This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

GENES

Benjamin Lewin

Oxford New York Tokyo Oxford University Press 1997 Oxford University Press, Great Clarendon Street, Oxford OX2 6DP Oxford New York

Athens Auckland Bangkok Bogata Bombay Buenos Aires
Calcutta Cape Town Dar es Salaam Delhi Florence Hong Kong
Istanbul Karachi Kuala Lumpur Madras Madrid Melbourne
Mexico City Nairobi Paris Singapore Taipei Tokyo Toronto
and associated companies in
Berlin Ibadan

Oxford is a trade mark of Oxford University Press

Published in the United States by Oxford University Press, Inc., New York

© Oxford University Press and Cell Press, 1997

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press. Within the UK, exceptions are allowed in respect of any fair dealing for the purpose of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act, 1988, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms and in other countries should be sent to the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data (Data available)

Typeset by Wyvern Typesetting Ltd, Bristol
Printed in The United States of America

CHAPTER 29

Regulation of transcription

The phenotypic differences that distinguish the various kinds of cells in a higher eukaryote are largely due to differences in the expression of genes that code for proteins, that is, those transcribed by RNA polymerase II. In principle, the expression of these genes might be regulated at any one of several stages. The concept of the level of control" implies that gene expression is not necessarily an automatic process once it has begun. It could be regulated in a genespecific way at any one of several sequential steps. We can distinguish (at least) five potential control points, forming the series:

Activation of gene structure

\[\]
Initiation of transcription
\[\]
Processing the transcript
\[\]
Transport to cytoplasm
\[\]
Translation of mRNA

The existence of the first step is implied by the discovery that genes may exist in either of two structural conditions. Relative to the state of most of the genome, genes are found in an "active" state in the cells in which they are expressed (see Chapter 27). The change of structure is distinct from the act of transcription, and indicates that the gene is "transcribable." This suggests that acquisition of the active" structure must be the first step in gene expression.

Transcription of a gene in the active state is

controlled at the stage of initiation, that is, by the interaction of RNA polymerase with its promoter. This is now becoming susceptible to analysis in the *in vitro* systems (see Chapter 28). For most genes, this is a major control point; probably it is the most common level of regulation.

There is at present no evidence for control at subsequent stages of transcription in eukaryotic cells, for example, via antitermination mechanisms.

The primary transcript is modified by capping at the 5' end, and usually also by polyadenylation at the 3' end. Introns must be spliced out from the transcripts of interrupted genes. The mature RNA must be exported from the nucleus to the cytoplasm. Regulation of gene expression by selection of sequences at the level of nuclear RNA might involve any or all of these stages, but the one for which we have most evidence concerns changes in splicing; some genes are expressed by means of alternative splicing patterns whose regulation controls the type of protein product (see Chapter 30).

Finally, the translation of an mRNA in the cytoplasm can be specifically controlled. There is little evidence for the employment of this mechanism in adult somatic cells, but it does occur in some embryonic situations, as described in Chapter 7. The mechanism is presumed to involve the blocking of initiation of translation of some mRNAs by specific protein factors.

But having acknowledged that control of gene expression can occur at multiple stages, and that production of RNA cannot inevitably be equated with production of protein, it is clear

that the overwhelming majority of regulatory events occur at the initiation of transcription. Regulation of tissue-specific gene transcription lies at the heart of eukaryotic differentiation; indeed, we see examples in Chapter 38 in which proteins that regulate embryonic development prove to be transcription factors. A regulatory transcription factor serves to provide

common control of a large number of target genes, and we seek to answer two questions about this mode of regulation: what identifies the common target genes to the transcription factor; and how is the activity of the transcription factor itself regulated in response to intrinsic or extrinsic signals?

Response elements identify genes under common regulation

The principle that emerges from characterizing groups of genes under common control is that they share a promoter element that is recognized by a regulatory transcription factor. An element that causes a gene to respond to such a factor is called a response element; examples are the HSE (heat shock response element), GRE (glucocorticoid response element), SRE (serum response element).

The properties of some inducible transcription factors and the elements that they recognize are summarized in **Table 29.1**. Response elements have the same general characteristics as upstream elements of promoters or enhancers. They contain short consensus sequences, and copies of the response elements found in different genes are closely related, but not necessarily identical. The region bound by the factor extends for a short distance on either side of

Table 29.1 Inducible transcription factors bind to response elements that identify groups of promoters or enhancers subject to coordinate control.

Regulatory Agent Module Consensus Factor

Heat shock HSE CNNGAANNTCCNNG HSTF
Glucocorticoid GRE TGGTACAAATGTTCT Receptor

TGACTCA

CCATATTAGG

AP1

TRE

SRE

Phorbol ester

the consensus sequence. In promoters, the elements are not present at fixed distances from the startpoint, but are usually <200 bp upstream of it. The presence of a single element usually is sufficient to confer the regulatory response, but sometimes there are multiple copies.

Response elements may be located in promoters or in enhancers. Some types of elements are typically found in one rather than the other usually an HSE is found in a promoter, while a GRE is found in an enhancer. We assume that all response elements function by the same general principle. A gene is regulated by a sequence at the promoter or enhancer that is recognized by a specific protein. The protein functions as a transcription factor needed for RNA polymerase to initiate. Active protein available only under conditions when the gene is to be expressed; its absence means that the promoter is not activated by this particular circle.

An example of a situation in which mail! genes are controlled by a single factor is provided by the heat shock response. This is colli mon to a wide range of prokaryotes all, eukaryotes and involves multiple controls gene expression: an increase in temperalling turns off transcription of some genes, turns off transcription of the heat shock genes, and causes changes in the translation of $mR^{N^{\frac{1}{2}}}$ The control of the heat shock genes illustrate, prokaryotic between differences eukaryotic modes of control. In bacteria, a production of control in bacteria in sigma factor is synthesized that directs $\mathfrak{g}^{\chi_{\mathfrak{g}}}$ polymerase holoenzyme to recognize an aller