Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.	Let (E,D) be an authenticated encryption system built by combining	1 / 1 point
	a CPA-secure symmetric cipher and a MAC. The system is combined	
	with an error-correction code to correct random transmission errors.	
	In what order should encryption and error correction be applied?	
	The order does not matter either one is fine.	
	Encrypt and then apply the error correction code.	
	The order does not matter neither one can correct errors.	
	O Apply the error correction code and then encrypt the result.	
	✓ Correct	
	That is correct. The error correction code will do its best	

2. Let X be a uniform random variable over the set $\{0,1\}^n$.

to ensure no other errors remains.

1 / 1 point

Let Y be an arbitrary random variable over the set $\{0,1\}^n$ (not necessarily uniform) that is independent of X.

to correct random errors after which the MAC in the ciphertext will be checked

Define the random variable $Z=X\oplus Y$. What is the probability

that Z equals 0^n ?

- $\bigcirc 2/2^n$
- $\bigcirc 1/n^2$
- $\bigcirc 1 (1/2^n)$
 - **⊘** Correct

The probability is $1/2^n$. To see why, observe

that whatever \boldsymbol{Y} is, the probability that

 $Z=X\oplus Y=0^n$ is the same as the probability that X=Y which is exactly $1/2^n$ because X is uniform.

3	3. Suppose (E_1,D_1) is a symmetric cipher that uses 128 bit keys to	1 / 1 point
	encrypt 1024 bit messages. Suppose $\left(E_{2},D_{2} ight)$ is a symmetric	
	cipher that uses 128 bit keys to encrypt 128 bit messages.	
	The encryption algorithms E_1 and E_2 are deterministic and	
	do not use nonces. Which of the following statements is true?	
	$lacksquare (E_1,D_1)$ can be one-time semantically secure, but cannot be perfectly	
	secure.	
	igotimes Correct Yes, for example (E_1,D_1) can be a secure stream cipher.	
	$\ \square \ (E_2,D_2)$ can be perfectly secure, but cannot be one-time	
	semantically secure.	
	$lacksquare (E_2,D_2)$ can be one-time semantically secure and perfectly secure.	
	$igotimes$ Correct Yes, for example (E_2,D_2) can be the one time pad. $igotimes$ (E_1,D_1) can be semantically secure under a chosen plaintext attack.	
4	1. Which of the following statements regarding CBC and counter mode is correct?	1 / 1 point
4	Both counter mode and CBC mode can operate	1 / 1 point
4	Both counter mode and CBC mode can operate just using a PRF.	1 / 1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block 	1 / 1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block cipher (PRP). 	1 / 1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block cipher (PRP). CBC mode encryption requires a block 	1 / 1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block cipher (PRP). 	1 / 1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block cipher (PRP). CBC mode encryption requires a block cipher (PRP), but counter mode encryption only needs a PRF. 	1 / 1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block cipher (PRP). CBC mode encryption requires a block cipher (PRP), but counter mode encryption only needs a PRF. counter mode encryption requires a block 	1/1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block cipher (PRP). CBC mode encryption requires a block cipher (PRP), but counter mode encryption only needs a PRF. counter mode encryption requires a block cipher (PRP), but CBC mode encryption only needs a PRF. ✓ Correct 	1/1 point
4	 Both counter mode and CBC mode can operate just using a PRF. Both counter mode and CBC mode require a block cipher (PRP). CBC mode encryption requires a block cipher (PRP), but counter mode encryption only needs a PRF. counter mode encryption requires a block cipher (PRP), but CBC mode encryption only needs a PRF. Correct Yes, CBC needs to invert the PRP for decryption, while 	1/1 point

5.	Let $G: A o A^{\perp}$ be a secure PRG where $A = \{0,1\}^{\perp}$.	1 / 1 point
	We let $G(k)[0]$ denote	
	the left half of the output and $G(k)[1]$ denote the right half.	
	Which of the following statements is true?	
	$igcirc$ $F(k,m)=m\oplus k$ is a secure PRF with key space and message space X .	
	$igcirc$ $F(k,m)=G(k)[0]\oplus m$ is a secure PRF with key space and message	
	space X .	
	igotimes F(k,m) = G(k)[m] is a secure PRF with key space X and message	
	space $m \in \{0,1\}$.	
	$igcirc$ $F(k,m)=G(m)[0]\oplus k$ is a secure PRF with key space and message	
	space $X.$	
	igotimes Correct Yes, since the output of $G(k)$ is indistinguishable from	
	random, the left and right halves are indistinguishable from random	
	independent values.	
6.	Let (E,D) be a nonce-based symmetric encryption system (i.e. algorithm	1 / 1 point
	E takes as input a key, a message, and a nonce, and similarly the	
	decryption algorithm takes a nonce as one of its inputs). The system	
	provides chosen plaintext security (CPA-security) as long as the nonce	
	never repeats. Suppose a single encryption key is used to encrypt	
	2^{32} messages and the nonces are generated independently at random for each	
	encryption, how long should the nonce be to ensure that it never repeats	
	with high probability?	
	O 48 bits	
	128 bits	
	16 bits	
	O 64 bits	
	\bigcirc Correct Yes, the probability of repetition after 2^{32} samples	

is negligible.

