Elaborazione di Immagini – Morfologia Matematica (MM)

morfología = lat. morphología dal gr. Morphe forma (di cui taluno erroneamente pretende sia trasposizione il lat. Fòrma, col quale combina soltanto nel significato) e lògia = lògos discorso, trattato.

Storia delle forme che può rivestire la materia; Trattato della conformazione esterna degli animali; Metamorfosi.

Cfr. Amorfo; Polimorfo; Morfologico.

L'analisi delle immagini si basa sulla forma e la struttura geometrica delle regioni di interesse. All'inizio le operazioni nell'ambito della morfologia matematica erano definite utilizzando opportune "operazioni" insiemistiche:

- si modificano le forme con operatori locali;
- alcuni operatori sono simili alla convoluzione ma utilizzano operazioni tra insiemi;
- utile per alcuni ambiti quali: enhancing di proprietà geometriche/strutturali, segmentazione, descrizione quantitativa,...

MM è nata a metà degli anni '60 in Francia alla Ecole des Mines de Paris, in Fontainebleau (alla Ecole des erano interessati all'analisi di dati geologici e relativi alla struttura dei materiali).

I maggiori contributi vennero da Georges Matheron e Jean Serra.

- •Il nome 'Mathematical Morphology' pare sia Stato coniato in un
- •La tecnica è diventata nota internazionalmente in seguito ad un articolo di Haralick/Sternberg/Zhuang su PAMI in 1987

La teoria è stata inizialmente sviluppata per immagini binarie, in seguito è stata estesa ad immagini a livelli di grigio attraverso insiemi di livello.

Alcuni concetti risalgono a Minkowski (1901), Birkhoff (1948) e Hawidger (1957).

Attualmente è compresa nelle teorie:

- Scale-space
- PDE-based filtering

Alcuni concetti risalgono a Minkowski (1901), Birkhoff (1948) e Hawidger (1957).

Attualmente è compresa nelle teorie:

- Scale-space
- PDE-based filtering

Fino ad ora una immagine (monocromatica) è stata definita come una funzione I(x,y) a valori reali in due variabili reali (x,y) nel caso continuo o due variabili discrete I(m,n).

Una alternativa a consiste nel considerare una immagine come una collezione (o insieme) di coordinate (continue o discrete) corrispondenti a punti o pixel appartenenti ad un oggetto dell'immagine stessa.

Esagonale

Basic Structures

Linear signal processing:

The basic structure in linear signal processing is the *vector space i.e.* a set of vectors V and a set of scalars K such that

- 1) K is a field;- V is a commutative group
- There exists a multiplicative law between scalars and vectors.

Mathematical morphology:

The basic structure is a *complete lattice i.e.* a set \mathcal{L} such that:

£ is provided with a partial ordering,
 i.e. a relation ≤ with

$$A \le A$$

 $A \le B, B \le A \implies A = B$
 $A \le B, B \le C \implies A \le C$

- 2) For each family of elements $\{Xi\} \in P$, there exists in \mathcal{L} :
- a greatest lower bound ∧{Xi}, called infimum (or inf.)
- a smallest upper bound $\vee \{Xi\}$, called supremum (or sup.)

Basic Operations

Linear Signal Processing

Since the structure is that of a vector space, whose fundamental laws are addition and scalar product, then

The basic operations are those which preserve these laws, *i.e.* which commute under them:

$$\Psi(\sum \lambda_i f_i) = \sum \lambda_i \Psi(f_i)$$

The resulting operator is called **convolution**.

Mathematical Morphology

Since the Lattice structure lies on the ordering relation, on the sup and the inf, the basic operations are those which preserve these fundamental laws, namely

Ordering Preservation:

$$\{X \le Y \Rightarrow \Psi(X) \le \Psi(Y)\} \Leftrightarrow \text{ increasingness}$$

Commutation under Supremum.:

$$\Psi(\vee X_i) = \vee \Psi(X_i) \Leftrightarrow Dilation$$

Commutation under Infimum:

$$\Psi (\wedge X_i) = \wedge \Psi (X_i) \Leftrightarrow Erosion$$

Examples of Lattices

Lattice of subsets P(E) of a set

E:

The **partial** ordering is defined by the inclusion law:

Sup: ∪

Inf: \cap

Extremes: E, \varnothing

Lattices of real or integer numbers:

This **total** ordering is given by the succession of the values:

Sup:∨ (usual sense)

 $Inf: \land$

Extremes: $-\infty, +\infty$

Lattice of convex sets:

The order is defined by the inclusion law:

 $Y \subset X$

Sup: Convex hull of the union

Inf: Intersection

Fino ad ora una immagine (monocromatica) è stata definita come una funzione I(x,y) a valori reali in due variabili reali (x,y) nel caso continuo o due variabili discrete I(m,n). Una alternativa a consiste nel considerare una immagine come una collezione (o insieme) di coordinate (continue o discrete) correspondenti a punti o pixel appartenenti ad un oggetto dell'immagine stessa.

