1. Теорема о неявной функции, заданной одним уравнением. Теорема о системе неявных функций (без доказательства).

Теорема 18.1. Пусть функция двух переменных F(x,y) непрерывно дифференцируема в некоторой окрестности точки (x_0,y_0) , причём $F(x_0,y_0)=0$, а $F_y'(x_0,y_0)\neq 0$. Тогда существует прямоугольник $\Pi=\{(x,y)\in\mathbb{R}^2:x_0-a< x< x_0+a,y_0-b< y< y_0+b\}$, в котором уравнение F(x,y)=0 равносильно некоторому уравнению вида y=f(x). Функция f непрерывно дифференцируема на $(x_0-a;x_0+a)$, причём на этом интервале

 $f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))}. (18.2)$

 \square Пусть для определённости $F'_y(x_0,y_0)>0$ (иначе сначала докажем теорему для функции -F). Напомним, что функция F непрерывно дифференцируема в $U_\delta(x_0,y_0)$, $\delta>0$. Так как F'_y непрерывна в точке (x_0,y_0) , то, по лемме о сохранении знака, найдётся окрестность точки (x_0,y_0) , в которой $F'_y(x,y)>0$. Эта окрестность является кругом радиуса δ_1 с центром в точке (x_0,y_0) , поэтому она содержит некоторый замкнутый прямоу-гольник

$$\widetilde{\Pi} = \{(x, y) \in \mathbb{R}^2 : x_0 - a_1 \leqslant x \leqslant x_0 + a_1, y_0 - b \leqslant y \leqslant y_0 + b\}$$

D--- 10 1

(например, квадрат со стороной меньшей, чем $\delta_1\sqrt{2}$ (см. рис. 18.1)). Поэтому $F'_{\nu}(x,y)>0$ во всех точках $\widetilde{\Pi}$.

Рассмотрим функцию одной переменной $\psi(y)=F(x_0,y),\ y_0-b\leqslant y\leqslant \leqslant y_0+b.$ Из условия следует, что эта функция непрерывна на $[y_0-b;y_0+b],$ поэтому функция ψ строго возрастает на $[y_0-b;y_0+b].$ Так как $\psi(y_0)=0,$

то $\psi(y_0-b)<0,\ \psi(y_0+b)>0.$ Значит, $F(x_0,y_0-b)<0,\ F(x_0,y_0+b)>0.$ По лемме о сохранении знака

$$\exists a \in (0; a_1) : \forall x \in [x_0 - a; x_0 + a] \longrightarrow$$

$$\longrightarrow (F(x, y_0 - b) < 0) \land (F(x, y_0 + b) > 0)$$

(см. рис. 18.2).

y₀ + b y* y₀ - b 0 x₀ - a x₀ x₀ + a x Puc. 18.3

Рассмотрим произвольную точку $x^*\in[x_0-a;x_0+a]$. Для непрерывной функции одной переменной $\varphi(y)=F(x^*,y)$ выполняются неравенства $\varphi(y_0-b)<0,\ \varphi(y_0+b)>0.$ Следовательно, по теореме Больцано-Коши 3.13, $\exists\,y^*\in(y_0-b;y_0+b)\colon\varphi(y^*)=0$, т.е. $F(x^*,y^*)=0.$ Так как $\varphi'(y)=F_y'(x^*,y)>0$, то функция φ строго возрастает на $[y_0-b;y_0+b]$ и не может обращаться в нуль более чем в одной точке. Итак, для любого $x^*\in[x_0-a;x_0+a]$ существует единственное значение $y^*\in[y_0-b;y_0+b]$ такое, что $F(x^*,y^*)=0.$ Таким образом, определена функция $y^*=f(x^*),$ и на замкнутом прямоугольнике $\overline{\Pi}=\{(x,y)\in\mathbb{R}^2:x_0-a\leqslant x\leqslant x_0+a,y_0-b\leqslant y\leqslant y_0+b\}$ уравнение F(x,y)=0 равносильно уравнению y=f(x) (см. рис. 18.3); в частности, это верно на открытом прямоугольнике

$$\Pi = \{(x, y) \in \mathbb{R}^2 : x_0 - a < x < x_0 + a, y_0 - b < y < y_0 + b\}.$$

Докажем, что функция f непрерывно дифференцируема на интервале $(x_0-a;x_0+a)$. Так как функция F_y' непрерывна на компакте $\overline{\Pi}$, то она достигает на $\overline{\Pi}$ своей точной нижней грани:

$$\alpha = \inf_{\overline{x}} F_y'(x,y) = F_y'(\tilde{x},\tilde{y}) > 0, \quad \text{где} \quad (\tilde{x},\tilde{y}) \in \overline{\Pi}, \quad \text{г.е.}$$

 $F'_y(x,y)\geqslant \alpha>0$ при всех $(x,y)\in\overline{\Pi}$. Так как функция F'_x непрерывна на компакте $\overline{\Pi}$, то она ограничена на нём, т.е. $|F'_x(x,y)|\leqslant \beta$ при всех $(x,y)\in\overline{\Pi}$.

Пусть $(x,y)\in\Pi$, причём F(x,y)=0; значит, y=f(x). Если Δx — приращение аргумента x такое, что $x+\Delta x\in(x_0-a;x_0+a)$, а Δy — соответствующее ему приращение функции f(x), то $F(x+\Delta x,y+\Delta y)=0$. По теореме Лагранжа для функций двух переменных (следствие из теоремы 10.8 при n=2) имеем

$$\begin{split} 0 &= F(x + \Delta x, y + \Delta y) - F(x, y) = \\ &= F_x'(x + \xi \Delta x, y + \xi \Delta y) \cdot \Delta x + F_y'(x + \xi \Delta x, y + \xi \Delta y) \cdot \Delta y, \quad \text{t.e.} \\ \frac{\Delta y}{\Delta x} &= -\frac{F_x'(x + \xi \Delta x, y + \xi \Delta y)}{F_y'(x + \xi \Delta x, y + \xi \Delta y)}, \quad 0 < \xi < 1. \end{split}$$

Следовательно, $\left|\frac{\Delta y}{\Delta x}\right| \leqslant \frac{\beta}{\alpha} = M$, т.е. $|\Delta y| \leqslant M |\Delta x|$. Поэтому

$$\forall \varepsilon > 0 \longrightarrow \exists \delta = \frac{\varepsilon}{M} > 0$$
:

$$\forall x, \ x + \Delta x \in (x_0 - a; x_0 + a), |\Delta x| < \delta \longrightarrow |f(x + \Delta x) - f(x)| < \varepsilon,$$

и функция f равномерно непрерывна на интервале $(x_0-a;x_0+a);$ во всяком случае, $\lim_{x\to a} \Delta y = 0.$

Далее, $\xi=\xi(\Delta x,\Delta y)$, где $\Delta y=f(x+\Delta x)-f(x)=\Delta y(\Delta x)$. Рассмотрим функции $\tilde{x}(\Delta x)=x+\xi\Delta x,\ \tilde{y}(\Delta x)=y+\xi\Delta y;$ $\lim_{\Delta x\to 0}\tilde{x}(\Delta x)=x,\ \lim_{\Delta x\to 0}\tilde{y}(\Delta x)=y=f(x)$. Доопределив $\tilde{x}(0)=x,\ \tilde{y}(0)=f(x),$ получим функции, непрерывные в точке $\Delta x=0$. Тогда по теореме 9.5 о непрерывности суперпозиции непрерывных функций (внешняя — двух переменных, внутренние — одной переменной)

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = -\frac{F_x'(x, f(x))}{F_y'(x, f(x))}.$$

Поскольку $F_y' \neq 0$ на П, то при всех $x \in (x_0 - a; x_0 + a)$ существует f'(x) и выполняется равенство (18.2); ясно, что функция f' непрерывна на $(x_0 - a; x_0 + a)$.

Пример 18.1. Пусть $F(x,y)=x^2+y^2-1$; графиком уравнения F(x,y)=0 является окружность. Так как $F_y'=2y\neq 0$ во всех точках окружности, кроме точек (1,0) и (-1,0), то для каждой такой точки существует окрестность в виде прямоугольника, пересечение окружности с которой является графиком некоторой функции y=f(x) (см. рис. 18.4); об этом говорилось перед формулировкой теоремы 18.1, теорема подтвердила эти выводы. При этом $f'(x)=-\frac{F'}{F'_y}=-\frac{x}{y}$ (см. также пример 4.9).

Пример 18.2. Пусть $F(x,y)=x+\sin x-2y-\sin y$. Но $F_y'=-2-\cos y<0$ всюду, поэтому для любой точки, координаты которой удовлетворяют уравнению $x+\sin x=2y+\sin y$, существует окрестность в виде прямоугольника такая, что пересечение графика уравнения с этой окрестностью является графиком некоторой функции y=f(x). На самом деле уравнение F(x,y)=0 задаёт непрерывно дифференцируемую на всей числовой прямой функцию y=f(x). В самом деле, $\lim_{y\to+\infty}(2y+\sin y)=+\infty$, $\lim_{y\to-\infty}(2y+\sin y)=-\infty$, поэтому

множеством значений непрерывной функции $\varphi(y)=2y+\sin y$ является неограниченный сверху и снизу промежуток, т.е. вся числовая прямая. Поэтому при любом x существует значение y такое, что $x+\sin x=2y+\sin y$. Так как $\varphi'(y)=2+\cos y>0$, то функция φ строго возрастает, и это значение y единственно. Итак, уравнение F(x,y)=0 задаёт однозначную функцию y=f(x) на всей числовой прямой (см. рис. 18.5). По теореме 18.1 она непрерывно дифференцируема в каждой точке, и $f'(x)=-\frac{F'_y}{F'_y}=\frac{1+\cos x}{2+\cos y}$. Функция f не может быть выражена через элементарные функции (в отличие от примера 18.1, где

верхняя и нижняя полуокружности задаются в отдельности уравнениями $y=\sqrt{1-x^2}$ и $y=-\sqrt{1-x^2}, x\in[-1;1]$).

Теорема 18.2. Пусть функция n+1 переменной $F(x_1, \ldots, x_n, y)$ непрерывно дифференцируема в некоторой окрестности точки $(x_1^0, \ldots, x_n^0, y^0)$, причём $F(x_1^0, \ldots, x_n^0, y^0) = 0$, а $F_g'(x_1^0, \ldots, x_n^0, y^0) \neq 0$. Тогда существует параэлеленинед в \mathbb{R}^{n+1}

$$\Pi = \{(x_1, \dots, x_n, y) : x_i^0 - a_i < x_i < x_i^0 + a_i, i = 1, \dots, n; y^0 - b < y < y^0 + b\}.$$

в котором уравнение $F(x_1, \ldots, x_n, y) = 0$ равносильно некоторому уравнению вида $y = f(x_1, \ldots, x_n)$. Функция f непре-

 \Box Доказательство существования параллеленинеда, в котором $F(x_1,\ \dots,\ x_n,\ y)=0\Longleftrightarrow y=f(x_1,\ \dots,\ x_n),$ повторяет соответствующую часть доказательства теоремы 18.1, если считать x_0 и x точками $\mathbb{R}^n.$ При применении леммы о сохранении знака нужно заметить, что для сферической окрестности точки \mathbb{R}^{n+1} или \mathbb{R}^n существует замкнутый параллеленинед соответствующей размерности с центром в данной точке, целиком лежащий в данной окрестности. Таковым является, например, куб с ребром, меньшим, чем 2 $\frac{R}{\sqrt{n+1}}$ (или 2 $\frac{R}{\sqrt{n}}$), где R — радиус окрестности (в двумерном случае это очевидно из рис. 18.1).

Доказательство непрерывной дифференцируемости функции $y=f(x_1,\ldots,x_n)$ в Π' несколько усложивется. Аналогично доказательству теоремы 18.1, для всех $(x_1,x_2,\ldots,x_n,y)\in\overline{\Pi}$

$$F'_y \geqslant \alpha > 0; \quad |F'_{x_i}| \leqslant \beta_i, \quad i = 1, \ldots, n.$$

Пусть $(x_1, \dots, x_n, y) \in \Pi$, причём $F(x_1, \dots, x_n, y) = 0$; значит, $y = f(x_1, \dots, x_n)$. Если $\Delta x_1, \dots, \Delta x_n$ — приращения аргументов x_1, \dots, x_n такие, что $(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) \in \Pi'$, а Δy — соответствующее им приращение функции $f(x_1, \dots, x_n)$, то $F(x_1 + \Delta x_1, \dots, x_n + \Delta x_n, y + \Delta y) = 0$. По теореме Лагранжа для функций нескольких переменных имеем

$$\begin{array}{l} 0=F(x_1+\Delta x_1,\ \dots,\ x_n+\Delta x_n,y+\Delta y)-F(x_1,\ \dots,\ x_n,y)=\\ =F'_{x_1}(x_1+\xi\Delta x_1,\ \dots,\ x_n+\xi\Delta x_n,y+\xi\Delta y)\cdot\Delta x_1+\\ +\dots+F'_{x_n}(x_1+\xi\Delta x_1,\ \dots,\ x_n+\xi\Delta x_n,y+\xi\Delta y)\cdot\Delta x_n+\\ +F'_y(x_1+\xi\Delta x_1,\ \dots,\ x_n+\xi\Delta x_n,y+\xi\Delta y)\cdot\Delta y,\quad 0<\xi<1. \end{array}$$
 Пусть $\rho=\sqrt{(\Delta x_1)^2+\dots+(\Delta x_n)^2}.$ Тогда $|\Delta x_i|\leqslant \rho,\ i=1,\ \dots,$ $n,\ \mathbf{n}\ |\Delta y|\leqslant \frac{\beta_1+\dots+\beta_n}{\alpha}\ \rho=M\rho.$ Аналогично доказательству теоремы 18.1 функция f равномерно непрерывна на параллеленипеде Π' . Далее, для приращений аргументов таких, что

$$\frac{\Delta y}{\Delta x_1} = -\frac{F'_{x_1}(x_1 + \xi \Delta x_1, x_2, \dots, x_n, y + \xi \Delta y)}{F'_{y}(x_1 + \xi \Delta x_1, x_2, \dots, x_n, y + \xi \Delta y)},$$

и, как в доказательстве теоремы 18.1, существует

 $\Delta x_2 = \ldots = \Delta x_n = 0$, имеем

$$\frac{\partial f}{\partial x_1} = -\frac{F'_{x_1}(x_1, \, \ldots, \, x_n, f(x_1, \, \ldots, \, x_n))}{F'_{y}(x_1, \, \ldots, \, x_n, f(x_1, \, \ldots, \, x_n))}$$

непрерывная на П'. Такое же рассуждение проводится для частных производных по другим переменным.

Теорема 18.3 (о системе неявных функций). Пусть функции n+m переменных $F_j(x_1,\ldots,x_n,y_1,\ldots,y_m),\ j=1,\ldots,\ m,$ непрерывно дифференцируемы в некоторой окрестности точки $(x_1^0,\ldots,x_n^0,y_1^0,\ldots,y_m^0),$ причём $F_j(x_1^0,\ldots,x_n^0,y_1^0,\ldots,y_m^0)=0,\ j=1,\ldots,m,$ а

$$\frac{D(F_1, \ldots, F_m)}{D(y_1, \ldots, y_m)}\Big|_{(x_1^0, \ldots, x_n^0, y_1^0, \ldots, y_m^0)} \neq 0.$$

Тогда существует параллеленинед в \mathbb{R}^{n+m}

$$\Pi = \{(x_1, \dots, x_n, y_1, \dots, y_m) : x_i^0 - a_i < x_i < x_i^0 + a_i, i = 1, \dots, n; \quad y_j^0 - b_j < y_j < y_j^0 + b_j, \ j = 1, \dots, m\},\$$

в котором система уравнений

$$F_j(x_1, \ldots, x_n, y_1, \ldots, y_m) = 0, \quad j = 1, \ldots, m,$$
 (18.3) равносильна системе вида

$$y_j = f_j(x_1, \ldots, x_n), \quad j = 1, \ldots, m,$$
 (18.4)

причём функции $f_j, j = 1, \ldots, m$, непрерывно дифференцируемы в параллеленинеде

$$\Pi' = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i^0 - a_i < x_i < x_i^0 + a_i, i = 1, \ldots, n\}.$$

2. Необходимые условия локального экстремума, достаточные условия локального экстремума.

Теорема 18.5 (необходимое условие точки локального экстремума). Если функция f дифференцируема в точке локального экстремума x^0 , то x^0 — стационарная точка f.

 \square Зафиксируем $i=1,\ \dots,n.$ Если $x^0=(x_1^0,\ \dots,x_n^0)$ — точка локального экстремума функции $f(x_1,\ \dots,x_n)$, то x_i^0 — точка локального экстремума того же характера для функции одной переменной $\varphi(x_i)=f(x_1^0,\ \dots,x_{i-1}^0,x_i,x_{i+1}^0,\ \dots,x_n^0),$ где все переменные, кроме x_i , зафиксированы. Тогда $\varphi'(x_i^0)=0,$ т.е. $\frac{\partial f}{\partial x_i}(x_1^0,\ \dots,x_i^0,\ \dots,x_n^0)=0.$ Это верно для всех $i=1,\ \dots,n,$ поэтому x^0 — стационарная точка.

Напомним, что квадратичной формой от вектора $x = (x_1, \ \dots, \ x_n)^T$ называется числовая функция

$$K(x) = K(x_1, \dots, x_n) = \sum_{i=1}^{n} b_{ii} x_i^2 + 2 \sum_{\substack{i,j=1 \ i < j}}^{n} b_{ij} x_i x_j,$$

где $(b_{ij})_{i,j=1}^n$ — симметричная квадратная матрица $(b_{ij}=b_{ji},i,j=1,\ldots,n,\ b_{ij}\in\mathbb{R})$. Если $\alpha\in\mathbb{R},$ то $K(\alpha x)=\alpha^2K(x)$. Квадратичная форма называется:

- 1) положительно определённой, если $\forall x \neq 0 \longrightarrow K(x) > 0$;
- 2) отрицательно определённой, если $\forall\,x\neq0\longrightarrow K(x)<0;$
- 3) неопределённой, если $\exists \, x', x'' \colon K(x') > 0, \, K(x'') < 0;$
- 4) положительно полуопределённой, если $\forall x \longrightarrow K(x) \geqslant 0$, но $\exists \, x \neq 0 \colon K(x) = 0$;
- 5) отрицательно полуопределённой, если $\forall x \longrightarrow K(x) \leqslant 0$, но $\exists x \neq 0 \colon K(x) = 0$.

Теорема 18.6 (достаточные условия точки локального экстремума). Пусть функция f дважды непрерывно дифференцируема в некоторой окрестности стационарной точки x^0 . Тогда:

- если d²f(x⁰) положительно определённая квадратичная форма, то x⁰ — точка строгого локального минимума;
- если d²f(x⁰) отрицательно определённая квадратичная форма, то x⁰ — точка строгого локального максимума;
- 3) если $d^2f(x^0)$ неопределённая квадратичная форма, то x^0 не является точкой локального экстремума.

