NLP and Clustering of YouTube Music & Movie Videos

#### YouTube sentiment analysis Project

Course: Advanced topics in machine learning

• Lecturer: Dr. Chen Hajaj

• Team Members: Dor Ingber & Itai Bekenshtein



# The Problem We're Addressing



User-generated content on YouTube is vast and reflects diverse sentiments.



Understanding audience sentiment towards music and movies is valuable for content creators and marketers.



Current approaches to sentiment analysis often neglect the unique context of YouTube video descriptions and titles.

### Original Project Goals

- Extract sentiment from YouTube video titles and descriptions.
- Cluster videos based on their dominant sentiment.
- Provide insights for content creators and marketers to tailor their offerings and marketing strategies.



# Other Methods & Techniques

- Other Potential Approaches:
  - Supervised Machine Learning: Requires large, labeled datasets to train models. Models learn to predict sentiment based on provided labels (positive, negative, etc.).
  - Deep Learning: Advanced techniques using neural networks. Can excel at complex sentiment analysis but often require substantial computational resources and massive datasets.



# Other Methods & Techniques

- Why We Chose Unsupervised Learning:
  - No Labeled Data: Manually labeling sentiment for a large YouTube video dataset can be extremely time-consuming and expensive.
  - Exploratory Analysis: We wanted to uncover patterns in the data and identify the dominant sentiments without prior assumptions about specific emotions.



- First Data:
- Source: YouTube Data API v3
- Features: ID, Title, Description, Date



• Second Data: After NLP process

 Features: ID, Title, Description, Date, title&description, emoji, processed, emotions, emoji\_grade, scaled\_emotions

| ld                   | title                                              | date                       | description                                       | title&description                                    | emoji                                 | processed                                            | emotions                                             | emoji_grade                                          | scaled_emotions                                     |
|----------------------|----------------------------------------------------|----------------------------|---------------------------------------------------|------------------------------------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| <b>0</b> v4KXWsMw8Fc | Relaxing Music For Stress<br>Relief, Anxiety and   | 2024-03-<br>18<br>08:40:05 | Relaxing Music For Stress<br>Relief, Anxiety and  | relaxing music for stress<br>relief anxiety and d    | [' <b>'''</b> ', ' <mark>'*</mark> ', | relax music stress relief<br>anxiety depressive s    | {'joy': 0.2, 'positive':<br>0.28421052631578947,     | {'neg': 0.0, 'neu':<br>1.0, 'pos': 0.0,<br>'compound | ('joy': 0.6923076923076924,<br>'positive': 0.9999   |
| 1 NgGJaXDC0wU        | Best Praise and Worship<br>Songs 2023 🚹<br>Nonstop | 2024-03-<br>18<br>13:49:38 | ► Music and Video Copyright belongs to @Praise    | best praise and worship<br>songs 2023 nonstop<br>chr | [                                     | best praise worship<br>song nonstop song<br>time pra | ('joy': 0.32653061224489793,<br>'positive': 0.346    | {'neg': 0.0, 'neu':<br>1.0, 'pos': 0.0,<br>'compound | {'joy': 0.9375, 'positive':<br>1.000000000000000002 |
| 2 mLW35YMzELE        | Creepy Nuts「Bling-Bang-<br>Bang-Born」× TV Anime    | 2024-03-<br>03<br>09:00:37 | [Bling-Bang-Bang-Born]<br>(2024.1.7.Digital Relea | creepy nutsbling bang<br>bang born tv anime<br>mashl | ['©']                                 | anime mashle<br>collaboration music<br>video bbbb bl | ('joy': 0.02912621359223301,<br>'positive': 0.077    | {'neg': 0.0, 'neu':<br>1.0, 'pos': 0.0,<br>'compound | {'joy':<br>0.1666666666666669,<br>'positive': 1.0,  |
| <b>3</b> BxPhT3mVVQw | Relaxing Music 24/7,<br>Sleep Music, Stress Rel    | 2024-03-<br>18<br>08:51:47 | Enjoy our latest relaxing music live stream: y    | relaxing music 24/7 sleep<br>music stress relief     | [' • ']                               | relax music sleep music<br>stress relief music sp    | ('joy': 0.3020408163265306,<br>'positive': 0.4265    | {'neg': 0.0, 'neu':<br>1.0, 'pos': 0.0,<br>'compound | ('joy': 0.7024390243902439,<br>'positive': 1.0, '   |
| 4 h8Cq1BwdTsg        | Ozoda - Ko'k jiguli<br>(Official Music Vide        | 2024-02-<br>21             | Composer: OZODA\nLyrics:<br>OZODA\nArrangement: D | ozoda ko 39 k jiguli<br>official music video         | [*, *]                                | official music video<br>composer ozoda lyric         | ('trust':<br>0.047619047619047616,<br>'iov': 0.04761 | {'neg': 0.0, 'neu':<br>1.0, 'pos': 0.0,<br>'compound | {'trust': 0.0, 'joy': 0.0,<br>'positive': 1.0, 's   |

