

AMENDMENTS TO THE CLAIMS

1-17. (Cancelled)

18. (Previously presented) A method for preparing a needle crystal comprising a C₆₀ platinum derivative and C₆₀ fullerene molecules that is single crystalline and having a hollow structural portion by a liquid-liquid interfacial precipitation method, which comprises (1) a step in which a solution containing a first solvent dissolving the C₆₀ platinum derivative and the C₆₀ fullerene molecules therein, wherein the amount of the C₆₀ platinum derivative to be added is in the range of 1-10 mass % for the C₆₀ fullerene molecules, is combined with an alcohol as a second solvent; (2) a step in which a liquid-liquid interface is formed between the solution and the second solvent; and (3) a step in which a carbon fine wire is precipitated on the liquid-liquid interface.

19. (Previously presented) The method for preparing a needle crystal as claimed in Claim 18, wherein the C₆₀ platinum derivative is (η^2 -C_{60)Pt(PPh₃)₂.}

20. (Previously presented) The method for preparing a needle crystal as claimed in Claim 18, wherein the first solvent is toluene.

21. (Previously presented) The method for preparing a needle crystal as claimed in Claim 18, wherein the second solvent is isopropyl alcohol.

22. (Previously presented) A C₆₀ fullerene needle comprising an amorphous structure, wherein nanometer-sized particles of platinum are dispersed thereon.

23. (Previously presented) The C₆₀ fullerene needle as claimed in Claim 22, having a hollow structural portion.

24. (Cancelled)

25. (Previously presented) A method for preparing a C₆₀ fullerene needle comprising an amorphous structure, wherein nanometer-sized particles of platinum are dispersed thereon, said method consisting of the following steps:

- (1) a step in which a solution containing a first solvent dissolving the C₆₀ platinum derivative therein is combined with an alcohol as a second solvent;
- (2) a step in which a liquid-liquid interface is formed between the solution and the second solvent;
- (3) a step in which a carbon fine wire is precipitated on the liquid-liquid interface; and
- (4) a step in which either a vacuum thermal treatment at 600°C or higher or an irradiation of an electron beam with high energy of 100 keV or higher is carried out on the carbon fine wire.

26. (Previously presented) The method for preparing a C₆₀ fullerene needle as claimed in Claim 25, wherein the C₆₀ platinum derivative is (η^2 -C_{60)Pt(PPh₃)₂.}

27. (Previously presented) The method for preparing a C₆₀ fullerene needle as claimed in Claim 25, wherein the first solvent is toluene.

28. (Previously presented) The method for preparing a C₆₀ fullerene needle as claimed in Claim 25, wherein the second solvent is isopropyl alcohol.

29. (New) A C₆₀ fullerene needle comprising an amorphous structure, wherein nanometer-sized particles of platinum are dispersed thereon and having an end that is closed or open.