Altera SoC Linux Intro Workshop

Altera SW SoC Workshop Series

- ✓ SW Workshop #1 Altera SoC SW Development Overview
- ✓ SW Workshop #2 Introduction to Linux on Altera SoC
- ✓ SW Workshop #3 Developing Drivers for Altera SoC Linux

Agenda

- Essential Information Resources
- SoC Device Overview
- SoC Physical Address Map
- SoCFPGA Development Flow & Tools
- Altera SoC Linux Overview
- Components of the SoC FPGA Linux BSP
- SoC Linux Upstreaming & Driver Support
- Altera SoC Linux Boot Flow
- Das U-Boot Bootloader
- Linux Device Tree for SoC FPGA
- Take Home Lab

Welcome. Here's What You Can Expect Today

Experienced Linux Developers

- Find a familiar embedded Linux development flow
- Overview of upstreaming and driver support for mach_SoCFPGA architecture
- Guide to SoCFPGA resources

New Linux Developers

- An exposure to the components of embedded Linux
- Essential Linux learning and documentation resources

Hardware Developers

- HW handoff to Linux build flow
- Boot and FPGA configuration for Linux
- SW implications of HW architecture

Everyone

- SoC FPGA architecture-specific information
- SoC FPGA recommendations and best practices

Focused on SoC/Nios Linux Specific Topics

Essential Information Resources

Where to learn more...
...a non-exhaustive list

Linux Foundation Training

Linux Developer classes are designed to help participants:

- Learn how to develop an embedded Linux product
- Become familiar with and learn to write device drivers
- Get practical experience with the Linux kernel
- Learn how to work with the Linux developer community

Developer Courses

- LFD331 Developing Linux Device Drivers
- LFD405 Building Embedded Linux with the Yocto Project
- LFD411 Embedded Linux Development
- LFD414 Introduction to Embedded Android Development
- LFD205 How to Participate with the Linux Community
- LFD211 Introduction to Linux for Developers
- LFD262 Developing with Git
- LFD312 Developing Applications for Linux
- LFD320 Linux Kernel Internals & Debugging
- LFD415 Inside Android: An Intro to Android Internals
- LFD432 Optimizing Linux Device Drivers for Power
 Efficiency

http://training.linuxfoundation.org/linux-courses/development-training

Linux Documentation Resources

< GIT

- Distributed revision control system to enable distributed collaboration
- On-line documentation & training:
 - ★ http://git-scm.com/doc
 - ★ https://training.github.com

Denx U-Boot Manual

- Complete documentation from the folks who wrote Das U-Boot

Free-Electrons:

- Complete training materials posted free
 - <u>http://free-electrons.com/docs/</u>

Device Tree for Dummies

 http://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-treedummies.pdf

The Two Best Sources for Linux Development Information

Linux Kernel Documentation

- The most complete and most essential Linux kernel documentation
- Included with the Linux kernel source code
 - < <local GIT repo>/Documentation

The Two Best Sources for Linux Development Information

An open source OS breeds open source information

RocketBoards.org – Altera SoC Linux Community Portal

- The source for SoC FPGA Linux info
 - Golden System Reference Design (GSRD)
 - Updates on latest releases
 - Step-by-step getting started guides
- SoC FPGA Mailing List RFI
 - Active community participation in answering SoC FPGA and Linux questions
- Example Projects, Applications, and Designs
 - From Altera and the SoC community
- Enables the SoC community to support Linux

RocketBoards.org Resources

RocketBoards.org Documentation

RocketBoards.org – Useful Links

- GSRD User Manual
 - The best starting point for Linux development
 - http://www.rocketboards.org/foswiki/Documentation/GSRD

Getting Started Guides

- . Booting Linux Using Prebuilt SD Card Image
- · Connecting to Board Web Server
- . Connecting to Board Using SSH
- Running Sample Linux Applications
- · Compiling the Hardware Design
- · Generating and Compiling the Preloader
- · Generating the Device Tree
- Compiling Angstrom Linux Distribution
- Creating and Updating SD Card
- GSRD FPGA Programming
- FPGA Programming with Quartus II Programmer
- · Using System Console
- · Angstrom Getting Started
- Device Tree Generator User Guide
 - http://www.rocketboards.org/foswiki/Documentation/GSRD141DeviceTreeGenerator
- Programming FPGA from HPS
 - http://www.rocketboards.org/foswiki/Documentation/GSRD131ProgrammingFPGA
- GSRD Releases
 - http://releases.rocketboards.org

Several Ways to Learn!

