CS340 - Theory of Computation
ant to is Compatation?
What is Computation?
Programs.
what is a progrem.
Brown Search - Many Hon
Binary Search - Algorithm.
What is an algorithm? Sequence of steps to implement some computation
to implement some computation
Algorithm - Takes an input and produces an output.
Implements a transpormation
Algorithm 7/F(x)
7 71130117211
Function $F: D \rightarrow R$
twhichor 1.D-X
Computation = Functions.
=

Defining a function / Computing a function

Prime: 1N -> {Yes, No 3.

Prime (n) := { Yes if n is a prime } No if n is not a prime.

Which functions admit an algorithm to computeit?

Goal. Techniques to show that a function does not admit any algorithm to compute it.

Ebbiciency.

Propositional logic -P-set of propositions D:= PEP 72 2VB $\Psi \in \Phi$ is a wff in propositional logic. Valuation V: P-> {T, I} V= P [Semantics]. SAT: Given of is there a valuation & such that U=q? Voc (4) - Set of propositions occurring in φ. 2(VOC(4)) "Herd problem

Formal Models of Computation.
Finite State automata.
Deterministic Computation
Deterministic Computation. Mon-deterministic Computation.
Regular Expression.
- Pushdown Automote.
- Furing Machine.
TWITTE TO LECTION

Decision Problem. Functions with simple output - "Yes" or "No"
Output - yes or No"
Set Membership Problem.
There is an underlying set 5.
Question. Given an a, is a ES?
f: D→R
graph(f) = { (a,b) f(a) = b }
Suppose there is no algorithm to solve
Set membership of graph(f). Iten f is not computable.
Computable.
Suppose Fan algorithm Af to compute F.
(a1b) E graph(f). 1ff f(4)=b
Af with input a - check if the output is b.

Autometa and Computability - Dexter Kozen
,
Introduction to Automata Theory I arounded and
Introduction to Automata Theory, Languages and Computation - Hopcroft, Ullman, Motwani
Computation - Hopcroft, Ullman, Motwani
Introduction to the Theory of Computation-Sipser