

TÉCNICAS EXPERIMENTAIS III LABORATORIO DE ÓPTICA

Exame do 6 de abril de 2021

NOME :	 	
Última cifra do DNI:		

Instrucións: Responde á pregunta número 1, e a outras catro a elixir entre as de número 2 a 6. Os datos aos que se refiren as preguntas 4 a 6 son os que obtiveches no laboratorio ou os datos que che enviamos, segundo sexa o caso. Responde a cada pregunta nunha páxina diferente e con letra lexible. Extensión máxima: 1 cara A4 por cada pregunta. Fotografa/escanea esas páxinas e súbeas como arquivo(s) de imaxe ou pdf á tarefa aberta na aula virtual antes da hora límite indicada. Indica o teu nome e apelidos no(s) arquivo(s).

1. POSTA A PROBA DE TEORÍAS CIENTÍFICAS

Describe con brevidade pero con precisión e rigor que conclusións poderías sacar do seguinte resultado experimental, supoñendo que o experimento está correctamente realizado e que as estimacións de incertezas foron razoablemente correctas:

Poñendo a proba a consistencia dos datos medidos cos previstos por unha teoría obtívose un valor de $\chi^2=12.5$. O número de graos de liberdade neste experimento foi igual á U+1, onde U é a última cifra do teu DNI.

TABLA 6.4.—Valores de χ_c^2 para cada grado de confianza P(%) y para v grados de libertad.

v P(%)	99	95	90	80
1	6.63	3.84	2.71	1.64
2	9.21	5.99	4.61	3.22
3	11.3	7.81	6.25	4.64
4	13.3	9.49	7.78	5.99
5	15.1	11,1	9.24	7.29
6	16.8	12.6	10.6	8.56
7	18.5	14.1	12.0	9.80
8	20.1	15.5	13.4	11.0
9	21.7	16.9	14.7	12.2
10	23.2	18.3	16.0	13.4
12	26.2	21.0	18.5	15.8
15	30.6	25.0	22.3	19.3
20	37.6	31.4	28.4	25.0
30	50.9	43.8	40.3	36.2
60	88.4	79.1	74.4	69.5
100	135.8	124.3	118.5	112.2

Fonte: Sánchez del Río, C., Análisis de errores (Eudema, 1989)

2. LENTES DELGADAS E INSTRUMENTOS ÓPTICOS: Supón que despois de realizar esta experiencia os resultados experimentais resultaron ser non compatibles coas predicións teóricas. Se tiveses

que indagar máis profundamente antes de concluír que a teoría da óptica xeométrica é esencialmente incorrecta, que factores revisarías? Que posibles explicacións alternativas explorarías?

- **3. REFRACTÓMETRO:** Habitualmente os resultados obtidos para o índice de refracción, n, en función da longura de onda, λ , forman unha recta moi ben definida ao representar n fronte a $1/\lambda^2$ ("Lei de Cauchy"). O χ^2 é xeralmente pequenísimo, moito menor do que se podería esperar por azar. Vimos situacións deste tipo nas sesións de traballo por Teams. A que pensas que se pode deber este valor tan pequeno do χ^2 ?
- **4. POLARIZACIÓN:** Describe brevemente os resultados que obtiveches ao analizar os datos desta experiencia e que conclusións sacaches sobre a validez ou non da "Lei de Malus" nese experimento en particular.
- **5. INTERFERENCIA:** Describe brevemente os resultados obtidos e a túa valoración sobre a compatibilidade ou non da longura de onda calculada a partir do padrón de interferencia e a que sabemos que emitía o láser (632.8 nm). Se tiveses que mellorar un (e só un) dos instrumentos ou etapas deste experimento, o máis conveniente sería mellorar aquel que contribúe en maior cantidade á incerteza final da longura de onda estimada a partir dos datos experimentais. Cal sería no teu caso, e por que?
- **6. DIFRACCIÓN:** Describe brevemente os resultados obtidos e a túa valoración sobre a compatibilidade ou non da posición dos mínimos de difracción coas predicións da teoría, así como a compatibilidade entre o valor da anchura das fendas calculado mediante difracción e medido no microscopio. Se tiveses que mellorar un (e só un) dos instrumentos ou etapas deste experimento, o máis conveniente sería mellorar aquel que contribúe en maior cantidade á incerteza final da diferenza de anchura das fendas estimada a partir dos datos experimentais. Cal sería no teu caso, e por que?