Analysis of a Complex Kind Week 3

Lecture 3: The Complex Exponential Function

Petra Bonfert-Taylor

Definition of the Complex Exponential Function

Recall from the last lecture that the function

$$f(z) = e^x \cos y + i e^x \sin y$$

(where again, z = x + iy) is an entire (= analytic in \mathbb{C}) function. Let's look at some of its properties:

- If y = 0, then $f(z) = f(x + i \cdot 0) = f(x) = e^x$, so f agrees with the "regular" exponential function on \mathbb{R} .
- $f(z) = e^x(\cos y + i\sin y) = e^x e^{iy}.$

Definition

The complex exponential function, e^z , sometimes also denoted $\exp(z)$, is defined by

$$e^z = e^x \cdot e^{iy}$$
, where $z = x + iy$.

Properties

$$e^z = e^x \cdot e^{iy}$$
, where $z = x + iy$.

- $|e^z| = |e^x||e^{iy}| = e^x$.
- $\operatorname{arg} e^z = \operatorname{arg}(e^x e^{iy}) = y$.
- $e^{z+2\pi i} = e^x e^{i(y+2\pi)} = e^x e^{iy} = e^z$.

•

$$e^{z+w} = e^{(x+iy)+(u+iv)}$$
 = $e^{(x+u)+i(y+v)}$ ($z = x + iy, w = u + iv$)
= $e^{x+u}e^{i(y+v)}$
= $e^x e^u e^{iy}e^{iv}$
= $(e^x e^{iy})(e^u e^{iv})$
= $e^z e^w$

Further Properties of $e^z = e^x e^{iy}$

- $\frac{1}{e^z} = e^{-z}$ since $e^z e^{-z} = e^{z-z} = e^0 = 1$.
- e^z is an entire function (we already showed this).
- What is its derivative? Recall

$$u(x, y) = e^x \cos y$$
 $v(x, y) = e^x \sin y$

and

$$u_X(x,y) = e^x \cos y$$
 $v_X(x,y) = e^x \sin y$
 $u_Y(x,y) = -e^x \sin y$ $v_Y(x,y) = e^x \cos y$

Thus $f'(z) = u_x(x, y) + iv_x(x, y) = e^x \cos y + ie^x \sin y = e^z!$ So the derivative of e^z is e^z , in symbols, $\frac{d}{dz}e^z = e^z$.

Even More Properties of $e^z = e^x e^{iy}$

- $\frac{d}{dz}e^{az} = a \cdot e^{az} \ (a \in \mathbb{C})$ by the chain rule.
- $\bullet \ e^{\overline{z}} = e^{x-iy} = e^x e^{-iy} = e^x \overline{e^{iy}} = \overline{e^x e^{iy}} = \overline{e^z}.$
- $e^z=1$ if and only if $e^xe^{iy}=1$. The complex number in polar form, e^xe^{iy} , equals 1, when its length equals 1 and its argument equals 0, i.e. when $e^x=1$ and $y=2k\pi$, i.e. x=0 and $y=2k\pi$, $k\in\mathbb{Z}$. Thus

$$e^z = 1 \iff z = 2\pi i k, \quad k \in \mathbb{Z}.$$

• $e^z = e^w \iff e^{z-w} = 1 \iff z - w = 2\pi ik \iff z = w + 2\pi ik$.

Understanding the Mapping $w = e^z$

The function $w=e^z$ is a mapping from $\mathbb C$ to $\mathbb C$. What are the images of

horizontal lines? $L = \{x + iy_0 \mid x \in \mathbb{R}\}$ for fixed $y_0 \in \mathbb{R}$. Then $e^{x + iy_0} = e^x e^{iy_0}$.

Understanding the Mapping $w = e^z$, cont.

What are the images of vertical lines? $L = \{x_0 + iy \mid y \in \mathbb{R}\}$ for fixed $x_0 \in \mathbb{R}$. Then $e^{x_0 + iy} = e^{x_0}e^{iy}$.

Understanding the Mapping $w = e^z$, cont.

What is the image of a vertical strip? $S = \{z : 0 < \text{Re } z < 1\}.$

Inverting ez

• When is $e^z = 0$?

$$e^z = 0 \iff e^x \cdot e^{iy} = 0$$
 Note: e^{iy} has absolute value 1! $\iff e^x = 0$ \iff Never...!

• For a given $z \in \mathbb{C} \setminus \{0\}$, is there a $w \in \mathbb{C}$ such that $e^w = z$? Writing $z = |z|e^{i\theta}$ and w = u + iv this is equivalent to:

$$e^{w} = z \iff e^{u}e^{iv} = |z|e^{i\theta}$$

 $\iff e^{u} = |z| \text{ and } e^{iv} = e^{i\theta}$
 $\iff u = \ln|z| \text{ and } v = \theta + 2k\pi$
 $\iff w = \ln|z| + i \text{ arg } z.$

This is the complex logarithm!