Artificial Intelligence on Medical Imaging Lab 1 314553020 許良亦

1. Introduction

本次報告實作了三種影像分類模型:ResNet-18、ResNet-50,以及採用 ImageNe 預訓練權重的 DenseNet-121,並用於 Chest X-Ray Images (Pneumonia) 資料集的(肺炎 vs.正常)二分類。由圖一可見,類別分布約為:訓練集 3:1、驗證集 1:1、測試集 1.5:1。實驗中以自訂的 DataLoader 進行資料前處理,最終比較三種模型的預測準確率與混淆矩陣表現。

▲ 圖一、Chest X-Ray dataset

2. Experiment setups

A. The detail of your model

ResNet 以殘差 (residual) 設計緩解深層網路的退化問題;其殘差模組分為兩型: Basic Block 與 Bottleneck。前者多用於較淺的 ResNet-18,後者則配置於較深的 ResNet-50 (如下圖二、三)。

在一個 residual block 裡,除了主幹的卷積堆疊,還有一條 shortcut 把輸入直接傳到輸出端。這條捷徑可視為 identity 分支,會跨越一層或多層,最後與主幹分支學到的映射相加,形成 (y=F(x)+x)。透過這個操作,深層模型至少能保有與淺層相當的表現,同時更容易在既有特徵 (x) 的基礎上只學差值 (殘差),讓優化更穩定、梯度傳遞更順暢,也更有機會得到更好的整體性能。

```
extend = 1
    __init__(self, in_channels, out_channels, downsample=None, stride=1): super().__init__()
    self.conv1 = nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1, bias=False)
    self.bn1 = nn.BatchNorm2d(out channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = nn.Conv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=False)
    self.bn2 = nn.BatchNorm2d(out channels)
                                                                         Basic block
    self.downsample = downsample
                                                                              64-d
def forward(self, x):
    identity = x
                                                                          3x3, 64
    out = self.relu(self.bn1(self.conv1(x)))
                                                                             relu
    out = self.bn2(self.conv2(out))
                                                                          3x3, 64
    if self.downsample is not None:
        identity = self.downsample(identity)
    out = self.relu(out + identity)
                                                                           +
                                                                             Trelu
    return out
```

▲ 圖二、Basic block

Bottleneck block 先用 1×1 卷積壓縮通道,再以 3×3 卷積在較低通道數下提取空間特徵,最後用 1×1 卷積擴張通道。

```
class Bottleneck(nn.Module):
    extend = 4
    def init (self, in channels, out channels, downsample=None, stride=1):
        super(). init ()
        self.block = nn.Sequential(
           nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out channels, out channels, 3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out channels, out channels * self.extend, 1, bias=False),
            nn.BatchNorm2d(out channels * self.extend),
                                                                Bottleneck block
                                                                       256-d
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
                                                                   1x1, 64
   def forward(self, x):
                                                                      relu
        identity = x
                                                                   3x3, 64
        out = self.block(x)
                                                                     relu
        if self.downsample is not None:
                                                                  1x1, 256
            identity = self.downsample(x)
        out = self.relu(out + identity)
                                                                     Trelu
        return out
```

▲ 圖三、Bottleneck block

```
__init__(self, Block, layers, num_classes, num_channels=3, dropout=0.3): super().__init__()
     self.in_channels = 64
     self.conv1 = nn.Conv2d(num_channels, 64, 7, stride=2, padding=3, bias=False)
     self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
     self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
     self.layer1 = self._make_layer(Block, layers[0], base=64, stride=1)
self.layer2 = self._make_layer(Block, layers[1], base=128, stride=2)
self.layer3 = self._make_layer(Block, layers[2], base=256, stride=2)
self.layer4 = self._make_layer(Block, layers[3], base=512, stride=2)
     self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
feat_dim = 512 * Block.extend
     self.fc = nn.Sequential
          nn.Linear(feat_dim, 50),
          nn.ReLU(inplace=True),
          nn.Dropout(dropout)
          nn.Linear(50, num_classes)
      _make_layer(self, Block, blocks, base, stride=1):
     downsample = None
     if stride != 1 or self.in channels != base * Block.extend:
         downsample = DownSample(self.in channels, base * Block.extend, stride)
     layers.append(Block(self.in_channels, base, downsample=downsample, stride=stride))
     self.in_channels = base * Block.extend
for _ in range(blocks - 1):
          layers.append(Block(self.in_channels, base))
def forward(self, x):
    x = self.relu(self.bn1(self.conv1(x)))
     x = self.avgpool(x)
      x = self.fc(x)
      return x
```

