Лабораторная работа 3: Композитная оптимизация

Белова Юлия

25 июня 2023 г.

Содержание

1	Эксперимент 1: Выбор длины шага в субградиентном методе	2
2	Эксперимент 2: Среднее число итераций одномерного поиска в градиентных методах	ç
3	Эксперимент 3: Сравнение методов	4
	$3.1 n = 500, m = 1000 \dots $	4
	$3.2 n = 500, m = 5000 \dots $	4
	3.3 $n = 1000, m = 1000 \dots $	Ę
	$3.4 n = 1000, m = 5000 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	Ę
	3.5 Выводы	Ę

1 Эксперимент 1: Выбор длины шага в субградиентном методе

В данном эксперименте исследуется зависимость величины невязки, в нашем случае зазора двойственности, от числа итераций для различных констант в формуле для длины шага. Параметры задачи:

- 1. Lasso-задача с параметром регуляризации $\lambda=1$
- 2. $n = 500, \, m = 1000, \,$ где m размерность пространства
- 3. Три типа начальных точек:
 - (a) $x_0 \sim \text{uniform}(-1, 1)$
 - (b) $x_0 \sim \text{uniform}(-5, 5)$
 - (c) $x_0 \sim \text{uniform}(-100, 100)$
- 4. Перебираемые α_0 : [0.1, 0.5, 1.0, 1.5, 2.0]

(а) Начальная точка №1

(b) Начальная точка №2

(с) Начальная точка №3

Рис. 1: Зависимость зазора двойственности от числа итераций

По результатам эксперимента можно сделать следующий вывод: чем ниже значение α_0 , тем медленнее будет снижаться зазор двойственности, а значит будет медленнее сходиться метод в целом. Выбор оптимального α_0 не зависит от выбора начальной точки.

2 Эксперимент 2: Среднее число итераций одномерного поиска в градиентных методах

Исследуем, сколько итераций линейного поиска L необходимо проксимальному градиентному методу и ускоренному методу Нестерова. Параметры задачи:

- 1. Lasso-задача с параметром регуляризации $\lambda=1$
- 2. n = 500, m = 1000, где m размерность пространства
- 3. Начальная точка $x_0 = 0$

Рис. 2: Зависимость числа итераций линейного поиска от количества итераций метода

Оба метода не успели сойтись за максимальное число итераций - 1000. При этом минимальный зазор двойственности меньше в быстром градиентном методе (13.323 в градиентном методе и 8.007 в быстром градиентном методе). При этом среднее число итераций линейного поиска, действительно, равно примерно двум и не зависит от числа итераций.

3 Эксперимент 3: Сравнение методов

Для сравнения субградиентного метода, проксимального градиентного метода и быстрого градиентного метода на задаче Lasso были выбраны следующие параметры:

1. Количество семплов *n*: [500, 1000]

2. Размерность пространства m: [1000, 5000]

3. Regcoef: [0.1, 1.0, 5.0]

Матрица A формировалась путем перебора всевозможных пар n и m, для каждой такой матрицы проверялись различные коэффициенты l1 регуляризации. Всего проведено 12 экспериментов. Графики приводятся выборочно.

3.1
$$n = 500, m = 1000$$

Для данной задачи лучшей всего себя показал быстрый градиентный метод с коэффициентом регуляризации $\lambda = 5$, это единственный случай, когда удалось сойтись к решению.

Из графиков видно, что субградиентный метод совсем не сходится (что является следствием выбора случайного субградиента, отсюда - возможно не идем в сторону уменьшения функции). Также видно, что субградиентный метод работает быстрее остальных методов. Проксимальный градиентный метод "застрял" в какой-то точке. Быстрый градиентный метод сходится скачкообразно, вероятнее всего, на это влияет то, что мы запоминаем лучшее приближение функции v_k .

3.2
$$n = 500, m = 5000$$

На данной задаче быстрый градиентный метод сошелся при $\lambda=1,\ \lambda=5$. При этом время на решение данной задачи, по сравнению с предыдущей, выросло примерно в 4 раза. Быстрому градиентному методу, однако, потребовалось меньше итераций.

3.3 n = 1000, m = 1000

На квадратичной задаче не сошелся ни один из методов. При этом быстрый градиентный метод сходился более плавно, чем на предыдущих задачах. При этом размер зазора двойственности не сильно уменьшается в зависимости от коэффициента регуляризации.

3.4 n = 1000, m = 5000

В данной задаче сошелся к оптимуму только быстрый градиентный метод. Наблюдается все та же зависимость: чем выше коэффициент регуляризации, тем лучше сходится метод.

3.5 Выводы

- 1. Чем выше коэффициент регуляризации, тем больше вероятность того, что метод сойдется
- 2. Быстрый градиентный метод показал себя лучше всего, потому что он хоть где-то сошелся
- 3. Субградиентному методу очень трудно сойтись, начать уменьшать зазор двойственности из-за случайности в выборе субградиента