Линейная алгебра. Коллоквиум 2 семестр. Основано на реальных событиях.

29 мая 2017

Определения

1. Сумма двух подпространств векторного пространства

Сумма двух подпространств U и W — это множество $U+W:\{u+w\mid u\in U, w\in W\}.$ Замечание. $\dim(U\cap W)\leqslant \dim U\leqslant \dim(U+W)$

2. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения

Теорема. $\dim(U \cap W) = \dim U + \dim W - \dim(U + W)$

3. Сумма нескольких подпространств векторного пространства

Пусть U_1, \ldots, U_k — подпространства векторного пространства V. Суммой нескольких подпространств называется

$$U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$$

- 4. EDIT: Линейная независимость нескольких подпространств векторного пространства
- 5. Эквивалентные условия, определяющие линейно независимый набор подпространств векторного пространства

Пусть U_1, \ldots, U_k — подпространства векторного пространства V. Тогда следующие **условия** эквивалентны:

- 1. Сумма $U_1 \oplus \ldots \oplus U_k$ прямая
- 2. Если i базис U_i , то $1 \cup \ldots \cup k$ базис $U_1 \oplus \ldots \oplus U_k$
- 3. $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$

6. Разложение векторного пространства в прямую сумму подпространств

Пусть U, W — подпространства векторного пространства V. Тогда если $U \cap W = \{0\}$, то $U \oplus W$ называется **прямой суммой**.

7. EDIT: При каких условиях на подпространства $U_1, U_2,$ векторного пространства V имеет место разложение $V = U_1 \oplus U_2$?

8. Описание всех базисов n-мерного векторного пространства в терминах одного базиса и матриц координат

Пусть V — векторное пространство, $\dim V = n, e_1, \ldots, e_n$ — базис. То есть

$$\forall v \in V : \exists! v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_1 = c_{11}e_1 + c_21e_2 + \dots + c_n1e_n$$

 $e'_2 = c_{12}e_1 + c_22e_2 + \dots + c_n2e_n$
 \vdots
 $e'_n = c_{1n}e_1 + c_2ne_2 + \dots + c_nne_n$

Обозначим матрицу $C = (c_{ij})$.

Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$.

3амечание. e_1, \ldots, e_n образуют базис $\iff \det C \neq 0$.

9. Матрица перехода от одного базиса векторного пространства к другому

Пусть V — векторное пространство, $\dim V = n, e_1, \ldots, e_n$ — базис e_1, \ldots, e_n — некий набор из n векторов. Тогда каждый вектор из этого набора линейно выражается через базис.

$$e'_{j} = \sum_{i=1}^{n} c_{ij}e_{i}, c_{ij} \in F$$

$$(e'_{1}, \ldots, e'_{n}) = (e_{1}, \ldots, e_{n}) \cdot C, \quad C = (c_{ij})$$

То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e_j' в базисе (e_1, \ldots, e_n) .

Теперь пусть e_1', \ldots, e_n' — тоже базис в V. В этом случае $\det C \neq 0$.

Матрица C называется **матрицей перехода** от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

10. Формула преобразования координат вектора при замене базиса векторного пространства

Пусть C — матрица перехода от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} \quad \text{или} \quad x_i = \sum_{j=1}^n c_{ij} x_i'$$

11. Линейное отображение векторных пространств, его простейшие свойства.

Пусть V, W — векторные пространства.

Отображение $\varphi: V \to W$ называется **линейным**, если:

1.
$$\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2), \forall v_1, v_2 \in V$$

2.
$$\varphi(\alpha v) = \alpha \varphi(v), \forall \alpha \in F, \forall v \in V$$

Простейшие свойства линейного отображения:

- 1. $\varphi(\vec{0}_V) = \vec{0}_W$
- $2. \ \varphi(-v) = -\varphi(v), \, \forall v \in V$

12. Изоморфизм векторных пространств. Изоморфные векторные пространства

Пусть V, W — векторные пространства над полем F.

Отображение $\varphi:V\to W$ называется **изоморфизмом**, если φ линейно и биективно. *Обозначение*: $\varphi:V\stackrel{\sim}{\to} W$.

Два векторных пространства называются **изоморфными**, если существует изоморфизм $\varphi: V \xrightarrow{\sim} W$ (и тогда существует изоморфизм $W \xrightarrow{\sim} V$ по предположению). Обозначение: $V \simeq W$.

13. Какими свойствами обладает отношение изоморфности на множестве всех векторных пространств?

Следствие из теоремы. Изоморфизм — это отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Если φ и ψ изоморфны, то $\varphi \circ \psi$ тоже изоморфизм.

14. Критерий изоморфности двух конечномерных векторных пространств

Два конечномерных векторных пространства V и W над полем F изоморфны тогда и только тогда, когда $\dim V = \dim W$.

15. Матрица линейного отображения

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{aj}f_1 + \ldots + a_{mj}f_j = \sum_{i=1}^m a_{ij}f_i.$$

Матрица $A=(a_{ij})\in Mat_{m\times n}(F)$ называется матрицей линейного отображения φ в базисах е и f.

