Eksamen på Økonomistudiet. Sommeren 2011

MATEMATIK A

1. årsprøve
Onsdag den 15. juni 2011
(2 timers skriftlig prøve uden hjælpemidler)

Vi henleder din opmærksomhed på, at du skal besvare eksamensopgaven på dansk. Har du tilmeldt dig fagets engelske titel med "eksamen på dansk" i parentes, skal du besvare opgavesættet på dansk.

Er du i tvivl om, hvad du har tilmeldt dig, fremgår det af printet med din tilmelding fra de studerendes selvbetjening.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2011 S-1A ex

EKSAMEN I MATEMATIK A

Onsdag den 15. juni 2011

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1.

Elasticiteter.

Lad $I \subseteq \mathbf{R}$ være et åbent interval, og lad $f: I \to \mathbf{R}$ være en funktion, som er differentiabel i punktet $x_0 \in I$. Det antages desuden, at $f(x_0) \neq 0$.

- (1) Definer elasticiteten $\text{El}f(x_0)$ af funktionen f i punktet $x_0 \in I$.
- (2) Antag, at funktionerne f og g begge er defineret på det åbne interval I, og at elasticiteterne $\text{El}f(x_0)$ og $\text{El}g(x_0)$ eksisterer.

Vis, at elasticiteten $El(fg)(x_0)$ eksisterer, og at

$$El(fg)(x_0) = Elf(x_0) + Elg(x_0).$$

(3) Find elasticiteten i punktet x for funktionerne

$$f(x) = 2 + \cos(5x), \ g(x) = e^{17x} \text{ og } h(x) = 2 + \cos(5x) + e^{17x}.$$

Opgave 2. For ethvert $x \in \mathbb{R}_+$ betragter vi den uendelige række

$$(*) \qquad \sum_{n=1}^{\infty} (\ln(x))^n.$$

(1) Bestem mængden

$$K = \{x \in \mathbf{R}_+ \mid (*) \text{ er konvergent}\}.$$

(2) Bestem en forskrift for funktionen $f: K \to \mathbf{R}$, som er givet ved

$$\forall x \in K : f(x) = \sum_{n=1}^{\infty} (\ln(x))^n.$$

- (3) Bestem den afledede f' af funktionen f, og vis, at f er voksende på hele mængden K.
- (4) Bestem mængden af de $x \in K$, hvor elasticiteten El f(x) for funktionen f eksisterer, og udregn derpå El f(x).

Opgave 3. Vi betragter funktionen $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved

$$\forall (x, y) \in \mathbf{R}^2 : f(x, y) = x^2 + \ln(1 + y^2).$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Vis, at funktionen f har netop et stationært punkt, bestem dette punkt, og godtgør, at det er et globalt minimumspunkt for f.
- (3) Bestem værdimængden for funktionen f.
- (4) Lad funktionen $\phi: \mathbf{R} \to \mathbf{R}$ være givet ved

$$\forall s \in \mathbf{R} : \phi(s) = f(e^s, e^s).$$

Vis, at funktionen ϕ er strengt konveks på hele den reelle akse.