Mathematical Logic (III)

Yijia Chen

1 The Semantics of First-order Logic

1.1 Structures and interpretations

We fix a symbol set S.

Definition 1.1. An S-structure is a pair $\mathfrak{A} = (A, \mathfrak{a})$ which satisfies the following conditions.

- 1. $A \neq \emptyset$ is the **universe** of \mathfrak{A} .
- 2. a is a function defined on S such that:
 - (a) Let $R \in S$ be an n-ary relation symbol. Then $\mathfrak{a}(R) \subseteq A^n$.
 - (b) Let $f \in S$ be an n-ary function symbol. Then $\mathfrak{a}(f) : A^n \to A$.
 - (c) $a(c) \in A$ for every constant $c \in S$.

For better readability, we write $R^{\mathfrak{A}}$, $f^{\mathfrak{A}}$, and $c^{\mathfrak{A}}$, or even R^{A} , f^{A} , and c^{A} , instead of $\mathfrak{a}(R)$, $\mathfrak{a}(f)$, and $\mathfrak{a}(c)$. Thus for $S = \{R, f, c\}$ we might write an S-structure as

$$\mathfrak{A} = (A, R^{\mathfrak{A}}, f^{\mathfrak{A}}, c^{\mathfrak{A}}) = (A, R^{A}, f^{A}, c^{A}).$$

Examples 1.2. 1. For $S_{Ar} := \{+, \cdot, 0, 1\}$ the S_{Ar} -structure

$$\mathfrak{N}=\left(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}}
ight)$$

is the standard model of natural numbers with addition, multiplication, and constants 0 and 1.

2. For $S_{Ar}^<:=\left\{+,\cdot,0,1,<\right\}$ we have an $S_{Ar}^<$ -structure

$$\mathfrak{N}^{<}=\left(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}},<^{\mathbb{N}}
ight)$$
 ,

i.e., the standard model of \mathbb{N} with the natural ordering <.

Upd: Assignment 只对 free variable 起作用。如果没有 free variable,公式是否成立,只取决于公式的结构 **Definition 1.3.** An **assignment** in an S-structure a is a mapping

$$\beta: \left\{\nu_i \ \middle| \ i \in \mathbb{N} \right\} \to A. \label{eq:beta-def}$$

Definition 1.4. An S-interpretation $\mathfrak I$ is a pair $(\mathfrak A,\beta)$ where $\mathfrak A$ is an S-structure and β is an assignment in $\mathfrak A$.

Definition 1.5. Let β be an assignment in \mathfrak{A} , $\alpha \in A$, and x a variable. Then $\beta \frac{\alpha}{x}$ is the assignment defined by

$$\beta \frac{\alpha}{x}(y) := \begin{cases} \alpha, & \text{if } y = x, \\ \beta(y), & \text{otherwise.} \end{cases}$$

Then, for the S-interpretation $\mathfrak{I}=(\mathfrak{A},\beta)$ we use $\mathfrak{I}^{\underline{\alpha}}_{\underline{x}}$ to denote the S-interpretation $(\mathfrak{A},\beta\frac{\alpha}{x})$.

1.2 The satisfaction relation $\mathfrak{I} \models \varphi$

We fix an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$.

Definition 1.6. For every S-term t we define its **interpretation** $\mathfrak{I}(t)$ by induction on the construction of t.

- (a) $\Im(x) = \beta(x)$ for a variable x.
- (b) $\mathfrak{I}(c) = c^{\mathfrak{A}}$ for a constant $c \in S$.
- (c) Let $f \in S$ be an n-ary function symbol and t_1, \dots, t_n S-terms. Then

$$\mathfrak{I}(\mathsf{f}\mathsf{t}_1\cdots\mathsf{t}_n)=\mathsf{f}^{\mathfrak{A}}\big(\mathfrak{I}(\mathsf{t}_1),\ldots,\mathfrak{I}(\mathsf{t}_n)\big).$$

Example 1.7. Let $S:=S_{Gr}=\{\circ,e\}$ and $\mathfrak{I}:=(\mathfrak{A},\beta)$ with $\mathfrak{A}=(\mathbb{R},+,0),\ \beta(\nu_0)=2,$ and $\beta(\nu_2)=6.$ Then

$$\begin{split} \Im \big(\nu_0 \circ (e \circ \nu_2) \big) &= \Im (\nu_0) + \Im (e \circ \nu_2) \\ &= 2 + \big(\Im (e) + \Im (\nu_2) \big) = 2 + (0+6) = 2+6 = 8. \end{split}$$

Definition 1.8. Let ϕ be an S-formula. We define $\mathfrak{I} \models \phi$ by induction on the construction of ϕ .

