

SÍLABO FORMULACIÓN Y EVALUACION DE PROYECTOS

ÁREA CURRICULAR: GESTIÓN

CICLO: VIII SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : 09054808040

II. CRÉDITOS : 04

III. REQUISITOS : 09014507040 Gestión Financiera

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso tiene carácter teórico - práctico. Le permite al estudiante desarrollar su capacidad para identificar una idea de negocio, hacer un diagnostico e identificar el problema central y su alternativa de solución, desarrollándola a través de un proyecto. Distingue la diferencia entre un perfil, un estudio de prefactibilidad y un estudio de factibilidad, estudia el mercado, los aspectos técnicos del proyecto, el tamaño y la localización de la planta, los aspectos legales, el medio ambiente, la inversión, su financiamiento, los flujos económico financieros y finalmente evalúa sobre la base de las técnicas estudiadas.

Los alumnos en pequeños grupo de trabajo aplican todo el desarrollo teórico y las prácticas en el laboratorio, a un proyecto que ellos proponen se discute y aprueba a principio de ciclo y lo desarrollan en función a las tres grandes unidades de aprendizaje: I. Economía, proyectos de inversión y Mercado. II. Formulación del Proyecto. II. Evaluación del proyecto.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Ross Stephen A., Westerfield Randolph W., Finanzas corporativas; editorial McGraw Hill, novena edición, 991 páginas, 2012
- Osterwalder Alexander, Pigneur Yves, Generación de modelos de negocio; editorial Deusto S.A. ediciones, segunda edición, 288 páginas, España 2011
- Sapag Chain Nassir, Proyectos de inversión Formulación y evaluación; editorial Pearson, Segunda edición, 543 páginas, Chile 2011.
- Baca Urbina, G. Evaluación de proyectos. México: McGraw-Hill, 2013.

VII. PROGRAMACIÓN DE LOS CONTENIDOS

UNIDAD I: ECONOMÍA, PROYECTOS DE INVERSION Y NEGOCIOS

OBJETIVOS DE APRENDIZAJE:

- Entender los vínculos entre la economía, la inversión, el proyecto y la generación de riqueza.
- Elaborar diagnósticos que contribuyan a la identificación de problemas centrales.
- Utilizar el marco Lógico como guía conceptual para la planificación y el seguimiento del proyecto.

PRIMERA SEMANA

Primera sesión:

Generación de ideas de negocio, proceso de emprendimiento de un negocio, análisis del entorno definiciones de proyectos e inversión, carácter y tipos de proyectos de inversión. Prueba de entrada

SEGUNDA SEMANA

Primera sesión:

Etapas del proyecto, viabilidades del proyecto, ciclo de vida de los proyectos, proceso de estudio del proyecto.

Segunda sesión:

Introducción al Enfoque del Marco Lógico, análisis de involucrados, árbol de problemas, árbol de objetivos, matriz del marco lógico, indicadores. Casos aplicando metodología del Marco Lógico. Práctica dirigida grupal

TERCERA SEMANA

Primera sesión:

Práctica dirigida grupal MML

Segunda sesión:

Presentación de propuesta de trabajos grupales.

UNIDAD II: FORMULACION DEL PROYECTO

OBJETIVOS DE APRENDIZAJE:

- Identificar y analizar el mercado.
- Identificar, analizar y proponer los procesos técnicos óptimos para el proyecto.
- Identificar la localización optima del proyecto considerando los aspectos propios que demanda la micro localización y la macro localización.
- Identificar el proceso óptimo de producción para el proyecto y la capacidad instalada necesaria.
- Identificar la organización óptima para el proyecto y el nivel de inversión.

CUARTA SEMANA

Primera sesión:

Presentación de propuesta de trabajos grupales.

Segunda sesión:

Estudio de mercado, segmentación de mercado, mercado meta, investigación de mercado, estimación de la demanda del proyecto.

QUINTA SEMANA

Primera sesión:

Métodos de proyección de la demanda, propuesta de valor, generación de modelos de negocio, business model canvas.

Segunda sesión:

1ra avance físico y exposición grupal.

SEXTA SEMANA

Primera sesión:

Exposición grupal.