16. Связь между координатами вектора и его образа при линейном отображении

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. $A = A(\varphi, e, f)$ — матрица линейного отображения φ .

Если $v = x_1 e_1 + \ldots + x_n e_n$ и $\varphi(v) = y_1 f_1 + \ldots + y_m f_m$, то

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

17. Формула изменения матрицы линейного отображения при замене базисов

Пусть φ — линейный *оператор векторного* пространства V, A — матрица φ в базисе $e = (e_1, \ldots, e_n)$. Пусть $e' = (e'_1, \ldots, e'_n)$ — другой базис, причем

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C, \quad C = (c_{ij}),$$

где C — матрица перехода, и A' — матрица φ в базисе е'. Тогда

$$A' = C^{-1}AC.$$

18. Сумма двух линейных отображений и ее матрица. Произведение линейного отображения на скаляр и его матрица

Пусть V, W — векторные пространства Hom(V, W) — множество всех линейных отображений из V в W. е = (e_1, \ldots, e_n) — базис V, $\mathbb{f} = (f_1, \ldots, f_m)$ — базис W, φ , $\psi \in Hom(V, W)$, $\alpha \in F$ A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица ψ .

- 1. Сумма $\varphi + \psi$ это линейное отображение, такое что $\forall v \in V : (\varphi + \psi)(v) = \varphi(v) + \psi(v)$. Матрица суммы линейных отображений: $A_{\varphi + \psi} = A_{\varphi} + A_{\psi}$.
- 2. Произведение $\alpha \varphi$ это линейное отображение, такое что $\forall v \in V : (\alpha \phi)(v) = \alpha \phi(v)$. Матрица произведения линейного отображения на скаляр: $A_{\alpha \varphi} = \alpha A_{\varphi}$

19. Композиция двух линейных отображений и ее матрица

Пусть V, U, W — векторные пространства. $V \xrightarrow{g} U \xrightarrow{f} W$ — два линейных отображения. n, m, k — их размерности соответственно. e'', e', e — их базисы, а A_g, A_f, A_{fg} — матрицы отображений в этих базисах.

$$A_{fg} = A_f A_g$$

Матрица композиции линейных отображений имеет вид:

$$A_{fg} = \sum_{i} a_{ji} b_{ik},$$

где a — коэффициент при f, а b — коэффициент при g.

20. Ядро и образ линейного отображения

Пусть V, W — векторные пространства с линейным отображением $\varphi: V \to W$.

Ядро φ — это множество $Ker\varphi:=\{v\in V\mid \varphi(v)=0\}$

Образ φ — это множество $Im\varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}$

21. Критерий инъективности линейного отображения в терминах его ядра. Критерий изоморфности линейного отображения в терминах ядра и образа

Пусть $\varphi:V \to W$ — линейное отображение.

- 1. Отображение φ инъективно тогда и только тогда, когда $Ker\varphi = \{0\}$
- 2. Отображение φ является **изоморфизмом** тогда и только тогда, когда $Ker\varphi=\{0\}$ и $Im\varphi=W$.

22. Связь между рангом матрицы линейного отображения и размерностью его образа

Пусть V, W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис $V, f = (f_1, \ldots, f_n)$ — базис W, A — матрица линейного отображения $\varphi : V \to W$.

$$\dim Im\varphi = rkA$$

23. Оценки на ранг произведения двух матриц

Пусть $A \in Mat_{k \times m}, \ B \in Mat_{m \times n}$. Тогда $rkAB \leqslant \min(rkA, rkB)$

24. EDIT: Каким свойством обладает набор векторов, дополняющий базис ядра линейного отображения до базиса всего пространства?

Набор векторов, дополняющий базис ядра линейного отображения до базиса всего пространства линейно независим по отношению к базису ядра линейного отображения.

25. Теорема о связи размерностей ядра и образа линейного отображения

$$\dim Im\varphi = \dim V - \dim Ker\varphi$$

26. EDIT: К какому простейшему виду можно привести матрицу линейного отображения путем замены базисов?

Простейшим видом матрицы линейного отображения является её канонический вид — диагональная матрица $D \in Mat_n$ вида

$$\begin{pmatrix}
1 & 0 & 0 & \dots & 0 \\
0 & 1 & 0 & \dots & 0 \\
0 & 0 & 1 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \dots & 0
\end{pmatrix},$$

задаваемая формулой

$$A' = D^{-1}AC$$

27. Линейная функция на векторном пространстве

Линейной функцией (формой) на векторном пространстве V называется всякое линейное отображение $\sigma: V \to F$. Обозначение: $V^* = Hom(V, F)$.

28. Сопряженное (двойственное) векторное пространство и его размерность

Пространство V^* (т.е. множество линейных функций на V) называется **сопряженным** (двойственным) к пространству V.

