第9期

DOI: 10.3724/SP. J. 1096.2013.30143

激光剥蚀-电感耦合等离子体-原子发射光谱/质谱法分析 中国古代钾玻璃组分

斯琴毕力格1 李青会*1 于福喜1,2

1(中国科学院上海光学精密机械研究所,上海 201800) 2(复旦大学,上海 200433)

摘 要 利用激光剥蚀电感耦合等离子体原子发射光谱(LA-ICP-AES)和激光剥蚀电感耦合等离子体质谱 (LA-ICP-MS)分析了一批中国古代钾玻璃。样品表面磨去 100 μm 以上,并通过预剥蚀去除风化影响,设计剥 蚀路径以消除元素分布不均匀影响。通过钙铝及其它微量元素将钾玻璃分成3个亚类,它们可能有不同的配 方及制造中心;研究发现,钾玻璃着色剂类型多样化,有单质 Cu,Mn²⁺,Cu²⁺,Co²⁺等;系统研究了钾玻璃的稀土 元素特征,成功区分了九只岭地区及风门岭地区的钾玻璃;对两种方法在古代玻璃分析中的特点进行了探讨。

关键词 激光剥蚀: 电感耦合等离子体原子发射光谱: 电感耦合等离子体质谱: 钾玻璃

1 引 言

古代钾硅酸盐玻璃(K,O含量为12%~17%)的制造年代从公元前5世纪至公元4世纪间,在印 度、泰国、越南、韩国、日本等地均有发现,为当时很重要的一类贸易物品[1,2]。近年来,中国各地也发现 了许多古代钾玻璃制品[3],包含单色珠、耳珰、玻璃杯、玻璃盘等,年代主要为汉代,少数在战国时期。 结合考古学发现,对这些钾玻璃样品进行成分分析对于研究其原料来源及生产工艺有重要的参考意义。 以往的分析以质子激发 X 射线荧光光谱(PIXE)及 X 射线荧光光谱(XRF)等无损分析方法为主^[4,5],但 这些方法受表面风化影响很大,需磨去大量表面部分,同时对某些复杂谱峰重叠不能很好分离,微量元 素的检出限和准确度不是很理想。因而对中国钾玻璃的研究基本局限于主量及次量元素,对于微量元 素的系统分析研究鲜见。

近年来,随着激光剥蚀(LA)进样技术发展,激光剥蚀电感耦合等离子体原子发射光谱(LA-ICP-AES)^[6~8]和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)^[9~12]已经广泛应用于地质、环境、半导体等 领域[13~15]。该方法能对固体样品进行直接分析,避免了湿法消解样品带来的试剂本底污染、样品分解 不完全、易挥发元素丢失等问题,能够进行原位、实时的快速分析,有很好的空间分辨率,对样品尺寸及 形貌要求低,对样品破坏量极小,非常适合古代文物样品的高精度分析[16]。本研究对中国出土的一批 古代钾玻璃进行了系统的元素(特别是稀土元素)分析,对钾玻璃相关问题进行了讨论。

实验部分 2

2.1 仪器及实验条件

UP-266MARCO 激光剥蚀系统 LA-ICP-AES(美国 New-Wave 公司), PRODIGY 型全谱直读 ICP-AES (美国 Leeman 公司)。剥蚀用激光由 Nd-YAG 激光器产生、激光波长为 266 nm,输出能量(15±1) mJ,光 斑半径 610 μm。

LA-ICP-MS 测试采用 GeoLas2005 193 nm 准分子激光剥蚀系统和 Agilent 7500a ICP-MS(日本 Aglient 公司)。剥蚀池载气采用 He 气, Ar 气作为补充气, 并在进入 ICP 前经过一个 T 型接头与载气混合。

2.2 测定方法

LA-ICP-AES 测定使用康宁玻璃博物馆 Corning D 玻璃标样为外标,得到每个元素氧化物在待测样 品与标样中含量的相对值,通过归一化得到每个氧化物的浓度。利用该方法分析 NIST 610 标准样品和

²⁰¹³⁻⁰²⁻⁰⁶ 收稿: 2013-04-16 接受

本文系国家自然科学基金(No.51072206)和国家文物局指南针计划"中国古代玻璃的价值挖掘与数据库建设研究"项目资助

^{*} E-mail: qinghuil@ sina. com

Corning B 标样。

LA-ICP-MS 法利用了 USGS 参考玻璃 BCR-2G, BHVO-2G 和 BIR-1G 以及 NIST 610 作为外标进行校正,计算采用软件 ICPMSDataCal 完成^[17]。

2.3 样品概况

实验所用中国各地钾玻璃样品信息见表1,这些样品出土自不同省份,年代多为汉代。

表1 古代钾玻璃样品概况

Table 1 Description of potash glass samples

样品 Samples	形貌 Feature		年代 Date	样品出土地点 Location	测试方法 * Method	
XJ-5	蓝色残片 Blue fragment		公元前3~公元前2世纪 3 rd -2 nd century BC	新疆温宿 Wensu, Xinjiang	LA-ICP-AES	
XJ-5B	青色残片 Blue green fragment		公元前3~公元前2世纪 3 rd -2 nd century BC	新疆温宿 Wensu, Xinjiang	LA-ICP-AES	
XJ05-7	青色残片 Blue green fragment		汉朝 Han dynasty	新疆阿合奇 Aheqi, Xinjiang	LA-ICP-AES	
XJ-37	深蓝色玻璃珠 Dark blue bead		汉晋时期 Han and Jin Dynasties	甘肃武威 Wuwei, Gansu	LA-ICP-AES	
GX-4	蓝色玻璃珠 Blue bead		西汉晚期 Late Western Han Dynasty	广西合浦风门岭 Fengmenling, Guangxi	LA-ICP-AES/MS	
XZHM-0608	红色玻璃珠 Red bead	6	西汉晚期 Late Western Han Dynasty	广西合浦风门岭 Fengmenling, Guangxi	LA-ICP-AES/MS	
XZHM-0602	蓝色玻璃珠 Blue bead	9	西汉晚期 Late Western Han Dynasty	广西合浦风门岭 Fengmenling, Guangxi	LA-ICP-AES/MS	
XZHM-0605	蓝色玻璃珠 Blue bead	D	西汉晚期 Late Western Han Dynasty	广西合浦风门岭 Fengmenling, Guangxi	LA-ICP-AES/MS	
XZHM-0606	浅蓝色玻璃珠 Light blue bead		东汉早期 Early Eastern Han Dynasty	广西合浦九只岭 Jiuzhiling, Guangxi	LA-ICP-AES/MS	
XZHM-0601	透明六棱珠残片 Colorless hexagonal bead		西汉晚期 Late Western Han Dynasty	广西合浦风门岭 Fengmenling, Guangxi	LA-ICP-AES/MS	
XZHM-0607	深蓝色玻璃珠 Dark blue bead		西汉晚期 Late Western Han Dynasty	广西合浦风门岭 Fengmenling, Guangxi	LA-ICP-AES/MS	
FMLM26-2	透明六棱珠残片 Colorless hexagonal bead		西汉晚期 Late Western Han Dynasty	广西合浦风门岭 Fengmenling, Guangxi	LA-ICP-AES/MS	
JZLM5-10	深蓝色玻璃珠 Dark blue bead	0	东汉早期 Early Eastern Han Dynasty	广西合浦九只岭 Jiuzhiling, Guangxi	LA-ICP-AES/MS	
JZLM5-17	棕色玻璃珠 Brown bead		东汉早期 Early Eastern Han Dynasty	广西合浦九只岭 Jiuzhiling, Guangxi	LA-ICP-AES/MS	

LA: Laser ablation.

3 结果及讨论

3.1 风化对于古代钾玻璃分析的影响

玻璃在长期风化过程中表面某些元素会流失而其它一些元素含量会升高,因而有必要对古代钾玻璃风化对分析结果的影响进行评估。LA-ICP-AES 法分析了 5 个钾玻璃样品的风化表面及新鲜面(见表 2 和图 1)。钾玻璃的风化表面的 Si, Al, Ca 及 Fe 元素含量相对于新鲜面是富集的,而 K 元素流失

很明显;Na 元素在风化比较严重的玻璃中含量显著增加,在风化较轻的玻璃中稍有减少。而 Mn, Ti 及其它微量元素变化不十分显著,表明风化对于钾玻璃中的微量元素的影响远小于主量及次量元素。为了提高数据的可靠性,钾玻璃在测量前一般需磨去 100 μm 以上,并预剥蚀,以消除风化的影响。为避免样品不均匀性带来的影响,设计样品的激光剥蚀路线,测得结果为该路径上的平均值。

