

Iterative Closest Point

Align partially overlapping meshes

Images from: "Geometry and convergence analysis of algorithms for registration of 3D shapes" by Pottman

The Problem

■ Input: Meshes *M,P*

• Output: Rotation *R* , translation *T*, s.t.

$$\tilde{M} = R*M + T$$

4

The Challenges

- Should support partial matching
- Should be robust to noise
- Should be efficient

ICP Insight 1

 If correspondance is known, easy to find transformation

ICP Insight 2

 If transformation is known, easy to find correspondance (closest point)

ICP Algorithm

- Start from initial guess
- Iterate
 - For each point on *M*, find closest point on *P*
 - Find best transform for this correspondance
 - Transform *M*

Find Closest Point

- For each point in M
 - Choose closest point (Euclidean) from P

• Minimizes
$$\frac{1}{|M|} \sum_{v \in M} ||v - match_p(v)||_2^2$$

Find Best Transform

Find R and T that minimize

$$\frac{1}{|M|} \sum_{v \in M} \left\| \boldsymbol{match_p(v)} - (R * \boldsymbol{v} + T) \right\|_2^2$$

- R 3D rotation
- T 3D translation

Find Best Transform

Translation part – from centroids

$$T = avg(\mathbf{P}) - R * avg(\mathbf{M})$$

Find Best Transform

- Rotation part
 - Closed form solution solve a cubic equation

or

- (Easier, but not equivalent)
- Find best matrix Q
 - Linear least squares system
- Find best approximating rotation
 - SVD

Converges?

- Errors decrease monotonically
- Converges to local minimum
- Good initial guess → Converges to global minimum

Extensions

- Speed up correspondance
 - Use spatial subdivision
- Select only sample of points
- Different error metrics
- Change point matching
- Reject outliers

Points Sampling

- All points
- Uniform sampling
- Random sampling
- Uniform normal distribution

Error Metrics

 Point-to-plane distance instead of point to point

Point Matching

- Standard closest point
 - Slow

- Normal shooting
 - Bad for noisy meshes

- Consider only compatible points
 - Same curvature, normals, colors

More Extensions

- Can be done in real time
 - Interactive scanning & registration

Movie from: "Efficient Varian the ICP Algorithm" by Rusinkiewicz et al.

More Extensions

Non rigid deformations

Images from: "Generalized Surface Flows for Mesh Processing"