Final Project Submission

Student name: Natalya Doris

• Student pace: self paced

Scheduled project review date/time: Monday, Aug 1, 1pm

• Instructor name: Abhineet Kulkarni / Claude Fried

Blog post URL: https://medium.com/@ntdoris/where-to-begin-choosing-a-baseline-linear-regression-model-when-you-have-limited-domain-knowledge-fe589ba10d3b

Introduction

This project uses the King County House Sales dataset help real estate company Royal Homes better understand the housing market in the county. What types of homes should they be looking to sell to make the most profit? What features lend towards higher sale prices?

Data Inspection and Initial Cleaning

Import Data & Necessary Packages

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        import scipy.stats as stats
        from sklearn.linear model import LinearRegression
        from sklearn.model selection import cross val score
        from sklearn.model selection import KFold
        from sklearn.metrics import mean squared error, r2 score
        from sklearn.model selection import train test split
        import statsmodels.api as sm
        import statsmodels.stats.api as sms
        import statsmodels.formula.api as smf
        from statsmodels.formula.api import ols
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.model selection import cross validate, ShuffleSplit
        from datetime import datetime
        from statsmodels.stats.outliers influence import variance inflation factor
```

/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-package s/statsmodels/compat/pandas.py:65: FutureWarning: pandas.Int64Index is depreca ted and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

from pandas import Int64Index as NumericIndex

Loading in data from the King County House Sales dataset:

```
In [2]: df = pd.read_csv('data/kc_house_data.csv')
df.head()
```

Out[2]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wate
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

5 rows × 21 columns

The dataset contains 21,596 rows, each representing a house in King County, and 21 distinct columns, including variables describing a house's square footage, number of beds/baths, condition and grade, to name a few.

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):
```

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	<pre>yr_built</pre>	21597 non-null	int64
15	<pre>yr_renovated</pre>	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtyp	es: float64(6),	int64(9), objec	t(6)
memo	ry usage: 3.5+ 1	MB	

```
In [4]: df.describe()
```

Out [4]:

id bedrooms bathrooms sqft_living price sqft_lot 21597.000000 count 2.159700e+04 2.159700e+04 21597.000000 21597.000000 2.159700e+04 4.580474e+09 5.402966e+05 3.373200 2.115826 2080.321850 1.509941e+04 mean std 2.876736e+09 3.673681e+05 0.926299 0.768984 918.106125 4.141264e+04 7.800000e+04 1.000102e+06 1.000000 0.500000 370.000000 5.200000e+02 min 25% 2.123049e+09 3.220000e+05 3.000000 1.750000 1430.000000 5.040000e+03 50% 3.904930e+09 4.500000e+05 3.000000 2.250000 1910.000000 7.618000e+03 6.450000e+05 4.000000 1.068500e+04 75% 7.308900e+09 2.500000 2550.000000 max 9.900000e+09 7.700000e+06 33.000000 8.000000 13540.000000 1.651359e+06

Taking the log makes this data much more normal. Will keep that in mind for later.


```
In [7]: y = df['price']
X = df.drop(['price'], axis=1)
```

Handling Missing Values & Cleaning the Data

```
In [8]: X.isna().sum()
        id
                              0
Out[8]:
        date
                              0
        bedrooms
                              0
        bathrooms
        sqft living
                             0
        sqft lot
                              0
        floors
                              0
                          2376
        waterfront
        view
                            63
        condition
                             0
        grade
                             0
        sqft_above
        sqft basement
                             0
        yr built
                             0
        yr renovated
                          3842
        zipcode
                             0
        lat
                              0
        long
                              0
        sqft_living15
                             0
        sqft lot15
        dtype: int64
In [9]: print(len(df[df["waterfront"].isna()]))
        print(len(df[df["view"].isna()]))
        print(len(df[df["yr_renovated"].isna()]))
        print(" ")
        print(len(df[df["yr renovated"]==0]))
        print(len(df[df["view"]=='NONE']))
        print(" ")
```

```
print(len(df[df["waterfront"].isna() & (df["view"]=='NONE')])) # houses with wa
         print(len(df[df["view"].isna() | (df["view"]=='NONE')]))
         2376
         63
         3842
         17011
         19422
         2110
         19485
In [10]: | df['waterfront'].value_counts()
                19075
         NO
Out[10]:
                  146
         YES
         Name: waterfront, dtype: int64
In [11]: X['yr_renovated'].value_counts()
         0.0
                   17011
Out[11]:
         2014.0
                       73
         2013.0
                       31
         2003.0
                       31
         2007.0
                       30
         1951.0
                       1
         1953.0
         1946.0
                       1
         1976.0
                       1
         1948.0
         Name: yr renovated, Length: 70, dtype: int64
In [12]: | X['sqft basement'].value counts()
         X['sqft basement'][X['sqft basement']=='?'] = 1.0
         X['sqft_basement'][X['sqft_basement']==0.0] = 1.0 # setting to 1 so that we can
         X['sqft basement'] = X['sqft basement'].astype(float)
         X['has basement'] = [0 if basement==1.0 else 1 for basement in X['sqft basement
         X['has basement'].value counts()
         /var/folders/wl/4cw k4nj07d773kdv1fw53tc0000gn/T/ipykernel 28102/3786226204.p
         y:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           X['sqft basement'][X['sqft basement']=='?'] = 1.0
         /var/folders/wl/4cw k4nj07d773kdv1fw53tc0000gn/T/ipykernel 28102/3786226204.p
         y:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           X['sqft_basement'][X['sqft_basement']==0.0] = 1.0 \# setting to 1 so that we
         can take the log
              21143
Out[12]:
                454
         Name: has basement, dtype: int64
```

While there aren't many missing values, a significant number of houses have no view, are

not waterfront, or have a 0 value for year renovated. I am inclined not to include these variables in the model as very few houses are impacted by these metrics. Nonetheless, I will perform some feature engineering so that I can see how they impact the model.

```
In [13]: | X['yr_renovated'][X['yr_renovated'] == 0] = 'NA'
         X['yr_renovated'][X['yr_renovated'].isna()] = 'NA'
         X['renovated'] = [0 if house=='NA' else 1 for house in X['yr_renovated']]
         sum(X['renovated'])
         /var/folders/wl/4cw_k4nj07d773kdv1fw53tc0000gn/T/ipykernel_28102/1224829936.p
         y:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user_guide/indexing.html#returning-a-view-versus-a-copy
           X['yr_renovated'][X['yr_renovated'] == 0] = 'NA'
         744
Out[13]:
In [14]: | X['view'][X['view'].isna()] = 'NA'
         set(X['view'])
         /var/folders/wl/4cw k4nj07d773kdv1fw53tc0000gn/T/ipykernel 28102/670772084.py:
         1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           X['view'][X['view'].isna()] = 'NA'
        {'AVERAGE', 'EXCELLENT', 'FAIR', 'GOOD', 'NA', 'NONE'}
Out[14]:
In [15]: X['waterfront'][X['waterfront'].isna()] = 'NA'
         X['waterfront'].value counts()
         /var/folders/wl/4cw k4nj07d773kdv1fw53tc0000gn/T/ipykernel 28102/808933529.py:
         1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           X['waterfront'][X['waterfront'].isna()] = 'NA'
         NO
                19075
Out[15]:
         NA
                 2376
                  146
         Name: waterfront, dtype: int64
In [16]: print(X['date'][0])
         X['date'] = [datetime.strptime(date, '%m/%d/%Y') for date in X['date']]
         X['yr_sold'] = pd.DatetimeIndex(X['date']).year
         X['mth sold'] = pd.DatetimeIndex(X['date']).month
         X.head()
```

