2018年-2019 学年度第一学期 华中科技大学本科生课程考试试卷(B卷)

	课程名称	: <u>运筹</u> :	学(一)	课程	是类别	□公共课 ■专业课	考试开	形式 量	<u>开卷</u> 闭卷
,	所在院系:	· <u>自</u> 弱	<u> </u>	专业及	及班级: _		垮试日期:	2019. 1	. 6
	学 号:			姓名:		任	课教师:		
						,			
	题号	_		=	四	五	六	总分	
	公数								

得分	评卷人

一、 (20 分) 试用大 M 法求解以下线性规划问题, 并指出解属于哪一类解,为什么?

$$\min z = 2x_1 + 3x_2 + x_3$$

$$\begin{cases} x_1 + 4x_2 + 2x_3 \ge 8 \\ 3x_1 + 2x_2 \ge 6 \\ x_1 , x_2 , x_3 \ge 0 \end{cases}$$

解:将上述问题化为标准型:

$$\min z = 2x_1 + 3x_2 + x_3 + Mx_5 + Mx_7$$

$$\begin{cases} x_1 + 4x_2 + 2x_3 - x_4 + x_5 = 8 \\ 3x_1 + 2x_2 - x_6 + x_7 = 6 \\ x_1, & \cdots, & x_7 \ge 0 \end{cases}$$

初始单纯形表为:

c_{j}	2	3	1	0	M	0	M	θ	
---------	---	---	---	---	---	---	---	---	--

C_B	X_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
M	x_5	8	1	[4]	2	-1	1	0	0	8/4
M	<i>x</i> ₇	6	3	2	0	0	0	-1	1	6/2
C	σ_j		2-4M	3-6M	1-2M	M		M		

选取 x_2 为换入变量, x_5 为换出变量,进行第一次迭代。

第一次迭代后的表格:

	c_{j}		2	3	1	0	M	0	M	θ
C_{B}	X_{B}	b	x_1	x_2	x_3	X_4	<i>X</i> ₅	x_6	x_7	
3	x_2	2	1/4	1	1/2	-1/4	1/4	0	0	8
М	<i>x</i> ₇	2	[5/2]	0	-1	1/2	-1/2	-1	1	4/ 5
c	σ_j		5/4-5/2 M	0	-1/2+ M	3/4-M/ 2	3/2M-3/ 4	M	0	

选取 x_1 为换入变量, x_7 为换出变量,进行第二次迭代。

第二次迭代后的表格:

$c_{_j}$	2	3	1	0	M	0	M	θ

C_{B}	X_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
3	x_2	9/5	0	1	3/5	-3/10	3/10	1/10	-1/10	
2	x_1	4/5	1	0	-2/5	1/5	-1/5	-2/5	2/5	
$\sigma_{_{j}}$			0	0	0	1/2	M-1/2	1/2	M-1/2	

所有非基变量的检验数都是 $\sigma_j \geq 0$,该解为最优解,最优解为:

$$[x_1, x_2, x_3] = [4/5, 9/5, 0]$$
 , 最优值为: $z^* = 3*9/5 + 2*4/5 = 7$ 。

由于非基变量x,的检验数为0,所以该解为无穷多最优解。

得分	评卷人

二、(10分)表 1 是某一求极大化问题的单纯形表,表中无人工变量, a_1,a_2,c_1,c_2,d 为待定常数,试说明 a_1,a_2,c_1,c_2,d 分别取何值时,以下结论成立:

- a) 表中解为唯一最优解;
- b) 表中解为无穷多最优解之一;
- c)下一步迭代将以 x_1 替换基变量 x_5 ;
- d) 该线性规划问题具有无界解;

表 1

		x_1	x_2	x_3	X_4	x_5
x_3	d	4	a_1	1	0	0
x_4	2	-1	-5	0	1	0

第 3 页 共 14 页

x_5	3	a_2	-3	0	0	1
c_j -	– z _j	c_1	c_2	0	0	0

答:

- a) 表中解为唯一最优解: $d \ge 0, c_1 < 0, c_2 < 0$;
- b) 表中解为无穷多最优解之一: $d \ge 0, c_1 \le 0, c_2 \le 0, c_1 * c_2 = 0$;
- c) 下一步迭代将以 x_1 替换基变量 x_5 : $d \ge 0$, $c_1 > 0$, $a_2 > 0$, $\frac{3}{a_2} < \frac{d}{4}$
- d) 该线性规划问题具有无界解: $d \ge 0, c_2 > 0, a_1 \le 0$;

