随机变量数字特征

1. 一维随机变量的数字特征

1.1 数学期望

1.1.1 离散型随机变量

X 是离散型随机变量, X 的分布列为 $p_i=P\{X=x_i\}(i=1,2,\cdots,n)$ 如果级数 $\sum_{i=1}^{+\infty}x_ip_i$ **绝对收敛**, 称随机变量 X 的**数学期望**存在, 将其记作 E(X)

$$E(X) = \sum_{i=1}^{+\infty} x_i p_i$$

1.1.2 连续型随机变量

X 是连续型随机变量, X 的概率密度为 f(x) 如果积分 $\int_{-\infty}^{+\infty}xf(x)dx$ 绝对收敛, 称随机变量 X 的数学期望存在, 将其记作 E(X)

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

1.1.3 数学期望推论

- E(a) = a, E(E(X)) = E(X)
- $E(aX \pm bY) = aE(X) \pm bE(Y)$

•
$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E(X_i)$$

- X与 Y相互独立 $\Rightarrow E(XY) = E(X)E(Y)$
- X_1,X_2,\cdots,X_n 相互独立 $\begin{cases} E\left(\prod\limits_{i=1}^nX_i\right)=\prod\limits_{i=1}^nE(X_i) \\ E\left[\prod\limits_{i=1}^ng_i(X_i)\right]=\prod\limits_{i=1}^nE\left[g_i(X_i)\right] \end{cases}$

1.2 方差和标准差

设 X 是随机变量,如果 $E[(X-E(X))^2]$ 存在,将 $E[(X-E(X))^2]$ 记作 X 的方差 D(X)

$$D(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2$$

将 $\sqrt{D(X)}$ 称为随机变量 X 的**标准差**或者**均方差**, 记作 $\sigma(X)$

随机变量
$$X^*=rac{X-E(X)}{\sqrt{D(X)}}$$
 是 X 的**标准化随机变量** $\begin{cases} E(X^*)=0 \ D(X^*)=1 \end{cases}$

1.2.1 方差和标准差推论

•
$$D(X) \ge 0, D(X) = E(X^2) - (E(X))^2$$

•
$$D(c) = 0, c \in \mathbb{R}$$

•
$$D(aX + b) = a^2D(X), D(X + b) = D(X)$$

•
$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)$$

$$ullet D\left(\sum\limits_{i=1}^n a_i X_i
ight) = \sum\limits_{i=1}^n a_i^2 D(X_i) + 2\sum\limits_{1 \leq i < j \leq n} a_i a_j Cov(X_i, X_j)$$

• X和 Y 相互独立 $\begin{cases} D(aX+bY)=a^2D(X)+b^2D(Y) \\ D(XY)=D(X)D(Y)+D(X)[E(Y)]^2+D(Y)[E(X)]^2\geq D(X)D(Y) \end{cases}$

•
$$X_1,X_2,\cdots,X_n$$
 相互独立
$$\begin{cases} D\left(\sum\limits_{i=1}^n a_iX_i\right)=\sum\limits_{i=1}^n a_i^2D(X_i) \\ D\left(\sum\limits_{i=1}^n g_i(X_i)\right)=\sum\limits_{i=1}^n D\left[g_i(X_i)\right] \end{cases}$$

•
$$\forall c \in \mathbb{R}, D(X) \leq E\left[(X-c)^2\right]$$

2. 二维随机变量的数字特征

2.1 数学期望

设 X,Y 为随机变量, g(X,Y) 为 X,Y 的函数 (g 是连续函数)

2.1.1 离散型随机变量

$$p_{ij} = P\{X = x_i, Y = y_j\}(i, j = 1, 2, \cdots)$$

级数
$$\sum\limits_{i}^{m}\sum\limits_{j}^{n}g(x_{i},y_{j})p_{ij}$$
绝对收敛

$$E[g(X,Y)] = \sum\limits_{i}^{m}\sum\limits_{j}^{n}g(x_{i},y_{j})p_{ij}$$

2.1.2 连续型随机变量

(X,Y) 概率密度为 f(x,y), 积分 $\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy$ **绝对收敛** $E[g(X,Y)]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy$

