Review: CNN Architecture

CNN을 구성하는 layers

- Input layer
 - 입력 이미지가 가로32, 세로32, 그리고 RGB 채널을 가지는 경우 입력의 크기는 [32x32x3]
- Convolution layer
 - 각 convolution operation은 filter를 통해 input의 일부분과 연결
 - 만일 12개의 filter를 사용한다면 [32(?)x32(?)x12] 크기의 출력 생성
 - 일반적으로 ReLU activation과 함께 사용
- Pooling layer
 - downsampling을 통해 계산량을 줄이고 특성을 강화
 - [32x32x12]를 입력받았다면 [16x16x12]를 출력
 - 학습할 parameter가 없음

- Fully-connected layer
 - Input의 각 뉴런들과 모두 연결되어 있는 레이어
 - 만일 노드가 10개라면 [10x1] 크기를 출력
 - 일반적으로 ReLU activation과 함께 사용

Convolution operation

IFrame(src='https://cs231n.github.io/assets/conv-demo/index.html', width=800, height=7

Input Volume (+pad 1) (7x7x3)						'x7x:	3) Filter W0 (3x3x3)	Filter W1 (3x3x3)	Output Volume (3x3x2)
x[:,:,0]							w0[:,:,0]	w1[:,:,0]	0[:,:,0]
0	0	0	0	0	0	0	-1 -1 -1	0 1 1	0 3 2
0	0	0	0	1	2	0	1 0 0	1 0 1	2 -5 -6
0	1	1	2	1	2	0	1 0 -1	0 -1 0	2 2 -2
0	2	1	1	1	2	0	w0[:,:,1]	w1[:,:,1]	0[:,:,1]
0	0	0	2	1	2	0			1 -1 -4 0 0 -8
0	2	2	0	1	2	0	0 1 1		
0	0	0	0	0	0	0		-1 -1 0	1 8 2
x[:	; , : ,	,1]					w0[:,:,2]	w1[:,:,2]	
0	0	0	0	0	0	0	1 1 -1		
0	0	0	1	0	2	0	1 0 1	1 1 1	
0	2	2	0	2	2	Ó	1 0	-1 -1 0	
0	2	2	0	2	1	0	Bias b0 (1x1x1)	Bias b1 (1x1x1)	
0	2	2	2	2	2	0	b0[:,:,0]	b1[:,:,0]	
0	0	0	2	0	0	0		0	
0	0	0	0	0	0	0			
x[:	; , : ,	, 2]		/			/////	toggle	movement
0	0	0	0	0	0	0			
0	2	2	0	1	2	Ø			
0	0	0	0	9	0	0			
0	2	2	1	0	1	0			
0	1	0	0	0	1	0			
0	0	2	2	2	0	0			
0	0	0	0	0	0	0			

- Input: $W_1 imes H_1 imes D_1$ 크기를 입력으로 받음
- Hyperparameters
 - Filter의 수: K
 - $lacksymbol{\bullet}$ Filter의 크기: F
 - ullet Stride(몇 칸씩 건너뛰며 convolution operation을 하는가?): S
 - Zero padding의 수: P
- Output: $W_2 imes H_2 imes D_2$ 크기가 output으로 나옴
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$
 - $D_2 = K$

Covolution architecture의 패턴

일반적으로 convolution(CONV), pooling(POOL), fully connected(FC) layer로 구성되어 있음

- INPUT -> FC
 - 선형 분류기
- INPUT -> CONV -> FC
- INPUT -> [CONV -> POOL]*2 -> FC -> FC
 - CONV 하나와 POOL 하나를 연결하는 세트를 두 번 반복
 - FC 하나 연결 후 output layer로 연결
- INPUT -> [CONV -> CONV -> POOL]*3 -> FC *2 -> FC
 - CONV 두 개와 POOL 하나를 연결하는 세트를 세 번 반복
 - POOL 연산으로 정보가 손실되기 전에 여러 층으로 쌓인 CONV 레이어를 통해 복잡한 feature들을 추출

Lecture 5. Classic Convolutional Neural Networks

LeNet (1998)

- Yann LeCunn et al. (http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf)(NYU)에 의해 개발
- CNN 개념의 시초
- Handwritten digit recognition (MNIST)에 널리 사용
- Convolution을 거치면서 작은 크기의 feature에서 보다 일반화된 feature를 얻어가는 과정을 제시
- Architecture

Layer	Туре	Maps	Size	Kernel size	Stride	Activation
Out	Fully Connected	-	10	-	-	RBF
F6	Fully Connected	-	84	_	-	tanh
C5	Convolution	120	1 × 1	5 × 5	1	tanh
S4	Avg Pooling	16	5 × 5	2 × 2	2	tanh
C3	Convolution	16	10 × 10	5 × 5	1	tanh
S2	Avg Pooling	6	14 × 14	2 × 2	2	tanh
C1	Convolution	6	28 × 28	5 × 5	1	tanh
In	Input	1	32 × 32	-	_	-

- 약 60,000개의 parameter
- 28×28 크기인 MNIST input을 padding=2를 사용하여 32×32 로 만들어 input 이미지 구성
- Average pooling 사용. 현재는 max pooling을 더 많이 사용
- Output layer에서 radial basis function을 사용. 현재는 softmax를 더 많이 사용

http://yann.lecun.com/exdb/lenet/index.html

AlexNet (2012)

- Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton(U of Toronto)에 의해 개발 http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- 2012 ImageNet ILSVRC challenge에서 우승
- 1000개의 범주를 가지는 1500만 개의 image classification

