Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	К работе допущен		
Студент	Работа выполнена		
Преподаватель	Отчет принят		
Рабочий протокол и отчет по лабораторной работе №1.01			
Исследование распредел	ения случайной величины		

1. Цель работы.

Исследовать распределения случайной величины на примере многократных измерений определённого интервала времени.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Проведение многократных измерений определенного интервала времени.
 - 2. Построение гистограммы распределения результатов измерения.
 - 3. Вычисление среднего значения и дисперсии полученной выборки.
- 4. Сравнение гистограммы с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.
- 3. Объект исследования.

Результат измерения заданного промежутка времени в виде случайной величины.

4. Метод экспериментального исследования.

При помощи обычных часов с секундной стрелкой или стрелочного секундомера задается некоторый промежуток t времени и многократно измеряется достаточно точным цифровым секундомером. Выявление закономерности в распределении значений созданной таким образом случайной величины.

- 5. Рабочие формулы и исходные данные.
- (1) Функция Гаусса, описывающая нормальное распределение:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

- где $\langle t \rangle$ математическое ожидание;
- σ среднеквадратичное стандартное отклонение.
- (2) Приближенное значение математического ожидания для N измерений:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

где t_i – результат і-ого измерения.

(3) Выборочное среднеквадратичное отклонение для N измерений:

$$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}}$$

(4) Максимальная плотность нормального распределения при t = $\langle t \rangle$

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

(5) Среднеквадратичное отклонение среднего значения для N измерений:

$$\sigma_{\langle \mathsf{t} \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle \mathsf{t} \rangle_N)^2}$$

где t_i – результат і-ого измерения;

 $\langle t \rangle_N$ – приближенное значение математического ожидания для N измерений.

(6) Доверительный интервал для измеряемого в работе промежутка времени:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{(t)}$$

 $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle \mathsf{t} \rangle}$ где $t_{\alpha,N}$ – коэффициент Стьюдента для доверительной вероятности α = 0,95; $\sigma_{\langle t \rangle}$ - среднеквадратичное отклонение среднего значения.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой секундомер	Цифровой	0,00 — 60,00 мин	0,005 c

7. Схема установки (перечень схем, которые составляют Приложение 1). В работе используется прибор, в котором происходит периодический процесс с частотой порядка нескольких десятых долей герца (стрелочный секундомер) и цифровой секундомер, с ценой деления 0,01 с. Первый прибор задает интервал времени, который многократно измеряется цифровым секундомером (см. Приложение 1).

- 1 стрелочный секундомер;
- 2 цифровой секундомер.

Рисунок 1 – Экспериментальная установка

8. Таблица 1: результаты прямых измерений и их обработки.

Nº	t _i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	5,57	-0,4102	0,1683
2	5,66	-0,3202	0,1025
3	5,72	-0,2602	0,0677
4	5,79	-0,1902	0,0362
5	5,81	-0,1702	0,029
6	5,81	-0,1702	0,029
7	5,81	-0,1702	0,029
8	5,81	-0,1702	0,029
9	5,81	-0,1702	0,029
10	5,81	-0,1702	0,029
11	5,82	-0,1602	0,0257
12	5,84	-0,1402	0,0197
13	5,84	-0,1402	0,0197
14	5,84	-0,1402	0,0197
15	5,85	-0,1302	0,017
16	5,85	-0,1302	0,017
17	5,87	-0,1102	0,0121
18	5,87	-0,1102	0,0121
19	5,88	-0,1002	0,01
20	5,88	-0,1002	0,01
21	5,88	-0,1002	0,01
22	5,88	-0,1002	0,01
23	5,9	-0,0802	0,0064
24	5,91	-0,0702	0,0049

25	5,91	-0,0702	0,0049
26	5,93	-0,0502	0,0025
27	5,93	-0,0502	0,0025
28	5,93	-0,0502	0,0025
29	5,93	-0,0502	0,0025
30	5,94	-0,0402	0,0016
31	5,94	-0,0402	0,0016
32	5,94	-0,0402	0,0016
33	5,94	-0,0402	0,0016
34	5,94	-0,0402	0,0016
35	5,94	-0,0402	0,0016
36	5,94	-0,0402	0,0016
37	5,94	-0,0402	0,0016
38	5,94	-0,0402	0,0016
39	5,96	-0,0202	0,0004
40	5,96	-0,0202	0,0004
41	5,96	-0,0202	0,0004
42	5,96	-0,0202	0,0004
43	5,96	-0,0202	0,0004
44	5,96	-0,0202	0,0004
45	5,97	-0,0102	0,0001
46	5,97	-0,0102	0,0001
47	5,97	-0,0102	0,0001
48	5,97	-0,0102	0,0001
49	5,97	-0,0102	0,0001
50	5,97	-0,0102	0,0001
51	6	0,0198	0,0004
52	6	0,0198	0,0004
53	6	0,0198	0,0004
54	6	0,0198	0,0004
55	6	0,0198	0,0004
56	6	0,0198	0,0004
57	6	0,0198	0,0004
58	6	0,0198	0,0004
59	6	0,0198	0,0004
60	6	0,0198	0,0004
61	6	0,0198	0,0004
62	6	0,0198	0,0004
63	6	0,0198	0,0004
64	6	0,0198	0,0004
65	6	0,0198	0,0004
66		0,0198	0,004
67	6,03 6,03	0,0498	0,0025
68		· ·	
69	6,03	0,0498 0,0498	0,0025
	6,03	·	0,0025
70	6,03	0,0498	0,0025
71 72	6,03	0,0498	0,0025
_	6,03	0,0498	0,0025
73	6,03	0,0498	0,0025
74	6,03	0,0498	0,0025
75	6,03	0,0498	0,0025

