_	SEQUENCE LISTING	1000 5 111	
<110> BURTON, KERRY CHALLEN, MICHALL ELLIOTT, TIMOTHY SREENIVASAPRASAD EASTWOOD, DANIEL MOLLOY, SHANNON		JC20 Reads	PCT/PTO 25
<120> SELECTIVE EXPRES	SION IN FILAMENTOUS	FUNGI	
<130> 44-05			
<150> PCT/GB2003/00471 <151> 2003-10-31	6		
<150> UK 0225390.4 <151> 2002-10-31			
<160> 37			
<170> PatentIn version	3.1		
<210> 1 <211> 1736 <212> DNA <213> Agaricus bisporu	· s		
<220> <221> CDS <222> (19)(1674) <223>			
<400> 1 ggctgagctc tattcatc atg Met 1	gcg tcg gaa cga ca Ala Ser Glu Arg Gli 5		
agt tat aag tac gcc tat Ser Tyr Lys Tyr Ala Tyr 15			
gtg ttt cac ggg tgg gat Val Phe His Gly Trp Asp 30			
cgg tca ttt caa gaa tat Arg Ser Phe Gln Glu Tyr 45			

85

aaa gcg att cta gac gga aac atc atc tct gtg ctc caa gcc gga tgt Lys Ala Ile Leu Asp Gly Asn Ile Ile Ser Val Leu Gln Ala Gly Cys

ttt ttt ggc gcg ctt gga acc gga tat ctc tct agt cga ttc ggc cga

Phe Phe Gly Ala Leu Gly Thr Gly Tyr Leu Ser Ser Arg Phe Gly Arg

aga ccc tgt ctt att gca tct ggt att gtg tat ata act ggc ggt ttg Arg Pro Cys Leu Ile Ala Ser Gly Ile Val Tyr Ile Thr Gly Gly Leu

100

65

80

95

60

90

105

243

291

339

	act gtc ggt Thr Val						387
	att ggc agg Ile Gly Arg						435
	gtg cct ttg Val Pro Leu 145						483
	tgt act gga Cys Thr Gly 160				_		531
	ttc tgg gtc Phe Trp Val 175	Asn Tyr		_			579
	caa tgg cga Gln Trp Arg	_			_		627
	atc ata gcc Ile Ile Ala						675
	cac ggg aaa His Gly Lys 225						723
	aag gat gtt Lys Asp Val 240	_	_		-		771
	caa gaa ttt Gln Glu Phe 255	Val Ala	_		-	_	819
	ctg gtc ggt Leu Val Gly					-	867
-	cta gtg atg Leu Val Met					_	915
	tat agt ccc Tyr Ser Pro 305		-				963
	gct ctc ttc Ala Leu Phe 320	-					1011
-	gca ctt gcc Ala Leu Ala 335	Leu Thr	-	-	-		1059
	ttg att ttt Leu Ile Phe						1107

tgg ttg gg Trp Leu G 365									ggt Gly 375			a cot	cct Pro	1155
gcg agt ca Ala Ser H: 380														1203
tcc atg go Ser Met G														1251
cct aac ca Pro Asn H														1299
tgg ctc to Trp Leu Pl								_			_	-	-	1347
cgt atc a Arg Ile L 445										-	_	_		1395
gta gcg a Val Ala T 460														1443
ctg gag g Leu Glu A				-			-	-	_			-		1491
ttg cag g Leu Gln A														1539
gaa tct g Glu Ser V 5	_	_	_				-	-		-	-			1587
cag ggt g Gln Gly G 525														1635
tca aaa a Ser Lys L 540										tga	tata	atagi	cct	1684
ccaaattct	a ttgt	aatgo	c at	tttc	ccaa	a tto	caaaa	aaaa	aaaa	aaaa	aaa a	aa		1736
<210> 2 <211> 551 <212> PRT <213> Agaricus bisporus														
<400> 2	<400> 2													

Met Ala Ser Glu Arg Gln Ile Glu Glu Leu Pro Ser Tyr Lys Tyr Ala 1 $$ 5 $$ 10 $$ 15

Tyr	Ile	Leu	Thr 20	Ala	Ser	Ala	Cys	Leu 25	Gly	Ser	Val	Phe	His 30	Gly	Trp
Asp	Val	Gly 35	Leu	Ile	Gly	Gly	Ile 40	Leu	Ser	Leu	Arg	Ser 45	Phe	Gln	Glu
Tyr	Leu 50	Gly	Ile	Asn	Thr	Lys 55	Asn	Ala	Val	Lys	Lys 60	Ala	Ile	Leu	Asp
Gly 65	Asn	Ile	Ile	Ser	Val 70	Leu	Gln	Ala	Gly	Cys 75	Phe	Phe	Gly	Ala	Leu 80
Gly	Thr	Gly	Tyr	Leu 85	Ser	Ser	Arg	Phe	Gly 90	Arg	Arg	Pro	Cys	Leu 95	Ile
Ala	Ser	Gly	Ile 100	Val	Tyr	Ile	Thr	Gly 105	Gly	Leu	Leu	Gln	Cys 110	Thr	Val
Gly	Leu	Gly 115	Pro	Ser	Gln	Ala	Ala 120	Ala	Leu	His	Val	Phe 125	Tyr	Ile	Gly
Arg	Phe 130	Ile	Ser	Gly	Ile	Gly 135	Val	Gly	Met	Val	Ser 140	Thr	Leu	Val	Pro
Leu 145	Tyr	Ile	Ser	Glu	Cys 150	Val	Pro	Arg	Thr	Ile 155	Arg	Gly	Arg	Cys	Thr 160
Gly	Thr	Leu	Gln	Phe 165	Ala	Thr	Asn	Ser	Gly 170	Leu	Met	Leu	Gly	Phe 175	Trp
Val	Asn	Tyr	Ser 180	Val	Ser	Lys	Asn	Val 185	Pro	Phe	Gly	Glu	Met 190	Gln	Trp
Arg	Ile	Pro 195	Leu	Ile	Ile	Gln	Met 200	Ile	Pro	Ser	Leu	Leu 205	Phe	Ile	Ile
Ala	Met 210	Phe	Phe	Gln	Pro	Glu 215	Ser	Pro	Arg	Trp	Leu 220	Val	Glu	His	Gly
Lys 225	His	Lys	Glu	Ala	Ala 230	Thr	Val	Leu	Ala	Arg 235	Thr	Gly	Gly	Lys	Asp 240
Val	Asp	His	Pro	Ser 245	Val	Val	Gln	Thr	Leu 250	Glu	Glu	Ile	Lys	Gln 255	Glu
Phe	Val	Ala	Ser 260	Lys	Gln	Pro	Ser	Phe 265	Leu	Lys	Gln	Ile	Arg 270	Leu	Val

Gly	Glu	Ser 275	Arg	Ala		Ala	Leu 280	Arg	Cys	Phe	Ile	Pro 285	Pro		Val
Met	Phe 290	Phe	Gln	Gln	Trp	Thr 295	Gly	Thr	Asn	Ala	Ile 300	Asn	Leu	Tyr	Ser
Pro 305	Glu	Val	Phe	Arg	His 310	Leu	Gly	Ile	His	Gly 315	Thr	Ser	Gly	Ala	Leu 320
Phe	Ala	Thr	Gly	Val 325	Tyr	Gly	Val	Val	Lys 330	Val	Val	Ser	Val	Ala 335	Leu
Ala	Leu	Thr	Phe 340	Ala	Val	Glu	Arg	Phe 345	Gly	Arg	Lys	Arg	Gly 350	Leu	Ile
Phe	Gly	Gly 355	Ile	Gly	Gln	Ala	Leu 360	Met	Met	Phe	Trp	Leu 365	Gly	Gly	Tyr
Ser	Ala 370	Thr	His	Gln	Asp	Gly 375	Thr	Val	Ser	Pro	Ala 380	Ser	His	Val	Ser
Ile 385	Val	Ala	Leu	Tyr	Leu 390	Tyr	Gly	Ala	Phe	Phe 395	Ser	Met	Gly	Trp	Gly 400
Pro	Leu	Pro	Trp	Val 405	Val	Ala	Gly	Glu	Val 410	Ala	Pro	Asn	His	Val 415	Arg
Ser	Phe	Ala	Leu 420	Ser	Ile	Ala	Val	Gly 425	Thr	His	Trp	Leu	Phe 430	Gly	Phe
Val	Ile	Ser 435	Lys	Val	Thr	Pro	Ile 440	Met	Leu	Asp	Arg	Ile 445	Lys	Tyr	Gly
Thr	Phe 450	Leu	Leu	Phe	Gly	Phe 455	Cys	Cys	Met	Ile	Val 460	Ala	Thr	Trp	Ala
Tyr 465	Phe	Cys	Leu	Pro	Glu 470	Thr	Ser	Gly	Phe	Ala 475	Leu	Glu	Asp	Ile	Lys 480
Tyr	Leu	Phe	Glu	Arg 485	Asp	Val	Ile	Ile	Arg 490	Ser	Leu	Gln	Asp	Ala 495	Pro
Gly	Gly	Lys	Ile 500	Phe	Leu	Gly	Gly	Arg 505	Arg	Val	Glu	Ser	Val 510	Ala	Ser
Leu	Lys	Glu 515	Arg	Arg	Val	Gly	Val	Ala	Gly	Glu	Gln	Gly	Glu	Lys	Ile

Leu Lys Glu Thr Ser Ser Val 545 550

<210> 3

<211> 3638

<212> DNA

<213> Agaricus bisporus

<220>

<221> misc feature

<222> (3)..(3)

<223> n is an unknown nucleotide

<220>

<221> misc feature

<222> (14)..(14)

<223> n is an unknown nucleotide

<220>

<221> misc feature

<222> (510)..(510)

<223> n is an unknown nucleotide

<400> 3

gtncgatggg ttcntctggg ttaagttgca cgacgctttc ctttttcttt tatggcctgt 60 120 ctgccctttt aacgctttat ctttcggcag ccatggatgt ccttcgtcac cgtattatca ctcttaatcg tggtggtgag cacatggaaa ggttcattat cgtcatccca tgacgcggtg 180 caaaattcgt cattcagagt ggaaccgata ctaggagagg attttgaaaa ggctatcgta 240 300 tetteegate catteactee aacgacatet atategggtt eteaagetae gataacegtt 360 cctcacgcat cacattette tetgattgta atgaccgaag accgeggtte caccectaat attcgaagag cttgttgcca atgtcaaaaa aggcttttgg gcaaaccggg atggcttatc 420 gageeteeag eeceageage taacateggg eagagaagga aaatteateg ggeggttgaa 480 ttatcaccgt ttggttcctg agtcatctgn ragatgtacg cagatggtga taccgtgttt 540 gattggcgcc gttggagaag aactatatta ttcgatggat tttttgttcg agtttgacac 600 agagacagag atgatagagg tttgctattg atgtagcaaa ggatcatttg acgatggcgc 660 atagggcgat ggttatcttt atgtctggaa ttataatatg tattgttccc cacttttctt 720 ttatatttat taatactaat tggaagtttc agttgttgga tgagcaaagt tggtgcagat 780 agaaactaga attoggatto coatatotga ggtacotttt cottoogotg gcaatootgg 840 ccacttcgac gtggtgacgc agagggcgcg tgctattgtt agcacatgcc atawggatcg 900

960 acgttgcctc tcgtacttcg acctagget cgctcatgcc tcgatgcatc ttatcaattc gggcgttgcg tctcccaggt gcctgttaaa agggcgaact ttagtgtaat tgtactaaca 1020 cagtccctcg ggctgagctc tattcatcat ggcgtcggaa cgacagattg aagaacttcc 1080 cagttataag tacgcctata ttttgacggc atcggcttgc ttgggaagtg tgtttcacgg 1140 gtgggatgtg caagtateet ttwgaegetg geteateeet tgtttgetga tggttaatgt 1200 gtagaggeet tataggagge atactetege taeggteatt teaagaatat etegggatea 1260 atacaaaaaa tgccgtcaag aaagcgattc tagacggaaa catcatctct gtgctccaag 1320 ccggatgttt tgtaagtcgt agcactcgtt cgaccagctt actttctttt actaacaacg 1380 1440 tgttgaccta gttttggcgc gcttggaacc ggatatctct ctagtcgatt cggccgaaga ccctgtctta ttgcatctgg tattgtgtat ataactggcg gtttgctgca atgcactgtc 1500 ggtttgggac cctcgcaagc tgctgctcta cacgtgttct atattggcag gttcatttct 1560 ggtatcggtg ttgggatggt gtccactctc gtgcctttgt atatttcgga gtgtgtccct 1620 1680 aggactatac gcgggcgctg tactggaaca ctccaatttg cgactaacag tggtctgatg ctgggctgta agtgtacctt ttgttatgct ccggggacga tactaaaagt agtctgtagt 1740 ctgggtcaac tacagcgtgt cgaaaaacgt gccctttggt gaaatgcaat ggcgaattcc 1800 1860 gttaattatc cagtacgtta ttggatgcaa agtgaagcat atgctgaaat tagacttgtg 1920 tegtaettte cagaatgatt eegageetet tgtteateat ageeatgttt ttecaaceag 1980 aatcgccgag atggcttgtt gaacacggga aacacaagga agctgcgacg gtactggcgc gtactggcgg caaggatgtt gatcatccta gtgttgtaca gacactggag gagatcaagc 2040 2100 aagaatttgt ggcgagtaaa caaccatcgt ttttaaagca gattcgcctg gtcggtgaat 2160 cgagggctgt tgccytgagg wgctttatac caccgctagt gatgttcttc cagcagtgga cgggtacaaa tgccatcaac ctttatagtc ccgaagtatt ccgtcatctt ggaatccatg 2220 gcaycagckr kgmwstcttc sctamtsgtg tttatkgmgt ggtrmaggtt gtttcagttg 2280 2340 cacttgccct cacttttgct gtcgaacgct ttggacgcaa gagagggttg atttttggtg gtatcggcca agcacttatg atgttttggt tgggaggtta tagtgccacc caccaagacg 2400 gtactgtcag tcctgcgagt catgtttcca ttgttgcact ctacttgtat ggtgcattct 2460 2520 tctccactga agaatggttc ctgttabcat gggtcgtcgc tggagaggtt gcacctaacc 2580 atgtccgctc cttcgccctc tccatcgccg ttggaactca ttggctcttc gggtttgtga tatcaaaagt gacgccaatt atgttggacc gtatcaaata tggcacattc ctactcttcg 2640 gattctgttg catgatagta gcgacatggg cttatttctg tctacctgag acaagtgggt 2700 tegetetgga ggacateaaa tatetgtteg agegagaegt cateattegt teattgeagg 2760 acgctcccgg tggaaaaata ttcttggggg ggaggcgtgt ggaatctgta qcttcqttqa 2820 aagagaggcg cgttggagt tggtgagc agggtgagaa gataactggt d 2880 aattggaaga tgtttcctca aaaaaatcaa cattgaagga aacttcatcc gtttgatata 2940 tagtctccaa attctattgt aatgccattt tcccaattca aaaggacccg ctctcgaacc 3000 gggtcagatg caattttggt cagcaatggt ttatgttgtt tccccgtaag tatgcactag 3060 aagagaacaa aacgtcacta tttgctcaat gcaggatgca cctggcgaga taatattctt 3120 gcggtgaagt cgaacaacgt ctgtagtcct gtaaaaatat acagtgagta gagggatgat 3180 gccgatgtgg aaggaagcaa ccgattacga ttcggatttg gccatgagac ggccgctctt 3240 gaacagacca acaatatccc tttaaattta atacagaatt actcaatatg cttccaagta 3300 tttcgattcc tcgaattccg tctggccgcg gcatgagcat ggacaggcgg acagaagagg 3360 ctatcgttgt attgcttcat caagcgaccc tgactagtga cttcaggcat gatcatgcgc 3420 ttagcaatct gtcccttcaa gtcgagtccc cgaattcaac agctttcaac aagtcgtgat 3480 tatttgaccc ccgactggaa tcaaattggc tcttcaaatt tcaaaccttc aatgcttcat 3540 gcttcatgcg tcatgacgca agctgtcaat tttcattttc cagttcggtc ccattctcac 3600 tctcgccct cstaatgtct tccagaaaat ggcttccc 3638

<210> 4

<211> 1033

<212> DNA

<213> Agaricus bisporus

<220>

<221> misc_feature

 $\langle 222 \rangle (495) \dots (495)$

<223> n is an unknown nucleotide

<400> 4

60 ctgggttaag ttgcacgacg ctttcctttt tcttttatgg cctgtctgcc cttttaacgc tttatctttc ggcagccatg gatgtccttc gtcaccgtat tatcactctt aatcgtggtg 120 gtgagcacat ggaaaggttc attatcgtca tcccatgacg cggtgcaaaa ttcgtcattc 180 agagtggaac cgatactagg agaggatttt gaaaaggcta tcgtatcttc cgatccattc 240 actocaacga catotatato gggttotoaa gotacgataa cogttootoa cgcatoacat 300 tettetetga ttgtaatgae egaagaeege ggtteeaeee etaatatteg aagagettgt 360 tgccaatgtc aaaaaaggct tttgggcaaa ccgggatggc ttatcgagcc tccagcccca 420 gcagctaaca tcgggcagag aaggaaaatt catcgggcgg ttgaattatc accgtttggt 480 tectgagtea tetgnragat gtacgeagat ggtgataceg tgtttgattg gegeegttgg 540 agaagaacta tattattcga tggatttttt gttcgagttt gacacagaga cagagatgat 600

agaggtttgc tattgatgta gcaaaggatc atttgacgat ggcgcatagg gcgatggtta	660
tctttatgtc tggaattat atgtattg ttccccactt ttctttata t	720
ctaattggaa gtttcagttg ttggatgagc aaagttggtg cagatagaaa ctagaattcg	780
gattcccata tctgaggtac cttttccttc cgctggcaat cctggccact tcgacgtggt	840
gacgcagagg gcgcgtgcta ttgttagcac atgccatawg gatcgacgtt gcctctcgta	900
cttcgcgcct aggctcgctc atgcctcgat gcatcttttc aattcgggcg ttgcgtctcc	960
caggtgcctg ttaaaagggc gaactttagt gtaattgtac taacacagtc cctcgggctg	1020
agctctattc atc	1033
<210> 5 <211> 702 <212> DNA <213> Agaricus bisporus	
<400> 5 tatatagtet ceaaatteta ttgtaatgee atttteeeaa tteaaaagga eeegeteteg	60
aaccgggtca gatgcaattt tggtcagcaa tggtttatgt tgtttccccg taagtatgca	120
ctagaagaga acaaaacgtc actatttgct caatgcagga tgcacctggc gagataatat	180
tcttgcggtg aagtcgaaca acgtctgtag tcctgtaaaa atatacagtg agtagaggga	240
tgatgccgat gtggaaggaa gcaaccgatt acgattcgga tttggccatg agacggccgc	300
tcttgaacag accaacaata tccctttaaa tttaatacag aattactcaa tatgcttcca	360
agtatttcga ttcctcgaat tccgtctggc cgcggcatga gcatggacag gcggacagaa	420
gaggetateg ttgtattget teateaageg accetgaeta gtgaetteag geatgateat	480
gcgcttagca atctgtccct tcaagtcgag tccccgaatt caacagcttt caacaagtcg	540
tgattatttg acccccgact ggaatcaaat tggctcttca aatttcaaac cttcaatgct	600
tcatgcttca tgcgtcatga cgcaagctgt caattttcat tttccagttc ggtcccattc	660
tcactctcgc ccctcstaat gtcttccaga aaatggcttc cc	702
<210> 6 <211> 689 <212> DNA <213> Agaricus bisporus <220> <221> CDS <222> (147)(521) <223>	
<400> 6 cgcctacttt tataccaacc ccaaatccaa aggttgaaaa aaaaatttcg acaaggattt	60

120

atatatccat ccatccgcga cactttcccg tttgattcta tcccttagtc tttccttctc

cccctttcct tcttcactt ccttg ctc taa ccg aaa gta aac ctt cc gcg Leu Pro Lys Val Asn Leu Pro Ala 1 5	173
atg aaa ttc tcc aat tct cta tcc gct ctc ctc gta tcc gca aat ctc Met Lys Phe Ser Asn Ser Leu Ser Ala Leu Leu Val Ser Ala Asn Leu 10 15 20	221
atg ttg gca gcg aag gcc tac aaa gga gat gcc acc ttt tat gat cct Met Leu Ala Ala Lys Ala Tyr Lys Gly Asp Ala Thr Phe Tyr Asp Pro 25 30 35 40	269
ggt ctg gga gct tgt ggc cat acg aat cag gct cat gaa ctt gtc gtt Gly Leu Gly Ala Cys Gly His Thr Asn Gln Ala His Glu Leu Val Val 45 50 55	317
gcc ctt cca tca gcc aaa tac ggc agc gga gac cat tgt tcc aag cat Ala Leu Pro Ser Ala Lys Tyr Gly Ser Gly Asp His Cys Ser Lys His 60 65 70	365
gtc ggc atc cac tac aaa ggc aaa tac gtg aaa gcc aaa gta gtc gac Val Gly Ile His Tyr Lys Gly Lys Tyr Val Lys Ala Lys Val Val Asp 75 80 85	413
aaa tgt ccc ggt tgt ggt tcg aac gat tta gac atc tca cca acc gca Lys Cys Pro Gly Cys Gly Ser Asn Asp Leu Asp Ile Ser Pro Thr Ala 90 95 100	461
ttc tct cac tta gcc agt caa gac ctc ggc cgt atc aaa gta gat tgg Phe Ser His Leu Ala Ser Gln Asp Leu Gly Arg Ile Lys Val Asp Trp 105 110 115 120	509
gaa ttt ctc tga tatcccattt tcaatccctt acacgaaatc tgtatttgta Glu Phe Leu	561
gaagaaagtc atgacgttat atagatcact tacatagatc ttcaggtttt cgtagatcga	621
cgaccgacgc tcttaaatat ttatttcccg tttttcygtt tttgttttaa aaaaaaaaa	681
aaaaaaaa	689
<210> 7 <211> 122 <212> PRT <213> Agaricus bisporus	
<400> 7	
Pro Lys Val Asn Leu Ser Ala Met Lys Phe Ser Asn Ser Leu Ser Ala 1 5 10 15	
Leu Leu Val Ser Ala Asn Leu Met Leu Ala Ala Lys Ala Tyr Lys Gly 20 25 30	
Asp Ala Thr Phe Tyr Asp Pro Gly Leu Gly Ala Cys Gly His Thr Asn 35 40 45	

Gln Ala His Glu Leu Val Val Ala Leu Pro Ser Ala Lys Tyr Gly Ser 50 60

Gly Asp His Cys Ser Lys His Val Gly Ile His Tyr Lys Gly Lys Tyr 65 70 75 80

Val Lys Ala Lys Val Val Asp Lys Cys Pro Gly Cys Gly Ser Asn Asp 85 90 95

Leu Asp Ile Ser Pro Thr Ala Phe Ser His Leu Ala Ser Gln Asp Leu 100 105 110

Gly Arg Ile Lys Val Asp Trp Glu Phe Leu 115 120

<210> 8

<211> 2782

<212> DNA

<213> Agaricus bisporus

<220>

<221> misc feature

<222> (2774)..(2774)

