... MAXIMAL TOM (CONTINUE) h a compact corrected lie grap T Ch maximal toms h= () g T g-1 =) YhEh I max tons T' contains h. Del G top. group. We say that Gis top. cyclic if Ig & G (g) = G (i.e. (g) is olnse in G) We call of a top. grunator. EXAMPLS

T = S x S Prop A corport tons Tistop. cyclic. Pf. We can arm M/Jh = T a EIR DET

Prop h cpt. Cornected lie group. S,T one max.toni $\exists g \in k$ s.t. $g S g^{-1} = T$. Pt. S is tows => SES top. generator. S= (s). h= Vg Tg-1=> Jg Ehs.t. S (g (g) =) (5) (g (g) $= S \subset gTg^{-1} = S = gTg^{-1}$ Ex.6.h

[maximal ton']

[maximal ton']

[maximal ton']

[maximal ton']

[maximal ton']

[maximal ton']

[maximal ton'] T -> lieT Det A nex. abelian subalyon is colled a Canton subalyon Prop Every two Cartan Insulphor in hie h are conjugated. Pf 5, t Contain mody. 5 = he S, t = he T four gone S, T max. tous. $\exists g s.t. g S g^{-1} = T \Rightarrow Ad(g) = Ad(g) hie s = t$

Det We call rank group the dimension of a nax tous.
nh N= dimT.
Cor If h corpact, then exp: lie h -> k is hijectile
Pt. gek. FT og naxival toms
exp: liet -> T is snjective
geexp(lieT)Cexp(lieG).
Examis exp. glz(112) -> Glz(112)
CLASSIFICATION IN RK 1 & S.Z.
The Let h be corpect connected lie grap with max. fors T. (f din T & S).
ì
thun his isomorphic to SOS(IR), SUZCO or S'.
$Pf. din k \ge 1$.
of dimh = 1 =) h=T b/c h,T corrected.
$=) \ \mathcal{N}^{2} S^{1}.$
dim k > 1.

y = Lieh & C: g > g X871-) X87

$$g = \bigoplus_{i \in \mathbb{Z}} g_i = \{ x + g \mid Ad(t) x = x(t) x \}$$

$$Ad + ((X,Y)) = [Ad(+)X, Ad(+)Y)^{=}$$

$$= (t^{\wedge}X, t^{\wedge}Y) = t^{\wedge + \infty}[X,Y]$$

$$Adf(c(x)) = c Ad(t)(x) = c(x(t)^{m}x) =$$

$$\chi(t)^{-m}c(x)$$

$$=$$
) $c(x) \in g_{-M}$.

.)
$$g_0 = \ker \otimes_{\mathbb{R}} \mathbb{C}$$
.

 $T = \mathcal{Z}_{K}(T) \Rightarrow \ker = \ker \mathcal{Z}_{K}(T)$
 $\begin{cases} \chi \in g | (Adt)X = X \neq t \in T) \end{cases}$
 $\begin{cases} \ker T = g_0 \cap \ker = g_0 \end{cases}$
 $\begin{cases} c : g_0 \rightarrow g_0 \Rightarrow g_0 = g_0 \otimes_{\mathbb{R}} \mathbb{C} = \ker \mathbb{R} \\ \text{Results } \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g_0 = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = \dim_{\mathbb{C}} X \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \Rightarrow \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \end{cases}$
 $\begin{cases} \dim_{\mathbb{C}} g = 1 \end{cases}$

Goal Now y = (X,c(X), [X,c(X)]) $[X,c(x)] \in g_0.$

· [x,c(x)] #0.

Asnu is O. Then $h = \langle X, C(X) \rangle$ is an abelian hie algebra. C: h >h, h is an abolion subolgular of olin 2/(IR)
lie k (X+c(X), iX-ic(X)) } =) (X,c(X))+0.

define
$$V = \mathbb{C}(x) \oplus \mathbb{F}_{y}$$
 moderal $x = x + y + y = x + y = x + y = x + y = x + y = x + y = x + y$

Y ∈
$$g_0$$
, $adc(x)(y) = -adyc(x) = mdk(y)c(x)$

=) V is stake moder $[ad X, adc(x)] = ad([Y,c(x)])$
 $ad([X,c(x)])$ has two trace on V .

 $cust the some is true $\forall Y \in g_0$. $tr Y|_V = 0$
 $formula = 0$
 $formula$$

Ad: K -> GL (lieh)

Ad: k -> GL (lieh) => dAd is injective.

Pt ht SO₂(IR). I g & Lunh Using Peter-Weyl the or in Execise S.h we can find

an innoheible complex up. V of U s.t.
g acts not trivially.
(ieh = lie SO ₂ (R)
lich & C = 8l2 CC).
We how the in. np. of Shall
((m), MZO, ((m) has dim m+1.
We also how that L(m) comes from an up. of
Soz(R) if and only if m is even.
~ V ≥ L(m) a a sl ₂ (r)-np.
and m is not ever. (If m is even we would
and m is not evh. (If m is even we would have such a digrand $N \to SO_2(\mathbb{R}) \to GL(L(m))$
lieh ~ lie SO3(R) -> gl (L(m))
but then g would act trivially.
form is odd => ((m) 15 ever dinemal.

I clain that p' is injective.

We know that hie song (I) has mo iduals.

(EXERCISE W.L.)

- =) op' injective
- =) ku(p') is finite
- (4 finite wood susprep of SU2 CC)
- => H is in the arter.

=) Z(SU_Z(C)) = \(\frac{1}{2} \) id}

But if hu \(q = \left(\frac{1}{2} \right) \) thu \(p \) factorites though \(SO_2(R) \).