Пусть $e = (e_1, \ldots, e_n)$ — базис V. Тогда он определяет изоморфизм $\varphi : V^* \to Mat_{1\times n}$, $\alpha \mapsto (\alpha_1, \ldots, \alpha_n)$, где $\alpha_i = \varphi(e_i)$ и α — линейная функция.

$$\dim V^* = n.$$

29. Базис сопряженного пространства, двойственный к данному базису исходного векторного пространства

Пусть е = (e_1, \ldots, e_n) — базис V. Рассмотрим линейные функции $\varepsilon_1, \ldots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, \ i = j \\ 0, \ i \neq j \end{cases}$. То есть $\varepsilon_i = (\delta_{i1}, \ldots, \delta_{ii}, \ldots, \delta_{in}) = (0, \ldots, 1, \ldots, 0)$. $(\varepsilon_1, \ldots, \varepsilon_n)$ — базис в V^* (сопряженного пространства).

30. Билинейная форма на векторном пространстве

Билинейная функция (форма) на V — это отображение $\beta: V \times V \to F$, линейное по каждому аргументу:

- 1. $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y)$
- 2. $\beta(\lambda x, y) = \lambda \beta(x, y)$
- 3. аналогично 1, но по второму аргументу
- 4. аналогично 2, но по второму аргументу

31. Матрица билинейной формы

Пусть $e = (e_1, \ldots, e_n)$ — базис V (dim $V < \infty$), $\beta : V \times V \to F$ — билинейная функция. Матрицей билинейной функции β в базисе e называется матрица $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$

32. Формула для вычисления значений билинейной формы в координатах

Пусть $e = (e_1, \ldots, e_n)$ — базис V (dim $V < \infty$), $\beta : V \times V \to F$ — билинейная функция, B — её матрица в базисе e.

Тогда для некоторых векторов $x = x_1 e_1 + \ldots + x_n e_n \in V$ и $y = y_1 e_1 + \ldots + y_n e_n \in V$:

$$\beta(x, y) = (x_1, \ldots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

33. Формула изменения матрицы билинейной формы при переходе к другому базису

Пусть
$$e = (e_1, \ \dots, \ e_n) - \text{базис в } V$$

$$e' = (e'_1, \ \dots, \ e'_n) - \text{другой базис в } V$$

$$e' = eC$$

$$B = B(\beta, e)$$

$$B' = B(\beta, e')$$

Тогда $B' = C^T B C$.

34. Ранг билинейной формы

Пусть $B(\beta, e)$ — матрица билинейной функции β в базисе e. Число rkB называется **рангом билинейной функции** β . Обозначение: $rk\beta$.

35. Симметричная билинейная форма

Билинейная функция β называется **симметричной**, если $\beta(x, y) = \beta(y, x) \ \forall x, y \in V$. β симметрична $\iff B$ симметрична (т.е. $B = B^T$).

36. Квадратичная форма

Пусть $\beta: V \times V \to F$ — билинейная функция. Тогда отображение $Q_{\beta}: V \to F$, заданное формулой $Q_{\beta}(x) = \beta(x, x)$ называется **квадратичной функцией** (формой), ассоциированной с билинейной функцией β .

37. Соответствие между симметричными билинейными формами и квадратичными формами

Пусть в поле F выполняется условие: $1+1\neq 0$ (т.е. $2\neq 0$).

Теорема. Отображение $\beta \to Q_\beta$ является биекцией между симметричными и квадратичными б.ф.

38. Симметризация билинейной формы

Билинейная функция $\sigma(x, y) = \frac{1}{2}(\beta(x, y) + \beta(y, x))$ называется **симметризацией** билинейной функции β .

39. Поляризация квадратичной формы

Симметричная билинейная функция $\beta(x, y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$ называется поляризацией квадратичной формы Q.

40. Матрица квадратичной формы

Пусть V — векторное пространство, dim $V < \infty$.

Матрицей квадратичной формы $Q:V\to F$ в базисе е называется матрица соответствующей ей симметричной билинейной функции (поляризацией) $\beta:V\times V\to F$ в том же базисе.

41. Канонический вид квадратичной формы

Квадратичная форма Q имеет в базисе $e = (e_1, \ldots, e_n)$ канонический вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in F$ (т.е. матрица квадратичной формы Q в этом базисе диагональна).

42. Нормальный вид квадратичной формы над $\mathbb R$

Квадратичная форма Q имеет в базисе $e = (e_1, \ldots, e_n)$ нормальный вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in \{-1, 0, 1\}$ (т.е. матрица квадратичной формы Q в этом базисе диагональна).

43. Индексы инерции квадратичной формы над $\mathbb R$

Пусть Q — квадратичная функция над R, которая в базисе e имеет нормальный вид:

$$Q(x_1, \ldots, x_n) = x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2,$$

где s — количество положительных слагаемых, t — количество отрицательных слагаемых. Тогда

 $i_{+} := s -$ положительный индекс инерции квадратичной формы Q

 $i_{-}:=t$ — **отрицательный индекс инерции** квадратичной формы Q

n-s-t — **нулевой индекс инерции** квадратичной формы Q

44. Закон инерции для квадратичной формы над R

Теорема. Индексы инерции $(i_+ := s, i_- := t)$ не зависят от базиса, в котором Qпринимает нормальный вид.

