ECONOMICS 261 STATISTICAL METHODS PROF. KARSTENSSON

EXAM 1 SPRING SEMESTER 2002 SOLUTIONS

Part I: Concept questions.

- 1. Inferential statistics.
- 2. Stem and leaf display.
- 3. Contingency table.
- 4. Skewness.
- 5. Correlation coefficient.

Part II: Problem questions.

6. Relative frequency distribution problem.

Ordered data set:

(a) Relative frequency distribution:

Class Interval:	Relative Frequency:
Hours Worked per Week	Percent of Students
1-10	10 (2 ÷ 20)
11-20	25 (5 ÷ 20)
21-30	30 (6 ÷ 20)
31-40	25 (5 ÷ 20)
41-50	10 (2 ÷ 20)

(b) The sample size, n=20; the center of the distribution is in the 21-30 hours worked interval; the class intervals have a range from 1 to 50 hours while the range in the data is from 10 to 49 hours; the distribution is symmetric.

7. Weighted mean problem.

$$\Sigma_{W} = \frac{\Sigma_{XW}}{\Sigma_{W}} = \frac{24,000}{1,000} = $24.00$$

Work:

Time	Price (X)	Quantity (W)	XW
August	\$30.00	300	9,000
November	20.00	500	10,000
January	25.00	200	5,000

 $\Sigma W = 1,000 \qquad \Sigma XW = 24,000$

8. Sample data set problem.

(a) Arithmetic mean:
$$\bar{X} = \frac{\Sigma X}{n} = \frac{76}{8} = 9.5$$
 complaints

(b)
$$\Sigma (X-X)^2 = 112$$
 complaints squared

(c)
$$S = \sqrt{\frac{\sum (X - X)^2}{n-1}} = \sqrt{\frac{112}{7}} = \sqrt{16} = 4.00 \text{ complaints}$$

(d)
$$CV = S/X$$
 (100) = $\frac{4}{9.5}$ (100) = 42.11 percent

(e)
$$Z(X=6) = \frac{X-\overline{X}}{S} = \frac{6-9.5}{4} = -0.875$$
 standard deviations

Work:

X	(X-X)	(X-X) ²
	2 F	10.05
6	-3.5	12.25
6	- 3.5	12.25
7	-2.5	6.25
8	-1.5	2.25
9	-0.5	0.25
10	0.5	0.25
12	2.5	6.25
18	8.5	72.25
	-	

$$\Sigma X = 76$$
 $\Sigma (X - X) = 0.0$ $\Sigma (X - X)^2 = 112.00$

n = 8

9. Empirical rule problem.

Given: Normal distribution

 \overline{X} = 88 percent

 s^2 = 4 percent \rightarrow S = 2 percent

By the empirical rule: $X \pm 1S \rightarrow 68\%$

 $88 \pm (1)(2)$

 88 ± 2

88 - 2 = 86

88 + 2 = 90

Answer: The room occupancy rate at the Bellagio Hotel for 68 percent of the days would have been between 86 percent and 90 percent.

- Part III: Output interpretation questions (with reference to the Excel Descriptive Statistics Output).
- 10. The variable, Gen, questions.
 - (a) $\overline{X} = 0.517$
 - (b) Since this is a 0-1 dummy variable, X gives the percent of 1s in the sample; thus, women comprise 51.7 percent of this sample while men make up the remaining 48.3 percent of the sample.
- 11. The variable, Job, suggests the following about the distribution of work for the sample of UNLV students:
 - (a) The sample size: n = 116
 - (b) Central tendency: The median and mean student in this sample works about 21.5 hours per week while the modal student does not work.
 - (c) Variation: The number of hours worked per week among the students in this sample ranges from 0 to 48 hours; the standard deviation suggests that the typical student's work hours deviates from the mean by some 13.3 hours.
 - (d) Symmetry: While the mean and median are fairly close to one another at about 21.5 hours per week, the mode is 0 hours. This suggests that this distribution is asymmetric and probably not a normal distribution.

Part IV: Optional extra credit question on the movie, A Beautiful Mind.

12. Charles Herman was the prodigal roommate and companion that existed only in John Forbes Nash's schizophrenic mind.