Basics of Monodromy

Pedro Núñez

Basic Notions — University of Freiburg

14th May 2020

Table of Contents

1. Introduction

2. Galois correspondence

3. Monodromy action

Motivating example — A multi-valued function

Consider
$$z=re^{\theta i}\mapsto z^2=r^2e^{2\theta i}$$
 on $\mathbb C$. Local inverse on $\mathbb C^{\times}$:
$$z=re^{\theta i}\mapsto \sqrt{z}=\sqrt{r}e^{\frac{\theta}{2}i}.$$

Motivating example — A multi-valued function

Consider
$$z=re^{\theta i}\mapsto z^2=r^2e^{2\theta i}$$
 on $\mathbb C$. Local inverse on $\mathbb C^{\times}$:
$$z=re^{\theta i}\mapsto \sqrt{z}=\sqrt{r}e^{\frac{\theta}{2}i}.$$

Ambiguity: the previous expression is not well defined, as

$$re^{\theta i} = re^{(\theta + 2\pi)i} \mapsto \sqrt{r}e^{\frac{\theta}{2}i} \neq \sqrt{r}e^{(\frac{\theta}{2} + \pi)i}.$$

Motivating example — A multi-valued function

Consider $z = re^{\theta i} \mapsto z^2 = r^2 e^{2\theta i}$ on \mathbb{C} . Local inverse on \mathbb{C}^{\times} : $z = re^{\theta i} \mapsto \sqrt{z} = \sqrt{r}e^{\frac{\theta}{2}i}.$

Ambiguity: the previous expression is not well defined, as

$$re^{\theta i} = re^{(\theta + 2\pi)i} \mapsto \sqrt{r}e^{\frac{\theta}{2}i} \neq \sqrt{r}e^{(\frac{\theta}{2} + \pi)i}.$$

Let $z_0 \in \mathbb{C}^{\times}$ and pick one value for $\sqrt{z_0}$. Let $\gamma \colon [0,1] \to \mathbb{C}^{\times}$ be a path with $\gamma(0) = z_0$. Then the chosen $\sqrt{z_0}$ determines uniquely a value of $\sqrt{\gamma(t)}$ for all $t \in [0,1]$, because we want $z \mapsto \sqrt{z}$ to be continuous.

The Monodromy Theorem

Theorem (Weierstraß)

Analytic continuation along a path only depends on the path up to homotopy.

The Monodromy Theorem

Theorem (Weierstraß)

Analytic continuation along a path only depends on the path up to homotopy.

In particular, if we walk around a simply connected space, then the analytic continuation is single-valued everywhere.

The Monodromy Theorem

Theorem (Weierstraß)

Analytic continuation along a path only depends on the path up to homotopy.

In particular, if we walk around a simply connected space, then the analytic continuation is single-valued everywhere. Hence:

"monodromy", mónos (alone, only, single) and drómos (running).

Polydromy, a.k.a. lack of monodromy

Let's go back to our example $z \mapsto \sqrt{z}$ on \mathbb{C}^{\times} .

Polydromy, a.k.a. lack of monodromy

Let's go back to our example $z\mapsto \sqrt{z}$ on \mathbb{C}^\times . Pick a value of $\sqrt{1}$, say 1 itself, and let $\gamma\colon [0,1]\to \mathbb{C}^\times$ be a loop at 1 around 0. Extend \sqrt{z} along γ as before.

Polydromy, a.k.a. lack of monodromy

Let's go back to our example $z \mapsto \sqrt{z}$ on \mathbb{C}^{\times} . Pick a value of $\sqrt{1}$, say 1 itself, and let $\gamma \colon [0,1] \to \mathbb{C}^{\times}$ be a loop at 1 around 0. Extend \sqrt{z} along γ as before.

Figure: After the loop we arrive at -1, the other possible value of $\sqrt{1}$.

Why are we then talking about monodromy?

The Monodromy Theorem became so famous that people kept using the word "monodromy" to talk about polydromy¹.

Why are we then talking about monodromy?

The Monodromy Theorem became so famous that people kept using the word "monodromy" to talk about polydromy¹.

Figure: This is an example of mathematical red herring principle.

