Particle spectrograph

Wave operator and propagator

${\mathfrak l}_{1^-}^{\#2}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{(1 + 2 k^2)^2 (2 r_3 + r_5) t_1}$	
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0	
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2+2k^4)(2r_3+r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	•
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	
${\tau_1^{\#1}}_{+}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	:
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	!
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	:
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{#2} + \alpha$	$\tau_1^{\#1} + \alpha$	$\tau_1^{\#2} + \alpha$	I

								-	O#1
	_	$\sigma_{2}^{\sharp 1}$	αβ	$ au_{2}^{\#1}$	αβ	$\sigma_{2}^{\#1}$	ιβχ		7,+0
$\sigma_{2}^{\#1}$	$+^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$		0			1+"1
$ au_2^{\#1}$	$+^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$		$\frac{4k^2}{(1+2k^2)^2t_1}$		0		#	ρ !-; !+;
$\sigma_2^{\#1}$	$\dagger^{\alpha\beta\chi}$	0	0			$\frac{2}{t_1}$			
$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\vec{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{}$	3	
$f_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	0	0	C		
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>1</u> 2 ع	0	$-\frac{1}{l} \sqrt{2} kt$	3 4	
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	-1 # Kt1	3	
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	C		
$\omega_{1}^{\#2}_{\alpha\beta} \ f_{1}^{\#1}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	C	>	
$\omega_1^{\#1}_{+\alpha\beta}$	$(r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	O		

Juadratic (free) action	
==	
$\iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \frac{1}{6} t_1 (2 \ \omega^{\alpha\prime} \ \omega^{\theta}_{} - 4 \ \omega^{\theta}_{} \partial_{,} f^{\alpha\prime} + 4 \ \omega^{\theta}_{} \partial_{,} f^{\alpha}_{} -$	
$2\partial_{i}f^{\theta}_{}\partial^{i}f^{\alpha}_{}$ $-2\partial_{i}f^{\alpha l}\partial_{\theta}f^{}_{}$ $+4\partial^{i}f^{\alpha}_{}\partial_{\theta}f^{l}_{}$ $-6\partial_{\alpha}f_{l}\partial^{\theta}f^{\alpha l}$ $-3\partial_{\alpha}f_{l}\partial^{\theta}f^{\alpha l}$ $+$	
$3\partial_i f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + 3\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + 3\partial_\theta f_{1\alpha}\partial^\theta f^{\alpha\prime} + 6\omega_{\alpha\theta\prime}(\omega^{\alpha\prime\theta} + 2\partial^\theta f^{\alpha\prime})) +$	
$rac{1}{3}r_2\left(4\partial_eta\omega_{lpha_Ieta}$ - $2\partial_eta\omega_{lphaeta_I}$ + $2\partial_eta\omega_{Ietalpha}$ - $\partial_I\omega_{lphaetaeta}$ + $\partial_eta\omega_{lphaeta_I}$ - $2\partial_eta\omega_{lpha_Ieta}$) $\partial^eta\omega_{lpha^BI}$ -	
$2 r_3 \left(\partial_{\beta} \omega_{\beta}^{\ \theta} \partial' \omega^{\alpha \beta}_{\ \alpha} + \partial_{i} \omega_{\beta}^{\ \theta} \partial' \omega^{\alpha \beta}_{\ \alpha} + \partial_{\alpha} \omega^{\alpha \beta i} \partial_{\theta} \omega_{\beta}^{\ \theta} \right) - 2 \partial' \omega^{\alpha \beta}_{\ \alpha} \partial_{\theta} \omega_{\beta}^{\ \theta} +$	Ü
$\partial_{\alpha}\omega^{\alpha\beta'}\partial_{\theta}\omega_{,\ \beta}^{\ \theta}$ - $2\partial'\omega^{\alpha\beta}_{\ \alpha}\partial_{\theta}\omega_{,\ \beta}^{\ \theta}$ + $2\partial_{\beta}\omega_{,\theta\alpha}^{\ \theta}\partial^{\theta}\omega^{\alpha\beta'}$ + $r_{5}(\partial_{i}\omega_{\kappa}^{\ \kappa}\partial^{\theta}\omega^{\alpha'}_{\ \alpha}$ -	
$\partial_{\theta}\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	3

0

0

0

 $\tau_{0}^{#1} + \tau_{0}^{#2} + \sigma_{0}^{#2} + \sigma_{0}^{#1} + \sigma_{$

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{0^{+}}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	16				

 $\kappa_{0+1}^{*+} + f_{0+1}^{*+} + f_{0+1}^{*+} + f_{0+1}^{*+} + \kappa_{0-1}^{*+} + \kappa_{0$

Massive and massless spectra

$$\begin{array}{c}
?\\
J^P = 0^-\\
?\\
?
\end{array}$$

Massive particle				
$-\frac{1}{r_2} > 0$				
1				
$\frac{t_1}{r_2} > 0$				
0				
Odd				

?
$$\xrightarrow{k^{\mu}}$$
 ? ?

• • • • • • • • • • • • • • • • • • • •				
, , ,	Quadratic pole			
?	Pole residue:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$		
	Polarisations:	2		

 $\omega_{1}^{\#2} \uparrow^{lpha}$

 $f_{1^{\bar{-}}}^{\#_1} +^{\alpha}$

Unitarity conditions