A comparitive analysis of some related Finnish Companies in the Helsinki Stock

Exchange("UPM.HE,STERV.HE,METSO.HE,,FORTUM.HE).UPM and STERV were highly correlated to each other in this project.

```
In [1]:
import numpy as np
import pandas as pd
import scipy
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
import statsmodels.graphics.tsaplots as sgt
import statsmodels.tsa.stattools as sts
from statsmodels.tsa.arima model import ARIMA
from statsmodels.tsa.statespace.sarimax import SARIMAX
from pmdarima.arima import auto arima
from arch import arch model
import yfinance
import warnings
warnings.filterwarnings("ignore")
df = yfinance.download (tickers = "UPM.HE,STERV.HE,METSO.HE,,FORTUM.HE", start = "2000-01-07",
                              end = "2020-09-18", interval = "1d", group by = 'ticker', auto adjus
 True, treads = True)
[********* 4 of 4 completed
In [3]:
#We will be concentrating on the Closing prices
df['UPM CL'] = df['UPM.HE'].Close[:]
df['FORTUM CL'] = df['FORTUM.HE'].Close[:]
df['STERV CL'] = df['STERV.HE'].Close[:]
df['METSO CL'] = df['METSO.HE'].Close[:]
In [4]:
df = df.iloc[1:]
del df['UPM.HE']
del df['FORTUM.HE']
del df['STERV.HE']
del df['METSO.HE']
df=df.asfreq('b')
df=df.fillna(method='ffill')
In [5]:
df.head()
Out[5]:
         UPM_CL FORTUM_CL STERV_CL METSO_CL
    Date
2000-01-10 6.582538
                   0.930695
                            7.386399
                                      3.522561
2000-01-11 6.304402
                    0.915087
                            7.282366
                                      3.407404
```

3 477912

2 560111

2000-01-12 5 995362

2000 04 42 6 170241

0.911183

0.026704

7 078460

7 022605

```
        2000-01-13
        0.179241
UPM_CL
        0.920794
FORTUM_CL
        7.032003
STERV_CL
        3.500141
METSO_CL

        2000-01-14
        6.335306
        0.926794
        6.907845
        3.524886
```

RETURNS

```
In [6]:
```

```
df['ret_UPM'] = df.UPM_CL.pct_change(1).mul(100)
df['ret_FORTUM'] = df.FORTUM_CL.pct_change(1).mul(100)
df['ret_STERV'] = df.STERV_CL.pct_change(1).mul(100)
df['ret_METSO'] = df.METSO_CL.pct_change(1).mul(100)
```

In [7]:

```
# Creating Squared Returns
df['sq_UPM'] = (df.ret_UPM)**2
df['sq_FORTUM'] = (df.ret_FORTUM)**2
df['sq_STERV'] = (df.ret_STERV)**2
df['sq_METSO'] = (df.ret_METSO)**2
```

In [8]:

```
#plotting closing prices
df['UPM_CL'].plot(legend=True, figsize=(15,8))
df['FORTUM_CL'].plot(legend=True)
df['STERV_CL'].plot(legend=True)
df['METSO_CL'].plot(legend=True);
```


In [9]:

```
#plotting sqaure returns(volatility)
df['sq_UPM'].plot(legend=True, figsize=(15,8))
df['sq_FORTUM'].plot(legend=True)
df['sq_STERV'].plot(legend=True)
df['sq_METSO'].plot(legend=True);
```


In [10]:

```
#plotting returns
df['ret_UPM'].plot(legend=True, figsize=(15,8))
df['ret_FORTUM'].plot(legend=True)
df['ret_STERV'].plot(legend=True)
df['ret_METSO'].plot(legend=True);
```


In [11]:

```
df_co=df[['UPM_CL','FORTUM_CL','STERV_CL','METSO_CL']].corr()
df_co
```

Out[11]:

