ASSIGNMNET 2

DATA MINING MUHAMMAD IZZUDDIN BIN AHAMAD SFHAFI WQD170041

TITLE: DATA ANALYTIC AND MODELLING ON CENSUS INCOME DATASET USING ENTERPRISE MINER

Contents

1. Introduction	3
2. Uploading Data into Enterprise Miner	4
2.1 Select Data Roles and Level	4
3. Initial Data Exploration	5
4. Correlation of Variable	9
5. Missing Value	10
6. Imputation	11
7. Drop	12
8. Data Partition	13
9. Modelling	13
9.1 Decision Tree	15
9.2 Logistic Regression	18
10. Model Performance Node And Score Node	20
10.1 Model Comparison	22
10.2 Fit Statistic	22
11. Performance Assessment Validation Set and Test Set under Fit Statistic	28
12. Conclusion	28

1. Introduction

The Census Income dataset is derived from UCI dataset archieve. The challenge from this data set is to determine the binary outcome of if a person is having an annual income more 50,000 USD or less than 50,000 USD based on the 14 variables and 32562 rows of dataset.

URL link of the Census Income Data Set: https://archive.ics.uci.edu/ml/datasets/census+income

1.1 Objective

To find best predicting model between Decision Tree and Logistic that predict if a person has annual income above \$50,000 USD or below \$50,000 based on the given variable

The variables consist of:

- Age = the age of the subject, interval
- Workclass = Occupation of the subject, nominal (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked)
- Fnlwgt = ID of the subjects, ID
- Education = Level of education of the subject, ordinal (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool)
- Education-num: Years of education that the subject has, continuous value
- Marital status: Married status of the subject, nominal (Married-civ-spouse, Divorced, Nevermarried, Separated, Widowed, Married-spouse-absent, Married-AF-spouse)
- Occupation: The job of the subject (Tech-support, Craft-repair, Other-service, Sales, Execmanagerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)
- Relationship: The relationship status of the subject of the subject (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)
- Race: the ethnicity of the subject, nominal (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)
- Sex: The Gender of the subject, binary (Female or Male)
- Target: above 50,000 USD annual income or below 50,000 USD annual income, binary

2. Uploading Data into Enterprise Miner

Figure 1: Process Flow for the modelling

2.1 Select Data Roles and Level

Above is the process flow for the data analytic and modelling process. The dataset is in CSV form. The data for each variable were selected based on criteria in the diagram below

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
Age	Input	Interval	No		No		
Target	Target	Binary	No		No		
Workclass	Input	Nominal	No		No		
capital_gain	Input	Interval	No		No		
capital_loss	Input	Interval	No		No		
country	Input	Nominal	No		No		
education	Input	Ordinal	No		No		
education_num	Input	Interval	No		No		
fnlwgt	ID	Interval	No		No		
hour_per_week	Input	Interval	No		No		
mariatl_status	Input	Nominal	No		No		
occupation	Input	Nominal	No		No		
race	Input	Binary	No		No		
relationship	Input	Nominal	No		No		
sex	Input	Binary	No		No		

Figure 2: The roles and data format for each variable

The fnlwgt variable was selected as ID while the Target is binary output which consist if the annual income was above or below 50,000 USD annually. Education was selected as ordinal as we hypothesize that different stages of education has different ranking (school, high school, college, etc). Workclass, Country, Marital status, occupation and relationship variables were selected as ordinal level to represent categorical nature of the variable and the remaining variables were selected as nominal

3. Initial Data Exploration

The initial data exploration was conducted to have initial understanding of the dataset. Using Explore Plot on the import node. We will explore the correlations between variables to have better understanding on the dataset.

Figure 3: Scatter Plot of Years of Education Vs Education Level

The scatter plot showed that the year of education was tallied with education level. The highest education level was Doctorate, followed by Prof-school, master and then bachelor was in accordance with the highest number of years of education. This showed positive correlation between these two variables.

