Chapter 2

Time-Domain Analysis of Continuous-Time Systems

Linear constant coefficient differential equations are used to describe LTIC systems.

$$\frac{d^{n}y(t)}{dt^{n}} + a_{1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{n-1}\frac{dy(t)}{dt} + a_{n}y(t)$$

$$= b_{n-m}\frac{d^{m}x(t)}{dt^{m}} + b_{n-m+1}\frac{d^{m-1}x(t)}{dt^{m-1}} + \dots + b_{n-1}\frac{dx(t)}{dt} + b_{n}x(t)$$

Using operational notation D to represent d/dt, we can get

$$(D^{n} + a_{1}D^{n-1} + \dots + a_{n-1}D + a_{n})y(t) = (b_{n-m}D^{m} + b_{n-m+1}D^{m-1} + \dots + b_{n-1}D + b_{n})x(t)$$
or
$$Q(D)y(t) = P(D)x(t)$$

where

$$Q(D) = D^{n} + a_{1}D^{n-1} + \dots + a_{n-1}D + a_{n}$$

$$P(D) = b_{n-m}D^{m} + b_{n-m+1}D^{m-1} + \dots + b_{n-1}D + b_{n}$$

Practical systems generally use $m \le n$.

The total response of an LTIC system

total response = zero-input response + zero-state response

- The zero-input response is the system response when the input x(t)=0.
- The zero-state response is the system response to the external input x(t) when the system is in zero state.

System response to internal conditions: the zero-input response

When the input x(t)=0, the zero-input response $y_0(t)$ is the solution of the equation Q(D)y(t)=p(D)x(t)

$$Q(D)y_0(t) = 0$$

$$\downarrow \downarrow$$

$$(D^N + a_1D^{N-1} + \cdots + a_{N-1}D + a_N)y_0(t) = 0$$

It is possible if and only if $y_0(t)$ and all its N successive derivatives are of the same form.

Only an exponential function has this property.

Signals and Systems

Assume

$$y_0(t) = ce^{\lambda t}$$

Then

$$Dy_0(t) = \frac{dy_0}{dt} = c\lambda e^{\lambda t}$$
:

 $D^{N}y_{0}(t) = \frac{d^{N}y_{0}}{dt^{N}} = c\lambda^{N}e^{\lambda t}$

Substituting these results in the preceding equation, we obtain

$$c(\lambda^{N} + a_{1}\lambda^{N-1} + \dots + a_{N-1}\lambda + a_{N})e^{\lambda t} = 0$$

$$\lambda^{N} + \boldsymbol{a}_{1}\lambda^{N-1} + \dots + \boldsymbol{a}_{N-1}\lambda + \boldsymbol{a}_{N} = 0$$

 $Q(\lambda)$ is the characteristic polynomial.

The corresponding characteristic equation is

$$Q(\lambda) = 0 \quad \Longrightarrow \quad \lambda^N + a_1 \lambda^{N-1} + \dots + a_{N-1} \lambda + a_N = 0$$

The roots λ_i (i = 1, 2, ..., N) are the characteristic roots.

The exponentials $e^{\lambda_i t}$ (i=1,2,...,N) are the characteristic modes.

 $y_0(t)$ is a linear combination of $e^{\lambda_i t}$ (i = 1, 2, ..., N).

The characteristic roots of an LTIC system:

> There are N distinct roots

$$y_0(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_N e^{\lambda_N t} = \sum_{i=1}^N c_i e^{\lambda_i t}$$

 \triangleright There are u distinct roots and p k_i th-order repeated roots

$$y_0(t) = \sum_{i=1}^{u} c_i e^{\lambda_i t} + \sum_{j=1}^{p} \sum_{l=1}^{k_j} d_{j,l} t^{k_j - l} e^{\lambda_j t}$$

> There are complex roots

Complex roots occur in pairs of conjugates if the system equation coefficients are real. If $\alpha+j\beta$ is a characteristic root, $\alpha-j\beta$ must also be a characteristic root.

The zero-input response corresponding to this pair of complex roots is

$$y_0(t) = c_1 e^{(\alpha+j\beta)t} + c_2 e^{(\alpha-j\beta)t}$$

For a real system, the response must also be real. This is possible only if c_1 and c_2 are conjugates. Let

$$c_1 = \frac{c}{2}e^{j\theta}, c_2 = \frac{c}{2}e^{-j\theta}$$

This yields

$$y_0(t) = \frac{c}{2} e^{j\theta} e^{(\alpha+j\beta)t} + \frac{c}{2} e^{-j\theta} e^{(\alpha-j\beta)t}$$

$$= \frac{c}{2} e^{\alpha t} \left[e^{j(\beta t + \theta)} + e^{-j(\beta t + \theta)} \right]$$

$$= ce^{\alpha t} \cos(\beta t + \theta)$$

Example: Find the zero-input response $y_0(t)$ for an LTIC system described by the following differential equation.

$$\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt} + 2x(t)$$
when the initial conditions are $y_{0}(0)=1$, $\frac{dy_{0}(t)}{dt}\Big|_{t=0}=1$

The characteristic equation is

$$\lambda^2 + 3\lambda + 2 = 0$$

The characteristic roots of the system are $\lambda_1 = -1$, $\lambda_2 = -2$

The characteristic modes of the system are e^{-t} and e^{-2t}

Signals and Systems

Therefore,
$$y_0(t) = c_1 e^{-t} + c_2 e^{-2t}$$
 $\dot{y}_0(t) = -c_1 e^{-t} - 2c_2 e^{-2t}$

Substituting the initial conditions, we obtain

$$\begin{cases}
c_1 + c_2 = 1 \\
-c_1 - 2c_2 = 1
\end{cases}$$

$$c_1 = 3, c_2 = -2$$

Therefore,
$$y_0(t)=3e^{-t}-2e^{-2t}$$
, $t\geq 0$

Example: Find the zero-input response $y_0(t)$ for an LTIC system described by the following differential equation.

$$\frac{d^{2}y(t)}{dt^{2}} + 6\frac{dy(t)}{dt} + 9y(t) = \frac{dx(t)}{dt} + 2x(t)$$
when the initial conditions are $y_{0}(0)=3$, $\frac{dy_{0}(t)}{dt}\Big|_{t=0} = -7$.

The characteristic equation is

$$\lambda^2 + 6\lambda + 9 = 0$$

The characteristic roots of the system are $\lambda_1 = \lambda_2 = -3$

The characteristic modes of the system are e^{-3t} and te^{-3t}

Therefore, $y_0(t) = c_1 e^{-3t} + c_2 t e^{-3t}$

$$\dot{y}_0(t) = -3c_1e^{-3t} + c_2e^{-3t} - 3c_2te^{-3t}$$

Substituting the initial conditions, we obtain

$$\begin{cases} c_1 = 3 \\ -3c_1 + c_2 = -7 \end{cases} \quad c_1 = 3, \quad c_2 = 2$$

Therefore, $y_0(t) = (3+2t)e^{-3t}$, $t \ge 0$

Example: Find the zero-input response $y_0(t)$ for an LTIC system described by the following differential equation.

$$\frac{d^{2}y(t)}{dt^{2}} + 4\frac{dy(t)}{dt} + 40y(t) = \frac{dx(t)}{dt} + 2x(t)$$
when the initial conditions are $y_{0}(0)=2\frac{dy_{0}(t)}{dt}\Big|_{t=0}=16.78$

The characteristic equation is

$$\lambda^2 + 4\lambda + 40 = 0$$

The characteristic roots of the system are λ_1 =-2+j6, λ_2 =-2-j6

The characteristic modes of the system are $e^{(-2+j6)t}$ and $e^{(-2-j6)t}$

Therefore, $y_0(t)=ce^{-2t}\cos(6t+\theta)$

$$\dot{y}_0(t) = -2ce^{-2t}\cos(6t+\theta) - 6ce^{-2t}\sin(6t+\theta)$$

Substituting the initial conditions, we obtain

$$\begin{cases} c\cos\theta=2\\ -2c\cos\theta-6c\sin\theta=16.78 \end{cases} c\cos\theta=2 \\ c\sin\theta=-3.463$$

Squaring and then adding the two sides of the above equations

yields
$$c^2=(2)^2+(-3.463)^2$$
 $c=4$

Dividing $c\sin\theta$ by $c\cos\theta$ yields $\tan\theta$ =-3.463/2 θ =- π /3

Therefore,
$$y_0(t)=4e^{-2t}\cos(6t-\pi/3)$$
, $t\geq 0$

Practical initial conditions and the meaning of 0⁻ and 0⁺

- ➤ In practical problems, we must derive initial conditions from the physical situation.
- The conditions immediately before t=0 (just before the input is applied) are the conditions at t=0.
- The conditions immediately after t=0 (just after the input is applied) are the conditions at $t=0^+$.
- \rightarrow At $t=0^-$, the input has not started yet.

$$y(0^-) = y_0(0^-), \quad \dot{y}(0^-) = \dot{y}_0(0^-), \dots$$

 \rightarrow At $t=0^+$, the input does not affect $y_0(t)$.

$$y_0(0^-) = y_0(0^+), \quad \dot{y}_0(0^-) = \dot{y}_0(0^+), \quad \dots$$

In general,

$$y(0^{-}) \neq y(0^{+}), \quad \dot{y}(0^{-}) \neq \dot{y}(0^{+}), \dots$$

Example: A voltage $x(t)=10e^{-3t}u(t)$ is applied at the input of the RLC circuit. Find the initial conditions of the system with $y(0^-)=0$ and $v_c(0^-)=5$.

$$L\frac{dy(t)}{dt} + Ry(t) + v_c(t) = x(t)$$

1) Find the initial conditions for the zeroinput response

$$\dot{y}_0(0) + 3y_0(0) + v_c(0) = 0$$

The inductor current and the capacitor voltage cannot change instantaneously. Therefore,

$$y_0(0)=0$$
 and $v_c(0)=5 \implies \dot{y}_0(0)=-5$

The initial conditions are

$$y_0(0) = 0, \dot{y}_0(0) = -5$$

2) Find the initial conditions for the total response

At
$$t=0^-$$
, $x(t)=0$. $\dot{y}(0^-)+3y(0^-)+v_c(0^-)=0$

At
$$t=0^+$$
, $x(t)=10$. $\dot{y}(0^+)+3y(0^+)+v_c(0^+)=10$

$$y(0^{+})=y(0^{-})=0$$
 and $v_c(0^{+})=v_c(0^{-})=5$

$$\dot{y}(0^{-}) = -5, \dot{y}(0^{+}) = 5$$

The initial conditions are

$$y(0^{-}) = 0, y(0^{+}) = 0, \dot{y}(0^{-}) = -5, \dot{y}(0^{+}) = 5$$

Example: In the circuit, $v_c(0)=30$. Find the zero-input component of the loop current.

The loop equation for the system is

$$\int_{\frac{1}{2}F}^{+} \int_{\nu_{C}(t)}^{+} 3y(t) + \frac{1}{\frac{1}{2}} \int_{\frac{1}{2}} y(t) dt = x(t)$$

$$= (3D+2)y(t) = Dx(t)$$

$$(3D+2)y_0(t)=0$$

$$\frac{3y_0(0) + v_c(0) = 0}{v_c(0) = 30} \implies 3c + 30 = 0 \implies c = -10$$

Therefore,
$$y_0(t) = -10e^{-\frac{2}{3}t}$$

 $\lambda = -\frac{2}{3} \implies y_0(t) = ce^{-\frac{2}{3}t}$

The unit impulse response h(t)

The impulse response h(t) is the system zero-state response to an impulse input $\delta(t)$ applied at t=0.

An Nth-order differential equation is

$$\frac{d^{n}y(t)}{dt^{n}} + a_{1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{n-1}\frac{dy(t)}{dt} + a_{n}y(t) \qquad Q(D)y(t) = P(D)x(t)$$

$$= b_{0}\frac{d^{m}x(t)}{dt^{m}} + b_{1}\frac{d^{m-1}x(t)}{dt^{m-1}} + \dots + b_{m-1}\frac{dx(t)}{dt} + b_{m}x(t)$$

When the input $x(t) = \delta(t)$, the output y(t) = h(t)

$$\frac{d^{n}h(t)}{dt^{n}} + a_{1}\frac{d^{n-1}h(t)}{dt^{n-1}} + \dots + a_{n-1}\frac{dh(t)}{dt} + a_{n}h(t) \qquad Q(D)h(t) = P(D)\delta(t)$$

$$= b_{0}\frac{d^{m}\delta(t)}{dt^{m}} + b_{1}\frac{d^{m-1}\delta(t)}{dt^{m-1}} + \dots + b_{m-1}\frac{d\delta(t)}{dt} + b_{m}\delta(t)$$

The impulse input $\delta(t)$ creates nonzero initial conditions instantaneously within the system at $t=0^+$. The system will have a response generated by these newly created initial conditions.

