Experimento #5

Sensor Hall

Objetivo: Introdução ao efeito Hall, com a medida da intensidade de campos magnéticos utilizando um sensor Hall. Determinação da curva de resposta do sensor em função do ângulo de incidência das linhas de campo magnético.

T /	-4-		1.
M	ate	rız	ı,

- Material:
 Multímetro Digital Modelo: ______. Fonte DC – Modelo:Sensor Hall (Honeywell SS495A)
- Magnetos com Transferidor
- 1) Determine a tensão de saída V_{so} observada na ausência de um campo magnético significativo sobre o sensor, com uma tensão de alimentação de +5 volts.

$$V_{so} =$$
 [volts]

2) Determine o valor de B_0 [G], a partir do modelo do sensor: $V_s = k_s B_z + V_{so} = k_s B_0 \cos(\theta) + V_{so}$

Note que:
$$k_s \sim 3,125 \text{ [mV/G]}$$
 $\theta = 0 \Longrightarrow V_{s_{\text{max}}} = k_s B_0 + V_{so}$ $B_0 = \frac{V_{s_{\text{max}}} - V_{so}}{k_s}$ θ $V_{s_{\text{max}}}[V]$ $cos(\theta)$ $B_0[G]$

θ	$V_{s_max}[V]$	$cos(\theta)$	$B_{\theta}[G]$
0			

3) Realize medidas da tensão V_s [V] do sensor Hall com um multímetro, para diferentes valores do ângulo entre o sensor e o campo magnético, sempre usando a melhor escala do voltímetro. Calcule os valores de $cos(\theta)$ e da densidade de fluxo magnético na direção-z (B_z) [G], perpendicular ao sensor.

θ	$V_s[V]$	$cos(\theta)$	$B_z[G]$
30			
60			
90			
120			
150			
180			
210			
240			
270			
300			
330			

4) Responda:

- a) Plote os gráficos V_s [V] vs. θ [graus] e V_s [V] vs. B_z [G]. Ajuste o modelo do sensor pelo método dos mínimos quadrados nos dois casos e plote as curvas nos mesmos gráficos. Calcule o Erro Quadrático Médio.
- b) Pesquisa: Qual dopagem e proporções físicas (Largura W; Comprimento L; Espessura d) devem ser usadas na construção de sensores Hall em Silício, para maximizar a sensibilidade a campos magnéticos?

Grupo: