

EduChain Vote

Secure, Transparent, Tamper-Proof Class Elections

Blockchain-Based Decentralized Voting System for Class Representative Elections

Rishika Banerjee:16010122012 & Aarushi Savla:16010123812

1. Introduction

1.1 Problem Definition

Traditional class representative election systems in educational institutions face persistent challenges that compromise trust, transparency, and fairness. As highlighted by **El Kafhali (2024)**, conventional voting mechanisms suffer from high costs, limited accessibility, security vulnerabilities, and inefficiencies. Within academic settings, these challenges manifest in the following ways:

- Lack of Transparency: Centralized control over vote counting processes leads to distrust among students.
- **Verification Challenges:** Voters lack the means to independently confirm that their votes were accurately recorded.
- **Security Vulnerabilities:** Systems are susceptible to manipulation, tampering, and unauthorized result alteration.
- **Single Points of Failure:** Heavy reliance on trusted third parties increases the risk of system compromise.
- **Limited Auditability:** Conducting a transparent, verifiable post-election audit is difficult or impossible.

FIGURE 1: Traditional paper ballot voting system.

1.2 Project Overview

EduChain Vote, developed by **Rishika Banerjee and Aarushi Savla**, is a fully functional blockchain-based voting application that demonstrates secure, transparent, and decentralized elections. The system leverages blockchain technology to ensure tamper-proof and verifiable voting, while simultaneously serving as an educational tool to teach concepts such as immutability, decentralization, and distributed consensus.

2. Potential Solutions

2.1 Blockchain-Based Approach (Primary Solution)

EduChain Vote addresses the identified problems through an end-to-end decentralized architecture that ensures:

- **Immutable Ledger:** Votes are permanently recorded on the blockchain, preventing unauthorized alterations.
- **Transparency with Privacy:** The system enables public verification of election data while preserving voter anonymity using cryptographic techniques.
- **Smart Contract Enforcement:** Election rules are encoded into immutable smart contracts to ensure a strict one-vote-per-student policy.
- **Cryptographic Security:** Public-key cryptography ensures secure voter identification and transaction authentication.

2.2 Supporting Literature

According to **El Kafhali (2024)**, blockchain technology can effectively mitigate the shortcomings of conventional e-voting systems while maintaining strong security guarantees. The research highlights:

- Enhanced Integrity: "Only verified and eligible voters can vote, and only once."
- Improved Transparency: "The overall system must be auditable by the public."
- End-to-End Verifiability: Voters can confirm both the cast-as-intended and recorded-as-cast integrity of their votes.

These principles form the theoretical foundation upon which EduChain Vote has been implemented.

Figure 2: Voters inside the blockchain.

FIGURE 3: Transactions within the Ethereum blockchain network.

3. Implementation Methodology

3.1 Technical Architecture

Frontend:

- Framework: React.js with TypeScript and Vite
- Design: Tailwind CSS for modern, responsive UI
- Features:
 - o 15+ interactive pages with comprehensive election workflow
 - Real-time visualization of vote counts and blockchain transactions
 - Educational modules explaining blockchain operations

Blockchain Layer:

- Network: Ethereum Virtual Machine (EVM)-compatible
- Smart Contracts: Solidity-based election logic
- Tools: Hardhat for testing and deployment
- Libraries: Web3.js for blockchain interaction
- Wallet Integration: MetaMask for transaction management and voter authentication

3.2 Core Implementation Features

Smart Contract Example:

```
None
contract EduChainVote {
    mapping(address => bool) public voters;
    mapping(uint => Candidate) public candidates;

function vote(uint _candidateId) public {
```



```
require(!voters[msg.sender], "Already voted");
require(electionActive, "Election not active");
voters[msg.sender] = true;
candidates[_candidateId].voteCount++;
}
```

Interactive Application Flow:

- Admin Dashboard: Enables contract deployment and election initialization.
- Student Login: Allows users to connect demo wallets and securely cast votes.
- Transaction Visibility: Displays real-time block details and transaction hashes.
- Session Management: Election lifecycle controlled by admin functions (start/end).
- Immutable Ledger: Transparent, auditable record of all votes cast.

