Loan Default Prediction

Problem Statement

Given information on the loan and borrower, what is the probability of default?

Motivations

- Financial stability and profitability for banks
- High-risk borrowers lead to potential losses and non-performing loans

Goals:

- Avoid loss
- Better allocation of resources

Dataset

	customer	Credit_lines	Loan_amt	Total_debt	income	Years	Fico	default
	_id	outstanding	outstanding	outstanding		employed	score	
0	8153374	0	5221.545193	3915.471226	78039.38546	5	605	0
1	7442532	5	1958.928726	8228.752520	26648.43525	2	572	1
2	2256073	0	3363.009259	2027.830850	65866.71246	4	602	0
3	4885975	0	4766.648001	2501.730397	74356.88347	5	612	0
4	4700614	1	1345.827718	1768.826187	23448.32631	6	631	0

Exploratory Data Analysis / Feature Importance

	Feature Id	Importances
0	credit_lines_outstanding	41.642504
1	years_employed	27.133336
2	total_debt_outstanding	10.848737
3	fico_score	10.598897
4	income	6.910185
5	loan_amt_outstanding	2.866341

Credit lines outstanding is a key indicator on default probability!

The default vs. non-default populations differ significantly in this attribute...

But what if some of the information is not available?

- Consider removing some features and train a model on just income, fico_score and years_employed
- These are commonly asked for by banks for entry-level credit cards

Model Comparisons -Default Logistic Regression Classifier

Model Comparisons -Tuned CatBoost Classifier

Model Comparisons -Tuned Logistic Regression Classifier

Final Model Metrics

	precision	recall	f1-score	support				
<pre>0(no default) 1(default)</pre>	0.84 0.59	0.97 0.18	0.90 0.28	1624 376				
accuracy			0.82	2000				
macro avg weighted avg	0.71 0.79	0.58 0.82	0.59 0.78	2000 2000				
Brier score loss: 0.12757509999134695 log loss: 0.4087386060695741								
ROC_AUC score: 0.7668041216853578								

Further Considerations

- Building a feature which further penalizes mis-identification of default class
- Weigh the samples with higher loan amount more to mitigate overall risk in the portfolio (i.e. worse mistake if bigger default was not caught)
- Weigh the default class more depending on management needs