Azzolini Riccardo 2019-05-13

# Alberi red-black

#### 1 Albero red-black

Un albero red-black (RB) è un albero binario di ricerca in cui:

- ogni nodo contiene (oltre a un valore) un campo colore (rosso/nero), il quale indica il colore del lato che collega il nodo al padre;
- non ci sono due lati rossi consecutivi (cioè il cammino da un qualunque nodo a un suo nipote ha almeno un lato nero);
- ogni cammino dalla radice a una foglia ha lo stesso numero di lati neri (ma le foglie non sono necessariamente tutte allo stesso livello).

## 2 Corrispondenza con gli alberi 2-3-4

Per implementare gli alberi 2-3-4 si potrebbe rappresentare ciascun nodo mediante un record dotato di 3 campi per i valori e 4 riferimenti per i figli. Così facendo, però, si avrebbe uno spreco di spazio per tutti non saturi.

Gli alberi red-black sono invece un'implementazione efficiente per gli alberi 2-3-4: siccome ogni nodo contiene esattamente un valore, si evitano gli sprechi.

In un albero red-black, più nodi collegati da lati rossi corrispondono a un unico nodo di un albero 2-3-4:



#### 2.1 Altezza

Lemma: Sia T un albero 2-3-4 di altezza h. Allora, ogni albero RB equivalente a T ha al massimo altezza 2h.

Dimostrazione: Per attraversare il corrispondente di un nodo 2-3-4 in un albero RB servono al massimo due lati, quindi l'altezza può al massimo raddoppiare passando da un albero 2-3-4 a un albero RB equivalente.

Osservazione: Segue dal lemma che un albero RB con n valori ha altezza  $\Theta(\log n)$ , quindi gli alberi red-black sono **bilanciati**.

#### 2.2 Alberi red-black equivalenti

A un particolare albero red-black corrisponde un unico albero 2-3-4.

Viceversa, a un dato albero 2-3-4 corrispondono più alberi RB, perché esistono due rappresentazioni diverse per i nodi di tipo 3 (e quale delle due viene usata in ogni caso dipende dalla sequenza di operazioni eseguite).

Di conseguenza, se un albero 2-3-4 ha n nodi di tipo 3, esistono  $2^n$  alberi RB corrispondenti.

## 3 Inserimento

L'inserimento di un valore in un albero red-black si effettua come in un BST, ma in più:

- 1. si scompongono eventuali nodi saturi (cioè aventi entrambi i figli collegati da lati rossi) durante la discesa, come per gli alberi 2-3-4;
- 2. se, dopo l'inserimento, si hanno due lati rossi consecutivi, si eseguono delle rotazioni per ridisporre i nodi in modo da eliminare la situazione illegale.

#### 3.1 Scomposizione

La scomposizione di un nodo saturo si effettua invertendo i colori di 3 lati (quelli che collegano il nodo al padre e ai due figli) e, se necessario, applicando delle rotazioni per evitare che ci siano due lati rossi consecutivi.

• Se il nodo saturo è figlio di un nodo di tipo 2 (o è la radice), la scomposizione è immediata:



• Se, invece, il nodo saturo è figlio di un nodo di tipo 3, la procedura di scomposizione dipende da come è orientato il padre, cioè da qual è il lato rosso:







• Infine, il nodo saturo non può essere figlio di un nodo di tipo 4, cioè di un altro nodo saturo, dato che quest'ultimo sarebbe già stato scomposto.

### 3.2 Complessità

Il costo della scomposizione di un nodo saturo è O(1), perché si effettuano al massimo 3 cambiamenti di colore e 2 rotazioni, tutte operazioni a costo costante.

Di conseguenza, la complessità in tempo dell'inserimento è  $\Theta(\log n)$  in ogni caso.

## 4 Cancellazione

Per la cancellazione, si applica agli alberi red-black la stessa strategia usata per gli alberi 2-3-4:

- 1. si cerca il nodo da cancellare;
- 2. se esso non è una foglia, si cerca un sostituto;
- 3. si rimuove il valore/sostituto e si ribilancia l'albero.

La complessità in tempo è sempre  $\Theta(\log n)$ .

## 5 Gestione di valori uguali

Nei BST, per poter gestire valori uguali è sufficiente determinare se inserirli sempre nel sottoalbero sinistro o in quello destro.



Negli alberi 2-3-4 e RB, invece, i valori uguali devono essere consentiti in tutti i sottoalberi, per via dell'operazione di scomposizione.



Ad esempio, se si costruisce un albero 2-3-4 dalla sequenza 1,1,1,1, con il quarto inserimento si creano due sottoalberi contenenti valori uguali a quello del padre:



Un altro problema è che la cancellazione diventa ambigua, perché non è ovvio quale dei valori uguali eliminare. Bisogna quindi scegliere in modo coerente.

In pratica, per questi motivi si tende a utilizzare una porzione univoca dei dati come chiave, in modo da garantire che tutti i valori inseriti siano diversi.