Discrete Structures (MA5.101)

Instructor: Dr. Ashok Kumar Das **IIIT Hyderabad**

Assignment 2 Solutions Total Marks: 70

Problem 1

$$\forall a \in A, \exists b \text{ such that } {}_aR_b \qquad \qquad \dots \{\text{given}\}$$

$$\forall a \in A, {}_aR_b \implies {}_bR_a \qquad \qquad \dots \{\text{since symmetric}\}$$

$$\forall a \in A, ({}_aR_b) \land ({}_bR_a) \implies ({}_aR_a) \qquad \qquad \dots \{\text{since transitive}\}$$

Thus we get that R is reflexive too, which is why it is equivalent.

You must write the \forall quantifier, while mentioning both the reason for it being reflexive, and when you are saying $(a,b) \in R$.

Problem 2 Given N = |A| = 10,

1.
$$2^{N^2} = 2^{100}$$

$$2. \ 2^{N(N-1)} = 2^{90}$$

3.
$$2^N 3^{\frac{N(N-1)}{2}} = 2^{10} 3^{45}$$

4.
$$2^{\frac{N(N-1)}{2}} = 2^{45}$$

5. 115, 975

Problem 3

a.

$$(a,b) \in (R_1 \cup R_2)^{-1}$$

$$\implies (b,a) \in (R_1 \cup R_2)$$

$$\implies ((b,a) \in R_1) \lor ((b,a) \in R_2)$$

$$\implies ((a,b) \in (R_1)^{-1}) \lor ((a,b) \in R_2^{-1})$$

$$\implies (a,b) \in (R_1^{-1} \cup R_2^{-1})$$

$$(R_1 \cup R_2)^{-1} \subseteq (R_1^{-1} \cup R_2^{-1})$$

$$(a,b) \in (R_1^{-1} \cup R_2^{-1})$$

$$\implies ((a,b) \in (R_1)^{-1}) \lor ((a,b) \in R_2^{-1})$$

$$\implies ((b,a) \in R_1) \lor ((b,a) \in R_2)$$

$$\implies (b,a) \in (R_1 \cup R_2)$$

$$\implies (a,b) \in (R_1 \cup R_2)^{-1}$$

$$(R_1^{-1} \cup R_2^{-1}) \subseteq (R_1 \cup R_2)^{-1}$$

- b. i. If $\forall a \in A, (a, a) \in R$, then by definition, so should $\forall a \in A, (a, a) \in R^{-1}$. Thus R^{-1} should also be reflexive.
 - ii. We assume $(a, b) \in R^{-1}$. We have to prove that $(b, a) \in R^{-1}$.

$$(b,a) \in R^{-1}$$

 $\implies (a,b) \in R \dots \{ \text{ by definition} \}$
 $\implies (b,a) \in R \dots \{ \text{ by symmetric property} \}$
 $\implies (a,b) \in R^{-1} \dots \{ \text{ by definition} \}$

iii. We assume $(a,b),(b,c)\in R^{-1}$. We have to prove that $(a,c)\in R^{-1}$.

$$((a,b) \in R^{-1}) \land ((b,c) \in R^{-1})$$

$$\implies ((b,a) \in R) \land ((c,b) \in R) \dots \{ \text{ by definition} \}$$

$$\implies ((c,b) \in R) \land ((b,a) \in R) \dots \{ \text{ commutativity of } \land \}$$

$$\implies (c,a) \in R \dots \{ \text{ by transitive property} \}$$

$$\implies (a,c) \in R \dots \{ \text{ by definition} \}$$

For ii and iii, you had to start with a tuple in R^{-1} and not R, since you have to generalize over R^{-1} , we have cut marks if you have not.

