互信息和散度

- 互信息
- ② KL-散度
- ③ 马尔可夫链
- ④ 数据处理定理
- ⑤ 费诺不等式

互信息和散度

- 互信息
- ② KL-散度
- ③ 马尔可夫链
- 数据处理定理
- ⑤ 费诺不等式

课堂小测

某城市温度 T和天气 W的联合分布为:

$p_{WT}(w,t)$	snowy	rainy	cloudy
0°C	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{12}$
10°C	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$
$20^{\circ}C$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{6}$

- (a) 计算 H(T) 和 H(W);
- (b) 计算 H(T, W);
- (c) 计算 H(W|T);
- (d) (本节内容) 计算 I(T; W).

● $X \sim p_X$, 随机变量 X 包含多少信息?

$$\Rightarrow$$
 \mathfrak{m} : $H(X) = E_X\{-\log p_X\}$

● $\{X,Y\} \sim p_{X,Y}$,从 Y 中能获取多少关于 X 的信息?

$$\Rightarrow$$
 互信息: $I(X; Y) = \mathbb{E}_{X,Y}\{\log \frac{p_{X,Y}}{p_{X}p_{Y}}\}$

- $X \sim p_X$, 随机变量 X 包含多少信息?
 - \Rightarrow \mathfrak{m} : $H(X) = E_X\{-\log p_X\}$
- $\{X,Y\} \sim p_{X,Y}$,从 Y 中能获取多少关于 X 的信息?
 - \Rightarrow 互信息: $I(X; Y) = \mathbb{E}_{X,Y} \{ \log \frac{p_{X,Y}}{p_X p_Y} \}$

经验 1: 若 Y = X: I(X; Y) = H(X)

- $X \sim p_X$, 随机变量 X 包含多少信息?
 - \Rightarrow \mathfrak{m} : $H(X) = E_X\{-\log p_X\}$
- $\{X,Y\} \sim p_{X,Y}$,从 Y 中能获取多少关于 X 的信息?
 - \Rightarrow **互信息**: $I(X; Y) = \mathbb{E}_{X,Y} \{ \log \frac{p_{X,Y}}{p_X p_Y} \}$

- 经验 1: 若 Y = X: I(X; Y) = H(X)
- 经验 2: 若 X 和 Y 相互独立: I(X; Y) = 0

$$I(X; Y) = H(X) - H(X|Y)$$

定义:两个联合分布的随机变量 X, Y的互信息 I(X; Y) 定义为

$$I(X; Y) = H(X) - H(X|Y)$$

• I(X;Y) = "X 的不确定性" - "给定 Y 条件下 X 的不确定性"

$$I(X; Y) = H(X) - H(X|Y)$$

- *I(X; Y)* = "X的不确定性" "给定 Y条件下 X的不确定性"
- *I(X; Y)* 表示: 给定 *Y* 条件下 *X* 减少的不确定性

$$I(X; Y) = H(X) - H(X|Y)$$

- I(X;Y) = "X 的不确定性" "给定 Y 条件下 X 的不确定性"
- I(X;Y) 表示: 给定 Y 条件下 X 减少的不确定性
- *I(X; Y)* 表示: *Y*携带关于 *X* 的信息

$$I(X; Y) = H(X) - H(X|Y)$$

- I(X; Y) = "X 的不确定性" − "给定 Y 条件下 X 的不确定性"
- *I(X; Y)* 表示: 给定 *Y* 条件下 *X* 减少的不确定性
- *I(X; Y)* 表示: *Y* 携带关于 *X* 的信息

$$I(X; Y) = \mathbb{E}_{X,Y} \left\{ \log \frac{p_{X|Y}}{p_X} \right\} = \mathbb{E}_{X,Y} \left\{ \log \frac{p_{X,Y}}{p_X p_Y} \right\}.$$

