Data Science HW2

A10715006 張秋霞

Dataset: data.csv \ test.csv

目標:透過 19 個 attributes 去分析各個 data 是否爲同一群。

程式碼檔案:hw2.py

執行方式:執行 'python hw2.py'即可。

一・程式架構

二・演算法流程&實作思路

觀察資料集

首先通過 head()和 info()觀察資料集,可以看到資料集沒有缺失值等需要處理的值。

資料處理

刪除不重要的 feature, 保留重要的 feature, 並使用 MinMaxScaler()對其進行 normalization。

聚類分析

此次使用 sk-learn 套件,該套件提供了很多可以用於 Clustering 的函式,主要有:

				C
Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

這次我選用 K-means、DBSCAN、Birch這三個比較具有代表性的方法對資料集進行 Clustering analysis,並通過他們的 silhouette score 和 calinski harabasz score 進行對比並初步分析選用哪個方法。

其中,K-means的使用如下圖:

```
for n_clusters in range(3,15,1):
    n_clusters=n_clusters
    clusters=n_clusters
    clusters=n_clusters
    clusters=n_clusters-n_clusters.random_state=10).fit(db)
    cluster_labels=clusterer.labels
    silhouette_avg = silhouette_score(db, cluster_labels)
    cal=calinski_harabasz_score(db, cluster_labels)
    print(n_clusters,':',cal)
    print(n_clusters',':',cal)
    print(n_cluster = ",n_clusters,'. The average silhouette_score is!', silhouette_avg)

3 : 5470. 428841583426
    n_cluster = 3 . The average silhouette_score is: 0.5502529946006443
    4 : 5510. 94422808757
    n_cluster = 4 . The average silhouette_score is: 0.528498409560366
    5 : 6229. 199985904982
    n_cluster = 5 . The average silhouette_score is: 0.5442262370154631
    6 : 6444. 038250029173
    n_cluster = 6 . The average silhouette_score is: 0.5204696355870047
    7 : 6508. 59696281795
    n_cluster = 7 . The average silhouette_score is: 0.4890527388155857
    8 : 6394. 856137255166
    n_cluster = 8 . The average silhouette_score is: 0.4877790939662017
    9 : 6351. 588483341102
    n_cluster = 8 . The average silhouette_score is: 0.4913359419776868
    10 : 6524. 743201247439
    n_cluster = 10 . The average silhouette_score is: 0.463064894326624
    11 : 6550. 824834982346
    10 : 6524. 743201247439
    n_cluster = 10 . The average silhouette_score is: 0.463064894326624
    11 : 6550. 824834982346
```

DBSCAN 的使用如下圖:

Birch 的使用如下圖:

對比及結果

整體來看,選用 K-means 或 Birch 的較好,於是分別選用它們對 data.csv 進行聚類分析,並 判斷 test.csv 中的結果是否爲同一群,將結果上傳至 kaggle,最終發現使用 Birch 所得的分 數更高,最終採用 Birch,程式碼如下: