Applications of Binary search

Today...

- Review: What is binary search?
- Binary search on monotonically increasing functions
- Basic methods of solving some problems by binary search
 - Using binary search directly
 - Converting optimization problems to decision problems

Today...

- Review: What is binary search?
- Binary search on monotonically increasing functions
- Basic methods of solving some problems by binary search
 - Using binary search directly
 - Converting optimization problems to decision problems

What was binary search?

- We want to find an element x from a sorted array a[1..n] $(a[1] \le a[2] \le \cdots \le a[n])$
- If we search naively, it takes O(n) time.
- However, we can do it in $O(\log n)$ time because..
 - If x < a[m], x < a[m+1], a[m+2], ..., a[n] also holds.
 - If x > a[m], x > a[m-1], a[m-2], ..., a[1] also holds.
 - So if we let m as a midpoint of [1, n], the size of the interval becomes at most half.

What was binary search? (cont.)

The size of the interval was 10, but after comparing it became at most 5.

What was binary search? (cont.)

```
int l = 0, r = n-1; // If x is in the array, it must be inside a[l..r]
while(1 <= r) {</pre>
   int m = (1 + r) / 2;
   if(x < a[m]) {
      r = m - 1;
   \} else if(x > a[m]) {
      1 = m + 1;
   }else { // we found it!
      printf("we found %d in position %d\n", x, m);
      break;
```

Today...

- Review: What is binary search?
- Binary search on monotonically increasing functions
- Basic methods of solving some problems by binary search
 - Using binary search directly
 - Converting optimization problems to decision problems

Binary search on functions

 To apply binary search on arrays, the array should be monotonically increasing.

• Like that, we can also apply a binary search on a monotonically increasing function $f: \mathbb{R} \to \mathbb{R}$. Assume it is continuous.

y = f(x) y = f(x)

• Given a real number k, we are trying to find some x_0 such that $f(x_0) = k$.

• As this function is monotonically increasing, the range of the possible x_0 can form an interval. So we are interested in finding two endpoints x_1 and x_2 .

• First, let's find a proper interval [l,r] such that f(l) < k and f(r) > k. As f is monotonically increasing, we are certain that the answer is inside the interval.

- Find the midpoint $m = \frac{a+b}{2}$ and calculate f(m).
 - If f(m) < k, f(a..m) < k also holds. Therefore we can shrink the interval to [m,b].

- Find the midpoint $m = \frac{a+b}{2}$ and calculate f(m).
 - If f(m) > k, f(m, b) > k also holds. Therefore we can shrink the interval to [a, m].

- So, we can start from the interval [l,r] and repeat these steps:
 - Set the midpoint $m = \frac{l+r}{2}$.
 - If f(m) > k, shrink the interval to [l, m].
 - If f(m) < k, shrink the interval to [m, r].
- If we repeat these steps s times, the length of the interval will become $\frac{(r-l)}{2^s}$.
- You should fix an appropriate s, by comparing $\frac{(r-l)}{2^s}$ and the desired precision that we want.

- But what if we need to find the endpoints?
- If $f(x) \neq k$, we shrink the interval in the same way we've discussed just before.

• However, if f(m) = k, it is slightly different.

• If we were to calculate the leftmost endpoint, we have to shrink the interval into [a, m].

• If we were to calculate the rightmost endpoint, we have to shrink the interval into [m, b].

- In short: To find the **leftmost** endpoint, we can start from the interval [l,r] and repeat these steps:
 - Set the midpoint $m = \frac{l+r}{2}$.
 - If $f(m) \ge k$, shrink the interval to [l, m].
 - If f(m) < k, shrink the interval to [m, r].

- In short: To find the **rightmost** endpoint, we can start from the interval [l,r] and repeat these steps:
 - Set the midpoint $m = \frac{l+r}{2}$.
 - If f(m) > k, shrink the interval to [l, m].
 - If $f(m) \le k$, shrink the interval to [m, r].

- We can apply this not only on real numbers, but also on integers.
- Actually, arrays (or sequences) can be just seen as a function $f: \mathbb{N} \to \mathbb{N}$ or $f: \mathbb{N} \to \mathbb{R}$, so you can apply the same method.

- However, the situation is slightly different. For example, let's try to get the **leftmost** point that $f(x_l) = k$.
- We are going to store x_l in a variable x_l .
- Let's make a large interval [l,r] that must contains x_l .

- Then we can repeat the steps until $l \leq r$:
 - Set the midpoint $m = \left\lfloor \frac{l+r}{2} \right\rfloor$.
 - If f(m) > k, shrink the interval to [l, m-1].
 - If f(m) < k, shrink the interval to [m + 1, r].
 - If f(m) = k, store the value of m into x1, and shrink the interval to [l, m-1].
- After repeating, the variable x1 stores the leftmost point.

