Лабораторная работа №8 по курсу «Численные методы»

Выполнил студент группы M8O-408Б-20 Блинов Максим. Преподаватель: Пивоваров Д. Е.

Цель

Используя схемы переменных направлений и дробных шагов, решить двумерную начально-краевую задачу для дифференциального уравнения параболического типа. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением U(x,t). Исследовать зависимость погрешности от сеточных параметров τ, h_x, h_y .

Вариант 3

Уравнение

$$\frac{\partial u}{\partial t} = a \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \quad a > 0,$$

с граничными условиями:

$$\begin{split} u(0,y,t) &= \cosh(y) \exp(-3at), \\ u\left(\frac{\pi}{4},y,t\right) &= 0, \\ u(x,0,t) &= \cos(2x) \exp(-3at), \\ u\left(x,\ln 2,t\right) &= \frac{5}{4}\cos(2x) \exp(-3at), \\ u(x,y,0) &= \cos(2x) \cosh(y). \end{split}$$

Аналитическое решение:

$$U(x, y, t) = \cos(2x)\cosh(y)\exp(-3at).$$

О программе

Программа была реализована на языке программирования Go и включает в себя два численных метода для решения дифференциальных уравнений. Для визуализации результатов использовалась библиотека Gonum, которая предоставляет широкие возможности для построения графиков в среде Go. Результаты вычислений иллюстрируют поведение решений в зависимости от времени и начальных условий, а также позволяют оценить точность численных методов путём сравнения с аналитическим решением задачи. Графики ошибок демонстрируют различия между аналитическими и численными решениями на протяжении всего временного интервала. Все вычислительные эксперименты и генерация графиков проводились в рамках данной программы.

Инструкция к запуску

Для запуска программы на Go, решающей гиперболические дифференциальные уравнения, убедитесь, что у вас установлена последняя версия Go (на данный момент 1.21, проверьте на официальном сайте). Создайте рабочее пространство, затем установите необходимые зависимости go mod tidy.

Результаты

Метод Либмана, также известный как метод Гаусса — Зейделя или метод последовательных замещений, является итерационным методом для решения систем линейных уравнений. Он работает путем последовательного приближения к решению, используя предыдущие оценки для вычисления текущей. Этот метод особенно полезен, когда решается большая система уравнений, так как может быть более эффективным по сравнению с другими методами, такими как прямое решение.

Вывод

В ходе выполнения лабораторной работы была решена начально-краевая задача для дифференциального уравнения параболического типа. В процессе были получены численные решения, для которых последующим шагом была проведена оценка погрешностей. Сравнение численных решений с аналитическими показало, что использованные методы и алгоритмы обладают достаточной точностью для рассматриваемых условий задачи. Оценка ошибок позволила подтвердить сходимость и эффективность выбранного численного метода.