

Time Series Analysis Thematic Assignment (2023 - 2024)

Team 24

Kyparissis Kyparissis Fotios Alexandridis 10346 9953 kyparkypar@ece.auth.gr faalexandr@ece.auth.gr The problem:
Time series forecasting
using CNNs

Time series forecasting using CNNs

Neural Networks based on discrete convolutions

What are Neural Networks

- Also known as Artificial Neural Networks (ANNs)
- Subset of Machine Learning and heart of Deep Learning algorithms
 - Rely on training data to learn and improve their accuracy over time
 - Classify and cluster data at a high velocity
- Name and structure inspired by the human brain
 - Mimicking the way that biological neurons signal to one another
- Utilize the concept of (node) layers
 - Represent structured **computations** / data **transformations**
 - Containing:
 - \rightarrow **1 INPUT** layer
 - → ≥ 1 **HIDDEN** layers
 - \rightarrow **1 OUTPUT** layer
 - Each node / artificial neuron connects to another
 - With an associated weight and threshold
 - If the output of any individual node > specified threshold value
 - Node is activated
 - Sends data to the next layer of the network
 - > Otherwise, no data is passed along to the next layer of the network

What are Neural Networks

Fully-Connected (FC) Layers

- Applies a linear transformation to the input vector through a weight matrix
 - Input vector (x) · Weights matrix (W)
 - All possible connections layer-to-layer are present

What are CNNs

Convolutional Neural Networks (CNNs) are Artificial Neural Networks based mainly on Convolutional layers

- They have **3 main types of layers**, which are:
 - Convolutional layer
 - Based on **discrete convolutions**
 - Moves around a filter called a kernel
 - Takes the sum of the weighted multiplication
 - Produce a feature map
 - Captures local patterns and spatial dependencies in different parts of the input
 - Can have multiple filters in one layer
 - Pooling layer
 - Reduce dimensionality by downsampling
 - Move around a filter
 - Keep max / average value
 - Fully-Connected (FC) layer
 - Responsible for the final classification task
- CNNs are used extensively in **Computer Vision** problems
 - Image (or video data) classification problems

1	1	2	4		
5	6	7	8		
3	2	1	0		
1	2	3	4		
Feature map					

What are CNNs

Benefits of CNNs for time series forecasting

Local Pattern Extraction

- CNNs are effective in capturing local patterns
 - Crucial for understanding short-term dependencies in time series data

Parameter Sharing

- Sharing parameters across different regions of the sequence
- Allows the network to generalize well

Translation Invariance

- CNNs can be translationally invariant
 - Can recognize patterns **regardless of their position** in the sequence

Benefits of CNNs for time series forecasting

Ability to Capture Spatial Dependencies

Convolutional operations are primarily designed for spatial data

HOWEVER

- Can effectively capture spatial dependencies in the temporal domain
 - Aiding in understanding how different time steps relate to each other

Applicability to Multivariate Time Series

- CNNs can be adapted for multivariate time series forecasting
 - By extending the convolutional operations across different dimensions
 - Providing a versatile framework

Past studies & Examples

Conditional time series forecasting with convolutional neural networks - 2018

This study supports:

- Dilated convolutions can be used to learn time series:
 - Long term correlations
 - Dependencies
- This is <u>important</u> since in many environments (e.g. economy)
 - Long term patterns often appear in data
 - Understanding them is crucial to analyze and predict future values

Figure 2.2: A dilated convolutional neural network with three layers.

Loss Function: Mean Absolute Error

Optimization Algorithm: Gradient Descent

Activation Function: Rectified Linear Unit (ReLU)

Conditional time series forecasting with convolutional neural networks - 2018

Another very important point \rightarrow CONDITIONING

- Able to forecast future values of time series A
 - Knowing past values of both time series A and another, related, time series B
- Can be extended to M related time series
 - Extremely useful for multivariate time series.

