac{8(n-k)L^2\eta^2}{nk} \end{split}$$

. The first inequality uses (8), and the second inequality

holds because that $F(\omega)$ is convex. We thus obtain

$$\| \omega_{m} - \omega_{*} \|^{2}$$

$$\leq \| \omega_{0} - \omega_{*} \|^{2} - 2\eta(1 - 2\eta L) \sum_{t=0}^{m-1} [F(\omega_{t}) - F(\omega_{*})] +$$

$$8Lm\eta^{2} [F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{8m(n-k)L^{2}\eta^{2}}{nk}$$

$$= \| \tilde{\omega}_{s} - \omega_{*} \|^{2} - 2\eta(1 - 2\eta L)m \left(\frac{1}{m} \sum_{t=0}^{m-1} [F(\omega_{t}) - F(\omega_{*})] \right) +$$

$$8Lm\eta^{2} [F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{8m(n-k)L^{2}\eta^{2}}{nk}$$

$$= \| \tilde{\omega}_{s} - \omega_{*} \|^{2} - 2\eta(1 - 2\eta L)m \mathbb{E}_{t} [F(\tilde{\omega}_{s+1}) - F(\omega_{*})] +$$

$$8Lm\eta^{2} [F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{8m(n-k)L^{2}\eta^{2}}{nk}$$

$$(10)$$

. The second equality holds because of $\omega_0 = \tilde{\omega}_s$. The third equality holds when we take expectation of t. The reason is that $\tilde{\omega}_{s+1}$ is identified by picking ω_t with $t \in \{0,1,...,m-1\}$ randomly, and $\tilde{\omega}_s$ is a constant in an epoch. Thus,

$$\begin{split} &2\eta(1-2\eta L)m\mathbb{E}_t[F(\tilde{\omega}_{s+1})-F(\omega_*)]\\ &\leq \parallel \tilde{\omega}_s-\omega_*\parallel^2 +8Lm\eta^2\mathbb{E}_t[F(\tilde{\omega}_s)-F(\omega_*)] + \frac{8m(n-k)L^2\eta^2}{nk}\\ &\leq \frac{2}{\mu}\mathbb{E}_t[F(\tilde{\omega}_s)-F(\omega_*)]\\ &+8Lm\eta^2\mathbb{E}_t[F(\tilde{\omega}_s)-F(\omega_*)] + \frac{8m(n-k)L^2\eta^2}{nk} \end{split}$$

. The second inequality holds due to the Assumption 2. Therefore, we obtain $\delta = \frac{1+4L\mu m\eta^2}{\mu m\eta(1-2\eta L)} < 1$ with $\frac{1}{12L}\left(1-\sqrt{\frac{\mu m-24L}{\mu m}}\right) < \eta < \frac{1}{12L}\left(1+\sqrt{\frac{\mu m-24L}{\mu m}}\right),$ and thus the training loss converges such that $\mathbb{E}_t[F(\tilde{\omega}_{s+1})-F(\omega_*)] \leq \delta \mathbb{E}_t[F(\tilde{\omega}_s)-F(\omega_*)] + \frac{4(n-k)L^2\eta}{(1-2L\eta)nk}.$ Thus, the Theorem 2 have been proved.

 $\begin{array}{lll} \textbf{Theorem} & \textbf{3.} & \text{SAMPLEVR} & requires & at & least \\ \frac{\ln \zeta}{\ln \delta} m + \left(-\frac{\log \frac{\alpha}{2}}{2\epsilon} (\frac{\ln \zeta}{\ln \delta} + 1) (\frac{\ln \zeta}{\ln \delta}) \right) & atomic & gradient & calculations & with & \delta & = & \frac{1+4L\mu m\eta^2}{\mu m\eta(1-2\eta L)} & to & achieve \\ \mathbb{E}_t[F(\tilde{\omega}_s) - F(\omega_*)] \leq \zeta \mathbb{E}_t[F(\omega_0) - F(\omega_*)]. & & & \end{array}$

Proof. The required atomic gradient calculations for the s_{th} epoch is denoted by G_s . We obtain $G_s=k+m=-\frac{s\log\frac{\alpha}{2}}{\epsilon}+m$. According to Theorem 2,

$$\mathbb{E}_{t}[F(\tilde{\omega}_{s+1}) - F(\omega_{*})] \leq \delta \mathbb{E}_{t}[F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{4(n-k)L^{2}\eta}{1-2L\eta}$$

$$= \delta \left(\mathbb{E}_{t}[F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{4(n-k)L^{2}\eta}{1-2L\eta} \right) \tag{12}$$

If $\mathbb{E}_t[F(\tilde{\omega}_s) - F(\omega_*)] \leq \zeta \mathbb{E}_t[F(\omega_0) - F(\omega_*)]$ holds, then we obtain $\delta^s = \zeta$ according to Theorem 2, that is, $s = \frac{\ln \zeta}{\ln \delta}$. Therefore, the total gradient complexity is $\frac{\ln \zeta}{\ln \delta} m + \left(-\frac{\log \frac{\alpha}{2}}{2\epsilon} \left(\frac{\ln \zeta}{\ln \delta} + 1 \right) \left(\frac{\ln \zeta}{\ln \delta} \right) \right)$ atomic gradient calculations with $\delta = \frac{\mu m \eta^2 (8Ln - 8Lk + 4Lnk) + nk}{\mu m nk \eta (1 - 2\eta L)}$.