Bauanleitung "Adapter Fischer Roboter- SPS"

Einleitung

Dieses Dokument stellt eine Schritt für Schritt Anleitung für den Bau des Adapters dar. Sämtliche dafür benötigte Dateien befinden sich im GitHub Repository.

Zum näheren Verständnis kann der Beleg hinzugezogen werden.

Benötigtes Material

Name	Menge
Finder Relais Typ 40.52 24V	8
LM2596S DC-DC Wandler	5
Standard Stiftleiste 2,54mm (1x20)	2
Lötbare Schraubklemme, 2 pol., 5,08mm	11
Optokoppler Typ 4N32	8
- Pro Pro	
SMD Widerstand 0805, 4k7	14
SMD Widerstand 0805, 5k1	
	4
M2x10mm Schrauben	2
M2x50mm Schrauben	2
Bananenbuchsen 2mm, lötbar	26
Steckbrettleitungen female -> female	26

Benötigtes Werkzeug/Geräte

- 3D- Drucker inklusive Filament
- Lötkolben inklusive Zubehör
- Werkzeug wie Schraubenzieher, Zange,...

Arbeitsschritte

- 1. Platine bestellen (24V Fischer GitHub Repo)
- 2. Bestücken der Platine nach Layout
- 3. Drucken des Gehäuses (24V Fischer GitHub Repo)

4. Anlöten der Steckbrettleitungen an Bananenbuchsen

- 5. Zusammensetzen des Adapters
 - a. Platine in Gehäuse einsetzen und festschrauben (diagonal)
 - b. Bananenbuchsen mit Steckbrettleitungen in Deckel einschrauben

- c. Leitungen auf Stifte auf Platine stecken
 - i. nach Bezeichnungen auf Deckel richten (mit 1 auf Deckel links anfangen mit einstecken)
- d. Adapter schließen und zuschrauben (diagonal)

Anschlusspläne

1. Zu Eingängen SPS:

2. Zu Ausgängen SPS:

3. Anschlussplan Eingänge

Zu Eingängen SPS (v. links n. rechts) -> siehe	Anschluss an SPS
Punkt 1	
1	10.7 (SPS)
2	IO.6 (SPS)
3	10.5 (SPS)
4	IO.4 (SPS)
5	10.3 (SPS)
6	IO.2 (SPS)
7	IO.1 (SPS)
8	IO.0 (SPS)
9	24V
10	GND
11	24V
12	24V
13	GND
14	GND

Hinweis: an eine der 24V Klemmen gegen eine der GND Klemmen müssen 24V angelegt werden. GND muss mit dem GND der SPS Eingänge gebrückt werden.

I0.0 und I0.1 sind die SPS Eingänge für die Inkrementalgeber. Alle anderen sind Eingänge für Taster.

4. Anschlussplan Ausgänge

Zu Ausgängen SPS (v. links nach rechts) -> siehe Punkt 2	Anschluss an SPS
1	Q0.7 (SPS) (Motor 4)
2	Q0.6 (SPS) (Motor 4)
3	Q0.5 (SPS) (Motor 3)
4	Q0.4 (SPS) (Motor 3)
5	Q0.3 (SPS) (Motor 2)
6	Q0.2 (SPS) (Motor 2)
7	Q0.1 (SPS) (Motor 1)
8	Q0.0 (SPS) (Motor 1)

Hinweis: Der Roboter hat vier Motoren. Für jeden Motor sind zwei SPS Ausgänge vorgesehen. Ist ein Ausgang HIGH, dreht der Motor in die eine Richtung, ist der andere HIGH, dreht er in die andere Richtung.

5. Anschlussplan Sensoren Roboter

Sensoranschlüsse (links, von oben nach unten)	Funktion
1	Anschluss für Inkrementalgeber
2	Anschluss für Inkrementalgeber
3	Anschluss für Taster
4	Anschluss für Taster
5	Anschluss für Taster
6	Anschluss für Taster
7	Anschluss für Taster
8	Anschluss für Taster

6. Anschlussplan Aktoren Roboter

Aktorenanschlüsse (rechts, von oben nach	Funktion
unten)	
1	Anschluss für Motor 1
2	Anschluss für Motor 2
3	Anschluss für Motor 3
4	Anschluss für Motor 4

Schließt man alles wie im Plan vorgeschrieben an, entspricht der erste SPS Eingang dem ersten Inkrementalgebersignal, der zweite dem zweiten Inkrementalgebersignal, der dritte dem ersten Taster, usw.

Der erste angeschlossene Motor entspricht dann auch den ersten beiden SPS Ausgängen, usw.