Agenda

2. Lineare Optimierung

- 2.1 Modellbildung
- 2.2 Graphische Lösung

2.3 Primaler Simplex

- 2.4 Dualer Simple:
- 2.5 Sonderfälle
- 2.6 Dualität
- 2.7 Sensitivitätsanalvse
- 2.8 Multikriterielle Optimierun

Agenda

2. Lineare Optimierung

- 2.1 Modellbildung
- 2.2 Graphische Lösung

2.3 Primaler Simplex

- 2.4 Dualer Simple:
- 2.5 Sonderfälle
- 2.6 Dualität
- 2.7 Sensitivitätsanalvse
- 2.8 Multikriterielle Optimierun

Simplex-Algorithmus

- ▶ Algorithmus, der die möglichen Optima also die Ecken abarbeitet
- ▶ 1947 von George Dantzig entwickelt
- ▶ Bis heute der leistungsfähigste Algorithmus zum Lösen linearer Optimierungsprobleme

- ► Voraussetzung: Bekannter "Startpunkt" (zulässige Basislösung)
- ▶ z. B. Koordinatenursprung, falls dieser im zulässigen Bereich liegt

Aus der Allgemeinen Form ...

$$\max z = \sum_{j=1}^{p} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{p} a_{ij} \cdot x_j \le b_i \text{ für } 1 \le i \le m_1$$

$$\sum_{j=1}^{p} a_{ij} \cdot x_j \ge b_i \text{ für } m_1 + 1 \le i \le m_2$$

$$\sum_{j=1}^{p} a_{ij} \cdot x_j = b_i \text{ für } m_2 + 1 \le i \le m$$

$$x_j \in \mathbb{R} \text{ für } 1 \le j \le p$$

... erhält man durch die Umformung der Zielfunktion ...

$$\max z = \sum_{j=1}^{p} c_j \cdot x_j \qquad \Leftrightarrow \min -z = \sum_{j=1}^{p} -c_j \cdot x_j$$

s.t.
$$\sum_{i=1}^{p} a_{ij} \cdot x_j \leq b_i$$

$$\sum_{i=1}^{p} a_{i+1} x_{i} > b_{i}$$

$$\sum_{i=1}^{p} a_{ij} \cdot x_{j} = b$$

$$x_j \in \mathbb{R}$$

für
$$1 \le i \le m_1$$

für
$$m_1 + 1 \le i \le m_2$$

für
$$m_2 + 1 \le i \le m$$

... und der Nebenbedingungen ...

$$\max z = \sum_{j=1}^{p} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{p} a_{ij} \cdot x_j \le b_i$$

$$\lim_{j=1}^{p} \sum_{j=1}^{p} a_{ij} \cdot x_j \ge b_i$$

$$\lim_{j=1}^{p} \sum_{j=1}^{p} (-a_{ij}) \cdot x_j \le -b_i \text{ für } m_1 + 1 \le i \le m_2$$

$$\lim_{j=1}^{p} \sum_{j=1}^{p} (-a_{ij}) \cdot x_j \le -b_i \text{ für } m_2 + 1 \le i \le m_2$$

$$\lim_{j=1}^{p} (-a_{ij}) \cdot x_j \le -b_i \text{ für } m_2 + 1 \le i \le m_2$$

... und der Nebenbedingungen ...

$$\max z = \sum_{j=1}^{p} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{p} a_{ij} \cdot x_j \le b_i$$

$$\sum_{j=1}^{p} a_{ij} \cdot x_j \ge b_i$$
für $1 \le i \le m_1$

$$\sum_{j=1}^{p} a_{ij} \cdot x_j \ge b_i$$

$$\Leftrightarrow \sum_{j=1}^{p} a_{ij} \cdot x_j \le b_i$$
 für $m_2 + 1 \le i \le m$

$$\sum_{j=1}^{p} a_{ij} \cdot x_j \ge b_i$$
 für $m_2 + 1 \le i \le m$

 $x_i \in \mathbb{R}$

... und der Nebenbedingungen ...

