Raportointityökalun kehittäminen Sovelia® PLM-järjestelmään

Turun yliopisto Tietotekniikan laitos TkK-tutkielma Tietotekniikka Lokakuu 2023 Elias Peltonen

TURUN YLIOPISTO

Tietotekniikan laitos

ELIAS PELTONEN: Raportointityökalun kehittäminen Sovelia® PLM-järjestelmään

TkK-tutkielma, 13 s., 3 liites.

Tietotekniikka Lokakuu 2023

Tarkempia ohjeita tiivistelmäsivun laadintaan läytyy opiskelijan yleisoppaasta, josta alla lyhyt katkelma.

Bibliografisten tietojen jälkeen kirjoitetaan varsinainen tiivistelmä. Sen on oletettava, että lukijalla on yleiset tiedot aiheesta. Tiivistelmän tulee olla ymmärrettävissä ilman tarvetta perehtyä koko tutkielmaan. Se on kirjoitettava täydellisinä virkkeinä, väliotsakeluettelona. On käytettävä vakiintuneita termejä. Viittauksia ja lainauksia tiivistelmään ei saa sisällyttää, eikä myäskään tietoja tai väitteitä, jotka eivät sisälly itse tutkimukseen. Tiivistelmän on oltava mahdollisimman ytimekäs n. 120–250 sanan pituinen itsenäinen kokonaisuus, joka mahtuu ykkösvälillä kirjoitettuna vaivatta yhdelle tiivistelmäsivulle. Tiivistelmässä tulisi ilmetä mm. tutkielman aihe tutkimuksen kohde, populaatio, alue ja tarkoitus käytetyt tutkimusmenetelmät (mikäli tutkimus on luonteeltaan teoreettinen ja tiettyyn kirjalliseen materiaaliin, on mainittava tärkeimmät lähdeteokset; mikäli on luonteeltaan empiirinen, on mainittava käytetyt metodit) keskeiset tutkimustulokset tulosten perusteella tehdyt päätelmät ja toimenpidesuositukset.

Asiasanat: tähän, lista, avainsanoista

UNIVERSITY OF TURKU

Department of Computing

ELIAS PELTONEN: Raportointityökalun kehittäminen Sovelia® PLM-järjestelmään

Bachelor's Thesis, 13 p., 3 app. p. Information Technology October 2023

Second abstract in english (in case the document main language is not english)

Keywords: here, a, list, of, keywords

Sisällys

1	Joh	hdanto				
2	Rap	ortoin	ti ja PLM järjestelmät	3		
	2.1	PLM-s	strategia ja PLM-järjestelmät lyhyesti	3		
	2.2	PLM-s	gian hyödyt ja merkitys			
		2.2.1	Lyhyen aikavälin hyödyt	5		
		2.2.2	Pitkän aikavälin hyödyt	5		
	2.3	Rapor	tointi PLM-järjestelmässä	LM-järjestelmässä		
		2.3.1	Osaluettelo PLM-järjestelmän sydämenä	7		
		2.3.2	Raportointi ja Business Intelligence	7		
	2.4 Raportointimoottorit					
		2.4.1	Raportointimoottorin rakenne ja prosessi	9		
		2.4.2	PLM-järjestelmä raportointimoottorin toimintaympäristönä $$.	10		
3	B Case-tapaus: Raportointimoottorin kehittäminen osaksi Sovelia F					
	järjestelmää					
	3.1	Sovelia	a PLM	13		
	3.2	Nykyi	set raportointimoottorit	13		
Lŧ	Lähdeluettelo 1					

\mathbf{A}	Liitedokumentti	A-1
В	Liitedokumentti 2	B-1

Kuvat

Taulukot

Termistö

API ohjelmointirajapinta, engl. Application Programming Interface

BI engl. Business Intelligence, liiketoimintatiedon hyödyntäminen

Big data suom. massadata, erittäin suuret ja järjestämättömät jatkuvasti lisääntyvät tietomassat

BOM Bill of Materials, osaluettelo, tuoterakenne

CAD engl. Computer Aided Design, tietokoneen käyttö suunnittelun apuvälineenä

JSON engl. JavaScript Object Notation, yksinkertainen tiedostomuoto tiedon välitykseen ja tallennukseen

PLM engl. Product Lifecycle Management, tuotteen elinkaaren hallinta

XML merkintäkielien standardi ja tiedostomuoto, engl. Extensible Markup Language

1 Johdanto

Tietotekniikan avulla voidaan tehostaa ja helpottaa työnteon tuottavuutta, kun samaan tehtävään käytetty aika vähenee. Tietotekniikan hyödyntäminen raportointiin hyvin luonnollista, sillä raportit ovat useimmiten digitaalisesti tuotettuja dokumentteja, joiden kokoaminen vaatii jonkinlaista laskentaa. Raportointidatan kerääminen ja jäsenteleminen manuaalisesti on hyvin vaivalloista ja hidasta, mikä vuoksi tietojärjestelmät voivat tarjota raportointityökaluja, joiden tarkoituksena on koota raportti automoidusti määritellystä lähdedatasta.

Raportoinnin ydinajatuksena on tuottaa tietoa muodossa, joka on helposti ymmärrettävissä ja jaettavissa. Raportointityökalujen avulla olemassa olevasta suuresta määrästä dataa voidaan tuottaa selkeä ja jäsennelty esitys, joka kokoaa lähdedatan tärkeimmät seikat helposti yhdellä silmäyksellä omaksuttavaan muotoon.

Tämän työn tarkoituksena oli toteuttaa raportointityökalu osaksi Sovelia PLM järjestelmää. Sovelia PLM on kaupallinen tuotteen elinkaaren hallintajärjestelmä(PLM),
(engl. Product Lifecycle Management). PLM-järjestelmän pääasiallisena tarkoituksena on koota tietoa yrityksen tuotteiden koko elinkaaren vaiheista keskitettyyn
tietojärjestelmään. Tämä keskitetty tietojärjestelmää on käytettävissä yrityksen eri
työryhmien ja liiketoimintajärjestelmien välillä, minkä tarkoituksena on vähentää
virheellisten tuotetietojen aiheuttamia turhia kustannuksia sekä viivästyksiä ja siten nopeuttaa yrityksen prosessia saada kehitetty tuote markkinoille.

Raportointityökalu voidaan nähdä yhtenä PLM järjestelmälle lisäarvoa tuottava-

LUKU 1. JOHDANTO

na ominaisuutena. Luotettavan, tehokkaan ja mukautuvan raportointityökalun avulla PLM-järjestelmä voi tuottaa enemmän lisäarvoa sen käyttäjille tarjoamalla mahdollisuuden jakaa, tallentaa ja analysoida tuotedataa eri tiedostoformaateissa sekä yrityksen sisäisten työryhmien että ulkoisten toimijoiden välillä. PLM-järjestelmiä käyttävillä yrityksillä on tyypillisesti suuria määriä tuotetietoja ja syviä tuoterakenteita, jolloin myös raportoinnin suorituskykyvaatimukset korostuvat.

PLM-järjestelmien tietomallit voidaan jakaa dokumentti- ja relaatiodatapohjaisiin tietorakenteisiin. [1] Koska Sovelia PLM -järjestelmä perustuu relaatiodatapohjaiseen tietomalliin, myös tässä tutkielmassa käsitellään raportointia nimenomaan relaatiodatan pohjalta.

Raportointityökalu integroituu osaksi Sovelian nykyistä lähdekoodia ja sen palvelinkomponentieja. Ohjelmakokonaisuus koostu palvelinkomponentista, joka tuottaa raporttitiedoston raportoinnin kohteena olevasta objektista, sekä konfigurointityökalusta, jonka avulla pääkäyttäjä voi muokata raporttien ulkonäköä ja rakennetta.

Tutkimuskysymykset

- Mitä tulee ottaa huomioon raportointityökalua kehittäessä osaksi PLM-järjestelmää?
- Mitä lisäarvoa raportoinnilla voidaan tuottaa asiakkaille?
- Millaisia ovat nykyiset ja tulevaisuuden raportointityökalut?

Tutkimusmenetelmät

- Kirjallisuusanalyysi
- Kvalitatiivinen case-analyysi

1

¹Johdannon sisältöä tulee arvioida uudelleen, kun tutkielman sisältö on valmiimpi. Tutkielman rakenne tulee esittää tiivistetysti ja nykyistä tekstiä tulee karsia.

2 Raportointi ja PLM järjestelmät

2.1 PLM-strategia ja PLM-järjestelmät lyhyesti

Laajempana käsitteenä tuotteen elinkaaren hallinta eli PLM voidaan nähdä yrityksen strategiana hallita tuotetietoja. PLM strategiana koostuu tuotteista, organisaatioista, työmenetelmistä, prosesseista, ihmisistä ja lopulta usein myös tietoteknisestä elinkaaren hallintajärjestelmästä.

