

LEAVING CERTIFICATE EXAMINATION, 2008 MATHEMATICS - HIGHER LEVEL PAPER 1 (300 marks) FRIDAY, 6 JUNE - MORNING, 9:30 to 12:00 Attempt **SIX QUESTIONS** (50 marks each). WARNING: Marks will be lost if all necessary work is not clearly shown. Answers should include the appropriate units of measurement, where relevant.

- 1. (a) Simplify fully $\frac{x^2+4}{x^2-4} \frac{x}{x+2}$.
 - **(b)** Given that one of the roots is an integer, solve the equation

$$6x^3 - 29x^2 + 36x - 9 = 0$$
.

- (c) Two of the roots of the equation $ax^3 + bx^2 + cx + d = 0$ are p and -p. Show that bc = ad.
- **2.** (a) Express $x^2 + 10x + 32$ in the form $(x + a)^2 + b$.
 - **(b)** α and β are the roots of the equation $x^2 7x + 1 = 0$.
 - (i) Find the value of $\alpha^2 + \beta^2$.
 - (ii) Find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$.
 - (c) Show that if a and b are non-zero real numbers, then the value of $\frac{a}{b} + \frac{b}{a}$ can never lie between -2 and 2.

Hint: consider the case where a and b have the same sign separately from the case where a and b have opposite sign.

- 3. (a) Let A be the matrix $\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$. Find the matrix B, such that $AB = \begin{pmatrix} 4 & 6 \\ 3 & 2 \end{pmatrix}$.
 - (b) (i) Let $z = \frac{5}{2+i} 1$, where $i^2 = -1$. Express z in the form a + bi and plot it on an Argand diagram.

- (ii) Use De Moivre's theorem to evaluate z^6 .
- (c) Prove, by induction, that $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \text{ for } n \in \mathbb{N}.$
- 4. (a) $2 + \frac{2}{3} + \frac{2}{9} + \dots$ is a geometric series. Find the sum to infinity of the series.
 - **(b)** Given that $u_n = 2\left(-\frac{1}{2}\right)^n 2$ for all $n \in \mathbb{N}$,
 - (i) write down u_{n+1} and u_{n+2}
 - (ii) show that $2u_{n+2} u_{n+1} u_n = 0$.
 - (c) (i) Write down an expression in n for the sum $1+2+3+\ldots+n$ and an expression in n for the sum $1^2+2^2+3^2+\ldots+n^2$.
 - (ii) Find, in terms of n, the sum $\sum_{r=1}^{n} \left(6r^2 + 2r + 5 + 2^r\right).$

- 5. (a) Find the range of values of x that satisfy the inequality $x^2 3x 10 \le 0$.
 - (b) (i) Solve the equation $2^{x^2} = 8^{2x+9}$
 - (ii) Solve the equation

$$\log_e(2x+3) + \log_e(x-2) = 2\log_e(x+4)$$

(c) Show that there are no natural numbers n and r for which

$$\binom{n}{r-1}$$
, $\binom{n}{r}$ and $\binom{n}{r+1}$ are consecutive terms in a geometric sequence.

6. (a) Differentiate $\sqrt{x^3}$ with respect to x.

(b) Let
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

Show that
$$\frac{dy}{dx} = \frac{4}{\left(e^x + e^{-x}\right)^2}$$
.

- (c) The function $f(x) = 2x^3 + 3x^2 + bx + c$ has a local maximum at x = -2.
 - (i) Find the value of b.
 - (ii) Find the range of values of c for which f(x) = 0 has three distinct real roots.

- 7. (a) Differentiate $2x + \sin 2x$ with respect to x.
 - **(b)** The equation of a curve is $5x^2 + 5y^2 + 6xy = 16$.
 - (i) Find $\frac{dy}{dx}$ in terms of x and y.
 - (ii) (1,1) and (2,-2) are two points on the curve. Show that the tangents at these points are perpendicular to each other.
 - (c) Let $y = \sin^{-1} \left(\frac{x}{\sqrt{1 + x^2}} \right)$.

Find $\frac{dy}{dx}$ and express it in the form $\frac{a}{a+x^b}$, where $a, b \in \mathbb{N}$.

- 8. (a) Find $\int (2x + \cos 3x) dx$.
 - **(b)** Evaluate **(i)** $\int_{0}^{1} 3x^{2}e^{x^{3}}dx$ **(ii)** $\int_{2}^{4} \frac{2x^{3}}{x^{2}-1}dx$.
 - (c) The diagram shows the curve $y = 4 x^2$ and the line 2x + y 1 = 0.

Calculate the area of the shaded region enclosed by the curve and the line.

Blank Page