M.E.CONSTRUCTION ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2018 SUBJECT: CONDITION ASSESSMENT & HEALTH MONITORING OF STRUCTURES - I

Time: Three hours

PART-I

Full Marks: 100

Answer all questions

3+4+8+10=25

- 1.i) What are the basic requirements for which NDT are done?
- ii)Will you ever recommend a single type of NDT for assessment of a structure or more than one type of test? If so or not-give reasons.
- iii) There is a concrete wall of grid 5mtr X8 mtrs which are distressed due to several reasons. How will you plan to assess the structure quantitatively by Schmidt hammer test?
- 2. Explain any two of the NDT methods in brief- Schmidt hammer/UPV/Core cutting.

M. CONS. ENGG. 1ST YR. 2ND SEM. EXAMINATION – 2018

Subject: CONDITION ASSESSMENT & HEALTH MONITORING OF STRUCTURES - I

Time: Three hours (All Parts)

PART - II

Full Marks: 25

Answer any TWO questions. Answer to all parts of the same question should be done SERIALLY & written together. This should be STRICTLY ADHERED to. Please use a FRESH page while answering a NEW question or any part of a new question. Assume any reasonable data as considered necessary. Use of fresh copies (NOT ANNOTATED / HAND WRITTEN) of relevant code of practice is permitted. Any methodology permitted by classical structural mechanics is permitted.

	code of practice is permitted. A	-119 1111	moustagy permitted	-,					
CO4	[1] 'Condition Assessment' forms a new dimension to structural retrofit - Enkindle. How does it differ								
[12.5]	from Non-Destructive / Partial Destructive Testing of Concrete Structures ? Discuss with special								
	reference to retrofit technolo	~ .					[12.5]		
CO5	[2] Schmidt Rebound Hamm	ier ca	n be used as a prin	ma fa	cie asses	sment of	the quantum of distress in a		
[12.5]	concrete structural system. Enumerate in the light of IS: 13311 (Part 2): 1992 in conjunction with								
	BS: 1881: Part 202: 1986	& A!	STM C 805:19	85. H	ow authe	entic is thi	s test.[CO5] [12.5]		
CO5	[3] Discuss the concept &	pract	ice of the use of	Ultra	asonic P	ulse Velo	city Test as a prima facie		
[12.5]	assessment of the quantum of distress in a concrete structural system in the light of IS: 13311 (Part								
	1): 1992. How can this test be used in the determination of crack depth & width in a distressed bridge								
	girder.[CO5] [12.5]								
CO6	[3] The table given below elaborates the crushing values of various core samples from a recently								
[12.5]	collapsed flyover in Eastern India. Determine the estimated probable characteristic strength of the								
	concrete as per the methodology enumerated in IS: 516: 1959 (Reaffirmed in 1999) in								
	conjunction with BS: 1881: Part 120: 1983 & ASTM C 42: 1990. Can it be considered to								
	pass a grade of M 40? Give your comments in the light of relevant codes of practice. Further								
	indicate the methodology for preparation of cores extracted before testing as per standard practice.								
	[CÔ6] 12.5								
			e a	er	th.				
			tio fur tio	net	- Sua	2			
		Ž	l ca uct	iai m	H (E)	((((((((((
		SI. No.	t Locati Structu Marked	Diam (mm)	ed Le	Load (kN)			
		()	Test Locations at Structure Marked	Core Diameter (mm)	Capped Length (mm)				
				Č	Ü				
		4	Girder G 12-13,	00	1150	172.20			
		1	0.5 M from top	90	115.0	172.29			
		2	Girder G 12-13, 1.5 M from top	90	158.0	176.26			
		-	Girder G 12-13,	00	162.0	160.50			
		3	2.0 M from top	90	162.0	168.58			
		4	Girder G 13-14, 0.5 M from top	90	158.0	183.27			
			Girder G 13-14,	00	170 0	171 20			
	'	5	1.5 M from top	90	178.0	171.29			
	1	6	Girder G 13-14, 2.0 M from top	90	169.0	182.58			
			Pier P13-13, 3.5 M	90	175.0				
		7	from top		175.0	182.25			
		8	Pier P13-13, 2.5 M	90	145.0	191.36			

from top

M.E.CONSTRUCTION ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2018 SUBJECT: CONDITION ASSESSMENT & HEALTH MONITORING OF STRUCTURES - I

Time: Three hours

Full Marks: 100

50 marks for each part

No of Questions	Part III				
	Answer any Four Questions	Marks			
Q1.	Write a short note on load test on structures.				
Q2.	Describe the non-destructive test technique based on sonic echo / Impulse response method.	12.5 12.5			
Q3.	State the different considerations and activities involved in preliminary investigation of a structure.	12.5			
Q4.	Briefly describe the effect of fire on concrete structures.	12.5			
	Write short notes on sulphate attack in concrete structures.				
	de de la concrete structures.	12.5			
-					