10/13/2014

```
date bedrooms bathrooms sqft_living sqft_lot floors waterfront
                     id
Out[16]:
                                                                                        view
                        2014-
          0 7129300520
                                      3
                                              1.00
                                                        1180
                                                                5650
                                                                        1.0
                                                                                      NONE
                                                                                   NΑ
                        10-13
                        2014-
             6414100192
                                      3
                                              2.25
                                                        2570
                                                                7242
                                                                        2.0
                                                                                      NONE
                                                                                  NO
                        12-09
                        2015-
          2 5631500400
                          02-
                                      2
                                              1.00
                                                         770
                                                               10000
                                                                                  NO NONE
                                                                        1.0
                           25
                        2014-
             2487200875
                                              3.00
                                                        1960
                                                                5000
                                                                        1.0
                                                                                      NONE
                                      4
                                                                                  NO
                        12-09
                        2015-
             1954400510
                                      3
                                              2.00
                                                        1680
                                                                8080
                                                                        1.0
                                                                                  NO NONE
                        02-18
         5 rows × 24 columns
          X['grade'] = [int(grade.split(" ")[0]) for grade in X['grade']]
In [17]:
          set(X['grade'])
          {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
Out[17]:
          set(X['condition']) # need to get rid of space in very good for model purposes
In [18]:
          {'Average', 'Fair', 'Good', 'Poor', 'Very Good'}
Out[18]:
In [19]: X['condition'][X['condition']=='Very Good'] = 'VeryGood'
          set(X['condition'])
          /var/folders/wl/4cw k4nj07d773kdv1fw53tc0000qn/T/ipykernel 28102/3950577358.p
          y:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
          able/user guide/indexing.html#returning-a-view-versus-a-copy
            X['condition'][X['condition']=='Very Good'] = 'VeryGood'
          {'Average', 'Fair', 'Good', 'Poor', 'VeryGood'}
Out[19]:
In [20]:
          X.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 24 columns):
    Column
                  Non-Null Count Dtype
                   _____
                                 ____
0
    id
                   21597 non-null int64
1
    date
                   21597 non-null datetime64[ns]
2
    bedrooms
                   21597 non-null int64
3
    bathrooms
                   21597 non-null float64
4
                   21597 non-null int64
    sqft_living
5
    sqft lot
                   21597 non-null int64
                   21597 non-null float64
6
    floors
7
    waterfront
                   21597 non-null object
                   21597 non-null object
9
    condition
                   21597 non-null object
10 grade
                   21597 non-null int64
11 sqft above
                   21597 non-null int64
12 sqft_basement 21597 non-null float64
13 yr built
                   21597 non-null int64
14 yr renovated
                   21597 non-null object
15 zipcode
                   21597 non-null int64
16
    lat
                   21597 non-null float64
17 long
                   21597 non-null float64
18 sqft_living15 21597 non-null int64
                   21597 non-null int64
    sqft lot15
                   21597 non-null int64
20 has_basement
21 renovated
                   21597 non-null int64
22
   yr_sold
                   21597 non-null int64
23 mth sold
                   21597 non-null int64
dtypes: datetime64[ns](1), float64(5), int64(14), object(4)
memory usage: 4.0+ MB
```

Baseline Model

Checking Correlations

Heatmap of Correlation Between Attributes (Including Price)


```
In [22]: most_correlated_feature = 'sqft_living'
fig, ax = plt.subplots()

ax.scatter(X[most_correlated_feature], y, alpha=0.5)
ax.set_xlabel(most_correlated_feature)
ax.set_ylabel("listing price (millions)")
ax.set_title("Most Correlated Feature vs. Price");
#ax.ticklabel_format(style='plain')

# I suspect a log transformation will improve the linearity
```



```
In [23]: fig, ax = plt.subplots()
    ax.scatter(np.log(X[most_correlated_feature]), np.log(y), alpha=0.5)
    ax.set_xlabel(most_correlated_feature)
    ax.set_ylabel("listing price")
    ax.set_title("Most Correlated Feature vs. Price");

# very linear after log transformation
```


Build Baseline Model With Most Correlated Feature as Independent Variable

Even if we hadn't used correlation to pick an independent variable for this first model, square footage would have been an obvious choice. It makes sense that a house's square footage has a positive relationship with price.

```
In [24]: outcome = 'price'
data_ols = pd.concat([X, y], axis=1)
predictors = 'sqft_living'
formula = outcome + '~' + predictors
```

```
base_model = ols(formula=formula, data=data_ols).fit()
base_model.summary()
```

Out[24]:

OLS Regression Results

Dep. Variable:priceR-squared:0.493Model:OLSAdj. R-squared:0.493Method:Least SquaresF-statistic:2.097e+04Date:Sun, 31 Jul 2022Prob (F-statistic):0.00

Time: 22:47:39 **Log-Likelihood:** -3.0006e+05

No. Observations: 21597 **AIC:** 6.001e+05

Df Residuals: 21595 **BIC:** 6.001e+05

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 Intercept
 -4.399e+04
 4410.023
 -9.975
 0.000
 -5.26e+04
 -3.53e+04

 sqft_living
 280.8630
 1.939
 144.819
 0.000
 277.062
 284.664

 Omnibus:
 14801.942
 Durbin-Watson:
 1.982

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 542662.604

 Skew:
 2.820
 Prob(JB):
 0.00

 Kurtosis:
 26.901
 Cond. No.
 5.63e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Checking Base Model Assumptions

```
In [25]: # Linearity check

X_base = X[most_correlated_feature]

preds = base_model.predict(X_base)
fig, ax = plt.subplots()

perfect_line = np.arange(y.min(), y.max())
ax.plot(perfect_line, linestyle="--", color="orange", label="Perfect Fit")
ax.scatter(y, preds, alpha=0.5)
ax.set_xlabel("Actual Price")
ax.set_ylabel("Predicted Price")
ax.legend();
```



```
In [26]: # Normality check
    residuals = (y - preds)
    sm.graphics.qqplot(residuals, dist=stats.norm, line='45', fit=True);
```


We have a JB value = \sim 543,000, indicating that errors are not normally distributed. The p-value of 0.0 also favors rejecting the normality null hypothesis at the 5% significance level. Additionally, the kurtosis is above 3, which indicates heavier tails than a normal distribution. The skewness value also shows that underlying data is heavily skewed.

```
In [28]: # Homoscedasticity check - conelike shape suggests heteroskedasticity of residu
fig, ax = plt.subplots()
```

```
ax.scatter(preds, residuals, alpha=0.5)
ax.plot(preds, [0 for i in range(len(X_base))])
ax.set_xlabel("Predicted Value")
ax.set_ylabel("Actual - Predicted Value");
```


Out[29]: [('F statistic', 0.9159859051813802), ('p-value', 0.9999921364751672)]

While this relatively large F statistic suggests heteroscedasticity, we cannot confirm this result via the GQ test given the p-value > 0.05. A cone-like shape as seen in the graph above, however, shows obvious heteroscedasticity, in my opinion.

This baseline model fails all of our assumption checks. Let's see if we can improve the next one..

