Parambrata Dutta Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

The function f(x) is defined by $f(x) = \cos^4 x + K\cos^2 2x + \sin^4 x$, where K is a constant. If the 2. function f(x) is a constant function, the value of k is

(A) -1 (B) -1/2

(C) 0 (D) 1/2

If range of $f(x) = \frac{2\sin x + 2\sin x + 3}{\sin^2 x + \sin x + 1}$ is [p, q] then 6p - 3 q equals 7.

- Let f(x) be a polynomial of degree 3 such that $f(x) = -\frac{2}{k}$ for k = 2, 3, 4, 5. Then the value of 52 32. 10 f(10) is equal to _____. [JEE - Main 2021]
- Let $f(x) = x^{135} + x^{125} x^{115} + x^5 + 1$. If f(x) is divided by $x^3 x$ then the remainder is some 5. function of x say g(x). Find the value of g(10).
- Let A = { $\lambda \in R : [x + 3] + [x + 4] \le$ }, B = $\left\{ x \in R : 3^x \left[\sum_{r=1}^{\infty} \frac{2}{10r} \right] < 3^{-3x} \right\}$, where [t] Denote greatest 41. integer function. Then [JEE - Main 2023] (B) $A \cap B = \phi$ (C) A = B(D) B ⊂ C, A ≠ B

(A) A ⊂ B, A ≠ B

Vector:

The vector $\overrightarrow{OP} = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle, passing through the positive x-axis on 21. the way. Find the vector in its new position.

(0 0) (0 0) (0 0 0)

59.	C(4, 0, 3) and D(1, 0, 0). Acute angle between the plane faces ADC and ABC is				
	(A) tan ⁻¹ (5/2)	(B) cos ⁻¹ (2/5)	(C) cosec ⁻¹ (5/2)	(D) cot ⁻¹ (3 /2)	
27.		Let $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ be two vectors. If a vector perpendicular to both the			
		(2) 4(2î-2ĵ-k)		ctor is: [JEE (Main)-2019] $(4) \ 4(2\hat{i}+2\hat{i}+\hat{k})$	
	(1) 4(-21-2j+k)	(2) 4(21-2)-K)	(3) 4(21+2)-k)	(+) +(21+2j+k)	
14.	If the vectors $3\overline{p} + \overline{q}$; $5\overline{p} - 3\overline{q}$ and $2\overline{p} + \overline{q}$; $4\overline{p} - 2\overline{q}$ are pairs of mutually perpendicular vector				
	then sin $(\overline{p}^*\overline{q})$ is				
	(A) √55/4	(B) √55/8	(C) 3/16	(D) √247/16	
				A) /A A A) A A	
9.	Let \vec{a} , \vec{b} , \vec{c} be three non-zero vectors which are pairwise non-collinear. If $\vec{a}+3\vec{b}$ is collinear with \vec{c} and $\vec{b}+2\vec{c}$ is collinear with \vec{a} , then $\vec{a}+3\vec{b}+6\vec{c}$ is: [AIEEE-2011]				
	(1) $\vec{a} + \vec{c}$	(2) ä	(3) c	(4) Ö	
	^			*	