Basic Cryptography

Security through obscurity is a fallacy!

- $substitution\ cipher \sim Cesarean\ cipher$
- XOR cipher XOR with some repeated "combinator"
- diffusion small change in plaintext \rightarrow large change in ciphertext
- confusion key/cleartext doesn't relate in simple way to ciphertext
- non-repudiation proves that a user performed an action
- plaintext data that is to be encrypted
- cleartext data that has not yet been encrypted

Resource vs. Security Constraint

- low-power devices need security
- crypto needs to work for devices with low-latency
- Energy, Latency, Security all fight in a trifecta

thus, there needs to be high resiliency in crypto

Four basic protections of crypto:

- Authenticity
- Confidentiality
- Integrity
- Non-Repudiation

Crypto Algorithms

- Stream Cipher one character and replaces with another
- Block Cipher entire block at a time
- Sponge Function expansion of plaintext to larger ciphertext

Hashing

- Fixed Size
- Unique
- Original
- Secure

Algorithm	Length	Traits
MD5	512b	Collisions, Weak
SHA-1	160b	Weak
SHA-2	128 (9 r), 192 (11 r), 256 (13 r)	Secure
SHA-3		Latest SHA, Low-Power
RIPEMD	128, 256, 320	Parallel
HMAC		Shared Key

RIPEMD - Race Integrity Primitives Evaluation Message Digest

Symmetric Key Crypto

Private Key Cypto, Shared Key Crypto

Algorithm	Type	Length	Traits
DES 3DES	Block Block	56b Key Can use 3 keys	Not Secure 3 rounds of DES
AES RC-4 + BR	Block Stream	128b plaintext, 192, 256 56b, 128b Key	NIST in 2000, Secure Voice, Video, Streaming
Rivest Blowfish IDEA	Block Block	64b blocks, 32-448 keys 64b blocks, 128b Key	No significant weakness 8 Rounds, EU

DES - Data Encryption Standard

AES - Advanced Encryption Standard

IDEA - International Data Encryption Algorithm

Asymmetric Key Cypto

Public Key Crypto

Algorithm	Traits
RSA	Prime Numbers, 1997 MIT, Most Common
ECC	Elliptic Curve, Less Power, Smaller Keys
DSA	Digital Signatures, U.S. Fed Standard

- $perfect\ forward\ secrecy$ - random public keys for each session

Key Exchange

 ${\bf Diffie\text{-}Hellman}$

- DH
 - Uses same keys each time
 - agree on large prime number and related integer
- DH Ephemeral
- Elliptic Curve DH

Attacks

- Knowledge of underlying plaintext language i.e. English
- Distribution of characters tons of E, little use of Q
- Null ciphertext null value padding
- Management Frames TCP/IP has a structure

- Collision Attack
- Birthday Attack

File System Encryption

- EFS Microsoft Windows Encrypting File System NTFS
- Full Disk Encryption BitLocker
- Hardware Encryption trusted platform module, hardware security model
 - password-protected flash drives
 - self-encrypting drives (SED)
 - TPM true random numbers & other crypto services, built in motherboard / hardware
 - HSM onboard keygen and storage