BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỰC

Kỳ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2021 – LẦN 1 Bài thi: TOÁN

(Đề thi có 05 trang)

Thời gian làm bài: 90 phút, không kể thời gian phát đề

Mã đề thi: 101

Câu 1: Tập nghiệm của bất phương trình $3^x < 2$ là

A.
$$(-\infty; \log_3 2)$$
.

A.
$$(-\infty; \log_3 2)$$
. **B.** $(\log_3 2; +\infty)$. **C.** $(-\infty; \log_2 3)$. **D.** $(\log_2 3; +\infty)$.

C.
$$(-\infty; \log_2 3)$$

D.
$$(\log_2 3; +\infty)$$

Câu 2: Nếu
$$\int_{1}^{4} f(x) dx = 3$$
 và $\int_{1}^{4} g(x) dx = -2$ thì $\int_{1}^{4} [f(x) - g(x)] dx$ bằng

$$A. -1.$$

Câu 3: Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;-4;0) và bán kính bằng 3. Phương trình của (S) là:

A.
$$(x+1)^2 + (y-4)^2 + z^2 = 9$$
.

B.
$$(x-1)^2 + (y+4)^2 + z^2 = 9$$
.

C.
$$(x-1)^2 + (y+4)^2 + z^2 = 3$$
.

D.
$$(x+1)^2 + (y-4)^2 + z^2 = 3$$
.

Câu 4: Trong không gian Oxyz, cho đường thẳng d đi qua điểm M(3;-1;4) và có một vecto chỉ phương $\vec{u} = (-2, 4, 5)$. Phương trình của d là:

A.
$$\begin{cases} x = -2 + 3t \\ y = 4 - t \end{cases}$$

B.
$$\begin{cases} x = 3 + 2t \\ y = -1 + 4t \\ z = 4 + 5t \end{cases}$$

C.
$$\begin{cases} x = 3 - 2t \\ y = 1 + 4t \\ z = 4 + 5t \end{cases}$$

A.
$$\begin{cases} x = -2 + 3t \\ y = 4 - t \\ z = 5 + 4t \end{cases}$$
B.
$$\begin{cases} x = 3 + 2t \\ y = -1 + 4t \\ z = 4 + 5t \end{cases}$$
C.
$$\begin{cases} x = 3 - 2t \\ y = 1 + 4t \\ z = 4 + 5t \end{cases}$$
D.
$$\begin{cases} x = 3 - 2t \\ y = -1 + 4t \\ z = 4 + 5t \end{cases}$$

Câu 5: Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

x	-∞	-2		-1		1		4		+∞
f'(x)		0	+	0	_	0	+	0	221	

Số điểm cực tri của hàm số đã cho là

Câu 6: Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình bên?

A.
$$v = -2x^4 + 4x^2 - 1$$
. **B.** $v = -x^3 + 3x - 1$.

B.
$$v = -x^3 + 3x - 1$$
.

C.
$$y = 2x^4 - 4x^2 - 1$$
. **D.** $y = x^3 - 3x - 1$.

D.
$$v = x^3 - 3x - 1$$

Câu 7: Đồ thị của hàm số $y = -x^4 + 4x^2 - 3$ cắt trục tung tại điểm có tung độ bằng

Câu 8: Với n là số nguyên dương bất kì, $n \ge 4$, công thức nào dưới đây đúng?

A.
$$A_n^4 = \frac{(n-4)!}{n!}$$

B.
$$A_n^4 = \frac{4!}{(n-4)!}$$
.

A.
$$A_n^4 = \frac{(n-4)!}{n!}$$
. **B.** $A_n^4 = \frac{4!}{(n-4)!}$. **C.** $A_n^4 = \frac{n!}{4!(n-4)!}$. **D.** $A_n^4 = \frac{n!}{(n-4)!}$.

D.
$$A_n^4 = \frac{n!}{(n-4)!}$$

Câu 9: Phần thực của số phức z = 5 - 2i bằng

$$C_{\rm c} = 5$$

Câu 10: Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\frac{3}{2}}$ là

A.
$$y' = \frac{2}{7}x^{\frac{7}{2}}$$

B.
$$y' = \frac{2}{5}x^{\frac{3}{2}}$$
.

C.
$$y' = \frac{5}{2}x^{\frac{3}{2}}$$

A.
$$y' = \frac{2}{7}x^{\frac{7}{2}}$$
. **B.** $y' = \frac{2}{5}x^{\frac{3}{2}}$. **C.** $y' = \frac{5}{2}x^{\frac{3}{2}}$. **D.** $y' = \frac{5}{2}x^{-\frac{3}{2}}$.

