UNCLASSIFIED

AD NUMBER	
AD271472	
LIMITATION CHANGES	

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; MAY 1961. Other requests shall be referred to Aeronautical Systems Division, Wright-Patterson AFB, OH 45433. Document partially illegible.

AUTHORITY

AFRL memo dtd 12 Dec 2016

file Copy ASRCAN

WADD TECHNICAL REPORT 61-84

AD0271472

OFFICIAL FILE COPE

EMPIRICAL METHODS FOR CALCULATION OF BOND ENERGIES

H. H. JAFFE VAN TRAN ZUNG

UNIVERSITY OF CINCINNATI

MAY 1961

MATERIALS CENTRAL CONTRACT NO. AF 33(616)-6900 PROJECT NO. 7023

AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

20040224038

DISCLAIMER NOTE:

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPRODUCED FROM BEST AVAILABLE COPY

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ASTIA release to OTS not authorized.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

Copies of ASD Technical Reports and Technical Notes should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This report was prepared by the University of Cincinnati under USAF Contract No. AF 33(616)-6900. This contract was initiated Project No. 7023, "Research on Chemical Synthesis", Task No. 73666, "New Synthetic Methods for Polymers and Fluids." The work was administered under the direction of the Materials Central, Deputy for Advanced Systems Technology, Aeronautical Systems Division, with Lt. Robert J. McHenry acting as project engineer.

This report covers work conducted from January 1960 to January 1961.

ABSTRACT

Slater parameters (F's and G's) were calculated for the elements scandium to bromine and are tabulated. These parameters were used to calculate the energies of a wide variety of valence states of these elements, and of their unipositive ions, and hence valence state ionization potentials are derived. These data are tabulated.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER

A. M. LOVELACE

Chief, Polymer Branch

Nonmetallic Materials Laboratory

Materials Central

TABLE OF CONTENTS

		PAGE
ı.	INTRODUCTION	1
II.	METHODS AND RESULTS	2
	A. Slater Equations for Stationary States	2
	B. Slater Parameters	3
•	C. Valence State Equations	5
	D. Valence State Energies	6
III.	DISCUSSION	7
IV.	BIBLIOGRAPHY	· 7

LIST OF TABLES

Table										Page
TABLE	1	Multiple	regression	analysis for Sc		data				8
TABLE	2	Multiple	regression	analysis for Sc		data				9
TABLE	3	Multiple	regression	analysis for Ti	input I	data				10&11
TABLE	Ľ,	Multiple	regression	analysis for Ti		data				12
TABLE	5	Multiple	regression	analysis	input	data	for	V]	Ε,	13
TABLE	6	Multiple	regression	analysis Vanadi		data	for		•	14&15
TABLE	7	Multiple	regression	analysis for Cr		data				16&17
TABLE	8	Multiple	regression	analysis Cr II	input	data	for			18&19
TABLE	9	Multiple	regression	analysis	input	data	for	Mn	I	20
TABLE	10	Multiple	regression	analysis	input	data	for	Mn	II	21
TABLE	11	Multiple	regression	analysis	input	data	for	Fe	I	22
TABLE	12	Multiple	regression	aĥalysis	input	data	for	Fe	II	23
TABLE	13	Multiple	regression	analysis	input	data	for	Co	I	24
TABLE	14	Multiple	regression	analysis	input	data	for	Co	II	25
TABLE	15.	Multiple	regression	analysis	input	data	for	Ni	I	26
TABLE	16	Multiple	regression	analysis	input	data	for	Ni	II	27
TABLE	17	Spectrosc	opic data f	or Cu I			•			28
TABLE	18	Multiple	regression	analysis	input	data	for	Cu	II	29
TABLE	19	Multiple	regression	analysis and II	input	data	for	Zn	Ι	30
TABLE	20	Multiple	regression	analysis Ga I ar		data	for			31

	LIST OF TABLES (Continued)	Page
TABLE 21	Multiple regression analysis input data for Ge I and II	32
TAPLE 22	Multiple regression analysis input data for As I and II	33
TABLE 23	Multiple regression analysis input data for Se and II	34
TABLE 24	Spectroscopic data for Br I and II	35
TABLE 25	Parameters for C I and C II	36
TABLE 26	Parameters for Sc I	37
TABLE 27	Parameters for Sc II	3 8
TABLE 28	Parameters for Ti I	39
TABLE 29	Parameters for Ti II	40
TABLE 30	Parameters for V I	41
TABLE 31	Parameters for V II	42
TABLE 32	Parameters for Cr I	43
TABLE 33	Parameters for Cr I	44
TABLE 34	Parameters for Mn I	45
TABLE 35	Parameters for Mn II	46
TABLE 36	Parameters for Fe I	47
TABLE 37	Parameters for Fe II	48
TABLE 38	Parameters for Co I	49
TABLE 39	Parameters for Co II	50
TABLE 40	Parameters for Ni I	51
TABLE 41	Parameters for Ni II	52
TABLE 42	Parameters for Cu I	5 3
מינטאיים אים	Parameters for Cu TI	54

LIST OF TABLES (continued) Page Parameters for Zn I and II TABLE 44 55 TABLE 45 Parameters for Ga I and II 56 TABLE 46 Parameters for Ge I and II 57 TABLE 47 Parameters for As I and II 58 Parameters for Se I and II TABLE 48 59 TABLE 49 Parameters for Br I and II 60 TABLE 50 Hybrids Orbitals Used 61862 TABLE 51 Valence State ionization potential of Sc 63 TABLE 52 Valence state ionization potentials of Ti 64 TABLE 53 Valence state ionization potentials of V 65 Valence state ionization potentials of Cr TABLE 54 66 TABLE 55 Valence state ionization potentials of Mn 67 TABLE 56 Valence state ionization potentials of Fe 68 TABLE 57 69 Valence state ionization potentials of Co TABLE 58 Valence state ionization potentials of Ni 70 TABLE 59 Valence state ionization potentials of Cu 71 TABLE 60 Valence state ionization potentials of X = Zn, Ga, Ge, As, Se, Br. 72

I. INTRODUCTION

The present work, aimed at developing semi-empirical methods for estimating bond energies, is a continuation of work initiated by Jaffe and Doak (1). This work was based on an approximate application of Mulliken's "Magic Formula (2) to estimate carbon-metal bond energies in symmetrical metal alkyls.

The "Magic Formula" is an empirical equation, based on a combination of the essential features of both molecular orbital and valence bond theory, expressing the atomization energy of a compound in terms of a series of terms which can either be estimated theoretically or semiempirically. It has the form

$$D_0 = \sum X_{i,j} - \frac{1}{2} \sum Y_{k1} + \frac{1}{2} \sum K_{mn} - PE + RE$$

where the X; term is the energy resulting from the interaction of bonding electrons and is assumed to be expressed as

$$X_{ij} = A S_{ij} \overline{I}_{ij}/(1 + S_{ij})$$

A is an empirical coefficient, adjusted by Mulliken from work on some selected compounds of first row elements, and has a value of 1.16. The \mathbf{T}_i are the mean valence state ionization potentials of atoms i and $\mathbf{j}_i^{i,j}$ and the $\mathbf{S}_{i,j}$ are overlap integrals.

The Y_{k1} and K_{mn} are electron repulsion energies, which have been neglected in the present work, but the importance of which is now under investigation.

The promotion energy, PE, is defined as the energy required to promote the atoms to their respective valence states. The resonance energy, RE, is intended to account for all resonance terms of the valence bond theory, not included in the other terms.

In the original work (1), a long series of approximations were made. $Y_{k\,1}$ and K_{mn} terms were neglected. In the evaluation of $X_{i\,j}$, normal ionization potentials were used instead of valence state ionization potentials. Only a single hybridization was considered, and promotion energies were neglected. Resonance energies were assumed to involve only ionic resonance energies, and were evaluated from electronegativities of the atoms.

Goldfarb (3) has started an investigation aimed at a removal of some of these drastic assumptions. The present work is intended to continue this process. The most important step which needs to be taken

Manuscript released by authors April 1961 for publication as a WADD Technical Report.

is the calculation of the required promotion energies and valence state ionization potentials for a variety of possible hybrid states of the atoms of concern. Later, investigation of the Y_{k1} and Y_{mn} and of the electronegativities is planned.

The calculation of the needed valence state ionization potentials and promotion energies is based on calculation of the energies of valence states. Two methods are available for such calculations. due to Mulliken (4), is based on Slater's treatment of the complex It involves expression of the valence state energy in terms atom (5). of certain integrals over the radial atomic wave functions F_1^K and G_{1-1}^k , the so-called Slater parameters. The other, proposed by Moffitt (6), expands the energy of valence states directly in terms of energies of spectroscopic (stationary) states of the atom. Slater treatment of the complex atom involved no assumptions, and hence no approximations, the two methods would be equivalent. Unfortunately, however, considerable approximations are involved in the Slater method; the worst of these are probably the neglect of configuration interaction and of spin-orbit coupling, and the assumption of perfect Russell-Saunders coupling. We believe that the Mulliken method, by averaging over more states tends to minimize these approximations. Also, this method appears to lend itself more readily to machine calculation, and hence we have chosen this method. Consequently Slater parameters were needed for all elements of interest. The present report summarizes the parameters obtained, and the valence state promotion energies and ionization potentials computed with their

II. METHODS AND RESULTS

A. Slater Equations for Stationary States.—The Slater parameters may be computed theoretically from the atomic radial wave functions. Such computations, however, are time-consuming. They would either involve finding, in the literature, the wave functions of all the atoms and ions needed, almost necessarily obtained in the same or equivalent approximation, or their calculation. No such data appear to be available in an approximation better than Slater orbitals, which was deemed inadequate for the present purpose. Although a Hartree-Fock calculation could undoubtedly be programmed, it was not deemed desirable to spend the time required to do so and carry out the massive computation involved.

Consequently, a semi-empirical technique was employed which is based on the well-known energies of spectroscopic states (7). In order to make use of these data, expressions for the energies of the spectroscopic states were required. These were obtained using a program written in this laboratory for the IEM 650 MDDPM (3). Since the

methods are well-known, no details will be given.

B. <u>Slater Parameters</u>.-Given the equations for the energies of spectroscopic states in terms of the Slater parameters and empirical energy values, it should be a simple matter to solve for the parameters. However, a number of problems arise.

In the transition elements, generally a large number of spectroscopic states are observed and consequently more equations are available than parameters which need to be evaluated. Since the theory on which the equations are based is approximate, different values would be obtained by different choice of equations. The most logical procedure to follow under these circumstances appears a least squares method, which gives the values of the parameters which best represent all data. Accordingly, the equations were fitted by a standard multiple regression technique, using the IBM 650 MDDPM to carry out the needed computation.

Theory does not require the Slater parameters to be identical for different configurations, since the radial wave-functions generally However, quite frequently, insufficient experimental data are available to find all parameters involved in a single configuration from the states of that configuration alone. Further, the equation for hybrid valence states of a given configuration frequently involves parameters not available from any states of the same configuration. Thus, e.g. in the valence state of carbon involving four tetrahedral hybrids, $(sp^3)^4$ or t_e^4 , F_{ss} terms are required which do not enter into any of the spectroscopic states of the same configuration sp³ of carbon. Accordingly, it was assumed throughout that the parameters could be treated as constants for an element, independent of the configuration, and multiple regression was generally performed on data from all configurations of interest, pooled into one regression. Calculations for single configurations are also reported, and tend to indicate that the overall fit of the equations was not appreciably adversely affected by this procedure, so that it may be concluded that the approximation involved in the assumption of constants F's and G's is less serious than some of the other approximations.

In cases where the number of equations was equal to the number of data, the parameters could, of course, be calculated directly by solution of the simultaneous equations, and this was done. In a few cases, some of the parameters could not be obtained at all, either because of lack of experimental data, or because of the nature of the equations. In such cases the missing parameters were estimated by extrapolation methods, or from theoretical calculations in the literature.

The experimental energies of spectroscopic states were taken from the tabulations of Moore (7). In states of higher multiplicity than one, means were used, weighted according to (2j+1). Where several states of equal L and S (equivalent multiplets) occur in the same configuration, the sum of all of them was used, since the Slater equation program was unable to perform the configuration interaction calculation needed to seperate the states.

Each energy expression involves, aside from the Slater parameters, a term constant for each configuration, W^0 . The W^0 for the lowest (ground state) configuration is treated as the constant term (intercept) of the multiple regression. The W^0 terms of the other configurations were treated as a sum, W^0 of the lowest configuration, and ΔW^0 , the excess above this. The ΔW^0 's were treated as additional parameters in the multiple regression.

The input data for the multiple regression analysis are given in Tables 1-24. In these tables, the first column specifies the configuration, the second the spectroscopic state, the last its energy, and the intervening columns give the energy equation. The results of the multiple regressions are shown in Tables 25-49. The first row gives the degrees of freedom available in the analysis, the second F, the variance ratio, and subsequent rows give the W's, F's and G's. Where available, standard deviations are given. Estimated values are so indicated.

The terms $F_2(dd)$ and $F_4(dd)$ of CuI are calculated by extrapolation of the corresponding parameters of FeI, CoI, and NiI. Values computed for CoI agree well with theoretically calculated ones (8). None of the $F_2(pp)$ terms for Fe, Co, Ni or Cu can be calculated from spectroscopic data. In accord with general practice, they have been neglected throughout.

In the calculation of valence state energies, some WO values for higher configurations are often needed which cannot be calculated from empirical data. Such values have been estimated on the basis of the assumption that promotion of an electron from an x orbital to a y orbital requires the same energy for any configuration, so that the promotion $xy \longrightarrow yy$ requires the same energy as $xx \longrightarrow xy$. Hence,

$$W_{o}(xy) - W_{o}(xx) = W_{o}(yy) - W_{o}(xy)$$

 $W_{o}(xx) - 2W_{o}(xy) + W_{o}(yy) = 0$

so that the unknown parameter $W_o(yy)$ is estimated as $W_o(yy) = 2W_o(xy) - W_o(xx)$

There are frequently different possible ways of making such estimates, which permit the testing of the assumption. Thus, $W_0(d^6p^2)$ of FeI, which is unobtainable empirically since no states of this configuration have been observed, may be estimated by any of the following three independent ways:

$$W_o(d^6p^2) = 2W_o(d^7p) - W_o(d^8) = 82,572.73 \text{ cm}^{-1}$$
 $W_o(d^6p^2) = W_o(d^7p) - W_o(d^6sp) - W_o(d^7s) = 103,155.52 \text{ cm}^{-1}$
 $W_o(d^6p^2) = 2W_o(d^6sp) - W_o(d^6s^2) = 104,899.66 \text{ cm}^{-1}$

Two of these are seen to agree excellently, the third only moderately well. Similarly for $W_o(d^5p^2)$ of FeII: $W_o(d^5p^2) = 2W_o(d^6p) - W_o(d^7) = 178,598.39 \text{ cm}^{-1}$

$$W_{o}(d^{5}p^{2}) = 2W_{o}(d^{6}p) - W_{o}(d^{7}) = 178,598.39 \text{ cm}^{-1}$$

$$= W_{o}(d^{6}p) + W_{o}(d^{5}sp) - W_{o}(d^{6}s) = 198,020.38 + G_{sp} \text{ cm}^{-1}$$

$$= 2W_{o}(d^{5}sp) = W_{o}(d^{5}s^{2}) = 193,668.22 + G_{sp} \text{ cm}^{-1}$$

suggesting $W_0(d^5p^2) = 178,598.39$ cm⁻¹ and $G_{sp} = 17,000$ cm⁻¹. This type of relation was required repeatedly, and is referred to as the \triangle_0 relation.

C. Valence State Equations.-A valence state is defined as the state of an atom in which it exists in the molecule. Such states are not stationary states, and hence not observable, but are purely hypothetical states which can, however, be treated theoretically.

The formation of a valence state may be conceived as follows: Remove all atoms, with their electrons, from a central atom in a molecule, holding at the same time the electrons of the central atom fixed, i.e. at constant angular momentum and spin. In this process there results the valence state, in which the orbital angular momentum of each electron is fixed, while the spin is completely unknown. This lack of knowledge of spin arises because, in the molecule, each electron is paired with an electron from another atom, and removal of these other electrons leaves the electrons of the central atom with indeterminate spin.

The energy of such valence states can be treated exactly analogously to the energy of spectroscopic states (4). A program was written which permitted the generation of the energy of the valence states in terms of the Slater parameters discussed above. This program requires specification of a configuration, including information as to which electrons are to be considered as valence electrons, and of the wave function of any electrons occupying hybrid orbitals. It is capable of handling any configuration made up of any number of s, p and d electrons. In case the electrons not involved in bonding (non-bonding electrons) do not completely fill the available orbitals, the program

makes computations for all possible assignments of d electrons to d orbitals and p electrons to p orbitals (9).

This program has been used to derive the energy equations, in terms of the Slater parameters, for a wide variety of valence states of the elements scandium through bromine. The valence states were specified in terms of the hybrid orbitals involved in the bonds. No complete treatment of all possible hybrids is possible, but it is believed that a sufficient variety of configurations and hybrids was included to permit the recognition of trends. The hybrids chosen were those believed, for each configuration, to be the ones most likely to lead to the formation of stable bonds. For each element, the most commonly observed coordination numbers were chosen, and in addition higher coordination numbers (four) were included. The hybrid orbitals used are summarized in Table 50, where σ , π , π' , δ , δ' refers to the five d orbitals, d₂2, d_{x2}, d_{y2}, d_{xy} and d_x2-y², respectively, and x, y and z refers to the orbitals p_x, p_y and p_z, respectively.

The valence state ionization potential is defined as the energy required to remove an electron from one of the bonding orbitals of the atom in its valence state. Thus, the energy is required of the rather peculiar valence state of the ion with the one valence electron of the free atom missing. The program just described is capable of deriving the equations for such valence states, and was used to obtain the valence states for the ions.

D. Valence State Energies.-Given the valence state equations (cf. Section II C) and the Slater parameters (Section IIB), it is a simple matter of substitution to obtain valence state energies. The only difficulty that arises is that the valence state equation specifies the energy in terms of all the Slater parameters, including F0 1, and G1 1, whereas these quantities, since they occur equally in every spectroscopic state of a given configuration, cannot be evaluated empirically, but are included in the W terms. However, in a valence state of a given configuration, they occur in a different manner. Thus, since each of the orbitals of the (sp³)4 (te⁴) state of carbon, e.g., involves a contribution from the sorbital, F6s appears in the valence state equation, together with F5p and F6p. In the spectroscopic states of sp³ carbon, however, only one electron is in the sorbital, and hence F6s does not occur. Consequently it is necessary to eliminate the F6s before the substitution can be performed. This is always possible by taking an appropriate combination of W6s, three, W6(pⁿ), W6(pⁿ⁻¹s), and W6(pⁿ⁻²s²), in the case of s and p electrons only, and six W6(dⁿ), W6(dⁿ⁻¹s), W6dⁿ⁻¹p, W6dⁿ⁻²s², W6(dⁿ⁻²sp), and W6(dⁿ⁻²p²) in the case of s,p, and delectrons. Also, in the case of more than half-filled shells, the spectroscopic states are calculated on the basis of complementary configurations, i.e. configurations in which vacancies are treated like electrons,

electrons like vacancies. This treatment also requires adjustment of W^{\bullet} 's. These eliminations, adjustments, and the subsequent substitution are not difficult. However, since the calculations were desired for several hundred valence states, a program for the IBM 650 MDDPM was written to perform all these functions. This program uses as input the output from the valence state equation program, and the data from the multiple regression, i.e. the Slater parameters, and finally produces the valence state energies.

It was not felt necessary to calculate the valence state ionization potentials for all possible valence states of any given configuration and hybrid type. Among the many possible states of a given configuration the one with the lowest promotion energy was chosen. was invariably one of highest multiplicity, in accord with Hund's rule. Within a given multiplicity, energy differences were, in general, quite small, and it is believed that no significant differences exist. Calculations for the ion were then restricted to the particular valence state chosen, and results are given only for these states. results are shown in Tables 51-60.

Finally, valence state ionization potentials are calculated by adding the normal ionization potential, obtained from Moore's tables (8) and the promotion energy of the ion, and subtracting the promotion energy of the atom.

III. DISCUSSION

The data presented in the accompanying Tables should prove useful for many calculations. In particular, they will be used for substitution into the Mulliken magic formula, both in the X terms and as promotion energies PE. In addition, they will be used, when supplemented by electron affinities now being computed, in the calculation of electronegativities for dements in various hybrid states. In addition, calculation of Y_{k1} and K_{mn} integrals, now under investigation, will provide all terms needed for an application of the magic formula.

IV. BIBLIOGRAPHY.

- H. H. Jaffe and G. O. Doak, J. Chem. Phys. 21, 198, 1118 (1953).
 R. S. Mulliken, J. Phys. Chem. 56, 295 (1952).
 I. J. Goldfarb, Ph. D. Thesis, University of Cincinnati, 1959.

- R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).
 J. C. Slater, Phys. Rev., 34, 1293 (1929); 36, 57 (1930).
 W. E. Moffitt, Proc. Roy. Soc. (London) 196A, 524 (1948); 702A, 534 (1950).
- C. E. Moore "Atomic Energy Levels", National Bureau of Standards Circular No. 467, Vol. 1-2.
- G. Racah, Phys. Rev. 61, 537 (1942); H. H. Marvin, ibid. 47, 521 (8) (1935).
- H. H. Jaffe and J. Zung, Technical Report No. 1, University of (9) Cincinnati, 1960.

Table 1. Multiple regression analysis input data for Sc I.

W cm-1	11,591.00 14,984,11 17,018.90 17,955.69 20,238.49 21,440.00	29,152,50 30,639,10 31,253,00 38,642,27 36,255,62 37,948,20	8,179 9,179 9,199 1,287	33,828,25 36,303,76 36,526,33 15,881,76	0,499.9 8,535.7 6,543.0
G ₂ sd	0 1 1 1 1 1 1 1 1 1	000000		00045	10100
G ₁ sb	000000	000000	0000	000	00100
G3(pq)	000000	10 10 10 10 10		0000	
(pd) [9	00000	0621129	9000	0009	0 -1 -6 066
F4(dd)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	10 10 10 10 10	- 84 - 84 - 84 - 84	-72 -47 0	0000
F2(dd)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		110000	0000
F2(pd)	00000	1.33 2.05 1.33	-14 -14 -14	00007	-3.5 -7 -2 1.33
(dp2)	000000	000000	0000	00000) 0 0 0 1
(dsb)	000000	000000	0000	000HF	14400
(d ³)	000000	000000	0000	HHH00	0000
(d ² p) (d	00000		IIII	0000	0000
Multp.	4年 22年 26 26 26	46 20 20(2/2) 20(3/3)	NE SEE SEE SEE SEE SEE SEE SEE SEE SEE S	47774 4100H	20(2/2) 4P 2D 2D
Conf.	d^2s	2 p		d ³ spd	dp ²

Table 2. Multiple regression analysis input data for Sc II

						•	
	3:	11,736.35	111.37	76,396.90	4,890.67 10,944.51 14,261.40 12,109.67	39,153.65 55,715.52	26,081,32 27,628,67 28,039,21 29,767,00 30,815,65 32,349,98
'	G ₂ sd	0		0	0000	0.0	000000
	cls lo	0	00	0	0000		000000
	ر رع آع	0	00	0	0000	00	031121 03121
	c_1 pa	0	00	O _j	0000	00	MONHHO
	± 4aa	0	00	0	36 36 1 1 84	00	000000
. 7	± 2ªª	0	00	0	8647	00	000000
. 1	r 2pa	0	00	0	0000	00	101110
	(pd)	0	00	0	0000	00	
	(ds)	0	00	0	0000		000000
M 10	(d^2)	0	00	Ö	<u> </u>		000000
7	(p ²)	0	00	, 	0000	00	000000
,	(ps)	0	r-1 r-1	O	0000	00	000000
1	·d-ros	1. S	3. 100 100	ب ت	H D O P	13 14 14	
ָּהָי בְּיִבְּיִי בְּיִבְיִי	• 07 - 1700	s 2	ds ع	2 ₀	d 2	ďs	ָם.

Multiple regression analysis input data for Ti I.

 		228.65 7,255.29 8,510.47 12,118.46	6,650,49 11,649,48 15,161,78 17,444,67 12,067,56 18,127,71 18,287,62 20,062,93	4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
G,sd	7	0000	40 40 40 40 00 00 C	
G, Sp	-4	0000	000000000	
Gapd	.		000000000	147 132,4 132,4 173,7 105,3 1105,3 115,1 15,1 15,1 15,1 15,1 15,1 15,1
G,pd	-	0000	000000000	
F,dd	j .	36 36 1 1		· · · · · ·
F,dd	7	0 m L 4	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
F,pd		0000	000000000	12.14 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Fopp	7.7	0000	000000000	0000000000000
	(q ^p ,)	0000	0000000000	000000000000
	(d ⁺)	0000	000000000	000000000000
AW _o	(d ₅ p)	0000	000000000	0000000000000
	(d^p)	0000	0000000000	O
	(d,s)	,	, , , , , , , , , , , , , , , , , , ,	- 000000000000
Multp.	,	다 유유먼 다 유유먼	57 37 37 37 37 37 17 17 17 17 17 17 17 17 17 17 17 17 17	35000000000000000000000000000000000000
Conf.		d^2s^2	င် န	en En

Table 3 (cont'd). Multiple regression analysis input data for Ti I (cont'd)

	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	257	00000
	::		355 355 335 335	915 253 139
			2000 2000 2000 2000 2000	4444 60007
	G ₂ sd	000000000000000000000000000000000000000	000	0000
	ds Lo	0 0000 111111100111	000	0000
	G ₃ pq	16.5 16.5 17.75 17.75 18.3 19.3	000	110 199 199
	g ₁ pq	1 H 1 H 1 H H 0 H 1 H 0 H 0 H 0 H 0 H 0	000	.5.5 .12 .12
	F ₄ dd	2. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1109 1153 94	-46.5 -24 -9
	F2dd	3. 25 1. 2. 25 2. 25	120	0.002
	F2pd	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	1 1 m 1 m
	F22P	0 0000 0000000000	000	1111 7070
	(d^2p^2)	0 0000 00000000000	000	
	(4 ⁴)	0 0000 00000000000		0000
	(d ² sp)	0 0000 НАНАНАНАННЯ	000	0000
	(d ₂ b)	н ныны 00000000000	000	0000
	(4 ³ s)	0 0000 00000000000	000	0000
	Multo.	4 4 62 64 66 64 64 64 64 64 64 64 64 64 64 64	0 4 0 0 4 0	5D(2) 5P(2) 5P(2)
	Conf	d ³ p (cont'		d ² p ²
'n	TO 61	o i		

Table 4. Multiple regression analysis input data for Ti II.

