Note: Page numbers followed by f indicate figures and t indicate tables.

A	singular value decomposition of, 198f
A posteriori variance, 63	singular values of, 193f
A priori constraint, 61, 237–238, 272	Attenuation factor, 269–270
A priori distributions, 175–177	Attenuation tomography, 270
maximum likelihood methods, 92–97	Autocorrelation, 235
A priori equations, 61	Auxiliary variable, 186
A priori information, 52–53, 55–56	Averages
length as, 56–60	estimates and, 118–119
model parameters, 93f, 94f, 95f, 99f, 100f,	global temperature, 4f
134–135	
variance, 107–108	
model vector, 57	В
nonunique averaging vectors, 119-121	Backprojection, 219-222
smoothness, 59	example, 222f
types of, 60–63	Back-solving, 125
A priori probability density function, 94, 96	Backus-Gilbert generalized inverse, 243
joint, 98 <i>f</i>	for temperature distribution problem, 244f
value of, 177 <i>f</i>	for underdetermined problem, 79-82
A priori variance, 63	Backus-Gilbert inverse problem, 207-209, 234
Absolute value, 41f	Backus-Gilbert solutions, 82
Absorption peaks, 9f	Dirichlet solution compared with, 82f
Acoustic tomography, 6–7	trade-off curves in, 85f
with deficient distribution of rays, 242f	Backus-Gilbert spread function, 78-79
problems, 240–241	Banana-doughnut kernel, 267
resolution of, 87f	Bayes Theorem, 29, 31–32
success of, 241	Bayesian Inference, 33, 101
true image, 241f	bicg () function, 45
Acoustic travel time experiments, 51f	Biconjugate gradient algorithm, 45, 59,
Acoustic waves, 6f	235–236, 240–241
Adjoint, 216	Blur, removing, 232 <i>f</i> , 233 <i>f</i>
operator, 219	Boltzmann probability density function,
Airgun signal, 236f	182–183
Anderson, D. L., 268	Booker, J. R., 262–263
Anorthite, 195	Bootstrap confidence intervals, 185–186
Approximate ray-steeping method,	for model parameters, 187f
240–241	Bootstrap method, 180
Armijo's rule, 180–181	Bordering method, 81–82
Asymptotes, 86f	Boundary conditions, 215–216
Atlantic Rock dataset, 193	Bounding values, 12
coefficients in, 194f	nonunique averages of model parameters, 137

Bounds, 119	discrete problems as, 209–211
finite, 152	linear, 210f
on weighted averages of model parameters,	solution of, 220 <i>f</i>
120f	Continuous inverse theory, 3
Boxcar filters, 232f	tomography and, 211–212
Boxed Inters, 232j	Convolution, 234
	Correlated data, 19–21
C	Covariance, 19–20. <i>See also</i> Variance
Calculus, fundamental theorem of, 215–216	of estimated model parameters, 134–135
Cameras, 231	of generalized inverses, 74–75, 76–78
Cartesian unit vectors, 249	overdetermined case, 76–77
Central limit theorem, 26–27	underdetermined case, 77
Centroid, 264–265	goodness of resolution measures and, 75
Certainty, 97–99	of least squares solution, 66
Characteristic frequencies, 256	matrix, 21, 105
Chave, A. D., 270–271	sample, 21
Checkerboard test, 87	size, 83–84
Chemical elements, 189	Cross-correlation, 235, 266
Chi-squared probability density function, 29	Crossover errors, 237
Circular random variable, 279	adjustment of, 236–240
Cluster analysis, 199	satellite gravity data, 238f
CMT. See Global Centroid Moment Tensor	CT. See Computed tomography
Coefficients, 194f	Cumulative distribution function, 16
Collinearity, 43	Curve fitting
Columns, 128	Gaussian, 250–252
Combining, 100–101	$L\infty$ norm, $160f$
probability density functions, 101	L1 norms, 156f
Completely overdetermined problem, 154–155	nonlinear inverse problems
Completely underdetermined problems, 154	gradient method for, 181f
Complex numbers, 278–280	grid search for, 169f
Computed tomography (CT), 7 <i>f</i>	Monte Carlo search for, 171 <i>f</i>
Conditional distributions, 32	simulated annealing for, 184f
Conditional probability density functions,	spectral, 9–10
30–33	1
example of, 32f	
inexact theory represented by, 101f	D
Confidence intervals, 33–34	Dalton, C. A., 270
