

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2006

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Моделирование динамических систем

СВОЙСТВА РЕШЕНИЙ УРАВНЕНИЙ ТИПА ДУФФИНГА С УСЛОВИЯМИ УДАРА

С.Г.КРЫЖЕВИЧ

198504, Санкт-Петербург, Петродворец, Университетский проспект, д.28 Санкт - Петербургский государственный университет, Математико-механический факультет, e-mail: kryzhevitz@rambler.ru, kryzhevich@hotmail.com

Аннотация.

Исследуются системы, описывающие движение материальной точки по прямой с абсолютно упругими ударами о неподвижный ограничитель. Приводятся условия общего вида, достаточные для наличия у рассматриваемой системы так называемых хаотических инвариантных множеств. Описывается механизм образования такого рода множеств.

Введение

В последнее время появилось большое число научных работ, в которых изучаются различные аспекты динамики систем с условиями удара [3]—[6], [10]—[33]. Хотя такие системы не сводятся к обыкновенным

 $^{^{0}}$ Работа выполнена при частичной финансовой поддержке РФФИ, грант №03-01-06493 а также Министерства Образования России и Правительства Санкт-Петербурга, грант №PD05-1.1-94, МАС, грант №03-01-06493, программы "Ведущие научные школы грант НШ-2271.2003.1 и научной программы министерства образования РФ "Университеты России".

дифференциальным уравнениям, их свойства в значительной мере совпадают со свойствами классических динамических систем. Так, в статьях [22] и [23] изучались общие свойства решений виброударных систем, такие, как существование, единственность, ограниченность и непрерывная зависимость от начальных данных и параметров. В статьях [3], [5], [6], [11]—[14], [16], [17], [19], [20], [24]—[27], [29]—[33] для различных периодических виброударных систем показывалась возможность наличия странных аттракторов. Приводились условия периодического и хаотического поведения решений виброударных систем.

Так, в статье [17] изучалась динамика мяча, подскакивающего на гармонически осциллирующей поверхности. Пусть период колебаний поверхности равен T. Рассматривались моменты ударов t_k , фазы $\tau_k = t_k \mod T$ и соответствующие им скорости v_k . Отображение Пуанкаре строилось следующим образом: паре (τ_k, v_k) ставилась в соответствие пара (τ_{k+1}, v_{k+1}) , соответствующая следующему по времени удару. Показывалось, что при определенных предположениях на рассматриваемую систему такое отображение обладает свойствами, близкими к свойствам так называемой "подковы Смейла" [28], в частности, имеет хаотическое инвариантное множество.

В статье [3] (см. также список литературы в указанной работе) изучались системы с неупругим ударом. Для таких систем исследовалась бифуркация, связанная с приходом периодического движения на границу области решений с бесконечным числом ударов за конечное время. Показывалось, что это может привести к возникновению хаотических колебаний.

В совместных работах автора с В. А. Плиссом [5], [6] исследовалось поведение решений системы с условием абсолютно упругого удара, описываемой в промежутке между ударами линейным уравнением второго порядка с кусочно-постоянной правой частью. Для рассматриваемой системы приводились условия, достаточные для наличия странного аттрактора и условия устойчивости в целом периодического решения рассматриваемой системы. Описывались механизмы возникновения хаотических режимов.

1 Постановка задачи

Рассматривается движение материальной точки по прямой под действием нелинейной восстанавливающей силы, сопротивления среды и периодической вынуждающей силы (рис. 1). Считаем, что рассматриваемая точка абсолютно

упруго ударяется об ограничитель. Движение описывается уравнением

$$\ddot{x} + p(x)\dot{x} + q(x) = f(t). \tag{1.1}$$

Относительно функций p(x) и q(x) предположим, что они являются C^1 -гладкими по x и аналитичны в окрестности значения x=0, причем

$$p(x) \ge p_0 > 0, \qquad q'(x) \ge q_0 > 0$$
 (1.2)

для любого $x \geqslant 0$. Отметим, что функция q(x) обратима. Предположим, что

$$\omega^2(x) = q'(x) - p^2(x)/4 > 0 \tag{1.3}$$

и, кроме того, найдутся такие константы α и $\beta \geqslant 0$, что

$$q'(x) \leqslant \alpha + \beta p(x) \tag{1.4}$$

для любого $x \geqslant 0$ и при этом справедливы следующие соотношения:

$$\Delta = 4(\alpha + \beta p_0) - p_0^2 > 0,$$

$$\sqrt{\alpha + \beta^2} < p_0 \exp\left(\frac{p_0}{\sqrt{\Delta}} \left(\arctan\frac{p_0}{\sqrt{\Delta}} + \arctan\frac{2\alpha + \beta p_0}{\beta\sqrt{\Delta}}\right)\right).$$
(1.5)

Введем обозначения $p_1 = p(0)$, $q_1 = q'(0)$. Не умаляя общности, можно считать, что q(0) = 0, для этого достаточно вычесть из обеих частей уравнения (1.1) число q(0). Также можно предположить, что $\omega(0) = 1$. Выполнения последнего условия можно добиться, проведя замену переменных $t = \mu \tau$, выбрав при этом подходящее $\mu > 0$.

Пусть правая часть f(t) задана следующей формулой

$$f(t) = f(t,T) = \overline{f}(tT_0/T),$$

где $\overline{f}(t)$ – аналитическая по t функция периода T_0 , а T – большой параметр. Считаем, что на отрезке $[0,T_0)$ функция $\overline{f}(t)$ имеет ровно 2 корня, причем $\overline{f}'(0)>0, \ \overline{f}'(\tau_1)<0.$ Положим $T_1=T\tau_1/T_0, \ T_2=T-T_1.$

Предположим справедливость следующего условия

$$\frac{1}{2} \int_0^{\tau_1} p(q^{-1}(\overline{f}(s))) ds + \frac{2p_1}{3} \int_{\tau_1}^{T_0} \overline{f}(s) ds + \frac{p_1(T_0 - \tau_1)}{2} = -\alpha_0 < 0.$$
 (1.6)

Ниже будет показано, что выполнение этого условия означает наличие у рассматриваемой системы неустойчивых решений. Уравнение (1.1) задано

при $x\geqslant 0$, а условие удара выражается следующим образом: если $x(t_0)=0,$ а $\dot{x}(t_0-0)\leqslant 0,$ то

$$\dot{x}(t_0 + 0) = -\dot{x}(t_0 - 0) \tag{1.7}$$

и, если $x(t_0)=0, \ \dot{x}(t_0-0)=0$ и $kT+T_1\leqslant t_0<(k+1)T$ для некоторого $k\in\mathbb{Z},$ то x(t)=0 при $t_0\leqslant t\leqslant (k+1)T.$

Условимся здесь и далее считать все числовые величины, обозначаемые буквами c и C, положительными константами. Примем также следующие стандартные обозначения: a(t) = o(b(t)), если $a(t)/b(t) \to 0$, и a(t) = O(b(t)), если $|a(t)| \leqslant C|b(t)|$. Из вида функции f(t) ясно, что f'(t) = O(1/T). Вместе с тем,

$$T|f'(t)| + |f(t)| > c$$
 для любого $t \in \mathbb{R}$. (1.8)

2 Основные свойства рассматриваемой системы

В отличие от систем, рассмотренных в работах [5] и [6], уравнение (1.1), вообще говоря, нелинейно и не всегда разрешимо. В общем случае, оно может иметь хаотические режимы даже при отсутствии условий удара. Однако, наличие ударов само по себе является сильной нелинейностью и может привести к образованию хаоса даже в случае, когда уравнение (1.1) конвергентно, что и будет продемонстрировано в настоящей работе.

Полагая

$$F(x) = \int_0^x p(s) ds, \qquad y = \dot{x} + F(x),$$

сведем уравнение (1.1) к эквивалентной системе:

$$\dot{x} = y - F(x), \qquad \dot{y} = -q(x) + f(t),$$
 (2.1)

заданной на множестве $\Lambda = \{z = (x,y) \in \mathbb{R}^2 : x > 0\} \bigcup \{(0,y) : y \geqslant 0\}.$ Отметим, что $y = \dot{x}$, если x = 0, следовательно, условия удара примут вид: y(t+0) = -y(t-0) при x = 0 и, если $x(t_0) = 0$, $\dot{x}(t_0-0) = 0$ и $kT + T_1 \leqslant t_0 < (k+1)T$ для некоторого $k \in \mathbb{Z}$, то x(t) = y(t) = 0 при $t_0 \leqslant t \leqslant (k+1)T$.

Мы будем также пользоваться следующими стандартным способом сведения уравнения (1.1) к системе: если положить $\hat{y} = \dot{x}$, получим

$$\dot{x} = \hat{y}, \qquad \dot{\hat{y}} = -p(x)\hat{y} - q(x) + f(t), \tag{2.2}$$

Система (2.2) задана на том же множестве Λ и условия удара имеют вид (1.7), если заменить \dot{x} на \hat{y} . Положим $z=(x,y),\,\hat{z}=(x,\hat{y}).$

Системы (2.1) и (2.2) с указанными условиями удара будем отождествлять и обозначать символами (*) и ($\widehat{*}$) соответственно. В зависимости от обстоятельств в дальнейшем мы будем пользоваться той или иной формой рассматриваемой системы. Как следует из результатов статьи [23], для любых t_0 , x_0 и y_0 , удовлетворяющих условиям $(x_0, y_0) \in \Lambda$, решение $x(t, t_0, x_0)$ системы (*) с начальными данными $x(t_0) = x_0$, $y(t_0) = y_0$ определено, единственно при всех t и локально непрерывно по начальным данным при всех значениях t, таких, что $x(t) \neq 0$.