Tuotteen elinkaari voidaan jakaa alku-, keski- ja loppuvaiheeseen. Tuotteen elinkaaren pääpiirteet on hyvä ymmärtää, jotta PLM-käsitettä voidaan tarkastella syvällisemmin. Bouhaddoun (2012) konferenssiartikkeli "PLM Model for Supply Chain Optimization" määrittelee tuotteen elinkaaren vaiheet ja niiden piirteet seuraavasti: [2]

- Alkuvaiheessa tuotteen vaatimuksia määritellään ja tuote on luonnosvaiheessa.
 Luonnosvaiheessa tuotetta voidaan kutsua prototyypiksi (engl. prototype) tai mallinnukseksi (engl. mockup).
- Keskivaiheessa tuote siirtyy tuotantoon ja valmistukseen. Tässä vaiheessa toteutetaan laadunvalvontaa ja kasaamista, ja voidaan puhua jo varsinaisesta tuotteesta. Valmis tuote siirtyy jakemluverkoston kautta itse asiakkaalle. Kun tuote on asiakkaalla, korostuu tuotteen käyttö sekä mahdollinen huolto ja asiakastuki.
- Loppuvaiheessa tuotteen elinkaari päättyy. Tuotteen valmistusta ei koeta enää

tarpeelliseksi, joten tässä vaiheessa huomio keskittyy tuotannon lopettamiseen ja tuotteen kierrätykseen.

Alemanni, ym. (2008) esittää PLM:n suorituskyvyn analysointia käsittelevässä artikkelissaan, että PLM-strategian keskittyessä olennaisesti tuotedatan hallintaan, on PLM-ohjelmisto olennainen osa strategian hyödyntämistä käytännössä. [3] Alemanni korostaa, että PLM-järjestelmän kehittäjän tulee kuitenkin toimia yhteistyössä asiakkaiden kanssa, jotta tuotteiden elinkaaren eri vaiheet ja prosessit voidaan implementoida osaksi ohjelmiston toimintoja siten. PLM-käsitteeseen liittyvien määritelmien lisäksi on tärkeää ymmärtää PLM-strategian ja -ohjelmistojen hyötyjä, jotta niiden hyödyntämisen motiivit voidaan ymmärtää. Tarkoituksena on siis vastata siihen, miksi ylipäätään PLM-järjestelmiä käytetään ja kehitetään.

2.2 PLM-strategian hyödyt ja merkitys

PLM-strategian hyötyjä on käsitelty laajasti [3] [4]. Strategian hyödyt voidaan jakaa kahteen osa-alueeseen: lyhyen ja pitkän aikavälin hyötyihin. Tietoteknisten PLM-järjestelmien tarkoituksena on taas mahdollistaa PLM-strategian käyttöön ottaminen ja hyödyntäminen käytännössä koko yrityksen tasolla. Näiden järjestelmien pää-asiallisena tarkoituksena on koota tietoa yrityksen tuotteiden koko elinkaaren vaiheista keskitettyyn tietojärjestelmään. Tämä mahdollistaa laajojen tuotekantojen johdonmukaisen ja keskitetyn hallinnan yhteistyössä yrityksen eri osastojen ja kumppaneiden välillä. Konkreettisia PLM:n hyötyjä voidaan havaita Lee, ym. (2008) toteuttamasta tutkimuksesta PLM:n hyödyntämisestä ilmailualalla: IBM-Dassaultin PLM-järjestelmää käytettiin lentokoneiden elinkaaren hallinnassa, jolloin ohjelmiston hyödyntäminen vähensi valmistusaikaa 16:sta kuukaudesta seitsemään kuukauteen. Lisäksi Teamcenter PLM -järjestelmä laski tuotantosykleihin käytettyä aikaa 35:llä prosentilla ja valmistusaikaa 66:lla prosentilla. Keskitetyssä järjestelmässä

myös lentokoneiden huoltotarve voitiin ottaa paremmin huomioon jo suunnitteluvaiheessa, mikä suoraviivaisti myös tuotteiden huoltoa niiden elinkaaren aikana. [5]

2.2.1 Lyhyen aikavälin hyödyt

Lyhyellä aikavälillä PLM-strategia ja PLM-järjestelmän käyttöönotto voi vähentää aikaa jota käytetään työntekijöiden jokapäiväisten työtehtävien suorittamiseen. Strategian avulla yrityksen tuotetiedot ovat keskitetysti saatavilla, eikä ajantasaisia tietoa tarvitse kysellä eri osastojen välillä. Tämä johtaa siihen, että työntekijät voivat käyttää enemmän aikaa tehtäviin, jotka tuottavat yritykselle lisäarvoa arvoa. Lisäksi tuotteiden rakenteiden ymmärtäminen ja visualisointi helpottuu PLM-järjestelmän käyttöönoton myötä. Rakenteen ymmärrystä ja jaettavuutta eri osastojen välillä voidaan parantaa entisestään myös PLM-järjestemän raportoinnilla. [3]

