Lecture6_homework

need to install package bio3d with the function install.packages().

Original Code

Running the original code snippet to understand the functions, inputs, and outputs. This code takes the pdb protein id, the chain, and the element type to isolate the B factors for this protein at that specific chain. It generates a plot for B-factor along with the chain of protein

```
library(bio3d)
s1 <- read.pdb("4AKE") # kinase with drug

Note: Accessing on-line PDB file
s2 <- read.pdb("1AKE") # kinase no drug

Note: Accessing on-line PDB file
    PDB has ALT records, taking A only, rm.alt=TRUE

s3 <- read.pdb("1E4Y") # kinase with drug</pre>
```

Note: Accessing on-line PDB file

```
s1.chainA <- trim.pdb(s1, chain="A", elety="CA")
s2.chainA <- trim.pdb(s2, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")
s1.b <- s1.chainA$atom$b
s2.b <- s2.chainA$atom$b
s3.b <- s3.chainA$atom$b
plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor")</pre>
```


plotb3(s2.b, sse=s2.chainA, typ="l", ylab="Bfactor")

plotb3(s3.b, sse=s3.chainA, typ="1", ylab="Bfactor")

Writing the Function

This code combines the steps from the previous code into a single function. The function takes three inputs: the protein PDB ID, the chain to focus on, and the element type. Similar to the previous approach, the function outputs a plot of B-factors. However, by using this function, we avoid repeating the same steps for each protein. Instead, we simply pass the relevant parameters for each protein to the function and get the desired plot.

```
##Define function protein_analysis() that read the sequences and analyze their
protein_analysis <- function(pdb_id, chain_input="A", elety_input="CA"){

##read the protein sequence from PDB
seq <- read.pdb(pdb_id)

##trim the sequence to focus on specific chain and element type
seq.chainA <- trim.pdb(seq, chain = chain_input, elety = elety_input)

##isolate b-factors from chain A of sequence
seq.b <- seq.chainA$atom$b

##plot b-factor vs. chainA
plotb3(seq.b, sse=seq.chainA, typ="l", ylab="Bfactor", main=paste("Plot for", pdb_id, "Cha")}</pre>
```

Testing the function:

```
protein_analysis("4AKE", chain_input = "A", elety_input = "CA")
```

Note: Accessing on-line PDB file

Warning in get.pdb(file, path = tempdir(), verbose = FALSE):
/var/folders/fr/phzdrrgx3wj4frmr82btkq2w0000gn/T//RtmpM8JsNu/4AKE.pdb exists.
Skipping download

Plot for 4AKE Chain A

protein_analysis("1AKE", "A", "CA")

Note: Accessing on-line PDB file

Warning in get.pdb(file, path = tempdir(), verbose = FALSE): /var/folders/fr/phzdrrgx3wj4frmr82btkq2w0000gn/T//RtmpM8JsNu/1AKE.pdb exists. Skipping download

PDB has ALT records, taking A only, rm.alt=TRUE

Plot for 1AKE Chain A

protein_analysis("1E4Y")

Note: Accessing on-line PDB file

Warning in get.pdb(file, path = tempdir(), verbose = FALSE):
/var/folders/fr/phzdrrgx3wj4frmr82btkq2w0000gn/T//RtmpM8JsNu/1E4Y.pdb exists.
Skipping download

Plot for 1E4Y Chain A