Лемма 18.4. Если квадратичная форма K(x) положительно определена, то $\exists C>0\colon \forall x\longrightarrow K(x)\geqslant C|x|^2,$ где $|x|=\sqrt{x_1^2+\ldots+x_n^2}.$ Если квадратичная форма K(x) отрицательно определена, то $\exists C>0\colon \forall x\longrightarrow K(x)\leqslant -C|x|^2.$

 \square Доказательство достаточно провести для положительно определённой квадратичной формы, затем заменить K(x) на -K(x). Отметим, что квадратичную форму можно рассматривать на \mathbb{R}^n как на точечном пространстве (не обязательно на векторном). Значение K(x) в точке x — это значение её на векторе с соответствующими координатами.

Рассмотрим положительно определённую квадратичную форму K на единичной сфере $S=\{x\in\mathbb{R}^n\colon |x|=1\}$. Это множество является компактом (замкнуто и ограничено), поэтому K достигает на S своей точной нижней грани C. Так как K(x)>0 на S, то C>0. Итак, $\forall\,x\in S\longrightarrow K(x)\geqslant C>0$. Пусть теперь $x\neq 0$ — любая точка из \mathbb{R}^n . Тогда $z=\frac{x}{|x|}\in S$, поэтому $K(z)\geqslant C$. Но x=|x|z, значит, $K(x)=|x|^2K(z)\geqslant C|x|^2$. При x=0 последнее неравенство очевидно.

 $\Box \ \ \, 1)$ Применим формулу Тейлора для функций n переменных с остаточным членом в форме Пеано (теорема 10.10). Так как $f\in C^2(U_\delta(x^0)),$ то

$$f(x) = f(x^{0}) + df(x^{0}) + \frac{1}{2} d^{2} f(x^{0}) + o(\rho^{2}),$$

$$(dx_{1}, \dots, dx_{n}) \to (0, \dots, 0),$$

$$\rho = \sqrt{dx_{1}^{2} + \dots + dx_{n}^{2}}, \quad dx_{i} = \Delta x_{i} = x_{i} - x_{i}^{0}, \quad i = 1, \dots, n,$$

$$\overrightarrow{dx} = (dx_{1}, \dots, dx_{n})^{T}, \quad \rho^{2} = |\overrightarrow{dx}|^{2},$$

$$o(\rho^{2}) = \varepsilon(dx_{1}, \dots, dx_{n})|\overrightarrow{dx}|^{2},$$

где $\lim_{\substack{dx_1=0\\dx_n=0}} \varepsilon(dx_1,\ \dots,\,dx_n)=0.$ В стационарной точке $d\!f(x^0)=0,$

поэтому

$$\Delta f(x^0) = f(x) - f(x^0) = \frac{1}{2} d^2 f(x^0) + \varepsilon (dx_1, \dots, dx_n) |\overrightarrow{dx}|^2.$$

Если $d^2f(x^0)$ — положительно определённая квадратичная форма от вектора \overrightarrow{dx} , то по лемме 18.4 $d^2f(x^0)\geqslant C|\overrightarrow{dx}|^2$. Тогда $\Delta f(x^0)\geqslant \left(\frac{C}{2}+\varepsilon(dx_1,\ldots,dx_n)\right)|\overrightarrow{dx}|^2$. Так как $\lim \varepsilon(dx_1,\ldots,dx_n)=0$ при $dx_1\to 0,\ldots,dx_n\to 0$, то

$$\exists \, \delta > 0 \, : \, \forall \overrightarrow{dx}, \quad 0 < |\overrightarrow{dx}| < \delta \longrightarrow \frac{C}{2} + \varepsilon(dx_1, \, \ldots, \, dx_n) > 0.$$

Значит, $\forall x \in \hat{U}_{\delta}(x^0)$ выполняется неравенство $\Delta f(x^0)>0$, т.е. $f(x)>f(x^0)$. Поэтому x^0 — точка строгого локального минимума.

- 2) Доказывается аналогично.
- 3) Пусть теперь $K(\overrightarrow{dx})=d^2f(x^0)$ неопределённая квадратичная форма. Тогда существует вектор $\vec{z}\neq \vec{0}$ такой, что $K(\vec{z})>0$. Рассмотрим всевозможные векторы вида $dx=\lambda\vec{z},$ $\lambda>0$ (приращения, сонаправленные с \vec{z}). Получим

$$d^2f(x^0) = K(\overrightarrow{dx}) = K(\lambda \overrightarrow{z}) = \lambda^2 K(\overrightarrow{z}) = \lambda^2 \beta |\overrightarrow{z}|^2,$$

где $\beta=\frac{K(\ddot{z})}{|\ddot{z}|^2}$ — фиксированное положительное число, так как \ddot{z} — фиксированный вектор. В соответствующей точке $x=x^0+\lambda\ddot{z}$ (вектор $\lambda\ddot{z}$ отложен из точки x^0):

$$\Delta f(x^0) = f(x) - f(x^0) = \frac{1}{2} d^2 f(x^0) + \varepsilon (dx_1, \dots, dx_n) \cdot |\overrightarrow{dx}|^2 =$$

$$= \frac{\lambda^2 \beta |\overrightarrow{z}|^2}{2} + \varepsilon (\lambda z_1, \dots, \lambda z_n) \cdot |\lambda \overrightarrow{z}|^2 = \lambda^2 |\overrightarrow{z}|^2 \left(\frac{\beta}{2} + \varepsilon (\lambda z_1, \dots, \lambda z_n)\right).$$

Так как $\lim \varepsilon(dx_1, \ldots, dx_n) = 0$ при $dx_1 \to 0, \ldots, dx_n \to 0$, то

$$\exists \delta > 0 : \forall \overrightarrow{dx}, \quad 0 < |\overrightarrow{dx}| < \delta \rightarrow \frac{\beta}{2} + \varepsilon(dx_1, \dots, dx_n) > 0.$$

Векторы вида $\overrightarrow{dx}=\lambda \vec{z}$ удовлетворяют условию $0<|\overrightarrow{dx}|<\delta$ при $0<\lambda<\frac{\delta}{|\vec{z}|}$; для них $\Delta f(x^0)>0$. Значит, найдутся сколь

угодно малые по модулю векторы \overline{dx} такие, что $f(x) > f(x^0)$. Аналогично, из существования вектора $\overline{z}^* \neq \overline{0}$ такого, что $K(\overline{z}^*) < 0$, следует, что существуют сколь угодно малые по модулю векторы \overline{dx} такие, что $f(x) < f(x^0)$. Точка x^0 не является точкой локального экстремума.

3. Условный экстремум. Метод Лагранжа нахождения точек условного экстремума: необходимые условия, достаточные условия.

Функцию n переменных $f(x) = f(x_1, \ldots, x_n)$ считаем определённой в некоторой окрестности точки $x^0 = (x_1^0, \ldots, x_n^0)$. При этом значения переменных x_1, \ldots, x_n не являются произвольными; считаем, что на них наложены дополнительные ограничения:

$$arphi_1(x_1, \, \ldots, \, x_n) = 0, \, \ldots, \, arphi_m(x_1, \, \ldots, \, x_n) = 0, \quad m < n \quad (18.13)$$
 — так называемые условия связи.

Определение 18.6. Точка x^0 , координаты которой удовлетворяют уравнениям (18.13), называется точкой условного (относительного) строгого максимума функции f при выполнении условий (18.13), если найдётся $\delta > 0$ такое, что для всех $x \in \mathring{U}_{\delta}(x^{0})$, удовлетворяющих этим условиям, выполняется неравенство $f(x) < f(x^0)$. Аналогично определяются точки условного строгого минимума, нестрогого максимума и минимума.

На практике такое явное разрешение условий связи с выражением одних переменных через другие далеко не всегда осуществимо. В общем случае рассматривается функция Лаг-

$$\begin{split} L(x) &= f(x) + \lambda_1 \varphi_1(x) + \ldots + \lambda_m \varphi_m(x), \quad \lambda_1, \ldots, \lambda_m \in \mathbb{R}, \\ \text{r.e. } L(x_1, \ldots, x_n) &= f(x_1, \ldots, x_n) + \lambda_1 \varphi_1(x_1, \ldots, x_n) + \ldots + \\ &+ \lambda_m \varphi_m(x_1, \ldots, x_n). \end{split}$$

Так как при всех $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ при выполнении условий связи L(x) = f(x), то условные экстремумы функции Лагранжа совпадают с условными экстремумами f при любых λ_i , $i=1,\ \dots,\ m.$ Оказывается, что можно подобрать числа $\lambda_1,$ \ldots, λ_m так, что условные экстремумы f совпадут с обычными локальными экстремумами L.

Теорема 18.7 (необходимое условие относительного экстремума). Пусть функции f и φ_i , i = 1, ..., m (m < 1< п), непрерывно дифференцируемы в некоторой окрестности точки $x^0 \in \mathbb{R}^n$, причём в точке x^0 ранг матрицы Якоби

$$\begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial \varphi_1}{\partial x_n} \\ \vdots & \ddots & \ddots \\ \frac{\partial \varphi_m}{\partial x_1} & \cdots & \frac{\partial \varphi_m}{\partial x_n} \end{pmatrix}$$

равен m. Пусть далее x^0 — точка относительного экстремума функции f при выполнении условий связи $\varphi_1(x) = 0, \ldots,$ $arphi_m(x)=0.$ Тогда найдутся числа $\lambda_1,\ \dots,\ \lambda_m\in\mathbb{R}$ такие, что точка x⁰ является стационарной точкой функции Лагранжа $L(x) = f(x) + \lambda_1 \varphi_1(x) + \ldots + \lambda_m \varphi_m(x).$

Так как определитель этой линейной системы относительно λ_1 , \ldots, λ_m равен $\left. \frac{D(\varphi_1, \ldots, \varphi_m)}{D(x_1, \ldots, x_m)} \right|_{x=x^0} \neq 0$, то такие числа $\lambda_1, \ldots, \lambda_m$ λ_m существуют и определены единственным образом. Тогда при найденных $\lambda_1, \ldots, \lambda_m$ в силу (18.16) и (18.17)

при наиденных
$$\lambda_1, \dots, \lambda_m$$
 в силу (18.10) и (18.17)
$$dL_0(\tilde{x}_0) = \frac{\partial L}{\partial x_1}(x^0) dx_1 + \dots + \\ + \frac{\partial L}{\partial x_m}(x^0) dx_m + \frac{\partial L}{\partial x_{m+1}}(x^0) dx_{m+1} + \dots + \\ + \frac{\partial L}{\partial x_n}(x^0) dx_n = \frac{\partial L}{\partial x_{m+1}}(x^0) dx_{m+1} + \dots + \frac{\partial L}{\partial x_n}(x^0) dx_n.$$

Ho $dL_0(\tilde{x}^0) = 0$ при любых $\lambda_1, \ldots, \lambda_m$, а dx_{m+1}, \ldots, dx_n независимы и принимают любые значения. Поэтому

$$\frac{\partial L}{\partial x_{m+1}}(x^0) = \dots = \frac{\partial L}{\partial x_n}(x^0) = 0.$$

Учитывая (18.17), мы видим, что при найденных $\lambda_1, \ldots, \lambda_m$ точка x^0 является стационарной точкой функции Лагранжа. \blacksquare \square В матрице Якоби m строк, n столбцов (m < n). Так как ранг её равен m, то найдётся минор порядка m, отличный от нуля. Не уменьшая общности, этот минор лежит на пересечении первых т столбцов с т строками матрицы, т.е.

$$\begin{vmatrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial \varphi_1}{\partial x_m} \\ \vdots & \ddots & \cdots & \vdots \\ \frac{\partial \varphi_m}{\partial x_1} & \cdots & \frac{\partial \varphi_m}{\partial x_m} \end{vmatrix} = \frac{D(\varphi_1, \dots, \varphi_m)}{D(x_1, \dots, x_m)} \neq 0$$

в точке x^0 (если это не так, то можно перенумеровать переменные x_1, \ldots, x_n). Так как $\varphi_1(x^0) = 0, \ldots, \varphi_m(x^0) = 0$, то по теореме 18.3 существует параллеленинед в \mathbb{R}^n с центром в точке x^0 , в котором система уравнений связи (18.13) равносильна системе вида

 $x_1 = g_1(x_{m+1}, \ldots, x_n), \ldots, x_m = g_m(x_{m+1}, \ldots, x_n), \quad (18.14)$ причём функции $g_i(x_{m+1}, \ldots, x_n), i = 1, \ldots, m$, непрерывно дифференцируемы в соответствующем парадлелепипеде в \mathbb{R}^{n-m} с центром в точке $\tilde{x}^0=(x_{m+1}^0,\,\ldots,\,x_n^0)$. При этом

Переменные x_{m+1}, \ldots, x_n будем называть независимыми, x_1 , \ldots , x_m — зависимыми; соответственно dx_{m+1} , \ldots , dx_n независимые дифференциалы, dx_1, \ldots, dx_m — зависимые.

Точку \mathbb{R}^{n-m} , соответствующую независимым переменным, будем обозначать волной: $\tilde{x} = (x_{m+1}, \ldots, x_n)$. При выполне-

будем обозначать волной:
$$\dot{x}=(x_{m+1},\ \dots,\ x_n)$$
. При выполнении условий связи (18.13) (или (18.14), что всё равно)
$$f(x)\Big|_{\operatorname{cs}}=f(g_1(x_{m+1},\ \dots,\ x_n),\ \dots, \\ g_m(x_{m+1},\ \dots,\ x_n),x_{m+1},\ \dots,\ x_n)\equiv\\ \equiv f_0(x_{m+1},\ \dots,\ x_n)=f_0(\check{x});$$

$$L(x)\Big|_{\operatorname{cs}}=L(g_1(x_{m+1},\ \dots,\ x_n),\ \dots, \\ g_m(x_{m+1},\ \dots,\ x_n),x_{m+1},\ \dots,\ x_n)\equiv\\ \equiv L_0(x_{m+1},\ \dots,\ x_n)=L_0(\check{x})=f_0(\check{x}),$$

так как $\varphi_i(x)|_{CB} = 0, i = 1, ..., m.$ Функция f_0 дифференцируема в точке \tilde{x}^0 по теореме о дифференцируемости сложной функции.

 Но $x^0 = (x_1^0, ..., x_n^0)$ — точка условного экстремума функции f при выполнении условий связи, поэтому \tilde{x}^0 $=(x_{m+1}^{0},...,x_{n}^{0})$ — точка локального экстремума того же характера функции f_0 , следовательно, $df_0(\tilde{x}^0) = 0$. А так как $L_0(\tilde{x}) = f_0(\tilde{x})$, то $dL_0(\tilde{x}^0) = 0$ при любых $\lambda_1, ..., \lambda_m \in \mathbb{R}$.

В силу инвариантности первого дифференциала относительно замены переменных

тельно замены переменных
$$dL = \frac{\partial L}{\partial x_1} \ dx_1 + \ldots + \frac{\partial L}{\partial x_m} \ dx_m + \frac{\partial L}{\partial x_{m+1}} \ dx_{m+1} + \ldots + \frac{\partial L}{\partial x_n} \ dx_n, \eqno(18.16)$$

рассматриваем ли мы L как функцию от n независимых переменных x_1, \ldots, x_n или как $L_0(x_{m+1}, \ldots, x_n)$, считая выполненными условия связи, т.е.

$$dL_0(\bar{x}) = dL(x)\Big|_{(18.15)}$$
.

При этом $dL_0(\tilde{x})$ означает дифференциал функции n-m независимых переменных, полученной при подстановке в L(x)условий (18.14), а $dL(x)|_{(18.15)}$ — дифференциал функции nпеременных (18.16), в который вместо dx_1, \ldots, dx_m подставлены их выражения через dx_{m+1}, \ldots, dx_n по форму-

Подберём теперь коэффициенты $\lambda_1, \ldots, \lambda_m$ в функции Лагранжа так, чтобы

$$\frac{\partial L}{\partial x_1}(x^0) = \ldots = \frac{\partial L}{\partial x_m}(x^0) = 0. \tag{18.17}$$

$$\frac{\partial f}{\partial x_1}(x^0) + \lambda_1 \frac{\partial \varphi_1}{\partial x_1}(x^0) + \ldots + \lambda_m \frac{\partial \varphi_m}{\partial x_1}(x^0) = 0;$$

$$\vdots$$

$$\frac{\partial f}{\partial x_m}(x^0) + \lambda_1 \frac{\partial \varphi_1}{\partial x_m}(x^0) + \ldots + \lambda_m \frac{\partial \varphi_m}{\partial x_m}(x^0) = 0.$$

Теорема 18.8 (достаточные условия относительного экстремума). Пусть функции f и φ_i , $i=1,\ldots,m$ (m< n), дважды непрерывно дифференцируемы в некоторой окрестности точки $x^0 \in \mathbb{R}^n$, причём координаты её и числа $\lambda_1,\ldots,\lambda_m$ удовлетворяют системе (18.18), а в точке x^0 ранг матрицы

якоби
$$\begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial \varphi_1}{\partial x_n} \\ \vdots & \ddots & \ddots \\ \frac{\partial \varphi_m}{\partial x_1} & \cdots & \frac{\partial \varphi_m}{\partial x_n} \end{pmatrix}$$
 равен m . Пусть $L_0(\tilde{x})$ — функция $n-m$ независимых переменных, полученная после подста-

ция n-m независимых переменных, полученная после подстановки в функцию Лагранжа L(x) условий связи (18.13), разрешённых относительно остальных m зависимых переменных, а $d^2L_0(\bar{x}^0)$ — второй дифференциал функции $L_0(\bar{x})$ в соответствующей точке \bar{x}^0 , рассматриваемый как квадратичная форма от n-m независимых дифференциалов (см. обозначения и рассуждения в доказательстве теоремы 18.7). Тогда

- 1) если $d^2L_0(\tilde{x}^0)$ положительно определённая квадратичная форма, то x^0 точка строгого условного минимума f при выполнении условий (18.13);
- 3) если $d^2L_0(\tilde{x}^0)$ неопределённая квадратичная форма, то x^0 не является точкой условного экстремума f при выполнении условий (18.13).

 \square Как и в доказательстве теоремы 18.7, можно считать, что существует параллелепипед в \mathbb{R}^n

$$\Pi = \{ (x_1, \dots, x_n) : x_i^0 - a_i < x_i < x_i^0 + a_i, \quad i = 1, \dots, n \},\$$

в котором система уравнений связи (18.13) равносильна системе вида (18.14), причём функции g_i , i = 1, ..., m, непрерывно дифференцируемы в параллелепипеде в \mathbb{R}^{n-m} :

$$\Pi' = \{(x_{m+1}, \dots, x_n) : x_i^0 - a_i < x_i < x_i^0 + a_i, i = m+1, \dots, n\}.$$

Дифференцируя тождества

$$\varphi_i(g_1(x_{m+1},\ldots,x_n),\ldots,$$

$$g_m(x_{m+1}, \ldots, x_n), x_{m+1}, \ldots, x_n) = 0, \quad i = 1, \ldots, m,$$

по x_i , $m+1 \leqslant j \leqslant n$, имеем

$$\frac{\partial \varphi_i}{\partial x_1} \cdot \frac{\partial g_1}{\partial x_j} + \ldots + \frac{\partial \varphi_i}{\partial x_m} \cdot \frac{\partial g_m}{\partial x_j} + \frac{\partial \varphi_i}{\partial x_j} = 0, \quad i = 1, \ldots, m. \quad (18.19)$$

При фиксированном j получается система m уравнений с m неизвестными $\frac{\partial g_i}{\partial x_j},~i=1,~\dots,~m$. Её определитель равен $\frac{D(\varphi_1,\,\dots,\,\varphi_m)}{D(x_1,\,\dots,\,x_m)},$ причём производные $\frac{\partial \varphi_i}{\partial x_j}$ рассматриваются как сложные функции

$$F_{ij}(x_{m+1}, \dots, x_n) = \frac{\partial \varphi_i}{\partial x_j} (g_1(x_{m+1}, \dots, x_n), \dots, g_m(x_{m+1}, \dots, x_n), x_{m+1}, \dots, x_n).$$

По следствию из теоремы 9.5 эти сложные функции непрерывны в Π' .

