

Hepatitis und HIV Diagnostik

3. Studienjahr Humanmedizin, Hybridkurs Labormedizin Unterlagen für das Selbststudium zu Hause

Klinik für Immunologie, Diagnostiklabor

Dr. med. Dr. phil II und Dr. Maya Vonow

Lernziele

Diagnostik der Hepatitiden (Hepatitis A, B, C, D und E)

- Klinik/Übertragung/Verbreitung
- Diagnostik
- Therapie

Diagnostik des HIV

- Struktur
- Klinik
- Diagnostik
- Therapie

Fallbeispiele

Hepatitiden - Übersicht

Hepatitis kommt von hepar (Leber) und bedeutet Leberentzündung

Ursachen:

- Infektiös
- Toxisch: Alkohol, Medikamente
- Mechanisch: Verletzung, Bestrahlung
- Extrahepatisch: Fettleber bei Adipositas
- Autoimmun: Autoimmun-Hepatitis (AIH), Primär biliäre Cholangitis (PBC), Primär Sklerosierende Cholangitis (PSC)
- Angeboren: α1-Antitrypsin-Mangel, Hämochromatose, Morbus Wilson

Infektionen der Leber

- Viren: klassische Hepatitisviren und andere
- Bakterien: Borrelien, Salmonellen, Rickettsien
- Pilze: Candida
- Parasiten: Amöben, Echinokokken, Leberegel

Leber mit Befall von Echinococcus multilocularis (Fuchsbandwurm)

www.echinococcus.uni-wuerzburg.de/

Symptome bei einer Hepatitis

- Stark abhängig von der Ursache und dem Schweregrad
- Absterben von Leberzellen: Erhöhung der Transaminasen
- Einschränkung der Funktionen der Leber:

Bilirubin ↑ → Ikterus

Glykogenstoffwechsel gestört →

Schwäche

Verminderte Synthese von

Gerinnungsfaktoren → Blutungen

Verminderter Abbau von Ammoniak → Funktion des

Gehirns gestört

Virale Hepatitiden

Klassische Viren mit Hepatitisviren 95% Begleithepatitis 5% Hepatitis A **EBV** Hepatitis B **CMV** Hepatitis C Mumps Hepatitis D Parvo B19 Hepatitis E und viele andere

Hepatitiden - Übersicht

Erreger Virusfamilie Virusgattung		HAV	HBV	HCV	HDV	HEV
		Picornaviridae Hepatovirus	Hepadnaviridae Orthohepadnavirus	Flaviviridae Hepacivirus	keine Familie Deltavirus	Hepeviridae Hepevirus
	Kapsidform	Ikosaedrisch	lkosaedrisch	Unbekannt	Unbekannt	Ikosaedrisch
Virus	Hülle	Nein	Ja	Ja	Ja1	Nein
Struktur des V	Durchmesser (nm)	28	42	50-100	36	32
	Genom	RNA, Einzelstrang, positiv	DNA, partiell doppelsträngig	RNA, Einzelstrang, positiv	RNA, Einzelstrang, negativ	RNA, Einzelstrang, positiv
Übertragungsweg		Fäkal-oral	Parenteral	Parenteral	Parenteral	(Fäkal)-Oral ²
Inkubationszeit (Tage)		15-49	25-160	21-84	60-110	10-56
Chro	onische Hepatitis	Nein	Ja	Ja	Ja	Nein ³
Karzinomentwicklung		Nein	Ja	Ja	Ja (durch HBV)	Nein
Antivirale Therapie		Nein	Ja	Ja	Ja ⁴	Ja ⁴
lmn	nunprophylaxe					
Passiv		Ja	Ja	Nein	Nein	Nein
Aktiv		Ja	Ja	Nein	Nein ⁵	Ja ⁶

- 1 Deltavirus ist defekt, nutzt die Hülle des HBV
- 2 Infektion durch Fleisch (Leber) infizierter Tiere möglich
- 3 Ausnahme: Chronizität bei Immundefizienten möglich
- 4 Nur bei chronischer Infektion
- 5 Impfung gegen Hepatitis B schützt auch vor Hepatitis D.
- 6 rekombinante HEV-Kapsid Impfstoffe sind wirksam; ein Impfstoff ist in China zugelassen

Hepatitis A - Klinik

Nur 1 Serotyp bekannt, in Menschen und Primaten

- RNA capsid
- Sehr stabil, erträgt Temperaturen von 60°C und pH3, Ausscheidung im Stuhl
- Quelle: pathmicro.med.sc.edu

- Verläuft bei Kindern oft ohne Symptome
- Eine Person ist zwei Wochen vor dem Auftreten der Symptome bis eine Woche nach dem Auftreten der Symptome infektiös
- 0.1% aller klinisch manifesten Infektionen verlaufen fulminant, bei >50 J. 2.5%
- Wird nie chronisch
- HAV Übertragung: fökal-oral durch verseuchtes Wasser, Gemüse, Früchte, Muscheln und Fische. Parenterale und sexuelle Übertragung möglich
- HAV Verbreitung: in Entwicklungsländer haben fast alle Kinder die Infektion als 5-Jährige schon durchgemacht, in Mitteleuropa Reisekrankheit

HAV - Prävalenz

Quelle: Centers for Disease Control and Prevention. CDC Health Information for International Travel 2014. New York: Oxford University Press; 2014.

