Homework 5

1. Calculate the mean molecular weight for a pure hydrogen/helium mixture with X=0.4, assuming the hydrogen and helium are both 50% ionized (i.e., $\mathcal{N}_j=0.5\times \mathcal{Z}_j$, where \mathcal{N}_j and \mathcal{Z}_j are defined in *Handout 15*).

4 points

2. By combining equations [6.4] and [6.8], derive the dependence of temperature *T* on pressure *P* for an ideal gas undergoing an adiabatic change. Use this expression to prove equation [13.7].

4 points

- 3. Consider a location within a star where the interior mass and luminosity are given by $m=0.3\,\mathrm{M}_\odot$ and $\ell=5\,\mathrm{L}_\odot$, respectively; the pressure and temperature are $P=10^{17}\,\mathrm{Ba}$ and $T=10^7\,\mathrm{K}$, respectively; and the opacity is $\kappa=1\,\mathrm{cm}^2\,\mathrm{g}^{-1}$.
 - Evaluate the radiative temperature gradient ∇_{rad} .
 - Assuming the stellar material behaves as an ideal gas with $\gamma = 1.4$, evaluate the adiabatic temperature gradient ∇_{ad} .
 - By applying the algorithm given in *Handout 13*, explain why convection will occur at this location.
 - Assuming a convective efficiency $\varphi_{\text{conv}} = 0.5$, evaluate the dimensionless temperature gradient ∇_T at the location.
 - Evaluate the convective (ℓ_{conv}) and radiative (ℓ_{rad}) interior luminosities, in L_{\odot} .

7 points

4. The central temperature and density of ZAMS stars can be approximated over the stellar mass interval $0.1\,{\rm M_\odot}\lesssim M\lesssim 30\,{\rm M_\odot}$ by the fits

$$\log \left(T_{\rm c}/{\rm K} \right) \approx 7.10 + 0.38 \left(M/{\rm M}_{\odot} \right),$$
$$\log \left(\rho_{\rm c}/{\rm g\,cm}^{-3} \right) \approx 1.77 - 0.77 \left(M/{\rm M}_{\odot} \right).$$

Derive corresponding expressions for the gas pressure $P_{\rm gas} \equiv P_{\rm ion} + P_{\rm e}$ (assuming an ideal gas with $\mu \approx 0.62$) and the radiation pressure $P_{\rm rad}$ at the center. At what stellar mass does radiation pressure begin to exceed gas pressure?

5 points

5. For a free electron gas in the completely degenerate limit, use your knowledge of the momentum distribution function $f_e(p)$ to determine what fraction of the electrons have momenta less than half of the Fermi momentum $p_{\rm F}$, and what fraction have momenta more than double the Fermi momentum.

5 points