(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年12 月12 日 (12.12.2002)

PCT

(10) 国際公開番号 WO 02/099133 A1

(51) 国際特許分類⁷: 15/31, G01N 33/569, 33/53, 33/566 C12Q 1/68, C12N

(21) 国際出願番号:

PCT/JP02/05107

(22) 国際出願日:

2002年5月27日(27.05.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-165929 2001年5月31日(31.05.2001) JF

- (71) 出願人 (米国を除く全ての指定国について): 扶桑薬品 工業株式会社 (FUSO PHARMACEUTICAL INDUS-TRIES, LTD.) [JP/JP]; 〒541-0045 大阪府 大阪市中央 区 道修町 1 丁目 7番 1 0 号 Osaka (JP).
- (71) 出願人 および
- (72) 発明者: 大野 典也 (OHNO, Tsuneya) [JP/JP]; 〒158-0081 東京都 世田谷区深沢 2 丁目 5-1 5 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 松久 明生 (MAT-SUHISA, Akio) [JP/JP]; 〒536-0025 大阪府 大阪市城東区 森之宮 2 丁目 7-5 0 6 Osaka (JP).

- (74) 代理人: 角田 嘉宏, 外(SUMIDA, Yoshihiro et al.); 〒 650-0031 兵庫県 神戸市中央区東町 123番地の1 貿易 ビル3階 有古特許事務所 Hyogo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

- (54) Title: IMPROVED METHOD FOR DETECTING AND IDENTIFYING MICROORGANISM CAUSATIVE OF INFECTION
- (54) 発明の名称: 感染症原因微生物の検出および同定のための改良された方法
- (57) Abstract: A microorganism causative of an infection is quickly and highly sensitively detected and/or identified by obtaining phagocytes from a clinical specimen containing phagocytes originating in a living body, immobilizing the obtained phagocytes, treating the phagocytes so as to enhance the permeability of the phagocyte membrane and expose DNA of the microorganism causative of the infection which is anticipated as being contained in the phagocytes, and then using a detection DNA probe hybridizable with the DNA under stringent conditions.
- (57) 要約:

生体由来の食細胞を含む臨床検体より食細胞を得、得られた食細胞を固定し、食細胞膜の透過性を亢進させる処理および該食細胞中に存在すると予想される感染症原因微生物のDNAを露出させる処理を施し、ストリンジェントな条件下で該DNAにハイブリダイゼーションすることのできる検出用DNAプローブを用いて、迅速且つ高感度に、感染症原因微生物を検出および/または同定する。

WO 02/099133 PCT/JP02/05107

1

明 細 書

感染症原因微生物の検出および同定のための改良された方法

5 技術分野

本発明は、感染症原因微生物の検出および同定のための改良された方法に関する。 また、感染症原因微生物を検出および/または同定するためのキット、臨床検体中の外来微生物の遺伝子をモニターする方法および敗血症原因微生物または菌血症原因菌を特定する方法に関する。

10

背景技術

従来より、血液中に存在する菌の証明法として血液培養法が広く用いられているが、培養・分離同定の操作に3~14日程度の日数がかかる上、検出率が約10%と低く、敗血症のような緊急を要する診断法としては、十分治療に 15 寄与していないのが現状である。

そこで、本発明者らは上記問題を解決するために、貪食細胞によって貪食された外来微生物を検出または同定するための方法、すなわち、貪食細胞中に存在する外来微生物由来の遺伝子を、該遺伝子に特異的にハイブリダイゼーションすることのできるプローブを用いてin situハイブリダイゼーションを施すことで、その検出を図る方法を発明した(特公平7-40号)。

特公平7-40号に記載された方法に従って、敗血症が疑われた患者血液を 用いて検査したところ、血液培養法と比較して約4倍の感度で菌を検出し、 さらに24時間以内に判定できたことなどから、感染症分野において脚光を浴 びるに至っている。

25 本願発明は、特公平7-40号に記載された発明、すなわち、生体由来の食 細胞を含む臨床検体より食細胞を得、得られた食細胞を固定し、該食細胞膜 の透過性を亢進させる処理を施し、該食細胞中に存在すると予想される感染 症原因菌のDNAを露出させる処理を施し、この露出DNAにストリンジェ

ントな条件下でハイブリダイゼーションできる検出用DNAプローブを用いてin situハイブリダイゼーションを行い、得られたシグナルにより感染症原因菌を検出および/または同定するための方法について、この方法による検出効率・検出感度をさらに高めることを目的とする。

5

発明の開示

本発明は、以上詳説した現状に鑑みて成し遂げられたものであり、その要 旨とするところは、以下のとおりである。

生体由来の食細胞を含む臨床検体より食細胞を得、得られた食細胞を固定 し、該食細胞膜の透過性を亢進させる処理を施し、該食細胞中に存在すると 予想される感染症原因微生物のDNAを露出させる処理を施し、該DNAに ストリンジェントな条件下でハイブリダイゼーションできる検出用DNAプローブを用いてin situ ハイブリダイゼーションを行い、得られたシグナル により感染症原因微生物を検出および/または同定するための方法であっ

- 15 て、下記(1)~(8)の特徴、すなわち、
 - (1)固定化する食細胞の密度(x個/ml)が、約 5×10^6 個/ml< x個/ml<約 1×10^6 個/mlであること、
 - (2) DNA露出工程においてリゾスタフィンが使用され、その力価が、約1単位/ml~約1,000単位/mlであること、
- 20 (3) DNA露出工程においてリゾチームが使用され、その力価が、約 1,000単位/ml~約1,000,000単位/mlであること、
 - (4) DNA露出工程においてN-アセチルムラミダーゼが使用され、その 力価が、約10単位/ml~約10,000単位/mlであること、
- (5) DNA露出工程においてザイモラーゼが使用され、その力価が、約 25 50単位/ml~約500単位/mlであること、
 - (6) in situハイブリダイゼーションの工程において界面活性剤を使用すること、
 - (7) 検出用DNAプローブが、約350~約600塩基長の鎖長を有する1種

WO 02/099133 PCT/JP02/05107

3

以上のDNAプローブであること、および

(8) 検出用DNAプローブの濃度が、約0.1 \lg/μ 1~約2.2 \lg/μ 1の濃度であること、

の少なくとも1つ以上の特徴を有する、感染症原因微生物を検出および/ 5 または同定するための方法である。

DNA露出工程にあっては、好ましくは、リゾスタフィン、リゾチーム、N-アセチルムラミダーゼおよびザイモラーゼより選択される1つ以上の酵素が使用され、そして、リゾスタフィンの力価が、約10単位/ml~約100単位/ml、N-アセチルロリゾチームの力価が約10,000単位/ml~約100,000単位/ml、N-アセチルムラミダーゼの力価が約100単位/ml~約1,000単位/ml、ザイモラーゼの力価が約100単位/ml~約500単位/mlであるものを使用する。

DNA露出工程にあっては、好ましくは、酵素を使用し、そして、この酵素を反応させる温度を約26℃~約59℃とし、また、この酵素を反応させる反応時間を約15分~約120分とする。

- DNA露出工程にあっては、好ましくは、さらに食細胞の形態を保持させる物質、特に、フェニルメチルスルフォニルフルオライドを、好ましくは、約 $10\,\mu\,\mathrm{mol/l}\sim$ 約 $10\,\mathrm{mmol/l}$ の濃度で使用する。 食細胞の形態を保持させる物質として、好ましくは、ジメチルスルフォキシドにて溶解された物質を使用する。
- 20 食細胞の形態を保持させる物質を、好ましくは、ジメチルスルフォキシド にて溶解された物質とし、そして、ジメチルスルフォキシドはDNA露出工 程で用いられる溶液において5%未満の濃度で調製する。

In situハイブリダイゼーションの工程にあっては、DNAとDNAプローブとが、界面活性剤、特に、アニオン界面活性剤、好ましくは、ドデシル 65 硫酸ナトリウム(SDS)の存在下でハイブリダイズされる。

In situハイブリダイゼーションの工程にあっては、好ましくは、ハイブリダイズ反応させる温度を約25℃~約50℃とし、そして、ハイブリダイズ反応させる反応時間を約30分~約900分とする。

固定工程の前に、得られた食細胞を支持担体上に支持させる工程をさらに 含み、なおかつ、その支持担体を、3-アミノプロピルトリエトキシシランを コートしたスライドグラスとする。

シグナルの検出の際に、シグナルと細胞のコントラストを明確にさせるた 5 めの色素を使用する。 また、臨床検体を、好ましくは、血液とする。

さらに、本発明によれば、食細胞を含む生体由来の臨床検体より食細胞を得、得られた食細胞を固定し、その細胞膜の透過性を亢進させる処理を施し、その食細胞中に存在すると予想される感染症原因微生物のDNAを露出させる処理を施し、該DNAにストリンジェントな条件下ハイブリダイゼーションできる検出用DNAプローブを用いて界面活性剤の存在下でin situハイブリダイゼーションを行い、得られたシグナルにより感染症原因微生物を検出および/または同定するためのキットであって、

- (1) DNA露出工程において使用される酵素が、少なくとも、リゾスタフィン、リゾチーム、N-アセチルムラミダーゼ、ザイモラーゼからなる群よ 15 り選択される1種以上の酵素であり、および
 - (2) 少なくとも1種以上の検出用DNAプローブを含む、

感染症原因微生物を検出および/または同定するためのキットも提供される。

また、本発明によれば、生体由来の食細胞を含む臨床検体中に含まれる食 20 細胞によって貪食された外来微生物の遺伝子をモニターする方法であって、 前出の感染症原因微生物の検出および/または同定方法におけるin situハイブリダイゼーション法を用いて該遺伝子を検出する工程を含み、該臨床検 体中の外来微生物の遺伝子をモニターする方法が提供される。

そして、敗血症または菌血症の診断方法であって、前出の感染症原因微生物の検出および/または同定方法におけるin situハイブリダイゼーション法を用いて原因微生物の候補となる微生物の遺伝子を同定する工程を含み、同定された結果に基づいて敗血症原因微生物または菌血症原因菌を特定する方法も、本願発明によって提供される。

図面の簡単な説明

第1図は、in situハイブリダイゼーションを(a) 界面活性剤(SDS)不使用下および(b) 界面活性剤(SDS)使用下で実施した結果を示す図である。

第2図は、種々の白血球細胞密度で固定した際の様子を示す図である。

第3図は、(a) Staphylococcus aureusおよびStaphylococcus epidermidis、(b) Pseudomonas aeruginosaおよびEscherichia coli、ならびに(c) Enterococcus faecalisに対する 溶菌酵素の活性を経時的に示す図である。

第4図は、(a) N-アセチルムラミダーゼ 300単位/ml、(b) リゾチーム 10,000単位/ml、および(c) リゾスタフィン 50単位/mlの溶菌活性に対する 10 DMSOの添加による濃度依存的効果を示す図である。

第 5 図は、白血球に形態劣化をもたらすプロテアーゼの作用を抑制するために用いるPMSFの添加効果を、(a) プロテアーゼ 0.2単位/mlのみ、(b) PMSF $1\,\mu$ mol/ml添加、(c) PMSF $10\,\mu$ mol/ml添加、(d) PMSF 0.1 mmol/ml添加、および(e) PMSF $1\,\mu$ mmol/ml添加について示す図である。

15 第6図は、本発明に従って調製した貪食サンプルにおいて、食細胞が細菌 を貪食して形態変化を起こしていることを示す図である。

第7図は、貪食サンプルに対する酵素処理の効果を示す図で、(a) 酵素処理前のStaphylococcus aureusの貪食サンプル、(b) 酵素処理前のEnterococcus faecalisの貪食サンプル、(c) サンプル(a)を酵素処理した後の様子、

20 および(d) サンプル(b)を酵素処理した後の様子を示す図である。

第8図は、in situハイブリダイゼーションでの至適プローブ濃度の検討のために用いた貪食サンプル塗抹用のスライドグラスを示す概略図である。

第9図は、in situハイブリダイゼーションでの至適温度の検討のために 用いた貪食サンプル塗抹用のスライドグラスを示す概略図である。

25 第10図は、(a) SAプローブおよび(b) PAプローブのジゴキシゲニンラベル 化で得られる検出用プローブの鎖長とラベルによるシグナル強度を示すサザンブロット(上段) および電気泳動(下段)の図である。

第11図は、Escherichia coli貪食サンプルに関するin situハイブリダイ

ができる。

ゼーションにおいて、検出用プローブとして、(a) EC-24、(b) EC-34、(c) EC-39、および(d) プローブ(a) ~ (c) の混合プローブ(MIX) を用いた場合に認められたシグナル検出の結果を示す図である。

5 発明を実施するための最良の形態

本実施態様において使用することができる臨床検体としては、生体由来の 食細胞が含まれる臨床検体であればいずれでも良く、例えば、血液、組織液、 リンパ液、脳脊髄液、膿、粘液、鼻水、痰などの体液が挙げられる。 また、 糖尿病、腎障害、肝障害などの病態によっては、尿、腹水、透析排液など、 10 その他、鼻腔、気管支、皮膚、各種臓器、骨などを洗浄した後の洗浄液にも 生体由来の食細胞が含有されるため、これらも本発明の臨床検体とすること

加えて、皮膚、肺、腎、粘膜などの組織も本発明の臨床検体として用いる ことができる。 これは、食細胞の一つであるマクロファージには、単球、

15 肺胞マクロファージ、腹腔マクロファージ、固定マクロファージ、遊離マクロファージ、ハンゼマンマクロファージ、炎症性マクロファージ、肝クッパー細胞、脳ミクログリア細胞などの様々な形態に変化するため、血液のみならず、これらを含む組織も本発明の臨床検体として用いることができる。 例えば、腎炎が疑われる患者より腎生検により腎組織を採取し、トリプシン

20 等の酵素を用いることにより細胞を剥離して該組織中に存在する食細胞を 得、得られた食細胞を用いることによって、腎炎の原因微生物を検出および 同定することができる。

本明細書で使用する「食細胞」の語は、外来微生物をはじめとする異物を自身の細胞内に取り込むことのできる細胞であれば特に限定されるものでは なく、例えば、マクロファージ、単球、好中球、好酸球などが挙げられる。 また、U937細胞、HL60細胞などの食細胞系も使用できる。 感染症の原因 ともなる外来微生物としては、食細胞によって食食される微生物であれば特に制限はなく、細菌、真菌、ウィルス、原虫、寄生虫等が含まれる。 細菌

としては、例えば、ブドウ球菌、緑膿菌、腸球菌、大腸菌、連鎖球菌、肺炎 球菌、結核菌、ヘリコバクター・ピロリ菌、リステリア、エルシニア、ブル セラ等が挙げられる。 真菌としては、例えば、カンジダ、アスペルギルス、 アクチノミセス、コクシジオイデス、ブラスミセス等が挙げられる。 ウィ ルスとしては、例えば、インフルエンザウイルス、ポリオウイルス、ヘルペ 5 スウイルス、肝炎ウイルス、エイズウイルス等が挙げられる。 原虫として は、例えば、アメーバ赤痢、膣トリコモナス、マラリア、トキソプラズマ等 が挙げられる。 寄生虫としては、トリパノゾーマ等が挙げられる。 敗血症または菌血症の原因菌としては、例えば、グラム陽性菌であるスタフ 10 イロコッカス属(Staphylococcus aureus、Staphylococcus epidermidis)、 エンテロコッカス属(Enterococcus faecalis、Enterococcus faecium、Stre ptococcus pneumoniae, Streptococcus pyogenes, Streptociccus agalacti ae)、グラム陰性菌である大腸菌 (Escherichia coli)、エンテロバクター (Enterobacter cloacae)、クレブシエラ(Klebsiella pneumoniae) 等の大腸 15 菌類縁腸内細菌群(Klebsiella oxytoca、Serratia marcesens、Proteus vulgaris、Citrobacter freundii)、好気性桿菌であるシュードモナス属 (Pseudomonas aeruginosa)、嫌気性菌であるクロストリジウム菌 (Clostri dium perfringens)、バクテロイデス菌(Bacteroides fragilis)等が挙げ まれに、Acinetobacter calcoaceticus、Aeromonas hydrophilia、 20 Flavobacterium meningosepticum、Bacillus cereus等が、原因菌となるこ

臨床検体からの食細胞(白血球)画分の取得には、公知の方法を使用することができる。 例えば、ヘパリン加静脈血約5ml(白血球数の少ない場合には10ml)を採取し、この血液と血液分離試薬(塩化ナトリウム225mg、デキストラン(分子量 200,000~300,000)1.5g、滅菌精製水にて全量25mlに調製したもの)とを4:1程度の割合で混和した後、約10℃~約40℃で、約15分~約120分間、好ましくは、約37℃で、約30分間静置することにより、白血球画分(上層)を取得することができる。

ともある。

このようにして得た白血球画分を、0 \mathbb{C} \mathbb{C}

5 白血球のペレットに滅菌精製水1mlを加えて懸濁し、直ちに過剰量のPBS(塩化ナトリウム18.24g、リン酸一水素ナトリウム12水和物6.012g、リン酸二水素ナトリウム2水和物1.123g、滅菌精製水にて全量120mlにしたもの

(PBS原液;以下、単に「PBS原液」と称する)を滅菌精製水にて20倍に希釈したもの;以下、単に「PBS」と称する)を加えて等張化した後、再度4℃10 下、約140×g~約180×gで、約10分間遠心分離すれば良い。 また、上記遠心分離を行わなくとも、貪食細胞が本来保有する接着能力を利用して、後述するスライドグラスに接着させることもできる。

白血球を固定する方法として、例えば、カルノア固定を行うことができる。 具体的には、白血球を支持できる担体(支持担体)に白血球を支持せしめ、

15 カルノア固定液(エタノール:クロロホルム:酢酸=6:3:1の容量比で 混合した液)に約20分間程度浸した後、約50%~約90%、好ましくは、約75 %エタノール液に約5分間浸し、完全に風乾する。

前記支持担体は、不溶性素材のものが好ましく、例えば、ガラス、金属、 合成樹脂(ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、

20 ポリエステル、ポリアクリル酸エステル、ナイロン、ポリアセタール、フッ 素樹脂など)、多糖類(セルロース、アガロースなど)が好ましい。

不溶性支持担体の形状としては、例えば、板状、トレイ状、球状、繊維状、棒状、盤状、容器状、セル、試験管等の種々の形状を用いることができる。

特に、本発明の実施態様として好ましい支持担体は、スライドグラスを使 25 用するのが好ましい。 このようなスライドグラスとして、例えば、日本エアーブラウン社製のスライドグラス (商品番号MS311BL) が挙げられる。 このスライドグラス (商品番号MS311BL) には、直径 5 mmの円形ウェルが14 個設けられている。 また、実際に使用する際には、細胞の接着性を上げる

ため、3-アミノプロピルトリエトキシシラン(APS、SIGMA社)をスライドグラスにコートしたAPSコートスライドグラスを使用するのが好ましい。 その他、ポリ-L-リジンやゼラチンをコートしたスライドグラスも使用することができる。

- 5 APSコートスライドグラスを作製するには、まず、スライドホルダーにスライドグラス(商品番号MS311BL)を固定した後、希釈した中性洗剤で30分以上浸して洗浄し、水道水で洗剤を十分に取り除き、次に、スライドグラスを精製水にて洗浄し、高温(100℃以上)で十分に乾燥させた後、室温で放置冷却する。 その後、スライドグラスを2%APS含有アセトンに1分間浸
- 10 し、直ちにアセトン及び滅菌精製水で順次軽く洗浄した後に、風乾する。 さらに再度、スライドグラスを約1~約10%APS含有アセトンに1分間浸し、 直ちにアセトンおよび滅菌精製水で順次軽く洗浄した後に、風乾する操作を 行った後、約20℃~約60℃、好ましくは約42℃で乾燥させることにより作製 することができる。
- 自血球をAPSコートスライドグラスに支持させる際には、各ウェルに白血球が単層に広がるように塗抹し風乾するのが好ましい。 固定化する食細胞の密度(x個/ml)が、約 5×10^6 個/ml < x 個/ml < 約 1×10^8 個/ml、好ましくは、約 1×10^7 個/ml $\le x$ 個/ml \le 約 1×10^7 個/ml に調製されたものを使用することが好ましい。
- また、このような1ml当たりの食細胞の密度の変化に対応して、APSコートスライドグラスに固定される1ウェル当たりの白血球の細胞数(y個/ウェル(直径5mm))は、約2.5×10⁴個/ウェル<y個/ウェル<約5×10⁵個/ウェル、好ましくは、約5×10⁴個/ウェル≦ y個/ウェル≦約2.5×10⁵個/ウェルとなるように調製するのが好ましい。 具体的には、白血球画分を、4℃にて、約140×g~約180×gで、約10分間遠心分離することによって得た白血球ペレットに、少量のPBSを加えて懸濁し、血球計算盤を用いて白血球数を計測する。 細胞数が、約5×10⁴個/ウェル~約2.5×10⁵個/ウェルとな

るようにPBSで調製した白血球懸濁液5μ1を、APSコートスライドグラスの

各ウェルに白血球が単層に広がるように塗抹し、完全に風乾することにより 調製することができる。

食細胞膜の透過性を亢進させる処理として、約3~約30分間PBSに浸し、 その後、酵素前処理試薬(サポニン1.25g、t-オクチルフェノキシポリエト 5 キシエタノール(比重1.068~1.075(20/4℃), pH(5 w/v%)5.5~7.5)1.25ml、 PBS原液25mlを混合し、滅菌精製水にて全量50mlに調製したもの)を、滅菌 精製水で約2~約50倍に希釈した溶液に浸し、振とう機で約3~約30分間浸 透する方法を用いることができる。

食細胞中に存在する感染症原因菌のDNAを露出させる処理として、スラ10 イドグラス1枚につき酵素試薬(N-アセチルムラミダーゼ、リゾチームおよび/またはリゾスタフィン)に酵素試薬溶解液(フェニルメチルスルフォニルフルオライド(PMSF)含有ジメチルスルフォキシド(DMSO)をPBSで約100倍希釈して調製したもの)を1ml加えて酵素試液を調製した後、約20℃~約60℃、好ましくは、約37℃~約42℃の湿潤箱内で、この酵素試液1mlを白血球塗抹15 部位に滴下し、約10~約60分間静置する。 その後、0.2mol/l塩酸含有PBS(PBS原液に塩酸を加え、滅菌精製水にて20倍希釈し、塩酸の終濃度を0.2mol/lに調製したもの)に浸し、そのまま振とう機上で3~30分間浸透することによって目的を達成できる。 DMSOは5%以上の濃度でリゾチームおよびリゾスタフィンの活性を低下させる可能性があるため、5%未満の濃度で20使用するのが好ましい。 食細胞の形態を保持させる物質としてのPMSF以外に他の公知のプロテアーゼ阻害剤、例えば、トシルリジンクロロメチルケトン(TLCK)およびそれらの混合物などを用いることもできる。 その際には、適宜DMSOなどの溶解剤を変更すれば良い。

酵素試薬として用いる各酵素の好ましい力価範囲は、Staphylococcus aur 25 eusの溶菌においては、リゾスタフィンの力価は1単位/mlで十分効果を示すが、Staphylococcus epidermidisの溶菌においては、10単位/ml以上のリゾスタフィンカ価が必要であった。 ゆえに、リゾスタフィンの至適力価は、約1単位/ml~約1,000単位/ml、好ましくは、約10単位/ml~約100単位/mlに

WO 02/099133 PCT/JP02/05107

設定するのが良い。 また、Enterococcus faecalisの溶菌においては、リゾチームの力価を約10,000単位/mlで固定したとき、N-アセチルムラミダーゼ力価が約10単位/ml以下では溶菌されなかった。 リゾチームについては、N-アセチルムラミダーゼ力価を100単位/mlに固定したとき、リゾチーム力価が1,000単位/ml以下では溶菌されなかった。 ゆえに、N-アセチルムラミダーゼの至適力価は、約10単位/ml~約10,000単位/ml、好ましくは、約100単位/ml~約1,000単位/ml、リゾチームの至適力価は、約1,000単位/ml~約1,000単位/ml、好ましくは、約10,000単位/ml~約1,000単位/ml、好ましくは、約10,000単位/ml~約100,000単位/mlに設定すると良い。 また、原因菌がCandida albicans等の真菌である場合には、

10 ザイモラーゼ約50単位/ml〜約500単位/ml、好ましくは、約100単位/ml〜約500単位/mlの力価範囲にすると良い。 また、ザイモラーゼを使用する際には、特に、PMSFまたは公知のプロテアーゼ阻害剤を使用するのが好ましい。

また、グラム陽性菌とグラム陰性菌の成分の違い、すなわち、ペプチドグリカンまたはリポポリサッカライドの違いにより、適宜使用酵素を選択することができる。 特に、グラム陽性菌、グラム陰性菌にかかわらず、より効果的に溶菌させるには、2種類以上の酵素を併用すればよい。 本発明においては、リゾチーム、リゾスタフィンおよびN-アセチルムラミダーゼの3種を混合したものを使用することにより、単独の酵素によった場合と比較して溶菌活性が高まることが明らかとなった。

20 酵素処理温度は、Staphylococcus aureusは、好ましくは約4℃~約60℃、Staphylococcus epidermidisは、約25℃より高く、好ましくは約37℃以上、また、Enterococcus faecalisでは、約25℃より高く約60℃未満、好ましくは約37℃~約42℃とすれば良い。 ゆえに、至適酵素処理温度を、約37℃~約42℃に設定するのが最も好ましい。 また、3種類の菌に対する共通の範25 囲の内、限界とされる温度は約26℃~約59℃と予想できる。

また、酵素処理時間は、Staphylococcus aureus、Staphylococcus epider midis、Enterococcus faecalisのいずれの貪食サンプルでも酵素処理時間20 分以上(0分および10分においては不適であった)であり、また、白血球中

12

に菌体は確認されなかったことから、少なくとも約15分以上、好ましくは約20分以上、さらに至適酵素処理時間を約30分~約60分とするのが好ましい。 また、酵素処理時間を約15分~約120分としてもよい。

また、N-アセチルムラミダーゼとは、Enterococcus faecalisの熱処理乾燥粉末とN-アセチルムラミダーゼを、 $2 \,\mathrm{nmo}\,\mathrm{I}/\mathrm{I}$ 塩化マグネシウムを含む $5 \,\mathrm{mmo}\,\mathrm{I}/\mathrm{I}$ トリス塩酸緩衝液 (pH 6.0) 中で、 $37\,\mathrm{C}$ で、 $5\,\mathrm{O}\,\mathrm{I}$ 同反応させた場合、 $600\,\mathrm{nm}\,\mathrm{O}\,\mathrm{W}$ 皮を下げる酵素である。 また、Streptococcus salivarius (IFO 3350)の熱処理細胞を、 $37\,\mathrm{C}$ 、pH 7.0で $1\,\mathrm{O}\,\mathrm{I}$ 同じてはない。 $5\,\mathrm{I}$ ではないた場合、 $5\,\mathrm{I}$ ではないた場合、 $5\,\mathrm{I}$ ではないが好ましい。

- 10 リゾチームは、Micrococcus luteusとリゾチームをPBS内で、37℃で、5 分間反応させた場合、600nmの吸光度を下げる酵素である。 また、Microco ccus luteusを、35℃、pH 6.2で1分間に540nmの吸収を0.001下げるときの 酵素活性を1単位とした場合、50,000単位/mg以上のものを使用するのが好 ましい。
- 15 リゾスタフィンは、Staphylococcus epidermidisとリゾスタフィンをPBS 内にて37℃で5分間反応させた場合、600nmの吸光度を下げる酵素である。また、Staphylococcus aureusを、37℃、pH 7.5で、10分間に620nmの吸収を 0.240から0.125に下げるときの酵素活性を1単位とした場合、500単位/mg以上のものを使用するのが好ましい。
- 20 ザイモラーゼ(商品名:ザイモリエイス、生化学工業)とは、Arthrobact er lutesulの培養液から調製された酵素であり、酵母生細胞の細胞壁に対して強い溶解活性を有している。 ザイモラーゼに含まれる細胞壁溶解に関わる必須酵素は β -1,3-グルカン・ラミナリペンタオヒドロラーゼ(lanimaripentaohydrolase)であり、 β -1,3-結合のグルコースポリマーに作用して、
- 25 主生産物としてラミナリペンタオースを生成する。 ザイモリエイス-100T は硫安分画により精製され、さらにアフィニティークロマトグラフィーにより精製され (Kitamura, K. et al.; J. Ferment. Technol., 60, 257, 1982)、100,000単位/gの活性を有している。 しかしながら、この酵素の

活性は、基質となる酵母の種類、培養条件および生育時期により変化するこ とが知られている (Kitamura, K. et al. ; J. Gen. Appl. Microbiol., 20, 323, 1974, Kitamura, K. et al.; Agric. Biol. Chem., 45, 1761, 1981, Kitamura, K. et al.; Agric. Biol. Chem., 46, 553, 1982). 5 エイス-100Tには、 β -1,3-グルカナーゼを約1,0×10⁷単位/g、プロテアー ゼを約1.7×10⁴単位/g、マンナーゼを約6.0×10⁴単位/g含み、DNaseおよ びRNaseは認められない (Kitamura, K. et al. ; J. Gen. Appl. Microbiol., 18, 57, 1972)。 また、ザイモリエイスの至適pHは、約5.5~約8.5、 好ましくは、約6.5~約7.5であり、至適温度は、約25 \mathbb{C} ~約55 \mathbb{C} 、好ましく 10 は約35℃~約45℃である。 さらに、酵母(対数増殖期細胞)に対する溶菌 スペクトラム (属名) は、Ashbya、Candida、Debaryomyces、Eremothecium、 Endomyces, Hansenia, Hanseniaspora, Kloekera, Kluyveromyces, Lipomy ces, Helschkowia, Pichia, Pullularia, Torulopsis, Saccharomyces, Saccharomycopsis、Saccharomycodes、Schwanniomycesなどが挙げられる。 15 特に、カンジダ属として、カンジダ・アルビカンス(Candida albicans)、 カンジダ・トロピカリス(Candida tropicalis)、カンジダ・パラシロシス (Candida parasilosis)、カンジダ・ガラクタ(Candida galacta)、カンジダ ・ギリエルモンジ(Candida guilliermondii)、カンジダ・クルセイ(Candida krusei)、クリプトコッカス・ネオフォーマンス(Cryptococcus neoformans) 20 等が挙げられる。 本酵素の賦活剤として、SH化合物、例えば、システイン、 2-メルカプトエタノール、ジチオスレイトールなどを用いることができる。 これらの属に属する菌も、本発明に使用できる。 この酵素は、ビール酵 母懸濁液を基質として、約25℃で、2時間の内に、反応液(酵素:0.05~ 0.1mg/ml溶液 1 ml、基質:ビール酵母懸濁液(2 mg乾燥重量/ml) 3 ml、

25 緩衝液: M/15リン酸緩衝液 (pH 7.5) 5 ml、滅菌精製水 1 mlで全量10mlに調製したもの)のA800が約30%減少するために必要な酵素活性を1単位とする。 ザイモリエイス-100Tは、100,000単位/gの活性を有している。

酵素試薬溶解液として用いるPMSF(プロテアーゼから白血球を保護してそ

の形態を保持させるために添加)の濃度として、10μmol/l 以上の濃度で効果が認められ、0.1mmol/l 以上のPMSF濃度では、白血球の形態の劣化が完全に抑制されていたことから、約10μmol/l~約10mmol/l、好ましくは約0.1 mmol/l~約1 mmol/lの範囲であることが好ましい。 また、DMSOの濃度として、5%未満、好ましくは2%以下、さらには1%程度の濃度であることが好ましい。 ゆえに、酵素試薬溶解液は、0.1mol/l フェニルメチルスルフォニルフルオライド(PMSF)含有ジメチルスルフォキシド(DMSO)をPBSで100~1,000倍希釈して調製したものであることが好ましい。

感染症原因菌のDNAを露出させる工程の後に、細胞膜タンパク質のアセ 5ル化の工程を挿入しても良い。 具体的には、アセチル化試薬(トリエタ ノールアミン7.46g、塩酸適量、滅菌精製水適量にて全量50mlとしたもの)に無水酢酸を加え、滅菌精製水で約2倍~約50倍希釈、好ましくは約10倍希 釈し、無水酢酸の終濃度を0.1~3.0%、好ましくは0.8%に調製したアセチレーション試薬にスライドグラスを浸し、振とう機上で5~30分間振とうす ることにより行うことができる。 その後、75%、85%、98%エタノールに、順次、2~5分間ずつ浸し、完全に風乾させる。

また、細胞膜タンパク質のアセチル化工程の後に、感染症原因菌のDNAをアルカリ処理することにより一本鎖DNAとする工程を挿入することもできる。 具体的には、スライドグラスを、約10mmol/l~約300mmol/l、好ましくは、約70mmol/l水酸化ナトリウム含有PBS(PBS原液に水酸化ナトリウムを加え、滅菌精製水で20倍希釈し、水酸化ナトリウムの終濃度を70mmol/lに調製したもの)に約2~約5分間浸すことにより行うことができる。 その後、75%、85%、98%エタノールに、順次、2~5分間ずつ浸し、完全に風乾させる。

25 露出された感染症原因菌のDNAとストリンジェントな条件下でハイブリ ダイゼーションできる検出用DNAプローブを用いてin situハイブリダイ ゼーションを行うには、例えば、プローブ希釈液にて調製した検出用DNA プローブを含有する液 (プローブ液)を塗抹部位に塗布し、約25℃~約50℃、 好ましくは、約37℃~約42℃の湿潤箱内で約1~約3時間、好ましくは、約 2時間静置させる。

その後、ハイブリダイゼーション洗浄液(ハイブリダイゼーション原液(塩化ナトリウム13.15g、クエン酸三ナトリウム2水和物6.615g、滅菌精製水にて全量75mlに調製したもの:以下、単に「ハイブリダイゼーション原液」と称する)を、ハイブリダイゼーション原液:滅菌精製水:ホルムアミド=5:45:50の割合で混合して調製したもの)を3つの染色ビンに用意し、順次、約35~約45℃、好ましくは、約42℃で10分間ずつ浸す。 その後、PBSに浸し、そのまま振とう機上で約5~約30分間振とうさせる。 詳細には、

10 プローブ希釈液には、サケ精子DNA $600\,\mu$ l、 $100\times$ デンハート溶液 $50\,\mu$ l、ハイブリダイゼーション原液 $500\,\mu$ l、ホルムアミド $2250\,\mu$ l、50%硫酸デキストラン $1000\,\mu$ lが含まれる。 プローブ液は各検出用DNAプローブ15ngを含むのが好ましく、プローブ希釈液にて全量 $50\,\mu$ lとするのが良い。

SA、SE、PA、EF、EKのプローブ濃度は、約0.6ng/ μ 1~約1.8ng/ μ 1、好ましくは約0.6ng/ μ 1~約1.2ng/ μ 1とするのが良い。 また、0.06ng/ μ 1においては不適であり、0.6ng/ μ 1においては適であったことから、少なくとも0.1ng/ μ 1以上とするのが好ましい。 さらに、2.4ng/ μ 1においては不適であり、1.8ng/ μ 1においては適であったことから、2.2ng/ μ 1以下とするのが好ましい。 また、陽性コントロールおよび陰性コントロールの至適濃度を、

20 それぞれ0.4~2.0ng/ μ lおよび0.6~2.0ng/ μ l、好ましくは共通して0.6~1.0ng/ μ lとするのが良い。

また、ハイブリダイゼーションを行う時間は、少なくとも30分以上、好ましくは60分以上、より好ましくは90分以上とするのが好ましい。 さらに好ましい至適ハイブリダイゼーション時間は、約120分~約900分に設定すると 25 良い。

また、in situハイブリダイゼーションの工程においてドデシル硫酸ナトリウム(SDS)などの界面活性剤を使用するのが、検出感度を高めることができる点から好ましい。 SDSの濃度は、1%以下が好ましく、より好ましく

は約0.1%~約0.5%、さらに好ましくは約0.25%とする。 SDSは、ハイブ リダイゼーションの際に用いる溶液に添加されていればよく、プローブ希釈 液またはプローブ液に事前に混合したものを用いてもよい。