Покажем, что рассматриваемая система диссипативна. Рассмотрим положительно определенную функцию

$$v(x,y) = y^2 - yF(x) + \frac{F^2(x)}{2} + 2\int_0^x q(x) dx.$$

Для любого решения (x(t),y(t)) системы (*) функция v(x(t),y(t)) непрерывна по t, в том числе и в точках ударов. В промежутках между ударами производная функции v в силу системы (2.1) равна

$$\dot{v} = -(y - F(x))^2 p(x) - q(x)F(x) + (2y - F(x))f(t).$$

Повторяя доказательство теоремы 4.2 книги [7], легко проверить, что найдется такое число $R_D > 0$, что

$$\dot{v} < 0$$
 при $x^2 + y^2 > R_D^2$. (2.3)

Следовательно, все решения системы (*) в некоторый момент попадают в область $D=\{z=(x,y): x^2+y^2\leqslant R_D^2, x\geqslant 0\}$ и остаются там с возрастанием времени. Это и означает диссипативность системы (*). Отметим, что величина R, равно как и компакт D, не зависят от T.

Рассмотрим отображение Пуанкаре G для системы (*) на периоде [0,T], то есть положим $G(z_0)=z(T,0,z_0)$. Помимо виброударной системы (*) рассмотрим дискретную динамическую систему

$$z_{n+1} = G(z_n), \tag{2.4}$$

определенную на множестве Λ . Аналогичным образом определим отображение Пуанкаре \widehat{G} , соответствующее системе $(\widehat{*})$.

Определение 2.1. Назовем решение z(t) системы (*) неблуждающим, если z(0) есть неблуждающая точка системы (2.4).

Отметим, что в силу (2.3) все неблуждающие решения z(t) при любом значении t содержатся в области D.

3 Свойства решений уравнения (1.1)

Доопределим функции p и q, положив p(x)=p(-x) и q(x)=-q(-x) при x<0. Функции p и q, определенные таким образом, удовлетворяют условиям

$$p(x) \in \text{Lip}_{loc}, \quad p(x) \geqslant p_0 > 0$$
 для любого $x \in \mathbb{R}$; $q \in C^1, \quad q'(x) \geqslant q_0 > 0$ для любого $x \in \mathbb{R}$.

Итак, мы можем считать, что уравнение (1.1) и система (2.1) заданы при всех значениях x.

Определение 3.1. Уравнение (1.1) конвергентно, если у него есть единственное периодическое решение $\varphi(t)$, к которому все остальные решения неограниченно приближаются в метрике C^1 с ростом времени.

Периодическому решению $\varphi(t)$ уравнения (1.1) соответствует периодическое решение

$$\Phi(t) = \begin{pmatrix} \varphi(t) \\ \psi(t) \end{pmatrix} = \begin{pmatrix} \varphi(t) \\ \dot{\varphi}(t) + F(\varphi(t)) \end{pmatrix}$$

системы (2.1). Будем говорить, что система (2.1) является конвергентной, если таковым является уравнение (1.1).

Лемма 3.1. При сделанных выше предположениях уравнение (1.1) конвергентно.

Доказательство. Периодическое решение $\varphi(t)$ существует в силу диссипативности системы (2.1). Фиксируем $\varphi(t)$ и рассмотрим систему

$$\dot{u} = v - F(u + \varphi(t)) + F(\varphi(t));$$

$$\dot{v} = -q(u + \varphi(t)) + q(\varphi(t)),$$
(3.1)

получаемую из (2.1) подстановкой $x=u+\varphi(t),\ y=v+\dot{\varphi}(t)+F(\varphi(t)).$ Положим

$$\widetilde{p}(t,u) = \frac{F(u+\varphi(t)) - F(\varphi(t))}{u}, \quad \widetilde{q}(t,u) = \frac{q(u+\varphi(t)) - q(\varphi(t))}{u}.$$

При u=0 непрерывно доопределим $\widetilde{p}(t,0)=p(\varphi(t)),\ \widetilde{q}(t,0)=q'(\varphi(t)).$

Система (3.1) примет вид

$$\dot{u} = v - \widetilde{p}(t, u)u;$$
 $\dot{v} = -\widetilde{q}(t, u)u.$

Очевидно, что $\widetilde{p}(t,u) \geqslant p_0$, $\widetilde{q}(t,u) \geqslant q_0$ для любых $t,u \in \mathbb{R}$. Кроме того,

$$\widetilde{q}(t,u) = \frac{\int_{\varphi(t)}^{u+\varphi(t)} q'(\xi) d\xi}{u} \leqslant \frac{\int_{\varphi(t)}^{u+\varphi(t)} (\alpha + \beta p(\xi)) d\xi}{u} \leqslant \alpha + \beta \widetilde{p}(t,u).$$

Тогда, как следует из результатов работы [2], при выполнении оценок (1.2), (1.4) и (1.5) система (3.1) конвергентна, и, стало быть, то же верно для уравнения (1.1). Лемма доказана.

Замечание 3.1. B дальнейшем достаточно предположить вместо выполнения условий (1.4) и (1.5) конвергентность уравнения (1.1) для достаточно больших значений параметра T. Все приводимые ниже результаты останутся справедливыми.

Обозначим $h(t) = q^{-1}(f(t))$.

Лемма 3.2. При больших значениях параметра T для любого $t \in \mathbb{R}$ справедливы следующие оценки

$$|\varphi(t) - h(t)| \leqslant C/T, \quad |\dot{\varphi}(t) - \dot{h}(t)| \leqslant C/T^2. \tag{3.2}$$

Доказательство. Положим $h(t) = q^{-1}(f(t))$ и сделаем замену переменных $\xi = x - h(t)$. Уравнение (1.1) примет вид

$$\ddot{\xi} + p(\xi + h(t))\dot{\xi} + p(\xi + h(t))\dot{h}(t) + q(\xi + h(t)) - q(h(t)) + \ddot{h}(t) = 0.$$
 (3.3)

Легко заметить, что уравнение (3.3) можно записать следующим образом

$$\ddot{\xi} + p(h(t))\dot{\xi} + q'(h(t))\xi = R(t, \xi, \dot{\xi}),$$

где $|R(t,0,0)| = |p(h(t))\dot{h}(t) + \ddot{h}(t)| \leqslant C_1/T$. Кроме того, найдется такое $\rho > 0$, что

$$|R(t, x_1, y_1) - R(t, x_2, y_2)| \le C\left(\frac{1}{T} + \rho\right)(|x_1 - x_2| + |y_1 - y_2|)$$
 (3.4)

для любых пар (x_1,y_1) и (x_2,y_2) , таких, что $x_i^2+y_i^2\leqslant \rho^2$.

Рассмотрим также уравнение линейного приближения

$$\ddot{\xi} + p(h(t))\dot{\xi} + q'(h(t))\xi = 0. \tag{3.5}$$

В силу результатов Алексеева и Лященко (см. [1]) при больших значениях параметра T уравнение (3.5) сводится к гиперболической системе, причем соответствующие константы гиперболичности могут быть выбраны не

зависящими от T. С другой стороны, рассматривая (3.5) как линейное приближение к (3.3), из теоремы Ляпунова-Пуанкаре получаем, что уравнение (3.3) имеет единственное ограниченное решение, стремящееся к нулю по норме в C^1 при $T \to \infty$. Очевидно, это будет $\varphi(t) - h(t)$. При этом оценка нормы этого периодического решения, получаемая при доказательстве теоремы Ляпунова-Пуанкаре, даст первую из формул (3.2).

Подставляя $\varphi(t)$ в уравнение (1.1) и дифференцируя полученное соотношение, получаем

$$\ddot{\varphi}(t) + p'(\varphi(t))\dot{\varphi}^2(t) + p(\varphi(t))\ddot{\varphi}(t) + q'(\varphi(t))\dot{\varphi}(t) = f'(t).$$

Следовательно, функция $T\dot{arphi}(t)$ есть решение уравнения

$$\ddot{x} + p(\varphi(t))\dot{x} + q'(\varphi(t))x + p'(\varphi(t))x^2/T = Tf'(t). \tag{3.6}$$

Применяя к уравнению (3.6) рассуждения, аналогичные первой части доказываемой теоремы, получаем справедливость второй из формул (3.2). Лемма доказана.

Следствие 3.1. При больших значениях параметра T периодическое решение $\varphi(t)$ уравнения (1.1) имеет на отрезке [0,T) ровно 2 корня $t=\vartheta_1$ и $t=\vartheta_2$. При этом $\min(\vartheta_1,T-\vartheta_1)\leqslant C,\ |\vartheta_2-T_1|\leqslant C.$

Доказательство. Если t таково, что $\varphi(t) = 0$, то, в силу (3.2)

$$|h(t)| \leqslant C/T. \tag{3.7}$$

Из (1.8) следует, что на тех отрезках, где выполнено (3.7), производная функции h(t) по модулю оценивается снизу величиной C_1/T . Следовательно, на этих отрезках производная $\dot{\varphi}(t)$ не обращается в нуль, а сама функция $\varphi(t)$ может иметь не более, чем по одному корню. Если $t \in [0,T)$, то неравенство (3.7) при малых ε может иметь место только на отрезках вида $J_1 = [0,C_2)$, $J_2 = (T_1 - C_2, T_1 + C_2)$ и $J_3 = (T - C_2, T)$. Таким образом, функция $\varphi(t)$ имеет ровно два корня, один из которых лежит на отрезке J_2 , а второй либо на отрезке J_1 , либо на отрезке J_3 . Лемма доказана.

