VM 250 Computational Lab Sessions Lab #6

Spur and Helical Gears

Prepared by TA Group

Spur gears

Preparation

Global variables

The procedures of managing global variables

Name				
	Value / Equation	Evaluates to	Comments	ОК
Global Variables				
"module"	= 2mm	2mm		Cance
"the number of teeth"	= 25	25		
Add global variable			Import.	
Features				,
Add feature suppression				Export.
Equations				Ехрогия
Add equation				Help

Sketch a circle

• Enter a pitch diameter by formulated Global variables

Enter this equation on the smart dimension for this circle

It turns....

Sketch circles

Draw a addendum circle of a gear

• Capture the route diameter

Sketch circles

Extrude the outside diameter with a midplane extrusion option

Convert entities

- 2. Show the previous sketch and convert the inner circle into the entity for convenience of sketching.
- 3. Mirror the 3-point based arc by using mirror entities.

Add a centerline

4. A offset circle (1mm) that intersects one point of 3-points arc.

5. Draw a center line intersecting the middle point of the arcs after making the sketch visible.

Add another center line.

6. Using a center line from the origin and make it tangent with the arc before determining pressure angles.

7. Determining pressure angles by adding another center line which is tangent with the arc.

Incorporate the previous sketch with the number of teeth.

8.Draw another center line.

9. Dimension the distance with the center line

10. Perpendicular to the new center line from adjacent teeth with previous one.

11. Make these 2 center lines equal

Cut the shape of teeth

Create an extruded cutting feature of a single tooth.

Fillet ✓ X Manual FilletXpert Fillet Type Radius: 0.6mm Constant size O Variable size Face fillet OFull round fillet Items To Fillet Edge<1> Edge<2> Full preview O Partial preview O No preview Fillet Parameters 2 =0.3*"module" Multiple radius fillet Profile: Circular

Create a filet with formulated parameters.

Cut the shape of teeth

Circumferential patterning of the teeth feature with respect to a temporary axis.

Helical gears

Preparation

• Delete the circular patterns, extrusion cut and fillet feature and some equations.

Equations, Global Variables, and Dimensions 9 6 Tilter All Fields Name Value / Equation **Evaluates to** Comments Global Variables "module" = 1.5mm 1.5mm = 30 30 "number of teeth" "width" = 30mm 30mm Add alobal variable - Features Add feature suppression - Equations "D1@Sketch1" = "module" * "number of teeth" 45mm "D2@Sketch1" = ("number of teeth" + 2) * "module" 48mm "D3@Sketch1" = "module" * if ("module" = > 1.25 , 2.25 , 2.4) 3.38mm "D3@Sketch2" = 180dea / "number of teeth" 6dea O "D1@Fillet1" = 0.3 * "module" "D2@CirPattern2" = 360deg / "number of teeth" "D1@CirPattern2" = "number of teeth" "D1@Boss-Extrude1" = "width" / 2 15mm Add equation ✓ Automatic solve order Automatically rebuild Angular equation units: Radians × Link to external file:

Guideline for extrusion cut

Sketch the line denoting the helix angle on the top plane and project it on a cylindrical face.

- 1. Add a midpoint relationship between the origin and the line.
- 2. Set the angle for the line and the right plane.
- 3. Use a projected curve feature.

Derive sketch for preparing lofted cut

Derive the sketch

- 1. Select the blue face and sketch2.
- 2. Find derive sketch with the insert option.

Add relationship to the derived sketch

• Fix the sketch by adding a coincide relationship and a pierce relationship.

Add lofted cut and fillet features

Lofted Cut and add fillets.

Ultimate Helical Gear

• On the circular pattern, change the helical direction by setting global variable.

