Pracownia z ANALIZY NUMERYCZNEJ

Lista nr 2

Początek zapisów: 13 listopada 2017 r.

Termin realizacji: 17 grudnia 2017 r.

Punktacja (podana przy każdym zadaniu): 8-12 punktów

Każde z zadań może być wybrane najwyżej przez trzy osoby (trzy zespoły dwuosobowe — w wypadku zadań P2.2, P2.9) spośród wszystkich zapisanych na pracownię.

P2.1. 12 punktów Układ równań nieliniowych,

$$f_i(x_1, x_2, \dots, x_n) = 0$$
 $(i = 1, 2, \dots, n),$ (1)

można rozwiązać uogólnieniem metody Newtona. Zapiszmy układ (1) w postaci wektorowej,

$$f(x) = 0$$
.

gdzie $\mathbf{f}, \mathbf{x} \in \mathbb{R}^n$. Załóżmy, że wektor \mathbf{x}_k jest bieżącym przybliżeniem rozwiązania układu (1). Wówczas, kolejne przybliżenie \mathbf{x}_{k+1} jest rozwiązaniem następującego układu równań liniowych:

$$\mathbf{J}(\mathbf{x}_k)\left(\mathbf{x}_{k+1} - \mathbf{x}_k\right) = -\mathbf{f}(\mathbf{x}_k),$$

gdzie

$$\mathbf{J}(\mathbf{x}) = \mathbf{f}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

nazywamy Jakobianem funkcji **f**. Należy zaprogramować powyższą metodę i wykorzystać ją do rozwiązania przykładowych układów równań nieliniowych. Jaki jest koszt pojedynczej iteracji algorytmu? Jakie problemy możemy napotkać? Jak wybrać dobre przybliżenie startowe?

P2.2. Zadanie dla dwuosobowego zespołu. 12 punktów Aby ustalić położenie obiektu na powierzchni Ziemi, system GPS wykorzystuje 4 satelity i rozwiązuje układ równań nieliniowych następującej postaci:

$$(x - a_1)^2 + (y - b_1)^2 + (z - c_1)^2 = [C(t_1 - T)]^2$$

$$(x - a_2)^2 + (y - b_2)^2 + (z - c_2)^2 = [C(t_2 - T)]^2$$

$$(x - a_3)^2 + (y - b_3)^2 + (z - c_3)^2 = [C(t_3 - T)]^2$$

$$(x - a_4)^2 + (y - b_4)^2 + (z - c_4)^2 = [C(t_4 - T)]^2,$$

gdzie zmiennymi są szukane współrzędne x,y,z oraz błąd T zegara urządzenia odbiorczego. Pozostałe wielkości są znane. Dla i-tego satelity, a_i,b_i,c_i opisują jego lokalizację w chwili wysłania sygnału; t_i jest czasem transmisji sygnału. C jest prędkością światła. Do wyznaczenia pozycji (x,y,z) teoretycznie potrzebne są 3 satelity, ponieważ trzeba obliczyć 3 współrzędne. Niestety w praktyce zegar urządzenia odbiorczego nie jest w pełni zsynchronizowany z zegarami satelitów, więc potrzebne jest czwarte równanie, powstałe w wyniku pomiaru czasu dotarcia sygnału z czwartego satelity. Zadanie polega na opracowaniu metody rozwiązywania powyższego układu. Metodę należy przetestować w praktyce.

