

MCU 方案板使用说明

V1. 1

版本	修改人	日期	备注
V1.0	HuangLun	2020.10.14	新建
V1.1	HuangLun	2020.11.27	增加若干内容

一、底板

底板上的各模块工作,必须有电源模块。

1.1 电源

要求 5V 电压输出。三种输入方式:

- 1) 适配器 DC 电源输出
- 2) USB 电源输入
- 3) 其他外接电源

图 1.1.1

每个接口位置都有跳针,连接后,接口位置才通电。

比如 MCU 核心板通电, J26 跳针必须插上跳线帽。

图 1.1.2 开关控制电源通断。按键是 MCU 的复位按键。

图 1.1.3

1.2 接口

各接口位置如图 1.2。

图 1.2

底板所有接口的 1PIN 为 5V, 2PIN 为 3.3V, 在底板上没有丝印。

从 3PIN 开始有丝印。底板各接口与 MCU 管脚对应关系见<mark>附录一</mark>。

二、MCU 核心板

1.1 电源

单独使用核心板时,可通过核心板上的 micro-USB 供电,需要焊接 R6 电阻。核心板与底板共同使用时,由底板供电,焊接 R2。

图 1.1

1.2 指示灯

电源上电指示灯为 D1。如图 1.2.1, MCU 通电电源指示灯亮。

调试指示灯 D2 连接在 PIN60_B00T0。初上电时, B00T0 通过 R4, R15 处于下 拉状态。如图 1. 2. 2。

图 1.2.2

1.3 复位

板上有一枚复位按键。

图 1.3

1.3 核心板引出引脚(黑色板)

下图为64PIN_MCU所有管脚。

下图为邮票孔定义。

1.5 核心板与底板对应关系

核心板插在底板上,管脚对应关系见表 1.4。

表 1.4

管脚编号	MCU 核心板管脚名称			底板接口对应名称
			复用管脚	
8	PC0	I2C1_SCL		I2CO_SCL
9	PC1	I2C1_SDA		I2CO_SDA
29	PB10	I2C2_SCL		I2C1_SCL
30	PB11	I2C2_SDA		I2C1_SDA

	Offinia IVIC			中移物联网有限公司
33	PB12	I2S2_WS	GPI014	I2S1_WS
34	PB13	I2S2_CK	GPI015	I2S1_CK
35	PB14	I2S2_MCK	GPI016	I2S1_MCK
36	PB15	I2S2_SD	GPIO17	I2S1_SD
21	PA5	SPI1_SCK		SPIO_SCK
22	PA6	SPI1_MISO		SPIO_MISO
23	PA7	SPI1_MOSI		SPIO_MOSI
41	PA8	SPI1_NSS		SPIO_NSS
37	PC6	SPI2_NSS		SPI1_NSS
38	PC7	SPI2_SCK		SPI1_SCK
39	PC8	SPI2_MISO		SPI1_MISO
40	PC9	SPI2_MOSI	_	SPI1_MOSI
10	PC2	ADCO_IN13		ADCO_IN13
11	PC3	ADC1_IN14		ADC1_IN14
20	PA4	DAC_OUT		DAC_OUT
14	PA0	USART2_CTS	GPI012	UARTO_CTS
15	PA1	USART2_RTS	GPI013	UARTO_RTS
16	PA2	USART2_TX		UARTO_TX
17	PA3	USART2_RX		UARTO_RX
42	PA9	USART1_TX		UART1_TX
43	PA10	USART1_RX		UART1_RX
56	PC10	USART3_TX/UART4_TX		UART2_TX
57	PC11	USART3_RX/UART4_RX	1	UART2_RX
61	PB8	CAN_RX		CAN_RX
62	PB9	CAN_TX		CAN_TX
26	PB0	TIM1_CH2N/TIM3_CH3		PWM1
59	PB7	TIM4_CH2		PWMO
อช	FDI	11M4_CUZ	+	I WMO
44	PA11	USB_DM		USB_DM
45	PA12	USB_DP		USB_DP
46	PA13	JTMS/SWDIO		JTMS/SWDIO

49	PA14	JTCK/SWCLK		JTCK/SWCLK
50	PA15	JTDI		JTDI
55	PB3	JTDO-TRACESWO		JTDO-TRACESWO
2	PC13	GPI08		GPI08
51	PB4	GPI05		GP105
52	PB5	GPI06		GPI06
53	PC12	GPI07		GPI07
54	PD2	GPI09		GP109
58	PB6	GPI02	GPI010	GPI02
24	PC4	GPI03	GPI011	GPI03
25	PC5	GPI04		GPIO4
27	PB1	GPI00		GPI00
28	PB2	GPI01		GPI01

