(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

PCT

(10) International Publication Number WO 01/35727 A1

(51) International Patent Classification⁷: A01H 1/00, 5/00, A61K 38/10, C07H 21/00, C12N 5/14, 15/11, 15/29, 15/82

(21) International Application Number: PCT/US00/31457

(22) International Filing Date:

14 November 2000 (14.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/166,228 17 November 1999 (17.11.1999) US 60/197,899 17 April 2000 (17.04,2000) US 60/227,439 22 August 2000 (22.08.2000) US

(71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94541 (US).

(71) Applicants and

(72) Inventors: REUBER, Lynne [US/US]; 2000 -Walnut-Avenue, Fremont, CA 94538 (US). CREELMAN, Robert [US/US]; 2801 Jennifer Drive, Castro Valley, CA 94546 (US). PILGRIM, Marsha [US/US]; 790 Saltillo Place, Fremont, CA 94536 (US). RIECHMANN, Jose Luis [ES/US]; 115 Moss Avenue #308, Oakland, CA 94611 (US). JIANG, Cai-Zhong [CN/US]; 34495 Heathrow Terrace, Fremont, CA 94555 (US). YU, Guo-Liang [CN/US]; 242 Gravatt Drive, Berkeley, CA 94705 (US).

PINEDA, Omaira [CO/US]; 19563 Helen Place, Castro Valley, CA 94546 (US). HEARD, Jacqueline [US/US]; 810 Guildford Avenue, San Mateo, CA 94402 (US).

(74) Agent: GUERRERO, Karen; Mendel Biotechnology, Inc., 21375 Cabot Boulevard, Hayward, CA 94545 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

[35727 A]

(54) Title: SEED TRAIT GENES

(57) Abstract: Recombinant polynucleotides and methods for modifying the phenotype of a plant are provided. In particular, the phenotype that is being modified is a plant's seed characteristics.

SEED TRAIT GENES

RELATED APPLICATION INFORMATION

The present invention claims the benefit from US Provisional Patent Application Serial Nos. 60/166,228 filed November 17, 1999 and 60/197,899 filed April 17, 2000 and "Plant Trait Modification III" filed August 22, 2000.

FIELD OF THE INVENTION

This invention relates to the field of plant biology. More particularly, the present invention pertains to compositions and methods for phenotypically modifying a plant.

BACKGROUND OF THE INVENTION

Transcription factors can modulate gene expression, either increasing or decreasing (inducing or repressing) the rate of transcription. This modulation results in differential levels of gene expression at various developmental stages, in different tissues and cell types, and in response to different exogenous (e.g., environmental) and endogenous stimuli throughout the life cycle of the organism.

Because transcription factors are key controlling elements of biological pathways, altering the expression levels of one or more transcription factors can change entire biological pathways in an organism. For example, manipulation of the levels of selected transcription factors may result in increased expression of economically useful proteins or metabolic chemicals in plants or to improve other agriculturally relevant characteristics. Conversely, blocked or reduced expression of a transcription factor may reduce biosynthesis of unwanted compounds or remove an undesirable trait. Therefore, manipulating transcription factor levels in a plant offers tremendous potential in agricultural biotechnology for modifying a plant's traits.

The present invention provides novel transcription factors useful for modifying a plant's phenotype in desirable ways, such as modifying the characteristics of a plant's seed.

SUMMARY OF THE INVENTION

In a first aspect, the invention relates to a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-27, or a complementary nucleotide sequence thereof; (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a); (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-27, or a

10

15

20

25

complementary nucleotide sequence thereof; (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c); (e) a nucleotide sequence which hybridizes under stringent conditions over substantially the entire length of a nucleotide sequence of one or more of: (a), (b), (c), or (d); (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e); (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's seed characteristics; (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g); (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g); (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27; (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEO ID Nos. 2N. where N=1-27; and (l) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-27. The recombinant polynucleotide may further comprise a constitutive. inducible, or tissue-active promoter operably linked to the nucleotide sequence. The invention also relates to compositions comprising at least two of the above described polynucleotides.

In a second aspect, the invention is an isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide described above.

In another aspect, the invention is a transgenic plant comprising one or more of the above described recombinant polynucleotides. In yet another aspect, the invention is a plant with altered expression levels of a polynucleotide described above or a plant with altered expression or activity levels of an above described polypeptide. Further, the invention may be a plant lacking a nucleotide sequence encoding a polypeptide described above. The plant may be a soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, or vegetable brassicas plant.

In a further aspect, the invention relates to a cloning or expression vector comprising the isolated or recombinant polynucleotide described above or cells comprising the cloning or expression vector.

10

15

20

25

In yet a further aspect, the invention relates to a composition produced by incubating a polynucleotide of the invention with a nuclease, a restriction enzyme, a polymerase; a polymerase and a primer; a cloning vector, or with a cell.

Furthermore, the invention relates to a method for producing a plant having improved seed traits. The method comprises altering the expression of an isolated or recombinant polynucleotide of the invention or altering the expression or activity of a polypeptide of the invention in a plant to produce a modified plant, and selecting the modified plant for modified seed traits.

In another aspect, the invention relates to a method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of the invention. The method comprises expressing a polypeptide encoded by the polynucleotide in a plant; and identifying at least one factor that is modulated by or interacts with the polypeptide. In one embodiment the method for identifying modulating or interacting factors is by detecting binding by the polypeptide to a promoter sequence, or by detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system, or by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.

10

15

20

25

30

In yet another aspect, the invention is a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest. The method comprises placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of the invention and monitoring one or more of the expression level of the polynucleotide in the plant, the expression level of the polypeptide in the plant, and modulation of an activity of the polypeptide in the plant.

In yet another aspect, the invention relates to an integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of the invention, or to a polypeptide encoded by the polynucleotide. The integrated system, computer or computer readable medium may comprise a link between one or more sequence strings to a modified plant seed trait.

In yet another aspect, the invention is a method for identifying a sequence similar or homologous to one or more polynucleotides of the invention, or one or more polypeptides encoded by the polynucleotides. The method comprises providing a sequence database; and, querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

The method may further comprise of linking the one or more of the polynucleotides of the invention, or encoded polypeptides, to a modified plant seed characteristics phenotype.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides a table of exemplary polynucleotide and polypeptide sequences of the invention. The table includes from left to right for each sequence: the SEQ ID No., the internal code reference number (GID), whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 2 provides a table of exemplary sequences that are homologous to other sequences provided in the Sequence Listing and that are derived from *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), identification of the homologous sequence, whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 3 provides a table of exemplary sequences that are homologous to the sequences provided in Figures 1 and 2 and that are derived from plants other than *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), the unique GenBank sequence ID No. (NID), the probability that the comparison was generated by chance (P-value), and the species from which the homologous gene was identified.

20

25

30

15

5

10

DETAILED DESCRIPTION

The present invention relates to polynucleotides and polypeptides, e.g. for modifying phenotypes of plants.

In particular, the polynucleotides or polypeptides are useful for modifying traits associated with a plant's seed characteristics when the expression levels of the polynucleotides or expression levels or activity levels of the polypeptides are altered. Specifically, the polynucleotides and polypeptides are useful for modifying the nutritional content or composition of seeds: such as to modify the protein or oil content of seeds, to modify insoluble sugar content or composition, such as by altering the levels of arabinose, fucose, galactose, mannose, rhamnose or xylose or the like; modify prenyl lipid content or composition, such as by altering the levels of lutein, beta-carotene, xanthophyll-1, xanthophyll-2, chlorophylls A or B, or alpha-, delta- or gamma-tocopherol or the like; modify fatty acid content or composition, such as by altering the levels of the fatty acids 16:0 (palmitic acid), 16:1 (palmitoleic acid), 18:0 (stearic acid), 18:1

(oleic acid), 18:2 (linoleic acid), 20:0, 18:3 (linolenic acid), 20:1 (eicosenoic acid), 20:2 and 22:1 (erucic acid); modify wax composition or content, such as by altering the levels of C29, C31, or C33 alkanes; modify sterol composition or content, such as by altering the levels of brassicasterol, campesterol, stigmasterol, sitosterol or stigmastanol or the like, or modify glucosinolate composition or content.

Other seed characteristics that may be modified include traits relating to a seed's germination characteristics; shelf-life; drydown characteristics; size; stress responses, such as to heat, cold, salt or osmotic shock; other nutritional content, such as vitamins, minerals, or flavonoids; seedling vigor; pest resistance, or seed coat quality, resistance to pathogens, germination rate, resistance to heavy metals and toxins. Yet another desirable phenotype is a change in the overall gene expression pattern of the seed.

The polynucleotides of the invention encode plant transcription factors. The plant transcription factors are derived, e.g., from Arabidopsis thaliana and can belong, e.g., to one or more of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) J. Biol. Chem. 379:633-646); the MYB transcription factor family (Martin and Paz-Ares (1997) Trends Genet. 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) J. Biol. Chem. 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) Plant Cell 4:1575-1588); the miscellaneous protein (MISC) family (Kim et al. (1997) Plant J. 11:1237-1251); the zinc finger protein (Z) family (Klug and Schwabe (1995) FASEB J. 9: 597-604); the homeobox (HB) protein family (Duboule (1994) Guidebook to the Homeobox Genes, Oxford University Press); the CAAT-element binding proteins (Forsburg and Guarente (1989) Genes Dev. 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) Mol. Gen. Genet. 1996 250:7-16); the NAM protein family; the IAA/AUX proteins (Rouse et al. (1998) Science 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) Prot. Profile 1:639-709); the DNAbinding protein (DBP) family (Tucker et al. (1994) EMBO J. 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) FASEB J. 8:192-200); the BPF-1 protein (Box Pbinding factor) family (da Costa e Silva et al. (1993) Plant J. 4:125-135); and the golden protein (GLD) family (Hall et al. (1998) Plant Cell 10:925-936).

In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e, expression) of proteins; as regulators of plant gene expression,

10

25

as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like, of as substrates for cloning e.g., including digestion or ligation reactions, and for identifying exogenous or endogenous modulators of the transcription factors.

DEFINITIONS

10

15

20

25

30

A "polynucleotide" is a nucleic acid sequence comprising a plurality of polymerized nucleotide residues, e.g., at least about 15 consecutive polymerized nucleotide residues, optionally at least about 30 consecutive nucleotides, at least about 50 consecutive nucleotides. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single stranded or double stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.

An "isolated polynucleotide" is a polynucleotide whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild type cell, e.g., more than about 5% enriched, more than about 10% enriched, or

more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

The term "transgenic plant" refers to a plant that contains genetic material, not found in a wild type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation.

10

20

. 25

30

A transgenic plant may contain an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to *in vitro* systems that mimic biochemical or cellular components or processes in a cell.

The phrase "ectopically expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant tissue, is different from the expression pattern in a wild type plant or a reference plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

The term "fragment" or "domain," with respect to a polypeptide, refers to a subsequence of the polypeptide. In some cases, the fragment or domain, is a subsequence of the polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA binding domain that binds to a DNA promoter region, an activation domain or a domain for protein-protein interactions. Fragments can vary in size from as few as 6 amino acids to the full length of the intact polypeptide, but are preferably at least about 30 amino acids in length and more preferably at least about 60 amino acids in length. In reference to a nucleotide sequence, "a fragment" refers to any subsequence of a polynucleotide, typically, of at least consecutive about 15 nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50, of any of the sequences provided herein.

The term "trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by available biochemical techniques, such as the protein, starch or oil content of seed or leaves or by the observation of the expression level of genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield or pathogen tolerance.

20

25

5

10

15

"Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2% increase or decrease in an observed trait (difference), at least a 5% difference, at least about a 10% difference, at least about a 20% difference, at least about a 30%, at least about a 50%, at least about a 70%, or at least about a 100%, or an even greater difference. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution of the trait in the plants compared with the distribution observed in wild type plant.

30

Trait modifications of particular interest include those to seed (such as embryo or endosperm), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; improved tolerance to microbial, fungal or viral diseases; improved tolerance to pest infestations, including nematodes, mollicutes, parasitic higher plants or the like;

decreased herbicide sensitivity; improved tolerance of heavy metals or enhanced ability to take up heavy metals: improved growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotype that can be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids), glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition. Physical plant characteristics that can be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves and roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that can be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, biomass or transpiration characteristics, as well as plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

POLYPEPTIDES AND POLYNUCLEOTIDES OF THE INVENTION

10

15

20

25

30

The present invention provides, among other things, transcription factors (TFs), and transcription factor homologue polypeptides, and isolated or recombinant polynucleotides encoding the polypeptides. These polypeptides and polynucleotides may be employed to modify a plant's seed characteristics.

Exemplary polynucleotides encoding the polypeptides of the invention were identified in the *Arabidopsis thaliana* GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. Polynucleotide sequences meeting such criteria were confirmed as transcription factors.

Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known transcription factors under low stringency hybridization conditions. Additional sequences, including full length coding sequences were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure, using a commercially available kit according to the

manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

The polynucleotides of the invention were ectopically expressed in overexpressor or knockout plants and changes in the seed characteristics of the plants were observed.

Therefore, the polynucleotides and polypeptides can be employed to improve the seed characteristics of plants.

Making polynucleotides

5

10

15

20

25

30

The polynucleotides of the invention include sequences that encode transcription factors and transcription factor homologue polypeptides and sequences complementary thereto, as well as unique fragments of coding sequence, or sequence complementary thereto. Such polynucleotides can be, e.g., DNA or RNA, e.g., mRNA, cRNA, synthetic RNA, genomic DNA, cDNA synthetic DNA, oligonucleotides, etc. The polynucleotides are either double-stranded or single-stranded, and include either, or both sense (i.e., coding) sequences and antisense (i.e., non-coding, complementary) sequences. The polynucleotides include the coding sequence of a transcription factor, or transcription factor homologue polypeptide, in isolation, in combination with additional coding sequences (e.g., a purification tag, a localization signal, as a fusion-protein, as a pre-protein, or the like), in combination with non-coding sequences (e.g., introns or inteins, regulatory elements such as promoters, enhancers, terminators, and the like), and/or in a vector or host environment in which the polynucleotide encoding a transcription factor or transcription factor homologue polypeptide is an endogenous or exogenous gene.

A variety of methods exist for producing the polynucleotides of the invention. Procedures for identifying and isolating DNA clones are well known to those of skill in the art, and are described in, e.g., Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, <u>Methods in Enzymology</u> volume 152 Academic Press, Inc., San Diego, CA ("Berger"); Sambrook et al., <u>Molecular Cloning - A Laboratory Manual</u> (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook") and <u>Current Protocols in Molecular Biology</u>, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2000) ("Ausubel").

Alternatively, polynucleotides of the invention, can be produced by a variety of in vitro amplification methods adapted to the present invention by appropriate selection of specific or degenerate primers. Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain

reaction (LCR), Qbeta-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the invention are found in Berger, Sambrook, and Ausubel, as well as Mullis et al., (1987) PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) (Innis). Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.

Alternatively, polynucleotides and oligonucleotides of the invention can be assembled from fragments produced by solid-phase synthesis methods. Typically, fragments of up to approximately 100 bases are individually synthesized and then enzymatically or chemically ligated to produce a desired sequence, e.g., a polynucletotide encoding all or part of a transcription factor. For example, chemical synthesis using the phosphoramidite method is described, e.g., by Beaucage et al. (1981) <u>Tetrahedron Letters</u> 22:1859-69; and Matthes et al. (1984) <u>EMBO J.</u> 3:801-5. According to such methods, oligonucleotides are synthesized, purified, annealed to their complementary strand, ligated and then optionally cloned into suitable vectors. And if so desired, the polynucleotides and polypeptides of the invention can be custom ordered from any of a number of commercial suppliers.

HOMOLOGOUS SEQUENCES

5

10

15

20

25

30

Sequences homologous, i.e., that sharc significant sequence identity or similarity, to those provided in the Sequence Listing, derived from Arabidopsis thaliana or from other plants of choice are also an aspect of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, corn, potato, cotton, rice, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, brussel sprouts and kohlrabi). Other crops, fruits and vegetables whose phenotype

can be changed include barley, rye, millet, sorghum, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, and sweet potato, and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus.

Transcription factors that are homologous to the listed sequences will typically share at least about 31% amino acid sequence identity. More closely related transcription factors can share at least about 50%, about 60%, about 65%, about 70%, about 75% or about 80% or about 90% or about 95% or about 98% or more sequence identity with the listed sequences. Factors that are most closely related to the listed sequences share, e.g., at least about 85%, about 90% or about 95% or more % sequence identity to the listed sequences. At the nucleotide level, the sequences will typically share at least about 40% nucleotide sequence identity, preferably at least about 50%, about 60%, about 70% or about 80% sequence identity, and more preferably about 85%, about 90%, about 95% or about 97% or more sequence identity to one or more of the listed sequences. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein. Conserved domains within a transcription factor family may exhibit a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity.

Identifying Nucleic Acids by Hybridization

Polynucleotides homologous to the sequences illustrated in the Sequence Listing can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency, the more similar are the two polynucleotide strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number), as described in more detail in the references cited above.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined

10

15

20

25

ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions, e.g., to a unique subsequence, of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C, for example 0.2 x SSC, 0.1% SDS at 65° C. For identification of less closely related homologues washes can be performed at a lower temperature, e.g., 50° C. In general, stringency is increased by raising the wash temperature and/or decreasing the concentration of SSC.

5

10

. 15

20

25

30

BNSDOCID: <WO

As another example, stringent conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the coding oligonucleotide with at least about a 5-10x higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a transcription factor known as of the filing date of the application. Conditions can be selected such that a higher signal to noise ratio is observed in the particular assay which is used, e.g., about 15x, 25x, 35x, 50x or more. Accordingly, the subject nucleic acid hybridizes to the unique coding oligonucleotide with at least a 2x higher signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. Again, higher signal to noise ratios can be selected, e.g., about 5x, 10x, 25x, 35x, 50x or more. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radio active label, or the like.

Alternatively, transcription factor homologue polypeptides can be obtained by screening an expression library using antibodies specific for one or more transcription factors. With the provision herein of the disclosed transcription factor, and transcription factor homologue nucleic acid sequences, the encoded polypeptide(s) can be expressed and purified in a heterologous expression system (e.g., *E. coli*) and used to raise antibodies (monoclonal or polyclonal) specific for the polypeptide(s) in question. Antibodies can also be raised against synthetic peptides derived from transcription factor, or transcription factor homologue, amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant from which it is desired to clone additional transcription factor homologues, using the methods described above. The selected cDNAs can be confirmed by sequencing and enzymatic activity.

SEQUENCE VARIATIONS

It will readily be appreciated by those of skill in the art, that any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many different polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.

For example, Table 1 illustrates, e.g., that the codons AGC, AGT, TCA, TCC, TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

Table 1

Amino acids	*		Codon					
Alanine	Ala	 A	GCA	GCC	GCG	GCU		
			1		aca	dCU		
Cysteine	Cys	C.	TGC	TGT	•			
Aspartic acid	Asp	D	GAC	GAT	•	,		
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	TTC	TTT				-
Glycine	Gly	G	GGA	GGC	GGG	GGT		
Histidine	His	H	CAC	CAT				
Isoleucine	Ile	I	ATA	ATC	ATT			
Lysine	Lys	K	AAA .	AAG				
Leucine	Leu	L	TTA	TTG	CTA	CTC	CTG	CTT
Methionine	Met	M	ATG					
Asparagine	Asn	N	AAC	AAT				
Proline	Pro	Ρ.	CCA	CCC	CCG	CCT	•	
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGT
Serine	Ser	S	AGC	AGT	TCA	TCC	TCG	TCT
Threonine	Thr	T	ACA	ACC	ACG	ACT		
Valine	Val	V	GTA	GTC	GTG	GTT		
Tryptophan	Trp	W	TGG					
Tyrosine	Tyr	Y	TAC	TAT				

Sequence alterations that do not change the amino acid sequence encoded by the polynucleotide are termed "silent" variations. With the exception of the codons ATG and TGG, encoding methionine and tryptophan, respectively, any of the possible codons for the same amino acid can be substituted by a variety of techniques, e.g., site-directed mutagenesis, available in the art. Accordingly, any and all such variations of a sequence selected from the above table are a feature of the invention.

In addition to silent variations, other conservative variations that alter one, or a few amino acids in the encoded polypeptide, can be made without altering the function of the polypeptide, these conservative variants are, likewise, a feature of the invention.

For example, substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) Meth. Enzymol. (1993) vol. 217, Academic Press) or the other methods noted below. Amino acid substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure. Preferably, the polypeptide encoded by the DNA performs the desired function.

Conservative substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 2 when it is desired to maintain the activity of the protein. Table 2 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as conservative substitutions.

25

10

15

20

Table 2

Residue	Conservative Substitutions
Ala	Ser
Arg	Lys
Asn	Gln; His
Asp	Glu
Gln	Asn
Cys	Ser
Glu	Asp
Gly	Pro
His.	Asn; Gln
Ile	Leu, Val
Leu	Ile; Val
Lys	Arg; Gln
Met	Leu; Ile
Phe	Met; Leu; Tyr
Ser	Thr; Gly
Thr	Ser;Val
Trp	Тут
Tyr .	Trp; Phe
Val	Ile; Leu

Substitutions that are less conservative than those in Table 2 can be selected by picking residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or throonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

FURTHER MODIFYING SEQUENCES OF THE INVENTION—MUTATION/ FORCED EVOLUTION

In addition to generating silent or conservative substitutions as noted, above, the present invention optionally includes methods of modifying the sequences of the Sequence Listing. In the methods, nucleic acid or protein modification methods are used to alter the given sequences to produce new sequences and/or to chemically or enzymatically modify given sequences to change the properties of the nucleic acids or proteins.

5

10

15

20

25

30

Thus, in one embodiment, given nucleic acid sequences are modified, e.g., according to standard mutagenesis or artificial evolution methods to produce modified sequences. For example, Ausubel, *supra*, provides additional details on mutagenesis methods. Artificial forced evolution methods are described, e.g., by Stemmer (1994) Nature 370:389-391, and Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751. Many other mutation and evolution methods are also available and expected to be within the skill of the practitioner.

Similarly, chemical or enzymatic alteration of expressed nucleic acids and polypeptides can be performed by standard methods. For example, sequence can be modified by addition of lipids, sugars, peptides, organic or inorganic compounds, by the inclusion of modified nucleotides or amino acids, or the like. For example, protein modification techniques are illustrated in Ausubel, *supra*. Further details on chemical and enzymatic modifications can be found herein. These modification methods can be used to modify any given sequence, or to modify any sequence produced by the various mutation and artificial evolution modification methods noted herein.

Accordingly, the invention provides for modification of any given nucleic acid by mutation, evolution, chemical or enzymatic modification, or other available methods, as well as for the products produced by practicing such methods, e.g., using the sequences herein as a starting substrate for the various modification approaches.

For example, optimized coding sequence containing codons preferred by a particular prokaryotic or eukaryotic host can be used e.g., to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced using a non-optimized sequence. Translation stop codons can also be modified to reflect host preference. For example, preferred stop codons for S. cerevisiae and mammals are TAA and TGA, respectively. The preferred stop codon for monocotyledonous plants is TGA, whereas insects and E. coli prefer to use TAA as the stop codon.

The polynucleotide sequences of the present invention can also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the sequence to facilitate cloning, processing and/or expression of the gene product. For example, alterations are optionally introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to introduce splice sites, etc.

Furthermore, a fragment or domain derived from any of the polypeptides of the invention can be combined with domains derived from other transcription factors or synthetic domains to modify the biological activity of a transcription factor. For instance, a DNA binding domain derived from a transcription factor of the invention can be combined with the activation domain of another transcription factor or with a synthetic activation domain. A transcription activation domain assists in initiating transcription from a DNA binding site. Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al. (1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, (1987) Nature 330:670-672).

EXPRESSION AND MODIFICATION OF POLYPEPTIDES

Typically, polynucleotide sequences of the invention are incorporated into recombinant DNA (or RNA) molecules that direct expression of polypeptides of the invention in appropriate host cells, transgenic plants, in vitro translation systems, or the like. Due to the inherent degeneracy of the genetic code, nucleic acid sequences which encode substantially the same or a functionally equivalent amino acid sequence can be substituted for any listed sequence to provide for cloning and expressing the relevant homologue.

Vectors, Promoters and Expression Systems

The present invention includes recombinant constructs comprising one or more of the nucleic acid sequences herein. The constructs typically comprise a vector, such as a plasmid, a cosmid, a phage, a virus (e.g., a plant virus), a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), or the like, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available.

5

10

15

20

25

General texts which describe molecular biological techniques useful herein, including the use and production of vectors, promoters and many other relevant topics, include Berger, Sambrook and Ausubel, *supra*. Any of the identified sequences can be incorporated into a cassette or vector, e.g., for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) Methods for Plant Molecular Biology, Academic Press, and Gelvin et al., (1990) Plant Molecular Biology Manual, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of *Agrobacterium tumefaciens*, as well as those disclosed by Herrera-Estrella et al. (1983) Nature 303: 209, Bevan (1984) Nucl Acid Res. 12: 8711-8721, Klee (1985) Bio/Technology 3: 637-642, for dicotyledonous plants.

10

20

25

30

Alternatively, non-Ti vectors can be used to transfer the DNA into monocotyledonous plants and cells by using free DNA delivery techniques. Such methods can involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide whiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou (1991) Bio/Technology 9: 957-962) and corn (Gordon-Kamm (1990) Plant Cell 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) Plant Physiol 102: 1077-1084; Vasil (1993) Bio/Technology 10: 667-674; Wan and Lemeaux (1994) Plant Physiol 104: 37-48, and for Agrobacterium-mediated DNA transfer (Ishida et al. (1996) Nature Biotech 14: 745-750).

Typically, plant transformation vectors include one or more cloned plant coding sequence (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

Examples of constitutive plant promoters which can be useful for expressing the TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al. (1985) Nature 313:810); the nopaline synthase promoter (An et al. (1988) Plant Physiol 88:547); and the octopine synthase promoter (Fromm et al. (1989) Plant Cell 1: 977).

A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a TF sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like. Numerous known promoters have been characterized and can favorable be employed to promote expression of a polynucleotide of the invention in a transgenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in US Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the 2A11 promoter (US Pat. No. 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) Plant Mol Biol 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929), promoters active in vascular tissue (Ringli and Keller (1998) Plant Mol Biol 37:977-988), flowerspecific (Kaiser et al, (1995) Plant Mol Biol 28:231-243), pollen (Baerson et al. (1994) Plant Mol Biol 26:1947-1959), carpels (Ohl et al. (1990) Plant Cell 2:837-848), pollen and ovules (Baerson et al. (1993) Plant Mol Biol 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol Biol 39:979-990 or Baumann et al. (1999) Plant Cell 11:323-334), cytokinin-inducible promoter (Guevara-Garcia (1998) Plant Mol Biol 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) Plant Mol Biol 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in response to heat (Ainley et al. (1993) Plant Mol Biol 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1:471, and the maize rbcS promoter, Schaffner and Sheen (1991) Plant Cell 3: 997); wounding (e.g., wunl, Siebertz et al. (1989) Plant Cell 1: 961); pathogens (such as the PR-1 promoter described in Buchel et al. (1999) Plant Mol. Biol. 40:387-396, and the PDF1.2 promoter described in Manners et al. (1998) Plant Mol. Biol. 38:1071-80), and chemicals such as methyl jasmonate or salicylic acid (Gatz et al. (1997) Plant Mol Biol 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (An and Amazon (1995) Science 270: 1986-1988); or late seed development (Odell et al. (1994) Plant Physiol 106:447-458).

Plant expression vectors can also include RNA processing signals that can be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors can include additional regulatory sequences from the 3'-untranslated region of plant

5

10

. 15

20

25

genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Additional Expression Elements

Specific initiation signals can aid in efficient translation of coding sequences. These signals can include, e.g., the ATG initiation codon and adjacent sequences. In cases where a coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence (e.g., a mature protein coding sequence), or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon can be separately provided. The initiation codon is provided in the correct reading frame to facilitate transcription. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers appropriate to the cell system in use.

Expression Hosts

5

10

15

20

25

30

The present invention also relates to host cells which are transduced with vectors of the invention, and the production of polypeptides of the invention (including fragments thereof) by recombinant techniques. Host cells are genetically engineered (i.e, nucleic acids are introduced, e.g., transduced, transformed or transfected) with the vectors of this invention, which may be, for example, a cloning vector or an expression vector comprising the relevant nucleic acids herein. The vector is optionally a plasmid, a viral particle, a phage, a naked nucleic acids, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the relevant gene. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art and in the references cited herein, including, Sambrook and Ausubel.

The host cell can be a eukaryotic cell, such as a yeast cell, or a plant cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Plant protoplasts are also suitable for some applications. For example, the DNA fragments are introduced into plant tissues, cultured plant cells or plant protoplasts by standard methods including electroporation (Fromm et al., (1985) Proc. Natl. Acad. Sci. USA 82, 5824, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., (1982) Molecular Biology of Plant Tumors, (Academic Press, New York) pp. 549-560; US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., (1987) Nature 327, 70-73), use of pollen as vector (WO 85/01856), or use of Agrobacterium

tumefaciens or A. rhizogenes carrying a T-DNA plasmid in which DNA fragments are cloned. The T-DNA plasmid is transmitted to plant cells upon infection by Agrobacterium tumefaciens, and a portion is stably integrated into the plant genome (Horsch et al. (1984) Science 233:496-498; Fraley et al. (1983) Proc. Natl. Acad. Sci. USA 80, 4803).

The cell can include a nucleic acid of the invention which encodes a polypeptide, wherein the cells expresses a polypeptide of the invention. The cell can also include vector sequences, or the like. Furthermore, cells and transgenic plants which include any polypeptide or nucleic acid above or throughout this specification, e.g., produced by transduction of a vector of the invention, are an additional feature of the invention.

For long-term, high-yield production of recombinant proteins, stable expression can be used. Host cells transformed with a nucleotide sequence encoding a polypeptide of the invention are optionally cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture. The protein or fragment thereof produced by a recombinant cell may be secreted, membrane-bound, or contained intracellularly, depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding mature proteins of the invention can be designed with signal sequences which direct secretion of the mature polypeptides through a prokaryotic or eukaryotic cell membrane.

Modified Amino Acids

Polypeptides of the invention may contain one or more modified amino acids. The presence of modified amino acids may be advantageous in, for example, increasing polypeptide half-life, reducing polypeptide antigenicity or toxicity, increasing polypeptide storage stability, or the like. Amino acid(s) are modified, for example, co-translationally or post-translationally during recombinant production or modified by synthetic or chemical means.

Non-limiting examples of a modified amino acid include incorporation or other use of acetylated amino acids, glycosylated amino acids, sulfated amino acids, prenylated (e.g., farnesylated, geranylgeranylated) amino acids, PEG modified (e.g., "PEGylated") amino acids, biotinylated amino acids, carboxylated amino acids, phosphorylated amino acids, etc. References adequate to guide one of skill in the modification of amino acids are replete throughout the literature.

IDENTIFICATION OF ADDITIONAL FACTORS

A transcription factor provided by the present invention can also be used to identify additional endogenous or exogenous molecules that can affect a phentoype or trait of

5

10

15

20

25

interest. On the one hand, such molecules include organic (small or large molecules) and/or inorganic compounds that affect expression of (i.e., regulate) a particular transcription factor. Alternatively, such molecules include endogenous molecules that are acted upon either at a transcriptional level by a transcription factor of the invention to modify a phenotype as desired. For example, the transcription factors can be employed to identify one or more downstream gene with which is subject to a regulatory effect of the transcription factor. In one approach, a transcription factor or transcription factor homologue of the invention is expressed in a host cell, e.g, a transgenic plant cell, tissue or explant, and expression products, either RNA or protein, of likely or random targets are monitored, e.g., by hybridization to a microarray of nucleic acid probes corresponding to genes expressed in a tissue or cell type of interest, by two-dimensional gel electrophoresis of protein products, or by any other method known in the art for assessing expression of gene products at the level of RNA or protein. Alternatively, a transcription factor of the invention can be used to identify promoter sequences (i.e., binding sites) involved in the regulation of a downstream target. After identifying a promoter sequence, interactions between the transcription factor and the promoter sequence can be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences can be employed in double-stranded DNA arrays to identify molecules that affect the interactions of the transcription factors with their promoters (Bulyk et al. (1999) Nature Biotechnology 17:573-577).

10

15

20

25

30

BRIGDOCID: 4MO

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification can occur by covalent modification, such as by phosphorylation, or by protein-protein (homo or-heteropolymer) interactions. Any method suitable for detecting protein-protein interactions can be employed. Among the methods that can be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

The two-hybrid system detects protein interactions in vivo and is described in Chien, et al., (1991), Proc. Natl. Acad. Sci. USA 88, 9578-9582 and is commercially available from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid

and the cDNA library are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions can be preformed.

10 IDENTIFICATION OF MODULATORS

5

20

25

30

In addition to the intracellular molecules described above, extracellular molecules that alter activity or expression of a transcription factor, either directly or indirectly, can be identified. For example, the methods can entail first placing a candidate molecule in contact with a plant or plant cell. The molecule can be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide can be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence can be detected by use of microarrays, Northerns, quantitative PCR, or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons (1998). Such changes in the expression levels can be correlated with modified plant traits and thus identified molecules can be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

Essentially any available composition can be tested for modulatory activity of expression or activity of any nucleic acid or polypeptide herein. Thus, available libraries of compounds such as chemicals, polypeptides, nucleic acids and the like can be tested for modulatory activity. Often, potential modulator compounds can be dissolved in aqueous or organic (e.g., DMSO-based) solutions for easy delivery to the cell or plant of interest in which the activity of the modulator is to be tested. Optionally, the assays are designed to screen large modulator composition libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

In one embodiment, high throughput screening methods involve providing a combinatorial library containing a large number of potential compounds (potential modulator compounds). Such "combinatorial chemical libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as target compounds.

A combinatorial chemical library can be, e.g., a collection of diverse chemical compounds generated by chemical synthesis or biological synthesis. For example, a combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (e.g., in one example, amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound of a set length). Exemplary libraries include peptide libraries, nucleic acid libraries, antibody libraries (see, e.g., Vaughn et al. (1996) Nature Biotechnology, 14(3):309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al. Science (1996) 274:1520-1522 and U.S. Patent 5,593,853), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), and small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337) and the like.

10

20

25

30

Preparation and screening of combinatorial or other libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, <u>Int. J. Pept. Prot. Res.</u> 37:487-493 (1991) and Houghton et al. <u>Nature</u> 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used.

In addition, as noted, compound screening equipment for high-throughput screening is generally available, e.g., using any of a number of well known robotic systems that have also been developed for solution phase chemistries useful in assay systems. These systems include automated workstations including an automated synthesis apparatus and robotic systems utilizing robotic arms. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput screening of potential modulators. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

Indeed, entire high throughput screening systems are commercially available.

These systems typically automate entire procedures including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s)

appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, microfluidic implementations of screening are also commercially available.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The integrated systems herein, in addition to providing for sequence alignment and, optionally, synthesis of relevant nucleic acids, can include such screening apparatus to identify modulators that have an effect on one or more polynucleotides or polypeptides according to the present invention.

In some assays it is desirable to have positive controls to ensure that the components of the assays are working properly. At least two types of positive controls are appropriate. That is, known transcriptional activators or inhibitors can be incubated with cells/plants/ etc. in one sample of the assay, and the resulting increase/decrease in transcription can be detected by measuring the resulting increase in RNA/ protein expression, etc., according to the methods herein. It will be appreciated that modulators can also be combined with transcriptional activators or inhibitors to find modulators which inhibit transcriptional activation or transcriptional repression. Either expression of the nucleic acids and proteins herein or any additional nucleic acids or proteins activated by the nucleic acids or proteins herein, or both, can be monitored.

In an embodiment, the invention provides a method for identifying compositions that modulate the activity or expression of a polynucleotide or polypeptide of the invention. For example, a test compound, whether a small or large molecule, is placed in contact with a cell, plant (or plant tissue or explant), or composition comprising the polynucleotide or polypeptide of interest and a resulting effect on the cell, plant, (or tissue or explant) or composition is evaluated by monitoring, either directly or indirectly, one or more of: expression level of the polynucleotide or polypeptide, activity (or modulation of the activity) of the polynucleotide or polypeptide. In some cases, an alteration in a plant phenotype can be detected following contact of a plant (or plant cell, or tissue or explant) with the putative modulator, e.g., by modulation of expression or activity of a polynucleotide or polypeptide of the invention.

SUBSEQUENCES

Also contemplated are uses of polynucleotides, also referred to herein as oligonucleotides, typically having at least 12 bases, preferably at least 15, more preferably at least

10

15

20

25

20, 30, or 50 bases, which hybridize under at least highly stringent (or ultra-high stringent or ultra-ultra- high stringent conditions) conditions to a polynucleotide sequence described above. The polynucleotides may be used as probes, primers, sense and antisense agents, and the like, according to methods as noted *supra*.

Subsequences of the polynucleotides of the invention, including polynucleotide fragments and oligonucleotides are useful as nucleic acid probes and primers. An oligonucleotide suitable for use as a probe or primer is at least about 15 nucleotides in length, more often at least about 18 nucleotides, often at least about 21 nucleotides, frequently at least about 30 nucleotides, or about 40 nucleotides, or more in length. A nucleic acid probe is useful in hybridization protocols, e.g., to identify additional polypeptide homologues of the invention, including protocols for microarray experiments. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods. See Sambrook and Ausubel, supra.

In addition, the invention includes an isolated or recombinant polypeptide including a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotides of the invention. For example, such polypeptides, or domains or fragments thereof, can be used as immunogens, e.g., to produce antibodies specific for the polypeptide sequence, or as probes for detecting a sequence of interest. A subsequence can range in size from about 15 amino acids in length up to and including the full length of the polypeptide.

PRODUCTION OF TRANSGENIC PLANTS

10

20

25

30

Modification of Traits

The polynucleotides of the invention are favorably employed to produce transgenic plants with various traits, or characteristics, that have been modified in a desirable manner, e.g., to improve the seed characteristics of a plant. For example, alteration of expression levels or patterns (e.g., spatial or temporal expression patterns) of one or more of the transcription factors (or transcription factor homologues) of the invention, as compared with the levels of the same protein found in a wild type plant, can be used to modify a plant's traits. An illustrative example of trait modification, improved seed characteristics, by altering expression levels of a particular transcription factor is described further in the Examples and the Sequence Listing.

Antisense and Cosuppression Approaches

In addition to expression of the nucleic acids of the invention as gene replacement or plant phenotype modification nucleic acids, the nucleic acids are also useful for sense and anti-sense suppression of expression, e.g., to down-regulate expression of a nucleic acid of the invention, e.g., as a further mechanism for modulating plant phenotype. That is, the nucleic acids of the invention, or subsequences or anti-sense sequences thereof, can be used to block expression of naturally occurring homologous nucleic acids. A variety of sense and anti-sense technologies are known in the art, e.g., as set forth in Lichtenstein and Nellen (1997)

Antisense Technology: A Practical Approach IRL Press at Oxford University, Oxford, England. In general, sense or anti-sense sequences are introduced into a cell, where they are optionally amplified, e.g., by transcription. Such sequences include both simple oligonucleotide sequences and catalytic sequences such as ribozymes.

For example, a reduction or elimination of expression (i.e., a "knock-out") of a transcription factor or transcription factor homologue polypeptide in a transgenic plant, e.g., to modify a plant trait, can be obtained by introducing an antisense construct corresponding to the polypeptide of interest as a cDNA. For antisense suppression, the transcription factor or homologue cDNA is arranged in reverse orientation (with respect to the coding sequence) relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length cDNA or gene, and need not be identical to the cDNA or gene found in the plant type to be transformed. Typically, the antisense sequence need only be capable of hybridizing to the target gene or RNA of interest. Thus, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous transcription factor sequence will be needed for effective antisense suppression. While antisense sequences of various lengths can be utilized, preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides. Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous transcription factor gene in the plant cell.

Suppression of endogenous transcription factor gene expression can also be achieved using a ribozyme. Ribozymes are RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 and U.S. Patent No. 5,543,508. Synthetic ribozyme sequences including antisense RNAs can be used to confer RNA cleaving activity on the antisense RNA, such that endogenous

5

10

15

20

25

mRNA molecules that hybridize to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

Vectors in which RNA encoded by a transcription factor or transcription factor homologue cDNA is over-expressed can also be used to obtain co-suppression of a corresponding endogenous gene, e.g., in the manner described in U.S. Patent No. 5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire transcription factor cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous transcription factor gene of interest. However, as with antisense suppression, the suppressive efficiency will be enhanced as specificity of hybridization is increased, e.g., as the introduced sequence is lengthened, and/or as the sequence similarity between the introduced sequence and the endogenous transcription factor gene is increased.

10

15

25

30

Vectors expressing an untranslatable form of the transcription factor mRNA, e.g., sequences comprising one or more stop codon, or nonsense mutation) can also be used to suppress expression of an endogenous transcription factor, thereby reducing or eliminating it's activity and modifying one or more traits. Methods for producing such constructs are described in U.S. Patent-No. 5,583,021. Preferably, such constructs are made by introducing a premature stop codon into the transcription factor gene. Alternatively, a plant trait can be modified by gene silencing using double-strand RNA (Sharp (1999) Genes and Development 13: 139-141).

Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of *Agrobacterium tumefaciens*. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a transcription factor or transcription factor homologue gene. Plants containing a single transgene insertion event at the desired gene can be crossed to generate homozygous plants for the mutation (Koncz et al. (1992) Methods in Arabidopsis Research, World Scientific).

Alternatively, a plant phenotype can be altered by eliminating an endogenous gene, such as a transcription factor or transcription factor homologue, e.g., by homologous recombination (Kempin et al. (1997) Nature 389:802).

A plant trait can also be modified by using the crc-lox system (for example, as described in US Pat. No. 5,658,772). A plant genome can be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites is excised. If the lox sites are in the opposite orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention can also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of

the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al. (1997) Nature 390 698-701; Kakimoto et al. (1996) Science 274: 982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant can be modified so as to increase transcription levels of a polynucleotide of the invention (See, e.g., PCT Publications WO 96/06166 and WO 98/53057 which describe the modification of the DNA binding specificity of zinc finger proteins by changing particular amino acids in the DNA binding motif).

The transgenic plant can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well established techniques as described above. Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homologue, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. Optionally, the plant cell, explant or tissue can be regenerated to produce a transgenic plant.

The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledenous plants. Suitable protocols are available for *Leguminosae* (alfalfa, soybean, clover, etc.), *Umbelliferae* (carrot, celery, parsnip), *Cruciferae* (cabbage, radish, rapeseed, broccoli, etc.), *Curcurbitaceae* (melons and cucumber), *Gramineae* (wheat, corn, rice, barley, millet, etc.), *Solanaceae* (potato, tomato, tobacco, peppers, etc.), and various other crops. See protocols described in Ammirato et al. (1984) <u>Handbook of Plant Cell Culture –Crop Species.</u> Macmillan Publ. Co. Shimamoto et al. (1989) <u>Nature</u> 338:274-276; Fromm et al. (1990) <u>Bio/Technology</u> 8:833-839; and Vasil et al. (1990) <u>Bio/Technology</u> 8:429-434.

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated

5

10

15

20

25

transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumeficiens mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence.

5

Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

10

Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

.15

After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in expression levels or activity of the polypeptide or polynucleotide of the invention can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

20

INTEGRATED SYSTEMS—SEQUENCE IDENTITY

Additionally, the present invention may be an integrated system, computer or computer readable medium that comprises an instruction set for determining the identity of one or more sequences in a database. In addition, the instruction set can be used to generate or identify sequences that meet any specified criteria. Furthermore, the instruction set may be used to associate or link certain functional benefits, such improved seed characteristics, with one or more identified sequence.

30

25

For example, the instruction set can include, e.g., a sequence comparison or other alignment program, e.g., an available program such as, for example, the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madision, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PhytoSeq (Incyte Pharmaceuticals, Palo Alto, CA) can be searched.

Alignment of sequences for comparison can be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window can be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous positions. A description of the method is provided in Ausubel et al., supra.

A variety of methods of determining sequence relationships can be used, including manual alignment and computer assisted sequence alignment and analysis. This later approach is a preferred approach in the present invention, due to the increased throughput afforded by computer assisted methods. As noted above, a variety of computer programs for performing sequence alignment are available, or can be produced by one of skill.

One example algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. J. Mol. Biol 215:403-410 (1990). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short 20 words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. 25 The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each 30 direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an

10

expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence (and, therefore, in this context, homologous) if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, or less than about 0.01, and or even less than about 0.001. An additional example of a useful sequence alignment algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. The program can align, e.g., up to 300 sequences of a maximum length of 5,000 letters.

10

15

20

25

30

The integrated system, or computer typically includes a user input interface allowing a user to selectively view one or more sequence records corresponding to the one or more character strings, as well as an instruction set which aligns the one or more character strings with each other or with an additional character string to identify one or more region of sequence similarity. The system may include a link of one or more character strings with a particular phenotype or gene function. Typically, the system includes a user readable output element which displays an alignment produced by the alignment instruction set.

The methods of this invention can be implemented in a localized or distributed computing environment. In a distributed environment, the methods may implemented on a single computer comprising multiple processors or on a multiplicity of computers. The computers can be linked, e.g. through a common bus, but more preferably the computer(s) are nodes on a network. The network can be a generalized or a dedicated local or wide-area network and, in certain preferred embodiments, the computers may be components of an intra-net or an internet.

Thus, the invention provides methods for identifying a sequence similar or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is

provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

Any sequence herein can be entered into the database, before or after querying the database. This provides for both expansion of the database and, if done before the querying step, for insertion of control sequences into the database. The control sequences can be detected by the query to ensure the general integrity of both the database and the query. As noted, the query can be performed using a web browser based interface. For example, the database can be a centralized public database such as those noted herein, and the querying can be done from a remote terminal or computer across an internet or intranet.

10

25

30

EXAMPLES

The following examples are intended to illustrate but not limit the present invention.

EXAMPLE I. FULL LENGTH GENE IDENTIFICATION AND CLONING

Putative transcription factor sequences (genomic or ESTs) related to known
transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the
tblastn sequence analysis program using default parameters and a P-value cutoff threshold of -4
or -5 or lower, depending on the length of the query sequence. Putative transcription factor
sequence hits were then screened to identify those containing particular sequence strings. If the
sequence hits contained such sequence strings, the sequences were confirmed as transcription
factors.

Alternatively, Arabidopsis thaliana cDNA libraries derived from different tissues or treatments, or genomic libraries were screened to identify novel members of a transcription family using a low stringency hybridization approach. Probes were synthesized using gene specific primers in a standard PCR reaction (annealing temperature 60°C) and labeled with ³²P dCTP using the High Prime DNA Labeling Kit (Boehringer Mannheim). Purified radiolabelled probes were added to filters immersed in Church hybridization medium (0.5 M NaPO₄ pH 7.0, 7% SDS, 1 % w/v bovine serum albumin) and hybridized overnight at 60 °C with shaking. Filters were washed two times for 45 to 60 minutes with 1xSCC, 1% SDS at 60°C.

To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed using the MarathonTM cDNA amplification kit (Clontech, Palo Alto, CA). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded

cDNA, blunting cDNA ends, followed by ligation of the MarathonTM Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA.

Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Nested primers, rather than single primers, were used to increase PCR specificity. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced and cloned. The process can be repeated until 5' and 3' ends of the full-length gene were identified. Then the full-length cDNA was generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR.

EXAMPLE II. CONSTRUCTION OF EXPRESSION VECTORS

5

10

20

25

30

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) Nucleic Acids Research 15:1543-58) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with SalI and NotI restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid were excised and purified by using a Qiaquick gel extraction kit (Qiagen, CA). The fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into competent cells of the *E. coli* strain DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l kanamycin (Sigma).

Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l kanamycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen, CA).

EXAMPLE III. TRANSFORMATION OF AGROBACTERIUM WITH THE EXPRESSION VECTOR

After the plasmid vector containing the gene was constructed, the vector was used to transform Agrobacterium tumefaciens cells expressing the gene products. The stock of Agrobacterium tumefaciens cells for transformation were made as described by Nagel et al. (1990) FEMS Microbiol Letts. 67: 325-328. Agrobacterium strain ABI was grown in 250 ml LB medium (Sigma) overnight at 28°C with shaking until an absorbance (A₆₀₀) of 0.5 – 1.0 was reached. Cells were harvested by centrifugation at 4,000 x g for 15 min at 4°C. Cells were then

resuspended in 250 μ l chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 μ l chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 μ l and 750 μ l, respectively. Resuspended cells were then distributed into 40 μ l aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.

Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50 – 100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 μl of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μF and 200 μF using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2 – 4 hours at 28°C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 μg/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28°C. Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.

EXAMPLE IV. TRANSFORMATION OF ARABIDOPSIS PLANTS WITH AGROBACTERIUM TUMEFACIENS WITH EXPRESSION VECTOR

After transformation of Agrobacterium tumefaciens with plasmid vectors

containing the gene, single Agrobacterium colonies were identified, propagated, and used to transform Arabidopsis plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l kanamycin were inoculated with the colonies and grown at 28°C with shaking for 2 days until an absorbance (A₆₀₀) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1

X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044 μM benzylamino purine (Sigma), 200 μl/L Silwet L-77 (Lehle Seeds) until an absorbance (A₆₀₀) of 0.8 was reached.

Prior to transformation, Arabidopsis thaliana seeds (ecotype Columbia) were sown at a density of ~10 plants per 4" pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75 μ E/m²/sec) at 22-23° C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

30

10

The pots were then immersed upside down in the mixture of Agrobacterium infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

EXAMPLE V. IDENTIFICATION OF ARABIDOPSIS PRIMARY TRANSFORMANTS

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into in a solution containing 0.1% (v/v) Triton X-100 (Sigma) and sterile H₂O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H₂O. The seeds were stored in the last wash water at 4°C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH adjusted to 5.7 with 1M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l kanamycin). Seeds were germinated under continuous illumination (50-75 μE/m²/sec) at 22-23° C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T₁ generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium).

Primary transformants were crossed and progeny seeds (T₂) collected; kanamycin resistant seedlings were selected and analyzed. The expression levels of the recombinant polynucleotides in the transformants varies from about a 5% expression level increase to a least a 100% expression level increase. Similar observations are made with respect to polypeptide level expression.

30

25

10

15

EXAMPLE VI. IDENTIFICATION OF ARABIDOPSIS PLANTS WITH TRANSCRIPTION FACTOR GENE KNOCKOUTS

The screening of insertion mutagenized *Arabidopsis* collections for null mutants in a known target gene was essentially as described in Krysan et al (1999) <u>Plant Cell</u> 11:2283-2290. Briefly, gene-specific primers, nested by 5-250 pb to each others, were designed from the 5' and 3' regions of a known target gene. Similarly, nested sets of primers were also created specific to each of the T-DNA or transposon ends (the "right" and "left" borders). All possible combinations of gene specific and T-DNA/transposon primers were used to detect by PCR an insertion event within or close to the target gene. The amplified DNA fragments were then sequenced which allows the precise determination of the T-DNA/transposon insertion point relative to the target gene. Insertion events within the coding or intervening sequence of the genes were deconvoluted from a pool comprising a plurality of insertion events to a single unique mutant plant for functional characterization. The method is described in more detail in Yu and Adam, US Application Serial No. 09/177,733 filed October 23, 1998.

EXAMPLE VII. IDENTIFICATION OF SEED CHARACTERISTICS PHENOTYPE IN OVEREXPRESSOR OR GENE KNOCKOUT PLANTS

Experiments were performed to identify those transformants or knockouts that exhibited an improved seed characteristics. For such studies, the transformants were observed by eye or biochemical assays were performed.

Among the biochemicals that were assayed were insoluble sugars, such as arabinose, fucose, galactose, mannose, rhamnose or xylose or the like; prenyl lipids, such as lutein, beta-carotene, xanthophyll-1, xanthophyll-2, chlorophylls A or B, or alpha-, delta- or gamma-tocopherol or the like; fatty acids, such as 16:0 (palmitic acid), 16:1 (palmitoleic acid), 18:0 (stearic acid), 18:1 (oleic acid), 18:2 (linoleic acid), 20:0, 18:3 (linolenic acid), 20:1 (eicosenoic acid), 20:2, 22:1 (erucic acid) or the like; waxes, such as by altering the levels of C29, C31, or C33 alkanes; sterols, such as brassicasterol, campesterol, stigmasterol, sitosterol or stigmastanol or the like, glucosinolates, protein or oil levels

Fatty acids were measured using two methods depending on whether the tissue was from leaves or seeds. For leaves, lipids were extracted and esterified with hot methanolic H2SO4 and partitioned into hexane from methanolic brine. For seed fatty acids, seeds were pulverized and extracted in methanol:heptane:toluene:2,2-dimethoxypropane:H2SO4 (39:34:20:5:2) for 90 minutes at 80°C. After cooling to room temperature the upper phase, containing the seed fatty

5

10

15

20

25

acid esters, was subjected to GC analysis. Fatty acid esters from both seed and leaf tissues were analyzed with a Supelco SP-2330 column.

Glucosinolates were purified from seeds or leaves by first heating the tissue at 95°C for 10 minutes. Preheated ethanol:water (50:50) is and after heating at 95°C for a further 10 minutes, the extraction solvent is applied to a DEAE Sephadex column which had been previously equilibrated with 0.5 M pyridine acetate. Desulfoglucosinolates were eluted with 300 ul water and analyzed by reverse phase HPLC monitoring at 226 nm.

For wax alkanes, samples were extracted using an identical method as fatty acids and extracts were analyzed on a HP 5890 GC coupled with a 5973 MSD. Samples were chromatographed on a J&W DB35 mass spectrometer (J&W Scientific).

To measure prenyl lipids levels, seeds or leaves were pulverized with 1 to 2% pyrogallol as an antioxidant. For seeds, extracted samples were filtered and a portion removed for tocopherol and carotenoid/chlorophyll analysis by HPLC. The remaining material was saponified for sterol determination. For leaves, an aliquot was removed and diluted with methanol and chlorophyll A, chlorophyll B, and total carotenoids measured by spectrophotometry by determining absorbance at 665.2 nm, 652.5 nm, and 470 nm. An aliquot was removed for tocopherol and carotenoid/chlorophyll composition by HPLC using a Waters uBondapak C18 column (4.6 mm x 150 mm). The remaining methanolic solution was saponified with 10% KOH at 80°C for one hour. The samples were cooled and diluted with a mixture of methanol and water. A solution of 2% methylene chloride in hexane was mixed in and the samples were centrifuged. The aqueous methanol phase was again re-extracted 2% methylene chloride in hexane and, after centrifugation, the two upper phases were combined and evaporated. 2% methylene chloride in hexane was added to the tubes and the samples were then extracted with one ml of water. The upper phase was removed, dried, and resuspended in 400 ul of 2% methylene chloride in hexane and analyzed by gas chromatography using a 50 m DB-5ms (0.25 mm ID, 0.25 um phase, J&W Scientific).

Insoluble sugar levels were measured by the method essentially described by Reiter et al., Plant Journal 12:335-345. This method analyzes the neutral sugar composition of cell wall polymers found in Arabidopsis leaves. Soluble sugars were separated from sugar polymers by extracting leaves with hot 70% ethanol. The remaining residue containing the insoluble polysaccharides was then acid hydrolyzed with allose added as an internal standard. Sugar monomers generated by the hydrolysis were then reduced to the corresponding alditols by treatment with NaBH4, then were acetylated to generate the volatile alditol acetates which were then analyzed by GC-FID. Identity of the peaks was determined by comparing the retention times

5

10

15

20

25

of known sugars converted to the corresponding alditol acetates with the retention times of peaks from wild-type plant extracts. Alditol acetates were analyzed on a Supelco SP-2330 capillary column (30 m x 250 um x 0.2 um) using a temperature program beginning at 180° C for 2 minutes followed by an increase to 220° C in 4 minutes. After holding at 220° C for 10 minutes, the oven temperature is increased to 240° C in 2 minutes and held at this temperature for 10 minutes and brought back to room temperature.

To identify plants with alterations in total seed oil or protein content, 150mg of seeds from T2 progeny plants were subjected to analysis by Near Infrared Reflectance (NIR) using a Foss NirSystems Model 6500 with a spinning cup transport system.

Table 3 shows the phenotypes observed for particular overexpressor or knockout plants and provides the SEQ ID No., the internal reference code (GID), whether a knockout or overexpressor plant was analyzed and the observed phenotype.

Table 3

		TADIC 5
GIDs	Knockout (KO) or	Phenotype observed
	overexpressor (OE)	
G214	OE	Up to 111% increase in seed lutein
G226	OE	Up to 17% increase in seed protein content
G229	OE	Up to 11% increase in seed oil, 13% decrease in seed protein
G241	OE	Up to 13% decrease in seed oil
G464	OE	Up to 12% decrease in seed oil, 25% increase in seed protein
G663	OE	Up to 16% decrease in seed oil, 14% increase in seed protein
G776	OE	Up to 31% alteration in some seed fatty acids, including
		······
G778	OE	Up to 32% increase in seed 18:1 fatty acid
G865	OE	Up to 39% increase seed protein; 23% increase in seed oil
G869	OE	Up to 25% alteration in some seed fatty acids
G883	OE	Up to 47% decrease in seed lutein
G938	OE	Up to 115% increase in some seed fatty acids
G1328	OE	Up to 43% decrease in seed lutein
G584	OE	Larger seeds
G668	OE	Reduced seed color

15

5

For a particular overexpressor that shows a less beneficial seed characteristic, it may be more useful to select a plant with a decreased expression of the particular transcription factor. For a particular knockout that shows a less beneficial seed characteristic, it may be more useful to select a plant with an increased expression of the particular transcription factor.

5 EXAMPLE VIII. IDENTIFICATION OF HOMOLOGOUS SEQUENCES

10

20

25

30

Homologous sequences from *Arabidopsis* and plant species other than *Arabidopsis* were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) <u>J. Mol. Biol.</u> 215:403-410; and Altschul et al. (1997) <u>Nucl. Acid Res.</u> 25: 3389-3402). The tblastx sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) <u>Proc. Natl. Acad. Sci. USA</u> 89: 10915-10919).

Identified *Arabidopsis* homologous sequences are provided in Figure 2 and included in the Sequence Listing. The percent sequence identity among these sequences is as low as 47% sequence identity. Additionally, the entire NCBI GenBank database was filtered for sequences from all plants except *Arabidopsis thaliana* by selecting all entries in the NCBI GenBank database associated with NCBI taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (*Arabidopsis thaliana*). These sequences were compared to sequences representing genes of SEQ IDs Nos. 1-54 on 9/26/2000 using the Washington University TBLASTX algorithm (version 2.0a19MP). For each gene of SEQ IDs Nos. 1-54, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6 x 10⁻⁴⁰. For up to ten species, the gene with the lowest P-value (and therefore the most likely homolog) is listed in Figure 3.

In addition to P-values, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. The ranges of percent identity between the non-Arabidopsis genes shown in Figure 3 and the Arabidopsis genes in the sequence listing are: SEQ ID No. 1: 38%-89%; SEQ ID No. 3: 50%-69%; SEQ ID No. 5: 68%-93%; SEQ ID No. 7: 69%-84%; SEQ ID No. 9: 34%-60%; SEQ ID No. 11: 52%-81%; SEQ ID No. 13: 48%-81%; SEQ ID No. 15: 37%-80%; SEQ ID No. 17: 48%-83%; SEQ ID No. 19: 31%-68%; SEQ ID No. 21: 47%-90%; SEQ ID No. 23: 57%-88%; SEQ ID No. 25: 39%-79%; SEQ ID No. 27: 35%-84%; SEQ ID No. 29: 54%-89%; SEQ ID No. 31: 42%-88%; SEQ ID No. 33: 41%-75%; SEQ ID No. 35: 34%-67%; SEQ ID No. 37: 72%-86%; SEQ ID No. 39: 39%-84%; SEQ ID No. 41: 40%-58%; SEQ ID No. 43: 44%-82%; SEQ ID

No. 45: 54%-68%; SEQ ID No. 47: 48%-64%; SEQ ID No. 49: 46%-88%; SEQ ID No. 51: 52%-92%; and SEQ ID No. 53: 48%-80%.

The polynucleotides and polypeptides in the Sequence Listing and the identified homologous sequences may be stored in a computer system and have associated or linked with the sequences a function, such as that the polynucleotides and polypeptides are useful for modifying the seed characteristics of a plant.

All references, publications, patents and other documents herein are incorporated by reference in their entirety for all purposes. Although the invention has been described with reference to the embodiments and examples above, it should be understood that various modifications can be made without departing from the spirit of the invention.

What is claimed is:

10

20

1. A transgenic plant with modified seed characteristics, which plant comprises a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-27, or a complementary nucleotide sequence thereof;
 - (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
 - (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-27, or a complementary nucleotide sequence thereof;
 - (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
 - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
 - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
 - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's seed characteristics;
 - (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g);
 - (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
 - (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27;
- 25 (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27; and (l) a nucleotide sequence which encodes a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-27.
- The transgenic plant of claim 1, further comprising a constitutive, inducible, or tissueactive promoter operably linked to said nucleotide sequence.
 - 3. The transgenic plant of claim 1, wherein the plant is selected from the group consisting of: soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf,

banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, and vegetable brassicas.

5

- 4. An isolated or recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-27, or a complementary nucleotide sequence thereof;

10

- (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
- (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-27, or a complementary nucleotide sequence thereof;
- (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);

15

- (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
- (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);

20

- (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's seed characteristics;
- (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g);

25

- (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
- (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27;
- (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27; and

30

(l) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-27.

5. The isolated or recombinant polynucleotide of claim 4, further comprising a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence.

- 6. A cloning or expression vector comprising the isolated or recombinant polynucleotide of claim 4.
- 7. A cell comprising the cloning or expression vector of claim 6.
- 8. A transgenic plant comprising the isolated or recombinant polynucleotide of claim 4.

10

- 9. A composition produced by one or more of:
 - (a) incubating one or more polynucleotide of claim 4 with a nuclease;
 - (b) incubating one or more polynucleotide of claim 4 with a restriction enzyme;
 - (c) incubating one or more polynucleotide of claim 4 with a polymerase;

15

- (d) incubating one or more polynucleotide of claim 4 with a polymerase and a primer;
- (e) incubating one or more polynucleotide of claim 4 with a cloning vector, or
- (f) incubating one or more polynucleotide of claim 4 with a cell.
- 10. A composition comprising two or more different polynucleotides of claim 4.

20

- 11. An isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide of claim 4.
- 12. A plant ectopically expressing an isolated polypeptide of claim 11.

25

- 13. A method for producing a plant having a modified seed characteristics, the method comprising altering the expression of the isolated or recombinant polynucleotide of claim 4 or the expression levels or activity of a polypeptide of claim 11 in a plant, thereby producing a modified plant, and selecting the modified plant for improved seed characteristics thereby providing the modified plant with a modified seed characteristics.
- 14. The method of claim 13, wherein the polynucleotide is a polynucleotide of claim 4.

15. A method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of claim 4, the method comprising:

- (a) expressing a polypeptide encoded by the polynucleotide in a plant; and
- (b) identifying at least one factor that is modulated by or interacts with the polypeptide.

5

- 16. The method of claim 15, wherein the identifying is performed by detecting binding by the polypeptide to a promoter sequence, or detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system.
- 17. The method of claim 15, wherein the identifying is performed by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.
 - 18. A method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest, the method comprising:
 - (a) placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of claim 4; and,
 - (b) monitoring one or more of:
 - (i) expression level of the polynucleotide in the plant;
 - (ii) expression level of the polypeptide in the plant;
 - (iii) modulation of an activity of the polypeptide in the plant; or
 - (iv) modulation of an activity of the polynucleotide in the plant.

20

25

15

- 19. An integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of claim 4, or to a polypeptide encoded by the polynucleotide.
- 20. The integrated system, computer or computer readable medium of claim 19, further comprising a link between said one or more sequence strings to a modified plant seed characteristics phenotype.

- 21. A method of identifying a sequence similar or homologous to one or more polynucleotides of claim 4, or one or more polypeptides encoded by the polynucleotides, the method comprising:
 - (a) providing a sequence database; and,

(b) querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

5

- 22. The method of claim 21, wherein the querying comprises aligning one or more of the target sequences with one or more of the one or more sequence members in the sequence database.
- 10 23. The method of claim 21, wherein the querying comprises identifying one or more of the one or more sequence members of the database that meet a user-selected identity criteria with one or more of the target sequences.
- 24. The method of claim 21, further comprising linking the one or more of the polynucleotides of claim 4, or encoded polypeptides, to a modified plant seed characteristics phenotype.
 - 25. A plant comprising altered expression levels of an isolated or recombinant polynucleotide of claim 4.

20

- 26. A plant comprising altered expression levels or the activity of an isolated or recombinant polypeptide of claim 11.
- 27. A plant lacking a nucleotide sequence encoding a polypeptide of claim 11.

Figure 1

SEQ ID No.	GID	cDNA or protein	conserved domain
1	G214	cDNA	
2	G214	protein	22-71
3	G226	cDNA	
4	G226	protein	28-78
5	G229	cDNA	
6 .	G229	protein	14-120
7	G241	cDNA	
8	G241	protein	14-114
9	G464	cDNA	
10	G464	protein	7-15,70-80,125-158,183-219
11	G663	cDNA	
12	G663	protein	9-111
13	G776	cDNA	
14	G776	protein	27-175
15	G778	cDNA	·
16	G778	protein	220-267
17	G865	cDNA	
18	G865	protein	36-103
19	G869	cDNA	
20	G869	protein	109-177
21	G883	cDNA	
22	G883	protein	245-302
23	G938	cDNA	
24	G938	protein	96-104
25	G1328	cDNA	
26	G1328	protein	14-119
27	G584	cDNA	
28	G584	protein	401-494
29	G668	cDNA	•
30	G668	protein	13-113

Figure 2

SEQ ID No.	GID	homolog	cDNA or protein	conserved domain
31 ·	G680	homolog of G214	cDNA	
32	G680	homolog of G214	protein	24-70
33	G682	homolog of G226	cDNA	
34	G682	homolog of G226	protein	22-53
35	G225	homolog of G226	cDNA :	
36	G225	homolog of G226	protein	39-76
37	G678	homolog of G229	cDNA	
38	G678	homolog of G229	protein	14-115
39	G233	homolog of G241	cDNA	
40	G233	homolog of G241	protein	14-114
41	G463	homolog of G464	cDNA	
42	G463	homolog of G464	protein	14-23, 77-88, 130-146, 194-227
. 43	G2422	homolog of G663	cDNA	
44	G2422	homolog of G663	protein	9-110
45	G2421	homolog of G663	cDNA	
. 46	G2421	homolog of G663	protein	9-110
47	G772	homolog of G776	cDNA ·	
48	G772	homolog of G776	protein	27-176
49	G866	homolog of G883	cDNA	
50	G866	homolog of G883	protein	43-300
51	G941	homolog of G938	cDNA	
52	G941	homolog of G938	protein	95-103
53	G198	homolog of G1328	cDNA	
54	G198	homolog of G1328	protein	14-117

Figure 3A

				TO
SEQ IDs		Genbank NID		Species
- 1	G214	8170933		Lycopersicon esculentum
1	G214	9205339		Glycine max
1	G214	8577344		Zea mays
1	G214	9119112	2.40E-18	Medicago truncatula
1	G214	7660673	4.80E-15	Sorghum bicolor
1	G214	8213273	4.40E-14	Oryza sativa
1	G214	3325786	4.70E-10	Gossypium hirsutum
1	G214	9435251	1.50E-09	Hordeum vulgare
1	G214	9411569	6.80E-09	Triticum aestivum
1	G214	7614730	3.00E-07	Lotus japonicus
3	G226	4396287		Glycine max
3 .	G226	9410205		Triticum aestivum
3	G226	3857004	0.11	Populus tremula x Populus tremuloides
3	G226	2428139	0.35	Oryza sativa .
5	G229	7337390		Lycopersicon esculentum
5	G229	7244424		Mentha x piperita
- 5	G229	7776053		Lotus japonicus
5	G229	2921335		Gossypium hirsutum
. 5	G229	1491932		Zea mays
5	G229	6455590		Glycine max
5	G229	6020191		Pinus taeda
5	G229	7765706		Medicago truncatula
5	G229	7629167		Gossypium arboreum
5				Oryza sativa
	G229	6850206		
7	G241	6552360		Nicotiana tabacum
7	G241	6782745		Oryza sativa
7	G241	8097368		Hordeum vulgare
7	G241	20560		Petunia x hybrida
7	G241	7217727		Sorghum bicolor
7	G241	5891408		Lycopersicon esculentum
7	G241	5139803		Glycine max
7	G241	7560175		Medicago truncatula
7	G241	8381332		Gossypium arboreum
7	G241	4886263		Antirrhinum majus
9	G464	6527230		Lycopersicon esculentum
9	G464	9305572		Sorghum bicolor
9	G464	6604917		Medicago truncatula
9	G464	5058123		Glycine max
9	G464	3760881		Oryza sativa
9	G464	5044476		Gossypium hirsutum
9	G464	9412603		Triticum aestivum
9	G464	7777277		Lotus japonicus
9	G464	9410371		Hordeum vulgare
9	G464	7624108		Gossypium arboreum
11	G663	7673087		Petunia integrifolia
11	G663	7673091		Petunia x hybrida
11	G663	7339148		Lycopersicon esculentum
11	G663	7673097		Petunia axillaris
11	G663	5048991		Gossypium hirsutum
11	G663	6455590		Glycine max
11	G663	7560175		Medicago truncatula
11	G663	7244424		Mentha x piperita
11	G663	6020191	2.90E-25	Pinus taeda

Figure 3B

		'. F a 		
SEQ IDs		Genbank NID		Species
11	G663	4138298		Oryza sativa subsp. indica
13	G776	8578423		Mesembryanthemum crystallinum
13	G776 ·	7411573		Lycopersicon esculentum
13	G776	9253340		Solanum tuberosum
13	G776	8383411		Euphorbia esula
13	G776	7565426	1.50E-39	Medicago truncatula
13	G776	6666629	2.50E-33	Glycine max
13	G776	6732155	3.60E-33	Triticum monococcum
13	G776	7502501	3.00E-32	Gossypium arboreum
13	G776	8708684	3.80E-32	Hordeum vulgare
. 13	G776	9307772	2.10E-31	Sorghum bicolor
15	G778	9258500		Glycine max
15	G778	9211293		Oryza sativa
15	G778	4380303		Lycopersicon esculentum
15	G778	7718953		Medicago truncatula
15	G778	7720768		Lotus japonicus
15	G778	6536575		Zea mays
15	G778	1668906	0.82	Citrus sinensis
17	G865	9417297		Triticum aestivum
. 17	G865	7206394		Medicago truncatula
17	G865	7796858		Glycine max
17	G865	4387560		Lycopersicon esculentum
17	G865	569065		Oryza sativa
17	G865	7788764		Lotus japonicus
17	G865	790362		Nicotiana tabacum
17	G865	7528275		Mesembryanthemum crystallinum
17	G865	3264766		Prunus armeniaca
17	G865	8098026		Hordeum vulgare
19	G869	2213784		Lycopersicon esculentum
19	G869	3065894		Nicotiana tabacum
19	G869	8570080		Oryza sativa
19	G869	7560260		Medicago truncatula
19	G869	7534890		Sorghum bicolor
		6455322		Glycine max
19	G869 G869	9362061		Triticum aestivum
19 19		7788764		Lotus japonicus
	G869			
19	G869 G869	7624302 3858036		Gossypium arboreum Populus balsamifera subsp. trichocarpa
19				Nicotiana tabacum
21 21	G883	4760595 4894962		Avena sativa
	G883	6719425		Glycine max
21	G883 G883			Lycopersicon esculentum
21		5273248		Sorghum bicolor
21	G883	9302479		
21	G883	6799932		Medicago truncatula
21	G883	5456433		Zea mays
21	G883	8706346		Hordeum vulgare
21	G883	8404566		Oryza sativa
21	G883	1432055		Petroselinum crispum
23	G938	4239844		Nicotiana tabacum
23	G938	7739794		Dianthus caryophyllus
23	G938	7567728		Medicago truncatula
23	G938	8894549		Cicer arietinum
23	G938	8104209	9.00E-90	Lycopersicon esculentum

