Real Analysis

Alec Zabel-Mena

 $\mathrm{June}\ 11,\ 2023$

Contents

1	The	e Real Numbers	5
	1.1	The Field of Real Numbers	١
	1.2	The Topology of \mathbb{R}	١

4 CONTENTS

Chapter 1

The Real Numbers

1.1 The Field of Real Numbers

1.2 The Topology of \mathbb{R}

Definition. We call a set U of \mathbb{R} **open** proveded for all $x \in U$, there exists an r > 0 for which the open interval $(x - r, x + r) \subseteq U$.

Example 1.1. For a < b the open interval (a,b) is open in \mathbb{R} . Let $x \in (a,b)$ and take $r = \min\{x - a, b - x\}$, then $(x - r, x + r) \subseteq (a,b)$. Similarly the intervals (a, ∞) , $(-\infty, b)$, and $(-\infty, \infty)$ are also open in \mathbb{R} .

Lemma 1.2.1. The set \mathbb{R} of real numbers forms a topology under the open sets of \mathbb{R} .

Lemma 1.2.2. Every nonempty open set in \mathbb{R} is the disjoint union of a countable collection of open sets in \mathbb{R} .

Proof. Let U be a nonempty open set in \mathbb{R} , and take $x \in U$. There there is a y > x for which $(x,y) \subseteq U$, and a z < x for which $(z,x) \subseteq U$. Now, define

$$a_x = \inf \{ z : (z, x) \subseteq U \}$$

$$b_x = \sup \{ y : (x, y) \subseteq U \}$$

and take

$$I_x = (a_x, b_x)$$

Then I_x is an open interval containing x. Now, we claim that $I_x \subseteq U$, but that $a_x, b_x \notin U$. Indeed, take $w \in I_x$, with $x < w < b_x$, then there is a y > w for which $(x, y) \subseteq U$, so that $w \in U$.

Now, suppose that $b_x \in U$, then for some r > 0, $(b_x - r, b_x + r) \subseteq U$, so that $(x, b_x + r) \subseteq U$, which contradicts that b_x is a least upper bound. Similar reasoning yields that $a_x \notin U$.

Now, consider the collection $\{I_x\}_{x\in U}$. Then we have that

$$U = \bigcup I_x$$

moreover, this union is disjoint since $a_x, b_x \notin U$ for each x. Now, observe that by the density of \mathbb{Q} in \mathbb{R} , there exists a rational $q_x \in \mathbb{Q}$ for which $q_x \in I_x$. This gives us a 1–1 correspondence of the collection $\{I_x\}$ onto \mathbb{Q} , which makes $\{I_x\}$ countable.

Definition. For a set E of real numbers, we call a point $x \in \mathbb{R}$ a **limit point** of E provided every open interval containing x contains a point in E. We call the set of all limit points of E, together with E the **closure** of E and denote it E. We call E **closed** if E = Cl E.

Lemma 1.2.3. For every set E of \mathbb{R} , the closure of E is closed. Morevoer, $\operatorname{cl} E$ is the smallest closed set containing E.

Proof. Let x be a limit point of $cl\ E$, and consider an open interval I_x containing x. Then there exists an $x' \in cl\ E \cap I_x$. Since x' is a limit point of E, and $x' \in I_x$, we get a $x \in E \cap I_x''$. Therefore every open interval that contains x also contains a point of E. This makes $x \in cl\ E$, and hence $cl\ E$ is closed.

Lemma 1.2.4. A set of \mathbb{R} is open if and only if its complement in \mathbb{R} is closed.

Proof. Suppose that $E \subseteq \mathbb{R}$ is open, and let x be a limit point of $\mathbb{R} \setminus E$. Then $x \notin E$, since otherwise there is an open interval containing x, contained in E, and hence disjoint from $\mathbb{R} \setminus E$. Therefore $x \in \mathbb{R} \setminus E$ which makes $\mathbb{R} \setminus E$ closed.

Corollary. A set \mathbb{R} is closed if, and only if its complement in \mathbb{R} is open.

Proof. By DeMorgan's laws.

