Module Interface Specification for CVT Simulator

Team #17, Baja Dynamics
Grace McKenna
Travis Wing
Cameron Dunn
Kai Arseneau

 $January\ 16,\ 2025$

1 Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at [give url —SS] [Also add any additional symbols, abbreviations or acronyms —SS]

Contents

1	Rev	vision 1	History			i	
2	Syn	nbols,	Abbreviations and Acronyms			ii	
3	Intr	Introduction 1					
4	Not	ation				1	
5	Mo	dule D	Decomposition			1	
6	Eng	gine Si	imulator Module			3	
	6.1	Modu	ıle			. 3	
	6.2	Uses				. 3	
	6.3	Syntax	ax			. 3	
		6.3.1	Exported Constants			. 3	
		6.3.2	Exported Access Programs			. 3	
	6.4	Semar	ntics			. 3	
		6.4.1	State Variables			. 3	
		6.4.2	Environment Variables			. 3	
		6.4.3	Assumptions			. 3	
		6.4.4	Access Routine Semantics			. 4	
		6.4.5	Local Functions			. 4	
7	Ext	ernal l	Forces Module			5	
	7.1	Modu	ıle			. 5	
	7.2	Uses				. 5	
	7.3	Syntax	ax			. 5	
		7.3.1	Exported Constants			. 5	
		7.3.2	Exported Access Programs			. 5	
	7.4	Semar	ntics			. 5	
		7.4.1	State Variables			. 5	
		7.4.2	Environment Variables			. 5	
		7.4.3	Assumptions			. 5	
		7.4.4	Access Routine Semantics				
		7.4.5	Local Functions			. 6	
8	MIS	of C	VT Simulation Module			7	
	8.1	Modu	ıle			. 7	
	8.2	Uses				. 7	
	8.3	Syntax	ax			. 7	
		8.3.1	Exported Constants			. 7	
		8.3.2	Exported Access Programs			. 7	

	8.4	Seman	tics													7
		8.4.1	State Variables													7
		8.4.2	Environment Variables													7
		8.4.3	Assumptions													7
		8.4.4	Access Routine Semantics													7
		8.4.5	Local Functions	•												8
9	MIS	of In	out Module													9
	9.1	_	e													9
	9.2															9
	9.3	Syntax	<u>.</u>													9
		9.3.1	Exported Constants													9
		9.3.2	Exported Access Programs													9
	9.4	Seman	tics													9
		9.4.1	State Variables													9
		9.4.2	Environment Variables													9
		9.4.3	Assumptions													9
		9.4.4	Access Routine Semantics													9
		9.4.5	Local Functions													10
10	MIS	of OI	DE Solver Module													11
			e													11
																11
			·													11
		-	Exported Constants													11
			Exported Access Programs													11
	10.4		tics													11
			State Variables													11
		10.4.2	Environment Variables													11
			Assumptions													12
			Access Routine Semantics													12
			Local Functions													12
11	MIS	of Ma	ain Module													13
			e													13
																13
			·													13
			Exported Constants													13
			Exported Access Programs													13
	11.4		tics													13
			State Variables													13
			Environment Variables													13
			Assumptions													13
					-	•	-	-	-	-		•	-	-		

		13 13
12 MI	S of Playback Module	14
		14
		14
		14
12.0		14
	•	14
19 4		14
12.7		14
		14
		14
	•	15
		15
	12.4.5 Local runctions	10
13 MI	S of Visualizer Module	16
13.1	Module	16
13.2	Uses	16
13.3	Syntax	16
	13.3.1 Exported Constants	16
	13.3.2 Exported Access Programs	16
13.4	Semantics	16
		16
		16
		16
		16
		17
T. FT		
		18
		18
		18
14.3	V	18
	1	18
	1	19
14.4		19
		19
		19
	1	19
	14.4.4 Access Routine Semantics	19
	14.4.5 Local Functions	19

