PGD-Al Intelligent Interfaces

Rock – Paper – Scissors

APTS YOERI, FAZELIAN PADIN, TIMMERMANS BART

Introduction

- Our take on "Intelligent" Interfaces:
 - Do NOT use traditional user-interface devices
 - keyboard, mouse, ...
 - But use:
 - Face recognition
 - Speech-commands recognition
 - Gesture recognition
 - ...
- → Motivation to:
 - Create a real UI experience accessible to all
 - Experiment with speech and video recognition
- → Create a Browser-based rock-paper-scissors game

Application Architecture

- Complete browser-based solution
 - Base app create with React and MUI
 - Video stream through react-webcam using mediaDevices.getUserMedia()
 - Audio streaming using the browser's mediaDevices.getUserMedia() and <u>WebAudio</u> API
- Tensorflow.js
 - Develop and/or use ML models directly in the browser
 - Convert Python models to be used in the browser (not used)
 - Retrain existing models using transfer learning (not used)
 - Use WebGL for speeding up visual and speech recognition
 - Use predefined tensorflow.js models
 - Hand pose detection
 - Speech command recognition
 - Custom models for face recognition: face-api package
- Deployment using GitHub-pages

Demo

Next round in 5 sec.

HELLO YOERI, WANT TO PLAY A GAME? [SAY YES]

• Face Matcher: Classifier; finds the shortest distance to labelled reference face-descriptors

- CNN #1: SSD MobileNet v1
 - Single Shot Multibox Detector
 - Input: full image
 - output: face-bounding box(es)
 - multiple convolutional layers, 1 fully connected layer
 - 4M trainable parameters
 - trained with WIDERFACE image dataset; 400K labelled faces in 32K pictures

CNN #2: Face Landmark 68 CNN

- input: face-bounding box
- output: 68 x 2d-landmarks
- multi-layer CNN (uses underlying C++ dlib implementation)

Table 1. MobileNet Body Architecture

The content of Dody The Internation								
Type / Stride	Filter Shape	Input Size						
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$						
Conv dw / s1	$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$						
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$						
Conv dw / s2	$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$						
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$						
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$						
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$						
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$						
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$						
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$						
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$						
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$						
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$						
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$						
5× Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$						
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$						
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$						
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$						
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$						
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$						
FC/s1	1024×1000	$1 \times 1 \times 1024$						
Softmax / s1	Classifier	$1 \times 1 \times 1000$						

- CNN #3: ResNet-34 to calculate face descriptor
 - Residual Network with
 - **33** convolutional layers
 - 1 fully connected last layer
 - has been trained to learn to map the characteristics of a human face to a face descriptor (a feature vector with 128 values)
 - input: centered and aligned face image 150x150
 - output: face-descriptor (vector w 128 values)

- Implementation:
 - Build with the face-api.js an open-source library
 - based on tensorflow.js, C++ dlib, ...
 - OpenGL based GPU acceleration is used
 - Uses 'Lightweight models'
 - Pro: allow real-time processing in the browser
 - Con: less accurate

Speech Command Recognition

- Keyword Spotting (KWS) vs. Speech Recognition
 - Runs usually natively on-device
 - Must be energy-efficient
 - Most of input is silence or background noise
 - Unit of recognition: single word
- Pretrained TensorFlow.js model working on WebAudioAPI
- Dataset
 - Limited vocabulary: digits 0 to 9, "Yes", "No", "Up", "Down", "Left", "Right", "Stop", and "Go"
 - Challenge: ignoring audio that does not contain speech
 - Size: 105,829 utterances of 35 words recorded by 2,618 crowdsource speakers

Speech Command Recognition

- Tensorflow.js model is based on a CNN Architecture proposed earlier by Google
- CNN preference over DNN in KWS
 - Deals with input typology
 - Shifts in frequency due to different speaking styles
 - Reducing parameters without sacrificing performance
- CNN Architecture
 - 2 convolutional, 1 linear low-rank, 1 DNN layer.

type	m	r	n	p	q	Par.	Mul.
conv	20	8	64	1	3	10.2K	4.4M
conv	10	4	64	1	1	164.8K	5.2M
lin	-	-	32	-	-	65.5K	65.5K
dnn	-	-	128	-	-	4.1K	4.1K
softmax	-	-	4	-	-	0.5K	0.5K
Total	-	-	-	-	-	244.2K	9.7M

Table 1: CNN Architecture for cnn-trad-fpool3

Speech Command Recognition

- Seems to be the least developed among TensorFlow.js models
 - Might be related to hold-out method (no k-fold cross-validation)

Gesture Recognition The Pipeline

Gesture classification

Gesture Recognition

- Handpose-detection model of tensorflow.js
 - Uses mediaPipe hands

MediaPipe Hands Keypoints: Used in MediaPipe Hands

Output

Gesture Recognition

- Gesture classification using fingerPose
 - https://github.com/andypotato/fingerpose
 - Simple gesture definition

```
const PaperGesture = new fp.GestureDescription('paper');
PaperGesture.addCurl(fp.Finger.Index, fp.FingerCurl.NoCurl);
PaperGesture.addCurl(fp.Finger.Middle,fp.FingerCurl.NoCurl);
PaperGesture.addCurl(fp.Finger.Ring, fp.FingerCurl.NoCurl);
PaperGesture.addCurl(fp.Finger.Pinky, fp.FingerCurl.NoCurl);
PaperGesture.addCurl(fp.Finger.Thumb, fp.FingerCurl.NoCurl);
PaperGesture.addCurl(fp.Finger.Thumb, fp.FingerCurl.HalfCurl);
```

Use best match of several gesture estimations

Wrap-up / Lessons learned

- Other experiments:
 - Develop a Native app?
 - Tensorflow on Nvidia-GPU/Linux, OpenCV, GUI framework: Qt, ...
 - == a steep learning curve
- Lesson-learned:
 - Face-, speech-command-, gesture- recognition can today be used in browsers, ready for 'real-time', 'real-world' applications
 - Still heavy on CPU and GPU use
- Code repository (GitHub):
 - https://github.com/bartimer/pg-ai.git
- Deployed on (GitHub-pages) :
 - https://bartimer.github.io/pg-ai/#/intelligent-interfaces

References

- SSD: Single Shot MultiBox Detector
 - Paper: https://arxiv.org/abs/1512.02325
 - Code: https://github.com/bruceyang2012/Face-detection-with-mobilenet-ssd
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
 - Paper: https://arxiv.org/abs/1704.04861
- Deep Residual Learning for Image Recognition
 - Microsoft Research
 - https://arxiv.org/pdf/1512.03385.pdf
- Face-api.js:
 - https://itnext.io/face-api-js-javascript-api-for-face-recognition-in-the-browser-with-tensorflow-js-bcc2a6c4cf07