Дифференцируя функции F_{ij} по x_k , $m+1 \leqslant k \leqslant n$, получим

$$\frac{\partial F_{ij}}{\partial x_k} = \frac{\partial^2 \varphi_i}{\partial x_j \partial x_1} \cdot \frac{\partial g_1}{\partial x_k} + \ldots + \frac{\partial^2 \varphi_i}{\partial x_j \partial x_m} \cdot \frac{\partial g_m}{\partial x_k} + \frac{\partial^2 \varphi_i}{\partial x_j \partial x_k} \,,$$

где производные $\frac{\partial^2 \varphi_i}{\partial x_j \partial x_k}$ рассматриваются как сложные функции

$$\frac{\partial^2 \varphi_i}{\partial x_i \partial x_k} (g_1(x_{m+1}, \dots, x_n), \dots, g_m(x_{m+1}, \dots, x_n), x_{m+1}, \dots, x_n);$$

аналогично они непрерывны в П'. Таким образом, функции F_{ij} непрерывно дифференцируемы в П'. Определитель системы (18.19), равный $\frac{D(\varphi_1,\ldots,\varphi_m)}{D(x_1,\ldots,x_m)}$, рассматриваемый как сложная функция от x_{m+1},\ldots,x_n , отличен от нуля в точке \bar{x}^0 , а в силу непрерывности и в некоторой окрестности этой точки, принадлежащей П'. Тогда решения системы (18.19) $\frac{\partial g_i}{\partial x_j},\ i=1,\ldots,m$, непрерывно дифференцируемы в некоторой окрестности \bar{x}^0 , а сами функции g_i дважды непрерывно дифференцируемы в этой окрестности.

Напомним, что второй дифференциал не обладает инвариантностью формы относительно замены переменных. Приведём выкладки в случае, когда внутренние функции $u_1(x_1,\ldots,x_k),\ldots,u_n(x_1,\ldots,x_k)$ дважды непрерывно дифференцируемы в окрестности точки (x_1^0,\ldots,x_k^0) , а внешняя функция $f(u_1,\ldots,u_n)$ дважды непрерывно дифференцируема в окрестности точки (u_1^0,\ldots,u_n^0) , где $u_j^0=u_j(x_1^0,\ldots,x_k^0),\ j=1,\ldots,n$. Тогда второй дифференциал сложной функции $F(x_1,\ldots,x_k)=f(u_1(x_1,\ldots,x_k),\ldots,u_n(x_1,\ldots,x_k))$ в точке $x^0=(x_1^0,\ldots,x_k^0)$ равен

$$d^2F = d(dF) = d\left(\sum_{i=1}^k \frac{\partial F}{\partial x_i} dx_i\right) = d\left(\sum_{j=1}^n \frac{\partial f}{\partial u_j} du_j\right).$$

Здесь мы воспользовались инвариантностью формы первого дифференциала относительно замены переменных; du_1, \ldots, du_n — дифференциалы функций от k переменных. Далее,

$$d^2F = \sum_{j=1}^n d\left(\frac{\partial f}{\partial u_j}\ du_j\right) = \sum_{j=1}^n du_j\, d\left(\frac{\partial f}{\partial u_j}\right) + \sum_{j=1}^n \frac{\partial f}{\partial u_j}\ d(du_j).$$

Снова воспользовавшись инвариантностью формы первого дифференциала, получим

$$\begin{split} d^2F &= \sum_{j=1}^n du_j \sum_{k=1}^n \frac{\partial^2 f}{\partial u_k \partial u_j} \ du_k + \sum_{j=1}^n \frac{\partial f}{\partial u_j} \ d^2u_j = \\ &= \sum_{j,k=1}^n \frac{\partial^2 f}{\partial u_k \partial u_j} \ du_k \, du_j + \sum_{j=1}^n \frac{\partial f}{\partial u_j} \ d^2u_j. \end{split}$$

Частный случай этой формулы при n=2 был получен в $\S 4$ главы X (см. (10.14)).

Так как в условии теоремы 18.8 функции $f, \varphi_1, \ldots, \varphi_m$ дважды непрерывно дифференцируемы в окрестности точки x^0 , то таковой же является и функция Лагранжа $L=f+\lambda_1\varphi_1+\ldots+\lambda_m\varphi_m$. Далее, x_{m+1},\ldots,x_n — независимые переменные, а x_1,\ldots,x_m — дважды непрерывно дифференцируемые функции от x_{m+1},\ldots,x_n в окрестности точки \bar{x}^0 . Поэтому сложная функция

$$L_0(\tilde{x}) = L(g_1(x_{m+1}, \dots, x_n), \dots, g_m(x_{m+1}, \dots, x_n), x_{m+1}, \dots, x_n)$$

(см. обозначения в доказательстве теоремы 18.7) дважды непрерывно дифференцируема в окрестности точки \bar{x}^0 , и

$$d^2L_0(\bar{x}) = \sum_{j,k=1}^n \frac{\partial^2 L}{\partial x_k \partial x_j} \ dx_k \ dx_j + \sum_{j=1}^n \frac{\partial L}{\partial x_j} \ d^2x_j.$$

При этом dx_{m+1}, \ldots, dx_n — независимые дифференциалы, а dx_1, \ldots, dx_m выражаются через них по формулам (18.15); полученное выражение — функция от dx_{m+1}, \ldots, dx_n . Частные производные $\frac{\partial^2 L}{\partial x_k \partial x_j}$ и $\frac{\partial L}{\partial x_j}$ рассматриваются как сложные функция от x_{m+1} .

функции от x_{m+1},\dots,x_n . Так как x^0 — стационарная точка функции Лагранжа при найденных $\lambda_1,\dots,\lambda_m$, то $\frac{\partial L}{\partial x_j}(x^0)=0,\ j=1,\dots,n;$ равны нулю и соответствующие сложные функции от x_{m+1},\dots,x_n в точке \tilde{x}^0 . Поэтому

$$d^2L_0(\tilde{x}^0) = \sum_{j,k=1}^n \frac{\partial^2 L}{\partial x_k \partial x_j} dx_k dx_j$$

(«квазинивариантность формы второго дифференциала в стационарной точке относительно замены переменных»); частные производные второго порядка берутся от сложных функций от x_{m+1}, \ldots, x_n в точке \bar{x}^0 .

Но $L_0(\tilde{x}) = f_0(\tilde{x})$ (см. обозначения в доказательстве теоремы 18.7), поэтому

$$d^2 f_0(\tilde{x}^0) = \sum_{j,k=1}^n \frac{\partial^2 L}{\partial x_k \partial x_j} \, dx_k \, dx_j$$

— квадратичная форма от n-m независимых дифференциалов dx_{m+1}, \ldots, dx_n (dx_1, \ldots, dx_m выражаются через них по формулам (18.15)). Так как $df_0(\tilde{x}^0) = dL_0(\tilde{x}^0) = 0$, то \tilde{x}^0 — стационарная точка функции $f_0(\tilde{x})$, и характер локального экстремума функции f_0 (или его отсутствие) определяется знакоопределённостью (или неопределённостью) квадратичной формы $d^2f_0(\tilde{x}^0) = d^2L_0(\tilde{x}^0)$. А этот локальный экстремум (или его отсутствие) соответствует относительному экстремуму того же характера (или его отсутствию) функции f при выполнении условий связи (18.13).

4. Критерий Дарбу интегрируемости нескольких переменных.

Лемма 19.4. Если F_1 и F_2 — непустые компакты в \mathbb{R}^n , причём $F_1 \cap F_2 = \emptyset$, то $\rho(F_1, F_2) > 0$.

Лемма 19.5. Пусть $G,\ F_1,\ \dots,\ F_N$ — множества в \mathbb{R}^n такие, что $\rho(F_i,F_j)=\rho_{ij},\ \rho=\min_{i\neq j}\rho_{ij}>0,\ \mathrm{diam}\, G<\rho.$ Тогда если $G \subset \bigcup_{j=1}^{N} F_j$, то найдётся j такое, что $G \subset F_j$.

Лемма 19.6. Если G — ограниченное множество в \mathbb{R}^n , то $\forall \varepsilon > 0$ существует открытое клеточное множество $S \supset G$ такое, что $mS < \mu^*G + \varepsilon$.

Лемма 19.7. Пусть G и F — измеримые множества в \mathbb{R}^n , $\mu F < \varepsilon$. Тогда существует $\delta > 0$ такое, что для любого разбиения R множества G на множества G_i такого, что $|R| < \delta$, выполняется неравенство $\sum_{G_i \cap F \neq \varnothing} \mu G_i < 2 \cdot 3^n \varepsilon$.

□ По лемме 19.6 существует открытое клеточное множество $S\supset F$ такое, что $mS<\mu F+\varepsilon<2\varepsilon$. Множество S состоит из клеток ранга k, т.е. n-мерных кубиков Q_j с ребром $\delta = \frac{1}{2^k}$, и точек общих границ этих клеток. Так как $\delta = \delta(\varepsilon)$, то k = $=k(\varepsilon).$ Пусть R — разбиение G такое, что $|R|<\delta.$ При этом $G=\bigcup_{i=1}^N G_i;$

 $\mu(G_i \cap G_j) = 0, \quad i \neq j; \quad \text{diam } G_i < \delta, \quad i = 1, \dots, N.$ Для фиксированной клетки $Q_j \subset S$ имеем

$$\sum_{G_i \cap \overline{Q}_j \neq \varnothing} \mu G_i < (3\delta)^n = 3^n m Q_j$$

(см. рис. 19.4; в двумерном случае все G_i , имеющие общие точки с Q_j , принадлежат множеству, состоящему из пяти квадратов, равных \overline{Q}_i , и четырёх секторов радиуса δ с центральным углом 90°). Так как $F \subset S \subset \bigcup_{j=1}^{N} \overline{Q}_{j}$, то

$$\sum_{G_i \cap F \neq \varnothing} \mu G_i \leqslant \sum_{G_i \cap S \neq \varnothing} \mu G_i \leqslant \sum_{j=1}^N \sum_{G_i \cap \overline{Q}_j \neq \varnothing} \mu G_i$$

(здесь учтено, что одно и то же множество G_i может пересекаться с разными клетками \overline{Q}_i); последняя сумма меныпе, чем

$$\sum_{j=1}^{N} 3^n \cdot mQ_j = 3^n \cdot mS < 3^n \cdot 2\varepsilon.$$

Теорема 19.1 (критерий интегрируемости Дарбу). Для ограниченной функции f на измеримом множестве G равносильны следующие три условия.

- 1° Функция f интегрируема по Риману на G.
- 2°. Для любого $\varepsilon > 0$ найдётся разбиение R множества G такое,
- Для любого $\varepsilon>0$ найдётся $\delta>0$ такое, что для любого разбиения R множества G, мелкость которого меньше δ , выполняется неравенство $\omega_R < \varepsilon$.

очевидно.

 $2^{\circ} \Rightarrow 1^{\circ}$. Пусть для любого $\varepsilon > 0$ найдётся разбиение Rтакое, что $\omega_R=S_R^*-S_{*R}<arepsilon$. Так как $S_R^*\geqslant I^*\geqslant I_*\geqslant S_{*R}$, то $0\leqslant I^*-I_*\leqslant S_R^*-S_{*R}<arepsilon$. Но arepsilon>0 — произвольно, поэтому $I^* - I_* = 0$ и функция интегрируема по Риману на [a;b].

 $1^{\circ}\Rightarrow 2^{\circ}$. Так как $I^{*}=I_{*}=I=\sup S_{*R}$, то $\forall\, \varepsilon>0 \to \exists\, R_{1}$: $S_{*R_1}>I-rac{arepsilon}{2}.$ Также $I=\inf_R S_R^*$, поэтому $\forall \, arepsilon >0 \, o \, \exists \, R_2$: $S_{R_2}^* < I + \frac{\varepsilon}{2}$. Рассмотрим разбиение $R = \max(R_1,R_2)$. Из деммы 12.1 следует, что

$$S_{*R} \geqslant S_{*R_1} > I - \frac{\varepsilon}{2}; \quad S_R^* \leqslant S_{R_2}^* < I + \frac{\varepsilon}{2}.$$

Значит, $\omega_R = S_R^* - S_{*R} < \varepsilon$. Приступим теперь непосредственно к доказательству утверждения 2° 3° в теореме 19.1.

Пусть $\varepsilon > 0$ фиксировано и существует разбиение R_0 множества G:

$$G=\bigcup_{j=1}^{N_0}G_j^0;\quad \mu(G_i^0\cap G_j^0)=0,\quad i\neq j,$$

такое, что $\omega_{R_0}=\sum\limits_{j=1}^{N_0}\omega_j^0\mu G_j^0<\frac{\varepsilon}{2}$. Докажем, что существует $\delta>$ > 0 такое, что для любого разбиения R множества G, удовлетворяющего условию $|R| < \delta$, выполняется неравенство $\omega_R < \varepsilon$.

Так как множества G_j^0 измеримы, то $\mu(\partial G_j^0)=0,\; j=1,$..., N_0 . Если $\Gamma = \bigcup_{j=1}^{N_0} \partial G_j^0$, то, в силу конечной аддитивности меры Жордана, $\mu \Gamma = 0$. По лемме 19.6 существует открытое клеточное множество $S\supset \Gamma$ такое, что $mS<\frac{\varepsilon}{8M\cdot 3^n},$ где M= $=\sup |f(x)|$ (если M=0, то $f(x)\equiv 0,$ и доказывать нечего; поэтому естественно считать, что M>0).

Так как $\Gamma \subset S$, то при всех j имеет место включение $\partial G_i^0 \subset$ $\subset S.$ Рассмотрим множества $F_j = G_j^0 \setminus S = \overline{G}_j^0 \setminus S$ (последнее равенство выполняется потому, что $\partial G_j^0\subset S$). Так как \overline{G}_j^0 — замкнутое, а S — открытое множества, то множества $F_j, j=1,$ \dots , N_0 , — замкнуты. Не уменьшая общности, можно считать, что $G_i^0 \cap G_i^0 = \varnothing, \, i \neq j.$ Если это не так, то рассмотрим разбиение R_0' , составленное из всевозможных непустых разностей и пересечений множеств G_i^0 , которые попарно не пересекаются; при $N_0=3$, например, это множества $G_1^0\setminus (G_2^0\cup G_3^0), \ G_2^0\setminus (G_1^0\cup G_3^0), \ G_3^0\setminus (G_1^0\cup G_2^0), \ (G_1^0\cap G_2^0)\setminus G_3^0, \ (G_2^0\cap G_3^0)\setminus G_1^0, \ (G_1^0\cap G_3^0)\setminus G_2^0, \ G_1^0\cap G_2^0\cap G_3^0$ (см. рис. 19.6). Так как $R_0'>R_0$, то $\omega_{R_0'}\leqslant \omega_{R_0}<\frac{\tilde{\xi}}{2}$, и разбиение R_0 можно заменить на R'_0 . Так как $G^0_i \cap G^0_j = \varnothing$, то и $(G_i^0\setminus S)\cap (G_j^0\setminus S)=arnothing,$ т.е. $F_i\cap F_j=arnothing,$ i
eq j. Легко видеть, что $G \setminus S = \bigcup_{j=1}^{N_0} (G_j^0 \setminus S) = \bigcup_{j=1}^{N_0} F_j$ (здесь используется известное теоретико-множественное соотношение

$$(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$$
,

Некоторые из множеств F_j могут быть пустыми; считаем пока, что среди F_j есть непустые и оставим в сумме $G \setminus S =$ = $\bigcup_{j=1}^{N_0} F_j$ только их. По лемме 19.4 $\rho_{ij}=\rho(F_i,F_j)>0$ при $i\neq j$. Тогда $\rho=\min_{i\neq j}\rho_{ij}>0$. По лемме 19.7, так как $\mu S<$ $<\frac{arepsilon}{8M\cdot 3^n},$ то найдётся $\delta_1>0$ такое, что для любого разбиения R множества G $(G = \bigcup_{i=1}^{N} G_i, \ \mu(G_i \cap G_j) = 0, \ i \neq j)$, удовлетворяющего условию $|R| < \delta_1$, выполняется неравенство $\sum_{G_i \cap S \neq \varnothing} \mu G_i < \frac{\varepsilon}{8M \cdot 3^n} \cdot 2 \cdot 3^n = \frac{\varepsilon}{4M} \,.$

$$\sum_{G \in \mathcal{G}_i \in \mathcal{G}} \mu G_i < \frac{\varepsilon}{8M \cdot 3^n} \cdot 2 \cdot 3^n = \frac{\varepsilon}{4M} \,.$$

Пусть $\delta = \min(\delta_1, \rho)$. Тогда рассмотрим любое разбиение R множества G такое, что $|R|<\delta,$ и фиксированное множество этого разбиения $G_i\subset (G\setminus S)=\bigcup_{j=1}^{N_0}F_j.$ Так как $G_i \leq |R| < \delta \leq \rho$, а $\rho_{ij} \geqslant \rho$ при $i \neq j$, то по лемме 19.5 найдётся j такое, что $G_i \subset F_j \subset G_j^0$.

Рассмотрим разбиение $R_1 = \max(R, R_0)$. Если множество G_i разбиения R таково, что $G_i\cap S=\varnothing$, то $G_i\subset (G\setminus S)$, и по только что доказанному $G_i\subset G_j^0$ при некотором j, значит, G_i является одним из множеств разбиения R_1 . Поэтому $\sum_{G_i\cap S=\varnothing}\omega_i\mu G_i\leqslant \omega_{R_1}\leqslant \omega_{R_0}<rac{arepsilon}{2}$. Тогда для любого разбиения G_i л $S=\varnothing$ R множества G такого, что $|R|<\delta$, выполняются неравенства $\omega_R=\sum_{G_i\cap S=\varnothing}\omega_i\mu G_i+\sum_{G_i\cap S\ne\varnothing}\omega_i\mu G_i<$

$$\begin{aligned} G_i \cap S = \varnothing & & G_i \cap S \neq \varnothing \\ & < \frac{\varepsilon}{2} + 2M \cdot \sum_{G_i \cap S \neq \varnothing} \mu G_i < \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M} = \varepsilon. \end{aligned}$$

Остаётся разобрать случай, когда все $F_i = \varnothing$. Но тогда $G \setminus S = \varnothing,$ поэтому $G \subset S$ и первая сумма отсутствует, что упрощает доказательство.

Мера графика интегрируемой функции. Мера подграфика неотрицательно интегрируемой функции.

