Modelos Gráficos Probabilísticos Solução da Lista 03

Para a solução da lista de exercícios, iremos assumir a distribuição conjunta dada por:

$$\mathbb{P}(D = d, I = i, G = g, S = s, L = l) = \mathbb{P}(D = d)\mathbb{P}(I = i)\mathbb{P}(S = s | I = i)\mathbb{P}(G = g | D = d, I = i)\mathbb{P}(L = l | G = g)$$

Questão 1.

Para que a equação seja uma distribuição de probabilidade, todos os valores de $\mathbb{P}(D=d,I=i,G=g,S=s,L=l)$ devem ser maior do que 0, e a soma sobre todos os valores deve ser igual a 1. Como todos os termos da fatoração são maiores do que 0 (por serem uma distribuição de probabilidade, como nas tabelas), o produto também será maior do que 0. Temos então que mostrar que a soma sobre todos os valores é igual a 1.

$$\sum_{D,I,G,S,L} \mathbb{P}(D=d)\mathbb{P}(I=i)\mathbb{P}(S=s|I=i)\mathbb{P}(G=g|D=d,I=i)\mathbb{P}(L=l|G=g)$$

Podemos observar que $\mathbb{P}(L=l|G=g)$ é a única probabilidade que depende apenas de L. Com isso, temos:

$$\textstyle \sum_{D,I,G,S} \mathbb{P}(D=d)\mathbb{P}(I=i)\mathbb{P}(S=s|I=i)\mathbb{P}(G=g|D=d,I=i) \sum_{L} \mathbb{P}(L=l|G=g)$$

Como, fixado um valor de G, $\sum_{L} \mathbb{P}(L = l | G = g) = 1$, o último somatório irá sumir da equação. Usando esse mesmo raciocínio, teremos:

$$\begin{split} &\sum_{D,I,G,S} \mathbb{P}(D=d)\mathbb{P}(I=i)\mathbb{P}(S=s|I=i)\mathbb{P}(G=g|D=d,I=i) \\ &= \sum_{D,I,G} \mathbb{P}(D=d)\mathbb{P}(I=i)\mathbb{P}(G=g|D=d,I=i) \sum_{S} \mathbb{P}(S=s|I=i) \\ &= \sum_{D,I,G} \mathbb{P}(D=d)\mathbb{P}(I=i)\mathbb{P}(G=g|D=d,I=i) \\ &= \sum_{D,I} \mathbb{P}(D=d)\mathbb{P}(I=i) \sum_{G} \mathbb{P}(G=g|D=d,I=i) \\ &= \sum_{D,I} \mathbb{P}(D=d)\mathbb{P}(I=i) = \sum_{D} \mathbb{P}(D=d) \sum_{I} \mathbb{P}(I=i) = 1 \end{split}$$

Logo, a fatoração é uma distribuição de probabilidade válida.

Questão 2.

$$\begin{split} &\sum_{I,G,S,L} \mathbb{P}(D=d^0,I=i,G=g,S=s,L=l) \\ &\sum_{I,G,S,L} \mathbb{P}(D=d^0) \mathbb{P}(I=i) \mathbb{P}(S=s|I=i) \mathbb{P}(G=g|D=d^0,I=i) \mathbb{P}(L=l|G=g) \\ &\sum_{I,G,S} \mathbb{P}(D=d^0) \mathbb{P}(I=i) \mathbb{P}(S=s|I=i) \mathbb{P}(G=g|D=d^0,I=i) \sum_{L} \mathbb{P}(L=l|G=g) \\ &\sum_{I,G,S} \mathbb{P}(D=d^0) \mathbb{P}(I=i) \mathbb{P}(S=s|I=i) \mathbb{P}(G=g|D=d^0,I=i) \\ &= \sum_{I,G} \mathbb{P}(D=d^0) \mathbb{P}(I=i) \mathbb{P}(G=g|D=d^0,I=i) \sum_{S} \mathbb{P}(S=s|I=i) \\ &= \sum_{I,G} \mathbb{P}(D=d^0) \mathbb{P}(I=i) \mathbb{P}(G=g|D=d^0,I=i) \\ &= \sum_{I} \mathbb{P}(D=d^0) \mathbb{P}(I=i) \sum_{G} \mathbb{P}(G=g|D=d^0,I=i) \end{split}$$

$$=\sum_{I} \mathbb{P}(D=d^{0})\mathbb{P}(I=i) = \mathbb{P}(D=d^{0})\sum_{I} \mathbb{P}(I=i) = \mathbb{P}(D=d^{0}) = 0.6$$

Utilizando o mesmo raciocínio, temos que $\mathbb{P}(D=d^1)=0.4$

Questão 3.

