Exercice 1

Considérons le plan de métro de Paris. Soit M l'ensemble des stations de métro.

- 1. Soit \mathcal{R} la relation sur $M \times M$ suivante définie : Soit x et y deux stations de métro. on a $x\mathcal{R}y$ si et seulement si x et y sont sur la même ligne. Quelles sont les propriétés de \mathcal{R} ?
- 2. Soit \mathcal{F} la relation sur $M \times M$ suivante définie : Soit x et y deux stations de métro. on a $x\mathcal{F}y$ si et seulement si un passagé peut aller de x vers y en métro. Quelles sont les propriétés de \mathcal{F} ?

Exercice 2

Nous considérons des pièces de monaies de 1, 2, 5 centimes. Notons N(x), le nombre minimun de pièces pour obtenir x centimes

- 1. Quelle est la valeur de N(0), N(1), N(2), N(3), N(4), N(5)?
- 2. Trouver la relation sous forme mathématique de N(x) en fonction de valeurs N(w) avec w < x.
- 3. Prouver cette formule par induction/récurrence sur x.

Exercice 3

Considérons la suite Z telle que Z(1) = 1 et $Z(n) = Z(\lceil \frac{n}{2} \rceil) + Z(\lceil \frac{n}{2} \rceil) + 1$. Montrer que

$$\forall n \ge 2, \ Z(n) \le cn - b$$

en fixant les variables c et b.

Exercice 4

Soit X, Y deux ensembles finis. Soit $f: X \to Y$ une application Montrer que

1. si f est surjective et si B est un sous ensemble de Y, alors

$$f(f^{-1}(B)) = B.$$

2. si f est injective et si A est un sous ensemble de X, alors

$$f^{-1}(f(A)) = A.$$

Supposons que X, Y sont deux ensembles finis de même cardinalité. Montrer que

- 1. si f est injective alors f est surjective.
- 2. si f est surjective alors f est injective.

Exercice 5

Existe-il

- 1. une application non-surjective et non-injective
- 2. une application non-surjective et injective
- 3. une application surjective et non-injective

Exercice 6

Soit k un entier. S_k l'ensemble des entiers compris entre 0 et $2^k - 1$.

Soit \mathcal{R} une relation d'équivalence de $S_k \times S_k$ définit de la façon suivante : on a $x\mathcal{R}y$ si et seulement si le nombre de bits de la représentation binaire x est égale au nombre de bits de la représentation binaire y.

– Montrer que \mathcal{R} est une relation d'équivalence.