Instructor-led training

- Face to face with an Altera expert Training Engineer
- 20+ courses to choose from (8 hour classes)

Virtual classes (taught via WebEX)

- Can ask questions to Altera expert Training Engineer
- Course content same as instructor-led classes (1/2 day sessions)

Online training (free and always available)

200+ topics available (~30 minutes in length)

- **▼ Videos (free and always available)**
 - YouTube videos (~4 minutes each)

SoC Classes Available

Instructor-led or virtual classes

- Designing with an ARM-based SoC
- Developing Software for an ARM-based SoC

Online classes

- Hardware Design Flow for an ARM-based SoC
- Software Design Flow for an ARM-based SoC
- SoC Hardware Overview: the Microprocessor Unit
- SoC Hardware Overview: Interconnect and Memory
- SoC Hardware Overview: System Management, Debug, and General Purpose Peripherals
- SoC Hardware Overview: Flash Controllers and Interface Protocols
- SoC Bare-metal Programming and Hardware Libraries
- Getting Started with Linux for Altera SoCs

Essential SoC Software Tools Online Videos

- ARM DS-5 Altera Edition Toolchain
 - https://youtu.be/HV6NHr6gLx0
- DS-5 Altera Edition: Bare-metal Debug and Trace
 - https://youtu.be/u_xKybPhcHI
- DS-5 Altera Edition: FPGA-adaptive Linux Kernel Debug and Trace
 - https://youtu.be/IrR-SfVZd18
- Debugging Linux applications on the Altera SoC with ARM DS-5
 - https://youtu.be/ZcGQEjkYWOc
- FPGA-adaptive debug on the Altera SoC using ARM DS-5
 - https://youtu.be/2NBcUv2Txbl
- Streamline Profiling on Altera SoC FPGA. Part 1 Setup
 - https://youtu.be/X-k9lmXQTio
- Streamline Profiling on Altera SoC FPGA. Part 2 Running Streamline
 - https://youtu.be/Tzbd7qldKqY

Essential SoC Hardware Documentation Resources

- Hard Processor System Technical Reference Manuals
 - Available in Device Handbooks:
 - ✓ https://www.altera.com/products/soc/portfolio/cyclone-v-soc/support.html
 - Contain Functional Descriptions Peripheral
 - Contain Control Register Address Map and Definitions
 - These are also available online at the links above in HTML and PDF formats
- HPS SoC Boot Guide
 - Cyclone V SoC & Arria V SoC: <u>AN709 HPS SoC Boot Guide</u>
 - Arria 10 SoC: included in HPS TRM in Arria 10 Device Handbook
- ARM Documentation Site
 - Documentation available for all ARM IP
 - Cortex-A9 & A53 MP Cores, FPU, NEON, GIC, ARM Peripherals, etc.
 - Requires free registration
 - Refer to HPS TRM for IP core names and revision information
 - http://infocenter.arm.com/help/index.jsp

Essential SoC Software Documentation Resources

- Altera SoC Embedded Design Software (SoC EDS) Tools
 - User Guide:

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_soc_eds.pdf

- Linux & Baremetal Software Development Tools Overview
- HPS Preloader User Guide
- ✓ HPS Flash Programmer User Guide
- SD Card Boot Utility
- Getting Started Guides: Preloader, Linux, Bare Metal, Debug, HW Library http://www.alterawiki.com/wiki/SoCEDSGettingStarted
- SoC HPS Release Notes
- SoC Abstraction Layer (SoCAL) API Reference
 - <SoC EDS install dir>/ip/altera/hps/altera_hps/doc/socal/html/index.html
- Hardware Manager API Reference
 - <SoC EDS install dir>/ip/altera/hps/altera_hps/doc/hwmgr/html/index.html
- GCC Documentation
 - <SoC EDS install dir>/ds-5/documents/gcc/getting_started.html
- Bare Metal Compiler
 - <SoC EDS installation directory>/host_tools/mentor/gnu/arm/baremetal/share/doc/sourceryg++-arm-altera-eabi

SoC Device Overview

Altera Investment in Embedded Technologies

- Altera established Austin Technology Center (ATC) in 2011
- Altera's primary embedded engineering center
- Austin provides access to one of the richest embedded processing talent bases in the world

Altera SoC Product Portfolio

LOW END SoCs

(Lowest Power, Form Factor & Cost)

MID RANGE SoCs

(High Performance with Low Power, Form Factor & Cost)

HIGH END SoCs

(Highest Performance & System Bandwidth)

- 14nm Intel Tri-Gate
- 64-bit Quad ARM A53 MP CoreTM
- Optimized for Max Performance per Watt
- Over 4000 KLE

- 28nm TSMC
- 925 MHz Dual ARM CortexTM-A9 MPCoreTM
- 5G Transceivers
- 400 MHz DDR3
- 25 to 110 KLE
- Up to 224 Multipliers (18x19)

- 28nm TSMC
- 1.05 GHz Dual ARM Cortex[™]-A9 MPCore[™]
- 10G Transceivers
- 533 MHz DDR3
- Up to 462 KLE
- Up to 2136 Multipliers (18x19)

- 20nm TSMC
- 1.5 GHz Dual ARM CortexTM-A9 MPCoreTM
- 17G Transceivers
- 1333 MHz DDR4
- Up to 660 KLE
- Up to 3356 Multipliers (18x19)

SoC devices available across entire product portfolio ...

