ONE- AND TWO-DIMENSIONAL ISING MODEL

L.E.N. Baakman* l.e.n.baakman@student.rug.nl

August 29, 2016

1. Introduction

A large number of systems change their macroscopic properties at thermal equilibria. For example magnetic atoms align them selves to form a magnetic material at low temperature or high pressure. When modeled mathematically, these phase transitions only occur in infinitely large systems. This paper investigates if a a simulation of a finite system, the Ising ferromagnet to be exact, can exhibit phase transitions such as the one described above [3].

Section 1.1 introduces the Ising model of ferromagnetism, the next section discusses the Metropolis Monte Carlo method that is used to estimate the Ising model numerically.

1.1. Ising Model

A magnet can be modeled as a large collection of electronic spins. In the Ising model spins point either up, $S_n = +1$, or down, $S_n = -1$ [5]. The magnetization of a magnet is defined as its average spin:

$$m = \left| \frac{1}{N} \sum_{i=1}^{N} S_i \right|,\tag{1}$$

where N is the number of spins. At high temperatures the spins point in random directions, consequently the magnetization is approximately zero. At a low enough temperature all spins in the two-dimensional model align themselves, this effect is called spontaneous

*Master Profile: Computing Science Student Number: s1869140 magnetization. The temperature at which this phase transition occurs is called the critical temperature, T_c [1]

Section 1.1.1 and 1.1.2 introduce the oneand two-dimensional Ising model, respectively.

1.1.1. One-Dimensional Model

Ising [2] introduced a model consisting of a one-dimensional lattice op spin variables. Contrary to the two dimensional model this model does not exhibit state transitions. In the one-dimensional ferromagnetic zero field model, the model that is considered here, each spin interacts only with its nearest neighbors, i.e. S_n interacts only with S_{n-1} and S_{n+1} .

The energy E of a particular arrangement of spins, $\{S_1, \ldots, S_N\}$, under free end boundary conditions is

$$E(\{S_1, \dots, S_N\}) = -\sum_{n=1}^{N-1} S_n S_{n+1}.$$
 (2)

Due to the use of the free end boundary condition particles the first and the last spin of the lattice, i.e. S_1 and S_N see no neighbor on one side [4]. The probability of a configuration of spins $\{s_i\}$ at temperature T is given by

$$P(\lbrace s_i \rbrace) = \frac{1}{Z} \exp \left[E(\lbrace s_i \rbrace) \frac{1}{T} \right], \quad (3)$$

where $T = \frac{1}{\beta}$ and Z is the partition function:

$$Z = \sum_{\{S_1, \dots, S_N\}} \exp\left[-E\beta\right],\tag{4}$$

where $\beta = 1/T$. The partition function sums over all possible configurations: Z = $\exp\left[-\beta E_1\right] + \exp\left[-\beta E_2\right] + \dots + \exp\left[-\beta E_N\right].$

Analytical Solution Z

Analytical Solution U/N

Analytical Solution C/N

Formules die ergens genoemd moeten worden.

The free energy U is given by

$$U = \frac{1}{Z} \cdot \sum_{\{S_1, \dots, S_N\}} E \cdot \exp\left[-\beta E\right]. \tag{5}$$

referentie It can be shown that this is equivalent to

$$U = -\tanh(\beta) \cdot N. \tag{6}$$

The specific heat C is defined as

$$C = \frac{\beta^2}{Z} \cdot \left[\sum_{\{S_1, \dots, S_N\}} E^2 \cdot \exp\left[-\beta E\right] \right] - U^2,$$
(7)

referentie which can also be computed as:

$$C = \frac{1}{N} \left(\frac{\beta}{\cosh \beta} \right)^2. \tag{8}$$

Present an prove analytical solution

1.1.2. TWO-DIMENSIONAL MODEL

2D Ising Model

Energy of a configuration

Average energy

Average magnetization per spin

Specific heat

Present analytical solution

1.2. **Metropolis** Carlo Monte Methods

Metropolis MC in general

Importance sampling

The Metropolis solution

What are we going to discuss in this paper?

2. **Метнор**

What are we going to discuss in this sec-

beter structureren, splitsen in 1D en 2D?

how have we applied the MMC to the 1D and 2D ising model? Refer to appendix with actual implementation

3. EXPERIMENTS

What are we going to discuss?

3.1. ONE-DIMENSIONAL MODEL

Wat gaan testen?

Average Energy

Define average energy for 1D

Report average energy for different values of T, N and NSAMPLES

Specific Heat

Define specific Heat for 1D

Report specific heat for different values of T, N and NSAMPLES

3.2. TWO-DIMENSIONAL MODEL

Wat gaan we testen

Average Energy

Define average energy for 1D

Report average energy for different values of T, N and NSAMPLES

Specific Heat

Define specific Heat for 1D

Report specific heat for different values of T, N and NSAMPLES

AVERAGE MAGNETIZATION

Define magnetization

Report average magnetization for different values of T, N and NSAMPLES

4. Discussion

What are we going to discuss?

Interpret results in terms of a phase transition from a state with magnetization zero to a state with definite magnetization (slide 31)

Invloed van de parameters, T, N, NSAM-PLES

4.1. One-Dimensional Model

Present analytical solution i.e. prove whatever is one slide 28

Compare results with the analytical solution

4.2. Two-Dimensional Model

Compare Average magnetization with the exact result for the infinite system

5. Conclusion

Hoe goed sluit het model aan bij de het exacte resultaat?

Wat hebben we geleerd over de parameters

REFERENCES

- [1] Wei Cai. "Handout 12. Ising Model". Feb. 2011. URL: http://micro.stanford.edu/~caiwei/me334/Chap12_Ising_Model_v04.pdf.
- [2] Ernst Ising. "Beitrag zur theorie des ferromagnetismus". In: Zeitschrift für Physik A Hadrons and Nuclei 31.1 (1925), pp. 253–258.
- [3] Wolfgang Kenzel et al. *Physics by computer*. Springer-Verlag New York, Inc., 1997.
- [4] David P Landau and Kurt Binder. A guide to Monte Carlo simulations in statistical physics. Cambridge university press, 2014.
- [5] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview press, 2014.