

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 18.56 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 0.82$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 12.72 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	-F-F

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.8W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 1.0W1.0D + 0.75L + 0.75W + 0.75S $0.6D + 1.0W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>464.45</u>	<u>4838.59</u>	k
Compressive Load =	3937.01	4451.22	k
Lateral Load =	382.62	2629.64	k
Moment (Weak Axis) =	0.76	0.35	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 122334.7 in-lbs Resisting Force Required = 1853.56 lbs A minimum 132in long x 26in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3089.26 lbs to resist overturning. Minimum Width = <u>26 in</u> in Weight Provided = 5183.75 lbs Sliding 631.79 lbs Force = Use a 132in long x 26in wide x 18in tall Friction = 0.4 Weight Required = 1579.48 lbs ballast foundation to resist sliding. Resisting Weight = 5183.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 631.79 lbs Cohesion = 130 psf Use a 132in long x 26in wide x 18in tall 23.83 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2591.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width					
	<u>26 in</u>	27 in	28 in	29 in		
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.17 \text{ ft}) =$	5184 lbs	5383 lbs	5583 lbs	5782 lbs		

ASD LC		1.0D -	+ 1.0S		1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	26 in	27 in	28 in	29 in	26 in	27 in	28 in	29 in	26 in	27 in	28 in	29 in	26 in	27 in	28 in	29 in
FA	1489 lbs	1489 lbs	1489 lbs	1489 lbs	1223 lbs	1223 lbs	1223 lbs	1223 lbs	1896 lbs	1896 lbs	1896 lbs	1896 lbs	-217 lbs	-217 lbs	-217 lbs	-217 lbs
F _B	1481 lbs	1481 lbs	1481 lbs	1481 lbs	1725 lbs	1725 lbs	1725 lbs	1725 lbs	2268 lbs	2268 lbs	2268 lbs	2268 lbs	-2320 lbs	-2320 lbs	-2320 lbs	-2320 lbs
F _V	204 lbs	204 lbs	204 lbs	204 lbs	1152 lbs	1152 lbs	1152 lbs	1152 lbs	1000 lbs	1000 lbs	1000 lbs	1000 lbs	-1264 lbs	-1264 lbs	-1264 lbs	-1264 lbs
P _{total}	8154 lbs	8353 lbs	8553 lbs	8752 lbs	8133 lbs	8332 lbs	8531 lbs	8731 lbs	9348 lbs	9548 lbs	9747 lbs	9947 lbs	574 lbs	693 lbs	813 lbs	932 lbs
M	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	5218 lbs-ft	5218 lbs-ft	5218 lbs-ft	5218 lbs-ft	2647 lbs-ft	2647 lbs-ft	2647 lbs-ft	2647 lbs-ft
е	0.48 ft	0.47 ft	0.46 ft	0.45 ft	0.43 ft	0.42 ft	0.41 ft	0.40 ft	0.56 ft	0.55 ft	0.54 ft	0.52 ft	4.61 ft	3.82 ft	3.26 ft	2.84 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	251.7 psf	250.5 psf	249.3 psf	248.2 psf	261.2 psf	259.6 psf	258.1 psf	256.7 psf	272.8 psf	270.8 psf	268.9 psf	267.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	432.5 psf	424.6 psf	417.2 psf	410.3 psf	421.2 psf	413.7 psf	406.7 psf	400.1 psf	511.7 psf	500.8 psf	490.7 psf	481.2 psf	199.2 psf	122.1 psf	103.5 psf	96.6 psf

Maximum Bearing Pressure = 512 psf Allowable Bearing Pressure = 1500 psf Use a 132 in long x 26 in wide x 18 in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1997.1 \text{ ft-lbs}$

Resisting Force Required = 1843.46 lbs S.F. = 1.67

Weight Required = 3072.44 lbs Minimum Width = 26 in in Weight Provided = 5183.75 lbs A minimum 132in long x 26in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		26 in			26 in			26 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	294 lbs	680 lbs	225 lbs	878 lbs	2463 lbs	825 lbs	110 lbs	199 lbs	42 lbs		
F _V	226 lbs	222 lbs	230 lbs	166 lbs	162 lbs	179 lbs	227 lbs	223 lbs	228 lbs		
P _{total}	6711 lbs	7098 lbs	6643 lbs	6987 lbs	8572 lbs	6934 lbs	1986 lbs	2075 lbs	1918 lbs		
М	896 lbs-ft	887 lbs-ft	908 lbs-ft	671 lbs-ft	672 lbs-ft	713 lbs-ft	895 lbs-ft	885 lbs-ft	899 lbs-ft		
е	0.13 ft	0.12 ft	0.14 ft	0.10 ft	0.08 ft	0.10 ft	0.45 ft	0.43 ft	0.47 ft		
L/6	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft		
f _{min}	177.5 psf	194.8 psf	173.2 psf	215.2 psf	281.6 psf	208.1 psf	0.0 psf	0.0 psf	0.0 psf		
f _{max}	385.7 psf	400.8 psf	384.2 psf	371.1 psf	437.7 psf	373.8 psf	190.3 psf	191.4 psf	189.2 psf		

Maximum Bearing Pressure = 438 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 26in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 26in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.028 k	Maximum Axial Load = 3.269 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>41%</u>	Utilization = 44%
Diagonal Strut		
Maximum Axial Load =	1.754 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>24%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 46.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.938 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.674 \text{ in} \\ & 0.674 \leq 0.938, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 129 \text{ in}$$

$$J = 0.432$$

$$356.874$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.2 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b[Bbr - mDbr^* h/t]$$

$$\varphi F_L = 43.2 \text{ ksi}$$

h/t = 37.0588

$$\begin{array}{lll} \phi F_L S t = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} S t = & 2.788 \text{ k-ft} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 129 \\ \mathsf{J} &= 0.432 \\ &= 226.951 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_I} &= 28.4 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L Wk = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$X = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Weak Axis: Strong Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1
Rb/t = 18.1

$$\left(Bt - 1.17 \frac{\theta_y}{2}\right)$$

N/A for Weak Direction

$$\begin{aligned} \text{Rb/t} &= & 18.1 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dt}\right)^{2} \\ \text{S1} &= & 1.1 \\ S2 &= & 1.1 \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & \phi \text{b} [\text{Bt-Dt*}\sqrt{(\text{Rb/t})}] \end{aligned}$$

31.1 ksi

3.4.18

 $\phi F_L =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

y = 43.717 mm

$$Sx = 1.375 \text{ in}^3$$

$$M_{max}St = 3.363 \text{ k-ft}$$

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

 $m = 0.65$

$$C_0 = 40$$

$$C_0 = 40$$

$$S2 = \frac{k_1 Bbr}{mDhr}$$

$$S2 = mDbr$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k= 33.3 \text{ ksi}$$

$$ly = 923544 \text{ mm}^4$$

$$Sy = 1.409 \text{ in}^3$$

$M_{max}Wk =$ 3.904 k-ft

Compression

3.4.9

$$b/t = 16.2$$

12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

 $\phi F_L =$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

31.4 ksi

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \cdot 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

Sy =

 $M_{max}Wk = 1.460 \text{ k-ft}$

0.621 in³

24.5

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S_0 = \frac{k_1Bbr}{mDbr}$$

$$S_0 = 77.3$$

$$\Phi_L = 1.3\Phi_V = 43.2 \text{ ksi}$$

$$\Psi_L = 43.2 \text{ ksi}$$

$$\Psi_L = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

x =

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$J = 0.942$$

98.9729

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$$

$$\phi F_L = 30.2 \text{ ksi}$$

Weak Axis:

$$J_{b} = 63.42$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = C_t$$

 $S2 = 141.0$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$m = 0.65$$
 $C_0 = 27.5$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

S2 =
$$77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 1.46712$$
 $r = 0.81 \text{ in}$
 $c_{1^*} - \frac{Bc - Fcy}{c_{1^*}}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

 $S1^* = 0.33515$

$$S1 = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$\phi cc = 0.7854$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 12.7711 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_1 Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sy = 0.621 \text{ in}^3$$

$$M_{\text{max}}Wk = 1.460 \text{ k-ft}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Υ	-46.9	-46.9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-39.013	-39.013	0	0
2	M14	٧	-39.013	-39.013	0	0
3	M15	V	-60.293	-60.293	0	0
4	M16	V	-60.293	-60.293	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	88.666	88.666	0	0
2	M14	V	67.386	67.386	0	0
3	M15	V	35.466	35.466	0	0
4	M16	У	35.466	35.466	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	487.336	2	996.413	1	.841	1	.004	1	0	1	0	1
2		min	-638.426	3	-1131.394	3	-50.566	5	264	4	0	1	0	1
3	N7	max	.043	9	1133.087	1	597	12	001	12	0	1	0	1
4		min	107	2	-83.12	3	-294.324	4	583	4	0	1	0	1
5	N15	max	.031	9	3028.468	1	0	2	0	2	0	1	0	1
6		min	-1.349	2	-357.27	3	-281.107	4	566	4	0	1	0	1
7	N16	max	1914.327	2	3424.012	1	0	9	0	2	0	1	0	1
8		min	-2022.798	3	-3721.994	3	-50.257	5	266	4	0	1	0	1
9	N23	max	.045	14	1133.087	1	12.369	1	.025	1	0	1	0	1
10		min	107	2	-83.12	3	-285.678	4	569	4	0	1	0	1
11	N24	max	487.336	2	996.413	1	048	12	0	12	0	1	0	1
12		min	-638.426	3	-1131.394	3	-51.213	5	266	4	0	1	0	1
13	Totals:	max	2887.435	2	10711.48	1	0	2						
14		min	-3299.909	3	-6508.292	3	-1007.07	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	126.551	1	439.293	1	-8.267	12	0	3	.302	1	0	4
2			min	6.156	12	-552.541	3	-190.139	1	012	1	.015	12	0	3
3		2	max	126.551	1	307.959	1	-6.464	12	0	3	.121	4	.562	3
4			min	6.156	12	-388.891	3	-146.28	1	012	1	.006	12	446	1
5		3	max	126.551	1	176.625	1	-4.661	12	0	3	.063	5	.929	3
6			min	6.156	12	-225.242	3	-102.422	1	012	1	047	1	736	1
7		4	max	126.551	1	45.291	1	-2.857	12	0	3	.032	5	1.1	3
8			min	6.156	12	-61.592	3	-58.563	1	012	1	143	1	868	1
9		5	max	126.551	1	102.057	3	-1.054	12	0	3	.004	5	1.076	3
10			min	6.156	12	-86.044	1	-25.342	4	012	1	187	1	844	1
11		6	max	126.551	1	265.707	3	29.154	1	0	3	008	12	.857	3
12			min	3.772	15	-217.378	1	-18.835	5	012	1	178	1	663	1
13		7	max	126.551	1	429.357	3	73.013	1	0	3	006	12	.441	3
14			min	-6.317	5	-348.712	1	-16.045	5	012	1	117	1	325	1
15		8	max	126.551	1	593.006	3	116.871	1	0	3	0	10	.17	1
16			min	-18.578	5	-480.046	1	-13.255	5	012	1	06	4	169	3
17		9	max	126.551	1	756.656	3	160.73	1	0	3	.162	1	.822	1
18			min	-30.84	5	-611.38	1	-10.464	5	012	1	072	5	975	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]			l .		
19		10	max	126.551	1	920.305	3	204.588	_1_	.012	1_	.38	1	1.631	1
20			min	6.156	12	-742.714	_1_	-120.987	14	0	3	.013	12	-1.977	3
21		11	max	126.551	1	611.38	_1_	-6.16	12	.012	1_	.162	1	.822	1
22			min	6.156	12	-756.656	3	-160.73	1_	0	3	.005	12	975	3
23		12	max	126.551	1	480.046	_1_	-4.356	12	.012	1_	.058	4	.17	1
24			min	6.156	12	-593.006	3	-116.871	1_	0	3	004	1	169	3
25		13	max	126.551	1	348.712	1_	-2.553	12	.012	1_	.026	5	.441	3
26			min	6.156	12	-429.357	3	-73.013	_1_	0	3	117	1	325	1
27		14	max	126.551	1	217.378	_1_	749	12	.012	_1_	002	15	.857	3
28			min	6.156	12	-265.707	3	-29.281	4	0	3	178	1	663	1
29		15	max	126.551	1	86.044	_1_	14.705	_1_	.012	_1_	008	12	1.076	3
30			min	-2.178	5	-102.057	3	-19.721	5	0	3	187	1	844	1
31		16	max	126.551	1	61.592	3	58.563	<u>1</u>	.012	<u>1</u>	005	12	1.1	3
32			min	-14.439	5	-45.291	1	-16.93	5	0	3	143	1	868	1
33		17	max	126.551	1	225.242	3	102.422	1_	.012	1	0	12	.929	3
34			min	-26.7	5	-176.625	1	-14.14	5	0	3	08	4	736	1
35		18	max	126.551	1	388.891	3	146.28	1	.012	1	.101	1	.562	3
36			min	-38.961	5	-307.959	1	-11.35	5	0	3	084	5	446	1
37		19	max	126.551	1	552.541	3	190.139	1	.012	1	.302	1	0	1
38			min	-51.223	5	-439.293	1	-8.56	5	0	3	096	5	0	3
39	M14	1	max	64.792	4	460.524	1	-8.487	12	.006	3	.342	1	0	1
40			min	2.58	12	-424.931	3	-195.689	1	009	1	.016	12	0	3
41		2	max	56.238	1	329.19	1	-6.684	12	.006	3	.17	4	.434	3
42			min	2.58	12	-301.95	3	-151.831	1	009	1	.007	12	472	1
43		3	max	56.238	1	197.856	1	-4.881	12	.006	3	.091	5	.721	3
44			min	2.58	12	-178.969	3	-107.972	1	009	1	021	1	786	1
45		4	max	56.238	1	66.522	1	-3.077	12	.006	3	.048	5	.862	3
46			min	2.58	12	-55.988	3	-64.114	1	009	1	123	1	944	1
47		5	max	56.238	1	66.993	3	-1.274	12	.006	3	.008	5	.855	3
48			min	2.203	15	-64.813	1	-37.077	4	009	1	174	1	945	1
49		6	max	56.238	1	189.974	3	23.604	1	.006	3	007	12	.702	3
50		-	min	-8.92	5	-196.147	1	-29.126	5	009	1	172	1	789	1
51		7	max	56.238	1	312.955	3	67.462	1	.006	3	006	12	.401	3
52			min	-21.181	5	-327.481	1	-26.336	5	009	1	117	1	477	1
		8		56.238	1	435.936	3	111.321	1	.006	3	0	10	0	9
53		0	max	-33.442	5	-458.815	1	-23.546	5	009	1	095	4	046	3
54		9	min	56.238	1		_				3		1		1
55		9	max			558.918	3	155.179	1	.006		.149		.619	
56		40	min	-45.704	5	-590.149	1_	-20.756	5_	009	1_	117	5	64	3
57		10	max	77.119	4	681.899	3	199.038	1_	.009	1_	.36	1	1.403	1
58		4.4	min	2.58	12	-721.483	1_	-123.255	14	006	3	.012	12	-1.381	3
59		11	max		4	590.149	1_	-5.94	12	.009	1_	.171	4	.619	1
60		40	min	2.58	12	-558.918	3_	-155.179	1_	006	3	.004	12	64	3
61		12	max	56.238	1	458.815	_1_	-4.136	12	.009	1	.089	5	0	9
62			min	2.58	12	-435.936	3	-111.321	1_	006	3	011	1_	046	3
63		13	max	56.238	1	327.481	_1_	-2.333	12	.009	1_	.046	5	.401	3
64			min	2.58	12	-312.955	3	-67.462	1_	006	3	117	1	477	1
65		14	max	56.238	1	196.147	_1_	529	12	.009	_1_	.006	5	.702	3
66			min	2.58	12	-189.974	3	-37.875	4	006	3	172	1	789	1
67		15	max	56.238	1	64.813	_1_	20.255	_1_	.009	1	007	12	.855	3
68			min	2.257	15	-66.993	3	-29.306	5	006	3	174	1	945	1
69		16	max	56.238	1	55.988	3	64.114	_1_	.009	_1_	004	12	.862	3
70			min	-8.837	5	-66.522	1	-26.516	5	006	3	123	1	944	1
71		17	max	56.238	1	178.969	3	107.972	1	.009	1	0	3	.721	3
72			min	-21.098	5	-197.856	1	-23.726	5	006	3	1	4	786	1
73		18	max	56.238	1	301.95	3	151.831	1	.009	1	.135	1	.434	3
74			min	-33.359	5	-329.19	1	-20.936	5	006	3	121	5	472	1
75		19	max	56.238	1	424.931	3	195.689	1	.009	1	.342	1	0	1

