Flag Algebra Method in Extremal Combinatorics

Oleg Pikhurko

University of Warwick

► Large graph *G*

- Large graph G
- Inequalities between subgraph densities

- Large graph G
- Inequalities between subgraph densities
- Razborov'07: Flag algebras

- Large graph G
- Inequalities between subgraph densities
- Razborov'07: Flag algebras
 - ▶ Asymptotically true inequalities (as $\nu(G) \to \infty$)

- Large graph G
- Inequalities between subgraph densities
- Razborov'07: Flag algebras
 - ▶ Asymptotically true inequalities (as $v(G) \rightarrow \infty$)
 - Formal rules for deriving them

- Large graph G
- Inequalities between subgraph densities
- Razborov'07: Flag algebras
 - Asymptotically true inequalities (as $v(G) \to \infty$)
 - Formal rules for deriving them
 - One aspect: semi-definite programming

Recent Results Obtained with Flag Algebras

Recent Results Obtained with Flag Algebras

▶ Structures: graphs, digraphs, k-uniform hypergraphs, permutations, subgraphs of the hypercube Q_n , ...

Recent Results Obtained with Flag Algebras

- ▶ Structures: graphs, digraphs, k-uniform hypergraphs, permutations, subgraphs of the hypercube Q_n , ...
- ▶ Contributors: R.Baber, J.Balogh, J.Cummings, S.Das, V.Falgas-Ravry, R.Glebov, A.Grzesik, H.Hatami, J.Hirst, J.Hladký, P.Hu, H.Huang, T.Klimosova, D.Král', L.Kramer, B.Lidicky, N.Linial, C.-H.Liu, J.Ma, L.Mach, E.Marchant, R.Martin, H.Naves, S.Niess, S.Norine, Y.Peled, F.Pfender, O.Pikhurko, A.Razborov, C.Reiher, J.-S.Sereni, K.Spengler, B.Sudakov, J.Talbot, A.Treglown, E.Vaughan, J.Volec, P.Whalen, Z.Yilma, M.Young, ...

Turán function:

$$ex(n, K_3) = max\{e(G) : v(G) = n, G \not\supseteq K_3\}$$

► Turán function:

$$ex(n, K_3) = max\{e(G) : v(G) = n, G \not\supseteq K_3\}$$

▶ Construction: $ex(n, K_3) \ge e(T_n^2) = \lfloor n^2/4 \rfloor$

Turán function:

$$ex(n, K_3) = max\{e(G) : v(G) = n, G \not\supseteq K_3\}$$

- ▶ Construction: $ex(n, K_3) \ge e(T_n^2) = \lfloor n^2/4 \rfloor$
- $T_n^2 = K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$

▶ K_3 -free G of order $n \to \infty$

- ▶ K_3 -free G of order $n \to \infty$
- #F = #(F, G)

- ▶ K_3 -free G of order $n \to \infty$
- #F = #(F, G) = # induced copies of F in G

- ▶ K_3 -free G of order $n \to \infty$
- #F = #(F, G) = # induced copies of F in G
 - $e(G) = \#(K_2, G)$

- K_3 -free G of order $n \to \infty$
- #F = #(F, G) = # induced copies of F in G
 e(G) = #(K₂, G)
- ▶ Density of F:

$$\phi(F) = \#F/\binom{n}{v(F)}$$

- ▶ K_3 -free G of order $n \to \infty$
- #F = #(F, G) = # induced copies of F in G
 e(G) = #(K₂, G)
- ▶ Density of F:

$$\phi(F) = \#F/\binom{n}{v(F)} = \mathbf{Prob}\{G[\text{random } v(F)\text{-set}] \cong F\}$$

$$A = \left(\begin{array}{cc} \alpha & \beta \\ \beta & \gamma \end{array} \right) \succeq 0$$

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$$

$$ightharpoonup oldsymbol{v}_{x} = (rac{d(x)}{n-1}, rac{\bar{d}(x)}{n-1}), \quad x \in V(G)$$

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$$

$$\blacktriangleright \ \mathbf{v}_{x} = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad x \in V(G)$$

$$ightharpoonup 0 \le \mathbf{v}_x A \mathbf{v}_x^T$$

- $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$
- $ightharpoonup oldsymbol{v}_{x} = (rac{d(x)}{n-1}, rac{\bar{d}(x)}{n-1}), \quad x \in V(G)$
- $ightharpoonup 0 \le \mathbf{v}_x A \mathbf{v}_x^T$
- ► Average over x (and ignore o(1)):

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$$

$$ightharpoonup oldsymbol{V}_{x} = (rac{d(x)}{n-1}, rac{\bar{d}(x)}{n-1}), \quad x \in V(G)$$

- $\qquad \qquad \bullet \quad 0 \leq \mathbf{v}_x A \mathbf{v}_x^T$
- Average over x (and ignore o(1)):

$$\frac{1}{n}\sum_{x}\alpha\frac{d^{2}(x)}{(n-1)^{2}}$$

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$$

$$ightharpoonup
ightharpoonup
igh$$

- $ightharpoonup 0 \le \mathbf{v}_x A \mathbf{v}_x^T$
- Average over x (and ignore o(1)):

$$\frac{1}{n}\sum_{x}\alpha\frac{d^{2}(x)}{(n-1)^{2}} = \frac{\alpha}{n^{3}}\sum_{x}\left(\sum_{y\sim x}1\right)\left(\sum_{z\sim x}1\right)$$

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$$

$$\mathbf{v}_{\mathbf{x}} = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad x \in V(G)$$

- $ightharpoonup 0 \le \mathbf{v}_x A \mathbf{v}_x^T$
- ► Average over *x* (and ignore *o*(1)):

$$\frac{1}{n}\sum_{x}\alpha\frac{d^{2}(x)}{(n-1)^{2}} = \frac{\alpha}{n^{3}}\sum_{x}\left(\sum_{y\sim x}1\right)\left(\sum_{z\sim x}1\right)$$
$$= \frac{\alpha}{6\binom{n}{2}}\times2\#P_{3}$$

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$$

$$\mathbf{v}_{\mathbf{x}} = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad x \in V(G)$$

- $ightharpoonup 0 \le \mathbf{v}_x A \mathbf{v}_x^T$
- ► Average over *x* (and ignore *o*(1)):

$$\frac{1}{n}\sum_{x}\alpha\frac{d^{2}(x)}{(n-1)^{2}} = \frac{\alpha}{n^{3}}\sum_{x}\left(\sum_{y\sim x}1\right)\left(\sum_{z\sim x}1\right)$$
$$= \frac{\alpha}{6\binom{n}{3}}\times2\#P_{3} = \frac{\alpha}{3}\phi(P_{3})$$

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$$

$$\mathbf{v}_{\mathbf{x}} = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad x \in V(G)$$

- $ightharpoonup 0 \le \mathbf{v}_x A \mathbf{v}_x^T$
- ► Average over *x* (and ignore *o*(1)):

$$\frac{1}{n}\sum_{x}\alpha\frac{d^{2}(x)}{(n-1)^{2}} = \frac{\alpha}{n^{3}}\sum_{x}\left(\sum_{y\sim x}1\right)\left(\sum_{z\sim x}1\right)$$
$$= \frac{\alpha}{6\binom{n}{2}}\times2\#P_{3} = \frac{\alpha}{3}\phi(P_{3})$$

$$\qquad \qquad \mathbf{0} \leq \left(\frac{2\beta}{3} + \frac{\alpha}{3}\right)\phi(P_3) + \left(\frac{2\beta}{3} + \frac{\gamma}{3}\right)\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$\qquad \qquad \mathbf{0} \leq \left(\frac{2\beta}{3} + \frac{\alpha}{3}\right)\phi(P_3) + \left(\frac{2\beta}{3} + \frac{\gamma}{3}\right)\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$0 \le \left(\frac{2\beta}{3} + \frac{\alpha}{3}\right)\phi(P_3) + \left(\frac{2\beta}{3} + \frac{\gamma}{3}\right)\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$\phi(K_2)$$

$$0 \le (\frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$\phi(K_2) = \frac{2}{3}\phi(P_3) + \frac{1}{3}\phi(\bar{P}_3)$$

Bounding Edge Density from Above

$$\bullet 0 \leq \left(\frac{2\beta}{3} + \frac{\alpha}{3}\right)\phi(P_3) + \left(\frac{2\beta}{3} + \frac{\gamma}{3}\right)\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)
\phi(K_2) = \frac{2}{3}\phi(P_3) + \frac{1}{3}\phi(\bar{P}_3)
\leq \left(\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3}\right)\phi(P_3) + \left(\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3}\right)\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

Bounding Edge Density from Above

$$\bullet 0 \leq \left(\frac{2\beta}{3} + \frac{\alpha}{3}\right)\phi(P_3) + \left(\frac{2\beta}{3} + \frac{\gamma}{3}\right)\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)
\phi(K_2) = \frac{2}{3}\phi(P_3) + \frac{1}{3}\phi(\bar{P}_3)
\leq \left(\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3}\right)\phi(P_3) + \left(\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3}\right)\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

▶ Note:
$$\phi(P_3) + \phi(\bar{P}_3) + \phi(\bar{K}_3) = 1$$

•
$$\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

- $\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$
- ▶ Minimise δ :

- $\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$
- Minimise δ :

- $\phi(K_2) \leq (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$
- Minimise δ :

- $\phi(K_2) \leq (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$
- Minimise δ :

$$\begin{array}{ll} \blacktriangleright & \frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3} \leq \delta \\ \blacktriangleright & \frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3} \leq \delta \end{array}$$

$$\gamma \leq \delta$$

•
$$\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3} \le \delta$$

$$\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3} \le \delta$$

$$\gamma \leq \delta$$

$$A = \left(\begin{array}{cc} \alpha & \beta \\ \beta & \gamma \end{array} \right) \succeq 0$$

•
$$\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$\gamma \leq \delta$$

$$A = \left(\begin{array}{cc} \alpha & \beta \\ \beta & \gamma \end{array} \right) \succeq 0$$

► Solution:
$$\delta = 1/2$$
 and $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$

•
$$\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$\gamma \leq \delta$$

$$A = \left(\begin{array}{cc} \alpha & \beta \\ \beta & \gamma \end{array} \right) \succeq 0$$

► Solution:
$$\delta = 1/2$$
 and $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$

$$\phi(K_2) \leq \frac{1}{2}$$

•
$$\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

$$\begin{array}{ll} \bullet & \frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3} \leq \delta \\ \bullet & \frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3} \leq \delta \end{array}$$

$$\gamma \leq \delta$$

$$A = \left(\begin{array}{cc} \alpha & \beta \\ \beta & \gamma \end{array} \right) \succeq 0$$

► Solution:
$$\delta = 1/2$$
 and $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$