P2.3. 10 punktów Niech dane bede wartości funkcji dwóch zmiennych,

$$f_{ij} := f(x_i, y_j)$$
 $(i = 1, 2, \dots, n; j = 1, 2, \dots, m),$

gdzie x_i oraz y_j są dane. Interpolacja funkcji dwóch zmiennych polega na znalezieniu wielomianu

$$p(x,y) = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} c_{ij} x^i y^j,$$

który spełnia warunki

$$p(x_i, y_j) = f_{ij}$$
 $(i = 1, 2, ..., n; j = 1, 2, ..., m).$

Zaproponuj algorytm rozwiązujący to zadanie. Przetestuj uzyskaną metodę dla kilku wybranych funkcji f. Literatura:

- [1] G. Dahlquist, Å. Björck, Numerical Methods in Scientific Computing, Volume 1, SIAM, 2008.
- **P2.4**. 8 punktów Zrealizować algorytm obliczania współczynników postaci potęgowej wielomianu $p_n \in \Pi_n$:

$$p_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n,$$

który przyjmuje w danych (parami różnych) punktach x_0, x_1, \ldots, x_n te same wartości, co funkcja f.

- **P2.5**. 8 punktów Zrealizować algorytm, który dla danej liczby naturalnej N i danych liczb rzeczywistych: $x, \varepsilon > 0$, x_0, x_1, \ldots, x_N ($x_i \neq x_j$ dla $i \neq j$), y_0, y_1, \ldots, y_N znajduje takie najmniejsze n (n < N), że $|p_n(x) p_{n-1}(x)| < \varepsilon$, gdzie $p_m \in \Pi_m$ ($0 \le m \le N$) jest wielomianem spełniającym warunki $p_m(x_k) = y_k$ ($k = 0, 1, \ldots, m$).
- **P2.6**. 10 punktów Niech dane będą parami różne węzły x_0, x_1, \ldots, x_n $(n \in \mathbb{N})$ oraz odpowiadające im wartości y_0, y_1, \ldots, y_n , dla których obliczamy wielomiany pomocnicze P_{ij} $(0 \le i \le n; 0 \le j \le i)$ według następującego schematu:

$$P_{i0}(x) := y_i \quad (i = 0, 1, \dots, n),$$

$$P_{i,j+1}(x) := \frac{(x-x_j)P_{ij}(x) - (x-x_i)P_{jj}(x)}{x_i - x_j} \quad (i = 1, 2, \dots, n; \ j = 0, 1, \dots, i-1).$$

Wykaż, że wielomian P_{nn} jest n-tym wielomianem interpolacyjnym dla danych (x_k, y_k) (k = 0, 1, ..., n), tj.

$$P_{nn} \in \Pi_n, \qquad P_{nn}(x_k) = y_k \qquad (k = 0, 1, \dots, n).$$

Wykonując odpowiednie testy numeryczne zbadać, jak podany wyżej sposób konstrukcji wielomianu interpolacyjnego sprawdza się w praktyce. Przedstawić wnioski z obliczeń, m.in. dla:

- a) węzłów równoodległych,
- b) węzłów będących zerami (n+1)-go wielomianu Czebyszewa,
- c) losowo wybranych węzłów oraz dla funkcji: $f_1(x)=(1+25x^2)^{-1}, f_2(x)=\arctan x$ i $f_3(x)=\max(0,1-4x)$.
- **P2.7**. 10 punktów Załóżmy, że funkcja f ma w przedziale [a,b] funkcję odwrotną i że wartości funkcji f znane są jedynie dla argumentów $a \le x_0 < x_1 < \cdots < x_n \le b \ (n \in \mathbb{N})$. Chcemy znaleźć przybliżone rozwiązanie równania $f(x) = c \ (c \in \mathbb{R})$ leżące w przedziale [a,b]. Jak do rozwiązania tego zadania można wykorzystać interpolację wielomianową? Wykonując odpowiednie testy numeryczne, m. in. dla

$$f(x) = \frac{1}{1 + 25x^2} \qquad (c = 0.5, \ x \in [0, 1]),$$

$$f(x) = x^4 - 3x + 1 \qquad (c = 0, \ x \in [-0.8, 0.8]),$$

$$f(x) = \ln(x^2 + 4) \qquad (c = \ln(4.2), \ x \in [0, 5])$$

i różnego doboru węzłów, zbadać, czy pomysł ten sprawdza się w praktyce.