- We can also find the rightmost point x_r too, if we repeat these steps until $l \le r$:
 - Set the midpoint $m = \left\lfloor \frac{l+r}{2} \right\rfloor$.
 - If f(m) > k, shrink the interval to [l, m-1].
 - If f(m) < k, shrink the interval to [m + 1, r].
 - If f(m) = k, store the value of m into xr, and shrink the interval to [m+1,r].
- After repeating, the variable xr stores the rightmost point.

- By using these methods, we can also calculate
 - The leftmost x such that $f(x) \ge k$.
 - The rightmost x such that $f(x) \le k$.
- ..but we leave these as your exercises. Try to fix a midpoint, and use the fact that f is monotonically increasing.

Today...

- Review: What is binary search?
- Binary search on monotonically increasing functions
- Basic methods of solving some problems by binary search
 - Using binary search directly
 - Converting optimization problems to decision problems

- Example problem:
- You are given n sticks. Each stick has length a_1, a_2, \cdots, a_n .
- We are going to make at least *k* sticks with the same length, by cutting the given sticks.
- We are not allowed to glue sticks, so we may have to throw away some sticks (if the length is not the same)
- What is the maximum possible length the resulting sticks?

• Example for the example problem:

If k = 7, we can cut the sticks into length 4. Then, exactly 7 sticks are available, and it is the maximum possible length.

- Solution: Suppose we fixed the length by x.
- Then, we can easily calculate the number of usable sticks by:

$$f(x) = \sum_{i=1}^{n} \left\lfloor \frac{a_i}{x} \right\rfloor$$

- And f(x) is monotonically decreasing, since
 - $\left[\frac{a_i}{x}\right]$ is a monotonically decreasing function, so sum is monotonically decreasing too.
 - It is obvious that if we increase the length, the number of usable sticks will decrease.

So the problem became:

Given a monotonically decreasing function f(x), find the *rightmost(largest)* x (x > 0) such that $f(x) \ge k$ holds.

- We can easily find such x by binary search!
 - The function is *decreasing* (not increasing), but if we flip the function, the function can be seen as an increasing function.
 - So the binary search logic works, if we change the details slightly.

- If we were to find a *real number x*, we could do like:
 - Start from the interval $[\epsilon, \max(a_i)]$.
 - Find the midpoint $m = \frac{l+r}{2}$.
 - If $f(m) \ge k$, shrink the interval to [m, r].
 - If f(m) < k, shrink the interval to [l, m].
 - Repeat this step about 100 times.

- If we were to find a *integer* x, we could do like:
 - Start from the interval $[1, \max(a_i)]$.
 - Find the midpoint $m = \lfloor \frac{l+r}{2} \rfloor$.
 - If $f(m) \ge k$, update the variable xr to m, and shrink the interval to [m+1,r].
 - If f(m) < k, shrink the interval to [l, m-1].
 - Repeat this step until $l \leq r$.

Today...

- Review: What is binary search?
- Binary search on monotonically increasing functions
- Basic methods of solving some problems by binary search
 - Using binary search directly
 - Converting optimization problems to decision problems

Converting to a decision problem

- Suppose we have to solve a problem like:
 - Find the largest x that satisfies these conditions: ...
- In some cases, we can easily find whether a given x satisfies the given conditions.

$$f(x) = \begin{cases} 1, & x \text{ satisfies the given conditions} \\ 0, & \text{otherwise} \end{cases}$$

Converting to a decision problem (cont.)

• If f is **monotonically decreasing**, we can find the *largest* x using binary search.

Converting to a decision problem (cont.)

- In short, this idea is extremely useful if
 - It is really easy to find whether a fixed x satisfies the conditions.
 - If x satisfies the conditions, any y smaller than x also satisfies the conditions.
- If the time complexity of calculating f(x) is O(T(n)), we can find the answer in $O(T(n) \log RANGE)$ time.

- There are n grocery stores and m schools in a 1D line.
- I am going to build a house on this line on coordinate x.
- I want to visit at least one store and one school while living, so I would like to *minimize* max(the distance to the nearest store, the distance to the nearest school).
- What is the minimum?

- Solution: Let f(d) be 1 if we can build a house such that at least one store and one school within distance d, 0 otherwise.
- f(d) is monotonically increasing, because if both one store and one school are within distance d, it is also within distance $d + \epsilon$.

- So it is sufficient to know how to calculate f(d). We want to know whether a coordinate x exists such there is a store and a school within distance d.
- A store in coordinate a_i is within distance d if:

$$|x - a_i| \le d$$

• If we write this in terms of x,

$$a_i - d \le x \le a_i + d \iff x \in [a_i - d, a_i + d]$$

- We can do the same thing with schools.
- A school in coordinate b_i is within distance d if:

$$\left|x-b_{j}\right|\leq d$$

• If we write this in terms of x,

$$b_j - d \le x \le b_j + d \iff x \in [b_j - d, b_j + d]$$

- So, for each school and for each store, we can make an interval that the house should be in.
- The condition is at least one store and one school should be in distance d.
- So we just need to check whether there exists a point such that is inside a red interval and a blue interval. This is easy to check.