12. Least squares

Outline

Least squares problem

Solution of least squares problem

Examples

Least squares problem

- ▶ suppose $m \times n$ matrix A is tall, so Ax = b is over-determined
- for most choices of b, there is no x that satisfies Ax = b
- ightharpoonup residual is r = Ax b
- least squares problem: choose x to minimize $||Ax b||^2$
- ► $||Ax b||^2$ is the *objective function*
- \hat{x} is a *solution* of least squares problem if

$$||A\hat{x} - b||^2 \le ||Ax - b||^2$$

for any n-vector x

- idea: \hat{x} makes residual as small as possible, if not 0
- also called regression (in data fitting context)

Least squares problem

- \hat{x} called *least squares approximate solution* of Ax = b
- \hat{x} is sometimes called 'solution of Ax = b in the least squares sense'
 - this is very confusing
 - never say this
 - do not associate with people who say this

- \hat{x} need not (and usually does not) satisfy $A\hat{x} = b$
- but if \hat{x} does satisfy $A\hat{x} = b$, then it solves least squares problem

Column interpretation

- suppose a_1, \ldots, a_n are columns of A
- then

$$||Ax - b||^2 = ||(x_1a_1 + \dots + x_na_n) - b||^2$$

- so least squares problem is to find a linear combination of columns of A that is closest to b
- if \hat{x} is a solution of least squares problem, the *m*-vector

$$A\hat{x} = \hat{x}_1 a_1 + \dots + \hat{x}_n a_n$$

is closest to b among all linear combinations of columns of A

Row interpretation

- suppose $\tilde{a}_1^T, \dots, \tilde{a}_m^T$ are rows of A
- residual components are $r_i = \tilde{a}_i^T x b_i$
- least squares objective is

$$||Ax - b||^2 = (\tilde{a}_1^T x - b_1)^2 + \dots + (\tilde{a}_m^T x - b_m)^2$$

the sum of squares of the residuals

- so least squares minimizes sum of squares of residuals
 - solving Ax = b is making all residuals zero
 - least squares attempts to make them all small

Example

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \qquad \stackrel{\mathbb{S}^1}{\sim} 0$$

- Ax = b has no solution
- least squares problem is to choose x to minimize

$$||Ax - b||^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2$$

- ▶ least squares approximate solution is $\hat{x} = (1/3, -1/3)$ (say, via calculus)
- ► $||A\hat{x} b||^2 = 2/3$ is smallest posible value of $||Ax b||^2$
- $A\hat{x} = (2/3, -2/3, -2/3)$ is linear combination of columns of A closest to b

Outline

Least squares problem

Solution of least squares problem

Examples

Solution of least squares problem

- ▶ we make one assumption: *A has linearly independent columns*
- this implies that Gram matrix A^TA is invertible
- unique solution of least squares problem is

$$\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b$$

• cf. $x = A^{-1}b$, solution of square invertible system Ax = b

Derivation via calculus

define

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_j - b_i\right)^2$$

ightharpoonup solution \hat{x} satisfies

$$\frac{\partial f}{\partial x_k}(\hat{x}) = \nabla f(\hat{x})_k = 0, \quad k = 1, \dots, n$$

- taking partial derivatives we get $\nabla f(x)_k = \left(2A^T(Ax b)\right)_k$
- ▶ in matrix-vector notation: $\nabla f(\hat{x}) = 2A^T(A\hat{x} b) = 0$
- so \hat{x} satisfies normal equations $(A^TA)\hat{x} = A^Tb$
- and therefore $\hat{x} = (A^T A)^{-1} A^T b$

Direct verification

- let $\hat{x} = (A^T A)^{-1} A^T b$, so $A^T (A \hat{x} b) = 0$
- for any n-vector x we have

$$||Ax - b||^{2} = ||(Ax - A\hat{x}) + (A\hat{x} - b)||^{2}$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(A(x - \hat{x}))^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(x - \hat{x})^{T}A^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2}$$

- so for any x, $||Ax b||^2 \ge ||A\hat{x} b||^2$
- if equality holds, $A(x \hat{x}) = 0$, which implies $x = \hat{x}$ since columns of A are linearly independent

