

Metody programowania równoległego Sprawozdanie z mierzenia opóźnienia i przepustowości w klastrze

autor: Ilona Tomkowicz

Akademia Górniczo-Hutnicza Wydział Informatyki, Elektroniki i Telekomunikacji, Informatyka, II stopień, I semestr

08 marca 2020

Contents

1	Kod	ły źródłowe	1
	1.1	Komunikacja z użyciem Send i Recv	1
	1.2	Komunikacja z użyciem Isend i Irecv	2
	1.3	Komunikacja z użyciem jednego węzła i pamięci współdzielonej	3
	1.4	Komunikacja z użyciem jednego węzła i połączenia sieciowego	3
	1.5	Komunikacja z użyciem dwóch węzłów, będących fizycznie na tej samej maszynie i połączenia sieciowego	4
	1.6	Komunikacja z użyciem dwóch węzłów, będących fizycznie na różnych maszynach i połączenia sieciowego	4
2	Dar	ne pomiarowe	5
3	Wy	kresy dla różnych konfiguracji	9
4	Wn	ioski	12

1. Kody źródłowe

1.1 Komunikacja z użyciem Send i Recv

```
#include <stdio.h>
#include "mpi.h"
void get device info(int* rank, int*size)
    MPI_Comm_rank (MPI_COMM_WORLD, rank); /* get current process id */
    MPI_Comm_size (MPI_COMM_WORLD, size); /* get number of processes */
    //printf("Current process id %d, number of processes %d. \n", *rank, *size);
}
int main(int argc, char** argv) {
    int rank, size, i;
                n = 10000;
    int
    MPI Status status;
                start, elapsed;
    double
    MPI Init(&argc, &argv);
    get_device_info(&rank, &size);
    int len = 2 << 13; //
    /* opoznienie */
    if (rank == 0)
           int k[len];
           start = MPI Wtime();
           for (i = 0; i < n; ++i)
               k[0] = i;
               MPI Send(k, len, MPI INT, 1, 123, MPI COMM WORLD);
               MPI_Recv(k, len, MPI_INT, 1, 123, MPI_COMM_WORLD, &status);
               if (k[0] != i+1) printf("error \n");
           }
         elapsed = MPI Wtime() - start;
         printf("av_message_of_length_%d_has_time_of_%g_sec n", len,
                                                                        elapsed /(2*n);
         fflush (stdout);
```

```
}
    /* przepustowosc */
    if (rank = 1)
    {
           int k[len];
           start = MPI Wtime();
           for (i = 0; i < n; ++i)
           \{ k[0] = i;
              MPI\_Send(k, len, MPI\_INT, 0, 123, MPI\_COMM\_WORLD);
              MPI Recv(k, len, MPI INT, 0, 123, MPI COMM WORLD, &status);
              if (k[0] != i+1) printf("error \n");
           elapsed = MPI Wtime() - start;
           long int s = sizeof(k);
           printf("av_message_of_size_%lu_has_%g_Mbit/s\n",
                  8*s, 8*s/(1000000 * elapsed/(2*n));
           fflush (stdout);
     MPI Finalize();
     return 0;
}
```

