Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Klausurfragen Bio Data Science

für Pflichtmodule

im 1. & 2. Semester B.Sc./M.Sc.

(Prüfungsleistung der Wahlpflichtmodule ist eine Portfolioprüfung)

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

Wintersemester 2024/25

"The test of a student is not how much he knows, but how much he wants to know." — Alice W. Rollins

1

Erlaubte Hilfsmittel

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten! Ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung. Keine digitalen Ausdrucke!
- Die Verwendung eines roten Farbstiftes ist nicht gestattet! Korrekturfarbe!
- You can answer the questions in English without any consequences.

Endnote

_____ von 20 Punkten sind aus den Multiple Choice Aufgaben erreicht.

_____ von 72 Punkten sind aus den Rechen- und Textaufgaben erreicht.

_____ von 92 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
88.0 - 92.0	1,0
83.5 - 87.5	1,3
78.5 - 83.0	1,7
74.0 - 78.0	2,0
69.5 - 73.5	2,3
65.0 - 69.0	2,7
60.5 - 64.5	3,0
55.5 - 60.0	3,3
51.0 - 55.0	3,7
46.0 - 50.5	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.

	A	В	С	D	E	✓
Aufgabe 1						
Aufgabe 2						
Aufgabe 3						
Aufgabe 4						
Aufgabe 5						
Aufgabe 6						
Aufgabe 7						
Aufgabe 8						
Aufgabe 9						
Aufgabe 10						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

Aufgabe	11	12	13	14	15	16	17
Punkte	12	10	80	9	9	12	12

• Es sind ____ von 72 Punkten erreicht worden.

Multiple Choice Aufgaben

Die Multiple Choice Aufgaben unterliegen dem Zufall. Die Reihenfolge der Antworten ist zufällig. Die Fragen und Antworten sind semantisch zufällig und haben somit verschiedene Textvarianten. Insbesondere die reinen Textaufgaben haben verschiedene Textvarianten. Die Semeantik mag sich unterscheiden, die Inhalte sind aber gleich.

ANOVA

1. Aufgabe (2 Punkte)

Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.31$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.
- **B** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
- **C** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.
- **D** \square Das η^2 wird genutzt um zu erfahren welchen Anteil der Varianz die Behandlungsbedingungen erklären.
- **E** \square Das η^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.

2. Aufgabe (2 Punkte)

Sie führen ein Feldexperiment durch um das Gewicht von Erbsen zu steigern. Die Pflanzen wachsen unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2=0.3$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der von den Umweltbedingungen erklärt wird. Daher werden 30% der Varianz durch die Umweltbedingungen erklärt. Der Anteil der Varianz durch die Behandlungsgruppen ist dann 70%.
- **B** \square Es werden 70% der Varianz durch die Behandlung erklärt. Das η^2 beschreibt den Anteil der Varianz, der von den unterschiedlichen Behandlungsbedingungen nicht erklärt wird.
- **C** \square Es werden 30% der Varianz durch den Versuch erklärt. Das η^2 beschreibt den Anteil der Varianz, der durch Fehler in der Versuchsdurchführung entsteht.
- \mathbf{D} \square Mit dem η^2 lässt sich auf die Qualität der Randomisierung und damit der Strukturgleichheit zwischen der Grundgesamtheit und der Stichprobe schließen. Es gilt dabei die Regel, dass ein η^2 -Wert von 1 zu bevorzugen ist.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Daher werden 30% der Varianz durch die Behandlungsgruppen erklärt.

3. Aufgabe (2 Punkte)

Die einfaktorielle ANOVA ist ein Standardverfahren in der agrawissenschaftlichen Forschung wenn es um den Vergleich von Behandlungsgruppen geht. Welche der folgenden Aussage zu der Berechnung der Teststatistik der einfaktoriellen ANOVA ist richtig?

- **A** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
- **B** □ Die F-Statistik wird berechnet indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich kaum von der Null unterscheidet kann die Nullhypothese nicht abgelehnt werden.
- **C** □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.

- D □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.
- **E** □ Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese nicht abgelehnt werden.

Die ANOVA ist ein statistisches Verfahren welches häufig in den Auswertungen von Experimenten in den Agrarwissenschaften angewendet wird. Dabei wird die ANOVA als ein erstes statistischen Werkzeug für die Übersicht über die Daten benutzt. Eine ANOVA testet dabei...

- **A** □ ... den Unterschied zwischen zwei paarweisen Mittelwerten aus verschiedenen Behandlungsguppen. Wenn die signifikant ist, ist daher bekannt welcher Vergleich konkret unterschiedlich ist.
- **B** □ ... den Unterschied zwischen der Varianz in den verschiedenen Behandlungsguppen und der Varianz in einer der Behandlungsgruppen. Wenn die ANOVA signifikant ist, muss über einen Posthoc-Test nachgedacht werden um den signifikanten Unterschied in einer der Gruppen exakt zu bestimmen.
- C □ ... den Unterschied zwischen der Varianz über alle Behandlungsgruppen und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, muss ein Posthoc-Test angeschlossen werden.
- **D** □ ... den Unterschied zwischen der Varianz über alle Behandlungsgruppen oder der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, muss sich zwischen einem der beiden Varianzquellen entschieden werden.
- **E** □ ... den Unterschied zwischen der F-Statistik anhand der Varianz der Gruppen. Wenn die F-Statistik exakt 0 ist, kann die Nullhypothese abgelehnt werden.

5. Aufgabe (2 Punkte)

In einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Schweine entstand folgende Abbildung. Der Versuch wurde an 46 Tieren durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden erhielt. Welche Aussage ist im Bezug auf eine zweifaktorielle ANOVA richtig?

- **A** \square Eine mittlere bis starke Interaktion liegt vor $(p \le 0.05)$
- **B** \square Keine Interaktion liegt vor $(p \le 0.05)$.
- **C** \square Eine negative Interaktion liegt vor ($\rho \ge 0.5$).
- **D** \square Eine Korrelation liegt vor ($p \le 0.05$).
- **E** \square Die Koeffizienten sind negativ ($\beta_0 < 0$; $\beta_1 < 0$).

Deskriptive Statistik & Explorative Datenanalyse

6. Aufgabe (2 Punkte)
Wie lautet der Mittelwert und Standardabweichung von y mit 8, 7, 14, 5 und 9.
A □ Es berechnet sich 9.6 +/- 11.3
B □ Sie erhalten 8.6 +/- 1.68
C □ Es ergibt sich 8.6 +/- 3.36
D □ Es ergibt sich 7.6 +/- 5.65
E □ Es ergibt sich 9.6 +/- 1.68
7. Aufgabe (2 Punkte)
Gegeben ist y mit 18, 19, 23, 32, 15, 26, 11, 19, 43, 29 und 63. Berechnen Sie den Median, das 1^{st} Quartile sowie das 3^{rd} Quartile.
A □ Es ergibt sich 27 +/- 18
B □ Es berechnet sich 24 [19; 31]
C □ Sie erhalten 23 [16; 30]
D □ Es ergibt sich 23 +/- 18
E □ Es ergibt sich 23 [18; 32]
8. Aufgabe (2 Punkte)
Die empfohlene Mindestanzahl an Beobachtungen für die Visualisierung mit einem Boxplot sind
A □ Die untere Grenze liegt bei einer Beobachtung.
B □ 1 Beobachtung.
C □ 10 Beobachtungen.
D □ Boxplot
E □ Wir sollten eine Beobachtung mindestens pro Gruppe vorliegen haben.
9. Aufgabe (2 Punkte)
Die Standardabweichung ist eine bedeutende deskriptive Statistik für die Analyse von Daten. Wie müssen Sie vorgehen um die Standardabweichung zu berechnen?
A □ Den Mittelwert berechen, dann die absoluten Abstände zum Mittelwert aufsummieren
B □ Wir berechnen erst den Mittelwert und dann die quadratischen Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl. Als letzten Schritt ziehen wir die quadratische Wurzel.
C □ Den Mittelwert berechen, dann die quadratischen Abstände zum Mittelwert aufsummieren und durch die Fallzahl teilen.
D □ Den Median berechen, dann die quadratischen Abstände zum Median aufsummieren, dann die Wurzel ziehen.
E □ Wir berechnen erst den Mittelwert und dann die absoluten Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl.

In Ihrer Abschlußarbeit wolllen Sie Ihre Daten für den Ertrag in einem Barplot darstellen. Sie nutzen den Barplot auch, da der Barplot zu den meist genutzten Visualiserungen von Daten gehört. Welche statistischen Maßzahlen stellt der Barplot dar?

- **A** □ Durch die Abbildung des Barplot erhalten wir die Informationen über die Mittelwerte und die Standardabweichung.
- **B** □ Den Median und die Standardabweichung.
- **C** □ Der Barplot stellt den Median und die Quartile dar.
- **D** □ Durch die Abbildung des Barplot erhalten wir die Informationen über den Median und die Standardabweichung.
- **E** □ Den Mittelwert und die Varianz.

11. Aufgabe (2 Punkte)

Der Mittelwert \bar{y} und der Median \tilde{y} unterscheiden sich nicht in Ihren Feldexperiment zu Leistungssteigerung von Erdbeeren. Welche Aussage ist richtig?

- A

 Der Mittelwert und der Median sollten sich unterscheiden sein, wenn Outlier in den Daten vorliegen.
- **B** □ Der Mittelwert und der Median sollten gleich sein, wenn Outlier in den Daten vorliegen.
- **C** □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.
- **D** □ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich keine Outlier in den Daten vor. Wir verweden den Datensatz so wie er ist.
- **E** □ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.

12. Aufgabe (2 Punkte)

Um zu Überprüfen, ob die Daten die Annahme einer Normalverteilung genügen, können wir folgende Visualisierung nutzen. Dabei kommt dann auch die entsprechende Regel zur Abschätzung der Annahme einer Normalverteilung zur Anwendung.

- **A** □ In einer explorativen Datanalyse nutzen wir den Violinplot. Dabei sollte der Bauch am Rand liegen. Dann können wir von einer Normalverteilung ausgehen.
- **B** □ Einen Dotplot. Die Punkte müssen sich wie an einer Perlenschnurr audreihen. Eine Abweichung führt zur Ablehnung der Annahme einer Normalverteilung.
- $\mathbf{C} \square$ Einen Barplot. Die Mittelwerte müssen alle auf einer Höhe liegen. Die Fehlerbalken haben hier keine Informationen.
- **D** □ Einen Boxplot. Das IQR muss über alle Behandlungen zusammen mit den Whiskers ungefähr gleich aussehen.
- **E** □ Nach der Erstellung eines Boxplots schauen wir, ob der Median in der Mitte der Box liegt. Dabei ist der Median als dicke Linie dargestellt und die Box ist das IQR.

13. Aufgabe (2 Punkte)

In der Statistik müssen wir häufig überprüfen, ob unser Outcome einer bestimmten Verteilung folgt. Meistens überprüfen wir, ob eine Normalverteilung vorliegt. Folgende drei Abbildungen eigenen sich im Besonderen für die Überprüfung einer Verteilungsannahme an eine Variable.

- **A** □ Densityplot, Boxplot, Violinplot
- **B** □ Scatterplot, Mosaicplot, Boxplot

- **C** □ Scatterplot, Densityplot, Barplot
- **D** □ Barplot, Mosaicplot, Violinplot
- **E** □ Histogramm, Scatterplot, Boxplot

Bevor Sie in Ihrer Abschlussarbeit einen statistischen Test rechnen, wollen Sie einmal betrachten, welcher Verteilung Ihre n = 179 geernteten Pflanzen folgen. Welche Verteilung ist abgebildet?

- **A** □ Eine multivariate Normalverteilung.
- **B** □ Wir haben eine Gammaverteilung vorliegen.
- **C** □ Es handelt sich um eine Binomial-Verteilung.
- **D** □ Wir haben eine Poisson-Verteilung vorliegen.
- **E** □ Es handelt sich um eine Normalverteilung.

Lineare Regression & Korrelation

15. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit wollen Sie ein kausales Modell rechnen. Jetzt stellt sich die Frage, was diese Entscheidung für Ihre Auswertung bedeutet. Welche Aussage ist richtig?

- **A** □ Wir modellieren den Zusammenhang zwischen *X* und *Y* wenn ein kausales Modell rerechnet wird. Dabei kann nicht der gesamte Datensatz genutzt werden. Es wird ein Trainingsdatensatz zum Trainieren des Modells benötigt.
- **B** □ Es wird ein Trainingsdatensatz zum Modellieren des Trainingsmodells benötigt. Der Testdatensatz dient rein zur Visualisierung. Dies gilt vor allem für ein kausales Modell.
- C ☐ Ein kausales Modell basiert auf einem Traingsdatensatz und einem Testdatensatz. Auf dem Trainingsdatensatz wird das Modell trainiert und auf dem Testdatensatz validiert.
- **D** □ Wir modellieren den Zusammenhang zwischen X und Y wenn ein kausales Modell rerechnet wird. Dabei kann der gesamte Datensatz genutzt werden. Eine Aufteilung wie in einem prädiktiven Modell ist nicht notwendig.
- **E** □ Ein kausales Modell benötigt mindestens eine Fallzahl von über 100 Beobachtungen und darf keine fehlenden Werte beinhalten. Die Varianzkomponenten müssen homogen sein.

Nach der Modellierung einer Regression stellt sich die Frage, ob die Residuen approximativ einer Normalverteilung folgen. Sie können einen QQ-Plot für die visuelle Überprüfung der Annahme an die Residuen nutzen. Welche Aussage ist richtig?

- **A** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- **B** □ Wir betrachten die Gerade. Wenn die Punkte einigermaßen gleichmäßig um die Gerade verteilt liegen, dann gehen wir von normalverteilten Residuen aus. Dies ist hier nicht der Fall. Wir haben keine normalverteilten Residuen vorliegen.
- C ☐ Wir betrachten die Punkte. Wenn die Punkte einigermaßen gleichmäßig verteilt liegen, dann gehen wir von normalen Residuen aus.
- **D** □ Wir betrachten insbesondere die beiden Enden der Gerade. Der Rest ist mehr oder minder egal, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.
- **E** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Geraden.

17. Aufgabe (2 Punkte)

Nach einer Regressions sollten die Residuen (.resid) gleichmäßig um die Gerade verortet sein. Was bei einer simplen Regression noch relativ einfach visuell in einem Scatterplot zu überprüfen ist. Für komplexere Modell liefert der Residual Plot die notwendigen Informationen. Welche Aussage ist richtig?

A □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Es ist kein Muster zu erkennen.

- **B** □ Wenn die Punkte gleichmäßig in dem positiven wie auch negativen Bereich ohne ein klares Muster liegen, dann hat unsere Modellierung geklappt. Wir können mit dem Modell weitermachen.
- **C** \square Die Annahme der normalverteilten Residuen ist erfüllt. Es ist ein Muster zu erkennen und wir können damit auf die Signifkanz von $x_1, ..., x_p$ schließen.
- D □ Die Punkte müssen gleichmäßig, mit ähnlichen Abständen, in dem positiven wie auch negativen Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Wir können mit dem Model so nicht rechnen und müssen erst die auffälligen Werte gesondert betrachten.
- **E** □ Wenn wir die Nulllinie betrachten so müssen die Punkte gleichmäßig unter der Nulllinie liegen. Unser Modell erfüllt somit nicht die Annahme von normalverteilten Residuen mit einem Mittelwert von > 0 und einer Streuung von s.

Welche Aussage über den Korrelationskoeffizienten ρ ist richtig?

- A □ Der Korrelationskoeffizienten ρ liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ als standardisierte Steigung zu verstehen, wenn eine Standardisierung durchgeführt wurde. Diese Adjustierung nach Fischer muss am Anschluß der Berechnung der Korrelation durchgeführt werden.
- **B** \square Der Korrelationskoeffizienten ρ liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ einheitslos und kann als standardisierte Steigung verstanden werden.
- **C** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen 0 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos. Eine Signifikanz kann nicht nachgewiesen werden.
- **D** \square Der Korrelationskoeffizienten ρ ist eine veraltete Darstellungsform von Effekten in der linearen Regression und wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ρ beschreibt den Anteil an erklärter Varianz durch die Regression.
- **E** \square Der Korrelationskoeffizienten ρ wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ρ beschreibt den Anteil an erklärter Varianz durch die Regression. Dabei gibt er jedoch eine Richtung an und kann auch negativ werden.

19. Aufgabe (2 Punkte)

Sie haben ein Feldexperiment mit Spitzkohl durchgeführt und wollen nun in einer simplen linearen Regression den Einfluss der CO_2 -Konzentration in $[\mu g]$ im Wasser auf das Wachstum in [kg] untersuchen. Sie erhalten einen β_{CO_2} Koeffizienten von 2.3×10^{-9} und einen p-Wert mit 0.00032. Welche Aussage zu der Signifikanz und dem Effekt ist richtig?

- **A** \square Die Einheit der CO_2 -Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p-Wert. Der p-Wert und die Einheit von der CO_2 -Konzentration hängen antiproportional zusammen.
- **B** □ Die Fallzahl ist zu hoch angesetzt. Je höher die Fallzahl ist, desto kleiner ist die Teststatistik und damit ist dann auch der *p*-Wert sehr klein. Es sollte über eine Reduzierung der Fallzahl nachgedacht werden. Dann sollte der Effekt zum p-Wert passen.
- ${f C} \ \square$ Das Gewicht und die CO_2 -Konzentration korrelieren sehr stark, deshalb wird der eta_{CO_2} Koeffizient sehr klein. Mit einer ANOVA kann für die Korrelation korrigiert werden und der Effektschätzer passt dann zum p-Wert.
- **D** \square Manchmal ist die Einheit der Einflussvariable X zu groß gewählt, so dass der Ansteig von 1 Einheit in X zu einer zu großen Änderung in Y führt. Daher kann der Effekt β_{CO_2} sehr klein wirken, da der p-Wert wird auf einer einheitslosen Teststatistik bestimmt wird.
- **E** \square Wenn der Effekt β_{CO_2} sehr klein ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{CO_2} in y. Daher ist hier mit einer anderen Einheit in den Daten zu rechnen, so dass wir hier einen besser formatierten Effekt sehen. Der p-Wert stammt aus einer einheitslosen Teststatistik.

Neben der klassischen Regression kann die Funktion lm() in Rauch für welche andere Art von Anwendung genutzt werden?

- A □ Neben der klassichen Verwendung der Funktion lm() in der linearen Regression kann auch ein Gruppenvergleich gerechnet werden. Dafür müssen aber alle Faktoren aus den Daten entfernt und numerishc umgewandelt werden. Dann kann das R Paket {emmeans} genutzt werden um die Korrelation zu berechnen. Eine Adjustierung ist dann nicht mehr notwendig.
- **B** □ Die Funktion lm() in wird klassischerweise für die nicht-lineare Regression genutzt. Ist die Einflussvariable *X* numerisch so werden die Gruppenmittelwerte geschätzt.
- $\mathbf{C} \square$ Ist die Einflussvariable X ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich. Die Funktion lm() kann dabei eigentlich weggelassen werden, wird aber traditionell gerechnet.
- D □ Die Funktion lm() in ist der letzte Schritt für einen Gruppenvergleich. Vorher kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion lm() werden die Gruppenvarianzen bestimmt.
- **E** \square Ist die Einflussvariable X ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich. Dennoch muss zuerst ein lineares Modell mit der Funktion lm() in \mathbb{R} gerechnet werden.

21. Aufgabe (2 Punkte)

Welche Aussage über das generalisierte lineare Modell (GLM) ist richtig?

- **A** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien als die Normalverteilung mit einer linearen Regression modelliert werden.
- **B** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien außer die Normalverteilung mit einer linearen Regression modelliert werden. Dafür werden alle Verteilungen in eine Normalverteilung überführt und anschließend standardisiert.
- **C** □ Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.
- D □ In ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann. Weitere Modellierungen sind in auch mit zusätzlich geladenen Paketen nicht möglich.
- **E** □ Das GLM ist ein faktisch maschineller Lernalgorithmus, der selstständig die Verteilungsfamilie für Y wählt.

Vermischte Themen

22. Aufgabe (2 Punkte)

Die Randomisierung von Beobachtungen zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig?

- **A** □ Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. Dadurch lässt sich erst ein Experiment auswerten.
- **B** □ Strukturgleichheit ist durch Randomisierung gegeben. Leider hilft die Randomisierung noch nicht um von der Stichprobe auf die Grundgesamtheit zu schließen. Deshalb wurde das Falsifikationsprinzip entwickelt.
- **C** □ Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- **D** □ Durch eine Randomisierung können wir nicht von Strukturgleichheit zwischen der Stichprobe und der Grundgesamtheit ausgehen.
- **E** □ Durch eine Randomisierung können wir von Strukturgleichheit zwischen der Stichprobe und der Grundgesamtheit ausgehen.

Wenn Sie einen Datensatz erstellen, dann ist es ratsam die Spalten und die Einträge in englischer Sprache zu verfassen, wenn Sie später die Daten in Rauswerten wollen. Welcher Aussage ist richtig?

- **A** □ Es gibt keinen Grund nicht auch deutsche Wörter zu verwenden. Es ist ein Stilmittel.
- **B** □ Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Daher ist die Nutzung in Deutsch in den AGBs von 😱 untersagt.
- **C** □ Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Die Nutzung von englischer Sprache umgeht dieses Problem in eleganter Art.
- **D** □ Alle Funktionen und auch Anwendungen sind in in englischer Sprache. Die Nutzung von deutschen Wörtern ist nicht schick und das ist zu vermeiden.
- **E** □ Die Spracherkennung von **Q** ist nicht in der Lage Deutsch zu verstehen.

24. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit wollen Sie zu Beginn eine explorativen Datenanalyse (EDA) in Rechnen. Dafür gibt es eine generelle Abfolge von Prozessschritten. Welche ist hierbei die richtige Reihenfolge?

- A ☐ Für eine explorativen Datenanalyse (EDA) in müssen wir als erstes die Daten über read_excel() einlesen. Danach müssen wir schauen, dass wir die Spalten richtig über mutate() transformiert haben. Insbesondere müssen Variablen mit Kategorien in einen Faktor umgewandelt werden. Am Ende nutzen wir die Funktion ggplot() für die eigentlich EDA.
- **B** □ Wir lesen die Daten über eine generische Funktion read() ein und müssen dann die Funktion ggplot() nur noch installieren. Dann haben wir die Abbildungen als *.png vorliegen.
- C □ Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben.
- **D** ☐ Für eine explorativen Datenanalyse (EDA) in müssen wir als erstes die Daten über read_excel() einlesen. Danach müssen wir schauen, dass wir die Zeilen richtig über mutate() transformiert haben. Insbesondere müssen Variablen mit kontinuierlichen Werten in einen Faktor umgewandelt werden. Am Ende nutzen wir die Funktion ggplot() für die eigentlich EDA.
- **E** □ Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben.

25. Aufgabe (2 Punkte)

Es sei $s_1^2 = s_2^2$ in dem Modell $Y \sim X$. Welche Aussage ist richtig?

- **A** □ Es handelt sich um ein balanciertes Design.
- **B** □ Es handelt sich um ein unbalanciertes Design.
- **C** □ Es liegt Varianzhetrogenität vor.
- **D** □ Es handelt sich um unabhängige Beobachtungen.
- **E** □ Es liegt Varianzhomogenität vor.

In einem Zuchtexperiment messen wir die Ferkel verschiedener Sauen. Die Ferkel einer Muttersau sind daher im statistischen Sinne...

- **A** □ Untereinander unabhängig. Sollten die Mütter verwandt sein, so ist die Varianzstruktur ähnlich und muss modelliert werden.
- **B** □ Untereinander abhängig. Die Ferkel stammen von einem Muttertier und haben vermutliche eine ähnliche Varianzstruktur.
- **C** □ Abhängig von der Stallanlage und des Experiments können die Ferkel abhängig oder unabhängig sein. Allgmein gilt, dass Ferkel von unterschiedlichen Sauen näher miteinander verwandt sind als Ferkel von gleichen Sauen. Das Fisher-Axiom.
- **D** □ Untereinander stark korreliert. Die Ferkel sind von einer Mutter und sommit miteinander korreliert. Dies wird in der Statistik jedoch meist nicht modelliert.
- **E** □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander unabhängig.

27. Aufgabe (2 Punkte)

Sie führen ein Experiment zur Behandlung von Klaueninfektionen bei Schafe durch. Bei 3 Tieren finden Sie eine Erkrankung der Klauen vor und 12 Tiere sind gesund. Welche Aussage über den Effektschätzer Risk ratio ist richtig?

- **A** □ Es ergibt sich ein Risk ratio von 4, da es sich um ein Anteil handelt.
- **B** □ Der Anteil der Kranken wird berechnet. Da es sich um ein Anteil handelt ergibt sich ein Risk ratio von 0.2.
- **C** □ Es ergibt sich ein Risk ratio von 0.25, da es sich um ein Anteil handelt.
- **D** ☐ Es ergibt sich ein Risk ratio von 0.2, da es sich um eine Chancenverhältnis handelt.
- **E** □ Da es sich um ein Chancenverhältnis handelt ergibt sich ein Risk ratio von 0.25.

28. Aufgabe (2 Punkte)

In der Bio Data Science wird häufig mit sehr großen Datensätzen gerechnet. Historisch ergibt sich nun ein Problem bei der Auswertung der Daten und deren Bewertung hinsichtlich der Signifikanz. Welche Aussage ist richtig?

- **A** □ Big Data ist ein Problem der parametrischen Statistik. Parameter lassen sich nur auf kleinen Datensätzen berechnen, da es sich sonst nicht mehr um eine Stichprobe im engen Sinne der Statistik handelt.
- **B** □ Aktuell werden immer größere Datensätze erhoben. Dadurch wird auch die Varianz immer höher was automatisch zu mehr signifikanten Ergebnissen führt.
- C □ Aktuell werden zu grosse Datensätze für die gänigige Statistik gemessen. Daher wendet man maschinelle Lernverfahren für kausale Modelle an. Hier ist die Relevanz gleich Signifikanz.
- **D** ☐ Mehr Fallzahl in Datensätzen bedeutet mehr signifikante Ergebnisse, da in mehr Daten auch mehr Informationen beinhaltet sind. Deshalb lohnen sich riesige Datensätze, die durch die vielen signifikanten Ergebnisse auch eine Menge an relevanten Erkenntnissen liefern.
- **E** □ Eine erhöhte Fallzahl führt automatisch zu mehr signifikanten Ergebnissen auch wenn der Effekt klein ist und damit nicht relevant. Dadurch sind die Informationen zur Signifikanz in riesigen Datensätzen schwer zu verwerten, da fast alle Vergleiche signifikant sind.

Multiple Gruppenvergleiche

29. Aufgabe (2 Punkte)

Sie haben folgende unadjustierten p-Werte gegeben: 0.34, 0.03, 0.001, 0.89, 0.21 und 0.02. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 2.04, 0.18, 0.006, 5.34, 1.26 und 0.12. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0567, 0.005, 2e-04, 0.1483, 0.035 und 0.0033. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0567, 0.005, 2e-04, 0.1483, 0.035 und 0.0033. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.
- **D** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1, 0.18, 0.006, 1, 1 und 0.12. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **E** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1, 0.18, 0.006, 1, 1 und 0.12. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.

30. Aufgabe (2 Punkte)

Auf wissenschaftlichen Postern finden Sie unter Abbildungen häufig die Abbkürzung *CLD*. Für welchen statistischen Fachbegriff steht die Abbkürzung und wie interpretieren Sie ein *CLD*?

- **A** □ Contrast letter display. Unterschiede in den Behandlungen werden durch den gleichen Buchstaben oder Symbol dargestellt. Die Interpretation des CLD führt häufig in die Irre.
- **B** \square Compound letter display. Gleichheit in dem Outcomes wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des Verbunds (eng. compound) herausfordernd, da wir ja nach dem Unterschied suchen.
- **C** □ Compact letter display. Teilweise ist die Interpretation des CLD schwierig, da wir ja nach Unterschieden suchen aber nur Gleichheit in den Buchstaben sehen. Die Gleichheit der Behandlungen wird durch gleiche Buchstaben dargestellt.
- D ☐ Compact letter display. Gleiche Buchstaben zeigen Gleichheit in den Behandlungen. Die Interpretation ist deshalb sehr intuitiv und einfach. Darüber hinaus ist damit das CLD auch auf einer Linie mit der Testtheorie, da wir ja auch dort die Gültigkeit der Nullhypothese nachweisen. Wir suchen ja Gleichheit.
- **E** □ Compact line display. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt. Früher wurden keine Buchstaben sondern eine durchgezogene Linie verwendet. Bei mehr als drei Gruppen funktioniert die Linie aber graphisch nicht mehr.

31. Aufgabe (2 Punkte)

In Ihrer Bachelorarbeit müssen Sie einen Feldversuch auswerten. Nachdem Sie die zweifaktorielle ANOVA gerechnet haben und keine signifikante Interaktion vorliegt, wollen Sie jetzt einen Posthoc-Test rechnen. Welches R Paket nutzen Sie dafür am besten?

- **A** □ Das R Paket {Im}. Das Paket {Im} erstellt selbstständig Konfidenzintervalle und entsprechende p-Werte. Da wir in dem Paket nicht adjustieren müssen, ist es bei Anwendern sehr beliebt.
- **B** □ Das R Paket {hmisc} erlaubt die Durchführung eines multiplen Gruppenvergleichs aus verschiedenen Modellen heraus. Aus einem hmisc Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- **C** □ Sie nutzen das R Paket {emmeans} für die Berechnung des multipnen Gruppenvergleichs. Die Ausgabe der Funktion emmeans() erlaubt zügig über {ggplot} einen Barplot zu erstellen und dann auch das CLD zu berechnen. Sie haben alles sofort zusammen.
- D □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem emmeans Objekt lässt sich leider kein CLD erstellen. Dennoch ist das Paket einfach zu bedienen und wird deshalb genutzt. Die Interpretation der statistischen Auswertung wird über einen Barplot abgebildet.
- **E** □ Das R Paket {ggplot}. Wir erhalten hier sofort eine Visualisierung der Daten. Anhand der Visualisierung lässt sich eine explorative Datenanalyse durchführen, die gleichwertig zu einem Posthoc-Test ist.

Bei einem multiplen Vergleich oder Posthoc Test kann es zu einer Besonderheit beim statistischen Testen kommen. Wie nennt man diese Besonderheit beim statistischen Testen und wie kann man mit ihr umgehen?

- **A** \square Die Adjustierung der p-Werte nach Bonferroni erlaubt es gegen die α -Inflation vorzugehen, die häufig beim multiplen Testen auftritt. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel höher. Das ist der Grund warum die p-Werte entsprechend adjustiert werden müssen.
- **B** \square Beim multiplen Testen kann es zu einer α -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Welch das bekanneste Verfahren ist.
- **C** □ Beim multiplen Testen kann es zu Varianzheterogenität kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5%. Daher müssen die p-Werte entsprechend adjustiert werden. Das Verfahren nach Welch, bekannt aus dem t-Test, ist hier häufig anzuwenden.
- **D** \square Beim multiplen Testen kann es zu einer α -Deflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist. Die p-Werte werden durch die Anzahl an Vergleichen geteilt
- **E** \square Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel niedriger, bei ca. 1%. Es kommt zu einer α -Hyperinflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.

33. Aufgabe (2 Punkte)

Sie rechnen mehrere t-Tests für einen multiplen Vergleich nachdem eine einfaktorielle ANOVA sich als signifikant herausgestellt hat. Welche Aussage im Bezug auf den Effekt ist richtig?

- **A** \square Beim multiplen Testen kann es zu einer Δ-Deflation kommen. Das globale Relevanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die Δ-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der Δ-Werte nach Bonferroni das bekanneste Verfahren ist. Die Δ-Werte werden durch die Anzahl an Vergleichen geteilt.
- ${\bf B} \ \square$ Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nicht adjustiert werden im Gegensatz zu den p-Werten.
- C □ Beim multiplen Testen kann es zu einer Δ-Inflation kommen. Das globale Effektniveau liegt nicht mehr bei 20%. Daher müssen die Effekte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der Effekte nach Bonferroni das bekanneste Verfahren ist.
- f D \Box Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ adjustiert werden im Gegensatz zu den p-Werten.
- **E** \square Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nach Bonferroni adjustiert werden. Dafür wird der Effekt mit der Anzahl an Vergleichen k multipliziert. Dies geschiet analog zu den p-Werten.

Statistische Testtheorie

34. Aufgabe (2 Punkte)

Welche Aussage zum mathematische Ausdruck $Pr(D|H_0)$ ist richtig?

- **A** □ Die Inverse der Wahrscheinlichkeit unter der die Nullhypothese nicht mehr die Alternativehypothese überdeckt.
- **B** \square $Pr(D|H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1 Pr(H_A)$
- ${f C} \ \square$ Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.
- **D** □ Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
- $\mathbf{E} \square Pr(D|H_0)$ ist die Wahrscheinlichkeit die Daten D zu beobachten, wenn die Nullhypothese wahr ist.

Das statistische Testen basiert auf dem Falsifikationsprinzip. Es besagt,

- A ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können.
- **B** □ ... dass ein minderwertes Modell durch ein minderwertiges Modell ersetzt wird. Es gilt das Verifikationsprinzip nach Karl Popper.
- **C** □ ... dass ein schlechtes Modell durch ein schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- **D** □ ... dass ein schlechtes Modell durch das Falsifikationsprinzip durch ein weniger schlechtes Modell ersetzt wird.
- $\mathbf{E} \square \dots$ dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.

36. Aufgabe (2 Punkte)

Das Signifikanzniveau α wird auch Fehler 1. Art genannt und liegt bei 5%. Warum wurde der Grenzwert von 5% als Signifikanzschwelle gewählt?

- **A** \square Als Kulturkonstante hat $\alpha = 5\%$ den Rang einer Naturkonstante und wurde nach langer Diskussion in der UN im Jahre 1983 festgesetzt. Damals auch schon mit der Zustimmung der UdSSR.
- **B** \square Die Festlegung von $\alpha = 5\%$ ist eine Kulturkonstante. Wissenschaftler benötigt eine Schwelle für eine statistische Testentscheidung, der Wert von α wurde aber historisch mehr zufällig gewählt.
- **C** □ Der Begründer der modernen Statistik, R. Fischer, hat die Grenze simuliert und berechnet. Dadurch ergibt sich dieser optimale Cut-Off.
- **D** ☐ Auf einer Statistikkonferenz in Genf im Jahre 1942 wurde dieser Cut-Off nach langen Diskussionen festgelegt. Bis heute ist der Cut Off aber umstritten, da wegen dem 2. Weltkrieg viele Wissenschaftler nicht teilnehmen konnten.
- **E** \square Da Wissenschaftler eine Schwelle für die statistische Testentscheidung benötigen wurde α in einer großen Konferenz 1945 gewählt. Damit ist $\alpha=5\%$ eine Kulturkonstante mit einem Rank einer Naturkonstante.

37. Aufgabe (2 Punkte)

Betrachten wir die Teststatistik aus einem abstrakteren Blickwinkel. Beim statistischen Testen wird das "signal" mit dem "noise" aus den Daten D zu einer Teststatistik T_D verrechnet. Welche der Formel berechnet korrekt die Teststatistik T_D ?

A □ Es gilt $T_D = (signal \cdot noise)^2$

B □ Es gilt
$$T_D = \frac{signal}{noise}$$

C
$$\square$$
 Es gilt $T_D = \frac{signal}{noise^2}$

D □ Es gilt
$$T_D = \frac{noise}{sianal}$$

E \square Es gilt $T_D = signal \cdot noise$

Eine Analogie kann helfen einen Sachverhalt besser zu verstehen. Wie kann folgende Aussage richtig in die Analogie der statistischen Testtheorie gesetzt werden?

H₀ ablehnen obwohl die H₀ gilt

- **A** □ In die Analogie eines Rauchmelders: *Alarm with fire*.
- **B** \square Dem β -Fehler mit der Analogie eines Rauchmelders: *Fire without alarm*.
- **C** \square In die Analogie eines Rauchmelders: *Alarm without fire*, dem α -Fehler.
- **D** \square *Fire without alarm*, dem β -Fehler als Analogie von Rauch im Haus.
- **E** \square Dem *β*-Fehler mit der Analogie eines brennenden Hauses: *Fire without alarm*.

39. Aufgabe (2 Punkte)

Sie sollen in Ihrer Abschlussarbeit die Relevanz und die Signifikanz in einer statistischen Maßzahl vereinen. Welche Aussage ist richtig?

- **A** \square Die Teststatistik. Durch den Vergleich von T_c zu T_k ist es möglich die H_0 abzulehnen. Die Relevanz ergibt sich aus der Fläche rechts vom dem T_c -Wert.
- **B** □ Über das Konfidenzintervall. Das Konfidenzinterval beitet eine Entscheidung über die Signifikanz und zusätzlich kann über die Visualizierung des Konfidenzintervals eine Relevanzschwelle definiert werden.
- C □ Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.
- **D** \square Einem Konfidenzintervall. Das Konfidenzinterval bringt durch eine Visualisierung und drei Intervallgrenzen die Möglichkeit mit, eine Relevanzschwelle neben der Signifikanzschwelle und der α -Schwelle zu definieren.
- **E** □ Über das Konfidenzintervall. Das Konfidenzinterval inkludiert eine Entscheidung über die Relevanz und zusätzlich kann über die Visualizierung des Konfidenzintervals eine Signifikanzschwelle vom Forschenden definiert werden.

40. Aufgabe (2 Punkte)

Welche Aussage über den p-Wert und dem Signifikanzniveau α gleich 5% ist richtig?

- **A** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.
- **B** □ Wir vergleichen die Effekte des *p*-Wertes mit den Effekten der Signifikanzschwelle unter der Annahme der Nullhypothese. Dabei gilt, dass wir die Nullhypothese nur ablehnen können anhand des Falsifikationsprinzips.
- ${f C}$ \square Wir schauen, ob der p-Wert größer ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_A gilt.
- **D** \square Wir schauen, ob der *p*-Wert kleiner ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_0 gilt.
- **E** \square Wir machen eine Aussage über die indivduelle Wahrscheinlichkeit des Eintretens der Nullhypothese H_0 . Der p-Wert wird mit dem Signifikanzniveau verglichen und bewertet.

Die Ergebnisse der einer statistischen Analyse können in die Analogie einer Wettervorhersage gebracht werden. Welche Analogie für die Ergebnisse eines statistischen Tests trifft am besten zu?

- **A** □ In der Analogie der Sonnenscheindauer: Wie lange kann mit einem entsprechenden Effekt gerechnet werden? Die Wahrscheinlichkeit für den Effekt gibt der statistische Test wieder.
- **B** □ In der Analogie des Niederschlags oder Regenmenge: ein statistischer Test gibt die Stärke eines Effektes wieder. Zum Beispiel, wie hoch ist der Mittelwertsunterschied.
- C □ Die Analogie der Regenwahrscheinlichkeit: der statistische Test erlaubt es die Wahrscheinlichkeit für Regen abzuschätzen jedoch nicht die Menge und somit den Effekt.
- D □ In der Analogie der Durchschnittstemperatur: Wie oft tritt ein Effekt durchschnittlich ein? Wir erhalten eine Wahrscheinlichkeit für die Effekte. Zum Beispiel, wie hoch ist die Wahrscheinlichkeit für einen Mittelwert als Durchschnitt.
- **E** □ In der Analogie der Regenwahrscheinlichkeit in einem bestimmten Gebiet: ein statistischer Test gibt die Wahrscheinlichkeit für ein Ereignis in einem Experiment mit den Daten *D* wieder und lässt sich kaum verallgemeinern.

42. Aufgabe (2 Punkte)

In Ihrer Forschungsarbeit wollen Sie eine Aussage über die untersuchte Population treffen. Dazu nutzen Sie eine ANOVA als statistischen Test. Erhalten Sie eine valide Aussage aus einem statistischen Test?

- **A** □ Ja, es ist möglich die untersuchte Population mit einem t-Test auszuwerten. Wir erhalten dann eine Aussage zur Population.
- **B** □ Weder eine Ausssage über die Population noch über das Individuum ist mit einem statistischen Test möglich. Wir erhalten eine Aussage über ein Experiment.
- C □ Nein, wir erhalten nur eine Aussage zu zwei Individuen. Ein statistischer Test liefert Informationen zu einem Individuum im Vergleich zu einem anderen Individuum.
- **D** □ Ja, wir erhalten eine Aussage. Müssen aber das Individuum im Kontext der Population adjustieren.
- **E** □ Nein, die untersuchte Population können wir mit einem statistischen Test nicht auswerten. Wir erhalten keine Aussage zur Population.

43. Aufgabe (2 Punkte)

In der statistischen Testtheorie gibt es den Begriff Power. Was sagt der statistische Begriff Power aus?

- **A** \square Die Power beschreibt die Wahrscheinlichkeit die H_A abzulehnen. Wir testen die Power jedoch nicht.
- **B** \square Alle statistischen Tests sind so konstruiert, dass die H_A mit 80% bewiesen wird. Die Power ist $1-\beta$ mit β gleich 20% gesetzt.
- **C** \square Die Power $1-\beta$ wird auf 80% gesetzt. Damit liegt die Wahrscheinlichkeit für die H_0 bei 20%.
- **D** \square Es gilt $\alpha + \beta = 1$ und somit liegt β meist bei 95%.
- **E** \square Die Power wird berechnet und ist keine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit H_0 bewiesen wird

44. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit sollen Sie neben den p-Werten auch die Effekte mit angeben. Welche Aussage ist richtig?

 ${\bf A} \ \square$ Durch den Effekt erfahren wir die biologisch interpretierbare Ausgabe eines statistischen Tests. Zum Beispiel das η^2 aus einer ANOVA. Damit können wir die Relevanz direkt mit dem Effekt verbinden. Am Ende muss der Forschende aber entscheiden, ob der Effekt entsprechend seinen Erwartungen als bedeutet zu bewerten ist.

- **B** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Moderen Algorithmen liefern keine Effekte mehr sondern nur noch bedingte Wahrscheinlichkeiten. Der Effekt spielt in der modernen Statistik keine Rollen mehr.
- **C** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
- **D** □ Der Effekt eines statistischen Tests beschreibt den Output oder die Wiedergabe eines Tests in einem Computer.
- **E** □ Der Forschende muss am Anfang wissen, ob das Eregbnis eines Experiments relevant für seine Forschung ist. Dafür kann der Effekt eines statistischen Tests genutzt werden oder auch der Prähoc-Test. Damit beschreibt der Effekt den biologischen interpretierbaren Teil eines Experimnts vor der Durchführung. Zum Beispiel der Unterschied zwischen zwei Mittelwerten.

