

Modelación Numérica de Sistemas Estocásticos

Daniel Otero Fadul

Departamento de Matemáticas y Ciencia de Datos Escuela de Ingeniería y Ciencias

Axiomas de la Probabilidad

Un experimento aleatorio es un procedimiento bien definido que produce un resultado observable que no se puede predecir con antelación. Sea Ω el conjunto que contiene todos los resultados posibles de un experimento aleatorio; a este conjunto se le conoce como espacio muestral. Cualquier subconjunto de Ω se le llama evento.

Por ejemplo, lanzar una moneda dos veces es un experimento aleatorio que tiene el siguiente espacio muestral:

$$\Omega = \{SS, SC, CS, CC\},\$$

donde S y C hacen referencia a que un lanzamiento haya sido "sello" o "cara", respectivamente. Un posible evento de este experimento es $A = \{CC\}$.

Nótese que, ya que los eventos son conjuntos, todas las operaciones de conjuntos son válidas también para eventos.

Axiomas de la Probabilidad

La probabilidad de un evento A es una medida de qué tan probable es que ocurra dicho evento. Esta medida debe cumplir con los siguientes axiomas:

- $\forall A \subseteq \Omega, P(A) \in [0,1].$
- $P(\Omega) = 1$.
- Para toda colección contable de eventos disyuntos $\{A_i\}_{i=1}^n$, $n \in \mathbb{N}$, $A_i \cap A_j = \emptyset$ $\forall i \neq j$,

$$P\left(\cup_{i=1}^{n}A_{i}\right)=\sum_{i=1}^{n}P(A_{i}).$$

Axiomas de la Probabilidad

Estos axiomas se utilizan para definir y probar distintos resultados en probabilidad. Por ejemplo, podemos calcular la probabilidad del complemento de un evento A:

$$1 = P(\Omega)$$

$$= P(A \cup A^{c})$$

$$= P(A) + P(A^{c}).$$

Por lo tanto, $P(A^c) = 1 - P(A)$.

Sea $A=\{\mathit{CC}\}$. Asumiendo que cada posible resultado de Ω tiene la misma probabilidad de ocurrir, tenemos que

$$P(A^{c}) = 1 - P(A)$$

= $1 - \frac{1}{4} = \frac{3}{4}$.

Probabilidad Condicional

Sean A y B dos eventos que pertenecen a un espacio muestral Ω . La probabilidad de que ocurra el vento A dado que se sabe que el evento B ocurrió se define como

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Si A y B son independientes, se tiene que P(A|B) = P(A), lo que implica que $P(A \cap B) = P(A)P(B)$.

Probabilidad Condicional

Retomemos el experimento de la moneda. El espacio muestral está dado por $\Omega = \{SS, SC, CS, CC\}$. Sea A el evento de que al menos un lanzamiento fue cara, y sea B el evento de que al menos uno de dos lanzamientos fue sello. ¿A qué es igual P(A|B)?

Tenemos que $A = \{SC, CS, CC\}$ y $B = \{SS, SC, CS\}$. Por lo tanto, $A \cap B = \{SC, CS\}$. Entonces,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(\{SC\}) + P(\{CS\})}{P(\{SS\}) + P(\{SC\}) + P(\{CS\})}$$

$$= \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}.$$

Probabilidad Total

Sea $\{A_i\}_{i=1}^n$ una colección de eventos mutuamente excluyentes que forman una partición del espacio muestral: $A_i \cap A_j = \emptyset$, $\forall i \neq j \text{ y } \cup_{i=1}^n A_i = \Omega$. Entonces, para cualquier evento $B \subset \Omega$, tenemos que

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B)$$

= $P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_n)P(A_n).$

Nótese que $\forall i, P(A_i) > 0$.

Probabilidad Total

Papá Noel empaca los juguetes que reparte en Navidad en cajas que contienen veinte juguetes. Suponga que el 60% de todas las cajas que reparte Papá Noel no contienen juguetes defectuosos, 30% contienen sólo un juguete defectuoso, y 10% contienen dos juguetes defectuosos. Si se elige una caja al azar, ¿cuál es la probabilidad de elegir aleatoriamente, sin reemplazo, dos juguetes sin defectos?

