

EXPERIMENTO 4

TRANSFERÊNCIA DE POTÊNCIA

TURMA: _D_ DATA: 16/04/2014_

NOME	RA
Karina Drews Bernardi Ferreira	556068
Marcelo Aparecido do Lago	559903
Marcos Vinicius Torsani Pires	387673

RESUMO:_Foi montado o esquema mostrado no procedimento experimental. Para simular uma resistência interna, foi utilizada uma resistência de 100Ω. Após a montagem do circuito, ajustou-se a fonte para 5V.

Variou-se a resistência do potenciômetro para verificar se a corrente e a tensão também variavam.

Constatado isso, construiu-se uma tabela com 20 pontos da tensão Vr no resistor R e a corrente I no circuito, começando com Vr = 0V até o valor máximo de 4V. Após isso foram feitos os cálculos para encontrar a resistência, a potencia útil, a potencia total e o rendimento. Foram respondidas as perguntas como pedido, apresentando-as nos resultados.

A) MEDIDAS

Tabela com os valores de V_R , I, R, P_u , P_T e η e suas incertezas.

B) RESULTADOS

- **B1)** Gráficos superpostos de P_{μ} , P_{T} e η em função de R em anexo.
- **B2)** A partir do gráfico, determine o valor de R para o qual P_u é máxima:

Pelo gráfico P_u x R, o valor de R para o qual Pu é máxima é de

 $R=64\Omega$

B3) Prove que a expressão de $P_{u}(R)$ possui um máximo em R=r.

Temos que:

$$P_u = I^2 *R$$

 $I = V_0 / (r + R)$

Assim:

$$Pu = V_0^2 * R / ((r + R)^2)$$

Derivando e igualando a zero para obtermos os pontos críticos da função, temos:

du / dR =
$$V_0^2$$
 [(r + R)² – 2R(r + R) / (r + R)⁴] = 0
2R – R = r
R = r

Conclui-se então que a potencia útil é máxima para R = r.

Experimento 4 – Física Experimental B

B4) Compare os valores de B2) e B3): A concordância entre R máximo e r é igual a

$$C = \{1 - [(64 - 60,5)/60,5]\} *100\% = 94,5\%$$

B5) A partir do gráfico, determine o valor do rendimento quando P_u é máxima.

$$\eta = 50\%$$

B6) Demonstre o valor de η quando a potência P_u é máxima.

O valor previsto para o rendimento seria dado por:

$$\eta = Pm/Pt = R.I^2/(r + R)I^2;$$

 $\eta = R.I^2/(rI^2 + RI^2)$

Para Pu máximo R = r, então:

R=r

$$\eta = R.I^2/(2RI^2)$$

 $\eta = \frac{1}{2}$
 $\eta = 0.5$
 $\eta = 50\%$

Era esperado este valor, pois o valor da potência útil é igual ao valor da potência dissipada, tendose R = r.

B7) Qual a região de valores nos quais o rendimento é máximo? Compare e explique os com os resultados obtidos.

Neste experimento, o rendimento foi máximo para R máximo:

$$η$$
 = 0,793 ou 79,3 % R = (231± 8) $Ω$

O rendimento é máximo (n \rightarrow 1) quando a resistência R $\rightarrow \infty$, visto que desta maneira a corrente do circuito tenderá a zero e desta forma não há dissipação de energia na forma de calor (em função do Efeito Joule). Assim, para valores altos de R temos um rendimento $\eta = R/(R + r)$ assim quando $R \rightarrow \infty$ podemos desprezar o valor de r. Assim quanto maior o valor de R, maior será o rendimento.

B8) Explique os conceitos de potências dissipadas útil e total.

A potência útil é aquela que realmente é aproveitada, pois, durante o percurso da corrente, esta encontra resistências como a da fonte, dos medidores e da resistência, assim há uma perda de potência. A diferença entra a potência total e esta perdida é a potência útil do sistema.

A potência total dissipada é aquela "perdida" na forma de calor em decorrência do Efeito Joule que ocorre ao longo do fio, dos resistores e nas demais resistências parasitas – esse processo transforma energia elétrica em energia térmica acarretando um aquecimento dos componentes do circuito.

Conclusões

Ao realizar o experimento 4, foi possível concluir que a máxima transferência de potência não implica em uma máxima eficiência, visto que o primeiro caso ocorre quando a resistência interna e a externa possuem um mesmo valor (r = R), fato que gera um rendimento de 50%.

Anexos:

A) Tabela com os valores de V_R , I, R, P_u , P_T e η e suas incertezas.

n	Vr(V)	u(Vr) (V)	I(mA)	u(I) (mA)	R(Ω)	u(R) (Ω)	Pu(mW)	u(Pu) (mW)	Pt (mW)	u(Pt) (mW)	η	u(η)
1	0,00	0,03	80,6	1,4	0,0	0,0	0,0	1,4	393,03	0,01	0,00	0,00
2	0,15	0,03	78,5	1,3	1,9	0,0	11,8	1,4	384,59	0,01	0,03	0,00
3	0,30	0,03	76,3	1,3	3,9	0,1	22,9	1,3	375,10	0,01	0,06	0,00
4	0,45	0,03	74,3	1,3	6,1	0,1	33,4	1,4	367,42	0,01	0,09	0,00
5	0,60	0,03	72,2	1,3	8,3	0,1	43,3	1,4	358,70	0,01	0,12	0,00
6	0,75	0,03	70,0	1,2	10,7	0,2	52,5	1,4	348,95	0,01	0,15	0,00
7	0,90	0,03	67,7	1,2	13,3	0,2	60,9	1,5	338,22	0,01	0,18	0,00
8	1,05	0,04	65,6	1,2	16,0	0,3	68,9	1,6	329,23	0,01	0,21	0,00
9	1,20	0,04	63,6	1,2	18,9	0,3	76,3	1,7	321,04	0,01	0,24	0,01
10	1,35	0,04	61,5	1,1	22,0	0,4	83,0	1,8	311,85	0,01	0,27	0,01
11	1,50	0,04	59,2	1,1	25,3	0,5	88,8	1,9	300,83	0,01	0,30	0,01
12	1,65	0,04	57,2	1,1	28,8	0,5	94,4	2,0	292,33	0,01	0,32	0,01
13	1,80	0,04	55,1	1,1	32,7	0,6	99,2	2,1	282,86	0,01	0,35	0,01
14	1,95	0,04	52,8	1,0	36,9	0,7	103,0	2,2	271,62	0,01	0,38	0,01
15	2,10	0,04	50,7	1,0	41,4	0,8	106,5	2,3	261,98	0,01	0,41	0,01
16	2,25	0,04	48,4	1,0	46,5	0,9	108,9	2,5	250,62	0,01	0,43	0,01
17	2,40	0,04	46,4	1,0	51,7	1,1	111,4	2,6	241,61	0,01	0,46	0,01
18	2,55	0,04	44,3	0,9	57,6	1,2	113,0	2,7	231,70	0,01	0,49	0,01
19	2,70	0,04	42,2	0,9	64,0	1,4	113,9	2,8	221,68	0,01	0,51	0,01
20	2,85	0,04	40,1	0,9	71,1	1,6	114,3	3,0	211,57	0,01	0,54	0,01
21	3,00	0,05	37,8	0,9	79,4	1,8	113,4	3,1	199,84	0,01	0,57	0,02
22	3,15	0,05	35,8	0,8	88,0	2,0	112,8	3,3	190,31	0,01	0,59	0,02
23	3,30	0,05	33,6	0,8	98,2	2,3	110,9	3,4	179,18	0,01	0,62	0,02
24	3,45	0,05	31,6	0,8	109,2	2,7	109,0	3,5	169,43	0,01	0,64	0,02
25	3,60	0,05	29,4	0,8	122,4	3,1	105,8	3,7	158,13	0,01	0,67	0,02
26	3,75	0,05	27,3	0,7	137,4	3,7	102,4	3,8	147,47	0,01	0,69	0,03
27	3,90	0,05	25,2	0,7	154,8	4,3	98,3	4,0	136,70	0,01	0,72	0,03
28	4,05	0,05	23,0	0,7	176,1	5,2	93,2	4,1	125,15	0,01	0,74	0,03
29	4,20	0,05	21,0	0,7	200,0	6,2	88,2	4,3	114,88	0,01	0,77	0,04
30	4,35	0,05	18,8	0,6	231,4	7,7	81,8	4,4	103,16	0,01	0,79	0,04