1						
:	· A	224.98 4,782.32 8,726.47 9,948.74 15,261.53 16,569.79 21,338.00	25,066.34	1,048.61 9,058.15 9,425.84 9,912.90 12,725.99 20,921.88	29,871,50 31,051,75 39,631,00 36,718,48 38,513,00 39,202,68 37,430,55 42,574,00 42,574,00 42,235,85	52,472.85 61,526.00 56,274.11 65,072.07
1	62sd	2	0	00000	000000000	HOHO
	$c_1^{\rm sp}$	000000	0	00000	0000000000	1010
	G ₃ pd	000000	0	000000	112 150.5 10 10 10 10 10 10 10 10 10 10 10 10 10	-63
T .	$^{\rm c_1pd}$	000000	0	000000	6441100 EL 666	w010
ı	F_4 dd	36 36 36 126 126	0	172 13 147 1147 112 -12	1 1 4 9 1 9 1 9 9 1 9 9 9 9 9 9 9 9 9 9	0000
	F2dd	17 4 7 1 1 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7	0	2110011	22.8 33.3 47.7 67.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	0000
	$^{\rm F}_{ m 2^{pd}}$	000000	0	000000	4 4 33 33 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	LL 2
	(dsb)	000000	O	00000	0000000000	pd pd pd pd
	(d ₂ p)	000000	0	00000	, , , , , , , , , , , , , , , , , , ,	0000
A M	(d ³)	000000	0		0000000000	0000
	(gsp)	000000	 1	000000	0000000000	0000
,	Multp.	222422 2224047 8464044	$^2_{ m D}$		445 445 445 445 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	4 _D 2 _D (2) 2 _F 2 _F
	Conf.	d 2s	ds ²	ص ت	م 2 _p	dsp

Table 5. Multiple regression analysis input data for V I

1 17	17	1 1/	72,	m	777	n	F2pp	F2pd	F2dd	\mathbb{F}_4 dd	Glpd	G _{3Pd} G	G_1^{sp}	\mathbf{G}_2 sd	N
d_b) (d_p) (_p) (s,	d_b) (_	C.	1	(d b)	(ds_p)									
0	0 0		0		0	00	0	00	-15	~ '	00	00	00	, oc	319
00 00 00	00	00			00	>	00) O	디		00) O (000	000	966,0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	00			~~	00	00	00	99	-12	00	00	50	00	183.9
1 0 0	0	0	·			, o	0	0	N,	ω v	00	0	00		2,244.3
00	00	00		00		00	00	00		960	00	> 0	50	ာက ။ ။	7,148
000 HTr	000	000		000		00	00	00		19	00	00	00	00	8,997.1 9,084.4
2H 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	000		900		000	00	000	10.5	-153 -94.5	00	00	00	7-1-	19,052.8
D(2) 1 0 5 0 1 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0	00 0	00		, 00		000	00	00	(C) 1-1	မ ျက်	00	00	00	00	20,202.4 37,018.5
0 0	0 1	 1		0		0	-5	H	-15	-72	-17	96-	0	0	50,876.0
O C	00	00		 1		00	00	7-7-2-5	-21	-189 -115.2	m	-105 -48	00	00	738
$\frac{4}{67}(4)$ 0 0 0 1		00		-1 1		00	00		-21	1 0O 0	00	S	00	00	4,935
000	00	00				00	00	~ 47	-5	176	⊣ က) /	00	0	6,408
S(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	0		l 1				-1.5	4.	81.	CO	ι)	0	0	9,392.
0 0 0	0	0				 1 1	0		15	20	. 10	Mr			6,694.
D(2) 0 0 0	00	00		00			00	·	-/•5 -15	72		1) ()	18,353
4F 4S(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		, 0 C		00		1 1 -1	00	8 14 1	10	-1 02	-1.33 -10	- 39	33 -1	-1,33 ⊕3	37,146.0 30,832.5
S															

Table 5. Fultiple regression analysis input data for Vanadium II

		21, 202, 91 12, 625, 57 14, 558, 57 27, 168, 29 19, 191, 50 19, 902, 60 26, 839, 93	2,846.16 13,616.00 16,436.51 19,112.93 20,303.19 22,273.33 23,391.09 25,191.08	63,827.00 66,962.70 70,936.40 65,927.60 72,292.20
	ps ² 5	000000000	000110110 000110110	11110
	G ₁ sp	000000000	000000000	11,110
	g ³ bq	000000000	000000000	-12 -12 -53 -6.5
	GIDG	000000000	000000000	H602
***************************************	FAdd	1189 176.5 176.5 194.5 176.5 176.5	11111111111111111111111111111111111111	6 1 1 6 6 5 7 4 1 5 6 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	F_2 dd	0 15 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2	110111 111 111023300	1077
	F2pd	000000000	000000000	1 H 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	(d _p)	000000000	000000000	00000
***	(d ² sp)	000000000	000000000	r-1 r-1 r-1 r-1
	(d ³ s)	000000000	<u>, , , , , , , , , , , , , , , , , , , </u>	00000
	Multp.	3350 3376(2) 110(2) 15(2)	HHAGHAGAHH HHAGHAGAHH OHAGA	54 151 15(2) 16(2)
	Conf.	7	.ປ ເປ ເນ	d ² sp

Table 6. (contid.)

4	16.14	_	N.									
cont.	Multp.	(d ³ s)	(d ² sp)	(d _p)	F22d	F2dd	P7,4d	Glbd	_{G3pd}	G_1 sp	G_2 sđ	
d ³ p	5,	0	0		 	[-		10	((c	c	000 %
ı	יט ני זיין נ	0	0	, 1 ,	ا ا	S	10	11	7	00	00	6,010,0
) (5 C	5 C	l	. · V	٠,	L	ω. Ω.	~ c	00	0	2,260.0
	30(e) 30(e)		0	- 	75	-5.75	-52.75	-ll	40	00	0	0,062.3
	ノ) [14	Ö	0	 1 :	S	-	2 3	တ	α	0	0	6,067.3
-		00	00	,	0,	⊷(ᡣ	ζ,	41.	0	0	0,780.4
	J. D.) c)	 -	`			L	9	0	0	6,904.9
	7出(2)) (> c	! r-		φ. •		Λ·	י רי	0	, O (9,750.0
	S) C	o c	-l _F	† C		-1 -) u	1	5	00	8,258,2
		C) C	-1	کا در	•	4	• 0	. 4) (> c	/ •004• /
	15(2)		0	ll	1,33		000) <u> </u>) C	> C	7,040.0 6,550.0
) ソソ	0	0	,	14	0	-147	10	- 105	0	0	9,731,3
	$\frac{1}{2}$	0	0	 1 1	-0.75	3,25	23		-	0	0	2,654.5
	35(2)	> c	> c		ئر	က (60,0	ന	မ ၂ ရ	O (0	3,922.2
	<u>)</u>) C	> C	l p	7. 2. 2.		N =	ກີ	, c	00	0	4,487.6
	┣- ┣-) - -	0	00		n m	ှာ ဟု ၂၂	112) (1)	71 - 9	D .O	00	55,403,38
	4										ì	• • • • • • • • • • • • • • • • • • • •

Table 7. Multiple regression analysis input data for Cr I

	5	0.0	7,593.1	0,523.6	1,847.8	4, 2559 000 000 000	7,190,2	0,055	1,049,2	5,157.8	3,762,7 5,903,0	39,158,68	8,037,4	3,632,0	5,059.1	7,703.8	32,097.36	3,920,6	35,520,48	3,401,3	40,227,10	6,646.1
}	G_2 sd						1 -		りず			어디 다	0	00	00	00	0	0	· 0	0	00	00
	ds Io	0	0	0	0	> C	0	0	00	0	၁ဝ	00	0	00	0	00	0	0	0	0	00	00
	ರ್ತಿಕ್ಕ	0	0	0	00	D C	0	00	00	00	00	00	0	00	00	00	00	ວ	0	0	_55 ??	11
	g_{1p}	۰,0	0	O	0		50		00	00	00	00	0	00	0	o 'o	0	>	0		က (က (4 •
•	F_{4} dd	31	댔,	<u> </u>	200	163	172.	131	2 co	20	100	<u>-30</u> -150	189		~	70	CVC		681-	31	-215 -180	12
. '	\mathbb{F}_2 dđ	3		Ŋ	70			1 ~ c	7-1	-10		-22	-21	വ 1	140 +		-15		-21	6)	-27	i Oi
	F ₂ Pd	0	0	5 (5 C	0	0	00	0	о c	0	00	0	00	0	00	0	, >	0	O	00	0
	(ås _j p)	00	5) ()	> c) O	0	00	00	o ć	00	00	0	00	00	00	00	>	0	0	00	0
0	(4 ₂ b)	,0,0	> C	> C	> c	0	0	00	0	00	0	00	00	၁ဝ	0	0	00	Ś	0		pul 900	
4 W	(d^{5})	0	> C	> C) C	0	0	00	0	00	0	00	00	00	00	o o	00	>	-	0	00	0
	(d ⁴ s ²)	00	> c) (o c	0	0	00	0	00	0	00	 1 -		r	-l l	p p	-I .	0	0	00	0
plet	,						_ ,==															
Multiplet		7 5	J IT. CD) L ()) r.) t ⁻¹ i	\int_{C}	36(2)		⊢-l [τ.) L∕) ((3)	⊢1 £0 1 €0 1	13 16(2)	А						5 U		57(3)	
Conf.		d S											ر د ع ک					(ם ה	ם ק		

	8000405648
	20000000000000000000000000000000000000
M	00014010400 0100001400000
	444 444 444 444 444 444 444 444
G2sd	000000000 4445
ds L	
6 ₃ pd	-60 -135 -90 -90 -20 -20 -20 -30 -60 -60 -105 -105 -105 -105 -21 -21 -21
G_1 pd	110 110 110 110 110 110 110 110
\mathbb{F}_4 dd	1190 1172 1172 1172 1172 1105 1105 1139 1139 1139 1139 1139 1139 1139 113
\mathbb{F}_2 dd	1109177711170
F2pd	000000000000000000000000000000000000000
(ds _½ p)	0000000000 HHHHHHHHHH
(q ⁵ p)	HHHHHHHHH 0000000000
0 M ₀ (4 ⁵)	000000000000000000000000000000000000000
(4 ^{4,} s ²)	000000000000000000000000000000000000000
ė.	
Multip	HTH SGH SHIP THE SOLUTION THE S
¢ρ	REPRESENTED TO PROPOSITION OF THE
Config.	d ⁵ p d ⁵ p
ပိ	Q Q Q Q

Multiple regression analysis input data for Cr II

				• .
	Ë	20,518,33 21,824,82 25,043,10 30,146,72 39,401,57 36,142,00 35,658,90 44,242,00	12, 228, 00 30, 607, 00 30, 293, 77 31, 163, 73 34, 722, 14 35, 002, 00 40, 215, 00 40, 415, 34	53,452,75 54,561,19 55,052,50 59,130,51 59,538,50
·	G ₂ sd	0000000000	\$1100000000000000000000000000000000000	00000
·	G_3 pq	000000000	0000000000	00000
	Gipd	0000000000	0000000000	00000
	Fķdd	11.13.15 11.10.0 11.10.0 11.10.0 11.10.0 11.10.0	20000000000000000000000000000000000000	-72 -147 -12 -12
	F2dd	1111111111 251111111111 251111111111111	11111111111111111111111111111111111111	115
	F_{2} pd	0000000000	0000000000	00000
	(d _p)	0000000000	000000000	00000
	$\frac{\Delta^{M_2}}{(d^3s^2)}$	0000000000	000000000	
	(5 ₇ 5)	000000000	हमा हमा हमा हमा हमा हमा हमा हमा हमा	00000
	Multp.	66 66 67 67 67 67 67 67 67 67 67 67 67 6	6 4 4 4 4 4 4 4 4 4 4 4 4 4	• 1
	Conf.	φ Ω	գ 8	d 3s 2

W	47,227.50 48,516.39 63,409.66 49,706.47 65,762.00 65,079.75 65,029.67 75,021.20 75,021.20 75,031.00 76,031.00
G2sd	000000000000000000000000000000000000000
pa ^c 9	105 105 105 105 105 105 100 100 100 100
e1pd	10 13.5 12.8 13.5 12.75 13.5 13.5
F ₄ dd	1009 1117 1001 1001 1001 1001 1001 1001
F2dd	21 21 21 21 22 23 30 30 30 30 30 30 30 30 30 30 30 30 30
F2pd	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(d,p)	, , , , , , , , , , , , , , , , , , ,
Δ ^W _o (d ³ s ²)	00000000000000
(¢ ² 5)	00000000000000
Multp.	22 22 22 22 22 22 22 22 22 22 22 22 22
Conf.	d t p

Table 9. Multiple regression analysis input data for Mn I

	i i	0.00 25,280.08 27,243.80 30,402.80	23, 398 23, 398 34, 259 37, 259 37, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35	43, 500, 00 45, 1023, 00 53, 251, 00 56, 920, 50 56, 627, 36 7221, 49	45,045,63 51,714,34 13,531,13 42,062,92 54,466,39 49,620,47 55,864,44
	G_2 sd	0000	40mmmm w	0000000	00000044400
	ds Lo	0000	0000000	0000000	11111 13 5 13 5 13 5 13 7 13 13 13 13 13 13 13 13 13 13 13 13 13 1
ĺ	₃ ಾರ್	0000	-0000000	2552 -2552 -2552 -2552 -2253 -176	0 0 1210 0 1510 154 154 154
	G_1 nd	0000	0000000	24 24 24 24 24 21 25 21 35	0 0 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
i	F4dd	-315 -190 -105 -225	20000000000000000000000000000000000000	2000 000 000 000 000 000 000 000 000 00	172 1315 1240 1170 1170 1170
]	F_2 dd	1111 1221 2351	40 7 07 0 60 7 07 0	121 121 121 174 175 175 176 176 176 176 176 176 176 176 176 176	15 123 135 112 123 123 135 135 135 135 135 135 135 135 135 13
	. F2pd	0000	0000000	27.7.2.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1	00000000
	(45 ⁵ p)	0000	-0000000	0000000	00044444
	(a^5p^2)	0000	0000000	0000000	0000000
	(d/)	0000	00000000	0000000	ннооооооо
A W	(d ₆ ₂)	0000	0000000	pul pul pul pul pul pul pul	00000000
	(9 ₀ s)	0000	pel ped pel pel pel pel pel	000,0000	00000000
Multo.		8 6 5 6 C	226 (2) 246 (2) 246 (2)	2 4 4 4 4 6 6 5 4 6 6 5 4 6 6 6 5 6 6 6 6	100000000000 PF PO 00000 PF PO 0000 PF PO 0000 PF PO 0000 PF PF PO 0000 PF PF PO 0000 PF
Conf		5 s 2	ა ი "შ	ත් ල 'ෆ්	م م م م م م م م م

Multiple regression analysis input data for Mn II

	ř:	14,781.03 30,276.96 30,679.24 31,636.72 33,209.39 37,233.90	27,472,86 27,570,95 27,570,95 32,811,12 34,910,43 36,350,30 43,3913,38	38,571.85 61,068.00 64,493.83 65,658.30 68,571.11 69,635.80 67,825.93 73,911.00 55,193.20 83,391.50 110,692.20
7	G ₂ sd	000000	11111111111111111111111111111111111111	000000000000000000000000000000000000000
0.1	G1 Sp	00000	00000000	00000000000000000000000000000000000000
משרש	G ₃ pd	000000	00000000	105 105 105 105 105 105 105 105 105 105
an direct	6 ₁ pq	00000	00000000	110 110 110 110 110 110 110 110 110 110
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\mathbb{F}_{ℓ_i} dđ	-189 -76.5 -69 -76.5 -129	1135 1135 1135 1135 1135 1135 1135 1135	11111111111111111111111111111111111111
170	F2dd	12.1.1.2.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.	11.11.12.33 12.11.12.23 12.45.25 13.54.55	127 127 127 127 127 127 127 14.4 14.4 17.4
	F2pd	000000	00000000	00000000000000000000000000000000000000
1	(d ₅ b)	000000	00000000	00000000ннн
	(d ⁴ s ²)	00000	00000000	0000000000000
	δ Mo (4 ⁵ p)	00000	00000000	
	(4 ₂ s)	000000	러러러러러러러	000000000000
·	Multp.	5 3 ² P(2) 3 ³ P(2) 3 ³ P(2) 3 ⁰ D	72888888888888888888888888888888888888	6,000 0,000
	Conf.	S S	ئ ج	d 4 5 p d 4 s p d 4 s p

Table 11. Multiple regression analysis input data for Fe I

sd		13.0	4	56.4	26,329 28,819	24,574.6	12,407.4	40,534,1	22,988.2	4,565.2 7,543.0	2,676.7	1,077.9	1,052,5 5,143,5	4,117,7	00.000.007	0,206.7	2,928.0	0.024.0
S-B page	5	00	000	o	700				Υ)(,	0	7	6.5	ູ້	o, o		νij	22	10
) pa			000	•	000						F 00 00		+ CO	0,00 0,00			4 -2	7 C
F, dd G.	1	6 6 1 9	- 94 - 180	F73	225	130	121	87	147	7 7	112	l I	72	72 109.5	1	79.5	189	000
d F,dd	7	27	12 21	•	•	- L -	116				99	יטֿיי	15	15	00	ണ	 -	1.0
[24	N [00	000		000	000	000	000	000	0	(T) (T)		• •	0.3	1 m	17	C1 L	
Wo (36					000						00							
10000	16		000				-									,		
Multp.			ე ტ ტ ტ		日日で) –I r () ()	፫ _ዛ ፫ _ዛ ፫	' 무너 L.	ን ፍጋ ፍ ይላ ይላ	으면 다면	. H H € Fel		C Ed to				I Ka	
Conf.		_d 6 _s 2		/	ა ე		(4 ²)	च •	(4,)	(d>)	d ⁷ p					V C	ds, p	

	5:	43.000 000 000 000 000 000 000 000 000 00
e II	G ₂ sd	0000000 1101401141010000000000000000000
a for F	G3pd	00 00 00 00 00 00 00 00 00 00 00 00 00
input data	Glpd	254.25 254.55 254.55
analysis i	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	F2dd	111000 11111 0111111111111111111111111
regression	F2pd	0000000 0000000000000000000000000000000
Multiple	⁷⁷ (d ⁶ p)	000000 0000000000000000000000000000000
e 12.	A (d ⁵ s	000000 0000000000000000000000000000000
Tabl	(9,8)	0000000 HERERHERHERHERO00000000
	Mil tp.	9046444 4464444644464 6464464 646464 646464 6464464
	Conf.	de d

Multiple regression analysis input data for Co. I.

				11 4									
Conf.	Multp.	(_q ₉)	(3 ⁸ b)	(d _p)	(d ₂ /sp)	F2pd	F_2 dd	Fydd	e^{1pq}	6_{3}	e_1^{sp}	G ₂ sd	19
d7s2		o c	00	00	00	00	1 -		00	00	00	0	127.9
		0	00	00	0	90	-15	• -	0	00	00	00	6,850.7 79 3. 0
i	Դ. Հ վ	5 0	00	00	00	00	0 1	-147 -12	00	00	00	00	14,010,36
ტ ე	$^{2}_{D}$	H	0	0	0	0	0	0	0	0	0	0	.27,983.78
g S	422 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000		000	000	000	887	00°	000	000	000	1 5	4,347.8
•		000	4 1 -1	000	000	, ,	13.7		000	000	000	7	12, /1/, 92 18, 582, 29 . 22, 526, 33
d D	462 463	000	000	न्न न्न न्न	000	4 T E	4			122	000	000	2,935.7
1	7 4 4 5 2 6 4 6 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000	00,0		000	144	^	786 787 787	1777	-126 -126 -126	0000	0000	44,665,25 48,753,72 47,977,94
ds_p	<u> </u>	000	000	000		™ ™	-15 -15 -7-5	-72 -72 -109.5	∞ ∞ ∞ ∞	000 000 000 000	ოოო 1 1 1	ოო «	004 r
		,	00	00		3.5	000	102	1-10	123			8,064,3 3,592,2

Table 14. Multiple regression analysis input data for Co II

A	671.70	1,433,8	4,110.3	24,251,30 24,886,50 27,727,17	47,753.98 45,957.52 63,458.67 56,010.60	80,733,76 82,314,33 85,630,43
G2sd	00	0		22	0000	-2.57 -2.5 -2.4
G ₁ sp	00	0	000	0000	0000	-2.7 -2.67 -2.6
G3pd	00	0		0000	111189	-227 -220 -234.6
Glpd	.00	0	000	0000	0000 1111	-19.29 -21.7 -20.2
F4dd	- 6 - 84	-189	727	-147 -127 -12	-72 -72 -147 -147	-116.15 -125.7 -123
F2dd	718	-21	-15	0011	-15 0 0	-9.57 -11.5 -11.4
F2pd	00	.0		0000	1 7 7 -14	-2.71 1.83 3.4
(49 ⁶ 61)	1 00	0	. 000	0000	0000	
W (d/n)		0	000	0000	러워러	000
(a/e)	00	ò	,		0000	000
(4 ⁶ s ²)	.00	, H	000	0000	0000	000
Multp.	ი ი ლ (UW, Fr	, മ മ മ മ റ ന ന ന	សល្ខស្គ ភេដ្ឋមល	5 _D (7) 5 _F (6) 5 _P (5)
Conf.	d ⁸	$d^{6}s^{2}$	d ⁷ s	$\binom{4_p}{2_p}$	^{d}p	d _e sp

Multiple regression analysis input data for Ni I

Conf.	Multp.		A Wo				τς τς	ر د و	بر د ور		۳ <u>ر</u> ور	<u>k</u>
	4	(d _b)	(48s ²)	(ds _g p)	£ 2pc	£ 244	m 7.	oli i	-35p	de Lo	2234	:
d°s	3. O.L.	00	00	00	00	00	00	.00	00	00	년 1 년	681.18 3,409.92
д ⁹ р	() (보기	, 	00	00	1 2 2	00	00		- 63	00	00	9,680.5
	#00p		0000	0000	~~~ <u>~</u>	0000	0000	9997	ოოოო დდდდ 1 I I I	0000	0000	29,949,43 31,441,66 29,207,28 32,982,28
d ⁸ s2	ት ጉራተ _ራ	1 0000)	0000	0000	4117	4 - 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0000	0000	0000	22,102,35 936,61 13,742,76 15,744,75
ds ⁸ b	55 56 56(2)	0000	0000) <u></u>	1 6 6 7	0004H	00000	1122	-126 -126 -132 -126	mm4m	1011	ည်တို့တို့
	\ ! \ !											

Multiple regression analysis input data for Ni II

П	603.76	32,511,40 9,354,90 14,169,71 24,036,60	3,333,3	75, 401.00 54,035.07 55,618.50	4,283.0
C ₂ sd	0	H0 0		0000	
G ₃ pd	0	00000	00 8	- 126 - 126 - 126	122
G_1 pq	0	00000	o i	7777 111	-l ll
Fqdd	0	0042	98	0 000	134 134
F2dd	0	4117	<u> </u>	4 1 1 L	
· F2pd	0	0000))	4 T 6 7	744 1 H H
(d ₈ p) ^o M	0	0000	00	p=1 p=1 p=1 p	
7					
4W, (d ^S s)	0	, , , , , ,	- 1	000	000
Multp.	$^{2}_{\mathrm{D}}$	242 424 444	7 ⁷ 20	H O H	հեր 2 2 2 2 2 2 2 3
Conf.	6 ^p	င် န	c	် ရ ည	

Table 17. Spectroscopic data for Cu I

	222 322 335 111 13 70 89
M	40,687.07 50,048.22 41,919.35 49,740.98 41,913.11 53,647.13 0.00 12,019.70
G2sd	ToToTo
G ¹ sb	manana 111111
6 ₃ pd	11111 0100 0100 0100 0100 0100 0100 01
G_1 pq	999999 111111
Multp.	45 45 45 20 20 27 27 2 20 20 20 20 20 20 20 20 20 20 20 20 2
Conf.	d. sp. q. 10 s. q. 10 d. d. 10 d.

Multiple regression analysis input data for Cu I

N	22,580.03 26,264.52 69,264.52 71,920.13 71,435.74 73,353.43 67,083.22 73,595.86 70,984.63 85,388.77 88,537.08 111,322.29 111,322.29 111,322.29 111,322.29 113,893.26
G ₂ sd	TH 00000 0000 THEST
G sb	00 00000 0000 111111
G _{3P} d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61pd	000 11111 000 11111 000 111111 000 111111
F4dd	00 00000 1181 11118
F2dd	00 000000 4117 441177
F2pd	0000 177 000
) AW _c (d ⁸ sp)	00 000000 O000 HHHHHH
(d8s2)	00 000000 HHHH 000000
Multp. AWo(d ⁹ p) AW	00 HHHHHH 0000 000000
Multp	CO FFOOT OFOR HEGFTON
Conf.	do d

Table 19. Multiple regression analysis input data for Zn I and II

<u>Zn I</u>						
Config.	Multiplet	ΔW _o (sp)	W _o (p ²)	F ₂ pp	G ₁ sp	W cm ⁻¹
s ²	ı _s	0	Ó	0	O.	0.00
sp	1. 3p	1	0	0	1-1	46,745.47 32,567.67
p ²	1 3 3 1 1 S	0 0 0	1 1 1	1 -5 10	0 0 0	80,795.00 80,285.00 81,561.07
			Zn II			
Config.	Multiplet					W
s p	2 _S 2 _P					0.00 48,91 7. 50

Table 20, Multiple regression analysis input data for Ga I and II

Ga	Ι

Config.	Multiplet	∆W _o (sp ²)	F ₂ (pp)	Ģ ₁ (sp)	W
s ² p	2 _S 2 _P	0	0	0	0.00 826.24
sp ²	2 _P 4 _P 2 _S	1 1 1	-5 -5 10	1 -2 -1	66,109.00 38,407.70 62,100.00

Ga II

Config.	Multiplet	0W _o (sp)	$\Delta W_o(p^2)$	F ₂ pp	G ₁ sp	W
s ²	1 _S	0	0	0	0	0.00
sp	1 3P	1 1	0	0	1 -1	70,700.00 47,978.70
p 2	3 _P	0	1	- 5	0	115,354,30

Table 21. Multiple regression analysis input data for Ge I and II

Ge	I

Config.	Multiplet	$\Delta W_{o}(sp^{3})$		F ₂ pp	G ₁ sp	W
s ² p ²	3 1 1 1 S	0 0		-5 1 10	0 0 0	1,125.63 7,125,26 16,367,14
sp ³	13P 1P 3D	1 1 1 1		0 0 -6 -6	0 -2 0 -2	55,473,60 57,098,00 58,091,30 59,677,70
***************************************			Ge II			
Config.	Multiplet	⊿W _o sp ²	AW _{op} 3	F ₂ pp	G_1 sp	W
s ² p	2 _P	0	0	0	O _.	1,178,06
2	4 _P	1	0	-5 1	-2 +1	52,709.44
sp ²	4P 2D 2S 2P	1 1	0 0 0	10 -5	-1 1	65,116.44 85,889.90 91,753.00

