ME FILE COPY (2

AFWAL-TR-87-3072

AD-A190 514

COMPOSITE REPAIR OF CRACKED ALUMINUM ALLOY AIRCRAFT STRUCTURE

Forrest A. Sandow Raymond K. Cannon

Structural Concepts Branch Structural Integrity Branch Structures Division

September 1987

Final Report for Period October 1981 - April 1984

Approved for public release; distribution unlimited.

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FORREST SANDOW

Project Engineer

RAYMOND K. CANNON, CAPTAIN, USAF

Project Engineer

LARRY G. KELLY, Chief Structural Concepts Branch

Frank D. adeems

DR. FRANK D. ADAMS, Chief Structural Integrity Branch

FOR THE COMMANDER:

HENRY A. BONDARUK, JR. Col, USAF Chief, Structures Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/FIBC, W~PAFB, OH 45433-6553 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security consideration, contractual obligations, or notice on a specific document.

UNCLASSIFIED

					PAGE

			OCUMENTATIO	N PAGE			Form Approved OMB No 0704-0188
1a REPORT SE		IFICATION		16 RESTRICTIVE	MARKINGS 1	01	0- = (1)
Unclas 2a. SECURITY	sified				MU-	111	10517
28. SECURITY	CLASSIFICATIO	N AUTHORITY			AVAILAS TY OF		
2b. DECLASSIF	CATION / DOW	NGRADING SCHEDU	LE		for Public lion Unlimited		e;
4 PERFORMIN	G ORGANIZAT	ION REPORT NUMBE	R(S)	5. MONITORING	RGANIZATION RE	PORT NU	MRER(S)
	-TR-87-3						
	PERFORMING rce Wrigh	ORGANIZATION L	6b OFFICE SYMBOL (If applicable)	7a. NAME OF MO	NITORING ORGAN	MOITASI	
Aerona	utical La	boratories	FIB				
6c. ADDRESS (d ZIP Code)	<u> </u>	7b. ADDRESS (Cit	y, State, and ZIP C	ode)	
AFWAL/							
WPAFB,	OH 45433	-6553					
	TION AIT	Force	Bb OFFICE SYMBOL (If applicable)	9 PROCUREMENT	INSTRUMENT IDE	NTIFICAT	ION NUMBER
Aercnautical Laboratories FIB							
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS							
AFWAL/				PROGRAM ELEMENT NO	PROJECT NO.	TASK NO	WORK UNIT
WPAFB,	OH 45433	-6553					
11. TITLE (Include Security Classification) 62201F 2401 01 79							
Composite Repair of Cracked Aluminum Alloy Aircraft Structure							
12 PERSONAL	AUTHOR(S)						
Sandow	Forrest	A.: Cannon.	Raymond K.				
13a TYPE OF	REPORT	136 TIME C		14. DATE OF REPO	RI (Year, Month,	Day) 15	PAGE (OUNT
Final			t 81 TO Apr 84	87/Sep			40
16 SUPPLEME	NTARY NOTA	TION					
17	COSATI		18 SUBJECT TERMS			-	-
FIELD 01	GROUP	SUB-GROUP		Repair, Alumi			
13	03		kepair, metai.	lic Aircrait	Repair, Alu	minum	Aircraft Repair
19 ABSTRACT	(Continue on	reverse if necessary	and identify by block r	number)			
			air of fatique-		num on airc	raft h	as advantages
over a	standard	bolted metal	patch repair,	such as no se	vere stress	conce	ntrations (no
bolt h	oles), fa	tigue-resista	nt patch, thinne	er patch, sim	ple molding	techn	iques, a sealed
interf	ace to he	lp prevent co	rrosion, and us	ually no insp	ection (NDI) prob	lems. The
object	ive of th	is program wa	s to determine	the effect of	composite	patche	s on stress
ntens	thickness	rack growth c	rameters (area,	ot aluminum.	This was a	ccompl	ished by studying
crack	orowth ra	te of the com	posite patch/al	tnickness, a	nd pry orie	ntatio	n) effects on
elevat	ed temper	ature (250 F)	curing adhesive	es were studi	ed. The te	oom te stino	mperature and
consis	ts of edg	e cracking a	<pre>/-inch x 18-incl</pre>	h 2024-T3 alu	minum speci	men to	a length of
betwee	n 0.3 and	0.5 inch.	The aluminum is	s then prepar	ed for bond	ing, n	ormally using
the ph	osphoric	acid non-tank	anodize (PANTA) method, pri	med, and pa	tched.	The specimen
			(CONTINUED OF	N REVERSE	*********		
		ILITY OF ABSTRACT			CURITY CLASSIFICA	ATION	
		TED E SAME AS	RPT 🔲 DTIC USERS	Unclassi	fied		
	F RESPONSIBL				Include Area Code		•
	T A. SAND	UW		513-255-586			WAL/FIBCB
DD Form 14	12, JUN 86		Previous editions are	obsolete.	SECURITY	CLASSIFIC	ATION OF THIS PAGE

Security Classification of this page

BLOCK 19 (CON'T)

Patch material for most specimens was 5521/4 boron/epoxy. Results have shown thickness of the metal being repaired to be the most significant factor in the Tepair process. There was also a significant difference in results between constant amplitude and spectrum tests. Comparisons between unpatched specimens with a 0%-Inch crack and high-temperature cured, patched specimens with 0%-Inch cracks showed 1/16-Inch thick aluminum constant amplitude-loaded (R=0.1, maximum stress=20 KSI) specimens to have lifetime extensions of greater than 25 times. 1/8-inch thick aluminum constant amplitude tests showed lifetime extensions of about 15 times, while 1/16-inch thick and 1/8-inch thick spectrum loaded-specimens showed extensions of about 15 and 7 times, respectively.

- A-2 .

FOREWORD

This work was performed as a joint effort between the Fatigue, Fracture, and Reliability Group, Structural Integrity Branch and the Structural Concepts Evaluation Group, Structural Concepts Branch of the Structures Division, Flight Dynamics Laboratory of the Air Force Wright Aeronautical Laboratories. The work was performed as a result of a cooperative effort proposed by The Technical Cooperation Program (TTCP) technical panel PTP4 on repair. The work was performed under Project 2401, "Flight Vehicle Structures and Dynamics Technology," Work Unit 24010109, "Life Analysis Methods," from October 1981 through April 1984.

Special thanks are given to Deborah Oliveira of Beta Industries for her help in etching of specimens and constituent data analysis. Thanks is also given to Harold Stalnaker for his aid in the testing of the specimens.

