MARTe in JET April 20, 2010

April 20, 2010 - EFDA Feedback Control Working Group Meeting

D. Alves¹ G. De Tommasi² A. Neto¹ F. Sartori³ and EFDA-JET PPCC contributors
¹Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear
²EURATOM-ENEA-CREATE, Università di Napoli Federico II

³Fusion For Energy

G. De Tommasi CREATE PPCC team

Outline

from

From JETRT to MARTe

MARTe in JET XSC adds-on VS5

1

MARTe in JET

Additional modules of the XSC The new Vertical Stabilization System - VS5 **EFCC Voltage Amplifier Controller**

Where we started from - mid 90s

The eXtreme Shape Controller

From JETRT to MARTe

Where we started from

From JETRT to MARTe

MARTe in JET XSC adds-on

VS5 EFCC Contro

PPCC systems for plasma magnetic control

The two main systems run at JET by the Plasma Position and Current Control Group were (and still are!):

Shape Controller (SC) C code deployed on a VxWorks/VME/Motorola68k platform

the Vertical Stabilization System (VS) C code deployed on 4
Texas Instruments DSPs

- ▶ The code was *tailored* for the specific platform
- Lack of modularity
- ▶ Different software solutions to interface with the JET software infrastructure (pre-pulse system configuration, post-pulse data collection,...)

F. Sartori et al.,

The Joint European Torus - Plasma position and shape control in the world's largest tokamak, *IEEE Control Systems Magazine*, vol. 26(2), Apr. 206

Motivation

- ▶ In 2001/2002 the revamping of the SC was planned in order to add the eXtreme Shape Controller algorithm (XSC)
- Within the PPCC group, it was decided to move to a common framework for the development of real-time application

Aims

- Standardize the development of real-time application
- Increase the code reusability
- ► Give consibility to separate the user application from the software need interface with the plant infrastructure
- Reduce the time needed for commissioning.

Requirements

The new framework would have been:

- portable (multi-OS and multi-platform)
- modular the user application would have been easily plugged into an executor of real-time application
- written in C++ (at that time C++ was not a CODAS standard)

Where we started from

MARTe in JET

- ▶ The JETRT framework was developed in 2002/2003 to deploy the XSC
- ▶ JETRT is based on the cross-platform BaseLib library (developed within the PPCC group)

Where we started from

From JETRT to MARTe

Separation between application and infrastructure software

Why we want to separate application from infrastructure software?

- Scientist (process experts) can abstract from the plant interfaces
- Increase code reusability
- ► Achieve standardization

Dutline

Where we started from

From JETRT to MARTe

As a result we have a **Real-time Application Plug-in** that can be used to:

- •

Outline

Where we started from

From JETRT to MARTe

- perform offline validation against a plat model
- •

Where we started from

From JETRT to MARTe

MARTe in JET XSC adds-on

VS5 EFCC Controlle As a result we have a **Real-time Application Plug-in** that can be used to:

- perform offline validation against a plat model
- perform real-time validation with hardware-in-the-loop

•

G. De Tommasi

Outline

Where we started from

From JETRT to MARTe

MARTe in JET

/S5 FCC Controller

As a result we have a **Real-time Application Plug-in** that can be used to:

- perform offline validation against a plat model
- perform real-time validation with hardware-in-the-loop
- run the real-time system on the plant

PPCC team

Outline

Where we started from

From JETRT to MARTe

MARTe in JET

VS5 EFCC Controller

- ► The new SC (including the XSC) has been deployed on a 400 MHz G4 PowerPC running VxWorks
- ▶ 2 ms control loop (but it can easily run at 1 ms)

Commissioning of the JETRT framework and of the XSC

- Thanks to portability, an exhaustive debug of both the JETRT framework and the XSC was performed offline on a Windows-based platform
- Only 3 days of testing on the plant were needed to commission the new system

Outline

Where we started from

From JETRT to MARTe The XSC

Where we started from

From JETRT to MARTe The XSC

MARTe in JET

XSC adds-on VS5

Although it was a first attempt, JETRT didn't provide a real separation between the user application from the plant-interface software!

From JETRT to MARTe

- ► *More* modularity → Generic Application Modules (GAMs)
- ▶ Real separation → Dynamic Data Buffer

The first version of GAMs has been adopted in 2007 to implement the strike-points sweeping algorithm for the XSC

Outline

Where we started from

From JETRT to MARTe

Where we started from

From JETRT to MARTe

MARTe in JET XSC adds-on VS5

Since 2008 several MARTe—based systems have been deployed at JET:

- ▶ betap-li ?? (??) please Filippo help us
- ▶ walls ?? (??) Filippo help us
- new VS system (2008/2009)
- ▶ new EFCC controller (2009)

PPCC team

- Elongated tokamak plasmas are susceptible to a vertical axisymmetric instability
- Dedicated VS system required
- Essential system for operation
- Growth rate of 1000 s^{-1}
- Loss of control can produce forces in the order of the 100's of tonnes

Outline

Where we started from

From JETRT to MARTe

G. De Tommasi

Outline

Where we started from

From JETRT to MARTe

MARTe in JET

VS5

- Elongated tokamak plasmas are susceptible to a vertical axisymmetric instability
- ► 192 signals acquired by ADCs and transferred at each cycle
- ► 50 μs control loop cycle time with jitter s
- Always in real-time (24 hours per day)
 - $1.728 \times 10^9 50 \ \mu s$ cycles/day
 - Crucial for ITER very long pulses

- ▶ 18 GAM instances
 - ▶ Altogether execute in less than 40 μs
 - lacktriangle Synchronization always achieved within 0.8 μs
- 192 signals acquired by ADCs and transferred at each loop
- ► Enable advanced experimental features
 - ELM pacing
 - Complex time windows with different controller features and settings

from

From JETRT to MARTe

EFCC Voltage Controller - Introduction

MARTe in JET

G. De Tommasi

- ► EFCCs, what do they do?
 - ► They change magnetic field topology at the plasma boundary
- ► Why is it important?
 - ▶ Instability mitigation and ELM control
- ► How?
 - By controlling the current in the FFCCs we can control the magnetic field
- Who?
 - The session leader sets the required current waveforms

Where we started from

From JETRT to MARTe

ATM

ETHERNET

>VME-based technology

EFCC controller - Software

Outline

Where we started from

From JETRT to MARTe

EFCC controller – Configuration

Outline

Where we started from

From JETRT to MARTe

EFCC controller – Experimental results

Where we started from

From JETRT to MARTe

