Университет ИТМО Физико-технический мегафакультет Физический факультет

5. Рабочие формулы и исходные данные.

Выборочное среднеквадратичное отклонение:

Группа ПИИКТ 1.2 К работе допущен				
Студент Мухамедьяров Артур Альбертович, Ларионов Владислав Васильевич, Шубин Егор Вячеславович		Работа выполнена		
Преподаватель	Рудель Алена Евгеньевна	Отчет принят		
	_	токол и отчет по ной работе №1		
	Исследование распред	деления случайной величины		
1. Цель работы.				
Исследование расі	пределения случайной величин	ны на примере количества слов в текстах треков Eminem		
2. Задачи, решаем	ые при выполнении работы.			
 Построить Вычислить Сравнить г 	гистограмму распределения ре среднее значение и дисперсию	о полученной выборки. ции Гаусса с такими же, как и у экспериментального		
3. Объект исследо	вания.			
Случайная величи	на – результат подсчёта количе	ества слов.		
4. Метод эксперим	иентального исследования.			
	мерение количества слов в ра чений этой случайной величин	зличных треках Eminem и проверка закономерностены.		

• Выборочное среднее как среднее арифметическое всех результатов измерений: $\langle t \rangle_N = \frac{1}{N}(t_1 + t_2 + \, \cdots + t_N) = \frac{1}{N} \sum_{i=1}^N \quad t_i \quad (1)$

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 (2)

• Значение плотности вероятности

$$\rho(t) = \frac{\Delta N}{N\Delta t} \quad (3)$$

• Максимальное значение плотности распределения

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} \quad (4)$$

• Функция Гаусса

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left\{ \left(-\frac{(t_i - \langle t \rangle_N)^2}{2\sigma^2} \right) \right\}$$
 (5)

• Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 (6)

• Доверительный интервал

$$\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t] \quad (7)$$

• Доверительный интервал для измеряемого промежутка времени

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \quad (8)$$

Формулы для вычисления приближенной вероятности попадания каждого измерения t в интервал [t₁;
 t₂]

$$t \in [\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma], t \in [\langle t \rangle_N - 2\sigma_N, \langle t \rangle_N + 2\sigma], t \in [\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma]$$
 (9)

• Соотношение вероятности попадания результата измерения в интервал $[t_1;t_2]$

$$P(t_1 < t < t_2 = \int_{t_1}^{t_2} p(t)dt \approx \frac{N_{12}}{N}$$
 (10)

 Значения вероятности попадания результата каждого измерения t в интервал [t1; t2] в стандартных (наиболее употребительных на практике) интервалах при условии реализации нормального распределения случайной величины

$$\begin{split} t &\in [\langle t \rangle_N - \sigma, \langle t \rangle_N + \sigma], P_\sigma \cong 0,683 \\ t &\in [\langle t \rangle_N - 2\sigma, \langle t \rangle_N + 2\sigma], P_{2\sigma} \cong 0,954 \\ t &\in [\langle t \rangle_N - 3\sigma, \langle t \rangle_N + 3\sigma], P_{3\sigma} \cong 0,997 \end{split} \tag{11}$$

 Относительное отклонение экспериментальной вероятности попадания результата измерения в интервал [t1; t2] от теоретической при условии реализации нормального распределения случайной величины

$$\Delta = \frac{\frac{\Delta N}{N}}{P} \cdot 100\% \quad (12)$$

6. Измерительные приборы.

Таблица 1. Измерительные приборы.

Л	© n/n	Наименование		Тип прибора	•	Погрешность прибора
1		Компьютер счётчиком слов	с	Программный (Python- скрипт)	0–2000 слов	±1 слово

- 7. Схема установки (перечень схем, которые составляют Приложение 1).
 - 1) Источник данных: тексты песен Eminem сайте Genius (страничка артиста на https://genius.com/artists/Eminem).
 - 2) Измерительный прибор: программа-счётчик слов.
 - 3) Далее: Excel/Python для статистики и построения графиков.
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Результаты прямых измерений приведены в Таблице 2 Приложения 1. (Таблица 2. Результаты прямых измерений и их обработки.)

