Regresión logística

Fernando Lozano

Universidad de los Andes

18 de agosto de 2017

• Datos $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$:

- Datos $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$:
 - ightharpoonup **x**_i objeto a clasificar.

- Datos $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$:
 - ightharpoonup \mathbf{x}_i objeto a clasificar.
 - ▶ $y_i \in \{-1, 1\}$ etiqueta.

- Datos $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$:
 - ightharpoonup \mathbf{x}_i objeto a clasificar.
 - $y_i \in \{-1, 1\}$ etiqueta.
- Queremos aprender regla de clasificación a partir de los datos.

- Datos $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$:
 - \mathbf{x}_i objeto a clasificar.
 - $y_i \in \{-1, 1\}$ etiqueta.
- Queremos aprender regla de clasificación a partir de los datos.
- Separador lineal:

$$y = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

• Cómo encontrar un buen clasificador?

• Clasificación binaria: $y \in \{0, 1\}$.

- Clasificación binaria: $y \in \{0, 1\}$.
- Queremos restringir $y \in [0, 1]$

- Clasificación binaria: $y \in \{0, 1\}$.
- Queremos restringir $y \in [0, 1]$
- Modelo (hipótesis):

$$h_{\mathbf{w}}(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$$

- Clasificación binaria: $y \in \{0, 1\}$.
- Queremos restringir $y \in [0, 1]$
- Modelo (hipótesis):

$$h_{\mathbf{w}}(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

- Clasificación binaria: $y \in \{0, 1\}$.
- Queremos restringir $y \in [0, 1]$
- Modelo (hipótesis):

$$h_{\mathbf{w}}(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

• $\sigma(.)$ es la función logística o sigmoide

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\mathbf{P}(y=1 \mid \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$\mathbf{P}(y = 1 \mid \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$
$$\mathbf{P}(y = 0 \mid \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

• Interpretamos $\sigma(\mathbf{w}^T\mathbf{x})$ como el estimativo dado por el modelo con parámetros \mathbf{w} de la probabilidad de que \mathbf{x} pertenezca a la clase 1:

$$\mathbf{P}(y = 1 \mid \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$
$$\mathbf{P}(y = 0 \mid \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

 \bullet Es decir, dado \mathbf{x} , y es una variable aleatoria de Bernoulli .

$$\mathbf{P}(y = 1 \mid \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$
$$\mathbf{P}(y = 0 \mid \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

- ullet Es decir, dado ${f x},\,y$ es una variable aleatoria de Bernoulli .
- Podemos escribir más compactamente

$$\mathbf{P}(y \mid \mathbf{x}; \mathbf{w}) = (\sigma(\mathbf{w}^T \mathbf{x}))^y (1 - \sigma(\mathbf{w}^T \mathbf{x}))^{1-y}$$

$$L(\mathbf{w}) = \mathbf{P}(\mathbf{y} \mid \mathbf{X}; \mathbf{w})$$

$$L(\mathbf{w}) = \mathbf{P}(\mathbf{y} \mid \mathbf{X}; \mathbf{w})$$
$$= \prod_{i=1}^{n} \mathbf{P}(y_i \mid \mathbf{x}_i; \mathbf{w})$$

$$L(\mathbf{w}) = \mathbf{P}(\mathbf{y} \mid \mathbf{X}; \mathbf{w})$$

$$= \prod_{i=1}^{n} \mathbf{P}(y_i \mid \mathbf{x}_i; \mathbf{w})$$

$$= \prod_{i=1}^{n} (\sigma(\mathbf{w}^T \mathbf{x}_i))^{y_i} (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))^{1-y_i}$$

$$L(\mathbf{w}) = \mathbf{P}(\mathbf{y} \mid \mathbf{X}; \mathbf{w})$$

$$= \prod_{i=1}^{n} \mathbf{P}(y_i \mid \mathbf{x}_i; \mathbf{w})$$

$$= \prod_{i=1}^{n} (\sigma(\mathbf{w}^T \mathbf{x}_i))^{y_i} (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))^{1-y_i}$$

• Tomando logaritmo:

$$l(\mathbf{w}) = \log(L(\mathbf{w})) = \sum_{i=1}^{n} y_i \log(\sigma(\mathbf{w}^T \mathbf{x}_i)) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

$$L(\mathbf{w}) = \mathbf{P}(\mathbf{y} \mid \mathbf{X}; \mathbf{w})$$

$$= \prod_{i=1}^{n} \mathbf{P}(y_i \mid \mathbf{x}_i; \mathbf{w})$$

$$= \prod_{i=1}^{n} (\sigma(\mathbf{w}^T \mathbf{x}_i))^{y_i} (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))^{1 - y_i}$$

• Tomando logaritmo:

$$l(\mathbf{w}) = \log(L(\mathbf{w})) = \sum_{i=1}^{n} y_i \log(\sigma(\mathbf{w}^T \mathbf{x}_i)) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

• Problema de optimización:

$$L(\mathbf{w}) = \mathbf{P}(\mathbf{y} \mid \mathbf{X}; \mathbf{w})$$

$$= \prod_{i=1}^{n} \mathbf{P}(y_i \mid \mathbf{x}_i; \mathbf{w})$$

$$= \prod_{i=1}^{n} (\sigma(\mathbf{w}^T \mathbf{x}_i))^{y_i} (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))^{1-y_i}$$

• Tomando logaritmo:

$$l(\mathbf{w}) = \log(L(\mathbf{w})) = \sum_{i=1}^{n} y_i \log(\sigma(\mathbf{w}^T \mathbf{x}_i)) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

• Problema de optimización:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} l(\mathbf{w})$$

Negativo de la Función de error (acierto!)

