Altium Library

Procedure to create and manage components

Version 1.0

Kleber Gouveia March 2018

Revision History

Name	Date	Changes	Version
Kleber Gouveia	03/26/2018	Initial release	1.0

Contents

1.	Introduction	n	4
	1.1 Refere	ences	4
	•		
2.	Altium Libro	ary	5
	2.1 Schem	natic Library (.SchLib)	6
	2.1.1 Fi	illing the Library Component Properties	6
		emplates and specific parameters for each component class	
	2.1.2.1	Antenna	
	2.1.2.2	Battery	7
	2.1.2.3	Capacitor	7
	2.1.2.4	Connector	8
	2.1.2.5	Crystal	9
	2.1.2.6	Diode	9
	2.1.2.7	Fuse	11
	2.1.2.8	Inductor	12
	2.1.2.9	Integrated Circuit	13
	2.1.2.10	Relay	13
	2.1.2.11	Resistor	13
	2.1.2.12	Switch	14
	2.1.2.13	Thyristor	15
	2.1.2.14	Transformer	16
	2.1.2.15	Transistor	17
	2.1.2.16	Varistor	19
	2.2 PCB Lil	brary (.SchLib)	19
	2.3 Observ	vations during adding/editing components	19
		SchLib Files	
	2.3.2 .F	PcbLib Files	19

1. Introduction

This document can be used as a directive to create/edit the Altium library's components. In the following sections are explained standards and models used in this library.

1.1 References

Altium Training: Module 15 - Schematic Library Editor.pdf;

Altium Training: Module 16 - PCB Library Editor.pdf;

2. Altium Library

The components are sorted by classes. Each class is treated in a .SchLib and a .PcbLib file as shown below:

Table 1 – Altium Library Classes and Files

Component Class	Default Designator	.SchLib File	.PcbLib File
Antenna	ANT?	Antenna.SchLib	Antenna.PcbLib
Battery	BAT?	Battery.SchLib	Battery.PcbLib
Capacitor	C?	Capacitor.SchLib	Capacitor.PcbLib
Connector	CN?	Connector.SchLib	Connector.PcbLib
Crystal	XTAL?	Crystal.SchLib	Crystal.PcbLib
Diode	D?	Diode.SchLib	Diode.PcbLib
Display	-	Display.SchLib	Display.PcbLib
Fuse	F?	Fuse.SchLib	Fuse.PcbLib
Heat Sink	HS?	Heat_SinkSchLib	Heat_Sink.PcbLib
Holder	-	Holder.SchLib	Holder.PcbLib
Inductor	L?	Inductor.SchLib	Inductor.PcbLib
Integrated Circuit	U?	Integrated_Circuit. SchLib	Integrated_Circuit.PcbLib
Miscellaneous	-	Miscellaneous.SchLib	Miscellaneous.PcbLib
Relay	RL?	Relay.SchLib	Relay.PcbLib
Resistor	R?	Resistor.SchLib	Resistor.PcbLib
SOM	-	SOM.SchLib	SOM.PcbLib
Switch	SW?	Switch.SchLib	Switch.PcbLib
SCR, Diac, Triac	TY?	Thyristor.SchLib	Thyristor.PcbLib
Transducer	-	Transducer.SchLib	Transducer.PcbLib
Transformer	TR?	Transformer.SchLib	Transformer.PcbLib
Transistor	T?	Transistor.SchLib	Transistor.PcbLib
Varistor	VR?	Varistor.SchLib	Varistor.PcbLib

2.1 Schematic Library (.SchLib)

Each .SchLib files contains all components related that component class. Inside the .SchLib file (SCH Library panel) there is, in most cases, a component template witch name starts with *MODEL_ and it has the parameters for this class listed in "Library Component Properties". Some parameters are common to all .SchLib files, for example: Manufacturer, Mount Type or Value. Each component class could be also different parameters only related that class, for example: tolerance for resistors or dielectric type for capacitors. The main purpose of the parameters is to be used as a filter to help the search of a desired component when the designer is capturing the schematic. A secondary purpose of the parameters is to generate BOMs and reports listing characteristics of the components in a design.

The template components could be used to create a new component using copy, paste and filling the template with the exact data from the desired part number. Figure 1 shows the "Library Component Properties" of the component *MODEL_RES listed in Resistor.SchLib. This is a template to creation of general purpose resistors.

Figure 1 - "Library Component Properties" window.

2.1.1 Filling the Library Component Properties

Below is the standard manner to fill the fields of the Library Component Properties window:

Default Designator (Visible) - Put the designator listed on Table 1 corresponding the correct component class. Don't forget the "?".

Comment – (not Visible) Put the component manufacturer's part number.

Description – Put the component description. It's useful to put in this field the short description by Digikey's web page (or the description by another Supplier).

