

Informed Target Speaker ASRJSALT 2020

DESH RAJ

Collaborators: Marc Delcroix, Shinji Watanabe, Kateřina Žmolíková, Pavel Denisov, Zili Huang, Sanjeev Khudanpur

The single-stream baseline system...

The single-stream baseline system...

...cannot handle overlapping speech

To solve this problem:

Baseline spectral clustering

Overlap-aware spectral clustering...

...using new problem formulation

$$egin{aligned} \max \epsilon(X) &= rac{1}{K} \sum_{k=1}^K rac{X_k^T \mathbf{A} X_k}{X_k^T \mathbf{D} X_k} \ & ext{s.t. } X \in \{0,1\}^{N imes K} & \longrightarrow \ & X \mathbf{1}_K = \mathbf{1}_N + \mathbf{v}_{OL} \end{aligned}$$

Next, we seek to obtain a discrete approximation for Z. First, we note from equation (7) that

$$X = f^{-1}(Z) = \text{Diag} \left(diag^{-\frac{1}{2}} (ZZ^T) \right) Z,$$
 (11)

Using this transformation, we can characterize the solution obtained in equation (10) as

$$\{\tilde{X}^*R : R^TR = I_K, \tilde{X}^* = f^{-1}(Z^*)\}.$$
 (12)

Now, our discretization problem is to find an X whiproximates \tilde{X}^*R for some orthonormal R, such the discrete constraints from problem (6). Muthis is formulated as

$$\min_{\substack{\phi(X,R) = 1 \\ \text{s.t. } X \in \{0 \\ X\}}} \phi(X,R) = 1$$
(13)

It is different and R. Suppose we are given some of reduces to

min
$$\phi(X) = \|X - \tilde{X}^* R^*\|^2$$

s.t. $X \in \{0, 1\}^{N \times K}$, $X \mathbf{1}_K = \mathbf{1}_N$. (14)

The optimal solution to this problem is given by nonmaximal suppression, i.e.,

$$X^{*}(i, l) = \left\langle l = \arg \max_{k \in [K]} \tilde{X}(i, k) \right\rangle, i \in \{1, ..., N\}.$$
(15)

Intuitively, we set the largest entry in each row as 1 and zero out all the others. This ensures that each sample belongs to exactly 1 cluster. In the next section, we will see how to reformulate problem (14) for the case when some samples can belong to more than one clusters.

Next, we fix X^* and solve the following problem for R^* :

min
$$\phi(R) = \|X^* - \tilde{X}^*R\|^2$$

s.t. $R^TR = I_K$. (16)

The solution to this problem is given by

$$R^* = \tilde{U}U^T$$
, (17)

$$X^*(i, l) = \left\langle l = \arg \max_{k \in [K]} \tilde{X}(i, k) \right\rangle$$
$$+ \mathbf{v}_{OL}^{(i)} \times \left\langle l = \arg \max_{k \in [K]} \tilde{X}(i, k) \right\rangle$$

*Manuscript in preparation for SLT 2021

Diarization results on LibriCSS eval set

Overlap detector:

Precision = 96.3% Recall = 83.8%

Method	Avg. DER	DER on 40%
AHC/PLDA	16.3	28.8
Spectral/cosine	12.6	23.4
Overlap-aware SC	9.3	15.2
+ oracle overlap detector	8.8	14.4

^{*}All DER reported using oracle VAD

Target speaker ASR

Target-speaker extraction (Katka's talk):

Žmolíková, Kateřina et al. "SpeakerBeam: Speaker Aware Neural Network for Target Speaker Extraction in Speech Mixtures." IEEE Journal of Selected Topics in Signal Processing 13 (2019): 800-814.