Conditional time series forecasting with convolutional neural networks - 2018 - Example 1

Example:

Lorenz Map:
$$egin{cases} \dot{\mathbf{X}} = \sigma(\mathbf{Y} - \mathbf{X}) \ \dot{\mathbf{Y}} = \mathbf{X}(
ho - \mathbf{Z}) - \mathbf{Y} \ \dot{\mathbf{Z}} = \mathbf{X}\mathbf{Y} - eta\mathbf{Y} \end{cases}$$

- For the generated time series X
 - Unconditional forecasting (uWN Model)
 - Conditional forecasting (cWN Model)

The conditional model (cWN)

performs really well in estimating future
members of the time series

Conditional time series forecasting with convolutional neural networks - 2018 - Example 2

Models were used in financial data forecasting for different stocks:

- SP500 stock
 - Trained for different time periods
 - Results are obtained for multiple models
 - Conditional (cWN) and the unconditional (uCW) models included!

		I	A	В		C	
100	Model	MASE	HITS	MASE	HITS	MASE	HITS
	Naive	1	0.513	1	0.504	1	0.555
	VAR	0.698	0.507	0.701	0.505	0.696	0.551
	LSTM	0.873(0.026)	0.525(0.006)	1.067(0.021)	0.496(0.016)	0.929(0.021)	0.531(0.008)
٢	uWN	0.685(0.025)	0.515(0.007)	0.681(0.002)	0.484(0.007)	0.684(0.006)	0.537(0.011)
L	cWN	0.699(0.042)	0.524(0.009)	0.693(0.014)	0.500(0.009)	0.701(0.015)	0.536(0.016)

Table 3.2: MASE and HITS (mean(standard deviation)) for a one-step ahead forecast over the periods A, B and C of the S&P500, both unconditional and conditional on the volatility index and the CBOE 10 year interest rate.

The new architectures (uWN & cWN) dominate over most metrics & time periods!

Conditional time series forecasting with convolutional neural networks - 2018 - Example 2

- FOREX data
 - Global economy is influenced in similar ways

Model	Period	EURUSD	EURJPY	GBPJPY	EURGBP	GBPUSD
VAR	A	1.105	1.176	1.446	1.348	1.832
	В	0.758	0.782	0.756	0.768	0.731
	C	0.716	0.738	0.737	0.709	0.713
LSTM	A	0.829(0.012)	0.863(0.005)	0.880(0.004)	0.868(0.005)	0.893(0.007)
	В	0.925(0.024)	0.911(0.029)	0.974(0.029)	0.948(0.023)	0.934(0.014)
	C	0.950(0.016)	1.031(0.022)	0.980(0.034)	0.839(0.034)	0.898(0.017)
cWN	A	0.693(0.016)	0.667(0.021)	0.759(0.064)	0.728(0.014)	0.834(0.089)
	В	0.690(0.006)	0.693(0.006)	0.699(0.005)	0.717(0.015)	0.710(0.009)
	C	0.702(0.009)	0.716(0.029)	0.721(0.014)	0.709(0.004)	0.716(0.004)

Table 3.4: MASE (mean(standard deviation)) one-step ahead multivariate forecast over the periods A, B and C of five foreign exhange rates.

The conditional model (cWN) dominated the charts Expected since:

Changes in one currency trading pair (EURUSD) often influence other currencies as well (EURJPY)

The conditional model further backs the assumptions of exceptional performance in multivariate forecast

Financial Time-series Data Analysis using Deep Convolutional Neural Networks - 2016

This study supports:

• CNNs have shown to be state of the art in problems that have images as data

Main concept explored: Transformation of 1D time series \rightarrow 2D picture

• Novel CNN architecture is used:

- 2 Pooling layers
- o 1 final output layer

Financial Time-series Data Analysis using Deep Convolutional Neural Networks - 2016 - Example

The problem consists of forecasting the future price of Taiwan index futures

- Training dataset consists of ~1M historical intraday 1' data
- From 2/1/2001 to 24/4/2015
- Data are given in OHLC prices for each data point
 - OHLC = Open High Low Close
 - We have the Opening price, Closing price, Highest price and Lowest price for that specific 1' time window

Financial Time-series Data Analysis using Deep Convolutional Neural Networks - 2016 - Example

<u>4 methods</u> were used to convert the 1D time series \rightarrow 2D image:

