Assignment-3

- 1. Using both the methods of vectors and determinants, the volume of the of the crystal comes out to be 9 Units.
- 2. As per the question, the various plots plotted are given below:

6. Probability density function for ka=0.2 and V/E=0.5 is obtained as:

7. Values of Reflection Coefficients and Transmission Coefficients were obtained for corresponding values of V/E and Ka

	S. No.	V/E		Ka	Reflection Coeff.	Transmission Coeff.
					(R)	(T)
1		0.5	0.1		-0.022,i0.146	0.97765,-i0.1495
2		1	0.2		-0.3072, -i0.439	0.691,-0.483i
3		1.5	0.3		-0.824, -0.280i	0.158, -0.465i

For a sanity check, the sum of the norms of the coefficients was always 1.

8. For the sake of plotting, only the real part of the final solution is depicted. V/E=1.5 in all cases

- 9. I was able to write the code for n=0 and n=1. But I was not able to get the desired plot. I am unsure about the exact expectation from the solution of the problem.
- 14. Omega is assumed to be 1. Problem 7-8 is used used as the skeleton of the code. Ka=0.5. V0=1.5.

The plots for real and imaginary part obtained were dynamic in nature (which I am unable to show in the document). The plotter program is input based with default to real part. For real part input is 1, for the imaginary part, the input is 2 and for the probability density function the input is 3.