45. Положительно/неотрицательно определенная квадратичная форма

Квадратичная форма Q называется положительно определённой (Q > 0), если $Q(x)>0\; \forall x\neq 0,\; {\rm a}\; {\rm e}\ddot{\rm e}\; {\rm нормальный}\; {\rm вид}:\; x_1^2+\ldots+x_n^2.$ Квадратичная форма Q называется **неотрицательно определённой** $(Q\geqslant 0),\; {\rm e}{\rm c}{\rm л}{\rm u}$

 $Q(x) \geqslant 0 \ \forall x$, а её нормальный вид: $x_1^2 + \ldots + x_k^2, \ k \leqslant n$.

46. Отрицательно/неположительно определенная квадратичная форма

Квадратичная форма Q называется **отрицательно определённой** (Q < 0), если $Q(x) < 0 \ \forall x \neq 0$, а её нормальный вид: $-x_1^2 - \ldots - x_n^2$.

Квадратичная форма Q называется **неположительно определённой** $(Q\leqslant 0),$ если $Q(x) \leq 0 \ \forall x$, а её нормальный вид: $-x_1^2 - \ldots - x_k^2, \ k \leq n$.

47. Неопределенная квадратичная форма

Квадратичная форма называется **неопределенной**, если $\exists x, y : Q(x) > 0, Q(y) < 0,$ а её нормальный вид: $x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2$, $s,t \ge 1$.

48. Следствие метода Якоби о нахождении индексов инерции квадратичной формы

Пусть $B = B(Q, e), B_k = B(Q, e), \delta_k = \det B_k - k$ -й угловой минор.

Теорема. Пусть $\delta_k \neq 0 \ \forall k=1, \ \dots, \ n$. Тогда i_- равен числу перемен знака в последовательности 1, δ_1 , δ_2 , ..., δ_n

49. Критерий Сильвестра положительной определённости квадратичной формы

Теорема. Q > 0 тогда и только тогда, когда $\delta_i > 0$ для всех i.

50. Критерий отрицательной определенности квадратичной формы

$$Q < 0 \Longleftrightarrow \begin{cases} \delta_i < 0, \ i \vdots 2 \\ \delta_i > 0, \ i \not : 2 \end{cases}$$

51. Евклидово пространство

Евклидово пространство $(F = \mathbb{R})$ — это векторное пространство \mathbb{E} над полем \mathbb{R} , на котором задана положительно определённая симметрическая билинейная функция (\cdot, \cdot) : $\mathbb{E} \times \mathbb{E} \to \mathbb{R}$, которую мы будем называть произведением.

52. Длина вектора в евклидовом пространстве

 \mathbb{E} — евклидово пространство, dim $\mathbb{E} < \infty$

Длиной вектора $x\in\mathbb{E}$ называется число $|x|=\sqrt{(x,\,x)}.\ |x|>0,$ причём $|x|=0\Longleftrightarrow x=0.$

53. Неравенство Коши-Буняковского

Пусть $x, y \in \mathbb{E}$. Тогда

$$|(x, y)| \leqslant |x||y|,$$

причем знак равенства возможен тогда и только тогда, когда x и y пропорциональны.

54. Угол между ненулевыми векторами евклидова пространства

Углом между векторами x и y называют такое число $\alpha \in [0, \pi]$, что

$$\cos \alpha = \frac{(x, y)}{|x||y|}.$$

55. Матрица Грама системы векторов евклидова пространства

 $v_1, \ldots, v_k \in \mathbb{E}$ — система векторов.

Матрицей Грама системы векторов $v_1, \ldots, v_k \in \mathbb{E}$ называется матрица

$$G(v_1, \ldots, v_k) := \begin{pmatrix} (v_1, v_1) & (v_1, v_2) & \ldots & (v_1, v_k) \\ (v_2, v_1) & (v_2, v_2) & \ldots & (v_2, v_k) \\ \vdots & \vdots & \ddots & \vdots \\ (v_k, v_1) & (v_k, v_2) & \ldots & (v_k, v_k) \end{pmatrix} := (g_{ij}), \quad g_{ij} = (v_i, v_j).$$

56. Свойства определителя матрицы Грама

- 1. $\det G(v_1, \ldots, v_k) \ge 0$
- 2. $\det G(v_1, \ldots, v_k) = 0$ тогда и только тогда, когда v_1, \ldots, v_k линейно зависимы.

57. Ортогональное дополнение подмножества евклидова пространства

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E}=n.$ $S\subseteq\mathbb{E}$ — произвольное подпространство. Ортогональным дополнением к S называется множество $S^\perp=\{x\in\mathbb{E}\mid (x,y)=0\ \forall y\in S\}.$

58. Чему равна размерность ортогонального дополнения к подпространству?

Пусть $S \subseteq \mathbb{E}$, dim $\mathbb{E} = n$. Тогда

$$\dim S^{\perp} = n - \dim S.$$

59. Каким свойством обладают подпространство евклидова пространства и его ортогональное дополнение?

Пусть $S \subseteq \mathbb{E}$. Тогда:

- 1. $\mathbb{E} = S \oplus S^{\perp}$ евклидово пространство разлагается в прямую сумму подпространства и его ортогонального дополнения
- 2. $(S^{\perp})^{\perp} = S$ ортогональное дополнение ортогонального дополнения пространства есть само пространство

60. Ортогональная проекция вектора на подпространство

Вектор y называется ортогональной проекцией вектора x на подпространство S. Обозначение: $pr_s x$.

