

Синтаксический анализ данных, представленных в виде контекстно-свободной грамматики

Автор: Ковалев Дмитрий Александрович, 444 группа Научный руководитель: к. ф.-м. н. Григорьев С. В. Рецензент: программист НИУ ИТМО Авдюхин Д. А.

Санкт-Петербургский государственный университет Кафедра системного программирования

9 июня 2017 г.

Контекстно-свободное сжатие

• КС-грамматика как компактное представление данных

- Известные алгоритмы: LZW, Sequitur, Sequential, Re-Pair, ...
- Грамматика порождает ровно одну строку (Straight-line grammar)
 - отсутствуют рекурсивные вызовы

Поиск шаблонов в сжатых данных

- Поиск шаблонов в КС-представлении без декомпрессии
- Шаблон может быть
 - строкой (compressed pattern matching)
 - 'straight-line' грамматикой (fully compressed pattern matching)
 - регулярным выражением

Поиск шаблонов в сжатых данных

- Поиск шаблонов в КС-представлении без декомпрессии
- Шаблон может быть
 - строкой (compressed pattern matching)
 - 'straight-line' грамматикой (fully compressed pattern matching)
 - регулярным выражением
- Шаблоны, описываемые КС-грамматикой:
 - поиск рРНК в сжатом геноме

Синтаксический анализ КС-представления

Определение

 G_p , G_d — произвольные KC-грамматики; $L(G_d) = \{\omega_1, \omega_2, \dots, \omega_k, \dots\}$. Необходимо определить, существуют ли строки ω' , для которых верно: $\omega' \in L(G_p)$ и ω' — подстрока одной из строк $\omega_i \in L(G_d)$.

- В общем случае задача неразрешима
 - сводится к задаче о проверке пустоты пересечения двух КС-языков

Постановка задачи

Целью данной работы является разработка алгоритма синтаксического анализа данных, представленных в виде контекстно-свободной грамматики. Для ее достижения были поставлены следующие задачи.

- Определить ограничения, при которых синтаксический анализ КС-представления является разрешимой задачей
- Разработать алгоритм синтаксического анализа КС-представления данных с учетом поставленных ограничений
- Реализовать предложенный алгоритм
- Провести экспериментальное исследование

Разрешимость задачи

Teopeмa (Nederhof, Satta, 2004 г.)

Пусть G_1 — произвольная KC-грамматика, G_2 — грамматика, которая не содержит непосредственной или скрытой рекурсий. Тогда проблема проверки $L(G_1) \cap L(G_2) = \emptyset$ относится к классу PSPACE-complete.

Следствие

Пусть G_p — произвольная KC-грамматика, G_d задает конечный язык $L(G_d)=\{\omega_1,\ldots,\omega_n\}$. В таком случае задача синтаксического анализа G_d разрешима и принадлежит PSPACE-complete классу.

Рекурсивные автоматы и КС-грамматики

- Контекстно-свободную грамматику можно представить в виде рекурсивного автомата
- На ребрах могут быть как терминальные символы, так и состояния-нетерминалы

$$S' ::= S$$

$$S ::= [S]$$

Алгоритм

- Вход:
 - $ightharpoonup G_p$ произвольная КС-грамматика
 - G_d KC-грамматика без рекурсии, представленная в виде рекурсивного автомата R
- Результат: $\{(n_1,n_2)\}$, где n_1,n_2 номера состояний автомата R, при этом существует ω такая, что $\omega \in L(G_p)$ и $\omega \in L(R')$, где R' получен из R заменой стартового и конечного состояний на n_1 , n_2

Реализация

- Основан на алгоритме обобщенного синтаксического анализа GLL
 - позволяет использовать произвольную КС-грамматику
 - ▶ более сложная структура стека (GSS)
- Модификация GLL для синтаксического анализа конечных автоматов [Рагозина А., 2016 г.; Горохов А., 2017 г.]
 - производит анализ регулярного множества строк, представленного автоматом
- Основные управляющие функции изменены для поддержки рекурсивных автоматов
 - обработка нетерминальных переходов и финальных состояний
 - ▶ два взаимосвязанных GSS
- Алгоритм реализован в рамках исследовательского проекта YaccConstructor на F#

Эксперименты

- Последовательность случайных символов
- Содержит определенное количество шаблонов, удовлетворяющих грамматике

$$S ::= [S] | a$$

- Сжатие в КС-грамматику (алгоритм Sequitur)
- Для замеров оценивается размер входной грамматики

$$|G| = \sum_{p \in P} length(p)$$

Эксперименты: время работы

Грамматика шаблона: $S := [S] \mid a$

Эксперименты: память

Грамматика шаблона: $S ::= [S] \mid a$ Измеряется размер стеков (GSS) анализатора

Полиномиальный рост объема используемой памяти — PSPACE

Заключение

- Определены ограничения, при которых синтаксический анализ контекстно-свободного представления является разрешимой задачей
- Разработан алгоритм синтаксического анализа КС-представления, учитывающий поставленные ограничения
- Предложенный алгоритм реализован на языке программирования F# в рамках исследовательского проекта YaccConstructor
- Проведено экспериментальное исследование
- По материалам работы был выполнен доклад на конференции PLC'17, тезисы опубликованы в сборнике материалов конференции. Принята к публикации статья в журнале, входящем в список BAK.