	_				.1
	Postient	chest pain	mali	&moking	MA
1	1	705	ys	NO	Yes
	2	7050	Yus	YUS	zes
	3	No	No	Yes	yes
	4	No	Yes	No	No
	5	<u>Yes</u> ~	No	Yus	yes
	6	No	Yes	Tes	NO
					100 %

Iteration (1) Info (0) =
$$I(4, 2)$$

$$= - \mathcal{E} P_i \log P_i$$

$$= - \frac{4}{6} \log \left(\frac{4}{6}\right) - \frac{2}{6} \log \frac{2}{6}$$

". Info chertpain (0) =
$$\frac{3}{6}$$
 I(3,0) + $\frac{3}{6}$ I(1,2)

$$\Rightarrow \frac{3}{6} \left[-\frac{3}{3} \log \left(\frac{3}{3} \right) - \frac{0}{3} \log \left(\frac{0}{3} \right) \right] + \frac{3}{6} \left[-\frac{1}{3} \log \left(\frac{1}{3} \right) - \frac{2}{3} \log \left(\frac{1}{3} \right) \right]$$

$$=) 0 + \frac{3}{6} \left[+0.528 + 0.389 \right]$$

$$\begin{array}{lll}
(ain = & 2600 - & 160 \text{ day}) \\
&= & 0.908 - & 0.45 \text{ y}. \\
&= & 0.45 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.45 \text{ y}. \\
&= & 0.45 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.45 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.45 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.45 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.45 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.45 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.
\end{array}$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - & 0.66 \text{ y}.$$

$$\begin{array}{lll}
&= & 0.908 - &$$

$$\frac{4}{6} \left[-\frac{2}{4} \log \left(\frac{3}{4} \right) - \frac{1}{4} \log \frac{1}{4} \right] + \frac{2}{6} \left(-\frac{1}{2} \log \left(\frac{1}{2} \right) - \frac{1}{2} \log \left(\frac{1}{2} \right) \right]$$

$$= \frac{4^{2}}{8^{3}} \left(0.311 + 0.5 \right) + \frac{21}{63} \left(+0.5 + 0.5 \right)$$

$$= \frac{0.873}{8^{3}}$$

$$= \frac{0.873}{8^{3}}$$

$$= \frac{0.908 - 0.873}{9^{3}}$$

$$= \frac{0.035}{9^{3}} = \frac{3}{9^{3}}$$

$$= \frac{0.035}{9^{3}} = \frac{3}{9^{3}}$$

$$= \frac{0.035}{9^{3}} = \frac{3}{9^{3}}$$

$$= \frac{0.035}{9^{3}} = \frac{3}{9^{3}}$$

$$= \frac{3}{9^{3}}$$

	4.6		
P2d	male	Smoking	AK
1.	yes	NO	yes -
2	Tes	Yes	745 V
5	NO	yes	1 yest
7			ray no de

can be 8 plit. based on male & 8 morning

Info
$$0 = I(1,2) \Rightarrow - \epsilon P_i \log P_i$$

 $\Rightarrow -\frac{1}{3} \log \left(\frac{1}{3}\right) - \frac{2}{3} \log \left(\frac{2}{3}\right) \Rightarrow 0.528 + 0.389$
 $\Rightarrow 0.917$

for male
$$= \frac{\pi}{100}$$
 $3 \sin_{(male)} 0 = 5 \text{ Typ}(0) - 5 \text{ Typ}(male)$

The male $= \frac{2}{3} \text{ I}(0, 2) + \frac{1}{3} \text{ I}(1, 0)$
 $= \frac{2}{3} \left[\frac{2}{2} \log(\frac{1}{2}) - \frac{2}{2} \log(\frac{1}{2}) \right] + \frac{1}{3} \left[\frac{1}{1} \log_{1} - \frac{2}{1} \log(\frac{1}{1}) \right]$
 $= \frac{2}{3} \left[\frac{2}{2} \log(\frac{1}{2}) - \frac{2}{2} \log(\frac{1}{2}) \right] + \frac{1}{3} \left[\frac{1}{1} \log_{1} - \frac{2}{1} \log(\frac{1}{1}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) + \frac{1}{3} \left[\frac{1}{1} \log(\frac{1}{1}) - \frac{1}{1} \log(\frac{1}{1}) \right] \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) + \frac{1}{3} \left[\frac{1}{1} \log(\frac{1}{1}) - \frac{1}{1} \log(\frac{1}{1}) \right] \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) + \frac{1}{3} \left[\frac{1}{1} \log(\frac{1}{1}) - \frac{1}{1} \log(\frac{1}{1}) \right] \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) + \frac{1}{3} \left[\frac{1}{1} \log(\frac{1}{1}) - \frac{1}{1} \log(\frac{1}{1}) \right] \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) \right]$
 $= \frac{2}{3} \left[\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2})$

gain male = (0.917) maximum
gain smeling = (0.251)

Chat pain -> No

male > 48

Smoking You.