1.2 Komunikacja z użyciem Isend i Irecv

```
#include <stdio.h>
#include "mpi.h"
void get device info(int* rank, int*size)
    \label{eq:mpi_comm_rank} $$ MPI\_COMM\_WORLD, rank); \ /* \ get \ current \ process \ id \ */ \ . \\
    MPI_Comm_size (MPI_COMM_WORLD, size); /* get number of processes */
    //printf("Current process id %d, number of processes %d. \n", *rank, *size);
}
int main(int argc, char** argv) {
    int rank, size, i;
                 n = 10000;
    MPI Status status;
    MPI Request req1, req2;
    double
                 start time, elapsed time;
    MPI Init(&argc, &argv);
    get device info(&rank, &size);
    int len = 2 < < 4;
    if (rank = 0)
```

```
int k[len];
           start_time = MPI Wtime();
           for (i = 0; i < n; ++i)
               k[0] = i;
               MPI Isend(k, len, MPI INT, 1, 123, MPI COMM WORLD&req1);
               MPI Irecv(k, len, MPI INT, 1, 123, MPI COMM WORLD, &req2);
               MPI Wait(&req1, &status);
               if (k[0] != i) printf("error\n");
           }
         elapsed time = MPI Wtime() - start time;
         printf("av_message_of_length_%d_has_time_of_%g_sec\n", len, elapsed/(2*n));
         fflush (stdout);
    }
    if (rank == 1)
           int k[len];
           start time = MPI Wtime();
           for (i = 0; i < n; ++i)
              k[0] = i;
              MPI Isend(k, len, MPI INT, 0, 123, MPI COMM WORLD, &req1);
              MPI Irecv(k, len, MPI INT, 0, 123, MPI COMM WORLD, &req2);
              MPI Wait(&req2, &status);
              if (k[0] != i) printf("error\n");
           elapsed time = MPI Wtime() - start time;
           printf("av_message_of_size_%lu_has_%g_Mbit/s\n",
                  8*s, 8*s/(1000000 * elapsed/(2*n));
           fflush (stdout);
    MPI_Wait(&req1, &status);
    MPI Wait(&req2, &status);
     MPI Finalize();
     return 0;
}
```

1.3 Komunikacja z użyciem jednego węzła i pamięci współdzielonej

Konfiguracja pliku all
nodes zawierała tylko adres tego węzła, a program uruchamiano na tym samym węźle.
 vnode $-01.\,\mathrm{dydaktyka}$. i csr . agh
. edu . pl : 4

1.4 Komunikacja z użyciem jednego węzła i połączenia sieciowego

Konfiguracja pliku allnodes zawierała tylko adres tego węzła, a program uruchamiano na innym węźle, w tym wypadku na 02.

1.5 Komunikacja z użyciem dwóch węzłów, będących fizycznie na tej samej maszynie i połączenia sieciowego

Konfiguracja pliku allnodes zawierała adresy używanych węzłów (01, 03), a program uruchamiano na węźle 02.

```
vnode -01. dydaktyka. icsr. agh. edu. pl:4
vnode -03. dydaktyka. icsr. agh. edu. pl:4
```

1.6 Komunikacja z użyciem dwóch węzłów, będących fizycznie na różnych maszynach i połączenia sieciowego

Konfiguracja pliku allnodes zawierała adresy używanych wezłów (05, 06), a program uruchamiano na weźle 02.

```
vnode -05. dydaktyka. icsr. agh. edu. pl
vnode -06. dydaktyka. icsr. agh. edu. pl
```

2. Dane pomiarowe

Pomiary wykonano dla paczek od 64 B do wielkości maksymalnej, która nie blokowała wykonania programu. Zrobiono 10000 iteracji w połączeniu ping-pong w celu zmierzenia poniższych parametrów. Dokładne dane jakich maszyn użyto w kolejnych konfiguracjach znajdują się w poprzednim rozdziale.

Table 2.1: Jeden węzeł, pamięć współdzielona

rozmiar [bit]	Send/recv przepustowość [Mbit/s]
64	347.872
256	1328.89
1024	4148.32
4096	12235.5
16384	38741.4
65536	60750.5
262144	61720.4
1048576	51421.7

Table 2.2: Jeden węzeł, pamięć współdzielona

size [bit] Isend/Irecv przepustowość [Mł	
64	75.871
256	322.474
1024	1240.93
4096	7566.22
16384	27147.9
65536	81429.6
262144	119653
1048576	55264.7

Table 2.3: Jeden węzeł, połączenie sieciowe

size [bit]	Send/recv przepustowość [Mbit/s]	
64	339.148	
256	1354.45	
1024	4119.87	
4096	13120.9	
16384	36961.9	
65536	46702.7	
262144	54996.8	