Model Name

Schletter, Inc. HCV

нсу

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
76			min	-45.621	5	-460.524	1	-18.145	5	006	3	144	5	0	3
77	M15	1	max	88.74	5	533.929	2	-8.453	12	.01	1	.342	1_	0	2
78			min	-59.341	1	-219.192	3	-195.656	1	005	3	.016	12	0	12
79		2	max	76.479	5	380.495	2	-6.649	12	.01	1	.208	4	.225	3
80			min	-59.341	1	-157.213	3	-151.797	1	005	3	.007	12	546	2
81		3	max	64.218	5	227.061	2	-4.846	12	.01	1	.118	5	.376	3
82			min	-59.341	1	-95.235	3	-107.939	1	005	3	021	1	909	2
83		4	max	51.956	5	74.12	1	-3.043	12	.01	1	.065	5	.452	3
84			min	-59.341	1	-33.256	3	-64.08	1	005	3	124	1	-1.089	2
85		5	max	39.695	5	28.722	3	-1.239	12	.01	1	.014	5	.455	3
86			min	-59.341	1	-79.806	2	-45.877	4	005	3	174	1	-1.085	2
87		6	max	27.434	5	90.701	3	23.637	1	.01	1	007	12	.384	3
88			min	-59.341	1	-233.24	2	-37.899	5	005	3	172	1	898	2
89		7	max	15.173	5	152.679	3	67.496	1	.01	1	006	12	.238	3
90			min	-59.341	1	-386.674	2	-35.109	5	005	3	117	1	531	1
91		8	max	2.912	5	214.657	3	111.354	1	.01	1	0	10	.026	2
92			min	-59.341	1	-540.108	2	-32.319	5	005	3	121	4	0	15
93		9	max	-2.946	12	276.636	3	155.213	1	.01	1	.149	1	.763	2
94			min	-59.341	1	-693.541	2	-29.529	5	005	3	153	5	274	3
95		10	max	-2.946	12	338.614	3	199.071	1	.005	3	.36	1	1.683	2
96			min	-59.341	1	-846.975	2	-127.749		01	1	.013	12	642	3
97		11	max	1.39	5	693.541	2	-5.974	12	.005	3	.207	4	.763	2
98			min	-59.341	1	-276.636	3	-155.213	1	01	1	.004	12	274	3
99		12	max	-2.946	12	540.108	2	-4.171	12	.005	3	.115	5	.026	2
100		12	min	-59.341	1	-214.657	3	-111.354	1	01	1	011	1	0	15
101		13	max	-2.946	12	386.674	2	-2.368	12	.005	3	.061	5	.238	3
102		13	min	-59.341	1	-152.679	3	-67.496	1	01	1	117	1	531	1
103		14	max	-2.946	12	233.24	2	564	12	.005	3	.011	5	.384	3
104		14	min	-59.341	1	-90.701	3	-46.7	4	01	1	172	1	898	2
105		15	max	-2.946	12	79.806	2	20.222	1	.005	3	007	12	.455	3
106		13	min	-61.419	4	-28.722	3	-38.083	5	01	1	174	1	-1.085	2
107		16	max	-2.946	12	33.256	3	64.08	1	.005	3	004	12	.452	3
108		10	min	-73.68	4	-74.12	1	-35.293	5	01	1	124	1	-1.089	2
109		17	max	-2.946	12	95.235	3	107.939	1	.005	3	0	3	.376	3
110		17		-85.941	4	-227.061	2	-32.502	5	01	1	127	4	909	2
111		18	min max	-2.946	12	157.213	3	151.797	1	.005	3	.134	1	.225	3
112		10	_	-98.203	4	-380.495	2	-29.712	5	01	1	158	5	546	2
113		19	min		12	219.192	3		1	.005	3	.342			2
		19	max	-2.946				195.656	5		1		1	0	
114	MAC	1	min	-110.464	4	-533.929	2	-26.922		01		192	5	0	5
115	<u>M16</u>	<u> </u>	max	87.04	51	514.57	2	-8.155	12	.01	1	.304	1	0	2
116		2		-134.977		-206.369		-190.361		008	3	.014	12	0	3
117		2	max		5	361.136	2	-6.352	12	.01	1	.158	4	.209	3
118		2	min	-134.977	1	-144.39	3	-146.503		008	3	.006	12	523	2
119		3		62.517	5	207.702	2	-4.549	12	.01	1	.089	5	.345	3
120		A	min		1	-82.412	3	-102.644		008	3	046	1_	863	2
121		4	max		5	54.269	2	-2.745	12	.01	1	.048	5_4	.406	3
122		_	min		1_	-20.433	3	-58.785	1	008	3	143	_1_	-1.019	2
123		5	max		_5_	41.545	3	942	12	.01	1	.011	5	.394	3
124		_		-134.977	1	-99.165	2	-33.903	4	008	3	187	1_	992	2
125		6	max		5	103.523	3	28.932	1	.01	1	008	12	.307	3
126			min		1_	-252.599	2	-27.275	5	008	3	178	1_	782	2
127		7	max		5	165.502	3	72.791	1_	.01	1	005	12	.146	3
128			min		1_	-406.033	2	-24.485	5	008	3	117	_1_	389	2
129		8	max		5	227.48	3	116.649	1	.01	1	0	10	.191	1
130			min		1_	-559.467	2	-21.695	5	008	3	085	4	088	3
131		9	max		12	289.459	3	160.508	1	.01	1	.161	_1_	.948	2
132			min	-134.977	1	-712.9	2	-18.905	5	008	3	106	5	397	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
133		10	max	-6.341	12	351.437	3	204.366	1	.008	3	.379	1	1.891	2
134			min	-134.977	<u>1</u>	-866.334	2	-125.24	14	01	1	.014	12	78	3
135		11	max	-3.861	15	712.9	2	-6.271	12	.008	3	.164	4	.948	2
136				-134.977	1_	-289.459	3	-160.508	1	01	1	.005	12	397	3
137		12	max	-6.341	12	559.467	2	-4.468	12	.008	3	.082	4	.191	1
138			min	-134.977	1_	-227.48	3	-116.649	1	01	1	004	1	088	3
139		13	max	-6.341	12	406.033	2	-2.665	12	.008	3	.039	5	.146	3
140			min	-134.977	_1_	-165.502	3	-72.791	1	01	1	117	1	389	2
141		14	max	-6.341	12	252.599	2	861	12	.008	3	0	15	.307	3
142			min	-134.977	1	-103.523	3	-37.751	4	01	1	178	1	782	2
143		15	max	-6.341	12	99.165	2	14.927	1	.008	3	008	12	.394	3
144			min	-134.977	1_	-41.545	3	-28.146	5	01	1	187	1	992	2
145		16	max	-6.341	12	20.433	3	58.785	1	.008	3	005	12	.406	3
146			min	-134.977	1	-54.269	2	-25.356	5	01	1	143	1	-1.019	2
147		17	max	-6.341	12	82.412	3	102.644	1	.008	3	0	12	.345	3
148			min	-134.977	1	-207.702	2	-22.565	5	01	1	107	4	863	2
149		18	max	-6.341	12	144.39	3	146.503	1	.008	3	.103	1	.209	3
150			min	-134.977	1	-361.136	2	-19.775	5	01	1	12	5	523	2
151		19	max	-6.341	12	206.369	3	190.361	1	.008	3	.304	1	0	2
152		10	min	-134.977	1	-514.57	2	-16.985	5	01	1	142	5	0	5
153	M2	1	max	982.876	1	1.956	4	.814	1	0	12	0	3	0	1
154	IVIZ		min	-993.98	3	.476	15	-48.921	4	0	4	0	1	0	1
155		2	max	983.304	1	1.9	4	.814	1	0	12	0	1	0	15
156				-993.658	3	.463	15	-49.294	4	0	4	014	4	0	4
157		3	max	983.733		1.843	4	.814	1	0	12	0	1	0	15
158		-	min	-993.337	3	.449	15	-49.667	4	0	4	029	4	001	4
159		4				1.786	4	.814	1	0	12		1		15
		4	max	-993.016	1	.436	15		4	0	4	043	<u> </u>	002	
160		_	min		3_4			-50.041					4		4
161		5	max	984.59	1	1.729	4	.814	1	0	12	0	1	0	15
162			min	-992.694	3	.423	15	-50.414	4	0	4	058	4	002	4
163		6	max	985.018	1_	1.672	4	.814	1	0	12	.001	1	0	15
164		_	min	-992.373	3	.409	15	-50.787	4	0	4	072	4	003	4
165		7	max	985.447	1_	1.616	4	.814	1	0	12	.001	1	0	15
166				-992.052	3	.396	15	-51.161	4	0	4	087	4	003	4
167		8	max	985.875	1_	1.559	4	.814	1	0	12	.002	1	0	15
168			min	-991.73	3	.383	15	-51.534	4	0	4	102	4	004	4
169		9	max	986.304	_1_	1.502	4	.814	1	0	12	.002	1	0	15
170			min	-991.409	3	.369	15	-51.907	4	0	4	117	4	004	4
171		10	max		_1_	1.445	4	.814	1	0	12	.002	1	001	15
172				-991.088	3	.356	15	-52.281	4	0	4	132	4	004	4
173		11		987.161	<u>1</u>	1.388	4	.814	1	0	12	.002	1	001	15
174				-990.766	3	.343	15	-52.654	4	0	4	147	4	005	4
175		12		987.589	1_	1.332	4	.814	1	0	12	.003	1_	001	15
176				-990.445	3	.329	15	-53.027	4	0	4	163	4	005	4
177		13		988.018	1	1.275	4	.814	1	0	12	.003	1	001	15
178				-990.123	3	.316	15	-53.401	4	0	4	178	4	006	4
179		14		988.446	1	1.218	4	.814	1	0	12	.003	1	001	15
180				-989.802	3	.302	12	-53.774	4	0	4	194	4	006	4
181		15		988.875	1	1.161	4	.814	1	0	12	.003	1	002	15
182		l i 🍈		-989.481	3	.28	12	-54.147	4	0	4	209	4	006	4
183		16	max		1	1.105	4	.814	1	0	12	.004	1	002	15
184		10	min	-989.159	3	.258	12	-54.52	4	0	4	225	4	002	4
185		17		989.732	<u> </u>	1.048	4	.814	1	0	12	.004	1	007	15
186		17		-988.838	3	.235	12	-54.894	4	0	4	241	4	002	4
		10			<u>ာ</u> 1										_
187		18	max			.991	4	.814	1	0	12	.004	1	002	15
188		40		-988.517	3_	.213	12	-55.267	4	0	4	257	4	007	4
189		19	max	990.588	_1_	.934	4	.814	1	0	12	.004	1	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

1991 M3		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
191 M3	190			min							_					
1992		M3	1							4	0	_		1		4
193											-			_		_
1994			2													
196													-			-
196			3											_	_	
198														4		
198			4												_	
199															_	
200			5									_				
Description																
202			6									_		_		
203																
Decomposition Process Process Decomposition Process Pr			7													
205																
206			8											_		
Description																
Dec Page P			9													
209																
210			10									_				
211			1													
The image is a second color of the image is a second color o			11									_				
12																
214			12													
215			<u> </u>													
216			13													
217			1								_			_		
218			14					_								
15																
220			15									_				
16																
222			16									12	.02			
17 max 411.624 2 -1.016 15 12.354 4 0 12 .025 4 001 15 15 12.4 min -559.206 3 -4.37 6 .008 12 0 4 0 12 004 6 12 .025 4 001 15 18 max 411.454 2 -1.196 15 12.893 4 0 12 .03 4 0 15 15 12.893 4 0 12 .03 4 0 15 15 12.893 4 0 12 .036 4 0 15 .002 6 19 max 411.283 2 -1.376 15 13.432 4 0 12 .036 4 0 1 .002 6 19 max 411.283 2 -1.376 15 13.432 4 0 12 .036 4 0 1 .002 6 10 1 .002														_		
224 min -559.206 3 -4.37 6 .008 12 0 4 0 12 004 6 225 18 max 411.454 2 -1.196 15 12.893 4 0 12 .03 4 0 15 226 min -559.334 3 -5.137 6 .008 12 0 4 0 12 002 6 227 19 max 411.283 2 -1.376 15 13.432 4 0 12 .036 4 0 1 228 M4 1 max 1130.021 1 0 1 -5.597 12 0 1 .026 4 0 1 229 M4 1 max 1130.021 1 0 1 -5.597 12 0 1 .026 4 0 1 230 min -85.499			17													
225 18 max 411.454 2 -1.196 15 12.893 4 0 12 .03 4 0 15 226 min -559.334 3 -5.137 6 .008 12 0 4 0 12 002 6 227 19 max 411.283 2 -1.376 15 13.432 4 0 12 .036 4 0 1 228 M4 1 max 1130.021 1 0 1 -5.97 12 0 4 0 12 0 1 229 M4 1 max 1130.021 1 0 1 -5.97 12 0 1 0 1 2 0 1 226 4 0 1 2 0 1 293.345 4 0 1 0 1 2 0 1 293.345 4 0 <						3										
226 min -559.334 3 -5.137 6 .008 12 0 4 0 12 002 6 227 19 max 411.283 2 -1.376 15 13.432 4 0 12 .036 4 0 1 228 min -559.462 3 -5.904 6 .008 12 0 4 0 12 0 1 229 M4 1 max 1130.021 1 0 1 -597 12 0 1 .026 4 0 1 230 min -85.419 3 0 1 -593.345 4 0 1 0 1 293.345 4 0 1 0 1 293.345 4 0 1 0 1 293.493 4 0 1 -0.08 4 0 1 233 3 max 1130.361			18													
227 19 max 411.283 2 -1.376 15 13.432 4 0 12 .036 4 0 1 228 min -559.462 3 -5.904 6 .008 12 0 4 0 12 0 1 229 M4 1 max 1130.021 1 0 1 -597 12 0 1 .026 4 0 1 230 min -85.419 3 0 1 -293.345 4 0 1 0 12 0 1 231 max 1130.191 1 0 1 -597 12 0 1 0 1 0 12 0 1 232 max 1130.191 1 0 1 -597 12 0 1 0 1 0 12 0 1 233 max 1130.361 1 0 1 -293.493 4 0 1 0 1 0 12 0 1 234 min -85.292 3 0 1 -293.493 4 0 1 0 1 0 12 0 1 234 min -85.164 3 0 1 -293.64 4 0 1 0 1 0 12 0 1 235 4 max 1130.532 1 0 1 -597 12 0 1 0 1 0 12 0 1 236 min -85.036 3 0 1 -293.788 4 0 1 -0 12 0 1 237 5 max 1130.702 1 0 1 -597 12 0 1 0 1 0 12 0 1 238 min -84.908 3 0 1 -293.936 4 0 1 -0 12 0 1 239 6 max 1130.872 1 0 1 -597 12 0 1 0 1 0 12 0 1 240 min -84.781 3 0 1 -294.083 4 0 1 -143 4 0 1 241 min -84.653 3 0 1 -294.379 4 0 1 -143 4 0 1 242 min -84.653 3 0 1 -294.379 4 0 1 -143 4 0 1 243 min -84.6525 3 0 1 -294.379 4 0 1 -211 4 0 1 244 min -84.525 3 0 1 -294.379 4 0 1 -211 4 0 1<														_		
228 min -559.462 3 -5.904 6 .008 12 0 4 0 12 0 1 229 M4 1 max 1130.021 1 0 1 -597 12 0 1 .026 4 0 1 230 min -85.419 3 0 1 -293.345 4 0 1 0 12 0 1 231 2 max 1130.191 1 0 1 -597 12 0 1 0 1 233 1 0 1 -597 12 0 1 -008 4 0 1 -208 4 0 1 -008 4 0 1 -208 4 0 1 -008 4 0 1 -208 4 0 1 -208 4 0 1 -208 4 0 1 -208 <t< td=""><td></td><td></td><td>19</td><td>max</td><td></td><td></td><td></td><td>15</td><td></td><td></td><td>0</td><td>12</td><td>.036</td><td></td><td></td><td></td></t<>			19	max				15			0	12	.036			
229 M4 1 max 1130.021 1 0 1 597 12 0 1 .026 4 0 1 230 min -85.419 3 0 1 -293.345 4 0 1 0 12 0 1 231 2 max 1130.191 1 0 1 -293.345 4 0 1 0 12 0 1 232 min -85.292 3 0 1 -293.493 4 0 1 008 4 0 1 233 3 max 1130.361 1 0 1 -597 12 0 1 0 1 200 1 234 min -85.164 3 0 1 -293.64 4 0 1 042 4 0 1 235 4 max 1130.532 1 0 <																1
230 min -85.419 3 0 1 -293.345 4 0 1 0 12 0 1 231 2 max 1130.191 1 0 1 -597 12 0 1 0 1 20 1 232 min -85.292 3 0 1 -293.493 4 0 1 -008 4 0 1 233 3 max 1130.361 1 0 1 -597 12 0 1 0 1 20 1 1 0 1 -293.64 4 0 1 -042 4 0 1 -2042 4 0 1 -042 4 0 1 -2042 4 0 1 -2042 4 0 1 -2042 4 0 1 -2042 4 0 1 -2042 4 0 1 -2075		M4	1	max		1		1		12	0	1	.026		0	1
231 2 max 1130.191 1 0 1 597 12 0 1 0 1 233.493 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 008 4 0 1 042 4 0 1 042 4 0 1 042 4 0 1 042 4 0 1 042 4 0 1 042 4 0 1 042 4 0 1 042 4 0 1 042 0 1 042	230					3		1	-293.345	4		1		12		1
232 min -85.292 3 0 1 -293.493 4 0 1 008 4 0 1 233 3 max 1130.361 1 0 1 597 12 0 1 0 1 234 min -85.164 3 0 1 -293.64 4 0 1 042 4 0 1 235 4 max 1130.532 1 0 1 597 12 0 1 0 1 236 min -85.036 3 0 1 -293.788 4 0 1 075 4 0 1 237 5 max 1130.702 1 0 1 597 12 0 1 0 1 238 min -84.908 3 0 1 -293.936 4 0 1 109 4 0			2					1				1				1
233 3 max 1130.361 1 0 1 597 12 0 1 0 1 2.39.64 4 0 1 042 4 0 1 236 4 max 1130.532 1 0 1 597 12 0 1 0 1 237 1 0 1 597 12 0 1 0 1 293.788 4 0 1 075 4 0 1 275 4 0 1 275 4 0 1 275 4 0 1 275 4 0 1 275 4 0 1 275 4 0 1 275 4 0 1 275 4 0 1 275 1 0 1 293.936 4 0 1 109 4 0 1 209 1 0 1 293.936<								1					008		0	
234 min -85.164 3 0 1 -293.64 4 0 1 042 4 0 1 235 4 max 1130.532 1 0 1 597 12 0 1 0 12 0 1 236 min -85.036 3 0 1 -293.788 4 0 1 075 4 0 1 237 5 max 1130.702 1 0 1 597 12 0 1 0 1 238 min -84.908 3 0 1 -293.936 4 0 1 -109 4 0 1 239 6 max 1130.872 1 0 1 597 12 0 1 0 1 240 min -84.781 3 0 1 -294.083 4 0 1 143			3					1				1				_
235 4 max 1130.532 1 0 1 597 12 0 1 0 12 0 1 236 min -85.036 3 0 1 -293.788 4 0 1 075 4 0 1 237 5 max 1130.702 1 0 1 597 12 0 1 0 12 0 1 238 min -84.908 3 0 1 -293.936 4 0 1 -109 4 0 1 239 6 max 1130.872 1 0 1 597 12 0 1 0 1 293.936 4 0 1 -109 4 0 1 240 min -84.781 3 0 1 -294.083 4 0 1 -143 4 0 1 241 7 max 1131.043 1 0 1 597 12 0 1 <													042		-	
236 min -85.036 3 0 1 -293.788 4 0 1 075 4 0 1 237 5 max 1130.702 1 0 1 597 12 0 1 0 1 238 min -84.908 3 0 1 -293.936 4 0 1 109 4 0 1 239 6 max 1130.872 1 0 1 597 12 0 1 0 1 240 min -84.781 3 0 1 -294.083 4 0 1 143 4 0 1 241 7 max 1131.043 1 0 1 597 12 0 1 0 1 242 min -84.653 3 0 1 -294.231 4 0 1 -177 4 0			4				0	1		12	0	1		12	0	1
237 5 max 1130.702 1 0 1 597 12 0 1 0 12 0 1 238 min -84.908 3 0 1 -293.936 4 0 1 109 4 0 1 239 6 max 1130.872 1 0 1 597 12 0 1 0 12 0 1 240 min -84.781 3 0 1 -294.083 4 0 1 -143 4 0 1 241 7 max 1131.043 1 0 1 597 12 0 1 0 1 242 min -84.653 3 0 1 -294.231 4 0 1 177 4 0 1 243 8 max 1131.213 1 0 1 597 12						3	0	1				1	075			1
238 min -84.908 3 0 1 -293.936 4 0 1 109 4 0 1 239 6 max 1130.872 1 0 1 597 12 0 1 0 1 240 min -84.781 3 0 1 -294.083 4 0 1 143 4 0 1 241 7 max 1131.043 1 0 1 597 12 0 1 0 1 242 min -84.653 3 0 1 -294.231 4 0 1 177 4 0 1 243 8 max 1131.213 1 0 1 597 12 0 1 0 1 -294.379 4 0 1 211 4 0 1 244 min -84.525 3 0			5	max		1	0	1			0	1			0	1
239 6 max 1130.872 1 0 1 597 12 0 1 0 12 0 1 240 min -84.781 3 0 1 -294.083 4 0 1 143 4 0 1 241 7 max 1131.043 1 0 1 597 12 0 1 0 12 0 1 242 min -84.653 3 0 1 -294.231 4 0 1 177 4 0 1 243 8 max 1131.213 1 0 1 597 12 0 1 0 1 2 0 1 0 1 -294.379 4 0 1 211 4 0 1 244 min -84.525 3 0 1 597 12 0 1 0 1 0 1 -211 4 0 1 -245 9 max 1131.383 1 0								1				1				1
240 min -84.781 3 0 1 -294.083 4 0 1 143 4 0 1 241 7 max 1131.043 1 0 1 597 12 0 1 0 1 242 min -84.653 3 0 1 -294.231 4 0 1 177 4 0 1 243 8 max 1131.213 1 0 1 597 12 0 1 0 1 244 min -84.525 3 0 1 -294.379 4 0 1 211 4 0 1 245 9 max 1131.383 1 0 1 597 12 0 1 0 1 0 1			6			1		1				1				
241 7 max 1131.043 1 0 1 597 12 0 1 0 12 0 1 242 min -84.653 3 0 1 -294.231 4 0 1 177 4 0 1 243 8 max 1131.213 1 0 1 597 12 0 1 0 12 0 1 244 min -84.525 3 0 1 -294.379 4 0 1 211 4 0 1 245 9 max 1131.383 1 0 1 597 12 0 1 0 12 0 1								_				1				
242 min -84.653 3 0 1 -294.231 4 0 1 177 4 0 1 243 8 max 1131.213 1 0 1 597 12 0 1 0 12 0 1 244 min -84.525 3 0 1 -294.379 4 0 1 211 4 0 1 245 9 max 1131.383 1 0 1 597 12 0 1 0 12 0 1			7					1			0	1			0	1
243 8 max 1131.213 1 0 1 597 12 0 1 0 12 0 1 244 min -84.525 3 0 1 -294.379 4 0 1 211 4 0 1 245 9 max 1131.383 1 0 1 597 12 0 1 0 12 0 1								_				_				
244 min -84.525 3 0 1 -294.379 4 0 1 211 4 0 1 245 9 max 1131.383 1 0 1 597 12 0 1 0 12 0 1			8					1				_				_
245 9 max 1131.383 1 0 1597 12 0 1 0 12 0 1																
			9					1				1				
								1				1				