<223> n is an unknown nucleotide

<400> ctgcgaattg.gcataagcac ttraactttc gtcttcctca ctctcttcag gagattgaga 60 ctgcatcggt gcaagcgagg gttgccgtac cgccctttga gaccccgaaa caagggattc 120 gtcaagagca tcaagaagac tagaacgacc ggctgttttt ccacccgaca tcatagcaca 180 aactqtcata aacccqtqtt caaaqqqqaa aaacaqqcaq agaqaaqqaa qqqacqcqtc 240 qcqatqaaat qctcattaac ctqaatqaca aacttccqcw aataacaatt taattaaaaa 300 taaaaatcac gaggtgacaa acaggggtgt ttacctccat tcgactgcat cctggctctt 360 cccttccata gaactgtcgt ccatgcatgc accgctagca tcgcactgct ctgactcgca 420 taaccttaaa acgcgtggac cccctgttcg gacggccggt tcaggatccg gggctcagga 480 cacagtaaaa tcacaaaaac tcatactttg agagatatga cttctcgact tgcgccttcg · 540 atggacggac aaattatccc caggtaccgg atctgtgaca ccgaattagt gcgcgatatt 600 atatatgact tttgacgggc gtctcatacg accgctcaag tccttgggga tggagaatgt 660 cacctcctgg tccaccgggc ccagagcatt acccggtcat taatctagcg cttcttgcat 720 gcactcctgc atgatcaccc cacgcggccg cgttttatcg gacatataag gaacaagatt 780 ccataggtag tggatcccct actccacctc ccgcctactt ttataccaac cccaaatcca 840 aaggttgaaa aaaaaatttc gacaaggatt tatatatcca tccatccgcg acactttctc 900 gtttgattct atcccttagt ctttccttct ccccctttcc ttcttcactt caccttgctc 960

taaccgaaag	taaaccttt	gcgatgaaa	ttctccaatt	ctctatccgc	terectegta	1020
tccgcgaatc	tcatgttggc	agcgaaggcc	tacaaaggag	atggtcagtt	atyacagtgt	1080
cgcccatcct	atcgtcaatg	atgctgattt	tgttctccca	cctttttagc	caccttttat	1140
gatcctggtg	tacgtttttc	ttacactttt	caccaagatt	cctcacccac	tggtttcaaa	1200
attagctggg	agcttgtggc	catacgaatc	aggctcatga	acttgttgtt	gcccttccat	1260
cagccaaata	cggcaacgga	gaccattgtt	ccaagcatgt	cggcatccac	tgtacgtttc	1320
ctccttctcc	ccacttctca	aaaatcaaaa	ttttactcat	tgtaacaaga	caaaggcaaa	1380
tacgtgaaag	tcaaagtagt	cgacaaatgt	cccggctgtg	gttcgaacga	tctagacatc	1440
tcaccaaccg	cattctctca	gttagccagc	caagacctcg	gccgtatcaa	agtagattgg	1500
gaatttatct	aatatcccat	ttcaatccct	tacacgaaat	ctgtacttgt	agtcttagaa	1560
gaaagtcatg	acgttatata	gatcacttac	atagatcttc	aggttttcgt	agatcgacga	1620
ccgacgctct	taaatattta	tttacagttt	ttctgttttt	tgttttattg	tcgcttggat	1680
ataaggtggt	atactttgat	atgattgcct	acacacatat	atcaacacag	ttttagttat	1740
atcaacatca	aaacatcagt	caaggaaaac	aaagagcgaa	cgataaacat	cagcacaagt	1800
atgtcagatt	atggtccaag	aacgcgaaaa	gaagttcgca	aaagaacaga	acactatcga	1860
aaagtgcaga	tacataggtc	acacaattaa	cgacttcccg	gaatagttcc	ctccaacctc	1920
ttatcgcgac	tactagcacc	aacggtaaca	ccaaaagtac	cttcaggcct	cctccatccc	1980
tgtgcattca	catcccaaat	actcaaatca	tacctcgaca	aggtcatttt	tacattccta	2040
gtctctccag	ggccaatcgg	tacagagtcg	aaaccgcgta	gcacggaagg	aggttctcca	2100
gcagattcag	ggaagttaat	gtagagttgg	ggagactcgg	cacccaaaag	tcgaccggta	2160
ttcttgacgt	tgaaggaaac	ctcgtacaaa	ggacgatgga	gcctggaaac	cggtcagcgt	2220
gaaattgttg	rttagagaac	cctcggcgct	taccaagaag	cgatagaacc	accttcaact	2280
tgcgggcttg	catgtccttg	atcccattcc	ctagccgcat	caacttctct	acctttgacg	2340
tgcactttct	taatagatat	cttcgagtaa	tcaaacttcg	tgtaactcaa	gccaaaacca	2400
aattcaaacc	gaggctcaat	gccattctgc	aagagaaaat	tcagtaagcg	aacgtttccg	2460
agagaatcaa	gcagcactgg	cttacagcgt	cgaagtgccg	gtaatcgatt	tgcaaacgat	2520
catcgtatgg	tatagaaaga	atatctcgaa	taccatctcc	ggggataact	tgggccgaat	2580
aatcttcaat	ccgtttggca	atggtatatg	gaagccttcc	ggatgggttc	caatctccat	2640
ataggacatc	ggtcaacgaa	tttcccgctt	ctgtcccggt	gccccagccc	aaagaacctg	2700
gaaatagtca	acaccggcgt	tcatcacaca	agtagaagat	acgaacagca	gtgacattag	2760
gatgattgat	ccanggttca	ag				2782

<210>	9	
<211>	984	
<212>	DNA	
<213>	Agaricus	bisporus

<400> 9 ctgcgaattg gcataagcac ttraactttc gtcttcctca ctctcttcag gagattgaga 60 ctgcatcggt gcaagcgagg gttgccgtac cgccctttga gaccccgaaa caagggattc 120 gtcaagagca tcaagaagac tagaacgacc ggctgttttt ccacccgaca tcatagcaca 180 aactgtcata aaccegtgtt caaaggggaa aaacaggcag agagaaggaa gggacgegte 240 gcgatgaaat gctcattaac ctgaatgaca aacttccgcw aataacaatt taattaaaaa 300 taaaaatcac gaggtgacaa acaggggtgt ttacctccat tcgactgcat cctggctctt 360 420 cccttccata gaactgtcgt ccatgcatgc accgctagca tcgcactgct ctgactcgca taaccttaaa acgcgtggac cccctgttcg gacggccggt tcaggatccg gggctcagga 480 cacagtaaaa tcacaaaaac tcatactttg agagatatga cttctcgact tgcgccttcg 540 atggacggac aaattatccc caggtaccgg atctgtgaca ccgaattagt gcgcgatatt 600 atatatgact tttgacgggc gtctcatacg accgctcaag tccttgggga tggagaatgt 660 cacctcctgg tccaccgggc ccagagcatt acccggtcat taatctagcg cttcttgcat 720 gcactcctgc atgatcaccc cacgcggccg cgttttatcg gacatataag gaacaagatt 780 ccataggtag tggatcccct actccacctc ccgcctactt ttataccaac cccaaatcca 840 aaggttgaaa aaaaaatttc gacaaggatt tatatatcca tccatccgcg acactttctc 900 gtttgattct atcccttagt ctttccttct ccccctttcc ttcttcactt caccttgctc 960 984 taaccgaaag taaacctttc cgcg

