Summary of Stochastic Process

2024 Fall

This is my summary of the course SEEM 5580, taught by professor Xuefeng Gao. The reference book is *Stochastic processes*, *Sheldon M. Ross* (1995), and the problem solutions can be found at http://www.charmpeach.com/?s=stochastic.

• Basic Probability Theory:

Distribution	PDF	MGF	Mean	Variance
Poisson	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\exp(\lambda(e^t - 1))$	λ	λ
Geometric	pq^{n-1}	-	1/p	q/p
Exponential	$\lambda e^{-\lambda x}$	$\frac{\lambda}{\lambda - t}$	$1/\lambda$	$1/\lambda^2$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma}\right)$	$\exp(\mu t + \sigma^2 t^2/2)$	μ	σ^2

where the moment generating function is defined as $\psi(t) = E\left[e^{tX}\right] = \int e^{tX} dF(x)$ Probability Inequalities-Chernoff Bounds:

$$P(X \ge a) \le e^{-ta} M(t), \forall t > 0; \ P(X \le a) \le e^{-ta} M(t), \forall t < 0$$

• Poisson Process:

$$-N(0)=0;$$

$$- P\{N(t+s) - N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \quad n = 0, 1, ...;$$

- independent increment:

$$P\{X_1 > t\} = P\{N(t) = 0\} = e^{-\lambda t}$$

$$S_n = \sum_{i=1}^n X_i, \quad n \ge 1$$

order statistics of uniform distribution: the conditional density of S_1, \ldots, S_n given N(t) = n is $f(t_1, \ldots, t_n) = \frac{n!}{t^n}$;

Let $N_1(t), N_2(t)$ represent the number of type-1/2 events that occur by time t, then they are independent Poisson random variables having means λtp and $\lambda t(1-p)$, where $p = \frac{1}{t} \int_0^t P(s) ds$;

• Nonhomogeneous Poisson Process: independent, nonstationary increment.

$$m(t) = \int_0^t \lambda(s) ds$$

$$P\{N(t+s) - N(t) = n\} = \exp\{-\int_t^{t+s} \lambda(t')dt'\}(\int_t^{t+s} \lambda(t')dt')^n/n!, n \ge 0$$

• Compound Poisson Process: independent, stationary increment.

Compound Poisson r.v.: $W = \sum_{i=1}^{N} X_i$, $E[W] = \lambda E[X]$, $Var(W) = \lambda E[X^2]$, $\psi_W(\theta) = \exp(\lambda \psi_X(\theta) - \lambda)$:

Definition: $X(t) := \sum_{i=1}^{N(t)} X_i$ where X_i are i.i.d. and independent of Poisson process N.

1

• Conditional Poisson Process: nonindependent stationary increment.

Definition: $\tilde{N}(t) := N(t\Lambda)$ where N is a Poisson process with rate 1 and Λ is a positive r.v. with distribution G.

$$P\{\Lambda \leq x \mid \tilde{N}(t) = n\} = \frac{\int_0^x e^{-\lambda t} (\lambda t)^n dG(\lambda)}{\int_0^\infty e^{-\lambda t} (\lambda t)^n dG(\lambda)};$$

• Discrete Time Markov Chain: $P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P(X_{n+1} = j | X_n = i) := P_{ij}$.

Chapman-Kolmogorov equations: $P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m;$

 $i \leftrightarrow j$: communicate, same class; *irreducible*: only one class;

period: greatest common divisor of n s.t. $P_{ii}^n \neq 0$; aperiodic: d(i) = 1;

$$f_{ij}^{n} = P\left\{X_{n} = j, X_{k} \neq j, k = 1, ..., n - 1 \mid X_{0} = i\right\}, f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{n};$$

recurrent: $f_{jj} = 1 \iff \sum_{n=1}^{\infty} P_{jj}^n = \infty$; transient: otherwise.

Define the expected number of transitions needed to return to the state $j, \mu_{jj} = \begin{cases} \infty & \text{if } j \text{ is transient} \\ \sum_{n=1}^{\infty} n f_{jj}^n & \text{if } j \text{ is recurrent.} \end{cases}$

(Limiting distribution) If $i \leftrightarrow j$, then

- If j is aperiodic, then $\lim_{n\to\infty} P_{ij}^n = \frac{1}{\mu_{ij}}$;
- If j has period d, then $\lim_{n\to\infty} P_{jj}^{nd} = \frac{d}{\mu_{jj}}$.

positive recurrent: $\mu_{jj} < \infty$; null recurrent: $\mu_{jj} = \infty$;

class property: positive recurrent, null recurrent, recurrent, period;

stationary:
$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \quad j \geq 0$$

(stationary distribution) irreducible aperiodic Markov chain,

- either the states are all transient or all null recurrent; in this case, $P_{ij}^n \to 0$ and there exists no stationary distribution;
- or else, all states are positive recurrent (ergodic); in this case, $\{\pi_j = \lim_{n\to\infty} P_{jj}^n\}$ is a stationary distribution and there exists no other stationary distribution.
- CTMC: We say $\{X(t), t \ge 0\}$ is CTMC if for all $s, t \ge 0$

$$P(X(t+s) = j|X(s) = i, X(u) = x(u), 0 \le u \le s) = P(X(t+s) = j|X(s) = i).$$

The survival time τ_i is exponentially distributed.