互信息 I(X; Y) 表示: Y 携带关于 X 的信息

● X和 Y相似——互信息较大

Y: 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0

互信息 I(X; Y) 表示: Y 携带关于 X 的信息

- X和 Y相似——互信息较大
 - X: 101010011100001000100011000
 - Y: 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0
- X和 Y独立——互信息为 0
 - X: 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0

$$I(X; Y) = I(Y; X)$$

•
$$I(X; Y) \ge 0$$

•
$$I(X; Y) = H(Y) - H(Y|X)$$

$$I(X; Y) = I(Y; X)$$

$$I(X; Y) \ge 0$$

•
$$I(X; Y) = H(Y) - H(Y|X)$$

•
$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$I(X; Y) = I(Y; X)$$

$$I(X; Y) \le H(X)$$

•
$$I(X; Y) \ge 0$$

•
$$I(X; Y) = H(Y) - H(Y|X)$$

•
$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$I(X; Y) = I(Y; X)$$

$$I(X; Y) \le H(X)$$

$$I(X; Y) \ge 0$$

$$I(X; Y) \le H(Y)$$

•
$$I(X; Y) = H(Y) - H(Y|X)$$

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$I(X; Y) = I(Y; X)$$

$$I(X; Y) \ge 0$$

$$I(X; Y) = H(Y) - H(Y|X)$$

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$I(X; Y) \leq H(X)$$

$$I(X; Y) \le H(Y)$$

•
$$I(X; X) = H(X)$$
 (自信息)

$$I(X; Y) = I(Y; X)$$

$$I(X; Y) \ge 0$$

$$I(X; Y) = H(Y) - H(Y|X)$$

•
$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$
 • $X 与 Y$ 相互独立: $I(X;Y) = 0$

$$I(X; Y) \le H(X)$$

$$I(X; Y) \le H(Y)$$

•
$$I(X; X) = H(X)$$
 (自信息)

●
$$X$$
 与 Y 相互独立: $I(X;Y)=0$

互信息的性质

$$\bullet$$
 $I(X; Y) = I(Y; X)$

$$I(X; Y) \ge 0$$

$$I(X; Y) = H(Y) - H(Y|X)$$

•
$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

$$I(X; Y) \leq H(X)$$

$$I(X; Y) \le H(Y)$$

•
$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$
 • $X = Y$ 相互独立: $I(X; Y) = 0$

Venn 图:理解互信息的定义和性质

•
$$5$$
 \sharp : $p_Y = \left\{ p(1-\epsilon), \quad \epsilon, \quad (1-p)(1-\epsilon) \right\}$

• 党求:
$$p_Y = \left\{ p(1-\epsilon), \quad \epsilon, \quad (1-p)(1-\epsilon) \right\}$$

$$I(X;Y) = H(Y) - H(Y|X)$$

• 労求:
$$p_Y = \left\{ p(1-\epsilon), \quad \epsilon, \quad (1-p)(1-\epsilon) \right\}$$

$$I(X;Y) = H(Y) - H(Y|X)$$
$$= (1-\epsilon)h(p) + h(\epsilon) - h(\epsilon)$$

•
$$p_X$$
 \ddagger : $p_Y = \left\{ p(1-\epsilon), \quad \epsilon, \quad (1-p)(1-\epsilon) \right\}$

$$I(X; Y) = H(Y) - H(Y|X)$$

$$= (1-\epsilon)h(p) + h(\epsilon) - h(\epsilon)$$

$$= (1-\epsilon)h(p)$$

$$p_Y = \{p(1-\epsilon) + (1-p)\epsilon, p\epsilon + (1-p)(1-\epsilon)\}\$$

$$\begin{aligned} p_Y &= \{ p(1-\epsilon) + (1-p)\epsilon, p\epsilon + (1-p)(1-\epsilon) \} \\ &= \{ p+\epsilon - 2p\epsilon, 1-p-\epsilon + 2p\epsilon \} \end{aligned}$$

$$p_Y = \{p(1-\epsilon) + (1-p)\epsilon, p\epsilon + (1-p)(1-\epsilon)\}$$
$$= \{p+\epsilon - 2p\epsilon, 1-p-\epsilon + 2p\epsilon\}$$

$$I(X; Y) = H(Y) - H(Y|X)$$

$$p_Y = \{ p(1 - \epsilon) + (1 - p)\epsilon, p\epsilon + (1 - p)(1 - \epsilon) \}$$
$$= \{ p + \epsilon - 2p\epsilon, 1 - p - \epsilon + 2p\epsilon \}$$

$$I(X; Y) = H(Y) - H(Y|X)$$
$$= h(p + \epsilon - 2p\epsilon) - h(\epsilon)$$

● 条件互信息: 给定 Z的条件下, X 和 Y 互信息定义为

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

● 条件互信息: 给定 Z 的条件下, X 和 Y 互信息定义为

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

● 链式法则:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

● 条件互信息: 给定 Z的条件下, X和 Y互信息定义为

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

● 链式法则:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

证明:

$$I(X; Y, Z) = H(X) - H(X|Y, Z)$$

• 条件互信息: 给定 Z的条件下, X 和 Y 互信息定义为

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

链式法则:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

证明:

$$I(X; Y, Z) = H(X) - H(X|Y, Z)$$

$$= \left[H(X) - H(X|Z)\right] + \left[H(X|Z) - H(X|Y, Z)\right]$$

条件互信息和链式法则

• 条件互信息: 给定 Z的条件下, X 和 Y 互信息定义为

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

链式法则:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

证明:

$$I(X; Y, Z) = H(X) - H(X|Y, Z)$$

$$= \left[H(X) - \frac{H(X|Z)}{I}\right] + \left[\frac{H(X|Z)}{I} - H(X|Y, Z)\right]$$

$$= I(X; Z) + I(X; Y|Z)$$

条件互信息和链式法则

● 条件互信息: 给定 Z 的条件下, X 和 Y 互信息定义为

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

链式法则:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

证明:

$$I(X; Y, Z) = H(X) - H(X|Y, Z)$$

$$= \left[H(X) - \frac{H(X|Z)}{I}\right] + \left[\frac{H(X|Z)}{I} - H(X|Y, Z)\right]$$

$$= I(X; Z) + I(X; Y|Z)$$

• $I(X_1, X_2, \dots, X_n; Y) = I(X_1; Y) + \sum_{i=1}^n I(X_i; Y | X_{i-1}, \dots, X_1)$

互信息的凹凸性

命题: $\diamondsuit(X,Y) \sim p_{X,Y} = p_X p_{Y|X}$,

- 1. 给定 $p_{Y|X}$, I(X;Y) 是 $\{p_x\}$ 的上凸函数;
- 2. 给定 p_X , I(X;Y) 是 $\{p_{y|x}\}$ 的下凸函数。

互信息的凹凸性

命题: $\diamondsuit(X,Y) \sim p_{X,Y} = p_X p_{Y|X}$,

- 1. 给定 $p_{Y|X}$, I(X;Y) 是 $\{p_x\}$ 的上凸函数;
- 2. 给定 p_X , I(X;Y) 是 $\{p_{y|x}\}$ 的下凸函数。

证明:

1.
$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum_x p_x H(Y|x)$$

 其中 $H(Y)$ 关于 $\{p_y\}$ 上凸,给定 $\{p_{y|x}\}$ 时 $\{p_y\}$ 为 $\{p_x\}$ 的线性函数

互信息的凹凸性

命题: $\diamondsuit(X,Y) \sim p_{X,Y} = p_X p_{Y|X}$,

- 1. 给定 $p_{Y|X}$, I(X;Y) 是 $\{p_x\}$ 的上凸函数;
- 2. 给定 p_X , I(X;Y) 是 $\{p_{y|x}\}$ 的下凸函数。

证明:

- I(X; Y) = H(Y) H(Y|X) = H(Y) ∑_x p_xH(Y|x)
 其中 H(Y)关于 {p_y} 上凸, 给定 {p_{y|x}} 时 {p_y} 为{p_x} 的线性函数
- 2. $I(X;Y) = \sum_x p_x D_x(p_{y|x} \| p_y)$ 其中 $D_x(p_{y|x} \| p_y)$ 关于 $\{p_{y|x}, p_y\}$ 下凸 (见下节),给定 p_X 时 $\{p_y\}$ 是关于 $\{p_{y|x}\}$ 的线性函数

