# 해시(HASH)

#### 해시 함수 요건

- 1. 임의 크기의 데이터 블록에 적용
- 2. 일정한 길이의 출력
- 3. 계산 용이성과 구현 가능성
- 4. 일방향 성질(one-way property)
- 5. 약한 충돌 저항성(weak collision resistance)
- 6. 강한 충돌 저항성(strong collision resistance)

#### 일 방향 성질

• 주어진 값 h에 대하여 H(x)=h 가 성립되는 x를 찾는 것이 계산적으로 불가능 하다.

#### 해시 충돌

- **해시 충돌**이란 <u>해시 함수</u>가 서로 다른 두 개의 입력값에 대해 동일한 출력값을 내는 상황을 의미한다.
- 해시 함수가 무한한 가짓수의 입력값을 받아 유한한 가짓수의 출력값을 생성하는 경우, 비둘기집 원리에 의해 해시 충돌은 항상 존재한다.
- 해시 충돌은 해시 함수를 이용한 <u>자료구조</u>나 <u>알고리즘</u>의 효율성을 떨어뜨리며, 따라서 해시 함수는 해시 충돌이 자주 발생하지 않도록 구성되어야 한다.
- <u>암호학적 해시 함수</u>의 경우 해시 함수의 안전성을 깨뜨리는 <u>충돌 공격</u>이 가능할 수 있기 때문에 의도적인 해시 충돌을 만드는 것이 어렵도록 만들어야 한다.

#### 해시함수 충돌 저항성

주어진 조건:해시 함수  $H_i$  패스워드  $x_i$   $y_i$ 

약한 충돌 저항성: 주어진 x에 대해, H(x) = H(y)인  $y \neq x$ 를 찾는 것이 어려울 때 해시 함수가 약한 충돌 저항성을 가지고 있다고 한다. 주어진 패스워드를 입력 값으로 해시 함수에 넣고, 그것을 초기 값 (x)이라고 하자. 만약 x에 대한 출력 값과 같은 출력 값을 갖는 또다른 패스워드를 찾을 확률이 해시 함수의 출력 값 범위 내에서 무시 가능(negligible)할 때 이 함수는 약한 충돌 저항성을 가지고 있다고 한다.

강한 충돌 저항성: H(x) = H(y)와 같이 같은 해시 출력 값을 갖는 x와 y를 찾는 것이 함수의 출력 값 범위 내에서 무시 가능(negligible)할 때 해시 함수 H는 강한 충돌 저항성을 가진다고 한다.

## 단순 해시 함수

|       | 비트 1     | 비트 2     | • • • | 비트 n     |
|-------|----------|----------|-------|----------|
| 블록 1  | $b_{11}$ | $b_{21}$ |       | $b_{n1}$ |
| 블록 2  | $b_{12}$ | $b_{22}$ |       | $b_{n2}$ |
|       | •        | •        | •     | •        |
|       | •        | •        | •     | •        |
|       | •        | •        | •     | •        |
| 블록 m  | $b_{1m}$ | $b_{2m}$ |       | $b_{nm}$ |
| 해시 코드 | $C_1$    | $C_2$    |       | $C_n$    |

#### 비트별 XOR 단순 해시 함수

 $C_i = b_{i1} \oplus b_{i2} \oplus \cdots \oplus b_{im}$ 

#### 여기서

- $-C_i$ :해시코드의 i 번째 비트,  $1 \le i \le n$
- -M: 입력의 n 비트 블록의 수
- $-b_{ij}$ : j 번째 블록의 i 번째 비트
- ⊕: XOR 연산
- 충돌 저항성이 없다. Why?

#### MD5

MD5는 임의의 길이의 메시지(variable-length message)를 입력받아, 128비트짜리 고정 길이의 출력값을 낸다. 입력 메시지는 512 비트 블록들로 쪼개진다; 메시지를 우선 패딩하여 512로 나누어떨어질 수 있는 길이가 되게 한다. 패딩은 다음과 같이 한다: 우선 첫 단일 비트, 1을 메시지 끝부분에 추가한다. 512의 배수의 길이보다 64 비트가 적은 곳까지 0으로 채운다. 나머지 64 비트는 최초의(오리지널) 메시지의 길이를 나타내는 64 비트 정수(integer)값으로 채워진다.

메인 MD5 알고리즘은 A,B,C,D라고 이름이 붙은 32 비트 워드 네 개로 이루어진 하나의 128 비트 스테이트(state)에 대해 동작한다. A,B,C,D는 소정의 상수값으로 초기화된다. 메인 MD5 알고리즘은 각각의 512 비트짜리 입력 메시지 블록에 대해 차례로 동작한다. 각 512 비트 입력 메시지 블록을 처리하고 나면 128 비트 스테이트(state)의 값이 변하게 된다.

하나의 메시지 블록을 처리하는 것은 4 단계로 나뉜다. 한 단계를 "라운드"(round)라고 부른다; 각 라운드는 비선형 함수 F, 모듈라 덧셈, 레프트 로테이션(left rotation)에 기반한 16개의 동일 연산(similar operations)으로 이루어져 있다. 오른쪽 그림은 한 라운드에서 이루어지는 한 연산 (operation)을 묘사하고 있다.

