THE BRIDGE DIGITAL TALENT ACCELERATOR

U0M3 - Fundamentos de Redes y Comunicaciones

D1 – Conceptos básicos de Redes

D2 – Fundamentos de Hardware de red

D3 – Modelo OSI &TCP/IP y encapsulamiento

BRDGE DIGITAL TALENT ACCELERATOR

D1 - Conceptos básicos de redes

D1 - Conceptos básicos de redes - Topologías de red

https://conocesobreinformatica.com/

D1 - Conceptos básicos de redes - Red LAN

D1 - Conceptos básicos de redes - Red WLAN

https://gpcinc.mx/blog/redes-lan-man-wan/

D1 - Conceptos básicos de redes - Red MAN

https://gpcinc.mx/blog/redes-lan-man-wan/

D1 - Conceptos básicos de redes - Red WAN

https://gpcinc.mx/blog/redes-lan-man-wan/

https://blogs.itpro.es/jairgomez

BRDG EDIGITAL TALENT ACCELERATOR

64:70:33:0d:ae:5e

7c:38:ad:2a:c7:75

18:5e:0f:de:08:f5

78:4f:43:5a:c9:47

c8:5a:9f:cb:65:57

3c:cd:93:74:62:56

Una dirección IPv4 (notación decimal con puntos)

https://www.expressvpn.com/es/what-is-my-ip

22.000 millones de dispositivos conectados a Internet y sin freno; ¿Cuántos habrá en unos años?

Si echamos la vista atrás y vemos cómo eran nuestros dispositivos tecnológicos hace unos años, con total seguridad notaremos grandes cambios. Pero sin duda uno de los más destacados y que cada vez está más presente en la tecnología es Internet. Antes solo teníamos conexión en ordenadores, quizás en algún PDA y posteriormente en los móviles. Hoy en día eso ha cambiado significativamente y ahora podemos tener conexión desde la televisión, Tablet y una gran variedad de lo que conocemos como el Internet de las Cosas. En concreto son 22.000 millones de dispositivos conectados a la red. ¿Cuántos habrá en unos años?

4228250625						
mr	С	½	%	÷		
10 ^x	7	8	9	×		
log ₁₀	4	5	6	-		
EE	1	2	3	+		
Rand	0		,	=		

BRDG EDIGITAL TALENT ACCELERATOR

D1 - Conceptos básicos de redes - MAC vs IP

MAC address vs. IP address

MAC ADDRESS	IP ADDRESS		
Layer 2 address	Layer 3 address		
Identifies network devices on a local scale	Controls how devices on the internet communicate on a global scale		
12 digits, grouped into six pairs, separated by hyphens Example: 00-00-00-00-00	For IPv4: 32 bits, grouped into four decimal numbers Example: 000.000.000.000 For IPv6: 128 bits, grouped into eight sets of four digits Example: FEDC:BA98:7654:3210:0123:4567:89AB:CDEF		
Can't be changed	Can be changed at any time		
Sometimes called physical address	Sometimes called logical address		
Hardcoded into the device at manufacturing	Assigned to device through software configurations		

	ne	twork pa	rt	host part
IPv4:	192.	168	.178	.31
	8 Bit	8 Bit	8 Bit	8 Bit

	network prefix			interface identifier				
IPv6:	0000	0000	0000	0000	0000	ffff	c0a8	b21f
	16 Bit	16 Bit	16 Bit	16 Bit	16 Bit	16 Bit	16 Bit	16 Bit

https://www.expressvpn.com/es/what-is-my-ip

Prefix Length	Subnet Mask	Subnet in Binary Network = N, Host = H, Borrowed = n Total IP addresses in /16 Network = 65536.	Available Network	Usable Host Per Network
/17	255.255.128.0	NNNNNNN.NNNNNNNN.nHHHHHHHH.HHHHHHHH 11111111.11111111.10000000.00000000	2 ¹ =2	2 ¹⁵ -2=32766
/18	255.255.192.0	NNNNNNN.NNNNNNNN.nnHHHHHHH.HHHHHHHH 11111111.11111111.11000000.00000000	2 ² =4	214-2=16382
/19	255.255.224.0	NNNNNNN.NNNNNNNN.nnnHHHHH.HHHHHHHH 1111111.11111111.11100000.000000000	2 ³ =8	213-2=8190
/20	255.255.240.0	NNNNNNN.NNNNNNNN.nnnHHHH.HHHHHHHH 1111111.11111111.11110000.000000000	24=16	212-2=4094
/21	255.255.248.0	NNNNNNN.NNNNNNNN.nnnnHHH.HHHHHHHH 1111111.11111111.11111000.00000000	25=32	211-2 = 2046
/22	255.255.252.0	NNNNNNN.NNNNNNNN.nnnnnHH.HHHHHHHH 1111111.11111111.11111100.00000000	2 ⁶ =64	210-2=1022
/23	255.255.254.0	NNNNNNN.NNNNNNNN.nnnnnnH.HHHHHHHH 1111111.11111111.1111110.00000000	2 ⁷ =128	2 ⁹ -2 =510
/24	255.255.255.0	NNNNNNN.NNNNNNNN.nnnnnnn.HHHHHHHH 1111111.11111111.1111111.00000000	2 ⁸ =256	2 ⁸ -2 =254
/25	255.255.255.128	NNNNNNN.NNNNNNNN.nnnnnnn.nHHHHHHH 1111111.11111111.1111111.10000000	2 ⁹ =512	2 ⁷ -2 =126
/26	255.255.255.192	NNNNNNN.NNNNNNNN.nnnnnnn.nnHHHHHH 11111111.11111111.1111111111	2 ¹⁰ =1024	2 ⁶ -2 =62