- (a) $\mathfrak{I} \models t_1 \equiv t_2 \text{ if } \mathfrak{I}(t_1) = \mathfrak{I}(t_2).$
- (b) $\mathfrak{I} \models Rt_1 \cdots t_n \text{ if } (\mathfrak{I}(t_1), \dots, \mathfrak{I}(t_n)) \in R^{\mathfrak{A}}.$
- (c) $\mathfrak{I} \models \neg \varphi$ if $\mathfrak{I} \not\models \varphi$ (i.e., it is **not** the case that $\mathfrak{I} \models \varphi$).
- (d) $\mathfrak{I} \models (\varphi \land \psi)$ if $\mathfrak{I} \models \varphi$ and $\mathfrak{I} \models \psi$.
- (e) $\mathfrak{I} \models (\varphi \lor \psi)$ if $\mathfrak{I} \models \varphi$ or $\mathfrak{I} \models \psi$.
- (f) $\mathfrak{I} \models (\varphi \rightarrow \psi)$ if $\mathfrak{I} \models \varphi$ implies $\mathfrak{I} \models \psi$.
- (g) $\mathfrak{I} \models (\varphi \leftrightarrow \psi)$ if $(\mathfrak{I} \models \varphi)$ if and only if $\mathfrak{I} \models \psi$.
- (h) $\mathfrak{I} \models \forall x \varphi$ if for all $\mathfrak{a} \in A$ we have $\mathfrak{I}^{\underline{\mathfrak{a}}}_{x} \models \varphi$.
- (i) $\mathfrak{I} \models \exists x \varphi$ if for some $\mathfrak{a} \in A$ we have $\mathfrak{I}^{\underline{\mathfrak{a}}}_{x} \models \varphi$.

If $\mathfrak{I} \models \varphi$, then \mathfrak{I} is a **model** of φ , of \mathfrak{I} **satisfies** φ .

Let Φ be a set of S-formulas. Then $\mathfrak{I} \models \Phi$ if $\mathfrak{I} \models \phi$ for all $\phi \in \Phi$. Similarly as above, we say that \mathfrak{I} is a model of Φ , or \mathfrak{I} satisfies Φ .

Example 1.9. Let $S:=S_{Gr}$ and $\mathfrak{I}:=(\mathfrak{A},\beta)$ with $\mathfrak{A}=(\mathbb{R},+,0)$ and $\beta(x)=9$ for all variables x. Then

$$\begin{split} \mathfrak{I} &\models \forall \nu_0 \ \nu_0 \circ e \equiv \nu_0 \iff \text{for all } r \in \mathbb{R} \text{ we have } \mathfrak{I} \frac{r}{\nu_0} \models \nu_0 \circ e \equiv \nu_0, \\ &\iff \text{for all } r \in \mathbb{R} \text{ we have } r+0=r. \end{split}$$

 \dashv

Definition 1.10. Let Φ be a set of S-formulas and φ an S-formula. Then φ is a **consequence of** Φ , written $\Phi \models \varphi$, if for any interpretation \mathfrak{I} it holds that $\mathfrak{I} \models \Phi$ implies $\mathfrak{I} \models \varphi$.

For simplicity, in case $\Phi = \{\psi\}$ we write $\psi \models \varphi$ instead of $\{\psi\} \models \varphi$.

