

Conteúdo

- Introdução a Probabilidade
- Conceito de Experimento
- Conceito de Espaço Amostral
- Conceito de Variável Aleatória
- Principais Distribuições de Probabilidade para Variáveis Quantitativas

Discretas

Uniforme Discreta

Bernoulli

Binomial

Poisson

Hipergeométrica

Introdução a Probabilidade

Estuda-se probabilidade pois vive-se em um ambiente de incerteza.

Estuda-se probabilidade para se ter uma idéia da chance de ocorrer um determinado fato.

O que é probabilidade ?

Probabilidade é uma medida numérica da possibilidade de um evento ocorrer.

Probabilidade é um número associado ao resultado de um evento aleatório.

Uma **probabilidade** é um número entre 0 e 1.

Exemplos

Qual a probabilidade de um novo investimento ser lucrativo ?

Exemplos

Qual a probabilidade da taxa de juros brasileira aumentar?

Profa. Dra. Alessandra de Ávila Montini

Exemplos

Qual a probabilidade de ganhar na Mega Sena?

Exemplos

Qual a probabilidade do Brasil ganhar a próxima copa do mundo ?

Experimento

Considere um <u>experimento</u> que consiste <u>no lançamento de um dado</u>. Quando lança-se um dado e observa-se o número que ficou para cima o resultado é imprevisível.

Um <u>experimento</u> é um <u>processo que gera resultados bem</u> <u>definidos</u>.

Em experimentos como o lançamento de um dado em que, sob as mesmas condições, podem apresentar resultados diferentes a cada ocorrência, dá-se o nome de experimentos aleatórios.

Espaço Amostral

Um <u>espaço amostral</u> é o conjunto <u>de todos os resultados</u> <u>possíveis</u> de um experimento.

O <u>espaço amostral</u> para o resultado obtido no lançamento de um dado é dado por: { 1, 2, 3, 4, 5, 6}

Probabilidade Clássica

- Experimento : lançamento de um dado
- Espaço amostral {face 1, face 2, face 3, face 4, face 5, face 6}
- Evento: face 4
- Probabilidade de ocorrência de um evento

$$P(A) = \frac{\text{número de resultados associados ao evento}}{\text{número total de resultados}}$$

Probabilidade Empírica

Preços diários de ações

D(volor do oo = 2)	_ 10	
P(valor da ação = 3) =	= 100	

P(valor da ação = 1) =
$$\frac{15}{100}$$

Valor da ação	Freqüência
0,5	5
1	15
1,5	20
2	30
2,5	20
3	10
Total	100

Probabilidade Subjetiva

Eventos novos para os quais não temos experiência

Exercício

	Taxa de Retorno	
Nível de Risco	< 2 %	> 2%
Baixo	0,20	0,10
Alto	0,20	0,50

Calcule as seguintes probabilidades:

- a) Estar em um nível baixo de risco
- b) Estar em um nível alto de risco
- c) Obter uma taxa de retorno inferior a 2 %
- d) Obter uma taxa de retorno superior a 2 %
- e) Obter uma taxa de retorno > 2 % dado que está em um nível alto de risco

	Taxa de Retorno	
Nível de Risco	< 2 %	> 2%
Baixo	0,20	0,10
Alto	0,20	0,50

A: obter uma taxa de retorno > 2 %

B : estar em um nível alto de risco

Obter uma taxa de retorno > 2 % dado que está em um nível alto de risco

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = 0.50 / 0.70$$

IBOVESPA	Dolar Ptax
0,007048798	-0,000138634
-0,013710431	0,003632782
-0,025971948	0,003722858
0,001333119	0,003057529
-0,006544707	-0,001785286
-0,025713896	0,002916604
0,003031884	0,004069008
0,021015962	-0,004514526
0,012443942	0,003021047
-0,000328338	0,002609623
-0,04035102	0,005949142
-0,030147556	0,006354406
-0,013072744	-0,002543711
0,005137999	0,004134478
0,014057418	0,004285841
0,001949367	-0,002697601
-0,042642119	0,009510279
-0,030153038	0,020032788
-0,056110123	0,024129553
0,051588638	-0,006356362

Completar com número absoluto :

		DOLAR PTAX		
		POSITIVO	NEGATIVO	Total
IBOVESPA	POSITIVO			
IDOVESPA	NEGATIVO			
	Total			

Completar com percentuais:

		DOLAR PTAX		
		POSITIVO	NEGATIVO	Total
IBOVESPA	POSITIVO			
IDOVESFA	NEGATIVO			
	Total			

Calcule as seguintes probabilidades:

- a) Retorno do Ibovespa ser positivo.
- b) Retorno do Ibovespa ser negativo.
- c) Retorno do Dólar ser positivo.
- d) Retorno do Ibovespa ser positivo e do Dólar ser positivo.
- e) Retorno do Ibovespa ser negativo dado que o retorno do Dólar foi positivo.

