Constants and Units (to two significant digits)

Gravitational constant	G		$6.7 \times 10^{-8} \text{ erg cm gr}^{-2}$
Speed of light	c	=	$3.0 \times 10^{10} \text{ cm s}^{-1}$
Planck's constant	h	=	$6.6 \times 10^{-27} \text{ erg s}$
	\hbar	=	$h/2\pi = 1.1 \times 10^{-27} \text{ erg s}$
Boltzmann's constant	k	=	$1.4 \times 10^{-16} \text{ erg } K^{-1}$
		=	$8.6 \times 10^{-5} \text{ eV } K^{-1}$
Stefan-Boltzmann constant	σ	=	$5.7 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} K^{-4}$
	a	=	$4\sigma/c = 7.6 \times 10^{-15} \text{ erg cm}^{-3} K^{-4}$
Proton mass	m_p	=	$1.7 \times 10^{-24} \text{ gr}$
Electron mass	m_e	=	$9.1 \times 10^{-28} \text{ gr}$
Electron charge	e	=	$4.8 \times 10^{-10} \text{ esu}$
Electron volt	1 eV	=	$1.6 \times 10^{-12} \text{ erg}$
Thomson cross section	σ_T	=	$6.7 \times 10^{-25} \text{ cm}^2$
Wien's Law	$\lambda_{ m max}$	=	$2900 \text{ Å } 10^4 K/T$
	$h\nu_{\rm max}$	=	$2.4 \text{ eV} \ T/10^4 K$
Ångstrom	1 Å	=	10^{-8} cm
Solar mass	$1~M_{\odot}$	=	$2.0 \times 10^{33} \text{ gr}$
Solar luminosity	_		$3.8 \times 10^{33} \text{ erg s}^{-1}$
Solar radius	$1~r_{\odot}$	=	$7.0 \times 10^{10} \text{ cm}$
Jupiter mass	$1 M_J$	=	$1.9 \times 10^{30} \text{ gr}$
Earth mass	$1~M_{\oplus}$	=	$6.0 \times 10^{27} \text{ gr}$
Astronomical unit	1 AU	=	$1.5 \times 10^{13} \text{ cm}$
Parsec	$1~{\rm pc}$	=	$3.1 \times 10^{18} \text{ cm} = 3.3 \text{ l.y.}$
Year	1 yr	=	$3.15 \times 10^7 \text{ s}$

Speed of sound: $v_c = \sqrt{dP/d\rho}$

Stefan-Boltzmann Law: $f = \sigma T^4$, $U = aT^4$, $P = \frac{1}{3}U = \frac{1}{3}aT^4$

Mean free path: $\bar{l} = 1/n\sigma$

Collision probability per target: $dP = n\sigma dx$ Collision rate per target: $f = n\sigma v$

Ideal gas law: $P = \rho kT/\bar{m}$

Virial theorem for non-rel. ideal gas in hydrostatic eq.: $E_{tot} = -E_{th} = \frac{1}{2}E_{gr} = -\frac{3}{2}\bar{P}V$ Hydrogen spectrum: $\epsilon(n_1, n_2) = 13.6 \text{eV}(\frac{1}{n_1^2} - \frac{1}{n_2^2}), \quad \lambda(n_1, n_2) = 911.5 \text{Å}/(\frac{1}{n_1^2} - \frac{1}{n_2^2})$

Schwarzschild radius: $R_s = \frac{2GM}{c^2}$

Gravitational redshift: $\frac{\lambda_{obs}}{\lambda_e} = (1 - R_s/r)^{-\frac{1}{2}}$ Relativistic Doppler shift: $\frac{\lambda_{obs}}{\lambda_e} = \frac{1 + \beta \cos \theta}{\sqrt{1 - \beta^2}} \to 1 + \frac{v \cos \theta}{c}$ (for v << c)

Cosmological redshift: $\frac{\lambda_{obs}}{\lambda_e} = 1 + z = R(t_{obs})/R(t_e)$