Figure 4: Histogram of Age

Based on our findings on histogram of Age. The youngest age for the subject was 17 years old while the highest age was around 90 years old. Most of the age population fall between 38.9-46.2 years old, followed by 31.6-38.9, 24.3-31.6 and 17-24.3 years old. All of these age bracket has population more than 300. The lowest population of age bracket was between 82.7-90

Figure 5: Hour Spend Per Week Bar Chart

Based on the Hour Spend per week, most of the subjects spend around 30-40 hours per week working which is consider common working hour. And this population of working hour made up more than 50% of the whole working hour population.

Figure 6: Boxplot Total Hour Per week Vs Education

We use boxplot to investigate the relationship on how many hours per week spend base on level of education. From the plot, it showed that the higher educated worker (bachelor, master, prof-school and Doctorate) tend to spend more than 40 hours per week working compare to other type of education level. This further support our initial assumption which showed higher educated subject tend to make 50,000 USD annually due to their longer working hour.

Figure 7: Pie Chart for country distribution

Based on the pie chart, it showed that the more than 90% of the subjects originated from USA.

Figure 8: bar Chart for Occupation Type

Based on type of Occupation bar chart. We found out that Prof-speciality made the highest population of profession while the lowest one was the armed-forces.

Figure 9: Percentage Bar Chart for target Varaible

Based on the percentage bar chart for our target variable, we found that more than 75% of the population made income below 50,000 annually and around 25% made annual income more than 50,000 USD.

4. Correlation of Variable

2. Stat Explore

StatExplore node was used to generate Descriptive Statistic. Chi Square Plot and Variable Worth plot are generated to determine the most important variable the target (income above >50k USD)

Figure 10: Chi Square for variables

Figure 11: Variable Worth for the variable

The findings of both Chi Square and Variable Worth lead to interesting discovery, our initial assumptions were that education and occupation will become the most important factors of having annual income above or below 50k USD. But it turns out people the most important variable was relationship (rank 1) followed by marital status (rank 2). Race and country were the weakest variable that influence our target.

ciass As	ariable Summary St	atistics						
(maximum	n 500 observations	printed)						
Data Rol	a-TD \ TM							
Data Kui	.c-irain							
			Number					
Data			of			Mode		Mode2
Role	Variable Name	Role	Levels	Missing	Mode	Percentage	Mode2	Percentage
TRAIN	Workclass	INPUT	10	1	Private	69.70	Self-emp-not-inc	7.80
TRAIN	country	INPUT	43	1	United-States	89.58	Mexico	1.97
TRAIN	education	INPUT	17	2	HS-grad	32.25	Some-college	22.39
TRAIN	mariatl_status	INPUT	8	1	Married-civ-spouse	45.99	Never-married	32.81
TRAIN	occupation	INPUT	15	0	Prof-specialty	12.71	Craft-repair	12.59
TRAIN	race	INPUT	6	1	White	85.42	Black	9.59
TRAIN	relationship	INPUT	7	2	Husband	40.51	Not-in-family	25.50
TRAIN	sex	INPUT	3	1	Male	66.92	Female	33.08
TRAIN	Target	TARGET	2	0	<=50K	75.92	>50K	24.08

Figure 12: Variable Summary Statistic

Based on Variable Summary Statistics, our further investigation showed that the mode percentage for country (United States) and race (white) contribute to the highest percentage of the mode population (89.58% and 85,42%) which is believed to be the main reason to the lowest rank of importance for both Chi-Square and Variable Worth plot.

5. Missing Value

			Number	
Data			of	
Role	Variable Name	Role	Levels	Missing
TRAIN	Workclass	INPUT	10	1
TRAIN	country	INPUT	43	1
TRAIN	education	INPUT	17	2
TRAIN	mariatl_status	INPUT	8	1
TRAIN	occupation	INPUT	15	0
TRAIN	race	INPUT	6	1
TRAIN	relationship	INPUT	7	2
TRAIN	sex	INPUT	3	1
TRAIN	Target	TARGET	2	0

Figure 13: Missing Value for each variables

From StatExplore result, it was found out that the missing value were so minor. Nevertheless, instead of removing the missing value, imputation method was chosen to fill up all the missing values

6. Imputation

Under Imputation, Distribution method was selected for all the missing variable. The main reason that for this selection due to the very small portion of the data set (less than 0.1%) were missing and secondly due to the some of the missing value came from categorical variable (which statistic method such as average, mean median are not feasible).