▲ 圖四、Resnet 架構

▲ 圖五、DownSample

Resnet-18

```
def ResNet18(num_classes: int, in_ch: int = 3, dropout: float = 0.09, pretrained: bool = False):
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, num_channels=in_ch, dropout=dropout)
```

▲ 圖六、ResNet-18

除了剛剛提及的 BasicBlock 之外,主體分成四個 stage: [64, 128, 256, 512] 通道,各自堆 [2, 2, 2, 2] 個 BasicBlock。每個 stage 的第一個 block 會用 stride=2 做降採樣 (stage1 例外, stride=1),同時若通道數或步幅改變, shortcut 分支用 1×1的 DownSample 把 shape 對齊,之後的 block 全用 stride=1。尾端接AdaptiveAvgPool2d(1×1) 做全域平均池化,flatten 後進入一個小的 FC head (Linear→ReLU→Dropout→Linear 到 num_classes)。因為 BasicBlock 的擴張係數 extend=1,最後特徵維度是 512×1。

Resnet-50

```
def ResNet50(num_classes: int, in_ch: int = 3, dropout: float = 0.09, pretrained: bool = False):
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, num_channels=in_ch, dropout=dropout)
```

▲ 圖七、ResNet-50

把BasicBlock 改為Bottleneck,分四個 stage:通道基底一樣是 [64,128,256,512],但每個 stage 的 block 數是 [3,4,6,3]。每個 stage 的首個 bottleneck 以 stride=2 降採樣(stage1 依然 stride=1),並用 1×1 DownSample 對齊捷徑;其餘 bottleneck 保持 stride=1。單個 bottleneck 內部是 $1\times1\rightarrow3\times3\rightarrow1\times1$:先壓縮通道、 在較低通道做 3×3 特徵抽取、最後再用 1×1 擴回(圖三); extend=4,因此最後的 特 徵 維 度 是 $512\times4=2048$ 。 收 尾 同 樣 是 Global AvgPool \rightarrow FC (Linear \rightarrow ReLU \rightarrow Dropout \rightarrow Linear)。

B. The detail of your Dataloader

```
path,label
chest_xray/train/NORMAL/NORMAL2-IM-0626-0001.jpeg,0
chest_xray/train/NORMAL/NORMAL2-IM-1152-0001.jpeg,0
chest_xray/train/NORMAL/NORMAL2-IM-1276-0001.jpeg,0
chest_xray/train/NORMAL/NORMAL2-IM-0814-0001.jpeg,0
chest_xray/train/NORMAL/IM-0549-0001-00002.jpeg,0
chest_xray/train/NORMAL/IM-0501-0001-0001.jpeg,0
chest_xray/train/NORMAL/IM-0618-0001-0001.jpeg,0
chest_xray/train/NORMAL/IM-0618-0001-0001.jpeg,0
chest_xray/train/NORMAL/NORMAL2-IM-0425-0001.jpeg,0
chest_xray/train/NORMAL/NORMAL2-IM-0634-0001.jpeg,0
chest_xray/train/NORMAL/NORMAL2-IM-0907-0001.jpeg,0
chest_xray/train/NORMAL/NORMAL2-IM-0907-0001.jpeg,0
```