ARM Public Processor Offering

28nm SoC System Architecture

- ✓ Processor
 - Dual-core ARM[®] Cortex[™]-A9 MPCore[™] processor
 - Up to 5,250 MIPS (1050 MHz per core maximum)
 - NEON coprocessor with double-precision FPU
 - 32-KB/32-KB L1 caches per core
 - 512-KB shared L2 cache
- ▼Multiport SDRAM controller
 - DDR3, DDR3L, DDR2, LPDDR2
 - Integrated ECC support
- ✓ High-bandwidth on-chip interfaces
 - > 125-Gbps HPS-to-FPGA interface
 - > 125-Gbps FPGA-to-SDRAM interface
- - Lowest power transceivers
 - Up to 1,600 GMACS, 300 GFLOPS
 - Up to 25Mb on-chip RAM
 - More hard intellectual property (IP): PCIe[®] and memory controllers

Notes:

- (1) Integrated direct memory access (DMA)
- (2) Integrated ECC

Arria 10 HPS Block Diagram

Notes:

- (1) Integrated direct memory access (DMA)
- (2) Integrated ECC

High-Level Block Diagram

A Comparison: Cyclone V SoC, Arria V SoC, Arria 10 SoC

Metric	Cyclone V SoC	Arria V SoC	Arria 10 SoC
Technology	28nm	28nm	20nm
Processor Performance	925 MHz	1.05 GHz	1.5 GHz
Total Power Dissipation	100%	100%	60% (40% Lower)
Max PCI Express Hard IP	Gen 2 x4	Gen 2 x8	Gen 3 x8
Memory Devices Supported	DDR2, DDR3, DDR3L, LPDDR2	DDR2, DDR3, DDR3L, LPDDR2	DDR4/3, LPDDR2/3, QDRIV, RLDRAM III, Hybrid Memory Cube
Max. HPS DDR Data- Width	40-bit (32-bit + ECC)	40-bit (32-bit + ECC)	72-bit (64-bit + ECC)
EMAC Cores	EMAC x 2	EMAC x 2	EMAC x 3
NAND Device Supported	8-bit	8-bit	8-bit and 16-bit
SD/MMC devices supported	SD/SDIO/MMC	SD/SDIO/MMC	SD/SDIO/MMC 4.5 with eMMC
FPGA Logic Density Range (LEs)	25 - 110K	370 - 450K	160 - 660K
FPGA Core Performance	260 MHz	307 MHz	500 MHz

SoC Physical Address Map

Essential HW information for SW Developers

Cyclone V & Arria V SoC HPS Physical Memory Map

Arria 10 SoC HPS Physical Memory Map

Arria 10 SoC HPS Physical Memory Map

Physical Address Mapping

Physical Address Mapping – FPGA to SDRAM

- FPGA Masters have access to full 4GB of SDRAM address space
 - Subject to MPFE MPU restrictions
 - No coherency
 - No virtual addressing

Physical Address Mapping – MPU

MPU has access to the lower 3 GBytes of SDRAM

 Kernel manages and can allocate memory in this 3GByte space

> Allocate for both user and kernel space

 Allocatable on 4K Byte Boundaries (page size)

Physical Address Mapping – MPU to FPGA

FPGA Portion

MPU can access 960 MBytes of FPGA address space via HPS to FPGA Bridge

MPU can access 2 MB of FPGA address space via HPS to FPGA Lightweight bridge

- Not allocatable in user space
- Space FPGA peripherals on Linux page size (4KB) boundaries
- Access methods discussed in Developing Linux Drivers for Custom Peripherals Workshop

Physical Address Mapping – FPGA to HPS

- FPGA to HPS (F2H) masters see 4 GByte address space
- F2H bandwidth to SDRAM limited vs.
 FPGA to SDRAM bridge

Cyclone V SoC Memory Map Example - SDRAM

Cyclone V SoC GSRD Memory Map Example - SDRAM

Cyclone V SoC Memory Map Example - PIO

Cyclone V SoC Memory Map Example - PIO

Cyclone V SoC GSRD Memory Map Example

Look at led_pio at Address 0x0001_0040

Cyclone V SoC GSRD Memory Map Example

It is connected to 3 Masters.

Cyclone V SoC GSRD Memory Map Example

- Each master sees the slave at a different address.
- These address are offsets from the HPS bridge address

SoCFPGA Development Flow & Tools

Why Does This Matter for Linux Development?

- Altera SoCs offer unique advantages
 - User specified peripheral set
 - Tightly-coupled MPU & FPGA fabric
 - One of a kind HW/SW debug capabilities
- Altera SoCs have unique requirements
 - Understanding of paths to exchange data between MPU and FPGA
 - Building custom BSP for user specified peripheral set
 - Correct handling and configuration of HPS/FPGA bridges
- Altera SoCs have tools to enable the power of a integrated MPU and FPGA

Altera SoC Embedded Design Suite

FPGA Design Flow Software Design Flow **Hardware** Software **__Qsys Development Development** ARM Development Studio 5 Quartus II design software GNU toolchain HW/SW Qsys system integration tool Design Design OS/BSP: Linux, VxWorks Standard RTL flow Handoff Hardware Libraries Altera and partner IP Design Examples ModelSim, VCS, NCSim, etc. **Simulate Simulate** AMBA-AXI and Avalon bus VirtuaSoftware functional models (BFMs) **Development** • GNU, Lauterbach, DS5 SignalTap™ II logic analyzer **Debug** Debug System Console **FPGA-Adaptive Debugging** Quartus II Programmer Release Release In-system Update

So... what exactly is Qsys?

