

planetmath.org

Math for the people, by the people.

Hadamard product

Canonical name HadamardProduct
Date of creation 2013-03-22 14:15:28
Last modified on 2013-03-22 14:15:28

Owner bbukh (348) Last modified by bbukh (348)

Numerical id 8

Author bbukh (348) Entry type Definition Classification msc 15A15

Defines Oppenheim inequality

Definition Suppose $A = (a_{ij})$ and $B = (b_{ij})$ are two $n \times m$ -matrices with entries in some field. Then their $Hadamard\ product$ is the entry-wise product of A and B, that is, the $n \times m$ -matrix $A \circ B$ whose (i, j)th entry is $a_{ij}b_{ij}$.

Properties

Suppose A, B, C are matrices of the same size and λ is a scalar. Then

$$A \circ B = B \circ A,$$

 $A \circ (B + C) = A \circ B + A \circ C,$
 $A \circ (\lambda B) = \lambda (A \circ B),$

- If A, B are diagonal matrices, then $A \circ B = AB$.
- (Oppenheim inequality) [?]: If A, B are positive definite matrices, and (a_{ii}) are the diagonal entries of A, then

$$\det A \circ B \ge \det B \prod a_{ii}$$

with equality if and only if A is a diagonal matrix.

Remark

There is also a Hadamard product for two power series: Then the Hadamard product of $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ is $\sum_{i=1}^{\infty} a_i b_i$.

References

- [1] R. A. Horn, C. R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, 1994.
- [2] V.V. Prasolov, *Problems and Theorems in Linear Algebra*, American Mathematical Society, 1994.
- [3] B. Mond, J. E. Pecaric, *Inequalities for the Hadamard product of matrices*, SIAM Journal on Matrix Analysis and Applications, Vol. 19, Nr. 1, pp. 66-70. http://epubs.siam.org/sam-bin/dbq/article/30295(link)