Welche Aussage über die Entscheidung anhand des p-Wertes gegen die Nullhypothese ist richtig?

- **A** \square Ist $Pr(D|H_0)$ kleiner als das Signifikanzniveau α gleich 5% dann wird die Nullhypothese H_0 abgelehnt.
- ${\bf B}$ \square Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert über oder gleich dem Signifikanzniveau α dann kann die Nullhypothese abgelehnt werden.
- $\mathbf{C} \square$ Ist in dem 95%-Konfidenzintervall nicht die Null enthalten dann wird die Nullhypothese H_0 abgelehnt.
- **D** \square Ist T_D höher als der kritische Wert $T_{\alpha=5\%}$ dann wird die Nullhypothese H_0 abgelehnt.
- **E** \square Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert in dem Signifikanzniveauintervall α dann kann die Nullhypothese abgelehnt werden.

46. Aufgabe (2 Punkte)

Ein statistischer Test benötigt für die richtige Durchführung Hypothesen *H*, sonst ist der Test nicht zu interpretieren. Welche Aussage ist richtig?

- **A** \square Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation.
- **B** \square Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen.
- **C** \square Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet.
- **D** \square Es gibt bedingt durch das das Falsifikationsprinzip ein Set von k Nullhypothesen, die iterative gegen k-1 Alternativhypothesen getestet werden.
- **E** \square Mit der Nullhypothese H_A und der Alternativehypothese H_0 gibt es zwei Hypothesen, die aber selten genutzt werden.

Statistische Tests für Gruppenvergleiche

47. Aufgabe (2 Punkte)

Nach einem Feldexperiment wollen Sie zwei Gruppen mit einem Welch t-Test vergleichen. Welche Aussage ist auch für den Student t-Test richtig?

- **A** □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.
- **B** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte *jeweils* von Null unterscheiden.

- **C** \square Der t-Test testet generell zu einem erhöhten α -Niveau von 20%.
- **D** Der t-Test vergleicht die Varianzen von mindestens zwei oder mehr Gruppen
- **E** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte in den Gruppen signifikant unterscheiden.

Die folgende Abbildung enthält die Daten aus einer Studie zur Bewertung der Wirkung des Mikronährstoff Nitrat auf den Ertrag in t/ha von Papaya im Vergleich zu einer Kontrolle. Der Versuch wurde in 9 Parzellen pro Gruppe durchgeführt. Welche Aussage im Bezug auf eine statistische Auswertung ist richtig?

- **A** □ Nach Betrachtung des Barplots liegt ein signifikanter Unterschied vor. Der Effekt liegt bei 6.
- **B** □ Die Barplots deuten auf einen signifikanten Unterschied. Der Effekt liegt vermutlich bei 6 unter einer groben Abschätzung. Wir müssen aber eine ANOVA rechnen um den Effekt wirklich bestimmen zu können.
- **C** □ Es liegt ein signifikanter Unterschied vor. Der Effekt liegt bei 0.6.
- **D** □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei 6. Wir müssen aber einen Posthoc-Test rechnen um den Effekt wirklich bestimmen zu können.
- **E** □ Der Test deutet auf kein signifikanten Unterschied hin. Der Effekt liegt vermutlich bei 6.

49. Aufgabe (2 Punkte)

Sie rechnen einen gepaarten t-Test, da Ihre Beobachtungen verbunden sind. Welche der folgenden Aussagen ist richtig?

- **A** □ Wenn die Beobachtungen unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir das Produkt zwischen den zwei Messpunkten.
- **B** □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir die Differenz zwischen den beiden Zeitpunkten. Auf den Differenzen rechnen wir den gepaarten t-Test.
- C □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir den Quotienten zwischen den beiden Zeitpunkten. Auf den Quotienten rechnen wir den gepaarten t-Test.
- **D** \square Der gepaarte t-Test wird genutzt, wenn die Differenzen der Beobachtungen verbunden sind und wir dadurch die Unabhäängigkeit nicht mehr vorliegen haben.
- **E** □ Beim gepaarten t-Test kombinieren wir die Vorteile des Student t-Test für Varianzhomogenität mit den Vorteilen des Welch t-Test für Varianzheterogenität. Wir bilden dafür die Differenz der Einzelbeobachtungen.

Nach einem Experiment mit fünf Weizensorten ergibt eine ANOVA (p=0.048) einen signifikanten Unterschied für den Ertrag. Sie führen anschließend die paarweisen t-Tests für alle Vergleiche der verschiedenen Weizensorten durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.053$. Welche Aussage ist richtig?

- **A** □ Der Fehler liegt in den t-Tests. Wenn eine ANOVA signifikant ist, dann muss zwangsweise auch ein t-Test signifikant sein.
- **B** Das ist kein Wunder. Die ANOVA testet auf der gesamten Fallzahl und die paarweisen t-Tests verlieren immer eine oder mehr Gruppen als Fallzahl. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.
- C □ Die ANOVA testet auf der gesamten Fallzahl. Es wäre besser die ANOVA auf der gleichen Fallzahl wie die einzelnen t-Tests zu rechnen.
- **D** ☐ Hier kommt der Effekt der stiegenden Fallzahl auf die Anzahl an signifikante Ergebnisse zu tragen. Da die ANOVA auf weniger Fallzahl testet als die paarweisen t-Tests, kann die ANOVA schwerer einen signifikanten Unterscheid nachweisen.
- **E** □ Das ist kein Wunder. Die ANOVA testet nicht auf der gesamten Fallzahl und die paarweisen t-Tests gewinnen immer eine oder mehr Gruppen als Fallzahl dazu. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.

Teil I.

Deskriptive Statistik & Explorative Datenanalyse

51. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark steht vor einem ersten Problem, denn wenn es nach seiner Betreuerin geht, soll er in einem einem Feldexperiment Erbsen auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Mark liebt Geocaching. Darin kann er sich wirklich verlieren und immer wieder neu begeistern. Das heißt erstmal überlegen für Mark. Mark schmeißt noch eine Handvoll Marzipankugeln in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Andrea Berg. Die Behandlung werden verschiedene Lüftungssysteme und Folientunnel (ctrl, storm und tornado) sein. In seiner Exceldatei wird er den Endpunkt (Y) Frischegewicht als freshmatter aufnehmen. Vorab soll Mark aber eimal die folgenden Barplots seiner Betreuerin nachbauen, damit er den Code schonmal für später vorliegen hat. Damit geht das Problem schon los. Wenn die Unsicherheit nicht wäre, ja dann wäre wohl vieles möglich für Mark! Aber so..

Leider kennt sich Mark mit der Erstellung von Barplots in $\mathbf R$ nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Barplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Barplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Mark einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Barplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Jonas nicht gemerkt, welche statistischen Maßzahlen für einen Barplot erhoben werden müssen. Besser wäre was anderes gewesen. Stricken. Ein wunderbares Hobby um sich drin zu verlieren und Abstand zu bekommen. Jonas denkt gerne über Stricken nach. Das ist in soweit doof, da nach seiner Betreuerin nun Barplots aus seinen Daten gebaut werden sollen, bevor es mit dem statistischen Testen weitergeht. Na dann mal los. Jonas schafft sich die nötige Stimmung. Jonas streichelt liebevoll das Meerschweinchen. Der Kopf ist in seinem Schloß vergraben um den Klang von Iron Maiden zu dämpfen. Die Behandlung für Brokoli waren verschiedene Substrattypen (torf, 40p60n und 70p30n). Erfasst wurde von Jonas als Endpunkt (Y) Proteingehalt. Jonas hat dann protein in seiner Exceldatei eintragen. Aber auch irgendwie egal. Jonas will später nochmal raus um zu Schwimmen. Druck ablassen, dass muss er auch.

treatment	protein
torf	40.4
torf	40.0
70p30n	41.6
70p30n	29.7
70p30n	27.7
torf	27.7
70p30n	23.6
70p30n	31.8
40p60n	47.3
40p60n	38.6
torf	21.1
40p60n	42.9

Leider kennt sich Jonas mit der Erstellung von Barplots nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichnen Sie in *einer* Abbildung die Barplots für die Behandlung von Brokoli! Beschriften Sie die Achsen entsprechend!(4 Punkte)
- 3. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Jonas keinen Effekt zwischen den Behandlungen von Brokoli erwarten würde, wie sehen dann die Barplots aus? Antworten Sie mit einer Skizze der Barplots! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Wenn die Faulheit nicht wäre, ja dann wäre wohl vieles möglich für Yuki! Aber so.. Deshalb gilt anschauen, was andere vor einem gemacht haben. Für Yuki ist es eine Möglichkeit schneller ans Ziel zu gelangen. Yuki soll in ihrer Hausarbeit Lauch untersuchen. Die Behandlung in ihrer Hausarbeit werden verschiedene Lüftungssystemen und Folientunneln (ctrl, storm und tornado) sein. Erheben wird Yuki als Endpunkt (Y) Frischegewicht benannt als freshmatter in ihrer Exceldatei. Von ihrer Betreuerin erhält sie nun folgende Abbildung von Boxplots, die sie erstmal zur Übung nachbauen soll, bevor sie mit dem eigentlichen Versuch beginnt. Aber nur in passender Atmospäre! Schon dutzende Male gesehen: Matrix. Aber immer noch großartig zusammen mit Reese's Peanut Butter Cups.

Leider kennt sich Yuki mit der Erstellung von Boxplots in $\mathbf R$ nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Boxplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 2. Beschriften Sie einen der Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Boxplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Yuki einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Eine echte Herausforderung für sie war schon immer die Erwartung gewesen. Ein leidiges Lied. Deshalb gilt anschauen, was andere vor einem gemacht haben. Für Nilufar ist es eine Möglichkeit schneller ans Ziel zu gelangen. Deshalb hat sich Nilufar viele Poster in der Fakultät angeschaut und ist zum Schluß gekommen, dass Boxplots eine häufig genutzte Abbildung sind. Nilufar soll nun in ihrer Abschlussarbeit Erdbeeren untersuchen. Die Behandlung in ihrer Abschlussarbeit sind verschiedene Substrattypen (torf und 70p30n). Erhoben wurden von Nilufar als Endpunkt (Y) Trockengewicht benannt als drymatter in ihrer Exceldatei. Erwartungsgemäß erhält sie von ihrer Betreuerin den Auftrag die erhobenen Daten als Boxplots darzustellen. Dann kann Nilufar auch schonmal abschätzen, was bei einem statistischen Test rauskommen könnte. Darüber hinaus kann Nilufar anhand Boxplots eine Aussage über die Varianzhomogenität über die Behandlungsgruppen treffen. Na dann mal los. Nilufar schafft sich die nötige Stimmung. Nilufar nickt im Takt von Deichkind und bemerkt dabei gar nicht was das Huhn schon wieder anstellt.

treatment	drymatter
torf	45.2 41.7
torf	37.2
torf	39.6
70p30n	35.6
70p30n	33.4
torf	33.0
70p30n	52.2
70p30n	25.1
torf	38.2
70p30n	45.7
torf	38.1
torf	39.5
70p30n	43.4
70p30n	49.3
torf	44.7
70p30n	38.5
torf	38.6

Leider kennt sich Nilufar mit der Erstellung von Boxplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Erdbeeren! Beschriften Sie die Achsen entsprechend! **(5 Punkte)**
- 2. Wie ist Ihr Vorgehen, wenn Sie eine gerade Anzahl an Beobachtungen pro Gruppe haben? (1 Punkt)
- 3. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Sie keinen Effekt zwischen den Behandlungen von Erdbeeren erwarten würden, wie sehen dann die beiden Boxplots aus? Antworten Sie mit einer Skizze der Boxplots! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ihrer Abschlussarbeit möchte Jessica gerne die Daten aus einem Freilandversuch mit Kartoffeln in einem Histogramm darstellen. Das Histogramm erlaubt ihr dabei Rückschlüsse auf die Verteilung über den Messwert (Y) zu treffen. Aus den Boxen wummert David Bowie und ihr Mund ist verklebt von Schokobons. 'Herrlich', denkt Jessica. In seinem Experiment hat Jessica die seltsamen Verdickungen gezählt. Es wäre einfacher, wenn da nicht noch was wäre. Eine echte Herausforderung für sie war schon immer der Mangel gewesen. Ein leidiges Lied. Wenn David Bowie ertönt, dann sucht der Hund schleunigst Schutz unter dem Sofa. Jessica schüttelt den Kopf.

Die seltsamen Verdickungen: 3, 4, 5, 2, 6, 6, 3, 2, 5, 2, 4, 3, 3, 2, 4, 1, 1, 4, 5, 7, 3, 3, 6, 6, 7, 0, 3, 5, 2, 4

Leider kennt sich Jessica mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die absoluten und relativen Häufigkeiten in der Abbildung! (1 Punkt)
- 4. Berechnen Sie aus den Daten die Wahrscheinlichkeit mehr als die Anzahl 6 zu beobachten! (1 Punkt)
- 5. Berechnen Sie aus den Daten die Chance mehr als die Anzahl 6 zu beobachten! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Gespräch mit seiner Betreuerin wird Alex gebeten seine Daten aus einem Feldexperiment mit Kartoffeln in einem Histogramm darzustellen. Alex schmeißt noch eine Handvoll Gummibärchen in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Abba. In seinem Experiment hat er die mittleren Mehltauspots erst fotographiert und dann ausgezählt. Laut seiner Betreuerin soll das Histogramm helfen, die Verteilung der die mittleren Mehltauspots zu bestimmen. Es wäre einfacher, wenn da nicht noch was wäre. Alex und die Gefälligkeit, eine unendliche Geschichte mit kniffeligen Wendungen. Wenn Abba ertönt, dann sucht die Katze schleunigst Schutz unter dem Sofa. Alex schüttelt den Kopf.

Die mittleren Mehltauspots: 10.7, 5.4, 6.8, 13.6, 8.9, 12.2, 10, 9, 8.5, 9.6, 11.4, 10.4, 8.1, 8.3, 8, 9.5, 10.3, 11.5, 10, 6.5, 10.1, 11.5, 11.8, 6.8, 8.1

Leider kennt sich Alex mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jessica liest laut: 'Wenn zwei kontinuierliche Variablen vorliegen, können diese in einer exploartiven Datenanalyse...'. Jessica stoppt. Jessica schmeißt noch eine Handvoll Schokobons in ihren Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von David Bowie. Was waren noch gleich kontinuierliche Variablen? In ihrer Abschlussarbeit hatte sie einen Versuch in einer Klimakammer im Teuteburgerwald durchgeführt. Dabei ging es um den Zusammenhang zwischen Proteingehalt [g/kg] und durschnittlichen Niederschlag [ml/w] im groben Kontext von Kartoffeln. Nun stellt sich die Frage für sie, ob es überhaupt einen Zusammenhang zwischen den gemessenen Variablen gibt. Dafür war eine explorative Datenanalyse gut! Wenn der Mangel nicht wäre, ja dann wäre wohl vieles möglich für Jessica! Aber so.. Dann was anderes. Wenn Herr der Ringe läuft, dann ist der Hund nicht mehr da. Aber jetzt braucht sie mal Entspannung!

Proteingehalt [g/kg]	Durschnittlichen Niederschlag [ml/w]
17.8	14.1
23.5	21.4
18.0	19.7
16.6	16.3
24.7	18.4
14.8	15.8
28.7	25.1
22.8	17.8
20.4	18.6
15.2	17.2
20.9	18.5
21.6	16.5

Leider kennt sich Jessica mit der Erstellung einer explorativen Datenanalyse für kontinuierliche Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen entsprechend! **(4 Punkte)**
- 2. Schätzen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn ein Effekt von x auf y vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Irgendwie komisch, wenn sie Star Trek anmacht, dann ist das Huhn eigentlich sofort vor dem Bildschirm und starrt hinein. Aber Ablenkung hilft nur begrenzt. 'Uff!', denkt sich Nilufar. Jetzt hat sie doch tatsächlich zwei kategoriale Variablen in ihrer Abschlussarbeit gemessen. Zum einen die Behandlung Pestizideinsatz [ja/nein] und zum anderen die Messung Frischegewicht über Zielwert [ja/nein] im Kontext von Kartoffeln. Hierfür hat sie ein Freilandversuch im Wendland durchgeführt. Jetzt möchte Nilufar die Daten einmal in einer explorativen Datenanalyse darstellen. Danach kann sie dann über den passenden statistischen Test nachdenken. Dabei unterstützt ihr Betreuer diesen Ansatz bevor es in der Datenanalyse weiter geht. So schön wie so gut. Wenn die Erwartung nicht wäre, ja dann wäre wohl vieles möglich für Nilufar! Aber so..

Frischegewicht über Zielwert	Pestizideinsatz	-	Frischegewicht über Zielwert	Pestizideinsatz
nein	ja	_	nein	nein
ja	ja		nein	ja
nein	nein		nein	nein
nein	nein		ja	nein
nein	nein		ja	nein
ja	ja		nein	nein
ja	nein		nein	ja
nein	ja		ja	nein
nein	nein		nein	nein
ja	nein		ja	nein
ja	nein		ja	nein
ja	nein		ja	nein
ja	nein		nein	ja
nein	nein		nein	nein
ja	nein		ja	nein
ja	nein	_	nein	nein
ja	ja		ja	ja
nein	nein		nein	nein

Leider kennt sich Nilufar mit der Erstellung einer explorativen Datenanalyse für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Stellen Sie den Zusammenhang zwischen den beiden kategorialen Variablen in einer zusammenfassenden Tabelle dar! (3 Punkte)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (3 Punkte)
- 3. Berechnen Sie die Verhältnisse in der Visualisierung! Welche Annahme haben Sie getroffen? (2 Punkte)
- 4. Wenn *kein* Effekt von der Behandlung vorliegen würde, wie würde die Tabelle und die Visualisierung aussehen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was soll das denn jetzt schon wieder sein? Drei Boxplot, die auf der Seite liegen?', entfährt es Nilufar und schaut dabei Alex an. 'Keine Ahnung. Es ist bestimmt wieder so ein Lernziel mit der Verteilung und so.', meint Alex sichtlich genervt und mampft noch ein paar Gummibärchen. 'Du weißt doch wie es heißt, *Frei ist, wer missfallen kann.*1', merkt Nilufar nickend an. Die beiden schauen angestrengt auf die drei Boxplots. Das Ziel ist es zu verstehen, wie eine Verteilung anhand eines Boxplots bewertet werden kann. Alex und die Erwartung machen die Sache nicht einfacher.

Jetzt brauchen Nilufar und Alex Ihre Hilfe bei der Abschätzung einer Verteilung anhand von Boxplots um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Zeichnen Sie über die Boxplots die entsprechende zugehörige Verteilung! (3 Punkte)
- 2. Zeichnen Sie unter die Boxplots die entsprechende zugehörige Beobachtungen als Stiche! (3 Punkte)
- 3. Wie viel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 4. Wie viel Prozent der Beobachtungen fallen in $\bar{y} \pm 1s$ und $\bar{y} \pm 2s$ unter der Annahme einer Normalverteilung? (2 Punkte)

¹Oschmann, A. (2024) Mädchen stärken: Stärken fördern, Selbstwert erhöhen und liebevoll durch Krisen begleiten. Goldegg Verlag

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark und die Unsicherheit machen die Sache mit dem Studium nicht einfacher. Immerhin ist noch Jonas zur Hilfe mit dabei. Jonas hat Marzipankugeln mitgebracht und Andrea Berg aufgedreht. Das ist immerhin eine Ablenkung. Nicht so gut wie Geocaching, aber immerhin etwas. Jetzt sollen die beiden diese komische Aufgabe lösen. Es geht um verschiedene Normalverteilungen. Anscheinend hängen Normalverteilungen vom Mittelwert \bar{y} und der Standardabweichung s ab. 'Wozu brauchen wir nochmal Normalverteilungen?', entfährt es Mark. Durch das Mampfen von Jonas versteht er kein Wort der Antwort. Jonas lächelt.

Jetzt brauchen Mark und Jonas Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie drei Normalverteilungen mit $\bar{y}_1 \neq \bar{y}_2 \neq \bar{y}_3$ und $s_1 = s_2 = s_3$! (3 Punkte)
- 2. Beschriften Sie die Normalverteilungen mit den statistischen Maßzahlen! (2 Punkte)
- 3. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. In welchen Bereich fallen 68% bzw. 95% der Beobachtungen in einer Normalverteilung? Ergänzen Sie die Bereiche in einer Normalverteilung! (2 Punkte)
- 5. Ergänzen Sie unter einer der Normalverteilungen den entsprechenden Boxplot! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was sollen wir hier dann noch zeichnen?!', entfährt es Nilufar und schaut dabei Alex an. 'Wir sollen eine Normalverteilung mit einem Mittelwert von $\bar{y}_1=4$ und einer Standardabweichung von $s_1=4$ zeichnen. Sowie eine weitere Normalverteilung mit einem Mittelwert von $\bar{y}_2=3$ und einer Standardabweichung von $s_2=4$. Keine Ahnung wie das geht. Darunter sollen dann noch eine Poissonverteilung mit einem Mittelwert von $\lambda_1=15$ sowie einer weiteren Poissonverteilung mit einem Mittelwert von $\lambda_2=1$ gezeichnet werden.', meint Alex sichtlich genervt und mampft noch ein paar Gummibärchen. Im Hintergrund spielt leise Abba. 'Wirre Geschichte...', merkt Nilufar nickend an. Die beiden schauen angestrengt auf die leeren Flächen für die Abbildungen. Alex und die Erwartung machen die Suche nach der Lösung nicht einfacher.