Accessed For	
NTIS CRASI DBC TAB Urbano ced Juliation co	y 0 0
By Distribution /	The state
Dist Avail of	id of

TABLE OF CONTENTS

SECTION		PAGE
ı	INTRODUCTION	1
11	ADHESIVE EVALUATION	2
Ш	SPECIMEN FABRICATION	5
IV	TESTING	8
V	RESULTS	12
VI	CONCLUSIONS AND RECOMMENDATIONS	17
	REFERENCES	18
APPENDIX		PAGE
1	FABRICATION PROCEDURES	19
11	TEST SPECIMEN LIST	21

LIST OF FIGURES

FIGURE		PAGE
1	TYPICAL PATCHED SPECIMEN	7
2	FALSTAFF SHORT SPECTRUM	8
3	PATCH FAILURE MODE	9
4	ADHESIVE FAILURE MODE	9
5	TYPICAL CYCLES VS. CRACK LENGTH	12
6	1/16-INCH-THICK CONSTANT AMPLITUDE TESTS	13
7	1/16-INCH-THICK SPECTRUM TESTS	14
8	1/8-INCH-THICK CONSTANT AMPLITUDE TESTS	14
9	1/8-INCH-THICK SPECTRUM TESTS	15
10	1/4-INCH-THICK SPECIMENS	16
11	RESULTS OF DOUBLE SIDED PATCHES	16

LIST OF TABLES

TABLE		PAGE
1	TEST MATRIX ADHESIVE EVALUATION	4
2	PATCH LAYUPS AND DIMENSIONS	6
3	MATERIAL PROPERTY TESTS	10
4	CRACK LENGTH DIFFERENCES	11
5	BASELINE VALUES	13

SECTION I

INTRODUCTION

In general, conventional repair procedures are often time-consuming and structurally inefficient. An improved repair method will increase availability of service equipment and reduce maintenance costs. A standard repair of cracked aluminum utilizes a metal patch bolted to the structure. The repair method studied in this program is different from the standard repair in two ways. First, the patch is made of composite material instead of aluminum. Second, the patch is adhesively bonded rather than bolted to the cracked structure.

There are several possible advantages of an adhesively bonded, composite patch over a bolted, metal patch. First of all, there are no severe stress concentrations created with the bonded method since bolt holes are not drilled in the cracked structure as they are with the bolted patch. Secondly, the boron/epoxy patch itself is a stiffer, more fatigue-resistant patch than its aluminum counterpart. The composite patch is also thinner than the aluminum patch which can be especially valuable to the aerodynamics of the aircraft with exterior patches. The composite patch is also easier to mold to curved irregular surfaces. This is because the patch can be applied in its precured state, as several layers of prepreg, and molded by hand to the shape of the component to be repaired. Another advantage is that a composite patch can be "seen through" with current non-destructive inspection (NDI) methods, such as Cscan to monitor the crack growth of the structure. Lastly, the bond which adheres the two materials also creates a sealed interface to help prevent corrosion. [1] The Australians have used this method on operational aircraft including repair of stress corrosion cracks initiating from rivet holes in Lockheed C-130 aircraft wing-plank ribs and fatigue cracks in magnesium alloy landing wheels. [1]

The project documented in this report was initiated by a request from the Australian Aeronautical Research Laboratory to conduct a TTCP (The Technical Cooperation Program) round-robin technical interchange studying the application of advanced fiber composite patches to fatigue-cracked aluminum alloy specimens. The objective of this program was to determine the effect of composite patches on stress intensity and crack growth characteristics of cracked aluminum. This was accomplished by studying metal thickness and patch parameter (area, thickness, and ply orientation) effects on stress distribution and crack growth rate of the composite patch aluminum specimen. Both room temperature and elevated temperature (250°F) curing adhesives have been studied.

SECTION II

ADHESIVE EVALUATION

The most critical part of the repair method is the adhesive. It must transfer part of the load to the composite patch and hold up under many load cycles. The adhesive should also resist moisture and other environmental effects. Another desirable property of an adhesive is a low or room temperature curing cycle. Typical structural adhesives require curing temperatures of 250°F and An advantage of the high temperature curing adhesive is the ease of application as far as getting the right amount of adhesive for the repair. Getting a thin, even distribution of the two part adhesives was difficult. temperature, curing adhesives come in a roll with the adhesive on a carrier cloth. Cutting off a piece the size of the bonded area is all that is required to get the correct amount and distribution of adhesive. There are two reasons why a room temperature curing adhesive would be more desirable for this application. First, the patch will be easier to apply with a low-temperature curing adhesive. If the adhesive needs to be heated up to 250°F, heating blankets or some other heat source will be required to bring the material to temperature. This could be troublesome, particularly for anything other than a depot-level repair. This type of heating may also require a significant amount of power if the repair is being made on the aircraft with the entire metal structure acting as a heat sink. The second reason for favoring a lower temperature curing adhesive is the differences in coefficients of thermal expansion between aluminum and composite materials. Aluminum has a coefficient of thermal expansion much higher than most composite materials. When the aluminum, adhesive, and composite patch system are brought up to temperature, the aluminum will have expanded much more than the composite patch. After the cure time, the system is cooled to room temperature. Now the aluminum and composite are coupled as one structure owing to the bond. This causes the specimen to warp, inducing bending stresses into the structure.

Three adhesives were chosen for initial single-lap shear tests to determine the relative merits of each. AF163 was chosen as the high-temperature (250°F) adhesive because it was being used in-house on other programs and was readily available. The adhesive used contained a carrier cloth. Two room temperature cure adhesives were also acquired from 3M to apply precured patches at room temperature. The first, 2216, is an off-the-shelf adhesive, while 1XB-3525 is an experimental two-part adhesive. Table 1 shows some trends of these adhesives. The 2216 gave reasonable results with both adherends made of epoxy. However, 2216 bonded to aluminum had half or less than half of the shear strength with epoxy/epoxy adherends. The 1XB-3525, however, shows a much less significant drop between epoxy-bonded and aluminum-bonded specimens. Results for 1XB-3525 are close to that of AF163. Considering the two specimens each for AF163 and 1XB-3525, each having one adherend of aluminum and one adherend of epoxy, results show an average shear strength of AF163 to be 3793 pounds and 1XB-3525 to be 3590 pounds, a 5.3% decrease in shear strength. Although these appear to be very good results for a

room temperature cure adhesive, the performance of the repaired specimens using 1XB-3525 was not acceptable in most cases. Precured patches bonded on with these adhesives failed adhesively at less than test load. The reasons for this were not established and should be studied in further work. Work with these adhesives was then dropped from the program. As a part of the program the Australians had good success using K138 room temperature cure adhesives with simple acid cleaning and an oven dry of the surfaces. This adhesive and cleaning was adopted for the room temperature phase of this program.

