REACTION SEGMENT

REACTION SEGMENT

- Comprised of three distinct components:
 - Centripetal acceleration: Generated by centripetal force due to ball's rapid rotation
 - Sinusoidal tilt response: SenseModule rotating through gravitational field
 - High frequency noise: Irregularities in contact surfaces between ball and lane, SenseModule vibration in finger hole, and digital noise infiltrating ADXL345
- Must isolate centripetal acceleration from tilt-response, while filtering out noise
- Wavelets are perfect for this

REACTION SEGMENT DECONSTRUCTION

REACTION SEGMENT DECONSTRUCTION

- Results of 3rd and 5th-level biorthogonal 6.8 wavelet decomposition and reconstruction
- 3rd-level approximation (a₃) yields tiltresponse superimposed on centripetal acceleration
- 5th-level approximation (a₅) isolates centripetal acceleration
- a₃ a₅ isolates tilt-response from centripetal acceleration

REACTION SEGMENT DECONSTRUCTION

REACTION TILT RESPONSE

- Compared filtering performance between FIR and wavelet techniques for tilt response
- FIR bandpass filtering uses F_R to establish pass band
 - \star Low band = 0.75 * F_R
 - \Rightarrow High band = 1.67 * F_R
- Better results from FIR filter, with fringes "folded" into loft and pin impact regions before applying Hamming window
- Expected, since tilt response is highly sinusoidal
- Wavelets used to isolate segments and REACTION segment components (centripetal acceleration, tilt response), while FIR filter used to remove noise from tiltresponse
- FIR results used for remainder of analysis for tilt response
- Following graph shows differences between FIR results and wavelet results

REACTION TILT RESPONSE

Difference between FIR results and Wavelet results
Wavelet results shown with dotted lines

CENTRIPETAL ACCELERATION VS TILT RESPONSE

- Filtered tilt response closely follows raw data
- Centripetal acceleration response should closely correspond with peak-to-peak tilt response
- Can use either/both to find instantaneous angular velocity
- For tilt response, peak-to-valley, and valley-to-peak times will give discrete angular velocity during each half-revolution
- Centripetal acceleration curve is continuous, but does not reflect true centripetal acceleration at surface of ball, since SenseModule is at bottom of finger hole
- Need to know depth of SenseModule to find angular velocity from centripetal acceleration

CENTRIPETAL ACCELERATION VS TILT RESPONSE

Raw data shown with dotted burgundy lines

REACTION TILT RESPONSE EXTRAPOLATION

Loft region extrapolated from start of Reaction region