40	Variable Name	Method	Imputed Variable	Value	Role	Level	Label	for TRAIN
41			•					
42	Age	DISTRIBUTION	IMP_Age		INPUT	INTERVAL		11
43	Workclass	DISTRIBUTION	IMP_Workclass		INPUT	NOMINAL		1
44	capital_gain	DISTRIBUTION	IMP_capital_gain		INPUT	INTERVAL	capital-gain	1
45	country	DISTRIBUTION	IMP_country		INPUT	NOMINAL		1
46	education	DISTRIBUTION	IMP_education		INPUT	ORDINAL		2
47	mariatl_status	DISTRIBUTION	IMP_mariatl_status		INPUT	NOMINAL	mariatl-status	1
48	race	DISTRIBUTION	IMP_race		INPUT	BINARY		1
49	relationship	DISTRIBUTION	IMP_relationship		INPUT	NOMINAL		2
50	sex	DISTRIBUTION	IMP_sex		INPUT	BINARY		1

Figure 14:After result of imputation using Distribution Method

7. Drop

Fnlweight variable consist of more than 21000 unique values and did not contribute to any significant under Chi-square and Variable Worth plot. The fnlwght variable was drop under drop node to reduce the complexity of the final modelling

Figure 15: Dropping fnlwgt variable under Drop node

8. Data Partition

The dataset was split into 40% training set, 30% validate set and 20% test set under the partition node

Figure 16: Data partition

9. Modelling

One of the main objective for this research is to compare the performance model between Logistic Regression and Decision Tree. After Data Partition node, the connecting line was split into 2 models which are Logistic Regression and Decision Tree

Figure 17: Generate Decision Tree And Logistic Regression Node

9.1 Decision Tree

The default setting for Decision Tree was used, All the parameters required for the decision tree were set as below

□ Splitting Rule	
-Interval Target Criterion	ProbF
-Nominal Target Criterion	ProbChisq
-Ordinal Target Criterion	Entropy
-Significance Level	0.2
-Missing Values	Use in search
-Use Input Once	No
-Maximum Branch	2
-Maximum Depth	6
L-Minimum Categorical Size	5
⊟Node	
-Leaf Size	5
-Number of Rules	5
-Number of Surrogate Rules	0
^L -Split Size	
□ Split Search	
-Use Decisions	No
-Use Priors	No
-Exhaustive	5000
i-Node Sample	20000
□Subtree	
-Method	Assessment
-Number of Leaves	1
-Assessment Measure	Decision
-Assessment Fraction	0.25

Figure 18: Decision Tree Parameter

Figure 19: Score Ranking Overlay: Target

Figure 20: Leaf Statistic

Fit Statistics								
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test		
Target		_NOBS_	Sum of Frequencies	13023	9768	9770		
Target		_MISC_	Misclassification Rate	0.142901	0.147011	0.146059		
Target		_MAX_	Maximum Absolute Err	0.996528	0.996528	0.996528		
Target		_SSE_	Sum of Squared Errors	2661.742	2048.065	2024.203		
Target		_ASE_	Average Squared Error	0.102194	0.104835	0.103593		
Target		_RASE_	Root Average Squared	0.319678	0.323783	0.321858		
Target		_DIV_	Divisor for ASE	26046	19536	19540		
Target		_DFT_	Total Degrees of Free	13023				

Figure 21: Fit Statistics

Figure 22: Decision Tree Split Criteria

9.2 Logistic Regression

For logistic regression, a transform node was introduced before the logistic regression node. The transform node was used to stabilize variance, remove nonlinearity, improve additivity, and counter non-normality.