Variável Aleatória

Uma <u>variável aleatória</u> está relacionada ao resultado de um <u>experimento</u> (evento cujo resultado não é conhecido).

Considere como sendo **X** a variável aleatória que deseja-se estudar.

Exemplo

X: número de automóveis sinistrados em São Paulo no mês de Janeiro;

Seja x o valor associado a variável aleatória X.

Sendo x o valor que a variável aleatória X pode assumir, tem-se que

x pode ser 0, 1, 2, 3, 4,...

Exemplo

X : número de produtos adquiridos por um cliente em um supermercado;

Exemplo

X: número de dias de utilização do cheque especial;

Seja **p(x)** a probabilidade de **X** ser igual a **x**.

Exemplo

Pode-se obter a probabilidade de haver um automóvel sinistrado em São Paulo no mês de Janeiro;

Exemplos

Pode-se obter a probabilidade do cliente adquirir um produto no supermercado;

Exemplos

Pode-se obter a probabilidade do cliente utilizar o cheque especial;

Valor Esperado e Variância

Valor Esperado de uma Variável Aleatória

X	Probabilidade	
1	0,30	
2	0,40	
3	0,30	

Valor Esperado de uma Variável Aleatória

X	Probabilidade	
1	0,30	
2	0,40	
3	0,30	

X	Probabilidade	X P(X)
1	0,3	0,3
2	0,4	0,8
3	0,3	0,9
	Soma	2,00

$$E(X) = \sum_{i=1}^{3} X_i p(X_i)$$

Valor Esperado	Probabilidade
1	0,30
2	0,40
3	0,30

Variância de
$$X = E ((X - E(X))^2)$$

Variancia =
$$\sum_{i=1}^{3} (X_i - E(X))^2 p(X_i)$$

Valor Esperado	Probabilidade	(X-E(X))2	((X-E(X))2) P(X)
1	0.3	1	0.3
2	0.4	0	0
3	0.3	1	0.3
		Soma	0.6

Variância = 0,6 **Desvio Padrão = 0,77**

Probabilidade

Considerando os dois fundos de investimentos apresentados abaixo calcule o retorno, o risco e o coeficiente de variação de cada fundo. Qual fundo você sugere para a aplicação ? Justifique.

Fundo 1

Valor Esperado	Probabilidade
1	0,2
2	0,5
6	0,3

Fundo 2

Valor Esperado	Probabilidade
2,6	0,3
-1,2	0,3
3,9	0,4

Propriedades

Valor Esperado

Sejam a e b constantes e Xi variáveis aleatórias

$$E(a)=a$$

$$E(aX)=aE(X)$$

	а	Х	aX	aX+2
	2	2	4	6
	2	3	6	8
	2	2	4	6
	2	4	8	10
	2	5	10	12
Média	2	3.2	6.4	8.4

$$E(aX+b)=aE(X)+b$$

$$E(X_1 + ... + X_n) = E(X_1) + ... + E(X_n)$$

	X1	X2	Х3	X1+X2+X3
	2	5	1	8
	3	6	1	10
	4	4	2	10
Média	3.00	5.00	1.33	9.33

Valor Esperado

Valor Esperado de uma Carteira com 2 ativos

Carteira: WX1+(1-W)X2

E(WX1+(1-W)X2)=WE(X1)+(1-W)E(X2)

$$\mu_{c} = W\mu_{1} + (1 - W)\mu_{2}$$

W : proporção do ativo 1 na carteira

1-W: proporção do ativo 2 na carteira

 μ_1 : valor esperado do ativo 1

 μ_2 : valor esperado do ativo 2

Medidas de Posição

Média Ponderada

Valor esperado do ativo A1 = $0.045 = \mu_1$

Valor esperado do ativo A2 = 0,058 = μ_2

Carteira de investimento composta dos ativos A1 e A2, respectivamente nas proporções W e 1- W. Seja W=0,40.

