EN ROUTE VERS LA lère SPECIALITE MATHS

Tu trouveras ici quelques incontournables à travailler ou à revoir pour bien aborder la 1ère spécialité maths.

Tu trouveras tous les rappels nécessaires :

sur la chaîne YouTube MATHS EN TÊTE

Partie A : calcul littéral, équations et inéquations

Exercice A1 : développer et réduire les expressions suivantes :

$$A = 3x(10x - 8)$$

$$C = \left(\frac{1}{5}x + \frac{1}{10}\right)\left(\frac{1}{5}x + \frac{3}{10}\right)$$
$$E = (4 + 5x)^2$$

$$E = (4 + 5x)^2$$

$$G = (2x - 4)^2$$

$$I = (3x + 2)(2x - 6) - (4x - 3)^{2}$$

$$B = (2x + 3)(4x - 1)$$

$$D = 3(2x - 1)(-x + 4)$$

$$F = 3(x+1)^2$$

$$H = (3x + 1)^2 + (2x - 1)(4x + 2)$$

$$J = \left(\sqrt{5} - \sqrt{3}\right)\left(\sqrt{5} + \sqrt{3}\right)$$

Exercice A2 : factoriser et réduire les expressions suivantes :

$$K = (2x + 1)(3x - 1) + (3x - 1)(-6x + 8)$$

$$L = 2x(x-1) - (x-1)(5-x)$$

$$M = (4x - 2) + (4x - 2)(x + 1)$$

$$N = 64 - 100x^2$$

Exercice A3: résoudre dans \mathbb{R} les équations suivantes.

On pensera à écrire l'ensemble-solution sous la forme $S = \{...\}$

a)
$$4x - 3 = 12$$

b)
$$-3x + 1 = 2(5x - 2)$$

a)
$$4x + 3 - 12$$

c) $(5x + 6)(2x + 3) = 10x^2 + 2x - 2$
d) $(3x - 1)(-2x + 3) = 0$
e) $\frac{x-1}{x} = 0$
f) $x^2 = 9$
g) $2x^2 - 16 = 0$

d)
$$(3x-1)(-2x+3)=0$$

e)
$$\frac{x-1}{x} = 0$$

f)
$$x^2 = 9$$

g)
$$2x^2 - 16 = 0$$

Exercice A4 : résoudre dans \mathbb{R} les inéquations.

On pensera à écrire l'ensemble-solution sous la forme d'un intervalle.

a)
$$4x - 1 \ge 7$$

b)
$$-2x + 1 > 2$$

c)
$$\frac{1}{2}x + 1 \le 11$$

Exercice A5 : résoudre les systèmes d'équations suivants :

$$\int 2x + 3y = 8$$

$$\begin{cases}
 2x + 3y = 8 \\
 4x + 3y = 10
 \end{cases}
 et
 \begin{cases}
 4x - 5y = 32 \\
 5x + 7y = -13
 \end{cases}$$

EN ROUTE VERS LA lère SPECIALITE MATHS

Partie B: fonctions

Exercice B1: on considère la fonction f définie sur \mathbb{R} par f(x) = 7x - 1.

- a) Calculer f(0), $f\left(\frac{1}{7}\right)$, $f\left(\frac{3}{14}\right)$
- b) Déterminer l'antécédent de 0 par f.
- c) Résoudre dans $\mathbb{R} f(x) \ge 0$
- d) Quelle est la nature de l'expression f ? Justifier.

Exercice B2 : soit g la fonction dont la courbe représentative est donnée cicontre.

- 2) Quelle est l'image de -2? de 1?
- 3) Que vaut g(-3) ?
- 4) Combien y a-t-il d'antécédents par g de -2? de -3?
- 5) Résoudre graphiquement l'équation g(x) = 0 sur D_q .
- 6) Résoudre graphiquement l'inéquation $g(x) \le 0$ sur D_a .

Exercice B3 : soit h la fonction dont la courbe représentative est donnée cidessous.