61. Ортогональная составляющая вектора относительно подпространства

Вектор z называется ортогональной составляющей вектора x вдоль подпространства S. Обозначение: $ort_s x$.

62. Формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом

Пусть $\mathbb{E}=\mathbb{R}^n$ со стандартным скалярным произведением. $S\subseteq\mathbb{R}^n$ — подпространство, $a_1,\ \dots,\ a_k$ — базис в S.

Образуем матрицу $A \in Mat_{n \times k}(\mathbb{R})$, где $A^{(i)} = a_i$.

$$\forall v \in \mathbb{E} : pr_s v = A(A^T A)^{-1} A^T v$$

63. Ортогональная система векторов. Ортогональный базис

Система векторов v_1, \ldots, v_k евклидова пространства называется **ортогональной**, если все её векторы попарно ортогональны, т.е. $(e_i, e_j) = 0 \ \forall i \neq j$.

Базис (e_1, \ldots, e_n) в \mathbb{E} называется **ортогональным**, если $(e_i, e_j) = 0 \ \forall i \neq j$. Это равносильно тому, что $G(e_1, \ldots, e_n)$ диагональна.

64. Ортонормированная система векторов. Ортонормированный базис

Система векторов v_1, \ldots, v_k евклидова пространства называется ортонормированной, если все её векторы попарно ортогональны, т.е. $(e_i, e_j) = 0 \ \forall i \neq j$, и длина (норма) каждого вектора системы равна 1.

Базис (e_1, \ldots, e_n) в \mathbb{E} называется **ортонормированным**, если $(e_i, e_j) = 0 \ \forall i \neq j$ и длина каждого вектора равна 1: $\left(\frac{e_1}{|e_1|}, \ldots, \frac{e_n}{|e_n|}\right)$.

65. Описание всех ортонормированных базисов евклидова пространства в терминах одного такого базиса и матриц перехода

Пусть (e_1, \ldots, e_n) — ортонормированный базис в \mathbb{E} . Пусть также есть ещё один базис (e'_1, \ldots, e'_n) , причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$.

 (e_1', \ldots, e_n') — **ортонормированный** тогда и только тогда, когда $C^TC = E$ или, что то же самое, $C^{-1} = C^T$.

66. Ортогональная матрица

Матрица $C \in Mat_n(\mathbb{R})$ называется **ортогональной**, если $C^TC = E$ или, что то же самое, $C^{-1} = C^T$.

 $\it Из\ матана: C$ — ортогональна \iff её столбцы образуют ортонормированный базис (сумма квадратов координат по столбцам равна единице).

67. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса

Пусть $S \subseteq \mathbb{E}$ — подпространство, (e_1, \ldots, e_k) — его ортогональный базис, $x \in \mathbb{E}$. Пусть есть базис e_1, \ldots, e_n в \mathbb{E} . Процесс ортогонализации Грама-Шмидта даёт ортогональный базис (f_1, \ldots, f_n) , причём:

$$f_1 = e_1$$

$$f_2 \in e_2 + \langle e_1 \rangle$$

$$\vdots$$

$$f_n \in e_n + \langle e_1, \dots, e_{n-1} \rangle$$

Точно так же можно заметить, что $\langle f_1, \ldots, f_n \rangle = \langle e_1, \ldots, e_n \rangle \ \forall i = 1, \ldots, n.$

$$pr_S x = \sum_{i=1}^k \frac{(x, e_i)}{(e_i, e_i)} e_i$$
, — для ортогонального базиса

$$pr_S x = \sum_{i=1}^k (x, e_i) e_i,$$
 — для ортонормированного базиса

68. Теорема Пифагора в евклидовом пространстве

Если $x, y \in \mathbb{E}$ и $x \perp y$ ((x, y) = 0), то

$$|x + y| = |x|^2 + |y|^2$$
.

69. Расстояние между векторами евклидова пространства

Рассмотрим векторы $x, y \in \mathbb{E}$.

Расстоянием между двумя векторами называется величина

$$\rho(x, y) := |x - y|.$$

70. Неравенство треугольника в евклидовом пространстве

$$\rho(a, b) + \rho(b, c) \geqslant \rho(a, c) \ \forall a, b, c \in \mathbb{E}.$$

71. Теорема о расстоянии между вектором и подпространством в терминах ортогональной составляющей

Пусть $x \in \mathbb{E}$ и $S \subseteq \mathbb{E}$ — подпространство.

Теорема. $\rho(x, U) = |ort_S x|$, причём $pr_S x$ – единственный ближайший к x вектор из S.

72. Псевдорешение несовместной системы линейных уравнений

Метод наименьших квадратов:

Имеем СЛУ(*) Ax = b, где $A \in Mat_{m \times n}$, $x \in \mathbb{R}^n$ — вектор неизвестных, $b \in \mathbb{R}^m$.

 $x_0 \in \mathbb{R}^n$ — решение СЛУ(*) $\Leftrightarrow Ax_0 = b \Leftrightarrow Ax_0 - b = 0 \Leftrightarrow |Ax_0 - b| = 0$ (где \mathbb{R}^n рассматривается как евклидово пространство со стандартным скалярным произведением) $\Leftrightarrow \rho(Ax_o, b) = 0$.

