CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Regressão

Prof.º: Manoel Limeira juniorlimeiras@gmail.com

Regressão Linear

Objetivo

- Estabelecer uma função matemática que descreva a relação entre uma variável contínua (dependente) e uma ou mais variáveis explicativas ou independentes
- O modelo de regressão linear simples se define por uma relação linear entre a variável dependente e uma variável independente
- Se em vez de uma, forem incorporadas várias variáveis independentes, o modelo passa a denominar-se de regressão linear múltipla

Exemplos

- Altura dos pais e altura dos filhos
- Tempo de prática de esportes e ritmo cardíaco
- Tempo de estudo e nota na prova
- Taxa de desemprego e taxa de criminalidade
- Expectativa de vida e taxa de analfabetismo
- Renda familiar e gasto com cartão de crédito
- Gastos com publicidade e preço do produto
- Tamanho e preço de um imóvel
- Número de agrotóxicos liberados e casos de cancer

A relação entre as variáveis

- A presença ou ausência de relação linear pode ser investigada sob dois pontos de vista
 - Explicitando a forma dessa relação: regressão
 - Quantificando a força dessa relação: correlação
- A relação pode entre as variáveis pode ser
 - Direta (ou positiva) quando os valores de Y aumentam em decorrência do aumento dos valores de X
 - Inversa (ou negativa) quando os valores de Y
 variam inversamente em relação aos de X

Diagrama de dispersão

 Os dados para a análise de regressão e correlação simples são da forma

-
$$(x_1,y_1), (x_2,y_2),..., (x_i,y_i),..., (x_n,y_n)$$

- Com os dados constrói-se um diagrama de dispersão, que deve exibir a tendência
- Este diagrama permite decidir empiricamente
- Se existe uma relação linear entre as variáveis X e Y
- Se a relação linear é direta ou inversa entre as variáveis, conforme o modo como os pontos se dispersam ao redor da equação da reta obtida através valores dos pontos

Regressão Linear Simples

Variável Dependente

Variável Independente

$$y = \alpha + \beta \cdot x$$

Constante ou Coeficiente Linear ("intercept")

Coeficiente Angular ("slope")

Relação Direta

#	X	Υ		
1	30	4300		
2	21	3350		
3	35	5200		
4	42	4900		
5	37	4700		
6	20	2100		
7	8	1950		
8	17	2700		
9	35	4000		
10 <mark>X</mark>	= ² ¶da	ad ⁴⁸⁰⁰		

e Y = Renda mensal

Relação Inversa

Sem Relação

#	Х	Υ		
1	35	4300		
2	25	3350		
3	8	5200		
4	17	4900		
5	20	4700		
6	37	2100		
7	35	1950		
8	42	2700		
9	30	4000		
10	< 2 1 c	lad ^{®0}		

Y = Distância do Centro

Erro ou Desvio

 Haverá sempre alguma diferença entre o valor observado Y e o valor estimado Y'. Essa diferença em estatística é chamada de erro ou desvio:

```
-erro = Y - Y'
```

- O erro indica que
 - As variações de Y não são perfeitamente explicadas pelas variações de X ou
 - Existem outras variáveis das quais Y depende ou
 - Os valores de X e Y são obtidos de uma amostra particular que não é representativa da realidade

Exemplo - Regressão

 A regressão significa que os pontos plotados no gráfico são regredidos, isto é, são definidos ou modelados por uma reta que corresponde à menor distância entre cada ponto plotado e a reta

Modelo de Regressão Linear

$$y = \alpha + \beta \cdot x$$

Fórmulas para encontrar o coeficiente linear α e angular β

$$\beta = \frac{\sum (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

$$n$$

<u>Medidas de Avaliação</u>

Table 5.8 Performance Measures for Numeric Prediction

Mean-squared error

Root mean-squared error

Mean absolute error

Relative squared error

Root relative squared error

Relative absolute error

Correlation coefficient

$$\frac{(p_1-a_1)^2 + \dots + (p_n-a_n)^2}{n}$$

$$\sqrt{\frac{(p_1-a_1)^2 + \dots + (p_n-a_n)^2}{n}}$$

$$\frac{|p_1-a_1| + \dots + |p_n-a_n|}{n}$$

$$\frac{(p_1-a_1)^2 + \dots + (p_n-a_n)^2}{(a_1-\overline{a})^2 + \dots + (a_n-\overline{a})^2}$$

(in this formula and the following two, \overline{a} is the mean value over the training data)

$$\sqrt{\frac{(p_{1}-a_{1})^{2}+\cdots+(p_{n}-a_{n})^{2}}{(a_{1}-\overline{a})^{2}+\cdots+(a_{n}-\overline{a})^{2}}}}$$

$$\frac{|p_{1}-a_{1}|+\cdots+|p_{n}-a_{n}|}{|a_{1}-\overline{a}|+\cdots+|a_{n}-\overline{a}|}$$

$$\frac{S_{PA}}{\sqrt{S_{P}S_{A}}}, \text{ where } S_{PA} = \frac{\sum_{i}(p_{i}-\overline{p})(a_{i}-\overline{a})}{n-1}, S_{P} = \frac{\sum_{i}(p_{i}-\overline{p})^{2}}{n-1},$$

$$S_{A} = \frac{\sum_{i}(a_{i}-\overline{a})^{2}}{n-1} \text{ (here, } \overline{a} \text{ is the mean value over the test data)}$$

Qual medida utilizar?

Table 5.9 Performance Measures for Four Numeric Prediction Models

	A	В	С	D
Root mean-squared error	67.8	91.7	63.3	57.4
Mean absolute error	41.3	38.5	33.4	29.2
Root relative squared error	42.2%	57.2%	39.4%	35.8%
Relative absolute error	43.1%	40.1%	34.8%	30.4%
Correlation coefficient	0.88	0.88	0.89	0.91

- Depende do contexto
- Coeficiente de correlação mais uma ou duas

CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Regressão

Prof.º: Manoel Limeira juniorlimeiras@gmail.com