ECE 426/516 Implementation of VLSI Systems with HDL Lab 6 Arithmetic Circuit Design with Pipelines

Due date: May 5th, 2024, by 11:30pm

Section A

In this section, you will code and test a design for adding two signed numbers of width 16 bits each at a time without any pipelining.

Lab Procedure

1. Use the following module template for this adder design.

// Addition of two 16 bits, 2's complement numbers, n1 and n2. All the 16 bits addition at one stroke without any pipeline. Result is 17 bits.

2. Write a test bench to verify the functionality. Synthesize this design and report the number of gates and operating clock cycle.

Section B

Lab Procedure

1. In this section, you add pipeline stage. **8 bits are used at every pipeline stage**. Use the following template to complete your Verilog coding.

```
// Addition of two 16 bit, 2's complement nos., n1 and n2. 8 bits addition at a time.
Result is 17 bits.
module adder_b (clk, n1, n2, sum);
input clk;
input [15:0] n1;
input [15:0] n2;
output [16:0] sum;
reg [16:0]
             sum;
wire [8:0]
             sum_LSB;
             sum_LSB_1;
reg [8:0]
reg [15:8]
             n1_{reg1};
             n2_reg1;
reg [15:8]
wire [16:8] sum_MSB;
wire [16:0] sum_next;
assign sum_LSB = ____; // Add least 8 significant bits. sum_LSB [8] is the carry.
always @ (posedge clk) // Pipeline 1, clk (1), register LSB to continue addition of
MSB.
      begin
       sum_LSB_1 <= ____;
n1_reg1 <= ____;
n2_reg1 <= ____;
                                             // Preserve LSB sum
                                             // Preserve MSBs of n1
                                             // Preserve MSBs of n2
            end
```

```
// Extend sign & add msbs with carry.

assign sum_MSB = ________; // Add MSBs with carry.
assign sum_next = _______;

always @ (posedge clk) // Pipeline 2, clk (2), register result.
begin sum <= ______;

end
endmodule
```

2. Write a test bench to verify the functionality. Synthesize this design and report the number of gates and operating clock cycle.

Demo

You should demo the following aspects of your design to TA.

- 1. Verilog code of your design
- 2. Your simulation waveforms and your synthesized results.