Generated on 2014-10-27 16:04:56 by gEcon version 0.7.0 (2014-10-27) Model name: rbc_ts

1 CONSUMER

1.1 Optimization problem

$$\max_{K_t^s, C_t, L_t^s, I_t} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left((1 - L_t^s)^{1 - \mu} C_t^{\mu} \right)^{1 - \eta}$$
(1.1)

s.t.

$$C_t + p_t I_t = \pi_t^C + \pi_t^I + K_{t-1}^s r_t + L_t^s W_t \quad (\lambda_t^{\text{CONSUMER}^1})$$
 (1.2)

$$K_t^s = I_t + K_{t-1}^s \left(1 - \delta\right) \quad \left(\lambda_t^{\text{CONSUMER}^2}\right) \tag{1.3}$$

1.2 Identities

$$Y_t = C_t + p_t I_t (1.4)$$

1.3 First order conditions

$$-\lambda_{t}^{\text{CONSUMER}^{2}} + \beta \left((1 - \delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{2}} \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{1}} r_{t+1} \right] \right) = 0 \quad (K_{t}^{s})$$

$$(1.5)$$

$$-\lambda_t^{\text{CONSUMER}^1} + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left((1 - L_t^s)^{1-\mu} C_t^{\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.6)

$$\lambda_t^{\text{CONSUMER}^1} W_t + (-1 + \mu) (1 - L_t^s)^{-\mu} \Big((1 - L_t^s)^{1-\mu} C_t^{\mu} \Big)^{-\eta} C_t^{\mu} = 0 \quad (L_t^s)$$
(1.7)

$$\lambda_t^{\text{CONSUMER}^2} - \lambda_t^{\text{CONSUMER}^1} p_t = 0 \quad (I_t)$$
(1.8)

2 FIRM C

2.1 Optimization problem

$$\max_{K_t^{C^d}, L_t^{C^d}, C_t^s} \pi_t^C = C_t^s - L_t^{C^d} W_t - r_t K_t^{C^d}$$
(2.1)

s.t.

$$C_t^s = Z_t K_t^{C^{d\alpha}} L_t^{C^{d^{1-\alpha}}} \left(\lambda_t^{\text{FIRM}^{C^1}}\right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^{C^1}} Z_t K_t^{C^{d-1+\alpha}} L_t^{C^{d^{1-\alpha}}} = 0 \quad (K_t^{C^d})$$
 (2.3)

$$-W_{t} + \lambda_{t}^{\text{FIRM}^{C^{1}}} Z_{t} (1 - \alpha) K_{t}^{C^{d}\alpha} L_{t}^{C^{d}-\alpha} = 0 \quad (L_{t}^{C^{d}})$$
(2.4)

$$1 - \lambda_t^{\text{FIRM}^{C^1}} = 0 \quad (C_t^s) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{C^{d-1+\alpha}} L_t^{C^{d-1-\alpha}} = 0 \quad (K_t^{C^d})$$
 (2.6)

$$-W_{t} + Z_{t} (1 - \alpha) K_{t}^{C^{d} \alpha} L_{t}^{C^{d-\alpha}} = 0 \quad (L_{t}^{C^{d}})$$
(2.7)

3 FIRM I

3.1 Optimization problem

$$\max_{K_t^{I^d}, L_t^{I^d}, I_t^s} \pi_t^I = I_t^s - L_t^{I^d} W_t - r_t K_t^{I^d}$$
(3.1)

s.t.

$$I_t^s = Z_t K_t^{I_d^{\sigma}} L_t^{I_d^{1-\alpha}} \quad (\lambda_t^{\text{FIRM}^{I^1}})$$
(3.2)