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1131.554	1	0	1	597	12	0	1	0	12	0	1
248			min	-84.269	3	0	1	-294.674	4	0	1	278	4	0	1
249		11	max	1131.724	1	0	1	597	12	0	1	0	12	0	1
250			min	-84.142	3	0	1	-294.821	4	0	1	312	4	0	1
251		12	max	1131.894	1	0	1	597	12	0	1	0	12	0	1
252			min	-84.014	3	0	1	-294.969	4	0	1	346	4	0	1
253		13	max	1132.065	1	0	1	597	12	0	1	0	12	0	1
254			min	-83.886	3	0	1	-295.117	4	0	1	38	4	0	1
255		14	max	1132.235	1	0	1	597	12	0	1	0	12	0	1
256			min	-83.758	3	0	1	-295.264	4	0	1	414	4	0	1
257		15	max	1132.405	1	0	1	597	12	0	1	0	12	0	1
258			min	-83.631	3	0	1	-295.412	4	0	1	448	4	0	1
259		16	max	1132.576	1	0	1	597	12	0	1	0	12	0	1
260			min	-83.503	3	0	1	-295.56	4	0	1	481	4	0	1
261		17	max	1132.746	1	0	1	597	12	0	1	001	12	0	1
262			min	-83.375	3	0	1	-295.707	4	0	1	515	4	0	1
263		18	max	1132.916	1	0	1	597	12	0	1	001	12	0	1
264			min	-83.247	3	0	1	-295.855	4	0	1	549	4	0	1
265		19	max	1133.087	1	0	1	597	12	0	1	001	12	0	1
266			min	-83.12	3	0	1	-296.002	4	0	1	583	4	0	1
267	M6	1	max	3176.179	1	2.193	2	0	1	0	1	0	4	0	1
268			min	-3269.109	3	.235	12	-49.43	4	0	4	0	1	0	1
269		2	max	3176.607	1	2.149	2	0	1	0	1	0	1	0	12
270			min		3	.213	12	-49.803	4	0	4	014	4	0	2
271		3	max	3177.036	1	2.104	2	0	1	0	1	0	1	0	12
272			min	-3268.466	3	.191	12	-50.176	4	0	4	029	4	001	2
273		4	max	3177.464	1	2.06	2	0	1	0	1	0	1	0	12
274			min	-3268.145	3	.169	12	-50.55	4	0	4	044	4	002	2
275		5	max	3177.893	1	2.016	2	0	1	0	1	0	1	0	12
276			min	-3267.824	3	.147	12	-50.923	4	0	4	058	4	002	2
277		6		3178.321	1	1.972	2	0	1	0	1	0	1	0	12
278			min	-3267.502	3	.125	12	-51.296	4	0	4	073	4	003	2
279		7	max	3178.75	1	1.927	2	0	1	0	1	0	1	0	12
280			min	-3267.181	3	.102	3	-51.67	4	0	4	088	4	004	2
281		8	max	3179.178	1	1.883	2	0	1	0	1	0	1	0	12
282			min	-3266.86	3	.068	3	-52.043	4	0	4	103	4	004	2
283		9	max	3179.607	1	1.839	2	0	1	0	1	0	1	0	12
284			min	-3266.538	3	.035	3	-52.416	4	0	4	118	4	005	2
285		10		3180.035	1	1.795	2	0	1	0	1	0	1	0	12
286			min	-3266.217	3	.002	3	-52.79	4	0	4	134	4	005	2
287		11		3180.464		1.751	2	0	1	0	1	0	1	0	12
288			min		3	031	3	-53.163	4	0	4	149	4	006	2
289		12	max	3180.892	1	1.706	2	0	1	0	1	0	1	0	12
290				-3265.574	3	064	3	-53.536	4	0	4	164	4	006	2
291		13		3181.321	1	1.662	2	0	1	0	1	0	1	0	3
292			min		3	098	3	-53.91	4	0	4	18	4	007	2
293		14	max	3181.749	1	1.618	2	0	1	0	1	0	1	0	3
294			min		3	131	3	-54.283	4	0	4	196	4	007	2
295		15		3182.178	1	1.574	2	0	1	0	1	0	1	0	3
296		ľ	min		3	164	3	-54.656	4	0	4	212	4	008	2
297		16		3182.606	1	1.529	2	0	1	0	1	0	1	0	3
298			min		3	197	3	-55.03	4	0	4	227	4	008	2
299		17		3183.035	1	1.485	2	0	1	0	1	0	1	0	3
300			min		3	23	3	-55.403	4	0	4	244	4	009	2
301		18		3183.463	1	1.441	2	0	1	0	1	0	1	0	3
302		10	min	-3263.646	3	263	3	-55.776	4	0	4	26	4	009	2
303		10		3183.892	1	1.397	2	0	1	0	1	0	1	0	3
JUJ		נון	IIIax	0100.082		1.381		U		U				U	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC.
304			min	-3263.325	3	297	3	<u>-56.15</u>	4	0	4	276	4	009	2
305	M7	1		1692.724	2	7.92	6	3.51	4	0	1	0	1	.009	2
306			min	-1751.82	3	1.859	15	0	1	0	4	029	4	0	3
307		2		1692.554	2	7.153	6	4.049	4	0	1	0	1	.007	2
308			min	-1751.948	3	1.679	15	0	1	0	4	028	4	002	3
309		3	max		2	6.386	6	4.588	4	0	1	0	1	.004	2
310		-	min	-1752.075	3	1.498	15	0	1	0	4	026	4	003	3
311		4		1692.213	2	5.618	6	5.127	4	0	1	0	1	.002	2
312		-	min	-1752.203	3	1.318	15	0	1	0	4	024	4	004	3
313		5		1692.043	2	4.851	6	5.665	4	0	1	0	1	0	2
314			min	-1752.331	3	1.137	15	0	1	0	4	022	4	005	3
315		6		1691.872	2	4.084	6	6.204	4	0	1	0	1	001	15
316		-	min	-1752.459	3	.957	15	0	1	0	4	019	4	006	3
317		7		1691.702	2	3.317	6	6.743	4	0	1	0	1	002	15
318			min	-1752.586	3	.777	15	0	1	0	4	017	4	007	3
319		8		1691.531	2	2.55	6	7.282	4	0	1	0	1	002	15
320			min	-1752.714	3	.596	15	0	1	0	4	014	4	008	4
321		9		1691.361	2	1.842	2	7.82	4	0	1	0	1	002	15
322			min	-1752.842	3	.324	12	0	1	0	4	01	4	009	4
323		10		1691.191	2	1.244	2	8.359	4	0	1	0	1	002	15
324			min	-1752.97	3	.001	3	0	1	0	4	007	4	009	4
325		11	max		2	.646	2	8.898	4	0	1	0	1	002	15
326			min	-1753.097	3	447	3	0	1	0	4	003	4	009	4
327		12	max		2	.048	2	9.437	4	0	1	0	4	002	15
328			min	-1753.225	3	895	3	0	1	0	4	0	1_	009	4
329		13	max		2	305	15	9.975	4	0	1	.004	4	002	15
330			min	-1753.353	3	-1.344	3	0	1	0	4	0	1_	009	4
331		14		1690.509	2	486	15	10.514	4	0	1	.009	4	002	15
332			min	-1753.481	3	-2.054	4	0	1	0	4	0	1	008	4
333		15		1690.339	2	666	15	11.053	4	0	1	.013	4	002	15
334			min	-1753.608	3	-2.821	4	0	1	0	4	0	1_	007	4
335		16		1690.169	2	846	15	11.592	4	0	1	.018	4	001	15
336			min	-1753.736	3	-3.588	4	0	1	0	4	0	1_	006	4
337		17		1689.998	2	-1.027	15	12.13	4	0	1	.023	4	001	15
338			min	-1753.864	3	-4.355	4	0	1	0	4	0	1_	004	4
339		18		1689.828	2	-1.207	15	12.669	4	0	1	.028	4	0	15
340			min	-1753.992	3	-5.123	4	0	1	0	4	0	1_	002	4
341		19	max		2	-1.387	15	13.208	4	0	1	.034	4	0	1
342			min	-1754.119	3	-5.89	4	0	1	0	4	0	1_	0	1
343	<u>M8</u>	1		3025.401	1	0	1	0	1	0	1	.024	4	0	1
344			_	-359.57	3	0	1	-284.046		0	1	0	1	0	1
345		2		3025.572	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-284.194		0	1	008	4	0	1
347		3		3025.742	1	0	1	0	1	0	1	0	1	0	1
348				-359.314		0	1	-284.341	4	0	1	041	4	0	1
349		4	1	3025.912		0	1	0	1	0	1	0	1	0	1
350		_		-359.187	3	0	1	-284.489		0	1	074	4	0	1
351		5		3026.083	1	0	1	0	1	0	1	0	1	0	1
352				-359.059		0	1	-284.637	4	0	1	106	4	0	1
353		6		3026.253	1	0	1	0	1	0	1	0	1	0	1
354				-358.931	3	0	1	-284.784		0	1	139	4	0	1
355		7		3026.423	1	0	1	0	1	0	1	0	1	0	1
356			min			0	1	-284.932		0	1	172	4	0	1
357		8		3026.594	1	0	1	0	1	0	1	0	1	0	1
358			min			0	1	-285.08	4	0	1	204	4	0	1
359		9		3026.764		0	1	0	1	0	1	0	1	0	1
360			min	-358.548	3	0	1	-285.227	4	0	1	237	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	1 -	LC	_	
361		10		3026.934	1_	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-358.42	3	0	1	-285.375	4	0	1_	27	4	0	1
363		11		3027.105	1	0	1	0	1_1	0	1	0	1	0	1
364		40		-358.292	3	0	1	-285.522	4	0	1_	303	4	0	1
365		12		3027.275	1	0	1	0	11	0	1_	0	1	0	1
366		40		-358.165	3	0	1	-285.67	4	0	1_	336	4	0	1
367		13		3027.445	1_	0	1	0	1	0	1	0	1	0	1
368		4.4	min	-358.037	3	0	1	-285.818	4	0	1_	368	4	0	1
369		14		3027.616	1	0	1	0	1	0	1	0	1	0	1
370		4.5		-357.909	3	0	1	-285.965	4	0	1_	401	4	0	1
371		15	_	3027.786	1_	0	1	0	1	0	1	0	1	0	1
372		10	min	-357.781	3	0	1	-286.113	4	0	1	434	4	0	1
373		16		3027.956	1_	0	1	0	1	0	1	0	1	0	1
374				-357.654	3	0	1	-286.261	4	0	1_	467	4	0	1
375		17		3028.127	1_	0	1	0	1	0	1	0	1	0	1
376				-357.526	3_	0	1	-286.408	4	0	1_	5	4	0	1
377		18		3028.297	1_	0	1	0	1	0	1	0	1	0	1
378			min	-357.398	3	0	1	-286.556	4	0	1_	533	4	0	1
379		19		3028.468	_1_	0	1_	0	1	0	1_	0	1	0	1
380			min	-357.27	3	0	1	-286.704	4	0	1_	566	4	0	1
381	M10	1	max	982.876	_1_	1.885	6	036	12	0	_1_	0	1_	0	1
382			min	-993.98	3	.428	15	-49.383	4	0	5	0	3	0	1
383		2	max		_1_	1.828	6	036	12	0	_1_	0	10	0	15
384				-993.658	3	.415	15	-49.756	4	0	5	014	4	0	6
385		3	max	983.733	_1_	1.772	6	036	12	0	_1_	0	12	0	15
386			min	-993.337	3	.402	15	-50.129	4	0	5	029	4	001	6
387		4	max	984.161	1	1.715	6	036	12	0	1	0	12	0	15
388			min	-993.016	3	.388	15	-50.502	4	0	5	043	4	002	6
389		5	max	984.59	1	1.658	6	036	12	0	1	0	12	0	15
390			min	-992.694	3	.375	15	-50.876	4	0	5	058	4	002	6
391		6	max	985.018	1	1.601	6	036	12	0	1	0	12	0	15
392			min	-992.373	3	.362	15	-51.249	4	0	5	073	4	003	6
393		7	max	985.447	1	1.544	6	036	12	0	1	0	12	0	15
394			min	-992.052	3	.348	15	-51.622	4	0	5	088	4	003	6
395		8	max	985.875	1	1.488	6	036	12	0	1	0	12	0	15
396			min	-991.73	3	.335	15	-51.996	4	0	5	103	4	003	6
397		9	max	986.304	1	1.431	6	036	12	0	1	0	12	0	15
398			min	-991.409	3	.322	15	-52.369	4	0	5	118	4	004	6
399		10	max	986.732	1	1.374	6	036	12	0	1	0	12	0	15
400			min	-991.088	3	.308	15	-52.742	4	0	5	133	4	004	6
401		11	max	987.161	1	1.317	6	036	12	0	1	0	12	001	15
402			min	-990.766	3	.295	15	-53.116	4	0	5	149	4	005	6
403		12		987.589	1	1.261	6	036	12	0	1	0	12	001	15
404				-990.445	3	.282	15	-53.489	4	0	5	164	4	005	6
405		13		988.018	1	1.204	6	036	12	0	1	0	12	001	15
406				-990.123	3	.268	15	-53.862	4	0	5	18	4	005	6
407		14		988.446	1	1.147	6	036	12	0	1	0	12	001	15
408				-989.802	3	.255	15	-54.236	4	0	5	196	4	006	6
409		15		988.875	1	1.09	6	036	12	0	1	0	12	001	15
410				-989.481	3	.241	15	-54.609	4	0	5	211	4	006	6
411		16	max		1	1.033	6	036	12	0	1	0	12	001	15
412			min	-989.159	3	.228	15	-54.982	4	0	5	227	4	006	6
413		17		989.732	1	.977	6	036	12	0	1	0	12	001	15
414				-988.838	3	.215	15	-55.356	4	0	5	243	4	007	6
415		18	max		1	.929	2	036	12	0	1	0	12	002	15
416		10		-988.517	3	.201	15	-55.729	4	0	5	259	4	007	6
417		19		990.588	1	.885	2	036	12	0	1	0	12	002	15
		- 10	mux	555.000				.000	- 1 -						

