Phase Interferometry Direction Finding

WPI MQP Group:

WPI Advisors:

Ted Clancy

Germano lannacchione

George Heineman

Daniel Guerin - ECE

Shane Jackson - Physics

Jonathan Kelly - CS/ECE

Group 108 Staff:

•Chris Strus

Lisa Basile

Kelly McPhail

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-10-C-0007. Opinions, interpretations, conclusions, and recommendations are those of the authors and not necessarily endorsed by the United States Government.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Overview

Project Goal

- Create a passive Direction Finding system for an airborne platform capable of determining the Angle of Arrival (AoA) in the azimuth plane.
- Display results in a real-time graphical interface

Specifications
±2.5° accuracy
40 dB dynamic range
90° field of view
1 Hz update rate
100 MHz bandwidth IF signal
X Band Frequency (8-12 GHz)
Secondary Objectives
Track 3 beacons
180° field of view

Planned System

Contents

- 1. Phase Interferometry
- 2. MATLAB Model
- 3. Prototype System
- 4. Summary

Passive Direction Finding

Method	Complexity	Size	Accuracy
Time Difference of Arrival	Medium	æ	✓
Amplitude Comparison	Low	✓	×
Phase Interferometry	High	✓	✓

Scope of this project

(Massa, O'Connor, Silva, 2011)

Phase Interferometry

Phase Ambiguities

Phase eclipsing causes ambiguous results due to antenna spacing and wavelength

Phase Ambiguities

Phase eclipsing causes ambiguous results due to antenna spacing and wavelength

Phase Ambiguities

Phase eclipsing causes ambiguous results due to antenna spacing and wavelength

Resolving Ambiguities

- Utilize multiple antennas for disambiguation
 - Compute Phase difference from Antenna 1 to 2
 - Compute Phase difference from Antenna 1 to 3
 - Compare possible angle solutions for common angle value

Antenna Spacing selected based on RF input requirement to minimize ambiguities

Resolving Ambiguities

Adding a third antenna provides unambiguous result

Resolving Ambiguities

Adding a third antenna provides unambiguous result

Contents

- 1. Phase Interferometry
- 2. MATLAB Model
- 3. Prototype System
- 4. Summary

MATLAB Model

- Used to develop and test the direction finding algorithm
- Simulates every step of the physical system
 - Pulsed wave generation, frequency down-converting, sampling waves
 - All processing steps in the final system tested in model first

MATLAB Model

Group 108 10/01/12

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MATLAB Results

Algorithm Performance			
Mean Error	0.097°		
Mean Certainty	0.87		
Ambiguity Error	1.08%		

Rare ambiguity errors can cause erroneous calculations

MATLAB Results

Algorithm Performance			
Mean Error	0.097°		
Mean Certainty	0.87		
Ambiguity Error	1.08%		

Contents

- 1. Phase Interferometry
- MATLAB Model
- 3. Prototype System
- 4. Summary

Prototype System

Third input channel not implemented due to hardware issues
Three antenna mode tested with MATLAB inputs

Prototype Results

- Strong agreement between verified model and C algorithm
- Processing time within specification
 - Data transfer accounts for 99.7% of latency
- GUI demonstrated with simulated and captured data

Real-Time Display Demo

Contents

- 1. Phase Interferometry
- 2. MATLAB Model
- 3. Prototype System
- 4. Summary

Future Work

Performance

- Combine phase interferometry and amplitude comparison for two antenna solution
- Move real-time processing to FPGA
- Enhance tracking algorithm to reduce probability of false ambiguity selection

Testing

- Test three channel operation with live data
- Verify operation with antennas connected

Conclusion

- Successfully met all primary requirements with simulated signals
- Extended field of view to ±85°
- Capable of identifying multiple emitters per batch
- Three channel operation verified with simulated data
- Two channel operation verified with live signal generator data

Acknowledgements

Emily Anesta

Lisa Basile

Ted Clancy

Sarah Curry

George Heineman

Germano lannacchione

Kelly McPhail

Christopher Strus

Resolving Phase

Finding Optimal Antenna Separation

GUI Sample for Two Channel Inputs