함수 F에는 4가지가 있다; 각 라운드마다 각각 다른 F가 쓰인다:

$$F(X,Y,Z) = (X \wedge Y) \vee (\neg X \wedge Z)$$

$$G(X,Y,Z) = (X \wedge Z) \vee (Y \wedge \neg Z)$$

$$H(X,Y,Z) = X \oplus Y \oplus Z$$

$$I(X,Y,Z) = Y \oplus (X \vee \neg Z)$$

 $\oplus$ ,  $\wedge$ ,  $\vee$ , ¬는 각각 XOR, 논리곱, 논리합 그리고 NOT 연산을 의미한다.



단일 MD5 연산. MD5에서는 이 단일 연산을 64번 <sup>C</sup>실행한다. 16개의 연산을 그룹화한 4 라운드로 묶인다. F는 각 라운드에서 사용하는 비선형 함수를 가리키며, 각 라운드에서는 각각 다른 함수를 사용한다. M는 입력 메시지의 32-비트 블록을 의미한다.

⋘₅는 s칸 만큼의 레프트 로테이션을 가리키며, s는 각 연산 후 값이 변한다. 田 은 모듈로 2<sup>32</sup> 덧셈을 말 하다.

8

#### SHA 안전 해시 함수

- 1993년에 FIPS PUB 180
- SHA-1
  - 1995년에 FIPS PUB 180-1: MD4 해시 함수에 기초, 설계: MD4를 모델
- SHA-2
  - SHA-256, SHA-384, SHA-512
- SHA-3:
  - 2008년에 수정된 문서가 FIP PUB 180-3
  - SHA-224

# SHA 매개변수 비교

|              | Mary and the second of the second | A STATE OF THE PARTY OF THE PAR |                   |                   |
|--------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
|              | SHA-1                             | SHA-256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SHA-384           | SHA-512           |
| 메시지 다이제스트 길이 | 160                               | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 384               | 512               |
| 메지시 길이       | <2 <sup>64</sup>                  | <2 <sup>64</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2 <sup>128</sup> | <2 <sup>128</sup> |
| 블록 길이        | 512                               | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1024              | 1024              |
| 단어 길이        | 32                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64                | 64                |
| 단계 수         | 80                                | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                | 80                |
| 보안           | 80                                | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 192               | 256               |

#### SHA-512 (SHA2)

- 입력메시지 크기
  - 최대 길이가 2128 비트 이하인 메시지
- 출력
  - 512비트 해시
- 처리 단위
  - 1024비트 블록

#### SHA-512 처리 단계

- 단계 1: 패딩 비트 붙이기(Appending padding bits)
- 단계 2: 길이 붙이기(Append length)
- 단계 3: MD 버퍼 초기화(Initialize MD buffer)
- **단계 4**: 1024-비트 블록 메시지 처리 (Process message in 1024-bit blocks)
- 단계 5: 출력(Output)

#### 패딩 비트 붙이기

- 총 길이를 896 (mod 1024)가 되게 만든다
- 메지시 길이가 1024의 배수이어도 패딩을 추가
- 패딩을 구성하는 비트는 첫 번째 비트가 1 이고 나머지 비트는 모두 0

### SHA-512를 사용하는 메시지 다이 제스트 생성



#### 길이 붙이기

• 128 비트 블록을 메시지에 추가

1024

896

128(L)

#### 예

• 메시지 길이가 1010일 때 패딩을 구성해 보아라

896 1010 1000...000 892

#### MD 버퍼 초기화

- 512-비트 버퍼를 해시함수의 중간 값과 최 종 값을 저장하기 위해 사용
- 버퍼를 8 개의 64-비트 레지스터(a, b, c, d, e, f, g, h)로 나타낸다

| a = 6A09E667F3BCC908 | e = 510E527FADE682D1 |
|----------------------|----------------------|
| b = BB67AE8584CAA73B | f = 9B05688CEB3E6C1F |
| c = 3C6EF372FE94F82B | g = 1F83D9ABFB41BD6B |
| d = A54FF53A5F1D36F1 | h = 5BE0CDI9137E2179 |

