Übung 7

Aufgabe 1

a)

```
Anzahl
                                                         Dauer
                                                1 16+2=18*
FUNCTION IntOf(dual: STRING): INTEGER;
  result, i: INTEGER;
BEGIN
                                                  1
                                                              1
 result := 0;
 i := 1;
                                                  1
                                                              1
 \label{eq:while i length dual} \mbox{ MHILE i length (dual) DO BEGIN} \qquad \qquad \mbox{u+1 } \mbox{1+16+2=19}
                                                        1+3=4
  result := result * 2;
                                                 u
                                                 u 1+0,5=1,5
  IF dual[i] = '1' THEN
                                                  v 1+0,5=1,5
    result := result + 1;
                                                  u 1+0,5=1,5
  i := i + 1;
 END; (*WHILE*)
 IntOf := result;
                                                  1
                                                              1
END; (*IntOf*)
```

Genaue Laufzeit: T(u, v) = 26u + 1.5v + 40

u = Länge des Eingabe-Strings dual

v = Anzahl der "1" im Eingabe-String dual

Zahl	T(u,v)	Laufzeit
100100	T(6,2)	199
100001	T(6,2)	199
110100	T(6,3)	200,5
1111	T(4,4)	150
0000	T(4,0)	144
1	T(1,1)	67,5
0	T(1,0)	66

^{*} Da in der Angabe nicht genau definiert, wird auch der Aufruf von *IntOf* zur Laufzeit gezählt.

b)

Angenäherte Laufzeit: $T(u) = 26u + 1.5 * \frac{u}{2} + 40 = 26.75u + 40$

n	T(n)
n	
1	66,75
2	93,5
3	120,25
4	147
5	173,75
6	200,5
7	227,25
8	254
9	280,75
10	307,5
11	334,25
12	361
13	387,75
14	414,5
15	441,25
16	468
17	494,75
18	521,5
19	548,25
20	575
50	1377,5
100	2715
200	5390

c)

Asymptotische Laufzeitkomplexität: O(n) oder linear -> günstig

Lösungsweg: Da nur eine Schleife durchlaufen wird und die Anzahl der Schleifendurchgänge n ist, ist die Asymptotische Laufzeitkomplexität O(n).

Aufgabe 2

a)

```
Anzahl
                                                     Dauer
                                                  16+2=18*
FUNCTION IntOf2 (dual: STRING): INTEGER;
 FUNCTION IORec(pos: INTEGER): INTEGER;
 BEGIN
   IF pos = 0 THEN
                                      u+1
                                                         1
                                                         1
    IORec := 0
                                         1
   ELSE IF dual[pos] = '1' THEN
                                        u
                                                   1+0,5=1,5
                                        v 1+18+0,5+3+0,5=23
    IORec:=IORec(pos - 1) * 2 + 1
                                             1+18+0,5+3=22,5
     IORec:= IORec(pos - 1) * 2;
                              u-v
 END; (*IORec*)
BEGIN (*IntOf2*)
 IntOf2 := IORec(Length(dual));
1 1+16+2+16+2=37
END; (*IntOf2*)
```

Genaue Laufzeit: T(u, v) = 25u + 0.5v + 57

u = Länge des Eingabe-Strings *dual*

v = Anzahl der "1" im Eingabe-String dual

Zahl	T(u,v)	Laufzeit
100100	T(6,2)	208,5
100001	T(6,2)	208,5
110100	T(6,3)	208,5
1111	T(4,4)	158
0000	T(4,0)	158
1	T(1,1)	82,25
0	T(1,0)	82,25

^{*} Da in der Angabe nicht genau definiert, wird auch der Aufruf von IntOf2 zur Laufzeit gezählt.

b)

Angenäherte Laufzeit: T(n) = 25,25u + 57

n	T(n)	
1	82,25	
2	107,5	
3	132,75	
4	158	
5	183,25	
6	208,5	
7	233,75	
8	259	
9	284,25	
10	309,5	
11	334,75	
12	360	
13	385,25	
14	410,5	
15	435,75	
16	461	
17	486,25	
18	511,5	
19	536,75	
20	562	
50	1319,5	
100	2582	
200	5107	

c)

Asymptotische Laufzeitkomplexität: O(n) oder linear -> günstig

Lösungsweg: Da nur eine Schleife durchlaufen wird und die Anzahl der Schleifendurchgänge n ist, ist die Asymptotische Laufzeitkomplexität O(n).

d)

Grafischer Vergleich: siehe Diagramm.

Beide Varianten haben eine asymptotische Laufzeitkomplexität von O(n). Deshalb werden sich nur Unterschiede in der Grob- und Feinanalyse zeigen.

Bei kleinen n (<=10) ist die iterative Lösung in der Feinanalyse besser.

Ab n>11 wird die rekursive Variante besser. Jedoch bleibt der Unterschied eher gering und wird nie größer als 6%

Aufgabe 3

Beste Laufzeit für....

n < 14: A3 14 <= n <= 20: A2 n >= 20: A1