- Third Data: emotions data frame
- Features: Id, joy, positive, sadness, negative, anger, anticipation, fear, trust, disgust, surprise

|   | Id          | joy      | positive | sadness  | negative | anger    | anticipation | fear     | trust    | disgust  | surprise |
|---|-------------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|
| 0 | v4KXWsMw8Fc | 0.692308 | 1.000000 | 0.538462 | 0.461538 | 0.115385 | 0.153846     | 0.115385 | 0.192308 | 0.000000 | 0.000000 |
| 1 | NgGJaXDC0wU | 0.937500 | 1.000000 | 0.187500 | 0.000000 | 0.000000 | 0.437500     | 0.187500 | 0.812500 | 0.000000 | 0.000000 |
| 2 | mLW35YMzELE | 0.166667 | 1.000000 | 0.500000 | 0.000000 | 0.833333 | 0.000000     | 0.833333 | 0.166667 | 0.000000 | 0.000000 |
| 3 | BxPhT3mVVQw | 0.702439 | 1.000000 | 0.521951 | 0.043902 | 0.000000 | 0.146341     | 0.004878 | 0.175610 | 0.000000 | 0.063415 |
| 4 | h8Cq1BwdTsg | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000     | 0.000000 | 0.000000 | 0.000000 | 0.000000 |

- Forth Data: Clusters data frame
- Features: Id, joy, positive, sadness, negative, anger, anticipation, fear, trust, disgust, surprise

|   | Id            | joy      | positive | sadness  | negative | anger    | anticipation | fear     | trust    | disgust  | surprise | cluster_label |
|---|---------------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|---------------|
| ( | mLW35YMzELE   | 0.166667 | 1.000000 | 0.500000 | 0.000000 | 0.833333 | 0.000000     | 0.833333 | 0.166667 | 0.000000 | 0.000000 | 2             |
| 1 | I 3cbnNwxtUUA | 0.137931 | 0.206897 | 0.206897 | 1.000000 | 0.068966 | 0.000000     | 0.862069 | 0.000000 | 0.034483 | 0.758621 | 2             |
| 2 | t_4ob8SB2UI   | 0.609756 | 1.000000 | 0.487805 | 0.804878 | 0.365854 | 0.560976     | 0.243902 | 0.536585 | 0.000000 | 0.048780 | 2             |
| 3 | pRpeEdMmmQ0   | 0.333333 | 0.666667 | 0.833333 | 0.833333 | 0.166667 | 1.000000     | 0.333333 | 0.666667 | 0.000000 | 0.000000 | 2             |
| 4 | 36vjwGx-Vzc   | 0.000000 | 0.222222 | 0.111111 | 1.000000 | 0.111111 | 0.000000     | 0.111111 | 0.000000 | 0.111111 | 0.888889 | 2             |

#### NLP

- Libraries used (VaderSentiment, spaCy, NRCLex).
- vaderSentiment for analyzing emotions from emojis.
- spacy Stop word removal, Lemmatization, and entity removal.
- NRCLex dealing with sentiment analysis from text.
- We used MIN MAX Scaler to normalize sentiment scores for each video. We wanted to normalize the sentiments to highlight dominant emotions and reduce the scores of minor emotions.



#### Clustering

- Hierarchical Clustering:
  - Forms a hierarchy of clusters based on distances between data points.
  - Offers a visual representation of the data's hierarchical structure (dendrogram). and identifying natural clusters
    in the data.
  - Threshold explains 70% of the data





#### Clustering

- K-means Clustering:
  - Partitions data into a fixed number (k) of clusters.
  - We tried this model because its clear separation of data points into clusters makes it easy to identify and understand the different groups present in the data.





#### Clustering

- DBSCAN Clustering:
  - Groups data points based on their density in a neighborhood.
  - Does not require a pre-defined number of clusters.
  - We tried this model because we wanted to diagnose a model that works on density and not on distance calculation





### **Experiments**

#### Parameter Tuning:

#### Hierarchical Clustering:

 We measured the results for changes in the hyperparameters of this model. Calculating result for each linkage method.