estimates, 186	Damped least squares, 56, 238
Constant velocity structure, 257	weighted, 58–60
Constrained least squares problem, 127	true model, 60f
Constraints	Damped minimum length, 78
a priori, 61, 237–238, 272	trade-off curves in, 85f
inequality, 120, 140-147	Damping parameters, 238
least squares with, 144-145	Data assimilation, 227
simplifying, 138–140	Data kernels, 135f, 211, 225–226, 226f, 232
Lagrange multiplier implementation of,	spectrum of, 135–136
277–278	Data spaces, 123
linear equality, 139	Density function, 90f
simplifying, 138–140	Derivatives
linear inequality, 62–63, 139–140	approximations, 56
half-spaces in, 140f, 142f	computing, 44
physicality, 194–199	finite element, 254
Continuous inverse problems	Fréchet, 218, 219-220, 268f, 269
differential equation and, 224f	differential equations and, 222–227

of error, 218–219	Eigenvalues, 130, 191–192
partial, 174	decomposition, 137–138
singular-value decomposition, 138	variance and, 136–137
Determinants, Jacobian, 23	Eigenvectors, 130
Deviation, 60	with large singular values, 192
Diagonal elements, 238–239	matrix of, 132
Differential equations, 225–226	with nonzero singular values, 191
continuous inverse problems, 224f	null, 137
Fréchet derivatives and, 222–227	singular-value decomposition, 194–195
Digital filter design, 234–236	Eikonal equation, 261–262
Dirac delta function, 103, 211–212, 223	Ekström, G., 270
Dirichlet spread functions, 75	El Nino-Southern Oscillation, 202–204
Backus-Gilbert solution compared with, 82f	Electromagnetic induction, 273
generalized inverse and, 77–78	Ellipse, 65 <i>f</i>
Discrete Fourier transforms, 214	Empirical orthogonal function analysis,
Discrete inverse theory, 3	199–204
Discrete problems, 210	image sequence, 204f
continuous inverse problems as, 209-211	Entropy, 94–96
Dispersion function, 268	relative, 94–96
Displacement, 264–265	maximum, 108–109
Distributions	minimum, 108–109
a priori, 175–177	erf(), 242
maximum likelihood methods, 92–97	Erosion, 190f
conditional, 32	Error
cumulative, function, 16	crossover, 237
exponential, 150t	adjustment of, 236–240
Fisher, 248 <i>f</i>	satellite gravity data, 238f
Gaussian, 91, 151–152	Fréchet derivative of, 218–219
area beneath, 150t	function, 242
long-tailed, 42	gradient method and, 220f
normal, with zero mean, 27f	maps, 63
null, 102	in nonlinear inverse problems, 166–167
for inexact non-Gaussian nonlinear	prediction, 41 <i>f</i> , 131, 137–138, 139–140, 157
theories, 184–185	as function of model parameters, 168f
of rays, 242f	L2, 167f
	of least squares solution, 64–66
temperature Poolsys Cilbert for 244f	•
Backus-Gilbert for, 244f	for lines through points, 50f
minimum length for, 244f	minimizing, 55–56, 146 <i>f</i>
model for, 244f	propagation, 25–26, 64
one-dimensional, 241–244	Estimates, 11
univariate, 24f, 32	averages and, 118–119
Dot products, 216	confidence intervals, 186
Double-difference method, 263–264	lengths of, 39
Dziewonski, A. M., 268	of model parameters, 11, 21–22, 65 <i>f</i> , 134, 249
	covariance of, 134–135
С	variance of, 63–64
E	unbiased, 165
Earthquakes, 50f	Euler vector, 271
location, 252–256	Euler-Lagrange method, 109–110
example, 255f	Even-determined problems, least square, 52
velocity structure, 261–264	Exact data, 107–108
moment tensors of, 264–265	Exact linear theory, 178–179
Eigenfrequencies, 256, 257, 267	Exact theory, 107–108
Eigenfunctions, 267	maximum likelihood for, 97–100

Expected measurements, 17	constrained, 62–63
Expected value, 18	$L\infty$ norm, 245–246
Explicit form, 2	L1 norm, 245–246
Explicit linear inverse problem, 106	L2 norm, 245–246
Exponential distribution, 150t	least square, 40f, 43–44, 62f, 65f, 74f
Exponential functions, 166f	Flatness, 56–57
Exponential probability density functions,	Force-couples, 264–265