理解条件互信息及其性质

X, Y, Z 的 Venn 图

利用 Venn 图理解

- 熵,条件熵,联合熵
- 互信息,条件互信息

互信息和散度

- 互信息
- ② KL-散度
- ③ 马尔可夫链
- 数据处理定理
- ⑤ 费诺不等式

相对熵/KL 散度

定义: 概率分布 p_X 和 q_X 的相对熵或 KL 散度 $D(p_x || q_x)$ 或 (D(p || q)) 为

$$D(p||q) = \sum_{x \in \mathcal{X}} p_x \log \frac{p_x}{q_x} = E_X \left\{ \log \frac{p_x}{q_x} \right\}$$

注: D(p||q) 表示真实分布px 和近似分布qx的距离。

Jensen 不等式

1. Jensen 不等式: 令 f 为一个下凸函数,X 为一个随机变量,那么 $\mathrm{E}[f(X)] \geq f(\mathrm{E}[X])$

Jensen 不等式

- 1. Jensen 不等式: \diamondsuit f 为一个下凸函数,X 为一个随机变量,那么 $\mathrm{E}[f(X)] \ge f(\mathrm{E}[X])$

• 广义 Jensen 不等式: 令 f 为一个下凸函数,X 为一个随机变量,那么 $\mathbb{E}[f(g(X))] \geq f\big(\mathbb{E}[g(X)]\big)$

广义 Jensen 不等式: 令 f 为一个下凸函数,X 为一个随机变量,那么

$$\mathrm{E}[f(g(X))] \ge f(\mathrm{E}[g(X)])$$

• 非负性: $D(p||q) \ge 0$

ullet 广义 Jensen 不等式: 令 f 为一个下凸函数,X 为一个随机变量,那么

$$\mathrm{E}[f(g(X))] \ge f(\mathrm{E}[g(X)])$$

• 非负性: $D(p||q) \ge 0$

证明:

$$D(p||q) = -\sum_{x \in \mathcal{X}} p_x \log \frac{q_x}{p_x} = \mathrm{E}_X[f(g(X))]$$

广义 Jensen 不等式: 令 f 为一个下凸函数,X 为一个随机变量,那么

$$\mathrm{E}[f(g(X))] \ge f(\mathrm{E}[g(X)])$$

• 非负性: $D(p||q) \ge 0$

证明:

$$D(p||q) = -\sum_{x \in \mathcal{X}} p_x \log \frac{q_x}{p_x} = \mathrm{E}_X[f(g(X))]$$

其中 $g(x) = \frac{q_x}{p_x}$,且 $f(\cdot) = -\log(\cdot)$ 是下凸函数,根据广义 Jensen 不等式,

$$\mathrm{E}_{X}\left[f(g(X))\right] \ge f(\mathrm{E}_{X}[g(X)]) = \log 1 = 0$$

• 一般 $D(p||q) \neq D(q||p)$, 因此 KL 散度不是真正的距离。

例: $p_X = \{r, 1-r\}, q(X) = \{s, 1-s\}.$

• 一般 $D(p||q) \neq D(q||p)$, 因此 KL 散度不是真正的距离。

例:
$$p_X = \{r, 1-r\}, q(X) = \{s, 1-s\}.$$

● 与互信息的关系

$$I(X; Y) = D(p_{x,y}||p_x p_y)$$

- 一般 $D(p||q) \neq D(q||p)$,因此 KL 散度不是真正的距离。 例: $p_X = \{r, 1-r\}, q(X) = \{s, 1-s\}.$
- 与互信息的关系

$$I(X; Y) = D(p_{x,y}||p_x p_y)$$

条件 KL 散度

$$D\left(p_{y|x}||q_{y|x}\right) = \sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} p_{y|x} \log \frac{p_{y|x}}{q_{y|x}}$$

