Book 3 Proposition 7

If some point, which is not the center of the circle, is taken on the diameter of a circle, and some straight-lines radiate from the point towards the (circumference of the) circle, then the greatest (straight-line) will be that on which the center (lies), and the least the remainder (of the same diameter). And for the others, a (straight-line) nearer to the (straight-line) through the center is always greater than a (straight-line) further away. And only two equal (straight-lines) will radiate from the point towards the (circumference of the) circle, (one) on each (side) of the least (straight-line).

Let ABCD be a circle, and let AD be its diameter, and let some point F, which is not the center of the circle, have been taken on AD. Let E be the center of the circle. And let some straight-lines, FB, FC, and FG, radiate from F towards (the circumference of) circle ABCD. I say that FA is the greatest (straight-line), FD the least,

and of the others, FB (is) greater than FC, and FC than FG.

For let BE, CE, and GE have been joined. And since for every triangle (any) two sides are greater than the remaining (side) [Prop. 1.20], EB and EF is thus greater than BF. And AE (is) equal to BE [thus, BE and EF is equal to AF]. Thus, AF (is) greater than BF. Again, since BE is equal to CE, and FE (is) common, the two (straight-lines) BE, EF are equal to the two (straight-lines) CE, EF (respectively). But, angle BEF (is) also greater than angle CEF. Thus, the base BF is greater than the base CF [Prop. 1.24]. So, for the same (reasons), CF is also greater than FG.

Again, since GF and FE are greater than EG [Prop. 1.20], and EG (is) equal to ED, GF and FE are thus greater than ED. Let EF have been taken from both. Thus, the remainder GF is greater than the remainder FD. Thus, FA (is) the greatest (straight-line), FD the least, and FB (is) greater than FC, and FC than FG.

I also say that from point F only two equal (straight-lines) will radiate towards (the circumference of) circle ABCD, (one) on each (side) of the least (straight-line) FD. For let the (angle) FEH, equal to angle GEF, have been constructed on the straight-line EF, at the point E on it [Prop. 1.23], and let EF have been joined. Therefore, since EF is equal to EF, and EF (is) common, the two (straight-lines) EF are equal to the two (straight-lines) EF (respectively). And angle EF (is) equal to angle EF. Thus, the base EF is

equal to the base FH [Prop. 1.4]. So I say that another (straight-line) equal to FG will not radiate towards (the circumference of) the circle from point F. For, if possible, let FK (so) radiate. And since FK is equal to FG, but FH [is equal] to FG, FK is thus also equal to FH, the nearer to the (straight-line) through the center equal to the further away. The very thing (is) impossible. Thus, another (straight-line) equal to GF will not radiate from the point F towards (the circumference of) the circle. Thus, (there is) only one (such straight-line).

Thus, if some point, which is not the center of the circle, is taken on the diameter of a circle, and some straight-lines radiate from the point towards the (circumference of the) circle, then the greatest (straight-line) will be that on which the center (lies), and the least the remainder (of the same diameter). And for the others, a (straight-line) nearer to the (straight-line) through the center is always greater than a (straight-line) further away. And only two equal (straight-lines) will radiate from the same point towards the (circumference of the) circle, (one) on each (side) of the least (straight-line). (Which is) the very thing it was required to show.