#### K-means Clustering:

- To find K, we pairs of emotions with the highest correlation between them. We used "networkx "to create a graph to find groups of closely related emotions based on their correlation. We checked the natural clusters from the Hierarchical model as well.
- We measured the results for changes in the hyperparameters of this model. Calculating distance, number of iterations, and different choices for the initial location of the cluster centers.

#### DBSCAN Clustering:

• We measured the results for changes in the hyperparameters of this model. Calculating different values for epsilon and minimum points parameters.

## Experiments

- Evaluation Metrics:
  - SSE, Silhouette Score, Calinski-Harabasz Index

#### **Hierarchical Clustering**

|   | n_clusters | SSE        | Silhouette | Calinski-Harabasz | linkage_methods |
|---|------------|------------|------------|-------------------|-----------------|
| 0 | 2          | 808.942570 | 0.494122   | 1100.374446       | ward            |
| 1 | 6          | 392.219389 | 0.467451   | 485.282546        | complete        |
| 2 | 5          | 417.659876 | 0.494371   | 579.700808        | average         |
| 3 | 21         | 237.429446 | 0.466082   | 135.651756        | single          |

#### K-means

|   | n_clusters | SSE        | Silhouette | Calinski-Harabasz |
|---|------------|------------|------------|-------------------|
| 0 | 2          | 808.942570 | 0.515813   | 1214.487828       |
| 1 | 3          | 536.407148 | 0.520630   | 1223.672644       |
| 2 | 5          | 417.659876 | 0.317243   | 870.716273        |

#### **DBSCAN**

|   | n_clusters | Silhouette | Calinski-Harabasz |
|---|------------|------------|-------------------|
| 0 | 11         | 0.463057   | 587.949247        |
| 1 | 9          | 0.442910   | 640.402853        |
| 2 | 5          | 0.402639   | 453.131065        |
| 3 | 11         | 0.519986   | 629.993677        |
| 4 | 6          | 0.504436   | 490.094060        |
| 5 | 4          | 0.497020   | 587.239534        |
| 6 | 7          | 0.535639   | 569.389848        |
| 7 | 5          | 0.527806   | 676.603092        |
| 8 | 5          | 0.527296   | 683.159201        |

frequencies\_dict is: Counter({'positive': 79360, 'joy': 37622, 'trust': 32405, 'anticipation': 26019, 'sadness': 15333, 'negative': 10815, 'fear': 6537, 'anger': 5896, 'surprise': 5672, 'disgust': 1525})

#### Results

- Best-performing model was k-means.
- Insights from the clusters based on sentiment patterns:
- Cluster 0: Predominantly Positive
  - Dominant Emotions: 'positive', 'joy', 'trust', 'anticipation'
  - Videos in this cluster seem to convey strong positive emotions, likely expressing enthusiasm, happiness, a sense of trust, and excitement about the content. This cluster might include music videos with upbeat tunes or videos with messages of optimism and hope.



frequencies\_dict is: Counter({'anticipation': 2976, 'sadness': 1052, 'trust': 984, 'negative': 794, 'fear': 760, 'positive': 680, 'joy': 415, 'surprise': 235, 'anger': 179, 'disgust': 125})

#### Results

- Cluster 1: Mixed Emotions with a Lean Towards Sadness
  - Dominant Emotions: 'anticipation', 'sadness', 'trust', 'negative', 'fear'
  - This cluster suggests a mix of emotions, with a noticeable presence of sadness and negativity. Some anticipation and trust might suggest underlying hopefulness, while fear adds a touch of apprehension. This cluster could include dramatic movie scenes or videos dealing with loss or difficult life experiences.



frequencies\_dict is: Counter({'negative': 17189, 'positive': 15729, 'fear': 11873, 'sadness': 8276, 'anger': 7318, 'anticipation': 7232, 'trust': 6814, 'joy': 4924, 'disgust': 4021, 'surprise': 3472})

#### Results

- Cluster 2: Complex Mix of Positive and Negative Emotions
  - Dominant Emotions: 'negative', 'positive', 'fear', 'sadness', 'anger'
  - This cluster showcases a complex mixture of emotions.
     There's a clear presence of negativity, fear, sadness, and anger, but there's also a strong undercurrent of positive sentiment. Videos in this cluster might explore difficult topics, videos that spark debate or controversy, or videos depicting emotionally-charged moments.



# Any Questions?