Figure 3C

SEQ IDs	Gene Ids	Genbank NID	P-value	Species
23	G938	6462339		Gossypium hirsutum
23	G938	9204568		Glycine max
23	G938	7720839		Lotus japonicus
23	G938	7324903		Lycopersicon pennellii
23	G938	2427923	4.20E-47	
25	G1328	4383290		Lycopersicon esculentum
25	G1328	1946266		Oryza sativa
25	G1328	9264503		Glycine max
25	G1328	8381332		Gossypium arboreum
25	G1328	9363004		Triticum aestivum
25	G1328	7765706		Medicago truncatula
25	G1328	20562		Petunia x hybrida
25	G1328	5050757		Gossypium hirsutum
25	G1328	5860031		Pinus taeda
25	G1328	4886263		Antirrhinum majus
27	G584	1142618		Phaseolus vulgaris
27	G584	4321761		Zea mays
27	G584	9280727		Oryza sativa
27	G584	6175251		Lycopersicon esculentum
27	G584	9193975		Medicago truncatula
27	G584	9364538		Triticum aestivum
27	G584	6847033		Glycine max
27	G584	5049283		Gossypium hirsutum
27	G584	7781217		Lotus japonicus
27	G584	4519200		Perilla frutescens
29	G668	8172976		Medicago truncatula
29	G668	9252441		Solanum tuberosum
29	G668	5897694		Lycopersicon esculentum
29	G668	8380712		Gossypium arboreum
29	G668	7685936		Glycine max
29	G668	1945280		Oryza sativa
29	G668	20562	1.10E-40	Petunia x hybrida
29	G668	7217727		Sorghum bicolor
29	G668	6552360	1.90E-36	Nicotiana tabacum
29	G668	4886263	5.80E-36	Antirrhinum majus
31	G680	9258166	5.70E-36	Glycine max
31	G680	9255178	3.00E-29	Zea mays
31	G680	5274804	1.20E-27	Lycopersicon esculentum
31	G680	4974199		Oryza sativa
31	G680	3325786	2.10E-21	Gossypium hirsutum
31	G680	9119112		Medicago truncatula
31 .	G680	7660673	3.20E-17	Sorghum bicolor
31	G680	7243970	6.10E-16	Mentha x piperita
31	G680	3858093	2.10E-10	Populus balsamifera subsp. trichocarpa
31	G680	8845091	3.70E-10	Triticum aestivum
33	G682	309571	4.40E-08	
33	G682	4396287		
33	G682	3857004		Populus tremula x Populus tremuloides
33	G682	9410205		Triticum aestivum
33	G682	8382118		Gossypium arboreum
33	G682	2428139		Oryza sativa
33	G682	7339148		Lycopersicon esculentum
33	G682	9302672	0.32	Sorghum bicolor

Figure 3D

		·		
SEQ IDs	Gene Ids	Genbank NID	P-value	Species
33	G682	5048991	0.39	Gossypium hirsutum
33	G682	6555777	0.46	Pinus taeda
35	G225	4396287	4.40E-16	Glycine max
35	G225	309571	0.00029	Zea mays
35	G225	3857004	0.001	Populus tremula x Populus tremuloides
35	G225	9410205	0.019	Triticum aestivum
35	G225	9426190	0.025	Triticum turgidum subsp. durum
35	G225	8382118	0.046	Gossypium arboreum
35	G225	6782756	0.27	Oryza sativa
35	G225	7721017	0.4	Lotus japonicus
35	G225	6020136	0.47	Pinus taeda
35	G225	2921331	0.48	Gossypium hirsutum
37	G678	7244424	8.70E-50	Mentha x piperita
37	G678	7776053		Lotus japonicus
37	G678	7337390		Lycopersicon esculentum
37	G678	2921335	2.30E-43	
37	G678	6455590	8.30E-43	
37	G678	1491932		Zea mays
37	G678	5860031		Pinus taeda
37	G678	7765706		Medicago truncatula
	G678	6850206		Oryza sativa
37	G678	7217727	2.00E-37	
37 39	G233	6552360		Nicotiana tabacum
	G233	20560		Petunia x hybrida
39		5139813		Glycine max
39	G233	5891103		Lycopersicon esculentum
39	G233 G233	6782745	1.80E-52	
39	G233	7560175		Medicago truncatula
39 39	G233	7217727	8.30E-51	
39	G233	8097368		Hordeum vulgare
39	G233	8381332		Gossypium arboreum
39	G233	5048991	3.50E-41	
41	G233 G463	6527230		Lycopersicon esculentum
41	G463	9305572		Sorghum bicolor
41	G463	3760881	1.20E-31	
	G463	6604917		Medicago truncatula
41	G463	5058123		Glycine max
41		5044476		Gossypium hirsutum
41	G463	9412603		Triticum aestivum
- 41	G463			Hordeum vulgare
41	G463	9419394		Gossypium arboreum
41	G463	7624108		Nicotiana tabacum
41	G463	8547152		Petunia integrifolia
43	G2422	7673087		Lycopersicon esculentum
43	G2422	7339148 7673083		Petunia x hybrida
43	G2422			Petunia x riyorida Petunia axillaris
43	G2422	7673097		Gossypium hirsutum
43	G2422	5048991		Glycine max
43	G2422	6455590		Pinus taeda
43	G2422	6020191		
43	G2422	309571		Zea mays
43	G2422	7560832		Medicago truncatula
43	G2422	9363004		Triticum aestivum
45	G2421	7673087	1. IUE-46	Petunia integrifolia

Figure 3E

SEQ IDs	Gene Ids	Genbank NID	P-value	Species
45	G2421	5048991	1.30E-35	Gossypium hirsutum
45	G2421	7673091	1.50E-31	Petunia x hybrida
45	G2421	8380196		Gossypium arboreum
45	G2421	7673095		Petunia axillaris
45	G2421	7339148		Lycopersicon esculentum
45	G2421	8747182		Medicago truncatula
45	G2421	7217727		Sorghum bicolor
45	G2421	6073050		Glycine max
45	G2421	. 1101769		Picea mariana
47	G772	8578423	4.80E-58	Mesembryanthemum crystallinum
47	G772	7570276	3.00E-52	Medicago truncatula
47	G772	7411573		Lycopersicon esculentum
47	G772	6341483		Glycine max
47	G772	1279639		Petunia x hybrida
. 47	G772	7722907		Lotus japonicus
47	G772	8405571		Hordeum vulgare
47	G772	6730945		Oryza sativa
47	G772	9302206		Sorghum bicolor
47	G772	5047907		Gossypium hirsutum
49	G866	4760595		Nicotiana tabacum
49	G866	4894962		Avena sativa
49	G866	6719425		Glycine max
49	G866	5273248		Lycopersicon esculentum
49	G866	9302479		Sorghum bicolor
49	G866	6799932		Medicago truncatula
49	G866	4886128		Zea mays
. 49	G866	8404566		Oryza sativa
49	G866	8706346		Hordeum vulgare
49	G866	1432055		Petroselinum crispum .
51	G941	4239844		Nicotiana tabacum
51	G941	7739794		Dianthus caryophyllus
51	G941	7567728		Medicago truncatula
51	G941	8104209		Lycopersicon esculentum
51	G941	8894549		Cicer arietinum
51	G941	5606033	1.60E-79	Glycine max
51	G941	6462339		Gossypium hirsutum
51	G941	7720839		Lotus japonicus
51	G941	7324903	1.00E-55	Lycopersicon pennellii
51	G941	2427923		Oryza sativa
53	G198	4383290		Lycopersicon esculentum
53	G198	1946266	1.10E-58	Oryza sativa
53	G198	9363004		Triticum aestivum
53	G198	8381332	6.40E-51	Gossypium arboreum
53	G198	9264503	1.30E-50	Glycine max
53	G198	5050757	4.10E-46	Gossypium hirsutum
53	G198	20562	9.30E-46	Petunia x hybrida
53	G198	7765706	2.70E-45	Medicago truncatula
53	G198	5860031	5.40E-45	Pinus taeda
53	G198	4886263	7.30E-45	Antirrhinum majus

MBI-17 Sequence Listing.ST25 SEQUENCE LISTING

					. SE	OOEN	רב די	1211	NG			•			
<110>	Reube Creel Pilgr Riech Jiang Yu, G Pined Heard	man, im, mann , Ca uo-L a, O	Robe Marsh , Jos i-zhe iang maire	ert ha se L ong a			· -	÷		2	*-		٠.		
<120>	Seed	Tra	it G	enes	. *										
<130>	MBI-	0017					•								
<150> <151>	•													·	
<150> <151>		97,8 -04-													
<150> <151>		t Tra		Modi	fica	tion	III	,							
<160>	54											٠.			
<170>	Pate	ntIn	ver	sion	3.0	•					•				
<210><211><211><212><213>	2240 DNA	idop	sis 1	thal:	iana									٠	•
<220><221><222><223>	CDS (238) (:	2064))		-						. •	٠.		
<400> tgaga	l tttct	ccati	ttcc	gt ag	gctto	itggt	t ct	zitt	çtt	tgtt	tcal	ttg a	atcaa	aaagca	60
aatca	cttct	tctt	cttc	tt ci	ttct	egati	tet	taci	gtt	ttct	taț	cca a	acgaa	aatctg.	120
gaatt	aaaaa	tggaa	atct	tt at	cgaa	atcca	a ago	ctgai	ttt	gtt	ctt	ca t	tgaa	atcatc	180
tctct	aaagt	ggaat	tttt	gt aa	aagag	gaaga	a tct	gaag	gttg	tgta	agag	gag d	cttag	gtg	237
atg ga Met G	ag aca lu Thr	aat Asn	tcg Ser 5	tct Ser	gga Gly	gaa Glu	gat Asp	ctg Leu 10	ġtt Val	att Ile	aag Lys	act Thr	cgg Arg 15	aag Lys	285
cca to	at acg yr Thr	ata Ile 20	aca Thr	aag Lys	caa Gln	cgt Arg	gaa Glu 25	agg Arg	tgg Trp	act Thr	gag Glu	gaa Glu 30	gaa Glu	cat His	333
aat a	ga ttc rg Phe 35	att Ile	gaa Glu	gct Ala	ttg Leu	agg Arg 40	ctt Leu	tat Tyr	ggt Gly	aga Arg	gca Ala 45	tgg Trp	cag Gln	aag Ly s	381
att ga Ile G	aa gaa lu Glu O	cat His	gta Val	gca Ala	aca Thr 55	aaa Lys	act Thr	gct Ala	gtc Val	cag Gln 60	ata Ile	aga Arg	agt Ser	cac His	429
gct ca Ala G 65	ag aaa ln Lys	ttt Phe	ttc Phe	tcc Ser 70	aag Lys	gta Val	gag Glu	aaa Lys	gag Glu 75	gct Ala	gaa Glu	gct Ala	aaa Lys	ggt Gly 80	477
gta g Val A	ct atg la Met	ggt Gly	caa Gln 85	gcg Ala	cta Leu	gac Asp	ata Ile	gct Ala 90	att Ile	cct Pro	cct Pro	cca Pro	cgg Arg 95	cct Pro	525
aag co Lys A	gt aaa rg Lys	cca Pro 100	aac Asn	aat Asn	cct Pro	tat Tyr	cct Pro 105	cga Arg	aag Lys	acg Thr	gga Gly	agt Ser 110	gga Gly	acg Thr	573
								-		4					

Page 1

							MBI	-1/	sequ	ence	LIS	crng	.512	5		
ato Ile	ctt Leu	atg Met 115	Ser	aaa Lys	acg Thr	ggt Gly	gtg Val 120	Asn	gat Asp	gga Gly	aaa Lys	gag Glu 125	Ser	ctt Leu	gga Gly	621
	gaa Glu 130	Lys										Asp				669
	aag Lys															717
ttc Phe	act Thr	cat His	cag Gln	tat Tyr 165	ctc Leu	tct Ser	gct Ala	gca Ala	tcc Ser 170	tcc Ser	atg Met	aat Asn	aaa Lys	agt Ser 175	tgt Cys	765
ata Ile	gag Glu	aca Thr	tca Ser 180	aac Asn	gca Ala	agc Ser	act	ttc Phe 185	Arg	gag Glu	ttc Phe	ttg Leu	cct Pro 190	tca Ser	cgg Arg	813 .
	gag Glu							Val								861
ttg Leu	aat Asn 210	gca Ala	aaa Lys	tct Ser	ctg Leu	gaa Glu 215	aac Asn	ggt .Gly	aat Asn	gag Glu	caa Gln 220	gga Gly	cct Pro	cag Gln	act Thr	909
	ccg															957
	tct Ser															1005
	gca Ala													Thr		1053
tta Leu	caa Gln	aca Thr 275	ccg Pro	gct Ala	ctt Leu	tat Tyr	act Thr 280	gcc Ala	gca Ala	act Thr	ttc Phe	gcc Ala 285	tca Ser	tca Ser	ttt Phe	1101
tgg Trp	cct Pro 290	ccc Pro	gat Asp	tct Ser	agt Ser	ggt Gly 295	ggc Gly	tca Ser	cct Pro	gtt Val	cca Pro 300	999 Gly	aac Asn	tca Ser	cct . Pro	1149
	aat Asn															1197
	tgg Trp															1245
	ggt Gly															1293
	gag Glu															1341
	gag Glu 370				Ser											1389
	gag Glu															1437
tct Ser	gca Ala	aca Thr	cct Pro	gag Glu	agt Ser	gat Asp	gca Ala	aag Lys	ggt Gly	tca Ser	gat Asp	gga Gly	gca Ala	gga Gly	gac Asp	1485

	405	MBI-17 Sequence 410	Listing.ST25 415	
aga aaa caa gtt Arg Lys Gln Val 420	. Asp Arg Ser	tcg tgt ggc tca Ser Cys Gly Ser 425	aac act ccg tcg agt Asn Thr Pro Ser Ser 430	1533
agt gat gat gtt Ser Asp Asp Val 435	gag gcg gat Glu Ala Asp	gca tca gaa agg Ala Ser Glu Arg 440	caa gag gat ggc acc Gln Glu Asp Gly Thr 445	1581
aat ggt gag gtg Asn Gly Glu Val 450	aaa gaa acg Lys Glu Thr 455	Asn Glu Asp Thr	aat aaa cct caa act Asn Lys Pro Gln Thr 460	1629
tca gag tcc aat Ser Glu Ser Asn 465	gca cgc cgc Ala Arg Arg 470	agt aga atc agc Ser Arg Ile Ser 475	tcc aat ata acc gat Ser Asn Ile Thr Asp 480	1677
cca tgg aag tct Pro Trp Lys Ser	gtg tct gac Val Ser Asp 485	gag ggt cga att Glu Gly Arg Ile 490	gcc ttc caa gct ctc Ala Phe Gln Ala Leu 495	1725
ttc tcc aga gag Phe Ser Arg Glu 500	Val Leu Pro	caa agt ttt aca Gln Ser Phe Thr 505	tat cga gaa gaa cac Tyr Arg Glu Glu His 510	1773
aga gag gaa gaa Arg Glu Glu Glu 515	caa caa caa Gln Gln Gln	caa gaa caa aga Gln Glu Gln Arg 520	tat cca atg gca ctt Tyr Pro Met Ala Leu 525	1821
gat ctt aac ttc Asp Leu Asn Phe 530	aca gct cag Thr Ala Gln 535	tta aca cca gtt Leu Thr Pro Val	gat gat caa gag gag Asp Asp Gln Glu Glu 540	1869
aag aga aac aca Lys Arg Asn Thr 545	gga ttt ctt Gly Phe Leu 550	gga atc gga tta Gly Ile Gly Leu 555	gat gct tca aag cta Asp Ala Ser Lys Leu 560	1917
atg agt aga gga Met Ser Arg Gly	aga aca ggt Arg Thr Gly 565	ttt aaa cca tac Phe Lys Pro Tyr 570	aaa aga tgt tcc atg Lys Arg Cys Ser Met 575	1965
gaa gcc aaa gaa Glu Ala Lys Glu 580	agt aga atc Ser Arg Ile	ctc aac aac aat Leu Asn Asn Asn 585	cct atc att cat gtg Pro Ile Ile His Val 590	2013
gaa cag aaa gat Glu Gln Lys Asp 595	ccc aaa cgg Pro Lys Arg	atg cgg ttg gaa Met Arg Leu Glu 600	act caa gct tcc aca Thr Gln Ala Ser Thr 605	2061
tga gactctattt	tcatctgatc to	gttgtttgt actctgt	ttt taagttttca	2114
agaccactgc taca	ttttct ttttc	ttttg aggcctttgt	atttgtttcc ttgtccatag	2174
tcttcctgta acat	ttgact ctgta	ttatt caacaaatca	taaactgttt aatcttttt	2234
tttcca				2240
<210> 2 <211> 608 <212> PRT <213> Arabidop	sis thaliana			
<400> 2	•			
Met Glu Thr Asn 1	Ser Ser Gly 5	Glu Asp Leu Val	Ile Lys Thr Arg Lys 15	
Pro Tyr Thr Ile	Thr Lys Gln	Arg Glu Arg Trp 25	Thr Glu Glu Glu His 30	

Asn Arg Phe Ile Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Lys Page 3 $\,$

35

MBI-17	Sequence	Listing.ST25
40	=	45

Ile Glu G	lu His Val	Ala Thr Lys	Thr Ala Val Gln	Ile Arg Ser His
50		55	60	-

Ala Gln Lys Phe Phe Ser Lys Val Glu Lys Glu Ala Glu Ala Lys Gly 65 70 75 80

Val Ala Met Gly Gln Ala Leu Asp Ile Ala Ile Pro Pro Pro Arg Pro 85 90 95

Lys Arg Lys Pro Asn Asn Pro Tyr Pro Arg Lys Thr Gly Ser Gly Thr 100 105 110

Ile Leu Met Ser Lys Thr Gly Val Asn Asp Gly Lys Glu Ser Leu Gly
115 120 125

Ser Glu Lys Val Ser His Pro Glu Met Ala Asn Glu Asp Arg Gln Gln 130 140

Ser Lys Pro Glu Glu Lys Thr Leu Gln Glu Asp Asn Cys Ser Asp Cys 145 150 155 160

Phe Thr His Gln Tyr Leu Ser Ala Ala Ser Ser Met Asn Lys Ser Cys 165 170 175

Ile Glu Thr Ser Asn Ala Ser Thr Phe Arg Glu Phe Leu Pro Ser Arg 180 185 190

Glu Glu Gly Ser Gln Asn Asn Arg Val Arg Lys Glu Ser Asn Ser Asp 195 200 205

Leu Asn Ala Lys Ser Leu Glu Asn Gly Asn Glu Gln Gly Pro Gln Thr 210 220

Tyr Pro Met His Ile Pro Val Leu Val Pro Leu Gly Ser Ser Ile Thr 225 230 235 240

Ser Ser Leu Ser His Pro Pro Ser Glu Pro Asp Ser His Pro His Thr 245 250 255

Val Ala Gly Asp Tyr Gln Ser Phe Pro Asn His Ile Met Ser Thr Leu 260 265 270

Leu Gln Thr Pro Ala Leu Tyr Thr Ala Ala Thr Phe Ala Ser Ser Phe 275 280 285

Trp Pro Pro Asp Ser Ser Gly Gly Ser Pro Val Pro Gly Asn Ser Pro 290 295 300

Pro Asn Leu Ala Ala Met Ala Ala Ala Thr Val Ala Ala Ala Ser Ala 305 310 315 320

Trp Trp Ala Ala Asn Gly Leu Leu Pro Leu Cys Ala Pro Leu Ser Ser 325 330 335

MBI-17 Sequence Listing.ST25
Gly Gly Phe Thr Ser His Pro Pro Ser Thr Phe Gly Pro Ser Cys Asp
340 345 350

Val Glu Tyr Thr Lys Ala Ser Thr Leu Gln His Gly Ser Val Gln Ser 355 360 365

Arg Glu Gln Glu His Ser Glu Ala Ser Lys Ala Arg Ser Ser Leu Asp 370 375 380

Ser Glu Asp Val Glu Asn Lys Ser Lys Pro Val Cys His Glu Gln Pro 385 390 395 400

Ser Ala Thr Pro Glu Ser Asp Ala Lys Gly Ser Asp Gly Ala Gly Asp 405 415

Arg Lys Gln Val Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro Ser Ser.
420 425 430

Ser Asp Asp Val Glu Ala Asp Ala Ser Glu Arg Gln Glu Asp Gly Thr 435 440 445

Asn Gly Glu Val Lys Glu Thr Asn Glu Asp Thr Asn Lys Pro Gln Thr 450 460

Ser Glu Ser Asn Ala Arg Arg Ser Arg Ile Ser Ser Asn Ile Thr Asp 465 470 475 480

Pro Trp Lys Ser Val Ser Asp Glu Gly Arg Ile Ala Phe Gln Ala Leu 485 490 495

Phe Ser Arg Glu Val Leu Pro Gln Ser Phe Thr Tyr Arg Glu Glu His 500 505 510

Arg Glu Glu Glu Gln Gln Gln Glu Gln Arg Tyr Pro Met Ala Leu 515 520 525

Asp Leu Asn Phe Thr Ala Gln Leu Thr Pro Val Asp Asp Gln Glu Glu 530 540

Lys Arg Asn Thr Gly Phe Leu Gly Ile Gly Leu Asp Ala Ser Lys Leu 545 555 5560

Met Ser Arg Gly Arg Thr Gly Phe Lys Pro Tyr Lys Arg Cys Ser Met 565 570 575

Glu Ala Lys Glu Ser Arg Ile Leu Asn Asn Pro Ile Ile His Val 580 585 590

Glu Gln Lys Asp Pro Lys Arg Met Arg Leu Glu Thr Gln Ala Ser Thr 595 600 605

<210> 3

<211> 407

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222>	(10)	(348
<223>	G226	

<22	. < t.	G226									٠		•				
<40 cca		3 . tt a Me	tg ga et A	at a sp A	at a	cc aa hr As 5	ac co sn A:	gt c rg L	tt c	gt c rg L	tt ceu A	rg. A	gc gg rg G	gt co ly P	cc agt ro Ser	!	5 :
ctt Leu 15	agg Arg	caa Gln	act Thr	Lys	ttc Phe 20	act Thr	cga Arg	tcc Ser	cga Arg	tat Tyr 25	gac Asp	tct Ser	gaa Glu	gaa Glu	gtg Val 30	9	9
agt Ser	agc Ser	atc Ile	gaa Glu	tgg Trp 35	gag Glu	ttt	atc Ile	agt Ser	atg Met 40	acc Thr	gaa Glu	caa Gln	gaa Glu	gaa Glu 45	gat Asp	14	1.
ctc Leu	atc Ile	tct Ser	cga Arg 50	atg Met	tac Tyr	aga Arg	ctt Leu	gtc Val 55	ggt Gly	aat Asn	agg Arg	tgg Trp	gat Asp 60	tta Leu	ata Ile	19) 5
gca Ala	gga Gly	aga Arg 65	gtc Val	gta Val	gga Gly	aga Arg	aag Lys 70	gca Ala	aat Asn	gag Glu	att Ile	gag Glu 75	aga Arg	tac Tyr	tgg Trp	24	13
att Ile	atg Met 80	aga Arg	aac Asn	tct Ser	gac Asp	tat Tyr 85	ttt Phe	tct Ser	cac His	aaa Lys	cga Arg 90	cga Arg	cgt Arg	ctt Leu	aat Asn	29)]
				ttt Phe													, 9
aaa Lys		taa	agaa	atca	iaa a	taaa	agct	t to	aato	ataa	aag	ıtaga	aca			38	8

aatcttgaat gtcttctca

<210>	4	
<211>	112	
<212>	PRT	
<213>	Arabidopsis	thaliana

<400>

Met Asp Asn Thr Asn Arg Leu Arg Leu Arg Gly Pro Ser Leu Arg 1 10 15 15

Gln Thr Lys Phe Thr Arg Ser Arg Tyr Asp Ser Glu Glu Val Ser Ser 20 25 30

Ile Glu Trp Glu Phe Ile Ser Met Thr Glu Glu Glu Asp Leu Ile 35

Ser Arg Met Tyr Arg Leu Val Gly Asn Arg Trp Asp Leu Ile Ala Gly 50 $\,$ 60 $\,$

Arg Val Val Gly Arg Lys Ala Asn Glu Ile Glu Arg Tyr Trp Ile Met 70 70 75 80

Arg Asn Ser Asp Tyr Phe Ser His Lys Arg Arg Arg Leu Asn Asn Ser 85

<21 <21 <21 <21	12>	5 1209 DNA Arab		sis	thal	iana			•	*						
<22 <22 <22 <22	?1> ?2>	CDS (41) G229	(1	156)	e P											
<40 ttg		5 cag	tgga	ataa	ac a	cata	taac	c gc	cgga	gaaa	Met				Pro	55
		gag Glu														103
gac Asp	cag Gln	att Ile	ctc Leu 25	tcc Ser	aac Asn	tac Tyr	att Ile	caa Gln 30	tcc Ser	aat Asn	ggt Gly	gaa Glu	ggt Gly 35	tct Ser	tgg Trp	151
		ctc Leu 40														199
aga Arg	ttg Leu 55	aga Arg	tgg Trp	ata Ile	aac Asn	tat Tyr 60	cta Leu	aga Arg	tca Ser	gac Asp	ctc Leu 65	aag Lys	cgt Arg	gga Gly	aac Asn	247
Ile 70	Thr	cca Pro	Glu	Glu	Glu 75	Glu	Leu	Val	Val	80 Tys	Leu	His	Ser	Thr	Leu 85	295
Ğİy	Asn	agg Arg	Trp	Ser 90	Leu	Ile	Ala	Gly	His 95	Leu	Pro	Gly	Arg	Thr 100	Asp	343
Asn	Glu	ata Ile	Lys 105	Asn	Tyr	Trp	Asn	Ser 110	His	Leu	Ser	Arg	Lys 115	Leu	His	391
Asn	Phe	att Ile 120	Arg	Lys	Pro	Ser	11e 125	Ser	Gln	Asp	Val	Ser 130	Ala	Val	Ile.	439
Met	Ala 135	aac Asn	Ala	Ser	Ser	Ala 140	Pro	Pro	Pro	Pro	Gln 145	Ala	Lys	Arg	Arg	487
Leu 150	Gly	aga Arg	Thr	Ser	Arg 155	Ser	Ala	Met	Lys	Pro 160	Lys	Ile	Arg	Arg	Thr 165	535 583
Lys	Thr	cgt Arg	Lys	Thr 170	Lys	Lys	Thr	Ser	Ala 175	Pro	Pro	Glu	Pro	Asn 180	Ala	631
Asp	Val	Ala	Gly 185	Ala	Asp	Lys	Glu	Ala 190	Leu	Met	Val	Glu	Ser 195	Ser	Gly	679
Ala	Glu	Ala 200 aat	Glu	Leu	Gly	Arg	Pro 205	Cys	Asp	Tyr	Tyr	Gly 210	Asp	Asp	Сув	727
Asn	Lys 215 gat	Asn	Leu atc	Met	Ser	Ile 220 ctt	Asn ttg	Gly	Asp	Asn	Gly 225 tca	Val gat	Leu	Thr	Phe	775
Asp 230	Asp	Asp	Ile	Ile	Asp 235	Leu	Leū	Leū	Asp	G1u 240	Ser	Āsp	Pro	ĞĨy	His 245	

MRT-17	Sequence	Listing	ST25
11DT-T/	Searchice	TITOLING.	

									-			_			•	
Leu	tac Tyr	aca Thr	aac Asn	aca Thr 250	acg Thr	tgc Cys	ggt Gly	ggt Gly	ggt Gly 255	999 Gl <u>y</u>	gag Glu	ttg Leu	cat His	aac Asn 260	ata Ile	823
			gaa Glu 265													871
aat Asn	ctc Leu	gac Asp 280	tgt Cys	ctt Leu	ctt Leu	cag Gln	tct Ser 285	tgt Cys	cca Pro	tct Ser	gtg Val	gag Glu 290	tcg Ser	ttt Phe	ctc Leu	919
			cac													967
			gtt Val													1015
aaa Lys	gag Glu	aat Asn	ccc Pro	gac Asp 330	tca Ser	atg Met	gtc Val	tcg Ser	tgg Trp 335	ctt Leu	tta Leu	gac Asp	ggt Gly	gat Asp 340	gat Asp	1063
			atc Ile 345													1111
			gac Asp											tga		1156
tgai	atto	gat t	gato	cgtt	a to	gtaat	cttt	ttt	gtgo	catt	caca	agtti	:ga a	atc		1209
-210	1 ~ 6															
<210 <211 <212 <213	L> :	5 871 PRT Arabi	idops	sis t	:hali	_ iana				•.				٠.		
<213	l> 1 2> 1 3> 1	871 PRT Arabi	idops	sis t	hali	iana				·			•	·.		
<213 <213 <213 <400	l> 3 2> 1 3> 1 0> 6	871 PRT Arabi	idops Ala				Glu	Lys	Val 10	Gly	Ile	Lys	Arg	Gly 15	Arg	
<21: <21: <21: <400 Met 1	l> 1 2> 1 3> 1 3> 1 0> 6	371 PRT Arabi	_	Pro 5	Cys	Cys			10	_		_		15		
<21: <21: <21: <400 Met 1	1> 1 2> 1 3> 7 0> 6 Gly	B71 PRT Arabi Arabi	Ala	Pro 5 Glu	Cys Asp	Cys Gln	Ile	Leu 25	10 Ser	Asn	Tyr	Ile	Gln 30	15 Ser	Asn	
<211 <212 <400 Met 1 Trp	l> 2 2> 1 3> 4 0> 6 Gly Thr	371 PRT Arabi Arg Ala Gly 35	Ala Glu 20	Pro 5 Glu Trp	Cys Asp Arg	Cys Gln Ser	Ile Leu 40	Leu 25	10 Ser Lys	Asn Asn	Tyr Ala	Ile Gly 45	Gln 30 Leu	15 Ser Lys	Asn Arg	
<21: <21: <21: <400 Met 1 Trp Gly	1> 1	PRT Arabi Arg Ala Gly 35	Ala Glu 20 Ser	Pro 5 Glu Trp Cys	Cys Asp Arg	Cys Gln Ser Leu 55	Ile Leu 40	Leu 25 Pro	10 Ser Lys Ile	Asn Asn Asn	Tyr Ala Tyr 60	Ile Gly 45 Leu	Gln 30 Leu Arg	Ser Lys Ser	Asn Arg Asp	
<21: <21: <21: <400 Met 1 Trp Gly Cys Leu 65	1> 2 2> 1 3> 1 6) 7 Thr Glu Gly 50	PRT Arabi Arg Ala Gly 35 Lys	Ala Glu 20 Ser	Pro 5 Glu Trp Cys	Cys Asp Arg Arg	Cys Gln Ser Leu 55	Ile Leu 40 Arg	Leu 25 Pro Trp Glu	10 Ser Lys Ile Glu	Asn Asn Asn Glu 75	Tyr Ala Tyr 60 Glu	Gly 45 Leu Leu	Gln 30 Leu Arg Val	Ser Lys Ser Val	Asn Arg Asp Lys	
<21: <21: <21: <400 Met 1 Trp Gly Cys Leu 65	l> 2 2> 1 3> 1 6 Gly Thr Glu Gly 50 Lys	PRT Arabi Arg Ala Gly 35 Lys Arg	Ala Glu 20 Ser Ser	Pro 5 Glu Trp Cys Asn Leu 85	Cys Asp Arg Arg Gly	Cys Gln Ser Leu 55	Ile Leu 40 Arg Pro	Leu 25 Pro Trp Glu	Ser Lys Ile Glu Ser 90	Asn Asn Glu 75 Leu	Tyr Ala Tyr 60 Glu	Ile Gly 45 Leu Leu	Gln 30 Leu Arg Val	Ser Lys Ser Val	Asn Arg Asp Lys 80	

MBI-17 Sequence Listing.ST25 Val Ser Ala Val Ile Met Ala Asn Ala Ser Ser Ala Pro Pro Pro 135

Gln Ala Lys Arg Arg Leu Gly Arg Thr Ser Arg Ser Ala Met Lys Pro 150

Lys Ile Arg Arg Thr Lys Thr Arg Lys Thr Lys Lys Thr Ser Ala Pro

Pro Glu Pro Asn Ala Asp Val Ala Gly Ala Asp Lys Glu Ala Leu Met 185

Val Glu Ser Ser Gly Ala Glu Ala Glu Leu Gly Arg Pro Cys Asp Tyr

Tyr Gly Asp Asp Cys Asn Lys Asn Leu Met Ser Ile Asn Gly Asp Asn

Gly Val Leu Thr Phe Asp Asp Asp Ile Ile Asp Leu Leu Leu Asp Glu

Ser Asp Pro Gly His Leu Tyr Thr Asn Thr Thr Cys Gly Gly Gly

Glu Leu His Asn Ile Arg Asp Ser Glu Gly Ala Arg Gly Phe Ser Asp

Thr Trp Asn Gln Gly Asn Leu Asp Cys Leu Leu Gln Ser Cys Pro Ser 280

Val Glu Ser Phe Leu Asn Tyr Asp His Gln Val Asn Asp Ala Ser Thr

Asp Glu Phe Ile Asp Trp Asp Cys Val Trp Gln Glu Gly Ser Asp Asn

Asn Leu Trp His Glu Lys Glu Asn Pro Asp Ser Met Val Ser Trp Leu

Leu Asp Gly Asp Asp Glu Ala Thr Ile Gly Asn Ser Asn Cys Glu Asn

Phe Gly Glu Pro Leu Asp His Asp Asp Glu Ser Ala Leu Val Ala Trp

Leu Leu Ser 370

<211> 1046 <212> DNA

<213> Arabidopsis thaliana

DRIGHTONIN AND

<221> CDS <222> (46)..(867)

<223> G241

. 40	٠						MBI	-17	Sequ	ence	Lis	ting	.ST2	5			
<40		7 att	tcaa	cttc	tt't	tato	agca	a tc	acaa	atca	aag	ag a	ta a	фа а	ga g	Ct	57
5											uug	M	et G		rg A		
	•	٠.						•		•		. 1					
															gaa Glu 20		105
gaa Glu	gat Asp	caa Gln	atc Ile	ttg Leu 25	gtc Val	tct Ser	ttt Phe	atc Ile	ctc Leu 30	aac Asn	cat His	gga Gly	cat	agt Ser 35	aac Asn	٠.	153
tgg Trp	cga Arg	gcc Ala	ctc Leu 40	cct Pro	aag Lys	caa Gln	gct Ala	ggt Gly 45	ctt Leu	ttg Leu	aga Arg	tgt Cys	gga Gly 50	aaa Lys	agc Ser		201
	aga Arg														ggc Gly		249
	ttc Phe 70											Leu			ata Ile		297
ctt Leu 85	ggc Gly	aat Asn	aga. Arg	tgg Trp	tca Ser 90	gcg Ala	att Ile	gca Ala	gca Ala	aaa Lys 95	ctg Leu	cct Pro	gga Gly	aga Arg	acc Thr 100		345
	aac Asn				Asn										ctc Leu		393
	gat Asp																441
	TA2															٠.	489
	gaa Glu 150															-	537
ttt Phe 165	tcg Ser	aca Thr	tcg Ser	cct Pro	tcg Ser 170	aca Thr	agt Ser	gag Glu	gtt. Val	tct Ser 175	tcg Ser	atg Met	aca Thr	ctc Leu	ata Ile 180	•	585
	cac His							Ile									633
	atc Ile																681
	gat Asp																729
	cac His 230																777 [*]
	caa Gln																825
	gac Asp												tag				867
aac	ggcg	199 9	aaca	agat	c to	ttag	ccgg	gct	ctag	tta	acat	gttt	ga g	gagt	aaag	t	927

1046

MBI-17 Sequence Listing.ST25 gaaatggtgc aaattagtta aggctaagaa attcaaaagc ttttgtttac cgagaaaaaa acacactcta actcttgatg tgatgtagtt agtgtattaa ttagaggctg cgttttcaa <210> <211> 273 <212> <213> Arabidopsis thaliana Met Gly Arg Ala Pro Cys Cys Glu Lys Met Gly Leu Lys Arg Gly Pro Trp Thr Pro Glu Glu Asp Gln Ile Leu Val Ser Phe Ile Leu Asn His Gly His Ser Asn Trp Arg Ala Leu Pro Lys Gln Ala Gly Leu Leu Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Met Asn Tyr Leu Lys Pro Asp Ile Lys Arg Gly Asn Phe Thr Lys Glu Glu Glu Asp Ala Ile Ile Ser Leu His Gln Ile Leu Gly Asn Arg Trp Ser Ala Ile Ala Ala Lys Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val Trp His Thr His Leu . .105 Lys Lys Arg Leu Glu Asp Tyr Gln Pro Ala Lys Pro Lys Thr Ser Asn Lys Lys Lys Gly Thr Lys Pro Lys Ser Glu Ser Val Ile Thr Ser Ser Asn Ser Thr Arg Ser Glu Ser Glu Leu Ala Asp Ser Ser Asn Pro Ser Gly Glu Ser Leu Phe Ser Thr Ser Pro Ser Thr Ser Glu Val Ser Ser Met Thr Leu Ile Ser His Asp Gly Tyr Ser Asn Glu Ile Asn Met Asp Asn Lys Pro Gly Asp Ile Ser Thr Ile Asp Gln Glu Cys Val Ser Phe Glu Thr Phe Gly Ala Asp Ile Asp Glu Ser Phe Trp Lys Glu Thr Leu Tyr Ser Gln Asp Glu His Asn Tyr Val Ser Asn Asp Leu Glu Val Ala Gly Leu Val Glu Ile Gln Gln Glu Phe Gln Asn Leu Gly Ser Ala Asn

