IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)
WHITE et al.) Art Unit: 1657
Application No. 10/519,731) Examiner: Srivastava, Kailash C.
Filed: July 5, 2005) Confirmation No. 5125
FOR: INHIBITORS OF FTSZ AND USES THEREOF)))

COMMUNICATION AFTER PAYMENT OF ISSUE FEE

MAIL STOP ISSUE FEE Commissioner for Patents P. O. Box 1450 Alexandria, VA 22313-1450 BALLARD SPAHR LLP Customer No. 23859

April 14, 2010

Sir:

In a telephone conference from Examiner Kailash Sirivastava on April 13, 2010, Applicants were advised that certain structures in Table 8, which begins on page 60, line 16, and ends on page 90 of the application, were not adequate for printing the granted patent. As requested by Examiner Sirivastava, Applicants provide a new Table 8 where the structures are larger. Also, since structures A100, A109, A116, A146, A168, A184, A189, A213, A247, A266, A284, A285, A287, A296, A315 were illegible, these have simply been deleted. This new table, which begins on page 2 of this communication, does not include new matter and is merely being supplied for the purposes of aiding the publication branch in preparing the printed patent.

Table 8

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A1	H ₃ C O N N N N CH ₃	100	0.2	4.3	21.5
A2	H ₃ C O N N N N N	100	6.25	>200	>32
A3	H ₃ C O N N N N	99			
A4	H ₃ C O N N CI	99			
A5	H ₃ C O N N CH ₃	99	1.56		

2

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A6	H ₃ C O O CI	99	1.56		
A7	H ₃ C OH OH CIH	99	3.13	1.89	0.6
A8	H ₃ C O N Chiral	99	6.25		
A9	H ₃ C O N CH ₃	99	6.25		
A10	H ₃ C O N N N CH ₃	99	12.5	>200	>16

3

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A11	H ₃ C N N N CH ₃	99	12.5	1.51	0.12
A12	H ₃ CONNH ₂ NH ₂ NCH ₃	99	12.5	1.51	0.12
A13	H ₃ C N CH ₃ CH ₃	98			
A14	H ₃ C N N N N N N N N N N N N N N N N N N N	98			
A15	H ₃ C N N N N N N N N N N N N N N N N N N N	98			
A16	H ₃ C O N CH ₃	98			

4

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A17	H ₃ C CH ₃	98			
A18	H ₃ C O N N N	98			
A19	H ₃ C N	98			
A20	H ₃ C O N N F	98			
A21	H ₃ C CH ₃ H ₃ C N N N N N CIH	98	0.1	8.3	83

5

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A22	H ₃ C O N N N N O CH ₃	98	1.56	8.7	5.58
A23	CH ₃	98	6.25	1.6	0.26
A24	H ₃ C O N N N N N Br	98	6.25	1.39	0.22
A25	H ₃ C N CH ₃ CH ₃ F CH ₃ CH	98	12.5	6.8	0.54
A26	NH ₂ N N N N CH ₃	98	12.5	1.51	0.12

6

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A27	H ₃ C O N N N CI	97			
A28	H ₃ C O-CH ₃ H ₃ C CH ₃	97			
A29	H ₃ C CH ₃	97			
A30	HO N N H ₃ C	97			
A31	H ₃ C O N N N N	97			

7

				_ , _ ,	
Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A32	H ₃ CON N N F F	97			
A33	NH ₂ O=S=O NN N	97	0.39	>6.25	>16
A34	H ₃ C ON N N CH ₃	97	6.25	2.28	0.36
A35	CIH CIH NH ₂ OH CH ₃ OCH ₃	97	12.5	>1000	>80

8

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A36	CI NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	97	12.5		
A37	CIH CIH H ₃ C O N N N N N	96	12.5		
A38	H ₃ C O N N N N	95			
A39	N CH ₃	95	1.56	>200	>128.21
A40	H ₃ C O N S CH ₃	95	>6.25		

CIH

9

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A41	H ₃ C O N N CH ₃	95	12.5	1.51	0.12
A42	H ₃ C O N CH ₃	95	12.5		
A43	H ₃ C O N N N	94	6.25		
A44	H ₃ CONNCH ₃	94	12.5	1.53	0.12
A45	N CH ₃ N CH ₃ N CH ₃ N CH ₃	93			
A46	H ₃ C CH ₃	93	3.13	189.26	60.47

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A47	NH ₂ O _{H₂} O _D O	93	>12.5		
A48	H ₃ C O N N N	92			
A49	H ₃ C O N N N N N N N N N N N N N N N N N N	92			
A50	H ₃ C OH OH ₂	92	>6.25		
A51	CH CH On ₂	92	>6.25		

11

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A52	H ₃ COOO	92	12.5	>200	>16
A53	H ₃ C O N CH ₃	92	12.5	<0.41	<0.03
A54	H ₃ C O N N N N N	91			
A55	NH ₂ N CH ₃	90	6.25		
A56	H ₃ C O N O THCH ₃	90	12.5		
A57	H ₃ C O N N N N	89			

12

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (μg/mL)	SI
A58	H ₃ C O N O CI	89			
A59	H ₃ C O N NH ₂	88			
A60	H ₃ CONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	87			
A61	H ₃ C O O	87			
A62	NH ₂ OH CI CH ₃ CH ₃	86			

13

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A63	H ₃ C O N N OH	86			
A64	CIH CH ₃	84			
A65	H ₃ C O N N N N	83			
A66	H ₃ C O N NH ₂	83			
A67	H_3C O N NH_2 O N N O	81			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A68	H ₃ C O N S CH ₃	79			
A69	H ₃ C O N CH ₃	77			
A70	N N N N N N N N N N N N N N N N N N N	76			
A71	S CH CH ₃	75			
A72	H ₃ C O N N N N	75			

15

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A73	N O CH ₃	74			
A74	H ₃ C O N N NH ₂ N CH ₃	72			
A75	H ₃ C O N N N O CH ₃	72			
A76	H ₃ C O N N CI	72			
A77	H ₃ C O N S	71			
A78	H_3C O N	71			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A79	H ₃ C O N N N N N N N N N N N N N N N N N N	71			
A80	CH ₃ NH ₂ Chiral N N N CH ₃ H ₃ C OH	70			
A81	NH ₂ N O CH ₃	69			
A82	H ₃ C N NH ₂	68			
A83	H_3C O CH_3 O	66			

17

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A84	NH NH ₂ NH ₂ OCH ₃ CIH OH ₂	66			
A85	CIH CIH	65			
A86	N N N O CH ₃	65			
A87	H_3C O N N N CH_3 CH_3	64			
A88	H ₃ C OH	64			
A89	N CH ₃	63			