Why are we then talking about monodromy?

The Monodromy Theorem became so famous that people kept using the word "monodromy" to talk about polydromy¹.

Figure: This is an example of mathematical red herring principle.

Exercise 0

This is the second red herring that appeared in this talk so far. Can you spot the first one?

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The goal of this talk is to generalize this situation as follows:

• As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

- As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .
- If $p: Y \to X$ is a nice covering space, then $\pi_1(X, x)$ acts naturally on $p^{-1}(x)$. This is the **monodromy action**.

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

- As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .
- If $p: Y \to X$ is a nice covering space, then $\pi_1(X, x)$ acts naturally on $p^{-1}(x)$. This is the **monodromy action**.
- We can recover the covering space from the monodromy action!

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

- As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .
- If $p: Y \to X$ is a nice covering space, then $\pi_1(X, x)$ acts naturally on $p^{-1}(x)$. This is the **monodromy action**.
- We can recover the covering space from the monodromy action!
- If the fibres of p carry a natural vector space structure, then
 one can use the tools of representation theory to study
 polydromy.

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

- As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .
- If $p: Y \to X$ is a nice covering space, then $\pi_1(X, x)$ acts naturally on $p^{-1}(x)$. This is the **monodromy action**.
- We can recover the covering space from the monodromy action!
- If the fibres of *p* carry a natural vector space structure, then one can use the tools of **representation theory** to study polydromy. This happens both naturally (e.g. when solving differential equations on a complex domain) and artificially (e.g. replacing the fibres by their cohomology groups).

Table of Contents

1. Introduction

2. Galois correspondence

3. Monodromy action

Let X be a topological space.

Let *X* be a topological space.

The category of *spaces over X* has for objects (continuous) maps *p*: *Y* → *X* and for morphisms commutative triangles

Let *X* be a topological space.

The category of *spaces over X* has for objects (continuous) maps *p*: *Y* → *X* and for morphisms commutative triangles

• A map $p \colon Y \to X$ has property \mathbf{P} locally on X if every point $x \in X$ has an open neighbourhood $x \in U \subseteq X$ such that \mathbf{P} is true for $p|_{p^{-1}(U)} \colon p^{-1}(U) \to U$.

Let *X* be a topological space.

The category of *spaces over X* has for objects (continuous) maps *p*: *Y* → *X* and for morphisms commutative triangles

- A map $p \colon Y \to X$ has property \mathbf{P} locally on X if every point $x \in X$ has an open neighbourhood $x \in U \subseteq X$ such that \mathbf{P} is true for $p|_{p^{-1}(U)} \colon p^{-1}(U) \to U$.
- p: Y → X is a covering space if locally on X it is isomorphic to a projection X × F → X for some discrete space F.

Maps into covering spaces

Figure: The set $\{z \in Z \mid f(z) = g(z)\}$ is open and closed, so if Z is connected and f and g agree on a single point, then they agree in all of Z.

Maps into covering spaces

Figure: The set $\{z \in Z \mid f(z) = g(z)\}$ is open and closed, so if Z is connected and f and g agree on a single point, then they agree in all of Z.

In particular, if $p: Y \to X$ is a connected cover and $\phi \in \operatorname{Aut}(Y \mid X)$ fixes a point, then $\phi = \operatorname{id}_Y$.

A connected cover $p: Y \to X$ is called *Galois* if $X = Aut(Y \mid X) \backslash Y$;

A connected cover $p: Y \to X$ is called *Galois* if $X = \operatorname{Aut}(Y \mid X) \setminus Y$; equivalently, if $\operatorname{Aut}(Y \mid X)$ acts transitively on each fibre.

A connected cover $p: Y \to X$ is called *Galois* if $X = \operatorname{Aut}(Y \mid X) \setminus Y$; equivalently, if $\operatorname{Aut}(Y \mid X)$ acts transitively on each fibre.

Theorem ([?, Theorem 2.2.10])

Let $p: Y \to X$ be a Galois cover. Then there is a bijection

A connected cover $p: Y \to X$ is called *Galois* if $X = \operatorname{Aut}(Y \mid X) \setminus Y$; equivalently, if $\operatorname{Aut}(Y \mid X)$ acts transitively on each fibre.

