

明細書

有機エレクトロルミネッセンス素子

5 技術分野

本発明は、電流の注入によって発光するエレクトロルミネッセンスを呈する有機化合物からなる発光層を含む1以上の薄膜（以下、有機機能層という）を備えた有機エレクトロルミネッセンス素子（以下、有機EL素子という）に関する。

10 背景技術

有機EL素子は、発光層を含む有機機能層を表示電極である陽極及び陰極間に挟んだ形態で基本的に構成され、両電極から注入された電子とホール（正孔）が再結合時の励起子が励起状態から基底状態に戻り光を生じさせる。例えば、透明基板上に、陽極の透明電極と、有機機能層と、陰極の金属電極とが順次積層されて有機EL素子は構成される。有機機能層は、例えば、透明電極側から順に積層されたホール注入層／ホール輸送層／発光層／電子輸送層／電子注入層など、それぞれの機能を持つ複数の層からなる。ホール注入層、ホール輸送層はホール輸送性を有する材料からなり、電子輸送層、電子注入層は電子輸送性を有する材料からなる。これら発光層以外の電荷輸送層は、発光層に対する電荷の注入効率を高め、発光層単層からなる素子に比べて、発光効率を大きく向上させる。実際の有機EL素子では電荷輸送層が無いタイプ、更に電荷輸送層の多層のタイプもある。更に、発光層も複数の層、例えば青色発光層／赤色発光層の2層からなる白色発光素子など、からなる場合がある。

発明の開示

有機EL素子の有機機能層の内、互いに隣接する2層を構成する材料のガラス転移温度(T_g)が低いと、高温の環境下に素子が置かれたとき、輝度劣化、色度劣化等が生じる。また、隣接する2層をガラス転移温度が高い材料で構成することも可能である
5 が、このような材料で、連続駆動に対する耐久性、あるいは、素子効率が良好になる材料(2材料)を選択することは至難である。

本発明の解決しようとする課題には、信頼性の高い有機EL素子を提供することが一例として挙げられる。

本発明による有機EL素子は、対向する1対の陽極及び陰極の間に成膜されかつ有
10 機化合物からなる発光層を含む3以上の薄膜からなる有機機能層からなる有機エレクトロルミネッセンス素子であって、前記有機機能層は、それぞれガラス転移温度が第1
温度以上の有機化合物からなる1対の第1及び第2層と、前記第1及び第2層間に挟
持されかつ前記第1温度未満のガラス転移温度を有する有機化合物からなる第3層と
を含むことを特徴とする。
15 図面の簡単な説明

図1は本発明による実施形態の有機EL素子を示す構造図である。

発明を実施するための形態

有機EL素子の有機機能層を構成する材料のガラス転移温度が低いと、高温環境下
に素子が置かれたとき、輝度劣化、色度劣化などが生じる。そこで、有機EL素子の有
20 機能層内のガラス転移温度が低い材料からなる層をガラス転移温度が高い材料からなる層で挟んだ構造とする試作を行った結果、高温環境下に長時間保存した場合でも輝度劣化が抑制されることが知見された。

以下に本発明の実施の形態を図面を参照しつつ説明する。

本発明の有機EL素子は、図1に示すように、例えば、ガラス、プラスチックなどの透明基板1上に、陽極の透明電極2と、有機機能層3と、陰極の金属電極4とが順次積層されて有機EL素子は構成され、透明基板1側から発光を得る。発光を取り出すために、

5 陽極、陰極の少なくとも何れかは、透明又は半透明である必要がある。有機化合物からなる有機機能層3は、例えば、図1に示すように、透明電極2側から積層されたホール注入層30／ホール輸送層31／発光層32／電子輸送層33のそれぞれの機能を持つ複数の層からなる。電子輸送層33及び金属電極4間に電子注入効率を上げるために電子注入層34が設け得る。発光層やホール輸送層及び電子輸送層の電荷輸送層
10 はそれぞれ多層とすることができます。

