

Page 1 of 98

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Chen Yu Safety Co., Ltd.

Active & bluetooth headset Model No.: H1

FCC ID: 2AJH9-H1

Prepared for : Chen Yu Safety Co., Ltd.

Address : Fl.7, No. 33, Ln. 751, Kang Ning St., Xizhi Dist.,

New Taipei City 22157, Taiwan, R.O.C.

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan

Rd. Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20161431

Date of Test : July 22-August 6, 2016

Date of Report : August 6, 2016

TABLE OF CONTENTS

Descrip	ption	Page
Toot D	an aut Cautification	
	eport Certification	
1. GE	ENERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2.	Accessory and Auxiliary Equipment	
1.3.	Description of Test Facility	
1.4.	Measurement Uncertainty	
2. MI	EASURING DEVICE AND TEST EQUIPMENT	
3. OP	PERATION OF EUT DURING TESTING	
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
4. TE	ST PROCEDURES AND RESULTS	9
5. 201	DB BANDWIDTH TEST	10
5.1.	Block Diagram of Test Setup	10
5.2.	The Requirement For Section 15.247(a)(1)	
5.3.	EUT Configuration on Measurement	10
5.4.	Operating Condition of EUT	10
5.5.	Test Procedure	10
5.6.	Test Result	
6. CA	ARRIER FREQUENCY SEPARATION TEST	17
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
	JMBER OF HOPPING FREQUENCY TEST	
7.1.	Block Diagram of Test Setup	
7.2. 7.3.	The Requirement For Section 15.247(a)(1)(iii)	
7.3. 7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	
8. DV	VELL TIME TEST	27
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Measurement	27
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
9. MA	AXIMUM PEAK OUTPUT POWER TEST	43
9.1.	Block Diagram of Test Setup	
9.2.	The Requirement For Section 15.247(b)(1)	
9.3.	EUT Configuration on Measurement	
9.4.	Operating Condition of EUT	43

	9.5.	Test Procedure	
	9.6.	Test Result	
10	. RA	DIATED EMISSION TEST	50
	10.1.	Block Diagram of Test Setup	50
	10.2.	The Limit For Section 15.247(d)	51
	10.3.	Restricted bands of operation	52
	10.4.	Configuration of EUT on Measurement	52
	10.5.	Test Procedure	
	10.6.	The Field Strength of Radiation Emission Measurement Results	53
11	. BA	ND EDGE COMPLIANCE TEST	66
	11.1.	Block Diagram of Test Setup	66
	11.2.	The Requirement For Section 15.247(d)	66
	11.3.	EUT Configuration on Measurement	66
	11.4.	Operating Condition of EUT	66
	11.5.	Test Procedure	67
	11.6.	Test Result	67
12	. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.20	7(A)90
	12.1.	Block Diagram of Test Setup	90
	12.2.	Power Line Conducted Emission Measurement Limits	
	12.3.	Configuration of EUT on Measurement	90
	12.4.	Operating Condition of EUT	
	12.5.	Test Procedure	91
	12.6.	Power Line Conducted Emission Measurement Results	91
13	. AN	TENNA REQUIREMENT	98
	13.1.	The Requirement	
	13.2.	Antenna Construction	

Report No.: ATE20161431

Page 4 of 98

Test Report Certification

Applicant : Chen Yu Safety Co., Ltd.

Manufacturer : Lanmart Co.

EUT Description: Active & bluetooth headset

Model No. : H1

Trade Mark : Chenyu and Lanmart

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2015 ANSI C63.10: 2013

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	July 22-August 6, 2016
Date of Report:	August 6, 2016
Prepared by :	(Bob Wang, Engineer)
Approved & Authorized Signer :	(Sean Liu, Manager)

Page 5 of 98

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Active & bluetooth headset

Model Number : H1

Trade Mark : Chenyu and Lanmart

Bluetooth version : BT 3.0

Frequency Range : 2402MHz-2480MHz

Number of Channels : 79 Antenna Gain : 0dBi

Antenna type : PCB Antenna

Power Supply : DC 4.5V, or DC 3.7V, or DC 5V (only for charging by

USB port)

Modulation mode
 GFSK, π/4 DQPSK, 8DPSK
 Applicant
 Chen Yu Safety Co., Ltd.

Address : Fl.7, No. 33, Ln. 751, Kang Ning St., Xizhi Dist., New

Taipei City 22157, Taiwan, R.O.C.