さらに、検出用DNAプローブを、約350~約600塩基長、好ましくは、約 350~約550塩基長の鎖長を有する1種以上のDNAプローブとすることで、食細胞内にプローブを円滑に導入し、取り込まれている外来微生物の遺伝子への確実な接触が許容されるので好ましい。 対象となるプローブの塩基長(塩基対の数)が、必ず上記塩基長範囲に収まらなければならないことを意味するものではなく、プローブの塩基長の分布に、上記範囲の塩基長が含まれていればよいこととする。 これらプローブは、1種で用いても数種(1種以上)で用いても良い。 1種以上のプローブとは、一菌種に対しハイブリダイズできる複数種のプローブであっても良く、また、一菌種に対してプローブは1つであるが、菌種が複数種存在するためにプローブの種類が複数種となっていても良く、プローブの種類が1種以上であれば特に限定されな15 い。

これらプローブは、食細胞自体といかようにもハイブリダイズしない配列を有するDNA断片を含むものとすることが好ましく、また他の種の菌に由来する遺伝子と交差ハイブリダイズするものであってはならない。 例えば、サブトラクション法を用いれば、短時間で特異プローブを作成することがで20 きる。 これらプローブは、フルオレセインイソチオシアネート(FITC)、ビオチン、ジゴキシゲニン(ジゴキシゲニン(DIG)-11-dUTP)等の非放射性同位体標識用物質を用い、定法のニックトランスレーションに従って、調製およびラベルするとよい。 プローブの鎖長は、ニックトランスレーション反応において添加するDNase I とDNAポリメラーゼ I の量比を変化させることにより、最も効率よくラベルできるように制御することができる。 例えば、DNAプローブ(SA-24) 2 μgを効率よくラベル化し、また、外来微生物 DNAと効率よくin situハイブリダイゼーションできるプローブ鎖長(約350~約600の塩基長)に調節するには、全量100μ1の反応液中に、10U/μ1

のDNAポリメラーゼ I の 2μ lに対し、全量 100μ l中に約10~約350 mU、好 ましくは、約25~約200mU、より好ましくは約50~約150mUとなるように調製 されたDNase I の 6 μ lが存在するようにすればよい。 このとき、各酵素の 容量および反応液全量などは、上記必須至適反応条件の比率が一定である限 り、適宜変更しても良い。 また、換言すれば、全量100μ1中にDNAポリ 5 メラーゼ I を20Uに対し、DNase I を約10~約350mU、好ましくは、約25~約 200mU、より好ましくは、約50~約150mUに調製すればよい。 さらに換言す れば、1単位のDNAポリメラーゼ I に対し、約0.5/1,000~約17.5/1,000、 好ましくは、約1.25/1,000~約10/1,000、より好ましくは、約2.5/1,000~ 10 約7.5/1,000単位のDNase I を用いてニックトランスレーション反応を行うと 良い。 また、DNA1 μ gに対してみれば、DNAポリメラーゼ I を約10 U、DNase I を約5~約175mU、好ましくは、約12.5~約100mU、より好まし くは、約25~約75mUに調製すれば良い。 他のプローブについては、上記至 適反応条件を参考にしてDNA量、DNAポリメラーゼIおよびDNaseIの 15 至適反応条件を決定することができ、また、効率よくラベル化し、外来微生 物DNAと効率よくin situハイブリダイゼーションできるプローブ鎖長(約 350~約600の塩基長) に調節することができる。

In situハイブリダイゼーションを行う際のストリンジェントな条件とは、 例えば、ホルムアミドが約30%~約60%、好ましくは、約50%の存在下、約 20 30~約50℃、好ましくは、約38~約42℃でインキュベートし、その後、洗浄 する条件である。

In situハイブリダイゼーションを行った後、ブロッキングの操作を行っても良い。 具体的には、湿潤箱内でスライドグラス1枚につきブロッキング試薬(ウサギ正常血清2ml、PBS原液0.5ml、滅菌精製水にて全量10mlに調25 製したもの)1mlを塗抹部位に滴下し、15~60分間静置する。 その後、ブロッキング試薬を除去する。

菌由来の遺伝子(ゲノムDNAまたはRNA)とハイブリダイズした結果に生じる シグナルの検出のためには、定法の抗原-抗体反応等を利用した呈色反応を 行うとよい。 すなわち、ハイブリダイゼーションを終えた試料を充分に洗浄した後に、ブロッキング操作を行い、次いで、抗FITC抗体、抗ジゴキシゲニン抗体などの接合物、例えば、アルカリホスファターゼ接合物を用いて処理し、次いで、接合物の発色系にてシグナルを発色し、ハイブリダイゼーションの状況を確認する。 例えば、プローブとして前記のジゴキシゲニン-11-dUTPでラベルしたものを用いた場合、抗ジゴキシゲニンーアルカリホスファターゼ接合物を用い、一般に使用されるアルカリホスファターゼに対する基質(ニトロブルーテトラゾリウムおよび5-ブロモ-4-クロロ-3-インドリルホスフェート等)を利用して検出すればよい。 次いで、呈色反応を行った後に洗浄した塗沫標本は、ナフトールブラック、Fast Green (20mg/50ml、Wako Chemicals社製)等で対比染色を行い、光学顕微鏡によって細胞内シグナルが観察される。

詳細には、ハイブリダイゼーションによるシグナルを得るには、例えば、 検出用DNAプローブとしてジゴキシゲニン標識DNAプローブを用いる場 15 合には、標識抗体(アルカリフォスファターゼ標識抗ジゴキシゲニン抗体溶 液1.05単位、バッファーA(トリエタノールアミン746mg、塩化ナトリウム 17.5mg、塩化マグネシウム6水和物20.3mg、塩化亜鉛1.36mg、ウシ血清アル ブミン1000mg、塩酸適量、滅菌精製水適量にて全量100mlに調製したもの) 12.6μ lにて全量を 14μ lに調製したもの)を標識抗体希釈液(トリス-(ヒド 20 ロキシメチル)-アミノメタン8.48mg、塩化ナトリウム6.14mg、塩酸適量、減 菌精製水適量にて全量0.7mlに調製したもの)で10~200倍希釈、好ましくは 50倍希釈した標識抗体液を調製し、この標識抗体液を塗抹部位に10μ1ずつ 滴下し、15~60分間静置すると良い。 その後、標識抗体洗浄液(ポリソル ベート20 1 ml、PBS原液50ml、滅菌精製水にて全量100mlに調製したもの) 25 を2~50倍、好ましくは、10倍に希釈した溶液に浸し、そのまま振とう機上 で5~30分間浸透する。 この操作を2回繰り返した後、発色前処理液1(ト リス-(ヒドロキシメチル)-アミノメタン6.06g、塩化ナトリウム2.92g、塩 酸適量、滅菌精製水適量にて全量50mlに調製したもの)と発色前処理液2(塩 化マグネシウム 6 水和物5.08g、滅菌精製水にて全量50mlに調製したもの)を等量混合し、滅菌精製水で 5 倍程度に希釈した発色前処理液に浸し、そのまま振とう機上で 5~30分間振とうすれば良い。 その後、スライドグラス1 枚につき発色試薬(ニトロブルーテトラゾリウム(NBT)/5-ブロモ-4-クロロ-3-インドリルフォスフェイト(BCIP))1 mlを0.2 μmシリンジトップフィルターを装着したディスポーザブルシリンジを用いてろ過しながら、スライドグラスの塗抹部位に滴下し、湿潤箱内で約10℃~約45℃、好ましくは、約37℃で、約15~約60分間遮光静置する。 その後、発色試薬洗浄液(トリス-(ヒドロキシメチル)-アミノメタン606mg、エチレンジアミン四酢酸ニナトリウム2水和物186mg、塩酸適量、滅菌精製水適量にて全量50mlに調製したもの)を約2~約50倍、好ましくは、約10倍に希釈した溶液に約2~約10分間浸し、風乾した後、対比染色液(ファストグリーンFCF(食用緑色3号)50mg、滅菌精製水適量にて全量50mlに調製したもの)を2~50倍、好ましくは10倍に希

15 その後、前記発色試薬洗浄液を約2~約50倍、好ましくは約10倍に希釈した。 溶液に再度浸して余分の前記対比染色液を洗い流し、完全に風乾すると良い。 また、上記発色試薬は、別々に調製したものであっても良い。

釈した溶液および、約0.1~約5%、好ましくは約1%の酢酸溶液に浸す。

アルカリフォスファターゼ標識抗ジゴキシゲニン抗体溶液は、ブロッティング用メンブレンにジゴキシゲニンラベルしたDNAの1ngをブロットし、

20 ブロッキング後、10,000倍に希釈したアルカリフォスファターゼ標識抗ジゴキシゲニン抗体溶液で処理し、発色基質(NBT/BCIP)を反応させるとDNAのブロッティング部位が発色し、ジゴキシゲニンラベルしていないDNAで同様の操作をしても発色は認められないものを使用するのが好ましい。 また、抗ジゴキシゲニン抗体は、ヒツジ由来のものが好ましい。 詳細には、免疫したヒツジ血清より、イオン交換クロマトグラフィーと抗体カラムクロマトグラフィーで精製すると良い。

発色試薬 (NBT/BCIP溶液、pH 9.0~10.0) は、ニトロテトラゾリウムブルー (NBT) 3.3mg、5-ブロモ-4-クロロ-3-インドリルフォスフェイト (BCIP) 1.65

mg、N, N-ジメチルホルムアミド99 μ g、トリス(ヒドロキシメチル)アミノメタン121mg、塩酸適量、塩化ナトリウム58.4mg、塩化マグネシウム6水和物101.6mg、滅菌精製水適量にて全量10m1に調製したものであるのが好ましい。

この発色試薬としては、アルカリフォスファターゼをラベルしたタンパク 質をブロッティング用メンブレンにブロットし、当該発色試薬でメンブレン を遮光室温で処理すると、ブロット部位に暗紫色のシグナルが現れるものを 使用するのが好ましい。

上記した対比染色を行う場合に、シグナルと細胞のコントラストをさらに明確にさせるため、食用色素、例えば、黄色4号(タートラジン)を使用する10 ことができる。 その理由は、基質によって紫色が呈色し、ナフトールブラックによって青色に呈色することから、類似色のために対比染色しづらいことが挙げられる。 この方法を本発明に応用したところ、対比染色を行う際に有用であることが判明した。 食用色素を用いるという手法は、これまでに無かった方法である。

15 ジゴキシゲニンを標識化する方法として、ニックトランスレーション法を 用いることができる。 その他に、PCR法、ランダムプライマーラベリング 法、in vitroトランスクリプションラベリング法、ターミナルトランスフェ ラーゼラベリング法などを使用することができる。

判定は、光学顕微鏡で鏡検(×1,000)するときに、上述した対比染色液に 20 より染まった単一ウェル内の細胞に於いて、青紫色の発色が1つでも認められた場合に陽性と判定するのがよい。

また、検出用プローブの作成方法として、日本国特許第2558420号、特許第2798499号、特許第2965543号、特許第2965544号および特許第3026789号などを参照することができる。

25 例えば、ワーキングセルバンクから釣菌して培養するには、ワーキングセルバンク (SA-24)を滅菌シャーレに作製した50 μg/mlアンピシリン含有のL-ブロス固形培地に、白金耳または使い捨てプラスチックループ等で画線塗抹する (釣菌)。

一晩培養した後に、シングルコロニーを採取し、50 µg/mlアンピシリン含有のL-ブロス培地 5 mlに植菌して、37℃で終夜振とう培養する(前培養)。 前記培地400ml入り培養用フラスコに、前培養液を2.5mlずつ植菌して、約37℃で終夜振とう培養する(本培養)。

次に、SA-24プラスミドDNAを抽出するために、本培養した培養液を、4℃、4,000×gで10分間遠心分離して集菌する。 培養上清を取り除き、STE(10 mmo1/1 トリス塩酸(pH 8.0)、1 mmo1/1 エチレンジアミン-四酢酸2ナトリウム塩(EDTA)、0.1mmo1/1 塩化ナトリウム)を20m1加えて菌体を再懸濁し、4℃、4,000×gで10分間遠心分離して集菌する。 10mg/m1リゾチームを含む溶液-1(50mmo1/1 グルコース、25mmo1/1 トリス塩酸(pH 8.0)、10mmo1/1 EDTA) 5 m1を加え、菌体を懸濁して室温で5分間放置する。 溶液-2(0.2mmo1/1 水酸化ナトリウム、1%ドデシル硫酸ナトリウム(SDS))10m1を加え、転倒混和して氷上で10分間放置する。 氷冷した溶液-3(3 mo1/1 酢酸カリウム(pH 4.8)) 7.5 m1を加え、転倒混和して氷上で10分間放置する。

高速冷却遠心機により、4℃、45,000×gで30分間遠心分離した後、上清を回収し、室温になるまで放置する。 放置した後、0.6容量(約24ml)のイソプロパノールを加え、転倒混和して室温で15分以上放置する。 高速冷却遠心機により、25℃、28,000×gで30分間遠心分離した後、上清を捨て、70%エタノールでペレットを洗浄して風乾する。 風乾後、TE(10mmol/lトリス塩酸(pH 8.0)、1mmol/l EDTA)を8ml加えて溶解する(プラスミドDNAの抽出)。

次に、SA-24含有プラスミドDNAを精製するために、得られたプラスミドDNAに、10mg/mlエチジウムブロマイド800μ1および塩化セシウム8.6gを加え、転倒混和して溶解させる。 その溶解液を超遠心用チューブに入れ、キャップまたはシールをする。 垂直型ローターにより、20℃、500,000×gで5時間超遠心した後、紫外線ライト照射下で注射筒または注射針を使用してプラスミドDNAのバンドを分取する。 分取したプラスミドDNA溶液に、等量のTE飽和 1-ブタノールを加えて転倒混和し、微量高速遠心機に

より、15,000×gで5分間遠心分離し、上清を取り除く。 この操作を繰り返し、プラスミドDNA溶液中のエチジウムブロマイドを取り除く。 次に、TEを加えて1.5mlとし、脱塩カラム(NAP-10)で脱塩する。 脱塩したプラスミドDNA溶液に3mol/l酢酸ナトリウム溶液を30μl加えて混和した後、3 倍量の99.5%エタノールを加えて転倒混和し、-20℃で30分以上放置する。

放置後、微量冷却高速遠心機により、4℃、15,000×gで20分間遠心分離して上清を除いた後、冷70%エタノールを加えて懸濁し、再度、微量冷却高速遠心機により、4℃、15,000×gで20分間遠心分離して上清を除き、プラスミドDNAの沈渣を減圧下乾固させる。 プラスミドDNAに100μ1のTE を加えて完全に溶解させ、260nmの吸光度で濃度を測定する(SA-24含有プラスミドDNAの精製)。 その後、SA-24含有プラスミドDNAの制限酵素処理およびアガロース電気泳動によるSA-24のサイズチェックを行う。

SA-24含有プラスミドDNAの制限酵素処理およびアガロース電気泳動による SA-24の精製を行うには、分子量チェックの終了したSA-24含有プラスミド DNA 1 mgを、制限酵素HindIII単独もしくは他の制限酵素と組み合わせて、 37℃で1.5時間以上の反応により消化する。 プラスミドDNAを消化した後、 反応液の一部を0.8%アガロースで電気泳動して、消化が完全に終了したことを確認する。 消化を確認した後、分取用の0.8%アガロースゲルで電気 泳動し、SA-24のバンドを採取する。 採取したSA-24をアガロースゲルから 20 抽出、精製して、吸光度計にて濃度を測定する。 精製したSA-24の一部を 0.8%アガロースゲルで電気泳動し、シングルバンドであることを確認する。 SA-24のラベル化を行うには、精製したSA-24の2μgを用い、以下の表1に記載の組成を有する反応液において、ジゴキシゲニンラベルを施すとよい。

表1:標識付用反応液の組成

	配合量(µL)
DNAプローブ 10×L.B. ^(a)	X 10
100mmol/L ジチオスレイトール	10
dNTPsધ (A、G、C 0.5mmol/L) ジゴキシゲニン-dUTPは (0.4mmol/L)	4 5
DNaseI (d)	6
10U/μL DNAポリメラーゼ I	2
滅 菌 精 製 水 	Y
合 計	100

[凡例]

(a) 10×L.B.: 0.5mol/L トリス塩酸 (pH 7.5)、

50mmol/L 塩化マグネシウム、

0.5mg/mL ウシ血清アルブミン

(b) dNTPs: 0.5mmol/L 2'-デオキシアデノシン-5'-三リン酸、

0.5mmol/L 2'-デオキシグアノシン-5'-三リン酸、

0.5mmol/L 2'-デオキシシチジン-5'-三リン酸

- (c) ジゴキシゲニンーdUTP: 0.4mmol/L ジゴキシゲニン-11-2'-デオキシー ウリジン-5'-三リン酸
- (d) DNase I : デオキシリボヌクレアーゼ I を、全量100 μ Lあたり50~150mUの使用量となるよう25mmol/L トリス塩酸 (pH 7.5)、50%グリセリン溶液で希釈して上記配合量とする。

表1において、Xは、プローブ原液の濃度に応じて上記好ましいプローブ 濃度となるように添加することができる容量であり、この容量に伴い精製水 量Yを決定して最終容量を調整する。

ラベル化後、反応液にTEを $100 \mu 1$ 加えて反応を停止させる。 反応停止液 をスピンカラムに注入し、 $4 \, \mathbb{C}$ 、 $380 \times g$ で10分間遠心分離して、遊離のヌ クレオチドを除く。 次に、溶出液の濃度を吸光度計により測定し、TEで $10 \, \mathrm{ng}/\mu 1$ に調製する。

ラベル化を確認するために、ラベルしたSA-24の0.5μlをメンブレンに滴

下し、風乾する。 ブロッキング試薬にメンブレンを浸し、室温で30分間ブロッキングする。 0.1mol/l トリス塩酸(pH 7.5)、0.15mol/l塩化ナトリウムで5,000倍に希釈したアルカリフォスファターゼ標識抗ジゴキシゲニン抗体溶液に、メンブレンを室温で30分間浸す。 0.1mol/lトリス塩酸(pH 7.5)、

- 5 0.15mol/l 塩化ナトリウムにメンブレンを浸し、室温で10分間振とうして 2 回洗浄する。 0.5mol/lトリス塩酸 (pH 9.5)、0.15mol/l塩化ナトリウム、 50mmol/l塩化マグネシウムに、メンブレンを室温で10分間浸す。 発色試薬 にメンブレンを室温で遮光下、10分間浸す。 メンブレンをTEに浸し、発色を停止させる。 スポット下部分の青紫色の発色で、ラベル化の確認を行う。
- 10 スピンカラムを作製するには、1 mlのディスポーザブルシリンジに、少量の滅菌済みグラスウールを充填する。 1 mmol/l トリス塩酸 (pH 7.5)、1 mmol/lのEDTA、0.1%SDSで膨潤させたセファデックスG-50をシリンジにつめる。 15mlのディスポーザブルコニカルチューブにシリンジを入れ、4℃、320×gで10分間遠心分離し、余分の緩衝液を落とす。 ディスポーザブルコニカルチューブからシリンジを抜き、排出された緩衝液を捨てた後、1.5 mlのエッペンドルフ型チューブをディスポーザブルコニカルチューブの底に

入れ、その上にシリンジを入れて作製する。

プローブの特異性を確認するため、以下の手順に従って、ドットブロット ハイブリダイゼーションを行うとよい。

- 20 まず、スポットした各ゲノムDNAを変性するために、定法に従い0.5mol/l 水酸化ナトリウム、1.5mol/l 塩化ナトリウム溶液で飽和した濾紙(ワットマン社製3MM)上に、調製した各種細菌ゲノム100ngをナイロンメンブレン(ポールバイオダインタイプB、日本ポール社製)にスポットし、風乾したメンブレンを10分間静置する。 次に、0.5mol/l トリス塩酸(pH7.5)、
- 25 1.5mol/l 塩化ナトリウム溶液で飽和した前出の濾紙上に10分間静置して変性DNAを中和する。 さらに、2×SSC (Standard Saline Citrate) 溶液で飽和した前記濾紙上に5分間静置し、リンスする。 その後、メンブレンを風乾し、2×SSC溶液にメンブレンを浸し、5分間浸透する。 定法に従

い、プラスチックバッグ内でプレハイブリタイゼーション溶液にメンブレン を浸し、42℃、60分間親和させる。 プラスチックバッグ内で、プローブ 400ngを含むハイブリタイゼーション溶液15ml内にメンブレンを浸し、42℃ で、一晩反応させる。 次に、2×SSC、0.1%SDS(ドデシル硫酸ナトリウ ム)溶液にメンブレンを浸し、5分間洗浄する(2回繰り返す)。 その後、 0.1×SSC、0.1%SDS溶液にメンブレンを浸し、60℃、10分間洗浄する(3回 繰り返す)。 2×SSC溶液にメンブレンを浸し、5分間洗浄する。 メンブ レンを3%ウシ血清アルブミン、1%ブロッキングバッファー(ベーリンガ ー社製)、0.1mol/1 トリス塩酸 (pH 7.5)、0.15mol/1塩化ナトリウム溶液に 10 メンブレンを浸し、30分間おだやかに振とうする。 その後、アルカリフォ スファターゼ標識抗ジゴキシゲニン抗体(ベーリンガー社製)を、0.1mol/l トリス塩酸(pH 7.5)、0.15mol/l 塩化ナトリウム溶液で5,000倍希釈した溶 液にメンブレンを浸し、30分間おだやかに振とうする。 次に、0.1mol/1ト リス塩酸(pH 7.5)、0.15mol/l 塩化ナトリウム溶液にメンブレンを浸し、15 分間振とうする (2回)。 0.1mol/l トリス塩酸(pH 9.5)、0.1mol/l 塩化 ナトリウム、5 mmol/l 塩化マグネシウム溶液にメンブレンを浸し、5分間 振とうする。 NBT-BCIP溶液(GIBCO BRL社製)にメンブレンを浸し、遮光 下で発色反応させる。 TE (10mmol/1 トリス塩酸 (pH 8.0)、1 mmol/1 EDTA) にメンブレンを浸し、発色反応を止め、風乾する。 プレハイブリダ

20 イゼーション溶液およびハイブリダイゼーション溶液を、以下の表2に示す。

表 2

[単位:ml]

	プ゚レ ハイプリダイゼーション溶液	ハイブ リダ イセーション溶液
ホルムアミド 20×SSC溶液 100×デンハート溶液 0.5mol/Lリン酸緩衝液 滅 菌 蒸 留 水 10mg/mLサケ精子DNA 50%硫酸デキストラン	7. 5 3. 75 0. 75 0. 75 1. 5 0. 75	6. 75 3. 75 0. 15 0. 6 1. 95 0. 3 1. 5
合 計 液 量	15.0	15.0

In situハイブリダイゼーションの工程において使用される界面活性剤としては、公知の界面活性剤が使用できる。 界面活性剤は、アニオン界面活性剤、非イオン性界面活性剤、カチオン界面活性剤および両性界面活性剤に大別される。

5 アニオン界面活性剤は、陰イオン界面活性剤とも呼ばれ、水中で電離して有機陰イオンとなるものである。 界面活性剤の分子中の親油基をRとして表現すると、RC00Na、RSO₃Na、RSO₄Naなどがある。 RC00Naのように弱酸性基を含有する界面活性剤の水溶液は加水分解しやすく弱アルカリ性であるが、RSO₃Na、RSO₄Naなどの強酸性基を有する界面活性剤の水溶液は加水分解 を受けにくく、中性となる。 陰イオン性であるから、多量の陽イオン性物質の存在で界面活性を失うことがあり、また強酸性にした時にも失活する。非イオン性界面活性剤は、親水基が非イオン性のものをいう。 親水基と

サイオン性外面活性剤は、税水差が升イオン性のものをいう。 税水差として酸化エチレン基(-CH₂CH₂O-)が多用され、この基の数が多くなる程親水性が増す。 反対に、親油基の炭素数が増加すると、親油性が増加する。 従って、親水性・親油性を様々に変化させた界面活性剤が得られるのが特徴である。 非イオン性界面活性剤は、水中で電離せず、無機塩の影響も受けにくいため、生体に及ぼす作用も少ない。 しかも、洗浄作用は、強力で、泡

立ちは比較的少ない為、洗剤のみならず、医薬品、化粧品、食品などに広く使用される。 水溶性の非イオン性界面活性剤は温度が上昇すると、ある温度で水に溶解しにくくなり、水溶液が濁り出すが、これは親水基と水との水素結合が切断されるために生じる。

- 5 カチオン界面活性剤は、陽イオン界面活性剤ともいう。 水中で、電離して有機陽イオンとなるものである。 カチオン界面活性剤は、一般に洗浄作用は大きくはないが、細菌などのアニオン性のものと強く結合するため、殺菌作用が大きい。 また、繊維やプラスチックの帯電防止能もある。 カチオン界面活性剤の代表的なもので、ドデシルトリメチルクロリド
- 10 [C₁₂H₂₅(CH₃)₃N] C1は水溶性であるが、ジドデシルジメチルアンモニウムクロリド [(C₁₂H₂₅)₂(CH₃)₂N] C1は水に溶解しにくく、水中では 2 分子膜状のベシクルを形成し、ベンゼンには溶解する。

両性界面活性剤は、分子内にアニオン基とカチオン基の両者を併せ持っている界面活性剤である。 水溶液中での電離状態はアミノ酸に類似しており、

- 15 両性界面活性剤には、アミノ酸誘導体が多く存在する。 従って、アミノ酸と同様に等電点を有し、等電点よりアルカリ性側ではアニオン界面活性剤として、酸性側ではカチオン界面活性剤として作用する。 等電点で水溶性は最低となり、表面張力も最も低下する。 両性界面活性剤は、殺菌剤、帯電防止剤などに用いられる。
- 20 また、アニオン界面活性剤は、カルボン酸型、スルホン酸型、硫酸エステル型およびリン酸エステル型に分けられ、非イオン性界面活性剤は、エステル型、エーテル型、エステルエーテル型およびアルカノールアミド型に分けられる。 カチオン界面活性剤は、アルキルアミン塩型および第四級アンモニウム塩型に分けられ、両性界面活性剤は、カルボキシベタイン型、2-ア25 ルキルイミダゾリンの誘導型およびグリシン型に分けられる。

さらに、アニオン界面活性剤のカルボン酸型は、脂肪酸モノカルボン酸塩、N-アシルサルコシン塩およびN-アシルグルタミン酸塩に細分される。 それ ぞれの代表例として、脂肪酸モノカルボン酸塩には、ラウリン酸ナトリウム

および薬用せっけんがあり、N-アシルサルコシン塩は、N-ラウロイルサルコ シンナトリウム、N-アシルグルタミン酸塩にN-ラウロイルグルタミン酸二ナ トリウムがある。 また、スルホン酸型は、ジアルキルスルホコハク酸塩、 アルカンスルホン酸塩、アルファオレフィンスルホン酸塩、直鎖アルキルベ ンゼンスルホン酸塩、アルキル(分岐鎖) ベンゼンスルホン酸塩、アルキル ナフタレンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合 物およびN-メチル- N-アシルタウリン塩に細分される。 代表例として、ジ アルキルスルホコハク酸塩は、ジオクチルスルホコハク酸ナトリウム、アル カンスルホン酸塩は、ドデカンスルホン酸ナトリウム、直鎖アルキルベンゼ 10 ンスルホン酸塩には直鎖ドデシルベンゼンスルホン酸ナトリウム、アルキル (分岐鎖)ベンゼンスルホン酸塩はドデシルベンゼンスルホン酸ナトリウム、 アルキルナフタレンスルホン酸塩はブチルナフタレンスルホン酸ナトリウ ム、N-メチル- N-アシルタウリン塩にはN-メチル- N-ステアロイルタウリン ナトリウムがある。 また、硫酸エステル型は、アルキル硫酸塩、ポリオキ 15 シエチレンアルキルエーテル硫酸塩および油脂硫酸エステル塩に細分され 代表例として、アルキル硫酸塩は、ドデシル硫酸ナトリウム、ラウリ ル硫酸ナトリウムおよびセチル硫酸ナトリウム、ポリオキシエチレンアルキ ルエーテル硫酸塩はポリオキシエチレンラウリルエーテル硫酸トリエタノー ルアミンがある。また、リン酸エステル型は、アルキルリン酸塩、ポリオ 20 キシエチレンアルキルエーテルリン酸塩およびポリオキシエチレンアルキル フェニルエーテルリン酸塩に細分される。 代表例を挙げると、アルキルリ ン酸塩には、モノラウリルリン酸二ナトリウムがある。 ポリオキシエチレ ンアルキルエーテルリン酸塩には、リン酸ナトリウムポリオキシエチレンラ ウリルエーテルおよびリン酸ポリオキシエチレンオレイルエーテル(8MOL)が 25 ある。

非イオン性界面活性剤のエステル型は、脂肪酸グリセリン、脂肪酸ソルビタンおよび脂肪酸ショ糖エステルに細分される。 それぞれの代表例として、脂肪酸グリセリンは、モノステアリン酸グリセリン、脂肪酸ソルビタンは、

ンザルコニウムがある。

モノステアリン酸ソルビタン、トリオレイン酸ソルビタン、セスキオレイン 酸ソルビタン、モノラウリン酸ソルビタン、ポリソルベート20(ポリオキシ エチレンソルビタン脂肪酸エステル)、ポリソルベート60およびポリソルベ ート80、脂肪酸ショ糖エステルはステアリン酸ショ糖エステルがある。 ま た、エーテル型は、ポリオキシエチレンアルキルエーテル、ポリオキシエチ レンアルキルフェニルエーテルおよびポリオキシエチレンポリオキシプロピ レングリコールに細分される。 代表例を挙げると、ポリオキシエチレンア ルキルエーテルとして、ポリオキシエチレンラウリルエーテル、ポリオキシ エチレンステアリルエーテルおよびポリオキシエチレンセチルエーテルがあ 10 り、また、ポリオキシエチレンアルキルフェニルエーテルとして、ポリオキ シエチレンノニルフェニルエーテルおよびポリオキシエチレンオクチルフェ ニルエーテルがある。 また、エステルエーテル型は、脂肪酸ポリエチレン グリコールおよび脂肪酸ポリオキシエチレンソルビタンに細分される。 そ れそれの代表例は、脂肪酸ポリエチレングリコールは、オレイン酸ポリエチ 15 レングリコール、脂肪酸ポリオキシエチレンソルビタンには、パルミチン酸 ポリオキシエチレンソルビタンおよびポリオキシエチレンソルビタンモノラ ウレートがある。 また、アルカノールアミド型は、脂肪酸アルカノールア ミドの1つのみである。 代表例は、ラウリン酸ジエタノールアミドである。 カチオン界面活性剤のアルキルアミン塩型には、モノアルキルアミン塩、 20 ジアルキルアミン塩およびトリアルキルアミン塩があり、代表例は、モノス テアリルアミン塩酸塩である。 また、第四級アンモニウム塩型は、塩化(ま たは臭化、沃化)アルキルトリメチルアンモニウム、塩化(または臭化、沃化) ジアルキルジメチルアンモニウムおよび塩化アルキルベンザルコニウムに細 分される。 それぞれの代表例は、塩化(または臭化、沃化)アルキルトリメ チルアンモニウムとして、塩化ステアリルトリメチルアンモニウム、塩化(ま たは臭化、沃化)ジアルキルジメチルアンモニウムとして、塩化ジステアリ ルジメチルアンモニウム、塩化アルキルベンザルコニウムは塩化ラウリルベ 両性界面活性剤のカルボキシベタイン型は、アルキルベタインの1つのみである。 代表例は、ラウリルベタインである。 また、2-アルキルイミダゾリンの誘導型は、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインの1つのみである。 代表例として、2-ウンデシル5 -N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインが挙げられる。 また、グリシン型は、アルキル(又はジアルキル)ジエチレントリアミノ酢酸があり、代表例として、ジオクチルジエチレントリアミノ酢酸が挙げられる。

さらに、上記代表例に加えて、Triton X-100、ラウリルサルコシン、サポ 10 ニン、BRIJ35、アルキルアリルポリエーテルアルコール、高級アルコール硫 酸化物、N-ココイル-L-アルギニンエチルエステルDL-ピロリドンカルボン酸 塩、N-ココイル-N-メチルアミノエチルスルホン酸ナトリウム、コレステロ ール、自己乳化型モノステアリン酸グリセリン、スクワラン、ステアリルア ルコール、ステアリン酸ポリオキシル40、セタノール、セトマクロゴール 15 1000、セバシン酸ジエチル、ノニルフェノキシポリオキシエチレンエタン硫 酸エステルアンモニウム、ポリオキシエチレンオレイルアミン、ポリオキシ エチレンソルビットミツロウ、ポリオキシル35ヒマシ油、マクロゴール400、 N-ヤシ油脂肪酸アシルL-アルギニンエチル・DL-ピロリドンカルボン酸塩、 ラウリルジメチルアミンオキシド液、ラウロマクロゴール、メチルセルロー 20 ス、CMC (カルボキシメチルセルロース)、ポリオキシエチレン硬化ヒマシ油 20およびポリオキシエチレン硬化ヒマシ油60、CHAPS、デオキシコール酸、 ジギトニン、n-ドデシルマルトシド、ノニデットP40、n-オクチルグルコシ ド、オクチルチオグルコシド、ラウリル酸シュクロース、ドデシルポリ(エ チレングリコールエーテル) n, n-ドデシル-N, N-ジメチル-3-アンモニオ-1-プロパンスルフォネート等も挙げることができる。

上掲の各種界面活性剤は、in situハイブリダイゼーションの工程で使用されることが重要であり、その使用方法は特に限定されない。 例えば、プローブ液またはプローブ希釈液中に混合されていても良いし、プローブ液と

31

は別に調製した界面活性剤を含有する溶液を、プローブ液を塗抹部位に塗布する前、同時または後に添加しても良いし、当業者は適宜変更することができる。

なお、本発明において、陽性コントロールプローブが必要であれば、次のように作製することができる。 例えば、まず、U937細胞(ATCC CRL-1593.2)のゲノムDNAの抽出と精製を行うには、37℃、5%炭酸ガスインキュベーター内で、細胞培養フラスコ(175cm²)内のRPMI1640培地(25ml)を用い、U937細胞を培養する。 U937培養液を50mlの遠沈管に入れ、4℃、220×gで10分間遠心分離し、U937細胞を回収する。 細胞を10mlのPBSで懸濁洗り、再度4℃、180×gで10分間遠心分離し、細胞を回収する。 その後、上清を捨て、細胞を1mlの200μg/mlプロテネースK含有1%SDS含有TE溶液で懸濁し、37℃で30分間放置する。 フェノール抽出を3~4回線り返し、除蛋白を行う。 エタノール沈殿により析出したゲノムを回収し、500μlの2.5μgリボヌクレアーゼ含有滅菌精製水に溶解し、42℃で30分間放置する。 フェノール抽出を2~3回繰り返し、除蛋白を行う。 エタノール沈殿により

り析出したゲノムを回収し、500μ1のTEに溶解する。 その後、吸光度計により濃度を測定し、ジゴキシゲニンラベルに供することにより、陽性コントロールプローブを作製することができる。 また、陽性コントロールプローブは、U937ゲノムを100ngスポットしたメンブレンに、陽性コントロールプローブをドットハイブリダイゼーションするとき、ハイブリッド形成が確認できるものを用いるのがよい。 陰性コントロールプローブが必要であれば、公知の方法で作製することができる。

また、本発明には、食細胞を含む生体由来の臨床検体より食細胞を得、得られた食細胞を固定し、該食細胞膜の透過性を亢進させる処理を施し、該食細胞中に存在すると予想される感染症原因菌のDNAを露出させる処理を施し、このDNAにストリンジェントな条件下ハイブリダイゼーションできる検出用DNAプローブを用いてin situハイブリダイゼーションを行い、得られたシグナルにより感染症原因菌を検出および/または同定するためのキ

ットであって、DNA露出工程で使用される酵素が、リゾスタフィン、リゾチーム、N-アセチルムラミダーゼ、ザイモラーゼからなる群より選択される少なくとも1種以上の酵素、界面活性剤が添加されたプローブ液、1種以上の検出用DNAプローブを有することを特徴とする、感染症原因菌を検出お よび/または同定するためのキットも含まれる。 キットには、後出の実施例に示す、血液分離試薬、酵素前処理試薬、酵素試薬、アセチル化試薬、プローブ液、ブロッキング試薬、標識抗体、標識抗体希釈液、発色前処理液ー1、発色前処理液ー2、発色試薬、対比染色液、PBS原液、ハイブリダイゼーション原液、標識抗体洗浄液、発色試薬洗浄液、APSコートスライドグラス、プローブ希釈液、バッファーA等が含まれる。 これらのうち、少なくとも酵素試薬とプローブ液を具備することが好ましい。 また、本発明に使用する各種試薬、例えば、クロロホルム、エタノール、無水酢酸、DMSO、PMSF、ホルムアミド、酢酸、塩酸、水酸化ナトリウム等を含んでいても良い。