UPM_CL FORTUM_CL STERV_CL METSO_CL

UPM_CL	1.000000	0.749284	0.932792	0.778270
FORTUM_CL	0.749284	1.000000	0.599455	0.891129
STERV_CL	0.932792	0.599455	1.000000	0.628190
METSO_CL	0.778270	0.891129	0.628190	1.000000

```
In [12]:
df_rt=df[['ret_UPM','ret_FORTUM','ret_STERV','ret_METSO']].corr()
Out[12]:
              ret_UPM ret_FORTUM ret_STERV ret_METSO
    ret UPM
              1.000000
                         0.332242
                                   0.794739
                                             0.406256
 ret_FORTUM
              0.332242
                         1.000000
                                   0.346507
                                             0.341670
  ret_STERV
              0.794739
                         0.346507
                                   1.000000
                                             0.428692
  ret_METSO
              0.406256
                         0.341670
                                   0.428692
                                             1.000000
In [13]:
df_vol=df[['sq_UPM','sq_FORTUM','sq_STERV','sq_METSO']].corr()
Out[13]:
              sq_UPM sq_FORTUM sq_STERV sq_METSO
                                             0.051457
    sq_UPM
              1.000000
                         0.253043
                                   0.632522
 sq_FORTUM
              0.253043
                         1.000000
                                   0.358592
                                             0.071432
  sq_STERV
              0.632522
                         0.358592
                                   1.000000
                                             0.053771
  sq_METSO
              0.051457
                         0.071432
                                   0.053771
                                             1.000000
SPLITTING OUR DATA TO TRAIN AND TEST SET
In [14]:
size = int(len(df)*0.8)
train= df.iloc[:size]
test=df.iloc[size:]
In [15]:
#lets try to fit in the various forecasting models
model ar = ARIMA(train.UPM CL, order = (1,0,0))
results ar = model ar.fit()
In [16]:
train.tail(2)
Out[16]:
       UPM_CL FORTUM_CL STERV_CL METSO_CL ret_UPM ret_FORTUM ret_STERV ret_METSO sq_UPM sq_FORTUM sq_S1
 Date
 2016-
                                      19.772427 1.564199
      15.219547
                  10.663694
                             6.760567
                                                            0.00000
                                                                     -0.674433
                                                                               0.079792 2.446720
                                                                                                   0.000000
                                                                                                             0.45
 07-27
 2016-
      15.336302
                  10.565413
                             6.727181
                                      19.394157 0.767135
                                                            -0.92164
                                                                     -0.493831
                                                                               -1.913115 0.588497
                                                                                                   0.849421
                                                                                                             0.24
 07-28
4
                                                                                                              F
In [17]:
```

start= "2016-07-29"

```
end="2017-09-18"
```

In [18]:

```
end='2020-09-18'
df_pred = results_ar.predict(start = start, end = end)
```

In [19]:

```
df_pred[start:end].plot(figsize = (20,5),legend=True)
test.UPM_CL[start:end].plot(legend=True)
plt.title("Predictions vs Actual", size = 24)
plt.show()
```


In [20]:

```
#using returns AR
end = "2016-09-25"

model_ret_ar = ARIMA(train.ret_UPM[1:], order = (3,0,0))
results_ret_ar = model_ret_ar.fit()

df_pred_ar = results_ret_ar.predict(start = start, end = end)

df_pred_ar[start:end].plot(figsize = (20,5), color = "red")
test.ret_UPM[start:end].plot(color = "blue")
plt.title("Predictions vs Actual (Returns)", size = 24)
plt.show()
```


In [21]:

```
results_ret_ar.summary()
```

Out[21]:

ARMA Model Results

Dep. Variable: ret_UPM No. Observations: 4318

Model: ARMA/3 0\ Log Likelihood -9408 172

_	-3-100.17	iiioou	og Likei		(IVIA(J, U)	\(\sigma\)	mouei.
8	2.13	S.D. of ations	innov		css-mle		Method:
3	18826.34	AIC			d, 23 Sep 2020	We	Date:
6	18858.19	BIC			00:33:41		Time:
1	18837.59	HQIC			1-11-2000	0.	Sample:
					7-28-2016	- 07	
	0.975]	[0.025	P> z	z	std err	coef	
	0.105	-0.020	0.185	1.324	0.032	0.0425	const
	0.062	0.002	0.036	2.097	0.015	0.0319	ar.L1.ret_UPM
	0.017	-0.043	0.390	-0.859	0.015	-0.0131	ar.L2.ret_UPM
	-0.002	-0.062	0.035	-2.110	0.015	-0.0321	ar.L3.ret UPM

