Page 13, importance sampling formula

$$\mathbb{E}_{x \sim p(x)}[H(x)] = \int_x p(x)H(x)dx = \int_x q(x)\frac{p(x)}{q(x)}H(x)dx = \mathbb{E}_{x \sim q(x)}[\frac{p(x)}{q(x)}H(x)]$$

Page 14, Kullback-Leibler divergence

$$KL(p_1(x) \| p_2(x)) = \mathbb{E}_{x \sim p_1(x)} \log \frac{p_1(x)}{p_2(x)} = \mathbb{E}_{x \sim p_1(x)} [\log p_1(x)] - \mathbb{E}_{x \sim p_1(x)} [\log p_2(x)]$$

Page 14, text snippet

The first term in KL is called entropy and doesn't depend on $p_2(x)$, so, could...

Combining both formulas, we can get the following iterative algorithm, which starts with $q_0(x) = p(x)$, and on every step improves approximation of p(x)H(x) with update

$$q_{i+1}(x) = \underset{q_{i+1}(x)}{\arg\min} - \mathbb{E}_{x \sim q_i(x)} \frac{p(x)}{q_i(x)} H(x) \log q_{i+1}(x)$$

Page 14, policy update

$$\pi_{i+1}(a|s) = \underset{\pi_{i+1}}{\arg\min} - \mathbb{E}_{z \sim \pi_i(a|s)}[R(z) \ge \psi_i] \log \pi_{i+1}(a|s)$$