TABLE 1

TEST MATRIX

		lottom
Conditioned Condition	Sand	404

Adhesive	Top Adherend	Bottom Adherend	Etch	Sand	Co-Cure	Average Shear (105/1n Non Moisture 1% Moist Conditioned Condition	105/1n 1 1 1 1 1 1 1 1 1	Percent Reduction
1XB-3525	Epoxy	Ероху	No	240 Grit	No	4680	1347	17
1X8-3525	Epoxy	Ероху	No	110 Grit	No	4330	1105	74
2216	Ероху	Epoxy	N _o	240 Grit	No	3145	1685	46
2216	Epcxy	Epoxy	No S	110 Grit	No	3060	1338	99
1XB-3525	Ероху	Aluminum	Yes	240 Grit	No	3350	2817	16
1XB-3525	Epoxy	Aluminum	Yes	110 Grit	No	3830	3240	15
AF-163	Ероху	Aluminum	Yes	None	Yes	4105	3655	11
AF-163	Ероху	Aluminum	Yes	None	Yes	3480	3512	~
2216	Ероху	Aluminum	Yes	240 Grit	No	1645	1415	14
10. 2216	Ероху	Aluminum	Yes	110 Grit	No	1305	969	46
11. 1XB-3525	Aluminum	Aluminum	Yes	None	No No	3440	2193	38
12.* 2216	Epoxy	Aluminum	No No	240 Grit	No	1	•	ι

12* - FAILED ADHESIVE WHILE HANDLING

Moisture conditioned graphite/epoxy laminates were exposed to 95% RH, 150°F for 6 weeks to achieve 1% moisture gain by weight, prior to bonding.

SECTION III

SPECIMEN FABRICATION

The 1/16-inch and 1/8-inch specimens were constructed with 2024-T3 aluminum and the 1/4-inch specimens were constructed with 2024-T351 Specimens were cut to 3 7/8 inch by 18 inch. Width of the specimens was limited to a maximum of 4 inches, owing to the width of the test grips. Edge cracks in the specimens were grown from 0.050-inch notches made by a band saw blade. After notching, the specimen was cycled with the same type of loading it would see after being repaired in order to initiate a crack. The crack length was measured periodically, and cycling was stopped when the crack grew to approximately 0.3 inch (a/w = 0.08, with 'a' being the length of the crack and 'w' being the width of the specimen). graphite/epoxy and boron/epoxy were considered for use in this program. For this application graphite/epoxy offers three advantages. First, graphite/epoxy is less expensive and more widely used in the aerospace industry than boron/epoxy. Second, graphite fibers are easier to handle (less likely to cause skin punctures) than boron fibers. Third, graphite fibers can be formed into smaller radii of curvature than boron fibers. This allows a patch to be more easily formed to odd shapes. There are also three advantages of boron/epoxy over graphite/epoxy. First, boron is stiffer than graphite and should make a more fatigue-resistant patch. Second, boron has a coefficient of thermal expansion an order of magnitude higher than graphite. This helps keep the problem of induced stresses due to warping at high cure temperatures to a minimum. Third, boron in contact with aluminum does not cause the galvanic response as graphite does. Graphite/epoxy patches would require a layer of noncorrosive material at the aluminum surface which would require the depot to store an additional repair material. Considering the trade-offs between these two materials, the boron/epoxy was chosen. The additional cost of the boron does not carry too much importance because of the small amount of material being used. The personnel hazard of possible puncture wounds can be minimized with proper care. The smaller radius of curvature would be important in some cases, but the added stiffness, combined with the reduced problems of induced stresses and corrosion, outweigh the benefits of graphite.

Figure 1 is a drawing of a typical patched specimen. The patches were tapered across the thickness to reduce stress concentrations due to edge effects. Table 2 lists the layup and dimension for the boron patches. Layups one and four were obtained from work done for the Navy by Northrop. [3] The other patches were designed to be more orthotropic and perform in more general stress fields. Before the patches were bonded, the surface of the aluminum was treated with a phosphoric acid non-tank anodize (PANTA) as specified in Reference 4 and listed in Appendix I. AVCO 5521/4 boron epoxy was used to help control the induced bending stress problem due to differences in coefficients of thermal expansion. This system requires a 250°F cure as shown in Appendix 1 instead of the 350°F cure which the more commonly used

5505/4 system requires. When the lower (below 250°F) cure adhesives were used, the patches had to be precured before being bonded to the aluminum. This procedure is also listed in Appendix 1.

TABLE 2
Patch Layups and Dimensions

Patch Number	Patch Layup (in.)	Inner Diameter (in.)	Outer Diameter
1	(0 ₂ ,90) _S	1.94	2.14
2	(±45,90,0) _S	1.94	2.34
3	(±45,90 ₂ ,0 ₂) _s	1.94	2.34
4	(±45,0 ₂ ,90,0 ₃)	1.94	2.24
5	(±45,0 ₂ ,90 ₂ ,0) _s	1.94	2.54
6	(0)3	1.94	1.94
7	(0)4	1.94	1.94
8	(0)5	1.94	1.94
9	(0)7	1.94	2.34
10	(0) ₁₂	1.94	2.34
11	(0) ₁₆	1.94	2.54

Before bonding, the bottoms of the precured patches were sand-blasted and cleaned with acetone and then distilled water. The surface to be patched was treated with Micro-Measurement A1 Conditioner, a surface cleaner. This was placed on the surface for 10 minutes and then cleaned off with distilled water. Then the specimens and patch were held at 100°F for 1 hour to remove moisture. K138, a two-part adhesive, was first properly mixed, then applied in a thin, even bondline to the patch. The patch was then placed flush to the edge of the aluminum and centered over the crack. Weights were placed on the specimen to provide about 2 psi pressure. The weights were separated from the specimen with a layer of non-porous material to keep the adhesive off of the The system was then heated to 100°F for 24 hours to cure the Two sets of precracked specimens were sent to the Australian Aeronautical Research Laboratories, patched, and returned for testing. These specimens were repaired by three different methods, using three different adhesives chosen by ARL. Half of the first set were repaired by cocuring the patches in place with FM73 adhesive. These were cured at 176°F for 8 hours. The other half were repaired by bonding precured patches with the K138 adhesive. These were cured in place for 8 hours at 104°F. The final set was repaired with cocured patches using AF126 adhesive. These were cured at 150°F for 8 hours.

Figure 1. Typical Patched Specimen

SECTION IV

Testing was done with several variables including room-temperature cure adhesives, high-temperature cure adhesives, metal thickness, single and double-sided patches, patches varying in layup, shapes, material, constant amplitude and flight spectrum loading, and some repairs done in Australia. Appendix II lists the specimens tested with their respective variables.

While most patches were single sided, a few were patched on both sides. In most cases, a single-sided patch is all that would be practical, since typical repairs do not allow easy access to both sides of the structure. However, with a thicker specimen, particularly the 1/4-inch specimens, the repairs were not extending the lifetime of the aluminum nearly as long as on the thinner specimens, owing to the stress variation across the thickness of the aluminum. Double-sided patches were then tried to see if this effect could be overcome.