18

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A90	CH ₃ NH ₂	62			
A91	S—NH ₂ N N N O CH ₃	61			
A92	CI N NH ₂ NH ₂	61			
A93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60			
A94	H_3C O	59			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A95	CH ₃ NH ₂ NH ₂	59			
A96	CIH CIH	58			
A97	H ₃ C O N S	58			
A98	H ₃ C O N CH ₃	57			
A99	H ₃ C OH OH ₂ OH OH	56			
A100		55			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A101	H ₃ C O N O H ₃ C N O O O O O O O O O O O O O O O O O O	54			
A102	H ₃ C O N N N CH ₃	54			
A103	NH ₂ OCH ₃	53			
A104	H_3 C O N N N O N N O N O	51			
A105	H ₃ C O N CH ₃	49			
A106	H ₃ C O N NH ₂	49			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A107	CI N NH ₂	46			
A108	H ₃ C O N N N N CH ₃	45			
A109		45			
A110	H ₃ C O N N N CH ₃	43			
A111	N O CH ₃	43			
A112	H ₂ N O CH ₃	42			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A113	H ₃ C N N CH ₃	41			
A114	H ₃ C NH ₂ O CH ₃	41			
A115	H ₃ C O OH	41			
A116		41			
A117	H ₃ C O N NH ₂	40			
A118	H ₃ C O N CIH CIH CH ₃	40			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A119	H ₃ C O N N N	36			
A120	H ₃ C O N NH ₂	34			
A121	H ₃ C O N N N CI	33			
A122	H ₃ C OH OH CH ₃	31			
A123	OH ₂ NH ₂ OH ₃ CH ₃	31			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A124	H ₃ C O-CH ₃ H ₃ C H ₃ C	31			
A125	NH ₂ N O CH ₃	30			
A126	H ₃ C NH ₂	30			
A127	CH ₃ NH ₂ O O O O O O O O O O O O O O O O O O O	30			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A128	S N N N N CH ₃	29			
A129	H ₃ C O N CH ₃	28			
A130	CH ₃	28			
A131	H ₃ C O N CH ₃	25			
A132	H ₃ C O N N N S	24			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A133	H_3C O N N N	23			
A134	H ₃ C	23			
A135	H ₃ C O N NH ₂	22			
A136	NOH NNOH NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	21			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A137	H ₃ C O N O CI	21			
A138	H ₃ C O N N CH ₃	20			
A139	H ₃ C O N NH ₂ NH ₂ OH OH OH OH ₂ OH ₂ OH ₂ OH ₂	20			
A140	H ₂ N O CH ₃	19			
A141	H ₃ C O N N NH ₂	19			
A142	H ₃ C O N N N N	18			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A143	H_3C O	17			
A144	H_3C N	16			
A145	H ₃ C O N CH ₃	16			
A146		15			
A147	H ₃ C O O CH ₃ CH ₃	15			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A148	H ₃ C O N N N N	14			
A149	H ₃ C OH OH	14			
A150	H ₃ C O N O CH ₃	14			
A151	H ₃ C O N N N N O	14			
A152	HO—NH ₂ NOCH ₃	13			
A153	H_3C N	12			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A154	H ₃ C O N NH ₂ H ₃ C CH ₃	12			
A155	H ₂ N N O CH ₃ O O O O O O O O O O O O O O O O O O O	11			
A156	H ₃ C O N NH ₂	10			
A157	H ₃ C OH ₂ Chiral	10			
A158	H ₃ C O N S	10			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A159	H ₃ C O N N N N N N N N N N N N N N N N N N	10			
A160	H ₃ C OH CH ₃ Chiral NH ₂ NH ₃ NH ₂ NH ₃ NH ₂ NH ₃ NH ₃ NH ₃ NH ₃ NH ₃ NH ₄ NH ₄ NH ₅	10			
A161	H_3C	9			
A162	H_3C	8			
A163	H_2N N CH_3 CH_3 CH_3	8			
A164	H ₃ C OHChiral NH ₂ N CH ₃ OH ₂ CH ₃	8			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A165	H ₃ C O O O	8			
A166	H ₃ C O N CH ₃	8			
A167	H ₃ C O N CH ₃	7			
A168		7			
A169	H ₃ C O N N N O CH ₃	7			
A170	H ₃ C O N CH ₃	7			
A171	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A172	H ₃ C N N O H ₃ C N O O O O O O O O O O O O O O O O O O	5			
A173	H ₃ C OH ₃	5			
A174	H_3C O N	5			
A175	H ₃ C O O O CH ₃	5			
A176	H ₃ C N OH	4			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A177	H ₃ C O N N N O N O O O O O O O O O O O O O	4			
A178	H ₃ C N H ₂ N O H ₃ C H HO III H	4			
A179	H ₃ C NH ₂ NH ₂ NH ₂ NH ₃ C OH	4			
A180	H_3C O	3			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A181	H_3 C O N N O H ₂ O H ₃ O H ₂ O H ₃ O H ₂	3			
A182	H ₃ C O N N N O CH ₃	2			
A183	H_3C O	2			
A184		2			
A185	CI N N N O CH ₃	2			
A186	H ₃ C OH ₂ Chiral	1			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A187	H_3 C \bigcirc O \bigcirc N \bigcirc N \bigcirc N \bigcirc O \bigcirc CI	1			
A188	CI N N N O	1			
A189		0			
A190	H ₃ C O N O CH ₃	0			
A191	H ₃ C O N O	0			
A192	H ₃ C O N O CH ₃	0			
A193	H ₃ C O N CH ₃	0			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (μg/mL)	SI
A194	H_3C O N N CH_3 CH_3	0			
A195	H ₃ COOOO	0			
A196	H ₃ C O N N O	0			
A197	H ₃ C O N CH ₃	0			
A198	H ₃ C O N N E CH ₃	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A199	S N N O CH ₃	0			
A200	H ₃ C O N NH ₂	0			
A201	CI N CH ₃	0			
A202	CH ₃ N CH ₃	0			
A203	H ₃ C O N N N	0			
A204	H ₃ C O N O CH ₃	0			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A205	CH ₃ NH ₂ O N O O O O O O O O O O O O O O O O O	0			
A206	H ₃ C O N N N N	0			
A207	H ₃ C O N	0			
A208	H_3 C O N N N O C	0			
A209	H_3C O N N N O N N O N	0			
A210	H ₃ C ON NH ₂ ON CH ₃	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A211	H ₃ C NH ₂ O N N N N N N N N N N N N N N N N N N	0			
A212	H ₃ C O N N N O CH ₃	0			
A213		0			
A214	H_3C	0			
A215	H ₃ C O N N N	0			
A216	H ₃ C O N N N	0			

