Patent claims

1. Silylated carboxamides of the formula (I)

$$\begin{array}{c|c}
O & & & \\
R^4 & & & \\
R^3 & & & \\
\end{array}$$
(I)

5 in which

10

15

20

25

30

R⁵

R represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

L represents a direct bond or represents in each case optionally substituted straightchain or branched alkylene (alkanediyl), alkenylene (alkenediyl) or alkynylene (alkyndiyl),

R¹ and R² independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or C₁-C₆-haloalkyl,

R³ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₃-C₆-cycloalkyl, or represents in each case optionally substituted phenyl or phenylalkyl,

represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

 $(C_1-C_8-alkyl)$ carbonyl, $(C_1-C_8-alkoxy)$ carbonyl, $(C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-cycloalkyl)$ carbonyl; $(C_1-C_6-haloalkyl)$ carbonyl, $(C_1-C_6-haloalkoxy)$ carbonyl, $(halo-C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-halocycloalkyl)$ carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or $-C(=O)C(=O)R^5$, $-CONR^6R^7$ or $-CH_2NR^8R^9$,

represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

5

10

15

20

25

30

or

Οľ

R⁶ and R⁷ independently of one another each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁶ and R⁷ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,

R⁸ and R⁹ independently of one another, represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,

R¹⁰ represents hydrogen or C₁-C₆-alkyl,

A represents the radical of the formula (A1)

R¹¹ represents hydrogen, halogen, hydroxyl, cyano, C₁-C₆-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms,

A represents the radical of the formula (A2)

R¹² represents chlorine, iodine or dichloromethyl,

A represents the radical of the formula (A3)

R¹³ represents C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

OL

A represents the radical of the formula (A4)

$$(A4) in which$$

5

R¹³ represents C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

A represents the radical of the formula (A5)

$$(A5)$$
 in which

R¹⁴ represents C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

10 or

A represents the radical of the formula (A6)

$$(A6)$$
 in which

R¹⁵ represents hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

15 or

A represents the radical of the formula (A7)

R¹⁶ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

20

A represents the radical of the formula (A8)

$$R^{17}$$
 N
 S
 $(A8)$ in which

R¹⁷ represents C₁-C₄-alkyl,

25 or

A represents the radical of the formula (A9)

or

A represents the radical of the formula (A10)

5

X represents O (oxygen) or S (sulphur),

or

A represents the radical of the formula (A11)

10

X represents O (oxygen) or S (sulphur),

R¹⁸ represents iodine or methyl.

- 2. Silylated carboxamides of the formula (I) according to Claim 1, characterized in that
- 15 R represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,
 - L represents a direct bond or represents in each case optionally halogen-substituted straight-chain or branched C₁-C₆-alkylene, C₂-C₆-alkenylene or C₂-C₆-alkynylene,
 - R^1 and R^2 independently of one another represent C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_3 -alkyl or C_1 - C_3 -alkylthio- C_1 - C_3 -alkyl,

20

25

- R³ represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl, C₃-C₆-cycloalkyl, phenyl or benzyl,
- represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

10

15

20

25

30

 $(C_1-C_6-alkyl)$ carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $(C_1-C_3-alkoxy-C_1-C_3-alkyl)$ carbonyl, $(C_3-C_6-cycloalkyl)$ carbonyl; $(C_1-C_4-haloalkyl)$ carbonyl, $(C_1-C_4-haloalkoxy)$ carbonyl, $(C_1-C_4-haloalkoxy)$ carbonyl, $(C_3-C_6-halocycloalkyl)$ carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, or $-C(=O)C(=O)R^5$, $-CONR^6R^7$ or $-CH_2NR^8R^9$,

- R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁶ and R⁷ independently of one another each represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁶ and R⁷ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally monoto tetrasubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,
 - R¹⁰ represents hydrogen or C₁-C₄-alkyl,
 - A represents the radical of the formula (A1)

R¹¹ represents hydrogen, fluorine, chlorine, bromine, iodine, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or C₁-C₂-haloalkylthio having in each case 1 to 5 fluorine, chlorine and/or bromine atoms.

or

A represents the radical of the formula (A2)

R¹² represents chlorine, iodine or dichloromethyl,

or

A represents the radical of the formula (A3)

(A3) in which

R¹³ represents methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or A

represents the radical of the formula (A4)

(A4) in which

10

5

R¹³ represents methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A5)

(A5) in which

15

R¹⁴ represents methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or A

represents the radical of the formula (A6)

(A6) in which

20

R¹⁵ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or A

represents the radical of the formula (A7)

(A7) in which

25

R¹⁶ represents fluorine, chlorine, bromine, iodine, hydroxyl, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms,

5 or

A represents the radical of the formula (A8)

(A8) in which

R¹⁷ represents methyl, ethyl, n-propyl or isopropyl,

or

A represents the radical of the formula (A9)

(A9),

or

A represents the radical of the formula (A10)

(A10) in which

15

10

X represents O (oxygen) or S (sulphur),

or

A represents the radical of the formula (A11)

(A11) in which

20

25

X represents O (oxygen) or S (sulphur),

R¹⁸ represents iodine or methyl.

- 3. Process for preparing silylated carboxamides of the formula (I) according to Claim 1, characterized in that
 - a) carboxylic acid derivatives of the formula (II)

in which

X¹ represents halogen or hydroxyl and

A is as defined in Claim 1

are reacted with amines of the formula (III)

$$\begin{array}{c|c}
 & R \\
 & R^4 & L \\
 & Si \\
 & R^2 \\
 & R^3
\end{array}$$
(III)

in which R, L, R¹, R², R³ and R⁴ are as defined in Claim 1,

if appropriate in the presence of a catalyst, if appropriate in the presence of a condensing agent, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent,

or

b) silylated carboxamides of the formula (I-1)

in which R, L, R¹, R², R³ and A are as defined in Claim 1,

are reacted with halides of the formula (VIII)

$$R^{4a} - X^2$$
 (VIII)

in which

X² represents chlorine, bromine or iodine,

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

 $(C_1-C_8-alkyl)$ carbonyl, $(C_1-C_8-alkoxy)$ carbonyl, $(C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-cycloalkyl)$ carbonyl; $(C_1-C_6-haloalkyl)$ carbonyl, $(C_1-C_6-haloalkyl)$

20

15

5

10

25

5

10

20

C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹, where R⁵, R⁶, R⁷, R⁸ and R⁹ are as defined in Claim 1,

in the presence of a base and in the presence of a diluent.

- 4. Compositions for controlling unwanted microorganisms, characterized in that they comprise at least one silvlated carboxamide of the formula (I) according to Claim 1, in addition to extenders and/or surfactants.
- 5. Use of silylated carboxamides of the formula (I) according to Claim 1 for controlling unwanted microorganisms.
- 6. Method for controlling unwanted microorganisms, characterized in that silylated carboxamides of the formula (I) according to Claim 1 are applied to the microorganisms and/or their habitats.
 - 7. Process for preparing compositions for controlling unwanted microorganisms, characterized in that silylated carboxamides of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.