NEC

NPN SILICON TRANSISTOR 2SC3731

DESCRIPTION

The 2SC3731 is designed for general purpose amplifier and high speed switching applications.

FEATURES

- High Frequency Current Gain.
- High Speed Switching.
- Small Output Capacitance.
- Complementary to the NEC 2SA1458 PNP transistor.

ABSOLUTE MAXIMUM RATINGS

Maximum Te	mperatures		
Storage	Temperature58	5 to +1	150 °C
Junctio	n Temperature 150°	C Max	cimum
Maximum Po	wer Dissipation (T _a = 25 °C)		
Total Po	ower Dissipation	250	mW
Maximum Vo	Itages and Current (T _a = 25 °C)		
$V_{\sf CBO}$	Collector to Base Voltage	60	. ^
V_{CEO}	Collector to Emitter Voltage	40	V
V_{EBO}	Emitter to Base Voltage	6.0	V
Ic	Collector Current	200	mΑ

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
ton	Turn-on Time			70	ns	See Test Circuit.
t _{stg}	Storage Time		100	200	ns	See Test Circuit.
toff	Turn-off Time			250	ns	See Test Circuit.
fT	Gain Bandwidth Product	300	510		MHz	$V_{CE} = 20 \text{ V}, I_E = -10 \text{ mA, f} = 100 \text{ MHz}$
C _{ob}	Output Capacitance		3.0	4.0	pF	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 1 \text{ MHz}$
hFE1*	DC Current Gain	75	200	300	-	$V_{CE} = 1.0 \text{ V, } I_{C} = 10 \text{ mA}$
hFE2*	DC Current Gain	25	80		-	$V_{CE} = 1.0 \text{ V, } I_{C} = 100 \text{ mA}$
VCE(sat)*	Collector Saturation Voltage		0.12	0.30	V	$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$
V _{BE(sat)} *	Base Saturation Voltage		0.80	0.95	V	$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$
ICBO	Collector Cutoff Current			0.1	μΑ	V _{CB} = 30 V, I _E = 0
I _{EBO}	Emitter Cutoff Current			0.1	μΑ	$V_{EB} = 3.0 \text{ V, } I_{C} = 0$

^{*} Pulsed PW \leq 350 μ s, Duty Cycle \leq 2 %

Classification of h_{FE1}

Rank	M	L	К
Range	75 to 150	100 to 200	150 to 300

Test Conditions : $V_{CE} = 1.0 \text{ V, } I_{C} = 10 \text{ mA}$

TYPICAL CHARACTERISTICS (T_a = 25 °C)

SWITCHING TIME TEST CIRCUIT

 $t_{off} = t_{stg} + t_f$