Определение 19.4. Графиком функции $y=f(x),\ x\in G\subset \mathbb{R}^n$, называется множество точек из \mathbb{R}^{n+1} :

$$\Gamma_f = \{(x, y) : y = f(x), x \in G\}.$$

Если функция f неотрицательна на множестве G, то её подграфиком называется множество точек из \mathbb{R}^{n+1} :

$$\Pi_f = \{(x, y) : 0 \leqslant y \leqslant f(x), x \in G\}.$$

Теорема 19.4. 1) Если функция f интегрируема на множестве $G \subset \mathbb{R}^n$, то её график Γ_f измерим в \mathbb{R}^{n+1} и $\mu\Gamma_f = 0$. 2) Если неотрицательная функция f интегрируема на множестве $G \subset \mathbb{R}^n$, то её подграфик Π_f измерим в \mathbb{R}^{n+1} и $\mu\Pi_f = \int_G f(x) \, dx$.

- \square Повторяется доказательство теоремы 12.25 с заменой [a;b] на G, Δx_i на μG_i , \mathbb{R}^2 на \mathbb{R}^{n+1} , $\int_a^b f(x) \, dx$ на $\int_G f(x) \, dx$. Фигуры Π^* , Π_* и Γ являются объединениями цилиндров с основаниями G_i . Они пересекаются по цилиндрам с основаниями $G_i \cap G_j$, $i \neq j$, имеющими нулевую меру в \mathbb{R}^n , поэтому пересечения этих цилиндров имеют нулевую меру в \mathbb{R}^{n+1} .
- \square 2) По пункту 2° критерия Дарбу для любого $\varepsilon>0$ найдётся разбиение R отрезка [a;b] такое, что $\omega_R=S_R^*-S_{*R}<<\varepsilon$. Но $S_R^*=\sum\limits_{i=1}^N M_i\Delta x_i,\ S_{*R}=\sum\limits_{i=1}^N m_i\Delta x_i$ это площади ступенчатых фигур П* и П*, являющихся объединениями нескольких прямоугольников, которые имеют общие точки разве что по прямолинейным отрезкам, следовательно, пересечения этих прямоугольников имеют нулевую меру (см. следствие 1 из теоремы 11.8 и теорему 11.10).

Так как $\Pi_* \subset \Pi_f \subset \Pi^*$ (см. рис. 12.1), а множества Π_* и Π^* измеримы, то $\mu\Pi_* \leqslant \mu_*\Pi_f \leqslant \mu^*\Pi_f \leqslant \mu\Pi^*$. Тогда $0 \leqslant \mu^*\Pi_f - \mu_*\Pi_f \leqslant \mu\Pi^* - \mu\Pi_* = S_R^* - S_{*R} < \varepsilon$. Так как $\varepsilon > 0$ — любое, то $\mu^*\Pi_f = \mu_*\Pi_f$, т.е. Π_f измерим в \mathbb{R}^2 . Далее, $S_{*R} = \mu\Pi_* \leqslant \mu\Pi_f \leqslant \mu\Pi^* = S_R^*$, а также $S_{*R} \leqslant I \leqslant S_R^*$, где $I = \int_a^b f(x) \, dx$. Поэтому $|\mu\Pi_f - I| \leqslant S_R^* - S_{*R} < \varepsilon$. Так как $\varepsilon > 0$ — любое, то $\mu\Pi_f = I$.

1) До сих пор мы считали, что f — неотрицательная интегрируемая функция на [a;b]. Если отказаться от неотрицательности, то всё равно $\Gamma_f \subset \Gamma$, где Γ — ступенчатая фигура, являющаяся объединением закрашенных прямоугольников на рис. 12.1; $\mu\Gamma = \sum_{i=1}^N (M_i - m_i) \Delta x_i = \omega_R$ (аналогично рассуждению в предыдущей части доказательства). Так как для любого $\varepsilon > 0$ найдётся разбиение R отрезка [a;b] такое, что $\omega_R < \varepsilon$, то $\mu^*\Gamma_f \leqslant \mu\Gamma = \omega_R < \varepsilon$. Но $\varepsilon > 0$ — любое, поэтому $\mu^*\Gamma_f = 0$; по лемме 11.9, Γ_f измерим в \mathbb{R}^2 , и $\mu\Gamma_f = 0$.

6. Линейность интеграла. Аддитивность по множеству. Теорема о среднем. Непрерывность интеграла.

Теорема 19.10 (линейность интеграла). Если функции f и g интегрируемы на множестве $G \subset \mathbb{R}^n$, то для любых $\alpha, \beta \in \mathbb{R}$ функция $\alpha f + \beta g$ интегрируема на G, причём

$$\int_{G} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{G} f(x) dx + \beta \int_{G} g(x) dx.$$

 \Box Повторяется доказательство теоремы 12.10 с заменой [a;b] и $[x_{i-1}^{(n)};x_i^{(n)}]$ соответственно на G и $G_i^{(n)}$.

 \square Рассмотрим произвольную последовательность разбиений R_n отрезка [a;b], лишь бы $\lim_{n\to\infty}|R_n|=0,$ и выберем произвольным образом точки $\xi_i^{(n)}\in[x_{i-1}^{(n)};x_i^{(n)}],\,i=1,\,\ldots,\,N_n.$ Тогда

$$\sigma_{R_n}(\alpha f + \beta g) = \alpha \sigma_{R_n}(f) + \beta \sigma_{R_n}(g). \tag{12.4}$$

Так как f и g интегрируемы на [a;b], то

$$\lim_{n\to\infty} \sigma_{R_n}(f) = \int_a^b f(x) dx \equiv I_1; \quad \lim_{n\to\infty} \sigma_{R_n}(g) = \int_a^b g(x) dx \equiv I_2.$$

Переходя в равенстве (12.4) к пределу, получим

$$\lim_{n \to \infty} \sigma_{R_n}(\alpha f + \beta g) = \alpha I_1 + \beta I_2. \tag{12.5}$$

Так как R_n — произвольная последовательность разбиений [a;b], удовлетворяющая условию $\lim_{n\to\infty}|R_n|=0$, и равенство (12.5) выполняется при любом выборе промежуточных точек $\xi_i^{(n)}$, то из критерия Римана следует, что функция $\alpha f + \beta g$ интегрируема на [a;b] и

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha I_{1} + \beta I_{2}.$$

Теорема 19.7 (аддитивность интеграла по множествам). Если функция f интегрируема на множествах G_1 и G_2 из \mathbb{R}^n таких, что $G_1\cap G_2=\varnothing$, то f интегрируема на $G_1\cup G_2$, причём $\int_{G_1\cup G_2}f(x)\,dx=\int_{G_1}f(x)\,dx+\int_{G_2}f(x)\,dx$.

- □ Повторяется доказательство теорем 12.4 и 12.13 с заменой отрезков [a;c], [c;b], [a;b] соответственно на множества G_1 , G_2 , $G_1 \cup G_2$. Разбиение R (а затем R_n) отрезка [a;b] состоит из всех множеств разбиений R_1 и R_2 (соответственно $R_n^{(1)}$ и $R_n^{(2)}$). ■
- \Box Существование интегралов в правой части последнего равенства следует из теоремы 12.5. Рассмотрим последовательности разбиений $R_n^{(1)}$ отрезка [a;c] и $R_n^{(2)}$ отрезка [c;b] такие, что $\lim_{n\to\infty}|R_n^{(1)}|=0,\ \lim_{n\to\infty}|R_n^{(2)}|=0.$ Тогда при любом выборе промежуточных точек для этих разбиений

$$\lim_{n\to\infty}\sigma_{R_n^{(1)}}=\int_a^c f(x)\,dx\equiv I_1;\quad \lim_{n\to\infty}\sigma_{R_n^{(2)}}=\int_c^b f(x)\,dx\equiv I_2.$$

Рассмотрим при фиксированном $n=1,\,2,\,\ldots$ разбиение R_n отрезка [a;b], включающее все точки $R_n^{(1)}$ и $R_n^{(2)}$, с соответствующими промежуточными точками для этих разбиений. Тогда $\sigma_{R_n}=\sigma_{R_n^{(1)}}+\sigma_{R_n^{(2)}}$, и $\lim_{n\to\infty}\sigma_{R_n}=I_1+I_2$. Так как $|R_n|=\max(|R_n^{(1)}|,|R_n^{(2)}|)$, то $\lim_{n\to\infty}|R_n|=0$, и по критерию Римана $\int_a^b f(x)\,dx=I_1+I_2$.

Теорема 19.15 (о среднем). Если функции f и g интегрируемы на множестве $F \subset \mathbb{R}^n$, причём g сохраняет знак (т.е. $g(x) \geqslant 0$ на F или $g(x) \leqslant 0$ на F), то:

- 1) $\int_F f(x)g(x)\,dx=\mu\int_F g(x)\,dx$, the $\mu\in[m;M]$, $m=\inf_F f(x)$, $M=\sup_x f(x)$;
- 2) если при этом F измеримый связный компакт и f непрерывна на F, то $\int_{F} f(x)g(x)\,dx = f(\xi)\int_{F} g(x)\,dx$, где $\xi\in F$.
- 2) Так как F компакт, то по теореме Вейерштрасса 9.7 $\exists \, x_1, x_2 \in F \colon m = f(x_1), \, M = f(x_2).$ Так как $\mu \in [m;M]$, то по теореме 9.6 о промежуточных значениях функции, непрерывной на связном множестве, $\exists \, \xi \in F \colon \mu = f(\xi)$.
- \square 1) Не уменьшая общности, считаем, что $g(x)\geqslant 0$ на [a;b] (иначе заменим g(x) на -g(x)). Так как для всех $x\in [a;b]$ выполняются неравенства $m\leqslant f(x)\leqslant M$, то $mg(x)\leqslant f(x)g(x)\leqslant Mg(x)$. Применяя теорему 12.14, получим

$$m\int_{a}^{b} g(x) dx \leqslant \int_{a}^{b} f(x)g(x) dx \leqslant M \int_{a}^{b} g(x) dx.$$
 (12.6)

Если $\int_a^b g(x) \, dx = 0$, то из (12.6) следует, что $\int_a^b f(x)g(x) \, dx = 0$, и нужное равенство выполняется для любого числа μ . Если $\int_a^b g(x) \, dx > 0$ (а отрицательным он быть не может в силу неотрицательности функции g), то разделим неравенство (12.6) на $\int_a^b g(x) \, dx$, получим

$$m\leqslant \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx}\leqslant M,\quad \text{r.e.}\quad \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx}=\mu\in [m;M].$$

2) Если функция f непрерывна на [a;b], то для числа $\mu \in [m;M]$ существует точка $\xi \in [a;b]$ такая, что $f(\xi) = \mu$ (это следует из теоремы 3.15); требуемое утверждение доказано.

Теорема 19.16 (непрерывность интеграла по множеству). Пусть G_k , $k=1,\,2,\,\ldots,\,-$ последовательность измеримых подмножеств измеримого множества $G\subset\mathbb{R}^n$, причём $G_1\subset G_2\subset\ldots\subset G_k\subset\ldots\subset G$, и $\lim_{k\to\infty}\mu G_k=\mu G$. Если функция f ограничена на G и интегрируема на любом G_k , $k=1,\,2,\,\ldots$, то f интегрируема на G и $\int_G f(x)\,dx=\lim_{k\to\infty}\int_{G_k}f(x)\,dx$.

 \square Так как $\mu(G\backslash G_k)=\mu G-\mu G_k\to 0$ при $k\to\infty,$ то $\forall\,\varepsilon>0\longrightarrow \exists\,k\colon\,\mu(G\backslash G_k)<\frac{\varepsilon}{4M},$ где $M=\sup_G|f(x)|$ (можно считать, что M>0). Но функция f интегрируема на G_k при этом фиксированном k, поэтому найдётся разбиение R_k множества G_k такое, что $\omega_{R_k}<\frac{\varepsilon}{2}.$ Рассмотрим разбиение R множества G такое, что κ_{R_k} добавляется множество $G\backslash G_k.$ В этом случае $\omega_R=\omega_{R_k}+\omega\cdot\mu(G\backslash G_k),$ где ω — колебание функции f на множестве $G\backslash G_k.$ Тогда $\omega\leqslant 2M$ и $\omega_R<\frac{\varepsilon}{2}+2M\cdot\frac{\varepsilon}{4M}=\varepsilon.$ По пункту 2° критерия Дарбу функция f интегрируема на G.

По теоремам 19.8 и 19.7 функция f интегрируема на любом множестве $G\setminus G_k$ и $\int_G f(x)\,dx=\int_{G_k} f(x)\,dx+\int_{G\setminus G_k} f(x)\,dx.$ При всех $k=1,\,2,\,\dots$ по следствию 3 из теоремы 19.13

$$\begin{split} \left| \int_G f(x) \, dx - \int_{G_k} f(x) \, dx \right| &= \left| \int_{G \backslash G_k} f(x) \, dx \right| \leqslant \\ &\leqslant M \cdot \int_{G \backslash G_k} dx = M \cdot \mu(G \backslash G_k). \end{split}$$

Так как $\lim_{k\to\infty}\mu(G\setminus G_k)=0$, то $\lim_{k\to\infty}\int_{G_k}f(x)\,dx=\int_Gf(x)\,dx$.

7. Интегрируемость функции непрерывной на измеримом компакте. Интегрируемость функции непрерывной на открытом и измеримом множестве.

Теорема 19.5. Если функция f непрерывна на измеримом компакте $F \subset \mathbb{R}^n$, то эта функция интегрируема на F.

З а м е ч а н и е. Напомним, что замкнутые или открытые ограниченные множества в \mathbb{R}^n не обязаны быть измеримыми (см., например, упражнение 11.20).

 \square Считаем, что $\mu F>0$ (иначе сразу $\int_F f(x)\,dx=0$). Непрерывная на компакте функция ограничена и равномерно непрерывна. Значит, $\forall\,\varepsilon>0\,\longrightarrow\,\exists\,\delta>0$: $\forall\,x,y\in F,\,\rho(x,y)<\delta\,\longrightarrow\,$ $\longrightarrow\,|f(x)-f(y)|<\frac{\varepsilon}{2\mu F}$. Тогда если R— разбиение F на множества $F_i,\,i=1,\,\ldots,\,N,$ такое, что $|R|<\delta,$ то $\forall\,x,y\in E$, $i=1,\,\ldots,\,N$, такое, что $|R|<\delta,$ то $\forall\,x,y\in E$, $i=1,\,\ldots,\,N$, такое, что $|R|<\delta,$ то $\forall\,x,y\in E$, $i=1,\,\ldots,\,N$, такое, что $|R|<\delta,$ то $\forall\,x,y\in E$, $i=1,\,\ldots,\,N$, такое, что $|R|<\delta,$ то $\forall\,x,y\in E$, $i=1,\,\ldots,\,N$, такое, что $|R|<\delta,$ то $\forall\,x,y\in E$. Если $f(x)\geqslant f(y),$ то $0\leqslant f(x)-f(y)<\frac{\varepsilon}{2\mu F}$. Переходя к точной верхней грани по $x\in F_i$ и к точной нижней грани по $y\in F_i,$ получим: $\omega_i=M_i-m_i\leqslant\frac{\varepsilon}{2\mu F}<\frac{\varepsilon}{\mu F}$. Тогда

$$\omega_R = \sum_{i=1}^N \omega_i \mu F_i < \frac{\varepsilon}{\mu F} \cdot \sum_{i=1}^N \mu F_i = \varepsilon.$$

Итак, $\forall \varepsilon > 0 \longrightarrow \exists \delta > 0$: $\forall R, |R| < \delta \longrightarrow \omega_R < \varepsilon$. По пункту 3° критерия Дарбу функция f интегрируема на F.

Теорема 19.9. Если функция f ограничена и непрерывна на измеримом открытом множестве $G \subset \mathbb{R}^n$, то она интегрируема на G.

 \square Так как множество G измеримо, то $\mu\partial G=0$. Определим f(x)=0 на ∂G . Полученная функция ограничена на $\overline{G}=G\cup \partial G$, причём $G\cap\partial G=\varnothing$. Так как \overline{G} — измеримый компакт, а множество точек разрыва f на \overline{G} принадлежит ∂G , то оно имеет меру нуль. По теореме 19.6 функция f интегрируема на \overline{G} , следовательно, и на G.

8. Сведение кратного интеграла к повторному.

Определение 19.5. Простым множеством (цилиндроидом) относительно оси x_{n+1} в \mathbb{R}^{n+1} называется множество

 $\coprod (G, \psi(x), \varphi(x)) = \{(x, y) \in \mathbb{R}^{n+1} : x \in G, \ \psi(x) \leqslant y \leqslant \varphi(x)\},\$

где G — измеримое множество в \mathbb{R}^n , $x \in \mathbb{R}^n$, $y \in \mathbb{R}^1$, $\psi(x)$ и $\varphi(x)$ — ограниченные функции на G такие, что $\psi(x) \leqslant \varphi(x)$ при всех $x \in G$.

Теорема 19.19 (о сведении кратного интеграла к повторному). Пусть функция f интегрируема на цилиндроиде $G^*=\coprod(G,\psi(x),\varphi(x))\subset\mathbb{R}^{n+1}$, где функции φ и ψ интегрируемы на множестве $G\subset\mathbb{R}^n$, и при всех $x\in G$ существует интеграл по отрезку $\Phi(x)=\int_{\psi(x)}^{\varphi(x)}f(x,y)\,dy$. Тогда функция Φ интегрируема на G и $\int_{G^*} f(x,y) dx dy = \int_G \Phi(x) dx$, т.е.

$$\int_{G^*} f(x,y)\,dx\,dy = \int_G \left\{ \int_{\psi(x)}^{\varphi(x)} f(x,y)\,dy \right\} dx.$$

 \square Измеримость G в \mathbb{R}^n и G^* в \mathbb{R}^{n+1} следует из интегрируемости соответствующих функций. Впрочем, измеримость следует и из измеримости G. В самом деле, если $\psi(x)\geqslant 0$, то $G^*=(\Pi_{\varphi}\setminus \Pi_{\psi})\cup \Gamma_{\psi}$, а множества $\Pi_{\varphi},\,\Pi_{\psi},\,\Gamma_{\psi}$ измеримы в \mathbb{R}^{n+1} по теореме 19.4. Если же ограниченная функция ψ принимает отрицательные значения, то найдётся натуральное N такое, что $\psi(x)\geqslant -N$ при всех $x\in G$; при парадлельном переносе системы координат на N вниз по оси x_{n+1} функция $\psi_1(x) =$ $= \psi(x) + N$ станет неотрицательной, а клеточные множества и их мера не изменятся, значит, сохранятся измеримость и мера множеств (см. также рассуждение при доказательстве теоремы 12.26).

Так как функции ψ и φ ограничены, то (см. рис. 19.13)

$$\exists A, B : \forall x \in G \longrightarrow A \leq \psi(x) \leq \varphi(x) \leq B.$$

Доопределим f(x,y) на пилиндре $\widetilde{G} = \coprod (G,A,B)$ нулём вне G^* . Тогда функция f интегрируема на \widetilde{G} и

$$I_1 = \int_G f(x, y) dx dy = \int_{G^*} f(x, y) dx dy.$$

Далее, при всех $x\in G$ функция f интегрируема по y на $[\psi(x);\varphi(x)]$, значит, она интегрируема по y на [A;B] и

$$\Phi(x) = \int_{\psi(x)}^{\varphi(x)} f(x,y) \, dy = \int_A^B f(x,y) \, dy.$$

Таким образом, теорему достаточно доказать для цилиндра \widetilde{G} . Докажем спачала, что функция Φ интегрируема на G. Рассмотрим разбиение R множества G:

$$G = \bigcup_{i=1}^{N} G_i$$
; $\mu(G_i \cap G_j) = 0$, $i \neq j$,

а также разбиение R_0 отрезка [A;B] на отрезки $[\alpha_{j-1};\alpha_j],$ $j=1,\ldots,p.$ Тогда всевозможные цилиндры \coprod_{ij} $= \coprod (G_i, \alpha_{j-1}, \alpha_j)$ образуют разбиение \widetilde{R} множества \widetilde{G} , так как они имеют общие точки только на основаниях и боковых поверхностих, т.е. на множествах меры нуль в \mathbb{R}^{n+1} (боковая поверхность цилиндра — цилиндр с основанием меры нуль в \mathbb{R}^n).

Пусть
$$M_{ij} = \sup_{\coprod_{ij}} f(x,y), \ m_{ij} = \inf_{\coprod_{ij}} f(x,y)$$
. Тогда
$$\forall x \in G_i \longrightarrow m_{ij} \cdot \Delta \alpha_j \leqslant \int_{\alpha_{j-1}}^{\alpha_{j}} f(x,y) \, dy \leqslant M_{ij} \cdot \Delta \alpha_j, \ j=1, \ \dots, \ p$$

(это — неравенство для интеграла по отрезку; $\Delta \alpha_j = \alpha_j$ —

Суммируем последние неравенства по
$$j$$
 от 1 до p :
$$\sum_{j=1}^{p} m_{ij} \cdot \Delta \alpha_{j} \leqslant \int_{A}^{B} f(x,y) \, dy = \Phi(x) \leqslant \sum_{j=1}^{p} M_{ij} \cdot \Delta \alpha_{j} \quad (19.1)$$
при всех $x \in G_{i}$, $i = 1, \ldots, N$. Пусть $M_{i} = \sup_{x \in G_{i}} \Phi(x)$, $m_{i} = \max_{x \in G_{i}} \Phi(x)$

$$\min_{x \in G_i} \Phi(x), \, \omega_i = M_i - m_i. \text{ Тогда}$$

$$\sum_{j=1}^p m_{ij} \cdot \Delta \alpha_j \leqslant m_i \leqslant M_i \leqslant \sum_{j=1}^p M_{ij} \cdot \Delta \alpha_j,$$
 откуда
$$\sum_{j=1}^p m_{ij} \cdot \Delta \alpha_j \leqslant m_i \leqslant M_i \leqslant \sum_{j=1}^p M_{ij} \cdot \Delta \alpha_j,$$

откуда
$$\omega_i \leqslant \sum_{j=1}^p (M_{ij}-m_{ij})\Delta\alpha_j, \quad i=1,\,\ldots,\,N.$$
 Умножим последнее неравенство на μG_i и просуммируем по i :

Умножим последиее неравенство на
$$\mu G_i$$
 и просуммируем по i :
$$\omega_R(\Phi) = \sum_{i=1}^N \omega_i \mu G_i \leqslant \sum_{i=1}^N \sum_{j=1}^p (M_{ij} - m_{ij}) \Delta \alpha_j \cdot \mu G_i = \sum_{i=1}^N \sum_{j=1}^p (M_{ij} - m_{ij}) \mu \coprod_{ij} = \omega_R(f).$$
 Так как функция f интегрируема на G , то по пункту 3° крите-

Так как функция f интегрируема на G, то по пункту 3° критерия Дарбу $\forall \varepsilon > 0 \longrightarrow \exists \delta > 0$: $\forall \widetilde{R}$ (разбиения \widetilde{G}), $|\widetilde{R}| < \delta \longrightarrow \omega_R(f) < \varepsilon$. Рассмотрим какое-инбудь одно такое разбиение на цялиндры $\coprod_{ij}=\coprod(G_i,\alpha_{j-1},\alpha_j)$. Тогда их основания G_i образуют разбиение R множества G такое, что $\omega_R(\Phi)\leqslant \omega_R(f)<$ По пункту 2^с критерия Дарбу функция Ф интегрируема на G.

Проинтегрируем неравенства (19.1) по множеству G_i , i=1,

$$\sum_{j=1}^{p} m_{ij} \Delta \alpha_{j} \mu G_{i} \leqslant \int_{G_{i}} \Phi(x) dx \leqslant \sum_{j=1}^{p} M_{ij} \Delta \alpha_{j} \mu G_{i},$$

$$\sum_{j=1}^{p} m_{ij} \mu \Pi_{ij} \leqslant \int_{G_i} \Phi(x) \, dx \leqslant \sum_{j=1}^{p} M_{ij} \mu \Pi_{ij}.$$

т.е.
$$\sum_{j=1}^p m_{ij} \mu \Pi_{ij} \leqslant \int_{G_i} \Phi(x) \, dx \leqslant \sum_{j=1}^p M_{ij} \mu \Pi_{ij}.$$
 Суммируем последние неравенства по i от 1 до N :
$$\sum_{i=1}^N \sum_{j=1}^p m_{ij} \mu \Pi_{ij} \leqslant \int_G \Phi(x) \, dx \leqslant \sum_{i=1}^N \sum_{j=1}^p M_{ij} \mu \Pi_{ij},$$

i=1 j=1 т.е. i=1 j=1 т.е. S_+ , \leqslant I_2 \leqslant S_+ , где I_2 = $\int_G \Phi(x) \, dx$, а сумма Дарбу берётся для функции f и разбиения \vec{R} множества \vec{G} . Также по определению кратного интеграла

$$S_{*R} \leqslant I_1 \leqslant S_R^*$$
, the $I_1 = \int_G f(x, y) \, dx \, dy$,

откуда $|I_1-I_2|\leqslant \omega_R$. Но так как брикция f интегрируема на \widetilde{G} , то $\forall \varepsilon>0$ — $\exists \,\delta>0:\,\,\forall \,\widetilde{R},\,\,|\widetilde{R}|<\delta$ — $\omega_R<\varepsilon$. Но разбиение с мелкостью, меньшей δ , можно взять в таком виде, как в нашем рассуждении (на цилиндры Π_{ij}), поэтому $\forall \varepsilon > 0 \longrightarrow |I_1 - I_2| < \varepsilon$, значит, $I_1 = I_2$.

9. Формула Грина.

Определение 19.8. Плоская область G называется канонической, если она одновременно задаётся как неравенствами

$$a < x < b$$
, $\psi(x) < y < \varphi(x)$,

где функции ψ и φ непрерывны на [a;b], так и неравенствами

$$c < y < d$$
, $\xi(y) < x < \eta(y)$,

где функции ξ и η непрерывны на [c;d].

Замыкание канонической области является одновременно простым множеством как относительно оси y, так и относительно оси x.

Теорема 19.20 (формула Грина). Пусть G — каноническая область на плоскости, функции P(x,y) и Q(x,y) непрерывно дифференцируемы в \overline{G} . Тогда

$$\iint_G \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \int_{\partial G^+} (P(x,y) \, dx + Q(x,y) \, dy).$$

 \square Каноническая область на плоскости имеет вид, изображённый на рис. 19.19. Кривая $D_2A_1A_2B_1$ — график функции $y=\varphi(x)$, кривая $D_1C_2C_1B_2$ — график функции $y=\psi(x)$. Так как $\psi(x)<\varphi(x)$ при $x\in(a;b)$, а функции ψ и φ непрерывны на [a;b], то $\psi(a)\leqslant \varphi(a)$,

Рис. 19.19

 $\psi(b)\leqslant \varphi(b)$. Точка D_2 расположена выше D_1 или совпадает с ней, точка B_1 расположена выше B_2 или совпадает с ней. Если точка D_2 выше D_1 , то отрезок D_1D_2 целиком принадлежит границе области G, если точка B_1 выше B_2 , то отрезок B_1B_2 целиком принадлежит границе G. Таким образом, ∂G состоит из графиков непрерывных функций $D_2A_1A_2B_1$ и $D_1C_2C_1B_2$ и отрезков D_1D_2 и B_1B_2 , т.е. ∂G имеет меру нуль в \mathbb{R}^2 . Следовательно, область G измерима в \mathbb{R}^2 . Пока мы учли только то, что \overline{G} — простое множество относительно оси y. Если учесть то же самое относительно оси x, то мы увидим, что границе G принадлежат отрезки A_1A_2 и C_1C_2 .

принадлежат отрезки A_1A_2 и C_1C_2 . Рассмотрим $\iint_G \frac{\partial P}{\partial y} \, dx \, dy$. Он существует по теореме 19.5 (в более общем случае по теореме 19.9). Так как $\mu \partial G = 0$, то, применяя сведение двойного интеграла к повторному, имеем

$$\iint_G \frac{\partial P}{\partial y} \ dx \ dy = \iint_{\overline{G}} \frac{\partial P}{\partial y} \ dx \ dy = \int_a^b dx \int_{\psi(x)}^{\varphi(x)} \frac{\partial P(x,y)}{\partial y} \ dy.$$

При фиксированном $x\in(a;b)$ функция P(x,y) непрерывна по y на отрезке $[\psi(x);\varphi(x)]$, непрерывно дифференцируема на интервале $(\psi(x);\varphi(x))$ и $\frac{\partial P}{\partial y}$ имеет конечные пределы в концах интервала. С учётом теоремы 4.16 эта функция непрерывно дифференцируема на $[\psi(x);\varphi(x)]$, и по формуле Ньютона—Лейбнипа

$$\int_{\psi(x)}^{\varphi(x)} \frac{\partial P(x,y)}{\partial y} \ dy = P(x,\varphi(x)) - P(x,\psi(x)).$$

Тогла

$$\begin{split} \iint_{G} \frac{\partial P}{\partial y} \; dx \, dy &= \int_{a}^{b} P(x, \varphi(x)) \, dx - \int_{a}^{b} P(x, \psi(x)) \, dx = \\ &= \int_{\overline{D_2 A_1 A_2 B_1}} P(x, y) \, dx - \int_{\overline{D_1 C_2 C_1 B_2}} P(x, y) \, dx = \\ &= - \left(\int_{\overline{B_1 A_2 A_1 D_2}} P \, dx + \int_{\overline{D_1 C_2 C_1 B_2}} P \, dx \right) \end{split}$$

(см. определение 19.6). Так как

$$\int_{\overline{D_2D_1}} P \, dx = \int_{\overline{B_2B_1}} P \, dx = 0$$

(по лемме 19.8), то в сумме имеем

$$\iint_G \frac{\partial P}{\partial y} \, dx \, dy = - \int_{\partial G^+} P \, dx.$$

Аналогично, $\iint_G \frac{\partial Q}{\partial x} \, dx \, dy = \iint_{\partial G^+} Q \, dy$. Смена знака обусловлена тем, что «при замене x на y меняется ориентация плоскости»; аккуратно это можно проследить, проводя соответствующие выкладки. Сложив два последних равенства, получим: $\iint_G \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy = \int_{\partial G^+} (P \, dx + Q \, dy)$.

Геометрический смысл модуля и знака якобиана отображения при n = 2.

Лемма 19.9 (вариант теоремы 19.21 при n=2 и $f\equiv \mathbf{1}$). Пусть $D\subset \mathbb{R}^2_{uv}$ и $G\subset \mathbb{R}^2_{xy}$ — области, к которым применима формула Грина, границы ∂D и ∂G которых являются простыми замкнутыми кусочно-гладкими кривыми. Пусть далее отображение Ф:

- 1) дважды непрерывно дифференцируемо в области $D_0 \supset \overline{D}$;
- 2) биективно отображает D на G и ∂D на ∂G :
- 3) имеет якобиан $J(u,v) \neq 0$ в D.

Тогла

$$\mu G = \iint_D |J(u,v)| \, du \, dv.$$

Параметризуем кусочно-гладкую границу области D: u = $=u(t), v=v(t), \alpha \leqslant t \leqslant \beta;$ считаем, что возрастание t соответствует положительному направлению обхода ∂D . Отрезок $[\alpha;\beta]$ разбивается на конечное число отрезков, на каждом из которых функции u(t) и v(t) непрерывно дифференцируемы; за счёт сдвига по t на каждом следующем отрезке разбиения можно добиться того, чтобы функции u и v были непрерывны на $[\alpha;\beta]$. Тогда к криволинейному интегралу по ∂D можно применить формулы §3 гл. XIV, выражающие криволинейный интеграл второго рода через определённый интеграл по отрезку.

В силу биективности соответствия границ граница области G параметризуется при помощи сложных функций:

$$x=x(u(t),v(t)),\quad y=y(u(t),v(t)),\quad \alpha\leqslant t\leqslant \beta.$$

Введём параметр λ , равный +1, если возрастание t соответствует положительному направлению обхода ∂G , и равный -1 в противоположном случае. Применяя формулу Грина для об-

$$\mu G = \iint_G dx \, dy = - \int_{\partial G^+} y \, dx = - \lambda \int_\alpha^\beta y(t) \cdot x_t' \, dt$$

(криволинейный интеграл второго рода сведён к интегралу по отрезку). Здесь $x_t' = \frac{\partial x}{\partial u} u_t' + \frac{\partial x}{\partial v} v_t'$ — производная сложной функции x(u(t),v(t)). Тогда последний интеграл равен $-\lambda \int_{\alpha}^{\beta} \!\! \left(y(t) \frac{\partial x}{\partial u} u_t' + y(t) \frac{\partial x}{\partial v} v_t'\right) dt = -\lambda \int_{\partial D^+} \!\! \left(y \frac{\partial x}{\partial u} du + y \frac{\partial x}{\partial v} dv\right)$ (интеграл по отрезку сведён к криволинейному интегралу второго рода мую по гразура области $D \subset \mathbb{P}^2$). Так как к области $D \subset \mathbb{P}^2$). Так как к области

$$-\lambda \int_{\alpha}^{\beta} \left(y(t) \frac{\partial x}{\partial u} u'_t + y(t) \frac{\partial x}{\partial v} v'_t \right) dt = -\lambda \int_{\partial D^+} \left(y \frac{\partial x}{\partial u} du + y \frac{\partial x}{\partial v} dv \right)$$

рого рода уже по границе области $D \subset \mathbb{R}^2_{uv}$). Так как к области Dможно применить формулу Грина, то интеграл равен

$$-\lambda \iint_{D} \left(\frac{\partial}{\partial u} \left(y \frac{\partial x}{\partial v} \right) - \frac{\partial}{\partial v} \left(y \frac{\partial x}{\partial u} \right) \right) du \, dv =$$

$$= -\lambda \iint_{D} \left(y \frac{\partial^{2} x}{\partial u \partial v} + \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} - y \frac{\partial^{2} x}{\partial v \partial u} - \frac{\partial y}{\partial v} \frac{\partial x}{\partial u} \right) du \, dv =$$

$$= \lambda \iint_{D} J(u, v) \, du \, dv$$

(в силу дважды непрерывной дифференцируемости функций x(u,v) и y(u,v) в области D смешанные частные производные, взятые в разном порядке, равны; для применения формулы Грина нужно также, чтобы функции $y \frac{\partial x}{\partial v}$ и $y \frac{\partial x}{\partial u}$ были непре-

Так как якобиан J(u,v) непрерывен и отличен от нуля в области D, то по теореме 9.6 он сохраняет знак в D (если бы он принимал значения разных знаков, то обратился бы в нуль в какой-то точке D).

Но $\lambda \iint_D J(u,v)\,du\,dv=\mu G>0$; поэтому если $\lambda=1$, то J(u,v)>0 в D, а если $\lambda=-1$, то J(u,v)<0 в D. Поэтому $\lambda = \operatorname{sign} J(u,v)$ и $\mu G = \iint_D |J(u,v)| \, du \, dv$.

Отсюда очевиден геометрический смысл знака якобиана отображения в двумерном случае. Так как в качестве ∂D и ∂G можно брать любые простые замкнутые кривые в соответствующих областях, лишь бы они удовлетворяли условиям леммы 19.9, то отображение с положительным якобианом сохраняет направление обхода простой замкнутой кривой на плоскости, с отрицательным якобианом — меняет направление обхода

Геометрический смысл модуля якобиана отображения в двумерном случае. Будем считать, что при выполнении условий леммы 19.9 отображение Ф является правильным в области D. Рассмотрим в области D последовательность клеток $Q_1\supset Q_2\supset\ldots\supset Q_k\supset\ldots\ni (u_0,v_0)$ такую, что diam $Q_k\to$ ightarrow 0. Пусть $G_k = \Phi(Q_k)$. Тогда по лемме 19.9

$$\mu G_k = \iint_{Q_k} \lvert J(u,v) \rvert \, du \, dv = \iint_{\overline{Q}_k} \lvert J(u,v) \rvert \, du \, dv = \lvert J(\xi_k,\eta_k) \rvert \cdot \mu \overline{Q}_k;$$

здесь $(\xi_k, \eta_k) \in \overline{Q}_k$ (применена теорема о среднем 19.15). Так как diam $Q_k \to 0$, то $\rho((\xi_k, \eta_k), (u_0, v_0)) \leqslant \text{diam } \overline{Q}_k = \text{diam } Q_k \to 0$ $\to 0$ и $(\xi_k, \eta_k) \to (u_0, v_0)$. Поэтому в силу непрерывности якобиана в любой точке области D

$$|J(u_0, v_0)| = \lim_{k \to \infty} \frac{\mu \Phi(Q_k)}{\mu Q_k}.$$

Таким образом, модуль якобиана в фиксированной точке области — это «коэффициент изменения площади» в этой точке.

11. Оценка меры образа измеримого открытого множества через верхнюю границу модуля якобиана отображения и меру самого множества.

Лемма 19.10. Пусть отображение Ф:

- 1) биективно отображает измеримое открытое множество $D \subset \mathbb{R}^2_{uv}$ на измеримое открытое множество $G \subset \mathbb{R}^2_{xy}$, причём обратное отображение Φ^{-1} является правильным в G;
- 2) дважды непрерывно дифференцируемо в D;
- 3) имеет отличный от нуля якобиан, ограниченный в D, т.е. $\exists \, C>0\colon \forall \, (u,v)\in D\longrightarrow |J(u,v)|\leqslant C.$ Тогда $\mu G\leqslant C\cdot \mu D.$

 \square Так как отображение Φ непрерывно дифференцируемо в D с ненулевым якобианом и биективно отображает D на G, то с учётом теоремы 18.4 обратное отображение непрерывно дифференцируемо в G (уже не только локально, но на всём множестве G). Так как Φ и Φ^{-1} непрерывны, то по лемме 18.3 для любого открытого множества Q, такого, что $\overline{Q} \subset G$, выполняется равенство $\Phi^{-1}(QQ) = \partial \Phi^{-1}(Q)$.

