CMOS Design Methodology

Pravin Zode

Outline

- Design Levels
- Key Parameters in design process
- Design Principles
 - > Hierarchy
 - > Regularity
 - > Modularity
 - Locality

Design Levels

Physical Domain

- A visual representation of IC design methodology.
- Depicts the relationship between design domains and levels of abstraction.
- Helps organize and manage complexity in digital and analog circuit design.
- **Behavioral Domain:** Defines functionality.
- Structural Domain: Details interconnections.
- Physical Domain: Manages physical layouts

Design Levels

Key Parameters for Design Success

Performance:

Speed, power, functionality, and flexibility.

Die Size:

> Affects manufacturing and costs.

Time to Design:

Impacts engineering resources and schedules.

Verification and Testability:

Ensures correctness and reduces debugging effort.

Design Principles

- Hierarchy: Divide and Conquer
 - Recursively partition system into modules
- Regularity
 - Reuse modules wherever possible
 - > Ex: Standard cell library
- Modularity: well-formed interfaces
 - > Allows modules to be treated as black boxes
- Locality
 - Physical and temporal

Hierarchy

- Hierarchy: Divide and Conquer
- It involves dividing complex design into various modules and submodules
- This division done until the complexity of submodules is at an understandable level of details

Regularity

- Designer divides the hierarchy into sets of similar building blocks
- Regularity is the design of array structures consisting of identical cells. Example: RAM composed of identical cells
- Regularity can be there at many levels
 - > At Transistor level
 - At identical GATE level
 - > At micro block
 - At macro block

Modularity

- Modularity means various functional blocks has well defined functions and interfaces, so that they can be implemented and tested separately
- All the blocks can be combined easily at the end of the design process to form large system

Locality

- Locality ensures that the connection between modules or blocks avoids long distance connection
- Locality ensures that internal connection of each module is not important for other modules
- Locality ensures that the internals of modules are not visible to any exterior interfaces
- This enables the outside world to treat each module as a block box with well defined input and outputs

Design Principles

Design Principle	Software	Hardware
Hierarchy	Subroutines, libraries	Modules
Regularity	Iteration, code sharing, object-oriented procedures	Datapath, module reuse, regular arrays, gate arrays, standard cells
Modularity	Well-defined subroutines interfaces	Well defined module interfaces, timing and loading data for modules, registered inputs and outputs
Locality	Local scoping, no global variables	Local connections through floor planning

Thank you!

Happy Learning