

## Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
  - Sheila McIlraith
  - Bahar Aameri
  - Fahiem Bacchus
  - Sonya Allin

# Formalizing a Search Problem

- Recall the formal definition of a search problem.
- Definition: Search Problem
  - Let S be a set of **states** that we want to search through.
  - From any given state,  $s \in \mathcal{S}$ , there exist a set of **actions**, A(s).
  - When an action,  $a \in A(s)$ , is applied to s, the result is a new state, denoted a(s).
  - A sequence of actions,  $\langle a_1, \ldots, a_n \rangle$  defines a **path** between two states.
  - The **length** of the path is the number of actions that make it up.
  - Each action, a, may have an associated **cost**, c(a) > 0. In this case, the cost of the path is the cumulative cost of its actions.
  - Given some initial state,  $s_0$ , we seek a path (often the shortest/cheapest one) to some state in a subset,  $\mathcal{G} \subseteq \mathcal{S}$ , called the **goal space**.

# Formalizing a Search Problem: Search Trees

• We saw that a graph could be used to represent the structure of a search problem. However, the searching itself takes place on a tree of possible paths.

Example: Search Tree for 4-Queens Puzzle



### Formalizing a Search Problem: Assumptions

- So far, we have assumed our agent has complete control over the states.
- In particular, we assumed:
  - Our agent is the only actor.
  - The actions have deterministic consequences.
- However, these are very strong assumptions.
- We need to modify our algorithms to work even when the aforementioned assumptions do not hold.

## Formalizing a Game

- If the first assumption is violated, our agent is said to be playing a game.
- A game is a situation in which:
  - There are multiple agents capable of making changes to the environment.
  - Each agent has their own goals and tries to alter the environment to its own benefit.
- Using search to make decisions in a game is difficult because the optimal action from any given state depends on the future actions of other agents.

### Formalizing a Game: Types of Games

- In general, a game can be:

  - deterministic (i.e., do not involve randomness), or stochastic (i.e., not deterministic).
  - **③ finite** (i.e., the state-space and action sets are finite), or **infinite** (i.e., not finite).
  - discrete (i.e., state-space is discrete), or continuous (i.e., not discrete).
  - of perfect information (i.e., all states are either fully observable by all players), or partial information (i.e., not of perfect information).
  - **3 zero-sum** (i.e., the cumulative utility over all players is independent of the state), or **non-zero-sum** (i.e., not zero-sum).

## Formalizing a Game

- For simplicity, we will focus on 2-player, deterministic, finite, discrete, zero-sum games of perfect information.
- **Definition**: Components of a Game
  - Let M denote our agent and m denote the adversary.
  - Let  $\mathcal S$  be the set of **states** that the game could be in.
  - A **circumstance**, *k*, is a state-player pair, i.e., game's state, and the turn-taker.
  - For any given circumstance, k, there is a set of **actions**, A(k), that must be made by the turn-taker.
  - When an action,  $a \in A(k)$ , is applied to k, the result is a new circumstance, a(k).
  - We assume that the turn-taking player switches after each action.
  - Let  $T \subseteq S$  denote the set of **terminal states**, i.e., those in which the game ends.
  - Each terminal state,  $t \in \mathcal{T}$ , provides a utility, u(t) to M and -u(t) to m.
  - Given a circumstance, k, in which M is the turn-taking player, we seek an action,  $a \in A(k)$ , that (eventually) leads to a terminal state,  $t \in \mathcal{T}$ , which maximizes u(t).

# Formalizing a Game: Game Trees

• Like any search problem, we can create a tree of possible paths. However, in a game tree, each level corresponds to different player, namely, the turn-taker.

#### **Example**: Game Tree for Tic-Tac-Toe Puzzle



#### Game Strategies

- Given any circumstance, k = (s, M), in which M is the turn-taker, they should chose the action,  $a_M(s)$ , that eventually leads to a terminal state with the maximum utility.
- If s is "almost-terminal", i.e., one action away from being terminal, the choice is straight-forward:

$$a_M(s) = \operatorname{argmax}_{a \in A(s)} \{u(a(s))\}$$

- If s is not "almost-terminal", u(a(s)), depends on m's actions.
- If M knew that m will play  $a_m(s)$ , in any circumstance, k=(s,m), in which it is the turn-taker, then:

$$U(s,t) = egin{cases} u(s), s \in \mathcal{T} \ U(a_m(s), M), t = m \ \max \left\{ U(s', m), s' \in S(s) 
ight\}, t = M \end{cases}$$

## Game Strategies: Example

• We will analyse different strategies on the game tree shown below, where • and  $\circ$  respectively, denote circumstances in which the turn-taker is M and m:



#### Game Strategies: Min-Max

• In the min-max strategy, we assume m always plays its best-response, i.e.,

$$a_m(s) = \operatorname{argmin}_{a \in A(s)} \{U(a(s), m)\}$$

It follows that

$$U(s,t) = egin{cases} u(s), s \in \mathcal{T} \ \min\left\{U(s',M), s' \in S(s)
ight\}t = m \ \max\left\{U(s',m), s' \in S(s)
ight\}, t = M \end{cases}$$

# Game Strategies: Min-Max Example

• Using the min-max strategy, we compute U as follows:



### $\alpha/\beta$ -Pruning: at *M*'s Nodes

- Let s be some state and define two quantities:
  - $\alpha_s$ : the minimum utility guaranteed at s thus far.
  - $\beta_s$ : the maximum utility guaranteed to s thus far.
- If M is the turn-taker at s:
  - $\alpha_s$  increases to the maximum value of s's successors as they explored.
  - $\beta_s$  will remain fixed.
- If *m* is the turn-taker at *s*:
  - $\alpha_s$  will remain fixed.
  - $\beta_s$  decreases to the minimum value of s's successors are explored.
- After exploring a successor of s, if  $\alpha_s$  increases beyond  $\beta_s$ , then we need explore any other successors of s since m will ensure s is never reached.

# Game Strategies: Min-Max w/ $\alpha/\beta$ -Pruning Example

• Using the min-max strategy with  $\alpha/\beta$ -pruning, we prune the nodes shown below:



#### Game Strategies: Expectation-Maximization

- The min-max strategy maximizes M's minimum utility.
- This means that M will never do worse than what is guaranteed by the min-max strategy, even if m does not always play its best response.
- However, it is very much possible for *M* to have done better.
- In the **expectation-maximization** strategy, we assume m chooses its action based on a probability distribution,  $P_s$ , over A(s),.
- It follows that  $a_m(S)$ , and consequently U(s,t), are random variables.
- We also assume that M wishes to maximize  $\mathbb{E}(U(s_0, M))$ , where

$$\mathbb{E}ig[ U(s,t) ig] = egin{cases} u(s), s \in \mathcal{T} \ \mathbb{E}ig[ U(a_m(s), M) ig], t = m \ \maxig\{ \mathbb{E}ig[ U(s', m) ig], s' \in S(s) ig\}, t = M \end{cases}$$

and 
$$\mathbb{E}\big[\mathit{U}(a_m(s),\mathit{M})\big] = \sum_{a \in \mathit{A}(s)} \mathit{U}(a,\mathit{M})\mathit{p}_s(a).$$

### Game Strategies: Expectation-Maximization Example

- Given  $p_S$  as shown below, it seems to make more sense for M to play the right action since there is an 85.5% chance that the resulting utility will be 20.
- However, if M uses the min-max strategy, it would play the action on the left, resulting in an expected utility of  $\approx 7.04$ .