	Real	Imaginary	Modulus	Frequency
AR.1	1.4947	-2.6318j	3.0266	-0.1678
AR.2	1.4947	+2.6318j	3.0266	0.1678
AR.3	-3.3964	-0.0000i	3.3964	-0.5000

In [22]:

```
#MA
end= "2020-09-01"

model_ret_ma = ARIMA(train.ret_UPM[1:], order=(0,0,3))
results_ret_ma = model_ret_ma.fit()

df_pred_ma = results_ret_ma.predict(start = start, end = end)

df_pred_ma[start:end].plot(figsize = (20,5), color = "red")
test.ret_UPM[start:end].plot(color = "blue")
plt.title("Predictions vs Actual (Returns)", size = 24)
plt.show()
```


In [23]:

```
results_ret_ma.summary()
```

Out[23]:

ARMA Model Results

4318	No. Observations:	ret_UPM	Dep. Variable:
-9408.091	Log Likelihood	ARMA(0, 3)	Model:
2.138	S.D. of innovations	css-mle	Method:
10006 101	AIC	Wed, 23 Sep	Data

Date:		2020			AIC	10020.101
Time:	(00:33:42			BIC	18858.034
Sample:	01-	11-2000		ı	HQIC	18837.428
	- 07-	28-2016				
	coef	std err	z	P>izi	[0.025	0.975]
const	0.0425	0.032	1.326	• •	-0.020	-
ma.L1.ret_UPM	0.0319	0.015	2.097	0.036	0.002	2 0.062
ma.L2.ret_UPM	-0.0130	0.015	-0.850	0.395	-0.043	3 0.017
ma.L3.ret_UPM	-0.0337	0.015	-2.204	0.027	-0.064	-0.004

	Real	Imaginary	Modulus	Frequency
MA.1	3.0694	-0.0000j	3.0694	-0.0000
MA.2	-1.7268	-2.5832j	3.1072	-0.3438
MA.3	-1 7268	+2 5832i	3 1072	0.3438

In [24]:

```
#ARMA
end = "2016-09-25"
model_ret_arma = ARIMA(train.ret_UPM[1:], order=(3,0,3))
results_ret_arma = model_ret_arma.fit()

df_pred_arma = results_ret_arma.predict(start = start, end = end)

df_pred_arma[start:end].plot(figsize = (20,5), color = "red")
test.ret_UPM[start:end].plot(color = "blue")
plt.title("Predictions vs Actual (Returns)", size = 24)
plt.show()
```


In [25]:

```
results_ret_arma.summary()
```

Out[25]:

ARMA Model Results

Dep. Variable:	ret_UPM	No. Observations:	4318
Model:	ARMA(3, 3)	Log Likelihood	-9403.506
Method:	css-mle	S.D. of innovations	2.136
Date:	Wed, 23 Sep 2020	AIC	18823.013
Time:	00:33:48	BIC	18873.977
Sample:	01-11-2000	HQIC	18841.008

```
- 07-28-2016
                coef std err
                               z P>|z| [0.025 0.975]
       const 0.0424
                      0.033 1.278 0.201 -0.023
                                               0.107
ar.L1.ret_UPM
              1.5580
                      0.272 5.720 0.000
                                       1.024
                                               2.092
                      0.435 -2.136 0.033 -1.782 -0.077
ar.L2.ret_UPM -0.9291
ar.L3.ret_UPM -0.0365
                      0.270 -0.135 0.893 -0.566
                                               0.493
ma.L1.ret_UPM -1.5284
                      0.272 -5.628 0.000 -2.061 -0.996
ma.L2.ret_UPM
              0.8725
                      0.435 2.006 0.045 0.020
                                               1.725
ma.L3.ret_UPM 0.0719
```

	Real	Imaginary	Modulus	Frequency
AR.1	0.8071	-0.6005j	1.0060	-0.1018
AR.2	0.8071	+0.6005j	1.0060	0.1018
AR.3	-27.0673	-0.0000j	27.0673	-0.5000
MA.1	0.8095	-0.5966j	1.0056	-0.1011
MA.2	0.8095	+0.5966j	1.0056	0.1011
MA.3	-13.7506	-0.0000j	13.7506	-0.5000