Jetzt brauchen Nilufar und Alex Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie die zwei Normalverteilungen und zwei Poissonverteilungen! (4 Punkte)
- 2. Achten Sie auf die entsprechende Skalierung in den jeweiligen Abbildungen! (2 Punkte)
- 3. Ergänzen Sie unter einer Normalverteilung den entsprechenden Boxplot! (1 Punkt)
- 4. Ergänzen Sie unter einer Poissonverteilung den entsprechenden Boxplot! (1 Punkt)
- 5. Geben Sie ein Beispiel für ein Outcome y, welches einer Normalverteilung folgt! (1 Punkt)
- 6. Geben Sie ein Beispiel für ein Outcome y, welches einer Poissonverteilung folgt! (1 Punkt)

Teil II.

Statistisches Testen & statistische Testtheorie

62. Aufgabe (9 Punkte)

Grundlage des statistischen Testen ist das Verständnis von der Grundgesamtheit (eng. *population* oder *ground truth*) und der experimentellen Stichprobe (eng. *sample*).

- 1. Nennen Sie das statistische Verfahren und zwei konkrete Beispiele zur Durchführung um von einer Grundgesamtheit auf eine Stichprobe zu gelangen! (3 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! Beschriften Sie das Schaubild entsprechend! Nutzen Sie hierfür als Veranschaulichung die Körpergröße von Männern oder Frauen aus den Gummibärchendaten! (3 Punkte)
- 3. Erweitern Sie das Schaubild um die Entstehung von $Pr(D|H_0)$! Nutzen Sie hierfür als Veranschaulichung zusätzlich die Gruppierungsvariable "Modul" aus den Gummibärchendaten! (3 Punkte)

Für ein besseres Verständnis der statistischen Testtheorie, auch Null-Ritual genannt, kann eine Visualisierung als Kreuztabelle genutzt werden.

 Tragen Sie folgende statistische Fachbegriffe zur statistischen Testtheorie korrekt eine selbst erstellte Kreuztabelle ein! (3 Punkte)

 α -Fehler H₀ wahr H₀ falsch β -Fehler

2. Ergänzen Sie Ihre erstellte Kreuztabelle um vier weitere, passende Fachbegriffe zur statistischen Testtheorie! (2 Punkte)

Die Entscheidungsfindung durch einen statistischen Test kann auch durch die Analogie zu einem Feuermelder abgebildet werden. Dabei symbolisiert der Feuermelder den statistischen Test und es soll getestet werden, ob ein Feuer ausgebrochen ist.

- 3. In der Analogie des Feuermelders, wie lautet der α -Fehler? (1 Punkt)
- 4. In der Analogie des Feuermelders, wie lautet der β -Fehler? (1 Punkt)
- 5. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem Jahr Alarm schlagen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Abgebildet ist die t-Verteilung unter der Anahme der Gültigkeit der Nullhypothese. Beachten Sie, dass im Folgenden keine numerisch korrekte Darstellung verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 95%"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $+T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen nicht signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche der Mittelwerte. Sie schätzen den Unterschied zwischen dem mittleren Befall mit Parasiten zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine in den Kontext passende Relevanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein signifikantes, relevantes 90% Konfidenzintervall.
 - (b) Ein 95% Konfidenzintervall mit höherer Fallzahl n in der Stichprobe als der Rest der 95% Konfidenzintervalle
 - (c) Ein signifikantes, relevantes 95% Konfidenzintervall
 - (d) Ein signifikantes, nicht relevantes 95% Konfidenzintervall
 - (e) Ein 95% Konfidenzintervall mit niedriger Fallzahl n in der Stichprobe als der Rest 95% der Konfidenzintervalle
 - (f) Ein nicht signifikantes, nicht relevantes 95% Konfidenzintervall

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Beim statistischen Testen gibt es einen Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl. Gegeben sei die Formel für den Student t-Test auf den die folgenden Überlegungen basieren sollen. Welche Auswirkung hat die Änderungen der jeweiligen statistischen Maßzahl des Effekts Δ , der Streuung s und der Fallzahl n auf die Teststistik T_D , den p-Wert $Pr(D|H_0)$ sowie dem Konfidenzintervall $KI_{1-\alpha}$?

- 1. Visualisieren Sie den Zusammenhang zwischen der Teststatiatik T_D und dem p-Wert $Pr(D|H_0)$ für sich verändernde T_D -Werte! Geben Sie dafür ein numerisches Beispiel in dem Sie drei T_D -Werte und deren Einfluss auf den p-Wert vergleichen! (3 Punkte)
- Füllen Sie die untenstehende Tabelle aus in dem Sie die Änderung der statistischen Maßzahlen auf die Teststatistik, den p-Wert sowie das Konfidenzintervall in einem Wort oder Symbol beschreiben! (4 Punkte)

	T_D	$Pr(D H_0)$	$KI_{1-\alpha}$		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$
Δ↑				Δ↓			
<i>s</i> ↑				s ↓			
				n ↓			

3. Visualisieren Sie ein 95%-iges Konfidenzintervall im Vergleich zu einem 90%-igen Konfidenzintervall! Begründen Sie Ihre Visualisierung anhand der Formel des Konfidenzintervalls des t-Tests mathematisch! (3 Punkte)

Teil III.

Der Student t-Test, Welch t-Test & gepaarter t-Test

67. Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der t-Test testet einen normalverteilten Messwert (Y).', liest Steffen laut. Das hilft jetzt auch nur bedingt weiter. Wenn die Romantik nicht wäre, ja dann wäre wohl vieles möglich für Steffen! Aber so.. Laut seiner Betreuerin ist zwar ihm Messwert Trockengewicht [kg/ha] normalverteilt, aber wie rechnet er jetzt einen t-Test? Für seinen Projektbericht zum Testen einer neuen technischen Anlage musste er ein Gewächshausexperiment mit Kartoffeln im Oldenburger Land durchführen. Als wäre das nicht schon anstrengend genug gewesen bei dem anspruchsvollen Pilotprojekt mit sehr geringer Fallzahl ($n_1 = n_2 = 3$). Jetzt soll er auch noch testen, ob die Behandlung Substrattypen (torf und 70p30n) ein signifikantes Ergebnis liefert. Hm, lecker Oreos und dazu dann im Hintergrund Harry Potter laufen lassen.

treatment	weight
dose	19.5
ctrl	22.5
ctrl	21.4
dose	25.8
ctrl	20.7
dose	13.6

Leider kennt sich Steffen mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 2. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 3. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des Welch t-Tests! (1 Punkt)
- 5. Formulieren Sie eine Antwort an Steffen über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Oldenburger Land, unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer von Jonas, der mit seiner 1 Mann starken Besatzung 12 Wochen lang unterwegs ist, um neue Welten zu erforschen, neues Leben und neue Zivilisationen. 'Oder nennen wir es Ödnis und Verzweiflung', denkt Jonas. Für seinen Projektbericht ist Jonas ins Nichts gezogen. Eine echte Herausforderung für ihn war schon immer die Erschöpfung gewesen. Ein leidiges Lied. Was macht er nun? Jonas hat ein Feldexperiment mit Kartoffeln durchgeführt. Die Behandlung Lichtstufen (none und 600lm) wurde an Kartoffeln getestet. Gemessen hat er dann als einen normalverteilten Endpunkt (Y) Chlorophyllgehalt (SPAD-502Plus) [SPAD]. Jetzt soll er seiner Betreuerin nach testen, ob die Behandlung Lichtstufen (none und 600lm) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Aus den Boxen wummert Iron Maiden und sein Mund ist verklebt von Snickers. 'Herrlich', denkt Jonas.

Lichtstufen	Chlorophyllgehalt
600lm	43.3
none	24.6
none	12.9
none	28.2
600lm	39.9
600lm	19.3
none	16.4
none	26.5
600lm	47.4
600lm	23.3
600lm	20.9
none	15.4
600lm	33.8
none	28.8
600lm	33.5
none	35.1
600lm	-1.0
600lm	17.2

Leider kennt sich Jonas mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.84$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie *einen* Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann der Effekt? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Formulieren Sie eine Antwort an Jonas über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der Teuteburgerwald, unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer von Paula, die mit ihrer 1 Frau starken Besatzung 12 Wochen lang unterwegs ist, um neue Welten zu erforschen, neues Leben und neue Zivilisationen. 'Oder nennen wir es Ödnis und Verzweiflung', denkt Paula. Für ihrer Hausarbeit ist Paula ins Nichts gezogen. Paula und der Perfektionismus, eine unendliche Geschichte mit kniffeligen Wendungen. Was macht sie nun? Paula hat ein Feldexperiment mit Kartoffeln durchgeführt. Die Behandlung Substrattypen (torf und 70p30n) wurde an Kartoffeln getestet. Gemessen hat sie dann als ein normalverteiltes Outcome (Y) Trockengewicht [kg/ha]. Jetzt soll sie ihrem Betreuer nach testen, ob die Behandlung Substrattypen (torf und 70p30n) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. 'Hm...', Smarties und White Lies. Das ist und bleibt die beste Kombination zum Nachdenken für Paula.

Substrattypen	Trockengewicht
70p30n	47.5
torf	31.5
70p30n	62.8
70p30n	47.0
torf	49.1
70p30n	60.6
torf	49.1
70p30n	33.2
torf	45.9
torf	72.3
torf	42.3
70p30n	47.1
70p30n	50.4
70p30n	42.1
torf	51.9
torf	58.5
70p30n	38.6
torf	59.5
torf	36.3
70p30n	47.4
torf	56.9
70p30n	38.7

Leider kennt sich Paula mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.84$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie das 99% Konfidenzintervall. Welche Annahmen haben Sie getroffen? (2 Punkte)
- 6. Nennen Sie den statistischen Grund, warum Sie sich zwischen einem Student t-Test und einem Welch t-Test entscheiden müssen! (1 Punkt)
- 7. Formulieren Sie eine Antwort an Paula über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Alex und Paula haben sich dazu entschieden zusammenzuarbeiten. Das sollte alles etwas einfacher machen. Jeder hat zwar ein getrenntes Themenfeld aber den Hauptversuch machen beide gemeinsam. Das hat sich schonmal als gut Idee soweit herausgestellt. In einer Hausarbeit sollen beide herausfinden, ob es einen Zusammenhang zwischen Jäten (*Aussaat* und *Ernte*) und Trockengewicht [kg/ha] gibt. Die Besonderheit ist hierbei, dass die Messungen an der gleichen Beobachtung stattfinden. Beide messen also zweimal an den gleichen Kartoffeln. Hier muss dann wohl auf einen normalverteilten Endpunkt (Y) ein gepaarter t-Test gerechnet werden. Alex schaut etwas flehentlich zu Paula. Wenn die Gefälligkeit nicht wäre, ja dann wäre wohl vieles möglich für Alex! Aber so... Steffen denkt derweil angestrengt an White Lies und wippt leicht mit dem Fuß.

ID	treatment	freshmatter
2	Ernte	48.0
9	Ernte	32.6
5	Ernte	48.8
1	Aussaat	32.0
7	Aussaat	29.6
2	Aussaat	36.2
1	Ernte	65.3
4	Ernte	67.4
8	Ernte	40.9
10	Ernte	28.8
10	Aussaat	34.2
9	Aussaat	31.5
5 3	Aussaat	28.6
3	Ernte	67.1
3	Aussaat	36.7
4	Aussaat	35.1
8	Aussaat	43.5
6	Ernte	33.8
7	Ernte	36.4
6	Aussaat	41.2
11	Aussaat	35.1

Leider kennen sich Alex und Paula mit der Berechnung eines gepaarten t-Tests überhaupt nicht aus. Deshalb brauchen sie beide bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines gepaarten t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%} = 2.68$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- Schätzen Sie den p-Wert des gepaarten t-Tests ab! Begründen Sie Ihre Antwort mit einer Skizze! (2 Punkte)
- 6. Formulieren Sie eine Antwort an Alex über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit dem R Paket {emmeans} können wir gleich die Gruppenvergleiche rechnen und uns das *compact letter displac*' ausgeben lassen!', verkündet Jonas sichtlich stolz. Ein paar Mal hat sie schon die Erschöpfung gehindert weiterzumachen. 'Nach Meinung der Betreuerin soll es aber nur erstmal ein t-Test sein. Und die Ausgabe ist schon wirr genug.', merkt Tina an. Tina und Steffen sind bei Jonas um sich in Rhelfen zu lassen. Im Hintergrund wummert Iron Maiden. Steffen streichelt zur Beruhigung das Meerschweinchen von Jonas. Die beiden waren 3 Monate im Wendland um einen Versuch mit Kartoffeln in einem Feldexperiment durchzuführen. Ziel war es das Outcome (Y) Proteingehalt [g/kg] zu bestimmen. Jonas überlegt, ob er die beiden nicht noch auf den Film *Mission Impossible* einlädt oder dann doch lieber raus geht um zu Schwimmen? Vielleicht will ja Steffen mit. Besser als der Film.

```
##
##
   Two Sample t-test
##
## data: Proteingehalt by Lüftungssystemen
## t = -1.4378, df = 19, p-value = 0.1668
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -11.765160
                 2.183342
## sample estimates:
##
      mean in group ctrl mean in group tornado
##
                32.30000
                                      37.09091
```

Helfen Sie Jonas bei der Interpretation des t-Tests! Sonst geht es auch für Tina und Steffen nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie eine Abbildung in der Sie T_D , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.09|$ einzeichnen! **(4 Punkte)**
- 5. Beschriften Sie die Abbildung! (1 Punkt)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit dem R Paket {emmeans} können wir gleich die Gruppenvergleiche rechnen und uns das compact letter displac' ausgeben lassen!', verkündet Paula sichtlich stolz. Ein paar Mal hat sie schon der Perfektionismus gehindert weiterzumachen. 'Nach Meinung des Betreuers soll es aber nur erstmal ein t-Test sein. Und die Ausgabe ist schon wirr genug.', merkt Mark an. Yuki und Mark sind bei Paula um sich in helfen zu lassen. Im Hintergrund wummert White Lies. Mark streichelt zur Beruhigung die Ratte von Paula. Die beiden waren 2 Monate im Emsland um einen Versuch mit Kartoffeln in einem Gewächshausexperiment durchzuführen. Ziel war es das Outcome (Y) Proteingehalt [g/kg] zu bestimmen. Paula überlegt, ob sie die beiden nicht noch auf den Film Jagd auf roter Oktober einlädt oder dann doch lieber raus geht um zu Fechten? Vielleicht will ja Mark mit. Besser als der Film.

```
##
## Two Sample t-test
##
## data: Proteingehalt by Substrattypen
## t = 4.6824, df = 16, p-value = 0.0002497
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 5.171643 13.728357
## sample estimates:
## mean in group torf mean in group 70p30n
## 47.10 37.65
```

Helfen Sie Paula bei der Interpretation des t-Tests! Sonst geht es auch für Yuki und Mark nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)
- 6. Interpretieren Sie den Effekt des 95% Konifidenzintervalls! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wir sind uns relativ sicher, dass unser Messwert Trockengewicht [kg/ha] ist!', ruft Nilufar wild gestikulierend. Nilufar wäre mehr präsent, wenn es die Erwartung nicht gäbe. Als würde sowas die Ausgabe von interessieren. Nilufar und Paula sind in einem Cafè mit Tina um sich Hilfe von ihr in zu holen. Während Tina Kirschstreuselkuchen und Katjes mampft, versuchen die Nilufar und Paula ihren Versuch im Teuteburgerwald mit Kartoffeln in einem Versuch in einer Klimakammer zu erklären. Tina hofft insgeheim, dass die Ausgabe des t-Tests ihr mehr Informationen liefert. Eigentlich würde sie dann doch lieber raus um zu Boxen vielleicht mit Paula?

```
##
## Two Sample t-test
##
## data: Trockengewicht by Lüftungssystemen
## t = -4.1293, df = 14, p-value = 0.001022
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -17.420057 -5.510102
## sample estimates:
## mean in group ctrl mean in group tornado
## 27.07778 38.54286
```

Helfen Sie Tina bei der Interpretation des t-Tests! Sonst geht es auch für Nilufar und Paula nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie die sich ergebenden Boxplot! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Skizieren Sie die sich ergebenden Barplots! (2 Punkte)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es gibt ja immer die Möglichkeit sich Hilfe zu holen. Das geht natürlich auch immer in einer Hausarbeit. Deshalb arbeiten Paula und Nilufar gemeinsam an einer Hausarbeit. Das macht dann auch die Analyse ihres Hauptversuches einfacher. Zwar hat jeder von ihnen noch ein Subthema, aber auch da kann man sich ja helfen. In dem Hauptversuch wurde Folgendes von den beiden gemacht. Paula und Nilufar haben sich Kartoffeln angeschaut. Dabei geht um Zusammenhang zwischen Jäten (*Aussaat* und *Ernte*) und Proteingehalt [g/kg]. Jetzt sollen beide einen gepaarten t-Test rechnen. Leider kennen sich beide nicht sehr gut in Raus.

```
##
## Paired t-test
##
data: Proteingehalt by Jäten
## t = 4.081, df = 8, p-value = 0.003529
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 8.360466 30.083979
## sample estimates:
## mean difference
## 19.22222
```

Jetzt brauchen Paula und Nilufar Ihre Hilfe bei der Berechnung eines gepaarten t-Tests in Rum ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Interpretieren Sie den Effekt des gepaarten t-Tests! (2 Punkte)
- 6. Skizzieren Sie den sich ergebenden Boxplot der Differenzen! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Teil IV.

Die einfaktorielle & zweifaktorielle ANOVA

75. Aufgabe (11 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Als erstes visualiseren wir unsere Daten und dann können wir schon abschätzen, ob unser Gruppenvergleich in der ANOVA signifikant werden würde?', Alex schaut Jonas fragend an und hofft auf eine positive Regung im Gesicht. Wird aber enttäuscht. Jonas tut sich auch sehr schwer mit der einfaktoriellen ANOVA. Beide waren im Wendland um ein Freilandversuch mit Kartoffeln durchzuführen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Lüftungssystemen und Folientunneln (*ctrl*, *storm* und *tornado*) und dem Messwert Frischegewicht [kg/ha] gibt.

Lüftungssystemen	Frischegewicht
storm	33
ctrl	26
ctrl	24
tornado	33
ctrl	24
storm	35
ctrl	25
tornado	33
storm	35
ctrl	25
storm	35
tornado	34
ctrl	26
tornado	35
tornado	35
storm	35

Leider kennen sich Alex und Jonas mit Darstellung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung der Datentabelle! Beschriften Sie die Abbildung! (2 Punkte)
- 2. Benennen Sie die Visualisierung mit dem korrekten, statistischen Fachbegriff! (1 Punkt)
- 3. Zeichnen Sie folgende statistischen Maßzahlen passend ein!
 - Globale Mittelwert: β₀ (1 Punkt)
 - Mittelwerte der einzelnen Behandlungsstufen: $\bar{y}_{0.5}$, $\bar{y}_{1.5}$ und $\bar{y}_{2.5}$ (1 Punkt)
 - Mittelwertsdifferenz der einzelnen Behandlungsstufen: $\beta_{0.5}$, $\beta_{1.5}$ und $\beta_{2.5}$ (1 Punkt)
 - Residuen oder Fehler: ε (1 Punkt)
- 4. Liegt ein vermutlicher signifikanter Unterschied vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie die Effekte der Behandlungsstufen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wie füllen wir jetzt die Tabelle der ANOVA aus und schauen, ob da was signifikant ist?', Mark hebt die Augenbraue. 'Das ist eine sehr gute Frage. Ich glaube man kann alles in der Tabelle relativ einfach mit wenigen Informationen berechnen.', meint Alex dazu. Mark hatte sich in ein Feldexperiment verschiedene Kartoffeln angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Lüftungssystemen und Folientunneln (ctrl, storm, thunder und tornado) und dem Messwert Proteingehalt [g/kg] gibt.

Leider kennen sich Mark und Alex mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Lüftungssystemen	3	4318.69			
error	23				
Total	26	5014.67			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.03$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Als erstes bauen wir uns aus unsere Daten die ANOVA Tabelle dann sehen wir schon, ob unser Gruppenvergleich in der ANOVA signifikant ist.', Jessica schaut Tina fragend an und hofft auf eine positive Regung im Gesicht. Wird aber enttäuscht. Tina tut sich auch sehr schwer mit der einfaktoriellen ANOVA. Nun möchte erstmal ihre Betreuung der Arbeit eine ANOVA Tabelle sehen. Was immer da auch drin zu erkennen sein mag. Beide waren im Wendland um ein Freilandversuch mit Kartoffeln durchzuführen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Bewässerungstypen (*ctrl*, *low*, *mid* und *high*) und dem Messwert Frischegewicht [kg/ha] gibt.

