Module-2 CSEN 3104 Lecture 17

Dr. Debranjan Sarkar

Interconnection Networks

Shuffle-Exchange and Omega Networks

- Based on two routing functions --- Shuffle (S) and Exchange (E)
- Let A = a_{n-1} a_1a_0 be the address of a Processing Element (PE)
- The Shuffle function is given by

$$S(a_{n-1} a_1 a_0) = a_{n-2} a_1 a_0 a_{n-1}$$
 where $0 \le A \le (N-1)$ and $n = log_2 N$

- Corresponds to cyclic shifting of the bits in A to the left for 1 bit position
- Show figure for perfect shuffle
- This action corresponds to perfect shuffling a deck of N cards
- The inverse perfect shuffle does the opposite to restore ordering (Show figure)
- Corresponds to cyclic shifting of the bits in A to the right for 1 bit position
- The Exchange function is given by

$$E(a_{n-1} a_1 a_0) = a_{n-1} a_1 a_0'$$

- The Exchange function exchanges the data between two PEs with adjacent addresses
- It is to be noted that $E(A) = C_0(A)$, where C_0 was the cube routing function

Shuffle-Exchange and Omega Networks

- The Shuffle-Exchange function can be implemented as
 - Single stage network
 - Multistage network
- Single Stage recirculating shuffle-exchange network (Show figure)
- Dashed lines -> Shuffle
 Solid lines -> Exchange
- A number of parallel algorithms can be effectively implemented by using Shuffle-Exchange function. Examples:
 - Fast Fourier Transform (FFT)
 - Polynomial Evaluation
 - Sorting
 - Matrix Transposition etc...

Multistage Omega Networks

- To implement Shuffle-Exchange functions (Show figure)
- An N X N Omega network consists of n (= log₂N) identical stages
- Perfect shuffle interconnection between two adjacent stages
- Each stage has N/2 numbers of 4-function (straight, exchange, upper broadcast and lower broadcast) switch boxes under independent box control
- The switch boxes can be repositioned without violating the perfect shuffle interconnection between stages (Show figure)
- The n-cube network has the same interconnection topology as the repositioned Omega
- However, they are different in the following two points:
 - Cube NW uses 2-function switch boxes, whereas Omega NW uses 4-function ones
 - The dataflow directions in the two NWs are opposite to each other i.e. the roles of the input-output lines are exchanged in the two networks

Routing Algorithm for Omega Network

- A source S (with address $s_{n-1} s_{n-2} \ldots s_0$) has to be connected to a certain destination D (with address $d_{n-1} d_{n-2} \ldots d_0$)
- Starting at input S, connect the input of the first switch [in the (n-1)th stage] that is connected to S to
 - the upper output of the switch when $d_{n-1}=0$
 - otherwise, to the lower output
- In the same way, bit d_{n-2} determines the output of the switch located on the next stage
- This process continues until a path is established between S and D
- In general, the input of the switch on the i^{th} stage is connected to the upper output when $d_i = 0$; Otherwise, the switch is connected to the lower output
- Example: Source 2 (i.e., S = 010) and destination 6 (i.e., D = 110) (Show Figure)
- In addition to one-to-one connections, the omega network also supports broadcasting
- Show Figure to explain the paths between source 2 and destinations 4,5,6 and 7

Thank you