Publikation: Pedersini R, Trav. Med. Inf. Dis., 2016

Hepatitis A - Diagnostik

Anti-HAV AK <u>IgM</u>

- → 2-4 Wochen nach Infektion
- --- Akute Infektion
- · Bei Ausbruch der Symptome positiv
- Achtung: falsch positive IgM bei anderen viralen Infekten (z.B. EBV)

Anti-HAV AK <u>lgG</u>

- → 8-12 Wochen nach Infektion oder nach Impfung
- Schon bei Ausbruch der Symptome nachweisbar

HCV-PCR

- → 1-2 Wochen nach Infektion
- Im Stuhl oder Blut vor Ausbruch der Symptome positiv

HAV Befundkonstellationen:

Phase	Anti-HAV-IgM	Anti-HAV-IgG	HAV-PCR
Späte Akutphase	-	-	+
Akute Infektion	+	+	+
Abgelaufene Infektion oder nach Impfung	-	+	-

Hepatitis A – Therapie und Prophylaxe

- Keine spezifische Therapie
- Passive Immunisierung bis 10 Tage nach Kontakt
- Aktive Immunisierung sinnvoll bei Reisen in Hochrisikogebieten und bei beruflich exponierten Personen
- Aktive Immunisierung mit 2 Dosen, eine zu Beginn und eine nach 6-12
 Monaten
- HAV-Impfstoffe werden aus inaktivierten Viren hergestellt und durch intramuskuläre Injektion verabreicht
- Monovalente HAV-Impfstoffe oder HAV/HBV-Kombinationsimpfstoff
- Impfkontrolle in der Regel nicht notwendig

Hepatitis B - Klinik

- Behülltes Virus mit teilweise doppelsträngiger DNA, 8 Genotypen
- http://www.hon.ch/Library/Theme/HepB/hb
- Besteht aus HBs (surface Antigen), HBc (core Antigen) und HBe (envelope Antigen)
- Das HBe-Antigen ist ähnlich wie HBc, wird ans Blut abgegeben, aber nicht ins Virus eingebaut
- Verschiedene Formen von HBV:
 - · sphärische Partikel mit HBs und Lipiden
 - · filamentös mit HBs und Lipiden
 - HBV-Virion
 - → Diese verschiedenen Formen können zu Diskrepanzen zwischen dem HBs-Antigen und der Viruslast führen
- 8 HBV Genotypen (von A bis H), mit unterschiedlichem Ansprechen auf Therapie

Quelle: C. Mueller-Eckhardt, Transfusionsmedizin und Immunhämatologie

 HAV Übertragung: via Blut oder sexuell, viel ansteckender als HIV (30% Übertragungs-Wahrscheinlichkeit), kleinste Verletzungen der Schleimhaut, Rasierapparate, von der Mutter aufs Kind, Drogenkonsumenten

Hepatitis B - Verbreitung/Verlauf

- HBV Verbreitung: HBV als globales Gesundheitsproblem
 - Weltweit: 300 Millionen Menschen mit chronischer HBV-Infektion
 Weltweit: 1.5 Millionen Neuinfektionen/Jahr
 - Bei Infektionen perinatal (um die Geburt) und als Kleinkind meist chronische Infektion
 - 1 Million Todesfälle/Jahr, meist durch Zirrhose und Leberzellkarzinom (primärer Laberkrebs)
 - Weltweit ca. die 10.-häufigste Todesursache
- HBV Verlauf: 1/3 ikterisch, 1% fulminant
 - Problematisch sind die chronischen Infektionen
 - Zerstörung der Leber durch das Immunsystem
 → Das HBV ist nicht zytopathogen

HBV - Prävalenz

Quelle: Centers for Disease Control and Prevention. CDC Health Information for International Travel 2014. New York: Oxford University Press; 2014.

Publikation: Pedersini R, Trav. Med. Inf. Dis., 2016

- Chronisch bei fast allen Neugeborene, bei 4-Jährigen in 50%, bei Erwachsenen in 5%
- Bei chronischen Verläufen Zirrhose und Leberzellkarzinom möglich → Lebertransplantation nötig

Hepatitis B - Diagnostik - 1

- HBs-Antigen: Im Durchschnitt 4 Wochen nach Infektion, auch kurz nach Impfung
- Anti-HBs Antikörper: Treten nach dem Verschwinden von HBs-Antigen auf oder nach erfolgreicher Impfung
- Anti-HBc IgM Antikörper: Einige Wochen nach Infektion, akute HBV, leicht positiv nach Reaktivierung von chron. HBV
- Anti-HBc IgG Antikörper: Lebenslang nachweisbar nach Infektion
- HBe-Antigen: Einige Wochen nach Infektion, bleibt positiv bei chronischen Infektionen, korreliert mit hoher HBV Prolif.
- Anti-HBe Antikörper: Prognostisch günstig bei chronischer HBV, nach Heilung ein paar Jahre lang nachweisbar

Acute HBV infection with recovery

HBeAg anti-HBe Total anti-HBc IgM anti-HBs 0 4 8 12 16 20 24 28 32 36 52 100 Weeks after exposure

Chronic HBV infection

Exkurs - Testprinzip der Polymerase Kettenreaktion (PCR)

TaqMan System

Erklärung: Die TaqMan Probe ist Zielsequenz spezifisch und enthält einen fluoreszierenden Reporter-Farbstoff (R) und einen Quencher-Farbstoff (Q). Die 5'-3' Exonuklease der DNA-Polymerase verdrängt die TaqMan Sonde von der Zielsequenz und der R wird vom Q getrennt --> Die Fluoreszenz des R kann detektiert werden.

Hepatitis B - Diagnostik - 2

HBV PCR und Viruslast

- HBV-PCR:
 - HBV-DNA nur in intakten Viruspartikeln nachweisbar
 - Direkter Nachweis infektiöser Viren
 - Ab 50 Kopien/ml gute Detektierbarkeit (1 internationale Einheit (IU) = 5.4 Kopien)
- Bestimmung des HBV-Genotyps:
 - 8 Genotypen A bis H, und 24 Subtypen bekannt
 - Mutanten mit Resistenzen → Unterschiedliches
 Ansprechen auf Therapie → Therapieplanung

Geografische Verteilung der HBV-Genotypen. Quelle: Valsamakis A, Clin. Microbiol. Rev, 2007

HBV Befundkonstellationen:

Phase	HBs-Antigen	Anti-HBc-lgM	Anti-HBc-IgG	Anti-HBs
akut	+	+	-/+	-
chronisch	+	+	+	-
Status nach HBV	-	+	+	+
Status nach Impfung	-	-	-	+

Hepatitis B - Therapie

- Aktuell nur die chronische HBV-Infektion wird therapiert, wenn:
 - Transaminasen >2x oberer Normwerte f

 ür >6 Monate
 - Viruslast >2000 IU/ml
 - Leberbiopsie mit Zeichen der Aktivität und Fibrose

Therapieziele:

- Verminderung der Entzündung, um Spätfolgen zu reduzieren
- Transaminasen normalisieren
- Serokonversion von HBe- zu Anti-HBe Antikörpern, sowie HBV-PCR negativ, Heilung selten erreicht

Therapie:

- Pegyliertes Interferon-Alpha (PEG-IFN-α) für 12 Monaten
- Antivirale Medikamente

Impfung:

- Aktive Impfung mit HBs-Antigen → 0, 1, 6 Monate, falls Anti-HBs >100 IE/I → lebenslange Immunität
- Passive Impfung immer zusammen mit aktiver Impfung:
 - Neugeborene von HBs-Antigen positiven Müttern
 - · Nach Stichverletzung bei Ungeimpften
 - Nach Transplantation wegen HBV

Hepatitis C - Klinik

- Kleines, behülltes RNA-Virus, 6 Genotypen mit vielen Subtypen
- Hypervariable Hüllproteine, entgeht so neutralisierenden Antikörpern
- Oft wenig oder keine Symptome
- Abheilung nur in 20-30%, die anderen werden chronisch → Zirrhose
 - → Hepatozelluläres Karzinom
- Oft auch weitere Symptome vermittelt durch Antikörper oder Befall von Lymphozyten:
 - Kryoglobulinämie
 - Glomerulonephritis
 - Lymphome

HCV Übertragung:

- Via Blut: i.v. Drogenkonsum, Transfusion, Kontakt mit infiziertem Blut Risiko 10x kleiner als bei HBV und 10x grösser als bei HIV (3% Übertragungswahrscheinlichkeit)
- Sexuelle Übertragung möglich
- Häufig zusammen mit HIV
- In 10-20% ist die Übertragung unklar

Hepatitis C - Verbreitung

- Weltweit 170 Millionen Träger, 350000 Todesfälle/Jahr durch chronische HCV, 35
 Millionen mit Leberzirrhose, 1-2 Millionen Hepatozelluläre Karzinome pro Jahr
- In der Schweiz 0.5% der Bevölkerung infiziert

HCV - Prävalenz

Quelle: Wei L, Gastroenterology, 2014

Hepatitis C - Diagnostik - 1

- Anti-HCV Antikörper (HCV Screen) → Nach 6-8 Wochen positiv Keine Aussage darüber, ob Infektion noch aktiv ist → nur mit HCV-PCR bestimmbar
- **HCV-PCR**: sehr empfindlich, fällt bei erfolgreicher Therapie rasch ab, Angabe in IE/ml

Quelle: Roche Diagnostics, geändert.

- Evtl. **HCV Antigen**: billig, aber weniger sensitiv als die HCV-PCR (unter 3'000 IE/ml häufig negativ)
- → Nach positiver HCV Diagnostik:
 - **HCV-Bestätigungstest (LIA)**
 - ---> Bestimmung spezifischer Antikörper
 - Bestimmung des

HCV-Genotyps

- → Genotypen 1, 2, 3, 4, 5, oder 6
- → Therapieplanung

5' UTR Core gene All HCV Genotypes 1, 4 and 5 Internal control NS5B gene - Same primers/probes as HCV viral load test Subtypes a and b of genotype 1 Genotypes 2, 3 and 6 5' UTR NS5B 3' UTR 5313 5475 6258 7602 NS2 NS3 NS4B NS5A NS5B NS4A **Protease** Virusproduktion **RNA Polymerase**

Die Struktur des HCVs mit spezifischen Genen, die zur Bestimmung der HCV-Genotypen amplifiziert werden

Hepatitis C - Diagnostik - 2

- HCV-PCR: nachweisbar ungefähr 7 Tage nach Infektion
- HCV-Ag: nachweisbar ungefähr 14 Tage nach Infektion

Quelle: Biomérieux Diagnostics

Hepatitis C - Therapie - 1

- Früher: Therapie mit pegyliertem Interferon (PEG-IFN) Alpha und Ribavirin:
 - Therapiedauer: 24 bis 48 Wochen mit sustained virological response (SVR) von 40 bis 50% (mässig)
 - Viele Nebenwirkungen: Fieber, Schüttelfrost, hämolytische Anämie, Autoimmunerkrankungen, Depression
- Neue Interferon-freie HCV Therapie:

Directly Acting Antivirals (DAA) (Virostatika)