透明電極2は有機機能層にホールを供給する陽極としての機能を有する。陽極材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などを用いることができ、好ましくは仕事関数が4eV以上の材料を用いる。例えば、陽極に酸化インジウムスズ(ITO)、アンチモンをドープした酸化スズ(ATO)、フッ素をドープした酸化スズ(FTO)、半導性金属酸化物(酸化スズ、酸化亜鉛、酸化インジウム、酸化亜鉛インジウム(IZO)など)、金属(金、銀、クロム、ニッケルなど)、これら金属と導電性金属酸化物との混合物又は積層物、無機導電性物質(ヨウ化銅、硫化銅など)、有機導電性材料(ポリアニリン、ポリチオフェン、ポリピロールなど)及びこれとITOとの積層物などを用い得る。陽極の厚さは例えばITOで1000～300nm程度、金で厚さが800～1
20 50nm程度のものが用い得るが、その材料、透過率に応じて適宜選択する。

金属電極4は有機機能層に電子を注入する陰極としての機能を有する。陰極材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などを用いるこ

とができる。金属電極には例えばアルミニウムなどの低抵抗材料が好ましく、アルミニウム単独のみならず、リチウムーアルミニウム合金、マグネシウムーアルミニウム合金など合金又は混合物を用い得る。有機機能層への電子注入効率を上げるために、LiF(フッ化リチウム)、 Li_2O (酸化リチウム)、CsF(フッ化セシウム)など数Å膜厚程度の電子注入層34を挿入できる。有機機能層に接する金属電極又は電子注入層には好ましくは仕事関数が4.5eV以下の材料を用いる。例えば、それら材料にアルカリ金属(Li、Na、K、Csなど)、アルカリ土類金属(Mg、Caなど)を添加できる。それら材料は単独で使用してもよいが、安定性と電子注入性とを両立させるためには2種以上を併用するのが好ましい。

10 本発明の実施形態の有機EL素子は、対向する1対の陽極及び陰極の間に成膜されかつ有機化合物からなる発光層を含む3以上の薄膜からなる有機機能層からなる。有機機能層は、それぞれガラス転移温度が例えば107°Cの第1温度以上の有機化合物からなる1対の第1及び第2層(ホール輸送層31及び電子輸送層33或いはホール注入層30及び発光層32)と、第1及び第2層間に挟持されかつ第1温度未満のガラス転移温度を有する有機化合物からなる第3層(発光層32或いはホール輸送層31)とを15 含むように構成する。本発明の実施形態の有機EL素子においては、第3層のガラス転移温度と第1及び第2層のいずれのガラス転移温度との差が12°C以上である。第1、第2及び第3層材料は、以上のガラス転移温度の関係を有する材料から選択される。本発明の実施形態の有機EL素子においては、第3層に含まれる有機化合物はフォト20 ルミネッセンスを示し、そのピークが500nm以下であることが好ましい。

かかる第3層と第1及び第2層とのガラス転移温度差が12°C以上あれば高温環境下における長時間保存した場合でも輝度劣化が生じることがない。ガラス転移温度は有

機化合物の熱的安定性を示し、ガラス転移温度が高いほど熱的に安定なアモルファス薄膜を与えることができる。本実施形態のように第1温度を107°Cとすれば、熱的に安定で長時間の通電に対して安定な発光が得られるが、高温下での動作環境などを考慮すると、第1温度が99°C以上でも或る程度の効果は期待できる。本実施形態では示

5 差走査熱量計を用い測定した値を採用している。

挟持される第3層は、発光層の他に、挟持する第1及び第2層のガラス転移温度より低いガラス転移温度を有するものであれば、ホール注入層、ホール輸送層、電子輸送層、電子注入層であってもよい。

本発明の実施形態の有機EL素子におけるホール注入層やホール輸送層を構成す

10 るホール輸送材料としては、上記条件の他に、ホールを輸送する能力、ホールを注入する能力を有し、できれば電子のホール輸送層への移動を防止できる化合物から選択される。ホール輸送材料としては、例えばフタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、4, 4' - ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α -NPD)などの芳香族ジアミン誘導体や、アミン系化合物などが挙げられ
15 る。

