[2024-2025] Группа 10 16 января 2025 г.

Тренировочная олимпиада

Задача 1. Дано простое число p такое, что 16p+1 — куб натурального числа. Найдите все возможные значения p.

Ответ: p = 307.

Решение. Пусть $16p + 1 = n^3$ для некоторого натурального числа n. Тогда

$$16p = (n-1)(n^2 + n + 1).$$

Число n^2+n+1 нечётно, больше единицы и является делителем числа 16p, поэтому $n^2+n+1=p$ (ведь у числа 16p нет нечётных делителей, кроме 1 и p). Значит, n-1=16, откуда n=17, $p=17^2+17+1=307$. Нетрудно проверить, что число 307 действительно является простым и подходит под условие задачи.

Задача 2. Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD, проходящие через точки C и D соответственно, пересекаются в точке Q. Докажите, что прямые AB и PQ перпендикулярны.

Pешение. Пусть перпендикуляры пересекаются внутри окружности (случай внешней точки рассматривается аналогично). Отметим точку R — вторую точку пересечения прямой DQ с окружностью.

Четырёхугольник PDCQ вписан в окружность (он образован двумя прямоугольными треугольниками с общей гипотенузой PQ), поэтому $\angle CPQ = \angle CDQ$, как опирающиеся на одну дугу. По этой же причине $\angle CAR = \angle CDR = \angle CDQ$, и, значит, прямые PQ и AR параллельны (соответственные углы равны). Но BR является диаметром, как следует из условия, поэтому $\angle BAR = 90^\circ$.

Задача 3. Множество клеток таблицы $n \times n$ назовем удобным, если в каждой строке и каждом столбце таблице есть по крайне мере две клетки этого множества. При каждом $n \ge 5$ найдите наибольшее m, для которого найдется удобное множество из m клеток, которое перестаёт быть удобным при удалении любой из его клеток.

Ответ: m = 4n - 8.

Решение. Сначала приведём пример удобного множества, состоящего из m = 4n - 8 клеток, которое перестаёт быть удобным при удалении любой из его клеток.

Пронумеруем столбцы слева направо, а строки — сверху вниз. Достаточно взять множество, состоящее из клеток, лежащих в первых двух столбцах или первых двух строках, но не в их пересечении (на рисунке ниже изображён пример такого множества для n = 8).

Теперь докажем, что $m \le 4n - 8$.

Рассмотрим удобное множество S. Назовем линию (строку или столбец) pedкой, если в ней содержится только две клетки из S. Очевидно, что любая клетка из S принадлежит редкому столбцу или редкой строке, иначе эту клетку можно было бы удалить из S, и набор клеток остался бы удобным. Поэтому любая клетка из S принадлежит редкой линии. Следовательно, общее количество элементов S не превосходит удвоенного количества редких линий.

Если и количество редких строк, и количество редких столбцов не больше n-2, то в S не больше 2(n-2+n-2)=4n-8 клеток. Если количество редких линий одного направления, скажем, строк, равно n, то количество всех клеток в S равно 2n<4n-8. Наконец, если количество редких линий одного направления, например, строк, равно n-1, а количество редких линий другого направления не больше n-1, то общее количество клеток в S не превосходит $2(n-1)+n-1=3n-3 \le 4n-8$, что и требовалось доказать.

Задача 4. Даны вещественные числа a_1, a_2, \dots, a_n , сумма которых равна нулю. Найдите наибольшее возможное значение выражения $a_1x_1 + a_2x_2 + \dots + a_nx_n$, где числа x_1, x_2, \dots, x_n принимают все возможные вещественные значения, удовлетворяющие равенству

$$(x_1-x_2)^2+(x_2-x_3)^2+...+(x_{n-1}-x_n)^2=1.$$

Omsem: $\sqrt{a_1^2 + (a_1 + a_2)^2 + ... + (a_1 + a_2 + ... + a_{n-1})^2}$.

Решение. Перепишем выражение $a_1x_1 + a_2x_2 + ... + a_nx_n$ в следующем виде

$$a_1(x_1-x_2)+(a_1+a_2)(x_2-x_3)+...+(a_1+a_2+...+a_{n-1})(x_{n-1}-x_n)+$$

 $+(a_1+a_2+...+a_n)x_n.$

По условию $a_1 + a_2 + ... + a_n = 0$, так что последнее слагаемое равно нулю. Итак, нам необходимо найти наибольшее значение выражения

$$a_1(x_1-x_2)+(a_1+a_2)(x_2-x_3)+...+(a_1+a_2+...+a_{n-1})(x_{n-1}-x_n).$$

По неравенству КБШ квадрат этого выражения не превосходит

$$(a_1^2 + (a_1 + a_2)^2 + ... + (a_1 + a_2 + ... + a_{n-1})^2)((x_1 - x_2)^2 + (x_2 - x_3)^2 + ... + (x_{n-1} - x_n)^2).$$

Второй множитель по условию равен 1, так что мы установили неравенство

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \le \sqrt{a_1^2 + (a_1 + a_2)^2 + \dots + (a_1 + a_2 + \dots + a_{n-1})^2}.$$
 (1)

Осталось показать, что существуют удовлетворяющие условию значения x_1, x_2, \dots, x_n , при которых достигается равенство. В самом деле, в неравенстве (1) достигается равенство тогда и только тогда, когда наборы чисел

пропорциональны (то есть один набор можно получить из другого, умножив все его элементы на одно и то же число).

Нетрудно видеть, что если отбросить условие $(x_1-x_2)^2+(x_2-x_3)^2+...+(x_{n-1}-x_n)^2=1$, то можно так подобрать значения $x_1,x_2,...,x_n$, чтобы наборы в обеих частях выражения (2) совпали. Теперь можно умножить все числа $x_1,x_2,...,x_n$ на одно и то же число так, чтобы выполнялось условие на сумму квадратов. Таким образом, равенство действительно достигается.

Замечание. Представление выражения $a_1x_1 + a_2x_2 + ... + a_nx_n$, описанное в начале решения, иногда называют дискретным преобразованием Абеля.

Задача 5. Назовём множество A отрезков на вещественной прямой *интересным*, если оно удовлетворяет следующим условиям

- множество A состоит ровно из 2024 отрезков;
- каждый отрезок множества A содержится внутри отрезка [0,1];
- любая точка вещественной прямой принадлежит не более чем 1012 отрезкам множества A.

Для двух интересных множеств отрезков A_1 и A_2 обозначим $n(A_1,A_2)$ число пар (α_1,α_2) , где α_1 — отрезок, принадлежащий множеству A_1 , α_2 — отрезок, принадлежащий множеству A_2 , причём отрезки α_1 и α_2 имеют общую точку. Найдите наибольшее возможное значение $n(A_1,A_2)$.

Ответ: $3 \cdot 1012^2$.

Решение. Сначала приведём пример интересных множеств A_1, A_2 , при котором $n(A_1, A_2) = 3 \cdot 1012^2$.

Пусть множество A_1 состоит из 1012 копий отрезка [0,0.2] и 1012 копий отрезка [0.3,1], а множество A_2 состоит из 1012 копий отрезка [0,0.8] и 1012 копий отрезка [0.9,1]. Ясно, что любой отрезок множества A_1 пересекается с любым отрезком множества A_2 , кроме копий отрезков [0,0.2] и [0.9,1], поэтому $n(A_1,A_2)=2024^2-1012^2=3\cdot 1012^2$.

Теперь покажем, что $n(A_1, A_2) \leq 3 \cdot 1012^2$ для любых интересных множеств A_1, A_2 . Назовём множество, состоящее из нескольких попарно непересекающихся отрезков удобным.

Доказательство леммы 1. Будем по очереди распределять отрезки по удобным множествам жадным образом: на очередном шаге возьмём из ещё нераспределённых отрезков тот, чей левый конец является самым левым, и добавим его к какому-нибудь из удобных множеств так, чтобы это множество осталось удобным. Если в некоторый момент такого удобного множества не найдётся, то левый конец рассматриваемого в данный момент отрезка лежит внутри какого-то отрезка каждого из 1012 удобных множеств, что противоречит условию. □

Лемма 2. Если S и T — два удобных множества, состоящих из s и t отрезков соответственно, то n(S,T) ≤ s+t-1.

Доказательство леммы 2. Индукция по s + t. Если s = 1 или t = 1, то утверждение леммы очевидно. Иначе рассмотрим самый левый отрезок α множества S и самый левый отрезок β множества T. Не умаляя общности можно считать, что правый конец отрезка α лежит левее правого конца отрезка β . Тогда α не может пересекать никакие другие отрезки множества T, кроме β . Значит, после удаления отрезка α из множества S величина n(S,T) уменьшится не более чем на 1, что доказывает переход, а вместе C ним и лемму.

Вернёмся к решению задачи. С помощью леммы 1 представим интересные множества A_1 и A_2 в виде объединения a и b удобных множеств соответственно $(a,b\leqslant 1012)$

$$A_1 = \bigcup_{i=1}^a S_i, \qquad A_2 = \bigcup_{i=1}^b T_j.$$

По лемме 2

$$n(A_1, A_2) = \sum_{\substack{1 \leqslant i \leqslant a \\ 1 \leqslant j \leqslant b}} n(S_i, T_j) \leqslant \sum_{\substack{1 \leqslant i \leqslant a \\ 1 \leqslant j \leqslant b}} (s_i + t_j - 1),$$

где s_i и t_j — это число элементов множеств S_i и T_j соответственно. Далее,

$$\sum_{\substack{1 \le i \le a \\ 1 \le j \le b}} (s_i + t_j - 1) = 2024a + 2024b - ab.$$

Итак, нам необходим доказать неравенство $2024a + 2024b - ab \leqslant 3 \cdot 1012^2$, которое равносильно неравенству

$$(2024 - a)(2024 - b) \ge 1012^2$$
.

Последнее неравенство выполнено, так как $a, b \le 1012$.