•
$$\phi(K_2) \leq \frac{1}{2} - \frac{1}{3} \phi(\bar{P}_3)$$

•
$$\phi(K_2) \le (\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3})\phi(P_3) + (\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3})\phi(\bar{P}_3) + \gamma\phi(\bar{K}_3)$$

- Minimise δ :
 - $\frac{2}{3} + \frac{2\beta}{3} + \frac{\alpha}{3} \le \delta$ $\frac{1}{3} + \frac{2\beta}{3} + \frac{\gamma}{3} \le \delta$

 - $ightharpoonup \gamma < \delta$
 - $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \succeq 0$
- ► Solution: $\delta = 1/2$ and $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$
- $\phi(K_2) \leq \frac{1}{2} \frac{1}{2} \phi(\bar{P}_3)$
- Asymptotic result: $ex(n, K_3) \leq (\frac{1}{2} + o(1))\binom{n}{2}$

► Recall
$$A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

► Recall
$$A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

$$\mathbf{v}_{x}A\mathbf{v}_{x}^{T} = \frac{1}{2(n-1)^{2}}(d(x) - \bar{d}(x))^{2}$$

- ► Recall $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$
- $\mathbf{v}_{x}A\mathbf{v}_{x}^{T} = \frac{1}{2(n-1)^{2}}(d(x) \bar{d}(x))^{2}$
- Human proof:

► Recall
$$A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

$$\mathbf{v}_{x}A\mathbf{v}_{x}^{T} = \frac{1}{2(n-1)^{2}}(d(x) - \bar{d}(x))^{2}$$

▶ Human proof:

$$\qquad \qquad \bullet \quad 0 \leq \sum_{x} \left(d(x) - \bar{d}(x) \right)^{2}$$

► Recall
$$A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

$$\mathbf{v}_{x}A\mathbf{v}_{x}^{T}=\frac{1}{2(n-1)^{2}}(d(x)-\bar{d}(x))^{2}$$

- Human proof:
 - \bullet 0 $\leq \sum_{x} (d(x) \bar{d}(x))^2$
 - Expand and re-group terms

► Recall
$$A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

$$\mathbf{v}_{x}A\mathbf{v}_{x}^{T}=\frac{1}{2(n-1)^{2}}(d(x)-\bar{d}(x))^{2}$$

- ▶ Human proof:
 - \bullet 0 $\leq \sum_{x} (d(x) \bar{d}(x))^2$
 - Expand and re-group terms
 - $\#K_2 \leq \frac{n^2}{4} \frac{1}{n} \#\bar{P}_3 + O(n)$

•
$$\phi(K_2) \leq \frac{1}{2} - \frac{1}{3} \phi(\bar{P}_3)$$

- $\phi(K_2) \leq \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$

- $\phi(K_2) \leq \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$
- $\phi(K_2) \approx \frac{1}{2} \Rightarrow \phi(\bar{P}_3) = o(1)$
- ► Induced Removal Lemma: G is $o(n^2)$ -close in edit distance to \bar{P}_3 -free

- $\phi(K_2) \leq \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$
- ► Induced Removal Lemma: G is $o(n^2)$ -close in edit distance to \bar{P}_3 -free
- \bar{P}_3 -free \Rightarrow complete multipartite

- $\phi(K_2) \leq \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$
- $\phi(K_2) \approx \frac{1}{2} \Rightarrow \phi(\bar{P}_3) = o(1)$
- ► Induced Removal Lemma: G is $o(n^2)$ -close in edit distance to \bar{P}_3 -free
- \bar{P}_3 -free \Rightarrow complete multipartite
- K_3 -free \Rightarrow at most 2 parts

- $\phi(K_2) \leq \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$
- $\phi(K_2) \approx \frac{1}{2} \Rightarrow \phi(\bar{P}_3) = o(1)$
- ► Induced Removal Lemma: G is $o(n^2)$ -close in edit distance to \bar{P}_3 -free
- \bar{P}_3 -free \Rightarrow complete multipartite
- K_3 -free \Rightarrow at most 2 parts
- $\phi(K_2) \approx \frac{1}{2} \Rightarrow \text{ parts almost equal}$

- $\phi(K_2) \leq \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$
- ► Induced Removal Lemma: G is $o(n^2)$ -close in edit distance to \bar{P}_3 -free
- \bar{P}_3 -free \Rightarrow complete multipartite
- K_3 -free \Rightarrow at most 2 parts
- $\phi(K_2) \approx \frac{1}{2} \Rightarrow \text{ parts almost equal}$
- ► Stability (Erdős'67, Simonovits'68): \forall almost extremal G_n is $o(n^2)$ -close to T_n^2

- $\phi(K_2) \leq \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$
- $\phi(K_2) \approx \frac{1}{2} \Rightarrow \phi(\bar{P}_3) = o(1)$
- ► Induced Removal Lemma: G is $o(n^2)$ -close in edit distance to \bar{P}_3 -free
- \bar{P}_3 -free \Rightarrow complete multipartite
- K_3 -free \Rightarrow at most 2 parts
- $\phi(K_2) \approx \frac{1}{2} \Rightarrow \text{ parts almost equal}$
- ► Stability (Erdős'67, Simonovits'68): \forall almost extremal G_n is $o(n^2)$ -close to T_n^2
- ▶ More work: exact result for $n \ge n_0$

► Recall:

- ► Recall:
 - $ightharpoonup 0 \leq \mathbb{E}_{x}(\mathbf{v}_{x}A\mathbf{v}_{x}^{T})$

Recall:

- $\bullet \ 0 \leq \mathbb{E}_{x}(\mathbf{v}_{x}A\mathbf{v}_{x}^{T})$
- $\mathbf{v}_{x}=(\frac{d(x)}{n-1},\frac{\bar{d}(x)}{n-1}), \quad x\in V(G)$

- Recall:
 - lacksquare $0 \leq \mathbb{E}_{x}(\mathbf{v}_{x}A\mathbf{v}_{x}^{T})$
 - $\mathbf{v}_{x} = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad x \in V(G)$
- Extensions:

- Recall:
 - $\qquad \qquad \bullet \quad 0 \leq \mathbb{E}_X(\mathbf{v}_X A \mathbf{v}_X^T)$
 - $\mathbf{v}_{x} = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad x \in V(G)$
- Extensions:
 - ▶ v_x: densities of k-vertex graphs rooted at x

- Recall:
 - $b 0 \leq \mathbb{E}_X(\mathbf{v}_X A \mathbf{v}_X^T)$ $b \mathbf{v}_X = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad X \in V(G)$
- Extensions:
 - v_x: densities of k-vertex graphs rooted at x
 - v_{xy}: k-vertex graphs rooted at edge xy

- Recall:
 - $b 0 \leq \mathbb{E}_X(\mathbf{v}_X A \mathbf{v}_X^T)$ $b \mathbf{v}_X = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad X \in V(G)$
- Extensions:
 - ▶ v_x: densities of k-vertex graphs rooted at x
 - ▶ v_{xy}: k-vertex graphs rooted at edge xy
 - Average over E(G)

Recall:

- $b 0 \leq \mathbb{E}_X(\mathbf{v}_X A \mathbf{v}_X^T)$ $b \mathbf{v}_X = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad X \in V(G)$
- Extensions:
 - \mathbf{v}_x : densities of *k*-vertex graphs rooted at *x*
 - v_{xy}: k-vertex graphs rooted at edge xy
 - ► Average over *E*(*G*)
 - ▶ v_{xy}: k-vertex graphs rooted at non-edge xy

- Recall:
 - $\bullet \ 0 \leq \mathbb{E}_{X}(\mathbf{v}_{X}A\mathbf{v}_{X}^{T})$
 - $\mathbf{v}_{x} = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad x \in V(G)$
- Extensions:
 - v_x: densities of k-vertex graphs rooted at x
 - v_{xy}: k-vertex graphs rooted at edge xy
 - Average over E(G)
 - v_{xy}: k-vertex graphs rooted at non-edge xy
 - Average over $E(\overline{G})$

- Recall:
 - $b 0 \leq \mathbb{E}_X(\mathbf{v}_X A \mathbf{v}_X^T)$ $b \mathbf{v}_X = (\frac{d(x)}{n-1}, \frac{\bar{d}(x)}{n-1}), \quad X \in V(G)$
- Extensions:
 - ▶ v_x: densities of k-vertex graphs rooted at x
 - v_{xy}: k-vertex graphs rooted at edge xy
 - Average over E(G)
 - ▶ v_{xy}: k-vertex graphs rooted at non-edge xy
 - ▶ Average over E(Ḡ)
 - **.** . . .

•
$$\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$$

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

▶ Suppose $A \succeq 0$ proves $\phi(K_2) \leq \frac{1}{2}$

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

- ▶ Suppose $A \succeq 0$ proves $\phi(K_2) \leq \frac{1}{2}$
- If $\varepsilon = \frac{1}{2} (\frac{2}{3} + 2\beta + \alpha) > 0$:

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

- ▶ Suppose $A \succeq 0$ proves $\phi(K_2) \leq \frac{1}{2}$
- If $\varepsilon = \frac{1}{2} (\frac{2}{3} + 2\beta + \alpha) > 0$:
 - ▶ Then $\phi(K_2) \le \frac{1}{2} \frac{1}{3}\phi(\bar{P}_3) \varepsilon \phi(P_3)$

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

- ▶ Suppose $A \succeq 0$ proves $\phi(K_2) \leq \frac{1}{2}$
- If $\varepsilon = \frac{1}{2} (\frac{2}{3} + 2\beta + \alpha) > 0$:
 - ► Then $\phi(K_2) \leq \frac{1}{2} \frac{1}{3}\phi(\bar{P}_3) \varepsilon \phi(P_3)$
 - ▶ False for $K_{n/2,n/2}$!

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

- ▶ Suppose $A \succeq 0$ proves $\phi(K_2) \leq \frac{1}{2}$
- If $\varepsilon = \frac{1}{2} (\frac{2}{3} + 2\beta + \alpha) > 0$:
 - ► Then $\phi(K_2) \leq \frac{1}{2} \frac{1}{3}\phi(\bar{P}_3) \varepsilon \phi(P_3)$
 - ▶ False for $K_{n/2,n/2}$!
- Likewise: $3\gamma = \frac{1}{2}$

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

- ▶ Suppose $A \succeq 0$ proves $\phi(K_2) \leq \frac{1}{2}$
- If $\varepsilon = \frac{1}{2} (\frac{2}{3} + 2\beta + \alpha) > 0$:
 - ► Then $\phi(K_2) \leq \frac{1}{2} \frac{1}{3}\phi(\bar{P}_3) \varepsilon \phi(P_3)$
 - ▶ False for $K_{n/2,n/2}$!
- Likewise: $3\gamma = \frac{1}{2}$
- $\qquad \phi(\mathcal{K}_2) + \mathbb{E}_{\mathcal{X}}(\mathbf{v}_{\mathcal{X}} \mathbf{A} \mathbf{v}_{\mathcal{X}}^T) = \frac{1}{2} \frac{1}{3} \phi(\bar{P}_3)$

- $\phi(K_2) \le (\frac{2}{3} + 2\beta + \alpha)\phi(P_3) + (\frac{1}{3} + 2\beta + \gamma)\phi(\bar{P}_3) + 3\gamma\phi(\bar{K}_3)$
- How to round

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \begin{pmatrix} 0.500007 & -0.499997 \\ -0.499997 & 0.500012 \end{pmatrix}$$
?