Symbol Reference – Put the component manufacturer's part number.

Parameters – (not Visible) Put the parameters related to the component.

- Add suppliers (Digikey, Farnell, Newark, Mouser, Arrow, etc.) using the Altium's Supplier Search;
- Add the parameter "Manufacturer" filling the manufacturer name.
- Add the parameter "Mount Type" filling the mount type of the component: SMD, PTH, PANEL...
- Add the parameters related to each component class as described in the following sections (Visible in some cases).

Models – Add the footprint of the component.

2.1.2 Templates and specific parameters for each component class

Inside each .SchLib file there are some components witch name is in the form: *MODEL_XXXXXXX, where XXXXXXX is something related to that class. These components are templates that could be copied to help the component creation. In the next sections these templates and its parameters are described.

2.1.2.1 Antenna

*MODEL ANT

- Parameters:
 - Value (Visible) Put the component manufacturer's part number.
- *MODEL_DIPOLE

- Parameters:
 - Value (Visible) Put the component manufacturer's part number.

2.1.2.2 Battery

*MODEL_BATTERY

- o Parameters:
 - Value (Visible) Put the battery nominal voltage in Volts (V).
 - Capacity (Visible) Put the battery capacity in mA-hours (mAh).
 - Type (not Visible) Put the battery type (Li-ion, Ni-Cad, Ni-MH, lead-acid...).

2.1.2.3 Capacitor

*MODEL_CAP_NO_POL

- Value (Visible) Put the capacitor capacitance.
- Voltage (Visible) Put the capacitor nominal voltage.
- Category Put the capacitor category (Ex: Ceramic, Electrolytic, Tantalum...).
- Dielectric Put the capacitor dielectric type.
- *MODEL_CAP_POL

Figura 2 - Esquemático do *MODEL_CAP_POL

o Parameters:

- Value (Visible) Put the capacitor capacitance.
- Voltage (Visible) Put the capacitor nominal voltage.
- Category Put the capacitor category (Ex: Ceramic, Electrolytic, Tantalum...).

2.1.2.4 Connector

• *MODEL_CONNECTOR_1LIN

- N of Positions Put the number of positions of the connector.
- Pitch Put the connector pitch.
- Value (Visible) Put the connector part number.
- *MODEL_CONNECTOR_2LIN

- N of Positions Put the number of positions of the connector.
- Pitch Put the connector pitch.
- Value (Visible) Put the connector part number.

2.1.2.5 Crystal

*MODEL_XTAL

Parameters:

- Load Capacitance Put the crystal load capacitance in pico Farads (pF).
- Value (Visible) Put the crystal frequency.
- *MODEL__XTAL_4PIN

o Parameters:

- Load Capacitance Put the crystal load capacitance in pico Farads (pF).
- Value (Visible) Put the crystal frequency in Hertz (Hz).

2.1.2.6 Diode

*MODEL_BRIDGE

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the forward current in Ampères (A).
- Voltage (Visible) Put the reverse voltage in Volts (V).

*MODEL_DIODE

o Parameters:

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the forward current in Ampères (A).
- Voltage (Visible) Put the reverse voltage in Volts (V).
- *MODEL_LED

Parameters:

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the color.
- Voltage Put the forward voltage in Volts (V).
- *MODEL_LED_BI_COLOR

o Parameters:

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the color.
- Voltage Put the forward voltage in Volts (V).
- *MODEL_LED_BI_COLOR_2

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the color.
- Voltage Put the forward voltage in Volts (V).
- *MODEL_LED_TRI_COLOR

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the color.
- Voltage Put the forward voltage in Volts (V).
- *MODEL_SCHOTTKY

o Parameters:

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the forward current in Ampères (A).
- Voltage (Visible) Put the reverse voltage in Volts (V).
- *MODEL_TVS

o Parameters:

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the nominal voltage in Volts (V).
- Power (Visible) Put the nominal power in Watts (W).
- *MODEL_ZENER

Parameters:

- Category Put the diode category (Bridge, LED, Rectifier, Schottky, TVS, Zener...).
- Value (Visible) Put the nominal voltage in Volts (V).
- Power (Visible) Put the nominal power in Watts (W).

2.1.2.7 Fuse

*MODEL_FUSE

■ Value (Visible) – Put the nominal current in Ampères (A).

2.1.2.8 Inductor

*MODEL_IND

Parameters:

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the inductor inductance in Henrys(H).
- *MODEL_IND_COM

o Parameters:

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the inductor inductance in Henrys(H).
- *MODEL_IND_COM_REV

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the inductor inductance in Henrys(H).
- *MODEL_IND_CORE

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the inductor inductance in Henrys(H).