15	MIS of State Module
	15.1 Module
	15.2 Uses
	15.3 Syntax
	15.3.1 Exported Constants
	15.3.2 Exported Access Programs
	15.4 Semantics
	15.4.1 State Variables
	15.4.2 Environment Variables
	15.4.3 Assumptions
	15.4.4 Access Routine Semantics
	15.4.5 Local Functions
	19.4.9 Local Pulictions
16	MIS of Backend Controller Module
	16.1 Module
	16.2 Uses
	16.3 Syntax
	16.3.1 Exported Constants
	16.3.2 Exported Access Programs
	16.4 Semantics
	16.4.1 State Variables
	16.4.2 Environment Variables
	16.4.3 Assumptions
	16.4.4 Access Routine Semantics
	16.4.5 Local Functions
	10.4.9 Local runctions
17	MIS of GUI Module
	17.1 Module
	17.2 Uses
	17.3 Syntax
	17.3.1 Exported Constants
	17.3.2 Exported Access Programs
	17.4 Semantics
	17.4.1 State Variables
	17.4.2 Environment Variables
	17.4.3 Assumptions
	17.4.4 Access Routine Semantics
	17.4.5 Local Functions
	17.4.0 LOCAL FUNCTIONS
18	MIS of File Output Module
	18.1 Module
	18.2 Uses
	18.3 Syntax

		18.3.1 Exported Constants	26
		18.3.2 Exported Access Programs	26
	18.4	Semantics	26
		18.4.1 State Variables	26
		18.4.2 Environment Variables	26
		18.4.3 Assumptions	26
		18.4.4 Access Routine Semantics	26
		18.4.5 Local Functions	26
19	MIS	of Communication Module	27
	19.1	Module	27
		Uses	27
	19.3	Syntax	27
		19.3.1 Exported Constants	27
		19.3.2 Exported Access Programs	27
	19.4	Semantics	27
		19.4.1 State Variables	27
		19.4.2 Environment Variables	27
		19.4.3 Assumptions	27
		19.4.4 Access Routine Semantics	27
		19.4.5 Local Functions	28
20	App	pendix	30

3 Introduction

The following document details the Module Interface Specifications for the CVT Simulatorprogram which is designed for optimizing McMaster Baja vehicles. This document specifies how each module interacts with one another throughout the program.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/gr812b/CVT-Simulator.

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by CVT Simulator.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
positive real	${f R}_+$	any real number (R) in $(0, \infty)$
input	I	a set of values $\{\mathbf{R}_+, \mathbb{R} \to \mathbb{R}, \mathbf{R}_+, \mathbf{R}_+, \mathbf{R}_+, \mathbf{R}_+, \mathbf{R}_+, \mathbf{R}_+, \mathbf{R}_+, \mathbf{R}_+\}$ that represent the input of the program

The specification of CVT Simulator uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, CVT Simulator uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
	Engine Simulator Module
	External Forces Module
	CVT Simulation Module
Behaviour-Hiding Module	Input Module
	ODE Solver Module
	Main Module
	Playback Module
	Visualizer Module
	Constants Module
	State Module
	Backend Controller Module
	GUI Module
Software Decision Module	File Output Module
	Communication Module

Table 1: Module Hierarchy

6 Engine Simulator Module

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R??. —SS]
[It is also possible to use LaTeXfor hypperlinks to external documents. —SS]

6.1 Module

Engine Module

6.2 Uses

• Constants Module (14)

6.3 Syntax

6.3.1 Exported Constants

None

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
getTorque	angular Veloctiy (\mathbb{R})	torque (\mathbb{R})	_
calcuAngularAccel	angular Veloctiy (\mathbb{R}) ,	angularAcceleration	-
	loadTorque (\mathbb{R})	(\mathbb{R})	

6.4 Semantics

6.4.1 State Variables

- Torque curve $\mathbb{R} \to \mathbb{R}$
- ullet Inertia $\mathbb R$

6.4.2 Environment Variables

None

6.4.3 Assumptions

- Torque Curve is initialized from the constants module
- Inertia is positive

6.4.4 Access Routine Semantics

getTorque(angularVeloctiy):

• output: torque:= torqueCurve(angularVeloctiy)

 $calc Angular Accel (angular Veloctiy,\ load Torque):$

• output: angularAcceleration:= (loadTorque - getTorque(angularVeloctiy))/inertia