$$\begin{split} \mathbb{P}(S = s^0) &= \sum_{D,I,G,L} \mathbb{P}(D = d) \mathbb{P}(I = i) \mathbb{P}(S = s^0 | I = i) \mathbb{P}(G = g | D = d, I = i) \mathbb{P}(L = l | G = g) \\ \mathbb{P}(S = s^0) &= \sum_{D,I,G} \mathbb{P}(D = d) \mathbb{P}(I = i) \mathbb{P}(S = s^0 | I = i) \mathbb{P}(G = g | D = d, I = i) \sum_{L} \mathbb{P}(L = l | G = g) \\ \mathbb{P}(S = s^0) &= \sum_{D,I} \mathbb{P}(D = d) \mathbb{P}(I = i) \mathbb{P}(S = s^0 | I = i) \sum_{G} \mathbb{P}(G = g | D = d, I = i) \\ \mathbb{P}(S = s^0) &= \sum_{D,I} \mathbb{P}(D = d) \mathbb{P}(I = i) \mathbb{P}(S = s^0 | I = i) \\ \mathbb{P}(S = s^0) &= \sum_{D} \mathbb{P}(D = d) \sum_{I} \mathbb{P}(I = i) \mathbb{P}(S = s^0 | I = i) \\ \mathbb{P}(S = s^0) &= \mathbb{P}(I = i_0) \cdot \mathbb{P}(S = s^0 | I = i^0) + \mathbb{P}(I = i^1) \cdot \mathbb{P}(S = s^0 | I = i^1) \\ \mathbb{P}(S = s^0) &= 0.7 \cdot 0.95 + 0.3 \cdot 0.2 = 0.725 \\ \mathbb{P}(S = s^1) &= 1 - \mathbb{P}(S = s^0) = 1 - 0.725 = 0.275 \end{split}$$

Questão 4.

$$\begin{split} \mathbb{P}(D=d,I=i) &= \sum_{G,S,L} \mathbb{P}(D=d) \mathbb{P}(I=i) \mathbb{P}(S=s|I=i) \mathbb{P}(G=g|D=d,I=i) \mathbb{P}(L=l|G=g) \\ \mathbb{P}(D=d,I=i) &= \sum_{G,S} \mathbb{P}(D=d) \mathbb{P}(I=i) \mathbb{P}(S=s|I=i) \mathbb{P}(G=g|D=d,I=i) \sum_{L} \mathbb{P}(L=l|G=g) \\ \mathbb{P}(D=d,I=i) &= \sum_{S} \mathbb{P}(D=d) \mathbb{P}(I=i) \mathbb{P}(S=s|I=i) \sum_{G} \mathbb{P}(G=g|D=d,I=i) \\ \mathbb{P}(D=d,I=i) &= \mathbb{P}(D=d) \mathbb{P}(I=i) \sum_{S} \mathbb{P}(S=s|I=i) = \mathbb{P}(D=d) \mathbb{P}(I=i) \end{split}$$

Em particular, $\mathbb{P}(D = d^0, I = i^1) = \mathbb{P}(D = d^0)\mathbb{P}(I = i^1) = 0.6 \cdot 0.3 = 0.18$

Questão 5.

Para mostrar o efeito de uma estrutura v iremos comparar a tabela $\mathbb{P}(D=d,I=i|G=g)$ com a tabela $\mathbb{P}(D=d|G=g)\mathbb{P}(I=i|G=g)$. Para isso, primeiro será calculado $\mathbb{P}(G=g)$ para cada g.

$$\begin{split} \mathbb{P}(G = g^1) &= \mathbb{P}(D = d^0) \mathbb{P}(I = i^0) \mathbb{P}(G = g^1 | D = d^0, I = i^0) + \mathbb{P}(D = d^0) \mathbb{P}(I = i^1) \mathbb{P}(G = g^1 | D = d^0, I = i^1) + \mathbb{P}(D = d^1) \mathbb{P}(I = i^0) \mathbb{P}(G = g^1 | D = d^1, I = i^0) + \mathbb{P}(D = d^1) \mathbb{P}(I = i^1) \mathbb{P}(G = g^1 | D = d^1, I = i^1) \\ \mathbb{P}(G = g^1) &= 0.6 * 0.7 * 0.3 + 0.4 * 0.7 * 0.05 + 0.6 * 0.3 * 0.9 + 0.4 * 0.3 * 0.5 = 0.362 \\ \mathbb{P}(G = g^2) &= 0.2884 \\ \mathbb{P}(G = g^3) &= 0.3496 \end{split}$$

Agora podemos calcular a probabilidade $\mathbb{P}(D=d,I=i|G=g)$. $\mathbb{P}(D=d^0,I=i^0|G=g^1) = \frac{\mathbb{P}(D=d^0,I=i^0,G=g^1)}{\mathbb{P}(G=g^1)} = \frac{\mathbb{P}(D=d^0)\mathbb{P}(I=i^0)\mathbb{P}(G=g^1|D=d^0,I=i^0)}{\mathbb{P}(G=g^1)} = \frac{0.6*0.7*0.3}{0.362} = 0.3481$

Para calcular a tabela de $\mathbb{P}(D=d|G=g)\mathbb{P}(I=i|G=g)$, precisamos calcular $\mathbb{P}(D=d|G=g)$ e $\mathbb{P}(I=i|G=g)$.