41

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A217	H ₃ C O N N N	0			
A218	NH ₂ O CH ₃	0			
A219	H ₃ C O N N N N N N N N N N N N N N N N N N	0			
A220	H_3C O N N O O N O	0			
A221	H ₃ C O N N N N O F F F	0			
A222	H_3C	0			

42

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A223	H ₃ C O N	0			
A224	H ₃ C O N O	0			
A225	H ₃ CONNO	0			
A226	H ₃ C O N O CI	0			
A227	H ₃ C O N O CH ₃ CH ₃	0			
A228	H ₃ C O N O O	0			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A229	H ₃ C O N O	0			
A230	H ₃ C CH ₃	0			
A231	H ₃ C O N N O O O CH ₃	0			
A232	H ₃ C OH OH	0			
A233	H ₃ C O O O CH ₃	0			

44

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A234	CI N N O CH ₃	0			
A235	H ₃ C O N N N N O N N N N O N N N N O N N N N N O N	0			
A236	H ₃ C ON NH ₂ NH ₂ CIH CIH	0			
A237	H ₃ C O CH ₃	0			
A238	H ₃ C O N N N O O O O O O O O O O O O O O O	0			

45

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A239	H ₃ C O N O CI OH ₂ OH ₂ OH	0			
A240	H ₃ C O N CI	0			
A241	S N N N N CH ₃	0			
A242	NH ₂ N N N O CH ₃	0			

46

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A243	H ₃ C N N O N O N N N O N N N N N N N N N N	0			
A244	O N O O O CH ₃	0			
A245	NH ₂ O=S=O NH ₂ NH ₂ NH ₂ NH ₂	0			
A246	H ₃ C O N NH ₂	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A247		0			
A248	H ₃ C O NH ₂	0			
A249	NH ₂ O=S=O N N N CH ₃	0			
A250	H ₃ C O N N N	0			
A251	H ₃ C O N N CH ₃	0			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A252	H ₃ C O N N N N N N N N N N N N N N N N N N	0			
A253	H ₃ C O N N N CH ₃	0			
A254	H ₃ C O N N CH ₃	0			
A255	H ₃ C O N N CH ₃	0			
A256	H ₃ C N NH ₂	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A257	H ₃ C O N N N N CI	0			
A258	H ₃ C O N N N CI	0			
A259	H ₃ C O N N N	0			
A260	H ₃ C O N N CH ₃	0			
A261	N N N CI	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A262	H ₃ C O N N N N CI	0			
A263	H ₃ COOOO	0			
A264	H ₃ COOO	0			
A265	CH ₃ CH ₃ CH ₃	0			
A266		0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A267	H ₃ C O CH ₃	0			
A268	H ₃ C O CH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃	0			
A269	H_3C O N	0			
A270	H ₃ COOOO	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A271	H ₂ N OH N O O CH ₃	0			
A272	H_3C O N N O	0			
A273	H_3C OH H_3C OH H_3C OH	0			
A274	H ₃ C O N N N O OH CH ₃	0			
A275	H_3C O N N N OH	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A276	H ₃ C O N CH ₃	0			
A277	CH ₃ O N CH ₃ CH ₃	0			
A278	CH ₃ ONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	0			
A279	H ₂ C N O N NH ₂	0			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A280	H ₃ C O O CIH	0			
A281	H ₃ C O N N N O CH ₃	0			
A282	H ₃ C O N N N CH ₃	0			
A283	H ₃ C O N N N CH ₃	0			
A284		0			
A285		0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A286	CI OI NO NH ₂	0			
A287		0			
A288	H_3C O O O O O O O O O	0			
A289	H ₃ C OH	0			
A290	H ₃ CONNH ₂ NH ₂ NH ₃ CONNH ₃ NH ₃ CONNH ₂ NH ₃ CONNH ₃ NH ₃ NH ₃ CONNH ₃ NH ₃	0			
A291	H ₃ C O N NH ₂	0			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A292	H ₃ C O NH ₂	0			
A293	H ₃ C O N NH ₂	0			
A294	H ₂ N S H ₃ C Cl NH ₂	0			
A295	H ₃ C CI	0			
A296		0			

