Space Smackdown 101

David A. Hasan

L-3 Communications @ NASA/JSC

david.a.hasan@nasa.gov

<0> imagine

You decide.

agenda

- 1. smackdown?
- 2. review of 2011
- *3. preview of 2012*
- 4. conversation ...
- 5. Join us!

<1> smackdown?

What is it?

- collaborative multi-team exercise
 - constructive simulation of a world
 - simulation of vehicles deployed in that world
 - stand-alone and integrated missions
 - other tools (recorders, viewers, ...)
- a competition
 - to add some spice to the event
 - 2011 Smackdown didn't have a competition
 - 2012 Smackdown should
- sponsored by SISO, held at the spring Simulation Interoperability Workshops.

Who is involved?

academia

- student teams with faculty sponsors
- federates drawn from their disciplines (aerospace engineering, electrical engineering, computer science...)

industry and government

- act as facilitators & mentors
- provide hardware & software infrastructure

SISO

- host the activity at the Spring SIW
- logistical support (facilities, power, Internet,...)

Why do it? (outward looking)

general outreach/education

- engage students in science, technology, engineering and math (STEM)
- teach young students team collaboration in a compelling context
- promote general awareness of modeling/simulation
- show that hands-on work is fun

specific modeling/simulation education

- teach practical, hands-on M&S skills
- create M&S job-ready college graduates
- introduce M&S activities into university programs

Why do it? (inward looking)

- SISO growth
 - reach new population of potential paper authors
 - attract new potential members
- hands-on HLA interoperability demonstration

- demonstration of HLA-Evolved in action
 - modules used for extensible exercises
 - library compatibility between RTI vendors

What do the teams do?

- build vehicle simulations
 - e.g., rovers, transfer vehicles, landers, bases, ...
 - define and execute stand-alone missions
- build simulation tools
 - data recorders and playback tools
 - data visualization
 - mission dashboards
- collaborate with other teams
 - define and execute joint missions
 - executions may be remote from the SIW venue

What are the moving parts? (1 of 3)

use HLA-Evolved

- Why HLA?
 - background of the original Smackdown planning team.
- Why HLA-Evolved?
 - Modular FOMs are a perfect fit for a loosely coupled set of simulated space vehicles/missions.
 - So we could start showing the new standard in action.
 - So we could demonstrate vendor support of the new standard.

collaboration tools

- collaboration website for file sharing
- VPN, DHCP, DNS for geographically distributed testing and remote participation in the event

What are the moving parts? (2 of 3)

collaboration documents

- Scenario Overview document
- FOM: the lingua franca of the simulations
- FOM description document: to avoid agonizing over XML when bringing new teams on board
- Federation Agreement: to get everyone on the same page
- Federation initialization instructions

execution tools

- VPN: to allow geographically distributed teams to join the Smackdown event from outside the venue
- run-time HLA tools: vendor-supplied RTIs and other useful tools
- vendor licenses: free for university teams participating in the event (Pitch, VT MÄK, ForwardSim)

What are the moving parts? (3 of 3)

- computing platforms provided by the teams (even at the Smackdown event)
 - hardware
 - operating system
 - language tools (Java, C++, Matlab...)
- facilities and other logistical details
 - room, tables, Internet connectivity, power provided by SISO
 - some network cabling provided by participating organizations
 - VPN hardware and DHCP server provided by NASA / Johnson Space Center
 - dynamic domain names arranged by NASA / Johnson Space Center

process? (1 of 2)

- coordinated and facilitated by SISO Space
 Smackdown Committees
 - Executive Committee Smackdown/SIW coordination
 - Outreach Committee attract new participants
 - Planning Committee logistics
 - Technical Committee scenario definition and testing
- three-part process
 - 1. get started
 - 2. incrementally test and refine the federations
 - deploy the final federations at the Space Smackdown at the SISO Spring SIW

process? (2 of 2)

1. getting started

- initial committees and teams (and mentor assignments)
- vehicle/scenario ideas and initial federates
- kickoff meeting at the Fall SIW
- monthly schedule

2. incrementally refine and test

- refine
 - team roster (and mentor assignments)
 - vehicles and scenarios
 - documentation (Scenario Description, FOM, Federation Agreement)
 - logistics (e.g., room size, network, microphones ...)
- test
 - to verify federate and federation behavior
 - to verify the VPN, DHCP, DNS infrastructure