Пусть

$$\eta = \frac{2\dot{\xi} + p(\varphi(t))\xi}{2\omega(\varphi(t))},$$

где функция $\omega(t)>0$ определена формулой (1.3). Уравнение (3.5) сводится к системе

$$\dot{\xi} = -\frac{p(\varphi(t))}{2}\xi + \omega(\varphi(t))\eta,
\dot{\eta} = -\omega(\varphi(t))\xi - \frac{p(\varphi(t))}{2}\eta + R_2(t, \xi, \eta),$$
(3.8)

где функция R_2 удовлетворяет в малой окрестности нуля условию Липшица, аналогичному (3.4). Перейдем к полярным координатам, полагая $\xi = r \cos \theta$, $\eta = r \sin \theta$. Система (3.8) примет вид

$$\dot{r} = -p(\varphi(t))r/2 + P(t, r, \theta), \qquad \dot{\theta} = -\omega(\varphi(t)) + \Theta(t, r, \theta), \tag{3.9}$$

где функции P и Θ определены и непрерывно дифференцируемы по своим аргументам на множестве $\mathbb{R}_t \times [0,\varepsilon]_r \times \mathbb{R}_\theta$ и периодичны по аргументам t и θ . При этом имеют место оценки

$$|P(t,r,\theta)| \leqslant Cr\left(r+\frac{1}{T}\right), \qquad |\Theta(t,r,\theta)| \leqslant C\left(r+\frac{1}{T}\right).$$

Тогда решение системы (3.9) с начальными данными $r(0)=r_0, \, \theta(0)=\theta_0$ удовлетворяет условиям

$$r(t, r_0, \theta_0) = r_0 \exp\left(-\int_0^t \frac{p(\varphi(s))}{2} ds + A_r(t)\right),$$

$$\theta(t, r_0, \theta_0) = \theta_0 - \int_0^t \omega(\varphi(s)) ds + A_\theta(t),$$
(3.10)

где $\max(|A_r(t)|, |A_\theta(t)|) \leqslant at/T$, если $t \geqslant 0$, причем константу a можно выбрать сколь угодно малой, если r_0 достаточно мало, а T достаточно велико (рис. 2). Заметим также, что

$$\dot{r}(t, r_0, \theta_0) = r(-p_1/2 + O(1/t)), \qquad \dot{\theta}(t, r_0, \theta_0) = -1 + O(1/t). \tag{3.11}$$

Пусть $\varphi_0(t)$ — решение (1.1) с начальными данными $x(0) = \dot{x}(0) = 0$. Поскольку расстояние между $\varphi(t)$ и $\varphi_0(t)$ в момент времени t=0 оценивается сверху величиной C/T, все проведенные выше рассуждения, а равно и оценки (3.10), применимы к уравнению, получаемому из (1.1) заменой $\chi = x - \varphi_0(t)$. Условимся далее полагать

$$\Upsilon = \Upsilon(0, T_1) = \int_0^{T_1} p(\varphi(s)) \, ds/2. \tag{3.12}$$

Заметим, что в силу леммы 3.2

$$\Upsilon = \int_0^{T_1} p(q^{-1}(f(s))) \, ds/2 + o(T), \quad \Xi = \int_0^{T_1} \omega(q^{-1}(f(s))) \, ds + o(T).$$

4 Поведение решений на отрезке $(0, T_1)$

На этом отрезке функция f(t) положительна. Введем в рассмотрение множество Γ , заданное условием $\Gamma=\{(x_0,y_0):x_0\geqslant 0,\exists\,t\in[0,T_1/2]:x(t,0,x_0,y_0)=y(t,0,x_0,y_0)=0\}.$

Лемма 4.1. В окрестности начала координат Γ представляет собой график C^1 - гладкой функции $x = \gamma(y)$, где

$$\gamma(y) = \sqrt{-\frac{8y^3}{9f'(0)}}(1 + o(1)), \qquad y < 0.$$
(4.1)

Доказательство. В окрестности t=0 представим f(t)=f'(0)t+o(t). Пусть решение z(t)=(x(t),y(t)) системы (*) таково, что $x(t_0)=y(t_0)=0$ для некоторого $t_0\in[0,T_1/2]$. Заметим, что в этом случае $\dot{x}(t_0)=0$.

Если t_0 достаточно мало, то x(t) не обращается в нуль на $[0,t_0)$. В противном случае найдутся последовательности моментов времени t_0^k и t_1^k , такие, что $0 < t_1^k < t_0^k$, причем решения $x_k(t)$ с начальными данными $x_k(t_0^k) = \dot{x}_k(t_0^k) = 0$ обращаются в нуль в момент t_1^k . Отметим, что $\ddot{x}_k(t_0^k) = f(t_0^k) > 0$. Не умаляя общности, считаем, что $x_k(t) > 0$ на отрезке (t_1^k, t_0^k) (легко видеть, что моменты ударов любого решения не имеют точек сгущения на любом отрезке, на котором f(t) > 0). Тогда существуют моменты времени $t_2^k \in (t_1^k, t_0^k)$, такие, что $\dot{x}_k(t_2^k) = 0$, причем $\dot{x}_k(t) < 0$ на отрезке (t_2^k, t_0^k) . Тогда $\ddot{x}_k(t_2^k) \geqslant 0$. С другой стороны, из уравнения (1.1) следует, что $\ddot{x}_k(t_2^k) + q(x_k(t_2^k)) = f(t_2^k)$. Значит, $x_k(t_2^k) \geqslant q^{-1}(f(t_2^k)) > \overline{f}'(0)t_2^k/(2q_1T)$, если k достаточно велико, а t_2^k , соответственно, достаточно мало. Найдется такой момент времени $t_3^k \in [t_1^k, t_2^k]$, что $\dot{x}(t_3^k) > \overline{f}'(0)/(2q_1T)$. Это противоречит тому, что $\dot{x}(t_2^k) = 0$, $t_2^k - t_3^k \to 0$, а вторые производные $\ddot{x}_k(t)$ могут при больших k быть оценены на отрезках $[t_1^k, t_0^k]$ сверху по модулю величиной 2 max |f(t)|.

Положим $s = t - t_0$, представим $x(s + t_0) = x_2 s^2 + x_3 s^3 + O(s^4)$. Тогда

$$\dot{x}(s+t_0) = 2x_2s + 3x_3s^2 + O(s^3), \qquad \ddot{x}(s+t_0) = 2x_2 + 6x_3s + O(s^2);$$

 $f(t_0+s) = f_0 + f_1s + O(s^2), \quad f_0 = f'(0)t_0 + O(t_0^2), \quad f_1 = f'(0) + O(t_0).$

Подставляя эти выражения в уравнение (1.1), получаем, что $x_2 = f_0/2$ и $x_3 = (f_1 - p_1 f_0)/6$. При t = 0 получаем $s = -t_0$, откуда следует, что

$$x(0) = f'(0)t_0^3/3 + O(t_0^4), \quad \dot{x}(0) = -f'(0)t_0^2/2 + O(t_0^3),$$

 $y(0) = -f'(0)t_0^2/2 + O(t_0^3),$

что и означает справедливость (4.1). Лемма 4.1 доказана.

Перейдем к рассмотрению системы (*). Очевидно, что для уравнения $\ddot{x} + p_1 \dot{x} + q_1 x = 0$ функция $v^0(x, \dot{x}) = \dot{x}^2 + p_1 x \dot{x} + q_1 x^2$ является функцией Ляпунова. В малой окрестности начала координат она же будет функцией

Ляпунова для уравнения $\ddot{x} + p(x)\dot{x} + q(x) = 0$ и для системы

$$\dot{x} = y, \qquad \dot{y} = -p(x)y - q(x).$$
 (4.2)

Фиксируем $\beta > 0$. Введем следующее обозначение:

$$D_{\beta} = \{(x, \widehat{y}) : x > 0, \widehat{y} < 0, v^{0}(x, \widehat{y}) < \exp(-\beta T)\}.$$

Обозначим через S^x_{β} часть границы области D_{β} , заданную условием x=0, через S^y_{β} участок границы области D_{β} , заданный условием $\widehat{y}=0$, а через S^v_{β} часть границы области D_{β} , заданную условием $v(x,\widehat{y})=\exp(-\beta T)$. Как следует из леммы 4.1, окрестность D_{β} разбивается кривой Γ на две части $D^+_{\beta}=\{(x,\widehat{y})\in D_{\beta}: x\geqslant \gamma(\widehat{y})\}$ и $D^-_{\beta}=\{(x,\widehat{y})\in D_{\beta}: x<\gamma(\widehat{y})\}$ (рис. 3).

Лемма 4.2. Для любого $\beta > 0$ найдется такое T_{β} , что если $T > T_{\beta}$, то существует такое значение $T_3 = T_3(T) \in (T_1 - C, T_1 + C)$, что любое решение $\widehat{z}(t)$ системы (*) с начальными данными $\widehat{z}(0) = \widehat{z}_0 \in D_{\beta}^+$, не имеет ударов на промежутке $[0, T_3)$.

Доказательство. Поскольку v^0 – функция Ляпунова системы (4.2), векторное поле системы (2.2) в любой точке S^v_{β} в момент времени t=0 направлено внутрь области D_{β} . С возрастанием времени первая компонента векторного поля в каждой фиксированной точке остается неизменной, а вторая компонента увеличивается. Легко видеть, что векторное поле остается направленным внутрь области D_{β} , таким образом на промежутке $[0,T_1]$ все решения покидают D_{β} либо через S^x_{β} , либо через S^y_{β} . Эти возможности реализуются в зависимости от того, имеет ли перед этим рассматриваемое решение $\widehat{z}(t)$ удар или нет. В первом случае $\widehat{z}(0) \in D^-_{\beta}$, во втором $\widehat{z}(0) \in D^+_{\beta}$. Остановимся на рассмотрении этого второго случая.

Фиксируем $z_0 \in D_{\beta}^+$ и решение $\widehat{z}(t)$ системы (*), такое, что $\widehat{z}(0) = z_0$. Пусть t_0 — первый положительный момент времени, такой, что $x(t_0) = 0$. Тогда, поскольку рассматриваемое решение покидает область D_{β} через отрезок S_{β}^y , найдется такое $t_1 \in (0,t_0)$, что $\dot{x}(t_1) = 0$, $\ddot{x}(t_1) \geqslant 0$. С другой стороны, если $t_0 < T_1$ (в противном случае, утверждение леммы для решения $\widehat{z}(t)$ очевидно), то $\dot{x}(t_0-0) \leqslant 0$ и $\ddot{x}(t_0-0) = f(t_0) - p_1 \dot{x}(t_0-0) > 0$. Поскольку $\dot{x}(t_1) = 0$, а $\dot{x}(t_0-0) \leqslant 0$, то найдется момент времени $t_2 \in (t_1,t_0)$, такой, что $\ddot{x}(t_2) \leqslant 0$. Поскольку $\ddot{x}(t_1) \geqslant 0$ и $\ddot{x}(t_0-0) > 0$, найдется такой момент времени $t_3 \in (t_1,t_0)$, что $\ddot{x}(t_3) = 0$. Но если T достаточно велико, то $\ddot{x}(0) \geqslant f'(0)/2 \geqslant C/T$. Подставляя x(t) в уравнение (1.1) и дважды дифференцируя полученное соотношение по t, получаем, что $x^{IV}(t) = O(1/T^2)$, откуда следует, что $t_3 > cT$. С другой стороны, $|x(t) - h(t)| \leqslant C/T$, следовательно, $|h(t_0)| \leqslant C/T$ и $|t_0 - T_1| \leqslant C$.

