1 Testes de Estabilidade

O gráfico mostra os tempos obtidos em 10 execuções, sendo cada uma com um conjunto de dados diferente. O tempo do quicksort foi menor em todas as execuções, mas a diferença é bem pequena. A variação dos tempos também é pequena, a variação entre o maior e menor tempo foi de menos de 2 segundos. A tabela mostra as estatísticas para o teste.

Algoritmo	Menor	Maior	Média	Mediana	Variância	Desvio Padrão	COV
Quicksort	18.449	20.086	18.7865	18.4895	0.294432	0.542616	0.0288833
Samplesort	19.44	20.622	19.8422	19.482	0.250538	0.500538	0.025226

Fiz um gráfico igual ao feito no trabalho da Paula contendo os tempos dos dois algoritmos.

Figura 1: Tempo (s): Teste de Estabilidade

2 Testes variando o número de partições

Esse teste foi o sugerido naquele email, para variar o número de partições para menos e manter o número de máquinas constante. As partições foram 8, 6, 4 e 2, e o tempo diminui consideravelmente com menos partições. (O gráfico mostra de forma crescente o número de partições, mas pensei que se for mostrado de maneira decrescente vai ser mais interessante.)

O esperado para o sample sort era o contrário, quanto maior o número de partições, melhor o desempenho, e de fato isso ocorre, mas de maneira menos acentuada. (Fiz o teste com o sample sort mais para ver como seria, talvez nem seja preciso incluir nos resultados.)

Esse teste é interessante porque justifica o uso de duas partições nos demais testes. Como foi verificado que o melhor tempo é com 2 partições, passei a utilizar esse valor para partições.

Figura 2: Tempo(s): ordenação de 10⁸ dados com diferente número de partições

A Figura 3 é o coeficiente de variação das partições, que mostra uma variação um pouco maior com o Quicksort.

Figura 3: COV das partições

3 Testes variando os dados de 10^6 a 10^{10}

Esse teste foi variando a quantidade de dados, com um número constante de máquinas. Você havia comentado na reunião sobre a quantidade de dados ser 4, e continuávamos com essa quantidade porque já haviam testes executados nesse número. Como a manutenção na rede deu muita alteração no tempo, eu refiz os testes com os dois algoritmos usando as 5 máquinas disponíveis.

Para o quicksort foi executado com 2 partições, e para o sample sort mantive a fórmula anteriormente usada: partições = máquinas x núcleos.

O tempo do quicksort foi ligeiramente menor com 10^6 e maior nos demais casos. Quanto maior o arquivo, maior a diferença entre os tempos. Para cada tamanho de arquivo, executei 5 testes, e o gráfico inclui a média dos tempos para as 5 execuções. Ainda é preciso incluir os dados das execuções de 10^{10} .

Fiz também um gráfico incluindo o tempo para ordenação de cada 10^6 dados (MegaDados).

Figura 4: Tempo (s): Teste variando dados de 10^6 a 10^{10}

Figura 5: Tempo (s): avaliando a ordenação de Mega Dados (arquivos de 10^6 a 10^{10})

4 Testes variando o número de máquinas

Os testes variando o número de máquinas são os mais interessantes para o sample sort, porque mostram o speed up e a eficiência. Para o quicksort também há uma melhora considerável no tempo, mesmo sendo o número constante de 2 partições.

Os gráficos de speed up e eficiência ainda não estão prontos, assim que estiverem eu enviarei.

Figura 6: Tempo (s): ordenação de 10^8 dados em número variável de máquinas

5 Testes variando a distribuição

Pensei em uma nova maneira para exibir os dados de distribuição. Considerando que a variação é bastante pequena no tempo, talvez possamos criar uma nova seção para testes com distribuições diferentes, e não incluir o resultado de cada distribuição em todos os testes. Ainda não pensei exatamente como seria isso, mas fiz um gráfico de uma possível maneira, incluindo o tempo médio das três distribuições com os dois algoritmos. Esse gráfico mostra o tempo médio de 10 execuções de 10^6 em 5 máquinas.

Figura 7: Tempo(s): ordenação de 10⁶ dados das três distribuições

Essa figura é para exibir o COV das partições, que varia entre as 3 distribuições, mas influência pouco no tempo geral de ordenação.

Figura 8: COV das partições nas três distribuições