

ESCUELA DE FÍSICA INGENIERIA FÍSICA

Reporte: Laboratorio I

Empleo y lectura de instrumentos de medición eléctrica para corriente y voltaje

Nombre Apellido | Carné Nombre Apellido | Carné 26 de agosto de 2025

Índice

1. Objetivos

- Comprender las limitaciones de lectura en los voltímetros y amperímetros de corriente continua en varias escalas.
- Calcular la resistencia equivalente de un elemento utilizando el método indirecto de la Ley de Ohm.
- Comprobar experimentalmente la Ley de Ohm.
- Demostrar el concepto de linealidad en una resistencia.

2. Investigación previa

Antes de empezar el laboratorio presente el siguiente cuestionario lleno.

- a. ¿Cómo se debe conectar un multímetro para medir la corriente en una carga?
- b. ¿Cómo se debe conectar un multímetro para medir el voltaje en una carga?
- c. Según las especificaciones de su multímetro y para los distintos rangos de medición, defina cuál es el porcentaje de error en las lecturas de voltaje y corriente.
- d. ¿Qué significa la linealidad de un dispositivo eléctrico? ¿Qué consecuencias tiene esta?

3. Materiales y equipo

A suministrar por la Escuela:

- 1 multímetro digital
- 1 socket para bombillo incandescente
- 1 bombillo incandescente
- 1 resistencia de potencia de 100 Ω en 12 W
- 10 cables conectores medianos
- 1 fuente variable de voltaje DC

A suministrar por el estudiante:

- 1 multímetro digital
- 1 protoboard
- Cable de interconexión macho-macho
- 3 resistencias de carbón con valores entre $1 \,\mathrm{k}\Omega$ y $10 \,\mathrm{k}\Omega$

4. Procedimiento

a. Realice las conexiones del circuito tal y como se indica en la Figura ??.

Figura 1: Medición de corriente y voltaje en un circuito.

- b. Encienda la fuente con un voltaje de 32 V y espere unos minutos mientras el bombillo se calienta.
- c. Una vez que el bombillo calentó mida la corriente que circula por el bombillo y el voltaje que cae en este, anote el resultado en la Tabla ??.
- d. Repita las mediciones utilizando los valores de voltaje que indica la Tabla ?? y complete la misma. Calcule indirectamente para cada caso el valor de la resistencia interna del bombillo.
- e. Grafique el comportamiento de la resistencia interna del bombillo y analice el comportamiento.
- f. Cambie ahora el bombillo por una resistencia de $100\,\Omega$ (12 W), repita los pasos anteriores empezando con cero voltios en la fuente, llene la Tabla ??.
- g. Grafique el comportamiento de la resistencia y analice el comportamiento.
- h. Realice las conexiones del circuito tal y como se indica en la Figura ??.
- i. Encienda la fuente con un voltaje de 30 V.
- j. Realice las mediciones de I, V_{R1} , V_{R2} , V_{R3} .
- k. Averigüe los valores teóricos de las resistencias usando el código de colores.
- l. Llene la Tabla ??
- m. Realice las conexiones del circuito tal y como se indica en la Figura??.
- n. Encienda la fuente con un voltaje de 10 V.
- ñ. Realice las mediciones de V, I_{R1} , I_{R2} , I_{R3} .
- o. Averigüe los valores teóricos de las resistencias usando el código de colores.
- p. Llene la Tabla??

Figura 2: Circuito en serie con tres resistencias

Figura 3: Circuito en paralelo con tres resistencias

5. Resultados

Tabla 1: Valores experimentales de corriente y voltaje del bombillo

V_B (V)	$I_B(A)$	$R_B(\Omega)$
0		
4		
8		
12		
16		
20		
24		
28		
32		

Tabla 2: Valores experimentales de corriente y voltaje en la resistencia

V_R (V)	$I_R(A)$	$R(\Omega)$	
0			
4			
8			
12			
16			
20			
24			
28			
32			

Tabla 3: Método indirecto de la ley de Ohm aplicado en un circuito con tres resistencias en serie

	V (V)	I(mA)	$R_{teor}(\Omega)$	$R_{exp}(\Omega)$	error (%)
R_1					
R_2					
R_3					

Tabla 4: Método indirecto de la ley de Ohm aplicado en un circuito con tres resistencias en paralelo

	V(V)	I(mA)	$R_{teor}(\Omega)$	$R_{exp}(\Omega)$	error (%)
R_1					
R_2					
R_3					

6. Análisis de resultados

7. Conclusiones

Si desea citar algo lo puede hacer así \cite{black}