GUI based system integration tool for HW system design using IP blocks.

- Simplifies complex system development
- Raises the level of design abstraction
- Provides a standard platform:
 - IP integration
 - Custom IP authoring
 - IP verification
- Enables design re-use
- Scales easily to meet the needs of end product
- Reduces time to market

Qsys System Integration Platform

Hard Processor System Configuration

Linux HW/SW Handoff – Cyclone V SoC and Arria V SoC

Linux HW/SW Handoff – Arria 10 SoC

Altera SoC Embedded Design Suite

Comprehensive Suite SW Dev Tools

- Hardware / software handoff tools
 - Preloader & Device Tree Generators
- Bare-metal application development
 - SoC Hardware Libraries
 - Bare-metal compiler tools
- FPGA-adaptive debugging
 - ARM DS-5 Altera Edition Toolkit
- Linux application development
 - Yocto Linux build environment
 - Pre-built binaries for Linux / U-Boot
 - Work in conjunction with the Community Portal
- Design examples

- √ Free Web Edition
- ✓ Subscription Edition
- ✓ Free 30-day Eval

Industry First: FPGA-Adaptive Debugging

ARM® Development Studio 5 (DS-5™) Altera® Edition Toolkit

- Removes debugging barrier between CPUs and FPGA
- Exclusive OEM agreement between Altera and ARM
- Result of innovation in silicon, software, and business model
- Supports FPGA-Adaptive Linux kernel, driver & application debug

Cross-Domain Debug 1

Trigger from software world to FPGA world

Cross-Domain Debug 2

Trigger from FPGA world to software world

Correlate HW and SW Events

Debug event trigger point set from either:

SignalTap™ II Logic Analyzer or DS-5 debugger

 Captured trace can then be analyzed using timestamp-correlated events

ARM® DS-5™ Toolkit

Timestamp Correlated

SignalTap II Logic Analyzer

SoC EDS Editions Summary

Component	Key Feature	Web Edition	Subscription Edition	30-Day Evaluation
Hardware/Software Handoff Tools	Preloader Image Generator	х	x	x
	Flash Image Creator	Х	x	x
	Device Tree Generator (Linux)	х	x	x
ARM DS-5 Altera Edition	Eclipse IDE	x	x	x
	Debugging over Ethernet (Linux)	Х	x	x
	Debugging over USB-Blaster II JTAG		x	x
	Automatic FPGA Register Views		х	x
	Hardware Cross-triggering		х	x
	CPU/FPGA Event Correlation		x	x
Compiler Tool Chains	Linaro Tool Chain (Linux)	х	x	x
	CodeBench Lite EABI (Bare-metal)	Х	x	x
Hardware Libraries	Bare-metal programming Support	X	x	x
SoC Programming Examples	Golden System Reference Design	х	x	x

Everything needed for Linux development is free & open source

Altera SoC Linux Overview

Linux for Altera SoCs

- High Quality Linux Support
- Modern release strategy
- Multiple Kernel Versions
- Community Enablement

Linux Strategy

Kernel

- Same kernel source tree for all SoC's and NIOS II
 - Same kernel binary for all 32bit SoCFPGA
 - Same kernel binary for all 64bit SoCFPGA
- Device tree support (SoCs and NIOS II)
- Upstream and maintain to kernel.org

✓ U-Boot

- 2013.01.01 supported for Cyclone V & Arria V SoC
- 2014.10 supported for Arria 10 SoC
- 2015.xx support in progress
- Same U-Boot source tree for all SoC's and NIOS II

Toolchain

Standard, un-patched Linaro Toolchain:
 gcc-linaro-arm-linux-gnueabihf-4.9-2014.09

Nios[®] II

Linux Strategy - Build Systems

- Offer support for Angstrom for SoC
- Ångström
- Embedded Linux distribution, Yocto Project configuration, package manager (OPKG)
 - Uses meta-altera Yocto layer
- Currently 2014.12
 - ✓ Linaro GCC 4.9 for 32 bit SoCs
- Yocto Project Support for SoC

- YOCTO PROJECT
- SoCFPGA layer (meta-altera) upstreamed to Angstrom
- Yocto Project v1.7 ready
- Buildroot for both SoC and Nios II
 - Roll your own from relevant source