P2.8. 10 punktów Wielomian $L_n \in \Pi_n$, spełniający dla danych parami różnych liczb t_0, t_1, \ldots, t_n i liczb y_0, y_1, \ldots, y_n warunki $L_n(t_i) = y_i \ (i = 0, 1, \ldots, n)$, można zapisać w **postaci Lagrange'a**

$$L_n(t) = \sum_{i=0}^n \sigma_i y_i \prod_{j=0, j \neq i}^n (t - t_j),$$
(2)

gdzie

$$\sigma_i := 1 / \prod_{j=0, j \neq i}^n (t_i - t_j) \qquad (i = 0, 1, \dots, n).$$

Na przykładach m.in. y_i określonych jako wartości funkcji $f_1(x) = (1 + 25x^2)^{-1}$, $f_2(x) = \arctan x$ i $f_3(x) = \max(0, 1 - 4x)$ porównać algorytmy obliczania wartości wielomianu L_n , stosujące

- a) postać (2);
- b) postać barycentryczną tego wielomianu:

$$L_n(t) = \begin{cases} \sum_{i=0}^n \frac{\sigma_i}{t - t_i} y_i / \sum_{i=0}^n \frac{\sigma_i}{t - t_i} & (t \notin \{t_0, t_1, \dots, t_n\}, \\ y_k & (t = t_k, 0 \leqslant k \leqslant n). \end{cases}$$

P2.9. Zadanie dla dwuosobowego zespołu. 12 punktów Jak wiadomo, interpolacja wielomianowa znajduje zastosowanie także w grafice komputerowej. Z pewnych względów (jakich?) osoby zajmujące się tą tematyką preferują tzw. postać Béziera wielomianu, tzn. wielomian $w_n \in \Pi_n$ zapisują w postaci

$$w_n(x) = \sum_{k=0}^n c_k B_k^n(x),$$

gdzie B_k^n jest k-tym wielomianem Bernsteina stopnia n,

$$B_k^n(x) := \binom{n}{k} x^k (1-x)^{n-k} \qquad (k = 0, 1, \dots, n; \ n \in \mathbb{N})$$

(patrz np. [1, §9], [2, §7.2.3], [3, §1]).

Niech dane będą liczby $0 \le x_0 < x_1 < \ldots < x_n \le 1$ oraz funkcja f określona w punktach x_i $(i = 0, 1, \ldots, n)$. Niech $L_n \in \Pi_n$ będzie wielomianem interpolacyjnym dla powyższych danych zapisanym w postaci Newtona,

$$L_n(x_i) = f(x_i)$$
 $(i = 0, 1, ..., n),$ $L_n(x) = \sum_{k=0}^{n} b_k p_k(x),$

gdzie $b_k := f[x_0, x_1, \dots, x_k]$ $(k = 0, 1, \dots, n)$ oraz $p_0(x) := 1$, $p_k(x) := (x - x_{k-1})p_{k-1}(x)$ $(k = 1, 2, \dots, n)$. Opracować **efektywny algorytm** zamiany *postaci Newtona* wielomianu interpolacyjnego L_n na jego *postać Béziera*, tj. znajdowania takich współczynników c_k $(k = 0, 1, \dots, n)$, dla których zachodzi

$$\sum_{k=0}^{n} c_k B_k^n(x) = \sum_{k=0}^{n} b_k p_k(x).$$

Wykonując odpowiednie testy numeryczne, sprawdzić zaproponowaną metodę pod względem jej dokładności, skuteczności i stabilności. Wyciągnij wnioski.