SHA-512를 이용한 메시지 다이제스트 생성







#### 1024-비트(128-워드)블록 메시지 처리

- 각 라운드가 80 라운드
  - 512-비트 버퍼 값인 abcdefgh를 입력으로 사용하고 이 버퍼의 내용을 갱신

#### 출력

사개의 1024-비트 블록 모두가 처리된 뒤에 N 번째 단계에서 512-비트 메시지 다이 제스트를 출력

## 해시 알고리즘 비교

<표 1> MD-SHA 패밀리 알고리즘 비교

| 알고리즘   |             | 해시크기(비트) | 보안 레벨®                   | 발표연도 |  |
|--------|-------------|----------|--------------------------|------|--|
| MD5    |             | MD5 128  |                          | 1992 |  |
|        | SHA-0       | 160      | 충돌발견                     | 1993 |  |
|        | SHA-1       | 160      | 충돌발견                     | 1995 |  |
|        | SHA-224     | 224      | 112                      | 2001 |  |
|        | SHA-256     | 256      | 128                      | 2001 |  |
| SHA-2  | SHA-384     | 384      | 192                      |      |  |
| OFF-Z  | SHA-512     | 512      | 256                      | 2001 |  |
|        | SHA-512/224 | 224      | 112                      |      |  |
|        | SHA-512/256 | 256      | 128                      |      |  |
|        | SHA3-224    | 224      | 112                      |      |  |
|        | SHA3-256    | 256      | 128                      | 2015 |  |
| CLIA 2 | SHA3-384    | 384      | 192                      | 2015 |  |
| SHA-3  | SHA3-512    | 512      | 256                      |      |  |
|        | SHAKE128    | d (임의)   | min(d/2, 128)            | 2015 |  |
|        |             | - W      | V. (1993) 1995 1984 1985 | 2015 |  |

# **Binary to Text**

# Binary to text

| Base58                | Integer                                                   | ~73%                                                                                  | C++&, Python&                                             | printed (0 - zero, I - capital i, O - capital o and I - lower case L). Satoshi Nakamoto invented the base58 encoding scheme when creating bitcoin. [1] Some messaging and social media systems line break on non-alphanumeric strings. This is avoided by not using URI reserved characters such as +. For segwit it was replaced by Bech32, see below. |  |
|-----------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bech32                | 1 bit<br>(mainnet or<br>testnet)<br>plus 3 to<br>40 bytes | not a simple<br>percentage<br>since it has<br>a 6-byte<br>error<br>correcting<br>code | C, C++, JavaScript,<br>Go, Python, Haskell,<br>Ruby, Rust |                                                                                                                                                                                                                                                                                                                                                         |  |
| Base62                |                                                           |                                                                                       |                                                           | Similar to Base64, but contains only alphanumeric characters.                                                                                                                                                                                                                                                                                           |  |
| Base64                | Arbitrary                                                 | 75%                                                                                   | awk량, C량, C (2)량,<br>Python량, many<br>others              |                                                                                                                                                                                                                                                                                                                                                         |  |
| Base85<br>(RFC 1924년) | Arbitrary                                                 | 80%                                                                                   | C <b>ଟ</b> , Python <b>ଟ</b><br>Python (2) <b>ଟ</b>       | Revised version of Ascii85.                                                                                                                                                                                                                                                                                                                             |  |
| BinHex                | Arbitrary                                                 | 75%                                                                                   | Perl <b>와</b> , C <b>와</b> , C (2) <b>와</b>               | MacOS Classic                                                                                                                                                                                                                                                                                                                                           |  |

### Base64 encoding/decoding

| 6-bit Value | Encoding |
|-------------|----------|-------------|----------|-------------|----------|-------------|----------|
| 0           | Α        | 16          | Q        | 32          | g        | 48          | w        |
| 1           | В        | 17          | R        | 33          | h        | 49          | х        |
| 2           | С        | 18          | s        | 34          | i        | 50          | у        |
| 3           | D        | 19          | Т        | 35          | j        | 51          | z        |
| 4           | Е        | 20          | U        | 36          | k        | 52          | 0        |
| 5           | F        | 21          | V        | 37          | 1        | 53          | 1        |
| 6           | G        | 22          | W        | 38          | m        | 54          | 2        |
| 7           | Н        | 23          | х        | 39          | n        | 55          | 3        |
| 8           | 1        | 24          | Υ        | 40          | 0        | 56          | 4        |
| 9           | J        | 25          | Z        | 41          | р        | 57          | 5        |
| 10          | К        | 26          | а        | 42          | q        | 58          | 6        |
| 11          | L        | 27          | b        | 43          | r        | 59          | 7        |
| 12          | М        | 28          | С        | 44          | S        | 60          | 8        |
| 13          | N        | 29          | d        | 45          | t        | 61          | 9        |
| 14          | 0        | 30          | е        | 46          | u        | 62          | +        |
| 15          | Р        | 31          | f        | 47          | v        | 63          | 1        |



$$24bit -> 6bit => 2^6 = 64$$

그런데 입력되는 정보가 모두 3바이트씩 떨어진다는 보장이 없으므로 3바이트로 나누어떨어지지 않는 경우 = **문자로 채우 기를 한다.** 즉 Base64로 인코딩 된 데이타에서 = 가 보이면 그 것은 다시 원래의 정보로 되돌아 갈때 (디코딩 될때) 아무 것도 없는 것이라는 소리가 된다.

(Base64로 인코딩 정보의 끝에 최대 나올 수 있는 = 의 수는 2개가 되겠다. 즉 끝부분에 =가 없거나 1개가 있거나 2개가 있는 것이 모두 나올 수 있는 경우가 되겠다.)

Q/A