- 一般 $D(p||q) \neq D(q||p)$,因此 KL 散度不是真正的距离。 **例**: $p_X = \{r, 1-r\}, q(X) = \{s, 1-s\}.$
- 与互信息的关系

$$I(X; Y) = D(p_{x,y}||p_x p_y)$$

条件 KL 散度

$$D\left(p_{y|x} \| q_{y|x}\right) = \sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} p_{y|x} \log \frac{p_{y|x}}{q_{y|x}}$$

● KL 散度的链式法则

$$D(p_{x,y}||q_{x,y}) = D(p_x||q_x) + D(p_{y|x}||q_{y|x})$$

● 一般 $D(p||q) \neq D(q||p)$, 因此 KL 散度不是真正的距离。

例: $p_X = \{r, 1-r\}, q(X) = \{s, 1-s\}.$

● 与互信息的关系

$$I(X; Y) = D(p_{x,y}||p_x p_y)$$

◆ 条件 KL 散度

$$D\left(p_{y|x} \| q_{y|x}\right) = \sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} p_{y|x} \log \frac{p_{y|x}}{q_{y|x}}$$

● KL 散度的链式法则

$$D(p_{x,y}||q_{x,y}) = D(p_x||q_x) + D(p_{y|x}||q_{y|x})$$

● D(p||q) 关于 (p,q) 是上凸函数, 即, 对于任意 $0 \le \lambda \le 1$,

$$D(\lambda p_1 + (1 - \lambda)p_2 || \lambda q_1 + (1 - \lambda)q_2) \le \lambda D(p_1 || q_1) + (1 - \lambda)D(p_2 || q_2).$$

互信息和散度

- 互信息
- ② KL-散度
- ③ 马尔可夫链
- 数据处理定理
- ⑤ 费诺不等式

马尔可夫链

定义: $X \to Y \to Z$ 为一个马尔可夫链, 当且仅当

$$p_{x,y,z} = p_x p_{y|x} q_{z|y}$$

马尔可夫链

定义: $X \to Y \to Z$ 为一个马尔可夫链, 当且仅当

$$p_{x,y,z} = p_x p_{y|x} q_{z|y}$$

◎ $X \to Y \to Z \iff$ 给定 Y时, X和 Z条件独立,即

$$q_{x,z|y} = q_{x|y}q_{z|y}$$

马尔可夫链

定义: $X \to Y \to Z$ 为一个马尔可夫链, 当且仅当

$$p_{x,y,z} = p_x p_{y|x} q_{z|y}$$

● $X \to Y \to Z \iff$ 给定 Y时, X和 Z条件独立,即

$$q_{x,z|y} = q_{x|y}q_{z|y}$$

"未来Z 取决于现在Y 而非过去X"

注: 对于 $X \to Y \to Z$, X 和 Z 并不独立。

马尔可夫链举例

• 衰落信道: $X \rightarrow "Y = aX" \rightarrow "Z = Y + n"$

马尔可夫链举例

• 衰落信道: $X \rightarrow "Y = aX" \rightarrow "Z = Y + n"$

中继信道: "X→ Y→ Z"

• $X \rightarrow Y \rightarrow Z \Rightarrow Z \rightarrow Y \rightarrow X$ 马尔可夫链也可表示为 $X \leftrightarrow Y \leftrightarrow Z$.

- $X \rightarrow Y \rightarrow Z \Rightarrow Z \rightarrow Y \rightarrow X$ 马尔可夫链也可表示为 $X \leftrightarrow Y \leftrightarrow Z$.
- $X \to Y \to g(Y)$ 组成一个马尔可夫链

- $X \rightarrow Y \rightarrow Z \Rightarrow Z \rightarrow Y \rightarrow X$ 马尔可夫链也可表示为 $X \leftrightarrow Y \leftrightarrow Z$.
- $X \to Y \to g(Y)$ 组成一个马尔可夫链

- $X \rightarrow Y \rightarrow Z \Rightarrow Z \rightarrow Y \rightarrow X$ 马尔可夫链也可表示为 $X \leftrightarrow Y \leftrightarrow Z$.
- $X \to Y \to g(Y)$ 组成一个马尔可夫链
- $X \to Y \to Z \Rightarrow I(X; Z | Y) = 0$

