Part I (Chapter 5)

Problem Set 5.1

13. ■



The radar stations A and B, separated by the distance a=500 m, track the plane C by recording the angles  $\alpha$  and  $\beta$  at one-second intervals. If three successive readings are

| <i>t</i> (s) | 9      | 10     | 11     |
|--------------|--------|--------|--------|
| α            | 54.80° | 54.06° | 53.34° |
| β            | 65.59° | 64.59° | 63.62° |

calculate the speed v of the plane and the climb angle  $\gamma$  at t=10 s. The coordinates of the plane can be shown to be

$$x = a \frac{\tan \beta}{\tan \beta - \tan \alpha}$$
  $y = a \frac{\tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$ 

## Part II (Chapter 6)

Problem Set 6.1 13. ■



The mass m is attached to a spring of free length b and stiffness k. The coefficient of friction between the mass and the horizontal rod is  $\mu$ . The acceleration of the mass can be shown to be (you may wish to prove this)  $\ddot{x} = -f(x)$ , where

$$f(x) = \mu g + \frac{k}{m}(\mu b + x) \left(1 - \frac{b}{\sqrt{b^2 + x^2}}\right)$$

If the mass is released from rest at x = b, its speed at x = 0 is given by

$$v_0 = \sqrt{2\int_0^b f(x) \, dx}$$

Compute  $v_0$  by numerical integration using the data m = 0.8 kg, b = 0.4 m,  $\mu = 0.3$ , k = 80 N/m, and g = 9.81 m/s<sup>2</sup>.

## Part III (Chapter 7)

Problem Set 7.2 16. ■



The magnetized iron block of mass m is attached to a spring of stiffness k and free length L. The block is at rest at x = L when the electromagnet is turned on, exerting the repulsive force  $F = c/x^2$  on the block. The differential equation of the resulting motion is

$$m\ddot{x} = \frac{c}{x^2} - k(x - L)$$

Determine the period of the ensuing motion by numerical integration with the adaptive Runge-Kutta method. Use  $c=5~{\rm N\cdot m^2}$ ,  $k=120~{\rm N/m}$ ,  $L=0.2~{\rm m}$ , and  $m=1.0~{\rm kg}$ .