3. Boolesche Algebra

hier nur kurze Einführung

 Details siehe Vorlesung "Logik und diskrete Strukturen"

George Boole

- **1815 1864**
- britischer Mathematiker und Philosoph
- begründete moderne mathematische Logik

Edward Vermilye Huntington

- **1874 1952**
- amerikanischer Mathematiker
- konnte die Boolesche Algebra auf vier Axiome zurückführen

Boolesche Algebra

Gegeben: Menge V, Operatoren •, +: V × V → V

V heißt Boolesche Algebra, wenn die folgenden vier Huntingtonschen Axiome gelten:

Kommutativgesetze (K): a • b = b • a

$$a+b=b+a$$

Distributivgesetze (D): a • (b + c) = (a • b) + (a • c)

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

Neutrale Elemente (N): Es existieren e, n ∈ V mit

• Inverse Elemente (I): Für alle a ∈ V existiert ein a' mit

Beispiele: Mengenalgebra

Beispiel 1: Mengenalgebra (T = Trägermenge)

Boolesche Algebra	Mengenalgebra	
V	℘(T)	Potenzmenge der Trägermenge T
•	Π	Durchschnitt
+	U	Vereinigung
n	Ø	Leere Menge
е	Т	Trägermenge
a'	T\A	Komplementärmenge

Veranschaulichung durch Venn-Diagramme

Mengenalgebra (2)

■ A∩(B∪C)

Mengenalgebra (3)

■ A U (B ∩ C)

Beispiel: Schaltalgebra

Beispiel 2: Schaltalgebra

Boolesche Algebra	Schaltalgebra	
V	{ 1, 0 }	Wahrheitswerte (TRUE, FALSE)
•	۸	Konjunktion (UND-Operator)
+	V	Disjunktion (ODER-Operator)
n	0	"Falsch" (FALSE)
е	1	"Wahr" (TRUE)
a'	¬а	Negation (Verneinung)

Konjunktion: z = x ∧ y

Disjun	ktion: z	$=x \lor y$
--------	----------	-------------

Negation:
$$z = \neg x = \overline{x} = x'$$

	X	у	Z
0	0	0	0
1	0	1	0
2	. 1	0	0
3	1	1	1

	X	у	Z
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

	x	Z
0	0	1
1	1	0

Schaltalgebra und Axiome von Huntington

• Wahrheitstabellen für die Huntington'schen Axiome

damit ist die Schaltalgebra eine Boolesche Algebra

Schaltalgebra

Schaltalgebra ist Spezialfall einer Booleschen Algebra

- Schaltvariable: x
 - kann die logischen Werte 0 (falsch) und 1 (wahr) annehmen
- Verknüpfungen
 UND, ODER, NICHT
 logische Schreibweise: x∧y, x∨y, ¬x
 einfacher zu setzen
 - algebraische Schreibweise $x \cdot y$, x+y, \overline{x} oder x'
 - algebraische Schreibweise ist kompakter
 - » Punkt kann weggelassen werden
 - » Punktrechnung geht vor Strichrechnung, dadurch entfallen viele Klammern
- Rechenregeln für Schaltvariablen
 - Huntington'sche Axiome sind erfüllt (s.u.)
 - daher gelten auch alle weiteren Rechenregeln der Booleschen Algebra

Boolesche Algebra, Rechenregeln

	Disjunktion	Konjunktion
Neutrales Element	a+0=a	a·1=a
Inverses Element	a+a' = 1	a·a'=0
Kommutativgesetz	a+b=b+a	$a \cdot b = b \cdot a$
Assoziativgesetz	(a+b)+c = a+(b+c)	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
Distributivgesetz	$a \cdot (b+c) = a \cdot b + a \cdot c$	$a+b\cdot c = (a+b)\cdot (a+c)$
Eliminationsgesetz	a+1 = 1	$a \cdot 0 = 0$
Idempotenz	a+a=a	$a \cdot a = a$
Doppelte Negation	a	u'' = a
Absorption	$a \cdot (a+b) = a$	$a+a\cdot b=a$
De-Morgan-Regel	$(a+b)' = a' \cdot b'$	$(a \cdot b)' = a' + b'$

die Zeilen 1-3 und 5 () definieren die Boolesche Algebra nach Huntington, der Rest folgt daraus

Beispiel: Idempotenzgesetze

Idempotenzgesetze

sind wichtig f
ür die Vereinfachung von Schaltfunktionen

Idempotenzgesetze

(ID1)
$$x \lor x = x$$

(ID2)
$$x \wedge x = x = (x \vee x) \wedge 1$$

Herleitung von (ID1):

$$x \vee x$$

$$= (x \lor x) \land 1$$

$$= (x \vee x) \wedge (x \vee \overline{x})$$

$$= x \lor (x \land \overline{x})$$

$$= x \lor 0$$

$$= x$$

Neutrales Element

Inverses Element

Distributivgesetz

Inverses Element

Neutrales Element

Achtung: Fehler im Buch! Wo steckt der Fehler?

Beispiel: Absorptionsgesetze

- Absorptionsgesetze
 - sind wichtig f
 ür die Vereinfachung von Schaltfunktionen

Absorptionsgesetze

(AB1)
$$x \lor (x \land y) = x$$

(AB2) $x \land (x \lor y) = x$

Herleitung von (AB1):

$$x \lor (x \land y)$$

$$= (x \land 1) \lor (x \land y)$$

$$= x \land (1 \lor y)$$

$$= x \land (y \lor 1)$$

$$= x \land 1$$

$$= x$$

Beispiel: Absorptionsgesetze (2)

• Tipp (funktioniert aber nur bei Schaltalgebra)

- wenn man die Absorptionsregel (oder irgendeine andere Regel)
 vergessen hat, kommt man oft mit einer Fallunterscheidung schneller ans Ziel:
- -1. Fall y = 0, dann gilt:

$$x \lor (x \land y) = x \lor (x \land 0)$$
$$= x \lor 0$$
$$= x$$

- 2. Fall y = 1, dann gilt:

$$x \lor (x \land y) = x \lor (x \land 1)$$

= $x \lor x$
= x (wenn man das schon weiß)