Figure 23: Transform variable criteria

For the nominal value, the numbers of bins were set based on the total number of nominal value for each variables. For interval variables, the Age variable was divided into 10 buckets while the remaining interval variables (capital gain, capital loss, education num and hour per week) were divide into 5 buckets.

For Regression Node, other than Regression type = logistic, all other parameter will use the default setting.

Figure 24: Score Ranking Overlay:Target

Figure 25: Effect Plot

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Target		_AIC_	Akaike's Information C	8425.033		
Target		_ASE_	Average Squared Error	0.101303	0.103135	0.101545
Target		_AVERR_	Average Error Function	0.315789	0.323838	0.322088
Target		_DFE_	Degrees of Freedom f	12923		
Target		_DFM_	Model Degrees of Fre	100		
Target		_DFT_	Total Degrees of Free	13023		
Target		_DIV_	Divisor for ASE	26046	19536	19540
Target		_ERR_	Error Function	8225.033	6326.49	6293.598
Target		_FPE_	Final Prediction Error	0.10287		
Target		_MAX_	Maximum Absolute Err	0.999892	0.999901	0.999997
Target		_MSE_	Mean Square Error	0.102086	0.103135	0.101545
Target		_NOBS_	Sum of Frequencies	13023	9768	9770
Target		_NW_	Number of Estimate	100		
Target		_RASE_	Root Average Sum of	0.318281	0.321146	0.318662
Target		_RFPE_	Root Final Prediction	0.320734		
Target		_RMSE_	Root Mean Squared E	0.31951	0.321146	0.318662
Target		SBC	Schwarz's Bayesian C	9172.48		
Target		_SSE_	Sum of Squared Errors	2638.526	2014.839	1984.195
Target		_SUMW_	Sum of Case Weights	26046	19536	19540
Target		MISC	Misclassification Rate	0.145281	0.150184	0.148516

Figure 26: Fit Statistic

10. Model Performance Node And Score Node

Figure 27:Model Comparison Node And Score Node

We compare the performance for both Decision Tree and Logistic Regression using Model Comparison node.

Figure 28: ROC Chart Decision Tree Vs Logistic Regression

Figure 29: Score Ranking Overlay: Target

Model Description	Target Variable	Target Label	Selection Criterion: Valid: Misclassifica tion Rate	Train: Akaike's Information Criterion	Train: Average Squared Error	Train: Average Error Function	Train: Degrees of Freedom for Error	Train: Model Degrees of Freedom	Train: Total Degrees of Freedom	Train: Divisor for ASE	Train: Error Function	Train: Final Prediction Error	Train: Maximum Absolute Error
Decision Tr	Target		0.147011		0.102194				13023	26046			0.996528
Regression	Target		0.150184	8425.033	0.101303	0.315789	12923	100	13023	26046	8225.033	0.10287	0.999892

Figure 30: Fit Statistic Decision Tree Vs Regression Tree

10.1 Model Comparison

Based on the Performance of the ROC curve for both model, the accuracy of both model is around 0.90 which is consider good (above 0.90 is consider excellent) with Logistic Regression perform slightly better.

10.2 Fit Statistic

The Valid. Misclassification rate for Decision Tree was 0.147 while for the Logistic Regression was 0.150. We can say that the Decision tree perform 0.3% better than logistic regression under this matrix.