Data Preparation for Second Model

Visually inspecting relationships between numerical variables and price:

```
'yr_built', # year house was built
'sqft_living15', # sq. ft. of interior housing living space for the
'sqft_lot15', # sq. ft. of the land lots of the nearest 15 neighbor
'yr_sold', # year house was sold
'mth_sold', # month house was sold
'date',
'sqft_basement'
]

data = pd.concat([X, y], axis=1)
fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(15,27))
axe = axes.ravel()

for xcol, ax in zip(num_cols, axe):
    data.plot(kind='scatter', x=xcol, y='price', ax=ax, alpha=0.4, color='b')
```


I am going to exclude latitude and longitude as we can use zip code to represent location/neighborhood. I'd like to treat zip code as a categorical variable since this is not really a linear relationship but it is possible that certain zip codes have a higher average price. I also think keeping zip code categorical makes it easier to interpret.

```
relevant columns = ['bedrooms', # number of bedrooms
In [31]:
                              'bathrooms', # number of bathrooms
                              'floors', # number of floors (levels) in the house
                              'waterfront', # whether the house is on the waterfront
                              'view', # quality of view from house
                              'condition', # How good the overall condition of the house
                                           # related to maintenance of house.
                              'grade', # Overall grade of the house. Related to the const
                              'zipcode', # zip code
                              'sqft living', # sq. ft. of living space
                              'sqft lot', # Square footage of the lot
                              'sqft_above', # Square footage of house apart from basement
                              'yr built', # year house was built
                              'sqft_living15', # sq. ft. of interior housing living space
                              'sqft_lot15', # sq. ft. of the land lots of the nearest 15
                              'sqft basement', # sq. ft. of basement
                              'mth sold', # month house was sold
                              'yr sold', # year house was sold
                              'lat', # latitude
                              'renovated', # whether a house had a year populated in the
                              'has basement' #whether a house has a basement
         categoricals = ['waterfront', 'view', 'condition', 'zipcode']
         continuous = ['bedrooms', 'bathrooms', 'sqft living', 'sqft lot', 'sqft above']
                        'sqft_living15', 'sqft_lot15', 'floors', 'lat', 'renovated', 'yr_
                        'sqft basement', 'has basement'
         X = X[relevant columns]
         Х
```

Out[31]:		bedrooms	bathrooms	floors	waterfront	view	condition	grade	zipcode	sqft_living
	0	3	1.00	1.0	NA	NONE	Average	7	98178	1180
	1	3	2.25	2.0	NO	NONE	Average	7	98125	2570
	2	2	1.00	1.0	NO	NONE	Average	6	98028	770
	3	4	3.00	1.0	NO	NONE	VeryGood	7	98136	1960
	4	3	2.00	1.0	NO	NONE	Average	8	98074	1680
	•••									
	21592	3	2.50	3.0	NO	NONE	Average	8	98103	1530
	21593	4	2.50	2.0	NO	NONE	Average	8	98146	2310
	21594	2	0.75	2.0	NO	NONE	Average	7	98144	1020
	21595	3	2.50	2.0	NA	NONE	Average	8	98027	1600
	21596	2	0.75	2.0	NO	NONE	Average	7	98144	1020

21597 rows × 20 columns

```
In [32]: X[continuous].hist(figsize=[20, 20], bins='auto');
```


Check for Multicollinearity

```
In [33]: df_corr=X[continuous].corr().abs().stack().reset_index().sort_values(0, ascending df_corr['pairs'] = list(zip(df_corr.level_0, df_corr.level_1))
    df_corr.set_index(['pairs'], inplace = True)
    df_corr.drop(columns=['level_1', 'level_0'], inplace = True)
    df_corr.columns = ['cc']
    df_corr.drop_duplicates(inplace=True)

df_corr[(df_corr.cc>.70) & (df_corr.cc<0.99)]</pre>
```

Out [33]: cc

```
pairs
  (sqft_above, sqft_living)
                            0.876448
       (mth_sold, yr_sold)
                            0.782325
       (grade, sqft_living)
                             0.762779
(sqft_living, sqft_living15)
                            0.756402
       (sqft_above, grade)
                             0.756073
  (bathrooms, sqft_living)
                            0.755758
(sqft_living15, sqft_above)
                             0.731767
      (sqft_lot15, sqft_lot)
                             0.718204
     (sqft_living15, grade)
                             0.713867
```

Preprocessing

Taking the kitchen sink approach for this second model - including as many variables as I can without introducing too much multicollinearity.

```
In [34]: # one hot encode categoricals

dummy_cat = ['condition', 'waterfront', 'view']
    df_ohe = pd.get_dummies(X[dummy_cat], prefix=dummy_cat, drop_first=True)
    zipcode_dummies = pd.get_dummies(X['zipcode'], prefix='zip', drop_first=True)

In [35]: cont = ['sqft_living', 'sqft_lot', 'bedrooms', 'floors', 'mth_sold', 'renovated', excluding grade, sqft_above, sqft_living15, bathrooms given high correlation # excluding yr_sold given high correlation with mth_sold

X_preprocessed = pd.concat([X[cont], df_ohe, zipcode_dummies], axis=1)
    X_preprocessed
```

Out[35]:		sqft_living	sqft_lot	bedrooms	floors	mth_sold	renovated	yr_built	sqft_basement
	0	1180	5650	3	1.0	10	0	1955	0.0
	1	2570	7242	3	2.0	12	1	1951	400.0
	2	770	10000	2	1.0	2	0	1933	0.0
	3	1960	5000	4	1.0	12	0	1965	910.0
	4	1680	8080	3	1.0	2	0	1987	0.0
	•••			•••					
	21592	1530	1131	3	3.0	5	0	2009	0.0
	21593	2310	5813	4	2.0	2	0	2014	0.0
	21594	1020	1350	2	2.0	6	0	2009	0.0
	21595	1600	2388	3	2.0	1	0	2004	0.0
	21596	1020	1076	2	2.0	10	0	2008	0.0

21597 rows × 88 columns

Played around with latitude and zip code a bit to get the following results:

- removing lat, keeping zip yields 0.853 R2 but way lower cond. no (500), similar skew and kurt best model
- keeping lat, removing zip yields 0.69 R2
- removing both yields very low R2 around 0.523
- keeping both 0.857 R2, 3544.428 JB, 4.88e+04 cond no, -0.13 skew, 5 kurt

```
In [36]: | X preprocessed.columns
         Index(['sqft_living', 'sqft_lot', 'bedrooms', 'floors', 'mth_sold',
Out [36]:
                 'renovated', 'yr built', 'sqft basement', 'condition Fair',
                 'condition_Good', 'condition_Poor', 'condition_VeryGood',
                 'waterfront NO', 'waterfront YES', 'view EXCELLENT', 'view FAIR',
                 'view GOOD', 'view NA', 'view NONE', 'zip 98002', 'zip 98003',
                 'zip 98004', 'zip 98005', 'zip 98006', 'zip 98007', 'zip 98008',
                 'zip_98010', 'zip_98011', 'zip_98014',
                                                        'zip_98019', 'zip_98022',
                 'zip 98023', 'zip 98024', 'zip 98027', 'zip 98028', 'zip 98029',
                 'zip_98030', 'zip_98031', 'zip_98032', 'zip_98033', 'zip_98034',
                 'zip_98038', 'zip_98039', 'zip_98040', 'zip_98042', 'zip_98045',
                 'zip_98052', 'zip_98053', 'zip_98055', 'zip_98056', 'zip_98058',
                 'zip_98059', 'zip_98065', 'zip_98070', 'zip_98072', 'zip_98074',
                 'zip_98075', 'zip_98077', 'zip_98092', 'zip_98102', 'zip_98103',
                 'zip 98105', 'zip 98106', 'zip 98107', 'zip 98108', 'zip 98109',
                 'zip_98112', 'zip_98115', 'zip_98116', 'zip_98117', 'zip_98118',
                 'zip_98119', 'zip_98122', 'zip_98125', 'zip_98126', 'zip_98133',
                 'zip 98136', 'zip 98144', 'zip 98146', 'zip 98148', 'zip 98155',
                 'zip 98166', 'zip 98168', 'zip 98177', 'zip 98178', 'zip 98188',
                 'zip_98198', 'zip_98199'<sub>]</sub>,
               dtype='object')
```