本発明の実施形態の有機EL素子における発光層のホスト材料としては、アントラゼン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレンなどの縮合多環誘導体、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(4-メチル-8-キノリナート)アルミニウム、トリス(5-フェニル-8-キノリナート)アルミニウム、

20 ビス(4-メチル-8-キノリナート)アルミニウムなどのキノリノール金属錯体などが使用できる。例えば、有機発光層のホスト材料として下記化学式(1)で示されるBAIq($T_g=99^{\circ}\text{C}$)や、下記化学式(2)で示されるHost($T_g=113^{\circ}\text{C}$)や、下記化学式(3)で

示されるBEM-B ($T_g = 130^\circ\text{C}$) が用いられる。

5 発光層のドーピング材料としては、クマリン系化合物、キナクリドン系化合物、スチルアミン系化合物などの蛍光材料や、フェニルピリジンやアセチルアセトンなどを配位子

とするイリジウム錯体などりん光材料が挙げられる。例えば、有機発光層のドーピング材料として下記化学式(4)で示されるBtpIrや、下記化学式(5)で示されるFIrpicや、下記化学式(6)で示されるIr(ppy)₃が用いられる。

5

本発明の実施形態の有機EL素子における電子輸送層を構成する電子輸送材料は、上記条件の他に、電子を輸送する能力、電子を注入する能力を有し、できればホール

の電子輸送層への移動を防止できる化合物から選択される。電子輸送材料としては、
例えばトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、フルオレ
ノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、
チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、
5 ジスチリルピラジン誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、
フタロシアニン誘導体、キノリノール誘導体などの金属錯体、メタロフタロシアニン、ベ
ンゾオキサゾールやベンゾチアゾールなどを配位子とする金属錯体、アニリン共重合
体、チオフェンオリゴマー、ポリチオフェンなどの導電性高分子、ポリチオフェン誘導体、
ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体などが挙
10 げられる。

{実施例1}

具体的に、サンプルの有機EL素子の複数を作製して、その発光特性を評価した。
サンプルでは、それぞれ基板上のITO(膜厚110nm)陽極上に、以下の材料を順次
蒸着し、下記構成の有機EL素子を作製した。

15 ホール注入層に銅フタロシアニン(CuPc)(膜厚25nm)を、ホール輸送層にHTM
ーA(膜厚105nm)を、発光層にBEMーA(膜厚30nm)を、電子輸送層にAlq3(そ
れぞれ膜厚20nm)を用い有機機能層を図1に示すように積層した。ホール注入材料
であるCuPcは熱的に安定な物質であり、熱分析において300°Cに至るまでガラス転
移温度、融点とも観測されない。HTMーAはガラス転移温度120°Cのホール輸送材
料である。発光層のBEMーAは106°Cのガラス転移温度を有する青色発光材料であ
る。電子輸送材料として機能しているAlq3は167°Cのガラス転移温度を有する。
さらに、それぞれの電子輸送層上に電子注入層としてLiFを膜厚1nm蒸着し、さらに

その上に陰極としてアルミニウム(Al)を膜厚100nm積層し、実施例の有機発光素子サンプルを作製した。

{実施例2}

実施例1におけるホール輸送層をHTM-Aに代えて、ガラス転移温度135°CのHT

5 M-B(膜厚105nm)とした以外、上記実施例1と同一な実施例2を作製した。

{比較例1}

実施例1におけるホール輸送層をHTM-Aに代えて、ガラス転移温度96°Cの α -NPD(膜厚105nm)とした以外、上記実施例1と同一な比較例1を作製した。

実施例1、実施例2、比較例1の有機EL素子を100°Cの恒温槽中で所定時間(時
10 間)保存した。その後、素子を5.5mA/cm²で駆動した場合の色度及び発光効率(cd/A)の変化をそれぞれ表1に示す。