Model Name

Schletter, Inc. HCV

110 V

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-988.195	3	.188	15	-56.102	4	0	5	276	4	007	6
419	M11	1	max	414.35	2	7.857	6	3.634	4	0	1_	0	12	.007	6
420			min	-557.162	3	1.837	15	178	1	0	4	029	4	.002	15
421		2	max	414.179	2	7.09	6	4.173	4	0	1	0	12	.004	2
422			min	-557.29	3	1.656	15	178	1	0	4	028	4	0	12
423		3	max	414.009	2	6.323	6	4.711	4	0	1_	0	12	.002	2
424			min	-557.418	3	1.476	15	178	1	0	4	026	4	0	3
425		4	max	413.838	2	5.556	6	5.25	4	0	1	0	12	0	2
426			min	-557.545	3	1.296	15	178	1	0	4	024	4	002	3
427		5	max	413.668	2	4.788	6	5.789	4	0	1	0	12	0	15
428			min	-557.673	3	1.115	15	178	1	0	4	022	4	003	4
429		6	max	413.498	2	4.021	6	6.328	4	0	1	0	12	001	15
430			min	-557.801	3	.935	15	178	1	0	4	019	4	005	4
431		7	max	413.327	2	3.254	6	6.866	4	0	1	0	12	002	15
432			min	-557.929	3	.755	15	178	1	0	4	016	4	007	4
433		8	max	413.157	2	2.487	6	7.405	4	0	1	0	12	002	15
434			min	-558.056	3	.574	15	178	1	0	4	013	4	008	4
435		9	max	412.987	2	1.719	6	7.944	4	0	1	0	12	002	15
436			min	-558.184	3	.394	15	178	1	0	4	01	4	009	4
437		10	max	412.816	2	.952	6	8.483	4	0	1	0	12	002	15
438			min	-558.312	3	.214	15	178	1	0	4	007	4	009	4
439		11	max	412.646	2	.292	2	9.021	4	0	1	0	12	002	15
440			min	-558.44	3	054	3	178	1	0	4	003	4	01	4
441		12	max	412.476	2	147	15	9.56	4	0	1	.001	5	002	15
442			min	-558.567	3	583	4	178	1	0	4	001	1	01	4
443		13	max	412.305	2	327	15	10.099	4	0	1	.005	5	002	15
444			min	-558.695	3	-1.35	4	178	1	0	4	001	1	009	4
445		14	max	412.135	2	508	15	10.637	4	0	1	.01	5	002	15
446			min	-558.823	3	-2.118	4	178	1	0	4	001	1	008	4
447		15	max	411.965	2	688	15	11.176	4	0	1	.014	5	002	15
448		'	min	-558.951	3	-2.885	4	178	1	Ö	4	001	1	007	4
449		16	max	411.794	2	869	15	11.715	4	0	1	.019	5	001	15
450		1.0	min	-559.078	3	-3.652	4	178	1	0	4	002	1	006	4
451		17	max		2	-1.049	15	12.254	4	0	1	.024	5	001	15
452			min	-559.206	3	-4.419	4	178	1	0	4	002	1	004	4
453		18	max	411.454	2	-1.229	15	12.792	4	0	1	.029	4	0	15
454			min	-559.334	3	-5.187	4	178	1	0	4	002	1	002	4
455		19	max	411.283	2	-1.41	15	13.331	4	0	1	.035	4	0	1
456			min	-559.462	3	-5.954	4	178	1	0	4	002	1	0	1
457	M12	1		1130.021	1	0	1	12.792	1	0	1	.025	4	0	1
458	14112			-85.419	3	0	1	-286.065		0	1	001	1	0	1
459		2		1130.191	1	0	1	12.792	1	0	1	0	1	0	1
460		_	min	-85.292	3	0	1	-286.212		0	1	008	4	0	1
461		3		1130.361	1	0	1	12.792	1	0	1	.002	1	0	1
462			min	-85.164	3	0	1	-286.36	4	0	1	041	4	0	1
463		4		1130.532	1	0	1	12.792	1	0	1	.003	1	0	1
464		7	min		3	0	1	-286.508	_	0	1	074	4	0	1
465		5		1130.702	1	0	1	12.792	1	0	1	.005	1	0	1
466				-84.908	3	0	1	-286.655		0	1	107	4	0	1
467		6		1130.872	1	0	1	12.792	1	0	1	.006	1	0	1
468				-84.781	3	0	1	-286.803		0	1	139	4	0	1
469		7		1131.043	1	0	1	12.792	1	0	1	.008	1	0	1
470			min	-84.653	3	0	1	-286.951	4	0	1	172	4	0	1
471		8		1131.213	_	0	1	12.792	1	0	1	.009	1	0	1
471		0	min	-84.525	3	0	1	-287.098		0	1	205	4	0	1
473		9		1131.383		0	1	12.792	1	0	1	.01	1	0	1
474		3			3		1	-287.246	_		1	238	4		1
4/4			min	-84.397	3	0		-201.240	4	0		230	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

475	Member	Sec		Axial[lb]						Torque[k-ft]				_	
475		10		1131.554	1	0	1	12.792	1	0	1	.012	1	0	1
476		4.4	min	-84.269	3	0	1_	-287.393	4	0	1_	271	4	0	1
477		11		1131.724	1_	0	1	12.792	1	0	1	.013	1	0	1
478		40	min	-84.142	3	0	1	-287.541	4	0	1	304	4	0	1
479		12		1131.894	1_	0	1	12.792	1	0	1	.015	1	0	1
480		40	min	-84.014	3	0	1_	-287.689	4	0	1_	337	4	0	1
481		13		1132.065	1_	0	1	12.792	1	0	1	.016	1	0	1
482		4.4	min	-83.886	3	0	1_	-287.836	4	0	1_	37	4	0	1
483		14		1132.235	_1_	0	1	12.792	1	0	1	.018	1	0	1
484		4.5	min	-83.758	3	0	1_	-287.984	4	0	1	403	4	0	1
485		15		1132.405	1_	0	1	12.792	1	0	1	.019	1	0	1
486		1.0	min	-83.631	3	0	1_	-288.132	4	0	1	437	4	0	1
487		16		1132.576	_1_	0	1	12.792	1	0	1	.021	1	0	1
488			min	-83.503	3	0	1_	-288.279	4	0	1	47	4	0	1
489		17		1132.746	_1_	0	1	12.792	1	0	1	.022	1	0	1
490			min	-83.375	3	0	1	-288.427	4	0	1_	503	4	0	1
491		18		1132.916	_1_	0	_1_	12.792	1	0	_1_	.024	1_	0	1
492			min	-83.247	3	0	_1_	-288.575	4	0	1_	536	4	0	1
493		19	max	1133.087	_1_	0	1	12.792	1	0	_1_	.025	1	0	1
494			min	-83.12	3	0	1	-288.722	4	0	1	569	4	0	1
495	M1	1	max	190.144	_1_	552.523	3	51.195	5	0	1_	.302	1	0	3
496			min	-8.56	5	-437.899	1	-126.383	1	0	3	096	5	012	1
497		2	max	190.75	1	551.549	3	52.437	5	0	1	.236	1	.22	1
498			min	-8.278	5	-439.197	1	-126.383	1	0	3	068	5	291	3
499		3	max	339.358	3	486.102	1	5.983	5	0	3	.169	1	.441	1
500			min	-203.848	2	-389.912	3	-125.852	1	0	1	041	5	571	3
501		4	max	339.812	3	484.804	1	7.224	5	0	3	.103	1	.185	1
502			min	-203.242	2	-390.885	3	-125.852	1	0	1	037	5	365	3
503		5	max		3	483.505	1	8.466	5	0	3	.036	1	003	15
504			min	-202.637	2	-391.859	3	-125.852	1	0	1	033	5	158	3
505		6	max	340.72	3	482.207	1	9.707	5	0	3	001	12	.049	3
506			min	-202.032	2	-392.833	3	-125.852	1	0	1	035	4	326	1
507		7	max		3	480.909	1	10.949	5	0	3	005	12	.256	3
508			min	-201.426	2	-393.806	3	-125.852	1	0	1	097	1	58	1
509		8	max	341.628	3	479.611	1	12.19	5	0	3	008	12	.465	3
510			min	-200.821	2	-394.78	3	-125.852	1	0	1	163	1	833	1
511		9	max		3	35.056	2	58.952	5	0	9	.095	1	.544	3
512			min	-121.142	2	.392	15	-182.125	1	0	3	14	5	95	1
513		10	max		3	33.758	2	60.193	5	0	9	0	12	.528	3
514			_	-120.537	2	0	5	-182.125	1	0	3	109	4	959	1
515		11		355.763	3	32.46	2	61.435	5	0	9	005	12	.513	3
516				-119.931	2	-1.605	4	-182.125	1	0	3	098	4	968	1
517		12	max		3	248.702	3	159.164	5	0	2	.161	1	.446	3
518		12		-74.604	10	-516.534	1	-122.866	1	0	3	215	5	855	1
519		13	max		3	247.728	3	160.405	5	0	2	.096	1	.315	3
520		13		-74.099	10	-517.832	1	-122.866	1	0	3	13	5	582	1
521		14	max		3	246.755	3	161.647	5	0	2	.031	1	.185	3
522		17		-73.595	10	-519.13	1	-122.866	1	0	3	045	5	309	1
523		15		370.298	3	245.781	3	162.888	5	0	2	.045	5	.055	3
524		10		-73.09	10	-520.428	1	-122.866	1	0	3	034	1	034	1
		16	min						_				_		
525		16		370.752	3	244.807	3	164.13	5	0	2	.126	5	.255	2
526		47	min	-72.586	10	-521.726	1	-122.866	1	0	3	098	1	075	3
527		17	max		3	243.834	3	165.371	5	0	2	.213	5	.524	2
528		40		-72.081	10	-523.025	1	-122.866	1	0	3	163	1	204	3
529		18	max		_5_	516.348	2	-6.341	12	0	5_	.198	5	.263	2
530		40		-190.962	1_	-205.445	3	-136.344	4	0	2	233	1	101	3
531		19	max	16.985	5	515.049	2	-6.341	12	0	5	.142	5	.008	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
532			min	-190.357	1	-206.419	3	-135.14	1	0	2	304	1	01	1
533	M5	1	max	409.166	1	1840.545	3	102.308	5	0	1	0	1	.023	1
534			min	15.927	12	-1476.968	1	0	1	0	4	219	4	0	3
535		2	max	409.771	1	1839.572	3	103.549	5	0	1	0	1	.803	1
536			min	16.229	12	-1478.266	1	0	1	0	4	165	4	971	3
537		3	max	1093.595	3	1498.387	1	60.862	4	0	4	0	1	1.547	1
538			min	-744.486	2	-1265.234	3	0	1	0	1	111	4	-1.904	3
539		4	max	1094.049	3	1497.089	1	62.104	4	0	4	0	1	.757	1
540			min	-743.881	2	-1266.208	3	0	1	0	1	078	4	-1.236	3
541		5	max	1094.503	3	1495.791	1	63.345	4	0	4	0	1	.005	9
542			min	-743.276	2	-1267.182	3	0	1	0	1	045	4	568	3
543		6	max	1094.957	3	1494.493	1	64.587	4	0	4	0	1	.101	3
544			min	-742.67	2	-1268.155	3	0	1	0	1	012	5	822	1
545		7	max	1095.411	3	1493.195	1	65.828	4	0	4	.023	4	.77	3
546			min	-742.065	2	-1269.129	3	0	1	0	1	0	1	-1.61	1
547		8	max	1095.865	3	1491.896	1	67.07	4	0	4	.058	4	1.44	3
548			min	-741.459	2	-1270.103	3	0	1	0	1	0	1	-2.397	1
549		9	max	1119.463	3	116.143	2	191.475	4	0	1	0	1	1.661	3
550			min	-578.308	2	.393	15	0	1	0	1	201	4	-2.713	1
551		10	max	1119.917	3	114.845	2	192.716	4	0	1	0	1	1.605	3
552			min	-577.702	2	.002	15	0	1	0	1	1	4	-2.745	1
553		11	max	1120.371	3	113.547	2	193.958	4	0	1	.002	4	1.55	3
554			min	-577.097	2	-1.408	6	0	1	0	1	0	1	-2.777	1
555		12	max	1144.079	3	797.647	3	229.914	4	0	1	0	1	1.359	3
556			min	-413.958	2	-1616.853	1	0	1	0	4	315	4	-2.475	1
557		13	max	1144.533	3	796.673	3	231.156	4	0	1	0	1	.939	3
558			min		2	-1618.151	1	0	1	0	4	193	4	-1.622	1
559		14	max	1144.987	3	795.699	3	232.397	4	0	1	0	1	.519	3
560			min	-412.747	2	-1619.45	1	0	1	0	4	071	4	768	1
561		15	max	1145.441	3	794.726	3	233.639	4	0	1	.052	4	.146	2
562			min	-412.142	2	-1620.748	1	0	1	0	4	0	1	004	13
563		16	max	1145.895	3	793.752	3	234.88	4	0	1	.176	4	.978	2
564			min	-411.537	2	-1622.046	1	0	1	0	4	0	1	32	3
565		17	max	1146.349	3	792.778	3	236.121	4	0	1	.3	4	1.811	2
566			min	-410.931	2	-1623.344	1	0	1	0	4	0	1	739	3
567		18	max	-16.452	12	1736.801	2	0	1	0	4	.323	4	.934	2
568			min	-409.347	1	-702.22	3	-30.765	5	0	1	0	1	386	3
569		19	max	-16.149	12	1735.502	2	0	1	0	4	.308	4	.021	1
570			min	-408.741	1	-703.194	3	-29.524	5	0	1	0	1	016	3
571	M9	1	max	190.144	1	552.523	3	126.383	1	0	3	015	12	0	3
572			min	8.267	12	-437.899	1	6.156	12	0	4	302	1	012	1
573		2	max		1	551.549	3	126.383	1	0	3	012	12	.22	1
574			min	8.57	12	-439.197	1	6.156	12	0	4	236	1	291	3
575		3	max		3	486.102	1	125.852	1	0	1	008	12	.441	1
576			min	-203.848	2	-389.912	3	6.119	12	0	3	169	1	571	3
577		4		339.812	3	484.804	1	125.852	1	0	1	005	12	.185	1
578			min		2	-390.885	3	6.119	12	0	3	103	1	365	3
579		5	max		3	483.505	1	125.852	1	0	1	002	12	003	15
580			min	-202.637	2	-391.859	3	6.119	12	0	3	046	4	158	3
581		6	max		3	482.207	1	125.852	1	0	1	.03	1	.049	3
582			min	-202.032	2	-392.833	3	6.119	12	0	3	025	5	326	1
583		7	max		3	480.909	1	125.852	1	0	1	.097	1	.256	3
584			min			-393.806	3	6.119	12	0	3	011	5	58	1
585		8	max		3	479.611	1	125.852	1	0	1	.163	1	.465	3
586		Ĭ	min	-200.821	2	-394.78	3	6.119	12	0	3	.002	15	833	1
587		9	max		3	35.056	2	182.125	1	0	3	004	12	.544	3
588			1	-121.142	2	.399	15	8.695	12	0	9	174	4	95	1
										_	_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	355.309	3	33.758	2	182.125	1	0	3	.001	1	.528	3
590			min	-120.537	2	.007	15	8.695	12	0	9	109	4	959	1
591		11	max	355.763	3	32.46	2	182.125	1	0	3	.097	1	.513	3
592			min	-119.931	2	-1.555	6	8.695	12	0	9	064	5	968	1
593		12	max	368.936	3	248.702	3	204.462	4	0	3	008	12	.446	3
594			min	-74.604	10	-516.534	1	5.753	12	0	2	274	4	855	1
595		13	max	369.39	3	247.728	3	205.704	4	0	3	005	12	.315	3
596			min	-74.099	10	-517.832	1	5.753	12	0	2	165	4	582	1
597		14	max	369.844	3	246.755	3	206.945	4	0	3	002	12	.185	3
598			min	-73.595	10	-519.13	1	5.753	12	0	2	057	4	309	1
599		15	max	370.298	3	245.781	3	208.187	4	0	3	.053	4	.055	3
600			min	-73.09	10	-520.428	1	5.753	12	0	2	.002	12	034	1
601		16	max	370.752	3	244.807	3	209.428	4	0	3	.163	4	.255	2
602			min	-72.586	10	-521.726	1	5.753	12	0	2	.005	12	075	3
603		17	max	371.206	3	243.834	3	210.67	4	0	3	.274	4	.524	2
604			min	-72.081	10	-523.025	1	5.753	12	0	2	.008	12	204	3
605		18	max	-8.458	12	516.348	2	135.14	1	0	2	.282	4	.263	2
606			min	-190.962	1	-205.445	3	-88.476	5	0	3	.011	12	101	3
607		19	max	-8.156	12	515.049	2	135.14	1	0	2	.304	1	.008	3
608			min	-190.357	1	-206.419	3	-87.235	5	0	3	.014	12	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.095	1	.006	3	7.624e-3	1	NC	1	NC	1
2			min	701	4	009	3	003	2	-8.47e-4	3	NC	1	NC	1
3		2	max	.001	1	.317	3	.054	1	8.837e-3	1	NC	5	NC	2
4			min	701	4	144	1	025	5	-8.602e-4	3	793.292	3	5001.964	1
5		3	max	.001	1	.58	3	.129	1	1.005e-2	1	NC	5	NC	3
6			min	701	4	333	1	029	5	-8.734e-4	3	438.295	3	2027.648	1
7		4	max	0	1	.74	3	.195	1	1.126e-2	1	NC	5	NC	3
8			min	701	4	441	1	02	5	-8.866e-4	3	344.584	3	1335.437	1
9		5	max	0	1	.777	3	.23	1	1.247e-2	1	NC	5	NC	3
10			min	701	4	452	1	002	5	-8.999e-4	3	328.208	3	1133.713	1
11		6	max	0	1	.695	3	.223	1	1.369e-2	1	NC	5	NC	3
12			min	701	4	368	1	.01	15	-9.131e-4	3	366.763	3	1170.525	1
13		7	max	0	1	.517	3	.176	1	1.49e-2	1	NC	5	NC	3
14			min	701	4	211	1	.013	10	-9.263e-4	3	490.781	3	1485.428	1
15		8	max	0	1	.291	3	.103	1	1.611e-2	1	NC	4	NC	3
16			min	701	4	019	1	.004	10	-9.395e-4	3	860.561	3	2547.604	1
17		9	max	0	1	.154	2	.034	4	1.732e-2	1	NC	4	NC	2
18			min	701	4	.005	15	004	10	-9.527e-4	3	2718.241	3	7552.443	4
19		10	max	0	1	.229	1	.019	3	1.854e-2	1	NC	3	NC	1
20			min	701	4	006	3	012	2	-9.66e-4	3	1921.149	1	NC	1
21		11	max	0	12	.154	2	.031	1	1.732e-2	1	NC	4	NC	2
22			min	701	4	.005	15	02	5	-9.527e-4	3	2718.241	3	8907.538	1
23		12	max	0	12	.291	3	.103	1	1.611e-2	1	NC	4	NC	3
24			min	701	4	019	1	02	5	-9.395e-4	3	860.561	3	2547.604	1
25		13	max	0	12	.517	3	.176	1	1.49e-2	1	NC	5	NC	3
26			min	701	4	211	1	006	5	-9.263e-4	3	490.781	3	1485.428	1
27		14	max	0	12	.695	3	.223	1	1.369e-2	1	NC	5	NC	3
28			min	701	4	368	1	.009	15	-9.131e-4	3	366.763	3	1170.525	1
29		15	max	0	12	.777	3	.23	1	1.247e-2	1	NC	5	NC	3
30			min	701	4	452	1	.017	12	-8.999e-4	3	328.208	3	1133.713	1
31		16	max	0	12	.74	3	.195	1	1.126e-2	1	NC	5	NC	3
32			min	701	4	441	1	.014	12	-8.866e-4	3	344.584	3	1335.437	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