Build System Resources

Angstrom flow for SoC

http://rocketboards.org/foswiki/view/Documentation/AngstromOnSoCFPGA_1

Yocto flow for SoC

http://www.rocketboards.org/foswiki/Documentation/YoctoDoraBuildWithMetaAltera

- Source Poky from the Yocto Project website <u>git://git.yoctoproject.org/poky.git</u>
- Buildroot flow for Nios II

http://rocketboards.org/foswiki/view/Documentation/NiosIILinuxUserManual

Buildroot flow for SoC

http://www.rocketboards.org/foswiki/Documentation/BuildrootForSoCFPGA

Angstrom/Yocto Information Resources

Yocto Project
https://www.yoctoproject.org/documentation

Angstrom Distribution
http://www.angstrom-distribution.org/

Open Embedded

 http://www.openembedded.org/wiki/Main_Page

✓ Building Linux w/ Yocto Linux Foundation class

LFD405 – Building Embedded Linux with the Yocto Project

Altera SOC Linux Provides Customers Kernel Choices

Status of the Linux kernel for SoC FPGA

Current versions

- Latest stable: refer to linux-socfpga git repo tags: rel_socfpga-x.x...
 - ✓ We keep up with Linus Torvalds releases
- LTSI v3.10
 - Maintained for its lifetime
 - ✓ Next LTSI version for SoCFPGA will be 4.1 available end of 2015
- Real-Time: 3.10-ltsi-rt
 - ✓ LTSI kernel with PREEMP_RT patches

All branches are kept in sync

- Bug fixes
- New features
- No changes of API in the LTSI branches

Wind River Linux

- Wind River Linux version 7
- ✓ Linux SMP Kernel version 3.14 (LTSI)
 - Real Time patches & Carrier Grade Linux available
- Yocto project user space
- Bitbake build system
- WR Workbench Tools
- Available now from Wind River
- Technical Support:
 - <u>www.windriver.com</u>
 - support@windriver.com

Monta Vista Linux

- Monta Vista Linux CGE7
 - Carrier Grade Edition
- Linux SMP Kernel version 3.10 (LTSI)
- Yocto project user space
- Available from Monta Vista
- Technical Support:
 - www.mvista.com

Latest Stable Kernel vs. LTSI Kernel

Latest Stable Kernel

- Access to latest kernel features
- New features and drivers often released only to the latest kernel version
- Significant investment in kernel maintenance:
 - Back porting features, bug fixes, device support, & new drivers or...
 - Constant upgrades to latest stable kernel

LTSI Kernel

- LTSI kernel versions supported for 2 years
- Critical bug fixes, priority features, & new device or driver support back-ported to LTSI kernel by the community
- Reduces investment in kernel maintenance
 - Features, bug fixes, device support, & new drivers ported by the community

LTSI – Economic value

Economic Value of LTSI?

- Cost of Back porting security and bug fixes are 3M\$ per year per version
- Cost of maintaining inhouse patch is 288K\$ in case of LTSI 3.4

Linux Code Quality

- Altera's internal development process is similar to the community's
 - Code/Peer reviews
 - Code style checked
 - Copyright, licenses, etc checked
 - All checks enforced

Daily Builds

- Automated builds run daily
- Complete system: boot loader, kernel, Angstrom
- SD card image produced

Daily Tests

- Linaro's LAVA is used
- All kernel branches tested

Linux Code Tests

Objectives

- Daily test of the supported Linux kernel branches
- Provide feedback to developers

Infrastructure

- Linaro's LAVA is used
 - Linaro Automated Validation Architecture
 - Runs our unit tests and log results
- Tests start automatically after each build is complete

Altera SoC Linux Support Model

Rocketboards.org

- RocketBoards.org
- SoC & Nios II Linux documentation
- SoC & Nios II SoC Linux reference & example designs
- Rocketboards.org RFI & Linux Community
 - Kernel/RFS/u-boot questions
 - SoC/Nios II subsystem and driver questions
- Altera.com and Rocketboards.org
 - SoCEDS & Quartus/QSys documentation and questions
 - SoC Preloader questions
 - SoC HPS implementation specific questions
 - Use myAltera for service requests
- Support from Altera is focused on SoCFPGA and NiosII Linux Board Support Package
- Altera enables Linux community development on SoCFPGA & Nios II

Break

Components of the SoC FPGA Linux BSP

Building a Custom Embedded Linux Distribution

How do I get from here....

...to here?

- ✓ Altera provides a Linux BSP...
 - ...not a Linux distribution.
- The BSP enables the creation of a custom distribution

SoC Linux Board Support Package

- **⋖** U-Boot
- Device Tree
- SoC Machine Specific
 Layer mach-socfpga
- Drivers for SoC and board components
- Kernel
- Root File System

SoC Linux BSP release provides all of the components in fully non-proprietary source code form

SoC Linux Board Support Package

User Space (debug, compiler, shell, etc) Example configuration to enable evaluation and initial development **Root File System** Kernel configuration to enable **Kernel** evaluation and initial development **BSP** Up-streamed and community **Drivers** supported drivers Up-streamed mach-socfpga **Machine Specific Layer** architecture Board-specific layer which **Device Tree** enables common kernel binary Open-source, community **U-Boot** supported boot loader SoC Development kit or custom board **Board**

Cyclone V SoC Development Kit

- Everything you need to begin Linux development
 - SoC Development Kit
 - Golden System Reference Design
 - A Linux distribution for the dev. kit

Features:

- 1 user license for ARM DS-5 Altera
 Edition Toolkit
- Ethernet, USB, CAN, UART
- DDR3 (HPS and FPGA), SDCard, QSPI
- PCIe (rootport & endpoint)
- Expansion header
- Much more . . .

www.altera.com/products/devkits/altera/kit-cyclone-v-soc.html

Linux GSRD for Development Kits

Boot Linux from an SD card

Updated images on:

http://releases.rocketboards.org/

- Choose a release date folder, the "gsrd" folder, then the "bin" folder. Ex: http://releases.rocketboards.org/release/2014.12/gsrd/bin
- 3.10 LTSI kernel
- Angstrom Linux distribution for SoC
 - Package manager to load packages from Angstrom's on-line package feed
 - Add whatever tools are needed for evaluation: gstreamer, usb-utils, etc...

