Combinação de Modelos

Departamento de Engenharia Informática (DEI/ISEP) Fátima Rodrigues

 $\underline{mfc@isep.ipp.pt}$

Combinação de Modelos

Ideia Base

- Constrói-se um conjunto de modelos a partir de dados de treino
- Fazem-se previsões combinando as previsões feitas pelos vários modelos

Razões para combinar modelos:

- Maior habilidade preditiva
- Maior robustez, previsões mais estáveis

Porquê Combinação de Modelos?

Resultados teóricos e experimentais comprovam que não existe nenhum algoritmo que apresente um melhor desempenho para todos os problemas

A ideia principal subjacente à combinação de modelos é baseada na observação de que diferentes algoritmos de aprendizagem exploram:

- Diferentes linguagens de representação
- Diferentes espaços de procura
- Diferentes funções de avaliação de hipóteses

A **Combinação de Modelos** visa explorar estas diferenças e desenvolver uma combinação de modelos que trabalhando em conjunto obtêm melhor desempenho do que cada um dos modelos individuais

Justificação para Combinação de Modelos

Duas condições são necessárias para que a combinação de modelos seja superior aos modelos individuais:

 Os modelos individuais devem ser independentes entre si, ou seja, cometem erros não correlacionados, ou negativamente correlacionados

→Combinar modelos idênticos é inútil

 A previsão dos classificadores individuais deve ser superior à previsão aleatória (taxa de erro < 50%)

Justificação para Combinação de Modelos

- Supondo que são construídos 25 classificadores base
- Cada classificador apresenta uma taxa de erro , ε = 0.35
- Se os classificadores base forem idênticos:
 - a combinação dos classificadores fará previsões idênticas às dos classificadores base, e apresenta idêntica taxa de erro ($\varepsilon = 0.35$)
- Se os classificadores base forem independentes
- A taxa de erro dos classificadores individuais for menor 50%
 - A combinação dos classificadores fará uma previsão errada se pelo menos metade dos classificadores base prever erradamente, e portanto apresentará uma taxa de erro:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Fases na Combinação de Modelos

1. Diversificação: escolhem-se diferentes modelos para cobrir diferentes regiões do espaço de procura

2. Integração: combinam-se os vários modelos por forma a maximizar o desempenho do modelo combinado

Técnicas de Diversificação

Amostragem

Varia os dados usados para treinar o algoritmo

Combinação homogénea

Um **único algoritmo** de aprendizagem é usado para desenvolver modelos sobre **diferentes sub-conjuntos de dados**

Diferentes algoritmos

Varia os algoritmos treinados sobre o conjunto de dados

Combinação heterogénea

Usa diferentes algoritmos de aprendizagem

Técnicas de Integração

- Estática: o procedimento de integração é fixo por exemplo:
 - votação (Max-Voting)
 - média/moda das previsões individuais
 - média pesada

 Dinâmica: as previsões base são combinadas através de um procedimento adaptativo - meta-aprendizagem

Combinação Heterogénea

Aprendizagem Multi-Estratégica

Diversificação

- Treinar M algoritmos de aprendizagem em subconjuntos de um conjunto de treino e medir o seu desempenho num conjunto de teste
- Selecionar J modelos com erro de correlação mínimo

Integração

Dinâmica: através de meta-aprendizagem

Combinação por votação

Combinação de modelos por votação

Combina previsões de diferentes modelos, independentes

Combinação: hard/soft voting

- Hard Voting (votação forte): é equivalente à votação mioritária
- Soft Voting (votação suave): é a média da saída dos vários modelos

Combinação por stacking

bias-variance tradeoff

- Modelos base (high variance)
- Modelos de base (High bias)

O método de combinação deve contrariar a tendência dos modelos base

Stacking

Stacking envolve:

Modelos de nível 0 (modelos base): modelos desenvolvidos com os dados de treino e cujas previsões são compiladas

Modelo de Nível 1 (meta-modelo): modelo que aprende como combinar melhor as previsões dos modelos básicos.

