

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Arias and Miki Lustig Fa 2022

Lecture 4B Vector Spaces

Announcements

- Last time:
 - Continue with Matrix transformations
 - Matrix Inverse
- Today:
 - Vector spaces
 - Null spaces
 - Subspaces / Row

Matrix Inversion

Invertibility of Linear Transformations

- Theorem: A is invertible, if and only if (iff) the columns of A are linearly independent.
 - 1. If columns of A are lin. dep. then A^{-1} does not exist
 - 2. If A^{-1} exists, then the cols. of A are linearly independent

Proof concept: Assume linear dependence and invertibility and show that it is a contradiction

From linear dependence: $\exists \overrightarrow{\alpha} \neq 0$ such that $A\overrightarrow{\alpha} = 0$

Assume
$$A^{-1}$$
 exists $A^{-1}A\overrightarrow{\alpha}=0$
$$I\overrightarrow{\alpha}=0$$
 But $\overrightarrow{\alpha}\neq 0$! Hence A^{-1} does not exist

Inverse of a 2x2 matrix

$$A = \begin{bmatrix} a & b \\ C & d \end{bmatrix}$$
 1.Flip a and d
2.Negate b and c
3.Divide by $ad - bc$

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Derive via Gauss Elimination!

Equivalent Statements

- Matrix A is invertible
- $\bullet A\overrightarrow{x} = \overrightarrow{b}$ has a unique solution
- $\bullet A$ has linearly independent columns (A is full rank)
- •A has a trivial nullspace
- ullet The determinant of A is not zero

Today (and next time's) Jargon

- Rank a matrix A is the number of linearly independent columns
- Nullspace of a matrix A is the set of solutions to $A\overrightarrow{x} = 0$
- A **vector space** is a set of vectors connected by two operators (+,x)
- A vector subspace is a subset of vectors that have "nice properties"
- A basis for a vector space is a minimum set of vectors needed to represent all vectors in the space
- Dimension of a vector space is the number of basis vectors
- Column space is the span (range) of the columns of a matrix
- Row space is the span of the rows of a matrix

M Uecker, P Lai, MJ Murphy, P Virtue, M Elad, JM Pauly, SS Vasanawala, ... Magnetic resonance in medicine 71 (3), 990-1001

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142121/

• Basis - 3 times

meets GRAPPA

- Rank 4 times
- Row space 4 times
- Columns (of a matrix) 6 times
- Subspace 17 times
- Null Space 29 times
- Eigen 87 times

Vector Space

From Merriam Webster:

Definition of vector space

a set of vectors along with operations of addition and multiplication such that the set is a commutative group under addition, it includes a multiplicative inverse, and multiplication by scalars is both associative and distributive

Vector Space

• A vector space, is a set of vectors and scalars ($\mathbb{V} \in \mathbb{R}^N$, $\mathbb{F} \in \mathbb{R}$) and two operators \cdot , + that satisfy the following:

Axioms of closure

1.
$$\alpha \overrightarrow{x} \in \mathbb{V}$$

2.
$$\overrightarrow{x} + \overrightarrow{y} \in \mathbb{V}$$

3.
$$\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$$
 (associativity)

Axioms of addition

4.
$$\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$$
 (commutativity)

5.
$$\exists \overrightarrow{0} \in \mathbb{V}$$
 s.t. $\overrightarrow{x} + \overrightarrow{0} = \overrightarrow{x}$ (additive identity)

6.
$$\exists (-\overrightarrow{x}) \in \mathbb{V}$$
 s.t. $\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$ (additive inverse)

7.
$$\alpha(\overrightarrow{x} + \overrightarrow{y}) = \alpha \overrightarrow{x} + \alpha \overrightarrow{y}$$
 (distributivity)

Axioms of scaling (\cdot)

8.
$$\alpha \cdot (\beta \overrightarrow{x}) = (\alpha \beta) \cdot \overrightarrow{x}$$

9.
$$(\alpha + \beta)\overrightarrow{x} = \alpha \overrightarrow{x} + \beta \overrightarrow{x}$$