Computing least squares approximate solutions

- compute QR factorization of A: A = QR (2 mn^2 flops)
- ightharpoonup QR factorization exists since columns of A are linearly independent
- to compute $\hat{x} = A^{\dagger}b = R^{-1}Q^{T}b$
 - form Q^Tb (2mn flops)
 - compute $\hat{x} = R^{-1}(Q^T b)$ via back substitution (n^2 flops)
- ► total complexity 2mn² flops

- identical to algorithm for solving Ax = b for square invertible A
- but when A is tall, gives least squares approximate solution

Outline

Least squares problem

Solution of least squares problem

Examples

Advertising purchases

- m demographics groups we want to advertise to
- v^{des} is m-vector of target views or impressions
- n-vector s gives spending on n advertising channels
- ightharpoonup m imes n matrix R gives demographic reach of channels
- R_{ij} is number of views per dollar spent (in 1000/\$)
- v = Rs is *m*-vector of views across demographic groups
- $||v^{\text{des}} Rs|| / \sqrt{m}$ is RMS deviation from desired views
- we'll use least squares spending $\hat{s}=R^\dagger v^{\rm des}$ (need not be ≥ 0)

Example

- ightharpoonup m = 10 groups, n = 3 channels
- target views vector $v^{\text{des}} = 10^3 \times 1$
- optimal spending is $\hat{s} = (62, 100, 1443)$

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Illumination

- n lamps illuminate an area divided in m regions
- ▶ A_{ij} is illumination in region i if lamp j is on with power 1, other lamps are off
- \triangleright x_i is power of lamp j
- $(Ax)_i$ is illumination level at region i
- $ightharpoonup b_i$ is target illumination level at region i

figure shows lamp positions for example with

$$m = 25^2$$
, $n = 10$

Illumination

• equal lamp powers (x = 1)

least squares solution \hat{x} , with b = 1

13. Least squares data fitting

Outline

Least squares model fitting

Validation

Feature engineering

Setup

▶ we believe a scalar y and an n-vector x are related by model

$$y \approx f(x)$$

- x is called the independent variable
- ▶ *y* is called the *outcome* or *response variable*
- ▶ $f: \mathbf{R}^n \to \mathbf{R}$ gives the relation between x and y
- often x is a feature vector, and y is something we want to predict
- lacktriangle we don't know f, which gives the 'true' relationship between x and y

Data

we are given some data

$$x^{(1)}, \dots, x^{(N)}, \qquad y^{(1)}, \dots, y^{(N)}$$

also called observations, examples, samples, or measurements

- $x^{(i)}, y^{(i)}$ is *i*th data pair
- $x_j^{(i)}$ is the *j*th component of *i*th data point $x^{(i)}$

Model

- ▶ choose $model \hat{f} : \mathbf{R}^n \to \mathbf{R}$, a guess or approximation of f
- linear in the parameters model form:

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

- $f_i: \mathbf{R}^n \to \mathbf{R}$ are basis functions that we choose
- \triangleright θ_i are model parameters that we choose
- $\hat{y}^{(i)} = \hat{f}(x^{(i)})$ is (the model's) *prediction* of $y^{(i)}$
- we'd like $\hat{y}^{(i)} \approx y^{(i)}$, i.e., model is consistent with observed data

Least squares data fitting

- prediction error or residual is $r_i = y^{(i)} \hat{y}^{(i)}$
- least squares data fitting: choose model parameters θ_i to minimize RMS prediction error on data set

$$\left(\frac{(r^{(1)})^2 + \dots + (r^{(N)})^2}{N}\right)^{1/2}$$

this can be formulated (and solved) as a least squares problem

Least squares data fitting

- express $y^{(i)}$, $\hat{y}^{(i)}$, and $r^{(i)}$ as N-vectors
 - $y^{d} = (y^{(1)}, \dots, y^{(N)})$ is vector of outcomes
 - $-\hat{y}^{d}=(\hat{y}^{(1)},\ldots,\hat{y}^{(N)})$ is vector of predictions
 - $-r^{d}=(r^{(1)},\ldots,r^{(N)})$ is vector of residuals
- $\mathbf{rms}(r^{\mathrm{d}})$ is *RMS* prediction error
- ▶ define $N \times p$ matrix A with elements $A_{ij} = f_j(x^{(i)})$, so $\hat{y}^d = A\theta$
- least squares data fitting: choose θ to minimize

$$||r^{\mathbf{d}}||^2 = ||y^{\mathbf{d}} - \hat{y}^{\mathbf{d}}||^2 = ||y^{\mathbf{d}} - A\theta||^2 = ||A\theta - y^{\mathbf{d}}||^2$$