Beispiel: Assoziativgesetz

Assoziativgesetze

(A1)
$$x \lor (y \lor z) = (x \lor y) \lor z$$

(A2)
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

Herleitung von (A1):

$$x \lor (y \lor z)$$

$$= (x \lor (y \lor z)) \land 1$$

$$= (x \lor (y \lor z)) \land (x \lor \overline{x})$$

$$= [(x \lor (y \lor z)) \land x] \lor [(x \lor (y \lor z)) \land \overline{x}]$$

$$= [x] \lor [(x \lor (y \lor z)) \land \overline{x}]$$

$$= [x \lor (x \land z)] \lor [(x \lor (y \lor z)) \land x]$$

$$= [(x \land (x \lor y)) \lor (x \land z)] \lor [(x \lor (y \lor z)) \land \overline{x}]$$

$$= [x \wedge ((x \vee y) \vee z)] \vee [(x \vee (y \vee z)) \wedge \overline{x}]$$

$$= [((x \lor y) \lor z) \land x] \lor [(x \lor (y \lor z)) \land \overline{x}]$$

$$= [((x \lor y) \lor z) \land x] \lor [\overline{x} \land (x \lor (y \lor z))]$$

$$= [((x \lor y) \lor z) \land x] \lor [(\overline{x} \land x) \lor (\overline{x} \land (y \lor z))]$$

$$= [((x \lor y) \lor z) \land x] \lor [0 \lor (\overline{x} \land (y \lor z))]$$

$$= [((x \lor y) \lor z) \land x] \lor [\overline{x} \land (y \lor z)]$$

$$= [((x \lor y) \lor z) \land x] \lor [(\overline{x} \land y) \lor (\overline{x} \land z)]$$

$$= [((x \lor y) \lor z) \land x] \lor [(0 \lor (x \land y)) \lor (x \land z)]$$

$$= [((x \lor y) \lor z) \land x] \lor [((\overline{x} \land x) \lor (\overline{x} \land y)) \lor (\overline{x} \land z)]$$

$$= [((x \lor y) \lor z) \land x] \lor [(\overline{x} \land (x \lor y)) \lor (\overline{x} \land z)]$$

$$= [((x \lor y) \lor z) \land x] \lor [x \land ((x \lor y) \lor z)]$$

$$= [((x \lor y) \lor z) \land x] \lor [((x \lor y) \lor z) \land \overline{x}]$$

$$= ((x \lor y) \lor z) \land [x \lor \overline{x}]$$

$$= ((x \lor y) \lor z) \land 1$$

$$= (x \lor y) \lor z$$

Schaltfunktionen

Definition Schaltfunktion

- seien B= $\{0, 1\}$; $n, m ? ?; n, m \ge 1$
- eine Funktion $f: B^n \rightarrow B^m$ heißt Schaltfunktion

Boolesche Funktionen

Definition Boolesche Funktionen

 eine Schaltfunktion mit m=1 nennt man auch (n-stellige) Boolesche Funktion

Offenbar gilt:

Eine Schaltfunktion mit m Ausgängen ist darstellbar als m
 Schaltfunktionen mit je einem Ausgang, also m Booleschen Funktionen:

$$f: B^n \to B^m \text{ entspricht}$$

$$\begin{cases} f_1: B^n \to B \\ \dots \\ f_m: B^n \to B \end{cases}$$

Wahrheitstabellen

Wahrheitstabelle

- auch Wahrheitstafel, Wertetabelle, Wertetafel genannt
- jede *n*-stellige Boolesche Funktion lässt sich eindeutig als Wahrheitstabelle mit 2ⁿ Zeilen darstellen

x_1	x_2	X ₃	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

– jede der Zeilen kann entweder 0 oder 1 enthalten, also gibt es $2^{(2^n)}$ verschiedene n-stellige Boolesche Funktionen

2-stellige Boolesche Funktionen

	F	ınkti	onswert	Schreibweise	Bemerkung
	y	=	$f(x_1,x_2)$	mit den Zeichen	
Benennung der	x_1	=	0 1 0 1	∧ ∨ <i>−</i>	
Verknüpfung	x_2	=	0 0 1 1		
Null	y_0	=	0000	0	Null
UND-Verknüpfung	y_1	=	0001	$x_1 \wedge x_2$	$x_1 \text{ UND } x_2$
Inhibition	y_2	=	0010	$\overline{x}_1 \wedge x_2$	
Transfer	y_3	=	0011	x_2	
Inhibition	<i>y</i> ₄	=	0100	$x_1 \wedge \overline{x}_2$	
Transfer	y_5	=	0 1 0 1	x_1	
Antivalenz	y_6	=	0110	$(x_1 \wedge \overline{x}_2) \vee (\overline{x}_1 \wedge x_2)$	Exclusiv-ODER
ODER-Verknüpfung	y ₇	=	0 1 1 1	$x_1 \lor x_2$	x_1 ODER x_2
NOR-Verknüpfung	y_8	=	1000	$\overline{x_1 \lor x_2}$	NICHT-ODER
Äquivalenz	y_9	=	1001	$(x_1 \wedge x_2) \vee (\overline{x}_1 \wedge \overline{x}_2)$	15
Komplement	y_{10}	=	1010	\overline{x}_1	A 10
Implikation	y_{11}	=	1011	$\overline{x}_1 \lor x_2$	
Komplement	y_{12}	=	1100	\overline{x}_2	
Implikation	y_{13}	=	1 1 0 1	$x_1 \vee \overline{x}_2$	
NAND-Verknüpfung	y_{14}	=	1110	$\overline{x_1 \wedge x_2}$	NICHT-UND
Eins	y_{15}	=	1 1 1 1	1	Eins

Boolesche Funktionen

Darstellungsmöglichkeiten

- Boolesche Ausdrücke
 - "Formeln": Zeichenfolge mit
 - Konstanten 0, 1
 - Schaltvariable x_i
 - Boolesche Operatoren \neg , \land , \lor
 - Klammern (,)
- Wahrheitstafel
 - alle Belegungen der freien Variablen werden explizit aufgezählt
 - Anzahl der Zeilen in der Wahrheitstabelle steigt exponentiell mit der Anzahl der freien Variablen
- Graphen
 - dienen häufig der Computer-internen Repräsentation
 - z.B. Binäre Entscheidungsdiagramme
 - detaillierte Beschreibung s.u.

Boolesche Ausdrücke

• Formale (rekursive) Definition

- Sei $V = \{x_1, ..., x_n\}$ eine Menge Boolescher Variablen.
- Die Menge aller Booleschen Ausdrücke definieren wir folgendermaßen:
 - $0, 1, x_i$ sind Boolesche Ausdrücke
 - Mit Φ ist auch ¬Φ ein Boolescher Ausdruck.
 - Mit Φ und Ψ sind auch Φ∧Ψ und Φ∨Ψ Boolesche Ausdrücke.
 - Mit Φ ist auch (Φ) ein Boolescher Ausdruck.
- Damit ist z.B. $(x_1 \lor 0) \land (1 \land ((\neg x_2 \land x_3)))$ ein Boolescher Ausdruck.