In [26]:

In [27]:

```
results_ret_armax.summary()
```

Out[27]:

ARMA Model Results

Dep. Variable:	ret_UPM	No. Observations:	4318
Model:	ARMA(1, 1)	Log Likelihood	-7194.434
Method:	css-mle	S.D. of	1.280

			"	iiiovati	UIIS	
Date:	Wed	, 23 Sep 2020			AIC 1	1402.869
Time:	(00:33:50		I	BIC 1	1447.462
Sample:	01-	11-2000		Н	QIC 1	1418.615
	- 07-	28-2016				
	coef	std err	z	P> z	[0.025	0.975]
const	0.0160	0.013	1.197	0.231	-0.010	0.042
ret_FORTUM	0.0610	0.012	5.066	0.000	0.037	0.085
ret_METSO	0.0773	0.009	8.526	0.000	0.060	0.095
ret_STERV	0.6885	0.010	71.605	0.000	0.670	0.707
ar.L1.ret_UPM	0.5779	0.058	9.962	0.000	0.464	0.692
ma.L1.ret_UPM	-0.7119	0.050	-14.220	0.000	-0.810	-0.614

	Real	Imaginary	Modulus	Frequency
AR.1	1.7303	+0.0000j	1.7303	0.0000
MA.1	1.4047	+0.0000j	1.4047	0.0000

In [28]:

```
#SARMA
end = "2017-01-25"
model_ret_sarma = SARIMAX(train.ret_UPM[1:], order = (3,0,4), seasonal_order = (3,0,2,5))
results_ret_sarma = model_ret_sarma.fit()

df_pred_sarma = results_ret_sarma.predict(start = start, end = end)

df_pred_sarma[start:end].plot(figsize = (20,5), color = "red")
test.ret_UPM[start:end].plot(color = "blue")
plt.title("Predictions vs Actual (SARMA)", size = 24)
plt.show()
```


In [29]:

```
results_ret_sarma .summary()
```

Out[29]:

SARIMAX Results

4318	No. Observations:	ret_UPM	Dep. Variable:
-9405.689	Log Likelihood	SARIMAX(3, 0, 4)x(3, 0, [1, 2], 5)	Model:
18837.378	AIC	Wed, 23 Sep 2020	Date:
18920.195	BIC	00:34:02	Time:
18866.621	HQIC	01-11-2000	Sample:

Covarianc	e Type:				opg	
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.3341	0.290	-1.151	0.250	-0.903	0.235
ar.L2	0.5830	0.133	4.370	0.000	0.322	0.844
ar.L3	0.5775	0.221	2.616	0.009	0.145	1.010
ma.L1	0.3634	0.291	1.250	0.211	-0.206	0.933
ma.L2	-0.5859	0.131	-4.469	0.000	-0.843	-0.329
ma.L3	-0.6194	0.220	-2.815	0.005	-1.051	-0.188
ma.L4	-0.0009	0.021	-0.042	0.967	-0.042	0.041
ar.S.L5	-0.7339	0.060	-12.255	0.000	-0.851	-0.617
ar.S.L10	-0.9355	0.060	-15.522	0.000	-1.054	-0.817
ar.S.L15	0.0052	0.016	0.315	0.753	-0.027	0.037
ma.S.L5	0.7485	0.060	12.534	0.000	0.631	0.865
ma.S.L10	0.9464	0.059	15.916	0.000	0.830	1.063
sigma2	4.5071	0.060	75.681	0.000	4.390	4.624
Lj	ung-Box ((Q): 58.2	23	Jarque	-Bera (JB):	2045.95
	Prob((Q): 0.	03	Prob	(JB):	0.00
Heteroske	dasticity	(H): 0.9	92	S	kew:	0.11
Prob(H)	(two-side	e d): 0.	14	Kurt	osis:	6.36

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [30]:


```
results_ret_sarimax.summary()
```

Out[31]:

