Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Equivalencia

- Cubrimiento. Dados E y F conjuntos de DFs, F cubre a E si $(\forall df \in E)df \in F^+$
- Equivalencia. Dados E y F conjuntos de DFs, F y E son equivalentes si $F^+=E^+$, es decir, si F cubre a E y E cubre a F
- Ejercicio. Decir si los siguientes conjuntos de DFs son equivalentes
 - $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
 - $G = \{A \rightarrow CD, E \rightarrow AH\}$
- Procedimiento. Para determinar si F cubre a G, calcular, para cada DF X→Y de G, X⁺ con respecto a F. Luego verificar si este X⁺ incluye los atributos en Y. Similar razonamiento para verificar si G cubre a F

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Conjunto Minimal de DFs (Cont.)

Algoritmo Nro. 2 Búsqueda de un cubrimiento minimal F para un conjunto de DFs E

```
Entrada: Conjunto de DFs E
```

```
    F:=E
    Reemplazar cada DF X → {A<sub>1</sub>, A<sub>2</sub>,...,A<sub>n</sub>} en F por n DFs X → A<sub>1</sub>, X → A<sub>2</sub>,...,X → A<sub>n</sub> /*Traslada a todas las DFs a una forma canónica para los pasos subsiguientes*/
    Para cada DF X → A en F
        Para cada atributo B que es un elemento de X
        Si{F - {X → A}} ∪ {(X - {B}) → A} es equivalente a F
        Entonces reemplazar X → A por (X - {B}) → A
        /*Remueve al atributo extraño B del lado izquierdo de X siempre que es posible*,
    Para cada DF X → A en F
        Si F - {X → A} es equivalente a F
        Remover X → A de F
        /*Remueve las DF redundantes siempre que es posible*/
```

Normalización - 2da. Parte

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Conjunto Minimal de DFs

- lacktriangle ightarrow Se explico cómo expandir F a F^+
- ← Se quiere ver el camino inverso, reducir F a su expresión minimal
- Atributo Extraño. Atributo que puede ser removido sin alterar la clausura del conjunto de DFs.
- Formalmente. Sea $X \rightarrow A$ en F, $Y \subset X$ es extraño si F implica lógicamente $(F \{X \rightarrow A\} \cup \{(X Y) \rightarrow A\}$
- Características de un Conjunto de DFs para ser minimal
 - ① Cada DF de F debe poseer un solo atributo en su lado derecho
 - No es posible reemplazar niguna DF $X \rightarrow A$ de F por $Y \rightarrow A$, siendo $Y \subset X$, y seguir teniendo un conjunto de DFs equivalente a F
 - No es posible remover niguna DF de F y seguir teniendo un conjunto de DFs equivalente a F
- Intuitivamente. F minimal es un conjunto canónico y sin redundancia
- Cubrimiento minimal. Un cubrimiento minimal de F es un conjunto minimal de DFs (en forma canónica y sin redundancia) que es equivalente a F.
- Existencia. Siempre es posible hallar al menos un cubrimiento minimal F para cualquier conjunto de DFs E usando el siguiente algoritmo

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Conjunto Minimal de DFs (Cont.)

- Ejemplo 1. Sea un conjunto de DFs E={B→A,D→A,AB→D}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Todas las DFs de E están en forma canónica. No es necesario hacer ningún cambio
 - Paso (2) Hay que determinar si $AB \rightarrow D$ posee algún atributo extraño en su lado izquierdo. Esto es. si puede ser reemplazado por $A \rightarrow D$ o $B \rightarrow D$
 - Aplicando RI2 a B→A, incrementándolo con B, se obtiene BB→AB
 que equivale a (i) B→AB; Adicionalmente se tiene la DF (ii) AB→D
 - Aplicando la RI3 (transitiva) sobre (i) y (ii), se obtiene B→D. Así, AB→D puede ser reemplazada por B→D
 - El conjunto original E puede ser reemplazado por otro equivalente $E' = \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$
 - No es posible otra reducción ya que todos los lados izquierdos poseen un solo atributo
 - Paso (3) Usando RI3 (transitiva) sobre B→D y D→A, se infiere B→A. Por lo tanto B→A es redundante y puede ser eliminada de E'
 - Cubrimiento minimal de E. $F = \{B \rightarrow D, D \rightarrow A\}$

Preservación de atributo Preservación de DFs Lossless Join

Normalización - Lossless Join (Cont.)