Incialize \mathbf{w}_0

Incialize \mathbf{w}_0 repeat

Incialize
$$\mathbf{w}_0$$

repeat
 $\mathbf{w}_{k+1} = \mathbf{w}_k + \eta_k \nabla_{\mathbf{w}} l(\mathbf{w}_k)$

Incialice \mathbf{w}_0 repeat $\mathbf{w}_{k+1} = \mathbf{w}_k + \eta_k \nabla_{\mathbf{w}} l(\mathbf{w}_k)$ until Condición de terminación.

• Note que $\sigma'(z) = \sigma(z)(1 - \sigma(z))$

• Note que $\sigma'(z) = \sigma(z)(1 - \sigma(z))$. Denote $\sigma_i = \sigma(\mathbf{w}^T \mathbf{x}_i)$

- Note que $\sigma'(z) = \sigma(z)(1 \sigma(z))$. Denote $\sigma_i = \sigma(\mathbf{w}^T \mathbf{x}_i)$
- Un término en la suma:

- Note que $\sigma'(z) = \sigma(z)(1 \sigma(z))$. Denote $\sigma_i = \sigma(\mathbf{w}^T \mathbf{x}_i)$
- Un término en la suma:

$$\left[\nabla_{\mathbf{w}}l(\mathbf{w})\right]_i = y_i \frac{\mathbf{x}_i \sigma_i (1 - \sigma_i)}{\sigma_i} + (1 - y_i) \frac{-\mathbf{x}_i \sigma_i (1 - \sigma_i)}{1 - \sigma_i}$$

- Note que $\sigma'(z) = \sigma(z)(1 \sigma(z))$. Denote $\sigma_i = \sigma(\mathbf{w}^T \mathbf{x}_i)$
- Un término en la suma:

$$[\nabla_{\mathbf{w}} l(\mathbf{w})]_i = y_i \frac{\mathbf{x}_i \sigma_i (1 - \sigma_i)}{\sigma_i} + (1 - y_i) \frac{-\mathbf{x}_i \sigma_i (1 - \sigma_i)}{1 - \sigma_i}$$
$$= y_i \mathbf{x}_i (1 - \sigma_i) + (y_i - 1) \mathbf{x}_i \sigma_i$$

- Note que $\sigma'(z) = \sigma(z)(1 \sigma(z))$. Denote $\sigma_i = \sigma(\mathbf{w}^T \mathbf{x}_i)$
- Un término en la suma:

$$[\nabla_{\mathbf{w}} l(\mathbf{w})]_i = y_i \frac{\mathbf{x}_i \sigma_i (1 - \sigma_i)}{\sigma_i} + (1 - y_i) \frac{-\mathbf{x}_i \sigma_i (1 - \sigma_i)}{1 - \sigma_i}$$
$$= y_i \mathbf{x}_i (1 - \sigma_i) + (y_i - 1) \mathbf{x}_i \sigma_i$$
$$= (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i$$

- Note que $\sigma'(z) = \sigma(z)(1 \sigma(z))$. Denote $\sigma_i = \sigma(\mathbf{w}^T \mathbf{x}_i)$
- Un término en la suma:

$$[\nabla_{\mathbf{w}} l(\mathbf{w})]_i = y_i \frac{\mathbf{x}_i \sigma_i (1 - \sigma_i)}{\sigma_i} + (1 - y_i) \frac{-\mathbf{x}_i \sigma_i (1 - \sigma_i)}{1 - \sigma_i}$$
$$= y_i \mathbf{x}_i (1 - \sigma_i) + (y_i - 1) \mathbf{x}_i \sigma_i$$
$$= (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i$$
$$= e_i \mathbf{x}_i$$

Incialize \mathbf{w}_0 a valores pequeños.

Incialize \mathbf{w}_0 a valores pequeños.

repeat

Escoja (\mathbf{x}_i, y_i)

Incialize \mathbf{w}_0 a valores pequeños.

repeat

Escoja
$$(\mathbf{x}_i, y_i)$$

 $g = \sigma(\mathbf{w}_k^T \mathbf{x}_i)$

Incialize \mathbf{w}_0 a valores pequeños.

repeat

Escoja
$$(\mathbf{x}_i, y_i)$$

 $g = \sigma(\mathbf{w}_k^T \mathbf{x}_i)$
 $e = y_i - g$

Incialize \mathbf{w}_0 a valores pequeños.

repeat

Escoja
$$(\mathbf{x}_i, y_i)$$

 $g = \sigma(\mathbf{w}_k^T \mathbf{x}_i)$
 $e = y_i - g$
 $\mathbf{w}_{k+1} = \mathbf{w}_k + \eta_k e \mathbf{x}_i$

Incialize \mathbf{w}_0 a valores pequeños.

repeat

Escoja
$$(\mathbf{x}_i, y_i)$$

 $g = \sigma(\mathbf{w}_k^T \mathbf{x}_i)$
 $e = y_i - g$
 $\mathbf{w}_{k+1} = \mathbf{w}_k + \eta_k e \mathbf{x}_i$

until Condición de terminación.

• Hessiana de $l(\mathbf{w})$:

$$\nabla^2 l(\mathbf{w}) = -\sum_{i=1}^n \sigma_i (1 - \sigma_i) \mathbf{x}_i \mathbf{x}_i^T$$

• $\nabla^2 l(\mathbf{w})$ es positiva definida

• Hessiana de $l(\mathbf{w})$:

$$\nabla^2 l(\mathbf{w}) = -\sum_{i=1}^n \sigma_i (1 - \sigma_i) \mathbf{x}_i \mathbf{x}_i^T$$

• $\nabla^2 l(\mathbf{w})$ es positiva definida $\Rightarrow l(\mathbf{w})$ es cóncava $(-l(\mathbf{w})$ es convexa).