FINAL REPORT

Trey Dufrene, Alan Wallingford, David Orcutt, Ryan Warner, Zack Johnson

ME 407 Preliminary Design of Robotic Systems Embry-Riddle Aeronautical University

Contents

1	Forward Kinematics	1
${f Lis}$ 1	t of Figures	
${f Lis}$	t of Tables	
1	DH Table for 6 DOF Manipulator	1

Forward Kinematics 1

Table 1: DH Table for 6 DOF Manipulator

DH	d_i	$ heta_i$	$ a_i $	α_i
1	ℓ_1	$ heta_1$	0	$\pi/2$
2	-d	$ heta_2$	ℓ_2	0
3	0	$\theta_3 + \pi/2$	0	$\pi/2$
4	$\ell_3 + \ell_4$	$ heta_4$	0	$-\pi/2$
5	0	$ heta_5$	0	$\pi/2$
6	ℓ_6	$ heta_6$	0	0

Where $\ell_1 = 22.08$ cm, $\ell_2 = 25$ cm, $\ell_3 = 20$ cm, $\ell_4 = 8$ cm, $\ell_6 = 5.25$ cm, and d = 1cm.

$$A = Rot_{z,\theta} \ Trans_{z,d} \ Trans_{x,a} \ Rot_{x,\alpha} \tag{1}$$

Given an arbitrary homogeneous matrix T_i^{i-1} (computed by matrix multiplication of A matrices $\to [A_1 A_2 \cdots A_{i-1} A_i]$), the orientation vector \bar{z}_i (with respect to φ , θ and ψ) and the relative joint position (displacement) vector \bar{o}_i (with respect to x, y, and z) can be obtained via the 3^{rd} and 4^{th} columns of the matrix respectively, as shown in Equation 2 (given β as an arbitrary rotation angle about the z-axis).

$$T_i^{i-1} = \begin{bmatrix} c_{\beta} & -s_{\beta} & z_i^{\varphi} & o_i^x \\ s_{\beta} & c_{\beta} & z_i^{\theta} & o_i^y \\ 0 & 0 & z_i^{\psi} & o_i^z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2)

$$A_1 = rotz(\theta_1) \ transz(\ell_1) \ rotx(\pi/2)$$

$$A_2 = rotz(\theta_2) \ transz(-d) \ transx(\ell_2)$$

$$A_1 = \begin{bmatrix} \cos(\theta_1) & 0 & \sin(\theta_1) & 0\\ \sin(\theta_1) & 0 & -\cos(\theta_1) & 0\\ 0 & 1 & 0 & 22.08\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} \cos(\theta_{1}) & 0 & \sin(\theta_{1}) & 0 \\ \sin(\theta_{1}) & 0 & -\cos(\theta_{1}) & 0 \\ 0 & 1 & 0 & 22.08 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} \cos(\theta_{2}) & -\sin(\theta_{2}) & 0 & 25\cos(\theta_{2}) \\ \sin(\theta_{2}) & \cos(\theta_{2}) & 0 & 25\sin(\theta_{2}) \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = rotz(\theta_3 + \pi/2) \ rotx(\pi/2)$$

$$A_4 = rotz(\theta_4) \ transz(\ell_3 + \ell_4) \ rotx(-\pi/2)$$

$$A_{3} = \begin{bmatrix} \cos(\theta_{3} + \pi/2) & 0 & \sin(\theta_{3} + \pi/2) & 0 \\ \sin(\theta_{3} + \pi/2) & 0 & -\cos(\theta_{3} + \pi/2) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{4} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -\sin(\theta_{4}) & 0 \\ \sin(\theta_{4}) & 0 & \cos(\theta_{4}) & 0 \\ 0 & -1 & 0 & 28 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} \cos(\theta_4) & 0 & -\sin(\theta_4) & 0\\ \sin(\theta_4) & 0 & \cos(\theta_4) & 0\\ 0 & -1 & 0 & 28\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_5 = rotz(\theta_5) \ rotx(\pi/2)$$

$$A_6 = rotz(\theta_6) \ transz(\ell_6)$$

$$A_5 = \begin{bmatrix} \cos(\theta_5) & 0 & \sin(\theta_5) & 0 \\ \sin(\theta_5) & 0 & -\cos(\theta_5) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_6 = \begin{bmatrix} \cos(\theta_6) & 0 & -\sin(\theta_6) & 0 \\ \sin(\theta_6) & 0 & \cos(\theta_6) & 0 \\ 0 & 0 & 1 & 5.25 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_6 = \begin{bmatrix} \cos(\theta_6) & 0 & -\sin(\theta_6) & 0\\ \sin(\theta_6) & 0 & \cos(\theta_6) & 0\\ 0 & 0 & 1 & 5.25\\ 0 & 0 & 0 & 1 \end{bmatrix}$$