

# TTI109 - Estatística

#### Aula 08 - Probabilidade Condicional





#### **Probabilidade Condicional**

#### Definição

Uma **probabilidade condicional** é a probabilidade de um evento ocorrer, dado que outro evento já tenha ocorrido. A probabilidade condicional de o evento B ocorrer, dado que o evento A tenha ocorrido, é denotada por P(B|A) e lê-se "probabilidade de B, dado A".

Exemplo: Duas cartas são selecionadas em sequência de um baralho normal de 52 cartas. Encontre a probabilidade de que a segunda carta seja uma rainha, dado que a primeira carta é um rei (considere que o rei não seja reposto).



#### **Probabilidade Condicional**





A primeira carta selecionada foi um rei (evento ) e ela não foi reposta. Assim, restam 51 cartas no baralho, 4 das quais são rainhas. Portanto, a seleção de um rainha (evento B) tem probabilidade

|           | Gene<br>presente | Gene<br>ausente | Total |
|-----------|------------------|-----------------|-------|
| QI alto   | 33               | 19              | 52    |
| QI normal | 39               | 11              | 50    |
| Total     | 72               | 30              | 102   |

Exemplo: A tabela mostra os resultados de um estudo no qual os pesquisadores examinaram o QI de uma criança e a presença de um gene específico nela.



#### **Probabilidade Condicional**

|           | Gene<br>presente | Gene<br>ausente | Total |
|-----------|------------------|-----------------|-------|
| QI alto   | 33               | 19              | 52    |
| QI normal | 39               | 11              | 50    |
| Total     | 72               | 30              | 102   |

 Há 72 crianças que têm o gene (espaço amostral). Dessas, 33 tem QI alto. Então:



 Qual a probabilidade de que a criança não tenha o gene?  Qual a probabilidade de que a criança não tem o gene, dado que ela tem um QI normal?



#### Definição

Dois eventos são **independentes** quando a ocorrência de um deles não afeta a probabilidade de ocorrência do outro. Dois eventos *A* e *B* são independentes quando:

$$P(B|A) = P(B)$$
 ou quando  $P(A|B) = P(A)$ .

Eventos que não são independentes são dependentes.

- Para determinar se e são independentes, primeiro calcule, a probabilidade do evento. Então, calcule, a probabilidade de , dado.
- Se os valores forem iguais, os eventos são independentes. Se ocorrer, então e são eventos dependentes.



#### Classificando eventos como independentes ou dependentes

Determine se os eventos são independentes ou dependentes.

- 1. Selecionar um rei (A) de um baralho normal com 52 cartas, sem reposição, e então selecionar uma rainha (B) do baralho.
- **2.** Jogar uma moeda e tirar cara (A) e então jogar um dado de seis faces e tirar um 6(B).
- **3.** Dirigir a mais de 85 milhas por hora (A) e então sofrer um acidente de carro (B).
- e. A ocorrência de muda a probabilidade da ocorrência de, então os eventos são dependentes.





#### Classificando eventos como independentes ou dependentes

Determine se os eventos são independentes ou dependentes.

- 1. Selecionar um rei (A) de um baralho normal com 52 cartas, sem reposição, e então selecionar uma rainha (B) do baralho.
- **2.** Jogar uma moeda e tirar cara (A) e então jogar um dado de seis faces e tirar um 6(B).
- **3.** Dirigir a mais de 85 milhas por hora (*A*) e então sofrer um acidente de carro (*B*).
- e . A ocorrência de não muda a probabilidade da ocorrência de , então os eventos são independentes.





#### Classificando eventos como independentes ou dependentes

Determine se os eventos são independentes ou dependentes.

- 1. Selecionar um rei (A) de um baralho normal com 52 cartas, sem reposição, e então selecionar uma rainha (B) do baralho.
- **2.** Jogar uma moeda e tirar cara (A) e então jogar um dado de seis faces e tirar um 6(B).
- **3.** Dirigir a mais de 85 milhas por hora (A) e então sofrer um acidente de carro (B).
- Oirigir a mais de 85 milhas por hora aumenta as chances de se envolver em um acidente, então os eventos são dependentes.





#### A regra da multiplicação para a probabilidade de A e B

A probabilidade de que dois eventos A e B ocorram em sequência é:

$$P(A \in B) = P(A) \cdot P(B|A)$$

Se os eventos  $A \in B$  forem independentes, então a regra pode ser simplificada para  $P(A \in B) = P(A) \cdot P(B)$ . Essa regra simplificada pode ser estendida para qualquer número de eventos independentes.



é muitas vezes escrito como . Uma consequência direta da regra da multiplicação é a expressão para a probabilidade condicional:



#### Usando a regra da multiplicação para encontrar probabilidades

- 1. Duas cartas são selecionadas, sem reposição da primeira carta, de um baralho normal de 52 cartas. Encontre a probabilidade de selecionar um rei e depois uma rainha.
- **2.** Uma moeda é jogada e um dado é lançado. Encontre a probabilidade de se obter cara e 6.



🕧 Como a primeira carta não é reposta, os eventos são dependentes.



#### Usando a regra da multiplicação para encontrar probabilidades

- 1. Duas cartas são selecionadas, sem reposição da primeira carta, de um baralho normal de 52 cartas. Encontre a probabilidade de selecionar um rei e depois uma rainha.
- **2.** Uma moeda é jogada e um dado é lançado. Encontre a probabilidade de se obter cara e 6.