SARIMAX Results

Dep. Variable:	ret_UPM	No. Observations:	4318
Model:	SARIMAX(3, 0, 4)x(3, 0, [1, 2], 5)	Log Likelihood	-7187.575
Date:	Wed, 23 Sep 2020	AIC	14407.150
Time:	00:34:30	BIC	14509.079
Sample:	01-11-2000	HQIC	14443.141
	- 07-28-2016		
Covariance Type:	opg		

	coef	std err	z	P> z	[0.025	0.975]
ret_FORTUM	0.0606	0.010	6.230	0.000	0.042	0.080
ret_METSO	0.0774	0.007	11.731	0.000	0.064	0.090
ret_STERV	0.6883	0.007	105.271	0.000	0.675	0.701
ar.L1	-0.3903	0.085	-4.583	0.000	-0.557	-0.223
ar.L2	-0.4145	0.069	-5.989	0.000	-0.550	-0.279
ar.L3	-0.6056	0.062	-9.727	0.000	-0.728	-0.484
ma.L1	0.2661	0.085	3.129	0.002	0.099	0.433
ma.L2	0.2624	0.072	3.620	0.000	0.120	0.405
ma.L3	0.4796	0.067	7.141	0.000	0.348	0.611
ma.L4	-0.1395	0.017	-8.294	0.000	-0.172	-0.107
ar.S.L5	0.1712	47.049	0.004	0.997	-92.042	92.385
ar.S.L10	0.2327	24.997	0.009	0.993	-48.760	49.226
ar.S.L15	0.0114	1.355	0.008	0.993	-2.645	2.668
ma.S.L5	-0.2349	47.049	-0.005	0.996	-92.449	91.979
ma.S.L10	-0.2268	27.989	-0.008	0.994	-55.084	54.631
sigma2	1.6341	0.018	92.488	0.000	1.599	1.669

7533.54	Jarque-Bera (JB):	34.04	Ljung-Box (Q):
0.00	Prob(JB):	0.73	Prob(Q):
0.25	Skew:	0.44	Heteroskedasticity (H):
9.45	Kurtosis:	0.00	Prob(H) (two-sided):

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [32]:

In [33]:

In [34]:

```
df_auto_pred.plot(figsize = (20,5), color = "red")
test_ret_UDM(start.endl_plot(color = "blue")
```

```
plt.title("Auto Model Predictions vs Real Data", size = 24)
plt.show()
```


In [42]:

```
#Comparing all the models
end="2016-09-25"

df_pred_sarimax[start:end].plot(figsize=(20,8),legend= True)
df_pred_sarma[start:end].plot(legend=True)
df_pred_armax[start:end].plot(legend=True)
df_pred_arma[start:end].plot(legend=True)
df_pred_ma[start:end].plot(legend=True)
df_pred_ma[start:end].plot(legend=True)
plt.legend(['SARIMAX','SARMA','ARMAX','ARMA','ARMA','AR'])
plt.title("All the Models", size = 24)
plt.show()
```


Forecasting Volatility(GARCH)

```
In [43]:
```

Iterations: 16
Function evaluations: 113
Gradient evaluations: 16

```
In [44]:
pred_garch = res_garch.forecast(horizon = 1, align = 'target')
In [45]:
pred garch.residual variance[start:].plot(figsize = (20,5),legend=True, zorder = 2)
test.ret UPM.abs().plot(legend=True, zorder = 1)
plt.title("Volatility Predictions", size = 24)
plt.show()
                                          Volatility Predictions
12
                                                                                                  ret UPM
                                    2018
                                                    Date
In [46]:
pred_garch = res_garch.forecast(horizon = 100, align = 'target')
pred_garch.residual_variance[-1:]
Out[46]:
      h.001 h.002 h.003
                             h.004
                                     h.005
                                             h.006
                                                     h.007
                                                             h.008
                                                                    h.009
                                                                            h.010
                                                                                    ... h.091
                                                                                            h.092
                                                                                                      h.09
 Date
2020-
     2.710105 2.144142 2.212408 2.243078 2.286316 2.358164 2.396006 2.394965 2.463345 2.472177 ... 5.39751 5.483715 5.608
09-17
1 rows × 100 columns
Multivariate Regression Model (VAR)
In [48]:
from statsmodels.tsa.api import VAR
In [49]:
df_returns = df[['ret_UPM', 'ret_FORTUM', 'ret_METSO', 'ret_STERV']][1:]
In [51]:
model var ret = VAR(df returns)
model_var_ret.select_order(20)
results var ret = model var ret.fit(ic = 'aic')
In [52]:
results var ret.summary()
Out[52]:
  Summary of Regression Results
```