Syntaxdiagramm:

Boolesche Ausdrücke (2)

Operatoren-Bindung

- aus obigem Syntax-Diagramm ist die Bindung der Operatoren nicht herauszulesen $\neg x_2 \land x_3 = \neg (x_2 \land x_3)$? $= (\neg x_2) \land x_3$?
- erst zusätzliche Regeln machen die Syntax eindeutig
 - NICHT-Operator bindet stärker als UND- oder ODER-Operator.
 - also

$$\neg x_2 \land x_3 = (\neg x_2) \land x_3$$

• Punktrechnung geht vor Strichrechnung.

also

$$x_2' \cdot x_3 + x_2 \cdot x_4 = (x_2' \cdot x_3) + (x_2 \cdot x_4) = x_2' x_3 + x_2 x_4$$

• Aber stimmt auch "UND-Operator bindet stärker als ODER-Operator"?

$$\neg x_2 \land x_3 \lor x_2 \land x_4 = (\neg x_2 \land x_3) \lor (x_2 \land x_4) ?$$
$$= \neg x_2 \land (x_3 \lor x_2) \land x_4 ?$$

Da würde ich mich nicht drauf verlassen. Besser die Klammern setzen!

den Punkt darf man

sogar weglassen

Boolesche Ausdrücke (3)

Beispiele Boolescher Ausdrücke in Baumdarstellung

Boolesche Ausdrücke (3)

- Sei Φ ein beliebiger Boolescher Ausdruck.
- Ф heißt
 - *erfüllbar*, wenn es Werte $x_1, ..., x_n$ gibt, mit $\Phi(x_1, ..., x_n) = 1$.
 - unerfüllbar, wenn Φ stets zu 0 evaluiert.
 - allgemeingültig, wenn Φ stets zu 1 evaluiert.
 - Einen allgemeingültigen Ausdruck bezeichnet man auch als

Tautologie.

Erfüllbare Funktionen

$$\phi_1 = \neg x$$

$$\phi_2 = x \wedge y$$

$$\phi_3 = x \vee y$$

Unerfüllbare Funktionen

$$\phi_1 = 0$$

$$\phi_2 = x \wedge \neg x$$

$$\phi_3 = \neg(x \lor \neg x)$$

Allgemeingültige Funktionen

$$\phi_1 = 1$$

$$\phi_2 = x \vee \neg x$$

$$\phi_3 = \neg(x \land \neg x)$$

Äquivalenz Boolescher Funktionen

Definition

– Zwei Boolesche Ausdrücke Φ und Ψ sind genau dann äquivalent, wenn sie dieselbe Funktion repräsentieren, d.h. wenn für alle Variablenbelegungen $x_1, ..., x_n$ gilt:

$$\Phi(x_1, ..., x_n) = \Psi(x_1, ..., x_n)$$

Anders gesagt

- Zwei Boolesche Ausdrücke Φ und Ψ sind genau dann äquivalent, wenn der Ausdruck Φ ↔Ψ eine Tautologie ist.
- Hierbei ist der Äquivalenz-Operator ,,↔" definiert als:

$$z = x \leftrightarrow y$$

\boldsymbol{x}	y	Z
0	0	1
0	1	0
1	0	0
1	1	1

oder

$$\begin{array}{rcl} \ddot{\mathsf{A}}\mathsf{quivalenz} \\ x \leftrightarrow y & = & (\overline{x} \land \overline{y}) \lor (x \land y) \\ & = & (\overline{x} \lor y) \land (x \lor \overline{y}) \end{array}$$

Feststellen der Äquivalenz

Wie stellt man fest, ob Φ und Ψ äquivalent sind?

- Vergleich der Wahrheitstabellen
 - alle Belegungen aufzählen (für beide Funktionen in derselben Reihenfolge)
 - Vergleich der Funktionswertspalte
 - geht in der Praxis nur bei einfachen Funktionen mit wenigen Variablen
- Algebraische Umformung
 - sukzessive Anwendung von Rechenregeln, um Φ in Ψ zu überführen oder um $\Phi \leftrightarrow \Psi$ zu 1 zu vereinfachen
- Erzeugen einer Normalform
 - Transformation der Ausdrücke Φ und Ψ in eine Normalform
 - Normalform bedeutet, dass die Darstellung eindeutig ist
 - die Ausdrücke Φ und Ψ müssen dann dieselbe Darstellung haben
 - z.B. ist die Wahrheitstabelle eine Normalform
 - es gibt weitere Normalformen (z.B. disjunktive und konjunktive Normalform, diverse Entscheidungsdiagramme, etc.) (s.u.)

Strukturelle Induktion

Spezielle Variante der vollständigen Induktion

- Induktionsanfang
 - Gültigkeit der Behauptung wird zunächst bewiesen für einen oder mehrere einfache Basisfälle
 - Elementare Wahrheitswerte 0 und 1 und alle booleschen Ausdrücke, die nur aus einer Variablen x_i bestehen
 - (wegen $0 = x \land \neg x$ und $1 = x \lor \neg x$ reicht es streng genommen sogar aus, nur die Variablen x_i zu betrachten)
- Induktionsschritt
 - Übertragung der Behauptung auf das nächst komplexere Objekt
 - zusammengesetzte Ausdrücke
 - Gültigkeit kann angenommen werden für alle
 Teilausdrücke, die ja einfacher sind

Induktionsanfang

Induktionsschluss

Erneuter Induktionsschluss

Strukturelle Induktion (2)

Strukturelle Induktion

entspricht klassischer Induktion über die Formellänge n

• Formellänge *n*

- Anzahl der Symbole in der Formel (Knoten im Baum, d.h. 0, 1, Variablen, Operatoren)
- $-0, 1, x_i$ sind die einzigen Ausdrücke der Länge 1
 - Induktionsanfang beweist die Behauptung für *n*=1
- jedes weitere Symbol vergrößert die Formellänge
 - um die Behauptung für *n*>1 zu zeigen, darf man annehmen, dass die Behauptung bereits für alle Formellängen bis maximal *n*-1 gezeigt wurde

Negationstheorem

Sei $f(0,1,x_1,...,x_n,\land,\lor,\neg)$ ein boolescher Ausdruck, in dem neben den Konstanten 1 und 0 und den Variablen $x_1,...,x_n$ die booleschen Operatoren \land,\lor und \neg vorkommen. Dann gilt:

$$\overline{f(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)}=f(1,0,\overline{x_1},\ldots,\overline{x_n},\vee,\wedge,\neg)$$

- d.h. einen beliebig komplexen Booleschen Ausdruck mit den Grundoperatoren kann man dadurch negieren, dass man folgende Ersetzungen vornimmt:
 - 0 durch 1
 - 1 durch 0
 - \(\text{durch} \(\text{\sqrt{}} \)
 - v durch ^
 - alle Variablen durch die negierten Variablen
 - Klammern müssen evtl. gemäß den Bindungsregeln neu gesetzt werden