Problem 4

- a. $\rho \subseteq R^2$ such that $(a,b)\rho_{(c,d)}$ means that (a,b) and (c,d) lie on the same curve 4x+5y=k for some $k \in \mathbb{R}$.
 - i. **Reflexive:** (a,b) and (a,b) obviously lie on the same curve 4a+5b=k. Thus the relation ρ is reflexive.
 - ii. **Symmetric:** Let $_{(a,b)}\rho_{(c,d)}$ be true for some (a,b) and (c,d), i.e. (a,b) and (c,d) lie on the same curve $4x + 5y \implies (c,d)$ and (a,b) lie on the same curve. 4a + 5b = 4c + 5d = k. The relation ρ is symmetric.
 - iii. **Transitive:** Let us assume that $(a,b)\rho(c,d)$ and $(c,d)\rho(e,f)$, i.e

$$4a + 5b = k_1 = 4c + 5d$$

 $4c + 5d = k_2 = 4e + 5f$

Thus we have $k_1 = k_2$, thus 4a + 5b = 4e + 5f. Thus (a, b) and (e, f) lie on the same curve. Thus $(a,b)\rho_{(e,f)}$ holds. The relation ρ is transitive.

Thus the relation ρ is an equivalent relation. The equivalence class for the relation ρ is given by:

$$[(a,b)]_{\rho} = \{(x,y) \mid 4x + 5y = 4a + 5b\}$$

(Source of mistake): Most have written the equivalence class as:

$$[(a,b)]_{\rho} = \{(x,y) \mid 4x + 5y = k\} \text{ for some } k \in \mathbb{R}$$

This is incorrect as this is the relation ρ itself and not an equivalence class of (a, b)

- b. $\psi \subseteq R^2$ such that $(a,b)\psi_{(c,d)}$ means that (a,b) and (c,d) lie on the same curve $9x^2 + 16y^2 = k^2$ for some $k \in \mathbb{R}$.
 - i. **Reflexive:** (a, b) and (a, b) obviously lie on the same curve $9x^2 + 16y^2 = k^2$. Thus the relation ψ is reflexive.
 - ii. Symmetric: Let $_{(a,b)}\psi_{(c,d)}$ be true for some (a,b) and (c,d), i.e. (a,b) and (c,d) lie on the same curve $9x^2 + 16y^2 \implies (c,d)$ and (a,b) lie on the same curve. $9a^2 + 16b^2 = 9c^2 + 16d^2 = k^2$. The relation ψ is symmetric.
 - iii. **Transitive:** Let us assume that $_{(a,b)}\psi_{(c,d)}$ and $_{(c,d)}\psi_{(e,f)}$, i.e

$$9a^{2} + 16b^{2} = k_{1}^{2} = 9c^{2} + 16d^{2}$$
$$9c^{2} + 16d^{2} = k_{2}^{2} = 9e^{2} + 16f^{2}$$

Thus we have $k_1^2 = k_2^2$, thus $9a^2 + 16b^2 = 9e^2 + 16f^2$. Thus (a, b) and (e, f) lie on the same curve. Thus $(a,b)\psi_{(e,f)}$ holds. The relation ψ is transitive.

Thus the relation ψ is an equivalent relation. The equivalence class for the relation ψ is given by: (Try to guess the geometric curve formed as well)

$$[(a,b)]_{\psi} = \{(x,y) \mid 9x^2 + 16y^2 = 9a^2 + 16b^2\}$$

(Source of mistake): Most have written the equivalence class as:

$$[(a,b)]_{\psi} = \{(x,y) \mid 9x^2 + 16y^2 = k^2\} \text{ for some } k \in \mathbb{R}$$

This is incorrect as this is the relation ψ itself and not an equivalence class of (a,b)

Problem 5

- a. We need to show the double implication, $[a] = [b] \iff (a, b) \in R$ where R is the equivalent relation.
 - i. Let us assume [a] = [b]. We need to show $(a, b) \in R$. Now we have:

$$[a]_R = \{x | (a, x) \in R\}; [b]_R = \{x | (b, x) \in R\}$$

Now we begin:

$$R$$
 is reflexive $\implies (a,b) \implies a \in [a]_R \dots$ (By defn. of $[a]$)
$$\implies a \in [b]_R \dots ([a]_R = [b]_R)$$

$$\implies (b,a) \in R \dots \text{(By defn of } [b]_R)$$

$$\implies (a,b) \in R \dots (R \text{ is symmetric)}$$

Thus
$$[a]_R = [b]_R \implies (a, b) \in R$$

ii. Let us assume that $(a,b) \in R$ and show that $[a]_R = [b]_R$. For this we neted to first show $[a]_R \subseteq [b]_R$ and then $[b]_R \subseteq [a]_R$.