表 2 钾玻璃 LA-ICP-AES 分析结果

Table 2 Analytical results of potash glass by LA-ICP-AES

样品 Sample	亚类 Subgroup	SiO ₂ (%)	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	MgO (%)	CaO (%)	Na ₂ O (%)	K ₂ O (%)	MnO (μg/g)	P_2O_5 $(\mu g/g)$	TiO ₂ (μg/g)	Sb ₂ O ₂ (μg/g
XJ-5	m-K-Ca-Al	77.40	1.91	0.53	0.35	1.63	0.26	16.85	158	2769	903	22
XJ-5-W *	m-K-Ca-Al	92.15	1.90	0.54	0.41	1.70	0.43	1.64	164	3366	944	38
XJ-5B	m-K-Ca-Al	74.89	1.60	0.45	0.38	1.75	0.72	18.45	194	3760	763	26
XJ-5B-W *	m-K-Ca-Al	81.56	2.08	0.50	0.42	1.90	0.69	11.05	216	3990	844	9
XJ05-7	m-K-Ca-Al	80.21	1.49	0.38	0.22	1.55	0.24	15.03	77	2277	733	0
XJ05-7-W	m-K-Ca-Al	91.65	1.70	0.46	1.01	2.05	0.86	1.21	90	2664	867	5
XJ-37	m-K-Ca-Al	79.17	1.38	0.97	0.34	1.20	0.20	14.37	10554	1858	1288	37
XJ-37-W *	m-K-Ca-Al	82.68	1.80	1.22	0.45	1.66	0.19	9.32	11706	2209	1506	31
GX-4	m-K-Al	77.06	3.50	1.03	0.38	0.90	0.15	14.71	6098	2158	1255	24
GX-4-W *	m-K-Al	81.13	3.93	1.11	0.42	1.13	0.14	9.75	6227	2255	1398	24
XZHM-0608	v-K-Ca-Al	63.34	3.11	1.69	3.47	4.00	0.55	18.28	1375	8406	5026	31
XZHM-0601	m-K-Ca-Al	81.69	2.10	0.64	0.33	1.13	0.43	12.85	569	5041	1620	32
XZHM-0602	m-K-Al	79.71	3.34	1.35	0.30	0.69	0.11	12.69	10731	1312	1470	18
XZHM-0606	m-K-Al	78.51	3.50	0.72	0.15	0.26	0.26	14.42	12359	1347	1378	31
XZHM-0605	m-K-Al	71.45	5.88	1.22	0.13	0.24	0.63	17.74	17488	783	2196	30
XZHM-0607	m-K-Ca-Al	79.90	1.90	1.66	0.31	1.33	0.13	12.35	15214	2485	1668	26
FMLM26-2	m-K-Ca-Al	80.18	1.83	0.50	0.27	0.91	0.50	15.08	411	4994	1120	3
JZLM5-10	m-K-Al	76.51	5.22	1.25	0.13	0.18	0.16	14.23	12420	801	2316	24
JZLM5-17	m-K-Al	74.41	3.31	1.26	0.29	0.67	0.22	14.56	42850	1687	1273	24
样品 Sample	亚类 Subgroup	CuO (µg/g)	PbO (μg/g)	CoO (µg/g)	BaO (μg/g)	SnO ₂ (μg/g)	${\rm SrO} \atop (\mu g/g)$	ZnO (µg/g)	$\begin{array}{c} B_2O_3 \\ (\mu g/g) \end{array}$	$\begin{matrix} V_2O_5\\ (\mu g/g)\end{matrix}$	NiO (µg/g)	ZrO (μg/
XJ-5	m-K-Ca-Al	5482	110	208	348	97	46	29	211	75	105	81
		(240	4.00			143		19	227			87
XJ-5-W *	m-K-Ca-Al	6240	129	213	375	143	49	19	237	145	114	
XJ-5-W * XJ-5B	m-K-Ca-Al m-K-Ca-Al	11481	129 293	213 47	375 305	65	49 46	14	201	145 73	114 34	98
												98 109
XJ-5B	m-K-Ca-Al	11481	293	47	305	65	46	14	201	73	34	
XJ-5B XJ-5B-W *	m-K-Ca-Al m-K-Ca-Al	11481 10946	293 870	47 46	305 349	65 75	46 59	14 20	201 211	73 108	34 54	109
XJ-5B XJ-5B-W * XJ05-7	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168	293 870 1695	47 46 7	305 349 261	65 75 44	46 59 39	14 20 17	201 211 185	73 108 90	34 54 37	109 132
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705	293 870 1695 2282	47 46 7 11	305 349 261 281	65 75 44 45	46 59 39 59	14 20 17 19	201 211 185 275	73 108 90 166	34 54 37 43	109 132 147
