Stochastik I

11. Übung

Aufgabe 41 (4 Punkte)

Es seien $p \in (0,1]$ und $(X_i)_{i \in \mathbb{N}}$ eine Folge von unabhängig und identisch $B_{1,p}$ -verteilten Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$. Wir definieren eine Abbildung $T : \Omega \longrightarrow \mathbb{N} \cup \{\infty\}$ durch $T(\omega) := \inf\{i \in \mathbb{N} : X_i(\omega) = 1\}, \ \omega \in \Omega$, unter Verwendung der Konvention inf $\emptyset := \infty$. Zeigen Sie:

- (i) T ist $(\mathcal{F}, \mathfrak{P}(\mathbb{N} \cup \{\infty\}))$ -messbar.
- (ii) $\mathbb{P}_T = \text{Geo}_n$.

Aufgabe 42 (4 Punkte)

Für Zufallsvariablen $X \sim B_{n,p}$ und $Y \sim \operatorname{Exp}_{\lambda}$ auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ sowie c > 0 berechne man $\mathbb{E}[X]$, $\mathbb{V}\operatorname{ar}[X]$ und $\mathbb{E}[X|X < n]$ sowie $\mathbb{E}[Y]$, $\mathbb{V}\operatorname{ar}[Y]$ und $\mathbb{E}[Y|Y > c]$.

Aufgabe 43 (4 Punkte)

Es seien $\Omega := \{1, 2, 3, 4\}$, $\mathcal{F} := \mathfrak{P}(\Omega)$ und \mathbb{P} die Gleichverteilung auf Ω . Zudem seien X und Y zwei durch X(1) := X(2) := 1, X(3) := X(4) := -1 bzw. Y(1) := 2, Y(2) := -2, Y(3) := 1, Y(4) := -1 gegebene Zufallsvariablen auf $(\Omega, \mathcal{F}, \mathbb{P})$.

- (i) Bestimmen Sie den Korrelationskoeffizienten $\mathbb{C}orr(X,Y)$ von X und Y.
- (ii) Prüfen Sie, ob X und Y unabhängig sind.
- (iii) Es gilt $X = aY^2 + b$ für gewisse $a, b \in \mathbb{R}$. Finden Sie diese a, b.

Aufgabe 44 (4 Punkte)

Es seien X_1, \ldots, X_d Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$. Es bezeichnen F_X und F_{X_i} die Verteilungsfunktionen von $X := (X_1, \ldots, X_d)$ bzw. $X_i, i = 1, \ldots, d$. Zeigen Sie:

- (i) $F_{X_i}(x_i) = \lim_{y \to \infty} F_X(y, \dots, y, x_i, y, \dots, y)$ für alle $x_i \in \mathbb{R}, i = 1, \dots, d$.
- (ii) $F_X(x) = \prod_{i=1}^d F_{X_i}(x_i)$ für alle $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, falls X_1, \dots, X_d unabhängig sind.

Zeigen Sie außerdem die folgenden Aussagen für den Fall, dass \mathbb{P}_X eine Lebesgue-Dichte f_X besitzt:

- (iii) Die Funktion $f_{X_i}(x_i) := \int_{\mathbb{R}^{d-1}} f_X(x_1, \dots, x_d) \ell^{(d-1)}(d(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d)), x_i \in \mathbb{R}$, liefert eine Lebesgue-Dichte von \mathbb{P}_{X_i} für jedes $i = 1, \dots, d$.
- (iv) $f_X(x) = \prod_{i=1}^d f_{X_i}(x_i)$ für $\ell^{(d)}$ -f.a. $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, falls X_1, \dots, X_d unabhängig sind.