

Week 10, April 18th: Fourier series

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)
- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

Exercise 1. We consider the 2π periodic functions defined on $[-\pi,\pi]$ by

$$f(-\pi) = \alpha$$
, $f(x) = -1$ for $x \in]-\pi$, o[, $f(0) = \beta$, $f(x) = 1$ for $x \in]0$, $\pi[$.

- 1. Calculate the Fourier series associated to f.
- 2. Show that f is equal to its Fourier series on $]-\pi$, o[and]o, π [. What should be the values of α and β in order for f to be equal to its Fourier series everywhere?
- 3. Deduce the values of

$$\sum_{k\geq 1} \frac{(-1)^k}{2k+1}, \quad \sum_{k\geq 1} \frac{1}{(2k+1)^1}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \frac{(-1)^{n-1}}{n^2}.$$

$\mathcal{E}_{xercise 2}$.

1. Let f be a 2π periodic function, which is C^k . Show that

$$\sum_{n=-\infty}^{\infty} n^{2k} |c_n(f)|^2 < \infty.$$

- 2. Let f be a 2π periodic, piecewise continuous function such that $\sum n^2 |c_n(f)|^2 < \infty$. Show that f is continuous.
- 3. By considering the 2π periodic function defined on $[-\pi,\pi]$ by |x|, show that $\sum n^2 |c_n(f)|^2$ does not imply that f is C^1 .

Exercise 3. Let f and g be two piecewise continuous, 2π periodic functions. We assume that there exists $x_0 \in]-\pi,\pi[$ and $\delta > 0$ such that f(x) = g(x) for all $x \in]x_0 - \delta,x_0 + \delta[$ and such that the Fourier series associated to f converges to f at x_0 .

1. Let $D_n(x) = \sum_{k=-n}^n e^{ikx}$. Show that for all $\varepsilon > 0$ there exists N such that for all $n \ge N$

$$\left| \int_{-\pi}^{\pi} D_n(t) f(x_o - t) dt - f(x_o) \right| \le \varepsilon.$$

2. Show that

$$\begin{split} & \int_{-\pi}^{\pi} D_n(t)g(x_o - t)dt - g(x_o) \\ & = \int_{-\pi}^{\pi} D_n(t)f(x_o - t)dt - f(x_o) + \int_{-\pi}^{-\delta} D_n(t)(g(x_o - t) - g(x_o))dt + \int_{\delta}^{\pi} D_n(t)(g(x_o - t) - g(x_o))dt \\ & - \int_{-\pi}^{-\delta} D_n(t)(f(x_o - t) - f(x_o))dt + \int_{\delta}^{\pi} D_n(t)(f(x_o - t) - f(x_o))dt. \end{split}$$

3. Thanks to Riemann-Lebesgue lemma show that

$$\int_{-\pi}^{-\delta} D_n(t)(g(x_o - t) - g(x_o))dt \to 0$$

$$\int_{\delta}^{\pi} D_n(t)(g(x_o - t) - g(x_o))dt \to 0$$

as $n \to \infty$ and the same holds for f.

4. Conclude that the Fourier series associated to g converges to g at x_0 . In other words, the properties of convergence of the Fourier series is a "local" property.

2 More involved exercises

Exercise 4. Let $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. We define the 2π periodic function $f_{\alpha}(t) = \cos(\alpha t)$ for $t \in [-\pi, \pi]$.

1. Calculate the Fourier series associated to f_{α} . Deduce that for all $t \in \mathbb{R} \setminus \pi \mathbb{Z}$ we have

$$\frac{1}{\tan(t)} = \frac{1}{t} + 2t \sum_{n=1}^{\infty} \frac{1}{t^2 - n^2 \pi^2}.$$
 (1)

- 2. Let $x \in]0,\pi[$ and $g:[0,x] \to \mathbb{R}$ defined by g(0)=0 and $g(t)=\frac{1}{\tan(t)}-\frac{1}{t}$ for $t \in]0,x[$. Calculate $\int_0^x g(t)dt$.
- 3. Show that for all $t \in]-\pi,\pi[$ we have

$$\sin(t) = t \prod_{n=1}^{\infty} (1 - \frac{t^2}{n^2 \pi^2}).$$

4. By differentiating (1) show that for all $t \in]-\pi,\pi[\setminus \{o\}]$

$$\frac{1}{\sin^2(t)} = \sum_{n = -\infty}^{\infty} \frac{1}{(t - n\pi)^2}.$$