Geoffrey Parker - grp352 HW 17: 3.180-3.22 M328K March 27th, 2012

3.18 Exercise. Find all solutions in the appropriate canonical complete residue system modulo n that satisfy the following linear congruences:
1. $26x \equiv 14 \pmod{3}$.
Solution. 1
$2. \ 2x \equiv 3 \pmod{5}.$
Solution. 4
3. $4x \equiv 7 \pmod{8}$.
Solution. No solution.
4. $24x \equiv 123 \pmod{213}$. (This congruence is tedious to do by trial and error so perhaps we should defer work on it for now and instead try to develop some techniques that might help.)
Solution. See 3.22.
3.19 Theorem. Let a, b, and n be integers with $n > 0$. Show that $ax \equiv b \pmod{n}$ has a solution if and only if there exist integers x and y such that $ax + ny = b$.
<i>Proof.</i> Let $a, b,$ and n be integers with $n > 0$. We will show that $ax \equiv b \pmod{n}$ has a solution if and only if there exist integers x and y such that $ax + ny = b$.
First, assume that $ax \equiv b \pmod{n}$ has a solution x . Then $n \mid ax - b$. Using the definition of divides, let $-y$ be the integer such that $n(-y) = ax - b$. So $ax + ny = b$
Now assume that there exist integers x and y such that $ax + ny = b$. Then $ax - ax + b$ is a sum of the following property of the following pr
$b = -ny$, so by the definition of divides $n \mid ax - b$. Therefore by the definition of

congruence mod n, $ax \equiv b \pmod{n}$.

3.20 Theorem. Let a, b, and n be integers with n > 0. The equation $ax \equiv b \pmod{n}$ has a solution if and only if (a, n)|b.

Proof. Let a, b, and n be integers with n > 0. We will show that the equation $ax \equiv b \pmod{n}$ has a solution if and only if $(a, n) \mid b$.

First, assume that $ax \equiv b \pmod{n}$ has a solution x. By theorem 1.40, there exist integers j and k such that aj + nk = (a, n). So n(-k) = aj - (a, n) and $n \mid aj - (a, n)$ Also, by the definition of congruence modulo n, $n \mid ax - b$. So by theorem 1.1, $n \mid ax - b + aj - (a, n)$, and by the definition of divides nm = a(x + j) - b - (a, n) for some integer m. Then for some integers c and d,

$$c(a, n)m = d(a, n)(x + j) - b - (a, n).$$

Rearranging this gives us:

$$-cm(a, n) + d(x + j)(a, n) - (a, n) = b$$

or:

$$(a,n)(d(x+j)-cm-1) = b.$$

Since d(x+j)-cm-1 is an integer, $(a,n)\mid b$.

Now assume that $(a, n) \mid b$. By the definition of divides there exists some integer m such that (a, n)m = b. And by theorem 1.40, there exist integers j and k such that aj + nk = (a, n). Multiplying both sides by m gives us m(aj + nk) = b, or ajm - b = nm(-k). So by the definition of divides $n \mid ajm - b$, and if we let x = jm, then by the definition of congruence modulo n, we have $ax \equiv b \pmod{n}$.

3.21 Question. What does the preceding theorem tell us about the congruence (4) in Exercise 3.18 above?

Solution. Because (24, 213) = 3 and $123 = 3 \times 41$, we know by theorem 3.20 that a solution to $24x \equiv 123 \pmod{213}$ exists.

3.22 Exercise. Use the Euclidean Algorithm to find a member x of the canonical complete residue system modulo 213 that satisfies $24x \equiv 123 \pmod{213}$. Find all members x of the canonical complete residue system modulo 213 that satisfy $24x \equiv 123 \pmod{213}$.

Solution. We will find all integers x in the canonical complete residue system modulo 213 such that $24x \equiv 123 \pmod{213}$ using the extended euclidean algorithm. Here we find the integers x and y such that ax + ny = b.

$$21 = 24 \cdot -8 + 213 \cdot 1$$

$$3 = 21 \cdot -1 + 24 \cdot 1$$

$$3 = (24 \cdot -8 + 213 \cdot 1) \cdot -1 + 24 \cdot 1$$

$$3 = 24 \cdot 9 + 213 \cdot -1$$

Also $3 \cdot 41 = 123$.

$$24(9) + 213(-1) = 3$$

$$41(24(9) + 213(-1)) = 41(3)$$

$$24(369) + 213(-41) = 123$$

$$24(369) - 123 = 213(41)$$

Therefore $24(369) \equiv 123 \pmod{213}$. Also, since $369 = 213 \cdot 1 + 156$, we have that $369 \equiv 156 \pmod{213}$. So our solution is $24(156) \equiv 123 \pmod{213}$, or x = 156. \square