Part 2: T-step Targeted Random Walk Sampling (TTRWS)

*Li-Chun Zhang*1,2,3 and *Melike Oguz-Alper*2 ¹*University of Southampton (L.Zhang@soton.ac.uk)*, ²*Statistics Norway*, ³*University of Oslo*

In this illustration, we will work with the basis of inference for the 1st and the 3rd order graph parameters under T-step targeted random walk sampling (TTRWS).

• Population graph: G = (U, A); |U| = N

Description of the population and sampling strategies

- Let $X_t = i$ be the node or *state* at step t. form a Markov chain
- The observation procedure (OP) of TRWS applied to the seed sample $s = \{X_0, X_1, \dots X_T\}$ ullet A node can be observed more than once in the seed sample in contrast to the T-wave SBS
- Under T-step TRWS, $\{i\} imes lpha_i$ and $lpha_i imes \{i\}$ observed at each $X_t = i$, such that the referense set given by $s_{ref} = s imes U \cup U imes s$
- Generating states of T-step walk with seed sample s: $\mathcal{C}_s = \{M: M \subseteq s\}$
- ullet Actual sampling sequence of states (AS3) of motif κ : $s_{\kappa}=(X_t,\ldots,X_{t+q})$ • Equivalent sampling sequence of states (ES3) of s_κ : $R_\kappa=\{ ilde s_\kappa: ilde s_\kappa\sim s_\kappa\}$, contains any possible
- sequence of states with $| ilde{s}_\kappa|=|s_\kappa|$, such that the motif κ would be observed given $(X_t,X_{t+1},\ldots,X_{t+q})= ilde{s}_{\kappa}$
- Formula sheet • The 1st order parameter of interest $\mu = heta/N = \sum_{i \in II} y_i/N$

ullet Let $r_i=r/(d_i+r)$ be the probabability of taking a $\it random\ \it jump$. The transition probability from $X_t = i$ to $X_{t+1} = i$ under TRWS $p_{ij}=rac{1}{d_i+r}ig(1+rac{r}{N}ig)$ if $a_{ij}=1$, and $p_{ij}=rac{r}{d_i+r}rac{1}{N}$ if $a_{ij}=0$ or i=j

$$ullet$$
 Let ${\mathfrak s}_n=\{X_{t_1},X_{t_2},\ldots,X_{t_n}\}$ be the n states after the walk becomes $stationary\ draw-by-draw\ at$

equilibrium, such that π same for each draw. The generalised ratio estimator for the 1st order parameter given by

Stationary probabilities in undirected graphs under TRWS

 $\hat{\mu} = \left(\frac{1}{n}\sum_{i\in\mathfrak{s}_n} \frac{y_i}{c_i}\right)\left(\frac{1}{n}\sum_{i\in\mathfrak{s}_n} \frac{1}{c_i}\right)^{-1}$, where c_i known or unknown values, such that the stationary

 $\pi_i \propto d_i + r$

probabilities $\pi_i \propto c_i$. Under *uniform walk*, $c_i \equiv 1$ and $\pi_i \equiv 1/N$; under *random walk* in undirected graphs, $c_i=d_i$, where c_i unknown for unvisited nodes; under targeted random walk in undirected graphs, $c_i = d_i + r$. • The naive variance estimator of $\hat{\mu}$ under T-step TRWS given by

 $\hat{\mathrm{V}}_{naive}(\hat{\mu})=rac{\sum_{t=0}^T(y_{X_t}-ar{y})^2}{T+1}$, where $ar{y}=\sum_{t=0}^Ty_{X_t}/(T+1)$ The variance estimator of $\hat{\mu}$ under SRS with replacement, an example of independent and identically distributed (IID) random sample, given by

• The 3rd order graph parameter

$$\mu=rac{ heta}{ heta'}$$
, where $heta=\sum_{\kappa\in\Omega}y_\kappa$ is the total number of triangles among cases with all the three nodes being cases, i.e., $y_i=1$ for all $i\in M$, and $heta'=\sum_{\kappa\in\Omega'}y_\kappa'$ is that of the other triangles with at least

An estimator of θ using IWE given by $\hat{ heta}(X_t,\ldots,X_{t+q})=\sum_{\kappa\in\Omega}\sum_Mrac{\delta_M}{\pi_M}I_\kappa(M)w_{M\kappa}y_\kappa$, where $w_{M\kappa}$ is the incidence weight, such that $\sum_{M\in R_\kappa}w_{M\kappa}=1$, $I_\kappa(M)=1$ if $M\in R_\kappa$, and 0 otherwise, and $\delta_M=1$ if M is realised and 0