Therefore, h(t) must consist of the system's characteristic modes for $t \ge 0^+$.

$$h(t)$$
=characteristic mode terms $t \ge 0^+$.

This response is valid for t > 0. What happens at t = 0?

At a single moment t = 0, there can at most be an impulse.

$$h(t)=b_0\delta(t)$$
+characteristic mode terms

 b_0 is the coefficient of the highest-order derivative term on the right-hand side of the system equation, when m = n.

$$b_0=0$$
, when $m < n$.

Simplified impulse matching method

$$h(t) = b_0 \delta(t) + [P(D)y_n(t)]u(t)$$

Where $y_n(t)$ is a linear combination of the characteristic modes of the system subject to the following initial conditions:

$$y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) = \dots = y_n^{N-2}(0) = 0$$
 and $y_n^{N-1}(0) = 1$

Where $y_n^k(0)$ is the value of the kth derivative of $y_n(t)$ at t=0.

$$N = 1: y_n(0) = 1$$

$$N = 2: y_n(0) = 0, \dot{y}_n(0) = 1$$

$$N = 3: y_n(0) = \dot{y}_n(0) = 0, \ddot{y}_n(0) = 1$$

• • •

Example: Find the impulse response h(t) for a system specified by $(D^2+5D+6)y(t)=(D+1)x(t)$.

The characteristic equation is $\lambda^2 + 5\lambda + 6 = 0$

The characteristic roots of the system are λ_1 =-2, λ_2 =-3

The characteristic modes of the system are e^{-2t} and e^{-3t}

Therefore,
$$y_n(t)=c_1e^{-2t}+c_2e^{-3t}$$
 : $y_n(0)=0, \dot{y}_n(0)=1$

$$c_1 + c_2 = 0 \qquad \implies c_1 = 1 \qquad \implies \qquad y_n(t) = e^{-2t} - e^{-3t}$$

$$-2c_1 - 3c_2 = 1 \qquad c_2 = -1$$

For
$$m < n$$
, $b_0 = 0$ $h(t) = [P(D)y_n(t)]u(t)$ and $P(D) = D+1$

Therefore,
$$h(t)=[P(D)(e^{-2t}-e^{-3t})]u(t)=(-e^{-2t}+2e^{-3t})u(t)$$

Example: Find the impulse response h(t) for a system described by (D+2)y(t)=(3D+5)x(t).

The characteristic equation is $\lambda + 2 = 0$

The characteristic root of the system is $\lambda=-2$

The characteristic mode of the system is e^{-2t}

Therefore,
$$y_n(t)=ce^{-2t}$$
 : $y_n(0)=1$
: $c=1$ \implies $y_n(t)=e^{-2t}$

:
$$m = n \Rightarrow b_0 = 3$$
 $h(t)=3\delta(t)+[P(D)y_n(t)]u(t)$ and $P(D)=3D+5$

Therefore,
$$h(t)=3\delta(t)+[P(D)(e^{-2t})]u(t)=3\delta(t)-e^{-2t}u(t)$$

In above discussion, we have assumed $m \le n$.

The expression for h(t) applicable to all possible values of m and n is given by

$$h(t) = P(D)[y_n(t)u(t)]$$

System response to external input: zero-state response

1. Representation of CT Signals in Terms of Impulses

f(t) can be approximated as:

$$f(t) \approx f_1(t) = \sum_{k=-\infty}^{\infty} f(k\Delta t) [u(t-k\Delta t) - u(t-k\Delta t - \Delta t)]$$

$$f(t) = \lim_{\Delta t \to 0} \sum_{k=-\infty}^{\infty} f(k\Delta t) \frac{u(t-k\Delta t) - u(t-k\Delta t - \Delta t)}{\Delta t} \Delta t$$

$$\delta(t-k\Delta t)$$

$$f(t) = \lim_{\Delta t \to 0} \sum_{k=-\infty}^{\infty} f(k\Delta t) \delta(t - k\Delta t) \Delta t$$

When
$$\Delta t \to \mathbf{0}$$

$$k\Delta t \to \tau, \quad \Delta t \to d\tau, \quad \sum_{-\infty}^{\infty} \to \int_{-\infty}^{\infty} f(\tau) \delta(t - \tau) d\tau$$

2. The CT Unit Impulse Response and the Convolution Integral Representation of LTI Systems

$$f(t) = \delta(t) \qquad \text{LTI} \qquad y(t) = h(t)$$

Unit Impulse Response h(t):

Response of the LTI system to the unit impulse $\delta(t)$.