Выбрав в качестве T_3 минимум t_0 по всем решениям $\widehat{z}(t)$, получим справедливость утверждения доказываемой леммы.

Таким образом, все решения, начинающиеся при t=0 в области D_{β}^{+} , ведут себя на отрезке $(0,T_{3})$ так же, как и решения уравнения (1.1), в частности, верно следующее утверждение.

Лемма 4.3. При сделанных выше предположениях найдется константа C > 0, что для любых двух решений $\widehat{z}_{1,2}(t)$ с начальными данными $\widehat{z}_i(0) \in D_{\beta}^+$, справедливо соотношение

$$(\widehat{z}_1(T_3) - \widehat{z}_2(T_3))^2 = \exp(-2\Upsilon(1+o(1)))(\widehat{z}_1(0) - \widehat{z}_2(0))^2.$$

5 Поведение решений виброударной системы на отрезке $[T_1, T]$

Пусть

$$T_4 = \min\{t > T_1 : |f'(t)| = -p_0 f(t)/2\}.$$
 (5.1)

Очевидно, что $T_4 \in (T_1,T)$. Рассмотрим отрезки $I_1 = [0,T_3), I_2 = [T_3,T_4)$ и $I_3 = [T_4,T)$. На отрезке I_3 справедлива оценка $p_0f(t) \leqslant 2f'(t)$.

Лемма 5.1. На отрезке I_3 система (*) имеет единственное постоянное решение $z \equiv 0$. При этом $z(T, T_4, z_0) \to 0$ при $T \to \infty$ равномерно по $z_0 \in D$ (рис. 4).

Доказательство. Пусть $z = (x, y)^T$. Положим

$$w = w(x, y, t) = v(x, y) - 2xf(t).$$

Отметим, что $w(z,0)=w(z,T_1)=v(z)$. При тех значениях t, для которых f(t)<0, функция w(z,t) положительно определена на множестве Λ . Для любого решения z(t) системы (*) функция w(z(t)) непрерывна по t, в том числе и в точках ударов. Вычислим ее производную в силу системы (2.1):

$$\dot{w} = -(y - F(x))^2 p(x) - q(x)F(x) + F(x)f(t) - 2f'(t)x < 0,$$

если $\Lambda \ni z \neq 0$. Стало быть, вдоль любого ненулевого решения функция w(z(t)) неограниченно убывает. Лемма 5.1 доказана.

Отметим, что в силу единственности решений системы (*) моменты ударов любого ненулевого решения на отрезке I_3 не имеют точек сгущения.

Следовательно, любое решение $z(t) = (x(t), y(t)) \neq 0$ системы (*) имеет на отрезке I_3 конечное число ударов. Обозначим их последовательные моменты через t_k (k = 1, ..., N) и положим $y_k = y(t_k + 0) = \dot{x}(t_k + 0)$.

Лемма 5.2. Для любого $\varepsilon > 0$ существуют такое положительное число T^0 и натуральное число K, что если $T > T^0$, то для всякого $z(T_1) \in D \setminus \{0\}$ и для любого k > K, такого, что $t_k \in I_3$,

$$\ln \frac{y_k}{y_1} \in (-\Sigma_+(t_k), -\Sigma_-(t_k)), \quad \text{ide} \quad \Sigma_\pm(t) = -\frac{p_1}{3} \int_{T_1}^t (f(s) \mp \varepsilon) \, ds.$$

Доказательство. Фиксируем решение z(t) системы (*) и его первую компоненту x(t), которая является в промежутках между ударами решением уравнения (1.1). Функция x(t) является решением уравнения

$$\ddot{x} + p_1 \dot{x} + q_1 x = g(t), \tag{5.2}$$

где $g(t) = f(t) + (p_1 - p(x(t)))\dot{x}(t) + q_1x(t) - q(x(t))$. Рассмотрим промежутки $J_k = [t_k, t_{k+1}]$ между двумя последовательными ударами решения x(t). Фиксируем k и представим функцию g(t) на отрезке J_k в виде степенного ряда

$$g(t) = g_0 + g_1(t - t_k) + g_2(t - t_k)^2 + \dots$$
 (5.3)

Рассмотрим $\phi(t)$ — решение (5.2), такое, что $\phi(t_k) = \phi_0 = g_0/q_1$, $\phi'(t_k) = 0$. Представляя решение $\phi(t)$ в виде ряда

$$\phi(t) = \phi_0 + \phi_2(t - t_k)^2 + \phi_3(t - t_k)^3 + \phi_4(t - t_k)^4 + O((t - t_k)^4)$$
 (5.4)

и подставляя ряды (5.3) и (5.4) в уравнение (5.2), получаем

$$2\phi_2 + 6\phi_3(t - t_k) + 12\phi_4(t - t_k)^2 + 2p_1\phi_2(t - t_k) + 3p_1\phi_3(t - t_k)^2 + q_1\phi_0 + q_1\phi_2(t - t_k)^2 + O((t - t_k)^3) = g_0 + g_1(t - t_k) + g_2(t - t_k)^2 + O((t - t_k)^3).$$

Отсюда следует, что $\phi_2=0,\ \phi_3=g_1/6,\ \phi_4=g_2/12-p_1g_1/24.$ Рассмотрим функцию

$$u(t) = (\dot{x}(t) - \dot{\phi}(t))^2 + p_1(\dot{x}(t) - \dot{\phi}(t))(x(t) - \phi(t)) + q_1(x(t) - \phi(t))^2.$$

Производная функции u(t) в силу уравнения (5.2) в промежутках между ударами решения $\phi(t)$ равна $-p_1u(t)$. Тогда $u(t_{k+1}-0)=\sigma_ku(t_k+0)$, где

 $\sigma_k = \exp(-p_1(t_{k+1} - t_k))$. Вместе с тем, $x(t_k) = x(t_{k+1}) = 0$, $\dot{x}(t_k + 0) = y_k$, $\dot{x}(t_{k+1} - 0) = -y_{k+1}$. Таким образом,

$$(y_{k+1} + \dot{\phi}(t_{k+1}))^2 + \phi(t_{k+1})p_1(y_{k+1} + \dot{\phi}(t_{k+1})) + q_1\phi(t_{k+1})^2 =$$

$$= \sigma_k(y_k^2 - \phi_0 p_1 y_k + q_1 \phi_0^2).$$
(5.5)

Пусть $\delta_k = y_k - y_{k+1}$, $\Delta_k = t_{k+1} - t_k$. Тогда

$$1 - \sigma_k = p_1 \Delta_k - p_1^2 \Delta_k^2 / 2 + p_1^3 \Delta_k^3 / 6 + O(\Delta_k^4); \tag{5.6}$$

$$y_{k+1} + y_k = -\int_{t_k}^{t_{k+1}} \ddot{x}(t) dt = \int_{t_k}^{t_{k+1}} (-g(t) + p_1 \dot{x}(t) + q_1 x(t)) dt =$$

$$= -g_0 \Delta_k - g_1 \Delta_k^2 / 2 - g_0 \Delta_k^3 / 3 + q_1 \int_{t_k}^{t_{k+1}} \dot{x}(t) dt = -g_0 \Delta_k + O(\Delta_k^2).$$
(5.7)

Оценим интеграл во второй строке формулы (5.7):

$$\int_{t_k}^{t_{k+1}} x(t) dt = \int_{t_k}^{t_{k+1}} dt \int_{t_k}^{t} \dot{x}(s) ds =
= \int_{t_k}^{t_{k+1}} dt \int_{t_k}^{t} ds \left(y_k + \int_{t_k}^{s} (g(\tau) - p_1 \dot{x}(\tau) - q_1 x(\tau)) d\tau \right) =
= y_k \Delta_k^2 / 2 + g_0 \Delta_k^3 / 6 + O(\Delta_k^4).$$
(5.8)

С другой стороны, аналогично можно получить, что

$$\int_{t_k}^{t_{k+1}} x(t) dt = y_{k+1} \Delta_k^2 / 2 + g_0 \Delta_k^3 / 6 + O(\Delta_k^4).$$
 (5.9)

Взяв полусумму равенств (5.8) и (5.9) и подставив ее в формулу (5.7), получим, что $y_{k+1} + y_k =$

$$= -g_0 \Delta_k + q_1 \Delta_k^2 (y_k + y_{k+1})/4 - g_1 \Delta_k^2/2 + g_0 q_1 \Delta_k^3/6 - g_2 \Delta_k^3/6 + O(\Delta_k^4),$$

откуда

$$y_{k+1} + y_k = -g_0(\Delta_k + q_1 \Delta_k^3 / 12) - g_1 \Delta_k^2 / 2 - g_2 \Delta_k^3 / 3 + O(\Delta_k^4).$$
 (5.10)

Вычитая (5.9) из (5.8), легко видеть, что $\delta_k = O(\Delta_k^2)$. Кроме того,

$$y_k = (y_k + y_{k+1} + \delta_k)/2 =$$

$$= \delta_k/2 - g_0(\Delta_k/2 + q_1\Delta_k^3/24) - g_1\Delta_k^2/4 - g_2\Delta_k^3/6 + O(\Delta_k^4).$$
(5.11)