$$\max z = \sum_{j=1}^{p} c_j \cdot x_j$$
s.t.
$$\sum_{j=1}^{p} a_{ij} \cdot x_j \le b_i$$

$$\sum_{j=1}^{p} a_{ij} \cdot x_j \ge b_i$$

$$\sum_{j=1}^{p} a_{ij} \cdot x_j \ge b_i$$

$$\min m_1 + 1 \le i \le m_2$$

$$\min m_2 + 1 \le i \le m$$

$$x_j \in \mathbb{R}$$

$$\Leftrightarrow x_j' \ge 0$$

$$x_i'' \ge 0 \text{ substituiere } x_j = x_i' - x_i''$$

... und durch Einführung von Schlupfvariablen ...

$$\max z = \sum_{j=1}^{p} c_{j} \cdot x_{j} + \sum_{j=p+1}^{n} 0x_{j}$$
s.t.
$$\sum_{j=1}^{p} a_{ij} \cdot x_{j} + x_{p+i}$$

$$\sum_{j=1}^{p} -a_{ij} \cdot x_{j} + x_{p+i}$$

$$\sum_{j=1}^{p} a_{ij} \cdot x_{j} + x_{p+i}$$

$$\sum_{j=1}^{p} -a_{ij} \cdot x_{j} + x_{p+i}$$

$$x_{i} > 0$$

$$=b_i$$
 für $1 \leq i \leq m_1$

$$=-b_i \text{ für } m_1+1\leq i\leq m_2$$

$$= b_i$$
 für $m_2 + 1 \le i \le m$

$$=-b_i$$
 für $m_2+1\leq i\leq m$

für
$$1 \le j \le n$$

... und Umstellung der Zielfunktion ...

$$\max z - \sum_{j=1}^{p} c_{j} \cdot x_{j} - \sum_{j=p+1}^{n} 0x_{j} = 0$$
s.t.
$$\sum_{j=1}^{p} a_{ij} \cdot x_{j} + x_{p+i} = b_{i} \text{ für } 1 \le i \le m_{1}$$

$$\sum_{j=1}^{p} -a_{ij} \cdot x_{j} + x_{p+i} = -b_{i} \text{ für } m_{1} + 1 \le i \le m_{2}$$

$$\sum_{j=1}^{p} a_{ij} \cdot x_{j} + x_{p+i} = b_{i} \text{ für } m_{2} + 1 \le i \le m$$

$$\sum_{j=1}^{p} -a_{ij} \cdot x_j + x_{p+i} = -b_i \text{ für } m_2 + 1 \le i \le m$$

$$x_j \ge 0 \text{ für } 1 \le j \le n$$

.. die sogenannte Standardform oder kanonische Form.

Strukturvariablen $\max z - \sum_{j=1}^{p} c_j \cdot x_j$ s.t. $\sum_{j=1}^{p} a_{ij} \cdot x_j$ X_i

Schlupfvariablen $-\sum_{i}0x_{i}=0$ $+x_{p+i}=b_i$ für $1 < i < m_1$ für $m_1 + 1 < i < m_2$ $+x_{p+i}=-b_i$ $+x_{p+i}=b_i$ für $m_2 + 1 < i < m$ $+x_{p+i}=-b_i$ für $m_2 + 1 < i < m$ > 0 für 1 < *i* < *n*

Matrizenschreibweise

Neben der bekannten, herkömmlichen Schreibweise ...

$$\max z = \sum_{j=1}^{p} c_j x_j$$
s.t.
$$\sum_{j=1}^{p} a_{ij} x_j + a_{p+i} x_{p+i} = b_i \qquad \text{für } 1 \le i \le m$$

$$a_{p+i} \in \{0; 1\} \qquad \text{für } 1 \le i \le m$$

$$x_j \qquad \geq 0 \qquad \text{für } 1 \le j \le p$$

... können die Probleme auch in Matrizenform dargestellt werden:

$$\max z = c^{T}x$$
s.t.
$$Ax = b$$

$$x > 0$$

Matrizenschreibweise

In der Matrizenschreibweise sind die einzelnen Koeffizienten und Variablen zu Vektoren und Matrizen zusammengefasst.

$$\max z = c^{T} x$$
s.t.
$$Ax = b$$

$$x \ge 0$$

- ightharpoonup Zielfunktionskoeffizienten $c^T = (c_1, c_2, \dots, c_p, 0, \dots, 0)$
- ► Koeffizienten der Nebenbedingungen $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mp} \end{pmatrix} \begin{pmatrix} a_{1,p+1} & 0 & \dots & 0 \\ 0 & a_{2,p+2} & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & a_{m,p+m} \end{pmatrix}$

Zulässige Basislösungen

Definition

"Kandidaten" für optimale Lösungen sind die Eckpunkte des Lösungsraumes. Sie werden zulässige Basislösungen genannt.

Aktive/Passive Nebenbedingungen

Definition

Eine Nebenbedingung heißt in einer Basislösung **bindend** (bzw. **aktiv**), wenn die dazugehörige Schlupfvariable den Wert Null annimmt. Eine Nebenbedingung, die in der Basislösung keine Einschränkung darstellt, ist **nicht bindend** (bzw. **passiv**).

Basislösung - Beispiel

$$\begin{array}{lll} \max z = & -0.8x_1 + x_2 \\ \text{s.t.} & 0.2x_1 & \leq x_2 \\ & 1 + x_1 & \geq x_2 \\ & 1.2 + 0.5x_1 & \geq x_2 \\ & x_{1,2} & \geq 0 \end{array}$$

Eckpunkt	Basisvariablen Nichtbasisvariablen			Basislösungen				
$(x_1;x_2)$			<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	X 5	
(0;0)	x_3, x_4, x_5	x_1, x_2	0	0	0	1	1,2	
(0;1))	x_2, x_3, x_5	x_1, x_4	0	1	1	0	0,2	
(0,4;1,4))	x_1, x_2, x_3	X4,X5	0,4	1,4	1,32	0	0	

Zunächste müssen die Gleichungen ...

$$\begin{array}{lll} \max z = & -0.8x_1 + x_2 \\ \text{s.t.} & 0.2x_1 & \leq x_2 \\ & 1 + x_1 & \geq x_2 \\ & 1.2 + 0.5x_1 & \geq x_2 \\ & x_{1,2} & \geq 0 \end{array}$$

...in die Standardform überführt werden.

$$\begin{array}{lll} 0.2x_1 - 1x_2 + 1x_3 + 0x_4 + 0x_5 & = 0 \\ -1x_1 + 1x_2 + 0x_3 + 1x_4 + 0x_5 & = 1 \\ -0.5x_1 + 1x_2 + 0x_3 + 0x_4 + 1x_5 & = 1,2 \\ 0.8x_1 - 1x_2 + 0x_3 + 0x_4 + 0x_5 + z & = 0 \end{array}$$

Welche Nichtbasisvariable (NBV) verbessert die Zielfunktion am meisten?

$$x_3 = 0$$
 $-0.2x_1$ $+1x_2$
 $x_4 = 1$ $+1x_1$ $-1x_2$
 $x_5 = 1.2$ $+0.5x_1$ $-1x_2$
 $z = 0$ $-0.8x_1$ $+1x_2$

Wähle Basisvariable mit niedrigerer oberer Schranke für x_2 .

$$x_3 = 0$$
 $-0.2x_1$ $+1x_2$
 $x_4 = 1$ $+1x_1$ $-1x_2$ $x_2 \le 1$
 $x_5 = 1.2$ $+0.5x_1$ $-1x_2$ $x_2 \le 1.2$
 $x_5 = 0$ $-0.8x_1$ $+1x_2$

Welche Nichtbasisvariable (NBV) verbessert die Zielfunktion am meisten?

$$\begin{array}{ccccccc} x_3 = & 0 & -0.2x_1 & +1x_2 \\ x_4 = & 1 & +1x_1 & -1x_2 \\ x_5 = & 1.2 & +0.5x_1 & -1x_2 \\ z = & 0 & -0.8x_1 & +1x_2 \end{array}$$

Basisvariable x_4 wird Nichtbasisvariable und x_2 kommt in die Basis. Es wird x_2 wie folgt substituiert $x_2=1+x_1-x_4$.

$$x_3 = 1 +0.8x_1 -1x_4$$

 $x_2 = 1 +1x_1 -1x_4$
 $x_5 = 0.2 -0.5x_1 +1x_4$
 $x_5 = 1 +0.2x_1 -1x_4$

Welche Nichtbasisvariable (NBV) verbessert die Zielfunktion am meisten?