Leider kennen sich Jessica und Tina mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bewässerungstypen	3	101.06			
Error	26	170.8			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=2.98$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA? (1 Punkt)
- 6. Berechnen Sie einen Student t-Test für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 Punkte)

Bewässerungstypen	Fallzahl (n)	Mittelwert	Standardabweichung
ctrl	7	5.00	1.73
low	8	5.25	3.06
mid	8	8.62	3.20
high	7	3.71	1.60

7. Gegebenen der ANOVA Tabelle war das Ergebnis des Student t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark schaut sich fragend in der Bibliothek um. Mark hatte gehofft, dass jemand hier sein würde, den er kennt und sich mit auskennt. Wird aber enttäuscht. Mark war im Wendland um ein Freilandversuch mit Kartoffeln durchzuführen. Nun möchte sein Betreuer seinem Projektbericht erstmal eine ANOVA sehen und die Ergebnisse präsentiert bekommen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Düngestufen (ctrl, low, mid und high) und dem Messwert Chlorophyllgehalt (SPAD-502Plus) [SPAD] gibt.

Leider kennen sich Mark mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkte)
- 4. Berechnen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 5. Skizzieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki steht im Wendland. Und das ist noch langweiliger als es sich anhört. Wäre es nur so spannend wie bei seinen Kommilitonen, die in Almería waren. Ödnis wohin man nur blickt. Oder eben Kartoffeln. Ja, darum geht es in seiner Hausarbeit. Und wäre das nicht noch alles genug, ist sein Experiment auch noch als einen Versuch in einer Klimakammer komplex geraten. Es wurde der Messwert Frischegewicht [kg/ha] mit dem Behandlung Substrattypen (torf, 40p60n, 30p20n und 70p30n) sowie der Behandlung Lüftungssystemen und Folientunneln (ctrl, und tornado) untersucht. 'Hmpf', denkt Yuki und ruft 'Und jetzt!?' in die Leere.

Leider kennen sich Yuki mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Substrattypen	3	112.26			
Lüftungssystemen	1	646.71			
Substrattypen:Lüftungssystemen	3	77.27			
Error	18	245.33			

4. Schätzen Sie den p-Wert der Tabelle ab. Begründen Sie Ihre Antwort! (3 Punkte)

	$F_{lpha=5\%}$
Substrattypen	4.26
Lüftungssystemen	3.40
Substrattypen:Lüftungssystemen	5.23

- 5. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA? (2 Punkte)
- 6. Was sagt der Term Substrattypen: Lüftungssystemen aus? Interpretieren Sie das Ergebnis! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit der zweifaktoriellen ANOVA lässt sich die Interaktion zwischen den beiden Behandlungen nachweisen!', ihre Betreuerin scheint die zweifaktoriellen ANOVA zu verstehen. Warum jetzt sie jetzt nochmal alles wiederkäuen muss, wird Nilufar echt nicht so klar. Wenn es doch so klar ist? Nilufar war im Wendland und hatte dort ein Gewächshausexperiment mit Kartoffeln durchgeführt. Die Komune wo sie untergekommen war, war cool gewesen. Nur jetzt muss eben das Experiment fertig ausgewertet werden. Nilufar hatte zwei Behandlungen auf Kartoffeln angewendet. Einmal Lüftungssysteme (*ctrl*, *storm*, *thunder* und *tornado*) sowie als zweite Behandlung Substrattypen (*torf*, 70*p*30*n*). Gemessen wurde der Messwert (Y) Proteingehalt [g/kg]. Jetzt muss das hier zu einem Ende kommen!

```
## Analysis of Variance Table
##
## Response: Proteingehalt
##
                                 Df Sum Sq Mean Sq F value
                                  2 374.50 187.250 9.9828 0.001210
## Lüftungssysteme
                                  1 203.81 203.813 10.8658 0.004014
## Substrattypen
## Lüftungssysteme:Substrattypen
                                 2
                                     7.15
                                             3.575
                                                    0.1906 0.828105
                                 18 337.63 18.757
## Residuals
```

Leider kennt sich Nilufar mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (3 Punkte)
- 4. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! **(5 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ein Gewächshausexperiment wurden Kartoffeln mit der Behandlung Lichtstufen (none, 200lm, 400lm und 600lm) sowie der Behandlung Lüftungssystemen und Folientunneln (ctrl, und tornado) untersucht. Alex schaut konzentriert auf die Formeln der ANOVA und des t-Tests. In seinem Experiment wurde als Messwert Trockengewicht [kg/ha] bestimmt. Eine echte Herausforderung für ihn war schon immer die Gefälligkeit gewesen. Ein leidiges Lied. Dann wäre es nicht noch komplizierter. Was war da jetzt nochmal der Zusammenhang zwischen den beiden statistischen Verfahren? Beide Verfahren haben ja irgendwie etwas miteinander zu tun und seine Betreuerin möchte das jetzt auch noch verstehen. Muss das nicht eigentlich klar sein? Immerhin ist Alex nicht die erste Betreuung einer Abschlussarbeit. Immerhin hat er die beiden Formeln vorliegen. Schon dutzende Male gesehen: Alien. Aber immer noch großartig zusammen mit Gummibärchen.

Gegebene Formeln für F_D und T_D

$$F_D = \frac{MS_{treatment}}{MS_{error}} \quad T_D = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{2/n_g}}$$

Leider kennen sich Alex mit dem Zusammenhang zwischen der ANOVA und dem t-Test nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Was testet der t-Test und was testet die ANOVA? Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen der F_D Statistik und T_D Statistik! (2 Punkte)
- 3. Visualisieren Sie in einer 2x2 Tafel den Zusammenhang von $MS_{treatment}$ und MS_{error} ! (2 Punkte)
- 4. Beschriften Sie die 2x2 Tafel mit signifikant und nicht signifikant! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Nennen Sie das Minimum der F-Statistik F_D ! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn die F-Statistik F_D minimal ist, welche Aussage erhalten Sie über die Nullhypothese? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einen Versuch in einer Klimakammer wurden Kartoffeln mit der Behandlung Lichtstufen (none, 200lm, 400lm und 600lm) sowie der Behandlung Düngestufen (ctrl, und high) untersucht. Es wurde als Messwert Chlorophyllgehalt (SPAD-502Plus) [SPAD] bestimmt. Jetzt starrt Steffen mit auf die Rausgabe einer zweifaktoriellen ANOVA. Leider starrt seine Betreuerin in der gleichen Art Steffen zurück an. Es liegt anscheinend eine signifikante Interaktion vor. 'Das wird ein langer Nachmmittag.', denkt er sich und kreuselt seinen Mund. 'Und was machen wir jetzt?' entfährt es ihm überrascht entnervt. Immerhin war geht es ja um seine Hausarbeit. Steffen hätte doch nichts mit Kartoffeln machen sollen. Kartoffeln – was soll das auch bedeutendes sein?

Leider kennen sich Steffen und seine Betreuerin mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Geschweige denn mit der Interpretation einer Interaktion zwischen zwei Behandlungsfaktoren. Deshalb braucht er bei der Erstellung Ihre Hilfe, sonst wird es heute Abend mit seinem Hobby Klemmbausteine nichts mehr!

- 1. Visualisieren Sie folgende Interaktionen zwischen den Behandlungen! Beschriften Sie die Abbildung! **(4 Punkte)**
 - a) Keine Interaktion.
 - b) Eine schwache Interaktion.
 - c) Eine starke Interaktion.
- 2. Erklären Sie den Unterschied zwischen den verschiedenen Interaktionen! (2 Punkte)
- 3. Welche statistische Maßzahl betrachten Sie für die Bewertung der Interaktion? (1 Punkt)
- 4. Skizzieren Sie die notwendigen Funktionen in 🔃 ! (2 Punkte)
- 5. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen bei einem Post-hoc-Test? Berücksichtigen Sie auch die Funktion emmeans () in Ihrem Vorgehen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es ist schon kurz nach fünf und Alex wird langsam nervös. Alex wollte heute Abend noch seine E-Sport Qualifikation schauen. Stattdessen versucht seine Betreuerin die Ausgabe der zweifaktoriellen ANOVA zu visualieren und zu überprüfen, ob es mit der Visualisierung der Daten als Boxplots zusammenpasst. Alex hatte im Wendland einen Versuch in einer Klimakammer mit Kartoffeln durchgeführt. Es gab dabei zwei Behandlungen. Einmal Bewässerungstypen (*ctrl*, *low*, *mid* und *high*) sowie als zweite Behandlung Genotypen (*AA*, und *BB*). Gemessen wurde der Messwert (Y) Trockengewicht [kg/ha]. So kompliziert kann das jetzt doch nicht sein!

Sie rechnen eine einfaktorielle ANOVA mit einem Faktor f_1 mit fünf Leveln. Nachdem Sie die einfaktorielle ANOVA gerechnet haben, erhalten Sie einen p-Wert von 0.078 und eine F Statistik mit $F_D=1.2$. Als Sie sich die Boxplots der Behandlungen anschauen, stellen Sie fest, dass es eigentlich einen Mittelwertsunterschied zwischen dem zweiten und ersten Level geben müsste. Die IQR-Bereiche überlappen sich nicht und die Mediane liegen auch weit vom globalen Mittel entfernt.

Leider kennen sich Alex mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Erklären Sie die Annahme der Normalverteilung und die Annahme der Varianzhomogenität für eine ANOVA an einer passenden Abbildung! (3 Punkte)
- 2. Visualisieren Sie die Berechnung von F_D am obigen Beispiel! (3 Punkte)
- 3. Erklären Sie das Ergebnis der obigen einfaktoriellen ANOVA unter der Berücksichtigung der Annahmen an eine ANOVA! (3 Punkte)

Teil V.

Multiple Gruppenvergleiche

84. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tina und Yuki untersuchen gemeinsam in ihrer Abschlussarbeit den Messwert Chlorophyllgehalt (SPAD-502Plus) [SPAD] in Kartoffeln. Es ist einiges schiefgelaufen, wie es immer so passiert. Hauptsächlich waren es Würmer, auch wenn man erstmal bei dem Messwert nicht unbedingt an Würmer denken würde. Aber das ist eine andere Geschichte. Jetzt wollen Tina und Yuki ihre Ergebnisse nochmal mit einer Studie von Meyer et al. (2021) vergleichen und schauen, ob was ähnliches rauskommt. Angeschaut wurde sich als Behandlung Substrattypen (kompost, torf, 40p60n, 30p20n und 70p30n). Es ergab sich dann die folgende Tabelle der rohen p-Werte für die Vergleiche zu Meyer et al. (2021).

Rohen p-Werte	Adjustierte p-Werte	Nullhypothese ablehnen?
0.080		
0.340		
0.002		
0.001		
0.760		

Leider kennen sich Tina und Yuki mit der Adjustierung von p-Werten und dem Signifikanzniveau α überhaupt nicht aus. Deshalb brauchen die beiden bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Füllen Sie die Spalte Adjustierte p-Werte nach der Bonferoni-Methode aus! (2 Punkte)
- 4. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese abgelehnt werden kann! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Wie ist Ihr Vorgehen, wenn Sie anstatt der p-Werte das Signifikanzniveau α adjustieren? (2 Punkte)
- 6. Erklären Sie warum die p-Werte oder das Signifikanzniveau α bei multiplen Vergleichen adjustiert werden müssen! (2 **Punkte**)
- 7. Würden Sie die Adjustierung der p-Werte oder die Adjustierung des Signifikanzniveaus α vorziehen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Alex hatte in seiner Hausarbeit einen Versuch in einer Klimakammer durchgeführt. Soweit so gut. Dabei hat er sich mit Kartoffeln beschäftigt. Angeblich der neueste heiße Kram... aber das ist wiederum was anderes. So richtig mitgenommen hat Alex das Thema dann doch nicht. Hat er sich doch mit Genotypen (00, AA, AB und BB) und Frischegewicht [kg/ha] schon eine Menge an Daten angeschaut. Nach seinem Betreuer soll er nun ein CLD bestimmen. Weder weiß er was ein CLD ist, noch war sein erster Gedanke mit Köln und die LGBTQ Community richtig...

Behandlung	Compact letter display
00	а
AA	b
AB	b
BB	b

Leider kennen sich Alex mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand des Compact letter display (CLD) ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD) zu den Barplots! (1 Punkt)
- 5. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)
- 6. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten eines Student t-Tests, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Paula betrachtet in sich gekehrt die Poster vor dem Büro von ihr Betreuer. Viele der explorativen Abbildungen sagen ihr etwas. Die Barplots und die Boxplots könnte sie dann schon nachbauen. Das macht sie dann zuversichtlich die Abschlussarbeit auch hinzukriegen. Etwas komischer sind die seltsamen Buchstaben über den Barplots. Paula betrachtet ein Poster das sich mit Kartoffeln beschäftigt. Lüftungssysteme (*ctrl*, *storm*, *thunder* und *tornado*) und Chlorophyllgehalt (SPAD-502Plus) [SPAD] wurden dort bestimmt. So richtig schlau, wird sie daraus nicht. Als erstes müsse müsse man die Gruppen nach absteigender Effektstärke sortieren, liest Paula im Methodenteil und ist dann noch verwirrter als vorher schon.

Lüftungssysteme	Fallzahl (n)	Mittelwert	Standardabweichung
ctrl	8	14.82	1.97
storm	7	4.66	2.94
thunder	9	14.73	2.15
tornado	8	3.89	1.81

Leider kennen sich Paula mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich ergebenden Barplots! (1 Punkt)
- 4. Berechnen Sie die Matrix der p-Werte anhand von Student t-Tests! (4 Punkte)
- 5. Ergänzen Sie das *Compact letter display (CLD)* zu den gezeichneten Barplots! Begründen Sie Ihre Antwort! **(4 Punkte)**
- 6. Interpretieren Sie das Compact letter display (CLD) für Paula und Yuki! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Das Problem ist, dass DataTab eben keine CLD kann. Die bräuchten wir dann schon dringend für unser Poster!', merkt sein Betreuer mit Nachdruck an. Jonas neigt den Kopf. 'Das wussten wir nicht vorher?', entfährt es ihm leicht entnervt. Da schaut sein Betreuer seltsam betroffen. Hilft jetzt auch so gar nicht. Jonas hatte sich zwei Variablen mit Düngestufen (ctrl, low, mid und high) und Chlorophyllgehalt (SPAD-502Plus) [SPAD] in ein Freilandversuch mit Kartoffeln angeschaut. Jetzt möchte er eigentlich fertig werden und nicht nochmal alles neu in und {emmeans} machen. Dabei hatte er schon echt ne Menge in im Wendland gemacht. Dann eben per Hand aus der Matrix der p-Wert. Jonas muss sich echt zusammenreißen.

	ctrl	low	mid	high
ctrl	1.0000000	0.5510673	0.2640480	0.0238202
low	0.5510673	1.0000000	0.1196098	0.0119376
mid	0.2640480	0.1196098	1.0000000	0.1632058
high	0.0238202	0.0119376	0.1632058	1.0000000

Leider kennen sich Jonas mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand der Matrix der p-Werte ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD)! Begründen Sie Ihre Antwort! (4 Punkte)
- 5. Interpretieren Sie das Compact letter display (CLD) für Jonas und Yuki! (2 Punkte)

Teil VI.

Der Chi-Quadrat-Test & Der diagnostische Test

88. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der χ^2 -Test auf einer 2x2-Kreuztabelle berechnet.', liest Steffen in seiner Mitschrift. So richtig helfen tut ihm das jetzt eherlichweise dann doch nicht. Steffen hatte sich in ein Feldexperiment n=104 Beobachtungen von Kartoffeln angeschaut. Dabei hat er als Behandlung *Pestizideinsatz* [ja/nein] bestimmt und zum anderen die Variable *Trockengewicht über Zielwert* [ja/nein] ermittelt. Am Ende möchte dann seine Betreuerin gerne einen χ^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

 24	19	
23	38	

Leider kennt sich Steffen mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}_{\alpha=5\%}^2=3.841!$ Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie die \mathcal{X}^2 -Verteilung, wenn die H_0 wahr ist! Ergänzen Sie $\mathcal{X}^2_{\alpha=5\%}$ und \mathcal{X}^2_D in der Abbildung! (2 Punkte)
- 7. Berechnen Sie den Effektschätzer Cramers V! Interpretieren Sie den Effektschätzer! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende hätte Jonas dann doch einen normalverteilten Endpunkt in seinem Projektbericht nehmen sollen. Vor ihm liegen jetzt die Daten von zwei Variablen als Kategorien oder wie es in \P so schön heißt, als Faktoren. Aber immerhin, hofft er das was bei den Daten rausgekommen ist. Gezählt hat Jonas einiges mit n=158 Beobachtungen von Kartoffeln. Zum einen hat er als Behandlung KI-gesteuert [ja/nein] bestimmt und zum anderen die Variable Trockengewicht über Zielwert [ja/nein] ermittelt. Nun möchte seine Betreuerin gerne einen χ^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

		81
		77
97	61	158

Leider kennt sich Jonas mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle, so dass *kein* signifikanter Effekt zu erwarten wäre! (2 Punkte)
- 4. Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests. Erklären Sie Ihr Vorgehen an einem Beispiel! (2 Punkte)
- 5. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 6. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des Standard Chi-Quadrat-Tests anwenden? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark hat sich ein Herz gefasst und war für seiner Hausarbeit in die Niederlande gegangen. Das war eine super Zeit in der er viel gelernt hat. Klar gab es auch die ein oder andere Besonderheit, aber das gehört hier eher nicht hin. Mark ist schon eine ganze Zeit im Büro, da sein Betreuer möchte, dass er jetzt auf seinen Daten mit n=158 Beobachtungen von Kartoffeln einen \mathcal{X}^2 -Test rechnet. Das ginge, da er als Behandlung Mechanische Bearbeitung [ja/nein] bestimmt und zum anderen die Variable Frischegewicht über Zielwert [ja/nein] ermittelt hat. Wie genau, das ist jetzt eine andere Frage. Nach seinem Experiment erhielt er folgende 2x2 Kreuztabelle aus seinen erhobenen Daten.

Dann rechnete Mark den Fisher-Exakt-Test auf der 2x2-Kreuztabelle in \mathbb{R} und erhielt folgende \mathbb{R} Ausgabe der Funktion fisher.test().

```
##
## Fisher's Exact Test for Count Data
##
## data: Frischegewicht über Zielwert
## p-value = 0.005898
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.462677 32.500828
## sample estimates:
## odds ratio
## 6.352594
```

Leider kennt sich Mark mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung des 95% Konfidenzintervalls! (1 Punkt)
- 6. Interpretieren Sie das *Odds ratio* im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)

Die Prävalenz von Klauenseuche bei Wollschweinen wird mit 3% angenommen. In 80% der Fälle ist ein Test positiv, wenn das Wollschwein erkrankt ist. In 8% der Fälle ist ein Test positiv, wenn das Wollschwein nicht erkrankt ist und somit gesund ist. Sie werten 4000 Wollschweine mit einem diagnostischen Test auf Klauenseuche aus.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! Beschriften Sie auch die Äste des Doppelbaumes, mit denen Ihnen bekannten Informationen! (8 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Was sagt Ihnen die Wahrscheinlichkeit $Pr(K^+|T^+)$ aus? (1 Punkt)

Folgender diagnostischer Doppelbaum nach der Testung auf Klauenseuche bei Fleckvieh ist gegeben.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! (4 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Berechnen Sie die Prävalenz für Klauenseuche! (2 Punkte)
- 4. Berechnen Sie die Sensifität und Spezifität des diagnostischen Tests für Klauenseuche! Erstellen Sie dafür zunächst eine 2x2 Kreuztabelle aus dem ausgefüllten Doppelbaum! (4 Punkte)

Teil VII.

Lineare Regression & Korrelation

93. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen!', ruft Steffen. 'Ich sehe nur eine Zahlen und keine Punkte. Wie soll ich da denn jetzt eine Gerade durchzeichnen?', fragt Yuki. Steffen atmet schwer ein. Die beiden hatten ein Feldexperiment im Oldenburger Land mit Kartoffeln durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Regenwurmdichte [Anzahl/I] und Frischegewicht [kg/ha]. Jetzt will die Betreuung von den beiden einmal die Visualisierung der Daten und auch gleich noch die lineare Regression gerechnet bekommen.

