Machine Learning HW5

Siddharth Bhadkamkar

USC ID: 8342072533

bhadkamk@usc.edu

(213-257-4605)

1. A.
$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||_2^2$$

For every n, only one r_{nk} is 1, all others are 0.

So for a cluster $\mathit{k'}$ we can differentiate with respect to a particular $\;\mu_{\mathit{k'}}$ and get rid of $\sum_{k=1}^K$

So
$$\frac{\partial}{\partial \mu_{k'}}(D) = \frac{\partial}{\partial \mu_{k'}} \sum_{n=1}^{N} r_{nk'} ||x_n - \mu_k||_2^2$$

$$\frac{\partial}{\partial \mu_{k'}}(D) = \frac{\partial}{\partial \mu_{k'}} \sum_{n=1}^{N} r_{nk'} ||x_n - \mu_k||_2^2 = 0$$

$$2\sum_{n=1}^{N} r_{nk'}(x_n - \mu_k) = 0$$

$$\mu_k = \frac{\sum\limits_{n=1}^{N} r_{nk} x_n}{\sum\limits_{n=1}^{N} r_{nk'}}$$
 So μ_k is mean of its member points

1. B.
$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||_1$$

summing absolute values over all the dimensions d.

$$||x_n - \mu_k||_1 = \sum_{j=1}^d |x_{nj} - \mu_{kj}|$$

We also know that all the dimensions are independent of each other. So we can minimize the following functions for each dimension j.

$$D_{j} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} |x_{nj} - \mu_{kj}|$$

We introduce s_{nk} such that $s_{nk} = -1$ if $s_{nk} > \mu_{kj}$, $s_{nk} = 1$ otherwise

$$D_{j} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} s_{nk} (-x_{nj} + \mu_{kj})$$

Consider a particular cluster k' and dimension j. We differentiate by $\,\mu_{k'j}$

$$\frac{\partial}{\partial \mu_{k'j}} D_j = \frac{\partial}{\partial \mu_{k'j}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} s_{nk} (-x_{nj} + \mu_{kj})$$

Element corresponding to k' will remain and others will become 0.

$$\begin{split} \frac{\partial}{\partial \mu_{k'j}} D_j &= \frac{\partial}{\partial \mu_{k'j}} \sum_{n=1}^N r_{nk'} s_{nk'} (-x_{nj} + \mu_{k'j}) \\ \frac{\partial}{\partial \mu_{k'j}} D_j &= \sum_{n=1}^N r_{nk'} s_{nk'} = 0 \quad \dots \text{ Equated to 0.} \end{split}$$

From this equation it is clear that on dimension j, half of the member points lie on left side and other half on the right side of the j-th dimension of mean ie. $\mu_{k'j}$ So $\mu_{k'j}$ is indeed median on j-th dimension. This is true for each j in 1 to d.

Hence proved

1. C.
$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || \varphi(x_n) - \mu_k ||_2^2$$

From 1a we know
$$\mu_k = \frac{\sum\limits_{n=1}^{N} r_{nk} \varphi(x_n)}{\sum\limits_{n=1}^{N} r_{nk}}$$

$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || \phi(x_n) - \frac{\sum_{i=1}^{N} r_{ik} \phi(x_i)}{\sum_{i=1}^{N} r_{ik}} ||$$

$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk}(\varphi(x_n)\varphi(x_n) - \frac{\sum_{i=1}^{N} r_{ik}\varphi(x_n)\varphi(x_i)}{\sum_{i=1}^{N} r_{ik}} + \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ik}r_{jk}\varphi(x_i)\varphi(x_j)}{(\sum_{i=1}^{N} r_{ik})}$$

$$K(x_i, x_j) = \varphi(x_i)\varphi(x_j)$$

$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} (K(x_n, x_n) - \frac{\sum_{i=1}^{N} r_{ik} K(x_n, x_i)}{\sum_{i=1}^{N} r_{ik}} + \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ik} K(x_i, x_j)}{(\sum_{i=1}^{N} r_{ik})})$$

So D can be represented in terms of only kernel K(x i, x j)

So for a point x_n , distance from cluster k centroid is

$$d = (K(x_n, x_n) - \frac{\sum_{i=1}^{N} r_{ik} K(x_n, x_i)}{\sum_{i=1}^{N} r_{ik}} + \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ik} r_{jk} K(x_i, x_j)}{(\sum_{i=1}^{N} r_{ik})})$$

We choose cluster k such that it minimizes d

Pseudocode:

- 1. Initialize random positions for the cluster centers in original feature space.
- 2. Find distance between each point and each cluster center in the mapped feature space using kernel functions and assign each point a cluster (one whose center is nearest).
- 3. For each cluster, update its center by bringing it to the mean position with respect to it's member points.
- 4. Go back to step 2 if cluster centers changed. Else exit.

