Lecture 7: Markov Chain Monte Carlo

Professor Alexander Franks

2020-11-16

Announcements

Homework Y out.

Monte Carlo estimation
$$\int OP(O 13) do$$

$$ullet \ \overline{ heta} = \sum_{s=1}^S heta^{(s)}/S o \mathrm{E}[heta|y_1,\ldots,y_n]$$

$$egin{aligned} ullet & \overline{ heta} = \sum_{s=1}^S heta^{(s)}/S
ightarrow \mathrm{E}[heta|y_1,\ldots,y_n] \ & igg(egin{aligned} igg(eta^{(s)} - \overline{ heta}igg)^2/(S-1)
ightarrow \mathrm{Var}[heta|y_1,\ldots,y_n] \end{aligned}$$

•
$$\#\left(\theta^{(s)} \leq c\right)/S \to \Pr\left(\theta \leq c|y_1,\ldots,y_n\right)$$

• the
$$lpha$$
-percentile of $\left\{ heta^{(1)},\dots, heta^{(S)}
ight\} o heta_lpha$

Sampling from the posterior distributions

- The Monte Carlo methods we discussed previously assumed we could easily get samples from the posterior, e.g. with rnorm
- In general, sampling from a general probability distribution is hard
- Want to call *complicatedistribution() but don't have it
 - Inversion and rejection can work well for low dimensional posteriors
- In high dimensions, these approaches aren't sufficient
 - Near impossible to find good proposal distributions that envelope target
 - target
 Or rejection rate is extremely high

Markov Chain Monte Carlo

- We want independent random samples, $\theta^{(s)}$ from $p(\theta \mid y_1, \dots y_n)$
- But there is no good way to get independent samples
- Alternative, create a sequence of correlated samples with the correct **limiting** distribution time Series
- Markov Chain Monte Carlo gives us a way to generate correlated samples from a distribution

Monte Carlo Error

- Reminder: $\overline{\theta} = \sum_{s=1}^{S} \theta^{(s)}/S$ and S is the number of samples.
- If the samples are independent,

mples are independent,
$$Var(\overline{\theta}) = \frac{1}{S^2} \sum_{n=1}^{S} Var(\theta^{(s)}) = \frac{Var(\theta \mid y_1, \dots y_n)}{S} = O(\frac{1}{S})$$

• If the samples are positively correlated,
$$Var(\overline{\theta}) = \frac{1}{S^2} \sum_{s,t} Cov(\theta^{(s)}, \theta^{(t)}) > \frac{Var(\theta \mid y_1, \dots y_n)}{S}$$

- MCMC methods have higher Monte Carlo error due to positive dependence between samples.
- Hope to minimize dependendence and hence MC error

Basics of Markov Chains

Markov Chains: Big Picture

- For standard Monte Carlo, we make use of the law of large number to approximate posterior quantities
- The law of large numbers can still apply to random variables that are not independent
- We have a sequence of random variables indexed in time, θ_t
- We'll be using a *discrete-time* Markov Chain: $t \in {0, 1, ... T}$
- The observations, $\theta^{(t)}$ can be discrete or continous ("discrete-state" or "continuous-state" Markov Chain)

Discrete-state Markov Chains

- Let $heta^{(t)} \in 1, 2, \ldots M$ be the state space for the Markov Chain
- A sequence is called a markov chain if

$$Pr(heta^{(t+1)} \mid heta^{(t)}, heta^{(t-1)} \ldots heta^{(1)}) = Pr(heta^{(t+1)} \mid heta^{(t)})$$

for all t > 0

• The **Markov property**: given the entire past history, $\theta^{(1)}, \dots \theta^{(t)}$, the most recent $\theta^{(t+1)}$ depends only on the immediate past, $\theta^{(t)}$

Memory of 1 time period

The Transition Matrix

- Define $q_{ij} = Pr(\theta^{(t+1)} \mid \theta^{(t)})$ is the transition probability from state i to state j
- The $M \times M$ matrix $Q = (q_{ij})$ is called the *transition matrix* of the Markov Chain

The Transition Matrix

3-state example
$$Q = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix}$$

- The rows of the transition matrix sum to 1
- Note: $Q^n = (q_{ij}^{(n)})$ is is the probability of transitionining from i to j in n steps $(Q \times Q)_{ij} = P_i \circ b$. Of $g \circ y \circ to \circ i$ in Steps, $g \circ y \circ to \circ i$.
 A Markov Chain is **regular** if Q^n has strictly positive entries for
- some value of n > 1
- A Markov Chain is **irreducible** if for any two states i and j it is possible to go from i to j in a finite number of steps (with positive

The limiting distribution

- A regular, irreducible Markov chain has a limiting probability distribution
- Describes the long-run fraction of time does the Markov Chain spend in each state (in the long run)
- Does not depend on where the chain starts is and probabilities associated with each state, such that $\sum_{i=1}^{M} = \pi_i = 1$
 - \circ The limiting distribution converges to π , which is said to be stationary because
 - If you sample from the limiting distribution and then transtion, the result is still distributed according to the limiting distribution

Markov Chain Example

- Sociologists often study social mobility using a Markov chain.
- In this example, the state space is {low income, middle income, and high income} of families
- Let **Q** be the transition matrix from parents income to childrens income

		Lower	Middle	Upper
PANTSQ =	Lower	0.40	0.50	0.10
	Middle	0.05	0.70	0.25
	Upper	0.05	0.50	0.45

Multi-step Transition Probabilities

2-step transition probabilities
$$\mathbf{Q}^{2} = \mathbf{Q} \times \mathbf{Q} = \begin{vmatrix} 0.1900 & 0.6000 & 0.2100 \\ 0.0675 & 0.6400 & 0.2925 \\ 0.0675 & 0.6000 & 0.3325 \end{vmatrix}$$

4-step transition probabilities

$$\mathbf{Q}^4 = \mathbf{Q}^2 \times \mathbf{Q}^2 = \begin{vmatrix} 0.0908 & 0.6240 & 0.2852 \\ 0.0758 & 0.6256 & 0.2986 \\ 0.0758 & 0.6240 & 0.3002 \end{vmatrix}$$

Multi-step Transition Probabilities

4-step transition probabilities

$$\mathbf{Q}^4 = \mathbf{Q}^2 \times \mathbf{Q}^2 = egin{bmatrix} 0.0908 & 0.6240 & 0.2852 \ 0.0758 & 0.6256 & 0.2986 \ 0.0758 & 0.6240 & 0.3002 \end{bmatrix}$$

8-step transition probabilities

$$\mathbf{Q}^{8} = \mathbf{Q}^{4} \times \mathbf{Q}^{4} = \begin{vmatrix} 0.0772 & 0.6250 & 0.2978 \\ 0.0769 & 0.6250 & 0.2981 \end{vmatrix}$$

Converging to limiting distribution.

The limiting distribution

So
$$T = P(\Im(G))$$
 $\mathbf{Q}^{\infty} = \mathbf{1}\pi = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \\ \pi_1 & \pi_2 & \pi_3 \\ \pi_1 & \pi_2 & \pi_3 \end{bmatrix}$
 $\mathbf{Q}^{\infty} = \mathbf{1}\pi = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \\ \pi_1 & \pi_2 & \pi_3 \end{bmatrix}$

[1] 0.07692308 0.62500000 0.29807692

```
## [,1] [,2] [,3]
## [1,] 0.07692308 0.625 0.2980769
```

Markov Chain Monte Carlo

Incredible idea: create a Markov Chain with the desired limiting distribution

• Want the limiting distribution to be the posterior distribution

• Unlike the previous examples, we will mostly work with *infinite* state space

• Instead of a transition matrix we have a transition kernel which is a conditional probability, $p(\theta^{(t+1)} \mid \theta^{(t)})$

• Want $p(\theta^{(t+1)} \mid \theta^{(t)})$ to have limiting distribution $p(\theta \mid y)$

 \circ If we run the random walk for long enough, $\theta^{(t)}$ will be distributed approximately according to $p(\theta \mid y)$

