COMP30026 Models of Computation

Lecture 20: Undecidable Languages and Reducibility

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

Some material from Michael Sipser's slides

Where are we?

Last time:

- Simulation and reduction
- Decidability of various problems about automata and grammars:

$$E_{
m DFA}$$
 , $A_{
m CFG}$, $E_{
m CFG}$

- $A_{\rm TM}$ is T-recognizable
- Countable Sets

Today: (Sipser §4.2)

- $A_{\rm TM}$ is undecidable
- The diagonalization method
- $\overline{A_{\rm TM}}$ is T-unrecognizable
- The reducibility method
- Halting Problem

Recall: The Size of Infinity

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Informally, two sets have the same size if we can pair up their members.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f: A \to B$

$$x \neq y \rightarrow$$
 Range $(f) = B$
 $f(x) \neq f(y)$ "surjective"

We call such an f a <u>1-1 correspondence</u>

Apply it to infinite sets too.

Recall: Countable Sets

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{...,-2,-1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

Let
$$\mathbb{Q}^+ = \{ m/n \mid m, n \in \mathbb{N} \}$$

Show $\mathbb N$ and $\mathbb Q^+$ have the same size

Q +	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	
:		:			

	n	f(n)	
\mathbb{N}	1	1/1	_ +
1/1	2	2/1	\mathbb{Q}^+
	3	1/2	
	4	3/1	
	5	3/2	
	6	2/3	
	7	1/3	
	:	:	

Think of table as a grid graph and f(n) is the n th number in BFS traversal starting from top-left corner

f(n)	0 7	-1	1	-2	2	-3	3	:
n	1	2	3	4	5	6	7	÷

Defn: A set is <u>countable</u> if it is finite or it has the same size as \mathbb{N} .

Both \mathbb{Z} and \mathbb{Q}^+ are countable.

R is Uncountable – Diagonalization

Let \mathbb{R} = all real numbers (expressible by infinite decimal expansion)

Theorem: R is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

	•	20 4	
hec	l_{-1} n	<i>)</i> (1)	
ロモし	/ _111	ZU. J	

Does the proof still work if we define x such that it differs from every real on the list in the first digit?

f(n)	Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$x = 0$$
.

differs from the $n^{\rm th}$ number in the $n^{\rm th}$ digit so cannot be the $n^{\rm th}$ number for any n. Hence x is not paired with any n. It is missing from the list. Therefore f is not a 1-1 correspondence.

n	f(n)
1	
2	
3	
4	
5	
6	
7	
:	Diagonalization

R is Uncountable – Corollaries

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathcal{L} is uncountable

Proof: There's a 1-1 correspondence from \mathcal{L} to \mathbb{R} so they are the same size.

Observation: $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ is countable.

Let $\mathcal{M} = \text{all Turing machines}$

Observation: \mathcal{M} is countable.

Because $\{\langle M \rangle | M \text{ is a TM}\} \subseteq \Sigma^*$.

Corollary 2: Some language is not recognizable.

Because there are more languages than TMs.

We will show some specific language $A_{\rm TM}$ is not decidable.

Σ^*	{ε,	0,	1,	00,	01,	10,	11,	000,	
$A \in \mathcal{L}$	{	0,		00,	01,				
f(A)	.0	1	0	1	1	0	0	0	

Consider the following mapping f from ${\mathcal M}$ to ${\mathcal L}$

 ${\mathcal M}$ is countable so we can list all of ${\mathcal M}$

 ${\cal L}$ is uncountable so there is some language not in list!

$A_{ m TM}$ is undecidable

Recall $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: A_{TM} is not decidable

An unusual aspect of proof:

- Proof considers input of the form $\langle M, \langle M \rangle \rangle$
- $\langle M, \langle M \rangle \rangle$ is in $A_{\rm TM}$ if M accepts when it is given its own encoding

Example: Optimizing compiler

- Suppose we write an optimizing compiler in C
- First feed it to an unoptimized C compiler to get an unoptimized optimizing compiler
- Feeding the optimizing compiler's code to the unoptimized executable yields an optimized optimizing compiler!

$A_{\rm TM}$ is undecidable

Recall $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: A_{TM} is not decidable

Proof by contradiction: Assume some TM H decides $A_{\rm TM}$.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} Accept & \text{if } M \text{ accepts } w \\ Reject & \text{if not} \end{cases}$

Use *H* to construct TM *D*

$$D =$$
"On input $\langle M \rangle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M \rangle$ iff M doesn't accept $\langle M \rangle$. D accepts $\langle D \rangle$ iff D doesn't accept $\langle D \rangle$. Contradiction.

Why is this proof a diagonalization?

Recognizable vs Decidable

Recognizable L: we know when to halt when w is in L but not when w is not in L

Decidable L: we know when to halt either way

Intuitively, unbounded search space vs bounded search space.

E.g. A_{CFG} (search all possible derivations vs search all derivations of CNF of length 2|w|-1)

$\overline{A_{\rm TM}}$ is T-unrecognizable

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize \overline{A} and \overline{A} .

Construct TM *T* deciding *A*.

 $\overline{T} =$ "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Corollary: A_{TM} is T-unrecognizable

Proof: A_{TM} is T-recognizable but also undecidable

The Reducibility Method

Use our knowledge that $A_{\rm TM}$ is undecidable to show other problems are undecidable.

Defn: $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w \}$

Theorem: $HALT_{TM}$ is undecidable

Proof by contradiction, showing that A_{TM} is reducible to $HALT_{TM}$:

Assume that $HALT_{TM}$ is decidable and show that A_{TM} is decidable (false!).

Let TM R decide $HALT_{TM}$.

Construct TM S deciding A_{TM} .

S = "On input $\langle M, w \rangle$

- 1. Use *R* to test if *M* on *w* halts. If not, reject.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If *M* has accepted then *accept*. If *M* has rejected then *reject*.

TM S decides $A_{\rm TM}$, a contradiction. Therefore $HALT_{\rm TM}$ is undecidable.

Quick review of today

- $A_{\rm TM}$ is undecidable
- The diagonalization method
- $\overline{A_{\rm TM}}$ is T-unrecognizable
- The reducibility method
- Halting Problem