Negationstheorem (2)

Beweis durch strukturelle Induktion

Copyright © 2022 Prof. Dr. Joachim K. Anlauf, Institut für Informatik VI, Universität Bonn

- − Induktionsanfang: *n*=1
 - 1. Fall: f = 0 $\neg f(0, 1, x_1, ..., x_n, \land, \lor, \neg) = \neg 0 = 1 = f(1, 0, \neg x_1, ..., \neg x_n, \lor, \land, \neg)$
 - 2. Fall: f = 1 $\neg f(0, 1, x_1, ..., x_n, \land, \lor, \neg) = \neg 1 = 0 = f(1, 0, \neg x_1, ..., \neg x_n, \lor, \land, \neg)$
 - 3. Fall: $f = x_i$ $\neg f(0,1,x_1,...,x_n,\land,\lor,\neg) = \neg(x_i) = (\neg x_i) = f(1,0,\neg x_1,...,\neg x_n,\lor,\land,\neg)$

Negationstheorem (3)

- Induktionsschritt: Der boolesche Ausdruck f ist auf jeden Fall aus "kleineren" booleschen Ausdrücke f_1 und f_2 , für die Behauptung schon bewiesen wurde, unter Verwendung von Operatoren zusammengesetzt.
- 1. Fall: $f = \neg f_1$

$$\neg f(0,1,x_{1},...,x_{n},\land,\lor,\neg) = \neg \neg f_{1}(0,1,x_{1},...,x_{n},\land,\lor,\neg)$$

$$= \neg f_{1}(1,0,\neg x_{1},...,\neg x_{n},\lor,\land,\neg)$$

$$= f(1,0,\neg x_{1},...,\neg x_{n},\lor,\land,\neg)$$

• 2. Fall: $f = f_1 \wedge f_2$

$$\neg f(0,1,x_{1},...,x_{n},\wedge,\vee,\neg) = \neg (f_{1}(0,1,x_{1},...,x_{n},\wedge,\vee,\neg) \wedge f_{2}(0,1,x_{1},...,x_{n},\wedge,\vee,\neg))$$

$$= \neg f_{1}(0,1,x_{1},...,x_{n},\wedge,\vee,\neg) \vee \neg f_{2}(0,1,x_{1},...,x_{n},\wedge,\vee,\neg)$$

$$= f_{1}(1,0,\neg x_{1},...,\neg x_{n},\vee,\wedge,\neg) \vee f_{2}(1,0,\neg x_{1},...,\neg x_{n},\vee,\wedge,\neg)$$

$$= f(1,0,\neg x_{1},...,\neg x_{n},\vee,\wedge,\neg)$$

• 3. Fall: $f = f_1 \lor f_2$ - analog

Dualitätsprinzip der Booleschen Algebra

wichtige Schlussfolgerung

Sei

$$\phi(0,1,x_1,...,x_n,\wedge,\vee,\neg) = \psi(0,1,x_1,...,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra, in der neben Variablen und den Konstanten 0 und 1 ausschließlich die Elementarverknüpfungen \neg , \land und \lor vorkommen. Dann ist auch die *duale Gleichung*

$$\phi(1,0,x_1,\ldots,x_n,\vee,\wedge,\neg)=\psi(1,0,x_1,\ldots,x_n,\vee,\wedge,\neg)$$

ein Gesetz der booleschen Algebra.

Beweis

- Negiere beide Seiten und wende Negationstheorem an.
- Ersetze alle \overline{x}_i durch x_i . (Wieso darf man das?)

Literale, Monome und Polynome

Definitionen

- Literal
 - Variable oder invertierte Variable
 - z.B. x_1 oder x_1 '
- Monom
 - Konjunktion (UND-Verknüpfung) von Literalen
 - z.B. $x_1x_2x_3'x_4$
 - man muss nicht über Klammern die Reihenfolge der 2-stelligen UND-Verknüpfungen festlegen
 - wegen des Assoziativgesetzes ist das Ergebnis eindeutig:

$$x_1 x_2 x_3 ' x_4 = ((x_1 x_2) x_3 ') x_4$$

= $(x_1 x_2)(x_3 ' x_4) = x_1(x_2(x_3 ' x_4)) = x_1((x_2 x_3 ') x_4) = (x_1(x_2 x_3 ')) x_4$

- Polynom
 - Disjunktion (ODER-Verknüpfung) von Monomen
 - z.B. $x_1x_2x_3'x_4+x_1'x_2x_3x_4'$

Minterme

vollständiges Monom

- ein Monom heißt vollständig genau dann, wenn *alle* x_i mit $1 \le i \le n$ genau einmal in ihm vorkommen
- ein vollständiges Monom heißt auch Minterm
 - Wahrheitstabelle für Minterme beinhaltet nur eine einzige 1 als Funktionswert
 - "kleinste" Boolesche Funktion, die von 0 verschieden ist
- z.B. $x_1x_2'x_3$:

x_1	x_2	x_3	$x_1x_2'x_3$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Beachte: ein Minterm ist selbst eine Boolesche Funktion!

Disjunktive Normalform, DNF

vollständiges Polynom

 ein Polynom heißt *vollständig* genau dann, wenn alle in ihm vorkommenden Monome vollständig sind (es also nur aus Mintermen besteht)

• Satz

- jede Boolesche Funktion lässt sich durch ein vollständiges Polynom darstellen
- diese Darstellung heißt "disjunktive Normalform" (DNF)
 - bis auf Permutationen innerhalb der Monome bzw. in der Reihenfolge der Disjunktionen ist die Darstellung eindeutig
 - Sortierung der Terme (z.B. wie in Wertetabelle): eindeutige Darstellung

Beweis

 trivial, da jede 1 in der Wertetabelle durch einen entsprechenden Minterm erzeugt werden kann. Durch ODER-Verknüpfung dieser Minterme entsteht die gewünschte Wertetabelle.