- ▶ Suppose $A \succeq 0$ proves $\phi(K_2) \leq \frac{1}{2}$
- If $\varepsilon = \frac{1}{2} (\frac{2}{3} + 2\beta + \alpha) > 0$:
 - ► Then $\phi(K_2) \leq \frac{1}{2} \frac{1}{3}\phi(\bar{P}_3) \varepsilon \phi(P_3)$
 - ▶ False for $K_{n/2,n/2}$!
- Likewise: $3\gamma = \frac{1}{2}$
- $\phi(\mathcal{K}_2) + \mathbb{E}_{\mathbf{X}}(\mathbf{v}_{\mathbf{X}}A\mathbf{v}_{\mathbf{X}}^T) = \frac{1}{2} \frac{1}{3}\phi(\bar{P}_3) \Rightarrow A\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} = 0$

► Independence number:

$$\alpha(G) = \min\{m : \#(\overline{K}_m, G) > 0\}$$

Independence number:

$$\alpha(G) = \min\{m : \#(\overline{K}_m, G) > 0\}$$

► Erdős'62:

$$f(n,k,\ell) = \min\{\#(K_k,G) : \alpha(G) < \ell, \ \nu(G) = n\}$$

Independence number:

$$\alpha(G) = \min\{m : \#(\overline{K}_m, G) > 0\}$$

Erdős'62:

$$f(n,k,\ell) = \min\{\#(K_k,G) : \alpha(G) < \ell, \ \nu(G) = n\}$$

Motivation: Ramsey numbers

Independence number:

$$\alpha(G) = \min\{m : \#(\overline{K}_m, G) > 0\}$$

► Erdős'62:

$$f(n,k,\ell) = \min\{\#(K_k,G) : \alpha(G) < \ell, \ \nu(G) = n\}$$

- Motivation: Ramsey numbers
 - ▶ $n \ge R(k, \ell) \iff f(n, k, \ell) > 0$

► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\mu_{k} = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\mu_k = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\mu_{k} = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$
- Erdős'62: Is $\mu_k = 2^{1-\binom{k}{2}}$?

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\blacktriangleright \mu_k = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$
- Erdős'62: Is $\mu_k = 2^{1-\binom{k}{2}}$?
- ▶ Thomason'89: False: $\mu_k \leq 0.936 \cdot 2^{1-\binom{k}{2}}$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\mu_k = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$
- Erdős'62: Is $\mu_k = 2^{1-\binom{k}{2}}$?
- ▶ Thomason'89: False: $\mu_k \leq 0.936 \cdot 2^{1-\binom{k}{2}}$
- ► Thomason'89: $\mu_4 \le \frac{1}{33} < \frac{1}{32}$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\qquad \qquad \mu_k = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$
- Erdős'62: Is $\mu_k = 2^{1-\binom{k}{2}}$?
- ▶ Thomason'89: False: $\mu_k \leq 0.936 \cdot 2^{1-\binom{k}{2}}$
- ▶ Thomason'89: $\mu_4 \le \frac{1}{33} < \frac{1}{32}$
- Giraud'79: $\mu_4 \ge \frac{1}{46} = 0.0217...$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\qquad \qquad \mu_{k} = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$
- Erdős'62: Is $\mu_k = 2^{1-\binom{k}{2}}$?
- ► Thomason'89: False: $\mu_k \leq 0.936 \cdot 2^{1-\binom{k}{2}}$
- ▶ Thomason'89: $\mu_4 \le \frac{1}{33} < \frac{1}{32}$
- Giraud'79: $\mu_4 \ge \frac{1}{46} = 0.0217...$
- ▶ Nieß \geq '14, Sperfeld \geq '14: $\mu_4 \geq 0.0287...$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\blacktriangleright \ \mu_{k} = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$
- Erdős'62: Is $\mu_k = 2^{1-\binom{k}{2}}$?
- ► Thomason'89: False: $\mu_k \leq 0.936 \cdot 2^{1-\binom{k}{2}}$
- ▶ Thomason'89: $\mu_4 \le \frac{1}{33} < \frac{1}{32}$
- Giraud'79: $\mu_4 \ge \frac{1}{46} = 0.0217...$
- ▶ Nieß \geq '14, Sperfeld \geq '14: $\mu_4 \geq 0.0287...$
- ► Erdős'62: $\mu_k \ge {R(k,k) \choose k}^{-1} \ge (4 + o(1))^{-k^2}$

- ► Erdős'62: $m(k, n) = \min\{\#(K_k, G_n) + \#(\overline{K}_k, G_n)\}$
- $\blacktriangleright \ \mu_{k} = \lim_{n \to \infty} m(k, n) / \binom{n}{k}$
- Goodman'56: $\mu_3 = 1/4$
- Erdős'62: Is $\mu_k = 2^{1-\binom{k}{2}}$?
- ► Thomason'89: False: $\mu_k \leq 0.936 \cdot 2^{1-\binom{k}{2}}$
- ▶ Thomason'89: $\mu_4 \le \frac{1}{33} < \frac{1}{32}$
- Giraud'79: $\mu_4 \ge \frac{1}{46} = 0.0217...$
- ▶ Nieß \geq '14, Sperfeld \geq '14: $\mu_4 \geq 0.0287...$
- ▶ Erdős'62: $\mu_k \ge \binom{R(k,k)}{k}^{-1} \ge (4+o(1))^{-k^2}$
- Conlon'12: $\mu_k \ge (2.18 + o(1))^{-k^2}$

$$f(n,k,\ell) = \min\{\#(K_k,G_n) : \alpha(G_n) < \ell\}$$

- $f(n,k,\ell) = \min\{\#(K_k,G_n) : \alpha(G_n) < \ell\}$
- Goodman'56: $f(2m,3,3) = \#(K_3, K_m \sqcup K_m)$

- $f(n,k,\ell) = \min\{\#(K_k,G_n) : \alpha(G_n) < \ell\}$
- Goodman'56: $f(2m,3,3) = \#(K_3, K_m \sqcup K_m)$
- ► Lorden'62: $f(2m+1,3,3) = \#(K_3, K_m \sqcup K_{m+1}), m \ge 6$

- $f(n,k,\ell) = \min\{\#(K_k,G_n) : \alpha(G_n) < \ell\}$
- Goodman'56: $f(2m,3,3) = \#(K_3, K_m \sqcup K_m)$
- ► Lorden'62: $f(2m+1,3,3) = \#(K_3, K_m \sqcup K_{m+1}), m \ge 6$
- Complement of T_n²

- $f(n,k,\ell) = \min\{\#(K_k,G_n) : \alpha(G_n) < \ell\}$
- Goodman'56: $f(2m,3,3) = \#(K_3, K_m \sqcup K_m)$
- ► Lorden'62: $f(2m+1,3,3) = \#(K_3, K_m \sqcup K_{m+1}), m \ge 6$
- Complement of T_n²
- ▶ Turán graph T_n^r : max r-partite order-n graph

Early Results

- $f(n, k, \ell) = \min\{\#(K_k, G_n) : \alpha(G_n) < \ell\}$
- Goodman'56: $f(2m,3,3) = \#(K_3, K_m \sqcup K_m)$
- ► Lorden'62: $f(2m+1,3,3) = \#(K_3, K_m \sqcup K_{m+1}), m \ge 6$
- Complement of T_n²
- ▶ Turán graph T_n^r : max r-partite order-n graph
- ► Erdős'62: Is $f(n, k, \ell) = \#(K_3, \overline{T}_n^{\ell-1})$?

Nikiforov'01: $c_{k,\ell} = \lim_{n \to \infty} f(n,k,\ell) / {n \choose k}$

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k,\ell} \leq (\ell-1)^{1-k}$

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k,\ell} \leq (\ell-1)^{1-k}$
- Nikiforov'01: Strict for all but finitely many (k, ℓ)

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k,\ell} \leq (\ell-1)^{1-k}$
- ▶ Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ► Turán graph: $c_{k,\ell} \leq (\ell-1)^{1-k}$
- ▶ Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:
 - ▶ Replace each $ij \in E(F)$ by complete graph $K[V_i, V_j]$

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k\ell} < (\ell-1)^{1-k}$
- Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:
 - ▶ Replace each $ij \in E(F)$ by complete graph $K[V_i, V_j]$
 - ▶ Replace each $i \in V(F)$ by clique on $K[V_i]$

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k,\ell} < (\ell-1)^{1-k}$
- ▶ Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:
 - ▶ Replace each $ij \in E(F)$ by complete graph $K[V_i, V_j]$
 - ▶ Replace each $i \in V(F)$ by clique on $K[V_i]$
- ▶ Uniform expansion $U_n(F)$: $\forall i, j \mid V_i V_j \mid \le 1$

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k,\ell} < (\ell-1)^{1-k}$
- ▶ Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:
 - ▶ Replace each $ij \in E(F)$ by complete graph $K[V_i, V_j]$
 - ▶ Replace each $i \in V(F)$ by clique on $K[V_i]$
- ▶ Uniform expansion $U_n(F)$: $\forall i,j \mid V_i V_i \mid \leq 1$
- ▶ Nikiforov'01: $f(n,4,3) \le \#(K_4, U_n(C_5))$

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k,\ell} < (\ell-1)^{1-k}$
- ▶ Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:
 - ▶ Replace each $ij \in E(F)$ by complete graph $K[V_i, V_j]$
 - ▶ Replace each $i \in V(F)$ by clique on $K[V_i]$
- ▶ Uniform expansion $U_n(F)$: $\forall i,j \mid V_i V_i \mid \leq 1$
- ▶ Nikiforov'01: $f(n,4,3) \le \#(K_4, U_n(C_5))$
 - $c_{4,3} \leq 3/25$

- ▶ Nikiforov'01: $c_{k,\ell} = \lim_{n\to\infty} f(n,k,\ell)/\binom{n}{k}$
- ▶ Turán graph: $c_{k,\ell} < (\ell-1)^{1-k}$
- ▶ Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:
 - ▶ Replace each $ij \in E(F)$ by complete graph $K[V_i, V_j]$
 - ▶ Replace each $i \in V(F)$ by clique on $K[V_i]$
- ▶ Uniform expansion $U_n(F)$: $\forall i,j \mid V_i V_i \mid \leq 1$
- ▶ Nikiforov'01: $f(n,4,3) \le \#(K_4, U_n(C_5))$
 - $c_{4,3} \le 3/25 < 1/8$

- Nikiforov'01: $c_{k,\ell} = \lim_{n \to \infty} f(n,k,\ell) / {n \choose k}$
- ▶ Turán graph: $c_{k,\ell} < (\ell-1)^{1-k}$
- Nikiforov'01: Strict for all but finitely many (k, ℓ)
- Expansion of F:
 - ▶ Replace each $ij \in E(F)$ by complete graph $K[V_i, V_j]$
 - ▶ Replace each $i \in V(F)$ by clique on $K[V_i]$
- ▶ Uniform expansion $U_n(F)$: $\forall i,j \mid V_i V_j \mid \leq 1$
- ► Nikiforov'01: $f(n, 4, 3) \le \#(K_4, U_n(C_5))$
 - $c_{4,3} \le 3/25 < 1/8$
- Nikiforov'05:

$$\alpha(\textit{G}_n) < 3 \text{ \& regular } \Rightarrow \ \#(\textit{K}_4,\textit{G}) \geq (\frac{3}{25} + o(1))\binom{n}{4}$$

Complete Solutions (for $n \ge n_0$)

Complete Solutions (for $n \ge n_0$)

► Das-Huang-Ma-Naves-Sudakov'13: (3,4) & (4,3)

Complete Solutions (for $n \ge n_0$)

- ▶ Das-Huang-Ma-Naves-Sudakov'13: (3,4) & (4,3)
- P.-Vaughan'13:

$$(k,3): \quad 4 \leq k \leq 7$$

$$(3, \ell): 4 \le \ell \le 7$$

•
$$c_{3,\ell} = (\ell - 1)^2$$
 for $4 \le \ell \le 7$

•
$$c_{3,\ell} = (\ell - 1)^2$$
 for $4 \le \ell \le 7$
• $\overline{T}_n^{\ell-1}$

- $c_{3,\ell} = (\ell 1)^2$ for $4 \le \ell \le 7$ • $\overline{T}_n^{\ell-1}$
- $c_{4,3} = 3/25$

- $c_{3,\ell} = (\ell 1)^2$ for $4 \le \ell \le 7$ • $\overline{T}_n^{\ell-1}$
- $c_{4,3} = 3/25$
- $c_{5,3} = 31/625$

- $c_{3,\ell} = (\ell 1)^2$ for $4 \le \ell \le 7$
- $c_{4,3} = 3/25$
- $c_{5,3} = 31/625$
 - ▶ Uniform expansion of C₅

- $c_{3,\ell} = (\ell 1)^2$ for $4 \le \ell \le 7$
- $c_{4.3} = 3/25$
- $c_{5,3} = 31/625$
 - ▶ Uniform expansion of C₅
- $c_{6,3} = 19211/2^{20} = 19211/1048576$

- $c_{3,\ell} = (\ell 1)^2$ for $4 \le \ell \le 7$
- $c_{4.3} = 3/25$
- $c_{5,3} = 31/625$
 - ▶ Uniform expansion of C₅
- $c_{6,3} = 19211/2^{20} = 19211/1048576$
- $c_{7,3} = 98491/2^{24} = 98491/16777216$

► Clebsch graph *L*:

- ► Clebsch graph *L*:
 - $V = {\mathbf{X} \in {\{0,1\}}^5 : dist(\mathbf{X}, \mathbf{0}) \text{ is even}}$

- Clebsch graph L:
 - $V = {\mathbf{X} \in {\{0,1\}}^5 : dist(\mathbf{X}, \mathbf{0}) \text{ is even}}$
 - $\blacktriangleright \ \, \textbf{X} \sim \textbf{Y} \ \text{iff} \ \text{dist}(\textbf{X},\textbf{Y}) = 4$

- ► Clebsch graph *L*:
 - $V = \{ \mathbf{X} \in \{0, 1\}^5 : \text{dist}(\mathbf{X}, \mathbf{0}) \text{ is even} \}$
 - $\mathbf{X} \sim \mathbf{Y}$ iff $dist(\mathbf{X}, \mathbf{Y}) = 4$
- ightharpoonup L and \overline{L} :

- Clebsch graph L:
 - $V = \{ \mathbf{X} \in \{0, 1\}^5 : \text{dist}(\mathbf{X}, \mathbf{0}) \text{ is even} \}$
 - $\mathbf{X} \sim \mathbf{Y}$ iff $dist(\mathbf{X}, \mathbf{Y}) = 4$
- ightharpoonup L and \overline{L} :

▶ Upper bound: $U_n(\overline{L})$

• $c_{3,7}$: 12,338 constraints

- $ightharpoonup c_{3,7}$: 12,338 constraints
- ▶ Emil Vaughan's package Flagmatic

- ► *c*_{3,7}: 12,338 constraints
- ▶ Emil Vaughan's package Flagmatic

Human Part: Stability

Human Part: Stability

Stability: above ideas + eigenvalues

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - Part ratios $y_1 + \cdots + y_{16} = 1$

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - ▶ Part ratios $y_1 + \cdots + y_{16} = 1$
 - $\phi(K_7) = p(y_1, \dots, y_{16})$, polynomial of degree 7

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - ▶ Part ratios $y_1 + \cdots + y_{16} = 1$
 - $\phi(K_7) = p(y_1, \dots, y_{16})$, polynomial of degree 7
- ▶ Which expansion of \overline{K}_2 minimise K_3 -density?

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - ▶ Part ratios $y_1 + \cdots + y_{16} = 1$
 - $\phi(K_7) = p(y_1, \dots, y_{16})$, polynomial of degree 7
- ▶ Which expansion of K_2 minimise K_3 -density?
 - $p(y_1,y_2) = y_1^3 + y_2^3$

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - ▶ Part ratios $y_1 + \cdots + y_{16} = 1$
 - $\phi(K_7) = p(y_1, \dots, y_{16})$, polynomial of degree 7
- ▶ Which expansion of \overline{K}_2 minimise K_3 -density?
 - $p(y_1, y_2) = y_1^3 + y_2^3$
 - $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - ▶ Part ratios $y_1 + \cdots + y_{16} = 1$
 - $\phi(K_7) = p(y_1, \dots, y_{16})$, polynomial of degree 7
- ▶ Which expansion of \overline{K}_2 minimise K_3 -density?
 - $p(y_1, y_2) = y_1^3 + y_2^3$
 - $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$
 - $\mathbf{v}_x = (y_1, y_2) \text{ or } (y_2, y_1)$

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - ▶ Part ratios $y_1 + \cdots + y_{16} = 1$
 - $\phi(K_7) = p(y_1, \dots, y_{16})$, polynomial of degree 7
- ▶ Which expansion of \overline{K}_2 minimise K_3 -density?
 - $p(y_1, y_2) = y_1^3 + y_2^3$
 - $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$
 - $\mathbf{v}_x = (y_1, y_2) \text{ or } (y_2, y_1)$
 - $\mathbb{E}_{X}(\mathbf{v}_{X}A\mathbf{v}_{X}^{T})=0$

- Stability: above ideas + eigenvalues
- ▶ Which expansions of \overline{L} minimise K_7 -density?
 - ▶ Part ratios $y_1 + \cdots + y_{16} = 1$
 - $\phi(K_7) = p(y_1, \dots, y_{16})$, polynomial of degree 7
- ▶ Which expansion of \overline{K}_2 minimise K_3 -density?
 - $p(y_1,y_2) = y_1^3 + y_2^3$
 - $A = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$
 - $\mathbf{v}_{x} = (y_1, y_2) \text{ or } (y_2, y_1)$
 - $\mathbb{E}_{x}(\mathbf{v}_{x}A\mathbf{v}_{x}^{T}) = 0 \quad \Rightarrow \quad y_{1} = y_{2}$

Exact result: One theorem covering all 8 cases

- Exact result: One theorem covering all 8 cases
- Assumptions:

- Exact result: One theorem covering all 8 cases
- Assumptions:
 - ▶ Stability (\forall almost extremal G is $o(n^2)$ -close to $U_n(F)$)

- Exact result: One theorem covering all 8 cases
- Assumptions:
 - ▶ Stability (\forall almost extremal G is $o(n^2)$ -close to $U_n(F)$)
 - ▶ \forall block addition of a vertex x to $U_n(F)$:

- Exact result: One theorem covering all 8 cases
- Assumptions:
 - ▶ Stability (\forall almost extremal G is $o(n^2)$ -close to $U_n(F)$)
 - ▶ \forall block addition of a vertex x to $U_n(F)$:
 - $ightharpoonup \overline{K}_{\ell}$ is created

- Exact result: One theorem covering all 8 cases
- Assumptions:
 - ▶ Stability (\forall almost extremal G is $o(n^2)$ -close to $U_n(F)$)
 - ▶ \forall block addition of a vertex x to $U_n(F)$:
 - $ightharpoonup \overline{K}_{\ell}$ is created
 - or x is a clone of an existing vertex

- Exact result: One theorem covering all 8 cases
- Assumptions:
 - ▶ Stability (\forall almost extremal G is $o(n^2)$ -close to $U_n(F)$)
 - ▶ \forall block addition of a vertex x to $U_n(F)$:
 - $ightharpoonup \overline{K}_{\ell}$ is created
 - or x is a clone of an existing vertex
 - or too many K_k 's are created

- Exact result: One theorem covering all 8 cases
- Assumptions:
 - ▶ Stability (\forall almost extremal G is $o(n^2)$ -close to $U_n(F)$)
 - ▶ \forall block addition of a vertex x to $U_n(F)$:
 - $ightharpoonup \overline{K}_{\ell}$ is created
 - or x is a clone of an existing vertex
 - or too many K_k 's are created
- Conclusion:

$$f(n, k, \ell) = \#(K_k, \text{ expansion of } F), \qquad n > n_0$$

Conjecture (P.-Vaughan):

$$c_{4,4} = \frac{14 \cdot 2^{1/3} - 11}{192}$$

Conjecture (P.-Vaughan):

$$c_{4,4} = \frac{14 \cdot 2^{1/3} - 11}{192}$$

Conjecture (P.-Vaughan):

$$c_{4,4} = \frac{14 \cdot 2^{1/3} - 11}{192}$$

▶ Das-Huang-Ma-Naves-Sudakov'13: $\ell_0 = \max\{\ell : c_{3,\ell} = (\ell-1)^{-2}\} = ?$

Conjecture (P.-Vaughan):

$$c_{4,4} = \frac{14 \cdot 2^{1/3} - 11}{192}$$

- Das-Huang-Ma-Naves-Sudakov'13:
 - $\ell_0 = \max\{\ell : c_{3,\ell} = (\ell-1)^{-2}\} = ?$
 - ▶ Nikiforov'01: $\ell_0 < \infty$

