องค์ประกอบคอมพิวเตอร์และภาษาแอสเซมบลี: กรณีศึกษา Raspberry Pi

รศ.ดร.สุรินทร์ กิตติธรกุล

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

สารบัญ

- 6.1 สัญญาณ HDMI สำหรับจอภาพ LCD ขนาดใหญ่
- 6.2 สัญญาณ DSI สำหรับจอภาพ LCD ขนาดเล็ก
- 6.3 สัญญาณ CSI สำหรับเชื่อมต่อกล้องขนาดเล็ก
- 6.4 สัญญาณ PCM สำหรับสัญญาณเสียง
- 6.5 สัญญาณภาพและเสียงสำหรับจอทีวี
- 6.6 สัญญาณ USB 2.0 สำหรับอุปกรณ์ต่อพ่วงต่างๆ
- 6.7 สัญญาณ Ethernet สำหรับสายเชื่อมต่อกับ เครือข่ายอินเตอร์เน็ต

- 6.8 สัญญาณ WiFi และ Bluetooth สำหรับการสื่อสารไร้สาย
- 6.9 หลักการ Memory Mapped Input/Output
- 6.10 หัวเชื่อมต**่**อ 40 ขา (40-Pin Header)
- 6.11 ขา GPIO (General Purpose Input Output)
- 6.12 การขัดจังหวะ (Interrupt)
- 6.13 การเข้าถึงหน่วยความจำโดยตรง (Direct Memory Access)
- 6.14 แหล่งจ่ายไฟ (Power Supply) ของบอร์ด Pi3

Computer Organization & กรระบบเห Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

Input/Output: Software Perspective

- การเชื่อมต่อแบบ HDMI เป็นการถ่ายโอนสัญญาณแบบดิจิทัล สามารถส่งได้ทั้งสัญญาณภาพและสัญญาณเสียง ไปพร้อมๆ กันด้วยอัตราบิตเรตสูง ระดับกิกะบิตต่อวินาที ความละเอียดภาพที่นิยม คือ 1080 เส้น x 1920 จุด
- การเชื่อมต่อด้วยสัญญาณ HDMI เหมาะสำหรับการแสดงผลจากเครื่องคอมพิวเตอร์หรือเครื่องเล่นมีเดีย (Media Player) ไปยังจอภาพความละเอียดสูงระดับเอชดี (HD) หรือสูงกว่าสำหรับจอความละเอียด Ultra HD
- HDMI เวอร์ชันล่าสุด คือ 2.1 ซึ่งพัฒนาเพื่อรองรับวีดีโอที่ละเอียดสูงเฟรมละ 8000 จุดต่อเส้นที่ 60 เฟรมต่อ วินาที (8K60) และเฟรมละ 4000 จุดต่อเส้นที่ 120 เฟรมต่อวินาที (4K120) และเพิ่มถึงเฟรมละ 10,000 จุด ต่อเส้น (10K) ซึ่งจะทำให้อัตราบิตเรตเพิ่มเป็น 48 กิกะบิตต่อวินาที

https://www.youtube.com/watch?v=5acgSK0kWTE

- สัญญาณ HDMI มีช่องสื่อสาร 5 ช่องแยกจากกัน ได้แก่
- ช่อง TMDS (Transition-Minimized Differential Signaling) ช่อง TMDS จะส่งข้อมูลภาพวีดีโอ เสียง และข้อมูลเป็น ดิจิทัล
 - 🕽 ช่วงส่งข้อมูลภาพ (Video Data Period) และ
 - 🕽 ช่วงส่งแพ็กเก็ตควบคุม (Control Period) สำหรับสัญญาณควบคุม เช่น สัญญาณ HSYNC และ VSYNC
- ช่อง DDC (Display Data Channel) ใช้สื่อสารกับเครื่อง Media Player
- ช่อง CEC (Consumer Electronics Control)
- ช่อง ARC (Audio Return Channel)
- ช่อง HEC (HDMI Ethernet Channel)

ขา	ชื่อ	หน้าที่		
1	Ground	กราวด์		
2	Data Lane 1-	ขาลบเลนข้อมูล 1		
3	Data Lane 1+	ขาบวกเลนข้อมูล 1		
4	Ground	กราวด์		
5	Clock N ขาลบเลนคล็อก			
6	Clock P	ขาบวกเลนคล็อก		
7	Ground กราวด์			
8	Data Lane 0-	ขาลบเลนข้อมูล 0		
9	Data Lane 0+	ขาบวกเลนข้อมูล 0		
10	Ground	กราวด์		
11				
12				
13	Ground	Ground กราวด์		
14	+3.3 V	ไฟเลี้ยงขนาด 3.3 โวลท์		
15	+3.3 V	ไฟเลี้ยงขนาด 3.3 โวลท์		

- สัญญาณ DSI (Display Serial Interface) สำหรับเชื่อมต่อกับแผง LCD ขนาดเล็กกับซีพียูบน อุปกรณ์เคลื่อนที่ เช่น โทรศัพท์เคลื่อนที่ แท็บเล็ต คอมพิวเตอร์โน้ตบุค เป็นต้น เพื่อการแสดงผล ในรูปของกราฟิคโหมด
- สัญญาณ DSI นี้ถูกกำหนดเป็นมาตรฐานโดยองค์กรชื่อ MIPI (Mobile Industry Processor Interface) http://www.mipi.org
- สัญญาณ DSI ใช้ได้กับจอแสดงผลหลายประเภท และไม่ขึ้นกับเทคโนโลยีของจอ เน้นที่การส่ง ข้อมูลภาพไปยังจอเป็นหลัก จึงมีเลนข้อมูลหลายเลน

ขา	ชื่อ หน้าที่		
1	Ground	กราวด์	
2	Data Lane 1- ขาลบเลนข้อมูล 1		
3	Data Lane 1+	ขาบวกเลนข้อมูล 1	
4	Ground	กราวด์	
5	Clock N	ขาลบเลนคล็อก	
6	Clock P	ขาบวกเลนคล็อก	
7	Ground	กราวด์	
8	Data Lane 0-	0- ขาลบเลนข้อมูล 0	
9	Data Lane 0+	ขาบวกเลนข้อมูล 0	
10	Ground	กราวด์	
11			
12			
13	Ground	กราวด์	
14	+3.3 V	ไฟเลี้ยงขนาด 3.3 โวลท์	
15	+3.3 V	ไฟเลี้ยงขนาด 3.3 โวลท์	

- สัญญาณ DSI แบ่งเป็นชนิดเลนเดียว (Single Lane) และหลายๆ เลนตั้งแต่ 2 เลนขึ้นไป เพื่อกระจายการส่ง ข้อมูลแต่ละไบท์ข้อมูล ไปแต่ละเลน
- ข้อมูลไบท์ที่ 0, 4, 8, ... จะส่งมาทางเลนหมายเลข 0
- ข้อมูลไบท์ที่ 1, 5, 9, ... จะส่งมาทางเลนหมายเลข 1
- ข้อมูลไบท์ที่ 2, 6, 10, ... จะส่งมาทางเลนหมายเลข 2
- ข้อมูลไบท์ที่ 3, 7, 11, ... จะส่งมาทางเลนหมายเลข 3 และสลับกันไปแบบนี้เรื่อยๆ
- การส่งข้อมูลจำนวนหลายๆ เลนพร้อมกันทำได้เร็วขึ้น รองรับการแสดงผลที่ละเอียดมากขึ้น เปลี่ยนแปลงภาพ ต่อวินาทีได้มากขึ้น การเคลื่อนไหวของภาพจึงต่อเนื่องไม่กระตุก
- เมื่อปลายทางรับข้อมูลได้สำเร็จ วงจรรับจะนำข้อมูลเหล่านั้นมารวมกัน (Lane Merging Function)

https://www.youtube.com/watch?v=sxuwbJPXSqk

6.3 สัญญาณ CSI สำหรับเชื่อมต่อกล้องขนาดเล็ก

- มาตรฐาน CSI: Camera Serial Interface มีความคล้ายคลึง กับสัญญาณ DSI ซึ่งกำหนดโดยองค์กรเดียวกัน คือ MIPI.org
- ข้อมูลภาพจากกล้องจะส่งผ่านสายด้วยเลนข้อมูลจำนวนหนึ่ง
 เพื่อไปรวมกันเป็นภาพเดียวที่ปลายทางแต่ละเลนมีการส่ง
 ข้อมูลทีละไบท์และอนุกรม
- ข้อมูลจะส่งแบบซิงโครนัสตามสัญญาณคล็อก และสัญญาณ ควบคุมมาตรฐาน I2C

6.3 สัญญาณ CSI สำหรับเชื่อมต่อกล้องขนาดเล็ก

6.3 สัญญาณ CSI สำหรับเชื่อมต่อกล้องขนาดเล็ก

https://www.youtube.com/watch?v=8REu h7bzHM

- สัญญาณชนิด PCM คือ สัญญาณดิจิทัลพื้นฐานเกิดจากการแปลงสัญญาณอนาล็อกเป็น ดิจิทัล (Analog to Digital: A2D) เป็นเลขจำนวนเต็มชนิดไม่มีเครื่องหมาย
- นิยมแพร่หลายในอดีตจนถึงปัจจุบัน และใช้กับแผ่นซีดี (Compact Disc) โทรศัพท์บ้านพื้น ฐาน และอื่นๆ
- ชิป BCM2837 บนบอร์ด Pi3 สามารถแปลงข้อมูลเสียงที่ได้จากการประมวลผลในรูปแบบ PCM แล้วแปลงสัญญาณดิจิทัลให้เป็นสัญญาณอนาล็อกเพื่อส่งต่อให้กับลำโพงภายนอก

- Nyquist Theorem: Sampling_freq >= 2x Freq_max, T = 1/Sampling_freq
- รูปคลื่นไซน์ (Sine Wave) และการสุ่มค่าของคลื่นไซน์นี้ ด้วยความถี่สูงเป็น 26 เท่าของความถี่เดิม แล้วทำการ แปลงเป็นสัญญาณดิจิทัลชนิด PCM ด้วยความละเอียด 16 ระดับให้กลายเป็นข้อมูลขนาด 4 บิตต่อการสุ่ม 1 ครั้ง
- สัญญาณเสียงสนทนาผ่านโทรศัพท์จะสุ่มด้วยความถี่ 8,000 ครั้งต่อวินาที ซึ่งจะตรงกับคาบเวลา 1/8,000 = 125 ไมโครวินาที ด้วยความละเอียด 256 ระดับ หรือ 8 บิต
- สัญญาณเสียงเพลงคุณภาพระดับแผ่นซีดี จะสุ่มด้วยความถี่ 44,100 ครั้งต่อวินาที ซึ่งจะตรงกับคาบเวลา 1/44,100 = 22.67 ไมโครวินาที ด้วยระดับความละเอียด 65,536 ระดับ เพื่อให้เป็นข้อมูลขนาด 16 บิต

https://www.youtube.com/watch?v=Ibrf6LHloGc

6.5 สัญญาณภาพและเสียงสำหรับจอทีวี

6.5 สัญญาณภาพและเสียงสำหรับจอทีวี

- บอร์ด Pi3 สามารถเชื่อมต่อกับจอทีวี โดยใช้ สัญญาณภาพและเสียง
- สัญญาณภาพเรียกว่า **สัญญาณคอมโพสิทวีดีโอ** มีความละเอียดต่ำกว่าสัญญาณ HDMI
- สัญญาณเสียงเป็นแบบสเตอริโอ สำหรับลำโพง
 ซ้ายและขวา
- สัญญาณเสียง มีรายละเอียดในหัวข้อก่อนหน้า

- ในตำราเล่มนี้จะกล่าวถึง USB เวอร์ชัน 2.0 ซึ่งเป็นพื้นฐานและมีคุณสมบัติ ดังนี้
- สามารถโอนถ่ายข้อมูลทั่วไป สัญญาณเสียง และสัญญาณภาพได้สูงสุดถึง
 - 1.5 (Low Speed) 12 (Full Speed) และ 48 (High Speed) เมกะบิตต่อวินาที่
- สามารถจ่ายไฟเลี้ยงความต่างศักย์ 5 โวลท์ 0.5 แอมแปร์ให้แก่อุปกรณ์ขนาดเล็ก และสูงสุด 1 แอมแปร์สำหรับพอร์ตพิเศษ
- สายเคเบิลมีความยาวไม่เกิน 5 เมตร เนื่องจากความต้านทานของสายจะทำให้เกิดโวลเตจตกคร่อม (Voltage Drop) ใน สาย จนทำให้ความต่างศักย์ไปเลี้ยงอุปกรณ์ไม่เพียงพอ
- "Hot Swapping" รองรับการต่อเชื่อม ถอดออก และรีเซตอุปกรณ์ที่ต่ออยู่โดยไม่ต้องรีเซตหรือรีบูทระบบโอเอส

