date: wednesday, february 28, 2024

Review of Rings I

Homomorphisms

Defa: Let R and S be rings. A ring homomorphism is a function 9:R-8 such that

 $\Psi:R\rightarrow 3$ such that $\Psi(a+b)=\Psi(a)+\Psi(b)$ <- Ψ is a group homomorphism + extra $\Psi(ab)=\Psi(a)\Psi(b)$

Def²: A homomorphism $9:R \rightarrow S$ is an isomorphism if it is bijective. We write $R \cong S$.

Proposition: Let $\Psi: R \rightarrow S$ be a ring homomorphism. ① $\Psi(O_R) = O_S$ ② $\Psi(-\alpha) = -\Psi(\alpha)$ ③ $\Psi(\alpha^n) = \Psi(\alpha)^n$ ④ The image $\Psi(R) = \{ \Psi(r) \mid r \in R \} \subseteq S$ is a subring ⑤ If $I_R \in R$ and $I_S \in S$, and if Ψ is onto, then $\Psi(I_R) = I_S$.

Proof

① Note $O_R = O_R + O_R$. So $P(O_R) = P(O_R + O_R) = P(O_R) + P(O_R)$. Subtract $P(O_R)$ from both sides,

 $O_s = \Psi(O_R) - \Psi(O_R) = (\Psi(O_R) + \Psi(O_R)) - \Psi(O_R) = \Psi(O_R).$ To show $\Psi(1_R) = 1_s$, need to show that $\Psi(1_R)$ "acts like" 1_s . Take be S. Since Ψ is onto, exists as R such that $\Psi(a) = b$. Now $a = 1_R \cdot a$. So, $b = \Psi(1_R \cdot a) = \Psi(1_R) \cdot \Psi(a) = \Psi(1_R) \cdot b$

 $b = \varphi(0, 1_R) = \varphi(0)\varphi(1_R) = b\varphi(1_R).$ Since part to be a size of the same are the same and the same are th

Since multiplicative identities are unique, $1_s = 9(1_R)$.

By the same argument,

eq. $\Psi: \mathbb{Z} \to \mathbb{Z}$ defined by $\Psi(n) = 0$ for all n. We don't have $\Psi(1) = 1$.

Def^a: The kernel of $\varphi:R\to S$ is $\ker \varphi=\{r\in R \mid \varphi(r)=0_s\}$. Theorem: 1 ker1 is an ideal of R. ② $\ker \Psi = \{0_R\}$ if and only if Ψ is injective. Proof ① $\ker \Psi \neq \emptyset$ since $O_R \in \mathbb{R}$ and $\Psi(O_R) = O_s$. Let asker φ and reR. Then $\varphi(ra) = \varphi(r)\varphi(a) = \varphi(r) \cdot O_s = O_s$. So rasker φ . Let a, beker Ψ . Then $\Psi(a-b) = \Psi(a) - \Psi(b) = O_s - O_s = O_s$. So a-beker Ψ Consequence: Any homomorphism 4:R->8 gives us a quotient ring: R ker 9 Isomorphism Theorems 1^{st} Isomorphism Theorem: Let 9:R-S be a homomorphism. Then, R/kery ~ P(R) <- image of R in S eq.Let $R=\mathbb{Z}$ and $S=\mathbb{Z}_{2024}$. Define a ring homomorphism $\Psi: \mathbb{Z} \to \mathbb{Z}_{2024}$ by $\Psi(n) = n \pmod{2024}$. This is onto So P(Z) = Z2024. By 1st Isomorphism Theorem, Claim: $\ker \Psi = \frac{2024}{n} \ln 2 \le -all \text{ multiples of } 2024$ Remark: We can an ideal I of R principal if there exists an acR such that I=2 ralrers. We write this as $I=\langle a \rangle$. Cideal generated by a Return to example: $ker \Psi = \langle 2024 \rangle$ So Z/2024> ~ Z/2024 Fact: Z/m>~Zm.

 $\binom{\mathbb{P}_{1}}{\binom{3}{1}} \stackrel{\sim}{\sim} \mathbb{P}_{J}$

correspondance between the ideals of Piand the ideals of R that contain I, ie.

 4^{th} Isomorphism Theorem: Let I be an ideal. Then there is a 1-1

I⊆J⊆R.

Maximal and Prime Ideals

R is assumed to be commutative.

Note that <2024> ⊆ <1012> ⊆ <2>

Def^a: An ideal M is a maximal ideal of R if for every ideal J such that M⊆J⊆R, then J=M or J=R.

Def^a: An ideal P of R is prime if P≠R, and whenever aloeP, aeP or beP.

Theorem: M is a maximal ideal if and only if 8 M is a field. eg. $\langle 2024 \rangle$ in 8 Z is not maximal since 8 $\langle 2024 \rangle$ 2 Z $_{2024}$ is not a field since its not a domain (eq. $2 \times 1012 = 0$)

eg. $\langle m \rangle \subseteq \mathbb{Z}$ is a maximal ideal $\langle - \rangle \mathbb{Z}_m \cong \mathbb{Z}_m$ is a field $\langle - \rangle m$ is prime.

Theorem: P is a prime ideal if and only if Rp is an integral domain.

ea	Р	Ei	a	Dr	ime	i i	dec	al c	4	\mathbb{Z}^{\prime}	<=>	D-	\\	p>,	, P	pr	ime								
	No	ite	1/	$\langle \diamond \rangle$	~	71	ÌЗ	an	in	tegr	α l	do	Mai	n	20	<	0>	Bi	P	ĊΙΥ	ie.				
																			•						
11	160	rer	M: [=V6	ery	M	10Xi	ma	l ic	leal	iδ	α	P	V.IV	ne	ide	BOI.								
Dr	00)																							
М	WU.	∟ Vim	ام	/=	> F	} _M	is	. ^	£:6	الماح															
	ш	AIIII	iui		ا <	Řм	is	Or	\ in	eld teg ne	ωl	do	mα	iΛ											
				<=	> [M.	is.	U E)LIU	ne	ide	:al .													
No	te:	Pr	`iM(e r	nΩ\	f	dil	to	be	· m	OXII	mal	(e	g. <	(0)	Bi	br.	ime	: b	ut	NO-	t 1	MOX	ma	1)
														U			,								