Theorem ([?, Theorem 2.2.10])

Let $p: Y \to X$ be a Galois cover. Then there is a bijection

$$\begin{cases}
\operatorname{Subgroups} \\
0 \subseteq H \subseteq \operatorname{Aut}(Y \mid X)
\end{cases} \longleftrightarrow
\begin{cases}
\operatorname{Connected} & Z \leftarrow \neg - Y \\
\operatorname{intermediate} & q \downarrow \\
\operatorname{covers} & X
\end{cases}$$

$$H \mapsto (H \setminus Y \to X)$$

$$\operatorname{Aut}(Y \mid Z) \longleftrightarrow (Z \to X)$$

Moreover, $q: Z \to X$ is Galois if and only if $H \subseteq \operatorname{Aut}(Y \mid X)$ is a normal subgroup, in which case we have

$$\operatorname{Aut}(Z \mid X) \cong G/H$$
.

1) $H \setminus Y \to X$ is a cover (local on X, hence may assume $Y = X \times F$).

1) $H \setminus Y \to X$ is a cover (local on X, hence may assume $Y = X \times F$).

Exercise 1

A continuous action $G \subset Y$ is called even if each $y \in Y$ has an open nhood $y \in V \subseteq Y$ such that $\{gV\}_{g \in G}$ are pairwise disjoint. Show that $Y \to G \setminus Y$ is then a cover and deduce that $Y \to H \setminus Y$ is a cover.

1) $H \setminus Y \to X$ is a cover (local on X, hence may assume $Y = X \times F$).

Exercise 1

A continuous action $G \cap Y$ is called even if each $y \in Y$ has an open nhood $y \in V \subseteq Y$ such that $\{gV\}_{g \in G}$ are pairwise disjoint. Show that $Y \to G \setminus Y$ is then a cover and deduce that $Y \to H \setminus Y$ is a cover.

2) Define $\varphi \colon H \to \operatorname{Aut}(Y \mid H \backslash Y)$ by $\varphi(h)(y) := h \cdot y$. Since $H \subset Y$ is even, φ is injective. By "Maps into covering spaces" it is also surjective. Hence $H \mapsto (H \backslash Y \to X) \mapsto \operatorname{Aut}(Y \mid H \backslash Y) \cong H$.

1) $H \setminus Y \to X$ is a cover (local on X, hence may assume $Y = X \times F$).

Exercise 1

A continuous action $G \cap Y$ is called even if each $y \in Y$ has an open nhood $y \in V \subseteq Y$ such that $\{gV\}_{g \in G}$ are pairwise disjoint. Show that $Y \to G \setminus Y$ is then a cover and deduce that $Y \to H \setminus Y$ is a cover.

- 2) Define $\varphi \colon H \to \operatorname{Aut}(Y \mid H \setminus Y)$ by $\varphi(h)(y) := h \cdot y$. Since $H \subset Y$ is even, φ is injective. By "Maps into covering spaces" it is also surjective. Hence $H \mapsto (H \setminus Y \to X) \mapsto \operatorname{Aut}(Y \mid H \setminus Y) \cong H$.
- 3) If $q: Z \to X$ is an intermediate connected cover, then the map $Y \to Z$ is a cover as well (local on Z, hence on X, hence we may assume that this map has the form $X \times F_Y \to X \times F_Z$).

Proof of the bijection in the previous theorem

1) $H \setminus Y \to X$ is a cover (local on X, hence may assume $Y = X \times F$).

Exercise 1

A continuous action $G \cap Y$ is called even if each $y \in Y$ has an open nhood $y \in V \subseteq Y$ such that $\{gV\}_{g \in G}$ are pairwise disjoint. Show that $Y \to G \setminus Y$ is then a cover and deduce that $Y \to H \setminus Y$ is a cover.

