PROBLEM SET 01

Day 1

§1. Explain in your own words how the provisional definition implies the $\epsilon - \delta$ definition of limit.

Provisional definition: The function f approaches a limit l near a, if we can make f(x) as close to a as we like to l by requiring that x be sufficiently close to, but unequal to, a.

 $\epsilon - \delta$ definition: The function f approaches a limit l near a, if for every $\epsilon > 0$ there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - l| < \epsilon$.

§2. For each of the following functions f and real numbers a,

- Guess the limit L = lim_{x→a} f(x).
 Find a δ corresponding to ε = 0.1 in the ε − δ definition of limit.
- For a real number $L' \neq L$ explain why you cannot find any δ that will work.
- Find a δ corresponding to an arbitrary real number ϵ and **prove** that L is indeed the limit.

(1)
$$f(x) = x + 2$$
, $a = 0$

(2)
$$f(x) = 7x + 2$$
, $a = 0$

(3)
$$f(x) = x^2 - 2$$
, $a = 0$

(4)
$$f(x) = \ln(x), \quad a = 1$$

Day 2

§1. Explain in your own words how the provisional definition implies the $\epsilon - \delta$ definition of limit.

Provisional definition: The function f approaches a limit l near a, if we can make f(x) as close to a as we like to l by requiring that x be sufficiently close to, but unequal to, a.

 $\epsilon - \delta$ definition: The function f approaches a limit l near a, if for every $\epsilon > 0$ there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - l| < \epsilon$.

- §2. For each of the following functions f and real numbers a,

 - Guess the limit L = lim_{x→a} f(x).
 Find a δ corresponding to ε = 0.1 in the ε − δ definition of limit.
 - For a real number $L' \neq L$ explain why you cannot find any δ that will work.
 - Find a δ corresponding to an arbitrary real number ϵ and **prove** that L is indeed the limit.
 - (1) f(x) = x + 2, a = 0
 - (2) f(x) = 7x + 2, a = 0
 - (3) $f(x) = x^2 2$, a = 0
 - (4) $f(x) = \ln(x), \quad a = 1$

Day 3

§1. Explain in your own words how the provisional definition implies the $\epsilon - \delta$ definition of limit.

Provisional definition: The function f approaches a limit l near a, if we can make f(x) as close to a as we like to l by requiring that x be sufficiently close to, but unequal to, a.

 $\epsilon - \delta$ definition: The function f approaches a limit l near a, if for every $\epsilon > 0$ there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - l| < \epsilon$.

- §2. For each of the following functions f and real numbers a,

 - Guess the limit L = lim_{x→a} f(x).
 Find a δ corresponding to ε = 0.1 in the ε − δ definition of limit.
 - For a real number $L' \neq L$ explain why you cannot find any δ that will work.
 - Find a δ corresponding to an arbitrary real number ϵ and **prove** that L is indeed the limit.
 - (1) f(x) = x + 2, a = 0
 - (2) f(x) = 7x + 2, a = 0
 - (3) $f(x) = x^2 2$, a = 0
 - (4) $f(x) = \ln(x), \quad a = 1$