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705 5610	293 870 1695 2282 43	47 46 7 11 432	305 349 261 281 3055	65 75 44 45 32	46 59 39 59 152	14 20 17 19 23	201 211 185 275 238	73 108 90 166 91	34 54 37 43 84	109 132 147 77
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W *	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705 5610 5328	293 870 1695 2282 43 1144	47 46 7 11 432 480	305 349 261 281 3055 3491	65 75 44 45 32 34	46 59 39 59 152 195	14 20 17 19 23 37	201 211 185 275 238 261	73 108 90 166 91 107	34 54 37 43 84 90	109 132 147 77 82
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705 5610 5328 2814	293 870 1695 2282 43 1144 7236	47 46 7 11 432 480 300	305 349 261 281 3055 3491 1286	65 75 44 45 32 34 805	46 59 39 59 152 195 43	14 20 17 19 23 37 29	201 211 185 275 238 261 256	73 108 90 166 91 107 99	34 54 37 43 84 90 42	109 132 147 77 82 113
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4 GX-4-W *	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Al	11481 10946 3168 3705 5610 5328 2814 2856	293 870 1695 2282 43 1144 7236 7898	47 46 7 11 432 480 300 301	305 349 261 281 3055 3491 1286 1610	65 75 44 45 32 34 805 689	46 59 39 59 152 195 43 49	14 20 17 19 23 37 29 100	201 211 185 275 238 261 256 286	73 108 90 166 91 107 99 113	34 54 37 43 84 90 42 51	109 132 147 77 82 113 120
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4 GX-4-W * XZHM-0608	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Al w-K-Al	11481 10946 3168 3705 5610 5328 2814 2856 38068	293 870 1695 2282 43 1144 7236 7898 82	47 46 7 11 432 480 300 301 44	305 349 261 281 3055 3491 1286 1610 1648	65 75 44 45 32 34 805 689 78	46 59 39 59 152 195 43 49	14 20 17 19 23 37 29 100 89	201 211 185 275 238 261 256 286 147	73 108 90 166 91 107 99 113 122	34 54 37 43 84 90 42 51	109 132 147 77 82 113 120 148
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4 GX-4-W * XZHM-0608 XZHM-0601	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Al w-K-Ca-Al	11481 10946 3168 3705 5610 5328 2814 2856 38068 70	293 870 1695 2282 43 1144 7236 7898 82 11	47 46 7 11 432 480 300 301 44 11	305 349 261 281 3055 3491 1286 1610 1648 496	65 75 44 45 32 34 805 689 78 37	46 59 39 59 152 195 43 49 191	14 20 17 19 23 37 29 100 89 38	201 211 185 275 238 261 256 286 147 82	73 108 90 166 91 107 99 113 122 143	34 54 37 43 84 90 42 51 140 25	109 132 147 77 82 113 120 148 99