10.
$$1 \cdot \overrightarrow{x} = \overrightarrow{x}$$

Vector Space

- A vector space V is a set of vectors and two operators \cdot , + that satisfy the following:
 - 1. $\alpha \overrightarrow{x} \in \mathbb{V}$
 - 2. $\overrightarrow{x} + \overrightarrow{y} \in \mathbb{V}$
 - 3. $\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$ (associativity)
 - 4. $\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$ (commutativity)
 - 5. $\exists \overrightarrow{0} \in \mathbb{V}$ s.t. $\overrightarrow{x} + \overrightarrow{0} = \overrightarrow{x}$ (additive identity)
 - 6. $\exists (-\overrightarrow{x}) \in \mathbb{V}$ s.t. $\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$
 - 7. $\alpha(\overrightarrow{x} + \overrightarrow{y}) = \alpha \overrightarrow{x} + \alpha \overrightarrow{y}$ (distributivity)
 - 8. $\alpha \cdot (\beta \overrightarrow{x}) = (\alpha \beta) \cdot \overrightarrow{x}$
 - 9. $(\alpha + \beta)\overrightarrow{x} = \alpha \overrightarrow{x} + \beta \overrightarrow{x}$
 - 10. $1 \cdot \overrightarrow{x} = \overrightarrow{x}$

Is \mathbb{R}^2 a vector space?

Is
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$
?

Is
$$\alpha \in \mathbb{R}$$
, $\alpha \geq 0$?

Is
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, +, \cdot)$
 - $\mathbb{U} \subset \mathbb{V}$ and have 3 properties
 - 1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
 - 2. Closed under vector addition: \overrightarrow{v}_1 , $\overrightarrow{v}_2 \in \mathbb{U}$, $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 \in \mathbb{U}$
 - 3. Closed under scalar multiplication: $\overrightarrow{v}_1 \in \mathbb{U}$, $\alpha \in \mathbb{F}$, $\Rightarrow \alpha \overrightarrow{v} \in \mathbb{U}$

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, +, \cdot)$
 - $\mathbb{U} \subset \mathbb{V}$ and have 3 properties
 - 1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
 - 2. Closed under vector addition: \overrightarrow{v}_1 , $\overrightarrow{v}_2 \in \mathbb{U}$, $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 \in \mathbb{U}$
 - 3. Closed under scalar multiplication: $\overrightarrow{v}_1 \in \mathbb{U}$, $\alpha \in \mathbb{F}$, $\Rightarrow \alpha \overrightarrow{v} \in \mathbb{U}$

Q: Consider all vectors \overrightarrow{v} who's length < 1. Is this a subspace?

A: not closed under addition, nor scalar mult.

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, +, \cdot)$
 - $\mathbb{U} \subset \mathbb{V}$ and have 3 properties
 - 1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
 - 2. Closed under vector addition: \overrightarrow{v}_1 , $\overrightarrow{v}_2 \in \mathbb{U}$, $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 \in \mathbb{U}$
 - 3. Closed under scalar multiplication: $\overrightarrow{v}_1 \in \mathbb{U}$, $\alpha \in \mathbb{F}$, $\Rightarrow \alpha \overrightarrow{v} \in \mathbb{U}$

Q: Is Span
$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$
 a subspace?

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, +, \cdot)$
 - $\mathbb{U} \subset \mathbb{V}$ and have 3 properties
 - 1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
 - 2. Closed under vector addition: \overrightarrow{v}_1 , $\overrightarrow{v}_2 \in \mathbb{U}$, $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 \in \mathbb{U}$
 - 3. Closed under scalar multiplication: $\overrightarrow{v}_1 \in \mathbb{U}$, $\alpha \in \mathbb{F}$, $\Rightarrow \alpha \overrightarrow{v} \in \mathbb{U}$

Q: Is Span
$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$
 a subspace?

Q: What about this?

A: $\overrightarrow{0} \notin \mathbb{U}$ No!

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, +, \cdot)$
 - $\mathbb{U} \subset \mathbb{V}$ and have 3 properties
 - 1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
 - 2. Closed under vector addition: \overrightarrow{v}_1 , $\overrightarrow{v}_2 \in \mathbb{U}$, $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 \in \mathbb{U}$
 - 3. Closed under scalar multiplication: $\overrightarrow{v}_1 \in \mathbb{U}$, $\alpha \in \mathbb{F}$, $\Rightarrow \alpha \overrightarrow{v} \in \mathbb{U}$

Q: What about this?

