A Mathematical Model of STDs in Campus

0.1 Assumption of the model

- We assumed the total population(N) subdivided into five compartments.
- The state variables are the form $(S_1, I_1, S_2, I_2, T) \in \mathbb{R}^5$ with:
 - $-S_1$...Susceptible individuals in the university community.
 - $-I_1$... Infected individuals in the university community.
 - $-S_2 \dots$ Susceptible individuals in the university Surrounding .
 - $-I_2$... Infected individuals in the surrounding Population.
 - T \dots The number of individuals treated with STD in the health centers
- The main parametric assumption in our Model:-
 - $-\kappa$ be the proportion effective treatment program from STD(efficacy level) join the active susceptible compartments and the remaining proportion 1κ inefficient of the treatment program.
 - $-\gamma$ be the proportion of awareness level of STD join the active susceptible compartment S_2 and the remaining proportion $1-\gamma$ awareness level of STD from the disease join in to active susceptible individual in campus.
 - β_1 , β_2 and β_3 are transmission rate of the disease to an active susceptible (S_1 and S_2 individuals) from $I_1,$ I_2 and T

0.2 Parameter description

Table 1: Parameter values and their description

Table 1: Parameter values and their description			
Parameters	Description	Value(/year)	Sources
Λ	Recruitment rate		
γ	The proportion of awareness level of STD		
	join to the active susceptible		
κ	The proportion of effective treatment		
	from STD(efficacy level)		
ϵ	Rate of being put on treatment		
M	Recruitment of university students		
μ	The natural death rate		
d	Diseases related death rate		
ρ_1	The rate of infected person join the health		
	center from campus		
ρ_2	The rate of infected person join the health		
	center from surrounding		
σ_1	Recruitment rate of freshman students to S_1		
σ_2	Recruitment rate of freshman students to I_1		
β_1	Transmission rate per act in $I_1(t)$ class		
β_2	Transmission rate per act in $I_2(t)$ class		
β_3	Transmission rate per act in $T(t)$ class		
δ	The student graduation rate		
δ	The student graduation rate under treatment		
	center		
c	Average number of unsafe sexual acts		

0.3 Flow Chart of the dynamical system

0.4 Dynamical System

$$\begin{cases}
\frac{dS_1}{dt} &= \sigma_1 M + \kappa (1 - \gamma) \epsilon T - (\lambda + \mu + \delta) S_1 \\
\frac{dI_1}{dt} &= \sigma_2 M + \lambda S_1 - (\rho_1 + \mu + d + \delta) I_1 \\
\frac{dS_2}{dt} &= \Lambda + \kappa \gamma \epsilon T - (c\lambda + \mu) S_2 \\
\frac{dI_2}{dt} &= c\lambda S_2 - (\rho_2 + \mu + d) I_2 \\
\frac{dT}{dt} &= \rho_1 I_1 + \rho_2 I_2 - [\kappa \epsilon + \bar{\delta} (1 - \kappa) (1 - \gamma) \epsilon + \mu + d)]T
\end{cases}$$
(1)

with initial conditions: $S_1(0) = S_1^0$, $S_2(0) = S_2^0$, $I_1(0) = I_1^0$, $I_2(0) = I_2^0$ and $I_2(0) = I_2^0$.