2.2 协方差与相关系数

随机变量 X 与 Y 的方差存在且 D(X)>0, D(Y)>0, 定义随机变量 X,Y 的协方差 Cov(X,Y)

$$Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y)$$
 $ho_{XY}=rac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}$ 定义为随机变量 X,Y 的相关系数

2.2.1 协方差和相关系数推论

- $Cov(X, Y) = Cov(Y, X), Cov(X, X) = D(X), \rho_{XX} = 1$
- $\bullet \ \ Cov(aX+b,Y) = aCov(X,Y), Cov(X_1+X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y)$
- $ho_{XY}=0\Rightarrow X,Y$ 不相关
- $ho_{XY}
 eq 0 \Rightarrow X, Y$ 相关

3. 独立性与相关性判定、切比雪夫不等式

3.1 独立性与相关性判定

随机变量 X,Y 相互独立充要条件

$$\begin{cases} f(x,y) = f_X(x) \cdot f_Y(y) \\ P\{X = x_i, Y = y_i\} = P\{X = x_i\} \cdot P\{Y = y_i\} \end{cases}$$

随机变量 X,Y 不相关充要条件 $ho_{XY}=0$

$$ho_{XY} = 0 \Leftrightarrow Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X) \cdot E(Y) \Leftrightarrow D(X \pm Y) = D(X) + D(Y)$$

3.2 切比雪夫不等式

随机变量 X 的期望 E(X) 和方差 D(X) 都存在

$$\left\{ egin{aligned} orall arepsilon > 0, P\{|X - E(X)| \leq arepsilon\} \geq rac{D(X)}{arepsilon^2} \ orall arepsilon > 0, P\{|X - E(X)| \geq arepsilon\} \leq 1 - rac{D(X)}{arepsilon^2} \end{aligned}
ight.$$

4. 常用分布数字特征

名称	概率分布	均值	方差	参数范围
两点分布 $B(1,p)$	$P(X=k)=P^kq^{1-k}\ (k=0,1)$	p	pq	$egin{aligned} 0$
二项分布 $B(n,p)$	$P(X=k) = C_n^k p^k q^{n-k} \ (k=0,1,2,\cdots,n)$	np	npq	$egin{aligned} 0$
泊松分布 $P(\lambda)$	$P(X=k) = rac{\lambda^k}{k!} e^{-\lambda} \ (k=0,1,2,\cdots)$	λ	λ	$\lambda > 0$
超几何分布 $H(n,N,M)$	$P(X=k) = rac{C_{N-M}^{n-k}C_M^k}{C_N^n} \ (k=0,1,\cdots,\min\{M,n\})$	$\frac{nM}{N}$	$\frac{n(N-n)(N-M)M}{N^2(N-1)}$	$n,N,M\in\mathbb{N}$ $n\leq N,M\leq N$
几何分布 $G(p)$	$P(X=k)=(1-p)^{k-1}p \ (k=1,2,\cdots)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$egin{aligned} 0$
均匀分布 $U(a,b)$	$f(x) = \frac{1}{b-a} (a \leq x \leq b)$	$\frac{a+b}{2}$	$\frac{(b-a)^3}{12}$	
指数分布 $E(\lambda)$	$f(x) = \lambda e^{-\lambda x} (x>0)$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$	$\lambda > 0$
正态分布 $N(\mu,\sigma^2)$	$f(x)=rac{1}{\sqrt{2\pi\sigma}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$\sigma > 0$
Γ 分布 $\Gamma(lpha,eta)$	$f(x)=rac{eta^lpha}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}(x>0)$	$\frac{\alpha}{\beta}$	$rac{lpha}{eta^2}$	$egin{array}{l} lpha > 0 \ eta > 0 \end{array}$