15 光学顕微鏡、可変式ピペット、採血管、チップ、ピペット、染色ビン、メスシリンダー、注射筒、0.2μmシリンジトップフィルターの機械や器具を含んでいても良い。

さらに、低速遠心機、恒温機、血球計算盤、振とう機、湿潤箱、恒温槽、

また、本発明は、生体由来の食細胞を含む臨床検体中に含まれる食細胞によって貪食された外来微生物の遺伝子をモニターする方法を提供する。 さ 20 らに、本発明は、原因菌の候補となる微生物の遺伝子を同定する工程を含み、同定された結果に基づいて敗血症原因菌または菌血症原因菌が特定されることを特徴とする方法を提供する。

この方法を、様々なセプシスが疑われた患者血液の診断に実際に応用したところ、投与された抗菌薬の影響を受けることなく、血液培養法に比べて約4倍の感度で起因菌を検出することができ、検出菌株の一致率は良好であることが明らかになっている。そして、血液培養では検査に3日以上14日程度を要するのに比較して、本発明の方法では全操作完了までに約8時間と極めて短時間の簡便な操作によって正確な結果を得ることができるので、特に

敗血症または菌血症など、速やかな善処が必要とされる感染症の診断や予後 診断のモニター等において有用マーカーとなり得る。

実 施 例

以下に、本発明を実施例に沿って具体的に説明するが、これら実施例の開 5 示によって本発明が限定的に解釈されるべきでないことは勿論である。

実施例1:採血・血液検体の処理

臨床検体として、敗血症が疑われた患者より採取した血液12検体(検体A~L)を用いた。 各患者からヘパリン加静脈血10mlを採取し、これら血液と血液分離試薬(塩化ナトリウム225mg、デキストラン(分子量:200,000~10 300,000)1.5g、滅菌精製水にて全量25mlに調製したもの)を4:1の割合で混和した後、37℃で、30分間静置することにより、白血球画分(上層)を取得した。 この白血球画分を、4℃にて160×gで10分間遠心分離することで、白血球を得た。 次に、得られた白血球のペレットに滅菌精製水1mlを加えて懸濁し、直ちに過剰量のPBS(塩化ナトリウム18.24g、リン酸一水素ナトリウム12水和物6.012g、リン酸二水素ナトリウム2水和物1.123g、滅菌精製水にて全量120mlにしたもの(PBS原液)を、滅菌精製水にて20倍に希釈したもの)を加えて等張化した後、再度4℃で、160×gで10分間遠心分離した。

実施例2:白血球の固定

20 3-アミノプロピルトリエトキシシラン (APS、SIGMA社) がスライドグラス (日本エアーブラウン社製、商品番号MS311BL) にコートされたAPSコートス ライドグラスを使用した。 APSコートスライドグラスの作製は、まず、ス ライドホルダーにスライドグラス (商品番号MS311BL) を固定した後、希釈 した中性洗剤で30分以上浸すことにより洗浄し、水道水で洗剤を十分に取り 25 除き、次に、スライドグラスを精製水にて洗浄し、高温 (100℃以上) で十分に乾燥させた後、室温で放置冷却した。 その後、このスライドグラスを 2 % APS含有アセトンに 1 分間浸し、直ちにアセトン及び滅菌精製水で順次軽く洗浄した後、風乾した。 さらに、再度、スライドグラスを 2 % APS含

PCT/JP02/05107

有アセトンに1分間浸し、直ちにアセトン及び滅菌精製水で、順次軽く洗浄 した後、風乾する操作を行った後、42℃で乾燥させることにより作製した。

34

白血球画分を、4 \mathbb{C} にて、 $160 \times g$ \mathbb{C} で 10 分間遠心分離して得た白血球ペレットに、少量のPBSを加えて懸濁し、血球計算盤を用いて白血球数を計測する。 細胞数が 1×10^5 個/ウェルとなるようにPBSで調製した白血球懸濁液 $5 \mu 1$ を、APS コートスライドグラスの各ウェルに白血球が単層に広がるように塗抹し、完全に風乾することにより、白血球をAPS コートスライドグラスに支持させた。 その後、カルノア固定液(エタノール:クロロホルム:酢酸=6:3:1の容量比で混合した液)に20 分間浸した後、75% エタノール

実施例3:白血球細胞膜の透過性亢進処理

PBSに10分間浸し、その後、酵素前処理試薬(サポニン1.25g、t-オクチルフェノキシポリエトキシエタノール(比重1.068~1.075(20/4℃)、pH(5w/v%)5.5~7.5) 1.25ml、PBS原液25mlを混合し、滅菌精製水にて全量50mlに調製したもの)を滅菌精製水で10倍に希釈した溶液に浸し、振とう機で10分間浸透させた。

実施例4:菌体壁の溶菌酵素処理

15

感染症原因菌のDNAを露出させるため、スライドグラス1枚につき酵素 試薬 (N-アセチルムラミダーゼ1,000単位/ml、リゾチーム100,000単位/mlお 20 よび/またはリゾスタフィン100単位/ml) に酵素試薬溶解液 (PBSで0.1mol/ 1フェニルメチルスルフォニルフルオライド (PMSF) 含有ジメチルスルフォ キシド (DMSO) を100倍希釈して製したもの) を1ml加えて酵素試液を調製 した後、37℃~42℃の湿潤箱内で、酵素試液1mlを白血球塗抹部位に滴下し、 30分間静置した。 その後、0.2mol/l 塩酸含有PBS (PBS原液に塩酸を加え、

25 滅菌精製水にて20倍希釈し、塩酸の終濃度を0.2mol/lに調製したもの) に浸し、そのまま振とう機上で10分間浸透させた。

実施例5:細胞膜タンパク質のアセチル化

アセチル化試薬(トリエタノールアミン7.46g、塩酸適量、滅菌精製水適

量にて全量50mlとしたもの)に無水酢酸を加え、滅菌精製水で10倍希釈し、 無水酢酸の終濃度を0.8%に調製したアセチレーション試薬にスライドグラ スを浸し、振とう機上で10分間振とうすることにより行った。 その後、75 %、85%、98%エタノールに、順次、3分間ずつ浸し、完全に風乾させた。

5 実施例 6: 菌体 DNA のアルカリ処理 (二本鎖 DNA を一本鎖に変性)

スライドグラスを、70mmo1/1 水酸化ナトリウム含有PBS (PBS原液に水酸化ナトリウムを加え、滅菌精製水で20倍希釈し、水酸化ナトリウムの終濃度を70mmo1/1に調製したもの)に3分間浸すことにより行った。 その後、75%、85%、98%エタノールに、順次、3分間ずつ浸し、完全に風乾させた。

10 実施例7:ハイブリダイゼーション

プローブ希釈液(0.25% SDS、サケ精子DNA $600\,\mu$ l、 $100\times$ デンハート溶液 $50\,\mu$ l、ハイブリダイゼーション原液 $500\,\mu$ l、ホルムアミド $2250\,\mu$ l、50% 硫酸デキストラン $1000\,\mu$ l が含まれる)で調製したジゴキシゲニン標識 D N A プローブ15ngを含有する液(プローブ液; 1.0ng/ μ l)を塗抹部位に塗布し、

- 15 37℃~42℃の湿潤箱中で2時間静置させた。 SDS無添加のプローブ液を対照とした。 ジゴキシゲニン標識DNAプローブは、ニックトランスレーション法にて作製した。 その後、ハイブリダイゼーション洗浄液(ハイブリダイゼーション原液(塩化ナトリウム13.15g、クエン酸三ナトリウム2水和物6.615g、滅菌精製水にて全量75m1に調製したもの)を、ハイブリダイゼーション原液:滅菌精製水:ホルムアミド=5:45:50の割合で混合して
 - その後、PBSに浸して、そのまま振とう機上で10分間振とうさせた。 ジゴキシゲニン標識DNAプローブとして、Staphylococcus aureusおよび Staphylococcus epidermidisに対するプローブとして、SA-24 (配列番号:

調製したもの)を3つの染色ビンに用意し、順次、42℃で10分間ずつ浸した。

25 1)、SA-36(配列番号: 2) およびSA-77(配列番号: 3) ならびにSE-22(配列番号: 4)、SE-3(配列番号: 5) およびSE-32(配列番号: 6)(日本国特許第2798499号参照) の各プローブを利用した。 また、Pseudomonas aeruginosaに対するプローブとして、P2-2(配列番号: 7)(日本国特許第2965544

号参照) のプローブを利用した。 また、Enterococcus faecalisに対する プローブとして、EF-1 (配列番号: 8)、EF-27 (配列番号: 9) およびEF-7 (配列番号: 10) (日本国特許第2965543号参照) を利用した。 そして、

Escherichia coli、Enterobacter cloacaeおよびKlebsiella pneumoniaeに 対するプローブとして、EC-24 (配列番号:11)、EC-34 (配列番号:12) およびEC-39 (配列番号:13) ならびにET-49 (配列番号:14) およびKI-50 (配列番号:15) (日本国特許第3026789号参照) を利用した。 さらに、Candida albicansに対するプローブとして、CA-26 (配列番号:16)、CA-26-1 (配列番号:17)、CA-26-2 (配列番号:18) およびCA-26-3 (配列番号:19) (日本 国特許第2558420号参照) を利用した。 これらプローブの配列を用いて、ニックトランスレーション法によりプローブの作製を行った。

実施例8:ブロッキング

In situハイブリダイゼーションを行った後、ブロッキングの操作を行った。 湿潤箱内でスライドグラス1枚につきブロッキング試薬(ウサギ正常血清2ml、PBS原液0.5ml、滅菌精製水にて全量10mlに調製したもの)1mlを塗抹部位に滴下し、30分間静置した。 その後、ブロッキング試薬を除去した。

実施例9:標識抗体との反応

標識抗体(アルカリフォスファターゼ標識抗ジゴキシゲニン抗体溶液1.05 20 単位、バッファーA(トリエタノールアミン746mg、塩化ナトリウム17.5mg、塩化マグネシウム6水和物20.3mg、塩化亜鉛1.36mg、ウシ血清アルブミン1000mg、塩酸適量、滅菌精製水適量にて全量100mlに調製したもの)12.6μlにて全量を14μlに調製したもの)を標識抗体希釈液(トリス-(ヒドロキシメチル)-アミノメタン8.48mg、塩化ナトリウム6.14mg、塩酸適量、滅菌精製25 水適量にて全量0.7mlに調製したもの)で50倍希釈した標識抗体液を調製し、この標識抗体液を塗抹部位に10μlずつ滴下し、30分間静置させた。その後、標識抗体洗浄液(ポリソルベート20 1ml、PBS原液50ml、滅菌精製水にて全量100mlに調製したもの)を10倍に希釈した溶液に浸して、そのまま振 とう機上で10分間浸透させた。 この操作を2回繰り返した後、発色前処理 液1 (トリス-(ヒドロキシメチル)-アミノメタン6.06g、塩化ナトリウム 2.92g、塩酸適量、滅菌精製水適量にて全量50mlに調製したもの)と発色前 処理液2 (塩化マグネシウム6水和物5.08g、滅菌精製水にて全量50mlに調製したもの)とを等量混合し、滅菌精製水で5倍に希釈した発色前処理液に 浸し、そのまま振とう機上で10分間振とうさせた。

実施例10:検 出

スライドグラス 1 枚につき発色試薬(ニトロブルーテトラゾリウム (NBT)/5-ブロモ-4-クロロ-3-インドリルフォスフェイト (BCIP)溶液、pH 9.0~10.0 : NBT 3.3 mg、BCIP 1.65 mg、N,N-ジメチルホルムアミド99 μg、トリス(ヒドロキシメチル)アミノメタン121 mg、塩酸適量、塩化ナトリウム58.4 mg、塩化マグネシウム 6 水和物101.6 mg、滅菌精製水適量にて全量10 m1に調製したもの) 1 m1を0.2 μmシリンジトップフィルターを装着したディスポーザブルシリンジを用いてろ過しながら、スライドグラスの塗抹部位に滴下し、湿潤箱15 内で、37℃、30分間遮光静置した。 その後、発色試薬洗浄液(トリス-(ヒドロキシメチル)-アミノメタン606 mg、エチレンジアミン四酢酸ニナトリウム2水和物186 mg、塩酸適量、滅菌精製水適量にて全量50 m1に調製したもの)を10倍に希釈した溶液に5分間浸し、風乾した後、対比染色液(ファストグリーンFCF(食用緑色3号)50 mg、滅菌精製水適量にて全量50 m1に調製したもの)を10倍に希釈した溶液および1%酢酸溶液に浸した。 その後、前記発色試薬洗浄液を10倍に希釈した溶液に再度浸して余分の前記対比染色液を洗い流し、完全に風乾させた。

実施例11:判定

判定は、光学顕微鏡で鏡検(×1,000)するとき、単一ウェル内で対比染 25 色液によって染まった細胞に於いて、青紫色の発色シグナルが1つでも認められた場合に陽性と判定した。 その結果、本発明の方法により、12検体中5検体で菌を検出した。 5検体の内訳は、検体A-SA(Staphylococcus aureus)、検体FおよびG-SE(Staphylococcus epidermidis)、検体J-SEおよ

びEF (Enterococcus faecalis)、検体L-SAおよびCA (Candida albicans)であった。 なお、同じ検体を用いて、公知の方法に従い血液培養を行ったところ、検体AはSAを検出し同一の結果を示したが、検体F、G、JおよびLは菌を検出することができなかった。 従って、本発明の方法が、血液培養と比較して、迅速に感度よく検出できることが判明した。

検体A-SAにおける結果に関し、プローブ希釈液へのSDSの添加の効果を、 第1図に示した。 第1図から、SDSを0.25%添加することで、シグナルの 検出感度が格段に高められることが明らかである。 その他の検体について も同様に、SDSを添加することで良好なシグナル検出が可能となった。 な 10 お、本実施例において使用したプローブは、SA-24(配列番号:1)、SA-36 (配列番号:2)およびSA-77(配列番号:3)の塩基配列を組み合わせて 用い、ニックトランスレーションによって作製したプローブである。

実施例12: 塗抹固定する至適白血球数の検討

 10^4 個/ウェル〈y個/ウェル(直径 5 mm) 〈約 5×10^5 個/ウェル、好ましくは、約 5×10^4 個/ウェル≦y個/ウェル(直径 5 mm) ≦約 2.5×10^5 個/ウェルとなるように調製するのが良いことが判明した。 試料(a) \sim (f) に関する実験結果を、第 2 図(a) \sim (f) にそれぞれ示した。

5 実施例13:使用溶菌酵素の選択

Staphylococcus aureus (ATCC 12600), Staphylococcus epidermidis (AT CC 14990), Pseudomonas aeruginosa (ATCC 10145), Enterococcus faecali s (ATCC 19433)、Escherichia coli (ATCC 11775) を溶菌する酵素条件を検 討した。 Staphylococcus aureusおよびStaphylococcus epidermidisでは、 10 溶菌酵素としてリゾスタフィン (Bur. J. Biochem., 38, 293-300, 1973) を使用した。 Enterococcus faecalisには、N-アセチルムラミダーゼ (Archs. Oral Biol., 23, 543-549, 1978)、リゾチーム(生化学工業)を 使用した。 また、Pseudomonas aeruginosaおよびEscherichia coliにつ いては、70mmol/1の水酸化ナトリウム含有PBSを使用した。 これら各種細 15 菌を 5 ml のBHI (ブレインハートインフュージョン) 液体培地 (DIFCO社製) に 植菌し、37℃で8時間以上培養した。 培養した菌液を、4℃、2,000×g で10分間遠心分離して集菌した。 集めた菌をPBSで懸濁して試料とした。 溶菌はマイクロプレートリーダーを用い、吸光度600nmにおける菌液の濁 度の減少により評価した。 その結果、Staphylococcus aureusおよびStaph 20 ylococcus epidermidisは、リゾスタフィンにより溶菌した。 Pseudomonas aeruginosaおよびEscherichia coliについては、70mmol/1の水酸化ナトリウ ム含有PBSで溶菌したため、酵素処理は必要としなかった。 また、Enteroc occus faecalisについては、N-アセチルムラミダーゼ単独よりもリゾチーム と併用した方が優れた溶菌活性が得られることが判明した。 また、貪食作 25 用を受けて取り込まれた菌が、例えば、Pseudomonas aeruginosaおよび Escherichia coliなどである場合には、アルカリ処理に際して菌の細胞壁が 溶解され、遺伝子が露出した状態となるので、必ずしもこの酵素処理を行う

必要はない。 本発明において外来微生物を溶解するために使用される前処

理用の各酵素は、前述した細菌株に対して有効であるのみならず、他のスタフィロコッカス属、ストレプトコッカス属、バシルス属およびミクロコッカス属を初めとする他の菌種等でも有効である。 また、かような酵素は、各々単独で用いることもできるが、混合した場合の方が有効である。 それら 結果を、第3図、具体的には、(a) Staphylococcus aureusおよびStaphylococcus epidermidis、(b) Pseudomonas aeruginosaおよびEscherichia coli、ならびに(c) Enterococcus faecalisについて示した。

実施例14:酵素溶解液に関する検討 (DMSOの至適濃度の検討)

酵素試薬に含有されるプロテアーゼは、白血球の形態を劣化させることか 10 ら、白血球の形態を保持させるために添加するPMSFの溶解剤であるDMSOの酵 素活性に及ぼす影響を検討した。 Enterococcus faecalisを、50mlの前記 BHI液体培地に植菌し、37℃で、8時間以上培養した。 この培養液を、4 ℃、2,000×gで10分間遠心分離して集菌し、PBSで懸濁した後、オートクレ ーブ(120℃、10分)により熱処理を行った。 次に、4℃、2,000×gで10 15 分間遠心分離し、上清を捨て、1mlのPBSで沈渣を懸濁させた後、凍結乾燥 させた。 この凍結乾燥試料を 0~10% DMS 0含有 5 mmol/l トリス-塩酸 (pH 6.0)、2 mmol/l塩化マグネシウムで懸濁し、N-アセチルムラミダーゼに対す る試料とした。 また、Micrococcus luteus (JCM1464) を、5mlのBHI液体 培地(前出)に植菌し、37℃で8時間以上培養した。 培養した菌液を、4 20 ℃、2,000×gで10分間遠心分離して集菌した。 上清を捨て、菌のペレッ トをPBS 5 mlで懸濁洗浄し、再度4℃、2,000×gで10分間遠心分離して集 菌した。 このようにして集めた菌を、0~10%DMSO含有PBSで懸濁し、リ ゾチームに対する試料とした。 一方、Staphylococcus epidermidisをリゾ チームの場合と同様に培養、集菌し、0~10%DMSO含有PBSで懸濁し、リゾ スタフィンに対する試料とした。 酵素活性は、マイクロプレートリーダー を用い、吸光度600mにおける試料の濁度の減少により評価した。 ただし、 本試験中それぞれの酵素力価は、(a) N-アセチルムラミダーゼ 300単位/ml、 (b) リゾチーム 10,000単位/ml、(c) リゾスタフィン 50単位/mlとし、酵素

活性に対するDMSOの影響を検討した。 それぞれの酵素活性を単位時間当た りにおける蘭濁度(0.D.=600nm)の減少で評価した結果、DMS0は、N-アセ チルムラミダーゼ活性に対しては殆ど影響を与えなかったが、リゾチームお よびリゾスタフィンに対しては、共に5%以上のDMSOで活性の低下が認めら 5 れた。 また、2%以下のDMSOの濃度では、酵素活性の低下は認められなか ゆえに、PMSFを溶解させるDMSO濃度は少なくとも5%未満、好まし った。 くは2%以下、さらには1%程度とするのが好ましい。 その結果を、第4 図(a)~(c)および下記表3に示した。

DMSO Nーアセチルムラミタ゛-セ゛ リゾチーム リゾスタフィン 添加量(%) 0.D./5分間 0.D./10分間 0.D./3分間 79.3 ± 4.8 0 (対照) 0.689 ± 0.028 0.168 ± 0.017 0.1 75.0 ± 3.2 0.678 ± 0.026 0.164 ± 0.009 75.8 ± 2.8 1 0.660 ± 0.026 0.160 ± 0.008 2 75.8 ± 2.5 0.653 ± 0.024 0.145 ± 0.009 76. 3 ± 4.9 0.566 ± 0.017 5 0.124 ± 0.006 10 73.8 ± 3.5 0.464 ± 0.016 0.094 ± 0.006

表3:酵素活性(菌濁度の減少)に対するDMSOの影響

実施例15:酵素溶解液に関する検討 (PMSFの至適濃度の検討)

10

酵素試薬に含有されるプロテアーゼは白血球の形態を劣化させることか ら、白血球の形態を保持させるために添加するPMSF(PIERCE社製)の効果を 検討した。100μlのDMSO(和光純薬社製)にPMSFを溶解し、PMSFの終濃度が 無添加(0mmol/l)~1mmol/lとなるようにPBSで10mlに希釈した。 この 溶液に、プロテアーゼの力価が0.2単位/mlとなるよう、プロテイネースK(ベ 15 ーリンガーマンハイム社製)を添加した。 ヘパリン加健常ヒト血液 5 mlを 採取し、実施例1に記載の方法に従って白血球を採取した。 次に、白血球 を適当量のPBSで懸濁して、血球計算盤で細胞数を計測し、細胞数を、約5 ×10⁴個/ウェル〜約2.5×10⁵個/ウェルに調製し、その5 μ1をAPSコートス

ライドグラスのウェルに塗抹し、風乾後、実施例 2 に記載のカルノア固定の方法に従って固定した。 このサンプルを用いて、実施例 $3\sim11$ に記載の方法に従って試験を行った。 $1~\mu$ mol/l~ $1~\mu$ mol/lのPMSFの濃度で試験を実施した結果、 $10~\mu$ mol/l以上の濃度で効果が認められ、 $0.1~\mu$ mol/l以上のPMSF 濃度では、白血球の形態の劣化が完全に抑制されていた。 その結果を、第5回の(a) プロテアーゼ0.2単位/mlのみ、(b) PMSF $1~\mu$ mol/ml添加、(c) PMSF $10~\mu$ mol/ml添加、(d) PMSF $0.1~\mu$ mol/ml添加、および(e) PMSF $1~\mu$ mol/ml添加についてそれぞれ示した。

実施例16:溶菌酵素ザイモラーゼの至適力価の検討

カンジダ・アルビカンス(Candida albicans)を溶菌してDNAを露出させ 10 るためのザイモラーゼの至適力価を検討した。 カンジダ・アルビカンスを YPD培地に植菌し、30℃で一昼夜培養した。 その後、基質としてカンジダ ・アルビカンスをPBSで懸濁した溶液(基質1)、およびカルノア固定後、70 %エタノールに浸し、風乾し、PBSにて懸濁した溶液(基質2)の2種類を 調製した。 反応は、ザイモラーゼ/PBS:0.5ml、基質:1.5ml、M/15リン酸 15 緩衝液:2.5ml、滅菌精製水:0.5mlにて全量5.0mlに調製したものを用いた。 その後、37℃で、2時間反応させ、そのOD®00を測定した。 モラーゼ (ザイモリエイス-100T) 濃度は、 0 mg/ml、 0.01mg/ml、 0.025mg/ m1, 0.05mg/m1, 0.1mg/m1, 0.25mg/m1, 0.5mg/m1, 1mg/m1, 2.5mg/m1, 520 mg/mlを用いた。 その結果、基質1を用いた場合のそれぞれのOD®の値は、 0.533, 0.521, 0.553, 0.554, 0.548, 0.417, 0.394, 0.288, 0.163, 0.113であり、また、基質2を用いた場合のそれぞれのOD®00値は、0.445、0.411、 0.359、0.282、0.232、0.146、0.115、0.096、0.08、0.057であった。 質1および基質2がともに、 $0.5 \text{mg/ml} \sim 5 \text{mg/ml}$ 、特に、 $1 \text{mg/ml} \sim 5 \text{mg/ml}$ 25 の範囲で有効であることが判明した。 すなわち、ザイモラーゼの使用量は、 50単位/ml~500単位/ml、特に100単位/ml~500単位/mlであることが好まし ₹7°

実施例17:至適酵素処理条件(力価)の検討

(1) 貪食サンプルの作製

① U937細胞の調製

37℃、5%炭酸ガスインキュベーター内で、細胞培養フラスコ(175cm²) 中のRPMI1640培地(25ml)でU937細胞(ヒト単球株化細胞、ATCC CRL-1593. 2)を培養した。 次に、U937細胞培養液を50mlの遠沈管に入れ、4℃、220×gで10分間遠心分離し、U937細胞を回収した。 その後、回収した U937細胞をPBS200μlで懸濁し、血球計算盤で細胞数を計算し、細胞数を1×10⁴個/μl~2×10⁴個/μlに調製した。

10 ② 細菌貪食サンプルの調製

Staphylococcus aureus (ATCC 12600)、Staphylococcus epidermidis (ATCC 14990)、Pseudomonas aeruginosa (ATCC 10145)、Enterococcus faecalis (ATCC 19433)およびEscherichia coli (ATCC 11775) を、各々 5 mlのBHI培養液に植菌し、37℃で8時間以上培養した。 培養した菌液を、4℃、

- 15 2,000×gで10分間遠心分離して集菌した。 上清を捨てた後、菌のペレットをPBS 5 mlで懸濁し、再度、4℃、2,000×gで10分間遠心分離して集菌した。 集菌した菌をPBS 5 mlで懸濁した後、PBSにて希釈して吸光度計により菌液の濁度(0.D.=600nm)を、Staphylococcus aureus (0.01~0.03)、Staphylococcus epidermidis (0.01~0.03)、Pseudomonas aeruginosa
- (0.02~0.03)、Enterococcus faecalis (0.01~0.03)、Escherichia coli (0.02~0.03) にそれぞれ調製したものを15ml作製した。 作製した菌液は、個別の175cm²の培養用フラスコに移し、30分間室温で静置した。 ヘパリン 加健常ヒト血液50mlを採取し、血球分離試薬を4:1の割合で加え、37℃で30分間静置し、白血球画分を分取した。 分取した白血球画分をPBSで50ml
- にした。 培養用フラスコ(前出)の上清を静かに捨て、PBSで希釈した白血球画分を10mlずつフラスコに加え、室温で10分間静置した。 培養用フラスコ内の上清を捨て、フラスコの底に付着した白血球を0.02%EDTA含有PBS 10mlで15mlの遠沈管に回収し、4℃、140×g~180×gで10分間遠心分離し、

白血球を収集した。 収集した白血球中に赤血球の混入が認められたので、滅菌精製水 $1 \, \mathrm{ml}$ にて白血球の沈渣を穏やかに懸濁して溶血させた後、PBSを $14 \, \mathrm{ml}$ 加えて等張化を行い、再度 $4 \, \mathrm{C}$ 、 $140 \times \mathrm{g} \sim 180 \times \mathrm{g}$ で $10 \, \mathrm{d}$ 間遠心分離を 行い、白血球を収集した。 収集した白血球をPBSで懸濁し、血球計算盤に て細胞数を計測し、 $1 \times 10^4 \, \mathrm{d}$ $\mu \, \mathrm{l} \sim 5 \times 10^4 \, \mathrm{d}$ $\mu \, \mathrm{l}$ に調製した。 この貪食 サンプルを、それぞれSA貪食サンプル、SE貪食サンプル、PA貪食サンプル、EF貪食サンプル、EK貪食サンプルとした。

③ 塗抹固定

実施例17(1)①で調製したU937細胞と、実施例17(1)②で作製した各細菌 10 食食サンプルとをAPSコートスライドグラスの各ウェルに5μ1ずつ塗抹し、 風乾させた。 次に、実施例2に記載のカルノア固定液に20分間浸した後、 75%エタノールに5分間浸し、カルノア固定液を洗浄して風乾させた後、試験に使用するまで4℃で保存した(実施例2参照)。 次いで、固定サンプルの前処理を、実施例3に従って行った。

15 (2) 貪食サンプルの規格及び試験方法

①細胞数

各細菌食食サンプルのスライドグラスに塗抹固定する細胞の数を、 $5.0 \times 10^4 \sim 2.5 \times 10^5$ 個/ウェルとし、また、U937細胞の細胞の数を $5.0 \times 10^4 \sim 1.0 \times 10^5$ 個/ウェルとした。

20 ② 食 食 率

スライドグラスに塗抹固定した細菌食食サンプルを、アクリジンオレンジ染色液で染色し、蛍光顕微鏡(×1,000)で無作為に約200個の細胞を計測した。 計測した細胞の中で、細胞内に細菌を食食している細胞(第6図で矢印にて示す、食食に特徴的な形態変化が認められた細胞)を陽性細胞とし、

25 以下の数式に従ってその貪食率(%)を算出した。

貪食率 $(\%) = [(陽性細胞数/計測細胞数) \times 100]$

この時に算出した各細菌貪食サンプルの貪食率(%)は、10%以上であった。

5

③ 試験方法

実施例17(2)①および②で作成した貪食サンプルを検体とした。 使用したSA貪食サンプルの貪食率は23%であり、1.98×10⁵個/ウェルであった。 SE貪食サンプルの貪食率は27%であり、1.74×10⁵個/ウェルであった。 また、EF貪食サンプルの貪食率は34%であり、6.40×10⁴個/ウェルであった。 各貪食サンプルを塗抹したスライドグラスを用いて、実施例3に記載の方

法に従って、酵素前処理を行った。 次に、酵素前処理済みのスライドグラスを湿潤箱に置き、各種力価に調製した各酵素溶液 1 mlを検体塗抹部位に滴下して反応させた。 その後、0.2mol/l塩酸含有PBS、70%エタノールにそれぞれ10分間浸し、風乾させた。 このスライドグラスを、70mmol/l水酸化ナトリウム含有PBSに3分間、70%エタノールに10分間浸した後に風乾し、1%アクリジンオレンジ染色液で染色した。 その後、蛍光顕微鏡(×1,000)により評価した。 Staphylococcus aureusおよびStaphylococcus epidermidisは、リゾスタフィンで至適力価の検討を行った。 Enterococcus

15 faecalisは、N-アセチルムラミダーゼとリゾチームの併用で至適力価を検討するため、N-アセチルムラミダーゼを100単位/mlに固定した場合のリゾチーム至適力価の検討と、リゾチームを10,000単位/mlに固定した場合のN-アセチルムラミダーゼ至適力価の検討を行った。 判定は、酵素処理により菌体が白血球中に確認されなくなるとき「適」とした。

20 ④ 結 果

Staphylococcus aureusの溶菌においては、表4に記載のように、リゾスタフィンの力価は1単位/mlで十分効果を示すが、Staphylococcus epidermi disの溶菌においては、10単位/ml以上のリゾスタフィン力価が必要であった。ゆえに、リゾスタフィンの至適力価を、10単位/ml~100単位/mlに設定した。

25 また、Enterococcus faecalisの溶菌においては、リゾチームの力価を 10,000単位/mlで固定したとき、N-アセチルムラミダーゼカ価が10単位/ml以 下では溶菌されなかった。 リゾチームについては、表 5 に記載の通り、N-アセチルムラミダーゼカ価を100単位/mlに固定したとき、リゾチームカ価が

1,000単位/ml以下では溶菌されなかった。 ゆえに、N-アセチルムラミダーゼの至適力価は、100単位/ml~1,000単位/ml、また、リゾチームの至適力価は、10,000単位/ml~100,000単位/mlに設定した。 その結果を、第7図に示すが、図中、(a)は酵素処理前のStaphylococcus aureusの貪食サンプル、

5 (b) は処理前のEnterococcus faecalisの貪食サンプル、(c) はサンプル(a) を酵素処理した後、および(d) はサンプル(b) を酵素処理した後の様子を示している。

表4:S. aureus、S. epidermidisに対する リゾスタフィンの至適酵素処理力価

リゾ スタフィン力価(U/mL) 貪食サンプル		0	0.1	1	10	100	1,000
	1回	不適	不適	適	適	適	適
SA貪食サンプル	2回	不適	不適	適	適	適	適
	3回	不適	不適	適	適	適	適
	1回	不適	不適	不適	適	適	適
SE貪食サンプル	2回	不適	不適	不適	適	適	適
	3回	不適	不適	不適	適	適	適

表 5:E. faecalisに対するN-アセチルムラミダーゼおよび リゾチームの至適酵素処理力価

N-アセチルムラミタ・- セ・カ価 (U/mL) 貪食サンプル		0	1	10	100	1,000	10,000
	1回	不適	不適	不適	適	適	適
EF貪食サンプル	2回	不適	不適	不適	適	適	適
	3回	不適	不適	不適	適	適	適
リゾ チーム力価(U/mL) 貪食サンプル		0	10	100	1,000	10,000	100, 000
	1回	不適	不適	不適	不適	適	適
EF貪食サンプル	2回	不適	不適	不適	不適	適	適
	3回	不適	不適	不適	不適	適	適

WO 02/099133 PCT/JP02/05107

食食サンプルを用いて得られたこれら結果を本発明に応用したところ、同一の結果を得ることができた。 ゆえに、本発明の臨床検体の感染症原因微生物同定における上記各酵素の至適力価も同一とした。

実施例18:至適酵素処理条件(温度)の検討

- 5 各食食サンプルを塗抹したスライドグラスを用いて、実施例17(2)③に記載の方法に準じて検討した。 ただし、本試験の酵素処理時間は30分、検討温度は4℃、25℃、37℃、42℃、60℃とし、また、各酵素力価は、N-アセチルムラミダーゼ(100単位/ml、生化学工業社製)、リゾチーム(10,000単位/ml、生化学工業社製)、リゾスタフィン(10単位/ml、SIGMA社製)とした。
- 10 判定は、実施例17(2)③に記載の方法に準じて行った。 その結果、 Staphylococcus aureusは、4℃~60℃の温度範囲で白血球の菌体は確認されなかった。 Staphylococcus epidermidisは、処理温度4℃および25℃では白血球中の菌体が残存していたが、37℃以上では菌体が確認されなかった。

また、Enterococcus faecalisでは、処理温度 $4 \, \mathbb{C}$ 、 $25 \, \mathbb{C}$ および $60 \, \mathbb{C}$ で菌 45 体が残存していたが、 $37 \, \mathbb{C}$ および $42 \, \mathbb{C}$ では確認されなかった。 ゆえに、至 適酵素処理温度を $37 \, \mathbb{C} \sim 42 \, \mathbb{C}$ に設定した。 その結果を、表 $6 \, \mathbb{C}$ に示した。

表6:酵素試薬の至適処理温度

処理温度	(°C)					
		4	25	37	42	60
貪食サンプル						
SA貪食サンプル	1回	適	適	適	適	適
	2回	適	適	適	適	適
	3回	適	適	適	適	適
	1回	不適	不適	適	適	適
SE貪食サンプル	2回	不適	不適	適	適	適
	3回	不適	不適	適	適	適
	1回	不適	不適	適	適	不適
EF貪食サンプル	2回	不適	不適	適	適	不適
	3回	不適	不適	適	適	不適

食食サンプルを用いて得られたこれら結果を本発明に応用したところ、同一の結果を得ることができた。 ゆえに、本発明の臨床検体の感染症原因微生物同定における酵素処理の至適温度も同一とした。

実施例19:至適酵素処理条件(時間)の検討

5 実施例17(1)①および②に記載の方法で作成した貪食サンプルを検体とし 検討した時間は、0分、10分、20分、30分、60分、120分とした。 た。 使用したSA貪食サンプルの貪食率は18%であり、7.80×10⁴個/ウェルであっ た。 SE貪食サンプルの貪食率は34%であり、 1.10×10^5 個/ウェルであった。 また、EF貪食サンプルの貪食率は28%であり、1.30×105個/ウェルであった。 10 各貪食サンプルを塗抹したスライドグラスを用いて、実施例17(2)③に記載 の方法に準じて検討した。 但し、本試験の酵素処理温度は37℃、各酵素力 価はN-アセチルムラミダーゼ(100単位/ml)、リゾチーム(10,000単位/ml)、 リゾスタフィン(10単位/ml)とした。 判定は、実施例17(2)③に記載の方 法に準じて行った。 その結果、Staphylococcus aureus、Staphylococcus 15 epidermidis、Enterococcus faecalis貪食サンプルともに酵素処理時間20分 以上(0分および10分においては不適であった)で、白血球中に菌体は確認 されなかったことから、少なくとも15分以上、好ましくは20分以上、さらに 至適酵素処理時間を30分~60分とするのが好ましい。 その結果を、表7に