COUNTY TO COUNTY OF THE PROPERTY OF THE PROPER

Two different types of loading were used during the testing. The simpler loading was constant amplitude with an R ratio (minimum stress divided by maximum stress) of 0.1 and a maximum load of 20 KSI. The other loading is called Falstaff Flight Spectrum, an abbreviated version of the Falstaff Spectrum [2]. Figure 2 shows the loads seen by the specimen during one flight of the Falstaff Flight Spectrum. Maximum stress under this loading was 20 KSI and minimum load was -2.7 KSI. Guides were used on the specimens to prevent buckling during compression loads.

Figure 2. Falstaff Short Spectrum

Two major modes of failure were found during the tests. Figure 3 shows the patch failure mode. Here the patch fractures with the aluminum. The adhesive does not fail, except locally over the crack itself. Figure 4 shows the adhesive-type failure mode. In most cases, the adhesive failed cohesively. The lower temperature cure adhesives provided some exceptions with the adhesive failing adhesively.

Figure 3. Patch Failure Mode

Figure 4. Adhesive Failure Mode

Baseline Panel Testing

The material for baseline panel testing was not cured under the normal 100 psi in order to simulate the way a patch would be applied under field conditions. Therefore we cured a small panel under the same conditions as the patches used in the repair (250°F and full vacuum pressure) to check some basic material properties. The patches on the aluminum carry loads through

tension and shear; therefore, 0° tensile, short beam shear and 0° flexural tests were examined for the panel testing.

A typical ply of the boron prepreg is composed of a single layer of boron fibers laid up on a scrim cloth and impregnated with epoxy. Some of the initial patches were laid up with scrim-to-scrim in some layers and boron-to-boron in other layers. There was a question whether this would have an effect on shear and flexural properties. Therefore, a second panel was laid up and cured. This panel started with an outer scrim layer, then two boron layers together, then two scrim layers together, and so on for the eight plies. The first panel was laid up with no adjacent boron or scrim layers. Both panels were bled the same and followed the same cure cycle as the patches. The results of the material test specimens are listed in Table 3. Only very small differences were noted between the two panels, indicating the placing of scrims together was not a major problem in this application.

Table 3
Material Property Tests

		Panel A	Panel B
A. Tensile Ultimate Load (KSI)		168 221 179	200 213 187
	Avg.	189	200
B. Short Beam Shear (KSI)		11.3 12.1 12.9 10.1 11.5 10.4	12.0 10.8 12.2 10.9 11.6 9.7
C. Flexural Strength (KSI)	Avg.	11.4 267 287 288 303 289 279	11.2 226 272 266 261 308 287
	Avg.	285	270

D. Flexural Modulus (MSI)		21.5	20.9
, , , , , , , , , , , , , , , , , , , ,		25.6	24.4
		26.1	22.5
		27.1	22.5
		24.9	26.4
		24.3	23.2
	Ava.	24.9	23.3

Panel A. 8 Ply with Alternate Scrims Panel B. 8 Ply with Scrims Together

In order to confirm the existence of a difference between the crack length at the bond surface and at the opposite surface, one specimen had marker bands placed on the crack during the test. The marker bands were generated by cycling the specimen with the same maximum load but R=0.85 for enough cycles to add an additional 0.01 inch to the crack at 5-thousand-cycle intervals during the test. This creates a mark on the fracture surface which is different from the normal fracture and can easily be measured after the test is complete and the specimen is broken. X-ray and ultrasonic techniques were also tried in order to measure the crack length difference during the test, but were not accurate enough to measure the difference. Table 4 lists the measured data for a 1/8-inch-thick specimen patched with a rectangular patch of 5 plies of unidirectional boron. This confirms that the crack length on the nonpatched side is longer than the patched side. This explains why the single-slagd patches are more effective on the thinner (1/16-inch) materials. With the thicker aluminum, particularly the 1/4-inch-thick specimens, the variation of the stress across the thickness of the metal is high, which renders the patch relatively ineffective.

Table 4
Crack Length Differences

Patched Side (in.)	Unpatched Side (in.)	Difference (in.)
.312	.407	.086`
.455	.552	.097
.657	.753	.096
.913	1.013	.100
1.342	1.403	.060
2.007	2.065	.058
failed	failed	

SECTION V

An A versus N (crack length versus cycles) curve is shown in Figure 5. The initial cracks grown from the 0.050-inch notch varied in length, as can be seen in the figure. In order to compare the different patches, a common starting point must be found. This was done by shifting the various curves horizontally (along the X-axis) until the curves intercepted the Y-axis (crack length) at the desired point. Due to the nonlinearity of the A versus N curve, it is also best to have this reference point constant across specimens of equal thickness. When these curves were shifted along the X axis, the baseline enters the highly curved portion, while the repaired specimen A vs N curve was still in its flat, linear portion. A much larger percentage of the baseline specimens' life will be lost than will the repaired specimen. The starting point used for both 1/8-inch and 1/16-inch specimens was 0.34 inch. Once this point was established, we then compared the effectiveness of different patches by computing their lifetime extension.

Figure 5. Typical Cycles vs. Crack Length

Figures 6 through 10 are summary bar graphs of life extension for different patches, aluminum thickness, and loading methods, as specified. The baseline specimen life (1/16-inch constant amplitude) was 7,065 cycles from a 0.34-inch crack to failure. Table 5 lists the baseline specimen lives for each thickness and loading type. As can be seen in Figure 6, most of the patches here performed well. The (±45,90,0)_s patch was the worst, but still showed a life extension of 16.4 times. All other repairs in this group yielded life extension averages from 19 to 22 times the baseline life. The first four columns used AF163 adhesive cured at 250°F. Column 6 in this figure is of a single specimen repaired by the

Australian Aeronautical Research Laboratory (ARL) with a (0_4) patch and a 104° F cure adhesive, K138. This single specimen had a life extension of 22.1 times, which is as good as the average extension of the $(\pm 45,90_2,0_2)_s$ patch. Two (0_4) repairs done by ARL shown in column 7 using AF126 at 250°F also performed well, with an average life extension of 19.6 times.

Table 5
Baseline Values

Constant	
<u>Amplitude</u>	Cycles
1/16 in.	7065
1/8 in.	3804
1/4 in.	1154
Falsataff	
Flights	<u>Flights</u>
1/16 in.	1033
1/8 in.	549
1/4 in.	289

Figure 6. 1/16-Inch-Thick Constant Amplitude Tests

The differences in the patches were much more pronounced under the Falstaff Flight spectrum loading. As shown in Figure 7, the $(\pm 45.90_2, 0_2)_s$ patch clearly performed better than the others, yielding a life extension of 21.8 times. The life extension of unidirectional layups decreased significantly under the spectrum loading. The last two columns show data (0_3) and (0_5) patches, respectively. Even the (0_5) had a significantly lower life extension than the $(\pm 45.90_2,0_2)_s$ patch, unlike the constant amplitude case where the (0_4) patches

Authorities and a single and a single and a superior and a superio

had performed roughly equivalently to the $(\pm 45.90_2, 0_2)_s$ patch. The ARL repaired specimens in column four used AF126 cured at 250°F.

