PRML Note C09 Mixture Models and EM

Yang Zhao

Department of Automation, Tsinghua University

1 K-means Clustering

- Suppose we have a data set $\{x_1, x_2, \dots, x_N\}$ and our goal is to partition the data set into some number K of clusters, where we shall suppose for the moment that the value of K is given.
- We might think of a cluster as comprising a group of data points whose inter-point distances are small compared with the distances to points outside of the cluster. To do this, we introduce a set of D-dimensional vectors $\boldsymbol{\mu}_k$, where $k = 1, \dots, K$, in which $\boldsymbol{\mu}_k$ is a prototype associated with the k^{th} cluster.
- For each data point, we introduce a corresponding set of binary indicator variables $r_{nk} \in \{0,1\}$, where $k=1,\cdots,K$ describing which of K clusters the data point \boldsymbol{x}_n is designed to, so that if data point \boldsymbol{x}_n is designed to cluster k, then $r_{nk}=1$ and $r_{nj}=0$ for $j\neq k$. This is known as the 1-of-K coding scheme. We can define an objective function, sometimes called a distortion measure, given by

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$
 (1)

Our goal is to find values for the r_{nk} and the μ_k so as to minimize J.

- First we choose some initial values for the μ_k . Then in the first phase we minimize J with respect to the r_{nk} , keeping the μ_k fixed. In the second phase we minimize J with respect to the μ_k , keeping the r_{nk} fixed. This two-stage optimization is then repeated until convergence.
- Consider first the determination of the r_{nk} . We can simply assign the n^{th} data point to the closest cluster centre.

$$r_{nk} = \begin{cases} 1 & \text{if } k = argmin_j || \boldsymbol{x}_n - \boldsymbol{\mu}_j ||^2 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

• Consider the optimization of the μ_k with the r_{nk} held fixed. The objective function can be minimized by setting its derivative with respect to μ_k to zero giving

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \boldsymbol{x}_n}{\sum_n r_{nk}} \tag{3}$$

- This K-means algorithm may converge to a local rather than global minimum of J.
- In practice, a better initialization procedure would be to choose the cluster centres μ_k to be equal to a random subset of K data points.
- It is worth noting that the K-means algorithm itself is often used to initialize the parameters in a Gaussian mixture model before applying the EM algorithm.
- The K-means algorithm can be generalized by introducing a more general dissimilarity measure $\nu(\boldsymbol{x}, \boldsymbol{x}')$ instead of the Euclidean distance, which gives the K-medoids algorithm.

2 Mixtures of Gaussians

• The Gaussian mixture distribution can be written as a linear superposition of Gaussians in the form

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (4)

Let us introduce a K-dimensional binary random variable z to represent the state of the Gaussian distribution using 1-of-K code.

Figure 1: Graphical representation of a mixture model

• The joint distribution is expressed in the form p(x, z) = p(z)p(x|z). The marginal distribution over z is specified in terms of the mixing coefficients π_k , such that

$$p(z_k = 1) = \pi_k \tag{5}$$

and the conditional distribution of x given a particular value for z is a Gaussian

$$p(\boldsymbol{x}|z_k=1) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (6)

So the joint distribution is given by

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (7)

• We use $\gamma(z_k)$ to denote $p(z_k = 1 | \boldsymbol{x})$, whose value can be found using Bayes' theorem

$$\gamma(z_k) \equiv p(z_k = 1 | \boldsymbol{x}) = \frac{\pi_k \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$
(8)

the $\gamma(z_k)$ can be viewed as the *responsibility* that component k takes for explaining the observation \boldsymbol{x} . $\gamma(z_{nk}) \equiv p(z_k = 1 | \boldsymbol{x}_n)$.

• Suppose we have a data set of observations $\{x_1, \dots, x_N\}$. The log of the likelihood function is given by

$$lnp(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$
(9)

It is worth emphasizing that there is a significant problem associated with the maximum likelihood framework applied to Gaussian mixture models, due to the presence of singularities.