表1

	ホール輸送材	100°C保存 経過時間	色 度		効率(cd/A)
			CIEx	CIEy	
実施例1	HTM-A $T_g = 120^\circ\text{C}$	0	0.144	0.111	4.1
		100	0.143	0.111	4.2
		250	0.143	0.110	4.3
		500	0.143	0.109	4.3
実施例2	HTM-B $T_g = 135^\circ\text{C}$	0	0.144	0.111	3.8
		100	0.143	0.108	3.8
		250	0.144	0.107	3.8
		500	0.143	0.108	4.0
比較例1	α -NPD $T_g = 96^\circ\text{C}$	0	0.146	0.115	3.6
		100	0.287	0.469	0.8
		250	0.299	0.483	0.8
		500	0.300	0.482	0.6

表1から分かるように、実施例1及び実施例2では、100°Cの恒温槽中に500時間保

存しても、色度、発光効率に変化が見られなかった。これに対して、比較例1では、100時間経過した時点で発光色が青色から緑色に変化するとともに、発光効率も初期の1/4以下になってしまった。

{実施例3}

5 実施例1におけるホール輸送層をHTM-Aの膜厚を55nmと薄くし、発光層のBEM-Aに代えて、ドーパント材料のBtpIrを添加したホストのBAIqを発光層(膜厚47.5nm)とし、電子輸送層Alq3の膜厚を30nmと厚くした以外、上記実施例1と同一な実施例3を作製した。発光層のBAIqは99°Cのガラス転移温度を有する。また、BtpIrはりん光性ドーパントである。

10 {実施例4}

実施例3の素子構造におけるホール輸送層のHTM-Aに代えて、ガラス転移温度143°CのHTM-C(膜厚55nm)のホール輸送層とした以外、上記実施例3と同一な実施例4を作製した。

{比較例2}

15 実施例3の素子構造におけるホール輸送材料をHTM-Aに代えて、ガラス転移温度96°Cの α -NPDとした以外、上記実施例3と同一な比較例2を作製した。

実施例3、実施例4、比較例2の有機EL素子を100°Cの恒温槽中で所定時間(時間)保存した。その後、素子を5.5mA/cm²で駆動した場合の色度及び発光効率(cd/A)の変化をそれぞれ表2に示す。

表2

	ホール輸送材	100°C保存 経過時間	色 度		効率(cd/A)
			CIEx	CIEy	
実施例3	HTM-A $T_g = 120^\circ\text{C}$	0	0.677	0.321	6.5
		100	0.678	0.320	6.3
		250	0.677	0.321	6.4
		500	0.678	0.321	6.2
実施例4	HTM-C $T_g = 143^\circ\text{C}$	0	0.676	0.322	5.8
		100	0.676	0.321	5.8
		250	0.676	0.322	5.7
		500	0.676	0.323	5.6
比較例2	α -NPD $T_g = 96^\circ\text{C}$	0	0.678	0.321	6.1
		100	0.645	0.344	2.3
		250	0.567	0.394	1.1
		500	0.531	0.415	1.2

表2から分かるように、実施例3及び実施例4では、100°Cの恒温槽中に500時間保存しても、色度、発光効率に変化が見られなかった。これに対して、比較例2では、100時間経過した時点で発光色が赤色から橙色に変化するとともに、発光効率も初期の5 1/5以下になってしまった。

{実施例5}

実施例1におけるホール輸送層をHTM-Aに代えて、ガラス転移温度96°Cの α -NPD(膜厚105nm)とし、発光層のBEM-Aに代えて、ガラス転移温度130°Cの青色発光材料であるBEM-B(膜厚30nm)とした以外、上記実施例1と同一な実施例5 10を作製した。 α -NPDのフォトルミネッセンスのピークは437nmである。

{比較例3}

実施例5の素子構造における発光層の青色発光材料BEM-Bに代えて、ガラス転移温度106°CのBEM-Aとした以外、上記実施例5と同一な比較例3を作製した。

(比較例1と同じ構成)。

実施例5、比較例3の有機EL素子を100°Cの恒温槽中で所定時間(時間)保存した。

その後、素子を5. 5mA/cm²で駆動した場合の色度及び発光効率(cd/A)の変化をそれぞれ表3に示す。

5 表3

	ホール輸送材	100°C保存 経過時間	色 度		効率(cd/A)
			CIEx	CIEy	
実施例5	BEM-B T _g = 130°C	0	0.146	0.229	2.4
		20	0.148	0.231	2.4
		100	0.159	0.247	2.2
比較例3	BEM-A T _g = 106°C	0	0.146	0.115	3.6
		20	0.146	0.113	3.7
		100	0.287	0.469	0.8

