| Facultad de Ingeniería, UNCuyo  | Alumno: |
|---------------------------------|---------|
| Ingeniería Mecatrónica          |         |
| MECÁNICA VIBRATORIA             |         |
| <b>Examen Final</b> 24//09/2020 | Legajo: |
| Alumnos Regulares               |         |

## Ejercicio 1

- a) Deduzca la ecuación de movimiento y obtenga los parámetros equivalentes del sistema. Figura 1.
- b) Con los parámetros indicados, determine la frecuencia natural del sistema, en [Hz] y la relación de amortiguamiento crítico,  $\xi$ .
- c) Determine la amplitud del desplazamiento en estado estacionario del bloque de masa m=30kg. Desprecie el rozamiento del bloque de masa m=40kg.



Figura 1.

## Ejercicio 2

- 1) Derive la ecuación de movimiento del sistema de la Figura 2 mediante las ecs. de Lagrange.
- 2) Considerando que,  $c_1=c_2=0$ ,  $k_1=k_2=k$ ,  $m_1=m_2=m$  y  $J_o=m^*r^2$ , determine analíticamente: parámetros modales, frecuencias naturales y formas modales en función de los parámetros del sistema. Admita el primer elemento de cada forma modal unitario.



Figura 2.