Durchschnittlicher Regenwurmdichte [Anzahl/l]	Frischegewicht [kg/ha]
24.8	23.5
13.3	16.8
24.5	21.3
22.2	22.8
13.5	14.7
19.8	25.1
25.8	26.1
24.9	24.3
30.3	26.9
13.0	11.3

Leider kennen sich Steffen und Yuki mit der linearen Regression für kontinuierliche Daten überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen! (2 Punkte)
- 3. Schätzen Sie die Regressionsgleichung aus der obigen Abbildung ab! (2 Punkte)
- 4. Beschriften Sie die Grade mit den statistischen Maßzahlen der linearen Regressionsgleichung! (2 Punkte)
- 5. Liegt ein Zusammenhang zwischen x und y vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Grade aussehen? Antworten Sie mit einer Skizze der Geraden! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen!', ruft Jonas. 'Ich sehe nur zwei Zeilen und keine Punkte. Wie soll ich da denn jetzt eine Gerade durchzeichnen?', fragt Steffen. Jonas atmet schwer ein und starrt auf die Rausgabe der Funktion lm(). Die beiden hatten ein Freilandversuch im Teuteburgerwald mit Kartoffeln durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittliche UV-Einstrahlung [UV/d] und Proteingehalt [g/kg]. Jetzt will die Betreuung von den beiden einmal die Visualisierung der Daten und auch gleich noch die lineare Regression gerechnet bekommen. Das haben beide in gemacht, aber wie soll das jetzt gehen?

term	estimate	std.error	t statistic	p-value
(Intercept)	2.10	2.18		
Durchschnittliche UV-Einstrahlung	0.51	0.21		

Leider kennen sich Jonas und Steffen mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung der lm()-Ausgabe. Beschriften Sie die Achsen! (2 Punkte)
- 3. Beschriften Sie die Visualisierung mit den statistischen Maßzahlen der der lm()-Ausgabe! (2 Punkte)
- 4. Formulieren Sie die Regressionsgleichung! (1 Punkt)
- 5. Ergänzen Sie die t Statistik in der lm()-Ausgabe! (2 Punkte)
- 6. Ergänzen Sie den p-Wert in der lm()-Ausgabe mit $T_{\alpha=5\%}=1.96!$ (2 Punkte)
- 7. Interpretieren Sie den p-Wert im Kontext der wissenschaftlichen Fragestellung! (1 Punkt)
- 8. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Ich glaube du bringst da was durcheinander. Wir nutzen zwar auch für die ANOVA die Funktion lm() aber hier wollen wir, glaube ich, eine Gerade durch die Punkte zeichnen.', merkt Nilufar an. 'Ich sehe keine Punkte... das ist doch eine Ausgabe in . Überhaupt, darum geht es doch gar nicht in unserem Versuch. Wir wollen doch keine Gerade zeichnen?.', antwortet Mark sichtlich übernächtigt. 'Doch wir müssen nur die Koeffizienten der linearen Regression erst richtig interpretieren und vor unserem geistigen Auge erscheint eine Gerade!', spricht Nilufar sehr deutlich und langsam. Die beiden hatten ein Freilandversuch im Emsland mit Kartoffeln durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Anteil an Ton [%/I] und Chlorophyllgehalt (SPAD-502Plus) [SPAD]. Jetzt wollen sie erstmal schauen, ob es einen Zusammenhang gibt und das soll mit der . Ausgabe möglich sein.

```
##
## Call:
## Chlorophyllgehalt ~ Durchschnittlicher_Anteil
##
## Residuals:
##
                  10
                       Median
                                    30
       Min
## -2.77685 -0.51265 -0.09686 0.69158 3.11103
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              -1.6677
                                          1.6276
                                                 -1.025
                                                             0.311
## Durchschnittlicher_Anteil
                             0.8755
                                          0.1619
                                                   5.409 2.8e-06
##
## Residual standard error: 1.325 on 42 degrees of freedom
## Multiple R-squared: 0.4106, Adjusted R-squared: 0.3965
## F-statistic: 29.25 on 1 and 42 DF, p-value: 2.799e-06
```

Leider kennen sich Nilufar und Mark mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (2 Punkte)
- 3. Interpretieren Sie die p-Werte im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 4. Visualisieren Sie die Verteilung der Residuen! (2 Punkte)
- 5. Ist die Annahme der Normalverteilung erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 6. Erklären Sie kurz den Begriff R-squared! Was sagt Ihnen der Wert 0.41 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Ich glaube ich bringe da was durcheinander. Ich möchte eine Gerade durch die Punkte zeichnen oder doch eine Korrelation berechnen?', merkt Mark laut an. 'Ich sehe keine Punkte... das ist doch eine Ausgabe in \textbf{\textit{?}}. Überhaupt, darum geht es doch gar nicht in meinem Versuch. Ich wollte doch keine Gerade zeichnen?.', antwortet Mark sich sichtlich übernächtigt selber. Die Nacht war zu lang und überhaupt. Mark hatte ein Feldexperiment im Oldenburger Land mit Kartoffeln durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Niederschlag [ml/w] und Proteingehalt [g/kg]. Jetzt will er erstmal schauen, ob es einen Zusammenhang gibt und das soll mit der \textbf{R} Ausgabe möglich sein.

```
##
## Pearson's correlation
##
## data: Durchschnittlicher Niederschlag [ml/w] and Proteingehalt [g/kg]
## t = -1.6416, df = 8, p-value = 0.1393
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8598424 0.1866402
## sample estimates:
## cor
## -0.501975
```

Leider kennt sich Mark mit der Korrelationsanalyse in Rüberhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Erstellen Sie eine Visualisierung für den Korrelationskoeffizienten! Beschriften Sie die Abbildung! (2 Punkte)
- 4. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 5. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Visualisieren Sie das 95% Konfidenzintervall! Beschriften Sie die Abbildung! (2 Punkte)

In den folgenden Abbildungen sehen Sie drei leere Scatterplots. Füllen Sie diese Scatterplots nach folgenden Anweisungen.

- 1. Zeichnen Sie für die angegebene ρ -Werte eine Gerade in die entsprechende Abbildung! (3 Punkte)
- 2. Zeichnen Sie für die angegebenen R^2 -Werte die entsprechende Punktewolke um die Gerade. (3 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (3 **Punkte**)

Pearsons
$$\rho = -0.5$$

$$R^2 = 0.25$$

Pearsons $\rho = -1$

$$R^2 = 0.75$$

In den folgenden Abbildungen sehen Sie vier Scatterplots. Ergänzen Sie die Überschriften der jeweiligen Scatterplots.

- 1. Schätzen Sie die ρ -Werte in der entsprechenden Abbildung! (4 Punkte)
- 2. Schätzen Sie die R^2 -Werte in der entsprechenden Punktewolke um die Gerade! (4 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (1 **Punkt**)

Sie rechnen eine lineare Regression um nach einem Feldexperiment den Zusammenhang zwischen Trockengewicht kg/m^2 (*drymatter*) und Wassergabe l/m^2 (*water*) bei Spargel zu bestimmen. Sie erhalten folgende Datentabelle.

.id	drymatter	water	.fitted	.resid
1	16.3	6.6	18.8	
2	13.9	4.4	15.3	
3	22.9	7.6	20.3	
4	22.4	7.4	20.1	
5	32.3	14.7	31.6	
6	32.6	16.4	34.1	
7	20.9	7.9	20.9	
8	19.8	8.3	21.4	
9	20.5	7.5	20.1	
10	17.0	5.6	17.1	
_11	25.3	10.1	24.3	

- 1. Ergänzen Sie die Werte in der Spalte .resid in der obigen Tabelle. Geben Sie den Rechenweg und Formel mit an! (4 Punkte)
- 2. Zeichnen Sie den sich aus der obigen Tabelle ergebenden Residualplot. Beschriften Sie die Abbildung! **(4 Punkte)**
- 3. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)

1. Zeichen Sie in die drei untenstehenden, leeren Abbilungen die Zeile des Regressionskreuzes der Binomialverteilung. Wählen Sie die Beschriftung der y-Achse sowie der x-Achse entsprechend aus! (6 Punkte)

- 2. Ergänzen Sie die jeweiligen statistischen Methoden zu der Abbildung! (2 Punkte)
- 3. Welchen Effektschätzer erhalten Sie aus der entsprechend linearen Regression bzw. den Gruppenvergleich? Geben Sie ein Beispiel! (2 Punkte)
- 4. Wenn Sie keinen Effekt erwarten, welchen Zahlenraum nimmt dann der Effektschätzer ein? Geben Sie ein Beispiel! (2 Punkte)

Ein Feldexperiment wurde mit n=200 Pflanzen durchgeführt. Folgende Einflussvariablen (x) wurden erhoben: height, block und variety. Als mögliche Outcomevariablen stehen Ihnen nun folgende gemessene Endpunkte zu Verfügung: drymatter, yield, count, quality score und dead.

- 1. Wählen Sie ein Outcome was zu der Verteilungsfamilie Poisson gehört! (1 Punkt)
- 2. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} in der Funktion glm() üblich ist *ohne Interaktionsterm*! (3 Punkte)
- 3. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} üblich ist und ergänzen Sie einen Interaktionsterm nach Wahl! (1 Punkt)
- 4. Zeichen Sie eine *starke* Interaktion in die Abbildung unten für den Endpunkt *yield*. Ergänzen Sie eine aussagekräftige Legende. Wie erkennen Sie eine Interaktion? Begründen Sie Ihre Antwort! **(4 Punkte)**

Teil VIII.

Experimentelles Design

102. Aufgabe (16 Punkte)

Leider kennen sich Paula, Steffen und Jessica mit dem *Latin square design* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😯! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (3 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (2 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Begründen Sie Ihre Antwort! (2 Punkte)

Tina und Alex sind bei Yuki um sich Hilfe für eine Versuchsplanung in \mathbb{R} zu holen. Dabei geht es um den Zusammenhang zwischen der Behandlung Substrattypen (torf, 40p60n, 30p20n und 70p30n) sowie Lüftungssystemen und Folientunneln (ctrl, und tornado) sowie drei Blöcken und dem Messwert Trockengewicht [kg/ha] in Kartoffeln. Der Versuch soll in einem Freilandversuch im Emsland durchgeführt werden. Nach dem Dozenten ist der Messwert Trockengewicht [kg/ha] normalverteilt. Die beiden entschieden sich für ein faktorielles Versuchsdesign. Im ersten Schritt überlegt Yuki ein komplexeres experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein *Randomized complete block design* mit Berücksichtigung einer Interaktion. Das sollte für den anfang erstmal reichen. 'Und jetzt, was machen wir jetzt?', Alex schaut die anderen beiden mit großen Augen an. Die zucken mit der Schulter.

Leider kennen sich Yuki, Tina und Alex mit dem *Randomized complete block design* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistische Hypothesenpaare! (2 Punkte)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😱! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (4 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (3 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Welche Annahme hinsichtlich der Modellierung haben Sie getroffen? Begründen Sie Ihre Antwort! (3 Punkte)

Teil IX.

Programmieren in R

104. Aufgabe (9 Punkte)

Nilufar muss ihrer Abschlussarbeit mit \mathbb{R} arbeiten. Deshalb sitzt sie jetzt mit Ihnen zusammen und hat einige Fragen zu den Grundlagen in \mathbb{R} an Sie! Na dann wollen Sie mal helfen. Immerhin will ihre Betreuerin, dass \mathbb{R} genutzt wird.

Nilufar: Warum brauche ich eigentlich das RStudio und R? Wo ist denn da der Unterschied? (1 Punkt) Sie antworten:

Nilufar: Ich habe doch die Spalte mutiert und geändert. Warum sehe ich das in R aber mein Datensatz ändert sich nicht? (1 Punkt)

Sie antworten:

Nilufar: Jetzt lese ich hier von einem Faktor. Was ist ein Faktor in ? (1 Punkt) Sie antworten:

Nilufar: Ich verstehe den Pipe-Operator nicht. Wie sieht der aus und was macht der? Gebe mal ein Beispiel! (1 Punkt)

Sie antworten:

Nilufar: Ich verstehe den Unterschied zwischen library() und Packages nicht. Warum gibt es die? (1 Punkt)

Sie antworten:

Nilufar: Wo nutzen wir nochmal die Tilde (\sim) in R. Das war irgendwie voll wichtig. Wo wird diese genutzt? (1 **Punkt**)

Sie antworten:

Nilufar: Der Zuweisungs-Operator wird sehr häufig genutzt. Wie sieht der aus und wie funktioniert der an einem Beispiel? (1 Punkt)

Sie antworten:

Nilufar: Ich habe den Namen der Funktion, die intern Daten speichert, vergessen. Was waren da nochmal die Vorteile? (1 Punkt)

Sie antworten:

Nilufar: Ich habe gehört, dass es Vorteile gibt zu nutzen. Nenne mir mal einen Vorteil! (1 Punkt) Sie antworten:

'Hm...am Ende ist dann Reigentlich gar nicht so schwer, wenn ich Hilfe habe.', meint Jonas stolz und lacht Sie an. Nur leider kennt er sich überhaupt nicht mit Raus! Das heißt, Sie müssen hier einmal Rede und Antwort stehen und helfen. Sonst wird es für Jonas dann in seinem Projektbericht nichts mit der Auswertung und Abgabe. Das kann auch keine Lösung für Jonas und Sie sein. Immerhin haben Sie schon so viel gelernt.

Jonas fragt: Ich hatte mir eine Analogie für das R Paket {ggplot} gemerkt. Wie war noch gleich die Analogie und das damit verbundene Prinzip von {ggplot}? (2 Punkte)

Sie antworten:

Jonas fragt: Warum wurde jetzt nach dem Laden der Daten die Funktion mutate() genutzt? (1 Punkt) Sie antworten:

Jonas fragt: Oh, wie baue ich mir nochmal die Daten in R? Wie heißt das Dateiformat? Gerne einmal mit Beispiel! (1 Punkt)

Sie antworten:

Jonas fragt: Ich glaube ich habe Varianzheterogenität zwischen den Gruppen vorliegen. Wie funktioniert die Adjustierung dafür nochmal in emmeans ()? (1 Punkt)

Sie antworten:

Jonas fragt: Wie spezifizieren wir nochmal eine Interaktion in einem Modell mit zwei Faktoren f_1 und f_2 ? (1 **Punkt**)

Sie antworten:

Jonas fragt: Was muss ich bei der Eingabe eines Datums in Excel beachten, wenn ich später die Exceldatei in R einlesen will? Wie lautet das Format? (1 Punkt)

Sie antworten:

Jonas fragt: Ich möchte ein CLD erstellen. Welche Funktionen muss ich in welcher Reihenfolge nutzen? (2 Punkte)

Sie antworten:

Teil X.

Forschendes Lernen

Das forschende Lernen basiert zum einen auf den folgenden wissenschaftlichen Veröffentlichungen. Für die Prüfung wird die vertiefende Kenntnis der folgenden Veröffentlichungen vorausgesetzt.

In der Prüfung erhalten Sie einen Auszug der wissenschaftlichen Veröffentlichung. Für die Einarbeitung in die Veröffentlichung ist in der Prüfung ausdrücklich keine Zeit vorgesehen.

- Sánchez, M., Velásquez, Y., González, M., & Cuevas, J. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation. Scientia Horticulturae, 304, 111320. [Link]
- Petersen, F., Demann, J., Restemeyer, D., Olfs, H. W., Westendarp, H., Appenroth, K. J., & Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. [Link]
- Selle, P. H., Cadogan, D. J., Li, X., & Bryden, W. L. (2010). Implications of sorghum in broiler chicken nutrition. Animal Feed Science and Technology, 156(3-4), 57-74. [Link]
- Wu, G., Knabe, D. A., & Kim, S. W. (2004). Arginine nutrition in neonatal pigs. The Journal of Nutrition, 134(10), 2783S-2790S. [Link]

Das forschende Lernen basiert zum anderen auf den folgenden wissenschaftlichen Datensätzen und deren vertiefende Analyse werden als bekannt vorausgesetzt. Die Teilaufgaben der Aufgaben stellen nur eine zufällige Auswahl an möglichen Fragen dar. Die Datensätze werden über ILIAS bereitgestellt.

In der Prüfung erhalten Sie <u>keinen Auszug</u> aus den wissenschaftlichen Daten. Die Datensätze werden als bekannt in der Prüfung vorgesetzt. Sie haben sich vorab Notizen und Anmerkungen gemacht.

• bar

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Alex hält die wissenschaftliche Veröffentlichung Wu, G., et al. (2004). Arginine nutrition in neonatal pigs unter einem Schnaufen in die Luft. 'Worum geht es denn eigentlich in dieser Arbeit?', fragt er stirnrunzelnd. Alex soll die Veröffentlichung nutzen um das eigene Experiment zu planen. Als eine Vorlage sozusagen. Daher möchte sein Betreuer, dass er einmal die Veröffentlichung sinnvoll zusammenfasst. Das sollte dann doch etwas aufwendiger werden.

Leider kennt sich Alex mit dem Lesen einer wissenschaftlichen Veröffentlichung mit Fokus auf die Statistik überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe! Glücklicherweise kennen Sie die wissenschaftliche Veröffentlichung schon im Detail und können sofort helfen.

- 1. Erläutern Sie die wissenschaftliche Fragestellung der wissenschaftlichen Veröffentlichung anhand des OCAR Prinzips nach Schimel (2012)² (4 Punkte)
- 2. Nennen Sie die untersuchten Endpunkte in der wissenschaftlichen Veröffentlichung! Wie lautet der primäre Endpunkt? (2 Punkte)
- 3. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 4. Nennen Sie eine Auswahl an bedeutenden statistischen Maßzahlen in der wissenschaftlichen Veröffentlichung! (1 Punkt)
- 5. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 6. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Effektstärke für den primären Endpunkt! (2 Punkte)
- 7. Diskutieren Sie die ökonomische Relevanz der Hauptaussage der wissenschaftlichen Veröffentlichung im Bezug auf Signifikanz und Effektstärke für den primären Endpunkt! (1 Punkt)
- 8. Skizzieren Sie für den primären Endpunkt den sich ergebenden Datensatz in R für eine ausgewählte Abbildung! (2 Punkte)
- 9. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)
- 10. Schätzen Sie die benötigte Fallzahl für ein zukünftiges Experiment anhand der Ergebnisse in der wisenschaftlichen Veröffentlichung für den primären Endpunkt! (2 Punkte)

²Schimel, J. (2012). Writing science: how to write papers that get cited and proposals that get funded. OUP USA.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Unter einem langen Schnaufen starrt Alex auf den wissenschaftlichen Datensatz data2 in seinem Laptop. 'Worum geht es denn eigentlich in diesem Datensatz?', fragt er kopfschüttelnd. Alex soll die Datentabelle nutzen um das eigene Experiment zu planen und eine Blaupause zu haben. Als eine Vorlage sozusagen, die er nur noch ausfüllen muss. Daher möchte seine Betreuerin, dass er einmal die Daten sinnvoll zusammenfasst. Das sollte dann doch etwas aufwendiger werden.

Leider kennt sich Alex mit der Analyse eines wissenschaftlichen Datensatzes überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe! Glücklicherweise kennen Sie den wissenschaftlichen Datensatz aus Ihren eigenen Analysen schon im Detail und können sofort helfen.

- 1. Formulieren Sie die wissenschaftliche Fragestellung des Datensatzes in Form einer PowerPoint Folie! (2 Punkte)
- 2. Nennen Sie zwei Besonderheiten des Datensatzes! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Nennen Sie die untersuchten Endpunkte in dem Datensatz! Wie lautet der primäre Endpunkt für die Auswertung? (2 Punkte)
- 4. Skizzieren Sie die großen Analysebereiche der Statistik! Beschriften Sie die Abbildungen! (2 Punkte)
- 5. In welchen der großen Analysebereiche der Statistik fällt die Auswertung des primären Endpunktes? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie eine ikonische Abbildung für den primären Endpunkt im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 7. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 8. Skizzieren Sie die Datenanalyse hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 9. Skizzieren Sie die Berechnung der Effektstärke für den primären Endpunkt! (2 Punkte)
- 10. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)

Teil XI.

Mathematik

108. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte³.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 0.9mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 12.5m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser in *m* der Eiche im Jahr 1820 als Herodot in der Eiche versteckt werden sollte? **(2 Punkte)**
- 2. Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 195cm, eine Breite von 80cm sowie eine Länge von 240cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *mühsam* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in *cm*! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! **(2 Punkte)**
- 5. Unter einer Dicke der Eichenwand von 20*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! **(2 Punkte)**

³Die Quelle der Inspiration für die Aufgabe war eine Fahrt an die Ostsee und folgender Artikel: Entdecke das erste Nationale Naturmonument Deutschlands - Ivenacker Eichen und Hutewald

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 180 Maispflanzen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Maispflanzen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Maispflanzen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 9cm und eine Höhe von 8cm. Der Kubikmeterpreis für Torf liegt bei 290 EUR.

- 1. Skizzieren Sie den Versuchsplan auf drei Tischen im Gewächshaus! (2 Punkte)
- 2. Berechnen Sie die benötigte Anzahl an Pflanztöpfen, wenn Sie Randpflanzen mit berücksichtigen wollen! (1 Punkt)
- 3. Welche Tischfläche in m^2 gegeben der Anzahl an Pflanztöpfen inklusive Randpflanzen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (3 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf in Liter *l*, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von *einem Zylinder* für die Pflanztöpfe aus! **(3 Punkte)**
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Rinderstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Rinderstall hat eine Höhe h_{ν} von 5.5m. Die hintere Seite des Rinderstall hat eine Höhe h_{b} von 9.5m. Der Rinderstall hat eine Tiefe t von 13m und eine Breite b von 70m.

- 1. Skizzieren Sie den Rinderstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! **(2 Punkte)**
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Rinderstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1.5m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 12t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 25% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80° C eine Dichte von $220kg/m^3$. Bei -100° C hat Methan eine Dichte von $300kg/m^3$. Sie betrieben Ihre Anlage bei -92° C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 **Punkte**)
- 5. Berechnen Sie die maximale Höhe h_{max} in m für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von einem Studenten im Karohemd. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Rewe über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile⁴. Tja, die Deutschen und Südamerika.

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von einem Studenten im Karohemd?