В случае, когда СЛУ(*) несовместна, набор $x_0 \in \mathbb{R}^n$ (вектор-столбец) называется **псев-дорешением**, если $\rho(Ax_o, b) = \min(Ax, b)$.

73. Формула для расстояния от вектора до подпространства в терминах матриц Грама

Пусть U — подпространство евклидова пространства $\mathbb{E}, x \in \mathbb{E}, (e_1, \ldots, e_n)$ — базис U. Тогда

$$(\rho(x, U))^2 = \frac{\det G(e_1, \ldots, e_k, x)}{\det G(e_1, \ldots, e_k)}$$

74. к-мерный параллелепипед и его объём

k-мерным параллелепипедом, натянутым на векторы a_1, \ldots, a_k , называется подмножество

 $P(a_1, \ldots, a_k) := \left\{ x = \sum_{i=1}^n x_i a_i \mid 0 \leqslant x_t \leqslant 1 \right\}.$

75. В каком случае два базиса евклидова пространства называются одинаково ориентированными?

Одинаковая ориентированность — отношение эквивалентности на множестве всех базисов в \mathbb{E} .

Пусть e, e' — два базиса пространства.

Будем говорить, что базисы e, e' **ориентированны одинаково**, если определитель матрицы перехода от e к e' больше нуля (det C > 0).

76. Смешанное произведение векторов трёхмерного евклидова пространства, формула для его вычисления в терминах координат в правом ортонормированном базисе

Правый ортонормированный базис — положительно ориентированный.

Смешанным произведением векторов a, b, c называется величина (a, b, c) = vol(a, b, c).

Если (e_1, e_2, e_3) — правый ортонормированный базис и

$$a = a_1e_1 + a_2e_2 + a_3e_3$$

$$b = b_1e_1 + b_2e_2 + b_3e_3$$

$$c = c_1e_1 + c_2e_2 + c_3e_3,$$

ТО

$$(a, b, c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

77. Критерий компланарности трёх векторов трёхмерного евклидова пространства

Векторы a, b, c компланарны (линейно зависимы) \iff (a, b, c) = 0.

78. Векторное произведение в трёхмерном евклидовом пространстве

Векторным произведением векторов $a,\,b\in\mathbb{E}$ называется вектор c такой, что:

- 1. $c \perp \langle a, b \rangle$
- 2. $|c| = |a||b|\sin\alpha$ (или же |c| = площади параллелограмма, образованного (a,b))
- 3. $(a, b, c) \geqslant 0$ (т.е. векторы образуют правую тройку)

Обозначение: [a, b] или $a \times b$.

79. Критерий коллинеарности двух векторов трёхмерного евклидова пространства

a, b коллинеарны (т.е. линейно зависимы) $\iff [a, b] = 0.$

80. Выражение смешанного произведения через векторное и скалярное в трёхмерном евклидовом пространстве

$$\forall a, b, c \in \mathbb{R}^3 : (a, b, c) = (a, [b, c])$$

81. Формула для двойного векторного произведения в трёхмерном евклидовом пространстве

$$[a, [b, c]] = (a, c)b - (a, b)c$$
$$= b(a, c) - c(a, b)$$

82. Формула для вычисления векторного произведения в терминах координат в правом ортонормированном базисе

Пусть (e_1, e_2, e_3) — ортонормированный базис.

$$a = a_1e_1 + a_2e_2 + a_3e_3$$
$$b = b_1e_1 + b_2e_2 + b_3e_3$$

Тогда

$$[a, b] = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = e_1 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} - e_2 \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} + e_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} =$$

$$= (b_1c_2 - b_2c_1)e_1 - (a_1c_2 - a_2c_1)e_2 + (a_1b_2 - a_2b_1)e_3 =$$

$$= ((b_1c_2 - b_2c_1), (a_2c_1 - a_1c_2), (a_1b_2 - a_2b_1))$$

83. Линейное многообразие. Характеризация линейных многообразий как сдвигов подпространств

Линейное многообразие в \mathbb{R}^n — множество решений некоторой совместной СЛУ.

84. Критерий равенства двух линейных многообразий. Направляющее подпространство и размерность линейного многообразия

 $L_1,\,L_2\subseteq \mathbb{R}^n$ — множества всех решений. $S_1,\,S_2\subseteq \mathbb{R}^n$ — множество решений однородной СЛУ Ax=0.

 $L_1 = v_1 + S_1$ и $L_2 = v_2 + S_2$ — два линейных многообразия.

$$L_1 = L_2 \Longleftrightarrow \begin{cases} S_1 = S_2 \ (= S), \\ v_1 - v_2 \in S \end{cases}$$

S называется **направляющим подпространством** линейного многообразия L.