Signals and Systems

Convolution Integral

Convolution Integral

An LTIC system is completely characterized by its unit impulse response h(t).

■ Method 1

Example: Let the input $x(t) = e^{-at}u(t)$ a>0 and h(t) = u(t), determine y(t) = x(t) * h(t).

Solution:
$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} e^{-a\tau}u(\tau)u(t-\tau)d\tau$$

$$= \int_{0}^{t} e^{-a\tau}d\tau = \frac{1}{a}(1-e^{-at})u(t)$$

□ Method 2

The convolution table

Signals and Systems

No.	x ₁ (t)	x2(t)	$x_1(t)^*x_2(t) = x_2(t)^*x_1(t)$
1	x(t)	$\delta(t-T)$	x(t-T)
2	e ^{λt} u(t)	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$
3	u(t)	u(t)	tu(t)
4	$e^{\lambda_1 t} u(t)$	$e^{\lambda_2 t} u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t) \qquad \lambda_1 \neq \lambda_2$
5	e ^{Xt} u(t)	e ^{λt} u(t)	$te^{\lambda t}u(t)$
6	$te^{\lambda t}u(t)$	e ^{λf} u(t)	$\frac{1}{2}t^2e^{\lambda t}u(t)$
7	t ^N u(t)	e ^{λt} u(t)	$\frac{N! e^{\lambda t}}{\lambda^{N+1}} u(t) - \sum_{k=0}^{N} \frac{N! t^{N-k}}{\lambda^{k+1} (N-k)!} u(t)$
8	$t^{M}u(t)$	t ^N u(t)	$\frac{M!N!}{(M+N+1)!} t^{M+N+1} u(t)$
9	$te^{\lambda_1 t}u(t)$	$e^{\lambda_2 t} u(t)$	$\frac{e^{\lambda_{2}t} - e^{\lambda_{1}t} + (\lambda_{1} - \lambda_{2})te^{\lambda_{1}t}}{(\lambda_{1} - \lambda_{2})^{2}}u(t)$
10	$t^M e^{\lambda t} u(t)$	t ^N e ^{λt} u(t)	$\frac{M!N!}{(N+M+1)!}t^{M+N+1}e^{\lambda t}u(t)$
11	$t^{M}e^{\lambda_{1}t}u(t)$ $\lambda_{1} \neq \lambda_{2}$	$t^N e^{\lambda_2 t} u(t)$	$\sum_{k=0}^{M} \frac{(-1)^{k} M! (N+k)! t^{M-k} e^{\lambda_{1} t}}{k! (M-k)! (\lambda_{1}-\lambda_{2})^{N+k+1}} u(t)$ $+ \sum_{k=0}^{N} \frac{(-1)^{k} N! (M+k)! t^{N-k} e^{\lambda_{2} t}}{k! (N-k)! (\lambda_{2}-\lambda_{1})^{M+k+1}} u(t)$
12	$e^{-at}\cos(\beta t + \theta)u(t)$	$e^{\lambda_1 t} u(t)$	$\frac{\cos(\theta - \phi)e^{\lambda t} - e^{-\alpha t}\cos(\beta t + \theta - \phi)}{\sqrt{(\alpha + \lambda)^2 + \beta^2}}u(t)$
13	$e^{\lambda_1 t} u(t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} u(t) + e^{\lambda_2 t} u(-t)}{\lambda_2 - \lambda_1} \text{Re} \lambda_2 > \text{Re} \lambda_1$
14	$e^{\lambda_1 t} u(-t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_2 - \lambda_1} u(-t)$

Example: Find the response of an LTIC system y(t) for the input $x(t)=10e^{-3t}u(t)$ and the impulse response $h(t)=(2e^{-2t}-e^{-t})u(t)$.

$$y(t) = x(t) * h(t) = 10e^{-3t}u(t) * (2e^{-2t} - e^{-t})u(t)$$

Using the distributive property of the convolution

$$x(t)*\{h_1(t)+h_2(t)\}=x(t)*h_1(t)+x(t)*h_2(t)$$
, we obtain

$$y(t) = 10e^{-3t}u(t)*2e^{-2t}u(t)-10e^{-3t}u(t)*e^{-t}u(t)$$

Using the pair 4 in the convolution table, we obtain

$$y(t) = \frac{20}{-3 - (-2)} (e^{-3t} - e^{-2t}) u(t) - \frac{10}{-3 - (-1)} (e^{-3t} - e^{-t}) u(t)$$

$$= -20 (e^{-3t} - e^{-2t}) u(t) + 5 (e^{-3t} - e^{-t}) u(t)$$

$$= (-5e^{-t} + 20e^{-2t} - 15e^{-3t}) u(t)$$

□ Method 3

Graphical interpretation of calculating the convolution Integral

- 1. Change independent variable: $t \longrightarrow \tau$
- 2. Time Reversal: $h(\tau) \longrightarrow h(-\tau)$
- 3. Time Shifting: $h(-\tau) \longrightarrow h(t-\tau)$
- 4. Multiplication: $x(\tau)h(t-\tau)$
- 5. Integration: $y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$

Example: Determine the response of the system when the input x(t) and the impulse response h(t) are shown in figure (a) and (b).

Solution: (1) $t \longrightarrow \tau$

Signals and Systems

$$(2) h(\tau) \longrightarrow h(-\tau)$$

(c)

$$(3) h(-\tau) \longrightarrow h(t-\tau)$$

(*d*)

$(4) x(\tau)h(t-\tau)$

$$(e) - \infty < t \le -\frac{1}{2}$$

(5) Integration

$$(f) - \frac{1}{2} \le t \le 1$$

When
$$-\infty < t \le -\frac{1}{2} : x(t) * h(t) = 0$$

When
$$-\frac{1}{2} \le t \le 1$$
: $x(t) * h(t) = \int_{-\frac{1}{2}}^{t} 1 \times \frac{1}{2} (t - \tau) d\tau$
$$= \frac{t^2}{4} + \frac{t}{4} + \frac{1}{16}$$

$$(g) \quad 1 \le t \le \frac{3}{2}$$

$$(h) \quad \frac{3}{2} \le t \le 3$$

(i)
$$3 \le t < \infty$$

When
$$1 \le t \le \frac{3}{2}$$
: $x(t) * h(t) = \int_{-\frac{1}{2}}^{1} 1 \times \frac{1}{2} (t - \tau) d\tau = \frac{3}{4} t - \frac{3}{16}$

When
$$\frac{3}{2} \le t \le 3$$
: $x(t) * h(t) = \int_{t-2}^{1} 1 \times \frac{1}{2} (t-\tau) d\tau$

$$= -\frac{t^2}{4} + \frac{t}{2} + \frac{3}{4}$$

When
$$3 \le t < \infty$$
: $x(t) * h(t) = 0$

Properties

h(t) completely characterizes an LTIC system

> The Commutative Property

$$x(t)*h(t)=h(t)*x(t)$$

$$x(t) \rightarrow h(t) \xrightarrow{y(t)=x(t)*h(t)}$$

$$\begin{array}{c|c} h(t) & y(t)=h(t)^*x(t) \\ \hline \end{array}$$

$$x(t)*h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \underline{\eta} = t-\tau \int_{\infty}^{-\infty} x(t-\eta)h(\eta)d(-\eta)$$
$$= \int_{-\infty}^{\infty} x(t-\eta)h(\eta)d\eta = h(t)*x(t)$$

The Distributive Property

$$x(t)*\{h_1(t)+h_2(t)\}=x(t)*h_1(t)+x(t)*h_2(t)$$

$$\begin{array}{c|c} x(t) & y(t) = x(t)^* \{h_1(t) + h_2(t)\} \\ \hline & h_1(t) + h_2(t) & \end{array}$$

▶ The Associative Property

$$x(t)*\{h_1(t)*h_2(t)\}=\{x(t)*h_1(t)\}*h_2(t)$$

> The Shift Property

If
$$x_1(t)*x_2(t)=c(t)$$
, then
$$x_1(t)*x_2(t-T)=x_1(t-T)*x_2(t)=c(t-T)$$

$$x_1(t-T_1)*x_2(t-T_2)=c(t-T_1-T_2)$$

> The Width Property

If the durations of $x_1(t)$ and $x_2(t)$ are finite, given by T_1 and T_2 , respectively, then the duration of $x_1(t)*x_2(t)$ is $T_1 + T_2$.

$$x(t) * \delta(t) = x(t)$$

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

$$x(t - t_1) * \delta(t - t_2) = x(t - t_1 - t_2)$$

$$x(t) * \delta'(t) = x'(t)$$

$$x(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

Example: Determine $y(t) = f_1(t) * f_2(t) * \delta'(t)$ when $f_1(t)$ and $f_2(t)$ are as shown in the following figures.