- These singularities provide another example of the severe over-fitting that can occur in a maximum likelihood approach. If we adopt a Bayesian approach, this difficulty does not occur.
- *EM algorithm*. The expectation-maximization algorithm is an elegant and powerful method for finding maximum likelihood solutions for models with latent variables. The EM algorithm can be generalized to obtain the variational inference framework.
- Setting the derivatives of $lnp(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})$ in equation (9) with respect to the $\boldsymbol{\mu}_k$ and $\boldsymbol{\Sigma}_k$ to zero, we obtain

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \boldsymbol{x}_n \tag{10}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^T$$
(11)

where we have defined

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk}) \tag{12}$$

• If we want to maximize $lnp(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to the π_k , we must take account of the constriant $\sum_{k=1}^K \pi_k = 1$. This can be achieved using a Lagrange multiplier and maximize the following quantity

$$lnp(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \lambda \Big(\sum_{k=1}^{K} \pi_k - 1\Big)$$
 (13)

which gives

$$0 = \sum_{n=1}^{N} \frac{\mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} + \lambda$$
 (14)

If we multiply both sides by π_k and sum over k making use of the constriant $\sum_{k=1}^{K} \pi_k = 1$, we can find $\lambda = -N$ and we can obtain

$$\pi_k = \frac{N_k}{N} \tag{15}$$

• For EM algorithm, in the expectation step, or E step, we use the current values for the parameters to evaluate the posterior probabilities, or responsibility given by equation (8); in the maximization step, or M step, we use the probabilities to re-estimate the means, convariances and mixing coefficients using the equation (10), (11), (15).

3 An Alternative View of EM

• The goal of the EM algorithm is to find maximum likelihood solutions for models having latent variables. We denote the set of all observed data by \mathbf{X} , in which the n^{th} row represents \boldsymbol{x}_n^T , and similarly we denote the set of all latent variables by \mathbf{Z} , with a corresponding row \boldsymbol{z}_n^T . The set of all model parameters is denoted by $\boldsymbol{\theta}$, and so the log likelihood function is given by

$$lnp(\mathbf{X}|\boldsymbol{\theta}) = ln\left\{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})\right\}$$
 (16)

- The presence of the sum prevents the logarithm from acting directly on the joint distribution, resulting in complicated expressions for the maximum likelihood solution.
- The General EM Algorithm.
 - 1. Choose an initial setting for the parameters $\boldsymbol{\theta}^{old}$.
 - 2. E Step. Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old})$.
 - 3. M Step. Evaluate θ^{new} given by

$$\boldsymbol{\theta}^{new} = argmax_{\boldsymbol{\theta}}Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) lnp(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. Check for convergence of either the log likelihood or the parameters values. If the convergence criterion is not satisfied, then let

$$\boldsymbol{\theta}^{old} \leftarrow \boldsymbol{\theta}^{new}$$

and return to step 2.

- The EM algorithm can also be used to find MAP solutions for models in which a prior $p(\boldsymbol{\theta})$ is defined over the parameters. In this case the E step remains the same as in the maximum likelihood case, whereas in the M step the quantity to be maximized is given by $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) + lnp(\boldsymbol{\theta})$. Suitable choices for the prior will remove the singularities.
- Consider the problem of maximizing the likelihood for the complete data set $\{X, Z\}$. This likelihood function takes the form

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$
(17)

where z_{nk} denotes the k^{th} component of \boldsymbol{z}_n . Taking the logarithm, we obtain

$$lnp(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \{ ln\pi_k + ln\mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \}$$
(18)

Comparision with the log likelihood function (9) for the incomplete data shows that summation over k and the logarithm have been interchanged.

4 The EM Algorithm in General

- Consider a probabilistic model in which we collectively denote all of the observed variables by **X** and all of the hidden variables by **Z**. The joint distribution $p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$ is governed by a set of parameters denoted $\boldsymbol{\theta}$.
- We shall suppose that direct optimization of $p(\mathbf{X}|\boldsymbol{\theta})$ is difficult, but that optimization of the complete-data likelihood function $p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$ is significantly easier.
- For any choice of $q(\mathbf{Z})$, the following decomposition holds

$$lnp(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q||p)$$
(19)

where we have defined

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$
 (20)

$$KL(q||p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$
 (21)

Because the Kullback-Leibler divergence satisfies $KL(q||p) \geq 0$, we see that the quantity $\mathcal{L}(q, \theta)$ is a lower bound on the log likelihood function $lnp(\mathbf{X}|\theta)$.

- The EM algorithm is a two-stage iterative optimization technique for finding maximum likelihood solutions.
 - 1. In the **E** step, the lower bound $\mathcal{L}(q, \boldsymbol{\theta}^{old})$ is maximized with respect to $q(\mathbf{Z})$ while holding $\boldsymbol{\theta}^{old}$ fixed when $q(\mathbf{Z})$ is equals to $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old})$.
 - 2. In the subsequent **M** step, the distribution $q(\mathbf{Z})$ is held fixed and the lower bound $\mathcal{L}(q, \boldsymbol{\theta})$ is maximized with respect to $\boldsymbol{\theta}$ to give some new value $\boldsymbol{\theta}^{new}$.

5 Appendix