Example 1.11. Let

$$\begin{split} \Phi_{\text{Gr}} := & \big\{ \forall \nu_0 \forall \nu_1 \forall \nu_2 \; (\nu_0 \circ \nu_1) \circ \nu_2 \equiv \nu_0 \circ (\nu_1 \circ \nu_2), \\ & \forall \nu_0 \; \nu_0 \circ e \equiv \nu_0, \forall \nu_0 \exists \nu_1 \; \nu_0 \circ \nu_1 \equiv e \big\}. \end{split}$$

Then it can be shown that

$$\Phi_{Gr} \models \forall v_0 \ e \circ v_0 \equiv v_0$$
.

and

$$\Phi_{\mathrm{Gr}} \models \forall \nu_0 \exists \nu_1 \ \nu_1 \circ \nu_0 \equiv e.$$

Definition 1.12. An S-formula φ is **valid**, written $\models \varphi$, if $\emptyset \models \varphi$. Or equivalently, $\mathfrak{I} \models \varphi$ for any \mathfrak{I} .

Definition 1.13. An S-formula φ is **satisfiable**, if there exists an S-interpretation \Im with $\Im \models \varphi$. A set Φ of S-formulas is satisfiable if there exists an S-interpretation \Im such that $\Im \models \varphi$ for every $\varphi \in \Phi$.

The next lemma is essentially the method of **proof by contradiction**.

Lemma 1.14. Let Φ be a set of S-formulas and φ an S-formula. Then $\Phi \models \varphi$ if and only if $\Phi \cup \{\neg \varphi\}$ is not satisfiable.

Proof:

$$\begin{split} \Phi &\models \phi \iff \text{Every model of } \Phi \text{ is a model of } \phi, \\ &\iff \text{there is no model } \mathfrak{I} \text{ with } \mathfrak{I} \models \Phi \text{ and } \mathfrak{I} \not\models \phi, \\ &\iff \text{there is no model } \mathfrak{I} \text{ with } \mathfrak{I} \models \Phi \cup \{ \neg \phi \}, \\ &\iff \Phi \cup \{ \neg \phi \} \text{ is not satisfiable.} \end{split}$$

Definition 1.15. Two S-formulas φ and ψ are **logic equivalent** if $\varphi \models \psi$ and $\psi \models \varphi$.

Example 1.16. Let φ be an S-formula. We define a logic equivalent φ^* which does not contain the logic symbols \land , \rightarrow , \leftrightarrow , \forall .

$$\begin{split} \phi^* &:= \phi & \text{if } \phi \text{ is atomic,} \\ (\neg \phi)^* &:= \neg \phi^*, \\ (\phi \wedge \psi)^* &:= \neg (\neg \phi^* \vee \neg \psi^*), \\ (\phi \vee \psi)^* &:= (\phi^* \vee \psi^*), \\ (\phi \to \psi)^* &:= (\neg \phi^* \vee \psi^*), \\ (\phi \leftrightarrow \psi)^* &:= \neg (\phi^* \vee \psi^*) \vee \neg (\neg \phi^* \vee \neg \psi^*), \\ (\forall x \phi)^* &:= \neg \exists x \neg \phi^*, \\ (\exists x \phi)^* &:= \exists x \phi^*. \end{split}$$

Thus, it suffices to consider \neg , \lor , \exists as the only logic symbols in any given φ . \neg 方便我们证明。证明逻辑等价只需要证明三个 logic symbol 即可。

Lemma 1.17 (The Coincidence Lemma). For $i \in \{1,2\}$ let $\mathfrak{I}_i = (\mathfrak{A}_i,\beta_i)$ be an S_i -interpretation such that $A_1 = A_2$ and every symbol in $S := S_1 \cap S_2$ has the same interpretation in \mathfrak{A}_1 and \mathfrak{A}_2 .

- (a) Let t be an S-term (thus also an S_1 -term and an S_2 -term). Assume further that $\beta_1(x) = \beta_2(x)$ for every variable $x \in \text{var}(t)$. Then $\mathfrak{I}_1(t) = \mathfrak{I}_2(t)$. 这是显然的,因为解释一样,universe 一样,变元一样
- (b) Let φ be an S-formula where $\beta_1(x) = \beta_2(x)$ for every $x \in \text{free}(\varphi)$. Then

$$\mathfrak{I}_1 \models \varphi \iff \mathfrak{I}_2 \models \varphi.$$

 \dashv

Proof: (a) We prove by induction on t.

•
$$t = x$$
. Then $\mathfrak{I}_1(x) = \beta_1(x) = \beta_2(x) = \mathfrak{I}_2(x)$.

•
$$t = c$$
. We deduce $\mathfrak{I}_1(c) = c^{\mathfrak{A}_1} = c^{\mathfrak{A}_2} = \mathfrak{I}_2(x)$.