- 1. Wenn 5 Blaubeerschalen 7.95 Euro kosten, wie viel kosten 9 Schalen? (2 Punkte)
- 2. Wenn Sie die 9 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 2.89 EUR können Sie sich dann noch für 50 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Rewe über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 1901 Wasser. Eine Strauchtomate wiegt 90 120g.
- Ein Kilo Salat benötigt 120l Wasser. Ein Salatkopf wiegt 310 510g.
- Ein Kilo Avocado benötigt 1050l Wasser. Eine Avocado wiegt 150 420g.
- Ein Kilo Blaubeeren benötigt 830l Wasser. Eine Blaubeere wiegt 3.1 3.5g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (3 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2021 blieben die Erträge von Blaubeeren mit 9×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 8.6%. Die Exporte für Avocados stiegen in dem gleichen Zeitraum um 22.1% auf 1.9×10^5 t.

4. Wie viele Tonnen Wasser hat Chile in dem Exportjahr 2020 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur drei Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 61 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 35 - 115 Liter pro Waschgang einer Waschmaschine und 9 - 14 Liter pro Spülgang.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von einem Studenten im Karohemd erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! **(1 Punkt)**

⁴Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Kardaschow-Skala • Dyson-Sphäre • Hohlerde • Entropie • Proton $r_P = 1.7 \times 10e - 15$ • Wasserstoff $r_H = 5.3 \times 10e - 11$

Die Dampfnudelerde "Was für einen Unsinn!", rufen Sie. Jetzt haben Sie kostbaren Schlaf prokrastiniert um einem Ernährungswissenschaftler auf YouTube über die Erde als Dampfnudel zu lauschen. Irgendwie passt es dann doch mit der Analogie. Übermüdet müssen Sie darüber nachdenken, warum vor 67 Millionen Jahren die Dinosaurier - so groß sie auch waren - nicht von der Schwerkraft zu Boden gerissen wurden. Hat der Dampfplauderer etwa recht und war die Schwerkraft vor Millionen von Jahren eine andere? Sind deshalb alle Lebewesen auf der Erde *heutzutage* so viel kleiner, weil die Schwerkraft größer ist als damals? War die Erde kleiner und hatte weniger Masse? Oder ist es nur ein Rechenfehler wie bei der Theorie der Hohlerde von Edmond Halley aus dem 17.–18. Jahrhundert? Müde reiben Sie sich die Augen. So wird es nichts mehr mit dem Schlafen, dann können Sie auch mal etwas rechnen⁵.

Betrachten wir die Schwerkraft oder Gewichtskraft, die auf Lebewesen damals und heute gewirkt haben soll. Nehmen Sie für die Fallbeschleunigung g der Erde heutzutage einen Wert von 9.81m/s^2 an. Im Weiteren hat die Erde einen ungefähren Durchmesser von $1.2742 \times 10^4 \text{km}$ und eine mittlere Dichte ρ von 5.51g/cm^3 . Das Gewicht von einem heute lebenden Waldelefanten mit 2.7 t liegt bei 6t und das Gewicht von einem Brachiosaurus bei bis zu 30 t.

- 1. Welchen Durchmesser müsste die Erde vor 67 Millionen Jahren gehabt haben, wenn Dinosaurier und Elefanten die gleiche Gewichtskraft $\overrightarrow{F_G}$ damals und heute erfahren hätten? Beantworten Sie die Frage anhand der folgenden Teilaufgaben!
 - a) Berechnen Sie die Fallbeschleunigung von vor 67 Millionen Jahren unter der obigen Annahme gleich wirkender Gewichtskraft $\overrightarrow{F_G}$ auf Elefant und Dinosaurier! (1 **Punkt**)
 - b) Berechnen Sie Masse der heutigen Erde! (2 Punkte)
 - c) Schließen Sie über die Masse auf den Durchmesser der Erde vor 67 Millionen Jahren! (2 Punkte)
- 2. Beantworten Sie die Eingangsfrage mit 1-2 Antwortsätzen! (1 Punkt)

Die Distanz zwischen Sonne und Erde entspricht 0.99 astronomische Einheiten (AE). Die Einheit 1 AE wird mit 1.48×10^8 km angegeben. Der *massebehaftete* Sonnenwind besteht aus 81% Wasserstoffkernen mit einer molaren Masse von 1.08g/mol, 11% Heliumkernen mit 4.01g/mol sowie 8% weiteren Atomkernen mit 89.32g/mol. Die Teilchendichte bei Eintritt in die Erdatmosphäre liegt zwischen 0.4 bis 100 Teilchen cm⁻³ pro Sekunde mit einer mittleren Teilchendichte von 5cm⁻³ pro Sekunde.

Lösen Sie den folgenden Aufgabenteil mit einer aussagekräftigen Skizze!

- 4. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die gesamte Erde pro Sekunde treffen! (2 Punkte)
- 5. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die Sonne pro Sekunde in alle Richtungen aussendet! (2 Punkte)
- 6. Berechnen Sie die Masse, die die Erde pro Jahr durch die *massebehafteten* Teilchen des Sonnenwind zunimmt! (2 Punkte)

⁵Die Quelle der Inspiration für die Aufgabe war folgender Artikel: "Skeptische Anmerkungen — Die Erde als Dampfnudel" in Der Humanistische Pressedienst

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Entschuldigung, ist das Ihre Feder in meinem Auge? So hört man häufiger höfliche Gänse in Mastställen sagen. Das ist natürlich etwas ungünstig, den dann kommt es zu Picken und Kannibalismus. Denn wenn der Nachbar nervt, dann muss zu Maßnahmen gegriffen werden. Kennt jeder aus einer mittelmäßigen Wohngemeinschaft. Das wollen wir aber als vorsorgliche Gänse-Halter:innen nicht⁶. Betrachten wir also einmal das Platzangebot (eng. *space allowance*, abk. *SA*) der Gänse für vier Tätigkeiten und versuchen die notwendige Fläche zu optimieren. Wie immer gibt es dafür eine mathematische Formel:

$$SA = \sum_{i=1}^{n} (A_i \times PB_i)$$
 $A_i = \pi \times (r_i + R_i)^2$

mit

- SA dem benötigten Platzangebot aller aufsummierten Verhalten i.
- Ai dem benötigten Platz für ein Verhalten i.
- PBi dem Anteil des Auftretens eines Verhaltens i.
- r_i dem Radius Gans plus dem benötigten Radius für das Verhalten i.
- Ri dem notwendigen Abstand zu den Nachbarn für das Verhalten i.
- *i* dem Verhalten: (1) standing, (2) sitting, (3) foraging incl. scratching und (4) walking.

In der folgenden Tabelle 1 sind die Werte für r_i , R_i und PB_i für ein spezifisches Verhalten i aus drei wissenschaftlichen Veröffentlichungen dargestellt.

	Aldridge et al. (2021)	Baxter et al. (2022)	Jabcobs et al. (2019)
standing	36cm; 22cm; 8.9%	33cm; 27cm; 3.5%	40cm; 22cm; 10.1%
sitting	36cm; 22cm; 50.1%	30cm; 17cm; 64.1%	39cm; 26cm; 25.4%
foraging incl. scratching	35cm; 24cm; 2.1%	40cm; 24cm; 4.1%	38cm; 27cm; 1.8%
walking	39cm; 23cm; 0.2%	38cm; 22cm; 0.2%	41cm; 29cm; 0.4%

- 1. Erstellen Sie eine zusammenfassende Tabelle mit den mittleren Werten für r, R und PB aus der obigen Tabelle 1 für die jeweiligen Verhalten! (3 Punkte)
- 2. Ergänzen Sie eine Spalte mit dem benötigten Platz A für das jeweilige Verhalten, welches sich aus den mittleren Werten ergibt! (1 Punkt)
- 3. Berechnen Sie das benötigte Platzangebot SA für alle betrachteten Verhalten! (1 Punkt)
- 4. Skizzieren Sie die Werte r_i , R_i und A_i für zwei nebeneinander agierende Gänse für ein Verhalten i. Nutzen Sie hierfür vereinfachte geometrische Formen! (2 Punkte)
- 5. Sie entnehmen der Literatur folgende Aussage zur Verteilung der Gänse in der Fläche A: "Assuming, that the animals will optimally and equally distribute in an area A, we observe a small part, which is not covered. This area is called ω and is calculated with $\omega = \frac{A}{0.9069}$." Veranschaulichen Sie die Fläche ω in einer aussagekräftigen Abbildung! (1 Punkt)
- 6. Ein Tier braucht Platz für sich selbst. Berechnen Sie nun die Körperfläche α , die ein Tier einnimmt. Welche Annahmen haben Sie für die Berechnung der Körperfläche getroffen? (2 Punkte)

⁶Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftliche Artikel: EFSA Panel on Animal Health and Welfare, et al. (2023) Welfare of broilers on farm. EFSA Journal 21.2.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 50 Tagen die ersten Symptome ein; die ersten Toten sind nach 60 Tagen zu beklagen; nach 115 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 222 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Was ist die Besonderheit der Überlebenszeitkurve? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Schätzen Sie die Überlebenswahrscheinlichkeit nach 95 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $8000\mu g/100mg$ Vitamin C. Der Bedarf liegt bei 120mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in t an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 20 Tage über den Pazifik! (3 Punkte)
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Event Horizon – Am Rande des Universums Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{27} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 3000m kollabiert, wird die Sonne 45% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. Sie haben folgende Formeln für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{grav} gegeben⁷.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \qquad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- ullet m_f , gleich der Masse [kg] des fliehenden Objektes
- m_s, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- G, gleich der Gravitationskonstante mit $5.974 \cdot 10^{-11} m^3 (kg \cdot s^2)^{-1}$

Im Folgenden wollen wir uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (1 Punkt)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (1 Punkt)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Gehen Sie von einer Lichtgeschwindigkeit von $2.9 \times 10^8 m/s$ aus. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! (2 **Punkte**)
- 6. Ein Auto und ein Äffchen stürzen aus großer und gleicher Höhe in ein schwarzes Loch. Welches der beiden Objekte überschreitet zuerst den Ereignishorizont des schwarzes Loches? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

⁷Die Quelle der Inspiration für die Aufgabe war ein Montagnachtfilm: Event Horizon – Am Rande des Universums

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Fermi Paradoxon Der Kernphysiker Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: "Where is everybody?". Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten? Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?⁸

Wir treffen folgende Annahmen. Eine außerirdische Zivilisation schickt drei Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $6.0523 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 750 Jahren ist die Replikation abgeschlossen und wiederum drei Sonden werden ausgesendet. Gehen Sie von 5.16 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 10^{11} Sterne in der Milchstraße. Nehmen Sie eine Lichtgeschwindigkeit von $2.8 \times 10^8 m/s$ an.

- 1. Skizzieren Sie in einer Abbildung die ersten vier Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer und der Anzahl an Sonden für jeden Schritt der Vervielfältigung! (4 Punkte)
- Berechnen Sie die theoretische Anzahl an Vervielfältigungsschritten die benötigt werden um mit einem einzigen Vervielfältigungsschritt die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 3. Berechnen Sie die Dauer, die eine außerirdische Zivilisation annährungsweise benötigt um die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 4. Bei einem vermutetet Alter der Erde von 4.5×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 10^8 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)

⁸Die Quelle der Inspiration für die Aufgabe war folgender Wikipediaeintrag: Fermi-Paradoxon

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die mecklemburgischen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 74 Grad im Vergleich zu den ägyptischen Pyramiden mit 54 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 44 Königsellen. Eine Königselle misst 52.4cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 44 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 4cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m^3 ! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 2 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Knieschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 85% aus. In eine Schubkarre passen 100 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 14°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die mecklemburgische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Chefredaktuer*) mit, das die Pyramide zu flach sei und somit nicht in die mecklemburgische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 7° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Geocaching – Von Satelliten und Plastikdosen Es ist Wochenende und das Wetter ist *sweet*. Sie schwingen sich auf Ihr Cachermobil um mit 17km/h, geleitet von modernster Satellietentechnologie und einem Supercompter aus dem Jahr 2000 in Ihren Händen, Plastikdosen in der Natur und an sehenswerten Orten zu finden. Sie wollen diesmal endlich die aufwärts Terrainchallenge durchführen. Die Reihenfolge der Caches nach Terrainwertung gibt daher die von Ihnen abzufahrenden Orte vor. Die Terrain- und Schwierigkeitswertungen laufen von 1 (leichteste Wertung) bis 5 (schwierigste Wertung) in 0.5 Schritten. Folgende Informationen zu den Orten und den entsprechenden Caches stehen Ihnen für Ihre Planung der Route zu Verfügung⁹.

Ort	Cache	Wertung (S T G)
Α	GC3QNER	3.5 1.5 Normal
В	GCX0Y3R	5.0 2.5 Mikro
С	GCAHL5C	2.5 1.0 Mikro
D	GCNP8YT	2.0 2.0 Mikro
Е	GCGETFY	3.0 3.0 Mikro

Im Weiteren sind Ihnen folgende Informationen zu den Entfernungen der Orte zugänglich. Der Entfernungsvektor \overrightarrow{AC} ist 4km. Im Weiteren ist Ihnen der Entfernungsvektor \overrightarrow{CB} mit 5.5km bekannt. Der Entfernungsvektor \overrightarrow{BE} ist das 1.5-fache des Entfernungsvektor \overrightarrow{CB} . Wenn Sie von dem Ort A den Ort C anpeilen, so liegt der Ort B ungefähr 30° südlich. Wenn Sie von dem Ort C den Ort B anpeilen, so liegt der Ort D ungefähr 50° östlich. Vom Ort B betrachtet, bilden die Orte C und D einen rechten Winkel am Ort B. Der Ort B liegt auf gerader Linie zwischen den Orten C und E. Somit liegt der Ort E südlich von B. Die Strecke zwischen A und E ist nicht passierbar. Sie starten an dem Ort C Ihre Cachertour.

- 1. Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Orte und Caches. Bezeichnen Sie die Strecken und die Winkel Ihrer Skizze entsprechend! (2 Punkte)
- 2. Welche Strecke in km legen Sie bei der Bewältigung der aufwärts Terrainchallenge zurück? (5 Punkte)
- 3. Gehen Sie von einer zusätzlichen Suchzeit in Stunden für die Caches an den jeweiligen Orten zur reinen Reisezeit mit Ihrem Cachermobil aus. Die Suchzeit in Stunden für jeden einzelnen Cache wird durch die Funktion

$$Suchzeit = 0.1 + 0.13 \cdot Schwierigkeit$$

beschreiben. Wie lange in Stunden benötigen Sie um die aufwärts Terrainchallenge zu erfüllen? (3 Punkte)

4. An der höchsten Schwierigkeit müssen Sie angeln. Ihre Angel ist ausgefahren 8m lang. Erreichen Sie einen Cache in der Höhe von 9.9m? Berechnen Sie dazu Ihre maximale mögliche Angelhöhe! Welche Annahmen mussten Sie treffen um die Aufgabe zu lösen? (2 Punkte)

⁹Die Quelle der Inspiration für die Aufgabe war folgende Tätigkeit: Geocaching – Mach mit bei der weltweit größten Schatzsuche.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Brot aus Luft • Walöl • Haber-Bosch-Verfahren • 1. Weltkrieg • 40% N im menschlichen Körper • Positivist

Die atmende Wand und Brot aus Luft Als Kellerkind vom Dorf wollen das Ausmaß der Radonbelastung in ihrem Kellerzimmer bestimmen und lüften daher nicht. Spart dann auch Energie und lüften wird sowieso überschätzt. Während einer Messperiode von 7:00 Uhr bis 21:00 bestimmen Sie dreimal automatisch die Radonbelastung in Ihrem Kellerraum in Bq/m^3 . Es ergibt sich folgende Abbildung¹⁰.

1. Wie lange dauert es in Stunden bis Sie eine kritische Belastung von $400Bq/m^3$ in Ihrem ungelüfteten Kellerraum erreicht haben? (2 Punkte)

Radon zerfällt mit einer Halbwertszeit von 1.8d zu Polonium. Polonium wiederum zerfällt mit einer Halbwertszeit von 135d zu Blei. Nur Radon und Polonium tragen zur radioaktiven Strahlenbelastung bei.

2. Wie lange dauert es in Stunden bis Ihre kritische Radonbelastung von $400Bq/m^3$ auf unter $80Bq/m^3$ gefallen ist? **(4 Punkte)**

Folgende Tabelle enthält die Informationen zur Zusammensetzung der normalen Umgebungsluft.

	Vol-%	M [g/mol]	ppm
Stickstoff	79.7	28.4	
Sauerstoff	21.3	16.2	
Kohlenstoffdioxid	0.045	11.8	

3. Rechnen Sie die Volumenprozente (Vol-%) der Umgebungsluft in die entsprechenden ppm-Werte um und ergänzen Sie die berechneten ppm-Werte in die Tabelle! (1 Punkt)

Während Sie Ihr etwas pappiges Toastbrot mampfen kommt Ihnen die Dokumentation über Brot aus Luft in den Sinn. Sie denken darüber ein wenig nach. Für die Umwandlung von Stickstoff N_2 mit Wasserstoff H_2 zu Ammoniak NH_3 gilt folgende Reaktionsgleichung¹¹:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Ein Mol eines beliebigen Gases hat bei normalen Umweltbedingungen ein Volumen von 22.4 Liter.

- 4. Welche Masse an Ammoniak in Kilogramm kg können Sie aus einem Kubikmeter m^3 Luft unter normalen Umweltbedingungen gewinnen? (2 Punkte)
- 5. Wieviel Ammoniak in mol erhalten Sie aus einem Kubikmeter Luft? (1 Punkt)

 $^{^{10}\}mathrm{Die}$ Quelle der Inspiration für die Aufgabe war folgender Artikel: Atmende Wand

¹¹Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Haber-Bosch-Verfahren – Brot aus Luft

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Finsternis Ihr Studentenjob war nach Ladenschluss bei Aldi die Regale einzuräumen. Dabei ist Ihnen in der Auslage der Sonderangebote das Necronomicon¹² in die Hände gefallen. Nun sind Sie ein Magier der Zeichen geworden! Also eigentlich können Sie nur Mathe und das dämliche Necronomicon hat Sie in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 939 n. Chr. für den neuen Lehnsherren Fürsten Arthur. Sie bauen natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Ihnen stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung.

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- v, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit $9.81\frac{m}{s^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 30mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 13m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 13m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 4.1mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 1.6mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 1.2×10^6 Bleikugeln zusammen. Blei hat eine Dichte von $15.1q/cm^3$.

4. Wie schwer in Kilogramm kg sind die 1.2×10^6 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 900 Bleikugeln produzieren wollen und die Bleikugel im Fall 1.4cm Abstand haben müssen? **(1 Punkt)**

 $^{^{12}}$ Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Kaninchen Leider hat es mit Ihrer Surfschule in Down Under nicht geklappt. War vielleicht auch nicht *so* die beste Idee... aber dafür haben Sie eine Neue! Oder wie es Mike Tyson zugeschrieben wird: "Ich wurde nie niedergeschlagen, ich war immer am Aufstehen!". Daher machen Sie jetzt einen Großhandel mit Kaninchenfleisch und damit dem teuersten Fleisch in Australien auf. Moment, hopsen hier nicht, seit Thomas Austin im Jahr 1860 ungefähr 28 Kaninchen entlassen hat, Millionen von Kaninchen rum? Wieso ist das Kaninchenfleisch dann so exklusiv? Dem wollen wir mal mathematisch nachgehen!¹³

Forscherinnen fand folgende Sättigungsfunktion für das jährliche Wachstum der gesamten Kaninchenpopulation im westlichen Australien.

$$f(t) = 10^{10} - 1.1 \times 10^9 \cdot 2.2^{-0.15 \cdot t + 2.7}$$

- 1. Skizzieren Sie die Sättigungsfunktion annäherungsweise in einer Abbildung! (1 Punkt)
- 2. Wie viele Kaninchen können nach der Sättigungsfunktion maximal im westlichen Australien leben? Ergänzen Sie den Wert in Ihrer Abbildung! (2 Punkte)
- 3. Wie viele Millionen Kaninchen leben nach der Sättigungsfunktion nach 6 Jahren auf dem australischen Kontinent? (1 Punkt)

Um den Kaninchen Einhalt zu gebieten wurde das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) in 12 Kaninchen ausgebracht. Da die Kaninchen keine Maßnahmen gegen die Ausbreitung vornehmen können, verläuft die Ausbreitung mit einem wöchentlichen Wachstumsfakor von 1.8 nach folgender Formel.

$$N(t) = N(0) \cdot a^t$$

3. Wie viele Wochen benötigen die Viren um theoretisch die gesamte Kaninchenpopulation nach 4 Jahren Wachstum zu durchseuchen? (1 Punkt)

Das Myxoma Virus und das RHDV töten 98.5% der Kaninchenpopulation innerhalb weniger Wochen.

4. Wie lange in Jahren dauert es bis eine Kaninchenpopulation nach einer Viruspandemie wieder auf 40% der gesättigten Kaninchenpopulation angewachsen ist? (2 Punkte)

Thomas Austin entließ die Kaninchen im äußersten Süden von Australien. Australien hat eine West-Ost-Ausdehnung von 4400km und eine Nord-Süd-Ausdehnung von knapp 3500km. Die Kaninchen breiten sich radial mit einer Geschwindigkeit von 7.8km pro Jahr aus.

5. Wie lange dauert es in Jahren bis die Kaninchen jeden Ort in Australien erreicht haben? Lösen Sie die Aufgabe unter der Verwendung einer schematischen Skizze! (2 Punkte)

Eine jährliche Impfung gegen das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) kosten 9\$ pro Tier und der durchführende Arzt verlangt ca. 45\$ pro Tier.