Fit Statistics Table		
Target: Target		
Data Role=Train		
Statistics	Tree	Reg
Train: Bin-Based Two-Way Kolmogorov-Smirnov Probability Cutoff	0.24	0.28
Train: Kolmogorov-Smirnov Statistic	0.60	0.65
Train: Akaike's Information Criterion		8425.03
Train: Average Squared Error	0.10	0.10
Train: Roc Index	0.89	0.91
Train: Average Error Function		0.32
Train: Cumulative Percent Captured Response	36.33	35.43
Train: Percent Captured Response	15.86	
Selection Criterion: Valid: Misclassification Rate	0.15	0.15
Train: Degrees of Freedom for Error		12923.00
Train: Model Degrees of Freedom		100.00
Train: Total Degrees of Freedom	13023.00	13023.00
Train: Divisor for ASE	26046.00	26046.00
Train: Error Function		8225.03
Train: Final Prediction Error		0.10
Train: Gain	263.11	254.08
Train: Gini Coefficient	0.78	
Train: Bin-Based Two-Way Kolmogorov-Smirnov Statistic	0.60	0.65
Train: Kolmogorov-Smirnov Probability Cutoff	0.11	0.22
Train: Cumulative Lift	3.63	3.54
Train: Lift	3.17	3.19
Train: Maximum Absolute Error	1.00	1.00
Train: Misclassification Rate	0.14	0.15
Train: Mean Square Error		0.10
Train: Sum of Frequencies	13023.00	13023.00
Train: Number of Estimate Weights		100.00
Train: Root Average Sum of Squares	0.32	0.32
Train: Cumulative Percent Response	87.44	85.26
Train: Percent Response	76.41	76.80
Train: Root Final Prediction Error	-	0.32
Train: Root Mean Squared Error	-	0.32
Train: Schwarz's Bayesian Criterion	-	9172.48
Train: Sum of Squared Errors	2661.74	2638.53
Train: Sum of Case Weights Times Freq		26046.00

Figure 31: Fit Statistic Table for train data set

Data Role=Valid		
Statistics	Tree	Reg
Valid: Kolmogorov-Smirnov Statistic	0.60	0.64
Valid: Average Squared Error	0.10	0.10
Valid: Roc Index	0.89	0.90
Valid: Average Error Function		0.32
Valid: Bin-Based Two-Way Kolmogorov-Smirnov Probability Cutoff	0.29	0.22
Valid: Cumulative Percent Captured Response	35.76	36.01
Valid: Percent Captured Response	15.40	16.50
Valid: Divisor for VASE	19536.00	19536.00
Valid: Error Function		6326.49
Valid: Gain	257.48	260.05
Valid: Gini Coefficient	0.77	0.81
Valid: Bin-Based Two-Way Kolmogorov-Smirnov Statistic	0.60	0.64
Valid: Kolmogorov-Smirnov Probability Cutoff	0.25	0.21
Valid: Cumulative Lift	3.57	3.60
Valid: Lift	3.08	3.30
Valid: Maximum Absolute Error	1.00	1.00
Valid: Misclassification Rate	0.15	0.15
Valid: Mean Square Error		0.10
Valid: Sum of Frequencies	9768.00	9768.00
Valid: Root Average Squared Error	0.32	0.32
Valid: Cumulative Percent Response	86.08	86.69
Valid: Percent Response	74.20	79.51
Valid: Root Mean Square Error		0.32
Valid: Sum of Square Errors	2048.06	2014.84
Valid: Sum of Case Weights Times Freq		19536.00

Figure 32: Fit Statistic Table for valid data set

Data Role=Test			
Statistics	Tree	Reg	
Test: Kolmogorov-Smirnov Statistic	0.61	0.66	
Test: Average Squared Error	0.10	0.10	
Test: Roc Index	0.89	0.91	
Test: Average Error Function		0.32	
Test: Bin-Based Two-Way Kolmogorov-Smirnov Probability Cutoff	0.18	0.28	
Test: Cumulative Percent Captured Response	36.09	36.17	
Test: Percent Captured Response	15.61	16.53	
Test: Divisor for TASE	19540.00	19540.00	
Test: Error Function		6293.60	
Test: Gain	260.94	261.67	
Test: Gini Coefficient	0.78	0.81	
Test: Bin-Based Two-Way Kolmogorov-Smirnov Statistic	0.61	0.65	
Test: Kolmogorov-Smirnov Probability Cutoff	0.11	0.23	
Test: Cumulative Lift	3.61	3.62	
Test: Lift	3.12	3.31	
Test: Maximum Absolute Error	1.00	1.00	
Test: Misclassification Rate	0.15	0.15	
Test: Lower 95% Conf. Limit for TMISC		0.14	
Test: Upper 95% Conf. Limit for TMISC		0.16	
Test: Mean Square Error		0.10	
Test: Sum of Frequencies	9770.00	9770.00	
Test: Root Average Squared Error	0.32	0.32	
Test: Cumulative Percent Response	86.93	87.10	
Test: Percent Response	75.26	79.71	
Test: Root Mean Square Error		0.32	
Test: Sum of Square Errors	2024.20	1984.20	
Test: Sum of Case Weights Times Freq	19540.00	19540.00	

