Iván Mauricio Burbano Aldana

Perimeter Scholars International

Chern-Simons Theory Part 1

Homework 2: Temperley - Lieb Algebra

QO: This is because one can perform the following homotopy

This is possible due to the movement

Q1: The inverse is obtained by performing all trajectories backwords.

Q2: Let o; be the braid where all strings were

Scanned with CamScanner

Q3. An even stronger assertion can be made. Let a, be Bn. Consider the infinite sequence of braids

This has period 2 in the time direction. The

corresponding link is obtained by identifying the points at this distance. However, this chain can be shifted to

· · · babababa · ·

Therefore the Knot defined by ab is the same as ba. In particular, the one defined by aba^{-1} is the same as $a^{-1}(ab) = b$.

Q4. The braid in B1 leads to the Knot O. while the braid | leads to

2. These Knots are isotopic.

Q5: Markovs move relies on RI, as is casily seen from the example above.

QG: Indeed

Q7:

$$\langle \mathcal{D} \rangle = A \langle \mathcal{D} \rangle + B \langle \mathcal{D} \rangle$$

$$= A \left(A \langle \mathcal{D} \rangle \right) + B \langle \mathcal{D} \rangle$$

$$+ B \left(A \langle \mathcal{D} \rangle \right) + B \langle \mathcal{D} \rangle$$

$$= (A^2 + B^2) \langle \mathcal{D} \rangle + ABA \langle \mathcal{D} \rangle$$

$$= (A^2 + B^2 + ABA) \langle \mathcal{D} \rangle + BA \langle \mathcal{D} \rangle$$

However, if this is to be a Knot invariant,

We in particular see that the choice $B=A^{-1}$ leads

while $d = -A^2 - A^{-2}$ makes the equality true. I don't know why this needs to be the case.

08: With the choices above and using RI we have

$$= A \left\langle \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\rangle + A^{-1} \left\langle \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\rangle$$

Thus the bracket is is invariant under RI

Q9:

$$\left\langle \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \right\rangle = A \left\langle \begin{array}{c} \begin{array}{c} \\ \end{array} \right\rangle + A^{-1} \left\langle \begin{array}{c} \\ \end{array} \right\rangle \right\rangle$$

$$= A \left\langle \begin{array}{c} \begin{array}{c} \\ \end{array} \right\rangle + A^{-1} \left(-A^2 - A^{-2} \right) \left\langle \begin{array}{c} \\ \end{array} \right\rangle$$

$$= \left(A - A - A^{-3} \right) \left\langle \begin{array}{c} \begin{array}{c} \\ \end{array} \right\rangle = -A^{-3} \left\langle \begin{array}{c} \\ \end{array} \right\rangle \right\rangle$$

Q10: Note that under the reflection we have

$$A\left\langle \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle +A^{-1}\left\langle \left\langle \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right\rangle =\left\langle \left\langle \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle$$

Now, the Kauffman bracket of every Knot can be evaluated into combinations of unknots via application at the above to every crossing. We have thus confirmed (!L>(A) = $\langle L>(A^{-1})$.

Scanned with CamScanner

Q11. It consists of

$$U_{i} = \begin{bmatrix} 1 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

and

Q12. Indeed we have

$$\rho_{n}(\sigma_{i})\rho_{n}(\sigma_{i}^{-1}) = (A + A^{-1}U_{i})(A^{-1} + AU_{i})$$

$$= II_{n} + A^{2}U_{i} + A^{-2}U_{i} + U_{i}^{2}$$

$$= II_{n} - dU_{i} + U_{i}^{2} = II_{n} - dU_{i} + dU_{i} = II_{n},$$

$$\rho_{n}(\sigma_{i})\rho_{n}(\sigma_{i+1})\rho_{n}(\sigma_{i}) = (A + A^{-1}U_{i})(A + A^{-1}U_{i+1})(A + A^{-1}U_{i})$$

$$= A^{3} + AU_{i} + AU_{i+1} + A^{-1}U_{i+1}U_{i} + AU_{i} + A^{-1}U_{i}^{2}$$

$$+ A^{-1}U_{i}U_{i+1} + A^{-3}U_{i}U_{i+1}U_{i}$$

$$= A^{3} + 2AU_{i} + AU_{i+1} + A^{-1}dU_{i} + A^{-1}U_{i+1}U_{i} + A^{-1}U_{i}U_{i+1} + A^{-3}U_{i}$$