33	Member	Sec 17	may	x [in]	LC	y [in] .58	LC 3	z [in] .129	LC 1		LC 1	(n) L/y Ratio		(n) L/z Ratio	
34		17	max	701	4	333	1	.129 .01	12	1.005e-2 -8.734e-4	3	438.295	<u>5</u> 3	2027.648	3
35		18	max	0	12	.317	3	.054	1	8.837e-3	<u> </u>	NC	5	NC	2
36		10	min	701	4	144	1	.003	10	-8.602e-4	3	793.292	3	5001.964	
37		19	max	0	12	.095	1	.006	3	7.624e-3	1	NC	1	NC	1
38		13	min	701	4	009	3	003	2	-8.47e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.16	3	.005	3	4.783e-3	1	NC	1	NC	1
40	IVIT		min	524	4	312	1	002	2	-2.9e-3	3	NC	1	NC	1
41		2	max	0	1	.458	3	.038	1	5.77e-3	1	NC	5	NC	2
42		1	min	524	4	666	1	036	5	-3.554e-3	3	728.223	1	7239.7	1
43		3	max	0	1	.707	3	.105	1	6.756e-3	1	NC	15	NC	3
44			min	524	4	968	1	043	5	-4.208e-3	3	392.898	1	2507.754	1
45		4	max	0	1	.877	3	.169	1	7.742e-3	1	NC	15	NC	3
46			min	524	4	-1.183	1	028	5	-4.862e-3	3	296.049	1	1550.151	1
47		5	max	0	1	.95	3	.205	1	8.729e-3	1	9139.988	15	NC	3
48			min	524	4	-1.293	1	003	5	-5.516e-3	3	263.032	1	1271.431	1
49		6	max	0	1	.928	3	.203	1	9.715e-3	1	9146.024	15	NC	3
50			min	524	4	-1.296	1	.016	12	-6.17e-3	3	262.004	1	1284.38	1
51		7	max	0	1	.827	3	.163	1	1.07e-2	1	NC	15	NC	3
52			min	524	4	-1.212	1	.013	10	-6.824e-3	3	286.454	1	1604.947	1
53		8	max	0	1	.683	3	.097	1	1.169e-2	1	NC	15	NC	3
54			min	524	4	-1.076	1	.004	10	-7.478e-3	3	337.641	1	2717.888	
55		9	max	0	1	.545	3	.049	4	1.267e-2	1	NC	15	NC	2
56			min	525	4	94	1	004	10	-8.132e-3	3	410.663	1	5259.11	4
57		10	max	0	1	.481	3	.017	3	1.366e-2	1	NC	5	NC	1
58			min	525	4	876	1	011	2	-8.786e-3	3	457.464	1	NC	1
59		11	max	0	12	.545	3	.03	1	1.267e-2	1	NC	15	NC	2
60			min	525	4	94	1	036	5	-8.132e-3	3	410.663	1	7467.482	5
61		12	max	0	12	.683	3	.097	1	1.169e-2	1	NC	15	NC	3
62			min	525	4	-1.076	1	04	5	-7.478e-3	3	337.641	1	2717.888	1
63		13	max	0	12	.827	3	.163	1	1.07e-2	1_	NC	15	NC	3
64			min	525	4	-1.212	1	025	5	-6.824e-3	3	286.454	1	1604.947	1
65		14	max	0	12	.928	3	.203	1	9.715e-3	1	9145.668	<u>15</u>	NC	3
66			min	525	4	-1.296	1	0	15	-6.17e-3	3	262.004	1_	1284.38	1
67		15	max	0	12	.95	3	.205	1	8.729e-3	1_	9139.544	<u>15</u>	NC	3
68			min	525	4	-1.293	1	.015	12	-5.516e-3	3	263.032	1_	1271.431	1
69		16	max	0	12	.877	3	.169	1	7.742e-3	_1_	NC	<u>15</u>	NC	3
70			min	525	4	-1.183	1	.012	12	-4.862e-3	3	296.049	1_	1550.151	1
71		17	max	0	12	.707	3	.105	1	6.756e-3	_1_	NC	15	NC	3
72			min	525	4	968	1	.009	12	-4.208e-3	3	392.898	<u>1</u>	2507.754	
73		18	max		12	.458	3	.051	4		1_	NC	5	NC	2
74		10	min	525	4	666	1	.002	10	-3.554e-3	3	728.223	1_	5056.37	4
75		19	max	0	12	.16	3	.005	3	4.783e-3	1_	NC		NC NC	1
76		-	min	<u>525</u>	4	312	1	002	2	-2.9e-3	3	NC	1_	NC NC	1
77	M15	1	max	0	12	164	3	.005	3	2.437e-3	3	NC NC	1_	NC NC	1
78		-	min	427	4	311	1	002	2	-4.904e-3	1	NC NC	1_	NC NC	1
79		2	max	0	12	.342	3	.038	1	2.992e-3	3_4	NC CE4.4F0	5	NC F220,000	2
80		-	min	427	4	705	1	048	5	-5.922e-3	1_	654.159	1_	5229.098	
81		3	max	0	12	.494	3	.105	1	3.547e-3	3_1	NC 252.007	<u>15</u>	NC	3
82 83		4	min	427	12	-1.04 605	3	058	5	-6.94e-3 4.102e-3	1	353.807	1_	2501.114 NC	3
		4	max	0 427	4	.605 -1.275	1	.169 04	1 5	-7.958e-3	<u>3</u> 1	NC 267.734	<u>15</u> 1	1547	1
84 85		5	min	427 0	12	.665	3	.205	1	4.657e-3	3	9152.015		NC	3
86		J	max	427	4	-1.388	1	008	5	-8.976e-3	<u> </u>	239.46	1	1269.118	
87		6	max	42 <i>1</i> 0	12	<u>-1.366</u> .675	3	.203	1	5.211e-3	3	9160.508	15	NC	3
88		0	min	427	4	-1.382	1	.203	12	-9.994e-3	<u> </u>	240.946	15 1	1281.988	
89		7	max	421 0	12	.641	3	.163	1	5.766e-3	3	NC	15	NC	3
LUJ			πιαχ	U	14	.041	J	.103		J.1008-3	J	INC	ıJ	INC	

