2022년 1학기 물리학 I: Quiz 12

김현철^{a1,†} and Lee Hui-Jae^{1,‡}

¹Hadron Theory Group, Department of Physics, Inha University, Incheon 22212, Republic of Korea (Dated: Spring semester, 2022)

문제 1. (20 pt) 아래 그림과 같이 끈의 길이가 l로 같은 두 진자의 끝에 질량이 각각 m, M인 두 공이 달려 있다. 질량이 m인 공을 d만큼 높은 위치까지 들어올렸다가 놓았다. 여기서 끈의 질량은 무시한다. 완전 비 탄성충돌이일어나는 경우 충돌 직후에 합쳐진 물체의 속력은 얼마인가?

FIG. 1. 문제 1

풀이: 맨처음 두 진자가 가지고 있는 역학적 에너지의 합을 E_i 라 하자. E_i 는,

$$E_i = mgd. (1)$$

질량이 M인 진자는 충돌 직전까지 정지해 있었으므로 충돌 직전 E_i 는 모두 질량이 m인 진자의 운동에너지로 전환되었다. 충돌 직전 질량이 m인 진자의 속력을 v_0 라고 하면,

$$v_0 = \sqrt{\frac{2E_i}{m}} = \sqrt{2gd}. (2)$$

두 진자는 완전 비탄성 충돌을 한다. 충돌 직후 두 진자의 속력을 v_1 이라 하면,

$$mv_0 = (m+M)v_1, \ v_1 = \frac{m}{m+M}v_0.$$
 (3)

따라서 충돌 직후 합쳐진 물체의 속력 v_1 은 다음과 같다.

$$v_1 = \frac{m\sqrt{2gd}}{m+M}. (4)$$

문제 2. (40 pt) 다음 그림과 같이 길이가 L인 기차의 왼쪽 벽(x=0)에 질량이 m인 철수가 서 있다. 철수와 기차는 모두 정지해 있다. 이제, 철수가 기차의 오른쪽 벽으로 이동한다. 기차의 질량이 M이고 기차와 선로 사이에는 마찰이 없다.

(r) 철수가 기차의 왼쪽 벽에 서 있을 때(즉 철수의 위치가 x=0일 때) 기차와 철수를 합한 전체 계의 질량중심의 좌표 $x_{\rm cm}$ 을 구하여라.

a Office: 5S-436D (면담시간 매주 화요일-16:00~20:00)

[†] hchkim@inha.ac.kr

[‡] hjlee6674@inha.edu

FIG. 2. 문제 2

- (나) 초기에 정지해 있던 철수가 속력 v로 움직일 때 기차와 철수를 합한 전체의 선운동량은 얼마인가? (단, 이 경우 철수의 속력 v는 외부에 정지한 관측자가 본 속력이다.)
- (Γ) 철수가 속력 v로 움직이는 동안 기차가 움직이는 속력은 얼마인가?
- (라) 철수가 기차의 오른쪽 벽까지 갔을 때 기차와 철수를 합한 전체의 질량중심의 좌표는 얼마이어야 하는가?
- (마) 철수가 이동하는 동안 기차도 움직였다면, 철수가 기차의 오른쪽 벽까지 갔을 때 기차가 움직인 거리는 얼마인 가?

풀이:

(r) 철수는 x=0에 위치해 있으므로 철수의 질량중심은 0이다. 기차의 질량중심을 x_t 라고 하자. 기차의 질량이 균일하게 분포해있다고 하면,

$$x_t = \frac{1}{M} \int r \, dm = \frac{1}{M} \int_0^L r \rho \, dr. \tag{5}$$

기차의 밀도 ρ 는 질량에 길이를 나눈 것이므로,

$$x_t = \frac{1}{M} \int_0^L \frac{M}{L} r \, dr = \frac{1}{2} L. \tag{6}$$

따라서 전체 질량중심 x_{cm} 은 다음과 같다.

$$x_{cm} = \frac{0 + Mx_t}{m + M} = \frac{ML}{2(m + M)}. (7)$$

- (나) 계의 총 선운동량은 외력에 의존한다. 철수가 v로 움직일 때 전체 계에 외력이 작용하지 않으므로 전체의 선운 동량은 변하지 않는다. 처음에 철수와 기차 모두 정지해 있었으므로 전체의 선운동량은 0이다.
- (다) 총 선운동량이 0이므로 철수의 운동량과 기차의 운동량의 합은 0이다. 기차의 속력을 v_t 라고 하면 기차와 철수의 운동 방향이 반대이므로,

$$mv + (-Mv_t) = 0, \ v_t = \frac{m}{M}v.$$
 (8)

이다.

(라) 전체의 선운동량이 변하지 않으므로 전체의 질량중심 또한 변하지 않는다. 철수가 오른쪽 벽까지 갔을때 전체의 질량중심의 좌표는,

$$x_{cm} = \frac{ML}{2(m+M)}. (9)$$

이다.

(마) 기차가 거리 d만큼 움직였다고 하자. 전체의 질량중심은 변하지 않고 철수가 x = L - d에 위치하므로 이 때 기차의 질량중심의 좌표 x_{t2} 는,

$$x_{t2} = \frac{L}{2} - d. (10)$$

식 (7)에 의해,

$$x_{cm} = \frac{ML}{2(m+M)} = \frac{m(L-d) + Mx_{t2}}{m+M} = \frac{1}{m+M} \left(m(L-d) + M\left(\frac{L}{2} - d\right) \right).$$
 (11)

따라서 기차가 움직인 거리 d는,

$$\frac{1}{2}ML = mL + \frac{1}{2}ML - (m+M)d, \ d = \frac{mL}{m+M},\tag{12}$$

이다.

문제 3. (30pt) 그림 3에서처럼 질량 m_1 인 물체 1이 정지상태에서 출발한 뒤, 마찰이 없는 비탈을 따라 높이 $h=2.50\,\mathrm{m}$ 를 미끄러져 내려와 질량 $m_2=2.00m_1$ 인 정지해 있는 물체 2와 충돌하였다. 충돌 뒤, 물체 2는 운몽마찰계수가 $\mu_k=0.500$ 인 영역으로 들어와서 거리 d만큼 가다가 멈췄다.

FIG. 3. 문제 3

- (가) 탄성출동일 때와
- (나) 비탄성충돌일 때 d는 각각 얼마인가?

풀이:

(가) 처음 역학적 에너지를 E_i 라고 하면 E_i 는 물체 1이 가진 위치에너지 뿐이므로,

$$E_i = m_1 g h. (13)$$

 E_i 는 충돌 직전 시점에 물체 1의 운동에너지로 전환되었다. 충돌 직전 물체 1의 속력을 v라고 하면,

$$\frac{1}{2}m_1v = E_i = m_1gh, \ v = \sqrt{2gh}.$$
 (14)

두 물체가 탄성충돌 하므로 충돌 이후 물체 1의 속도를 v_1, v_2 라고 하면,

$$m_1 v = m_1 v_1 + m_2 v_2$$

$$\frac{1}{2} m_1 v^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2.$$
(15)

식 (14)에 의해,

$$m_1\sqrt{2gh} = m_1v_1 + m_2v_2 \tag{16}$$

$$m_1 g h = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2. \tag{17}$$

식 (16)에 의해,

$$m_2 v_2 = m_1(\sqrt{2gh} - v_1), \tag{18}$$

이고, 식 (17)에 2를 곱하고 식 (18)를 대입하면,

$$2m_1gh = m_1v_1^2 + m_1(\sqrt{2gh} - v_1)v_2. (19)$$

우변의 첫 항을 좌변으로 옮기고 인수분해하면 다음과 같다.

$$m_1(\sqrt{2gh} + v_1)(\sqrt{2gh} - v_1) = m_1(\sqrt{2gh} - v_1)v_2. \tag{20}$$

따라서,

$$v_2 = \sqrt{2gh} + v_1.$$
 (21)

 v_2 를 다시 (16)에 대입하여 다음을 얻을 수 있다.

$$m_1\sqrt{2gh} = m_2\sqrt{2gh} + (m_1 + m_2)v_1, \ v_1 = \frac{\sqrt{2gh}(m_1 - m_2)}{m_1 + m_2}.$$
 (22)

따라서 v_2 는,

$$v_2 = \frac{2m_1\sqrt{2gh}}{m_1 + m_2}. (23)$$

물체 2가 마찰력인 존재하는 영역에서 운동하면 마찰력에 의해 운동에너지를 잃고 정지한다. 물체 2에 작용하는 마찰력 f_k 와 마찰력이 물체 2가 멈출 때 까지 한 일 W_k 는,

$$f_k = \mu_k N = \mu_k m_2 g, \ W_f = f_k d = \mu_k m_2 g d.$$
 (24)

마찰력이 물체 2에 한 일은 물체 2가 가지고 있던 운동에너지와 같다. 즉,

$$W_f = \mu_k m_2 g d = \frac{1}{2} m_2 v_2^2, \quad d = \frac{v_2^2}{2\mu_k q}.$$
 (25)

식 (23)에 의해,

$$d = \frac{4m_1^2h}{(m_1 + m_2)^2\mu_k} = \frac{4m_1^2(2.50 \text{ m})}{(3.00 m_1)^2(0.500)}$$

$$= \frac{4(2.50 \text{ m})}{9.00(0.500)}$$

$$= 2.22 \text{ m}.$$
(26)

탄성충돌한 물체 2는 2.22 m만큼 움직인다.

(나) 공이 완전 비탄성충돌한다고 하자. 충돌 후 속력을 v_0 라고 하면 식 (16)으로 부터,

$$m_1\sqrt{2gh} = (m_1 + m_2)v_0. (27)$$

따라서 v_0 는,

$$v_0 = \frac{m_1 \sqrt{2gh}}{m_1 + m_2}. (28)$$

완전 비탄성충돌한 물체에 작용하는 마찰력 f_k 와 마찰력이 물체가 멈출 때 까지 한 일 W_k 는,

$$f_k = \mu_k N = \mu_k (m_1 + m_2), W_f = f_k d = \mu_k (m_1 + m_2) g d.$$
 (29)

 W_k 는 물체가 충돌 후 가지고 있던 운동에너지와 같다. 따라서,

$$\mu_k(m_1 + m_2)gd = \frac{1}{2}(m_1 + m_2)v_0^2 = \frac{1}{2}(m_1 + m_2)\left(\frac{m_1\sqrt{2gh}}{m_1 + m_2}\right)^2.$$
(30)

양변을 $(m_1 + m_2)$ 로 나누고 d에 대해 정리하면,

$$d = \frac{m_1^2 h}{(m_1 + m_2)^2 \mu_k} = \frac{m_1^2 (2.50 \,\mathrm{m})}{(3.00 m_1)^2 (0.500)}$$

$$= 0.556 \,\mathrm{m}$$
(31)

완전 비탄성충돌한 물체는 0.556 m만큼 움직인다.

문제 4. (40pt) 질량 m, 반지름 r ($r \ll R$)인 공이 그림 4과 같이 미끄러지지 않고 굴러내려오고 있다. 이 공이 반지름 R인 원형경로 밑바닥에서부터 높이 h인 위치에 공의 가장 낮은 지점이 닿아있다. 공을 정지상태에서 놓으면

FIG. 4. 문제 4

- (r) 공이 원형궤도를 완전히 한바퀴돌 수 있는 r의 최소값은 얼마인가? r과 r로 표현하여라.
- (나) h = 3R이면, P점에서 공에 작용하는 힘의 성분들은 얼마인가?

풀이:

(가) 처음 공이 가지고 있는 역학적 에너지 E_i 는 다음과 같다.

$$E_i = mg(h+r). (32)$$

공이 원형궤도를 완전히 한바퀴 돌기 위해 원형궤도의 꼭대기 지점에서 속력이 충분히 커야한다. 꼭대기 지점에서 공의 자유 물체 다이어그램을 그려보면 다음과 같다.

FIG. 5. 자유 물체 다이어그램

꼭대기 지점에서 공의 속력을 v_0 라고 하면 공이 떨어지지 않기 위해 다음을 만족해야한다.

$$\sum F_y = -F_g = -\frac{mv_0^2}{R}, \ v_0 = \sqrt{gR}$$
 (33)

에너지 보존 법칙에 의해 꼭대기 지점에서 공의 역학적 에너지의 합은,

$$E_d = E_i = mg(h+r) = mg(2R-r) + \frac{1}{2}mv_0^2 + \frac{1}{2}I\omega_0^2, \ \omega_0 = \frac{v_0}{r}.$$
 (34)

공의 관성 모멘트 I는,

$$I = \frac{2}{5}mr^2. (35)$$

따라서,

$$mg(h+r) = mg(2R-r) + \frac{1}{2}\left(m + \frac{2}{5}m\right)v_0^2$$

$$= mg(2R-r) + \frac{7}{10}mv_0^2,$$
(36)

이다. v_0 는,

$$v_0 = \sqrt{\frac{10}{7}g(h - 2(R - r))},\tag{37}$$

이다. d=2R일 때 구심력 F_p 는 구에 작용하는 중력이다. 공이 원형궤도를 한바퀴 돌기 위해 원심력 F_f 가 구심력 F_p 보다 커야 하므로,

$$F_p \le F_f, \quad mg \le \frac{mv_0^2}{R},\tag{38}$$

를 만족해야 한다. 식 (37)에 의해,

$$mg \le \frac{10mg(h-2(R-r))}{7R}, \ 7R \le 10(h-2(R-r)),$$
 (39)

이다. $r \ll R$ 이므로 h의 최소값은 다음과 같다.

$$\frac{27R}{10(R-r)} = \frac{27}{10}R \le h. \tag{40}$$

h의 최소값은 2.7R 이다.

(나) 공이 점 P에 있을 때 자유 물체 다이어그램을 그려보면 다음과 같다. N은 공에 작용하는 수직항력, F_g 는 공에 작용하는 중력이다.

FIG. 6. 자유 물체 다이어그램

공은 시계 방향으로 자전하면서 궤도를 돈다. 공이 미끄러지지 않으므로 공과 궤도 사이에 정지 마찰력 f_s 가 수직 위 방향으로 작용한다. 따라서 각 방향으로 작용하는 합력을 구해보면 다음과 같다.

$$\sum F_x = ma_x = -N = -\frac{mv^2}{R - r}$$

$$\sum F_y = ma_y.$$
(41)

v는 점 P에서 공의 속력이다. 에너지 보존 법칙에 의해,

$$mg(3R+r) = mgR + \frac{1}{2}mv^2 + \frac{1}{2}I\left(\frac{v}{R}\right)^2$$

$$= mgR + \frac{1}{2}mv^2 + \frac{1}{5}mv^2.$$
(42)

따라서 v^2 는 다음과 같다.

$$v^2 = \frac{10}{7}(2R + r)g\tag{43}$$

식 (43)를 (41)에 대입하여 힘의 x성분을 얻을 수 있다.

$$ma_x = -\frac{10(2R+r)mg}{7(R-r)} = -\frac{20}{7}mg. \tag{44}$$

y축 방향으로 작용하는 힘은,

$$ma_y = f_s - mg = -mr\alpha, (45)$$

이므로 f_s 는,

$$f_s = mg - mr\alpha. (46)$$

이다. 이제 공의 자전에 대해 생각해보자. 공이 시계방향으로 자전하므로 공의 토크가 존재하여,

$$\sum \tau = I\alpha = \frac{2}{5}mr^2\alpha,\tag{47}$$

이다. 중력은 공의 질량중심에서 작용하는 것으로 간주할 수 있으므로 회전에 관여하는 힘은 f_s 뿐이다. 따라서 토크 au의 합은,

$$\sum \tau = f_s r = \frac{2}{5} m r^2 \alpha. \tag{48}$$

식 (46)와 (48)에 의해,

$$mgr - mr^2\alpha = \frac{2}{5}mr^2\alpha, \quad \alpha = \frac{5g}{7r},\tag{49}$$

이고 식 (45)에 대입하여 y축 힘의 성분을 구할 수 있다.

$$ma_y = -\frac{5}{7}mg. (50)$$