103

MBI-17 Sequence Listing.ST25

Asn Glu Met	Ile Phe	Asp Ser	Glu Me	t Glu	Leu	Leu	Val	Arg Cys	Ile
	260		26	5			•	270	•

<210>	9.
<211>	989
<212>	DNA
<213>	Arabidopsis thaliana
<220>	
<221>	CDS
<222>	(41)(664)
<223>	G464

<400> 9 ctctgctggt atcattggag tctagggttt tgttattgac atg cgt ggt gtg tca 55 Met Arg Gly Val Ser

gaa ttg gag gtg ggg aag agt aat ctt ccg gcg gag agt gag ctg gaa Glu Leu Glu Val Gly Lys Ser Asn Leu Pro Ala Glu Ser Glu Leu Glu 10 15 20ttg gga tta ggg ctc agc ctc ggt ggt ggc gcg tgg aaa gag cgt ggg Leu Gly Leu Gly Leu Ser Leu Gly Gly Gly Ala Trp Lys Glu Arg Gly 25 30 35151

agg att ctt act gct aag gat ttt cct tcc gtt ggg tct aaa cgc tct Arg Ile Leu Thr Ala Lys Asp Phe Pro Ser Val Gly Ser Lys Arg Ser 199

gct gaa tot toe tot cac caa gga gct tot cot cot cgt toa agt caa Ala Glu Ser Ser Ser His Gln Gly Ala Ser Pro Pro Arg. Ser Ser Gln 247

gtg gta gga tgg cca cca att ggg tta cac agg atg aac agt ttg gtt Val Val Gly Trp Pro Pro Ile Gly Leu His Arg Met Asn Ser Leu Val 295 - 80

aat aac caa gct atg aag gca gca aga gcg gaa gaa gga gac ggg gag Asn Asn Gln Ala Met Lys Ala Ala Arg Ala Glu Glu Gly Asp Gly Glu 343

aag aaa gtt gtg aag aat ggt gag ctc aaa gat gtg tca atg aag gtg Lys Lys Val Val Lys Asn Gly Glu Leu Lys Asp Val Ser Met Lys Val 391

aat ccg aaa gtt cag ggc tta ggg ttt gtt aag gtg aat atg gat gga Asn Pro Lys Val Gln Gly Leu Gly Phe Val Lys Val Asn Met Asp Gly 439

gtt ggt ata ggc aga aaa gtg gat atg aga gct cat tcg tct tac gaa Val Gly Ile Gly Arg Lys Val Asp Met Arg Ala His Ser Ser Tyr Glu 487

aac ttg gct cag acg ctt gag gaa atg ttc ttt gga atg aca ggt act Asn Leu Ala Gln Thr Leu Glu Glu Met Phe Phe Gly Met Thr Gly Thr 535 155

act tgt cga gaa acg gtt aaa cct tta agg ctt tta gat gga tca tca Thr Cys Arg Glu Thr Val Lys Pro Leu Arg Leu Leu Asp Gly Ser Ser 583

gac ttt gta ctc act tat gaa gat aag ggg att gga tgc ttg ttg gag Asp Phe Val Leu Thr Tyr Glu Asp Lys Gly Ile Gly Cys Leu Leu Glu 185 190 195 631

atg ttc cat gga gaa tgt.tta tca act cgg tga aaaggcttcg.gatcatggga Met Phe His Gly Glu Cys Leu Ser Thr Arg

Page 12

200

acctcagaag ctagtggact agctccaaga cgtcaagagc agaaggatag acaaagaaac 744
aaccctgttt agcttccctt ccaaagctgg cattgtttat gtattgtttg aggtttgcaa 804
tttactcgat actttttgaa gaaagtattt tggagaatat ggataaaagc atgcagaagc 864
ttagatatga tttgaatccg gttttcggat atggttttgc ttaggtcatt caattcgtag 924
ttttccagtt tgtttcttct ttggctgtgt accaattatc tatgttctgt gagagaaagc 984
tcttg

<210> 10

<211> 207 <212> PRT

<213> Arabidopsis thaliana

<400> 10

Met Arg Gly Val Ser Glu Leu Glu Val Gly Lys Ser Asn Leu Pro Ala 1 10 15

Glu Ser Glu Leu Glu Leu Gly Leu Gly Leu Ser Leu Gly Gly Ala

Trp Lys Glu Arg Gly Arg Ile Leu Thr Ala Lys Asp Phe Pro Ser Val 35 40 45

Gly Ser Lys Arg Ser Ala Glu Ser Ser Ser His Gln Gly Ala Ser Pro

Pro Arg Ser Ser Gln Val Val Gly Trp Pro Pro Ile Gly Leu His Arg

Met Asn Ser Leu Val Asn Asn Gln Ala Met Lys Ala Ala Arg Ala Glu 85 90 95

Glu Gly Asp Gly Glu Lys Lys Val Val Lys Asn Gly Glu Leu Lys Asp 100 105 110

Val Ser Met Lys Val Asn Pro Lys Val Gln Gly Leu Gly Phe Val Lys 115 120 125

Val Asn Met Asp Gly Val Gly Ile Gly Arg Lys Val Asp Met Arg Ala 130 135 140

His Ser Ser Tyr Glu Asn Leu Ala Gln Thr Leu Glu Glu Met Phe Phe 145 155 160

Gly Met Thr Gly Thr Thr Cys Arg Glu Thr Val Lys Pro Leu Arg Leu 165 170 175

Leu Asp Gly Ser Ser Asp Phe Val Leu Thr Tyr Glu Asp Lys Gly Ile 180 185 190

Gly Cys Leu Leu Glu Met Phe His Gly Glu Cys Leu Ser Thr Arg 195 200 205

<210> 11

. 2.2		1000		. 3			MBI	-17	Sequ	ence	Lis	ting	.ST2	5		:	•
<21 <21 <21	2>	1033 DNA Arab		sis	thal	iana											
<22 <22		CDS					•			•							
<22 <22) (862)													
	0 > ·				·.	·	-						.*		•		
gtc	gacc	cac	gcgt	ccgt	99 g	aagc	caca	a ta	accc	ccta	ttc	ctcg	gcc	tttt	ttaaaa	l	60
aag	tttt	aga	ataa	teeg	at a	aaat	actt	t ta	tatt	aatt	ttt	cttt	ggt		tg gag et Glu		118
ggt Gly	tcg Ser	tcc Ser 5	aaa Lys	999 Gly	ttg Leu	agg Arg	aaa Lys 10	ggt Gly	gca Ala	tgg Trp	act Thr	gct Ala 15	gaa Glu	gaa Glu	gat Asp		166
										gga Gly							214
										tgc Cys 45						: ;	262
										atc Ile							310
										ctt Leu							358
aat Asn	agg Arg	tgg Trp 85	tcc Ser	ttg Leu	att Ile	gct Ala	ggt Gly 90	cga Arg	ttg Leu	cct Pro	ggt Gly	cgg Arg 95	acc Thr	gct Ala	aat . Asn :	٠	406
										agt Ser							454
										aac Asn 125					cct · Pro 130		502
					Lys					aag Lys							550
										aat Asn							598
										aaa Lys							646
										aaa Lys							694
aat Asn 195	cta Leu	atg Met	aat Asn	gga Gly	gat Asp 200	aat Asn	atg Met	tgg Trp	ttg Leu	gag Glu 205	aat Asn	tta Leu	ctg Leu	Gl y 999	gaa Glu 210		742
										gcg Ala							790
									Gln	ctt Leu age 1	Trp						838

892

			230	•		•	MBI	-17 S 235	Seque	ence	List	ing	ST25	5 .	
		act Thr 245	Val				tag	tgt	ttct(cac (gtt	tgtti	ta a	gatt	gtggg
tgg	cttt	tct 1	ttcg	tatt	tt ag	gtaal	tgtai	t tti	ttct	gtat	gaag	gtaa	aga i	attt	cagcat
ttta	aaga	aaa a	atgg	ttat	gt ti	tcta	cgta	a taa	aaaa	aaaa	cgt	tatt	tat a	aaaa	aaaaa
aaaa	aaaa	aaa a	aaaa	aaaa	aa a										
<210 <210 <210 <210	l> 2>	12 249 PRT Arab:	idop:	sis 1	:hal:	iana		·			,				
<400) > :	12	*				•				•				
Met 1	Glu	Gly	Ser	Ser 5	Lys	Gly	Leu	Arg	Lys 10	Gly	Ala	Trp	Thr	Ala 15	Glu
Glu	Asp	Ser	Leu 20	Leu	Arg	Leu	Cys	Ile 25	Asp	Lys	Tyr	Gly	Glu 30	Gly	Lys
Trp	His	Gln 35	Val	Pro	Leu	Arg	Ala 40	Gly	Leu	Asn	Arg	Cys 45	Arg	Lys	Ser .
Cys	Arg 50	Leu	Arg	Trp	Leu	Asn 55	Tyr	Leu	Lys	Pro	Ser 60	Ile	Lys	Arg	Gly
Arg 65	Leu	Ser	Asn	Asp	Glu 70	Val	Asp	Leu	Leu	Leu 75	Arg	Leu	His	Lys	Leu 80
Leu	Gly	Asn	Arg	Trp 85	Ser	Leu	Ile	Ala	Gly 90	Arg	Leu	Pro	Gly	Arg 95	Thr .
Ala	Asn	Asp	Val 100	Lys	Asn	Tyr	Trp	Asn 105	Thr	His	Leu	Ser	Lys 110	Lys	His
Glu	Ser	Ser 115	Cys	Cys	Lys	Ser	Lys 120	Met	Lys	Lys	Lys	Asn 125	Ile	Ile	Ser
Pro	Pro 130	Thr	Thr	Pro	Val	Gln 135	Lys	Ile	Gly	Val	Phe 140	Lys	Pro	Arg	Pro
Arg 145	Ser	Phe	Ser	Val	Asn 150	Asn	Gly	Cys	Ser	His 155	Leu	Asn	Gly	Leu	Pro 160
Glu	Val	Asp	Leu	Ile 165	Pro	Ser	Cys	Leu	Gly 170	Leu	Lys	Lys	Asn	Asn 175	Val
Cys	Glu	Asn	Ser 180	Ile	Thr	аұЭ	Asn	Lys 185	Asp	Asp	Glu	Lys	Asp 190	Asp	Phe
Val	Asn	Asn 195	Leu	Met	Asn	Gly	Asp 200	Asn	Met	Trp	Leu	Glu 205	Asn	Leu	Leu
Gly	Glu 210	Asn	Gln	Glu	Ala	Asp 215	Ala	Ile	Val	Pro	Glu 220	Ala	Thr	Thr	Ala

Glu His Gly Ala Thr Leu Ala Phe Asp Val Glu Gln Leu Trp Ser Leu 225 230 240

Phe Asp Gly Glu Thr Val Glu Leu Asp 245

<210> 13 <211> 1640 <212> DNA <213> Arabidopsis thaliana											
<220> <221> CDS <222> (76)(1431) <223> G776											
<400> 13 tgcaattgaa ggtgaggttt ggtgaaaggg aaattgagaa aaccctagaa caagtacggt											
ctctattttg cttta atg ggt cgc gaa tct gtg gct gtt gtg act gcg ccg Met Gly Arg Glu Ser Val Ala Val Thr Ala Pro 1 5 10											
ccc tcg gcg act gct ccg ggt act gct tcg gtg gcg acc tcg ctt gct Pro Ser Ala Thr Ala Pro Gly Thr Ala Ser Val Ala Thr Ser Leu Ala 15 20 25	159										
cct ggc ttc cga ttt cat ccg act gat gag gaa ctc gtg agc tat tac Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu Val Ser Tyr Tyr 30 35 40	207										
ttg aag agg aag gtt ctg ggc caa cct gta cgc ttc gat gcg att gga Leu Lys Arg Lys Val Leu Gly Gln Pro Val Arg Phe Asp Ala Ile Gly 45 50 55 60	255										
gag gtc gat ata tac aag cat gag ccc tgg gat tta gca gtg ttt tcg Glu Val Asp Ile Tyr Lys His Glu Pro Trp Asp Leu Ala Val Phe Ser 65 70 75	303										
aga ttg aag aca agg gac caa gaa tgg tac ttc tac agt gca tta gat Arg Leu Lys Thr Arg Asp Gln Glu Trp Tyr Phe Tyr Ser Ala Leu Asp 80 85 90	351										
aag aag tat gga aac ggt gct agg atg aac cga gca act aac aga ggg Lys Lys Tyr Gly Asn Gly Ala Arg Met Asn Arg Ala Thr Asn Arg Gly 95 100 105	399										
tac tgg aaa gct act gga aaa gac aga gaa atc cgc cgt gac att ctg Tyr Trp Lys Ala Thr Gly Lys Asp Arg Glu Ile Arg Arg Asp Ile Leu 110 115 120	447										
Ctt ctc ggt atg aaa aag aca ctt gtt ttc cac agt ggg cgt gca cca Leu Leu Gly Met Lys Lys Thr Leu Val Phe His Ser Gly Arg Ala Pro 125 130 135 140	495										
gac ggg ctt cgg act aat tgg gtt atg cat gag tat cgc ctt gtg gaa Asp Gly Leu Arg Thr Asn Trp Val Met His Glu Tyr Arg Leu Val Glu 145 150 155	543										
tat gaa acc gag aaa aac gga aac ctg gtg caa gat gca tat gtg ttg Tyr Glu Thr Glu Lys Asn Gly Asn Leu Val Gln Asp Ala Tyr Val Leu 160 165 170	591										
tgt aga gtc ttc cac aag aat aac att ggg cca cca agt ggg aac aga Cys Arg Val Phe His Lys Asn Asn Ile Gly Pro Pro Ser Gly Asn Arg 175 180 185	639										
tat gct ccg ttc atg gaa gag gaa tgg gct gat gat gaa gga gct ctg Tyr Ala Pro Phe Met Glu Glu Glu Trp Ala Asp Asp Glu Gly Ala Leu 190 195 200	687										

Page 16

ABIT-17 Sequence Listing.ST25 11e Pro Gly Ile Asp Val Lys Leu Arg Leu Clu Pro Pro Pro Val Ala 2205 210 210 215 2215 2216 2216 2216 2216 2216 2216																		
Asn Gly Asn Asp Gln Met Asp Gln Glu Fle Gln Ser Ala Ser Lys Ser Lev at Cat Cat Cat Cat Cat Cat Cat Cat Cat	Ile	Pro	gga Gly	ata Ile	gac Asp	Val	aag Lys	ctc	agg	cta	gag Glu	ccg	ccg	cca	gta	Ala	. 7 :	35
gaa tcg gac caa cag aat cat cat gag aa aa gag gaa cac ctc aaa cgc gag gag gag cgc aac aaa gaa ga	aat Asn	gga Gly	aac Asn	gac Asp	Gln	atg Met	gac Asp	cag Gln	gaa Glu	Ile	cag Gln	tca Ser	gcc Ala	agc Ser	rys	agt Ser	78	83
Glu Ser Asp Gln Gln Asn His His Glu Asn Asp Leu Lys Pro Glu Glu 255 cat aac aac aat aat aat tat gat gaa aac gag gaa acc ctc aaa cgc 270 gag cag atg gaa gag gag gag cgt cct cct cct cga cct gta tgc gtt ctc 280 gag cag atg gaa gag gag gag cgt cct cct cct cga cct gta tgc gtt ctc 300 gaac aaa gaa gct cca tta cct ctt ctg caa tac aaa cgt aga cgc caa 1023 Asn Lys Glu Ala Pro Leu Pro Leu Ly Gln Tyr Lys Arg Arg Arg Gln 305 agc gag tcc aac aac aac tca agc agg aac aca cag gac cat tgt tcg ser Asn Asn Asn Asn Asn Asn Ser Ser Arg Asn Thr Gln Asp His Cys Ser 320 tcc aca aca aca aca gt gtc gac aat aca aca act tat atc tca tct ser Thr Thr Thr Val Asp Asn Thr Thr Thr Leu Ile Ser Ser Ser Arg Asn Thr Ala Ile Ser Ala Leu Leu Glu Phe Ser Leu 350 atg ggt atc tcc gac aag aaa gaa aga cag cag cat tgt tcg ctt gc gct gcc gct gcc acc aca act act gcc atc tct gca ttg ctt gag ttc tca ctc Ala Ala Ala Thr Asn Thr Ala Ile Ser Ala Leu Leu Glu Phe Ser Leu 366 atg ggt atc tcc gac aag aaa gaa aga ccg cag caa ccg cta cgt cct het Gly Ile Ser Asp Lys Lys Glu Lys Pro Gln Gln Pro Leu Arg Pro 395 cac aag gaa cct ttg cct cct caa act cca act tca gat tct cct gra tgc gc act acg dct his Lys Glu Pro Pro Gln Thr Pro Leu Ala Ser Pro Glu Glu 395 aag gtt aat gat ctc cag aag ag gag at cac cag at tct gct gcd acg cac cac acg acg gag acg cac cac acg acg	ctc Leu	atc	aac Asn	Ile	aat Asn	gag Glu	cca Pro	ccg Pro	Arg	gag Glu	aca Thr	gct Ala	cca Pro	Leu	gat Asp	atc Ile	8.	31
Ris Asn Asn Asn Asn Asn Asn Try Asp Glu Asn Glu Glu Thr Leu Lys Arg 270 gag cag atg gaa gag gag cgt cct cct cga cct gta tgc gtt ctc glu Glu Glu Glu Glu Glu Glu Arg Pro Pro Arg Pro Val Cys Val Leu 300 aca aca aaa gaa gac cct ctt ctg caa tac aac cgt aga cgc caa lo23 Asn Lys Glu Ala Pro Leu Pro Leu Leu Gln Try Lys Arg Arg Arg Gln 315 ago gag tcc aac aac aac tca agc agg aac aca cag gac cat tgt tcg Ser Glu Ser Asn Asn Asn Asn Ser Ser Arg Asn Thr Gln Asp His Cys Ser 320 ago gag tcc aca aca cac aca tca agc aga aca aca cag gac cat tgt tcg lo71 ago go get gcc aca act gt gac aat aca acc act lea acc act lea agc agg and tca acc cac tca tca ser Thr Thr Thr Thr Thr Val Asp Asn Thr Thr Thr Leu Ile Ser Ser Ser Ser Ala Ala Ala Ala Thr Asn Thr Ala Ile Ser Ala Leu Leu Glu Phe Ser Leu 350 at 360	gaa Glu	tcg Ser	Asp	caa Gln	cag Gln	aat Asn	cat His	His	Glu	aat Asn	gac Asp	ctc Leu	Lys	ccg Pro	gag Glu	gag Glu	81	79
aac aaa gaa gct cca tta cct ctt ctg caa tac aac cgt aga cgc caa logs car cgu ser ship ship ship ship ship ship ship ship	cat His	Asn	aac Asn	aat Asn	aat Asn	aat Asn	Tyr	gat Asp	gaa Glu	aac Asn	gag Glu	Glu	aca Thr	ctc Leu	aaa Lys	cgc Arg	92	27
Asn Lys Glu Ala Pro Leu Pro Leu Leu Gln Tyr Lys Arg Arg Arg Gln 305 305 310 310 310 310 310 310 310 310 310 310	Glu	Gln	atg Met	gaa Glu	gaa Glu	Glu	gag Glu	cgt Arg	cct Pro	cct Pro	Arg	cct Pro	gta Val	tgc Cys	gtt Val	Leu	97	75
Ser Glu Ser Asn Asn Asn Ser Ser Arg Asn Thr Gln Asp His Cys Ser 320 Asn Thr Gln Asp His Cys Ser 320 Asn Thr	aac Asn	aaa Lys	gaa Glu	gct Ala	Pro	tta Leu	cct Pro	ctt Leu	ctg Leu	Gln	tac Tyr	aaa Lys	cgt Arg	aga Arg	Arg	caa Gln	102	23
Ser Thr Thr Thr Thr Val Asp Asn Thr Thr Thr Leu 11e Ser Ser Ser Ser 335 gcc gct gct gcac acc aac aac act gcc atc tct gca ttg ctt gag ttc tca ctc Ala Ala Ala Ala Thr Asn Thr Ala 11e Ser Ala Leu Leu Glu Phe Ser Leu 350 atg ggt atc tcc gac aag aaa gaa gaa aag ccg cag caa ccg cta cgt cct Asp Lys Lys Glu Lys Pro Gln Gln Pro Leu Arg Pro 380 cac aag gaa cct ttg cct cct caa act gcc atc act tca gaa gag gag ttc tca cct glu Arg Pro 380 aag gtt aat gat ctc cag aag gag gad att cac cac cag atg tcc gaa gag gad glu Ser Pro Glu Glu Arg And Ser Ser Ala Glu Ala Met Ile Ser Ile Glu Arg And Ser Arg Ile Asp Ala Leu Arg Gln Glu Ala Met Ile Ser Ile Glu Glu Arg And Ser Arg Ile Asp Ala Leu Arg Gln Glu Ala Met Ile Ser Ile And	agc Ser	gag Glu	tcc Ser	Asn	aac Asn	aac Asn	tca Ser	agc Ser	Arg	aac Asn	aca Thr	cag Gln	gac Asp	His	tgt Cys	tcg Ser	107	71
Ala Ala Ala Thr Asn Thr Ala Ile Ser Ala Leu Leu Glu Phe Ser Leu 360 atg ggt atc tcc gac aag aaa gaa aag ccg cag caa ccg cta cgt cct Met Gly Ile Ser Asp Lys Lys Glu Lys Pro Gln Gln Pro Leu Arg Pro 380 cac aag gaa cct ttg cct cct caa act cca ctt gca tct cct gaa gag His Lys Glu Pro Leu Pro Pro Gln Thr Pro Leu Ala Ser Pro Glu Glu 395 aag gtt aat gat ctc cag aag gag att cac cag atg tct gt gaa aga Lys Val Asn Asp Leu Gln Lys Glu Ile His Gln Met Ser Val Glu Arg 410 gaa act ttc aag ctt gaa atg atg agt gca gaa gct atg atc agt att Ile Ser Ile 425 ctc cag tca agg atc gat gcg ctg cgt cag gag aac gag gaa ctc aag atg Ile Glu Glu Glu Leu Lys 430 aag aac aat gct aat gga caa taa aggetctaaa aacatctct caggttactt Lys Asn Asn Ala Asn Gly Gln 450 cttattgccc ttcgccttt atttagctt aatctccta atactatgac ccatctacat 1521 agctcctcta gacagattgc gaactgtgtg aatctctgtt gtaacatagg ataaaacgga 1581	tcc Ser	aca Thr	Thr	aca Thr	act Thr	gtc Val	gac Asp	Asn	aca Thr	acc Thr	act Thr	tta Leu	He	tca Ser	tca Ser	tct Ser	111	L9
Met Gly Ile Ser Asp Lys Lys Glu Lys Pro Gln Gln Fro Leu Arg Pro 380 cac aag gaa cct ttg cct cct caa act cca ctt gca tct cct gaa gag gag His Lys Glu Pro Leu Pro Pro Gln Thr Pro Leu Ala Ser Pro Glu Glu Glu Japs Val Asn Asp Leu Gln Lys Glu Ile His Gln Met Ser Val Glu Arg 410 gaa act ttc aag ctt gaa atg atg agg gag att cac cag gag gct atg atc agt att Ile Ser Ile Als Ser Ile Glu Thr Phe Lys Leu Glu Met Met Ser Ala Glu Ala Met Ile Ser Ile Gln Ser Arg Ile Asp Ala Leu Arg Gln Glu Asn Glu Glu Leu Lys Asn Asn Ash Ala Asn Gly Gln 450 cttattgccc ttegecttt atttagettt aatctecta atactatgac ccatctacat agctectcta gacagattgc gaactgtgtg aatctetgt gtaacatagg ataaaacgga 1581	gcc Ala	Ala	gcc Ala	acc Thr	aac Asn	act Thr	Ala	atc Ile	tct Ser	gca Ala	ttg Leu	Leu	gag Glu	ttc Phe	tca Ser	ctc Leu	116	57
Aag aac aat gct aat gga caa taa aggetetaaa aacatetete caggttactt Lys Asn Asn Ala Asp Ala Leu Arg Gln Glu Arg 410 1311	Met	ggt Gly	atc Ile	tcc Ser	gac Asp	Lys	aaa Lys	gaa Glu	aag Lys	ccg Pro	GIn	caa Gln	ccg Pro	cta Leu	cgt Arg	Pro	121	15
Lys Val Asn Asp Leu Gln Lys Glu Ile His Gln Met Ser Val Glu Arg 400 gaa act ttc aag ctt gaa atg atg agt gca gaa gct atg atc agt att Glu Thr Phe Lys Leu Glu Met Met Ser Ala Glu Ala Met Ile Ser Ile 415 ctc cag tca agg atc gat gcg ctg cgt cag gag aac gag gaa ctc aag Leu Gln Ser Arg Ile Asp Ala Leu Arg Gln Glu Asn Glu Glu Leu Lys 430 aag aac aat gct aat gga caa taa aggetctaaa aacatetete caggttactt Lys Asn Asn Ala Asn Gly Gln 445 cttattgccc ttegectttt atttagettt aateteecta atactatgae ccatetacat aggetcetcta gacagattge gaactgtgtg aateteegt gtaacatagg ataaaacgga 1581	cac His	aag Lys	gaa Glu	cct Pro	Leu	cct Pro	cct Pro	caa Gln	act Thr	Pro	ctt Leu	gca Ala	tct Ser	cct Pro	GIU	gag Glu	126	53
Ctc cag tca agg atc gat gcg ctg cgt cag gag aac gag gaa ctc aag Leu Gln Ser Arg Ile Asp Ala Leu Arg Gln Glu Asn Glu Glu Leu Lys 430 aag aac aat gct aat gga caa taa aggctctaaa aacatctctc caggttactt Lys Asn Asn Ala Asn Gly Gln 445 cttattgccc ttcgcctttt atttagcttt aatctcccta atactatgac ccatctacat agctcctcta gacagattgc gaactgtgtg aatctctgtt gtaacatagg ataaaacgga 1581	aag Lys	gtt Val	aat Asn	Asp	ctc Leu	cag Gln	aag Lys	Glu	Ile	cac His	cag Gln	atg Met	Ser	vai	gaa Glu	aga Arg	131	11
Leu Gln Ser Arg Ile Asp Ala Leu Arg Gln Glu Asn Glu Glu Leu Lys 430 aag aac aat gct aat gga caa taa aggctctaaa aacatctctc caggttactt Lys Asn Asn Ala Asn Gly Gln 445 cttattgccc ttcgcctttt atttagcttt aatctcccta atactatgac ccatctacat agctcctcta gacagattgc gaactgtgtg aatctctgtt gtaacatagg ataaaacgga 1581	gaa Glu	act Thr	Phe	aag Lys	ctt Leu	gaa Glu	atg Met	Met	agt Ser	gca Ala	gaa Glu	gct Ala	Met	atc Ile	agt Ser	att Ile	135	59
Lys Asn Asn Ala Asn Gly Gln 445 cttattgccc ttcgcctttt atttagcttt aatctcccta atactatgac ccatctacat agctcctcta gacagattgc gaactgtgtg aatctctgtt gtaacatagg ataaaacgga 1581	ctc Leu	Gln	tca Ser	agg Arg	atc Ile	gat Asp	Ala	ctg Leu	cgt Arg	cag Gln	gag Glu	Asn	Glu	gaa Glu	ctc Leu	aag Lys	140)7
agctcctcta gacagattgc gaactgtgtg aatctctgtt gtaacatagg ataaaacgga 1581	Lys	aac Asn	aat Asn	gct Ala	aat Asn	Gly	caa Gln	taa	aggo	tcta	aa a	acat	ctct	c ca	aggtt	actt	146	51
	ctt	attgo	cc t	tcgc	cttt	t at	ttag	cttt	aat	ctc	cta	atac	tate	gac o	cato	tacat	152	21
	agctcctcta gacagattgc gaactgtgtg aatctctgtt gtaacatagg ataaaacgga										158	31						
•	10																	

<211> 451
<212> PRT
<213> Arabidopsis thaliana

<400> 14

Met Gly Arg Glu Ser Val Ala Val Val Thr Ala Pro Pro Ser Ala Thr 1 10 15

Ala Pro Gly Thr Ala Ser Val Ala Thr Ser Leu Ala Pro Gly Phe Arg 20 25 30

Phe His Pro Thr Asp Glu Glu Leu Val Ser Tyr Tyr Leu Lys Arg Lys 35 40 45

Val Leu Gly Gln Pro Val Arg Phe Asp Ala Ile Gly Glu Val Asp Ile 50 60

Tyr Lys His Glu Pro Trp Asp Leu Ala Val Phe Ser Arg Leu Lys Thr 65 70 75 80

Arg Asp Gln Glu Trp Tyr Phe Tyr Ser Ala Leu Asp Lys Lys Tyr Gly
85 90 95

Asn Gly Ala Arg Met Asn Arg Ala Thr Asn Arg Gly Tyr Trp Lys Ala 100 105 110

Thr Gly Lys Asp Arg Glu Ile Arg Arg Asp Ile Leu Leu Gly Met
115 120 125

Lys Lys Thr Leu Val Phe His Ser Gly Arg Ala Pro Asp Gly Leu Arg

Thr Asn Trp Val Met His Glu Tyr Arg Leu Val Glu Tyr Glu Thr Glu 145 150 150

Lys Asn Gly Asn Leu Val Gln Asp Ala Tyr Val Leu Cys Arg Val Phe
165 170 175

His Lys Asn Asn Ile Gly Pro Pro Ser Gly Asn Arg Tyr Ala Pro Phe
180 185

Met Glu Glu Trp Ala Asp Asp Glu Gly Ala Leu Ile Pro Gly Ile 195 200 205

Asp Val Lys Leu Arg Leu Glu Pro Pro Pro Val Ala Asn Gly Asn Asp 210 220

Gln Met Asp Gln Glu Ile Gln Ser Ala Ser Lys Ser Leu Ile Asn Ile 225 230 235 240

Asn Glu Pro Pro Arg Glu Thr Ala Pro Leu Asp Ile Glu Ser Asp Gln
245 250 255

Gln Asn His His Glu Asn Asp Leu Lys Pro Glu Glu His Asn Asn Asn 260 265 270

Asn Asn Tyr Asp Glu Asn Glu Glu Thr Leu Lys Arg Glu Gln Met Glu 275 280 285

MBI-17 Sequence Listing.ST25 Glu Glu Glu Arg Pro Pro Arg Pro Val Cys Val Leu Asn Lys Glu Ala . 295 Pro Leu Pro Leu Gln Tyr Lys Arg Arg Gln Ser Glu Ser Asn 315 Asn Asn Ser Ser Arg Asn Thr Gln Asp His Cys Ser Ser Thr Thr Thr Val Asp Asn Thr Thr Leu Ile Ser Ser Ser Ala Ala Ala Thr 345 Asn Thr Ala Ile Ser Ala Leu Leu Glu Phe Ser Leu Met Gly Ile Ser 360 Asp Lys Lys Glu Lys Pro Gln Gln Pro Leu Arg Pro His Lys Glu Pro 375 Leu Pro Pro Gln Thr Pro Leu Ala Ser Pro Glu Glu Lys Val Asn Asp 390 Leu Gln Lys Glu Ile His Gln Met Ser Val Glu Arg Glu Thr Phe Lys . 410 405 Leu Glu Met Met Ser Ala Glu Ala Met Ile Ser Ile Leu Gln Ser Arg Ile Asp Ala Leu Arg Gln Glu Asn Glu Glu Leu Lys Lys Asn Asn Ala 440 Asn Gly Gln 450 <210> 15 <211> 1389 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (50)..(1249) <223> G778 <400> 15 58 . tctcaataac acaaaacctt ttaaactagt aaaatacaca gattttagg atg agc caa Met Ser Gln 106 tot ott cca aac tot cac atc gat gat act ccg gca gca gcc acc acc Cys Val Pro Asn Cys His Ile Asp Asp Thr Pro Ala Ala Ala Thr Thr acc gtc cgc tcc acc aca gcc gca gac atc ccc ata tta gac tac gag Thr Val Arg Ser Thr Thr Ala Ala Asp Ile Pro Ile Leu Asp Tyr Glu 30 gta gcc gag ctg acg tgg gag aac ggg caa cta ggc ttg cac ggc tta Val Ala Glu Leu Thr Trp Glu Asn Gly Gln Leu Gly Leu His Gly Leu 202 ggt cca ccg cga gtg acg gct tcg tcg acc aag tac tcc aca ggc gcc Gly Pro Pro Arg Val Thr Ala Ser Ser Thr Lys Tyr Ser Thr Gly Ala

									, eque					•		
ggt Gly	gga Gly	acg Thr 70	ttg Leu	gag Glu	tcg Ser	ata Ile	gtg Val 75	gac Asp	caa Gln	gct Ala	act Thr	cgc Arg 80	ctc Leu	cct Pro	aac Asn	298
					gag Glu											346
agg Arg 100	gcc Ala	gcg Ala	atg Met	gca Ala	atg Met 105	gac Asp	gcg Ala	ctt Leu	gtc Val	cct Pro 110	tgc Cys	tcc Ser	aac Asn	cta Leu	gta Val 115	394
					aag Lys											442
tca Ser	tgt Cys	Ser	gat Asp 135	ggt Gly	cgt Arg	acc Thr	atg Met	ggc Gly 140	ggt Gly	gga Gly	aaa Lys	cga Arg	gca Ala 145	aga Arg	gtg Val	490
gca Ala	ccg Pro	gag Glu 150	tgg Trp	agc Ser	ggc Gly	ggc Gly	999 Gly 155	agt Ser	cag Gln	cgg Arg	ctg Leu	acc Thr 160	atg Met	gac Asp	act Thr	538
tac Tyr	gac Asp 165	gta Val	ggt Gly	ttc Phe	acc Thr	tca Ser 170	aca Thr	tca Ser	atg Met	ggc Gly	tcg Ser 175	cac His	gat Asp	aac Asn	aca Thr	586
atc Ile 180	gac Asp	gat Asp	cat His	gac Asp	tcc Ser 185	gtc Val	tgc Cys	cac His	agc Ser	cgc Arg 190	cca Pro	cag Gln	atg Met	gag Glu	gac Asp 195	634
gaa Glu	gaa Glu	gag Glu	aag Lys	aaa Lys 200	gcc Ala	gga Gly	gga Gly	aaa Lys	tca Ser 205	tca Ser	gtt Val	tca Ser	acc Thr	aag Lys 210	aga Arg	682
					att											730
aaa Lys	atc Ile	aat Asn 230	caa Gln	agg Arg	atg Met	aag Lys	act Thr 235	ttg Leu	caa Gln	aaa Lys	ctg Leu	gtt Val 240	ccc Pro	aat Asn	tcc Ser	778
agc Ser	aag Lys 245	acg Thr	gat Asp	aaa Lys	gca Ala	tct Ser 250	atg Met	ttg Leu	gat Asp	gaa Glu	gtg Val 255	ata Ile	gag Glu	tat Tyr	ttg Leu	826
aag Lys 260	caa Gln	ctt Leu	caa Gln	gca Ala	caa Gln 265	gtg Val	agc Ser	atg Met	atg Met	agc Ser 270	aga Arg	atg Met	aat Asn	atg Met	cct Pro 275	874
tct Ser	atg Met	atg Met	ctt Leu	cct Pro 280	atg Met	gcc Ala	atg Met	cag Gln	caa Gln 285	caa Gln	caa Gln	caa Gln	cta Leu	caa Gln 290	atg Met	922
					ccc Pro										ccc Pro	. 970
ggt Gly	ctc Leu	ggt Gly 310	ctc Leu	ctc Leu	gac Asp	ctt Leu	aat Asn 315	tct Ser	atg Met	aac Asn	cga Arg	gct Ala 320	gct Ala	gca Ala	agc Ser	1018
gct Ala	cct Pro 325	aat Asn	atc Ile	cat His	gcc Ala	aac Asn 330	atg Met	atg Met	cca Pro	aac Asn	cca Pro 335	ttt Phe	ttg Leu	ccc Pro	atg Met	1066
aat Asn 340	tgt Cys	cca Pro	tcg Ser	tgg Trp	gat Asp 345	gct Ala	tct Ser	tcc Ser	aat Asn	gac Asp 350	tct Ser	cga Arg	ttt Phe	cag Gln	tct Ser 355	1114
cct Pro	ctc Leu	atc Ile	ccc Pro	gat Asp	cct Pro	atg Met	tct Ser	gcc Ala	Phe	ctt Leu	Ala	tgc Cys	tct Ser	act Thr	cag Gln	1162