Hepatitis C - Therapie am USZ

- M, 59 J.
 - 2004: Chronische Hepatitis, Viruslast 3'100'000 IE/ml, <u>Genotyp 1</u>, beginnende Leberzirrhose CHILD A6, MELD 13, Diabetes mellitus Typ 2
 - Vom 07/2004 bis 07/2005: Therapie mit PEG-IFN und Ribavirin
 - 07/2005: HCV nicht nachweisbar
 - 01/2006: HCV <u>wieder positiv</u> (Relaps)
 - 2012, 2013, 2014: Abdomensonographie: gut kompensierte Leberzirrhose mit erhöhter Elastizität im Fibroscan (29.9 kPa, Hinweis auf Vermehrung des Bindegewebes, Fibrose)
 - 09/2015: Kostengutsprachegesuch einer Therapie mit Viekirax (Ombitasvir, Paritaprevir, Ritonavir), Exviera (Dasabuvir) und Ribavirin für 12 Wochen
 - 10.2015: Krankenkasse vergütet die Kosten der Therapie
 - 16.10.2015: Therapiebeginn
 - 13.11.2015: HCV-PCR: nicht mehr nachweisbar

4 D	Abnahme Datum	13.08.15	30.10.15	13.11.15	08.01.16	04.02.16	23.03.16
	Do 09:16	Fr 16:10	Fr 16:03	Fr 15:30	Do 12:09	Mi 09:35	
Eingangs Datum		13.08.15	02.11.15	16.11.15	08.01.16	04.02.16	23.03.16
	Wochentag Zeit	Do 10:49	Mo 08:23	Mo 08:10	Fr 16:00	Do 14:49	Mi 10:51
HCV-RNS (PCR)	neg.	positiv	positiv <	nnwb (5)	nnwb (6)	nnwb (6)	nnwb (6)
HCV-RNS (quant/IE)	IE/ml 0	* 3100000	* <15 (4)				
HCV-Genotyp		18					l. J
Enzyne							
AST(GOT)Aspartat-Aminot	U/1 < 50	* 77	34	35	30	32	36
ALT(GPT)Alanin-Aminotra.	U/1 < 50	* 123	42	36	40	31	40
GGT (g-Glutamyltranspep	U/1 < 60	* 527	* 308	* 192	* 112	* 73	* 196
Alk. Phosphatase	U/1 40 - 129	92	84	84	96	78	96

Hepatitis D (Delta) - Klinik

- Inkomplettes RNA-Virus, das zu seiner Vermehrung das HBV benötigt
- Die Hülle enthält das HBs-Antigen (wie bei HBV)
- Gleiche Übertragung wie bei HBV, HBV-Impfung schützt auch
- Schädigt die Leberzellen direkt

Die Struktur des HDVs im Vergleich zu HBV Quelle: Giersch K, J. Clin. Transl. Hepatol., 2015

Das HDV Genom kodiert nur 2 Proteine:

- Das kleine Delta-Ag: 195 Aminosäure, für die Replikation des HDV notwendig
- Das grosse Delta-Ag: 214 Aminosäure, für die Virionproduktion notwendig

Hepatitis D - Verbreitung

- Keine Korrelation der lokalen Prävalenz von HBV mit derjenigen von HDV
- Endemisch in Osteuropa (Rumänien, Russland), Südamerika (Amazonien), Asien (China, Japan), Afrika
- Zwei Hauptreservoirs in Europa: (1) lang infizierte Patienten mit Leberzirrhose und HCC und
 (2) junge Migranten aus den endemischen Zonen

Hepatitis D - Diagnostik - 1

- HDV tritt nur zusammen mit einer HBV Infektion auf
- Die Diagnose der HDV erfolgt über den Nachwies von HDV-AK (das HBV-Ag muss nachweisbar sein) und HDV-RNA mittels HDV-PCR
- Akute HDV Infektion:
 - Anti-HDV-IgM und RNA positiv
 - Anti-HDV-IgG 1-2 Jahre nachweisbar
- Chronische HDV Infektion:
 - Anti-HDV-IgG/M und RNA bleiben nachweisbar

Test	Material	Bewertung		
Hepatitis D- Antigen-ELISA	Serum	 bei Superinfektion oft besser nachweisbar als bei Koinfektion Hepatitis B und D persistiert nur kurz (12. Woche der akuten Infektion) 		
Anti-HDV lgM- ELISA	Serum	 oft einziger Marker während des späten Akutstadiums (Hepatitis D-Antigen schon negativ) bei chronischem Verlauf häufig Persistenz zu beobachten. 		
Anti-HDV lgG- ELISA	Serum	 Koinfektion: Anti-HDV Antikörper IgG tritt 4-6 Monate nach Erkrankungsbeginn auf Superinfektion: Anti-HDV Antikörper IgG tritt 4 Wochen nach Erkrankungsbeginn auf löst den IgM-Antikörper häufig ab persistiert nach Ausheilung nur kurz! 		
Hepatitis D-PCR	EDTA- Blut	 Indikation: unklare Befunde in der ELISA-Serologie (siehe oben), Verdacht auf eine frische (seronegative) Infektion höchste Sensitivität für frische Infektionen 		

Hepatitis D - Diagnostik - 2

Weltweit sind <u>5% der HBV-Träger</u> auch mit HDV infiziert → 15-20 Millionen

HBV-HDV Ko-Infektion

- HBV und HDV werden gemeinsam übertragen
- Meist spontane Elimination der Viren

HDV Superinfektion

- HBV-Träger werden mit HDV infiziert
- Chronifizierung in 90% der Fälle
 - → Rasche Progression zur Leberzirrhose und HCC

Hepatitis D - Diagnostik - 3

Reduzierte HBV Viruslast bei chronischer HDV:

