

DEPARTAMENTO DE ENG. INFORMÁTICA E SISTEMAS ENGENHARIA INFORMÁTICA E DE SISTEMAS

INTELIGÊNCIA COMPUTACIONAL 22-23

AULA LABORATORIAL N.º 2 RECONHECIMENTO DE DÍGITOS - REDES NEURONAIS MLP

1. Objetivo

Pretende-se implementar em MATLAB redes não lineares de múltipla camada usando o algoritmo backpropagation para aprendizagem de parâmetros.

A metodologia deverá ser aplicada a um problema de classificação, nomeadamente reconhecimento de dígitos.

Uma rede perceptron multicamada é totalmente configurável através da definição do número de tipo de camadas, número de neurónios, funções de ativação e algoritmo de aprendizagem. Os algoritmos de treino principais baseiam-se:

- Gradiente descendente, com taxa de aprendizagem configurável, momentum e tamanho dos lotes (batch);
- Levenberg-Marquardt, com parâmetros configuráveis e regularização.

A evolução do treino pode ser analisada em termos de:

- Erro quadrado médio (MSE);
- Número de épocas;
- Relação entre os conjuntos de dados de treino e validação.

2. Arquitectura de Redes MLP (Multi-layer Perceptron)

A Figura 1 apresenta o esquema de uma rede neuronal MLP. A rede representada possui *p* entradas e uma camada de neurónios.

A função de activação usualmente aplicada consiste na função sigmóide combinada com funções lineares na camada de saída (Figura 2).

CPereira IC 22-23

FIGURA 1. REDE MLP (MATLAB TOOLBOX)

FIGURA 2. ARQUITECTURA TÍPICA.

O **algoritmo de aprendizagem** funciona de forma **supervisionada**: Os pesos são alterados de acordo com o princípio de minimização de um critério de erro, em particular o erro quadrático médio.

O algoritmo divide-se em duas fases:

- Apresenta-se a entrada à rede neuronal e calcula-se o valor de saída.
- Actualizam-se os pesos da rede neuronal baseado nos designados valores "delta", que medem a contribuição de cada parâmetro para o valor do erro final ("Neural Networks Design", Cap.11).

3. Aplicação

Pretende-se uma rede neuronal, MLP, capaz de classificar correctamente dígitos de 0 a 9. Cada dígito deve ser representando através de uma matriz de dimensão 7x5 (Figura 3).

A rede neuronal pode ser representada através de uma camada com 35 entradas (valores binários), de uma camada interna com funções sigmóide e um número de neurónios a configurar e 10 saídas. A activação da primeira saída (saída a um) representa o reconhecimento do número zero à entrada, a activação da segunda saída

representa o número um e assim sucessivamente. Em alternativa poderá apresentar apenas uma saída com função de activação linear, como representado na Figura 2.

FIGURA 3. REPRESENTAÇÃO DO DÍGITO ZERO, NUMA MATRIZ DE 7x5.

4. Exercícios

Resolva os seguintes exercícios recorrendo às funções disponibilizadas pela toolbox "deep learning" do <u>MATLAB</u>, nomeadamente da função **patternet**.

- 1. Construa um conjunto de padrões para treino da rede neuronal contendo dígitos de 0 a 9, para resolver um **problema de classificação binária identificar o dígito "0".**
 - a. Construa um conjunto de treino. Este conjunto deve incluir diversos exemplos referentes a cada dígito, contendo "ruído", para aumentar a capacidade de generalização.
 - Considere 10 padrões (matrizes binárias), representativas de "5" e 10 padrões representativos de outros dígitos.
 - b. Construa um conjunto de teste, com apenas dois exemplos por classe.
 - c. Teste o desempenho de uma rede MLP no conjunto de treino e teste. Represente a matriz de confusão para o conjunto de teste e comente os resultados.
 - d. Varie o coeficiente de aprendizagem e o número de neurónios. Estude o efeito desses parâmetros na capacidade de classificação da rede neuronal.
 - e. Considera adequada a dimensão dos conjuntos de treino e teste? Justifique.
- 2. Treine uma rede neuronal MLP para o dataset disponível na UCI designado de "optdigits":

 $\frac{https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten}{+Digits}$

- a. Analise o problema Especifique as entradas e saídas da rede neuronal.
- b. Treine uma rede MLP com os exemplos de treino "optdigits.tra".
- c. Apresente a matriz de confusão e valores de precisão e *recall* para o conjunto de teste "optdigits.tes".
- 3. O dataset MNIST (Modified National Institute of Standards and Technology) – Figura 4, representa um conjunto de exemplos de dígitos manuscritos que é comumente usado para treinar e avaliar vários algoritmos de aprendizagem automática. Treine uma rede neuronal MLP para classificar corretamente este dataset.

FIGURA 4. EXEMPLOS DE IMAGENS NO DATASET MNIST.

a. Analise o problema - Especifique as entradas e saídas da rede neuronal.

b. Treine uma rede MLP e avalie para o conjunto de teste:

```
%% conjunto de teste
imagesTeste = loadMNISTImages('t10k-images.idx3-ubyte');
labelsTeste = loadMNISTLabels('t10k-labels.idx1-ubyte');
```

Homework:

• Construa uma rede MLP com melhor AUC para o conjunto de teste.

Anexo - Métricas

Definição de uma Matriz de Confusão:

		<u>Real</u>	
	população	Condição	Condição
		Positiva	Negativa
Classificador	Predição	TP	FP
	Positiva		
	Predição	FN	TN
	Negativa		

• Métricas Comuns:

Prevalência = Σ Condições positivas/ Σ População Total Taxa de Acerto (ACC-Accuracy) = (TP+TN)/Tamanho da População

Precisão ou PPV-"Positive Predicted Value" = TP/(TP+FP) False discovery rate (FDR) = FP/(TP+FP) False omission rate (FOR)=FN/(FN+TN)

Negative predictive value (NPV)=TN/ (FN+TN)

Sensibilidade ou Recall (TPR-True Positive Rate)=TP/(TP+FN) False negative rate (FNR)=FN/ (TP+FN) False positive rate (FPR)=FP/(FP+TN)

Especificidade (TNR-True Negative Rate)=TN/FP+TN

• Métricas Combinadas:

F-Measure=2*(Precison*Recall)/(Precision+Recall)

F1 score=2*TP/(2*TP+FP+FN) – média harmónica entre precisão e recall

Positive likelihood ratio (LR+)=TPR/FPR

Negative likelihood ratio (LR-)=FNR/TNR