Solution:

$$y(t) = f_1(t) * f_2(t) * \delta'(t)$$

$$= f_1(t) * [f_2(t) * \delta'(t)]$$

$$= f_1(t) * f_2'(t)$$

$$= f_1(t) * [\delta(t+1) - \delta(t-1)]$$

$$= f_1(t+1) - f_1(t-1)$$

> LTIC System with and without Memory

An LTIC system is memoryless:

$$h(t)=0$$
 for $t\neq 0$
 $y(t)=kx(t)$

$$\frac{\delta(t)}{h(t)} \xrightarrow{h(t) = k\delta(t)}$$

> Invertibility of LTIC system

Inverse system

$$x(t) \longrightarrow h(t) = \delta(t) \longrightarrow x(t) = x(t) * \delta(t)$$
(Identity system)

$$h_1(t)*h_2(t)=\delta(t)$$

> Causality for LTIC system

CT system: h(t)=0 for t<0

An LTI system is causal \(\lforall \) It's unit impulse response is a causal signal

Example: System:
$$y(t) = x(t) + x(t-2)$$
 causal

$$h(t) = \delta(t) + \delta(t-2)$$

System:
$$y(t) = x(t) + x(t+2)$$

$$h(t) = \delta(t) + \delta(t+2)$$

> Stability for LTIC system

Bounded input produces bounded output.

LTIC system:

If
$$|x(t)| < B$$
, $|y(t)| = \left| \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau \right| \le \int_{-\infty}^{\infty} |h(\tau)| |x(t-\tau)|d\tau \le B \int_{-\infty}^{\infty} |h(\tau)|d\tau$

An LTIC system is stable
$$\iff \int_{-\infty}^{+\infty} |h(\tau)| d\tau < +\infty$$

Examples:

$$y(t) = x(t - t_0)$$

$$h(t) = \delta(t - t_0)$$

stable

$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

$$h(t) = \int_{-\infty}^{t} \delta(\tau) d\tau = u(t)$$

not stable

▶ The Unit Step Response of LTIC system

The unit step response: s(t)

$$b(t) \qquad h(t) \qquad h(t) \qquad s(t) = u(t) * h(t)$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

$$s(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau = \int_{-\infty}^{t} h(\tau)d\tau$$

$$\delta(t) = \frac{du(t)}{dt} = u'(t)$$

$$h(t) = \frac{ds(t)}{dt} = s'(t)$$

$$h(t) = \frac{ds(t)}{dt} = s'(t)$$

A very special function for LTIC systems: The everlasting exponential e^{st}

The system response to an everlasting exponential e^{st} is

$$y(t) = h(t) * e^{st} = \int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

$$y(t) = H(s) e^{st}$$

The input and the output are the same (within a multiplicative constant) for the everlasting exponential signal.

The equation of a system is

$$Q(D)y(t) = P(D)x(t)$$

Substitution of this $x(t) = e^{st}$ and $y(t) = H(s)e^{st}$ in the above equation yields

$$H(s)[Q(D)e^{st}]=P(D)e^{st}$$

Moreover
$$D^r e^{st} = \frac{d^r e^{st}}{dt^r} = s^r e^{st}$$
 \Longrightarrow $Q(D)e^{st} = Q(s)e^{st}$

$$P(D)e^{st} = P(s)e^{st}$$

Therefore, the transfer function of the system is

$$H(s) = \frac{P(s)}{Q(s)}$$

Total response
$$y(t) =$$

$$y(t) = y_0(t) + x(t)*h(t)$$

zero-input response

zero-state response

 $t \ge 0$

Example: $x(t)=10e^{-3t}u(t)$, y(0)=0 and $v_c(0)=5$

$$(\mathbf{D}^2 + 3\mathbf{D} + 2)\mathbf{y}(t) = \mathbf{D}\mathbf{x}(t)$$

$$y(t) = \underbrace{(-5e^{-t} + 5e^{-2t})}_{\text{zero-input response}} + \underbrace{(-5e^{-t} + 20e^{-2t} - 15e^{-3t})}_{\text{zero-state response}}$$

$$y(t) = \underbrace{(-10e^{-t} + 25e^{-2t})}_{\text{natural response}} + \underbrace{(-15e^{-3t})}_{\text{forced response}} t \ge 0$$