- 2) Define $\varphi \colon H \to \operatorname{Aut}(Y \mid H \setminus Y)$ by $\varphi(h)(y) := h \cdot y$. Since $H \subset Y$ is even, φ is injective. By "Maps into covering spaces" it is also surjective. Hence $H \mapsto (H \setminus Y \to X) \mapsto \operatorname{Aut}(Y \mid H \setminus Y) \cong H$.
- 3) If $q: Z \to X$ is an intermediate connected cover, then the map $Y \to Z$ is a cover as well (local on Z, hence on X, hence we may assume that this map has the form $X \times F_Y \to X \times F_Z$).
- 4) Since $\operatorname{Aut}(Y \mid X) \cap p^{-1}(q(z))$ is transitive, $\operatorname{Aut}(Y \mid Z) \cap f^{-1}(z)$ is transitive as well by "Maps into covering spaces". Hence $Y \to Z$ is Galois and $Z \mapsto \operatorname{Aut}(Y \mid Z) \mapsto \operatorname{Aut}(Y \mid Z) \setminus Y = Z$.

Table of Contents

1. Introduction

Galois correspondence

3. Monodromy action

Let $p: Y \to X$ be a cover and $f_t: Z \to X$ a homotopy, i.e. a map $F: Z \times [0,1] \to X$.

Let $p\colon Y\to X$ be a cover and $f_t\colon Z\to X$ a homotopy, i.e. a map $F\colon Z\times [0,1]\to X$. If $\tilde{f}_0\colon Z\to Y$ is a lift of $f_0\colon Z\to X$, then we can extend it to a lift $\tilde{F}\colon Z\times [0,1]\to Y$ of the whole homotopy.

Let $p: Y \to X$ be a cover and $f_t: Z \to X$ a homotopy, i.e. a map $F: Z \times [0, 1] \to X$. If $\tilde{f}_0: Z \to Y$ is a lift of $f_0: Z \to X$, then

we can extend it to a lift $\tilde{F}: Z \times [0,1] \to Y$ of the whole homotopy.

Let $p: Y \to X$ be a cover and $f_t: Z \to X$ a homotopy, i.e. a map $F: Z \times [0,1] \to X$. If $\tilde{f}_0: Z \to Y$ is a lift of $f_0: Z \to X$, then we can extend it to a lift $\tilde{F}: Z \times [0,1] \to Y$ of the whole homotopy.

1) Let $z_0 \in W \subseteq Z$ be an open neighbourhood of a point in Z for which there exists a subdivision $0 = t_0 < t_1 < \cdots < t_m = 1$ such that $p \colon Y \to X$ is trivial over $F(W \times [t_i, t_{i+1}])$ for all i.

Let $p: Y \to X$ be a cover and $f_t: Z \to X$ a homotopy, i.e. a map $F: Z \times [0,1] \to X$. If $\tilde{f}_0: Z \to Y$ is a lift of $f_0: Z \to X$, then we can extend it to a lift $\tilde{F}: Z \times [0,1] \to Y$ of the whole homotopy.

- 1) Let $z_0 \in W \subseteq Z$ be an open neighbourhood of a point in Z for which there exists a subdivision $0 = t_0 < t_1 < \cdots < t_m = 1$ such that $p: Y \to X$ is trivial over $F(W \times [t_i, t_{i+1}])$ for all i.
- 2) Since p is trivial over $F(W \times [0, t_1])$, there is a unique way to extend the lifting \tilde{f}_0 to liftings \tilde{f}_t for $t \in [0, t_1]$.

Let $p: Y \to X$ be a cover and $f_t: Z \to X$ a homotopy, i.e. a map $F: Z \times [0,1] \to X$. If $\tilde{f}_0: Z \to Y$ is a lift of $f_0: Z \to X$, then we can extend it to a lift $\tilde{F}: Z \times [0,1] \to Y$ of the whole homotopy.

- 1) Let $z_0 \in W \subseteq Z$ be an open neighbourhood of a point in Z for which there exists a subdivision $0 = t_0 < t_1 < \cdots < t_m = 1$ such that $p: Y \to X$ is trivial over $F(W \times [t_i, t_{i+1}])$ for all i.
- 2) Since p is trivial over $F(W \times [0, t_1])$, there is a unique way to extend the lifting \tilde{f}_0 to liftings \tilde{f}_t for $t \in [0, t_1]$.
- 3) Iterate this process to obtain a local lifting $\tilde{F} \colon W \times [0,1] \to Y$.