Literatura:

- [1] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips, Wprowadzenie do grafiki komputerowej, WNT, 2001.
- [2] M. Jankowski, Elementy grafiki komputerowej, WNT, 1990.
- [3] P. Kiciak, Podstawy modelowania krzywych i powierzchni. Zastosowania w grafice komputerowej, WNT, 2005.
- **P2.10**. 12 punktów Wielomian interpolacyjny Lagrange'a $L_n \in \Pi_n$, przyjmujący w węzłach $t_0, t_1, \ldots, t_n \in [-1, 1]$ takie same wartości, co funkcja f, można wyrazić wzorem

$$L_n(t) = \sum_{i=0}^n f(t_i)\lambda_i(t), \quad \text{gdzie} \quad \lambda_i(t) = \prod_{j=0, j \neq i}^n \frac{t - t_j}{t_i - t_j} \quad (-1 \leqslant t \leqslant 1).$$
 (3)

Wskaźnik uwarunkowania zadania obliczania wartości wielomianu (3) określamy wzorem

$$K_n := \max_{-1 \leqslant t \leqslant 1} \sum_{i=0}^n |\lambda_i(t)|.$$

Obliczyć wartość ${\cal K}_n$ dla

- a) węzłów równoodległych $t_i := \frac{2i}{n} 1$ lub $t_i := \frac{2i+1}{n+1} 1$ $(i=0,1,\ldots,n),$
- b) węzłów będących zerami (n+1)-go wielomianu Czebyszewa,
- c) losowo wybranych węzłów.

prowadzących pracownie).

Przedstawić wnioski, w szczególności dotyczące związku wartości wskaźnika z dokładnością przybliżenia funkcji f za pomocą wielomianu L_n (wykresy funkcji błędu $e_n := f - L_n$ mile widziane); w roli funkcji testowych można m.in. wziąć $f_1(x) = (1 + 25x^2)^{-1}$, $f_2(x) = \arctan g$ x i $f_3(x) = \max(0, 1 - 4x)$.

- **P2.11**. 10 punktów Obliczyć przybliżoną wartość pochodnej f'(x) dla dowolnego $x \in [a, b]$ przy założeniu, że znane są tylko wartości f w zadanych z góry punktach $a = t_0 < t_1 < \cdots < t_n = b$. Wykonać obliczenia kontrolne dla kilku wartości n i m. in. dla funkcji sin, ln i exp.
- **P2.12.** 10 punktów Zrealizować algorytm zamiany kombinacji liniowej $\sum_{k=0}^{n} a_k q_k$ na kombinację $\sum_{k=0}^{n} A_k Q_k$, gdzie $q_k, Q_k \in \Pi_k$ $(k=0,1,\ldots,n)$ są danymi wielomianami, np. $q_k(x)=x^k$, $Q_k(x)=T_k(x)$ (wielomiany Czebyszewa); **Literatura** B.Y. Ting, Y. Luke, IMA J. Numer. Anal. 1 (1981), 229–234 (kopię artykułu można otrzymać od

P2.13. 10 punktów Niech dane będą: liczba naturalna k, liczby $m_0, m_1, \ldots, m_k \in \mathbb{N} \setminus \{0\}$ parami różne węzły x_0, x_1, \ldots, x_k oraz wielkości rzeczywiste $y_i^{(j)}$ $(i = 0, 1, \ldots, k; \ j = 0, 1, \ldots, m_k - 1)$. Przyjmijmy $n := m_0 + m_1 + \ldots + m_k - 1$. Udowodnij, że istnieje dokładnie jeden wielomian H_n stopnia co najwyżej n, nazywany wielomianem interpolacyjnym Hermite'a, spełniający następujące warunki:

$$H_n^{(j)}(x_i) = y_i^{(j)}$$
 $(i = 0, 1, \dots, k; \ j = 0, 1, \dots, m_k - 1).$

Następnie, zaproponuj efektywny pod względem numerycznym i złożoności obliczeniowej algorytm konstrukcji wielomianu H_n . Wykonaj odpowiednie testy i wyciągnij wnioski dotyczące m.in. użyteczności wielomianu interpolacyjnego Hermite'a w praktyce obliczeniowej.

