Oiulin Fan

ma412-w24

Assignment WebWork9-Homomorphisms_and_Symmetric_Groups due 03/26/2024 at 11:59pm EDT

Problem 1. (4 points)

Let U_n be the (multiplicative) group of units of \mathbb{Z}_n .

Find the values of a, b, c, in U_{10} such that the following map is an isomorphism.

 $U_5 \rightarrow U_{10}$

 $1 \rightarrow a$

 $2 \rightarrow 7$

 $3 \rightarrow b$

 $4 \rightarrow c$

Then fill in the multiplication table for U_{10} with the correct numerical values in U_{10} , where the a, b and c in the table are the values in U_{10} you found above. You are given the multiplication table for U_5 , which you might consider using.

U_5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

U ₁₀	а		7		b		С
a		- -		_ -		- -	
7		- -		_ -		- -	
b		- -		_ -		- -	
c		- -		_ -		- -	

Answer(s) submitted:

- 1

- 3
- 1

submitted: (correct) recorded: (correct)

Problem 2. (5 points)

Answer yes if the given map is a group homomorphism in the given groups and no otherwise.

$$a.\mathbb{Z}_4 \to \mathbb{Z}_8$$
 [?/Yes/No] $m \to 2m$

$$b.\mathbb{Z} \to \mathbb{Q}^{\times}$$
 [?/Yes/No] $n \to \frac{1}{2^n}$

$$c.\mathbb{Z}_5 \to \mathbb{Z}_8$$
 [?/Yes/No]
 $[x]_5 \to [x]_8$

$$d.\mathbb{R} \to \mathbb{R}^{\times}$$
 [?/Yes/No] $\lambda \to 10^{\lambda}$

$$e.U_{13} \rightarrow U_{13}$$
 [?/Yes/No]

$$x \rightarrow -x$$

Answer(s) submitted:

- Yes
- Yes
- No
- Yes • No

submitted: (correct) recorded: (correct)

Problem 3. (4 points)

Find the number of elements in the kernel of the following map

$$\mathbb{Z}_{13}^{\times} \to \mathbb{Z}_{13}^{\times}$$

$$x \rightarrow x^2$$

Number of elements in kernel: ____

Answer(s) submitted:

• 2

submitted: (correct)

recorded: (correct)

Problem 4. (4 points)

Let f and g be permutations on the set $\{1,2,3,4,5,6\}$, defined as follows

$$f = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 3 & 2 & 1 & 6 \end{array}\right)$$

$$g = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 5 & 4 & 6 \end{array}\right)$$

Write each of the following permutations as a product of disjoint cycles, separated by commas (e.g. (1,2),(3,4,5),...). Do not include 1-cycles (e.g. (2)) in your answer.

(a)
$$fg =$$

(b)
$$f^{-1} =$$

(c)
$$fgf^{-1} =$$

Assume multiplication of permutations f,g obeys the rule (fg)(x) = f(g(x)) so (1,3)(1,2) = (1,2,3) not (1,3,2). Answer(s) submitted:

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- (1,3,4),(2,5)
- (5,2,4,1)
- (3,4),(1,2)

submitted: (correct)
recorded: (correct)

Problem 5. (4 points)

Let f be a permutation on the set $\{1,2,3,4,5,6,7,8,9\}$, defined as follows

$$f = (72)(51724)$$

(a) Write the permutation f^6 as a product of disjoint cycles, separated by commas (e.g. (1,2),(3,4,5),...). Do not include 1-cycles (e.g. (2)) in your answer.

$$f^6 =$$

(b) Determine the order of f^6 .

Answer(s) submitted:

- (2,5),(4,1)
- 2

submitted: (correct)

recorded: (correct)