Segunda sesión:

Exposición grupal

SÉPTIMA SEMANA

Primera sesión:

Caso de diseño de investigación de mercado. Caso de proyección de demanda. Aspectos Técnicos del Proyecto. Procesos de operación y elección de tecnología. Estudio técnico del producto. Dimensionamiento: Factores que determinan el tamaño de proyecto

Segunda sesión:

El estudio de la localización. Factores de localización. Técnicas de localización. Programa de producción. Capacidad instalada. Estudio de la organización del proyecto, Aspectos legales y ambientales del proyecto.

OCTAVA SEMANA

Primera sesión:

Ingresos, costos directos, indirectos, variables, fijos, de fabricación, gastos operativos, depreciación y amortización.

Segunda sesión:

Examen parcial

NOVENA SEMANA

Primera sesión:

Examen parcial

Segunda sesión:

Inversión inicial, inversión de tangibles, de intangibles y capital de trabajo. Fuentes de financiamiento, estados financieros relevantes: Balance general y flujos de caja.

DÉCIMA SEMANA

Primera sesión:

2do avance físico y exposición grupal.

Segunda sesión:

2do avance exposición grupal.

UNDÉCIMA SEMANA

Primera sesión:

2do avance exposición grupal.

Segunda sesión:

2do avance exposición grupal.

UNIDAD III: EVALUACION DEL PROYECTO

OBJETIVOS DE APRENDIZAJE

- Identificar la estructura y tipo de inversiones.
- Identificar las fuentes de financiamiento del proyecto y la estructura financiera optima
- Elaborar los presupuestos del proyecto
- Elaborar los estados financieros del proyecto
- Elaborar los flujos de caja del proyecto
- Uso de las técnicas de evaluación del proyecto

DUODÉCIMA SEMANA

Primera sesión:

Flujos de caja del proyecto: Importancia de los flujos de caja. Identificación de flujos relevantes. Flujo de caja operativo, de capital, económico y financiero.

Segunda sesión:

Costo de oportunidad del capital: Análisis e importancia de la tasa mínima de rendimiento aceptable.

DECIMOTERCERA SEMANA

Primera sesión

Fundamentos de matemáticas financieras para la evaluación de proyectos. Valor del dinero. Valor actual de los flujos de efectivo esperados.

Segunda sesión

Técnicas de evaluación de proyectos: Valor Actual Neto. Tasa Interna de Retorno. Período de Recuperación del Capital. Ratio Beneficio/Costo. Tasa interna de retorno versus valor actual neto. Análisis de escenarios.

DECIMOCUARTA SEMANA

Primera sesión:

1er laboratorio – 1er Caso de evaluación de proyectos de inversión

Segunda sesión:

2do laboratorio – 1er Caso de evaluación de proyectos de inversión

DECIMOQUINTA SEMANA

Primera sesión:

3er laboratorio – 2do Caso de evaluación de proyectos de inversión

Segunda sesión:

4to laboratorio – 2do Caso de evaluación de proyectos de inversión. Entrega de proyecto final.

DECIMOSEXTA SEMANA

Examen final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCION DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias básicas
b. Tópicos de Ingeniería
c. Educación General
4

IX. PROCEDIMIENTOS DIDÁCTICOS

Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

X. MEDIOS Y MATERIALES

Equipos: Una computadora, ecran, proyector de multimedia

Materiales: Presentación de diapositivas en Power Point y excel

Laboratorio: Para el desarrollo de casos donde cada alumno deberá trabajar con un computador.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4

PE = ((P1+P2+P3+P4-MN)/3 + W1)/2

Donde

PF=Promedio final

EP=Examen parcial

EF=Examen Final

PE=Promedio de evaluaciones

P1, P2 = Primer avance del trabajo

P3, P4 = Segundo avance del trabajo

MN=Menor nota

W1 = Trabajo Final

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Industrial, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro Vacío = no aplica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	K
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	R
(f)	Comprensión de lo que es la responsabilidad ética y profesional	K
(g)	Habilidad para comunicarse con efectividad	K
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	K
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	K

(j)	Conocimiento de los principales temas contemporáneos		1
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	R	Ī

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro Vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	К
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	R
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	R
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	K
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	K
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	K
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	K
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	K
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	R
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica Laboratorio
3 2 0

b) **Número de sesiones por semana:** Dos sesiones por semana

c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. César Bezada Sánchez

XV. FECHA

La Molina, marzo de 2018.