<210> 10 <211> 1270 <212> DNA

<213> Agaricus bisporus

<220>

<221> misc_feature <222> (1262)..(1262)

<223> n is an unknown nucleotide

<400> 10
tatcccattt caatccctta cacgaaatct gtacttgtag tcttagaaga aagtcatgac 60
gttatataga tcacttacat agatcttcag gttttcgtag atcgacgacc gacgctctta 120
aatatttatt tacagttttt ctgttttttg ttttattgtc gcttggatat aaggtggtat 180
actttgatat gattgcctac acacatatat caacacagtt ttagttatat caacatcaaa 240
acatcagtca aggaaaacaa agagcgaacg ataaacatca gcacaagtat gtcagattat 300

	ggtccaagaa	cgcgaaaaga	gttcgcaaa	agaacagaac	actatcgaaa	agegcagata	360
	cataggtcac	acaattaacg	acttcccgga	atagttccct	ccaacctctt	ategogacta	420
	ctagcaccaa	cggtaacacc	aaaagtacct	tcaggcctcc	tccatccctg	tgcattcaca	480
	tcccaaatac	tcaaatcata	cctcgacaag	gtcattttta	cattcctagt	ctctccaggg	540
	ccaatcggta	cagagtcgaa	accgcgtagc	acggaaggag	gttctccagc	agattcaggg	600
	aagttaatgt	agagttgggg	agactcggca	cccaaaagtc	gaccggtatt	cttgacgttg	660
•	aaggaaacct	cgtacaaagg	acgatggagc	ctggaaaccg	gtcagcgtga	aattgttgrt	720
	tagagaaccc	tcggcgctta	ccaagaagcg	atagaaccac	cttcaacttg	cgggcttgca	780
	tgtccttgat	cccattccct	agccgcatca	acttctctac	ctttgacgtg	cactttctta	840
	atagatatct	tcgagtaatc	aaacttcgtg	taactcaagc	caaaaccaaa	ttcaaaccga	900
	ggctcaatgc	cattctgcaa	gagaaaattc	agtaagcgaa	cgtttccgag	agaatcaagc	960
	agcactggct	tacagcgtcg	aagtgccggt	aatcgatttg	caaacgatca	tcgtatggta	1020
	tagaaagaat	atctcgaata	ccatctccgg	ggataacttg	ggccgaataa	tcttcaatcc	1080
	gtttggcaat	ggtatatgga	agccttccgg	atgggttcca	atctccatat	aggacatcgg	1140
	tcaacgaatt	tcccgcttct	gtcccggtgc	cccagcccaa	agaacctgga	aatagtcaac	1200
	accggcgttc	atcacacaag	tagaagatac	gaacagcagt	gacattagga	tgattgatcc	1260
	anggttcaag						1270

<210> 11

<211> 835 <212> DNA

<213> Agaricus bisporus

<400> 11

ccttgccgtt ttccagaagc tgcgaccagt cctcggagga gggggaacta aagatgtcga 60 120 aagcagcagg gtgtgtgaca tagcgggaag aaagggtgat gatgatgaga acgaggggta 180 cgatgaggac ggcccatctg aattgacggc caacgcgacg tttccggtcg tgagaggaca tggcaaagga gacggggga ggggcgaggg tggcggagga ggtgctcgtg ccgaattcgg 240 300 cacgagetea ceatgaaatt egeaactget etectegeet geettaetge tgetgetage 360 getcaregeg teetcategg ateceetect gaccaageaa atetttetge tggccagaae 420 actacgattc aaattgtact cccgaatttc caatcgtctt cgcaagaagt tgcggtagtg 480 cttgggatca cgtcctgcgc cgctgctccc tgccctgctc cagccgatac gatgggtcgt atcctttaca gcggtcattt caacccgcag agagatcctg caatgcccgc aatgcaagcc 540 tacgaaaatt tcacggtctt cttgccggag aacctgccta agggcgcggc gcagattaac 600 gtttaccatg tcgcacttat cggggccggt ctcatgccat ggaacgagac gttgtccacc 660

acagctttga	ttcagtaatt	catcaggat	ttgaaatgga	cctttagtag	ttoctgttt	720
tgctatcgaa	cgattcgrat	aattacctga	gatcaggtcg	gtgactgagg	ccegtcggag	780
tgctaccata	atggcataat	aaaattatac	tcagctgaaa	aaaaaaaaa	aaaaa	835
<210> 12 <211> 770 <212> DNA <213> Aga:	ricus bispo	rus				
<400> 12		2222222		5++ 6++ ++ ++		60
	aagctacgat					60
	gcggttccac					120
cttttgggca	aaccgggatg	gcttatcgag	cctccagccc	cagcagctaa	catcgggcag	180
agaaggaaaa	tcatcggcgt	tgaattatca	ccgtttggtt	cctgagtcat	ctggagatgt	240
acgcagatgg	tgataccgtg	tttgattggc	gccgttggag	aagaactata	ttattcgatg	300
gattttttgt	tcgagtttga	cacagagaca	gagatgatag	aggtttgcta	ttgatgtagc	360
aaaggatcat	ttgacgatgg	cgcatagggc	gatggttatc	tttatgtctg	gaattataat	420
atgtattgtt	ccccactttt	cttttatatt	tattaatact	aattggaagt	ttcagttgtt	480
ggatgagcaa	agttggtgca	gatagaaact	agaattcgga	ttcccatatc	tgaggtacct	540
tttccttccg	ctggcaatcc	tggccacttc	gacgtggtga	cgcagagggc	gcgtgctatt	600
gttagcacat	gccatatgga	tcgacgttgc	ctctcgtact	tcgcgcctag	gctcgctcat	660
gcctcgatgc	atctttcaat	tcgggcgttg	cgtctcccag	gtgcctgtta	aaagggcgaa	720
ctttagtgta	attgtactaa	cacagtccct	cgggctgagc	tctattcatc		770
<210> 13 <211> 703 <212> DNA <213> Aga	ricus bispo:	rus		·		
<400> 13	22++2222+	222224226	200102022	22222tatt	taggtagatt	
	aattaaaaat					60
	ctggctcttc					120
cgcactgctc	tgactcgcat	aaccttaaaa	cgcgtggacc	ccctgttcgg	acggccggtt	180
caggatccgg	ggctcaggac	acagtaaaat	cacaaaaact	catactttga	gagatatgac	240
ttctcgactt	gcgccttcga	tggacggaca	aattatcccc	aggtaccgga	tctgtgacac	300
cgaattagtg	cgcgatatta	tatatgactt	ttgacgggcg	tctcatacga	ccgctcaagt	360
ccttggggat	ggagaatgtc	acctcctggt	ccaccgggcc	cagagcatta	cccggtcatt	420
aatctagcgc	ttcttgcatg	cactcctgca	tgatcacccc	acgcggccgc	gttttatcgg	480