Подставляя (5.4) в (5.5), получаем

$$\sigma_{k}(y_{k}^{2} - \phi_{0}p_{1}y_{k} + q_{1}\phi_{0}^{2}) =
= (y_{k+1} + 3\phi_{3}\Delta_{k}^{2})^{2} + p_{1}\phi_{0}(y_{k+1} + 3\phi_{3}\Delta_{k}^{2} + 4\phi_{4}\Delta_{k}^{3}) +
+q_{1}(\phi_{0} + \phi_{3}\Delta_{k}^{2})^{2} + O(\Delta_{k}^{4}) =
= y_{k+1}^{2} + \phi_{0}p_{1}y_{k+1} + q_{1}\phi_{0}^{2} + 6y_{k+1}\phi_{3}\Delta_{k}^{2} + 3p_{1}\phi_{0}\phi_{3}\Delta_{k}^{2} + 4p_{1}\phi_{0}\phi_{4}\Delta_{k}^{3} +
+2q_{1}\phi_{0}\phi_{3}\Delta_{k}^{3} + O(\Delta_{k}^{4}).$$
(5.12)

Из (5.12) следует, что

$$y_k^2 - y_{k+1}^2 = (1 - \sigma_k)(q_1\phi_0^2 - p_1y_k\phi_0 + y_k^2) + \phi_0 p_1(y_{k+1} + y_k) + y_{k+1}g_1\Delta_k^2 + p_1g_0g_1\Delta_k^2/(2q_1) + p_1g_0g_2\Delta_k^3/(3q_1) - p_1^2g_0g_1\Delta_k^3/(6q_1) + g_0g_1\Delta_k^3/3 + O(\Delta_k^4).$$

Подставляя (5.6), (5.10) и (5.11) в последнее равенство, получим

$$\begin{split} -g_0\delta_k\Delta_k &= (p_1\Delta_k - p_1^2\Delta_k^2/2 + p_1^3\Delta_k^3/6)(g_0^2/q_1 - p_1g_0((2\delta_k - 2g_0\Delta_k - g_1\Delta_k^2)/4q_1) + g_0^2\Delta_k^2/4) - \\ -p_1g_0(g_0\Delta_k + g_0q_1\Delta_k^3/12 + g_1\Delta_k^2/2 + g_2\Delta_k^3/3)/q_1 + g_0g_1\Delta_k^3/2 + \\ +p_1g_0g_1\Delta_k^2/(2q_1) + p_1g_0g_2\Delta_k^3/(3q_1) - \\ -p_1^2g_0g_1\Delta_k^3/(6q_1) + g_0g_1\Delta_k^3/6 + O(\Delta_k^4) = \\ &= -p_1^2g_0^2\Delta_k\delta_k/(2q_1) - g_0^2p_1^3\Delta_k^3/(12q_1) + p_1g_0^2\Delta_k^3/6 + \\ +p_1^2g_0g_1\Delta_k^3/(12q_1) - g_0g_1\Delta_k^3/6 + O(\Delta_k^4). \end{split}$$

Группируя слагаемые, зависящие от δ_k , и сокращая на $-g_0\Delta_k(1-p_1^2/(2q_1))$, получаем, что

$$\delta_k = -(g_0 p_1 - g_1) \Delta_k^2 / 6 + O(\Delta_k^3), \tag{5.13}$$

если $p_1 \neq \sqrt{2q_1}$. Для случая $p_1 = \sqrt{2q_1}$ соотношение (5.13) получается предельным переходом. Поскольку $y_k = -g_0\Delta_k/2 + O(\Delta_k^2)$, эквивалентной формой (5.13) является следующая:

$$y_{k+1} = y_k - \delta_k = y_k (1 + (g_0 p_1 - g_1) \Delta_k / 3 + O(\Delta_k^2)),$$

которую, в свою очередь, можно переписать в виде

$$\ln y_{k+1} - \ln y_k = (g_0 p_1 - g_1) \Delta_k / 3 + \widetilde{\xi}_k,$$

где $\widetilde{\xi}_k = O(\Delta_k^2)$. Заметим, что разность f(t) - g(t) равномерно мала вместе с производными на отрезке (t_k, t_{k+1}) , соответствующем большому значению k. Вместе с тем, поскольку g'(t) стремится к нулю с ростом T, то же самое верно и для g_1 . Тогда для любого $\varepsilon > 0$ найдется такое K > 0, что если k > K, то

$$\ln y_{k+1} - \ln y_k = \frac{p_1}{3} \int_{t_k}^{t_{k+1}} f(t) dt + \xi_k, \tag{5.14}$$

где $|\xi_k| \leqslant \varepsilon \Delta_k/2$ при k>K. Суммируя равенства (5.14), получаем

$$\ln y_n - \ln y_1 = \frac{p_1}{3} \int_{t_k}^{t_{k+1}} f(t) dt + \sum_{k=1}^{n-1} \xi_k.$$

Выберем константу $C = C(\varepsilon)$ так, чтобы

$$\sum_{k=1}^{n-1} |\xi_k| \leqslant C + \sum_{k=1}^{n-1} \varepsilon \Delta_k / 2 = C + 2\varepsilon (t_n - t_1) / 2.$$

А тогда

$$\left| \left(\ln y_n - \ln y_1 + \frac{p_1}{3} \int_{t_k}^{t_{k+1}} g(t) dt \right) / (t_n - t_1) \right| \leqslant C / (t_n - t_1) + \varepsilon / 2 \leqslant \varepsilon,$$

если разность $t_n - t_1$ достаточно велика. Лемма 5.2 доказана.

Так как $w(0, y, t) = y^2$, справедливо следующее утверждение.

Следствие 5.1. Если z(t) – решение системы (*) с начальными данными $z(T_1) \in D$, то для любого $\varepsilon > 0$ найдется такое $T^0 > 0$, что если $T > T^0$, то для любого $t \in I_3$ имеет место соотношение

$$c \exp(2\Sigma_{-}(t))w(z(T_1), T_1) \leq w(z(t), t) \leq C \exp(2\Sigma_{+}(t))w(z(T_1), T_1).$$

Оценим количество ударов решения z(t) на промежутке I_3 .

Лемма 5.3. Для любого ненулевого решения z(t) с начальными данными $z(T_1) \in D$ число N ударов на промежутке I_3 оценивается по формуле

$$N = \frac{\exp(\Sigma + a_1(T, z)T_2)}{\sqrt{w(z(T_1), T_1)}}, \quad e \partial e \quad \Sigma = -\frac{p_1}{3} \int_{T_1}^{T} f(s) \, ds,$$

 $u \ a_1(T,z) = o(1) \ npu \ T \to \infty.$

Доказательство. Положим $w_1 = \sqrt{w(z(T_1), T_1)}$. Из асимптотической устойчивости периодического решения $\Phi(t)$ системы (2.1) следует, что найдется такое C_1 , что на подотрезках отрезка $[T_1, T]$ длины не менее C_1 , где $f(t) \leq 0$, любое решение z(t) системы (*) с начальными данными $z(T_1) \in D$ имеет удары. Поскольку в момент удара $w(z(t_1), t_1) = y_1^2$, скорость y_1 первого удара решения z(t) на промежутке I_3 оценивается по формуле $cw_1 \leq y_1 \leq Cw_1$.

Фиксируем число $\delta > 0$ и момент времени $s \in (T_1, T_4 - 1)$, где число T_4 определяется формулой (5.1). Поскольку скорости y_k последовательных ударов удовлетворяют соотношению $y_k = -f(t_k)(t_{k+1}-t_k)(1+o(1))/2$ и в силу леммы 5.2 число ударов N(s) на отрезке $[s, s+\delta]$ оценивается по формуле

$$N(s) \in \left[\frac{\delta \min_{s \leqslant t \leqslant s+\delta} |f(t)| \exp(\Sigma_{-}(t))}{w_1} - 1, \frac{\delta \max_{s \leqslant t \leqslant s+1} |f(t)| \exp(\Sigma_{+}(t))}{w_1} + 1\right]. \tag{5.15}$$

Покрывая промежуток I_3 малыми отрезками равной длины и применяя для каждого из них оценку (5.15), получаем оценки сверху и снизу для числа N, что и доказывает лемму.

6 Обгон

Исследуем, как меняется расстояние между решениями системы $(\widehat{*})$ с течением времени, пока t пробегает отрезок I_3 . Рассмотрим решение $z(t)=(x(t),y(t))^T$ задачи Коши для системы $(\widehat{*})$ с начальными данными $x(t_0)=x_0>0,\,y(t_0)=y_0<0$. Пусть t' – первый момент удара решения z(t) после t_0 , а $\eta=y(t_0+0)>0$. Тогда

$$t' - t_0 = -\frac{x_0}{y_0} + r_1(t_0, x_0, y_0), \qquad \eta = -y_0 + f(t_0) \frac{x_0}{y_0} + r_2(t_0, x_0, y_0)$$
 (6.1)

где $r_1(t_0, x_0, y_0) = o(x_0/y_0)$, а $r_2(t_0, x_0, y_0) = O(y_0^2 + x_0^2/y_0^2 + x_0/(Ty_0))$.