• $t = ft_1 \cdots t_n$. It holds that

- (b) The induction proof is on the structure of φ .
 - $\phi = t_1 \equiv t_2$. We have

$$\begin{array}{l} \mathfrak{I}_1 \models \mathfrak{t}_1 \equiv \mathfrak{t}_2 \iff \mathfrak{I}_1(\mathfrak{t}_1) = \mathfrak{I}_1(\mathfrak{t}_2) \\ \iff \mathfrak{I}_2(\mathfrak{t}_1) = \mathfrak{I}_2(\mathfrak{t}_2) \\ \iff \mathfrak{I}_2 \models \mathfrak{t}_1 \equiv \mathfrak{t}_2. \end{array} \tag{by (a)}$$

• $\varphi = Rt_1 \cdots t_n$. Then

$$\begin{split} \mathfrak{I}_1 &\models \mathsf{R} t_1 \cdots t_n \iff \big(\mathfrak{I}_1(t_1), \ldots, \mathfrak{I}_1(t_n)\big) \in \mathsf{R}^{\mathfrak{A}_1} \\ &\iff \big(\mathfrak{I}_1(t_1), \ldots, \mathfrak{I}_1(t_n)\big) \in \mathsf{R}^{\mathfrak{A}_2} \\ &\iff \big(\mathfrak{I}_2(t_1), \ldots, \mathfrak{I}_2(t_n)\big) \in \mathsf{R}^{\mathfrak{A}_2} \\ &\iff \mathfrak{I}_2 \models \mathsf{R} t_1 \cdots t_n. \end{split}$$

• $\varphi = \neg \psi$. We conclude

$$\mathfrak{I}_1 \models \neg \psi \iff \mathfrak{I}_1 \not\models \psi \iff \mathfrak{I}_2 \not\models \psi \iff \mathfrak{I}_2 \models \neg \psi.$$

• $\varphi = (\psi \vee \chi)$.

$$\begin{array}{l} \mathfrak{I}_1 \models (\psi \lor \chi) \iff \mathfrak{I}_1 \models \psi \text{ or } \mathfrak{I}_1 \models \chi \\ \iff \mathfrak{I}_2 \models \psi \text{ or } \mathfrak{I}_2 \models \chi \\ \iff \mathfrak{I}_2 \models (\psi \lor \chi). \end{array}$$

• $\varphi = \exists x \psi$.

$$\mathfrak{I}_1 \models \exists x \psi \iff \text{for some } a \in A_1 \text{ we have } \mathfrak{I}_1 \frac{a}{x} \models \psi$$
 $\iff \text{for some } a \in A_1 \text{ we have } \mathfrak{I}_2 \frac{a}{x} \models \psi$
$$\left(\text{by induction hypothesis on } \mathfrak{I}_1 \frac{a}{x}, \, \mathfrak{I}_2 \frac{a}{x}, \, \text{and } \psi \right)$$
 $\iff \mathfrak{I}_2 \models \exists x \psi. \quad \beta \text{ the sum of the sum of$

"是否 model" 只由 S-structure 和 Assignment 决定

Remark 1.18. Let $\varphi \in L_n^S$, i.e., φ is an S-formula with free $(\varphi) \subseteq \{v_0, \dots, v_{n-1}\}$. By the coincidence lemma whether $\mathfrak{I} = (\mathfrak{A}, \beta) \models \varphi$ is completely determined by \mathfrak{A} and $\beta(v_0), \dots, \beta(v_{n-1})$. So in case $\mathfrak{I} \models \varphi$ we can write

$$\mathfrak{A} \models \varphi[\mathfrak{a}_0, \ldots, \mathfrak{a}_{n-1}]$$

where $a_i := \beta(\nu_i)$ for $0 \leqslant i < n$. In particular, if ϕ is an S-sentence, i.e., $\phi \in L_0^S$, then $\mathfrak{A} \models \phi$ is well-defined.

Similarly, we write

$$t^{\mathfrak{A}}[a_0,\ldots,a_{n-1}]$$

instead of $\Im(t)$.

Definition 1.19. Let $\mathfrak A$ and $\mathfrak B$ be two S-structures.

