

## Práctica 2

2do cuatrimestre 2021 Álgebra I

| Integrante    | LU     | Correo electrónico  |
|---------------|--------|---------------------|
| Yago Pajariño | 546/21 | ypajarino@dc.uba.ar |



## Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

# $\acute{\mathbf{I}}\mathbf{ndice}$

| 1. | Prá  | ctica 2     | 2 |
|----|------|-------------|---|
|    | 1.1. | Ejercicio 1 | 2 |
|    | 1.2. | Ejercicio 2 | 2 |
|    | 1.3. | Ejercicio 3 | 2 |
|    | 1.4. | Ejercicio 4 | 3 |
|    | 1.5. | Ejercicio 5 | 3 |
|    | 1.6. | Ejercicio 6 | 4 |

#### Práctica 2 1.

#### Ejercicio 1 1.1.

- 1. (a)  $\sum_{i=1}^{100} i$ (b)  $\sum_{i=1}^{10} i^2$ 

  - (c)  $\sum_{i=1}^{12} (-1)^i . i^2$ (d)  $\sum_{i=1 \land i \text{ impar }}^{21} i^2$ (e)  $\sum_{i=0}^{n} 2i + 1$

  - (f)  $\sum_{i=1}^{n} i.n$
- 2. (a)  $\frac{100!}{4!}$ 
  - (b)  $\prod_{i=1}^{10} 2^i$
  - (c)  $\prod_{i=1}^{n} i.n$

#### Ejercicio 2 1.2.

- (a) 2+4; 2(n-6)+2(n-5)
- (b)  $\frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)}$ ;  $\frac{1}{(2n-1)\cdot 2n} + \frac{1}{2n\cdot (2n+1)}$
- (c)  $\frac{n+1}{2} + \frac{n+2}{4}$ ;  $\frac{n+n-1}{2 \cdot (n-1)} + \frac{2n}{2n}$
- (d)  $n + \frac{n}{2}$ ;  $\frac{n}{n^2 1} + \frac{n}{n^2}$
- (e) -(n+1).(n+2);  $\frac{n+n-1}{2(n-1)-3}.\frac{2n}{2n-3}$

#### Ejercicio 3 1.3.

(a)

$$\sum_{i=1}^{n} (4i+1) = \sum_{i=1}^{n} 4i + \sum_{i=1}^{n} 1$$

$$= 4 \cdot \sum_{i=1}^{n} i + n$$

$$= 4 \cdot \frac{n \cdot (n+1)}{2} + n$$

$$= 2 \cdot n(n+1) + n$$

$$= 2n^{2} + 3n$$

(b)

$$\begin{split} \sum_{i=6}^{n} 2(i-5) &= 2\sum_{i=6}^{n} (i-5) \\ &= 2\left(\sum_{i=6}^{n} i - \sum_{i=6}^{n} 5\right) \\ &= 2\left(\left(\sum_{i=1}^{n} i - \sum_{i=1}^{5} i\right) - \left(\sum_{i=1}^{n} 5 - \sum_{i=1}^{5} 5\right)\right) \\ &= 2\left(\left(\frac{n(n+1)}{2} - 15\right) - (5n - 25)\right) \\ &= 2\left(\left(\frac{n(n+1) - 30}{2}\right) - 5(n+5)\right) \\ &= n(n+1) - 30 - 10(n+5) \\ &= n^2 + n - 30 - 10n - 50 \\ &= n^2 - 9n - 80 \end{split}$$

## 1.4. Ejercicio 4

(a) 
$$\sum_{i=0}^{n} 2^i = n^{n+1} - 1$$

(b) 
$$\sum_{i=1}^{n} q^{i} = \begin{cases} \frac{q^{n+1}-2}{q-1} & q \neq 1\\ n & q = 1 \end{cases}$$

(c) 
$$\sum_{i=1}^{n} q^{2i} = \sum_{i=1}^{n} (q^2)^i = \begin{cases} \frac{(q^2)^{n+1} - 1}{q^2 - 1} & q \neq 1\\ n + 1 & q = 1 \end{cases}$$

(d) 
$$\sum_{i=n}^{2n} q^i = \sum_{i=0}^{2n} q^i - \sum_{i=0}^{n-1} q^i = \begin{cases} \frac{q^{2n+1} - q^n}{q-1} & q \neq 1\\ n+1 & q = 1 \end{cases}$$

## 1.5. Ejercicio 5

Usando la suma aritmética:

$$\sum_{i=1}^{n} (2i - 1) = \sum_{i=1}^{n} 2i - \sum_{i=1}^{n} 1$$
$$= 2 \cdot \frac{n(n+1)}{2} - n$$
$$= n^{2} + n - n$$
$$= n^{2}$$

Usando el principio de inducción:

Defino el predicado  $p(n): \sum_{i=1}^{n} (2i-1) = n^2; \forall n \in \mathbb{N}$ 

Caso base n = 1

$$\sum_{i=1}^{1} (2i - 1) = 2 - 1 = 1$$
$$n^{2} = 1^{2} = 1$$

Luego el caso base es verdadero.

Paso inductivo

Quiero probar que para  $k \ge 1$ ,  $p(k) \implies p(k+1)$ 

HI: 
$$\sum_{i=1}^{k} (2i-1) = k^2$$

QpQ: 
$$\sum_{i=1}^{k+1} (2i-1) = (k+1)^2$$

Pero,

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + 2(k+1) - 1$$
$$= k^2 + 2(k+1) - 1$$
$$= k^2 + 2k + 1$$
$$= (k+1)^2$$

Luego el paso inductivo es verdadero. Por lo tanto p(n) es verdadero,  $\forall n \in \mathbb{N}$ 

## 1.6. Ejercicio 6

## 1.6.A. Pregunta i

Prueba por inducción:

Defino el predicado  $p(n): \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$ 

Caso base n = 1

$$\sum_{i=1}^{1} i^2 = 1^2 = 1$$

$$\frac{n(n+1)(2n+1)}{6} = \frac{1 \cdot 2 \cdot 3}{6} = \frac{6}{6} = 1$$

Luego el caso base p(1) es verdadero.

#### Paso inductivo

Para todo  $k \ge 1 : p(k) \implies (k+1)$ 

HI: 
$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

QpQ: 
$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2(k+1)+1)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

Pero.

$$\begin{split} \sum_{i=1}^{k+1} i^2 &= \sum_{i=1}^{k} i^2 + (k+1)^2 \\ &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \end{split}$$

Entonces necesito probar que,

$$\frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$\iff \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$\iff k(2k+1) + 6(k+1) = (k+2)(2k+3)$$

$$\iff 2k^2 + k + 6k + 6 = 2k^2 + 3k + 4k + 6$$

$$\iff 2k^2 + 7k + 6 = 2k^2 + 7k + 6$$

Luego  $\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$  como se quería probar, el paso inductivo el verdadero.

Por lo tanto, p(n) es verdadero,  $\forall n \in \mathbb{N}$ .

### 1.6.B. Pregunta ii

Defino el predicado  $p(n): \sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4}$ 

Caso base n = 1

$$\sum_{i=1}^{n} i^3 = 1^3 = 1$$

$$\frac{n^2(n+1)^2}{4} = \frac{4}{4} = 1$$

Luego el caso base p(1) es verdadero.

#### Paso inductivo

Para todo  $k \ge 1 : p(k) \implies (k+1)$ 

HI: 
$$\sum_{i=1}^{k} i^3 = \frac{k^2(k+1)^2}{4}$$

QpQ: 
$$\sum_{i=1}^{k+1} i^3 = \frac{(k+1)^2(k+2)^2}{4}$$

Pero,

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^k i^3 + (k+1)^3$$
$$= \frac{k^2(k+1)^2}{4} + (k+1)^3$$
$$= \frac{k^2(k+1)^2 + 4(k+1)^3}{4}$$

Luego debo probar,

$$\frac{k^2(k+1)^2 + 4(k+1)^3}{4} = \frac{(k+1)^2(k+2)^2}{4}$$

$$\iff k^2 + 4(k+1) = k^2 + 4k + 4$$

$$\iff k^2 + 4k + 4 = k^2 + 4k + 4$$

Luego  $p(k) \implies p(k+1); \forall k \geq 1$ , como se quería probar.

Por lo tanto, p(n) es verdadero,  $\forall n \in \mathbb{N}$ .