85. Теорема о плоскости, проходящей через точку k+1 в \mathbb{R}^n

Теорема. а) Через любые k+1 точек в \mathbb{R}^n проходит плоскость размерности $\leqslant k$

б) Если k+1 точек не лежат в плоскости размерности < k, то через них проходит ровно одна плоскости размерности k

86. Три способа задания прямой в \mathbb{R}^2 . Уравнение прямой в \mathbb{R}^2 , проходящей через две различные точки

- 1. Уравнение в координатах: Ax + By = C, $(A, B) \neq (0, 0)$
- 2. Векторное уравнение: $(\vec{n}, v v_0) = 0$, где \vec{n} вектор нормали, $v v_0$ принадлежит прямой
- 3. Параметрическое уравнение: $v=v_0+\vec{a}\lambda$, где v_0 точка на прямой, \vec{a} направляющий вектор прямой, λ коэффициент

Уравнение прямой, проходящей через две точки (x_0, y_0) и x_1, y_1 :

$$\begin{vmatrix} x - x_0 & y - y_0 \\ x_1 - x_0 & y_1 - y_0 \end{vmatrix} = 0 \quad \text{или} \quad \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

87. Три способа задания плоскости в \mathbb{R}^3 . Уравнение плоскости в \mathbb{R}^3 , проходящей через три точки, не лежащие на одной прямой

- 1. Уравнение в координатах: Ax + By + Cz = D, $(A, B, C) \neq (0, 0, 0)$
- 2. Векторное уравнение: $(\vec{n}, v-v_0=0)$, где \vec{n} нормальный вектор плоскости, $v-v_0$ вектор на плоскости
- 3. Параметрическое уравнение: $v=v_0+\vec{a}\alpha+\vec{b}\beta$, где v_0--- , $a,\,b$ направляющие векторы на плоскости

Уравнение плоскости, проходящей через точки $(x_0,y_0,z_0),\,(x_1,y_1,z_1),\,(x_2,y_2,z_2)$:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$$

16

88. Три способа задания прямой в \mathbb{R}^3 . Уравнения прямой в \mathbb{R}^3 , проходящей через две различные точки

1. **C**
$$\Pi$$
Y:
$$\begin{cases} A_1x + B_1y + C_1z = D_1 \\ A_2x + B_2y + C_2z = D_2 \end{cases}$$

- 2. Векторное уравнение: $[v-v_0,\,a]=0$, где $v-v_0$ принадлежит прямой, \vec{a} направляющий вектор
- 3. Параметрическое уравнение: $v=v_0+\vec{a}\lambda$, где v_0 точка на прямой, \vec{a} направляющий вектор
- 4. Каноническое уравнение прямой: $\frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}$, где $a_1,\ a_2,\ a_3$ направляющий вектор, $x_0,\ y_0,\ z_0$ координаты точки на прямой

Уравнение прямой, проходящей через две различные точки (x_0, y_0, z_0) и (x_1, y_1, z_1) :

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

89. Случаи взаимного расположения двух прямых в \mathbb{R}^3

Пусть a_1, a_2 — направляющие прямых $l_1, l_2,$ а v_1, v_2 — точки, лежащие на данных прямых. Тогда прямые l_1, l_2 :

- 1. совпадают 2. параллельны лежат в одной плоскости \Rightarrow $(a_1, a_2, v_2 v_1) = 0$ 3. пересекаются в точко
- 3. пересекаются в точке
- 4. скрещиваются или не лежат в одной плоскости

90. Случаи взаимного расположения трёх попарно различных плоскостей в \mathbb{R}^3

Пусть имеются три плоскости P_1, P_2, P_3 .

- 1. Среди P_1, P_2, P_3 есть две параллельных
 - (a) $P_1 \parallel P_2 \parallel P_3$
 - (b) Две параллельны, а третья их пересекает
- 2. Никакие две плоскости не параллельны
 - (а) Все три пересекаются по одной прямой
 - (b) Прямые пересечения параллельны
 - (c) P_1, P_2, P_3 пересекаются в одной точке

91. Формула для расстояния от точки до прямой в \mathbb{R}^3

Пусть l — прямая, v — точка, не лежащая на данной прямой, a — направляющий вектор прямой.

$$\rho(v, l) = |ort_{\langle a \rangle}(v - v_0)| = \frac{[v - v_0, a]}{|a|}$$

17

92. Формула для расстояния от точки до плоскости в \mathbb{R}^3

Пусть P — плоскость, n — вектор нормали, v_0 — точка, лежащая на плоскости, v — точка, не лежащая на плоскости, $S = \langle n \rangle^{\perp}$ — направляющее подпространство.

$$\rho(v, P) = |ort_S(v - v_0)| = |pr_{\langle n \rangle}(v - v_0)| = \left| \frac{(v - v_0, n)}{(n, n)} n \right| = \frac{|(v - v_0, n)|}{|n|}$$

93. Формула для расстояния между двумя скрещивающимися прямыми в \mathbb{R}^3

Пусть l_1 , l_2 — прямые. v_1 , v_2 — точки, лежащие на каждой из данных прямых. a_1 , a_2 — их направляющие векторы.