Beispiel DNF

Beispiel

x_1	x_2	x_3	$f(x_1,x_2,x_3)$	Minterm	x_1 ' x_2 ' x_3	x_1 ' x_2 x_3 '	$x_1x_2'x_3$
0	0	0	0		0	0	0
0	0	1	1	x_1 ' x_2 ' x_3	1	0	0
0	1	0	1	x_1 ' x_2 x_3 '	0	1	0
0	1	1	0		0	0	0
1	0	0	0		0	0	0
1	0	1	1	$x_1x_2'x_3$	0	0	1
1	1	0	0		0	0	0
1	1	1	0		0	0	0

$$f(x_1, x_2, x_3) = x_1'x_2'x_3 + x_1'x_2x_3' + x_1x_2'x_3$$

Konjunktive Normalform, KNF

es geht auch umgekehrt

- jede Boolesche Funktion lässt sich als konjunktive Normalform schreiben, also als Konjunktion von Maxtermen (vollständige Disjunktionen, d.h. genau eine 0 in der Wahrheitstabelle)
- z.B.

x_1	x_2	x_3	$f(x_1,x_2,x_3)$	Maxterm	$x_1 + x_2' + x_3$	$x_1 + x_2' + x_3'$	$x_1' + x_2 + x_3'$
0	0	0	1		1	1	1
0	0	1	1		1	1	1
0	1	0	0	$x_1 + x_2' + x_3$	0	1	1
0	1	1	0	$x_1 + x_2' + x_3'$	1	0	1
1	0	0	1		1	1	1
1	0	1	0	$x_1' + x_2 + x_3'$	1	1	0
1	1	0	1		1	1	1
1	1	1	1		1	1	1

$$f(x_1, x_2, x_3) = (x_1 + x_2' + x_3) (x_1 + x_2' + x_3') (x_1' + x_2 + x_3')$$

Normalformen

- jede Schaltfunktion kann als DNF oder KNF dargestellt werden
 - DNF ist einfacher, wenn die Wertetabelle wenige 1'en enthält
 - KNF ist einfacher, wenn die Wertetabelle wenige 0'en enthält
- häufig enthalten Wertetabellen aber sehr viele 1'en und 0'en (je etwa zur Hälfte), so dass diese Normalform-Darstellungen sehr umfangreich sind

Vollständige Operatorensysteme

Definition

- Sei M eine beliebige Menge von Operatoren.
- M ist ein *vollständiges Operatorensystem*, wenn sich jede Boolesche Funktion durch einen Ausdruck beschreiben lässt, in dem neben den Variablen $x_1, ..., x_n$ ausschließlich Operatoren aus M vorkommen.
 - Braucht man neben den eigentlichen Operatoren noch die Werte 0 oder 1, gehören diese ebenfalls in die Menge *M*.

Beispiele für vollständige Operatorensysteme

- jede Boolesche Funktion lässt sich mithilfe von ¬, ∧, ∨ beschreiben (siehe z.B. Darstellung als DNF), daher ist {¬, ∧, ∨} ein vollständiges Operatorensystem.
- Aber auch NAND oder NOR alleine bilden schon ein vollständiges
 Operatorensystem:

Vollständige Operatorensysteme (2)

Definition von NAND und NOR

$$z = x \overline{\wedge} y$$

X	у	Z
0	0	1
0	1	1
1	0	1
1	1	0

Sheffer-Funktion (NAND)

$$z = x \nabla y$$

٦	50 VIII 1	450	
	x	y	Z
	0	0	1
	0	1	0
	1	0	0
	1	1	0

Peirce-Funktion (NOR)

Reduktion der Grundoperationen auf NAND und NOR

Reduktion von \land , \lor , \neg auf NAND

$$\overline{x} = (\overline{x \wedge x})$$

$$x \wedge y = \overline{x \wedge y}$$

$$= \overline{x \wedge y} \wedge \overline{x \wedge y}$$

$$x \vee y = \overline{x \vee y}$$

$$= \overline{x} \wedge \overline{y}$$

$$= \overline{x} \wedge \overline{y}$$

$$= \overline{x} \wedge \overline{y}$$

Reduktion von \land , \lor , \neg auf NOR

$$\overline{x} = (\overline{x \vee x})$$

$$x \wedge y = \overline{x \wedge y}$$

$$= \overline{x} \vee \overline{y}$$

$$= \overline{x \vee x} \vee \overline{y \vee y}$$

$$x \vee y = \overline{x \vee y}$$

$$= \overline{x \vee y} \vee \overline{x \vee y}$$

Binäre Entscheidungsdiagramme

- Binary Decision Diagrams, BDD
 - relativ junge Entwicklung (erste Veröffentlichungen 1958)
 - auf Graphen basierende Repräsentation Boolescher Funktionen

Begriffe zu gerichteten Graphen

Binäre Entscheidungsdiagramme (2)

Binary Decision Diagrams, BDD

- jeder Weg von der Wurzel zu einem Blatt stellt eine Variablenbelegung dar
- der Funktionswert steht als Markierung in dem Blatt

Beispiel 3-stellige Paritätsfunktion

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Geordnete binäre Entscheidungsdiagramme

Ordered Binary Decision Diagram, OBDD

- Eine binärer Entscheidungsbaum heißt geordnet, wenn die Reihenfolge der Variablen auf allen Pfaden von der Wurzel zu den Blättern gleich ist.
- obiges Beispiel ist schon ein OBDD

Redundanzen

- Baum kann erheblich vereinfacht werden
 - Überführung des Baumes in einen Graphen durch Verwendung von nur 2 Blättern zur Darstellung der 0 und der 1

Vereinfachungsregeln

Verschmelzen gleicher Teilgraphen

- angefangen bei den Blättern werden in jeden Schritt identische Teilgraphen verschmolzen
- zwei Teilgraphen sind genau dann identisch, wenn deren linke und rechte Kanten alle jeweils zu den gleichen Nachfolgeknoten zeigen

Vereinfachungsregeln (2)

Löschen von Knoten mit zwei gleichen Nachfolgern

- beim Verschmelzen entstehen gelegentlich Knoten, deren beiden ausgehenden Kanten auf denselben Nachfolgeknoten verweisen
- der Wert der entsprechenden Variablen ist damit unerheblich
- der Knoten wird gelöscht (Resolutionsregel, s.u.)
- die Kanten, die auf den gelöschten Knoten zeigten, werden auf den Nachfolgeknoten umgesetzt

Reduziertes geordnetes Entscheidungsdiagramm

Reduced Ordered Binary Decision Diagram, ROBDD

 Ein geordnetes Entscheidungsdiagramm heißt *reduziert*, wenn keine Vereinfachungsregel mehr anwendbar ist.

• Beispiel 3-stellige Paritätsfunktion

nach zwei Schritten entsteht schon ein ROBDD

Reduziertes geordnetes Entscheidungsdiagramm (2)

- Wichtiger Satz von Randal Bryant (1986)
 - Binäre Entscheidungsbäume, die sowohl geordnet als auch reduziert sind, stellen jede Boolesche Funktion eindeutig dar.
 - Mit anderen Worten:

ROBDDs sind eine weitere Normalform Boolescher Funktionen.

