Autovalores, autovectores, diagonalización

Álgebra Lineal 2024 (LM, PM, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

23 de octubre de 2024

Subespacio invariante

Definición 1

Sea V un espacio vectorial sobre \mathbb{K} , sea $T \in \mathcal{L}(V)$. Un subespacio $U \subseteq V$ es invariante bajo T si $u \in U \Rightarrow Tu \in U$. En otras palabras, U es invariante bajo T si $T/U \in \mathcal{L}(U)$.

Ејемрьо 1

 $\{0\}$, V, img(T), nul(T) son espacios invariantes bajo T para cualquier operador $T \in \mathcal{L}(U)$.

AUTOVALOR, AUTOVECTOR

Definición 2

Sea V un espacio vectorial sobre el cuerpo \mathbb{K} y sea T un operador lineal sobre V. Un autovalor o valor propio de T es un escalar $\lambda \in \mathbb{K}$ tal que existe un vector no nulo $v \in V$ que verifica $Tv = \lambda v$.

Si λ es un autovalor de T, entonces

- 1. cualquier vector $v \neq 0$ tal que $Tv = \lambda v$ se llama autovector o vector propio de T asociado al autovalor λ .
- 2. la colección de todos los v tales que $Tv = \lambda v$ se llama se llama autoespacio o espacio propio asociado a λ .

$$\{v \in V : Tv = \lambda v\} = \{v \in V : (T - \lambda I)v = 0\} = nul(T - \lambda I) \subseteq_{s.e.} V.$$

 λ es autovalor de T si el subespacio $nul(T - \lambda I)$ es distinto del subespacio nulo.

 $nul(T - \lambda I) \neq \{0\}$ luego $(T - \lambda I)$ es no inyectiva.

Si $\dim(V)$ es finita, $(T - \lambda I)$ inversible si la matriz asociada a la transformación en cualquier base ordenada es inversible. Si \mathcal{B} es cualquier base ordenada de V y $A = [T]_{\mathcal{B}}$, entonces $(T - \lambda I)$ es inversible si y sólo si la matriz $(A - \lambda I)$ es inversible.

Definición 3

Sea A una matriz $n \times n$ sobre el cuerpo \mathbb{K} , un autovalor o valor propio de A en \mathbb{K} es un escalar $\lambda \in \mathbb{K}$ tal que la matriz $(A - \lambda I)$ es singular (no inversible).

Nota 1

Puede definirse el autovalor de una matriz A como un $\lambda \in \mathbb{K}$ para el cual existe un vector $0 \neq x \in \mathbb{K}^n$ tal que $Ax = \lambda x$. Un tal vector no nulo se llama autovector o vector propio de A asociado a λ

Nota 2

Por definición un autovector debe ser distinto de cero, pero un valor propio si puede ser cero.

4/12

Definición 4

El conjunto de todas las soluciones del sistema $(A - \lambda I)x = 0$ es el espacio nula de la matriz $(A - \lambda I)$. Este conjunto es un subespacio de \mathbb{K}^n y se llama el autoespacio o espacio propio de A correspondiente a λ . El autoespacio consiste en todos los autovectores correspondientes al autovalor λ y el vector nulo.

Teorema 1

Los autovalores de una matriz triangular son las entradas de su diagonal principal.

Demos · · ·

TEOREMA 2

Si v_1, \dots, v_r son autovectores que corresponden a distintos autovalores $\lambda_1, \dots, \lambda_r$ de una matriz $n \times n$ A, entonces $\{v_1, \dots, v_r\}$ son l.i.

Demos · · ·

Ecuaión característica

Definición 5

La ecuación $\det(A - \lambda I) = 0$ se llama ecuación característica de A Al polinomio $p(\lambda) = \det(A - \lambda I)$ se lo llama polinomio característico de A

Observación 1

Un escalar λ es un autovalor de una matriz $n \times n$ A si y sólo si λ satisface la ecuación característica de A.

Hallar los valores propios de A equivale a encontrar las raíces del polinomio característico de A.

A la multiplicidad de un autovalor como raíz del polinomio se le llama multiplicidad algebraica del autovalor.