Câu 11: Cho hàm số $f(x) = x^2 + 4$. Khẳng định nào dưới đây đúng?

$$\mathbf{A.} \int f(x) \mathrm{d}x = 2x + C.$$

B.
$$\int f(x) dx = x^2 + 4x + C$$
.

C.
$$\int f(x) dx = \frac{x^3}{3} + 4x + C$$
.

D.
$$\int f(x) dx = x^3 + 4x + C$$
.

Câu 12: Trong không gian Oxyz, cho điểm A(-2;3;5). Tọa độ vecto \overrightarrow{OA} là

A.
$$(-2;3;5)$$
.

B.
$$(2;-3;5)$$
.

$$\mathbf{C.}(-2;-3;5).$$

D.
$$(2;-3;-5)$$
.

Câu 13: Cho hàm số y = f(x) có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng

$$A_{-1}$$

$$C. -3.$$

D. 1.

Câu 14: Cho hàm số y = f(x) có đồ thị là đường cong trong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A.
$$(0;1)$$
.

B.
$$(-\infty;0)$$
.

C.
$$(0;+\infty)$$
.

D.
$$(-1;1)$$
.

Câu 15: Nghiệm của phương trình $\log_3(5x) = 2$ là:

A.
$$x = \frac{8}{5}$$
.

B.
$$x = 9$$
.

C.
$$x = \frac{9}{5}$$
.

D.
$$x = 8$$
.

Câu 16: Nếu $\int_{0}^{3} f(x) dx = 4$ thì $\int_{0}^{3} 3f(x) dx$ bằng

- **A.** 36.
- **B.** 12.
- **C.** 3.
- **D.** 4.

Câu 17: Thể tích của khối lập phương cạnh 5a bằng

- **A.** $5a^3$.
- **B.** a^{3} .
- **C.** $125a^3$.
- **D.** $25a^3$.

Câu 18: Tập xác định của hàm số $y = 9^x$ là

- $\mathbf{A.} \ \mathbb{R}$.
- **B.** $[0;+\infty)$.
- **C.** $\mathbb{R} \setminus \{0\}$.
- **D.** $(0;+\infty)$.

Câu 19: Diện tích S của mặt cầu bán kính R được tính theo công thức nào dưới đây?

- **A.** $S = 16\pi R^2$.
- **B.** $y = 4\pi R^2$.
- $\mathbf{C.} \ S = \pi R^2 \ .$
- **D.** $S = \frac{4}{3}\pi R^3$.

Câu 20: Tiệm cận đứng của đồ thị hàm số $y = \frac{2x-1}{x-1}$ là đường thẳng có phương trình:

- **A.** x = 1.
- **B.** x = -1.
- **C.** x = 2.
- **D.** $x = \frac{1}{2}$

Câu 21: Cho a > 0 và $a \ne 1$, khi đó $\log_a \sqrt[4]{a}$ bằng

- **A.** 4.
- **B.** $\frac{1}{4}$.
- $\mathbf{C.} \frac{1}{4}$.
- **D.** -4

Câu 22: Cho khối chóp có diện tích đáy $B = 5a^2$ và chiều cao h = a. Thể tích của khối chóp đã cho bằng

A.
$$\frac{5}{6}a^3$$
.

B.
$$\frac{5}{2}a^3$$
.

C.
$$5a^3$$
.

D.
$$\frac{5}{3}a^3$$
.

Câu 23: Trong không gian Oxyz, cho mặt phẳng (P): 3x - y + 2z - 1 = 0. Vecto nào dưới đây là một vecto pháp tuyến của (P)?

A.
$$\overrightarrow{n_1} = (-3;1;2)$$

A.
$$\overrightarrow{n_1} = (-3;1;2)$$
. **B.** $\overrightarrow{n_2} = (3;-1;2)$. **C.** $\overrightarrow{n_3} = (3;1;2)$. **D.** $\overrightarrow{n_4} = (3;1;-2)$.

C.
$$\vec{n_3} = (3;1;2)$$

D.
$$\overrightarrow{n_4} = (3;1;-2)$$
.

Câu 24: Cho khối trụ có bán kính đáy r = 6 và chiều cao h = 3. Thể tích của khối trụ đã cho bằng

A.
$$108\pi$$
 .

B.
$$36\pi$$
.

C.
$$18\pi$$
.

D.
$$54\pi$$
 .

Câu 25: Cho hai số phức z = 4 + 2i và w = 3 - 4i. Số phức z + w bằng

A.
$$1+6i$$
.

B.
$$7-2i$$
.

C.
$$7 + 2i$$

D.
$$-1-6i$$
.

Câu 26: Cho cấp số nhân (u_n) với $u_1 = 3$ và $u_2 = 9$. Công bội của cấp số nhân đã cho bằng

B.
$$\frac{1}{3}$$
.

Câu 27: Cho hàm số $f(x) = e^x + 2$. Khẳng định nào dưới đây đúng?