Riportiamo nella figura sottostante una immagine che contiene due oggetti o insiemi **A** e **B** (si noti che occorre fissare un sistema di coordinate).

Considerando immagini binarie restringiamo la discussione a sottoinsiemi dello spazio **Z**².

Potremmo definire gli oggetti come

 $A = \{ (m,n) \text{ tale che } P(m,n) \text{ vera } \} \text{ dove }$

Pè una certa "proprietà".

Operazioni insiemistiche classiche, complementare Ac di A:

$$A^c = \{ (x,y): (x,y) \notin A \}$$

FIGURE 9.3 Some logic operations between binary images. Black represents binary 1s and white binary 0s in this example.

Operazioni logiche per immagini Binarie: 1=nero, 0=bianco

TABLE 9.1 The three basic logical operations.

p	q	p AND q (also $p \cdot q$)	$p \ \mathbf{OR} \ q \ (\mathbf{also} \ p \ + \ q)$	NOT (p) (also \bar{p})
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Siano, $\mathbf{A} \subset Z^2$, $w=(w_1,w_2) \in Z^2$, definisco la traslazione \mathbf{A}_w come

$$A_{w} = A + w = \{ c : c = a + w; con \ a \in A \}$$

E la riflessione come:

$$\hat{A} = \{(-x, -y) : (x, y) \in A\}.$$

Traslazione

Riflessione

Le due trasformazioni morfologiche di base sono:

- erosione
- dilatazione

Consideriamo l'interazione tra A (oggetto di interesse) ed un insieme B detto "elemento strutturante" che caratterizzerà il cambiamento morfologico. Operazioni insiemistiche di base:

Addizione di Minkowski -
$$A \oplus B = \bigcup_{\beta \in B} (A + \beta)$$

Sottrazione di Minkowski -
$$A \ominus B = \bigcap_{\beta \in B} (A - \beta)$$

$$D(A,B) = A \oplus B = \bigcup_{\beta \in B} (A + \beta)$$

Erosione -

$$E(A,B) = A \ominus B = \bigcap_{\beta \in \widehat{B}} (A + \beta)$$

(si può scrivere utilizzando la riflessione di B)

(a) Dilation D(A,B)

(b) Erosion E(A,B)

Dilatazione con diversi elementi strutturanti

Figure 9.3: Dilation

 $A \ominus B = \{x : B_x \subseteq A\}.$

Erosione

Erosione

a b c d e

FIGURE 9.6 (a) Set A. (b) Square structuring element. (c) Erosion of A by B, shown shaded. (d) Elongated structuring element. (e) Erosion of A using this element.

Erosione

a b c

FIGURE 9.7 (a) Image of squares of size 1, 3, 5, 7, 9, and 15 pixels on the side. (b) Erosion of (a) with a square structuring element of 1's, 13 pixels on the side. (c) Dilation of (b) with the same structuring element.

Erosione + Dilatazione: NON SONO UNA L'INVERSO DELL'ALTRA

FIGURE 9.10

Morphological opening and closing. The structuring element is the small circle shown in various positions in (b). The dark dot is the center of the structuring element.

$$B = N_8 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad B_1 = \begin{bmatrix} - & - & - \\ - & 1 & - \\ - & - & - \end{bmatrix} \qquad B_2 = \begin{bmatrix} - & 1 & - \\ 1 & - & 1 \\ - & 1 & - \end{bmatrix}$$
(a) (b) (c)

Figure 40: Structuring elements B, B_1 , and B_2 that are 3×3 and symmetric.

a) Image A

b) Dilation with 2**B**

c) Erosion with 2B

d) Opening with 2**B**

e) Closing with 2B

f) 8-c contour: $A-E(A,N_8)$

$$A \circ B = (A \ominus B) \oplus B$$
. Operazione di opening

$$A \bullet B = (A \oplus B) \ominus B$$
. Operazione di closing