示した。

酵素処理時間	(分)							
貪食サンプル		0	10	20	30	60	120	
	1回	不適	不適	適	適	適	適	
SA貪食サンプル	2回	不適	不適	適	適	適	適	
	3回	不適	不適	適	適	適	適	
	1回	不適	不適	適	適	適	適	
SE貪食サンプル	2回	不適	不適	適	適	適	適	
	3回	不適	不適	適	適	適	適	
	1回	不適	不適	適	適	適	適	
EF貪食サンプル	2回	不適	不適	適	適	適	適	
	3回	不適	不適	適	適	適	適	

表7:酵素試薬の至適処理時間

食食サンプルを用いて得られたこれら結果を本発明に応用したところ、同一の結果を得ることができた。 ゆえに、本発明の臨床検体の感染症原因微生物同定における酵素処理の至適時間も同一とした。

実施例20:プローブ濃度の検討

本発明のin situハイブリダイゼーション反応において、プローブ濃度はハイブリッド形成速度に影響を与える主要な因子である。 プローブ濃度が低すぎると反応速度の低下を招き、シグナルが明確でなくなる可能性がある。また、過剰量のプローブの使用は、非特異的反応の原因に繋がる。

ゆえに、各種プローブ液について、至適濃度を検討した。 まず、実施例 17 (1) ①および②に記載の方法で作成した貪食サンプルを検体とした。 使用したSA貪食サンプルの貪食率は24%であり、1.48×10⁵個/ウェルであった。 SE貪食サンプルの貪食率は28%であり、2.07×10⁵個/ウェルであった。 PA 貪食サンプルの貪食率は11%であり、1.59×10⁵個/ウェルであった。 また、 EF貪食サンプルの貪食率は24%であり、1.72×10⁵個/ウェルであった。 EK 15 貪食サンプルの貪食率は12%であり、1.63×10⁵個/ウェルであった。 各貪食サンプルを塗抹したスライドグラスを用いて、実施例17(2)③に記載の方法に準じて検討した。 プローブは、ジゴキシゲニン標識したものを使用し、

Staphylococcus aureus、Staphylococcus epidermidis、Enterococcus faec alis、Pseudomonas aeruginosa、Escherichia coliに対する各プローブ濃度を、それぞれ、 $0.06 \log/\mu$ l、 $0.6 \log/\mu$ l、 $1.2 \log/\mu$ l、 $1.8 \log/\mu$ l、 $2.4 \log/\mu$ l、 $3 \log/\mu$ lに調製した。 食食サンプルを塗抹したスライドグラス(第8図参照)に、上記各種濃度に調製したプローブ液を使用し、実施例3~11に記載の方法に従い検討した。

その結果、低濃度 $(0.06 \text{ng}/\mu 1)$ ではシグナルが明確でなくなり、一方で、高濃度 $(2.4 \text{ng}/\mu 1$ および $3 \text{ng}/\mu 1)$ ではバックグラウンドの増大が認められた。 ゆえに、SA、SE、PA、EF、EKのプローブ濃度を $0.6 \sim 1.8 \text{ng}/\mu 1$ 、好 10 ましくは $0.6 \sim 1.2 \text{ng}/\mu 1$ とした。 また、 $0.06 \text{ng}/\mu 1$ においては不適であり、 $0.6 \text{ng}/\mu 1$ においては適であったことから、少なくとも $0.1 \text{ng}/\mu 1$ 以上とするのが好ましい。

さらに、 $2.4 \text{ng}/\mu$ 1においては不適であり、 $1.8 \text{ng}/\mu$ 1においては適であったことから、 $2.2 \text{ng}/\mu$ 1以下とするのが好ましい。 その結果を、以下の表 8~表12に示した。

表8: SAプローブ

貪食サンプル	プローブ濃度(ng/µL)							
	0.06	0.6	1.2	1.8	2.4	3		
SA貪食サンプル		+	+	+	十	+		
SE貪食サンプル				_	+	+		
PA貪食サンプル			_		+	+		
EF貪食サンプル					+	+		
EK貪食サンプル			*****		-+	十		

表9:SEプローブ

貪食サンプル	プローブ濃度(n g/μL)							
	0.06	0.6	1.2	1.8	2.4	3		
SA貪食サンプル			_	—	********	+		
SE貪食サンプル		+	+	+	十	+		
PA貪食サンプル				*****	••••	+		
EF貪食サンプル	-		—			+		
EK貪食サンプル						+		

表10:PAプローブ

貪食サンプル	プローブ濃度(ng/μL)							
·	0.06	0.6	1.2	1.8	2.4	3		
SA貪食サンプル	k	W/W/W/W				_		
SE貪食サンプル	b		,		+	+		
PA貪食サンプル		+	+	十	+	+		
EF貪食サンプル		_			-	+		
EK貪食サンプル	N-1000-					+		

表11: EFプローブ

貪食サンプル	プローブ濃度(ng/μL)						
	0.06	0.6	1.2	1.8	2.4	3	
SA貪食サンプル						+	
SE貪食サンプル					+	+	
PA貪食サンプル				*******	+	+	
EF貪食サンプル		+	+	+	+	+	
EK貪食サンプル							

表12:EKプローブ

貪食サンプル	プローブ濃度(ng/μL)						
	0.06	0.6	1.2	1.8	2.4	3	
SA貪食サンプル					+	+	
SE貪食サンプル					+	+	
PA貪食サンプル					+	+	
EF貪食サンプル					+	+	
EK貪食サンプル		+	+	+	十	+	

食食サンプルを用いて得られたこれら結果を本発明に応用したところ、同一の結果を得ることができた。 ゆえに、本発明の臨床検体の感染症原因微生物同定における上記各プローブの至適濃度も同一とした。

実施例21:ハイブリダイゼーション温度の検討

- 5 ハイブリダイゼーション反応における反応温度は、ハイブリッド形成速度 とハイブリッドの安定性に影響を与えるパラメーターである。 ハイブリダ イゼーション反応を高温にすると細胞の形態が劣化することが知られている ことから、至適温度の検討(4℃、25℃、37℃、42℃、50℃、60℃)を行っ た。
- まず、実施例17(1)①および②に記載の方法で作成した貪食サンプルを検体とした。 使用したSA貪食サンプルの貪食率は31%であり、1.38×10⁵個/ウェルであった。 SE貪食サンプルの貪食率は42%であり、1.95×10⁵個/ウェルであった。 PA貪食サンプルの貪食率は14%である、1.27×10⁵個/ウェルであった。 また、EF貪食サンプルの貪食率は48%であり、1.05×10⁵個/ウェルであった。 EK貪食サンプルの貪食率は17%であり、1.85×10⁵個/ウェルであった。

食食サンプルおよびU937細胞を塗抹固定したスライドグラス(第9図参照)を使用して、実施例3~11に記載の方法に従い検討した。 その結果、ハイブリダイゼーション温度が4℃以下ではハイブリッド形成速度が低下

20 し、各種プローブで安定なシグナルが観察されなかった。 また、60℃においては細胞形態の変化が認められ、安定なシグナルが観察されなかった。

また、25℃および50℃では37℃および42℃に比べ、シグナルが明確でなかったが検出することは可能であった。 ゆえに、至適ハイブリダイゼーションの温度は、25℃~50℃、より好ましくは37~42℃に設定すると良い。 そ

25 れら結果を、以下の表13~表17に示した。

表13: SAプローブ

貪食サンプル	ハイブリダイゼーション温度(℃)							
	4	25	37	42	50	60		
SA貪食サンプル		+	+	+	十	+		
SE貪食サンプル								
PA貪食サンプル						-		
EF貪食サンプル		-		-				
EK貪食サンプル						—		

表14:SEプローブ

貪食サンプル	ハイブリダイゼーション温度(℃)							
	4	25	37	42	50	60		
SA貪食サンプル			-					
SE貪食サンプル	+	+	+	+	+			
PA貪食サンプル		_		_				
EF貪食サンプル	_			_				
EK貪食サンプル								

表15:PAプローブ

貪食サンプル	ハイブリダイゼーション温度(℃)							
	4	25	37	42	50	60		
SA貪食サンプル			_			******		
SE貪食サンプル					_			
PA貪食サンプル		+	+	+	+			
EF貪食サンプル		_	******					
EK貪食サンプル		_						

表16:EFプローブ

貪食サンプル	ハイブリダイゼーション温度(℃)					
	4	25	37	42	50	60
SA貪食サンプル						
SE貪食サンプル	_				,	
PA貪食サンプル						
EF貪食サンプル	+	+	+	+	+	
EK貪食サンプル						

表17:EKプローブ

貪食サンプル	ハイブリダイゼーション温度(℃)					<u>°C)</u>
	4	25	37	42	50	60
SA貪食サンプル			_			
SE貪食サンプル				_		_
PA貪食サンプル	-					_
EF貪食サンプル	_					
EK貪食サンプル		+	+	+	+	

食食サンプルを用いて得られたこれら結果を本発明に応用したところ、同一の結果を得ることができた。 ゆえに、本発明の臨床検体の感染症原因微生物同定におけるハイブリダイゼーションの至適温度も同一とした。

実施例22:ハイブリダイゼーション時間の検討

- 実施例17(1)①および②に記載の方法で作成した貪食サンプルを検体とし、10分、60分、90分、120分、180分、900分間のハイブリダイゼーション時間について検討した。 使用したSA貪食サンプルの貪食率は47%であり、1.45×10⁵個/ウェルであった。 SE貪食サンプルの貪食率は47%であり、1.33×10⁵個/ウェルであった。 PA貪食サンプルの貪食率は15%である、1.91×
- 10 10⁵個/ウェルであった。 また、EF貪食サンプルの貪食率は41%であり、
 - 1.45×10^5 個/ウェルであった。 EK食食サンプルの食食率は20%であり、
 - 1.23×10⁵個/ウェルであった。

貪食サンプルおよびU937細胞を塗抹固定したスライドグラス(第9図に示すものに同じ)を使用して、実施例3~11に記載の方法に従い検討した。

15 その結果、ハイブリダイゼーション時間が10分ではシグナルが観察されなかったが、60分以上でシグナルが観察され、90分以上で安定したシグナルが観察された。 また、ハイブリダイゼーション時間が900分においてもシグナルの検出には変化は認められなかった。 ゆえに、少なくとも30分以上、好ましくは60分以上、より好ましくは90分以上とするのが好ましい。 さら 20 に好ましい至適ハイブリダイゼーション時間は、120分~900分に設定すると

良い。 それら結果を、以下の表18~表22に示した。

表18:SAプローブ

貪食サンプル	ハイブリダイゼーション時間(分)					
	10	60	90	120	180	900
SA貪食サンプル		+	+	+	+	十
SE貪食サンプル						
PA貪食サンプル			_	******		
EF貪食サンプル				_	*****	
EK貪食サンプル						

表19:SEプローブ

貪食サンプル	ハイブリダイゼーション時間(分)					
	10	60	90	120	180	900
SA貪食サンプル		_	_			
SE貪食サンプル	+	+	+	+	+	+
PA貪食サンプル	_	_		_		
EF貪食サンプル	_					
EK貪食サンプル						

表20:SEプローブ

貪食サンプル	ハイブリダイゼーション時間(分)					分)
	10	60	90	120	180	900
SA貪食サンプル		_				
SE貪食サンプル		_			-	
PA貪食サンプル		+	+	+	+	+
EF貪食サンプル				-		
EK貪食サンプル						

表21:EFプローブ

貪食サンプル	ハイブリダイゼーション時間(分)					
	10	60	90	120	180	900
SA貪食サンプル					_	
SE貪食サンプル						_
PA貪食サンプル		-				
EF貪食サンプル	+	+	+	+	+	+
EK貪食サンプル						

表22:EKプローブ

貪食サンプル	ハイブリダイゼーション時間(分)					分)
	10	60	90	120	180	900
SA貪食サンプル	_	_				
SE貪食サンプル			—			
PA貪食サンプル					-	
EF貪食サンプル	_	—			*********	
EK貪食サンプル		+		+	+	+

食食サンプルを用いて得られたこれら結果を本発明に応用したところ、同一の結果を得ることができた。 ゆえに、本発明の臨床検体の感染症原因微生物同定におけるハイブリダイゼーションの至適時間も同一とした。

実施例23:ハイブリダイゼーション溶液に添加する界面活性剤の影響

5 実施例17(1)①および②に記載の方法で作成した貪食サンプルを検体とした。 プローブ希釈液に各種界面活性剤(SDS、ラウリスサルコシン、サポニン、BRIJ35、Tween 20、Triton X-100)を添加し、実施例7に従ってハイブリダイゼーションを行ったところ、0.25%のSDSを添加することにより検出感度が飛躍的に増強された。 また、ラウリルサルコシン、BRIJ 35、ツイーン20(Tween 20)によって検出感度を高めることができた。 その結果を、以下の表23に示した。

<u>表23</u>

界面活性剤	シグナル検出
無添加	+
SDS	+++
ラウリルサルコシン	++
サポニン	+
BRIJ 35	+
Tween 20	++
Triton X-100	++

さらに、SDSを種々の濃度で用いた結果、好ましい濃度は、1%以下、より好ましくは0.1%~0.5%、さらに好ましくは0.25%であることが明らかになった。

食食サンプルを用いて得られたこれら結果を本発明に応用したところ、同 一の結果を得ることができた。 ゆえに、本発明においてもin situハイブ リダイゼーションの工程に界面活性剤、特に、SDSを添加するのが好ましい。

<u>実施例24:ハイブリダイゼーションの際に使用するプローブ鎖長の検討</u>

Staphylococcus aureusプローブ (SA-24 (配列番号: 1))およびPseudomo nas aeruginosaプローブ (P2-2 (配列番号: 7))を、ジゴキシゲニンでラベ 10 ル化した。

まず、精製した各種DNAプローブ1μgを、10×L.B. (0.5mol/l トリス 塩酸(pH 7.5) 5 μ1、50mmol/l 塩化マグネシウム、0.5mgウシ血清アルブミ ン) $5 \mu l$ 、100mmol/l ジチオスレイトール $5 \mu l$ 、dNTPs (A、G、C) 各 1 nmol、ジゴキシゲニン-dUTP (Dig-dUTP) 0.5nmol、dTTP各0.5nmol、DNase 15 3 μl (25mU、75mUおよび200mU相当量)、10U/μl DNAポリメラーゼ1 μ lおよび滅菌精製水適量にて全量 50μ lとなるように調製した。 15 \circ 、2時間でジゴキシゲニンラベル化を行った。 ラベル化後、5分間煮沸し反応 を停止させた。 反応停止液をスピンカラム (CENTRI-SEP COLUMUNS CS901、 PRINCETON SEPARATIONS, INC.) に注入し、25℃で2分間遠心分離 (3,000× g)を行い、遊離のヌクレオチドを除去した。 その後、溶出液の濃度を吸 20 光度計により測定し、3%アガロースゲルにて電気泳動しサイズを確認した。 次に、サザンブロッティング法によりアガロースゲル内のDNAをニトロ セルロース膜に転写させた。 その後、2%ブロッキング試薬(ロシュ社製) に30分間浸した後、1/5,000量のアルカリフォスファターゼ標識抗ジゴキシ 25 ゲニン抗体を加え、30分間浸した。 次に、100mmol/1のトリス塩酸 (pH 7.5)、150mmol/l 塩化ナトリウムにて10分間振とうし、2回洗浄した。 そ の後、100mmol/1のトリス塩酸 (pH9.5)、150mmol/1 塩化ナトリウムにて10

分間振とうして洗浄した。 その後、NBT/BCIP溶液に浸して発色させた。

最後に、精製水に浸し発色を止めて乾燥させた。 その結果、第10図の(a) SAプローブ使用時および(b)PAプローブ使用時についてそれぞれ示すように、25mUのDNase(図中、レーン1)を用いて、その鎖長が、主として約350~約600塩基長に分布するように切断した場合に、ラベル効率が高いことが示された。 こうして得られた検出用プローブを、貪食サンプルや感染症患者からの臨床検体を用いた本発明の感染症原因微生物の検出方法において使用し、ハイブリダイゼーションを行ったところ、優れた感度でシグナルが検出された。 従って、ハイブリダイゼーションに使用するプローブの鎖長は、約350~約600の塩基長、好ましくは、約350~約550の塩基長とすることが良いものと判明した。

実施例25:ハイブリダイゼーションの際に使用するプローブの検討

実施例17(1)①および②に記載の方法で作成した、Escherichia coliの貪食サンプルを検体として、検出用プローブについての検討を行った。

検出用プローブは、EC-24 (配列番号:11)、EC-34 (配列番号:12) およ 15 びEC-39 (配列番号:13) から、実施例24に記載したようにジゴキシゲニン ラベル化し、約350~約600塩基長を有するように調製したものを、それぞれ 単独または3種を組み合わせて使用した。 得られた結果から、第11図に示 すとおり、(a) EC-24、(b) EC-34または(c) EC-39のそれぞれを単独で検出用プ ローブとして用いるよりも、(d) これらを混合してなる混合プローブ「MIX」

20 の方がシグナルが明瞭に検出され、感度が高められることが明らかであった。

産業上の利用可能性

本発明の方法におけるin situハイブリダイゼーションは、2時間以下でも安定なシグナルを観察することができるので、評価判定を非常に迅速に得ることができる。 このような時間短縮は、敗血症の迅速な診断に適用する 25 価値を実証するものに他ならない。

請 求 の 範 囲

- 1. 生体由来の食細胞を含む臨床検体より食細胞を得、得られた食細胞を固定し、該食細胞膜の透過性を亢進させる処理を施し、該食細胞中に存在すると予想される感染症原因微生物のDNAを露出させる処理を施し、該露出DNAにストリンジェントな条件下でハイブリダイゼーションできる検出用DNAプローブを用いてin situハイブリダイゼーションを行い、得られたシグナルにより感染症原因微生物を検出および/または同定するための方法であって、以下の特徴(1)~(8)、すなわち;
- 10 (1) 固定化する食細胞の密度(x個/ml)が、5×10⁶個/ml<x個/ml< 1×10⁸個/mlであること、
 - (2) 前記DNAを露出させる工程においてリゾスタフィンが使用され、 その力価が、1単位/ml~1,000単位/mlであること、
- (3) 前記DNAを露出させる工程においてリゾチームが使用され、その 15 力価が、1,000単位/ml~1,000,000単位/mlであること、
 - (4) 前記DNAを露出させる工程においてN-アセチルムラミダーゼが使用され、その力価が、10単位/ml~10,000単位/mlであること、
 - (5) 前記DNAを露出させる工程においてザイモラーゼが使用され、その力価が、50単位/ml~500単位/mlであること、
- 20 (6) 前記in situハイブリダイゼーションの工程において界面活性剤を使用すること、
 - (7) 前記検出用DNAプローブが、350~600塩基長の鎖長を有する1種以上のDNAプローブであること、および
- (8)前記検出用DNAプローブの濃度が、0.1ng/μl~2.2ng/μlである 25 ことの少なくとも1つ以上の特徴を有する、

ことを特徴とする、感染症原因微生物を検出および/または同定するための方法。

- 2. 前記DNAを露出させる工程において、リゾスタフィン、リゾチーム、N-アセチルムラミダーゼおよびザイモラーゼより選択される1以上の酵素が使用され、そして、リゾスタフィンの力価が10単位/ml~100単位/ml、リゾチームの力価が10,000単位/ml~100,000単位/ml、N-アセチルムラミダーゼの力価が100単位/ml~1,000単位/ml、ザイモラーゼの力価が100単位/ml~500単位/mlである請求の範囲第1項に記載の方法。
- 3. 前記DNAを露出させる工程において、酵素が使用され、そして、 該酵素を反応させる温度が26℃~59℃であり、該酵素を反応させる時間が15
 10 分~120分である請求の範囲第1項または第2項に記載の方法。
 - 4. 前記DNAを露出させる工程において、さらに食細胞の形態を保持させる物質を使用する請求の範囲第1項乃至第3項のいずれかに記載の方法。

15

- 5. 前記食細胞の形態を保持させる物質が、フェニルメチルスルフォニルフルオライドである請求の範囲第4項に記載の方法。
- 6. 前記フェニルメチルスルフォニルフルオライドが、10μmol/l~10 20 mmol/lの濃度で使用される請求の範囲第5項に記載の方法。
 - 7. 前記食細胞の形態を保持させる物質が、ジメチルスルフォキシドに て溶解された物質である請求の範囲第4項乃至第6項のいずれかに記載の方 法。

WO 02/099133 61

PCT/JP02/05107

8. 前記食細胞の形態を保持させる物質が、ジメチルスルフォキシドに て溶解された物質であり、また、当該ジメチルスルフォキシドが、前記 DNAを露出させる工程で用いられる溶液において5%未満の濃度に調製さ れる請求の範囲第7項に記載の方法。

5

- 9. 前記in situハイブリダイゼーションの工程において、DNAと DNAプローブとが、界面活性剤の存在下でハイブリダイズされる請求の範囲第1項乃至第8項のいずれかに記載の方法。
- 10 10. 前記界面活性剤が、アニオン界面活性剤である請求の範囲第9項に記載の方法。
 - 11. 前記アニオン界面活性剤が、ドデシル硫酸ナトリウムである請求の範囲第10項に記載の方法。

15

- 12. 前記in situハイブリダイゼーション工程において、ハイブリダイズ反応させる温度が25 $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ であり、反応させる時間が30 $^{\circ}$ 0 $^{\circ}$ 00 $^{\circ}$ 0 る請求の範囲第1項乃至第11項のいずれかに記載の方法。
- 20 13. 前記固定工程の前に、得られた食細胞を支持担体上に支持させる工程を含み、当該支持担体が、3-アミノプロピルトリエトキシシランをコートしたスライドグラスである請求の範囲第1項乃至第12項のいずれかに記載の方法。
- 25 14. 前記シグナルの検出の際に、シグナルと細胞のコントラストを明確 にさせるための色素が使用される請求の範囲第1項乃至第13項のいずれかに 記載の方法。

- 15. 前記臨床検体が、血液である請求の範囲第1項乃至第14項のいずれかに記載の方法。
- 16. 食細胞を含む生体由来の臨床検体より食細胞を得、得られた食細胞 を固定し、該食細胞膜の透過性を亢進させる処理を施し、該食細胞中に存在 すると予想される感染症原因微生物のDNAを露出させる処理を施し、該 DNAにストリンジェントな条件下ハイブリダイゼーションすることのできる検出用DNAプローブを用いて界面活性剤の存在下にin situハイブリダイゼーションを行い、得られたシグナルにより感染症原因微生物を検出およ び/または同定するためのキットであって、
 - (1) 前記DNAを露出させる工程において使用される酵素が、少なくとも、リゾスタフィン、リゾチーム、N-アセチルムラミダーゼ、ザイモラーゼからなる群より選択される1種以上の酵素を含み、および
 - (2) 少なくとも1種以上の検出用DNAプローブを含む、
- 15 ことを特徴とする、感染症原因微生物を検出および/または同定するためのキット。
- 17. 生体由来の食細胞を含む臨床検体中に含まれる、食細胞によって食食された外来微生物の遺伝子をモニターする方法であって、請求の範囲第120 項乃至第15項のいずれかに記載の方法におけるin situハイブリダイゼーション法を用いて該遺伝子を検出する工程を含み、該臨床検体中の外来微生物の遺伝子がモニターされることを特徴とする方法。
- 18. 敗血症または菌血症の診断方法であって、請求の範囲第1項乃至第 25 15項のいずれかに記載の方法におけるin situハイブリダイゼーション法を 用いて原因微生物の候補となる微生物の遺伝子を同定する工程を含み、同定 された結果に基づいて敗血症原因微生物または菌血症原因菌が特定されるこ とを特徴とする方法。

WO 02/099133 PCT/JP02/05107

1/11

第1図

差替え用紙 (規則26)

WO 02/099133 PCT/JP02/05107

 $\frac{2}{11}$

第2図

WO 02/099133 PCT/JP02/05107

3/11

第3図

WO 02/099133

4/11

第4図

5/11

第5図

(b) PMSF $1 \mu \text{ mol/mL}$

(c) PMSF $10\,\mu\,\mathrm{mol/mL}$

(d) PMSF 0.1mmol/mL

(e) PMSF 1mmol/mL

WO 02/099133 PCT/JP02/05107

6/11

第6図

(e)EK貪食サンプル

写真中の矢印は 貪食された細菌を示す

WO 02/099133 PCT/JP02/05107

7/11

第フ図

8/11

第8図

各種貪食サンプル

SA: SA貪食サンプル

SE: SE貪食サンプル

PA: PA貪食サンプル EF: EF貪食サンプル

EK: EK貪食サンプル

9/11

第9図

SA: SA貪食サンプル SE: SE貪食サンプル PA: PA貪食サンプル EF: EF貪食サンプル EK: EK貪食サンプル

第10図

SAプローブ DNase 量 1.25mU 2.75mU 3.200mU

(a) 発色後ニトロセルローズ膜(上)と電気泳動図

11/11

第11図

(a) EC-24

(b) EC-34

(c) EC-39

(d) Mix

1/51

SEQUENCE LISTING

<110> FUSO PHARMACEUTICAL INDUSTRIES, LTD.
TSUNEYA OHNO

<120> Improved Method for Detecting and Identifying Causal Microorganisms

<130> 02P327W0

<150> JP 2001-165929

<151> 2001-05-31

<160> 19

<210> 1

<211> 10207

<212> DNA

<213> Staphylococcus aureus

<220>

<223 Designated as SA-24

<400> 1

aagettatgg acctatttta ggtatattga ttagttgget tggattaatt tetggaacat 60 ttacagteta tttgatetgt aaacgattgg tgaacactga gaggatgeag egaattaaac 120 aacgtactge tgtteaacge ttgattagtt ttattgateg eeaaggatta ateceattgt 180 ttattttact ttgttteet tttacgeeaa atacattaat aaattttgta gegagtetat 240 eteatattag acctaaatat tattteattg ttttggeate ateaaagtta gttteaacaa 300

ttattttagg	ttatttaggt	aaggaaatta	ctacaatttt	aacgcatcct	t t a a g a g g g a	360
tattaatgtt	agttgtgttg	gttgtatttt	ggattgttgg	aaaaaagtta	gaacagcatt	420
ttatgggatc	gaaaaaggag	tgacatcgtg	aaaaaagttg	taaaatattt	gatttcattg	480
atacttgcta	ttatcattgt	$act \verb gttcgta $	caaacttttg	taatagttgg	tcatgtcatt	540
ccgaataatg	atatgtcacc	aacccttaac	aaagggacgt	gttattgtaa	ataaaattaa	600
agttacattt	aatcaattga	ataatggtga	tatcattaca	tataggcgtg	gtaacgagat	660
atatactagt	cgaattattg	ccaaacctgg	tcaatcaatg	gcgtttcgtc	agggacaatt	720
ataccgtgat	gaccgaccgg	ttgacgcatc	ttatgccaag	aacagaaaaa	ttaaagattt	780
tagtttgcgc	aattttaaag	aattagatgg	agatattata	ccgcctaaca	attttgttgt	840
gctaaatgat	catgataaca	atcagcatga	ttctagacaa	tttggtttaa	ttgataaaaa	900
ggatattatt	ggtaatataa	gtttgagata	ttatcctttt	tcaaaatgga	cgattcagtt	960
caaatcttaa	aaagaggtgt	caaaattgaa	aaaagaatta	ttggaatgga	ttatttcaat	1020
tgcagtcgct	tttgtcattt	tatttatagt	aggtaaattt	attgttacac	catatacaat	1080
taaaggtgaa	tcaatggatc	caactttgaa	agatggcgag	cgagtagctg	taaacattat	1140
tggatataaa	acaggtggtt	tggaaaaagg	taatgtagtt	gtcttccatg	caaacaaaaa	1200
tgatgactat	gttaaacgtg	tcatcggtgt	tcctggtgat	aaagtagaat	ataaaaatga	1260
tacattatat	gtcaatggta	aaaaacaaga	tgaaccatat	ttaaactata	atttaaaaca	1320
taaacaaggt	gattacatta	ctgggacttt	ccaagttaaa	gatttaccga	atgcgaatcc	1380
taaatcaaat	gtcattccaa	aaggtaaata	tttagttctt	ggagataatc	gtgaagtaag	1440
taaagatagc	cgtgcgtttg	gcctcattga	tgaagaccaa	attgttggta	aagtttcatt	1500
tagattctgg	ccatttagtg	aatttaaaca	taatttcaat	cctgaaaata	ctaaaaatta	1560
atatgaaaca	aatacaacat	cgtttgtcgg	ttttaatact	gataaacgat	gttttatttt	1620
gttagtacca	caataaaagc	taagttcgaa	atgaacttat	aataaatcaa	tcacaatcac	1680
tttgtgttaa	aatatgtgtc	aaaggaagtg	agggtttgtc	atgacattac	atgcttattt	1740
aggtagagcg	ggaacaggta	agtctacgaa	aatgttgacc	gaaataaaac	aaaaaatgaa	1800
agcagatccg	cttggagatc	caatcatttt	aattgcgcca	actcaaagta	catttcaatt	1860
agaacaagcc	tttgtcaatg	atccggaatt	aaatggtagt	ttaagaacag	aagtgttgca	1920
ttttgaacga	ttaagtcatc	gtattttcca	agaagttggt	agttatagcg	aacaaaagtt	1980
atctaaagct	gcaacggaaa	tgatgattta	taacattgtt	caagaacaac	aaaagtattt	2040

aaaactttat	caatcacaag	caaaatatta	tgggtttagt	gaaaaattaa	cagaacaaat	2100
tcaagatttt	aaaaaatatg	cagtaacgcc	tgaacattta	gaacacttta	ttgctgataa	2160
aaatatgcaa	actcgaacta	aaaataagtt	agaggatatt	gctttaatat	accgtgagtt	2220
cgaacaacgc	attcaaaacg	agtttattac	tggtgaggat	tcattacaat	attttattga	2280
ttgtatgccg	aaatcagagt	ggctaaaacg	tgctgatata	tatattgatg	gttttcacaa	2340
cttttcaacg	attgagtatt	taataatcaa	aggattaatt	aaatatgcga	gagtgtcaca	2400
attatattga	cgacagatgg	taaccacgat	caatttagtt	ttttagaaaa	ccatcggaag	2460
tgttacgaca	tattgaagaa	atagcaaatg	aactcaatat	ttctattgaa	cgtcaatatt	2520
tcaaccaatt	atatcgcttc	aataatcaag	atttaaagca	tcttgaacaa	gaatttgatg	2580
tacttcaaat	caatcgagtg	gcatgtcaag	gtcatatcaa	tattttagaa	tctgcgacta	2640
tgagagagga	aataaatgaa	attgcgcgac	gtatcatcgt	tgatattcgt	gataagcaat	2700
tacgatatca	agatattgca	attttatatc	gtgacgagtc	ttatgcttat	ttatttgatt	2760
ccatattacc	gctttataat	attccttata	acattgatac	aaagcgttcg	atgacacatc	2820
atccggtcat	ggaaatgatt	cgttcattga	ttgaagttat	tcaatctaat	tggcaagtga	2880
atccaatgct	acgcttattg	aagactgatg	tgttaacggc	atcatatcta	aaaagtgcat	2940
acttagttga	tttacttgaa	aattttgtac	ttgaacgtgg	tatatacggt	aaacgttggt	3000
tagatgatga	gctatttaat	gtcgaacatt	ttagcaaaat	ggggcgtaaa	gcgcataaac	3060
tgaccgaaga	tgaacgtaac	acatttgaac	aagtcgttaa	gttaaagaaa	gatgtcattg	3120
ataaaatttt	acattttgaa	aagcaaatgt	cacaagcgga	aactgtaaaa	gactttgcaa	3180
ctgcttttta	tgaaagtatg	gaatatttcg	aactgccaaa	tcaattgatg	acagagcgag	3240
atgaacttga	tttaaatggt	aatcatgaaa	aggcggagga	aattgatcaa	atatggaatg	3300
gcttaattca	aatccttgac	gacttagttc	tagtatttgg	agatgaacca	atgtcgatgg	3360
aacgtttctt	agaagtattt	gatattggtt	tagaacaatt	agaatttgtc	atgattccac	3420
aaacattaga	tcaagttagt	attggtacga	tggatttggc	taaagtcgac	aataagcaac	3480
atgtttactt	agttggaatg	aacgacggca	ccatgccaca	accagtaact	gcatcaagtt	3540
taattactga	tgaagaaaag	aaatattttg	aacaacaagc	aaatgtagag	ttgagtccta	3600
catcagatat	tttacagatg	gatgaagcat	ttgtttgcta	tgttgctatg	actagagcta	3660
agggagatgt	tacattttct	tacagtctaa	tgggatcaag	tggtgatgat	aaggagatca	3720
gcccattttt	aaatcaaatt	caatcattgt	tcaaccaatt	ggaaattact	aacattcctc	3780