Figure 7. 1/16-Inch-Thick Spectrum Tests

Overall, the 1/8-inch specimens tested at constant amplitude and plotted in Figure 8 did not show quite as great a life extension as the 1/16-inch specimens. Here the (0_7) specimens repaired by the ARL using AF126 adhesive with a 250°F cure performed the best with a life extension of 17.7 times, nearly as good as the 1/16-inch specimens. However, the single ARL repaired (0_7) specimen using the K138 adhesive, 104°F cure showed a life extension of only 8.3 times. Recall that the K138 with a (0_4) patch on the 1/16 inch specimen with constant amplitude loading performed very well. The $(\pm 45,0_2,90.0_3)$ specimen did a little better than the (0_7) K138 repaired specimen, and the $(\pm 45,0_2,90_2,0)_s$ specimen had an average life extension of 11.4 times.

Figure 8. 1/8-Inch-Thick Constant Amplitude Tests

The Falstaff flight spectrum loading of the 1/8-inch specimens shown in Figure 9 again showed a large relative drop in life extension with the unidirectional patch repairs. The top-performing patch here was the $(\pm 45.0_2,90_2,0)_s$ patch, with an average life extension of 7.3 times, while the ARL repaired (0_7) using the AF126 adhesive and 250°F cure had an average life extension of 6.3 times. Column 4 shows the results of a (0_7) patch repair using K138 adhesive, 104°F cure, and an alternate aluminum preparation method. Here the aluminum was sand-blasted, cleaned, and treated with Micro Measurement Conditioner A-1 instead of being etched with the PANTA process. The average life extension for these specimens was 4.8 times, very close to that of the single (0_7) specimen using AF163 and a 250°F cure (4.9 times). Still another (0_7) specimen, this time repaired by the ARL with a 176°F cure and FM73 adhesive, showed a life extension of 6.8 times.

Since the baseline lifetime of the 1/4-inch specimens was much shorter than the 1/8-inch or 1/16-inch specimens, direct comparisons between these different thickness specimens cannot be made. Using a 0.26-inch crack as the starting point for comparison, a (0_{12}) patch under constant amplitude loading had an average life extension of 15.8 times (see Figure 10). Under Falstaff flight loading, a (0_{12}) specimen showed a life extension of 4.8 times, while a (0_{16}) specimen showed an extension of 6.3 times. All of the above specimens used a PANTA aluminum preparation and AF163 adhesive with a 250°F cure.

The repairs done using patches on both sides of the cracked specimen were extremely effective. Although crack lengths could not be monitored while the specimen was being tested without removing it from the test machine, the three double-sided 1/8-inch specimens and the one 1/4-inch specimen all cycled well past the best of the single side repaired specimens. For example, the 1/8-inch specimens ranged from a low of 288,000 constant amplitude cycles to a high of 1,244,000 cycles, but all these specimens failed outside the patched area. The 1/4-inch double-sided specimen cycled for 178,000 cycles. Figure 11 shows these results.

Figure 11. Results of Double Sided Patches

SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

Overall, the patches were very effective in slowing down crack growth in the repaired specimens, particularly the thinner material (1/16-inch aluminum). The variations of the stresses across the metal seem to limit the effectiveness in the thicker specimens. The patches having more balance between 0°, 45°, and 90° plies performed better under the Falstaff flight spectrum loading, including compression, than did unidirectional patches. The $(\pm 45,90_2,0_2)_8$ was the best performing patch for 1/16-inch-thick aluminum, as was the $(\pm 45,0_2,90_2,0)_8$ patch for 1/8 inch aluminum. The low-temperature (104°F) curing adhesive, K138, performed very well in some circumstances, but lacked the consistency of the 250°F curing adhesives. This may have been due to the fact that the K138 is more difficult to apply correctly than the other adhesives because it is a two-part adhesive, whereas the higher temperature adhesives are carrier cloth-type adhesives which are easy to get the required even thickness distribution across the adherends

The results of this program have application at a depot level where controlled surface treatments can be completed, regulated heating is available, and special techniques can be used to apply the required pressure for a proper cure. In a remote field location or in a rapid battle-damage situation, equipment for this type of bonding will probably not be available. The potential exists to do this type of repair using room temperature cure systems in wet layups with graphite or fiber-glass cloth. Further work needs to be done in this area.

REFERENCES

- 1. Baker, A. A., "Work on Application of Advanced Composites at The Aeronautical Research Laboratories," Composites 9 (1), 1978.
- 2. van Dijk, G. M. and de Jonge, J. B., Introduction to a Fighter Aircraft Loading Standard for Fatigue Evaluation FALSTAFF, National Aerospace Laboratory, The Netherlands, NLR MP 75017, May 1975.
- 3. Ratwani, M. M., and Labor, J. D., "Composite Patches For Metal Structure," Navy Contract N62269-79-C-0271, May 1979.
- 4. "Adhesive Bonded Aerospace Structures Standarized Repair Handbook," Mil-hdbk-337, 1983.

APPENDIX I FABRICATION PROCEDURES

Before the patches were bonded, the surface of the aluminum was treated with a phosphoric acid non-tank anodize (PANTA) as specified in Reference 4. The following steps were used:

- (1) Solvent-wipe with MEK
- (2) Abrade with nylon abrasive pads
- (3) Dry wipe with clean gauze
- (4) Apply a uniform coat of gelled 12% phosphoric acid
- (5) Place three layers of gauze and apply enough gelled phosphoric acid to completely saturate a piece of stainless steel screen over the coating. Apply another coating of gelled phosphoric acid
- (7) Connect the screen as a cathode (-) and the aluminum as an anode (+) for a D.C. power source
 - (8) Supply a potential of 6 volts for 10 minutes
 - (9) Remove screen and gauze
- (10) Moisten clean gauze with water and lightly wipe off the remaining gelled acid. Rinse the surface with water within 5 minutes
 - (11) Force air oven dry for 30 minutes at 150°F
- (12) Examine the surface with a polarized filter rotated 90° at a low angle of incidence to the specimen. A properly anodized surface will show an interference color
 - (13) Repeat 4 through 12 if no color
 - (14) Coat anodized area with American Cyanimid's BR127 primer
 - (15) Wrap in Kraft paper until need for patching

AVCO 5521/4 boron epoxy was used to help control the induced bending stress problem due to differences in coefficients of thermal expansion. This system requires a 250°F cure instead of the 350°F cure which the more commonly used 5505/4 system requires.