Patienten mit positivem HBs-Ag und niedriger oder negativer HBV-PCR haben eine höhere Wahrscheinlichkeit, eine chronische HDV aufzuweisen

Hepatitis E - Klinik - 1

- Kleines, stabiles, unbehülltes Virus → keine Hülle = schwierig zu inaktivieren, Seife nützt nicht
- HEV Übertragung: fökal-oral (wie HAV-Infektion), Bluttransfusionen, 1% symptomatisch
- Symptome dauern 4-5 Wochen: Übelkeit, Erbrechen, Oberbauchschmerzen, Durchfall
- Letalität: 1%
 - Höher bei Schwangeren mit Genotypen 1 und 2 in Entwicklungsländern
 - Höher bei älteren Männer mit Lebererkrankungen mit Genotypen 3 und 4
 - Höher bei transplantierten und immunkompromittierten Patienten mit Genotypen 3 und 4
- 4 HEV Genotypen, in Europa vor allem Genotyp 3 und 4:

	HEV1 und HEV2	HEV3 und HEV4		
Geographisches Vorkommen	Entwicklungsländer	Industrie- und Entwicklungsländer		
Verbreitung	Epidemisch und sporadisch	Sporadisch		
Betroffene Arten	Mensch	Schwein (Hirsch, Wildschwein), Mensch = Fehlwirt		
Übertragung	Kontaminiertes Wasser	Rohes oder nicht ausreichend durchgegartes Fleisch		
Ikterusrate	Hoch	Niedrig		
Risikopatienten	Jugendliche und junge Erwachsene	Männer mittleren oder hohen Alters		
Mortalität	Erhöht bei Schwangeren	Erhöht bei zugrundeliegenden chronischen Lebererkrankungen		
Extrahepatische Manifestationen	Selten	Neurologische Manifestationen (Gelenke, Nieren, hämatologische Manifestationen)		
Chronische Infektion	Nicht beschrieben	Bei Immunsupprimierten		
Therapie	Keine	Reduktion der Immunsuppressiva Ribavirin, pegyliertes Interferon-alpha		

Hepatitis E - Verbreitung

- Weltweit: 20 Millionen/Jahr neu angesteckt, davon 3.4 Millionen akut erkrankt, 70'000 Tote und 3000 Totgeburten
- HEV Verbreitung: Anstieg der neu gemeldeten HEV-Fällen

Prävalenz in Deutschland: 17%

• Prävalenz der Schweiz: 5%

HEV Prävalenz

 $Quelle: www.wikidoc.org/index.php/Hepatitis_E_epidemiology_and_demographics$

Hepatitis E - Diagnostik - 1

- Inkubationszeit: 2 bis 10 Wochen
- Dauer der Infektion: 6 bis 7 Wochen
- Chronische HEV: Persistenz der Anti-HEV-IgM und positive HEV-PCR im Serum oder Stuhl >3 Monate mit erhöhten Leberenzymen
- Serologie: IgG und IgM Antikörper
 - meist beides bei Beginn der Symptome nachweisbar
 - Titeranstieg in 2-4 Wochen
 - → Achtung! Falsch reaktive IgM bei polyklonaler Stimulation, z.B. EBV, CMV
- PCR aus Serum oder Stuhl

Quelle: J. Clin. Transl. Hepatol., 2015; 3:117-126

Hepatitis E - Diagnostik - 2

- HEV-PCR: alle 4 Genotypen werden gemessen, wenn das Kit die Open Reading Frame 3 (ORF3) des HEVs amplifiziert
- Das ORF3 ist in allen 4 Genotypen vorhanden

Quelle: Clin. Microbiol. Rev, 2014

Hepatitis E - Therapie

- HEV ist in der Regel selbstlimitierend (wie HAV)
- Für Genotypen 1 und 2: keine Kausale Therapie möglich
- Für Genotypen 3 und 4: Versuch mit Ribavirin oder PEG-IFN Alpha
- Aktive Impfung in China seit 2012 zugelassen, aber nur gegen den Genotyp 1, nur in China zugelassen
- Prophylaxe: Risiko durch Kochen reduziert, da das Virus bei ca. 70°C inaktiviert wird
 - Ungenügend gekochtes Fleisch (vor allem Schweinfleisch und Wild) vermeiden
 - Hohes Ansteckungsrisiko mit roher Schweinleber (z.B. Mortadella-Leberwurst)

HIV- Struktur

Humanes Immundefizienz Virus (RNA-Virus)

- Hülle: Lipoproteine mit eingebetteten env (envelope)-Glykoproteinen (gp) → HIV-1: gp120 und gp41 - HIV-2 gp105 und gp36
- → gp120 ermöglicht die Ankopplung des HIV an die CD4-Moleküle der menschlichen T Lymphozyten
- Kapsid, Matrix und Nukleocapsid: gag (groupspecific antigen) Polyproteine, «Core antigen», enthält 2 Kopien der HIV-RNA
- → Kapsidprotein p24
- → Äussere Kernmembran p17
- Replikation: Involviert das pol-Gen
- → Reverse Transkriptase p64: Umschreibung der einzelsträngigen RNA in dopplesträngiger DNA
- → Integrase p32
- → **Protease** p10 und p12

HIV-1

Quelle: biosci.mcdb.ucsb.edu/immunology/Immunodeficiencies/HIV-structure

HIV- Typen und Untergruppen

Spezies	Virulenz	Infektiosität	Vorkommen	Häufigkeit	Herkunft
HIV-1	hoch	hoch	weltweit	hoch	Schimpanse, Gorilla
HIV-2	niedrig	niedrig	Westafrika	sehr niedrig	Russmangabe

