Use this document as a template

My PhD Thesis

Customise this page according to your needs

Tobias Hangleiter*

April 25, 2025

^{*} A LaTEX lover/hater

The kaobook class

Disclaimer

You can edit this page to suit your needs. For instance, here we have a no copyright statement, a colophon and some other information. This page is based on the corresponding page of Ken Arroyo Ohori's thesis, with minimal changes.

No copyright

⊚ This book is released into the public domain using the CC0 code. To the extent possible under law, I waive all copyright and related or neighbouring rights to this work.

To view a copy of the CC0 code, visit:

http://creativecommons.org/publicdomain/zero/1.0/

Colophon

This document was typeset with the help of KOMA-Script and LATEX using the kaobook class.

The source code of this book is available at:

https://github.com/fmarotta/kaobook

(You are welcome to contribute!)

Publisher

First printed in May 2019 by

Contents

Co	intents	v
Ι	A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY	1
II	CHARACTERIZATION AND IMPROVEMENTS OF A MILLIKELVIN CONFOCAL MICROSCOPE	3
1	Introduction	5
2	Characterization of electrical performance	7
3	Characterization and improvements of the optical path	9
4	Vibration performance	11
5	Conclusion & outlook	13
III	Optical Measurements of Electrostatic Exciton Traps in Semiconductor Membranes	15
IV	A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS	17
Aı	PPENDIX	19

Part I

A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY

Part II

CHARACTERIZATION AND IMPROVEMENTS OF A MILLIKELVIN CONFOCAL MICROSCOPE

Introduction 1

Characterization of electrical performance

Characterization and improvements of the optical path

OISE

Vibration performance

Conclusion & outlook 5

Part III

OPTICAL MEASUREMENTS OF ELECTROSTATIC EXCITON TRAPS IN SEMICONDUCTOR MEMBRANES

Part IV

A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS

