Qualifying Examination in Analysis August 2013

Please use only one side of the paper and start each problem on a new page.

1. Find all continuous functions $f:[0,1]\to\mathbb{R}$ such that

$$\int_0^1 f(x)x^n dx = \frac{1}{n+4} \quad \text{for} \quad n = 0, 1, 2, 3, \dots$$

Hint: One such function is $f(x) = x^3$.

2. Let $A \subseteq \mathbb{R}$ be a (not necessarily measurable) set with $0 < \mu^*(A) < \infty$. Show there is an interval I such that $\mu^*(I \cap A) \ge (1/2)\mu^*(I)$. (Here μ^* is Lebesgue outer measure on the subsets of \mathbb{R} .)

3. Let $\langle r_k \rangle_{k=1}^{\infty}$ be an enumeration of the rational numbers in [0, 1]. Show the series

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{2^n \sqrt{|x - r_k|}}$$

converges for almost all $x \in [0, 1]$.

4. Let $f: [0,1] \to \mathbb{R}$.

(a) If f is absolutely continuous show

$$|f(1) - f(0)| \le \left(\int_0^1 f'(t)^2 dt\right)^{1/2}.$$

(b) Give an example of a continuous function $f: [0,1] \to \mathbb{R}$ where f'(t) = 0 for almost all $t \in [0,1]$ but the inequality of (a) is false.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be measurable. Show

$$\int_{\mathbb{R}} |f|^2 d\mu = 2 \int_0^\infty t \, \mu\{x : |f(x)| > t\} \, dt$$

where μ is Lebesgue on \mathbb{R} .

6. Let f(z) be an entire function such that $|f(z)| \neq 1$ for all $z \in \mathbb{C}$. Show that f is constant.

7. Compute $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$.

8. Let f_n be a sequence of analytic functions on an open set U such that there is function f(z) on U with $f_n(z) \to f(z)$ uniformly on compact subsets of U. Then show f(z) is analytic in U.

9. True or False. Either give a proof or a counter example.

- (a) If U is an open subset of (0,1), that contains all the rational numbers in (0,1), then $\mu(U) = 1$ (where μ is Lebesgue measure).
- (b) If f is a function on [0, 1] such that f^2 is measurable, then f is also measurable.

(c) There is an entire function f(z) such that $f(1/n) = \frac{n^2 + 1}{n^2 - 1}$ for $n = 1, 2, 3, \ldots$

(d) If $f \in L^1([0,\infty))$, then $\lim_{n\to\infty} f(x+n) = 0$ for almost all $x \in [0,1]$.

(e) If (X, d) is a complete metric space and $f: X \to X$ is a function such that d(f(x), f(y)) < d(x, y) for all $x, y \in X$ with $x \neq y$, then f has a fixed point on X. (Recall that x is a fixed point of f iff f(x) = x.)