3.2 First order conditions

$$-r_t + \sigma \lambda_t^{\text{FIRM}^{I^1}} Z_t K_t^{I^{d-1} + \sigma} L_t^{I^{d-1} - \alpha} = 0 \quad (K_t^{I^d})$$
 (3.3)

$$-W_t + \lambda_t^{\text{FIRM}^{I^1}} Z_t (1 - \alpha) K_t^{I^{d^{\sigma}}} L_t^{I^{d^{-\alpha}}} = 0 \quad (L_t^{I^d})$$
 (3.4)

$$1 - \lambda_t^{\text{FIRM}^{I^1}} = 0 \quad (I_t^s) \tag{3.5}$$

3.3 First order conditions after reduction

$$-r_t + \sigma Z_t K_t^{I^{d-1} + \sigma} L_t^{I^{d-1} - \alpha} = 0 \quad (K_t^{I^d})$$
(3.6)

$$-W_t + Z_t (1 - \alpha) K_t^{I^{d}} L_t^{I^{d-\alpha}} = 0 \quad (L_t^{I^d})$$
(3.7)

4 EQUILIBRIUM

4.1 Identities

$$K_t^{C^d} + K_t^{I^d} = K_{t-1}^s (4.1)$$

$$L_t^{C^d} + L_t^{I^d} = L_t^s (4.2)$$

$$C_t = C_t^s \tag{4.3}$$

5 EXOG

5.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{5.1}$$

6 Equilibrium relationships

$$-r_t + \alpha Z_t K_t^{C^{d-1+\alpha}} L_t^{C^{d-1-\alpha}} = 0 {(6.1)}$$

$$-r_t + \sigma Z_t K_t^{I^{d-1+\sigma}} L_t^{I^{d-1-\alpha}} = 0 (6.2)$$

$$-C_t + Z_t K_t^{C^{d^{\alpha}}} L_t^{C^{d^{1-\alpha}}} = 0 (6.3)$$

$$-I_t^s + Z_t K_t^{I^{d}} L_t^{I^{d}} = 0 (6.4)$$

$$-W_t + Z_t (1 - \alpha) K_t^{C^{d} \alpha} L_t^{C^{d-\alpha}} = 0$$
 (6.5)

$$-W_t + Z_t (1 - \alpha) K_t^{I^{d}} L_t^{I^{d}} = 0$$
 (6.6)

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{6.7}$$

$$\beta \left(\mu \mathcal{E}_{t} \left[r_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right] + \mu \left(1 - \delta\right) \mathcal{E}_{t} \left[p_{t+1} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta} C_{t+1}^{-\eta}\right] \right)$$

$$(6.8)$$

$$(-1+\mu)\left(1-L_t^s\right)^{-\mu}\left((1-L_t^s)^{1-\mu}C_t^{\mu}\right)^{-\eta}C_t^{\mu} + \mu W_t C_t^{-1+\mu}\left(1-L_t^s\right)^{1-\mu}\left((1-L_t^s)^{1-\mu}C_t^{\mu}\right)^{-\eta} = 0 \tag{6.9}$$

$$-K_{t-1}^s + K_t^{C^d} + K_t^{I^d} = 0 (6.10)$$

$$-C_t + Y_t - p_t I_t = 0 (6.11)$$

$$I_t - K_t^s + K_{t-1}^s (1 - \delta) = 0 (6.12)$$

$$-L_t^s + L_t^{C^d} + L_t^{I^d} = 0 (6.13)$$

$$U_t - \beta E_t [U_{t+1}] - (1 - \eta)^{-1} \left((1 - L_t^s)^{1 - \mu} C_t^{\mu} \right)^{1 - \eta} = 0$$
(6.14)

$$I_t^s + K_{t-1}^s r_t - p_t I_t - r_t K_t^{C^d} - r_t K_t^{I^d} + L_t^s W_t - L_t^{C^d} W_t - L_t^{I^d} W_t = 0$$

$$(6.15)$$

7 Steady state relationships

$$-r_{\rm ss} + \alpha Z_{\rm ss} K_{\rm ss}^{C^{d-1+\alpha}} L_{\rm ss}^{C^{d-1-\alpha}} = 0$$
 (7.1)