- เนื่องจากภายในชิป BCM2837 จะมีรูทฮับ (Root Hub) เพียง 1 พอร์ต
- โครงสร้างของไอซี LAN9514 ถูกออกแบบให้ LAN9514 มี USB Hub (Upstream) จำนวน 1 พอร์ต เพื่อเชื่อม กับรูทฮับในชิป BCM2837 และขยายจำนวนพอร์ต (Downstream) เพิ่มเป็น 4 พอร์ต เพื่อต่อเชื่อมกับคีย์บอร์ด เมาส์ และอุปกรณ์ USB อื่นๆ
- ภายใน LAN9514 ยังมีโมดูล Ethernet สำหรับเชื่อมต่อกับเครือข่ายอินเตอร์เน็ตแบบใช้สาย ซึ่งจะได้กล่าวต่อไป
- ในทางปฏิบัติชิป LAN9514 มีพอร์ต IEEE 1149.1 TAP (Test Access Port) CONTROLLER เพื่อใช้สำหรับ ทดสอบวงจรภายใน

https://www.youtube.com/watch?v=pIZREjck9jg

6.7 สัญญาณ Ethernet สำหรับสายเชื่อมต่อกับอินเตอร์เน็ต

6.8 สัญญาณ WiFi และ Bluetooth สำหรับการสื่อสารไร้สาย

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

6.9 หลักการ Memory MappedInput/Output

การอ่านหรือเขียนข้อมูลไปยังแอดเดรส กายภาพเหล่านี้ ทำได้การใช้คำสั่ง I DR และ STR เหมือนกับหน่วยความจำปกติ ทั่วไป โดยผู้ผลิตฮาร์ดแวร์ได้กำหนด หมายเลขแอดเดรสของบัสตามตารางที่ 6.4 โดยแอดเดรสบัสเริ่มต้นที่หมายเลข 0x7E000000 หรือ 0x7E00 0000

6.10 หัวเชื่อมต่อ 40 ขา (40-Pin Header)

6.11 ขา GPIO

(General Purpose Input Output)

Alternate function direction

Function

Select Regs

Pin Set & Clear Regs

Output State

Alternate function output

Alternate function input

Interrupts

Table 6.6: ตารางแอดเดรสในหน่วยความจำเริ่มต้นที่หมายเลข 0x7E20_0000 สำหรับ GPIO ที่มา: Broadcom (2012)

แอดเดรสบัส	รีจิสเตอร์	รายละเอียด	จำนวนบิท	R/W	ขา
0x7E20_0000	GPFSEL0	GPIO Function Select 0	32	R/W	0-9
0x7E20_0004	GPFSEL1	GPIO Function Select 1	32	R/W	10-19
0x7E20_0014	GPFSEL5	GPIO Function Select 5	12	R/W	50-53
0x7E20_001C	GPSET0	GPIO Pin Output Set 0	32	W	0-31
0x7E20_0020	GPSET1	GPIO Pin Output Set 1	22	W	32-53
0x7E20_0028	GPCLR0	GPIO Pin Output Clear 0	32	W	0-31
0x7E20 002C	GPCLR1	GPIO Pin Output Clear 1	22	W	32-53

Computer Organization & Assembly Language: Raspber

Computer Organization & Assembly Language: Raspberry Pi, รศ.ดร.สุรินทร์ กิตติธรกุล

- กลไกการขัดจังหวะเกิดขึ้นจากการใช้งานวงจร
 อินพุตเอาท์พุต
- Kernel/Driver จะเป็นผู้จัดการขบวนการรับส่ง
 ข้อมูลแทนโปรแกรมหรือ User
- โปรแกรมย่อยที่ซีพียูจะต้อง Execute สำหรับ สัญญาณ Interrupt แต่ละแบบเรียกว่า Interrupt Handler หรือ Interrupt Service Routine (ISR)
- ซีพียูจะไม่เสียเวลารอคอยการทำงานของวงจร
 IO มากจนซีพียูไม่มีโอกาสทำงานโปรแกรมอื่นๆ

https://www.youtube.com/watch?v=T67VfwiJPMg

6.13 การเข้าถึงหน่วยความจำโดยตรง (DMA)

- 1. โปรแกรมสั่งให้ซีพียูตั้งค่าควบคุมกับวงจร DMA Controller
- 2. DMAC เริ่มต้นโดยการส่งสัญญาณ Request ไปยัง Disk Controller เพื่ออ่านข้อมูลจากดิสค์
- 3. อ่านข้อมูลจากดิสค์ไปเขียนลงในหน่วยความจำ DRAM จนแล้วเสร็จ
- 4. SD Controller ส่งสัญญาณตอบรับ (Acknowledge) ไปยัง DMAC
- 5. DMAC ส่งสัญญาณ Interrupt ไปยังซีพียู เพื่อแจ้ง ว่าแล้วเสร็จ

6.13 การเข้าถึงหน่วยความจำโดยตรง

(Direct Memory Access)

การรับข้อมูลจากอุปกรณ์อินพุต DMA จะ ทำหน้าที่เคลื่อนย้ายข้อมูลจาก FIFO ของ วงจรเชื่อมต่อไปยังหน่วยความจำหลัก และการส่งข้อมูลไปยังอุปกรณ์เอาท์พุต ต่างๆ DMAC (DMA Controller) จะทำ หน้าที่เคลื่อนย้ายข้อมูลจากหน่วยความ จำหลัก ไปยัง FIFO ของวงจรนั้นๆ

ตารางที่ 6.4: ตารางเชื่อมโยงระหว่างบัสแอดเดรสสำ หมายเลขหัวข้อของตำราเล่มนี้ เริ่มต้นที่หมายเลข 0x7E

บัสแอดเดรส	ชื่อ
(Bus Address)	(Name)
0x7E00_0000	
0x7E00_1000	
0x7E00_2000	•••
_0x7E00_3000-	System-Tlmer
0×7E00_7000	DMA Controller
0x7E00_B000_	Interrupt Register
0×7E00_B400	Timer
0×7E20_0000	General Purpose I/O
0×7E20 1000	Universal Async. Rx Tx
0x7E20 3000	Pulse Code Modulation
0x7E20 4000	SPI0
0x7E20 5000	Serial Controller (I ² C)
0x7E21 4000	SPI/BSC Slave
0x7E21 5000	mini UART, SPI1, SPI2
0×7E30 0000	External Mass Media Controller
0x7E98 0000	Universal Serial Bus

6.13 การเข้าถึงหน่วยความจำ โดยตรง (DMA)

- ขบวนการ DMA เริ่มต้นจาก DMA Controller อ่านค่าการติดตั้งใน CB (Control Block) ในหน่วยความจำไปตั้งค่าริจิสเตอร์ CONBLK_AD ภายใน DMA ช่อง (Channel) ที่ยังว่างอยู่ หลังจากนั้น วงจร DMA ช่องนั้นจะเริ่มทำงานด้วยตนเอง
- DMA ช่อง 0 เริ่มต้นการตั้งค่าที่แอดเดรส 0×7E00_7000
- DMA ช่อง 1 เริ่มต้นการตั้งค่าที่แอดเดรส 0x7E00_7100
- DMA ช่อง 2 เริ่มต้นการตั้งค่าที่แอดเดรส 0×7E00 7200
- •
- DMA ช่อง 14 เริ่มต้นการตั้งค่าที่แอดเดรส 0x7E00_7e00
- DMA ช่อง 15 เริ่มต้นการตั้งค่าที่แอดเดรส 0x7EE0_5000

6.13 การเข้าถึงหน่วยความจำโดยตรง (DMA)

https://www.youtube.com/watch?v=RzdxfCg_jHo&t=1s

6.14 แหล่งจ่ายไฟ (Power Supply) ของบอร์ด Pi3

แหล่งจ่ายไฟของบอร์ดมาจากอแดปเตอร์ (Adaptor) แปลงไฟฟ้ากระแสสลับ 220 โวลท์เป็นไฟกระแสตรงความต่างศักย์ 5 โวลท์จะไหลผ่านฟิวส์และไดโอด เพื่อจ่าย ไฟให้กับบอร์ด Pi3 แล้วจึงถูกแปลงจาก 5 โวลท์ให้ลดลง (Step Down) เป็น 3.3 และ 1.8 โวลท์ด้วยชิป PAM2306 และ 1.2 โวลท์ด้วยชิป RT8088A ตามลำดับ

References

- https://www.researchgate.net/figure/Block-Diagram-of-Micro-SD-card_fig6_306236972
- https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/
- https://freedompenguin.com/articles/how-to/learning-the-linux-file-system
- https://www.techpowerup.com/174709/arm-launches-cortex-a50-series-the-worlds-most-energy-efficient-64-bit-processors
- https://www.researchgate.net/figure/NVIDIA-Tegra-2-mobile-processor-11_fig1_221634532
- Harris, D. and S. Harris (2013). Digital Design and Computer Architecture (1st ed.). USA: Morgan Kauffman Publishing.
- https://learn.adafruit.com/resizing-raspberry-pi-boot-partition/edit-partitions

References

- https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
- https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/programmer-s-guide-for-armv8-a
- https://xdevs.com/article/rpi3_oc/
- https://www.gsmarena.com/a look inside the new proprietary apple a6 chipset-news-4859.php
- https://www.slideshare.net/kleinerperkins/2012-kpcb-internet-trends-yearend-update/25-Global_Smartphone_Tablet_Shipments_Exceeded
- https://www.aliexpress.com/item/32329091078.html
- https://www.raspberrypi.org/forums/viewtopic.php?t=63750
- https://www.youtube.com/watch?v=2ciyXehUK-U