A: Not closed under addition!

Q: What about each of these 2D planes in \mathbb{R}^3

A: yes, as long as passing through 0

By Alksentrs at en.wikipedia -

Example:

$$\mathbb{W} = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \middle| a, b, d \in \mathbb{R} \right\}, \quad \mathbb{V} = \mathbb{R}^{2 \times 2}$$

Is $\mathbb{W} \subset \mathbb{V}$?

1. Zero vector?

2. Closed under addition?

3. Closed under scalar multiplication?

Bases

- In words: Minimum set of vectors that spans a vector space
- Definition: given \mathbb{V} , a set of vectors $\{\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_N\}$ is a basis of the vector space, if it satisfies:
 - $\{\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_N\}$ are linearly independent
 - $\forall \overrightarrow{v} \in \mathbb{V}, \ \exists \ \alpha_1, \alpha_2, \cdots, \alpha_N \in \mathbb{R}^N$ such that $\overrightarrow{v} = \alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2 + \cdots + \alpha_N \overrightarrow{v}_N$

Bases examples

Q: Is
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$
 a basis for $\mathbb{V} = \mathbb{R}^3$?

Q: Is
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\10\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$
 a basis for $\mathbb{V} = \mathbb{R}^3$?

Q: Is
$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$
 a basis for $\mathbb{V} = \mathbb{R}^3$?

Bases examples

Q: Is
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$$
 a basis for $\mathbb{V} = \mathbb{R}^3$?

Q: Is
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\10\\0 \end{bmatrix} \right\}$$
 a basis for $\mathbb{V} = \mathbb{R}^3$?

Column Space

 The range/span/columnspace of a set of vectors is a set of all possible linear combinations:

$$\operatorname{span}\left\{\overrightarrow{a}_{1}, \overrightarrow{a}_{2}, \cdots, \overrightarrow{a}_{M}\right\} = \triangleq \left\{\sum_{m=1}^{M} \alpha_{m} \overrightarrow{a}_{m} \middle| \alpha_{1}, \alpha_{2}, \cdots, \alpha_{M} \in \mathbb{R}\right\}$$

Consider:

$$A = \begin{bmatrix} a & 0 \\ 0 & b \\ 0 & 0 \end{bmatrix}$$

Q: Are the columns of A, a basis?

Q: Is the column space of A, a subspace?

Column Space

Consider:

$$A = \begin{bmatrix} a & 0 \\ 0 & b \\ 0 & 0 \end{bmatrix} \qquad \overrightarrow{v}_1 = A \overrightarrow{u}_1, \quad \overrightarrow{v}_2 = A \overrightarrow{u}_2$$

- 2. Closed under addition?
- 3. Closed under scalar multiplication?

$$\overrightarrow{v}_2 = A\overrightarrow{u}_2$$

Q: Is the column space of A, a subspace?

$$\overrightarrow{A0} = \overrightarrow{0}$$

$$\overrightarrow{v_1} + \overrightarrow{v_2} = A\overrightarrow{u}_1 + A\overrightarrow{u}_2 = A(\overrightarrow{u_1} + \overrightarrow{u}_2)$$

$$\alpha \overrightarrow{v}_1 = \alpha A \overrightarrow{u}_1 = A(\alpha \overrightarrow{u}_1)$$

Rank

- USA Today University Ranking for Cal:
 - #1 (joint) in Computer Science
 - #3 in Electrical Engineering
 - #3 in Computer Engineering

Rank

• $A \in \mathbb{R}^{N \times M}$, Rank $\{A\} = \dim \{\operatorname{Span} \{A\}\}$

$$A = \begin{bmatrix} a & 0 \\ 0 & b \\ 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} a & 0 & 0 \\ b & 0 & 0 \\ c & 0 & 0 \end{bmatrix}$$

2 2 1

• Rank $\{A\} = \dim \{ \operatorname{Span} \{A\} \} \leq \min(M, N)$

Null Space

• Definition: The null-space of $A \in \mathbb{R}^{N \times M}$ is the set of all vectors $\overrightarrow{x} \in \mathbb{R}^M$ such that: $A\overrightarrow{x} = 0$

$$\overrightarrow{Ax} = 0$$

How many solutions for \overrightarrow{x} satisfy the above?