表3から分かるように、実施例5では、100°Cの恒温槽中に500時間保存しても、色度、発光効率に大きな変化が見られなかった。これに対して、比較例3では、100時間経過した時点で発光色が青色から緑色に変化するとともに、発光効率も初期の1/4以下になってしまった。

10 {実施例6}

実施例1におけるホール輸送層をHTM-Aに代えて、ガラス転移温度96°Cのα-NPD(膜厚55nm)とし、発光層のBEM-Aに代えて、ドーパント材料のBtpIrを添加したホストのガラス転移温度113°Cを有する上記Hostを発光層(膜厚47. 5nm)とし、電子輸送層Alq3の膜厚を30nmと厚くした以外、上記実施例1と同一な実施例6の有

15 機EL素子を作製した。

{比較例4}

実施例6の素子構造における発光層のHostに代えて、ガラス転移温度99°CのBA1

qとした以外、上記実施例6と同一な比較例4を作製した。(比較例2と同じ構成)。

実施例6、比較例4の有機EL素子を100°Cの恒温槽中で所定時間(時間)保存した。

その後、素子を5.5mA/cm²で駆動した場合の色度及び発光効率(cd/A)の変化をそれぞれ表4に示す。

5 表4

	ホール輸送材	100°C保存 経過時間	色 度		効率(cd/A)
			CIEx	CIEy	
実施例6	Host Tg = 113°C	0	0.676	0.321	5.9
		150	0.673	0.324	5.3
		300	0.672	0.325	4.3
比較例4	BAIq Tg = 99°C	0	0.678	0.321	6.1
		150	0.576	0.386	1.2
		300	0.528	0.416	1.2

表4から分かるように、実施例6では、100°Cの恒温槽中に300時間保存しても、色度、発光効率に大きな変化がみられなかった。これに対して、比較例4では、150時間経過した時点で発光色が赤色から橙色に変化するとともに、発光効率も初期の1/5になってしまった。

10 これら実施例1～6、比較例1～4の有機機能層の状態は表5のように示される。

表5

各有機機能層材料				
実施例1	CuPc($T_g \geq 300^{\circ}\text{C}$)	HTM-A($T_g = 120^{\circ}\text{C}$)	BEM-A($T_g = 106^{\circ}\text{C}$)	Alq3($T_g = 167^{\circ}\text{C}$)
実施例2	CuPc($T_g \geq 300^{\circ}\text{C}$)	HTM-B($T_g = 135^{\circ}\text{C}$)	BEM-A($T_g = 106^{\circ}\text{C}$)	Alq3($T_g = 167^{\circ}\text{C}$)
比較例1, 3	CuPc($T_g \geq 300^{\circ}\text{C}$)	α -NPD($T_g = 96^{\circ}\text{C}$)	BEM-A($T_g = 106^{\circ}\text{C}$)	Alq3($T_g = 167^{\circ}\text{C}$)
実施例3	CuPc($T_g \geq 300^{\circ}\text{C}$)	HTM-A($T_g = 120^{\circ}\text{C}$)	BAlq($T_g = 99^{\circ}\text{C}$)+BtpIr	Alq3($T_g = 167^{\circ}\text{C}$)
実施例4	CuPc($T_g \geq 300^{\circ}\text{C}$)	HTM-C($T_g = 143^{\circ}\text{C}$)	BAlq($T_g = 99^{\circ}\text{C}$)+BtpIr	Alq3($T_g = 167^{\circ}\text{C}$)
比較例2, 4	CuPc($T_g \geq 300^{\circ}\text{C}$)	α -NPD($T_g = 96^{\circ}\text{C}$)	BAlq($T_g = 99^{\circ}\text{C}$)+BtpIr	Alq3($T_g = 167^{\circ}\text{C}$)
実施例5	CuPc($T_g \geq 300^{\circ}\text{C}$)	α -NPD($T_g = 96^{\circ}\text{C}$)	BEM-B($T_g = 130^{\circ}\text{C}$)	Alq3($T_g = 167^{\circ}\text{C}$)
実施例6	CuPc($T_g \geq 300^{\circ}\text{C}$)	α -NPD($T_g = 96^{\circ}\text{C}$)	Host($T_g = 113^{\circ}\text{C}$)+BtpIr	Alq3($T_g = 167^{\circ}\text{C}$)