A probabilidade de que uma cirurgia reconstrutiva do ligamento cruciforme anterior (LCA) seja bem-sucedida é de 0,95. (Fonte: The Orthopedic Center of St. Louis.)

- 1. Determine a probabilidade de que três cirurgias do LCA sejam bem-sucedidas.
- **2.** Determine a probabilidade de que nenhuma das três cirurgias do LCA seja bem-sucedida.
- **3.** Determine a probabilidade de que pelo menos uma das três cirurgias do LCA seja bem-sucedida.
- 1 A chance de sucesso em uma cirurgia é independente da chance de sucesso nas outras cirurgias.





A probabilidade de que uma cirurgia reconstrutiva do ligamento cruciforme anterior (LCA) seja bem-sucedida é de 0,95. (Fonte: The Orthopedic Center of St. Louis.)

- **1.** Determine a probabilidade de que três cirurgias do LCA sejam bem-sucedidas.
- **2.** Determine a probabilidade de que nenhuma das três cirurgias do LCA seja bem-sucedida.
- **3.** Determine a probabilidade de que pelo menos uma das três cirurgias do LCA seja bem-sucedida.
  - 2 A probabilidade de fracasso em uma cirurgia é .





A probabilidade de que uma cirurgia reconstrutiva do ligamento cruciforme anterior (LCA) seja bem-sucedida é de 0,95. (Fonte: The Orthopedic Center of St. Louis.)

- **1.** Determine a probabilidade de que três cirurgias do LCA sejam bem-sucedidas.
- **2.** Determine a probabilidade de que nenhuma das três cirurgias do LCA seja bem-sucedida.
- **3.** Determine a probabilidade de que pelo menos uma das três cirurgias do LCA seja bem-sucedida.





3 O complemento do evento "ao menos um sucesso" é o evento "nenhum sucesso". Usando a regra do complemento:



Como encontrar a probabilidade de que ao menos um de dois eventos ocorra?

Probabilidades como essas são denotadas por e dependem se os eventos são mutuamente exclusivos.



A e B não são mutuamente exclusivos.





**1.** Evento *A*: obter um 3 no lançamento de um dado. Evento *B*: obter um 4 no lançamento de um dado.

Mutuamente exclusivos

- **2.** Evento *A*: selecionar aleatoriamente um estudante do sexo masculino. Evento *B*: selecionar aleatoriamente um graduando em enfermagem.
- **3.** Evento *A*: selecionar aleatoriamente um doador de sangue com tipo O. Evento *B*: selecionar aleatoriamente um doador de sangue do sexo feminino.

Não são mutuamente exclusivos

- e não podem ocorrer ao mesmo tempo (dado único)
- 2 O estudante pode ser um homem cursando enfermagem
- 3 O doador pode ser mulher com tipo sanguíneo O



#### A regra da adição para a probabilidade de A ou B

A probabilidade de que os eventos A ou B ocorram, P(A ou B), é dada por:

$$P(A \text{ ou } B) = P(A) + P(B) - P(A \text{ e } B).$$

Se os eventos A e B forem mutuamente exclusivos, então a regra pode ser simplificada para P(A ou B) = P(A) + P(B). Esta regra simplificada pode ser estendida para qualquer número de eventos mutuamente exclusivos.

Exemplo: Você seleciona uma carta de um baralho. Encontre a probabilidade de a carta ser um 4 ou um ás.



Se a carta for um 4, não pode ser um ás...









Os eventos são mutuamente exclusivos. Logo:

Exemplo: Você joga um dado. Encontre a probabilidade de sair um número menor que três ou um número ímpar.



Os eventos não são mutuamente exclusivos!





Então:

Exemplo: Um banco de sangue catalogou os tipos de sangue, incluindo fator Rh positivo ou negativo, de doadores nos últimos cinco dias. O número de doadores de cada tipo sanguíneo é mostrado na tabela a seguir. Se um doador é selecionado aleatoriamente:



|          |          | Tipo sanguíneo |     |    |    |       |
|----------|----------|----------------|-----|----|----|-------|
|          |          | 0              | A   | В  | AB | Total |
|          | Positivo | 156            | 139 | 37 | 12 | 344   |
| Fator Rh | Negativo | 28             | 25  | 8  | 4  | 65    |
|          | Total    | 184            | 164 | 45 | 16 | 409   |

1 Qual a probabilidade de que o doador tenha sangue tipo O ou tipo A?

Como o doador não pode ter tipo O e tipo A, esses eventos são mutuamente exclusivos.



|          |          | Tipo sanguíneo |     |    |    |       |
|----------|----------|----------------|-----|----|----|-------|
|          |          | 0              | A   | В  | AB | Total |
| Fator Rh | Positivo | 156            | 139 | 37 | 12 | 344   |
|          | Negativo | 28             | 25  | 8  | 4  | 65    |
|          | Total    | 184            | 164 | 45 | 16 | 409   |

Qual a probabilidade de que o doador tenha sangue tipo B ou que seja Rh negativo?

Como o doador poder ter tipo B e o seu Rh ser negativo, esses eventos não são mutuamente exclusivos.



|          |          | Tipo sanguíneo |     |    |    |       |
|----------|----------|----------------|-----|----|----|-------|
|          |          | 0              | A   | В  | AB | Total |
|          | Positivo | 156            | 139 | 37 | 12 | 344   |
| Fator Rh | Negativo | 28             | 25  | 8  | 4  | 65    |
|          | Total    | 184            | 164 | 45 | 16 | 409   |



# TTI109 - Estatística

#### Aula 08 - Probabilidade Condicional