Definición 6

Sean A y B dos matrices cuadradas $n \times n$ sobre el cuerpo \mathbb{K} . Se dice que B es semejante a A sobre \mathbb{K} si existe una matriz $n \times n$, P inversible sobre \mathbb{K} tal que $B = P^{-1}AP$.

Teorema 3

Si las matrices $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ son semejantes entonces tienen el mismo polinomio característico, y por lo tanto tienen los mismos autovalores (con las mismas multiplicidades.

Demos ···

Definición 7

Sea V $e.v.s/\mathbb{K}$, $\dim(v) = n$. El polinomio característico de $T \in \mathcal{L}(V)$ es el polinomio característico de cualquier matriz $n \times n$ que represente a T en alguna base ordenada de V.

Diagonalización

Definición 8

Se dice que una matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ es diagonalizable si A es semejante a una matriz diagonal, esto es, si $A = PDP^{-1}$ para alguna matriz inversible P y alguna matriz diagonal D.

Teorema 4

Una matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ es diagonalizable si y sólo si A tiene n vectores propios l.i. De hecho, $A = PDP^{-1}$ con D matriz diagonal, si y sólo si las columnas de P son n vectores propios de A l.i. En este caso las entradas diagonales de D son los autovalores de A que corresponden respectivamente a los autovectores de P.

Demos · · ·

Teorema 5

Condición suficiente de diagonalización.

Una matriz $n \times n$ con n valores propios distintos es diagonalizable.

Demos · · ·

Lema 1

Supongamos que $Av = \lambda v$. Sea p un polinomio cualquiera, entonces se verifica que $p(A)v = p(\lambda)v$.

Demos · · ·

Lema 2

Sea $T \in \mathcal{L}(V)$, y sean $\lambda_1, \dots, \lambda_p$ distintos autovalores de T. Para cada $i = 1, \dots, p$ sea S_i un conjunto finito, linealmente independientes contenido en el autoespacio E_i asociado al autovalor λ_i . Luego $S = S_1 \cup \dots \cup S_p$ es un conjunto linealmente independiente de V.

Demos ···

Teorema 6

Sea *A* una matriz $n \times n$ cuyos autovalores distintos son $\lambda_1, \dots, \lambda_p$.

- a) Para $1 \le k \le p$, la dimensión del autoespacio para λ_k es menor o igual que la multiplicidad del autovalor λ_k .
- b) La matriz A es diagonalizable si y sólo si la suma de las dimensiones de los distintos autoespacios es igual a n y, esto sucede si y sólo si la dimensión del autoespacio de cada λ_k es igual a la multiplicidad de autovalor λ_k .
- c) Si A es diagonalizable y \mathcal{B}_k es una base para el autoespacio correspondiente a λ_k para cada k, entonces la colección total de vectores de los conjuntos $\mathcal{B}_1, \dots, \mathcal{B}_p$ forma una base de autovectores para \mathbb{K}^n .

Demos · · ·

Matrices triangulares superiores

Proposición 1

Sea $T \in \mathcal{L}(V)$ y $B = \{v_1, \dots, v_n\}$ una base de V. Resulta equivalente:

- a) la matriz $[T]_B$ es triangular superior.
- b) $Tv_k \in \langle v_1, \dots, v_k \rangle$ para cada $k = 1, \dots, n$.
- $(c) < v_1, \cdots, v_k >$ es invariante bajo $(c) < v_1, \cdots, v_k >$ 0 (c) < (c) <

Demos: · · ·

Teorema 7

Sea V un espacio vectorial de dimensión finita sobre \mathbb{C} y $T \in \mathcal{L}(V)$. Luego existe una base \mathcal{B} para V tal que $[T]_{\mathcal{B}}$ es triangular superior.

<u>Demos</u>: Este resultado será demostrado en la próxima unidad.

Proposición 2

Sea $T \in \mathcal{L}(V)$ un operador lineal y $[T]_{\mathcal{B}}$ una matriz triangular superior para alguna base \mathcal{B} de V. Luego:

- a) T es inversible si y sólo si todas las entradas de la diagonal de $[T]_{\mathcal{B}}$ son no nulas.
- b) Los autovalores de T son los elementos diagonales de $[T]_{\mathcal{B}}$.

Demos: · · ·