PCT/US00/31457

MBI-17 Sequence Listing.ST25 365 37

cca acc	acg a Thr M	Met Glu	gcg tat Ala Tyr	agc agg Ser Arg 380	atg gct Met Ala	Thr Leu	tat cag caa Tyr Gln Gln 385	1210
atg caa Met Glr	caa c Gln G 390	caa ctt 31n Leu	cct cct Pro Pro	cct tcg Pro Ser 395	aat cca Asn Pro	aaa tga Lys	ttattactca	1259
aacacct	cta ta	tagttta	c gtcta	atat gtg	gttagtca	catacata	ca tatatatatt	1319
ccatcat	aat ta	tttattt	a tatgta	atagg ctt	ctcatga	attatgat	at tatacgtatt	1379
acgtaaa	aaa							1389

<210> 16

<211> 399

<212> PRT

<213> Arabidopsis thaliana

<400> 16

Met Ser Gln Cys Val Pro Asn Cys His Ile Asp Asp Thr Pro Ala Ala 1 5 10 15

Ala Thr Thr Thr Val Arg Ser Thr Thr Ala Ala Asp Ile Pro Ile Leu 20 25 30

Asp Tyr Glu Val Ala Glu Leu Thr Trp Glu Asn Gly Gln Leu Gly Leu 35 40

His Gly Leu Gly Pro Pro Arg Val Thr Ala Ser Ser Thr Lys Tyr Ser 50 60

Thr Gly Ala Gly Gly Thr Leu Glu Ser Ile Val Asp Gln Ala Thr Arg 65 70 80

Leu Pro Asn Pro Lys Pro Thr Asp Glu Leu Val Pro Trp Phe His His 90 95

Arg Ser Ser Arg Ala Ala Met Ala Met Asp Ala Leu Val Pro Cys Ser 100 105 110

Asn Leu Val His Glu Gln Gln Ser Lys Pro Gly Gly Val Gly Ser Thr 115 120 125

Arg Val Gly Ser Cys Ser Asp Gly Arg Thr Met Gly Gly Gly Lys Arg 130 140

Ala Arg Val Ala Pro Glu Trp Ser Gly Gly Gly Ser Gln Arg Leu Thr 145 150 155 160

Met Asp Thr Tyr Asp Val Gly Phe Thr Ser Thr Ser Met Gly Ser His

Asp Asn Thr Ile Asp Asp His Asp Ser Val Cys His Ser Arg Pro Gln

Met Glu Asp Glu Glu Glu Lys Lys Ala Gly Gly Lys Ser Ser Val Ser 195 200 205

MBI-17 Sequence Listing.ST25	
Thr Lys Arg Ser Arg Ala Ala Ile His Asn Gln Ser Glu Arg Lys 210 215 220	•
Arg Arg Asp Lys Ile Asn Gln Arg Met Lys Thr Leu Gln Lys Leu Val 225 230 235 240	
Pro Asn Ser Ser Lys Thr Asp Lys Ala Ser Met Leu Asp Glu Val Ile 245 250 255	
Glu Tyr Leu Lys Gln Leu Gln Ala Gln Val Ser Met Met Ser Arg Met 260 265 270	
Asn Met Pro Ser Met Met Leu Pro Met Ala Met Gln Gln Gln Gln 275 280 285	
Leu Gln Met Ser Leu Met Ser Asn Pro Met Gly Leu Gly Met Gly Met 290 295 300	
Gly Met Pro Gly Leu Gly Leu Leu Asp Leu Asn Ser Met Asn Arg Ala 305 310 315 320	
Ala Ala Ser Ala Pro Asn Ile His Ala Asn Met Met Pro Asn Pro Phe 325 330 335	
Leu Pro Met Asn Cys Pro Ser Trp Asp Ala Ser Ser Asn Asp Ser Arg 340 345 350	
Phe Gln Ser Pro Leu Ile Pro Asp Pro Met Ser Ala Phe Leu Ala Cys 355 360 365	
Ser Thr Gln Pro Thr Thr Met Glu Ala Tyr Ser Arg Met Ala Thr Leu 370 375 380	
Tyr Gln Gln Met Gln Gln Leu Pro Pro Pro Ser Asn Pro Lys 385 390 395	
<210> 17 <211> 1126 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (282)(920) <223> G865	
<400> 17 atccccactt gttgttcatc accaagccaa gctccatgtc ctagtcactc cacagattcc	60
ctatcatcat caattcgttt caaacttagt teettteaaa gtettgtaca tatatacaca	120
cacacctatt attotottgg tgtgtttgtg tgttacatat acgtgtgagt acatactttg	180
ttgtaaaagt ggatcggagg tatggaaagg gaccggttcc accggaaaca tcggcggcgg	240
cggatgataa ttcgtcttgg aacgagactg atgtcaccgc c atg gtc tcc gct ctc Met Val Ser Ala Leu 1 5	296
agc cgt gtc ata gag aat ccg aca gac ccg ccg gtc aaa caa gag ctt Ser Arg Val Ile Glu Asn Pro Thr Asp Pro Pro Val Lys Gln Glu Leu	344

Page 22

				10	. 8	: •	MBI-	-17 8	Seque 15	nce	List	ing	ST25	20		
gat Asp	aaa Lys	tcg Ser	gat Asp 25	caa Gln	cat His	caa Gln	cca Pro	gac Asp 30	caa Gln	gat Asp	caa Gln	cca Pro	aga Arg 35	Arg	aga Arg	392
cac His	tat Tyr	aga Arg 40	ggc Gly	gta Val	agg Arg	cag Gln	aga Arg 45	cca Pro	tgg Trp	ggt Gly	aaa Lys	tgg Trp 50	gcg Ala	gca Ala	gaa Glu	440
atc Ile	cgc Arg 55	gat Asp	cca Pro	aag Lys	aaa Lys	gca Ala 60	gcc Ala	cgt Arg	gtc Val	tgg Trp	ctc Leu 65	ggg Gly	act Thr	ttc Phe	gag Glu	488
acg Thr 70	gca Ala	gag Glu	gaa Glu	gct Ala	gct Ala 75	tta Leu	gcc Ala	tat Tyr	gac Asp	cga Arg 80	gct Ala	gcc Ala	ctc Leu	aaa Lys	ttc Phe 85	536
aaa Lys	ggc Gly	acc Thr	aag Lys	gct Ala 90	aaa Lys	ctg Leu	aac Asn	ttc Phe	cct Pro 95	gaa Glu	cgg Arg	gtc Val	caa Gln	ggc Gly 100	cct Pro	584
act Thr	acc Thr	acc Thr	aca Thr 105	acc Thr	att Ile	tct Ser	cat His	gca Ala 110	cca Pro	aga Arg	gga Gly	gtt Val	agt Ser 115	gaa Glu	tcc Ser	632
atg Met	aac Asn	tca Ser 120	cct Pro	cct Pro	cct Pro	cga Arg	cct Pro 125	ggt Gly	cca Pro	cct Pro	tca Ser	act Thr 130	act Thr	act Thr	act Thr	680
tcg Ser	tgg Trp 135	cca Pro	atg Met	act Thr	tat Tyr	aac Asn 140	cag Gln	gac Asp	ata Ile	ctt Leu	caa Gln 145	tac Tyr	gct Ala	cag Gln	ttg Leu	728
ctt Leu 150	acg Thr	agt Ser	aac Asn	aat Asn	gag Glu 155	gtt Val	gat Asp	tta Leu	tca Ser	tac Tyr 160	tac Tyr	acg Thr	tcg Ser	act Thr	ctc Leu 165	776
ttc Phe	agt Ser	caa Gln	cct Pro	tțt Phe 170	tca Ser	acg Thr	cct Pro	tct Ser	tca Ser 175	Ser.	tct Ser	tct Ser	tcc Ser	tcc Ser 180	caa Gln	824
cag Gln	acg Thr	cag Gln	caa Gln 185	cag Gln	cag Gln	cta Leu	caa Gln	caa Gln 190	caa Gln	caa Gln	cag Gln	cag Gln	cgt Arg 195	gaa Glu	gaa Glu	872
gaa Glu	gag Glu	aag Lys 200	aat Asn	tat Tyr	ggt Gly	tac Tyr	aat Asn 205	tat Tyr	tat Tyr	aac Asn	tac Tyr	cca Pro 210	aga Arg	gaa Glu	taa	920
tcta	atta	att a	attgt	tggt	c ga	atca	gttt	: tat	taaat	agc	tato	atag	jtt t	catt	tttgg	980
tttc	cgta	ac c	ettte	gttgo	a to	gaaa	atat	gaa	atgaa	cga	999a	cate	jtg t	aaca	atttg	1040
tttg	tgtt	tc g	gtaaa	tgtt	a gt	tgta	tttg	gat	ttgc	tga	agtt	tgat	tt t	ctga	gcata	1100
aato	attt	ga o	ggto	aaaa	aa aa	aaaa	1									1126
<210 <211 <212 <213	> 2 > E	8 212 PRT Arabi	idops	sis t	hali	.ana										

Met Val Ser Ala Leu Ser Arg Val Ile Glu Asn Pro Thr Asp Pro Pro 1 5 10 15

Val Lys Gln Glu Leu Asp Lys Ser Asp Gln His Gln Pro Asp Gln Asp 25 30

Gln Pro Arg Arg Arg His Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Page 23

35

Lys Trp Ala Ala Glu Ile Arg Asp Pro Lys Lys Ala Ala Arg Val Trp

Leu Gly Thr Phe Glu Thr Ala Glu Glu Ala Ala Leu Ala Tyr Asp Arg

Ala Ala Leu Lys Phe Lys Gly Thr Lys Ala Lys Leu Asn Phe Pro Glu

Arg Val Gln Gly Pro Thr Thr Thr Thr Ile Ser His Ala Pro Arg 105

Gly Val Ser Glu Ser Met Asn Ser Pro Pro Pro Arg Pro Gly Pro Pro 115

Ser Thr Thr Thr Ser Trp Pro Met Thr Tyr Asn Gln Asp Ile Leu

Gln Tyr Ala Gln Leu Leu Thr Ser Asn Asn Glu Val Asp Leu Ser Tyr

Tyr Thr Ser Thr Leu Phe Ser Gln Pro Phe Ser Thr Pro Ser Ser Ser

Ser Ser Ser Gln Gln Thr Gln Gln Gln Leu Gln Gln Gln Gln

Gln Gln Arg Glu Glu Glu Lys Asn Tyr Gly Tyr Asn Tyr Tyr Asn 200

Tyr Pro Arg Glu 210

<210> 19

<211> 1571

<212> DNA

Arabidopsis thaliana <213>

<220>

<221> CDS

<222> (428) .. (1402)

G869

<400> 19

aggaacagtg aaaggttcgg ttttttgggt ttcgatctga taatcaacaa gaaaaaaggg 60 tttgatttat gtcggctggg tttgaatcga ctgtgatttt gtctttgatt catatctctt 120 ctccgatttc atcatcatct tccccatcat cgtcgtcttt gaaatcttgt cttctcaacg 180 ctcttcactt ctgctgtaat aagcagaggc ttgttctgga gactccttct ctttccatgc 240 gettaagace caaaaggact tgttetagtg ttgaagtett tggggggtttt cacataaage 300 agcaaaagtt ttctttttc atagttcgct gagagttttg agttttgata ccaaaaaagt 360 tttgaccttt tagagtgatt ttttgttctt tctgttttct gggtattttt gaggagtggg 420 469 tttaaca atg git geg att aga aag gaa cag tet tig agt ggt gtt agt

Met Val Ala Ile Arg Lys Glu Gln Ser Leu Ser Gly Val Ser

Page 24

·		1	• •			5 .	MBI	-17 8	Seque	ence	List 10	ting	. ST2:				
agc Ser 15	gag Glu	att Ile	aag Lys	aag Lys	aga Arg 20	gct Ala	aag Lys	aga Arg	aac Asn	act Thr 25	cta Leu	tcg Ser	tcc Ser	ctt Leu	cct Pro 30		517
caa Gln	gaa Glu	acc Thr	caa Gln	cct Pro 35	ttg Leu	agg Arg	aaa Lys	Val	cgt Arg 40	att Ile	att Ile	gtg Val	aat Asn	gat Asp 45	cct Pro		565
tat Tyr	gct Ala	act Thr	gat Asp 50	gat Asp	tcc Ser	tct Ser	agt Ser	gat Asp 55	gag Glu	gaa Glu	gag Glu	ctt Leu	aag Lys 60	gtt Val	cct Pro		613
aag Lys	cca Pro	agg Arg 65	aaa Lys	atg Met	aaa Lys	cgt Arg	atc Ile 70	gtt Val	cgt Arg	gag Glu	att	aac Asn 75	ttt Phe	cct Pro	tct Ser		661
Met.	gaa Glu 80	gtt Val	tct Ser	gaa Glu	cag Gln	cct Pro 85	tct Ser	gag Glu	agt Ser	tct Ser	tct Ser 90	cag Gln	gac Asp	agt Ser	act Thr		709
aaa Lys 95	act Thr	gat Asp	ggc Gly	aag Lys	ata Ile 100	gct Ala	gtg Val	tca Ser	gct Ala	tct Ser 105	cct Pro	gct Ala	gtt Val	cct Pro	agg Arg 110		757
aag Lys	aag Lys	cct Pro	gtt Val	ggt Gly 115	gtt Val	agg Arg	caa Gln	agg Arg	aaa Lys 120	tgg Trp	999 Gly	aaa Lys	tgg Trp	gct Ala 125	gct Ala		805
gag Glu	att Ile	aga Arg	gat Asp 130	cct Pro	att Ile	aag Lys	aaa Lys	act Thr 135	agg Arg	act Thr	tgg Trp	ttg Leu	ggt Gly 140	act [.] Thr	ttt Phe		853
gat Asp	act Thr	ctt Leu 145	gaa Glu	gaa Glu	gct Ala	gct Ala	aaa Lys 150	gct Ala	tat Tyr	gat Asp	gct Ala	aag Lys 155	aag Lys	ctt Leu	gag Glu		901
Phe	gat Asp 160	gct Ala	att Ile	gtt Val	gct Ala	gga Gly 165	aat Asn	gtg Val	tcc Ser	act Thr	act Thr 170	aaa Lys	cgt Arg	gat Asp	gtt Val	-	949
tct Ser 175	tca Ser	tct Ser	gag Glu	act Thr	agc Ser 180	caa Gln	tgc Cys	tct Ser	cgt Arg	tct Ser 185	tca Ser	cct Pro	gtt Val	gtt Val	cct Pro 190		997
gtt Val	gag Glu	caa Gln	gat Asp	gac Asp 195	act Thr	tct Ser	gca Ala	tca Ser	gct Ala 200	ctc Leu	act Thr	tgt Cys	gtc Val	aac Asn 205	aac Asn		1045
cct Pro	gat Asp	gac Asp	gtc Val 210	tcg Ser	acc Thr	gtt Val	gct Ala	cca Pro 215	act Thr	gct Ala	cca Pro	act Thr	cca Pro 220	aat Asn	gtt Val		1093
cct Pro	gct Ala	ggt Gly 225	gga Gly	aac Asn	aag Lys	gaa Glu	acg Thr 230	ttg Leu	ttc Phe	gat Asp	ttc Phe	gac Asp 235	ttt Phe	act Thr	aat Asn		1141
cta Leu	cag Gln 240	atc Ile	cct Pro	gat Asp	ttt Phe	ggt Gly 245	ttc Phe	ttg Leu	gca Ala	gag Glu	gag Glu 250	caa Gln	caa Gln	gac Asp	cta Leu		1189
gac Asp 255	ttc Phe	gat Asp	tgt Cys	ttc Phe	ctc Leu 260	Ala	gat Asp	gat Asp	cag Gln	ttt Phe 265	gat Asp	gat Asp	ttc Phe	ggc Gly	ttg Leu 270		1237
ctt Leu	gat Asp	gac Asp	att Ile	caa Gln 275	gga Gly	ttc Phe	gaa Glu	gat Asp	aac Asn 280	ggt Gly	cca Pro	agt Ser	gcg Ala	tta Leu 285	cca Pro		1285
gat Asp	ttc Phe	gac Asp	ttt Phe 290	gcg Ala	gat Asp	gtt Val	gaa Glu	gat Asp 295	ctt Leu	cag Gln	cta Leu	gct Ala	gac Asp 300	tct Ser	agt Ser		1333
ttc	ggt	ttc	ctt	gat	caa	ctt	gct	cct		aac age 2		tct	tgc	cca	tta		1381

WO 01/35727 PCT/US00/31457

MBI-17 Sequence Listing.ST25 Phe Gly Phe Leu Asp Gln Leu Ala Pro Ile Asn Ile Ser Cys Pro Leu 305 310 315	
aaa agt ttt gca gct tca tag gatcttgctt agtaatgtta agtgagaaga	1432
Lys Ser Phe Ala Ala Ser 320	
gtgttttgtt ttttcgttta tgctttagta atttaagaca tacaaaagtg tgtgttccgg	1492
attgtagtaa gatcttaaga cataaagccg ggttttgcaa ttaggaatcg agttttaatg	1552
aagttttagt ttatgtttg	1571
<210> 20 <211> 324 <212> PRT <213> Arabidopsis thaliana	
<400> 20	
Met Val Ala Ile Arg Lys Glu Gln Ser Leu Ser Gly Val Ser Ser Glu 1 5 10 15	
Ile Lys Lys Arg Ala Lys Arg Asn Thr Leu Ser Ser Leu Pro Gln Glu 20 25 30	
Thr Gln Pro Leu Arg Lys Val Arg Ile Ile Val Asn Asp Pro Tyr Ala 35 40 45	
Thr Asp Asp Ser Ser Ser Asp Glu Glu Glu Leu Lys Val Pro Lys Pro 50 60	
Arg Lys Met Lys Arg Ile Val Arg Glu Ile Asn Phe Pro Ser Met Glu 65 70 75 80	
Val Ser Glu Gln Pro Ser Glu Ser Ser Gln Asp Ser Thr Lys Thr 85 90 95	
Asp Gly Lys Ile Ala Val Ser Ala Ser Pro Ala Val Pro Arg Lys Lys 100 105 110	
Pro Val Gly Val Arg Gln Arg Lys Trp Gly Lys Trp Ala Ala Glu Ile 115 120 125	
Arg Asp Pro Ile Lys Lys Thr Arg Thr Trp Leu Gly Thr Phe Asp Thr 130 135 140	
Leu Glu Glu Ala Ala Lys Ala Tyr Asp Ala Lys Lys Leu Glu Phe Asp 145 150 155 160	
Ala Ile Val Ala Gly Asn Val Ser Thr Thr Lys Arg Asp Val Ser Ser 165 170 175	
Ser Glu Thr Ser Gln Cys Ser Arg Ser Ser Pro Val Val Pro Val Glu 180 185 190	
Gln Asp Asp Thr Ser Ala Ser Ala Leu Thr Cys Val Asn Asn Pro Asp 195 200 205	
Asp Val Ser Thr Val Ala Pro Thr Ala Pro Thr Pro Asn Val Pro Ala 210 215 220 Page 26	

Gly Gly Asn Lys Glu Thr Leu Phe Asp Phe Asp Phe Thr Asn Leu Gln	
225 230 235 240	
Ile Pro Asp Phe Gly Phe Leu Ala Glu Glu Gln Gln Asp Leu Asp Phe 245 250 255	•
Asp Cys Phe Leu Ala Asp Asp Gln Phe Asp Asp Phe Gly Leu Leu Asp 260 265 270	
Asp Ile Gln Gly Phe Glu Asp Asn Gly Pro Ser Ala Leu Pro Asp Phe 275 280 285	
Asp Phe Ala Asp Val Glu Asp Leu Gln Leu Ala Asp Ser Ser Phe Gly 290 295 300	
Phe Leu Asp Gln Leu Ala Pro Ile Asn Ile Ser Cys Pro Leu Lys Ser 305 310 315 320	
Phe Ala Ala Ser	
<210> 21 <211> 1195 <212> DNA <213> Arabidopsis thaliana	
<220>	
<221> CDS <222> (67)(1041) <223> G883	
<222> (67)(1041) <223> G883 <400> 21	60
<222> (67)(1041) <223> G883	60 108
<222> (67)(1041) <223> G883 <400> 21 ctctctcgtc ttcgtcttct tcttcttcaa cgttcctctc caaaatcctc agaccaagaa atcatc atg gcc gtc gat cta atg cgt ttc cct aag ata gat gat caa Met Ala Val Asp Leu Met Arg Phe Pro Lys Ile Asp Asp Gln	
<pre><222> (67)(1041) <223> G883 <400> 21 ctctctcgtc ttcgtcttct tcttcttcaa cgttcctctc caaaatcctc agaccaagaa. atcatc atg gcc gtc gat cta atg cgt ttc cct aag ata gat gat caa</pre>	108
<pre><222> (67)(1041) <223> G883 <400> 21 ctctctcgtc ttcgtcttct tcttcttcaa cgttcctctc caaaatcctc agaccaagaa atcatc atg gcc gtc gat cta atg cgt ttc cct aag ata gat gat caa</pre>	108
<pre><222> (67)(1041) <223> G883 <400> 21 ctctctcgtc ttcgtcttct tcttcttcaa cgttcctctc caaaatcctc agaccaagaa atcatc atg gcc gtc gat cta atg cgt ttc cct aag ata gat gat caa</pre>	108 156 204
<pre><222> (67)(1041) <223> G883 <400> 21 ctctctcgtc ttcgtcttct tcttcttcaa cgttcctctc caaaatcctc agaccaagaa atcatc atg gcc gtc gat cta atg cgt ttc cct aag ata gat gat caa</pre>	108 156 204 252
<pre><222> (67)(1041) <223> G883 <400> 21 ctctctcgtc ttcgtcttct tcttcttcaa cgttcctctc caaaatcctc agaccaagaa atcatc atg gcc gtc gat cta atg cgt ttc cct aag ata gat gat caa</pre>	108 156 204 252

												5					
cca Pro	agc Ser	atc	ttc Phe 130	ggc Gly	acc Thr	aaa Lys	gct Ala	aag Lys 135	agc Ser	gcc Ala	gag Glu	Leu	gaa Glu 140	ttc Phe	tcc Ser		492
	gaa Glu												Ser		gcg Ala		540
ata Ile	acc Thr 160	Gly	gac Asp	ggc Gly	agc Ser	gtc Val 165	tcc Ser	aat Asn	gga Gly	aaa Lys	atc Ile 170	ttc Phe	ctt. Leu	gct Ala	tct Ser	•	588
gct Ala 175	ccg Pro	tcg Ser	cag Gln	cct Pro	gtt Val 180	aac Asn	tct Ser	tcc Ser	gga Gly	aaa Lys 185	cca Pro	ccg Pro	ttg Leu	gct Ala	ggt Gly 190		636
cat His	cct Pro	tac Tyr	aga Arg	aag Lys 195	aga 'Arg	tgt Cys	ctc Leu	gag Glu	cat His 200	gag Glu	cac His	tca Ser	gag Glu	agt Ser 205	ttc Phe.		684
	gga Gly																732
agg Arg	aaa Lys	aat Asn 225	cgg Arg	atg Met	aag Lys	aga Arg	acc Thr 230	gtg Val	aga Arg	gta Val	ccg Pro	gcg Ala 235	ata Ile	agt Ser	gca Ala		780
aag Lys	atc Ile 240	gcc Ala	gat Asp	att Ile	cca Pro	ccg Pro 245	gac Asp	gaa Glu	tat Tyr	tcg Ser	tgg Trp 250	agg Arg	aag Lys	tac Tyr	gga Gly	•	828
caa Gln 255	aaa Lys	ccg Pro	atc Ile	aag Lys	ggc Gly 260	tca Ser	cca Pro	cac His	cca Pro	cgt Arg 265	ggt Gly	tac Tyr	tac Tyr	aag Lys	tgc Cys 270	-	876
agt Ser	aca Thr	ttc Phe	aga Arg	gga Gly 275	tgt Cys	cca Pro	gcg Ala	agg Arg	aaa Lys 280	His	gtg Val	gaa Glu	cga Arg	gca Ala 285	tta Leu		924
gat Asp	gat Asp	cca Pro	gcg Ala 290	atg Met	ctt Leu	att Ile	gtg Val	aca Thr 295	tac Tyr	gaa Glu	gga Gly	gag Glu	cac His 300	cgt [.] Arg	cat His	•	972
aac Asn	caa Gln	tcc Ser 305	gcg Ala	atg Met	cag Gln	gag Glu	aat Asn 310	att Ile	tct Ser	tct Ser	tca Ser	ggc Gly 315	att Ile	aat Asn	gat . Asp		1020
	gtg Val 320					tga	cttt	ttt	tg t	acta	atttg	gt tt	tttg	gatt			1071
ttt	gagta	act t	taga	atgga	at to	gaaat	ttgt	aaa	tttt	ttt	atta	agaa	aat o	caatt	taaa	t	1131
aga	gaaa	aat t	agte	gtg	gt go	caaaa	aaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaaa	aaaa	a i	1191
aaa	a														•		1195

<210> 22 <211> 324 <212> PRT

<213> Arabidopsis thaliana

<400> 22

Met Ala Val Asp Leu Met Arg Phe Pro Lys Ile Asp Asp Gln Thr Ala 1 5

Ile Gln Glu Ala Ala Ser Gln Gly Leu Gln Ser Met Glu His Leu Ile 20 25

- MBI-17 Sequence Listing ST25
 Arg Val Leu Ser Asn Arg Pro Glu Gln Gln His Asn Val Asp Cys Ser
 35 40 45
- Glu Ile Thr Asp Phe Thr Val Ser Lys Phe Lys Thr Val Ile Ser Leu 50 60
- Leu Asn Arg Thr Gly His Ala Arg Phe Arg Arg Gly Pro Val His Ser 65 70 75 80
- Thr Ser Ser Ala Ala Ser Gln Lys Leu Gln Ser Gln Ile Val Lys Asn 85 90 95
- Thr Gln Pro Glu Ala Pro Ile Val Arg Thr Thr Thr Asn His Pro Gln
 100 105 110
- Ile Val Pro Pro Pro Ser Ser Val Thr Leu Asp Phe Ser Lys Pro Ser 115 120 125
- Ile Phe Gly Thr Lys Ala Lys Ser Ala Glu Leu Glu Phe Ser Lys Glu 130 135 140
- Asn Phe Ser Val Ser Leu Asn Ser Ser Phe Met Ser Ser Ala Ile Thr 145 150 155 160
- Gly Asp Gly Ser Val Ser Asn Gly Lys Ile Phe Leu Ala Ser Ala Pro 165 170 175
- Ser Gln Pro Val Asn Ser Ser Gly Lys Pro Pro Leu Ala Gly His Pro 180 185 190
- Tyr Arg Lys Arg Cys Leu Glu His Glu His Ser Glu Ser Phe Ser Gly
- Lys Val Ser Gly Ser Ala Tyr Gly Lys Cys His Cys Lys Lys Arg Lys
- Asn Arg Met Lys Arg Thr Val Arg Val Pro Ala Ile Ser Ala Lys Ile 225 230 235 240
- Ala Asp Ile Pro Pro Asp Glu Tyr Ser Trp Arg Lys Tyr Gly Gln Lys 245 250 255
- Pro Ile Lys Gly Ser Pro His Pro Arg Gly Tyr Tyr Lys Cys Ser Thr 260 265 270
- Phe Arg Gly Cys Pro Ala Arg Lys His Val Glu Arg Ala Leu Asp Asp 285 285
- Pro Ala Met Leu Ile Val Thr Tyr Glu Gly Glu His Arg His Asn Gln 290 295 300
- Ser Ala Met Gln Glu Asn Ile Ser Ser Ser Gly Ile Asn Asp Leu Val 305 310 315 320

Phe Ala Ser Ala

<21 <21 <21 <21	1 > 2 >	23 1755 DNA Arab	idop	sis	thal	iana		•			,						
<22 <22 <22 <22	1 > 2 >	CDS (1). G938	(17	55)	*			*		•							
<40 atg Met 1	atg	23 atg Met	ttt Phe	aac Asn 5	gag Glu	atg Met	gga Gly	atg Met	tat Tyr 10	gga Gly	aac Asn	atg Met	gat Asp	ttc Phe 15	ttc Phe		48
		tcc Ser														•	96
gaa Glu	cct	gta Val 35	gtt Val	gaa Glu	gat Asp	gtc Val	gac Asp 40	tac Tyr	acc Thr	gat Asp	gat Asp	gag Glu 45	atg Met	gat Asp	gtg Val		144
		ctt Leu															192
		.gag Glu															240
		cag Gln															288
		ggg Gly															336
		ggc Gly 115															384
		gct Ala															432
Phe 145	Āsp	cgt Arg	Asn	ĞĪy	Pro 150	Āla	Āla	Ile	Āla	Lys 155	Tyr	Gln	Ser	Ğlū	Asn 160		480
Asn	Ile	tct Ser	ĞÎy	Gly 165	Ser	Asn	Āsp	Cys	Asn 170	Ser	Leu	Val	ĞÎy	Pro 175	Thr		528
Pro	His	acg Thr	Leu 180	Gln	Ğlū	Leu	Gln	Asp 185	Thr	Thr	Leu	ĞÎy	Ser 190	Leu	Leu		576
Ser	Āla	Leu 195	Met	Gln	His	Cys	Asp 200	Pro	Pro	Gln	Arg	Arg 205	Phe	Pro	Leu		624
Glu	Lys 210		Val	Ser	Pro	Pro 215	Trp	Trp	Pro	Asn	Gly 220	Asn	Ğlu	Glu	Trp		672
Trp 225	Pro	cag Gln	Leu	ĞÎy	Leu 230	Pro	Asn	Ğlü	Gln	Gly 235	Pro	Pro	Pro	Tyr	Lys 240		720
		cat His							Lys		Gly						768

		•					MOT	12 (3		T : -	ina	CTO			
				245					250		List			255		•
gtg Val	atc Ile	aag Lys	cat His 260	atg Met	tcg Ser	ccg Pro	Asp	att Ile 265	gcg Ala	aag Lys	atc Ile	cgt Arg	Lys 270	ctt Leu	gtg Val	816
agg Arg	caa Gln	tca Ser 275	aaa Lys	tgc Cys	ttg Leu	cag Gln	gat Asp 280	aag Lys	atg Met	acg Thr	gcg Ala	aaa Lys 285	Glu	agt Ser	gct Ala	864
act Thr	tgg Trp 290	ctt Leu	gcc Ala	att Ile	att Ile	aac Asn 295	caa Gln	gaa Glu	gag Glu	gtt Val	gtg Val 300	gct Ala	cgg Arg	gag Glu	ctt Leu	912
tat Tyr 305	ccc Pro	gag Glu	tca Ser	tgc Cys	cct Pro 310	cct Pro	ctt Leu	tct Ser	tct Ser	tct Ser 315	tca Ser	tca Ser	tta Leu	gga Gly	agc Ser 320	960
999 Gly	tcg Ser	ctt Leu	ctc Leu	att Ile 325	aat Asn	gat Asp	tgt Cys	agc Ser	gag Glu 330	tat Tyr	gac Asp	gtt Val	gaa Glu	ggt Gly 335	ttc Phe	1008
gag Glu	aag Lys	gaa Glu	caa Gln 340	cat His	ggt Gly	ttc Phe	gat Asp	gtg Val 345	gaa Glu	gag Glu	cgg Arg	aaa Lys	cca Pro 350	gag Glu	ata Ile	1056
gtg Val	atg Met	atg Met 355	cat His	cct Pro	cta Leu	gca Ala	agc Ser 360	ttt Phe	ggg Gly	gtt Val	gct Ala	aaa Lys 365	atg Met	caa Gln	cat His	1104
ttt Phe	ccc Pro 370	ata Ile	aag Lys	gag Glu	gag Glu	gtc Val 375	gcc Ala	acc Thr	acg Thr	gta Val	aac Asn 380	tta Leu	gag Glu	ttc Phe	acg Thr	1152
aga Arg 385	aag Lys	agg Arg	aag Lys	cag Gln	aac Asn 390	aat Asn	gat Asp	atg Met	aat Asn	gtt Val 395	atg Met	gta Val	atg Met	gac Asp	aga Arg 400	1200
tca Ser	gca Ala	ggt Gly	tac Tyr	act Thr 405	tgt Cys	gag Glu	aat [.] Asn	ggt Gly	cag Gln 410	tgt Cys	cct Pro	cac His	agc Ser	aaa Lys 415	atg Met	1248
aat Asn	ctt Leu	gga Gly	ttt Phe 420	caa Gln	gac Asp	agg Arg	agt Ser	tca Ser 425	agg Arg	gac Asp	aac Asn	cac His	cag Gln 430	atg Met	gtt . Val	1296
tgt Cys	cca Pro	tat Tyr 435	aga Arg	gac Asp	aat Asn	Arg	tta Leu 440	gcg Ala	tat Tyr	gga Gly	gca Ala	tcc Ser 445	aag Lys	ttt Phe	cat His	1344
atg Met	ggt Gly 450	gga Gly	atg Met	aaa Lys	cta Leu	gta Val 455	gtt Val	cct Pro	cag Gln	caa Gln	cca Pro 460	gtc Val	caa Gln	ccg Pro	atc Ile	1392
gac Asp 465	cta Leu	tcg Ser	ggc Gly	gtt Val	gga Gly 470	gtt Val	ccg Pro	gaa Glu	aac Asn	999 Gly 475	cag Gln	aag Lys	atg Met	atc Ile	acc Thr 480	1440
gag Glu	ctt Leu	atg Met	gcc Ala	atg Met 485	tac Tyr	gac Asp	aga Arg	aat Asn	gtc Val 490	caa Gln	agc Ser	aac Asn	caa Gln	acg Thr 495	cct Pro	1488
cct Pro	act Thr	ttg Leu	atg Met 500	gaa Glu	aac Asn	caa Gln	agc Ser	atg Met 505	gtc Val	att Ile	gat Asp	gca Ala	aaa Lys 510	gca Ala	gct Ala	1536
cag Gln	aat Asn	cag Gln 515	cag Gln	ctg Leu	aat Asn	Phe	aac Asn 520	agt Ser	ggc Gly	aat Asn	caa Gln	atg Met 525	ttt Phe	atg Met	caa Gln	1584
Gln	999 Gly 530	acg Thr	aac Asn	aac Asn	999 Gly	gtt Val 535	aac Asn	aat Asn	cgg Arg	ttc Phe	cag Gln 540	atg Met	gtg Val	ttt Phe	gat Asp	1632
tcg	aca	cca	ttc	gat	atg	gca	gca	ttc	_	tac ige 3	_	gat	gat	tgg	caa	1680

