Introduction

Finding the size of a vector, its angle, and projection

Changing the reference frame

- Video: Changing basis
- Practice Quiz: Changing basis 5 questions
- ▶ Video: Basis, vector space and linear independence 4 min
- ▶ Video: Applications of changing basis
- Practice Quiz: Linear dependency of a set of vectors 6 questions

Doing some real-world vectors examples

Congratulations! You passed!

TO PASS 80% or higher PRACTICE QUIZ • 15 MIN

Keep Learning

100%

Changing basis

Changing basis

TOTAL POINTS 5

1. In this quiz, you will a full mital guig a fail and a dasis to a basis consisting of orthogonal vectors.

1/1 point

Try again

Given vectors $\mathbf{v} = \begin{bmatrix} 5 \text{Receive grade} \\ -\frac{1}{4} \mathbf{p}, \mathbf{b}_1 = \\ -\frac{1}{4} \mathbf{p} \text{ PASS Soly} \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by \mathbf{b}_1 and \mathbf{b}_2 ? You are given that \mathbf{b}_1 and \mathbf{b}_2 are orthogonal to each other.

Grade 100%

View Feedback We keep your highest score

6 P P

 $left v_{\mathbf{b}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

 $\mathbf{v_b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

 $\mathbf{v_b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

 $\mathbf{v_b} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

The vector \boldsymbol{v} is projected onto the two vectors $\boldsymbol{b_1}$ and $\boldsymbol{b_2}$

2. Given vectors $\mathbf{v} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$$

$$\bullet$$
 $\mathbf{v_b} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$

$$\mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$$

Correct

The vector \boldsymbol{v} is projected onto the two vectors $\boldsymbol{b_1}$ and $\boldsymbol{b_2}$

3. Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 2/5 \\ -4/5 \end{bmatrix}$$

$$\mathbf{o}$$
 $\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 4/5 \end{bmatrix}$

$$\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 5/4 \end{bmatrix}$$

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$

Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the 1/1 point

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ 2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$