Figure 33:Fit Statistic Table for test data set

Event	nt Classification Table							
Model	Model Selection based on Valid: Misclassification Rate (_VMISC_)							
Model	Model	Data		Target	False	True	False	True
Node	Description	Role	Target	Label	Negative	Negative	Positive	Positive
Reg	Regression	TRAIN	Target		1219	9214	673	1917
Reg	Regression	VALIDATE	Target		920	6869	547	1432
Tree	Decision Tree	TRAIN	Target		1469	9495	392	1667
Tree	Decision Tree	VALIDATE	Target		1110	7090	326	1242

Figure 34: Classification Table Decision Tree Vs Logistic Regression

Score Node

28	Score Input Vari	oblog					
29	Score input vari	anies					
30							Used in
31						Variable	Score
32	Variable Name	Role	Creator	Comment	Label	Warrabre Hidden	Code
33	Agriable Mame	Role	creator	сошшенс	raper	nidden	code
34	Age	INPUT				Y	Y
35	Target	TARGET	•			N	N
36	capital gain	INPUT			capital-gain	Y	Y
37	capital loss	INPUT			capital-loss	N	Y
38	education num	INPUT			education-num	N	Y
39	hour per week	INPUT			hour-per-week	N	Y
40	occupation	INPUT				N	Y
41	relationship	INPUT				Y	Y
42							
43							
44							
45							
46	Score Output Var	iables					
47							
48	Variable Name		Function	Creator	Label		
49							
50	EM_CLASSIFICATIO	N	CLASSIFICATION		Prediction f	-	
51	EM_EVENTPROBABIL		PREDICT	Score	_		OK of Target
52	EM_PROBABILITY		PREDICT	Score	Probability	of Classific	ation
53	EM_SEGMENT		TRANSFORM	Score	Node		
54	IMP_Age		TRANSFORM	Impt	Imputed Age		
55	IMP_capital_gain		TRANSFORM	Impt	Imputed: cap	-	
56	IMP_relationship		TRANSFORM	Impt	Imputed rela	tionship	
57	I_Target		CLASSIFICATION	Tree	Into: Target		
58	P_Target_50K		PREDICT	Tree	Predicted: T	-	
59	P_Target50K		PREDICT	Tree	Predicted: T	-	
60	Q_Target_50K		TRANSFORM	Tree	Unadjusted P	-	
61	Q_Target50K		TRANSFORM	Tree	Unadjusted P	: Target=<=5	0K
62	U_Target		CLASSIFICATION	Tree	Unnormalized	-	t
63	V_Target_50K		PREDICT	Tree	Validated: T	arget=>50K	
64	V_Target50K		PREDICT	Tree	Validated: T	arget=<=50K	
65	_NODE_		TRANSFORM	Tree	Node		
66	_WARN_		ASSESS	Tree	Warnings		
67							

