Introduction to Data Analysis in R (Part I)

Your first step in learning how to make your data work for you!

SECTION I: WHAT IS R?

Section I: What is R?

R is a programming language for statistical computing and graphics that is used extensively by researchers, statisticians and data scientists to clean, analyze, and graph their data.

It can be used to:

- Import data from your computer, websites and databases
- Clean the data by organizing it into matrices, data frames, or tables
- Analyze the data using statistical tests or graphs
- Communicate your results

The Different Components That Make Up R

SECTION II: MAKING THE BEST OF R MARKDOWN & VARIABLES

- A variable is a named storage space that we can manipulate and mutate using code in R.
- We often name variables something meaningful to our program for readability

- E.g. Math: x = 5

R: x<- 5

- To save values and result to access later
- To simplify your code so one single line does not run too long
- Variable is defined using "<-"

- To save values and result to access later
- To simplify your code so one single line does not run too long
- Variable is defined using "<-"

- Three Types of Variables
 - Integer/Numeric → Numbers
 - Character → Words/Text
 - Logical → TRUE/FALSE

SECTION III: DATA OBJECTS IN R

- Vectors: a sequence of value of the same data type

Vectors: a sequence of value of the same data type

"Sun" "Mon" "Tues" "Wed" 4

- Vectors: a sequence of value of the same data type

1	
2	
3	
4	

TRUE
TRUE
FALSE
TRUE

- Vector Calculation

1 multiply 2 3

Vector Calculation

Section III: Data Objects — Data Frames

Vectors: 1D vertical "list"

- Data Frame: 2D : row component + column component

2 "Mon" 3 "Tues" 4 "Wed"

Section III: Data Objects – Data Frames

Vectors: 1D vertical "list"

- Data Frame: 2D : row component + column component

2	"Mon"
3	"Tues"
4	"Wed"

Section III: Data Objects — Data Frames

Vectors: 1D vertical "list"

- Data Frame: 2D : row component + column component

ID	Day	────── Column Names
2	"Mon"	
3	"Tues"	
4	"Wed"	

SECTION IV: DATA SUBSETTING

Section IV: Subsetting Vectors

- Subsetting allows you to access specific elements in your data objects
- We will use variable_name[index] to access the elements

"Sun" "Mon" "Tues" "Wed"

Section IV: Subsetting Vectors

- Subsetting allows you to access specific elements in your data objects
- We will use variable_name[index] to access the elements

"Sun" "Mon" 3 "Tues" "Wed" 4

Index

- Subset by Row
- Subset by Column
- Subset by Row & Column

ID	UNI	name
1	qa2116	Grace
2	cy3905	Winnie

- Subset by Row
- Subset by Column
- Subset by Row & Column

ID	UNI	name
1	qa2116	Grace
2	cy3905	Winnie

- Subset by Row
- Subset by Column
- Subset by Row & Column

Column Index

- Subset by Row
- Subset by Column
- Subset by Row & Column

Column Index

Section IV: Subsetting Data Frames(with logical operator)

- Logical Operator definition: test conditions and output either TRUE or FALSE
- Logical Operators:
 - ==
 - >/<
 - <u>!</u>=

Section IV: Subsetting Data Frames(with logical operator)

- Logical Operator definition: test conditions and output either TRUE or FALSE

ERC_fellow[condition ,]

ID	UNI	name
1	qa2116	Grace
2	cy3905	Winnie

TRUE

SECTION V: CREATING YOUR OWN DATA ANALYTICS PROJECT in R!

Section V: Project Series Introduction

- Main Research Question: How much is the college wage premium?
- Leading Questions:
 - What is distribution of early_career_pay?
 - We can find out whether attending a private vs public colleges make in difference in early_career_pay (mid_career_pay).
 - We can fit a linear regression analysis on early_career_pay versus stem_percent where early_career_pay is our response(dependent variable) and stem_percent is our independent variable
 - Finally, we want to figure out whether college tuition pays off. Is the difference between **mid career pay** and **tuition cost** positive?

Section V: Project Series Introduction

- Approach:
 - Summary Statistics
 - Clean the data if needed
 - Data Visualization to attempt at problem
 - Linear Regression to tackle the problem

Linear Regression

- Linear regression is a technique used to explain and understand the relationship between two quantitative variables.
- Fits a line of best fit to the scatter plot
- Y variable is the response variable
- X variable is the explanatory variable

$$Y = mX + b$$

m=coefficient of explanatory variable

Linear Regression

A **hypothesis tes**t determines whether the relationship between the two variables is **statistically significant or not**.

Null hypothesis = no relationship between the two variables

Alternative hypothesis = statistical evidence must be strong enough (beyond reasonable doubt) that there is a relationship between the two variables

Hypothesis test on the regression produces:

P value = A number which quantifies how likely that the data occurred by random chance.

If p < 0.05, reject the null hypothesis in favor of the alternative

Linear Regression

Wrap Up

- R and R Markdowns
- Variable Assignment
- Data Objects
 - Vectors
 - Data Frame
 - Reading in csv files
- Subsetting
- Exploratory Data Analysis (EDA)

Want to do more with R?

YES!

Intermediate Workshop next Monday(04/18) at 4pm!

- Answer more questions about college wage premium
- Library and packages
- dplyr
- ggplots

Image source: https://r-graph-gallery.com/index.html

Thank you for attending this workshop!

Hope to see you again next week!

Workshop Presented by: Aarushi Sharma and Grace An(Qi An)

More information about ERC:

Website: https://erc.barnard.edu/

Walk-in Hours: https://erc.barnard.edu/visit-us

Email us at erc@barnard.edu