- $\hat{\theta} = (A^T A)^{-1} A^T y$ (if columns of A are linearly independent)
- ► $||A\hat{\theta} y||^2/N$ is minimum mean-square (fitting) error

Fitting a constant model

- ▶ simplest possible model: $p = 1, f_1(x) = 1$, so model $\hat{f}(x) = \theta_1$ is a constant
- $\hat{\theta}_1 = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T v^d = (1/N) \mathbf{1}^T v^d = \mathbf{avg}(v^d)$
- the mean of $y^{(1)}, \dots, y^{(N)}$ is the least squares fit by a constant
- ► MMSE is $std(y^d)^2$; RMS error is $std(y^d)$
- more sophisticated models are judged against the constant model

Fitting univariate functions

- ▶ when n = 1, we seek to approximate a function $f : \mathbf{R} \to \mathbf{R}$
- we can plot the data (x_i, y_i) and the model function $\hat{y} = \hat{f}(x)$

Straight-line fit

$$p = 2$$
, with $f_1(x) = 1$, $f_2(x) = x$

- model has form $\hat{f}(x) = \theta_1 + \theta_2 x$
- matrix A has form

$$A = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ \vdots & \vdots \\ 1 & x^{(N)} \end{bmatrix}$$

• can work out $\hat{\theta}_1$ and $\hat{\theta}_2$ explicitly:

$$\hat{f}(x) = \mathbf{avg}(y^{d}) + \rho \frac{\mathbf{std}(y^{d})}{\mathbf{std}(x^{d})} (x - \mathbf{avg}(x^{d}))$$

where
$$x^{d} = (x^{(1)}, \dots, x^{(N)})$$

Example

Asset α and β

- x is return of whole market, y is return of a particular asset
- write straight-line model as

$$\hat{y} = (r^{\rm rf} + \alpha) + \beta(x - \mu^{\rm mkt})$$

- $-\mu^{mkt}$ is the average market return
- rrf is the risk-free interest rate
- several other slightly different definitions are used
- ▶ called asset ' α ' and ' β ', widely used

Time series trend

- $y^{(i)}$ is value of quantity at time $x^{(i)} = i$
- $\hat{y}^{(i)} = \hat{\theta}_1 + \hat{\theta}_2 i$, i = 1, ..., N, is called *trend line*
- $y^d \hat{y}^d$ is called de-trended time series
- $\hat{\theta}_2$ is trend coefficient

World petroleum consumption

Polynomial fit

•
$$f_i(x) = x^{i-1}, \quad i = 1, \dots, p$$

model is a polynomial of degree less than p

$$\hat{f}(x) = \theta_1 + \theta_2 x + \dots + \theta_p x^{p-1}$$

(here x^i means scalar x to ith power; $x^{(i)}$ is ith data point)

A is Vandermonde matrix

$$A = \begin{bmatrix} 1 & x^{(1)} & \cdots & (x^{(1)})^{p-1} \\ 1 & x^{(2)} & \cdots & (x^{(2)})^{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x^{(N)} & \cdots & (x^{(N)})^{p-1} \end{bmatrix}$$

Example

N = 100 data points

Regression as general data fitting

- regression model is affine function $\hat{y} = \hat{f}(x) = x^T \beta + v$
- ► fits general fitting form with basis functions

$$f_1(x) = 1,$$
 $f_i(x) = x_{i-1},$ $i = 2, ..., n + 1$

so model is

$$\hat{y} = \theta_1 + \theta_2 x_1 + \dots + \theta_{n+1} x_n = x^T \theta_{2:n} + \theta_1$$

 $\beta = \theta_{2:n+1}, v = \theta_1$

General data fitting as regression

- general fitting model $\hat{f}(x) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)$
- common assumption: $f_1(x) = 1$
- same as regression model $\hat{f}(\tilde{x}) = \tilde{x}^T \beta + v$, with

$$-\tilde{x} = (f_2(x), \dots, f_p(x))$$
 are 'transformed features'

$$-\ v=\theta_1,\,\beta=\theta_{2:p}$$

Auto-regressive time series model

- ightharpoonup time zeries z_1, z_2, \dots
- ▶ auto-regressive (AR) prediction model:

$$\hat{z}_{t+1} = \theta_1 z_t + \dots + \theta_M z_{t-M+1}, \quad t = M, M+1, \dots$$