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A297	H ₃ C O N N N CH ₃	0			
A298	N O O O O O O O O O O O O O O O O O O O	0			
A299	H ₃ C	0			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A300	H ₃ C O N NH ₂ OH ₂ CIH	0			
A301	H_3C O	-1			
A302	H ₂ N N O CH ₃ O N CH ₃ HO CH ₃	-1			
A303	H_3C O	-2			

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A304	H ₃ C O Chiral	-2			
A305	H ₃ C OH H ₃ C OH	-2			
	H ₃ C O N N CH ₃				
A306		-3			

A307
$$H_3C$$
 OH_2 OH_2 OH_3C OH

Compound #	Structure	% Inh	MIC (μg/mL)	IC50 (µg/mL)	SI
A309	H ₃ C O N H H H H H H H H H H H H H H H H H H	-10			
A310	H ₃ C O N N Chiral Ch ₃ Chiral Ch ₄ Ch ₃ Ch ₄ Ch ₄ Ch ₃ Ch ₄ Ch ₃ Ch ₄ Ch ₄ Ch ₄ Ch ₅ Ch ₅ Ch ₅ Ch ₄ Ch ₅	-15			
A311	H ₃ C O O O	-16			
A312	H ₃ C OH OH ₂	-19			
A313	H_3C O N	-21			

61

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A314	H ₃ C O N I I O O O O O O O O O O O O O O O O	-36			

A315

A318

Atlanta #1056100 v1

A317
$$H_3C$$
 O N N N

62

Compound #	Structure	% Inh	MIC (µg/mL)	IC50 (µg/mL)	SI
A320	H ₃ C N CH ₃ O II N O N NH ₂				
A321	H ₃ C O N NH ₂				
A322	H ₃ C O N NH ₂				
A323	H ₃ C O N N N N N N N N N N N N N N N N N N				

REMARKS

Again, Table 8 has been reproduced solely for the benefit of the publication branch. The only difference between the new Table 8 supplied herewith and the original Table 8 is the size of the structures and the deletion of certain structures that were illegible. No new matter has been added.

No fees are believed due; however, the Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 14-0629.

Respectfully submitted, BALLARD SPAHR LLP

/Christopher L. Curfman/

Christopher L. Curfman Registration No. 52,787

BALLARD SPAHR LLP Customer Number 23859 (678) 420-9300 (678) 420-9301 (fax)

CERTIFICATE OF EFS-WEB TRANSMISSION UNDER 37 C.F.R. § 1.8				
I hereby certify that this correspondence – including any items indicated as attached, enclosed, or included – is being transmitted by EFS-WEB on the date indicated below.				
/Christopher L. Curfman/	April 14, 2010			
Christopher L. Curfman	Date			