Continuous Variables - Transformations

Second Model - Results and Assumptions Check

```
In [38]: outcome = 'price'
   data_ols = pd.concat([y_log, X_preprocessed], axis=1)
   predictors = data_ols.drop('price', axis=1)
   pred_sum = '+'.join(predictors.columns)
   formula = outcome + '~' + pred_sum

second_model = ols(formula=formula, data=data_ols).fit()
   second_model.summary()
```

Out[38]:

OLS Regression Results

Dep. Variable: price **R-squared:** 0.857

Model: OLS Adj. R-squared: 0.856

Method: Least Squares **F-statistic:** 1462.

Date: Sun, 31 Jul 2022 **Prob (F-statistic):** 0.00

Time: 22:48:04 **Log-Likelihood:** 4193.6

No. Observations: 21597 **AIC:** -8209.

Df Residuals: 21508 **BIC:** -7499.

Df Model: 88

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.4773	0.142	73.933	0.000	10.200	10.755
sqft_living	0.0003	2.55e-06	134.163	0.000	0.000	0.000
sqft_lot	6.631e-07	3.62e-08	18.299	0.000	5.92e-07	7.34e-07
bedrooms	-0.0047	0.002	-2.536	0.011	-0.008	-0.001
floors	-0.0213	0.004	-5.582	0.000	-0.029	-0.014
mth_sold	-0.0050	0.000	-11.512	0.000	-0.006	-0.004
renovated	0.0877	0.008	11.125	0.000	0.072	0.103
yr_built	0.0008	7.23e-05	11.060	0.000	0.001	0.001
sqft_basement	-0.0001	4.3e-06	-28.016	0.000	-0.000	-0.000
condition_Fair	-0.1688	0.016	-10.827	0.000	-0.199	-0.138
condition_Good	0.0413	0.004	11.675	0.000	0.034	0.048
condition_Poor	-0.3377	0.037	-9.046	0.000	-0.411	-0.265
condition_VeryGood	0.1095	0.006	19.625	0.000	0.099	0.120
waterfront_NO	0.0021	0.004	0.487	0.626	-0.006	0.011
waterfront_YES	0.4134	0.021	19.773	0.000	0.372	0.454
view_EXCELLENT	0.2128	0.015	13.969	0.000	0.183	0.243
view_FAIR	0.0071	0.013	0.549	0.583	-0.018	0.032
view_GOOD	0.0869	0.011	7.871	0.000	0.065	0.109
view_NA	-0.0876	0.026	-3.363	0.001	-0.139	-0.037
view_NONE	-0.1528	0.007	-22.241	0.000	-0.166	-0.139
zip_98002	-0.0708	0.018	-4.009	0.000	-0.105	-0.036
zip_98003	0.0391	0.016	2.456	0.014	0.008	0.070
zip_98004	1.1813	0.016	76.126	0.000	1.151	1.212
zip_98005	0.8338	0.019	44.490	0.000	0.797	0.870
zip_98006	0.7182	0.014	51.482	0.000	0.691	0.746

zip_98007	0.7148	0.020	35.973	0.000	0.676	0.754
zip_98008	0.6826	0.016	42.865	0.000	0.651	0.714
zip_98010	0.2263	0.023	9.998	0.000	0.182	0.271
zip_98011	0.4888	0.018	27.511	0.000	0.454	0.524
zip_98014	0.2775	0.021	13.210	0.000	0.236	0.319
zip_98019	0.3207	0.018	17.868	0.000	0.286	0.356
zip_98022	0.0245	0.017	1.440	0.150	-0.009	0.058
zip_98023	-0.0014	0.014	-0.105	0.916	-0.029	0.026
zip_98024	0.4105	0.025	16.494	0.000	0.362	0.459
zip_98027	0.5516	0.014	38.139	0.000	0.523	0.580
zip_98028	0.4435	0.016	27.946	0.000	0.412	0.475
zip_98029	0.6587	0.015	42.792	0.000	0.628	0.689
zip_98030	0.0612	0.016	3.747	0.000	0.029	0.093
zip_98031	0.0861	0.016	5.375	0.000	0.055	0.118
zip_98032	-0.0254	0.021	-1.225	0.220	-0.066	0.015
zip_98033	0.8209	0.014	57.481	0.000	0.793	0.849
zip_98034	0.5624	0.014	41.459	0.000	0.536	0.589
zip_98038	0.1704	0.013	12.722	0.000	0.144	0.197
zip_98039	1.3131	0.030	43.210	0.000	1.254	1.373
zip_98040	0.9561	0.016	59.376	0.000	0.925	0.988
zip_98042	0.0609	0.014	4.489	0.000	0.034	0.087
zip_98045	0.3284	0.017	19.154	0.000	0.295	0.362
zip_98052	0.6979	0.013	51.907	0.000	0.672	0.724
zip_98053	0.5970	0.015	40.819	0.000	0.568	0.626
zip_98055	0.1388	0.016	8.608	0.000	0.107	0.170
zip_98056	0.3061	0.014	21.138	0.000	0.278	0.334
zip_98058	0.1827	0.014	12.972	0.000	0.155	0.210
zip_98059	0.3535	0.014	25.181	0.000	0.326	0.381
zip_98065	0.3861	0.016	24.786	0.000	0.356	0.417
zip_98070	0.3190	0.022	14.677	0.000	0.276	0.362
zip_98072	0.5440	0.016	33.887	0.000	0.513	0.575
zip_98074	0.6331	0.014	44.425	0.000	0.605	0.661
zip_98075	0.6334	0.015	42.129	0.000	0.604	0.663
zip_98077	0.5265	0.018	29.553	0.000	0.492	0.561
zip_98092	0.0480	0.015	3.203	0.001	0.019	0.077
zip_98102	1.0399	0.023	46.096	0.000	0.996	1.084