三、电源板

LDO DC/DC

1.2 接口

插在底板 POWER 接口。

1.3 电源

电源有两种供电方式。只能选择一种方式供电,不能同时使用。

第一种是使用 LDO, 如图 1.1。 需焊接 R11, R1 电阻, 同时断开另一面 R13, R14 电阻。

图 1.1

第二种是使用 DC/DC, 如图 1.2, 需焊接 R13, R14. 同时断开 R11, R1。

图 1.2

四、NB板

1.1 接口定义

接在底板 UART 接口。**详见附录二。** USB 不能供电,是打印 LOG 用端口。

1.2 电源

有两种供电方式:

- 一是使用底板上 3.3V, 焊接 R15, 断开 R17。同时底板各 UART 接口的 PIN9 需要拉高, 拉低时电源被关断。
- 二是使用 NB 板上电源供电。需焊接 R17, 断开 R15。同时底板各 UART 接口的 PIN9 需要拉高;拉低时电源被关断。

注: USB 接口不能为 NB 模组供电。

图 1.2.1

图 1.2.2

1.3 指示灯

D5 连接 wakeup_out, D4 连接 STATE。

图 1.3

1.4 控制

1.4.1 复位

控制模组复位,底板各 UART 接口 PIN7 拉高复位。

1.4.2 唤醒

唤醒模组,底板各 UART 接口 PIN8 拉高 1S 以上唤醒。

1.4.3 开机

底板各 UART 接口 PIN10 拉高 1S 以上开机。

五、CAT1 板

1.1 接口定义

接在底板 UART 接口上。**详见附录二。** USB 端口连接在 CAT1 USB 功能接口上。

图 1.1

1.2 电源

CAT1 的电源由子板上电源单独供电。由**底板输入 5V,需要连接 5V 跳针。**输出 4V。

注:USB接口电源不能为模组供电。

图 1.2

1.3 指示灯

D5 为 MOD 指示灯。D6 为 STATE 指示灯。D7 为 wakeup 指示灯。

图 1.3

1.4 控制

图 1.4

1.4.1 复位

控制模组复位,底板各 UART 接口 PIN8 拉高复位。

1.4.2 唤醒

唤醒模组,底板各 UART 接口 PIN9 拉低 1S 以上唤醒。

图 1.4.2

1.4.3 开机

底板各 UART 接口 PIN10 拉高 1S 以上开机。

15

六、GNSS 板

1.1 接口

接在底板 UART 接口。详见附录二。

图 1.1

1.2 电源

有两种供电方式,

- 一是使用底板上 3. 3V, 焊接 R5, 断开 R9。同时各 UART 接口的 PIN7 需要拉高; 拉低时电源被关断。
- 二是使用 GNSS 板上电源供电。需焊接 R9, 断开 R5。同时各 UART 接口的 PIN7 需要拉高; 拉低时电源被关断。

图 1.2.1

图 1.2.2

1.3 控制

控制模组复位,底板各 UART 接口 PIN8 拉高复位。

1.4 天线

使用有源天线时,天线连接 J2, 需焊接 0 欧姆电阻 R8, R3, 断开 R4, R12。 使用无源 RF 时,天线连接在 J3, 焊接 0 欧姆电阻 R4, R12, 断开 R8, R3。

图 1.4.1

图 1.4.2

图 1.4.3

七、蓝牙板

1.1 接口

接在底板 UART 接口。详见<mark>附录二。</mark>

1.2 电源

有三种供电方式:

- 一是插在底板上后,电源直接连通: 需焊接 R9 电阻,断开 R10、R11。
- 二是使用底板上 3.3V, 焊接 R10, 断开 R9、R11。同时各 UART 接口的 PIN7 需要拉高, 拉低时电源被关断。
- 三是使用蓝牙板上电源供电。需焊接 R11, 断开 R9、R10。同时各 UART 接口的 PIN7 需要拉高;拉低时电源被关断。