GSRD contents

- Complete HW reference design w/ FPGA programming file
- Bootable SD card image & component binaries
- Tagged for rebuilding in angstrom-socfpga git repository ACDSX.X_REL_GSRD_PR

A complete SD card ships with the board

- Take it out and stick it in a drawer
- Based on out-of date 3.9 kernel

Multiple Dev. Kit Options w/ Linux BSP

Kit	Vendor	Family
Arria 10 SoC Dev. Kit	Altera	Arria 10 SoC
Arria V SoC Dev. Kit	Altera	Arria V SoC
Cyclone V SoC Dev. Kit	Altera	Cyclone V SoC
Atlas Board	Altera	Cyclone V SoC
SoCKit	Arrow	Cyclone V SoC
Helio SoC Eval. Platform	Macnica	Cyclone V SoC
SoCrates	EBV Elektronik	Cyclone V SoC

SoC Linux Up-streaming & Driver Support

Maintaining and Up-streaming

- Altera awarded maintainership for the 'SoC FPGA' architecture
 - Kernel (arch/arm/mach-socfpga)
 - U-Boot (altera/socfpga_cyclone5)
- Being a maintainer means
 - We upstream the SoC related code
 - We control the changes against the SoC code requested by the community
 - See kernel.org and git.denx.de
- Other community contributions
 - Device Tree Generator: sopc2dts
 - Yocto meta-altera layer

SoCFPGA Linux Code Repositories on GitHub

Public git repos for SoCFPGA

https://github.com/altera-opensource

- Migrated from RocketBoards
 - Rocketboards.org git repos are no longer updated

SoCFPGA Linux Code Repositories on GitHub

Repository	Description
linux-socfpga.git/	 SoCFPGA Linux development repository Mirrors kernel.org linux repo releases Downstream branches for socfpga specific patches and updates
meta-altera.git/	Repository for Yocto recipes for SoCFPGAStarting point for custom Yocto recipes
angstrom-socfpga.git/	Setup scripts for SoCFPGA Angstrom distribution
uboot-socfpga.git/	SoCFPGA u-boot development repository
sopc2dts.git/	Device Tree Generator (sopc2dts) repository
linux-refdesigns.git/	SW source code for Linux reference designs

^{*} Sourced from: github.com/altera-opensource/

Kernel Release Cycle – Merge & Bug Fix

Kernel Release Cycle – Merge & Bug Fix

github.com/altera-opensource/linux-socfpga development repository

Altera moves with the community to the latest stable kernel

Altera BSP Kernel Development

Altera LTSI Kernel Development

github.com/altera-opensource/linux-socfpga repository

Altera LTSI Kernel Development

github.com/altera-opensource/linux-socfpga repository

SoC Hard IP Driver Support

- Altera SoC HPS built mainly with off the shelf Hard IP components
 - ARM
 - Synopsys DesignWare
 - Cadence
- Wide-spread usage and community support result in high-quality drivers
- Altera is actively contributing features, updates, and fixes to the community

Notes:

- (1) Integrated direct memory access (DMA)
- (2) Integrated ECC

Linux Driver Support for HPS Peripherals

Driver	Kernel Source Tree Location	Maintainer
SPI	drivers/spi/spidev.c drivers/spi/spi-dw.c drivers/spi/spi-dw-mmio.c	Community
CAN	drivers/net/can/c_can/c_can_platform.c	Community
Ethernet	drivers/net/ethernet/stmicro/stmmac/stmm ac_platform.c	Community
NAND	mtd/nand/denali_dt.c	Community
I2C	drivers/i2c/busses/i2c-designware-platdrv.c	Community
USB	drivers/usb/dwc2/	Community
USB PHY	usb/phy/phy-generic.c	Community
SDMMC	drivers/mmc/host/dw_mmc-pltfm.c	Community
Timer	drivers/clocksource/dw_apb_timer_of.c	Community

Linux Driver Support for HPS Peripherals

Driver	Kernel Source Tree Location	Maintainer
Watchdog	drivers/watchdog/dw_wdt.c	Community
PL330 DMA	dma/pl330.c	Community
GIC	drivers/irqchip/irq-gic.c	Community
GPIO	drivers/gpio/gpio-dwapb.c	Community
Timer	drivers/clocksource/dw_apb_timer_of.c	Community
UART	drivers/tty/serial/8250/8250_dw.c	Community
QSPI	spi/spi-cadence-qspi.c	Altera
Clock Manager	drivers/clk/socfpga/clk.c	Altera
FPGA Manager	drivers/fpga/fpga-mgrs/altera.c	Altera
FPGA Bridges	drivers/misc/fpga-bridge/	Altera
EDAC (ECC)	drivers/edac/altera_*	Altera