https://networkustad.com

http://alejollagua.blogspot.com

THE BRIDGE DIGITAL TALENT ACCELERATOR

Ejercicio

192.168.26.100/25 10.0.5.7/22 172.17.5.73/28

D1 - Conceptos básicos de redes - IP privada vs pública

https://www.comparahosting.com/p/que-es-una-direccion-ip/

D1 - Conceptos básicos de redes - IP privada vs pública

https://tuelectronica.es/ip-privada-y-publica/

D1 - Conceptos básicos de redes - IP privada vs pública

Clase	Rango de direcciones de red reservadas	Dirección de Red con bits Máscara		
Α	10.0.0.0	10.0.0.0/8		
В	172.16.0.0 - 172.31.0.0	172.16.0.0/12		
С	192.168.0.0 - 192.168.255.0	192.168.0.0/16		

D1 - Conceptos básicos de redes - Configuración de red

D1 - Conceptos básicos de redes - Configuración de red

https://www.youtube.com/watch?v=SHkdWNo7SC8

https://www.youtube.com/watch?v=cn8Zxh9bPio

BRDGE DIGITAL TALENT ACCELERATOR

D2 – Hardware de red

D2 – Hardware de red – Hub vs Switch

D2 – Hardware de red – Router

D2 – Hardware de red – Firewall

D2 - Hardware de red - IDS vs IPS

Intrusion Detection System (IDS)

Intrusion Prevention System (IPS)

https://purplesec.us/intrusion-detection-vs-intrusion-prevention-systems/

D2 – Hardware de red – Honeypots

Fuente: Inco, diseño e implementacion de un Honeypot

https://honeypots.wordpress.com/

BRDG EDIGITAL TALENT ACCELERATOR

THE BRIDGE DIGITAL TALENT ACCELERATOR

D3 – Modelo OSI & TCP/IP y encapsulamiento

D3 - Modelo OSI & TCP/IP - Modelo OSI

https://www.definicionabc.com

D3 - Modelo OSI & TCP/IP - Modelo TCP/IP

http://redesteleco.com

D3 - Modelo OSI & TCP/IP - Encapsulamiento

Figura 1.22 • Disposición de capas en horizontal de las funcionalidades de una compañía área.

Libro: Redes de computadoras. Un enfoque descendente. James F. Kurose, Keith W. Ross

D3 - Modelo OSI & TCP/IP - Encapsulamiento

Ejemplo de encapsulamiento de datos

https://sites.google.com/site/redeslocalesyglobales/6-arquitecturas-de-redes/6-arquitectura-tcp-ip/4-proceso-de-encapsulacion-de-datos

D3 - Modelo OSI & TCP/IP - Modelo TCP/IP

Conjunto de protocolos TCP/IP y proceso de comunicación

http://redesteleco.com

BRDG EDIGITAL TALENT ACCELERATOR

D3 - Modelo OSI & TCP/IP - Encapsulamiento

Figura 1.24 • Hosts, routers y switches de la capa de enlace. Cada uno de ellos contiene un conjunto distinto de capas, lo que refleja sus distintas funcionalidades.

Libro: Redes de computadoras. Un enfoque descendente. James F. Kurose, Keith W. Ross

D3 - Modelo OSI & TCP/IP - Capa Enlace - Protocolo ARP

How address resolution protocol (ARP) works

https://cdn.ttgtmedia.com/rms/onlineimages/whatis-arp_desktop.png

D3 - Modelo OSI & TCP/IP - Capa Enlace - Protocolo ARP

https://geekytheory.com/wp-content/uploads/2013/10/protocolo-arp.png

D3 - Modelo OSI & TCP/IP - Modelo TCP/IP

Conjunto de protocolos TCP/IP y proceso de comunicación

http://redesteleco.com

D3 - Modelo OSI & TCP/IP - Capa Transporte - Protocolo TCP vs UDP

https://www.prometec.net/blog-protocolo-udp/

TCP

UDP

D3 - Modelo OSI & TCP/IP - Capa Transporte - Protocolo TCP vs UDP

Item	TCP	UDP
Stands For	Transmission Control Protocol	User Datagram Protocol
Protocol	Connection Oriented	Connectionless
Security	Makes Checks For Errors And	Makes Error Checking But
	Reporting	No Reporting
Data Sending	Slower	Faster
Header Size	20 Bytes	8 Bytes
Segments	Acknowledgement	No Acknowledgement
Typical Applications	- Email	- VoIP

https://miro.medium.com/max/2322/1*ni8U_s0qOxilaf61HXeN2w.jpeg