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

91	00	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
92	90			min	427	4	<u>-1.276</u>	1	.013		-1.101e-2	1_	267.508	1_	1601.333	
94			8													3
95														_		
96			9				-							<u>15</u>		2
96			40					•				_		_1_		
98			10													1
98			44							_		•				1
12			11													2
100			12									•		•		
101			12			-										3
102			12									-				3
103			13			_										
104			11											_		3
105			14													
106			15					_				•		•		3
107			13													
108			16													3
109			10													1
110			17									•		•		3
111			17			-										1
112			18									-				2
113			10													4
114			10													1
115 M16			13									1		1		1
116		M16	1									3		1		1
117 2 max 0 12 .054 3 .053 1 5.114e-3 3 NC 5 NC 118 min 153 4 204 2 037 5 -8.199e-3 1 902.284 2 5036.464 119 3 max 0 12 .138 3 .129 1 5.935e-3 3 NC 5 NC 120 min 153 4 433 2 045 5 -9.286e-3 1 501.553 2 2034.669 121 4 max 0 12 .184 3 .195 1 6.757e-3 3 NC 5 NC 122 min 153 4 565 2 033 5 -1.037e-2 1 398.812 2 1337.635 123 5 max 0 12 .185 3 .229 1 7.579e-3 3 NC 5 </td <td></td> <td>IVITO</td> <td></td> <td>1</td>		IVITO														1
118 min 153 4 204 2 037 5 -8.199e-3 1 902.284 2 5036.464 119 3 max 0 12 .138 3 .129 1 5.935e-3 3 NC 5 NC 120 min 153 4 433 2 045 5 -9.286e-3 1 501.553 2 2034.669 121 4 max 0 12 .184 3 .195 1 6.757e-3 3 NC 5 NC 122 min 153 4 565 2 033 5 -1.037e-2 1 398.812 2 1337.635 123 5 max 0 12 .185 3 .229 1 7.579e-3 3 NC 5 NC 124 min 153 4 584 2 01 5 -1.146e-2 1 <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td>2</td>			2									•		•		2
119 3 max 0 12 .138 3 .129 1 5.935e-3 3 NC 5 NC 120 min 153 4 433 2 045 5 -9.286e-3 1 501.553 2 2034.669 121 4 max 0 12 .184 3 .195 1 6.757e-3 3 NC 5 NC 122 min 153 4 565 2 033 5 -1.037e-2 1 398.812 2 1337.635 123 5 max 0 12 .185 3 .229 1 7.579e-3 3 NC 5 NC 124 min 153 4 584 2 01 5 -1.146e-2 1 387.513 2 1133.957 125 6 max 0 12 .142 3 .223 1 8.4e-3																
120 min 153 4 433 2 045 5 -9.286e-3 1 501.553 2 2034.669 121 4 max 0 12 .184 3 .195 1 6.757e-3 3 NC 5 NC 122 min 153 4 565 2 033 5 -1.037e-2 1 398.812 2 1337.635 123 5 max 0 12 .185 3 .229 1 7.579e-3 3 NC 5 NC 124 min 153 4 584 2 01 5 -1.146e-2 1 387.513 2 1133.957 125 6 max 0 12 .142 3 .223 1 8.4e-3 3 NC 5 NC 126 min 153 4 492 2 .011 15 -1.254e-2 1			3									•				3
121 4 max 0 12 .184 3 .195 1 6.757e-3 3 NC 5 NC 122 min 153 4 565 2 033 5 -1.037e-2 1 398.812 2 1337.635 123 5 max 0 12 .185 3 .229 1 7.579e-3 3 NC 5 NC 124 min 153 4 584 2 01 5 -1.146e-2 1 387.513 2 1133.957 125 6 max 0 12 .142 3 .223 1 8.4e-3 3 NC 5 NC 126 min 153 4 492 2 .011 15 -1.254e-2 1 449.454 2 1168.901 127 7 max 0 12 .064 3 .176 1 9.222e-3																1
122 min 153 4 565 2 033 5 -1.037e-2 1 398.812 2 1337.635 123 5 max 0 12 .185 3 .229 1 7.579e-3 3 NC 5 NC 124 min 153 4 584 2 01 5 -1.146e-2 1 387.513 2 1133.957 125 6 max 0 12 .142 3 .223 1 8.4e-3 3 NC 5 NC 126 min 153 4 492 2 .011 15 -1.254e-2 1 449.454 2 1168.901 127 7 max 0 12 .064 3 .176 1 9.222e-3 3 NC 5 NC 128 min 153 4 314 2 .015 12 -1.363e-2 1			4			_										3
123 5 max 0 12 .185 3 .229 1 7.579e-3 3 NC 5 NC 124 min 153 4 584 2 01 5 -1.146e-2 1 387.513 2 1133.957 125 6 max 0 12 .142 3 .223 1 8.4e-3 3 NC 5 NC 126 min 153 4 492 2 .011 15 -1.254e-2 1 449.454 2 1168.901 127 7 max 0 12 .064 3 .176 1 9.222e-3 3 NC 5 NC 128 min 153 4 314 2 .015 12 -1.363e-2 1 652.44 2 1479.57 129 8 max 0 12 0 5 .104 1 1.004e-2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
124 min 153 4 584 2 01 5 -1.146e-2 1 387.513 2 1133.957 125 6 max 0 12 .142 3 .223 1 8.4e-3 3 NC 5 NC 126 min 153 4 492 2 .011 15 -1.254e-2 1 449.454 2 1168.901 127 7 max 0 12 .064 3 .176 1 9.222e-3 3 NC 5 NC 128 min 153 4 314 2 .015 12 -1.363e-2 1 652.44 2 1479.57 129 8 max 0 12 0 5 .104 1 1.004e-2 3 NC 3 NC 130 min 153 4 093 2 .006 10 -1.472e-2 1			5													3
125 6 max 0 12 .142 3 .223 1 8.4e-3 3 NC 5 NC 126 min 153 4 492 2 .011 15 -1.254e-2 1 449.454 2 1168.901 127 7 max 0 12 .064 3 .176 1 9.222e-3 3 NC 5 NC 128 min 153 4 314 2 .015 12 -1.363e-2 1 652.44 2 1479.57 129 8 max 0 12 0 5 .104 1 1.004e-2 3 NC 3 NC 130 min 153 4 093 2 .006 10 -1.472e-2 1 1478.119 2 2521.83 131 9 max 0 12 .135 1 .044 4 1.087e-2 3 NC 2 NC 132 min 153 4 111 </td <td></td> <td>1</td>																1
126 min 153 4 492 2 .011 15 -1.254e-2 1 449.454 2 1168.901 127 7 max 0 12 .064 3 .176 1 9.222e-3 3 NC 5 NC 128 min 153 4 314 2 .015 12 -1.363e-2 1 652.44 2 1479.57 129 8 max 0 12 0 5 .104 1 1.004e-2 3 NC 3 NC 130 min 153 4 093 2 .006 10 -1.472e-2 1 1478.119 2 2521.83 131 9 max 0 12 .135 1 .044 4 1.087e-2 3 NC 2 NC 132 min 153 4 111 3 003 10 -1.58e-2 1			6									•				3
127 7 max 0 12 .064 3 .176 1 9.222e-3 3 NC 5 NC 128 min 153 4 314 2 .015 12 -1.363e-2 1 652.44 2 1479.57 129 8 max 0 12 0 5 .104 1 1.004e-2 3 NC 3 NC 130 min 153 4 093 2 .006 10 -1.472e-2 1 1478.119 2 2521.83 131 9 max 0 12 .135 1 .044 4 1.087e-2 3 NC 2 NC 132 min 153 4 111 3 003 10 -1.58e-2 1 4487.326 3 5914.511 133 10 max 0 1 .223 1 .014 3 1.169e-2																1
128 min 153 4 314 2 .015 12 -1.363e-2 1 652.44 2 1479.57 129 8 max 0 12 0 5 .104 1 1.004e-2 3 NC 3 NC 130 min 153 4 093 2 .006 10 -1.472e-2 1 1478.119 2 2521.83 131 9 max 0 12 .135 1 .044 4 1.087e-2 3 NC 2 NC 132 min 153 4 111 3 003 10 -1.58e-2 1 4487.326 3 5914.511 133 10 max 0 1 .223 1 .014 3 1.169e-2 3 NC 5 NC 134 min 153 4 148 3 01 2 -1.689e-2 1			7													3
129 8 max 0 12 0 5 .104 1 1.004e-2 3 NC 3 NC 130 min 153 4 093 2 .006 10 -1.472e-2 1 1478.119 2 2521.83 131 9 max 0 12 .135 1 .044 4 1.087e-2 3 NC 2 NC 132 min 153 4 111 3 003 10 -1.58e-2 1 4487.326 3 5914.511 133 10 max 0 1 .223 1 .014 3 1.169e-2 3 NC 5 NC 134 min 153 4 148 3 01 2 -1.689e-2 1 1969.785 1 NC 135 11 max 0 1 .135 1 .032 1 1.087e-2 3 NC 2 NC																1
130 min 153 4 093 2 .006 10 -1.472e-2 1 1478.119 2 2521.83 131 9 max 0 12 .135 1 .044 4 1.087e-2 3 NC 2 NC 132 min 153 4 111 3 003 10 -1.58e-2 1 4487.326 3 5914.511 133 10 max 0 1 .223 1 .014 3 1.169e-2 3 NC 5 NC 134 min 153 4 148 3 01 2 -1.689e-2 1 1969.785 1 NC 135 11 max 0 1 .135 1 .032 1 1.087e-2 3 NC 2 NC			8					5	.104			3		3		3
131 9 max 0 12 .135 1 .044 4 1.087e-2 3 NC 2 NC 132 min 153 4 111 3 003 10 -1.58e-2 1 4487.326 3 5914.511 133 10 max 0 1 .223 1 .014 3 1.169e-2 3 NC 5 NC 134 min 153 4 148 3 01 2 -1.689e-2 1 1969.785 1 NC 135 11 max 0 1 .135 1 .032 1 1.087e-2 3 NC 2 NC								2		10	-1.472e-2			2	2521.83	1
132 min 153 4 111 3 003 10 -1.58e-2 1 4487.326 3 5914.511 133 10 max 0 1 .223 1 .014 3 1.169e-2 3 NC 5 NC 134 min 153 4 148 3 01 2 -1.689e-2 1 1969.785 1 NC 135 11 max 0 1 .135 1 .032 1 1.087e-2 3 NC 2 NC			9													2
133 10 max 0 1 .223 1 .014 3 1.169e-2 3 NC 5 NC 134 min 153 4 148 3 01 2 -1.689e-2 1 1969.785 1 NC 135 11 max 0 1 .135 1 .032 1 1.087e-2 3 NC 2 NC				min	153	4		3	003	10		1	4487.326	3	5914.511	
134 min 153 4 148 3 01 2 -1.689e-2 1 1969.785 1 NC 135 11 max 0 1 .135 1 .032 1 1.087e-2 3 NC 2 NC			10			1	.223					3				1
135 11 max 0 1 .135 1 .032 1 1.087e-2 3 NC 2 NC					153	4	148	3		2		1	1969.785	1		1
400 min 4E0 4 444 0 00 E 4 E0 0 4 4407 000 0 0000 007	135		11	max	0	1	.135	1	.032			3	NC	2	NC	2
130	136			min	153	4	111	3	03	5	-1.58e-2	1	4487.326	3	8528.307	1
137	137		12	max	0	1	0	15	.104	1	1.004e-2	3	NC	3	NC	3
138 min153 4093 2031 5 -1.472e-2 1 1478.119 2 2521.83	138			min	153	4	093	2	031	5	-1.472e-2	1	1478.119	2	2521.83	1
139	139		13	max	0	1	.064		.176	1		3		5	NC	3
140 min153 4314 2014 5 -1.363e-2 1 652.44 2 1479.57	140			min	153	4	314		014	5	-1.363e-2	1		2		1
141	141		14		0	1	.142	3	.223			3	NC	5	NC	3
142 min153 4492 2 .008 15 -1.254e-2 1 449.454 2 1168.901	142				153	4	492		.008	15		1		2	1168.901	1
143	143		15	max	0	1	.185	3	.229			3		5	NC	3
144 min152 4584 2 .015 12 -1.146e-2 1 387.513 2 1133.957				min	152	4				12	-1.146e-2	1		2		
145 16 max 0 1 .184 3 .195 1 6.757e-3 3 NC 5 NC			16	max		1				1	6.757e-3	3		5		3
146 min152 4565 2 .012 12 -1.037e-2 1 398.812 2 1337.635	146			min	152	4	565	2	.012	12	-1.037e-2	1	398.812	2	1337.635	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	.001	1	.138	3	.129	1	5.935e-3	3	NC	5_	NC	3
148			min	152	4	433	2	.009	12	-9.286e-3	1_	501.553	2	2034.669	1
149		18	max	.001	1	.054	3	.057	4	5.114e-3	3_	NC	_5_	NC	2
150		10	min	1 <u>52</u>	4	204	2	.004	10	-8.199e-3	1_	902.284	2	4524.833	
151		19	max	.001	1	.092	1	.004	3	4.292e-3	3_	NC NC	1_	NC NC	1
152	140	1	min	152	4	054	3	002	2	-7.113e-3	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1	max	.006	1	.005	2	.01	1	1.529e-3	5_	NC NC	1	NC of foo	2
154		_	min	006	3	009	3	<u>657</u>	4	-2.725e-4	<u>1</u>	NC NC	1_	95.536	4
155		2	max	.006	1	.004	2	.009	1	1.639e-3	_5_	NC NC	1_	NC 404 040	2
156			min	006	3	008	3	603	4	-2.556e-4	<u>1</u>	NC NC	1_	104.013	4
157		3	max	.005	1	.003	2	.008	1	1.748e-3	5_	NC NC	1	NC	2
158		+ .	min	005	3	008	3	<u>55</u>	4	-2.387e-4	<u>1</u>	NC NC	1_	114.077	4
159		4	max	.005	1	.002	2	.007	1	1.857e-3	_5_	NC NC	1	NC 100.11	2
160		-	min	005	3	008	3	4 <u>97</u>	4	-2.218e-4	1_	NC	1_	126.14	4
161		5	max	.005	1	.002	2	.007	1	1.966e-3	5_	NC NC	1_	NC 4.40.700	2
162			min	005	3	008	3	446	4	-2.048e-4	<u>1</u>	NC NC	1_	140.762	4
163		6	max	.004	1	0	2	.006	1	2.075e-3	5_	NC	1_	NC 450.740	1
164		+_	min	004	3	007	3	39 <u>5</u>	4	-1.879e-4	_1_	NC	1_	158.718	4
165		7	max	.004	1	0	2	.005	1	2.185e-3	_5_	NC		NC 404.407	1
166			min	004	3	007	3	<u>346</u>	4	-1.71e-4	<u>1</u>	NC NC	1_	181.107	4
167		8	max	.004	1	0	2	.004	1	2.294e-3	5_	NC NC	1	NC	1
168			min	004	3	007	3	299	4	-1.541e-4	1_	NC	1_	209.527	4
169		9	max	.003	1	0	15	.004	1	2.403e-3	4_	NC	1_	NC	1
170		4.0	min	003	3	006	3	<u>255</u>	4	-1.372e-4	1_	NC	1_	246.381	4
171		10	max	.003	1	0	15	.003	1	2.519e-3	4_	NC	_1_	NC 005 440	1
172		1.1	min	003	3	006	3	212	4	-1.202e-4	1_	NC	1_	295.416	4
173		11	max	.003	1	0	15	.002	1	2.634e-3	4_	NC	1_	NC NC	1
174		1.0	min	003	3	<u>005</u>	3	<u>173</u>	4	-1.033e-4	_1_	NC	1_	362.746	4
175		12	max	.002	1	0	15	.002	1	2.749e-3	4_	NC		NC 450.04	1
176		10	min	002	3	005	3	137	4	-8.64e-5	1_	NC NC	1_	458.91	4
177		13	max	.002	1	0	15	.001	1	2.865e-3	4	NC NC	1	NC 000,000	1
178		1.4	min	002	3	004	3	104	4	-6.948e-5	1_	NC	1_	603.393	4
179		14	max	.002	1	0	15	.001	1	2.98e-3	4_	NC	1_	NC	1
180		4.5	min	002	3	004	3	075	4	-5.256e-5	1_	NC	1_	835.625	4
181		15	max	.001	1	0	15	0	1	3.096e-3	4_	NC NC	1_	NC 1015.050	1
182		10	min	<u>001</u>	3	003	3	<u>05</u>	4	-3.564e-5	1_	NC NC	1_	1245.852	4
183		16	max	0	1	0	15	0	1	3.211e-3	4	NC NC	1	NC	1
184		47	min	0	3	002	3	03	4	-1.872e-5	1_	NC NC	1_	2081.017	4
