Homework 4: Algorithms

- 1. "A program with a given input prints the digit 1" is unsolvable
 - a. There is a program P and an input I. Does program P with input I print 1?
 - b. Proof by Contradiction:
 - i. Assume there exists a program print1(P, I).
 - 1. This program will return true if P prints the digit 1 with input I
 - ii. Assume there is a program "kryptonite" with the following algorithm:

```
void kryptonite (String p) {
   if(print1(p,p)) {
      return; // Do not print the digit 1
   }
   print(1); // Print the digit 1
   return;
}
```

- iii. Case 1: print1(p,p) is true
 - 1. If program p prints 1, then the if statement will return without printing 1, creating a contradiction.
- iv. Case 2: print1(p,p) is false
 - 1. If program p does not print 1, then the if statement will not be executed and 1 will be printed, creating another contradiction.
- 2. f(n, m) is $\Omega(g(n, m))$
 - a. f and g be two functions, and n and m are positive integers.
 - b. $f(n, m) = \Omega(g(n, m))$ if there are positive constants c, n_0 , and m_0 such that for any $n \ge n_0$ and $m \ge m_0$, $f(n, m) \ge c*g(n, m)$.
- 3. $f(x, y) = x^5y^3 + x^4y^4 + x^3y^5$. Is $f(x, y) = \Omega(x^3y^3)$?
 - a. $f(x, y) = x^5y^3 + x^4y^4 + x^3y^5$ and $g(x, y) = x^3y^3$
 - b. Select c = 1, $x_0 = 1$, $y_0 = 1$. Show that for any $x \ge 1$ and $y \ge 1$, $f(x, y) \ge g(x, y)$.
 - i. $x^5y^3 + x^4y^4 + x^3y^5 \ge x^3y^3$
 - ii. $x^3y^3(x^2 + xy + y^2) \ge x^3y^3$
 - iii. Prove that $x^2 + xy + y^2 \ge 1$
 - 1. Since $x \ge 1$ and $y \ge 1$, $x^2 \ge x \ge 1$, $xy \ge 1$, and $y^2 \ge y \ge 1$
 - 2. Add inequalities $x^2 \ge 1$, $xy \ge 1$, and $y^2 \ge 1$ to get $x^2 + xy + y^2 \ge 1$
 - iv. Therefore, for $x \ge 1$ and $y \ge 1$, $f(x, y) \ge g(x, y)$.