Associativity Avatar Graph

by Sven Nilsen, 2020

In this paper I present an Avatar Graph that models associativity.

The Associativity Avatar Graph^[1] is the following, as illustrated:

Reading from the bottom to the top:

- 1. The bottom node is the unit `()`
- 2. Introduction of 3 elements `a, b, c`, which can be thought of as `() \rightarrow a, () \rightarrow b, () \rightarrow c`
- 3. Two products `ab` and `bc`
- 4. Two new products `a(bc)` and `(ab)c`
- 5. A witness of the equality `a(bc) = (ab)c`

This avatar graph was discovered by the author during a discussion in the Bivector Discord Server^[3] when investigating axioms of the geometric product by comparing them with theorems in Avatar Algebra^[4].

The Associative Avatar Graph has 9 vertices, which is uncommon for filled avatar graphs (usually 2ⁿ).

This graph was not listed previously in the House of Graphs, a database of interesting graphs. Graph properties calculated by the House of Graphs^[2]:

Acyclic:	No	Edge Connectivity:	2	Minimum Degree:	2
Algebraic connectivity:	1.268	Eulerian:	No	Min. Dominating Set:	3
Average degree:	2.889	Genus:	1	Number of Components:	1
Bipartite:	No	Girth:	4	Number of Edges:	13
Chromatic Index:	4	Hamiltonian:	Yes	Number of Triangles:	0
Chromatic Number:	3	Independence Number:	4	Number of Vertices:	9
Circumference:	9	Index:	2.928	Planar:	No
Claw-Free:	No	LLE*:	5.414	Radius:	2
Clique Number:	2	Longest Induced Cycle:	6	Regular:	No
Connected:	Yes	Longest Induced Path:	5	SLE*:	1.277
Density:	0.361	Matching Number:	4	Smallest Eigenvalue:	-2.414
Diameter:	3	Maximum Degree:	3	Vertex Connectivity:	4

^{*} LLE = Laplacian Largest Eigenvalue

^{*} SLE = Second Largest Eigenvalue

References:

- [1] "Avatar Graphs"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/avatar-graphs.pdf
- [2] "Associativity, Filled Avatar Graph"
 The House of Graphs
 https://hog.grinvin.org/ViewGraphInfo.action?id=44059
- [3] "Bivector"
 Discord
 https://discord.gg/vGY6pPk
- [4] "Avatar Algebra"
 Summary of Avatar Extensions
 https://advancedresearch.github.io/avatar-extensions/summary.html#avatar-algebra