3840 aataccatga agttaaccca ttgtcactaa tgcaacatgc taagcaaacc aaaattacat 3900 tatttgaagc attgcgtgct tggttagatg atgaaattgt ggctgatagt tggttagatg 3960 cttatcaagt aattagagat agcgatcatt taaatcaagg tttagattat ttaatgtcag cattaacgtt tgacaatgaa actgtaaaat taggtgaaac gttgtctaaa gatttatatg 4020 gtaaggaaat caatgccagt gtatctcgtt ttgaaggtta tcaacaatgc ccatttaaac 4080 actatgcttc acatggtctg aaactaaatg aacgaacgaa atatgaactt caaaactttg 4140 atttaggtga tattttccat tccgttttaa aatatatatc tgaacgtatt aatggcgatt 4200 ttaaacaatt agacctgaaa aaaataagac aattaacgaa tgaagcattg gaagaaattt 4260 tacctaaagt tcagtttaat ttattaaatt cttcagctta ctatcgttat ttatcaagac 4320 gcattggcgc tattgtagaa acaacactaa gcgcattaaa atatcaaggc acgtattcaa 4380 agtttatgcc aaaacatttt gagacaagtt ttagaaggaa accaagaacc aaatgtacga 4440 attaattgca caaacattaa cgacaactca aggtattcca attaatatta gagggcaaat 4500 tgaccgtatc gatacgtata caaagaatga tacaagtttt gttaatatca ttgactataa 4560 atcctctgaa ggtagtgcga cacttgattt aacgaaagta tattatggta tgcaaatgca 4620 4680 aatgatgaca tacatggata tcgttttaca aaataaacaa cgccttggat taacagatat tgtgaaacca ggtggattat tatacttcca tgtacatgaa cctagaatta aatttaaatc 4740 atggtctgat attgatgaag ataaactaga acaagattta attaaaaagt ttaagctgag 4800 4860 tggtttagtg aatgcagacc aaactgttat tgatgcattg gatattcgtt tagaacctaa attcacttca gatattgtac cagttggttt gaataaagat ggctctttga gtaaacgagg 4920 cagccaagtg gcagatgaag caacaattta taaattcatt cagcataaca aagagaattt 4980 tatagaaaca gcttcaaata ttatggatgg acatactgaa gtgcaccatt aaagtacaaa 5040 5100 caaaaattgc catgtgcttt ttgtagttat caatcggtat gtcatgtaga tggcatgatt 5160 gatagtaagc gatatcgaac tgtagatgaa acaataaatc caattgaagc aattcaaaat 5220 attaacatta atgatgaatt tgggggtgag taatagatga caattccaga gaaaccacaa 5280 ggcgtgattt ggactgacgc gcaatggcaa agtatttacg caactggaca agatgtactt gttgcagccg cggcaggttc aggtaaaaca gctgtactag ttgagcgtat tatccaaaag 5340 attttacgtg atggcattga tgtcgatcga cttttagtcg taacgtttac aaacttaagc 5400 5460 gcacgtgaaa tgaagcatcg tgtagaccaa cgtattcaag aggcatcgat tgctgatcct 5520 gcaaatgcac acttgaaaaa ccaacgcatc aaaattcatc aagcacaaat atctacactt

catagttttt	gcttgaaatt	aattcaacag	cattatgatg	tattaaatat	tgacccgaac	5580
tttagaacaa	gcagtgaagc	tgaaaatatt	ttattattag	aacaaacgat	agatgaggtc	5640
atagaacaac	attacgatat	ccttgatcct	gcttttattg	aattaacaga	acaattgtct	5700
tcagatagaa	gtgatgatca	gtttcgaatg	attattaaac	aattgtattt	ctttagcgtt	5760
gcaaatccaa	atcctacaaa	ttggttggat	caattggtga	caccatacga	agaagaagca	5820
caacaagcgc	aacttattca	actactaaca	gacttatcta	aagtatttat	cacagctgcc	5880
tatgatgctt	taaataaggc	gtatgatttg	tttagtatga	tggatggcgt	cgataaacat	5940
ttagctgtta	tagaagatga	acgacgttta	atggggcgtg	ttttagaagg	tggttttatt	6000
gatatacctt	atttaactga	tcacgaattt	ggcgcgcgtt	tgcctaatgt	aacagcgaaa	6060
attaaagaag	caaatgaaat	gatggtcgat	gccttagaag	atgctaaact	tcagtataaa	6120
aaatataaat	cattaattga	taaagtgaaa	aatgattact	tttcaagaga	agctgatgat	6180
ttgaaagctg	atatgcaaca	attggcgcca	cgagtaaagt	accttgcgcg	tattgtgaaa	6240
gatgttatgt	cagaattcaa	tcgaaaaaag	cgtagcaaaa	atattctgga	ttttctgat	6300
tatgaacaat	ttgcattaca	aattttaact	aatgaggatg	gttcgccttc	agaaattgcc	6360
gaatcatacc	gtcaacactt	tcaagaaata	ttggtcgatg	agtatcaaga	tacgaaccgg	6420
gttcaagaga	aaatactatc	ttgcatcaaa	acgggtgatg	aacataatgg	taatttattt	6480
atggttggag	atgitaagca	atccatttat	aaatttagac	aagctgatcc	aagtttattt	6540
attgaaaagt	atcaacgctt	tactatagat	ggagatggca	ctggacgtcg	aattgatttg	6600
tcgcaaaact	ccgttctcga	aaagaagtac	tgtcaacgac	taactatata	tcaaacatat	6660
gatggatgaa	caagtcggtg	aagtaaaata	tgatgaagcg	gcacagttgt	attatggtgc	6720
accatatgat	gaatcggacc	atccagtaaa	cttaaaagtg	cttgttgaag	cggatcaaga	6780
acatagtgat	ttaactggta	gtgaacaaga	agcgcatttt	atagtagaac	aagttaaaga	6840
tatcttagaa	catcaaaaag	tttatgatat	gaaaacagga	agctatagaa	gtgcgacata	6900
caaagatatc	gttattctag	aacgcagctt	tggacaagct	cgcaatttac	aacaagcctt	6960
taaaaatgaa	gatattccat	tccatgtgaa	tagtcgtgaa	ggttactttg	aacaaacaga	7020
agtccgctta	gtattatcat	ttttaagagc	gatagataat	ccattacaag	atatttattt	7080
agttgggtta	atgcgctccg	ttatatatca	gttcaaagaa	gacgaattag	ctcaaattag	7140
aatattgagt	caaatgatga	ctacttctat	caatcgattg	taaattacat	taatgacgaa	7200
gcagcagatg	ctattttagt	tgataaatta	aaaatgtttt	tatcagatat	tcaaagttac	7260

caacaatata gtaaagatca tooggtgtat cagttaattg ataaatttta taatgatcat 7320 7380 tatgitatic aatacittag iggacitati ggiggacgig gacgacgigc aaaccittat ggtttattta ataaagctat cgagtttgag aattcaagtt ttagaggttt atatcaattt 7440 attcgtttta tcgatgaatt gattgaaaga ggcaaagatt ttggtgagga aaatgtagtt 7500 7560 ggtccaaacg ataatgttgt tagaatgatg acaattcata gtagtaaagg tctagagttt ccattigtca titaticigg atigicaaaa gattitaata aacgigatti gaaacaacca 7620 gttattttaa atcagcaatt tggtctcgga atggattatt ttgatgtgga taaagaaatg 7680 gcatttccat ctttagcttc ggttgcatat aaagctgttg ccgaaaaaga acttgtgtca 7740 gaagaaatgc gattagtcta tgtagcatta acaagagcga aagaacaact ttatttaatt 7800 ggtagagtga aaaattgata aatcgttact agaactagag caattgtcta tttctggtga 7860 gcacattgct gtcaatgaac gattaacttc accaaatccg ttccatctta tttatagtat 7920 tttatctaaa catcaatctg cgtcaattcc agatgattta aaatttgaaa aagatatagc 7980 acaagttgaa gatagtagtc gtccgaatgt aaatatttca attatatact ttgaagatgt 8040 gtctacagaa accattttag ataataatga atatcgttcg gttaatcaat tagaaactat 8100 gcaaaatggt aatgaggatg ttaaagcaca aattaaacac caacttgatt atcaatatcc 8160 atatgtaaat gatactaaaa agccatccaa aacaatctgt ttctgaattg aaaaggcaat 8220 atgaaagaag aaagtggcac aagttacgaa cgagtaagac aatatcgtat cggttttcaa 8280 cgtatgaacg acctaaattt ctaagtgaac aaggtaaacg aaaaagcgaa ttgaaattgg 8340 tacgttaatg catacagtga tgcaacattt accattcaaa aaagaacgca tatctgaagt 8400 tgagttacat cagtatatcg atggattaat cgataaacat attatcgaag cagatgcgaa 8460 aaaagatatc cgtatggatg aaataatgac attatcaata gtgagtatat tcgattattg 8520 ctgaagcaga gcaagtttat cgtgaattac cgtttgtagt taaccaagca ttagttgacc 8580 8640 aattgccaca aggagacgaa gacgtctcaa ttattcaagg tatgattgac ttaatctttg ttaaagatgg tgtgcattat tttgtagact ataaaaccga tgcatttaat cgtcgccgtg 8700 ggatgacaga tgaagaaatt ggtacacaat taaaaaaataa atataagata cagatgaaat 8760 8820 attatcaaaa tacgcttcaa acgatactta ataaagaagt taaaggttat ttatacttct tcaaatttgg tacattgcaa ctgtagtatt ttgattttca aaagaataaa aaataatttc 8880 gattaagtgc aaagtccttg tagcagaatg aacacaactc attttcaaaa ttgtcttact 8940 9000 tatttatttg ttatttgata acgaaaaaag ttataatgtg aattaagata aagatgagga

gttgagaatg	aatgaaattc	ttatcattca	agtataatga	caaaacttca	tatggcgtta	9060
aagtaaaacg	cgaagatgct	gtatgggatt	taacacaagt	atttgctgac	tttgcagaag	9120
gagatttcca	tcctaaaaca	ttgttagctg	gtttacaaca	aaatcatact	ttagattttc	9180
aagaacaagt	acgtaaagca	gttgtagcag	cagaagatag	cggcaaagct	gaagactata	9240
aaatttcatt	taatgacatt	gaattettae	caccagtaac	acctccgaat	aatgtgattg	9300
cttttggtag	aaattacaaa	gatcatgcga	acgaattaaa	tcatgaagta	gaaaaattat	9360
atgtatttac	aaaagcagcg	tcatctttaa	caggagataa	tgcaacaatt	ccaaatcata	9420
aagatattac	tgatcaatta	gattatgaag	gtgaattagg	tattgttatt	ggtaagtctg	9480
gtgaaaagat	tccaaaagca	ttagctttag	attatgttta	cggctataca	attattaacg	9540
atatcactga	tcgcaaagca	caaagtgaac	aagatcaagc	attttatca	aaaagtttaa	9600
ctggcggttg	cccaatgggt	ccttatatcg	ttactaaaga	cgaactacca	ttacctgaaa	9660
atgtaaatat	tgttacaaaa	gttaacaatg	aaattagaca	agatggtaac	actggcgaaa	9720
tgattcttaa	aattgatgaa	ttaatagaag	aaatttcaaa	atatgttgca	ctactaccgg	9780
gagattatta	ttgcaactgg	tacaccagct	ggcgttggtg	caggtatgca	accacctaaa	9840
tttttacaac	caggtgatga	agttaaagtg	actattgata	atattggaac	gctgacaact	9900
tatatcgcta	$a at a at tat \\ c$	atttaaaaaag	ctaaccaggt	ctttatatag	attggttagt	9960
tttttcttgc	ttttctaaaa	aggtgttaaa	gataaattat	ttataatgtt	accattttga	10020
gatgaaagtg	aaatattgat	attaagaagt	agttgattat	tttacagcag	attcacaata	10080
ttctaataag	ggcaatgcaa	atgtcatgtt	cttcctctca	aatatagaag	tgtggtagaa	10140
tatatattcg	tgtataatca	aatctagatt	aaattacaag	caagtgggta	ttaatcccaa	10200
gaagctt						10207

<210> 2

<211> 2082

<212> DNA

<213> Staphylococcus aureus

<220>

<223> Designated as SA-36

<400> 2

aagctttcta	atctatcgtt	aatgatttgc	tttaaaattg	ggtcgaagtt	aattgaaggt	60
gtgaagtgta	tatctgtatt	aataaccatg	tcattcattt	gctgcttcac	tttgttaaca	120
agtcttccgt	catataaaaa	taatggtacg	acaatcaatt	tttgataccg	tttcgagatg	180
ctttctaaat	catgtgtaaa	actaatctct	ccatatagcg	ttctcgcata	agtaggttta	240
ttaatctgca	aatgttgagc	gcatatttgt	aactcttcgt	gtgccttagt	aaaatttcca	300
ttaatattgc	cgtgtgcaac	aaccataact	ccaacttgtt	gttcgtcacc	tgctaatgcg	360
tcacaaatac	gttgttcaat	taatcgtctc	attaaaggat	gtgtgccaag	tggctcgctt	420
acttctacct	ttatgtctgg	ataccgtcgt	ttcatttcat	gaacgatatt	cggtatatcc	480
ttgagataat	gcattgcact	aaagattagc	aatggtacaa	ttttaaaatg	gtcaacccca	540
ctttgaatca	acgtcgtcat	taccgtctct	aaatcctgat	gctcactttc	taaaaacgca	600
atatcatagt	gatgtatatc	atctttact	aattcagaaa	taaatgcttc	taacgcttga	660
ttctgtcgtc	cgtgcctcat	gccatgtgca	acaatgatat	tcccattcac	atttaccaac	720
$\tt cctttcacac$	gtattgtata	ccaaatcatt	ttgtttttgt	gaaaagaatc	acattataat	780
gtaaaatcag	ggaattccct	gatgcctgta	gtcatgcata	ttccttatac	attttccctt	840
tttgttaaat	caaaaaaagc	gaccgatata	tgaatcccta	ctcaacattt	atttgagcaa	900
gcatcaatat	atcggtcgct	tgtagtgtat	attattatct	taaaatggtg	gttggcctaa	960
tattgtttcg	tcaaagcgct	cgggtatcaa	tactttgcgc	atgatcacac	ctaaatcgcc	1020
atcatcattt	tcatgttcgc	tgtatatttc	ataacctctt	ttttcataaa	ttttaagtaa	1080
ccacggatgc	aatcttgcag	atgtacctaa	agtaactgcc	gctgacttta	acgtatctcg	1140
caaaaatgct	cttcaacata	agtaagtaat	tggctaccat	agcctttccc	ttcatactca	1200
ggatttgtcg	caaaccacca	gacaaaagga	tagcccgaaa	tacttttcac	acttccccaa	1260
ggatatctaa	ccgtaatcgt	agatataatt	tcatcatcaa	ttgtcatgac	aaatgtagta	1320
tttttatcta	tattttcttt	aacagcatct	aaattagcat	taactgaagg	ccaatcaata	1380
cctagttctc	ttagaggcgt	aaatgcttca	tgcatgagtt	gttgcaattt	ttctgcatct	1440
tgttcacttg	cgagtcgaat	catcgttttt	gtcatattaa	tccccactct	ttttaaatg	1500
atttaaccat	attttatttt	taaaataaat	atccatcaaa	gtgtatcaat	aaatttatca	1560
catgtcagaa	agtatgcttc	atctgaatac	accaatactc	tcatgaaact	tattaaaaat	1620

WO 02/099133 PCT/JP02/05107 9 / 51

1680 tactctctca acgtaaaaaa accattcaaa ttcatgaatg gtttggaaga atgattcatt 1740 gttacgctat ttaatcacta catcttaatt attgttgctc taaacgatta cgcttaccat 1800 ttaagaaagc ataaacgaga cctacaaaaa taccgccacc gacaaagtta cctaagaaag caaaaacgat atttttaaa acatgtaacc atgaaactgc atcaaggtta aagaatacca 1860 tacctgcata tagacctgca ttgaacacaa cgtgctcata tcccatgtat acaaagacca 1920 1980 cgacaccaca agctatgaag aatgcctttg ttaagccgcc tttgaattgc atagagatga aaataccaat attaataaag aagttacaga aaataccttt tgtaaaaata ttcaaccatg 2040 ttgaatcaac agtctttttc tgaactaaag ctgttaaagc tt 2082

<210> 3

<211> 2885

<212> DNA

<213> Staphylococcus aureus

<220>

<223 Designated as SA-77

<400> 3

aagcttttga ttaatttggg ctttaaagta ttcccaatta taattcttca tgattttctt 60 attggatttc gaatttggtt tcatgcattg ttgcctcaaa gaacatgctg aacagtcatc 120 gcattcatat agcttgaagt cacgtttaaa accatatcta tcattacggt atgcatatct 180 240tttaaaacct attcttttgt tattaggaca tataaattca tcattaagtt cgtcatattt 300. ccaattttga gtgttaaaaa tgtcactttt aaactttcta gttttatctt taataaacat gccatacgta ataagtggcg ttttattaaa acatctataa tagccatata gttttgctca 360 ctatcataac tgcatcagct acattaactc tggtaatacc gaggatttga atcattgtta 420 480 aaaatggaat taaagttcta gtatctgttg gggtttgaaa taggtcatag gataaaaaaa 540 ttgagaattt gtcgctattt gtaaattgta tcctggctta agttggccat ttttcatatg 600 gtcttccttc attctcataa aagttgcatc atgatcagcc cagaaagcta ttictatctt 660 taagaatcca tttttgttct tcatatttat tttttctttc ggaataatca tcaaatttct

ttttgaactt cttaatctca gttctttttt acgggtctgt tttctaattt gagcactctt 720 cgttctaaat agaatgattt aaatcttcga tttcttttat ctaaatgact accaattaaa 780 840 tctatttctt ctcgtgattt tgaatacttt tcttccacac aaatgtatat ctattggcat 900 tagcttctac ttatgtacca tcaataaaaa ttgaattatt atcaataaga ttttgcttta 960 aacattgact atggaactga ataaataaag attcaattaa cgcatcagta ttaggattca ctctaaaacg attaatagtt ttataagaag gtgtttgatc ttgagctaac cacatcattc 1020 gaatactgtc atgaagtaat ttctctattc tacgaccaga aaatacagat tgagtatatg 1080 catataagat gatttttaac atcatttttg gatgatagga tgttgcgcca cgatgatgtc 1140 tgaattcatc gaattcgcta tcaggtatcg tttcaacaat ttcatttaca tatcgcgaaa 1200 tatcatttta aggaattcta acagaagttt ctattggtag tgtaagttgg gcaaagtgtc 1260 ttatttttt aaagtatgta aaagtaaaat tacatgttaa tacgtagtat taatggcgag 1320 actcctgagg gagcagtgcc agtcgaagac cgaggctgag acggcaccct aggaaagcga 1380 agcattcaat acgaagtatt gtataaatag agaacagcag taagatattt tctaattgaa 1440 aattatetta etgetgtttt tiltagggati tatgteeag eetgttttat tiltegaetag 1500 tttggagaat ttattgacat tcacattatt taaacggcaa caaagattgt tttattttga 1560 taggcattat atggtgttaa aaaatttgca tgaaaattaa aaaatgcttc gttcaggaag 1620 gtgtcgtaat ttacctattt gctgaatgaa gcattttatt tttaaatatg atagccaata 1680 taacaagcta taaatccaat gatgaattgt aaaagtgaat aattgagaaa aaggttaata 1740 tcaaattttg gtgtcatcat taatgtaagt tccttggcta acgttgagaa agttgttaag 1800 ccacctaaaa aaaccggtga caaagaacgc agggaaccat gagattgaaa ttgataggcc 1860 tatagttaat ccaattaaaa aactaccaac tagatttact atcaatgttg cgataggtaa 1920 ctttgaagta aatttatgat taaaataatc agtaatggca cttctagcaa ttgcgccaaa 1980 2040 accgccgcca atcatgacta aaatgattga tatcatgata aaccaccacc tagttttata ccgacgtaac ataacaaaat accaaagaca taacttgtta cagcatatag tagtaaagtt 2100 ataaattgtt gatgatcaaa catatgtatt aattctaatt gaaatgttga aaaagtcgtt 2160 2220 aaagcaccaa gaaaaccagt cgtaatagct ttttttaggg tcggatggtt tgaaaaaaat gcaattgtta aggctgttag caatcccatt acaaaggcac cagtcaaatt ggctatcagt 2280 2340 2400 cctaaagcac caccgataaa aatatataca tattgcattt ggttcacctc gaaaagaagt

11/51

2460 agtttgaatt taaaaaagag gttttggcaa cacgacgaca aaaattgtcg atgcattatc 2520 aaacctcatt atatgttata tcttgttgta taactatagc gattagatgc atagttatga 2580 tttcgaaaat ctaatatttt ttatacgcaa caacgtcatc aaattgtttt actcattata gcatgataca tigiatigit tigiattaac gciacatiga cattitatci tittiaaata 2640 aaaccgaatg tacgacaatt gaaaagatat gtactaaaat aacaattaga ataatccaag 2700 gcaaactttt actcgcaatt ctaatccaat ctgcatcagg ctttagtgat ttaattgaac 2760 gatctgcaaa aattatagac aaaattagta caattgagtt aataacactg cagaaaagta 2820 2880 ttaatttaat aaaagaatta aaaaatccac ttaggaaaac gttatttgta ttaaagaaaa 2885 agctt

<210> 4

<211> 8654

<212> DNA

<213> Staphylococcus epidermidis

<220>

<223 Designated as SE-22

<400> 4

aagettgttt tattgettag ttatatttee aataacaete attttatatg taegtattge 60 caaaaaaaat tatctataca gtaataagta tgaaatgaga actggaataa tcattggtat 120 180 tattgcttta attctagtaa ttatgcaagg gtttcacttt aactgggcta ttattcctat 240 ttctatctat ggtcatcagt ttgtattttt cgctggaatt attttaagtc ttgttggtat 300 attetttaaa egtatagaat tigtaggagi iggettaeta tiligteaaa aacatagaig 360 caatggtaac tgacccggaa attgcacagt ttttctcttt agcaatttgg attatacttg ttgtgctaat cattttttat acgatacgtt tatctgaacg cactaaatca tcatcatata 420 480 caaagattta aactcagaaa atatgctaga catatctttc tgagtttttt aatttattaa 540 aatatatcat ttgtttacca tataagtttg ttttagaaaa tgaatcacta ttttaatata 600 caaataattt aattacactg aaaataacct aaaagcgtaa cactatttta atatgggtat

ataaatgact aaagggagg	t gccaagatga	ataaaattca	aatttgtaat	cagattgaac	660
ttaactatat tgatgaagg	c gaaggcatcc	ccatcatttt	aattcatgga	ttagatggaa	720
acttggcagg atttaaaga	t ttaaaaaaatg	aactcaagaa	gcagtataga	gtaattactt	780
atgatgtcag aggtcatgg	a aaatcttcac	gaacagaatc	atatgaatta	aaagatcatg	840
ttgaagattt aaatgattt	a atgggagcat	taaatatcga	ttctgcacat	attttaggac	900
atgatatggg gggcatcat	t gcgagtgaat	ttactgaaaa	atatcaatat	aaagtgatta	960
cattgacaat tgtttcggc	c aaaagtgaag	acattgcaaa	tggtttcaac	aaattaatgg	1020
ttgattacca agaagaatt	a gcaggcttta	ataaatctga	ggcaatgatt	attttattct	1080
ctaaattatt taaagagaa	a gataaagcaa	tgaaatgggt	atcaaagcca	aaaattatac	1140
aatagaccaa ctccggaag	a aagtgcaatt	gcagtacgtg	cattgcttaa	tattaaagat	1200
ttaactcgtg ttcatcata	a tgtgtccata	cctactttaa	ttgtgaatgg	taagtatgac	1260
ccactcatac aaaataaaa	g tcattatgat	atggatcaat	attatgatca	agttacaaaa	1320
attgtatttg ataattcag	g acatgcacca	catatcgagg	aaccagaaaa	attcctgaaa	1380
ctctacttag attttgtta	g ttaaaaaata	agaacataaa	taaaaaccct	taaatgatta	1440
ttgtcggaaa atcatttga	g ggttttgtag	tagcagtaaa	gtttggactc	agatcactat	1500
cgtattaact taataaaag	a gtaaaacagt	cttatctttc	ataagtgaaa	gaaatatctg	1560
tttnactccc tagccatta	t acttcatttc	attatttgct	tctgtgatac	ggttgtttac	1620
tcgtttaagt aaatcatcg	a ttttttacg	ctgcttagaa	tctactaaga	ttaaaacagt	1680
tctttcatcg tgttcatta	c gttttttatt	aaagtaattt	tcttgagata	aattttaac	1740
agctttaaca acttgaggt	t gittataait	taagtgattg	ataatatctt	taagataata	1800
ttcctcttct ttattctca	c taatataagt	taatactgca	aattetteaa	agctgattga	1860
gaattettt ttaattatt	c cttttaatct	gtcagcataa	gtgaccatag	ctaataattc	1920
aaagcagtca ttgattttt	g aaatagccat	taatgaaacc	tccctattta	tatcatatcc	1980
ataaatetta aaacccate	t ttttaaattt	aaagatagtt	aattatatta	ttgaattaag	2040
attacttgga tactatacc	c taatttatta	atttatatct	atttttctta	tgaaaatacg	2100
aaagtgtccg tcataatat	a gtattaattt	aaatttaaag	aatatattta	atgctatatt	2160
atttagttaa ttataacta	a ataaaattaa	gaagtaaaca	aataagtgtt	tataaaacaa	2220
attatctttt aaagtttat	a cttgaattag	caatgtagca	tttgctatat	tcaaaaaaat	2280
aagattgttt ctaattttc	c ttaatttaat	aaaaattata	ctaaaaagaa	tactttttgg	2340

aaagaatttt	actaacattt	tttatatata	aatgtttatt	aatttagaag	taggatttt	2400
aacaactttt	tcatctatca	ataagccttt	agttatatta	atatacccac	tttttaaact	2460
ctttttgtat	gttacttctc	tttttgtaga	attaaaacat	agcgtttttg	aacaatagct	2520
gacgtaggta	actctatgtc	atttgaggct	aatttgattt	taaagtgtgt	tccaatttga	2580
tgattgggtt	gtgtagaaag	taaaatgtcg	taatatgaga	cgccattttt	tatttttgat	2640
ggtatattcg	aaatttcttt	aattttacta	gtaaattgag	tgttgtcact	agatgttaca	2700
gaaatatttt	gatttatttt	taataaattc	aactcagatt	ctgatatatt	agcacgaata	2760
atacgttcgt	tgctattaat	ttgcactatc	ttttcgtttg	gttttgaagg	gatagaatta	2820
atatatgaaa	tacttccatt	aattggtgaa	aataaagtgg	atttaattga	ggatttagtt	2880
tgaatcattt	gtaattttag	ctgattaagg	aatgaataat	aatgtaaatc	attttagaa	2940
tttaaagttt	tgttgttacg	tt cattacta	agtgtatttt	ggagttcctc	atataaatga	3000
tctttttcat	aattgtaata	ttctaacact	ggagtgtttt	tagatacttt	gctatgattt	3060
tttactaaaa	gtttttggag	ttgtcctaaa	gtgggagtgt	agtagaaaat	atagctgtta	3120
agaggggctt	gtataccagt	tgttgaaagg	agtaatttgg	gctttgcttt	tatagtttt	3180
at atttttaa	tatcttctgt	tttagaagtt	aatttagaga	aagtaatgta	actaaaacta	3240
caagttgtga	gaatgaaaat	gaatagtaat	gaagaaataa	cgatgcgttg	cttggtcatg	3300
gatgttcacc	tcataatatt	attgtgaggt	tattatacac	tattatttta	aatgaaatat	3360
attaatttta	aataagcatt	acttttggtt	tgtatattgt	tttatttcaa	aaaataaagt	3420
aaatcaattt	aataaattga	aaaatagaag	gctatcttta	attttaaaat	atatgattct	3480
acataaatgt	tactataaga	agaatcactc	ataaaaactg	ccaacaaaga	caaaatcttt	3540
gttggcagtt	cgaaatagac	atttatttgt	atgaggaatc	tacattaata	taagcggata	3600
atttttattc	agaataagga	atttaaaata	atcgtaataa	aataatacct	atagctatac	3660
ataataatcc	acctaactta	cgtgatgtta	ttttgttttt	aggtgaaccc	aacaaaccga	3720
aatgatcgat	aataataccc	ataatcattt	ggcccatcat	agcaattata	gtagttaaag	3780
ctgctcctaa	gaaaggcatt	aaaataatat	tagatgttac	gaatgccatt	cctagtatcc	3840
ctccaataaa	ataaatagat	ttaatcttac	ctagtgtttt	atgagtagat	gatattttca	3900
gactacgatt	aaatactaat	gttaatataa	ataacgctat	tgtaccaacg	ctaaatgata	3960
tgagtgaagc	aaatatggat	gagtgtgtgt	gttgagccag	tgtgctgttg	attgttgttt	4020
ggattggcgg	acgaaaccaa	atacgaatcc	aataagcaac	cagaatacta	ttggtgtatt	4080

cttatgtcta ttaacaggat gtctacgaac ataattcata aatataattc cagtaattaa 4140 4200 aaatataatt ccaacacctt taaataatgt aaaagattgt tgatgggcgc ccaataatcc 4260 aaatgtatca atgattacac ccataataat ttgccctgta accgtaataa caacagtaag 4320 tgctgcgcct aatcttggta ataataataa gtttccagtt aaatagataa cacctaatag tcctcctagg acccaagtat agttaagtgt ttgcttagaa aagaattctg gtgttaatac 4380 ttgtggatga ataatgatat taagcacaag taagcatatt gttccgacag caaaagatat 4440 ggttgaagca taaaaagatg aacgggtaaa ttggcttagc cttgagttga ttgaagtttg 4500 aataggaagt aacatgccaa caaaaattcc taaaagatat agaaaaaaca atgataaaaa 4560 ccaactttct caatttaata tgattatcat accattcata atcatgtttc taaaatgatt 4620 gagccataag caaagtatag aaataagttg tgaatgttcc gaggtgtcat acagccgata 4680 ctattttgat gaatcattat aataaaatgc acattaaaca agttttagaa ttaaaaaaag 4740 4800 cgagacatca ttttgaattt gatatctcac ttcatattaa taaaagaaca atgtaaatta agttettttt tagaettgaa caattttaaa aaatttgtte ttegataagt etttttatg 4860 4920 attitagtac titaaataaa gcgicaaaaa taatgtttta tgaattaatt titatcitca aatataacag ttgtcctttt atcaataagt tgtgcagcat aaattttgac aggctttccc 4980 5040 aaactaaatc ttaaaatgtc taattctaaa atgtctaatt ctaaaagttg gttcatactt 5100 tetttaatta attgttetgt agtaatageg ttaaaategg gtaatagtaa tttgaegggt 5160 ttattaagat tigatttaaa tacgagticc aaagtiittig acatacigat giatccicci taaattaaag attetgitti aacgateteg acittgicat aciettegee acigaacgit 5220 caatgatgga acgaaaagat ttgatttgat cattagaaac aagcggatta atgttagaaa 5280 5340 tegteactig attgactica ticataataa aaceteetti caetatatat ategaaatag 5400 attgaaaaaa aaggacacat tttttgaaaa atataggcaa atgcctttga tgtgatacaa 5460 acgtcattta 'tcattaatta tgaaacctgt tttagaaggt atatgaggta agtagaattg 5520 5580 ttaagtigia aaagaaaaaa tiggaaccig atatttaaaa taaccaacti aaaagatiga tcagtgtcta aaattactat ttatatatga attaaaatat taagatctcc caatatgaga 5640 atgaattagt ttaagtttat cgatgattga aaaattatag cctcatggat tctatcttat 5700 ataaaataaa gttctattcc cttttggata taaataagaa tagttacctt tttgtgatat 5760 5820 gccaaticag aaaaaaagcg acagtgctig aatctatgta tgctcaataa actcattcaa

atcaactagc	aatatcaaat	cataaatcgt	gttgcaccat	aataaggatt	aaaacctgtt	5880
agtttaacta	atttaagaaa	aacatttgat	tatcttctct	ttcaatcggg	aatattaatt	5940
tctatcattc	aacaatattt	tggatatcag	ataacttaag	aaatattgag	atttattgaa	6000
atacgatatg	tttcaaatcg	ccatacaatg	attacactta	ataaatgatt	acacttaata	6060
taaatgtaaa	aagaaaagga	ggggttaaat	gagtttagta	tatcttatgg	cgactaattt	6120
attagtcatg	ctcatagttt	tattcactct	gagtcatcgt	caactaagaa	aggttgcggg	6180
ctatgttgca	ttaatagctc	ctattgtgac	atctacatat	tttattatga	aaataccaga	6240
tgtgattcga	aataagttta	ttgctgttcg	attaccatgg	atgccttcaa	ttgatattaa	6300
tttagattta	agattagatg	gtttaagttt	aatgttcggc	ttaattattt	cgctaatagg	6360
tgtgggtgta	tttttttatg	ctacgcaata	tttatcccac	agtacggaca	atcttcctag	6420
attttcatc	tatttactat	tatttatgtt	cagtatgatt	ggcattgtaa	tagctaataa	6480
taccatctta	atgtatgtat	tttgggaact	cacaagtatt	tcctcattct	tgcttatatc	6540
ctattggtac	aataatggtg	aaagtcaatt	aggcgccatt	caatctttca	tgattacagt	6600
gtttggtggg	ctagcgttat	taacaggatt	tatcatttta	tatatcatta	caggaacaaa	6660
cacaattact	gatatcttaa	tcaacgcaat	gcaatttcac	gacatccttt	atttatacca	6720
atgattttga	tgctattatt	aggtgctttt	accaaatctg	cacaatttcc	gtttcatatt	6780
tggttaccaa	aggccatggc	agcacctaca	ccagtaagtg	$\tt cttatcttca$	ttcggcaaca	6840
atggtaaagg	ctggaatctt	tttactattt	agatttacac	ctttattggg	acttagtaat	6900
gtttatattt	atacagtgac	atttgttggt	ctaataacta	tgttatttgg	atctttaact	6960
gctttacgac	aatacgactt	aaaaggtata	ctcgcttatt	ctacaataag	tcaattaggt	7020
atgattatga	caatggtagg	tctaggtggc	ggttatgctc	agcacacatc	agatgaattg	7080
tctaagtttt	atattttagt	tttatttgct	ggcttattcc	atttaatgaa	tcatgcggtt	7140
tttaaatgtg	cattatttat	gggcgttggt	atcattgatc	acgagtccgg	aacacgtgat	7200
attcgtttgc	taaatggtat	gcgtaaagtc	tcccctaaaa	tgcatattgt	catgttgctc	7260
gctgcattat	ctatggcagg	tgttcctttt	ttaaatggct	ttttaagtaa	ggaaatgttt	7320
ttagattcgt	taactaaagc	aaacgaactt	gatcaatatg	gcttcgtatt	aacgtttgtg	7380
attatttcaa	taggtgtcat	cgcgagtata	ttgactttta	cttatgcact	ttacatgata	7440
aaagaaacat	tctggggaaa	ttacaatata	gaaaaattta	aacgtaaaca	aatacatgaa	7500
ccatggctat	ttagtttacc	agctgtgatt	ttaatgttac	tcattccagt	tatcttcttt	7560

٤	gttccaaacg	tttttggcaa	ctttgttatt	ttgcccgcaa	ccagatctgt	atctgggata	7620
٤	gggcggaggt	tgatgcattt	gtgccacata	tttctcagtg	gcatggtgtg	aatctccatt	7680
ĕ	aattttaaga	tagtgtatat	attggactat	tttagctcta	gtgtgattgg	aaagaggtta	7740
(cgcatcaaat	aatcaaaagt	gctcgattac	agtggctatc	ggaaatttat	agagaatttg	7800
ä	aattatactc	agcccgtggt	atacgtgcat	tgatgaataa	taaattgaat	tattacatca	7860
ì	tgattacatt	atttattttt	gtagctattg	tagttatgga	tatttgactg	tgggttttcc	7920
İ	tcatgtactc	agcttcatat	tagttctttc	ggaccgttgg	aagttatctt	atcagttgta	7980
ä	acattgatta	tcggcatttc	attaatcttt	attcgtcaac	gactaacgat	ggtggtattg	8040
ä	aatggaatga	ttggattcgc	agttacatta	tattttattg	caatgaaagc	tccagattta	8100
ş	gctttaacac	agttagttgt	tgaaactatt	acgacaatct	tatttattgt	tagtttttcg	8160
ä	agactaccta	acatccctcg	agttaaggca	aatttaaaaa	aagagacctt	caaaatcatt	8220
Ę	gtgtcacttg	ttatggcatt	gacggtggta	tcacttattt	ttgttgctca	acaagcagat	8280
{	ggtatgcctt	caattgctaa	attttatgaa	gatgcatatg	aacttacagg	tggaaaaaat	8340
į	attgtcaatg	ctatactagg	tgacttcaga	gctttagata	ctatgtttga	aggactagtg	8400
	ttaatcatag	ctggattagg	tatttatacg	ttacttaatt	acaaagatag	gagggggcaa	8460
į	gatgaaagag	aatgatgtag	tacttaaatc	agttacaaaa	attgtagtgt	ttattttgtt	8520
i	aacatttgga	ttttatgtat	tttttgctgg	ccataataat	ccaggtggtg	gctttattgg	8580
	tggcttgatt	tttagctcgg	catttatctt	aatgtttctt	gcctttgatg	taaatgaagt	8640
į	gttgaaaaaa	gctt					8654

