In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
```

In [2]:

```
data = pd.read_csv("C:/Users/AKASH JOY/Documents/Verzeo DataSciene Major/covid_19_india.csv
```

In [3]:

```
data.columns
```

Out[3]:

In [4]:

```
data.head()
```

Out[4]:

	Sno	Date	Time	State/UnionTerritory	ConfirmedIndianNational	ConfirmedForeignNational	С
0	1	2020- 01-30	6:00 PM	Kerala	1	0	
1	2	2020- 01-31	6:00 PM	Kerala	1	0	
2	3	2020- 02-01	6:00 PM	Kerala	2	0	
3	4	2020- 02-02	6:00 PM	Kerala	3	0	
4	5	2020- 02-03	6:00 PM	Kerala	3	0	
4							•

In [5]:

```
data.describe()
```

Out[5]:

	Sno	Cured	Deaths	Confirmed
count	15806.000000	1.580600e+04	15806.000000	1.580600e+04
mean	7903.500000	1.986514e+05	3004.846324	2.204181e+05
std	4562.943513	4.299306e+05	7919.358996	4.781429e+05
min	1.000000	0.000000e+00	0.000000	0.000000e+00
25%	3952.250000	2.082000e+03	15.000000	3.291250e+03
50%	7903.500000	2.293950e+04	385.000000	2.927950e+04
75%	11854.750000	2.208698e+05	2690.500000	2.472700e+05
max	15806.000000	5.564348e+06	100470.000000	5.842000e+06

In [6]:

```
data.isnull().sum()
```

Out[6]:

Sno	0
Date	0
Time	0
State/UnionTerritory	0
ConfirmedIndianNational	0
ConfirmedForeignNational	0
Cured	0
Deaths	0
Confirmed	0
dtung: intel	

dtype: int64

In [7]:

```
data1 = data
```

In [8]:

```
dates_1 = data1[data1['Sno']>5]
```

```
In [9]:
```

```
data1.Date
Out[9]:
0
         2020-01-30
         2020-01-31
1
2
         2020-02-01
         2020-02-02
3
         2020-02-03
15801 2021-06-08
15802
         2021-06-08
15803
         2021-06-08
15804
         2021-06-08
15805
        2021-06-08
Name: Date, Length: 15806, dtype: object
In [10]:
data1.Date = pd.to_datetime(data1.Date,utc = True)
In [11]:
data1['Date']
Out[11]:
        2020-01-30 00:00:00+00:00
        2020-01-31 00:00:00+00:00
1
        2020-02-01 00:00:00+00:00
2
3
        2020-02-02 00:00:00+00:00
        2020-02-03 00:00:00+00:00
15801
        2021-06-08 00:00:00+00:00
15802
       2021-06-08 00:00:00+00:00
15803 2021-06-08 00:00:00+00:00
15804
        2021-06-08 00:00:00+00:00
15805
        2021-06-08 00:00:00+00:00
Name: Date, Length: 15806, dtype: datetime64[ns, UTC]
In [12]:
ds=data1[(data1['Date'] > '2020-03-26') & (data1['Date'] <= '2020-04-30')]
```

In [13]:

ds

Out[13]:

	Sno	Date	Time	State/UnionTerritory	ConfirmedIndianNational	ConfirmedForei
392	393	2020-03-27 00:00:00+00:00	10:00 AM	Andaman and Nicobar Islands	1	
393	394	2020-03-27 00:00:00+00:00	10:00 AM	Andhra Pradesh	12	
394	395	2020-03-27 00:00:00+00:00	10:00 AM	Bihar	6	
395	396	2020-03-27 00:00:00+00:00	10:00 AM	Chandigarh	7	
396	397	2020-03-27 00:00:00+00:00	10:00 AM	Chhattisgarh	6	
1473	1474	2020-04-30 00:00:00+00:00	5:00 PM	Telengana		
1474	1475	2020-04-30 00:00:00+00:00	5:00 PM	Tripura		
1475	1476	2020-04-30 00:00:00+00:00	5:00 PM	Uttarakhand		
1476	1477	2020-04-30 00:00:00+00:00	5:00 PM	Uttar Pradesh	-	
1477	1478	2020-04-30 00:00:00+00:00	5:00 PM	West Bengal		
1086 r	1086 rows × 9 columns					
4						>

In []:

In [14]:

ds

Out[14]:

	Sno	Date	Time	State/UnionTerritory	ConfirmedIndianNational	ConfirmedForei
392	393	2020-03-27 00:00:00+00:00	10:00 AM	Andaman and Nicobar Islands	1	
393	394	2020-03-27 00:00:00+00:00	10:00 AM	Andhra Pradesh	12	
394	395	2020-03-27 00:00:00+00:00	10:00 AM	Bihar	6	
395	396	2020-03-27 00:00:00+00:00	10:00 AM	Chandigarh	7	
396	397	2020-03-27 00:00:00+00:00	10:00 AM	Chhattisgarh	6	
1473	1474	2020-04-30 00:00:00+00:00	5:00 PM	Telengana	-	
1474	1475	2020-04-30 00:00:00+00:00	5:00 PM	Tripura	-	
1475	1476	2020-04-30 00:00:00+00:00	5:00 PM	Uttarakhand	-	
1476	1477	2020-04-30 00:00:00+00:00	5:00 PM	Uttar Pradesh	-	
1477	1478	2020-04-30 00:00:00+00:00	5:00 PM	West Bengal	-	

1086 rows × 9 columns

In [15]:

ds.shape

Out[15]:

(1086, 9)

In [16]:

ds.dtypes

Out[16]:

Sno	int64
Date	datetime64[ns, UTC]
Time	object
State/UnionTerritory	object
ConfirmedIndianNational	object
ConfirmedForeignNational	object
Cured	int64
Deaths	int64
Confirmed	int64

dtype: object

Sno O Date I Time I State/UnionTerritory N ConfirmedIndianNational N ConfirmedForeignNational N Cured N Deaths N Confirmed N

Labels are:-

- 1.Cured
- 2.Deaths
- 3.Confirmed

Features are:-

- 1. State/Union Territory
- 2. ConfirmedIndianNational
- 3. ConfirmedForeignNational

In [17]:

```
ds.isnull().sum()
Out[17]:
Sno
                              0
Date
                              0
Time
                              0
State/UnionTerritory
                              0
ConfirmedIndianNational
                              0
ConfirmedForeignNational
                              0
Cured
                              0
Deaths
                              0
Confirmed
                              0
```

The given DataSet does not have any null values

In [18]:

dtype: int64

from the above correlation its gives and insight:-

Cured is related to Confirmed COVID-19 Cases

Confirmed

Cured

Sno

Deaths

Deaths is highly related to Confirmed COVID-19 Cases

Also the number of cases confirmed increased gets the deaths rate increased too

```
In [19]:
```

```
ds.drop(['Time','Sno'],axis = 1,inplace =True)
```

C:\anaconda\lib\site-packages\pandas\core\frame.py:4163: SettingWithCopyWarn
ing:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

return super().drop(

In [20]:

```
ds.columns
```

Out[20]:

In [21]:

ds.shape

Out[21]:

(1086, 7)

In [22]:

```
dataplot = sb.heatmap(ds.corr(),cmap="YlGnBu",annot = True)
```


In []:

In [23]:

```
sb.relplot(x="Confirmed",y = "Cured", data = ds)
```

Out[23]:

<seaborn.axisgrid.FacetGrid at 0xab994a8>

In [24]:

```
sb.relplot(x="Date",y = "Cured", data = ds)
```

Out[24]:

<seaborn.axisgrid.FacetGrid at 0xab783d0>

In [44]:

```
X = ds['Date']
Y = ds['Cured']
plt.xlabel("Date")
plt.ylabel("Cured")
fig,ax = plt.subplots(figsize = (22,12))
ax.plot(X,Y,color ='blue',label='Date')
```

Out[44]:

[<matplotlib.lines.Line2D at 0xa90d9b8>]

In [45]:

```
X = ds['Confirmed']
Y = ds['Deaths']
plt.xlabel("Confirmed")
plt.ylabel("Deaths")
fig,ax = plt.subplots(figsize = (12,10))
ax.plot(X,Y,color ='blue',label='Date')
```

Out[45]:

[<matplotlib.lines.Line2D at 0xb05640>]

In [46]:

```
sb.relplot(x="Confirmed",y = "Deaths", data = ds)
```

Out[46]:

<seaborn.axisgrid.FacetGrid at 0xa91b400>

In [47]:

sb.pairplot(ds)

Out[47]:

<seaborn.axisgrid.PairGrid at 0xa91b6d0>

In [48]:

ds.columns

Out[48]:

Index(['Date', 'State/UnionTerritory', 'ConfirmedIndianNational', 'ConfirmedForeignNational', 'Cured', 'Deaths', 'Confirmed'], dtype='object')

In [49]:

```
ax=sb.barplot(x =ds['ConfirmedIndianNational'],y = ds['Cured'])
plt.xticks(rotation = 90)
plt.figure(figsize = (42,12))
```

Out[49]:

<Figure size 3024x864 with 0 Axes>

<Figure size 3024x864 with 0 Axes>

In [50]:

```
ax=sb.barplot(x =ds['ConfirmedIndianNational'],y = ds['Cured'])
plt.xticks(rotation = 90)
plt.figure(figsize = (42,12))
```

Out[50]:

<Figure size 3024x864 with 0 Axes>

<Figure size 3024x864 with 0 Axes>

In [51]:

```
ax=sb.barplot(x =ds['ConfirmedForeignNational'],y = ds['Cured'])
plt.xticks(rotation = 90)
plt.figure(figsize = (42,12))
```

Out[51]:

<Figure size 3024x864 with 0 Axes>

<Figure size 3024x864 with 0 Axes>

In [52]:

```
ax=sb.barplot(x =ds['ConfirmedIndianNational'],y = ds['Deaths'])
plt.xticks(rotation = 90)
plt.figure(figsize = (42,12))
```

Out[52]:

<Figure size 3024x864 with 0 Axes>

<Figure size 3024x864 with 0 Axes>

In [53]:

```
ax=sb.barplot(x =ds['ConfirmedForeignNational'],y = ds['Deaths'])
plt.xticks(rotation = 90)
plt.figure(figsize = (42,12))
```

Out[53]:

<Figure size 3024x864 with 0 Axes>

<Figure size 3024x864 with 0 Axes>

In [54]:

```
ds['State/UnionTerritory']
```

Out[54]:

392	Andaman and Nicobar Islands			
393	Andhra Pradesh			
394	Bihar			
395	Chandigarh			
396	Chhattisgarh			
	•••			
1473	Telengana			
1474	Tripura			
1475	Uttarakhand			
1476	Uttar Pradesh			
1477	West Bengal			
Name:	State/UnionTerritory, Length:	1086,	dtype:	object

```
In [55]:
```

```
sb.barplot(x = 'State/UnionTerritory',y = 'Confirmed',data = ds)
plt.xticks(rotation = 90)
Out[55]:
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3
31),
 [Text(0, 0, 'Andaman and Nicobar Islands'),
  Text(1, 0, 'Andhra Pradesh'),
  Text(2, 0, 'Bihar'),
  Text(3, 0, 'Chandigarh'),
  Text(4, 0, 'Chhattisgarh'),
  Text(5, 0, 'Delhi'),
  Text(6, 0, 'Goa'),
  Text(7, 0, 'Gujarat'),
  Text(8, 0, 'Haryana'),
  Text(9, 0, 'Himachal Pradesh'),
  Text(10, 0, 'Jammu and Kashmir'),
 Text(11, 0, 'Karnataka'),
  Text(12, 0, 'Kerala'),
  Text(13, 0, 'Ladakh'),
  Text(14, 0, 'Madhya Pradesh'),
  Text(15, 0, 'Maharashtra'),
  Text(16, 0, 'Manipur'),
  Text(17, 0, 'Mizoram'),
 Text(18, 0, 'Odisha'),
  Text(19, 0, 'Puducherry'),
  Text(20, 0, 'Punjab'),
  Text(21, 0, 'Rajasthan'),
  Text(22, 0, 'Tamil Nadu'),
  Text(23, 0, 'Telengana'),
  Text(24, 0, 'Uttarakhand')
 Text(25, 0, 'Uttar Pradesh'),
Text(26, 0, 'West Bengal'),
  Text(27, 0, 'Unassigned'),
  Text(28, 0, 'Assam'),
  Text(29, 0, 'Jharkhand'),
  Text(30, 0, 'Arunachal Pradesh'),
  Text(31, 0, 'Tripura'),
  Text(32, 0, 'Nagaland'),
  Text(33, 0, 'Meghalaya')])
```


From The Above Bar Chart:-

We can observe that the states like Maharashtra has more than 500 Cases!

while there are States/Union-Territory like Meghalaya, Nagaland, Tripura, Arunachal Pradesh that has very less Covid-19 Cases!