185		17	max	0	1	0	15	0	1	3.327e-3	4_	NC NC	1_	NC 40.44.077	1
186		40	min	0	3	002	6	015	4	-1.799e-6	1_	NC NC	1_	4241.977	4
187		18	max	0	1	0	15	0	1	3.442e-3		NC NC	1	NC NC	1
188		10	min	0	3	0	6	005	4	5.469e-7	12	NC NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	3.557e-3	4	NC NC	1	NC NC	1
190	MO	1	min	0	1	0	1	0	1	1.386e-6	12	NC NC	1_	NC NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-4.63e-7	<u>12</u>	NC NC	1	NC NC	1
192		_	min	0		0		0	1	-8.697e-4	4	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	.017	4	1.771e-5	1_	NC NC	1_	NC NC	1
194		<u> </u>	min	0	2	002	6	0	12	-1.49e-4	5_	NC NC	1_	NC NC	1
195		3	max	0	3	0	15	.032	4	5.762e-4	4	NC NC	1_	NC NC	1
196		A	min	0	2	003	6	0	12	2.13e-6	<u>12</u>	NC NC	1_1	NC NC	1
197		4	max	0	3	001	15	.047	4	1.299e-3	4	NC NC	1	NC	1
198		-	min	0	2	005	6	0	12	3.426e-6	12	NC NC	1_	8141.528	
199		5	max	.001	3	002	15	.06	4	2.022e-3	4	NC NC	1_1	NC 7470.04	1
200			min	0	2	007	6	072	12	4.722e-6	12	NC NC	1_	7172.64	5
201		6	max	.001	3	002	15	.073	4	2.745e-3	4	NC NC	1_1	NC cocc odo	1
202		7	min	0	2	009	6	0	12	6.019e-6	12	NC NC	1_	6866.818	
203		7	max	.002	3	002	15	.085	4	3.468e-3	4	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
204			min	001	2	01	6	0	12	7.315e-6	12	8738.544	6	7007.801	5
205		8	max	.002	3	003	15	.095	4	4.191e-3	4_	NC	<u>1</u>	NC	1
206			min	001	2	012	6	0	12	8.612e-6	12	7836.824	6	7576.63	5
207		9	max	.002	3	003	15	.106	4	4.914e-3	4	NC	2	NC	1
208			min	002	2	013	6	0	12	9.908e-6	12	7302.675	6	8699.05	5
209		10	max	.002	3	003	15	.116	4	5.637e-3	4	NC	3	NC	1
210			min	002	2	013	6	0	12	1.12e-5	12	7042.789	6	NC	1
211		11	max	.003	3	003	15	.126	4	6.36e-3	4	NC	3	NC	1
212			min	002	2	013	6	0	12	1.25e-5	12	7018.793	6	NC	1
213		12	max	.003	3	003	15	.135	4	7.083e-3	4	NC	3	NC	1
214			min	002	2	013	6	0	12	1.38e-5	12	7232.524	6	NC	1
215		13	max	.003	3	003	15	.145	4	7.806e-3	4	NC	1_	NC	1
216			min	002	2	012	6	0	12	1.509e-5	12	7728.603	6	NC	1
217		14	max	.004	3	002	15	.155	4	8.529e-3	4	NC	1	NC	1
218			min	003	2	011	6	0	12	1.639e-5	12	8617.674	6	NC	1
219		15	max	.004	3	002	15	.165	4	9.252e-3	4	NC	1	NC	1
220			min	003	2	009	6	0	12	1.769e-5	12	NC	1	NC	1
221		16	max	.004	3	001	15	.176	4	9.975e-3	4	NC	1	NC	1
222			min	003	2	008	1	0	12	1.898e-5	12	NC	1	NC	1
223		17	max	.004	3	0	15	.188	4	1.07e-2	4	NC	1	NC	1
224			min	003	2	006	1	0	12	2.028e-5	12	NC	1	NC	1
225		18	max	.005	3	0	15	.201	4	1.142e-2	4	NC	1	NC	1
226			min	003	2	005	1	0	12	2.158e-5	12	NC	1	NC	1
227		19	max	.005	3	0	5	.216	4	1.214e-2	4	NC	1	NC	2
228			min	004	2	003	1	0	12	2.287e-5	12	NC	1	9754.599	1
229	M4	1	max	.003	1	.003	2	0	12	6.626e-5	1	NC	1	NC	3
230			min	0	3	005	3	216	4	-4.343e-4	5	NC	1	115.056	4
231		2	max	.003	1	.003	2	0	12	6.626e-5	1	NC	1	NC	3
232			min	0	3	005	3	198	4	-4.343e-4	5	NC	1	125.134	4
233		3	max	.002	1	.003	2	0	12	6.626e-5	1	NC	1	NC	3
234			min	0	3	004	3	181	4	-4.343e-4	5	NC	1	137.125	4
235		4	max	.002	1	.003	2	0	12	6.626e-5	1	NC	1	NC	3
236			min	0	3	004	3	164	4	-4.343e-4	5	NC	1	151.528	4
237		5	max	.002	1	.002	2	0	12	6.626e-5	1	NC	1	NC	3
238			min	0	3	004	3	147	4	-4.343e-4	5	NC	1	169.019	4
239		6	max	.002	1	.002	2	0	12	6.626e-5	1	NC	1	NC	2
240			min	0	3	004	3	13	4	-4.343e-4	5	NC	1	190.535	4
241		7	max	.002	1	.002	2	0	12	6.626e-5	1	NC	1	NC	2
242			min	0	3	003	3	114	4	-4.343e-4	5	NC	1	217.408	4
243		8	max	.002	1	.002	2	0	12	6.626e-5	1	NC	1	NC	2
244			min	0	3	003	3	099	4			NC	1	251.577	4
245		9	max	.002	1	.002	2	0	12		1	NC	1	NC	2
246			min	0	3	003	3	084	4	-4.343e-4	5	NC	1	295.965	4
247		10	max	.001	1	.002	2	0	12	6.626e-5	1	NC	1	NC	2
248		10	min	0	3	002	3	07	4	-4.343e-4	5	NC	1	355.139	4
249		11	max	.001	1	.002	2	0	12	6.626e-5	1	NC	1	NC	1
250		+ ' '	min	0	3	002	3	057	4	-4.343e-4	5	NC	1	436.571	4
251		12	max	.001	1	.002	2	0 - <u>037</u>	12	6.626e-5	1	NC	1	NC	1
252		12	min	0	3	002	3	045	4	-4.343e-4	5	NC	1	553.186	4
253		13	max	0	1	.002	2	<u>043</u> 0	12	6.626e-5	1	NC	1	NC	1
254		13	min	0	3	002	3	034	4	-4.343e-4	5	NC NC	1	728.972	4
255		14	max	0	1	<u>002</u> 0	2	034 0	12	6.626e-5	1	NC	1	NC	1
256		14	min	0	3	001	3	024		-4.343e-4	5	NC NC	1	1012.73	4
		15			1	<u>001</u> 0	2	<u>024</u> 0	12			NC NC	•	NC	
257		15	max	0	3				12	6.626e-5			1		1
258		10	min	0		001	3	<u>016</u>	4	-4.343e-4	5	NC NC		1516.951	4
259		16	max	0	1	0	2	0	12	6.626e-5	1	NC NC	1_1	NC 2552 579	1
260			min	0	3	0	3	01	4	-4.343e-4	5	NC	<u>1</u>	2552.578	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	6.626e-5		NC NC	1	NC FOZO 445	1
262		10	min	0	3	0	3	005	4	-4.343e-4	5	NC	1_	5272.415	4
263		18	max	0	1	0	2	0	12	6.626e-5	_1_	NC	1	NC	1
264			min	0	3	0	3	001	4	-4.343e-4	5	NC	1_	NC	1
265		19	max	0	1	00	1	0	1_	6.626e-5	_1_	NC	_1_	NC	1_
266			min	0	1	0	1	0	1	-4.343e-4	5	NC	1_	NC	1
267	M6	1_	max	.019	1	.019	2	0	1	1.624e-3	4	NC	3	NC	1
268			min	02	3	027	3	663	4	0	1_	3270.598	2	94.638	4
269		2	max	.018	1	.017	2	0	1	1.731e-3	4	NC	3	NC	1
270			min	019	3	026	3	609	4	0	1	3596.194	2	103.037	4
271		3	max	.017	1	.016	2	0	1	1.838e-3	4	NC	3	NC	1
272			min	018	3	024	3	555	4	0	1	3990.343	2	113.008	4
273		4	max	.016	1	.014	2	0	1	1.945e-3	4	NC	3	NC	1
274			min	016	3	023	3	502	4	0	1	4472.946	2	124.961	4
275		5	max	.015	1	.012	2	0	1	2.052e-3	4	NC	1	NC	1
276			min	015	3	021	3	45	4	0	1	5071.941	2	139.45	4
277		6	max	.014	1	.011	2	0	1	2.16e-3	4	NC	1	NC	1
278			min	014	3	02	3	399	4	0	1	5827.546	2	157.243	4
279		7	max	.013	1	.009	2	0	1	2.267e-3	4	NC	1	NC	1
280			min	013	3	018	3	35	4	0	1	6799.393	2	179.429	4
281		8	max	.012	1	.008	2	0	1	2.374e-3	4	NC	1	NC	1
282			min	012	3	017	3	302	4	0	1	8079.05	2	207.593	4
283		9	max	.011	1	.006	2	0	1	2.481e-3	4	NC	1	NC	1
284			min	011	3	015	3	257	4	0	1	9813.189	2	244.118	4
285		10	max	.01	1	.005	2	0	1	2.588e-3	4	NC	1	NC	1
286		10	min	01	3	014	3	214	4	0	1	NC	1	292.717	4
287		11	max	.009	1	.004	2	0	1	2.696e-3	4	NC	1	NC	1
288		+ ' '	min	009	3	012	3	174	4	0	1	NC	1	359.454	4
289		12	max	.007	1	.003	2	0	1	2.803e-3	4	NC	1	NC	1
290		12	min	008	3	011	3	138	4	0	1	NC	1	454.78	4
291		13	max	.006	1	.002	2	0	1	2.91e-3	4	NC	1	NC	1
292		10	min	007	3	009	3	105	4	0	1	NC	1	598.023	4
293		14	max	.005	1	.003	2	0	1	3.017e-3	4	NC	1	NC	1
294		17	min	005	3	008	3	076	4	0.0176-3	1	NC	1	828.297	4
295		15	max	.004	1	008	2	070	1	3.124e-3	4	NC	1	NC	1
296		13	min	004	3	006	3	051	4	0	1	NC	1	1235.159	4
297		16	max	.003	1	0	2	0	1	3.232e-3	4	NC	1	NC	1
298		10		003	3	005	3	03	4	0	1	NC NC	1	2063.749	
299		17	min	.002	1	<u>005</u> 0	2	<u>03</u> 0	1	3.339e-3	•	NC NC	1		1
		17	max		3		3		4		<u>4</u> 1		1	NC 4208.898	
300		10	min	002		003		015	4	0		NC NC	1		4
301		18		.001	1	0	2	0	1	3.446e-3	4	NC NC	1	NC NC	1
302		10	min	001	3	002	3	005	1	2 5520 2	1_1	NC NC	<u>1</u> 1	NC NC	1
303		19	max	<u> </u>	1	0 0	1	<u> </u>	1	3.553e-3	<u>4</u> 1	NC NC	1	NC NC	1
304 305	M7	1	min	0	1	0	1	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
	IVI /		max		1		1						1		
306		2	min	0	3	0		0	4	-8.675e-4	4	NC NC	_	NC NC	1
307		2	max	<u> </u>	2	0 002	15	.017 0	1	0 -1.63e-4	1_1	NC NC	1	NC NC	1
308		3	min	.002	3	<u>002</u> 0		.032			4	NC NC	<u>1</u> 1	NC NC	1
309		3	max		2	004	15		1	5.415e-4	<u>4</u> 1	NC NC	1	9844.906	
310		1	min	002				0		1 2460 2			_		4
311		4	max	.003	3	001	15	.047	4	1.246e-3	4	NC NC	1	NC 7544.2	1
312		-	min	002	2	006	3	0	1 1	0	1_1	NC NC	1	7544.2	4
313		5	max	.003	3	002	15	.06	4	1.951e-3	4	NC NC	1_4	NC CEOF OF 4	1
314			min	003	2	008	3	0	1	0	1_1	NC NC	1_	6595.054	
315		6	max	.004	3	002	15	.073	4	2.655e-3	4	NC NC	1	NC COEO O4C	1
316		-	min	004	2	<u>01</u>	3	0	1	0	1_1	NC NC	1_	6252.916	
317		7	max	.005	3	003	15	.084	4	3.36e-3	4	NC	_1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	_	LC	(n) L/y Ratio			
318			min	005	2	011	3	0	1	0	_1_	8822.972	4	6302.232	-
319		8	max	.006	3	003	15	.095	4	4.064e-3	4	NC	_1_	NC	1
320			min	006	2	012	3	0	1	0	1	7906.973	4_	6701.593	
321		9	max	.007	3	003	15	.105	4	4.769e-3	4	NC	1_	NC	1
322			min	007	2	013	4	0	1	0	<u>1</u>	7363.742	4	7518.009	4
323		10	max	.008	3	003	15	.115	4	5.473e-3	4	NC	<u>1</u>	NC	1
324			min	007	2	014	4	0	1	0	_1_	7098.216	4	8958.288	4
325		11	max	.008	3	003	15	.124	4	6.178e-3	4	NC	1_	NC	1
326			min	008	2	014	4	0	1	0	1	7071.129	4	NC	1
327		12	max	.009	3	003	15	.133	4	6.882e-3	4_	NC	_1_	NC	1
328			min	009	2	013	4	0	1	0	1_	7283.936	4	NC	1
329		13	max	.01	3	003	15	.142	4	7.587e-3	4	NC	_1_	NC	1
330			min	01	2	013	4	0	1	0	1	7781.287	4	NC	1
331		14	max	.011	3	003	15	.152	4	8.291e-3	4	NC	1_	NC	1
332			min	011	2	012	4	0	1	0	<u>1</u>	8674.33	4	NC	1
333		15	max	.012	3	002	15	.162	4	8.996e-3	4	NC	_1_	NC	1
334			min	011	2	01	3	0	1	0	_1_	NC	1_	NC	1
335		16	max	.013	3	002	15	.172	4	9.7e-3	4	NC	1_	NC	1
336			min	012	2	009	1	0	1	0	1	NC	1_	NC	1
337		17	max	.014	3	<u>001</u>	15	.183	4	1.04e-2	4	NC	1	NC	1
338		4 -	min	013	2	008	1	0	1	0	1_	NC	1_	NC	1
339		18	max	.014	3	0	15	.196	4	1.111e-2	4	NC	_1_	NC	1
340			min	014	2	007	1	0	1	0	1_	NC	1_	NC	1
341		19	max	.015	3	0	15	.209	4	1.181e-2	4	NC	1_	NC	1
342			min	015	2	005	1	0	1	0	1_	NC	1_	NC	1
343	<u>8M</u>	1	max	.007	1	.014	2	0	1	0	_1_	NC	_1_	NC	1_
344			min	0	3	016	3	209	4	-5.142e-4	4	NC	<u>1</u>	118.616	4
345		2	max	.007	1	.013	2	00	1	0	_1_	NC	_1_	NC	1_
346			min	0	3	015	3	192	4	-5.142e-4	4	NC	1_	129.011	4
347		3	max	.006	1	.012	2	0	1	0	_1_	NC	1_	NC	1
348			min	0	3	014	3	175	4	-5.142e-4	4	NC	1_	141.38	4
349		4	max	.006	1	.011	2	0	1	0	_1_	NC	_1_	NC	1_
350			min	0	3	013	3	159	4	-5.142e-4	4	NC	1_	156.237	4
351		5	max	.006	1	.011	2	0	1	0	_1_	NC	1_	NC	1
352			min	0	3	012	3	142	4	-5.142e-4	4	NC	1_	174.278	4
353		6	max	.005	1	.01	2	0	1	0	_1_	NC	_1_	NC	1_
354			min	0	3	011	3	126	4	-5.142e-4	4	NC	<u>1</u>	196.471	4
355		7	max	.005	1	.009	2	0	1	0	_1_	NC	_1_	NC	1_
356			min	0	3	01	3	111	4	-5.142e-4	4	NC	1_	224.188	4
357		8	max	.004	1	.008	2	0	1	0	_1_	NC	1_	NC	1
358			min	0	3	01	3	096	4	-5.142e-4	4	NC	1_	259.431	4
359		9	max	.004	1	.008	2	0	1	0	1_	NC	_1_	NC	1
360			min	0	3	009	3	081	4	-5.142e-4	4_	NC	1_	305.214	4
361		10	max	.004	1	.007	2	0	1	0	1_	NC	1_	NC	1
362			min	0	3	008	3	068	4	-5.142e-4	4	NC	1_	366.249	4
363		11	max	.003	1	.006	2	0	1	0	1	NC	1_	NC	1
364			min	0	3	007	3	055	4	-5.142e-4	4_	NC	1_	450.241	4
365		12	max	.003	1	.005	2	0	1	0	1_	NC	_1_	NC	1
366			min	0	3	006	3	043	4	-5.142e-4	4	NC	1_	570.523	4
367		13	max	.002	1	.005	2	0	1	0	_1_	NC	1_	NC	1
368			min	0	3	005	3	033	4	-5.142e-4	4	NC	1_	751.839	4
369		14	max	.002	1	.004	2	0	1	0	1	NC	1_	NC	1_
370			min	0	3	004	3	024	4	-5.142e-4	4	NC	1_	1044.525	
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	016	4	-5.142e-4	4	NC	1_	1564.617	4
373		16	max	.001	1	.002	2	0	1	0	1	NC	1_	NC	1_
374			min	0	3	003	3	009	4	-5.142e-4	4	NC	1_	2632.861	4