Построим плоскости

$$P_1 = v_1 + \langle a_1, a_2 \rangle \supseteq l_1$$

$$P_2 = v_2 + \langle a_1, a_2 \rangle \supseteq l_2$$

Тогда

$$\rho(l_1, l_2) = \rho(P_1, P_2) = \frac{|(a_1, a_2, v_2 - v_1)|}{|[a_1, a_2]|}$$

94. Линейный оператор

Пусть V — конечномерное векторное пространство.

Линейным оператором (преобразованием) называется всякое линейное отображение $\varphi: V \to V$, то есть из V в себя. Обозначение: L(V) = Hom(V, V).

95. Матрица линейного оператора

Пусть V — векторное пространство, $e = (e_1, \ldots, e_n)$ — его базис и φ — его линейный оператор.

Матрицей линейного оператора φ называется такая матрица, в j-ом столбце которой стоят координаты вектора $\varphi(e_j)$ в базисе e.

$$(\varphi(e_1), \ldots, \varphi(e_n)) = (e_1, \ldots, e_n)A, \quad A \in Mat_n.$$

96. Формула преобразования координат вектора при действии линейного оператора

Пусть $\varphi \in L(V)$, A — матрица φ в базисе \mathfrak{e} . Тогда

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\varphi(v) = y_1 e_1 + \dots + y_n e_n$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

97. Формула изменения матрицы линейного оператора при переходе к другому базису

Пусть φ — линейный оператор векторного пространства V, A — матрица φ в базисе $e = (e_1, \ldots, e_n)$. Пусть $e' = (e'_1, \ldots, e'_n)$ — другой базис, причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$. Тогда

$$A' = C^{-1}AC,$$

где C — матрица перехода к новому базису e', A' — матрица φ в базисе e'.

98. Подобные матрицы

Две матрицы A', $A \in Mat_n(F)$ называются **подобными**, если существует такая матрица $C \in Mat_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

99. Подпространство, инвариантное относительно линейного оператора

Подпространство $U\subseteq V$ называется **инвариантным** относительно φ (или φ -инвариантным), если $\varphi(U)\subseteq U$. То есть $\forall u\in U: \varphi(u)\in U$.

100. Матрица линейного оператора в базисе, дополняющем базис инвариантного подпространства

Пусть $\varphi:V \to V$ — линейный оператор.

Пусть $U \subset V - \varphi$ -инвариантное подпространство. Также пусть e_1, \ldots, e_k — базис в U. Дополним его до базиса $V: e = (e_1, \ldots, e_n)$. Тогда

$$A(\varphi, e)$$
 = $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$, где $B \in Mat_n$.

101. Собственный вектор линейного оператора

Пусть $\varphi:V \to V$ — линейный оператор.

Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторого $\lambda \in F$.

102. Собственное значение линейного оператора

Элемент $\lambda \in F$ называется **собственным значением** линейного оператора $\varphi: V \to V$, если существует такой ненулевой вектор $v \in V$, что $\varphi(v) = \lambda v$.

103. Спектр линейного оператора

Множество всех собственных значений линейного оператора φ называется **спектром**.

104. Диагонализуемый линейный оператор

Линейный оператор φ называется **диагонализуемым**, если существует такой базис е, что $A(\varphi, e)$ — диагональная матрица, т.е. $A(\varphi, e) = diag(\lambda_1, \ldots, \lambda_n)$

105. Критерий диагонализуемости линейного оператора в терминах собственных векторов

Линейный оператор φ диагонализуем тогда и только тогда, когда в V есть базис из собственных векторов для φ .

106. Собственное подпространство линейного оператора

Пусть $\lambda \in Spec(\varphi)$.

Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ называется **собственным подпространством** линейного оператора, отвечающим собственному значению λ .

107. Характеристический многочлен линейного оператора

Пусть $t \in F$.

Многочлен $\chi_{\varphi}(t) := (-1)^n \det(\varphi - t \cdot \mathrm{id})$ называется **характеристическим многочленом** линейного оператора φ .

108. Связь спектра линейного оператора с его характеристическим многочленом

Пусть $\lambda \in Spec(\varphi)$.

$$\chi_{\varphi}(\lambda) = 0,$$

то есть λ — корень характеристического многочлена.

109. Алгебраическая кратность собственного значения линейного оператора

Пусть $\varphi: V \to V$ — линейный оператор, λ — его собственное значение.

Алгебраической кратностью собственного значения λ линейного оператора φ называется такое число k, которое равняется кратности λ как корня характеристического многочлена.

110. Геометрическая кратность собственного значения линейного оператора

Пусть $\varphi: V \to V$ — линейный оператор, λ — его собственное значение, $V_{\lambda}(\varphi)$ — соответствующее собственное подпространство.

Геометрической кратностью собственного значения λ называется число dim $V_{\lambda}(\varphi)$ (проще говоря — количество линейно независимых векторов в ФСР матрицы, образованной λ).

111. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора

Пусть a_i — алгебраическая кратность собственного значения, s_i — геометрическая кратность. Тогда справедливо неравенство

$$s_i \leqslant a_i$$

112. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей его собственных значений

Линейный оператор $\varphi:V\to V$ диагонализуем тогда и только тогда, когда:

- \bullet $\chi_{\varphi}(t)$ разлагается на линейные множители
- Для любого собственного значения φ геометрическая кратность равна алгебраической