2.2.2 Pitkän aikavälin hyödyt

Pidemmällä aikavälillä hyödyt näkyvät konkreettisemmin PLM-strategiaa hyödyntävien yritysten tunnusluvuissa, erityisesti myyntikatteessa. PLM-järjestelmien keskeinen hyöty on prosessien suoraviivaistaminen, mikä johtaa usein tuotteiden saamiseen nopeammin ja useimmin markkinoille. Kun tuotteet pääsevät nopeammin suunnittelusta markkinoille, niiden suunnitteluun ja kehittämiseen käytetyt kustannukset laskevat. [2] [3]

2.3 Raportointi PLM-järjestelmässä

Kuten osioissa 2.2 todettiin, yksi PLM-järjestelmän hyödyistä on yksittäisten työntekijöiden työmäärän vähentäminen ja prosessien suoraviivaistaminen. Tietoteknisten järjestelmien etuna on varsinkin automoitu laskenta, joka voi vähentää inhimillisiä virheitä. [6]. [7] Tätä automoitua laskentaa voidaan erityisesti hyödyntää raporttien muodostamisessa.

Koska PLM:n tarkoituksena mahdollistaa koko tuotantoketjun yhteistyön asiakkaiden, kehittäjien, toimittajien ja valmistajien välillä tuotteen eri elinkaaren vaiheissa, [2] on tärkeää että tuotetieto elinkaaren eri vaiheissa on dokumentoitavissa, analysoitavissa ja helposti jaettavissa. Vaikka PLM-järjestelmien tietomallit ovat usein ohjelmistokohtaisia ja harvemmin standardinomaisia [8] on tärkeää, että tuotedataa on mahdollista viedä järjestelmän ulkopuolelle tallennettavaksi ja jaettavaksi.

PLM:n kontekstissa raporteilla tarkoitetaan tuotedataa kokoavia ja analysoivia kokoavia laskenti voivat olla esimerkiksi PDF- tai Excel-tiedostoja, jotka kokoavat tuotetietoja ja suorittavat laskentaa visualisoimalla dataa esim. kuvaajin tai interaktiivisia "kojelautoja" (engl. dashboards), jotka kokoavat useita kuvaajia ja laskettuja arvoja yksittäiseen käyttäjäystävälliseen näkymään. Tässä tutkielmassa keskitytään enemmän raporttitiedostojen tuottamiseen ohjelmallisesti, mutta usein näihin tiedostoihin on myös mahdollista upottaa kojelautamaisia ominaisuuksia, kuten kuvaajia ja tilastoja.

Raporttitiedostojen tuottamista varten monet PLM-järjestelmät tarjoavat "raportointimoottorin" osana PLM-ohjelmistoa, jonka tarkoituksena on kerätä analysoida dataa kokoamalla sitä dokumenttitiedostoformaatteihin. Alan standardina näistä formaateista raporttien kontekstissa lienee PDF-, Excel- ja HTML-pohjaiset raportit, sillä useimmat raportointimoottorit tarjoavat raportteja näissä tiedostomuodoissa ja ne ovat myös tuttuja suurimmalle osalle ohjelmiston käyttäjistä. ¹

¹Ajatuksena oli tehdä raportoinnista oma osio ja tämän kappaleen yläotsikko, mutta aihealueena se on hyvin laaja ja väljä. Ehkä on parempi keskittyä raportointiin ja sen merkitykseen PLM-kontekstissa?

2.3.1 Osaluettelo PLM-järjestelmän sydämenä

Yksi PLM-järjestelmän tärkeimmistä toiminnallisuuksista on tuotteen osaluettelon (BOM)(engl. Bill of Materials) esittäminen organisoidusti. [1] Yksinkertaisuudessaan osaluettelo on lista kaikista osista, joita tarvitaan tuotteet valmistamiseen. Osaluettelossa jokainen yksittäiseen osaan voidaan liittää useita tietokenttiä kuten valmistaja, versio, materiaali ja määrä. Osaluettelo koostuu usein hierarkkisesti osakokoonpanoista, välikokoonpanoista, osakomponenteista ja yksittäisistä osista, eli se kerää dataa siitä, kuinka eri tuotteen komponentit ovat riippuvaisia toisistaan. Osaluetteloa voidaan käyttää viestintään esimerkiksi valmistuskumppanien välillä tai se voidaan rajoittaa yhteen tuotantoyksikköön. [9]

Koska osaluettelot ovat hyvin olennainen osa PLM-järjestelmää, ovat ne tärkeä kohde myös raportoinnille. Osaluetteloista tuotetut raportit voivat analysoida rakennetta pintaa syvemmältä sekä luoda helposti ymmärrettävän yleiskatsauksen massiivisen osaluettelon omaavaan tuotteeseen tarjoamalla samalla esimerkiksi graafeja ja statistiikkaa tuotteesta. Koska raportit voidaan tuottaa erillisinä sähköisinä dokumentteina, voidaan laskentaa jatkaa esimerkiksi Excel-raporttien tapauksessa, tai erityisesti PDF-raportit ovat omiaan arkistoinnille myöhempää käyttöä varten.

