Anemoi: Exploiting the Link between Arithmetization-Orientation and CCZ-equivalence

Clémence Bouvier 1,2

joint work with Pierre Briaud^{1,2}, Pyrros Chaidos³, Léo Perrin², Robin Salen⁴, Vesselin Velichkov^{5,6} and Danny Willems^{7,8}

¹Sorbonne Université, ²Inria Paris,

Journées C2, October 19th, 2023

* Anemoi: Greek gods of winds

* Anemoi: Greek gods of winds

* Anemoi: Greek gods of winds

* Anemoi: Family of ZK-friendly Hash functions

Content

Anemoi: Exploiting the Link between Arithmetization-Orientation and CCZ-equivalence

- A need for new primitives
 - Emerging uses
 - Our approach
- Anemoi
 - CCZ-equivalence...
 - Definition and properties
 - New S-box: Flystel
 - ... for good performances!
 - SPN structure
 - Some benchmarks

A need of new symmetric primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- ★ ZK: Systems of Zero-Knowledge proofs

Example: SNARKs, STARKs, Bulletproofs

A need of new symmetric primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- ZK: Systems of Zero-Knowledge proofs
 Example: SNARKs, STARKs, Bulletproofs

Need: Designing ZK-friendly symmetric primitives

⇒ What differs from the "usual" case?

Comparison with "usual" case

A new environment

"Usual" case

- ⋆ Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4,8$
- ★ Operations: logical gates/CPU instructions

Arithmetization-friendly

- ⋆ Field size:
 - \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
- * Operations: large finite-field arithmetic

Comparison with "usual" case

A new environment

"Usual" case

- ⋆ Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4,8$
- ★ Operations: logical gates/CPU instructions

Ex: Field of AES: \mathbb{F}_{2^n} where n=8

Arithmetization-friendly

- * Field size:
 - \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
- * Operations: large finite-field arithmetic

Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d805 53bda402fffe5bfefffffff00000001

Comparison with "usual" case

A new environment

"Usual" case

* Field size:

 \mathbb{F}_{2^n} , with $n \simeq 4,8$

 Operations: logical gates/CPU instructions

Ex: Field of AES: \mathbb{F}_{2^n} where n=8

New properties

"Usual" case

$$y \leftarrow E(x)$$

 Optimized for: implementation in software/hardware

Arithmetization-friendly

* Field size:

 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$

⋆ Operations: large finite-field arithmetic

Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d805 53bda402fffe5bfefffffff00000001

Arithmetization-friendly

$$y \leftarrow E(x)$$
 and $y == E(x)$

 Optimized for: integration within advanced protocols

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example: Minimize the number of multiplications (R1CS)

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example: Minimize the number of multiplications (R1CS)

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$
 $t_3 = t_2 \times t_1$ $t_6 = t_3 \times t_5$
 $t_1 = t_0 + b$ $t_4 = c \cdot x$ $t_7 = e \cdot x$
 $t_2 = t_1 \times t_1$ $t_5 = t_4 + d$ $t_8 = t_6 + t_7$

3 constraints

Need: verification using few multiplications.

Need: verification using few multiplications.

* First approach: evaluation also using few multiplications (Poseidon)

$$y \leftarrow E(x)$$

 \sim *E*: low degree

$$y == E(x)$$

 \sim *E*: low degree

Need: verification using few multiplications.

* First approach: evaluation also using few multiplications (Poseidon)

$$y \leftarrow E(x)$$

 \sim *E*: low degree

$$y == E(x)$$

 \sim *E*: low degree

* Rescue approach: using inversion

$$y \leftarrow E^{-1}(x)$$

 $y \leftarrow E^{-1}(x)$ $\sim E^{-1}$: high degree

$$x == E(y)$$

 \sim *E*: low degree

Need: verification using few multiplications.

* First approach: evaluation also using few multiplications (Poseidon)

$$y \leftarrow E(x)$$

 \sim *E*: low degree

$$y == E(x)$$

y == E(x) $\sim E$: low degree

* Rescue approach: using inversion

$$y \leftarrow E^{-1}(x)$$

 $y \leftarrow E^{-1}(x)$ $\sim E^{-1}$: high degree

$$x == E(y)$$

 \sim *E*: low degree

\star Our approach: using $(u, v) = \mathcal{L}(x, y)$

$$y \leftarrow F(x)$$

 \sim *F*: high degree

$$v == G(u)$$

 \sim G: low degree

CCZ-equivalence

Example: the inverse

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\textit{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\textit{F}^{-1}} \ .$$

CCZ-equivalence

Example: the inverse

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\digamma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\digamma^{-1}} \ .$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent if

$$\Gamma_F = \mathcal{L}(\Gamma_G) + c$$
.

If
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it G}$.

Differential uniformity: maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it G}$.

Differential uniformity: maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

 \star Linear properties are the same: $W_F = W_G$.