149–150, 246–248	Forcing, 226–227
comparison of, 150f	unknown, 227
in MatLab, 150	Forward transformations, 129
maximum likelihood estimate of mean of,	Fosterite, 195
151–153	Fourier slice theorem, 213–214
two-sided, 149	Fourier transforms
	discrete, 214
-	integral, 214
F	Fréchet derivatives, 218, 219–220,
F ratio, 112	268f, 269
Factors, 189	differential equations and, 222-227
analysis, 10–11, 189–194	of error, 218–219
Q-mode, 199	Free oscillations, 267–269, 270
R-mode, 199	F-test, 111–112
loadings, 191, 194–195, 198–199, 200–201,	Functions. See also specific functions
201 <i>f</i>	analysis, 199–204, 204 <i>f</i>
matrix, 199	error, 242
mutually perpendicular, 196f	of random variables, 21–26
Faults, 252–253	two-dimensional, 202f
fcdf () function, 112	Fundamental theorem of calculus, 215–216
Feasible half-space, 140	
Fermat's Principle, 264	
filterfun () function, 235	G
find () function, 186	Gap filling problem, 147
Finite bounds, 152	Gaussian curve fitting, 250–252
Finite element derivatives, 254	Gaussian data
First order terms, 65–66	implicit nonlinear inverse problem with,
Fisher distribution, 248f	175–180
Fisher probability density function, 246–248	linear theory and, 172
Fitting	nonlinear theory and, 172–173
curve	Gaussian distribution, 91, 151–152
Gaussian, 250–252	area beneath, 150t
$L\infty$ norm, 160 f	Gaussian joint probability density
<i>L</i> 1 norms, 156 <i>f</i>	function, 32f
nonlinear inverse problems, 169f, 171f,	Gaussian multivariate probability density
181 <i>f</i> , 184 <i>f</i>	functions, 34
spectral, 9–10	Gaussian probability density functions, 26–29,
least squares	36 <i>f</i> , 97–99
to exponential functions, 166f	Gaussian random variables, 29
parabola, 47–48	Gaussian statistics
plane surface, 48–49	assumption of, 29–30
of straight lines, 40f, 43-44, 62f, 65f, 74f	least squares and, 42
Lorentzian curves, 250–252	Geiger, L., 254
parabolas, 5	Geiger's method, 254, 261
1 47 40	
least squares solution, 47–48	General linear Gaussian case, 104–107 General linear problem, 153

Generalized inverse, 69	Hypocenter, 252-253, 261
Backus-Gilbert, 243	Hypoinverse, 262
for temperature distribution problem, 244f	
for underdetermined problem, 79–82	1
covariance of, 74–75	•
Dirichlet spread function and, 77–78	Identity matrix, 72
with good resolution and covariance,	Identity operators, 220
76–78	Image enhancement problem, 231–234
overdetermined case, 76–77	blur removal, 232 <i>f</i> , 233 <i>f</i>
underdetermined case, 77	Image sequence, 203f
least squares, 74	empirical orthogonal functions, 204 <i>f</i>
minimum length, 75	Impedance, 273
natural, 133	Implicit linear form, 2
resolution of, 74–75	Implicit linear inverse problem, 106
singular-value decomposition, 132–138	Implicit nonlinear inverse problem, with
Geological Survey, U.S., 265	Gaussian data, 175–180
Geomagnetism, 271–272	Importance, 71
Gilbert, F., 270	Indefinite integrals, 221
Global Centroid Moment Tensor (CMT), 265	Index vectors, 84
Global minimum, 173f, 174f	Inequality constraints, 120, 140–147
Global Positioning System, 271	least squares with, 144–145
Gradient method, 180–181, 181 <i>f</i>	simplifying, 138–140
error and, $220f$	Inexact non-Gaussian nonlinear theories,
Gravity	184–185
geomagnetism and, 271–272	Inexact theories
Newton's inverse square law of, 143 <i>f</i>	conditional probability density function for,
satellite, 238f	101 <i>f</i>
vertical force of, 143 <i>f</i>	infinitely, 108
Green function integral, 215–216,	maximum likelihood for, 100–102, 103f
223, 224	Infeasible half-space, 140
Grid search, 167–170, 169 <i>f</i>	Infinitely inexact theory, 108
Grid scarcii, 107–170, 103j	Information gain, 94–96
	Inner product, 216
H	Integral equation theory, 3
Half-space	Integral Fourier transforms, 214
feasible, 140	Inverse problems, 150f
infeasible, 140	Backus-Gilbert, 207–209, 234
in linear inequality constraints,	continuous
140f, 142f	differential equations, 224f
Handles, 45–46	discrete problems as, 209–211
Hanson, D. J., 143	linear, 210 <i>f</i>
Haxby, Bill, 238f	even-determined, 52
Heating functions, 224	explicit form, 2
Heaviside step function, 210, 217, 225	explicit linear, 3, 106
Hermetian matrices, 279	formulating, 1–3
Hermetian transpose, 279	acoustic tomography, 6–7
High variance, 195	examples, 4–5
hist () function, 186	factor analysis, 10–11
Histograms, 16f	fitting parabola, 5
of random variables, 37f	fitting straight line, 4–5
· · · · · · · · · · · · · · · · · · ·	
Householder transformation, 124–127, 280	spectral curve fitting, 12
designing, 127–129	X-ray imaging, 7–9
Hyperplane, 123	implicit linear, 2, 106

Inverse problems (Continued)	K
linear, 3–4	Kepler's third law, 48
general, 153	tests of, 48f
L2 prediction error in, 167f	Knowledge, 1
least squares solution for, 44–46	Kronecker delta, 44, 256–257
least squares solution of, 44–46	Kuhn-Tucker theorem, 140–141, 142, 145
MatLab, 232–233	Kurile subduction zone, 50f, 250f
maximum likelihood methods, 92-108	
a priori distributions, 92–97	L
simplest case, 92	$L\infty$ norms, 158–160
mixed-determined, 52, 54-56	curve fitting using, 160f
natural solution to, 133	straight line fitting, 245–246
nonlinear	L1 norms, 149–150
curve-fitting, 169f, 171f, 181f, 184f	curve fitting using, 156f
error in, 166–167	solving, 153–157
implicit, 175–180	straight line fitting, 245–246
likelihood in, 166–167	L2 inverse theory, 278–280
MatLab for, 168–170	L2 norms, 40–42, 53–54, 92, 111, 126, 137–138
Newton's method, 171–175, 176f	
nonunique, 53	straight line fitting, 245–246
overdetermination of, 43, 52	L2 prediction error, 167f
completely, 154–155	Lagrange function, 80–81
linear programming problem and, 158	Lagrange multipliers, 54, 61, 80–81, 239–240,
Newton's method for, 180	249
overdetermined, 126	equations, 178
bricks, 51–52	graphical interpretation of, 278f
completely, 154–155	implementing constraints with, 277–278
of inverse problems, 43	Lamond-Doherty Earth Observatory, 238f
least square, 52	Lanczos, C., 138
linear programming problems, 158	Laplace transforms, 72, 82
n generalized inverse, 76–77	Lawson, C. L., 143
Newton's method for, 180	Least squares, 156
	constrained, Householder transformations
partitioning, 263	and, 127
premultiplying, 263 purely underdetermined, 52–54	covariance of, 66
	damped, 56, 238
simple, 116	weighted, 58–60, 60f
simple solutions, 53–54	even-determined problems, 52
solutions to, 11–13	existence of, 49–52
underdetermined, 51–52	filter, 235–236
Backus-Gilbert generalized inverse and,	fitting
79–82	to exponential functions, 166f
completely, 154	parabola, 47–48
in generalized inverse, 77	plane surface, 48–49
model parameters, 121f	of straight lines, 40f, 43–44, 62f, 65f, 74f
purely, 52–54	Gaussian statistics and, 42
Inverse transformations, 129	generalized inverse and, 74
Iterative formula, 179	with inequality constraints, 144-145
Iterative method, 173 <i>f</i>	linear inverse problem and, 44–46
_	matrix products required by, 46, 47-48
J	nonnegative, 141–143, 144–145
Jacobian determinant, 23, 213	prediction error of, 64–66
Jacobson, R. S., 270	simple, 179
Joint probability function, 32, 104f, 249	for straight lines, 43–44
•	

undetermined problems, 51-52	M
variance of, 64–66	Magma chambers, 215f
leastsquaresfcn () function, 45-46	Magnetotelluric method, 273
Length	Mapping function, 270–271
as <i>a priori</i> information, 56–60	Martinson, D. G., 270–271
of estimates, 39	Masters, G., 270
measures, 39–43	MatLab, 9, 16-17, 159-160, 174-175
minimum, 243	command plots, 193-194
damped, 78, 85 <i>f</i>	expected value in, 18
trade-off curves in, 85f	exponential probability density function in,
generalized inverse, 75	150