- (a) A mapping $\pi: A \to B$ is an **isomorphism** from $\mathfrak A$ to $\mathfrak B$ (in short $\pi: \mathfrak A \cong \mathfrak B$) if the following conditions are satisfied.
 - (i) π is a bijection.
 - (ii) For any n-ary relation symbol $R \in S$ and $\alpha_0, \ldots, \alpha_{n-1} \in A$

$$(\alpha_0,\ldots,\alpha_{n-1})\in R^{\mathfrak{A}}\quad\Longleftrightarrow\quad \big(\pi(\alpha_0),\ldots,\pi(\alpha_{n-1})\big)\in R^{\mathfrak{B}}.$$

(iii) For any n-ary function symbol $f \in S$ and $a_0, \ldots, a_{n-1} \in A$ 映射 π 是保运算的

$$\pi(f^{\mathfrak{A}}(\mathfrak{a}_{0},\ldots,\mathfrak{a}_{n-1})) = f^{\mathfrak{B}}(\pi(\mathfrak{a}_{0}),\ldots,\pi(\mathfrak{a}_{n-1})). \quad \begin{array}{l} \text{E.g. } S = (*,e) \\ \mathfrak{A} = (\mathbb{R},+^{\mathbb{R}},0^{\mathbb{R}}) \end{array}$$

$$\in S \qquad \qquad \mathfrak{B} = (\mathbb{R},\times^{\mathbb{R}},1^{\mathbb{R}})$$

$$\pi(c^{\mathfrak{A}}) = c^{\mathfrak{B}}. \qquad \qquad \text{Claim: } \mathfrak{A} \cong \mathfrak{B} \quad \text{(Consider: } \pi(\mathbb{R}) = (\mathbb{R},+^{\mathbb{R}}) = (\mathbb{R}) \end{array}$$

(iv) For any constant $c \in S$

(b)
$$\mathfrak A$$
 and $\mathfrak B$ are isomorphic, written $\mathfrak A\cong\mathfrak B$, if there is an isomorphism $\pi:\mathfrak A\to\mathfrak B$.

 \dashv

Claim: $\mathfrak{A} \cong \mathfrak{B}$. (Consider: $\pi(x) = \exp(x)$)

 \dashv

Observe that the above definition is not symmetric. However we can easily show:

Lemma 1.20. \cong is an equivalence relation. That is, for all S-structures $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$

- 1. $\mathfrak{A} \cong \mathfrak{A}$;
- 2. $\mathfrak{A} \cong \mathfrak{B}$ implies $\mathfrak{B} \cong \mathfrak{A}$;
- 3. if $\mathfrak{A} \cong \mathfrak{B}$ and $\mathfrak{B} \cong \mathfrak{C}$, then $\mathfrak{A} \cong \mathfrak{C}$.

Lemma 1.21 (The Isomorphism Lemma). Let $\mathfrak A$ and $\mathfrak B$ be two isomorphic S-structures. Then for every S-sentence ϕ

$$\mathfrak{A}\models \varphi$$
 \iff $\mathfrak{B}\models \varphi$.
 为什么这里写 φ 而不是什么 $\pi(\varphi)$ 之类的?
 因为这 φ 是语法的一个结构,无关乎语义。 π transform 的是语义的东西。

Proof: Let β be an assignment in $\mathfrak A$. By the coincidence lemma, it suffices to show that there is an assignment β' in $\mathfrak B$ such that 为什么要大费周章搞一个 assignment 进去? 因为我们要归纳。

$$(\mathfrak{A}, \beta) \models \varphi \iff (\mathfrak{B}, \beta') \models \varphi,$$
 (1)

where ϕ is an S-sentence. 因为他是 sentence,所以跟 assignment 没关系的。

Let $\pi: \mathfrak{A} \cong \mathfrak{B}$ and we define an assignment β^{π} in \mathfrak{B} by

$$\beta^{\pi}(x) := \pi(\beta(x))$$

for any variable x. Then we prove for any S-formula φ

$$(\mathfrak{A}, \beta) \models \varphi \iff (\mathfrak{B}, \beta^{\pi}) \models \varphi,$$
 (2)

which certainly generalizes (1). To simplify notation, let $\mathfrak{I} := (\mathfrak{A}, \beta)$ and $\mathfrak{I}^{\pi} := (\mathfrak{B}, \beta^{\pi})$. First, it is routine to verify that for every S-term t

$$\pi(\Im(t)) = \Im^{\pi}(t)$$
. 归纳证明。一样的。 (3)

Then we prove (2) by induction on the construction of S-formula φ .