Architecture

- LeNet과 비슷하지만 훨씬 깊고 큰 network
- 5개의 convolution layer, 3개의 fully-connected layer 사용
- GPU 두 개를 기반으로한 병렬 구조
- ReLU activation을 사용
- Dropout의 소개
- 약 6천만 개의 parameter

VGGNet (2014)

- ImageNet ILSVRC Challenge 2014에서 Simonyan and Zisserman(Oxford Univ.)에 의해 제안(2등) http://www.robots.ox.ac.uk/~vgg/research/very_deep/ (http://www.robots.ox.ac.uk/~vgg/research/very_deep/)
- 단순한 구조로 지금까지 많이 사용, 망의 구조보다는 망의 깊이가 중요하다는 것을 보여줌 (16개 layer 이상이면 큰 개선 없음; VGG16이 가장 좋은 성능)
- 항상 3×3 filter, Stride=1, same padding, 2×2 pooling 사용
- 2014년 1등인 GoogLeNet 보다 이미지 분류 성능은 낮지만 transfer learning 과제에서 더 좋은 성능을 보이는 경우가 많음
- Architecture

- Filter의 수가 64, 128, 256, ... 두 배씩 커짐
- 약 1억3천8백만 개의 parameter: 매우 많은 메모리와 연산량이 필요

GoogLeNet(2014)

- ImageNet ILSVRC Challenge 2014의 우승 모델. Google의 Szegedy et al.이 제안
- Parameter의 수를 획기적으로 줄여주는 inception module을 소개

Inception module

- 어느 사이즈의 필터를 사용할 것인가?
 - $1 \times 1, 3 \times 3, 5 \times 5$ filter를 모두 사용하여 쌓고 weight를 학습시킴

- Bottleneck layer
 - ullet 계산량이 너무 많은 단점을 해결하기 위해 1×1 filter를 사용하여 사이즈를 줄여준 뒤 5×5 filter 적용

- Inception module
 - \blacksquare (1 imes 1, 3 imes 3),(1 imes 1, 5 imes 5)를 사용하여 stack

GoogLeNet architecture

- Inception module의 반복적용
- 중간에 maxpooling으로 사이즈 축소
- Hidden layer에서 softmax를 통해 output을 예측하는 과정을 추가하여 layer 전체를 통과하지 않더라도 나쁘지 않은 예측을 가능하도록 설계(overfitting 방지의 역할)

ResNet (2015)

- ImageNet ILSVRC 2015 우승 (error rate 3.6%, 인간의 error rate 5~10%)
- Kaiming He (Microsoft 북경 연구소)
- Residual block

■ ReLU를 통해 전달되는 비선형 경로와 레이어를 하나 혹은 두 단계씩 건너뛰는 skip connection(or shortcut)을 결합

- 이론적으로는 network가 깊어질수록 training set에 대해서는 error가 줄어들어야 하지만 training이 어려워지기 때문에 error 가 상승할 수 있음
- Vanishing/exploding gradient problem 발생
- Skip connection을 사용함으로써 얕은 모델 보다 높은 training error를 가질 수 없음

Keras가 제공하는 ImageNet classification model

• 각 유명 모형과 학습된 weight를 제공 https://keras.io/applications/#usage-examples-for-image-classification-models (https://keras.io/applications/#usage-examples-for-image-classification-models)

```
In [5]: from keras.applications.vgg16 import VGG16
        import numpy as np
```

```
model = VGG16(weights='imagenet', include_top=False)
model.summary()
```

Layer (type)	Output 				Param # =======
<pre>input_4 (InputLayer)</pre>	(None,	None,	None,	3)	0
block1_conv1 (Conv2D)	(None,	None,	None,	64)	1792
block1_conv2 (Conv2D)	(None,	None,	None,	64)	36928
block1_pool (MaxPooling2D)	(None,	None,	None,	64)	0
block2_conv1 (Conv2D)	(None,	None,	None,	128)	73856
block2_conv2 (Conv2D)	(None,	None,	None,	128)	147584
block2_pool (MaxPooling2D)	(None,	None,	None,	128)	0
block3_conv1 (Conv2D)	(None,	None,	None,	256)	295168
block3_conv2 (Conv2D)	(None,	None,	None,	256)	590080
block3_conv3 (Conv2D)	(None,	None,	None,	256)	590080
block3_pool (MaxPooling2D)	(None,	None,	None,	256)	0
block4_conv1 (Conv2D)	(None,	None,	None,	512)	1180160
block4_conv2 (Conv2D)	(None,	None,	None,	512)	2359808
block4_conv3 (Conv2D)	(None,	None,	None,	512)	2359808
block4_pool (MaxPooling2D)	(None,	None,	None,	512)	0
block5_conv1 (Conv2D)	(None,	None,	None,	512)	2359808
block5_conv2 (Conv2D)	(None,	None,	None,	512)	2359808
block5_conv3 (Conv2D)	(None,	None,	None,	512)	2359808
block5_pool (MaxPooling2D)	(None,	None,	None,	,	0
Total params: 14,714,688 Trainable params: 14,714,688					

Non-trainable params: 0

References

- https://www.coursera.org/specializations/deep-learning)
- Hands on Machine Learning with Scikit-Learn and Tensorflow, Aurélien Géron (http://www.hanbit.co.kr/store/books/look.php?p_code=B9267655530)
- <u>Deep Learning with Python, François Chollet, (https://www.manning.com/books/deep-learning-with-python)</u>