图 1.2

1.3 指示灯

指示灯接在蓝牙芯片的 PIN15_P1。输出高,指示灯亮。

图 1.3

1.4 天线

焊接 R3 使用板载天线;焊接 R2 使用外接天线。

图 1.4

八、WIFI 板

1.1 接口

接口接在底板 UART 接口。详见附录二。

图 1.1

1.2 电源

电源有两种供电方式;两个供电方式不能同时使用。为使 wifi 板上电,都需要将 UART 接口 PIN7 管脚拉高。

第一种使用底板上 3.3V 电源, 需焊接 R11, 断开 R13。为了更低功耗可断开 R15。

第二种使用 WIFI 板上 LDO, 需焊接 R13, 断开 R11。

图 1.2.1

图 1.2.2

1.3 指示灯

指示灯接在 WIFI 模组的 PIN17—GPIO2 引脚,输出低电平时,指示灯亮起。

图 1.3.1

图 1.3.2

1.4 控制

图 1.4 分别是控制 wifi 模组的复位信号和使能信号。 复位 RST 信号,需底板 UART 接口的 PIN8 管脚输出高。 使能 EN 信号,需底板 UART 接口的 PIN9 管脚输出高。

九、RS485 板

1.1 接口

接在底板 UART 接口。详见附录二。

图 1.1

1.2 电源

电源有两种供电方式,如图 1.2。两个供电方式不能同时使用。为使 RS485 板上电,都需要将底板 UART 接口 PIN7 管脚拉高。

第一种使用底板上 3.3V 电源,需焊接 R4,断开 R8。为了更低功耗可断开 R9。

第二种使用子板上 LDO, 需焊接 R8, 断开 R4。

图 1.2.1

图 1.2.2

1.3 工作

通过RS485 芯片的PIN2与PIN3 控制数据的传输方向;即底板UART接口PIN8管脚。长距离通信时需焊接上R2。

GPI00 的控制收发功能真值表如下表。

表 1.3.1

MCU_GPI00	High	Low
RO	dis	Enable
DI	Enable	dis

十、以太网板

1.1 接口

接在底板的 SPI 接口。详见附录三。

1.2 电源

电源有三种供电方式,三个供电方式不能同时使用。为使以太网板上电,前两种方式需要将底板 SPI 接口 PIN9 管脚拉高。

第一种使用底板上 3.3V 电源, 需焊接 R21, 断开 R27, R28。为了更低功耗可断开 R29。

第二种使用本子板上 LDO, 需焊接 R28, 断开 R21, R27。

第三种不使用控制,直接上电,需焊接 R27,断开 R21, R28

图 1.2.2

1.3 控制

复位信号需将底板 SPI 接口 PIN9 管脚拉高。

1.4 中断

中断信号接在底板 SPI 接口 PIN10 管脚。

图 1.4

1.5 模式设置

通过 R1, R2, R3, R6, R7, R8 设置工作模式。

PHYMODE 的设置见表 1.5。

图 1.5.1

图 1.5.2

表 1.5

PHYMODE[2:0]

0	0	0	10BT Half-duplex, Auto-negotiation disabled
0	0	1	10BT Full-duplex, Auto-negotiation disabled
0	1	0	100BT Half-duplex, Auto-negotiation disabled
0	1	1	100BT Full-duplex, Auto-negotiation disabled
1	0	0	100BT Half-duplex, Auto-negotiation enabled
1	1	1	Auto-negotiation enabled

十一、电机驱动板

TOP BOTTOM

1.1 接口

J12 时 GPIO 接口,使用时,要关注 GPIO 是否和底板其他接口冲突。 J13 是电机的电源输入接口。 J14 接步进电机的四路。

图 1.1.1

图 1.1.2

1.2 电源

电机的电源由 J13 外部输入。见图 1.1.2。

1.3 驱动方式

驱动方式有两种,一种是 MOS 电路驱动。如图 1.3.1

图 1.3.1

另一种是通过 IC 驱动。如图 1.3.2, 默认情况使用 MOS 电路驱动,使用 IC 时,需要将 Q4,Q5,Q8,Q9,Q10,Q11,Q15,Q14 全部断开。

图 1.3.2

1.4 MOS 驱动方式工作逻辑

使用 MOS 管驱动时, GPIO 的工作逻辑见表 1.4。

表 1.4

节点	电平	优先级	电流流向
GPI00	L	2	
GPI01	Н	1	V M \05 \a9 \ A 如死国 \a1 \00 \CND
a1	GND	,	V_M->Q5->a2->外部线圈->a1->Q8->GND
a2	V_M	/	
节点	电平	优先级	电流流向
GPI00	Н	1	
GPI01	L	2	V_M->Q4->a1->外部线圈->a2->Q9->GND
a1	V_M	/	