Manufacuter : Lanmart Co.

Address : Rm. 3B Aibang Mansion, 585 Ling Ling Road, Shanghai

20030, China.

Date of sample received: July 20, 2016

Date of Test : July 22-August 6, 2016

1.2. Accessory and Auxiliary Equipment

N/A

Page 6 of 98

1.3. Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2016	Jan. 09, 2017
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2016	Jan. 09, 2017
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2016	Jan. 09, 2017
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2016	Jan. 09, 2017
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	Jan. 13, 2017
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	Jan. 13, 2017
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	Jan. 12, 2017
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 14, 2016	Jan. 13, 2017
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2016	Jan. 09, 2017
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2016	Jan. 09, 2017
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 9, 2016	Jan. 09, 2017
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 9, 2016	Jan. 09, 2017

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

EUT
Figure 1 Setup: Transmitting mode

(EUT: Active & bluetooth headset)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Report No.: ATE20161431

Page 10 of 98

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Active & bluetooth headset)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

Channel	Frequency	GFSK 20dB Bandwidth	∏/4-DQPSK 20dB Bandwidth	8DPSK 20dB Bandwidth	Result
	(MHz)	(MHz)	(MHz)	(MHz)	
Low	2402	0.803	1.220	1.207	Pass
Middle	2441	0.803	1.220	1.207	Pass
High	2480	0.803	1.224	1.211	Pass

The spectrum analyzer plots are attached as below.

Low channel

Middle channel

Page 13 of 98

High channel

∏/4-DQPSK Mode

8DPSK Mode

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Active & bluetooth headset)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20161431 Page 18 of 98

6.5. Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 2 MHz.
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

GFSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0014	25KHz or 20dB	PASS
Low	2403	1.0014	bandwidth	PASS
Middle	2440	1.0014	25KHz or20dB	PASS
Middle	2441	1.0014	bandwidth	1 Abb
High	2479	1.0014	25KHz or 20dB	PASS
	2480	1.0014	bandwidth	1 700

∏/4-DQPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
Low	2403	1.002)	bandwidth	17100
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
Middle	2441	1.0029	bandwidth	LASS
Uiah	2479	1.0029	25KHz or 2/3*20dB	PASS
High	2480	1.0029	bandwidth	rass

8DPSK

Channel	Frequency	Channel	Limit	Result
	(MHz)	Separation(MHz)	(MHz)	
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
LOW	2403	1.0029	bandwidth	rass
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
Mildule	2441	1.0029	bandwidth	rass
High	2479	1.0029	25KHz or 2/3*20dB	PASS
nigii	2480	1.0029	bandwidth	rass

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

High channel

$\Pi/4$ -DQPSK Mode

8DPSK Mode

Page 23 of 98

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Active & bluetooth headset)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5. Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)

Number of hopping channels $(\Pi/4-DQPSK)$

Number of hopping channels(8DPSK)

Report No.: ATE20161431

Page 27 of 98

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Active & bluetooth headset)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.

8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
	2402	0.428	136.96	400		
DH1	2441	0.438	140.16	400		
	2480	0.442	141.44	400		
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6		
	2402	1.746	279.36	400		
DH3	2441	1.790	286.40	400		
	2480	1.761	281.76	400		
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6		
	2402	2.978	317.65	400		
DH5	2441	2.978	317.65	400		
	2480	3.000	320.00	400		
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.446	142.72	400	
DH1	2441	0.442	141.44	400	
	2480	0.438	140.16	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(2*)	79))×31.6	
	2402	1.714	274.24	400	
DH3	2441	1.714	274.24	400	
	2480	1.728	276.48	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6	
	2402	3.000	320.00	400	
DH5	2441	3.022	322.35	400	
	2480	2.978	317.65	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2402	0.449	143.68	400
	2441	0.446	142.72	400
	2480	0.446	142.72	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2402	1.736	277.76	400
	2441	1.721	275.36	400
	2480	1.736	277.76	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	3.040	324.27	400
	2441	2.975	317.33	400
	2480	3.062	326.61	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

GFSK Mode

Page 30 of 98

Page 32 of 98

Page 33 of 98

\prod /4-DQPSK

Page 36 of 98

8DPSK Mode

Page 39 of 98

Page 42 of 98

Page 43 of 98

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Active & bluetooth headset)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

