FLIP-FLOP

Aim: Truth table verification of Flip-Flops:

RS FLIP-FLOP

- (i) JK Master Slave
 - (ii) D- Type
 - (iii) T- Type.

Apparatus Required: -

IC 7410, IC 7400, etc.

Procedure: -

- 1. Connections are made as per circuit diagram.
- 2. The truth table is verified for various combinations of inputs.

Truth Table: (Master Slave JK Flip-Flop)

Preset	Clear	J	K	Clock	Qn+1	Qn+1	
0	1	X	X	X	1	0	Set
1	0	X	X	X	0	1	Reset
1	1	0	0	л	Qn	Qn	No Change
1	1	0	1	л	0	1	Reset
1	1	1	0	л	1	0	Set
1	1	1	1	л	Qn	Qn	Toggle

D Flip-Flop:

Preset	Clear	D	Clock	Qn+1	$\overline{Qn+1}$
1	1	0	Л	0	1
1	1	1	л	1	0

T Flip-Flop:-

Preset	Clear	Т	Clock	Qn+1	Qn+1
1	1	0	Л	Qn	Qn
1	1	1	Л	Qn	$\mathbf{Q}\mathbf{n}$

Exercise:

· Write the timing diagrams for all the above Flip-Flops

Pi	n I)etai	ils: ·	
CK1	1	0	16	K1
PR1	2		15	<u>Q1</u>
Clr1	3		14	01
J1	4		13	Gnd
VCC_	5	7476	12	K2
CK2_	6		11	<u>Q2</u>
PR2	7		10	02
Clr2	8		9	J2

Truth Table:-									
	Clock	QC	QB	QA					
	0	0	0	0					
	1	0	0	1					
	2	0	1	0					
	3	0	1	1					
	4	1	0	0					
	5	1	0	1					
	6	1	1	0					
	7	1	1	1					

Timing Diagram:

Preset	Clear	J	K	Clock	Qn+1	Qn+1	
О	1	x	x	x	1	0	Set
1	0	x	x	x	0	1	Reset
1	1	0	0	小	Qn	Qn	No Change
1	1	0	1	元	0	1	Reset
1	1	1	0	小	1	0	Set
1	1	1	1	小	Qn	Qn	Toggle

(a) Connect the two NOR gates as shown in Figure 1.

Figure 1. An RS Flip-Flop created using NOR gates.

- (b) Vary the inputs R and S (i.e. 0 and +5V) to obtain all the possible combinations for Q and /Q.
- (c) <u>In your opinion</u> why is there a Q and /Q output? <u>In your opinion</u> how does this circuit work?

Section 2. The Synchronous Flip-Flop

(a) Synchronous means that this flip-flop is concerned with time! Digital circuits can have a concept of time using a clock signal. The clock signal simply goes from low-to-high and high-to-low in a short period of time.

Figure 2. A typical clock signal.

Figure 3. The Synchronous Flip Flop.

Implement the circuit in Figure 3. You can simulate a clock signal by moving the clock line from low to high and back again to low.

(b) Vary inputs R and S and apply the clock pulse. Write the output states into a table as below:

Qn	/Qn	R	S	Qn+1	/Qn+1
0	1	0	0		
1	0	0	0		
0	1	0	1		
1	0	0	1		
0	1	1	0		
1	0	1	0		
0	1	1	1		
1	0	1	1		

(c) Convert the circuit into a D-type flip flop (as shown in Figure 4.)

Figure 4. The D-type flip-flop

Draw up the truth table for a D-type flip flop. <u>In your opinion</u> how does it work? what could this circuit be useful for?