Если множества D и G пусты, то доказывать нечего. Если непусты, то они имеют положительную меру (так как открыты). Пусть S — произвольное клеточное множество положительной меры, принадлежащее G. Может быть так, что \overline{S} имеет общие точки с ∂G , но тогда для любого $\varepsilon>0$ найдётся открытое клеточное множество S_{ε} такое, что $\overline{S}_{\varepsilon}\subset G$ и $mS_{\varepsilon}>mS-\varepsilon$.

Рис. 19.22

жества и есть S_{ε} .

В самом деле, если $\overline{S} \cap \partial G \neq \emptyset$, то можно представить S как клеточное множество более высокого ранга и удалить из него клетки, замыкания которых имеют общие точки с ∂G (закрашены на рис. 19.22); за счёт увеличения ранга можно добиться того, что сумма мер закрашенных клеток будет меньше ε . Внутренность оставшегося клеточного мно-

Пусть Q — некоторая клетка, входящая в S_ε . К ней применима формула Грина и граница её — простая замкнутая кусочно-гладкая кривая. Так как Φ^{-1} — правильное отображение, то $P=\Phi^{-1}(Q)$ также область, к которой применима формула Грина, и $\partial P=\Phi^{-1}(\partial Q)$ — простая замкнутая кусочно-гладкая кривая. Но отображение Φ дважды непрерывно дифференцируемо в D, а

$$\overline{P} = P \cup \partial P = \Phi^{-1}(Q) \cup \Phi^{-1}(\partial Q) = \Phi^{-1}(\overline{Q}) \subset \Phi^{-1}(G) = D,$$

поэтому по лемме 19.9

$$\mu Q = \iint_P |J(u,v)| du dv \leqslant C \cdot \mu P.$$

Так как сумма мер всех таких клеток Q равна μS_{ε} , а сумма мер их прообразов при отображении Φ равна $\mu(\Phi^{-1}(S_{\varepsilon}))$, то $\mu S_{\varepsilon} \leqslant C \cdot \mu(\Phi^{-1}(S_{\varepsilon})) \leqslant C \cdot \mu D$. Тогда $mS < mS_{\varepsilon} + \varepsilon \leqslant C \cdot \mu D + \varepsilon$. Если mS = 0, то последнее неравенство также выполнено при любом $\varepsilon > 0$. Поскольку S — произвольное клеточное множество, принадлежащее G, то $\mu G \leqslant C \cdot \mu D + \varepsilon$. Но $\varepsilon > 0$ — произвольно, поэтому $\mu G \leqslant C \cdot \mu D$.

12. Теорема о замене переменной в кратном интеграле при n = 2.

Теорема 19.21'. Пусть Ф — биективное отображение измеримой области $D \subset \mathbb{R}^2_{uv}$ на измеримую область $G \subset \mathbb{R}^2_{xv}$, действующее по формулам x = x(u, v), y = y(u, v), дважды непрерывно дифференцируемое в D, якобиан которого отличен от нуля и ограничен в D, причём Φ — правильное отображение в области \hat{D} , а Φ^{-1} — правильное отображение в области G. Пусть далее функция f ограничена и непрерывна в области G.

$$\iint_G f(x,y)\,dx\,dy = \iint_D f(x(u,v),y(u,v)) \cdot |J(u,v)|\,du\,dv.$$

Докажем теперь, что

$$I_1 \equiv \iint_{\Phi(\overline{I})} f(x,y) \, dx \, dy = \\ = \iint_{\overline{I}} f(x(u,v),y(u,v)) \cdot |J(u,v)| \, du \, dv \equiv I_2.$$
Because for the property of the property of

В силу биективности отображения и леммы 18.3 $\Phi(\overline{Q}_i) = \Phi(Q_i \cup \partial Q_i) = \Phi(Q_i) \cup \Phi(\partial Q_i) = \Phi(Q_i) \cup \partial \Phi(Q_i),$ а $\mu(\partial \Phi(Q_i)) = 0$, поэтому $\mu(\Phi(\overline{Q}_i)) = \mu(\Phi(Q_i))$. По лемме 19.9 римановская сумма для интеграла I₁

$$\begin{split} \sigma_{R_k^*} &= \sum_{i=1}^N f(x_i, y_i) \cdot \mu(\Phi(\overline{Q}_i^{(k)})) = \sum_{i=1}^N f(x_i, y_i) \mu(\Phi(Q_i^{(k)})) = \\ &= \sum_{i=1}^N f(x_i, y_i) \iint_{Q_i^{(k)}} |J(u, v)| \, du \, dv = \\ &= \sum_{i=1}^N f(x_i, y_i) \iint_{\overline{Q}_i^{(k)}} |J(u, v)| \, du \, dv = \sum_{i=1}^N f(x_i, y_i) |J(\xi_i, \eta_i)| \cdot \mu \overline{Q}_i^{(k)}, \end{split}$$

где $(\xi_i, \eta_i) \in \overline{Q}_i^{(k)}$ — здесь применена теорема 19.15 (о среднем) для множества $\overline{Q}_i^{(k)}$.

До сих пор (x_i, y_i) была произвольной точкой множества $\Phi(\overline{Q}_i^{(k)})$. Возьмём теперь $x_i=x(\xi_i,\eta_i),\,y_i=y(\xi_i,\eta_i)$. Тогда $\sigma_{R_k^*}$ совпадает с некоторой римановской суммой σ_{R_k} интеграла I_2 . Так как $(\sigma_{R_k^*})_{I_1} = (\sigma_{R_k})_{I_2}$ при всех $k \geqslant k_0$, а $|R_k| \to 0$ и $|R_k^*| \to$ \rightarrow 0, то в пределе получим равенство $I_1 = I_2$.

Вспомним, что множество Т строилось в зависимости от $n=1, 2, \ldots$, поэтому при всех n

$$\iint_{\Phi(\overline{T}_n)} f(x,y) \, dx \, dy = \iint_{\overline{T}_n} f(x(u,v), y(u,v)) \cdot |J(u,v)| \, du \, dv. \tag{19.4}$$

 $\iint_{\Phi(\overline{T}_n)} f(x,y) \, dx \, dy = \iint_{\overline{T}_n} f(x(u,v),y(u,v)) \cdot |J(u,v)| \, du \, dv. \ \ (19.4)$ Можно считать, что $S_1 \supset S_2 \supset \ldots \supset S_n \supset \ldots$, поэтому $\overline{T}_1 \subset \overline{T}_2 \subset \ldots \subset \overline{T}_n \subset \ldots \subset D \ \ \text{(см. рис. 19.23)} \ \ \text{и} \ \Phi(\overline{T}_1) \subset \subset \Phi(\overline{T}_2) \subset \ldots \subset \Phi(\overline{T}_n) \subset \ldots \subset G \ \ \ \text{(см. рис. 19.24)}.$ Но $\mu(D \setminus \overline{T}_n) < \frac{1}{n}$, значит, $\mu D - \mu \overline{T}_n = \mu(D \setminus \overline{T}_n) \to 0$, и $\mu \overline{T}_n \to \mu D$.

Если $|J(u,v)| \leq C$ в области D, то из леммы 19.10 следует, что $\mu(\Phi(D\setminus \overline{T}_n)) \leqslant C \cdot \mu(D\setminus \overline{T}_n) \to 0$; так как $\mu(\Phi(D\setminus \overline{T}_n)) =$ $=\mu(G\setminus\Phi(\overline{T}_n))=\mu G-\mu\Phi(\overline{T}_n), \text{ to } \mu\Phi(\overline{T}_n)\to\mu G.$

Так как все функции в интеграле справа в (19.4) ограничены на D, то по теореме 19.16 о непрерывности интеграла по

$$\lim_{n\to\infty} \iint_{\overline{T}_n} f(x(u,v),y(u,v)) \cdot |J(u,v)| \, du \, dv =$$

$$= \iint_D f(x(u,v),y(u,v)) \cdot |J(u,v)| \, du \, dv. \quad (19.5)$$

Аналогично, так как функция f ограничена на G, то по тео-

$$\lim_{n \to \infty} \iint_{\Phi(\overline{T}_n)} f(x, y) \, dx \, dy = \iint_G f(x, y) \, dx \, dy. \quad (19.6)$$

Из (19.4), (19.5) и (19.6) следует, что

$$\iint_G f(x,y) dx dy = \iint_D f(x(u,v),y(u,v)) \cdot |J(u,v)| du dv. \quad \blacksquare$$

 \square Так как $\mu \partial D = 0$, то по лемме 19.6 для любого фиксированного $n=1,\,2,\,\ldots$ найдётся открытое клеточное множество S такое, что $\partial D \subset S$ и $mS < \frac{1}{n}$.

Пусть это множество имеет ранг k_0 . Из клеток ранга k_0 , не входящих в S, часть лежит внутри D, остальные — внутри дополнения \hat{D} . Ясно, что $T=D\setminus \overline{S}$ — открытое клеточное множество ранга k_0 (см. рис. 19.23); $\overline{T} \subset D, D \backslash \overline{T} \subset S$, поэтому $\mu(D \setminus \overline{T}) \leqslant mS < \frac{1}{n}$. Множество \overline{T} можно рассматривать как замкнутое клеточное множество любого ранга $k\geqslant k_0$. При этом $\overline{T}=\bigcup_{i=1}^N \overline{Q}_i^{(k)}$, где $\overline{Q}_i^{(k)}$ — замыкания клеток ранга k, образующие разбиение R_k множества \overline{T} . Тогда в силу биективности отображения Φ в D

$$\Phi(\overline{T}) = \bigcup_{i=1}^N \Phi(\overline{Q}_i^{(k)})$$

(см. рис. 19.24), следовательно, множества $\Phi(\overline{Q}_i^{(k)}), i = 1, \ldots,$ N, образуют разбиение R_{k}^{*} множества $\Phi(\overline{T})$. В самом деле, при правильном отображении $\Phi(Q_i)$ — области, к которым применима формула Грина, следовательно, множества $\partial\Phi(Q_i)$ имеют нулевую меру, а в силу биективности отображения при $i \neq j$

$$\Phi(\overline{Q}_i) \cap \Phi(\overline{Q}_i) = \Phi(\overline{Q}_i \cap \overline{Q}_i) \subset \Phi(\partial Q_i) = \partial \Phi(Q_i);$$

здесь использована лемма 18.3 и применяется рассуждение, аналогичное началу доказательства леммы 19.10. Поэтому множества $\Phi(\overline{Q}_i)$ пересекаются по множествам нулевой меры и образуют разбиение множества $\Phi(\overline{T})$. Ясно, что $|R_k| \to 0$ при $k \to \infty$. Докажем, что $|R_k^*| \to 0$.

Так как функции x(u,v) и y(u,v), задающие отображение Φ , непрерывны на компакте \overline{T} , то они равномерно непрерывны,

$$\forall \, \varepsilon > 0 \longrightarrow \exists \, \delta > 0 \, : \, \forall \, (u_1,v_1), (u_2,v_2) \in \overline{T},$$

$$\sqrt{(u_2-u_1)^2 + (v_2-v_1)^2} \leqslant \delta \longrightarrow$$

$$\longrightarrow |x(u_2,v_2) - x(u_1,v_1)| \leqslant \frac{\varepsilon}{\sqrt{2}} \, , \quad |y(u_2,v_2) - y(u_1,v_1)| \leqslant \frac{\varepsilon}{\sqrt{2}}$$
 (можно употребить нестрогие неравенства вместо строгих).

Значит.

$$\sqrt{(x(u_2, v_2) - x(u_1, v_1))^2 + (y(u_2, v_2) - y(u_1, v_1))^2} \le \varepsilon$$

 $u \, \forall \, \varepsilon > 0 \longrightarrow \exists \, \delta > 0 \colon \, \forall \, X \subset \overline{T}, \, \operatorname{diam} X \leqslant \delta \longrightarrow \operatorname{diam} \Phi(X) \leqslant \varepsilon.$ Поэтому если мелкость разбиения R_k множества \overline{T} на множества $\overline{Q}_i^{(k)}$ не превосходит δ , то мелкость соответствующего разбиения R_k^* множества $\Phi(\overline{T})$ на множества $\Phi(\overline{Q}_i^{(k)})$ не превосходит ε . Так как $|R_k| \to 0$, то для данного $\delta(\varepsilon)$ найдётся k_1 такое, что $\forall k \geqslant k_1 \longrightarrow |R_k| \leqslant \delta$, значит, $|R_k^*| \leqslant \varepsilon$. Окончательно, $\forall \, \varepsilon > 0 \longrightarrow \exists \, k_1 \colon \, \forall \, k \geqslant k_1 \longrightarrow |R_k^*| \leqslant \varepsilon$, т.е. $|R_k^*| \to 0$ при $k \to \infty$.

Функция f непрерывна и ограничена в измеримой области G. По теореме 19.9 функция f интегрируема на G. Таким образом, интеграл в левой части равенства в формулировке теоремы 19.21' (и теоремы 19.21) существует. Аналогично существует и интеграл в правой части этого равенства (функция f(x(u,v),y(u,v)) непрерывна в D по теореме 9.5). Естественно, что существуют интегралы от таких же функций по любым измеримым подмножествам G и D.

13. Простые гладкие поверхности. Касательная к плоскости, нормаль. Ориентация простой гладкой поверхности.

Определение 20.1. Пусть G — ограниченная область в \mathbb{R}^2_{uv} . Отображение F из \overline{G} в \mathbb{R}^3_{xyz} , заданное векторным равенством $\vec{r}=\vec{r}(u,v),\ (u,v)\in \overline{G}$, называется гладким в \overline{G} , если оно непрерывно дифференцируемо в \overline{G} , причём $[\vec{r}_u,\vec{r}_v]\neq \vec{0}$ в \overline{G} (т.е. векторы \vec{r}_u и \vec{r}_v не коллинеарны в \overline{G}).

Определение 20.2. Пусть отображение F биективно отображает замыкание \overline{G} ограниченной области $G \subset \mathbb{R}^3_{uv}$ на множество $S \subset \mathbb{R}^3_{xyz}$, причём это отображение является гладким в \overline{G} . Тогда множество точек S называется простой гладкой поверхностью (ПГП) в \mathbb{R}^3 .

Определение 20.3. Пусть $D\subset \mathbb{R}^2_{st}$ и $G\subset \mathbb{R}^2_{uv}$ — плоские ограниченные области. Рассмотрим отображение Φ , биективно отображающее D на G и ∂D на ∂G (т.е. в целом \overline{D} на \overline{G}), действующее по формулам $u=u(s,t),\ v=v(s,t),$ непрерывно дифференцируемое с ненулевым якобианом в \overline{D} . Если ПГП S задаётся отображением F, действующим по формулам $x=x(u,v),\ y=y(u,v),\ z=z(u,v),\ (u,v)\in \overline{G},$ то отображение Φ называется допустимой заменой параметров (ДЗП) на S.

Определение 20.4. Пусть S — ПГП, заданная отображением F замыкания ограниченной области $G \subset \mathbb{R}^3_{uv}$ в \mathbb{R}^3_{xyz} . Тогда образ ∂G при отображении F называется краем поверхности S (обозначается δS), а оставшееся множество $S \setminus \delta S$ — внутренней областью поверхности S.

Лемма 20.1. При допустимой замене параметров (см. обозначения определения 20.3) имеют место равенства:

- 1) $\vec{r}_s=u_s\vec{r}_u+v_s\vec{r}_v,\ \vec{r}_t=u_t\vec{r}_u+v_t\vec{r}_v,\ (s,t)\in\overline{D},\ \vec{r}_u$ и \vec{r}_v рассматриваются в точке (u(s,t),v(s,t));
- 2) $[\vec{r}_s, \vec{r}_t] = \frac{D(u,v)}{D(s,t)} [\vec{r}_u, \vec{r}_v], \ (s,t) \in \overline{D}, \ \vec{r}_u$ и \vec{r}_v рассматриваются в точке $(u(s,t), \ v(s,t)).$

 $\ \square$ 1) Так как функции u и v дифференцируемы в D, а функции $x,\,y,\,z$ дифференцируемы в G, то по теореме о дифференцировании сложной функции имеют место равенства:

$$x_s = x_u \cdot u_s + x_v \cdot v_s, \quad y_s = y_u \cdot u_s + y_v \cdot v_s,$$

 $z_s = z_u \cdot u_s + z_v \cdot v_s, \quad (s, t) \in D.$

Эти три равенства можно записать в виде одного векторного $\vec{r}_s = u_s \vec{r}_u + v_s \vec{r}_v$, аналогично $\vec{r}_t = u_t \vec{r}_u + v_t \vec{r}_v$. В силу непрерывности всех этих функций, равенства сохраняются при $(s,t) \in \overline{D}$

2) $[\vec{r}_s, \vec{r}_t] = [u_s \vec{r}_u + v_s \vec{r}_v, u_t \vec{r}_u + v_t \vec{r}_v]$. Так как $[\vec{r}_u, \vec{r}_u] = [\vec{r}_v, \vec{r}_v] = \vec{0}$, а $[\vec{r}_v, \vec{r}_u] = -[\vec{r}_u, \vec{r}_v]$ (известные из аналитической геометрии свойства векторного произведения), то

$$[\vec{r}_s,\vec{r}_t] = (u_sv_t - v_su_t) \cdot [\vec{r}_u,\vec{r}_v] = \frac{D(u,v)}{D(s,t)} \cdot [\vec{r}_u,\vec{r}_v].$$

Следствие 1. Если на ПГП в параметризации u, v произвести ДЗП по формулам $u=u(s,t), \ v=v(s,t), \ (s,t)\in \overline{D}$ (см. обозначения определения 20.3), то в параметризации s,t поверхность также является ПГП.

 \Box Так как функции $x,\ y,\ z$ непрерывны в \overline{G} и все их частные производные продолжаются до функций, непрерывных в \overline{G} (определение 20.2 ПГП), а функции u и v непрерывны в \overline{D} и все их частные производные продолжаются до функций, непрерывных в \overline{D} , то сложные функции x(u(s,t),v(s,t)), y(u(s,t),v(s,t)), z(u(s,t),v(s,t)) непрерывны в \overline{D} и их частные производные, определяемые по первой части леммы 20.1, продолжаются до функций, непрерывных в \overline{D} . Так как $[\vec{r}_u,\vec{r}_v]\neq \vec{d},\ \frac{D(u,v)}{D(s,t)}\neq 0$ в \overline{G} и \overline{D} соответственно, то по второй части леммы 20.1 также $[\vec{r}_s,\vec{r}_t]\neq \vec{0}$ в \overline{D} , т.е. поверхность S является ПГП в параметризации s,t.

Определение 20.5. Плоскость, проходящая через точку M_0 , лежащую на ПГП S, с координатами $x_0=x(u_0,v_0),\ y_0=y(u_0,v_0),\ z_0=z(u_0,v_0)$ (см. обозначения определения 20.2) с парой направляющих векторов $\vec{r}_u(u_0,v_0)$ и $\vec{r}_v(u_0,v_0)$, называется касательной плоскостью к поверхности S в точке M_0 . Два вектора $\vec{v}_1=\frac{[\vec{r}_u,\vec{r}_v]}{[\vec{r}_u,\vec{r}_v]}$ и $\vec{v}_2=-\vec{v}_1$ (векторы \vec{r}_u и \vec{r}_v рассматриваются при $u=u_0,\ v=v_0$) называются векторами единичной нормали к ПГП S в точке M_0 .