3.3 Educational Components

The platform also includes interactive learning modules that help users understand blockchain fundamentals:

- Cryptographic Hashing Demo: Real-time SHA-256 hashing visualization.
- **Public-Key Encryption Lab:** Demonstrations of digital signatures and verification.
- Consensus Mechanism Simulation: Interactive explanation of distributed agreement.
- Smart Contract Workflow Visualization: Step-by-step depiction of contract execution.

FIGURE 4: Typical scheme of blockchain-based voting system.

4. Results

4.1 Functional Outcomes

- V Implementation of 15+ interactive pages with seamless navigation
- Real-time vote recording with blockchain confirmation
- **V** Tamper-evident and verifiable election records
- V Fully integrated educational modules for user learning
- Administrative control panel for end-to-end election management

4.2 Performance Metrics

Metric	Observation
Transaction Processing	Instant blockchain confirmation of votes
System Availability	100% uptime during all test sessions
User Authentication	Successful cryptographic verification for all users

Data Integrity Zero instances of vote tampering detected

4.3 Research Compliance

EduChain Vote meets El Kafhali's (2024) e-voting criteria:

Criterion	Compliance
Security	Strong cryptographic protection against cyber-attacks
Integrity	Smart contracts prevent double-voting
Accessibility	Remote participation via MetaMask
Privacy	Anonymous yet verifiable voting
Transparency	Publicly auditable transactions
Verifiability	End-to-end user vote confirmation

5. Installation & Deployment

5.1 Quick Start

Shell

Install dependencies npm install

Start development server

npm run dev

Access the application http://localhost:5173/

5.2 Prerequisites

- Node.js (v16 or higher)
- npm or yarn package manager
- MetaMask browser extension
- Modern browser with JavaScript enabled

6. Conclusion

6.1 Key Achievements

The **EduChain Vote** system successfully demonstrates how blockchain can transform student election systems by offering:

- Enhanced Trust: Fully transparent and auditable election process
- Improved Security: Immutable blockchain records and cryptographic verification
- Educational Value: Interactive modules for experiential learning
- Practical Implementation: Production-ready model for academic institutions

6.2 Research Validation

This project substantiates **El Kafhali's (2024)** conclusion that "blockchain represents a new solution that, by its very nature, addresses many security concerns in electronic voting systems."

EduChain Vote stands as a practical case study illustrating blockchain's capacity to enhance trust and transparency in democratic processes within educational contexts.

6.3 Future Enhancements

- Scalability for large-scale institutional elections
- Mobile-friendly user interface for accessibility
- Advanced cryptographic privacy (Zero-Knowledge Proofs)
- Cross-platform and cross-browser compatibility

7. References

- El Kafhali, S. (2024). Blockchain-Based Electronic Voting System: Significance and Requirements.
 Mathematical Problems in Engineering, Volume 2024, Article ID 5591147.
 https://doi.org/10.1155/2024/5591147
- 2. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
- 3. **Buterin, V. (2014).** Ethereum Whitepaper: A Next-Generation Smart Contract and Decentralized Application Platform.

Project Developed By: Rishika Banerjee & Aarushi Savla

Implementation Date: 21 October 2025

Technology Stack: React.js, Solidity, Web3.js, Hardhat, Tailwind CSS, Vite

Research Foundation: Based on El Kafhali, S. (2024) – *Blockchain-Based Electronic Voting System:*

Significance and Requirements

- (1) Verify ZKSM proof
- (2) Consume the vote token
- (3) Read the vote
- (4) Receive the tallying transaction

Token contract:

- (1) Create vote token
- (2) When token is consumed, the address is locked

POA contract: (1) Verify transactions

Election contract:

(1) Configure parameters of the election like smart/end time, list of candidates, and POA memebers