Design and Analysis of three basic OP AMP

Ajou university, Guen Seok Choi*

I. Introduction

지난 5주간 (2019.01.02. ~ 2019.02.07.) op amp에 대해 Razavi 'Design of Analog Cmos Integrated Circuit' 교재로 학습하였습니다. 이후 2주간 (2019.01.08. ~ 2019.02.20.) two stage op amp, folded cascode op amp, widebandwidth op amp 등 3개의 op amp를 design 하였습니다. 각 amp는 g_m/i_d methodology를 이용하여 주어진 specification을 만족시키기 위해 hand calculation 하였습니다. 이후 350n 공정에서 hspice로 parameter들을 simulation을 하였고 optimization을 거쳐 design을 마쳤습니다.

Ⅱ. Two stage op amp

2-1 Target and result of Specification

Parameter	Target	Achievement
DC Gain	≥70dB	72.6dB
Common-Mode Input Range	1V	at least 2V
OutputSwing	1V	2.7V
PowerDissipation (excludebiasing)	100uW	98uW
Unity GainFrequency	8MHz	8.6MHz
Settling Time (0.5V OutputStep)	100nsec to 0.1%	104nec
CMRR at DC	≥70dB at DC	72.6dB
PSRR	≥70dB at DC	82.6dB
Load Capacitance	1pF	1pF
Supply Voltage	3.3V(VDD), 0V(VSS)	3.0V(VDD), 0V(VSS)
Phase Margin	60 °	67.5 °

2-2 Design and Hand calculation

Two stage op amp는 위와 같이 design 하였다. 350nm 공정에서의 Nmos와 Pmos의 $u_n cox$ 의 값을 가지고 g_m/i_d methodology를 이용하였다. g_m/i_d 를 통하여 Vod를 100mv로 설정한 후 w/l를 구하고 $m,\ r,\ c$ 의 값을 추후다른 spec에 맞도록 계산한 후 결정하였다.

그 결과 parameter들이 아래와 같이 결정되었다.

M1	l=0.55u w=0.4u m=3	M2	l=0.55u w=0.4u m=3
M3	l=0.55u w=0.4u m=9	M4	l=0.55u w=0.4u m=9
M5	l=0.55u w=0.4u m=6	M6	l=0.55u w=0.4u m=54
M7	l=0.55u w=0.4u m=18	M8	l=0.55u w=0.4u m=4
c_c	0pF	c_L	1pF
V_{DD}	3V	V_{ss}	0V
Ibias	5.5uA	R_f	0 Ω
vin1	1V	vin2	1V

^{*}아주대학교 전자공학과(Department of Electrical and Computer Engineering, Ajou University)

.Corresponding Author: Guen Seok Choi (e-mail: ieggiegg@ajou.ac.kr)

1

2-3 Simulation Result

Input common-mode voltage range simulation

Output voltage swing simulation

Power supply rejection ratio simulation

Common-mode rejection ratio

Slew rate and settling time

Gain, Bandwidth, Power dissipation, Phase Margin, ICMR, Output swing, PSRR, CMRR, settling time은 아래와 같이 design하였고 simulation 결과 spec을 만족시켰다.

$$\begin{split} \text{(1)} \ \ Gain &= 20 \text{log}_{10} g_{m2}(r_{O2} \parallel r_{O4}) \times g_{m6}(r_{O6} \parallel r_{O7}) \\ &= 20 \text{log}_{10} \left(2g_{m2} g_{m6} / \left(I_5 I_6 \left(\lambda_2 + \lambda_4 \right) (\lambda_6 + \lambda_7) \right) \right. \\ &= 20 \text{log}_{10} \left(60u \times \left(1 / 170n \parallel 1 / 680n \right) \right) \\ &\times \left(360u \times \left(1 / 1u \parallel 1 / 4u \right) = 74.1dB \end{split}$$

(2)
$$GB = g_{m1}/2\pi C_c = 60u/(1p \times 2\pi) = 9.5MHz$$

(3)
$$P = V_{DD} \times (I_{M5, M7}) = 3 \times (8u + 24u) = 96u W$$

(4)
$$ICMR_{\text{max}} = V_{DD} - V_{gsM4} = 3 - 0.1 = 2.9 V$$

 $ICMR_{\text{min}} = V_{dSatM1, M3, M5} - V_{gsM1}$
 $= 0.1 + 0.1 + 0.1 - 0.1 = 0.2 V$

