Math 18.100B Final Exam Spring 2002

			-	Name:	
			(e-mail:	
If you want your cou	rse grade	posted outsid	e my office o	door, write dov	wn a secret code.
			secret	code:	
	1.		5.		
	2.		6.		
	3.		7.		
	4.		8.		
			Total		

Make sure your name is written on every page of this exam. Each problem is worth 25 points.

	Name:			
1. (a) Suppose that $X, Y,$ and Z are metric spaces and that $f: X \to Y$ and $g: Y \to Z$ a continuous functions. Show that				
	$g \circ f: X \to Z$			
is continuous.				

(b) Does there exist a continuous function function $f:[0,1]\to\mathbb{R}$ with the property that f(s)=0 for countably many values of s? If so, give an example. If not explain why not.

(c) Does there exist a differentiable function $f:[0,1]\to\mathbb{R}$ with $f(0)=0,\ f(1)=1,$ and f'(x)>2 for all x? If so, give an example. If not explain why not.

- **2.** Suppose that $\alpha:[a,b]\to\mathbb{R}$ is a monotone increasing function, and that $f:[a,b]\to\mathbb{R}$ is bounded.
- (a) Give the definitions of

$$\underline{\int_a^b} f \, d\alpha \quad \text{and} \quad \overline{\int_a^b} f \, d\alpha,$$

the lower and upper Riemann-Stieltjes integrals of f with respect to $\alpha.$

(b) What does it mean to say $f \in \mathcal{R}(\alpha)$ on [a, b]?

- **3.** Fill in the blanks.
- (a) Suppose that X and Y are metric spaces, and that S is a collection of functions from $X \to Y$. The collection S is said to be there exists δ such that for all $f \in S$, and all $x, y \in X$,

$$d(x,y) < \delta \implies d(f(x), f(y)) < \epsilon$$
.

- (b) A function $f: X \to Y$ is said to be exists $\delta > 0$ such that for all $x, y \in \overline{X}$ $d(x, y) < \delta \implies d(f(x), f(y)) < \epsilon.$
- (c) A sequence of functions $\{f_n\}$ is said to to a function f if given $\epsilon > 0$ there exists N such that for all x $n > N \implies d(f_n(x), f(x)) < \epsilon.$
- (d) The ______ says that a sequence of functions $f_n: X \to \mathbb{R}$ if and only if given $\epsilon > 0$ there exists N such for all x $m, n > N \implies |f_n(x) f_m(x)| < \epsilon$.

- **4.** Which of the following are true of a continuous function $f: K \to \mathbb{R}$ from a compact metric space K to \mathbb{R} :
- (a) f is bounded;
- (b) f is uniformly continuous;
- (c) f satisfies the intermediate value theorem;
- (d) There exists a point $x \in K$ at which f attains its maximum.

Name:
5. Suppose that K is a compact metric space and $\{f_n : K \to \mathbb{R}\}$ is an equicontinuous sequence of continuous functions. Show that if $\{f_n\}$ converges pointwise then it converges uniformly.

- **6.** Suppose that $\alpha : [a, b] \to \mathbb{R}$ is monotone increasing, and $f_n \in \mathcal{R}(\alpha)$ on [a, b] is a sequence of functions which are integrable (with respect to α) on [a, b]. Suppose that the sequence f_n converges uniformly to a function f.
 - (a) Show that given ϵ , there exists N so that n > N implies

$$\int_{a}^{b} (f_{n} - \epsilon) d\alpha \le \int f d\alpha \le \int_{a}^{b} f d\alpha \le \int_{a}^{b} (f_{n} + \epsilon) d\alpha.$$

(b) Conclude that $f \in \mathcal{R}(\alpha)$ and that

$$\lim_{n \to \infty} \int_a^b f_n \, d\alpha = \int_a^b f \, d\alpha.$$

Name:				
-------	--	--	--	--

- 7. Consider the sequences of functions $\{f_n(x)\}\$ on the open interval (0,1), with f_n given by:
 - (i) $\sin(x/n)$

(ii) $\sin(nx)$

(iii) n^2x^n

(iv) $\frac{1}{x^n}$

(v) $\sum_{k=1}^{n} \frac{1}{1+k^2x}$

- (vi) n(1-x)
- (a) Which sequences are pointwise bounded?

(b) Which sequences are uniformly bounded?

(c) Which sequences converge uniformly?

(d) Which sequences form an equicontinuous family?

Name:
8. (a) Suppose that E is a metric space, and that $\{f_n\}$ and $\{g_n\}$ are sequences of bounded real-valued functions on E . Show that if $\{f_n\}$ and $\{g_n\}$ converge uniformly then so does $\{f_ng_n\}$.

(b) Does the result of part (a) remain true if we drop the assumption that the sequences are				
(b) Does the result of part (a) remain true if we drop the assumption that the sequences are bounded? Give a reason for your answer.				

Name:	