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4 GX-4-W * XZHM-0608 XZHM-0601 XZHM-0602	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Al w-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705 5610 5328 2814 2856 38068 70 466	293 870 1695 2282 43 1144 7236 7898 82 11 370	47 46 7 11 432 480 300 301 44 11 586	305 349 261 281 3055 3491 1286 1610 1648 496 2466	65 75 44 45 32 34 805 689 78 37 51	46 59 39 59 152 195 43 49 191 133 47	14 20 17 19 23 37 29 100 89 38 22	201 211 185 275 238 261 256 286 147 82 269	73 108 90 166 91 107 99 113 122 143 110	34 54 37 43 84 90 42 51 140 25 80	109 132 147 77 82 113 120 148 99
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4 GX-4-W * XZHM-0608 XZHM-0601 XZHM-0602 XZHM-0605	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Al w-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705 5610 5328 2814 2856 38068 70 466 337	293 870 1695 2282 43 1144 7236 7898 82 11 370 242	47 46 7 11 432 480 300 301 44 11 586 525	305 349 261 281 3055 3491 1286 1610 1648 496 2466 4883	65 75 44 45 32 34 805 689 78 37 51 59	46 59 39 59 152 195 43 49 191 133 47 20	14 20 17 19 23 37 29 100 89 38 22 28	201 211 185 275 238 261 256 286 147 82 269 265	73 108 90 166 91 107 99 113 122 143 110	34 54 37 43 84 90 42 51 140 25 80 67	109 132 147 77 82 113 120 148 99 119
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4 GX-4-W * XZHM-0608 XZHM-0601 XZHM-0602 XZHM-0605 XZHM-0606	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Al w-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705 5610 5328 2814 2856 38068 70 466 337 950	293 870 1695 2282 43 1144 7236 7898 82 11 370 242 1137	47 46 7 11 432 480 300 301 44 11 586 525 252	305 349 261 281 3055 3491 1286 1610 1648 496 2466 4883 3617	65 75 44 45 32 34 805 689 78 37 51 59	46 59 39 59 152 195 43 49 191 133 47 20 23	14 20 17 19 23 37 29 100 89 38 22 28	201 211 185 275 238 261 256 286 147 82 269 265 210	73 108 90 166 91 107 99 113 122 143 110 111	34 54 37 43 84 90 42 51 140 25 80 67 41	109 132 147 77 82 113 120 148 99 119 162 110
XJ-5B XJ-5B-W * XJ05-7 XJ05-7-W XJ-37 XJ-37-W * GX-4 GX-4-W * XZHM-0608 XZHM-0601 XZHM-0602 XZHM-0605 XZHM-0606 XZHM-0607	m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Al w-K-Ca-Al m-K-Ca-Al m-K-Ca-Al m-K-Ca-Al	11481 10946 3168 3705 5610 5328 2814 2856 38068 70 466 337 950 388	293 870 1695 2282 43 1144 7236 7898 82 11 370 242 1137 7	47 46 7 11 432 480 300 301 44 11 586 525 252 930	305 349 261 281 3055 3491 1286 1610 1648 496 2466 4883 3617 2930	65 75 44 45 32 34 805 689 78 37 51 59 173 28	46 59 39 59 152 195 43 49 191 133 47 20 23 85	14 20 17 19 23 37 29 100 89 38 22 28 22 33	201 211 185 275 238 261 256 286 147 82 269 265 210 125	73 108 90 166 91 107 99 113 122 143 110 111 108 133	34 54 37 43 84 90 42 51 140 25 80 67 41 142	109 132 147 77 82 113 120 148 99 119 162 110 78