ROBDDs werden häufig zur Äquivalenzfeststellung von Booleschen Funktionen verwendet

Reduziertes geordnetes Entscheidungsdiagramm (3)

Größe von ROBDDs

- die Wahrheitstabelle wächst immer exponentiell mit der Anzahl der Variablen
- viele Formelklassen können als ROBDDs kompakter dargestellt werden als mit einer Wertetabelle
- z.B. steigt die Anzahl der Knoten für die n-stellige Paritätsfunktion nur linear mit der Anzahl n der Variablen
- im Allgemeinen wächst aber auch die Knotenzahl von ROBDDs exponentiell mit der Anzahl der Variablen

Entwicklungssatz von Shannon

Sei f eine beliebige n-stellige boolesche Funktion. Dann gilt:

$$f(x_1,...,x_n) = (x_i \wedge f_{x_i=1}) \vee (\overline{x_i} \wedge f_{x_i=0})$$

 $f_{x_i=1}$ und $f_{x_i=0}$ bezeichnen den positiven und den negativen Kofaktor von f und sind wie folgt definiert:

$$f_{x_{i}=1} := f(x_{1},...,x_{i-1},1,x_{i+1},...,x_{n})$$

 $f_{x_{i}=0} := f(x_{1},...,x_{i-1},0,x_{i+1},...,x_{n})$

$$f_{x_i=0} := f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$$

Beweis durch Fallunterscheidung

- Für $x_i = 1$ ist die Behauptung äquivalent zu

$$f(x_1,...,x_{i-1},x_i=1,x_{i+1},...,x_n)=(1 \land f_{x_i=1}) \lor (0 \land f_{x_i=0})=f_{x_i=1}$$

- was wegen der Definition des Kofaktors korrekt ist.
- Für $x_i = 0$ gilt ebenso:

$$f(x_1,...,x_{i-1},x_i=0,x_{i+1},...,x_n)=(0 \land f_{x_i=1}) \lor (1 \land f_{x_i=0})=f_{x_i=0}$$

Zusammenhang BDD und Boolesche Funktion

- Die Kofaktoren sind nichts weiter, als die Ergebnisse der Fallunterscheidung bzgl. einer Variablen.
- Der Entwicklungssatz von Shannon zeigt, wie man die
 Originalfunktion f aus ihren Kofaktoren rekonstruieren kann.
- In einem BDD entspricht der linke Nachfolger eines Knotens x_i dem negativen Kofaktor bzgl x_i und der rechte Nachfolger dem positiven Kofaktor:

$$f_{x_{i}=0}$$

$$f_{x_{i}=1}$$

$$f(x_1,...,x_n) = (x_i \land f_{x_i=1}) \lor (\overline{x_i} \land f_{x_i=0})$$

Beispiel 3-stellige Paritätsfunktion

- Entwicklungssatz von Shannon rekursiv auf alle Knoten anwenden
- damit kann man ein BDD in eine Boolesche Funktion umformen

$$y = (x_1 \wedge f_{x_1=1}) \vee (\overline{x_1} \wedge f_{x_1=0})$$

$$= \dots$$

$$= (x_1 \wedge ((x_2 \wedge ((x_3 \wedge 1) \vee (\overline{x_3} \wedge 0))) \vee (\overline{x_2} \wedge ((x_3 \wedge 0) \vee (\overline{x_3} \wedge 1)))) \vee$$

$$(\overline{x_1} \wedge ((x_2 \wedge ((x_3 \wedge 0) \vee (\overline{x_3} \wedge 1))) \vee (\overline{x_2} \wedge ((x_3 \wedge 1) \vee (\overline{x_3} \wedge 1))))$$

$$= (x_1 \wedge ((x_2 \wedge x_3) \vee (\overline{x_2} \wedge \overline{x_3}))) \vee$$

$$(\overline{x_1} \wedge ((x_2 \wedge \overline{x_3}) \vee (\overline{x_2} \wedge \overline{x_3})))$$

Logikgatter

Schaltzeichen verschiedener Logikgatter

verkürzte Notation der Negation:

Schaltnetze

Schaltnetz

- technische Realisierung einer Schaltfunktion mithilfe von Gattern
- jede Schaltfunktion kann als DNF dargestellt werden
- damit kann auch jede Schaltfunktion als Schaltnetz, z.B. mit UND-,
 ODER- und NICHT-Gattern realisiert werden

Vorgehensweise zur Aufstellung der DNF

- Wertetabelle aufstellen
- alle Zeilen suchen, die eine 1 ergeben
- zugehörige Minterme aufstellen
- Minterme durch Disjunktion zu Polynomen zusammenfassen

• Beispiel: Majorität dreier Schaltvariablen

Ausgabe ist 1, wenn mindestens 2 Eingänge 1 sind

Beispiel Majorität

Wertetabelle:

x_1	x_2	x_3	$f(x_1,x_2,x_3)$	Minterm	x_1 ' x_2 x_3	$x_1x_2'x_3$	$x_1x_2x_3$	$x_1x_2x_3$
0	0	0	0		0	0	0	0
0	0	1	0		0	0	0	0
0	1	0	0		0	0	0	0
0	1	1	1	x_1 ' x_2 x_3	1	0	0	0
1	0	0	0		0	0	0	0
1	0	1	1	$x_1x_2'x_3$	0	1	0	0
1	1	0	1	$x_1x_2x_3'$	0	0	1	0
1	1	1	1	$x_1x_2x_3$	0	0	0	1

also:

$$f(x_1, x_2, x_3) = x_1'x_2x_3 + x_1x_2'x_3 + x_1x_2x_3' + x_1x_2x_3$$

Beispiel Majorität (2)

• Schaltnetz 1

$$f(x_1, x_2, x_3) = x_1'x_2x_3 + x_1x_2'x_3 + x_1x_2x_3' + x_1x_2x_3$$

Beispiel Majorität (3)

Vereinfachen

Aufgabe der Normalform, aber weniger Gatter

Beispiel Majorität (4)

– besser:

zweifaches Kopieren (Idempotenz) von $x_1x_2x_3$:

$$f(x_1, x_2, x_3) = \underbrace{x_1' x_2 x_3 + x_1 x_2 x_3}_{= x_2 x_3} + \underbrace{x_1 x_2' x_3 + x_1 x_2 x_3}_{= x_1 x_2} + \underbrace{x_1 x_2 x_3 + x_1 x_2 x_3}_{= x_1 x_2} + \underbrace{$$

Schaltnetz 2

$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3$$

 x_1 x_2 x_3 x_3 x_4 x_2 x_3 x_4 x_4 x_5 x_4 x_5 x_4 x_5 x_5 x_4 x_5 x_5

Dies ist keine DNF mehr!

hat aber noch dieselbe Struktur (Polynom)

Beispiel Majorität (5)

Schaltnetz 3

$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3$$
$$= x_1(x_2 + x_3) + x_2x_3$$

Beispiel Majorität (6)

Schaltnetz 4

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

= $((x_1 x_2)' (x_1 x_3)' (x_2 x_3)')'$ (De-Morgan)

Optimierung von Schaltnetzen

Problem

- Eine Schaltfunktion, viele mögliche Schaltnetze
- Welches ist das beste Schaltnetz?