Conjecture (P.-Vaughan):

$$c_{4,4} = \frac{14 \cdot 2^{1/3} - 11}{192}$$

- Das-Huang-Ma-Naves-Sudakov'13:
 - $\ell_0 = \max\{\ell : c_{3,\ell} = (\ell-1)^{-2}\} = ?$
 - ▶ Nikiforov'01: $\ell_0 < \infty$
 - ▶ Das-Huang-Ma-Naves-Sudakov'13: ℓ₀ < 2074</p>

Conjecture (P.-Vaughan):

$$\textit{c}_{4,4} = \frac{14 \cdot 2^{1/3} - 11}{192}$$

Das-Huang-Ma-Naves-Sudakov'13:

$$\ell_0 = \max\{\ell : c_{3,\ell} = (\ell-1)^{-2}\} = ?$$

- ▶ Nikiforov'01: $\ell_0 < \infty$
- ▶ Das-Huang-Ma-Naves-Sudakov'13: $\ell_0 < 2074$
- P.-Vaughan ≥'14: ℓ₀ ≥ 7

• $g(n,m) := \min\{\#K_3(G) : v(G) = n, e(G) = m\}$

- $ightharpoonup g(n,m) := \min\{\#K_3(G) : v(G) = n, e(G) = m\}$
- ► Mantel 1906, Turán'41: $\max\{m: g(n, m) = 0\} = \lfloor \frac{n^2}{4} \rfloor$

- $ightharpoonup g(n,m) := \min\{\#K_3(G) : v(G) = n, \ e(G) = m\}$
- ► Mantel 1906, Turán'41: $\max\{m: g(n, m) = 0\} = \lfloor \frac{n^2}{4} \rfloor$
- ► Rademacher'41: $g(n, \lfloor \frac{n^2}{4} \rfloor + 1) = \lfloor \frac{n}{2} \rfloor$

▶ Erdős'55: $m \leq \lfloor \frac{n^2}{4} \rfloor + 3$

- ▶ Erdős'55: $m \leq \lfloor \frac{n^2}{4} \rfloor + 3$
- ▶ Erdős'62: $m \leq \lfloor \frac{n^2}{4} \rfloor + \varepsilon n$

- ► Erdős'55: $m \le |\frac{n^2}{4}| + 3$
- ▶ Erdős'62: $m \leq \lfloor \frac{n^2}{4} \rfloor + \varepsilon n$
- ► Erdős'55: Is $g(n, \lfloor \frac{n^2}{4} \rfloor + q) = q \cdot \lfloor \frac{n}{2} \rfloor$ for q < n/2?

- ► Erdős'55: $m \le |\frac{n^2}{4}| + 3$
- ► Erdős'62: $m \leq \lfloor \frac{n^2}{4} \rfloor + \varepsilon n$
- ► Erdős'55: Is $g(n, \lfloor \frac{n^2}{4} \rfloor + q) = q \cdot \lfloor \frac{n}{2} \rfloor$ for q < n/2?
 - $K_{k,k} + q$ edges versus $K_{k+1,k-1} + (q+1)$ edges

- ► Erdős'55: $m \le |\frac{n^2}{4}| + 3$
- ► Erdős'62: $m \leq \left| \frac{n^2}{4} \right| + \varepsilon n$
- ► Erdős'55: Is $g(n, \lfloor \frac{n^2}{4} \rfloor + q) = q \cdot \lfloor \frac{n}{2} \rfloor$ for q < n/2?
 - $K_{k,k} + q$ edges versus $K_{k+1,k-1} + (q+1)$ edges
- Lovász-Simonovits'75: Yes

- ► Erdős'55: $m \le |\frac{n^2}{4}| + 3$
- ▶ Erdős'62: $m \leq \left| \frac{n^2}{4} \right| + \varepsilon n$
- ► Erdős'55: Is $g(n, \lfloor \frac{n^2}{4} \rfloor + q) = q \cdot \lfloor \frac{n}{2} \rfloor$ for q < n/2?
 - $K_{k,k} + q$ edges versus $K_{k+1,k-1} + (q+1)$ edges
- Lovász-Simonovits'75: Yes
- ▶ Lovász-Simonovits'83: $m \le \lfloor \frac{n^2}{4} \rfloor + \varepsilon n^2$

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$
- ► Moon-Moser'62, Nordhaus-Stewart'62 (Goodman'59): $g(a) \ge 2a^2 a$

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$
- ► Moon-Moser'62, Nordhaus-Stewart'62 (Goodman'59): $g(a) \ge 2a^2 a$
- Bollobás'76: better lower bound

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$
- ► Moon-Moser'62, Nordhaus-Stewart'62 (Goodman'59): $g(a) \ge 2a^2 a$
- Bollobás'76: better lower bound
- ► Fisher'89: g(a) for $\frac{1}{2} \le a \le \frac{2}{3}$

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$
- ► Moon-Moser'62, Nordhaus-Stewart'62 (Goodman'59): $g(a) \ge 2a^2 a$
- Bollobás'76: better lower bound
- ► Fisher'89: g(a) for $\frac{1}{2} \le a \le \frac{2}{3}$
- ► Razborov'08: *g*(*a*) for all *a*

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$
- ► Moon-Moser'62, Nordhaus-Stewart'62 (Goodman'59): $g(a) \ge 2a^2 a$
- Bollobás'76: better lower bound
- ► Fisher'89: g(a) for $\frac{1}{2} \le a \le \frac{2}{3}$
- ► Razborov'08: g(a) for all a
- No stability

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$
- ► Moon-Moser'62, Nordhaus-Stewart'62 (Goodman'59): $g(a) \ge 2a^2 a$
- Bollobás'76: better lower bound
- ► Fisher'89: g(a) for $\frac{1}{2} \le a \le \frac{2}{3}$
- Razborov'08: g(a) for all a
- No stability
 - ► H_n^a : modify the last two parts of $K_{cn,...,cn,(1-tc)n}$

- ▶ Upper bound: $K_{cn,...,cn,(1-tc)n}$
- ► Moon-Moser'62, Nordhaus-Stewart'62 (Goodman'59): $g(a) \ge 2a^2 a$
- Bollobás'76: better lower bound
- ► Fisher'89: g(a) for $\frac{1}{2} \le a \le \frac{2}{3}$
- Razborov'08: g(a) for all a
- No stability
 - ► H_n^a : modify the last two parts of $K_{cn,...,cn,(1-tc)n}$
- ► P.-Razborov \geq '14: \forall almost extremal G_n is $o(n^2)$ -close to some H_n^a

Upper bound: Kruskal'63, Katona'66

Subgraph density

$$\phi(F, G) = \mathbf{Prob} \{ G[\mathsf{random} \ v(F)\mathsf{-set}] \cong F \}$$

Subgraph density

$$\phi(F, G) = \mathbf{Prob} \{ G[\mathsf{random}\ v(F)\mathsf{-set}] \cong F \}$$

▶ F = {finite graphs}

Subgraph density

$$\phi(F,G) = \mathbf{Prob} \{ G[\mathsf{random}\ v(F)\mathsf{-set}] \cong F \}$$

- ▶ F = {finite graphs}
- \triangleright (G_n) converges if

$$\forall F \in \mathcal{F} \quad \exists \lim_{n \to \infty} \phi(F, G_n)$$

Subgraph density

$$\phi(F,G) = \mathbf{Prob}\{G[\mathsf{random}\ v(F)\mathsf{-set}] \cong F\}$$

- ▶ F = {finite graphs}
- \triangleright (G_n) converges if

$$\forall \ F \in \mathcal{F} \quad \exists \lim_{n \to \infty} \phi(F, G_n) =: \phi(F)$$

Subgraph density

$$\phi(F, G) = \mathbf{Prob} \{ G[\text{ random } v(F) \text{-set }] \cong F \}$$

- ▶ F = {finite graphs}
- ▶ (*G_n*) converges if

$$\forall \ F \in \mathcal{F} \quad \exists \lim_{n \to \infty} \phi(F, G_n) =: \phi(F)$$

LIM = {all such φ}

Subgraph density

$$\phi(F, G) = \text{Prob}\{G[\text{random } v(F)\text{-set}] \cong F\}$$

- ▶ F = {finite graphs}
- \triangleright (G_n) converges if

$$\forall \ F \in \mathcal{F} \quad \exists \lim_{n \to \infty} \phi(F, G_n) =: \phi(F)$$

▶ LIM = {all such ϕ } ⊆ [0, 1] $^{\mathcal{F}}$

Subgraph density

$$\phi(F, G) = \mathbf{Prob} \{ G[\text{ random } v(F) \text{-set }] \cong F \}$$

- ▶ F = {finite graphs}
- \triangleright (G_n) converges if

$$\forall \ F \in \mathcal{F} \quad \exists \lim_{n \to \infty} \phi(F, G_n) =: \phi(F)$$

- ▶ LIM = {all such ϕ } ⊆ [0, 1]^{\mathcal{F}}
- $g(a) = \inf\{\phi(K_3) : \phi(K_2) = a\}$

Razborov's Flag Algebra \mathcal{A}^0

 $\blacktriangleright \ \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$

- $\blacktriangleright \ \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$
- $\phi \in LIM$

- $ightharpoonup \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$
- $\phi \in LIM$
- $\mathbb{R}\mathcal{F}^0 := \{\text{quantum graphs}\} = \{\sum \alpha_i F_i\}$

- $ightharpoonup \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$
- $\phi \in LIM$
- ▶ $\mathbb{R}\mathcal{F}^0 := \{\text{quantum graphs}\} = \{\sum \alpha_i F_i\}$
- ▶ Linearity: $\phi : \mathbb{R}\mathcal{F}^0 \to \mathbb{R}$

- $ightharpoonup \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$
- $\phi \in LIM$
- ▶ $\mathbb{R}\mathcal{F}^0 := \{\text{quantum graphs}\} = \{\sum \alpha_i F_i\}$
- ▶ Linearity: $\phi : \mathbb{R}\mathcal{F}^0 \to \mathbb{R}$
- ullet $\mathcal{A}^0:=\mathbb{R}\mathcal{F}^0/ig\langle ext{linear relations that always hold}ig
 angle$

- $ightharpoonup \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$
- $\phi \in LIM$
- ▶ $\mathbb{R}\mathcal{F}^0 := \{\text{quantum graphs}\} = \{\sum \alpha_i F_i\}$
- ▶ Linearity: $\phi : \mathbb{R}\mathcal{F}^0 \to \mathbb{R}$
- ullet $\mathcal{A}^0:=\mathbb{R}\mathcal{F}^0/ig\langle ext{linear relations that always hold}ig
 angle$

- $ightharpoonup \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$
- $\phi \in LIM$
- ▶ $\mathbb{R}\mathcal{F}^0 := \{\text{quantum graphs}\} = \{\sum \alpha_i F_i\}$
- ▶ Linearity: $\phi : \mathbb{R}\mathcal{F}^0 \to \mathbb{R}$
- ullet $\mathcal{A}^0:=\mathbb{R}\mathcal{F}^0/\langle ext{linear relations that always hold}
 angle$
- ▶ Define: $F_1 \cdot F_2 := \sum_H c_H H$