Let $p: Y \to X$ be a cover and $f_t: Z \to X$ a homotopy, i.e. a map $F: Z \times [0,1] \to X$. If $\tilde{f}_0: Z \to Y$ is a lift of $f_0: Z \to X$, then we can extend it to a lift $\tilde{F}: Z \times [0,1] \to Y$ of the whole homotopy.

- 1) Let $z_0 \in W \subseteq Z$ be an open neighbourhood of a point in Z for which there exists a subdivision $0 = t_0 < t_1 < \cdots < t_m = 1$ such that $p \colon Y \to X$ is trivial over $F(W \times [t_i, t_{i+1}])$ for all i.
- 2) Since p is trivial over $F(W \times [0, t_1])$, there is a unique way to extend the lifting \tilde{f}_0 to liftings \tilde{f}_t for $t \in [0, t_1]$.
- 3) Iterate this process to obtain a local lifting \tilde{F} : $W \times [0, 1] \rightarrow Y$.
- 4) Do the same for each point $z \in Z$. On the overlaps the extensions agree by "Maps into covering spaces" applied to each $\{z\} \times [0,1]$, because $\tilde{F}(z,0)$ has to be $\tilde{f}_0(z)$.

The monodromy action

Figure: Given the class of a path $[\gamma] \in \pi_1(X, x)$ and a point $y \in p^{-1}(x)$, set $[\gamma] \cdot y := \tilde{\gamma}(1)$, where $\tilde{\gamma}$ is the unique lift of γ to the cover. Only defining concatenation the unconventional way we obtain a *left* action!

Cover \leftrightarrow Monodromy [X connected+locally 1-connected]

Theorem ([?, Theorem 2.3.4])

The functor

Fib_x: Cov(X)
$$\longrightarrow \pi_1(X, x)$$
 – Set
($p: Y \to X$) $\longmapsto \pi_1(X, x) \cap p^{-1}(x)$

is an equivalence of categories from the category of covers of X to the category of sets endowed with a $\pi_1(X, x)$ -action.

Cover \leftrightarrow Monodromy [X connected+locally 1-connected]

Theorem ([?, Theorem 2.3.4])

The functor

Fib_x: Cov(X)
$$\longrightarrow \pi_1(X, x)$$
 – Set
($p: Y \to X$) $\longmapsto \pi_1(X, x) \cap p^{-1}(x)$

is an equivalence of categories from the category of covers of X to the category of sets endowed with a $\pi_1(X, x)$ -action.

Exercise 2

Check that Fib_x is a functor. [Hint: "Maps into covering spaces".]

1) The *universal cover* \tilde{X}_X consists of homotopy classes of paths in X starting at X, and the projection $\pi: \tilde{X}_X \to X$ is $\pi([\alpha]) := \alpha(1)$.

- 1) The *universal cover* \tilde{X}_x consists of homotopy classes of paths in X starting at X, and the projection $\pi \colon \tilde{X}_x \to X$ is $\pi([\alpha]) := \alpha(1)$.
- 2) Let $y \in p^{-1}(x)$. Define $\pi_y \in \operatorname{Hom}_X(\tilde{X}_x, Y)$ by $\pi_y([\alpha]) := \tilde{\alpha}(1)$.

- 1) The *universal cover* \tilde{X}_x consists of homotopy classes of paths in X starting at X, and the projection $\pi \colon \tilde{X}_x \to X$ is $\pi([\alpha]) := \alpha(1)$.
- 2) Let $y \in p^{-1}(x)$. Define $\pi_y \in \operatorname{Hom}_X(\tilde{X}_x, Y)$ by $\pi_y([\alpha]) := \tilde{\alpha}(1)$.
- 3) Let $\phi \in \operatorname{Hom}_X(\tilde{X}_x, Y)$. Define $y \in p^{-1}(x)$ as $y := \phi([x])$.

