MATH 141: QUIZ 7 SECTIONS 4.1-4.3

ANN CLIFTON
UNIVERSITY OF SOUTH CAROLINA

Name: SO(S) Key

No phone or calculator. You must show all work to receive full credit. Be sure to make reasonable simplifications.

1. (5 points) Find the absolute maximum and minimum values of $f(x) = x(2-x)^3$ over the interval [1, 3].

$$f'(x) = (2-x)^{3} - 3 \times (2-x)^{2}$$

$$= (2-x)^{2} ((2-x)-3x)$$

$$= (2-x)^{2} (2-4x)$$

$$f'(x) = 0 \text{ when } x = 2 \text{ or } x = 1/2 \text{ otherwise}$$

 $f(1) = (1)(2-1)^{3} = 1 \qquad f(2) = (2)(2-2)^{3} = 0$ $f(3) = (3)(2-3)^{3} = -3$

Absolute max of 1 at x=1 \ \ + |

Absolute min of -3 at x=3

Date: March 21, 2018.

- 2. (5 points) For the function $f(x) = \frac{1}{3}x^3 x$,
 - (a) State the intervals of increase and decrease, and
 - (b) State the local maximum and minimum points.

$$f'(x) = x^{2} - 1$$

$$f'(x) = 0 \text{ when } x^{2} - 1 = 0$$

$$(x-1)(x+1) = 0$$

$$x = 1, x = -1$$

$$f'(-2) = 4 - 1 > 0$$

$$f'(2) = 4 - 1 > 0$$

f is increasing on $(-\infty, -1)U(1, \infty)$ and decreasing on (-1, 1) +2 There is a local max at X=-1and a local man at X=1