In fact, the above gives us a way of constructing CTMC:

- v_i as the rate of exponential distribution of τ_i ;
- when the process leaves state i, it will enter j with probability P_{ij} , where $\sum_{i\neq i} P_{ij} = 1$.

Define

$$q_{ij} = \begin{cases} v_i P_{ij} & \forall i \neq j \\ -v_i & j = i. \end{cases}$$

We call q_{ij} the transition rate from i to j. The matrix Q is called the generator matrix.

Let us denote by $P_{ij}(t) = P(X(t+s) = j|X(s) = i)$.

A CTMC with states $0, 1, \ldots$ for which $q_{ij} = 0$ whenever |i - j| > 1 is called a birth and death process. Let λ_i and μ_i be given by $\lambda_i = q_{i,i+1}, \mu_i = q_{i,i-1}$ and are called respectively birth rates and death rates. We see that $v_i = \lambda_i + \mu_i, P_{i,i+1} = \frac{\lambda_i}{\lambda_i + \mu_i}$.

Kolmogorov's Backward Equations: P'(t) = QP(t).

Kolmogorov's Forward Equations. Under suitable regularity condition, P'(t) = P(t)Q.

 $\pi = (\pi_i)_{i \in S}$ is said to be a stationary distribution for the CTMC if

$$0 = \pi Q, \pi_i \ge 0, \sum_{i \in S} \pi_i = 1.$$

(M/M/1) $\pi_n = \rho^n \pi_0$. Define $\rho = \lambda/\mu$, name it utilization or traffic intensity.

Consider an irreducible CTMC. If a stationary distribution π exists, then it is unique and $\lim_{t\to\infty} P_{ij}(t) = \pi_j$ for all $i \in S$.

• Martingale: A stochastic process $\{Z_n, n=0,1,\ldots\}$ is called a martingale if $\mathbb{E}[|Z_n|] < \infty$ and $\mathbb{E}[Z_{n+1}|Z_1,\ldots,Z_n] = Z_n$ for all n.

(Stopping Time) The positive integer-valued random variable N is random time for the process $\{Z_n, n \geq 1\}$ if the event $\{N = n\}$ is determined by the random variables Z_1, \ldots, Z_n . If $P(N < \infty) = 1$, then N is stopping time.

(Doob's Stopping Theorem / Sampling Theorem) If either:

- 1. \bar{Z}_n are uniformly bounded, or;
- 2. N is bounded, or;
- 3. $\mathbb{E}[N] < \infty$, and there is an $M < \infty$ such that

$$E[|Z_{n+1} - Z_n| \mid Z_1, \dots, Z_n] < M,$$

then

$$E[Z_N] = E[Z_1].$$

(Wald's equation) If X_i are iid with $E[|X|] < \infty$ and if N is a stopping time for X_i with $E[N] < \infty$, then

$$E[\sum_{i=1}^{N} X_i] = E[N]E[X].$$

(Martingale convergence theorem) If $\{Z_n, n \geq 1\}$ is a martingale such that for some $M < \infty$

$$E[|Z_n|] \leq M, \forall n$$

then, with probability 1, $\lim_{n\to\infty} Z_n$ exists and is finite.

How to compute a value (e.g., expected happening time, probability) related to some event:

- 1. Identify the underlying random variables and identify the happening of the event as a stopping time;
- 2. Define a $\{Y_n, n = 1, 2, ...\}$ with known value at the stopping time;
- 3. Check whether $\{Y_n, n = 1, 2, \ldots\}$ is a martingale;
- 4. Apply Doob's stopping theorem.
- Brownian Motions:
 - 1. X(0) = 0;
 - 2. stationary and independent increment;
 - 3. $X(t) \sim N(0, c^2t)$.

$$T_a := \inf\{t : X(t) \ge a\}.$$

$$P(T_a \le t) = 2P(X(t) \ge a).$$

$$\{T_a \le t\} = \{\max_{0 \le s \le t} X(s) \ge a\}.$$