得分	评卷人

三 (20 分)、已知线性规划问题:
$$\max z = -5x_1 + 5x_2 + 13x_3$$

$$\begin{cases}
-x_1 + x_2 + 3x_3 \le 20 & \text{①} \\
12x_1 + 4x_2 + 10x_3 \le 90 & \text{②} \\
x_1, x_2, x_3 \ge 0
\end{cases}$$

假设在上述线性规划问题的第①个约束条件中加入松弛变量x4,第②个约 束条件中加入松弛变量 x_5 (这里 $x_4, x_5 \ge 0$),用单纯形法求解,初表和终表 如表2和表3所示。

- (1) 填完初表和终表的空白处。
- (2) 求使最优基变量不改变的 b_2 (即约束条件②的右端常数项)的取值范 围。
- (3)求使最优解不发生变化的 c_3 (即目标函数中 x_3 的价值系数)的取值范围。
- (4) 根据终表,求对偶问题的最优解。

表	2	初	表
表	2	初	表

c _j	-5	5	13	0	0
C_B X_B b	X ₁	X_2	x_3	X ₄	X ₅
	-1	1	3	1	0
	12	4	10	0	1
$\sigma_{\rm j}$					

表3终表

	c _j		-5	5	13	0	0
C_B	X_{B}	b	X ₁	X_2	x_3	X_4	X ₅
			-1	1		1	0
			16	0		-4	1
	$\sigma_{\rm j}$						

解: (1)

初表

	c _j		-5	5	13	0	0	
C_{B}	X_{B}	b	X ₁	X_2	X_3	X_4	X ₅	
0	X ₄ X ₅	20	-1	1	3	1	0	
0	X ₅	90	12	4	10	0	1	
	σ_{j}		-5	5	13	0	0	

终表

	c _j		-5	5	13	0	0
C_{B}	X_{B}	b	X ₁	X ₂	x_3	X_4	X ₅
5	X ₂	20	-1	1	3	1	0
0	x ₅	10	16	0	-2	-4	1
	$\sigma_{\rm j}$		0	0	-2	-5	0

(2) b_2 变化,会影响 b 列取值,为保证最优基变量不变,则有:

$$B^{-1} \begin{bmatrix} 20 \\ b_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ b_2 \end{bmatrix} = \begin{bmatrix} 20 \\ -80 + b_2 \end{bmatrix} \ge 0$$

得出: $b_2 \ge 80$

(3) c_3 变化,只会影响 x_3 的检验数,若最优解不发生变化,则:

$$\sigma_3=c_3-15\geq 0\Rightarrow c_3\geq 15_{\,\circ}$$

(4) 对偶问题的最优解:

解法 1: 对偶问题的最优解等于原问题松弛变量所对应检验数的相反数, 故对偶问题最优解: $Y = [5 \ 0]$ 。

解法 2:
$$Y = C_B B^{-1} = \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \end{bmatrix}$$
。

得分	评卷人

四、(20分)已知某运输问题的产量、销量、及产地到销地的单位运价表如表4所示,试求最优的运输调拨方案。

表 4

销地 产地	甲	Z	丙	7	戊	产量
1	10	20	5	9	10	5
2	2	10	8	30	6	6
3	1	20	7	10	4	2
4	8	6	3	7	5	9
销售	4	4	6	2	4	

解: 先将不平衡运输问题转化为平衡运输问题,因为是产大于销,所以增加一列,即虚拟一个销地,其单位运价为 0,销量为产量与销量的差额,即 22-20=2.如下表

销地 产地	甲	乙	丙	1	戊	ΠĴ	产量
1	10	20	5	9	10	0	5
2	2	10	8	30	6	0	6
3	1	20	7	10	4	0	2
4	8	6	3	7	5	0	9
销售	4	4	6	2	4	2	

(3分)

用最小元素法,求得初始可行方案,如下表。初始解(3分)

销地 产地	甲	乙	丙	1	戊	īĹ	产量
1		1		2		2	5
2	2	3			1		6
3	2						2
4			6		3		9
销售	4	4	6	2	4	2	