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

375	Member	Sec 17	max	x [in]	LC 1	y [in] .002	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
376		11/	min	0	3	002	3	005	4	-5.142e-4	4	NC	1	5438.419	_
377		18	max	0	1	0	2	<u>.005</u>	1	0.1420 4	1	NC	1	NC	1
378		10	min	0	3	0	3	001	4	-5.142e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0.1420 4	1	NC	1	NC	1
380		13	min	0	1	0	1	0	1	-5.142e-4	4	NC	1	NC	1
381	M10	1	max	.006	1	.005	2	0	12	1.635e-3	4	NC	-	NC	2
382	IVITO		min	006	3	009	3	662	4	1.372e-5	12	NC	1	94.736	4
383		2	max	.006	1	.004	2	0	12	1.741e-3	4	NC	1	NC	2
384			min	006	3	008	3	608	4	1.288e-5	12	NC	1	103.144	4
385		3	max	.005	1	.003	2	_ 000 _	12	1.846e-3	4	NC	1	NC	2
386			min	005	3	008	3	554	4	1.204e-5	12	NC	1	113.126	4
387		4	max	.005	1	.002	2	_ 554 _	12	1.952e-3	4	NC	1	NC	2
388		1	min	005	3	008	3	501	4	1.12e-5	12	NC NC	1	125.091	4
389		5	max	.005	1	.002	2	<u>501</u> 0	12	2.058e-3	4	NC	1	NC	2
390		- 5	min	005	3	008	3	449	4	1.036e-5	12	NC NC	1	139.596	4
391		6	max	.003	1	_ 008	2	449 0	12	2.164e-3	4	NC	1	NC	1
392		- 0	min	004	3	007	3	398	4	9.522e-6	12	NC	1	157.408	4
393		7		.004	1	<u>007</u> 0	2	_ 396 _ 0	12	2.27e-3	4	NC	1	NC	1
394		+ ′	max	004	3	007	3	349	4	8.683e-6	12	NC NC	1	179.619	4
395		8		.004	1	<u>007</u> 0	2	349 0	12	2.375e-3	4	NC NC	1	NC	1
396		-	max		3	007	3	302		7.844e-6		NC NC	1		
		9	min	004	1	007 0	2		4	2.481e-3	12	NC NC	1	207.815 NC	1
397		9	max	.003	3		3	0	12		4		1		_
398		10	min	003		006		257	4	7.005e-6	12	NC NC		244.38	4
399		10	max	.003	1	001	2	0	12	2.587e-3	4	NC NC	1	NC 202,025	1
400		44	min	003	3	006	3	214	4	6.166e-6	<u>12</u>	NC NC	_	293.035	4
401		11	max	.003	1	001	10	0	12	2.693e-3	4	NC	1	NC	1
402		40	min	003	3	005	3	174	4	5.327e-6	12	NC NC	1_	359.849	4
403		12	max	.002	1	001	15	0	12	2.798e-3	4	NC	1	NC 455,000	1
404		40	min	002	3	005	3	138	4	4.488e-6	12	NC NC	1_	455.289	4
405		13	max	.002	1	001	15	0	12	2.904e-3	4	NC	1	NC FOO. 700	1
406		4.4	min	002	3	004	3	105	4	3.648e-6	12	NC NC	1_	598.706	4
407		14	max	.002	1	001	15	0	12	3.01e-3	4	NC NC	1	NC 000.070	1
408		4.5	min	002	3	004	4	076	4	2.809e-6	12	NC	1_	829.272	4
409		15	max	.001	1	0	15	0	12	3.116e-3	4	NC NC	1	NC	1
410		10	min	001	3	003	4	<u>051</u>	4	1.97e-6	12	NC NC	1_	1236.675	4
411		16	max	0	1	0	15	0	12	3.222e-3	4	NC	1	NC	1
412		-	min	0	3	003	4	03	4	1.131e-6	12	NC	1_	2066.443	
413		17	max	0	1	0	15	0	12	3.327e-3	4	NC	1_	NC	1
414		10	min	0	3	002	4	<u>015</u>	4	1.163e-7	10	NC	1_	4214.984	4
415		18	max		1	0	15	0		3.433e-3		NC	1	NC	1
416		10	min	0	3	001	4	005	4	-1.512e-5	1_	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	3.539e-3	4_	NC	1	NC	1
418			min	0	1	0	1	0	1	-3.204e-5	1_	NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	1.054e-5	_1_	NC	1	NC	1
420			min	0	1	0	1	0	1	-8.637e-4	4	NC	1_	NC	1
421		2	max	0	3	0	15	.017	4	-8.333e-7	12	NC	1	NC	1
422		_	min	0	2	002	4	0	1	-1.568e-4	<u>4</u>	NC	1_	NC	1
423		3	max	0	3	0	15	.032	4	5.502e-4	_5_	NC	1_	NC	1
424			min	0	2	004	4	0	1	-4.595e-5	_1_	NC	1_	NC	1
425		4_	max	0	3	001	15	.047	4	1.257e-3	4_	NC	_1_	NC	1
426			min	0	2	006	4	0	1	-7.419e-5	_1_	NC	_1_	7799.106	
427		5_	max	.001	3	002	15	.06	4	1.964e-3	4	NC	1	NC	1
428			min	0	2	008	4	0	1	-1.024e-4	1_	NC	1_	6849.392	
429		6	max	.001	3	002	15	.072	4	2.671e-3	4_	NC	1	NC NC	1
430			min	0	2	01	4	001	1	-1.307e-4	1_	9854.649	4	6531.142	
431		7	max	.002	3	003	15	.084	4	3.378e-3	4	NC	_1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	001	2	011	4	001	1	-1.589e-4	1_	8466.17	4	6630.418	
433		8	max	.002	3	003	15	.094	4	4.085e-3	4_	NC	_1_	NC	1
434			min	001	2	012	4	002	1	-1.872e-4	_1_	7609.843	4_	7117.934	
435		9	max	.002	3	003	15	.105	4	4.791e-3	4	NC	2	NC	1
436			min	002	2	013	4	002	1	-2.154e-4	_1_	7104.588	4_	8090.333	4
437		10	max	.002	3	003	15	.114	4	5.498e-3	4_	NC	3	NC	1
438			min	002	2	014	4	003	1	-2.437e-4	_1_	6862.624	4_	9827.487	4
439		11	max	.003	3	003	15	.124	4	6.205e-3	_4_	NC	3	NC	1
440			min	002	2	014	4	003	1	-2.719e-4	1_	6848.381	4	NC	1
441		12	max	.003	3	003	15	.133	4	6.912e-3	_4_	NC	3_	NC NC	1
442			min	002	2	014	4	004	1	-3.001e-4	1_	7064.871	4_	NC	1
443		13	max	.003	3	003	15	.142	4	7.619e-3	4_	NC	1_	NC	1
444			min	002	2	<u>013</u>	4	004	1	-3.284e-4	_1_	7556.592	4_	NC	1
445		14	max	.004	3	003	15	.152	4	8.326e-3	4_	NC		NC NC	1
446		4.5	min	003	2	<u>012</u>	4	005	1	-3.566e-4	1_	8432.502	4_	NC	1
447		15	max	.004	3	003	15	.162	4	9.033e-3	4	NC	1	NC NC	1
448		4.0	min	003	2	01	4	006	1	-3.849e-4	1_	9933.716	4_	NC	1
449		16	max	.004	3	002	15	.173	4	9.74e-3	4_	NC	1	NC NC	1
450		4-	min	003	2	008	4	006	1	-4.131e-4	1_	NC	1_	NC NC	1
451		17	max	.004	3	002	15	.184	4	1.045e-2	4	NC NC	1	NC NC	1
452		40	min	003	2	006	1	007	1	-4.414e-4	1_	NC NC	1_	NC NC	1
453		18	max	.005	3	001	15	.196	4	1.115e-2	4	NC NC	1_	NC NC	1
454		40	min	003	2	005	1	008	1	-4.696e-4	1_	NC NC	1_	NC NC	1
455		19	max	.005	3	0	10	.21	4	1.186e-2	4	NC	1	NC 0754 500	2
456	MAO	1	min	004	2	003	1	009	1	-4.978e-4	1	NC NC	1_	9754.599	1
457	M12	1	max	.003	1	.003	2	.009	1	-3.231e-6	12	NC NC	1	NC	3
458		2	min	0	3	005	3	21	4	-4.644e-4	4	NC NC	1_	117.945	4
459		2	max	.003	1	.003	2	.009	1	-3.231e-6	12	NC	1	NC	3
460		2	min	0	3	005	3	193	4	-4.644e-4	4	NC NC		128.276	4
461 462		3	max	.002 0	3	.003 004	3	.008 176	4	-3.231e-6 -4.644e-4	<u>12</u> 4	NC NC	<u>1</u> 1	NC 140.57	3
463		4	min	.002	1	.003	2	.007	1	-4.044e-4 -3.231e-6	12	NC	1	NC	3
464		4	max min	.002	3	004	3	16	4	-3.231e-6 -4.644e-4	4	NC NC	1	155.336	4
465		5		.002	1	.002	2	.006	1	-4.044e-4 -3.231e-6	12	NC NC	1	NC	3
466		5	max min	.002	3	004	3	143	4	-4.644e-4	4	NC	1	173.267	4
467		6	max	.002	1	.002	2	.006	1	-3.231e-6	12	NC	1	NC	2
468		0	min	0	3	004	3	127	4	-4.644e-4	4	NC	1	195.325	4
469		7	max	.002	1	.002	2	.005	1	-3.231e-6	12	NC	1	NC	2
470			min	0	3	003	3	111	4	-4.644e-4	4	NC	1	222.874	4
471		8	max	.002	1	.002	2	.004	1		12	NC	1	NC	2
472			min		3	003	3	096		-4.644e-4		NC	1	257.903	4
473		9	max	.002	1	.002	2	.004	1	-3.231e-6		NC	1	NC	2
474		 	min	0	3	003	3	082	4	-4.644e-4	4	NC	1	303.408	4
475		10	max	.001	1	.002	2	.003	1	-3.231e-6		NC	1	NC	2
476		· · ·	min	0	3	002	3	068	4	-4.644e-4	4	NC	1	364.071	4
477		11	max	.001	1	.001	2	.002	1	-3.231e-6		NC	1	NC	1
478			min	0	3	002	3	055	4	-4.644e-4	4	NC	1	447.553	4
479		12	max	.001	1	.001	2	.002	1	-3.231e-6		NC	1	NC	1
480		T	min	0	3	002	3	044	4	-4.644e-4	4	NC	1	567.103	4
481		13	max	0	1	.001	2	.001	1	-3.231e-6	12	NC	1	NC	1
482			min	0	3	002	3	033	4	-4.644e-4	4	NC	1	747.313	4
483		14	max	0	1	0	2	.001	1	-3.231e-6		NC	1	NC	1
484			min	0	3	001	3	024	4	-4.644e-4	4	NC	1	1038.213	_
485		15	max	0	1	0	2	0	1	-3.231e-6		NC	1	NC	1
486			min	0	3	001	3	016	4	-4.644e-4	4	NC	1	1555.124	4
487		16	max	0	1	0	2	0	1	-3.231e-6		NC	1	NC	1
488			min	0	3	0	3	009	4	-4.644e-4		NC	1	2616.82	4
		-													_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
489		17	max	0	1	0	2	00	1	-3.231e-6	12	NC	_1_	NC	1
490			min	0	3	0	3	005	4	-4.644e-4	4	NC	1_	5405.127	4
491		18	max	0	1	0	2	0	1	-3.231e-6		NC	1_	NC	1
492			min	0	3	0	3	001	4	-4.644e-4	4_	NC	_1_	NC	1
493		19	max	0	1	0	1	0	1	-3.231e-6	12	NC	_1_	NC	1
494	B 4 4		min	0	1	0	1	0	1	-4.644e-4	4_	NC	1_	NC	1
495	<u>M1</u>	1_	max	.006	3	.095	1	.701	4	1.73e-2	1_	NC	1	NC NC	1
496			min	003	2	009	3	0	12	-2.353e-2	3	NC NC	1_	NC NC	1
497		2	max	.006	3	.046	1	.679	4	9.33e-3	4_	NC	3	NC NC	1
498		2	min	003	2	003	3	007	1	-1.164e-2	3	2353.705	1_	NC NC	1
499		3	max	.006	3	.009	3	.656	4	1.495e-2	4	NC	5	NC cooc ooz	1
500		1	min	003	2	008	2	01	1	-2.014e-4	1_	1125.547	1_	6396.007	5
501		4	max	.006	3	.031	3	.633	4	1.312e-2	4	NC	5	NC 4545 004	1
502		_	min	003	2	068	1	009	1	-4.055e-3	3	702.77	1_	4545.231	5
503		5	max	.006	3	.061	3	.61 006	4	1.129e-2	4	NC FO2 FF0	<u>15</u> 1	NC 3614.799	5
504		6	min	002		133			1	-7.996e-3	3	502.558	•		
505		6	max	.006	3	.094	3	.586	4	1.403e-2	1	NC 393.036	<u>15</u>	NC 2057 9C2	1
506		7	min	002		196	1	003	1	-1.194e-2	3		1_	3057.863	
507		-	max	.006	3	.125	3	561	4	1.878e-2	1	9896.054	<u>15</u>	NC	1
508 509		0	min	002	3	<u>253</u> .152	3	<u>0</u> .535	12	-1.588e-2 2.352e-2	<u>3</u> 1	328.761	<u>1</u> 15	2673.762 NC	1
		8	max	.006	2			<u>.535</u>	12		3	8786.607			4
510		0	min	002	3	298	3		4	-1.982e-2		290.905	1_	2398.944	
511		9	max	.005		.169	1	.508		2.596e-2	1	8208.642	<u>15</u>	NC 2224 C24	1
512		10	min	002	2	327	•	0	1	-1.976e-2	3	271.258	1_	2234.621	4
513 514		10	max	.005	3	.176 336	3	.479	12	2.687e-2	1	8032.721	<u>15</u> 1	NC 2190.497	4
515		11	min	002	3	<u>336</u> .172	3	<u> </u>		-1.705e-2	3	265.378	15	NC	1
		11	max	.005	2	326		<u>447</u> 0	12	2.778e-2 -1.434e-2	<u>1</u>	8208.395		2247.335	
516		12	min	002	3		3				_	271.61	1_		1
517 518		12	max	.005 002	2	.157 297	1	.413 001	1	2.627e-2	3	8786.044 292.011	<u>15</u> 1	NC 2421.262	4
519		13	max	.002	3	.134	3	.375	4	-1.177e-2 2.115e-2	<u>3</u> 1	9894.982	15	NC	1
520		13	min	002	2	251	1	<u></u>	1	-9.419e-3	3	331.513	1	2851.37	4
521		14	max	.002	3	.104	3	.335	4	1.602e-2	1	NC	15	NC	1
522		14	min	002	2	193	1	<u>.335</u>	12	-7.069e-3	3	398.983	1	3737.785	
523		15	max	.005	3	.071	3	.294	4	1.089e-2	<u> </u>	NC	15	NC	1
524		15	min	002	2	128	1	<u>.294</u>	12	-4.718e-3	3	514.888	1	5647.827	4
525		16	max	.005	3	.036	3	.254	4	1.e-2	4	NC	5	NC	1
526		10	min	002	2	064	1	0	12	-2.368e-3	3	728.903	1	NC	1
527		17	max	.004	3	.003	3	.216	4	1.113e-2	4	NC	5	NC	1
528		17	min	002	2	004	2	0	12	-1.77e-5	3	1185.025	1	NC	1
529		18	max	.002	3	.047	1	.183		1.035e-2		NC	4	NC NC	1
530		10	min	002	2	026	3	0	12	-3.841e-3	3	2505.355	1	NC	1
531		19	max	.004	3	.092	1	.152	4	2.074e-2	2	NC	1	NC	1
532		1 '	min	002	2	054	3	001	1	-7.807e-3	3	NC	1	NC	1
533	M5	1	max	.019	3	.229	1	.701	4	0	1	NC	1	NC	1
534	IVIO	<u>'</u>	min	012	2	006	3	0	1	-4.133e-6	4	NC	1	NC	1
535		2	max	.019	3	<u></u> .11	1	.683	4	7.676e-3	4	NC	5	NC	1
536			min	013	2	.001	3	0	1	0	1	961.082	1	8895.344	_
537		3	max	.019	3	.029	3	.662	4	1.512e-2	4	NC	15	NC	1
538			min	013	2	025	2	0	1	0	1	449.984	1	5160.489	4
539		4	max	.019	3	.091	3	.639	4	1.232e-2	4	9218.1	15	NC	1
540			min	012	2	189	1	0	1	0	1	273.608	1	3938.297	4
541		5	max	.018	3	.179	3	.613	4	9.517e-3	4	6455.16	15	NC	1
542			min	012	2	367	1	0	1	0	1	191.564	1	3341.27	4
543		6	max	.012	3	.278	3	.587	4	6.716e-3	4	4972.198	15	NC	1
544			min	012	2	545	1	0	1	0.7 100 0	1	147.497	1	2974.917	_
545		7	max	.018	3	.375	3	.561	4	3.916e-3	4	4115.309	15	NC	1
0 10			ITTIGA	.010		.070		.001	т_	0.01000	т				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	012	2	707	1	0	1	0	1_	122.019	1_	2696.612	
547		8	max	.017	3	.456	3	.535	4	1.115e-3	4_		<u>15</u>	NC	1
548			min	011	2	<u>836</u>	1	0	1	0	1_	107.194	1_	2439.937	4
549		9	max	.017	3	.509	3	.509	4	0	1_		<u>15</u>	NC 0000 07	1
550		40	min	011	2	<u>918</u>	1	470	1	-2.774e-6	5	99.59	1_	2230.87	4
551		10	max	.016	3	.528	3	.479	4	0 -2.677e-6	1		<u>15</u>	NC 2204.839	4
552		11	min	011 .016	3	<u>945</u> .514	3	<u>0</u> .447	4	0	<u>5</u> 1	97.327 3361.245	<u>1</u> 15	NC	1
553 554			max	011	2		1	.447	1	-2.58e-6	5	99.731	1	2272.363	
555		12		.016	3	<u>917</u> .47	3	.414	4	7.916e-4	4		15	NC	1
556		12	max min	011	2	833	1	.414	1	0	1	107.66	1	2377.977	4
557		13	max	.015	3	.399	3	.376	4	2.781e-3	4		15	NC	1
558		13	min	01	2	7	1	0	1	0	1	123.23	1	2807.379	
559		14	max	.015	3	.309	3	.334	4	4.77e-3	4		15	NC	1
560		17	min	01	2	534	1	0	1	0	1	150.217	1	3913.808	
561		15	max	.015	3	.208	3	.291	4	6.759e-3	4		15	NC	1
562		10	min	01	2	353	1	0	1	0	1	197.448	1	7068.532	4
563		16	max	.014	3	.106	3	.248	4	8.748e-3	4		15	NC	1
564			min	01	2	173	1	0	1	0	1	286.745	1	NC	1
565		17	max	.014	3	.009	3	.21	4	1.074e-2	4		15	NC	1
566			min	01	2	014	2	0	1	0	1	481.802	1	NC	1
567		18	max	.014	3	.115	1	.178	4	5.452e-3	4	NC	5	NC	1
568			min	01	2	073	3	0	1	0	1	1046.067	1	NC	1
569		19	max	.014	3	.223	1	.153	4	0	1	NC	1	NC	1
570			min	01	2	148	3	0	1	-2.294e-6	4	NC	1	NC	1
571	M9	1	max	.006	3	.095	1	.701	4	2.353e-2	3	NC	1_	NC	1
572			min	003	2	009	3	001	1	-1.73e-2	1_	NC	1	NC	1
573		2	max	.006	3	.046	1	.683	4	1.164e-2	3	NC	3	NC	1
574			min	003	2	003	3	0	12	-8.396e-3	1_	2353.705	1_	9101.727	4
575		3	max	.006	3	.009	3	.662	4	1.509e-2	_4_	NC	5_	NC	1
576			min	003	2	008	2	0	12	-1.504e-5	<u>10</u>	1125.547	1_	5234.828	
577		4	max	.006	3	.031	3	.638	4	1.182e-2	5	NC	5	NC	1
578			min	003	2	068	1	0	12	-4.544e-3	_1_	702.77	1_	3957.531	4
579		5	max	.006	3	.061	3	.613	4	8.873e-3	_5_		<u>15</u>	NC	1
580			min	002	2	133	1	0	12	-9.289e-3	1_	502.558	1_	3329.53	4
581		6	max	.006	3	.094	3	.587	4	1.194e-2	3		<u>15</u>	NC	1
582		7	min	002	3	<u>196</u> .125	3	0 561	12	-1.403e-2	1	393.036	1_	2947.446	
583			max	.006	2	253	1	.561	1	1.588e-2	<u>3</u>		<u>15</u> 1	NC 2667.719	1
584 585		8	min	002 .006	3	<u>253</u> .152	3	.535	4	-1.878e-2 1.982e-2	3	328.761 8768.815	<u>1</u> 15	NC	1
586		0	max min		2	298	1	001		-2 3520-2				2423.834	
587		9	max	.005	3	.169	3	.508	4	1.976e-2	3		15	NC	1
588		9	min	002	2	327	1	0	12	-2.596e-2	1	271.258	1	2227.766	
589		10	max	.005	3	.176	3	.479	4	1.705e-2	3		15	NC	1
590		10	min	002	2	336	1	0	1	-2.687e-2	1	265.378	1	2191.758	4
591		11	max	.002	3	.172	3	.447	4	1.434e-2	3		15	NC	1
592			min	002	2	326	1	0	1	-2.778e-2	1	271.61	1	2256.359	-
593		12	max	.005	3	.157	3	.413	4	1.177e-2	3		15	NC	1
594			min	002	2	297	1	0	12	-2.627e-2	1	292.011	1	2396.592	
595		13	max	.005	3	.134	3	.375	4	9.419e-3	3		15	NC	1
596			min	002	2	251	1	0	12	-2.115e-2	1	331.513	1	2853.742	
597		14	max	.005	3	.104	3	.334	4	7.069e-3	3		15	NC	1
598			min	002	2	193	1	002	1	-1.602e-2	1	398.983	1	3885.128	_
599		15	max	.005	3	.071	3	.291	4	6.341e-3	5		15	NC	1
600			min	002	2	128	1	006	1	-1.089e-2	1	514.888	1	6380.043	5
601		16	max	.005	3	.036	3	.249	4	8.542e-3	5	NC	5	NC	1
602			min	002	2	064	1	009	1	-5.76e-3	1	728.903	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.003	3	.211	4	1.079e-2	4	NC	5	NC	1
604			min	002	2	004	2	009	1	-6.312e-4	1	1185.025	1	NC	1
605		18	max	.004	3	.047	1	.179	4	5.068e-3	5	NC	4	NC	1
606			min	002	2	026	3	006	1	-1.035e-2	2	2505.355	1	NC	1
607		19	max	.004	3	.092	1	.153	4	7.807e-3	3	NC	1	NC	1
608			min	002	2	054	3	0	12	-2.074e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.