

Exercice n°4

Pour le montage à amplificateurs opérationnels ci-dessous :

- 1°) Déterminer l'expression de l'amplification en tension A_{ν} , lorsque l'interrupteur K est
- $f{2}$ Déterminer l'expression de l'amplification en tension A_{ν} , lorsque l'interrupteur K est
- 3°) La position de l'interrupteur K a-t-elle une influence sur la valeur de cette
- 4°) Calculer l'impédance d'entrée Z_E de ce montage, lorsque l'interrupteur K est ouvert. 5°) Calculer l'impédance d'entrée Z_E de ce montage, lorsque l'interrupteur K est fermé.
- 6°) Lorsque K est fermé, montrer qu'il existe une valeur de R qui rend cette impédance infinie.

On donne pour application numérique : R_1 = R_3 = R_4 = $5~k\Omega$; R_2 = $5~R_1$.

Récapitulation des résultats :

1°) K ouvert	$A_{v} =$
2°) K fermé	A_{v} =
3%	
4°) K ouvert	$Z_{\rm E}=$
5°) K fermé	Z_{E} =
6°)	R =

Exercice n°5

Exprimer la tension de sortie V_s en fonction des tensions d'entrée V_1 et V_2 . Quel est le rôle de ce montage?

Récapitulation des résultats :

$V_{\mathcal{S}} =$	Rôle du montage :

Exercice n°6:

Exprimer la tension de sortie V_s en fonction des tensions d'entrée $V_1,\,V_2$ et $V_3.$ Quel est le rôle de ce montage?

Récapitulation des résultats :

Rôle du montage: $V_s =$ 4/4