_				-
		~		
	a2	CND		
	u2	UND		

注: GPI00 与 GPI01 不能同时出现高电平

节点	电平	优先级	电流流向
GPI02	L	2	
GPI03	Н	1	V_M->Q11->b2->外部线圈->b1->Q15->GND
b1	GND	/	V_M-/Q11-/D2-/9/mp线圈-/D1-/Q19-/GND
b2	V_M	/	
节点	电平	优先级	电流流向
GPI02	Н	1	
GPI03	L	2	V M->Q10->b1->外部线圈->b2->Q14->GND
b1	V_M	,	v_M-/&10-/D1-/かし中後層-/D2-/&14-/GND
b2	GND	/	

注: GPI02 与 GPI03 不能同时出现高电平

十二、9轴板

1.1 接口

SPI 接口。**详见<mark>附录三。</mark>**

1.2 电源

9 轴传感器由 1. 8V 供电。底板 SPI 接口的 PIN9 管脚控制电源上电,高电平有效。

十三、CAN 总线板

1.1 接口

连接底板的 CAN 总线接口。

CAN 接口	CAN 模块
CAN_TX	/
CAN_RX	/
GPI00	速率设置(配置低)
GPI01	

图 1.1

1.2 电源

电源由底板上 3.3V 直接供电。

1.3 工作

- (1) GPI00 是控制速率管脚,一般情况需要拉低。
- (2) 进行长距离通信, R61 需焊接 120R 电阻

图 1.3.1

图 1.3.2

十四、湿度测量板

1.1 接口

子板接在底板 ADC 接口。

图 1.1

ADCO 接口	ADC1 接口	湿度测量
ADC0	ADC1	ADC 采样
GPI08	GPI09	发送方波

1.2 电路

底板 ADC 接口的 PIN5 需要输出 1KHz 的方波,更该电阻 R8 调节 灵敏度。

图 1.2

十五、人体检测板

1.1 接口

接在 GPIO 接口上。需要用到一路 GPIO。

GPIO 接口	人体检测
GPI00	接收电平变化

1.2 电源

电源由底板 5V 供电。

1.3 工作方式

当检测到人体时,输出高电平。8S 钟后输出低电平。 距离和延时时间可通过下图电阻调整。

十六、继电器板

1.1 接口

接在底板 GPIO 接口上。需要用到一路 GPIO。

GPIO 接口	继电器
GPI00	控制开关

1.2 工作

电路如图所示。常开接在 N. O, 常闭接在 N. C。

图 1.2

十七、LED 驱动板

1.1 接口

接在底板 PWM 接口上。每块子板上三鹿 LED 驱动,每一路驱动都需要一路 PWM 控制。因此需要底板 PWM 接口上 PIN5 和 PIN6 的 GPIO 模拟 PWM。

图 1.1.1

PWM1	LED 驱动
PWM1	第一路 PWM
GPIO4	第二路 PWM
GPI05	第三路 PWM
GPI06	/
GPI07	/

J9, J10. J11 是三路输出接口。24V_*接 LED 正极, FB_*接负极。

图 1.1.2

图 1.1.3

1.2 电源

输入电源由外部接口提供。

图 1.2.1

图 1.2.2

1.3 工作原理

驱动 IC 是流控驱动型芯片,调整 R15 控制最大输出电流。详见芯片手册。 芯片型号为圣邦微 SGM3749。

十八、温度与大气压板

1.1 接口

接在底板的 IIC 接口。底板 I2C 接口上 PIN7 连接器件的中断。详见附录四。

图 1.1

1.2 电源

电源直接连接底板 3.3V。

1.3 电路

附录一 底板与 MCU 管脚对应关系表

管脚编号	М	MCU 核心板管脚名称		底板接口对应名称
			复用管脚	
8	PC0	I2C1_SCL		I2CO_SCL
9	PC1	I2C1_SDA		I2CO_SDA
29	PB10	I2C2_SCL		I2C1_SCL
30	PB11	I2C2_SDA		I2C1_SDA
33	PB12	I2S2_WS	GPIO14	I2S1_WS
34	PB13	I2S2_CK	GPIO15	12S1_CK