Linux Driver Support for soft Peripherals

Driver	Kernel Source Tree Location	Maintainer
TSE Ethernet	drivers/net/ethernet/altera	Altera
PCIe Root Port	www.rocketboards.org — w/o MSI	Altera
Frame Buffer	video/altvipfb.c	Community
Avalon SPI	spi/spi-altera.c	Community
Avalon UART	tty/serial/altera_uart.c	Community
JTAG UART	tty/serial/altera_jtaguart.c	Community
QSYS Sys ID	misc/altera_sysid.c	Altera
Mailbox	drivers/mailbox/mailbox-altera.c	Altera
Altera 16550 UART	drivers/tty/serial/8250/8250_core.c	Community
Avalon PIO	drivers/gpio/gpio-altera.c	Altera

Altera SoC Linux Boot Flow

Altera SoC FPGA Configuration Options

SoCFPGA Linux Boot Flow – Cyclone V & Arria V SoC

Preloader Overview – Cyclone V & Arria V SoC

- Loaded by Boot ROM
 - From flash and executed from on-chip RAM
 - or run directly from FPGA
- Uses U-boot Secondary Program Loader (SPL)
 - Open source, GPL Licensed
- Loads U-boot into RAM and jumps to U-boot
- Always regenerate and recompile Preloader when
 - QSys system or HPS configuration changes
 - Quartus/QSys version changes

Not regenerating and recompiling the Preloader is the single most common source of SoC SW problems!

Covered in detail in SoCEDS User Guide and Designing Software for ARM-Base SoC training class

SoCFPGA Linux Boot Flow – Arria 10

Booting from SD/eMMC – GSRD Flow - Simplified

Provides ONE example of an SD/eMMC Linux boot flow

GSRD SD Card Image for Cyclone V & Arria V

Partition 3
Type=A2 (raw)

Partition 2
Type=83 (EXT Linux)

Partition 1
Type=B (FAT32 Windows)

U-boot Environment Settings

Master Boot Record
(MBR)

Location	File Name	Desciption
	socfpga.dtb	Device Tree Blob
	soc_system.rbf	FPGA configuration file
Partition 1 (FAT32)	u-boot.scr	U-Boot script: configures FPGA and loads kernel
	zlmage	Compressed Linux kernel image file
Partition 2 (EXT3)	Various	Linux root file system
Partition 3 (A2 raw)	n/a	Preloader image(s)
	n/a	U-Boot image

address

GSRD SD Card Image for Arria 10

Partition 3
Type=A2 (raw)

Partition 2
Type=83 (EXT Linux)

Partition 1
Type=B (FAT32 Windows)

U-boot Environment Settings

Master Boot Record
(MBR)

Location	File Name	Desciption
	socfpga.dtb	Device Tree Blob
	soc_system.rbf	FPGA configuration file
Partition 1 (FAT32)	u-boot.scr	U-Boot script: configures FPGA and loads kernel
	zlmage	Compressed Linux kernel image file
Partition 2 (EXT3)	Various	Linux root file system
Partition 3 (A2 raw)	n/a	U-Boot image

address

Creating SD Card Images

- Create using Altera provided script
 - See "tools" folder under GSRD release folders http://releases.rocketboards.org/
 - Builds complete SD card image which can be directly copied
- Use pre-built images
 - In "bin" folder under GSRD release folders http://releases.rocketboards.org/
 - <SoCEDS install directory>/examples/software
 - Can be directly copied to SD card
- Described in "Creating and Updating SD Card" section of GSRD User Manual

http://www.rocketboards.org/foswiki/Documentation/GSRD

FPGA Configuration – Cyclone V & Arria V SoC

FPGA Configuration – Arria 10 SoC

Das U-Boot Bootloader

What is u-boot?

- Common embedded bootloader
 - Command line interface w/ decent help and lots of hardware support
 - Capable board bring up tool
 - Driver support for a wide variety of essential peripherals
- Loads the Device Tree and modifies Device Tree configuration at run-time
- Loads the kernel and passes boot arguments
 - From local file system, over network, or over a serial link
- Open-source & GPL licensed
 - http://www.denx.de/wiki/U-Boot

U-Boot for SoCFPGA

- Sourced from GitHub Altera Opensource or SoCEDS https://github.com/altera-opensource/u-boot-socfpga.git
 <SoC EDS install dir>/examples/hardware/<*_ghrd>/.../uboot-socfpga
- Supported u-boot versions:
 - Cyclone V SoC & Arria V SoC: 2013.01.01
 - Preliminary support for 2015.xx up streamed to Denx GIT repo
 - Arria 10 SoC: 2014.10
 - 2014.10 & later up streamed to Denx Git repo
- u-boot-socfpga branch & tag convention similar to linuxsocfpga

