Formulario Campo y Potencial Eléctrico

$$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \, \text{N} \cdot \text{m}^2/_{\text{C}^2} \quad \text{con } \varepsilon_0 = 8,85 \cdot 10^{-12} \, \text{C}^2/_{\text{N} \cdot \text{m}} \, \, \text{o} \, \, \text{F}/_{\text{m}}$$

Carga del electrón: $e^- = 1.6 \cdot 10^{-19} C$

Fuerza entre dos cargas:

$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12} = k \frac{q_1 q_2}{r_{12}^3} \vec{r}_{12}$$

Campo eléctrico producido por una carga puntual:

$$\vec{E} = k \frac{q}{r^2} \hat{r} = k \frac{q}{r^3} \vec{r}$$

Densidades de carga:

Volúmica: $\rho = \frac{dQ}{dV}$ Superficial: $\sigma = \frac{dQ}{dS}$ Lineal: $\lambda = \frac{dQ}{dl}$

Si la densidad es uniforme: $\rho = \frac{Q}{V}$, $\sigma = \frac{Q}{S}$, $\lambda = \frac{Q}{l}$

Campo eléctrico producido por una distribución de carga:

$$d\vec{E} = k \frac{dq}{r^2} \hat{r}$$
 \Rightarrow $\vec{E} = k \int \frac{dq}{r^2} \hat{r}$

Flujo eléctrico y Ley de Gauss:

Flujo: $\phi = \int_S \; \vec{E} \hat{n} dA$ Ley de Gauss: $\phi_{neto} = \frac{q_{interior}}{\varepsilon_0}$

$$\oint_{S} \vec{E} \, \hat{n} \, dA = \frac{Q_{interior}}{\varepsilon_{0}}$$

Lo que solemos usar: $\vec{E} \cdot \vec{S}_{gaussiana} = \frac{Q_{interior}}{\varepsilon_0}$

ACADEMIA NEWTON - Cáceres

Potencial Eléctrico:

Creado por una carga:
$$V = k \frac{q}{r}$$

Debido a una distribución de cargas:

$$V = k \int \frac{dq}{r} = \int_{V} \frac{\rho \cdot dV}{r}$$

Relación entre campo y potencial:

$$\vec{E} = -\overrightarrow{grad} V; \qquad V = -\int \vec{E} \cdot d\vec{r}$$

En una dimensión:

$$E = -\frac{dV}{dx}; \qquad V = -\int \vec{E} \cdot d\vec{x}$$

Trabajo eléctrico para llevar una carga desde el punto 1 al punto 2:

$$W = q \cdot (V_2 - V_1)$$