Ziele für eine Optimierung

- wenige Gatter und wenige Eingänge ⇒ billige Hardware
 - Schaltnetz 3 optimal
- kurze Durchlaufzeit ⇒ schnelle Hardware
 - Schaltnetz 2 oder 4 optimal (in CMOS ist 4 optimal, s.u.)
- Benutzung vorgegebener Gattertypen
 - z.B. nur NAND, NOR, NOT, dann Schaltnetz 4 optimal

Resolutionsregel

Resolutionsregel:

 Wenn in einer disjunktiven Form zwei Monome vorkommen, die sich in genau einer komplementären Variable unterscheiden, so kann man die Monome durch ihren gemeinsamen Teil ersetzen.

Beispiel

$$f(x_1,x_2,x_3) = x_1'x_2x_3 + x_1x_2x_3$$

= $(x_1'+x_1) x_2x_3$ (Distributivgesetz)
= $1 x_2x_3$ (Inverses Element)
= x_2x_3 (Neutrales Element)

Resolutions regel (2)

Beachte

- wegen der Idempotenz a+a=a darf die Resolutionsregel auch mehrfach mit demselben Monom angewandt werden

Beispiel

$$f(x_1,x_2,x_3)$$
= $x_1'x_2x_3 + x_1x_2'x_3 + x_1x_2x_3$
= $(x_1'x_2x_3 + x_1x_2x_3) + (x_1x_2'x_3 + x_1x_2x_3)$ (Idempotenz)
= $x_2x_3 + x_1x_3$ (Resolutions regel)

KV-Diagramm

Verfahren von Karnaugh und Veitch

- (Englisch: Karnaugh map)
- grafisches Verfahren zur Vereinfachung von Schaltnetzen
- sinnvoll bei 3 oder 4 Eingängen
- hilft beim Erkennen von möglichen Resolutionen
- Darstellung der Wahrheitstabelle in besonderer Gestalt

x_1x_2					
rari		00	01	11	10
x_3x_4	00				
	01				
	11				
	10				

KV-Diagramm (2)

KV-Diagramm

- jede Ergebnis-1 aus der Wahrheitstabelle wird an die passende Stelle im KV-Diagramm eingetragen
- beachte: beim Übergang von einem Feld zu einem benachbarten Feld ändert sich genau ein Bit
 - siehe Gray-Code
 - damit liegen für die Resolutionsregel geeignete Minterme nebeneinander
- gilt auch zyklisch über die Ränder hinweg

Beispiel Majorität

Majoritätsfunktion

Jeder Minterm liefert genau eine 1 im KV-Diagramm

KV-Diagramm (3)

Resolutionsblöcke

 für im KV-Diagramm benachbarte Minterme kann die Resolutionsregel angewandt werden

KV-Diagramm (4)

- die benötigten Monome ergeben sich direkt aus der Randbeschriftung
 - Literale, die sowohl negiert als auch nicht negiert auftreten, fallen weg
 - das Monom besteht aus den restlichen Literalen in der durch die Randbeschriftung festgelegten Ausprägung
- das gilt auch für größere Blöcke der Kantenlänge $2^n * 2^m$
 - sie entstehen durch Verschmelzen kleinerer Resolutionsblöcke
 - die größtmöglichen Blöcke werden auch Primimplikanten genannt

Beispiel Majorität (2)

• Beispiel Majorität

- also

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

KV-Diagramm (5)

Wahl der Resolutionsblöcke

- alle Einsen abdecken
- möglichst große Blöcke wählen
 - Monome enthalten weniger Literale (kleinere Monome)
 - da viele Einsen abgedeckt werden, kommt man in der Regel mit weniger Blöcken aus (weniger Monome)
- Blöcke dürfen überlappen
 - Ausnutzen der Idempotenz

KV-Diagramm (6)

Achtung

- beachte: es ist nicht immer sinnvoll, den größten Block zu verwenden
- Beispiel:

4 Monome mit je 3 Literalen reichen aus

Don't-Cares

Don't-Cares

- Häufig ist die Ausgabe für bestimmte Eingabekombinationen nicht definiert, also beliebig
- dies kann zur weiteren Vereinfachung der Schaltfunktionen ausgenutzt werden
- Beispiel:
 - angenommen, wir wissen, dass es bei der Majorität nie vorkommt, dass $x_1=x_2=0$ und $x_3=1$ sind (sinnvolleres Beispiel in den Übungen), dann interessiert uns die Ausgabe für diesen Fall nicht

Don't-Cares (2)

• Beispiel Majorität

x_1	x_2	χ_3	$f(x_1,x_2,x_3)$	Minterm
0	0	0	0	
0	0	1	_	$x_1'x_2'x_3$
0	1	0	0	
0	1	1	1	$x_1'x_2x_3$
1	0	0	0	
1	0	1	1	$x_1x_2'x_3$
1	1	0	1	$x_1x_2x_3$
1	1	1	1	$x_1x_2x_3$

$$f(x_1, x_2, x_3) = x_1 x_2 + x_3$$

Don't-Care-Term kann 0 oder 1 sein, wie es uns besser passt. Hier ist 1 sinnvoll.

Don't-Cares (3)

Nutzung der Don't-Cares

- Annahme: Don't-Care = 1
 - man kann evtl. größere Blöcke wählen, wenn man die Don't-Cares mit überdeckt
 - hilft, Monome mit weniger Literalen zu erhalten
- Annahme: Don't-Care = 0
 - Don't-Cares brauchen nicht überdeckt zu werden
 - das hilft, Monome zu sparen

KV-Diagramm (7)

Alternative Darstellung im Lehrbuch

Bevorzugte Darstellung: leichter und schneller auszufüllen (meine subjektive Meinung)

KV-Diagramm (8)

Abschließende Bemerkungen

- Schaltfunktionen in KNF
 - können auch mit KV-Diagramm minimiert werden
 - dann fasst man entsprechend die Terme mit Nullen zusammen
- Anzahl der Schaltvariablen
 - KV-Diagramm bis 4 Variablen praktikabel
 - bei mehr als 4 Variablen wird das KV-Diagramm zu unübersichtlich
 - Gray-Code mit 3 Variablen