The following procedure was followed in patching the precracked specimens:

- (1) Add one layer of AF163 to the bottom of the patch
- (2) Center the patch over the cracked area of the specimen
- (3) Place a layer of non-porous material over the patch
- (4) Place 2 layers of glass vent cloth over the non-porous and extend to a vacuum port
- (5) Place a vacuum bag over the patching area and draw a minimum of 28 in-Hg
- (6) Heat the specimen to 250°F at 5°F per minute with a heat blanket or heated platen
 - (7) Hold at 250°F for 2 hours
 - (8) Allow to cool to less than 140°F before removing vacuum
 - (9) Ultrasonically inspect specimens for disbonds

When the lower (below 250°F) cure adhesives were used, the patches had to be precured before being bonded to the aluminum. The precured patches were laid up individually and cured as follows:

- (1) Place a layer of non-porous material over the patch.
- (2) Place two layers of glass vent cloth over the non-porous and extend to a vacuum port.
 - (3) Draw a minimum of 28 in-Hg vacuum.
 - (4) Heat to 250°F at 5°F per minute.
 - (5) Apply 85 psi pressure.
 - (6) Hold at 250°F for 2 hours.
 - (7) Allow to cool to less than 140°F before removing vacuum.
 - (8) Ultrasonically inspect specimens.

APPENDIX II

TEST SPECIMEN LIST

SPECIMEN # LAYUP BASELINE	1	THICKNESS	1/16
		TEST LEVEL	ଞଉଉଉଉ
SPECIMEN # LAYUP (@/@/-45/45/0		THICKNESS	1/16
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH	COCURE 250 F Sine	TEST LEVEL	20000
FAILURE CYCLES FAILURE MODE	138000	BORON FATIGUE	
SPECIMEN #	3	THICKNESS	1/16
INITIAL CRACK LENGTH FAILURE CYCLES	SEMICIRCLE COCURE 250F SINE .300	TEST LEVEL	ବ୍ୟବରତ
SPEDIMEN #	4	THICKNESS	1/16
LAYUP (Ტ/Დ/୨୯)5	SEMICIROLE COCURE 250 F SINE .323	TEST LEVEL	
LAYUP (Ø/Ø/Ø0)S PATOH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH	SEMICIRCLE COCURE 250 F SINE .323 149020 BORON AND ALL	TEST LEVEL	<u>ଅ</u> ନ୍ଧର୍ଭ ହଣ
LAYUP (Ø/Ø/ØØ)S PATOH SHAPE OURE SYSTEM TEST TYPE INITIAL DRACK LENGTH FAILURE MODE SPECIMEN # LAYUP (45/~45/93/Ø) PATOH SHAPE OURE SYSTEM TEST TYPE INITIAL DRACK LENGTH	SEMICIRCLE COCURE 250 F SINE .323 .149000 BORON AND ALL 5 S SEMICIRCLE COCURED 250 F SINE .308	TEST LEVEL UKINUM FATIGUE THICKNESS TEST LEVEL	පැවැතිම ා 1/16
LAYUP (0/0/90)S PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FPILURE MODE SPECIMEN # LAYUP (45/-45/90/0) PATCH SHAPE	SEMICIRCLE COCURE 250 F SINE .323 .149000 BORON AND ALL 5 S SEMICIRCLE COCURED 250 F SINE .308	TEST LEVEL UKINUM FATIGUE THICKNESS TEST LEVEL	පැවැතිම ා 1/16
LAYUP (0/0/90)S PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE SPECIMEN # LAYUP (45/-45/90/0) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE SPECIMEN # LAYUP (45/-45/90/0)	SEMICIRCLE COCURE 250 F SINE .323 149000 BORON AND ALL 5 SEMICIRCLE COCURED 250 F SINE .308 112000 BORON AND ALL	TEST LEVEL UKINUM FATIGUE THICKNESS THICKNESS	20200 1/16 20200
LAYUP (0/0/90)S PATOH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FPILURE MODE SPECIMEN # LAYUP (45/-45/90/0) PATOH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE SPECIMEN #	SEMICIRCLE COCURE 250 F SINE .323 148000 BORON AND ALL 5 SEMICIRCLE COCURED 250 F SINE .308 112000 BORON AND ALL 6 6/0/0)S SEMICIRCLE COCURE 250 F SINE .402 131000	TEST LEVEL WINDE FATIGUE THICKNESS THICKNESS THICKNESS	20000 1/16 20000

SPECIMEN # LAYUP (45/-45/90/90 PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	7/0/0)S RECTANGLE COCURE 250 F SINE .298		
	8 RECTANGULAR COCURE 250 F SINE	THICKNESS TEST LEVEL	
SPECIMEN # LAYUP (0/0) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	RECTANGULAR COCURE 250 F SINE .304 97000		
SPECIMEN # LAYUP (45/-45/90/0) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FRILURE CYCLES FAILURE MODE	S RECTANGULAR COCURE 250 F SINE .301		
LAYUP (Ø/Ø/90)S PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	COCURE 250 F SINE	TEST LEVEL	
LAYUP (457-45790790) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	/0/0)S SEMICIRCLE COCURE 250 F SINE	THICKNESS TEST LIVEL MINUM FATIGUE	

•

SPECIMEN #	13	THICKNESS	1/16
	RECTANGULAR (
TEST TYPE INITIAL CRACK LENGTH	. 260	TEST LEVEL	ଞ୍ଜନ୍ଦର
FAILURE CYCLES FAILURE MODE		MINUM FATIGUE	
SPECIMEN # LAYUP BASELINE	14	THICKNESS	1/16
PATCH SHAPE	NONE NONE		
	SPECTRUM .129	TEST LEVEL	35000
FAILURE MODE		GUE	
SPECIMEN # LAYUP BASELINE	15	THICKNESS	1/16
PATCH SHAPE	NONE NONE		
	SPECTRUM	TEST LEVEL	<u>ଅ</u> ବରତ୍ତ୍ର
FAILURE CYCLES	2274		
FAILURE MODE	ALUMINUM FATI	GUE	
SPECIMEN # LAYUP BASELINE	16	THICKNESS	1/16
PATCH SHAPE CURE SYSTEM	NONE NONE		
TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	SPECTRUM	TEST LEVEL	<u>ප</u> ල්ලබන
	ALUMINUM FATI	GUE	
SPECIMEN # LAYUP (45/-45/90/50		THICKNESS	1/16
PATCH SHAPE	SEMICIRCLE		
TEST TYPE		TEST LEVEL	22630
INITIAL CRACK LENGTH FAILURE CYCLES	.258 16954		
FAILURE MODE	BORON AND ALU	MINUM FATIQUE	
SPECIMEN # LAYUP (45/-45/90/0):		THICKNESS	1/16
PATCH SHAPE	SEMICIRCLE COCURE 250 F		
TEST TYPE	SPECTRUM	TEST LEVEL	<u> ව</u> හිමගින
INITIAL CRACK LENGTH FAILURE CYCLES	. ଓଡ଼ିଆ ଜଣ୍ମ		