- 1) The *universal cover* X_x consists of homotopy classes of paths in X starting at X, and the projection $\pi: \tilde{X}_x \to X$ is $\pi([\alpha]) := \alpha(1)$.
- 2) Let $y \in p^{-1}(x)$. Define $\pi_y \in \operatorname{Hom}_X(\tilde{X}_x, Y)$ by $\pi_y([\alpha]) := \tilde{\alpha}(1)$.
- 3) Let $\phi \in \operatorname{Hom}_X(\tilde{X}_x, Y)$. Define $y \in p^{-1}(x)$ as $y := \phi([x])$.
- 4) These two maps are mutually inverse, so $|\operatorname{Fib}_x \cong \operatorname{Hom}_X(\tilde{X}_x, -)|$.

- 1) The *universal cover* X_x consists of homotopy classes of paths in X starting at X, and the projection $\pi \colon \tilde{X}_x \to X$ is $\pi([\alpha]) := \alpha(1)$.
- 2) Let $y \in p^{-1}(x)$. Define $\pi_y \in \operatorname{Hom}_X(\tilde{X}_x, Y)$ by $\pi_y([\alpha]) := \tilde{\alpha}(1)$.
- 3) Let $\phi \in \operatorname{Hom}_X(\tilde{X}_x, Y)$. Define $y \in p^{-1}(x)$ as $y := \phi([x])$.
- 4) These two maps are mutually inverse, so $[\operatorname{Fib}_x \cong \operatorname{Hom}_X(\tilde{X}_x, -)]$.
- 5) $\pi: X_x \to X$ is Galois, because $\pi_{[\gamma]}$ is an automorphism and $\pi_{[\gamma]}([x]) = [\gamma]$ (suffices to check transitivity on a single fibre).

- 1) The *universal cover* X_x consists of homotopy classes of paths in X starting at X, and the projection $\pi: \tilde{X}_x \to X$ is $\pi([\alpha]) := \alpha(1)$.
- 2) Let $y \in p^{-1}(x)$. Define $\pi_y \in \operatorname{Hom}_X(\tilde{X}_x, Y)$ by $\pi_y([\alpha]) := \tilde{\alpha}(1)$.
- 3) Let $\phi \in \operatorname{Hom}_X(\tilde{X}_x, Y)$. Define $y \in p^{-1}(x)$ as $y := \phi([x])$.
- 4) These two maps are mutually inverse, so $[\operatorname{Fib}_x \cong \operatorname{Hom}_X(\tilde{X}_x, -)]$.
- 5) $\pi: \tilde{X}_x \to X$ is Galois, because $\pi_{[\gamma]}$ is an automorphism and $\pi_{[\gamma]}([x]) = [\gamma]$ (suffices to check transitivity on a single fibre).
- 6) $\pi_1(X, x) \cong \operatorname{Aut}(\tilde{X}_x \mid X)^{\operatorname{op}})$ via $[\gamma] \longmapsto ([\alpha] \mapsto [\alpha \cdot \gamma]).$

- 1) The *universal cover* X_x consists of homotopy classes of paths in X starting at X, and the projection $\pi : \tilde{X}_x \to X$ is $\pi([\alpha]) := \alpha(1)$.
- 2) Let $y \in p^{-1}(x)$. Define $\pi_y \in \operatorname{Hom}_X(\tilde{X}_x, Y)$ by $\pi_y([\alpha]) := \tilde{\alpha}(1)$.
- 3) Let $\phi \in \operatorname{Hom}_X(\tilde{X}_x, Y)$. Define $y \in p^{-1}(x)$ as $y := \phi([x])$.
- 4) These two maps are mutually inverse, so $[\operatorname{Fib}_x \cong \operatorname{Hom}_X(\tilde{X}_x, -)]$.
- 5) $\pi: \tilde{X}_x \to X$ is Galois, because $\pi_{[\gamma]}$ is an automorphism and $\pi_{[\gamma]}([x]) = [\gamma]$ (suffices to check transitivity on a single fibre).
- 6) $\pi_1(X, x) \cong \operatorname{Aut}(\tilde{X}_x \mid X)^{\operatorname{op}} \text{ via } [\gamma] \longmapsto ([\alpha] \mapsto [\alpha \cdot \gamma]).$
- 7) Let $\phi \in \operatorname{Aut}(\tilde{X}_x \mid X)$ and $y \in p^{-1}(x)$. Define $\phi \cdot y := \pi_y \circ \phi([x])$, i.e. the point in $\operatorname{Fib}_x(Y)$ corresponding to $\pi_y \circ \phi \in \operatorname{Hom}_X(\tilde{X}_x, Y)$. Then $\psi \cdot (\phi \cdot y)$ corresponds to $\pi_y \circ \phi \circ \psi = \pi_y \circ (\psi \circ^{\operatorname{op}} \phi)$. We get $\operatorname{Aut}(\tilde{X}_x \mid X)^{\operatorname{op}} \curvearrowright p^{-1}(x)$, which agrees with $\pi_1(X, x) \curvearrowright p^{-1}(x)$.