1. Moving Average Mapping (MAM)

$$G = \begin{bmatrix} MA_{t-D+1,1} & \cdots & MA_{t,1} \\ \vdots & \ddots & \vdots \\ MA_{t-D+1,D} & \cdots & MA_{t,D} \end{bmatrix}$$

- 2. Double Moving Average Mapping (DMAM)
 - Defined in the same way that the Moving Average Mapping
 BUT
 - Uses the mean value of the opening price and closing price
 - Instead of simply the closing price (Moving Average Mapping case)
- 3. Gramian Angular Field (GAF)

$$G = \begin{bmatrix} <\tilde{x}_1, \tilde{x}_1 > & \cdots & <\tilde{x}_1, \tilde{x}_n > \\ \vdots & \ddots & \vdots \\ <\tilde{x}_n, \tilde{x}_1 > & \cdots & <\tilde{x}_n, \tilde{x}_n > \end{bmatrix}$$
 where $<$ x, y $>$ = x \cdot y $\sqrt{1-x^2} \cdot \sqrt{1-y^2}$

- 4. Image of candlestick chart
 - More traditional graph
 - Often seen in trading views of brokers and exchanges

Financial Time-series Data Analysis using Deep Convolutional Neural Networks - 2016 - Example

Testing Year	GAF	MAM	DMAM	Candlestick chart
2006	56.53%	57.28%	56.05%	55.04%
2007	55.97%	56.86%	57.06%	55.72%
2008	55.73%	55.62%	55.57%	53.87%
2009	53.84%	53.71%	53.81%	53.91%
2010	57.06%	56.42%	56.42%	56.20%
2011	57.88%	56.42%	57.10%	55.36%
2012	52.52%	52.44%	52.75%	53.60%
2013	51.28%	51.63%	52.07%	50.66%
2014	52.93%	52.47%	52.36%	49.50%
Average	54.86%	54.76%	54.80%	53.76%

Results showcase that in **almost all cases** the ranking for the representation is as follows:

GAF > DMAM > MAM > Chandlestick

Comparisons with other NNs and nonlinear models

CNNs **vs** Fully Connected Neural Networks

Pros of **CNNs**

- Able to learn patterns regardless of their position in the time series
 - Have temporal invariance
- Run a smaller risk of overfitting
- Often less computationally intensive
 - Fully connected networks need to be sufficiently large to process a large time frame of the timeseries

Pros of Fully Connected Neural Networks

- Understand the full global context of data
 - Process the entirety of the data

• Often have a **simpler**, **layered structure**

- Can handle variable length sequences
 - No major reshapings required

CNNs vs Recurrent Neural Networks

Pros of **CNNs**

- Often prevent overfitting in problems with limited training data
- Usually less computationally intensive to train and run

Handle local patterns and spatial relationships better

Pros of Recurrent Neural Networks

 Very good in handling temporal order of events

- Can generally handle long term trends and relationships very effectively
- Can easily handle variable length input
 - With minimal changes

CNNs **vs** Random Forest

Pros of **CNNs**

- Way less computationally intensive
- Able to learn larger patterns that may be more apart from each other

Able to learn sequential data more efficiently

Pros of Random Forest

- Ensemble method that can capture complex, non-linear relationships
- They provide feature importance rankings
 - Aiding in understanding the impact of different variables on the forecast

They are robust in regards to outliers

- [1] Borovykh, Anastasia, Sander Bohte, and Cornelis W. Oosterlee. "Conditional time series forecasting with convolutional neural networks." arXiv preprint arXiv:1703.04691 (2017)
- [2] J. -F. Chen, W. -L. Chen, C. -P. Huang, S. -H. Huang and A. -P. Chen, "Financial Time-Series Data Analysis Using Deep Convolutional Neural Networks," 2016 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China, 2016, pp. 87-92, doi: 10.1109/CCBD.2016.027.
- [3] "What Are Neural Networks?" IBM, <u>www.ibm.com/topics/neural-networks</u>. Accessed 11 Jan. 2024.
- [4] "What are convolutional neural networks?" IBM, https://www.ibm.com/topics/convolutional-neural-networks. Accessed 11 Jan. 2024.

REFERENCES

Thank You!

For Your Attention

Any questions?