Target-speaker ASR (this talk):

How to train your Target speaker ASR

Method	Details	Avg. WER	WER on 40% overlap region
Speaker- independent AM	Librispeech with RIRs	27.88	47.7

LF-MMI objective

Hybrid HMM-DNN with RNNLM rescoring

i. Train with simulated overlapping data

Method	Details	Avg. WER	WER on 40% overlap region
Speaker- independent AM	Librispeech with RIRs	27.88	47.7
Speaker- independent AM	+ simulated overlapping data	18.00	25.44

LF-MMI objective

ii. Add speaker i-vectors to guide ASR

Method	Details	Avg. WER	WER on 40% overlap region
Speaker- independent AM	Librispeech with RIRs	27.88	47.7
Speaker- independent AM	+ simulated overlapping data	18.00	25.44
+ speaker i- vectors	_	16.99	21.74

^{*}i-vectors estimated from clean enrollment utterances

iii. Discriminative training

Method	Method Details		WER on 40% overlap region
Speaker- independent AM	Librispeech with RIRs	27.88	47.7
Speaker- independent AM	+ simulated overlapping data	18.00	25.44
+ speaker i- vectors	_	16.99	21.74
+ speaker i- vectors	Discriminative training	16.96	22.85

^{*}i-vectors estimated from clean enrollment utterances

iv. Add i-vectors to several layers

Method	Details	Avg. WER	WER on 40% overlap region
Speaker- independent AM	Librispeech with RIRs	27.88	47.7
Speaker- independent AM	+ simulated overlapping data	18.00	25.44
+ speaker i- vectors	-	16.99	21.74
+ speaker i- vectors	Discriminative training	16.96	22.85
+ deeper integration	_	16.56	21.12

^{*}i-vectors estimated from clean enrollment utterances

v. Next steps?

Method	Method Details Avg. WE		WER on 40% overlap
Speaker- independent AM	Librispeech with RIRs	27.88	47.7
Speaker- independent AM			25.44
+ speaker i- vectors	_	16.99	21.74
+ speaker i- vectors	Discriminative training	16.96	22.85
+ deeper integration	-	16.56	21.12
+ deeper integration	Discriminative training	?	?

^{*}i-vectors estimated from clean enrollment utterances

PART 3

Combining Parts 1 and 2

Results for TS-ASR are on oracle segments with i-vectors estimated from enrollment utterances.

- i. Estimate i-vectors from recording instead of enrollment utterances
- ii. Use segments obtained from Diarization instead of oracle segments

Combining Parts 1 and 2

High overlap

ASR	i-vectors obtained from	Segments	DER	cpWER	cpWER (OV40)
Baseline (speaker independent AM)	no i-vectors used	Baseline Diarization (no overlap)	18.28	32.72	48.05
Baseline (speaker independent AM)	no i-vectors used	oracle	0.00	27.88	47.70
TS-ASR	enrollment	oracle	0.00	16.56	21.12

a) Using recording to estimate i-vectors

ASR	i-vectors obtained from	Segments	DER	cpWER	cpWER (OV40)
Baseline (speaker independent AM)	no i-vectors used	Baseline Diarization (no overlap)	18.28	32.72	48.05
Baseline (speaker independent AM)	no i-vectors used	oracle	0.00	27.88	47.70
TS-ASR	enrollment	oracle	0.00	16.56	21.12
TS-ASR	recording	oracle	0.00	19.29	24.55

b) Using baseline diarization to get segments

ASR	i-vectors obtained from	Segments	DER	cpWER	cpWER (OV40)
Baseline (speaker independent AM)	no i-vectors used	Baseline Diarization (no overlap)	18.28	32.72	48.05
Baseline (speaker independent AM)	no i-vectors used	oracle	0.00	27.88	47.70
TS-ASR	enrollment	oracle	0.00	16.56	21.12
TS-ASR	recording	oracle	0.00	19.29	24.55
TS-ASR	recording	Baseline Diarization (no overlap)	18.28	32.07	42.99

c) Using overlap-aware diarization

ASR	i-vectors obtained from	Segments	DER	cpWER	cpWER (OV40)
Baseline (speaker independent AM)	no i-vectors used	Baseline Diarization (no overlap)	18.28	32.72	48.05
Baseline (speaker independent AM)	no i-vectors used	oracle	0.00	27.88	47.70
TS-ASR	enrollment	oracle	0.00	16.56	21.12
TS-ASR	recording	oracle	0.00	19.29	24.55
TS-ASR	recording	Baseline Diarization (no overlap)	18.28	32.07	42.99
TS-ASR	recording	overlap-aware diarization	15.15	30.36	39.91
		+ oracle VAD	9.34	25.36	35.68