acatataagg aacaagattc cataggtagt ggatccccta ctccacctcc cgcctacttt	540
tataccaacc ccaaatcca gttgaaaa aaaaatttcg acaaggattt a tccat	600
ccatccgcga cactttctcg tttgattcta tcccttagtc tttccttctc cccctttcct	660
tcttcacttc accttgctct aaccgaaagt aaacctttcc gcg	703
<210> 14 <211> 486 <212> DNA <213> Agaricus bisporus	
<220> <221> misc_feature <222> (4)(9) <223> Restriction site for KpnI	
<220> <221> misc_feature <222> (477)(482) <223> Restriction site for NarI	
<220> <221> Intron <222> (277)(328) <223>	
<220> <221> Intron <222> (349)(408) <223>	·
<220> <221> Intron <222> (415)(468) <223>	
<400> 14 cggggtaccg aggtccgcaa gtagattgaa agttcagtac gtttttaaca atagagcatt	60
ctcgaggctt gcgtcattct gtgtcaggct agcagtttat aagcgttgag gatctagagc	120
tgctgtttcc gcgtctcgaa tgttctcggt gtttaggggt tagcaatctg atatgataat	180
aatttgtgat gacatcgata gtacaaaaac cccaattccg gtcacatcca ccatctccgt	240
tttctcccat ctacacacaa caagettate gccatggttt gtctctcgct tgcataccat	300
ccagcagctc actgatgtcg acttgtaggt taaagttgga atcaacgggt aagtgttttt	360
gtcgtcgcgc tgtggttccg gatcatctca gactttgggt gtcttgcagt ttcggtgagt	420
gaccaccctg cattetgget atatgegtga tactgaccat egetcaaggt egtateggeg	480
ccggcc	486

```
<210> 15
<211> 57
<212> DNA
<213> Agaricus bisporus
<220>
<221> CDS
<222> (1)..(57)
<223>
<400> 15
atg cat ttc tct ttg tct ttt gcc acc ctt gct ctc tta gtc gct tcg
                                                                     48
Met His Phe Ser Leu Ser Phe Ala Thr Leu Ala Leu Leu Val Ala Ser
                5
                                    10
                                                                     57
gct gtt ggt
Ala Val Gly
<210> 16
<211> 19
<212> PRT
<213> Agaricus bisporus
<400> 16
Met His Phe Ser Leu Ser Phe Ala Thr Leu Ala Leu Leu Val Ala Ser
                                    10
Ala Val Gly
<210> 17
<211> 45
<212>
      DNA
<213> Agaricus bisporus
<400> 17
gtgggattat ggttagccaa atggtcgtag ctaattatct tgcag
                                                                      45
<210> 18
<211>
      47
<212>
      DNA
<213> Agaricus bisporus
                                                                      47
gtacgtaggc aagtggttcc caaaaagcac cagctaacac aacgtag
<210> 19
<211>
      48
<212> DNA
<213> Agaricus bisporus
<400> 19
gtacgttgaa tcgtacaaga aagtgtaatc atcctgactt tctatcag
                                                                      48
```

<210> <211>	20 62	
<212> <213>	DNA Agaricus bisporus	
<400> gtaagca	20 accg getgegtteg cacaccegte ttgtgaaaag tegteteatg aatategeee	60
ag		62
<210> <211> <212> <213>	21 51 DNA Agaricus bisporus	
<400> gtaatta	21 aacc tcatcattat tgatcctttc catgcttaca gctgttatca g	51
<210> <211> <212> <213>	22 52 DNA Agaricus bisporus	
<400> gtgcgtt	22 tett etettgteet ateacaaatt etgaegeege aggaettgee ag	52
<210> <211> <212> <213>	23 63 DNA Agaricus bisporus	
<400> gcaaget	23 ttct cttgtcacaa tgttaacggc gaggggtctg actcccttgg ttgtttttgt	60
tag		63
<210> <211> <212> <213>	24 48 DNA Agaricus bisporus	
<400> gtacgct	24 tata gcttgcaagg atggacatat ctaatcgggg acgtgtag	48
<210><211><211><212><213>		
	25 tcca tcatctcttg agttatgccg cggctgactg atcatgtttc taatacttca	60
g		61
<210> <211>	26 46	

<212> <213>		
<400> gtgcgt	26 catg teegtateat etacteteat actaatgege atatag	46
<210><211><212><212><213>		
	27 ccct tttatttttg gtccgattgc gtcattcatg tctatatatg cag	53
<210> <211> <212> <213>	48 DNA	
	28 ttta ttcatccctc tgttcttatc agcttgacat ccttcaag	48
<210><211><211><212><213>	53 DNA	
<400> gtaagca	29 ataa ggagttgctg caggcgaccc atagcgttct aattagctgc tag	53
<210><211><211><212><213>	52	
<400> gtatgt	30 tgga actcaccgat gcgctctttg ttgattttat ttttctacat ag	52
<210><211><211><212><213>	50	
<400> gtgggt	31 gatc attcgaggtt gtcttcctgt gtattgataa ggtttgctag	50
<210><211><211><212><213>	DNA	
<400> gtcagta	32 acta gtttgttttc tcttacacct tctcattctt tgcag	45
<210> <211>	33 56	

