Classical Natural Language Processing

Practice class session 3

Problem 3.1 Probabilities

a) Are X and Y as defined in the following table independently distributed, why?

x	a	a	b	b
y	a	b	a	b
p(X = x, Y = y)	0.32	0.08	0.48	0.12

b) Compute the entropies H(X), H(Y), H(X|Y), H(Y|X), H(X,Y). Use the following log_2 values:

k	0.08						0.6	0.8
$log_2(k)$	-3.644	-3.059	-2.322	-1.644	-1.322	-1.059	-0.737	-0.322

c) Compute the Kullback-Leibler divergence D(X||Y).

Problem 3.2 Language Models

Consider the following training text:

SALAMI IST IM SALAT. LAMA IST ALT.

- a) Create an MLE n-gram model for letter unigrams. (Tip: Use fractions)
- b) Create an MLE n-gram model for letter bigrams and draw the corresponding Markov Chain. Assume a start symbol.

Consider the following test text:

LAMA ISST

- c) Compute the probabilities of the test text for each model.
- d) Compute the perplexities of the models on the test text.
- e) Use "add one" smoothing for both models and re-assess the probabilities and perplexities on the test set. Which LM does model the test text better?
- f) Compute the probabilities and perplexities using a mixture model with $\lambda_1 = 0.1$ and $\lambda_2 = 0.9$ on the MLE estimates. What can you say about the quality of the model.