Soit $P = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$ la matrice de passage de la base canonique vers la base \mathcal{B}' 9.12 constituée des vecteurs propres : $\mathcal{B}' = \left(\begin{pmatrix} 2 \\ -1 \end{pmatrix}; \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right)$.

Dans la base \mathcal{B}' , la matrice associée à l'endomorphisme h est : $A' = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$.

Si A désigne la matrice de h dans la base canonique de \mathbb{R}^2 , alors $\mathbf{A}' = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$. Il s'ensuit que $A = PA'P^{-1}$.

Calculons P⁻¹ à l'aide des déterminants :
$$\det(P) = \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} = 2 \cdot 1 - (-1) \cdot 3 = 5$$

$$P^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 1 \\ -3 & 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & -\frac{3}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

On peut désormais calculer la matrice A de l'endomorphisme h dans la base canonique de \mathbb{R}^2 :

$$A = PA'P^{-1} = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & -\frac{3}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix} = \begin{pmatrix} 4 & -9 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & -\frac{3}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -6 \\ -1 & 0 \end{pmatrix}$$