A.
$$\int f(x) dx = e^{x-2} + C$$
.

B.
$$\int f(x) dx = e^x + 2x + C$$
.

$$\mathbf{C.} \int f(x) \mathrm{d}x = e^x + C.$$

D.
$$\int f(x) dx = e^x - 2x + C$$
.

Câu 28: Trên mặt phẳng tọa độ, điểm M(-3;4) là điểm biểu diễn của số phức nào dưới đây?

A.
$$z_2 = 3 + 4i$$
.

B.
$$z_3 = -3 + 4i$$
.

C.
$$z_4 = -3 - 4i$$
.

D.
$$z_1 = 3 - 4i$$

Câu 29: Biết hàm số $y = \frac{x+a}{x+1}$ (a là số thực cho trước, $a \ne 1$)

có đồ thị như trong hình bên. Mệnh đề nào dưới đây đúng?

A.
$$y' < 0, \forall x \ne -1$$

A.
$$y' < 0, \forall x \ne -1$$
. **B.** $y' > 0, \forall x \ne -1$.

C.
$$y' < 0, \forall x \in \mathbb{R}$$
. **D.** $y' > 0, \forall x \in \mathbb{R}$.

D.
$$v' > 0$$
 $\forall x \in \mathbb{R}$

Câu 30: Từ một hộp chứa 12 quả bóng gồm 5 quả màu đỏ và 7 quả màu xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng

A.
$$\frac{7}{44}$$

B.
$$\frac{2}{7}$$
.

C.
$$\frac{1}{22}$$
.

D.
$$\frac{5}{12}$$
.

Câu 31: Trên đoạn [0;3], hàm số $y = -x^3 + 3x$ đạt giá trị lớn nhất tại điểm

A.
$$x = 0$$
.

B.
$$x = 3$$
.

C.
$$x = 1$$
.

D.
$$x = 2$$
.

Câu 32: Trong không gian Oxyz, cho điểm M(-1;3;2) và mặt phẳng (P):x-2y+4z+1=0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là:

A.
$$\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z-2}{1}$$
.

B.
$$\frac{x-1}{1} = \frac{y+3}{2} = \frac{z+2}{1}$$
.

C.
$$\frac{x-1}{1} = \frac{y+3}{-2} = \frac{z+2}{4}$$
.

D.
$$\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z-2}{4}$$
.

Câu 33: Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB = 2a và SA vuông góc với mặt phẳng đáy. Khoảng cách từ C đến mặt phẳng (SAB) bằng

A.
$$\sqrt{2}a$$
.

D.
$$2\sqrt{2}a$$

Câu 34: Trong không gian Oxyz, cho hai điểm A(1;0;0) và B(4;1;2). Mặt phẳng đi qua A và vuông góc với AB có phương trình là

A.
$$3x + y + 2z - 17 = 0$$
. **B.** $3x + y + 2z - 3 = 0$. **C.** $5x + y + 2z - 5 = 0$. **D.** $5x + y + 2z - 25 = 0$.

Câu 35: Cho số phức z thỏa mãn iz = 5 + 4i. Số phức liên hợp của z là

A.
$$\bar{z} = 4 + 5i$$
.

B.
$$z = 4 - 5i$$
.

$$\mathbf{C}$$
. $z = -4 + 5i$.

D.
$$z = -4 - 5i$$
.

Câu 36: Cho hình lắng trụ đứng *ABC.A'B'C'* có tất cả các cạnh bằng nhau (tham khảo hình bên. Góc giữa hai đường thẳng AA' và BC' là

- **A.** 30° .
- **B.** 90°.
- C. 45°.
- **D.** 60° .

Câu 37: Với mọi a,b thỏa mãn $\log_2 a^3 + \log_2 b = 6$, khẳng định nào dưới đây đúng?

A.
$$a^3b = 64$$
.

B.
$$a^3b = 36$$
.

C.
$$a^3 + b = 64$$
. **D.** $a^3 + b = 64$.

D.
$$a^3 + b = 64$$

Câu 38: Nếu $\int_{0}^{x} f(x) dx = 5$ thì $\int_{0}^{x} \left[2f(x) - 1 \right] dx$ bằng

A. 8. **B.** 9. **C.** 10. **D.** 12. **Câu 39:** Cho hàm số $f(x) = \begin{cases} 2x+5 & khi & x \ge 1 \\ 3x^2+4 & khi & x < 1 \end{cases}$. Giả sử F là nguyên hàm của f trên \mathbb{R} thỏa mãn F(0) = 2.