Определение 20.9. ПГП S, заданная уравнением $\vec{r}=\vec{r}(u,v),\ (u,v)\in \overline{G}$, где G — ограниченная область в \mathbb{R}^2_{uv} , называется ориентированной, если задан вектор единичной нормали как непрерывная вектор-функция на \overline{G} (т.е. сделан выбор знака в равенстве $\vec{\nu}=\pm\frac{|\vec{r}_u,\vec{r}_v|}{|\vec{r}_u,\vec{r}_v|}$; геометрически выбор этого знака соответствует выбору одной из двух сторон ПГП).

Рассмотрим другой подход к определению ориентации ПГП. Пусть плоскость \mathbb{R}^2_{uv} «естественно положительно ориентирована», т.е. кратчайший поворот от базисного вектора \vec{e}_u к базисному вектору \vec{e}_v происходит на 90° против часовой стрелки. Напомним, что простая замкнутая гладкая кривая γ в области G считается положительно ориентированной, если обход её осуществляется против часовой стрелки. Пусть ПГП S — образ \overline{G} при отображении F; $S = F(\overline{G})$. Как было доказано в § 1 этой главы, образ $F(\gamma)$ кривой γ также является гладкой кривой, которая является простой замкнутой в силу биективности отображения F.

Пусть точка (u_0, v_0) лежит внутри кривой γ . Рассмотрим соответствующую точку M_0 на поверхности и координатные кривые $u=u_0, \ v=v_0$ (см. рис. 20.9).

Из конца вектора $\vec{\nu}_1$ кратчайший поворот от \vec{r}_u к \vec{r}_v виден против часовой стрелки, поэтому обход $F(\gamma)$ виден также против часовой стрелки. Итак, выбор нормали $\vec{\nu}_1$ (т.е. знака «+» в формуле $\vec{\nu}=\pm\frac{\left|\vec{r}_w,\vec{r}_v\right|}{\left|\vec{r}_u,\vec{r}_v\right|}$) соответствует выбору стороны поверхности, на которой направление обхода образа простой замкнутой гладкой кривой то же, что и направление обхода самой кривой в области G; выбор знака «-» соответствует изменению направления обхода образа простой замкнутой кривой по сравнению с самой кривой (строгих формулировок и рассуждений мы здесь не приводим).

14. Поверхностные интегралы первого и второго рода. Независимость определения от ДЗП.

Определение 20.7. Пусть $S = \Pi \Gamma \Pi$, заданная уравнениями x = x(u, v), y = y(u, v), z = z(u, v) (в векторном виде $\vec{r} = \vec{r}(u,v), (u,v) \in \overline{G}$), где G — измеримая область в \mathbb{R}^2_{uv} ; f — непрерывная функция от x, y, z на множестве S. Тогда поверхностным интегралом первого рода $\iint_S f(x,y,z) dS$ называется двойной интеграл

$$\iint_{G} f(x(u,v), y(u,v), z(u,v)) \cdot |[\vec{r}_{u}, \vec{r}_{v}]| \, du \, dv. \tag{20.1}$$

Корректность определения 20.7. Пусть отображение Φ , задающее ДЗП на ПГП S, удовлетворяет также условиям теоремы 19.21' о замене переменной в двойном интеграле (дважды непрерывно дифференцируемо в D с ограниченным якобианом, причём Φ — правильное отображение в D, а Φ^{-1} правильное отображение в области G); здесь применяются обозначения определений 20.3 и 20.7. Докажем, что значение $\iint_S f(x,y,z) dS$ не изменится при ДЗП на поверхности S (области D и G считаем измеримыми).

(здесь использована вторая часть леммы 20.1). Поэтому значение $\iint_S f(x,y,z) \, dS$ не изменится после ДЗП $u=u(s,t), \, v=$

Определение 20.8. Площадью ПГП S, полученной при отображении замыкания измеримой области $G \subset \mathbb{R}^2_{uv}$ в \mathbb{R}^3_{xuz} , называется

$$\iint_S dS = \iint_G |[\vec{r}_u, \vec{r}_v]| \, du \, dv.$$

Определение 20.10. Пусть S — ориентированная ПГП, заданная уравнением $\vec{r} = \vec{r}(u, v), (u, v) \in \overline{G}$, где G — измеримая область в \mathbb{R}^2_{uv} ; $\vec{\nu}$ — вектор единичной нормали к S, соответствующий её данной ориентации; $\vec{a} = (P,Q,R)^T$ — непрерывная вектор-функция от переменных x, y, z на множестве S. Тогда поверхностным интегралом второго рода $\iint_S (\vec{a}, d\vec{S})$ называется поверхностный интеграл первого рода $\iint_S (\vec{a}, \vec{\nu}) \, dS$.

Так как $\vec{\nu}=\pm \frac{[\vec{r}_u,\vec{r}_v]}{[\vec{r}_u,\vec{r}_v]}$, где знак определяется выбором стороны поверхности, а $[\vec{r}_u, \vec{r}_v] \neq \vec{0}$ в точке S, то вектор-функция $\vec{\nu}$, а вместе с ней и скалярная функция $(\vec{a}, \vec{\nu})$, непрерывна на множестве S. Согласно определению 20.7 поверхностного интеграла первого рода,

$$\begin{split} &\iint_S(\vec{a},d\vec{S}) = \iint_S\left(\vec{a},\ \pm \frac{[\vec{r}_u,\vec{r}_v]}{|[\vec{r}_u,\vec{r}_v]|}\right)dS = \\ &= \pm \iint_G\left(\vec{a},\ \frac{[\vec{r}_u,\vec{r}_v]}{|[\vec{r}_u,\vec{r}_v]|}\right) \cdot |[\vec{r}_u,\vec{r}_v]| \, du \, dv = \pm \iint_G(\vec{a},\vec{r}_u,\vec{r}_v) \, du \, dv. \end{split}$$
 Для поверхностного интеграла второго рода принят также

координатный символ

$$\iint_{\mathcal{C}} (P(x,y,z) \, dy \, dz + Q(x,y,z) \, dz \, dx + R(x,y,z) \, dx \, dy);$$

таким образом, $d\vec{S}$ — это символический вектор (dy dz, dz dx, $dx\,dy)^T$, причём порядок умножения символических дифференциалов существенен: именно $dz\,dx$, а не $dx\,dz$, и т.д. Смысл этого станет понятен чуть позже. Преобразуя выражение $\iint_C (\vec{a}, \vec{r}_u, \vec{r}_v) du dv$ по формуле, выражающей смещанное произведение через координаты векторов в правом ортонормированном базисе, получим

$$\begin{split} \iint_G \begin{vmatrix} P & Q & R \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix} du \, dv = \\ & = \iint_G \left(P \frac{D(y,z)}{D(u,v)} + Q \frac{D(z,x)}{D(u,v)} + R \frac{D(x,y)}{D(u,v)} \right) du \, dv. \\ \text{Здесь } P, \ Q, \ R & -\text{ сложные функции } (P(x(u,v), \ y(u,v), \ z(u,v)) \text{ и т.д.}). \ \text{Таким образом,} \end{split}$$

$$\begin{split} \iint_S (P\,dy\,dz + Q\,dz\,dx + R\,dx\,dy) &= \\ &= \pm \iint_G \left(P\,\frac{D(y,z)}{D(u,v)} + Q\,\frac{D(z,x)}{D(u,v)} + R\,\frac{D(x,y)}{D(u,v)}\right)du\,dv, \end{split}$$

а в якобиане порядок функций существенен; это объяснений некоммутативности формального умножения символических дифференциалов. Напомним, что знак «+» или «—» в этой формуле определяется знаком в формуле $\vec{\nu}=$ $=\pm \frac{|\vec{r}_u,\vec{r}_v|}{|[\vec{r}_u,\vec{r}_v]|},$ соответствующим выбранной стороне поверхности. При смене стороны поверхности $(\vec{\nu} \to -\vec{\nu})$ поверхностный интеграл второго рода изменяет знак.

15. Теорема Остроградского-Гаусса.

Теорема 21.1 (формула Остроградского–Гаусса). Пусть G — каноническая область в пространстве \mathbb{R}^3 , векторное поле $\vec{a}(x,y,z)=(P,Q,R)^T$ непрерывно дифференцируемо в G. Тогла

$$\iiint_{G} \operatorname{div} \vec{a} \, dx \, dy \, dz = \iint_{\partial G} (\vec{a}, d\vec{S}), \quad \text{r.e.}$$

$$\iiint_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx \, dy \, dz =$$

$$= \iint_{\partial G} (P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy)$$

(граница области ориентирована внешней нормалью).

Поверхностный интеграл второго рода в теории поля называют потоком векторного поля через выбранную сторону поверхности. Таким образом, поток непрерывно дифференцируемого векторного поля через внешнюю сторону границы канонической области в \mathbb{R}^3 равен тройному интегралу от дивергенции поля по всей области.

 \square По теореме о сведении кратного интеграла к повторному, применённой к \overline{G} как к простому множеству относительно оси z,

$$\iiint_{\overline{G}} \frac{\partial R}{\partial z} \ dx \ dy \ dz = \iint_{\overline{G}_1} dx \ dy \int_{\psi(x,y)}^{\varphi(x,y)} \frac{\partial R(x,y,z)}{\partial z} \ dz.$$

Тройной интеграл существует по теореме 19.5 (в более общем случае по теореме 19.9). Так как граница области G состоит из графиков непрерывных функций $z=\varphi(x,y)$ и $z=\psi(x,y)$ на измеримом компакте \overline{G}_1 , а также части цилиндрической поверхности, то $\mu\partial G=0$. Тройной интеграл по множеству G такой же, как и по множеству \overline{G} .

При фиксированных $(x,y)\in G_1$ функция R(x,y,z) непрерывна по z на отрезке $[\psi(x,y);\varphi(x,y)]$, непрерывно дифференцируема на интервале $(\psi(x,y);\varphi(x,y))$ и $\frac{\partial R}{\partial z}$ имеет конечные пределы в концах интервала. С учётом теоремы 4.16 эта функция непрерывно дифференцируема на $[\psi(x,y);\varphi(x,y)]$, и по формуле Ньютона–Лейбница

$$\int_{\psi(x,y)}^{\varphi(x,y)} \frac{\partial R(x,y,z)}{\partial z} \ dz = R(x,y,\varphi(x,y)) - R(x,y,\psi(x,y)).$$

Применяя сведение тройного интеграла к повторному, имеем

$$\begin{split} \iiint_G \frac{\partial R}{\partial z} \; dx \, dy \, dz &= \iint_{\overline{G}_1} dx \, dy \, \int_{\psi(x,y)}^{\varphi(x,y)} \frac{\partial R(x,y,z)}{\partial z} \; dz = \\ &= \iint_{\overline{G}_1} R(x,y,\varphi(x,y)) \, dx \, dy - \iint_{\overline{G}_1} R(x,y,\psi(x,y)) \, dx \, dy = \\ &= \iint_{\Gamma_{\varphi}^{-1}} R(x,y,z) \, dx \, dy - \iint_{\Gamma_{\psi}^{-1}} R(x,y,z) \, dx \, dy, \end{split}$$

где последние два поверхностных интеграла второго рода берутся по верхним сторонам графиков соответствующих непрерывных функций на компакте \overline{G}_1 (см. определение 20.17). Внешняя сторона ∂G соответствует верхней стороне графика функции φ и нижней стороне графика функции ψ , поэтому в последнее выражение интегралы по внешним сторонам соответствующих

кусков ∂G войдут со знаком «+» (см. рис. 21.1).

Остался нерассмотренным интеграл $\iint_S R(x,y,z)\,dx\,dy$, где S — часть цилиндрической поверхности, входящая в ∂G (см. рис. 21.1). Но для этого интеграла соответствующая векторфункция $\vec{a}=(0,0,R)^T$, а вектор $\vec{\nu}$ нормали к S ортогонален оси z, поэтому $(\vec{a},\vec{\nu})=0$, и $\iint_S R\,dx\,dy=\iint_S (\vec{a},\vec{\nu})dS=0$. Окончательно имеем

$$\iiint_G \frac{\partial R}{\partial z} \; dx \, dy \, dz = \iint_{\partial G} R(x,y,z) \, dx \, dy,$$

где поверхностный интеграл второго рода берётся по внешней стороне $\partial G.$ Аналогично, рассматривая \overline{G} как простое множество относительно осей x и y, получим

$$\iiint_G \frac{\partial P}{\partial x} \, dx \, dy \, dz = \iint_{\partial G} P(x, y, z) \, dy \, dz,$$

$$\iiint_G \frac{\partial Q}{\partial y} \, dx \, dy \, dz = \iint_{\partial G} Q(x, y, z) \, dz \, dx.$$

Складывая полученные три равенства, придём к нужной формуле.

16. Теорема Стокса.

Теорема 21.3 (формула Стокса). Пусть

- 1°. Вектор-функция $\vec{a}=(P,Q,R)^T$ непрерывно дифференцируема в области $G\subset\mathbb{R}^3_{xyz}$;
- 2°. S дважды непрерывно дифференцируемая ПГП, заданная уравнением $\vec{r}=\vec{r}(u,v),\,(u,v)\in\overline{D}$, где к области D применима формула Грина, а граница D простая замкнутая кусочно-гладкая кривая γ , причём $S\subset G$;
- 3°. ориентация S согласована c ориентацией её края Γ . Тогда $\int_{\Gamma}(\vec{a},d\vec{r})=\iint_{S}(\operatorname{rot}\vec{a},d\vec{S}).$
- З а м е ч а н и е. Под дважды непрерывной дифференцируемостью S понимается дважды непрерывная дифференцируемость вектор-функции $\vec{r}(u,v)$ в \overline{D} .

 \square Параметризуем кривую $\gamma\colon u=u(t),\,v=v(t),\,t\in[\alpha;\beta],$ так, что при возрастании t от α к β кривая γ обходится в положительном направлении в плоскости $\mathbb{R}^2_{uv}.$ Функции u и v непрерывны на отрезке $[\alpha;\beta]$ и отрезок этот разбивается на конечное число отрезков, на каждом из которых они перерывно дифференцируемы. Так как Γ является образом γ при биективном отображении вектор-функцией $\vec{r}(u,v)=(x(u,v),y(u,v),z(u,v))^T,$ то Γ также параметризуется параметром $t\in[\alpha,\beta]$:

$$x=x(u(t),v(t)),\quad y=y(u(t),v(t)),\quad z=z(u(t),v(t)).$$

При этом, как отмечалось в § 3 главы XX, со стороны поверхности, ориентированной нормалью $\vec{\nu}=+\frac{|\vec{r}_u,\vec{r}_v|}{|\vec{r}_u,\vec{r}_v|}$, обход Γ , соответствующий возрастанию t, также осуществляется против часовой стрелки (т.е. эта ориентация S согласована с ориентацией Γ , соответствующей возрастанию t). Из равенства $\vec{r}'(t)==u'(t)\cdot \vec{r}_u+v'(t)\vec{r}_v$ следует, что кривая Γ является гладкой на всех промежутках изменения t, на которых является гладкой кривая γ (см. конец § 1 главы XX), и, следовательно, в целом, в силу биективности отображения, Γ — простая замкнутая кусочно-гладкая кривая. Тогда

$$\begin{split} \int_{\Gamma} P(x, y, z) \, dx &= \\ &= \int_{\alpha}^{\beta} P(x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) x'(t) \, dt = \\ &= \int_{\alpha}^{\beta} P(x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) \times \\ &\times (x_u \cdot u'(t) + x_v \cdot v'(t)) \, dt = \int_{\gamma} (P \cdot x_u \, du + P \cdot x_v \, dv) \end{split}$$

(при преобразовании криволинейного интеграла второго рода в \mathbb{R}^3_{xyz} в интеграл по отрезку и затем при преобразовании интеграла по отрезку в криволинейный интеграл второго рода в \mathbb{R}^2_{uv} учтено, что направление обхода кривой в обоих случаях соответствует возрастанию t).

Последний интеграл по формуле Грина преобразуем в двойной интеграл по области D_{τ} получим

$$\iint_D \left(\frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial v}\right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u}\right)\right) du \, dv.$$
 Здесь использовано то, что функции x_u и x_v непрерывно диф-

Здесь использовано то, что функции x_u и x_v непрерывно дифференцируемы в \overline{D} в силу дважды непрерывной дифференцируемости x(u,v). Преобразуем этот двойной интеграл:

$$\iint_D \left(\frac{\partial P}{\partial u} \frac{\partial x}{\partial v} + P \frac{\partial^2 x}{\partial u \partial v} - \frac{\partial P}{\partial v} \frac{\partial x}{\partial u} - P \frac{\partial^2 x}{\partial v \partial u}\right) du \, dv.$$
 Смещанные частные производные, взятые в разном порядке,

Смешанные частные производные, взятые в разном порядке, равны (это следует из дважды пепрерывной дифференцируемости функции x(u,v) в D). Преобразуя $\frac{\partial P}{\partial u}$ и $\frac{\partial P}{\partial v}$ как частные производные сложных функций, приведём интеграл к виду

производные сложных функций, приведём интеграл к виду
$$\iint_D \left(\left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial u} \right) \frac{\partial x}{\partial v} - \right. \\ \left. - \left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial v} \right) \frac{\partial x}{\partial u} \right) du \, dv = \\ = \iint_D \left(\frac{\partial P}{\partial z} \cdot \frac{D(z,x)}{D(u,v)} - \frac{\partial P}{\partial y} \cdot \frac{D(x,y)}{D(u,v)} \right) du \, dv = \\ = \iint_S \left(\frac{\partial P}{\partial z} \, dz \, dx - \frac{\partial P}{\partial y} \, dx \, dy \right)$$

(здесь использованы формула для вычисления поверхностного интеграла второго рода из \S 4 главы XX и соответствие данной ориентации S знаку «+» в формуле для $\vec{\nu}$).

Аналогично

$$\begin{split} & \int_{\Gamma} Q(x,y,z) \, dy = \iint_{S} \left(\frac{\partial Q}{\partial x} \, dx \, dy - \frac{\partial Q}{\partial z} \, dy \, dz \right), \\ & \int_{\Gamma} R(x,y,z) \, dz = \iint_{S} \left(\frac{\partial R}{\partial y} \, dy \, dz - \frac{\partial R}{\partial x} \, dz \, dx \right). \end{split}$$

Складывая полученные три равенства, имеем

$$\begin{split} \int_{\Gamma} (P \, dx + Q \, dy + R \, dz) &= \\ &= \iint_{S} \biggl(\biggl(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \biggr) \, dy \, dz + \biggl(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \biggr) \, dz \, dx + \\ &+ \biggl(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \biggr) \, dx \, dy \biggr), \end{split}$$

T.e.

$$\int_{\Gamma} (\vec{a}, d\vec{r}) = \iint_{\Gamma} (\operatorname{rot} \vec{a}, d\vec{S}).$$

17. Потенциальные векторные поля. Условие независимости криволинейного интеграла

второго рода от пути.