6.4.5 Local Functions

7 External Forces Module

7.1 Module

Load Simulator

7.2 Uses

• Constants Module (14)

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
calcInclineForce	-	inclineForce \mathbb{F}	-
${\it calcDragForce}$	velocity \mathbb{F}	$\mathrm{dragForce}~\mathbb{F}$	-
${\it calcLoadTorque}$	velocity \mathbb{F}	loadTorque \mathbb{F}	-
${\it calc} Gearbox Load$	velocity \mathbb{F}	$\operatorname{gearboxLoad}\mathbb{F}$	-

7.4 Semantics

7.4.1 State Variables

None

7.4.2 Environment Variables

None

7.4.3 Assumptions

Constants are initialized from the constants module

7.4.4 Access Routine Semantics

calcInclineForce():

• output: inclineForce:= carMass*gravity*sin(inclineAngle)

calcDragForce():

• output: dragForce:= 0.5*airDensity*frontalArea*dragCoefficient*velocity²

calcLoadTorque():

 \bullet output: load Torque:= dragForce + inclineForce calcGearboxLoad():

• output: gearboxLoad:= (loadTorque*wheelRadius)/gearboxRatio

7.4.5 Local Functions

8 MIS of CVT Simulation Module

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R??. —SS]
[It is also possible to use LaTeXfor hypperlinks to external documents. —SS]

8.1 Module

[Short name for the module —SS]

8.2 Uses

• Constants Module (14)

8.3 Syntax

8.3.1 Exported Constants

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	<u> </u>	-	_
—SS]			

8.4 Semantics

8.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

8.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

8.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

8.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

8.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

9 MIS of Input Module

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R??. —SS]
[It is also possible to use LATEX for hypperlinks to external documents. —SS]

9.1 Module

[Short name for the module —SS]

9.2 Uses

None.

9.3 Syntax

9.3.1 Exported Constants

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	<u> </u>	-	_
—SS]			

9.4 Semantics

9.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

9.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

9.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

9.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

9.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

10 MIS of ODE Solver Module

10.1 Module

ODE Solver

10.2 Uses

- Constants Module (14)
- CVT Simulation Module (8)
- External Forces Module (7)
- Engine Simulator Module (6)
- State Module (15)

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
solveIvp	list of enginerAngu-	list of States (State	_
	$larAcceleration \mathbb{R}$ and	Module)	
	$\operatorname{carAccleration} \mathbb{R}$ and		
	car Velocity S, timeS-		
	pan (tuple of \mathbb{Z} and		
	\mathbb{Z}), array of \mathbb{S} , array of		
	\mathbb{F}		

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

10.4.3 Assumptions

None

10.4.4 Access Routine Semantics

solveIVP():

• output: states:= solve_ivp(ode, initial_state, time_span, args)

10.4.5 Local Functions

11 MIS of Main Module

11.1 Module

Main

11.2 Uses

- Communication Module (19)
- Visualizer Module (13)

11.3 Syntax

11.3.1 Exported Constants

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	-	-

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

None

11.4.3 Assumptions

The GUI module is assumed to be running in the background and is used to display the results of the simulation.

11.4.4 Access Routine Semantics

main():

• transition: Connects the backend controller module to the visualizer module.

11.4.5 Local Functions

12 MIS of Playback Module

12.1 Module

Playback

12.2 Uses

None.

12.3 Syntax

12.3.1 Exported Constants

 ${\bf car Spin Transform:\ Transform}$

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
StartPlayback	-	-	-
RestartPlayback	-	-	-
PausePlayback	_	-	-
PlaybackCoroutine	-	-	

12.4 Semantics

12.4.1 State Variables

 \bullet is Playing: $\mathbb B$

• currentIndex: I

• startTime: F

• carTransform: Transform

12.4.2 Environment Variables

• Start Button: Button

• Restart Button: Button

• Pause Button: Button

12.4.3 Assumptions

Assume that there is data to playback.