Giá trị của F(-1)+2F(2) bằng

- **A.** 27.
- **B.** 29.
- **C.** 12.
- **D.** 33.

Câu 40: Có bao nhiều số nguyên x thỏa mãn $(3^{x^2} - 9^x) \lceil \log_3(x + 25) - 3 \rceil \le 0$

- **A.** 27.
- B. Vô số.
- **C.** 26.
- **D.** 25.

Câu 41: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

Số nghiệm thực phân biệt của phương trình f(f(x))=1 là

- **A.** 9.
- **B.** 3.
- **C.** 6.
- **D.** 7.

Câu 42: Cắt hình nón (N) bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng chứa đáy một góc bằng 60° ta thu được thiết diện là một tam giác đều cạnh 4a. Diện tích xung quanh của (N) bằng:

- **B.** $4\sqrt{13}\pi a^2$.
- **C.** $8\sqrt{13}\pi a^2$.

Câu 43: Trên tập hợp các số phức, xét phương trình $z^2 - 2(m+1)z + m^2 = 0$ (m là tham số thực). Có bao nhiêu giá trị của m
 để phương trình đó có nghiệm $z_{\scriptscriptstyle 0}$ thỏa mãn $\left|z_{\scriptscriptstyle 0}\right|=7$?

- **A.** 2.
- **B.** 3.

D. 4.

Câu 44: Xét các số phức z, w thỏa mãn |z| = 1 và |w| = 2. Khi $|z + i\overline{w} - 6 - 8i|$ đạt giá trị nhỏ nhất, |z - w| bằng

- **A.** $\frac{\sqrt{221}}{5}$.
- **B.** $\sqrt{5}$.
- **C.** 3.

Câu 45: Trong không gian Oxyz, cho đường thẳng $d: \frac{x}{1} = \frac{y-1}{1} = \frac{z-2}{-1}$ và mặt phẳng (P): x+2y+z-4=0. Hình chiếu vuông góc của d trên (P) là đường thẳng có phương trình:

A.
$$\frac{x}{2} = \frac{y+1}{1} = \frac{z+2}{-4}$$
. **B.** $\frac{x}{3} = \frac{y+1}{-2} = \frac{z+2}{1}$. **C.** $\frac{x}{2} = \frac{y-1}{1} = \frac{z-2}{-4}$. **D.** $\frac{x}{3} = \frac{y-1}{-2} = \frac{z-2}{1}$.

Câu 46: Cho hàm số $f(x) = x^3 + ax^2 + bx + c$ với a,b,c là các số thực. Biết hàm số g(x) = f(x) + f'(x) + f''(x)

có hai giá trị cực trị là là -3 và 6. Diện tích hình phẳng giới hạn bởi các đường $y = \frac{f(x)}{g(x)+6}$ và y = 1 bằng

Câu 47: Có bao nhiều số nguyên y sao cho tồn tại $x \in \left(\frac{1}{3}; 3\right)$ thỏa mãn $27^{3x^2+xy} = \left(1+xy\right)27^{9x}$.

Câu 48: Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, BD = 2a, góc giữa hai mặt phẳng (A'BD) và (ABCD) bằng 30° . Thể tích của khối hộp chữ nhật đã cho bằng

A.
$$6\sqrt{3}a^3$$
.

B.
$$\frac{2\sqrt{3}}{9}a^3$$
.

C.
$$2\sqrt{3}a^3$$
.

D.
$$\frac{2\sqrt{3}}{3}a^3$$
.

Câu 49: Trong không gian Oxyz, cho hai điểm A(1;-3;-4), B(-2;1;2). Xét hai điểm M và N thay đổi thuộc mặt phẳng (Oxy) sao cho MN = 2. Giá trị lớn nhất của |AM - BN| bằng

A.
$$3\sqrt{5}$$
.

B.
$$\sqrt{61}$$
 .

C.
$$\sqrt{13}$$

D.
$$\sqrt{53}$$
.

Câu 50: Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-7)(x^2-9), \forall x \in \mathbb{R}$. Có bao nhiều giá trị nguyên dương của tham số m để hàm số $g(x) = f(|x^3+5x|+m)$ có ít nhất 3 điểm cực trị?

----- HÉT -----

BẢNG ĐÁP ÁN

1.A	2.C	3.B	4.D	5.D	6.A	7.D	8.D	9.A	10.C
11.C	12.A	13.C	14.A	15.C	16.B	17.C	18.A	19.B	20.A
21.B	22.D	23.B	24.A	25.B	26.C	27.B	28.B	29.B	30.A
31.C	32.D	33.B	34.B	35.A	36.C	37.A	38.A	39.A	40.C
41.D	42.D	43.B	44.D	45.C	46.D	47.C	48.D	49.D	50.A