目录

目录

第	一部分	分位数 Quantile	2
1	"分位数"	,的定义	2
2	上侧 α 分	$oldsymbol{\gamma}$ 位数:就是 ${f x}$ 轴上的一个点,该点右侧曲线下的面积 $=lpha$	2

文件名

第一部分 分位数 Quantile

1 "分位数"的定义

"某"分位数, 指的就是连续数据的"概率函数 f(x)"的 x 轴上的一个点,这个点对应着"其左侧的曲线下的面积"(即概率值)="某".

比如下图, x_p 就是"p 分位数"。意思是:在 x_p 这个点处,该点左侧的曲线下的面积值 =p .即 $PX \le x_p = p$.

2 上侧 α 分位数 u_{α} : 就是 \mathbf{x} 轴上的一个点. 该点右侧曲线下的面积 $=\alpha$

 ${f X}$ 是个正态分布, 即 $X\sim N(0,1)$. 我们规定 α 的取值范围是 $(0<\alpha<1)$, 即 α 点只能处在 ${f x}=({f 0},{f 1})$ 的区间上. 然后, 你去 ${f x}$ 轴上找一个点的位置 u, 要使得 $P\{X>u_{\alpha}\}$ 的概率 $=\alpha$, 则, 这个 u_{α} 点, 就叫做 "上 α 分位数".

所以我们现在就知道了,上 α 分位数,它其实就是 $\mathbf x$ 轴上的一个点,只不过它的变量名写作了: $u_{\mathsf{f} \mathsf{Q} \mathsf{h} \mathsf{d} \mathsf{d} \mathsf{v} \mathsf{f} \mathsf{o} \mathsf{n} \mathsf{n} \mathsf{d} \mathsf{e} \mathsf{d} \mathsf{e}}$.

例
又比如:
$$P\{X > \underbrace{u_{0.025}}_{\text{要求的.}=1.96}\} = \underbrace{0.025}_{\text{已知的}}$$