▲ 圖八、csv data

▲ 圖八、get csv data

讀入對應的 CSV,將影像路徑與標籤標準化為兩個列表 (paths、labels)

```
def __ten__(self) -> int:
    return len(self.paths)

def __getitem__(self, idx: int):
    rel = Path(self.paths[idx])
    img_path = rel if rel.is_absolute() else (self.data_root / rel)
    if not img_path.exists():
        raise FileNotFoundError(f*Image not found: {img_path}\n*)

img = Image.open(img_path).convert("L")

box = img.getbbox()
    if box is not None:
        img = img.crop(box)

if self.equalize:
    img = ImageOps.equalize(img)

if self.to 3ch:
    img = To3Channels()(img)

if self.transform is not None:
    img = self.transform(img)

label = self.labels[idx]
    return self.labels
```

▲ 圖九、data transform

```
train_sampler = None
if sampler == "imbalanced":
    train_sampler = ImbalancedDatasetSampler(train_ds)
elif sampler == "weighted":
    labels = torch.tensor(train_ds.get_labels())
    class_counts = torch.bincount(labels)
    class_weights = 1.0 / class_counts.float().clamp_min(1)
    sample_weights = class_weights[labels]
    train_sampler = WeightedRandomSampler(
    weights=sample_weights, num_samples=len(sample_weights), replacement=True
)
```

▲ 圖十、imbalanced

前處理包含裁除純黑邊 (getbbox)、直方圖等化以提升對比,以及將灰階影像複寫為 3 通道 (便於沿用 ImageNet 正規化與預訓練權重);幾何與強度處理則使用自訂的 KeepAspectSquareResize 等比縮放並補邊到指定的正方形大小。訓練階段的 transform 採輕量高斯模糊、隨機仿射 (小角度旋轉/平移/縮放)、亮度/對比抖動、轉為 Tensor、加入少量高斯雜訊並進行正規化;驗證/測試階段僅進行縮放、轉 Tensor 與正規化。為因應類別不平衡,訓練可選用ImbalancedDatasetSampler (依類別頻率重採樣)或 WeightedRandomSampler (由labels 計算類別權重加權抽樣),未指定時則隨機打亂。最終為 train/val/test 各建立一個 DataLoader,設定 batch_size、num_workers、pin_memory 等參數,以批次輸出 (image_tensor, label);並提供 get_labels() 介面便於後續加權與採樣統計的計算。

為了緩解類別不平衡,我們在訓練階段進行重取樣,讓批次中的正常及肺炎

比例更接近均衡,避免模型偏向多數類別。ImbalancedDatasetSampler 會依各類別的出現頻率自動為樣本分配機率(少數類別給更高機率),以隨機但平衡的方式抽樣每個 batch;相比單純的 under-/over-sampling,它較不會丟失多樣性或因重複樣本導致過度擬合。

3. Experiment result and Discussion

A. Highest testing accuracy and F1-score

以下結果為訓練 50 epoch, batch-size 設為 64 、learning rate 設為、 optimizer 使用 AdamW(weight decay 為 1e-4)、dropout 為 0.09、loss 為 CrossEntropyLoss。

ResNet-18					ResNet-50					Densenet-121				
precision=0.88	68, recall=0.	9846, f1	=0.9332, a	cc=91.19%	precision=0.8	942, recall=0).9538, f1	=0.9231, a	cc=90.06%	precision=0.88	71, recall=0	.9667, f1	.=0.9252, a	cc=90.22%
1111	precision	recall	f1-score	support	1111	precision	recall	f1-score	support	1111	precision	recall	f1-score	support
0 - NORMAL 1 - PNEUMONIA	0.97 0.89	0.79 0.98	0.87 0.93	234 390	0 - NORMAL 1 - PNEUMONIA	0.91 0.89	0.81 0.95	0.86 0.92	234 390	0 - NORMAL 1 - PNEUMONIA	0.93 0.89	0.79 0.97	0.86 0.93	234 390
accuracy macro avg weighted avg	0.93 0.92	0.89 0.91	0.91 0.90 0.91	624 624 624	accuracy macro avg weighted avg	0.90	0.88 0.90	0.90 0.89 0.90	624 624 624	accuracy macro avg weighted avg	0.91 0.90	0.88 0.90	0.90 0.89 0.90	624 624 624
	e = 91.19		Acc = 90.06%, F1 = 0.92					Acc = 90.22%, F1 = 0.92						