Определение 21.5. Непрерывно дифференцируемая скалярная функция u называется потенциалом непрерывного векторного поля $\vec{a}=(P,Q,R)^T$ в области $G\subset\mathbb{R}^3$, если в этой области $\vec{a}=\operatorname{grad} u$ (т.е. $P=\frac{\partial u}{\partial x},\,Q=\frac{\partial u}{\partial y},\,R=\frac{\partial u}{\partial z}$). Аналогичное определение даётся для области $G\subset\mathbb{R}^2$; там $\vec{a}=(P,Q)^T,\,P=\frac{\partial u}{\partial x},\,Q=\frac{\partial u}{\partial y}$.

Определение 21.6. Векторное поле \vec{a} называется потенциальным в области $G \subset \mathbb{R}^3$ (или \mathbb{R}^2), если оно имеет потенциал в этой области.

Теорема 21.5. Пусть вектор-функция \vec{a} непрерывна в области $G \subset \mathbb{R}^3$ (или \mathbb{R}^2). Тогда следующие 3 утверждения равносильны.

- 1°. $\int_{\Gamma}(\vec{a},d\vec{r})=0$ по любой замкнутой кусочно-гладкой кривой $\Gamma\subset G.$
- 2° . $\int_{\gamma}(\vec{a},d\vec{r})$ по кусочно-гладкой кривой $\gamma\subset G$ зависит только от начальной и конечной точек кривой, но не зависит от самой кривой.
- 3° Векторное поле \vec{a} имеет потенциал.

При выполнении каждого из этих условий $\int_{\gamma}(\vec{a},d\vec{r})=u(B)-u(A)$, где A — начальная, B — конечная точка кривой, u — потенциал.

 \square Рассмотрим случай \mathbb{R}^3 (случай \mathbb{R}^2 разбирается аналогично).

 $1^{\circ} \Rightarrow 2^{\circ}$ (см. рис. 21.3). Рассмотрим две кусочно-гладкие кривые γ_1 и γ_2 с общим началом A и концом B. Они образуют замкнутую ориентированную кусочно-гладкую кривую Γ (сначала из точки A движемся к точке B по кривой γ_1 , затем обратно из B в A по кривой γ_2). Тогда

$$0=\int_{\Gamma}(\vec{a},d\vec{r})=\int_{A\gamma_1B}+\int_{B\gamma_2A}=\int_{A\gamma_1B}-\int_{A\gamma_2B},\quad \text{r.e.}\quad \int_{A\gamma_1B}=\int_{A\gamma_2B}$$

(интегралы по кривым γ_1 и γ_2 с общими началом A и концом B совпадают). Отметим, что кривая Γ может иметь точки самопересечения, т.е. не обязана являться простой замкнутой.

 $2^{\circ}\Rightarrow 3^{\circ}$. Пусть $A=(x_0,y_0,z_0)\in G$ — фиксированная точка, $B=(x,y,z)\in G$ — произвольная точка. Так как $\int_{\gamma}(\vec{a},d\vec{r})$ зависит только от начальной и конечной точек кривой, то выражение $u(x,y,z)=\int_A^B(\vec{a},d\vec{r})$ определяет однозначную функцию точки B, не зависящую от кусочно-гладкой кривой γ с началом в A и концом в B. Докажем, что u — потенциал векторного поля \vec{a} .

Так как G — область, то точка B входит в G вместе с некоторой окрестностью, и для достаточно малых τ точка $C(x+\tau,y,z)$ и весь отрезок BC целиком принадлежат G (см. рис. 21.4). Тогда

$$\begin{split} u(x+\tau,y,z) - u(x,y,z) &= \int_A^C (\vec{a},d\vec{r}) - \int_A^B (\vec{a},d\vec{r}) = \int_B^C (\vec{a},d\vec{r}) = \\ &= \int_B^C P(\xi,\eta,\zeta) \, d\xi + Q(\xi,\eta,\zeta) \, d\eta + R(\xi,\eta,\zeta) \, d\zeta. \end{split}$$

Этот интеграл не зависит от кусочно-гладкой кривой, соединяющей точки B и C, его можно брать по отрезку BC. Параметризуем отрезок BC: $\xi=t,\,\eta=y,\,\zeta=z,\,t\in[x;x+\tau]$ $(x,\,y,\,z-$ фиксированные числа, координаты точки $B;\,t-$ параметр). Если $\tau<0$, то отрезок BC всё равно пробегается от B к C; в этом случае ориентация отрезка соответствует убыванию t. Тогла

$$u(x+\tau,y,z)-u(x,y,z)=\int_x^{x+\tau}P(t,y,z)\,dt=P(\tau_0,y,z)\cdot\tau,$$

где $au_0= au_0(au)\in[x;x+ au]$; здесь применена теорема о среднем для определённого интеграла по отрезку.

Так как $\lim_{\tau\to 0}\tau_0(\tau)=x$, а функция P непрерывна по первому аргументу, то $\lim_{\tau\to 0}P(\tau_0,y,z)=P(x,y,z)$ и существует $\frac{\partial u}{\partial x}(x,y,z)=\lim_{\tau\to 0}\frac{u(x+\tau,y,z)-u(x,y,z)}{\tau}=\lim_{\tau\to 0}P(\tau_0,y,z)=P(x,y,z)$. Аналогично, $\frac{\partial u}{\partial y}=Q$, $\frac{\partial u}{\partial z}=R$. Значит, функция u непрерывно дифференцируема в области G и является потращия пом подя $\frac{\partial u}{\partial z}=0$.

 $3^{\circ}\Rightarrow 1^{\circ}$. Пусть $P=\frac{\partial u}{\partial x},\ Q=\frac{\partial u}{\partial y},\ R=\frac{\partial u}{\partial z}$ в области $G;\ \gamma$ — произвольная кусочно-гладкая кривая в G, параметризуемая параметром $t\colon x=x(t),\ y=y(t),\ z=z(t),\ t\in [\alpha;\beta];\ A=(x(\alpha),y(\alpha),z(\alpha))$ — начало, $B=(x(\beta),y(\beta),z(\beta))$ — конец кривой. Тогда

$$\begin{split} \int_{\gamma} (P\,dx + Q\,dy + R\,dz) &= \\ &= \int_{\alpha}^{\beta} \left(\frac{\partial u}{\partial x}\,x'(t) + \frac{\partial u}{\partial y}\,y'(t) + \frac{\partial u}{\partial z}\,z'(t) \right) dt = \\ &= \int_{\alpha}^{\beta} \frac{d}{dt} \left(u(x(t), y(t), z(t)) \right) dt = \\ &= u(x(\beta), y(\beta), z(\beta)) - u(x(\alpha), y(\alpha), z(\alpha)) = u(B) - u(A). \end{split}$$

Для замкнутой кусочно-гладкой кривой $\Gamma\subset G$ начало и конец совпадают, т.е. A=B и $\int_{\Gamma}(\vec{a},d\vec{r})=0.$

Попутно доказано, что при наличии потенциала для кривой γ с началом A и концом B интеграл равен u(B)-u(A). Равенство $\int_A^B (\vec{a}, d\vec{r}) = u(B) - u(A)$ является аналогом формулы Ньютона-Лейбница для потенциальных полей.

18. Геометрическое определение ротора. Связь потенциальность и безвихревости векторного

поля.

Теорема 21.4 (геометрический смысл проекции ротора на произвольное направление). Пусть векторфункция $\vec{a}(x,y,z)$ непрерывно дифференцируема в окрестности точки $M_0 \in \mathbb{R}^3$; $\vec{\nu}$ — произвольный единичный вектор.

Тогда $(\cot\vec{a},\vec{\nu})(M_0)=\lim_{k\to\infty}\frac{\int_{\Gamma_k}(\vec{a},d\vec{r})}{\mu S_k}\;,$ где $\Gamma_k,\ k=1,\ 2,\ \dots,\ -$ последовательность окружностей, лежащих в плоскости, проходящей через точку М₀ перпендикулярно вектору $\vec{\nu}$, центры которых — точка M_0 , а радиусы стремятся к нулю; μS_k — площади кругов S_k , ограниченных этими окружностями; направление обхода Γ_k из конца вектора й видно против часовой стрелки.

 \square Применим формулу Стокса к кривой Γ_k и поверхности S_k :

$$\int_{\Gamma_k} (\vec{a}, d\vec{r}) = \iint_{S_k} (\cot \vec{a}, d\vec{S}) = \iint_{S_k} (\cot \vec{a}, \vec{\nu}) dS$$

(ориентации Γ_k и S_k такие, как на рис. 21.2, поверхностный интеграл в формуле Стокса приведён к интегралу первого рода). Здесь S_k — круг как ПГП, являющаяся частью плоскости; если внутренность этого круга рассмотреть как область $G_k \subset \mathbb{R}^2_{uv}$, то ПГП S_k мо-

жет быть параметризована так:

$$\vec{r} = \vec{r}_0 + \vec{e}_1 u + \vec{e}_2 v, \quad (u, v) \in \overline{G}_k,$$

где \vec{r}_0 — радиус-вектор точки M_0 , \vec{e}_1 и \vec{e}_2 — ортонормированный базис в \mathbb{R}^2_{uv} . Тогда поверхностный интеграл первого рода приводится к двойному интегралу

$$\iint_{\overline{G}_k} (\operatorname{rot} \vec{a}, \vec{\nu}) \cdot |[\vec{r}_u, \vec{r}_v]| du \, dv = \iint_{\overline{G}_k} (\operatorname{rot} \vec{a}, \vec{\nu}) \, du \, dv,$$
 так как $|[\vec{r}_u, \vec{r}_v]| \, = \, |[\vec{e}_1, \vec{e}_2]| \, = \, 1. \;\;$ В последнем интеграле по-

дынтегральное выражение — функция от u и v. По теореме о среднем 19.15 этот интеграл равен

$$\begin{split} (\operatorname{rot} \vec{a}, \vec{\nu})(M_k) \cdot \iint_{\overline{G}_k} du \, dv = \\ &= (\operatorname{rot} \vec{a}, \vec{\nu})(M_k) \cdot \mu \overline{G}_k = (\operatorname{rot} \vec{a}, \vec{\nu})(M_k) \cdot \mu S_k, \end{split}$$

где $M_k \in \overline{G}_k$ или, если M_k рассматривать как точку поверхности $S_k,\ M_k\in S_k$. Так $ho(M_k,M_0)\to 0$ (это расстояние не превосходит радиуса круга S_k), то $\lim_{k \to \infty} M_k = M_0$. В силу непрерывности функции $(\operatorname{rot} \vec{a}, \vec{\nu})$ в точке M_0

$$(\operatorname{rot} \vec{a}, \vec{\nu})(M_0) = \lim_{k \to \infty} (\operatorname{rot} \vec{a}, \vec{\nu})(M_k) = \lim_{k \to \infty} \frac{\int_{\Gamma_k} (\vec{a}, d\vec{r})}{\mu S_k}.$$

Теорема 21.7. Если непрерывно дифференцируемое векторное поле $\vec{a}=(P,Q)^T$ потенциально в области $G\subset\mathbb{R}^2$, то $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ в области G. Обратно, если в односвязной области $G \subset \mathbb{R}^2$ для непрерывно дифференцируемого векторного поля $\vec{a} = (P,Q)^T$ выполняется равенство $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, то поле \vec{a} потенциально в G.

 \Box Если поле потенциально, то найдётся непрерывно дифференцируемая функция uтакая, что $P=\frac{\partial u}{\partial x},\,Q=\frac{\partial u}{\partial y}$ (так как P и Q — непрерывно дифференцируемые функции, то u дважды непрерывно дифференцируемая функция в G). Тогда

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x} \,, \quad \text{r.e.} \quad \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \,.$$

Обратно, пусть $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ в односвязной области G, а Γ – замкнутая кусочно-гладкая кривая в G. В силу односвязности G кривая Γ является границей ограниченного открытого множества $D \subset G$. По формуле Грина (мы приняли без доказательства, что формула Грина справедлива в этом общем слу-

$$\int_{\Gamma} (P \, dx + Q \, dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = 0$$

(граница считается положительно ориентированной). Так как $\int_{\Gamma} (\vec{a}, d\vec{r}) = 0$ по любой замкнутой кусочно-гладкой кривой в G, то поле \vec{a} потенциально в области G.

Условие односвязности области G во второй части теоремы 21.7 существенно. В неодносвязной области условие $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial u}$ не является достаточным для потенциальности поля.

Теорема 21.8. Если непрерывно дифференцируемое векторное поле \vec{a} потенциально в области $G\subset\mathbb{R}^3$, то $\cot\vec{a}=\vec{0}$ в области G. Обратно, если в поверхностно односвязной области $G \subset \mathbb{R}^3$ для непрерывно дифференцируемого векторного поля \vec{a} выполняется равенство rot $\vec{a}=\vec{0}$, то поле \vec{a} потенциально BG.

□ Если поле потенциально, то найдётся непрерывно дифференцируемая вектор-функция u такая, что $\vec{a} = \operatorname{grad} u$ (так как \vec{a} — непрерывно дифференцируемая вектор-функция, то функция u дважды непрерывно дифференцируема в G). Тогда $\operatorname{rot} \vec{a} = \operatorname{rot} \operatorname{grad} u = \vec{0}$ в G (свойство 6° в $\S 1$ этой главы).

Обратно, пусть $\cot \vec{a} = 0$ в поверхностно односвязной области G, а Γ — замкнутая кусочно-гладкая кривая в G. В силу поверхностной односвязности G кривая Γ является краем КГП $S \subset G$. Будем считать, что можно применить формулу Стокса (то, что поверхность S разбивается на дважды непрерывно дифференцируемые ПГП, в теореме Стокса несущественно, но очень упрошает доказательство). Из общего варианта формулы Грина, принятого нами без доказательства, следует, что эта формула применима к плоским областям, образами замыканий которых при отображении на S являются ПГП, входящие в S. Тогда по теореме Стокса

$$\int_{\Gamma} (\vec{a}, d\vec{r}) = \iint_{S} (\operatorname{rot} \vec{a}, d\vec{S}) = 0.$$

Так как $\int_{\Gamma} (\vec{a}, d\vec{r}) = 0$ по любой замкнутой кусочно-гладкой кривой в области G, то поле \vec{a} потенциально в G.

19. Геометрическое определение дивергенции. Соленоидальные векторные поля.

Теорема 21.2 (геометрический смысл дивергенции). Пусть вектор-функция $\vec{a}(x,y,z)$ непрерывно дифференцируема в окрестности точки $M_0 \in \mathbb{R}^3$. Тогда

$$\operatorname{div} \vec{a}(M_0) = \lim_{k \to \infty} \frac{\iint_{\partial G_k} (\vec{a}, d\vec{S})}{\mu G_k} \,,$$

где $G_1\supset G_2\supset\ldots\supset G_k\supset\ldots\ni M_0$ — последовательность канонических областей таких, что вектор-функция й непрерывно дифференцируема в \overline{G}_1 и $\lim_{k \to \infty} \operatorname{diam} G_k = 0$ (например, последовательность окрестностей точки M_0 , радиусы которых стремятся к нулю); интегралы берутся по внешней стороне ∂G_k .

Теорема 21.9. Если непрерывно дифференцируемое векторное поле \vec{a} соленоидально в области $G \subset \mathbb{R}^3$, то div $\vec{a} = 0$ в области G. Обратно, если в объёмно односвязной области $G \subset \mathbb{R}^3$ для непрерывно дифференцируемого векторного поля \vec{a} выполняется равенство div $\vec{a}=0$, то поле \vec{a} соленоидально в

Определение 21.12. Векторное поле \vec{a} называется соле-

ноидальным в области $G \subset \mathbb{R}^3$, если поток этого поля через

любую замкнутую КГП $S \subset G$ равен нулю.

□ По теореме Остроградского–Гаусса

$$\iint_{\partial G_k} (\vec{a}, d\vec{S}) = \iiint_{G_k} \operatorname{div} \vec{a} \, dx \, dy \, dz \equiv \iiint_{\overline{G}_k} \operatorname{div} \vec{a} \, dx \, dy \, dz.$$
 По теореме 19.15 о среднем последний интеграл равен

$$\operatorname{div} \vec{a}(M_k) \cdot \iiint_{\overline{G}_k} dx \, dy \, dz = \operatorname{div} \vec{a}(M_k) \cdot \mu G_k,$$

где $M_k \in \overline{G}_k$ (здесь использовано то, что функция div \vec{a} непрерывна в замыкании измеримой области G_k).

Легко показать, что всегда diam \overline{X} = diam X, где $X \subset \mathbb{R}^n$. B самом деле, пусть $\operatorname{diam} X = d$, и точки $A, B \in \overline{X}$. Тогда существуют последовательности точек $A_k \in X, B_k \in X, k = 1$, 2, ..., такие, что $\lim_{k\to\infty}A_k=A, \lim_{k\to\infty}B_k=B$. Значит,

$$\forall \, arepsilon > 0
ightarrow \exists \, k_0 : \, \forall \, k \geqslant k_0 \longrightarrow
ho(A_k,A) < arepsilon, \quad
ho(B_k,B) < arepsilon; \
ho(A,B) \leqslant
ho(A,A_k) +
ho(A_k,B_k) +
ho(B_k,B) < \operatorname{diam} X + 2 arepsilon = d + 2 arepsilon.$$
 Так как $arepsilon > 0$ — любое, то $ho(A,B) \leqslant d$; следовательно, $\operatorname{diam} \overline{X} \leqslant d$. Ho $\operatorname{diam} \overline{X} \geqslant \operatorname{diam} X = d$, значит, $\operatorname{diam} \overline{X} = d$.

Возвращаясь к доказательству теоремы 21.2, имеем

$$\rho(M_k, M_0) \leqslant \operatorname{diam} \overline{G}_k = \operatorname{diam} G_k \to 0$$
 при $k \to \infty$,

и lim $M_k=M_0$. В силу непрерывности функции div \vec{a} в точке

$$\operatorname{div} \vec{a}(M_0) = \lim_{k \to \infty} \operatorname{div} \vec{a}(M_k) = \lim_{k \to \infty} \frac{\iint_{\partial G_k} (\vec{a}, d\vec{S})}{\mu G_k}.$$

 \square Если точка $M_0 \in G$, то по теореме 21.2 о геометрическом смысле дивергенции

$$\operatorname{div} \vec{a}(M_0) = \lim_{k \to \infty} \frac{\iint_{\partial G_k} (\vec{a}, d\vec{S})}{\mu G_k} ,$$

где в качестве G_k можно взять последовательность окрестностей точки M_0 , радиусы которых стремятся к нулю. Так как все интегралы в этом равенстве равны нулю при $G_k \subset G$ (т.е. при $k \geqslant k_0$), то div $\vec{a}(M_0) = 0$, а M_0 — произвольная точка G. Первая часть теоремы доказана.

Обратно, пусть div $\vec{a}=0$ в объёмно односвязной области G, а S — замкнутая КГП в G. В силу объёмной односвязности G поверхность S является границей ограниченного открытого множества $D \subset G$. По формуле Остроградского–Гаусса (мы приняли без доказательства, что формула Остроградского-Гаусса справедлива в этом общем случае)

$$\iint_S (\vec{a}, d\vec{S}) = \iiint_D \operatorname{div} \vec{a} \, dx \, dy \, dz = 0$$

(поверхность S ориентирована внешней нормалью). Так как $\iint_S (\vec{a}, d\vec{S}) = 0$ по любой замкнутой КГП в G, то поле \vec{a} соленоидально в области G.