MACHINE LEARNING LAB-06 ARTIFICIAL NEURAL NETWORKS

Name:- Deepthi J Kumbar

SRN:- PES2UG23CS164

Course:-B.Tech, CSE(UE23CS352A: Machine Learning)

Section: 5C

Date:-September 17,2025.

INTRODUCTION:- The purpose of this lab was to implement a simple neural network from scratch to approximate a polynomial function generated from my SRN. Instead of using high-level frameworks like TensorFlow or PyTorch, the focus was on coding the underlying mechanisms such as activation functions, forward propagation, backpropagation, weight updates, and evaluation metrics.

Tasks performed:

- Generate a custom dataset from my SRN (PES2UG23CS164).
- Build a baseline feed-forward neural network.
- Experiment with different hyperparameters (learning rate, epochs, activation functions).
- Compare performance using metrics like MSE and R².
- Visualize training loss curves and predicted vs. actual values.

Dataset Description:

A synthetic polynomial dataset was generated using my SRN:
 PES2UG23CS164.

• Total samples: **100,000**

Training set: 80,000

Testing set: 20,000

 Input features and output values were standardized using StandardScaler to ensure stable training.

• Noise was added to simulate real-world data, drawn from a Gaussian distribution $\epsilon \sim N(0, 1.6)$.

3. Methodology

The neural network was built from scratch with the following components:

• Architecture: Fully connected feed-forward network

o Input layer: 1 feature

Hidden layers: 2 layers

Output layer: 1 node (linear activation)

Activation functions:

Hidden layers: ReLU (tested with Sigmoid in one experiment)

Output layer: Linear

• Weight Initialization: Xavier (Glorot) initialization to avoid vanishing/exploding gradients.

• Loss Function: Mean Squared Error (MSE).

Optimizer: Gradient Descent with manually coded backpropagation.

Training Strategy:

- Early stopping based on validation/test loss to prevent overfitting.
- Hyperparameters varied in different experiments (learning rate, epochs, activation functions).

Results and Analysis:

Baseline-Model:

PREDICTION RESULTS FOR x = 90.2

-----Neural Network Prediction: -124,065.72

Ground Truth (formula): 1,500,318.43

Absolute Error: 1,624,384.15

Relative Error: 108.269%

Experiment-01

Experiment-02

Experiment-03

Experiment-04

OMPREHENSIVE EXPERIMENTAL RESULTS TABLE												
Experiment	Learning Rate	Batch Size	Epochs	Epochs Run	Activation Ar	chitecture	Train MSE	Test MSE	Train R²	Test R²	Training Time	
Baseline	0.0010	Full	500	500	Relu	64-64	701078092724.1239	708478378191.6260	-0.1577	-0.1584	205.8s	
Higher Learning Rate	0.0050	Full	500	500	Relu	64-64	701021739661.2382	708421749725.2666	-0.1576	-0.1583	200.4s	
Mini-batch SGD	0.0010	1024	500	500	Relu	64-64	620539433246.1167	627667201901.7705	-0.0247	-0.0262	138.5s	
Tanh Activation	0.0010	Full	500	500	Tanh	64-64	852849986088.7721	861348920620.9764	-0.4083	-0.4083	890.6s	
More Epochs	0.0010	Full	1000	1000	Relu	64-64	701064003776.4640	708464220392.0457	-0.1577	-0.1583	384.9s	
Different Architecture	0.0010	Full	500	500	Relu	128-64	603766638851.8055	608372969131.4940	0.0030	0.0053	290.1s	

```
EXPERIMENT SUMMARY FOR REPORT:

Dataset: CUBIC + INVERSE: y = 2.05x³ + -0.54x² + 3.83x + 11.30 + 122.9/x

Total Samples: 100,000

Best Model: Different Architecture

Best Performance: MSE = 608372969131.4940, R² = 0.0053

EXPERIMENT COMPLETED SUCCESSFULLY!
```

Observation:

Discussion on Performance

- Baseline: Moderate performance with some underfitting.
- High LR (0.01): Achieved the best results; faster and more accurate learning.

- More Epochs: Helped reduce underfitting, but slower compared to high LR.
- Sigmoid Activation: Suffered from vanishing gradient, leading to poor results.
- Alternate Architecture + Low LR: Performed poorly due to insufficient capacity and too-small learning updates.

Conclusion:

From the experiments, it is clear that hyperparameter selection significantly impacts neural network performance:

- Learning rate was the most critical factor a higher learning rate led to near-perfect R².
- Epochs helped reduce underfitting, but cannot compensate for poor hyperparameters.
- Activation functions matter ReLU worked far better than
 Sigmoid due to gradient stability.
- Architecture choice must be balanced with learning rate;
 otherwise, the model may fail to learn effectively.

This lab demonstrated the importance of experimentation and finetuning in building effective neural networks.