Progress Report

Victor Huang

November 29, 2020

Overview:

Concerned variables and underlying Monte-Carlo model:

```
nSims: Number of simulations to run for each groups of parameter.
N: Size of population.
p: Probablity an observation is sampled.
sigma_e2: Variance of Model error e.
sigma_epi2: variance of unpredicted error epislon.
yi: Dependent variable without unpredicted error.
xi: Independent variable.
cap_y: Dependent variable with unpredicted error.
```

Simulation2: A function that randomly draws samples from population given. Each observation \\ has probability p of being samapled. It repeats this operation nSims times and will output a \\ vector of beta, the empirical value for an OLS fitting model based on cap_y and xi.

```
# setting parameters
sigma_e2<-1
N<-10000
beta<-2
nSims<-10000

p<-c(0.01,0.1,0.5,0.9,0.99)
sigma_epi2<-c(0,1,2)

x_para<-set_para(0,1)
e_para<-set_para(0,sigma_e2)

# generating population
xi<-pop_gen(x_para,N,'normal')
ei<-pop_gen(e_para,N,'normal')
yi<-xi*beta+ei</pre>

# for each group of simulations, generate one population with
```

```
# independent error epislon.
for (j in c(1:length(sigma epi2))){
    epi_para<- set_para(0,sigma_epi2[j])</pre>
    epi<-pop_gen(epi_para,N,'normal')</pre>
    cap_y<-yi+epi
# sample from the population with probability p and return the
# variance of the beta.
 for (i in c(1:length(p))){
    start.time.small<-Sys.time()</pre>
    var_beta<-var(simulation2(cap_y,xi,p[i],nSims))</pre>
    theo_var<-((1-p[i])/p[i])*
      ((sum(xi**2*ei**2))/((sum(xi**2))**2)+sigma_epi2[j]/(sum(xi**2)))
    end.time.small<-Sys.time()</pre>
# rearranging the data for presentation and making graph
    out<-cbind(obs=var_beta,theo=theo_var,prob=sprintf('p = %f ',p[i]),</pre>
                sigma=sprintf('sigma_epi2 = %f',sigma_epi2[j]),
                time=end.time.small-start.time.small)
    result <-rbind(result,out)
  }
}
```

Observation with p= 0.010000

Observation with p= 0.100000

Observation with p= 0.500000 3e-04 2e-04 1e-04 1e-04 1e-04 1e-04

 $sigma_epi2 = 0.000000 sigma_epi2 = 1.000000 sigma_epi2 = 2.000000$

Observation with p= 0.900000

Observation with sigma= 0.000000

Observation with sigma= 1.000000

Observation with sigma= 2.000000

prob	sigma	obs	theo
p = 0.010000	$sigma_epi2 = 0.000000$	0.0107351716856739	0.00994779387593741
p = 0.100000	$sigma_epi2 = 0.000000$	0.000914028736408776	0.000904344897812491
p = 0.500000	$sigma_epi2 = 0.000000$	9.99490743653437e-05	0.00010048276642361
p = 0.900000	$sigma_epi2 = 0.000000$	1.12802009108874e-05	1.11647518248456e-05
p = 0.990000	$sigma_epi2 = 0.000000$	1.01796988414198e-06	1.01497743862233e-06
p = 0.010000	$sigma_epi2 = 1.000000$	0.019824360698349	0.0197155975086595
p = 0.100000	$sigma_epi2 = 1.000000$	0.00173379381176622	0.00179232704624177
p = 0.500000	$sigma_epi2 = 1.000000$	0.000193587397300893	0.000199147449582419
p = 0.900000	$sigma_epi2 = 1.000000$	2.16657610590346e-05	2.21274943980466e-05
p = 0.990000	$sigma_epi2 = 1.000000$	1.96603828135991e-06	2.01159039982242e-06
p = 0.010000	$sigma_epi2 = 2.000000$	0.02997040729814	0.0294834011413816
p = 0.100000	$sigma_epi2 = 2.000000$	0.00266955792009593	0.00268030919467106
p = 0.500000	$sigma_epi2 = 2.000000$	0.000292805710898252	0.000297812132741229
p = 0.900000	$sigma_epi2 = 2.000000$	3.26242695421498e-05	3.30902369712476e-05
p = 0.990000	$sigma_epi2 = 2.000000$	2.93629270284254e-06	3.00820336102251e-06

prob	sigma	time
	0	
p = 0.010000	$sigma_epi2 = 0.000000$	3.95243191719055
p = 0.100000	$sigma_epi2 = 0.000000$	4.24368596076965
p = 0.500000	$sigma_epi2 = 0.000000$	5.08839416503906
p = 0.900000	$sigma_epi2 = 0.000000$	4.93181204795837
p = 0.990000	$sigma_epi2 = 0.000000$	4.9098379611969
p = 0.010000	$sigma_epi2 = 1.000000$	4.02327108383179
p = 0.100000	$sigma_epi2 = 1.000000$	4.44408512115479
p = 0.500000	$sigma_epi2 = 1.000000$	5.2460470199585
p = 0.900000	$sigma_epi2 = 1.000000$	5.0504629611969
p = 0.990000	$sigma_epi2 = 1.000000$	5.05451583862305
p = 0.010000	$sigma_epi2 = 2.000000$	4.03324294090271
p = 0.100000	$sigma_epi2 = 2.000000$	4.21171092987061
p = 0.500000	$sigma_epi2 = 2.000000$	5.201092004776
p = 0.900000	$sigma_epi2 = 2.000000$	5.03955817222595
p = 0.990000	$sigma_epi2 = 2.000000$	5.07842087745667
time in total	time in total	1.21575103203456