3. go-live

- dry-run testing just prior to the event (remotely from team locations)
- execution of the joint simulation as the Space Smackdown event at the Spring SIW

<2> **2011**

participants (1 of 2)

- University of Alabama / Huntsville
 - lunar communications satellite
- University of Bordeaux / University of Calabria
 - lunar supply depot
- Massachusetts Institute of Technology
 - in situ resource utilization
- North Carolina State University
 - lunar rover
- Pennsylvania State University
 - lunar lander

participants (2 of 2)

NASA / Johnson Space Center

- environment and transfer vehicle federate
- VPN, DHCP and technical support

Aegis Technologies

SharePoint collaboration web site and technical support

ForwardSim Inc.

Matlab-based 3-D viewer

Pitch Technologies & VT MÄK

RTI, simulation tools and product licenses

VT MÄK

RTI, simulation tools and product licenses

the constructive world (1 of 3)

the constructive world (2 of 3)

the constructive world (3 of 3)

FOM

- modular FOM concept:
 - common modules for the basic mission
 - specialized modules for vehicle/mission extensions
- FOM modules developed:
 - core: common information, settings and datatypes
 - environment: reference frame and time object classes
 - entity: PhysicalEntity object class for vehicles such as rovers and transfer vehicles
 - MIT: datatypes, object classes, interaction classes for the in situ resource utilization federates
 - NASA/JSC: object classes for the lunar rover and lander

federates

- lunar communications satellite (UAH)
- lunar supply depot (Bordeaux/UNICAL)
- in situ lunar resource utilization (MIT)
- lunar rover (NCSU)
- lunar lander (PSU)
- Earth-Moon-Sun reference frames (NASA/JSC)
- Earth-Moon transfer vehicle (NASA/JSC)
- 3-D viewer (ForwardSim)

joint documentation

VPN

lessons learned (1 of 2)

- Teams did best when working with explicitly assigned mentors.
- Java/C++ programming skills really are a prerequisite. Sample federates were available to illustrate HLA for C++, Java & Matlab.
- Over time, we expect to have mission scenarios that involve more vehicle-to-vehicle cooperation.
- Network connectivity (firewalls)
 - adopted an SSL-VPN device
 - special instructions to configure RTIs for the VPN
 - VPN IP address management

lessons learned (2 of 2)

FOM table interpretation

- testing revealed different vendor interpretations of some FOM tables.
- led to FOM modules that only worked for one vendor.
- gave feedback to Pitch and VT MÄK, and the incompatibilities were resolved.

explicit initialization process

- to allow federates to join the federation late and rejoin a federation already in progress.
- This is important for an event such as the Smackdown.

time required to develop federates

- Teams must get started building federates before December.
- Interest must be translated into coding quickly.

<3> **2012**

mission?

- start with Sun/Earth/Moon
 - i.e., build on last year's scenario
 - existing FOM and FOM description documents
- add new federates

- that do new things
 - new missions for new vehicles
 - more vehicle-to-vehicle cooperation

federates?

- Sun/Earth/Moon
- lunar landers
- lunar launchers
- unmanned lunar rovers
- manned lunar rovers
- lunar habitats
- lunar power stations

- communications satellites
- navigation satellites
- space solar power satellites
- lunar prospector vehicles
- orbit transfer vehicles
- mission monitoring tools
- data visualization tools
- <...your ideas here>

cooperative missions?

- line-of-sight communications
- line-of-sight power (from solar power station)
- GPS-like navigation
- in-orbit rendezvous / docking
- surface rendezvous
- multi-vehicle surface missions
- lunar hopper / in situ resource utilization communication
- <...your ideas here>

a competition?

- hypothetical award categories
 - best evidence of teamwork
 - most original federate
 - most ambitious/challenging technical problem
 - team with most interfaces to other teams' federates
 - most FOM modules / object and interaction classes
 - most object/interaction instances
 - most published/subscribed attributes
 - most federates
 - number of post-event observations / lessons-learned
 - degree of participation (observer, passive federate, active federate...)
 - <...your ideas here>
- details (scoring, awards, judges, categories) TBD

resources

- Wiki: http://smackdown.inarisolutions.com
 - for collaboration & document sharing
 - contact Paul Grogan or Dan Dexter for accounts
- software available to university teams
 - sample "EZButton" Java federate (contact Zack Crues)
 - Pitch & VT MÄK RTI and tools
 - ForwardSim HLA Toolbox for HLA
- Contact Priscilla Elfrey for:
 - SISO-provided IEEE-1516 standard documents
 - simulation- and HLA-related educational resources
 - Space Smackdown Starter Kit

draft schedule (1 of 2)