Valor esperado da carteira = 0,40 (0,045) + 0,60 (0,058) = 0,0528 = 5,28 %

$$\overline{X}_{P} = \sum_{i=1}^{n} W_{i} X_{i} \qquad 0 \leq W_{i} \leq 1 \qquad \sum_{i=1}^{n} W_{i} = 1$$

Variância

$$VaR(a)=0$$

$$VaR(aX)=a^2VaR(X)$$

$$VaR(aX+b)=a^2VaR(X)$$

	а	X	аX	aX+2
	2	2	4	6
	2	3	6	8
	2	2	4	6
	2	4	8	10
	2	5	10	12
Média	2	3.2	6.4	8.4
Variância	0	1.7	6.8	6.8

Variância

Se as variáveis aleatórias forem independentes

$$VaR\left(\sum_{i=1}^{n} \left(X_{i}\right)\right) = \sum_{i=1}^{n} \left(VaR\left(X_{i}\right)\right)$$

$$VaR(a_1X_1 + ... + a_nX_n + b) = a_1^2VaR(X_1) + ... + a_n^2VaR(X_n)$$

Variância

A variância da soma de variáveis aleatórias dependentes é dada por

$$VaR(\sum_{i=1}^{n} (X_{i})) = \sum_{i=1}^{n} (VaR(X_{i})) + 2\sum_{i < j} \sum cov(X_{i}, X_{j})$$

Variância de uma Carteira com 2 ativos

$$\sigma_c^2 = W^2 \sigma_1^2 + (1 - W)^2 \sigma_2^2 + 2W(1 - W)Cov(A_1, A_2)$$

W : proporção do ativo 1 na carteira

1-W: proporção do ativo 2 na carteira

 σ_1^2 : variância do ativo 1

 σ_2^2 : variância do ativo 2

Profa. Dra. Alessandra de Ávila Montini

Risco de uma Carteira com 2 ativos

$$\sigma_{\rm c} = \sqrt{\sigma_{\rm c}^2}$$

Exercício

Exercício

Calcule o Risco da Carteira

Valor esperado do ativo 1 = 0.034 Risco do

Risco do ativo 1 = 0.045

Valor esperado do ativo 2 = 0.058

Risco do ativo 2 = 0.06

Correlação entre os Ativos = -0,728

Carteira composta por 30 % do ativo 1 e 70 % do ativo 2

Um experimento pode gerar como resultado uma variável quantitativas discreta ou contínua.

Exemplo de <u>variável quantitativa</u> <u>discreta</u>.

Exemplos:

- Número de unidades vendidas
- Número de automóveis que passam por um pedágio em determinado dia

Exemplo de <u>variável quantitativa</u> <u>contínua</u>.

Exemplos:

- Duração de uma chamada telefônica
- Tempo necessário para a realização de uma cirurgia.

Principais Distribuições de Probabilidade para Variáveis Quantitativas Discretas

Algumas Distribuições

- Uniforme Discreta
- Bernoulli
- Binomial
- Poisson
- Hipergeométrica

DISTRIBUIÇÃO UNIFORME DISCRETA

A <u>Distribuição Uniforme Discreta</u> pode ser utilizada quando todos os valores que forem resultados de um experimento possuem a <u>mesma probabilidade de ocorrer</u>.

Distribuição Uniforme Discreta

Seja **X** o valor obtido no lançamento de um dado;

Ao lançar um dado os valores possíveis são:

$$x = \{1, 2, 3, 4, 5, 6\}$$

Ao lançar um dado todos os valores possíveis possuem a mesma probabilidade de ocorrer por esse motivo a distribuição associada ao resultado do lançamento do dado é a Distribuição Uniforme Discreta.

Distribuição Uniforme Discreta

Sejam:

X o valor obtido no lançamento de um dado; p(x) a probabilidade de X ser igual a x.

A distribuição de probabilidade associada ao lançamento de um

dado é dada por

Х	p(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Distribuição Uniforme Discreta

Note que em uma distribuição de probabilidade todas as probabilidades são valores entre 0 e 1 e a soma de todas as probabilidade é igual a um.

<u> </u>	p(x)	
1	1/6	
2	2 1/6	Soma de todas
3	3 1/6	as
۷	1/6	probabilidades é igual a um
5	5 1/6	
6	5 1/6	

Distribuição de Bernoulli

A <u>Distribuição de Bernoulli</u> pode ser utilizada quando em um experimento houver apenas <u>dois</u> <u>resultados possíveis</u>.

A <u>Distribuição de Bernoulli</u> recebeu este nome em homenagem ao matemático Suiço Jakob Bernoulli.

Matemático Suiço – Nascido em 27 de dezembro de 1654

Exemplo 1

Resultado obtido no lançamento de uma moeda;

Resultado após o nascimento de um bebê.