提示:从 Venn 图理解。

互信息和散度

- 互信息
- ② KL-散度
- ③ 马尔可夫链
- ④ 数据处理定理
- ⑤ 费诺不等式

数据处理不等式: 如果 $X \rightarrow Y \rightarrow Z$, 那么

$$I(X; Y) \ge I(X; Z)$$

数据处理不等式: 如果 $X \to Y \to Z$, 那么

$$I(X; Y) \ge I(X; Z)$$

证明:根据链式法则,

$$I(X; Y, Z) = I(X; Z) + \underbrace{I(X; Y|Z)}_{\geq 0} = I(X; Y) + \underbrace{I(X; Z|Y)}_{=0}.$$

数据处理不等式: 如果 $X \to Y \to Z$, 那么

$$I(X; Y) \ge I(X; Z)$$

证明:根据链式法则,

$$I(X; Y, Z) = I(X; Z) + \underbrace{I(X; Y|Z)}_{\geq 0} = I(X; Y) + \underbrace{I(X; Z|Y)}_{=0}.$$

推论:

• $I(X; Y) \ge I(X; Y|Z)$, 因为 $I(X; Z) \ge 0$ (马尔可夫链的性质)

数据处理不等式: 如果 $X \rightarrow Y \rightarrow Z$, 那么

$$I(X; Y) \ge I(X; Z)$$

证明:根据链式法则,

$$I(X; Y, Z) = I(X; Z) + \underbrace{I(X; Y|Z)}_{\geq 0} = I(X; Y) + \underbrace{I(X; Z|Y)}_{=0}.$$

推论:

- $I(X; Y) \ge I(X; Y|Z)$, 因为 $I(X; Z) \ge 0$ (马尔可夫链的性质)
- $I(X; Y) \ge I(X; g(Y))$

数据处理不等式: 如果 $X \rightarrow Y \rightarrow Z$, 那么

$$I(X; Y) \ge I(X; Z)$$

证明:根据链式法则,

$$I(X; Y, Z) = I(X; Z) + \underbrace{I(X; Y|Z)}_{\geq 0} = I(X; Y) + \underbrace{I(X; Z|Y)}_{=0}.$$

推论:

- $I(X; Y) \ge I(X; Y|Z)$, 因为 $I(X; Z) \ge 0$ (马尔可夫链的性质)
- $I(X; Y) \ge I(X; g(Y))$
- $\bullet \ \ H(X|Y) \le H(X|Z), \ H(X|Y) \le H(X|g(Y))$

数据处理不等式: 如果 $X \rightarrow Y \rightarrow Z$, 那么

$$I(X; Y) \ge I(X; Z)$$

证明:根据链式法则,

$$I(X; Y, Z) = I(X; Z) + \underbrace{I(X; Y|Z)}_{\geq 0} = I(X; Y) + \underbrace{I(X; Z|Y)}_{=0}.$$

推论:

- $I(X; Y) \ge I(X; Y|Z)$, 因为 $I(X; Z) \ge 0$ (马尔可夫链的性质)
- $I(X; Y) \geq I(X; g(Y))$
- \bullet $H(X|Y) \le H(X|Z), H(X|Y) \le H(X|g(Y))$

借助 Venn 图理解!

互信息和散度

- 互信息
- ② KL-散度
- ③ 马尔可夫链
- 数据处理定理
- ⑤ 费诺不等式

考虑估计问题:
$$\hat{X}=g(Y)$$
,即 $X\to Y\to \hat{X}=g(Y)$,我们关心
$$p_e=\Pr\{\hat{X}\neq X\}$$

考虑估计问题:
$$\hat{X} = g(Y)$$
, 即 $X \to Y \to \hat{X} = g(Y)$, 我们关心 $p_e = \Pr{\hat{X} \neq X}$

考虑估计问题: $\hat{X}=g(Y)$,即 $X\to Y\to \hat{X}=g(Y)$,我们关心 $p_e=\Pr\{\hat{X}\neq X\}$

• 直觉上, H(X|Y) 越小, p_e 也应该越小

考虑估计问题:
$$\hat{X}=g(Y)$$
,即 $X\to Y\to \hat{X}=g(Y)$,我们关心
$$p_e=\Pr\{\hat{X}\neq X\}$$

- 直觉上, H(X|Y) 越小, p_e 也应该越小

问: H(X|Y) 和 p_e 的关系?