Linearity: maximum value of the LAT

$$\mathcal{W}_{F} = \max_{a,b \neq 0} \left| \sum_{\mathbf{x} \in \mathbb{F}_{2n}^{m}} (-1)^{a \cdot \mathbf{x} + b \cdot F(\mathbf{x})} \right|$$

If
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

If
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Example: in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd$

If
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Example: in \mathbb{F}_p where

 $p = 0 \times 73 \\ eda 753299 \\ d7d483339 \\ d80809 \\ a1d80553 \\ bda402 \\ fffe5 \\ bfefffffff000000011 \\ description of the property of the property$

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd$

The Flystel

$$\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathsf{Flystel}$$

A 3-round Feistel-network with

$$Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$$
 and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

High-degree permutation

Low-degree function

The Flystel

$$\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathsf{Flystel}$$

A 3-round Feistel-network with

$$Q_{\gamma}: \mathbb{F}_{q} \to \mathbb{F}_{q}$$
 and $Q_{\delta}: \mathbb{F}_{q} \to \mathbb{F}_{q}$ two quadratic functions, and $E: \mathbb{F}_{q} \to \mathbb{F}_{q}$ a permutation

High-degree permutation

Open Flystel \mathcal{H} .

Low-degree function

Closed Flystel ${\cal V}$.

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}})$$
 s.t. $((x, y), (u, v)) = \mathcal{L}(((v, y), (x, u)))$

* High Degree Evaluation.

High-degree permutation

Open Flystel \mathcal{H} .

Ex: if
$$E: x \mapsto x^5$$
 in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

then
$$E^{-1}: x \mapsto x^{5^{-1}}$$
 where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002 217f0e679998f1993333332ccccccd

- * High Degree Evaluation.
- * Low Cost Verification.

 $(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$

High-degree permutation

Open Flystel \mathcal{H} .

Low-degree function

Closed Flystel \mathcal{V} .

Flystel in \mathbb{F}_{2^n}

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
, $Q_{\delta}(x) = \delta + \beta x^3$, and $E(x) = x^3$

 $Open Flystel_2.$

Closed Flystel₂.

Properties of Flystel in \mathbb{F}_{2^n}

Degenerated Butterfly.

Introduced by [Perrin et al. 2016].

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

⋆ Differential properties

$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

★ Linear properties

$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{n+1}$$

- Algebraic degree
 - * Open Flystel₂: $deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $deg_{\nu} = 2$

Flystel in \mathbb{F}_p

$$Q_{\gamma}(x) = \gamma + \beta x^2$$
, $Q_{\delta}(x) = \delta + \beta x^2$, and $E(x) = x^{\alpha}$

Open Flystel,

 $\begin{array}{l} \text{usually} \\ \alpha = \text{3 or 5}. \end{array}$

Closed Flystel_p.

Properties of Flystel in \mathbb{F}_{p_1}

* Differential properties

 ${\tt Flystel}_{\tt p}$ has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{\rho}^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{\alpha}{\alpha} - 1$$

Properties of Flystel in \mathbb{F}_{p_1}

* Differential properties

 ${\tt Flystel}_{\tt p}$ has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{\alpha}{\alpha} - 1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{\alpha}{\alpha} - 1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

* Linear properties

Conjecture:

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p}\right) \right| \leq p \log p?$$

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

(a) Internal state.

(b) The constant addition.

$$\longleftarrow \mathcal{M}_{x} \longrightarrow$$

$$\longleftarrow \mathcal{M}_{y} = \mathcal{M}_{x} \circ \rho \longrightarrow$$

(c) The diffusion layer.

(d) The Pseudo-Hadamard Transform.

(e) The S-box layer.

Number of rounds

$$Anemoi_{q,\alpha,\ell} = \mathcal{M} \circ R_{n_r-1} \circ ... \circ R_0$$

★ Choosing the number of rounds

$$n_r \geq \max \left\{ 8, \underbrace{\min(5, 1 + \ell)}_{\text{security margin}} + \underbrace{2 + \min \left\{ r \in \mathbb{N} \mid \left(\frac{4\ell r + \kappa_{\alpha}}{2\ell r} \right)^2 \geq 2^{s} \right\}}_{\text{to prevent algebraic attacks}} \right\}.$$

$\alpha (\kappa_{\alpha})$	3 (1)	5 (2)	7 (4)	11 (9)
$\ell=1$	21	21	20	19
ℓ = 2	14	14	13	13
ℓ = 3	12	12	12	11
ℓ = 4	12	12	11	11

Number of rounds of Anemoi (s = 128).

Some Benchmarks

	$m (= 2\ell)$	RP^1	Poseidon ²	${\rm Griffin}^3$	Anemoi	_		$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
	2	208	198	-	76			2	240	216	-	95
D1CC	4	224	232	112	96	D1.66	4	264	264	110	120	
R1CS	6	216	264	-	120		R1CS	6	288	315	-	150
	8	256	296	176	160		8	384	363	162	200	
	2	312	380	-	191	_		2	320	344	-	212
Plonk	4 560 832 260 316	Plonk	4	528	696	222	344					
PIONK	6	756	1344	-	460		FIOIIK	6	768	1125	-	496
	8	1152	1920	574	648			8	1280	1609	492	696
	2	156	300	-	126			2	200	360	-	210
AIR	4	168	348	168	168	AIR	4	220	440	220	280	
AIK	6	162	396	-	216		AIK	6	240	540	-	360
	8	192	456	264	288		8	320	640	360	480	

(a) when $\alpha = 3$

(b) when $\alpha = 5$

Constraint comparison for standard arithmetization, without optimization (s = 128).