Exemplo 2

Seja x o resultado obtido no lançamento de uma moeda;

Ao lançar uma moeda os valores possíveis são:

Coroa

Cara

Como ao lançar uma moeda existem apenas <u>dois valores possíveis</u> por esse motivo a distribuição associada ao resultado do lançamento é a <u>Distribuição de Bernoulli</u>.

Sejam:

- x o resultado obtido no lançamento de uma moeda
- p(x) a probabilidade de X ser igual a x.

A distribuição de probabilidade associada ao lançamento de uma moeda é dada por

X	P(x)	
Cara	1/2	
Coroa	1/2	

Exemplo 3

Uma peça é selecionada aleatoriamente de um lote de peças. O interesse é saber se a peça selecionada é defeituosa ou não.

Seja X=1 se a peça selecionada for defeituosa

Seja X=0 se a peça selecionada não for defeituosa

p : probabilidade da peça selecionada ser defeituosa

A <u>distribuição de probabilidade</u> associada ao experimento é dada

por

X	0	1
p(x)	1 - p	р

Exemplo 4

Um segurado é selecionado aleatoriamente do banco de dados de segurados de auto. O interesse é saber se o segurado sofreu ou não sofreu algum tipo de sinistro nos últimos 12 meses.

Seja X=1 se o segurado sofreu sinistro

Seja X=0 se o segurado não sofreu sinistro

Seja p a probabilidade do segurado sofrer sinistro

A <u>distribuição de probabilidade</u> associada ao experimento é dada por

_	X	0	1
	p(x)	1-p	р
Profa	a. Dra. Aless	sandra de Av	ila Montini

Distribuição Binomial

Exemplos

Considere os resultados obtidos após o lançamento de três moedas;

Considere a distribuição de sexo resultante após o nascimento de <u>três bebês</u>.

A <u>Distribuição Binomial</u> pode ser utilizada em um experimento formado por um conjunto de experimentos com <u>Distribuição de Bernoulli</u>.

No experimento formado pelo resultado obtido após o lançamento de três moedas tem-se que cada lançamento de moeda é um experimento com distribuição de Bernoulli.

A resultado composto pelo lançamento das três moedas pode ser representado por uma Distribuição Binomial.

Exemplo – Sinistro de Automóvel

Distribuição Binomial

Considere um experimento em que:

 Dois segurados são selecionados aleatoriamente do banco de dados de seguros de auto. <u>Portanto n = 2</u>;

- Os segurados são independentes, ou seja, o sinistro de um segurado não está relacionado com o sinistro do outro segurado;
- 10 % dos segurados sofreram sinistro nos últimos 12 meses. Portanto p= 0,10.

Cada segurado selecionado aleatoriamente do banco de dados de seguros de auto pode ter <u>tido sinistro</u> nos últimos 12 meses (neste caso é um sinistrado) ou <u>não ter tido sinistro</u> nos últimos 12 meses (neste caso é um não sinistrado).

A probabilidade de um segurado sofrer sinistro (S) nos últimos 12 meses é 0,10 e a probabilidade de um segurado não sofrer sinistro (NS) nos últimos 12 meses é 0,90.

Considerando os dois segurados selecionados aleatoriamente do banco de dados de seguros de auto tem-se a <u>árvore de possibilidades</u> apresentada.

Cada segurado pode ter tido um sinistro (S) ou pode não ter tido um sinistro (NS).

Árvore de probabilidade

Considerando os dois segurados selecionados aleatoriamente do banco de dados de seguros de auto tem-se na tabela apresentada todas as possibilidades.

Sejam: X o número de sinistrados

p(x) a probabilidade de **X** ser igual a **x**.

Tabela com todas as possibilidades

Resultado		Probabilidade	p(x)	X
S S		(0,10).(0,10)	0,01	2
S	NS	(0,10).(0,90)	0,09	1
NS	S	(0,90).(0,10)	0,09	1
NS	NS	(0,90).(0,90)	0,81	0

A <u>função distribuição de probabilidade</u> associada ao experimento pode ser obtida por meio da tabela apresentada com todas as possibilidades.

Tabela com todas as possibilidades

Resultado		Probabilidade	p(x)	Х
S S		(0,10).(0,10)	0,01	2
S	NS	(0,10).(0,90)	0,09	1
NS	S	(0,90).(0,10)	0,09	1
NS	NS	(0,90).(0,90)	0,81	0

Distribuição de Probabilidade

	<u> </u>
X	p(x)
0	0,81
1	0,18
2	0,01

X	p(x)
0	0,81
1	0,18
2	0,01

A probabilidade de <u>ter dois segurados</u> com sinistro nos últimos 12 meses é **0,01**.

