CS3350B Computer Organization

Chapter 2: Synchronous Circuits

Part 2: Stateless Circuits

Iqra Batool

Department of Computer Science University of Western Ontario, Canada

Wednesday January 31, 2024

Outline

- 1 Combinational Circuits
- 2 Adders and Subtractors
- 3 MUX and DEMUX
- 4 Arithmetic Logic Units

Stateless Circuits are Combinational Circuits

- Stateless ⇒ No memory.
- **Combinational** ⇒ Output is a combination of the inputs alone.

Combinational circuits are formed from a combination of logic gates and other combinational circuits.

- → Modular Design,
- Simple to add new components.

Sometimes, these are called functional blocks, they implement functions.

Increasing Arity

Arity: the number of inputs to a gate, function, etc.

How can we build an n-way add from simple 2-input and gates?

Example: 5-way AND

Works for AND, OR, XOR. *Doesn't* work for NAND, NOR.

Block Diagrams

A **block diagram** or **schematic diagram** can use used to express the high-level specification of a circuit.

- How many inputs, how many bits for each input?
- How many outputs, how many bits for each output?
- What does the circuit do? Formula or truth table.

a	b	$\mid c \mid$	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

From Blocks to Gates (1/2)

b	c	F
0	0	0
0	1	0
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

- 1 Generate truth table.
- 2 Get canonical form:

$$F \equiv \overline{a}bc + a\overline{b}c + ab\overline{c} + abc$$

3 Simplify if possible:

$$\overline{a}bc + a\overline{b}c + ab\overline{c} + abc$$

$$\equiv \overline{a}bc + a\overline{b}c + ab\overline{c} + abc + abc + abc$$

$$\equiv \overline{a}bc + abc + a\overline{b}c + abc + ab\overline{c} + abc$$

$$\equiv bc + ac + ab$$

From Blocks to Gates (2/2)

3 Simplify if possible:

$$F \equiv bc + ac + ab$$

4 Draw your circuit from simplified formula.

This is called a *majority* circuit. Output is true iff majority of inputs are true.

Outline

- 1 Combinational Circuits
- 2 Adders and Subtractors
- 3 MUX and DEMUX
- 4 Arithmetic Logic Units

1 Bit Adder

Adder interprets bits as a binary number and does addition.

$$s = add(a, b)$$

 $c = carry (overflow) bit$

a	$\mid b \mid$	s	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

1 Bit Full Adder

Full Adder does addition of 3 inputs: a, b, and carry $_{in}$.

□ Previous adder was a half adder.

$$s = (a \ XOR \ b) \ XOR \ c_{in}$$
$$c = ab + (XOR(a,b) \cdot c_{in})$$

1 Bit Full Adder using Half Adders

A full adder can be built from half adders.

→ Modular design, reuse, simplified view.

n-Bit Full Adder

n-bit adder: Add n bits with carry.

- $\,\,\,\,\,\,\,\,\,$ Final carry bit is c_n .

Addition Overflow (1/2)

Overflow occurs when arithmetic results in a number strictly larger than can fit in the predetermined number of bits.

- lacksquare For *unsigned* integers, overflow is detected by c_n being 1.
- For signed (i.e. twos-compliment) integers, overflow more interesting.

Example: Addition in 4 bits.

```
1000 \quad \text{(carry bits)}
1101
+ 0110
10011 \quad \Rightarrow \quad c_n \text{ is 1. Overflow?}
```

Addition Overflow (1/2)

Overflow occurs when arithmetic results in a number strictly larger than can fit in the predetermined number of bits.

- lacksquare For *unsigned* integers, overflow is detected by c_n being 1.
- For signed (i.e. twos-compliment) integers, overflow more interesting.

Example: Addition in 4 bits.

Addition Overflow (2/2)

In twos-compliment when is there overflow?

- Most significant bit encodes a negative number in two's compliment.
- If both operands are positive and $c_{n-1} \equiv 1$ then we have overflow.
- If one positive and one negative, overflow impossible.
 - ☐ Their sum is always closer to zero than either of the operands.
- If both operands are negative and $c_n \equiv 1$ then we have overflow.

Overflow in two's compliment: c_n XOR c_{n-1} .

n-bit Subtractor (1/2)

n-bit subtractor: Subtract two n-bit numbers.

- We want s = a b.
- Start with an *n*-bit adder.
- XOR b with a **control signal** for subtraction.
 - \rightarrow signal is 1 for subtraction, 0 for addition.

XOR works as conditional inverter.

$$\downarrow$$
 A XOR B \equiv C \Longrightarrow if (B) then \overline{A} \equiv C else A \equiv C.

Α	В	$A \oplus B \equiv C$
0	0	0
0	1	1
1	0	1
1	1	0

n-bit Subtractor (2/2)

Control signal SUB acts as c_0 .

Outline

- 1 Combinational Circuits
- 2 Adders and Subtractors
- 3 MUX and DEMUX
- 4 Arithmetic Logic Units

Multiplexer

A multiplexer "mux" conditionally chooses among its inputs to set value of output.

- Uses control signal to control which input is chosen.
- Still no state, output depending only on inputs: input bits and control signal.

2-way multiplexer

If $s \equiv 0$ then $c \equiv a$.

If $s \equiv 1$ then $c \equiv b$.

Notice actual value of a and b have no effect on decision.

 \downarrow 0 and 1 in multiplexer is not the *value* of a or b but the "index".

2-way Multiplexer

How to encode this "if-then" behaviour without actual conditionals?

$$c \equiv MUX(a,b,s)$$

$$\equiv \overline{s}a(b+\overline{b}) + sb(a+\overline{a})$$

$$\equiv \overline{s}a + sb$$

Note: $X \cdot (Y + \overline{Y})$ encodes "X independent of what the value of Y is".

4-way Multiplexer

$$e \equiv MUX(a, b, c, d, S)$$
$$\equiv \overline{s_1 s_0} a + \overline{s_1} s_0 b$$
$$+ s_1 \overline{s_0} c + s_1 s_0 d$$

The index of each input is now 0 through 3.

- Need 2 bit to choose among 4 inputs.
- Control signal's bit-width is now 2.

Big Data Multiplexer

Bit-width of input and output must match, but bit-width of *control signal* only determined by number of inputs to choose from.

Demultiplexer

Demultiplexer "demux" conditionally chooses among its outputs.

- → Opposite of MUX.
- $\,\,\,\,\,\,\,\,\,\,$ Un-selected outputs are set to 0.

Outline

- 1 Combinational Circuits
- 2 Adders and Subtractors
- 3 MUX and DEMUX
- 4 Arithmetic Logic Units

Arithmetic Logic Unit

- An ALU is a black-box type circuit which can do many different arithmetic or logic operations on its inputs.
 - → Not many at one time, but selectively acts as many.
- Depending on the implementation can do addition, subtraction, multiplication, division, logical AND, logical OR, shifting, etc.
- Use a control signal to choose which operation to perform.
- Essentially a big collection of MUX and combinational blocks for each operation.

Optimizing ALU

Remember, every additional gate increases delay and space. Instead, optimize via the normal four step process:

- 1 Generate a truth table,
- 2 Get canonical form from truth table,
- 3 Simplify expression,
- 4 Make circuit.

Another option: programmable logic array.

Programmable Logic Array

A programmable logic array (PLA) directly implements a truth table/canonical disjunctive normal form.

- Each AND row is a truth table row.
- Each OR column is one output bit.
- Each ⊕ is a programmable (i.e. optional) AND gate (on the AND plane; OR gate on the OR plane) joining the input to the circuit.