			stu	ıdent		
zip_98103	0.8444	0.014	61.657	0.000	0.818	0.871
zip_98105	1.0122	0.017	58.826	0.000	0.979	1.046
zip_98106	0.3093	0.015	20.287	0.000	0.279	0.339
zip_98107	0.8674	0.016	52.801	0.000	0.835	0.900
zip_98108	0.3581	0.018	19.740	0.000	0.323	0.394
zip_98109	1.0654	0.022	48.127	0.000	1.022	1.109
zip_98112	1.1447	0.017	69.261	0.000	1.112	1.177
zip_98115	0.8422	0.014	61.834	0.000	0.815	0.869
zip_98116	0.7853	0.015	50.776	0.000	0.755	0.816
zip_98117	0.8284	0.014	60.131	0.000	0.801	0.855
zip_98118	0.4506	0.014	32.292	0.000	0.423	0.478
zip_98119	1.0490	0.018	56.847	0.000	1.013	1.085
zip_98122	0.8685	0.016	53.952	0.000	0.837	0.900
zip_98125	0.5680	0.015	39.108	0.000	0.540	0.596
zip_98126	0.5315	0.015	35.141	0.000	0.502	0.561
zip_98133	0.4592	0.014	33.011	0.000	0.432	0.486
zip_98136	0.6915	0.016	42.149	0.000	0.659	0.724
zip_98144	0.6799	0.015	44.383	0.000	0.650	0.710
zip_98146	0.2445	0.016	15.394	0.000	0.213	0.276
zip_98148	0.1560	0.029	5.468	0.000	0.100	0.212
zip_98155	0.4333	0.014	30.528	0.000	0.406	0.461
zip_98166	0.3078	0.016	18.694	0.000	0.276	0.340
zip_98168	0.0370	0.016	2.282	0.022	0.005	0.069
zip_98177	0.6333	0.016	38.437	0.000	0.601	0.666
zip_98178	0.1180	0.016	7.217	0.000	0.086	0.150
zip_98188	0.0772	0.020	3.835	0.000	0.038	0.117
zip_98198	0.0457	0.016	2.859	0.004	0.014	0.077
zip_98199	0.9211	0.016	59.039	0.000	0.891	0.952

Omnibus: 2454.640 Durbin-Watson: 2.013

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 12487.516

 Skew:
 -0.441
 Prob(JB):
 0.00

 Kurtosis:
 6.619
 Cond. No.
 4.64e+06

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.64e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Out[39]:

OLS Regression Results

Dep. Variable: price **R-squared:** 0.857

Model: OLS Adj. R-squared: 0.856

Method: Least Squares **F-statistic:** 1550.

Date: Sun, 31 Jul 2022 **Prob (F-statistic):** 0.00

Time: 22:48:05 **Log-Likelihood:** 4188.1

No. Observations: 21597 **AIC:** -8208.

Df Residuals: 21513 **BIC:** -7538.

Df Model: 83

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.5271	0.140	75.178	0.000	10.253	10.802
sqft_living	0.0003	2.55e-06	134.192	0.000	0.000	0.000
sqft_lot	6.628e-07	3.62e-08	18.293	0.000	5.92e-07	7.34e-07
bedrooms	-0.0049	0.002	-2.615	0.009	-0.009	-0.001
floors	-0.0210	0.004	-5.501	0.000	-0.028	-0.013
mth_sold	-0.0050	0.000	-11.516	0.000	-0.006	-0.004
renovated	0.0872	0.008	11.062	0.000	0.072	0.103
yr_built	0.0008	7.18e-05	10.846	0.000	0.001	0.001
sqft_basement	-0.0001	4.3e-06	-27.959	0.000	-0.000	-0.000
condition_Fair	-0.1682	0.016	-10.790	0.000	-0.199	-0.138
condition_Good	0.0405	0.004	11.463	0.000	0.034	0.047
condition_Poor	-0.3366	0.037	-9.016	0.000	-0.410	-0.263
condition_VeryGood	0.1089	0.006	19.527	0.000	0.098	0.120
waterfront_YES	0.4113	0.021	19.989	0.000	0.371	0.452
view_EXCELLENT	0.2110	0.015	14.174	0.000	0.182	0.240
view_GOOD	0.0851	0.011	8.070	0.000	0.064	0.106
view_NA	-0.0897	0.026	-3.475	0.001	-0.140	-0.039
view_NONE	-0.1545	0.006	-25.546	0.000	-0.166	-0.143
zip_98002	-0.0755	0.015	-4.942	0.000	-0.105	-0.046
zip_98003	0.0344	0.013	2.606	0.009	0.009	0.060
zip_98004	1.1769	0.013	92.544	0.000	1.152	1.202
zip_98005	0.8294	0.017	50.261	0.000	0.797	0.862
zip_98006	0.7137	0.011	66.253	0.000	0.693	0.735
zip_98007	0.7101	0.018	39.945	0.000	0.675	0.745
zip_98008	0.6779	0.013	51.337	0.000	0.652	0.704

			Stu	uciit		
zip_98010	0.2217	0.021	10.633	0.000	0.181	0.263
zip_98011	0.4841	0.015	31.426	0.000	0.454	0.514
zip_98014	0.2726	0.019	14.293	0.000	0.235	0.310
zip_98019	0.3160	0.016	20.201	0.000	0.285	0.347
zip_98022	0.0196	0.015	1.352	0.176	-0.009	0.048
zip_98024	0.4057	0.023	17.430	0.000	0.360	0.451
zip_98027	0.5471	0.011	47.776	0.000	0.525	0.570
zip_98028	0.4389	0.013	33.350	0.000	0.413	0.465
zip_98029	0.6541	0.013	51.791	0.000	0.629	0.679
zip_98030	0.0566	0.014	4.124	0.000	0.030	0.083
zip_98031	0.0816	0.013	6.105	0.000	0.055	0.108
zip_98033	0.8163	0.011	72.880	0.000	0.794	0.838
zip_98034	0.5577	0.010	54.357	0.000	0.538	0.578
zip_98038	0.1659	0.010	16.419	0.000	0.146	0.186
zip_98039	1.3092	0.029	45.055	0.000	1.252	1.366
zip_98040	0.9518	0.013	70.903	0.000	0.926	0.978
zip_98042	0.0564	0.010	5.474	0.000	0.036	0.077
zip_98045	0.3235	0.015	22.002	0.000	0.295	0.352
zip_98052	0.6933	0.010	68.450	0.000	0.673	0.713
zip_98053	0.5925	0.012	50.661	0.000	0.570	0.615
zip_98055	0.1338	0.013	9.948	0.000	0.107	0.160
zip_98056	0.3015	0.011	26.315	0.000	0.279	0.324
zip_98058	0.1781	0.011	16.251	0.000	0.157	0.200
zip_98059	0.3490	0.011	31.936	0.000	0.328	0.370
zip_98065	0.3814	0.013	29.666	0.000	0.356	0.407
zip_98070	0.3144	0.020	15.842	0.000	0.276	0.353
zip_98072	0.5393	0.013	40.262	0.000	0.513	0.566
zip_98074	0.6285	0.011	56.168	0.000	0.607	0.650
zip_98075	0.6291	0.012	51.585	0.000	0.605	0.653
zip_98077	0.5220	0.015	33.709	0.000	0.492	0.552
zip_98092	0.0435	0.012	3.583	0.000	0.020	0.067
zip_98102	1.0343	0.021	49.958	0.000	0.994	1.075
zip_98103	0.8389	0.010	80.928	0.000	0.819	0.859
zip_98105	1.0070	0.015	68.631	0.000	0.978	1.036
zip_98106	0.3041	0.012	24.593	0.000	0.280	0.328
zip_98107	0.8619	0.014	62.521	0.000	0.835	0.889