 $\hat{ heta} = \Big(\sum_{t=1}^{n-q} \mathbb{I}_t \hat{ heta}_t\Big) / \Big(\sum_{t=1}^{n-q} \mathbb{I}_t\Big)$

 $V_{IID}(\hat{\mu}) = \mu(1-\mu)/(T+1)$

one noncase node.

otherwise

 $\pi_M=\Pr(X_{t_1},X_{t_2},\ldots,X_{t_q})=\pi_{X_{t_1}}\prod_{i=1}^{q-1}p(X_{t_i}X_{t_{i+1}})$, where $p(X_{t_i}X_{t_{i+1}})$ is the transition probability from X_{t_i} to $X_{t_{i+1}}$ ullet Let $\mathbb{I}_t=1$ if $M=\{X_t,\ldots,X_{t+q}\}$ yields $\sum_{\kappa\in\Omega}I_\kappa(M)>0$, and 0 otherwise. Provided TRWS

stationary sequence-by-sequence, an estimator of θ combining all $\hat{\theta}_t$ given by

• Given $(X_t, X_{t+1}) = (i, j)$ between two adjacent nodes under TRWS, all the triangles including i and jas two of the nodes observed. Given $(X_t; X_{t+1}) = (i, j)$ as the AS3, the ES3s of any sampled triangle

$$\pi_i p_{ij}=1+rac{r}{N}$$
, which leads to that both the multiplicity and the PPW reduce to $w_{M\kappa}\equiv 1/6$
• The expectation $E(\hat{\mu})$ is estimated by $\bar{\hat{\mu}}=\sum_{b=1}^B\hat{\mu}_b/B$, where $\hat{\mu}_b$ is the estimate for the b th

replication and B is the total number of replications

tot: The number of cases in the population U; default value 20

ullet A N imes N adjacency matrix generated based on the probabilities given by ${oldsymbol xi}$

• The variance of $\hat{\mu}$ is estimated, over all replications, by

• The simulation error of $\bar{\hat{\mu}}$ is estimated by $\sqrt{{
m V}(\bar{\hat{\mu}})/B}$

NB. R-package igraph has to be installed

Description of R-function **genG**

vice-versa, and noncase-noncase, respectively; default vector
$$(0.7,0.2,0.1)^{\top}$$

2. Main steps of the function

ColSums =

3. Main outputs of the function

1. Function parameters

Description of R-function **trw**

 $\Pr(X_0 = i) = 1$; default value 0

3. Main outputs of the function The adjacency matrix returned Description of R-function **triangle** 1. Function parameters • amat: The adjacency matrix for the population graph. Use the output of the function **genG**

- 2. Main steps of the function ullet After specification of the initial state X_0 based on **init**, sample nodes are selected for each step with the transition probabilities given above
- walk Description of R-function **cnv.y**

1. Function parameters

calculated

• **B**: The number of replications; default value 1002. Main steps of the function

• The TRW sampling applied independently for each replication

• **K**: The number of steps after the initial state; default value 2

- The expectation at equilibrium Estimate for the expectation $E(Y_t)$ and its MC-SD
- 3. Main outputs of the function ullet The expectation of the mean over B replications and its SD returned • The square-root of the variance under an IID sample (SD-IID) (e.g. SRS with replacement) returned
- calculated 3. Main outputs of the function
- **init**: How to choose the initial state: if 0, $\Pr(X_0 = i) = \pi_i$; if < 0, $\Pr(X_0 = i) \equiv 1/N$; if > 0, $\Pr(X_0 = i) = 1$; default value 0 \mathbf{K} : The number of steps after the initial state; default value 100
- 2. Main steps of the function ullet An N imes N matrix of transition probabilities constructed, where the transition probabilities given in the

r: The probabilities of random jumps reduced given small value; default value 0.1

- For each walk, the S3P calculated for any given $(X_t, X_{t+1}) = (i, j)$, where $t = 1, \dots, T-1$
- the number of triangles with at least one non-case node calculated. The PPW used. • For each replicate, the ratio of θ/θ' estimated if the walk is valid, which is defined as a walk where at
- The mean and the variance of the estimates obtained over all B replications calculated 3. Main outputs of the function

- $\mu=rac{ heta}{ heta'}$, where $heta=\sum_{\kappa\in\Omega}y_\kappa$ is the total number of triangles among cases with all the three nodes
- $w_{M\kappa}\equivrac{1}{|R_\kappa|},\quad w_{M\kappa}=rac{\pi_M}{\pi_\kappa}$, with $\pi_\kappa=\sum_{M\in R_\kappa}\pi_M$, where π_M is the stationary successive sampling probability (S3P) defined by

■ The multiplicity weight and the proportional-to-probability weight (PPW) given, respectively, by