System stability

1. External (BIBO) stability

- If every bounded input produces bounded output, the system is BIBO stable. Otherwise, it is BIBO unstable.
- BIBO stability is an external stability also known as the zero-state stability. It is determined by applying the external input with zero initial conditions.

For an LTIC system

$$y(t)=h(t)*x(t)$$

An LTIC system is BIBO stable $\iff \int_{-\infty}^{+\infty} |h(\tau)| d\tau < +\infty$

2. Internal (Asymptotic) stability

Asymptotic stability is an internal stability also known as the zero-input stability. It is determined by applying the nonzero initial conditions and no external input.

- Asymptotic stable: When some initial conditions are applied to a system in zero state, the system eventually returns to zero state.
- •Unstable: When some initial conditions are applied to a system in zero state, the system's response increases without bound.
- Marginally stable: When some initial conditions are applied to a system in zero state, the system does not go to zero state and the response dose not increase indefinitely.

Zero-input response

Characteristic root location

Zero-input response

Characteristic root location

Zero-input response

Characteristic root location

Zero-input response

$$\lim_{t \to \infty} e^{\lambda t} = \lim_{t \to \infty} e^{(\alpha + j\beta)t} = \lim_{t \to \infty} e^{\alpha t} e^{j\beta t} = \begin{cases} 0 & \alpha < 0 \\ \infty & \alpha > 0 \end{cases}$$

Also valid for the terms of the form $t^r e^{\lambda t}$

The internal stability criterion:

- An LTIC system is asymptotically stable if, and only if, all the characteristic roots are in the LHP. The roots may be simple (unrepeated) or repeated.
- An LTIC system is unstable if, and only if, one or both of the following conditions exist: (i) at least one root is in the RHP; (ii) there are repeated roots on the imaginary axis.
- An LTIC system is marginally stable if, and only if, there are no roots in the RHP, and there are some unrepeated roots on the imaginary axis.

3. Relationship between BIBO and Asymptotic stability

- An asymptotically stable system is BIBO stable.
- A marginally stable or asymptotically unstable system is BIBO unstable.
- BIBO stability cannot assure internal stability.
- When a system is controllable and observable, its external and internal descriptions are equivalent.

An LTIC system consists of two subsystems in **Example:** cascade. $h_1(t) = \delta(t) - 2e^{-t}u(t)$ and $h_2(t) = e^{t}u(t)$.

$$x(t)$$
 S_1 S_2 $y(t)$

$$h(t)=h_1(t)*h_2(t)=[\delta(t)-2e^{-t}u(t)]*e^tu(t)$$

$$= e^{t}u(t) - 2\left[\frac{e^{-t} - e^{t}}{-2}\right]u(t)$$
$$= e^{-t}u(t)$$

$$\int_{-\infty}^{+\infty} |h(\tau)| d\tau < +\infty \quad \Longrightarrow \quad \text{The composite system is BIBO stable}$$

 S_2 has a characteristic root 1.

 \longrightarrow S_2 , is asymptotically unstable

BIBO stability cannot assure internal stability.

Example: Investigate the asymptotic and the BIBO stability of LTIC system described by the following equations.

		The characteristic	
1)	D(D+2)y(t)=3x(t)	roots 0, -2	Marginally stable BIBO unstable
2)	$D^2(D+3)y(t)=(D+5)x(t)$	0, 0, -3	Unstable in both senses
3)	(D+1)(D+2)y(t)=(2D+3)x(t)	-1, -2	Stable in both senses
4)	$(D^2+1)(D^2+9)y(t)=(D^2+2D+4)x(t)$	$\pm j$, $\pm 3j$	Marginally stable BIBO unstable
5)	$(D+1)(D^2-4D+9)y(t)=(D+7)x(t)$	$-1, \ 2 \pm \sqrt{5}j$	Unstable in both senses