VİTMO

Основы электротехники

Отчёт по лабораторной работе №3

Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока

Группа *Р3331* Вариант *31*

Выполнил: Дворкин Борис Александрович

Дата сдачи отчёта: 08.11.2024

Дата защиты: 08.11.2024

Контрольный срок защиты: 23.10.2024

Количество баллов:

Содержание

цель р	аботы												
Іасть	1												
1.1		ние											
1.2		етры элементов исследуемых схем											
1.3		е расчёты											
1.4		олюсник 1											
	1.4.1	Схема исследуемой цепи											
	1.4.2	Расчётные формулы и расчёты											
	1.4.3	Вектора входного напряжения и тока											
1.5	Двухп	олюсник 2											
	1.5.1 Схема исследуемой цепи												
	1.5.2	Расчётные формулы и расчёты											
	1.5.3	Вектора входного напряжения и тока											
1.6	Двухп	олюсник 3											
	1.6.1	Схема исследуемой цепи											
	1.6.2	Расчётные формулы и расчёты											
	1.6.3	Вектора входного напряжения и тока											
1.7		олюсник 4											
1.,	1.7.1	Схема исследуемой цепи											
	1.7.2	Расчётные формулы и расчёты											
	1.7.3	Вектора входного напряжения и тока											
1.8	-	олюсник 5											
1.0	1.8.1	Схема исследуемой цепи											
	1.8.2	Расчётные формулы и расчёты											
	1.8.3	Вектора входного напряжения и тока											
1.9		олюсник 6											
1.0	1.9.1	Схема исследуемой цепи											
	1.9.2	Расчётные формулы и расчёты											
	1.9.3	Вектора входного напряжения и тока											-
1 10		олюсник 7											
1.10	двулп 1 10 1	Схема исследуемой цепи	•	•	•	•	•	•	•	•	•	•	-
		Расчётные формулы и расчёты											
		Вектора входного напряжения и тока											
1 11		олюсник 8											
1.11		Схема исследуемой цепи											
		Расчётные формулы и расчёты											
		Вектора входного напряжения и тока											
1 19		олюсник 9											
1.12		Схема исследуемой цепи											
		Расчётные формулы и расчёты											
		Вектора входного напряжения и тока											
1 12		ненная таблица 2.2											
		ненная таолица 2.2											

Часть	2		20
2.1	Введег	ние	20
2.2		иетры элементов исследуемых схем	
2.3	Двухп	олюсник 6	20
		Схема исследуемой цепи	
	2.3.2	Расчётные формулы и расчёты	21
	2.3.3	Заполненная таблица 2.3	
	2.3.4	Графики характеристических зависимостей от частоты	23
	2.3.5	Векторная диаграмма для состояния резонанса	24
2.4	Двухп	олюсник 9	25
		Схема исследуемой цепи	
	2.4.2	Расчётные формулы и расчёты	25
	2.4.3	Заполненная таблица 2.4	
	2.4.4	Графики характеристических зависимостей от частоты	
	2.4.5	Векторная диаграмма для состояния резонанса	28
2.5	Вывод	[Ы	29

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Часть 1

1.1 Введение

В данной части лабораторной работы произведены измерения действующих значений входного напряжения, тока и фазового сдвига между ними для девяти различных двухполюсников, а также произведены сравнения результатов с расчётными значениями.

1.2 Параметры элементов исследуемых схем

1. Расчёт амплитуды синусоидального напряжения:

$$U_{max} = U_{\pi} \cdot \sqrt{2} = 6 \cdot \sqrt{2} = 8.485 \,\mathrm{B}$$

2. Известные значения:

$$U_{\rm д}=6\,{\rm B}, \psi_{\rm H}=0^\circ, f=19.894\,\Gamma$$
ц, $R_1=30\,{\rm Om}, R_k=5\,{\rm Om}$
$$L_k=23.094\,{\rm m}$$
 Γ $H,C=71.454\,{\rm mk}$ Φ

1.3 Общие расчёты

1. Угловая частота:

$$\omega = 2\pi f = 2 \cdot 3.1416 \cdot 19.894 \approx 125\,\mathrm{pag/c}$$

2. Реактивная составляющая сопротивления ёмкостного элемента:

$$X_c = \frac{1}{\omega C} = \frac{1}{125 \cdot 71.454 \cdot 10^{-6}} = 111.96 \,\mathrm{Om}$$

3. Реактивная составляющая сопротивления индуктивного элемента:

$$X_L = \omega L = 125 \cdot 23.094 \cdot 10^{-3} = 2.887 \,\mathrm{Om}$$

4. Реактивная проводимость ёмкостного элемента:

$$B_c = \omega C = 125 \cdot 71.454 \cdot 10^{-6} = 0.00893 \,\mathrm{Cm}$$

5. Реактивная проводимость индуктивного элемента:

$$B_k = \frac{X_L}{R_k^2 + X_I^2} = \frac{2.887}{5^2 + (2.887)^2} = 0.0866 \,\mathrm{Cm}$$

1.4 Двухполюсник 1

1.4.1 Схема исследуемой цепи

Рис. 1: Схема замещения Двухполюсника 1 в LTspice.

1.4.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = 0, R = R_1 \implies I = \frac{U}{R_1} = \frac{6}{30} = 0.2 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{0}{R_1}\right) = 0^{\circ}$$

1.4.3 Вектора входного напряжения и тока

1.5 Двухполюсник 2

1.5.1 Схема исследуемой цепи

Рис. 2: Схема замещения Двухполюсника 2 в LTspice.

1.5.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = -X_C, R = 0 \implies I = \frac{U}{X_C} = \frac{6}{111.96} = 0.0536 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(-\inf\right) = -90^{\circ}$$

1.5.3 Вектора входного напряжения и тока

1.6 Двухполюсник 3

1.6.1 Схема исследуемой цепи

Рис. 3: Схема замещения Двухполюсника 3 в LTspice.

1.6.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = -X_C, R = R_1 \implies I = \frac{U}{\sqrt{R_1^2 + X_C^2}} = \frac{6}{\sqrt{30^2 + 111.96^2}} = 0.0518 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{-X_C}{R_1}\right) = \arctan\left(\frac{-111.96}{30}\right) = -75^{\circ}$$

1.6.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), I_y = I\sin(\phi)$$

$$I_x = 0.0518 \cdot \cos(75^\circ) = 0.0134 \,\text{A}, \quad I_y = 0.0518 \cdot \sin(75^\circ) = 0.05 \,\text{A}$$

1.7 Двухполюсник 4

1.7.1 Схема исследуемой цепи

Рис. 4: Схема замещения Двухполюсника 4 в LTspice.

1.7.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = X_L, R = R_k \implies I = \frac{U}{\sqrt{R_k^2 + X_L^2}} = \frac{6}{\sqrt{5^2 + 2.887^2}} = 1.039 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{X_L}{R_k}\right) = \arctan\left(\frac{2.887}{5}\right) = 30.7^{\circ}$$

1.7.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), I_y = I\sin(\phi)$$

$$I_x = 1.039 \cdot \cos(-30.7^\circ) = 0.893 \,\text{A}, \quad I_y = 1.039 \cdot \sin(-30.7^\circ) = -0.531 \,\text{A}$$

1.8 Двухполюсник 5

1.8.1 Схема исследуемой цепи

Рис. 5: Схема замещения Двухполюсника 5 в LTspice.

1.8.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = X_L, R = R_1 + R_k \implies I = \frac{U}{\sqrt{(R_1 + R_k)^2 + X_L^2}} = \frac{6}{\sqrt{(30 + 5)^2 + 2.887^2}}$$

$$= 0.171 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{X_L}{R_1 + R_k}\right) = \arctan\left(\frac{2.887}{30 + 5}\right) = 4.72^{\circ}$$

1.8.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), I_y = I\sin(\phi)$$

$$I_x = 0.171 \cdot \cos(-4.72^\circ) = 0.17 \,\text{A}, \quad I_y = 0.171 \cdot \sin(-4.72^\circ) = -0.014 \,\text{A}$$

+j

1.9 Двухполюсник 6

1.9.1 Схема исследуемой цепи

Рис. 6: Схема замещения Двухполюсника 6 в LTspice.

1.9.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}}$$

$$X = X_L - X_C, R = R_1 + R_k \implies I = \frac{U}{\sqrt{(R_1 + R_k)^2 + (X_L - X_C)^2}} = \frac{6}{\sqrt{(30 + 5)^2 + (2.887 - 111.96)^2}} = 0.0524 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{X_L - X_C}{R_1 + R_k}\right) = \arctan\left(\frac{2.887 - 111.96}{30 + 5}\right) = -72.209^{\circ}$$

1.9.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), I_y = I\sin(\phi)$$

$$I_x = 0.0524 \cdot \cos(72.209^\circ) = 0.016\,\text{A}, \quad I_y = 0.0524 \cdot \sin(72.209^\circ) = 0.05\,\text{A}$$

 $\phi = 72.209^{\circ}$ I = 0.0524 A

1.10 Двухполюсник 7

1.10.1 Схема исследуемой цепи

Рис. 7: Схема замещения Двухполюсника 7 в LTspice.

1.10.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = U \cdot Y = U \cdot \sqrt{G^2 + B^2}$$

$$G = \frac{1}{R_1}, B = -B_C \implies I = U \cdot \sqrt{\frac{1}{R_1^2} + B_C^2} = 6 \cdot \sqrt{\frac{1}{30^2} + 0.00893^2} = 0.207 \,\text{A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{-B_C}{\frac{1}{R_1}}\right) = \arctan\left(\frac{-0.00893}{0.03}\right) = -16.577^{\circ}$$

1.10.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), I_y = I\sin(\phi)$$

$$I_x = 0.207 \cdot \cos(16.577^\circ) = 0.198 \,\text{A}, \quad I_y = 0.207 \cdot \sin(16.577^\circ) = 0.059 \,\text{A}$$

1.11 Двухполюсник 8

1.11.1 Схема исследуемой цепи

Рис. 8: Схема замещения Двухполюсника 8 в LTspice.

1.11.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = U \cdot Y = U \cdot \sqrt{G^2 + B^2}$$

$$G = G_1 + G_k, B = B_k - B_1 \implies I = U \cdot \sqrt{(G_1 + G_k)^2 + (B_k - B_1)^2} =$$

$$= U \cdot \sqrt{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + \left(\frac{X_L}{R_k^2 + X_L^2} - 0\right)^2} =$$

$$= 6 \cdot \sqrt{\left(\frac{1}{30} + \frac{5}{5^2 + 2.887^2}\right)^2 + \left(\frac{2.887}{5^2 + 2.887^2}\right)^2} = 1.217 \text{ A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{B_k - B_1}{G_1 + G_k}\right) = \arctan\left(\frac{0.0866}{0.183}\right) = 25.325^{\circ}$$

1.11.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), I_y = I\sin(\phi)$$

 $I_x = 1.217 \cdot \cos(-25.325^\circ) = 1.1 \text{ A}, \quad I_y = 1.217 \cdot \sin(-25.325^\circ) = -0.521 \text{ A}$

1.12 Двухполюсник 9

1.12.1 Схема исследуемой цепи

Рис. 9: Схема замещения Двухполюсника 9 в LTspice.

1.12.2 Расчётные формулы и расчёты

1. Расчёт действующего тока в цепи:

$$I = U \cdot Y = U \cdot \sqrt{G^2 + B^2}$$

$$G = G_1 + G_k, B = B_k - B_1 \implies I = U \cdot \sqrt{(G_1 + G_k)^2 + (B_k - B_1)^2} =$$

$$= U \cdot \sqrt{\left(\frac{R_1}{R_1^2 + X_C^2} + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + \left(\frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}\right)^2} =$$

$$= 6 \cdot \sqrt{\left(\frac{30}{30^2 + 111.96^2} + \frac{5}{5^2 + 2.887^2}\right)^2 + \left(\frac{2.887}{5^2 + 2.887^2} - \frac{111.96}{30^2 + 111.96^2}\right)^2} =$$

$$= 1.027 \text{ A}$$

2. Расчёт фазового сдвига:

$$\phi = \arctan\left(\frac{B_k - B_1}{G_1 + G_k}\right) = \arctan\left(\frac{0.0783}{0.152}\right) = 27.254^{\circ}$$

1.12.3 Вектора входного напряжения и тока

$$I_x = I\cos(\phi), I_y = I\sin(\phi)$$

 $I_x = 1.027 \cdot \cos(-27.254^\circ) = 0.913 \,\text{A}, \quad I_y = 1.027 \cdot \sin(-27.254^\circ) = -0.47 \,\text{A}$

1.13 Заполненная таблица 2.2

Для каждого двухполюсника 1-9, представленного выше, были не только произведены теоретические расчёты действующего тока и фазового сдвига, но и произведено построение временных диаграмм, из которых величины действующего напряжения, тока и фазового сдвига определены эксперементально. Для напряжения и тока были измерены амплитудные значения и вычислены по формуле:

$$U_{\mathrm{M}} = \frac{U_{max}}{\sqrt{2}}$$
$$I_{\mathrm{M}} = \frac{I_{max}}{\sqrt{2}}$$

А фазовый сдвиг рассчитан следующим образом:

$$\phi = 180^{\circ} \cdot \frac{\delta h}{h}$$

, где δh - расстояние между моментами перехода синусоид напряжения и тока от отрицательных значений к положительным, а h - половина периода синусоиды, измеренная в секундах.

Номер	Пара	метры дв	зухполюсн	ІИКОВ	Резуль	таты изме	ерений	Результаты вычислений		
	R ₁	R_k	L	С	U	I	φ	I	φ	
цепи	0	М	Гн	мкФ	В	Α	0	Α	0	
1	30	-	-	-	6.017	0.199	0	0.2	0	
2	-	-	-	71.454	6.004	0.0536	-88.519	0.0536	-90	
3	30	-	-	71.454	6.0005	0.0518	-74.896	0.0518	-75	
4	-	5	23.094	-	5.991	1.0397	30.713	1.039	30.7	
5	30	5	23.094	-	5.998	0.171	4.908	0.171	4.72	
6	30	5	23.094	71.454	6.001	0.0524	-72.158	0.0524	-72.209	
7	30	-	-	71.454	5.9998	0.207	-16.594	0.207	-16.577	
8	30	5	23.094	-	5.9983	1.216	25.327	1.217	25.325	
9	30	5	23.094	71.454	5.999	1.027	27.255	1.027	27.254	

Итоговая таблица 2.2

1.14 Выводы

В результате выполнения первой части лабораторной работы я исследовал 9 двухполюсников и рассчитал их действующие значения входного тока и напряжения, а также определил фазовый сдвиг между этими величинами.

В ходе исследования я эксперементально подтвердил теоретические значения величин действующего тока, напряжения и фазового сдвига, что подтвердило корректность опытов. Исходя из этого можно корректно заключить, как синусоидальный ток влиял на различные двухполюсники.

А именно, в первом двухполюснике нулевой сдвиг по фазе, что указывает что ток и напряжение изменяются синхронно, что очевидно, т.к. в цепи только лишь один резистор, и это можно подтвердить теоретически, т.к. сдвиг по фазе это соотношение реактивного и активного сопротивлений, а в цепи с одним лишь резистором реативное сопротивление отсутствует.

В двухполюсниках 2,3,7 в дело вступает ёмкостной элемент. В прошлой лабораторной я исследовал переходные процессы в электрических цепях и сделал вывод о том, что ёмкостной элемент сопротивляется изменению напряжения, а индуктивный - изменению тока. Следовательно, в данных двухполюсниках ток будет **опережать** напряжение.

В двухполюсниках 4,5,8 аналогично, но с индуктивным элементом. Ток уже будет запаздывать относительно напряжения, т.к. индуктивный элемент будет сопротивляться его изменению.

А в двухполюсниках 6,9 происходит самое интересное - катушка и конденсатор совмещены в одной цепи, и каждый сопротивляется изменению тока и напряжения соответственно, смещая обе фазы и тем самым сближая или наоборот отдаляя их друг от друга. Это можно наблюдать по значениям сдвига по фазе для данных двухполюсников. В двухполюснике 7 не было индуктивного

элемента, в 6 добавился - и отдалил фазу тока, добавив задержку. И наоборот в двухполюснике 5 не было ёмкостного элемента, и добавили сразу большой - поначалу фазы могли бы сблизиться в нулевой сдвиг, если бы ёмкость была меньше, но так как мы добавили сразу большую ёмкость, то фазы далее отдалились аж до -72° .

Также стоит отметить, что погрешности эмпирически полученных значений фазового сдвига, входного тока и напряжения связаны исключительно с неточностью вычислений и накоплением погрешностью округления. Если снимать показания с большим разрешением, то величины сходятся 1:1.

Часть 2

2.1 Введение

В данной части лабораторной работы произведено исследование и анализ частотных характеристик RCL-цепи с последовательным и параллельным подключениями ветвей с индуктивным и ёмкостным элементами соответственно.

2.2 Параметры элементов исследуемых схем

Известные значения:

$$U_{\mathrm{A}}=6\,\mathrm{B}, \psi_{\mathrm{H}}=-150^{\circ}, R_{1}=17\,\mathrm{Om}, R_{k}=5\,\mathrm{Om}$$
 $L_{k}=23.094\,\mathrm{m}\Gamma\mathrm{H}, C=71.454\,\mathrm{mk}\Phi$

2.3 Двухполюсник 6

2.3.1 Схема исследуемой цепи

Рис. 10: Схема замещения Двухполюсника 6 (в резонансе) в LTspice.

2.3.2 Расчётные формулы и расчёты

1. Резонансная частота:

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} = \frac{1}{2 \cdot \pi \cdot \sqrt{23.094 \cdot 71.454 \cdot 10^{-3} \cdot 10^{-6}}} = 123.896 \, \Gamma \text{ц}$$

2. Угловая частота:

$$\omega = 2 \cdot \pi \cdot f$$

3. Действующий ток в цепи:

$$I = \frac{U_{\rm d}}{\sqrt{(R_1 + R_k)^2 + (\omega L - \frac{1}{\omega C})^2}}$$

4. Напряжение на резистивном элементе:

$$U_{R_k} = I \cdot R_1$$

5. Напряжение на индуктивном элементе:

$$U_k = I \cdot \sqrt{R_k^2 + (\omega L)^2}$$

6. Напряжение на ёмкостном элементе:

$$U_C = \frac{I}{\omega C}$$

7. Фазовый сдвиг между входным напряжением и током:

$$\phi = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R_1 + R_k}\right)$$

8. Добротность контура:

$$Q_p = \frac{p}{R_1 + R_k}$$

$$Q_e = \frac{U_{C_0}}{U_{\mathcal{A}}}$$

2.3.3 Заполненная таблица 2.3

Изменяя частоту источника в диапазоне от $0.1 \cdot f_0$ до $2 \cdot f_0$ были рассчитаны значения по вышеуказанным формулам, а также сняты показания с двухполюсника для указанных частот.

Значения действующего тока в цепи и напряжений на резистивном, ёмкостном и индуктивном элементах были найдены как максимальное измеренное значение (I_m, U_m) , поделённое на $\sqrt{2}$ для преобразования амплитудного значения, в действующее.

Фазовый сдвиг вычислен как дельта между синусоидами тока и напряжения при переходе от отрицательных значений к положительным, поделённая на амплитуду напряжения: $\phi = 180^{\circ} \cdot \frac{\delta h}{h}$.

	U=	= 6 B; R ₁ =	=17 Ом; Р	R _k = 5 Ом;	L = 23,09	94 мГ	н; С = 71,	1,454 мкФ; f ₀ = 123,896 Гц						
f			Расчё	Ť		Эксперимент								
'			$Q_p = 0.8$	317				$Q_e = 0.8$	318					
	φ	1	U _{R1} U _k		Uc	φ	1	U_{R1}	U_k	Uc				
Гц	0	Α		В		0	Α	В						
12.39	-83	0.033	0.561	0.175	5.932	-84	0.033	0.569	0.178	6.016				
24.779	-76	0.067	1.139	0.413	6.023	-76	0.067	1.146	0.415	6.056				
37.169	-68	0.102	1.734	0.75	6.112	-68	0.102	1.763	0.773	6.116				
49.558	-60	0.137	2.329	1.2	6.157	-60	0.137	2.337	1.208	6.179				
61.948	-51	0.172	2.924	1.769	6.184	-51	0.173	2.948	1.789	6.204				
74.338	-41	0.206	3.502	2.449	6.172	-42	0.206	3.495	2.444	6.16				
86.727	-31	0.234	3.978	3.169	6.01	-31	0.234	3.983	3.173	6.018				
99.117	-20	0.256	4.352	3.898	5.753	-20	0.256	4.351	3.898	5.752				
111.506	-10	0.269	4.573	4.555	5.373	-10	0.269	4.568	4.551	5.368				
123.896	0	0.273	4.641	5.094	4.908	0.3	0.274	4.645	5.086	4.908				
136.286	9	0.269	4.573	5.487	4.396	9	0.269	4.601	5.496	4.404				
148.675	17	0.261	4.437	5.78	3.91	17	0.261	4.441	5.785	3.914				
161.065	23	0.25	4.25	5.975	3.457	23	0.25	4.254	5.979	3.461				
173.454	29	0.238	4.046	6.107	3.056	29	0.237	4.045	6.105	3.055				
185.844	34	0.225	3.825	6.171	2.697	35	0.225	3.832	6.182	2.701				
198.234	39	0.213	3.621	6.219	2.393	39	0.213	3.626	6.227	2.397				
210.623	42	0.202	3.434	6.256	2.136	42	0.202	3.432	6.251	2.135				
223.013	45	0.191	3.247	6.254	1.908	45	0.191	3.251	6.261	1.906				
235.402	48	0.181	3.077	6.248	1.713	49	0.181	3.084	6.262	1.716				
247.792	51	0.172	2.924	6.244	1.546	51	0.172	2.931	6.258	1.55				

Итоговая таблица 2.3

2.3.4 Графики характеристических зависимостей от частоты

Графики зависимостей $I(f), \phi(f), U_{R_1}(f), U_k(f), U_C(f)$ поделены на два для большей наглядности и удобства разрешения масштаба - первый показывает зависимости характеристик $I(f), \phi(f)$, второй - $U_{R_1}(f), U_k(f), U_C(f)$.

Рис. 11: Зависимость действующего тока и фазового сдвига от частоты

Рис. 12: Зависимость действующих напряжений от частоты

2.3.5 Векторная диаграмма для состояния резонанса

Векторная диаграмма, представленная ниже, должна эксперементально подтверждать II Закон Кирхгофа для нашего двухполюсника:

$$U_{R_1} + U_k + U_C = U$$

Диаграмма выполнена в масштабе, 1 клетка = 1 Вольт. По-хорошему, векторы напряжений на катушке и конденсаторе должны компенсировать друг друга в резонансе, но мы специально собрали схему так, что между индуктивным и ёмкостным элементом есть резистивный элемент, в данном случае на 5 Ом, так что можно наглядно сложить векторы и напряжений и получить действующее напряжение в цепи.

Для построения векторной диаграммы рассчитаю фазовые сдвиги действующих напряжений на элементах в момента резонанса:

$$\phi(U_{R_1}) = \psi = -150^\circ$$

$$\phi(U_{C_1} U_{R_1}) = 180^\circ \cdot \frac{\delta h}{h} = 180^\circ \cdot \frac{29.595 - 27.577}{31.606 - 27.574} = 90.089^\circ$$

$$\phi(U_{L_1} U_{R_1}) = 180^\circ \cdot \frac{\delta h}{h} = 180^\circ \cdot \frac{43.722 - 42.052}{31.606 - 27.274} = -69.39^\circ (U_{R_1} \text{ опережает } U_{L_1})$$

2.4 Двухполюсник 9

2.4.1 Схема исследуемой цепи

Рис. 13: Схема замещения Двухполюсника 9 (в резонансе) в LTspice.

2.4.2 Расчётные формулы и расчёты

1. Характеристическое сопротивление:

$$p = \sqrt{\frac{L}{C}} = \sqrt{\frac{23.094 \cdot 10^{-3}}{71.454 \cdot 10^{-6}}} = 17.978 \, \text{Om}$$

2. Резонансная частота:

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} \cdot \sqrt{\frac{p^2 - R_k^2}{p^2 - R_1^2}} =$$

$$= \frac{1}{2 \cdot \pi \cdot \sqrt{23.094 \cdot 71.454 \cdot 10^{-3} \cdot 10^{-6}}} \cdot \sqrt{\frac{17.978^2 - 25}{17.978^2 - 17^2}} = 365.806 \, \Gamma \mathrm{I} \mathrm{I}$$

3. Вычисление общей проводимости G:

$$G = G_1 + G_k = \frac{R_1}{R_1^2 + X_C^2} + \frac{R_k}{R_k^2 + X_L^2}$$

4. Вычисление общей проводимости В:

$$B = B_k - B_1 = \frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}$$

5. Вычисление общего тока I:

$$I = U\sqrt{G^2 + B^2}$$

6. Вычисление тока через индуктивный элемент I_1 :

$$I_1 = \frac{U}{\sqrt{R_k^2 + X_L^2}}$$

7. Вычисление тока через емкостной элемент I_2 :

$$I_2 = \frac{U}{\sqrt{R_1^2 + X_C^2}}$$

8. Вычисление вызового сдвига φ :

$$\varphi = \arctan\left(\frac{B}{G}\right)$$

2.4.3 Заполненная таблица 2.4

Изменяя частоту источника в диапазоне от $0.1 \cdot f_0$ до $2 \cdot f_0$ были рассчитаны значения по вышеуказанным формулам, а также сняты показания с двухполюсника для указанных частот.

Значения действующего тока в цепи и на резистивном, ёмкостном и резистивном, индуктивном элементах были найдены как максимальное измеренное значение (I_{1_m}, I_{1_m}) , поделённое на $\sqrt{2}$ для преобразования амплитудного значения, в действующее.

Фазовый сдвиг вычислен как дельта между синусоидами суммарного тока в цепи и напряжения при переходе от отрицательных значений к положительным, поделённая на амплитуду напряжения: $\phi = 180^{\circ} \cdot \frac{\delta h}{h}$.

	U =	6 B; R1 =17	′ Ом; Rk = 5	Ом; L = 23,	094 мГн; С =	71,454 мк	Φ; f0 = 365.8	806 Гц		
f		Pa	асчёт		Эксперимент					
	φ	1	l ₁	l ₂	φ	1	l ₁	l ₂		
Гц	0		Α		0		Α			
36.581	40.717	0.778	0.823	0.095	40.983	0.778	0.823	0.095		
73.161	45.987	0.434	0.511	0.172	46.186	0.433	0.513	0.172		
109.742	33.758	0.305	0.359	0.227	34.128	0.305	0.358	0.226		
146.322	19.628	0.275	0.275	0.263	19.807	0.274	0.276	0.263		
182.903	10.578	0.279	0.222	0.287	10.934	0.280	0.221	0.288		
219.484	5.636	0.290	0.186	0.303	5.711	0.291	0.185	0.302		
256.064	2.945	0.301	0.160	0.314	2.896	0.300	0.160	0.314		
292.645	1.427	0.311	0.140	0.322	1.461	0.311	0.140	0.322		
329.225	0.537	0.318	0.125	0.328	0.534	0.317	0.125	0.328		
365.806	0.000	0.323	0.113	0.332	-0.021	0.323	0.112	0.332		
402.387	-0.331	0.328	0.102	0.336	-0.309	0.328	0.102	0.335		
438.967	-0.537	0.331	0.094	0.338	-0.524	0.331	0.094	0.336		
475.548	-0.666	0.334	0.087	0.340	-0.665	0.334	0.087	0.339		
512.128	-0.744	0.337	0.081	0.342	-0.744	0.339	0.081	0.343		
548.709	-0.790	0.339	0.075	0.343	-0.783	0.338	0.075	0.344		
585.29	-0.814	0.340	0.071	0.344	-0.814	0.340	0.071	0.344		
621.87	-0.824	0.342	0.066	0.345	-0.826	0.340	0.066	0.344		
658.451	-0.824	0.343	0.063	0.346	-0.824	0.344	0.063	0.346		
695.031	-0.817	0.344	0.059	0.347	-0.817	0.344	0.059	0.349		
731.612	-0.806	0.345	0.056	0.347	-0.806	0.346	0.056	0.348		

Итоговая таблица 2.3

2.4.4 Графики характеристических зависимостей от частоты

Графики зависимостей $I(f), \phi(f), I_1(f), I_2(f)$ поделены на два для большей наглядности и удобства разрешения масштаба - первый показывает зависимости характеристик $I(f), \phi(f)$, второй - $I_1(f), I_2(f)$.

Рис. 14: Зависимость действующего тока и фазового сдвига от частоты

Рис. 15: Зависимость поделённых действующих токов от частоты

2.4.5 Векторная диаграмма для состояния резонанса

Векторная диаграмма, представленная ниже, должна эксперементально подтверждать I Закон Кирхгофа для нашего двухполюсника:

$$I_1 + I_2 - I = 0$$

Диаграмма выполнена в масштабе, 1 клетка = 1 мА. Для построения векторной диаграммы рассчитаю фазовые сдвиги действующих токов на элементах в момента резонанса:

$$\phi(I) = \psi = -150^{\circ}$$

$$\phi(I_1\hat{\ }I) = 180^{\circ} \cdot \frac{\delta h}{h} = 180^{\circ} \cdot \frac{25.744 - 26.395}{18.908 - 20.274} = -85.783^{\circ}$$

$$\phi(I_2\hat{\ }I) = 180^{\circ} \cdot \frac{\delta h}{h} = 180^{\circ} \cdot \frac{17.3915 - 17.5624}{18.908 - 20.274} = 22.52^{\circ}$$

2.5 Выводы

В результате выполнения второй части лабораторной работы я провёл исследование резонанса токов и напряжений, возникающих в линейных двухполюсниках под воздействием однофазного синусоидального тока.

Резонанс - это такой интересный момент, когда реактивные сопротивления индуктивного и ёмкостного элементов компенсируют друг друга, таким образом их полное реактивное сопротивление становится близким к (в пределе - равным) нулю, оставляя только активную составляющую. Происходит это на определённой частоте - резонансной. Получается так, что на этой частоте индуктивное и ёмкостное сопротивления создают противоположные по фазе реактивные напряжения. Индуктивность опережает ток на 90°, , 90°.

В последовательной RCL-цепи наступает максимальный ток, а фазовый сдвиг, что логично из вышесказанного, также стремится к нулю, импеданс минимизируется. В параллельной RCL-цепи наоборот - ток минимизируется, импеданс - максимизируется.

Найденную резонансную частоту и эксперименты можно считать корректными, исходя из векторных диаграмм, подтверждающих I и II законы Кирхгофа соответственно, графиков зависимостей, корректно описывающих состояние системы и величин в таблицах, близко сходящимися с расчётными. Небольшая погрешность обусловлена неаккуратными измерениями, депривацией сна (погрешность человеческого глаза) и прочими факторами.