Algoritmi e Strutture Dati

a.a. 2018/19

Compito del 13/06/2019

Cognome:	Nome:			
Matricola:	E-mail:			

Parte I

(30 minuti; ogni esercizio vale 2 punti)

- 1. Si consideri una tabella Hash di dimensione m = 8, e indirizzamento aperto con doppio Hashing basato sulle funzioni $h_1(k) = k \mod m$ e $h_2(k) = 1 + 2 * (k \mod (m 3))$. Si descriva in dettaglio come avviene l'inserimento della sequenza di chiavi: 34, 12, 18, 9.
- 2. Il Prof. C. Lick sostiene di aver sviluppato un algoritmo di complessità

$$T(n) = 3T\left(\frac{n}{3}\right) + \frac{n}{2}$$

che riceve in ingresso un numero intero k e un grafo non orientato G = (V, E) (con n vertici) e risponde TRUE se è possibile estrarre da G un sottoinsieme C di k vertici mutuamente adiacenti (ovvero: $\forall u,v \in C: u \neq v \Rightarrow (u,v) \in E$). Si dica, **giustificando tecnicamente la risposta**, se l'affermazione è verosimile.

3. Si dica, **giustificando tecnicamente la risposta**, se nei grafi sottostanti gli archi indicati in grassetto formano o meno (1) un albero di copertura; (2) un albero di copertura minimo:

Algoritmi e Strutture Dati

a.a. 2018/19

Compito del 13/06/2019

Cognome:	Nome:			
Matricola:	E-mail:			

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

- 1. Si disegni l'albero binario di ricerca la cui visita in post-ordine ha come risultato 4, 7, 6, 15, 23, 21, 18, 12. Si effettuino poi le seguenti operazioni nell'ordine dato e disegnando l'albero risultante dopo ogni singola operazione di inserimento e ogni singola operazione di cancellazione:
 - a. inserimenti: 19, 20, 24;
 - b. cancellazioni: 18, 15, 19, 21. Ove necessario, si utilizzi il successore.
- 2. Sia A un array di n numeri interi. Si consideri il problema di decidere se esistono 3 posizioni distinte x,y,z in A tali che A[x] + A[y] + A[z] = 0.

Scrivere un algoritmo di complessità $O(n^2)$ per risolvere il problema.

(Suggerimento: si ordini A, poi si utilizzino 3 contatori i, j, k: i assume tutti i valori da 1 a n-2; poi per ogni valore di i, j viene inizializzato a i+1, e k ad n...).

Dimostrare che la complessità della soluzione proposta sia $O(n^2)$.

3. Si scriva l'algoritmo di Dijkstra, si dimostri la sua correttezza, si fornisca la sua complessità computazionale e si simuli accuratamente la sua esecuzione sul seguente grafo (utilizzando il vertice 1 come sorgente):

In particolare:

- a) si indichi l'ordine con cui vengono estratti i vertici
- b) si riempia la tabella seguente con i valori dei vettori de π , iterazione per iterazione:

	vertice 1		vertice 2		vertice 3		vertice 4		vertice 5	
	d[1]	π[1]	d[2]	π[2]	d[3]	π[3]	d[4]	π[4]	d[5]	π[5]
dopo INIT_SS										
iterazione 1										
iterazione 2										
iterazione 3										
iterazione 4										
iterazione 5										

Nota: si giustifichino tecnicamente tutte le risposte. In caso di discussioni poco formali o approssimative l'esercizio non verrà valutato pienamente.

4. Dato un grafo orientato e pesato G=(V, E) con pesi positivi, cioè w(u,v) > 0 per ogni $(u,v) \in E$, si vuole determinare se esiste in G un ciclo $c = \langle x_0, x_1, ..., x_q \rangle$ (con $x_0 = x_q$) per cui sia soddisfatta la seguente condizione:

$$\prod_{i=1}^{q} 10w(x_{i-1}, x_i)^2 > 10^q$$

Si sviluppi un algoritmo per risolvere questo problema, se ne discuta la correttezza e si determini la sua complessità computazionale. (Suggerimento: si cerchi di ricondurre il problema dato ad uno noto.)

Nota: si giustifichino tecnicamente tutte le risposte. In caso di discussioni poco formali o approssimative l'esercizio non verrà valutato pienamente.