Table 22. Multiple regression analysis input data for As I and II

۸ ۵	T
AS	T

Config.	Multiplet	4 Wo(sp4)	F ₂ pp	G ₁ sp	W
s ² p ³	4 _S	0	-15	0	0.00
	2 _D	0	-6	0	10,753.55
	2 _P	0	0	0	18,416.80
sp ⁴	4 _P	1	-5	-3	56,572.70
	2 _P	1	-5	0	65,154.45
	2 _D	1	1	-2	68,351.65
Config.	Multiplet	As III	F ₂ pp	G ₁ sp	W
s ² p ²	3 _P	0	-5	0	1,535.25
	1 _D	0	1	0	10,093.00
	1 _S	0	10	0	22,593.00
sp ³	3 _D	1	±6	-2	73,950.00
	1 _P	1	0	0	83,099.00
	3 _P	1	0	-2	84,730.67

Table 23. Multiple regression analysis input data for Se and II

<u>Se I</u>

Config.	Multiplet	F ₂ pp	G ₁ sp	W
s ² p ⁴	3 _P 1 _D 1 _S	-5 1 10	0 0	1,130.96 9,576.08 22,556.03

Se II

Config.	Multiplet	∆ W _o (sp ⁴)	F ₂ pp G ₁ sp	W
s ² p ³	4 2S 2D 2B	0 0 0	-15 0 -6 0 0 0	0.00 13,476.60 23,466.55
sp ⁴	4 _P 2 _P	1	-5 -3 -5 0	84,871.13 100,295.10

Table 24. Spectroscopic data for Br-I and II

		<u>Br I</u>		
Isoelectron elements	ic	2 _p , s ² _p ⁵		2 _S ,sp ⁶
BrI Kr II Rb III Sr IV Y V		1,228.33 1,790.33 2,460.00 3,243.37 4,032.67		109,002.06 130,036.00 150,505.00 170.936.00
		Br II		
Config.	Multiplet	F ₂ pp	G ₁ sp	W
s ² p ⁴	3 _P 1 _D	-5 1	0	1,747.50 11,409.00
sp ⁵	3 _p	0	-1	97,228.71

Table 25. Parameters for C I and C II

	CI	CII		
D. F. @	3/4	D.F. @	3/3	
r. @	350.28	F. @	230.07	
$W_o(s^2p^2)$	7,244.72	W _o (sp ²)	97,694.64	
W _o (sp ³)	114,928.50	W _o (p ³)	167,067.43	
s.d.	3,482.04	s.d.	3,856.23	
F ₂ (pp)	1,699.60	F ₂ (pp)	1,903.29	
s.d.	196.43	s.d.	258.26	
G ₁ (sp)	19,116.03	G ₁ (sp)	22,523.57	
s.d.	1,103.45	s.d.	1,928.11	
*W _o (p ⁴)	222,632.28	+*W _o (s ² p)	42,66	

^{*} Terms estimated using ΔW_0 relationship.

@Note:

The variance ratio F is the ratio of the estimated of variance for the improvement due to regression to the estimate of the vari-

ance of the regression itself. Thus F measures the goodness of fit and is to be compared with a critical F taken from standard tables.

The degree of freedom is expressed, in Tables 31-54, as D.F. with the number of independent variables n in the numerator and the number of degrees of freedom (= N - n-1, where n is the number of data used) in the denominator.

^{+*} Terms calculated by hand.

Table 26. Parameters for Sc I

	d ² s	d ² p	Total regression
D.F.	3/3	5/6	11/15
F.	1,667.95	2.47	26.95
Wo(d2s)	18,876.09	•	16,544.21
W _o (d ² p) s.d.	•	36,779.85	36,053.96 2,045.21
W _o (d ³) s.d.	• • • •	• •	34,063.53 2,196.89
W _o (dsp) s.d.			21,832.37 2,236.18
W _o (dp ²) s.d.			50,448.49 4,009.84
W _o (ds ²)	* * * * * * * * * * * * * * * * * * * *		101.00
F ₂ (pd) s.d.		286.72 259.74	179.47 178.50
F ₂ (dd) s•d•	593.30 9.75	133.65 138.40	363.45 88.19
F ₄ (dd) s.d.	32.55 1.43	-89.38 30.96	29.83 17.97
G ₁ (pd) s.d.		298.79 311.43	104.99 239.25
G ₃ (pd) s.d.		83.73 45.34	38.79 35.68
G ₁ (sp) s.d.			3,023.59 2,831.38
G ₂ (sd)	1,146.24		1,044.05
%F ₂ (pp)	Am and the and the and the an and and pag and and and pag.		483,68

^{*} Term calculated from ΔW_o relationship.

Table 27. Parameters for Sc II

	d ²	dp	Total regression
D.F.	2/2	3/3	12/4
F.	2,197.00	17.35	
W _o (s ²)			11,736.35
W _o (ds)			1,327.17
W _o (p ²)	•		76,396.90
W _o (d ²)	11,276.13	·	11,276.13
W _o (sp)		· .	47,434.58
W _o (pd)	·	28,952.25	28,952.25
F _x (pd) s•p•		242.07 49.21	242.07 49.21
F ₂ (dd)	738.71 3.52		738.71 3.52
F ₄ (dd) s.d.	51.75 0.47		51.75 0.47
G ₁ (pd) s.d.		382.03 72.86	382.03 72.86
G ₃ (pd) s.d.	•	2.76 7.40	2.76 7.40
G ₁ (sp)	•	•	8,280.93
G ₂ (sd)		•	1,214.80

Table 28. Parameters for Ti I

	d^2s^2	d ³ s	d ³ p	Total regression
D.F.	2/2	3/8	5/14	13/41
F.	90.40	4.65	10.46	8.4
W _o (d ² s ²)	7,976.16		,	7,413.91
Wod3s)		20,184.79		20,682.49 1,773.63
W (d ³ p)		1	41,004.20	42,099.95 1,602.15
W (d ² sp)				31,676.14 1,802.43
Wo(d ⁴)				40,408.46 2,846.24
$W_{\text{s.d.}}^{\text{d}^2p^2}$			•	54,333.64 4,961.18
F ₂ (pd) s.d.	•		94.39 142.51	137.53 108.51
F ₂ (dd) s.d.	916.17 68.28	296.59 247.13	211.17 117.45	411.24 73.97
F4(dd) s.d.	67.71 9.17	26.14 24.84	20.53 24.40	27.55 12.69
G ₁ (pd) s.d.			175.35 13.17	195.46 149.48
G ₃ (pd)			97.97 36.71	17.30 21.18
G ₁ (sp) s.d.				4,028.73 2,118.07
G ₂ (sd) s.d.		1,449.48 937.51	•	1,348.58 690.05
F ₂ (pp)				555.91 1,170.76

Table 29. Parameters for Ti II

	d ² s	d^3	d ² p	Total regression
D.F.	3/4	2/4	5/6	. 11/18
F.	18.85	66.00	6.77	242.43
$W_o(d^2s)$	10,798.96			10,913.96
Wo(ds ²) s.d.			·	25,066.34 2,033.91
Wo(d ³) s.d.		16,446.64		15,736.09 1,278.64
Wo(d ² p)			40,772.05	40,552.55 1,285.45
Wo(dsp)				64,220.68 1,620.78
F ₂ (pd) s.d.			435.19 256.71	368.66 114.15
F ₂ (dd) s.d.	783.24 114.29	856.31 74.64	688.59 193.06	. 765.75 58.87
F4(dd) s.d.	19.73 13.40	52.85 10.51	11.63 40.05	28.76 8.10
G ₁ (pd) s.d.	•	* * * * * * * * * * * * * * * * * * * *	432.94 315.28	343.19 179.67
G ₃ (pd) s.d.			41.61 45.05	25.32 23.38
G ₁ (sp) s.d.				7,359.04 2,182.89
G ₂ (sd) s.d.	1,693.84 762.03	•		1,767.85 625.47
‰(d ² p ²)	and 400 And pair over your wat And and and and	•		93,859.27
*F ₂ (pp)				700.00

^{*} Estimated values, using & Wo approximation.

Table 30. Parameters for V I

	d^3s^2	d ⁴ s	d^4p	Total regression
D.F.	2/3	3/4	5/1	13/13
F.	109.47	4.12	6.08	44.50
$W_o(d^3s^2)$	21,310.34		·	17,403.72
W (d ⁴ s) s•d•		33,665.18		33,235.94 2,518.79
Wo(d ⁵)	·	,		57,798.64 4,194.05
Wo(d ³ p ²)			•	72,963.39 5,520.68
Wo(d ⁴ p)			47,123.23	45,825,96 3,360.49
W (d ³ sp)				50,100.33 4,062.31
F ₂ (pp) s.d.	•			1,077.88 1,512.40
F ₂ (pd) s.d.			-75.45 463.34	193.95 225.17
F ₂ (dd) s.d.	1,000.36 77.95	738.78 404.51	297.57 347.91	696.37 115.05
F ₄ (dd) s.d.	85 .05 6.86	50.91 33.84	87.00 45.93	50.35 13.74
G ₁ (pd) s.d.		· •	-263.73 548.95	296.06 301.62
G ₃ (pd) s.d.			4.69 7.98	-26.05 42.24
G ₁ (sp)				14,987.98 640.81
G ₂ (sd) s.d.		1,201.85 1,168.33		1,323.67 833.21

Table 31. Parameters for V II

	\mathtt{d}^{4}	d ³ s	d ³ p	Total regression
D.F.	2/8	3/7	5/14	10/34
F.	1,765.47	8.89	13.17	45.06
W _o (d ⁴)	31,372.05		·	26,981.05
Wo(d ³ s)		25,150.68		24,755.59 3,020.10
$W_{o}(d^2sp)$	·			68,374.30 10,534.10
Wo(d ³ p)			58,069.31	61,230.32 7,952,90
F ₂ (pd) s.d.			295.02 181.60	298.16 191.79
F ₂ (dd) s.d.	754.42 18.16	665.62 180.17	841.31 170.13	564.87 126.99
F ₄ (dd) s.d.	80.98 3.03	77.45 35.22	51.83 29.61	58,58 24,05
G ₁ (pd) s.d.			146.37 239.47	143,67 255.78
G ₃ (pd) s.d.	:	•	40.42 47.03	192 .9 8 289.34
G ₁ (sp) s.d.			· · · · · · · · · · · · · · · · · · ·	-6,759.06 9,346.73
G ₂ (sd) s.d.		602,99 1,458.97		1,149.21 1,414.26
+W _o (d ² s ²)				18,929.31
W _o (d ² p ²)		•		84,766.57

^{*} Terms estimated from A Wo relationship.

⁺ Terms calculated separately by hand.

Table 32. Parameters for Cr I

	d ⁵ s	d ⁴ s ²	d ⁵ p	Total regression
D.F.	3/12	2/6	4/11	11/40
F.	34.45	4,4	12.91	43.25
$W_{o}(d^{5}s)$	52,412.98		•	52,862.59
$W_{\text{od}}(d^4s^2)$		37,583.72		38,337.87 2,883.91
Wo(d ⁶) s.d.	·			62,587.60 5,043.89
Wo(d ⁵ p)			72,963.41	70,824.06 3,256.06
Wo(d4sp)			•	62,604.34 1,218.84
₩ _o (d ⁴ p ²)	•			80,565.81
F2(pd) s.d.	• • • • • • • • • • • • • • • • • • •	•		180.23 67.76
F ₂ (dd) s.d.	464.45 114.06	535.17 361.40	806.71 187.39	549.32 94.99
F4(dd) s.d.	88.14 12.95	74.94 39.27	70.09 19.82	82.07 10.53
G ₁ (pd) s.d.			-848.00 450.86	-279.09 312.55
G3(pd) s.d.		•	17.79 49.41	-25.01 34.11
G ₁ (sp) s.d.	·		·	9,084.58 11,335.99
G ₂ (sd) s.d.	1,059.21 823.53	•		960.50 882.49

^{*} Term estimated by using 4 Wo approximation.

Table 33. Parameters for Cr II

			·	
British and Artificial Control of the Control of th	d ⁵	d ^Z s	d ³ 2 +d ⁴ p	Total regression
D.F.	. 2/9	3/8	5/17	9/35
F.	68.57	12.23	2.89	80.94
W _o (a ⁵)	57,365.09			51,426.82
Wo(d ⁴ s) s.d.	,	48,690.91		47,799.51 3,329.46
$V_{\text{s.d.}}^{\text{d}^3\text{s}^2}$			58,625.13	62,663.37 2,947.17
Wo(d ⁴ p)			85,990.09	83,218.94 3,412.36
F ₂ (pd) s.d.			421.56 232.40	399.07 394.24
F ₂ (dd) s.d.	951.32 130.05	295.23 217. 2 1	349.53 120.63	594 . 94 96 . 55
F4(dd) s.d.	70.03 13.71	111.87 27.04	100.96 19.62	72.12 13.47
G ₁ (pd) s.d.			527.14 252.82	194.25 405.21
G ₃ (pd) s.d.			79.07 33.77	67.31 44.52
G ₂ (sd) s.d.		1,732.97 966.13		1,817.31 1,121.05
**************************************	and delay disp down below disp i	inan dawa inwa dawa dawa gawa	named assets there obvious paper object i	115,011.07
*// ₀ (d ³ sp)	1.7 p	· · · · · · · · · · · · · · · · · · ·	,	79,591.63

^{*} Terms obtained by using ΔW_o approximation.