<210> 5

<211> 2362

<212> DNA

<213> Staphylococcus epidermidis

<220>

<223 Designated as SE-3

〈400**〉** 5

aagcttcaca	acttgaaaat	atagcacaaa	cattaaagga	tttaggtaga	aaacgagcaa	60
ttttaattca	tggtgcaaat	gggatggatg	aggccacgct	ttctggtgaa	aatatcattt	120
atgaagttag	cagcgaaaga	gcattaaaaa	aatatagttt	aaaagcagaa	gaagtcggtt	180
tagcttatgc	aaataatgac	acgttgatag	gtggttcacc	tcaaacaaat	aaacaaattg	240
cattgaatat	cctaagtggc	acggatcact	caagtaaacg	agatgtagtt	ttgttaaatg	300
ctggaattgc	tttatatgtt	gctgagcaag	tggaaagtat	caaacatggc	gtagagagag	360
cgaaatatct	cattgataca	ggtatggcaa	tgaaacaata	tttaaaaatg	ggaggttaag	420
taatgactat	tttaaatgaa	attattgagt	ataaaaaaac	tttgcttgag	cgtaaatact	480
atgataaaaa	acttgaaatt	ttacaagata	acggaaatgt	taagaggaga	aagctgattg	540
attcacttta	actatgatag	aacattatca	gttattgctg	aaataaaatc	gaaaagccca	600
tctgtacctc	aattaccgca	acgtgatctt	gttcaacaag	ttaaagatta	tcaaaaatat	660
ggtgctaatg	ctatttcaat	attaactgat	gaaaaatact	ttggcggtag	ttttgaacga	720
ttaaatcagt	tatcaaagat	aacatcgtta	ccagttttat	gtaaagattt	tattattgat	780
aaaattcaaa	tagatgttgc	aaaacgagct	ggtgcatcta	ttattttatt	aatagtaaat	840
attttaagtg	atgaccaatt	aaaagaattg	tattcatatg	caacaaacca	taatttagaa	900
gctctagtag	aagttcatac	aattagagaa	cttgaacgtg	cacaccaaat	taaccctaaa	960
attattggtg	ttaataatcg	tgatttaaaa	cgatttgaaa	ccgatgttct	acatacaaat	1020
aaattactta	agtttaaaaa	gtctaattgc	tgctacattt	cagagagtgg	cattcataca	1080
aaagaagatg	ttgagaaaat	agtagattca	agtattgacg	gtttacttgt	aggggaggca	1140
ttaatgaaaa	caaatgactt	aagtcagttt	tttgcctagt	ttaaagttaa	agaagaatct	1200
ctatgatagt	taaattttgt	ggttttaaaa	ccgaaagtga	tattaagaaa	attaaaaaat	1260
tagaagttga	tgcagtaggg	tttatacatt	atcccgatag	taagagacat	gtctcactga	1320
aacaattaaa	atatttggct	aaaatagtgc	cagatcatat	agagaaagta	gtgtcgtagt	1380
aaatcctcaa	atgtccacca	taaagagaat	aattaatcaa	actgatatta	acacaatcca	1440
attacatgga	aatgaaagca	ttcaattaat	tagaaatatt	aagaaactta	attcaaaaat	1500
aagaatcata	aaagcaattc	cagcaacaag	aaatttaaat	aataacattc	aaaagtataa	1560
agatgagata	gactatgttt	attatagata	caccatcaat	cacatacgga	gggacaggtc	1620
aaagttttga	ctggaaatta	ttaaaaaaaa	taaaggcgtt	gattttctca	ttgcggtggt	1680
ttggattttg	aaaagataaa	acgattagaa	atatattcat	ttggacaatg	tggttatgac	1740

18/51

atctcaactg gcattgagtc acataatgaa aaagatttta ataagatgac tcgaatatta 1800 aaatttttga aaggagacga atgattaatg aaaattcaaa cagaagtaga tgaattgggc 1860 1920 tttttcggtg aatatggtgg ccaatatgta cctgaaacat tgatgccagc tattattgaa 1980 cttaaaaaag catatgagga cgcgaaatca gatactcact tcaagaaaga atttaattat tatttaagtg aatatgttgg tagagaaacg cctttaacat ttgctgaatc atacacaaaa 2040 2100 ttgttaggtg gtgccaaaat atatettaaa agagaagaet taaateaeae tggtgeteat 2160 aaaattaata acgcgatagg acaggcacta ttagctaaaa ggatggggaa aactaaatta 2220 gtagccgaaa caggtgctgg tcaacatggt gtagcaagtg ccaccatcgc tgctttattc gatatggatc ttattgtttt catgggaagt gaagatatca aacgtcaaca acttaacgta 2280 2340 tttagaatgg aattgctagg agctaaagta gtgtctgtgt cagatgggca aggaacacta tcagatgctg taaataaagc tt 2362

<210> 6

<211> 5024

<212> DNA

<213> Staphylococcus epidermidis

 $\langle 220 \rangle$

<223> Designated as SE-32

<400> 6

aagctttttg atttttaaag aaaaaattaa acaagggggc attgcttatg gtcaatagaa 60 gaaagatatc aattattggc gcgggacata caggtgggac tctagcattc attcttgcac 120 aaaaggaatt aggagatatt gtgttgattg aacgccagca atcagagggt atggctaaag 180 240 gaaaggcgtt agatatttta gaaagcggac ccatttgggg gtttgacaca tctgtacatg 300 gttcagtaaa tatagaagat attaaagatt cagacatagt ggtgatgact gcaggtatac 360 ctaggaaatc aggaatgaca aggagaagaa ttagttcaaa ctaatgaaca aatagtacga 420 gaaactgcat tacaaattgc aacgtatgca cctcattcaa taattattgt attgactaat 480 ccggttgatg ttatgacata tactgcattt aaagcatcag gttttcctaa agaacgtatt

attggtcaat	ctggaatttt	agacgctgca	agatatcgaa	$\tt cttttattgc$	tcaagaactt	540
aacgtgtctg	tcaaagatgt	aaatgggttt	gttttaggtg	gacatggtga	tacgatgtta	600
cctttgatta	ataacacaca	cattaatggg	attccagtta	agcatcttat	ttctgaagaa	660
aagattgatc	aaattgttga	acgtacacgt	aagggtggtg	cagaaattgt	tgcattacta	720
ggtcaaggct	cagcatatta	tgcaccagca	actgctatat	atgaaactat	agatgcaatt	780
tttaatgatc	ggaaacggtt	attaccaagt	attgcttatc	tagagggaga	atacggttgt	840
tcagatattt	gtttcggagt	tcctactata	ataggatatc	aaggaataga	aaagattata	900
gaggtagata	tgaataatga	tgagtatcaa	caactacaac	actctgcgca	agatgtgagt	960
gaagtcaaaa	actcactaaa	attcaaataa	ataattatga	agttctacat	cttaaattgt	1020
tagatttttg	tgaaaattgt	gtaaagggta	ttttttcgtt	gatttataaa	agcgctttct	1080
tgatataatg	aacatatatt	catagaataa	ggagacgatt	aaaatggcta	aaggggacca	1140
atatcaagct	catactgaaa	aatatcatga	gtaaaaagtc	taaaaaaagt	tataaacctg	1200
tgtggattat	cattagtttt	attattttaa	ttacaatctt	gttattaccc	acaccagcag	1260
gattacctgt	aatggctaaa	gcagcactag	$\tt ctattttagc$	tttcgctgta	gttatgtggg	1320
ttacagaagc	agttacttat	${\tt ccagtttctg}$	caacattaat	tttaggatta	atgatacttt	1380
tactaggttt	aagtccagtt	caagatttat	ccgaaaaact	tggaaaccta	aaagtggcga	1440
cataatacta	aaaggtagcg	atattttagg	aacgaataac	gcgcttagtc	acgcttttag	1500
tggtttttca	acctcagccg	tagcacttgt	agctgcagca	ttatttttag	cagtagctat	1560
gcaggaaacc	aatttacata	aacgacttgc	attatttgtg	ctatcaattg	ttggaaataa	1620
aactagaaat	atagtcattg	gtgctatttt	agtatctatt	gttctagcat	tctttgtacc	1680
atcagctaca	gcacgtgctg	gtgcagttgt	cccaatatta	ctgggaatga	ttgctgcatt	1740
taatgtgagt	aaggatagta	gacttgcttc	attattaatt	attactgctg	tacaagcagt	1800
ttcgatatgg	aatataggta	ttaaaaaacgg	ctgcagcaca	aaatattgta	gccatcaatt	1860
ttattaacca	aaatttagga	catgatgtat	catggggaga	gtggttttta	tatctgcgcc	1920
gtggtcaatc	attatgtcta	tagctcttta	ttttataatg	attaagttta	tgccacctga	1980
acatgatgca	attgaaggtg	gaaaagagtt	aattaaaaag	gaacttaata	aattaggacc	2040
agtcagtcat	agagaatggc	gactaattgt	gatttcagtg	cttttatatt	ctctggtcga	2100
ctgagaaagt	attgcatccg	attgattcag	cttcgattac	actagttgct	ctaggtatta	2160
tgctaatgcc	aaagattggt	gttattactt	ggaaaggtgt	tgaaaagaag	attccttggg	2220

ggacgattat	agtatttggt	gtaggaatct	cacttggtaa	tgtattactt	aaaacaggag	2280
ccgctcatgg	ttagtgatca	acatttgttt	gatgggtctt	aaacatttac	cgatcatagc	2340
aactattgcg	ttaattacct	tatttaatat	attaatacat	ttaggttttg	caagtgcaac	2400
gagcttagcc	tctgcgttaa	tacctgtgtt	tatttctttg	acttcaacgc	taaatttagg	2460
tgatcatgct	attggttttg	tattaataca	acaatttgtg	attagttttg	gtttcctact	2520
acctgtcagt	gcaccacaaa	atatgcttgc	atatggtact	gggactttta	ccgtaaagga	2580
ttttttaaag	acaggtatac	ctttaacgat	agtaggttat	attttagtta	tcgtatttag	2640
tttaacgtat	tggaaatggc	ttggtttagt	gtaagtaaaa	gatttaggta	ttaaaatgat	2700
aattataaat	gtctcgtaaa	gtttaatatt	ttaactttac	gacacatttt	ttataaactc	2760
gtggcaagtt	a a t c t t a a t a	gttgaaatgt	atcgtataaa	aaatatatga	atgtaaatag	2820
aatttagtat	tagagaataa	caaaaaattg	atgttaggtg	gtaaaatcta	atggctatag	2880
gtgtcatatt	aaatagagtt	tttaggctaa	ataataatcc	attatttgat	tatatata	2940
gtaataaaga	atctataaat	cattgttatt	ttattattcc	aactgaagag	tttgaagaag	3000
aagcaaaaaa	gaaagcacaa	tactattatg	ggtccataca	gaagtttatg	tatgaactac	3060
aacgatatga	tatagaaccc	tttttgatgt	cttatgataa	attaatagac	ttttgtaaaa	3120
aacaagctat	agacaaagt t	gttgttgcag	gtgatattat	gagttatcat	cacgaagaat	3180
atgacatttt	acatcaaagg	aaacgattta	aacaagctaa	tattcaagta	atatcattaa	3240
gagcaaatca	ttattttaac	cccgcaaaa	cacataataa	acaaggggaa	ccatataaag	3300
tatttaccag	tttttataga	aaatggcgtc	cttacttaat	gattagagat	gaatatgact	3360
atcatttaga	agatatttca	aaggttgtag	tgaaatctca	acataaaatt	aaagaagatt	3420
atcattcata	tggtataagt	gaacgtgatg	ttcaaaatcg	ttggtctgaa	tttttatctc	3480
aagatatcga	aaattataaa	gaaaacaggg	aatacttgcc	tgaagtatta	acaagccaac	3540
taagtattta	cttagcttat	ggaatgatag	atattataca	atgttttcaa	cgatttactt	3600
caaaattatg	ataaaaatga	acaaaattac	gaaacttta	tacgtgaatt	gatttttaga	3660
gagttttatt	atgtattaat	gaccaattat	cccgaaacag	ctcatgttgc	tttaaagaa	3720
aaataccaac	aattgaaatg	gtcttataat	gaagagaatt	ttaaactgtg	gaaagatggg	3780
aatactggtt	ttccaattat	tgatgcagca	atggaggaac	t taaaacaac	tggatttatg	3840
cataatcgca	tgagaatggt	agtttctcaa	ttttaacta	aagatttgtt	tattgactgg	3900
atttggggtg	agtcatttt	caaacaaaaa	ttaatagatt	atgatgcagc	ttcaaatgtt	3960

cacggatggc	agtggtcagc	ttctactgga	acagatgctg	taccatactt	tagaatgttt	4020
aatcctataa	gacaaagcga	gcgttttgat	aataatgcac	gatatataaa	aacttacatt	4080
ccaagattaa	atcaggtaga	tgctaagtat	ttacacgata	ctcataaatt	cgagcaacaa	4140
ataaaggggc	aaggtgttga	aataggtaaa	gactatccta	aacaaatgat	tgatcacaaa	4200
gaaagtagac	aacgtgtaat	gtcagaattc	aaagctatag	attaaataaa	aaagatctga	4260
acaacatgat	ataggtgttc	agatctttat	ctagttacat	aaaaaagcaa	acatgaatta	4320
aaatatattc	taacaaagtt	aaaatataca	tatatttaag	atttaattta	gttttcaaag	4380
gtacttccca	atttgtataa	cggggctcat	aataaaataa	ttgcatcaaa	tataatccta	4440
tccctaacgg	taaacacatt	aataaaatag	ctttagtata	actccatcct	atttgatgcc	4500
ataaatgacc	tatcataagt	tgaataatga	tgagacatac	cattaaaatt	acttcaatta	4560
tcattggtat	aatctcaccc	ctttaataaa	caatatgact	gttgcttgta	tgagcaccat	4620
taaaacgaca	aatagtaacg	$\tt ctttaacatc$	tatgattaaa	aaaacctctt	tcacaatttt	4680
taaaggtgca	tttaataaat	agacagtatg	taatcttaag	aatcgaccga	tgtaaatacc	4740
taatccattt	aagaacatta	atataactat	caatagtcga	tttaaccata	cataagacgt	4800
aaaatgtgca	atttctaaaa	atataagaat	tgtgaggtat	attgctaaga	gtacgccaag	4860
tattaaatag	gtgaaataaa	tccattctgt	gatgtttaat	ccagctaaaa	agttaaattg	4920
aaattggttt	aagtgtatga	gatcggtaat	catataaaat	gtgtttggaa	ctaataatag	4980
aaatatgagt	ccgaaaacaa	taaataaggg	ccattcaaaa	gctt		5024

<210> 7

<211> 9515

<212> DNA

<213> Pseudomonas aeruginosa

<220>

<223> Designated as P2-2

<400> 7

cgcgaggcct	cggccacgct	gccgcattcc	acggtggtca	cgaaatactt	gagttgccgc	120
aaggtatagg	acgccactgc	aagacctcat	cggcgcatca	tcctcccgg	gccgggcgtg	180
cgcgcctcga	ttgttgtgtc	cgccgcgctg	caagcaagtt	gcaggccgct	gccgagcgtc	240
gcgcgctggc	cgcggaacga	ttgcccgcct	gcacgataac	ccagcacgac	gcactttgcc	300
ggggcacgcc	tggccagctt	tttcttatgt	cccgaggaca	ttttaataa	ttttccttcg	360
ccgcggcttg	cgcgaccatc	cttccccatc	gaccccatgg	acagcggttc	gcctcccggc	420
ggtccgggcc	atgcgtgcag	aaccacgacc	ggcgcagacc	ggcgagataa	caaggagaag	480
gtggggtgtt	cgaactcagc	gattggcaac	ggcgcgccgc	gacacagcgc	ttcatcgacc	540
aggccctgat	cggcggccgc	cagcgtccag	ccgccagcgg	cgctaccttc	gacgccatcg	600
atccggcgag	caatcgcctg	${\tt ctggcgcggg}$	tcgcggcctg	cgatgcggcc	gacgtcgacg	660
cggcagtggc	cgccgcccgc	cgcgccttcg	acgaaggccc	ctgggcgcgt	ctcgccccgg	720
tcgagcgcaa	gcgcgtgctc	tgcgcctggc	cgagctgatg	ctggcccatc	gcgaagagct	780
ggcgctgctc	gactcgctga	acatgggcaa	gccggtgatg	gacgcctgga	acatcgatgt	840
acccggcgcc	gcccacgtct	tcgcctggta	tgcggaaagc	ctcgacaagc	tctacgacca	900
ggtcgcgccg	gccgcccagc	agaccctggc	caccattacc	cgcgtgccgc	tgggggtgat	960
cggcgcggtg	gtgccgtgga	acttcccgct	cgacatggcc	gcctggaagc	tcgcccggc	1020
cctggccgcc	ggcaactcgg	tggtgctcaa	gccggccgag	cagtcgccgt	tctccgccct	1080
gcgcctggcc	gagctggccc	tggaggcggg	ggtgccggaa	ggcgtgctga	acgtggtgcc	1140
gggcctcggc	gagcaggccg	gcaaggccct	cggcttgcac	ccggaggtgg	acgcactggt	1200
gttcaccggc	tccaccgagg	tcggcaagta	cttcatgcag	tattccgcgc	aatccaacct	1260
caagcaggtc	tggctggagt	gcggcggtaa	gagtccgaac	ctggtgttcg	ccgattgccg	1320
cgatcttgac	ctggcggcgg	aaaaaggcgc	cttcggcatt	ttcttcaatc	agggcgaggt	1380
ctgttcggcg	aactcgcgct	tgctggtgga	gcgttcgatc	cacgacgagt	tcgtcgagcg	1440
cctgctggcc	aaggcccgcg	actggcagcc	gggcgatccg	ctggacccgg	gccagccgcg	1500
ccggcgccat	cgtcgaccgc	cggcagaccg	ccgggattct	cgccgccatc	gagcgggcgc	1560
aaggcgaggg	cgcgaccctg	ctcgcggtgg	ccgccagttg	acgatcaacg	gttcggacaa	1620
cttcatcgaa	ccgaccctgt	tcggcgacgt	acgcccggac	atgcagctgg	cccgcgagga	1680
aatcttcggc	ccggtgctgg	cgatcagcgc	cttcgactcc	gaggacgagg	ccatacgcct	1740
ggccaaggac	agccgctacg	gcctcgccgc	ctcgctgtgg	agcgacgacc	tgcaccgtgc	1800

gcaccgggtg	gcgcggcgct	tgaatgccgg	aacgtgtcgg	tgaataccgt	ggacgcgctg	1860
gacgtcgcgg	tgcctttcgg	cggcggcaag	cagtccggct	tcggtcgcga	cctgtcgctg	1920
cattccttcg	acaagtacac	ccagttgaag	acgacctggt	tccagttgcg	ctgaagacgc	1980
gacggacgcg	acacgactcg	atgccgataa	cgacaacaag	aggacgatcg	aatgaacgac	2040
acgccgaacg	tgcgtgagcc	ggccctgcgc	cgcgtgctcg	ggctgggacc	gctgctggcg	2100
gtggccatcg	gcctggtggt	ttcccagggc	gtgatggtac	tgatgctgca	aggcgccggg	2160
acggccggcc	tgggcttcat	cgtgccgctg	ggagtggcct	acctgctggc	gctgactacg	2220
ccttttcctt	ttccgagctg	gccctgatga	ttcccgcgc	cggtagcctg	agcagctaca	2280
ccgaggtggc	catcgggcat	ttcccggcga	tcctggcgac	cttttccggc	tacgtggtgg	2340
tggcgatgtt	cgccctctcg	gcggaactgc	tgctgctcga	cctgatcatc	ggcaaggtct	2400
accccggcgc	gctgccgccg	atgctggtgc	tacggcgtgc	tcggcctgtt	caccctgctc	2460
aacctgctcg	gcatcgacat	cttcgcgcgc	ctgcagagcg	cgctggcgct	gctgatgatg	2520
atcgtcctgc	tggtgctcgg	cctgggtgcg	gtgagcagcg	accacgcttc	cgcgcagacc	2580
gccctggcga	gcggctggaa	cccgctgggg	gtaagcgccc	tggcgctcac	cgcgatggcc	2640
gtgtggggct	tcgtcggcgc	cgagttcgtc	tgcccgctgg	tggaggagac	gcggcgtccg	2700
gagcgcaaca	tcccgcgttc	gatgatcctc	ggcctgagca	tcatcttcct	gaccatcgcc	2760
ctctactgct	tcggtgcgct	gctgtgcatc	ccgcaggcgg	aactggccgg	cgacccgctg	2820
${\tt ccacacttcc}$	tcttcgccaa	ccgcgtgttc	ggcgagtacg	gccagctgtt	cctggtgatc	2880
gccgcgatca	ccgccacctg	cagcaccctc	aactcgtcgc	tggcggcgat	cccgcggatg	2940
ctctacggga	tggcgcagaa	cggccaggcc	ttcccgcaat	tcaagcagct	cagccggcgg	3000
gcgcgcacgc	cctgggtggc	ggtgctgttc	gtcgccgcga	tcaccggcct	gccgatcctg	3060
atcctcggcc	aggacccgga	ctcgatcaac	ctgctgctgc	tcgccgccgc	gctggcctgg	3120
ctgctggcct	acatcatcgc	ccacgtcgac	gtgctggccc	tgcgccgtcg	ctatccgcac	3180
atcgcccgtc	cgtttcgcac	gccgttctac	ccgctgccgc	aactgttcgg	catcgccggg	3240
atgatctacg	cggtggtcca	cgtctcgccg	accccggaaa	tgaccggacg	gatcttcgcc	3300
agcgccggcg	tggtgctcgg	cgtggtctcg	ctggtggcgg	tggtgtggat	caagggcgtg	3360
atgcgcaagc	ccctcttcgt	acccgaaccg	ctcgagacgg	ccggtgagac	tgcccagggc	3420
aagtccgtcg	ccctcgatcc	cctgcaatcc	cttcggcctg	acgcgccaag	ggaacaagga	3480
gaacacagac	gatgaccgct	cagctcaacc	cgcagcgcga	cacccgcgac	taccagcaac	3540

tggacgccgc	gcaccacatc	cacgccttcc	tcgaccagaa	ggcgctgaac	cgcgaaaggc	3600
ccgcgggtga	tggtccgcgg	cgatggcctg	cagctctggg	acaacgacgg	caagcgctac	3660
ctggacggca	tgtccggcct	ctggtgtacc	aacctcggct	acggccgcca	ggacctcgcc	3720
gccgccgcca	gccgccagct	ggaacaactg	ccgtactaca	acatgttctt	ccacaccacc	3780
cacccggcgg	tggtggagct	ttccgagatg	ctcttcagcc	tgctgccgga	ccactacagc	3840
cacgcgatct	acaccaactc	cggctccgag	gccaacgagg.	tgctgatccg	taccgtgcgg	3900
cgctactggc	agatcctcgg	caagccgcag	aagaagatca	tgatcggccg	ctggaacggc	3960
taccacggct	cgaccctggg	cagcaccgcg	ctcggcggga	tgaagttcat	gcacgagatg	4020
ggcgcatgct	gccggacttc	gcccacatcg	acgaacccta	ctggtacgcc	aacggcggcg	4080
agctgagccc	ggccgaagtt	cggtcgccgc	gcggcgctgc	aactggagga	gaagatcctc	4140
gaactgggcg	cggagaacgt	cgccgccttc	gtcgccgagc	ccttccaggg	cgccggtggc	4200
atgatettee	cgccgcaaag	ctattggccg	gagatccagc	gcatctgccg	gcagtacgac	4260
gtgctgctgt	gcgccgacga	agtgatcggc	ggcttcggcc	gcaccggcga	atggttcgcc	4320
cacgaacact	ttcgcttcca	gccggacacc	ttgtccatcg	ccaagggcct	gacgtccggc	4380
tacatcccca	tgggcggcct	ggtactcggc	aagcgcatcg	ccgaggtgct	ggtggagcag	4440
ggcggggtgt	tcgcccacgg	cctgacctat	tccggccacc	cggtggcggc	ggcggtggcc	4500
atcgccaacc	tcaaggctgc	gcgacgaggg	cgtggtcacg	cgggtcaggg	aggagaccgg	4560
cccctacctg	caacgctgcc	tgcgcgaggt	cttcggcgac	catccgctgg	tcggcgaggt	4620
ccagggcgcc	ggcttcgtcg	ccgcgctgca	gttcgccgag	gacaaggtga	cccgcaagcg	4680
cttcgccaac	gagaacgatc	tggcctggcg	ctgccgcacc	atcggcggct	tcgaggaggg	4740
cgtgatcatc	cgctccaccc	tcggccgcat	gatcatggcc	ccggcgctgg	tggccgggcg	4800
tgccgagatc	gacgaactga	tcgacaagac	ccgtatcgcg	gtggatcgca	ccgcgcgcga	4860
gatcggcgtg	ctctgacgcg	ccccggcggc	ccggcctcgg	ccgggtcgcc	tgcgacacgg	4920
agcgtccccc	cataacgacg	atgcggcgcc	tggcgaccgc	gcgcggaacc	gtttcggcct	4980
ctggcggcaa	ctgcctaagc	aacatcacaa	caatgccaat	cggctgtggg	agtgttccat	5040
gttcaagtcc	ttgcaccagt	acgcacacgt	gttttcccgg	ttgtccctgt	tcgtcctggc	5100
gttcgccgcg	gcggcccagg	cgcagagcca	gagcctgacg	gtgatctcct	tcggcggcgc	5160
gaccaaggcc	gcccaggaac	aggcctattt	caaacccttc	gagcgaagcg	gcggcgggca	5220
ggtggtcgcc	ggcgaataca	acggcgaaat	ggccaaggtg	aaggccatgg	tcgacgtcgg	5280

caaggtcagc	tgggacgtgg	tcgaggtgga	gagccccgaa	ctgctccgcg	gctgcgacga	5340
ggggctgttc	gaacgcctcg	acccggcgcg	tttcggcgac	cccgcgcagt	tcgtccccgg	5400
cactttcagc	gagtgcgggg	tggccaccta	cgtctggtcg	atggtgatgg	cctacgactc	5460
gacgaagctg	gccagggcgc	cgcagtcctg	ggcggatttc	tggaacgtcc	gcgagttccc	5520
ccggcaagcg	tggcctgcgc	aagggcgcca	agtacaccct	ggaagtggcg	ttgctggccg	5580
acggggtgaa	ggcggaggac	ctctacaagg	tactcgccac	cccggagggg	gtcagccgcg	5640
cctttcgcca	agctcgacca	gctcaagccg	aacatccagt	ggtgggaggc	cggcgcccag	5700
ccgccgcaat	ggctggcggc	cggcgacgtg	gtgatgagcg	cggcctacaa	cgggcgcatc	5760
gccgctgcgc	agaaggaggg	ggtgaaactg	gccatcgtct	ggcccggcag	tctctacgat	5820
ccggagtact	gggcggtggt	gaagggcacc	ccgaacaagg	cgctggcgga	gaaattcatc	5880
gccttcgcca	gccagccgca	gacgcagaag	gtgttctccg	agcagatccc	ctacgggccg	5940
gtacacaagg	gcaccctggc	gttgctgccg	aagacggtgc	aggaggcgct	gccgacccgc	6000
gccggccaac	ctcgaaggcg	cgcgggcggt	ggatgccgag	ttctgggtgg	accacggcga	6060
ggagctggaa	cagcgtttca	atgcctgggc	gcgcgctgag	cgctgcgcgt	cggcaaaaaa	6120
aatgacgggc	cccaagtcgt	ccgggcccgt	cgggtcaaag	cgctgacggg	gtgatcagcg	6180
cagctcttcc	aacaacccct	gcagataccg	acagccctcg	gtatccagcg	cctgcaccgg	6240
aaggcgcggc	gccccacct	ccaggccgga	gaggcccagg	ccggccttga	tggtggtcgg	6300
caggccccgg	cggaggatga	agtcgagcag	cggcaactgc	cggtagaaca	gcgcgcgggc	6360
cttctccagg	tcgccgtcga	gcaccgcctg	gtagagctgg	ccgttgagcg	tcgggatcag	6420
gttcggcgcg	gcgctgcacc	agcctttcgc	gccggccacg	aaggcctcca	gcgccagcgc	6480
gttgcagccg	ttgtagaagg	gcacccggcc	ttcgccgagc	aggcgcagct	tgtgcatgcg	6540
ctggatgtcg	ccggtgctct	ccttgaccat	ggtcacgttg	tccacttcgc	ggacgatgcg	6600
caggatcagt	tccaccgaca	tgtcgatgcc	gctggtgccc	gggttgttgt	agagcatcac	6660
cggcacgccg	atggcttcgc	caaccgcgcg	gtagtgctgg	aacacttccg	cctcgttgag	6720
cttccagtag	gagatcggca	ggaccatcac	cgcctcggcg	ccgagggatt	cggcgaactg	6780
cgcgcggcgc	acggtcttgg	cggtggtcag	gtcggagacg	ctgacgatgg	tcggcacgcg	6840
atgggcgacg	gtcttcaggg	tgaagtcgac	cacctcgtcc	cattccgggt	cgctcaggta	6900
ggcgccttcg	ccggtgctgc	cgagcggggc	gatggcgtgc	acgccgccgt	cgatcaggcg	6960
ctcgatggag	cggccgaggg	ccggcaggtc	gagaccgccg	tcggcgccga	aggggggtga	7020

7080 tggtgtagcc gatgatgccg tggatggatg cggacattgg atgtacccgt gacattgagt gggaaatgcc aggacggacc tggtgggaaa ggtcgttcag ctcaggcagt cgctgttgcg 7140 7200 cggcaggcag cgccgggcgt agtagttgaa tgcggcgccg tggcgcttcg gggtggagat ccagtcgtgg gcctcgcgcg ccagggccgg cgggatcggc ttgatctctc cggcggccat 7260 cgccagcaac tgcatcttcg ccgcgcgctc gagcagcacc gcgatcacgc aggcctcctc 7320 gatgctcgca ccggtggcca gcaggccgtg gtgggagagc aggatggcgc gcttgtcgcc 7380 gaggggggg gagatgatet egeetteete gttgeetaee ggeaegeeeg geeagteett 7440 7500 gaggaaggcg cagtcgtcgt atagcgggca aaggtccatg tgcgagacct gcagcggtac 7560 ttccagggtc gacagcgcgg cgatgtgcag cgggtgggtg tggatgatgc agttgacgtc 7620 cgggcgggcg cgatagaccc agctgtggaa gcgattggcc ggattcgcca tgccgtgccc 7680 gtggaggacg ttgaggtctt cgtcgaccag cagcaggttg ccggcgctga tctcgtcgaa 7740 gcccaggccc agttgctggg tgtagtaggt ccccgcctcc gggccgcgcg aggtgatctg cccggcgagc ccggagtcgt ggccggcctc gaagagaatc cggcaggtca gggccagctt 7800 7860 ttgccggtca gtccacgtat tatcgccgag gctgcttttc atctgcttca gcgcgtgctg 7920 gatcagttga tccttgggta attccagtgt cgtaaccatg cgaggttcct ttgacggagc gagtcggggg aaacgccagg cagttgcgcg ccacgcaacg acccggctgt aaatgacacg 7980 8040 gatcaagtta tatgacacaa agtgtcattt agcaagagag aagtttcatc gccatcggga gaaggetgte etcaatgtee atgegettga aattgetgag aaaaaaaacte ggggteaege 8100 tggagaccct ggccgacaag accggcctga ccaagagcta cctgtccaag gtcgagcgcg 8160 ggctgaacac gccgtccatt gccgccgcgc tgaagctggc gaaggcgttg aacgtgcagg 8220 8280 tggaggaget gtteteegag gaaagegaeg gtgtegaegg etacageate gttegtegeg accagegeaa gtegetgtee ageggegaeg aeggeeegge etaegeetee etegtegeag 8340 cagateggeg ecegeget gttgeegtte ategteeace eceegegega ttteagteac 8400 8460 tcgacgttca aggagcacct cggcgaagag ttcatcttcg tccatgaggg ccaggtcgag 8520 gtcgacttca tgaaccagcg gatcatcctc gagcgcggcg acgccctgca tttcaacgca cagaagccgc accgcatccg ctccctgggg gagacccagg cggaattgct ggtggtgatc 8580 cacagcgacg aatgaggcga cggcttcggt cgatcggatg cttgctaacg ttctgttcga 8640 8700 ttatcgaact gttaatcgat tatcggattg tgagccctcg gaccccggcg taaggttctc 8760

gtcacgtgcc gtccaggcag cgcacaacaa gacgagaccc gaccgatggc tgaaatcctc

27/51

tccctgcgcg	aacggtgcga	cgcttcgtcc	acgatggcga	cagcgtcgcc	ctcgaaggct	8820
tcactcacct	gatcccgacg	nccgccggcc	acgagctgat	ccgccagggc	aggaaagacc	8880
tgacgctgat	ccgcatgact	cccgacctgg	tctacgacct	gctgatcggt	gcaggctgcg	8940
cgaagaagct	ggtgttctcc	tggggcggca	accccggtgt	cggttcgctg	caccgcctgc	9000
gcgacgcggt	ggagaagggc	tcggccgcaa	ccgctggaga	tcgaggaaca	cagccacgcc	9060
gacctcgcca	acgcctattt	tgccggcgcc	tccgggctgc	ccttcgcggt	ntgcgcgcct	9120
acgccggctc	cgacctgccg	aaggtcaacc	cgctgatccg	cagcgtcacc	tgcccgttca	9180
ccggcgaagt	gctggcggcg	gtgccctcgg	tgcgtccgga	cgtcagcgtg	atccacgcgc	9240
agaaggccga	ccgcaagggc	aacgtgctgc	tctggggcat	cctcggcgtg	cagaaggaag	9300
cggccctggc	ggcgaagcgc	tgcatcgtca	ccgtcgagga	gatcgtcgac	gaactggacg	9360
ccccgatgaa	cgcctgcgtc	ctgccgagct	ggggcgctca	gcgccgtgtg	cctggtgccc	9420
ggcggcgcgc	atccgtccta	tgcccacggc	tactacgagc	gcgacaaccg	cttctaccag	9480
gactgggacc	cgatcgcccg	cgaccgcgaa	agctt			9515

<210> 8

<211> 2291

<212> DNA

<213> Enterococcus faecalis

<220>

<223> Designated as EF-1

<400> 8

aagctttaga	taatgataaa	cgcgtgtatg	tgaatgtcca	gccgattcaa	tcgcctactg	60
gagaaacagt	gattggtgtc	ctttatgtga	aaagtaattt	agaaaataaa	taccaagaaa	120
ttactaacac	agcaagtatc	tttttcactg	cttctattat	tgccgcagca	atctcgatta	180
ttgtgaccct	actgattgca	cgatcaatca	cgaagccgat	tggtgaaatg	cgcgagcaag	240
ccattcgaat	cgctcgtggt	gattacgctg	gaaaagtaga	agtccatgga	aaagatgaat	300
taggccaatt	agcagaaaca	tttaatcaat	tatcagaacg	gattgaagaa	gcacaagaaa	360

420 caatggaagc agaagaatcg tttagatagt gtcttaacgc atatgacaga tggtgtcatt gcgacggatc gccgcggaaa ggtgattacg attaatgaga tggccctttc attattaaat 480 gtaaaaaatg aaaatgtgat tgggacctcg ttattagagt tgttagatat tgaagaagat 540 tacacattgc ggaagctgtt agaagagcca gatgaactgc tgattgatcg ctcaacgtct 600 660 gatcgtgaag aagaccaaat gattatccgg gtagacttta cgatgattcg tcgggaatca 720 ggatttatta ctggcttagt ttgcgtactt catgacgtca cagaacagga aaaaaacgaa 780 cgggaaagac gggaatttgt ttccaatgtt tctcatgagt tgcgacgcct ttgacaagta tgcgtagtta tatagaggct ttgagtgaag gagcttggga aaaccctgag attgcgccga 840 900 atttcttaaa agtcacgtta gaagaaaccg accggatgat tcgtatgatt aatgatttgt 960 taaatttatc tcggatggac tctgggaata cacatcttca attagagtat gtgaatttta acgaattgat taattttgtc ttggatcgct ttgatatgat gattgaaaat gagcaaaaaa 1020 attacaaaat tegeegtgaa titactaaae gegatitatg ggtagagita gatacagaca 1080 aagtaattca ggtttttgac aacattttga acaatgcgat taagtattcg ccagatggcg 1140 1200 gcgtcattac ctgccgacta gttgaaacac ataataatgt cgtctttagt atctcggacc 1260 aaggtttggg catccctaaa aaagatctcg ggaaagtctt cgagcgtttt tatcgtgtgg ataaagcacg tgcgcgagca caaggtggga ctggtttagg tttagcaatt tctaaagaag 1320 taattcgggc ccataacggg agtatttggg tggaaagtac agaaggtgaa ggatcaactt 1380 tctatatttc actaccatat gaaccttatg aagaggattg gtgggaatga tgaaaaaatc 1440 agaatggatt acaagaattg gcttgatttt gatggtcatt ttaagtatat atttttcagt 1500 caatatctgg ctgaattctg ccaaaaaaat accagaaatg aagtcgggaa gccaagtcac 1560 aacagctgtc aatgaaaaag ccattggcga tgtctattta cctttgcaat tgattcgaat 1620 1680 agccgatgga aaagcgatgc aaagtaatcg tgaaacatta attagtaatg ttcaaaatga tattaaaatg gctacgtttg gtaaattgac acaagttgtg acaaaaaatg cagagcaact 1740 taagcgctac aaccaaatgg aacaaggcat tgaacttctt tatcaaggtc cctttttaat 1800 ctcggactat gcttcgattt ataatctatc cattaatttt actaacttta atgagttgac 1860 1920 ggaccagtat tttacgaaaa ttcaattgga ttttaacgaa aataagatac gttttttaga ttatgatcaa tccaacgtct atgaagcgcc catgactgtt aataaggcgc gcttaatggg 1980 2040 aattatcaat aaagagggat tgcaatatca agacgtttcc gaaaatacgc taaccaaaca aggacaatgt tatttaacca atgatatgaa gttgaaaaag tacagttata tcttanttcg 2100