计算检验数 第一次迭代(检验数的计算4分,调整运量4分)

销地	7,0 7,0						
产地	甲	乙	丙	1	戊	己	u_i
	10	20	5	9	10	0	0
1	-2	0	-9	0	-6	0	0
2	2	10	8	30	6	0	-10
2	0	0	4	31	0	10	-10
3	1	20	7	10	4	0	-11
3	0	11	4	12	-1	11	-11
4	8	6	3	7	5	0	-11
4	7	-3	0	9	0	11	-11
v_j	12	20	14	9	16	0	

调整运量,得到新的调运方案

销地 产地	甲	乙	丙	1	戊	巾	产量
1		1		2		2	5
2	2	3			1		6
3	2						2
4			6		3		9
销售	4	4	6	2	4	2	

调整运量

销地 产地	甲	乙	丙	1,	戊	己	产量
1		0	1	2		2	5
2	2	4					6
3	2						2

4			5		4		9
销售	4	4	6	2	4	2	

再计算检验数

计算检验数 第二次迭代(2次-6次迭代 5分)

销地产地	甲	乙	丙	1,	戊	己	u_i
1	-2	0	0	0	3	0	0
2	0	10 0	13	30	9	10	-10
3	0	20 11	7 13	10 12	8	11	-11
4	-2	-12	0	7 0	0	2	-2
v_j	12	20	5	9	7	0	

调整运费

销地 产地	甲	乙	丙	1	戊	己	产量
1			1	2		2	5
2	2	4					6
3	2						2
4		0	5		4		9
销售	4	4	6	2	4	2	

计算检验数 第三次迭代

销地 产地	甲	乙	丙	1	戊	己	u_i

1	10 10	20 12	0	0	3	0	0
2	0	0	1	30 19	-3	-2	2
3	0	20 11	7 1	10 0	-4	-1	1
4	10	0	0	7 0	0	2	-2
v_j	0	8	5	9	7	0	

调整运费

销地 产地	甲	乙	丙	1	戊	己	产量
1			1	2		2	5
2	4	2					6
3					2		2
4		2	5		2		9
销售	4	4	6	2	4	2	

计算检验数 第四次迭代

11 71 122 422 754		, - I					
销地 产地	甲	乙	丙	丁	戊	己	u_i
1	10 10	20 12	0	0	3	0	0
2	0	0	1	30 19	-3	-2	2
3	4	20 15	7 5	10 4	0	3	-3

第 9 页 共 14 页

	8	6	3	7	5	0	
4	10	0	0	0	0	2	-2
v_j	0	8	5	9	7	0	

调整运费

销地产地	甲	乙	丙	1	戊	己	产量
1			1	2		2	5
2	4	0			2		6
3					2		2
4		4	5				9
销售	4	4	6	2	4	2	

第五次迭代

>10-22-9-10-14							
销地 产地	甲	乙	丙	1	戊	己	u_i
1	10 10	20 12	0	0	6	0	0
2	0	0	1	30 19	0	-2	2
3	1	20 12	2	10	0	0	0
4	8 10	6 0	0	7 0	3	2	-2
v_j	0	8	5	9	4	0	

调整运费

销地 产地	甲	乙	丙	1	戊	己	产量	

1			1	2		2	5
2	4				2	0	6
3					2		2
4		4	5				9
销售	4	4	6	2	4	2	

第6次迭代

销地产地	甲	乙	丙	1	戊	己	u_i
1	10 8	20 12	0	0	10	0	0
2	0	10	3	30 21	6 0	0	0
3	1	20 14	7 4	3	0	2	-2
4	8 5	0	0	7 0	5 1	2	-2
v_j	2	8	5	9	6	0	

由上表可知,调运方案为最优方案 运费为 Min z=90. (6 分 结果正确)

得分	评卷人

五(15分)试建立如下问题的目标规划模型(只建模不求解)。 某工厂生产 I,II 两种产品,已知相关数据见表 5,在工厂 决策时,依次考虑如下的条件:

- 1) 根据市场信息,产品 I 的销售量有下降的趋势,故考虑产品 I 的产量不大于产品 II;
- 2) 应尽可能充分利用设备台时,但不希望加班;
- 3) 应尽可能达到并超过计划利润指标 56 元。

