(2017年预赛第三题)设曲线 Γ 为在 $x^2 + y^2 + z^2 = 1$, x + z = 1, $x \ge 0$, $y \ge 0$, $z \ge 0$, 上从A(1,0,0)到B(0,0,1)的一段, 求曲线 积分 $I = \int_{-}^{} y \, \mathrm{d}x + z \, \mathrm{d}y + x \, \mathrm{d}z.$ 解析: 由 $\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + z = 1 \end{cases}$, 得 $x^2 + y^2 + (1 - x)^2 = 1$, 整理得 $\frac{\left(x-\frac{1}{2}\right)^2}{\frac{1}{4}} + \frac{y^2}{\frac{1}{2}} = 1$. 因此,得到曲线 Γ 的参数方程 $\begin{cases} x = \frac{1}{2} + \frac{1}{2}\cos\theta \\ y = \frac{\sqrt{2}}{2}\sin\theta \quad , \quad 其中\theta: \ 0 \to \pi. 于是, \\ z = \frac{1}{2} - \frac{1}{2}\cos\theta \end{cases}$ $I = \int_{-}^{} y \, \mathrm{d}x + z \, \mathrm{d}y + x \, \mathrm{d}z$ $=\int_0^\pi \left[rac{\sqrt{2}}{2} \sin heta \left(-rac{1}{2} \sin heta
ight) + \left(rac{1}{2} - rac{1}{2} \cos heta
ight) rac{\sqrt{2}}{2} \cos heta + \left(rac{1}{2} + rac{1}{2} \cos heta
ight) rac{1}{2} \sin heta
ight] \mathrm{d} heta$ $= \int_0^{\pi} \left(-\frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} \cos \theta + \frac{1}{4} \sin \theta + \frac{1}{4} \sin \theta \cos \theta \right) d\theta$ $=-\frac{\sqrt{2}}{4}\pi + \frac{1}{2}$