1.	new key is chosen and is incremented by 1 after every encryption. What is the shortest nonce possible to ensure that the nonce does not repeat when encrypting 2^{32} messages using a single key?	I / I POIIIC
	32 bits	
	O 64 bits	
	O 16 bits	
	the nonce must be chosen at random, otherwise the system	
	cannot be CPA secure.	
	\bigcirc Correct Yes, with 32 bits there are 2^{32} nonces and each	
	message will use a different nonce.	
8.	Let (S,V) be a deterministic MAC system with message space M and key	1/1 point
	space K . Which of the following properties is implied by the	
	standard MAC security definition?	
	igcirc $S(k,m)$ preserves semantic security of m .	
	That is, the adversary learns nothing about m given $S(k,m)$.	
	igcirc The function $S(k,m)$ is a secure PRF.	
	$lacksquare$ For any two distinct messages m_0 and m_1 ,	
	given m_0, m_1 and $S(k, m_0)$ it is difficult to compute $S(k, m_1)$.	
	igcirc Given a key k in K it is difficult to find	
	distinct messages m_0 and m_1 such that $S(k,m_0)=S(k,m_1).$	
	 Correct yes, this is implied by existential unforgeability under 	
	a chosen message attack.	
a	Let $H:M o T$ be a collision resistant hash function where $ T $ is smaller than $ M $.	1/1 point
٠.		1/1 point
	Which of the following properties is implied by collision resistance?	
	$lacksquare$ Given a tag $t \in T$ it is difficult to construct	
	$m \in M$ such that $H(m) = t$.	
	For all m in M , $H(m)$ must be shorter than m .	
	it is difficult to find m_0 and m_1 such	
	that $H(m_0)=H(m_1)+1$. (here we treat the outputs of H as integers)	

but is insecure against man in the middle attacks.	
As with RSA, the protocol only provides	
eavesdropping security in the group \mathbb{Z}_N^* where N is an	
RSA modulus.	
☐ The basic protocol provides key exchange secure against	
active adversaries that can inject and modify messages.	
The protocol can be converted to a public-key	
encryption system called the ElGamal public-key system.	
○ Correct yes, that is correct.	
12. Suppose $n+1$ parties, call them B,A_1,\ldots,A_n , wish to setup	1/1 point
a shared group key. They want a protocol so that at the end	
of the protocol they all have a common secret key $oldsymbol{k}$, but an eavesdropper	
who sees the entire conversation cannot determine $k.$ The parties	
agree on the following protocol that runs in a group ${\cal G}$ of prime order q	
with generator g :	
• for $i=1,\dots,n$ party A_i chooses a random a_i in $\{1,\dots,q\}$ and sends to Party B the quantity $X_i \leftarrow g^{a_i}$.	
• Party B generates a random b in $\{1,\dots,q\}$ and for $i=1,\dots,n$ responds to Party A_i with the messages $Y_i \leftarrow X_i^b$.	
The final group key should be g^b . Clearly Party B can compute	
this group key. How would each Party A_i compute this group key?	
$igcirc$ Party A_i computes g^b as $Y_i^{-a_i}$	
$igcirc$ Party A_i computes g^b as Y_i^{-1/a_i}	
$igotimes$ Party A_i computes g^b as Y_i^{1/a_i}	
$igcap$ Party A_i computes g^b as $Y_i^{a_i}$	
$ extstyleigoplus_i^{2}$ Correct Yes, $Y_i^{1/a_i}=g^{(ba_i)/a_i}=g^b.$	
13. Recall that the RSA trapdoor permutation is defined in the group	1 / 1 point
\mathbb{Z}_N^* where N is a product of two large	

primes. The public key is (N,e) and the private key is (N,d)

where d is the inverse of e in $\mathbb{Z}_{\varphi(N)}^*$.

Suppose RSA was defined modulo a prime p instead of an RSA

composite N . Show that in that case anyone can compute the private

 $\operatorname{key}\left(N,d\right)$ from the public $\operatorname{key}\left(N,e\right)$ by computing:

$$\bigcirc \ d \leftarrow e^{-1} \pmod{p^2}.$$

$$\bigcirc \ d \leftarrow -e \pmod{p}.$$

$$\bigcirc \ d \leftarrow e^{-1} \pmod{p+1}.$$

⊘ Correct

yes, that is correct.