Computational Physics 1: Übung 5: Lösung von Gleichungssystemen

Jakob Hollweck

Abgabe 15.12.17

LU-Zerlegung mit Crout's Algorithmus

Das Gleichungssystem $x\mathrm{CH_4} + y\mathrm{CO_2} + z\mathrm{H_2O} \to n\mathrm{C_aH_bO_c}$ konnte mithilfe der LU-Zerlegung gelöst werden. Der Faktor n, der die Skalierung des Inhomogenitätsvektors angibt, ist konstant und das Gleichungssystem linear. So skaliert auch das Ergebnis linear mit n. Die Ergebnisse für n=1 sind in untenstehender Tabelle gegeben, wobei ein negativer Wert ein Produkt des Prozesses bedeutet.

	x: Methan (CH ₄)	x: Kohlendioxid (CO ₂)	z: Wasser (H ₂ O)
Fructose $(C_6H_{12}O_6)$	3	3	0
Ethanol (C_2H_6O)	1.5	0.5	0
Weinsäure $(C_4H_6O_6)$	1.25	2.75	0.5
Zitronensäure $(C_6H_8O_7)$	2.25	3.75	-0.5

Die LU-Zerlegung hat einen Laufzeitvorteil gegenüber dem Gauß-Jordan Verfahren, da bei letzterem nach jedem Schritt ein neues Gleichungssystem gelöst werden muss und so die Rechenzeit mit N^3 skaliert. Dagegen skaliert die Vorwärts-/Rückwärtselimination nur mit N^2 . Die LU-Zerlegung skaliert zwar auch mit N^3 , siehe Abbildung 1, muss aber nur einmal durchgeführt werden.

Zeitverhalten der Implementierung

Abbildung 1: Rechenzeit für die LU-Zerlegung einer $N\times N$ -Matrix in Abhängigkeit der Matrixgröße N im Vergleich zu einer Geraden mit Anstieg N^3

Die in Abbildung 1 zu erkennende Kurve zeigt durch den Vergleich mit der Vergleichsgeraden N^3 und der logarithmischen Darstellung eindeutig ebenfalls einen solchen Anstieg für höhere N. Dieser Anstieg kommt zustanden, da die LU-Zerlegung durch eine dreifach ineinander verschachtelte Schleife implementiert wurde, wobei jeder dieser Schleifen N Operationen durchführen muss. Bei Annahme eines linearen Zusammenhangs zwischen Rechenoperationen und Rechenzeit ergibt sich so ein Zusammenhang von N^3 . Der Grund für den schwächeren Zusammenhang für kleine N ist, dass in diesem Bereich die Rechenzeit viel mehr von z.B. Fluktuationen in der momentanen Leistung des Rechners abhängt als bei höheren N.