$$x_3 = 1$$
 $+0.8x_1$ $-1x_4$
 $x_2 = 1$ $+1x_1$ $-1x_4$
 $x_5 = 0.2$ $-0.5x_1$ $+1x_4$
 $z = 1$ $+0.2x_1$ $-1x_4$

Wähle einzigen negativen Koeffizienten.

$$x_3 = 1$$
 $+0.8x_1$ $-1x_4$
 $x_2 = 1$ $+1x_1$ $-1x_4$
 $x_5 = 0.2$ $-0.5x_1$ $+1x_4$
 $z = 1$ $+0.2x_1$ $-1x_4$

$$x_3 = 1$$
 $+0.8x_1$ $-1x_4$
 $x_2 = 1$ $+1x_1$ $-1x_4$
 $x_5 = 0.2$ $-0.5x_1$ $+1x_4$
 $z = 1$ $+0.2x_1$ $-1x_4$

Basisvariable x_5 wird Nichtbasisvariable und x_1 kommt in die Basis. Es wird x_1 wie folgt substituiert $x_1=0.4+2x_4-2x_5$.

$$x_3 = 1,32 +0.6x_4 -1.6x_5$$

 $x_2 = 1,4 +1x_4 -2x_5$
 $x_1 = 0,4 +2x_4 -2x_5$
 $x = 1,08 -0.6x_4 -0.4x_5$

Keine weitere Verbesserung möglich.

Zur Vereinfachung kann die Tableauschreibweise des Simplex-Algorithmus angewendet werden. Dazu wird ebenfalls die Standardform benötigt:

$$0.2x_1 - 1x_2 + 1x_3 + 0x_4 + 0x_5 = 0$$

$$-1x_1 + 1x_2 + 0x_3 + 1x_4 + 0x_5 = 1$$

$$-0.5x_1 + 1x_2 + 0x_3 + 0x_4 + 1x_5 = 1,2$$

$$0.8x_1 - 1x_2 + 0x_3 + 0x_4 + 0x_5 + z = 0$$

Diese wird in die einfache Tableauschreibweise übertragen:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b_i
<i>X</i> ₃	$0,2x_1$	$-1x_{2}$	$+1x_{3}$	$+0x_{4}$	$+0x_{5}$	0
X_4	$-1x_{1}$		$+0x_{3}$			1
<i>X</i> ₅	$-0.5x_1$	$+1x_{2}$	$+0x_{3}$	$+0x_{4}$	$+1x_{5}$	1,2
Z	0,8 <i>x</i> ₁	$-1x_2$	$+0x_{3}$	$+0x_{4}$	$+0x_{5}$	0

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b_i
<i>X</i> ₃	0,2 <i>x</i> ₁	$-1x_{2}$	$+1x_{3}$	$+0x_{4}$	$+0x_{5}$	0
<i>X</i> ₄	$-1x_1$	$+1x_{2}$	$+0x_{3}$	$+1x_{4}$	$+0x_{5}$	1
X 5	$-0,5x_1$	$+1x_{2}$	$+0x_{3}$	$+0x_{4}$	$+0x_5 +1x_5$	1,2
Z	0,8 <i>x</i> ₁					

Innerhalb des Tableaus kann aufgrund der eindeutigen Zuordnung auf die Variablen verzichtet werden.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	b _i
<i>X</i> ₃	0,2	-1	1	0	0	0
X_4	-1	1	0	1	0	1
<i>X</i> ₅	-0,5	1	0	0	1	1,2
Z	0,8	-1	0	0	0	0

Pivotspalte j bestimmt durch minimalen (negativen) Zielfunktionskoeffizienten.

	<i>x</i> ₁	X 2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b _i
-X ₃	0,2	-1	1	0	0	0
X_4	-1	1	0	1	0	1
<i>X</i> ₅	-0,5	1	0	0	1	1,2
Z	0,8	-1	0	0	0	0

Pivotzeile bestimmt durch minimalen (nicht-negativen) Quotienten b_i/a_{ij} unter allen positiven a_{ij} .