- M is memory of model
- \hat{z}_{t+1} is prediction of next value, based on previous M values
- we'll choose β to minimize sum of squares of prediction errors,

$$(\hat{z}_{M+1}-z_{M+1})^2+\cdots+(\hat{z}_T-z_T)^2$$

put in general form with

$$y^{(i)} = z_{M+i}, \quad x^{(i)} = (z_{M+i-1}, \dots, z_i), \quad i = 1, \dots, T-M$$

- hourly temperature at LAX in May 2016, length 744
- ▶ average is 61.76°F, standard deviation 3.05°F
- predictor $\hat{z}_{t+1} = z_t$ gives RMS error 1.16° F
- predictor $\hat{z}_{t+1} = z_{t-23}$ gives RMS error 1.73°F
- ► AR model with M = 8 gives RMS error 0.98° F

solid line shows one-hour ahead predictions from AR model, first 5 days

Outline

Least squares model fitting

Validation

Feature engineering

Generalization

basic idea:

- goal of model is not to predict outcome for the given data
- ▶ instead it is to predict the outcome on new, unseen data

- a model that makes reasonable predictions on new, unseen data has generalization ability, or generalizes
- a model that makes poor predictions on new, unseen data is said to suffer from over-fit

Validation

a simple and effective method to guess if a model will generalize

- split original data into a training set and a test set
- typical splits: 80%/20%, 90%/10%
- build ('train') model on training data set
- then check the model's predictions on the test data set
- (can also compare RMS prediction error on train and test data)
- if they are similar, we can guess the model will generalize

Validation

- can be used to choose among different candidate models, e.g.
 - polynomials of different degrees
 - regression models with different sets of regressors
- we'd use one with low, or lowest, test error

models fit using training set of 100 points; plots show test set of 100 points

suggests degree 4, 5, or 6 are reasonable choices

Cross validation

to carry out cross validation:

- divide data into 10 folds
- for i = 1, ..., 10, build (train) model using all folds except i
- test model on data in fold i

interpreting cross validation results:

- if test RMS errors are much larger than train RMS errors, model is over-fit
- if test and train RMS errors are similar and consistent, we can guess the model will have a similar RMS error on future data

- ► house price, regression fit with $x = (area/1000 \text{ ft.}^2, bedrooms)$
- 774 sales, divided into 5 folds of 155 sales each
- fit 5 regression models, removing each fold

	Мо	del param	RMS error			
Fold	v	β_1	β_2	Train	Test	
1	60.65	143.36	-18.00	74.00	78.44	
2	54.00	151.11	-20.30	75.11	73.89	
3	49.06	157.75	-21.10	76.22	69.93	
4	47.96	142.65	-14.35	71.16	88.35	
5	60.24	150.13	-21.11	77.28	64.20	

Outline

Least squares model fitting

Validation

Feature engineering

Feature engineering

- start with original or base feature n-vector x
- choose basis functions f_1, \ldots, f_p to create 'mapped' feature p-vector

$$(f_1(x),\ldots,f_p(x))$$

now fit linear in parameters model with mapped features

$$\hat{y} = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

check the model using validation

Transforming features

standardizing features: replace x_i with

$$(x_i - b_i)/a_i$$

- b_i ≈ mean value of the feature across the data
- $-a_i \approx$ standard deviation of the feature across the data

new features are called z-scores

▶ *log transform*: if x_i is nonnegative and spans a wide range, replace it with

$$\log(1+x_i)$$

hi and lo features: create new features given by

$$\max\{x_1 - b, 0\}, \quad \min\{x_1 - a, 0\}$$

(called hi and lo versions of original feature x_i)

- house price prediction
- start with base features
 - $-x_1$ is area of house (in 1000ft.²)
 - $-x_2$ is number of bedrooms
 - $-x_3$ is 1 for condo, 0 for house
 - x₄ is zip code of address (62 values)
- we'll use p = 8 basis functions:
 - $-f_1(x) = 1, f_2(x) = x_1, f_3(x) = \max\{x_1 1.5, 0\}$
 - $f_4(x) = x_2, f_5(x) = x_3$
 - $-f_6(x), f_7(x), f_8(x)$ are Boolean functions of x_4 which encode 4 groups of nearby zip codes (*i.e.*, neighborhood)
- five fold model validation

	Model parameters									
Fold	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7	θ_8	Train	Test
1	122.35	166.87	-39.27	-16.31	-23.97	-100.42	-106.66	-25.98	67.29	72.78
2	100.95	186.65	-55.80	-18.66	-14.81	-99.10	-109.62	-17.94	67.83	70.81
3	133.61	167.15	-23.62	-18.66	-14.71	-109.32	-114.41	-28.46	69.70	63.80
4	108.43	171.21	-41.25	-15.42	-17.68	-94.17	-103.63	-29.83	65.58	78.91
5	114.45	185.69	-52.71	-20.87	-23.26	-102.84	-110.46	-23.43	70.69	58.27

14. Least squares classification

Outline

Classification

Least squares classification

Multi-class classifiers

Classification

- data fitting with outcome that takes on (non-numerical) values like
 - TRUE OF FALSE
 - SPAM OF NOT SPAM
 - DOG, HORSE, Or MOUSE
- outcome values are called labels or categories
- data fitting is called classification
- we start with case when there are two possible outcomes
- called Boolean or 2-way classification
- we encode outcomes as +1 (TRUE) and -1 (FALSE)
- classifier has form $\hat{y} = \hat{f}(x), f : \mathbf{R}^n \to \{-1, +1\}$

Applications

- email spam detection
 - x contains features of an email message (word counts, ...)
- financial transaction fraud detection
 - x contains features of proposed transaction, initiator
- document classification (say, politics or not)
 - x is word count histogram of document
- disease detection
 - x contains patient features, results of medical tests
- digital communications receiver
 - $-\ y$ is transmitted bit; x contain n measurements of received signal

Prediction errors

- data point (x,y), predicted outcome $\hat{y} = \hat{f}(x)$
- only four possibilities:
 - True positive. y = +1 and $\hat{y} = +1$.
 - True negative. y = -1 and $\hat{y} = -1$.

(in these two cases, the prediction is correct)

- False positive. y = -1 and $\hat{y} = +1$.
- False negative. y = +1 and $\hat{y} = -1$.

(in these two cases, the prediction is wrong)

the errors have many other names, like Type I and Type II

Confusion matrix

- given data set $x^{(1)}, \dots, x^{(N)}, y^{(1)}, \dots, y^{(N)}$ and classifier \hat{f}
- count each of the four outcomes

	$\hat{y} = +1$	$\hat{y} = -1$	Total
y = +1	N_{tp}	$N_{ m fn}$	$N_{ m p}$
y = -1	$N_{ m fp}$	$N_{ m tn}$	$N_{\rm n}$
All	$N_{\mathrm{tp}} + N_{\mathrm{fp}}$	$N_{\rm fn} + N_{\rm tp}$	N

- off-diagonal terms are prediction errors
- many error rates and accuracy measures are used
 - error rate is $(N_{\rm fp} + N_{\rm fn})/N$
 - true positive (or recall) rate is $N_{\rm tp}/N_{\rm p}$
 - false positive rate (or false alarm rate) is $N_{
 m fp}/N_{
 m n}$
- a proposed classifier is judged by its error rate(s) on a test set

spam filter performance on a test set (say)

	$\hat{y} = +1$ (SPAM)	$\hat{y} = -1$ (not spam)	Total
y = +1 (SPAM)	95	32	127
y = -1 (not spam)	19	1120	1139
All	114	1152	1266

- error rate is (19 + 32)/1266 = 4.03%
- false positive rate is 19/1139 = 1.67%

Outline

Classification

Least squares classification

Multi-class classifiers

Least squares classification

- fit model \tilde{f} to encoded (±1) $y^{(i)}$ values using standard least squares data fitting
- $\tilde{f}(x)$ should be near +1 when y = +1, and near -1 when y = -1
- $\tilde{f}(x)$ is a number
- use model $\hat{f}(x) = \operatorname{sign}(\tilde{f}(x))$
- (size of $\tilde{f}(x)$ is related to the 'confidence' in the prediction)

Handwritten digits example

► MNIST data set of 70000 28 × 28 images of digits 0, ..., 9

- divided into training set (60000) and test set (10000)
- ➤ *x* is 494-vector, constant 1 plus the 493 pixel values with nonzero values in at least 600 training examples
- ▶ y = +1 if digit is 0; -1 otherwise

Least squares classifier results

► training set results (error rate 1.6%)

