Real-Time Shortest-Job-First Scheduling with Preemption on TIVA TM4C

Microcontroller

By Caleb Rash and Zachariah Abuelhaj

The Problem

- Implement Shortest Job First scheduling
 - Three different process types, each with a different execution time
 - Each process has critical section

Preemption

- User adds process to Queue at any time
- When a process is added, the Queue adjusts to prioritize

Starvation

- With smaller processes in queue, larger ones become lower priority
 - Provides possibility that larger process will never execute

The Solution

- Three different process types
 - P1 4 seconds
 - P2 8 seconds
 - P3 12 seconds
- Defined with struct
 - Process ID: This is used for lighting correct LED of running process
 - Time Waiting: This is used to identify starvation in the system
 - Time Remaining: This is used to determine priority of a process
- Critical sections
 - Each process has a 1 second-long critical section
 - Enters critical section 3 seconds into run-time
 - Process does not get disturbed or preempted in critical section

Solution (cont.)

- User adds process at any given time
 - Push-button interrupts to add chosen process to Queue
 - Queue, which is 10 slots wide, will hold each added process
 - Bubble-sort to find shortest process available
 - Based on time left to execute

Starvation

- User can input combinations of processes and fill queue
 - i.e. if a P1 gets added repeatedly and a P3 keeps waiting
- To detect starvation, check how long each process has waited
 - If a process waits longer than 25 seconds, then flash LEDs until reset

Implementation: UML Use-Case Diagram

SJF Scheduler: Use Case Diagram

Implementation: State Diagram

Implementation: UML Class Diagram

Implementation: Sequence Diagram

Results (Example Operation)

Results (Example Starvation)

Conclusions and Future Work

- Successfully implemented Shortest Job First, which includes preemption, on a Tiva TM4C microcontroller
 - Ran in real-time
 - o Process struct used with timers to simulate actual processes/tasks to be ran
 - Lightweight and easily modifiable

Takeaways:

- Could be converted to a library for implementation on simpler embedded systems
 - Replace processes with different I/O tasks for the microcontroller to schedule
- Not as complex as TI-RTOS, easier to use understand

Future Work:

Could improve starvation detection to run process in queue rather than exit system.

Questions