$$-r_{\rm ss} + \sigma Z_{\rm ss} K_{\rm ss}^{I^d - 1 + \sigma} L_{\rm ss}^{I^d 1 - \alpha} = 0$$
 (7.2)

$$-C_{\rm ss} + Z_{\rm ss} K_{\rm ss}^{C^{d}\alpha} L_{\rm ss}^{C^{d}1-\alpha} = 0 (7.3)$$

$$-I_{\rm ss}^s + Z_{\rm ss} K_{\rm ss}^{I^{d}\sigma} L_{\rm ss}^{I^{d}1-\alpha} = 0 (7.4)$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{C^{d^{\alpha}}} L_{\rm ss}^{C^{d^{-\alpha}}} = 0$$
 (7.5)

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{I^{d}\sigma} L_{\rm ss}^{I^{d}-\alpha} = 0$$
 (7.6)

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{7.7}$$

$$\beta \left(\mu r_{\rm ss} (1 - L_{\rm ss}^s)^{1-\mu} \left((1 - L_{\rm ss}^s)^{1-\mu} C_{\rm ss}^{\mu} \right)^{-\eta} C_{\rm ss}^{-1+\mu} + \mu p_{\rm ss} (1 - \delta) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^s)^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^s)^{1-\mu} \right)^{-\eta} \right) - \mu p_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^s)^{1-\mu} \left((1 - L_{\rm ss}^s)^{1-\mu} (1 - L_{\rm ss}^s)^{1-\mu} (1 - L_{\rm ss}^s)^{1-\mu} \right)^{-\eta} \right) - \mu p_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^s)^{1-\mu} \left((1 - L_{\rm ss}^s)^{1-\mu} (1 - L_{\rm ss}^s)^{1-\mu} (1 - L_{\rm ss}^s)^{1-\mu} (1 - L_{\rm ss}^s)^{1-\mu} \right)^{-\eta} \right) - \mu p_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^s)^{1-\mu} \left((1 - L_{\rm ss}^s)^{1-\mu} (1 - L_{\rm ss}$$

$$(-1+\mu)C_{\rm ss}^{\mu}(1-L_{\rm ss}^{s})^{-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{s})^{1-\mu}\right)^{-\eta} + \mu W_{\rm ss}C_{\rm ss}^{-1+\mu}(1-L_{\rm ss}^{s})^{1-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{s})^{1-\mu}\right)^{-\eta} = 0$$
 (7.9)

$$-K_{\rm ss}^s + K_{\rm ss}^{C^d} + K_{\rm ss}^{I^d} = 0 (7.10)$$

$$-C_{\rm ss} + Y_{\rm ss} - p_{\rm ss}I_{\rm ss} = 0 (7.11)$$

$$I_{\rm ss} - K_{\rm ss}^s + K_{\rm ss}^s (1 - \delta) = 0$$
 (7.12)

$$-L_{\rm ss}^s + L_{\rm ss}^{C^d} + L_{\rm ss}^{I^d} = 0 (7.13)$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\ s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{7.14}$$

$$I_{ss}^{s} - p_{ss}I_{ss} + r_{ss}K_{ss}^{s} - r_{ss}K_{ss}^{C^{d}} - r_{ss}K_{ss}^{I^{d}} + L_{ss}^{s}W_{ss} - L_{ss}^{C^{d}}W_{ss} - L_{ss}^{I^{d}}W_{ss} = 0$$

$$(7.15)$$

8 Parameter settings

$$\alpha = 0.2 \tag{8.1}$$

$$\beta = 0.99 \tag{8.2}$$

$$\delta = 0.025 \tag{8.3}$$

$$\eta = 2 \tag{8.4}$$

$$\mu = 0.3 \tag{8.5}$$

$$\phi = 0.95 \tag{8.6}$$

$$\sigma = 0.4 \tag{8.7}$$

9 Steady state values

	Steady state values
p	1.5318
r	0.0538
C	0.3374
I	0.0439
I^s	0.0672
K^s	1.7551
K^{C^d}	1.2551
K^{I^d}	0.5
L^s	0.2914
L^{C^d}	0.243
L^{I^d}	0.0484
U	-176.3002
\overline{W}	1.111
Y	0.4046
Z	1