Figure 35: Score Input Node Summary

76	Class Variable Summary Statistics							
77								
78	Data Role=TEST Output Type=CLASSIFICATION							
79								
80		Numeric	Formatted	Frequency				
81	Variable	Value	Value	Count	Percent			
82								
83	I_Target	•	<=50K	8234	84.2784			
84	I_Target	•	>50K	1536	15.7216			
85								
86				_				
87	Data Role=	TEST Output	Type=SEGMENT					
88				_				
89		Numeric	Formatted	Frequency				
90	Variable	Value	Value	Count	Percent			
91		_	_					
92	_NODE_	7	7	96	0.9826			
93	_NODE_	9	9	149	1.5251			
94	_NODE_	11	11	223	2.2825			
95	_NODE_	13	13	286	2.9273			
96	_NODE_	24	24	4102	41.9857			
97	_NODE_	30	30	248	2.5384			
98	_NODE_	32	32	437	4.4729			
99	_NODE_	34	34	166	1.6991			
100	_NODE_	35	35	14	0.1433			
101	_NODE_	37	37	119	1.2180			
102	_NODE_	40	40	853	8.7308			
103	_NODE_	41	41	5	0.0512			
104	_NODE_	46	46	751	7.6868			
105	_NODE_	47	47	40	0.4094			
106	_NODE_	50	50	1324	13.5517			
107	_NODE_	51	51	45	0.4606			
108	_NODE_	52	52	67	0.6858			
109	_NODE_	53	53	845	8.6489			
110								
111								
112	Data Role=	TRAIN Outpu	t Type=CLASSI	FICATION				
113			_	_				
114		Numeric	Formatted	Frequency				
115	Variable	Value	Value	Count	Percent			
116								
117	I_Target		<=50K	10964	84.1895			
118	I_Target		>50K	2059	15.8105			
119								

Figure 36: Class Variable Summary Statistics

182	Interval Variable Summary Statistics							
183								
184	Variable Name=P_Target_50K							
185								
186	Statistics	Label	TRAIN	VALIDATE	TEST			
187								
188	MEAN	Mean	0.24	0.24	0.24			
189	STD	Standard Deviation	0.28	0.29	0.29			
190	N	Non Missing	13023.00	9768.00	9770.00			
191	MIN	Minimum	0.02	0.02	0.02			
192	P25	25th Percentile	0.02	0.02	0.02			
193	MEDIAN	Median	0.11	0.11	0.11			
194	P75	75th Percentile	0.34	0.34	0.34			
195	MAX Maximum		1.00	1.00	1.00			
196								
197								
198	Variable Name=P_Target50K							
199								
200	Statistics	Label	TRAIN	VALIDATE	TEST			
201								
202	MEAN	Mean	0.76	0.76	0.76			
203	STD	Standard Deviation	0.28	0.29	0.29			
204	N Non Missing		13023.00	9768.00	9770.00			
205	MIN Minimum		0.00	0.00	0.00			
206	P25	25th Percentile	0.66	0.66	0.66			
207	MEDIAN Median		0.89	0.89	0.89			
208	P75	75th Percentile	0.98	0.98	0.98			
209	MAX	Maximum	0.98	0.98	0.98			
210								

Figure 37: Interval Variable Summary Statistic

11. Performance Assessment Validation Set and Test Set under Fit Statistic

We selected several matrices from Fit Statistic Table to assess the performance of our model

	Performance Direction	Decision Tree	Logistic Regression
Validate Set			
 Kolmogorov-Smirnov Statistic 	Largest	0.60	0.64
ROC Index	Largest	0.89	0.90
Gini Coefficient	Largest	0.77	0.81
Average Square Error	Smallest	0.10	0.10
Test Set			
 Kolmogorov-Smirnov Statistic 	Largest	0.61	0.66
ROC Index	Largest	0.89	0.91
Gini Coefficient	Largest	0.78	0.81
Average Square Error	Smallest	0.10	0.10

Table 1: Fit Statistic Table Performance Measurement

Based on the selected matrices, we can concluded Logistic Regression has slight better performance than the Decision Tree.

12. Conclusion

Based on the performance of our Fit Statistic Matrix, we concluded that both of our model (decision tree and Logistic Regression) display a good performance with Logistic Regression perform slightly better than our logistic regression.