9.6.Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	4.28/0.0027	30 / 1.0
Middle	2441	4.24/0.0027	30 / 1.0
High	2480	4.10/0.0026	30 / 1.0

Π /4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	3.36/0.0022	21 / 0.125
Middle	2441	3.78/0.0024	21 / 0.125
High	2480	4.06/0.0025	21 / 0.125

8DPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	3.78/0.0024	21 / 0.125
Middle	2441	3.94/0.0025	21 / 0.125
High	2480	4.15/0.0026	21 / 0.125

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Date: 6.August.2016 07:59:34

Middle channel

Date: 6.August.2016 07:57:44

High channel

Date: 6.August.2016 07:52:33

\prod /4-DQPSK Mode

Low channel

Date: 6.August.2016 08:01:45

Middle channel

Date: 6.August.2016 08:04:25

High channel

Date: 6.August.2016 08:09:31

8DPSK Mode

Low channel

Date: 6.August.2016 08:28:08

Middle channel

Date: 6.August.2016 00:11:33

___ _

Date: 6.August.2016 08:44:33

10. RADIATED EMISSION TEST

- 10.1.Block Diagram of Test Setup
- 10.1.1.Block diagram of connection between the EUT and peripherals

Setup: Transmitting mode

10.1.2. Semi-Anechoic Chamber Test Setup Diagram

Page 51 of 98

30MHz-1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation

Report No.: ATE20161431 Page 52 of 98

required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3. Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

pern	nitted in any of the freque	ncy bands listed below:	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 53 of 98

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

10.6. The Field Strength of Radiation Emission Measurement Results

Note:

- 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8QPSK mode and recorded the worst case data (GFSK mode) for all test mode.
- 2. The test frequency is from 30MHz to 25GHz, The 18-25GHz emissions are not reported, because the levels are too low against the limit.

Page 54 of 98

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Mark 2016 #846

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active & bluetooth headset

TX 2402MHz Mode:

Model: H1

Manufacturer: Lanmart Co.

Note: Report No.:ATE20161431 Polarization: Vertical Power Source: DC 3.7V

Date: 16/07/23/ Time: 9/01/34

Engineer Signature: Mark

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	45.7333	32.27	-19.58	12.69	40.00	-27.31	QP	8		
2	98.3752	31.92	-21.61	10.31	43.50	-33.19	QP			
3	402.5168	38.34	-13.94	24.40	46.00	-21.60	QP			

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161431

Page 55 of 98

Job No.: Mark 2016 #847 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Active & bluetooth headset

Mode: TX 2402MHz

Model: H1

Manufacturer: Lanmart Co.

Note: Report No.:ATE20161431

Polarization: Horizontal Power Source: DC 3.7V

Date: 16/07/23/ Time: 9/02/16

Engineer Signature: Mark

Distance: 3m

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161431

Page 56 of 98

Job No.: Mark 2016 #848 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/07/23/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/03/01

EUT: Active & bluetooth headset Engineer Signature: Mark

Mode: TX 2441MHz Distance: 3m

Model: H1

Manufacturer: Lanmart Co.

Note: Report No.:ATE20161431

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	145.2995	40.92	-22.25	18.67	43.50	-24.83	QP			
2	234.3099	32.75	-18.29	14.46	46.00	-31.54	QP			
3	357.1925	32.30	-14.40	17.90	46.00	-28.10	QP			

Report No.: ATE20161431 Page 57 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Mark 2016 #849 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Active & bluetooth headset

Mode: TX 2441MHz

Model: H1

Manufacturer: Lanmart Co.

Note: Report No.:ATE20161431

Polarization: Vertical
Power Source: DC 3.7V

Date: 16/07/23/ Time: 9/04/17

Engineer Signature: Mark

Distance: 3m

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 58 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/07/23/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/05/18

EUT: Active & bluetooth headset Engineer Signature: Mark

TX 2480MHz Mode: Distance: 3m

Model: H1 Manufacturer: Lanmart Co.

Job No.: Mark 2016 #850

Report No.:ATE20161431 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	216.1197	32.38	-18.42	13.96	46.00	-32.04	QP			
2	474.7913	32.38	-12.52	19.86	46.00	-26.14	QP			
3	833.0127	34.76	-5.33	29.43	46.00	-16.57	QP			

Site: 1# Chamber

Page 59 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Mark 2016 #851

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Active & bluetooth headset

Mode: TX 2480MHz

Model: H₁

Manufacturer: Lanmart Co.