7/31/22, 10:49 PM st

			stu	dent		
zip_98108	0.3529	0.016	22.357	0.000	0.322	0.384
zip_98109	1.0595	0.020	52.376	0.000	1.020	1.099
zip_98112	1.1392	0.014	82.112	0.000	1.112	1.166
zip_98115	0.8368	0.010	81.661	0.000	0.817	0.857
zip_98116	0.7801	0.013	61.876	0.000	0.755	0.805
zip_98117	0.8230	0.010	78.733	0.000	0.802	0.843
zip_98118	0.4453	0.011	41.656	0.000	0.424	0.466
zip_98119	1.0434	0.016	64.710	0.000	1.012	1.075
zip_98122	0.8629	0.013	64.541	0.000	0.837	0.889
zip_98125	0.5629	0.011	49.147	0.000	0.540	0.585
zip_98126	0.5260	0.012	43.162	0.000	0.502	0.550
zip_98133	0.4541	0.011	42.525	0.000	0.433	0.475
zip_98136	0.6866	0.014	49.981	0.000	0.660	0.714
zip_98144	0.6745	0.012	54.247	0.000	0.650	0.699
zip_98146	0.2393	0.013	18.227	0.000	0.214	0.265
zip_98148	0.1507	0.027	5.563	0.000	0.098	0.204
zip_98155	0.4283	0.011	38.787	0.000	0.407	0.450
zip_98166	0.3029	0.014	21.893	0.000	0.276	0.330
zip_98177	0.6283	0.014	45.358	0.000	0.601	0.655
zip_98178	0.1126	0.014	8.231	0.000	0.086	0.139
zip_98188	0.0721	0.018	3.992	0.000	0.037	0.107
zip_98198	0.0409	0.013	3.087	0.002	0.015	0.067
zip_98199	0.9159	0.013	71.693	0.000	0.891	0.941

Omnibus: 2448.320 Durbin-Watson: 2.012

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 12440.829

Skew: -0.440 **Prob(JB):** 0.00

Kurtosis: 6.613 **Cond. No.** 4.56e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.56e+06. This might indicate that there are strong multicollinearity or other numerical problems.

There is certainly improvement in this model compared to the baseline, both in terms of R^2 and the various model assumptions. The JB value is still quite large, indicating that errors are not normally distributed, and kurtosis is above 3, indicating the data has heavier tails

than a normal distribution. No VIF is above 5, but a few are in the 2-3 range, which could likely be improved. We can probably get rid of a few independent variables in our next model to reduce multicollinearity even further and even transform some to reduce skew / kurtosis, hopefully without sacrificing R^2 greatly.

```
In [40]: # Linearity check
         model = second_model
         X model = X preprocessed
         y_model = y_log['price']
         preds = model.predict(X_model)
         fig, ax = plt.subplots()
         ax.scatter(y_model, preds, alpha=0.5)
         ax.set xlabel("Actual Price")
         ax.set_ylabel("Predicted Price")
         ax.legend();
         # Normality of residuals check
         residuals = (y_model - preds)
         sm.graphics.qqplot(residuals, dist=stats.norm, line='45', fit=True);
         # JB test
         name = ['Jarque-Bera', 'Prob', 'Skew', 'Kurtosis']
         test = sms.jarque_bera(model.resid)
         print("JB Results", list(zip(name, test)))
         # Homoscedasticity check
         fig, ax = plt.subplots()
         ax.scatter(preds, residuals, alpha=0.5)
         ax.plot(preds, [0 for i in range(len(X model))])
         ax.set xlabel("Predicted Value")
         ax.set ylabel("Actual - Predicted Value");
         # multicollinearity
         df corr=X preprocessed.corr().abs().stack().reset index().sort values(0, ascend
         df corr['pairs'] = list(zip(df corr.level 0, df corr.level 1))
         df corr.set index(['pairs'], inplace = True)
         df_corr.drop(columns=['level_1', 'level_0'], inplace = True)
         df corr.columns = ['cc']
         df corr.drop duplicates(inplace=True)
         print(df corr[(df corr.cc>.75) & (df corr.cc<0.99)])</pre>
         predictors int = sm.add constant(predictors)
         model = sm.OLS(y log['price'], predictors int).fit()
         vif = [variance inflation factor(predictors int.values, i) for i in range(predi
         vif ser = pd.Series(vif, index=predictors int.columns, name="Variance Inflation"
         print(vif ser.sort values())
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

```
JB Results [('Jarque-Bera', 12440.829118754615), ('Prob', 0.0), ('Skew', -0.43
96203133317141), ('Kurtosis', 6.6127551167262135)]
Empty DataFrame
Columns: [cc]
Index: []
                          1.006074
mth_sold
condition_Poor
                          1.012263
condition_Fair
                          1.027782
zip_98148
                          1.046476
view_NA
                          1.050705
sqft_basement
                          1.937326
floors
                          2.291060
                          2.409667
yr_built
sqft living
                          2.969580
const
                     10618.345439
Name: Variance Inflation Factor, Length: 84, dtype: float64
  17
  16
Predicted Price
  15
  14
  13
  12
              12
                        13
                                  14
                                            15
                                                      16
                          Actual Price
    5.0
    2.5
    0.0
Sample Quantiles
   -2.5
   -5.0
   -7.5
  -10.0
  -12.5
        -12.5
              -10.0
                     -7.5
                                                2.5
                            -5.0
                                   -2.5
                                          0.0
                                                       5.0
                         Theoretical Quantiles
```


Final Model

Going to take log of sq footage to see if that improves residuals, also going to get rid of Waterfront NO, view FAIR, and zip codes with high p values.

```
In [41]:
          X preprocessed.columns
          Index(['sqft living', 'sqft lot', 'bedrooms', 'floors', 'mth sold',
Out[41]:
                 'renovated', 'yr_built', 'sqft_basement', 'condition Fair',
                 'condition_Good', 'condition_Poor', 'condition_VeryGood',
                 'waterfront YES', 'view EXCELLENT', 'view GOOD', 'view NA', 'view NON
         Е',
                 'zip_98002', 'zip_98003', 'zip_98004', 'zip_98005', 'zip_98006',
                 'zip 98007', 'zip 98008', 'zip 98010', 'zip 98011', 'zip 98014',
                 'zip 98019', 'zip 98022', 'zip 98024', 'zip 98027', 'zip 98028',
                 'zip_98029', 'zip_98030', 'zip_98031', 'zip_98033', 'zip_98034',
                 'zip_98038', 'zip_98039', 'zip_98040', 'zip_98042', 'zip_98045',
                 'zip_98052', 'zip_98053', 'zip_98055', 'zip_98056', 'zip_98058',
                 'zip_98059', 'zip_98065', 'zip_98070', 'zip_98072', 'zip_98074',
                 'zip_98075', 'zip_98077', 'zip_98092', 'zip_98102', 'zip_98103', 'zip_98105', 'zip_98106', 'zip_98107', 'zip_98108', 'zip_98109',
                 'zip 98112', 'zip 98115', 'zip 98116', 'zip 98117', 'zip 98118',
                 'zip 98119', 'zip 98122', 'zip 98125', 'zip 98126', 'zip 98133',
                 'zip 98136', 'zip 98144', 'zip 98146', 'zip 98148', 'zip 98155',
                 'zip 98166', 'zip 98177', 'zip 98178', 'zip 98188', 'zip 98198',
                 'zip 98199'],
                dtype='object')
In [42]: # Log transformation of continuous variables
          cont_cols = ['sqft_living', 'sqft_lot', 'sqft_basement']
          df cont = X[cont cols]
          log names = [f'{column} log' for column in df cont.columns]
          df log = np.log(df cont)
          df log.columns = log names
```

/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-package s/pandas/core/internals/blocks.py:402: RuntimeWarning: divide by zero encounte red in log

