Introduction to Bayesian inference for evolutionists & ecologists

Kent E. Holsinger

Department of Ecology & Evolutionary Biology, U-3043
University of Connecticut
Storrs, CT 06269-3043

© 2020 by Kent E. Holsinger

Why be Bayesian?

How worried should you be if you get a positive test for COVID-19?

• Abbott Alinity SARS-CoV2 Assay

SARS-CoV-2 concutration	Number tested	Number detected
1X to 2X LOD	20	20
20X LOD	20	20
Negative	31	0

- Do you believe it's perfect?
 - P(true positive) = 0.976(0.913, 1.000)
 - P(true negative) = 0.970(0.888, 0.999)

Why be Bayesian?

- Positive test \neq carrying virus
 - Positive and carrying virus (true positive)
 - Positive and not carrying virus (false positive)
- Assume prevalence (proportion of population carrying virus) is 3% and imagine that we test 1000 people

How much should I worry?

 $N_{\text{infected}} = 1000 \times 0.03 = 30$

 $N_{\mathrm{not~infected}} = 1000 \times 0.97 = 970$

 $N_{\rm infected\ and\ positive} = N_{\rm infected} \times 0.976$

 $N_{
m not~infected~and~positive} = N_{
m not~infected} \times 0.030$

How much should I worry?

$$N_{\mathrm{infected}}$$
 = $1000 \times 0.03 = 30$
 $N_{\mathrm{not infected}}$ = $1000 \times 0.97 = 970$
 $N_{\mathrm{infected and positive}}$ = $N_{\mathrm{infected}} \times 0.976$
 $N_{\mathrm{not infected and positive}}$ = $N_{\mathrm{not infected}} \times 0.030$
 N_{positive} = N_{positive} = $N_{\mathrm{not infected}} \times 0.030$
= $N_{\mathrm{positive}} \times 0.030$

Coin flip on whether you have COVID

Bayes' Rule

$$P(\text{infected}|\text{positive}) = \frac{P(\text{positive}|\text{infected})}{P(\text{positive})}P(\text{infected})$$

$$= \frac{0.976}{(0.976)(0.03) + (0.030)(0.97)}(0.03)$$

$$= 0.502$$

$$P(X|Y) = \frac{P(Y|X)}{P(X)}P(Y)$$

Bayes' Rule for inference

$$P(\theta|X) = \frac{P(X|\theta)}{P(X)}P(\theta)$$

$$\theta = \text{parameter}$$

$$X = \text{data}$$

Bayes' Rule for inference

$$P(\theta|X) = \frac{P(X|\theta)}{P(X)}P(\theta)$$

$$\theta = \text{parameter}$$

$$X = \text{data}$$

$$P(X|\theta) = \text{likelihood}$$

Maximum likelihood estimate: value of θ that maximizes $P(X|\theta)$

Bayes' Rule for inference

$$P(\theta|X) = \frac{P(X|\theta)}{P(X)}P(\theta)$$

$$\theta = \text{parameter}$$

$$X = \text{data}$$

$$P(X|\theta) = \text{likelihood}$$

$$P(\theta) = \text{prior distribution of } \theta$$

$$P(\theta|X) = \text{posterior distribution of } \theta$$

Bayesian inference: based on posterior distribution, $P(\theta|X)$

Stan

A probabilistic language for Bayesian analysis

Posterior comparisons

We have a posterior distribution of LMA in *Protea eximia* and *Protea punctata*

- 1. Set i = 1
- 2. Take one sample at random from the posterior distribution of $Protea\ eximia$, one from the posterior distribution of $Protea\ punctata$, take the difference and record it as δ_i .
- 3. Increment i by 1, and return to step 2 until i is a "big" number.
- 4. The set of δ_i you have is now a sample from the posterior distribution of the difference. If the 95% credible interval is strictly positive, you have evidence that the LMA of P. eximia is bigger than the LMA of P. punctata.

Scaling variables

scale() sets mean to 0, standard deviation to 1 Interpretation of regression coefficient:

$$y_i = \beta_0 + \beta_1 x_i$$

a 1-sd unit change in x leads to a β_1 -sd unit change in y

Horseshoe prior

Shrinkage factor: How much a regression coefficient is "shrunk" towards 0. Lies between 0 and 1.

Pironen & Vehtari, Electronic Journal of Statistics 11:5018-5051; 2017.

Leave-one out cross-validation

Cross-validation: Leaving some data out of the model, then "cross-validating" the model by seeing how well you can predict the data you left out.

Leave-one out cross-validation: Leave each observation out of the model, fit the model, predict the observation, and compare prediction to observed for every observation in the data set.

loo() provides a sneaky way of doing this while only fitting the model once.