10 The solution of the perturbation

10.1 P

$$\begin{array}{ccc} K_{t-1}^s & Z_{t-1} \\ K^s & \begin{pmatrix} 0.9522 & -0.0054 \\ 0 & 0.95 \end{pmatrix} \end{array}$$

10.2 Q

$$\begin{array}{c} \epsilon^Z \\ K^s \left(\begin{array}{c} -0.0056 \\ I \end{array} \right) \end{array}$$

10.3 R

$$\begin{array}{c} K_{t-1}^{s} & Z_{t-1} \\ p \\ r \\ C \\ I \\ I^{s} \\ C^{d} \\ I^{s} \\ C^{d} \\ I^{d} \\ I^{d}$$

10.4 S

	ϵ^Z
p	/ 1.2258
r	1
C	1
I	-0.2258
I^s	1
K^{C^d}	0
K^{I^d}	0
L^s	0
L^{C^d}	0
L^{I^d}	0
U	-0.048
W	1
Y	\setminus 1 /

11 Statistics of the model

11.1 Moments

	Steady state value	Std. dev.	Variance	Loglinear
p	1.5318	0.113	0.0128	Y
r	0.0538	0.0922	0.0085	Y
C	0.3374	0.0922	0.0085	Y
I	0.0439	0.0208	0.0004	Y
I^s	0.0672	0.0922	0.0085	Y
K^s	1.7551	0.0018	0	Y
L^s	0.2914	0.0003	0	Y
U	-176.3002	0.0044	0	Y
W	1.111	0.0922	0.0085	Y
Y	0.4046	0.0922	0.0085	Y

11.2 Correlation matrix

	p	r	C	I	I^s	K^s	L^s	U	W	Y
p	1	0.9998	1	-0.9966	0.9998	-0.3088	0.0262	-0.9999	1	1
r	0.9998	1	0.9996	-0.9948	1	-0.3265	0.0449	-0.9995	0.9997	0.9997
C	1	0.9996	1	-0.9973	0.9996	-0.3001	0.0172	-1	1	1
I	-0.9966	-0.9948	-0.9973	1	-0.9948	0.229	0.0566	0.9976	-0.9972	-0.9969
I^s	0.9998	1	0.9996	-0.9948	1	-0.3265	0.0449	-0.9995	0.9997	0.9997
K^s	-0.3088	-0.3265	-0.3001	0.229	-0.3265	1	-0.9589	0.2963	-0.3014	-0.3045
K^{C^d}	-0.0262	-0.0449	-0.0172	-0.0566	-0.0449	0.9589	-1	0.0131	-0.0185	-0.0218
K^{I^d}	0	0	0	0	0	0	0	0	0	0
L^s	0.0262	0.0449	0.0172	0.0566	0.0449	-0.9589	1	-0.0131	0.0185	0.0218
L^{C^d}	-0.0262	-0.0449	-0.0172	-0.0566	-0.0449	0.9589	-1	0.0131	-0.0185	-0.0218
L^{I^d}	0.0262	0.0449	0.0172	0.0566	0.0449	-0.9589	1	-0.0131	0.0185	0.0218
U	-0.9999	-0.9995	-1	0.9976	-0.9995	0.2963	-0.0131	1	-1	-1
W	1	0.9997	1	-0.9972	0.9997	-0.3014	0.0185	-1	1	1
Y	1	0.9997	1	-0.9969	0.9997	-0.3045	0.0218	-1	1	1
Z	1	0.9998	1	-0.9968	0.9998	-0.3065	0.0238	-0.9999	1	1