	$\hat{y} = +1$	$\hat{y} = -1$	Total
y = +1	5158	765 52010	5923
y = -1	167	53910	54077
All	5325	54675	60000

► test set results (error rate 1.6%)

	$\hat{y} = +1$	$\hat{y} = -1$	Total
y = +1	864	116	980
y = -1	42	8978	9020
All	906	9094	10000

▶ we can likely achieve 1.6% error rate on unseen images

Distribution of least squares fit

distribution of values of $\tilde{f}(x^{(i)})$ over training set

Coefficients in least squares classifier

Skewed decision threshold

• use predictor $\hat{f}(x) = \mathbf{sign}(\tilde{f}(x) - \alpha)$, *i.e.*,

$$\hat{f}(x) = \left\{ \begin{array}{ll} +1 & \tilde{f}(x) \geq \alpha \\ -1 & \tilde{f}(x) < \alpha \end{array} \right.$$

- $\triangleright \alpha$ is the decision threshold
- for positive α , false positive rate is lower but so is true positive rate
- for negative α , false positive rate is higher but so is true positive rate
- trade off curve of true positive versus false positive rates is called receiver operating characteristic (ROC)

ROC curve

Outline

Classification

Least squares classification

Multi-class classifiers

Multi-class classifiers

- we have K > 2 possible labels, with label set $\{1, \dots, K\}$
- ▶ predictor is $\hat{f}: \mathbf{R}^n \to \{1, \dots, K\}$
- for given predictor and data set, confusion matrix is $K \times K$
- some off-diagonal entries may be much worse than others

- handwritten digit classification
 - guess the digit written, from the pixel values
- marketing demographic classification
 - guess the demographic group, from purchase history
- disease diagnosis
 - guess diagnosis from among a set of candidates, from test results, patient features
- translation word choice
 - choose how to translate a word into several choices, given context features
- document topic prediction
 - guess topic from word count histogram

Least squares multi-class classifier

- create a least squares classifier for each label versus the others
- take as classifier

$$\hat{f}(x) = \underset{\ell \in \{1, \dots, K\}}{\operatorname{argmax}} \tilde{f}_{\ell}(x)$$

(*i.e.*, choose ℓ with largest value of $\tilde{f}_{\ell}(x)$)

for example, with

$$\tilde{f}_1(x) = -0.7, \quad \tilde{f}_2(x) = +0.2, \quad \tilde{f}_3(x) = +0.8$$

we choose $\hat{f}(x) = 3$

Handwritten digit classification

confusion matrix, test set

	Prediction										
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	944	0	1	2	2	8	13	2	7	1	980
1	0	1107	2	2	3	1	5	1	14	0	1135
2	18	54	815	26	16	0	38	22	39	4	1032
3	4	18	22	884	5	16	10	22	20	9	1010
4	0	22	6	0	883	3	9	1	12	46	982
5	24	19	3	74	24	656	24	13	38	17	892
6	17	9	10	0	22	17	876	0	7	0	958
7	5	43	14	6	25	1	1	883	1	49	1028
8	14	48	11	31	26	40	17	13	756	18	974
9	16	10	3	17	80	0	1	75	4	803	1009
All	1042	1330	887	1042	1086	742	994	1032	898	947	10000

error rate is around 14% (same as for training set)

Adding new features

- let's add 5000 random features (!), $\max\{(Rx)_j, 0\}$
 - R is 5000×494 matrix with entries ± 1 , chosen randomly
- now use least squares classification with 5494 feature vector

- results: training set error 1.5%, test set error 2.6%
- can do better with a little more thought in generating new features
- ▶ indeed, even better than humans can do (!!)

Results with new features

confusion matrix, test set

	Prediction										
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	972	0	0	2	0	1	1	1	3	0	980
1	0	1126	3	1	1	0	3	0	1	0	1135
2	6	0	998	3	2	0	4	7	11	1	1032
3	0	0	3	977	0	13	0	5	8	4	1010
4	2	1	3	0	953	0	6	3	1	13	982
5	2	0	1	5	0	875	5	0	3	1	892
6	8	3	0	0	4	6	933	0	4	0	958
7	0	8	12	0	2	0	1	992	3	10	1028
8	3	1	3	6	4	3	2	2	946	4	974
9	4	3	1	12	11	7	1	3	3	964	1009
All	997	1142	1024	1006	977	905	956	1013	983	997	10000