Table 34. Parameters for Mn I

	d^5s^2	d ⁶ s	d ⁶ p	Totalregression
D.F.	2/2	3/5	5/3	12/17
F.	253.18	16,73	201.25	41.61
$W_o(d^5s^2)$	74,363.58		•	60,877,57
₩ ૢ(d ⁶ s) s.d.		49,950.56		53,457.20 4,823.83
Wo(d ⁶ p)	•		52,060.21	52,396.64 2,096.25
Wo(d ⁵ p ²)		•		94,272.73 1,711.39
Wo(d ⁵ sp)		•	•	86,000.52 5,979.49
F ₂ (pd) s,d.		•	153,48 61,30	170.91 34.97
F ₂ (dd) s.d.	1,346.99 93.91	1,107.39 183.53	544.21 130,69	554.52 180.17
F4(dd) s.d.	85.92 7.61	139.93 28.29	112.13 13.29	121.92 20.16
G ₁ (pd) s.d.	• •		-837.16 276.72	-851.11 685.83
G ₃ (pd) s.d.			-15.36 25.92	-17.86 66.95
G ₁ (sp) s.d.				8,174.91 818.95
G ₂ (sd) s.d.		886.24 846.10		942.44 110.54
W _o (d ⁷)				65,636.58

Table 35. Parameters for Mn II

	₫ ⁶	d ⁵ s	d ⁵ p	Total regression
D.F.	2/4	3/6	4/9	
F.	3.01	6.73	15.02	•
W _o (d ⁶)	43,366,74		•	43,366,74
W _o (d ⁵ s)		49,459.53		49,459,53
W _o (d ⁵ p)	•		91,556.21	91,556.21
$W_o(d^4s^2)$				80,566.24
W _o (d ⁴ sp)				134,394.82
W _o (d ⁴ p ²)		•		176,490.68
F ₂ (pd)		·	.•	325,21
F ₂ (dd) s.d.	612.26 430.26	705.25 350.03	551.11 219.03	612.26
F ₄ (dd) s.d.	66.22 65.17	60.06 42.33	93.95 26.13	66,22
G ₁ (pd)	•	•	585.21 65.45	489.00
G ₃ (pd) s.d.			33.71 77.85	32,00
G ₁ (sp)			•	-3,627.65
G ₂ (sd)		1,632.66 200.24	•	1,632.66

Note: The total regression was done by substitution of known parameters into equations of configurations d^4s^2 , d^4sp d^4p^2 .

Table 36. Parameters for Fe I

				•
:	d ⁶ s ²	d ⁷ s	d ⁷ p	Total regression
F.	5,635.21	579.44	270.51	984.15
D.F.	2/2	3/8	5/4	9/20
$W_o(d^6s^2)$	51,167.58			49,379.22
Wo(d ⁷ s)		31,194.53		37,632.67 599.00
Wo(d ⁷ p)		•	63,962.27	63,648.40 1,553.00
Wo(d ⁷ sp)				77,139.79 2,206.00
F ₂ (pd) s.d.	•		146.15 35.60	179.25 39.80
F ₂ (dd) s.d.	1,386.66 18.90	1,265.79 31.20	1,316.31 53.00	1,312.07 26.20
F4(dd) s.d.	106.87 1.09	102.81 4.40	100.45 6.86	106.87 3.33
G ₁ (pd) s.d.			53.47 52.30	82.59 68.60
G ₃ (pd) s.d.			7.67 9.63	-0.01 8.23
G ₂ (sd) s.d.		1,331,39 149.50		1,331.39 161.42
W _o (d ⁸)	, ·	· · · · · · · · · · · · · · · · · · ·		44,724.07
$W_o(d^5s^2p)$				120,674.65
*W _o (d ⁶ p ²)				103,155.52

^{*} Term estimated from ΔW_0 approximate relationship.

Table 37. Parameters for Fe II

) to 146	ď	d ⁶ s	d ⁶ p	Total regression
D.F.	2/4	3/10	5/2	8/21
F.	452	1,567	1,574	1,099
$W_o(d^7)$	28,335.37			29,337.43
Wo(d ⁶ s)		56,871.32		56,837.98 623.00
$W_{s,d}^{(d^5s^2)}$	•			108,132.68 1,354.00
Wo(d ⁶ p)			102.063.	103,967.91 7,828.00
F ₂ (pd) s.d.			318.44 39.80	321.80 1 0 1.90
F ₂ (dd) s.d.	1,350.38 43.60	1,261.46 28.60	1,328.23 86.70	1,350.38 30.00
F ₄ (dd) s.d.	97.44 6.37	115.55 3.91	119.98 12.80	112.98 4.32
%G ₁ (sp)				17,245.91*
G ₁ (pd) s.d.			252.58 311.20	219.52 383,00
G ₃ (pd) s.d.	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	12.31 28.00	30.72 17,50
G ₂ (sd) s.d.		1,637.58 120.90		1,627.43 187.00
W _o (d ⁵ sp)		152,804.35		150.900.45
"Vo(d ⁵ p ²)		•		178,598.39

^{*} Terms obtained by using & Wo relationship.

Table 38. Parameters for Co I

-	$d^7 s^2 + d^8 s$	d ⁸ p+d ⁸ s	Total regression
D.F.	4/5	৪/2	11/8
F.	35.66	9.54	30.63
$W_o(d^7s^2)$	32,235.13	· · ·	33,156.49.
Wo(d ⁸ s) s.d.	19,919.11 1,583.11		21,297.90 2,619.09
Wo(d ⁸ p)	·	54,988.51	54,988.51 2,660.21
Woddsp)			64,203.50 2,103.07
F2(pd) s.d.		193.29 191.14	185.57 202.30
F ₂ (dd) s.d.	1,451.53 126.35	1,084.61 232.78	1,268.07 222.18
F ₄ (dd) s.d.	136.42 14.41	157.21 38.60	124.99 21.16
G ₁ (pd) s.d.		260.78 457.84	151.03 316.49
G ₃ (pd) s.d.		117.87 51.71	74.58 68.44
G ₁ (sp)			7,979.03
G ₂ (sd) s.d.	912.81 620.77	755.12 1,254.3 5	833.96 1,213.49
Wo(d ⁹)	n and and the sea two doe con two doe con		27,984.78 4,265.56
w _o (d ⁷ p ²)			81,992.23

^{*} Term estimated from Ano relationship.

Note: Values given by Racah (35):

$$F_2(dd) = 1,393.00$$

 $F_4(dd) = 119.10$
 $G_2(sd) = 1,128.00$

Table 39. Parameters for Co II

	d ⁸ d ⁷ s	d ⁷ p	Total regression
D.F.	4/3	5/3	11/4
F.	5.49	7.03	48.53
W _o (d ⁸)	8,613.18	•	8,395.35
Wo(d ⁷ s) s.d.	27,557.96 4,976.64		25,343.72 4,431.85
W _o (d ⁷ p)	•	48,985.06	48,985.06
W _o (d ⁶ sp)			59,892.00
F ₂ (pd) s.d.		405.19 207.60	339.22 309.18
T.2(dd) *** s.d.	855.81 221.19	654.15 250.19	754.18 174.89
F4(dd) s.d.	24.51 35.36	18.76 45.42	29.46 29.46
G ₁ (pd) s.d.		-1,416.00 526.27	-1,327.42
3(pd)		-154.90 145.23	-194.81
G ₁ (sp)	•	•	15,187.06
G ₂ (sd) s.d.	1,342.95 1,316.86		1,331.45 1,172.44
7. (d ⁶ s ²)			63,952.26 8,525.99
(10 (d ⁶ p ²)		· ·	86,555.05

^{*} Term estimated from & Wo relationship.

Table 40. Parameters for Ni I

	d ⁹ p	d ⁸ s ² +d ⁸ sp	Total regression
D.F.	3/2	7/3	10/5
F.	5.13	218.83	106.15
W (d ⁹ p) s.d.	31,992.94		32,079.22 1,543.73
Wo(d ⁸ s ²)		14,764.25	14,943.90 1,185.64
Wo(d ⁸ sp)		54,614.89	56,595.44 10,830.72
F ₂ (pd) s.d.	107.58 62.08	107.58 72.19	132.22 189.43
F ₂ (dd) s.d.		1,632.81 92.71	1,830.54 1,143.19
F4(dd) s.d.		120.61 12.45	133.51 16.91
G ₁ (pd) s.d.	189 . 99 48 . 98	189.99 56.96	221.17 121.84
G3(pd) s.d.	14,56 9.54	14.56 11.09	20.12 20.57
G ₁ (sp)			2,193.23 2,815.91
G ₂ (sd) s.d.			1,364.41 984.57
$W(d^{10})$	60 go, 40 da 6p Ai ka ka Ri Ri Ai Ai Ai Ai Ai Ai Ai Ai		14,728.85
W _o (d ⁹ s) *W ₃ (d ⁸ p ²)			2,045.05 98,246.98

^{*} Term calculated from OWo approximate relationship.

Table 41. Parameters for Ni II

	d ⁸ s	d ⁸ p	Total regression
D,F,	3/2	6/4	8/4
F.	142.00	13.00	138.75
Wo(d ⁸ s)	26,477.23	·	24,961.96
Wo(d ⁸ p)	•	81,201.44	74,264.48 6,551.29
F ₂ (dd) s.d.	1,637.36 82.46	1,012.38 200.37	1,297.78 164.56
F ₄ (dd) s.d.	117.85 12.09	-0.27 41.57	66.20 28.39
F ₂ (pd) s.d.		260.73 143.54	312.13 149.49
G ₁ (pd) s.d.		78.24 340.85	136.74 355.34
G3(pd) s.d.		137.22 55.69	78.81 52.22
G ₂ (sd) s.d.	1,528.83 318,99	•	1,264.77 070.86
W _o (d ⁹)			602.76
%V _o (d ⁷ sp)		•	98,020.92
*W _o (d ⁷ s ²)	. •		49,321.16
*N _o (d ⁷ p ²)			147,926.20

^{*} Terms estimated from \(\Delta \) Wo relationship.

Table 42. Parameters for Cu I

W _o (d ¹⁰ s)				, ,	0.00
$W_o(d^9s^2)$					12,019.70
$W_o(d^{10}p)$	· ng	•		٠ .	30,700.89
Wo(d9sp)	•				66,236.99
F ₂ (pd)				,	315.50
+F ₂ (dd)				•	1,810.00
+F4(dd)				•	148.00
G ₁ (pd)	,		•		390.62
G ₃ (pd)					6.83
G ₁ (sp)				•	6,906.00
G ₂ (sd)		,		2 3	901.00
*W _o (d ⁹ p ²)		٠.	,	•	108,695.00

Note: All values are obtained by exact
Solution of Matrix, except:
+ Terms obtained by extrapolation
with the corresponding terms of
FeI, CoI, NiI.
*Term estimated from \(\Delta \text{W}_0 \) relationship.

Table 43. Parameters for Cu II

	d ⁹ s+d ⁹ p	$d^8s^2+d^9p$	Total regression
D.F.	3/2	6/2	10/7
F.	11.16	119.06	833.22
Wo(dp ⁹)	73,749.10	73,749.10	72,097.76 1,580.50
W (d ⁸ s ²) s.d.		87,018.12 1,049.46	86,953.00 1,325.59
Wo(d ⁸ sp)			134,435.00 3,902.08
F ₂ (pd) s.d.	378.93 79.71	378.93 89.26	377.57 106.12
F ₂ (dd) s.d.		1,899.14 114.65	1,748.43 117.80
F ₄ (dd) s.d.		135.65 15.40	130.99 18.01
G ₁ (pd) s.d.	325.19 62.89	325.19 70.43	104.63 104.53
G3(pd) s.d.	32.59 12.26	32.59 13.72	12.76 20.01
G ₁ (sp) s.d.			341.12 912.34
G ₂ (sd) s.d.	1,842.25		1,231.97 827.37
W _o (d ¹⁰) W _o (d ⁹ s) *W _o (d ⁸ p ²)	24,422.27		0.00 24,422.27 181,917.00

^{*} Term estimated from 4Wo relationship.

Table 44. Parameters for Zn I and II

Zn I		Zn II	
W _o (s ²)	0.00	W _o (s)	0.00
W _o (sp)	39,671.00	W _Q (p)	48,917.50
W _o (p ²)	80,710.09	· ·	
F ₂ (pp)	84.92	·	•
G ₁ (sp)	7. 073 . 85		

Table 45. Parameters for Ga I and II

	Ga I	G	a II
D. F.	3/1		•
F.	4,003.98		
$W_o(s^2p)$	413.12	W _o (s ²)	0.00
Wosp ²)	61,694.75 563.69	W _o (sp)	59,339.35
F ₂ (pp) s.d.	963 . 90 48 . 54	F ₂ (pp)	66,49
G ₁ (sp)	9,233.77 275.24	G₁(s p)	11,360.85
*Wo(p3)	122,976.38	*W _o (p ²)	118,678.70

*Term obtained by using ΔW_0 approximation.

Table 46. Parameters for Ge I and II

	Ge I		Ge II
D.F.	3/3	D.F.	4/1
F•	73. 86	F.	24.40
$W_o(s^2p^2)$	6,368.14	W _o (s ² p)	1,178.06
Wo(sp ³)	51,921.11 4,379.38	W _o (sp ²)	83,617.97
*1/0(p4)	96,974.05	Wo(p ³)	156,014.04 12,452.98
F ₂ (pp) s.d.	668.93 357. 58	F ₂ (pp) s.d.	1,316.05 617.79
G ₁ (sp)	-802.70	G ₁ (sp) s.d.	13,439.71 3,480.35

^{*} Terms evaluated by using Δ \mathbb{W}_{o} relationship.

