B. Truncation trick in \mathcal{W}

If we consider the distribution of training data, it is clear that areas of low density are poorly represented and thus likely to be difficult for the generator to learn. This is a significant open problem in all generative modeling techniques. However, it is known that drawing latent vectors from a truncated [42, 5] or otherwise shrunk [34] sampling space tends to improve average image quality, although some amount of variation is lost.

We can follow a similar strategy. To begin, we compute the center of mass of \mathcal{W} as $\bar{\mathbf{w}} = \mathbb{E}_{\mathbf{z} \sim P(\mathbf{z})}[f(\mathbf{z})]$. In case of FFHQ this point represents a sort of an average face (Figure 8, $\psi = 0$). We can then scale the deviation of a given \mathbf{w} from the center as $\mathbf{w}' = \bar{\mathbf{w}} + \psi(\mathbf{w} - \bar{\mathbf{w}})$, where $\psi < 1$. While Brock et al. [5] observe that only a subset of networks is amenable to such truncation even when orthogonal regularization is used, truncation in \mathcal{W} space seems to work reliably even without changes to the loss function.

Yst o open variation X

ODE 壁 不明的不是 避 行时明例 Jake

气、对对型比较 罗思 心是 罗里 能加。