

Business Case: Prediction of Charged Off Loans

Pedro Martinez

The Problem and Solution Proposal

- > Objective: design a model that predicts Charged Off Loans using LC's database
- > Solution Structure
 - > Exploratory Data Analysis
 - Analysis and data cleaning (missing values, "o.h.e." on categorical variables)
 - > Feature Selection (Forward Selection, Gradient Boosted Weights and Regularization)
 - > Model Training
 - three models: Logistic Regression, Gradient Boosting, K-Nearest Neighbors
 - GridSearch for HyperParameters and Cross Validation for overfitting analysis
 - Performance analysis: Confusion Matrices and ROC Curves
 - Model Testing
 - Performance analysis: Confusion Matrices and ROC Curve

Dataset

- Train set: 887379 observations by 74 variables
- Test set: 759338 observations by 72 variables
- Columns with more than half of observations with missing values:

```
761351
mths since last deling
                                454312
mths since last record
                                750326
mths since last major derog
                                665676
annual inc joint
                                886868
dti joint
                                886870
verification_status_joint
                                886868
open_acc_6m
                                866007
open il 6m
                                866007
open il 12m
                                866007
open il 24m
                                866007
mths since rcnt il
                                866569
total bal il
                                866007
il util
                                868762
open_rv_12m
                                866007
open_rv_24m
                                866007
max bal bc
                                866007
all_util
                                866007
ing fi
                                866007
total cu tl
                                866007
ing last 12m
                                866007
```

Exploratory Data Analysis

Exploratory Data Analysis (2)

Charged-Off Loans by Debt-to-Income

Charged-Off Loans by Debt-to-Income

10

boxplot on Interest Rates by Charged-Off Loans

ChOff

Exploratory Data Analysis (conclusion)

 Average Loan Rate for Charged-Off borrowers may show common higher cost:

 In summary, a preliminary analysis shows no noticeable common characteristics among Charged-Off Loan borrowers compared to others.

Feature Selection

Several selection techniques were performed

- > Regularization (for Logistic Regression): loan amount, interest rate, annual income, Debe-to-Income, delinquencies in the last 2 years, inquiries last 6 months, employment length, number of derogatory public records, number of open credit lines in the borrower's credit file.
- > Gradient Boosted Weights (for Gradient Boosting):

Logistic Regression

- Called logistic since it uses the Logit function $log_e\left(\frac{p}{1-p}\right)$
- The regression is in the form of

$$p = \left(\frac{1}{1 + e^{-\beta \cdot X}}\right)$$

where β is the coefficients matrix representing the log-odds for p =1 X is the feature or explanatory variables matrix p is the probability of the target variable being 1

Gradient Boosting

A gradient boosting tress is an ensemble learning technique which predicts in the form of an ensemble of decision trees where the results of the each base-learner are combined to generate the final estimate.

XGBoost Plot from Charged-Off Model:

K-Nearest Neighbor

Given a defined 'number of neighbors' (K), for every pair combination of features (e.g. X_1 and X_2), this model analyzes for each random observation the K-nearest points and identifies their class to then estimate the very class of it based on the distribution of their neighbors (i.e. conditional probability).

Model Training and Performance Comparison

Confusion Matrix

	Predicted Negative	Predicted Positive
Actual Negative	TRUE NEGATIVE	FALSE POSITIVE
Actual Positive	FALSE NEGATIVE	TRUE POSITIVE

	Predicted Negative	Predicted Positive
Actual Negative	1 - α	α
Actual Positive	β	1 - β

Results – Train set

Regularized Logistic Regression	Predicted No Charged-Off	Predicted <i>Charged-Off</i>
Actual No Charged-Off	841,201	143
Actual Charged-Off	45,935	71

Gradian Boosting	Predicted No Charged-Off	Predicted <i>Charged-Off</i>	
Actual No Charged-Off	840,904	440	
Actual Charged-Off	45,773	233	

K-Nearest Neighbors	Predicted No Charged-Off	Predicted <i>Charged-Off</i>	
Actual No Charged-Off	840,323	1,021	
Actual Charged-Off	44,218	1,788	

Results – Test set

Regularized Logistic Regression	Predicted No Charged-Off	Predicted <i>Charged-Off</i>	
Actual No Charged-Off	715,350	14	
Actual Charged-Off	43,618	0	

Gradian Boosting	Predicted No Charged-Off	Predicted <i>Charged-Off</i>	
Actual No Charged-Off	715,054	310	
Actual Charged-Off	43,587	31	

K-Nearest Neighbors	Predicted No Charged-Off	Predicted <i>Charged-Off</i>	
Actual No Charged-Off	713,791	1,573	
Actual Charged-Off	43,520	98	

Classification Report

- Precision: $\frac{TP}{(TP + FP)}$
- Recall: $\frac{TP}{(TP + FN)}$
- F1score: $2 \cdot \frac{\text{precision} \cdot \text{recall}}{(\text{precision} + \text{recall})}$
- High precision: Predicted most of Non-Charged Off Loans correctly
- High recall: Not many actual Charged Off Loans predicted as Non-Charged Off

Classification Report: Train and Test sets

TRAIN

TEST

REGULARIZED LOGISTIC REGRESSION

	precision	recall	f1-score	support
No Charged-Off	0.95	1.00	0.97	841,344
Charged-Off	0.33	0.00	0.00	46,006
accuracy			0.9481	887,350
macro avg	0.64	0.50	0.49	887,350
weighted avg	0.92	0.95	0.92	887,350

REGULARIZE	D LOGIS	TIC REGE	<u>RESSION</u>
ſ		1	1

	precision	recall	f1-score	support
No Charged-Off	0.94	1.00	0.97	715,364
Charged-Off	0.00	0.00	0.00	43,618
accuracy			0.9425	758,982
macro avg	0.47	0.50	0.49	758,982
weighted avg	0.89	0.94	0.91	758,982

GRADIENT BOOSTING

	precision	recall	f1-score	support
No Charged-Off	0.95	1.00	0.97	841,344
Charged-Off	0.35	0.01	0.01	46,006
accuracy			0.9479	887,350
macro avg	0.65	0.50	0.49	887,350
weighted avg	0.92	0.95	0.92	887,350

	precision	recall	f1-score	support
No Charged-Off	0.94	1.00	0.97	715,364
Charged-Off	0.09	0.00	0.00	43,618
accuracy			0.9422	758,982
macro avg	0.52	0.50	0.49	758,982
weighted avg	0.89	0.94	0.91	758,982

KNN

	precision	recall	f1-score	support
No Charged-Off	0.95	1.00	0.97	841,344
Charged-Off	0.64	0.04	0.07	46,006
accuracy			0.9490	887,350
macro avg	0.79	0.52	0.52	887,350
weighted avg	0.93	0.95	0.93	887,350

Κ	N	N	
•			

KININ					
	precision	recall	f1-score	support	
No Charged-Off	0.94	1.00	0.97	715,364	
Charged-Off	0.06	0.00	0.00	43,618	
accuracy			0.9406	758,982	
macro avg	0.50	0.50	0.49	758,982	
weighted avg	0.89	0.94	0.91	758,982	

conclusion 1: in terms of **Accuracy**, KNN model performs better in the Train set conclusion 2: in terms of **Accuracy**, Regularized Logistic Regression model performs better in the Test set

Further Improvement

- > Feature Engineering:
 - > Standardization
 - Normalization
 - > log-changes
- Outlier Analysis

Other Classifying Models

Business Case:

Prediction of Charged Off Loans

Applicant: Pedro Martinez