29/51

caaccagtta ctcgttttag gaatgctttt ttcaatgaaa cggaagatat ccaaaccaat 2160 gaagacagtc aagacttaac ctatacgagt aaagaagaac gattgtttgc agaagaaaaa 2220 ctggggaaaa tcgattttaa agggaccttg ccagaagaga ataaacggga ctcaatctat 2280 aatcaaagct t

<210> 9

<211> 2441

<212> DNA

<213> Enterococcus faecalis

<220>

<223> Designated as EF-27

<400> 9

60 aagettetge getaggaace ageeetttaa ttacatetee ceatactgga tttgacaatg 120 ccacttgata agcaaaaatc acaaaaataa caacaattaa agcaacaaca atagcttcaa 180 tttttctaaa accaattttt gtcaataaca acaaaagtaa aacatcaaat accgtaatga 240 agacagecag acctaaagga atatgaaata ataaatataa ggcaattgeg ceecegataa 300 cttcagcgat atctgtagcc ataattgcta actctgttaa aatccataat acaataccta acgtettaet agttetagea egaategett gtgetaaate eatetgtgaa eaatgeetaa 360 tttagcagcc atatattgga gcaacattgc aatcaaactg gaaattaaaa taatcgacat 420 480 caataaatat tgaaaatttt gtcccccagt aattgaagta gaccagtttc ctggatccat 540 ataccccact gctaccaatg ctcctggacc tgagtaagca aataacgttt tccaaaaaact 600 catattttta ggcacgtcga tggtgccatt aatttcttca agcgaaggac catttgcata ttcaatcaaa tgatgtcttt gctttggttc atgttcttct gaatttttca attcaattcc 660 ttctttcgtt ttgcaataat tttaaaaggc ccttcccgtt agaaggttaa cctctagtat 720 780 attitaggta cacctaaaat atactgctaa aaataacaaa atgcaagact tgaaagaaaa 840 ttttgacagt gtaaaaatag attgtcgtaa atgtgcgatc ttaaagtttg aagaaatcag 900 ggtagctggt agttgattat cttaagaagt agaaaataag ggacctaagt catttcggct

taggtccctt att	aatgattt	ctaaaatctc				960
			gtaaacttaa	tetgacgaaa	agattanagt	1000
	ttattttn			1019409444	acciicaagi	1020
acttcgggca act		ccccattca	aaagttccat	catttctttt	caataatctt	1080
tgtaaaattt ct	tctttctc	gaccgctaac	aaaaaatgat	aaacgtcaat	gcctgctcgt	1140
ctcagatatc caa	atcagctc	ttcttcatat	tcatttttat	aaagggtcat	tgtaacaata	1200
atcggccgtc cag	gactcttt	ggacattcgt	tttaataaat	gagcattcca	gcaacgccat	1260
tcctgatact cc	tgaaaatc	attttctttc	atttcttcgg	gaactagctc	catcaatgca	1320
ctaccaataa tt	tctggatc	ataaatgatt	gcgttgggaa	gtttttgttg	taactcatgt	1380
gcaatggtcg tt	tttccgga	tccaaacgca	ccgtttaacc	aaataattat	cataatttcc	1440
ttttcttctg aac	caaatttc	tttgttgttt	aatttaggtg	ctagattact	tttaattttt	1500
ttagccattc ac	ttatagtt	actacttaca	tctttaacag	taaacgagac	aaactaaaaa	1560
tacaacatcc tac	egetatta	acctcgggtt	atataacata	ctcatctgat	aatttctccc	1620
taaaaaaaca gaa	atgtgggc	aatctttta	agaataattg	aatagaataa	caacaaacag	1680
taattcaggt ata	aaccagct	agaaattgtt	ttatttttag	tcacgagtat	gataagcatg	1740
taaatcaaat aga	aatcatat	taggtgaggt	tactctgaag	aacacaggtt	atcgctcgga	1800
aatgtcgaga gad	cagtaacg	agtaaagcag	ggattgtcga	attaaggctt	tcctaagata	1860
actagaattt tt	ttcttacg	tctcagaaag	ccaaagctca	attattgtga	ttaccctata	1920
atcttcttct tt:	tattcggc	gacctcttta	atatgattaa	ttggaggttt	ttaaattgaa	1980
agctgtcact gca	atcatcta	agaaaaatac	cctacttgct	aaaagtatcg	ggaatcttac	2040
cttgctcatc at	tttaggca	ttttcatttt	tatcatcgtc	ttctcttggc	taaaaatgaa	2100
tcgccctctc cad	caccette	cctcagaaga	attcctcgca	acaccaagta	aaacagatga	2160
tttcttatct cc	atcaaatc	ttttttactt	ttcaattcga	accatgtttc	gaatgattgt	2220
ggggatggct tgg	gtccttcc	tgttttcctt	tgtttttggt	attttagccg	taaaatataa	2280
aacggcacga aga	agtcattt	taccattagt	taatttcctt	gaatctgttc	cattgctagg	2340
ttttttgacc tt	tacaactg	cttggttact	tggtttattt	ccaggaaatg	tgatgggcgc	2400
agaagcggtt gc	tatttttg	ccatcttcac	aggtcaagct	t		2441

<210> 10

<211> 3480

WO 02/099133

31/51

PCT/JP02/05107

<212> DNA

<213> Enterococcus faecalis

<220>

<223 Designated as EF-7

<400> 10

aagcttctag cgtttcggat tggcgcctat gatgcaccag gagagcgacg aatcaatacc 60 aaaaatatgc ctacagcagg aggacttgca atctacattg cttttgctag ttcatgttta 120 ttgatttttc gttcgattat cccacaagat tatatttggc cgattatttt ggctggtgga 180 atggttgttt tgacaggcct cattgatgat attaaagaga ttactccaat gaaaaaaaca 240 atcggtattt tgttagcagc attagttatt ttattttgtt gctggaattc ggatagattt 300 tgtgacgttg ccagttgttg gaatgattga tttgcgctgg tttagtttac cactaacttt 360 attgtggatt ttagcgatta cgaatgcagt aaatttaatt gatggtttgg atggtttagc 420 atcaggegta tecattattg gattaaceae gattggtatt acagggtatt tttteetaea 480 540 tttcccatac aatttttatc cggctaaaat atttctagga gataccgggg cgttattcct 600 660 cgggittatg attgcagtaa tgtcgttaca gggcttgaaa aatgctacgt ttattacggt aattacgcca atggtgattt taggtgtgca attacggata cggtttatgc aattattcga 720 cggctattga acaagaagcc catttcctca gcagataaaa tgcatttaca tcaccgcttg 780 ttatctttag gttttaccca taaaggggcg gtcatgacta tttatgcatt agcgttagtt 840 ttttcctttg tctctttatt gttcagctat tcaagtacag tagcatcaat tttattaatt 900 gtcttttgtt taattggctt agaactattc attgaactaa tcggtctagt tggcgaaggg 960 catcaaccgt tgatgtattt gttacggatt ttagggaatc gtgaatatcg tcaggagcaa 1020 atgaaaaagc gacttggcaa gcattctaag agaaagtaaa gaaatcttta ggttgctttg 1080 cgagagctaa acctatgata taattccatt aaacttaaaa aagtatatgt gtgaaacata 1140 tgctttttt ttaagacgat gtttcagtag taaggagaaa tgagcatgca agaaatggta 1200 1260 acaatctcga ttgtcactta taatagtcgt tacattttta atgtactaga ccaattaaaa 1320 gccgaactag gtactgatag tatctatgat attcatatct atgacaatca ttctgaaaca

gcgtatcttg	aaaaattaac	aacatatgaa	ccatttatta	ctatccatcg	cgctgaagaa	1380
aatcaagggt	ttggtcatgg	tcataatcaa	gtgttattca	atgcttcgac	aaagtatgca	1440
attatttta	tcccgatgtg	ttggttacta	aagacgtgct	tgatcgttat	tagacgtatc	1500
aaatagataa	gaacattgca	gtcggtagcc	ctaaagttgt	taaatgaaga	tggcacgacg	1560
caatatttag	ttcgtcaaaa	attagatgtc	ttcgattata	tgttacgttt	tattcccttt	1620
caatttgtaa	agaaaatttt	tgataaacgt	ttgagtattt	atgaatgtcg	cgatttgtcg	1680
gatacagaaa	caacggatat	taaaatgggc	tcaggctgtt	ttatgttgat	tgatcgtgaa	1740
aaattcgttg	aaattggtgg	gttcgatgaa	cgtttcttca	tgtactttga	agacaacgat	1800
ttatgtttac	gctttggcaa	agcaggctat	cggattctct	atacgccttt	tgaaacggtt	1860
gttcacatgt	atgaaaaggg	cgcccataaa	agtcgaaaat	tgtttaaaat	ctttatgcaa	1920
tcaatgggga	aatttttaa	caaatggggc	tggaggttct	tttaatgagt	caaagattag	1980
cggtagtcat	cgtcttatat	caaatgaaaa	tggctgatac	gccgaattat	ttgttattaa	2040
aagaagtggt	agaccacccc	caattgcact	tatttattta	tgacaacagt	ccacttcctc	2100
aagaagatgc	attatttta	caaccaaatg	ttacttatcg	acataatcct	gataatccag	2160
gactagcgac	cgcttataat	gaagcgattg	cttttagtca	agcgaatcaa	tgtgaattat	2220
tgttgctcct	tgaccaagac	acagaagtgc	cagcctctta	ttttgatacg	ttgatcatca	2280
tgccattaga	tccgactgtg	gcagtctatg	ttccaattgt	agaagcaaat	ggacaacaaa	2340
tttcgccagt	atatagtgat	caatacgttg	ggcttaaagg	agcaaagcca	acagcaggga	2400
tagccaacca	accgttgatg	gctatcaatt	ctggtacagt	tattacggca	gaaacgctac	2460
gctggttgga	aggatttcg	gaagaatttc	ctttggacta	tttagaccat	tggttctttt	2520
atcaattaaa	tcaagccaat	aaaaagattg	aagtcttacc	aatccaccta	aaacaagaat	2580
tgtctgtttt	agattatcgt	acaatgagtc	ctcaacgtta	tcgctctatt	attgaagcag	2640
aaacgttatt	ttatcgtcga	tatgatcaag	aaaagttttc	$\tt ccatcatcga$	cgccatttat	2700
ttttacgcag	tagtaagcaa	ttttaactg	tcaaaaatcg	ccaaatttgg	cggcaaacat	2760
tggcagaatt	tctcaagtta	atgaaaggat	aatctatgat	ctcagtttgt	attgcgacat	2820
ataatggaga	aaaatatctc	gcggaacaat	tagatagtat	tcttttacaa	gtcagtgaag	2880
aagatgaact	aattatttca	gatgatggtt	ctactgatca	tacgttggaa	attttgagga	2940
cgtatgcagc	gaattatccc	caaattcaat	tgttacaagg	tcccagggca	aggagtgatt	3000
gctaattttg	cattttgcct	tacgcatacg	aaaggcgaag	ta a ta t t t t t	agcagatcaa	3060

33/51

gatgatgttt ggttgccaaa taaagtaacg acggtgacag aatattttga agcgcaccct 3120 gacatccaag tggttattag tgacttgaaa attgttgatg cggatttaca agttaccaat 3180 ccctcttatt taagtttcga aaagtcaaac cagggttttg gcgaaatgcg ataaaaagtg 3240 gctatattgg ggcaggtatg gcctttcgtc aagaaatgaa aaacgtcatt ttacccattc 3300 cgccagaagt tcctatgcat gatatgtgga ttggcttatt agctgcacgg aagaagcaaa 3360 cgggtctcat taaagaacca ttagtgcttt accgaagaca tggagcgaat gtcagcccca 3420 ttattaccaa aacaagttc caacaaaaat taaattggcg tgtgaattta ttaaaagctt 3480

<210> 11

<211> 3615

<212> DNA

<213> Escherichia coli

<220>

<223 Designated as EC-24

<400> 11

aagettttet tgegtgttet tgtgaggett eettegeeat tateateaeg ateeacataa 60 ataaagccgt agcgcttaga catttgtgaa tgagatgcac tgactaaatc aattggcccc 120 caactggtgt accccataat atccacacca tcggcaatcg cttcatttac ctgtaccagg 180 tgatcgttta aataggcaat tcgataatcg tcctgtatcg aaccatccgc ttcaacgctg 240 300 tcttttgcgc ctaatccgtt ctcgacaata aataacggtt tttgataacg atcccaaagc 360 gtatttaaca gaacccgtaa tccaaccgga tcaatttgcc accccactc tgaacttttc agatgcggat tggggatcat attcagtatg ttgccctgcg catttttatt aatgctttcg 420 tcgtgggaac acaaccagtc atgtataact aaagagatga atcgacggta tgttttaaat 480 ctctgcgtca ctttcagtca tctcaatggt gatattgtgg tcgcggaaga aacgctgcat 540 600 atagccggga tactggccac gcgcctgaac atcaccaaag aacatccagc gccggttctc 660 ticcatggcc igcaacatat ccigiggcig gcaggigagg gggtaaacca gcccaccgag 720 aagcatattg ccgattttcg cttcggggag caggctatga caggctttaa ctgcccgcgc

actggcaacc	agttgatggt	ggatagcctg	at a a a c t t c c	gcctcgccac	tctcttctgc	780
cagccccacg	cccgtgaatg	gcgcgtgtaa	cgacatgttg	atttcattaa	acgtcagcca	840
taacgccact	ttatgttggt	agcgagtaaa	gaccgtgcgg	gcgtaatgtt	cgaagtgatc	900
gatgaccgct	cgattagcca	accgccgtag	tttttcacca	gcccatatgg	catttcgtaa	960
tgggataacg	ttaccagcgg	cttgatcccc	gcctgcgcca	tttcatcaaa	cagccgatcg	1020
taaaacgcta	accccgcttc	attcggttcg	acttcgtcgc	cctgagggaa	aattcgcgcc	1080
caggcaatgg	aaatacgcag	acaggtgaag	cccatctcgg	caaataacgc	gatatettee	1140
gggtaacggt	gataaaaatc	gatggcgaca	tctttgatat	${\tt tctctttccc}$	caggatgcgc	1200
ggttccattt	ttcccattac	gcatgaggct	gtaaatctga	ggtcgagatc	cctttgccat	1260
cttcctgcca	ggcaccttcc	acctgattgg	cagctgttgc	ggcaccccaa	agaaatgttt	1320
ctggaaatgc	tttcataatt	aactcctttt	atcgttagcg	aatgatggat	aacagcggtt	1380
cacctgcgct	tatctgcgcc	gtgccgtggg	gtaatacgtc	cgtaaaatca	tcgctattac	1440
tgattaatac	cggcgtcgtc	agatcaaatc	cggcctcgcg	aatagcaggg	atatcaaaag	1500
aaatcagccg	atcgcctgta	ttgaccttgt	cacccacgtt	gacgtgagcg	gaaaagaatt	1560
tgccgtccag	ttttacggtg	tcgataccga	catgaatcag	gatctccaca	ccatcatctg	1620
actcaatgcc	aatggcgtgt	aatgtggcga	acaacgaagc	aattcgaccc	gcaaccggag	1680
aacgcacttc	accaaccgag	ggcagaatgg	caataccttt	acccaacagg	ccactggcaa	1740
acgtggtatc	agcgacgtga	atgagcgaca	caatctctcc	cgtcatcggt	gaacagatac	1800
cgccctgctc	aggtggtgta	ataacctctg	gtgtttctc	ttcggggcac	cctgcgctgg	1860
ctgacgttta	gcggtgatga	aatgaagcat	caccgtaccg	acaaatgcgc	aaccgatggc	1920
aatgacaccg	ccaataacgc	tggcccagac	ggtgaaatca	attcccgttg	acgggatggt	1980
ttgcatgaag	gtgaaaatac	ttggcaaacc	aaaggagtag	actttcgttt	gcgcgtagcc	2040
aataatggtg	gccccaaag	ccccactgat	acaggcgata	acaaaggggt	acttacgcgg	2100
caggttgacg	ccatataccg	ctggttcggt	gataccaaac	agactcgtca	acgccgctga	2160
tcccgccacc	actttttct	gcgcatcgcg	ttcgcagagg	aagacgccga	gcgccgcccc	2220
gacctgcgcc	ataatggcgg	gcattaacag	cgggatcatg	gtgtcgtagc	ccagcacggt	2280
gaagttattg	atacacaccg	gcaccaggcc	ccagtgcagt	ccgaacatga	cgaagatttg	2340
ccagaagccg	cccattaccg	cgcccgcaaa	tgcaggaacc	gcctgataaa	gccagagata	2400
accggcggca	atcagttcgc	ttatccaggt	tgatagcggc	cccaccagca	gaaaggtgac	2460

gggtgtgata	accatcagac	atagcaatgg	tgtgaagaaa	tttttgattg	ccgacggtaa	2520
ccacgcatta	agtcggcgtt	ccagaatgct	gcacaaccag	gcagaaaaaa	taatgggaat	2580
aaccgatgac	gagtaattca	acaatgtgac	cggaataccc	aggaaatcca	gccccagcgc	2640
atccgctttt	gcgcgttctc	gaaaagcagt	acagaattaa	tggatgcact	aacgctccac	2700
caatcaccat	ggcagtaaat	ggattatcgc	cgaagcgttt	cccgcggtg	tatcccagga	2760
ttatcgggaa	gaaccaaaac	aaggcatcac	tggcgctgaa	taaaattaaa	taagtaccac	2820
tttgttcggg	cgtccactga	aaagtgagcg	ccagagccag	catacctttc	aagatccccg	2880
gttgcccgcc	atcaaaccga	tacagaggcg	taaaaatacc	tgaaataaca	taaacaaagc	2940
ggtttagaca	gattaccttt	atcatacatt	ttccggtgcc	tgttgcgctt	tttcgtcaag	3000
gcctgccaca	ctgttaaccg	ccaggaagac	atcggccaca	tggttaccta	tgaccacctg	3060
aaactggcca	ccgctttcca	ccaccataat	aataccgggg	gtctttttca	gtacctctgc	3120
ttgcgctttg	$\tt ctttcatcct$	ttaatttaaa	aacgtaaatc	gcgttgcgca	atgcatcaga	3180
ctcacaatgt	tatctgcgcc	cccgactcct	gcgactattt	ttctggctaa	ctccgtcata	3240
acttgccctc	tacgctttgc	ggcaaaactc	caaaaaaaaa	cctgaaaaaa	acggcctgac	3300
gtgaatcaag	caatttttt	caggttttgc	ccgcttagtg	cggtaacaat	cctttactca	3360
gtaataatat	ttcagtgttc	tttgcgcacg	cgctctatat	ttatggctaa	aaacataatc	3420
tctgcgggtg	aaattttacg	ttgatactgc	aaaccaataa	aaatggcgat	ccgttccgca	3480
cattgccatg	cttgcgggta	attttgtttt	actgcttgtt	gtaatgattc	atcactatcg	3540
ttaattgaag	catgttcaag	aatacgccag	gataaaaact	tcagatgtgt	aaccagtcgc	3600
tgataactca	agctt					3615

<210> 12

<211> 4954

<212> DNA

<213> Escherichia coli

<220>

<223> Designated as EC-34

36/51

<400> 12

aagcttaacc	gctctcatct	gttgaccgca	cggcatagct	atattctgcc	ggtcctggga	60
cgtagcgaga	ttgacatgca	aaaaaacggt	gcgcaggcgg	taaccgttga	ggattcaatg	120
tcgatgattc	atgcctcgcg	tggcgtgtta	aaacccgccg	gtgtaatgct	gaaatcagag	180
tgtgcagtgg	tcgcgggaat	cgcgcaggca	gcactacccc	agagcgtggt	agcctgggag	240
tatctggtgg	aagattatga	tcgcattcgc	aatgacattg	aagctgtgct	gccagagttc	300
gccgactata	accagcgcat	ccgtcatccc	ggtggttttc	acctgataaa	tgcagctgct	360
gaaaggcgct	ggatgacgcc	gtcaggtaag	gctaatttca	ttaccagcaa	agggctgtta	420
gaagatccct	cttcagcgtt	taacagtaag	ctggtcatgg	cgacagtacg	cagccacgat	480
cagtacaaca	cgacgattta	tggtatggat	gatcgctatc	gaggggtatt	cggtcaacga	540
gatgtggtct	ttatgagtgc	taaacaagct	aaaatttgcc	gtgtaaaaaa	cggcgaaaga	600
gttaatctta	ttgcgcttac	gccagacggt	aagcgcagtc	acgccgcatg	gatagattaa	660
aagtggtcat	ttaccctatg	gctgaccgct	cactggtgac	$\tt ctattttcca$	gaatcgaatc	720
acatgctaac	acttgataac	cacgatccat	taagtggcat	tcctggctat	aaaagtattc	780
cgcttgaatt	agaaccatca	aattaatgtc	tcttctcatt	tcttctgctg	tcatccgcac	840
agcagaagaa	ttcctcattg	actattattt	cgcaatttgc	tcacatggat	taaattaaac	900
tacatactat	aagatataaa	cttctgccta	cagctgtaag	aaactccgct	cagtactgaa	960
gcaccagtcc	tatttcctct	tttctccagc	ctgttatatt	aagcatactg	attaacgatt	1020
tttaacgtta	tccgctaaat	aaacatattt	gaaatgcatg	cgaccacagt	gaaaaacaaa	1080
atcacgcaaa	gagacaacta	taaagaaatc	atgtctgcaa	ttgtgggtgt	cttattactg	1140
acacttacgt	gatagccatt	ttttcggcaa	ttgatcagct	gagtatttca	gaaatgggtc	1200
gcattgcaag	agatcttaca	catttcatta	tcaatagttt	gcaaggctgt	aaacaaacag	1260
caaattataa	atatgaaatg	ttaaaaaaagt	atcgataaaa	actttattgt	tttaaggaga	1320
taaaatgtcg	ctcgtttgtt	ctgttatatt	tattcatcat	gccttcaacg	ctaacatttt	1380
agataaagat	tacgccttct	ctgacggcga	gatcctgatg	gtagataacg	ctgttcgtac	1440
gcattttgaa	ccttatgagc	ggcattttaa	agagatcgga	tttactgaaa	ataccattaa	1500
aa,aatatcta	caatgcacta	acatccagac	agtgacggtg	cctgttcctg	cgaagtttt	1560
acgtgcttca	aatgtaccga	ctggattgct	taatgaaatg	attgcttatc	tcaactcgga	1620
agaacgcaat	catcataatt	tttcagaact	tttgcttttt	tcttgcctgt	ctatttttgc	1680

37/51

cgcatgcaaa	ggtttcatta	cactattaac	taacggtgtg	ctatccgttt	ctgggaaagt	1740
gagaaatatt	gtcaacatga	agccggcgca	cccatggaag	ctgaaagata	tttgtgactg	1800
cctgtacatc	agtgaaagcc	tgttgaagaa	aaacttaagc	aagagcaaac	gacattctca	1860
cagattcttt	tagatgcaag	aatgcagcac	gcaaaaaatt	tgatacgcgt	agaaggttca	1920
gtcaataaaa	ttgccgaaca	atgtggttat	gccagtacat	cttattttat	ttatgcgttc	1980
cgcaaacatt	tcggcaacag	tccgaagaga	gtttctaagg	agtaccgttg	tcaaagtcac	2040
acgggtatga	atacgggcaa	cacgatgaat	gctttagcta	tttgattatt	tgctaacgag	2100
tagtcaacca	cacacgctgc	gtaagaatta	aatggggcag	ccattccctg	ccccgcgttg	2160
tttttaggcg	atatattat	tgaaataaat	aagtgacatc	catcacatat	ttatgcactt	2220
gcataacctg	ttgcatgatt	atttatgatc	tcaattctgc	attttgtcag	taaaatgcaa	2280
taatttatta	aatatcaata	aattagttgt	ttatcggcga	gaaattactt	aatagaacag	2340
aaagtaatgt	caacgcttta	tggactgttt	tttccctttt	tttagctaaa	tctgctatct	2400
ctttatgtga	$\tt ctaacttcac$	ttacatccac	ttatttctct	tcgtaaaatt	actttggaat	2460
taagtacaat	aagaagagga	acatttatga	agtctgcatt	aaagaaaagt	gtcgtaagta	2520
cctcgatatc	tttgatactg	gcatctggta	tggctgcatt	tgctgctcat	gcggcagatg	2580
atgtaaagct	gaaagcaacc	aaaacaaacg	ttgctttctc	agactttacg	ccgacagaat	2640
acagtaccaa	aggaaagcca	aatattatcg	tactgaccat	ggatgatctt	ggttatggac	2700
aacttccttt	tgataaggga	tcttttgacc	caaaaacaat	ggaaaatcgt	gaagttgtcg	2760
atacctacaa	aatagggata	gataaagcca	ttgaagctgc	acaaaaatca	acgccgacgc	2820
tcctttcatt	aatggatgaa	ggcgtacgtt	ttactaacgg	ctatgtggca	cacggtgttt	2880
ccggcccctc	ccgcgccgca	ataatgaccg	gtcgagctcc	cgcccgcttt	ggtgtctatt	2940
ccaataccga	tgctcaggat	ggtattccgc	taacagaaac	tttcttgcct	gaattattcc	3000
agaatcatgg	ttattacact	gcagcagtag	gtaaatggca	cttgtcaaaa	atcagtaatg	3060
tgccggtacc	ggaagataaa	caaacgcgtg	actatcatga	${\tt caccttcacc}$	acattttctg	3120
cggaagaatg	gcaacctcaa	aaccgtggct	ttgattactt	tatgggattc	cacgctgcag	3180
gaacggcata	ttacaactcc	ccttcactgt	tcaaaaatcg	tgaacgtgtc	cccgcaaaaag	3240
gttatatcag	cgatcagtta	accgatgagg	caattggcgt	tgttgatcgt	gccaaaacac	3300
ttgaccagcc	ttttatgctt	tacctggctt	ataatgctcc	gcacctgcca	aatgataatc	3360
ctgcaccgga	tcaatatcag	aagcaattta	ataccggtag	tcaaacagca	gataactact	3420

acgcttccgt	ttattctgtt	gatcagggtg	taaaacgcat	tctcgaacaa	ctgaagaaaa	3480
acggacagta	tgacaataca	attattctct	ttacctccga	taatggtgcg	gttatcgatg	3540
gtcctctgcc	gctgaacggg	gcgcaaaaag	gctataagag	tcagacctat	cctggcggta	3600
ctcacacccc	aatgtttatg	tggtggagaa	ggaaaacttc	aacccggtaa	ttatgacaag	3660
ctgatttccg	caatggattt	ctacccgaca	gctcttgatg	cagccgatat	cagcattcca	3720
aaagacctta	agctggatgg	cgtttccttg	ctgccctggt	tgcaagataa	gaaacaaggc	3780
gagccacata	aaaatctgac	ctggataacc	tcttattctc	actggtttga	cgaggaaaat	3840
attccattct	gggataatta	ccacaaattt	gttcgccata	cagtcagacg	attacccgca	3900
taaccccaac	actgaggact	taagccaatt	ctcttatacg	gtgagaaata	acgattattc	3960
gcttgtctat	acagtagaaa	acaatcagtt	aggtctctac	aaactgacgg	atctacagca	4020
aaaagataac	cttgccgccg	ccaatccgca	ggtcgttata	gagatgcaag	gcgtggtaag	4080
agagtttatc	gacagcagcc	agccaccgct	tagcgaggta	aatcaggaga	agtttaacaa	4140
tatcaagaaa	gcactaagcg	aagcgaaata	actaaacctt	catgcggcgg	attttccgc	4200
cgccttattg	agcgagatag	cgatgcacgt	tacagccaag	ccctccagtt	ttcaatgtaa	4260
tctcaaatgt	gattactgtt	tttaccttga	aaaagagtcg	cagtttactc	atgaaaaatg	4320
gatggatgac	agcactttga	aagagttcat	caaacaatat	atcgcagcgt	ctggcaatca	4380
ggtctatttt	acctggcaag	gcggtgaacc	cactctggct	ggcctggatt	ttttccgtaa	4440
agttattcac	tatcaacaac	gctatgcagg	ccaaaaacgt	attttaatg	cattacaaac	4500
gaatggcatt	ttattgaata	atgaatggtg	tgccttctca	aagaacatga	atttctggtg	4560
gtatctcgat	cgatggcccc	caggagttac	atgaccgtta	cagacgcagt	aattcaggta	4620
acggtacttt	tgcaaaagtg	atagcagcca	tcgagcgtct	gaaatcatat	caagtagagt	4680
ttaatacgtt	aaccgtcatt	aataacgtta	atgtccatta	ccctcttgag	gtttatcatt	4740
ttttaaaatc	tatcggcagt	aaacatatgc	aatttatcga	attgctagaa	accgggacgc	4800
cgaatattga	tttcagtggt	catagtgaga	acacattccg	tatcattgat	ttttctgtgc	4860
ctcccacggc	ttatggcaag	tttatgtcaa	ccatttttat	gcaatgggtt	aaaaacgatg	4920
tgggtgaaat	tttcatccgt	cagtttgaaa	gctt			4954

⟨210⟩ 13

<211> 3796

WO 02/099133 PCT/JP02/05107 39 / 51

<212> DNA

<213> Escherichia coli

<220>

<223 Designated as EC-39

<400> 13

aagettaate gegtgaatea ggagtaaaaa aatgacaace cagaetgtet etggtegeeg 60 120 ttatttcacg aaagcgtggc tgatggagca gaaatcgctt atcgctctgc tggtgctgat cgcgattgtc tcgacgttaa gcccgaactt tttcaccatc aataacttat tcaatattct 180 ccagcaaacc tcagtgaacg ccattatggc ggtcgggatg acgctggtga tcctgacgtc 240 gggcatcgac ttatcggtag gttctctgtt ggcgctgacc ggcgcagttg ctgcatctat 300 cgtcggcatt gaagtcaatg cgctggtggc tgtcgctgct gctctcgcgt taggtgcgca 360 attggtgcgg taaccggggt gattgtagcg aaaggtcgcg tccaggcgtt tatcgctacg 420 ctggttatga tgcttttact gcgcggcgtg accatggttt ataccaacgg tagcccagtg 480 aataccggct ttactgagaa cgccgatctg tttggctggt ttggtattgg tcgtccgctg 540 ggcgtaccga cgccagtctg gatcatgggg attgtcttcc tcgcggcctg gtacatgctg 600 660 catcacacgc gtctggggcg ttacatctac gcgctgggcg acaacgaagc gacaacgcgt 720 ctttctggta tcaacgtcaa taaaatcaaa atcatcgtct attctctttg tggtctgctg gcatcgctgg cgggatcata gaagtggcgc gtctctcctc cgcacaacca cggcggggac 780 840 tggctatgag ctggatgcta ttgctgcggt ggttctgggc ggtacgagtc tggcgggcgg 900 aaaaggtcgc attgttggga cgttgatcgg cgcatiaatt cttggcticc ttaataatgg 960 attgaatttg ttaggtgttt cctcctaita ccagatgatc gtcaaagcgg tggtgatttt gctggcggtg ctggtagaca acaaaaagca gtaataacga ctacaggcac atcttgaata 1020 1080 tgaacatgaa aaaactggct accctggttt ccgctgttgc gctaagcgcc accgtcagtg cgaatgcgat ggcaaaagac accatcgcgc tggtggtctc cacgcttaac aacccgttct 1140 tigtaicgci gaaagaiggc gcgcagaaag aggcggaiaa actiggciai aacciggigc 1200 tggactccca gaacaacccg gcgaaagagc tggcgaacgt gcaggactta accgttcgcg 1260 1320 gcacaaaaat tctgctgatt aacccgaccg actccgacgc agtgggtaat gctgtgaaga

tggctaacca ggcgaacatc ccggttatca ctcttgaccg ccaggcaacg aaaggtgaag 1380 tggtgagcca cattgcttct gataacgtac tgggcggcaa aatcgctggt gattacatcg 1440 cgaagaaagc gggtgaaggt gccaaagtta tcgagctgca aggcattgct ggtacatccg 1500 cagcccgtga acgtggcgaa ggcttccagc aggccgttgc tgctcacaag tttaatgttc 1560 ttgccagcca gccagcagat tttgatcgca ttaaaggttt gaacgtaatg cagaacctgt 1620 tgaccgctca tccggatgtt caggctgtat tcgcgcagaa tgatgaaatg gcgctgggcg 1680 cgctgcgcgc actgcaaact gccggtaaat cggatgtgat ggtcgtcgga tttgacggta 1740 caccggatgg cgaaaaagcg gtgaatgatg gcaaactagc agcgactatc gctcagctac 1800 ccgatcagat tggcgcgaaa ggcgtcgaaa ccgcagataa agtgctgaaa ggcgagaaag 1860 ttcaggctaa gtatccggtt gatctgaaac tggttgttaa gcagtagttt taatcaggtt 1920 gtatgacctg atggtgacat aaatacgtca tcgacagatg aacgtgtaat ataaagaaaa 1980 gcagggcacg cgccacccta acacggtggc gcattttatg gacatcccga atatgcaaaa 2040 cgcaggcagc ctcgttgttc ttggcagcat taatgctgac cacattctta atcttcaatc 2100 ttttcctact ccaggcgaaa cgtaaccggt aaccactatc aggttgcatt tggcggcaaa 2160 ggcgcgaatc aggctgtggc tgctgggcgt agcggtgcga atatcgcgtt tattgcctgt 2220 acgggtgatg acagcattgg tgagagcgtt cgccagcagc tcgccactga taacattgat 2280 attactccgg tcagcgtgat caaaggcgaa tcaacaggtg tggcgctgat ttttgttaat 2340 ggcgaaggtg agaatgtcat cggtattcat gccggcgcta atgctgccct ttccccggcg 2400 ctggtggaag cgcaacgtga gcgtattgcc aacgcgtcag cattattaat gcagctggaa 2460 tcaccactcg aaagtgtgat ggcagcggcg aaaatcgccc atcaaaataa aaactatcgt 2520 tcgcttaacc cgctccggct cgcgaacttc ctgacgaact ctgcgctgtg gacattatta 2580 cgccaaacga aacggaagca gaaaagctca ccggtattcg tgttgaaaat gatgaagatg 2640 2700 gaagtcgtgg tgtatgggct agcgtgaatg gtgaaggtca gcgcgttcct ggattccggg 2760 tgcaggctgt cgataccatt gctgccggag atacctttaa cggtgcgtta atcacggcat 2820 tgctggaaga aaaaccattg ccagaggcga ttcgttttgc ccatgctgcc gctgcgattg 2880 ccgtaacacg taaaggcgca caaccttccg taccgtggcg tgaagagatc gacgcatttt 2940 tagacaggca gaggtgacgc ttggctacaa tgaaagatgt tgcccgcctg gcgggcgttt 3000 ctacctcaac agtitctcac gttatcaata aagatcgctt cgtcagtgaa gcgattaccg 3060

WO 02/099133 PCT/JP02/05107 41/51

caaagtgagc gcgatta	iaag actcaattac	gcgccatcag	ctctggcgcg	tagcctcaaa	3120
ctcaatcaaa cacatao	cat tggcatgttg	atcactgcca	gtaccaatcc	tttctattca	3180
gaactggtgc gtgtcgt	tga acgcagctgo	ttcgaacgcg	gttatagtct	cgtcctttgc	3240
aataccgaag gcgatga	aca gcggatgaat	cgcaatctgg	aaacgctgat	gcaaaaacgc	3300
gttgatggct tgctgtt	act gtgcaccgaa	acgcatcaac	cttcgcgtga	aatcatgcaa	3360
cgttatccga cagtgcc	tac tgtgatgatg	gactgggctc	cgttcgatgg	cgacagcgat	3420
cttattcagg ataactc	egtt gctgggcgga	gacttagcaa	cgcaatatct	gatcgataaa	3480
ggtcataccc gtatcgc	ctg tattaccggc	ccgctggata	aaactccggc	gcgctgcggt	3540
tggaaggtta tcgggcg	ggcg atgaaacgtg	cgggtctcaa	cattcctgat	ggctatgaag	3600
tcactggtga ttttgaa	ıttt aacggcgggt	ttgacgctat	gcgccaactg	ctatcacatc	3660
cgctgcgtcc tcaggcc	gtc tttaccggaa	atgacgctat	ggctgttggc	gtttaccagg	3720
cgttatatca ggcagag	gtta caggttccgc	aggatatcgc	ggtgattggc	tatgacgata	3780
tcgaactggc aagctt					3796