6. In Ihrem Stall leben 1000 Mastkaninchen. Mit welchen jährlichen Zusatzkosten für die Impfungen der Kaninchen müssen Sie daher kalkulieren? (1 Punkt)

¹³Die Quelle der Inspiration für die Aufgabe war der folgendes YouTube Video: Incredible Stories – Why don't they eat wild rabbits in Australia? They have millions of them! The reason is surprising...

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Uckermark. Unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer des Schafs Frida und Ihnen. Grünes Gras unter Ihren Füßen und ein strammer Wind im Gesicht, egal wohin Sie schauen. Ein schmatzendes Geräusch ertönt unter Ihnen. Sie sinnieren, sollten Sie Ihre weiten Graslandschaften jetzt schon düngen? Dafür benötigen Sie die *Grünlandtemperatur*! Die Grünlandtemperatur (GLT) ist die Summe aller positiven Tagesmitteltemperaturen seit Jahresbeginn. Ab einer GLT von 200° kann mit der Stickstoffdüngung begonnen werden. Sie sehen nicht ein, Geld für einen Agrarmetrologen zu bezahlen. Also rechnen Sie mit folgenden Informationen zu Monatsmultiplikatoren des GLT-Wertes: Januar mit 0.5×, Februar mit 0.7× und März mit 1.2×. Sie haben noch im letzten Jahr folgende Temperaturen gemessen.

Datum	C°
01. Jan 2023	0.3
01. Feb 2023	1.5
01. Mrz 2023	3.5
01. Apr 2023	4.3

- 1. Erstellen Sie eine Skizze aus den Informationen aus der Temperaturtabelle! (1 Punkt)
- 2. Stellen Sie die linearen Funktionen $f_1(t)$, $f_2(t)$ und $f_3(t)$ aus der obigen Temperaturtabelle auf! (1 **Punkt**)
- 3. Bestimmen Sie die Stammfunktionen $F_1(t)$, $F_2(t)$ und $F_3(t)$ für Ihre linearen Funktionen aus der obigen Temperaturtabelle! **(1 Punkt)**
- 4. Osterglocken beginnen ab einer GLT von 190°C zu blühen. An welchem Tag im 1. Quartal des Jahres 2023 war dies der Fall? *Ignorieren Sie ein eventuelles Schaltjahr in Ihrer Berechnung.* **(4 Punkte)**

Auf dem Weg zu Ihrer Pink Lady Plantage wurden Sie mit Ihrem Trecker von einer Gruppe elektrifizierter Renter abgedrängt. Der Trecker muss wieder aus dem Graben! Frida und die elektrifizierten Rentner ziehen an zwei, separaten Seilen. Dabei zieht Frida mit 180N. Die elektrifizierter Renter bringen eine Kraft von 190N auf.

Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Kraftvektoren. Bezeichnen Sie die Kraftvektoren und die Winkel Ihrer Skizze entsprechend!

- 5. Im ersten Versuch legen Sie das Seil für Frida lotrecht über einen Ast oberhalb des Treckers. Die Rentner ziehen in einer geraden Linie über die Böschung hinweg am anderen Seil. Welche Kraft wird aufgebracht? (2 Punkte)
- 6. Im zweiten Versuch ziehen Frida und die Rentner mit einem 30° Winkel mit ihrem Seil an dem Trecker. Welche Kraft wird aufgebracht? (2 Punkte)
- 7. Mit welcher Beschleunigung ziehen Sie den 1.3t schweren Trecker *jeweils* aus dem Graben, wenn $F = m \cdot a$ gilt? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In der Kartonagenfabrik Wenn man sich zu spät anmeldet, dann ist die Exkursion nicht so toll. Also geht es mit Rektor Skinner und Mrs. Krabappel in die Kartonagenfabrik. Wie schon im vorherigen Semester... In der Kartonagenfabrik angekommen erfahren Sie, dass die Kartons zum Versand von Nägeln nicht hier zusammengebaut werden sondern das sich die Endfertigung in Flint, Michigan befindet. Unter anderem wird dort der berühmte Doppelt gewellte, 6-mal-gefaltete, 0.7mm, 40-cm-Karton durch Falzung hergestellt. Beim letzten Mal war Rektor Skinner die Stimmung zu schlecht und deshalb geht es erst nach Hause, wenn ein paar Aufgaben gelöst sind. Martin gefällt das. An dem Vorrat an Zigaretten von Mrs. Krabappel meinen Sie wenig Zuversicht zu erkennen.

Jetzt heißt es Kartons optimieren. Der nun zu optimierende, flache Karton hat eine Länge von 40cm und eine Breite von 21cm. Die Kartonagenmaschine in Flint soll dann einen quadratischen Eckenausschnitt der Länge \boldsymbol{x} falzen.

- 1. Erstellen Sie eine Skizze des Karton*blatt*rohlings! Beschriften Sie die Skizze mit den entsprechenden Längenangaben (1 Punkt)
- 2. Berechnen Sie die Falztiefe x für ein maximales Volumen des flachen Kartons! (3 Punkte)
- 3. Welches Volumen in Liter ergibt sich mit der von Ihnen berechneten Falztiefe x? (1 Punkt)
- 4. Sie wollen noch einen bündig mit dem Boden abschließenden Deckel für den Karton stanzen lassen. Wie groß ist die Fläche des Kartondeckel*blattr*ohlings in *cm*²? **(2 Punkte)**

Rektor Skinner möchte sich gerne wieder in seinem Vorgarten aufhalten und nicht die ganze Zeit von Bart mit Erdnüssen beworfen werden. Deshalb möchte er einen geräumigen Teil seines Vorgartens einzäunen. Ein Teil der Umzäunung bildet seine Vorderhauswand. Wegen Lieferschwierigkeiten stehen Rektor Skinner nur 110m Zaun zu Verfügung. Sie wollen nun die maximale Fläche des abgeschirmten Vorgartens in Abhängigkeit der Seitenlängen bei der Verwendung von 110m Zaun bestimmen!

- 5. Welche Seitenlängen für den Zaun ergeben sich für die maximale Fläche des abgeschirmten Vorgartens? (2 Punkte)
- 6. Berechnen Sie die Fläche des abgeschirmten Vorgartens! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Ein Pfund Insekten, bitte! Das wird wohl häufiger gehört werden, wenn wir die Menschheit mit Proteinen ausreichend ernähren wollen 14 . Schauen wir uns dazu einmal den Vergleich Deutschland zu Nigeria an. Nigeria hat eine der am schnellsten wachsenden Bevölkerungen der Welt und wird vermutlich im Jahr 2100 zu den Top 5 der bevölkerungsreichsten Länder zählen. Im Jahr 2023 leben ca. 8×10^7 Menschen in Deutschland und ca. 1.84×10^8 Menschen in Nigeria. Mit den Informationen wollen wir anfangen und dann eine Prognose für den Fleischkonsum im Jahr 2050 zu treffen.

Im folgenden ist Abbildung des Fleischkonsums im Jahr 2023 in Deutschland und Nigeria in [kg] einmal dargestellt.

- 1. Stellen Sie den Fleischkonsum in Deutschland und Nigeria im Jahr 2023 *pro Kopf* in einer aussagekräftigen Tabelle dar! (2 Punkte)
- 2. Ergänzen Sie in der Tabelle eine Spalte in der Sie für den Fleischkonsum in Nigeria auf Deutschland normieren, daher ins Verhältnis Nigeria/Deutschland, setzen! (1 Punkt)

In der nächsten Abbildung finden Sie die CO₂-Emission in [kg] nach Lebensmittel, die durch die Produktion entsteht, abgebildet.

3. Stellen Sie in einer Tabelle die Treibhausgasemissionen an CO_2 pro Kopf, die durch den Fleischkonsum in Deutschland und Nigeria im Jahr 2023 entstehen, dar! Ergänzen Sie auch hier das Verhältnis Nigeria zu Deutschland! (2 Punkte)

¹⁴Die Quelle der Inspiration für die Aufgabe war der folgende Artikel aus dem Spiegel: Acht Milliarden - sind wir bald zu viele Menschen auf der Erde?

In der folgenden Abbildung sehen Sie die Bevölkerungsentwicklung [Millionen] in Nigeria von 1950 bis ins Jahr 2030 fortgeführt.

- 4. Schätzen Sie graphisch die zu erwartende Bevölkerung [Millionen] in Nigeria im Jahr 2050, die sich anhand der Informationen aus der Abbildung ergibt!
 - a) Ohne Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
 - b) Unter Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
- 5. Berechnen Sie den geschätzten Fleischkonsum von Nigeria im Jahr 2050 unter der Annahme 60%-iger Angleichung der Lebensbedingungen zu Deutschland im Jahr 2023! (1 Punkt)
- 6. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria im Jahr 2050 im Vergleich zum Jahr 2023, der sich durch den angeglichenen Fleischkonsum ergibt! (1 Punkt)
- 7. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria, wenn die gesamte Proteinaufnahme durch Insekten ersetzt würde! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tödliche Seuche AIDS – Die rätselhafte Krankheit Irritiert legen Sie die historische Ausgabe des Spiegels aus den 80zigern beiseite. Sie sind bei Ihrem Hautarzt und wollen einen AIDS-Test machen lassen. Woanders leider keinen Termin gekriegt... Immerhin denken Sie und Ihr Partner über Nachwuchs nach und da geht es eben nur durch ungeschützten Sex. Was wissen Sie nun aber über AIDS und dem diagnostischen AIDS-Test, den Sie nun machen werden?

Die Prävalenz von AIDS bei einem Menschen in Europa wird mit 0.8% angenommen. In 92% der Fälle ist ein HIV-Test positiv, wenn der Patient erkrankt ist. In 4% der Fälle ist ein HIV-Test positiv, wenn der Patient nicht erkrankt ist und somit gesund ist. Sie stutzen. Wie wahrscheinlich ist es denn eigentlich an AIDS erkrankt zu sein (K^+), wenn Sie einen positiven AIDS-Test vorliegen haben (T^+)? Gehen Sie für die folgenden Berechnungen von $n=2\times 10^4$ Patienten mit einem diagnostischen Test für AIDS aus. Sie nehmen sich also einen Kuli und fangen an auf der historischen Ausgabe des Spiegels zu rechnen¹⁵.

- 1. Welche Wahrscheinlichkeit Pr wollen Sie berechnen? (1 Punkt)
- 2. Zeichnen Sie einen Häufigkeitsdoppelbaum zur Bestimmung der gesuchten Wahrscheinlichkeit *Pr*! (2 **Punkte**)
- 3. Beschriften Sie den Häufigkeitsdoppelbaum, mit denen Ihnen bekannten Informationen zu der AIDS Erkrankung und dem AIDS-Test! (1 Punkt)
- 4. Füllen Sie den Häufigkeitsdoppelbaum mit den sich ergebenden, absoluten Patientenzahlen n aus! (2 Punkte)
- 5. Berechnen Sie die gesuchte Wahrscheinlichkeit Pr! (1 Punkt)

Bei dem folgenden Arztgespräch erfahren Sie, dass beim diagnostischen Testen *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)* auftreten. Das verstehen Sie so noch nicht und deshalb stellen Sie für sich den Zusammenhang in einer 2x2 Kreuztabelle dar.

- 6. Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (1 Punkt)
- 7. Berechnen Sie die Sensitivität und Spezifität des diagnostischen Tests für AIDS! Füllen Sie dafür die 2x2 Kreuztabelle mit den Informationen aus dem Häufigkeitsdoppelbaum aus! (2 Punkte)
- 8. Was beschreibt die Sensitivität und die Spezifität im Bezug auf die Gesunden und Kranken? Stellen Sie beide diagnostische Maßzahlen als Wahrscheinlichkeiten *Pr* dar! **(2 Punkte)**

¹⁵Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftlicher Artikel: Binder et al. (2022) Von Baumdiagrammen über Doppelbäume zu Häufigkeitsnetzen – kognitive Überlastung oder didaktische Unterstützung? Journal für Mathematik-Didaktik, 1-33

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Network-Marketing oder Schneeballschlacht! Eine Möglichkeit, leicht Geld zu verdienen, ist es anderen Menschen für Geld zu versprechen, wie man leicht reich werden kann. Am besten natürlich ohne viel Aufwand und ortsunabhängig. Dann wollen wir mal loslegen. Schnell ein YouTube-Werbevideo gedreht und auf geht es mit unserem Network-Marketing. Aber Moment, wie funktioniert Network-Marketing eigentlich und was hat das alles mit einer Schneeballschlacht zu tun? Wir wollen hier einmal in die Untiefen des "passiven Einkommens" abtauchen¹⁶.

Das Jahr 2022 war das erfolgreichste Jahr in der Geschichte von KH Gesund und Schön Components (KH-GSC). Das Unternehmen steigerte den Umsatz um rund 15 Prozent von 260 Millionen Euro im Jahr 2021. Doch wie viel kommt bei den Partnern an? Laut KH-GSC habe das Unternehmen 3.8×10^5 aktive Partner.

- 1. Berechnen Sie zuerst den Umsatz der Firma KH-GSC im Jahr 2022! (1 Punkt)
- 2. Wie viel von dem Umsatz im Jahr 2022 wird im Durchschnitt von jedem aktiven Partner erwirtschaftet? (1 Punkt)
- 3. Welche *monatlicher* Umsatz ergibt sich dadurch im Durchschnitt für jeden aktiven Partner bei einer direkten Provision von 30%? (1 Punkt)

Ihr zu vermarkendes Produkt, hinter dem Sie voll stehen, kostet 200EUR pro Einheit im Direktverkauf. Die direkte Provision für die erste Stufe beträgt 40%. Für die zweite, dritte und vierte Stufe betragen die indirekten Provisionen jeweils 3%, 2% und 1.5%. Jeder Ihrer angeworbenen "Partner" wirbt wiederum fünf Partner für sich selbst an. Pro Monat werden im Schnitt fünf Einheiten vom Produkt verkauft. Sie wollen nun 3200EUR im Monat *passiv* – also durch indirekte Provisionen – erwirtschaften.

4. Ergänzen Sie die folgende Tabelle mit den obigen Informationen! (2 Punkte)

Stufe	Anzahl Partner	Umsatz/Stufe	Provision
1	Sie selber		
2			
3			
4			

5. Wie viele Partner müssen Sie auf der 2 Stufe anwerben um Ihr passives Einkommen durch indirekte Provision zu erreichen? Wie viele Menschen arbeiten am Ende indirekt für Sie? Stellen Sie den Zusammenhang graphisch dar! (3 Punkte)

Sie mussten zum Einstieg bei KH-GSC Einheiten des Produkts für 6000EUR kaufen. Diese Einheiten können Sie nur direkt verkaufen. Leider mussten Sie den Kauf über einen Kredit über 5.1% p.a. über 48 Monate finanzieren.

- 6. Berechnen Sie die Gesamtsumme, die Sie als Kredit abbezahlen müssen! (2 Punkte)
- 7. Wie viele Einheiten müssen Sie pro Monat verkaufen um die anfallenden Zinsen durch die direkte Provision zu erwirtschaften? (1 Punkt)
- Wie lange in Monaten benötigen Sie um den Kredit durch die direkte Provision abzubezahlen? (1 Punkt)

¹⁶Die Quellen der Inspiration für die Aufgabe waren folgendes YouTube Video: Simplicissimus – Die meistgesuchte Betrügerin der Welt und der Artikel: Deutschlandfunk Kultur – Die Illusion, schnell reich zu werden

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Höhlen & Drachen Nachdem Sie sich begeistert in der Serie *Stranger Thinks* verloren haben, wollen Sie bei einer Ihrer Freundinnen einmal *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen Sie fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen stellen.

In dem Spiel haben Sie nun auf einmal 5 achtseitige Würfel (5d8) zum würfeln in der Hand. Wenn Sie eine 8 würfeln, haben Sie einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 3 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Sie betrachten nun aufmerksam die ausufernden Ausrüstungstabellen. Ihnen wird aber geholfen und Sie müssen sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei zwölfseitigen Würfeln (2d12) als Schaden oder das Schwert mit einem vierseitigen Würfel plus 6 (1d4+6) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Sie sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass Ihr Rettungswurf gegen den zaubernden Hexer funktioniert. Sie haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.7, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.9. Sie haben mitgezählt und festgestellt, dass in 45 von 100 Fällen Ihr Rettungswurf bei einem erfolgeichen Zauber funktioniert hat.

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega=100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 Punkte)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! (1 **Punkt**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Retrocheck im TV "Und hier ist sie wieder, die Show der fantastischen Preise. Seien Sie mit dabei, wenn es wieder heißt: Der Preis ist heiß!", ertönt es und Sie fragen sich, ob Sie nicht doch lieber bezahlter Gast bei Barbara Salesch hätten sein sollten. Aber Sie brauchen das Geld und jetzt heißt es Spielschows farmen! Erstmal eine Kaffemaschine von Mitropa gewinnen. Ein Kandidat gewinnt die Kaffeemaschine von Mitropa, wenn nicht alle Kandidaten überbieten (eng. *outbid*). Mit Ihnen bilden Thorsten und Annegret das Team der drei Kandidaten.

Name	P(win)	P(outbid)
Thorsten	0.2	0.043
Annegret	0.2	0.08

- 1. Mit welcher Wahrscheinlichkeit gewinnen Sie die Kaffeemaschine von Mitropa, wenn keiner der Kandidaten überbietet? (1 Punkt)
- 2. Wenn Ihre Überbietungswahrscheinlichkeit *P(outbid)* bei 0.12 liegt, mit welcher Wahrscheinlichkeit gewinnt *keiner* die Kaffeemaschine von Mitropa? **(1 Punkt)**

Glücksrad für Arme auf der Kirmes! Leider hat es für Maren Gilzer nicht gereicht. Deshalb sind Sie jetzt auf der Kirmes und spielen mit Catwoman um das große Geld. Das Glücksrad hat 22 Felder. Sie drehen das Glücksrad zweimal. Auf 8 Feldern gewinnen Sie 5000EUR sonst 1000EUR. Ganz schön viel Geld und ganz schön zwielichtig hier...

- 3. Skizzieren Sie das Glücksrad und ergänzen Sie die Wahrscheinlichkeiten! (1 Punkt)
- 4. Zeichnen Sie das zugehörige Baumdiagramm für das zweimalige Drehen! Ergänzen Sie die Wahrscheinlichkeiten und die entsprechenden Ereignisse (2 Punkte)
- 5. Mir welcher Wahrscheinlichkeit gewinnen Sie 6000EUR? (1 Punkt)

Nach Ihrem Fiebertraum reisen Sie im Zug nach Köln um bei "Geh aufs Ganze!" mitzuspielen. Sie schaffen es tatsächlich ins Finale und können als Hauptgewinn ein Auto hinter einer der drei Türen gewinnen.

- 6. Bevor die Show beginnt, wird das Auto hinter eine zufällig bestimmte Tür gestellt. Mit welcher Wahrscheinlichkeit wird jeweils eine der drei Türen ausgewählt? Zeichnen Sie ein Baumdiagramm! (1 Punkt)
- 7. Mit welcher Wahrscheinlichkeit wählen Sie sofort die Tür mit dem Auto? Erweitere Sie das Baumdiagramm entsprechend! (1 Punkt)
- 8. Der Moderator öffnet nun eine der nicht gewählten Türen, aber natürlich nicht die mit dem Auto. Mit welcher Wahrscheinlichkeit steht das Auto hinter der anderen Tür? Erweitern Sie das Baumdiagramm entsprechend! (2 Punkte)
- 9. Lösen Sie nun das "Ziegenproblem"! Berechne Sie dazu die Wahrscheinlichkeiten der einzelnen Pfade. Lohnt sich ein Wechsel der anfangs gewählte Tür? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

Teil XII.

Angewandte Nutztier- und Pflanzenwissenschaften (M.Sc.)

129. Aufgabe (6 Punkte)

Vergleichen Sie die Standardabweichung mit dem Standardfehler und grenzen Sie die beiden Kennzahlen voneinander ab.

130. Aufgabe (8 Punkte)

Ihnen liegt folgendes Varianzanalysemodell mit der üblichen Beschreibung zur Auswertung des Merkmals fett- und eiweißkorrigierte Milchleistung pro Kuh und Jahr in kg vor:

$$Y_{ijkl} = \mu + Var_i + EKA_i + VarEKA_{ij} + V_k + b(L_{ij} - L) + e_{ijkl}$$

mit

- Yijkl: I-te Beobachtung
- μ: Populationsmittel
- Var_i: fixer Effekt der i-ten Variante (i: Kontrolle, Versuchsgruppe 1, Versuchsgruppe 2)
- EKA_i : fixer Effekt der j-ten Erstkalbealtergruppe (j: $EKA \le 25$ Monate, EKA > 25 Monate)
- VarEKAii: fixer Effekt der Interaktion Variante x Erstkalbealtergruppe
- V_k: zufälliger Effekt des Vaters
- $b(L_{ii} L)$: lineare Kovariable Laktationsnummer
- e_{ijkl} : zufälliger Restfehler

Erläutern Sie anhand dieses Beispiels die Begriffe fixer Effekt, Interaktion, zufälliger Effekt und Kovariable und grenzen Sie diese Begriffe voneinander ab.

131. Aufgabe (6 Punkte)

Wie bestimmen Sie die richtige Stichprobengröße? Welche Kennzahlen / statistische Maßzahlen benötigen Sie dabei und nennen Sie die Voraussetzungen.