A probabilidade de <u>apenas um segurado</u> ter tido sinistro nos últimos 12 meses é **0,18.**

A probabilidade de <u>nenhum segurado</u> ter tido sinistro nos últimos 12 meses é **0,81**.

A probabilidade de X ser igual a x, p(x), pode ser obtida no Excel pelas expressões apresentadas na tabela.

X	p(x)			
0	=DISTRBINOM(0;2;0,1;FALSO)			
1	=DISTRBINOM(1;2;0,1;FALSO)			
2	=DISTRBINOM(2;2;0,1;FALSO)			
	Probabilidade de ser sinistrado - p			
Número de segurados – n				

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$0!=1$$
 $1!=1$ $2!=(2).(1)$ $3!=(3).(2).(1)$

$$P(X = k) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$P(X=1) = {2 \choose 1} (0,10)^{1} (1-0,10)^{2-1}$$

$$\binom{2}{1} = \frac{2!}{1!(2-1)!} = \frac{(2).(1)}{1!(1)!} = 2$$

$$P(X = 1) = 2(0,10)^{1}(0,90)^{1} = 0,18$$

n			p p							
	x	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50
2	0	0,8100	0,7225	0,6400	0,5625	0,4900	0,4225	0,3600	0,3025	0,2500
	1	0,1800	0,2550	0,3200	0.3750	0,4200	0,4550	0,4800	0,4950	0,5000
	2	0,0100	0,0225	0,0400	0,0625	0,0900	0,1225	0,1600	0,2025	0,2500
3	0	0,7290	0,6141	0,5120	0,4219	0,3430	0,2746	0,2160	0,1664	0,1250
	1	0,2430	0,3251	0,3840	0,4219	0,4410	0,4436	0,4320	0,4084	0,3750
	2	0,0270	0,0574	0,0960	0,1406	0,1890	0,2389	0,2880	0,3341	0,3750
	3	0,0010	0,0034	0,0080	0,0156	0,0270	0,0429	0,0640	0,0911	0,1250
4	0	0,6561	0,5220	0,4096	0,3164	0,2401	0,1785	0,1296	0,0915	0,0625
	1	0,2916	0,3685	0,4096	0,4219	0,4116	0,3845	0,3456	0,2995	0,2500
	2	0,0486	0,0975	0,1536	0,2109	0,2646	0,3105	0,3456	0,3675	0,3750
	3	0,0036	0,0115	0,0256	0,0469	0,0756	0,1115	0,1536	0,2005	0,2500
	4	0,0001	0,0005	0,0016	0,0039	0,0081	0,0150	0,0256	0,0410	0,0625
5	0	0,5905	0,4437	0,3277	0,2373	0,1681	0,1160	0,0778	0,0503	0,0312
	1	0,3280	0,3915	0,4096	0,3955	0,3602	0,3124	0,2592	0,2059	0,1562
	7	0.0729	0.1382	0.2048	0.2637	0.3087	0.3364	0.3456	0.3369	0.3125

Propriedades

- O experimento consiste de uma seqüência de n ensaios idênticos;
- Dois resultados são possíveis em cada ensaio;
- A probabilidade de ocorrência do evento de interesse permanece constante em todos os ensaios;
- Os ensaios são independentes.

Valores que a variável pode assumir :

$$X = 0,1,2,3,...,n$$

Exercício – Central de Vendas

Uma empresa de vendas por telefone possui 4 operadores. A ligação de cada operador pode ter dois resultados: venda ou não venda de um produto. Cada operador possui uma probabilidade de 0,20 de vender um produto por ligação. As vendas entre os operadores são independentes.

A venda realizada por apenas um operador pode ser classificada como qual distribuição ?

Uma empresa de vendas por telefone possui <u>4 operadores</u>. A ligação de cada operador pode ter <u>dois resultados</u>: <u>venda ou não venda de um produto</u>. Cada operador possui uma <u>probabilidade de 0,20</u> de vender um produto por ligação. As vendas entre os operadores são independentes.

Considerando como variável em estudo o número de operadores que fizeram uma venda na próxima ligação.

Qual o valor de n?

Qual o valor de p?

Considerando como variável em estudo o número de operadores que fizeram uma venda na próxima ligação. Responda com 4 casas decimais.

