CS102501

B.Tech.(Fifth Semester) Examination,

Nov-Dec 2022

[CSE, CSE (DS), CSE (IOT), CSE (BDA), CSE (IOTCS), CSE (AI), CSE (AIML), CSE (GT) Branch]

THEORY OF COMPUTATION

Time Allowed: 3 hours

Maximum Marks: 100

Minimum Marks: 35

Note: All five units are compulsory. Part (a) is compulsory carry 4 marks. Attempts any two parts from (b),(c) & (d) carry 8 marks each.

COI:-Design finite automata to accept a set of strings of a language.

CO2:-Determine whether the given language is regular or not.

CO3;-Design context free grammars to generate strings of context free language.

CO4:-Design push down automata and the equivalent context free grammars and Design Turing machine.

CO5:-Distinguish between computability and no computability, Decidability and un-decidability

		- 			UNIT-1					
Q. No		Questions				Marks	CO	BL	ΡĮ	
Q.1	a)	Differentiate between NFA & DFA.			4	C01	L2	1.3.1		
	Ъ)	Construct a Moore machine equivalent to Melay Machine:								
					State		8	CO1	L2	1.3.1
ŀ		→ q1	q1	1	q2	0				
İ		q2	q4	1	q4	1_				
1	ĺ	q3	q2	0	q3	1				
		q4	q3	0	q 2	1				
	c)	Minimize the given DFA with My Hill Nerode Theorem: State/∑ 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
		->ql	0	q1	(14				
		g1		q2		<u>1</u> 3				
		(g2)		q7		18	8	CO1	L5	1.3.2
		(93)		q8		17				1.5.2
		q4		q5	(16				
1		(q5))	<u>q</u> 7	0	8				
		(96)		<u>q7</u>		18				
		q7		q7	(7				
		q8	ļ	q8	(8				

AC100202

	d)	Design a DFA which accepts a language L= {w where number of a in w=2 and number of b	8	CO1	L5	1.3.2		
	<u> </u>	in w≥3} UNIT-2						
Q.2	I _\	Explain closure property of regular grammar.	4	CO2	L2	2.1.2		
Q.2	a) b)	Construct a finite automata equivalent to the	-7	CO2	112	2.1.2		
	(ט	regular expression: (0+1)*(00+11) (0+1)*		CO2	L4	2.1.2		
	c)	Prof that the following language is not regular: L={a ⁿ b ⁿ where n≥1}	8	CO2	L3	2.2.3		
	d)	Calculate regular expression from the following						
	۳,	transition system:						
		tanishion system.	8	CO2	L4	2.1.2		
	1							
	1	0						
	<u> </u>	0000						
UNIT-3								
Q.3	a)	(1) Give a regular expression for the set of all						
		strings having odd number of 1's.	4	CO3	L2	2.2.2		
		(2) Give the regular expression for the set of all	-					
		strings ending in 00.			<u> </u>			
	Ъ)	Explain Chomsky classification of Grammar.	- 8	CO3	L2	2.2.3		
ŀ	c)	E->E+T/T						
		T->T*F/F	8	СОЗ	L5	2.2.3		
		F->(E)/a						
		Convert it to GNF.						
	d)	S->0B/1A						
		A->0/0S/1AA	8	СОЗ	L5	2,2,3		
		B->1/1S/0BB						
		Find LMD, RMD & also calculate the derivation						
		tree for the string w=00110101.		<u> </u>	<u> </u>	<u> </u>		
	T-:-	UNIT-4				1		
Q.4	a)	Write down difference between NPDA& DPDA.	4	CO4	L5	1.4.1		
	b)	Design a PDA which accepts the language:	8	CO4	L2	1.4.1		
		L={a ⁿ b ²ⁿ } where n≥1		204	1,2	1,7,1		
	c)	Design a Turing machine M to recognize the						
		language	8	CO4	L4	1.4.1		
		L={a ⁿ b ⁿ c ⁿ } where n≥0.						
	d)			CO4	L4	1.4.1		
1								
	•	AC100202		 	·	'		

		(2) Halting problem of Turing machine.				
		(3) Post correspondence problem.				
		UNIT-5				
Q.5	a)	Explain partial and initial functions.	4	CO5	L4	2.2.3
	b)	Show that $f(x,y)=x^*y$ and $f(x,y)=x^y$ is primitive recursive function.	8	CO5	L5	2.2.3
	(c)	Explain space & time complexity.	8	CO5	L2	2.2.3
	d)	What is computation? Explain Turing Model for computation.	8	CO5	L4	2.1.2

•

.

.