O meta-modelo é treinado com as previsões feitas pelos modelos base com os dados de teste

Stacking - representação conceptual

Combinação de Modelos por Amostragem

Combinação de Modelos por Amostragem

Esta técnica funciona bem com **algoritmos de aprendizagem instáveis**, ou seja, algoritmos cuja saída sofre grandes alterações em resposta a pequenas mudanças nos dados de treino: árvores de decisão, regressão, redes neuronais

Métodos mais usuais baseados em amostragem dos exemplos treino:

- Bagging: "bootstrap agregação" (Breiman 1996)
- Boosting: reamostragem através de ponderação adaptativa

Homogeneous Parallel Ensembles

Bagging

Bagging = Bootstrap AGGregatING

O Bagging consiste em duas etapas:

1. durante o treino:

amostragem bootstrap ou amostragem com substituição é usada para gerar diferentes subconjuntos de treino, extraídos do conjunto de dados original

→ garante que os modelos base treinados são diferentes

2. durante a previsão:

são combinadas as previsões dos modelos base individuais

Classificação: a previsão final é obtida pelo voto maioritário dos modelos base individuais

Regressão: a previsão final é obtida pela **média** das previsões dos modelos base individuais

Bagging

Exemplificação Bagging

Sem *bagging* a melhor divisão que se pode conseguir deste conj^{to} de dados é $x \le 0.35$ ou $x \le 0.75$

que equivale a uma accuracy de 70%

Aplicando o método *bagging* a este conjunto de dados, usando 10 amostras *bootstrap*

Exemplificação Bagging

Bagging 1	Х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x \le 0.35 \Rightarrow y = 1$
	У	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \Rightarrow y = -1$
Bagging 2	Х	0.1	0.2	0.3	0.4	0.5	0.8	0.9	0.2	0.3	0.8	$x \le 0.65 \Rightarrow y = 1$
	У	1	1	1	-1	-1	1	1	1	1	1	$x > 0.65 \Rightarrow y = 1$
Bagging 3	Х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9	$x \le 0.35 \Rightarrow y = 1$
	У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.35 \Rightarrow y = -1$
Bagging 4	Х	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	0.8	0.9	$x \le 0.3 \Rightarrow y = 1$
	У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \Rightarrow y = -1$
Bagging 5	Х	0.1	0.1	0.2	0.5	0.6	0.6	0.6	0.8	0.9	0.2	$x \le 0.35 \Rightarrow y = 1$
	У	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \Rightarrow y = -1$
Bagging 6	Х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.1	$x \le 0.75 \Rightarrow y = -1$
	У	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \Rightarrow y = 1$
Bagging 7	х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	0.8	x ≤ 0.75 ⇒ y = -1
	У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \Rightarrow y = 1$
Bagging 8	Х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	0.2	$x \le 0.75 \Rightarrow y = -1$
	У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \Rightarrow y = 1$
Bagging 9	Х	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	0.3	0.9	x ≤ 0.75 ⇒ y = -1
	У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \Rightarrow y = 1$
Bagging 10	Х	0.1	0.1	0.1	0.1	0.3	0.3	0.8	0.8	0.9	0.9	x ≤ 0.05 ⇒ y = -1
	У	1	1	1	1	1	1	1	1	1	1	$x > 0.05 \Rightarrow y = 1$

Exemplificação Bagging

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1
Bagging 1	1	1	1	-1	-1	-1	-1	-1	-1	-1
Bagging 2	1	1	1	1	1	1	1	1	1	1
Bagging 3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Bagging 4	1	1	1	-1	-1	-1	-1	-1	-1	-1
Bagging 5	1	1	1	-1	-1	-1	-1	-1	-1	-1
Bagging 6	-1	-1	-1	-1	-1	-1	-1	1	1	1
Bagging 7	-1	-1	-1	-1	-1	-1	-1	1	1	1
Bagging 8	-1	-1	-1	-1	-1	-1	-1	1	1	1
Bagging 9	-1	-1	-1	-1	-1	-1	-1	1	1	1
Bagging 10	1	1	1	1	1	1	1	1	1	1
Soma	2	2	2	-6	-6	-6	-6	2	2	2
Previsão	1	1	1	-1	-1	-1	-1	1	1	1

Accuracy: 100%

Bagging:

