Preprocessing and Data Cleaning

Prep work for machine learning

Machine Learning Plan

- Machine Learning Intro
- Preprocessing
- Making Pipelines
- Comparing Evaluation Metrics
- Feature Selection

Preprocessing Plan

- Exploring the Dataset
- Find and handle missing data
- Encoding Categorical and String Data into Numbers
- Outlier Removal
- Standardization and Normalization

In Class Example

- Dataset that should predict whether someone purchased a product or not
- Load in dataset as a class and look at it.

1. Identify the Features and the Target

What are features and Target here?

2. Explore Dataset

- Ex:
 - What are counts of different values in each column?
 - What are averages of each column?
 - What columns follow a normal distribution?
 - Our How many NA values are there?

2. Explore Dataset

- You can use pandas's describe method to get total count and means for numerical columns
- You can use pandas's value_counts method to get count of a column's individual value count.
- Make bar chart function with docstring to explore this as well.

2. Explore Dataset

- Which columns follows a normal distribution?
 - This information is important to know for later when we have to normalize or standardize the data
 - It also may tell us that the columns do not have any "blind spots"

- Different methods
 - Remove any row with missing data
 - Remove any column with missing data
 - Impute using the average value for numerical data
 - Impute using the most frequent value for categorical data
 - Impute using random selection for categorical data
 - Impute with a new category for categorical data- eg category called "missing"
 - Impute- Replace the value based on inference

- Pros and Cons of removing rows with missing values.
- What do you think?

- Removing Rows with NA values
- Pros
 - Easy and simple
- Cons
 - Could lose valuable information
- Rule of thumb
 - Don't do it if you are losing more then 10% of data

- Removing Cols with NA values
- When would you do it vs not?

- Removing Cols with NA values
- When do it?
 - When you may want to get rid of that column anyway
 - Adds noise
 - Not relevant or helpful
- Disadvantage
 - You lose an entire feature! This could have a lot of information!!

- Imputing average value for numerical results
- Pros and Cons?

- Imputing average value for numerical results
- Pros
 - Allows you to use more data for your training
 - With normal distribution, the underlying pattern the model is predicting will not change
- Cons
 - You are inserting "fake" data- could skew results if this is done for a lot of values

- Imputing most frequent value for categorical data
- Talk about what this means with Ex
- What do you think pros and cons are?

- Imputing most frequent value for categorical data
- Pros
 - You get to use more data!
- Cons
 - Could just be wrong
 - Recommended to use this if you have one category that is the much bigger than the others
 - May make more sense if you look at other factors in the data to confirm that you are filling in where there is

- Replacing certain problematic categories with a new category- Ex: "missing", "other"
- Pros and Cons?

- Replacing certain problematic categories with a new category- Ex: "missing", "other"
- Pros
 - Your not putting in anything false that will skew the data
- Cons
 - Assuming there are not a lot of these, they will not affect the ml training much.
 - If there are a lot, the "missing" category may actually play an important role in how the model performs. You probably don't want that

- Machine Learning models need all features to be numbers
 - All ml models are just math functions
- What do we do with data that are strings?
 - We make them into numbers!
 - This process is called "encoding"

- Common methods
 - Label Encoding
 - One Hot Encoding

- Label Encoding
 - Do example on whiteboard
- What are pros and cons?

- Label Encoding
- Pros
 - Simple
 - Does not change amount of columns
- Assumptions it has
 - That there is a sequence in the categories

- Ex:
 - France, Germany, Spain
 - Encoded:
 - \blacksquare F = 0
 - \Box G = 1
 - \blacksquare S = 2
 - What is average of the 3 countries? A: Germany
 - It makes no sense in this case

- One Hot Encoding:
 - Makes a Column for each possible value
 - Show Example on whiteboard
- Pros and cons?

- One Hot Encoding:
 - Makes a Column for each possible value
 - Show Example on whiteboard
- Pros and cons?

- One Hot Encoding
- Pros
 - Does not prioritize some variables over others
- Cons
 - Makes a lot of columns if you have a lot of categories
 - Unintuitive, but not necessarily a bad thing for machine learning

Outlier Removal- ie Anomaly Detection

- Ex:
 - HW where someone ran over 100,000 km in a session
- Why would you want to remove outliers?

Outlier Removal

Why would you NOT want to remove outliers?

Outlier Removal

- Why would you NOT want to remove outliers?
 - Ex: You want to predict the population of different groups of endangered species
 - If you see an extremely small number, you don't want to ignore it, these may be the groups you care most about!

Outlier Removal

- TLDR
 - You want to remove outliers that don't match the underlying function/pattern you want to model
 - You want to keep outliers

How do you know when to remove outliers?

Domain Knowledge

3 Methods we will explore

- Box plot with hard coded thresholding
- 2. Interquartile Range
- 3. Z-score

Box plot

• What is a box plot? How do you read one?

introduction to data analysis: Box Plot

Max = Q3 + (1.5)(IQR)

Min = Q1 - (1.5)(IQR)

Do Interquartile Range Ex

Use ziteboard with 7 numbers

Making a Boxplot with Seaborn

- Seaborn is a wrapper of matplotlib
 - Much easier to customize
 - Default settings are better
 - Generally easier to use then matplotlib
 - BUT it is built on top of matplotlib

Removing Outliers with hard coded thresholding

Show example from notebook

Removing Outliers with hard coded Thresholds

Pros and Cons?

Removing Outliers with hard coded Thresholds

- Pros
 - Expert/boss can tell you what they think you should ignore
- Cons
 - You gotta just pick the thresholds
 - Not mathematical
 - May be hard to defend if you are not domain expert

Removing Outliers based on Interquartile Range

Show example from notebook

Removing Outliers based on Interquartile Range

Pros and Cons?

Removing Outliers based on Interquartile Range

- Pros
 - Standard statistical technique
 - Works for features that are not normally distributed
 - Boxplot takes distribution into account
- Cons
 - If data does follow a normal distribution, this method can remove more outliers then another method (z-score). This may/may not be a con

What if the data is normally distributed?

- Is there another way?
- Yep! Using something called the Z-score!

Z-score- good for normally distributed data

Standard normal distribution

No. of standard deviations from the mean

What is Z-score?

- X- value in your data
- u- mean of feature
- σ- standard deviation

What is Z-score?

- What does a z = 0 mean?
- z = 1?
- \bullet z = 2?
- z = -1?

What does Z-score mean?

- It tells you how far you are from the mean.
- Lets look at example in code

Z-score

• Pros and Cons? When to use it vs not?

Z-score

- Pros
 - Established recognized mathematical procedure
 - Still gives you control about how much to prune off
- Should only be used on normally distributed data

Feature Scaling

- What is it and why do we care?
- Ex: predict if someone wants to buys a house given age and salary
 - O What are ranges?

Why do Feature Scaling after Outlier Removal?

• What do you think?

Outliers can impact how Feature Scaling Works

- Ex:
 - If you leave extreme outliers, then those are treated as the min and max and the distribution of your data may become very squished

Feature Scaling

- Two main methods:
 - a. Normalization
 - b. Standardization

Normalization

- Maps the max number in dataset to 1
- Maps the smallest number in dataset to 0
- Lays everything else out proportionately between 0 and 1.

Normalization

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Data before Normalization

Data after Normalization

Comparison

What do you notice?

Example

Do it in notebook

Standardization

- Rescales data so that
 - The mean of the data is 0
 - The standard deviation 1
- The min and max could be whatever

Standardization

Data before Normalization

After Standardization

Comparison- What do you notice?

Example

Do it in notebook