• 费诺不等式: $\Leftrightarrow X \to Y \to \hat{X}, p_e = \Pr\{\hat{X} \neq X\}$, 那么 $\underbrace{h(p_e)}_{\leq 1} + p_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y),$

$$\underbrace{h(p_e)}_{\leq 1} + p_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y),$$

也可进一步弱化为

$$1 + p_e \log |\mathcal{X}| \ge H(X|Y),$$

• **费诺不等式**:
$$\diamondsuit$$
 $X \to Y \to \hat{X}, p_e = \Pr{\{\hat{X} \neq X\}}$, 那么

$$\underbrace{h(p_e)}_{\leq 1} + p_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y),$$

也可进一步弱化为

$$1 + p_e \log |\mathcal{X}| \ge H(X|Y),$$

$$p_e \geq \frac{H(X|Y) - 1}{\log |\mathcal{X}|}.$$

• 费诺不等式: \diamondsuit $X \to Y \to \hat{X}, p_e = \Pr{\{\hat{X} \neq X\}}$, 那么

$$\underbrace{h(p_e)}_{\leq 1} + p_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y),$$

也可进一步弱化为

$$1 + p_e \log |\mathcal{X}| \ge H(X|Y),$$

或者

$$p_e \geq \frac{H(X|Y) - 1}{\log |\mathcal{X}|}.$$

● 费诺不等式给了错误概率的一个下界 (能好到什么程度)

$$\underbrace{h(p_e)}_{\leq 1} + p_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y),$$

也可进一步弱化为

$$1 + p_e \log |\mathcal{X}| \ge H(X|Y),$$

$$p_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}.$$

- 费诺不等式给了错误概率的一个下界 (能好到什么程度)
- $p_e = 0 \Rightarrow H(X|Y) = 0$

$$\underbrace{h(p_e)}_{\leq 1} + p_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y),$$

也可进一步弱化为

$$1 + p_e \log |\mathcal{X}| \ge H(X|Y),$$

$$p_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}.$$

- 费诺不等式给了错误概率的一个下界 (能好到什么程度)
- $p_e = 0 \Rightarrow H(X|Y) = 0$
- 一般 $\hat{\mathcal{X}} \neq \mathcal{X}$, 将 $\log |\mathcal{X}|$ 替换为 $\log(|\mathcal{X}|-1)$ 可做到更好

$$\underbrace{h(p_e)}_{\leq 1} + p_e \log |\mathcal{X}| \geq H(X|\hat{X}) \geq H(X|Y),$$

也可进一步弱化为

$$1 + p_e \log |\mathcal{X}| \ge H(X|Y),$$

$$p_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}.$$

- 费诺不等式给了错误概率的一个下界(能好到什么程度)
- $p_e = 0 \Rightarrow H(X|Y) = 0$
- 一般 $\hat{\mathcal{X}} \neq \mathcal{X}$, 将 $\log |\mathcal{X}|$ 替换为 $\log(|\mathcal{X}|-1)$ 可做到更好
- 费诺不等式对信道容量逆定理非常重要

定义随机变量

$$E = \begin{cases} 0, & \text{with } \hat{X} \neq X \\ 1, & \text{with } \hat{X} = X \end{cases}$$

定义随机变量

$$E = \begin{cases} 0, & \text{sup } \hat{X} \neq X \\ 1, & \text{sup } \hat{X} = X \end{cases}$$

• 根据链式法则,

$$H(E, X | \hat{X}) = H(X | \hat{X}) + \underbrace{H(E | \hat{X}, X)}_{=0}$$

定义随机变量

$$E = \begin{cases} 0, & \text{bulk } \hat{X} \neq X \\ 1, & \text{bulk } \hat{X} = X \end{cases}$$