	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄	<i>X</i> ₅	b _i
<i>X</i> 3	0,2	-1	1	0	0	0
<i>X</i> ₄	-1	1	0	1	0	1
<i>X</i> ₅	-0,5	1	0	0	1	1,2
Z	0,8	-1	0	0	0	0

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	b _i
<i>X</i> ₃	0,2	-1	1	0	0	0
<i>X</i> ₄	-1	1	0	1	0	1
<i>X</i> 5	-0,5	1	0	0	1	1,2
Z	0,8	-1	0	0	0	0

Erzeuge Einheitsvektor für neue Basisspalte durch elementare Zeilenoperationen mit der Pivotzeile.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b _i
<i>X</i> ₃	-0,8	0	1	1	0	1
<i>X</i> ₂	-1	1	0	1	0	1
<i>X</i> ₅	0,5	0	0	-1	1	0,2
Z	-0,2	0	0	1	0	1

Pivotspalte j bestimmt durch minimalen (negativen) Zielfunktionskoeffizienten

	<i>X</i> ₁					b _i
<i>X</i> ₃	-0,8	0	1	1	0	1
<i>X</i> ₂	-1	1	0	1	0	1
<i>X</i> ₅	0,5	0	0	1 1 -1	1	0,2
Z	-0,2	0	0	1	0	1

Pivotzeile bestimmt durch minimalen (nicht-negativen) Quotienten b_i/a_{ij} unter allen positiven a_{ij} .

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	b _i
<i>X</i> 3	-0,8	0	1	1	0	1
<i>X</i> ₂	-1	1	0	1	0	1
<i>X</i> ₅	0,5	0	0	-1	1	0,2
Z	-0,2	0	0	1	0	1

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	b _i
<i>X</i> ₃	-0,8	0	1	1	0	1
<i>X</i> ₂	-1	1	0	1	0	1
X 5	0,5	0	0	-1	1	0,2
Z	-0,2	0	0	1	0	1

Erzeuge Einheitsvektor für neue Basisspalte.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b_i
X ₃ X ₂ X ₁	0	0	1	-0,6	1,6	1,32 1,4 0,4
<i>X</i> ₂	0	1	0	-1	2	1,4
<i>X</i> ₁	1	0	0	-2	2	0,4
Z	0	0	0	0,6	0,4	1,08

Alle Zielfunktionskoeffizienten sind positiv: Optimales Ergebnis erreicht.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	bi
-X ₃	0	0 1	1	-0,6		1,32
<i>X</i> ₂	0	1	0	-1	2	1,4
<i>X</i> ₁	1	0	0	-2	2	0,4
Z	0	0	0	0,6	0,4	1,08

Basisvariablen

Nichtbasisvariablen

Die Lösung kann im Tableau abgelesen werden:

$$x_1 = 0,4$$

 $x_2 = 1,4$
 $x_3 = 1,32$
 $x_4 = 0$
 $x_5 = 0$

Simplex-Algorithmus

Case Study: Energiemixentwicklung in San Andrés

Aktuelle Situation:

- Auf der Insel existieren nur 2 Dieselkraftwerke mit einer installierten Kapazität von jeweils 25 MW
- ► Im Januar 2022 muss ein Dieselkraftwerk aufgrund seines hohen Alters stillgelegt werden, das andere Kraftwerk (Baujahr 2012) hat 2022 einen Wirkungsgrad von 40%

Fragestellung:

Wie muss der Kraftwerkmix bis 2022 auf der Insel ausgebaut werden, um die Befriedigung der Energienachfrage in diesem Jahr sicherzustellen?

Energiemixentwicklung in San Andrés: Annahmen

Aktionsprogramm Klimaschutz

- Die Regierung von San Andrés beschließt in Hinblick auf Natur- und Klimaschutz kein neues Dieselkraftwerk zu bauen
- ➤ Trotzdem muss die Stromnachfrage auf der Insel zu jeder Zeit gedeckt werden
 → dazu können Offshore-Windparks um die Inseln oder Solaranlagen auf der Insel installiert werden

Zielfunktion

- ▶ Die Regierung möchte die Anschaffungskosten für die neuen Kraftwerke minimieren
 - ightarrow variable Kosten für den Betrieb können vernachlässigt werden, da diese bei erneuerbarer Energieproduktion nahezu identisch sind