12.4.4 Access Routine Semantics

StartPlayback():

• transition: isPlaying:= True, currentIndex:= 0, startTime:= time.time()

PausePlayback():

• transition: isPlaying:= False

RestartPlayback():

• transition: isPlaying:= False, currentIndex:= 0, startTime:= time.time(), carTransform:= back to start position

PlaybackCoroutine():

• transition: carTransform updates to new positions, carSpinTransform updates to new rotations based on position

12.4.5 Local Functions

13 MIS of Visualizer Module

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R??. —SS]
[It is also possible to use LATEX for hypperlinks to external documents. —SS]

13.1 Module

[Short name for the module —SS]

13.2 Uses

• GUI Module (17)

13.3 Syntax

13.3.1 Exported Constants

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	g -	-	-
—SS]			

13.4 Semantics

13.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

13.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

13.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

13.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

13.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

14 MIS of Constants Module

14.1 Module

Constants

14.2 Uses

None.

14.3 Syntax

14.3.1 Exported Constants

- ENGINE_INERTIA: A positive real value (\mathbb{R}_+) representing the inertia of the current car's engine (in kg·m²) used for calculations involving car specifications.
- GEARBOX_RATIO: A positive real value (\mathbb{R}_+) representing the current car's gearbox ratio (unitless) used for calculations involving car specifications.
- FRONTAL_AREA: A positive real value (\mathbb{R}_+) representing the current car's frontal area (in m^2) used for calculations involving car specifications.
- DRAG_COEFFICIENT: A positive real value (\mathbb{R}_+) representing the current car's drag coefficient (unitless) used for calculations involving car specifications.
- CAR_WEIGHT: A positive real value (\mathbb{R}_+) representing the current car's weight (in lbs) used for calculations involving car specifications.
- CAR_MASS: A positive real value (\mathbb{R}_+) representing the current car's weight converted to kilograms (in kg) used for calculations involving car specifications.
- WHEEL_RADIUS: A positive real value (\mathbb{R}_+) representing the current car's wheel radius (in m) used for calculations involving car specifications.
- AIR_DENSITY: A positive real value (\mathbb{R}_+), set at 1.225 (in kg/m³).
- GRAVITY: A positive real value (\mathbb{R}_+) , set at 9.80665 (in m/s²).
- engineSpecs A list of dictionaries representing various engine rpm's and corresponding torque values (in ft*lbs):=["rpm": 2400, "torque": 18.5, "rpm": 2600, "torque": 18.1, "rpm": 2800, "torque": 17.4, "rpm": 3000, "torque": 16.6, "rpm": 3200, "torque": 15.4, "rpm": 3400, "torque": 14.5, "rpm": 3600, "torque": 13.5]
- engineData: A list of dictionary values for angular velocity (in rad/s), torque (in N*m), and power (torque*angular velocity) converting the above engineSpecs into SI units.

- angular_velocities: A list of angular velocity values (in rad/s) extracted from engineData.
- torques: A list of torque values (in N*m) extracted from engineData.
- powers: A list of power values (in watts) calculated from engineData.
- torque_curve: A cubic interpolation function that maps angular_velocities to torques, created using the interp1d method with extrapolation for values outside the range.

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
constants	-	-	-

14.4 Semantics

14.4.1 State Variables

None.

14.4.2 Environment Variables

None.

14.4.3 Assumptions

None.

14.4.4 Access Routine Semantics

None.

14.4.5 Local Functions

None.

15 MIS of State Module

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R??. —SS]
[It is also possible to use LATEX for hypperlinks to external documents. —SS]

15.1 Module

[Short name for the module —SS]

15.2 Uses

None.

15.3 Syntax

15.3.1 Exported Constants

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	g -	-	-
—SS]			

15.4 Semantics

15.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

15.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

15.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

15.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

15.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

16 MIS of Backend Controller Module

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R??. —SS]
[It is also possible to use LaTeXfor hypperlinks to external documents. —SS]

16.1 Module

[Short name for the module —SS]

16.2 Uses

- Input Module (9)
- ODE Solver Module (10)

16.3 Syntax

16.3.1 Exported Constants

16.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	_
—SS]			

16.4 Semantics

16.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

16.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

16.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

16.4.4 Access Routine Semantics

```
[accessProg —SS]():
```

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

16.4.5 Local Functions

[As appropriate—SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

17 MIS of GUI Module

17.1 Module

gui

17.2 Uses

None.

17.3 Syntax

17.3.1 Exported Constants

None.

17.3.2 Exported Access Programs

Name	In	Out	Exceptions
gui	None	None	-

17.4 Semantics

17.4.1 State Variables

- Button states (Boolean for clicked state)
- Input Fields (I)

17.4.2 Environment Variables

- \bullet Keyboard (\mathbf{Z}_{+} for key codes describing the key pressed)
- Mouse (Boolean for click state and \mathbf{Z}_+ for cursor position)
- Screen (**Z**₊ for width and height in pixels)

17.4.3 Assumptions

None.

17.4.4 Access Routine Semantics

gui():

• transition: Provides methods from Unity to build and deploy a GUI to the Visualizer Module 13

17.4.5 Local Functions

None.

18 MIS of File Output Module

18.1 Module

output

18.2 Uses

None.

18.3 Syntax

18.3.1 Exported Constants

None.

18.3.2 Exported Access Programs

Name	In	Out	Exceptions
write	outputPath (String)	-	-

18.4 Semantics

18.4.1 State Variables

• states: \mathbb{S}^n , where each entry represents the state of the car at a given time.

18.4.2 Environment Variables

None.

18.4.3 Assumptions

The file path given can be written to.

18.4.4 Access Routine Semantics

write(outputPath):

- output: Writes the states to a file at the given path.
- exception: [if appropriate —SS]

18.4.5 Local Functions

None.

19 MIS of Communication Module

19.1 Module

communication

19.2 Uses

• Backend Controller Module (16)

19.3 Syntax

19.3.1 Exported Constants

None.

19.3.2 Exported Access Programs

Name In	Out	Exceptions
frontToBack input (I)	ouput (\mathbb{I})	-
backToFront -	states (\mathbb{S}^n)	-

19.4 Semantics

19.4.1 State Variables

- mainPath: a String representing the path to the main file.
- outputPath: a String representing the path to the file to be read.

19.4.2 Environment Variables

• pythonPath: a String representing the path to the python environment.

19.4.3 Assumptions

All files are in the correct location matching the given paths.

19.4.4 Access Routine Semantics

frontToBack(input):

- transition: Sends the given parameters to the backend controller.
- exception: [if appropriate —SS]

backToFront():

 $\bullet\,$ transition: Reads the states from the output file.

 \bullet exception: [if appropriate —SS]

19.4.5 Local Functions

None.

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

20 Appendix

 $[{\bf Extra~information~if~required~-\!SS}]$

Appendix — Reflection

[Not required for CAS 741 projects—SS]

The information in this section will be used to evaluate the team members on the graduate attribute of Problem Analysis and Design.

The purpose of reflection questions is to give you a chance to assess your own learning and that of your group as a whole, and to find ways to improve in the future. Reflection is an important part of the learning process. Reflection is also an essential component of a successful software development process.

Reflections are most interesting and useful when they're honest, even if the stories they tell are imperfect. You will be marked based on your depth of thought and analysis, and not based on the content of the reflections themselves. Thus, for full marks we encourage you to answer openly and honestly and to avoid simply writing "what you think the evaluator wants to hear."

Please answer the following questions. Some questions can be answered on the team level, but where appropriate, each team member should write their own response:

- 1. What went well while writing this deliverable?
- 2. What pain points did you experience during this deliverable, and how did you resolve them?
- 3. Which of your design decisions stemmed from speaking to your client(s) or a proxy (e.g. your peers, stakeholders, potential users)? For those that were not, why, and where did they come from?
- 4. While creating the design doc, what parts of your other documents (e.g. requirements, hazard analysis, etc), it any, needed to be changed, and why?
- 5. What are the limitations of your solution? Put another way, given unlimited resources, what could you do to make the project better? (LO_ProbSolutions)
- 6. Give a brief overview of other design solutions you considered. What are the benefits and tradeoffs of those other designs compared with the chosen design? From all the potential options, why did you select the documented design? (LO_Explores)