• The Metroplis algorithm tells us how to construct such a transition matrix

Generalizing the rejection sampler

- Make a small tweak to the rejection sampler
- Sample from a proposal, $q(\theta)$, doesn't have to envelope $p(\theta \mid y)!$
- If $p(\theta \mid y) > 0$ then we need $q(\theta) > 0$ (same support)
- Unlike the rejection sampler, we never "throw out" samples
- Instead, at each iteration we have a choice:
- → Accept the new proposed sample
- o Or **repeat** the previous sample again

Generalizing the rejection sampler

- 1. Initialize θ_0 to be the starting point for you Markov Chain
- 2. Choose a proposal distribution, $J(\theta^*)$
 - Propose a candidate value for the next sample
 - Best performance if density is very similar to target
- 3. Generate the candidate θ^* from the proposal distribution, J

4. Compute
$$r = \min(1, \frac{p(\theta^*|y)}{p(\theta_t|y)})$$
 Posterior disits at proposed valve at when the valve

- 5. Set $\theta_{t+1} \leftarrow \theta^*$ with probability r
 - \circ Generate a uniform random number $u \sim Unif(0,1)$
 - If u < r we accept θ^* as our next sample
 - \circ Else $\theta_{t+1} \leftarrow \theta_t$ (we do not update the sample this time)

Intuition

- If $p(\theta^* \mid y) > p(\theta_t \mid y)$ accept with probability 1
 - The proposed sample has higher posterior density than the previous sample
 - Always accept if we increase the posterior probability density
- If $p(\theta^* \mid y) < p(\theta_t \mid y)$ accept with probability r < 1
 - Accept with probability less than 1 if probability density would decrease
 - Relative frequency of θ^* vs θ_t in our samples should be $\frac{p(\theta^*|y)}{p(\theta_t|y)}$

Independence Sampler

- The previous algorithm is known as an "Independence Sampler"
- Let $P(\theta \mid y)$ be a Beta(5, 10) posterior distribution
- ullet Propose from a distribution $J(heta^*) \sim N(0.5,1)$

Independence Sampler

Note and source of confusion: samples are correlated over time for the "independence sampler".

Weighting by waiting

Where did the sampler get stuck? Where does it quickly leave?

Independence Sampler

Monte Carlo vs True

The Metropolis Algorithm

- The Metropolis Algorithm generalizes the independence sampler
- Allow the proposal distribution to depend on the most recent sample
 - \circ Independence: $J(\theta^*)$, e.g. θ^* N(0.5,1) Toes not depend on $\exists_{\mathbf{t}}$
 - \circ Metropolis: $J(\theta^* \mid \underline{\theta_t})$, e.g. $\theta^* \sim N(\theta_t, 1)$
- Independence sampler: "Independence" refers to the proposal being fixed (**not** independence samples)!
- Metropolis sampler: a "moving" proposal distribution

Proposal density Changes in time.

The Metropolis Algorithm

- 1. Initialize θ_0 to be the starting point for you Markov Chain
- 2. Choose a proposal distribution, $J(\theta^* \mid \theta_t)$
 - Propose a candidate value for the next sample
 - \circ Must have symmetry: $J(\theta^* \mid \theta_t) = J(\theta_t \mid \theta^*)$
- 3. Generate the candidate θ^* from the proposal distribution, J
- 4. Compute $r = \min(1, \frac{p(\theta^*|y)}{p(\theta_t|y)})$
- 5. Set $\theta_{t+1} \leftarrow \theta^*$ with probability r
 - \circ Generate a uniform random number $u \sim Unif(0,1)$
 - If u < r we accept θ^* as our next sample
 - \circ Else $\theta_{t+1} \leftarrow \theta_t$ (we do not update the sample this time)

Metropolis Algorithm

- Let $P(\theta \mid y)$ be a Beta(5, 10) posterior distribution
- 1-d sampling: lets try sampling from the Beta using the Metropolis algorithm
- Initialize θ_0 to 0.9
 - Note that the probability of drawing a value larger than 0.9 from a Beta(5, 10) is smaller than 1e-8
 - Our initial value is far from the high posterior density
 - In the long run this won't matter
- Define transition kernel $J(\theta_{t+1} \mid \theta_t)$ as $\theta^* \sim N(\theta_t, \tau^2)$
 - How does choice of τ^2 effect performance of MC sampler?