Probabilidad Total

Sean C_0 , C_1 y C_2 los eventos de caja con cero juguetes defectuosos, caja con un juguete defectuoso y caja con dos juguetes defectuosos, respectivamente. Sea J_0 el evento de sacar dos juguetes sin defectos de una caja. Entonces,

$$P(J_0) = P(J_0|C_0)P(C_0) + P(J_0|C_1)P(C_1) + P(J_0|C_2)P(C_2)$$

$$= (1)\left(\frac{6}{10}\right) + \left(\frac{19}{20}\frac{18}{19}\right)\left(\frac{3}{10}\right) + \left(\frac{18}{20}\frac{17}{19}\right)\left(\frac{1}{10}\right)$$

$$= \frac{903}{950} = 0.9505...$$

Teorema de Bayes

Sea $\{A_i\}_{i=1}^n$ una colección de eventos mutuamente excluyentes que forman una partición del espacio muestral: $A_i \cap A_j = \emptyset$, $\forall i \neq j$, $\cup_{i=1}^n A_i = \Omega$ y $P(A_i) > 0$ $\forall i$. Entonces, para cualquier evento $B \subset \Omega$ tal que P(B) > 0, tenemos que

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)}$$

$$= \frac{P(B|A_i)P(A_i)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_n)P(A_n)}.$$

Teorema de Bayes

Cuando la partición de Ω es de solo dos elementos ($A \cup \bar{A} = \Omega$), tenemos el siguiente caso especial:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\bar{A})P(\bar{A})}.$$

Teorema de Bayes

Sean C_0 , C_1 y C_2 los eventos de caja con cero juguetes defectuosos, un juguete defectuoso y dos juguetes defectuosos, respectivamente. Sea J_0 el evento de sacar dos juguetes sin defectos de una caja. Entonces, para responder la primera pregunta, necesitamos calcular $P(C_0|J_0)$:

$$P(C_0|J_0) = \frac{P(J_0|C_0)P(C_0)}{P(J_0|C_0)P(C_0) + P(J_0|C_1)P(C_1) + P(J_0|C_2)P(C_2)}$$

$$= \frac{(1)\left(\frac{6}{10}\right)}{(1)\left(\frac{6}{10}\right) + \left(\frac{19}{20}\frac{18}{19}\right)\left(\frac{3}{10}\right) + \left(\frac{18}{20}\frac{17}{19}\right)\left(\frac{1}{10}\right)}$$

$$= 0.631229...$$

Variables Aleatorias

Una variable aleatoria es una variable cuyos valores dependen de un fenómeno aleatorio. Más formalmente, una variable aleatoria $X:\Omega\to E$, donde E es algún espacio medible, es una función que le asigna a cada elemento del espacio muestral Ω un número entero o real. Por ejemplo, para el experimento de la moneda, podríamos definir a X como la siguiente variable aleatoria:

Х
SS o 0
SC o 1
$CS \rightarrow 2$
$CC \rightarrow 3$

Variables Aleatorias Discretas

Una variable aleatoria es discreta si el conjunto de valores que toma es *contable*. Justamente, la variable que definimos en la diapositiva anterior es un ejemplo de variable aleatoria discreta.

Variables Aleatorias Discretas

Toda variable aleatoria discreta tiene asociada una función de masa de probabilidad, la cual le asigna probabilidades a cada valor que puede tomar la variable aleatoria. Esta función $f: E \to \mathbb{R}$ debe cumplir con las siguientes condiciones:

- $\forall x \in E, f(x) \geq 0.$
- $\sum_{x} f(x) = 1$.
- P(X = x) = f(x).

Además, asociada a la función de masa de probabilidad tenemos la función de distribución acumulada:

$$F(x) = P(X \le x) = \sum_{y \le x} f(y).$$

Variables Aleatorias Discretas

Por ejemplo, volviendo a la moneda que lanzamos dos veces, la función de masa de probabilidad sería igual a

$$f(x) = \frac{1}{4}, \ x = 0, 1, 2, 3.$$
 (1)

Nótese que $f(1) = P(X = 1) = P(\{SC\})$.

Variables Aleatorias Continuas

Una variable aleatoria es continua si el conjunto de valores que toma es *no contable*. Por ejemplo, la temperatura de una habitación o el tiempo que esperamos la llegada de un bus en una estación son ejemplos de variables aleatorias continuas.

Variables Aleatorias Continuas

Toda variable aleatoria continua tiene asociada una función de densidad de probabilidad. Esta función $f: E \to \mathbb{R}$ debe cumplir con las siguientes condiciones:

- $\forall x \in E, f(x) > 0.$
- $\int_{\mathbb{D}} f(x) dx = 1.$
- $P(a < X < b) = \int_a^b f(x) dx$.

