

Wydział Fizyki i Informatyki Stosowanej

Praca magisterska

Paweł Rzońca

kierunek studiów: Fizyka Techniczna

Badanie krzywych chronometrycznych w kontekście hipotezy zegara

Opiekun: dr hab. Łukasz Bratek

Kraków, Lipiec 2018

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałen osobiście i samodzielnie i nie korzystałem ze źródeł innych niż wymienione w pracy.							
(czytelny podpis)							

Tematyka pracy magisterskiej i praktyki dyplomowej Jana Nowaka, studenta V roku studiów kierunku fizyka techniczna

Temat 1	pracy magisterskiej	i: Badanie krz	ywych chronom	etrycznych w	kontekście h	ipotezy :	zegara

Opiekun pracy:	dr hab. Łukasz Bratek
Recenzenci pracy:	
Miejsce praktyki dyplomowej:	WFMI PK, Kraków

Program pracy magisterskiej i praktyki dyplomowej

- 1. Omówienie realizacji pracy magisterskiej z opiekunem.
- 2. Zebranie i opracowanie literatury dotyczącej tematu pracy.
- 3. Praktyka dyplomowa:
 - zapoznanie się z literaturą przedmiotu dotyczącą hipotezy zegara,
 - opracowanie podstawowych pojęć i narzędzi związanych z tematyką przedmiotu,
 - konstrukcja modelu idealnego zegara dla ciała w ruchu po okręgu,
 - powtórzenie konstrukcji modelu idealnego zegara dla metryki FLRW,
 - stworzenie skryptów do numerycznego sprawdzenia obliczeń oraz generacji wykresów.
 - sporządzenie sprawozdania z praktyk
- 4. Kontynuacja obliczeń związanych z tematem pracy magisterskiej.
- 5. Zebranie i opracowanie wyników obliczeń.
- 6. Analiza wyników obliczeń.
- 7. Opracowanie redakcyjne pracy.

7. Opracowanie redakcyjne pracy.	
Termin oddania w dziekanacie:	
(podpis kierownika katedry)	(podpis opiekuna)

Na kolejnych dwóch stronach proszę dołączy, kolejno recenzje pracy popełnione przez Opiekuna oraz Recenzenta (wydrukowane z systemu MISIO i podpisane przez odpowiednio Opiekuna i Recenzenta pracy). Papierową wersję pracy (zawierającą podpisane recenzje) proszę złożyć w dziekanacie celem rejestracji co najmniej na tydzień przed planowaną obroną.

Tu zostanie umieszczona recenzja opiekuna

Tu zostanie umieszczona recenzja recenzenta

Spis treści

1	ı wstęp						
2	2 Pojęcia wstępne	Pojęcia wstępne					
	2.1 Wstępne pojęcia i konwencje .		9				
	2.2 Krzywe w czasoprzestrzeni		10				
	2.3 Czas własny. Hipoteza zegara		12				
	2.4 Pochodna absolutna i transport	równoległy	13				
3	3 Konstrukcja zegara		14				
	3.1 Fundametalny relatywistyczny i	rotator	14				
	3.2 Model uogólniony		17				
	3.3 Transport Fermiego-Walkera		19				
	3.4 Czwórka symetryczna kierunków	w zerowych	21				
	3.5 Konstrukcja zegara		24				
4	4 Aplikacje	·	2 6				
	4.1 Ruch hiperboliczny		26				
	4.2 Ruch po okręgu		27				
	4.3 Ruch po okręgu względem galak	ktyk	29				
	4.4 Ruch po okręgu wokół czarnej o	dziury	31				
5	5 Analiza równania fazy zegara		3 3				
	5.1 Zegar w przypadku stałego przy	yspieszenia	33				
	5.2 Rozwiązanie przybliżone		35				
	5.3 Ruch jednostajnie przyspieszon	y	36				
	5.4 Ruch po okręgu		38				
	5.5 Analiza modelu pod kątem pom	niaru	40				
6	6 Podsumowanie		41				
\mathbf{A}	A Dodatek matematyczny		42				
	A.1 Rozwiązanie układu równań na	$f(\xi)$ w modelu Staruszkiewicza	42				
	A.2 Równoważność warunków trans	portu Fermiego-Walkera	43				

1 Wstęp

Od czasów starożytnych czas wyobrażano sobie jako jednowymiarowa rozmaitość różniczkową. Oczywiście pojęcie rozmaitości różniczkowej jeszcze wtedy nie istniało, lecz ówczesne wyobrażenia dobrze pasują do jej definicji [Hel93]. Można powiedzieć, że rozmaitości różniczkowe wymiaru 1 są dwie: okrąg i prosta. Pozostałe jednowymiarowe rozmaitości różniczkowe można uzyskać poprzez rozciąganie i zginanie (dokładniej homeomorficzne przekształcenie) tychże. Cykliczność obserwowanych zjawisk takich jak pory roku, cykl faz Księżyca, dały początek pierwszym miarom czasu. Prowadzi to do koncepcji czasu periodycznego, który możemy utożsamiać z okręgiem. Okrąg taki zostaje rozcięty przez zdarzenie, które występuje jednokrotnie. Takim zdarzeniem może być na przykład przyjście na świat Jezusa Chrystusa, co obserwujemy w postaci powszechnie używanego kalendarza. Wyobrażenie prostej wiąże się również z porządkiem, kolejnością zdarzeń. Dostatecznie mały fragment okręgu jest bardzo zbliżony do prostej. Więc przypadku okręgu również można myśleć o porządku lecz tylko w sensie lokalnym. W istocie wyobrażenie czasu w postaci porządek zdarzeń pojawiło się naturalnie wcześniej niż wyobrażenie jako prosta w sensie ścisłym, które to zaczęło się pojawiać wraz z pojawieniem się ilościowego opisu przyrody [HM01].

Istotna zmiana wyobrażenia czasu nastąpiła wraz z wprowadzeniem przez A. Einsteina w 1905 r. szczególnej teorii względności [Ein05]. Pojawiło się mieszanie współrzędnych przestrzennych i czasu przy transformacji inercjalnych układów odniesienia. W 1907 H. Minkowski nadał szczególnej teorii względności geometryczną postać traktując czas jako czwartą współrzędną [MP12], co może wprowadzać pewne problemy interpretacyjne, gdyż taki czas płynie różnie w różnych inercjalnych układach odniesienia. Wprowadził on również pojęcie czasu własnego jako długości krzywej czasoprzestrzennej po której odbywa się ruch zwanej linią świata. W tym sensie porządkuje on zdarzenia czyli punkty znajdujące się na linii świata. Czas własny jest niezmiennikiem transformacji Lorentza, więc posługując się nim nie wyróżniamy żadnego obserwatora. Hipoteza zegara mówi, że istnieje zegar idealny, który odmierza czas własny wzdłuż swojej linii świata niezależnie od przyspieszeń jakim podlega.

W następnym rozdziale wprowadzamy pojęcia wstępne oraz omawiamy wspomnianą hipotezę. W rozdziale trzecim wprowadzamy pojęcie fundamentalnego relatywistycznego rotatora [Sta08] oraz dzięki niemu konstruujemy matematyczny zegar. Wskazówka takiego zegara zakreśla krzywą chronometryczną. W następnych rozdziałach badamy otrzymany model zegara dla różnych ruchów pod kątem prawdziwości hipotezy zegara.

2 Pojęcia wstępne

2.1 Wstępne pojęcia i konwencje

Będziemy stosować konwencję sumacyjną Einsteina. Ustalamy, że indeksy oznaczane literami greckimi zmieniają się w zakresie od 0 do 3, natomiast indeksy oznaczane literami arabskimi w zakresie od 1 do 3. Jednostki ustalamy, tak, że c=1.

Modelem ogólnej teorii względności jest czterowymiarowa Lorenzowska rozmaitość różniczkowa. Rozmaitość tę budujemy na zbiorze, nazywanym czasoprzestrzenią, punktów nazywanych zdarzeniami. Zakładamy, że zbiór ten ma strukturę rozmaitości różniczkowej. Wprowadzimy pokrótce pojęcie rozmaitości różniczkowej. Niech M będzie niepustą przestrzenią Hausdorffa (czyli taką, że dla każdych dwóch punktów $p,q \in M$ istnieją rozłączne otoczenia U_p, U_q odpowiednio punktów p,q.) Mapą w otoczeniu U punktu $p \in M$ nazywamy parę (U,ξ) , gdzie $\xi: U \to R^n$ jest homeomorfizmem (ciągłą bijekcją, której odwrotność jest ciągła). Homeomorfizm ξ nazywamy układem współrzędnych w otoczeniu p. Mówimy, że mapy dwie mapy są zgodne, jeżeli $\xi_1 \circ \xi_2$ (tam gdzie ma sens) jest dyfeomorfizmem klasy C^k (homeomorfizm z ciągłymi pochodnymi stopnia k) Zbiór A map parami zgodnych (o zgodności klasy C^k) takich, że pokrywają cały zbiór M nazywamy atlasem klasy C^k . Atlasem maksymalnym nazywamy atlas do którego nie można dodać kolejnej mapy bez złamania zgodności. Rozmaitością różniczkową klasy C^k nazywamy zbiór M z atlasem maksymalnym klasy C^k . Wymiarem rozmaitości nazywamy wymiar przestrzeni R^n , na której modelujemy rozmaitość. Od teraz przyjmujemy, że rozmaitość jest klasy C^∞ oraz n=4. Rozmaitość nazywamy Lorenzowską jeśli określony na niej tensor metryczny g ma sygnaturę $(+,-,\ldots,-)$.

Rysunek 1: Różne parametryzacje krzywej y.

2.2 Krzywe w czasoprzestrzeni.

W tej części wprowadzimy pojęcie krzywej w czasoprzestrzeni. Jest to bardzo ważny obiekt matematyczny, gdyż służy do definiowania wektora stycznego na rozmaitości różniczkowej [GO03].

Definicja 1. Krzywą sparametryzowaną (lub parametryzacją krzywej) nazywamy odwzorowanie $y_1:I\ni\tau\to y_1(\tau)\in M$ klasy c^∞ , gdzie $I\subset R$ jest przedziałem otwartym (niekoniecznie skończonym).

Definicja 2. Parametrem dla krzywej sparametryzowanej y_1 nazywamy funkcję $\tau_1 : y_1(I) \ni p \to \tau_1(p) = y_1^{-1}(p) \in I$. Będziemy pisać τ_1 zamiast $\tau_1(p)$, wszędzie gdzie punkt p wynika z kontekstu.

Definicja 3. Niech $y_1: I \to M$ i $y_2: J \to M$ będą parametryzacjami. Reparametryzacją krzywej będziemy nazywać dyfeomorfizm $f: I \to J$ klasy C^{∞} taki, że $y_1 = y_2 \circ f$.

Jeśli dla dwóch parametryzacji istnieje reparametryzacja to mówimy, że są one równoważne. Można łatwo pokazać, że jest to relacja równoważności. Możliwość różnego parametryzowania tej samej krzywej możemy rozumieć tak, że możemy podróżować wzdłuż krzywej w różny sposób.

Definicja 4. Krzywą (lub krzywą niesparametryzowaną) nazywamy klasę równoważności parametryzacji ze względu powyższą relację równoważności. Jeżeli y jest krzywą, y_1 jej parametryzacją z parametrem τ_1 to wprowadzamy oznaczenie $y_1 =: y(\tau_1)$.

Definicja 5. Niech (U,ξ) będzie mapą w M oraz $p \in U$. W tej mapie przez y^{μ} oznaczamy współrzędne krzywej y. Wektorem stycznym do krzywej y w punkcie p (lub wektorem prędkości w parametrze τ) nazywamy wektor $y'(\tau)$ taki, że

$$y'(\tau) = \frac{\mathrm{d}y_1^{\mu}}{\mathrm{d}\tau}$$

Mając mapę w punkcie p możemy określić bazę w danym punkcie za pomocą wektorów stycznych do linii układu współrzędnych. Taką bazę należy rozumieć jako bazę lokalną (bazę w punkcie p). W bazie ortonormalnej macierz

tensora metrycznego przybiera postać

$$(g_{\mu\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Tensor metryczny określa następujący podział wektorów

$$g_{\mu\nu}u^{\mu}u^{\nu} > 0 \implies u$$
 - wektor czasowy
$$g_{\mu\nu}u^{\mu}u^{\nu} = 0 \implies u$$
 - wektor zerowy
$$g_{\mu\nu}u^{\mu}u^{\nu} < 0 \implies u$$
 - wektor przestrzenny

Podział wektorów wprowadzony przez tensor metryczny g wyróżnia trzy rodzaje krzywych.

