II Roots multiplied by a given non-zero constant k.

Theory Let α be a root of a polynomial equation f(x) = 0, then $k\alpha$ is a root of a polynomial equation $f(\frac{y}{k}) = 0$.

That is to say, change $x \to \frac{y}{k}$

Class Work II.1

Given the equation $x^2 - x - 6 = 0$, roots 3, -2.

Find the equation whose roots are -24 and 16.

 $k = ____,$ the new equation is $()^2 - () - 6 = 0$

On simplification, the equation is _____ = 0

Class Work II.2

(a) Let α , β and γ be the roots of $x^3 + qx^2 + r = 0$.

Find the new equation whose roots are 2α , 2β and 2γ .

(b) Find the value of $(\beta + \gamma - \alpha)(\alpha + \gamma - \beta)(\alpha + \beta - \gamma)$

 $\alpha + \beta + \gamma = \text{sum of roots of the old equation} = \underline{\hspace{1cm}}$

$$\beta + \gamma - \alpha = (\alpha + \beta + \gamma) - 2\alpha = \underline{\hspace{1cm}}$$

$$\alpha + \gamma - \beta =$$

$$\alpha + \beta - \gamma =$$

From (a),
$$(y - 2\alpha)(y - 2\beta)(y - 2\gamma) = y^3 + 2qy^2 + 8r$$

Put y = -q, do the rest yourself.