$$\mathbb{P}(D=d^0|G=g^1) = \frac{\mathbb{P}(D=d^0,G=g^1)}{\mathbb{P}(G=g^1)} = \frac{\mathbb{P}(D=d^0,G=g^1,I=i^0) + \mathbb{P}(D=d^0,G=g^1,I=i^1)}{\mathbb{P}(G=g^1)} = \frac{0.6*0.7*0.3 + 0.6*0.3*0.9}{0.362} = 0.7956$$

$\mathbb{P}(D=d G=g)$	d^0	d^1
g^1	0.7956	0.2044
g^2	0.6325	0.3675
g^3	0.2506	0.7494

Fazendo os mesmos cálculos para $\mathbb{P}(I=i|G=g)$

$\mathbb{P}(D=d G=g)$	i^0	i^1
g^1	0.3867	0.6132
g^2	0.8252	0.1747
g^3	0.9210	0.0790

Fazendo o produto, temos:

$\mathbb{P}(D=d G=g)\mathbb{P}(I=i G=g) \ \big $	(d^0,i^0)	(d^1, i^0)	(d^0,i^1)	(d^1, i^1)
g^1	0.3077	0.0790	0.4879	0.1254
g^2	0.5219	0.3033	0.1106	0.1248
q^3	0.2308	0.6902	0.0198	0.0592

Questão 6.

Basta fazer os cálculos como na questão anterior.

Questão 7.

$D \perp L$ - Falso	$(I \perp D L)$ - Falso
$I \perp L$ - Falso	$(S \perp G L)$ - Falso
$S \perp L$ - Falso	$(D \perp S L)$ - Falso
$S \perp G$ - Falso	$(D \perp L I,S)$ - Falso
$D \perp S$ - Verdadeiro	$(I \perp L G,S)$ - Verdadeiro
$(D \perp L I)$ - Falso	
$(I \perp L S)$ - Falso	$(S \perp L I,G)$ - Verdadeiro
$(I \perp L G)$ - Verdadeiro	$(I \perp D L, S)$ - Falso
$(S \perp L I)$ - Verdadeiro	$(S \perp G L, D)$ - Falso
$(I \perp D \acute{G})$ - Falso	$(D \perp S L,I)$ - Verdadeiro

Questão 8.

 $\mathbb{P}(G=g^1|I) \text{ não \'e uma distribuição de probabilidade. } \mathbb{P}(G=g^1|I=i^0)=0.2, \mathbb{P}(G=g^1|I=i^i)=0.74$

Questão 9.

Temos que:

$$\mathbb{P}(D=d,L=l|G=g) = \mathbb{P}(L=l|G=g)\mathbb{P}(D=d|L=l,G=g) = \mathbb{P}(D=d|G=g)\mathbb{P}(L=l|G=g).$$

Questão 10 (6).

Seja a rede Bayesiana $X \to Z \to Y$. Temos que $\mathbb{P}(X|Y) = \frac{\mathbb{P}(X,Y)}{\mathbb{P}(Y)}$. Seja as seguintes CPDs:

Temos que
$$\mathbb{P}(Y=y_1)=0.5*(0.9*0.7+0.1*0.4+0.2*0.7+0.8*0.4)=0.565$$
. Com isso, temos: $\mathbb{P}(X=x_1|Y=y_1)=\frac{\mathbb{P}(X=x_1,Y=y_1)}{\mathbb{P}(Y=y_1)}=\frac{0.5*0.9*0.7+0.5*0.1*0.4}{0.565}=0.5929\neq \mathbb{P}(X=x_1)$.

Logo, X não é independente de Y.

$$\mathbb{P}(X=x_1|Z=z_1,Y=y_1) = \mathbb{P}(X=x_1|Z=z_1) = \frac{\mathbb{P}(X=x_1,Z=z_1)}{\mathbb{P}(Z=z_1)} = \frac{0.5*0.9}{0.5*0.9+0.5*0.2} = 0.8182 \neq \mathbb{P}(X=x_1)$$

Questão 11 (7).

Seja a rede Bayesiana $X \to Z \leftarrow Y$. Seja as seguintes CPTs:

Temos que $X \perp Y$.

Temos que X não é independente de Z dado Y.

$$\mathbb{P}(X = x_1 | Z = z_1, Y = y_1) = \frac{\mathbb{P}(X = x_1, Y = y_1, Z = z_1)}{\mathbb{P}(Z = z_1, Y = y_1)} = \frac{\mathbb{P}(X = x_1)\mathbb{P}(Y = y_1)\mathbb{P}(Z = z_1 | X = x_1, Y = y_1)}{\mathbb{P}(Y = y_1)\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1)\mathbb{P}(Z = z_1 | X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y_1)}{\mathbb{P}(Z = z_1 | Y = y_1)} = \frac{\mathbb{P}(X = x_1, Y = y$$

A questão possui um erro, pois uma rede de causa comum é da forma $X \leftarrow Z \rightarrow Y$. Neste caso, X não é independente de Y.

Questão 12 (8).

Temos que:

$$\mathbb{P}(X = x, Y = y | Z = z) = \mathbb{P}(X = x | Z = z) \mathbb{P}(Y = y | X = x, Z = z)$$

A expressão será igual a $\mathbb{P}(X=x|Z=z)\mathbb{P}(Y=y|Z=z)$ somente quando Y for independente de X dado Z