Examples

$$\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Linearly independent!
$$\overrightarrow{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\overrightarrow{0}$ is always in the null space — trivial Null space

Examples

Conssian elimination:

$$\begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 0 \\ 0 \end{bmatrix} \stackrel{=}{\Rightarrow} \vec{x}_1 = \lambda x_2$$

$$\Rightarrow \vec{x}_2 = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$$
Linearly

Linearly dependent!

$$\overrightarrow{x} = \alpha \begin{vmatrix} 2 \\ 1 \end{vmatrix}$$

A has a non-trivial null-space, span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$

Example

$$\overrightarrow{Ax} = \overrightarrow{b}$$

We know that $\overrightarrow{v}_0 \in \text{Null}(A)$

$$\rightarrow A\overrightarrow{v}_0 = \overrightarrow{0}$$

We know 1 solution: \overrightarrow{x}_0

$$\rightarrow A\overrightarrow{x}_0 = b$$

Example

$$\overrightarrow{Ax} = \overrightarrow{b}$$

We know that $\overrightarrow{v}_0 \in \text{Null}(A)$

$$\rightarrow A\overrightarrow{v}_0 = \overrightarrow{0}$$

We know 1 solution: \overrightarrow{x}_0

$$\rightarrow A\overrightarrow{x}_0 = b$$

Then: $\overrightarrow{x}_0 + \alpha \overrightarrow{v}_0$ is also a solution

Back to Tomography

$$1 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 = 4$$

$$0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + 1 \cdot x_4 = 3$$

$$1 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + 0 \cdot x_4 = 2$$

$$0 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 = 5$$

Null Space of the Tomography System (4 measur.)

Step I	[1	1	0	0	$\mid 0 \mid$
	0	0	1	1	0
	1	0	1	0	0
	0	1	0	1	0

Step IV
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Step II
$$\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Null Space of the Tomography System (4 measur.)

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_4$$
 is the free variable: 1

$$\Rightarrow \overrightarrow{x} = \alpha \begin{vmatrix} -1 \\ -1 \end{vmatrix}$$

Possible reconstruction

Rank

- $A \in \mathbb{R}^{N \times M}$, Rank $\{A\} = \dim \{\text{Span } \{A\}\}$
- Rank $\{A\} = \dim \{ \operatorname{Span} \{A\} \} \leq \min(M, N)$

• Rank = L, mean the matrix $A \in \mathbb{R}^{N \times M}$ has L independent rows&columns

• Rank $\{A\}$ + dim $\{\text{Null }\{A\}\}$ = min(M, N)

Equivalent Statements

- Matrix A is invertible
- $\bullet A\overrightarrow{x} = \overrightarrow{b}$ has a unique solution
- $\bullet A$ has linearly independent columns (A is full rank)
- •A has a trivial nullspace
- ullet The determinant of A is not zero

The Determinant

• For $A \in \mathbb{R}^{2 \times 2}$

$$\det(A) = \left(\begin{array}{c} a & b \\ a & \end{array}\right) = ad - bc$$

When $det(A) \neq 0$, A is invertible

Recall:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

lelogram
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ Area} \neq 0 \quad \det(A) = \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc$$

lelogram
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ Area} \neq \emptyset \qquad \det(A) = \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc$$

$$\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$$
 Area $\neq 0$

$$\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix}$$
 Area=0 $det(A) = 1 \cdot 2 - 1 \cdot 2 = 0$

$$\det(A) = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

$$\det(A) = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

$$\det(A) = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

$$area = (c+d)(a+b) - 2bc - ac - bd$$

$$= ca + cb + da + db - 2bc - gc - bd = ad - bc$$

Determinant in \mathbb{R}^3

$$\det\left(\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}\right) = \begin{bmatrix} \mathbf{a}_{\mathbf{X}} \\ \mathbf{e}_{\mathbf{X}} \end{bmatrix} - \begin{bmatrix} \mathbf{b}_{\mathbf{X}} \\ \mathbf{g}_{\mathbf{X}} \end{bmatrix} + \begin{bmatrix} \mathbf{c}_{\mathbf{X}} \\ \mathbf{g}_{\mathbf{X}} \end{bmatrix}$$