▲ 表一、Testing accuracy & F1-score

根據表一,三個模型的整體表現接近,最佳為 ResNet-18:91.19%, ResNet-50:90.06%, DenseNet-121:90.22%。從分類報告可見共同的型態:對PNEUMONIA的 recall 很高,而 NORMAL的 recall 較低,代表模型傾向於多抓到肺炎,但會多標一些正常胸腔為陽性。就效益而言,ResNet-18 在最輕量參數量的同時拿到最高準確率與F1(0.91)。

進一步觀察二類的 precision/recall,可發現對 PNEUMONIA 而言,模型的 recall 普遍高於 precision;對 NORMAL 則相反。臨床上最不希望把肺炎判成正常,因此 PNEUMONIA 的 recall 相當重要,同時也需兼顧 precision 以避免 過多誤報。在本次設定下,三個 model 在測試集對 PNEUMONIA 的表現皆接近 90% 的 precision 並有 約 0.95-0.98 的 recall,代表該抓的大多能抓到,但仍 會有少量正常被誤判為肺炎的情形。

B. Ploting the comparison figures

• Accuracy figure

▲ 表二、Training & Testing accuracy

三個模型的 train_acc 在前 5-10 個 epoch 內即快速攀升至 99-100%,圖中可見訓練集的正確率穩定上升並逐步飽和;相對地,測試集的正確率出現較大幅度的震盪。其主為只對訓練集做了重取樣以平衡 NORMAL/PNEUMONIA的比例;而測試集則維持真實分佈 (肺炎樣本佔比超過一半),再加上評估集規模較小、每次權重更新都可能微調決策邊界,容易讓指標在各個 epoch 間波動。

• F1-score figure

▲ 表三、Training & Testing F1-score

三個模型的 train_fl 在前幾個 epoch 近 0.98-1.00 並飽和;而 test_fl 落在約 0.83-0.92 間明顯震盪(受測試集規模較小、且僅訓練集做了重取樣的影響)。 ResNet-18 的 test_fl 相對較穩、DenseNet-121 變動最大、ResNet-50 介於兩者之間,最終三者的峰值彼此接近。

• Confusion Matrix

Confusion Matrix 以真實標籤及預測標籤構成(對二分類為 2×2 表),對角線為正確分類(TP、TN),非對角線為錯誤分類(FP、FN)。特別是在不平衡資料下,觀察右上角的 FP 與左下角的 FN 能直觀判斷模型是否把兩類互相混淆,以及錯誤偏向哪一邊;同時,混淆矩陣也是後續計算 precision、recall、F1-score的基礎,便於評估模型在不同錯誤成本下的實際表現。

▲ 表四、Testing Confusion Matrix

從表四來看,三者都呈現 FN 很少、FP 較多的型態,對肺炎敏感度高、但會把部分正常誤判為肺炎,由於 Pneumonia 的數量大於 Normal 的數量,對模型來說是更為安全的選擇。ResNet-18 的取向較合適;以減少誤報來看的話,ResNet-50 略優。

C. Anything you want to present

• 高斯濾波

```
class RandomGaussianNoise(torch.nn.Module):
    """Additive Gaussian noise with small std, applied with given p."""
    def __init__(self, p: float = 0.25, std: float = 0.01):
        super().__init__()
        self.p = p
        self.std = std

def forward(self, tensor: torch.Tensor) -> torch.Tensor:
    if random.random() < self.p:
        noise = torch.randn_like(tensor) * self.std
        return tensor + noise
    return tensor</pre>
```

▲ 圖十一、高斯 noise

本次 lab 加入兩種輕量級高斯處理以提升泛化,先 Gaussian Blur 以小機率套用 3×3 高斯濾波,模擬影像取得過程中的輕微模糊,減少對高頻噪點與邊緣細節的過度擬合,讓模型更具穩健性,接著加入 Gaussian Noise 以機率 p 於張量上加高斯白噪,使模型學到對隨機像素擾動的不變性。

