

David J. Miller Zhen Xiang George <u>Kesidis</u>

Adversarial Learning and Secure Al

© David J. Miller, Zhen Xiang, and George Kesidis 2023

Appendix Support-Vector Machines (SVMs)

Outline

- Background on constrained optimization and duality
- Background on distance to a hyperplane
- Linear SVMs
- Dealing with not linearly separable data
- SVMs with nonlinear kernels
- SVMs for more than two classes
- Single-class SVMs

Background on constrained optimization and duality

► Consider a *primal* optimization problem with a set of *m* inequality constraints: Find

$$\arg\min_{x\in D}f_0(\underline{x}),$$

where the constrained domain of optimization is

$$D \equiv \{\underline{x} \in \mathbb{R}^n \mid f_i(\underline{x}) \leq 0, \forall i \in \{1, 2, ..., m\}\}.$$

▶ To study the primal problem, we define the corresponding Lagrangian function on $\mathbb{R}^n \times [0, \infty)^m$:

$$L(\underline{x},\underline{v}) \equiv f_0(\underline{x}) + \sum_{i=1}^m v_i f_i(\underline{x}),$$

where, by implication, the vector of *Lagrange multipliers* (dual variables) is $\underline{v} \in [0, \infty)^m$, *i.e.*, non-negative $\underline{v} \ge \underline{0}$.

Primal constrained optimization with Lagrange multipliers

▶ Theorem:

$$\min_{\underline{x} \in \mathbb{R}^n} \max_{\underline{v} \geq \underline{0}} L(\underline{x}, \underline{v}) = \min_{\underline{x} \in D} f_0(\underline{x}) \equiv p^*.$$

Proof: Simply,

$$\max_{\underline{v} \geq \underline{0}} L(\underline{x}, \underline{v}) = \begin{cases} \infty & \text{if } \underline{x} \notin D, \\ f_0(\underline{x}) & \text{if } \underline{x} \in D \text{ (see complementary slackness)} \end{cases}$$

- Note that if $\underline{x} \notin D$ then $\exists i > 0$ s.t. $f_i(\underline{x}) > 0 \Rightarrow$ optimal $v_i^* = \infty$.
- So, we can maximize the Lagrangian in an unconstrained fashion to find the solution to the constrained primal problem.

Complementary slackness of primal solution

Define the maximizing values of the Lagrange multipliers,

$$\underline{v}^*(\underline{x}) \equiv \arg \max_{\underline{v} \geq \underline{0}} L(\underline{x}, \underline{v})$$

and note that the complementary slackness conditions

$$v_i^*(\underline{x})f_i(\underline{x}) = 0$$

hold for all $\underline{x} \in D$ and $i \in \{1, 2, ..., m\}$.

- ▶ That is, if there is slackness in the i^{th} constraint, *i.e.*, $f_i(\underline{x}) < 0$, then there is no slackness in the constraint of the corresponding Lagrange multiplier, *i.e.*, $v_i^*(\underline{x}) = 0$.
- Conversely, if $f_i(\underline{x}) = 0$, then the *optimal* value of the Lagrange multiplier $v_i^*(\underline{x})$ is not relevant to the Lagrangian.

The dual problem

Now define the *dual* function of the primal problem:

$$g(\underline{v}) = \min_{\underline{x} \in \mathbb{R}^n} L(\underline{x}, \underline{v}).$$

i.e., unconstrained optimization w.r.t. primal variables first.

- Note that $g(\underline{v})$ may be infinite for some values of \underline{v} and that g is always concave.
- ▶ **Theorem:** For all $\underline{x} \in D$ and $\underline{v} \ge \underline{0}$,

$$g(\underline{v}) \leq f_0(\underline{x}).$$

▶ **Proof:** For $\underline{v} \ge \underline{0}$ and $\underline{x} \in D$,

$$g(\underline{v}) \le L(\underline{x},\underline{v}) \le \max_{\underline{v} \ge 0} L(\underline{x},\underline{v}) = f_0(\underline{x}),$$

where the last equality is the bound on L assuming $\underline{x} \in D$. \square