2.3.2 Raportointi ja Business Intelligence

Liiketoimintatiedon hyödyntämisellä (BI), (engl. Business Intelligence) tarkoitetaan yrityksen kykyä hyödyntää dataa merkityksellisellä tavalla. PLM:n kontekstissa BI korostuu etenkin tuotetiedon hyödyntämisessä. Tätä PLM:n ja BI:n yhteyttä on tutkinut Bosch-Mauchand, ym. (2014) artikkelissaan "Preliminary Requirements and Architecture Definition for Integration of PLM and Business Intelligence Systems" [10]. Bosch-Mauchand totetaa, että PLM järjestelmä kulkee käsikädessä BI:n kanssa ja PLM-järjestelmän tuotedatan integraatio ja sen jaettavuus eri järjestelmien välillä on hyvin tärkeää tuotetiedon merkityksellisen hyödyntämisen kannalta.

Bosch-Mauchand erittelee, että jotkin PLM-järjestelmät tarjoavat erillisiä moduuleja raporttien tuottamiseen, mutta harva raportointityökalu tai -moduuli hyödyntää BI:n periaatteita. Bosch-Mauchandin mukaan varsinkin kahden tyyppisillä raporteilla voidaan tuottaa lisäarvoa: [10]

- Dokumenttien ja objektien määrällinen analysointi. Esimerkiksi näiden summien tai tyyppien laskenta.
- PLM-järjestelmien ominaisuuksien käyttö. Esimerkiksi tuotteen osien uudelleenkäyttö ja tietokantakyselyt.

Näiden lisäksi raportointia voidaan hyödyntää IT-hallinnon osa-alueilla, kuten esimerkiksi järjestelmän suorituskyvyn monitoroinnin kannalta.

2.4 Raportointimoottorit

Raportointimoottori on ohjelmisto tai osa ohjelmistokokonaisuutta, jolla voidaan luoda ohjelmallisesti raportteja. Tämä tarkoittaa sitä, että raportointimoottori saa vain syötedatan ja mahdollisen pohjan (engl. template), mutta kaikki logiikka näiden yhdistämiseen sekä raportin koostamiseen jää raportointimoottorin vastuulle. [11] Raportointimoottorilla ei tarkoiteta ainostaan ohjelmistokehittäjille käytössä olevaa sovellusta tai ohjelmistokirjastoa, sillä raportointimoottorit ovat usein konfiguroitavissa myös loppukäyttäjien toimesta. Täten raportointimoottoria kehittäessä tulee huomioida myös loppukäyttäjän tarpeet. [12]

Bambang Prasetya Adhi ym. vertailevat tutkimusartikkelissaan "Performance comparison of reporting engine birt, jasper report, and crystal report on the process business intelligence" (2019) [12] suosituimpia kaupallisia (SAP Crystal Reports) ja avoimen lähdekoodin (BIRT ja Jasper Report) raportointimoottoreita. Ahdi ym. käyttävät kokeellisia menetelmiä mitatakseen kolmea raportointimoottorin osa-aluetta:

- Soveltuvuus, esimerkiksi kuinka hyvin raportointimoottori tukee erilaisen lähdedatan käyttöä
- Käytettävyys, joka ilmenee oppimisen helppoutena sekä toiminnallisuuden loogisuutena ja tehokkaana käyttönä
- Tehokkuus, joka mittaa itse järjestelmän tehokkuutta, esimerkiksi suoritusaikaa

Näitä osa-alueita arvioimalla voidaan tehdä perusteltuja päätöksiä raportointimoottorin valinnasta, joten nämä ovat tärkeitä seikkoja ottaa huomioon uuden raportointimoottorin suunnittelussa ja kehityksessä.

