

TrailerMate

Team Jason

Abdessamad Amadar Malaurie Bernard Sarah Bobillot Emilie Fraumar Killian Gonet Réda Kharoubi Antonin Laborde-Tastet

Step 1: Android application

You can see the state of the different sensors via the **Android application**. You also can communicate with the car by clicking on the button.

Step 3: Autonomous forward and backward movement

A control loop implementation allows to move forward or backward at a desired speed despite of perturbations.

Figure 1

(1) Control loop of the backward motion

Step 1: Android application

You can see the state of the different sensors via the Android application. You also can communicate with the car by clicking on the button.

Step 3: Autonomous forward and backward movement

A control loop implementation allows to move forward or backward at a desired speed despite of perturbations.

Figure 1

Step 2: Obstacle detection

With the **ultrasound sensors**, the trailer stops 20 cm before hitting an obstacle.

Step 4: Wheel improvement

Wheels' adherence and steering control loop are improved.

Figure 2

Step 1: Android application

You can see the state of the different sensors via the **Android application**. You also can communicate with the car by clicking on the button.

Step 3: Autonomous forward and backward movement

A control loop implementation allows to move forward or backward at a desired speed despite of perturbations.

Figure 1

(2) Correction of the wheels grip

Raymond

Step 2: Obstacle detection

With the **ultrasound sensors**, the trailer stops 20 cm before hitting an obstacle.

Step 4: Wheel improvement

Wheels' adherence and steering control loop are improved.

Figure 2

Step 6:

Step 1: Android application

You can see the state of the different sensors via the Android application. You also can communicate with the car by clicking on the button.

Step 3: Autonomous forward and backward movement

A control loop implementation allows to move forward or backward at a desired speed despite of perturbations.

Figure 1

Raymond

Step 2: Obstacle detection

With the **ultrasound sensors**, the trailer stops 20 cm before hitting an obstacle.

Step 4: Wheel improvement

Wheels' adherence and steering control loop are improved.

Figure 2

Step 6:

Step 1: Android application

You can see the state of the different sensors via the **Android application**. You also can communicate with the car by clicking on the button.

Step 3: Autonomous forward and backward movement

A control loop implementation allows to move forward or backward at a desired speed despite of perturbations.

Figure 1

Step 5: Reverse straight line

Figure 3

(3) Open and closed loop straight line

With the ultrasound sensors, the trailer stops 20 cm before hitting an obstacle.

Step 4: Wheel improvement

Wheels' adherence and steering control loop are improved.

Figure 2

Step 6:

Step 1: Android application

You can see the state of the different sensors via the Android application. You also can communicate with the car by clicking on the button.

Step 3: Autonomous forward and backward movement

A control loop implementation allows to move forward or backward at a desired speed despite of perturbations.

Figure 1

Step 5: Reverse straight line

Figure 3

3,2,1...GO!

Raymond

Step 2: Obstacle detection

With the **ultrasound sensors**, the trailer stops 20 cm before hitting an obstacle.

Step 4: Wheel improvement

Wheels' adherence and steering control loop are improved.

Figure 2

Step 6: Record and replay

An open loop sequence of movements is **recorded and stored**. It can then be replayed at any time.

You can see the state of the different sensors via the **Android application**. You also can communicate with the car by clicking on the button.

Step 3: Autonomous forward and backward movement

A control loop implementation allows to move forward or backward at a desired speed despite of perturbations.

Figure 1

Step 5: Reverse straight line

Figure 3