	Ser 545		Pro	Phe	Asp	Met 550	Ala			Asp		Arg	ting Asp			Gln 560	
			gca Ala														1728
			gat Asp											•	-		1755
	<21 <21 <21 <21	1> 2>	24 584 PRT Arab:	idop	sis (thal:	iana				. 0						
	<40	0 >	24														
	Met 1	Met	Met	Phe	Asn 5	Glu	Met	Gly	Met	Tyr 10	Gly	Asn	Met	Asp	Phe 15	Phe	
	Ser	Ser	Ser	Thr 20	Ser	Leu	Asp	Val	Cys 25	Pro	Leu	Pro	Gln	Ala 30	Glu	Gln	
	Glu	Pro	Val 35	Val	Glu	Asp	Val	Asp 40	Tyr	Thr	Asp	Asp	Glu 45	Met	Asp	Val	
	Asp	Glu 50	Leu	Glu	Lys	Arg	Met 55	Trp	Arg	Asp	Lys	Met 60	Arg	Leu	Lys	Arg	
	Leu 65	Lys	Glu	Gln	Gln	Ser 70	Lys	Cys	Lys	Glu	Gly 75	Val _.	Asp	Gly	Ser	Lys 80	
	Gln	Arg	Gln	Ser	Gln 85	Glu	Gln	Ala	Arg	Arg 90	Lys	Lys	Met	Ser	Arg 95	Ala	
	Gln	Asp	Gly	Ile 100	Leu	Lys	Tyr	Met	Leu 105	Lys	Met	Met		Val	Cys	Lys	
	Ala	Gln	Gly 115	Phe	Val	Tyr	Gly	Ile 120	Ile	Pro	Glu	Lys	Gly 125	Lys	Pro	Val	
	Thr	Gly 130	Ala	Ser	Asp	Asn	Leu 135	Arg	Ğlu	Trp	Trp	Lys 140	Asp	Lys	Val	Arg	
	Phe 145	Asp	Arg	Asn	Gly	Pro 150	Ala	Ala	Ile	Ala	Lys 155	Tyr	Gln	Ser	Glu	Asn 160	
	Asn	Ile	Ser	Gly	Gly 165	Ser	Asn	Asp	Cys	Asn 170	Ser	Leu	Val	Gly	Pro 175	Thr	
	Pro	His	Thr	Leu 180	Gln	Glu	Leu	Gln	Asp 185	Thr	Thr	Leu	Gly	Ser 190	Leu	Leu	
į	Ser	Ala	Leu 195	Met	Gln	His	-	Asp 200	Pro	Pro	Gln	Arg	Arg 205	Phe	Pro	Leu	
(Glu	Lys 210	Gly	Val	Ser	Pro	Pro 215	Trp	Trp	Pro	Asn	Gly 220	Asn	Glu	Glu	Trp	

			٠.										وتناو	cmo r		
	Trp 225	Pro	Gln	Leu	Gly	Leu 230		Asn				Pro		ST25 Pro		Lys 240
	Lys	Pro	His	Asp	Leu 245	Lys	Lys	Ala	Trp	Lys 250	Val	Gly	Val	Leu	Thr 255	Ala
	Val	Ile	Lys	His	Met	Ser	Pro	Asp	Ile 265	Ala	Lys	Ile	Arg	Lys 270	Leu	Val
	Arg	Gln	Ser 275	Lys	Сув	Leu	Gln	Asp 280	Lys	Met	Thr	Ala	Lys 285	Glu	Ser	Ala
	Thr	Trp 290	Leu	Ala	Ile	Ile	Asn 295	Gln	Glu	Glu	Val	Val	Ala	Arg	Glu	Leu
	Tyr 305		Glu	Ser	Cys	Pro	Pro	Leu	Ser	Ser	 Ser 315	Ser	Ser	Leu	Gly	Ser 320
		Ser	Leu	Leu	Ile 325	Asn	Asp	Суз	Ser	Glu 330	Tyr	Asp	 Val	Glu	Gly 335	Phe
	Glu	Lys	Glu			Gly	Phe	Asp	Val		Glu	Arg	Lys	Pro		Ile
	Val	Met		340 His	Pro	Leu	Ala	Ser		Gly	Val	Ala	Lys		Gln	Hiș
	Phe	Pro	355 Ile	Lys	Glu	Glu	Val	360 Ala	Thr	Thr	Val	Asn	365 Leu	Glu	Phe	Thr
		370		(·		375	Asp		٠		380	-			
	385					390			•		395					400
	•	•			405		٠.	Asn		410					415	•
,				420				Ser	425					430		
			435					Leu 440					445			
		450					455	Val				460				
	Asp 465	Leu	Ser	Gly	Val	Gly 470	Val	Pro	Glu	Asn	Gly 475	Gln	Lys	Met	Ile	Thr 480
-	Glu	Leu	Met	Ala	Met 485	Tyr	Asp	Arg	Asn	Val 490	Gln	Ser	Asn	Gln	Thr 495	Pro
	Pro	Thr	Leu	Met 500	Glu	Asn	Gln	Ser	Met 505	Val	Ile	Asp	Ala	Lys 510	Ala	Ala
	Gln	Asn	Gln 515	Gln	Leu	Asn	Phe	Asn 520	Ser	Gly	Asn	Gln	Met 525	Phe	Met	Gln

Gln Gly Thr Asr	Asn	Gly	Val	Asn	Asn	Arg	Phe	Gln	Met	Val	Phe	Asp
530			535					540				

Ser Thr Pro Phe Asp Met Ala Ala Phe Asp Tyr Arg Asp Asp Trp Gln 545 550 560

Thr Gly Ala Met Glu Gly Met Gly Lys Gln Gln Gln Gln Gln Gln Gln Gln 575

Gln Gln Asp Val Ser Ile Trp Phe 580

<210>	25
<211>	1161
<212>	DNA
<213>	Arabidopsis thaliana
<220>	
<221>	CDS
<222>	(67)(1041)
<223>	G1328

·	+ + ·
<pre><400> 25 aattcaatca ctatatttt ttaaaaaa</pre>	cat ttgacttcat cgatcggtta acaattaatc 60
	t tgt gag aag aag aat ggt ctc aag 108 s Cys Glu Lys Lys Asn Gly Leu Lys 10
	ag gat caa aag ctc att gat tat atc 156 lu Asp Gln Lys Leu Ile Asp Tyr Ile 25 30
	gg aga act ctt ccc aag aat gct ggg 204 rp Arg Thr Leu Pro Lys Asn Ala Gly 40 45
	gt cgt ctc cgg tgg acc aac tat ctc 252 ys Arg Leu Arg Trp Thr Asn Tyr Leu 55 60
	ga ttc tct ttt gaa gaa gaa acc 300 rg Phe Ser Phe Glu Glu Glu Glu Thr 0 75
	tg gga aac aag tgg tct gcg att gcg 348 et Gly Asn Lys Trp Ser Ala Ile Ala 90
	ac aac gag atc aaa aac tat tgg aac 396 sp Asn Glu Ile Lys Asn Tyr Trp Asn 105 110
	ta aag atg gga atc gac ccg gtt aca 444 eu Lys Met Gly Ile Asp Pro Val Thr 120 125
	tc gat atc tcc tcc att ctc agc tca 492 eu Asp Ile Ser Ser Ile Leu Ser Ser 135 140
	at cat cat cat cat caa caa cat 540 is His His His His Gln Gln His 50 155
	tg agt gat ggt aat cat caa cca ttg 588 et Ser Asp Gly Asn His Gln Pro Leu 170

Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His
100 105 110

Ile Arg Lys Arg Leu Leu Lys Met Gly Ile Asp Pro Val Thr His Thr 115 120 125

Pro Arg Leu Asp Leu Leu Asp Ile Ser Ser Ile Leu Ser Ser Ser Ile 130 140

Tyr Asn Ser Ser His His His His His His Gln Gln His Met Asn 145 150 155 160

Met Ser Arg Leu Met Met Ser Asp Gly Asn His Gln Pro Leu Val Asn 165 170 175

Pro Glu Ile Leu Lys Leu Ala Thr Ser Leu Phe Ser Asn Gln Asn His 180 185 190

Pro Asn Asn Thr His Glu Asn Asn Thr Val Asn Gln Thr Glu Val Asn 195 200 205

Gln Tyr Gln Thr Gly Tyr Asn Met Pro Gly Asn Glu Glu Leu Gln Ser 210 215 220

Trp Phe Pro Ile Met Asp Gln Phe Thr Asn Phe Gln Asp Leu Met Pro 225 230 235 235

Met Lys Thr Thr Val Gln Asn Ser Leu Ser Tyr Asp Asp Asp Cys Ser 245 250 255

Lys Ser Asn Phe Val Leu Glu Pro Tyr Tyr Ser Asp Phe Ala Ser Val

Thr Tyr Ile Asn Ser Ser Thr Cys Ser Thr Glu Asp Glu Lys Glu Ser 290 295 300

Tyr Tyr Ser Asp Asn Ile Thr Asn Tyr Ser Phe Asp Val Asn Gly Phe 305 310 315 320

Leu Gln Phe Gln

<210> 27

<211> 2162

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (40)..(1809)

<223> G584

<400> 27

aaaaagtctt ctcttttata actacgtcag agaactgtt atg tct ccg acg aat Met Ser Pro Thr Asn

54

. *				•						;	1				5		
gtt Val	caa Gln	gta Val	acc Thr	gat Asp 10	tac Tyr	cat His	ctc Leu	aac Asn	caa Gln 15	tca Ser	aaa Lys	acg Thr	gat Asp	aca Thr 20	aca Thr		102
aat Asn	ctc Leu	tgg Trp	tca Ser 25	acc Thr	gac Asp	gac Asp	gat Asp	gca Ala 30	tcg Ser	gta Val	atg Met	gaa Glu	gct Ala 35	ttc Phe	atc Ile		150
ggc Gly	ggc	ggc Gly 40	tcc Ser	gat Asp	cat His	tct Ser	tct Ser 45	ctt Leu	ttt Phe	cct Pro	ccá Pro	ctt Leu 50	cct Pro	cct Pro	cct Pro	•	198
cct Pro	ctt Leu 55	cct Pro	caa Gln	gtc Val	aac Asn	gaa Glu 60	gat Asp	aat Asn	ctc Leu	cag Gln	caa Gln 65	cgt Arg	ctc Leu	caa Gln	gct Aľa		246
tta Leu 70	atc Ile	gaa Glu	gga Gly	gca Ala	aac Asn 75	gag Glu	aac Asn	tgg Trp	act Thr	tac Tyr 80	gcc Ala	gtg Val	ttc Phe	tgg Trp	caa Gln 85		294
tca Ser	tct Ser	cac His	ggt Gly	ttc Phe 90	gcc Ala	gga Gly	gaa Glu	gac Asp	aac Asn 95	aac Asn	aac Asn	aac Asn	aac Asn	aca Thr 100	gtg Val		342
ttg Leu	tta Leu	ggt Gly	tgg Trp 105	gga Gly	gat Asp	ggt Gly	tat Tyr	tac Tyr 110	aaa Lys	gga Gly	gaa Glu	gaa Glu	gag Glu 115	aag Lys	tct Ser		390
aga Arg	aag Lys	aag Lys 120	Lys	tca Ser	aat Asn	cca Pro	gct Ala 125	agt Ser	gca Ala	gct Ala	gaa Glu	caa Gln 130	gag Glu	cat His	cgt Arg		438
Lys	aga Arg 135	gtg Val	att Ile	aga Arg	gag Glu	ctc Leu 140	aac Asn	tct Ser	tta Leu	atc	tcc Ser 145	ggt Gly	ggt Gly	gta Val	gga Gly		486
gga Gly 150	Gly	gat Asp	gaa Glu	gct [.] Ala	gga Gly 155	gat Asp	gaa Glu	gaa [.] Glu	gtt Val	aca Thr 160	gat Asp	act Thr	gaa Glu	tgg Trp	ttc Phe 165		534
ttc Phe	tta Leu	gtt Val	tca Ser	atg Met 170	aca Thr	cag Gln	agc Ser	ttt Phe	gtc Val 175	aag Lys	ggt Gly	act Thr	ggt Gly	tta Leu 180	cct Pro	.*	582
ggt Gly	caa Gln	gct Ala	ttc Phe 185	tca Ser	aat Asn	tca Ser	gac Asp	acg Thr 190	att Ile	tgg Trp	tta Leu	tct Ser	ggt Gly 195	tct Ser	aat Asn		630
gct Ala	tta Leu	gct Ala 200	gga Gly	tca Ser	agt Ser	tgt Cys	gag Glu 205	aga Arg	gct Ala	cgt Arg	caa Gln	ggt Gly 210	cag Gln	att Ile	tat Tyr		678
ggg Gly	tta Leu 215	caa Gln	aca Thr	atg Met	gtg Val	tgt Cys 220	gta Val	gcg Ala	aca Thr	gag Glu	aat Asn 225	ggt Gly	gtc Val	gtt Val	gag Glu		726
ctt Leu 230	ggt Gly	tcg Ser-	tcg Ser	gag Glu	att Ile 235	att Ile	cat His	caa Gln	agt Ser	tca Ser 240	gat Asp	ctt Leu	gtt Val	gat Asp	aaa Lys 245		774
gtt Val	gac Asp	acc Thr	ttt Phe	ttc Phe 250	aat Asn	ttt Phe	aac Asn	aat Asn	ggt Gly 255	ggt Gly	ggt Gly	gaa Glu	ttt Phe	ggt Gly 260	tct Ser		822
tgg Trp	gcg Ala	ttt Phe	aat Asn 265	ttg Leu	aat Asn	cca Pro	gat Asp	caa Gln 270	gga Gly	gag Glu	aat Asn	gat Asp	cca Pro 275	ggt Gly	ttg Leu		870
tgg Trp	att Ile	agt Ser 280	gaa Glu	cct Pro	aat Asn	ggt Gly	gtt Val 285	gac Asp	tct Ser	ggt Gly	ctt Leu	gta Val 290	gct Ala	gct Ala	ccg Pro		918
gtg	atg	aat	aat	ggt	gga	aat	gac	tca	act Pa	tct age :		tct	gat	tct	caa		966

				٠,													
Val	Met 295	Asn	Asn :	Gly	Gly	Asn 300			Seque Thr						Gln		
				Leu					tct Ser		Ğlu						
									aat Asn 335							. 1	062
									aag Lys			Ser				1	110
	Asn								acc Thr								.158
									gtg Val			Glu				1	206
									aaa Lys							1	.254
									ttg Leu 415								302
									aga Arg							1	350
									aaa Lys								398
									tct Ser							1	446
									att Ile							` 1	494
					_	_	_		gat Asp 495			_	_		_	1	542
									gtt Val							1	590
									agt Ser						ggt Gly	1	638
									ttg Leu							1	686
									atg Met								734
									gat Asp 575				Val			1	782
					gaa Glu			tga	attg	aagt	ca g	cato	ttta:	g		1	829

Page 38

1889

1949 2009 2069

2129 2162

000						+000				ence					occaca
															gccgcg
_				•											tctatt
	_			_											ggattc
															tgtttg
ato	aatg	gtt	aagt	cttt	gg t	ttgt	tggt	g ta	tgta	tgta	aat	aagg	ctt	ttgt	tagaaa
taa	gaca	aat	ggga	ctga	ag t	tgga	gttt	a aa	a						•
<21 <21 <21 <21	1 > 2 >	28 589 PRT Arab	idop	sis	thal	iana		·	· ·						
<40	0>	28													
Met 1	Ser	Pro	Thr	Asn 5	Val	Gln	Val	Thr	Asp 10	Tyr	His	Leu	Asn	Gln 15	Ser
Lys	Thr	Asp	Thr 20	Thr	Ásn	Leu	Trp	Ser 25	Thr	Asp	Asp	Asp	Ala 30	Ser	Val
Met	Glu	Ala 35	Phe	Ile	Gly	Gly	Gly 40	Ser	Asp	His	Ser	Ser 45	Leu	Phe	Pro
Pro	Leu 50	Pro	Pro	Pro	Pro	Leu 55	Pro	Gln	Val	Asn	Glu 60	Asp	Asn	Leu	Gln
Gln 65	Arg	. Leu	Gln	Ala	Leu 70	Ile	Glu	Gly	Ala	Asn 75	Glu	Asn	Trp	Thr	Tyr 80
Ala	Val	Phe	Trp	Gln 85	Ser	Ser	His	Gly	Phe 90	Ala	Gly	Glu	Asp	Asn 95	Asn .
Asn	Asn	Asn	Thr 100	Val	Leu	Leu	Gly	Trp 105	Gly	Asp	Gly	Tyr	Tyr 110	Lys	Gly
Glu	Glu	Glu 115	Lys	Ser	Arg	Lys	Lys 120	Lys	Ser	Asn	Pro	Ala 125	Ser	Ala	Ala
Glu	Gln 130	Glu	His	Arg	Lys	Arg 135	Val	Ile	Arg	Glu	Leu 140	Asn	Ser	Leu	Ile
Ser 145	Gly	Gly	Val	Gly	Gly 150	Gly	Asp	Glu	Ala	Gly 155	Asp	Glu	Glu	Val	Thr 160
Asp	Thr	Glu	Trp	Phe 165	Phe	Leu	Val	Ser	Met 170	Thr	Gln	Ser	Phe	Val 175	Lys
Gly	Thr	Gly	Leu 180	Pro	Gly	Gln	Ala	Phe 185	Ser	Asn	Ser	Asp	Thr 190	Ile	Trp
Leu	Ser	Gly 195	Ser	Asn	Ala	Leu	Ala 200	Gly	Ser	Ser	Cys	Glu 205	Arg	Ala	Arg

Gln Gly Gln Ile Tyr Gly Leu Gln Thr Met Val Cys Val Ala Thr Glu 210 215 220

Asn Gly Val Val Glu Leu Gly Ser Ser Glu Ile Ile His Gln Ser Ser 225 230 235

Asp Leu Val Asp Lys Val Asp Thr Phe Phe Asn Phe Asn Asn Gly Gly
245 250 255

Gly Glu Phe Gly Ser Trp Ala Phe Asn Leu Asn Pro Asp Gln Gly Glu 260 265 270

Asn Asp Pro Gly Leu Trp Ile Ser Glu Pro Asn Gly Val Asp Ser Gly 275 280 285

Leu Val Ala Ala Pro Val Met Asn Asn Gly Gly Asn Asp Ser Thr Ser 290 295 300

Asn Ser Asp Ser Gln Pro Ile Ser Lys Leu Cys Asn Gly Ser Ser Val 305 310 315

Glu Asn Pro Asn Pro Lys Val Leu Lys Ser Cys Glu Met Val Asn Phe 325 330 335

Lys Asn Gly Ile Glu Asn Gly Gln Glu Glu Asp Ser Ser Asn Lys Lys 340 345 350

Arg Ser Pro Val Ser Asn Asn Glu Glu Gly Met Leu Ser Phe Thr Ser 355 360 365

Val Leu Pro Cys Asp Ser Asn His Ser Asp Leu Glu Ala Ser Val Ala 370 375 380

Lys Glu Ala Glu Ser Asn Arg Val Val Val Glu Pro Glu Lys Lys Pro 385 390 395 400

Arg Lys Arg Gly Arg Lys Pro Ala Asn Gly Arg Glu Glu Pro Leu Asn 405 410 415

His Val Glu Ala Glu Arg Gln Arg Glu Lys Leu Asn Gln Arg Phe 420 425 430

Tyr Ser Leu Arg Ala Val Val Pro Asn Val Ser Lys Met Asp Lys Ala 435 440 445

Ser Leu Leu Gly Asp Ala Ile Ser Tyr Ile Ser Glu Leu Lys Ser Lys 450 460

Leu Gln Lys Ala Glu Ser Asp Lys Glu Glu Leu Gln Lys Gln Ile Asp 465 470 475 480

Val Met Asn Lys Glu Ala Gly Asn Ala Lys Ser Ser Val Lys Asp Arg 485 490 495

Lys Cys Leu Asn Gln Glu Ser Ser Val Leu Ile Glu Met Glu Val Asp 500 510

Val Lys Ile Ile Gly Trp Asp Ala Met Ile Arg Ile Gln Cys Ser Lys 515 520 525

Page 40

								. :					•				
Arg	Asn 530	His	Pro	Gly	Ala	Lys 535	Phe	Met	Glu	Aļa	Leu 540	Lys	Glu	Leu	Asp		•
Leu 545	Glu	Val	Asn	His	Ala 550	Ser	: Leu	Ser	Val	Val 555		Asp	Leu	Met	Ile 560		
Gln	Glm	Ala		Val 565		Met	Gly	Asn	Gln 570	Phe	Phe	Thr	Gln	Asp 575	Gln		
Leu	Lys	Val	•			Glu	Lys	Val	Gly	Glu	Cys	Pro		٠.			
	•		580					585									
<210 <211 <212 <213	l > 2 >	29 1056 DNA Arab	idop	sis '	thal:	iana				*.			٠.				
<220 <221 <222	L>	CDS		56)				÷ .	•								•
<223		G668	•							•							
<400 atg Met 1	gga	29 aga Arg	cca Pro	cct Pro 5	tgc Cys	tgt Cys	gaa Glu	aag Lys	att Ile 10	gga Gly	gtg Val	aag Lys	aaa L ys	999 Gly 15	cca Pro		4.8
tgg Trp	aca Thr	cca Pro	gag Glu 20	gaa Glu	gac Asp	atc Ile	atc Ile	ttg Leu 25	gtt Val	tct Ser	tac Tyr	atc	caa Gln 30	gaa Glu	cat His		96
Gly	Pro	gga Gly 35	Asn	Trp	Arg	Ser	Val 40	Pro	Thr	His	Thr	Gly 45	Leu	Arg	Cys		144
agc Ser	aag Lys 50	agc Ser	tgc Cys	aga Arg	ttg Leu	aga Arg 55	tgg Trp	act Thr	aat Asn	tat Tyr	ctt Leu 60	cga Arg	ccc Pro	ggt Gly	att Ile	:	192
aag Lys 65	cgt Arg	gga Gly	aat Asn	ttt Phe	act Thr 70	gag Glu	cat His	gaa Glu	gag Glu	aag Lys 75	aca Thr	att Ile	gtt Val	cat His	ctt Leu 80		240
caa Gln	gcc Ala	ctt Leu	tta Leu	ggc Gly 85	aac Asn	aga Arg	tgg Trp	gca Ala	gcc Ala 90	ata Ile	gca Ala	tca Ser	tac Tyr	ctt Leu 95	cca Pro		288
gaa Glu	agg Arg	aca Thr	gac Asp 100	aat Asn	gat Asp	ata Ile	Lys	aac Asn 105	tat Tyr	tgg Trp	aac Asn	act Thr	cac His 110	ttg Leu	aag Lys		336
aag Lys	aag Lys	ctc Leu 115	aaa Lys	aag Lys	att Ile	aat Asn	gaa Glu 120	tct Ser	ggt Gly	gaa Glu	gaa Glu	gat Asp 125	aat Asn	gat Asp	ggt Gly		384
gtc Val	tct Ser 130	tca Ser	tca Ser	aac Asn	act Thr	agt Ser 135	tca Ser	caa Gln	aag Lys	aac Asn	cat His 140	caa Gln	agc Ser	act Thr	aac Asn		432
Lys 145	Ğİy	caa Gln	Trp	Glu	Arg 150	Arg	Leu	Gln	Thr	Asp 155	Ile	Asn	Met	Ala	Lys 160		480
caa Gln	gct Ala	ctt Leu	tgt Cys	gag Glu 165	gcc Ala	ttg Leu	tct Ser	tta Leu	gac Asp 170	aaa Lys	cca Pro	tca Ser	tcc Ser	act Thr 175	ctt Leu		528
tca	tca	tct	tca	tca	tta	ccg	aca	cca		atc age		caa	caa	aac	atc		576

	1.1																	•
Se	er S	er	Ser	Ser 180		Leu	Pro							.ST2! Gln 190		Ile	*	
																tct Ser		62
	er S													act Thr				67
	r P											Asn		gcc Ala				720
														tta Leu				768
														gtc Val 270				816
														aat Asn				864
	p G													cat His				912
	ī I													cta Leu				960
									Lys					gag Glu				1008
ca Hi	с ga в Gl	ag lu	atg Met	gtt Val 340	ggt Gly	atg Met	gca Ala	cta Leu	gca Ala 345	gga Gly	caa Gln	gaa Glu	999 Gly	atg Met 350	Phe	tag		1056
<2 <2	10> 11> 12> 13>	3 P	0 51 RT rabi	.dops	sis t	:hali	ana						,					
< 4	00>	3	0															
Me 1	t Gl	.у	Arg	Pro	Pro 5	Сув	Cys	Glu	Lys	Ile 10	Gly	Val	Lys	Lys	Gly 15	Pro		
Tr	p Th	ır	Pro	Glu 20	Glu	Asp	Ile	Ile	Leu 25	Val	Ser	Tyr	Ile	Gln 30	Glu	His		
Gl	y Pr		Gly 35	Asn	Trp	Arg	Ser	Val 40	Pro	Thr	His	Thr	Gly 45	Leu	Arg	Сув		
Se	r Ly 50		Ser	Сув	Arg	Leu	Arg 55	Trp	Thr	Asn	Tyr	Leu 60	Arg	Pro	Gly	Ile		
Ly 65		g	Gly	Asn	Phe	Thr 70	Glu	His	Glu	Glu	Lys 75	Thr	Ile	Val	His	Leu 80		

Gln Ala Leu Leu Gly Asn Arg Trp Ala Ala Ile Ala Ser Tyr Leu Pro 95

WO 01/35727 PCT/US00/31457

MBI-17 Sequence Listing ST25
Glu Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr His Leu Lys
100 105 110

Lys Lys Leu Lys Lys Ile Asn Glu Ser Gly Glu Glu Asp Asn Asp Gly 115 120 125

Val Ser Ser Asn Thr Ser Ser Gln Lys Asn His Gln Ser Thr Asn 130 140

Lys Gly Gln Trp Glu Arg Arg Leu Gln Thr Asp Ile Asn Met Ala Lys 145 155 160

Gln Ala Leu Cys Glu Ala Leu Ser Leu Asp Lys Pro Ser Ser Thr Leu 165 170 175

Ser Ser Ser Ser Leu Pro Thr Pro Val Ile Thr Gln Gln Asn Ile 180 185 190

Arg Asn Phe Ser Ser Ala Leu Leu Asp Arg Cys Tyr Asp Pro Ser Ser 195 200 205

Ser Ser Ser Ser Thr Thr Thr Thr Thr Thr Ser Asn Thr Thr Asn Pro 210 215 220

Tyr Pro Ser Gly Val Tyr Ala Ser Ser Ala Glu Asn Ile Ala Arg Leu 225 230 235 240

Leu Gln Asp Phe Met Lys Asp Thr Pro Lys Ala Leu Thr Leu Ser Ser 245 250 255

Ser Ser Pro Val Ser Glu Thr Gly Pro Leu Thr Ala Ala Val Ser Glu 260 265 270

Glu Gly Glu Gly Phe Glu Gln Ser Phe Phe Ser Phe Asn Ser Met $\frac{275}{280}$

Asp Glu Thr Gln Asn Leu Thr Gln Glu Thr Ser Phe Phe His Asp Gln 290 300

Val Ile Lys Pro Glu Ile Thr Met Asp Gln Asp His Gly Leu Ile Ser 305 310 315 320

Gln Gly Ser Leu Ser Leu Phe Glu Lys Trp Leu Phe Asp Glu Gln Ser

His Glu Met Val Gly Met Ala Leu Ala Gly Gln Glu Gly Met Phe 340 345 350

<210> 31

<211> 2526

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (338)..(2275)

<223> G680

					•		MBI-	-17 5	Seque	ence	Lis	ting	.ST2	5	•		
		31 ctt	cttc	cttc	tt c	tctc			_				•		tttttg		60
ttt	tgct	tcc	gatt	tgat	ta t	ttcc	ggga	a cg	atga	cttc	tcc	9999	agt	tccc	ggtgag		120
atg	ataa	gtc	agat	tgca	ta ç	ttgt	ctcc	t cc	atgg	ctac	tct	caag	ggt	tttg	gctgcg		180
gtg	gatt	cgt	ttgg	tttc	tc t	agaa	tcta	a ag	aggt	tatc	aca	acgg	ctt	tgca	atttga		240
aaa	cttt	cat	gttt	9999	ag a	tcaa	agat	g git	ttct	tttt	tat	actt	tac	ttgt	tagaga		300
gga	tttg	aag	cagc	gaat	ag c	tgca	accg	g to	ctgt						a tct r Ser		355
														aca Thr			403
cag Gln	cga Arg	gag Glu 25	cga Arg	tgg Trp	act	gag Glu	gat Asp 30	gag Glu	cat His	gag Glu	agg Arg	ttt Phe 35	cta Leu	gaa Glu	gcc Ala		451
ttg Leu	agg Arg 40	ctt Leu	tat Tyr	gga Gly	aga Arg	gct Ala 45	tgg Trp	caa Gln	cga Arg	att Ile	gaa Glu 50	gaa Glu	cat His	att Ile	999 Gly		499
														ttc Phe			547
aag Lys	ttg Leu	gag Glu	aaa Lys	gag Glu 75	gct Ala	gaa Glu	gtt Val	aaa Lys	ggc Gly 80	atc Ile	cct Pro	gtt Val	tgc Cys	caa Gln 85	gct Ala		595
														aat Asn			643
cct Pro	tat Tyr	cct Pro 105	cga Arg	aaa Lys	cct Pro	999 Gly	aac Asn 110	aac Asn	ggt Gly	aca Thr	tct Ser	tcc Ser 115	tct Ser	caa Gln	gta Val	•	691
														tca Ser		•	739
														gag Glu			787
aca Thr	tca Ser	act Thr	gga Gly	aaa Lys 155	gaa Glu	aat Asn	caa Gln	gat Asp	gag Glu 160	aat Asn	tgc Cys	tcg Ser	ggt Gly	gtt Val 165	tct Ser		835
														gac Asp			883
														gtt Val			931
														cac His			979
														999 Gly		1	027
ata Ile	gca Ala	aaa Lys	tgc Cys	cct Pro 235	caa Gln	aat Asn	cat His	ccc Pro	tca Ser 240	ggt Gly	atg Met	gta Val	tct Ser	caa Gln 245	gac Asp	10	075

Page 44

	ttc Phe	atg Met	ttt Phe	cat His 250	cct Pro	atg Met	aga Arg	qaa	qaa	act	ence cac His	qqq	cac	gca	aat	ctt Leu	1123
	caa Gln	gct Ala	aca Thr 265	Thr	gca Ala	tct Ser	gct Ala	act Thr 270	act Thr	aca Thr	gct Ala	tct Ser	cat His 275	caa Gln	gcg Ala	ttt Phe	1171
	cca Pro	gct Ala 280	tgt Cys	cat His	tca Ser	cag Gln	gat Asp 285	gat Asp	tac Tyr	cgt Arg	tcg Ser	ttt Phe 290	ctc Leu	cag Gln	ata Ile	tca Ser .	1219
	tct Ser 295	act Thr	ttc Phe	tcc Ser	aat Asn	ctt Leu 300	att Ile	atg Met	tca Ser	act Thr	ctc Leu 305	cta Leu	cag Gln	aat Asn	cct Pro	gca Ala 310	1267
	gct Ala	cat His	gct Ala	gca Ala	gct Ala 315	aca Thr	ttc Phe	gct Ala	gct Ala	tcg Ser 320	gtc Val	tgg Trp	cct Pro	tat Tyr	gcg Ala 325	agt Ser	1315
	gtc Val	999 Gly	aat Asn	tct Ser 330	ggt Gly	gat Asp	tca Ser	tca Ser	acc Thr 335	cca Pro	atg Met	agc Ser	tct Ser	tct Ser 340	cct Pro	cca Pro	1363
	agt Ser	ata Ile	act Thr 345	gcc Ala	att Ile	gcc Ala	gct Ala	gct Ala 350	aca Thr	gta Val	gct Ala	ġct Ala	gca Ala 355	act Thr	gct Ala	tgg Trp	1411
	tgg Trp	gct Ala 360	tct Ser	cat	gga Gly	ctt Leu	ctt Leu 365	cct Pro	gta Val	tgc Cys	gct Ala	cca Pro 370	gct Ala	cca Pro	ata Ile	aca Thr	1459
•	tgt Cys 375	gtt Val	cca Pro	ttc Phe	tca Ser	act Thr 380	gtt Val	gca Ala	gtt Val	cca Pro	act Thr 385	cca Pro	gca Ala	atg Met	act Thr	gaa Glu 390	1507
	atg Met	gat Asp	acc Thr	gtt Val	gaa Glu 395	aat Asn	act Thr	caa Gln	ccg Pro	ttt Phe 400	gag Glu	aaa Lys	caa Gln	aac Asn	aca Thr 405	gct Ala	1555
	ctg Leu	caa Gln	gat Asp	caa Gln 410	acc Thr	ttg Leu	gct Ala	tcg Ser	aaa Lys 415	tct Ser	cca Pro	gct Ala	tca Ser	tca Ser 420	tct Ser	gat Asp	1603
	gat Asp	tca Ser	gat Asp 425	gag Glu	act Thr	gga Gly	gta Val	acc Thr 430	aag Lys	cta Leu	aat Asn	gcc Ala	gac Asp 435	tca Ser	aaa Lys	acc Thr	1651
	aat Asn	gat Asp 440	gat Asp	aaa Lys	att Ile	gag Glu	gag Glu 445	gtt Val	gtt Val	gtt Val	act Thr	gcc Ala 450	gct Ala	gtg Val	cat His	gac Asp	1699
	tca Ser 455	aac Asn	act Thr	gcc Ala	cag Gln	aag Lys 460	aaa Lys	aat Asn	ctt Leu	gtg Val	gac Asp 465	cgc Arg	tca Ser	tcg Ser	tgt Cys	ggc Gly 470	1747
	tca Ser	aat Asn	aca Thr	cct Pro	tca Ser 475	Gly 999	agt Ser	gac Asp	gca Ala	gaa Glu 480	act Thr	gat Asp	gca Ala	tta Leu	gat Asp 485	aaa Lys	1795
	atg Met	gag Glu	aaa Lys	gat Asp 490	aaa Lys	gag Glu	gat Asp	gtg Val	aag Lys 495	gag Glu	aca Thr	gat Asp	gag Glu	aat Asn 500	cag Gln	cca Pro	1843
	gat Asp	gtt Val	att Ile 505	gag Glu	tta Leu	aat Asn	aac Asn	cgt Arg 510	aag Lys	att Ile	aaa Lys	atg Met	aga Arg 515	gac Asp	aac Asn	aac Asn	1891
	agc Ser	aac Asn 520	aac Asn	aat Asn	gca Ala	act Thr	act Thr 525	gat Asp	tcg Ser	tgg Trp	aag Lys	gaa Glu 530	gtc Val	tcc Ser	gaa Glu	gag Glu	1939
	ggt Gly 535	cgt Arg	ata Ile	gcg Ala	ttt Phe	cag Gln 540	gct Ala	ctc Leu	ttt Phe	Ala	Arg 545	gaa Glu	aga Arg	ttg Leu	cct Pro	caa Gln 550	1987

agc Ser	ttt Phe	tcg Ser	cct Pro	cct Pro 555	caa Gln	gtg Val	gca Ala	gag Glu	aat Asn 560	gtg Val	aat Asn	aga Arg	aaa Lys	caa Gln 565	agt Ser	2035
											agc Ser				tgt Cys	2083
gct Ala	gca Ala	gac Asp 585	caa Gln	gaa Glu	gga Gly	gta Val	gta Val 590	atg Met	atc Ile	ggt Gly	gtt Val	gga Gly 595	aca Thr	tgc Cys	aag Lys	2131
											tac Tyr 610					2179
											aac Asn					2227
											gaa Glu				tga	2275
caga	cttg	ga g	gtaa	aaaa	aa aa	acat	ccac	att	ttta	tca	atat	cttt	aa a	tcta	gtgtt	2335
agta	gttt	gc t	tctc	caat	c tt	tate	jaaag	aga	cttt	taa	tttt	cctt	cc g	jaaca	tttct	2395
ttgg	tcat	gt c	aggt	tctg	gt ac	cata	ttac	ccc	atgt	ctt	gtct	cttg	jtc t	ctgt	ttgtg	2455
tatg	ctac	tt	tggt	ctat	a to	tcat	ctgo	tac	tact	gtt	aatt	aacc	at t	aago	aatgg	2515
attt	gtct	tt a	ı													2526

<210> 32

<211> 645

<212> PRT

<213> Arabidopsis thaliana

<400> 32

Met Asp Thr Asn Thr Ser Gly Glu Glu Leu Leu Ala Lys Ala Arg Lys

1 10 15

Pro Tyr Thr Ile Thr Lys Gln Arg Glu Arg Trp Thr Glu Asp Glu His 20 25 30

Glu Arg Phe Leu Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Arg 35 40 40

Ile Glu Glu His Ile Gly Thr Lys Thr Ala Val Gln Ile Arg Ser His 50 60

Ala Gln Lys Phe Phe Thr Lys Leu Glu Lys Glu Ala Glu Val Lys Gly 65 70 75

Ile Pro Val Cys Gln Ala Leu Asp Ile Glu Ile Pro Pro Pro Arg Pro 85 90 95

Lys Arg Lys Pro Asn Thr Pro Tyr Pro Arg Lys Pro Gly Asn Asn Gly 100 105

Thr Ser Ser Ser Gln Val Ser Ser Ala Lys Asp Ala Lys Leu Val Ser 115 $$ 120 $$ 125