- 1) La fonction h semble-t-elle paire ? Impaire ? Ni l'un ni l'autre ?
- 2) Déterminer le domaine de définition D_h de la fonction h.
- 3) Résoudre graphiquement l'équation h(x) = 1 sur D_h .
- 4) Résoudre graphiquement l'inéquation $h(x) \le -1$ sur D_h .

Exercice B4: soient $f_1: x \mapsto \frac{x^3}{4} - \frac{9x}{4} + 1$ et $f_2: x \mapsto \frac{x^2}{3} + \frac{x}{6} - \frac{3}{2}$

- 1) Calculer $f_1(0)$ et $f_2(0)$.
- 2) Associer chaque courbe à la fonction correspondante.
- 3) Combien de solutions l'équation $f_1(x) = f_2(x)$ possède-t-elle sur l'intervalle [-4; 4] ?
- 4) On admettra que $f_1\left(\frac{10}{3}\right) = f_2\left(\frac{10}{3}\right)$. Comment interpréter graphiquement cette égalité ?
- 5) Résoudre l'inéquation $f_1(x) \ge f_2(x)$ sur [-4; 4].

Exercice B5 : construire le tableau de variations et de signes des fonctions suivantes définies par leur courbe représentative.

Exercice B6: on considère une fonction f dont le tableau de variations est donné ci-dessous:

Exercise Do. on considere and rondion, admit to tableau de variations est donné el dessous.											
x	-15	-7	-3	8	15	21	22				
Variations de f	4		7	0	-3	0	→ 3				
Signe de $f(x)$											

- a) En créant des compartiments et en plaçant des signes + et des signes -, compléter le tableau de signes de f.
- b) En déduire les solutions de l'inéquation $f(x) \ge 0$ sur [-15; 22].

Exercice B7: on considère une fonction a dont le tableau de variations est donné ci-dessous:

Exercice B7. On considere due fonction g dont le tableau de variations est donne ci-dessous.											
	x	0	1	2	3	5	7				
	Variations de g	4 —	→ 4	6 —	6	-3	-1				

VRAI ou FAUX?

1) a) Le domaine de définition D_g de g est [-1; 6].

V □ F □

b) L'image de 0 par g est 4.

V □ F □

c) 2,5 n'a pas d'image.

V □ F □ V □ F □

d) -3 < g(6) < -1.

- V \square $\mathsf{F} \square$
- e) L'équation g(x) = 7 admet pour ensemble-solution $S = \emptyset$

f) L'équation g(x) = 0 admet une unique solution.

- V \square $\mathsf{F} \square$
- 2) Dans un repère orthonormé, tracer une courbe représentative possible de g.

Exercice B8: déterminer le coefficient directeur de la fonction affine f tele que f(0) = 7 et f(3) = 1.

Exercice B9: déterminer l'expression de la fonction affine g telle que g(3) = 4 et g(9) = 8.

Exercice B10: dans un même repère orthonormé, tracer les courbes représentatives de $f_1(x) = 2x + 5$, $f_2(x) = x - 2$, $f_3(x) = -2x$, $f_4(x) = \frac{1}{4}x + 1$ et $f_5(x) = 3$.

Exercice B11 : déterminer graphiquement l'expression algébrique des fonctions affines représentées cidessous.

EN ROUTE VERS LA lère SPECIALITE MATHS

Partie C : géométrie

Exercice C1: sur la figure ci-dessous:

- a) Déterminer les vecteurs égaux aux vecteurs \vec{u} et \vec{v} .
- b) Construire les points P et M tels que $\overrightarrow{GP} = \overrightarrow{u}$ et $\overrightarrow{CM} = \overrightarrow{v}$.
- c) Construire le point N tel que $\overrightarrow{DN} = \vec{u} + \vec{v}$.
- d) Construire le point O tel que $\overrightarrow{EO} = \overrightarrow{u} \overrightarrow{v}$