Report No.:ATE20161431

Polarization: Horizontal Power Source: DC 3.7V

Date: 16/07/23/ Time: 9/06/19

Engineer Signature: Mark

Distance: 3m

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 60 of 98

Above 1GHz

Job No.: Mark #1135

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Horizontal

Power Source: DC 3.7V

Date: 16/07/22/ Time: 8/59/01

Engineer Signature: Distance: 3m

TX 2402MHz Mode:

Test item: Radiation Test

Model: H1

EUT:

Lanmart Co. Manufacturer:

Note: Report No.:ATE20161431

Standard: FCC Class B 3M Radiated

Temp.(C)/Hum.(%) 23 C / 48 %

Active & bluetooth headset

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 61 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Distance: 3m

Polarization: Vertical Job No.: Mark #1136 Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/07/22/

Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/04/14 Active & bluetooth headset EUT: Engineer Signature:

TX 2402MHz Mode:

Model: H₁

Manufacturer: Lanmart Co.

Report No.:ATE20161431 Note:

Page 62 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Mark #1139

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % Active & bluetooth headset EUT:

TX 2441MHz Mode:

Model: H1

Manufacturer: Lanmart Co.

Report No.:ATE20161431 Note:

Polarization: Horizontal Power Source: DC 3.7V

Date: 16/07/22/ Time: 9/07/21 Engineer Signature: Distance: 3m

100.	0 dBuV/m									
									limit1:	_
90			1					ļ 		
80								ļ		
70								ļ		
60					ļ		ļ			22222222
50									and heavy had be	2 maria
40	ologodyn medicaji i s. Kolob di PA		, and	Announce Market Who	repetupaturaheers	hiputhornery	der-displayer and have	Manufacture		
30	the deplement of the books of the	many promise many promise and promise and	Market Harris				ļ <u>ļ</u>			
20										
10.0										
1	000.000	20	00	3000	5000	6000 7	000 8000	9000		18000.0 MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	2441.000	94.15	-7.35	86.80			peak			
-	16127.689	9.32	40.08	49.40	54.00	-4.60	peak			
	10127.000	The second section is		CONTRACT (\$100)						

Report No.: ATE20161431 Page 63 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Mark #1140

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %
EUT: Active & bluetooth headset

Mode: TX 2441MHz

Model: H1

Manufacturer: Lanmart Co.

Note: Report No.:ATE20161431

Polarization: Vertical Power Source: DC 3.7V

Date: 16/07/22/ Time: 9/11/45 Engineer Signature: Distance: 3m

									limit1:	_
90								ļļ		
80			\							
70										
60										
50								and come	depression of the state of the	y say a sur fairmen
40			الانفساد الن	more than the state of	white the standard and the standards	Market March Marks	WASHINGTON TOWN			3
30	with mark with warther	nelsolarellanguetian	Appart Andrews							
20										
10.0	0									
1	1000.000	20	00	3000	5000	6000 7	7000 8000	9000		18000.0 MHz
	Freq.	Reading	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	(MHz)	(dBuV/m)	(ub)	(4247111)						
•		(dBuV/m) 87.32	-7.35	79.97			peak			
	(MHz)				54.00	-4.81	peak peak			

Report No.: ATE20161431 Page 64 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Mark #1141

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Active & bluetooth headset

Mode: TX 2480MHz

Model: H1

Manufacturer: Lanmart Co.

Note: Report No.:ATE20161431

Polarization: Vertical
Power Source: DC 3.7V

Date: 16/07/22/
Time: 9/14/33
Engineer Signature:
Distance: 3m

Report No.: ATE20161431 Page 65 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Mark #1142

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %
EUT: Active & bluetooth headset

Mode: TX 2480MHz

Model: H1

Manufacturer: Lanmart Co.

Note: Report No.:ATE20161431

Polarization: Horizontal Power Source: DC 3.7V

Date: 16/07/22/ Time: 9/18/52 Engineer Signature: Distance: 3m

Page 66 of 98

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Active & bluetooth headset)

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
	GFSK	
2400.00	40.47	> 20dBc
2483.50	56.38	> 20dBc
	∏/4-DQPSK Mode	
2400.00	33.86	> 20dBc
2483.50	53.11	> 20dBc
	8DPSK	
2400.00	34.13	> 20dBc
2483.50	51.72	> 20dBc

GFSK

∏/4-DQPSK Mode

8DPSK