for temperature distribution problem, 244 <i>f</i>	inverse problem in, 232–233
preservation of, 124–127, 129–130	least squares with inequality constraints in,
weighted minimum, 58	144–145
Likelihood, 166–167	for loops, 197–198
function, 90–91	Metropolis-Hastings algorithm for, 183–184
surface, 91f	nonlinear problems, 168–170
Linear algebra, 81–82	nonnegative least squares implemented in, 143
Linear continuous inverse problem, 210f	probability computation in, 30
Linear equality constraints, 139	resampling in, 186
simplifying, 138–140	singular-value decomposition in, 134, 192
Linear equations, 231	variance in, 18
Linear inequality constraint, 62–63, 139–140	Matrices
half-spaces in, 140 <i>f</i> , 142 <i>f</i>	columns of, 128
Linear inverse problem, 3–4	covariance, 21, 105
general, 153	equation, bordering method for, 81–82
L2 prediction error in, 167f	factor, 199
least squares solution of, 44–46	Hermetian, 279
Linear operators, 220f	linear operators and, 214–218
matrices and, 214–218	loading, 191
Linear programming problem, 120, 154–155	model resolution, 72, 258
for overdetermined case, 158	in resolution computation, 86
Linear theory	selected rows of, 73f
exact, 178–179	multiplication, 233
Gaussian data and, 172	norms, 43
simple Gaussian case with, 102–104	notation, 45
Linearizing transformations, 165–166	null, 133
Lines. See also Straight lines	partial derivatives, 174
through a single point, 50f	products, 46, 47–48
parallel, 214f	resolution, 79f
linprog () function, 120–121	data, $69-71$, $71f$
Loading matrix, 191	deltalike, 79
Local minimum, 174f	relationships to, 117–118
Localized averages, 13, 78, 209	spikiness of, 234
	*
with large error bounds, 209 of model parameters, 117	roughness, 59
Log-normal probability density function, 165	rows of, 128
	sample, 191, 194, 199
Long-tailed distributions, 42	steepness, 56–57
Long-tailed probability density function, 42f	Toeplitz, 235
Loops, 197–198	transformation, 123
Lorentzian curves, 9f	unary, 195–196
fitting, 250–252	unit covariance, 72–74
Lower hemisphere stereonet, 250f	unit data covariance, 72–73

3.5 1 19 19 1 4 1 17 100	1 150 151
Maximum likelihood methods, 17, 183	parameterization and, 150–151
for exact theories, 97–100	prediction error as function of, 168 <i>f</i>
for inexact theories, 100–102, 103 <i>f</i>	probability density functions, 93f, 94f
inverse problem, 92–108	representation of, 124f
a priori distributions, 92–97	resolution of, 73f
simplest case, 92	sets of realizations of, 13
of mean of exponential probability density	sorting, 54–55
function, 151–153	true, 21–22
mean of measurement groups, 89–91	underdetermined problems, 121f
of probability density functions, 17f	unpartitioned, 55–56
Maximum Relative Entropy, 108–109	vector, 86
<i>M</i> -dimensional space, 124 <i>f</i>	weighted averages, 13
Mean, 17	bounds on, 120f
of exponential probability density function,	Model resolution
151–153	matrix, 72, 258
of measurement groups, 89–91	in resolution computation, 86
sample, 18	selected rows of, 73f
of unit vector sets, 246–250	natural generalized inverse, 134
zero, 27 <i>f</i>	Model spaces, 123
Meaningful, 1	Model vector, a priori, 57
Measures of length, 39–43	Modes, 256–257
Median, 151–152	Moment tensors of earthquakes, 264–265
Menke, J., 138	Monte Carlo search, 170–171
Menke, W., 138	for nonlinear curve-fitting problem, 171f
Metropolis-Hastings algorithm, 35–36,	undirected, 181
182–183	Mossbauer spectroscopy, 9f, 252f
in <i>MatLab</i> , 183–184	Mountain profiles, 200f, 201f
Minimum length, 243	Mutually perpendicular factors, 196 <i>f</i>
damped, 78	Tractally perpendicular factors, 1969
trade-off curves in, $85f$	
generalized inverse, 75	N
solution, 60	Natural generalized inverse, 133
for temperature distribution problem, 244 <i>f</i>	model resolution of, 134