HIV-1:

- 4 Untergruppen: M (major group Haputgruppe) → kommt weltweit vor N, O, P mit weiteren Subtypen
- 90% aller Infektionen durch HIV-1 (Gruppe M)
- Bei uns vor allem HIV-1 Gruppe M, Subtyp B, weltweit Subtyp C

HIV-2:

- Subtypen A-G, wobei A und B am häufigsten sind
- Vor allem in Westafrika
- Ist weniger pathogen

HIV- Klinik - 1

HIV Übertragung:

- Sexualkontakte (ca. 75% aller HIV-Infektionen)
- Via Blut: i.v. Drogenkonsum, frühere Transfusionen, Organtransplantationen
- Vertikale Übertragung während der Schwangerschaft oder durch das Stillen

HIV Verlauf:

- Akute Phase (Primo-Infektion): 3-6 Wochen nach Ansteckung, serologische Latenz
 - HIV-RNA und das p24-Antigen im Blut nachweisbar, aber noch keine Antikörper
 - CD4-Zellen niedriger in den ersten 6 Wochen, danach wieder moderater Anstieg
 - CD8-Zellen höher nach der Infektion, daher ist der CD4/CD8 Quotient zu tief

Chronische Phase:

- HIV-Antikörper erst ungefähr 4 Wochen nach Ansteckung nachweisbar (Anti-gp41 und Anti-p24)
- Viruslast nimmt nur ganz langsam zu
- CD4-Zellen nehmen ganz langsam ab
- AIDS: Auftreten von AIDS-definierten Erkrankungen
 - Viruslast nimmt nun zu
 - CD4-Zellen <200/Mikroliter

HIV- Diagnostik - 1

- p24-Antigen: Positiv 2-4 Wochen nach Exposition
- Anti-HIV Antikörper: Positiv ungefähr 2-4 Wochen nach Exposition
- → p24-Antigen + Anti-HIV Antikörper: Combo-Screen der 4. Generation
 - --> Im Durchschnitt 20 Tage nach Exposition positiv
 - --> 95% der positiven Patienten können 4 Wochen nach Exposition detektiert werden

Mit einer zweiten Probe:

- HIV-Konfirmationstest (Line Immunoassay):
 Unterscheidet HIV-1 und HIV-2
- HIV-PCR: Positiv ungefähr 10 Tage nach Exposition
- Genetischer Resistenztest: Resistenzen gegen antiretrovirale Medikamente → Therapieplanung
- CD4+/CD8+ Quotient erniedrigt

HIV- Diagnostik - 2

Verlauf Anzahl CD4⁺ T Lymphozyten und HIV-PCR

- CD4⁺ T Lymphozyten: Reduziert in den ersten 6 Wochen, danach leichter Anstieg
- CD8+ T Lymphozyten: Leichter Anstieg nach Exposition
 - → CD4+/CD8+ Quotient erniedrigt

Quelle: https://upload.wikimedia.org/wikipedia/commons/d/d0/Verlauf_einer_HIV_Infektion1.svg

HIV- Testkonzept des Bundesamt für Gesundheit (BAG)

HIV-Bestätigungsprozess

Vier diagnostische Fragen:

- 1. Ist jemand mit HIV infiziert?
- 2. Falls ja, welche Eigenschaften hat das Virus?
- 3. Wie hoch ist die Viruslast?
- 4. Wie hoch ist der Anteil frischer an den neu gemeldeten HIV-Infektionen?

→ Ziel:

Bevorzugter Ablauf des HIV-Bestätigungsprozesses

Quelle: Das schweizerische HIV Testkonzept - eine aktualisierte Übersicht, 2013

- Grösste Zuverlässigkeit der Diagnose
- Korrekte Wahl der diagnostischen Tests
- Korrekte Zusammenstellung der antiretroviralen Therapie (ART)

HIV- Diagnostik - 3

Grösste Zuverlässigkeit der Stufendiagnostik

HIV-Screening

- Combo-Screen: Test der 4. Generation mit HIV-1/2 Antikörpern und das HIV-1 p24
 Antigen → Frühestens 6 Wochen nach Risikosituation
 - Hohe Sensitivität (>99%) und hohe Spezifität (>99%)
 - Falsch negative Resultate im diagnostischen Fenster möglich (sehr früh zu Beginn der Infektion, bevor genügend Viren produziert und ans Blut abgegeben werden)
 - Manchmal falsch positive Ergebnisse mit dem Test der 4. Generation, da er sehr sensitiv eingestellt ist → Resultat bestätigen oder dementieren mit dem Konfirmationstest (Nachweis der HIV-Antikörper)
- HIV-PCR als Screening-Test nicht empfohlen, da falsch negative Ergebnisse möglich sind (z.B. bei den Elite Controllers)

2. Bestätigungstest → 2. Probe: Ausschluss einer Verwechslung

- Konfirmationstest: Line-Immunoassay (LIA) → Bestätigung von HIV-1/2-Antikörpern oder
- HIV-PCR als Bestätigungstest zuverlässig (Achtung! Patienten unter CAR-T-Zell Therapie können leicht positive HIV-PCR zeigen)
 oder
- HIV-1-Antigen Assay → Bestätigung des p24-Antigens

HIV - Therapie

HAART: highly active antiretroviral therapy

- Die Therapie kann HIV nicht heilen, die Infektion kann aber gut kontrolliert werden
- Die Therapien greifen an verschiedenen Orten an
- Kombinationstherapien wichtig, damit wenn ein Virus mutiert und gegen eines der Medikamente resistent wird, es sich trotzdem nicht vermehren kann
- Therapie sofort und nicht erst bei schlechter Immunabwehr (CD4-pos Zellen tief) empfohlen
- Die Medikamente sind sehr viel besser verträglich geworden
- · Lebensqualität ist besser, Übertragung auf Baby meist vermeidbar

Wirkungsmechanismen der Medikamente:

- Hemmung des Eintritts → CCR5-Inhibitoren
 Post-Attachment-Inhibitoren: Verhindern die Konfirmationsänderung von gp120
- Fusions-Inhibitoren
- Hemmung der reversen Transkription: nukleosid und non-nukleosid-reverse Transkriptasehemmer (NRTI und NNRTI)
- Hemmung der Integration: HIV-Genom kann nicht eingebaut werden
- Protease-Inhibitoren: Blockieren das Enzym, das die langen Polypeptide spaltet.