Пусть t'' — момент удара решения z(t), следующий за t', η'' — соответствующее значение послеударной скорости. В силу формул (5.13),

$$\eta'' = -(\eta + p_1 f(y_0)(t'' - t')\eta/3) + O(\eta^2(\eta + 1/T)).$$

Фиксируем некоторое значение $t \in (t', t'')$. Тогда

$$y(t) = \eta + f(t_0)(t - t') + r_3(t, t', \eta),$$

где $r_3(t, t', \eta) = 0(\eta^3 + \eta/T)$,

$$x(t) = \eta(t - t') + f(t_0)(t - t')^2 / 2 + r_4(t, t', \eta),$$

где $r_4(t,t',\eta)=0(\eta^2(\eta^2+1/T))$. Подставляя в последние формулы значения t' и η из (6.1), получаем

$$x(t) = \left(-y_0 + f(t_0)\frac{x_0}{y_0}\right) \left(t - t_0 + \frac{x_0}{y_0}\right) + f(t_0) \left(t - t_0 + \frac{x_0}{y_0}\right)^2 + + r_5(t, x_0, y_0);$$

$$y(t) = -y_0 + f(t_0)\frac{x_0}{y_0} + f(t_0) \left(t - t_0 + \frac{x_0}{y_0}\right) + r_6(t, x_0, y_0),$$

$$(6.2)$$

где $r_{5,6}(t,x_0,y_0)=0(x_0^3/y_0^3+x_0/(Ty_0))$. С другой стороны, как следует из (5.7) и (5.13),

$$t'' - t' = \frac{2\eta}{f_0} \left(1 + \frac{p_1 \eta}{3} \right) + O(\eta^3).$$

Если x_0 стремится к нулю, $t' \to t_0$, $\eta \to y_0$. Вычисляя в (6.2) производные x(t) и y(t) по x_0 и y_0 , учитывая (5.13) и устремляя в (6.2) x_0 к нулю, t' к t_0 , а t к t'', получаем следующую матрицу производных:

$$\begin{pmatrix}
1 - \frac{p_1(t'' - t')}{2} + O((t'' - t')^2) & t'' - t' + O((t'' - t')^2) \\
- \frac{2 + p_1(t'' - t')/3 + O((t'' - t')^2)}{t'' - t'} & -1 + \frac{p_1(t'' - t')}{2} + O((t'' - t')^2)
\end{pmatrix} (6.3)$$

Таким образом, решению, соответствующему большему значению скорости η в момент удара, отвечает больший промежуток t''-t' времени между соседними ударами. В случае, когда координаты y двух решений в некоторый момент времени совпадают, промежуток между двумя ударами больше для того решения, которому соответствуют большие начальные данные по оси x. Это явление, характерное для систем с условиями удара, назовем обгоном (рис. 5). Именно благодаря ему в рассматриваемой виброударной системе возникает неустойчивость.

Фиксируем $z_0 \in \Lambda$ и соответствующее решение $z(t) = z(t, T_1, z_0)$. Пусть t_k – моменты ударов z(t), а y_k – соответствующие скорости. Положим $z_k = (0, y_k)$. Пусть $\zeta = (\xi, \eta)$, положим

$$D_k = \lim_{\Delta \to 0} \frac{\partial z(t_{k+1} - \Delta, t_k - \Delta, \zeta)}{\partial \zeta} \bigg|_{\zeta = z(t_k - \Delta, t_k, z_k)}.$$

Матрица D_k имеет вид (6.3), следовательно, ее можно записать в форме

$$\exp\left(\frac{-p_1(t_{k+1}-t_k)}{2}\right) \begin{pmatrix} 1+O((t_{k+1}-t_k)^2) & y_k+O((t_{k+1}-t_k)^2) \\ -2 & \\ t_{k+1}-t_k \end{pmatrix} (1+O(t_{k+1}-t_k)) & -1+O((t_{k+1}-t_k)^2) \end{pmatrix}.$$

Отметим, что

$$\frac{1}{t_{k+1} - t_k} - \frac{1}{t_{k+2} - t_{k+1}} = \frac{t_k + t_{k+2} - 2t_{k+1}}{(t_{k+2} - t_{k+1})(t_{k+1} - t_k)} = \frac{-p_1}{3} + O(t_{k+2} - t_k).$$

С учетом этого, перемножая соседние матрицы D_k , получаем, что матрица $D_k' = D_{k+1}D_k$ имеет вид

$$\exp\left(\frac{-p_1(t_{k+2}-t_k)}{2}\right)\left(\frac{-1+O((t_{k+2}-t_k)^2)t_{k+2}-t_k+O((t_{k+2}-t_k)^2)}{-2p_1}+O(t_{k+2}-t_k)-1+O((t_{k+2}-t_k)^2)\right)$$

Матрица же $D_k'' = D_{k+2}'D_k'$ имеет вид

$$\exp\left(\frac{-p_1(t_{k+4}-t_k)}{2}\right) \begin{pmatrix} 1+O((t_{k+4}-t_k)^2) & O((t_{k+4}-t_k)^2) \\ 4p_1(1+o(t_{k+4}-t_k))/3 & 1+O((t_{k+4}-t_k)^2) \end{pmatrix}.$$

Положим

$$J_0 = \begin{pmatrix} 0 & 0 \\ 8p_1 f(t_k)/3 & 0 \end{pmatrix},$$

 $\widetilde{D}_k = \exp(p_1(t_{k+4} - t_k)/2)D_k''$, тогда $\widetilde{D}_k = \exp(J_0)(E + o(t_{k+4} - t_k))$. Таким образом, \widetilde{D}_k можно представить как значение при $t = t_4$ фундаментальной матрицы системы $\dot{z} = J_0 + Q(t)$, где $Q(t) = 0(t_{k+4} - t_k)$.

Пусть N — число ударов решения z(t) на промежутке I_3 . Отметим, что при таком выборе N утверждение леммы 5.3 остается справедливым. Пусть $N_1 = [N/4]$. Произведение $D''_{4N_1+1}D''_{4N_1-3}\dots D''_5D''_1$ в силу упомянутой выше теоремы Алексеева-Лященко [1] имеет вид

$$\exp(-p_1 T_2/2) \begin{pmatrix} \pm \exp(o(T)) & \pm \exp(-2\Sigma + o(T)) \\ \pm \exp(2\Sigma + o(T)) & \pm \exp(o(T)). \end{pmatrix} = \exp(-p_1 T_2/2) A.$$
(6.4)

Такой же вид имеет произведение $D_N D_{N-1} \dots D_2 D_1$. Отметим также, что

$$\prod_{j=1}^{N} \det D_k = \exp(-p_1 T_2 + o(T)). \tag{6.5}$$

7 Оценки показателей Ляпунова

Представим отображение \widehat{G} как композицию отображений G_I и G_{II} , определенных следующим образом: $G_I(z_0) = z(T_3,0,z_0)$, $G_{II}(z_1) = z(T,T_3,z_1)$. В качестве T_3 выбираем наибольшее число, для которого утверждение леммы 4.2 остается справедливым. Тогда для любой точки $z_0 \in D_{\beta}^+$ матрица Якоби $DG(z_0)$ отображения \widehat{G} в точке z_0 представима в виде $DG(z_0) = DG_{II}(G_I(z_0))DG_I(z_0)$. Поскольку $|T_1 - T_3| \leqslant C$, матрица $DG_I(z_0)$ имеет вид

$$DG_I = \exp(-\Upsilon) \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \exp(-\Upsilon)B,$$

где нормы матрицы B и матрицы B^{-1} ограничены сверху константой, не зависящей от T, а число Υ определяется формулой (3.12). С другой стороны, матрица DG_{II} и ее определитель имеют соответственно вид (6.4) и (6.5), что также следует из того факта, что $|T_1 - T_3| \leqslant C$. Обозначим коэффициенты матрицы A в правой части формулы (6.4) через a_{ij} . Тогда

$$DG = \exp(-\Upsilon - p_1 T_2/2) \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix},$$

причем $\det DG = \pm \exp(-2\Upsilon - p_1T_2) \det A \det B$. Так как $\det A$ и $\det B$ равны $\pm \exp(o(T))$, справедлива оценка $|\det DG| \leq \exp(-2\Upsilon - p_1T_2 + \delta T)$, где параметр δ может быть выбран сколь угодно малым, если T достаточно велико. С другой стороны, след матрицы DG считается по формуле

$$\operatorname{Tr} DG = (a_{11}b_{11} + a_{12}b_{21} + a_{21}b_{12} + a_{22}b_{22}).$$

Таким образом, если

$$|b_{12}| \geqslant \exp(-\alpha_0 T/3),\tag{7.1}$$

то $|{\rm Tr}\, DG|\geqslant \exp(\alpha_0-a)T)$, где число a>0 может быть взято сколь угодно малым, если T достаточно велико. А тогда, если λ_1 и λ_2 – собственные числа матрицы DG, то справедливы оценки

$$|\lambda_1| \geqslant \exp((\alpha_0 - a)T) = \exp(2\Sigma - \Upsilon - p_1 T_2 / 2 - aT),$$

$$|\lambda_2| \leqslant \exp(-\Upsilon - p_1 T_2 / 2).$$
(7.2)

Как следует из вида матрицы DG, направление, соответствующее собственному числу λ_1 в каждой фиксированной точке z, сколь угодно близко при больших T к направлению векторного поля системы (2.1) в точке z в момент времени t=0. Пусть r и θ – полярные координаты в полуплоскости Λ . В силу формул (3.10) и (3.11) найдется такое $\overline{\theta} \in (-\pi/2, \pi/2)$, что если

$$\Lambda_1 = \{ z \in \Lambda : |\theta - \overline{\theta}| < \exp(-\alpha_0 T/4) \},$$

то для любого $z_0 \notin \Lambda_1$ выполнена оценка (7.1), а также оценка (7.2) (рис. 6). Положим $\Lambda_2 = \Lambda \setminus \Lambda_1$ и в дальнейшем ограничимся поиском неблуждающих точек на множестве Λ_2 .

8 Локализация инвариантного множества

Поскольку все решения системы $(\widehat{*})$ (равно, как и все решения системы (*)) с течением времени попадают в область D и

$$\widehat{G}(D) \subset Q_0 = \{(x, y) \in \Lambda : \exp(-2\Sigma_+(T)) \leqslant v(z) \leqslant \exp(-2\Sigma_-(T))\},$$

все неблуждающие точки отображения Пуанкаре \widehat{G} принадлежат Q_0 . Справедлива оценка $\operatorname{diam} Q_0 < \exp(aT_2 - \Sigma)$, где число a > 0 можно взять сколь угодно малым, если T достаточно велико. Так как $Q_0 \subset D$, получаем, что $\widehat{G}(Q_0) \subset Q_0$. Множества $Q_k = \overline{\widehat{G}^k}(Q)$ образуют последовательность вложенных компактов $\overline{Q_0} \supset Q_1 \supset Q_2 \supset \dots$ Положим

$$Q_{\infty} = Q_0 \bigcap Q_1 \bigcap Q_2 \dots$$

Тогда множество неблуждающих точек отображения \widehat{G} содержится в Q_{∞} .