Definicja 6. Krzywą y nazywamy krzywą czasową (zerową, przestrzenną) jeżeli w każdym punkcie $p \in y$ wektor y' jest wektorem czasowym (zerowym, przestrzennym). Linią świata cząstki jest krzywa czasowa.

Długość $S(y(\tau))$ krzywej czasowej y liczymy korzystając z tensora metrycznego g. Kwadrat długości elementu liniowego wyraża się przez

$$\mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^\mu \mathrm{d}x^\nu.$$

Stąd długość krzywej liczymy wzorem

$$S(y(\tau)) = \int_{\tau(p_0)}^{\tau(p_1)} \sqrt{g(y'(\tau), y'(\tau))} d\tau.$$
 (1)

Oczywiście długość krzywej nie powinna zależeć od wyboru parametryzacji. Istotnie, długość dana wzorem (1) jest niezmiennicza ze względu na reparametryzację. Niech τ_1 , τ_2 będą parametrami powiązanymi reparametryzacją $\tau_2 = f(\tau_1)$, taką że $f'(\tau_1) > 0$ (gdy $f'(\tau_1) < 0$ rozumowanie przebiega analogicznie). Wtedy stosując zmianę zmiennych całkowania dostajemy

$$S(y(\tau_2)) = \int_{\tau_2(p_0)}^{\tau_2(p_1)} \sqrt{g(y'(\tau_2), y'(\tau_2))} d\tau_2 = \int_{\tau_1(p_0)}^{\tau_1(p_1)} \sqrt{g\left(\frac{y'(\tau_1)}{f'(\tau_1)}, \frac{y'(\tau_1)}{f'(\tau_1)}\right)} f'(\tau_1) d\tau_1 = \int_{\tau_1(p_0)}^{\tau_1(p_1)} \sqrt{g(y'(\tau_1), y'(\tau_1))} d\tau_1 = S(y(\tau_1)).$$

Stosując ten sam wzór do krzywej zerowej otrzymujemy zerową długość.

2.3 Czas własny. Hipoteza zegara.

Spośród parametryzacji krzywych czasowych możemy wyróżnić tak zwaną parametryzację łukową. Jest to parametryzacja dla której długość wektora styczny do krzywej ma stałą długość równą jedności. Wyróżniony w ten sposób parametr będziemy oznaczać przez s i nazywać czasem własnym. Czas własny jest równy długości krzywej

$$s = \int 1 ds$$

Dla cząstki spoczywającej w danym układzie odniesienia jej prędkość ma wyłącznie składową czasową i jest ona równa czasowi własnemu (z dokładnością do stałej addytywnej i multiplikatywnej). Uzasadnia to nazywanie parametru s czasem własnym.

Definicja 7. Parametrem afinicznym nazywamy parametr dla którego prędkość w każdym punkcie krzywej ma tę samą długość.

Wynika z tego natychmiast, że czas własny jest parametrem afinicznym. Łatwo pokazać, że jeśli s jest parametrem afinicznym, to każdy parametr afiniczny jest postaci as+b, gdzie $a,b\in R$. Wektor prędkości wzdłuż krzywej y parametryzowanej czasem własnym będziemy oznaczać przez \dot{y} . Mierząc czas własny nie wyróżniamy obserwatorem wiec postępujemy zgodnie z zasada względności Einteina. Do pomiaru czasu używa się zegarów.

Definicja 8. Zegarem nazywamy dowolny układ fizyczny, w którym możemy wyodrębnić pewien mechanizm oscylacji. Oscylacje te nazywamy częstością zegara. Czas mierzymy ilością oscylacji.

Mianem zegara idealnego określa się więc zegar mierzący czas własny niezależnie od krzywizny krzywej po jakiej się porusza. Ciężko wyobrazić sobie fizyczną realizację takiego zegara, jednak zwykle zakłada się, że można konstruować coraz lepsze zegary tak że w granicy doskonałości otrzymamy zegar mierzący czas własny. Jednak jest to wyłącznie hipotezę zwana Hipotezą zegara. Jest to hipoteza, która leży u podstaw zarówno szczególnej jak i ogólnej teorii względności. W czasoprzestrzeni Minkowskiego dla ruchów odbywających się bez przyspieszeń tj po liniach geodezyjnych hipoteza zegara jest spełniona, a realizacją takiego zegara może być zegar świetlny lub inaczej zegar geometrodynamiczny (ang. geometrodynamic clock [OR13]) W najprostszym wydaniu składa się on z ustawionych vis a vis luster poruszających się po równoległych torach. Odbijający się między nimi promień świetlny określa częstość pracy zegara. Warto wspomnieć, że hipoteza zegara została eksperymentalnie sprawdzona dla ogromnych przyspieszeń rzędu 10^{19}m/s^2 [Bai+77].

W następnej przedstawimy fundamentalny relatywistyczny rotator, który może posłużyć do konstrukcji zegara fundamentalnego. Abstrahujemy od realizacji fizycznej. Nie jest ona istotna, gdyż interesuje nas granica doskonałości, czyli zegar, który może być zegarem czysto matematycznym.

2.4 Pochodna absolutna i transport równoległy

W trójwymiarowej przestrzeni euklidesowej z kartezjańskim układem współrzędnych x^i definiuje się transport równoległy wektora v w kierunku wektora w za pomocą równania

$$w^j \frac{\partial v^i}{\partial x^j} = 0$$

To znaczy, że podczas przemieszczania wektora v po krzywej, której wektorem prędkości w parametrze τ jest wektorw, spełniony jest warunek

$$\frac{\mathrm{d}v^i}{\mathrm{d}\tau} = 0$$

Jednak w ogólności możemy mieć do czynienia z krzywoliniowym układem współrzędnych lub z przestrzenią zakrzywioną. W takim przypadku uogólnia się pojęcie transportu równoległego za pomocą pochodnej kowariantnej.

Definicja 9. Niech x^i będzie układem współrzędnych. Pochodną kowariantną wektora v w kierunku wektora w nazywamy

$$w^{\rho} \nabla_{\rho} v^{\mu} = w^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} + \Gamma^{\mu}_{\nu\sigma} w^{\nu} v^{\sigma},$$

gdzie $\Gamma^{\mu}_{\nu\sigma}$ są symbolami Christoffela, które możemy wyznaczyć z tensora metrycznego poprzez zależność

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2}g^{\mu\rho} \left(\frac{g_{\rho\nu}}{\partial x^{\sigma}} + \frac{g_{\rho\sigma}}{\partial x^{\nu}} - \frac{g_{\nu\sigma}}{\partial x^{\rho}} \right)$$

Odwzorowanie ∇_{ρ} nazywa się niekiedy koneksją afiniczną.

Definicja 10. Pochodną kowariantną wektora v w kierunku wektora prędkości y' krzywej y w parametrze τ nazywamy pochodną absolutną wektora v i oznaczamy

$$\frac{\mathrm{D}v^{\mu}}{\mathrm{d}\tau} = \frac{\mathrm{d}v^{\mu}}{\mathrm{d}\tau} + \Gamma^{\mu}_{\nu\rho}v^{\nu}u^{\rho}.$$

Pochodną absolutną wektora v wzdłuż krzywej y parametryzowanej czasem własnym s przez będziemy oznaczać przez $\mathrm{D}v/\mathrm{d}s$ lub \dot{v} .

$$0 = \frac{\mathrm{d}(\dot{y} \cdot \dot{y})}{\mathrm{d}s} = 2\frac{\mathrm{D}\dot{y}}{\mathrm{d}s} \cdot \dot{y}$$

Definicja 11. Linią geodezyjną (lub krzywą swobodnego spadku) nazywamy krzywą y, dla której

$$\frac{\mathrm{D}y'}{\mathrm{d}\tau} = by',$$

gdzie b = 0 gdy τ jest parametrem afinicznym.

Będziemy w dalszej części pracy przez u oraz A będziemy oznaczać prędkość oraz przyspieszenie definiowane jak następuje

$$u^{\mu} = \dot{y}^{\mu} = \frac{\mathrm{d}y^{\mu}}{\mathrm{d}s}, \quad A = \dot{u}^{\mu} = \frac{\mathrm{D}u^{\mu}}{\mathrm{d}s}.$$

Rysunek 2: Klasyczny rotator składający się z dwóch mas m_1, m_2 połączonych nieważkim prętem długości ℓ .

3 Konstrukcja zegara

3.1 Fundametalny relatywistyczny rotator

Przez nierelatywistyczny rotator rozumiemy układ dwóch mas punktowych m_1 , m_2 połączonych nieważkim prętem długości ℓ (rys. 2). Lagrangian takiego układu w układzie środka masy ma postać [LL78]

$$L = \frac{m}{2} \left(\frac{dr}{dt} \right)^2, \quad m = m_1 + m_2, r = r_2 - r_1$$

gdzie r_1 , r_2 to odpowiednio położenia mas m_1 , m_2 . Zauważmy, że $||r|| = \ell = const$, a zatem interesuje nas jedynie kierunek wyznaczony przez r. Wersor $\hat{r} = r/\ell$ możemy przedstawić za pomocą współrzędnych sferycznych

$$\hat{r} = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$$

Obracamy układ odniesienia tak, aby $\theta = \pi/2$. Lagrangian przyjmuje wtedy postać

$$L = \frac{m\ell^2}{2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}t}\right)^2$$

Z równania Eulera-Lagrange'a dla ϕ wynika, że

$$\ddot{\phi} = 0$$

A zatem $\phi \sim t$, to znaczy, że nierelatywistyczny rotator mierzy Newtonowski czas absolutny t. Skłania nas to do refleksji nad możliwością wykorzystania relatywistycznego rotatora do pomiarów czasu. Prostota układu sugeruje, że może on być odpowiedni do testowania hipotezy zegara.

Przeniesienie tego układu na grunt relatywistyczny wprowadził profesor Staruszkiewicz [Sta08] proponując następujące definicje:

Definicja 12. Relatywistyczny rotator to układ dynamiczny opisany przez położenie x i kierunek zerowy k oraz dodatkowo dwa parametry: masę m i długość ℓ .

Definicja 13. Układ dynamiczny nazywamy fenomenologicznym jeżeli jego niezmienniki Casimira są całkami ruchu. Układ dynamiczny nazywamy fundamentalnym jeżeli jego niezmienniki Casimira są parametrami (m. in. nie zależą od warunków początkowych).

Powtórzymy teraz konstrukcję przedstawioną we wspomnianej pracy oraz w [Kas+09; Bra09]. W oparciu o powyższe definicje można skonstruować fundamentalny relatywistyczny rotator. Z wielkości zawartych w definicji relatywistycznego rotatora możemy utworzyć bezwymiarowa wielkość

$$\xi = -\ell^2 \frac{\dot{k} \cdot \dot{k}}{(k \cdot \dot{x})^2}.$$

Możemy wtedy utworzyć Lagrangian postaci

$$L = m\sqrt{\dot{x} \cdot \dot{x}} f(\xi). \tag{2}$$

Działanie związane z powyższym Lagrangianem jest niezmiennicze ze względu reparametryzację, Lorenzowsko niezmiennicze. Dodatkowo k wskazuje kierunek zerowy, a zatem układ fizyczny nie zmienia się po przeskalowaniu $k \to ak$. Nie jest to najogólniejszy relatywistyczny rotator jaki można wziąć pod uwagę, gdyż ξ nie jest jedyną możliwą bezwymiarową kombinacją wielkości charakterystycznych dla relatywistycznego rotatora [Bra09].

