Politechnika Wrocławska	Wrocław, 2016
Wydział Budownictwa Lądowego i Wodnego	
Katedra Mostów i Kolei	
Projekt drogi linii kolejowej	
Wykonał:	Sprawdzający:
Piotr Kopka Dr inż. Radosła	aw Mazurkiewicz

Część opisowo- obliczeniowa

1. Założenia projektowe i dane wyjściowe

Linia kolejowa zostanie poprowadzona od istniejącej stacji Obora do miejscowości Ogrodziska.

Kategoria linii kolejowej: 2

Rodzaj ruchu: towarowy

Liczba torów: 2

Rodzaj trakcji: niezelektryfikowana

Parametry eksploatacyjne

Według rozporządzenia z 2014 r

Obciążenie przewozami: <10 Tg/rok

Maksymalna prędkość pociągów towarowych v_t = 60 km/h

Według TSI

Kod ruchu: F3

Dopuszczalny nacisk osi: 20 t

Długość pociągu: 500 m

Skrajnia: GA

Wymagania

Minimalny promień łuków poziomych: R_{min} = 600 m

Minimalna długość kolistej części łuku: I_{min} = 30 m

Minimalna długość wstawek prostych: $I_{min} = \frac{v_{max}}{2.5} = \frac{60}{2.5} = 24 \ m$

Maksymalne pochylenie podłużne: i = 12,5 ‰

Minimalna długość odcinków o pochyleniu jednostajnym: $l \geq l_{poc} = 500m$

<u>Uwarunkowania szczególne</u>

Przy projektowaniu kierowano się minimalizacją długości trasy, równocześnie dążąc do omijania przeszkód. Lokalizację stacji końcowej zaprojektowano tak, aby była ona łatwo dostępna z miejscowości Ogrodziska.

2. Obliczenia geometrii trasy

2.1. Parametry łuków poziomych

W1- od km 1+316,59 do km 2+201,05

$$\alpha = 72,3937^{o}$$

$$R = 700 \, m$$

$$T = R * tg\left(\frac{\alpha}{2}\right) = 700 * tg\left(\frac{72,3937^{o}}{2}\right) = 512,26 m$$

$$L = \frac{\alpha \pi R}{180^{\circ}} = \frac{72,3937^{\circ} * \pi * 700}{180^{\circ}} = 888,46 \ m$$

$$f = R * \left(\frac{1}{\cos\left(\frac{\alpha}{2}\right)} - 1\right) = 700m * \left(\frac{1}{\cos\left(\frac{72,3937^{\circ}}{2}\right)} - 1\right) = 167,42 m$$

W2- od km 2+688,61 do km 3+510,00

$$\alpha = 39.2184^{\circ}$$

$$R = 1200 \, m$$

$$T = R * tg\left(\frac{\alpha}{2}\right) = 1200 * tg\left(\frac{39,2184^{o}}{2}\right) = 427,52 m$$

$$L = \frac{\alpha \pi R}{180^{\circ}} = \frac{39,2184^{\circ} * \pi * 1200}{180^{\circ}} = 821,39 m$$

$$f = R * \left(\frac{1}{\cos\left(\frac{\alpha}{2}\right)} - 1\right) = 1200 * \left(\frac{1}{\cos\left(\frac{39,2184^{\circ}}{2}\right)} - 1\right) = 73,88 m$$

W3- od km 4+973,93 do km 6+405,62

$$\alpha = 91,1570^{\circ}$$

$$R = 900 \, m$$

$$T = R * tg\left(\frac{\alpha}{2}\right) = 900 * tg\left(\frac{91,1570^{\circ}}{2}\right) = 918,36 m$$

$$L = \frac{\alpha \pi R}{180^{\circ}} = \frac{91,1570^{\circ} * \pi * 900}{180^{\circ}} = 1431,89 m$$

$$f = R * \left(\frac{1}{\cos\left(\frac{\alpha}{2}\right)} - 1\right) = 900 * \left(\frac{1}{\cos\left(\frac{91,1570^{\circ}}{2}\right)} - 1\right) = 385,84 m$$

W4- od km 7+271,85 do km 9+244,23

$$\alpha = 94,1743^{\circ}$$

$$R = 1200 \, m$$

$$T = R * tg\left(\frac{\alpha}{2}\right) = 1200 * tg\left(\frac{94,1743^{\circ}}{2}\right) = 1290,77 m$$

$$L = \frac{\alpha \pi R}{180^{\circ}} = \frac{94,1743^{\circ} * \pi * 1200}{180^{\circ}} = 1972,38 \, m$$

$$f = R * \left(\frac{1}{\cos\left(\frac{\alpha}{2}\right)} - 1\right) = 1200 * \left(\frac{1}{\cos\left(\frac{94,1743^{\circ}}{2}\right)} - 1\right) = 562,41 m$$

