Problem Sheet 1.3: Introduction to Lambda Calculus

For these exercises, you do not need to follow the definition of capture-avoidance **exactly** — it is very mechanical, and thus tedious. You only need to rename an abstraction λx that would otherwise capture a variable (in the substitution rule above, when x is a free variable in M). Renaming an abstraction, from $\lambda x.M$ to $\lambda z.(M[z/x])$, simply means renaming all variables x bound by λx , and λx itself, to z.

Exercise 1: For each of the following terms, (1) say if it's a **variable**, **abstraction**, or **application**, (2) identify the free variables (encircle them), and (3) find the binding occurrence for each bound variable (connect them with an arrow).

- a) x
- b) $\lambda x.x$
- c) $(\lambda a.z)a$
- d) $\lambda a.za$
- e) $(\lambda n.n)z$
- f) $\lambda z.(\lambda y.(\lambda x.x)y)z$
- g) $(\lambda t.((\lambda t.(\lambda t.t)t)t))t$

Exercise 2: Perform the following (capture-avoiding) substitutions.

- a) $(\lambda x.xy)[\lambda z.z/y]$
- b) $(\lambda x.xy)[\lambda z.zx/y]$
- c) $(f(\lambda x.yx)yx)[fy/x]$
- d) $(\lambda f. f(\lambda x. yx) yx) [fy/x]$

Exercise 3: Identify all the redexes in the following terms, and compute the λ -terms that result from β -reducing each redex.

- a) $(\lambda x.\lambda y.x)yx$
- b) $(\lambda f.f(\lambda x.x))(\lambda y.z)$
- c) $(\lambda x.\lambda y.yx)(\lambda x.xy)$
- d) $(\lambda x.xx)((\lambda y.y)(\lambda x.x))$

- e) $(\lambda x.xx)(\lambda y.y)(\lambda x.x)$
- f) $(\lambda x.xx)(\lambda x.xx)((\lambda y.y)(\lambda x.x))$

Exercise 4:

- a) Find distinct terms $\,M,N,P\,$ such that $\,M\to_{\beta} P\,$ and $\,N\to_{\beta} P\,$.
- b) Find distinct terms M,N,P,Q such that $M\to_{\beta} N$, $M\to_{\beta} P$ and $M\to_{\beta} Q$.