Energiemixentwicklung in San Andrés: Annahmen

- Kapazitätsausbau von erneuerbarer Energie ist stufenlos möglich
- Bei Energieüberproduktion (außerhalb der Spitzennachfrage) können einzelne Kraftwerke vom Netz genommen werden
 - ▷ Bspw. Windturbinen können abgedreht werden
- Da San Andrés ökonomische Stärke von dem Tourismus abhängt, möchte die Regierung den idyllisch-karibischen Inselcharme nicht durch große Photovoltaik-Freiflächen belasten.
 - Daher wird der Ausbau von Solarpanels auf eine installierte Kapazität von 5 MW beschränkt

- 122 -

OR-GDL - Vorlesung

Energiemixentwicklung in San Andrés: Daten

- Analysten stellen fest, dass nur die kritische Spitzennachfrag am späten Nachmittag mit nur den Dieselkraftwerken nicht befriedigt werden kann (den Rest des Tages ist die Energieversorgung gewährleistet)
- ▶ Da in San Andrés relative konstante klimatische Bedingungen herrschen, kann für erneuerbare Energiequelle in der Zeit am späten Nachmittag folgende Wirkungsgrade angenommen werden:

Technologie	Wirkungsgrad in 2022		
Wind offshore	60%		
Solar	20%		
Dieselkraftwerk	40%		

▶ Die Anschaffungskosten im Jahr 2022 betragen voraussichtlich:

Technologie	Anschaffungskosten pro MW
Wind offshore	2800000€
Solar	750000€
Dieselkraftwerk	0€

Energiemixentwicklung in San Andrés: Modell

Definition der Variablen:

 x_{tech} – installierte Kapazität der Technologie tech in **MW**

 $\textit{tech} = \{\textit{diesel}, \textit{solar}, \textit{wind}\}$

Aufstellen eines Linearen Programms:

Zielfunktion:

$$\min \textit{Anschaffungskosten} = \sum_{\textit{Technologie}} \textit{cost}_{\textit{tech}} \cdot \textit{x}_{\textit{tech}}$$

Nebenbedingungen:

s.t.
$$demand \leq \sum_{Technolgie} efficiency_{tech} \cdot x_{tech}$$

 $x_{solar} \leq 5$
 $x_{tech} \geq 0$

Energiemixentwicklung in San Andrés: Modell

Definition der Variablen:

x_{tech} – installierte Kapazität der Technologie *tech* in **MW**

 $x_{diesel} = 25$

tech = {diesel, solar, wind}

Aufstellen eines Linearen Programms:

Zielfunktion:

 $min \textit{ Anschaffungskosten} = 0 \cdot 25 + 750000 \cdot \textit{x}_{\textit{solar}} + 2800000 \cdot \textit{x}_{\textit{wind}}$

Nebenbedingungen:

s.t.
$$25 \leq 0,4 \cdot 25 + 0,2 \cdot x_{solar} + 0,6 \cdot x_{wind}$$

$$0 \leq x_{solar} \leq 5$$

$$x_{wind} \geq 0$$

Energiemixentwicklung in San Andrés: Modell

Aufstellen der Standardform:

Zielfunktion:

$$\max 0 = (-Anschaffungskosten) + 750000 \cdot x_{solar} + 2800000 \cdot x_{wind}$$

Nebenbedingungen:

s.t.
$$-0.2 \cdot x_{solar} - 0.6 \cdot x_{wind} + x_{schlupf1} = -15$$

 $x_{solar} + x_{schlupf2} = 5$
 $x_{solar,wind} \ge 0$

Aufstellen der Standardform:

Zielfunktion:

$$\max 0 = (-Anschaffungskosten) + 750000 \cdot x_{solar} + 2800000 \cdot x_{wind}$$

Nebenbedingungen:

s.t.
$$-0.2 \cdot x_{solar} - 0.6 \cdot x_{wind} + x_{schlupf1} = -15$$

 $x_{solar} + x_{schlupf2} = 5$
 $x_{solar, wind} \ge 0$

Lösung:

$$x_{solar} = 5MW$$
 $x_{wind} = 23.33MW$
 $x_{schlupf1} = 0$
 $x_{schlupf2} = 0$
Anschaffungskosten = 69083333€