La función de densidad de probabilidad también tiene asociada una función de distribución acumulada:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy.$$

Nótese que

$$\frac{d}{dx}F(x)=f(x).$$

Variables Aleatorias Continuas

Consideremos la siguiente función de densidad de probabilidad:

$$f(x) = \begin{cases} \frac{1}{3}x^2, & -1 < x < 2\\ 0, & x \notin (-1, 2) \end{cases}$$
 (2)

¿A qué es igual P(0 < X < 1)?

$$P(0 < X < 1) = \int_{0}^{1} \frac{1}{3} x^{2} dx$$

$$= \frac{1}{3} \int_{0}^{1} x^{2} dx$$

$$= \frac{1}{3} \left(\frac{x^{3}}{3} \Big|_{0}^{1} \right)$$

$$= \frac{1}{9}.$$

Función de Probabilidad Conjunta

Los conceptos anteriores se pueden extender para incluir funciones que muestren las relaciones que existen entre dos variables aleatorias o más. Si tenemos dos variables aleatorias discretas X y Y, se puede definir la **función de masa de probabilidad conjunta** de la siguiente forma:

$$P(X = x, Y = y) = f(x, y).$$

En el caso de que X y Y sean variables aleatorias continuas, tenemos que

$$P(X \in A, Y \in B) = \int_{B} \int_{A} f(x, y) dx dy,$$

donde f(x, y) es la función de densidad de probabilidad conjunta.

Función de Probabilidad Conjunta

Se puede demostrar, para variables aleatorias discretas, que X y Y son independientes si y solo si

$$f(x,y) = f_X(x)f_Y(y),$$

para todo x y y, donde f_X y f_Y son las funciones de masa de probabilidad de las variables X y Y, respectivamente.

De manera similar, si X y Y son variables aleatorias continuas, estas son independientes si y solo si, para todo x y y,

$$f(x,y)=f_X(x)f_Y(y),$$

donde f_X y f_Y son las funciones de densidad de probabilidad de las variables X y Y, respectivamente.

El valor esperado de una variable aleatoria discreta se define como

$$E(X) = \sum_{x} x f(x).$$

Este se puede entender como un promedio o como un parámetro de localización: el valor en el que nuestra función de masa de probabilidad está "centrada" o ubicada.

Volviendo a recordar la función de masa de probabilidad del experimento aleatorio de la moneda, tenemos que el valor esperado de X es igual a

$$E(X) = \sum_{x=0}^{3} xf(x)$$

$$= (0)\frac{1}{4} + (1)\frac{1}{4} + (2)\frac{1}{4} + (3)\frac{1}{4}$$

$$= \frac{3}{2}.$$

En el caso de una variable aleatoria continua tenemos que

$$E(X) = \int_{\mathbb{R}} x f(x) dx.$$

Vale la pena mencionar que el valor esperado también se conoce como el momento de primer orden de la variable aleatoria <math>X.

Para la función de densidad de probabilidad que mencionamos anteriormente tenemos que

$$E(X) = \int_{-1}^{2} x \left(\frac{1}{3}x^{2}\right) dx$$
$$= \frac{1}{3} \int_{-1}^{2} x^{3} dx$$
$$= \frac{1}{3} \left(\frac{x^{4}}{4}\Big|_{-1}^{2}\right) dx$$
$$= \frac{5}{4}.$$

Vale la pena mencionar que el valor esperado tiene las siguientes propiedades:

- $\forall a \in \mathbb{R}, \ E(aX) = aE(X).$
- Sean X_1 y X_2 variables aleatorias. Entonces, $E(X_1 + X_2) = E(X_1) + E(X_2)$.
- Para una variable aleatoria discreta X, $E(g(X)) = \sum_{x} g(x)f(x)$.
- De manera similar, para una variable aleatoria continua X, tenemos que $E(g(X)) = \int_{\mathbb{R}} g(x)f(x)dx$.

Varianza

La varianza de una variable aleatoria X es una medida de dispersión de esta alrededor de su media o valor esperado. Esta se define como

$$Var(X) = E((X - E(X))^{2})$$

= $E(X^{2}) - (E(X))^{2}$.

Esta medida de dispersión tiene estas propiedades:

- $Var(aX + b) = a^2Var(X)$, donde $a, b \in \mathbb{R}$.
- ullet Si X_1 y X_2 son variables aleatorias independientes,

$$\mathsf{Var}(X_1+X_2)=\mathsf{Var}(X_1)+\mathsf{Var}(X_2).$$

Varianza

Para la variable aleatoria X con función de masa de probabilidad definida en (1), tenemos que la varianza es igual a

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= \sum_{x=0}^{3} x^{2} f(x) - \left(\frac{3}{2}\right)^{2}$$

$$= (0^{2}) \frac{1}{4} + (1^{2}) \frac{1}{4} + (2^{2}) \frac{1}{4} + (3^{2}) \frac{1}{4} - \frac{9}{4}$$

$$= \frac{5}{4}.$$

Varianza

La varianza de la variable aleatoria continua X, cuya función de densidad de probabilidad está definida en (2), es igual a

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= \frac{1}{3} \int_{-1}^{2} x^{4} dx - \left(\frac{5}{4}\right)^{2}$$

$$= \frac{1}{3} \left(\frac{x^{5}}{5}\Big|_{-1}^{2}\right) - \frac{25}{16}$$

$$= \frac{11}{5} - \frac{25}{16} = \frac{51}{80}.$$

Distribución de Bernoulli

Para la distribución de Bernoulli tenemos una variable aleatoria X que solo toma dos valores: X es igual a 1 con probabilidad p e igual a 0 con probabilidad 1-p. Su función de masa de probabilidad es igual a

$$f(x) = \begin{cases} 1 - p, & x = 0 \\ p, & x = 1 \end{cases}$$

Además, tenemos que

$$E(X) = \sum_{x=0}^{1} xf(x)$$

= (0)(1 - p) + (1)p = p.

En cuanto a la varianza, está es igual a

$$Var(X) = \sum_{x=0}^{1} x^{2} f(x) - p^{2}$$
$$= (0^{2})(1-p) + (1^{2})p - p^{2} = p(1-p).$$

Distribución Binomial

Sea $\{X_i\}_{i=1}^n$ una colección de variables de Bernoulli independientes e idénticamente distribuidas. La variable aleatoria binomial X se define como

$$X = \sum_{i=1}^{n} X_i.$$

En este caso, la función de masa de probabilidad está dada por

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, 1, 2, \dots, n.$$

El valor esperado de X se puede calcular de la siguiente forma:

$$E(X) = E\left(\sum_{i=1}^{n} X_i\right)$$
$$= \sum_{i=1}^{n} E(X_i)$$
$$= np.$$

De manera similar, tenemos que la varianza es igual a

$$Var(X) = Var\left(\sum_{i=1}^{n} X_i\right)$$
$$= \sum_{i=1}^{n} Var(X_i)$$
$$= np(1-p).$$

Supongamos que lanzamos una moneda diez veces. Si asumimos que en cada lanzamiento la probabilidad de que salga cara y sello es la misma, es decir, p=1/2 y n=10, ¿cuál es la probabilidad de que en seis lanzamientos salga cara?

Esto es equivalente a calcular P(X = 6):

$$P(X = 6) = f(6)$$

$$= {10 \choose 6} \left(\frac{1}{2}\right)^6 \left(1 - \frac{1}{2}\right)^{10 - 6}$$

$$= \frac{10!}{(10 - 6)!6!} \left(\frac{1}{64}\right) \left(\frac{1}{16}\right)$$

$$= \frac{105}{512}$$

Distribución Uniforme

Una de las distribuciones más simples es la distribución uniforme. La variable aleatoria continua X asociada a esta distribución toma valores en un intervalo acotado de la recta real. La función de densidad de probabilidad es igual a

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases}$$

La función de distribución acumulativa está dada por

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

El valor esperado de X es igual a

$$E(X) = \int_{\mathbb{R}} f(x)dx$$
$$= \int_{a}^{b} \frac{x}{b-a} dx$$
$$= \frac{b^{2} - a^{2}}{2(b-a)} = \frac{a+b}{2}.$$

La varianza está dada por

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= \int_{a}^{b} \frac{x^{2}}{b-a} dx - \left(\frac{a+b}{2}\right)^{2}$$

$$= \frac{b^{3} - a^{3}}{3(b-a)} - \frac{(a+b)^{2}}{4}$$

$$= \frac{(b-a)^{2}}{12}.$$

Figura: Gráfica de una función de densidad de probabilidad uniforme para una variable aleatoria que toma valores en el intervalo [1,3]. Imagen tomada de [2].

Distribución Normal

La distribución más importante en estadística es la distribución normal, también conocida como distribución Gaussiana en honor a Karl Friedrich Gauss. La función de densidad de probabilidad de una variable aleatoria normal X está dada por

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

donde $\mu = E(X)$ y $\sigma^2 = Var(X)$.

Figura: Gráfica de la distribución normal con parámetros μ y σ . Imagen tomada de [2].

Sea X una variable aleatoria normal con $\mu=$ 50 y $\sigma=$ 10. ¿Cuál es la probabilidad de que X tome valores entre 45 y 62?

$$P(45 < X < 62) = P\left(\frac{45 - 50}{10} < \frac{X - \mu}{\sigma} < \frac{62 - 50}{10}\right)$$
$$= P\left(-\frac{1}{2} < Z < \frac{6}{5}\right)$$
$$= P\left(Z < \frac{6}{5}\right) - P\left(Z < -\frac{1}{2}\right)$$
$$= 0.8849 - 0.3085 = 0.5764.$$

BIBLIOGRAFÍA

- 1 Ross S., "Simulation", Quinta Edición, Elsevier, 2013.
- Walpole R. E., Myers R. H., Myers S. L., Keying Y., "Probability and Statistics for Engineers and Scientists", 9th Edition, Prentice Hall, 2012.