Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d-1 key-element items (k_i, o_i) , where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v₁ are less than k₁
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d-1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- \square Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

- Similar to search in a binary search tree
- \Box For each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d-1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- □ Theorem: A (2,4) tree storing n items has height $O(\log n)$
 - Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth i = 0, ..., h-1 and no items at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} = 2^h 1$
 - Thus, $h \leq \log (n+1)$
- □ What is the minimum and maximum height?
- Searching in a (2,4) tree with n items takes $O(\log n)$ time (may require more than one comparison within a node)

- \square We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node v may become a 5-node)
- Example: inserting key 17

- \square We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node v may become a 5-node)
- Example: inserting key 30 causes an overflow

Overflow and Split

- \square We handle an overflow at a 5-node ν with a split operation:
 - let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
 - node v is replaced nodes v' and v"
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
 - key k_3 is inserted into the parent u of v (a new root may be created)
- \Box The overflow may propagate to the parent node u

4, 6, 12, 15, 3, 5, 10, 8, 11, 7, 13, 14, 17

4, 6, 12, 15, 3, 5, 10, 8, 11, 7, 13, 14, 17

4, 6, 12, 15, 3, 5, 10, 8, 11, 7, 13, 14, **17**

4, 6, 12, 15, 3, 5, 10, 8, 11, 7, 13, 14, **17**

4, 6, 12, 15, 3, 5, 10, 8, 11, 7, 13, 14, **17**

4, 6, 12, 15, 3, 5, 10, 8, 11, 7, 13, 14, 17

Analysis of Insertion

Algorithm *put*(*k*, *o*)

- 1. We search for key *k* to locate the insertion node *v*
- 2. We add the new entry (k, o) at node v
- 3. while overflow(v) if isRoot(v)

create a new empty root above v

 $v \leftarrow split(v)$

- \Box Let *T* be a (2,4) tree with *n* items
 - Tree T has $O(\log n)$ height
 - Step 1 takes O(log n) time because we visit
 O(log n) nodes
 - Step 2 takes *O*(1) time
 - Step 3 takes O(log n) time because each split takes O(1) time and we perform O(log n) splits
- Thus, an insertion in a (2,4) tree takes $O(\log n)$ time

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: Delete key 24

Underflow and Fusion

- \Box Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- \Box To handle an underflow at node v with parent u, we consider two cases
- \Box Case 1: the adjacent siblings of v are 2-nodes
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- \Box To handle an underflow at node v with parent u, we consider two cases
- \Box Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of w to v
 - 2. we move an item from u to v
 - 3. we move an item from w to u
 - After a transfer, no underflow occurs

(2,4) Trees

26

Analysis of Deletion

- \Box Let *T* be a (2,4) tree with *n* items
 - Tree T has $O(\log n)$ height
- In a deletion operation
 - We visit O(log n) nodes to locate the node from which to delete the entry
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes O(1) time
- \square Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time