Hepatitiden und HIV - Meldung an BAG

Laut BAG «Wer diagnostiziert, meldet»

- Hepatitis A: 24 Stunden IgM (Titeranstieg >4x oder Serokonversion), HAV-Ag
 im Stuhl oder PCR im Serum oder Stuhl
- Hepatitis B: 1 Woche Anti-HBc IgM, HBs-Ag mit HBe-Ag oder PCR
- Hepatitis C: 1 Woche Anti-HCV, HCV-Ag mit HCV-Konf. Test oder HCV-Ag
- Hepatitis D: nicht meldepflichtig
- Hepatitis E: 24 Stunden nur positive PCR
- HIV: 1 Woche Bestätigung des reaktiven Resultats des Combo-Screens mit einer zweiten Probe und einem anderem Test, z.B. mit dem HIV-

Konfirmationstest oder mit der HIV-PCR.

Fallbeispiele _{1a}

Befund 1a und 1b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert
5 MATERIAL	N Serum			
5 ANTI HAV IGM	positiv		neg.	
5 ANTI HAV IGM QUANT	↑ 15.0 3	Quot.	<0.8	
5 ANTI HAV IGG ARCHI	positiv		neg	
5 ANTI HAV IGG QUANT	↑ 3.16	Quot.	<1	
5 HBS ANTIGEN	negativ		neg.	
5 HBS ANTIGEN QUANT	N 0.36	Quot.	<1	
5 ANTI HBS	negativ		neg	
5 ANTI HBS QUANT	0	IE/l	<10	
5 ANTI HBC IGGM	negativ		neg.	
5 ANTI HBC IGGM QUANT	0.09	Quot.	<1.0	
5 ANTI HCV #ncom	negativ		neg.	
5 ANTI HCV IGG QUANT	0.40	Quot.	<1.00	
5 ANTI HEV IGG	negativ		neg.	
5 ANTI HEV IGG QUANT	0.20	Quot.	<1.00	
5 ANTI HEV IGM	negativ		neg.	
5 ANTI HEV IGM QUANT	0.20	Quot.	<1.00	

Welche Diagnose stellen Sie?

1b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert
5 ANTI HAV IGM	negativ		neg.	
5 ANTI HAV IGM QUANT	N 0.60	Quot.	<0.8	
5 ANTI HAV IGG ARCHI	positiv		neg	
5 ANTI HAV IGG QUANT	↑ 9.1 3	Quot.	<1	

Nennen Sie zwei Erklärungen für diese Serologie.

Befund 2a und 2b

2a

Verfahren	*	Resultat	Einheit	RefWerte	Vorwert	
5 HBS ANTIGEN		positiv		neg.		
5 HBS ANTIGEN QUANT	N	1784.89	Quot.	<1		
5 HBS ANTIGEN QUANT	1	63.90	IU/mL	<0.05		
5 HBS ANTIGEN CONF		positiv		pos.		
5 HBS ANTIGEN CONF	N	100.0	%	>50		
5 ANTI HBS		negativ		neg		
5 ANTI HBS QUANT		0	IE/l	<10		
5 ANTI HBC IGGM		positiv		neg.		
5 ANTI HBC IGGM QUANT		4.65	Quot.	<1.0		
5 ANTI HBC IGM		positiv		neg.		
5 ANTI HBC IGM QUANT	1	27.71	Quot.	<1.00		
5 HBV DNA PCR QUAL		positiv		neg		
5 HBV DNS PCR QUANT	1	1800	IE/ml	0		
5 ANTI-HEPATITIS D		negativ		neg.		
5 ANTI HDV IGGM QUANT		0.6	Quot.	<1.1		

Woran leidet der Patient?

2b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert	
5 HBS ANTIGEN	negativ		neg.		
5 HBS ANTIGEN QUANT	N 0.20	Quot.	<1		
5 ANTI HBS	positiv		neg		
5 ANTI HBS QUANT	↑ >1000	IE/l	<10		
5 ANTI HBC IGGM	negativ		neg.		
5 ANTI HBC IGGM QUANT	0.08	Quot.	<1.0		

Wie ist diese Konstellation erklärbar?

Befund 3a und 3b

3a

Verfahren	* Resultat	Einheit	RefWerte	Vorwert	
5 HCV CORE ANTIGEN	positiv		neg.		
5 HCV CORE ANTIGEN QU	↑ 5048.41	fmol/l	<3.00		
5 ANTI HCV	reaktiv		neg.		
5 ANTI HCV IGG QUANT	↑ 14.31	Quot.	<1.00		
5 HCV RNS	positiv		neg.		
5 HCV RNS QUANT	3400000	IE/ml	0		

Welche Diagnose stellen Sie?