2.2. Przechyłka

Przyjęto 2 prędkości pociągów towarowych- 60 km/h oraz 50 km/h

Łuk W1- od km 1+316,59 do km 2+201,05- R = 700 m

Przechyłka równoważąca naciski

$$h_r(v = 60 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{60^2}{700} = 60.69 mm$$

$$h_r(v = 50 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{50^2}{700} = 42.14 mm$$

Przechyłki dopuszczalne

$$a_t = 0.62 \frac{m}{s^2} \operatorname{dla} t < 10 \frac{Tg}{rok}$$

$$h_{max}^{tow} = 11.8 \frac{v_t^2}{R} + 153a_t = 11.8 * \frac{60^2}{700} + 153 * 0.62 = 155.55 mm$$

Warunki praktyczne

 $h \in <20mm;150mm>$

h = n * 5mm

Dobór przechyłki

Przyjęto, że 70% pociągów porusza się z prędkością 60 km/h, a 30% z prędkością 50 km/h.

$$h = 60,69 - (60,69 - 42,14) * 0,3 = 55,125 mm$$

Przyjęto przechyłkę 55 mm.

Łuk W2- od km 2+688,61 do km 3+510,00- R = 1200 m

Przechyłka równoważąca naciski

$$h_r(v = 60 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{60^2}{1200} = 35.40 mm$$

$$h_r(v = 50 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{50^2}{1200} = 24.58 mm$$

Przechyłki dopuszczalne

$$a_t = 0.62 \frac{m}{s^2} \operatorname{dla} t < 10 \frac{Tg}{rok}$$

$$h_{max}^{tow} = 11.8 \frac{v_t^2}{R} + 153a_t = 11.8 * \frac{60^2}{1200} + 153 * 0.62 = 130.26 mm$$

Warunki praktyczne

 $h \in <20mm;150mm>$

h = n * 5mm

Dobór przechyłki

Przyjęto, że 70% pociągów porusza się z prędkością 60 km/h, a 30% z prędkością 50 km/h.

$$h = 35,40 - (35,40 - 24,58) * 0,3 = 32,15 mm$$

Przyjęto przechyłkę 30 mm.

Łuk W3- od km 4+973,93 do km 6+405,62- R = 900 m

Przechyłka równoważąca naciski

$$h_r(v = 60 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{60^2}{900} = 47.20 \ mm$$

$$h_r(v = 50 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{50^2}{900} = 32.78 mm$$

Przechyłki dopuszczalne

$$a_t = 0.62 \frac{m}{s^2} \operatorname{dla} t < 10 \frac{Tg}{rok}$$

$$h_{max}^{tow} = 11.8 \frac{v_t^2}{R} + 153a_t = 11.8 * \frac{60^2}{900} + 153 * 0.62 = 142.06 \ mm$$

Warunki praktyczne

 $h \in <20mm:150mm>$

h = n * 5mm

Dobór przechyłki

Przyjęto, że 70% pociągów porusza się z prędkością 60 km/h, a 30% z prędkością 50 km/h.

$$h = 47,20 - (47,20 - 32,78) * 0,3 = 42,87 mm$$

Przyjęto przechyłkę 45 mm.

Łuk W4- od km 7+271,85 do km 9+244,23- R = 1200 m

Przechyłka równoważąca naciski

$$h_r(v = 60 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{60^2}{1200} = 35.40 mm$$

$$h_r(v = 50 \frac{km}{h}) = 11.8 * \frac{v^2}{R} = 11.8 * \frac{50^2}{1200} = 24.58 mm$$

Przechyłki dopuszczalne

$$a_t = 0.62 \frac{m}{s^2} \operatorname{dla} t < 10 \frac{Tg}{rok}$$

$$h_{max}^{tow} = 11.8 \frac{v_t^2}{R} + 153a_t = 11.8 * \frac{60^2}{1200} + 153 * 0.62 = 130.26 \ mm$$

Warunki praktyczne

 $h \in <20mm;150mm>$

h = n * 5mm

Dobór przechyłki

Przyjęto, że 70% pociągów porusza się z prędkością 60 km/h, a 30% z prędkością 50 km/h.

$$h = 35,40 - (35,40 - 24,58) * 0,3 = 32,15 mm$$

Przyjęto przechyłkę 30 mm.

3. Opis techniczny

Podstawa opracowania

Podstawę opracowania stanowi karta tematu ćwiczenia projektowego z przedmiotu "koleje-podstawy" nr tematu 388 wydana przez dr inż. Radosława Mazurkiewicza.

Podstawa formalna

Podstawę formalną stanowią obowiązujące przepisy: Dz. U. poz. 867 z 2014 zamiast Dz. U. nr 151 poz. 987 z 1998, TSI Infrastruktura Dz. U. UE L356 z 12.12.2014, Id-1, Id-3.