• Resize preprocessing

```
def __init__(self, img_size: int, fill: int = 0):
   self.img_size = img_size
self.fill = fill
def __call__(self, img: Image.Image) -> Image.Image:
   w, h = img.size
   if w == 0 or h == 0:
       return img
   scale = self.img_size / max(w, h)
   new_w, new_h = int(round(w * scale)), int(round(h * scale))
   img = img.resize((new_w, new_h), resample=Image.BILINEAR)
   pad_left = (self.img_size - new_w) // 2
   pad top = (self.img size - new h) // 2
   pad right = self.img size - new w - pad left
   pad bottom = self.img size - new h - pad top
    if any(p > 0 for p in (pad_left, pad_top, pad_right, pad_bottom)):
       img = ImageOps.expand(img, border=(pad_left, pad_top, pad_right, pad_bottom), fill=self.fill)
    return img
```

本次實作 KeepAspectSquareResize 以影像長邊為基準等比縮放到目標邊長,再對短邊左右/上下對稱補邊,將內容置中,補邊填值為 0(黑邊),插值採 bilinear。透過這個方法可以同時滿足 CNN 需要固定大小的要求,又避免直接拉伸造成的幾何變形,不會改變肺部結構的相對比例;之後再接 ToTensor/Normalize 與輕量增強。

• 影像增強

```
class To3Channels:
    def __call__(self, img: Image.Image) -> Image.Image:
        if img.mode != "L":
              img = img.convert("L")
        return Image.merge("RGB", (img, img, img))
```

T.ColorJitter(brightness=0.04, contrast=0.04),

本次實作也將影像先轉成 3 通道再套用 ColorJitter, 亮度與對比會對所有通 道等比例調整;在訓練階段隨機做約 ±4% 的微幅變動,用來模擬不同曝光造成 的成像差異,提升模型對光照與對比變化的穩健性。

Validation

▲ 表五、Training & Validation Accuracy

▲ 表六、Training & Validation F1-score

▲ 表七、Training & Validation Overall

▲ 表七、Validation Confusion Matrix

• Densenet121

```
class DenseNet121(nn.Module):
   def init (self, num classes: int = 2, in ch: int = 3,
                dropout: float = 0.0, pretrained: bool = False):
       super(). init ()
       weights = None
       if pretrained:
           try:
               weights = models.DenseNet121 Weights.DEFAULT
           except Exception:
               weights = None
       backbone = models.densenet121(weights=weights, drop rate=0.0)
       if in ch != 3:
           old = backbone.features.conv0
           backbone.features.conv0 = nn.Conv2d(
               in ch, old.out channels,
               kernel size=old.kernel size, stride=old.stride,
               padding=old.padding, bias=False
       self.features = backbone.features
       self.num features = backbone.classifier.in features
       self.dropout p = float(dropout)
       self.classifier = nn.Linear(self.num features, num classes)
   def forward(self, x: torch.Tensor) -> torch.Tensor:
       x = self.features(x)
       x = F.relu(x, inplace=True)
       x = F.adaptive avg pool2d(x, (1, 1))
       x = torch.flatten(x, 1)
       if self.dropout p > 0:
           x = F.dropout(x, p=self.dropout p, training=self.training)
       x = self.classifier(x)
       return x
```

我以 torchvision.models.densenet121 建立 DenseNet-121:使用 pretrained=True;為了支援灰階或任意通道輸入,當 in_ch!=3 時,僅替換首層 features.conv0 為 同 幾 何 配 置 的 新 Conv2d(in_ch, old.out_channels, kernel_size/stride/padding 與原層一致),其餘層維持預訓練權重不變。接著保留 DenseNet 的特徵抽取部分 features,讀取原分類器的輸入維度 in_features,並用一個 Linear(in_features → num_classes) 取代原分類頭,同時提供可調 dropout。影像經 features → ReLU → AdaptiveAvgPool2d → flatten →dropout → 新分類器輸出。

4. Github Link

https://github.com/Ianuyu/AIMI/tree/main