Table 47. Parameters for As I and II

As I		Às II	
D.F.	3/4	D.F.	3/3
$W_o(s^2p^3)$	18,416.80	F.	2,052.62
Wo(sp4)	70,873.55	W _o (s ² p ²	8,494.26
F ₂ (pp)	1,233,28	Wo(sp ³)	83,099.00 1,236.11
G ₁ (sp)	2,483,21	F ₂ (pp)	1,456.41 95.86
**************************************	123,330.30	G ₁ (sp) s•d•	-305.28 689.60
		*(₁₀ (p ⁴)	157,703.74

^{*} Terms estimated from ΔW_o approximation.

Table 48. Parameters for Se I and II

Se I		Se II	
Wo(s2p4)	8,156.56	D.F.	3/2
+11 ₀ (sp ⁵)	83,323.05	F.	11,350.06
F ₂ (pp)	1,419.52	W _o (s ² p ³)	23,228.27
G ₁ (sp)	00 00 00	$W_{\mathbf{s},\mathbf{d}}$	108,090.80 571.52
*10(be)	158,489.54	F2(pp)	1,559.14 45.76
		G ₁ (sp)	5,141.32 230.31
		*10(p ⁵)	192,953.33

⁺ Term estimated by linear extrapolation from the corresponding terms of isoelectronic elements Br II and Kr III

^{*} Terms calculated from ΔW_0 relationship.

Table 49. Parameters for Br I and II

Br I		Br II	
$W_o(s^2p^5)$	1,228.33	W _o (s ² p ⁴)	. 9,798.75
+Wo(sp6)	90,000.00	Wo(sp ⁵)	97,228.71
=F ₂ (pp)	1,571.39	F ₂ (pp)	1,610.25
G ₁ (sp)	date and the	G ₁ (sp)	
		****(p ⁶)	184,658.67

^{*} Term calculated from ΔW_0 relationship.

⁺ Term estimated by extrapolation from the corresponding term of isoelectronic elements Kr II, Rb III, Sr IV, Y V.

⁼ Term obtained by linear extrapolation with $F_2(pp)$ of Se I, As I, Ge I and Ga I.

Table 50. Hybrids Orbitals Used.

Divalent	Symbols	Wave functions
	(sp) ²	$\begin{cases} di_1 = 1/\sqrt{2} (s + z) \\ di_2 = 1/\sqrt{2} (s - z) \end{cases}$
	(sd) ²	$\psi_{1,2} = \frac{1}{\sqrt{2}} (s \pm \delta)$
	(pd) ²	$\psi_{1,2} = \frac{1}{\sqrt{2}} (z \pm \sigma)$
	$(dd^1)^2$	$\begin{cases} \psi_1 = \frac{1}{\sqrt{3}} \sigma + \sqrt{\frac{2}{3}} \delta \text{ or } \begin{cases} \sqrt{\frac{1}{3}}\pi + \sqrt{\frac{2}{3}}\delta \\ \psi_2 = \sqrt{\frac{2}{3}}\sigma - \sqrt{\frac{1}{3}} \delta \end{cases} & \sqrt{\frac{2}{3}}\pi + \sqrt{\frac{1}{3}} \delta \end{cases}$
		$\psi_2 = \sqrt{\frac{2}{3}} \sigma - \sqrt{\frac{1}{3}} \delta$ $\sqrt{\frac{2}{3}} \pi + \sqrt{\frac{1}{3}} \delta$
<u>Trivalent</u>	(sp ²) ³	$\begin{cases} \psi_1 = \sqrt{\frac{1}{3}}s + \sqrt{\frac{2}{3}}x \end{cases}$
		$\psi_{2,3} = \sqrt{\frac{1}{3}}s - \sqrt{\frac{1}{6}}x \pm \sqrt{\frac{1}{2}}y$
	(sd ²) ³	$\begin{cases} \psi_1 = \sqrt{\frac{1}{3}}s + \sqrt{\frac{2}{3}}\pi \end{cases}$
t.		$\psi_{2,3} = \sqrt{\frac{1}{3}}s - \sqrt{\frac{1}{6}}\pi \pm \sqrt{\frac{1}{2}}\pi$
	(pd ²) ³	$\int \psi_1 = \sqrt{\frac{1}{3}x} + \sqrt{\frac{2}{3}} \sigma$
		$\int_{2^{3}} t^{2} = \sqrt{\frac{1}{3}} \times - \sqrt{\frac{1}{6}} \sigma + \sqrt{\frac{1}{2}} \delta$
	(d ³)	$\int \psi_1 = \sqrt{\frac{1}{3}} \sigma + \sqrt{\frac{2}{3}} \delta$
		$\int_{1}^{4} \psi_{1,2} = \sqrt{\frac{1}{3}\sigma} - \sqrt{\frac{1}{6}\delta} + \sqrt{\frac{1}{2}\delta}.$

Table 50 (continued)

$$\begin{cases} \psi_{1},_{2} = \sqrt{\frac{1}{12}s} \pm \sqrt{\frac{1}{2}z} + \sqrt{\frac{5}{12}\sigma} \\ \psi_{3} = \sqrt{\frac{5}{6}s} - \sqrt{\frac{1}{6}\sigma} \end{cases}$$

$$\begin{cases} \psi_{1},_{2} = \frac{1}{2}(s + \kappa \pm y \pm z) \\ \psi_{3},_{4} = \frac{1}{2}(s - \kappa \pm y \mp z) \end{cases}$$

$$(dsp^{2})^{4} \qquad \begin{cases} \psi_{1},_{2} = \frac{1}{2}s \pm \sqrt{\frac{1}{2}x} + \frac{1}{2}\sigma \end{cases}$$

$$(sd^{3})^{4} \qquad \begin{cases} \psi_{1},_{2} = \frac{1}{2}s \pm \sqrt{\frac{1}{2}m} + \frac{1}{2}\sigma \end{cases}$$

$$(sd^{3})^{4} \qquad \begin{cases} \psi_{1},_{2} = \frac{1}{2}s \pm \sqrt{\frac{1}{2}m} + \frac{1}{2}\sigma \end{cases}$$

$$(d^{4})^{4} \qquad \begin{cases} \psi_{1},_{2} = \frac{1}{2}s \pm \sqrt{\frac{1}{2}m} - \frac{1}{2}\sigma \end{cases}$$

$$(d^{4})^{4} \qquad \begin{cases} \psi_{1},_{2} = -\frac{1}{2}\sigma - +\frac{1}{2}\sigma + \frac{1}{2}\sigma \end{cases}$$

$$(d^{2}sp^{3})^{6} \qquad \begin{cases} \psi_{1},_{2} = \sqrt{\frac{1}{6}s} \pm \frac{1}{\sqrt{2}z} + \sqrt{\frac{1}{12}\sigma} - +\frac{1}{2}\sigma \end{cases}$$

$$\psi_{3},_{4} = \sqrt{\frac{1}{6}s} \pm \frac{1}{\sqrt{2}}x + \sqrt{\frac{1}{12}\sigma} - \frac{1}{2}\sigma \end{cases}$$

$$\psi_{5},_{6} = \sqrt{\frac{1}{6}s} \pm \frac{1}{\sqrt{2}}y + \frac{1}{\sqrt{12}\sigma} - \frac{1}{2}\sigma \end{cases}$$

Table 51. Valence State ionization potential of Sc.

No	Valence state	P.E.ScI	P.E.Sc II	V.S.I.P.
1	V ₃ (s)d(sp) ²	1.716	1.853	6.697
2	$V_3(2)$ d"sd) ²	1.773	0.613	5.400
3	$V_3(2)d(pd)^2$	4.222	2.486	4.824
4	$V_3(2)s(pd)^2$	1.817	1.777	6.520
5	v ₃ (2)d(dd') ²	3.874	1.460	4.146
6	V ₃ (2)s(dd') ²	1.747	0.239	5.502
7	V ₃ (3)(sp ²) ³	2.998	5.319	8.881
8	$V_3(3)(d^2s)^3$	2.231	0.844	5.173
9	$V_3(spd)^3$	1.621	1.931	6.870
10	$V_3(pd^2)^3$	4.248	2.999	5.311
11	$v_3^3(d^3)^3$	4.063	1.036	3.533

Table 52. Valence state ionization potentials of Ti.
I.P. = 6.830 volts

			•	
Mo	Valence states	P.E.Ti I	P.E.Ti II	V.S.I.P.
1	$V_{4}(2)d^{2}(sp)^{2}$	1.957	2.412	7.285
2	$V_{L}(2)d^{2}(sd)^{2}$	1.581	1.343	6.592
3	V ₄ (2)d ² (pd) ²	4.500	3.010	5.340
Z _t	V ₄ (2)sd(pd) ²	2.136	3.291	7.985
5	$V_2 s^2 (pd)^2$	0.875	5.804	11.759
6	V ₄ (2)d ² (dd1) ²	3.591	1.601	4.340
7	V _Δ (2)sd(dd') ²	1.356	1.149	6.623
8	V ₂ s ² (dd') ²	0.358	2.923	9.395
9	$V_4(3)d(sp^2)^3$	3.806	7.449	10.473
10	$V_{\lambda}(3)d(sd^2)^3$	1.795	0.898	5.933
11	$V_4(3)d(spd)^3$	2.221	3.433	8.042
12	$V_{\Lambda}(3)d(pd^2)^3$	4.640	3.820	6.010
13	$V_{4}(3)s(pd^{2})^{3}$	2.299	4.706	9.239
14	V ₄ (3)d(d ³) ³	3.906	1.231	4.155
15	$V_{4}(3)s(d^{3})^{3}$	1.719	0.887	5.998
16	ν ₄ (sp ³) ⁴	6.722	13.323	13.431
17	۷۸(sd ^ع)	1.720	1.030	6.140
18	$V_{\Lambda}(dsp^2)^{2}$	4.079	9.273	12.024
19	ν ₄ (d ⁴ ,) ⁴	3.906	1.199	4.123
-				فيرا الوجد بالبار وزواد فلعاد الوجيد بالشاة فعدد والدماعات بويراسا وسألاه

Table 53. Valence state ionization potentials of V.

I.P. = 6.74 volts

No	Valence States	F.E.V I	P.E.V II	V.S.I.P.
1	$V_5(2)d^3(sp)^2$	-0.395	3.079	. 10.214
2	⁷ 5(2)d ³ (sd) ²	1.444	2.243	6.539
3	V ₅ (2)d ³ (pd) ²	3.903	3.176	6.008
4	$V_5(2)$ sd $^2(pd)^2$	0.628	5.426	11.574
5	$V_3(2)s^2d(pd)^2$	-1.121	7.553	15.414
G	v ₅ (2)a ³ (da•) ²	2.890	1.253	5.113
7	$V_5(2)$ sd $^2(dd')^2$	1.074	1.428	7.094
8	V ₃ (2)s ² d(dd!)	0.305	1.644	8.079
 9	V ₅ (3)d ² (sp ²) ³	2.394	9.191	13.537
10	$V_5(3)d^2(sd^2)^3$	1.042	1.514	6.412
11	$V_5(3)d^2(spd)^3$	0.715	5.283	11.308
12	$V_5(3)d^2(pd^2)^3$	4.540	4.473	6.673
13	$V_5(3)$ sd $(pd^2)^3$	1.150	7.271	12.861
14	$V_3 s^2 (pd^2)^3$	0.989	9.619	15.370
1.5	$v_5^3(3)d^2(d^3)^3$	3.766	1.641	4.615
16 ·	$V_5(3) \text{ sd} (d^3)^3$	1.7 86	1.837	7.000
17	$v_3 s^2 (d^3)^3$	0.634	1.695	7.801
 13	$V_5(4)d(sp^3)^4$	9.380	16.373	13.733
19	$V_5(4)d(sd^3)^4$	2.055	1.934	6.619
20	V ₅ (4)d(dsp ²) ⁴	3.420	11.380	14.700
21	v ₅ (4)d(d ⁴) ⁴	3.958	1.846	4.628
 22	V ₅ (4)s(d ⁴) ⁴	1.868	1.882	6.754

Table 54. Valence state ionization potentials of Cr. I.P. = 6.763 volts

-			,	
No	Valence states	P.E.Cr. I	P.E.Cr II	V.S.I.P.
1	V ₆ (2)d ⁴ (sp) ²	1.392	4.359	9.930
2	$V_6(2)d^4(sd)^2$	1.691	1.992	7.064
3	$V_6(2)d^4(pd)^2$	4.796	4.115	6.082
4	$V_6(2) \operatorname{sd}^3(\operatorname{pd})^2$	2.460	3.736	8,039
5	$V_{L}(2)d^{2}d^{2}(pd)^{2}$	1.656	5.967	11.051
6	V ₄ (2)d ⁴ (dd') ²	5.000	3.690	5.453
7	$V_6(2) s d^3 (dd')^2$	1.227	2.467	8,003
8	$v_4(2)s^2d^2(dd^1)$	1.518	5.800	11.045
)	$v_6(3)d^3(sp^2)^3$	4,076	7.672	10.359
LO	$V_6(3)d^3(sd^2)^3$	2.386	2.800	7.177
1	$V_6(3)d^3(dsp)^3$	2.638	4.297	8.422
L2	$V_6(3)d^3(pd^2)^3$	5.541	5.494	6.716
13	$V_6(3) sd^2(pd^2)^3$	3.061	4.651	8.354
L4.	$V_{A}(3)s^{2}d(pd^{2})^{3}$	1.993	6.121	10.891
5	$V_{L}(3)d^{3}(d^{3})^{3}$	5.603	3.857	5.017
.6	$V_c(3) sd^2(d^3)^3$	2.340	2.967	7.390
7	$V_4(3)s^2d(d^3)^3$	2.131	6.063	10,695
.8	$V_6(4)d^2(sp^3)^4$	8.532	10.448	8,679
9	$V_6(4)d^2(sd^3)^4$	2.788	3,244	7.219
20	$V_6(4)d^2(dsp^2)^4$	5.112	8.076	9.727
21	V ₄ (4)d ² (d ⁴) ⁴	5.602	3.869	5.030
22	V ₆ (4)sd(d ⁴) ⁴	2.602	3,280	7.441
23	V ₄ (4)s ² (d ⁴) ⁴	2.121	6.051	10.693

Table 55. Valence state ionization potentials of Mm.

