Alcoa Youth Talent Competition

Panel de entrenamiento modular para la automatización y control de procesos

Módulo de entrenamiento: Motor de explosión

Desarrollado por Diego Bercial Argüelles, Marta Caldero Iglesias, Diego Canteli Suárez, Sergio Martínez Olivar, Adrián Rojo Fernández

2º Bachillerato

Colegio Corazón de María (Gijón)

PRÁCTICAS DE AUTOMATIZACIÓN Y CONTROL MÓDULOS DE PANEL DE ENTRENAMIENTO

Objetivos

- •Proyecto de automatización (Motor)
- •Control mediante Arduino UNO
- •Señales E/S digitales
- •Cableado de señales de mando y fuerza
- •Programación en IDE Arduino.
- •Control mediante placa Arduino.
- •Programación de aplicación para Smartphone Android con AppInventor.
- •Descarga, depuración y puesta en marcha.

Modulo entrenador en automatización:

- Módulo HMI-1: Interface de usuario.
- Módulo IFC-1: Interface de señales (Fuente de alimentación).
- Módulo PSM-H: Incluye Arduino UNO, placa interface de señal y placa con 4 relés para gestión de salidas.
- Smartphone Android

Software IDE Arduino. AppInventor

Claretianos

Modulo HMI-1: Interface de usuario

- Se utiliza el pulsador Verde (acelerador).
- Se utiliza el pulsador Rojo (freno).
- Se utiliza el interruptor de 2 posiciones (arranque/apagado).
- Se utilizan los pilotos luminosos (Verde y rojo) para indicar motor arrancado y frenado del motor.
- * Desarrollo posterior

Modulo PSM-H: Control de proceso

- Se conecta el puerto con el pulsador verde
- Se conecta el puerto con el pulsador rojo
- Se conecta el puerto con el interruptor de 2 posiciones
- Se conectan los puertos con los pilotos luminosos
- * Desarrollo posterior

Smartphone Arduino

Claretianos

- Posee el software de simulación del proceso.
- Simula un motor de explosión que aumenta sus revoluciones al ser acelerado.

Motor

Desconectar

Desarrollo

Se trata de simular el funcionamiento de un motor de explosión mediante la conexión Bluetooth entre un Arduino y una aplicación realizada con App Inventor. Las funciones simuladas son las siguientes:

- 1)Aceleración (Botón "Verde" en el módulo de Interface). Mantener pulsado el botón acelera el motor. Si se suelta el pulsador el motor se desacelera.
- 2)Freno (Botón "Rojo" en el módulo de Interface). Mantener pulsado el botón frena el motor.
- 3)Arranque del motor (Conmutador de 2 posiciones en el módulo de Interface). Una posición comunica arranque del motor, la otra posición comunica apagado del motor.
- 4)Pilotos luminosos (Rojo y verde). Se enciende el rojo cuando se pulsa el freno, el verde cuando el motor está arrancado.
- * Desarrollo posterior

Comunicación entre Arduino y Smartphone

El sistema de control y el sistema de simulación se comunican vía Bluetooth enviando diversos código de estado del sistema:

- 1)Se envía el código 'A1' a la App del Smartphone para indicar que se ha pulsado el botón Verde, se deben subir las revoluciones del motor y por tanto, el motor irá acelerando.
- 2)Se envía el código 'A0' a la App del Smartphone para indicar que se no ha pulsado el botón Verde, se deben bajar las revoluciones del motor y por tanto, el motor irá decelerando.
- 3)Se envía el código 'R' y el valor de las revoluciones que tiene el motor al programa de control de Arduino para que el programa de control sepa si tiene que cambiar de marcha.
- 4)Se envía el código 'M' y el número de marcha a la App del Smartphone para indicar que marcha se debe utilizar de manera que el funcionamiento del motor sea correcto y pueda seguir aumentando su velocidad.
- 5)Se envía el código 'F' a la App del Smartphone para indicar que el pulsador del freno ha sido accionado y se deba bajar su velocidad.
- 6)Se envía el código 'K1' a la App del Smartphone para indicar que se girado el counmutador para indicar el arranque del motor. Si se gira en sentido contrario se envía el código 'K0' a la App del Smartphone para indicar el apagado del motor.
- * Desarrollo posterior


```
#include "Arduino.h"
#include <SoftwareSerial.h>
char var;
String inString = "";
bool M = 1; //marcha
int rpm = 0;
int rpm_rueda = 0;
int buttonstate;
const int boton = 4;
void setup()
  Serial.begin(9600);
 delay(3000);
 pinMode(boton, INPUT);
void loop()
   buttonstate=digitalRead(boton);
   if(buttonstate == HIGH){
          Serial.println("A1");
    }
   else{
        Serial.println("A0");
```

```
if (Serial.available()>0 )
  var = Serial.read();
  if(var == 'R')
    while (Serial.available() > 0) {
      int var = Serial.read();
      if (isDigit(var)) {
          inString += (char)var;
  rpm = inString.toInt();
  if (rpm > 2000)
    if(M < 4){
        M = M + 1;
    else{
        M = 4;
    Serial.println('M',M);
  if(rpm < 750)
    if(M > 0)
        M = M - 1;
    else{
      M = 0;
    Serial.println('M',M);
```