76	6,04	0,0598	0,0036
77	6,04	0,0598	0,0036
78	6,04	0,0598	0,0036
79	6,06	0,0798	0,0064
80	6,07	0,0898	0,0081
81	6,09	0,1098	0,0121
82	6,09	0,1098	0,0121
83	6,1	0,1198	0,0144
84	6,1	0,1198	0,0144
85	6,1	0,1198	0,0144
86	6,1	0,1198	0,0144
87	6,12	0,1398	0,0195
88	6,12	0,1398	0,0195
89	6,13	0,1498	0,0224
90	6,13	0,1498	0,0224
91	6,15	0,1698	0,0288
92	6,16	0,1798	0,0323
93	6,16	0,1798	0,0323
94	6,16	0,1798	0,0323
95	6,19	0,2098	0,044
96	6,19	0,2098	0,044
97	6,22	0,2398	0,0575
98	6,22	0,2398	0,0575
99	6,25	0,2698	0,0728
100	6,31	0,3298	0,1088
	$\langle t \rangle_N = 5,9802 \text{ c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0 \ c$	$\sigma_N = 0.1234 \text{ c}$ $\rho_{max} = 3.233 \text{ c}^{-1}$

Таблица 2: Данные для построения гистограммы.

Границы интервалов, с	- $ -$		<i>t</i> , c	ρ, c ⁻¹
		ΝΔτ		
5,57	1	0,1351	5,607	0,0333
5,644				
5,644	1	0,1351	5,681	0,1709
5,718		0,200		
5,718	2	0,2703	5,755	0,6113
5,792	۷	0,2703	3,733	0,0113
5,792	12	1 6316	F 020	1 526
5,866	12	1,6216	5,829	1,526
5,866	22	2.072	F 002	2.6505
5,94		2,973	5,903	2,6585
5,94	27	3,6486	5,977	3,2322
6,014	21	3,0480	3,377	3,2322
6,014	15	2 027	6,051	2,7425
6,088	15	2,027	0,051	2,7425
6,088	1.4	1 9010	6 125	1 624
6,162	14	1,8919	6,125	1,624
6,162	4	0,5405	6,199	0,6711
6,236	4	0,3403	0,133	0,0711
6,236	2	0,2703	6,273	0,1936
6,31	۷	0,2703	0,273	0,1330

Таблица 3: Стандартные доверительные интервалы

	Интер	вал, с	ΔΝ	ΔN	Р
	ОТ	до	ΔIN	N	Г
$\langle t \rangle_N \pm \sigma_N$	5,8568	6,1036	70	0,7	0,683
$\langle t \rangle_N \pm 2\sigma_N$	5,7334	6,227	95	0,95	0,954
$\langle t \rangle_N \pm 3\sigma_N$	5,61	6,3504	99	0,99	0,997

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}} = \sqrt{\frac{1}{100-1} \cdot 1,5075} \approx 0,1234 \text{ c}$$

$$\rho_{max} = \frac{1}{\sigma \sqrt{2\pi}} = \frac{1}{1,1234 \cdot \sqrt{2\pi}} \approx 3,233 \text{ c}^{-1}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

То. Расчет погрешностей измерений (оля прямых в
$$\Delta_{\rm H} = 0{,}005~{\rm c}$$
 $t_{\alpha,N} = 1{,}9842$ $\Delta_{\rm (t)} = t_{\alpha,N} \cdot \sigma_{\rm (t)} \approx 0{,}0244~{\rm c}$ $\Delta_t = \sqrt{\Delta_{\rm (t)}^2 - (\frac{2}{3}\Delta_{\rm H}t)^2} = \sqrt{0{,}0244^2 - \left(\frac{2}{3}\cdot 0{,}005\right)^2} \approx 0{,}0242~{\rm c}$ $\epsilon_t = \frac{\Delta_t}{t} \cdot 100\% = \frac{0{,}0242}{6} \cdot 100\% \approx 0{,}4033~\%$

- 12. Окончательные результаты.
 - 1. Среднее арифметическое всех результатов измерений, выборочное среднеквадратичное отклонение и максимальное значение плотности распределения.

$$\langle t \rangle_N = 5,9802 \text{ c}$$

 $\sigma_N = 0,1234 \text{ c}$
 $\rho_{max} = 3,233 \text{ c}^{-1}$

2. График, на котором изображены гистограмма и функция плотности распределения.

3. Среднеквадратичное отклонение среднего значения и доверительный интервал.

$$\sigma_{(t)} = 0.0123 \text{ c}$$

 $\Delta t = 0.0242 \text{ c}$

$$t = (6 \pm 0.0242) c$$
;

$$\varepsilon_t = 0.4033 \%; \qquad \alpha = 0.95$$

$$\alpha = 0.95$$

13. Выводы и анализ результатов работы.

Проведены многократные измерения интервала времени в 6 секунд, получена выборка из 100 измерений, построена гистограмма распределения результатов измерения, вычислено среднее значение измерений. При сравнении гистограммы с графиком функции Гаусса отмечено сходство построенной опытным путём функции с теоретикостатистической. Работа позволила ознакомиться с законом распределения случайной величины и подробно его изучить.