Exploring an Imputation Strategy for TQIP ICU Days from Hospital Data

Lisa Over

This research is funded by the Department of Defense Contract No. W81XWH-16-D-0024 and is supported by the U.S. Army Medical Research Acquisition Activity.

Introduction

- LITES Task Order One (TO-001)
 - Linking Investigations in Trauma and Emergency Services (LITES)
 - https://www.litesnetwork.org/
- Data
 - Trauma Quality Improvement Program (TQIP) datasets
 - In-hospital electronic health records (EHR)
 - Electronic health records from pre-hospital transport services

Motivation

n-hospital	TQIP reports ICU days = null	TQIP reports ICU days = 0
Patients in © U	100	404
Patients not in © U	518	0

Table 1: TQIP values by In-hospital ICU status.

* TQIP total records = 77,538

Current Approach

Impute missing ICU days with TQIP ventilation days.

 ICU and ventilator days are highly correlated with r=0.87.

Figure 1: TQIP days in ICU by TQIP days on ventilator with 45° line with sample data (n=1,115), see Method step 5 below.

Study Objective

Estimate ICU length of stay (LOS) from in-hospital location records and estimate Lin's Concordant Correlation Coefficient (CCC) to assess agreement with TQIP reported ICU days.

Method

- 1. Evaluate the 504 records where in-hospital location records and TQIP disagree.
- 2. Evaluate the 518 records where in-hospital locations records and TQIP agree.

ICU status	Total Records	Average ventilation days (SD)	25 th , 50 th , 75 th , 85 th of ventilation days
TQIP ICU days are 0 or null, but in-hospital ICU records exist	504	7.14 (9.18)	1, 4, 8, 14
TQIP ICU days are null, and in- hospital ICU records do not exist	518	1.21 (0.98)	1, 1, 1, 1

Table 2: Summary of TQIP ventilation days by agreement with in-hospital ICU records.

Method

- 3. Estimate ICU LOS using a record-by-record count of days from in-hospital ICU location records.
- 4. Test the algorithm by comparing two methods for calculating hospital LOS.
- 5. Evaluate agreement between the estimated ICU LOS and TQIP ICU LOS using Lin's Concordant Correlation Coefficient (CCC).

Results

	CCC	95% C□
New Method	0.86	(0.85, 0.88)
Current Approach	0.72	(0.69, 0.74)

Table 5: Lin's Concordant Correlation Coefficient (CCC) with 95% confidence interval with sample data (n=1,115).

Figure 2: TQIP days in ICU by recordby-record count of days in ICU from in-hospital location records with 45° line with sample data (n=1,115).

Conclusion

- The data show higher agreement between TQIP ICU LOS and the estimated ICU LOS from in-hospital location records (CCC=0.86) than between TQIP ICU LOS and TQIP ventilation days (CCC=0.72).
- Based on the results from this study, we can impute TQIP ICU LOS when records meet these criteria:
 - In-hospital records indicate patients were in the ICU.
 - TQIP ventilation days are greater than 0.
 - TQIP ICU days are 0 or null.

Contact and Access

Lisa Over, lisa.over@pitt.edu

Authors

Lisa Over, MLIS^{1,2}, Kuo-Ting Huang, PhD², Bryan A. Cotton, MD MPH³, Andrew Dennis, DO⁴, Francis Guyette, MD⁵, Brian Harbrecht, MD⁶, Bellal A. Joseph, MD⁷, Ernest Eugene Moore, MD⁸, Daniel G. Ostermayer, MD⁹, Silvia Owusu-Ansah, MD MPH¹⁰, Mayur B. Patel, MD MPH¹¹, Martin Schreiber, MD¹², Samual R. Todd, MD¹³, Chad T. Wilson, MD¹⁴, Stephen R. Wisniewski, PhD¹⁵, Jason Lee Sperry, MD MPH¹⁶

¹University of Pittsburgh, Epidemiology Data Center; ²University of Pittsburgh, Department of Information Culture and Data Stewardship; ³University of Houston School of Medicine, Department of Surgery; ⁴Cook County Health, Department of Trauma and Burn; ⁵University of Pittsburgh School of Medicine, Department of Emergency Medicine; ⁶University of Louisville School of Medicine, Department of Surgery; ⁷University of Arizona Tucson College of Medicine, Department of Surgery; ⁸University of Colorado Denver Health, Department of General Surgery; ⁹University of Houston School of Medicine, Department of Emergency Medicine; ¹⁰University of Pittsburgh School of Medicine, Assistant Professor of Pediatrics and Emergency Medicine; ¹¹Vanderbilt University Medical Center, Department of Surgery; ¹²Oregon Health & Science University, Department of Surgery; ¹³Grady Memorial Hospital, Department of Trauma Surgery; ¹⁴Baylor College of Medicine, Department of Surgery; ¹⁵University of Pittsburgh, School of Public Health; ¹⁶University of Pittsburgh School of Medicine, Department of General/Trauma Surgery

Aknowledgments

This research is funded by the Department of Defense Contract No. W81XWH-16-D-0024 and is supported by the U.S. Army Medical Research Acquisition Activity.

References

National Trauma Data Standard: Data Dictionary 2022 Admissions. (2021). American College of Surgeons. 130.

