TD2

Prof. Habiba Drias

Exercices

Exercice 2.1

- 1) Implémenter chacune des structures suivantes à l'aide de tableaux
 - a. Liste
 - b. Oueue
 - c. Pile
- 2) Ecrire des algorithmes d'insertion et de suppression d'un élément en tenant compte de tous les cas possibles de l'état de la structure à savoir : vide, contenant un seul élément ou contenant plus d'un élément. Calculer la complexité de chacun des algorithmes développés.
- 3) Répéter les deux premières questions en utilisant des listes dynamiques à la place des tableaux

Exercice 2.2

Reprendre l'exercice précédent mais en considérant cette fois-ci, la structure d'arbre binaire. Calculer la complexité de chacun des algorithmes développés.

Exercice 2.3

Considérer un tableau constitué des n premiers nombres entiers (1, 2, ..., n). Une méthode de détermination des nombres premiers inférieurs au sens large à n, consiste à considérer le nombre 2 qui est premier puis à éliminer tous les nombres multiples de 2 car ils ne sont pas premiers, ensuite itérer ce processus en continuant avec le nombre suivant non éliminé c'est-à-dire 3 jusqu'à traiter tous les entiers du tableau.

- 1) Illustrer chaque itération du procédé de calcul des nombres premiers décrit ci-dessus sur les 10 premiers nombres entiers
- 2) Ecrire un algorithme de calcul et d'impression des nombres premiers inférieurs au sens large à n. Il est recommandé par souci de simplification de l'algorithme de mettre le nombre à 0 s'il est premier et à 1 sinon, une fois qu'il est traité.
- 3) Calculer la complexité de l'algorithme.
- 4) Ecrire l'algorithme en assembleur à l'aide du jeu d'instructions donné en cours.
- 5) Calculer la complexité du programme assembleur

Exercice 2.4

Ecrire les procédures suivantes :

- Insertion d'un élément dans un ensemble
- Suppression d'un élément d'un ensemble
- Union de deux ensembles
- Intersection de deux ensembles

Exercice 2.5

Le parcours des nœuds dans un arbre binaire peut se faire selon les deux stratégies suivantes :

- Le parcours selon l'ordre préfixé défini comme suit :
 - a. Visiter la racine
 - b. Parcourir selon l'ordre préfixé le sous arbre dont la racine est le fils gauche de la racine

- c. Parcourir selon l'ordre préfixé le sous arbre dont la racine est le fils droit de la racine
- Le parcours selon l'ordre post-fixé défini comme suit :
 - a. Parcourir selon l'ordre post-fixé le sous arbre dont la racine est le fils gauche de la racine
 - b. Parcourir selon l'ordre post-fixé le sous arbre dont la racine est le fils droit de la racine
 - c. Visiter la racine
- 1- Pour chacune de ces stratégies, écrire un algorithme récursif pour parcourir un arbre binaire
- 2- Donner les versions itératives de ces algorithmes

Exercice 2.6

- 1- Ecrire un algorithme pour inverser l'ordre d'une liste. Calculer sa complexité
- 2- Ecrire un algorithme pour créer une liste doublement chainée à partir d'une liste quelconque. Calculer sa complexité

Exercice 2.7

Considérer deux listes de nombres entiers triées par ordre croissant. On souhaiterait fusionner ces deux listes pour obtenir une troisième liste triée.

- 1) Ecrire un algorithme de fusion de deux listes triées
 - a. En utilisant la structure de tableau
 - b. En utilisant la structure dynamique de listes
- 2) Quelle est la complexité de votre algorithme.
- 3) Comment représenter une liste chainée en assembleur. Illustrer votre réponse à l'aide d'un petit exemple
- 4) Ecrire l'algorithme de fusion proposé en assembleur à l'aide du jeu d'instructions donné en cours.
- 5) Calculer sa complexité

Exercice 2.8 (Tour de Hanoi)

Ecrire une version itérative de la procédure de la tour de Hanoi vue en cours.

Exercice 2.10

Ecrire un algorithme pour évaluer les expressions arithmétiques sur les opérateurs + et *, écrites en

- a) notation polonaise (préfixée)
- b) infixée
- c) post-fixée

Exercice 2.11

Soit G = (V, E) un graphe orienté sans cycle. Ecrire un algorithme pour associer des entiers aux sommets de G de manière que si (v, w) est un arc orienté alors l'entier associé à v est plus petit que l'entier associé à v. Calculer sa complexité ? (sol:(IEI + IVI).

Exercice 2.12

Soient G= (V,E) un graphe orienté sans cycle et deux sommets s et d de V. Ecrire un algorithme pour trouver un ensemble de chaines de s vers d satisfaisant les conditions suivantes:

- 1) Seuls s et d sont communs à deux chaines.
- 2) Aucune autre chaine satisfaisant (1) ne peut être ajoutée à l'ensemble. Quelle est la complexité de l'algorithme ? (Sol: (IEI + IVI) .