Oznaczamy przez P_{μ} i Π_{μ} pędy kanoniczne związane odpowiednio z x i k oraz przez $M_{\mu\nu}$ całkowity moment pędu.

$$\begin{split} P_{\mu} &= \frac{\partial L}{\partial \dot{x}^{\mu}}, \qquad \Pi_{\mu} = \frac{\partial L}{\partial \dot{k}^{\mu}} \\ M_{\mu\nu} &= x_{\mu}P_{\nu} - P_{\mu}x_{\nu} + k_{\mu}\Pi_{\nu} - \Pi_{\mu}k_{\nu}. \end{split}$$

Dla Lagrangianu 2 mamy

$$P_{\mu} = \frac{m}{\sqrt{\dot{x} \cdot \dot{x}}} f(\xi) \dot{x}_{\mu} - 2 \frac{m}{k \cdot \dot{x}} \sqrt{\dot{x} \cdot \dot{x}} f'(\xi) \xi k_{\mu}$$

$$\Pi_{\mu} = 2 \frac{m}{\dot{k} \cdot \dot{k}} \sqrt{\dot{x} \cdot \dot{x}} f'(\xi) \xi \dot{k}_{\mu}$$

Niezmiennikami Casimira będą w tym przypadku $P_{\mu}P^{\mu}$ oraz $W_{\mu}W^{\mu}$ gdzie W jest pseudowektorem Pauliego-Lubańskiego danym przez

$$W_{\mu} = -\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}M^{\nu\rho}P^{\sigma}$$

Kontrakcja tensora antysymetrycznego $A_{\mu\nu}$ z tensorem symetrycznym $S_{\mu\nu}$ jest równa zeru. Korzystając z tego i antysymetrii tensora ε dostajemy

$$W_{\mu} = -\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}(x^{\mu}P^{\nu} - P^{\mu}x^{\nu} + k^{\mu}\Pi^{\nu} - \Pi^{\mu}k^{\nu})P^{\sigma} = -\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}(k^{\mu}\Pi^{\nu} - \Pi^{\mu}k^{\nu})P^{\sigma} = \varepsilon_{\mu\nu\rho\sigma}\Pi^{\mu}k^{\nu}P^{\sigma}$$

Dla Lagrangianu 2 możemy zapisać W_{μ} w postaci

$$W_{\mu} = \varepsilon_{\mu\nu\rho\sigma} \Pi^{\mu} k^{\nu} P^{\sigma} = 2 \frac{m^2}{\dot{k} \cdot \dot{k}} f(\xi) f'(\xi) \xi \varepsilon_{\mu\nu\rho\sigma} \dot{k}^{\mu} k^{\nu} \dot{x}^{\sigma}$$

Pozwala to zapisać $W_{\mu}W^{\mu}$ w postaci wyznacznika Gramma

$$W_{\mu}W^{\mu} = 4 \frac{m^4}{(\dot{k} \cdot \dot{k})^2} f(\xi)^2 f'(\xi)^2 \xi^2 \begin{vmatrix} \dot{k} \cdot \dot{k} & \dot{k} \cdot \dot{k} & \dot{k} \cdot \dot{x} \\ \dot{k} \cdot \dot{k} & \dot{k} \cdot \dot{k} & \dot{k} \cdot \dot{x} \\ \dot{x} \cdot \dot{k} & \dot{x} \cdot \dot{k} & \dot{x} \cdot \dot{x} \end{vmatrix}$$

Inwestując równości $k \cdot k = 0$, $\dot{x} \cdot \dot{x}$ oraz $\dot{k} \cdot k = 0$ dostajemy

$$P_{\mu}P^{\mu} = m^2(f(\xi)^2 - 4f(\xi)f'(\xi)\xi)W_{\mu}W^{\mu} = -4m^4\ell^2f(\xi)^2f'(\xi)^2\xi$$

Zakładamy, że rotator jest fundamentalny, a więc niezmienniki Casimira powinny być parametrami, co można zapisać w postaci równości

$$P_{\mu}P^{\mu} = m^2 \tag{C1}$$

$$W_{\mu}W^{\mu} = -\frac{1}{4}m^4\ell^2 \tag{C2}$$

$$f(\xi)^2 - 4f(\xi)f'(\xi)\xi \stackrel{\text{C1}}{=} 1 \stackrel{\text{C2}}{=} 16f(\xi)^2 f'(\xi)^2 \xi$$

Powyższe rozwiązanie mają wspólne rozwiązanie postaci (zobacz dod. A)

$$f(\xi) = \pm \sqrt{1 \pm \sqrt{\xi}}.$$

Z fizycznych powodów wybieramy znaki + [Bra09].

$$f(\xi) = \sqrt{1 + \sqrt{\xi}}.$$

To że dwa równania różniczkowe miały wspólne rozwiązanie wydaje się być szczęśliwym zbiegiem okoliczności. Niestety otrzymany Lagrangian ma defekt i ruch takiego rotatora nie jest deterministyczny [Bra12]. Przedstawimy teraz uogólnienie takiego rotatora, które możemy znaleźć w [Bra15].

3.2 Model uogólniony

W tej części będziemy rozważać układ w którym zakładamy więz postaci $\dot{x} \cdot \dot{x} = 0$, to jest cząstkę poruszającą się po krzywej zerowej. Lagrangian postaci

$$L = \sqrt{\dot{x} \cdot \dot{x}}$$

nie jest odpowiedni do opisu takiej cząstki, gdyż wtedy pęd $P_{\mu}=\frac{\partial L}{\partial \dot{x}^{\mu}}$ nie jest skończony. W zastępstwie możemy użyć Lagrangianu postaci []

$$L = w(\dot{x} \cdot \dot{x}). \tag{3}$$

Wtedy równanie Eulera-Lagrange dla zmiennej w jest postaci

$$0 = \frac{\partial L}{\partial w} = \dot{x} \cdot \dot{x}$$

i zapewnia zerowość linii świata x. Wtedy ped kanoniczny związany z x jest zachowany podczas ruchu i równy

$$P_{\mu} = 2w\dot{x}_{\mu}, \quad P_{\mu}P^{\mu} = 0.$$

Wtedy w układzie odniesienia, w którym e jest wersorem czasowym takim, że

$$e \cdot \dot{x} = 1$$

mamy

$$p = U\dot{x}$$
,

gdzie U jest energią fotonu.

Uogólnienie biorące pod uwagę cząstki poruszające się po krzywych zerowych możemy zapisać w postaci [Pol98]

$$L = \frac{1}{2} \left(\eta^{-1} \dot{x} \cdot \dot{x} + \eta m^2 f(\xi) \right) + \lambda (k \cdot k)$$

Równanie Eulera-Lagrange'a dla η daje dwie możliwości

$$0 = \frac{\partial L}{\partial \eta} = \frac{1}{2} \left(m f(\xi) - \eta^{-2} (\dot{x} \cdot \dot{x}) \right).$$

Zakładając, że η jest zależna od prędkości dostajemy więz

$$\eta = \frac{\sqrt{\dot{x} \cdot \dot{x}}}{mf(\xi)}.$$

Wtedy lagrangian sprowadza się do postaci wyjściowej dla rotatora relatywistycznego 2. Gdy założymy, że η jest niezależne otrzymujemy więzy

$$\dot{x} \cdot \dot{x} = 0, \quad f(\xi) = 0$$

Przyjęcie m=0 daje automatycznie spełnione warunki $P_{\mu}P^{\mu}=0$ oraz $W_{\mu}W^{\mu}=0$ i sprowadza Lagrangian do postaci 3, czyli dla swobodnej cząstki poruszającej się po krzywej zerowej. Będziemy zatem traktować m jako parametr w ogólności niezerowy, co implikuje więz $f(\xi)=0$. Obliczamy P_{μ} oraz W_{μ}

$$P_{\mu} = \eta^{-1} \dot{x}_{\mu} - \frac{\eta m^2}{k \cdot \dot{x}} \xi f'(\xi) k_{\mu},$$

$$nm^2 \cdot \dot{x}$$

$$\Pi_{\mu} = \frac{\eta m^2}{\dot{k} \cdot \dot{k}} \xi f'(\xi) \dot{k}_{\mu},$$

$$P_{\mu} = -2m^{2}\xi f'(\xi),$$

$$W_{\mu}W^{\mu} = \frac{m^{4}}{(\dot{k} \cdot \dot{k})^{2}} f'(\xi)^{2} \xi^{2} \begin{vmatrix} \dot{k} \cdot \dot{k} & \dot{k} \cdot \dot{k} & \dot{k} \cdot \dot{x} \\ k \cdot \dot{k} & \dot{k} \cdot \dot{k} & \dot{k} \cdot \dot{x} \\ \dot{x} \cdot \dot{k} & \dot{x} \cdot \dot{k} & \dot{x} \cdot \dot{x} \end{vmatrix} = -m^{4} \ell^{2} \xi f'(\xi)^{2}$$

Ponownie zakładamy że niezmienniki Casimira $P_{\mu}P^{\mu}$ i $W_{\mu}W^{\mu}$ są parametrami. Daje się je zapisać w postaci C1 i C2.

$$-2\xi f'(\xi) \stackrel{C1}{=} 1 \stackrel{C2}{=} 4\xi f'(\xi)^2$$

Uzyskaliśmy w ten sposób odpowiednie więzy

$$f(\xi) = 0, \ f'(\xi) = -\frac{1}{2}, \ \xi = 1.$$

$$-\ell^2 \frac{\dot{k} \cdot \dot{k}}{(k \cdot \dot{x})^2} = 1. \tag{4}$$

Więzy te pozwolą nam określić ruch zegara. Będziemy go opisywać w reperze który porusza się wraz z posiadaczem zegara.

3.3 Transport Fermiego-Walkera

Konstrukcję zegara przeprowadzimy w lokalnie nierotującej bazie. W tej części pracy przedstawimy koncepcje potrzebne do konstrukcji takiej bazy. Dokładne omówienie prezentowanych zagadnień można znaleźć np. tu [Syn60; MF08] Zauważmy, że dla transport równoległy wzdłuż linii geodezyjnej przekształca wektory styczne w wektory styczne. Własność tę tracimy, gdy linia świata nie jest linią geodezyjną, czyli gdy $A = \frac{Du}{ds} = 0$. Transportem, który zachowuje styczność wektorów do linii świata jest transport Fermiego-Walkera (FW). Doświadczenie wskazuje, że taki transport odpowiada fizycznemu transportowi wektorów [CN15; AP14]. Do jego zdefiniowania posłużą nam odwzorowania P i R. Niech u będzie jednostkowym wektorem stycznym do linii świata y. Dowolny wektor v możemy w punkcie $p \in y$ rozłożyć na składowe styczną R(v) i prostopadłą P(v) do y (5). Przestrzeń wektorów p rozpada się w ten sposób na sumę prostą przestrzeni $\{P(v)\}$ i $\{R(v)\}$.

$$v = \underbrace{v - (v \cdot u)u}_{P(v)} + \underbrace{(v \cdot u)u}_{R(v)} = P(v) + R(v). \tag{5}$$

Definicja 14. Mówimy, że wektor v spełnia prawo **transportu Fermiego-Walkera** (FW) wzdłuż linii świata y jeżeli

$$\frac{D_{FW}(v)}{ds} := P\left(\frac{DP(v)}{ds}\right) + R\left(\frac{DR(v)}{ds}\right) = 0$$
 (FW)

Wyrażenie $\frac{D_{FW}}{ds}$ nazywamy **pochodną Fermiego-Walkera**.

Twierdzenie 1. Zalóżmy, że $u = \dot{y}$ oraz $A = \frac{Du}{ds}$ to odpowiednio czterowektory prędkości i przyspieszenia stowarzyszone z linią świata y. Wtedy pochodną Fermiego-Walkera możemy zapisać w postaci

$$\frac{D_{FW}v}{ds} = \frac{Dv}{ds} + (A \cdot v)u - (u \cdot v)A. \tag{6}$$

Powyższa równość może służyć za definicje pochodnej Fermiego-Walkera [Syn60] równoważną do tutaj przyjetej.