Фиксируем малое a>0 и такое T>0, чтобы выполнялась первая из оценок (7.2) и положим

$$\delta = \exp(aT - p_1T_2/2 - \Upsilon - \Sigma).$$

Рассмотрим кривую $\eta_0 \subset \Lambda$, заданную соотношением $v(z) = \exp(-2\Sigma(T))$. Длина кривой η_0 , а также длина проекции этой кривой на ось Oy оцениваются сверху и снизу величинами вида $C \exp(-\Sigma(T))$. Множество $\widehat{G}(\eta_0)$ состоит, вообще говоря, из нескольких компонент связности, каждая из которых является гладкой кривой. Суммарная их длина l удовлетворяет оценке

$$\exp(\Sigma - \Upsilon - p_1 T_2 / 2 - aT) \leqslant l \leqslant \exp(\Sigma - \Upsilon - p_1 T_2 / 2 + aT).$$

Для каждой из точек $z \in G(\eta_0)$ проведем прямую P(z) вдоль направления, соответствующего $\lambda_2(z)$ – меньшему по модулю собственному числу матрицы DG(z). Длина компоненты связности множества $P(z) \cap \widehat{G}(Q)$, содержащей точку z (очевидно, что это будет кривая) не превосходит δ . Определим

$$\widetilde{Q} = \bigcup_{z \in \widehat{G}(\eta_0)} P(z) \bigcap \widehat{G}(Q).$$

Отметим, что вместо η_0 можно было выбрать произвольную кривую, лежащую в Q_0 и соединяющую положительную и отрицательную полуоси оси Oy.

При больших значениях T кривая Γ представляет собой график функции $x=\gamma(y)$, определенной при $y\leqslant 0$, принимающей положительные значения и имеющей в окрестности нуля положительную вторую производную. Вторая производная функции $x=\xi(y)>0$, неявно заданной соотношением $w(z)=W_0$, отрицательна. Сама функция ξ задана в малой окрестности начала координат. Стало быть, уравнение $\xi(y)=\gamma(y)$ имеет единственное решение $y_0^-<0$. Положим $x_0^-=\gamma(y_0^-)$. Уравнение $\xi(y)=0$ имеет два

корня: положительный и отрицательный. Обозначим положительный через y_0^+ . Рассмотрим область H, заданную соотношениями:

$$H = \{(x, y) \in \Lambda : v(z) \in \widetilde{Q}, y \in [y^-, y^+]\}.$$

Считаем, что величины y^{\pm} удовлетворяют следующим условиям:

$$y_0^- \leqslant y^- < y^+ \leqslant y_0^+, \quad y^+ - y^- \geqslant \operatorname{diam}(\operatorname{pr}_y Q_0)/10$$

и при этом $H \subset \Lambda_2 \cap D_{W_1}^+ \cap \widetilde{Q}$ (рис. 7). В силу того, что сектор Λ_1 можно выбрать сколь угодно узким при достаточно большом T, такое множество H существует.

Ясно, что $H \subset Q_0$, причем отображение $\widehat{G}|H$ является C^1 - гладким в окрестности каждой точки непрерывности. С учетом формул (7.2) для собственных чисел матриц DG(p) получаем, что в окрестностях этих точек \widehat{G} является локальным диффеоморфизмом. Обозначим отрезки границы множества H, заданные условиями $y = y^{\pm}$, через ∂^{\pm} .

Лемма 8.1.
$$\widehat{G}(H) \cap H \neq \emptyset$$
.

Доказательство. Пусть $\eta \subset H$ — произвольная гладкая кривая, соединяющая точки множеств ∂^- и ∂^+ и являющаяся графиком некоторой гладкой функции $x = \xi(y)$, такой, что $\max |\xi'(y)| \leq 1$. Рассмотрим натуральную параметризацию на кривой η , определяемую отображением $h_0: [0, l_0] \to H$, где $h_0(0) \in \partial^-$, $h_0(l_0) \in \partial^+$. Рассмотрим оператор pr_y , соответствующий ортогональной проекции на ось Oy. Из (1.6) получаем

$$2\Sigma - p_1 T_2 / 2 - \Upsilon > \alpha_0 T. \tag{8.1}$$

Из формул (7.2) и выбора области H следует, что

$$\int_0^{l_0} \operatorname{pr}_y \frac{d}{dt} \widehat{G}(h_0(t)) dt \geqslant \exp\left(2\Sigma - \Upsilon - \frac{p_1 T_2}{2} - aT\right) l_0,$$

где число a>0 можно взять сколь угодно малым, если T велико. Отсюда и из формулы (8.1) следует, что сумма длин проекций компонент связности множества $\widehat{G}(\eta)$ на ось y более, чем вдвое превосходит диаметр множества Q_0 , следовательно $\widehat{G}(\eta)$ не может целиком содержаться в $Q_0 \backslash H$, что и доказывает лемму.

Фиксируем некоторое число $M_0 > 0$. Если

$$T > \overline{T} = \frac{2\ln M_0}{\alpha_0},\tag{8.2}$$

суммарную длину проекций $S(\widehat{G}(D_{\beta}^{+}))$ множества $\widehat{G}(H)$ на ось Oy можно оценить по формуле

$$S(\widehat{G}(H)) > M_0 \operatorname{diam} Q_0. \tag{8.3}$$

Тогда число компонент связности множества $\widehat{G}(H)$ не меньше числа $[M_0]$ – целой части M_0 . Отметим, что чем большее значение T выбрано, тем меньшей можно взять величину α_0 , чтобы оценка (8.3) оставалась справедливой.

9 Подкова Смейла

Если η – кривая, соединяющая ∂^+ и ∂^- и являющаяся графиком функции $x=\xi(y)$, такой, что $|\xi'(y)|\leqslant 1$, то множество $\widehat{G}(H)\bigcap H$ содержит кривую $\widetilde{\eta}$, обладающую теми же свойствами.

Пусть $z_0 \in \widehat{G}(H) \cap H$. Обозначим через z(t) соответствующее решение системы $(\widehat{*})$. Поставим в соответствие точке z_0 число $N(z_0)$ ударов соответствующих решению z(t) на отрезке [-T,0]. Пусть N_1 — минимальное значение N(z) на множестве $\widehat{G}(H) \cap H$, N_2 — максимальное, $M = N_2 - N_1 + 1$. Для любого $j = 1, \ldots, n$ рассмотрим множества

$$H_j = \{ z \in \widehat{G}(H) \cap H : N(z) = j + N_1 - 1 \}.$$

Все множества H_j компактны и $\widehat{G}(H) \cap H = H_1 \cup \ldots \cup H_M$ (рис. 8). В каждом из множеств H_j выберем (если возможно) компоненту связности K_j , содержащую кривую η с указанными выше свойствами. Если такой компоненты не существует, положим $K_j = \emptyset$. Определим $\widetilde{K} = K_1 \cup \ldots \cup K_M$. Как следует из сказанного выше, $\widetilde{K} \neq \emptyset$.

Лемма 9.1. Пусть $\eta \subset \widetilde{K}$ — кривая, представляющая собой образ непрерывного отображения $h:[0,l] \to H$, такого, что

$$h_0(0) \in \partial^+, \quad h_0(l) \in \partial^-.$$

Предположим также, что эта кривая является графиком некоторой гладкой функции $x=\xi(y)$, такой, что $\max |\xi'(y)| \leqslant 1$. Тогда найдется такое n>1, что если T достаточно велико, то множество $\widehat{G}^n(\eta)$ пересекает K_j для любого $2\leqslant j\leqslant M-1$, причем для любого $j\in \{3,\ldots,M-2\}$ пересечение множеств $\widehat{G}^n(\eta)$ и K_j содержит кривую η_j , обладающую теми же свойствами, что и η .

Замечание. В частности, $K_j \neq \emptyset$ для любого $3 \leqslant j \leqslant M-2$. Поскольку, чем больше T, тем больше M, множество \widetilde{K} при больших T содержит как минимум 2 компоненты связности.

Доказательство. Для любой точки $z \in \widetilde{K}$ найдется такая точка $\zeta \in \eta$, что $\mathrm{dist}\,(z,\zeta) \leqslant C(W_1-W_0) \leqslant \exp(2aT-p_1T_2/2-\Upsilon-2\Sigma)$. Возьмем произвольную кривую ϱ , соединяющую точки z и ζ и лежащую в H. Тогда длина $\widehat{G}(\varrho)$ (или сумма длин компонент этой кривой) не превосходит величины $\exp(3aT-p_1T_2-2\Upsilon)=s$. Если

$$s \leqslant \sqrt{W_0/2},\tag{9.1}$$

то любая точка множества $\widehat{G}(\widetilde{K})$ соединяется с некоторой точкой из $\widehat{G}(\eta)$ кривой, лежащей в $\widehat{G}(H)$, длина которой не превосходит половину длины проекции множества Q_0 на ось y, что и доказывает лемму. Если (9.1) неверно, то, выбирая по аналогии с результатами раздела 8 число n таким, что $\widehat{G}^n(Q)$ содержится в δ - окрестности множества $\widehat{G}^n(\eta)$ и переходя от отображения \widehat{G} к его соответствующей степени, получаем требуемый результат. Лемма доказана.

Далее, не умаляя общности, будем считать, что n=1. Все приводимые ниже рассуждения сохраняют силу и при n>1.

Лемма 9.2. Если значение T достаточно велико, то для любого $m \in \mathbb{N}$ и любого набора чисел $a = (a_0, \ldots, a_m)$, такого, что $3 \leqslant a_j \leqslant M-2$ для любого $j = 0, \ldots, m$, множество

$$K_a = K_{a_0} \bigcap \widehat{G}^{-1}(K_{a_1}) \bigcap \dots \bigcap \widehat{G}^{-m}(K_{a_m})$$

непусто.