3b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert
5 ANTI HCV	reaktiv		neg.	
5 ANTI HCV IGG QUANT 5 HCV RNS	↑ 7.29 negativ	Quot.	<1.00 neg.	
5 HCV RNS QUANT	nnwb	IE/ml	0	

Worum handelt es sich hier?

Befund 4a und 4b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert
5 HBS ANTIGEN	positiv		neg.	
5 HBS ANTIGEN QUANT	N 4434.22	Quot.	<1	
5 HBS ANTIGEN QUANT	↑ 6374.30	IU/mL	<0.05	
5 HBS ANTIGEN CONF	positiv		pos.	
5 HBS ANTIGEN CONF	N 90.0	%	>50	
5 ANTI HBS	negativ		neg	
5 ANTI HBS QUANT	0	IE/l	<10	
5 HBE ANTIGEN	negativ		neg.	
5 HBE ANTIGEN QUANT	N 0.653	Quot.	<1.00	
5 ANTI HBE	negativ		neg.	
5 ANTI HBE QUANT	N 1.61	Quot.	>1.00	
5 HBV DNA PCR QUAL	negativ		neg	
5 HBV DNS PCR QUANT	nnwb	IE/ml	0	
5 ANTI-HEPATITIS D	positiv		neg.	
5 ANTI HDV IGGM QUANT	↑ 42.0	Quot.	<1.1	
5 HDV RNS	positiv		neg.	
5 HDV RNS PCR QUANT	N 27300	E/ml		
5 HDV RNS PCR INT	108683	IE/ml		

Wie lautet Ihre Diagnose?

4b

4a

Verfahren	* Resul	tat Einheit	RefWe	rte	Vorwert
5 ANTI-HEPATITIS D	p	ositiv		neg.	#p
5 ANTI HDV IGGM QUAN	т ↑ 7	'. 5 Q	uot.	<1.1	7.5
5 HDV RNS	n	egativ		neg.	
5 HDV RNS PCR QUANT	N n	nwb E	/ml	_	

Wie lässt sich dieser Laborbefund erklären?

Befund 5a und 5b

5a

Verfahren	* Resultat	Einheit	RefWerte	Vorwert	
5 ANTI HEV IGG	positiv		neg.		
5 ANTI HEV IGG QUANT 5 ANTI HEV IGM	↑ 9.30 positiv	Quot.	<1.00 neg.		
5 ANTI HEV IGM QUANT	10.00	Quot.	<1.00		
5 HEV RNS	positiv		neg.		
5 HEV RNS PCR QUANT	242000	IE/ml			

Woran ist diese Patientin erkrankt?

5b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert
5 ANTI HEV IGG	positiv		neg.	
5 ANTI HEV IGG QUANT	↑ 8.60	Quot.	<1.00	
5 ANTI HEV IGM	positiv		neg.	
5 ANTI HEV IGM QUANT	1.00	Quot.	<1.00	
5 HEV RNS	negativ		neg.	
5 HEV RNS PCR QUANT	nnwb	IE/ml		

Wie würden Sie diesen Befund erklären?

Fallbeispiele Befund 6a und 6b

6a

Verfahren	* Resultat	Einheit F	RefWerte	Vorwert
5 HIV 1 ANTIGEN	N pos		neg.	
5 HIV 1 AG QUANT LI	N↑ 952.0	Quot.	<1.0	
5 HIV 1 RNS QUAL	positiv		neg	
5 HIV 1 RNS QUANT	↑ >10000000	Kopien/m	1 0	
5 HIV 1 KONF LIA	negativ		neg.	
5 HIV 2 KONF LIA	negativ		neg.	

Ihre Diagnose? Zeitpunkt der Infektion?

6b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert
5 HIV 1 ANTIGEN	neg		neg.	
5 HIV 1 AG QUANT LI	0.4	Quot.	<1.0	
5 HIV 1 RNS QUAL	positiv		neg	
5 HIV 1 RNS QUANT	↑ 150000	Kopien	n/m 0	
5 HIV 1 KONF LIA	positiv		neg.	
5 HIV 2 KONF LIA	negativ		neg.	
5 ENV HIV1 SGP120	3			
5 ENV HIV1 GP41	3			
5 POL PROT P31	3			
5 GAG PROT P24	3			
5 GAG PROT P17	3			
5 ENV HIV2 SGP105	0			
5 ENV HIV2 GP36	0			

Ihre Diagnose? Zeitpunkt der Infektion: kürzlich oder schon länger her?

Befund 7a und 7b

7a

Verfahren	* Resultat	Einheit	RefWerte	Vorwert
5 HIV COMBO SCREEN	reaktiv		neg.	
5 HIV COMBO SCREEN Q	↑ 118.6 5	Quot.	<1.0	
5 HIV 1 KONF LIA	negativ		neg.	
5 HIV 2 KONF LIA	positiv		neg.	
5 ENV HIV1 SGP120	0			
5 ENV HIV1 GP41	0			
5 POL PROT P31	3			
5 GAG PROT P24	0			
5 GAG PROT P17	0			
5 EÑV HIV2 SGP105	2			
5 ENV HIV2 GP36	3			

Ihre Diagnose? Ist diese Erkrankung bei uns häufig?

7b

Verfahren	* Resultat	Einheit	RefWerte	Vorwert	
5 HBS ANTIGEN 5 HBS ANTIGEN QUANT	negativ N 0.15	Quot.	neg. <1		
5 ANTI HBS	positiv		neg		
5 ANTI HBS QUANT	↑ 189	IE/l	<10		
5 ANTI HBC IGGM	positiv		neg.		
5 ANTI HBC IGGM QUANT	9.81	Quot.	<1.0		

Wie erklären Sie diese Konstellation?