2.4.1 Raportointimoottorin rakenne ja prosessi

Prosessina raportointimoottori toimii kolmella tasolla: data-, logiikka- ja esitysta-solla.[11]

Datataso

Datatasolla reportointimoottori voi hakea dataa suoraan tietotokannasta tai esimerkiksi API:n eli ohjelmointirajapinnan (engl. Application Programming Interface) kautta. Raportointimoottorin tapauksessa ohjelmointirajapinta voi olla esimerkiksi hakurajapinta, jonka taustalla toimivan hakumoottorin avulla raportointimoottori voi hakea tarvitsemaansa dataa täsmällisemmin. Varsinkin PLM-järjestelmän kontekstissa hakumoottori on hyvin keskeinen osa PLM-järjestelmää. Datataso määrittelee siis mistä ja miten raportointimoottori hankkii lähtödataa sekä millaiset lähtötiedot sillä on koostaa raportti.[11] Näihin lähtötietoihin lukeutuu esimerkiksi mahdolliset raporttipohjat ja muut käyttäjän määrittämät asetukset.

Logiikkataso

Logiikkatasolla raportointimoottori jäsentelee lähtödataa ja suorittaa laskentaa. Lähtödatan formaatti on usein historiallisesti ollut XML (engl. Extensible Markup Language) sen ollessa yksi internetin yleisimmin käytetyistä dataformaateista, mutta JavaScriptin yleistyttyä myös JSON (engl. JavaScript Object Notation) noussut suosituksi tiedostomuodoksi. JSONin etuna on sen suora integraatio JavaScriptin yhteyteen sekä sen nopeus verrattuna vanhempaan XML-standardiin. [13] Logiikkatason toteuttaman laskennan avulla lähtödatasta voidaan luoda esimerkiksi graafeja ja sekä taulukoida dataa, mikä mahdollistaa lasketut sarakkeet ja summat. Tämä voidaan nähdä raportointimoottorin ytimenä, sillä se tuottaa merkityksellistä dataa usein vaikeaselkoisesta lähdedatasta.[11] Lisäksi logiikkatason tulee jäsentää data siten, että se on mahdollista kirjoittaa tiedostoon esitystasolla.

Esitystaso

Esitystasolla data kirjoitetaan tiedostoon, jolloin se voidaan tallentaa käyttäjäystävällisessä tiedostoformaatissa.[11] Suosituimpia tiedostoformaatteja ovat HTML-, Excel- ja PDF-tiedostoformaatit.[11] Esitystasolla raportin merkitys ilmenee käyttäjälle: lähtödata on esitetty helposti omaksuttavassa ja ymmärrettävässä muodossa, sekä raportti on luettavissa ja jaettavissa helposti yksittäisenä tiedostona.

2.4.2 PLM-järjestelmä raportointimoottorin toimintaympäristönä

Rohleder ym. (2014) käsittelee tutkimuksessaan "Requirements Engineering in Business Analytics for Innovation and Product Lifecycle Management" vaatimusten määrittelyä liiketoimintatiedon hyödyntämisessä PLM-järjestelmissä. Rohleder ym. korostaa, että PLM-järjestelmissä toimitaan usein Big datan eli massadatan parissa, sillä heidän tutkimuksen mukaan yksittäisen auton tuoterakenne voi koostua noin

120 tuhannesta yksittäisestä osasta, joilla jokaisella on tyypillisesti omat CAD-mallit (tietokoneavusteisen suunniteluohjelman luomia tiedostoja), piirustukset ja metadataa. Lisäksi tuotteen useat versiot ja variantit nostavat lopullisen datan määrää eksponentiaalisesti. Lisäksi PLM-järjestelmiä käyttää tyyppillisesti eri työntekijöitä yrityksen eri osastoissa, jolloin tuonkulkujen poikkeavaisuus lisää PLM-järjelmien datan kompleksisuutta entisestään. Kompleksisuus johtaa usein siihen, että valmiit raportointimoottorit, varsinkin esimerkiksi taloudelliseen raportointiin erikoistuneet, eivät välttämättä sovi sellaisenaan käytettäväksi PLM:n kontekstissa.[14]

Kuten kappaleessa 2.3.1 todettiin, osaluettelot ovat keskeiseen osa PLM-järjestelmään tallennetun datan esittämistä. Koska tuoteobjektit koostuvat osaluetteloista, myös PLM-järjestelmässä tuotteista koostettavat raportit perustuvat osaluetteloista kerättyyn lähtödataan. PLM-järjestelmän raportointimoottorit ovat siten erikoistuneita jäsentelemään ja kokoamaan hierarkkista dataa.[14] PLM-järjestelmän tarjoamille raporteille on olennaista tuotteeseen ja sen kehitykseen liittyvät seikat, kuten esimerkiksi tuotteen osien toimittajien jakauma tai tuotteen muokkaushistoria. Lisäksi osaluettelon perusteella voidaan laskea yksittäisten osien summia rakenteessa tai esimerkiksi luoda raportteja tietyistä tuotteen osista, jotka täyttävät annetut kriteerit.