^{*:}风化表面数据(Weathered surfaces)

3.2 古代钾玻璃样品的 LA-ICP-AES 分析

LA-ICP-AES 分析了 14 件钾玻璃样品,13 件样品 MgO 含量小于 0.5%,表明很可能只使用了矿物碱(如硝石)作为碱的来源,而 XZHM-0608 的 MgO 含量高于 3%,表明原料可能含草木灰。根据 Al_2O_3 和 CaO 含量不同,这些钾玻璃可以分成 3 个亚类:第一类 Al_2O_3 含量大于 3%, CaO 含量小于 1%, 记为

第9期

■ MnO
• TiO₂

10000

1000

Concentration for polished surface (µg/g)

钾玻璃新鲜表面与风化表面元素对比

0.4

0.6

Concentration for polished surface (wt%)

0.8

0.6 0.4

0.2

0.0

Concentration comparisons for polished and weathered surfaces of potash glass

1.0

Fe₂O:

MgO

▲ Na₂O

m-K-Al 亚类,包含大部分广西的玻璃,微量元素 Zr 和 Ti 含量较高, Sr 含量较低;第二类 Al,O,和 CaO 含 量均为 1%~2%, 记为 m-K-Ca-Al 亚类, Zr, Ti 和 Sr 均较低, 包括新疆和甘肃的样品及小部分广西样 品;第三类 Al,O,和 CaO 含量均大于 3%,记为 v-K-Ca-Al 亚类,Ti 和 Sr 元素较高。不同亚类的钾玻璃 很可能具有不同的来源和制作配方。m-K-Ca-Al 亚类在印度、泰国、中国等地均有发现,结合考古学材 料判断,新疆的这批钾玻璃很可能是从印度北部通过沙漠丝绸之路传入中国;而 m-K-Al 亚类主要在广 西和越南北部以及韩国日本等地发现,很可能是通过西南丝绸之路和海上丝绸之路从东南亚传入中国 并继续传往韩国日本等地;v-K-Ca-Al 类型在中国和越南均有发现,且化学成分十分接近,很可能具有同 一来源。

100

100

过渡金属元素分析结果表明,这些钾玻璃使用了不同的着色剂。红色 XZHM-0608 可能是 Cu,O 或 铜单质着色,结合拉曼光谱确定是铜单质着色。棕色的 JZLM5-17 主要以 Mn²⁺着色,新疆的 XJ-05B 和 XJ05-7 等青色玻璃珠主要以 Cu²+着色。而新疆、甘肃和广西的蓝色、深蓝色玻璃珠是 Cu²+和 Co²+共同 致色或只以 Co2+致色。对所有钴着色样品的 MnO/CoO 比进行研究发现,甘肃和广西的样品均含有很 高的 MnO/CoO 比(>15),与中国的钴土矿特点吻合,而新疆的 MnO/CoO 比仅有 0.76,表明钴料来源不 是钴土矿。同时风门岭样品 MnO/CoO 约为18, 九只岭样品 MnO/CoO 约为50, 甘肃的 XJ-37 样品 MnO/ CoO 约为 24, 可能使用了不同来源的钴土矿。过渡金属元素分析可以提供有关玻璃着色剂许多信息。

3.3 古代钾玻璃的 LA-ICP-MS 分析

LA-ICP-MS 法分析了 10 件古代钾玻璃样品。大部分主量及微量元素的值与 LA-ICP-AES 值一致 (误差在100%±5%),少部分微量元素存在可校正的系统误差(大部分100%±20%),而且利用两种方 法进行分类及着色剂判别结果一致,不再赘述。相比于 LA-ICP-AES 结果, LA-ICP-MS 方法得到的钾玻 璃的微量元素信息更加全面,对于含量很低的稀土元素以及其他元素(如 Rb, W, Th, Cd, U 等)也能有 很好的分析结果(见表3),通过这些元素含量能够进一步挖掘有关钾玻璃原料的一些信息。

LA-ICP-MS 分析发现不同亚类钾玻璃中 Rb、Sr 等元素含量各有特点。m-K-Al 亚类玻璃特点为高 铷低锶, Rb/Sr 比大于4; m-K-Ca-Al 为低铷高锶, Rb/Sr 比通常小于1; v-K-Ca-Al 为高铷高锶, Rb/Sr 比 也较小。利用微量元素 Rb, Sr 对钾玻璃进行的分类与 Al, Ca 和其它元素分类结果相一致,验证了分类 的可靠性。

