

보험사기분류모델링

(머신러닝 프로젝트, 3조)

김도겸 류승환 임현수

목차

0. 프로젝트 소개

1. 베이스라인 및 목표

2. 진행 과정

3. 결과 및 최종 선택 모델

4. 추후 개선점, 아쉬웠던 점, 의문

0. 프로젝트 소개

프로젝트 소개

1. 주제

: 머신러닝을 통해 자동차 보험 사기 여부 예측 모델 개발

2. 기대효과

: 보험 사기 여부 실사 시, 조사대상 건수 최소화를 통한 효율적 리소스 운영

1. 베이스라인 및 목표

베이스라인 설정

1. 기준

: recall 값 0.29 이상

2. 이유

- : 기타 전처리 없이 오버샘플링(SMOTE)만 진행 시 결과값
 - → 기타 전처리 추가에 따른 성능 향상 기대

======================================	•	491509131		
[2 -]]	precision	recall	f1-score	support
0 1	1.00 0.00	0.79 0.29	0.88 0.01	3114 7
accuracy	3121			
macro avg	0.50	0.54	0.45	3121
weighted avg	1.00	0.79	0.88	3121
name: Decisionaccuracy_score [[2036 1078] [5 2]]		346683755		
[2 2]]	precision	recall	f1-score	support
0 1	1.00 0.00	0.65 0.29	0.79 0.00	3114 7
accuracy			0.65	3121

0.79

3121

0.65

1.00

macro avg

weighted avg

목표

1. 주목표

: recall 최대화

2. 부목표

: recall값이 동일할 경우, accuracy 최대화

name: LogisticRegression								
accuracy_score	accuracy_score: 0.7926946491509131							
[[2472 642]								
[5 2]]								
	precision	recall	f1-score	support				
•	1.00	0.70	0.00	2444				
0	1.00	0.79	0.88	3114				
1	0.00	0.29	0.01	/				
accuracy			0.79	3121				
macro avg	0.50	0.54	0.45	3121				
weighted avg	1.00	0.79	0.88	3121				
nergineed arg	2100	0175	0.00	3121				
name: DecisionTree								
accuracy_score: 0.6529958346683755								
[[2036 1078]								
[5 2]]								
	precision	recall	f1-score	support				
0	1.00	0.65	0.79	3114				
1	0.00	0.29	0.00	7				
accuracy			0.65	3121				
macro avg	0.50	0.47	0.40	3121				
weighted avg	1.00	0.65	0.79	3121				
weighted avg	1.00	0.05	0.75	3121				

2. 진행 과정

순서도

이상데이터 제거

> 1가지 (제거)

null값 제거

2가지 (제거/유지) OneHot Encoding

2가지 (적용/미적용) Sampling

5가지

- · SMOTE
- BorderlineSMOTE
- · SVMSMOTE
- · ADASYN
- RandomOverSampling

Scaling

4가지

- · 미적용
- MinMax
- Standard
- Robust

Hyper
Parameter
Tuning

10가지

- 5가지 알고리즘
- · 2가지 경우 (class_weight tuning 여부)

총 800가지 경우에 대해 시행

전처리: 이상데이터 제거

대여시간과 사고발생시각 비교 시, 납득하기 어려운 데이터 존재 (ex. 11~20시 대여, 21시 이후 사고 발생)

	start_hour	accident_hour	<pre>gap_start_acci</pre>	duration	test_set
43	4	1	-3	2	0
1504	4	1	-3	1	0
1762	4	1	-3	2	0
1766	4	1	-3	2	1
11706	4	1	-3	2	0
12031	4	1	-3	2	0
12665	4	1	-3	2	0

(※ 추후 마스킹 예정)

→ 총 41개 데이터 발견, 삭제 후 진행

전처리: Null값 제거, Encoding, Sampling

Null값 제거

6개 features 제거

- · repair_cost
- · insure_cost
- · acc_type1
- · insurance_site_aid_YN
- police_site_aid_YN
- total_prsn_cnt

OneHot Encoding

9~13개 features 제거 (Null값 제거 시 9개, 포함 시 13개)

- · car_model
- · sharing_type
- · age_group
- has_previous_accident
- •

Sampling

5가지 경우

- · SMOTE
- BorderlineSMOTE
- · SVMSMOTE
- · ADASYN
- RandomOverSampling

(* 추후 마스킹 예정)

Pipeline: Scaling, hyperparameter tuning

Scaling

4가지 경우

- · 미적용
- MinMax
- Standard
- Robust

HyperParameter Tuning

5가지 알고리즘

- Logistic Regression
- Decision Tree
 - max_depth: [3, 4, 6, 8, 10, 30]
 - max_features: [None, sqrt, log2]

Random Forest

- n_estimators: [50, 100, 200, 400]
- max_depth: [4, 6, 8, 10, 30]

Light GBM

- n_estimators: [50, 100, 200, 400]
- num_leaves: [4, 8, 16]

Support Vector Classification

- C: [0.1, 1.0]

2가지 경우

(class_weight 튜닝)

- ·미적용
- · 적용([

```
{0: 0.01, 1: 1.0},
{0: 0.005, 1:1},
'balanced'
```

Module 설명

3. 결과 및 최종 선택 모델

결과 및 최종 선택 모델

1. 결과

	class_weight_YN	null_del	encoded	scaler	sampler	classifier	train accuracy	train recall	test accuracy	test recall
1	0	0.0	1.0	None	BdlSMOTE	SVC	0.632224	0.999219	0.284204	1.000000
2	0	0.0	0.0	None	SVMSMOTE	LogisticReg	0.774697	0.995547	0.684396	0.857143
3	1	1.0	0.0	None	SVMSMOTE	RandomForest	0.862384	0.995547	0.817687	0.714286
4	1	1.0	1.0	SD	SVMSMOTE	LogisticReg	0.884418	0.998381	0.745274	0.571429
5	0	0.0	0.0	None	RandomOverSampler	LightGBM	0.939082	1.000000	0.830503	0.428571

2. 최종 선택 모델

- 1st (Best): 2번째 모델 (test recall=0.86, test accuracy=0.68)
- 2nd: recall과 accuracy 중 우선순위에 따라 1번째 혹은 3번째 모델

4. 추후 개선점, 아쉬웠던 점, 의문

추후 개선점, 아쉬웠던 점, 의문

1. 추후 개선점

- Null값 처리
 - : 클러스터링을 통한 대체값 등 삭제 외 다른 방법 적용
- hyper-parameter 튜닝
 - : 더 다양한 파라미터 (ex. SVC에서 gamma 값) 및 세분화된 튜닝

2. 아쉬웠던 점

- 세분화된 시간 데이터
 - : 시간대가 아닌 구체적 시간 및 날짜 데이터였다면...

3. 의문점

- Logistic Regression과 RandomForest의 경우, 인코딩 미적용한 경우가 성능이 더 좋게 나타남
 - → 알고리즘 특성상 인코딩 효과가 미미하거나, 오히려 미적용하는 것이 성능이 더 우수할 수 있나?

Q&A

E.O.D