# B.E. (Computer Science Engineering) Fourth Semester (C.B.S.)

Theoretical Foundations of Computer Science NIR/KW/18/3381 P. Pages: 3 Time: Three Hours Max. Marks: 80 Notes: All questions carry marks as indicated. 1. 2. Solve Question 1 OR Questions No. 2. 3. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. 4. 5. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. 6. Solve Question 11 OR Questions No. 12. 7. 8. Assume suitable data whenever necessary. Explain closure of a Relation. Find  $R^*$  for  $R = \{(1,1), (1,2), (2,1), (2,3), (3,2)\}$ . 3 1. a) Prove the following relation using principle of Induction: 8 b)  $1.2.3 + 2.3.4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$ i) ii)  $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ What is countability? Explain. 2 c) OR 2. Describe the concept of Pigeon – hole principle with example. 5 a) b) Define the following any four. 8 i) Transitive Closure. Reflexive Transitive Closure. ii) iii) Prefix of String. iv) Suffix of String. Substring. v) Subsequence Design a DFA to accept all the natural numbers divisible by 3. 3. a) 6

8

b) Construct a Mealy machine to find 2's complement of a given binary number. Assume that given binary number is presented from LSB to MSB. Also, convert the resultant Mealy machine into its equivalent Moore machine.

OR

| 4. | a) | Convert the following NFA into its equivalent DFA. |
|----|----|----------------------------------------------------|
| ₹. | α) | Convert the following NIA into its equivalent DIA. |

| $Q/\Sigma$      | 0 | 1    |
|-----------------|---|------|
| $\rightarrow$ p | р | p, q |
| * q             | r | r    |
| r               | - | S    |
| *S              | S | S    |

# b) Construct a minimum state automaton equivalent to a given automaton M whose transition table is given by,

| State / $\Sigma$             | a              | b                                   |
|------------------------------|----------------|-------------------------------------|
| $\rightarrow$ q <sub>0</sub> | $\mathbf{q}_0$ | $q_3$                               |
| $\mathbf{q}_1$               | $\mathbf{q}_2$ | $q_5$                               |
| <b>Q</b> 2                   | $\mathbf{q}_3$ | $\mathrm{q}_{\scriptscriptstyle 4}$ |
| $q_3$                        | $\mathbf{q}_0$ | $q_5$                               |
| ${ m q}_4$                   | $\mathbf{q}_0$ | $\mathbf{q}_{6}$                    |
| $q_5$                        | $\mathbf{q}_1$ | ${ m q}_4$                          |
| $\mathbf{q}_{6}$             | $\mathbf{q}_1$ | $q_3$                               |

## **5.** a) Reduce the following grammar.

$$S \rightarrow aA / aBB$$

$$A \rightarrow aaA/ \in$$

$$B \rightarrow bB / bbC$$

$$C \rightarrow B$$

$$(0+1)*10(0+1)*+(0+1)*11(0+1)*$$

c) Check whether the given grammar is ambiguous or not.

$$S \rightarrow a/Sa/bSS/SbS$$

#### OR

### **6.** a) Convert the following Right linear grammar into left linear grammar.

$$S \rightarrow 01A/10$$

$$A \rightarrow 10A/10$$

## b) Construct a Regular expression from the following finite automata.



5

6

6

7

7. Convert the CFG into PDA. 7 a)  $E \rightarrow aAB/d$  $A \rightarrow BA/a$  $B \rightarrow Ead/c$ Design a PDA for 7 b)  $L = \left\{ ww^{R} / w \in \{a, b\} * \right\}$ OR Convert the given PDA to CFG. 7 8. a)  $\delta(q_0, a, z_0) \rightarrow (q_0, x z_0)$  $\delta(q_0, a, x) \rightarrow (q_0, x x)$  $\delta(q_0, b, x) \rightarrow (q_1, \in)$  $\delta(q_1, b, x) \rightarrow (q_1, \in)$  $\delta(q_1, \in, z_0) \rightarrow (q_1, \in)$ b) Using pumping lema, prove that language 7  $L = \left\{ a^{i^3} / i \ge 1 \right\}$ is not regular. 9. Design a Turing machine for the language a) 6  $L = \left\{ a^n b^m c^n / n, m \ge 1 \right\}$ b) Design a TM to perform multiplication of two unary numbers. 7 OR 10. Explain various types of Turing machines. a) 6 7 b) Design a Turing machine to copy a string over  $\Sigma = \{a, b\}^*$ . 11. a) Explain post correspondence problem. Consider the post correspondence system described 7 by the following lists.  $A = \{10, 01, 0, 100, 1\}$  $\mathbf{B} = \{101, 100, 10, 0, 010\}$ Does this PCP have a resolution? b) Compute A(1, 1), A(1, 2), A(2, 1) using Ackermann function. 6 OR 12. Write a short note on: 13 Halting problem of Turing Machine ii) Linear bounded Automata

iii)

Primitive Recursive Function.

\*\*\*\*\*