Subspace

Et subspace av \mathbb{R}^n er et subset V av \mathbb{R}^n , som oppfyller:

- 1. Nonemptiness: $\overrightarrow{\mathbf{0}} \in V$
- 2. Closure under addition: $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{k}} \in V \Leftrightarrow \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{k}} \in V$
- 3. Closure under multiplication: $\overrightarrow{\mathbf{u}} \in V \Leftrightarrow c\overrightarrow{\mathbf{u}} \in V$ Alle subspaces er et span og alle span er et subspace

Finne ut om et subset er et subspace

- Er subsettet et span? Kan det skrives som et span?
- Kan det bli skrevet som et columnspace til en matrise?
- Kan det bli skrevet som nullspacet til en matrise
- Er det hele \mathbb{R}^n eller $\{\overrightarrow{\mathbf{0}}\}$
- Kan det skrives som en type subspace?
 - Eigenspace
 - Ortogonal complement etc...
- Kan en bekrefte de tre kravene til et subspaces er oppfylt?

Rasis:

La V være et subspace av \mathbb{R}^n . En basis til V vil da være et sett av vektorer $\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$ slik at:

1.
$$V = Span\{\vec{\mathbf{v_1}}, \vec{\mathbf{v_2}}, \dots \vec{\mathbf{v_n}}\}$$

2.
$$\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$$
 Er lineært uavhengig.

Rank Theorem:

- Rank(A) = Dim(Col(A))
- Nullity(A) = Dim(Null(A))

Hvis A er en $m \times n$ matrise, Da:

Rank(A) + Nullity(A) = n

Invertibel matrise teorem:

La A være en $n \times m$ matrise. Følgende utsagn er ekvivalent:

- 1. A er invertibel
- 2. Redusert trappeform til A er identitetsmatrisen
- 3. $\overrightarrow{Ax} = 0$ Har ingen løsninger annet en den trivielle
- 4. $Nul(A) = \{\overrightarrow{\mathbf{0}}\}$ Nullity(A) = 0
- 5. Kolonnene til A er lineært uavhengig
- 6. Kolonnene til A former en basis for \mathbb{R}^n
- 7. $Col(A) = \mathbb{R}^n$
- 8. Rank(A) = n
- 9. $\overrightarrow{Ax} = b$ er konsistent for alle b i \mathbb{R}^n
- 10. $\overrightarrow{A} = b$ har en unik løsning for alle b i \mathbb{R}^n
- 11. $det(A) \neq 0$
- 12. $\overrightarrow{\mathbf{0}}$ er ikke en egenvektor til A

1 Determinant:

Definisjon:

Determinanten er en funksjon:

 $det: \{n \times nmatrise\} \to \mathbb{R}$

Som oppfyller følgende atributter:

- 1. Å legge til en multippel av en rad til en annen rad, endrer ikke determinanten
- 2. Skalere en av radene til A med en skalar c multipliserer determinanten med c
- 3. Bytte to rader av en matrise, multipliserer determinanten med -1
- 4. Determinanten til identitetsmatrisen er 1

Atributter til determinanten:

- \bullet Hvis Ahar en 0 kollone eller 0 rad så er determinanten 0
- Hvis A er triangulær, så er determinanten produktet av elementene langs diagonalen
- $det(A^{-1} = \frac{1}{\det(A)})$
- det(AB) = det(A)det(B)
- $det(A^T) = det(A)$
- Hvis en matrise A har to like rader, så er det(A) = 0
- Determinanten er volumet til paralellepipeden spent ut av kolonnene til en matrise