- 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).
- Среднее арифметическое значение результатов измерений (1):

$$\langle t \rangle_N = \frac{21390}{50} = 427,8 \, c$$
лов

Выборочное среднеквадратичное отклонение (2):

$$\sigma_N \, = \, \sqrt{\frac{1070464}{49}} = 147,\! 8 \, \text{слов}$$
 Максимальное значение плотности распределения (4):

$$ho_{max} = rac{1}{147,805 \cdot \sqrt{2\pi}} = 0,0027 \ {
m c}{
m mo}{
m B}^{-1}$$

Таблица 3. Стандартные доверительные интервалы.

Интервал	Начало интервала, слова	Конец интервала, слова	ΔΝ	$\frac{\Delta N}{N}$	P, %
$\langle t \rangle_N \pm \sigma_N$	280	575,6	36	0,72	0,6827
$\langle t \rangle_N \pm 2\sigma_N$	132,2	723,4	48	0,96	0,9545

$$P(280 < t < 575,6) = \int_{380}^{575,6} p(t)dt \approx \frac{36}{50} \approx 0.72$$

Расчет попадания результата измерения в интервал
$$\langle t \rangle_N \pm \sigma_N$$
 (10):
$$P(280 < t < 575,6 = \int_{280}^{575,6} p(t)dt \approx \frac{36}{50} \approx 0,72$$
 Расчет попадания результата измерения в интервал $\langle t \rangle_N \pm 2\sigma_N$ (10):
$$P(132,2 < t < 723,4 = \int_{132,2}^{723,4} p(t)dt \approx \frac{48}{50} \approx 0,96$$
 Расчет попадания результата измерения в интервал $\langle t \rangle_N \pm 3\sigma_N$ (10):
$$P(-15,6 < t < 871,2 = \int_{-15,6}^{871,2} p(t)dt \approx \frac{49}{50} \approx 0,98$$

$$P(-15.6 < t < 871.2 = \int_{-15.6}^{871.2} p(t)dt \approx \frac{49}{50} \approx 0.98$$

Среди полученных данных t_{min} = 155 с и t_{max} = 953 с разобьем промежуток [155; 953] на $\sqrt{N} \approx 7$ равных частей: $\Delta t = 114$

Таблица 4. Данные для построения гистограммы.

№	Границы интервала	ΔN	ρ	t	$\rho(t)$
0	155-268	6	0,001053	211,5	0,000925
1	269-382	12	0,002105	325,5	0,002124
2	383-496	20	0,003509	439,5	0,002691
3	497-610	6	0,001053	553,5	0,001880
4	611-724	4	0,000702	667,5	0,000725
5	725-838	1	0,000175	781,5	0,000154
6	839-953	1	0,000175	896,0	0,000018

$$\rho(t) = \frac{6}{50 \cdot 114} = 0,001053 \text{ слов}^{-1}$$

Пример расчета значения плотности вероятности для интервала №1 (3):
$$\rho(t) = \frac{6}{50 \cdot 114} = 0,001053 \, \text{слов}^{-1}$$
 Пример расчета значения функции Гаусса для интервала №1 (5):
$$\rho(t) = \frac{1}{147,805\sqrt{2\pi}} exp \left\{ (-\frac{(-216,3)^2}{2 \cdot 147,805^2}) \right\}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

 $\Delta_{\mathrm nt}=1$ слово - инструментальная погрешность

Найдем табличное значение коэффициента Стьюдента $t_{\alpha,N}$ где доверительная вероятность $\alpha=0.95,$ а число измерений N = 50:

$$t_{\alpha,N} = 2,01$$

Рассчитаем среднеквадратичное отклонение среднего значения, для этого воспользуемся уже найденной величиной σ_N и формулой, которую можно вывести из формул (2) и (6):

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N}} * \sigma_N \ = \sqrt{\frac{1}{50}} * 147,805 \ = 20,903$$
 слов

Далее воспользовавшись формулой (8), рассчитаем доверительный интервал измеряемой величины:

 $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle_N} = 2,01 * 20,903 = 42,01$ слов

Рассчитаем абсолютную погрешность с учетом доверительного интервала и инструментальной погрешности —————

$$\Delta t_{\mathrm{a6c}} \,=\, \sqrt{\Delta t^2 + \,(rac{2}{3}\Delta_{\scriptscriptstyle\mathrm{H}t})^2} \,=\, \sqrt{42,\!01^2 \,+\, (rac{2}{3}*1)^2} = 42,\!01\,$$
слов $pprox 42\,$ слов

Рассчитаем относительную погрешность:

$$\varepsilon_t = \frac{\Delta t_{\rm a6c}}{t} * 100\% = 10\%$$

В данном случае случайная погрешность много больше инструментальной в связи с чем значение абсолютной погрешности практически не отличается от доверительного интервала.