U-Boot for SoCFPGA

- SoCFPGA-specific u-boot documentation <u-boot-socfpga repo>/doc/README.SOCFPGA
- u-boot controls SDRAM size passed to kernel
 - u-boot SDRAM sizing algorithm overwrites device tree SDRAM memory node entry
 - Device tree entry overrides boot arguments
- SoCFPGA u-boot environment variables
 - Pass HPS/FPGA bridge status and configuration info from preloader
 - Enable FPGA programming from preloader

SoCFPGA HPS Peripherals Supported in U-boot

Peripheral support in u-boot-socfpga 2013.01.01

MPU Subsystem

Cache/MMU

Cache Mgmt

MMU Mgmt

Interrupt Ctrl

FPGA Manager

Clock Manager

Reset Manager

System Manager

SDRAM Ctrl

Interrupt Ctrl

Pin I/O Cnf Mgmt

ECC Mgmt

Ethernet MAC

Flash Memory

QSPI

NAND

SD/MMC

GPIO

DMA

Serial

UART

Timers

Watchdog

General Purpose

Useful U-boot Commands and Variables

Write memory location

```
mw <address> <size> <optional count>
mw 0xC0000000 0x10 0x6
```

Read memory location

```
md<optional .b .w .l> <address> <optional size>
md.w 0xC0000000 0x2
```

Control u-boot auto-boot

Boot without delay:

```
setenv bootdelay 0
```

Disable auto-boot (stop at u-boot command line):

```
setenv bootdelay -1
```

Save environment variables to flash

```
saveenv
```


Linux Device Tree for SoC FPGA

What's a Linux Device Tree?

- A tree-like data structure for describing hardware in embedded systems
- Enables device drivers to be linked to Linux kernel at runtime
 - No Linux kernel recompile required
 - Drivers loaded dynamically after loading Device Tree
- Triver-specific Device Tree bindings are documented in the kernel documentation
 - Documentation/devicetree/bindings
- See Device Tree Generator User Guide
 - See link in GSRD User Guide

SoC FPGA Device Tree Bindings Example

```
i2c<mark>@0xffc04000</mark>
                                        compatible = "snps,designware-i2c"
Specify base address and size
                                         req = \langle 0xffc04000 \ 0x100 \rangle;
                                         interrupt-parent = <0x3>;
Specify driver
                                         interrupts = <0x0 0x9e 0x4>;
                                         clocks = <0x1e>;
Specify interrupts
                                         status = "okay";
Specify clock sources
                                         speed-mode = <0x0>;
                                         i2c-sda-falling-time-ns = <0x1388>;
                                         i2c-scl-falling-time-ns = <0x1388>;
Enable peripheral
Driver specific bindings
                                         atmel,24c32@0x51 {
                                                 compatible = "atmel,24c32";
Load and configure drivers for
                                                 reg = <0x51>;
sub-nodes
                                                 pagesize = <0x20>;
                                };
```


Device Trees for a Configurable Peripheral Set

- Typically developers build Linux for fixed form chips
- How do you build Linux for an FPGA fabric that changes?

You use the Device Tree Generator

- Device tree information can be added to custom Qsys peripherals and custom drivers
- Device Tree Source can be edited by hand

How to use Altera SoC Device Tree Generator

- .sopcinfo file describes HPS and FPGA system
- Board info file describes external devices on board
- Device Tree Generator creates a plain text representation of the device tree – called the Device Tree Source (DTS)
 - Device Tree Generator: SoCEDS sopc2dts tool
 - sopc2dts distributed as part or SoCEDS or on RBO GIT repo
- Compile the text into a binary representation called the Device Tree Blob (DTB)
- Optionally directly generate DTB from sopc2dts

Board Info File

- XML file required as an input to sop2dts
- Specifies information of which QSys isn't aware
 - SPI or I2C timing or external peripherals and their properties
 - External flash (QSPI, SPI, or NAND) properties (organization, specs, etc)
- Board specific Ethernet & PHY information
- Allows the developer to disable peripherals which may be enabled in preloader or FPGA HW

Take Home Lab

Workshop 2 Lab Overview

⋖ Goal:

Familiarize you with SoC FPGA Linux components and where to obtain them

Overview

- You will build the SoC-specific pieces of a Cyclone V or Arria V SoC Linux distribution and run it on your dev. kit
- This flow builds each component discretely without a build system. It does not use the optional Yocto or Angstrom based build systems.
- It configures the distribution in a way which works for this lab, which may differ from your actual system requirements

What You'll Need

- A supported Dev. Kit
 - Altera Atlas Board
 - Altera Cyclone V SoC Board
 - Altera Arria V SoC Board
 - Arrow SoCKIT
 - Macnica Helio Board
- microSD Card

- Linux machine native or VM
 - 4GByte RAM minimum
- Serial Terminal Application

Obtaining Lab Files and Instructions

Posted on RocketBoards

Link will be emailed out after class

What You Will Accomplish

- Generate and build the preloader
- Generate and compile the device tree
- Obtain and build u-boot
- Obtain, configure, and build the kernel
- Program to an SD card
- Run a Simple Linux App
 - Verifies the lab was completed
- Submit results & feedback

Thank You