	Offinia IVIC			中移物联网有限公司
35	PB14	I2S2_MCK	GPI016	12S1_MCK
36	PB15	I2S2_SD	GPIO17	I2S1_SD
21	PA5	SPI1_SCK		SPIO_SCK
22	PA6	SPI1_MISO		SPIO_MISO
23	PA7	SPI1_MOSI		SPIO_MOSI
41	PA8	SPI1_NSS		SPIO_NSS
37	PC6	SPI2_NSS		SPI1_NSS
38	PC7	SPI2_SCK		SPI1_SCK
39	PC8	SPI2_MISO		SPI1_MISO
40	PC9	SPI2_MOSI		SPI1_MOSI
10	PC2	ADCO_IN13		ADCO_IN13
11	PC3	ADC1_IN14		ADC1_IN14
20	PA4	DAC_OUT		DAC_OUT
14	PA0	USART2_CTS	GPI012	UARTO_CTS
15	PA1	USART2_RTS	GPI013	UARTO_RTS
16	PA2	USART2_TX		UARTO_TX
17	PA3	USART2_RX		UARTO_RX
42	PA9	USART1_TX		UART1_TX
43	PA10	USART1_RX		UART1_RX
56	PC10	USART3_TX/UART4_TX		UART2_TX
57	PC11	USART3_RX/UART4_RX		UART2_RX
61	PB8	CAN_RX		CAN_RX
62	PB9	CAN_TX		CAN_TX
26	PB0	TIM1_CH2N/TIM3_CH3		PWM1
59	PB7	TIM4_CH2		PWMO
		_		
44	PA11	USB DM		USB DM
45	PA12	USB_DP		USB_DP
46	PA13	JTMS/SWDIO		JTMS/SWDIO
49	PA14	JTCK/SWCLK		JTCK/SWCLK
50	PA15	JTDI		JTDI
55	PB3	JTDO-TRACESWO		JTDO-TRACESWO

2	PC13	GPI08		GPI08
51	PB4	GPI05		GPI05
52	PB5	GPI06		GPI06
53	PC12	GPI07		GPI07
54	PD2	GPI09		GPI09
58	PB6	GPI02	GPI010	GPI02
24	PC4	GPI03	GPIO11	GPIO3
25	PC5	GPI04		GPIO4
27	PB1	GPI00		GPI00
28	PB2	GPI01		GPIO1

附录二 UART 与各模块管脚对应关系表

UARTO 接口	UART1 接口	UART2 接口	CAT1 板	NB 板
UARTO_RX	UART1_RX	UART2_RX	UART_TX	UART_TX
UARTO_TX	UART1_TX	UART2_TX	UART_RX	UART_RX
UARTO_CTS	GPI00	GPI04	电源控制(配置高)	模组复位
UARTO_RTS	GPI01	GPI05	模组复位	模组唤醒
GPI00	GPIO2	GPI06	模组唤醒	电源控制(配置高)
GPIO1	GPIO3	GP10 7	模组开机	模组开机

UARTO 接口	UART1 接口	UART2 接口	GNSS	蓝牙
UARTO_RX	UART1_RX	UART2_RX	UART_TX	UART_TX
UARTO_TX	UART1_TX	UART2_TX	UART_RX	UART_RX
UARTO_CTS	GPI00	GPI04	电源控制 (配置高)	电源控制 (配置高)
UARTO_RTS	GPIO1	GPI05	模组复位	中断信号
GPI00	GPIO2	GPI06		
GPIO1	GPIO3	GPI07		

UARTO 接口	UART1 接口	UART2 接口	WIFI	RS485
UARTO_RX	UART1_RX	UART2_RX	UART_TX	UART_TX(只测发)
UARTO_TX	UART1_TX	UART2_TX	UART_RX	UART_RX
UARTO_CTS	GPI00	GPIO4	电源控制(配置高)	电源控制(配置高)
UARTO_RTS	GPI01	GPIO5	模组复位	收发控制(配置高)

GPI00	GPIO2	GPI06	WIFI 模组使能	
GPIO1	GPI03	GPI07		

附录三 SPI 与各模块管脚对应关系表

SPI0 接口	SPI1接口	以太网	9 轴传感器
SPIO_SCK	SPI1_SCK	/	/
SPIO_MOSI	SPI1_MOSI	/	/
SPIO_MISO	SPI1_MISO	/	/
SPIO_NSS	SPI1_NSS	/	/
GPIO2	GPI04	复位	电源控制 (配置高)
GPIO3	GPI05	中断信号	中断信号

附录四 I2C 与各模块管脚对应关系表

I2C0 接口	温度+大气压
I2CO_SCL	/
I2CO_SDA	/
GPIO7	配置地址
GPI08	/