Рассчитаем относительное отклонение экспериментальной вероятности попадания результата измерения в стандартные интервалы от теоретической при условии реализации нормального распределения измеряемой величины по формуле (12) (обозначим их как Δ_1 , Δ_2 и Δ_3 для интервалов $\langle t \rangle_N \pm \sigma_N$, $\langle t \rangle_N$, $\langle t \rangle$

$$\Delta_1 = \frac{0.720}{0.683} * 100\% = 105\%$$

$$\Delta_2 = \frac{0,960}{0.954} * 100\% = 101\%$$

$$\Delta_3 = \frac{0.980}{0.997} * 100\% = 98\%$$

Исходя из полученных расчетов можем заметить, что полученное распределение достаточно точно соответствует нормальному.

11. Графики (перечень графиков, которые составляют Приложение 2).

Гистограмма распределения измеряемой величины и график нормального распределения приведены в Приложении 2 на рисунке 1.

12. Окончательные результаты.

$$t = 427,8 \, \pm 42$$
 слов; $\varepsilon_t \, = 10\%; \; \alpha \, = \, 0,95$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы была проведена серия измерений количества слов в текстах треков Eminem. На основе 50 полученных значений рассчитаны выборочное среднее и выборочное среднеквадратичное отклонение, построена гистограмма распределения и проведено сравнение с теоретической кривой нормального распределения. Анализ показал, что распределение экспериментальных данных в целом близко к нормальному, особенно во втором и третьем стандартных интервалах, хотя в первом интервала

наблюдается некоторое превышение экспериментальной вероятности над теоретической, что может быть связано с ограниченностью выборки и особенностями текстов песен. Абсолютная погрешность измерений составила 42 слова, а относительная -- 10%, что свидетельствует о значительном влиянии случайной погрешности. Полученные результаты подтверждают корректность выбранного метода исследования и позволяют сделать вывод о характере распределения изучаемой случайной величины.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание: 1.

- 1. Пункты 1-6,8-13 Протокола-отчета **обязательны** для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.

Приложение 1. Таблица 2. Результаты прямых измерений и их обработки.

№	t _i , слова	$t_i - \langle t \rangle_N$, слова	$(t_i - \langle t \rangle_N)^2$, слова ²
1	412	-15.8	249.64
2	378	-49.8	2480.04
3	512	84.2	7089.64
4	456	28.2	795.24
5	678	250.2	62600.04
6	289	-138.8	19265.44
7	345	-82.8	6855.84
8	423	-4.8	23.04
9	389	-38.8	1505.44
10	467	39.2	1536.64
11	312	-115.8	13409.64
12	398	-29.8	888.04
13	512	84.2	7089.64
14	155	-272.8	74419.84
15	267	-160.8	25856.64
16	334	-93.8	8798.44
17	189	-238.8	57025.44
18	423	-4.8	23.04
19	345	-82.8	6855.84
20	740	312.2	97468.84
21	953	525.2	275835.04
22	456	28.2	795.24
23	278	-149.8	22440.04
24	389	-38.8	1505.44
25	334	-93.8	8798.44
26	456	28.2	795.24
27	267	-160.8	25856.64
28	378	-49.8	2480.04
29	512	84.2	7089.64
30	678	250.2	62600.04
31	456	28.2	795.24
32	567	139.2	19376.64
33	423	-4.8	23.04
34	234	-193.8	37558.44
35	389	-38.8	1505.44
36	512	84.2	7089.64
37	678	250.2	62600.04
38	456	28.2	795.24
39	345	-82.8	6855.84
40	389	-38.8	1505.44
41	278	-149.8	22440.04
42	423	-4.8	23.04
43	334	-93.8	8798.44
44	267	-160.8	25856.64
45	456	28.2	795.24
46	389	-38.8	1505.44
47	512	84.2	7089.64
7/	J14	07.2	/007.UT

48	678	250.2	62600.04
49	423	-4.8	23.04
50	456	28.2	795.24

среднее t_N: 427.8

выборочное среднеквадратичное отклонение: 147.8046145478302 контроль правильности нахождения среднего: 0.0 максимальное значение плотности распределения: 0.002699119250247314

Приложение 2.

Рисунок 1. Гистограмма распределения измеряемой величины и график нормального распределения

Добавлено примечание ([1]): красивовое