The dual problem (cont)

By the previous theorem, if we solve the dual problem, i.e., find

$$d^* \equiv \max_{\underline{v} \geq \underline{0}} g(\underline{v}),$$

then we will have obtained a (hopefully good) lower bound to the primal problem, *i.e.*,

$$\max_{\underline{v} \geq \underline{0}} g(\underline{v}) = \max_{\underline{v} \geq \underline{0}} \min_{\underline{x} \in \mathbb{R}^n} L(\underline{x}, \underline{v}) = d^* \leq p^* = \min_{\underline{x} \in \mathbb{R}^n} \max_{\underline{v} \geq \underline{0}} L(\underline{x}, \underline{v}) = \min_{\underline{x} \in D} f_0(\underline{x})$$

Under certain conditions in this finite dimensional setting, in particular when the primal problem is convex and a *strictly* feasible solution exists, the duality gap,

$$p^* - d^* = 0.$$

The dual problem for a linear program

- ▶ If $f_0(\underline{x}) = \sum_{j=1}^n \phi_j x_j$ and all $f_i(\underline{x}) = \xi_i + \sum_{j=1}^n \gamma_{i,j} x_j$ are linear functions, then the above primal problem, $\min_{\underline{x}} f_0(\underline{x})$ s.t. $f_i(\underline{x}) \leq 0 \ \forall i \geq 1$, is called a Linear Program (LP).
- ► Exercise: Find an *equivalent* dual LP. Hint: first show the Lagrangian of the primal problem can be written as

$$L(\underline{x},\underline{v}) = \sum_{i=1}^{m} \xi_{i} v_{i} + \sum_{j=1}^{n} x_{j} \left(\phi_{j} + \sum_{i=1}^{m} v_{i} \gamma_{i,j} \right).$$

▶ LPs can be solved by the simplex algorithm (along feasible region boundaries) or by interior point methods.

Iterated subgradient method

▶ Using duality to find p^* and $\underline{x}^* = \operatorname{argmin}_{\underline{x} \in D} f_0(\underline{x})$ in this case, consider a *slow* ascent method is used to maximize g,

$$\underline{v}_n = \underline{v}_{n-1} + \alpha_1 \nabla_{\underline{v}} L(\underline{x}^*(\underline{v}_{n-1}), \underline{v}_{n-1}),$$

and between steps of the ascent method, a *fast* descent method used to evaluate $g(\underline{v}_n)$ by minimizing $L(\underline{x},\underline{v}_n)$,

$$\underline{x}_k = \underline{x}_{k-1} - \alpha_2 \nabla_{\underline{x}} L(\underline{x}_{k-1}, \underline{v}_n) \rightarrow \underline{x}^*(\underline{v}_n)$$

- ► The process described by such an ascent/descent method is called an iterative subgradient method.
- The step sizes α can be chosen dynamically, *e.g.*, steepest ascent/descent (*i.e.*, itself the result of optimization).
- ► Instead of slow ascent, the descent step can be projected on the feasible domain *D*.

KKT conditions

► Consider again a *primal* optimization problem with a set of *m* inequality constraints: Find

$$\arg\min_{\underline{x}\in D}f_0(\underline{x}),$$

where the constrained domain of optimization is

$$D \equiv \{\underline{x} \in \mathbb{R}^n \mid f_i(\underline{x}) \leq 0, \forall i \in \{1, 2, ..., m\}\}.$$

▶ So the Lagrangian on $(\underline{x},\underline{v}) \in \mathbb{R}^n \times (\mathbb{R}^+)^m$ is

$$L(\underline{x},\underline{v}) \equiv f_0(\underline{x}) + \sum_{i=1}^m v_i f_i(\underline{x}).$$

and our objective is to find $\min_x \max_{v \geq 0} L$.

▶ If f_0 is convex and, $\forall i \geq 1$, f_i is linear, then the following Karush-Kuhn-Tucker (KKT) conditions suffice for optimality:

$$\forall j, \quad \partial L/\partial x_j = 0$$
 and

$$\forall i, v_i f_i = 0$$
 (complementary slackness).

Background: Distance to a hyperplane

For a fixed *n*-dimensional vector $\underline{w} \in \mathbb{R}^n$, $\underline{w} \neq 0$, and scalar $b \in \mathbb{R}$, we can define the hyperplane in \mathbb{R}^n ,

$$\mathcal{F} = \{\underline{x} \in \mathbb{R}^n \mid 0 = f(\underline{x}) = b + \langle \underline{x}, \underline{w} \rangle = b + \sum_{i=1}^n x_i w_i \}.$$

- For n=2, note that the line $x_2=b+mx_1$ can be written as $0=b+\langle \underline{x},\underline{w}\rangle$ where $\underline{w}=(m,-1)^{\mathrm{T}}\perp(1,m)^{\mathrm{T}}$.
- ▶ If $\underline{x}, \underline{z} \in \mathcal{F}$ and $\underline{x} \neq \underline{z}$, then the vector $\underline{x} \underline{z}$ must be parallel to the hyperplane;
- ▶ since $0 = f(\underline{x}) f(\underline{z}) = \langle \underline{w}, \underline{x} \underline{z} \rangle$, $\underline{w} \perp \mathcal{F}$.
- Equivalently, we can define the hyperplane \mathcal{F} given any particular vector \underline{x}^* such that $f(\underline{x}^*) = 0$:

$$\mathcal{F} = \{\underline{x}^* + \underline{v} \mid \underline{v} \perp \underline{w}\}.$$

▶ One such $\underline{x}^* = -b \ \underline{w} / \|\underline{w}\|^2 \ \bot \mathcal{F}$.

Background: Distance to a hyperplane

Recall we can project \underline{z} onto \underline{w} to write

$$\underline{z} = \alpha \frac{\underline{w}}{\|\underline{w}\|} + (\underline{z} - \alpha \frac{\underline{w}}{\|\underline{w}\|}),$$

where the component of \underline{z} in the direction \underline{w} is

$$\alpha = \frac{\langle \underline{z}, \underline{w} \rangle}{\|\underline{w}\|}$$

and $\underline{w}/\|\underline{w}\|$ is a vector of unit (Euclidean) norm.

▶ The distance from \underline{z} to \mathcal{F} is $|d_{\underline{z}}|$ for a scalar $d_{\underline{z}} \in \mathbb{R}$ such that $\underline{z} - d_{\underline{z}}\underline{w}/\|\underline{w}\| \in \mathcal{F}$, *i.e.*,

$$0 = f(\underline{z} - d_{\underline{z}}\underline{w}/\|\underline{w}\|) = f(\underline{z}) - d_{\underline{z}}\|\underline{w}\|.$$

Background: Distance to a hyperplane

▶ Thus, $d_z = f(\underline{z})/\|\underline{w}\|$ and

$$|d_{\underline{z}}| = \frac{|f(\underline{z})|}{\|\underline{w}\|}.$$

▶ If $d_{\underline{z}} > 0$ then \underline{z} is on one side of the hyperplane \mathcal{F} , *i.e.*, the half of \mathbb{R}^n where f > 0 since

$$0 = f(\underline{z} - d_{\underline{z}}\underline{w}) = f(\underline{z}) - d_{\underline{z}} \|\underline{w}\|.$$

▶ Else if $d_{\underline{z}} < 0$ then \underline{z} is on the side of the hyperplane \mathcal{F} where f < 0.

Background: Distance to hyperplane (cont)

Linear SVMs

- Support-vector machines (SVMs) are classifiers f of real vector valued, two-class samples,
- ▶ *i.e.*, training set $\mathcal{X} \subset \mathbb{R}^n$ and $|\mathcal{C}| = 2$, where the classes are enumerated

$$\{-1,1\} = C.$$

- ▶ Ideally, a SVM $f: \mathbb{R}^n \to \mathbb{R}$ has the following separability property on the training set: $\forall \underline{x} \in \mathcal{X}$,
 - if \underline{x} 's class label $y_{\underline{x}} = 1$ then $f(\underline{x}) > 0$
 - else (when $y_{\underline{x}} = -1$) $f(\underline{x}) < 0$,
 - *i.e.*, the sign of $f(\underline{x})$ indicates the class $y_{\underline{x}}$.
- So the classifier is actually