(5)
$$Swing = V_{DD} - V_{od\ M1,M3,M5} = 3 - 0.3 = 2.7\ V$$

(6)
$$PSRR^{+} = \frac{V_{dd}}{V_{out}}$$

$$= \frac{g_{m}g_{mII}}{G_{I}g_{ds6}} \times \frac{(sc_{c}/g_{mI} + 1)(sc_{c}/g_{mII} + 1)}{sg_{mI}c_{c}/G_{i}g_{ds6} + 1}$$

$$\approx 20\log_{10}\frac{60u \times 360u}{(170n + 680n) \times 1u} = 88dB$$

$$PSRR = 20\log_{10}(\Delta V/\Delta V_{out} \times A_{V})dB$$

$$= PSRR^{+} + A_{v} = 88dB$$

$$\begin{split} &(7) \;\; CMRR = A_{DM}/A_{CM} = 80.8dB \\ &A_{DM} = g_{m2}(r_{O2} \parallel r_{O4}) \times g_{m6}(r_{O6} \parallel r_{O7}) = 44.1dB \\ &A_{CM} = \frac{1}{1/2g_{m2} + R_{ss}} \times (1/g_{m4} \parallel r_{o4}/2 \parallel 1/g_{m6} \parallel r_{o6}/2) \\ &= \frac{1}{1/100u + 1/2u} \times (1/60u \parallel 1/1.36u \parallel 1/360u \parallel 1/2u) = -36.7dB \end{split}$$

(8)
$$\tau = V/SR = C_t V/I_5 = 0.5 \times 1p/8u = 62.5ns$$

Ⅲ. Folded Cascode op amp

3-1 Target and result of parameters

Parameter	Target	Achievement
DC Gain	≥70dB	71.9dB
Common-Mode Input Range	1V	1.2V
OutputSwing	1V	2.2V
PowerDissipation (excludebiasing)	100uW	90.4uW
Unity GainFrequency	8MHz	14.7MHz
Settling Time (0.5V OutputStep)	100nsec to 0.1%	70nec
CMRR at DC	≥70dB at DC	82.9dB
PSRR	≥70dB at DC	82.5dB
Load Capacitance	1pF	1pF
Supply Voltage	3.3V(VDD), 0V(VSS)	3.0V(VDD), 0V(VSS)
Phase Margin	60 °	79 °

3-2 Design and Hand calculation

Folded cascode op amp는 위와 같이 design 하였다. 350nm 공정에서의 Nmos와 Pmos의 $u_n cox$ 의 값을 가지고 g_m/i_d methodology를 이용하였다. g_m/i_d 를 통하여 Vod를 $100\sim 200mv$ 로 설정한 후 w/l를 구하고 $m,\ r,\ c$ 의 값을 추후 다른 spec에 맞도록 계산한 후 결정하였다.

그 결과 parameter들이 아래와 같이 결정되었다.

M1	l=0.7u w=0.4u m=6	M2	l=0.7u w=0.4u m=6
M3	l=0.7u w=0.4u m=12	M4	1=0.7u w=0.4u m=36
M5	1=0.7u w=0.4u m=36	M6	1=0.7u w=0.4u m=18
M7	l=0.7u w=0.4u m=18	M8	l=0.7u w=0.4u m=3
M9	1=0.7u w=0.4u m=3	M10	l=0.7u w=0.4u m=3
M11	1=0.7u w=0.4u m=3	M12	1=0.7u w=0.4u m=12
M11	l=0.7u w=0.4u m=12	M14	1=0.7u w=0.4u m=36
M15	l=0.7u w=0.4u m=36		
c_c	0pF	c_L	1pF
V_{DD}	3V	V_{ss}	0V
Ibias	15uA	R_f	0 Ω
vin1	1V	vin2	1V

3-3 Simulation Result

Input common-mode voltage range simulation

Output voltage swing simulation

Power supply rejection ratio simulation

Common-mode rejection ratio

Slew rate and settling time

Gain, Bandwidth, Power dissipation, Phase Margin, ICMR, Output swing, PSRR, CMRR, settling time은 아래와 같이 design하였고 simulation 결과 spec을 만족시켰다.

(1)
$$Gain = 20\log_{10}g_{m2} \times (\left[g_{m7} \times r_{O7}(r_{O5} \parallel r_{O2})\right] \parallel \left[g_{m9}(r_{O9} \times r_{O11})\right]) = 20\log_{10}(100u \times (100u \times 1/2u \times (1/1.3u \parallel 1/100n) \parallel (100u \times 1/200n \times 1/200n)) = 70.1dB$$