11.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
p	0.7135	0.4715	0.2715	0.1102	-0.016
r	0.7152	0.4742	0.2746	0.1134	-0.0131
C	0.7127	0.4703	0.2701	0.1088	-0.0173
I	0.708	0.4629	0.2615	0.1001	-0.0252
I^s	0.7152	0.4742	0.2746	0.1134	-0.0131
K^s	0.9589	0.8598	0.7228	0.5647	0.3987
L^s	0.9589	0.8598	0.7228	0.5647	0.3987
U	0.7124	0.4698	0.2695	0.1082	-0.0178
W	0.7128	0.4704	0.2703	0.109	-0.0171
Y	0.7131	0.4709	0.2708	0.1095	-0.0166

12 Statistics of the model

12.1 Moments relative to moments of the reference variable

	Steady state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
p	3.7858	1.226	1.503	Y
r	0.1329	1.0008	1.0015	Y
C	0.8339	0.9999	0.9998	Y
I	0.1084	0.2261	0.0511	Y
I^s	0.1661	1.0008	1.0015	Y
K^s	4.3375	0.0199	0.0004	Y
K^{C^d}	3.1018	0.0278	0.0008	Y
K^{I^d}	1.2357	0	0	Y
L^s	0.7201	0.0033	0	Y
L^{C^d}	0.6005	0.0013	0	Y
L^{I^d}	0.1196	0.0265	0.0007	Y
U	-435.7117	0.048	0.0023	Y
W	2.7457	0.9999	0.9999	Y
Y	1	1	1	Y
Z	2.4714	1	1.0001	Y

12.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
p	-0.0189	0.1073	0.2688	0.4693	0.7122	1	0.7144	0.473	0.2734	0.1124	-0.0137
r	-0.0284	0.098	0.2604	0.4626	0.7082	0.9997	0.7196	0.4819	0.2845	0.1245	-0.0015
C	-0.0143	0.1118	0.2728	0.4725	0.714	1	0.7118	0.4686	0.268	0.1065	-0.0196
I	-0.0234	-0.1479	-0.3046	-0.4968	-0.727	-0.9969	-0.6883	-0.4316	-0.2231	-0.0583	0.0677
I^s	-0.0284	0.098	0.2604	0.4626	0.7082	0.9997	0.7196	0.4819	0.2845	0.1245	-0.0015
K^s	0.491	0.4367	0.3392	0.1896	-0.0218	-0.3045	-0.4925	-0.6029	-0.6512	-0.6515	-0.616
K^{C^d}	0.5104	0.491	0.4367	0.3392	0.1896	-0.0218	-0.3045	-0.4925	-0.6029	-0.6512	-0.6515
K^{I^d}	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
L^s	-0.5104	-0.491	-0.4367	-0.3392	-0.1896	0.0218	0.3045	0.4925	0.6029	0.6512	0.6515
L^{C^d}	0.5104	0.491	0.4367	0.3392	0.1896	-0.0218	-0.3045	-0.4925	-0.6029	-0.6512	-0.6515
L^{I^d}	-0.5104	-0.491	-0.4367	-0.3392	-0.1896	0.0218	0.3045	0.4925	0.6029	0.6512	0.6515
U	0.0122	-0.1138	-0.2746	-0.4739	-0.7148	-1	-0.7106	-0.4667	-0.2656	-0.1039	0.0223
\overline{W}	-0.0149	0.1111	0.2722	0.472	0.7138	1	0.7121	0.4693	0.2688	0.1074	-0.0188
Y	-0.0166	0.1095	0.2708	0.4709	0.7131	1	0.7131	0.4709	0.2708	0.1095	-0.0166
Z	-0.0177	0.1085	0.2699	0.4702	0.7127	1	0.7137	0.4718	0.272	0.1108	-0.0153

13 Impulse response functions

13.1 Shock ϵ^Z

Figure 1: Impulse response function for ϵ^Z shock

Figure 2: Impulse response function for ϵ^Z shock