Table 2.4: Jeden węzeł, połączenie sieciowe

size [bit] Isend/Irecv przepustowość [M	
64	74.3444
256	275.714
1024	1601.85
4096	4002.86
16384	25237.1
65536	71933.1
262144	75605.2
1048576	43859.2

Table 2.5: Dwa węzły, jeden host

size [bit]	Send/recv przepustowość [Mbit/s]
64	319.243
256	1156.55
1024	4638.69
4096	12530.4
16384	31242.5
65536	59722.3
262144	53988.5

Table 2.6: Dwa węzły, jeden host

size [bit] Isend/Irecv przepustowość [Mbit	
64	74.64
256	337.766
1024	1003.36
4096	4407.19
16384	26874.5
65536	60076.7
262144	120085
1048576	36403.5

Table 2.7: Dwa węzły, różne hosty

size [bit]	Send/recv przepustowość [Mbit/s]
64	3.09821
256	12.1787
1024	49.11
4096	76.0858
16384	120.212
65536	440.153
262144	1206.13
524288	1917.71

Table 2.8: Dwa węzły, różne hosty

size [bit]	Isend/Irecv przepustowość [Mbit/s	
64	9.89011	
256	36.2111	
1024	92.1024	
4096	360.693	
16384	895.855	
65536	2388.71	
262144	2862.97	
1048576	3153.6	

Table 2.9: Porównanie opóźnienia dla małej paczki 64 bitów

	$\operatorname{Send}+\operatorname{Recv}$	${\rm Isend+Irecv}$
zad_1	1.94335e-07 sec	7.73275e-07 sec
zad_2	2.21586e-07 sec	8.59272e-07 sec
zad_3	1.99199e-07 sec	$8.57234e-07 \ sec$
zad_4	$2.06115e-05 \ sec$	6.07103 e-06 sec

3. Wykresy dla różnych konfiguracji

Połączenie przez sieć - jeden węzeł (01)

Połączenie przez sieć - dwa węzły (01,03) na tym samym hoście fizycznym

Połączenie przez sieć - dwa węzły (05,06) na różnych hostach

4. Wnioski

Zgodnie z oczekiwaniami największą przepustowość ma połączenie lokalne bez użycia sieci. Biorąc pod uwagę najlepszy przypadek (połączenie asynchroniczne przesyłające 32768 B - pik czerwonej linii), przepustowość dochodzi aż do 125000Mbit/s. Mimo, że połączenie przez sieć przez dwa węzły (01,03) daje podobne rezultaty w maksimum, to krzywa wykresu jest bardziej stroma.

Nie każdy test udało się nasycić dojściem do maksymalnej przepustowości. W większości dla komunikacji asynchronicznej można zaobserwować maksymalny pik, a potem spadek przepustowości. Dla komunikacji synchronicznej także istnieje niższa granica maksymalnych paczek, bo 32768 B to zwykle największa ilość jaką udało się przesłać. Dla komunikacji asynchronicznej ta wielkość dochodzi do 131072 B.

W każdej konfiguracji komunikacja asynchroniczna ma większą przepustowość, jednak opóźnienie związane z tą komunikacją jest większe. Jest to różnica mniejsza niż jeden rząd wielkości, więc dla używanych danych nie ma dużego znaczenia.

Opóźnienie pomiędzy konfiguracjami dla tych samych operacji jest porównywalne dla wszystkich przypadków poza ostatnim. W konfiguracji, gdzie łączymy dwa różne hosty opóźnienie rośnie nawet o 2 rzędy wielkości, co jest odczuwalną różnicą. Wniosek z tego jest taki, że dopóki węzły są fizycznie na tym samym hoście to nie będzie miało drastycznego znaczenia czy użyjemy do obliczeń połączenia sieciowego, pamięci współdzielonej, komunikacji synchronicznej czy asynchronicznej. Dopiero przy komunikacji dwóch różnych fizycznie hostów takie szczegóły konfiguracyjne dadzą się odczuć.