(2)
$$GB = g_{m1}/C_c = 100u/(1p \times 2\pi) = 16MHz$$

(3)
$$P = V_{DD} \times (I_{M3, M10, M11})$$

= $3 \times (15u + 7.5u + 7.5u) = 90u W$

(4)
$$ICMR_{\text{max}} = V_{DD} - V_{gsM5,7} = 3 - 1 = 2 V$$

 $ICMR_{\text{min}} = V_{dSatM9,M11,M7} - V_{gsM7}$
 $= 1.15 - 0.45 = 0.7 V$

(5)
$$Swing = V_{DD} - V_{od\ M4,\ M6,\ M8,\ M10}$$

= 3 - 0.1 - 0.1 - 0.2 - 0.2 = 2.4 V

(6)
$$PSRR^{+} = \frac{V_{dd}}{V_{out}}$$

$$= \frac{g_{m}g_{mII}}{G_{I}g_{ds6}} \times \frac{(sc_{c}/g_{mI}+1)(sc_{c}/g_{mII}+1)}{sg_{mI}c_{c}/G_{I}g_{ds6}+1}$$

$$\approx 20\log_{10}\frac{100u \times 100u}{(0.1+1.3)u \times (1.8+0.4)u} = 70.2dB$$

$$PSRR = 20\log_{10}(\Delta V/\Delta V_{out} \times A_{V})dB$$

$$= PSRR^{+} + A_{v} = 70.2dB$$

$$\begin{split} & (7) \ \textit{CMRR} = A_{\textit{DM}} / A_{\textit{CM}} = 78.2dB \\ & A_{\textit{DM}} = 20 \text{log}_{10} g_{m2} \times (\left[g_{m7} \times r_{\textit{O7}} (r_{\textit{O5}} \parallel r_{\textit{O2}})\right] \parallel \\ & \left[g_{m9} (r_{\textit{O9}} \times r_{\textit{O11}})\right]) = 20 \text{log}_{10} \left(100u \times (100u \times 1/2u \times (1/1.3u \parallel 1/100n) \parallel (100u \times 1/200n \times 1/200n)) = 40.1dB \\ & A_{\textit{CM}} = \frac{1}{1/2g_{m2} + R_{\textit{ss}}} \times \left(1/g_{m7} \parallel r_{\textit{o7}} / 2 \parallel 1/g_{m9,m10} \parallel r_{\textit{o9},\textit{o10}} / 2\right) \\ & = \frac{1}{1/200u + 1/2u} \times \left(1/60u \parallel 1/1.36u \parallel 1/360u \parallel 1/2u\right) = -38.1dB \end{split}$$

(8)
$$\tau = V/SR = C_t V/I_3 = 0.5 \times 1p/15u = 33.3ns$$

IV. Widebandwidth op amp

4-1 Target and result of parameters

Parameter	Target	Achievement
DC Gain	≥70dB	71.1dB
Common-Mode Input Range	0.8~2.5V	1.5V
OutputSwing	0.35~2.95V	2.3V
PowerDissipation (excludebiasing)	500uW	498uW
Unity GainFrequency	140MHz	140.1MHz
Settling Time (0.5V OutputStep)	38nsec to 0.1%	40nec
CMRR at DC	≥60dB at DC	66.1dB
PSRR	≥60dB at DC	76.1dB
Load Capacitance	1pF	1pF
Supply Voltage	3.3V(VDD), 0V(VSS)	3.0V(VDD), 0V(VSS)
Phase Margin	60 °	60.4 °

4-2 Design and Hand calculation

Widebandwidth op amp는 위와 같이 Two stage op amp로 design 하였다. 처음에는 two stage folded cascode 로 설계하였지만 느렸고 two stage cascode으로 설계하였을 때 spec을 만족시켰지만 cascode를 안해도 spec을 만족 가능하다고 판단되어 위와 같은 기본적인 two stage op amp로 설계하였다. 350nm 공정에서의 Nmos와 Pmos의 $u_n cox$ 의 값을 가지고 g_m/i_d methodology를 이용하였다. g_m/i_d 를 통하여 Vod를 $200\sim300mv$ 로 설정한 후 w/l를 구하고 $m,\ r,\ c$ 의 값을 추후 다른 spec에 맞도록 계산한후 결정하였다.

그 결과 parameter들이 아래와 같이 결정되었다.

M1	1=0.55u w=0.35u m=7	M2	1=0.55u w=0.35u m=7
M3	l=0.55u w=0.35u m=21	M4	l=0.55u w=0.35u m=21
M5	l=0.55u w=0.35u m=14	M6	l=0.55u w=0.35u m=42
M7	l=0.55u w=0.35u m=17	M8	l=0.55u w=0.35u m=7
c_c	0.5pF	c_L	1pF
V_{DD}	3V	V_{ss}	0V
Ibias	20.5uA	R_f	8.2Ω
vin1	1V	vin2	1V

4-3 Simulation Result

Input common-mode voltage range simulation

Output voltage swing simulation

Power supply rejection ratio simulation

Common-mode rejection ratio

Slew rate and settling time

Gain, Bandwidth, Power dissipation, Phase Margin, ICMR, Output swing, PSRR, CMRR, settling time은 아래와 같이 design하였고 simulation 결과 spec을 만족시켰다.