- a) Nenhum operador vender um produto.
- b) Apenas um operador vender um produto.
- c) Três operadores venderem um produto.

Considere como X o número de operadores que fizeram uma venda na próxima ligação.

A probabilidade de nenhum operador vender um produto pode ser escrita

como: P(X=0)

A probabilidade de apenas um operador vender um produto pode ser escrita como : P(X = 1)

A probabilidade de três operadores vender um produto pode ser escrita

como: P(X = 3)

Considerando como variável em estudo o número de operadores que fizeram uma venda na próxima ligação, obtenha a probabilidades de <u>no máximo dois operadores venderem um produto</u>.

Dica: A probabilidade de <u>no máximo dois operadores</u> venderem um produtos é obtida pela soma da probabilidades: P(X = 0) + P(X = 1) + P(X = 2)

Exemplo – Cancelamento de Linha Telefônica

Uma empresa de telefonia recebe ligações de clientes para solicitação de cancelamento de linha telefônica.

Quando isso ocorre a empresa possui um **novo plano** para tentar **vender** a esses clientes.

Considere que a equipe de atendimento telefônico é composta de 15 operadores. A ligação de cada operador pode ter dois resultados: venda ou não venda do novo plano. Cada operador possui uma probabilidade de 0,40 de vender o novo plano por ligação. As vendas entre os operadores são independentes.

Qual o número médio de planos vendidos na próxima ligação dos operadores?

Qual o número médio de planos vendidos na próxima ligação dos operadores ?

Neste exemplo temos uma distribuição Binomial com $\underline{n} = 15$ e $\underline{p} = 0.40$

O **número médio** de planos vendidos é <u>a média da Distribuição</u> Binomial que é dada por: **n** * **p**

O número médio de planos vendidos = 15 * 0,40 = 6 planos.

✓ Média = n * p

- ✓ Variância = n * p * (1-p)
- ✓ O desvio padrão é a raiz quadrada da variância

Exercício - Seguro de Residência

94

Considere um vendedor de seguros que visita 10 famílias selecionadas aleatoriamente. O resultado associado com cada visita está classificado como uma compra ou não de uma

apólice de seguro residencial. Da experiência passada, o vendedor sabe que a probabilidade de que uma família selecionada aleatoriamente compre uma apólice <u>de seguros é</u> de 0,10.

A variável em estudo é o <u>número de famílias que compraram</u> <u>uma apólice de seguro residencial</u>.

- 1 Qual o valor de n?
- 2 Qual o valor de p?
- 3 Qual a probabilidade de que 5 famílias comprem uma apólice de seguro residencial ? Responder com 10 casas decimais.
- 4 Qual a probabilidade de que no máximo 2 famílias comprem uma apólice de seguro residencial ?
- 5 Qual o número esperado de famílias que compram uma apólice de seguro residencial ?
- 6 Se a variável em estudo é o <u>número de famílias que compraram uma</u> <u>apólice de seguro residencial</u> qual a variância dessa variável aleatória?
- 7 Se a variável em estudo é o <u>número de famílias que compraram uma</u> <u>apólice de seguro residencial</u> qual o desvio padrão dessa variável aleatória? Responder com 4 casas decimais.

DISTRIBUIÇÃO DE POISSON

A Distribuição de Poisson é empregada quando o experimento consiste em <u>contar o número de eventos que ocorrerem em um intervalo de tempo</u>.

Nem toda contagem de eventos segue uma Distribuição de Poisson.

Quando um processo possui Distribuição de Poisson a média do processo é igual a variância do processo.

Média = Variância

A Distribuição de Poisson foi descoberta pelo matemático Francês <u>Siméon-Denis Poisson</u>.

Matemático Francês - Nascido em 21 de junho de 1781

Exemplos

Número de carros que chegam a um posto de pedágio em um dia;

Exemplos

Número de chamadas telefônicas recebidas em um intervalo de cinco minutos;

Exemplos

Número de falhas de um sistema bancário em um dia de operação;

Exemplo - Número de Clientes que efetuam um saque em um Caixa Eletrônico

Uma Instituição financeira deseja estudar a distribuição de probabilidade associada ao número de clientes que efetuam saque em um determinado caixa eletrônico por hora.

Sabe-se que em **média** são efetuados **5 saques** por hora.

Supondo que o número de clientes que efetuam saque, por hora, em um determinado caixa eletrônico segue uma Distribuição de Poisson, calcule a probabilidades de que em uma determinada hora 3 clientes efetuem saque.