(a)
$$[a]_R \subset [b]_R$$
: Let $x \in [a]_R$
 $\implies (a, x) \in R \dots (By \text{ defn})$
 $\implies (x, a) \in R \dots (R \text{ is symmetric})$
 $\implies (x, b) \in R \dots (Using (a, b) \in R \text{ and } R \text{ is transitive})$
 $\implies (b, x) \in R \dots (R \text{ is symmetric})$
 $\implies x \in [b]_R \dots (By \text{ defn})$

Thus we have $[a]_R \subseteq [b]_R$.

(b)
$$[b]_R \subset [a]_R$$
: Let $x \in [b]_R$
 $\implies (b, x) \in R \dots$ (By defn)
 $\implies (x, b) \in R \dots$ (R is symmetric)
 $\implies (x, a) \in R \dots$ (Using $(a, b) \in R$ and R is symmetric and transitive)
 $\implies (a, x) \in R \dots$ (R is symmetric)
 $\implies x \in [a]_R \dots$ (By defn)

Thus we have $[b]_R \subseteq [a]_R$.

Thus from (a) and (b) we can say that $(a,b) \in R \implies [a]_R = [b]_R$

Thus from (i) and (ii) we have shown that the double implication holds.

b. We need to show that either $[a] \cap [b] = \phi$ or [a] = [b], We will prove one part by using proof by contradiction.

Let us assume the contrary that $[a] \cap [b] \neq \phi$. Then

$$\exists x \ (x \in [a]) \land (x \in [b])$$

That is,

$$x \in [a] \implies (a, x) \in R \dots (By \text{ defn})$$

 $x \in [b] \implies (b, x) \in R \dots (By \text{ defn})$
 $\implies (x, b) \in R \dots (R \text{ is symmetric})$
 $\implies (a, b) \in R \dots (Using \text{ the above two, } R \text{ is transitive})$

Thus we have [a] = [b] (Using part a.) which is contradiction to our assumption, which means that our assumption was incorrect and [a] and [b] are not disjoint under certain scenarios, rather [a] = [b].

If we have $(a, b) \notin R$ then, $[a] \cup [b]$ will have to be disjoint because of the above proof. Thus we have only the two cases. **Problem 6** Many examples exist. The most common one among all submissions is the following:

The set of integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is a totally ordered set with respect to the relation $R = \{(x, y) \in \mathbb{Z}^2 | x \leq y\}$

- a. **Reflexive:** For any integer $a \in \mathbb{Z}$ $a \leq a$. Thus the relation is reflexive.
- b. **Anti-Symmetric:** For any arbitrary integers $a, b \in \mathbb{Z}$, if aleqb does not necessarily imply $b \leq a$. Thus the relation is anti-symmetric.
- c. **Transitive:** Let us assume that the relation R holds for the pair (a, b) and (b, c). Then we have $a \le b \le c$. Thus (a, c) is also holds. Thus the relation is transitive.

Problem 7 We are given that $A_i \cup A_j = \phi$. So all we need to show that $\bigcup_{i=1}^k A_i = A$. We have to show this by showing both sides are subsets of each other:

- a. $\bigcup_{i=1}^k A_i \subseteq A$: We have $A_i \subseteq A$. Therefore we will definitely have $\bigcup_{i=1}^k A_i \subseteq A$
- b. $A \subset \bigcup_{i=1}^k A_i$: We can prove by contradiction. Let us assume the contrary, i.e.

$$\exists x \in A \ x \notin A_i \forall i = 1, 2, \dots, k$$

Now we know that $(x, x) \in R$ because R is a reflexive relation. Thus $x \in A_i$ which is a contradiction to our assumption. Thus our assumption was incorrect, and we have that for all $x \in A \implies x \in A_i$ for some i = 1, 2, ..., k. Thus $A \subset \bigcup_{i=1}^k A_i$.

Therefore from a. and b., we have $A = \bigcup_{i=1}^k A_i$.

Thus we have our result that A_i s are partitions of the set A with respect to the equivalent relation R.