● 根据链式法则,

$$H(E, X | \hat{X}) = H(X | \hat{X}) + \underbrace{H(E | \hat{X}, X)}_{=0}$$

$$= \underbrace{H(E | \hat{X})}_{\leq h(p_e)} + \underbrace{H(X | \hat{X}, E)}_{\leq p_e H(X) \leq p_e \log | \mathcal{X}}$$

定义随机变量

$$E = \begin{cases} 0, & \text{bold} \hat{X} \neq X \\ 1, & \text{bold} \hat{X} = X \end{cases}$$

● 根据链式法则,

$$H(E, X | \hat{X}) = H(X | \hat{X}) + \underbrace{H(E | \hat{X}, X)}_{=0}$$

$$= \underbrace{H(E | \hat{X})}_{\leq h(p_e)} + \underbrace{H(X | \hat{X}, E)}_{\leq p_e H(X) \leq p_e \log |\mathcal{X}|}$$

因此,

$$H(X|\hat{X}) \le h(p_e) + p_e \log |\mathcal{X}|$$

定义随机变量

$$E = \begin{cases} 0, & \text{wp } \hat{X} \neq X \\ 1, & \text{wp } \hat{X} = X \end{cases}$$

● 根据链式法则,

$$H(E, X | \hat{X}) = H(X | \hat{X}) + \underbrace{H(E | \hat{X}, X)}_{=0}$$

$$= \underbrace{H(E | \hat{X})}_{\leq h(p_e)} + \underbrace{H(X | \hat{X}, E)}_{\leq p_e H(X) \leq p_e \log | \mathcal{X}}$$

因此,

$$H(X|\hat{X}) \le h(p_e) + p_e \log |\mathcal{X}|$$

• 根据马尔可夫链 $X \to Y \to \hat{X}$,

$$H(X|Y) \le H(X|\hat{X})$$

费诺不等式的性质

•
$$H(p) + p \log |\mathcal{X}| \ge H(X|Y)$$
, $\not = p = Pr(Y \ne X)$. $(\diamondsuit \hat{X} = Y)$

费诺不等式的性质

•
$$H(p) + p \log |\mathcal{X}| \ge H(X|Y)$$
, $\not = p = Pr(Y \ne X)$. ($\diamondsuit \hat{X} = Y$)

•
$$\diamondsuit$$
 $\hat{X}: \mathcal{Y} \to \mathcal{X}$, 那么

$$H(X|\hat{X}, E) = p_e H(X|\hat{X}, \hat{X} \neq X) \le p_e \log(|\mathcal{X}| - 1)$$

因此,
$$h(p_e) + p_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$$
。

费诺不等式的性质

- $H(p) + p \log |\mathcal{X}| \ge H(X|Y)$, $\not = p = Pr(Y \ne X)$. $(\diamondsuit \hat{X} = Y)$
- \diamondsuit $\hat{X}: \mathcal{Y} \to \mathcal{X}$, 那么

$$H(X|\hat{X}, E) = p_e H(X|\hat{X}, \hat{X} \neq X) \le p_e \log(|\mathcal{X}| - 1)$$

因此, $h(p_e) + p_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$ 。

• 在特定情况下费诺不等式的等号可以成立。例如,令 Y与 X 独立, $X \in \mathcal{X} = \{0,1\}$ 且 $p_0 \geq p_1 = 1 - p_0$,则最优估计为 $\hat{X} = 0$ 。那么, $p_e = 1 - p_0$, $|\mathcal{X}| = 2$,且

$$h(p_e) + p_e \log(|\mathcal{X}| - 1) = h(p_0) = H(X) = H(X|Y)$$

总结

• 互信息: 一个变量包含的另一个变量的信息

● KL 距离: 两个概率分布的相似程度

• 马尔可夫链: 未来由现在决定,而不是过去

• 数据处理定理: 处理不会增加信息量

● 费诺不等式: 错误概率 p_e 的下界

● 许多重要的性质

• 理解各种概念的物理意义, 借助 Venn 图!

作业

- 复习授课内容
- 预习单信源编码
- 独立完成习题
 - 2.9
 - 2.10
 - 2.12
 - 2.13
 - 2.17