

TOOL USED:

- ❖ EXCEL for cleaning the data and creating the dashboard.
- SQL insights for Visualization.
- EDA-PYHTON (Pandas, NumPy, Matplotlib)

PROJECT OVERVIEW:

- ❖ ANALYZE UBER RIDE REQUEST DATA TO DETECT SUPPLY-DEMAND ISSUES.
- ❖ DATASET: RIDE LOGS WITH TIMESTAMPS, PICKUP POINT, AND TRIP STATUS.
- ❖ TOOLS: EXCEL (DASHBOARDS AND PIVOT TABLES), SQL (INSIGHTS), PYTHON (PANDAS, NUMPY, MATPLOTLIB, SEABORN).

DATA EXTRACTION:

- Standard python libraries used are:
 - NumPy 1.19.2,
 - Pandas 1.2.3,
 - Matplotlib 3.3.4
 - Seaborn 0.11.1
- Loading the dataset from csv to pandas data frame.

```
uberdata = pd.read_csv("Uber Request Data.csv")
```

Checking different columns data types.

```
uberdata.info()
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Request id	Pickup point	Driver id	Status	Request timestamp	Drop timestamp
619	Airport	1.0	Trip Completed	11/7/2016 11:51	11/7/2016 13:00
867	Airport	1.0	Trip Completed	11/7/2016 17:57	11/7/2016 18:47
1807	City	1.0	Trip Completed	12/7/2016 9:17	12/7/2016 9:58
2532	Airport	1.0	Trip Completed	12/7/2016 21:08	12/7/2016 22:03
3112	City	1.0	Trip Completed	13-07-2016 08:33:16	13-07-2016 09:25:47

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6745 entries, 0 to 6744
Data columns (total 6 columns):
    Column
                        Non-Null Count Dtype
8 Request id 6745 non-null
1 Pickup point 6745 non-null
                                         int64
                                        object
2 Driver id
                        4095 non-null
                                        float64
                        6745 non-null
                                         object
4 Request timestamp 6745 non-null
                                         object
    Drop timestamp
                        2831 non-null
                                        object
dtypes: float64(1), int64(1), object(4)
```

memory usage: 316.3+ KB

DATA CLEANING:

- > Checking Null column values:
 - 'Drop timestamp' has 58 percent of null values.
 - 'Driver ID' has 39 percent of null values.
 - These entries are the rides where trip was never assigned to a driver.

```
pd.DataFrame(round((100*(uberdata.isnull().sum()/len(uberdata.index))),2))
```

Request id	0.00
Pickup point	0.00
Driver id	39.29
Status	0.00
Request timestamp	0.00
Drop timestamp	58.03

- Correcting data types of datetime columns:
 - Converting format of 'Request timestamp' and 'Drop timestamp' columns to datetime object.

```
uberdata['Request timestamp'] = pd.to_datetime(uberdata['Request timestamp'])
uberdata['Drop timestamp'] = pd.to_datetime(uberdata['Drop timestamp'])
uberdata.head(10)
```

Request id	Request timestamp	Drop timestamp
619	2016-11-07 11:51:00	2016-11-07 13:00:00
867	2016-11-07 17:57:00	2016-11-07 18:47:00
1807	2016-12-07 09:17:00	2016-12-07 09:58:00

FEATURE ENGINEERING:

> Addition of new columns:

- 'Request Hours': By extracting hours from 'Request Timestamp' object column.
- 'Drop Hours': By extracting hours from 'Drop Timestamp' object column.

```
uberdata['Request Hours'] = uberdata['Request timestamp'].apply(lambda x:x.hour)
uberdata['Drop Hours'] = uberdata['Drop timestamp'].apply(lambda x: x.hour)
uberdata.head(5)
```

Request id	Request timestamp	Drop timestamp	Request Hours	Drop Hours
619	2016-11-07 11:51:00	2016-11-07 13:00:00	31	13.0
867	2016-11-07 17:57:00	2016-11-07 18:47:00	17	18.0
1807	2016-12-07 09:17:00	2016-12-07 09:58:00	9	9.0
2532	2016-12-07 21:08:00	2016-12-07 22:03:00	21	22.0
3112	2016-07-13 08:33:16	2016-07-13 09:25:47	8	9.0

Dividing all requests into different time slots:

```
def determine_time_slot(x):
    if (x >=0 and x < 8):
        return "Early morning hours"
                                         #12am-7am
    elif (x >= 8 \text{ and } x < 12):
        return "Peak morning hours"
                                          #Sam-11am
    elif (x >= 12 and x < 17):
        return "Noon hours"
                                         #12pm-4pm
    elif (x >= 17 \text{ and } x < 21):
        return "Evening hours"
                                         #5pm-8pm
    elif (x >= 21):
        return "Night hours"
                                          #9pm onwards
uberdata['Request Time Slot'] = uberdata['Request Hours'].apply(determine time slot)
uberdata[['Request id', 'Pickup point', 'Request Time Slot']].head(5)
```

