Week 6: The Sylow theorems

Practice Problems

- 1. Let G be a finite group and let H be a subgroup of G. Let P be a Sylow p-subgroup of G. Show that if P is contained in H then P is a Sylow p-subgroup of H.
- 2. Let p be an odd prime. Find all Sylow p-subgroups of the dihedral group of order 2p.
- 3. Find all Sylow subgroups of S_4 .

Presentation Problems

- 1. Let G be a finite group and let H be a subgroup of G. Show that the number of Sylow p-subgroups of H is at most the number of Sylow p-subgroups of G.
- 2. Let G be a finite group of order pqr for primes p < q < r.
 - (a) Show that G is not simple.
 - (b) Show that G has a normal Sylow r-subgroup.

It is also true that if all Sylow subgroups of G are cyclic and if r is the largest prime dividing the order of G then G has a normal Sylow r-subgroup but don't try to prove this.

- 3. Let G be a finite group.
 - (a) Let H be a normal subgroup of G and let P be a Sylow subgroup of H. Show that $G = N_G(P)H$.
 - (b) Let P be a Sylow subgroup of G and let H be a subgroup of G containing $N_G(P)$. Show that $N_G(H) = H$.
- 4. Let G be a finite group, let φ be a fixed-point-free automorphism of G, and let p be a prime.
 - (a) Show that φ permutes the Sylow p-subgroups of G.
 - (b) Show that φ fixes a Sylow p-subgroup of G.
 - (c) Show that φ fixes a unique Sylow p-subgroup of G.

Tricky Problems

- 1. Let G be a finite group of order $p^k m$ where p is a prime not dividing m. Suppose that G has exactly p+1 Sylow p-subgroups.
 - (a) Show that the union of the Sylow p-subgroups of G has order p^{k+1} .
 - (b) Show that if $k \geq 2$ then G is not simple.
- 2. Let G be a nonabelian simple group of order less than or equal to 100. Prove that |G| = 60.

You can use the previous tricky problem without proof.

Hint: If you're stuck on some order, try using the techinques in the bonus.

Bonus: Simple Group Techniques

Technique 1: Sylow's Theorems

If there is only one Sylow p-subgroup, then that subgroup is normal.

- 1. Prove that there is no simple group of order 156.
- 2. Prove that there is no simple group of order 675.

Technique 2: Element Counting I

Any two distinct subgroups of prime order must intersect trivially. When combined with the previous technique, this can often lead to too many elements in a hypothetical simple group.

- 1. Prove that there is no simple group of order 105.
- 2. Prove that there is no simple group of order 380.

Technique 3: Element Counting II

After counting the elements of prime order, there might only be room for one Sylow p-subgroup.

- 1. Prove that there is no simple group of order 56.
- 2. Prove that there is no simple group of order 351.

Technique 4: Subgroups of Small Index

Suppose that H is a proper subgroup of a simple group G. Problem 1 from Week 4 gives a nontrivial group homomorphism $G \to S_{[G:H]}$. Since G is simple, this group homomorphism must be injective. In particular, the order of G must divide [G:H]! which is often a contradiction. To find subgroups of small index, consider normalizers of Sylow subgroups.

- 1. Prove that there is no simple group of order 3393.
- 2. Prove that there is no simple group of order 4125.

Technique 5: Normalizers of Sylow Intersections

Suppose that $|G| = p^2 m$ for a prime p not dividing m. If distinct Sylow p-subgroups of G intersect trivially then we can apply element counting. Otherwise, there will be Sylow p-subgroups P and Q of G with $P \cap Q \neq 1$. However, P and Q are abelian so $N_G(P \cap Q)$ will contain both P and Q. This forces $N_G(P \cap Q)$ to be a large subgroup of G and we can apply the previous technique.

- 1. Prove that there is no simple group of order 90.
- 2. Prove that there is no simple group of order 144.

More Advanced Techniques

For more advanced techniques, read section 6.2 of Dummit & Foote.