$$\mathsf{sgn} \circ f : \mathbb{R}^n \to \mathcal{C} = \{-1, 1\}.$$

◆ロト ◆園 ▶ ◆園 ▶ ◆園 ▶ ■ めぬべ

Linear SVMs and Separable Data

If the data is linearly separable, then there is a classifier

$$f(\underline{x}) = \langle \underline{w}, \underline{x} \rangle + b$$

such that

$$y_{\underline{x}}f(\underline{x}) > 0$$
 for all $\underline{x} \in \mathcal{X}$,

where the scalar $b \in \mathbb{R}$, the vector $w \in \mathbb{R}^n$.

ightharpoonup The classification margin of a class-separating classifier f is

$$\min_{\underline{x} \in \mathcal{X}} \frac{|f(\underline{x})|}{\|\underline{w}\|} = \min_{\underline{x} \in \mathcal{X}} \frac{y_{\underline{x}} f(\underline{x})}{\|\underline{w}\|}$$

Learning Linear SVMs on Separable Data

► To maximize generalization performance, choose <u>w</u>, b to solve the following optimization problem:

$$\min \|\underline{w}\|^2$$
 subject to $y_x f(\underline{x}) = y_x (\langle \underline{w}, \underline{x} \rangle + b) \ge 1 \ \forall \underline{x} \in \mathcal{X}$,

where minimizing $\|\underline{w}\|^2$ (easier to differentiate than $\|\underline{w}\|$) is equivalent to maximizing classification *margin*,

- ▶ *i.e.*, maximizing the shortest distances to the decision boundary (hyperplane $\mathcal{F} = \{x : f(x) = 0\}$) among points in each class.
- Note that the linear optimization constraints are ≥ 1 instead of ≥ 0 so as to "normalize" the resulting the weight vector \underline{w} with respect to the **closest points (support vectors)** to the hyperplane \mathcal{F} ,

$$\mathcal{X}^* \subset \mathcal{X}$$
.

Linear SVMs with Separable Data - finding \underline{w} , b

Define the Lagrangian with Lagrange multipliers λ :

$$L((\underline{w},b),\underline{\lambda}) = \frac{1}{2} \|\underline{w}\|^2 - \sum_{x \in \mathcal{X}} \lambda_{\underline{x}} (y_{\underline{x}} (\langle \underline{w}, \underline{x} \rangle + b) - 1)$$

Taking the dual approach:

$$\nabla_{w}L = 0 \Rightarrow \underline{w}^{*} = \sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}} y_{\underline{x}} \underline{x}$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}} y_{\underline{x}} = 0$$

Linear SVMs with Separable Data - Dual Approach

Thus by substitution we get

$$L((\underline{w}^*, b^*), \underline{\lambda}) = \frac{1}{2} \| \sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}} y_{\underline{x}} \underline{x} \|^2 - \sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}} y_{\underline{x}} \langle \sum_{\underline{z} \in \mathcal{X}} \lambda_{\underline{z}} y_{\underline{z}} \underline{z} \rangle, \ \underline{x} \rangle$$
$$- \sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}} y_{\underline{x}} b + \sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}}$$
$$= -\frac{1}{2} \sum_{\underline{x} \in \mathcal{X}} \sum_{\underline{z} \in \mathcal{X}} \lambda_{\underline{x}} \lambda_{\underline{z}} y_{\underline{x}} y_{\underline{z}} \langle \underline{x}, \underline{z} \rangle + \sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}}$$

Linear SVMs with Separable Data - Dual Approach (cont)

Now need to maximize $L((\underline{w}^*, b^*), \underline{\lambda})$ over $\underline{\lambda}$, subject to

$$\sum_{\underline{x} \in \mathcal{X}} \lambda_{\underline{x}} y_{\underline{x}} = 0, \quad \lambda_{\underline{x}} \geq 0, \forall \underline{x} \in \mathcal{X}$$

which is a quadratic program.

▶ This problem corresponds to solving a set of *linear* equations in the unknowns $\underline{\lambda} \geq \underline{0}$.

Linear SVMs with Separable Data - Dual Approach (cont)

► Recall complementary slackness,

$$\forall x \in \mathcal{X}, \ \lambda_x(y_x(\langle \underline{w}^*, \underline{x} \rangle + b^*) - 1) = 0$$

► Thus,

$$\lambda_{\underline{x}} = 0 \quad \Leftrightarrow \quad \underline{x} \notin \mathcal{X}^*$$

$$\underline{w}^* \quad = \quad \sum_{\underline{x} \in \mathcal{X}^*} \lambda_{\underline{x}} \underline{y}_{\underline{x}} \underline{x}$$

$$b^* \quad = \quad \underline{y}_{\underline{x}} - \langle \underline{w}^*, \underline{x} \rangle = \underline{y}_{\underline{x}} - \sum_{\underline{z} \in \mathcal{X}^*} \lambda_{\underline{z}} \underline{y}_{\underline{z}} \langle \underline{z}, \underline{x} \rangle$$

 \triangleright For robustness to error, average b^* over support vectors:

$$b^* = \frac{1}{|\mathcal{X}^*|} \sum_{\underline{x} \in \mathcal{X}^*} \left(y_{\underline{x}} - \sum_{\underline{z} \in \mathcal{X}^*} \lambda_{\underline{z}} y_{\underline{z}} \langle \underline{z}, \underline{x} \rangle \right)$$

Inference by linear SVM

- ▶ Suppose the class of test sample ξ is to be inferred.
- Evaluating the sign of the SVM at a test sample ξ ,

$$\operatorname{sgn}(f(\underline{\xi})) = \operatorname{sgn}\left(\langle \underline{w}^*, \underline{\xi} \rangle + b^*\right) = \operatorname{sgn}\left(\sum_{\underline{x} \in \mathcal{X}^*} \lambda_{\underline{x}} y_{\underline{x}} \langle \underline{x}, \underline{\xi} \rangle + b^*\right)$$

depends only on inner products of: $\underline{\xi}$ with support vectors, $\langle \underline{\xi}, \underline{x} \rangle$ for $\underline{x} \in \mathcal{X}^*$ and support vectors with each other (b^*) ,

see the kernel trick.

Linear SVMs with Separable Data - Illustrative Example

The SVM is the decision boundary that maximizes classification margin for both clases for improved generalization performance.

Linear SVM with slackness for non-separable data

When the labelled training data X is not linearly separable, instead:

$$\min \frac{1}{2} \|\underline{w}\|^2 + c \sum_{\underline{x} \in \mathcal{X}} \gamma_{\underline{x}} \text{ such that:}$$

$$y_{\underline{x}} f(x) := y_{\underline{x}} (\langle w, x \rangle + b) \geq 1 - \gamma_{\underline{x}} \ \, \forall x \in \mathcal{X}.$$

and optimize over \underline{w} , b and $\gamma_x \geq 0 \ \forall \underline{x} \in \mathcal{X}$.

- The scale c and slackness γ hyperparameters determine the relative importance of the weight vector magnitude (inverse margin) in order to deal with margin violators including misclassified samples.
- c, γ can be found by grid search using a held-out evaluation subset of the training set \mathcal{X} (or training-set fold) to assess the error rate of each (γ, c) grid point.

Linear SVMs with non-separable data

- two white margin violators
- one black sample misclassified

Kernel SVMs with nonlinear decision boundaries

- Again suppose that the training data \mathcal{X} is not linearly separable, but suppose there is a feature mapping function $\Phi: \mathbb{R}^n \to \mathbb{R}^N$ for N > n (the original number of features) such that $\{(\Phi(x), y_x)\}_{x \in \mathcal{X}}$ is linearly separable.
- Recall Cover's theorem.
- ▶ Repeating the above procedure gives the SVM in \mathbb{R}^N :

$$f^*(\underline{x}) = \langle \underline{w}^*, \Phi(\underline{x}) \rangle + b^* = \sum_{\xi \in \mathcal{X}^*} \lambda_{\underline{\xi}} y_{\underline{\xi}} K(\underline{\xi}, \underline{x}) + b^*,$$

where for any $\underline{\zeta} \in \mathcal{X}^*$

$$b^* = y_{\underline{\zeta}} - \sum_{\xi \in \mathcal{X}^*} \lambda_{\underline{\xi}} y_{\underline{\xi}} K(\underline{\xi}, \underline{\zeta})$$

and the kernel K is given by

$$K(\xi,\zeta) = \langle \Phi(\xi), \Phi(\zeta) \rangle.$$

Kernel SVMs (cont)

- Note that the SVM classifier f^* depends on the feature map Φ only implicitly through K and \mathcal{X}^* .
- Computation of the SVM typically begins by selecting the kernel K (and parameter N), hoping that the data can be separable with the choice made, and attempting to discover the Lagrange multipliers $\lambda_{\underline{x}}$ (and hence the support vectors \mathcal{X}^*) without Φ ,
- i.e., the "kernel trick".
- ► The corresponding "weight vector norm squared" (classification margin) in the nonlinear classifier case is

$$\sum_{\underline{\xi},\underline{\zeta}\in\mathcal{X}} \lambda_{\underline{\xi}} \lambda_{\underline{\zeta}} y_{\underline{\xi}} y_{\underline{\zeta}} K(\underline{\xi},\underline{\zeta})$$

clearly generalizing $||w^*||^2$ for a linear SVM.

4□ > 4問 > 4 ≣ > 4 ≣ > ■ 9 Q @

Kernel SVMs - optimization

The optimization objective is:

$$\frac{1}{2} \sum_{\underline{\xi},\underline{\zeta} \in \mathcal{X}} \lambda_{\underline{\xi}} \lambda_{\underline{\zeta}} y_{\underline{\xi}} y_{\underline{\zeta}} K(\underline{\xi},\underline{\zeta}) + c \sum_{\underline{x} \in \mathcal{X}} \gamma_{\underline{x}} \text{ subject to:}$$

$$1-\lambda_{\underline{x}} \leq y_{\underline{x}}\big(\langle \underline{w}, \Phi(\underline{x}) \rangle + b\big), \ \lambda_{\underline{x}} \geq 0 \ \forall \underline{x} \in \mathcal{X}$$

with class decision function

$$f(\underline{z}) = \sum_{x \in \mathcal{X}} \lambda_{\underline{x}} y_{\underline{x}} K(\underline{z}, \underline{x}) + b$$

where

- ▶ the **kernel** $K(\underline{z},\underline{x}) = \langle \Phi(\underline{z}), \Phi(\underline{x}) \rangle$, and
- $\lambda_{x} > 0 \Rightarrow \underline{x} \in \mathcal{X}^{*}.$

Kernel SVMs - Examples

- Suppose $\Phi(x)$ contains all polynomial components that can be created with the components of \underline{x} of degree ≤ 2 :
 - Specifically, if $x = (x_1, x_2, x_3)^T$ and

$$\Phi(\underline{x}) = (1, x_1\sqrt{2}, x_2\sqrt{2}, x_3\sqrt{2}, x_1^2, x_2^2, x_3^2, x_1x_2\sqrt{2}, x_2x_3\sqrt{2}, x_3x_1\sqrt{2})^{\mathrm{T}}$$

then

$$K(\underline{x},\underline{z}) = \langle \Phi(\underline{x}), \Phi(\underline{z}) = (1 + \langle \underline{x},\underline{z}) \rangle)^2.$$

Gaussian radial basis functions are commonly used:

$$K(\underline{z},\underline{x}) = \exp\left(-\frac{\|\underline{z}-\underline{x}\|^2}{2\sigma^2}\right)$$

Note that we don't need to know Φ to train the SVM or make inferences!

Feature selection using SVMs

- Many features may confound or may simply not be useful for purposes of classification.
- Promote sparsity in the weights by adding a penalty term to the Lagrangian:

$$\|w\|_q^q = \sum_i |w_i|^q$$
 for $0 < q \ll 1$,

i.e., penalize nonzero weights $(q \ll 1)$ while preserving differentiability (q > 0).

- Recursive methods have been proposed to reduce features used for classification (make SVM weights sparser).
- ► Eliminate features associated with smallest-magnitude weight-vector components (RFE).
- ► Margin-based Feature Elimination (MFE) removes the feature which results in the largest margin.

SVMs for more than two classes

- ▶ Assume $|C| \ge 2$ classes.
- Suppose we find $|\mathcal{C}|(|\mathcal{C}|-1)/2$ SVMs $f_{y,y'}$, one for each different pair of classes $y' \neq y \in \mathcal{C}$.
- For example, we can then create a multiclass SVM by labelling test samples \underline{x} as follows,

$$y_{\underline{x}} = \underset{y}{\operatorname{arg max}} \sum_{y' \in \mathcal{C}, \ y' \neq y} \mathbf{1} \{ f_{y,y'}(\underline{x}) \text{ decides } y \},$$

i.e., each SVM "votes" for a class label for \underline{x} .

- ▶ Alternatively, we could find just $|\mathcal{C}|$ SVMs each between a class y and the rest of classes $\bar{y} := \mathcal{C} \setminus y = \{y' \in \mathcal{C} | y' \neq y\}$ (*i.e.*, lump together the rest of the classes giving "one versus rest").
- ▶ Ideally here, select class $y_{\underline{x}}$ for unlabelled sample \underline{x} if $f_{y_{\underline{x}},\overline{y}_{\underline{x}}}$ decides $y_{\underline{x}}$ for \underline{x} and $\forall y \in \mathcal{C} \backslash y_{\underline{x}}$, $f_{y,\overline{y}}$ decides \overline{y} for \underline{x} .

Pairwise SVMs for three linearly separable classes

For red samples, two SVMs vote "red" (R) while $\mathcal{F}_{\mathrm{WB}}$ votes either "black" (B) or "white" (W), so decide the "red" class.

SVMs for more than two classes (cont)

- ▶ One may choose the class label for \underline{x} with corresponding largest distance to the class-decision boundary (as $|f(\underline{x})|/||w||^2$ for linear SVMs).
- ▶ For the set of classes C(x) which have garnered votes for test sample x, let $y^*(x) \in C(x)$ with largest distance to classification boundary, where the distance to be the class-decision boundary is $d_{y^*}(x)$.
- Can take the quantity

$$1 - \max_{y \in \mathcal{C}(x) \setminus y^*(x)} d_y(x) / d_{y^*}(x)$$

as the "confidence" in class decision-making for x.

One-class SVMs

- ► Idea is to train the SVM to return 1 for a small region containing the training samples, otherwise return -1.
- In one approach (Scholkopf):

$$\begin{split} \min_{\underline{w},\gamma,\rho} \; & \frac{\|\underline{w}\|^2}{2} + \frac{1}{\nu n} \sum_{\underline{x} \in \mathcal{X}} \gamma_{\underline{x}} - \rho \quad \text{subject to:} \\ \langle \underline{w}, \Phi(\underline{x}) \rangle \geq \rho - \gamma_{\underline{x}}, \; \gamma_{\underline{x}} \leq 0 \; \; \forall \underline{x} \in \mathcal{X} \end{split}$$

- ▶ The parameter ν sets:
 - an upper bound on the fraction of outliers (misclassified training samples), and
 - a lower bound on the number of training samples used as support vectors.

One-class SVMs

▶ In another approach (Tax and Duin):

$$\begin{split} \min_{R,\underline{z}} \ R^2 + c \sum_{\underline{x} \in \mathcal{X}} \gamma_{\underline{x}} \quad \text{subject to:} \\ \|\underline{x} - \underline{z}\|^2 & \leq R^2 + \gamma_{\underline{x}}, \ \gamma_{\underline{x}} \leq 0 \quad \forall \underline{x} \in \mathcal{X} \end{split}$$

▶ Here the decision boundary is a sphere according to the norm $\|\cdot\|$.