¹Rescue [Aly et al., ToSC 2020]

²Poseidon [Grassi et al., USENIX 2021]

³GRIFFIN [Grassi et al., CRYPTO 2023]

Conclusions

Anemoi: A new family of ZK-friendly hash functions

★ Contributions of fundamental interest:

★ New S-box: Flystel
★ New mode: Jive

* Identify a link between AO and CCZ-equivalence

Conclusions

Anemoi: A new family of ZK-friendly hash functions

★ Contributions of fundamental interest:

★ New S-box: Flystel
★ New mode: Jive

* Identify a link between AO and CCZ-equivalence

Related works

- * AnemoiJive₃ with TurboPlonK [Liu et al., 2022]
- * Arion [Roy, Steiner and Trevisani, 2023]
- * APN permutations over prime fields [Budaghyan and Pal, 2023]

Conclusions

Anemoi: A new family of ZK-friendly hash functions

★ Contributions of fundamental interest:

★ New S-box: Flystel
★ New mode: Jive

* Identify a link between AO and CCZ-equivalence

Related works

- * AnemoiJive₃ with TurboPlonK [Liu et al., 2022]
- * Arion [Roy, Steiner and Trevisani, 2023]
- * APN permutations over prime fields [Budaghyan and Pal, 2023]
 - More details on eprint.iacr.org/2022/840 or on anemoi-hash.github.io

Announcement

Cryptanalysis and design of symmetric primitives defined over large finite fields

November 27th, at 2:00pm

Inria Paris

Announcement

Cryptanalysis and design of symmetric primitives defined over large finite fields

November 27th, at 2:00pm

Inria Paris

Thanks for your attention!

More benchmarks and

Cryptanalysis

Purposes of Anemoi

The 2 purposes of Anemoi:

- * a hash function to emulate a random oracle
- ⋆ a compression function within a Merkle-tree

Using different functions for the different purposes

Sponge construction

★ Hash function (random oracle):

★ input: arbitrary length★ ouput: fixed length

New Mode: Jive

- ★ Compression function (Merkle-tree):
 - ★ input: fixed length
 - ★ output: (input length) /2

Dedicated mode: 2 words in 1

$$(x, y) \mapsto x + y + \mathbf{u} + \mathbf{v}$$
.

New Mode: Jive

★ Compression function (Merkle-tree):

* input: fixed length

⋆ output: (input length) /b

Dedicated mode: b words in 1

$$\mathtt{Jive}_b(P): egin{cases} (\mathbb{F}_q^m)^b & o \mathbb{F}_q^m \ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} \left(x_i + P_i(x_0,...,x_{b-1})
ight) \ . \end{cases}$$

Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon	3 2	110 88
Reinforced Concrete	3 2	378 236
Rescue-Prime	3	252
Griffin	3	125
AnemoiJive	2	86

	m	Constraints
Poseidon	3 2	98 82
Reinforced Concrete	3 2	267 174
Rescue-Prime	3	168
Griffin	3	111
AnemoiJive	2	64

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} . (s = 128).

Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon	3 2	110 88
Reinforced Concrete	3 2	378 236
Rescue-Prime	3	252
Griffin	3	125
AnemoiJive	2	86 56

	m	Constraints
Poseidon	3 2	98 82
Reinforced Concrete	3 2	267 174
Rescue-Prime	3	168
Griffin	3	111
AnemoiJive	2	64

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} . (s = 128).

with an additional quadratic custom gate: 56 constraints

Native performance

Rescue-12	Rescue-8	Poseidon-12	Poseidon-8	Griffin-12	Griffin-8	Anemoi-8
15.67 μ s	9.13 μ s	$5.87~\mu$ s	$2.69~\mu \mathrm{s}$	$2.87~\mu { m s}$	2.59 μ s	4.21 μ s

2-to-1 compression functions for \mathbb{F}_p with $p = 2^{64} - 2^{32} + 1$ (s = 128).

Rescue	Poseidon	Griffin	Anemoi
206 μs	9.2 μ s	74.18 μ s	128.29 μ s

For BLS12-381, Rescue, Poseidon, Anemoi with state size of 2, Griffin of 3 (s = 128).

Algebraic attacks: 2 modelings

(a) Model 1.

(b) Model 2.

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

(a) For different α .

(b) For the smallest α .

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} \exp \left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

(a) when p = 11 and $\alpha = 3$.

(b) when p = 13 and $\alpha = 5$.

LAT of $Flystel_p$.

(c) when p = 17 and $\alpha = 3$.