A probabilidades de que em uma determinada hora 3 clientes efetuem saque é dada por:

$$P(X = 3) = \frac{e^{-5}5^3}{3!}$$

Tem-se que:
$$e^{-5} = (2,71828)^{-5} = 0,006738$$

$$5^3 = 125$$
 e $3! = 3*2*1 = 6$

Desta forma:

$$P(X = 3) = \frac{(0,006738)*125}{6} = 0,14$$

A probabilidades de que em uma determinada hora 3 clientes efetuem saque pode ser calculada no Excel pela expressão:

=POISSON(3;5;FALSO)

Média

Exercício – Número de Clientes que chegam em um Caixa de Supermercado

Distribuição Poisson

Uma Rede de Supermercado deseja estudar a distribuição de probabilidade associada ao número de clientes que chegam em um caixa de mercado em um determinado dia.

Sabe-se que **em média** chegam ao caixa diariamente <u>150</u> clientes.

Supondo que o número de clientes que chegam em um caixa de mercado em um determinado dia segue uma <u>Distribuição</u> de <u>Poisson</u>, calcule as probabilidades.

Distribuição Poisson

a) Qual a probabilidade de que em um determinado dia chegarem 120 clientes em um determinado caixa? Considerar 5 casas decimais.

b) Qual a probabilidade de que em um determinado dia chegarem entre 120 e 122 clientes em um determinado caixa? Considerar 5 casas decimais.

Distribuição de Poisson

Distribuição de Poisson

X: Número de sinistro de auto de uma carteira de seguros durante o período de um ano

 λ : número médio de sinistros no período de um ano

Qual a probabilidade de obtermos 2 sinistros durante o período de um quatro meses sabendo-se que o número médio de sinistrados no período de um ano é 6 ?

$$\lambda = \left(\frac{6}{12}\right) 4 = 2$$

$$P(X = 2) = \frac{e^{-2}2^2}{2!}$$
 =POISSON(2;2;FALSO) = 0,2706

Aproximação da Distribuição Binomial via Distribuição de Poisson

Distribuição Binomial

Considere uma apólice de vida em grupo com 8.000 vidas. Sabemos que a probabilidade anual de morte para este grupo é de 1 %.

A variável em estudo é o número de mortes em um período de um ano.

Qual a probabilidade de que após um ano de observação haver 50 mortes?

$$P(X = 50) = {8.000 \choose 50} (0.01)^{50} (0.99)^{8.000-50} = 0.00008028$$

=DISTRBINOM(50;8000;0,01;FALSO)

Aproximação de Poisson da Distribuição Binomial

A distribuição de Poisson pode ser usada como uma aproximação da distribuição binomial de probabilidade quando p é pequeno e n é grande.

Regra prática : a aproximação será boa sempre que p ≤ 0,05 e n ≥ 20

Para fazer a aproximação vamos considerar λ=n.p

Aproximação de Poisson da Distribuição Binomial

Considere uma apólice de vida em grupo com 8.000 vidas. Sabemos que a probabilidade anual de morte para este grupo é de 1 %.

A variável em estudo é o número de mortes em um período de um ano.

Qual a probabilidade de que após um ano de observação haver 50 mortes ? Utilizar a distribuição de Poisson.

$$\lambda = (8.000)(0.01) = 80$$

$$P(X = 50) = \frac{e^{-80}80^{50}}{50!} = 0,00008470$$

Distribuição de Poisson

$$E(X)=\lambda$$

Variância
$$VAR(X) = \lambda$$

- 1) São colocadas em uma urna bolas numeradas de 1 a 20. Todas as bolas possuem igual probabilidade de serem selecionadas. Uma bola é retirada aleatoriamente e seu número observado.
- a) Qual a variável aleatória em estudo?
- b) Este experimento pode ser caracterizado por qual distribuição de probabilidade ?
- c) Qual a probabilidade de:

A bola sorteada ter o número 18?

A bola sorteada ter um número menor do que 15 ?

A bola sorteada ter um número menor ou igual a 18 ?

A bola sorteada ter um número maior do que 9 ?