Mart Atri -

NO

SVM

0 +ve 0 -ve.

Support => vectors.

 $\begin{array}{ccc}
\mathring{S}_{1} & \mathring{S}_{2} \\
\mathring{C}_{0} & \mathring{C}_{0}
\end{array}$

augmated Bias=(1 input value.

Equations of support vector Si, Si

Solve Ola

 $\alpha_1 \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = +1$

of (4+0+1) + d2 (8+0+1) = 1 $d_2('8+0+1) + d_2(16+0+1) = -1$

5d1 + 9 d2 = 1 -1 9d1 + 17 d2 = 1 -

 $\begin{vmatrix} \alpha_1 = 6.5 \\ \alpha_2 = -3.5 \end{vmatrix}$

weight vector =
$$\omega$$
 $w = \begin{cases} x & x & x \\ 0 & x & x \\ 0$

-

find the predict target class for the (fever= No cougn= normal fatigue = Yes

Fern 1	cough	Fatigue	eisiose	
Tes	High	No	res	
No	Mgh	Yu	425	
465	Normal	7-45	740	
1 NO 46	Normal	No	No No	outer dist (c

ol= [10-MA] + [No2-MA,

Fever > 14 (1)

6=0 c=1 6=1

Cough & righ @

Normal 1	Fever	Cough	Fatigue	Risease	
Fatigue > You ()	1	2	0 "	1	
> NO - 5	0	2)	1	
3)	'	1	1	1	
> Y)	0	1	1	0	
()	1	1	0	0	1

$$d_1 = \sqrt{(0-1)^2 + (1-2)^2 + (1-0)^2} = \sqrt{3} = 1.732 \left(\frac{5}{5}\right)$$

$$3d2 = \int (0-0)^2 + (1-2)^2 + (1-1)^2 = 1$$

$$d_3 = \sqrt{(0-1)^2 + (1-1)^2 + (1-1)^2} = 1$$

$$dy = \int (0-0)^2 + (1-1)^2 + (1-1)^2 = 0$$

$$ds = \int (0-1)^2 + (1-1)^2 + (4-0)^2 = \sqrt{2} = 1.414$$

gince. K=2, we select. dy, dr. ... 8 ample 4, 2

voting INO, 140.

(an choose any one awarding

$$\frac{24}{K}$$
 (KNN with bagging.) $K=2$

New X1 = 4.0 X2 = 4.5 X3.2.2 find target.

Bootstrop Sample 1: (1,2,5,6,7)

BOISTING Sample 2: (3,4,5,8,10)

Bootstrap sample 3: (1,3,6,7,9)

Sangele	F XI	F X2		
0		1 7 7 2	F X3	Tonget
-	2.0	3.1	1.5	0 /
2	3.2	4-3	2-1	١
3	1 . 2	2-8.	1-2	٥
4	4.1	3.9	2- S	1
- 5	5-3	6.7	3-2	1
) E	3-8	S·I	2-8	١
7 7	2-7	3.5	1.3) 0
ત્ર	4.2	y-9	2-7	1
q	1.9	3-0	1-4	0
10	2.1	16.2	3.0	

Bagging.
(Bootshap aggreigation)

m₁(5) me(5) m₃(5)

m₁(5) me(5) m₃(5)

C₁(knn) (₂(knn) (₃(knn) (₃(knn) (₉(knn) (₉(k

			1	(
1	20	3.1	1.5	0	
2	3.2	4-3	2.1	ſ	-
5	5.3	6.7	3-2	1	
6	3-8	5.1	2-8	(-
7	2.7	2.5	1.8	O	
1	the state of the s			-	-

:.
$$m_1 \circ p \rightarrow 1$$
 } Consemble max voting $m_2 \circ p \rightarrow 1$ } we get.

 $= 1 - \leq p(n)^2$ To find Gini Index Impurity In Dodasot. Weather A companied Money Timelass parents 1 Sunny Cinema. Rich Yes Tennis 2 Sunny Rich No @ windy Yes Cinema Rich 9 Rainy Yes Poor Cinema-@ Rainy NO House Rich 6 Rainy Cinema Yes Poor 1 windy Poor NQ! ·Cinema @ windy No Rich Shopping @ Windy Yes Rich Cinema D Sunny. Rìch Tennis No Cirema = 6 Total 10 Tennis = 2 Shopping 2 1 $\frac{1 - \left(\frac{6}{10}\right)^2 + \left(\frac{2}{10}\right)^2 + \left(\frac{1}{10}\right)^2}{10}$ weather windy (4) 30) Sarry cinema 3 unema = 2 Shapping & House = = = Tennis z 2

Parent. Yes Connis Rich Stenny Yes Guenna Rainy Rich nomice Windy Poor Cinema. Rich Shopping Suny Rich Tonris Ceay no de

we	ather	,
(3) Sunny	3)windy	& Raing.
Tennis = 2	anema = 1	nome = 1
	Shopping = 1	
1-[12]=0	$1 - \left(\left(\frac{1}{2} \right)^2 + \left(\frac{1}{4} \right)^2 \right)$ $= 0.5$	1-[12]
- 0	25(0)+ 3((0.8) 40
, w.A =	25(0)+ 5	