表 3 钾玻璃 LA-ICP-MS 分析结果

Table 3 Analytical results of potash glass by LA-ICP-MS

	rour rooures	. I	0 ,										
样品 Samples	亚类 Subgroup	Rb/Sr (μg/g)	Rb (µg/g)	$\mathop{\rm Sr}_{\left(\begin{array}{c} \mu g/g \end{array} \right)}$	La (µg/g)	Ce (µg/g)	Pr (μg/g)	Nd (μg/g)	Sm (μg/g)	Eu (µg/g)	Gd (µg/g)	$\mathop{\rm Tb}_{(\mu g/g)}$	Dy (µg/g)
XZHM-0601	m-K-Ca-Al	0.43	55.3	127.2	5.7	13.6	1.4	5.4	1.0	0.28	0.94	0.14	0.75
XZHM-0602	m-K-Al	5.8	300.2	51.7	15.7	148.0	4.4	16.7	4.0	1.05	3.26	0.47	2.90
XZHM-0605	m-K-Al	28	645.4	23.3	18.6	103.6	4.7	17.6	4.4	1.12	3.85	0.60	4.01
XZHM-0606	m-K-Al	16	459.5	27.9	14.6	65.2	3.4	12.5	2.6	0.61	2.73	0.37	2.46
XZHM-0607	m-K-Ca-Al	0.97	87.6	90.6	21.7	191.4	5.8	22.5	6.0	1.46	5.11	0.79	4.77
XZHM-0608	v-K-Ca-Al	0.67	145.4	215.9	13.4	25.2	3.0	11.7	2.1	0.56	2.00	0.27	1.82
GX-4	m-K-Al	6.8	340.6	50.3	15.5	91.2	4.0	15.2	3.2	0.73	3.02	0.44	2.60
FMLM26-2	m-K-Ca-Al	0.48	66.7	139.4	6.5	14.7	1.6	6.3	1.1	0.29	1.02	0.16	0.83
JZLM5-10	m-K-Al	24	452.0	19.1	15.2	90.0	3.5	13.4	2.7	0.55	2.80	0.43	2.92
JZLM5-17	m-K-Al	4.6	386.2	84.2	11.7	25.9	2.8	11.0	2.3	0.57	2.85	0.36	2.07
样品 Samples	亚类 Subgroup	Rb/Sr (μg/g)	Ho (µg/g)	Er (μg/g)	Tm (μg/g)	Υb (μg/g)	Lu (µg/g)	$_{(\mu g/g)}^{Hf}$	Ta (μg/g)	W (μg/g)	Bi (μg/g)	Th (μg/g)	U (μg/g)
XZHM-0601	m-K-Ca-Al	0.43	0.14	0.48	0.07	0.53	0.08	2.06	0.19	0.14	0.03	1.9	0.46
XZHM-0602	m-K-Al	5.8	0.58	1.65	0.22	1.67	0.24	3.19	0.28	0.32	0.02	4.1	0.77
XZHM-0605	m-K-Al	28	0.70	2.30	0.34	2.28	0.34	4.93	0.50	0.19	0.02	4.9	0.82
XZHM-0606	m-K-Al	16	0.52	1.54	0.21	1.37	0.19	3.35	0.30	0.52	0.06	4.0	0.79
XZHM-0607	m-K-Ca-Al	0.97	0.89	2.64	0.36	2.81	0.39	2.05	0.20	0.21	0.02	4.5	0.77
XZHM-0608	v-K-Ca-Al	0.67	0.34	1.12	0.14	0.87	0.15	3.93	0.63	0.43	0.97	4.6	0.52
GX-4	m-K-Al	6.8	0.55	1.45	0.19	1.54	0.26	3.46	0.35	0.34	0.03	4.9	0.87
FMLM26-2	m-K-Ca-Al	0.48	0.19	0.52	0.08	0.55	0.14	2.39	0.24	0.11	0.02	2.1	0.47
JZLM5-10	m-K-Al	24	0.69	2.01	0.31	1.91	0.32	6.75	0.60	0.25	0.03	5.7	1.39

古代玻璃中的稀土元素很难在制作过程中人为控制其浓度,因而反映的是玻璃原材料的特征。具有相同稀土元素特征的玻璃很可能具有相同的配方及原料来源。考古分析中较多采用中子活化分析

(INAA)分析稀土元素,但样品需磨成粉末并进行辐照,分析耗时久(达数星期),鲜有对中国古代玻璃稀土元素的分析应用。本研究利用 LA-ICP-MS 方法系统研究了中国钾玻璃的稀土元素的特征,将 14 种稀土元素含量通过球粒陨石(Chondrite)进行标准化,并绘成稀土元素配分模式图(图 2)。相比于有颜色样品,近无色样品稀土元素整体含量较少,说明着色剂对稀土元素含量起主导作用。6 个样品 Ce 元素有明显正异常,且都是 Co 着色的样品,说明其 Ce 异常主要与使用的钴料有关。结合上面的研究,这些玻璃的钴料具有高 Mn 高 Ce 特征,若能获取各地钴矿的 Mn, Ce 元素特征就能够判断这些玻璃钴料种类。九只岭地区 3 个样品和风门岭地区 7 个样品其主量

图 2 钾玻璃样品稀土元素配分模式图 Fig. 2 Rare earth elements results of potash glass samples

及一般微量元素无显著区别,但稀土元素结果表明其 Eu 缺失明显,Eu-Gd 趋势线比较陡,与风门岭地区的有显著差异。LA-ICP-MS 方法以其良好的分辨率以及检测灵敏度能够实现古代玻璃中稀土元素的测量,提供一般主量和微量元素无法体现的更丰富的信息。