Definition. We call a collection $\{E_{\lambda}\}$ of sets of \mathbb{R} a **cover** for a set E of \mathbb{R} if $E \subseteq_{\lambda}$. If each E_{λ} is open, we call the collection $\{E_{\lambda}\}$ an **open cover**. We call a set E of \mathbb{R} **compact** if each open cover of E has a finite subcover of E.

Theorem 1.2.5 (Heine-Borel). If F is a closed bounded set in \mathbb{R} , then F is compact.

Proof. Consider first the case where F = [a, b], for a < b, the closed bounded interval from a to b. Let \mathcal{F} be an open cover of [a, b], and define

 $E = \{x \in [a, b] : [a, x] \text{ can be covered by a finite subcollection of } \mathcal{F}\}$

Notice then that $a \in E$, so that E is nonempty. Moreover, E is bounded above, so by the completeness of \mathbb{R} , $c = \sup E$ exists in [a, b]. Now, then, there exists a set U in F such that $c \in U$. Since U is open (well F is an open cover), there exists an $\varepsilon > 0$ for which the interval $(c - \varepsilon, c + \varepsilon) \subseteq U$. Now, $c - \varepsilon$ is not an upperbound of E by definition of C, so there is an $x \in E$ with $c - \varepsilon < x$. Now, there is a finite subcollection $\{U_i\}_{i=1}^k$ of open sets in F covering [a, x], consequently the collectuion $\{U_i\} \cup U$ covers $[a, c + \varepsilon]$, so that c = b. That is [a, b] has a finite subcover of F, so that [a, b] is compact.

Now, let F be any closed and bounded set, and let \mathcal{F} be an open cover of F. Since F is bounded, we have $F \subseteq [a,b]$ for some a < b, and the set $U = \mathbb{R} \setminus F$ is open. Now, let $\mathcal{F}' = \mathcal{F} \cup U$. Since \mathcal{F} covers F, \mathcal{F}' covers [a,b]. By the compactness of [a,b], we obtain the compactness of F.

Theorem 1.2.6 (The Nested Set Theorem). Let $\{F_n\}$ a countable descending collection of closed sets of \mathbb{R} , for which F_1 is bounded. Then the intersection

$$\bigcap F_n$$

is nonempty.

Proof. Suppose to the contrary that the intersection $F = \bigcap F_n$ is empty. Then for every $x \in \mathbb{R}$, there is an $n \in \mathbb{Z}^+$ for which $x \notin F_n$. That is, $x \in U_n = \mathbb{R} \setminus F_n$, and $\mathbb{R} = \bigcup U_n$. Now, since each F_n is closed, each U_n is open, making $\{U_n\}$ an open cover of \mathbb{R} , and hence F_1 . Then by the theorem of Heine-Borel, F_1 is compact, and there is an $N \in \mathbb{Z}^+$ for which

$$F_1 \subseteq \bigcup_{n=1}^N U_n$$

since $\{F_n\}$ is a descending collection, the collection of open sets $\{U_n\}$ is an ascending collection. Thus we have

$$\bigcup_{n=1}^{N} U_n = U_n = \mathbb{R} \backslash F_N$$

making $F_1 \subseteq \mathbb{R} \backslash F_N$, which contradicts that $F_n \subseteq F_1$ is nonempty

Definition. Let X be a set. We call a collection \mathcal{A} of subsetes of X a σ -algebra of X provided

- (1) $X \in \mathcal{A}$ and $\emptyset \in \mathcal{A}$.
- (2) \mathcal{A} is closed under complements in X.
- (3) \mathcal{A} is closed under countable unions.

Example 1.2. The collections $\{\emptyset, X\}$ and 2^X are σ -algebras on X.

Lemma 1.2.7. Let \mathcal{F} be a collection of subsets of a set X. Then the intersection \mathcal{A} of all σ -algebras of X containing \mathcal{F} is a σ -algebra containing \mathcal{F} . Moreover, it is the smallest such σ -algebra of X containing \mathcal{F} .

Definition. We define the collection \mathcal{B} of **Borel sets** of \mathbb{R} to be the smallest σ -algebra of \mathbb{R} containing all open sets of \mathbb{R} .

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- $[2]\,$ I. N. Herstein, Topics~in~algebra. New York: Wiley, 1975.