METODY NUMERYCZNE – LABORATORIUM

Zadanie 2 – Rozwiązywanie N układów równań z N niewiadomymi metodą eliminacji Jordana.

Opis rozwiązania

Opis:

Metoda eliminacji Jordana-Gaussa (inaczej zwana metodą Gaussa-Jordana) to modyfikacja eliminacji Gaussa, której celem jest doprowadzenie rozszerzonej macierzy układu równań do postaci zredukowanej schodkowej (postaci kanonicznej).

- 1. Tworzymy rozszerzoną macierz A|b z układu równań (macierz współczynników oraz kolumnę wyrazów wolnych).
- 2. Dla każdej kolumny i od 0 do N-1:
 - a. Wybieramy element główny (pivot):
 - b. Znajdujemy wiersz r z największą wartością bezwzględną w kolumnie i (od wiersza i w dół).
 - c. Jeśli A[r][i] == 0:
 - i. Jeśli cała kolumna i zawiera zera, to sprawdzamy, czy układ jest nieoznaczony lub sprzeczny.
 - ii. Jeśli nie da się znaleźć pivotu różnego od zera, to wnioskujemy, że układ nie ma jednoznacznego rozwiązania.
 - d. Zamieniamy wiersze i i r (pivotowanie).
 - e. Normalizujemy wiersz i, aby element główny był równy 1:
 - i. Dzielimy cały wiersz i przez A[i][i].
 - f. Zerujemy wszystkie inne elementy w kolumnie i (nad i pod pivotem):
 - i. Dla każdego j ≠ i, odejmujemy A[j][i] * wiersz i od wiersza j, tak aby A[j][i] = 0.
- 3. Po wykonaniu wszystkich kroków dla każdej kolumny:
 - a. Sprawdzamy, czy macierz A stała się jednostkowa wtedy wektor wynikowy zawiera rozwiązanie.
- 4. Kończymy odczytujemy rozwiązanie z ostatniej kolumny macierzy.

Wyniki

Oznaczenie przykładu	Zawartość przykładu	Wartość teoretyczna	Wartość poznana w programie
a.	$\begin{bmatrix} 3 & 3 & 1 \\ 2 & 5 & 7 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 33 \\ 8 \end{bmatrix}$	$x_1 = 1, x_2 = 2, x_3 = 3$	$\begin{array}{c} x_1 = 1, \ x_2 = 2, x_3 \\ = 3 \end{array}$
b.	$\begin{bmatrix} 3 & 3 & 1 \\ 2 & 5 & 7 \\ -4 & -10 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 20 \\ -40 \end{bmatrix}$	Układ nieoznaczony	Układ nieoznaczony
c.	$\begin{bmatrix} 3 & 3 & 1 \\ 2 & 5 & 7 \\ -4 & -10 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 20 \\ -20 \end{bmatrix}$	Układ sprzeczny	układ
d.	$\begin{bmatrix} 0.5 & -0.0625 & 0.1875 & 0.0625 \\ -0.0625 & 0.5 & 0 & 0 \\ 0.1875 & 0 & 0.375 & 0.105 \\ 0.0625 & 0 & 0.125 & 0.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ $= \begin{bmatrix} 1.5 \\ -1.625 \\ 1 \\ 0.4375 \end{bmatrix}$	$x_1 = 2, x_2 = -3,$ $x_3 = 1.5, x_4 = 5$	

		1	1 4
e.	$\begin{bmatrix} 3 & 2 & 1 & -1 \\ 5 & -1 & 1 & 2 \\ 1 & -1 & 1 & 2 \\ 7 & 8 & 1 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ 4 \\ 6 \end{bmatrix}$	Układ sprzeczny	Układ sprzeczny
f.	$\begin{bmatrix} 3 & -1 & 2 & -1 \\ 3 & -1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ -1 & 1 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -13 \\ 1 \\ 21 \\ -5 \end{bmatrix}$	$x_1 = 7, x_2 = 5, x_3 = 3,$ $x_4 = 5$	$x_1 = 7, x_2 = 5, x_3$ = 3, $x_4 = 5$
g.	$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 5 \end{bmatrix}$	$x_1 = 7, x_2 = 5, x_3 = 3$	$x_1 = 7, x_2 = 5, x_3 = 3$
h.	$\begin{bmatrix} 10 & -5 & 1 \\ 4 & -7 & 2 \\ 5 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 19 \end{bmatrix}$	$x_1 = 1, x_2 = 2, x_3 = 3$	$\begin{array}{c} x_1 = 1, \ x_2 = 2, x_3 \\ = 3 \end{array}$
i.	$\begin{bmatrix} 6 & -4 & 2 \\ -5 & 5 & 2 \\ 0.9 & 0.9 & 3.6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \\ 13,5 \end{bmatrix}$	Układ nieoznaczony	Układ nieoznaczony
j.	$\begin{bmatrix} 1 & 0.2 & 0.3 \\ 0.1 & 1 & -0.3 \\ -0.1 & -0.2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1.5 \\ -0.3 \\ 0.7 \end{bmatrix}$	$x_1 = 1, x_2 = 1, x_3 = 1$	$x_1 = 1, x_2 = 1, x_3 =$

Wnioski

Metoda eliminacji Jordana może być bardziej czasochłonna niż klasyczna eliminacja Gaussa (dużo więcej operacji), ale łatwa do zaimplementowania komputerowo oraz działa bez konieczności "podstawiania wstecz".