04/07

Warm up

Exercise: Using the exercise 1.27 of the book (muscle mass) and the 6 observations:

 Observation
 1
 2
 3
 4
 5
 6

 Xi
 43
 39
 41
 86
 72
 76

 Yi
 106
 106
 97
 60
 70
 80

- a. Obtain a Table in order to compute the least square estimates. Similar to Table 1.1 (Tocula company example) page 19.
- b. Compute bo and b1 using the equations (1.10a) and (1.10b).
- c. Consider and explain a, b and c in 2.27 (Book) for this exercise.

Figure 1: Midterm bonus problem.

d. Given $X_h = 40$, compute the point estimator of the mean response $E[Y_h]$ and the corresponding 95% confidence interval.

i	X_i	Y_i	$X_i - \bar{X}$	$Y_i - \bar{Y}$	$(X_i - \bar{X})(Y_i - \bar{Y})$	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$
1	43	106	-16.5	19.5			
2	39	106	-20.5	19.5			
3	41	97	-18.5	10.5			
4	86	60	26.5	-26.5			
5	72	70	12.5	-16.5			
6	76	80	16.5	-6.5			
Total	357	519					
Mean	59.5	86.5					

a
$$b_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$b_0 = \bar{Y} - b_1 \bar{X}$$

b

 \mathbf{c}

d

$$\hat{Y}_h = b_0 + b_1 X_h$$

$$(\hat{Y}_h - t(1 - \alpha/2; n - 2) * s(\hat{Y}_h), \hat{Y}_h + t(1 - \alpha/2; n - 2) * s(\hat{Y}_h))$$

1.2

Y = 2X + 300. Functional relation.

1.8

Yes. Not necessarily

$$E[Y] = \beta_0 + \beta_1 * X$$

1.12

- a
- b
- \mathbf{c}
- d

1.27

- a
- b

1.30

04/14