2.1.2.9 Integrated Circuit

*MODEL_CI

Parameters:

- Category Put the category of the CI (Amplifier, Driver, Reference, Regulator, Memory, Microcontroller, FPGA, DC DC converter, Logical...)
- Value (Visible) Put the component part number.

2.1.2.10 Relay

*MODEL_SPDT

o Parameters:

- Action Put the kind of action (Latched or Momentary)
- Circuit Put the kind of circuit (SPST, SPDT, DPST, DPDT...)
- Value (Visible) Put the component part number.
- *MODEL_SPST

o Parameters:

- Action Put the kind of action (Latched or Momentary)
- Circuit Put the kind of circuit (SPST, SPDT, DPST, DPDT...)
- Value (Visible) Put the component part number.

2.1.2.11 Resistor

*MODEL POT

- Power (Visible) Put the power in Watts (W).
- Tolerance Put the tolerance in %.
- Value (Visible) Put the component resistance.
- *MODEL_RES

Parameters:

- Power (Visible) Put the power in Watts (W).
- Tolerance Put the tolerance in %.
- Value (Visible) Put the component resistance.

2.1.2.12 Switch

*MODEL DPDT

o Parameters:

- Action Put the kind of action (Latched or Momentary)
- Circuit Put the kind of circuit (SPST, SPDT, DPST, DPDT...)
- Value (Visible) Put the component part number.
- *MODEL DPST

- Action Put the kind of action (Latched or Momentary)
- Circuit Put the kind of circuit (SPST, SPDT, DPST, DPDT...)
- Value (Visible) Put the component part number.

*MODEL_SPDT

o Parameters:

- Action Put the kind of action (Latched or Momentary)
- Circuit Put the kind of circuit (SPST, SPDT, DPST, DPDT...)
- Value (Visible) Put the component part number.
- *MODEL_SPST

o Parameters:

- Action Put the kind of action (Latched or Momentary)
- Circuit Put the kind of circuit (SPST, SPDT, DPST, DPDT...)
- Value (Visible) Put the component part number.

2.1.2.13 Thyristor

*MODEL_DIAC

Parameters:

- Category Put the thyristor category (DIAC, SCR, TRIAC...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_SCR

- Category Put the thyristor category (DIAC, SCR, TRIAC...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_TRIAC

- Category Put the thyristor category (DIAC, SCR, TRIAC...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.

2.1.2.14 Transformer

*MODEL_ TRANS_1+1P_1S

Parameters:

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ TRANS_1Px2_2S

o Parameters:

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ TRANS_1P_1S

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ TRANS_2P_1S

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ TRANS_2P_2S

o Parameters:

- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.

2.1.2.15 Transistor

*MODEL_ DARL_NPN

Parameters:

- Category Put the transistor category (BJT NPN, BJT PNP, NMOSFET, PMOSET...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ DARL_PNP

- Category Put the transistor category (BJT NPN, BJT PNP, NMOSFET, PMOSET...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ FOTO_NPN

- Category Put the transistor category (BJT NPN, BJT PNP, NMOSFET, PMOSET...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ NMOS

Parameters:

- Category Put the transistor category (BJT NPN, BJT PNP, NMOSFET, PMOSET...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL_ NPN

o Parameters:

- Category Put the transistor category (BJT NPN, BJT PNP, NMOSFET, PMOSET...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL PMOS

- Category Put the transistor category (BJT NPN, BJT PNP, NMOSFET, PMOSET...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.
- *MODEL PNP

- Category Put the transistor category (BJT NPN, BJT PNP, NMOSFET, PMOSET...).
- Current (Visible) Put the nominal current in Ampères (A).
- Value (Visible) Put the component part number.

2.1.2.16 Varistor

*MODEL_ VARISTOR

Parameters:

- Voltage (Visible) Put the nominal voltage in Volts (V).
- Value (Visible) Put the component part number.

2.2 PCB Library (.SchLib)

To the creation of the footprints the following table must be considered:

Layer	Role	
Mechanical 1	Border outline	
Mechanical 2	Dimensions	
Mechanical 3	Route tool	
Mechanical 4	3D Body	
Mechanical 15	Occupied area	

Whenever possible is preferred to use these configurations in the silkscreen:

• Line trace: 0.2mm

• Font size: 0,8mm height, 0,2mm width

2.3 Observations during adding/editing components

2.3.1 .SchLib Files

- Use grid = 5;
- Centralize the component in relation of the origin;
- Check what fields in the "Library Component Properties" must be selected as "visible";
- Check if pins in .SchLib file are compatible with pins in .PcbLib file;

2.3.2 .PcbLib Files

- Put the origin in component center (<u>E</u>dit->Set Re<u>f</u>erence-><u>C</u>enter);
- Put a colorful 3D body. A good place to find 3D models is http://www.3dcontentcentral.com.