§2.1: ELEMENTARY DERIVATIVE RULES

Dr. Mike Janssen

February 10, 2021

PREVIEW ACTIVITY DISCUSSION

ANNOUNCEMENTS

CONSTANTS, POWERS, AND EXPONENTIALS

•
$$\frac{d}{dx}[c] = 0$$

CONSTANTS, POWERS, AND EXPONENTIALS

•
$$\frac{d}{dx}[c] = 0$$

•
$$\frac{d}{dx}[x^m] = mx^{m-1}$$

CONSTANTS, POWERS, AND EXPONENTIALS

•
$$\frac{d}{dx}[c] = 0$$

•
$$\frac{d}{dx}[x^m] = mx^{m-1}$$

•
$$\frac{d}{dx}[m^x]\ln(m)m^x$$

ACTIVITY 2.1.2

CONSTANT MULTIPLES AND SUMS

•
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

CONSTANT MULTIPLES AND SUMS

•
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

•
$$\frac{d}{dx}[g(x)+h(x)]=g'(x)+h'(x)$$

ACTIVITY 2.1.3

OBSERVATIONS

• The derivative of a polynomial is a polynomial

OBSERVATIONS

- The derivative of a polynomial is a polynomial
- The derivative of an exponential is an exponential

OBSERVATIONS

- The derivative of a polynomial is a polynomial
- The derivative of an exponential is an exponential
- We must not lose sight of what the derivative means-it still describes the instantaneous rate of change of the function being differentiated

ACTIVITY 2.1.4