<210> 14

<211> 6914

<212> DNA

<213> Enterobacter cloacae

<220>

<223> Designated as ET-49

<400> 14

aagcttttcg	agttcgccat	ccggcaacag	ctcactgagc	ttttacgcgc	ccagggtgcc	60
tttgaactca	attcccagct	cagtaaggcg	gtcctgaata	atctctttgc	gagatttttc	120
actggtaccg	gcatcaggtg	ttgcaggttt	cagctcgcca	ccagcctcgc	ccttcatcag	180
ccggacgtta	gacttcagcg	ccgggtgaag	atctttcaac	tccaccacgt	cgccaacctt	240
tacgccgaac	catgggcgca	caacttcgta	tttagccatg	ctgtttcctt	acgccaggtt	300
agcgccgtag	acaacgccag	acaggcctga	tegtetgeag	taatttgcag	gccttcagca	360

gacatgatct ggaagttgta gttaacgtta ggcagtgggc gcggcagtgg cacaacgcca 420 480 acagccatac ccaccagtgg ggagatcacg tcacgacgac gaacgtacgc gataaactcg ttaccggtca gcgcgaagtc atgcggattt ctttcaccgg tgcgaatggc agaacagcct 540 gcaggagagt gccgctcacc acaccattaa ctacgtatgg ctgagccata tttgcccaga 600 tctcagggga aacccacatc acatcatact gagctacttt gttggtgcgt gcggtggtac 660 cgaatgctcc tttaccaaag aactcaaaat attgagtcgt ggttgcgctg gtcaggtcga 720 tgttcgcacc accagcacca gaaccgaggt taatcttctt ggtgttgcgg tggttcttga 780 tgccctgcgc cgggtaggac tgaacctgaa tttttgaatc gccgttcagg tagtagttga 840 900 egegettetg gttgaacttg egeatetteg ecatetgega atceagaace agateaatge 960 ctacagagtt aaggccagca gcatgacgcc agttaacacc gtagccagca gtgaacaccg gaatcgggtc gccatcgctc gcgtagtcag tgtggtcgaa ggagaatggc gcctgaccat 1020 cgatgcttac tgacacgtcg tcagcgatgt cgccgaccac gttatacagc ttggcggttt 1080 taccaaccgg cagcacggtc tgaacgccga tcaggtcgtt tacgatttcc atgccaactt 1140 cctgatcccg cagctgcagc acctggttgt caatctcagc ccagaagtca cgggagaaac 1200 cgccaacagc gttacaagcc agcatgtcag gcgtcatcat tgcgcggtta gctgcaatga 1260 tggaatcgtt cigtaggtic cacaigtigc ggittgccca cagcicacic cagigcccgc 1320 cgaggcggga gttagtcgcc agcgtctctt tagagaagta catatgtgtt tgtccttttg 1380 ttacgcgcca gctgcggcga cagtgccaac gcgcatacgc acgcgaatga agtcagtggt 1440 1500 gctggccgcg atggtgtatt catcctggct gtagccgatc actgaatcag tgtcggatgt ggcaagggta aactgaccgg cagttcccag cttgatcggg ctgtcttttt tatacgcacc 1560 aggcaggcag cgcagcgcca gctcacgacc ttcttcgacg tagttaccta ctgccgaatc 1620 cccggcaggg atticticgg tgattgicag gccctggiga taaccgacai cgatgatgia 1680 1740 caggcggccg gttagcgcgg tggcctgagc gaatttatcg gatgagttga tggttgcggc ggtgccagga agcaacccgg cggccgttgt gcgggtttcg gtcttgtaca gagactgacc 1800 1860 gtcgatatta acgcgacgat aacgtggcat tattccggct ccttacttga agtgttcgtc tgcggctggt gcgccggttt ctttgtgctg ctgagcattg ttggtgccca gcgacttgaa 1920 categogtee agagettege etgacagage gttegegage gatategeea tggacetteg 1980 caaccgcttc gcgctttgct ttctcttcgg cacgggagtt cgcggtaagg gtttccgcga 2040 gttgcttctg attggcctgc agcgcatcaa ccttttccgc gagaggctta atagccgctt 2100

WO 02/099133 PCT/JP02/05107 43/51

cagtattggt cgcaacagcc tggccgatca tgctgccgat ttgttccagt tcttctttgg 2160 ttaaaggcat gtcgcctccg ttttgtggtt tggtgcaggc tgttcctgcg gtgtgaatag 2220 agctttgaat tgttagcgac gactgccacc cacgactcct ggcgcgctac tgcggttccg 2280 gtatcgtcga ttgtgatctt cccgccatca gcgaataccg taaacctgag catcaccgcc 2340 atttcgcacg atgaccacct gcgagtcagt gagtcagcaa cccaggcata ttcatccgtg 2400 cccggcgcaa acttggcttt ggctgcccga tcgagacgct gctcgcgctc ccggtaggat 2460 tcacccacca gcgcgccgga gttcgcttta agcggctgcg ccagatcggc gtttaccatc 2520 aggccaacgc cctgctcagg ggtggcggct ccgacttcgt gcagtaggat cgcgtcgtgg 2580 tccatgctgt gaatcttcgc cacccactcg gcacccgtag ctctctgttg ttcgttaggc 2640 tcaagctggt cgaggaaagc ggcgacactg gtatgaatcg gcggaacgtc atcgccgcgc 2700 tcgatggctg cgacgcgctc aagtagttct cggccacctt cagactcacc ggcgcgggca 2760 acatcaaccc actiticgag giagatacga tiaccggact icitaacgii gcggiiccac 2820 gcgccgatat ggcctgcgtt aatcccctcc ggggagaaag cagacacgaa ctgaccatta 2880 acctgagggt ggcccagcgg cgccagggta ccttccagcc ccttatagtg ggcgtcgatt 2940 tgctcttgcg tgtacaagcc gccattcatg acgacgttag ctggaagtgt gtagctcggc 3000 agcaccaggt gctcacgccc gttgtatgtt tcgcgccgga tagactggct gttcaccttt 3060 gtggtgatgt tgacctgaat atgctcacca tgtttcggtg cctggattgg acgctgtgct 3120 tcgtggttta cctggaattt catgagttat ttctccgccc aggcgtaacc gctcgcctgc 3180 atcgatttat attcctgttt gagtttcgtg atggtgtccg ggtattccgg cttgccgtcc 3240 gcatccacca gcaccgactg ctggctgcat ttgcagttga tggagttgcc atctttgctg 3300 taccagtcac gcacctcttc gttggtgtag aggtgggcat gggcgcactg cgtgggtatg 3360 3420 tcgcgttgtc ggcgacagag ctgagatgtg aaccagcagc gttttaaggc cgaacaggtc attcgcctct tggtcttcat cccacttggc ccggcgcagc gcggtagtca cttcagtgcg 3480 3540 tgctatccgg ttagcccggc gtttctcgat gccggtctgg tctgtcaggt tgcgggcaat gtccagagga ttgagcccgc gcccaacacc atcagtaaga cacgcgccat gtcgcgctta 3600 acgtcagccg tcagcccctt catttcctca aatacacgcg catgcaccag cgccatgcgt 3660 ttctgatact ggtcgcttgc gaggatggag gccagcgact cacgcccggc tgcgtacacc 3720 ggggattgct gactgaggtt gtagaacgac tgcccggtcc ctttttccga agccagatcg 3780 atgtactcgt aaaaccacag gtcgtaatcg ccaccttcaa gcagtacctg atcaaccagg 3840

taactggcat cgttcaggat gatggagagt agcattgggt ttagctggta ttcgtatctg 3900 gcgtttactg cgagggagga aggtattttg ttgagtgctg atttgtacgc cttgccaatc 3960 ttattcatcc gcctggcgaa gtctttcatt gcccggcgtt ccagcgcatc ggctccggtc 4020 ggatcctgat agttacgcgg cagaatcggt ggcttcgtct tcttcgtcgc catcctcttc 4080 tcctaatgga aattcatcga cgttttcata accggcagca gtgcggaatt tcttcacgac 4140 taaaggctgg tttttctccg ctcccctgga acgtctggtt aatctctgcc atggttttgg 4200 cattiggag titcicagit ccagicigit cgtigaggic atcccagata accgicitci 4260 cgctgactgc atcaataatt ttcaggtcga tgagcttgtc actgaagtct tcaatttcga 4320 atgacaggtc accgcgccgt gactggcagc gcgcgttgaa atattictga tcctcggtgc 4380 ttgccctttc acccgtctgc atcccaacca gaaccttcac agggatatca acagatgcag 4440 cgaaggttig caggtigacg tiataggicg cigacggatc cgctacagct gigaccagtg 4500 gtgtgactgt agccccttgg gttgtcatca gaacatcgtt accacggttc atttccccgg 4560 caacttcgtt aaacttatcc tgcaactcgt ccatgtcacg ccataaagtg acgcgagatt 4620 gttgaaatcg atttccttct caaagttgac attaagctgc cgcgcggcgt tctttaggaa 4680 tgactcacca gaaccaccct cgaccttctc aaggctgacg caggcgttat agccaggctc 4740 aaggaagcca atagcatcat tagaatagtc accaaggata aagacgcgat cgggatgtac 4800 gaagegetga ttagtteeac egettggaag geteteaaca tattteeact getttggetg 4860 cccgtagcct gccgatttct ggtcagttac ccactcgctg actgttaatg acccagccca 4920 tgcgatcgta accttttta gtgacttgcc acgaacaaca ggctgatccc atgttctgga 4980 atcattgata tgcagcagga tacccgcata acgtccgacc tgtcggcggc ggtctgcttc 5040 agcaaaagcc cgccaaaggc gctttgtgaa aacctttttg gtgttcttct cccaggcagt 5100 5160 ttcatcctta ctctcgtcgg catcatcacc ctcgatgatt tccgggttgg tctgccagca cttgcccacc agcttctcta ctgcgccgtg ggctattcca ccgcgacgat acagtgcgta 5220 gaggttttcg taagtgacct gctcagggaa tccatactcg caccatgcgg aatggcgctt 5280 attgtccagc cccattgtag gcgccaacag ccccatacgg gcacgggcca tccgcgcatc 5340 gttcaacgca tggttgacgg cgagagttaa tttgtcagtc atggtttgtc cgttggtgga 5400 tttaaggcat aaaaaaaggc cgctttggcg accttgtggc tatttaaaaa gctaaactct 5460 gttgaacgaa ataaacataa tctgctcagg cttaacgcca taatcacttg ccaacttctg 5520

agtgcactca attaagacag ttgatgcaga tttcgaagag cttgcaccat aaatttcgaa

5580

gttttcaaat actccgccgt	tggtgtggta	aatcttatat	gacataaacc	aatcattcat	5640
aatatctact cccttacaga	attgagtaga	tattatcggc	aagtgcatat	gtttctttaa	5700
attatcicaa ccttttcggg	atcatcatcc	cggccatctg	gcccttacgt	ttaatgtgtc	5760
cgtcgaggct gtagcgaata	ccgtcccagc	agtgttcgta	accgtctgcc	agtttaggca	5820
atacctcgcc ggtgatgcgg	tccgttttgt	aggaccacat	gcgggcctct	ctcgccacat	5880
tcttgcagcg-aggatggata	atgatttcgt	caaagccgcg	aagatgcgcg	ataccgtcct	5940
caacactccc ctgccatttc	tcggcagccg	agatgttgaa	gccctggcgc	ttgagatagc	6000
tgatagtctc gggtcgggcg	gagtcggcct	tgatgggcca	gtcacgcgat	ccggggattg	6060
tgtcgtatag ctctggcata	tggtcgagct	ctgtctgctg	accgtatgcc	tcgtattcga	6120
tgtacagccg gttgtgcagg	atgaacgagc	gcaccagcgt	gttagggtct	ttggcgaaac	6180
cgaagtcagc accgaagaaa	aggcgatcgg	$\tt cctctttcca$	tagctggtcc	gagaactcag	6240
cgatccggta tttaccggcc	agcacctgct	tatcagagtt	ttcgaggtaa	gcaccttccc	6300
aaacccacgc gtatgttgcc	gggtcaaggc	ggcgctgatc	gttctgtcgc	tcaccttcca	6360
gcacgtcggg gaaccatgga	ttatccgtgt	agttcatctc	aacgtgatac	agtcgtcgcc	6420
agcctcttta cggaaacgct	tatccgtgcg	ctgccgtcgc	gctccgggtt	ccatgtcacc	6480
caaatctctg aaccttcctc	acgaacggtc	gggctcagct	tctgccaggc	tatttcgctg	6540
actgattcag cctcatcaac	ccaacagagc	aagatgcgcg	ctttcgactt	gatgctgtcg	6600
aggitatgcc gcagaccgca	gaacacgtag	ttaacgctct	tgtcgatggt	gcggatgtac	6660
ttctcgccga tatcaaagtt	ggaagccagc	cagggaacag	acaggatagc	ctgtttcacc	6720
tcctgcatac tcgactcttc	cagtgagttc	atgaattcac	gcgcacagag	caccacgccg	6780
ctttcaccgt tcatcatcga	ctgatacgcc	tttacggctg	tcatcagcgc	aaaagtgcgc	6840
gtcttggcac taccacgccc	accatgcgag	caccggtaac	gcttattctc	ggcgatgaac	6900
agtggcgcaa gctt					6914

<210> 15

<211> 5975

<212> DNA

<213> Klebsiella pneumoniae

WO 02/099133 46/51

<220>

<223> Designated as KI-50

<400> 15

60	gccggcatcg	caacgctatc	ttatcggcgt	gcgtccggga	cacgctggag	aagcttattc
120	cgcagcgtga	caaacgcaac	accgcttttt	atgctctccg	catcgccggc	ccgggaccat
180	tggtcgccgc	cctgatgctc	ccggcttcgc	ctgaacaccg	catcagcctg	tggccggatt
240	ggcgctctga	ggccaccatt	ttatcttcgg	ctggcgatga	cactgatatt	acaattacta
300	gccggggccg	gcgcaaggcc	atatctcttc	atcgccgtcg	tggcgggctg	cctgcttcct
360	ttctcaccgg	ctgggcgagt	cggcgccggc	gcagctacgc	catcggcatc	cgctcggcac
420	atttcagcac	acgctgtatg	aaacggcaaa	ctatccttga	gataaaacgg	gttcattatt
480	taccactgcc	tactctgttt	ggttcngcgc	gtacggtctg	ttctgggtgg	gttggcgctg
540	ataaccgatt	cgttctcctc	cggcagacct	tgccgtcgaa	cccggcgcca	gccatcgtcg
600	gcctgtttat	gggctgttac	aagacatcag	tgatgcctgc	gaagaagata	aacgaataag
660	ggcagctgga	gccgcggact	atctgccgcc	tggcgctgca	ctgccgctgc	cgcctgcgcg
720	accgggaagc	acggccggca	tcgtccgccg	gccacggtat	gagctcagcc	gaaagtggtc
780	gggagctcac	acccatgacg	cgagtggacc	gaccgtggac	gccaccggcc	catcgaggcc
840	attaccgcca	gaaggccagc	agggcgtgcg	tggtcaacaa	tatgccgccg	cggccatggc
900	gcgccagccc	atatacgtgc	ggcggagtcg	gatgcccgac	ctgcaggccg	gctcggcctg
960	ccggctgcgg	ggcgccttcc	gctggtggat	ccgcccaggc	acgcgagcga	gctgcagcgg
1020	acaagttcgc	tttcagaccg	cgatcccctg	gcggggatgc	cattatgtca	cgtcgctatc
1080	cggggatctg	aagagaaggc	ggcgcggtga	cccgccagct	accgaccccg	cgccacgcaa
1140	gtttgtcagg	gaaacaggcg	tccagctatt	gcgccgacca	gcaggcgctg	gcgcaggtcg
1200	aaaagtggga	cgagcagagc	cgtggcaggt	ttcgataccc	ctgcccgatc	ccgataagcc
1260	cgtctcggct	ggagacgctg	ccaatatggt	agcgtgatgg	tagcggactg	agaccaccat
1320	gccaggcaga	gatcacccag	cgtggggcaa	agccagctgg	cctgcctctc	ggagtgaaaa
1380	gtgttgtata	gagtaacgat	actacgatct	ttaacggaaa	gctgccgctg	tcaccgccct
1440	aaaccggagc	cgacggcgtc	acgctatgct	gtgctgctca	acgcgggtcg	ccgcgcaaaa
1500	atggtgcgca	caatatcgcc	gccatgacac	gctgctggtg	tacgctggct	gaatcgaacg

PCT/JP02/05107

47/51

cgctgatgaa	$\tt ctttagctgg$	cagctgccgg	gctacagccg	gggaaatatc	ccgccgggca	1560
gcagcctggt	gctggagcgc	tggcgcaacg	cgaagagcgg	agaacgctat	ctgcgggtct	1620
atttccaggc	ccagggcctc	gacgacctgc	gtcgtctgca	gacgccggac	gcgcagaccc	1680
cgatgctgcg	tcaggagtgg	catcagccgg	gctgccgtca	gaccgatgtc	ggtacgctgt	1740
gtcccttcca	ggcggctatt	accgccctcg	gtcagcgtat	cgaccgatca	tccgccccgg	1800
cggtagcatg	gtcctgccgt	agcggcgcgg	tgtttgtccg	ggcccgggaa	aaccttttt	1860
tccaggccgg	cacgacgtcc	gttatccgtt	gtccggcgca	aacgccccgg	cggcgacctg	1920
cgccggggtg	acacccgctg	tccagcaccc	agccgcttat	cagcccagca	ggcgtgacgt	1980
cgaacgccgg	attgtaaacg	gtggcccccg	tcggcgccca	ctgtaccgcg	ccgaagctgc	2040
ccgccactcc	ggtcacttcc	gccgccgcgc	gctgctcaat	ggggatcgcc	gcccgttcg	2100
ggcaatggcg	gtcgagggtg	gtctgcgggg	cagcgacgta	aaacgggatc	tggtgataat	2160
gggccaaaac	cgccagagaa	taggtgccga	ttttattcgc	cacgtcgccg	ttggcggcga	2220
tacggtcggc	gccgacccac	accgcatcca	cctgcccctg	cgccatcagg	ctggcggcca	2280
ttgaatcggc	gatcagctga	tagggcacgc	ccagctcgcc	cagctcccag	gcggttaaac	2340
gaccgccctg	cagcagcggc	cgggtttcat	caacccatac	gttggtcact	tttccctgcc	2400
ggtgcgccag	cgcgataacg	ccgagggcgg	tccctacccc	ggcggtcgcc	aggccaccgg	2460
tgttgcagtg	ggtcagcagt	cgactgccgg	gcttcaccag	cgcactgccc	gcctcagcga	2520
tgcggtcgca	cagctgttta	tcttcttcga	ccagacgcaa	ggcttccgct	tccagcgcct	2580
gcgggtaatc	tccgggccag	cgctgcttca	tgcgatcaga	ttattcatca	ggttgaccgc	2640
cgtcggccgc	gccgcgcgca	gtctccagcg	cctgctggag	tgcatcccgg	ttcaggccgc	2700
gctgggccag	cagggccagc	agcaggctgg	cggacaggcc	aatcagcggc	gcgccgcgca	2760
cccgcaggt	atgaatatgg	tccaccagca	gcgcaacgtt	atccgccgcc	agccagcgtt	2820
tttcctgcgg	caaggcctgc	tggtcgagaa	taaaaagctg	attttcactc	acccgcaggc	2880
tggtggtctg	taatgtctgc	atgtcgttaa	atccctgttg	cgttgttgta	tcacattgtg	2940
tcaggatgga	atccagaagt	atagacgtct	gaacggctta	atcagaattc	gaggatcgag	3000
gcaatgtcgc	aataccatac	cttcaccgcc	cacgatgccg	tggcttacgc	gcagagtttc	3060
gccggcatcg	acanccatct	gagctggtca	gcgcgcagga	agtgggcgat	ggcaactcaa	3120
tctggtgttt	aaagtgttcg	atcgccaggg	cgtcacgggc	gatcgtcaaa	caggctctgc	3180
cctacgtgcg	ctgcgtcggc	gaatcctggc	cgctgaccct	cgaccgcgcc	cgtctcgaag	3240

PCT/JP02/05107

cgcagaccct	ggtcgcccac	tatcagcaca	gcccgcagca	cacggtaaaa	atccatcact	3300
ttgatcccga	gctggcggtg	atggtgatgg	aagatctttc	cgaccaccgc	atcttgcgcg	3360
gagagcttat	cgctaacgtc	tactatcccc	aggcggcccg	ccagcttggc	gactatctgg	3420
cgcaggtgct	gtttcacacc	agcgatttct	acctccatcc	ccacgagaaa	aaggcgcagg	3480
tggcgcagtt	tattaacccg	gcgatgtgcg	agatcaccga	ggatctgttc	tttaacgacc	3540
cgtatcagat	ccacgagcgc	aataactacc	cggcggagct	gggaggccga	tgtcgccgcc	3600
ctgcgcgacg	acgctcagct	taagctggcg	gtggcggcgc	tgaagcaccg	tttctttgcc	3660
catgcggaag	cgctgctgca	cggcgatatc	cacagcgggt	cgatcttcgt	tgccgaaggc	3720
agcctgaagg	ccatcgacgc	cgagttcggc	tacttcggcc	ccattggctt	cgatatcggc	3780
accgccatcg	gcaacctgct	gcttaactac	tgcggcctgc	cgggccagct	cggcattcgc	3840
gatgccgccg	ccgcgcgcga	gcagcggctg	aacgacatcc	accagctgtg	gaccaccttt	3900
gccgagcgct	tccaggcgct	ggcggcggag	aaaacccgcg	acgcggcgct	ggcttacccc	3960
ggctatgcct	ccgcctttct	gaaaaaggtg	tgggcggacg	cggtcggctt	ctgcggcagc	4020
gaactgatcc	gccgcagcgt	cggactgtcg	cacgtcgcgg	atatcgacac	tatccaggac	4080
gacgccatgc	gtcatgagtg	cctgcgccac	gccattaccc	tgggcagagc	gctgatcgtg	4140
ctggccgagc	gtatcgacag	cgtcgacgag	ctgctggcgn	gggtacgcca	gtacagctga	4200
gtgcgcctgt	ttccctcacc	ccaaccctct	cccacaggga	gagggagcac	cccctaaaaa	4260
agtgccattt	tctgggattg	cccggcgngn	tgcgcttgcc	gggcctacag	atagccgcat	4320
aacggtttga	tcttgcactc	tttcgtaggc	cgggtaaggc	gaaagccgcc	acceggeaga	4380
catgcgagta	caattttgca	tttaccttac	cctcacccca	gatactcaat	caccgatagc	4440
ccgccgttgt	aatcggtgct	gtagataatg	ccttgcgcat	cgacaaacac	gtcacaggac	4500
tggatcaccc	gcgggcggcc	gggacgggta	tccatcattc	tctcagcgca	gccggcacca	4560
gcgccccggt	ctccagcggg	cgatacgggt	tggaaatgtc	gtaagcccgc	acgccggcat	4620
tctgatacgt	ggcaaaaaatc	agcgttgagc	tgacaaagct	ccccggccgg	ttctcatgca	4680
ggttgtgcgg	accgaaatgc	gccccttcg	ccacgtaatc	cgcttcatcc	ggcggcggga	4740
aggtggcgat	gctcaccggg	ttggttggct	cgcggatatc	aaacagccag	atcagcttct	4800
cgccgtcctc	ctggttatcg	agcaccgctt	catccagcac	caccagcaga	tcgcgatccg	4860
gcagcggcag	cgcggtatgc	gttccgccgc	cgaacggcgg	gctccagttg	cgatggctaa	4920
tcagcctcgg	ctgggtacgg	tctttgacat	ccagcagcgt	caggccgccg	tcgcgccagc	4980

tgcgtaggcg	tatcccggc	aataatggcg	tgatgcagcg	catagcgttt	gccctgcggc	5040
cagtccggtg	tttcaccgcc	cgcctggtgc	atccccggca	gccaccagcg	cccgctact	5100
tcgggcttac	gcggatcggc	cagatcgatg	gtcaggaaga	tgtagtcggt	aaaaccgtcg	5160
atcagcgcag	acacatacgc	ccagcgcccg	ccgacgtacc	agatgcggtg	aataccgatg	5220
ccgttaagcg	acaggaaact	gatttcccgc	gctgcgcggg	agtggaaata	tcaaagatgc	5280
gcagcccggc	gctccagccc	ctgtcctgca	catcgctgac	cgtgtcaccc	accgagcggg	5340
tgtagtacac	cttctcatca	gcaaaacggg	cgtcagcaaa	cagatcccgg	gcgttgatca	5400
ccagcagcag	atcgtcatgc	gcctggagtg	cacgttccag	gtgcccggcg	gcgcggcaat	5460
atagttgacg	gtggtgggcc	gggtcggatc	gcgaacatcg	accacggaaa	aaccctgcga	5520
caccatatgg	ccgatatagg	cgaatccgcg	gtgcaccatc	agctgcacgc	cgtccggacg	5580
accgccctga	tcgctatggc	caatcagccg	catattgcgg	ctgtattcgg	gggaaggtaa	5640
tgctgacata	ggggatccct	ctcgcccggt	ggcatggttt	tccccctct	cctgcggaga	5700
gggccggggc	gagggcacca	ggccgccgcc	caccgccacc	cggcttgatt	ttatttgttc	5760
ttcgcttcca	gcgtcgcgaa	ccacggcgcg	ataaagtctt	cggtctggcc	ccagccaggg	5820
ataattttcc	ccagcgacgc	cacgtttacc	gctcccggct	gggccgccag	cagcgcctgg	5880
ggaatcgctg	ccgccttgaa	gtcgtaggtg	gctggcgtcg	gctcgccggc	gatcttgttg	5940
gcgatcagcc	gcacgttggt	cgcgccgata	agctt			5975

<210> 16

<211> 899

<212> DNA

<213> Candida albicans

<220>

<223> Designated as CA-26

<400> 16

gaatteetag taagegeaag teateagett gegttgatta egteetgee etttgtacae 60 accgeeegte getaetaeeg attgaatgge ttagtgagge etceggattg gtttaggaaa 120 WO 02/099133 PCT/JP02/05107

50/51

gggggcaacc	tcattctgga	accgagaagc	tggtcaaact	tggtcattta	gaggaagtaa	180
aagtcgtaac	aaggtttccg	tagtgaacct	gcggaaggat	cattactgat	ttgcttaatt	240
gcaccacatg	tgtttttctt	tgaacaaact	tgctttgcgg	tgggcccagc	ctgccgccag	300
aggtctaaac	ttacaaccaa	ttttttatca	acttgtcaca	ccagattatt	acttaatagt	360
caaacttcaa	caaacggatc	tcttggttct	cgcagcgaaa	tgcgatacgt	aatatgaatt	420
gcagatattc	gtgaatcatc	gaatctttga	acgcacattg	cgccctctgg	tattccggag	480
ggcatgcctg	tttgagcgtc	gtttctccct	caaaccgctg	ggtttggtgt	tgagcaatac	540
gacttgggtt	tgcttgaaag	acggtagtgg	taaggcggga	tcgtttgaca	atggcttagg	600
tctaaccaaa	aacattgctt	gcggcggtaa	cgtccaccac	gtatatcttc	aaactttgac	660
ctcaaatcag	gtaggactac	ccgctgaact	taagcatatc	aataagcgga	ggaaaagaaa	720
ccaacaggga	ttgcctcagt	agcggcgagt	gaagcggcaa	aagctcaaat	ttgaaatctg	780
gcgtctttgg	cgtccgagtt	gtaatttgaa	gaaggtatct	ttgggcccgg	ctcttgtcta	840
tgttccttgg	aacaggacgt	cacagagggt	gagaatcccg	tgcgatgaga	tgacccggg	299

<210> 17

<211> 189

<212> DNA

<213> Candida albicans

<220>

<223> Designated as CA-26-1

<400> 17

gcgcaagtca	tcagcttgcg	ttgattacgt	ccctgccctt	tgtacacacc	gcccgtcgct	60
actaccgatt	gaatggctta	gtgaggcctc	cggattggtt	taggaaaggg	ggcaacctca	120
ttctggaacc	gagaagctgg	tcaaacttgg	tcatttagag	gaagtaaaag	tcgtaacaag	180
gtttccgta						189

WO 02/099133 PCT/JP02/05107

51/51

<211> 224

<212> DNA

<213 Candida albicans

<220>

<223 Designated as CA-26-2

<400> 18

gctgggtttg gtgttgagca atacgacttg ggtttgcttg aaagacggta gtggtaaggc 60 gggatcgttt gacaatggct taggtctaac caaaaacatt gcttgcggcg gtaacgtcca 120 ccacgtatat cttcaaactt tgacctcaaa tcaggtagga ctacccgctg aacttaagca 180 tatcaataag cggaggaaaa gaaaccaaca gggattgcct cagt 224

<210> 19

<211> 369

<212> DNA

<213> Candida albicans

<220>

<223 Designated as CA-26-3

<400> 19

aaacggatct cttggttctc gcagcgaaat gcgatacgta atatgaattg cagatattcg 60
tgaatcatcg aatctttgaa cgcacattgc gccctctggt attccggagg gcatgcctgt 120
ttgagcgtcg tttctccctc aaaccgctgg gtttggtgtt gagcaatacg acttgggttt 180
gcttgaaaga cggtagtggt aaggcgggat cgtttgacaa tggcttaggt ctaaccaaaa 240
acattgcttg cggcggtaac gtccaccacg tatatcttca aactttgacc tcaaatcagg 300
taggactacc cgctgaactt aagcatatca ataagcggag gaaaagaaac caacagggat 360
tgcctcagt

WO 02/099133 NATIONAL SEARCH REPORT

International alpCT/JP02/05107 PCT/JP02/05107

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), MEDLINE(STN), WPI(DIALOG), BIOSIS(DIALOG) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to classes.	. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C12Q1/68, C12N15/31, G01N33/569, G01N33/53, G01N33/566							
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ Cl2Ql/68, Cl2Nl5/31, G01N33/569, G01N33/53, G01N33/566 Documentation searched other than minimum documentation to the extent that such documents are included in the fields search terms used) Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), MEDLINE(STN), WPI(DIALOG), BIOSIS(DIALOG) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to classification symbols are considered to the constraint of the relevant passages Relevant to classification symbols are considered to the constraint of the relevant passages Relevant to classification symbols are considered to the constraint of the relevant passages Relevant to classification symbols are considered to the constraint of the relevant passages Relevant to classification symbols are considered to the constraint of the	According to International Patent Classification (IPC) or to both national classification and IPC							
Int.Cl ⁷ Cl2Ql/68, Cl2Nl5/31, G0lN33/569, G0lN33/53, G0lN33/566 Documentation searched other than minimum documentation to the extent that such documents are included in the fields search search data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), MEDLINE(STN), WPI(DIALOG), BIOSIS(DIALOG) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to cla								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), MEDLINE(STN), WPI(DIALOG), BIOSIS(DIALOG) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to classes.	Minimum documentation searched (classification system followed by classification symbols)							
CA (STN), MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to cla	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to cla								
	im No.							
Y WO 89/10411 A (Fuso Yakuhin Kogyo Kabushiki 1-18 Kaisha), 02 November, 1989 (02.11.89), & EP 366813 A & US 5358846 A								
Y WO 99/54502 A1 (Acad Ziekenhuis Groningen), 1-18 28 October, 1999 (28.10.99), & EP 957175 A1								
Y G.J. JANSEN et al., Rapid Identification of Bacteria in Blood Cultures by Using Fluorescently Labeled Oligonucleotide Probes., Journal of Clinical Microbiology, Feb.2000, Vol.38, No.2, pages 814 to 817								
Further documents are listed in the continuation of Box C. See patent family annex.								
"A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 23 August, 2002 (23.08.02) priority date and not in conflict with the application but cit understand the principle or theory underlying the invention of considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention or considered to involve an inventive step when the document considered to involve an inventive step when the document of particular relevance; the claimed invention or considered to involve an inventive step when the document of particular relevance; the claimed invention or considered to involve an inventive step when the document considered to involve an inventive step when the document of particular relevance; the claimed invention or considered novel or cannot be	priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 10 September, 2002 (10.09.02)							
Name and mailing address of the ISA/ Japanese Patent Office Facsimile No. Authorized officer Telephone No.								

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/05107

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	WO 94/28115 A1 (FAFF O), 08 December, 1994 (08.12.94), & EP 707635 A1 & JP 8510136 W & US 6268123 B1	4-8
Y	JP 8-205893 A (Sumitomo Metal Industries, Ltd.), 13 August, 1996 (13.08.96), (Family: none)	7,8
Y	WO 96/31522 A1 (UNIV NEW YORK STATE), 10 October, 1996 (10.10.96), & US 5720928 A & EP 871640 A1	13
Y	WO 94/10341 A1 (FUSO PHARM IND. LTD.), 11 May, 1994 (11.05.94), & JP 6133798 A & EP 670373 A1 & US 5708159 A	1-18
Y	WO 94/01583 A1 (FUSO PHARM IND. LTD.), 20 January, 1994 (20.01.94), & EP 652291 A1 & US 5763188 A	1-18
A	Akiko NATSUHISA et al., Detection of Bacteria in Phagocyte-Smears from Septicemia-Suspected Blood by In Situ Hybridization Using Biotinylated Probes., Microbiol.Immunol. (1994), Vol.38, No.7, pages 511 to 517	1-18

電話番号 03-3581-1101 内線 3448

発明の属する分野の分類(国際特許分類(IPC)) Α. Int. C1' C12Q1/68, C12N15/31, G01N33/569, G01N33/53, G01N33/566 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' C12Q1/68, C12N15/31, G01N33/569, G01N33/53, G01N33/566 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CA(STN) MEDLINE(STN) WPI(DIALOG) BIOSIS(DIALOG) 関連すると認められる文献 C. 関連する 引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 1 - 18WO 89/10411 A (FUSO YAKUHIN KOGYO KK) 1989. 11. 02 Y & EP 366813 A & US 5358846 A 1 - 18WO 99/54502 A1 (ACAD ZIEKENHUIS GRONINGEN) 1999. 10. 28 Y & EP 957175 A1 1 - 18Y G. J. JANSEN et al., Rapid Identification of Bacteria in Blood Cultures by Using Fluorescently Labeled Oligonucleotide Probes., JOURNAL OF CLINICAL MICROBIOLOGY, Feb. 2000, Vol. 38, No. 2, p. 814-817, | | パテントファミリーに関する別紙を参照。 区欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの の理解のために引用するもの 「E」国際出願日前の出願または特許であるが、国際出願日 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) 「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査報告の発送日 国際調査を完了した日 10.09.02 23.08.02 特許庁審査官 (権限のある職員) 9359 4 B 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 光本 美奈子 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

C (続き). 関連すると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
Y	WO 94/28115 A1 (FAFF 0) 1994. 12. 08 & EP 707635 A1 & JP 8510136 W & US 6268123 B1	4-8			
Y	JP 8-205893 A (住友金属工業株式会社) 1996.08.13 (ファミリーなし)	7, 8			
Y	WO 96/31522 A1 (UNIV NEW YORK STATE) 1996.10.10 & US 5720928 A & EP 871640 A1	1 3			
Y	WO 94/10341 A1 (FUSO PHARM IND LTD) 1994.05.11 &JP 6133798 A & EP 670373 A1 & US 5708159 A	1-18			
Y	WO 94/01583 A1 (FUSO PHARM IND LTD) 1994.01.20 & EP 652291 A1 & US 5763188 A	1-18			
A	Akiko NATSUHISA et al., Detection of Bacteria in Phagocyte-Smears from Septicemia-Suspected Blood by In Situ Hybridization Using Biotinylated Probes., Microbiol. Immunol. (1994), Vol. 38, No. 7, p. 511-517	1-18			