1) Let $\psi \colon \operatorname{Fib}_{x}(Y) \to \operatorname{Fib}_{x}(Z)$ be $G := \pi_{1}(X, x)$ -equivariant. Want some $f \colon Y \to Z$ over X such that $\psi(y) = f(y)$ for all $y \in p^{-1}(x)$.

- 1) Let $\psi \colon \operatorname{Fib}_{x}(Y) \to \operatorname{Fib}_{x}(Z)$ be $G := \pi_{1}(X, x)$ -equivariant. Want some $f \colon Y \to Z$ over X such that $\psi(y) = f(y)$ for all $y \in p^{-1}(x)$.
- 2) We may assume Y and Z connected (G-orbits are connected).

- 1) Let $\psi \colon \operatorname{Fib}_{x}(Y) \to \operatorname{Fib}_{x}(Z)$ be $G := \pi_{1}(X, x)$ -equivariant. Want some $f \colon Y \to Z$ over X such that $\psi(y) = f(y)$ for all $y \in p^{-1}(x)$.
- 2) We may assume Y and Z connected (G-orbits are connected).
- 3) Hence faithfulness follows from "Maps into covering spaces"...

- 1) Let $\psi \colon \operatorname{Fib}_{x}(Y) \to \operatorname{Fib}_{x}(Z)$ be $G := \pi_{1}(X, x)$ -equivariant. Want some $f \colon Y \to Z$ over X such that $\psi(y) = f(y)$ for all $y \in p^{-1}(x)$.
- 2) We may assume Y and Z connected (G-orbits are connected).
- 3) Hence faithfulness follows from "Maps into covering spaces"..
- 4) Let $\pi_y \colon \tilde{X}_x \to Y$ corresponding to $y \in p^{-1}(x)$, so that $Y = \operatorname{Aut}(\tilde{X}_x \mid Y) \setminus \tilde{X}_x$ by Galois correspondence.

- 1) Let $\psi \colon \operatorname{Fib}_{x}(Y) \to \operatorname{Fib}_{x}(Z)$ be $G := \pi_{1}(X, x)$ -equivariant. Want some $f \colon Y \to Z$ over X such that $\psi(y) = f(y)$ for all $y \in p^{-1}(x)$.
- 2) We may assume Y and Z connected (G-orbits are connected).
- 3) Hence faithfulness follows from "Maps into covering spaces"...
- 4) Let $\pi_y \colon \tilde{X}_x \to Y$ corresponding to $y \in p^{-1}(x)$, so that $Y = \operatorname{Aut}(\tilde{X}_x \mid Y) \setminus \tilde{X}_x$ by Galois correspondence.
- 5) Via $G \cong \operatorname{Aut}(\tilde{X}_x \mid X)$ we can identify $G_y := \{g \in G \mid g \cdot y = y\}$ and $\{\phi \in \operatorname{Aut}(\tilde{X}_x \mid X) \mid \pi_y \circ \phi = \pi_y\}$. Hence $\left[\operatorname{Aut}(\tilde{X}_x \mid Y) = G_y\right]$.