 $Dow \acute{o}d$. Obliczmy pochodne absolutne rzutów P(v) oraz R(v)

$$\frac{\mathrm{D}P(v)}{\mathrm{d}s} = \frac{\mathrm{D}v}{\mathrm{d}s} - (u \cdot v)A - \frac{\mathrm{d}(u \cdot v)}{\mathrm{d}s}u, \quad \frac{\mathrm{D}R(v)}{\mathrm{d}s} = \frac{\mathrm{d}(u \cdot v)}{\mathrm{d}s}u + (u \cdot v)A.$$

Pamiętając, że $u \perp A$ mamy

$$\begin{split} P\left(\frac{\mathrm{D}P(v)}{\mathrm{d}s}\right) &= \frac{\mathrm{D}v}{\mathrm{d}s} - (u\cdot v)A - \frac{\mathrm{d}(u\cdot v)}{\mathrm{d}s}u - \left(\frac{\mathrm{D}v}{\mathrm{d}s}\cdot u\right)u + \frac{\mathrm{d}(u\cdot v)}{\mathrm{d}s}u = \\ &= \frac{\mathrm{D}v}{\mathrm{d}s} - (u\cdot v)A - \left(\frac{\mathrm{D}v}{\mathrm{d}s}\cdot u\right)u, \\ R\left(\frac{\mathrm{D}R(v)}{\mathrm{d}s}\right) &= \frac{\mathrm{d}(u\cdot v)}{\mathrm{d}s}u = \left(\frac{\mathrm{D}v}{\mathrm{d}s}\cdot u\right)u + (A\cdot v)u. \end{split}$$

Zatem pochodna FW jest równa

$$\frac{D_{FW}(v)}{ds} = P\left(\frac{DP(v)}{ds}\right) + R\left(\frac{DR(v)}{ds}\right) = \frac{Dv}{ds} + (A \cdot v)u - (u \cdot v)A. \tag{7}$$

W przypadku zerowego przyspieszenia ($A \equiv 0$) linia świata jest linią geodezyjną, pochodna (FW) sprowadza się do pochodnej absolutnej, a transport (FW) sprowadza się do transportu równoległego.

Dla dowolnych wektorów v_1 i v_2 mamy $P(v_1) \perp R(v_2)$, a więc warunek transportu (FW) sprowadza się zerowania się każdego ze składników

$$P\left(\frac{\mathrm{D}P(v)}{\mathrm{d}s}\right) = 0,$$
$$R\left(\frac{\mathrm{D}R(v)}{\mathrm{d}s}\right) = 0.$$

Definicja 15. Reperem lokalnie nierotującym nazywamy reper ruchomy poruszający się wraz z ciałem wzdłuż jego linii świata, którego wersor czasowy jest styczny do linii świata (co odpowiada czteroprędkości) i którego wersory spełniają prawo transportu (FW).

Reper lokalnie nierotujący jest szczególnie dogodny do opisu zjawisk fizycznych. W granicy nierelatywistycznej odpowiada on Newtonowskiej koncepcji nierotującego reperu [Syn60]. Przeprowadzimy teraz konstrukcję takiego reperu, co sprowadza się do konstrukcji odpowiedniej bazy E.

Za wersor czasowy takiej bazy możemy zawsze obrać prędkość u, gdyż jest ona unormowanym wektorem czasowym spełniającym prawo transportu (FW)

$$e := u = \frac{\mathrm{d}y}{\mathrm{d}s}.$$

Dobieramy do niego wersory przestrzenne e_i , i=1,2,3 tak, aby otrzymana baza $E=\{e_\mu\}$ była ortogonalna. Warunek $e_i \perp e$ zapewnia, że $R(e_i)=0$. Zatem dodatkowym warunkiem jaki trzeba nałożyć na wersory przestrzenne e_i jest

$$P\left(\frac{\mathrm{D}P(v)}{\mathrm{d}s}\right) = 0.$$

Uwzględniając, że e=u oraz $P(e_i)=e_i$ możemy powyższy warunek zapisać w postaci

$$\frac{\mathrm{D}e_i}{\mathrm{d}s} = \left(\left(\frac{\mathrm{D}e_i}{\mathrm{d}s} \right) \cdot e \right) e,\tag{8}$$

Przydatną własnością bazy E jest, że dany wektor ma w tej bazie stałe współrzędne wtedy i tylko wtedy, gdy spełnia prawo transportu (FW). Aby to pokazać wystarczy rozłożyć dany wektor w bazie E i skorzystać z definicji transportu (FW).

3.4 Czwórka symetryczna kierunków zerowych

Będziemy od teraz zakładać, że jeden z wersorów bazy E (e_3) jest prostopadły do hiperpłaszczyzny ruchu, tak, że

$$A \cdot e_3 = 0.$$

Nie jest to duże ograniczenie i, jak się później przekonamy, pozwala na zastosowanie modelu w wielu przypadkach. Zauważmy, że wektor A leży wtedy w płaszczyźnie rozpinanej przez wektory e_1 i e_2 . Licząc przyspieszenie właściwe dostajemy

$$\alpha^2 = (A \cdot e_1)^2 + (A \cdot e_2)^2$$

Interpretując powyższą równość jako trójkę pitagorejską możemy wprowadzić następujące oznaczenia

$$\cos \chi = \frac{A \cdot e_1}{\alpha},$$
$$\sin \chi = \frac{A \cdot e_2}{\alpha}.$$

Z wersorów e i e_3 tworzymy dwa zerowe wektory skierowane w przyszłość k_+ i k_- , które uważamy za wektory własne pewnej transformacji Lorentza.

$$k_{+} = \frac{e + e_3}{\sqrt{2}} \tag{9}$$

$$k_{-} = \frac{e - e_3}{\sqrt{2}} \tag{10}$$

$$k_+ \cdot k_- = 1$$
 $k_{\pm} \cdot k_{\pm} = 0.$

$$\mathcal{O}(k_{\pm}) = \frac{1}{\sqrt{2}}\mathcal{O}(e \pm e_3) = \frac{1}{\sqrt{2}}(\mathcal{O}e \pm \mathcal{O}e_3) = \frac{1}{\sqrt{2}}(e \pm e_3) = k_{\pm}.$$

Wektory te są wektorami własnymi pewnego obrotu \mathcal{O} . Łatwo sprawdzić, że jest to obrót w płaszczyźnie wyznaczonej przez wersory e_1 i e_2 , czyli eliptyczne przekształcenie Lorentza. Obrót ten pozwala nam zinterpretować kąt χ . Zauważmy, że możemy za pomocą obrotu \mathcal{O} obrócić, wersor wektora przyspieszenia o kąt $-\chi$, tak aby spełniał prawo transportu (FW). Schematycznie przedstawiono to na rysunku 3.

Rozważamy trzeci wektor zerowy skierowany w przyszłość k taki, że $k \cdot e_3 \equiv 0$ oraz $k(0) \cdot e_1(0) = 0$. Wektor ten rozkładamy w bazie E

$$k = k^0 e + k^i e_i,$$
 $k^1(0) = 0, k^3 = 0$

$$k(0) = k^0(0)e(0) + k^2(0)e_2(0)$$

Rozkładając k w bazie E stwierdzamy, że jego współrzędne formują trójkę pitagorejską

$$(k \cdot e)^2 = (k \cdot e_1)^2 + (k \cdot e_2)^2 \tag{11}$$

Wprowadzamy fazę zegara φ równością (12)

$$\cos \varphi = \frac{k \cdot e_1}{k \cdot e} \tag{12}$$

Rysunek 3: Schemat obrazujący obrót \mathcal{O} wykonany na wersorze przyspieszenia A/α w bazie E.

$$k = (k \cdot e)(e - \cos \varphi e_1 - \sin \varphi e_2)$$

Z wektora k(0) tworzymy wektor zerowy $k_0(s)$ tak aby spełniał prawo transportu (FW). Wiemy, że wtedy jego współrzędne w bazie E są stałe. Wektor k_0 ustalamy więc jako (14). Warunek początkowy na fazę φ ustalamy na (13), aby dla s=0 wektory k i k_0 reprezentowały ten sam kierunek zerowy.

$$\varphi(0) = -\frac{\pi}{2} \tag{13}$$

$$k_0(s) = \sqrt{2}(e + e_2). \tag{14}$$

Każdemu kierunkowi zerowemu możemy przyporządkować punkt na sferze, a następnie każdemu punktowi sfery możemy przyporządkować, przez rzut stereograficzny, punkt z płaszczyzny zespolonej (odpowiednio uzwarconej) [Sta]. Skonstruujemy teraz czwarty wektor zerowy k_3 , który razem z wektorami k_+ , k_0 , k_- utworzy czwórkę symetryczną. Mówimy, że wektory zerowe tworzą czwórkę symetryczną, kiedy dwustosunek odpowiadających im liczb zespolonych wynosi $e^{\pm i\pi/3}$. Dwustosunek liczb zespolonych z_0 , z_1 , z_2 , z_3 przyjmujemy w postaci (16) [Sta]. Liczby zespolone odpowiadające wektorom własnym k_ν oznaczamy przez κ_ν gdzie $\nu \in \{+, 0, -, 3\}$. W zależności od kolejności wektorów i przyjętego znaku w (17) otrzymujemy dwie liczby κ_3 różniące się znakiem części rzeczywistej (18). Wektorowi zerowemu k odpowiada liczba κ_φ (15).

$$\kappa = -\cos\varphi - i\sin\varphi \tag{15}$$

Na rysunkach 4 oraz 5 prezentujemy wzajemne położenie uzyskanej czwórki symetrycznej (dla $Re(\kappa_3) > 0$) oraz obrazu wektora k. Uzyskane wektory wektory są liniowo niezależne i tworzą bazę kierunków zerowych, która dodatkowo spełnia prawa transportu (FW).

$$(z_0 z_1 z_2 z_3) = \frac{(z_0 - z_1)}{(z_0 - z_3)} \frac{(z_2 - z_3)}{(z_2 - z_1)}.$$
(16)

$$\kappa_0 = i, \ \kappa_+ = 0, \ \kappa_- = \infty, \qquad (\kappa_0 \kappa_+ \kappa_- \kappa_3) = e^{\pm i\pi/3}$$
(17)

$$\kappa_3 = \pm \frac{\sqrt{3}}{2} + \frac{i}{2}, \qquad k_3 = \sqrt{2}e \pm \frac{\sqrt{3}}{\sqrt{2}}e_1 + \frac{1}{\sqrt{2}}e_2$$
(18)

$$k_{\mu} \cdot k_{\nu} = 1$$
, $k_{\nu} \cdot k_{\nu} = 0$, $\mu \neq \nu$, $\mu, \nu \in \{0, +, -, 3\}$

Rysunek 4: Obraz czwórki symetrycznej oraz kierunku k na płaszczyźnie zespolonej. Punkt κ_- utożsamiamy z punktem ∞ . Punkt κ_ϕ porusza się po zaznaczonym okręgu jednostkowym wraz ze wzrostem ϕ . Wektorem stycznym do okręgu zaznaczono kierunek ruchu.

Rysunek 5: Obraz kierunków zerowych k_0 , k_+ , k_- wraz z kierunkiem k na sferze jednostkowej. Punkt κ_{ϕ} porusza się po zaznaczonym okręgu jednostkowym wraz ze wzrostem ϕ . Wektorem stycznym do okręgu zaznaczono kierunek ruchu. Płaszczyzna zawierająca okrąg jest prostopadła do prostej zawierającej κ_+ i κ_-

Rysunek 6: Schemat działania zegara (kolor niebieski) wzdłuż linii świata (kolor czerwony).

3.5 Konstrukcja zegara

Zakładamy, że podczas ruchu mamy spełniony więz (4). Założymy dodatkowo, że wektor zerowy \dot{x} można przedstawić jako kombinację liniową e oraz k, taką, że $e \cdot \dot{x} = 1$. Rozkładając \dot{x} w bazie E dostajemy

$$\dot{x} = e - C(k \cdot e_1)e_1 - C(k \cdot e_2)e_2,$$

Korzystając z faktu, że \dot{x} jest zerowy możemy wyznaczyć współczynniki kombinacji liniowej.

$$0 = \dot{x} \cdot \dot{x} = 1 - C^2 (k \cdot e_1)^2 - C^2 (k \cdot e_2)^2 = 1 - C^2 (k \cdot e_2)^2$$

$$C = \pm 1/(k \cdot e)$$
.

Wybieramy znak minus, gdyż w przeciwnym przypadku $\dot{x} = k/(k \cdot e)$ oraz $\dot{x} \cdot k = 0$. Zatem

$$\dot{x} = 2e - k/(k \cdot e) = e + \cos \varphi e_1 + \sin \varphi e_2, \quad \dot{x} \cdot k = 2k \cdot e,$$
(19)

Sytuację tę obrazujemy na schematycznym rysunku (6)

Następnie obliczamy pochodną absolutną wektora k

$$\dot{k} = \underbrace{\frac{\mathrm{d}(k \cdot e)}{\mathrm{d}s} e - \frac{\mathrm{d}(k \cdot e_1)}{\mathrm{d}s} e_1 - \frac{\mathrm{d}(k \cdot e_2)}{\mathrm{d}s} e_2}_{K_P} + \underbrace{(k \cdot e)\dot{e} - (k \cdot e_1)\dot{e_1} - (k \cdot e_2)\dot{e_2}}_{K}$$

$$\dot{k} \cdot \dot{k} = K_p \cdot K_p + K \cdot K + 2K_p \cdot K$$

Obliczymy oddzielnie każdy ze składników powyższej sumy. Zaczynamy od przedstawienia pochodnych wersorów bazy w bardziej użytecznej postaci

$$\dot{e_0} = \frac{\mathrm{D}e}{\mathrm{d}s} = A,$$

$$\dot{e_1} = \frac{\mathrm{D}e_1}{\mathrm{d}s} = \frac{\mathrm{D}(e_1)_{\perp}}{\mathrm{d}s} \stackrel{(??)}{=} \left(\frac{\mathrm{D}(e_1)_{\perp}}{\mathrm{d}s} \cdot e_0\right) e = \left(\frac{\mathrm{D}e_1}{\mathrm{d}s} \cdot e\right) e \stackrel{(??)}{=} - \left(\frac{\mathrm{D}e}{\mathrm{d}s} \cdot e_1\right) e = - (A \cdot e_1) e,$$

$$\dot{e_2} = \frac{\mathrm{D}e_2}{\mathrm{d}s} = \frac{\mathrm{D}(e_2)_{\perp}}{\mathrm{d}s} \stackrel{(??)}{=} \left(\frac{\mathrm{D}(e_2)_{\perp}}{\mathrm{d}s} \cdot e\right) e = \left(\frac{\mathrm{D}e_2}{\mathrm{d}s} \cdot e\right) e \stackrel{(??)}{=} - \left(\frac{\mathrm{D}e}{\mathrm{d}s} \cdot e_2\right) e = - (A \cdot e_2) e.$$

Zgodnie z powyższym zachodzą równości

$$K = (k \cdot e)(A + (A \cdot e_1)\cos\varphi \ e + (A \cdot e_2)\sin\varphi \ e)$$

$$K_p = (k \cdot e)\dot{\varphi}(\sin\varphi \ e_1 - \cos\varphi \ e_2) + \frac{\mathrm{d}(k \cdot e)}{\mathrm{d}s}(e - \cos\varphi \ e_1 - \sin\varphi \ e_2).$$

$$\begin{split} K_p \cdot K_p &= \left(\frac{\mathrm{d}(k \cdot e)}{\mathrm{d}s}\right)^2 - \left(\frac{\mathrm{d}(k \cdot e_1)}{\mathrm{d}s}\right)^2 - \left(\frac{\mathrm{d}(k \cdot e_2)}{\mathrm{d}s}\right)^2 = \left(\frac{\mathrm{d}(k \cdot e)}{\mathrm{d}s}\right)^2 - \left(\frac{\mathrm{d}(k \cdot e)\cos\varphi}{\mathrm{d}s}\right)^2 - \left(\frac{\mathrm{d}(k \cdot e)\sin\varphi}{\mathrm{d}s}\right)^2 \\ &= \left(\frac{\mathrm{d}(k \cdot e)}{\mathrm{d}s}\right)^2 - \left(\frac{\mathrm{d}(k \cdot e)}{\mathrm{d}s}\right)^2 \left(\cos^2\varphi + \sin^2\varphi\right) - (k \cdot e)^2(\dot{\varphi})^2 (\sin^2\varphi + \cos^2\varphi) \\ &= -(k \cdot e)^2(\dot{\varphi})^2 \end{split}$$

$$2K_p \cdot K = 2(k \cdot e_0)\dot{\varphi}\left((A \cdot e_1)\sin\varphi - (A \cdot e_2)\cos\varphi\right) - \frac{\mathrm{d}(k \cdot e_0)}{\mathrm{d}s}\left((A \cdot e_1)\cos\varphi + (A \cdot e_2)\sin\varphi\right) + \frac{\mathrm{d}(k \cdot e_0)}{\mathrm{d}s}(A \cdot e_1)\cos\varphi + \frac{\mathrm{d}(k \cdot e_0)}{\mathrm{d}s}(A \cdot e_2)\sin\varphi$$
$$= 2(k \cdot e_0)\dot{\varphi}\left((A \cdot e_1)\sin\varphi - (A \cdot e_2)\cos\varphi\right)$$

$$K \cdot K = (k \cdot e)^{2}((A \cdot A) + ((A \cdot e_{1})\cos\varphi + (A \cdot e_{2})\sin\varphi)^{2}) =$$

$$= -(k \cdot e)^{2}((A \cdot e_{1})^{2} + (A \cdot e_{2})^{2} - (A \cdot e_{1})^{2}\cos^{2}\varphi - (A \cdot e_{2})^{2}\sin^{2}\varphi - 2(A \cdot e_{1})(A \cdot e_{2})\sin\varphi\cos\varphi)$$

$$= -(k \cdot e)^{2}((A \cdot e_{1})\sin\varphi - (A \cdot e_{2})\cos\varphi)^{2}$$

Sume powyższych składników możemy zwinąć do kwadratu i ostatecznie

$$1 = -\frac{\ell^2 \dot{k} \cdot \dot{k}}{(k \cdot \dot{x})^2} = \frac{\ell^2}{4} (\dot{\varphi} - (A \cdot e_1) \sin \varphi + (A \cdot e_2) \cos \varphi)^2$$
$$\dot{\varphi} = \pm \frac{2}{\ell} + (A \cdot e_1) \sin \varphi - (A \cdot e_2) \cos \varphi$$

Stosując oznaczenie ?? możemy zapisać owo równanie w zgrabnej postaci

$$\dot{\varphi} = \pm \frac{2}{\ell} + \alpha \cos \chi \sin \varphi - \alpha \sin \chi \cos \varphi$$

$$\dot{\varphi} = \pm \frac{2}{\ell} + \alpha \sin(\varphi - \chi)$$
(20)

W przypadku braku przyspieszenia $\alpha = 0$, wprowadzony model zegara mierzy czas własny.

$$\dot{\varphi} = \frac{2}{\ell}, \quad \varphi = \pm \frac{2}{\ell} s + \varphi_0. \tag{21}$$

4 Aplikacje

4.1 Ruch hiperboliczny

Jako pierwszy przypadek chcemy zbadać relatywistyczny odpowiednik ruchu jednostajnie przyspieszonego. Poniższe wyprowadzenie kształtu linii świata takiego ruchu można znaleźć w [KT84; AP14]. W układzie obserwatora inercjalnego $\mathcal I$ posługującego się kartezjańskim układem współrzędnych rozważamy linię świata y=y(s) obserwatora $\mathcal Z$ parametryzowaną czasem własnym s. Ruch ten odbywa się w jednym wymiarze przestrzennym. W takim przypadku ogólna postać wektora prędkości, po uwzględnieniu warunku unormowania, ma postać

$$(u^{\mu}) = (\cosh \beta(s), \sinh \beta(s), 0, 0), \tag{22}$$

gdzie $\beta(s)$ jest pewną funkcją parametryzowaną czasem własnym s. Żądamy teraz, aby przyspieszenie właściwe α było stałe ze względu w czasie s.

$$(A^{\mu}) = (\dot{\beta}(s)\sinh\beta(s), \,\dot{\beta}(s)\cosh\beta(s), \,0, \,0).$$

$$\alpha = \sqrt{-A^{\mu}A_{\mu}} = \dot{\beta}(s)$$

Otrzymujemy równanie różniczkowe na funkcję $\beta(s)$. Możemy bez straty ogólności przyjąć, że $\beta(0) = 0$. Wtedy rozwiązanie jest postaci

$$\beta(s) = \alpha s$$
,

$$(u^{\mu}) = (\cosh \alpha s, \sinh \alpha s, 0, 0),$$

$$(A^{\mu}) = (\alpha \sinh \alpha s, \alpha \cosh \alpha s, 0, 0).$$

A zatem odpowiednik ruchu jednostajnie przyspieszonego w czasoprzestrzeni Minkowskiego to ruch opisany przez hiperbolę. Łatwo sprawdzić, że dla małych prędkości ruch ten przechodzi w ruch jednostajnie przyspieszony. Ciało w takim ruchu porusza się po linii świata

$$(y^{\mu}) = \left(\frac{1}{\alpha}\sinh\alpha s, \frac{1}{\alpha}\cosh\alpha s, 0, 0\right). \tag{23}$$

Chcemy skonstruować reper współporuszający się z \mathcal{Z} . W tym celu za wersor czasowy obieramy prędkość $e_0 = u$, a za pierwszy z wersorów przestrzennych unormowane przyspieszenie $e_1 = A/\alpha$. Wersory te uzupełniamy do bazy za pomocą wersorów kanonicznych. Otrzymaną bazę możemy zapisać zgrabnie w postaci macierzy (24). Łatwo sprawdzić, że tak skonstruowany reper spełnia prawo transportu (FW).

$$\begin{pmatrix}
e_0 \\
e_1 \\
e_2 \\
e_3
\end{pmatrix} = \begin{pmatrix}
\cosh \alpha s & \sinh \alpha s & 0 & 0 \\
\sinh \alpha s & \cosh \alpha s & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$
(24)

Możemy teraz podać równanie na fazę zegara ϕ

$$\chi = \pi, \quad \alpha = \text{const.}$$

$$\dot{\varphi} = \pm \frac{2}{\ell} + \alpha \sin(\varphi - \pi) = \pm \frac{2}{\ell} - \alpha \sin(\varphi)$$

4.2 Ruch po okręgu

W układzie obserwatora inercjalnego \mathcal{I} z kartezjańskim układem współrzędnych rozważamy linię świata obserwatora \mathcal{Z} w ruchu jednostajnym po okręgu. Zagadnienie rozpatrujemy w czasoprzestrzeni Minkowskiego. Rozpatrzmy punkt poruszający się po okręgu o promieniu R i częstości ω . W układzie obserwatora inercjalnego \mathcal{I} porusza się on po trajektorii y = y(s). Współrzędne tej trajektorii mają, w kartezjańskim układzie współrzędnych, postać

$$(y^{\mu}) = (\gamma s, R \cos \omega \gamma s, R \sin \omega \gamma s, 0).$$

Wtedy wektory prędkości i przyspieszenia mają postać

$$(u^{\mu}) = \left(\frac{\mathrm{d}y^{\mu}}{\mathrm{d}s}\right) = (\gamma, -R\omega\gamma\sin\omega\gamma s, R\omega\gamma\cos\omega\gamma s, 0),$$

$$(A^{\mu}) = \left(\frac{\mathrm{D}u^{\mu}}{\mathrm{d}s}\right) = (0, -R\omega^2 \gamma^2 \cos \omega s, -R\omega^2 \gamma^2 \sin \omega \gamma s, 0).$$

Właściwe przyspieszenie jest wtedy zachowane podczas ruchu

$$\alpha = \sqrt{-A \cdot A} = R\omega^2 \gamma^2.$$

Teraz zajmiemy się znalezieniem reperu lokalnie nierotującego poruszającego się po rozpatrywanej linii świata. Jako wersor czasowy e wybieramy prędkość u. Pierwszy z wersorów przestrzennych e'_1 wybieramy wersor przeciwny do przyspieszenia. Jako wersor e_3 wybieramy unormowany wektor prostopadły do płaszczyzny ruchu. Wersor e'_2 wybieramy tak, aby był ortogonalny do pozostałych. Uzyskaną bazę zapisujemy w postaci macierzowej (??).

$$E' = \begin{pmatrix} e \\ e'_1 \\ e'_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} \gamma & -R\omega\gamma\sin\omega\gamma s & R\omega\gamma\cos\omega\gamma s & 0 \\ 0 & \cos\omega\gamma s & \sin\omega\gamma s & 0 \\ R\omega\gamma & -\gamma\sin\omega\gamma s & \gamma\cos\omega\gamma s & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (25)

Chcemy, aby obrana baza spełniała prawo transportu (FW). Łatwo sprawdzić, że wersor e_3 spełnia prawo transportu (FW) natomiast wersory e'_1 i e'_2 nie. Aby to naprawić dokonamy obrotu bazy o kąt $\psi = \psi(s)$ w płaszczyźnie wyznaczonej przez wersory e'_1 i e'_2 . Odpowiedni obrót w bazie kanonicznej jest dany przez (26) [Sta]. Właściwie obrócone wersory obliczamy za pomocą (27).