3.4 小结

本研究利用 LA-ICP-AES/MS 法对一批中国古代钾玻璃的主量、次量和微量元素进行系统分析研究,将这些钾玻璃分为 3 个亚类,推测存在多个制作中心及不同的原料配方。对过渡金属元素的分析确定了这些玻璃中的主要着色剂类型。系统研究了中国古代钾玻璃的 14 种稀土元素,并用以区分不同地区

样品。两种方法在利用主量、微量元素进行分类以及着色剂类型的确定上相一致;而 LA-ICP-MS 相比于 LA-ICP-AES 法在更低含量的稀土元素以及其他微量元素(如 Th,U 等)的分析中有显著优势,其高灵敏、高空间分辨和近无损特点十分适合古代文物的高精度分析,可作为今后该类样品分析的重要手段。

References

- 1 Lai B B. Ancient India. New Delhi: Lakshmi Book Store, 1952: 17-27
- 2 Brill R H. Chemical Analysis of Early Glasses. New York; the Corning Museum of Glass, 1999
- 3 Gan F X, Brill R H, Tian S Y. Ancient Glass Research along the Silk Road. Singapore: World Scientific Publishing Co. Pte. Ltd. 2009; 41-108
- 4 Zhang B, Li Y H, Li Q H, Ma B, Gan F X, Zhang Z Q, Cheng H S, Yang F J. J. Radioanal Nucl. Chem., 2004, 261(2): 387–392
- 5 Liu S, Li Q H, Gan F X, Zhang P, Lankton J W. J. Archaeol. Sci., 2012, 39(7); 2128-2142
- 6 Russo R E, Mao X L, Borisov O V. Trac-Trend Anal. Chem., 1998, 17(8-9): 461-469
- 7 DucreuxZappa M, Mermet J M. Spectrochimica Acta Part B-Atomic Spectroscopy, 1996, 51(3): 333-341
- 8 Borisov O V, Mao X L, Ciocan A C, Russo R E. Appl Surf Sci., 1998, 127: 315-320
- 9 Gray A L. Analyst, 1985, 110(5): 551-556
- 10 Becker J S, Dietze H J. Spectrochimica Acta Part B-Atomic Spectroscopy, 1998, 53(11): 1475-1506
- 11 Durrant S F. J. Anal. At. Spectrom., 1999, 14(9): 1385-1403
- 12 Gunther D, Hattendorf B. Trac-Trend Anal. Chem., 2005, 24(3): 255-265
- 13 Watling R J, Herbert H K, Abell I D. Chemical Geology, 1995, 124(1-2): 67-81
- 14 Figg D J, Cross J B, Brink C. Applied Surface Science, 1998, 127-129(5): 287-291
- 15 Koch J, Günther D. Anal. Bioanal. Chem., 2007, 387(1): 149-153
- 16 Gratuze B, Blet-Lemarquand M, Barrandon J N. J. Radioanal. Nucl. Chem., 2001, 247(3): 645-656
- 17 Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. Chemical Geology, 2008, 257(1-2): 34-43

Analysis of Ancient Chinese Potash Glass by Laser Ablation Inductively Coupled Plasma-Atomic Emission Spectrometry/Mass Spectrometry

SIQIN Bilige¹, LI Qing-Hui * ¹, GAN Fu-Xi^{1,2}

¹(Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

²(Fudan University, Shanghai 200433, China)

Abstract Laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were applied to analyze ancient Chinese potash glass. Surfaces of glasses were polished over 100 µm, then pre-ablation was performed to avoid surface weathering effect, and laser ablation was performed in designed route to eliminate influence of heterogeneity. The glasses were classified into three subgroups by their lime and alumina concentrations, and they may have different recipe and production center. There were various colorants in these glass including metallic copper, and ions of manganese, copper and cobalt. The characteristics of rare earth elements of Chinese potash glass were studied for the first time and it successfully separated potash glass of Fengmenling and Jiuzhiling. The features of two methods in the studies of ancient glass were discussed.

Keywords Laser ablation inductively coupled plasma atomic emission spectrometry; Laser ablation inductively coupled plasma mass spectrometry; Potash glass

(Received 6 February 2013; accepted 16 April 2013)