STA 108 Discussion 9: Outlier detection

Yuanyuan Li

Reference: textbook sec. 10.2, 10.3, 10.4; lecture summary 26.

1 Outlying cases

- Outlying Y observations: case 1, 3, 4.
- Outlying X observations: case 2, 3, 4.
- Influential cases: case 3, 4. They are outlying with regard to their X values, and their Y values are not consistent with the regression relation for the other cases.

2 Diagnostics of outliers

Simple linear regression: box plots, stem-and-Ieaf plots, scatter plots, and residual plots.

Multiple linear regression: Recall the least square estimates is $\hat{\beta} = (X'X)^{-1}X'Y$, and fitted value is $\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y$. Define the hat matrix as $H = X(X'X)^{-1}X'$, then $\hat{Y} = HY$.

The residulas can be expressed as $\hat{\epsilon} = (I - H)Y$, hence the variance of residual $\hat{\epsilon}_i$ is $\sigma^2(1 - h_{ii})$, where h_{ii} is the *i*th element on the main diagonal of the hat matrix. Using MSE as the estimator of the error variance σ^2 , we get the standard error of $\hat{\epsilon}_i$ as $s.e.(\hat{\epsilon}_i) = \sqrt{MSE(1 - h_{ii})}$.

- Identifying outlying Y observations:
 - studendized residual: $r_i = \frac{\hat{\epsilon}_i}{s.e.(\hat{\epsilon}_i)} = \frac{\hat{\epsilon}_i}{\sqrt{MSE(1-h_{ii})}}$.
 - jackknife (deleted) residual: Fit the regression with the *i*th case deleted; let $Y_{i(-i)}$ denote the predicted value for Y_i , under this regression. $d_i = Y_i Y_{i(-i)}$ is called the deleted residual.
 - studentized deleted residual: $t_i = \frac{d_i}{s.e.(d_i)}$, where $s.e.(d_i) = \frac{MSE_{(i)}}{1-h_{ii}}$. Under the null hypothesis that there are no outliers, $t_i \sim t_{n-p-1}$.

- Test for outliers by Bonferroni method: Reject H_0 (no outlying Y observations), if $\max_{1 \le i \le n} |t_i| > t_{n-p-1}(1-\frac{\alpha}{2n})$.
- Identifying outlying X observations:
 - leverages: h_{ii} , which is a measure of the distance between the X values for the i th case and the means of the X values for all n cases. If $h_{ii} > 2p/n$, case i is considered outlying in X.
- Identifying influential cases:
 - Cook's distance: $D_i = \frac{(\hat{Y} \hat{Y}_{(i)})'(\hat{Y} \hat{Y}_{(i)})}{pMSE} = \frac{\epsilon_i^2}{pMSE} \frac{h_{ii}}{(1 h_{ii})^2}$. Case i is considered as influential case if $D_i > 4/n$.

3 Example: Can you find outliers and influential cases for model below?

```
fit=lm(Sepal.Length~ ., data=iris)
##
## Call:
  lm(formula = Sepal.Length ~ ., data = iris)
##
  Coefficients:
##
##
         (Intercept)
                             Sepal.Width
                                                Petal.Length
                                                                     Petal.Width
                                                      0.8292
                                                                         -0.3152
##
              2.1713
                                  0.4959
## Speciesversicolor
                        Speciesvirginica
##
             -0.7236
                                 -1.0235
plot(fit, which=1:6)
```