Minimum Relative Entropy, 108–109	Negative off-diagonal elements, 78
Mixed-determined problems, 52, 54–56	
	Neighborhoods, 13
vector spaces and, 130–131	Newtonian heat flow equation, 223
Mixtures, 189, 199–200	Newton's inverse square law of gravity, 143f
Model, 1	Newton's method
one-dimensional, 221f	model parameters using, 187 <i>f</i>
regionalized, 262	for nonlinear inverse problem, 171–175
three-dimensional, 262	curve-fitting, 176f
two-dimensional, 262	for overdetermined problems, 180
vector spaces, 123	Nonlinear explicit equations, 10
Model parameters, 1	Nonlinear inverse problems
a priori information, 93f, 94f, 95f, 99f, 100f,	complicated surfaces and, 178f
134–135	curve-fitting
bootstrap confidence intervals, 187f	gradient method for, 181f
estimates of, 11, 21–22, 65f, 134, 249	grid search for, 169f
covariance of, 134–135	Monte Carlo search for, 171f
variance of, 63–64	simulated annealing for, 184f
localized averages of, 117	error in, 166–167
Newton's method, 187f	implicit, with Gaussian data, 175–180

likelihood in, 166–167	Operators
MatLab for, 168-170	adjoint, 219
Newton's method, 171–175	identity, 220
curve-fitting, 176f	linear, 220 <i>f</i>
Nonlinear theory, 172–173	matrices and, 214-218
Nonnegative least squares, 141–143, 144–145	solutions and, 69
in MatLab, 143	Optical sensors, 231
Nonspiky orthogonal vectors, 196–197	Organ pipe example, 258f
Nonuniform variance, 112	Orthogonality, 195–196
Nonunique averaging vectors	Outliers, 40-42, 149, 151-152, 240-241
a priori information, 119–121	Overdetermined algorithm, 157
bounding, 137	Overdetermined problems, 126
Nonunique inverse problem, 53	bricks, 51–52
Nonuniqueness, null vectors and, 115–116	completely, 154–155
Normal distribution with zero mean, 27f	in generalized inverse with good resolution
Normal probability density function, 28f	and covariance, 76–77
Normalization, 194–199	of inverse problems, 43
norminy () function, 32	least square, 52
Norms, 40	linear programming problems, 158
$L\infty$, 158–160	Newton's method for, 180
curve fitting using, 160f	Overshooting, 252
straight line fitting, 245–246	<i>5</i> ,
L1, 149–150	P
curve fitting using, 156f	P waves, 253f, 255
solving, 153–157	Parabolas, 18f
straight line fitting, 245–246	fitting, 5
L2, 40–42, 53–54, 92, 111, 126, 137–138	least squares solution, 47–48
straight line fitting, 245–246	Paraboloids, 173f
matrix, 43	Parallel lines, 214f
vector, 42	Parameterization, 163–165
Null distribution, 102	model parameters under, 150–151
for inexact non-Gaussian nonlinear theories,	Parameters, 226–227
184–185	Parker, Robert, 227
Null eigenvectors, 137	Partial derivatives, matrix of, 174
Null Hypothesis, 112	Patching, 180
Null matrix, 133	Pavlis, G. L., 262–263
Null probability density functions, 94–96	P-axes, 250f
Null solutions, 115–116	Pearson's chi-squared test, 30
Null space, 130–131	example of, 20f
identifying, 133	Perturbation theory, 256–257
Null vectors	Perturbed equation, 226–227, 256–257
fluctuating elements, 232	Perturbed modes, 256–257
nonuniqueness and, 115–116	Petrologic database, 193
of simple inverse problem, 116	Phases, 266
Numbers, complex, 278–280	Physicality constraints, 194–199
1	Pixels, 240, 241
O	Plane surface, 48–49
Oldenburg, D. W., 273	Points
One-dimensional models, 221f	balancing, 17
One-dimensional temperature distribution,	lines through, 50f
241–244	Precision parameter, 246–248, 248f
One-dimensional tomography, 221	Predicted wave fields, 266–267

Prediction errors, 41 <i>f</i> , 131, 137–138, 139–140,	noise and, 15–18
157	random variables and, 15–18
as function of model parameters, 168f	Proportionality factor, 225
L2, 167f	Proposed successors, 35–36
of least squares solution, 64-66	Pure path approximation, 269
for lines through points, 50f	Purely underdetermined problems, 52-54
minimizing, 55–56	