"benachbarte" Belegungen

- Alternative: 3-dimensionale Darstellung
 - » auf dem Papier auch schwierig
- systematisches Verfahren wird benötigt

Quine-McCluskey Verfahren

- systematisches Verfahren, das mit Tabellen arbeitet
- kann Schaltfunktionen mit vielen Variablen minimieren
- leicht automatisierbar
- benutzt DNF als Ausgangspunkt
- findet systematisch alle Minterme, die nach der Resolutionsregel zusammengefasst werden können

Quine-McCluskey (2)

Schreibweise

- Monome der Schaltfunktion werden durch ihr Binäräquivalent dargestellt
 - "1" steht für nicht negierte Variable
 - "0" für negierte Variable
 - "-" für nicht auftretende Variable

Beispiele

$$x_{4}\overline{x}_{3}x_{2}\overline{x}_{1}$$
 1010
 $x_{4}\overline{x}_{3}\overline{x}_{1}$ 10-0
 $x_{4}x_{2}$ 1-1-

Quine-McCluskey (3)

• Erläuterung des Verfahrens an Beispiel

- Schaltfunktion sei durch ihre Wertetabelle gegeben
- die Reihenfolge der
 Funktionswerte wird so gewählt,
 dass die Binäräquivalente der
 Minterme aufsteigenden
 Binärzahlen entsprechen
- als weitere Vereinfachung verwendet man Dezimalzahlen als Indizes für die Minterme

Dez	x_4	x_3	x_2	x_1	$f(x_4,x_3,x_2,x_1)$
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
2 3	0	0	1	1	0
4 5	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

Quine-McCluskey (4)

• 1. Schritt:

- die Minterme werden in gewichteten Gruppen zusammengefasst
- das Gewicht einer Gruppe ist die *Anzahl* der Einsen in den Binäräquivalenten

• Gruppe 0: keine 1

• Gruppe 1: eine 1

• Gruppe 2: zwei 1'en

• etc.

- das spart Zeit beim Suchen der passenden Monome für die Resolutionsregel
 - passende Monome liegen in benachbarten Gruppen

\mathbf{Dez}	x_4	x_3	x_2	x_1		Gruppe
0	0	0	0	0		0
$\overline{2}$	0	0	1	0	√	1
4	0	1	0	0		
5	0	1	0	1		2
6	0	1	1	0		
10	1	0	1	0		
7	0	1	1	1		3
11	1	0	1	1		

Quine-McCluskey (5)

• 2. Schritt

- entsprechend der Resolutionsregel werden Monome aus benachbarten Gruppen zusammengefasst
- das ist möglich, wenn sie sich nur an einer Stelle unterscheiden
- man versucht jedes Monom einer Gruppe mit jedem Monom der nächsten Gruppe zu verschmelzen
- alle Monome, die verschmolzen werden können, werden gekennzeichnet
- es bleiben die nicht gekennzeichneten Monome übrig
 - sie werden *Primimplikanten* genannt
 - sie entsprechen den größtmöglichen Resolutionsblöcken im KV-Diagramm, da sie nicht zu noch größeren Blöcken verschmolzen werden können

Quine-McCluskey (6)

Dez	x_4	x_3	x_2	x_1		Gruppe
0,2	0	0	-	0	\checkmark	0
0,4	0	-	0	0		
2,6	0	-	1	0		1
2,10	-	0	1	0	•	Primimplikant
4,5	0	1	0	-	$ \sqrt{ }$	
4,5 4,6	0	1	-	0		
5,7	0	1	-	1		2
6,7	0	1	1			
10,11	1	0	1	-	—	- Primimplikant

Quine-McCluskey (7)

- die beiden Schritte werden solange wiederholt, bis keine Verschmelzung mehr möglich ist
- dabei werden mehrfach entstehende Monome bis auf einen gestrichen
- die Schaltfunktion setzt sich nun nur noch aus den Primimplikanten zusammen

Quine-McCluskey (8)

• für Beispiel gilt

$$f(x_4, x_3, x_2, x_1) = (2,10) + (10,11) + (0,2,4,6) + (4,5,6,7)$$

oder in Boolescher Form

$$f(x_4, x_3, x_2, x_1) = \overline{x}_3 x_2 \overline{x}_1 + x_4 \overline{x}_3 x_2 + \overline{x}_4 \overline{x}_1 + \overline{x}_4 x_3$$

Quine-McCluskey (9)

• 3. Schritt

- diese Schaltfunktion lässt sich mithilfe von Primimplikantentafeln weiter vereinfachen
- jeder Primimplikant ist aus bestimmten Mintermen entstanden
- andererseits kann jeder Minterm in verschiedenen Primimplikanten enthalten sein
- das Ziel ist es, eine minimale Anzahl von Primimplikanten zu finden, die alle Minterme überdecken
 - diese nennt man wesentliche Primimplikanten
 - entspricht den Resolutionsblöcken beim KV-Diagramm, die letztendlich benutzt werden

Quine-McCluskey (10)

Indizes der Minterme

Quine-McCluskey (11)

- Steht in einer Spalte nur ein Primimplikant, so nennt man ihn
 - Kernimplikant
- er muss in der Minimalform erscheinen, da nur er den Minterm abdeckt, und wird deshalb mit einem Kreis markiert
- die Minterme, die dieser wesentliche Primimplikant überdeckt, werden durch "|" verbunden und damit gestrichen
- aus den evtl. verbleibenden Primimplikanten sucht man eine minimale
 Anzahl heraus, die alle verbleibenden Minterme überdecken
 - minimale Restüberdeckung
 - muss nicht unbedingt eindeutig sein
- die minimierte Schaltfunktion ist die Disjunktion (ODER-Verknüpfung) der Kernimplikanten und der Restüberdeckung

$$f(x_4, x_3, x_2, x_1) = x_4 \overline{x}_3 x_2 + \overline{x}_4 \overline{x}_1 + \overline{x}_4 x_3$$

Quine-McCluskey und Don't-Cares

• Erweiterung des Verfahrens zur Berücksichtigung von Don't-Care Belegungen

- zunächst werden alle don't-care Belegungen wie 1'en behandelt
 - dadurch entstehen mehr Möglichkeiten Belegungen zusammenzufassen
 - die Chance für größere Primimplikanten steigt
- in der Primimplikantentafel
 - müssen nur diejenigen Minterme abgedeckt werden, die tatsächlich eine 1 erfordern
 - die Don't-Care Belegungen können, müssen aber nicht abgedeckt werden
 - im nachfolgenden Beispiel aus dem Buch werden die Don't-Care Belegungen leider immer als 0 genutzt

Quine-McCluskey und Don't-Cares (2)

