In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv("C:\\Users\\SRI KAAVYA\\OneDrive\\Desktop\\Internship projects\
 df.head()

Out[2]:

_		TV	Radio	Newspaper	Sales
_	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9

In [3]: df.shape

Out[3]: (200, 4)

In [4]: df.describe()

Out[4]:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

```
In [5]: sns.pairplot(df,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',kind='scatter
plt.show()
```


In [6]: df['Radio'].plot.hist(bins=10, color='green',xlabel='Radio')

Out[6]: <Axes: ylabel='Frequency'>

In [7]: df['TV'].plot.hist(bins=10, color='orange',xlabel='TV')

Out[7]: <Axes: ylabel='Frequency'>

In [8]: df['Newspaper'].plot.hist(bins=10, color='purple',xlabel='Newspaper')

Out[8]: <Axes: ylabel='Frequency'>


```
In [9]: sns.heatmap(df.corr(),annot=True)
plt.show()
```



```
In [10]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train,y_test=train_test_split(df[['TV']],df[['Sales']],test
```

```
In [11]: print(X_train)
```

TV 187 191.1 46 89.7 138 43.0 195 38.2 108 13.1 67 139.3 192 17.2 117 76.4 47 239.9 172 19.6

[120 rows x 1 columns]

```
In [12]: print(y_train)
               Sales
          187
                17.3
          46
                10.6
          138
                  9.6
          195
                 7.6
          108
                 5.3
          . .
                  . . .
          67
                13.4
          192
                 5.9
          117
                 9.4
          47
                23.2
          172
                 7.6
          [120 rows x 1 columns]
In [13]: print(X_test)
                   TV
                69.2
          18
          170
                50.0
          107
                90.4
          98
               289.7
          177
               170.2
                 . . .
          89
               109.8
          109
               255.4
          14
               204.1
          27
               240.1
          141 193.7
          [80 rows x 1 columns]
In [14]: | print(y_test)
               Sales
                11.3
          18
          170
                 8.4
          107
                12.0
          98
                25.4
          177
                16.7
          . .
                 . . .
                16.7
          89
          109
                19.8
          14
                19.0
          27
                20.9
          141
                19.2
          [80 rows x 1 columns]
```

```
In [15]: from sklearn.linear_model import LinearRegression
    model=LinearRegression()
    model.fit(X_train,y_train)
```

Out[15]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [16]: res=model.predict(X_test)
print(res)

- [[10.87270287]
- [9.80413715]
- [12.05257753]
- [23.14451236]
- [16.49380382]
- [10 14010402]
- [10.14919483]
- [7.50560775]
- [20.38405091]
- [8.34599017]
- [18.01873615]
- [21.56392556]
- [11.87448324]
- [15.7369031]
- [47 472224
- [17.4733224]
- [11.27341502]
- [13.71108058]
- [21.80323976]
- [7.06037204]
- [11.17880243]
- [18.8980767]
- [23.02763798]
- [14.82973532]
- [16.7665107]
- [14.35110692]
- [9.99892778]
- [13.87247853]
- [16.23779328]
- [18.43057919]
- [19.48801402]
- [8.41834098]
- [10.79478662]
- [18.09108696]
- [22.64362218]
- [20.47309805]
- [7.75605285]
- [8.0621524]
- [10.33842001]
- [17.08374114]
- [10.8281793]
- [8.41277553]
- [9.07506366]
- [8.77452955]
- [14.97443693]
- [18.68658973]
- [10,000303/3
- [19.00938563] [12.73712744]
- [7 50004034
- [7.50004231]
- [7.96197436]
- [14.01718013]
- [12.84287093]
- [13.13227414]
- [19.79411358]
- [21.14651707]
- [17.31192445] [9.50916849]
- [10.48868707]
- [23.32260665]

```
[16.62180909]
          [18.29144303]
           [ 7.4276915 ]
           [21.78097797]
          [18.01873615]
          [19.18191447]
          [15.21931657]
          [16.55502373]
          [19.1373909]
          [21.64184181]
          [16.1209189]
          [12.60912218]
          [11.26784957]
          [17.31192445]
          [14.49580853]
          [22.25404092]
          [23.51739728]
          [12.37537342]
          [13.13227414]
          [21.23556422]
          [18.38049017]
          [20.38405091]
          [17.80168374]]
In [17]: model.coef_
Out[17]: array([[0.05565446]])
In [18]: model.intercept_
Out[18]: array([7.02141391])
In [19]: 0.05473199*69.3+7.4573254
Out[19]: 11.250252307
```

In [20]: plt.plot(res)

Out[20]: [<matplotlib.lines.Line2D at 0x22a0f577150>]


```
In [26]: plt.scatter(X_test,y_test)
    plt.plot(X_test,7.4573254+0.05473199*X_test,'r')
    plt.show()
```


In []: