Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 6 - Chapter 12

Started on Friday, 3 March 2017, 3:04 PM

State Finished

Completed on Friday, 3 March 2017, 3:05 PM

Time taken 5 secs

Grade 100.00 out of 100.00

## Question 1

Correct

Mark 10.00 out of 10.00

P12.08b\_6ed

Given  $f(t) = \sin(\omega t)$  ( $\omega$  is omega)

Find the Laplace Transform.

Select one:

$$\bullet$$
 a.  $\frac{\omega}{s^2 + \omega^2} \checkmark$ 

$$\circ$$
 b.  $rac{s}{s^2+\omega^2}$ 

$$\circ$$
 c.  $\frac{\omega}{(s+\omega)^2}$ 

$$\circ$$
 d.  $\frac{1}{(s\!+\!\omega)^2}$ 

## Correct

Correct

Mark 10.00 out of 10.00

P12.08a\_6ed

Given  $f(t) = t e^{-at}$ 

Find the Laplace Transform.

Select one:

$$\odot$$
 a.  $\frac{1}{(s+a)^2}$ 

O b. 
$$\frac{1}{\bar{s}}$$

$$\circ$$
 c.  $\frac{1}{s+a}$ 

O d. 
$$\frac{s}{s^2 + \omega^2}$$

# Correct

Correct

Mark 10.00 out of 10.00

P12.08e\_6ed

Given  $f(t) = \cosh(t + \Theta)$ (cosh is the hyperbolic cosine and  $\Theta$  is Theta)

Find the Laplace Transform.

Select one:

• a. 
$$\frac{s[\cosh(\theta)] + \sinh(\theta)}{s^2 - 1}$$

o b. 
$$\frac{\cosh(\theta) + s[\sinh(\theta)]}{s^2 - 1}$$

o c. 
$$\frac{s[\cosh(\theta)] + \sinh(\theta)}{(s-1)^2}$$
  
o d.  $\frac{s[\cosh(\theta)] + \sinh(\theta)}{s^2 + 1}$ 

o d. 
$$\frac{s[\cosh( heta)] + \sinh( heta)}{s^2 + 1}$$

## Correct

Correct

Mark 10.00 out of 10.00

P12.08c\_6ed

Given  $f(t) = \sin(\omega t + \Theta)$  ( $\omega$  is omega and  $\Theta$  is Theta)

Find the Laplace Transform.

Select one:

• a. 
$$\frac{s[\sin(\theta)] + \omega[\cos(\theta)]}{s^2 + \omega^2}$$

o b. 
$$\frac{\omega[\sin( heta)] + s[\cos( heta)]}{s^2 + \omega^2}$$

o c. 
$$\frac{\omega \left[\sin(\theta)\right] + s \left[\cos(\theta)\right]}{\left(s + \omega\right)^2}$$

o d. 
$$rac{s[\sin( heta)]\!+\!\omega[\cos( heta)]}{(s\!+\!\omega)^2}$$

#### Correct

Correct

Mark 10.00 out of 10.00

P12.08d\_6ed

Given  $f(t) = \cosh(t)$  (cosh is the hyperbolic cosine)

Find the Laplace Transform.

Select one:

$$\odot$$
 a.  $\frac{s}{s^2-1}$ 

$$\circ$$
 b.  $rac{1}{s^2-1}$ 

$$c.\frac{s}{(s+1)^2}$$

O d. 
$$\frac{1}{(s-1)^2}$$

# Correct

Correct

Mark 10.00 out of 10.00

P12.12b\_6ed

Find the Laplace Transform of  $\left\{ rac{d}{dt}\cos\omega\,t\,
ight\}$ 

Select one:

$$\circ$$
 a.  $\frac{-\omega^2}{s^2+\omega^2}$ 

$$\circ$$
 b.  $\frac{-s}{s^2+\omega^2}$ 

$$\circ$$
 c.  $rac{-\omega}{s^2+\omega^2}$ 

$$\circ$$
 d.  $rac{\omega}{s^2+\omega^2}$ 

# Correct

Correct

Mark 10.00 out of 10.00

P12.12a\_6ed

Find the Laplace Transform of  $\left\{ rac{d}{dt} \sin \omega \, t \, 
ight\}$ 

Select one:

$$\circ$$
 b.  $\frac{s}{s^2+\omega^2}$ 

$$\circ$$
 c.  $\frac{\omega}{s^2+\omega^2}$ 

$$o$$
 d.  $\frac{s\omega}{(s+\omega)^2}$ 

#### Correct

Marks for this submission: 10.00/10.00.

## Question 8

Correct

Mark 10.00 out of 10.00



P12.19\_7ed

This waveform has the following regions in time:

$$t <= 0$$
  $f(t) = 0$ 

$$0 \le t \le 2$$
  $f(t) = 5t$ 

$$2 \le t \le 6$$
  $f(t) = -5t + 20$ 

$$6 \le t \le 8$$
  $f(t) = 5t - 40$ 

$$t => 8$$
  $f(t) = 0$ 

Find the Laplace transform of this waveform.

Select one:

• a. 
$$F(s) = \frac{5}{s^2} \left[ 1 - 2e^{-2s} + 2e^{-6s} - e^{-8s} \right]$$

$$F(s) = \frac{5}{s} \left[ 1 - 2e^{-2s} + 2e^{-6s} - e^{-8s} \right]$$

$$F(s) = \frac{1}{s^2} \left[ 1 - 2e^{-2s} + 2e^{-6s} - e^{-8s} \right]$$

$$F(s) = \frac{1}{s^2} \left[ 5 - 10e^{-2s} + 10e^{-6s} - 3e^{-8s} \right]$$

#### Correct

Correct

Mark 10.00 out of 10.00

P12.12c\_6ed

Find the Laplace Transform of  $\left\{ \frac{d^3}{dt^3}t^2 \right\}$ 

Select one:

- a. 2 √
- O b.  $\frac{t^4}{4}$
- $\circ$  c.  $rac{6}{t}$
- O d. Zero

## Correct

Correct

Mark 10.00 out of 10.00



P12.24\_6ed

Find the Laplace transform of the voltage output  $V_0(s)$ .

There is no energy stored in this circuit for t < 0.

Select one:

### Correct