- 2) Uma seguradora sabe que 0,08 % dos residentes de uma determinada cidade sofrem anualmente algum tipo de acidente pessoal. Considerando uma amostra de 6.000 pessoas selecionadas aleatoriamente desta cidade calcule as seguintes probabilidades:
- a) Obtermos 5 acidentes pessoais
- b) Não obtermos nenhum acidente pessoal
- c) Obtermos pelo menos 4 acidentes pessoais
- d) Obtermos no máximo 18 acidentes pessoais

- 3) Cinco segurados são selecionados aleatoriamentedo banco de dados de seguros de auto. Sabemos que 0,03 % dos segurados sofreram sinistro nos últimos 12 meses.
- a) Qual é a probabilidade de que 2 segurados tenham tido sinistro nos últimos 12 meses ?
- b) Qual é a probabilidade de que nenhum segurado tenha tido sinistro nos últimos 12 meses ?
- c) Qual o número esperado de sinistrados no período de um ano ?
- d) Obtenha a função de probabilidade e a função de probabilidade acumulada.

- 4) Uma seguradora sabe que o número médio de sinistrados de sua carteira de vida no período de um ano é 8,5.
- a) Qual a probabilidade de obtermos 4 sinistros durante o período de um ano ?
- b) Qual a probabilidade de obtermos pelo menos 3 sinistros durante o período de um ano ?
- c) Qual a probabilidade de obtermos no máximo 8 sinistros durante o período de um ano ?

- 5) Vamos considerar que o número de reclamações recebidas por uma central de atendimento ao cliente em um intervalo de 1 hora segue uma distribuição de Poisson. Durante o mês do estudo foi observado em média 12 reclamações por hora.
- a) Obtenha a função de probabilidade e a função de probabilidade acumulada da variável em estudo.
- b) Qual a probabilidade do número de reclamações recebidas ser:
 - Exatamente 6 reclamações ?
 - Superior a 10 reclamações ?
 - Inferior a 10 reclamações ?
 - Pelo Menos 16 reclamações ?

DISTRIBUIÇÃO HIPERGEOMÉTRICA

A <u>Distribuição Hipergeométrica</u> pode ser utilizada em um experimento que consiste na extração de uma amostra de tamanho n, sem reposição, de uma população, de tamanho N, composta por dois atributos (A e B).

Na <u>Distribuição Hipergeométrica</u> o objetivo é obter a probabilidade de selecionar **x** elementos, na amostra, com o atributo A.

Considerando um grupo formado por jogadores do Palmeiras e do Fluminense pode-se ter o objetivo de <u>obter a probabilidade do Barcelona selecionar aleatoriamente 2 jogadores do Palmeiras.</u>

EXEMPLO

Considere uma população de <u>40 jogadores</u>, sendo que 2<u>5</u> possuem o Atributo A (são jogadores do Palmeiras) e <u>15 possuem o Atributo</u> B (são jogadores do Fluminense).

Suponha que é retirada, pelo Barcelona, uma amostra sem reposição de <u>tamanho 5 jogadores</u>. Qual a probabilidade de existir nesta amostra <u>exatamente 3 jogadores do Palmeiras</u>?

Qual a probabilidade de obter essa AMOSTRA?					
Atributo B	Atributo A				
2 elementos	3 elementos				

A probabilidade de existir nesta amostra <u>exatamente 3</u> <u>elementos do Atributo A (P(X=3)</u> pode ser obtida no Microsoft Excel por meio da função apresentada.

=DIST.HIPERGEOM.N(3;5;25;40;FALSO)=0,3670

A (P(X=3) pode ser obtida no Microsoft Excel por meio da função apresentada.

	Α	В	С	D	E	F	
1		Distribuição Hipergeométrica					
2				Atributo A	Atributo B	Total	
3			População	15	25	40	
4			Amostra	2	3	5	
5							
6	=DIST.HIPERGEOM.N(\$E\$4;\$F\$4;\$E\$3;\$F\$3;FALSO)						
7							

=DIST.HIPERGEOM.N(3;5;25;40;FALSO)

✓ Variância =
$$n*p*(1-p)*\frac{N-n}{N-1}$$

✓ Desvio padrão =
$$\sqrt{n*p*(1-p)*\frac{N-n}{N-1}}$$

Exercício – Controle de Qualidade

Profa. Dra. Alessandra de Ávila Montini

Considere a área de Controle de Qualidade de uma fábrica de automóveis. A fábrica recebe lotes de 600 pneus (N=600). Os lotes possuem 4 pneus com defeito. Neste caso cada lote é considerado uma população.

- Cada pneu pode ser defeituoso (Atributo A) ou não defeituoso (Atributo B);
- Seleciona-se uma amostra, sem reposição, <u>de 25 pneus</u>;

O objetivo da área de Controle de Qualidade é obter a probabilidade de **NÃO se obter pneu defeituoso** na amostra.

Preencha a Tabela.

	Atributo A	Atributo B	Total
População			
Amostra			