- 1) Let $\psi \colon \operatorname{Fib}_{x}(Y) \to \operatorname{Fib}_{x}(Z)$ be $G := \pi_{1}(X, x)$ -equivariant. Want some $f \colon Y \to Z$ over X such that $\psi(y) = f(y)$ for all $y \in p^{-1}(x)$.
- 2) We may assume Y and Z connected (G-orbits are connected).
- 3) Hence faithfulness follows from "Maps into covering spaces"...
- 4) Let $\pi_y \colon \tilde{X}_x \to Y$ corresponding to $y \in p^{-1}(x)$, so that $Y = \operatorname{Aut}(\tilde{X}_x \mid Y) \setminus \tilde{X}_x$ by Galois correspondence.
- 5) Via $G \cong \operatorname{Aut}(\tilde{X}_x \mid X)$ we can identify $G_y := \{g \in G \mid g \cdot y = y\}$ and $\{\phi \in \operatorname{Aut}(\tilde{X}_x \mid X) \mid \pi_y \circ \phi = \pi_y\}$. Hence $\operatorname{Aut}(\tilde{X}_x \mid Y) = G_y$.
- 6) $G_y \subseteq G_{\psi(y)}$ by G-equivar. $\leadsto f \colon Y = G_y \setminus \tilde{X}_x \longrightarrow G_{\psi(y)} \setminus \tilde{X}_x = Z$.
- 7) $f(y) = f(\pi_y([x])) = \pi_{\psi(y)}([x]) = \psi(y)$. For $y' \in p^{-1}(y)$, let y s.t. $[y] \cdot y = y'$, so that $\psi(y') = [y] \cdot \psi(y)$. Then we have

$$f(y') = f \circ \tilde{\gamma}^{Y}(1) = \tilde{\gamma}^{Z}(1) = [\gamma] \cdot \psi(y) = \psi(y').$$

1) Let *S* be a set with a $G := \pi_1(X, x)$ action.

- 1) Let *S* be a set with a $G := \pi_1(X, x)$ action.
- 2) We may assume $G \cap S$ transitive (otherwise split into orbits).

- 1) Let *S* be a set with a $G := \pi_1(X, x)$ action.
- 2) We may assume $G \cap S$ transitive (otherwise split into orbits).
- 3) Let $s \in S$ any and let G_s be its stabiliser. By Galois correspondence we can find

- 1) Let *S* be a set with a $G := \pi_1(X, x)$ action.
- 2) We may assume $G \cap S$ transitive (otherwise split into orbits).
- 3) Let $s \in S$ any and let G_s be its stabiliser. By Galois correspondence we can find

- 4) Since $p: Y \to X$ is connected, $G \cap p^{-1}(x)$ is transitive.
- 5) Define $\varphi(q([x])) := s$. We will try to extend by *G*-equivariance.

- 1) Let *S* be a set with a $G := \pi_1(X, x)$ action.
- 2) We may assume $G \cap S$ transitive (otherwise split into orbits).
- 3) Let $s \in S$ any and let G_s be its stabiliser. By Galois correspondence we can find

- 4) Since $p: Y \to X$ is connected, $G \cap p^{-1}(x)$ is transitive.
- 5) Define $\varphi(q([x])) := s$. We will try to extend by *G*-equivariance.
- 6) If $g' \cdot q([x]) = g \cdot q([x])$, then $g'g^{-1} \in G_{q([x])} = \operatorname{Aut}(\tilde{X}_x \mid Y)$, which is G_s by construction. Hence we can define a G-equivariant map $\varphi \colon p^{-1}(x) \to S$ by $y = g \cdot q([x]) \mapsto g \cdot s$.

- 1) Let *S* be a set with a $G := \pi_1(X, x)$ action.
- 2) We may assume $G \cap S$ transitive (otherwise split into orbits).
- 3) Let $s \in S$ any and let G_s be its stabiliser. By Galois correspondence we can find

- 4) Since $p: Y \to X$ is connected, $G \cap p^{-1}(x)$ is transitive.
- 5) Define $\varphi(q([x])) := s$. We will try to extend by *G*-equivariance.
- 6) If $g' \cdot q([x]) = g \cdot q([x])$, then $g'g^{-1} \in G_{q([x])} = \operatorname{Aut}(\tilde{X}_x \mid Y)$, which is G_s by construction. Hence we can define a G-equivariant map $\varphi \colon p^{-1}(x) \to S$ by $y = g \cdot q([x]) \mapsto g \cdot s$.
- 7) If $g \cdot s = g' \cdot s$, then again $g'g^{-1} \in G_s = G_y$, so $\varphi(y) = g'(y)$