- reduz a variância dos classificadores de base
- é menos susceptível a sobre-ajustamento dos modelos

Bagging

- Amostragem Bootstrap produz conjuntos de treino altamente sobrepostos
- Reduz o erro devido à diminuição da variância: melhora consideravelmente algoritmos altamente instáveis ou algoritmos com alta variância, isto é, onde pequenas variações de dados conduzem a modelos muito diferentes (por exemplo árvores de decisão, redes neuronais)

Algoritmos Bagging:

- Bagging
- Random Forest

Random Forest – (Floresta aleatória)

Random Forest é uma extensão especial de *bagging* que introduz ainda mais aleatoriedade para promover maior diversidade no conjunto de modelos base (árvores de decisão) criados

Random Forest

- Começa por fazer amostragem bootstrap para gerar subconjuntos de treino diferentes (tal como bagging)
- Com cada subconjunto de treino é gerada uma árvore de decisão como estimadores de base
- 3. As previsões das árvores são combinadas por voto

Random Forest

Random Forest

- Random Forest combina:
 - seleção aleatória de instâncias (bagging)
 - seleção aleatória de atributos
- A diversidade é garantida selecionando aleatoriamente em cada divisão, um subconjunto dos atributos originais durante o processo de geração de árvores
- Algoritmo base de aprendizagem: Alg. CART (árvores de decisão)
- Floresta = um conjunto de árvores T

[Breiman, 2001]

Homogeneous Sequential Ensembles

Boosting

Boosting: Ideia Base

Diversificação

Reamostragem sequencial adaptativa por ponderação das instâncias

- Inicialmente: todas as instâncias têm pesos iguais: 1/|TRN|
- Em cada uma das iterações:
 - aplicar o algoritmo e estimar o erro
 - Aumentar/diminuir o peso dos casos mal/corretamente classificados

Foco na aprendizagem dos casos difíceis

Boosting

Boosting

- Procedimento iterativo: os novos modelos são influenciados pelo desempenho dos modelos construídos anteriormente
 - O novo modelo é uma especialização em instâncias classificadas incorretamente pelos modelos anteriores
 - Justificação intuitiva: os novos modelos devem complementar os modelos anteriores

Algoritmos de Boosting

Existem diversos algoritmos de boosting essencialmente diferem na forma:

- Como os pesos são atribuídos às instâncias mal classificadas no final de cada iteração de boosting
- Como as previsões de cada classificador são combinadas

Algoritmos Boosting:

- AdaBoost (Adaptative Boosting)
- Gradient Boosting
- XGBoost
- LightBoost

Boosting: Sumário

- O poder do Boosting deve-se à reamostragem adaptativa
- Tal como o Bagging, o Boosting reduz a variância
- Também reduz o bias, obrigando os modelos a concentrarem-se nos casos mais difíceis
 - ->Hipótese combinada mais flexível
- Rápida Convergência

Bagging vs. Boosting

	Bagging	Boosting					
Similaridades	Classificação: por esquema de voto						
Sillialidades	Combinam modelos do mesmo tipo						
	Modelos base	Cada novo modelo é					
	desenvolvidos	influenciado pelo desempenho					
Diforoncos	separadamente	dos modelos previamente					
Diferenças		desenvolvidos					
	igual peso atribuído a	O peso do modelo é definido					
	todos os modelos	pelo seu desempenho					

Estratégias para Combinação de Modelos

Sumário

- Manipulação do conjunto de treino, através de diferentes formas de amostragem
- 2. Manipulação dos atributos da amostra inicial
- 3. Usando um conjunto diversificado de algoritmos, tais como, rede neural, árvore de decisão, ...
- 4. Através de diferentes funções de combinação, que determinam como divergências entre as previsões são reconciliadas: por votação, por ponderação, ...

Parametrização de Algoritmos

Otimização dos híper-parâmetros

O ajuste dos híper-parâmetros dos algoritmos de ML é importante para se conseguir obter melhor desempenho dos modelos

A otimização dos parâmetros envolve:

- Conhecer os parâmetros dos algoritmos
- De entre os parâmetros selecionar os mais importantes
- Testar as combinações possíveis de valores dos parâmetros

RandomForest parâmetros

```
clf = RandomForestClassifier()
clf.get_params().keys()

['bootstrap', 'ccp_alpha', 'class_weight', 'criterion', 'max_depth',
'max_features', 'max_leaf_nodes', 'max_samples', 'min_impurity_decrease',
'min_impurity_split', 'min_samples_leaf', 'min_samples_split',
'min_weight_fraction_leaf', 'n_estimators', 'n_jobs', 'oob_score',
'random_state', 'verbose', 'warm_start'])
```

- n_estimators = number of trees in the foreset
- max_depth = maximum depth of each tree in the forest
- max_features = max number of features considered for splitting a node
- min_samples_split = minimum number of samples required to split an internal node
- min_samples_leaf = min number of data points allowed in a leaf node

Estratégias para Otimização dos parâmetros

- Pesquisa manual
- Grid Search CV
- Random Search CV
- Bayesian Optimization

Grid Search CV

São executadas todas as combinações exaustivas de valores de parâmetros fornecidos e escolhida a melhor combinação

Exemplo, algoritmo randomForest principais parâmetros:

n_estimators, max_depth, max_features

- Todas as combinações de valores dos híper parâmetros resulta em 5X4X2 = 60 x cv=5
 300 modelos diferentes
- Adicionar mais um híper parâmetro aumentará exponencialmente o número de combinações, aumentando drasticamente o tempo de execução
- Devem ser escolhidos apenas os parâmetros mais importantes a ajustar

Random Forest GridSearch optimization

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import GridSearchCV
rfm = RandomForestClassifier()
param rfm = { 'n_estimators': [100, 200, 300, 400, 500],
               'max depth': [None, 10, 20, 30],
               'max features': ['auto', 'log'] }
rfm gs = GridSearchCV(rfm, params rfm, cv=5)
rfm gs fit = rfm gs.fit(X train, y train)
rfm best = rfm gs.best estimator
rfm_preds = cross_val_score(rfm_best, X_test, y_test, cv=5)
```

Random Search CV

Escolhe aleatoriamente apenas algumas combinações de todas as combinações possíveis

- Das 60 combinações possíveis RandomSearchCV através do parâmetro
 n_iter permite especificar quantas combinações experimentar
- Se n_iter=20, significa que quaisquer 20 combinações aleatórias serão testadas

Random Forest Random Search optimization

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import RandomizedSearchCV
rfm = RandomForestClassifier()
param rfm = \{ 'n \text{ estimators': } [100, 200, 300, 400, 500], \}
               'max depth': [None, 10, 20, 30],
               'max features': ['auto', 'log'] }
rfm gs = GridSearchCV(rfm, params rfm, cv=5)
# Create a RandomizedSearchCV object
rfm rs=RandomizedSearchCV(rfm,
                           params rfm,
                           n iter=100, cv=5, n jobs=-1)
rfm rs fit=rfm rs.fit(X train, y train)
rfm best = rfm rs.best estimator
rfm preds = cross val score(rfm best, X test, y test, cv=5)
```

Bayesian Optimization

Faz uma escolha inteligente sobre a próxima combinação a ser tentada, por análise dos resultados das combinações anteriores

- Supondo que o teste relativo ao parâmetro n_estimators = 100, 200 e
 300 produziu o melhor resultado com n_estimators=200
- O próximo conjunto de valores a ser testado será em torno de 200
- O mesmo com os outros parâmetros
- Alguns dos valores de hiper-parâmetros fornecidos podem não ser testados

Random Forest Bayesian optimization

```
from sklearn.ensemble import RandomForestClassifier
from skopt import BayesSearchCV
rfm = RandomForestClassifier()
param rfm = { 'n estimators': [100, 200, 300, 400, 500],
               'max depth': [None, 10, 20, 30],
               'max features': ['auto', 'log'] }
# Create a BayesSearchCV object
rfm bs = BayesSearchCV (rfm, params_rfm,
                        n iter=100,
                        cv=5.
                        n jobs=-1)
rfm bs fit=rfm bs.fit(X train, y train)
rfm best = rfm_bs.best_estimator_
rfm preds = cross val score(rfm best, X test, y test, cv=5)
```