```
In [56]:
```

```
sb.barplot(x = 'State/UnionTerritory',y = 'Deaths',data = ds)
plt.xticks(rotation = 90)
Out[56]:
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3
31),
 [Text(0, 0, 'Andaman and Nicobar Islands'),
  Text(1, 0, 'Andhra Pradesh'),
  Text(2, 0, 'Bihar'),
  Text(3, 0, 'Chandigarh'),
  Text(4, 0, 'Chhattisgarh'),
  Text(5, 0, 'Delhi'),
  Text(6, 0, 'Goa'),
  Text(7, 0, 'Gujarat'),
  Text(8, 0, 'Haryana'),
  Text(9, 0, 'Himachal Pradesh'),
  Text(10, 0, 'Jammu and Kashmir'),
 Text(11, 0, 'Karnataka'),
  Text(12, 0, 'Kerala'),
  Text(13, 0, 'Ladakh'),
  Text(14, 0, 'Madhya Pradesh'),
  Text(15, 0, 'Maharashtra'),
  Text(16, 0, 'Manipur'),
  Text(17, 0, 'Mizoram'),
 Text(18, 0, 'Odisha'),
  Text(19, 0, 'Puducherry'),
  Text(20, 0, 'Punjab'),
  Text(21, 0, 'Rajasthan'),
  Text(22, 0, 'Tamil Nadu'),
  Text(23, 0, 'Telengana'),
  Text(24, 0, 'Uttarakhand')
 Text(25, 0, 'Uttar Pradesh'),
Text(26, 0, 'West Bengal'),
  Text(27, 0, 'Unassigned'),
  Text(28, 0, 'Assam'),
  Text(29, 0, 'Jharkhand'),
  Text(30, 0, 'Arunachal Pradesh'),
  Text(31, 0, 'Tripura'),
  Text(32, 0, 'Nagaland'),
  Text(33, 0, 'Meghalaya')])
```


From The Above Bar Chart:-

We can observe that the states like Maharashtra has more than 500 Death Cases!

while there are States/Union-Territory like Meghalaya, Nagaland, Tripura, Arunachal Pradesh that has very less Death in Covid-19 Cases!

```
In [57]:
```

```
sb.barplot(x = 'State/UnionTerritory',y = 'Cured',data = ds)
plt.xticks(rotation = 90)
Out[57]:
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3
31),
 [Text(0, 0, 'Andaman and Nicobar Islands'),
  Text(1, 0, 'Andhra Pradesh'),
  Text(2, 0, 'Bihar'),
  Text(3, 0, 'Chandigarh'),
  Text(4, 0, 'Chhattisgarh'),
  Text(5, 0, 'Delhi'),
  Text(6, 0, 'Goa'),
  Text(7, 0, 'Gujarat'),
  Text(8, 0, 'Haryana'),
  Text(9, 0, 'Himachal Pradesh'),
  Text(10, 0, 'Jammu and Kashmir'),
 Text(11, 0, 'Karnataka'),
  Text(12, 0, 'Kerala'),
  Text(13, 0, 'Ladakh'),
  Text(14, 0, 'Madhya Pradesh'),
  Text(15, 0, 'Maharashtra'),
  Text(16, 0, 'Manipur'),
  Text(17, 0, 'Mizoram'),
 Text(18, 0, 'Odisha'),
  Text(19, 0, 'Puducherry'),
  Text(20, 0, 'Punjab'),
  Text(21, 0, 'Rajasthan'),
  Text(22, 0, 'Tamil Nadu'),
  Text(23, 0, 'Telengana'),
  Text(24, 0, 'Uttarakhand')
 Text(25, 0, 'Uttar Pradesh'),
Text(26, 0, 'West Bengal'),
  Text(27, 0, 'Unassigned'),
  Text(28, 0, 'Assam'),
  Text(29, 0, 'Jharkhand'),
  Text(30, 0, 'Arunachal Pradesh'),
  Text(31, 0, 'Tripura'),
  Text(32, 0, 'Nagaland'),
  Text(33, 0, 'Meghalaya')])
```


From The Above Bar Chart:-

We can observe that the states like Maharashtra has more than 500 cases Cured!

while there are States/Union-Territory like Meghalaya, Nagaland, Tripura, Arunachal Pradesh that has very less cured level of Covid Cases!

So from the above Visualization/Chart we can conclude that the states like Maharashtra, Delhi, Goa need higher precauntionary measures against Covid-19

While the states like Meghalaya, Nagaland, Tripura, Arunachal Pradesh are stable/Green regions so no higher precauntionary measures against Covid-19 is required

```
In [ ]:
In [ ]:
ds.columns
In [26]:
X = ds.drop(['Cured'],axis = 1)
Y = ds['Cured']
```

In [27]:

```
sb.relplot(x="Cured",y = "Deaths", hue = "Cured",data = ds)
```

Out[27]:

<seaborn.axisgrid.FacetGrid at 0x5cddf88>

So, The Number of Death Cases is also Rising with the covid-19 Cases

But there is also a Rise in Cure Cases of Covid-19 which is a point to be Observed!!!

In [28]:

from sklearn.model_selection import train_test_split

In [29]:

```
X = ds.drop(['Date','Cured','State/UnionTerritory','ConfirmedIndianNational','ConfirmedFore
Y = ds['Cured']
                                                                                          •
```

In [30]:

ds.dtypes

Out[30]:

Date	<pre>datetime64[ns, UTC]</pre>
State/UnionTerritory	object
ConfirmedIndianNational	object
ConfirmedForeignNational	object
Cured	int64
Deaths	int64
Confirmed	int64
dtype: object	

In [31]:

Out[31]:

	Deaths	Confirmed
392	0	1
393	0	12
394	1	6
395	0	7
396	0	6
1473	26	1012
1474	0	2
1475	0	55
1476	39	2203
1477	22	758

1086 rows × 2 columns

```
In [32]:
```

```
Υ
Out[32]:
392
           0
393
           1
394
           0
395
           0
396
1473
        367
1474
           2
1475
         36
        513
1476
1477
        124
Name: Cured, Length: 1086, dtype: int64
In [33]:
```

```
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.3)
```

In [34]:

```
print(X_train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
(760, 2)
(760,)
```

In [35]:

(326, 2)(326,)

print(X)

	Deaths	Confirmed
392	0	1
393	0	12
394	1	6
395	0	7
396	0	6
• • •	• • •	• • •
1473	26	1012
1474	0	2
1475	0	55
1476	39	2203
1477	22	758

[1086 rows x 2 columns]

```
In [36]:
```

```
from sklearn.linear_model import RidgeCV
model = RidgeCV(cv=2)
model.fit(X_train, Y_train)
Out[36]:
RidgeCV(alphas=array([ 0.1, 1. , 10. ]), cv=2)
In [40]:
predict = model.predict(X_test)
```

70.366441049453

The number of each cases were approx 70 new cases each day starting from March 26th to April 30th

print("{}".format(np.linalg.norm(predict - Y_test, 1)*2/len(Y_test)))