Charakterystyka terenu

Teren ma charakter nizinny. Miejscowości znajdujące się w okolicy to Obora, Ogrodziska, Krzeczyn Wielki, Górzyca, Krzeczyn Mały, Brunów oraz Kolonia Szklary Dolne. Występują niewielkie cieki wodne. Dominujące rodzaje zagospodarowania terenu to lasy oraz łąki.

Stan istniejącej sieci

Występuje linia kolejowa przebiegająca obok miejscowości Obora oraz w okolicy miejscowości Brunów. Występuje stacja kolejowa Obora, od której poprowadzona zostanie nowa linia do miejscowości Ogrodziska.

Stan projektowany

Charakterystyka trasy w planie

Linia została poprowadzona od stacji Obora do miejscowości Ogrodziska w taki sposób, aby zminimalizować liczbę przecięć z przeszkodami oraz ominąć większe wzniesienia, co wymagało wydłużenia trasy i uniemożliwiło jej zaprojektowanie w prostszy sposób.

Zestawienie elementów trasy w planie								
km		Drocto	Łuki					
od	do	Proste [m]	R	L	α	T	f	h
			[m]	[m]	[°]	[m]	[m]	[mm]
0	1+316,59	1316,59			-			
1+316,59	2+201,05	-	700	884,46	72,3937	512,26	167,42	55
2+201,05	2+688,61	487,56			-			
2+688,61	3+510,00	-	1200	821,39	39,2184	427,52	73,88	30
3+510,00	4+973,73	1463,73			-			
4+973,73	6+405,62	-	900	1431,89	91,1570	918,36	385,84	45
6+405,62	7+271,85	866,23			-			
7+271,85	9+244,23	-	1200	1972,38	94,1743	1290,77	562,41	30
9+244,23	10+394,99	1150,76			-		·	

Charakterystyka trasy w profilu

Zestawienie elementów trasy w profilu								
km		Spadki			Poziomy	Wzniesienia		
od	do	i	L	Δh	L	i	L	Δh
		[‰]	[m]	[m]	[m]	[‰]	[m]	[m]
0+000,00	0+863,36	-			863,46	-		
0+863,46	1+901,00	-			-	12,5	1037,54	12,96
1+901,00	2+794,28	-			-	3,0	893,28	2,69
2+794,28	4+244,86	3,0	1450,58	4,36	ı	-		
4+244,86	5+172,77	11,7	927,91	10,87	ı	-		
5+172,77	6+155,85	-			-	12,5	983,08	12,29
6+155,85	6+988,42	8,8	832,57	7,34	-	-		
6+988,42	7+730,05	-			ı	8,0	741,63	5,91
7+730,05	9+329,49	3,0	1599,44	4,80	-	-		
9+329,39	10394,99	-			1065,50	-		

Przekrój normalny

Przekrój oparty jest na kształcie przekroju dwutorowego z Id-1. Zaprojektowano torowisko o szerokości 10,45 m, rozstaw osiowy torów 3,75 m, ławy torowiska o szerokości 0,80 m. Przyjęto standard konstrukcyjny nawierzchni w wariancie 3.3 dla torów klasy 3: szyny 60E1 reprofilowane klasy II, podkłady drewniane II/B, rozstaw podkładów 0,65 m, typ przytwierdzenia szyn K, grubość podsypki 0,25 m. Przyjęto grubość warstwy filtracyjnej 0,20 m. W przekopie zastosowano odwodnienie w formie rowów bocznych o kształcie trapezowym o wymiarach: szerokość dna 0,4 m, wysokość rowu 0,5 m, pochylenie ścian bocznych 1:1,5. Na całej długości przekopu zastosowano pochylenie podłużne nie mniejsze niż 3‰. Odwodnienie nasypu zostanie szczegółowo zaprojektowane według potrzeb w projekcie budowlanym.

Roboty ziemne

Wymagane będą roboty ziemne o przeciętnej objętości. Występuje niewielka przewaga nasypów nad przekopami.

Przejazdy kolejowe

Zaprojektowano 1 przejazd kolejowy na przecięciu linii kolejowej z drogą główną. Znajduje się on na km 7+617,46, kąt $\alpha=78^{\circ}$. Przyjęto kategorię przejazdu B.

Obiekty inżynieryjne

Zaprojektowano 2 przepusty rurowe o średnicy 1 m. Lokalizacja pierwszego z nich to km 5+007,86, α = 60°, drugiego- km 6+996,05, α = 79°.

Inwestycje związane z drogą kolejową

Zaprojektowano budowę posterunku odgałęźnego za stacją Obora w celu obsługi projektowanej linii kolejowej oraz budowę stacji przy miejscowości Ogrodziska. Zdecydowano o likwidacji dróg leśnych przecinających projektowaną linię oraz budowie nowych dróg wzdłuż torów.