MBI-17 Sequence Listing.ST25 Ser Ala Ser Ser Ser Gln Leu Asn Gln Ala Phe Leu Asp Leu Glu Lys 135 Met Pro Phe Ser Glu Lys Thr Ser Thr Gly Lys Glu Asn Gln Asp Glu Asn Cys Ser Gly Val Ser Thr Val Asn Lys Tyr Pro Leu Pro Thr Lys Gln Val Ser Gly Asp Ile Glu Thr Ser Lys Thr Ser Thr Val Asp Asn 185 Ala Val Gln Asp Val Pro Lys Lys Asn Lys Asp Lys Asp Gly Asn Asp 195 200 205 Gly Thr Thr Val His Ser Met Gln Asn Tyr Pro Trp His Phe His Ala Asp Ile Val Asn Gly Asn Ile Ala Lys Cys Pro Gln Asn His Pro Ser Gly Met Val Ser Gln Asp Phe Met Phe His Pro Met Arg Glu Glu Thr His Gly His Ala Asn Leu Gln Ala Thr Thr Ala Ser Ala Thr Thr Thr Ala Ser His Gln Ala Phe Pro Ala Cys His Ser Gln Asp Asp Tyr Arg 280 Ser Phe Leu Gln Ile Ser Ser Thr Phe Ser Asn Leu Ile Met Ser Thr Leu Leu Gln Asn Pro Ala Ala His Ala Ala Ala Thr Phe Ala Ala Ser Val Trp Pro Tyr Ala Ser Val Gly Asn Ser Gly Asp Ser Ser Thr Pro Met Ser Ser Pro Pro Ser Ile Thr Ala Ile Ala Ala Ala Thr Val Ala Ala Ala Thr Ala Trp Trp Ala Ser His Gly Leu Leu Pro Val Cys Ala Pro Ala Pro Ile Thr Cys Val Pro Phe Ser Thr Val Ala Val Pro Thr Pro Ala Met Thr Glu Met Asp Thr Val Glu Asn Thr Gln Pro Phe

Pro Ala Ser Ser Asp Asp Ser Asp Glu Thr Gly Val Thr Lys Leu

ログロしくこう・ へんり

0125797A

Glu Lys Gln Asn Thr Ala Leu Gln Asp Gln Thr Leu Ala Ser Lys Ser

WO 01/35727 PCT/US00/31457

MBI-17 Sequence Listing.ST25

Asn Ala Asp Ser Lys Thr Asn Asp Asp Lys Ile Glu Glu Val Val Val

Thr Ala Ala Val His Asp Ser Asn Thr Ala Gln Lys Lys Asn Leu Val

Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro Ser Gly Ser Asp Ala Glu

Thr Asp Ala Leu Asp Lys Met Glu Lys Asp Lys Glu Asp Val Lys Glu

Thr Asp Glu Asn Gln Pro Asp Val Ile Glu Leu Asn Asn Arg Lys Ile

Lys Met Arg Asp Asn Asn Ser Asn Asn Asn Ala Thr Thr Asp Ser Trp 520

Lys Glu Val Ser Glu Glu Gly Arg Ile Ala Phe Gln Ala Leu Phe Ala 535 540

Arg Glu Arg Leu Pro Gln Ser Phe Ser Pro Pro Gln Val Ala Glu Asn 550 555

Val Asn Arg Lys Gln Ser Asp Thr Ser Met Pro Leu Ala Pro Asn Phe 570

Lys Ser Gln Asp Ser Cys Ala Ala Asp Gln Glu Gly Val Val Met Ile 585

Gly Val Gly Thr Cys Lys Ser Leu Lys Thr Arg Gln Thr Gly Phe Lys 600

Pro Tyr Lys Arg Cys Ser Met Glu Val Lys Glu Ser Gln Val Gly Asn. 615

Ile Asn Asn Gln Ser Asp Glu Lys Val Cys Lys Arg Leu Arg Leu Glu

Gly Glu Ala Ser Thr

<210> 33 <211> 22 228

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(228)

<223> G682

<400> 33

atg gat aac cat cgc agg act aag caa ccc aag acc aac tcc atc gtt Met Asp Asn His Arg Arg Thr Lys Gln Pro Lys Thr Asn Ser Ile Val

act tct tct tct gaa gaa gtg agt agt ctt gag tgg gaa gtt gtg aac Thr Ser Ser Ser Glu Glu Val Ser Ser Leu Glu Trp Glu Val Val Asn

Page 48

BNSDOCID: <WO 0135727A1 I 48

Asp 55	Arg	Trp	Glu	Leu	Ile 60	Ala			Seque Ile						Glu 70	
gag Glu	ata Ile	gag Glu	aga Arg	tat Tyr 75	tgg Trp	ctt Leu	atg Met	aaa Lys	cac His 80	ggc Gly	gtc Val	gtt Val	ttt Phe	gcc Ala 85	aac Asn	414
		aga Arg							ttt	tttt!	tgt	ttgg	atta	aa		. 461
agaa	aat	ttt d	cctct	cctt	a at	tcac	caag	a ca	agaa	aaaa	agg	aaat	gta	cctg	tccttg	521
aatt	acta	atti	tgga	atgt	a ta	atta	atcta	a ta	tata	taag	aag	aaaa	aat	tgct	taggáa	581
ttt																584
<210 <211 <212 <213	.> ! !> !	36 94 PRT Arabi	idops	sis t	hali:	ana	8		*.						•	
<400)> -:	36										• :				
Met 1	Phe	Arg	Ser	Asp 5	Lys	Ala	Glu	Lys	Met 10	Asp	Lys 	Arg	Arg	Arg 15	Arg	
Gln	Ser	Lys	Ala 20	Lys	Ala	Ser	Cys	Ser 25	Glu	Glu	Val	Ser	Ser 30	Ile	Glu	
Trp	Glu	Ala 35	Val	Lys	Met	Ser	Glu 40	Glu	Glu	Glu	Asp	Leu 45	Ile	Ser	Arg	
Met	Tyr 50	Lys	Leu	Val	Gly	Asp 55	Arg	Trp	Glu	Leu	Ile 60	Ala	Gly	Arg	Ile	
Pro 65	Gly	Arg	Thr	Pro	Glu 70	Glu	Ile	Glu	Arg	Tyr 75	Trp	Leu	Met	Lys	His 80	
Gly	Val	Val	Phe	Ala 85	Asn	Arg	Arg	Arg	Asp 90	Phe	Phe	Arg	Lys			
<210 <211 <212 <213	> 1 > [7 369 NA Arabi	.dops	is t	hali	ana										
<220 <221 <222 <223	> C > (DS (104) 678	(1	174)											•	
<400 ggtt		7 .cg t	cact	ttac	t to	tctt	taaa	ı taa	tctc	ttt	ctct	agto	gat t	gact	ttagg	60
aaca	agtç	aa g	tgag	tgat	t tt	taat	aatc	gco	gged	gag	aga			agg Arg		115
		tgt Cys		Lys												163
		cgg Arg	Thr													211

		•															
							gcc Ala	999	cta		aga	tgt	gga	aag	agc Ser	·	259
tgt Cys	aga Arg	ttg Leu 55	aga Arg	tgg Trp	ata Ile	aac Asn	tat Tyr 60	ttg Leu	aga Arg	tca Ser	gac Asp	atc Ile 65	aag Lys	aga Arg	gga Gly	÷ '	307
		Thr				gag Glu 75											355
ttg Leu 85	gga Gly	acc Thr	agg Arg	tgg Trp	tca Ser 90	aca Thr	att Ile	gcg Ala	agc Ser	aat Asn 95	cta Leu	ccg Pro	gga Gly	aga Arg	aca Thr 100		403
gac Asp	aac Asn	gaa Glu	ata Ile	aaa Lys 105	aac Asn	tat Tyr	tgg Trp	aat Asn	tct Ser 110	cat	ctc Leu	agc Ser	cgt Arg	aaa Lys 115	ctc Leu		451
cac His	ggt Gly	tac Tyr	ttc Phe 120	aga Arg	aaa Lys	cca Pro	act Thr	gtc Val 125	gcc Ala	aat Asn	acc Thr	gtc Val	gag Glu 130	aat Asn	gcg Ala		499
cct Pro	ccg Pro	cct Pro 135	cct Pro	aag Lys	cgt Arg	aga Arg	cct Pro 140	gga Gly	aga Arg	acc Thr	agc Ser	aga Arg 145	tcc Ser	gcc Ala	atg Met		547 _.
Lys	ccc Pro 150	aaa Lys	ttt Phe	atc Ile	cta Leu	aac Asn 155	cct Pro	aaa Lys	aac Asn	cac His	aaa Lys 160	acc Thr	cct Pro	aat Asn	tct Ser		595
ttt Phe 165	aaa Lys	gca Ala	aac Asn	aaa Lys	agt Ser 170	gac Asp	atc Ile	gtt Val	ttg Leu	cca Pro 175	act Thr	acg Thr	aca Thr	ata Ile	gag Glu 180		643
aat Asn	gga Gly	gag Glu	gga Gly	gac Asp 185	aaa Lys	gaa Glu	gac Asp	gca Ala	tta Leu 190	atg Met	gtg Val	ttg Leu	tca Ser	agt Ser 195	agt Ser		691
agc Ser	tta Leu	agt Ser	gga Gly 200	gca Ala	gag Glu	gaa Glu	ccc Pro	ggt Gly 205	tta Leu	gga Gly	cca Pro	tgt Cys	ggt Gly 210	tat Tyr	gga Gly		739
gac Asp	gat Asp	ggc Gly 215	gat Asp	tgt Cys	aac Asn	cca Pro	agc Ser 220	att Ile	aat Asn	ggc Gly	gac Asp	gat Asp 225	gga Gly	gct Ala	ttg Leu		787
tgt Cys	ctc Leu 230	aat Asn	gac Asp	gac Asp	att Ile	ttc Phe 235	gat Asp	tct Ser	tgt Cys	ttt Phe	cta Leu 240	ttg Leu	gac Asp	gac Asp	tct Ser		835
						tca Ser											883
gag Glu	cca Pro	tat Tyr	gga Gly	999 Gly 265	atg Met	tca Ser	gtt Val	ggg Gly	cac His 270	aaa Lys	aat Asn	atc Ile	gaa Glu	acg Thr 275	atg Met		931
gct Ala	gat Asp	gat Asp	ttc Phe 280	gtt Val	gac Asp	tgg Trp	Asp	ttt Phe 285	gta Val	tgg Trp	aga Arg	gaa Glu	ggt Gly 290	caa Gln	acc Thr		979
ctt Leu	tgg Trp	gac Asp 295	gaa Glu	aaa Lys	gag Glu	gat Asp	ctt Leu 300	gat Asp	tcg Ser	gtt. Val	ttg Leu	tcg Ser 305	agg Arg	ctg Leu	tta Leu	1	027
Asp	gga Gly 310	gag Glu	gaa Glu	atg Met	gaa Glu	tct Ser 315	gag Glu	atc Ile	aga Arg	caa Gln	agg Arg 320	gac Asp	tcc Ser	aac Asn	gac Asp	1	075
ttt Phe 325	gga Gly	gaa Glu	ccg Pro	ttg Leu	gat Asp 330	att Ile	gac Asp	gaa Glu	Glu	aac Asn 335	Lys	atg Met	gct Ala	gct Ala	tgg Trp 340	1	123
									() =								

WO 01/35727 PCT/US00/31457

MBI-17 Sequence Listing.ST25

off the too the age att the occ off too the too off the occ off 1171 Leu Phe Ser Leu Lys Ile Leu Pro Pro Ser Phe Ser Leu Phe Pro Leu 345 350 taa tttttaccaa aacccccct tgccagatcc tgtccgtttt tccattaaac 1224 ctttttccc ccctaccttc cttttttat ttttaatttt tttttttcc tttttttc 1284 ctttcctttt ttaattccga tttttggcgg gttgccaatt aaccaaatta aatccatcct taaaaaaaa aaaaaaaaa aaaaa 1369

<210> 38

PRT

<213> Arabidopsis thaliana

<400> 38

Met Gly Arg Ala Pro Cys Cys Glu Lys Val Gly Ile Lys Lys Gly Arg

Trp Thr Ala Glu Glu Asp Arg Thr Leu Ser Asp Tyr Ile Gln Ser Asn

Gly Glu Gly Ser Trp Arg Ser Leu Pro Lys Asn Ala Gly Leu Lys Arg

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Ser Asp

Ile Lys Arg Gly Asn Ile Thr Pro Glu Glu Glu Asp Val Ile Val Lys 70

Leu His Ser Thr Leu Gly Thr Arg Trp Ser Thr Ile Ala Ser Asn Leu 90

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Ser His Leu

Ser Arg Lys Leu His Gly Tyr Phe Arg Lys Pro Thr Val Ala Asn Thr

Val Glu Asn Ala Pro Pro Pro Pro Lys Arg Pro Gly Arg Thr Ser

Arg Ser Ala Met Lys Pro Lys Phe Ile Leu Asn Pro Lys Asn His Lys

Thr Pro Asn Ser Phe Lys Ala Asn Lys Ser Asp Ile Val Leu Pro Thr

Thr Thr Ile Glu Asn Gly Glu Gly Asp Lys Glu Asp Ala Leu Met Val

Leu Ser Ser Ser Leu Ser Gly Ala Glu Glu Pro Gly Leu Gly Pro

Cys Gly Tyr Gly Asp Asp Gly Asp Cys Asn Pro Ser Ile Asn Gly Asp

Page 52

<212>

;						•			•			•					
Asr 225		/ Ala	Leu	Cys	Leu 230		Asp	Asp	Ile	Phe 235		Ser	Cys	Phe	Leu 240		
Let	Asp	Asp	Ser	His 245		Val	His	Val	Ser 250		Cys	Glu	Ser	Asn 255	Asn		
Va]	Lys	s. Asn	Ser 260		Pro	Tyr	Gly	Gly 265		Ser	Val	Gly	His 270	Lys	Asn		
Ile	Glu	Thr 275	Met	Ala	Asp	Asp	Phe 280	Val	Asp	Trp	Asp	Phe 285	Val	Trp	Arg		
Glu	Gly 290		Thr	Leu	Trp	Asp 295		Lys	Glu	Asp	Leu 300	Asp	Ser	Val	Leu		
Ser 305		Leu	Leu	Asp	Gly 310	Glu	Glu	Met	Glu	Ser 315		Ile	Arg	Gln	Arg 320	•	
Asp	Ser	Asn	Asp	Phe 325	Gly	Glu _.	Pro	Leu	Asp 330	Ile	Asp	Glu	Glu	Asn 335	Lys	• .	
٠.				•		:					_ ,		_	_,	_		
Met	Ala	Ala	Trp 340		Phe	Ser	Leu	Lys 345	I.le	Leu	Pro	Pro	350	Pne	Ser		
Leu	Phe	Pro 355	Leu	•	• .												
<21 <21 <21	1 > . 2 >	39 1046 DNA Arab	idops	sis t	hali	iana		. •	•								
<22 <22 <22 <22	1> 2>	CDS (46) G233	(86	57)												•	
<400> 39 gaaaaacatt tcaacttctt ttatcagcaa tcacaaatca aagag atg gga aga gct Met Gly Arg Ala 1														57			
cca Pro	tgc Cys	tgt Cys	gag Glu	aag Lys	atg Met 10	999 Gly	ttg Leu	aag Lys	aga Arg	gga Gly 15	cca Pro	tgg	aca Thr	cct Pro	gaa Glu 20		105
gaa Glu	gat Asp	caa Gln	atc Ile	ttg Leu 25	gtc Val	tct Ser	ttt Phe	atc Ile	ctc Leu 30	aac Asn	cat His	gga Gly	cat His	agt Ser 35	aac Asn		153
tgg Trp	cga Arg	gcc Ala	ctc Leu 40	cct Pro	aag Lys	caa Gln	gct Ala	ggt Gly 45	ctt Leu	ttg Leu	aga Arg	tgt Cys	gga Gly 50	aaa Lys	agc Ser		201
tgt Cys	aga Arg	ctt Leu 55	agg Arg	tgg Trp	atg Met	aac Asn	tat Tyr 60	tta Leu	aag Lys	cct Pro	Asp	att Ile 65 .	aaa Lys	cgt Arg	ggc Gly		249
aat Asn	ttc Phe 70	acc Thr	aaa Lys	gaa Glu	gag Glu	gaa Glu 75	gat Asp	gct Ala	atc Ile	atc Ile	agc Ser 80	tta Leu	cac His	caa Gln	ata Ile		297
ctt	ggc	aat	aga	tgg	tca	gcg	att	gca		aaa age 5		cct	gga	aga	acc		345

Lei 85	Gly	Asn	Arg	Trp	Ser 90	Ala							ST25 Gly		Thr 100		
	aac Asn														Leu	3	93
	gat Asp															4	41
	aaa Lys		Lys													4	89
	gaa Glu 150															5	37
	tcg Ser															5	85
	cac His																33
	atc Ile															6	81 .
	gat Asp															· 7 :	29
	cac His 230															7	77
	caa Gln															8:	25
	gac Asp												tag		**	80	57
aac	cggc	999 9	gaaca	agat	c to	ttag	ccgg	gct	ctaç	jtta	acat	gttt	ga g	gagt	aaagt	9:	27
gaa	atggt	gc a	aatt	agtt	a ag	gcta	agaa	att	caaa	agc	tttt	gttt	ac c	gaga	ıaaaaa	98	37
aca	cacto	cta a	actct	tgat	g t <u>s</u>	jatgt	agtt	agt	gtat	taa	ttag	gaggo	tg c	gttt	tcaa	104	16
<21 <21 <21 <21	1> 2 2> 1	10 273 PRT Arabi	idops	sis t	:hali	.ana											
<40	0 > 4	0								•							
Met 1	Gly	Arg	Ala	Pro 5	Cys	Суѕ	Glu	Lys	Met 10	Gly	Leu	Lys	Arg	Gly 15	Pro		
Trp	Thr	Pro	Glu 20	Glu	Asp	Gln	Ile	Leu 25	Val	Ser	Phe	Ile	Leu 30	Asn	His		
Gly	His	Ser 35	Asn	Trp	Arg	Ala	Leu 40	Pro	Lys	Gln	Ala	Gly 45	Leu	Leu	Arg		

Cys Gly Lys Ser Cys Arg Leu Arg Trp Met Asn Tyr Leu Lys Pro Asp 50 Page 54

PCT/US00/31457

MBI-17 Sequence Listing.ST25

Ile Lys Arg Gly Asn Phe Thr Lys Glu Glu Glu Asp Ala Ile Ile Ser Leu His Gln Ile Leu Gly Asn Arg Trp Ser Ala Ile Ala Ala Lys Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val Trp His Thr His Leu Lys Lys Arg Leu Glu Asp Tyr Gln Pro Ala Lys Pro Lys Thr Ser Asn Lys Lys Lys Gly Thr Lys Pro Lys Ser Glu Ser Val Ile Thr Ser Ser Asn Ser Thr Arg Ser Glu Ser Glu Leu Ala Asp Ser Ser Asn Pro Ser Gly Glu Ser Leu Phe Ser Thr Ser Pro Ser Thr Ser Glu Val Ser Ser 170 165 Met Thr Leu Ile Ser His Asp Gly Tyr Ser Asn Glu Ile Asn Met Asp Asn Lys Pro Gly Asp Ile Ser Thr Ile Asp Gln Glu Cys Val Ser Phe 195. . Glu Thr Phe Gly Ala Asp Ile Asp Glu Ser Phe Trp Lys Glu Thr Leu Tyr Ser Gln Asp Glu His Asn Tyr Val Ser Asn Asp Leu Glu Val Ala Gly Leu Val Glu Ile Gln Gln Glu Phe Gln Asn Leu Gly Ser Ala Asn Asn Glu Met Ile Phe Asp Ser Glu Met Glu Leu Leu Val Arg Cys Ile 265 Gly <210> 41 1262 DNA <213> Arabidopsis thaliana <2205 <221> CDS (217)..(957) <222> <223> G463

			•				PIDI	- / .	sequi	-1100		cing	.512	,		
tagt	999	ttt	ttgt	tgtt	gt t	gttg	tggt	c tc	tctg						gag Glu	234
atg Met	999 999	aaa Lys	ggt Gly 10	gag Glu	agt Ser	gag Glu	ctt Leu	gag Glu 15	ctt Leu	ggt Gly	cta Leu	ggg Gly	ctg Leu 20	agt Ser	ctt Leu	282
ggc Gly	ggt Gly	gga Gly 25	acg Thr	gcg Ala	gcc Ala	aag Lys	att Ile 30	ggt Gly	aaa Lys	tca Ser	ggt Gly	ggt Gly 35	ggt Gly	ggc	gcg Ala	330
tgg Trp					agg Arg											378
					gct Ala 60										cct Pro 70	426
Pro																474
atg Met																522
gaa Glu	gaa Glu	gct Ala 105	ggt Gly	aag Lys	aag Lys	aaa Lys	gtg Val 110	aaa Lys	gat Asp	gat Asp	gaa Glu	cct Pro 115	aaa Lys	gat Asp	gtg Val	570
aca Thr																618
atg Met 135																666
tct Ser																714
aat Asn															agg Arg	762
ctt Leu																810
gga g Gly																858
ser v																906
gct o																954
tag a	atct	cttt	tc g	acgt	tacg	g tg	ttac	aggt	ttt	atat	ttt	9999	tttt	gc		1007
aagto	ctga	ga t	actt	ctga	a go	aagc	ataa	gct	agat	tga	tctt	atat	.cc a	gttt	gtgta	1067
tttt	ettg	gt t	ctta	taat	g gt	tttt	actg	gtt	ttct	tta	gttt	tttt	tt t	tgct	gtctt	1127
ttaat	cttt	cg g	ttgc	gatt	t ca	ctat	atac	tat	ggat	gga	agag	aatg	ct c	ettta	tatct	1187
tttad	ctac	ac t	gtaa	atat	t tg	aagc	ttat	cta	atat	cgt	tttt	aagg	gt t	aaaa	aaccc	1247

tgacgtagcc tcgag

<210> 42

<211> 246 <212> PRT

<213> Arabidopsis thaliana

<400> 42

Met Ile Thr Glu Leu Glu Met Gly Lys Gly Glu Ser Glu Leu Glu Leu

Gly Leu Gly Leu Ser Leu Gly Gly Gly Thr Ala Ala Lys Ile Gly Lys 20 25 30

Ser Gly Gly Gly Ala Trp Gly Glu Arg Gly Arg Leu Leu Thr Ala

Lys Asp Phe Pro Ser Val Gly Ser Lys Arg'Ala Ala Asp Ser Ala Ser

His Ala Gly Ser Ser Pro Pro Arg Ser Ser Gln Val Val Gly Trp Pro

Pro Ile Gly Ser His Arg Met Asn Ser Leu Val Asn Asn Gln Ala Thr

Lys Ser Ala Arg Glu Glu Glu Glu Ala Gly Lys Lys Val Lys Asp

Asp Glu Pro Lys Asp Val Thr Lys Lys Val Asn Gly Lys Val Gln Val

Gly Phe Ile Lys Val Asn Met Asp Gly Val Ala Ile Gly Arg Lys Val

Asp Leu Asn Ala His Ser Ser Tyr Glu Asn Leu Ala Gln Thr Leu Glu

Asp Met Phe Phe Arg Thr Asn Pro Gly Thr Val Gly Leu Thr Ser Gln

Phe Thr Lys Pro Leu Arg Leu Leu Asp Gly Ser Ser Glu Phe Val Leu 180 185 185

Thr Tyr Glu Asp Lys Glu Gly Asp Trp Met Leu Val Gly Asp Val Pro

Trp Arg Met Phe Ile Asn Ser Val Lys Arg Leu Arg Val Met Lys Thr

Ser Glu Ala Asn Gly Leu Ala Ala Arg Asn Gln Glu Pro Asn Glu Arg

Gln Arg Lys Gln Pro Val

<210> 43

PCT/US00/31457

							MRT	-17.	Seau	ence	Lis	rina	ST2	5				
<21 <21 <21	2 >	741 DNA Arab	idop	gig	rhal	iana			ooqu								<i>:</i> .	
			тоор						.:			,						
<22 <22 <22	1>	CDS	: . (74	1)											• •			
		G242		Ţ., ·								•						
-40	0>	43															•	
atg	ggc	gaa													gaa Glu		48	
								att Ile 25							aaa Lys		96	
								ggt Gly							agt Ser		144	
								ttg Leu									192	
aaa Lys 65	ctc Leu	tgc Cys	tcc Ser	gat Asp	gaa Glu 70	gtt Val	gat Asp	ctt Leu	gtt Val	ctt Leu 75	cgc Arg	Ctt Leu	cat His	aaa Lys	ctt Leu 80		240	
								gct Ala									288	
								aac Asn 105									336	
								atg Met									384	
cat His	cct Pro 130	act Thr	tca Ser	tcg Ser	gcc Ala	caa Gln 135	aaa Lys	atc Ile	gat Asp	gtt Val	tta Leu 140	aag Lys	cct Pro	cgg Arg	cct Pro	•	432	
								cys Cys									480	
								ctt Leu									528	
								aaa Lys 185									576	
								gat Asp									624	
								gaa Glu									672	
								caa Gln									720	
			gaa Glu			tag											741	

<210> 44

<211> 240

<212> PRT

<213> Arabidopsis thaliana

<400> 44

Met Gly Glu Ser Pro Lys Gly Leu Arg Lys Gly Thr Trp Thr Thr Glu
1 5 - 10 15

Glu Asp Ile Leu Leu Arg Gln Cys Ile Asp Lys Tyr Gly Glu Gly Lys 20 25 30

Trp His Arg Val Pro Leu Arg Thr Gly Leu Asn Arg Cys Arg Lys Ser 35 40 45

Cys Arg Leu Arg Trp Leu Asn Tyr Leu Lys Pro Ser Ile Lys Arg Gly
50 60

Lys Leu Cys Ser Asp Glu Val Asp Leu Val Leu Arg Leu His Lys Leu 65 70 75

Leu Gly Asn Arg Trp Ser Leu Ile Ala Gly Arg Leu Pro Gly Arg Thr 85 90

Ala Asn Asp Val Lys Asn Tyr Trp Asn Thr His Leu Ser Lys Lys His 100 105 110

Asp Glu Arg Cys Cys Lys Thr Lys Met Ile Asn Lys Asn Ile Thr Ser 115 120 125

His Pro Thr Ser Ser Ala Gln Lys Ile Asp Val Leu Lys Pro Arg Pro 130 140

Arg Ser Phe Ser Asp Lys Asn Ser Cys Asn Asp Val Asn Ile Leu Pro 145 150 155 160

Lys Val Asp Val Val Pro Leu His Leu Gly Leu Asn Asn Asn Tyr Val

Cys Glu Ser Ser Ile Thr Cys Asn Lys Asp Glu Gln Lys Asp Lys Leu 180 185 190

Ile Asn Ile Asn Leu Leu Asp Gly Asp Asn Met Trp Trp Glu Ser Leu 195 200 205

Leu Glu Ala Asp Val Leu Gly Pro Glu Ala Thr Glu Thr Ala Lys Gly 210 220

Val Thr Leu Pro Leu Asp Phe Glu Gln Ile Trp Ala Arg Phe Asp Glu 225 230 235 240

Glu Thr Leu Glu Leu Asn

<210> 45 <211> 762 <212> DNA

<213> Arabidopsis thalian	MBI-17 Sequence	Listing.ST25	
<220> <221> CDS <222> (1)(630) <223> G2421			
<400> 45 atg gag ggt tcg tcc aaa ggg Met Glu Gly Ser Ser Lys Gly 1 5			48
gaa gat agt ctc ttg agg cag Glu Asp Ser Leu Leu Arg Glu 20			96
tgg cat caa gtt cct tta aga Trp His Gln Val Pro Leu Arg 35			144
tgt aga cta aga tgg tta aac Cys Arg Leu Arg Trp Leu Ass 50 55			192
aaa ttt agt tct gat gaa gtt Lys Phe Ser Ser Asp Glu Val 65 70	gat ctt ctt ctt l Asp Leu Leu Leu 75	cgt ctt cat aag ctt Arg Leu His Lys Leu 80	240
cta gga aat agg tgg tcc ttg Leu Gly Asn Arg Trp Ser Leu 85	g att gct ggt cga i lle Ala Gly Arg 90	tta cct ggt cgg acc Leu Pro Gly Arg Thr 95	288
gct aat gat gtc aag aac tac Ala Asn Asp Val Lys Asn Tyn 100			336
gaa ccg tgt tgt aaa act aag Glu Pro Cys Cys Lys Thr Lys 115			384
cct aat aca ccg gcc caa aaa Pro Asn Thr Pro Ala Gln Lys 130 135	s Val Cys Glu Asn		432
aaa gat gat gag aaa gat gat Lys Asp Asp Glu Lys Asp Asp 145 150			480
aat ata tgg ttg gag cgt ttg Asn Ile Trp Leu Glu Arg Leu 165			528
ctg gtt aca gaa gcg gcg gca Leu Val Thr Glu Ala Ala 180	a aca gaa aag gag a Thr Glu Lys Glu 185	ggc act ttg gcg ttt Gly Thr Leu Ala Phe 190	576
gac gtt gag caa ctt tgg aat Asp Val Glu Gln Leu Trp Asn 195			624
gat tag tgtttataaa cgtttgtg Asp	tt ctcttgtttg tga	aggtttct ctatttaatt	680
tagtatctat tttctaaatt aacta	atatc ttatagtatt	ttaggcaaac cttatgtttc	740
cgtttctgtg cggccgctct ag		•	762
<210> 46 <211> 209 <212> PRT <213> Arabidopsis thaliana	÷		

Page 60

<400> 46

Met Glu Gly Ser Ser Lys Gly Leu Arg Lys Gly Ala Trp Thr Ala Glu 1 5 15

Glu Asp Ser Leu Leu Arg Gln Cys Ile Gly Lys Tyr Gly Glu Gly Lys 20 25 30

Trp His Gln Val Pro Leu Arg Ala Gly Leu Asn Arg Cys Arg Lys Ser 35 40 45

Cys Arg Leu Arg Trp Leu Asn Tyr Leu Lys Pro Ser Ile Lys Arg Gly 50 60

Lys Phe Ser Ser Asp Glu Val Asp Leu Leu Leu Arg Leu His Lys Leu 65 70 75 80

Leu Gly Asn Arg Trp Ser Leu Ile Ala Gly Arg Leu Pro Gly Arg Thr 85 90 95

Ala Asn Asp Val Lys Asn Tyr Trp Asn Thr His Leu Ser Lys Lys His 100 105 110

Glu Pro Cys Cys Lys Thr Lys Ile Lys Arg Ile Asn Ile Ile Thr Pro 115 120 125

Pro Asn Thr Pro Ala Gln Lys Val Cys Glu Asn Ser Ile Thr Cys Asn 130 135 140

Lys Asp Asp Glu Lys Asp Asp Phe Val Asp Asn Phe Met Val Gly Asp 145 150 155

Asn Ile Trp Leu Glu Arg Leu Leu Asp Glu Gly Gln Glu Val Asp Val 165 170 175

Leu Val Thr Glu Ala Ala Thr Glu Lys Glu Gly Thr Leu Ala Phe 180 185 190

Asp Val Glu Gln Leu Trp Asn Leu Phe Asp Gly Glu Thr Val Ile Phe 195 200 205

Asp

<210> 47

<211> 1665

<212> DNA

<213> Arabidopsis thaliana

-220>

<221> CDS

<222> (33)..(1376)

<223> G772

53

gtt gtg tcc tcg ccg cca tcg gcg act gcg ccc agt act gct gtg tcg Page 61

101

		•	•					•			,						
	Val	Val	Ser 10	Ser	Pro	Pro	Ser		-17 S Thr							Ser	·
				ctt Leu							His						149
	ctc Leu 40	gtg Val	agc Ser	tat Tyr	tac Tyr	ttg Leu 45	aag Lys	agg Arg	aag Lys	gtt Val	ctg Leu 50	ggt Gly	aaa Lys	cct Pro	gta Val	cgc Arg 55	197
				att Ile													245
				ttt Phe 75													293
				tta Leu													341
	gca Ala	act Thr 105	Asn	aaa Lys	ggg Gly	tac Tyr	tgg Trp 110	aaa Lys	gca Ala	act Thr	gga Gly	aaa Lys 115	gac Asp	aga Arg	gaá Glu	atc Ile	389
				att Ile													437
	agc Ser	Gly 999	cgt Arg	gct Ala	cca Pro 140	gac Asp	ggc Gly	ctt Leu	cgg Arg	act Thr 145	aat Asn	tgg Trp	gtc Val	atg Met	cac His 150	gag Glu	485
				gtg Val 155													533
•	gat Asp	gca Ala	tat Tyr 170	gtg Val	ttg Leu	tgc Cys	aga Arg	gtg Val 175	ttt Phe	cac His	aag Lys	aat Asn	aac Asn 180	att Ile	999 Gly	cca Pro	581
	cca Pro	agt Ser 185	dj aaa	aac Asn	aga Arg	tat Tyr	gcg Ala 190	cca Pro	ttc Phe	atg Met	gaa Glu	gaa Glu 195	gaa Glu	tgg Trp	gct Ala	gat Asp	629
				gct Ala													677
				caa Gln													725
				aag Lys 235													773
				gac Asp													821
				cag Gln													869
	gac Asp 280	aca Thr	ctc Leu	aaa Lys	cgc Arg	gag Glu 285	cac His	gca Ala	gaa Glu	gaa Glu	gat Asp 290	gag Glu	cgt Arg	cct Pro	cct Pro	tct Ser 295	917
				ctc Leu													965

MBI-17 Sequence Listing.ST25	
cgt aga cgc caa aac gag tcc aac aac tca agc agg aac aca cag Arg Arg Arg Gln Asn Glu Ser Asn Asn Asn Ser Ser Arg Asn Thr Gln 315 320 325	1013
gac cat tgt tcg tcc aca ata aca acc gtc gac aat aca acc acc tta Asp His Cys Ser Ser Thr Ile Thr Thr Val Asp Asn Thr Thr Thr Leu 330 335 340	1061
atc tca tct gct gct gct acc aac act gcc atc tct gca ttg Ile Ser Ser Ser Ala Ala Ala Ala Thr Asn Thr Ala Ile Ser Ala Leu 345 350 355	1109
Ctt gag ttc tca ctt atg ggt atc tcc gac aag aaa gaa aac cag cag Leu Glu Phe Ser Leu Met Gly Ile Ser Asp Lys Lys Glu Asn Gln Gln 360 365 370 375	1157
aaa gag gaa act tct cct cct agt cca att gca tct cct gaa gag aag Lys Glu Glu Thr Ser Pro Pro Ser Pro Ile Ala Ser Pro Glu Glu Lys 380 385 390	1205
gtt aat gat ctc cag aag gag gtt cac cag atg tct gtt gaa aga gaa Val Asn Asp Leu Gln Lys Glu Val His Gln Met Ser Val Glu Arg Glu 395 400 405	1253
act ttc aag ctt gag atg atg agt gca gag gct atg atc agc att ctc Thr Phe Lys Leu Glu Met Met Ser Ala Glu Ala Met Ile Ser Ile Leu 410 415	1301
cag tca aga atc gat gcg ctg cgt cag gag aac gag gaa ctt aag aag Gln Ser Arg Ile Asp Ala Leu Arg Gln Glu Asn Glu Glu Leu Lys Lys 425 430 435	1349
aag aac gcc agt gga caa gct agt taa accaccgcaa catctctcca Lys Asn Ala Ser Gly Gln Ala Ser 440 445	1396
ggtgtcttct tettettett ettettett geetettage tgtaatette ttaatagtat	1456
gagetatgga tgtagettet teagaeggat cagaaacett atgaatetet gttgtaaaat	1516
taggataaaa cggaacggag ccaaccaact aggtcttttt attttatcct tttttacttt	1576
ggatgtttct gcatcttttg ggaacatttt caggetgate cattgtcgta tattatcate.	1636
tatctatcta gtcttttcag acaaaaaaa	1665
<210> 48 <211> 447 <212> PRT <213> Arabidopsis thaliana	
<400> 48.	
Met Gly Arg Glu Ser Leu Ala Val Val Ser Ser Pro Pro Ser Ala Thr 1 10 15	
Ala Pro Ser Thr Ala Val Ser Ala Thr Ser Leu Ala Pro Gly Phe Arg 20 25 30	
Phe His Pro Thr Asp Glu Glu Leu Val Ser Tyr Tyr Leu Lys Arg Lys 35 40 45	
Val Leu Gly Lys Pro Val Arg Phe Asp Ala Ile Gly Glu Val Asp Ile 50 60	

