12 Integració de formes diferencials

Exercici 12.1. Integrar la forma $\sin y \, dx + \sin x dy$ al llarg del segment que va de $(0, \pi)$ a $(\pi, 0)$.

Exercici 12.2. Calculeu la integral de la 1-forma $\omega = \frac{-y}{\sqrt{x^2+y^2}}dx + \frac{x}{\sqrt{x^2+y^2}}dy$, definida a $\mathbb{R}^2 \setminus \{0\}$, sobre la circumferència $x^2 + y^2 = r^2$ orientada positivament.

Exercici 12.3. Integreu la forma $(x^2 - 2xy)dx + (y^2 - 2xy)dy$ sobre $C = \{(x, y) : |x| \le 1, y = x^2\}$.

Exercici 12.4. Proveu que la 1-forma diferencial $\omega = \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$, definida a $\mathbb{R}^2 \setminus \{0\}$, és tancada però no exacta. Proveu que si $C \subset \mathbb{R}^2 \setminus \{0\}$ és una corba tancada orientada (possiblement amb auto-interseccions) aleshores $\frac{1}{2\pi} \int_C \omega \in \mathbb{Z}$. Aquest valor s'anomena el nombre de rotació (winding number) de C respecte de l'origen.

Exercici 12.5. Integreu sobre la semiesfera superior unitaria $A \subset S^2$ la forma $\omega = xydx \wedge dy + 2xdy \wedge dz + 2ydx \wedge dz$.

Exercici 12.6. Es considera la superfície amb vora $S = \{x^2 + y^2 - z^2 = 1, \ a \le z \le b\} \subset \mathbb{R}^3$ orientada amb vector normal $\nu_{|(1,0,0)} = (1,0,0)$. Calculeu $\int_S d\omega$ i $\int_{\partial S} \omega$ en els següents casos:

a)
$$y^2dx + xdy$$
 b) $\omega = f(x, y, z)dz$.

Exercici 12.7. Considereu la 2-forma $\omega = z \, dx \wedge dy$ i la subvarietat amb vora

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - R)^2 + z^2 \le r^2\}$$

de \mathbb{R}^3 . Calculeu $\int_V d\omega$ i $\int_{\partial V} \omega$ amb les orientacions induïdes per l'orientació canònica de \mathbb{R}^3 .

Exercici 12.8. Si X és un camp vectorial a \mathbb{R}^3 , $C \subset \mathbb{R}^3$ una corba orientada i $S \subset \mathbb{R}^3$ una superfície orientada es defineixen

1. la integral de línia o circul·lació de X al llarg de C com

$$\int_C X \cdot dL := \int_C X \cdot T \, ds = \int_c^b X(\gamma(t)) \cdot \gamma'(t) \, dt,$$

on $\gamma:(a,b)\to C$ és una parametrització (ben orientada) de C tal que $\dim(C\setminus \operatorname{Im}\gamma)<1$;

2. el flux de X a través de S com

$$\int_{S} X \cdot dS := \int_{S} X \cdot \nu \, dA = \int_{U} X(\varphi(u, v)) \cdot (\varphi_{u} \times \varphi_{v}) \, du \, dv,$$

on $\varphi: U \to S$ és una parametrització (ben orientada) de S tal que $\dim(S \setminus \operatorname{Im} \varphi) < 2$.

Comproveu que si $X = (X_1, X_2, X_3)$ aleshores

a)
$$\int_C X \cdot dL = \int_C \omega_X^1$$
 on $\omega_X^1 = X_1 dx + X_2 dy + X_3 dz$,

b)
$$\int_S X \cdot dS = \int_S \omega_X^2$$
 on $\omega_X^2 = X_1 dy \wedge dz + X_2 dz \wedge dx + X_3 dx \wedge dy$.