Penant (5) Poor 4 (0.625) + (1) x0 1-[(2)2+(4)2+(4)] 0.625 (Lowest) parent = 0'5 Parent Wowthe windy Rian

(Random Forest) Broom will by a Brodut based on Age (Young, middle, old) Salary (low, med, high) online Ads (Few, Moderate, Marry) 73, 40, Tongst Lio Age Salary clicles Buy Few NO Young low Yeese many High Young 4.83 Moderale Midium mid NO old Few ww 7es. medim old many 5 No Few mid High moderate Yes medium young 7 No Few mid 8 Low Yes. old wigh many 9 many Yes 01 young Low click = few' Salary High Buy=? Age= old Sample &1,3, 4,5,7,93 True 1

	Age	Salan	Click		
1	young	low	Few	110	,
3	nid	nedim	moderal	Us:	ت
4	old	Victor	MES	HES. O	
5	old	medin	mony	res.	<u> </u>
7	young	melian	modrale	YUS.	-
9	old	sugh.	many	yes.].

Total (a)
$$400 = \frac{4}{6}$$
 $100 = \frac{2}{6}$
 $1 - \left[\left(\frac{4}{6} \right)^2 + \left(\frac{2}{6} \right)^2 \right]$
 $= 0.444$
 $1 - \left[\left(\frac{4}{6} \right)^2 + \left(\frac{2}{6} \right)^2 \right]$
 $= 0.444$
 $1 - \left[\left(\frac{4}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.5$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.5$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$
 $1 - \left[\left(\frac{1}{6} \right)^2 + \left(\frac{1}{6} \right)^2 \right]$
 $= 0.386$

	Age	Salony	Wich.	
2	young	high	many	No
4	old	ww	few	No
6	middle	high	fw	No
8	midde	low	Bew	Na
q	old	high	many	YS
10	young	\ ww	nerry	Yes.

Gini
$$(0) = \frac{3}{2} + \frac{3}{2} + \frac{3}{2}$$

$$1 - (\frac{1}{2})^2 + (\frac{1}{2})^2$$

$$= \frac{1}{2} - \frac{3}{2} = \frac{1}{2}$$

Gini
$$(Agg)$$
 =)

(a) young (aloga)

 (a) young (aloga)

 (b) young (aloga)

 (c) young (a

(a) young old b)
$$\frac{1}{2}$$
 $\frac{1}{1-\left[\frac{1}{2}\right]^{2}+\left(\frac{1}{2}\right)^{2}=0.5}{1-\left[\frac{1}{2}\right]^{2}+\left(\frac{1}{2}\right)^{2}=0.5}$
 $\frac{1}{2}$
 $\frac{1}{$

zain (dich)

$$fuv(\frac{3}{6})$$
 (\frac{3}{6}) monny.

Yes $\rightarrow \frac{3}{3}$
 $1-[1]^{2}=0$
 $1-[1]^{2}=0$

$$WA = (\frac{3}{6}) \times 0 + \frac{3}{6} \times 0 = 9$$

Glich

Mong

Woung high Yes

Voung high Yes

Old high Tes

yound low Yes

leaf

leaf.

Cuel	(3) Age_	Salar	clian.	
13 S S 7 10	young middle old middle yours yours	low medium medium high medium low	few moderate many few moderate money	No Yes- No Yes- Tes- Yes-

$$gini(0) = \frac{4}{86} + \frac{2}{6}$$

$$1 - \left[(\frac{4}{6})^{2} + (\frac{2}{6})^{2} \right]$$

$$= 0.444$$

$$gini(Age)$$
 $(\frac{3}{6})$ young
 $(\frac{3}{6})$ young
 $(\frac{3}{6})$ niddl

 $(\frac{3}{6})$ young
 $(\frac{3}{6})$ niddl

 $(\frac{3}{6})$ old

 $(\frac{3}{6})$ young
 $(\frac{3}{6})$ niddl

 $(\frac{3}{6})$ old

 $(\frac{3}{6})$ old

gini (salury) = (1) high (Z) LOW (3) midim 43ラ も 44 -> 3 NO 3 + No > 1 NO D & 45 40 1- ((1)) + (2) 1- (19 =0 1-[12]=0 = 0.2 = $\frac{2}{6} \times \frac{1}{2} = \frac{1}{6} = \frac{0.168}{2}$ E AW gin (dich) a moderate e fu 4か 元 200 元 NO -> 0 WA = 0 Sin (click = (Loverst) dich many. moderate old hudin YUS Friddlefriedium Yes. Young nedim Yes midde high No for Age=Old' Salony=High True O -> 0/p -> NO click = for True -> O/P -> NO Tree 3 -> gp -> No. Buy = No.)