problem of, 146f	Q
Preliminary Reference Earth Model, 268	Q-mode factor analysis, 199
Probability, 30	Quantitative model, 1
Probability density functions, 12, 15	Quantitative model, 1
a priori, 94, 96	D
joint, 98 <i>f</i>	R
value of, 177 <i>f</i>	Radon transform
Boltzmann, 182–183	performing, 213f
chi-squared, 29	tomography and, 212–213
combining, 101	random () function, 34, 150–151
conditional, 30–33	Random resampling, 185–186
example of, 32f	in <i>MatLab</i> , 186 Random variables
for inexact theories, 101f	circular, 279
displaying, 19f, 20f, 21f evaluation of, 99f	computing realizations of, 34–36
along surface, 178f	functions of, 21–26
exponential, 149–150, 246–248	Gaussian, 29
comparison of, 150 <i>f</i>	histograms of, 37f
in <i>MatLab</i> , 150	realizations of, 90f
maximum likelihood estimate of mean of,	Rayleigh wave, 269
151–153	Rays, 212
two-sided, 149	deficient distribution of, 242f
Fisher, 246–248	refracted paths of, 255f
Gaussian, 26–29, 36f, 97–99	straight line, 253
joint, 32 <i>f</i>	theory, 261
multivariate, 34	tracing, 253
log-normal probability density function, 165	Realizations, 1
long-tailed, 42f	Reciprocal velocity, 261
maximum likelihood point of, 17f	Reconstructed gravity anomalies, 238f
model parameters and, 93f, 94f	Refracted paths, 255f
normal, 28f	Regionalized models, 262
null, 94–96	Relationships, 66
with ridge, 93f	to resolution matrices, 117–118
shaded area, 16f	Relative entropy, 94–96
short-tailed, 42f	Resolution
transformed, 22f, 23f, 24f	of acoustic tomography problem, 87 <i>f</i>
uniform, 22f, 23f, 24f	checkerboard test, 87
with well-defined peak, 93f	computing, 86–87 model resolution matrix in, 86
Probability theory	covariance and, 75
conditional probability density functions, 30–33	
confidence intervals, 33–34	generalized inverse with, 76–78 overdetermined case, 76–77
correlated data, 19–21	underdetermined case, 70
functions of random variables, 21–26	of generalized inverses, 74–75
Gaussian probability density functions, 26–29	matrix, 79f

data, 69–71, 71 <i>f</i> deltalike, 79	Singular-value decomposition, 55, 139–140, 157, 191, 263
relationships to, 117–118	of Atlantic Rock dataset, 198f
spikiness of, 234	derivation of, 138
model, 134	
	eigenvectors, 194–195
trade-off curves, 85f	generalized inverse, 132–138
variance and, 79–82, 209	in <i>MatLab</i> , 134, 192
Resolving kernel, 208	Sinusoidal patterns, 243
Riemann summation, 211, 226	Sinusoids, 60f
R-mode factor analysis, 199	Size, covariance, 83–84
Robust methods, 42, 149	Slabs, 241, 242, 243 <i>f</i>
Romanowicz, B., 270	Smoothness, 59
Rotations, 123, 125	Sparse matrices, 8, 59
Roughness, 56–57	Spectral curve fitting, 9–10
matrix, 59	Spectrum, 135–136
Rows, 128	Spikiness, 195
Rutile, 195	of resolution matrix, 234
c	Spirit rover, 9f
S	Spread, 75
S wave, 255	sqrt () function, 130
Sample covariance, 21	Standard deviation, sample, 18
Sample matrix, 191, 194, 199	Station correction, 262
Sample mean, 18	Steepness, 56–57
Sample standard deviation, 18	matrix, 56–57
Samples, 189	Straight lines
composition of, 190f	fitting, 4–5, 41 <i>f</i>
Satellite gravity data, 238f	constrained, 62–63
Scalar quantities, 246–248	$L\infty$ norm, 245–246
Second-order terms, 65	L1 norm, 245–246
Sediment, 10 <i>f</i> , 190 <i>f</i>	L2 norm, 245–246, 248f
Seismic attenuation, 269–270	least squares, 40f, 43-44, 62f, 65f, 74f
Seismic surface waves, 267–269	problem, 46–47
Seismic wave fields, 266	rays, 253
Seismology, 227, 258	Stretching factor, 22
Self-adjoint, 217	Strike and dip, 160
Sets	Surface wave tomography, 269
of realizations of model parameters, 13	svd (), 192–193
of unit vectors, 246–250	Sylvester equation, 77–78
Shear waves, 253f	
Short-tailed probability density function, 42f	T
Shuffling, 118	Taylor series, 65, 173–174
Shure, L., 270–271	Taylor's theorem, 171–172