Request Time Slot	Pickup point	Request id	
Peak morning hours	Airport	619	
Evening hours	Airport	867	
Peak morning hours	City	1807	
Night hours	Airport	2532	
Peak morning hours	City	3112	

PLOTS AND OBSERVATIONS:

Most problematic pickup point status wise:

```
sns.countplot(x="Status",hue="Pickup point",data = uberdata)
plt.title('Status vs Airport/City trips count')
plt.ylabel('Airport/City trip count')
```

Table 1. Distribution of airport/City trips status wise

	Pickup Point		
Status	Airport	City	
No Cars Available	1600-1700	900	
Cancelled	175-200	1400-1500	
Trip Completed	1300-1350	1500	

Most problematic time slots where rides were unsuccessful:

Table 1. Problematic time slots

	Request Time Slot		
Status	Evening	Early Morning	
No Cars Available	1100-1200	500-600	
Cancelled	100	550	
Trip Completed	700	750-775	

SUMMARY OF EDA INSIGHTS:

 Gap for airport pickup point is maximum in evening.

Request Time Slot	Demand_From_Airport	Supply_To_Airport	Gap_From_Airport
Evening	1457	312	1145

 Gap for city pickup point is maximum in early morning.

Request Time Slot	Demand_From_City	Supply_To_City	Gap_From_City	
Early morning	1310	396	914	

 For 73 % of total airport requests cars were not available.

 41% of city requests were cancelled by the drivers.

SUMMARY OF SQL INSIGHTS:

Uber_SQL_Insights.sql × C: > Users > hp > Desktop > Uber_SQL_Insights.sql -- Total Requests by Pickup Point and Status SELECT pickup_point, status, COUNT(*) AS total_requests FROM uber_requests GROUP By pickup point, status ORDER BY pickup point, total requests DESC; -- Hourly Demand Trend SELECT 9 HOUR(request_timestamp) AS hour of day, 1.63 COUNT(*) AS total_requests FROM uber requests 11 12 GROUP BY hour of day 13 ORDER BY hour_of_day; 14 2.55 -- Requests with No Cars Available SELECT COUNT(*) As no_car_requests 11.05 17 FROM uber requests WHERE status - 'No Cars Available'; 19 -- Supply vs Demand Per Hour 20 21 SELECT 22 HOUR(request_timestamp) AS hour, 23 COUNT(*) As total requests, SUM(CASE WHEN status - 'Trip Completed' THEN 1 ELSE 0 END) AS completed_trips. 24 SUM(CASE WHEN status I= 'Trip Completed' THEN 1 ELSE 0 END) AS unfulfilled_requests 25 FROM uber requests 20 GROUP BY hour 27 28 ORDER BY hour; 29 -- Driver-wise Trip Completion Count 30 SELECT driver_id, COUNT(*) AS completed_trips 31 32 FROM uber_requests WHERE status - 'Trip Completed' 34 GROUP BY driver id 34 ORDER BY completed_trips DESC; 36 -- Cancellation Rates by Pickup Point 37 SELECT 38 39 pickup point. 40 COUNT(*) AS total requests, SUM(CASE WHEN status = 'Cancelled' THEN 1 ELSE 0 END) AS cancelled. 41 ROUND(SUM(CASE WHEN status - 'Cancelled' THEN 1 ELSE Ø END) * 100.0 / COUNT(*), 2) AS cancel rate_percent 42 43 FROM uber requests GROUP BY pickup point; 44 -- Peak Hours for No Cars Available 46 47 48 HOUR(request_timestamp) AS hour, COUNT(*) As no_car_count 49 50 FROM uber_requests 51 WHERE status = 'No Cars Available' GROUP BY hour ORDER BY no car count DESC LIMIT 5:

SUMMARY OF EXCEL INSIGHTS:

SOLUTION FOR THE SUPPLY DEMAND GAP:

- For the trips in the early morning, drivers can be incentivized to make those trips.
 - 1. Uber can pay for the gas mileage of drivers to come back to the city without a rider.
 - 2. Uber can increase the demand at the airport to reduce idle time by increased marketing and price cuts for the passengers.
 - 3. Uber can request a feedback from drivers to understand reasons behind ride cancellation.
- For the trips in evening, some of the ways are:
 - 1. Uber can also pay drivers to come without a passenger to the airport.
 - 2. Another innovative way can be to encourage passengers to pool the ride with others so that lesser number of cars can serve more passengers.