Exercice C2 : en utilisant la figure ci-contre, simplifier les égalités de vecteurs suivantes :

1)
$$\overrightarrow{AE} + \overrightarrow{EO} =$$

2)
$$\overrightarrow{AD} + \overrightarrow{AB} =$$

3)
$$\overrightarrow{AO} + \overrightarrow{FC} =$$

4)
$$\overrightarrow{BD} - \overrightarrow{BC} =$$

5)
$$\overrightarrow{AE} + \overrightarrow{OF} + \overrightarrow{DO} =$$

6)
$$\overrightarrow{OC} + \overrightarrow{BA} - \overrightarrow{OF} =$$

7)
$$\overrightarrow{AB} + \overrightarrow{CD} =$$

8)
$$\overrightarrow{AC} + \overrightarrow{OA} + \overrightarrow{FA} =$$

Exercice C3 : simplifier au maximum les sommes suivantes grâce à la relation de Chasles :

a)
$$\overrightarrow{AB} + \overrightarrow{BM}$$

b)
$$\overrightarrow{DC} + \overrightarrow{CD}$$

c)
$$\overrightarrow{MP} + \overrightarrow{AM}$$

d)
$$\overrightarrow{AB} - \overrightarrow{PB}$$

e)
$$\overrightarrow{DC} - \overrightarrow{DC}$$

f)
$$-\overrightarrow{SK} + \overrightarrow{MK}$$

Exercice C4: dans un repère $(0; \vec{\iota}, \vec{j})$, on considère les points A(5; 3), B(2; 4), C(-2; -3) et D(0; -2).

- a) Déterminer les coordonnées des points I, J, K et L milieux respectifs de [AB], [BC], [CD] et [DA].
- b) Montrer que IJKL est un parallélogramme.

Exercice C5: dans un repère $(0; \vec{\iota}, \vec{j})$, on considère les points K(2; -5), L(8; 3) et M(11; 7).

- a) Montrer que les vecteurs \overrightarrow{KL} et \overrightarrow{KM} sont colinéaires.
- b) Que peut-on en déduire sur les points K, L et M?
- c) On considère le point N de coordonnées (17; 16). Les droites (KL) et (MN) sont-elles parallèles ? *Justifier*.

Exercice C6: dans un repère orthonormé $(0; \vec{i}, \vec{j})$, on a G(3; 3), H(5; 2) et I(0; -3).

- a) Montrer que $GH = \sqrt{5}$.
- b) Calculer les distances HI et GI.
- c) Montrer que le triangle *GHI* est rectangle en *G*.

Exercice C7: dans un repère $(0; \vec{\iota}, \vec{j})$, on considère les points A(1; -1), B(2; -3) et C(4; 5).

- a) Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- b) Déterminer les coordonnées du point D tel que $\overrightarrow{AB} = \overrightarrow{CD}$.

Exercice C8 : donner les coordonnées d'un vecteur directeur pour chacune des droites tracées ci-dessous :

Exercice C9 : dans le repère orthonormé précédent, tracer (d_5) passant par A(1;5) de vecteur directeur $\vec{u} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ et (d_6) passant par B(-4;4) de vecteur directeur $\vec{v} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

Exercice C10: on considère la droite (Δ) qui admet pour équation cartésienne 3x - 2y + 1 = 0

- a) Déterminer les coordonnées d'un vecteur directeur \vec{u} de (Δ) .
- b) Déterminer l'équation réduite de (Δ) .
- c) Les points A(-1; -1) et $B\left(0; -\frac{1}{2}\right)$ appartiennent-ils à (Δ) ? Justifier.

Exercice C11: déterminer les coordonnées du point M d'intersection des droites (d) et (d') d'équations réduites $y = \frac{1}{2}x + 6$ et y = -3x - 1.

Exercice C12: déterminer une équation cartésienne de la droite (d) passant par M(1;3) dirigée par $\vec{u} \binom{-1}{2}$.