$$(\mathcal{O}^{\mu}_{\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\psi & \sin\psi & 0\\ 0 & -\sin\psi & \cos\psi & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{26}$$

$$e_1 = \mathcal{O}_1^{\mu} E_{\mu}',$$
 (27)
 $e_2 = \mathcal{O}_2^{\mu} E_{\mu}'.$

Wstawiając obrócone wersory to warunku (FW) otrzymujemy równania różniczkowe na kąt ψ , które (przyjmując bez straty ogólności $\psi(0) = 0$) mają wspólne rozwiązane postaci (28). Otrzymana ortonormalna baza (29) spełnia prawo transportu (FW).

$$\psi(s) = -\omega \gamma^2 s \tag{28}$$

$$E = \begin{pmatrix} e \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} \gamma & -R\omega\gamma\sin\omega\gamma s & R\omega\gamma\cos\omega\gamma s & 0 \\ R\omega\gamma\sin\psi & \cos\omega\gamma s\cos\psi - \gamma\sin\omega\gamma s\sin\psi & \sin\omega\gamma s\cos\psi + \gamma\cos\omega\gamma s\sin\psi & 0 \\ R\omega\gamma\cos\psi & -\cos\omega\gamma s\sin\psi - \gamma\sin\omega\gamma s\cos\psi & -\sin\omega\gamma s\sin\psi + \gamma\cos\omega\gamma s\cos\psi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \gamma & -R\omega\gamma\sin\omega\gamma s & R\omega\gamma\cos\omega\gamma s\cos\psi & 0 \\ -R\omega\gamma\sin\omega\gamma^2 s & \cos\omega\gamma^2 s\cos\omega\gamma s + \gamma\sin\omega\gamma s\sin\omega\gamma^2 s & \sin\omega\gamma s\cos\omega\gamma^2 s - \gamma\cos\omega\gamma s\sin\omega\gamma^2 s & 0 \\ R\omega\gamma\cos\omega\gamma^2 s & \cos\omega\gamma^2 s\cos\omega\gamma s + \gamma\sin\omega\gamma s\cos\omega\gamma^2 s & \sin\omega\gamma s\cos\omega\gamma^2 s - \gamma\cos\omega\gamma s\sin\omega\gamma^2 s & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Mając odpowiedni reper możemy podać równanie na kąt φ

$$\chi = \omega \gamma^2 s = -\psi, \quad \alpha = R\omega \gamma^2$$

$$\dot{\varphi} = \pm \frac{2}{\ell} + R\omega^2 \gamma^2 \sin(\varphi - \omega \gamma^2 s) = \pm \frac{2}{\ell} + \alpha \sin(\varphi - \alpha s / R\omega)$$

4.3 Ruch po okręgu względem galaktyk

Rozważymy teraz ponownie ruch po okręgu z tą różnicą, że wiążemy obserwatora \mathcal{I} z pyłem (galaktykami) w ekspandującym wszechświecie. Sytuacji tej odpowiada metryka Friedmana-Lemaître'a-Robertsona-Walkera (FLRW). Dla uproszczenia zakładamy zerową krzywizną przestrzenną. Tensor metryczny dany jest przez (30)

$$(g_{\mu\nu}) = \operatorname{diag}(1, -a(t)^2, -a(t)^2, -a(t)^2).$$
 (30)

Warto zauważyć, że dla $a(t) \equiv 1$ metryka ta przechodzi w zwykłą metrykę czasoprzestrzeni Minkowskiego, a zatem można łatwo weryfikować poprawność wyników sprawdzając, czy dla przy przejściu $a(t) \to 1$ pokrywają się one z otrzymanymi w poprzednim podrozdziale. W dalszej części przyjmujemy następujące oznaczenia

$$a := a(t), \quad a' := \frac{\mathrm{d}a(t)}{\mathrm{d}t}.$$

Dla tej metryki symbole Chrostofella Γ_{ij}^k przedstawiam poniżej w tablicach odpowiednio dla k=0,1,2,3

Rozważamy więc linie świata cząstki w ruchu po okręgu

$$y^{\mu}(s) = (t, x, y, z) = (t(s), R\cos\omega t(s), R\sin\omega t(s), 0),$$

gdzie $dt/ds = \gamma = (1 - a^2 R^2 \omega^2)^{-1/2}$. Wtedy wektory prędkości i przyspieszenia mają postać

$$u^{\mu} = \dot{y}^{\mu} = \frac{\mathrm{d}y}{\mathrm{d}s} = (\gamma, -R\omega\gamma\sin\omega t, R\omega\gamma\cos\omega t, 0),$$

$$(A^{\mu}) = \left(\frac{\mathrm{D}u^{\mu}}{\mathrm{d}s}\right) =$$

$$= (a'aR^{2}\omega^{2}\gamma^{2}(\gamma^{2} + 1), -\frac{a'}{a}R\omega\gamma^{2}(\gamma^{2} + 1)\sin\omega t - R\omega^{2}\gamma^{2}\cos\omega t, \frac{a'}{a}R\omega\gamma^{2}(\gamma^{2} + 1)\cos\omega t - R\omega^{2}\gamma^{2}\sin\omega t, 0)$$
(31)

Właściwe przyspieszenie wynosi

$$\alpha = \sqrt{-A_{\mu}A^{\mu}},$$

$$A^{\mu}A_{\mu} = -\left(\frac{a'}{a}\right)^{2} (\gamma^{2} - 1) (\gamma^{2} + 1)^{2} - a^{2}R^{2}\omega^{4}\gamma^{4}$$

Konstruując w tym przypadku reper E którego wersory będą spełniać prawo transportu (FW) można konstrukcję przeprowadzić analogicznie do przedstawionej w poprzednim przypadku - czasoprzestrzeni Minkowskiego. Jednakże rachunki można znacząco uprościć wykonując konstrukcję w inny sposób. Mianowicie można stosunkowo łatwo uogólnić wersory uzyskanej wcześniej bazy (29), tak aby tworzyły bazę ortonormalną w metryce (30). Odpowiednia baza jest postaci (32). Jak poprzednio wersory e i e_3 są transportowane wzdłuż linii świata zgodnie z prawem (FW). Wersory e_1 i e_2 zależą od kąta obrotu ψ . Jak metryka FLRW przy $a \to 1$ przechodzi w metrykę Minkowskiego

tak szukany kąt obrotu ψ powinien w granicy $a \to 1$ przechodzić w kąt znaleziony dla ciała poruszającego się po okręgu w czasoprzestrzeni Minkowskiego. Traktujemy tę granicę jako test poprawności wyników. Wartość ψ można znaleźć żądając, aby wersory e_1 i e_2 spełniały prawo transportu (FW). Wspólne rozwiązanie dla otrzymanych równań różniczkowych można wyrazić przez (33).

$$E_{FLRW} = \begin{pmatrix} e \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} \gamma & -R\omega\gamma\sin\omega t & R\omega\gamma\cos\omega t & 0 \\ aR\omega\gamma\sin\psi & \frac{1}{a}\cos\omega t\cos\psi - \frac{1}{a}\gamma\sin\omega t\sin\psi & \frac{1}{a}\sin\omega t\cos\psi + \frac{1}{a}\gamma\cos\omega t\sin\psi & 0 \\ aR\omega\gamma\cos\psi & -\frac{1}{a}\cos\omega t\sin\psi - \frac{1}{a}\gamma\sin\omega t\cos\psi & -\frac{1}{a}\sin\omega t\sin\psi + \frac{1}{a}\gamma\cos\omega t\cos\psi & 0 \\ 0 & 0 & 0 & \frac{1}{a} \end{pmatrix}. (32)$$

$$\psi(s) = \int_0^s -\omega \gamma(s_1)^2 ds_1, \quad \text{gdzie } \gamma(s) = (1 - a(t(s))^2 R^2 \omega^2)^{-1/2}.$$
 (33)

Mając znaleziony odpowiedni reper możemy obliczyć wielkości potrzebne do równania na fazę zegara φ .

$$A \cdot e_1 = -a'R\omega\gamma \left(\gamma^2 + 1\right) \sin\psi + aR\omega^2\gamma^2 \cos\psi$$
$$A \cdot e_2 = -a'R\omega\gamma \left(\gamma^2 + 1\right) \cos\psi - aR\omega^2\gamma^2 \sin\psi$$
$$\alpha = aR\omega\gamma\sqrt{a'^2 \left(\gamma^2 + 1\right)^2 + \omega^2\gamma^2}$$

4.4 Ruch po okręgu wokół czarnej dziury

W układzie obserwatora inercjalnego \mathcal{I} z sferycznym układem współrzędnych (t,r,ϕ,θ) rozważamy linię świata obserwatora \mathcal{Z} w ruchu jednostajnym po okręgu wokół czarnej dziury. Będziemy używać metryki Schwarzschilda, która odpowiada czasoprzestrzeni w pobliżu nierotującej sferycznie symetrycznej masie nieobdarzonej ładunkiem [Har16]. Element liniowy oraz macierz tensora metrycznego mają postać

$$ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} - r^{2}\sin^{2}\theta d\phi^{2} - r^{2}d\theta^{2}.$$
 (34)

$$(g_{\mu\nu}) = \begin{pmatrix} 1 - \frac{2M}{r} & 0 & 0 & 0\\ 0 & -\left(1 - \frac{2M}{r}\right)^{-1} & 0 & 0\\ 0 & 0 & -r^2 \sin^2 \theta & 0\\ 0 & 0 & 0 & -r^2 \end{pmatrix}.$$
 (35)

Dla metryki [${f CDmetric}$] symbole Christoffela Γ^k_{ij} przedstawiam poniżej w tablicach odpowiednio dla k=0,1,2,3

Jak poprzednio rozważamy ruch po okręgu o promieniu R i częstości ω . W rozważanym układzie współrzędnych linię świata można zapisać następująco

$$(y^{\mu}) = \left(t, R, \omega t, \frac{\pi}{2}\right). \tag{36}$$

Wtedy wektor prędkości ma postać

$$(u^{\mu}) = \left(\frac{\mathrm{d}y^{\mu}}{\mathrm{d}s}\right) = (\gamma, 0, \omega\gamma, 0),$$

gdzie $\gamma = dt/ds$. Z danego elementu liniowego (34), po uwzględnieniu (36), możemy odczytać

$$\gamma = \frac{\mathrm{d}t}{\mathrm{d}s} = \sqrt{1 - \frac{2M}{R} - R^2 \omega^2}$$

Wyznaczamy przyspieszenie oraz przyspieszenie właściwe

$$(A^{\mu}) = \left(0, -\frac{R\omega^2}{1 - R^2\omega^2}, 0, 0\right)$$

$$\alpha = \sqrt{-A \cdot A} = \frac{R\omega^2}{1 - R^2\omega^2} \left(1 - \frac{2M}{R}\right)^{-1/2}$$

Ponownie skorzystamy z bazy wyznaczonej wcześniej dla przypadku czasoprzestrzeni Minkowskiego i uogólnimy ją w ten sposób, aby była unormowana i spełniała prawo transportu (FW). Takie postępowanie daje nam łatwy sposób sprawdzania poprawności obliczeń, gdyż dla M=0 wyniki powinny przechodzić w przypadek bez grawitacji, czyli

czasoprzestrzeń Minkowskiego. W pierwszym kroku musimy przetransformować wektory bazy (29) do współrzędnych sferycznych. Na potrzeby tej transformacji współrzędne kartezjańskie oznaczymy przez x^i , natomiast współrzędne sferyczne przez \tilde{x}^i . Współrzędne wektorów transformują się kontrawariantnie [IJ80] co można zapisać jako

$$\tilde{v}^i = \frac{\partial \tilde{v}^i}{\partial v^j} v^j.$$

Współczynniki tej transformacji obliczamy w punkcie należącym do rozważanej tu linii świata. Baza (29) we współrzednych sferycznych ma zatem postać

$$\widetilde{E} = \begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} \gamma & 0 & \gamma \omega & 0 \\ R\omega\gamma\sin\psi & \cos\psi & \frac{\gamma}{R}\sin\psi & 0 \\ R\omega\gamma\cos\psi & -\sin\psi & \frac{\gamma}{R}\cos\psi & 0 \\ 0 & 0 & 0 & -\frac{1}{R} \end{pmatrix}.$$