• Algoritmo Nro. 4 Chequeo de propiedad Lossless Join

Entrada: R, descomposición $D = \{R_1, R_2, ..., R_m\}$ de R y un conjunto de DFs F

- 1. Crear una matriz S con una fila i por cada R; en D, y una columna j por cada atributo A; en R
- 2. Para todo i,j asignar $S(i,j)=b_{ii}$ /*cada b_{ii} es un elemento distinto de la matriz*/
- Para cada i , j

Si $A_i \in R_i$ entonces $S(i,j)=a_i$ /*distingue a elementos que pertenecen a la relación R_i^* /

4. Repetir hasta que un loop completo no genere cambios en S

Para cada $X \rightarrow Y$ en F

Para todas las filas fs en S que <u>tienen los mismos valores</u> en los atributos de X

Hacer que los atributos en fs para cada columna y de Y tengan el mismo valor de la siguiente manera

Si alguna de las fs en y tiene un simbolo a entonces asignarlo al resto de las fs en y Sino elegir arbitrariamente un simbolo b de fs en y y asignarlo al resto de las fs en y

5. Si alguna fila de S posee la totalidad de elementos a entonces es lossless join, caso contrario no lo es

Normalización - 2da, Parte

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Preservación de atributos Preservación de DFs Lossless Join

Normalización - Lossless Join (Cont.)

- Eiemplo 1. Sean
 - R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
 - $R_1 = EMP = \{E_CUIL, E_Nombre\}$
 - R₂=PROY={P_Número,P_Nombre,P_Ubicación}
 - R₃=TRABAJA_EN={E_CUIL,P_Número,Horas}
 - $D = \{R_1, R_2, R_3\}$
 - F={ E_CUIL→E_Nombre; P_Número→{P_Nombre; P_Ubicación}; {E_CUIL,P_Número}→Horas;}
 - Paso 1.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1						
R_2						
R_3						

Paso 2.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅	b ₂₆
R ₃	b ₃₁	b ₃₂	b ₃₃	b ₃₄	b ₃₅	b ₃₆

Paso 3.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
₹1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
₹2	b ₂₁	b ₂₂	a ₃	a 4	a ₅	b ₂₆
₹3	a ₁	b ₃₂	a ₃	b ₃₄	b ₃₅	a ₆

Normalización - 2da. Parte

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Preservación de atributo Preservación de DFs Lossless Join

Normalización - Lossless Join (Cont.)

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP_UBICACION={E_Nombre,P_Ubicación}
- R₂=EMP_PROY1={E_CUIL,P_Número,P_Nombre,P_Ubicación,Horas}
- $D = \{R_1, R_2\}$
- F={

 $E_CUIL \rightarrow E_Nombre$:

 $P_N \'umero \rightarrow \{P_N ombre; P_U bicaci\'on\};$ $\{E_C UIL, P_N \'umero\} \rightarrow H oras;\}$

Paso 1. E_CUIL E_Nombre P_Número P_Nombre P_Ubicación Horas

- Paso 4. No modifica ningún símbolo b en a
- Paso 5. No hay ninguna fila en S que posea a en la totalidad de valores, por lo tanto la descomposición no es lossless join

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Preservación de atributo Preservación de DFs Lossless Join

Normalización - Lossless Join (Cont.)

• Eiemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- R₃=TRABAJA_EN={E_CUIL,P_Número,Horas}
- $D = \{R_1, R_2, R_3\}$
- F={ E_CUIL→E_Nombre; P_Número→{P_Nombre;P_Ubicación}; {E_CUIL,P_Número}→Horas;}
- Paso 4. E_CUIL→E_Nombre

_COIL — L_Nombre								
	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas		
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆		
R_2	b ₂₁	b ₂₂	a ₃	a 4	a ₅	b ₂₆		
R_3	a_1	ββ¢ a 2	a ₃	b ₃₄	b ₃₅	a ₆		

Paso 4. P Número→{P Nombre:P Ubicación}

· ivamero · (· ivamere, i zoeleacion)									
	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas			
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆			
R_2	b ₂₁	b ₂₂	a ₃	a 4	a ₅	b ₂₆			
R_3	a ₁	<i>b</i> /32 a 2	a ₃	báá a4	bás as	a ₆			

- Paso 4. $\{E_CUIL, P_N\'umero\} \rightarrow Horas$ no produce cambios en S
- Paso 4. Nueva vuelta sobre TODAS las DFs F no produce cambios en S
- Paso 5. Última fila de *S* posee la totalidad de sus valores en *a*, por lo tanto la descomposición es lossless join

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Preservación de atributo Preservación de DFs Lossless Join

Normalización - Lossless Join - Descomposiciones sucesivas

 Recapitulando. En ejemplos previos utilizamos descomposiciones sucesivas al pasar a R a 2FN y luego a 3FN

Afirmación Nro. 2

Si se cumplen las siguientes condiciones:

- Una descomposición $D=\{R_1,R_2,\ldots,R_m\}$ de R cumple la propiedad de lossless join con respecto a F de R
- Una descomposición D_i={Q₁,Q₂,...,Q_k} de R_i cumple la propiedad de lossless join con respecto a la proyección de F sobre R_i

Entonces la descomposición $D_2=\{R_1,R_2,...R_{i-1},Q_1,Q_2,...,Q_k,R_{i+1},...,R_m\}$ de R cumple con la propiedad lossless join con respecto a F de R