(1)
$$Gain = 20\log_{10}g_{m2}(r_{O2} \parallel r_{O4}) \times g_{m6}(r_{O6} \parallel r_{O7})$$

 $= 20\log_{10}(2g_{m2}g_{m6}/(I_5I_6(\lambda_2 + \lambda_4)(\lambda_6 + \lambda_7))$
 $= 20\log_{10}(480u \times (1/1.4u \parallel 1/5.6u))$
 $\times (2.9m \times (1/8u \parallel 1/32u) = 73.9dB$

(2)
$$GB = g_{m1}/C_c = 480u/(0.5p \times 2\pi) = 152MHz$$

(3)
$$P = V_{DD} \times (I_{M5, M7}) = 3(40 + 120)u = 480u W$$

(4)
$$ICMR_{\text{max}} = V_{DD} - V_{gsM4} = 3 - 1 = 2 V$$

 $ICMR_{\text{min}} = V_{dSatM1, M3, M5} - V_{gsM1}$
 $= 1 - 0.2 + 0.2 + 0.2 = 0.4 V$

(5)
$$Swing = V_{DD} - V_{od\ M1.M3.M5} = 3 - 0.6 = 2.4\ V$$

(6)
$$PSRR^{+} = \frac{V_{dd}}{V_{out}}$$

$$= \frac{g_{m}g_{mII}}{G_{I}g_{ds6}} \times \frac{(sc_{c}/g_{mI}+1)(sc_{c}/g_{mII}+1)}{sg_{mI}c_{c}/G_{i}g_{ds6}+1}$$

$$\approx 20\log_{10}\frac{480u \times 2.9m}{(1.4u+5.6u) \times 8u} = 87.9dB$$

$$PSRR = 20\log_{10}(\Delta V/\Delta V_{out} \times A_{V})dB$$

$$= PSRR^{+} + A_{v} = 88 = 87.9dB$$

$$\begin{split} &(7) \;\; CMRR = A_{DM}/A_{CM} = 80.8dB \\ &A_{DM} = g_{m2}(r_{O2} \parallel r_{O4}) \times g_{m6}(r_{O6} \parallel r_{O7}) = 44.1dB \\ &A_{CM} = \frac{1}{1/2g_{m2} + R_{ss}} \times (1/g_{m4} \parallel r_{o4}/2 \parallel 1/g_{m6} \parallel r_{o6}/2) \\ &= \frac{1}{1/800u + 1/16u} \times (1/480u \parallel 1/10.9u \parallel 1/2.9m \parallel 1/16u) = -36.7dB \end{split}$$

(8)
$$\tau = C_c V/I_5 = 0.5 \times 1.5 p/40u = 18.8 ns$$

V Ways to Measure Parameters with simulation

5-1 Input common-mode voltage range simulation

ICMR은 Unit gain Buffer을 구성한 후 input을 VSS에서 VDD까지 sweep한다.

5-2 Output voltage swing simulation

Output Voltage swing은 Unit gain Buffer을 구성한 후 input을 VSS에서 VDD까지 sweep한다.

5-3 Power supply rejection ratio simulation

PSRR은 Unit gain amp를 구성한 후 VDD에 AC를 주면 PSRR+, VSS에 AC를 주면 PSRR-를 구한다. PSRR+의 정의 가 V_{DD}/V_{out} 이고 PSRR의 정의가 $20\log_{10}\left(\Delta\ V/\Delta\ V_{out} \times A_V\right)dB$

5-4 Common-Mode Rejection Ratio simuulation

CMRR은 아래와 같이 구성한 후 amp에 feedback을 걸고 입력에 pulse를 인가한다. 이때 0.5V를 output step를 가져 야하므로 필자는 1.25V에서 1.75V의 pulse를 인가하였다. CMRR의 정의가 V_{cm}/V_{out} 임을 이용하여 구한다.

5-5 Common-Mode Rejection Ratio simuulation

Slew rate은 Unit gain amp를 구성한 후 V2의 Vcm에 AC를 주고 V1의 Vcm은 DC와 AC를 준다. 이때 CMRR의 정의가 V_{out}/V_{DD} 이다.

최 근 석 (아주대학교 / 학부생)

2014년 3월~현재: 아주대학교 전자공 학과 학부생

[주 관심분야] SoC (System-on-chip) Architecture, Integrated Circuits