WHO LIFE EXPECTANCY

END OF BOOTCAMP PROJECT: HEALTHCARE DATASET

I AM SUZY AUROLLE DJOMAKO

I graduated in 2013 of bachelor in Biomedical Science. It's been exactly 10 years that I have been struggling to register a Biomedical Scientist, so I ended up studying some more, went into Nursing but realized it was not for me. I then in 2016 decided to return into bioscience and enrolled on a master in Medical Microbiology. Afterwards, I got my first lab job in 2018, and yet it took me another 5 years to register with the HCPC. I signed up for this bootcamp because I would like to develop into a health Data Analyst. I know that IT is the future as everything is becoming digital especially in healthcare sciences. I am excited about graduating from the NIYO Data Analytics bootcamp and hopeful for what the future hold for me. I am determined to not relent, continue learning and be the best girl in tech I can be.

WHY HEALTHCARE DATASET?

- Every human being should have a good health status. As the world advances to new
 heights of modernity, the air is getting polluted with toxic chemicals, food is genetically
 modified, and resistance of microorganisms to antibiotics is growing and many other
 adverse consequences. Individual's health deteriorates, making their life a misery.
- Since I can remember, I have always felt the need to helping people, and I believed there is no better way than through the modern healthcare system.
- Life expectancy is the average number of years that a newborn could expect to live, if he
 or she were to pass through life exposed to the gender and age-specific death rates
 prevailing at the time of his or her birth, for a specific year, in each country, territory, or
 geographic area.

MY PROJECT - OBJECTIVES

Identify

Identify the world top 10 countries with lowest life expectancy.

Analyse and identify

Analyze and identify the health determinants preventing the WHO from reaching its 2030 goal "Health Equity for healthy people 2030".

Determine

Determine the cause of the extreme variation in life expectancy in "children" globally and suggest remedial actions.

DETERMINANT OF HEALTH

The Determinants of health are factors which influence health status and determine health differentials or health inequalities. They are many, for example:

Natural, biological factors (age, gender and ethnicity);

Behaviour and lifestyles (smoking, alcohol consumption, diet and physical exercise);

Physical and social environment (housing quality, the workplace and the wider urban and rural.

DATA CLEANING

These 3 applications were used to clean the data prior to different manipulation:

- Excel prior to excel analysis
- Power query prior to dashboard visualization
- Python prior to analysis and python visualization

MY PROJECT - EXCEL FINDINGS

Questions	Results
What is the total population of India over the year 2000-2015	6743512329
What is Cameroon (the highest recorded) life expectancy?	57.3
How many countries have a life expectancy value of 80 years?	65
What is the % of people that have had hepatitis_B in row 2930 for Zimbabwe amongst 1 year old?	79
If life expectancy is over 50, print Goodlife, if not print Bad life!	Good life, Bad life
How many countries have an average BMI of 18?	11
What is the country with the lowest life expectancy?	36.3, Haiti
What is the country with the highest life expectancy?	89, this appears 11 times.

MY PROJECT - SQL ANALYSIS

infant deaths

2938.000000

30.303948

117.926501

0.000000

0.000000

3.000000

22.000000

1800.000000

alcohol

2938.000000

4.602861

3.916288

0.010000

1.092500

4.160000

7.390000

17.870000

percentage expenditure

2938.000000

738.251295

1987.914858

0.000000

4.685343

64.912906

441.534144

19479.911610

data.describe()

2938.000000

2007.518720

2000.000000

2004.000000

2008.000000

2012.000000

2015.000000

8 rows × 21 columns

4.613841

count

mean

std

min

25%

50%

75%

max

adult mortality

2938.000000

164,796448

124.080302

1.000000

74.000000

144.000000

227.000000

723.000000

life expectancy

2938.000000

69.224932

9.507640

36.300000

63.200000

72.000000

75.600000

89.000000

MY PROJECT - PYTHON ANALYSIS

TOP 1	country	life_expectancy
152	Sierra Leone	46.11250
31	Central African Republic	48.51250
94	Lesotho	48.78125
3	Angola	49.01875
100	Malawi	49.89375
32	Chad	50.38750
44	Côte d'Ivoire	50.38750
192	Zimbabwe	50.48750
164	Swaziland	51.32500
123	Nigeria	51.35625

Ton 10 Countries with Least Life Expectancy

Top 1		<pre>with Most Life Expectancy life_expectancy</pre>
84	Japan	82.53750
165	Sweden	82.51875
75	Iceland	82.44375
166	Switzerland	82.33125
60	France	82.21875
82	Italy	82.18750
160	Spain	82.06875
7	Australia	81.81250
125	Norway	81.79375
30	Canada	81.68750

MY PROJECT - POWER BI DASHBOARD

Data Analytic final project: WHO Life Expectancy Dashboard visualization

Average of children_deaths, Average of schooling and Average of BMI by status

Average of life_expectancy, Average of hepatitis_B, Average of diphtheria, Average of polio and Average of schooling by status

Sum of percentage expenditure by country

PYTHON CORRELATION AND HEAT MAP

We can see that life expectancy positively correlate with schooling, income composition and BMI; negatively correlate with children death, **HIV-AIDS** and adult mortality.

df.corr()['life e	xpectancy	' '1
41.6011()	11100	Apeceancy	

C→	year	0.170819
_	life_expectancy	1.000000
	adult_mortality	-0.696390
	infant_deaths	-0.196769
	alcohol	0.388918
	percentage_expenditure	0.381418
	hepatitis_B	0.170219
	measles	-0.157767
	BMI	0.556901
	under_five_deaths	-0.222738
	polio	0.458399
	total_expenditure	0.208844
	diphtheria	0.472211
	HIV_AIDS	-0.556703
	GDP	0.430461
	population	-0.029014
	thinness_1_to_19_years	-0.468002
	thinness_5_to_9_years	-0.462473
	<pre>income_composition_of_resources</pre>	0.688662
	schooling	0.713054
	Name: life_expectancy, dtype: flo	oat64

PYTHON VISUALIZATION

MY PROJECT - RECOMMENDATIONS/INSIGHTS

Create and Build Address Invest in Invest in Leverage Increase promote Create and Leverage the Invest in essential Build a strong Invest in Increase Address prepublic health primary health institutionalized domestic and existing current response promote care foundation mechanisms for enablina inequities and to strengthen functions alobal both pandemic including those whole-of-society environments for investment in the needed for allpreparedness health system disproportionate engagement research. and health foundations and hazards innovation and impact of emergency risk all-hazards COVID-19 on systems learning management emergency risk marainalized and vulnerable management populations

CHALLENGES

- The data set was large with many null values up to 652 in countries
- The data was spread over 15 years but many developing country had gap in their data
- I struggled with the fact that there was only two category: country and status
- I struggled with finding realistic recommendations to the developing country to help them close the gap in inequality in health.

CONCLUSION AND KEY LEARNINGS

I have learnt that a lot still to be done to have global equality in health. Poorer countries have higher population but also higher children death, and mortality rate in children. I also found out the life expectancy in countries like Sierra Leone is 34-year-old, which is almost 3 times lower than in developed countries.

PROJECT RECOMMENDATIONS

- Creating a society where everyone has an opportunity to live a healthy life requires
 action across government. While social protection measures such as income replacement
 benefits, pensions, free school meals, social housing are widely used in developed
 countries.
- In poorer countries more have to be done in health promotions, education and auditing of investments made or AID given by NGO and WHO because, developing country suffers from lack of audit and inspection, so that shows that even though children mortality is decreasing over time, a child born in a country like Sierra Leone in 2023 still has a life expectancy of about 35 years old.
- Public health can lead the way in creating a more equitable, healthier society by continuing to look for long-term solutions through sound public health research and by encouraging health-focused policy across health disciplines.

THANK YOU TO EVERYONE FOR LISTENING THANKS TO NIYO FOR THE OPPORTUNITY AND TO MY TUTORS FOR ALL THEIR SUPPORTS.

FOR MORE INFO ON MY PROJECT, FOLLOW MY GITHUB

SUZYAUROLLE/NIYO-BOOTCAMP-DATA-ANALYTICS-PROJECT: FINAL BOOT-CAMP DATA ANALYTICS PROJECT (GITHUB.COM)