```
result = func(self.values, **kwargs)
```

```
In [43]: # Categorical one hot encoding
dummy_cat = ['waterfront', 'condition', 'view']
df_ohe = pd.get_dummies(X[dummy_cat], prefix=dummy_cat, drop_first=True)
```

I went through several iterations of including/exclding different variables. The below model maintains the highest R^2 while significantly reducing skew, kurtosis, condition no. and improves normality of residuals. I also tried including the non log transformed independent variables and concluded that the log transformation improved the model.

- removing renovated doesnt seem to hurt the model at all, so no need to include
- dropping log of sqft_basement reduces R^2 by 0.005 but reduces Kurtosis, JB and condition more
- including has_basement increases kurtosis and doesn't strongly impact R^2

Out[44]:		sqft_living_log	waterfront_YES	condition_Fair	condition_Good	condition_Poor	condit
	0	7.073270	0	0	0	0	
	1	7.851661	0	0	0	0	
	2	6.646391	0	0	0	0	
	3	7.580700	0	0	0	0	
	4	7.426549	0	0	0	0	
	•••	•••	•••	•••		•••	
	21592	7.333023	0	0	0	0	
	21593	7.745003	0	0	0	0	
	21594	6.927558	0	0	0	0	
	21595	7.377759	0	0	0	0	
	21596	6.927558	0	0	0	0	

21597 rows × 76 columns

Results & Model Assumption Check

```
In [45]: outcome = 'price'
data_ols = pd.concat([y_log, X_preprocessed_2], axis=1)
predictors = data_ols.drop('price', axis=1)
pred_sum = '+'.join(predictors.columns)
```

```
formula = outcome + '~' + pred_sum

final_model = ols(formula=formula, data=data_ols).fit()
final_model.summary()
```

Out[45]:

OLS Regression Results

OLO REGICOSION RESULTS							
Dep. Variable:	price	R-squared:	0.845				
Model:	OLS	Adj. R-squared:	0.845				
Method:	Least Squares	F-statistic:	1547.				
Date:	Sun, 31 Jul 2022	Prob (F-statistic):	0.00				
Time:	22:48:28	Log-Likelihood:	3357.1				
No. Observations:	21597	AIC:	-6560.				
Df Residuals:	21520	BIC:	-5946.				
Df Model:	76						

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	7.5260	0.031	239.220	0.000	7.464	7.588
sqft_living_log	0.6799	0.004	175.090	0.000	0.672	0.687
waterfront_YES	0.4487	0.021	21.034	0.000	0.407	0.491
condition_Fair	-0.1267	0.016	-7.858	0.000	-0.158	-0.095
condition_Good	0.0078	0.003	2.315	0.021	0.001	0.014
condition_Poor	-0.2708	0.039	-6.992	0.000	-0.347	-0.195
condition_VeryGood	0.0564	0.005	10.367	0.000	0.046	0.067
view_EXCELLENT	0.2570	0.015	16.660	0.000	0.227	0.287
view_GOOD	0.1044	0.011	9.547	0.000	0.083	0.126
view_NA	-0.0944	0.027	-3.519	0.000	-0.147	-0.042
view_NONE	-0.1555	0.006	-24.952	0.000	-0.168	-0.143
zip_98003	0.0460	0.014	3.337	0.001	0.019	0.073
zip_98004	1.2450	0.013	94.203	0.000	1.219	1.271
zip_98005	0.8490	0.017	49.425	0.000	0.815	0.883
zip_98006	0.7570	0.011	67.425	0.000	0.735	0.779
zip_98007	0.7167	0.019	38.725	0.000	0.680	0.753
zip_98008	0.6735	0.014	48.914	0.000	0.646	0.700
zip_98010	0.3206	0.022	14.833	0.000	0.278	0.363
zip_98011	0.4811	0.016	29.935	0.000	0.450	0.513
zip_98014	0.3938	0.020	20.087	0.000	0.355	0.432
zip_98019	0.3605	0.016	22.163	0.000	0.329	0.392
zip_98022	0.1071	0.015	7.163	0.000	0.078	0.136
zip_98024	0.5471	0.024	22.809	0.000	0.500	0.594
zip_98027	0.5915	0.012	49.636	0.000	0.568	0.615
zip_98028	0.4366	0.014	31.756	0.000	0.410	0.464

				student		
zip_98029	0.6790	0.013	51.782	0.000	0.653	0.705
zip_98030	0.0680	0.014	4.753	0.000	0.040	0.096
zip_98031	0.0927	0.014	6.652	0.000	0.065	0.120
zip_98033	0.8532	0.012	72.914	0.000	0.830	0.876
zip_98034	0.5618	0.011	52.244	0.000	0.541	0.583
zip_98038	0.2032	0.011	19.331	0.000	0.183	0.224
zip_98039	1.5028	0.030	49.980	0.000	1.444	1.562
zip_98040	1.0100	0.014	72.419	0.000	0.983	1.037
zip_98042	0.1034	0.011	9.634	0.000	0.082	0.124
zip_98045	0.3914	0.015	25.643	0.000	0.362	0.421
zip_98052	0.7081	0.011	66.792	0.000	0.687	0.729
zip_98053	0.6888	0.012	57.044	0.000	0.665	0.712
zip_98055	0.1517	0.014	10.801	0.000	0.124	0.179
zip_98056	0.3380	0.012	28.249	0.000	0.315	0.361
zip_98058	0.2040	0.011	17.806	0.000	0.182	0.226
zip_98059	0.3991	0.011	35.083	0.000	0.377	0.421
zip_98065	0.4366	0.013	32.653	0.000	0.410	0.463
zip_98070	0.3950	0.020	19.351	0.000	0.355	0.435
zip_98072	0.5750	0.014	41.175	0.000	0.548	0.602
zip_98074	0.6689	0.012	57.263	0.000	0.646	0.692
zip_98075	0.7034	0.013	55.586	0.000	0.679	0.728
zip_98077	0.6298	0.016	39.319	0.000	0.598	0.661
zip_98092	0.0870	0.013	6.889	0.000	0.062	0.112
zip_98102	1.0448	0.021	49.205	0.000	1.003	1.086
zip_98103	0.8385	0.010	80.408	0.000	0.818	0.859
zip_98105	0.9876	0.015	65.804	0.000	0.958	1.017
zip_98106	0.3350	0.013	25.961	0.000	0.310	0.360
zip_98107	0.8672	0.014	61.434	0.000	0.840	0.895
zip_98108	0.3391	0.016	20.694	0.000	0.307	0.371
zip_98109	1.0381	0.021	49.892	0.000	0.997	1.079
zip_98112	1.1340	0.014	80.631	0.000	1.106	1.162
zip_98115	0.8209	0.011	78.011	0.000	0.800	0.842
zip_98116	0.7679	0.013	59.062	0.000	0.742	0.793
zip_98117	0.8220	0.011	76.733	0.000	0.801	0.843
zip_98118	0.4536	0.011	41.012	0.000	0.432	0.475
zip_98119	1.0158	0.016	61.589	0.000	0.983	1.048

zip_98122	0.8509	0.014	62.432	0.000	0.824	0.878
zip_98125	0.5629	0.012	47.168	0.000	0.540	0.586
zip_98126	0.5550	0.013	43.866	0.000	0.530	0.580
zip_98133	0.4706	0.011	42.223	0.000	0.449	0.492
zip_98136	0.6945	0.014	48.779	0.000	0.667	0.722
zip_98144	0.6733	0.013	52.752	0.000	0.648	0.698
zip_98146	0.2687	0.014	19.627	0.000	0.242	0.296
zip_98148	0.1759	0.028	6.240	0.000	0.121	0.231
zip_98155	0.4443	0.012	38.475	0.000	0.422	0.467
zip_98166	0.3222	0.014	22.347	0.000	0.294	0.350
zip_98168	0.0646	0.014	4.590	0.000	0.037	0.092
zip_98177	0.6342	0.014	43.959	0.000	0.606	0.662
zip_98178	0.1076	0.014	7.557	0.000	0.080	0.136
zip_98188	0.0876	0.019	4.657	0.000	0.051	0.124
zip_98198	0.0601	0.014	4.343	0.000	0.033	0.087
zip_98199	0.8986	0.013	68.120	0.000	0.873	0.924

Omnibus: 935.360 Durbin-Watson: 2.000

Prob(Omnibus): 0.000 Jarque-Bera (JB): 3142.856

 Skew:
 0.053
 Prob(JB):
 0.00

 Kurtosis:
 4.866
 Cond. No.
 281.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [46]: # Linearity check

model = final_model
X_model = X_preprocessed_2
y_model = y_log['price']

preds = model.predict(X_model)
fig, ax = plt.subplots()

ax.scatter(y_model, preds, alpha=0.5)
ax.set_xlabel("Actual Price")
ax.set_ylabel("Predicted Price")
ax.legend();

# Normality of residuals check

residuals = (y_model - preds)
sm.graphics.qqplot(residuals, dist=stats.norm, line='45', fit=True);
```

```
# JB test
name = ['Jarque-Bera', 'Prob', 'Skew', 'Kurtosis']
test = sms.jarque_bera(model.resid)
print("JB Results", list(zip(name, test)))
# Homoscedasticity check
fig, ax = plt.subplots()
ax.scatter(preds, residuals, alpha=0.5)
ax.plot(preds, [0 for i in range(len(X_model))])
ax.set xlabel("Predicted Value")
ax.set_ylabel("Actual - Predicted Value");
# Multicollinearity
df corr=X model.corr().abs().stack().reset index().sort values(0, ascending=Fal
df_corr['pairs'] = list(zip(df_corr.level_0, df_corr.level_1))
df corr.set index(['pairs'], inplace = True)
df corr.drop(columns=['level 1', 'level 0'], inplace = True)
df_corr.columns = ['cc']
df_corr.drop_duplicates(inplace=True)
df_corr[(df_corr.cc>.75) & (df_corr.cc<0.99)]</pre>
predictors int = sm.add constant(predictors)
model = sm.OLS(y_model,predictors_int).fit()
vif = [variance_inflation_factor(predictors_int.values, i) for i in range(predi
vif ser = pd.Series(vif, index=predictors int.columns, name="Variance Inflation"
print(vif ser.sort values()) # nothing above 5 other than constant which implie
No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.
JB Results [('Jarque-Bera', 3142.856011952616), ('Prob', 0.0), ('Skew', 0.0532
6750222460519), ('Kurtosis', 4.865796774663683)]
condition Poor
                    1.008972
condition_Fair
                    1.018912
zip 98039
                    1.047384
zip 98148
                    1.049364
view_NA
                    1.050290
                     . . .
zip 98103
                    1.477904
waterfront YES
                    1.532475
view EXCELLENT
                    1.726623
view_NONE
                    1.764647
                  496.442801
Name: Variance Inflation Factor, Length: 77, dtype: float64
```


