

Department of Mechanical and Aerospace Engineering MEE 440/AEE 521 – Flight Vehicle Performance/Dynamics Project-1

This is an individual project – no partners allowed!

Aircraft: Use the Aircraft that has been assigned to you in-class and you will be working with the same aircraft for your Project-2 and Project-3.

We've covered the basics of aircraft analytical modeling, from the 6-DOF equations of motion to the longitudinal and lateral-directional aero coefficients. Using MATLAB/Simulink model that you created, you will simulate the aircraft response to various inputs. The project involves 2 parts:

- 1. Using the Homeworks 1-4, the simulink model and the aero-coefficients computed, excite the aircraft with the following inputs and present the following plots: Use the small perturbation Rectilinear EOM
 - (a) Elevator doublet: $u, \alpha, \theta, \delta_E$ vs time
 - (b) Aileron doublet: $\beta, \phi, \psi, \delta_A$ vs time
 - (c) Rudder doublet: $\beta, \phi, \psi, \delta_R$ vs time
 - (d) Write a short paragraph describing your results.

Consider the magnitude of each doublet to be 2° with a duration of 2 seconds in each direction.

- 2. In this second part of your project: You will vary the following parameters from your baseline value (given in the aircraft data) and compute the aerodynamic coefficients (Homework- 3 and 4). Looking at the coefficients, explain what happened to the coefficient and how it affects the aircraft performance No more than a paragraph.
 - (a) $X_{WH_R} \pm 15\%$
 - (b) Wing
 - i. Double the span $(2 \times b)$ and $\frac{c_R}{2}$
 - ii. Half the span $(\frac{b}{2})$ and $2 \times c_R$
 - (c) Vertical Tail Double the dimensions of the vertical tail
 - (d) Horizontal Tail $\frac{c_{R_H}}{2}$
 - (e) Change in ailer on positions $(\frac{y_{A_I}}{2})$ and $(\frac{y_{A_O}}{2})$