_____ Model: Method: OLS Date: Wed, 23, Sep, 2020 01:21:46 ______ No. of Equations: 4.00000 BIC:
Nobs: 5396.00 HQIC:
Log likelihood: -43071.6 FPE:
AIC: 4.62611 Det(Omega_mle): 4.67010 4.64147 102.116 101.438 Results for equation ret_UPM

	coefficient	std. error	t-stat	prob
const	0.048587	0.027985	1.736	0.083
L1.ret UPM	-0.036065	0.022767	-1.584	0.113
L1.ret FORTUM	0.004324	0.017895	0.242	0.809
L1.ret METSO	0.001358	0.012235	0.111	0.912
L1.ret STERV	0.073638	0.021241	3.467	0.001
L2.ret UPM	-0.071964	0.022788	-3.158	0.002
L2.ret FORTUM	-0.002111	0.017890	-0.118	0.906
L2.ret METSO	0.022510	0.012231	1.840	0.066
L2.ret_STERV	0.038362	0.021215	1.808	0.071

Results for equation ret FORTUM

	coefficient	std. error	t-stat	prob
const	0.070041	0.023388	2.995	0.003
L1.ret_UPM	-0.005919	0.019027	-0.311	0.756
L1.ret FORTUM	-0.025732	0.014955	-1.721	0.085
L1.ret_METSO	0.025574	0.010225	2.501	0.012
L1.ret STERV	0.013846	0.017751	0.780	0.435
L2.ret UPM	0.029485	0.019044	1.548	0.122
L2.ret_FORTUM	-0.024661	0.014951	-1.649	0.099
L2.ret METSO	0.015759	0.010222	1.542	0.123
L2.ret_STERV	-0.034866	0.017730	-1.966	0.049
===========	============			

Results for equation ret_METSO

	coefficient	std. error	t-stat	prob
const	0.057809	0.035584	1.625	0.104
L1.ret UPM	0.068788	0.028948	2.376	0.017
L1.ret FORTUM	0.047895	0.022753	2.105	0.035
L1.ret METSO	-0.036285	0.015557	-2.332	0.020
L1.ret STERV	-0.001674	0.027008	-0.062	0.951
L2.ret UPM	0.052415	0.028975	1.809	0.070
L2.ret FORTUM	-0.030833	0.022748	-1.355	0.175
L2.ret METSO	0.008428	0.015553	0.542	0.588
L2.ret_STERV	-0.026757	0.026976	-0.992	0.321

Results for equation ret STERV

=========				========
	coefficient	std. error	t-stat	prob
const	0.033060	0.030463	1.085	0.278
L1.ret UPM	0.113364	0.024782	4.574	0.000
L1.ret FORTUM	-0.007782	0.019479	-0.400	0.690
L1.ret METSO	0.007202	0.013318	0.541	0.589
L1.ret STERV	-0.058029	0.023121	-2.510	0.012
L2.ret UPM	0.018427	0.024805	0.743	0.458
L2.ret FORTUM	-0.002466	0.019474	-0.127	0.899
L2.ret METSO	0.009062	0.013314	0.681	0.496
L2.ret_STERV	-0.006503	0.023093	-0.282	0.778
==========				

Correlation matrix of residuals ret UPM ret FORTUM ret METSO ret STERV

	ret_UPM	ret_FORTUM	ret_METSO	ret_STERV
ret_UPM	1.000000	0.332743	0.407899	0.798908
ret_FORTUM	0.332743	1.000000	0.342841	0.347109
ret_METSO	0.407899	0.342841	1.000000	0.428037
ret STERV	0.798908	0.347109	0.428037	1.000000

In [54]:

In [59]:

```
results_var_ret.plot_forecast(1000)
plt.show()
```


In []:			