This is by far the best model. It is not perfect but shows remarkable improvement in terms of normality of residuals, homoscedasticity and linearity while maintaining a similar R^2 as the second model. Around 85% of the variation in price is explained by the model. Skew of 0.053 is the closest we have seen to 0 thus far, and the kurtosis value of 4.86 is the lowest we've seen thus far.

Conclusion

```
In [47]:
          final_model.params.sort_values().tail(50) #top 50 coefficients in terms of magn
          zip_98108
                              0.339072
Out[47]:
          zip_98019
                              0.360462
          zip 98045
                              0.391448
          zip_98014
                              0.393821
          zip_98070
                              0.394969
          zip 98059
                              0.399139
          zip_98065
                              0.436561
          zip_98028
                              0.436647
          zip_98155
                              0.444322
          waterfront_YES
                              0.448698
          zip 98118
                              0.453604
          zip_98133
                              0.470559
          zip_98011
                              0.481119
          zip_98024
                              0.547078
          zip 98126
                              0.554961
          zip 98034
                              0.561801
          zip_98125
                              0.562930
          zip_98072
                              0.575042
          zip_98027
                              0.591515
          zip_98077
                              0.629763
          zip_98177
                              0.634197
          zip 98074
                              0.668852
          zip_98144
                              0.673332
          zip 98008
                              0.673478
          zip_98029
                              0.678963
          sqft_living_log
                              0.679855
          zip 98053
                              0.688810
          zip 98136
                              0.694462
          zip 98075
                              0.703410
          zip 98052
                              0.708085
          zip_98007
                              0.716704
          zip 98006
                              0.756972
          zip 98116
                              0.767911
          zip 98115
                              0.820940
          zip 98117
                              0.821996
          zip 98103
                              0.838482
          zip 98005
                              0.849017
          zip 98122
                              0.850881
          zip 98033
                              0.853162
          zip 98107
                              0.867193
          zip_98199
                              0.898597
          zip 98105
                              0.987559
          zip 98040
                              1.009959
          zip 98119
                              1.015815
          zip 98109
                              1.038090
          zip 98102
                              1.044787
          zip 98112
                              1.134013
          zip 98004
                              1.244965
          zip_98039
                              1.502781
          Intercept
                              7.526014
          dtype: float64
```

In [48]: final model.params.sort values().head(30) # bottom 30 coefficients in terms of

Out[48]:

condition_Poor	-0.270790
view_NONE	-0.155519
condition_Fair	-0.126731
view_NA	-0.094408
condition_Good	0.007843
zip_98003	0.046045
condition_VeryGood	0.056405
zip_98198	0.060128
zip_98168	0.064580
zip_98030	0.068030
zip_98092	0.087010
zip_98188	0.087590
zip_98031	0.092711
zip_98042	0.103425
view_GOOD	0.104433
zip_98022	0.107089
zip_98178	0.107598
zip_98055	0.151720
zip_98148	0.175912
zip_98038	0.203183
zip_98058	0.203987
view_EXCELLENT	0.257027
zip_98146	0.268748
zip_98010	0.320623
zip_98166	0.322191
zip_98106	0.335011
zip_98056	0.337996
zip_98108	0.339072
zip_98019	0.360462
zip_98045	0.391448
dtype: float64	

In the final model we can see that a house's zip code is highly influential on its sale price given the magnitude of the coefficients of several zip codes, all of which are statistically significant. For example, a house in zip code 98039 is associated with a log of sale price that is 1.50 higher, or a price that is about ~31.6 dollars higher.

Square footage of a house's living space also positively impacts sale price. Given a 0.68 coefficient, a 1% increase in sqft_living increases price by 0.68%.

Whether a house is on the waterfront, the quality of view, and how good the condition of the house is also impact sale price. A waterfront property is associated with a log of sale price that is 0.45 higher, or a sale price that is 2.8 dollars higher.

Given the above results, I would recommend the following:

- focus on finding properties in advantageous zip codes
- focus on larger houses, particularity with a larger living space
- waterfront properties and properties with good views tend to yield higher prices. To the extent possible, select waterfront properties and houses with a view
- condition matters. Selecting a house in poor condition can detract from sale price