= A3 + (ZA - A3 - A)U; + AU;++ A-1 U;+1U; + A-1U;U;+1

Scanned with CamScanner

$$= A^{3} + AU_{i} + AU_{i+1} + A^{-1}U_{i+1}U_{i} + A^{-1}U_{i}U_{i+1} + A^{-3}U_{i+1} - A^{-3}U_{i+1}$$

$$= A^{3} + AU_{i} + AU_{i+1} + A^{-1}U_{i+1}U_{i} + A^{-1}U_{i}U_{i+1} + A^{-3}U_{i+1} - A^{-3}U_{i+1}$$

$$= A^{3} + AU_{i} + (2A - A^{-3} - A)U_{i+1} + A^{-1}U_{i+1}U_{i} + A^{-1}U_{i}U_{i+1} + A^{-3}U_{i+1} + A^{-3}U_{i+1}$$

$$= A^{3} + AU_{i} + 2AU_{i+1} + A^{-1}dU_{i+1} + A^{-1}U_{i+1}U_{i} + A^{-1}U_{i}U_{i+1} + A^{-3}U_{i+1}$$

$$= A^{3} + AU_{i} + 2AU_{i+1} + A^{-1}U_{i+1} + A^{-1}U_{i+1}U_{i} + A^{-1}U_{i}U_{i+1} + A^{-3}U_{i+1}$$

$$= (A + A^{-1}U_{i+1})(A + A^{-1}U_{i})(A + A^{-1}U_{i+1}) = g(\sigma_{i+1})g(\sigma_{i})g(\sigma_{i+1}), \quad \text{and}$$

$$f(\sigma_{i})f(\sigma_{3}) = (A + A^{-1}U_{i})(A + A^{-1}U_{i}) = A^{2} + U_{i} + U_{i} + A^{-2}U_{i}U_{i} = g(\sigma_{i})g(\sigma_{i}).$$

$$= A^{2} + U_{i} + U_{j} + A^{-2}U_{j}U_{i} = (A + A^{-1}U_{j})(A + A^{-1}U_{i}) = g(\sigma_{i})g(\sigma_{i}).$$

for 11-1171.

Q13: For the same reason of for braids we must have
$$\overline{t_1t_2} = \overline{t_2t_1}$$
 for all tanglesve t_1 and t_2 .

This relation can be extended to all The Then

 $\langle \overline{p(aba^{-1})} \rangle = \langle \overline{p(a)} \overline{p(b)} \overline{p(a^{-1})} \rangle = \langle \overline{p(a^{-1})} \overline{p(a)} \overline{p(b)} \rangle = \langle \overline{p(a^{-1})} \overline{p(a)} \overline{p(b)} \rangle = \langle \overline{p(a^{-1})} \overline{p(a)} \overline{p(b)} \rangle$
 $= \langle \overline{p(b)} \rangle$.

Q14: From

$$b = \frac{1}{2} = \sigma_2^{-1} \sigma_1 / \frac{1}{2}$$

we get

$$P_{3}(b) = (A^{-1} + AU_{2})(A + A^{-1}U_{1}) = 1 + A^{-2}U_{1} + A^{2}U_{2} + U_{2}U_{1}$$

$$= A^{-2} + A^{-2} + A^{2} + A^{2$$

Thus, if

we have

$$(610) = 1$$
, $(611) = A^{-2}$, $(612) = A^{2}$, $(613) = 1$.

which compared to

suggests

for all braids be Bn. We thus have have

$$\langle \overline{b} \rangle = (-A)^{-3\omega(\overline{b})} \langle \overline{b} \rangle = (-A)^{-3\omega(\overline{b})} \langle \overline{p(b)} \rangle^{(-2)}$$

$$= (-A)$$

Now, it is clear from their definitions that $\omega(\bar{b}) = W(b)$. On the other hand, if to is elementary,

to is anly composed of unknots. It is then clear

that
$$\langle \bar{\ell}_i \rangle = d^{||\ell_i||} \langle o \rangle$$
. Thus,