Problem Set #1

March 21, 2022

Due: 11:59am, March 30

Discussions are allowed and encouraged, but please write your own answers.

- 1. (5 pts each) Using the property of the unit impulse, calculate the following.
- (a) $\int_{-\infty}^{\infty} \cos(6t) \delta(t-3) dt$
- (b) $\int_{-\infty}^{\infty} \frac{10\delta(t-3)}{1+t} dt$
- 2. (5 pts each) Prove the following three properties of the Fourier series.
 - (a) If x(t) is real, $X_n^* = X_{-n}$
 - (b) If x(t) is real and even, that is x(t) = x(-t), X_n is purely real and even
 - (c) If x(t) is real and odd, that is x(t) = -x(-t), X_n is purely imaginary and odd
- 3. (5 pts each) Let $y_s(t) = \sum_{m=-\infty}^{\infty} \delta(t mT_s)$.
 - (a) Prove that $y_s(t) = f_s \sum_{n=-\infty}^{\infty} e^{j2\pi n f_s t}$.
 - (b) Prove that $y_s(t) \longleftrightarrow Y_s(f) = \sum_{m=-\infty}^{\infty} e^{j2\pi mT_s f} = f_s \sum_{n=-\infty}^{\infty} \delta(f nf_s)$
- 4. (5 pts each) Find the Fourier transforms of the signals below. Assume $A, \tau > 0$.
 - (a) $x_1(t) = A \exp(-t/\tau)u(t)$
 - (b) $x_2(t) = A \exp(t/\tau) u(-t)$
 - (c) $x_3(t) = x_1(t) x_2(t)$
 - (d) $x_4(t) = x_1(t) + x_2(t)$
- 5. (5 pts each) Find the inverse Fourier transforms of the spectra below. For (a), do not use the Fourier transform table. You may use the table for (b) and (c).
 - (a) $X_1(f) = \prod (f/2B)$
 - (b) $X_2(f) = 2\cos(2\pi f) \prod (f) \exp(-j4\pi f)$
 - (c) $X_3(f) = \left[\prod \left(\frac{f+4}{2} \right) + \prod \left(\frac{f-4}{2} \right) \right] \exp(-j8\pi f)$
- 6. (5 pts each)
 - (a) Show that the Fourier transform of x(t) * y(t) * z(t) is X(f)Y(f)Z(f), where X(f),Y(f),Z(f) are Fourier transforms of x(t),y(t),z(t), respectively. Do not use Fourier transform tables.
 - (b) What is the Fourier transform of x(at + b), $a \neq 0$? Represent your answer in terms of X(f). Do not use Fourier transform tables.