First Name:	Last Name:	Student	ID:
			·- ·

Trigonometric Functions (1)

Measuring Angles

There are more ways of measuring angles: ______ and _____.

An angle θ , when measured in radian, is the _____ of the arc length subtended by θ as a central angle of a circle to the radius of the circle.

$360^{o} =$	$90^{o} =$	$45^{o} =$	$120^{o} =$
$180^{o} =$	$60^{o} =$	$30^{o} =$	$15^{o} =$

Convert each degree measure into radians and each radian measure into degrees.

1)
$$-\frac{4\pi}{3}$$

4)
$$\frac{52\pi}{9}$$

5)
$$\frac{23\pi}{18}$$

Arc Length Formula

Area of a Sector Formula

Example: Determine the arc length of a sector with an area of $100\pi\ cm^2$ and radius of 40 cm.

Angles in Standard Position

Draw an angle with the given measure in standard position.

b)
$$-\frac{3\pi}{4}$$

c)
$$\frac{28\pi}{9}$$

Coterminal Angles

Two angles in standard position are said to be **coterminal** if they share the same terminal arm.

Note: In general, two angles in standard position are coterminal if their difference is a non-zero integer multiple of 2π or 360° .

Find a coterminal angle between 0 and 2π for each given angle.

a)
$$\frac{11\pi}{4}$$

$$b) - \frac{41\pi}{36}$$

c)
$$\frac{17\pi}{3}$$

d)
$$-\frac{11\pi}{36}$$

Reference Angles

A **reference angle** is the acute angle formed between the terminal arm of a standard position angle and the *x*-axis. A reference angle is also referred to as a related acute angle.

Find the reference angle (related acute angle) for each angle θ .

a)
$$\theta = -390^{\circ}$$

b)
$$\theta = 247^{\circ}$$

c)
$$\theta = \frac{11\pi}{5}$$

$$d)\theta = -\frac{8\pi}{7}$$

Defining Trigonometric Ratios

$$sin(\theta) =$$

$$cos(\theta) =$$

$$tan(\theta)=$$

The reciprocal trigonometric ratios are defined as follows:

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

What is a unit circle?

$$sin(\theta) =$$

$$cos(\theta) =$$

$$tan(\theta) =$$

Find $sin(\theta)$, $cos(\theta)$, $tan(\theta)$ if

$$a. \theta = \frac{\pi}{2}$$

a.
$$\theta = \frac{\pi}{2}$$
 b. $\theta = \frac{3\pi}{2}$ c. $\theta = \pi$ d. $\theta = 2\pi$ e. $\theta = 0$

c.
$$\theta = \pi$$

d.
$$\theta$$
 = 2τ

$$e. \theta = 0$$

Example: The point P(-6,3) is on the terminal arm of an angle θ in standard position where $0 \le \theta \le 2\pi$. Determine the exact values of the six trigonometric ratios.

Special Triangles

The first of the triangles is a 30°-60°-90° triangle. The ratio of the corresponding opposite side lengths is 1: $\sqrt{3}$: 2.

The second triangle is a 45° -45° -90° triangle. The ratio of the corresponding opposite side lengths is $1:1:\sqrt{2}$.

Using radian measure, the first triangle is a $\pi/6$ - $\pi/3$ - $\pi/2$ triangle and the second triangle is a $\pi/4$ - $\pi/4$ triangle.

Determine the exact values of the six trigonometric ratios for each of the angles $\frac{\pi}{6}$, $\frac{\pi}{4}$, and $\frac{\pi}{3}$.

Angle(θ)	$sin(\theta)$	$tan(\theta)$	$tan(\theta)$
Angle(θ) $\frac{\pi}{6}$ or 30°			
$\frac{\pi}{3}$ or 60°			
$\frac{\pi}{4}$ or 45°			

Example:

- a) A unit circle is shown with OP as the terminal arm of a $\frac{\pi}{3}$ radian standard position angle. Determine the coordinates of P.
- b) A unit circle is shown with OQ as the terminal arm of a $\frac{-4\pi}{3}$ radian standard position angle. Determine the coordinates of Q.

Determining the Sign of a Trigonometric Ratio

Example: Determine the exact value of the following:

a.
$$cos(300^{\circ})$$

c.
$$\sec(\frac{17\pi}{3})$$

d.
$$tan(2018\pi)$$

e.
$$csc(\frac{17\pi}{2})$$

f.
$$\cot(-\frac{25\pi}{4})$$

Example:

a) If $cos(\theta) = -\frac{1}{4}$, determine the possible values of θ such that $-180^{\circ} \le \theta \le 180^{\circ}$.

b) If $tan(\theta) = -\sqrt{3}$, determine the possible values of θ such that $0 \le \theta \le 2\pi$.

c) If $sin(\theta) = -\frac{\sqrt{2}}{2}$, determine the possible values of θ such that $-\pi \le \theta \le 3\pi$.

d) For $\tan \theta = -\frac{5}{24}$, where $0^o \le \theta \le 360^o$, determine the values of other trig ratios.

Graphing $\sin x$, $\cos x$, and $\tan x$

For each of the following trigonometric graphs, identify the function, mark on the scale, and highlight one cycle of the graph. State the amplitude, period, max/min values, domain, range, and end behaviours.

Function: **y** = _____

Amplitude: _____

Period:

Maximum:

Minimum:

Domain: _____ End Behaviour:

Range: _____

Function:	y =

Amplitude:

Period:

Maximum: _____

Minimum: _____

Domain: _____ End Behaviour:

Range:

Function: **y** = _____

Amplitude:

Period:

Maximum:

Minimum:

Domain: _____ End Behaviour:

Range: _____

Warm UP!

On the same grid, sketch two cycles of $y = \sin x$ and $y = \cos x$.

Rewrite $y = \sin x$ as a cosine function:

Rewrite $y = \cos x$ as a cosine function:

Summary

	$y=\sin(x)$	$y = \cos(x)$	$y = \tan(x)$
Domain	$\{x\mid x\in\mathbb{R}\}$	$\{x\mid x\in\mathbb{R}\}$	$\left\{x\mid x eqrac{\pi}{2}+n\pi, n\in\mathbb{Z}, x\in\mathbb{R} ight\}$
Range	$\{y\mid -1\leq y\leq 1, y\in \mathbb{R}\}$	$\{y\mid -1\leq y\leq 1, y\in \mathbb{R}\}$	$\{y\mid y\in\mathbb{R}\}$
Maximum	y = 1	y = 1	none
Minimum	y = -1	y = -1	none
Period	2π	2π	π
Amplitude	1	1	not defined
Vertical Asymptotes	none	none	$x=\frac{\pi}{2}+n\pi, n\in\mathbb{Z}$
y-intercept	0	1	0
x-intercepts	$x=n\pi,\in\mathbb{Z}$	$x=\frac{\pi}{2}+n\pi, n\in\mathbb{Z}$	$x=n\pi, n\in \mathbb{Z}$