Mahdollisen raportointimoottorin ohella PLM-järjestelmät sisältävät usein hakumoottorin, jonka avulla voidaan etsiä tehokkaasti ja tarkasti tietokannasta annettujen kriteerien mukaisesti. Tiedon haku on yksi PLM-järjestelmän ydinominaisuuksista.[15] Raporttien muodostamisessa ulkoisen hakumoottorin hyödyntäminen vähentää itse raportointimoottorin kuormaa, jolloin raportointimoottorin toiminallisuuden kehittämisessä voidaan keskittyä enemmän laskentaan ja lisäarvon tuottamiseen. Täten PLM-järjestelmän tapauksessa lähtödatan hakeminen voi tapahtua haku-API:n välityksellä, jolloin raportteja voidaan muodostaa tuoterakenteiden lisäksi esimerkiksi jonkin tietyn hakulausekkeen perusteella.

PLM-järjestelmien käyttäjät ovat tyypillisesti suhteellisen suuren mittakaavan teollisuusyrityksiä. Useissa tapauksissa myös tuoterakenteet ovat valtavia, joten raportointimoottorin tulee olla tarpeeksi tehokas ja optimoitu, jotta myös suurista tietorakenteista on mahdollista koostaa raportteja siedettävässä suoritusajassa. Raportointimoottorin logiikkatason lisäksi PLM-järjestelmien käyttäjillä on myös tarpeita muokata raporttien ulkoasua raportointimoottorin esitystasolla. Esimerkiksi yrityksen logojen ja visuaalisen ilmeen muokkaaminen raportteihin on olennainen osa raportointimoottorin toiminnallisuutta.

3 Case-tapaus:

Raportointimoottorin kehittäminen osaksi Sovelia PLM-järjestelmää

3.1 Sovelia PLM

Sovelia PLM on kaupallinen PLM-järjestelmä... (selostus yleisellä tasolla kehitettävän raportointityökalun toimintaympäristöstä)

3.2 Nykyiset raportointimoottorit

Alustus ja esittely nykyisiin raportointityökaluihin, niiden ominaisuuksiin ja käytettyihin tekniikoihin.

Lähdeluettelo

- [1] M. David ja F. Rowe, "What does PLMS (product lifecycle management systems) manage: Data or documents? Complementarity and contingency for SMEs", Computers in Industry, vol. 75, s. 140–150, tammikuu 2016, ISSN: 0166-3615. DOI: 10.1016/j.compind.2015.05.005. url: https://www.sciencedirect.com/science/article/pii/S0166361515300051 (viitattu 17.09.2023).
- [2] I. Bouhaddou, A. Benabdelhafid, L. Ouzizi ja Y. Benghabrit, "PLM (Product Lifecycle Management) Model for Supply Chain Optimization", en, teoksessa Product Lifecycle Management. Towards Knowledge-Rich Enterprises, L. Rivest, A. Bouras ja B. Louhichi, toim., sarja IFIP Advances in Information and Communication Technology, Berlin, Heidelberg: Springer, 2012, s. 134–146, ISBN: 978-3-642-35758-9. DOI: 10.1007/978-3-642-35758-9_12.
- [3] M. Alemanni, G. Alessia, S. Tornincasa ja E. Vezzetti, "Key performance indicators for PLM benefits evaluation: The Alcatel Alenia Space case study", *Computers in Industry*, vol. 59, nro 8, s. 833-841, lokakuu 2008, ISSN: 0166-3615. DOI: 10.1016/j.compind.2008.06.003. url: https://www.sciencedirect.com/science/article/pii/S0166361508000663 (viitattu 17.10.2023).
- [4] L. Rivest, A. Bouras ja B. Louhichi, toim., Product Lifecycle Management.

 Towards Knowledge-Rich Enterprises: IFIP WG 5.1 International Conference,

LÄHDELUETTELO 15

PLM 2012, Montreal, QC, Canada, July 9-11, 2012, Revised Selected Papers (IFIP Advances in Information and Communication Technology), en. Berlin, Heidelberg: Springer, 2012, vol. 388, ISBN: 978-3-642-35757-2 978-3-642-35758-9. DOI: 10.1007/978-3-642-35758-9. url: http://link.springer.com/10.1007/978-3-642-35758-9 (viitattu 17.10.2023).

- [5] S. G. Lee, Y. .-. Ma, G. L. Thimm ja J. Verstraeten, "Product lifecycle management in aviation maintenance, repair and overhaul", Computers in Industry, Product Lifecycle Modelling, Analysis and Management, vol. 59, nro 2, s. 296–303, maaliskuu 2008, ISSN: 0166-3615. DOI: 10.1016/j.compind.2007.06.022. url: https://www.sciencedirect.com/science/article/pii/S0166361507001108 (viitattu 18.10.2023).
- [6] Y. Niu, L. Ying, J. Yang, M. Bao ja C. B. Sivaparthipan, "Organizational business intelligence and decision making using big data analytics", *Information Processing & Management*, vol. 58, nro 6, s. 102725, marraskuu 2021, ISSN: 0306-4573. DOI: 10.1016/j.ipm.2021.102725. url: https://www.sciencedirect.com/science/article/pii/S0306457321002090 (viitattu 22.10.2023).
- [7] L. Raković, M. Sakal ja P. Matković, "Digital workplace: Advantages and challenges", en, *Anali Ekonomskog fakulteta u Subotici*, nro 47, s. 65–78, 2022, ISSN: 0350-2120, 2683-4162. DOI: 10.5937/AnEkSub2247065R. url: https://scindeks.ceon.rs/Article.aspx?artid=0350-21202247065R (viitattu 22.10.2023).
- [8] M.-F. Sriti ja P. Boutinaud, "PLMXQuery: Towards a Standard PLM Querying Approach", eng, teoksessa IFIP Advances in Information and Communication Technology, vol. AICT-388, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, s. 379–388, ISBN: 9783642357572.

LÄHDELUETTELO 16

[9] R. Jones ja L. Tate, Visualizing Comparisons of Bills of Materials, arXiv:2309.11620
 [cs], syyskuu 2023. DOI: 10.48550/arXiv.2309.11620. url: http://arxiv.org/abs/2309.11620 (viitattu 17.10.2023).

- [10] M. Bosch-Mauchand, M. Bricogne, B. Eynard ja J.-P. Gitto, "Preliminary Requirements and Architecture Definition for Integration of PLM and Business Intelligence Systems", en, teoksessa *Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications*, E. Bayro-Corrochano ja E. Hancock, toim., vol. 8827, Series Title: Lecture Notes in Computer Science, Cham: Springer International Publishing, 2014, s. 265–272, ISBN: 978-3-319-12567-1 978-3-319-12568-8. DOI: 10.1007/978-3-662-44739-0_33. url: http://link.springer.com/10.1007/978-3-662-44739-0_33 (viitattu 22.10.2023).
- [11] Y. He ja F. Gong, "Design and Implementation of the Large Enterprise Reporting Engine", teoksessa 2010 International Conference on Web Information Systems and Mining, vol. 2, lokakuu 2010, s. 235–238. DOI: 10.1109/WISM. 2010.96. url: https://ieeexplore.ieee.org/document/5662268 (viitattu 09.10.2023).
- [12] B. P. Adhi, D. N. Prasetya ja Widodo, "Performance comparison of reporting engine birt, jasper report, and crystal report on the process business intelligence", English, *IOP Conference Series. Materials Science and Engineering*, vol. 508, nro 1, huhtikuu 2019, Place: Bristol, United Kingdom Publisher: IOP Publishing, ISSN: 17578981. DOI: 10.1088/1757-899X/508/1/012129. url: https://www.proquest.com/docview/2560973452/abstract/E835BABAB8FE44D6PQ/1 (viitattu 09.10.2023).
- [13] N. Nurseitov, M. Paulson, R. Reynolds ja C. Izurieta, "Comparison of JSON and XML Data Interchange Formats: A Case Study", en,

LÄHDELUETTELO 17

[14] C. Rohleder, J. Lin, I. Kusumah ja G. Özkan, "Requirements Engineering in Business Analytics for Innovation and Product Lifecycle Management", en, teoksessa *Advances in Conceptual Modeling*, J. Parsons ja D. Chiu, toim., sarja Lecture Notes in Computer Science, Cham: Springer International Publishing, 2014, s. 51–58, ISBN: 978-3-319-14139-8. DOI: 10.1007/978-3-319-14139-8_7.

[15] J. G. Enríquez, J. M. Sánchez-Begines, F. J. Domínguez-Mayo, J. A. García-García ja M. J. Escalona, "An approach to characterize and evaluate the quality of Product Lifecycle Management Software Systems", Computer Standards & Interfaces, vol. 61, s. 77–88, tammikuu 2019, ISSN: 0920-5489. DOI: 10.1016/j.csi.2018.05.003. url: https://www.sciencedirect.com/science/article/pii/S0920548917303239 (viitattu 17.11.2023).

Liite A Liitedokumentti

Esimerkki liitedokumentista, jätetty paikalleen mikäli liitteitä on tarve lisätä.

Liite B Liitedokumentti 2

Tässä esimerkki

toisesta kaksisivuisesta liitteestä.