• A generalised ratio estimator of the population ratio $\mu=rac{ heta}{ heta'}$ given by $\hat{\mu}=rac{ heta}{\hat{\hat{\mu}}}$, which is invariant towards the unknown proportionality constant in S3P

$$ext{V}(\hat{\mu}) = rac{\sum_{b=1}^{B}(\hat{\mu}_b - ar{\hat{\mu}})^2}{B-1}$$

are the six possible adjacent moves along the triangle. Under TRWS, the S3P given by

1. Function parameters • **N**: The number of nodes (vertices) in the population graph G; default value 100

xi: A 3 imes 1 vector of the probabilities of generating edges between any case-case, case-noncase, or

Non-cases

tot X (N-tot)

(N-tot) X (N-tot)

(N-tot) X tot

• amat: The adjacency matrix for the population graph. Use the output of the function **genG**

• **init**: How to choose the initial state: if 0, $\Pr(X_0 = i) = \pi_i$; if < 0, $\Pr(X_0 = i) \equiv 1/N$; if > 0,

• A list of two elements returned: the first element is a vector states X_0, X_1, \ldots, X_K and the second element is an N imes 1 vector of TRUE/FALSE indicating which nodes are visited in the targeted random

• amat: The adjacency matrix for the population graph. Use the output of the function **genG**

ullet The expectation $E(Y_\infty)=\sum_{i\in U}\pi_iy_i$, where $y_i=1$ if case, and $y_i=0$ otherwise, at equilibrium

ullet The expectation $E(Y_t) = \sum_{i \in U} p_{t,i} y_i$ estimated by calculating the mean of the y values of the sample states at step t=K over all replications and the squre-root of the Monte-Carlo variance (MC-SD) is

• **y**: An $N \times 1$ vector of y-values which are equal to 1 for cases, and 0 for non-cases

ullet r: The probabilities of random jumps reduced given small value; default value 0.1

• Counts the triangles in the population graph based on the adjacency matrix

• The number of triangles in the population graph returned

• \mathbf{K} : The number of steps after the initial state; default value 100

- 3. Main outputs of the function
 - ullet $oldsymbol{y}$: An N imes 1 vector of y-values which are equal to 1 for cases, and 0 for non-cases • **init**: How to choose the initial state: if 0, $\Pr(X_0 = i) = \pi_i$; if < 0, $\Pr(X_0 = i) \equiv 1/N$; if > 0, $\Pr(X_0 = i) = 1$; default value 0

r: The probabilities of random jumps reduced given small value; default value 1

- calculated 3. Main outputs of the function
- 2. Main steps of the function • For each replication, the TRW sampling applied for chosen parameters
- **y**: An $N \times 1$ vector of y-values which are equal to 1 for cases, and 0 for non-cases 2. Main steps of the function

Description of R-function **muFun**

1. Function parameters

- The population ratio between the total number of case-triangles and the total number of triangles with at least one non-case node returned

B: The number of replications; default value 100

Description of R-function **est.tri**

- For each step t of a TRW, it is determined if any triangle observed • For each observed triangle, the PPW calculated For each step of a TRW, the weighted sum of the number of case triangles and the weighted sum of
- The number of nodes visited and the estimates of the ratio for replicates with valid walks returned

• **B**: The number of replications; default value 100

• The case prevalence is estimated with the generalised ratio estimator for each Markov-Chain • The SD of the y-values corresponding to the sample states calculated for each Markov-Chain

• amat: The adjacency matrix for the population graph. Use the output of the function **genG**

• The population graph is generated from the adjacency matrix as a graph object. The R-package **igraph**

- used here • All the triangles are idenfified in the population graph • The total number of case-triangles and the total number of triangles with at least one non-case node
- 1. Function parameters • amat: The adjacency matrix for the population graph. Use the output of the function **genG** **y**: An $N \times 1$ vector of y-values which are equal to 1 for cases, and 0 for non-cases
 - formula sheet above For each replication, the TRW sampling applied for chosen parameters
 - least one triangle with at least one non-case node observed
 - The mean and the variance of the estimates over all B replications returned
- Simulation error of the mean of the estimates returned

Description of R-function **est.y** 1. Function parameters • amat: The adjacency matrix for the population graph. Use the output of the function **genG** • **y**: An $N \times 1$ vector of y-values which are equal to 1 for cases, and 0 for non-cases • **init**: How to choose the initial state: if 0, $\Pr(X_0=i)=\pi_i$; if <0, $\Pr(X_0=i)\equiv 1/N$; if >0, $\Pr(X_0 = i) = 1$; default value 0 • \mathbf{K} : The number of steps after the initial state; default value 100• \mathbf{r} : The probabilities of random jumps reduced given small value; default value 0.1