- Sep 2011 (Fall SIW, Orlando)
 - initial documents on the wiki
 - Space Smackdown 101 tutorial
 - papers by 2011 smackdown participants
 - kickoff smackdown planning
- Oct 2011 (Planning and Technical committees)
 - initial list of teams and mentors
 - deploy the VPN
- Nov 2011 (Planning and Technical committees)
 - initial testing over the VPN
- Dec 2011 no activity (holiday break)

draft schedule (2 of 2)

- Jan 2012 (Planning and Technical committees)
 - final list of teams and mentors
 - more testing over the VPN
- Feb 2012 (Planning and Technical committees)
 - documentation updates
 - full federation test over the VPN
- Mar 2012 (Planning and Technical committees)
 - documentation updates
 - full federation test over the VPN
- Apr 2012 (Spring SIW, Orlando)
 - pre-SIW federation dry-run testing over the VPN
 - 2012 Space Smackdown

to do

planning kickoff (tomorrow 19:00, Legacy South 3)

assemble the teams and assign mentors

define the vehicles & mission scenarios

execute the schedule

Space Smackdown at the 2012 Spring SIW

<4>conversation ...

panel discussion

- Zack Crues, NASA / Johnson Space Center
- Dannie Cutts, Aegis Technologies
- Dan Dexter, NASA / Johnson Space Center
- Paul Grogan, Massachusetts Institute of Technology
- Joe Hubbard, NASA / Johnson Space Center

questions?

<5> Join us!

a simple getting-started checklist

- □student team members ☐ faculty sponsor □designated smackdown mentor **POC** for Technical Committee meetings □Java or C++ skills □willingness to learn HLA □ideas for a simulated mission Imodel development technical skills □time
 - for model/simulation development
 - to coordinate with other participants
 - for integrated federation-wide testing

immediate next steps

- planning meeting (tomorrow 1900-2100, Legacy South 3)
 - 2012 Spring SIW Smackdown "kickoff"
 - gather initial interest and have people sign up
 - committee assignments (Executive, Outreach, Planning, Technical)
 - mission scenario definition
 - What are we going to simulate? (the things, the nouns)
 - What are they going to do? (the activities, the verbs)
 - competition
 - award categories
 - judging criteria
 - panel of judges
 - open question/answer session
 - preliminary schedule
- contact us (see next slide) to become a participant
- wiki: http://smackdown.inarisolutions.com
- Bring your ideas, and join us!

points of contact

- Zack Crues, EZButton federate, NASA/JSC edwin.z.crues@nasa.gov
- Dan Dexter, Technical Committee, NASA/JSC daniel.e.dexter@nasa.gov
- Priscilla Elfrey, SISO coordination, NASA/KSC priscilla.r.elfrey@nasa.gov
- David Hasan, L-3 Communications david.a.hasan@nasa.gov
- Joe Hubbard, Planning Committee, NASA/JSC joseph.v.hubbard@nasa.gov
- Björn Möller, Pitch bjorn.moller@pitch.se
- Tom Stanzione, VT MÄK tstanzione@mak.com
- Martin Steele, Space Forum, NASA/KSC martin.j.steele@nasa.gov
- Bill Waite, SISO industry outreach, AEgis bwaite@aegistg.com

<fin>

acronyms (1 of 2)

acronym	meaning
DHCP	dynamic host configuration protocol
DNS	domain naming system
FOM	federation object model
GPS	Global Positioning System
HLA	High Level Architecture
IP	internet protocol
JSC	NASA Johnson Space Center
M&S	modeling and simulation
MIT	Massachusetts Institute of Technology
NCSU	North Carolina State University
POC	point of contact
PSU	Pennsylvania State University
RTI	runtime infrastructure

acronyms (2 of 2)

acronym	meaning
SISO	Simulation Interoperability Standards Organization
SIW	Simulation Interoperability Workshop
SSL	secure sockets layer
TBD	to be determined
STEM	science, technology, engineering and mathematics
UAH	University of Alabama / Huntsville
UNICAL	University of Calabria
VPN	virtual private network
XML	extensible markup language