19 THICKNESS 1/8 SPECIMEN # LAYUP BASELINE PATCH SHAPE NONE CURE SYSTEM TEST TYPE NONE TEST LEVEL 20000 SINE INITIAL CRACK LENGTH .033
FAILURE CYCLES 39919
FAILURE MODE ALUMINUM FATIGUE EW
LAYUP (45/-45/0/0/90/0/0/0)
PATCH SHOPE SPECIMEN # THICKNESS 1/8 PATCH SHAPE SEMICIRCLE
CURE SYSTEM COCURE 250F
TEST TYPE SINE TEST LEVEL 20000 TEST TYPE INITIAL CRACK LENGTH .512
FAILURE CYCLES 30000
FAILURE MODE BORON AND ALUMINUM FATIGUE THICKNESS 1/8 SPECIMEN # Ē١ LAYUP (45/-45/0/0/90/90/0)S PATCH SHAPE SEMICIRCLE
CURE SYSTEM COCURE 250 F
TEST TYPE SINE TEST LEVEL 20000 INITIAL CRACK LENGTH .303 FAILURE CYCLES 52000 FAILURE MODE ALUMINUM FATIGUE AND COHESIVE BOND SPECIMEN # 22 THICKNESS 1/8 LAYUP (45/-45/0/0/90/0/0/0) PATCH SHAPE SEMICIRCLE
CURE SYSTEM COCURE 250 F
TEST TYPE SINE TEST LEVEL 20000 INITIAL CRACK LENGTH .297
FAILURE CYCLES 35000
FAILURE MODE COMESIVE BOND SPECIMEN # 23 THICKNESS 1/8 LAYUP (45/-45/0/0/90/90/0)S PATCH SHAPE SEMICIRCLE
CURE SYSTEM COCURE 250 F
TEST TYPE SINE TEST LEVEL 20000 INITIAL CRACK LENGTH .326
FAILURE CYCLES 40000
FAILURE MODE BORON AND ALUMINUM FATIGUE E4 LAYUP (45/-45/0/0/90/0/0/0) THICKNESS 1/8 PATCH SHAPE SEMICIRCLE
CURE SYSTEM COCURE 250 F
TEST TYPE SINE SINE INITIAL CRACK LENGTH .307 FAILURE CYCLES 35437
FAILURE MODE BORON AND ALUMINUM FATIGUE

25 THICKNESS 1/A SPECIMEN # LAYUP (0)5 REC 1/2 WIDTH DOUBLE SIDED PATCH SHAPE CURE SYSTEM TEST TYPE RECTANGULAR COCURE 250 F TEST TYPE SINE
INITIAL CRACK LENGTH .317 TEST LEVEL 20000 FAILURE CYCLES 288000 FAILURE MODE ALUMINUM FATIGUE DUTSIDE PATCH THICKNESS 1/8 SPECIMEN # ã6 LAYUP (0)5 DOUBLE SIDED PATCH SHAPE CURE SYSTEM TEST TYPE RECTANGULAR COCURE 250 F SINE TEST LEVEL 2000 INITIAL CRACK LENGTH .308 FAILURE CYCLES 506000 FAILURE MODE ALUMINUM FATIGUE OUTSIDE PATCH SPECIMEN # 27 THICKNESS LAYUP (0)5 DOUBLE SIDED PATCH SHAPE RECTANGULAR
CURE SYSTEM COCURE 250 F
TEST TYPE SINE COCURE 250 F TEST TYPE SINE
INITIAL CRACK LENGTH .312
FAILURE CYCLES 1244000 TEST LEVEL 20000 FAILURE CYCLES FAILURE MODE ALUMINUM FATIGUE OUTSIDE PATCH SPECIMEN # 8ء THICKNESS 1/8 LAYUR (0)3 DOUBLE SIDED PATCH SHAPE RECTANGULAR DURÉ SYSTEM Tist type COCURE 250 F TEST LEVEL SINE INITIAL CRACK LENGTH .434
FAILURE CYCLES 20493 FAILURE MODE ALUMINUM FATIGUE DUTSIDE PATCH PRECINEN # ⊇9 THICKNESS LAYUR BASELINE PATON BHADE NONE DURE BYSTEM TEUT TYPE NONE SPECTRUM TEST LEVEL EDOGO INITIAL CRACK LENGTH . ହତହ FRILDRE CYCLES 1413 FAILURE MODE ALUMINUM FATIGUE SPECIMEN # 30 THICKNESS 1/8 LAYUP BASELINE PATCH SHAPE NONE CURE SYSTEM TEST TYPE NONE SPECTRUM TEST LEVEL INITIAL CRACK LENGTH . ଅପ୍ର FAILURE CYCLES 1230 FAILURE MODE ALUMINUM FATIGUE

SPECIMEN # LAYUP BASELINE	31	THICKNESS	1/4
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	. ୧୧୯		ଅବଦେଶ
SPECIMEN #	32	THICKNESS	1/4
LAYUP- (45/-45/0/0/9 PATCH SHAPE CURE SYSTEM TEST TYPE	90/90/0)S SEMICIRCLE COCURE 250 F	TEST LEUSI	ാരത്ത
INITIO CRACK LENGTH FAIL DLES FAIL DE	.318 5000 BORON AND ALU	MINUM FATÍGUE	೭೪೪೪೪
SPECIMEN #	33	THICKNESS	1/4
LAYUP (45/-45/0/0/9 PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH	RECTANGULAR COCURE 250 F	SIDED	
TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SINE .280 178000	TEST LEVEL	ଅବବହର
SPECIMEN # LAYUP (0/0/90)S PATCH SHAPE	SEMICIRCLE		1/16
TEST TYPE INITIAL DRACK LENGTH	SPECTRUM .298	TEST LEVEL	<u> උගමමම</u>
FAILURE CYCLES FAILURE MODE	BOSON AND ALU	MINUM FATIGUE	
FEYUP (で)5		THICKNESS	1/8
CURÉ SYSTEM TEST TYPE	SEMICIRCLE COCURE 250F SPECTRUM	TEST LEVEL	ଅଟନ୍ତ୍ର
INITIAL DRACK LENGTH FAILURE CYCLES FAILURE MODE	.335 2513 50%COHESIVE/ !	50%ADHESIVE	
SPECIMEN #		THICKNESS	1/8
LAYUP (@)5 GRAPHITE			
PATCH SHAPE CURE SYSTEM			
PATCH SHAPE	SEMICIRCLE COCURE 350 F SINE	TEST LEVEL	ଅଷ୍ଟେଷ୍ଟ

TEST TYPE INITIAL CRACK LENGTH	3/90/0)S SEMICIRCLE CICURE 250 F SPECTRUM .317 4166	THICKNESS TEST LEVEL MINUM FATIGUE	20000
SPECIMEN # LAYUP (0)10 GRAPHITE PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURE 350 F SINE .400	TEST LEVEL	1/4 20000
SPECIMEN # LAYUP (45/-45/0/0/9) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	0/0/0/0) SEMICIRCLE COCURE 250 F SPECTRUM	TEST LEVEL	1/8 20000
SPECIMEN # LAYUP (0)4 AUSTRALIS PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE PRECURED 104 SINE .314 219000	TEST LEVEL	
CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	SEMICIRCLE PRECURED 104 SINE	F TEST LEVEL	1/8 20000
TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	SEMICIRCLE COCURE 176 F SINE .493 31000	THICKNESS TEST LEVEL MINUM FATIGUE	1/8 20000

