UM-SJTU JOINT INSTITUTE Physics Laboratory DATA SHEET (EXERCISE 3)

Name: This Jiaming Kang

Student ID: 51802191122

Name: 18 18 Luo Chenhao

Student ID: <u>518370910038</u>

Group: <u>18</u>

Date: <u>Jun 21,</u> 2019

NOTICE. Please remember to show the data sheet to your instructor before leaving the laboratory. The data sheet will not be accepted if the data are recorded with a pencil or modified with a correction fluid/tape. If a mistake is made in recording a datum item, cancel the wrong value by drawing a fine line through it, record the correct value legibly, and ask your instructor to confirm the correction. Please remember to take a record of the precision of the instruments used. You are required to hand in the original data with your lab report, so please keep the data sheet properly.

	, TV	in I ~ (w				
	spri	$ng 1 cm \pm 0.01 cm$	spri	$\log 2$ [cm] \pm 0.01 [cm]	seri	es [<u>cm]± 0,01 [cm]</u>
-	L_0	2,55 &	L_0	6.12	L_0	6.46
	L_1	4.72	L_1	8,05	L_1	10.50
	L_2	3,80	L_2	9,94	L_2	14.41
	L_3	8,86	L_3	+18,1-[11,81]	L_3	18,40
	L_4	11.03	L_4	13.73	L_4	22,52
	L_5	13.13	L_5	156.4 15.64	L_5	26.58
,	L_6	15.25	L_6	17.55	L_6	30.52

Table 1. Spring constant measurement data.

Martin Instructor's signature: _

ten periods $[\underline{\textit{ms}}] \pm \underline{\textit{o}_{il}}$ $[\underline{\textit{ms}}]$				
horizontal	incline 1	incline 2		
m_1 12572,1	m1 125598	m1 12564,4		
m2 1271910	m_2 12723.4	$ m_2 $ 12713,5		
m3 12873,5	m_3 , 2877, 6	m_3 12881.3		
m4 13041.9	$ m_4 13030.1$	m ₄ 13033.5		
m ₅ 13195,7	m ₅ 13189,4	m_5 13169,0		
$m_6 13340.7$	m_6 13349.3	m ₆ 13325,0		

Table 2. Measurement data for the T vs. M relation.

A	$[cm] \pm pil [cm]$	ten periods [MS] \pm 0.1 [MS]
1	5.0	1240616
2	10.0	12399,5
3	15,0	1240013.
4	20,0	12412,3
5	25,0	12410,7
6	30.0	1241.7

Table 3. Data for the T vs. A relation.

A [cm] \pm 0.1 [cm]	Δt [ms] \pm v.vl [ms]
1 5,0	40,85
2 10,0	20,86
3 15.0	13,92
4 20.0	10,46
5 25.0	8,38
6 30,0	7,13
$x_{\rm in}$ [mm] \pm 0.02 [mm]	$x_{ m out}$ [mm] \pm 0.02 [mm]
\$5. K 5.02)	15,08)
5,00	15,08
5.02.	15.0b

Table 4. Data for the v_{max}^2 vs. A^2 relation.

Instructor's signature:

\overline{m}	$[a] \pm o(o)[a]$
1	4.74.4.74
2	9,45
3	14.21
4	19.05
5	23,85
6	28.67

Table 5. Weight measurement data.

object	with I-shape $m_{\text{obj}} [\underline{\mathbf{q}}] \pm \underline{\mathbf{ool}} [\underline{\mathbf{q}}]$	
176.87		
object '	with U-shape $m_{ m obj}$ [4] \pm 0.01 [4]	
191,30		
mass of springs 1 & 2 $m_{\rm spr1\&2}$ [4] $\pm 0\iota ol$ [4]		
21,32		
equival	ent mass $M_0 = m_{\rm obj} + \frac{1}{3} m_{\rm spr1\&2} \ [9]$	
I-shape	183,98	
U-shape	198,41	

Table 6. Mass measurement data.

Instructor's signature:	Mars
mounding organitie.	1 1 7