P2.14. 11 punktów Zaproponuj algorytm przybliżający zadany łuk okręgu,

$$c(\alpha; t) = (r \cos t, r \sin t) \qquad (-\alpha \leqslant t \leqslant \alpha),$$

gdzie α , r > 0, krzywą wielomianową w wybranej postaci. Uogólnij opracowane podejście, aby rozwiązać problem przybliżania zadanej helisy,

$$h(\alpha; t) = (r \cos t, r \sin t, pt)$$
 $(-\alpha \le t \le \alpha),$

gdzie α , r, p > 0, krzywą wielomianową w wybranej postaci. Jakie cechy powinny posiadać dobre rozwiązania tych problemów? Przetestuj opracowane algorytmy. Zobacz [1] i artykuły tam cytowane.

Literatura:

- [1] L. Lu, On polynomial approximation of circular arcs and helices, Computers and Mathematics with Applications 63 (2012), 1192–1196.
- **P2.15**. 8 punktów Skonstruować naturalną funkcję sklejaną III stopnia s, interpolującą daną funkcję f w n+1 równoodległych punktach przedziału [a,b]. Obliczyć błąd

$$\hat{E}_N^{(n)} := \max_{x \in D_N} |f(x) - s(x)|,$$

gdzie D_N jest zbiorem N równoodległych punktów przedziału [a,b]. Wykonać obliczenia dla kilku par wartości n i N oraz dla funkcji (a) $f(x) = \sin x$, $0 \le x \le \pi$; (b) $f(x) = e^x$, $0 \le x \le 4$; (c) $f(x) = (x^2 + 1)^{-1}$, $x \in [-5, 5]$; (d) $f(x) = x/(x^2 + \frac{1}{4})$, $x \in [-\pi, \pi]$.

- **P2.16.** 9 punktów Dla danej krzywej parametrycznej $x=x(t),\ y=y(t)\ (a\leqslant t\leqslant b)$ możemy skonstruować następującą krzywą sklejaną interpolacyjną. Dla wybranych: $n\in\mathbb{N}$ oraz $a=t_0< t_1<\ldots< t_n=b$ obliczamy $x_i=x(t_i),\ y_i=y(t_i)$ dla $i=0,1,\ldots,n$, a następnie konstruujemy naturalne funkcje sklejane interpolujące III stopnia $s_x(t),\ s_y(t)$. Poszukiwana krzywa sklejana ma przedstawienie parametryczne $x=s_x(t),\ y=s_y(t)$ $(a\leqslant t\leqslant b)$. Wykonać obliczenia m.in. dla krzywej zwanej $serpentynq:\ x=\frac{1}{2}\operatorname{ctg} t,\ y=\sin 2t\ (-\frac{1}{2}\pi\leqslant t\leqslant \frac{1}{2}\pi)$.
- **P2.17**. 10 punktów Wartości funkcji f znane są jedynie w punktach $x_0 < x_1 < \cdots < x_n \ (n \in \mathbb{N})$. Zaproponuj, jak wykorzystać naturalną funkcję sklejaną trzeciego stopnia do znalezienia przybliżonych wartości wszystkich ekstremów lokalnych funkcji f leżących w przedziale $[x_0, x_n]$. Wykonując odpowiednie testy numeryczne, m. in. dla funkcji

$$f(x) = \sin(4\pi^2 x^2)$$
 $(x \in [0,1]),$ $f(x) = \ln\left(\frac{3}{2} + xT_6(x)\right)$ $(x \in [-1,1]),$

gdzie T_6 to wielomian Czebyszewa stopnia 6, zbadać, czy pomysł ten sprawdza się w praktyce.

