HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
 Fully operational to +1200V
 Tolerant to negative transient voltage
 dV/dt immune
- Gate drive supply range from 12 to 20V
- Undervoltage lockout for both channels
- 3.3V logic compatible
 Separate logic supply range from 3.3V to 20V
 Logic and power ground £V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Outputs in phase with inputs

Description

The IR2213(S) is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs, down to 3.3V logic. The output drivers feature a high

Product Summary

Voffset	1200V max.
I _O +/-	1.7A / 2A
Vout	12 - 20V
t _{on/off} (typ.)	280 & 225 ns
Delay Matching	30 ns

Packages

pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 1200 volts.

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
V _B	High Side Floating Supply Voltage		-0.3	1225	
Vs	High Side Floating Supply Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Low Side Fixed Supply Voltage		-0.3	25	
V _{LO}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	V
V _{DD}	Logic Supply Voltage		-0.3	V _{SS} + 25	
V _{SS}	Logic Supply Offset Voltage		V _{CC} - 25	V _{CC} + 0.3	
V _{IN}	Logic Input Voltage (HIN, LIN & SD)		V _{SS} - 0.3	V _{DD} + 0.3	
dV _S /dt	s/dt Allowable Offset Supply Voltage Transient (Figure 2)		_	50	V/ns
PD	Package Power Dissipation @ T _A ≤ +25°C	(14 Lead PDIP)	_	1.6	W
		(16 Lead SOIC)	_	1.25	VV
R _{THJA}	Thermal Resistance, Junction to Ambient	(14 Lead PDIP)	_	75	· °C/W
		(16 Lead SOIC)	_	100	C/VV
TJ	Junction Temperature		_	125	
T _S	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The Vs and Vss offset ratings are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High Side Floating Supply Absolute Voltage	V _S + 12	V _S + 20	
٧s	High Side Floating Supply Offset Voltage	Note 1	1200	
V _{HO}	High Side Floating Output Voltage	Vs	V _B	
V _{CC}	Low Side Fixed Supply Voltage	12	20	.,
V_{LO}	Low Side Output Voltage	0	VCC	V
V_{DD}	Logic Supply Voltage	V _{SS} + 3	V _{SS} + 20	
V _{SS}	Logic Supply Offset Voltage	-5 (Note 2)	5	
V _{IN}	Logic Input Voltage (HIN, LIN & SD)	V _{SS}	V _{DD}	

Note 1: Logic operational for V_S of -5 to +1200V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Note 2: When VDD<5V, the minimum Vss offset is limited to -VDD

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}, V_{DD}) = 15V, C_L = 1000 pF, T_A = 25°C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	_	280	_		V _S = 0V
t _{off}	Turn-Off Propagation Delay	_	225	_		V _S = 1200V
t _{sd}	Shutdown Propagation Delay	_	230	_		V _S = 1200V
t _r	Turn-On Rise Time	_	25	_	ns	
t _f	Turn-Off Fall Time	_	17	_		
MT	Delay Matching, HS & LS Turn-On/Off	_	_	30		Figure 5

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, T_A = 25°C and V_{SS} = COM unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" Input Voltage	9.5	_	_		
V _{IL}	Logic "0" Input Voltage		_	6.0		
VoH	High Level Output Voltage, V _{BIAS} - V _O	_	_	1.2	V	I _O = 0A
VoL	Low Level Output Voltage, VO		_	0.1		I _O = 0A
I _{LK}	Offset Supply Leakage Current		_	50		V _B = V _S = 1200V
I _{QBS}	Quiescent V _{BS} Supply Current		125	230		$V_{IN} = 0V \text{ or } V_{DD}$
IQCC	Quiescent V _{CC} Supply Current	_	180	340		$V_{IN} = 0V \text{ or } V_{DD}$
IQDD	Quiescent V _{DD} Supply Current		15	30	μA	V _{IN} = 0V or V _{DD}
I _{IN+}	Logic "1" Input Bias Current		20	40		$V_{IN} = V_{DD}$
I _{IN-}	Logic "0" Input Bias Current		_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	8.7	10.2	11.7		
V _{BSUV} -	V _{BS} Supply Undervoltage Negative Going Threshold	7.9	9.3	10.7	V	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	8.7	10.2	11.7	V	
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going Threshold	7.9	9.3	10.7		
I _{O+}	Output High Short Circuit Pulsed Current	1.7	2.0`	_	A	$V_O = 0V$, $V_{IN} = V_{DD}$ $PW \le 10 \mu s$
I _{O-}	Output Low Short Circuit Pulsed Current	2.0	2.5	_		$V_{O} = 15V, V_{IN} = 0V$ PW \le 10 \mus

Functional Block Diagram

Lead Definitions

Symbol	Description
V _{DD}	Logic supply
HIN	Logic input for high side gate driver output (HO), in phase
SD	Logic input for shutdown
LIN	Logic input for low side gate driver output (LO), in phase
Vss	Logic ground
VB	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
Vcc	Low side supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. Shutdown Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

Figure 10A. Turn-On Rise Time vs. Temperature

Figure 11A. Turn-Off Fall Time vs. Temperature

Figure 12A. Logic "1" Input Threshold vs. Temperature

Figure 10B. Turn-On Rise Time vs. Voltage

Figure 11B. Turn-Off Fall Time vs. Voltage

Figure 12B. Logic "1" Input Threshold vs. Voltage

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 13B. Logic "0" Input Threshold vs. Voltage

Figure 14A. High Level Output vs. Temperature

Figure 14B. High Level Output vs. Voltage

Figure 15A. Low Level Output vs. Temperature

Figure 15B. Low Level Output vs. Voltage

Figure 16A. Offset Supply Current vs. Temperature

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Voltage

Figure 18A. V_{CC} Supply Current vs. Temperature

Figure 18B. V_{CC} Supply Current vs. Voltage

Figure 19A. V_{DD} Supply Current vs. Temperature

Figure 20A. Logic "1" Input Current vs. Temperature

Figure 21A. Logic "0" Input Current vs. Temperature

Figure 19B. V_{DD} Supply Current vs. V_{DD} Voltage

Figure 20B. Logic "1" Input Current vs. VDD Voltage

Figure 21B. Logic "0" Input Current vs. VDD Voltage

Figure 36. Maximum V_S Negative Offset vs. V_{BS} Supply Voltage

Figure 37. Maximum V_{SS} Positive Offset vs. V_{CC} Supply Voltage

Case outlines

International

IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 2/11/2002