Normalización - 2da, Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

Normalización - 2da. Parte

Normalización - Algoritmos Diseño 1 - 3FN

Algoritmo Nro. D1 Descomposición en 3FN

Entrada: R universal y un conjunto de DFs F sobre R

- 1. Hallar el cubrimiento minimal G de F (utilizar algoritmo ya dado)
- Para cada lado izquierdo X de cada DF que aparece en G
 Crear una relación en D con atributos {X∪{A₁}∪{A₂}∪...∪{Ak}}

crear una relacion en D con atributos $\{X \cup \{A_1\} \cup \{A_2\} \cup ... \cup \{A_k\} \}$ siendo $X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_k$ las únicas dependencias

en G con X como lado izquierdo (X es la clave de esta relación)

3. Si ninguna relación en D contiene una clave de R

entonces crear una relación adicional en D que contenga atributos que formen una clave de R (se puede utilizar algoritmo ya dado)

4. Eliminar relaciones redundantes de D. Una relación R de D es redundante si R es una proyección de otra relación S de D

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

Normalización - Algoritmos Diseño

- Algortimo D1. Descompone relación universal R cumpliendo:
 - 3FN
 - Preservación de DFs
 - Lossless Join
- Algortimo D2. Descompone relación universal R cumpliendo:
 - BCFN
 - Lossless Join
- No es posible diseñar algoritmo que produzca una descomposición en BCFN con preservación DFs y Lossless Join

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Algoritmo D1 - 3FN Algoritmo D2 - BCFN

Normalización - Algoritmos Diseño 1 - 3FN (Cont.)

- Ejemplo 1.
 - $U = \{E_CUIL, P_Número, E_Salario, E_Teléfono, D_Número, P_Nombre, P_Ubicación\}$
 - $F = \{ FD1: E_CUIL \rightarrow \{ E_Salario, E_Teléfono, D_Número \},$

FD2: $P_N imero \rightarrow \{P_N ombre, P_U bicación\},$

 $FD3: \{E_CUIL, P_Número\} \rightarrow \{E_Salario, E_Teléfono, D_Número, P_Nombre, P_Ubicación\}\}$

- {E_CUIL,P_Número} representa una clave de la relación U (por FD3)
- Paso 1. Aplicando algoritmo de minimal cover, en su paso 3 se observa
 - P_Número es atributo extraño en

 $\{E_CUIL, P_N\'umero\} \rightarrow \{E_Salario, E_Tel\'efono, D_N\'umero\}$

- E_CUIL es atributo extraño en {E_CUIL,P_Número} → {P_Nombre,P_Ubicación}
- Así, cubrimiento minimal = FD1 y FD2 (FD3 es redundante).

Agrupando atributos con mismo lado izq. en una sola DF:

 $\textit{Cubrimiento minimal G} = \{\textit{E_CUIL} \rightarrow \{\textit{E_Salario}, \textit{E_Teléfono}, \textit{D_Número}\},$

 $P_N imero \rightarrow \{P_N ombre, P_U bicación\}\}$

- Paso 2. Producir relaciones R₁ y R₂
 - R₁=(<u>E_CUIL</u>, E_Salario, E_Teléfono, D_Número)
 - R₂=(P_Número, P_Nombre, P_Ubicación)
- Paso 3. Generar R_3 adicional con clave de U. Obteniendo finalmente:
 - R₁=(E_CUIL,E_Salario,E_Teléfono,D_Número)
 - R₂=(P_Número, P_Nombre, P_Ubicación)
 - R₃=(E_CUIL,P_Número)

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

Normalización - Algoritmos Diseño 2 - BCFN

• Algoritmo Nro. D2 Descomposición en BCFN

```
Entrada: R universal y un conjunto de DFs F sobre R

1. D:={R}
2. Mientras (∃Q∈D) Q no cumple BCFN{
    Seleccionar Q∈D que no cumple BCFN;
    Encontrar DF X → Y en Q que no cumple con BCFN;
    ReemplazarQ en D por la siguientes dos relaciones: (Q−Y) y (X∪Y);
```

En base a la propiedad NJB (descomposición binaria) y a la Afirmación Nro. 2
 D cumple con la propiedad lossless join

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

Normalización - Bibliografía

 Capítulo 15 (hasta 15.3 inclusive) Elmasri/Navathe - Fundamentals of Database Systems, 7th Ed., Pearson, 2015.

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

Normalización - Algoritmos Diseño 2 - BCFN

- Ejemplo.
 - R={ <u>Estudiante</u>, <u>Materia</u>, Instructor }
 - F={ FD1:{Estudiante,Materia}→Instructor, FD2:Instructor→Materia}
- Aplicando el algoritmo se obtiene
 - R₁=(<u>Estudiante</u>, <u>Instructor</u>)
 - R₂=(<u>Instructor</u>, Materia)

Importante

La teoría de lossless join se basa en la asunción de que no existen valores NULL en los atributos de JOIN