Sidelobes, 78–79	Tectonic plate motions, 271
Signal correlation, 270–271	Teleseismic tomography, 264
Simple Gaussian case, 102–104	Temperature distribution
Simple inverse problem, 116	Backus-Gilbert for, 244 <i>f</i>
Simple least squares, 179	minimum length for, 244f
Simplicity, 53–54	model for, 244f
Simulated annealing, 181–184	one-dimensional, 241–244
for nonlinear curve-fitting	Temperature function, 225
_	*
problem, 184f	Thermal motion, 182–183
parameters in, 182	Three-dimensional models, 262

Time reversed operators, 225	in generalized inverse with good resolution
Time sequence, 203 <i>f</i>	and covariance, 77
Time series, 234	model parameters, 121f
Toeplitz matrix, 235	purely, 52–54
Tomography	Undirected Monte Carlo method, 181
acoustic, 6–7	Unfolding, 202
with deficient distribution of rays, 242f	unidrnd (), 186
success of, 241	Uniform probability density function, 22f, 23f
true image, 241f	24 <i>f</i>
computed, 7f	Uniform variance, 234–235
continuous inverse theory and, 211-212	Unit covariance matrix, 72-74, 99
hypothetical experiments, 84f	Unit data covariance matrix, 72-73
inversions, 264	Unit sphere, 248f
one-dimensional, 221	Unit vectors
radon transform, 212-213	Cartesian, 249
teleseismic, 264	mean of sets of, 246-250
waveform, 265–267	scattering, 247f
Tracks	Unitary transformations, 125, 127
ascending, 237f	Univariate distribution, 24f, 32
descending, 237f	Unknown forcing, 227
Trade-off curves, 85, 209	Unpartitioned model parameters, 55–56
asymptotes in, 86f	Unperturbed equation, 227
Backus-Gilbert solutions, 85f	Unperturbed problem, 256–257
damped minimum length solution, 85f	Unperturbed structures, 256–257
resolution, 85f	
variance, 85 <i>f</i>	1/
Transformations	V
forward, 129	Variables
householder, 124–127	auxiliary, 186
designing, 124–127	random
inverse, 129	circular, 279
length preservation and, 124–127	computing realizations of, 34–36
linearizing, 165–166	functions of, 21–26
matrix, 123	Gaussian, 29
Transformed probability density function, 22f,	histograms of, 37f
23 <i>f</i>	realizations of, 90f
Travel time data, 261–264	Variance, 17–18. See also Covariance
Triangle inequalities, 43	a posteriori, 63
True model parameters, 21–22	a priori, 63
Two-dimensional models, 262	model parameters, 107–108
Two-sided exponential probability density	a priori model variance, 107–108
functions, 149	eigenvalues and, 136–137
Tamerions, 119	expression for, 66
	high, 195
U	in MatLab, 18
Unary matrix, 195–196	of model parameter estimates, 63-64
Unbiased estimation, 165	nonuniform, 112
Uncorrelated Gaussian noise, 234–235	prediction error of least squares solution,
Underdetermined algorithm, 157	64–66
Underdetermined problems, 51–52	resolution and, 79-82, 209
Backus-Gilbert generalized inverse and,	trade-off curves, 85f
79–82	uniform, 234–235
completely, 154	Varimax procedure, 195-196, 198

Vasco, D. W., 264	W
Vectors	Waveform cross-correlation, 263
arbitrary, 235	Waveform tomography, 265–267
lambda, 134	Weight, 64f
<i>N</i> -dimensional position, 215	Weighted averages, 115
nonspiky orthogonal, 196–197	of model parameters, 13
nonunique averaging	bounds on, 120f
a priori information, 119–121	Weighted damped least squares, 58-60
bounding, 137	true model, 60f
norms, 42	Weighted least squares, 58
rotation, 195–196	Weighted measures, 56–60
spaces	Weighted minimum length, 58
applications of, 123–148	weightedleastsquaresfcn (), 59, 180
data spaces, 123	Wind forcing, 222–223
mixed-determined problem solution,	
130–131	V
model, 123	X
Velocity structure	xcorr (), 235
earthquake location and, 261–264	X-ray imaging, 7–9
from free oscillations, 267–269	X-ray opacity, 55f, 84
from seismic surface waves, 267–269	X-ray tomography, 54
Vertically stratified structures, 262	
Vibrational problems, 256–258	_
Volcano, 215f	Z
Voxels, 84f	Zero mean, 27f