• $\phi = t_1 \equiv t_2$. Then

$$\begin{split} \mathfrak{I} &\models t_1 \equiv t_2 \iff \mathfrak{I}(t_1) = \mathfrak{I}(t_2) \\ &\iff \pi(\mathfrak{I}(t_1)) = \pi(\mathfrak{I}(t_2)) \\ &\iff \mathfrak{I}^\pi(t_1) = \mathfrak{I}^\pi(t_2) \\ &\iff \mathfrak{I}^\pi \models t_1 \equiv t_2. \end{split}$$
 (since π is an injection) (by (3))

• $\varphi = Rt_1 \cdots t_n$.

$$\begin{split} \mathfrak{I} &\models Rt_1 \cdots t_n \iff \big(\mathfrak{I}(t_1), \ldots, \mathfrak{I}(t_n)\big) \in R^{\mathfrak{A}} \\ &\iff \big(\pi(\mathfrak{I}(t_1)), \ldots, \pi(\mathfrak{I}(t_n))\big) \in R^{\mathfrak{B}} \\ &\iff \big(\mathfrak{I}^{\pi}(t_1), \ldots, \mathfrak{I}^{\pi}(t_n)\big) \in R^{\mathfrak{B}} \\ &\iff \mathfrak{I}^{\pi} \models Rt_1 \cdots t_n. \end{split} \tag{by (3)}$$

- $\varphi = \neg \psi$. It follows that $\mathfrak{I} \models \neg \psi \iff \mathfrak{I} \not\models \psi \iff \mathfrak{I}^{\pi} \not\models \iff \mathfrak{I}^{\pi} \models \neg \psi$.
- $\phi = \psi \lor \chi$. The inductive argument is similar to the above $\neg \psi$.
- $\varphi = \exists x \psi$. This is again the most complicated case.

$$\mathfrak{I} \models \exists x \psi \iff \text{ there exists an } \alpha \in A \text{ such that } \mathfrak{I} \frac{\alpha}{\chi} = \left(\mathfrak{A}, \beta \frac{\alpha}{\chi}\right) \models \psi$$

$$\iff \text{ there exists an } \alpha \in A \text{ such that } \left(\mathfrak{I} \frac{\alpha}{\chi}\right)^{\pi} = \left(\mathfrak{A}, \beta \frac{\alpha}{\chi}\right)^{\pi} \models \psi,$$

$$\left(\text{by induction hypothesis on } \mathfrak{I} \frac{\alpha}{\chi}, \left(\mathfrak{I} \frac{\alpha}{\chi}\right)^{\pi}, \text{ and } \psi\right)$$

$$\text{ that is, there exists an } \alpha \in A \text{ such that } \left(\mathfrak{B}, \beta^{\pi} \frac{\pi(\alpha)}{\chi}\right) \models \psi$$

$$\iff \text{ there exists a } b \in B \text{ such that } \left(\mathfrak{B}, \beta^{\pi} \frac{b}{\chi}\right) \models \psi \qquad \text{ (since } \pi \text{ is surjective)}$$

$$\text{i.e., there exists a } b \in B \text{ with } \mathfrak{I}^{\pi} \frac{b}{\chi} = \left(\mathfrak{B}, \beta^{\pi}\right) \frac{b}{\chi} \models \psi$$

$$\iff \mathfrak{I}^{\pi} \models \exists x \psi.$$

This finishes the proof.

Corollary 1.22. Let $\pi: \mathfrak{A} \cong \mathfrak{B}$ and $\varphi \in L_n^S$. Then for every $\mathfrak{a}_0, \ldots, \mathfrak{a}_{n-1}$

$$\mathfrak{A} \models \varphi[\mathfrak{a}_0, \dots, \mathfrak{a}_{n-1}] \iff \mathfrak{B} \models \varphi[\pi(\mathfrak{a}_0), \dots, \pi(\mathfrak{a}_{n-1})]$$

 \dashv