<212> DNA <213> Agaricus bisposs	
<400> 33 gtgagcactg caatatggta tagcttggaa agcctttatt tatacagaac atccag	56
<210> 34 <211> 55 <212> DNA <213> Agaricus bisporus	
<400> 34 gtgagtgaag atagttetea tgtgagatee ttgtaetaat tgeegaaegt egtag	55
<210> 35 <211> 690 <212> DNA	
<400> 35 tatatagtet ceaaatteta ttgtaatgee atttteedaa tteaaaagga eeegeteteg	60
aaccgggtca gatgcaattt tggtcagcaa tggtttatgt tgtttccccg taagtatgca	120
ctagaagaga acaaaacgtc actatttgct caatgcagga tgcacctggc gagataatat	180
tottgoggtg aagtogaaca acgtotgtag tootgtaaaa atatacagtg agtagaggga	240
tgatgccgat gtggaaggaa gcaaccgatt acgattcgga tttggccatg agacggccgc	300
tcttgaacag accaacaata tccctttaaa tttaatacag aattactcaa tatgcttcca	360
agtatttcga ttcctcgaat tccgtctggc cgcggcatga gcatggacag gcggacagaa	420
gaggctatcg ttgtattgct tcatcagcga ccctgactag tgacttcagg catgatcatg	480
cgcttagcaa tctgtccctt caagtcgagt ccccgaattc aacagcttca acaagtcgtg	540
attatttgac ccccgactgg aatcaaattg gctcttcaaa tttcaaactt caatgcttca	600
tgcttcatgc gtcatgacgc aagctgtcaa ttttcatttt ccagttcggt cccattctca	660
ctctcgcccc tcctaatgtc ttccagaaaa	690
<210> 36 <211> 910 <212> DNA <213> Agaricus bisporus	
<400> 36 tatcccattt caatccctta cacgaaatct gtacttgtag tcttagaaga aagtcatgac	60
gttatataga toacttacat agatetteag gttttegtag ategaegaee gaegetetta	120
aatatttatt tacagttttt ctgttttttg ttttattgtc gcttggatat aaggtggtat	180
actitigatat gattgcctac acacatatat caacacagtt ttagttatat caacatcaaa	240
	300
acatcagtca aggaaaacaa agagcgaacg ataaacatca gcacaagtat gtcagattat	300

```
360
cataggtcac acaattaac
                      ttcccgga atagttccct ccaacctctt a
                                                                  420
ctagcaccaa cggtaacacc aaaagtacct tcaggcctcc tccatccctg tgcattcaca
                                                                  480
tcccaaatac tcaaatcata cctcgacaag gtcattttta cattcctagt ctctccaggg
                                                                  540
ccaatcggta cagagtcgaa accgcgtagc acggaaggag gttctccaqc agattcaggg
                                                                  600
aagttaatgt agagttgggg agactcggca cccaaaaqtc gaccggtatt cttqacqttg
                                                                  660
aaggaaacct cgtacaaagg acgatggagc ctggaaaccg gtcagcgtga aattqttgat
                                                                  720
tagagaaccc tcggcgctta ccaagaagcg atagaaccac cttcaacttg cggqcttgca
                                                                  780
tgtccttgat cccattccct agccgcatca acttctctac ctttgacgtg cactttctta
                                                                  840
atagatatct tcgagtaatc aaacttcgtg taactcaagc caaaaccaaa ttcaaaccga
                                                                  900
ggctcaatgc
                                                                  910
<210>
      37
<211>
      800
<212>
      DNA
<213>
      Agaricus bisporus
<220>
<221>
      misc feature
<222>
      (5)..(9)
<223> Restriction site for BglII
<220>
<221> misc feature
<222>
      (790)..(795)
<223> Restriction site for KpnI
<220>
<221> misc_feature
<222>
      (290)..(290)
<223> n is an unknown nucleotide
<220>
<221> misc_feature
      (498)..(498)
<222>
<223> n is an unknown nucleotide
<220>
<221> misc feature
<222>
      (589)..(589)
<223>
      n is an unknown nucleotide
<400> 37
gaatagatct gatgccgacc gcgggatcca cttaacgtta ctgaaatcat caaacagctt
                                                                   60
gacgaatctg gatataagat cqttqqtqtc qatqtcaqct ccqqaqttqa qacaaatqqt
                                                                  120
```

gttcaggatc	tcgataagat	acgttcattt	gtccaagcag	caaagagtgc	cttctagtga	180
tttaatagct	ccatgtcaa	gaataaaa	cgcgttttcg	ggtttacctc	tagatac	240
agctcatctg	caatgcatta	atgcattgac	tgcaacctag	taacgccttn	caggctccgg	300
cgaagagaag	aatagcttag	cagagctatt	ttcattttcg	ggagacgaga	tcaagcagat	360
caacggtcgt	caagagacct	acgagactga	ggaatccgct	cttggctcca	cgcgactata	420
tatttgtctc	taattgtact	ttgacatgct	cctcttcttt	actctgatag	cttgactatg	480
aaaattccgt	caccagence	tgggttcgca	aagataattg	catgtttctt	ccttgaactc	540
tcaagcctac	aggacacaca	ttcatcgtag	gtataaacct	cgaaatcant	tcctactaag	600
atggtataca	atagtaacca	tgcatggttg	cctagtgaat	gctccgtaac	acccaatacg	660
ccggccgaaa	ctttttaca	actctcctat	gagtcgttta	cccagaatgc	acaggtacac .	720
ttgtttagag	gtaatccttc	tttctagaag	tcctcgtgta	ctgtgtaagc	gcccactcca	780
catctccacg	gtacctgcag					800

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.