Mathematics II, Spring 2020 Complex Analysis

Pradeep Boggarapu

Functions

Limits and Continuity

Mathematics II, Spring 2020 Complex Analysis

Pradeep Boggarapu

Department of Mathematics, BITS-Pilani K. K. Birla Goa Campus

March 14, 2020

Complex functions

Mathematics II, Spring 2020 Complex Analysis

> Pradeep Boggarapu

Functions

Limits and Continuity A function from a subset of complex numbers into the set of complex numbers is called a complex function.

 $S \subset \mathbb{C}$ a mapping $f: S \to \mathbb{C}$ is called a complex function if it is well defined.

The set S is called the domain of the function. Sometime if the domain is not mentioned then the largest possible set where f is well defined is taken to be the domain.

The set $\{f(z): z \in S\} \subset \mathbb{C}$ is called the range of the function.

Examples

Mathematics

II. Spring 2020 Complex **Analysis**

> Pradeep Boggarapu

Functions

- $f: \mathbb{C} \longrightarrow \mathbb{C}$ defined by $f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ where $a_i \in \mathbb{C}$ is called a polynomial function.
- $f = \frac{P(z)}{Q(z)}$ where P, Q are polynomial functions, is called a rational function, note that the domain of the function is all of complex plane except for the roots of Q.
- $f(z) = e^z$ is the exponential function which is defined by $e^z = e^x e^{iy} = e^x (\cos y + i \sin y)$

for z = x + iy. Note that the domain is all of the complex plane.

Examples. cont

Mathematics

II. Spring 2020 Complex **Analysis**

> Pradeep Boggarapu

Functions

- If z = x + iy then define $f(z) = x^2 y^2$ is a real valued function since the range is contained in the real line.
- The function $f(z) = z + z_0$ for some fixed complex number z_0 is called a translation.
- $f(z) = e^{i\theta_0}z$ is called a rotation since the image is z rotated by the angle θ_0 .
- f(z) = az + b for some complex numbers a, b is an affine transformation of the real vector space \mathbb{C} to itself.
- 5 $f(z) = \overline{z}$ is a reflection about the X axis.

Limits and Continuity

Definition

Let the function f be defined on a deleted neighborhood of a point z_0 then we say

$$\lim_{z\to z_o}f(z)=w_0,$$

if for each positive real number ϵ there is a positive real number δ such that

$$|f(z) - w_0| < \epsilon$$
 whenever $|z - z_0| < \delta$

Uniqueness

Mathematics II, Spring 2020 Complex Analysis

> Pradeep Boggarapu

Functions

Limits and

As we "move" closer to the point z_0 the value of the function moves closer to the value w_o . Note that a limit may or may not exist. But if it exists then one can show as in the next theorem that it is unique.

Theorem 1

If a limit $\lim_{z\to z_0} f(z)$ exists then it is unique.

Uniqueness

Mathematics II, Spring 2020 Complex Analysis

To prove the assertion let us assume if possible there are more than one limits, let us say w_1 , w_2 are two limits.

Pradeep Boggarapu

So for each positive $\epsilon > 0$ there are δ_1, δ_2 positive such that

Limits and

$$|f(z)-w_1|<\epsilon$$
 whenever $|z-z_0|<\delta_1$ and

Continuity

$$|f(z)-w_2|<\epsilon$$
 whenever $|z-z_0|<\delta_2$.

So whenever $|z-z_0|<\delta=\min\{\delta_1,\delta_2\}$, we have

$$|w_1-w_2|=|(f(z)-w_2)-(f(z)-w_1)|\leq |f(z)-w_1|+|f(z)-w_2|$$

$$<$$
 2 ϵ

Since ϵ in the above was arbitrary, we must have $w_1 = w_2$.

Mathematics

II. Spring 2020 Complex **Analysis**

Pradeep Boggarapu

Limits and Continuity

Theorem 2

Let us suppose that f(z) = u(x, y) + iv(x, y) where z = x + iyand u, v are real valued functions of two real variables. And let us say $z_0 = x_0 + iv_0$ and $w_0 = u_0 + iv_0$ then :

$$\lim_{z\to z_0}f(z)=w_0$$

if and only if

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \quad \text{and} \quad \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0.$$

Limits and Continuity

Theorem 3

Let us assume $\lim_{z\to z_0} f(z) = w_0$ and $\lim_{z\to z_0} g(z) = p_0$ Then:

$$\lim_{z \to z_0} (f(z) + g(z)) = w_0 + p_0$$

$$\lim_{z \to z_0} f(z)g(z) = w_0 p_0$$

If
$$p_0 \neq 0$$
 then $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w_0}{p_0}$

Problems

Mathematics II, Spring 2020 Complex Analysis

> Pradeep Boggarapu

Functions

Limits and Continuity

Show that the limit of the function $f(z) = \left(\frac{z}{\overline{z}}\right)^2$ as z tends to 0 does not exist.

Find which of the following limits exists:

$$\lim_{z\to 1}\frac{1-\overline{z}}{1-z}.$$

$$\lim_{z\to 0}\frac{z^2-\overline{z}^2}{z}.$$

$$\lim_{z\to 0} \frac{z}{\text{Re}z}.$$

Limit to infinity

Mathematics II, Spring 2020 Complex Analysis

> Pradeep Boggarapu

unctions

Limits and Continuity

Theorem 4

- I $\lim_{z\to z_0} f(z) = \infty$ if and only if $\lim_{z\to z_0} \frac{1}{f(z)} = 0$
- $\lim_{z\to\infty} f(z) = w_0$ if and only if $\lim_{z\to0} f(\frac{1}{z}) = w_0$.
- If $\lim_{z\to\infty} f(z) = \infty$ if and only if $\frac{1}{\lim_{z\to 0} f(1/z)} = 0$

Limits and Continuity Use the above theorem to find the following limits

$$\lim_{z\to\infty}\frac{4z^2}{(z-1)^2}$$

$$\lim_{z \to 1} \frac{1}{(z-1)^3}$$

$$\lim_{z\to\infty}\frac{z^2+1}{z-1}$$