表 5

	I	II	拥有量	
原材料(kg)	3	2	10	
设备(hr)	1	2	12	
利润(元/件)	8	10		

解:设 x_1, x_2 分别表示产品 I, II 的产量,其目标规划模型如下:

$$\min z = P_1 d_1^+ + P_2 \left(d_2^- + d_2^+ \right) + P_3 d_3^-$$

$$\begin{cases} 3x_1 + 2x_2 \le 10 \\ x_1 - x_2 + d_1^- - d_1^+ = 0 \end{cases}$$

$$s.t. \begin{cases} x_1 + 2x_2 + d_2^- - d_2^+ = 12 \\ 8x_1 + 10x_2 + d_3^- - d_3^+ = 56 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3 \end{cases}$$

得分	评卷人

六、(15分)有甲乙丙丁 4 个工人,要分别指派他们完成 ABCD 不同的 4 项工作,每人做各项工作所消耗的时间 如表 6 所示。应如何指派工作,才能使总的消耗时间最

少?

表 6								
工作	A	В	C	D				
工人								
甲	5	10	7	4				
乙	2	5	6	7				
丙	3	13	11	7				
丁	11	8	10	9				

解:

设 0-1 型决策变量为 x_{ij} ,其中, x_{ij} =1 表示指派第 i 个工人完成第 j 项工作, x_{ij} =0 表示不指派第 i 个工人完成第 j 项工作,i,j=1,2,3,4。第 1,2,3,4 个工人分别代表甲乙丙丁。第 1,2,3,4 项工作分别代表 ABCD 四项工作。记 C_{ij} 表示第 i 个工人完成第 j 项工作所消耗的时间,i,j=1,2,3,4。则指派问题的数学模型为:

$$\min_{x} Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} x_{ij}$$
s. t.
$$\sum_{i=1}^{4} x_{ij} = 1, i = 1, 2, 3, 4$$

$$\sum_{i=1}^{4} x_{ij} = 1, j = 1,2,3,4, \ x_{ij} = 0 \not x 1, i, j, = 1,2,3,4$$

采用匈牙利法求解, 步骤入下所示。

(1) 将矩阵

的每行元素都减去该行的最小值,得到

(2) 将(1)中的结果矩阵的每列都减去该列的最小值,得到

(3) 在(2)中的结果矩阵的各行各列中寻找独立 0元,并记以②。②所在行和列的其他 0元素记为Ø。得到

(4) 独立 0元的个数为 3<4,还未找到最优解,需要增加 0元。将(3)中的结果矩阵中无①的行,标记√。得到

$$\begin{vmatrix} 1 & 6 & 1 & 0 \\ 0 & 3 & 2 & 5 \\ 0 & 10 & 6 & 4 \\ 3 & 0 & 0 & 1 \end{vmatrix}$$

第 13 页 共 14 页

(5) 在(4) 中的结果矩阵中标记√的行中0 元所在的列,标记为√。得到

(6) 在(5)的结果矩阵中,标记√的列中@元所在的行,标记为√。得到

(7) 标记为√的行中所有 0 元所在列都已被标记为√。在 (6) 中的结果矩阵中,将无√的行,以及标记为√的列划线,得到

$$\begin{vmatrix} 1 & 6 & 1 & 0 \\ 0 & 3 & 2 & 5 \\ 0 & 10 & 6 & 4 \\ 3 & 0 & 0 & 1 \\ \sqrt{ } \end{aligned}$$

(8) 选取(7)中的结果矩阵中未被划线覆盖的元素中的最小元素,也就是 2。将标记√的行的所有元素都减去最小元素,再将标记为√的列的所有元素都加上最小元素。得到

$$\begin{bmatrix} 3 & 6 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 8 & 4 & 2 \\ 5 & 0 & 0 & 1 \\ \sqrt{} \end{bmatrix} \checkmark$$

(9) 重复(3)的处理。在(8)的结果矩阵中重新寻找独立0元。得到

(10)独立0元的个数为4个,因此,找到最优解。

最优解为: $x_{14} = x_{23} = x_{31} = x_{42} = 1$,其余 x_{ij} 都为 0。最优值 $Z=C_{14}+C_{23}+C_{31}+C_{42}=21$.

因此,应指派甲完成工作 D,乙完成工作 C,丙完成工作 A,丁完成工作 B。此时总耗时最少,为 Z=21。

第 14 页 共 14 页