Tyr Lys His Glu Pro Trp Asp Leu Ala Val Phe Ser Lys Leu Lys Thr 65 70 75

Arg Asp Gln Glu Trp Tyr Phe Phe Ser Ala Leu Asp Lys Lys Tyr Gly

Page 63

BRISDOCIO, JAIO 019E797A1

85

Asn Gly Ala Arg Met Asn Arg Ala Thr Asn Lys Gly Tyr Trp Lys Ala

Thr Gly Lys Asp Arg Glu Ile Arg Arg Asp Ile Gln Leu Leu Gly Met 115 120 125

Lys Lys Thr Leu Val Phe His Ser Gly Arg Ala Pro Asp Gly Leu Arg 130 135 140

Thr Asn Trp Val Met His Glu Tyr Arg Leu Val Glu Tyr Glu Thr Glu 145 150 155 160

Thr Asn Gly Ser Leu Leu Gln Asp Ala Tyr Val Leu Cys Arg Val Phe 165 170 175

His Lys Asn Asn Ile Gly Pro Pro Ser Gly Asn Arg Tyr Ala Pro Phe 180 185 190

Met Glu Glu Glu Trp Ala Asp Gly Gly Gly Ala Leu Ile Pro Gly Ile 195 200 205

Asp Val Arg Val Arg Val Glu Ala Leu Pro Gln Ala Asn Gly Asn Asn 210 215 220

Gln Met Asp Gln Glu Met His Ser Ala Ser Lys Asp Leu Ile Asn Ile 225 230 235 240

Asn Glu Leu Pro Arg Asp Ala Thr Pro Met Asp Ile Glu Pro Asn Gln
245 250 255

Gln Asn His His Glu Ser Ala Phe Lys Pro Gln Glu Ser Asn Asn His
260 265 270

Ser Gly Tyr Glu Glu Asp Glu Asp Thr Leu Lys Arg Glu His Ala Glu

Glu Asp Glu Arg Pro Pro Ser Leu Cys Ile Leu Asn Lys Glu Ala Pro 290 295 300

Leu Pro Leu Gln Tyr Lys Arg Arg Arg Gln Asn Glu Ser Asn Asn 305 310 315 320

Asn Ser Ser Arg Asn Thr Gln Asp His Cys Ser Ser Thr Ile Thr Thr

Val Asp Asn Thr Thr Thr Leu Ile Ser Ser Ser Ala Ala Ala Thr 340 345 350

Asn Thr Ala Ile Ser Ala Leu Leu Glu Phe Ser Leu Met Gly Ile Ser 355 360 Phe Ser Leu Met Gly Ile Ser 365

Asp Lys Glu Asn Gln Gln Lys Glu Glu Thr Ser Pro Pro Ser Pro 370 380

								MDT	12 0			T 1 01	ina	CTO				
:	lle 385		Ser	Pro		Glu 390	Lys	Val	17 S Asn	Asp	Leu 395	Gln	Lys	Glu	Val	His 400	•	
	Gln	Met	Ser	Val	Glu 405	Arg	Glu	Thr	Phe	Lys 410	Leu	Glu	Met	Met	Ser 415	Ala ·		•
,	Glu	Ala	Met	Ile 420	Ser	Ile	Leu	Gln	Ser 425	Arg	Ile	Asp	Ala	Leu 430	Arg	Gln		
٠	Glu		Glu, 435	Glu	Leu	Lys	Lys	Lys 440	Asn	Ala	Ser	Gly	Gln 445	Ala	Ser			
	<210 <210 <210 <210	l > 1 2 > 1	49 1198 DNA Arabi		sis t	hali	iana											
	<220 <221 <222 <223	L> (2>	CDS (56) 3866	(10)21)													
	<400 aaaa)> 4 aaaa	19 act t	gcad	catct	t ct	caga	tctt	caa	agttt	ctc	ctct	ggtt	tc t	cato	atg Met 1	58	
	acc Thr	gtt Val	gat Asp	att Ile 5	atg Met	cgt Arg	tta Leu	cct Pro	aag Lys 10	atg Met	gaa Glu	gat Asp	caa Gln	acg Thr 15	gct Ala	ata Ile	106	
	caa Gln	gaa Glu.	gct Ala 20	gca Ala	tca Ser	caa Gln	ggc Gly	tta Leu 25	aaa Lys	agc Ser	atg Met	gaa Glu	cac His 30	ttg Leu	att Ile	cgt Arg	154	
	gtc Val	ctc Leu 35	tct Ser	aac Asn	cgt Arg	ccc Pro	gaa Glu 40	gaa Glu	cgt Arg	aac Asn	gtt Val	gat Asp 45	tgc Cys	tct Ser	gag Glu	atc Ile	202	
	act Thr 50	gat Asp	ttc Phe	aca Thr	gtt Val	tct Ser 55	aag Lys	ttc Phe	aag Lys	aaa Lys	gtt Val 60	atc Ile	tct Ser	ctt Leu	ctt Leu	aac Asn [.] 65	250	
	cgt Arg	tcc Ser	ggt Gly	cac His	gcc Ala 70	cgg Arg	ttt Phe	aga Arg	cgt Arg	ggt Gly 75	ccg Pro	gtt Val	cat His	tcc Ser	cct Pro 80	cct Pro	298	
	tcc Ser	tcc Ser	tcc Ser	gtt Val 85	cct Pro	cca Pro	ccg Pro	gtg Val	aaa Lys 90	gtg Val	aca Thr	act Thr	ccg Pro	gct Ala 95	ccc Pro	act Thr	346	
	cag Gln	atc Ile	tct Ser 100	gct Ala	cca Pro	gca Ala	ccg Pro	gtt Val 105	agc Ser	ttc Phe	gtt Val	Gln	gca Ala 110	aat Asn	caa Gln	caa Gln	394	
	agc Ser	gtg Val 115	acg Thr	tta Leu	gat Asp	ttc Phe	act Thr 120	aga Arg	ccg Pro	agc Ser	gtt Val	ttt Phe 125	ggc Gly	gct Ala	aaa Lys	acc Thr	442	
	aag Lys 130	agc Ser	tcg Ser	gag Glu	gtt Val	gtt Val 135	gag Glu	ttt Phe	gct Ala	aaa Lys	gag Glu 140	Ser	ttt Phe	agc Ser	gta Val	tct Ser 145	490	
	tct Ser	aac Asn	tct Ser	tct Ser	ttc Phe 150	atg Met	tct Ser	tct Ser	gcg Ala	atc Ile 155	acc Thr	ggt Gly	gat Asp	gga Gly	agt Ser 160	gtc Val	538	
	tct Ser	aaa Lys	ggc Gly	tct Ser 165	tcg Ser	atc Ile	ttt Phe	ctt Leu	gct Ala 170	ccg Pro	gct Ala	cca Pro	gcg Ala	gtg Val 175	cca Pro	gtg Val	586	

									•			_				
			ggg													634
tgc Cys	ttt Phe 195	gaa Glu	cat His	gac Asp	cac His	tct Ser 200	gaa Glu	ggc Gly	ttt Phe	tcc Ser	ggc Gly 205	aag Lys	atc Ile	tct Ser	ggc Gly	682
tcc Ser 210	ggc Gly	aac Asn	ggc Gly	aag Lys	tgc Cys 215	cat His	tgc Cys	aag Lys	aaa Lys	agc Ser 220	cga Arg	aaa Lys	aat Asn	cgg Arg	atg Met 225	730
			gtg Val													778
			gaa Glu 245													826
			cat His													874
Cys			agg Arg													922
			acg Thr													970
cag Gln	gag Glu	cat His	gta Val	act Thr 310	cct Pro	agc Ser	gtg Val	agt Ser	ggt Gly 315	ttg Leu	gtg Val	ttt Phe	ggt Gly	tcg Ser 320	gct Ala	1018
tga	agaa	ttaa	itt a	gttt	ggta	g tt	ttgt	aata	ttt	tgag	aaa	taga	9999	tt		1071
ggtt	ttgt	aa t	tttt	tttc	t at	aaca	aaat	tag	tttt	aga	t ttt	tttt	ta g	tagt	ctttt	1131
gaat	ggat	tt t	aatc	ttac	t ac	cgag	aaag	aaa	aaat	tct	tact	acat	tt t	caaa	aaaaa	1191
aaaa	aaa														•	1198

<210> 50

<211> 321

<212> PRT

<213> Arabidopsis thaliana

<400> 50

Met Thr Val Asp Ile Met Arg Leu Pro Lys Met Glu Asp Gln Thr Ala 1 5 5 10 10 10 15 15

Ile Gl
n Glu Ala Ala Ser Gl
n Gly Leu Lys Ser Met Glu His Leu Ile 20 25

Arg Val Leu Ser Asn Arg Pro Glu Glu Arg Asn Val Asp Cys Ser Glu 35 40 45

Ile Thr Asp Phe Thr Val Ser Lys Phe Lys Lys Val Ile Ser Leu Leu 50 60

Asn Arg Ser Gly His Ala Arg Phe Arg Arg Gly Pro Val His Ser Pro 65 75 80

Pro Ser Ser Ser Val Pro Pro Pro Val Lys Val Thr Thr Pro Ala Pro 85

Page 66

WO 01/35727 PCT/US00/31457

MBI-17 Sequence Listing.ST25

Thr Gln Ile Ser Ala Pro Ala Pro Val Ser Phe Val Gln Ala Asn Gln 100 105 110

Gln Ser Val Thr Leu Asp Phe Thr Arg Pro Ser Val Phe Gly Ala Lys 115 120 125

Thr Lys Ser Ser Glu Val Val Glu Phe Ala Lys Glu Ser Phe Ser Val 130 140

Ser Ser Asn Ser Ser Phe Met Ser Ser Ala Ile Thr Gly Asp Gly Ser 145 150 155 160

Val Ser Lys Gly Ser Ser Ile Phe Leu Ala Pro Ala Pro Ala Val Pro 165 170 175

Val Thr Ser Ser Gly Lys Pro Pro Leu Ser Gly Leu Pro Tyr Arg Lys 180 185 190

Arg Cys Phe Glu His Asp His Ser Glu Gly Phe Ser Gly Lys Ile Ser 195 200 205

Gly Ser Gly Asn Gly Lys Cys His Cys Lys Lys Ser Arg Lys Asn Arg 210 215 220

Met Lys Arg Thr Val Arg Val Pro Ala Val Ser Ala Lys Ile Ala Asp 225 230 235

Ile Pro Pro Asp Glu Tyr Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile
245 250 255

Lys Gly Ser Pro His Pro Arg Gly Tyr Tyr Lys Cys Ser Thr Phe Arg

Gly Cys Pro Ala Arg Lys His Val Glu Arg Ala Leu Asp Asp Ser Thr

Met Leu Ile Val Thr Tyr Glu Gly Glu His Arg His His Gln Ser Thr 290 295 300

Met Gln Glu His Val Thr Pro Ser Val Ser Gly Leu Val Phe Gly Ser 305 315 320

Ala

<210> 51

<211> 2310 <212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (179)..(2065)

<223> G941

<400> 51 tottottott offcotoff ofcatologi atototaact titiglogaag ffoffitigat

gaa	acta	999	ttta	ttat	ct t	ctcc	ttct	t tt	tccc	atca	cca	taga	aaa	ggca	gagacc		120
ttt	ttct	tca	tcat	tttt	at t	ctcc	ttct	t ct	tctg	ctgt	tca	tttc	tcc	aggt	taca		178
		ttt Phe													tct Ser		226
tct Ser	gga Gly	tca Ser	ctt Leu 20	ggt Gly	gaa Glu	gtt Val	gat Asp	ttc Phe 25	tgt Cys	cct Pro	gtt Val	cca Pro	caa Gln 30	gct Ala	gag Glu		274
		tcc Ser 35															322
		ttg Leu															370
		gag Glu															418
		tct Ser															466
		atc Ile															514
		ttt Phe 115															562
		tct Ser															610
		aat Asn															658
atc Ile	ccg Pro	999 Gly	att Ile	cat His 165	gaa Glu	ggt Gly	aat Asn	aac Asn	ccg Pro 170	att Ile	gga Gly	ccg Pro	act Thr	cct Pro 175	cat · His		706
		caa Gln															754
	Met	caa Gln 195															802
gga Gly	gtt Val 210	cct Pro	cct Pro	ccg Pro	tgg Trp	tgg Trp 215	cct Pro	aat Asn	999 Gly	aaa Lys	gag Glu 220	gat Asp	tgg Trp	tgg Trp	cct Pro		850
		ggt Gly															898
cat His	gat Asp	ttg Leu	aag Lys	aag Lys 245	gcg Ala	tgg Trp	aaa Lys	gtc Val	ggc Gly 250	gtt Val	ttg Leu	act Thr	gcg Ala	gtt Val 255	atc Ile		946
aag Lys	cat His	atg Met	ttt Phe 260	cct Pro	gat Asp	att Ile	gct Ala	aag Lys 265	atc Ile	cgt Arg	aag Lys	ctc Leu	gtg Val 270	agg Arg	caa Gln		994
		tgt Cys							Ala		Glu					. 1	042

	•		275					280		-			285					
	ctt Leu	gct Ala 290	Ile	att Ile	aac Asn	caa Gln	gaa Glu 295	gag Glu	tcc Ser	ttg Leu	gct Ala	aga Arg 300	gag Glu	ctt Leu	tat Tyr	ccc Pro		1090
	gag Glu 305	Ser	tgt Cys	cca Pro	Pro	ctt Leu 310	tct Ser	ctg Leu	tct Ser	ggt Gly	gga Gly 315	agt Ser	tgc Cys	tcg Ser	ctt Leu	ctg Leu 320		1138
	atg Met	aat Asn	gat Asp	tgc Cys	agt Ser 325	caa Gln	tac Tyr	gat Asp	gtt Val	gaa Glu 330	Gly	ttc Phe	gag Glu	aag Lys	gag Glu 335	tct Ser		1186
	cac	tat Tyr	gaa Glu	gtg Val 340	gaa Glu	gag Glu	ctc Leu	aag Lys	cca Pro 345	gaa Glu	aaa Lys	gtt Val	atg Met	aat Asn 350	tct Ser	tca Ser		1234
	aac Asn	ttt Phe	999 Gly 355	atg Met	gtt Val	gct Ala	aaa Lys	atg Met 360	cat His	gac Asp	ttt Phe	cct Pro	gtc Val 365	aaa Lys	gaa Glu	gaa Glu		1282
	Val	Pro 370	Ala	gga Gly	Asn	Ser	Glu 375	Phe	Met	Arg	Lys	Arg 380	Lys	Pro	Asn	Arg		1330
	gat Asp 385	ctg Leu	aac Asn	act Thr	att Ile	atg Met 390	gac Asp	aga Arg	acc Thr	gtt Val	ttc Phe 395	acc Thr	tgc Cys	gag Glu	aat Asn	ctt · Leu 400		1378
	Gly	Cys	Ala	cac His	Ser 405	Glu	Ile	Ser	Arg	Gly 410	Phe	Leu	Asp	Arg	Asn 415	Ser	-	1426
	aga Arg	gac Asp	aac Asn	cat His 420	caa Gln	ctg Leu	gca Ala	tgt Cys	cca Pro 425	cat His	cga Arg	gac Asp	agt Ser	cgc Arg 430	tta Leu	ccg Pro		1474
	tat Tyr	gga Gly	gca Ala 435	gca Ala	cca Pro	tcc Ser	agg Arg	ttt Phe 440	cat His	gtc Val	aat Asn	gaa Glu	gtt Val 445	aag Lys	cct Pro	gta Val		1522
	Val	Gly 450	Phe	cct Pro	Gln	Pro	Arg 455	Pro	Val	Asn	Ser	Val 460	Ala	Gln	Pro	IIe		1570
	Asp 465	Leu	Thr	ggt Gly	Ile	Val 470	Pro	Glu	Asp	Gly	Gln 475	Lys	Met	Ile	ser	480		1618
	Leu	Met	Ser	atg Met	Tyr 485	Asp	Arg	Asn	Val	Gln 490	Ser	Asn	Gln	Thr	Ser 495	Met		1666
	Val	Met	Ğlu	aat Asn 500	Gln	Ser	Val	Ser	Leu 505	Leu	Gln	Pro	Thr	Val 510	His	Asn		1714
	His	Gln	Glu 515	cat His	Leu	Gln	Phe	Pro 520	Gly	Asn	Met	Val	Glu 525	Gly	Ser	Phe		1762
,	Phe	Glu 530	Asp	ttg Leu	Asn	Ile	Pro 535	Asn	Arg	Ala	Asn	Asn 540	Asn	Asn	Ser	Ser		1810
	Asn 545	Asn	Gln	acg Thr	Phe	Phe 550	Gln	Gly	Asn	Asn	Asn 555	Asn	Asn	Asn	Val	Phe 560		1858
	ГÀЗ	Phe	Asp	act Thr	Ala 565	Asp	His	Asn	Asn	9he 570	Glu	Ala	Ala	His	Asn 575	Asn		1906
	aac	aat	aac	agt	agc	ggc	aac	agg	ttc		ctt age (ttt	gat	tcc	aca		1954

Asn	Asn	Asn	Ser 580		Gly	Asn			Gln	ence Leu				Ser	Thr	
ccg Pro	ttc Phe	gac Asp 595	Met	gcg Ala	tca Ser	ttc Phe	gat Asp 600	Tyr	aga Arg	gat Asp	gat Asp	atg Met 605	Ser	atg Met	cca Pro	2002
		Val					Gly					Gln			gta Val	2050
	Ile		ttc Phe		agt	cttg	gta	gtag	attt	ca t	cttc	tctt	a tt	ttta	tctt	2105
ttg	tgtt	ctt	acat	tcac	tc a	acca	tgta	a ta	tttt	ttcc	tgg	gtct	ctc	tgtc	tctatc	2165
gct	tgtt	atg	atgt	gtct	gt a	agagi	tctc	t aa	aaac	tctc	tgt	tact	gtg	tgtc	tttgtc	2225
tcg	gctt	ggt	gaat	ctct	ct g	tcat	catc	a gc	tttt	agtt	aca	cacc	cga	cttg	gggatg	2285
aac	gaac	act	aaat	gtaa	gt t	ttca										2310
<21 <21 <21 <21	1> 2>	52 628 PRT Arab	idop	sis t	hal:	iana										
<40	0>	52														
Met 1	Met	Phe	Asn	Glu 5	Met	Gly	Met	Cys	Gly 10	Asn	Met	Asp	Phe	Phe 15	Ser	·
Ser	Gly	Ser	Leu 20	Gly	Glu	Val	Asp	Phe 25	Сув	Pro	Val	Pro	Gln 30	Ala	Glu	
Pro	Asp	Ser 35	Ile	Val	Glu	Asp	Asp 40	Tyr	Thr	Asp	Asp	Glu 45	Ile	Asp	Val	
Asp	Glu 50	Leu	Glu	Arg	Arg	Met 55	Trp	Arg	Asp	Lys	Met 60	Arg	Leu	Lys	Arg	
Leu 65	Lys	Glu	Gln	Asp	Lys 70	Gly	Lys	Glu	Gly	Val 75	Asp	Ala	Ala	Lys	Gln 80	
Arg	Gln	Ser	Gln	Glu 85	Gln	Ala	Arg	Arg	Lys 90	Lys	Met	Ser	Arg	Ala 95	Gln	
Asp	Gly	Ile	Leu 100	Lys	Tyr	Met	Leu	Lys 105	Met	Met	Glu	Val	Cys 110	Lys	Ala	
Gln	Gly	Phe 115	Val	Tyr	Gly	Ile	Ile 120	Pro	Glu	Asn	Gly	Lys 125	Pro	Val	Thr	
Gly	Ala 130	Ser	Asp	Asn	Leu	Arg 135	Glu	Trp	Trp	Lys	Asp 140	Lys	Val	Arg	Phe	
Asp 145	Arg	Asn	Gly	Pro	Ala 150	Ala	Ile	Thr	Lys	Tyr 155	Gln	Ala	Glu	Asn	Asn 160	
Ile	Pro	Gly	Ile	His 165	Glu	Gly	Asn	Asn	Pro 170	Ile	Gly	Pro	Thr	Pro 175	His	

MBI-17 Sequence Listing.ST25
Thr Leu Gln Glu Leu Gln Asp Thr Thr Leu Gly Ser Leu Leu Ser Ala
180 185 190

Leu Met Gln His Cys Asp Pro Pro Gln Arg Arg Phe Pro Leu Glu Lys 195 200 205

Gly Val Pro Pro Pro Trp Trp Pro Asn Gly Lys Glu Asp Trp Trp Pro 210 220

Gln Leu Gly Leu Pro Lys Asp Gln Gly Pro Ala Pro Tyr Lys Lys Pro 225 230 235 240

His Asp Leu Lys Lys Ala Trp Lys Val Gly Val Leu Thr Ala Val Ile 245 250 255

Lys His Met Phe Pro Asp Ile Ala Lys Ile Arg Lys Leu Val Arg Gln 260 265 270

Ser Lys Cys Leu Gln Asp Lys Met Thr Ala Lys Glu Ser Ala Thr Trp 275 280 285

Leu Ala Ile Ile Asn Gln Glu Glu Ser Leu Ala Arg Glu Leu Tyr Pro 290 295 300

Glu Ser Cys Pro Pro Leu Ser Leu Ser Gly Gly Ser Cys Ser Leu Leu 305 310 310 320

Met Asn Asp Cys Ser Gln Tyr Asp Val Glu Gly Phe Glu Lys Glu Ser 325 330 335

His Tyr Glu Val Glu Glu Leu Lys Pro Glu Lys Val Met Asn Ser Ser 340 345 350

Asn Phe Gly Met Val Ala Lys Met His Asp Phe Pro Val Lys Glu Glu 355 360 365

Val Pro Ala Gly Asn Ser Glu Phe Met Arg Lys Arg Lys Pro Asn Arg 370 375 380

Asp Leu Asn Thr Ile Met Asp Arg Thr Val Phe Thr Cys Glu Asn Leu 385 390 395 400

Gly Cys Ala His Ser Glu Ile Ser Arg Gly Phe Leu Asp Arg Asn Ser 405 410 415

Arg Asp Asn His Gln Leu Ala Cys Pro His Arg Asp Ser Arg Leu Pro 420 425 430

Tyr Gly Ala Ala Pro Ser Arg Phe His Val Asn Glu Val Lys Pro Val 435 440 445

Val Gly Phe Pro Gln Pro Arg Pro Val Asn Ser Val Ala Gln Pro Ile 450 455 460

Asp Leu Thr Gly Ile Val Pro Glu Asp Gly Gln Lys Met Ile Ser Glu 465 470 475 480

Page 71

96

MBI-17 Sequence Listing.ST25

Leu Met Ser Met Tyr Asp Arg Asn Val Gln Ser Asn Gln Thr Ser Met 490

Val Met Glu Asn Gln Ser Val Ser Leu Leu Gln Pro Thr Val His Asn 505

His Gln Glu His Leu Gln Phe Pro Gly Asn Met Val Glu Gly Ser Phe . 520

Phe Glu Asp Leu Asn Ile Pro Asn Arg Ala Asn Asn Asn Asn Ser Ser 535

Asn Asn Gln Thr Phe Phe Gln Gly Asn Asn Asn Asn Asn Asn Val Phe

Lys Phe Asp Thr Ala Asp His Asn Asn Phe Glu Ala Ala His Asn Asn 565 570

Asn Asn Asn Ser Ser Gly Asn Arg Phe Gln Leu Val Phe Asp Ser Thr 585

Pro Phe Asp Met Ala Ser Phe Asp Tyr Arg Asp Asp Met Ser Met Pro 595

Gly Val Val Gly Thr Met Asp Gly Met Gln Gln Lys Gln Gln Asp Val 615

Ser Ile Trp Phe

<210>

<211> 1089 <212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1089)

<223> G198

<400> 53

atg gca agg tca cct tgt tgc gag aag aac gga ctc aag aaa ggg cca Met Ala Arg Ser Pro Cys Cys Glu Lys Asn Gly Leu Lys Lys Gly Pro

tgg aca tct gaa gaa gac cag aag ctt gtt gac tat atc cag aaa cat Trp Thr Ser Glu Glu Asp Gln Lys Leu Val Asp Tyr Ile Gln Lys His

ggt tat ggt aac tgg aga acc ctc ccc aaa aat gcc ggt acg tgt ttg Gly Tyr Gly Asn Trp Arg Thr Leu Pro Lys Asn Ala Gly Thr Cys Leu 144 40

caa aga tgt ggc aaa agt tgt agg tta agg tgg act aat tat ctc cga Gln Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu Arg 192

240 cca gat ata aaa cga gga aga ttc tct ttt gag gaa gaa gaa gcc att Pro Asp Ile Lys Arg Gly Arg Phe Ser Phe Glu Glu Glu Glu Ala Ile 65 70 75 80

att cag ctt cat agc ttc tta gga aac aag tgg tct gcg att gcg gcg 288 Ile Gln Leu His Ser Phe Leu Gly Asn Lys Trp Ser Ala Ile Ala Ala

Page 72

•				85	:	•	MBI	-17 5	Seque 90	ence	List	ing	.ST2	95			
cgt Arg	ttg Leu	cca Pro	gga Gly 100	aga Arg	aca Thr	gat Asp	aat Asn	gag Glu 105	atc	aag Lys	aac Asn	ttt Phe	tgg Trp 110	aac Asn	act Thr		336
cat	ata Ile	aga Arg 115	aag Lys	aag Lys	cta Leu	ctt Leu	aga Arg 120	atg Met	999 Gly	att	gat Asp	cca Pro 125	gtg Val	act Thr	cac His		384
agt Ser	cca Pro 130	cga Arg	ctc Leu	gat Asp	ctc	ctc Leu 135	gat Asp	atc Ile	tca Ser	tcc Ser	atc Ile 140	tta Leu	gct Ala	tca Ser	tct Ser	:	432
Leu 145	Tyr	Asn	Ser	Ser	tca Ser 150	His	His	Met	Asn	Met 155	Ser	Arg	Leu	Met	Met 160		480
Asp	Thr	Asn	Arg	Arg 165	cat His	Gln	Gln	Gln	His 170	Pro	Leu	Val	Asn	Pro 175	Glu		528
Ile	Leu	Lys	Leu 180	Ala	acc Thr	Ser	Ile	Phe 185	Ser	Gln	Asn	Gln	Asn 190	Gln	Asn		576
His	Asn	Gln 195	Asn	Gln	aac Asn	Gln	Asn 200	Gln	Asn	Leu	Val	Val 205	Asp	His	Glu		624
Lys	Gln 210	Thr	Val	Tyr	cat His	His 215	His	Asp	Val	Asn	Gln 220	Thr	Gly	Val	Asn		672
Gln 225	Tyr	Gln	Thr	Asp	Gln 230	Tyr	Phe	Glu	Asn	Ala 235	Ile	Thr	Gln	Glu	240		720
Gln	Ser	Ser	Met	Pro 245	cca Pro	Phe	Pro	Asn	Glu 250	Ala	His	Gln	Phe	Asn 255	Asp		768
Met	Āsp	His	His 260	Phe	aat Asn	Gly	Phe	Gly 265	Glu	Gln	Asn	Leu	Val 270	Ser	Thr	•	816
Ser	Thr	Thr 275	Ser	Val	caa Gln	Asp	Cys 280	Tyr	Asn	Pro	Ser	Phe 285	Asn	Asp	Tyr		864
Ser	Ser 290	Ser	Asn	Phe	gtc Val	Leu 295	Asp	His	Ser	Tyr	Ser 300	Asp	Gln	Ser	Phe		912
Asn 305	Phe	Ala	Asn	Ser	gtc Val 310	Leu	Asn	Thr	Pro	Ser 315	Ser	Ser	Pro	Ser	320		960
Thr	Thr	Leu	Asn	Ser 325	agt Ser	Tyr	Ile	Asn	Ser 330	Ser	Ser	Cys	Ser	335	Glu		1008
Asp	Glu	Ile	Glu 340	Ser	tat Tyr	Cys	Ser	Asn 345	Leu	Met	aag Lys	ttt Phe	gat Asp 350	att Ile	Pro		1056
gat Asp	ttc Phe	ttg Leu 355	gac Asp	gtt Val	aat Asn	ggt Gly	ttt Phe 360	att Ile	ata Ile	taa			٠			3	1089

³⁶² PRT Arabidopsis thaliana

<400> 54

Met Ala Arg Ser Pro Cys Cys Glu Lys Asn Gly Leu Lys Lys Gly Pro 1 15

Trp Thr Ser Glu Glu Asp Gln Lys Leu Val Asp Tyr Ile Gln Lys His
20 25 30

Gly Tyr Gly Asn Trp Arg Thr Leu Pro Lys Asn Ala Gly Thr Cys Leu 35 40 45

Gln Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu Arg 50 55 60

Pro Asp Ile Lys Arg Gly Arg Phe Ser Phe Glu Glu Glu Glu Ala Ile 65 70 75 80

Ile Gln Leu His Ser Phe Leu Gly Asn Lys Trp Ser Ala Ile Ala Ala 85 90 95

Arg Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Phe Trp Asn Thr

His Ile Arg Lys Lys Leu Leu Arg Met Gly Ile Asp Pro Val Thr His

Ser Pro Arg Leu Asp Leu Leu Asp Ile Ser Ser Ile Leu Ala Ser Ser 130 140

Leu Tyr Asn Ser Ser Ser His His Met Asn Met Ser Arg Leu Met Met 145 150 155

Asp Thr Asn Arg Arg His Gln Gln His Pro Leu Val Asn Pro Glu 165 170 175

Ile Leu Lys Leu Ala Thr Ser Ile Phe Ser Gln Asn Gln Asn 180 185 190

His Asn Gln Asn Gln Asn Gln Asn Gln Asn Leu Val Val Asp His Glu 195 200 205

Lys Gln Thr Val Tyr His His Asp Val Asn Gln Thr Gly Val Asn

Gln Tyr Gln Thr Asp Gln Tyr Phe Glu Asn Ala Ile Thr Gln Glu Leu 225 230 235 240

Gln Ser Ser Met Pro Pro Phe Pro Asn Glu Ala His Gln Phe Asn Asp

Met Asp His His Phe Asn Gly Phe Gly Glu Gln Asn Leu Val Ser Thr 260 265 270

Ser Thr Thr Ser Val Gln Asp Cys Tyr Asn Pro Ser Phe Asn Asp Tyr 275 280 285 Ser Ser Ser Asn Phe Val Leu Asp His Ser Tyr Ser Asp Gln Ser Phe 290 295 300

Asn Phe Ala Asn Ser Val Leu Asn Thr Pro Ser Ser Ser Pro Ser Pro 305 310 315

Thr Thr Leu Asn Ser Ser Tyr Ile Asn Ser Ser Ser Cys Ser Thr Glu 325 330 335

Asp Glu Ile Glu Ser Tyr Cys Ser Asn Leu Met Lys Phe Asp Ile Pro 340 345 350

Asp Phe Leu Asp Val Asn Gly Phe Ile Ile 355 360

INTERNATIONAL SEARCH REPORT

Inter____at application No.

	<u> </u>	PCT/US00/314	57
IPC(7) US CL 320.3	: 435/468,419,320.1;530/300,326,327;536/23	; C12N 5/14, 15/11, 15/29, 15/82 .1,23.6;800/278,281,287,305-310,314,3	15,317.1-317.4,320.1-
B. FIE	ELDS SEARCHED		
Minimum o U.S. :	documentation searched (classification system follows 435/468,419,320.1;530/300,326,327;536/23.1,23.6;	ed by classification symbols) 800/278,281,287,305-310,314,315,317.	1-317.4,320.1-320.3
Documenta	tion searched other than minimum documentation to t	he extent that such documents are includ	ed in the fields searched
Electronic of EAST, STN	data base consulted during the international search (na N (Agricola, Biosis, Caplus, Embase), SEQ ID NO: 1	ame of data base and, where practicable, &2	search terms used)
	CUMENTS CONSIDERED TO BE RELEVANT		
Category *			Relevant to claim No.
X Y	Ll, S.F. et al. A novel myb-related gene from Ara Vol. 379, pages 117-121, entire reference	S.F. et al. A novel myb-related gene from Arabidopsis thaliana. FEBS Letters 1996,	
			27
X 	circadian rhythms and the photoperiodic control of	HAFFER, R. et al. The late elongated hypocotyl mutation of Arabidopsis disrupts cadian rhythms and the photoperiodic control of flowering. Cell 1998, Vol. 93, pages	
Υ .	1219-1229.		27
Υ - '	Database NCBI Nucleotide, U.S. National Library of Medicine, (Bethesda, MD, USA), No. U28422, WANG, Z. Direct Submission, Sequence, January 14, 1997.		1-14 & 25-27
Y	S 5,939,601 (KLESSIG et al) 17 August 1999 (17.08.1999), entire reference.		1-14 & 25-27
Υ.	SUZUKI, A. et al. Cloning and expression of five myb-related genes from rice seed. Gene 1997, Vol. 198, pages 393-398.		1-14 & 25-27
Y,P	LOGUERCIO, L.L. et al. Differential regulation of six novel myb-domain genes defines ow distinct expression patterns in allotetraplid cotton (Goxxypium hirsutum L.), Mol. Gen. Genet. 1999, Vol. 261, pages 660-671.		1-14 & 25-27
Υ,Ρ	KIRIK, V. et al. Two novel myb homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol. Biol. 1998, Vol. 37, pages 819-827.		1-14 & 25-27
	1		
Funthe	er documents are listed in the continuation of Box C.	See patent family annex.	
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be		later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
of particular relevance "E" earlier application or patent published on or after the international filing date		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art	
'L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)			
O document referring to an oral disclosure, use, exhibition or other means			
"P" document published prior to the international filing date but later than the priority date claimed		"&" document member of the same patent family	
Date of the actual completion of the international search		Date of mailing of the international search report	
14 February 2001 (14.02.2001) Name and mailing address of the ISA/US		Authorized officer	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT		David Kruse	00 1
Washington, D.C. 20231 Facsimite No. (703)305-3230		Telephone No. 703-308-0196	lanson
	A/210 (second sheet) (July 1998)	100-300-0190	/!

BNSDOCID: <WO____0135727A1_I_>

INTERNATIONAL SEARCH REPORT

Ints onal application No.

PCT/US00/31457

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claim Nos.:			
because they relate to subject matter not required to be searched by this Authority, namely:			
2. Claim Nos.:			
because they relate to parts of the international application that do not comply with the prescribed requirements to			
such an extent that no meaningful international search can be carried out, specifically:			
3. Claim Nos.:			
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule			
6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)			
201 2 Observations where they of the three in the state of the breety			
This International Searching Authority found multiple inventions in this international application, as follows:			
Please See Continuation Sheet			
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
K-7			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report			
is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-14 &25-27:SEQ ID NOs:			
1&2			
Remark on Protest The additional search fees were accompanied by the applicant's protest.			
No protest accompanied the payment of additional search fees.			

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

INTERNATIONAL SEARCH REPORT

Int tonal application No.

PCT/US00/31457

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I-XXVII, claim(s) 1-14 and 25-27, drawn to a transgenic plant having modified seed characteristics, polynucleotides and vectors for producing said transgenic plant and a method of making said transgenic plant. Applicant must elect one pair of sequences (one nucleic acid and the corresponding amino acid translation) to be examined, i.e. SEQ ID NO: 1 and 2 in Group I, SEQ ID NO: 3 and 4 in Group II, SEQ ID NO: 5 and 6 in Group III, etc.

Group XXVIII, claim(s) 15-17, drawn to a method of identifying a factor that is modulated.

Group XXIX, claims(s) 18, drawn to a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide.

Group XXX, claims(s) 19 and 20, drawn to an integrated computer system.

Group XXXI, claim(s) 21-24, drawn to a method for identifying a polynucleotide sequence comprising selecting a nucleic acid sequence from a database that meets a selected sequence criteria.

The inventions listed as Groups I-XXXI do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The inventions listed as Groups I-XXXI do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I-XXVII are drawn to a transgenic plant and a method of producing said plant with a nucleic acid sequence. The methods of Groups I-XXVII differ from each other in that they are directed to a plant transformation method and transgenic plant with a structurally and functionally distinct nucleic acid sequence which encodes a structurally and functionally distinct amino acid sequence. In addition, Groups XXVIII, XXIX and XXXI are different methods from any of Groups I-XXVII in that they have different method steps and different end products, and Group XXX requires a computer system. Thus, there is no single special technical feature, which links the inventions of Groups I-XXXI under PCT Rule 13.2.

Form PCT/ISA/210 (extra sheet) (July 1998)