SPECIMEN # LAYUP (0)4 AUSTRALI	43 AN	THICKNESS	1/16
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURED 176 F SINE .688 99132	TEST LEVEL	20000
PAILORE MODE	BORON HND HEG	MINOM PHIIGOE	
SPECIMEN # LAYUP (0)4 AUSTRALI			
LAYUP (0)4 AUSTRALI PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURE 176 F SPECTRUM .389	TEST LEVEL	ଅ ଉଉଉ ଅ
FAILURE MUDE	BUKUN AND ALU	MINUM FAIIGUE	•
SPECIMEN # LAYUP (0)7 AUSTRALI		THICKNESS	1/8
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURE 176 F SPECTRUM .332		
SPECIMEN # LAYUP (0)7 AUSTRALI		THICKNESS	1/8
PATCH SHAPE CURE SYSTEM	SEMICIRCLE PRECURED 104	F	
TEST TYPE INITIAL CRACK LENGTH	SPECTRUM	TEST LEVEL	20000
FAILURE CYCLES FAILURE MODE	4711 BORON AND ALL	JMINUM FATI GUE	
SPECIMEN # LAYUP (0)4	47	THICKNESS	1/16
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH	SEMICIRCLE COCURE 250 F SINE .327	TEST LEVEL	ଅଉଦଉଞ
FAILURE CYCLES FAILURE MODE	142000 BORON AND ALI	JMINUM FATIGUE	
anentuev "		T11701/5/E00	
SPECIMEN # LAYUP (0)8 PATCH SHAPE	48 SEMICIRCLE	THICKNESS	1/8
CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	COCURE 250 F SINE	TEST LEVEL	20000

	LAYUP (45/-45/0/0) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	49 SEMICIRCLE PRECURED SINE . 327 155000 COHESIVE BOND	THICKNESS TEST LEVEL	
	LAYUP (0)8 PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	.000 21314	THICKNESS TEST LEVEL (SPECIMEN NOTO	
	TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	1/90/0)S SEMICIRCLE COCURE 250 F SPECTRUM	TEST LEVEL	
	LAYUP (45/-45/0/0/90) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	SEMICIRCLE COCURE 250 F SPECTRUM	THICKNESS TEST LEVEL	1/8 2003ව
	LAYUP (0)7 PATCH SHAPE CURE SYSTEM	SEMICIRCLE COCURE 250 F SPECTRUM .303 2790	TEST LEVEL	1/8 2000ව
,	CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES	SEMICIRCLE COCURE 250 F SPECTRUM .248	THICKNESS TEST LEVEL INUM FATIGUE	

	- · · - ·	THICKNESS	1/16
LAYUP (457-45/90/0) PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURE 250 F SPECTRUM		ଌଊଡ଼ଡ଼ଊ
SPECIMEN # Layup (0/0/90)5	56	THICKNESS -	1/16
PATCH SHAPE	SPECTRUM .280	TEST LEVEL	ଌଉଉଉପ
SPECIMEN # LAYUP (0)7	57	THICKNESS	1/8
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES TAILURE MODE	PRECURED 105 SPECTRUM .270 3611		ଅଷ୍ଟର
SPECIMEN # Layup (0)5	58	THICKNESS	1/16
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH PAILURE CYCLES FAILURE MODE	PRECURED 105 SPECTRUM .244	TEST LEVEL	ଅବସ୍ଥ
\$PECIMEN + LANUP (0)3	59	THICKNESS	1/16
PATON SHAPE CURE SYSTEM		F TEST LEVEL	ଥଉଦ୍ଭତ
SPECIMEN # LAYUP (Ø)4 AUSTRAL!	EØ IAN	THICKNESS	1/16
PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURED 150 : SPECTRUM .323 6114	F TEST LEVEL UMINUM FATIGUE	ଥଉଉଅଅ

TO SELECTION OF THE PROPERTY O

SPECIMEN #	£1	THICKNESS	1/1Ē
LAYUP (@)4 AUSTRALIO PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURE 150 F SPECTRUM		ବଉଦ୍ବର
SPECIMEN #	62	THICKNESS	1/8
LAYUP (Ø)7 AUSTRALI PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURE 150 F SPECTRUM	TEST LEVEL	ଌଊଊଊଌ
SPECIMEN #	6 3	THICKNESS	1/8
LAYUP (Ø)7 AUSTRALI PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	AN SEMICIRCLE COCURE 150 F SPECTRUM .315 2856 FORON AND ALL	TEST LEVEL	ଽଊଡ଼୬୶
SPECIMEN #	Ē4	THICKNESS	1/16
LAYUP (Ø)4 AUSTRALI PATOH SHAPE OURE SYSTEM TEST TYPE INITIAL ORACK LENGTH FAILURE MODE *	SEMICIRCLE COCURE 150 F SINE .238	TEST LEVEL JMINUM FATIGUE	<u>ප</u> ැත ව ලව
SPECIMEN # EAYUP (0)4 AUSTRALI		THICKNESS	1/16
FATCH SLIAPE	SEMICIROLE COCURE 150 F SINE . 202	TEST LEVEL	ଅବସ୍ଥନ
SHECIMEN #		THICKNESS	1/8
CURE SYSTEM	SEMICIRCLE COCURE 150 F SINE .287 84111	TEST LEVEL	ଥଉଚଚଚ

CURE SYSTEM TEST TYPE	N SEMICIRCLE COCUPE 155 F	THIC' IDD	1/8
SPECIMEN # LAYUP BASELINE PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	68 NONE NONE SPECTRUM .195 455 ALUMINUM FATIG	THICKNESS TEST LEVEL	20000
SPECIMEN # LAYUP (0)12 PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	SEMICIRCLE COCURE 250 F SINE .193 18511 COHESIVE BOND	THICKNESS	20000
SPECIMEN # LAYUP (0)12 PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES CAILURE MODE	70 SEMICIRCLE COCURE 250 F SINE .203 18210 COHESIVE BOND	THICKNESS	1/4 20000
SPECIMEN # LOYUP (0) 12 PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	51 SEMICIRCLE COCURE 250 F SPECTRUM . 252 1415 COHESIVE BOND	TEST LEVEL	5/4 20000
SPECIMEN # LAYUP (@)16 PATCH SHAPE CURE SYSTEM TEST TYPE INITIAL CRACK LENGTH FAILURE CYCLES FAILURE MODE	72 SEMICIRCLE COCURE 250 F SPECTRUM .192 1861 COHESIVE BONI	THICKNESS TEST LEVEL *U.S.Governm	1/4 2හිගිගිහි ent Printing Office: 1988 548-054/80667