I.P. = 7.432 volts

Мо	Valence States	P.E.Mn I	P.E.Im II	V.S.I.P.	
1	$v_7(2)d_1^5(sp)^2$	1.051	3.464	9.345	
2	$V_5(2)a_1^5(ad)^2$	3.174	3.004	7.342	
3	$V_5(2)c^5(pd)^2$	6.071	3.053	5.214	
4.	$V_7(2) \operatorname{ad}^6(\operatorname{pd})^2$	2.87 8	7.744	12.298	
5	7 ₅ (2)s ² d ³ (pd) ²	4.423	16.871	19,880	
S	v ₃ (2)a ⁵ (aa ¹) ²	6.467	4.507	5.472	
7	7 ₅ (2)0d ⁴ (dd ¹) ²	1.520	4.709	10.701	
0	~ V ₅ (2)s ² d ³ (dd') ²	0.319	7.906	14.519	
9 .	v ₇ (3)4 ⁴ (sp ²) ³	5.849	14.603	16.186	
10	$v_5(3)d^4(sd^2)^3$	3.792	4.014	7.654	
11	7,(3)d ⁴ (spd) ³	3.030	7.161	11.563	
12	٧ ₇ (3)٥ۅ ³ (pq ²) ³	3.802	11.200	14.918	
13	$V_{5}(3)d^{4}(pd^{2})^{3}$	6.722	5.749	6.459	
14	$V_5(3)s^2d^2(pd^2)^2$	5.085	21.416	23.763	
15	$v_3 d^4 (d^3)^3$	6.762	4.217	4.887	
16	$V_{5}(3) s d^{3}(d^{3})^{3}$	3.570	4.065	7.928	
17	$V_5(3)s^2d^2(d^3)^3$	2.101	8.280	13.611	
 L8	77(4)d ³ (te) ⁴	13.253	34.897	29.076	
L9	$V_5(4)d^3(sd^3)^4$	4.106	4.410	7.736	
20	$V_7(4)d^3(dsp^2)^4$	7.536	19.706	19.602	
21	$V_{5}(4)s^{2}d(d^{2})^{4}$	2.355	8.476	13.553	
22	$V_{5}(4) \text{sd}^{2}(d^{4})^{4}$	3.628	4.017	7.821	

Table 56. Valence state ionization potentials of Fe. I.P. = 7.896 volts

ilo	V _a lence states	P.E.Fe I	P.E.Fe II	V.S.I.P.
1	V ₄ (2)d ⁴ s ² (dd') ²	1.283	6.428	12.978
2	$V_{\Lambda}(2)d^{6}(sd)^{2}$	2.168	2.207	7.9 39
3	v ₂ d ⁵ (dd ¹) ² (dd ¹) ⁺	5.030	3.733	6.602
4	V ₆ (2)d ⁶ (sp) ²	3.29 8	2.870	7.472
5	V ₆ (2)sd ⁵ (pd)	4.644	6.345	9.601
6	V ₆ (2)d ⁵ (spd)+(spd) ² 4.602	5.882	9.180
7	V ₄ (2)d ⁶ (pd) ²	9.688	7.478	5.690
8	$v_4(3)s^2d^3(d^3)^3$	2.316	7.585	13.169
9	$V_4(3)d_2^5(sd^2)^{\frac{3}{3}}$	2.916	3.764	8.748
10	$V_6(3)d^5(spd)^3$	4.997	7.7 93	10.196
11	$V_{\lambda}(4)s^{2}d^{2}(d^{4})^{4}$	2.316	7.626	13,210
12	V ₄ d ⁴ (sd ³) ⁴	2.740	3.525	8.685

Table 57. Valence state ionization potentials of Co.

I.P. = 7.86 volts

No	To Valence states	P.E.Co I	P.E.Co II	V.S.I.P.
1	V ₃ (2)d ⁷ (sd) ²	1,825	1,501	7.536
2	$V_5(2)d^7(di)^2$	3,699	6.240	10.401
3	$V_3(2)d^7(pd)^2$	4.961	5.792	9.171
4	V ₅ (2)sd ⁶ (pd) ²	4.636	5.290	9.126
5	V ₇ (3)d ⁶ tr ³	8.190	8.672	8.342
6	$V_3d^6(sd^2)^3$	2.166	2.301	7.995
7	V ₃ d ⁶ (pd ²) ³	5 .0 51	7.569	10.378
8	$V_5(3) \text{sd}^5(\text{pd}^2)^3$	5.168	6.662	9.354
9	$V_5(d)d^6(spd)^3$	4.921	5.713	8.652
- -	$v_7(4)d^5(dsp^2)^4$	9.659	7.801	6.002
11	V ₉ (4)d ⁵ te ⁴	14.228	2.564	-3.802

Table 58. Valence state ionization potentials of Ni. I.P. = 7.633 volts

lio.	Valence states	P.E.Ni I	P.E.Ni II	V.S.I.P.
1	72d8(sd)2	0.756	1.975	- 8.952
2	$v_{4}^{2}(2)d^{8}di^{2}$	3,972	4.083	7.744
3	V ₂ d ^S (pd <u>)</u> ²	4.505	4,403	7.531
Zı.	$V_{l}(2)$ sd 7 (pd) 2	5.135	5,276	7.774
5	$v_2^{s^2}d^6(dd^1)^2$	0.615	5.097	12.115
6	V ₆ (3)d ⁷ tr ³	13.130	9,238	3.741
7	$V_4(3)$ pd $^6(sd^2)^3$	5.310	8,630	10.953
8	$V_{\alpha}(3)$ sd $^{6}(pd^{2})^{3}$	5.539	6.543	8.637
9	$V_{4}(3)d^{7}(\mathrm{spd})^{3}$	5.305	5.228	7.556
10	V ₆ (4)d ⁶ (dsp ²) ⁴	15.123	11.181	3.691
11	V ₈ (4)d ⁶ te ⁴	27.780	15.214	-4.933

Table 59. Valence state ionization potentials of Cu.

I.P. = 7.723 volts

No	Valence states	P.E.Cu I	P.E.Cu II	V.S.I.P.
1	V, d ¹⁰ di	1.903	0,000	. 5.821
2.	V.d ⁸ p ² (sd)	17.086	23,065	13,703
3	V ₁ d ⁸ s ² (pd)	5,988	12,229	13.965
۷.	V ₃ (2)d [©] p(sd) ²	5.933	12.893	14.684
5	$V_3(2)d^9di^2$	5.679	5.776	7.821
G	V ₃ (2)d ⁸ s(pd) ²	6.542	10.068	11.250
7	V ₅ (3)d ³ tr ³	16.652	16.282	7.354
. C	$v_3 d^6 s^2 (pd^2)^3$	9.104	21.482	20.102
9	$v_3(3)d^8(spd)^3$	6.527	9.545	10.742

Table 60. Valence state ionization potentials of X = Zn, Ga, Ge, As, Se, Br.

Element	Valence States	P.E.M I	P.E.M II	V.S.I.P.	
<u>Zu</u>	V ₂ di ²	4.067	3. 032	8.356	
Ga	Vatr ³	5.401	9.017	9.616	٠,
Ge	V <u>,te</u>	5.814	10.134	12.200	* *
<u> </u>	ν ₃ ρ ² <u>ττ</u> 3	6.136	12.291	16.155	
	$V_3 te^{\frac{2}{(te)^3}}$	4.760	9.266	14.506	
Se	$v_{2p}^{4}\frac{di}{2}$	6.897	15.476	18.329	
	V2p2tr2tr1tr2	4.124	11.054	16.630	
	v_2 te ¹² , te ¹¹² ,				
	<u>te"'te""</u>	2.744	8.855	15.361	
<u>Er</u>	V(1)te ² te ²		>		
	to", 2, to"	-1.479	4.088	17.407	
	V(1)p ² tr ² tr" ²	٠.			w - 4
	<u>tr</u> "	-0.725	5,467	18.032	
•	V(1)p ⁴ s ² p	-3.743	-1.430	14.103	
	V(1)p ⁴ di' ² di"	0.785	8.259	19.314	

UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
UNIVERSITY OF CINCINNATI, Cincinnati, Ohio EMPIRICAL METHODS FOR CALCULATION OF BOND EMERGIES, by H. H. Jaffe and Van Tran Zung, May 1961, 72p. incl. tables. (Project 7023; Task 7366) (wADD TR 61-84) (Contract AF 33(616)-6900) Unclassified Report Slater parameters (F's and G's) were calculated for the elements scandium to bromine and are tabulated. These parameters were used to calculate the energies of a wide variety of valence states of these elements, and of their univesitive ions, and hence	valence state ionization potentials are derived. These data are tabulated.		
UNCLASSIFTED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
UNIVERSITY OF CINCINNATI, Cincinnati, Chic EMPIRICAL METHODS FOR CALCULATION OF BOND ENERGIES, by H. H. Jaffe and Van Tran Zung, May 1961, 72p. incl. tables. (Project 7023; Task 73666) (WADD TR 61-£4) (Contract AF 33(616)-6900) Unclassified Report Slater parameters (F's and G's) were calculated for the elements scandium to bromine and are tabulated. These parameters were used to calculate the energies of a wide variety of valence states of these elements, and of their unifositive ions, and hence	valence state ionization potentials are derived. These data are tabulated.		

UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED		CE LE LOCAL PARTIE
UNIVERSITY OF CINCINNATI, Cincinnati, Ohio EMPRICAL METHODS FOR CALCULATION OF BOND ENERGIES, by H. H. Jaffe and Wan Tran Zung, May 1961, 72p. incl. tables. (Project 7023; Task 73666) (WADD TR 61-84) (Contract AF 33(616)-6900) Slater parameters (F's and G's) were calculated for the elements scandium to bromine and are tabulated. These parameters were used to calculate the energies of a wide warloty of valence states of these elements, and of their unipositive ions, and hence valence state ionization potentials are derived. These data are tabulated.	(****)			
UNCLASSIFTED	UNCLASSIFIED	UNCLASSIFIED		UNCLASSIFTED
UNIVERSITY OF CINCINNATI, Cincinnati, Chic EMPIRICAL METHODS FOR CALCULATION OF BOND ENERGIES, by H. H. Jaffe and Van Tran Zung, May 1961, 72p. incl. tables. (Froject 7023; Task 7366) (WADD TR 61-64) (Contract AF 33(616)-6900) Unclassified Report Slater parameters (F's and G's) were cal- culated for the elements scandium to bromine and are tabulated. These parameters were used to calculate the energies of a wide warioty of valence states of these elements, and of their unipositive ions, and hence valence state ionization potentials are derived. These data are tabulated.	(1880)			

UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	 UNCLASSIFT ED
UNIVERSITY OF CINCINNATI, Cincinnati, Ohio EMPIRICAL METHODS FOR CALCULATION OF BOND ENERGIES, by H. H. Jaffe and Van Tran Zung, May 1961, 72p. incl. tables. (Project 7023; Task 73666) (WADD TR 61-64) (Contract AF 33(616)-6900) Slater parameters (F's and G's) were calculated for the elements scandium to bromine and are tabulated. These parameters were used to calculate the energies of a wide variety of valence states of these elements, and of their unipositive ions, and hence valence state ionization potentials are derived. These data are tabulated.	()		
UNCLASSIFTED	UNCLASSIFIED +	UNCLASSIFIED	UNCLASSIFIED
UNIVERSITY OF CINCINNATI, Cincinnati, Ohio EMPIRICAL METHODS FOR CALCULATION OF BOND ENERGIES, by H. H. Jaffe and Van Tran Zung, May 1961, 72p. incl. tables. (Project 7023; Task 73665) (WADD TR 61-84) (Contract AF 33(616)-6900) Unclassified Report Slater parameters (F's and G's) were calculated for the elements scandium to bromine and are tabulated. These parameters were used to calculate the energies of a wide variety of valence states of these elements, and of their unipositive ions, and hence valence state ionization potentials are derived. These data are tabulated.	(1000)		

DEPARTMENT OF THE AIR FORCE

AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE OHIO 45433

December 12, 2016

MEMORANDUM FOR AFRL/RXOP
ATTN: Robin Hayes

FROM: AFRL/RXAS

SUBJECT: Technical reports WADD-TR-61-84-PT-1 and WADD-TR-61-84-PT-2

I have read through both technical reports you sent me - reference WADD-TR-61-84-PT-1 (U) Empirical Methods for Calculation of Bond Energies. Part 1 dated May 1961 and WADD-TR-61-84-PT-2 (U) Empirical Methods for Calculation of Bond Energies. Part 2 dated Sep 1963. In both cases the computations that were done, while significant in the early 1960s, could be reproduced now with better accuracy by modern computational methods and equipment in a matter of a few hours. Thus the data presented in the reports is of historical value only. Since I saw no discussions of specific strategic materials or weapon systems, I conclude that both reports should be assigned a distribution statement A. If you have any further questions, please feel free to contact me by e-mail at alan.yeates@us.af.mil or by phone at 312-785-9138 or (937)255-9138 (comm).

YEATES.ALAN.TO Digitally signed by TRATES.ALANTOOD.1231648760 DN. CHIS, CONFIDENCE OF UNIT OF

ALAN TODD YEATES Research Chemist Soft Matter Materials Branch Functional Materials Division