Доказательство. Фиксируем индекс a. Из леммы 9.1 следует, что образ рассмотренной выше кривой η (выбранной произвольным образом) содержит кривую $\eta_{a_0} \subset K_{a_0}$, соединяющую ∂^+ и ∂^- . Применяя лемму 9.1 к кривой η_{a_0} , получим, что найдется кривая $\eta_{a_0a_1} \subset \widehat{G}(\eta_{a_0}) \cap K_{a_1}$. Продолжая эту процедуру, получим кривую $\eta_{a_0...a_m} \subset K_{a_m} \cap ... \cap \widehat{G}^m(K_{a_0})$. Тогда утверждение леммы следует из того, что $\widehat{G}^{-m}\eta_{a_0...a_m} \subset K_a$.

Положим

$$K = \bigcap_{n=-\infty}^{\infty} \widehat{G}^n(\widetilde{K}).$$

Очевидно, что множество K инвариантно под действием отображения \widehat{G} , компактно и непусто, как пересечение вложенных компактов (пересечений конечного числа итераций компакта \widetilde{K}). Кроме того, $K \subset \widehat{G}^{-1}(\widetilde{K})$, следовательно, множество K не пересекается с прообразом оси Oy. Кроме того, K не пересекается с кривой Γ , поэтому найдется такая окрестность Ω множества K, что $\widehat{G}|_{\Omega}$ — диффеоморфизм.

Каждой точке $z \in K$ соответствует единственная последовательность

$$a(z) = \{\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots\}, \qquad a_n \in \{3, \ldots, M-2\}, \quad n \in \mathbb{Z},$$

такая, что $\widehat{G}^n(z) \in K_{a_n}$ для любого $n \in \mathbb{Z}$. Из леммы 9.2 следует, что для любой последовательности a можно подобрать соответствующую точку z. Заметим, что в силу гиперболичности диффеоморфизма \widehat{G} в окрестности множества K точка $z \in K$ однозначно определяется последовательностью a(z). Если $M \geqslant 6$, множество возможных значений величин a_j не меньше 2 и множество K имеет мощность континуум. Отображению \widehat{G} соответствует сдвиг последовательности a(z) на единицу влево. Таким образом, отображение $\widehat{G}|K$ (равно, как и отображение G) обладает теми же свойствами, что и знаменитая "подкова Смейла а именно:

- **I)** отображение G|K имеет бесконечно много периодических точек;
- **II)** периодические точки G всюду плотны в K;
- **III)** существует точка $z_0 \in K$, орбита которой $\{G^n(z_0) : n \in \mathbb{Z}\}$ всюду плотна в K.

Итак, справедливо следующее утверждение.

Теорема. Пусть коэффициенты уравнения (1.1) удовлетворяют условиям (1.2) и (1.6) для некоторого $\alpha_0 > 0$, причем это уравнение конвергентно при достаточно больших T. Тогда существует такое $\bar{T} > 0$, что если $T > \bar{T}$, то отображение G имеет гиперболическое инвариантное множество K со свойствами I)—III).

Таким образом, показано, что система (*) имеет компактное гиперболическое инвариантное множество, содержащее бесконечно много периодических решений и всюду плотную траекторию. Такие множества часто называют хаотическими. Видно, что введенное выше множество Q_{∞} представляет собой аттрактор. Хаотическое множество содержится, разумеется, в этом аттракторе. Такие аттракторы часто называют странными. Итак, показано, что виброударная система (*) имеет странный аттрактор.

Отметим также, что результаты, аналогичные приведенным выше, могут быть получены для функции f с произвольным конечным числом простых корней на периоде.

Рис. 1. Рассматриваемая механическая система.

Рис.2. Вид решений уравнения (3.5) в окрестности начала координат.

Рис. 3. Кривая Γ и ограниченные ею области.

Рис. 4. Поведение решений виброударной системы когда правая часть отрицательна.

Рис. 5. Явление обгона.

Рис. 7. Возможные виды области Н.

Рис.8. "Подкова Смейла" для рассматриваемой виброударной системы.

Список литературы

- [1] *Алексеев В. М.* Об асимптотическом поведении решений слабо нелинейных систем дифференциальных уравнений // Докл. Акад. Наук СССР, 1960, Т. 134, №2, С. 247–250.
- [2] *Бибиков Ю. Н.* Критерии абсолютной устойчивости двумерных систем с нестационарными нелинейностями // Метод теории Ляпунова в анализе динамики систем. Сб. статей. Новосибирск. "Наука 1987, С. 189–193.
- [3] *Горбиков С. П. Меньшенина А. В.* Бифуркация, приводящая к хаотическим движениям в динамических системах с ударными взаимодействиями // Дифференц. уравнения, 2005, Т. 41, №8, С. 1046—1052.
- [4] Козлов В.В., Трещев Д.В. Биллиарды. Генетическое введение в динамику систем с ударами. М.: Изд-во МГУ, 1991, 168 с.
- [5] Крыжсевич C. Г., Плисс В. А. Хаотические режимы колебаний виброударной системы // Прикладная математика и механика, 2005, Т. 69, Вып. 1, С. 15–29.
- [6] *Крыжсевич С. Г., Плисс В. А.* Пример хаоса в системе с ударами / Международная конференция "Четвертые Окуневские чтения 22-25 июня 2004 г., Санкт-Петербург, Россия. Материалы докладов. Том III. Симпозиум "Пуанкаре и проблемы нелинейной механики СПб, 2005, С. 65–75.
- [7] Π_{nucc} В. А. Нелокальные проблемы теории колебаний. М.—Л.: Наука, 1964, 367с.
- [8] *Плисс В. А.* Существование гиперболического интегрального множества специальной периодической системы.// Дифференц. уравнения, 1990, Т. 26, №5, С. 800–806.
- [9] *Плисс В. А.* Неблуждающее множество специальной гиперболической системы.// Дифференц. уравнения, 1990, Т. 26, №6, С. 966–975.
- [10] Фейгин М.И. Вынужденные колебания систем с разрывными нелинейностями. М.: Наука, 1994, 288с.
- [11] Banerjee S., Yorke J. A., Grebogi C. Robust chaos // Physical Review Letters, 1998, V. 80, \mathbb{N} 14. P. 3049–3052.

- [12] Budd C. Grazing in impact oscillators / Branner B. and Hjorth P. Real and Complex Dynamical Systems. Kluwer Academic Publishers, 1995, P.47–64.
- [13] Budd C., Dux F. Chattering and related behavior in impacting oscillators // Phil. Trans. Roy. Soc., 1994, V. 347, P. 365–389.
- [14] Chin W., Ott E., Nusse H. E., Grebogi C. Universal behavior of impact oscillators near grazing incidence // Physics Letters A. 1995. V. 201. P. 197–204.
- [15] Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. London-New York: Springer. 1986. = Γ укенхеймер Дж., Холмс Ф. Нелинейные колебания, динамические системы и бифуркации векторных полей. Москва-Ижевск: Институт компьютерных исследований, 2002, 560с.
- [16] Hindmarsh D., Jefferies D.J. On the motions of the offset impact oscillator // J.Phys A: Math. Gen., V. 17, P. 1791–1803.
- [17] Holmes P. J. The dynamics of repeated impacts with a sinusoidally vibrating table // J. Sound. Vib., V. 84, P. 173–189.
- [18] Leine R. I., Van Campen D. H., Van de Vrande B. L. Bifurcations in nonlinear discontinuous systems // Nonlinear Dynamics, 2000, V. 23, P. 105–164.
- [19] Nguyen D. T., Noah S. T., Kettleborough C. F. Impact behavior of an oscillator with limiting stops. Part I: A Parametric Study // J. Sound Vib., 1986, V. 109, № 2, P. 293–307.
- [20] Nordmark A. B. Non-periodic motion caused by grazing incidence in an impact oscillator // J. Sound Vib. 1991, V. 145, № 2, P. 279–297.
- [21] Nusse H. E., Ott E., Yorke J. A. Border-collision bifurcations: An explanation for observed bifurcation phenomena // Physical Review E, 1994, V. 49, P. 1073–1076.
- [22] Paoli L., Schatzman M. Resonance in impact problems // Math. Comput. Modelling, 1998, V. 28, № 4–8, P. 385–406.
- [23] Schatzman M. Uniqueness and continuous dependence on data for one-dimensional impact problem // Math. Comput. Modelling, 1998, V. 28, № 4–8, P.1–18.
- [24] Shaw S. W., Holmes P. J. A periodically forced piecewise linear oscillator // J. Sound Vib., 1983, V. 90. № 1, P. 129–155.

- [25] Sharma A., Ananthkrishnan N. Large-amplitude limit cycles via a homoclinic bifurcation mechanism // J. Sound Vib., 2000, V. 236, № 4, P. 725–729.
- [26] Shaw S. W. The Dynamics of a Harmonically Excited System Having Rigid Amplitude Constrains. Part 2: Chaotic Motions and Global Bifurcations // Journal of Applied Mechanics, June 1985, V. 52, P. 459–464.
- [27] Shaw S. W., Rand R. H. The transition to chaos in a simple mechanical system // Int. J. Non-Linear Mechanics, 1989, V. 24, № 1, P. 41–56.
- [28] Smale S. Diffeomorfisms with many periodic points // Different. and Combinator. Topol. Princeton: Univ. Press, 1965, P.63—81 = Смейл С. Диффеоморфизмы со многими периодическими точками // Математика, 1967. Период. сб. перев. иностр. статей. № 4, С. 69—78.
- [29] Thomson J. M. T., Ghaffari R. Chaos after period-doubling bifurcations in the resonance of an impact oscillator // Physics Letters, 1982, V. 91A, № 1, P. 5–8.
- [30] Thomson J. M. T., Ghaffari R. Chaotic dynamics of an impact oscillator // Phys. Rew., 1983, V. 27A, №3., P. 1741–1743.
- [31] Whiston G. S. The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator // J. Sound Vib., 1987, V. 115, P. 303–319.
- [32] Whiston G. S. Global dynamics of a vibro-impacting linear oscillator // J. Sound Vib., 1987, V. 118, P. 395–429.
- [33] Xu L., Lu M. W., Cao Q. Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise linearities by incremental harmonic balance method // J. Sound Vib., 2003, V. 264, P. 873–882.