Powyższa baza, rozważana w czasoprzestrzeni z metryką Schwarzschilda, nie jest ortonormalna. Można jednak stosunkowo łatwo uogólnić ją w ten sposób aby ortonormalna była

$$\widetilde{E} = \begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} \gamma & 0 & \gamma \omega & 0 \\ R\omega\gamma\sin\psi\left(1 - \frac{2M}{R}\right)^{-1/2} & \cos\psi\left(1 - \frac{2M}{R}\right)^{1/2} & \frac{\gamma}{R}\sin\psi\left(1 - \frac{2M}{R}\right)^{1/2} & 0 \\ R\omega\gamma\cos\psi\left(1 - \frac{2M}{R}\right)^{-1/2} & -\sin\psi\left(1 - \frac{2M}{R}\right)^{1/2} & \frac{\gamma}{R}\cos\psi\left(1 - \frac{2M}{R}\right)^{1/2} & 0 \\ 0 & 0 & 0 & -\frac{1}{R} \end{pmatrix}.$$

Odpowiedni kąt obrotu ψ znajdujemy za pomocą prawa transportu (FW). Dają one równania różniczkowe (jak poprzednio zakładamy $\psi(0) = 0$), które mają wspólne rozwiązanie dane przez (38).

$$\psi = -\omega \gamma^2 s \left(1 - \frac{3M}{R} \right). \tag{37}$$

Mając odpowiedni reper ruchomy znajdujemy równanie na fazę zegara (??)

$$\chi = -\psi = \omega \gamma^2 s \left(1 - \frac{3M}{R} \right), \quad \alpha = \frac{R\omega^2}{1 - R^2 \omega^2} \left(1 - \frac{2M}{R} \right)^{-1/2}
\dot{\varphi} = \pm \frac{2}{\ell} + \frac{R\omega^2}{1 - R^2 \omega^2} \left(1 - \frac{2M}{R} \right)^{-1/2} \sin \left(\varphi - \omega \gamma^2 s \left(1 - \frac{3M}{R} \right) \right)$$
(38)

Zauważmy, że uzyskane równanie różni się od rozwiązania otrzymanego w ruchu po okręgu w płaskiej metryce Minkowskiego czynnikami $(1-2M/R)^{-1/2}$ i (1-3M/R). Na wykresie 7 wykresiamy ich wartości w zależności od R. Dla R dużych w porównaniu z 2M wpływ masy M na działanie zegara jest niewielki, przy czym silniej wpływa na χ niż na α .

Rysunek 7: Wykres czynników wpływających na działanie zegara pochodzących od M w zależności od R.

5 Analiza równania fazy zegara

W tej części przeprowadzimy analizę równania na fazę zegara wyprowadzonego w poprzedniej części. Interesującym nas parametrem jest przybliżenie właściwe, będące miarą przyspieszenia jakie działa na obiekt.

5.1 Zegar w przypadku stałego przyspieszenia

Zakładamy stałe przyspieszenie właściwe α . Wtedy wektor przyspieszenia określony jest przez parametr χ Załóżmy szczególną postać $\chi(s)=ps+q$, gdzie p,q=const(s). Gdy p=0 rozpatrujemy przypadek gdy wektor A jest podczas ruchu transportowany za pomocą transportu (FW). W tym przypadku rozwiązanie uzyskujemy stosując podstawienie (39)

$$\Phi = \varphi - \chi, \tag{39}$$

$$\frac{\mathrm{d}\Phi}{\mathrm{d}s} = \frac{\mathrm{d}\varphi}{\mathrm{d}s} - p \tag{40}$$

$$\frac{\mathrm{d}\Phi}{\mathrm{d}s} = \pm \frac{2}{\ell} - p + \alpha \sin(\Phi)$$

$$ds = \frac{d\Phi}{\pm \frac{2}{\ell} - p + \alpha \sin(\Phi)}$$

Całkując prawą stronę powyższej równości stosujemy podstawienie $x=\operatorname{tg}(\Phi/2)$. Dla uproszczenia stosujemy oznaczenia $B=\pm\frac{2}{\ell}-p,\,C=\sqrt{1-\frac{\alpha^2}{B^2}}$

$$s + s_0 = \frac{2}{BC} \operatorname{arctg} \left(\frac{\operatorname{tg}(\Phi/2)}{C} + \frac{\alpha}{BC} \right),$$

$$\varphi = ps + q + 2\operatorname{arctg}\left(C\operatorname{tg}\left(BC(s+s_0)/2\right) - \frac{\alpha}{R}\right)$$

Zauważmy, że dla $\alpha \to 0$ rozwiązanie jest postaci (41). To znaczy, że w przypadku ruchu bez przyspieszeń nasz model zegara mierzy czas własny s.

$$\varphi = \pm \frac{2}{\ell} s + const. \tag{41}$$

Zakładając warunek początkowy postaci $\varphi(0)=-\pi/2$, czyli $\Phi(0)=-\pi/2-q$ możemy wyznaczyć stałą całkowania s_0 .

$$s_0 = \frac{2}{BC} \operatorname{arctg} \left(-\frac{1}{C} \operatorname{tg}(q/2 + \pi/4) + \frac{\alpha}{BC} \right),$$

5.2 Rozwiązanie przybliżone

Interesuje nas jak rozwiązanie zachowuje się dla małych przyspieszeń. Rozwiążemy równanie (20) stosując rachunek zaburzeń ze względu na parametr α . W tym celu zapisujemy ϕ oraz χ w postaci szeregów (42) (43). W równaniu (20) zapisujemy sinus w postaci szeregu (44). Następnie wstawiamy rozwinięcia ϕ i χ do uzyskanego równania i porządkujemy wyrazy ze względu na α , odrzucając wyrazy $O(\alpha^2)$. Separujemy równanie ze względu na α dostając równania (45), których rozwiązania wyglądają następująco (46). Ostatecznie szukane przez nas rozwiązanie ma postać (47).

$$\varphi = \sum_{n=0}^{\infty} \alpha^n \varphi_n, \tag{42}$$

$$\chi = \sum_{n=0}^{\infty} \alpha^n \chi_n \tag{43}$$

$$\dot{\varphi} \mp \frac{2}{\ell} - \alpha \sum_{n=0}^{\infty} (-1)^n \frac{(\varphi - \chi)^{2n+1}}{(2n+1)!} = 0$$
(44)

$$\begin{cases} \dot{\varphi_0} = \pm \frac{2}{\ell}, & \varphi_0(0) = -\frac{\pi}{2}, \\ \dot{\varphi_1} = \sin(\varphi_0 - \chi_0), & \varphi_1(0) = 0. \end{cases}$$

$$(45)$$

$$\begin{cases}
\varphi_0 = \pm \frac{2}{\ell} s - \frac{\pi}{2}, \\
\varphi_1 = -\alpha \int_0^s \cos(\pm 2s_1/\ell - \chi_0(s_1)) ds_1.
\end{cases}$$
(46)

$$\varphi = \pm \frac{2}{\ell} s - \frac{\pi}{2} - \alpha \int_0^s \cos(\pm 2s_1/\ell - \chi_0(s_1)) ds_1 + O(\alpha^2).$$
 (47)

Z rozwiązania przybliżonego (47) wiemy, że dla małych przyspieszeń nasz model zegara dobrze mierzy czas własny s. Przyspieszenie charakterystyczne dla którego efekt powinien mieć istotny wpływ to (48). Wpływ zaburzenia φ_1 na działanie zegara jest rzędu (49).

$$\alpha_c = \frac{2}{\ell} \tag{48}$$

$$\epsilon = \frac{\alpha}{\alpha_c} \tag{49}$$

Rysunek 8: Faza zegara φ w ruchu hiperbolicznym dla $\ell=0.01$ oraz $\alpha=100$ w porównaniu do fazy φ_0 w układzie bez przyspieszeń.

5.3 Ruch jednostajnie przyspieszony

W przypadku relatywistycznego odpowiednika ruchu jednostajnie przyspieszonego mamy $\chi=\pi$ oraz $\alpha=const.$ W takim przypadku faza φ jest równa (50), a przybliżenie dla małych przyspieszeń dane przez (51). Na wykresach 9a-9f porównano rozwiązanie przybliżone z rozwiązaniem pełnym dla różnych przyspieszeń. Widzimy, że przybliżenie jest dobre dla odpowiednio małych wartości $\epsilon=\epsilon=\alpha/\alpha_c$. Rozwiązania dla $\ell=0.01$ oraz $\alpha=100$ zostały przedstawione na wykresach 8a-8d. Wykres rozwiązania pełnego ukazuje, że niezależnie od kierunku działania zegara to jest obranego znaku w równaniu (20), przy dużych przyspieszeniach zegar będzie opóźniony w stosunku do czasu własnego. Zauważmy, że tego efektu nie widać w rozwiązaniu przybliżonym.

$$\varphi = \pi + 2\operatorname{arctg}\left(\sqrt{1 - \frac{\alpha^2 \ell^2}{4}}\operatorname{tg}\left(\pm\sqrt{1 - \frac{\alpha^2 \ell^2}{4}}(s + s_0)/\ell\right) \mp \frac{\alpha \ell}{2}\right)$$
(50)

$$s_0 = \pm \ell \operatorname{arctg}\left(\left(1 \pm \frac{\alpha \ell}{2}\right) / \sqrt{1 - \frac{\alpha^2 \ell^2}{4}}\right) / \sqrt{1 - \frac{\alpha^2 \ell^2}{4}}$$

$$\varphi = \pm \frac{2}{\ell} s - \frac{\pi}{2} + \frac{\alpha \ell}{2} \sin(2s/\ell) + O(\alpha^2). \tag{51}$$

Rysunek 9: Porównanie rozwiązania przybliżonego z rozwiązaniem pełnym dla faza zegara φ w ruchu hiperbolicznym przy $\ell=0.01$. Linią przerywaną zaznaczono fazę φ_0 w układzie bez przyspieszeń.

5.4 Ruch po okręgu

W przypadku ruchu po okręgu o promieniu R z częstością ω mamy $\chi = \omega \gamma^2 s$ oraz $\alpha = R\omega^2 \gamma^2$. W takim przypadku faza φ jest równa (52), a przybliżenie dla małych przyspieszeń dane przez (53).

$$\varphi = \omega \gamma^2 s + 2 \operatorname{arctg} \left(\sqrt{1 - \frac{R^2 \omega^4 \gamma^4}{\left(\pm \frac{2}{\ell} - \omega \gamma^2 \right)^2}} \operatorname{tg} \left(\left(\pm \frac{2}{\ell} - \omega \gamma^2 \right) \sqrt{1 - \frac{R^2 \omega^4 \gamma^4}{\left(\pm \frac{2}{\ell} - \omega \gamma^2 \right)^2}} (s + s_0) / 2 \right) - \frac{R \omega^2 \gamma^2}{\pm \frac{2}{\ell} - \omega \gamma^2} \right)$$
(52)

$$s_0 = \frac{2}{\pm \frac{2}{\ell} - \omega \gamma^2} \operatorname{arctg} \left(\left(\frac{R\omega^2 \gamma^2}{\pm \frac{2}{\ell} - \omega \gamma^2} - 1 \right) / \sqrt{1 - \frac{R^2 \omega^4 \gamma^4}{\left(\pm \frac{2}{\ell} - \omega \gamma^2 \right)^2}} \right) / \sqrt{1 - \frac{R^2 \omega^4 \gamma^4}{\left(\pm \frac{2}{\ell} - \omega \gamma^2 \right)^2}},$$

$$\varphi = \pm \frac{2}{\ell} s - \frac{\pi}{2} + \frac{R\omega^2 \gamma^2}{\pm 2/\ell - \omega \gamma^2} \sin((\pm 2/\ell - \omega \gamma^2)s) + O(\alpha^2).$$
 (53)

Rysunek 10: Porównanie rozwiązania przybliżonego z rozwiązaniem pełnym dla faza zegara φ w ruchu po okręgu przy $\ell=0.01$ i R=1 dla różnych prędkości ω . Linią przerywaną zaznaczono fazę φ_0 w układzie bez przyspieszeń.