2.
$$f(x|\theta_1) = N(\mu_1, \sigma_1^2)$$

$$f(x|\theta_2) = N(\mu_2, \sigma_2^2)$$

$$L(x_1|\theta_1,\theta_2,\alpha) = \alpha N(\mu_1,\sigma_1^2) + (1-\alpha)N(\mu_2,\sigma_2^2)$$

Since $0 \leq \alpha \leq 1$ we know that

$$min(N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)) \le L(x_1|\theta_1, \theta_2, \alpha) \le max(N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2))$$

We want to maximize $L(x_1|\theta_1,\theta_2,\alpha)$

so
$$L(x_1|\theta_1, \theta_2, \alpha) = max(N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2))$$

If
$$N(\mu_1, \sigma_1^2) > N(\mu_2, \sigma_2^2)$$
 then $\alpha = 1$ else $\alpha = 0$

$$N(\mu_1, \sigma_1^2) = exp(-0.5x_1^2) for \ \mu_1 = 0 \ \& \ \sigma_1^2 = 1$$

$$N(\mu_2, \sigma_2^2) = \frac{exp(-x_1^2)}{\sqrt{0.5}} for \ \mu_1 = 0 \ \& \ \sigma_1^2 = 1$$
So $\alpha = 1$ if $x_1^2 > ln(2)$ else $\alpha = 0$

3.
$$p(x_i) = \pi + (1 - \pi)e^{-\lambda}$$
 if $x_i = 0$

$$p(x_i) = (1 - \pi) \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} \text{ if } x_i > 0$$

 π is probability of zero distribution

 π is probability of poisson distribution

Let us introduce hidden variable z_i such that $z_i = 1$ if x_i from zero distribution $z_i = 0$ if x_i from poisson distribution

So we can write the likelihood function using an Indicator function I.

$$L(x_i|\pi,\lambda) = \prod_{i=1}^{N} (\pi)^{z_i I(x_i=0)} [(1-\pi)e^{-\lambda}]^{(1-z_i)I(x_i=0)} [\frac{(1-\pi)\lambda^{x_i}e^{-\lambda}}{x_i!}]^{(1-z_i)I(x_i>0)}$$

So log likelihood is:

$$\begin{split} l(x_i|\pi,\lambda) &= \sum_{i=1}^{N} z_i I(x_i = 0) log(\pi) + (1-z_i) I(x_i = 0) log\left[(1-\pi)e^{-\lambda} \right] \\ &+ (1-z_i) I(x_i > 0) log\left[\frac{(1-\pi)\lambda^{x_i}e^{-\lambda}}{x_i!} \right] \end{split}$$

Estimation step:

$$p(x_i|zero\ Distribution)p(zero\ Distribution)$$

 $z_i = \frac{p(x_i|zero\ Distribution)p(zero\ Distribution)}{p(x_i|zero\ Distribution)p(zero\ Distribution) + p(x_i|poisson\ Distribution)p(poisson\ Distribution)}$

Use
$$x_i = 0$$

$$z_i = \frac{\pi}{\pi + (1 - \pi)e^{-\lambda}}$$

Maximization step:

Differentiate $l(x_i|\pi,\lambda)$ by π and equate to 0.

$$\frac{\partial l(x_i|\pi,\lambda)}{\partial \pi} = 0 = \frac{\sum\limits_{i=1}^{N} z_i I(x_i=0)}{\pi} - \frac{\sum\limits_{i=1}^{N} (1-z_i) I(x_i=0)}{1-\pi} - \frac{\sum\limits_{i=1}^{N} (1-z_i) I(x_i>0)}{1-\pi}$$

$$\frac{\sum\limits_{i=1}^{N} z_i I(x_i=0)}{\pi} = \frac{\sum\limits_{i=1}^{N} (1-z_i) I(x_i=0)}{1-\pi} + \frac{\sum\limits_{i=1}^{N} (1-z_i) I(x_i>0)}{1-\pi} = \frac{\sum\limits_{i=1}^{N} (1-z_i)}{1-\pi}$$

$$\frac{\pi}{1-\pi} = \frac{\sum\limits_{i=1}^{N} z_i I(x_i=0)}{\sum\limits_{i=1}^{N} (1-z_i)}$$

$$\pi = \frac{\sum_{i=1}^{N} z_i I(x_i = 0)}{\sum_{i=1}^{N} (1 - z_i) + z_i I(x_i = 0)} = \frac{\sum_{i=1}^{N} z_i I(x_i = 0)}{N}$$

Differentiate $l(x_i|\pi,\lambda)$ by λ and equate to 0.

$$\frac{\partial l(x_i|\pi,\lambda)}{\partial \lambda} = 0 = \sum_{i=1}^{N} (1-z_i)I(x_i = 0)(-1) + \sum_{i=1}^{N} (1-z_i)I(x_i > 0)(\frac{x_i}{\lambda} - 1)$$
$$-\sum_{i=1}^{N} (1-z_i) + \sum_{i=1}^{N} \frac{(1-z_i)I(x_i > 0)x_i}{\lambda} = 0$$

$$\lambda = \frac{\sum_{i=1}^{N} I(x_i > 0) x_i}{N - \sum_{i=1}^{N} z_i I(x_i = 0)}$$

4. Programming

Implement k-means

a) hw5 blob.csv

K=2

K=3

hw5 circle.csv K=2

K=5

b) k-means algorithm fails to separate the two circles in the hw5 circle.csv

In k means clustering, each point is assigned to a cluster with the nearest centroid.

In case of concentric circles, you cannot find a point (in same feature space) that is nearer to all points in outer circle but far from inner circle. Hence k-means algorithm fails.

The only solution to this is to project our features in some higher dimensions and hope to have separate clusters in that feature space.

Implement kernel k-means

a) Used an RBF kernel.

b) K=2

Implement Gaussian Mixture Model

a)

b)

Variance 1:

Variance 2:

[0.02716617 -0.00839784 -0.00839784 0.04044061]

Variance 3:

Mean 1:

[-0.6395396 1.47455763]

Mean 2:

[0.75896585 0.67976677]

Mean 3:

[-0.32579627 0.97130734]