- $ightharpoonup \mathcal{F}^0 = \{ \text{unlabeled graphs} \}$
- $\phi \in LIM$
- ▶ $\mathbb{R}\mathcal{F}^0 := \{\text{quantum graphs}\} = \{\sum \alpha_i F_i\}$
- ▶ Linearity: $\phi : \mathbb{R}\mathcal{F}^0 \to \mathbb{R}$
- ullet $\mathcal{A}^0:=\mathbb{R}\mathcal{F}^0/\langle ext{linear relations that always hold}
 angle$
- ▶ Define: $F_1 \cdot F_2 := \sum_H c_H H$
- $\phi:\mathcal{A}^0 \to \mathbb{R}$ is algebra homomorphism

• $\phi \in \text{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R}) = \{\text{positive homomorphisms}\}$

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$

 - ▶ Distribution on \mathcal{F}_n^0

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$

 - ▶ Distribution on \mathcal{F}_n^0
 - ▶ **Prob**[random $G_n \rightarrow \phi$] = 1

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$

 - ▶ Distribution on \mathcal{F}_n^0
 - ▶ **Prob**[random $G_n \rightarrow \phi$] = 1
 - $\phi \in LIM$

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$

 - ▶ Distribution on \mathcal{F}_n^0
 - ▶ **Prob**[random $G_n \rightarrow \phi$] = 1
 - $\phi \in LIM$
- ▶ $\sum \alpha_i F_i \ge 0$ is true if

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$

 - ▶ Distribution on \mathcal{F}_n^0
 - ▶ **Prob**[random $G_n \rightarrow \phi$] = 1
 - $\phi \in LIM$
- ▶ $\sum \alpha_i F_i \ge 0$ is true if
 - $\forall \phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R}) \ \sum \alpha_i \phi(F_i) \ge 0$

- $\phi \in \operatorname{Hom}(\mathcal{A}^0, \mathbb{R})$ is positive if $\forall F \in \mathcal{F}^0 \ \phi(F) \geq 0$
- ▶ $\operatorname{Hom}^+(\mathcal{A}^0,\mathbb{R}) = \{\text{positive homomorphisms}\}$
- ► Lovász-Szegedy'06, Razborov'07: $LIM = Hom^+(A^0, \mathbb{R})$
- ▶ \supseteq : Let $\phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R})$
 - $\blacktriangleright \sum_{|F|=n} \phi(F) = 1$
 - ▶ Distribution on \mathcal{F}_n^0
 - ▶ **Prob**[random $G_n \rightarrow \phi$] = 1
 - $\phi \in LIM$
- ▶ $\sum \alpha_i F_i \ge 0$ is true if
 - $\forall \phi \in \operatorname{Hom}^+(\mathcal{A}^0, \mathbb{R}) \ \sum \alpha_i \phi(F_i) \geq 0$
 - ► Equivalently: $\forall G_n \quad \sum \alpha_i \phi(F_i, G_n) \geq o(1)$

h(a) =conjectured value

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1] $^{\mathcal{F}}$ is closed

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$
- $ightharpoonup c: e(K_{cn,cn,(1-2c)n}) \approx a\binom{n}{2}$

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$
- $c: e(K_{cn,cn,(1-2c)n}) \approx a\binom{n}{2}$
- Assume $\frac{1}{2} < a < \frac{2}{3}$

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$
- $c: e(K_{cn,cn,(1-2c)n}) \approx a\binom{n}{2}$
- ► Assume $\frac{1}{2} < a < \frac{2}{3}$
 - Otherwise done by the Goodman bound

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$
- $c: e(K_{cn,cn,(1-2c)n}) \approx a\binom{n}{2}$
- ▶ Assume $\frac{1}{2} < a < \frac{2}{3}$
 - Otherwise done by the Goodman bound
- h is differentiable at a

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$
- $c: e(K_{cn,cn,(1-2c)n}) \approx a\binom{n}{2}$
- ▶ Assume $\frac{1}{2} < a < \frac{2}{3}$
 - Otherwise done by the Goodman bound
- h is differentiable at a
- ▶ Pick $G_n \rightarrow \phi_0$

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$
- $ightharpoonup c: e(K_{cn,cn,(1-2c)n}) \approx a\binom{n}{2}$
- ▶ Assume $\frac{1}{2} < a < \frac{2}{3}$
 - Otherwise done by the Goodman bound
- h is differentiable at a
- ▶ Pick $G_n \rightarrow \phi_0$
 - ► Rate of growth: ≈ cn triangles per new edge

- h(a) =conjectured value
- ▶ LIM \subseteq [0, 1]^{\mathcal{F}} is closed \Rightarrow compact
- $f(\phi) := \phi(K_3) h(\phi(K_2))$ is continuous
- ▶ $\exists \phi_0$ that minimises f on $\{\phi \in \text{LIM} : \frac{1}{2} \leq \phi(K_2) \leq \frac{2}{3}\}$
- $a := \phi_0(K_2)$
- $ightharpoonup c: e(K_{cn,cn,(1-2c)n}) \approx a\binom{n}{2}$
- ▶ Assume $\frac{1}{2} < a < \frac{2}{3}$
 - Otherwise done by the Goodman bound
- h is differentiable at a
- ▶ Pick $G_n \rightarrow \phi_0$
 - ► Rate of growth: ≈ cn triangles per new edge
 - ▶ G_n has $\lesssim cn$ triangles on almost every edge

► Flag algebra statement

$$\phi_{\mathbf{0}}^{\mathbf{E}}(K_3^{\mathbf{E}}) \leq c$$
 a.s.

► Flag algebra statement

$$\phi_0^{\mathcal{E}}(K_3^{\mathcal{E}}) \leq c$$
 a.s.

Informal explanation:

► Flag algebra statement

$$\phi_0^E(K_3^E) \leq c$$
 a.s.

- Informal explanation:
 - $G_n \rightarrow \phi_0$

Flag algebra statement

$$\phi_0^E(K_3^E) \leq c$$
 a.s.

- Informal explanation:
 - $ightharpoonup G_n o \phi_0$
 - ϕ_0^E : Two random adjacent roots x_1, x_2 in G_n

Flag algebra statement

$$\phi_0^E(K_3^E) \leq c$$
 a.s.

- Informal explanation:
 - $G_n \rightarrow \phi_0$
 - ϕ_0^E : Two random adjacent roots x_1, x_2 in G_n
 - K_3^E : Density of rooted triangles

Flag Algebra \mathcal{A}^{E}

• $E := (K_2, 2 \text{ roots})$

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, x_{1}, x_{2}) : F \in \mathcal{F}^{0}, x_{1} \sim x_{2} \}$

- $E := (K_2, 2 \text{ roots})$
- $\quad \blacktriangleright \ \mathcal{F}^E := \{ (F, x_1, x_2) : F \in \mathcal{F}^0, x_1 \sim x_2 \}$
- $\phi(F, G)$: root-preserving induced density

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, x_1, x_2) : F \in \mathcal{F}^0, x_1 \sim x_2 \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, x_1, x_2) : F \in \mathcal{F}^0, x_1 \sim x_2 \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$
- $\phi^{\mathsf{E}}: \mathbb{R}\mathcal{F}^{\mathsf{E}} \to \mathbb{R}$

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, X_{1}, X_{2}) : F \in \mathcal{F}^{0}, X_{1} \sim X_{2} \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$
- $\phi^{\mathsf{E}}: \mathbb{R}\mathcal{F}^{\mathsf{E}} \to \mathbb{R}$
- $ightharpoonup \mathcal{A}^{\it E} := \left(\mathbb{R} \mathcal{F}^{\it E} / \langle {\sf trivial relations} \rangle, \, {\sf multiplication} \right)$

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, X_{1}, X_{2}) : F \in \mathcal{F}^{0}, X_{1} \sim X_{2} \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$
- $ightharpoonup \mathcal{A}^{\it E} := (\mathbb{R}\mathcal{F}^{\it E}/\langle {\sf trivial relations} \rangle, {\sf multiplication})$
- ▶ Razborov'07: {limits ϕ^E } = Hom⁺(\mathcal{A}^E , \mathbb{R})

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, X_{1}, X_{2}) : F \in \mathcal{F}^{0}, X_{1} \sim X_{2} \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$
- $ightharpoonup \mathcal{A}^{\it E} := (\mathbb{R}\mathcal{F}^{\it E}/\langle {\sf trivial relations} \rangle, {\sf multiplication})$
- ▶ Razborov'07: {limits ϕ^E } = Hom⁺(\mathcal{A}^E , \mathbb{R})
- ► Random homomorphism $\phi_0^E(K_3^E)$:

Flag Algebra A^E

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, X_{1}, X_{2}) : F \in \mathcal{F}^{0}, X_{1} \sim X_{2} \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$
- $ightharpoonup \mathcal{A}^{\it E} := (\mathbb{R}\mathcal{F}^{\it E}/\langle {\sf trivial relations} \rangle, {\sf multiplication})$
- ▶ Razborov'07: {limits ϕ^E } = Hom⁺(\mathcal{A}^E , \mathbb{R})
- ▶ Random homomorphism $\phi_0^E(K_3^E)$:
 - $G_n \rightarrow \phi$

Flag Algebra A^E

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, X_{1}, X_{2}) : F \in \mathcal{F}^{0}, X_{1} \sim X_{2} \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$
- $ightharpoonup \mathcal{A}^{\it E} := (\mathbb{R}\mathcal{F}^{\it E}/\langle {\sf trivial relations} \rangle, {\sf multiplication})$
- ▶ Razborov'07: {limits ϕ^E } = Hom⁺(\mathcal{A}^E , \mathbb{R})
- ► Random homomorphism $\phi_0^E(K_3^E)$:
 - $G_n \rightarrow \phi$
 - $(G_n, [random x_1 \sim x_2]) \in \mathcal{M}(\mathcal{F}^E)$

Flag Algebra A^E

- $E := (K_2, 2 \text{ roots})$
- $\mathcal{F}^{E} := \{ (F, X_{1}, X_{2}) : F \in \mathcal{F}^{0}, X_{1} \sim X_{2} \}$
- $\phi(F, G)$: root-preserving induced density
- ▶ $G_n \in \mathcal{F}^E$ converges if $\forall F \in \mathcal{F}^E \ \phi^E(F, G_n) \to \phi^E(F)$
- $\phi^{E}: \mathbb{R}\mathcal{F}^{E} \to \mathbb{R}$
- $ightharpoonup \mathcal{A}^{\it E} := (\mathbb{R}\mathcal{F}^{\it E}/\langle {\sf trivial relations} \rangle, {\sf multiplication})$
- ▶ Razborov'07: {limits ϕ^E } = Hom⁺(\mathcal{A}^E , \mathbb{R})
- ▶ Random homomorphism $\phi_0^E(K_3^E)$:
 - $G_n \rightarrow \phi$
 - $(G_n, [random x_1 \sim x_2]) \in \mathcal{M}(\mathcal{F}^E)$
 - Weak limit

