Final Assessment Test (FAT) - July/August 2023

Programme	B.Tech.	Semester	Fall Inter Semester 22-2	
Course Title	ANTENNA AND MICROWAVE ENGINEERING	Course Code	BECE305L	
Faculty Name		Slot	C1+TC1	
	Prof. Idayachandran G	Class Nbr	CH2022232500127	
Time	3 Hours	Max. Marks	100	

Section A (5 X 5 Marks) Answer All questions

- O1. In a long-range microwave communication system operating at 9 GHz, the transmitting and receiving antennas are identical and are separated by 10,000 m. To meet the receiver's signal-to-noise ratio, the received power must be at least 10 μW. Assuming the two antennas are aligned for maximum reception to each other, including being polarization-matched, what should the gains (in dB) of the transmitting and receiving antennas be when the input power to the transmitting antenna is 10 W?
- O2. A uniform array of 3 elements is designed so that its maximum is directed toward the broadside.
 The spacing between the elements is λ2. Determine (a) the half-power beamwidth (in degrees).
 (2.5 marks)
 - (b) directivity (dimensionless and in dB) (2.5 marks)
- 03. Discuss the possible methods to feed the EM signal to a planar rectangular patch antenna with a neat sketch.
 - [5]

Differentiate between Butterworth and Chebyshev filter response.
 Name five antennas and mention their corresponding applications.

[5]

Section B (6 X 10 Marks) Answer All questions

- 06. A small dipole antenna is carrying a uniform rms current of 10 A. Its far zone rms electric field at a distance of 'r' meters in a direction making angle θ with the conductor is given by $E = \frac{200}{r} \sin \theta \text{ V/m} \text{ and radiation intensity } U = \frac{E^2}{120\pi} r^2 \text{ W/steradian. Find}$
 - a) the total power radiated (8 marks)
 - b) radiation resistance (2 marks)
- 07. Three isotropic sources, with spacing d between them, are placed along the z-axis. The excitation coefficient of each outside element is unity while that of the center element is 2. For a spacing of d = λ/4 between the elements, find the
 - (a) array factor (2 marks)
 - (b) angles (in degrees) where the nulls of the pattern occur ($0^{\circ} \le \theta \le 180^{\circ}$) (3 marks)
 - (c) angles (in degrees) where the maxima of the pattern occur ($0^{\circ} \le \theta \le 180^{\circ}$). (5 marks)
- 08. Assuming the diameter of the parabolic reflector antenna is 1 meter, the frequency of operation is 4 GHz, and its aperture efficiency is 69%. If the power density of the wave incident upon the antenna is 10 μW/m², determine the following:
 - (a) Physical area of the reflector. (2 marks)

- (b) Maximum effective area of the antenna (J marks)
- (c) Maximum directivity (dB). (5 marks)
- 09. (a) Explain the avalanche effect. (2 marks)
 - (b) Describe the operation of IMPATT and TRAPATT diode. (4+4 marks)
- 10. Design a stepped-impedance low-pass filter with a maximally flat response and a cut-off frequency of 2.4 GHz using Figure 1. It is necessary to have at least 30 dB attenuation at 4.0 GHz. The filter impedance is 50 ohms; the highest practical line impedance is 130 ohms & the lowest is 30 ohms. Determine the \(\text{dl} \) in degrees. The filter coefficients can be taken from below

Fig.1 Table 1

_											
N	z)	<i>t</i> :	£3	E4	žy :	ħ.	r	. An	ħ	£10	£),i
ı	2 0000	1.0000									
2	1.4142	1.4142	1 0000								
$\hat{\mathcal{J}}$	1 0000	2,0000	1.0000	1.0000							
	0.7654	15479	1813	0.7654	1.0000						
3	0.6100	1.6150	20000	1.6130	0.61%	1.0000					
6	0.5176	14142	1.9318	1.9318	1.4142	0.5176	1 0000				
*	9.4450	1.2479	1 9019	2 0000	1 5019	1.2470	0.4450	1.0000			
8	0.7902	1.11111	1 6629	+9615	1 9615	1 6629	1.1111	0.3902	1.0000		
9	0.3473	1.9000	1.5921	1.5*94	2,0000	1.1794	1.3324	1.0000	0.3473	1 0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.90\$0	0.3129	1.0000

11. A GaAs MESFET amplifier in Fig.2 has the following S-parameters at 4 GHz with a 50-ohm reference

[10]

[10]

Fig. 2

$$S_{11}=0.4\angle 140^\circ,\ S_{12}=0.08\angle 140^\circ,\ S_{21}=1.8\angle 120^\circ,\ S_{22}=0.3\angle 140^\circ,\ {
m Note:}\ Z_s=35\Omega$$
 and $Z_L=45\Omega$.

- a) Calculate Γ., Γ., Γ and Γ and (8 marks)
- b) Find the transducer Gain G_T . (2 marks)

Section C (LX 15 Marks) Answer All questions

12. (a) Write the scattering matrix for the ideal three-port circulator (2 marks)

- [15]
- (b) A three-port circulator has an insertion loss of 2dB, Isolation of 30 dB and VSWR is 1.3. Find its scattering matrix. Assume the phases of all coefficients are zero. (6 marks)
- (c) Show that any three port network cannot be lossless, reciprocal, and matched at the same time using S- matrix. (7 marks)

Some Formulae:

$$\begin{split} P_{rind} &= \int \int U \sin \theta \ d\theta \ d\phi \\ P_r &= P_t G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2 \\ D_{array} &= 2N \left(\frac{d}{\lambda}\right) \\ \theta_{bulf power point} &= \cos^{-1} \left(\pm \frac{1.791\lambda}{\epsilon N d}\right) \\ A_p &= \frac{gD^2}{4} \\ A_r &= \eta_{ap} A_p \\ D &= \frac{d\pi}{\lambda^2} A_c \end{split}$$

Power=power density x effective area

Power=power density x effect
$$\Gamma_{L} = \frac{[Z_{1} - Z_{nw}]}{(Z_{1} + Z_{nw})}$$

$$\Gamma_{S} = \frac{Z_{2} - Z_{n}}{Z_{S} + Z_{n}}$$

$$\Gamma_{nut} = S_{12} + \frac{S_{11}S_{21}\Gamma_{1}}{1 - S_{11}\Gamma_{1}}$$

$$\Gamma_{tm} = S_{11} + \frac{S_{12}S_{21}\Gamma_{1}}{1 - S_{21}\Gamma_{1}}$$

$$\Delta = S_{11}S_{22} - S_{12}S_{21}$$

$$G_{T} = \frac{|S_{n}|^{2}(1 - |\Gamma_{d}|^{2})(1 - |\Gamma_{1}|^{2})}{|1 - \Gamma_{s}\Gamma_{n}|^{2}|1 - S_{21}\Gamma_{1}|^{2}}$$

$$K = \frac{1 + |\Delta|^{2} - S_{11}S_{21}|^{2}}{2S_{11}S_{21}|^{2}}$$

000000