Eigen-1

Title

Eigenvalue analysis of a two DOF system

Description

A simple frictionless two DOF system is constructed with two springs and two lumped masses.

Find the two natural frequencies and the corresponding mode shapes.

Structural geometry

MODEL

Analysis Type

2-D eigenvalue analysis (X-Y plane)

Unit System

in, lbf

Dimension

Length 20.0 in

Mass $M_1 = 4.0 \text{ lbf} \cdot \text{sec}^2 / \text{in}$

 $M_2 = 1.0 \text{ lbf} \cdot \text{sec}^2 / \text{in}$

Stiffness K = EA/L

Element

Truss element

Material

Modulus of elasticity $E = 1.0 \times 10^5 \text{ psi}$

Section Property

Area $A = 0.1 \text{ in }^2$

Boundary Condition

Node 3 ; Constrain all DOFs

Nodes 1 and 2 ; Constrain Dy and Rz (Only Dx allowed)

Analysis Case

Masses M_1 and M_2 exist at the nodes 1 and 2 in the X direction respectively.

Number of eigenvalues to be computed = 2

Results

Eigenvalue Analysis Results

EIGEN VALUE AN ALYSIS													
	Mode		Frequ	jency		Period		Tolerance					
	No	(rad/	sec)	(cycle	/sec)	(se	ec)	Tolerance					
	1	10	,826716	1	,723125	(0,580341	1,21	23e-016				
	2	46	,182055	7	7,350102	(0,136053	1,75	05e-013				
MODAL PARTICIPATION MASSES(%) PRINTOUT													
	Mode	TRAN-X		TRAN-Y		TRAN-Z		ROTN-X		ROTN-Y		ROTN-Z	
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	95,89	95,89	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2	4,11	100,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FIGENVECTOR													

Comparison of Results

	Result		Theoretical	MSC/NASTRAN	NISA II	MIDAS/ Civil
1 st Mode	Angular velocity	$\omega_1(\text{rad/sec})$	10.83	10.83	10.83	10.83
	Eigenvalue	\mathbf{x}_1	1.000	1.000	1.000	1.000
		\mathbf{x}_2	0.531	0.531	0.531	0.531
2 nd Mode	Angular velocity	$\omega_2(\text{rad/sec})$	46.18	46.18	46.18	46.18
	Eigenvalue	\mathbf{x}_1	-0.133	-0.133	-0.133	-0.133
		\mathbf{x}_2	1.000	1.000	1.000	1.000

References

Donald T. Greenwood, "*Principles of Dynamics*", Englewood Cliff, Prentice-Hall, Inc.,1965 . p.459, EX.9-1.

[&]quot;MSC/NASTRAN, Verification Problem Manual", V.64, The MacNeal-Schwendler Corporation, 1986, Problem No.V0301.

[&]quot;NISA II, Verification Manual", Version 91.0, Engineering Mechanics Research Corporation, 1991.