産業上の利用可能性

本実施形態のような構成とすることにより、高温の環境下に素子が置かれたときでも、

輝度劣化、色度変化などの不具合が生じない。また、材料の選択も容易になるという

5 効果がある。特に本発明を用いることにより、車載用を前提とした製品の信頼性が向上する。

請求の範囲

1. 対向する1対の陽極及び陰極の間に成膜されかつ有機化合物からなる発光層を含む3以上の薄膜からなる有機機能層からなる有機エレクトロルミネッセンス素子であって、前記有機機能層は、それぞれガラス転移温度が第1温度以上の有機化合物からなる1対の第1及び第2層と、前記第1及び第2層間に挟持されかつ前記第1温度未満のガラス転移温度を有する有機化合物からなる第3層とを含むことを特徴とする有機エレクトロルミネッセンス素子。
5
2. 前記第3層のガラス転移温度と前記第1及び第2層のいずれのガラス転移温度との差が12°C以上であることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
10
3. 前記第1温度が107°Cであることを特徴とする請求項1又は2記載の有機エレクトロルミネッセンス素子。
4. 前記第3層に含まれる有機化合物はフォトルミネッセンスを示し、そのピークが500nm以下であることを特徴とする請求項1～3のいずれかに記載の有機エレクトロルミネッセンス素子。
15

1/1

図 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/014702

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ H05B33/22, H05B33/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ H05B33/00-33/28

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2004
Kokai Jitsuyo Shinan Koho	1971-2004	Toroku Jitsuyo Shinan Koho	1994-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2000-243574 A (Toyota Motor Corp.), 08 September, 2000 (08.09.00), Par. Nos. [0031], [0032], [0034], [0036] (Family: none)	3-4

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent but published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
04 November, 2004 (04.11.04)Date of mailing of the international search report
22 November, 2004 (22.11.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/014702

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1-2
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
In the invention of claims 1-2, the "first temperature" is not specified and, even if the description is studied, what temperature is meant by the "first temperature" is not clear. As a result, even if technical (continued to extra sheet)
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/014702

Continuation of Box No.II-2 of continuation of first sheet(2)

common knowledge at the filing of this application is taken into account,
the invention of claims 1-2 fails to satisfy the requirement of clarity
prescribed in PCT Article 6.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' H05B33/22, H05B33/14

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' H05B33/00-33/28

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
 日本国公開実用新案公報 1971-2004年
 日本国実用新案登録公報 1996-2004年
 日本国登録実用新案公報 1994-2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2000-243574 A (トヨタ自動車株式会社) 2000.09.08 , 【0031】、【0032】、【0034】、【0036】， (ファミリー無し)	3-4

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

04. 11. 2004

国際調査報告の発送日

22.11.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

森内 正明

2V 3208

電話番号 03-3581-1101 内線 3271

第II欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 _____ は、この国際調査機関が調査をすることを要しない対象に係るものである。
つまり、
2. 請求の範囲 1-2 _____ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
請求の範囲1-2に係る発明は「第1温度」が特定されておらず、明細書を参照しても「第1温度」がどのような温度を指すのか不明であり、結果として請求の範囲1-2に係る発明は、出願時の技術常識を参照してもPCT第6条の意味における明確性の要件を欠いている。
3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第III欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

追加調査手数料の納付と共に出願人から異議申立てがあった。
 追加調査手数料の納付と共に出願人から異議申立てがなかった。