5.5 Analiza modelu pod katem pomiaru

Najprostszym obiektem, dla którego można użyć tego modelu wydaje się być elektron. Wiemy, że dla małych przyspieszeń hipoteza zegara wydaje się być spełniona []. W tej części oszacujemy rząd wielkości przyspieszenia dla którego spodziewamy się obserwowalnych odstępstw od hipotezy zegara. Za ℓ możemy podstawić wielkość o wymiarze metra charakterystyczną dla elektronu - długość Komptonowską fali (54). Wtedy przyspieszenie charakterystyczne dla elektronu wynosi (55). Dla porównania energie elektronów otrzymywane w akceleratorach liniowych są rzędu kilku-kilkunastu GeV. Dla szacowania przyjmiemy gradient przyspieszenia rzędu kilku GeV/m [GK15]. Rząd wielkości przyspieszenia szacujemy jako (56). Porównując rzędy wielkości stwierdzamy, że efekty raczej nie będą obserwowalne.

$$\lambda_e = \approx 2,426 \cdot 10^{-10} \text{cm} \tag{54}$$

$$\alpha_c \approx 8,244 \cdot 10^9 \text{cm}^{-1} \tag{55}$$

$$\alpha \approx 10^2 \text{cm}^{-1} \tag{56}$$

Komptonowska długość fali protonu wnosi (57). Przyspieszenie charakterystyczne dla protonu wynosi wynosi (58). Energie protonów osiągane w CERN są rzędu 7TeV [Cer]. proton doświadczy wtedy przyspieszenia rzędu (59). Porównując rzędy wielkości przyspieszeń stwierdzamy, że jesteśmy daleko od możliwych obserwacji

$$\lambda_p = \approx 1.321 \cdot 10^{-13} \text{cm} \tag{57}$$

$$\alpha_c \approx 7.57 \cdot 10^{12} \text{cm}^{-1} \tag{58}$$

$$\alpha \approx 124 \text{cm}^{-1} \tag{59}$$

6 Podsumowanie

Badanie hipotezy zegara jest ważne ze względu na jej fundamentalny charakter w teorii względności. W tej pracy wykorzystano fundamentalny relatywistyczny rotator do konstrukcji modelu najprostszego i zarazem podstawowego zegara. Uzyskany model determinuje równanie na fazę zegara φ , która w układach bez przyspieszeń mierzy czas własny. Zbadano ruch hiperboliczny oraz ruch po okręgu w przestrzeni Minkowskiego oraz ruch po okręgu z perspektywy odległych galaktyk oraz wokół czarnej dziury. W układach tych pojawia się przyspieszenie, a razem z nim pojawia się czynnik zaburzający w działanie zegara. Faza φ przestaje być wtedy odpowiednia do pomiaru czasu własnego. Sugeruje to, że hipoteza zegara może się załamywać, gdy pojawia się przyspieszenie. Zaburzenie fazy zegara wynikające z przyjętego modelu jest zauważalne dopiero dla ogromnych przyspieszeń. Aktualnie przeprowadzane eksperymenty zdają się odbywać w zbyt małych przyspieszeniach. Może to być motywacją do rozwoju w kierunku budowy akceleratorów o większych przyspieszeniach.

Załączniki

A Dodatek matematyczny

A.1 Rozwiązanie układu równań na $f(\xi)$ w modelu Staruszkiewicza

Dany jest układ równań postaci

$$f(\xi)^2 - 4f(\xi)f'(\xi)\xi = 1 = 16f(\xi)^2 f'(\xi)^2 \xi.$$

Zauważmy przy tym, że

$$\xi = -\ell^2 \frac{\dot{k} \cdot \dot{k}}{(k \cdot \dot{x})^2} > 0.$$

Rozwiązemy teraz pierwsze z równań, to jest

$$f(\xi)^2 - 4f(\xi)f'(\xi)\xi = 1$$

Można je przekształcić do postaci równania o zmiennych rozdzielonych

$$\frac{1}{\xi} = \frac{4f(\xi)}{f(\xi)^2 - 1}f'(\xi)$$

$$\ln \xi = \int \frac{4f}{f^2 - 1} \mathrm{d}f$$

$$\ln \xi = \int \frac{2}{f^2 - 1} \mathrm{d}f^2$$

$$\ln C_1 \xi = 2\ln|f^2 - 1|, \quad C_1 > 0$$

$$C_1 \xi = (f^2 - 1)^2$$

$$\sqrt{C_1 \xi} = |f^2 - 1|$$

$$|f(\xi)| = \sqrt{1 \pm C\sqrt{\xi}}$$

Rozwiążemy teraz równanie

$$16f(\xi)^2 f'(\xi)^2 \xi = 1$$

Ponownie równanie to da się zapisać jako równanie o zmiennych rozdzielonych

$$4f(\xi)f'(\xi) = \pm \frac{1}{\sqrt{\xi}}$$

$$2f^2 = \pm 2\sqrt{\xi} + 2C_2$$

$$f^2 = \pm \sqrt{\xi} + C_2$$

$$|f| = \sqrt{\pm\sqrt{\xi} + C_2}$$

Oba rozwiązanie uzgadniamy wybierając stałe całkowania $C_1=1$ oraz $C_2=1$.

A.2 Równoważność warunków transportu Fermiego-Walkera

Zakładamy, że y - linia świata wzdłuż której wykonujemy transport oraz

$$u = \frac{\mathrm{d}y}{\mathrm{d}s}, \quad A = \dot{u} = \frac{\mathrm{D}u}{\mathrm{d}s}, \quad u \cdot A = 0,$$

 $R(v) = (u \cdot v)u, \quad P(v) = v - R(v).$

Niech v będzie wektorem zdefiniowanym wzdłóż y. Pokażemy, że następujące warunki transportu Fermiego-Walkera są równoważne

1.

$$P\left(\frac{\mathrm{D}P(v)}{\mathrm{d}s}\right) + R\left(\frac{\mathrm{D}R(v)}{\mathrm{d}s}\right) = 0,$$

2.

$$\dot{v} + (v \cdot A)u - (v \cdot u)A = 0.$$

Dowód. Obliczamy składniki lewej strony równości 1.

$$\frac{\mathrm{D}R(v)}{\mathrm{d}s} = \frac{\mathrm{D}((v\cdot u)u)}{\mathrm{d}s} = \frac{\mathrm{d}(v\cdot u)}{\mathrm{d}s}u + (v\cdot u)A = (\dot{v}\cdot u)u + (v\cdot A)u + (v\cdot u)A.$$

$$\frac{\mathrm{D}P(v)}{\mathrm{d}s} = \dot{v} - (\dot{v} \cdot u)u - (v \cdot A)u - (v \cdot u)A.$$

$$R\left(\frac{\mathrm{D}R(v)}{\mathrm{d}s}\right) = (\dot{v}\cdot u)u + (v\cdot A)u.$$

$$P\left(\frac{\mathrm{D}P(v)}{\mathrm{d}s}\right) = \dot{v} - (\dot{v} \cdot u)u - (v \cdot A)u - (v \cdot u)A - (\dot{v} \cdot u - (\dot{v} \cdot u) - (v \cdot A))u =$$
$$= \dot{v} - (\dot{v} \cdot u)u - (v \cdot A)u - (v \cdot u)A + (v \cdot A)u = \dot{v} - (\dot{v} \cdot u)u - (v \cdot u)A.$$

Korzystając z powyższych obiczeń otrzymujemy ciąg równości

$$P\left(\frac{\mathrm{D}P(v)}{\mathrm{d}s}\right) + R\left(\frac{\mathrm{D}R(v)}{\mathrm{d}s}\right) = \dot{v} - (\dot{v} \cdot u)u - (v \cdot u)A(\dot{v} \cdot u)u + (v \cdot A)u = \dot{v} - (v \cdot u)A + (v \cdot A)u.$$

Bibliografia

[Hel93] M. Heller. Fizyka ruchu i czasoprzestrzeni. PWN, Warszawa, 1993. ISBN: 83-01-11249-2.

[HM01] M. Heller i J. Mączka. Czas... BIBLOS Tarnów & OBI Kraków, 2001. ISBN: 83-7332-019-9.

[Ein05] A. Einstein. "Zur Elektrodynamik bewegter Körper". Deutsch. In: Annalen der Physik 322 (1905), S. 891–921. DOI: 10.1002/andp.19053221004.

[MP12] H. Minkowski and V. Petkov. Space and Time: Minkowski's papers on relativity. English. Minkowski Institute Press, 2012. ISBN: 978-0-9879871-2-9.

- [Sta08] A. Staruszkiewicz. "Fundamental relativistic rotator". English. In: Acta Phys. Pol. B 1 (Jan. 2008), pp. 109–112.
- [GO03] J. Gancarzewicz i B. Opozda. Wstęp do geometrii różniczkowej. Matematyka. Wyd. Uniwersytetu Jagiellońskiego, Kraków, 2003. ISBN: 83-233-1768-2.
- [OR13] H.C. Ohanian and R. Ruffini. *Gravitation and Spacetime*. English. Cambridge University Press, 2013. ISBN: 9781139003391.
- [Bai+77] J. Bailey et al. "Measurements of relativistic time dilatation for positive and negative muons in a circular orbit". English. In: *Nature* 268 (1977), pp. 301–305.
- [LL78] L.D. Landau i E.M. Lifszyc. Krótki kurs fizyki teoretycznej: Mechanika, Elektrodynamika. PWN, Warszawa, 1978.
- [Kas+09] V. Kassandrov et al. "On a model of a classical relativistic particle of constant and universal mass and spin". English. In: J. Phys. A: Math. Theor. 42, 315204 (Aug. 2009). DOI: 10.1088/1751-8113/42/31/315204. arXiv: 0902.3688 [hep-th].
- [Bra09] L. Bratek. "On the nonuniqueness of free motion of the fundamental relativistic rotator". English. In: ArXiv e-prints (Feb. 2009). arXiv: 0902.4189 [math-ph].
- [Bra12] L. Bratek. "Spinor particle. An indeterminacy in the motion of relativistic dynamical systems with separately fixed mass and spin". English. In: *J. Phys.: Conf. Ser.* 343, 012017 (Feb. 2012).
- [Bra15] L. Bratek. "Relativistic Ideal Clock". English. In: ArXiv e-prints (Nov. 2015). arXiv: 1511.00419 [math-ph].
- [Pol98] J Polchinski. String Theory. English. Vol. 1. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1998. DOI: 10.1017/CBO9780511816079.
- [Syn60] J.L. Synge. Relativity: The general theory. English. North-Holland Publishing Company, Amsterdam, 1960.
- [MF08] J.W. Maluf and F.F. Faria. "On the construction of Fermi–Walker transported frames". English. In: Annalen der Physik 17 (2008), pp. 326–335. DOI: 10.1002/andp.200810289.
- [CN15] L.F.O. Costa and J. Natário. "Inertial forces in general relativity". English. In: *J. Phys.: Conf. Ser.* 600.1, 012053 (2015). DOI: 10.1088/1742-6596/600/1/012053.
- [AP14] A. Ashtekar and V. Petkov. Springer Handbook of Spacetime. English. Springer, Berlin, 2014. DOI: 10. 1007/978-3-642-41992-8.
- [Sta] isbn = 83-7081-086-1 series = Wykłady dla fizyków, tom I year = 1993 publisher = $\langle N|K|F\rangle$, Krakw, language = polish yphenation = polish Staruszkiewicz A... Algebra i geometria.
- [KT84] W. Kopczyński i A. Trautmann. Czasoprzestrzeń i grawitacja. PWN, Warszawa, 1984. ISBN: 83-01-02266-3.
- [Har16] J.B. Hartle. Grawitacja: Wprowadzenie do ogolnej teorii wzgledności Einsteina. Wyd. Uniwersytetu Warszawskiego, Warszawa, 2016. ISBN: 978-83-235-0476-4.
- [IJ80] R.S. Ingarden i A. Jamiołkowski. Elektrodynamika klasyczna. PWN, Warszawa, 1980. ISBN: 83-01-00464-9.
- [GK15] H. S. Ghotra and N. Kant. "Electron acceleration by a chirped laser pulse in vacuum under the influence of magnetic field". English. In: Opt. Rev. 22.4 (2015), pp. 539–543. ISSN: 1349-9432. DOI: 10.1007/s10043-015-0113-6.

 $[Cer] \begin{tabular}{ll} The \ accelerator \ complex. \ English. \ https://home.cern/about/accelerators. \ Dostęp: 2018-05-15. \end{tabular}$