Lista de Exercícios 1

March 29, 2021

Questão 1. Prove que se $f \in C([a,b])$, então $|f| \in C([a,b])$. Mostre que $|f| \in C([a,b])$ não implica que $f \in C([a,b])$.

Questão 2. Prove que (f_n) converge uniformemente para f em \mathbb{R} se, e somente se,

$$\lim_{n \to +\infty} \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = 0$$

.

Questão 3. (Teorema do ponto fixo de Browder) Prove que se $f:[a,b] \to [a,b]$ é contínua, então f possui um ponto fixo, ou seja, existe $c \in [a,b]$ tal que f(c) = c. Dê um exemplo de função contínua $f:[0,1) \to [0,1)$ onde não há ponto fixo.

Questão 4. Seja f contínua tal que f(a+b) = f(a) + f(b) para todo $a, b \in \mathbb{R}$. Prove que f(x) = cx, onde c := f(1).

Questão 5. Prove que se $f_1, ..., f_n$ são contínuas em $A \subset \mathbb{R}$, então $h : \max\{f_1, ..., f_n\}$ é contínua em A (i.e. $h(x) = \max\{f_1(x), ..., f_n(x)\}$).

Questão 6. (Teorema da Contração Uniforme) Seja $f: \mathbb{R} \to \mathbb{R}$ tal que existe $c \in (0,1)$ e

$$|f(x) - f(y)| \le c|x - y|, \quad \forall x, y \in \mathbb{R}$$

- (a) Prove que f é contínua.
- (b) Escolha qualquer $y \in \mathbb{R}$ e defina uma sequência $y, f(y), f(f(y)), \dots$ Prove que essa sequência converge para um ponto fixo de f.
- (c) Prove que o ponto fixo é único.

References

Elon Lages Lima. Análise real. Impa, 2004.