▶ Remove $x \in V(G_n)$:

- ▶ Remove $x \in V(G_n)$:
 - $\qquad \qquad \quad \bullet \ \phi(\textit{K}_{2},\textit{G}_{n}):$

- ▶ Remove $x \in V(G_n)$:
 - $ightharpoonup \partial \phi(K_2, G_n)$:
 - ▶ Remove edges: $-d(x)/\binom{n}{2}$

- ▶ Remove $x \in V(G_n)$:
 - $\triangleright \partial \phi(K_2, G_n)$:
 - ▶ Remove edges: $-d(x)/\binom{n}{2}$
 - ► Remove isolated $x: \times \binom{n}{2} / \binom{n-1}{2} = 1 + \frac{2}{n} + \dots$

- ▶ Remove $x \in V(G_n)$:
 - $\triangleright \partial \phi(K_2, G_n)$:
 - ▶ Remove edges: $-d(x)/\binom{n}{2}$
 - ► Remove isolated $x: \times \binom{n}{2} / \binom{n-1}{2} = 1 + \frac{2}{n} + \dots$
 - ► Total change: $-K_2^1(x)/\binom{n}{2} + a\frac{2}{n} + ...$

- ▶ Remove $x \in V(G_n)$:
 - $ightharpoonup \partial \phi(K_2, G_n)$:
 - ► Remove edges: $-d(x)/\binom{n}{2}$
 - ► Remove isolated $x: \times \binom{n}{2} / \binom{n-1}{2} = 1 + \frac{2}{n} + \dots$
 - ► Total change: $-K_2^1(x)/\binom{n}{2} + a\frac{2}{n} + ...$

- ▶ Remove $x \in V(G_n)$:
 - $ightharpoonup \partial \phi(K_2, G_n)$:
 - ▶ Remove edges: $-d(x)/\binom{n}{2}$
 - ► Remove isolated $x: \times {n \choose 2} / {n-1 \choose 2} = 1 + \frac{2}{n} + \dots$
 - ► Total change: $-K_2^1(x)/\binom{n}{2} + a^{\frac{2}{n}} + ...$
- ► Expect: $\partial \phi(K_3) \gtrsim h'(a) \partial \phi(K_2)$

- ▶ Remove $x \in V(G_n)$:
 - $\triangleright \partial \phi(K_2, G_n)$:
 - ▶ Remove edges: $-d(x)/\binom{n}{2}$
 - ▶ Remove isolated $x: \times \binom{n}{2} / \binom{n-1}{2} = 1 + \frac{2}{n} + \dots$
 - ► Total change: $-K_2^1(x)/\binom{n}{2} + a^{\frac{2}{n}} + \dots$
- ▶ Expect: $\partial \phi(K_3) \gtrsim h'(a) \partial \phi(K_2)$
- Cloning x: signs change

- ▶ Remove $x \in V(G_n)$:
 - $\triangleright \partial \phi(K_2, G_n)$:
 - ▶ Remove edges: $-d(x)/\binom{n}{2}$
 - ▶ Remove isolated $x: \times \binom{n}{2} / \binom{n-1}{2} = 1 + \frac{2}{n} + \dots$
 - ► Total change: $-K_2^1(x)/\binom{n}{2} + a\frac{2}{n} + \dots$
- ► Expect: $\partial \phi(K_3) \gtrsim h'(a) \partial \phi(K_2)$
- Cloning x: signs change
- Approximate equality for almost all x

- ▶ Remove $x \in V(G_n)$:
 - $\triangleright \partial \phi(K_2, G_n)$:
 - ▶ Remove edges: $-d(x)/\binom{n}{2}$
 - ► Remove isolated x: $\times \binom{n}{2} / \binom{n-1}{2} = 1 + \frac{2}{n} + \dots$
 - ► Total change: $-K_2^1(x)/\binom{n}{2} + a^{\frac{2}{n}} + ...$
- ▶ Expect: $\partial \phi(K_3) \gtrsim h'(a) \partial \phi(K_2)$
- Cloning x: signs change
- Approximate equality for almost all x
- Flag algebra statement:

$$-3! \ \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right) \quad a.s.$$

► Recall: A.s.

- ► Recall: A.s.
 - $-3! \phi_0^{1}(K_3^{1}) + 3\phi_0(K_3) = 3c \left(-2\phi_0^{1}(K_2^{1}) + 2a\right)$

Recall: A.s.

- $\begin{array}{ll} & -3! \ \phi_{\mathbf{0}}^{\mathbf{1}}(K_{3}^{1}) + 3\phi_{0}(K_{3}) = 3c \left(-2\phi_{\mathbf{0}}^{\mathbf{1}}(K_{2}^{1}) + 2a \right) \\ & \bullet \ \phi_{\mathbf{0}}^{\mathbf{E}}(K_{3}^{\mathbf{E}}) \leq c \end{array}$

- Recall: A.s.
 - $\begin{array}{ll} & -3!\ \phi_{\mathbf{0}}^{\mathbf{1}}(K_{3}^{\mathbf{1}}) + 3\phi_{0}(K_{3}) = 3c\left(-2\phi_{\mathbf{0}}^{\mathbf{1}}(K_{2}^{\mathbf{1}}) + 2a\right) \\ & \bullet\ \phi_{\mathbf{0}}^{\mathbf{E}}(K_{3}^{\mathbf{E}}) \leq c \end{array}$
- Average?

- Recall: A.s.
 - $-3! \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right)$
 - $\phi_0^E(K_3^E) \leq c$
- Average?
 - ▶ 0 = 0

Recall: A.s.

$$-3! \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right)$$

•
$$\phi_{\mathbf{0}}^{\mathbf{E}}(K_3^{\mathbf{E}}) \leq c$$

Average?

- Recall: A.s.
 - $-3! \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right)$
- Average?
 - **▶** 0 = 0 ⓒ
 - Slack

- Recall: A.s.
 - $-3! \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right)$
- Average?

 - ► Slack ②

- Recall: A.s.
 - $-3! \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right)$
 - $\phi_{\mathbf{0}}^{\mathbf{E}}(K_3^{\mathbf{E}}) \leq c$
- Average?
 - ▶ 0 = 0 ②
 - ► Slack ③
- ▶ Multiply by K_2^1 & \overline{P}_3^E and then average!

- Recall: A.s.
 - $-3! \phi_{\mathbf{0}}^{\mathbf{1}}(K_3^1) + 3\phi_{\mathbf{0}}(K_3) = 3c \left(-2\phi_{\mathbf{0}}^{\mathbf{1}}(K_2^1) + 2a\right)$
 - $\phi_{\mathbf{0}}^{\mathbf{E}}(K_3^{\mathbf{E}}) \leq c$
- Average?
 - ▶ 0 = 0 ②
 - ► Slack ②
- ▶ Multiply by K_2^1 & \overline{P}_3^E and then average!
- Calculations give

- Recall: A.s.
 - $-3! \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right)$
 - $\phi_{\mathbf{0}}^{\mathbf{E}}(K_3^{\mathbf{E}}) \leq c$
- Average?
 - **▶** 0 = 0 ⓒ
 - ► Slack ②
- ▶ Multiply by K_2^1 & \overline{P}_3^E and then average!
- Calculations give

$$\phi_0(K_3) \geq \frac{3ac(2a-1) + \phi_0(K_4) + \frac{1}{4}\phi_0(\overline{K}_{1,3})}{3c + 3a - 2}$$

- Recall: A.s.
 - $-3! \phi_0^1(K_3^1) + 3\phi_0(K_3) = 3c \left(-2\phi_0^1(K_2^1) + 2a\right)$
 - $\qquad \qquad \phi_{\mathbf{0}}^{\mathbf{E}}(K_{3}^{\mathbf{E}}) \leq c$
- Average?
 - **▶** 0 = 0 ②
 - ► Slack ②
- ▶ Multiply by K_2^1 & \overline{P}_3^E and then average!
- Calculations give

$$\phi_0(K_3) \geq \frac{3ac(2a-1) + \phi_0(K_4) + \frac{1}{4}\phi_0(\overline{K}_{1,3})}{3c + 3a - 2}$$

$$\qquad \qquad \phi_0(\mathcal{K}_4) \geq 0 \& \phi_0(\overline{\mathcal{K}}_{1,3}) \geq 0 \quad \Rightarrow \quad \phi_0(\mathcal{K}_3) \geq h(a)$$

Extremal limit: limits of almost extremal graphs

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: { $\phi \in \text{LIM} : \phi(K_3) = g(\phi(K_2))$ }

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(K_3) = g(\phi(K_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(K_3) = g(\phi(K_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - ▶ Pick a counterexample (G_n)

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - Pick a counterexample (G_n)
 - Subsequence convergent to some φ

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - ▶ Pick a counterexample (G_n)
 - Subsequence convergent to some \(\phi \)
 - $H_n^a o \phi$

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(K_3) = g(\phi(K_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - ▶ Pick a counterexample (G_n)
 - Subsequence convergent to some φ
 - $H_n^a \rightarrow \phi$
 - $\delta_{\square}(G_n, H_n^a) \rightarrow 0$

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - ▶ Pick a counterexample (G_n)
 - Subsequence convergent to some φ
 - $H_n^a \rightarrow \phi$
 - $\delta_{\square}(G_n, H_n^a) \rightarrow 0$
 - Overlay $V(G_n) = V(H_n^a)$

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - ▶ Pick a counterexample (*G_n*)
 - Subsequence convergent to some φ
 - $ightharpoonup H_n^a o \phi$
 - $\delta_{\square}(G_n, H_n^a) \rightarrow 0$
 - Overlay $V(G_n) = V(H_n^a) = V_1 \cup \cdots \cup V_{t-1} \cup U$

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - Pick a counterexample (G_n)
 - ► Subsequence convergent to some φ
 - $H_n^a \rightarrow \phi$
 - $\delta_{\square}(G_n, H_n^a) \rightarrow 0$
 - Overlay $V(G_n) = V(H_n^a) = V_1 \cup \cdots \cup V_{t-1} \cup U$
 - $G[V_i, \overline{V_i}]$ almost complete

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - Pick a counterexample (G_n)
 - ► Subsequence convergent to some φ
 - $H_n^a o \phi$
 - $\delta_{\square}(G_n, H_n^a) \rightarrow 0$
 - Overlay $V(G_n) = V(H_n^a) = V_1 \cup \cdots \cup V_{t-1} \cup U$
 - $G[V_i, \overline{V_i}]$ almost complete
 - ▶ G[V_i] almost empty