P2.18. 10 punktów Niech dane będą: liczba naturalna n, węzły t_1, t_2, \ldots, t_n ($a = t_1 < t_2 < \ldots < t_n = b$) oraz funkcja f określona w przedziale [a, b]. Punkty

$$\tau_0 := t_1, \quad \tau_i := \frac{1}{2}(t_i + t_{i+1}) \quad (1 \le i \le n-1), \quad \tau_n := t_n$$

nazywamy przegubami. Dowodzi się, że istnieje dokładnie jedna taka $interpolująca funkcja sklejana II stopnia <math>\sigma \in C^1[a, b]$, że 1^o w każdym podprzedziale $[t_i, t_{i+1}]$ jest $\sigma \equiv q_i \in \Pi_2 \ (1 \leqslant i \leqslant n-1)$ oraz że $2^o \ \sigma(\tau_k) = f(\tau_k)$ $(k=0,1,\ldots,n)$. Dla $x \in [t_i, t_{i+1}] \ (1 \leqslant i \leqslant n-1)$ funkcja σ wyraża się wzorem

$$\sigma(x) = f(\tau_i) + \frac{1}{2}(m_{i+1} + m_i)(x - \tau_i) + \frac{1}{2h_i}(m_{i+1} - m_i)(x - \tau_i)^2,$$

gdzie $h_i := t_{i+1} - t_i$, a wielkości $m_i := \sigma'(t_i)$ $(i=1,2,\ldots,n)$ stanowią rozwiązanie układu równań

$$h_{i-1}m_{i-1} + 3(h_{i-1} + h_i)m_i + h_i m_{i+1} = 8(f(\tau_i) - f(\tau_{i-1}))$$
 $(1 \le i \le n).$

(Przyjmujemy, że $h_0 := h_n := m_0 := m_{n+1} := 0$). Skonstruować funkcję sklejaną σ dla kilku wartości n oraz m. in. dla funkcji (a) $f(x) = \sin x$, $0 \le x \le \pi$; (b) $f(x) = e^x$, $0 \le x \le 4$; (c) $f(x) = (x^2 + 1)^{-1}$, $x \in [-5, 5]$; (d) $f(x) = x/(x^2 + \frac{1}{4})$, $x \in [-\pi, \pi]$. W każdym wypadku obliczyć błąd $\Delta_N^{(n)} := \max_{x \in D_N} |f(x) - \sigma(x)|$, gdzie D_N jest zbiorem N (np. 101) równoodległych (lub wybranych losowo) punktów przedziału [a, b].

- **P2.19.** 10 punktów Zrealizować i porównać na przykładach dwie poznane metody konstrukcji wielomianów ortogonalnych P_0, P_1, \ldots, P_r na danym zbiorze $\{x_0, x_1, \ldots, x_r\}$ z wagą p:
 - a) metodę Grama-Schmidta ortogonalizacji układu $1, x, \ldots, x^r$;
 - b) sposób korzystający ze związku rekurencyjnego, spełnianego przez P_0, P_1, \dots, P_r .

Wykonać obliczenia i zinterpretować wyniki **między innymi** dla zbioru punktów $\{u_0, u_1, \ldots, u_r\}$, gdzie $u_k := \cos \frac{k\pi}{r} \ (k = 0, 1, \ldots, r)$, oraz takiej wagi p, że

$$p(u_k) = \begin{cases} \frac{1}{2} & (k = 0, r), \\ 1 & (1 < k < r). \end{cases}$$

P2.20. 12 punktów O funkcji $f \in C[0,1]$ wiadomo, że f(0) = a, a f(1) = b. Opracuj efektywny algorytm wyznaczania wielomianu $w_n^* \in \widehat{\Pi}_n$ $(n \ge 2)$ spełniającego warunek

$$||f - w_n^*||_2 = \min_{w_n \in \widehat{\Pi}_n} ||f - w_n||_2,$$

gdzie $\widehat{\Pi}_n := \{w \in \Pi_n : w(0) = a, \ w(1) = b\}$, a $||g||_2^2 := \int_0^1 [g(x)]^2 dx$. Wykonując odpowiednie testy numeryczne, sprawdź pod względem dokładności, skuteczności i stabilności zaproponowaną metodę.