- Extremal limit: limits of almost extremal graphs
- ▶ Equivalently: $\{ \phi \in \text{LIM} : \phi(\mathcal{K}_3) = g(\phi(\mathcal{K}_2)) \}$
- ▶ P.-Razborov \geq '14: {extremal limits} = {limits of H_n^a 's}
- Implies the discrete theorem
 - Pick a counterexample (G_n)
 - ► Subsequence convergent to some φ
 - $H_n^a o \phi$
 - $\delta_{\square}(G_n, H_n^a) \rightarrow 0$
 - Overlay $V(G_n) = V(H_n^a) = V_1 \cup \cdots \cup V_{t-1} \cup U$
 - $G[V_i, \overline{V_i}]$ almost complete
 - ▶ G[V_i] almost empty
 - G[U] has $o(n^3)$ triangles

• Assume $\phi_0(K_3) = h(a)$

- Assume $\phi_0(K_3) = h(a)$
- ► Lovász-Simonovits'83: $a \in (\frac{1}{2}, \frac{2}{3})$

- Assume $\phi_0(K_3) = h(a)$
- ► Lovász-Simonovits'83: $a \in (\frac{1}{2}, \frac{2}{3})$
- ▶ Density of K_4 and $\overline{K}_{1,3}$ is 0

- Assume $\phi_0(K_3) = h(a)$
- ► Lovász-Simonovits'83: $a \in (\frac{1}{2}, \frac{2}{3})$
- ▶ Density of K_4 and $\overline{K}_{1,3}$ is 0
- $\qquad \qquad \mathbf{If} \ \phi_0(\overline{P}_3) = \mathbf{0},$

- Assume $\phi_0(K_3) = h(a)$
- ► Lovász-Simonovits'83: $a \in (\frac{1}{2}, \frac{2}{3})$
- ▶ Density of K_4 and $\overline{K}_{1,3}$ is 0
- $\qquad \qquad \mathbf{If} \ \phi_0(\overline{P}_3) = \mathbf{0},$
 - Complete partite

- Assume $\phi_0(K_3) = h(a)$
- ► Lovász-Simonovits'83: $a \in (\frac{1}{2}, \frac{2}{3})$
- ▶ Density of K_4 and $\overline{K}_{1,3}$ is 0
- $\qquad \qquad \mathbf{If} \ \phi_0(\overline{P}_3) = \mathbf{0},$
 - Complete partite
 - ► K₄-free

- Assume $\phi_0(K_3) = h(a)$
- ► Lovász-Simonovits'83: $a \in (\frac{1}{2}, \frac{2}{3})$
- ▶ Density of K_4 and $\overline{K}_{1,3}$ is 0
- $\qquad \qquad \mathbf{If} \ \phi_0(\overline{P}_3) = \mathbf{0},$
 - Complete partite
 - K_4 -free \Rightarrow at most 3 parts

- Assume $\phi_0(K_3) = h(a)$
- ► Lovász-Simonovits'83: $a \in (\frac{1}{2}, \frac{2}{3})$
- ▶ Density of K_4 and $\overline{K}_{1,3}$ is 0
- $\qquad \qquad \mathbf{If} \ \phi_0(\overline{P}_3) = \mathbf{0},$
 - Complete partite
 - ▶ K_4 -free \Rightarrow at most 3 parts \Rightarrow done!

► Special graphs F_1 and F_2 :

- ► Special graphs F_1 and F_2 :
- Claim: $\phi_0(F_1) = \phi_0(F_2) = 0$

- ► Special graphs F_1 and F_2 :
- Claim: $\phi_0(F_1) = \phi_0(F_2) = 0$
- ▶ Claim: Exist many \overline{P}_3 's st

Case 2:
$$\phi_0(\overline{P}_3) > 0$$

- ► Special graphs F_1 and F_2 :
- Claim: $\phi_0(F_1) = \phi_0(F_2) = 0$
- ▶ Claim: Exist many \overline{P}_3 's st
 - ▶ $|A| = \Omega(n)$: vertices sending 3 edges to it

- ► Special graphs F_1 and F_2 :
- Claim: $\phi_0(F_1) = \phi_0(F_2) = 0$
- ▶ Claim: Exist many \overline{P}_3 's st
 - ▶ $|A| = \Omega(n)$: vertices sending 3 edges to it
 - ▶ $|B| = \Omega(n)$: vertices sending \leq 2 edges to it

- ► Special graphs F_1 and F_2 :
- Claim: $\phi_0(F_1) = \phi_0(F_2) = 0$
- ▶ Claim: Exist many \overline{P}_3 's st
 - ▶ $|A| = \Omega(n)$: vertices sending 3 edges to it
 - ▶ $|B| = \Omega(n)$: vertices sending \leq 2 edges to it
- ▶ Non-edge across \rightarrow a copy of F_1 , F_2 , or $\overline{K}_{1,3}$

- Claim: $\phi_0(F_1) = \phi_0(F_2) = 0$
- ▶ Claim: Exist many \overline{P}_3 's st
 - ▶ $|A| = \Omega(n)$: vertices sending 3 edges to it
 - ▶ $|B| = \Omega(n)$: vertices sending \leq 2 edges to it
- ▶ Non-edge across \rightarrow a copy of F_1 , F_2 , or $\overline{K}_{1,3}$
- $G_n[A, B]$ is almost complete

- ► Special graphs F_1 and F_2 :
- Claim: $\phi_0(F_1) = \phi_0(F_2) = 0$
- ▶ Claim: Exist many \overline{P}_3 's st
 - ▶ $|A| = \Omega(n)$: vertices sending 3 edges to it
 - ▶ $|B| = \Omega(n)$: vertices sending \leq 2 edges to it
- ▶ Non-edge across \rightarrow a copy of F_1 , F_2 , or $\overline{K}_{1,3}$
- $G_n[A, B]$ is almost complete

▶ Open: Exact result for K₃

- Open: Exact result for K₃
- ▶ Nikiforov'11: Asymptotic solution for K₄

- ▶ Open: Exact result for K₃
- ► Nikiforov'11: Asymptotic solution for K₄
- ▶ Reiher \geq '14: Asymptotic solution for K_r

- Open: Exact result for K₃
- Nikiforov'11: Asymptotic solution for K₄
- ▶ Reiher \geq '14: Asymptotic solution for K_r
- Open: Structure & exact result

▶ Colour critical: $\chi(F) = r + 1 \& \chi(F - e) = r$

- ▶ Colour critical: $\chi(F) = r + 1 \& \chi(F e) = r$
 - ► Simonovits'68: $ex(n, F) = ex(n, K_{r+1}), n \ge n_0$

- ▶ Colour critical: $\chi(F) = r + 1 \& \chi(F e) = r$
 - ► Simonovits'68: $ex(n, F) = ex(n, K_{r+1}), n \ge n_0$
 - ▶ Mubayi'10: Asymptotic for $m \le ex(n, F) + \varepsilon_F n$

- ▶ Colour critical: $\chi(F) = r + 1 \& \chi(F e) = r$
 - ► Simonovits'68: $ex(n, F) = ex(n, K_{r+1}), n \ge n_0$
 - ▶ Mubayi'10: Asymptotic for $m \le ex(n, F) + \varepsilon_F n$
 - ▶ P.-Yilma \geq '14: Asymptotic for $m \leq ex(n, F) + o(n^2)$

- ▶ Colour critical: $\chi(F) = r + 1 \& \chi(F e) = r$
 - ► Simonovits'68: $ex(n, F) = ex(n, K_{r+1}), n \ge n_0$
 - ▶ Mubayi'10: Asymptotic for $m \le ex(n, F) + \varepsilon_F n$
 - ▶ P.-Yilma \geq '14: Asymptotic for $m \leq ex(n, F) + o(n^2)$
- Bipartite F

- ► Colour critical: $\chi(F) = r + 1 \& \chi(F e) = r$
 - ▶ Simonovits'68: $ex(n, F) = ex(n, K_{r+1}), n \ge n_0$
 - ▶ Mubayi'10: Asymptotic for $m \le ex(n, F) + \varepsilon_F n$
 - ▶ P.-Yilma \geq '14: Asymptotic for $m \leq ex(n, F) + o(n^2)$
- Bipartite F
 - Conjecture (Erdős-Simonovits'82, Sidorenko'93):

- ▶ Colour critical: $\chi(F) = r + 1 \& \chi(F e) = r$
 - ► Simonovits'68: $ex(n, F) = ex(n, K_{r+1}), n \ge n_0$
 - ▶ Mubayi'10: Asymptotic for $m \le ex(n, F) + \varepsilon_F n$
 - ▶ P.-Yilma \geq '14: Asymptotic for $m \leq ex(n, F) + o(n^2)$
- Bipartite F
 - Conjecture (Erdős-Simonovits'82, Sidorenko'93):
 - Random graphs are optimal

General Graphs

- ▶ Colour critical: $\chi(F) = r + 1 \& \chi(F e) = r$
 - ▶ Simonovits'68: $ex(n, F) = ex(n, K_{r+1}), n \ge n_0$
 - ▶ Mubayi'10: Asymptotic for $m \le ex(n, F) + \varepsilon_F n$
 - ▶ P.-Yilma \geq '14: Asymptotic for $m \leq ex(n, F) + o(n^2)$
- Bipartite F
 - Conjecture (Erdős-Simonovits'82, Sidorenko'93):
 - Random graphs are optimal
 - ..., Conlon-Fox-Sudakov'10, Li-Szegedy ≥'14, Kim-Lee-Lee ≥'14, ...

Novel use of computers in combinatorics

- Novel use of computers in combinatorics
 - ► Hatami-Norine'10: undecidable in general

- Novel use of computers in combinatorics
 - ► Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures

- Novel use of computers in combinatorics
 - Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures
 - Caccetta-Häggkvist Conjecture

- Novel use of computers in combinatorics
 - Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures
 - Caccetta-Häggkvist Conjecture
 - Turán density of K₄³

- Novel use of computers in combinatorics
 - Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures
 - Caccetta-Häggkvist Conjecture
 - Turán density of K₄³
 - **...**

- Novel use of computers in combinatorics
 - Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures
 - Caccetta-Häggkvist Conjecture
 - Turán density of K₄³
 - **.**..
- General and adaptable

- Novel use of computers in combinatorics
 - Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures
 - Caccetta-Häggkvist Conjecture
 - Turán density of K₄³
 - **.**...
- General and adaptable
 - Differential methods

- Novel use of computers in combinatorics
 - Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures
 - Caccetta-Häggkvist Conjecture
 - Turán density of K₄³
 - **>** ...
- General and adaptable
 - Differential methods
 - Inductive arguments

- Novel use of computers in combinatorics
 - Hatami-Norine'10: undecidable in general
- Tool in approaching old conjectures
 - Caccetta-Häggkvist Conjecture
 - Turán density of K₄³
 - **.**..
- General and adaptable
 - Differential methods
 - Inductive arguments
 - **...**

Thank you!