

Chapter 1.1

Statements, Symbolic Representation, Tautologies

Instructor: Abhishek Santra Email: abhishek.santra@uta.edu

1

Logic

Formal logic

- Definition foundation for the organized, careful method of thinking that characterizes any reasoned activity
 - A criminal investigation, judiciary
 - A scientific experiment
 - A sociological study, personality assessment
- The study of reasoning specifically concerned with whether something is true or false
- Formal logic focuses on the relationship between statements as opposed to the content of any particular statement
- Applications of formal logic in computer science
 - Prolog programming language based on logic
 - Circuit logic logic governing computer science

Fall 2022

CSE2315: Abhishek Santra

Statement

- > Statement (proposition)
 - A sentence that is either true or false, but not both
- > Truth value of a statement
 - True, T, 1
 - False, F, 0
- > Examples:
 - a. Ten is less than seven. (10 < 7) False Statement
 - b. Austin is the capital of Texas. True Statement
 - c. He is very talented. Not a Statement
 - d. There are life forms on Pluto. Statement

Fall 2022

CSE2315: Abhishek Santra

4

4

Statements and logical connectives

- Statements letters:
 - Capital letters like A, B, C, D, etc. are used to represent statements
- > Logical connectives:
 - Symbols like Λ , V, \rightarrow , \leftrightarrow , '
- Λ: and
- V: or
- \rightarrow : implies
- →: equivalent
- ': negation

Fall 2022

CSE2315: Abhishek Santra

Conjunction

- Connective #1 : Conjunction (Λ)
 - A, B: Statements (or statement variables)
 - A ∧ B: Conjunction of A and B
 - A and B are called *conjuncts of the expression*
 - A ∧ B is TRUE when both A and B are true
 - A Λ B is FALSE when at least one of A or B is false
- > Example
 - A: Ten is less than seven.
 - B: Austin is the capital of Texas.
 - A ∧ B ?

Fall 2022

CSE2315: Abhishek Santra

6

6

Truth Table

- > A table that shows
 - the truth values of a **statement form** (e.g. A ∧ B),
 - which correspond to the different combinations of truth values for the variable (A, B)
 - How many combinations of A, B are possible?

A	В АЛВ		
Т	T	T	
Т	F	F	
F	T	F	
F	F	F	

Fall 2022

CSE2315: Abhishek Santra

7

Disjunction

- Connective #2 : Disjunction (V)
 - A, B: Statements (or statement variables)
 - A V B: Disjunction of A and B
 - A and B are called disjuncts of the expression
 - A V B is TRUE when at least one of A or B is true
 - A V B is FALSE when both A and B are false
- > Example
 - A: Ten is less than seven.
 - B: Austin is the capital of Texas.
 - AVB?

A	В	AVB
T	T	T
T	F	T
F	T	T
F	F	F

Fall 2022

CSE2315: Abhishek Santra

8

8

Implication

- ➤ Connective #3 : Implication (→)
 - A and B: Statements (or statement variables)
 - A → B: Symbolic form of "If A, then B" or A implies B
 - A : hypothesis or antecedent statement
 - B : conclusion or consequent statement
 - A \rightarrow B is FALSE when A is true and B is false
 - A → B is TRUE otherwise

A	В	A→B
Т	Т	T
T	F	F
F	Т	Т
F	F	Т

Remark: If I pass the exam, I will go for the trip

Fall 2022

CSE2315: Abhishek Santra

9

Equivalence

- ➤ Connective #4: Equivalence (↔)
 - $A \leftrightarrow B$ stands for $(A \rightarrow B) \land (B \rightarrow A)$
 - TRUE: Both A and B have the same truth values
 - FALSE: A and B have different truth values

A	В	A→B	В→А	$(A \to B) \land (B \to A) / A \leftrightarrow B$
Т	T	T	T	T
Т	F	F	T	F
F	T	T	F	F
F	F	T	T	Т

Fall 2022

CSE2315: Abhishek Santra

10

10

Negation

- Connective #5: Negation (')
 - Unary connective
 - AND, OR, Implication, and Equivalence: Binary connectives, because they join two expressions to produce the third one
 - The negation of A is "not A" and is denoted A'
 - It has the opposite truth value from A
 - If A is true, then A' is false; if A is false, then A' is true

Fall 2022

CSE2315: Abhishek Santra

11

Negation (Examples)

- \triangleright A: 5 is greater than 2 (5 > 2)
 - A': 5 is less than equal to 2 (5 <= 2)
- > B: Jane likes butter
 - B': Jane dislikes butter / hates / doesn't like
- > C: John hates butter but (and) likes cream
 - C': John likes butter or hates cream
- > In a negation, AND becomes OR, OR becomes AND

Fall 2022

CSE2315: Abhishek Santra

12

12

Another form of implication

- ➤ A: You do not do your homework
 - A': You do your homework
- B: You will fail
- ➤ A' V B ??
 - You do your homework or you will fail
- If you do not do your homework, then you will fail
 - A → B
- ightharpoonup Therefore, $A \rightarrow B \equiv A' \lor B$

A	В	A→B
T	T	T
T	F	F
F	T	T
F	F	T

A	A'	В	A' V B
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	T

Fall 2022

CSE2315: Abhishek Santra

Lab

Tables

Table 1.5 – Common English words associated with various logical connectives

English Words	Logical Connectives	Logical Expression
And; but; also; in addition; moreover	Conjunction	ΑΛΒ
Or	Disjunction	AVB
If A, then B. A implies B A, therefore B A only if B B follows from A A is a sufficient condition for B B is necessary condition for A	Implication	$A\toB$
A if and only if B A is necessary and sufficient for B	Equivalence	$A \leftrightarrow B$
Not A It is false that A It is not true that A	Negation	A'

Fall 2022

CSE2315: Abhishek Santra

14

14

Tables

➤ Table 1.6 – Examples for the negation of a statement

Statement	Correct Negation	Incorrect Negation
It will rain tomorrow.	It is false that it will rain tomorrow. It will not rain tomorrow.	
Peter is tall and thin.	It is false that Peter is tall and thin. Peter is <u>not</u> tall <u>or</u> he is not thin. Peter is short <u>or</u> fat.	Peter is short and fat.
The river is shallow or polluted.	It is false that the river is shallow or polluted. The river is neither shallow nor polluted. The river is deep and unpolluted.	The river is not shallow or not polluted.

Fall 2022

CSE2315: Abhishek Santra

Well Formed Formula (wff)

- Combining letters, connectives, and parentheses can generate an expression which is meaningful.
- wff: An expression that is a legitimate string
 - Example 1: $(A \rightarrow B) \lor (B \rightarrow A)$ (wff)
 - Example 2: A)) V B (\rightarrow C) (not a wff)
- To reduce the number of parentheses, an order is stipulated in which the connectives can be applied, called the order of precedence
 - Connectives within innermost parentheses first and then progress outwards
 - 2. Negation (')
 - 3. Conjunction (A), Disjunction (V)
 - 4. Implication (\rightarrow)
 - Equivalence (↔)
- ▶ Hence, A V B \rightarrow C is the same as (A V B) \rightarrow C

Fall 2022

CSE2315: Abhishek Santra

16

16

Well Formed Formula (wff)

- ➤ Main connective: The connective to be applied *last*
 - A ∧ (B →C)'
 - A is the main connective
- Capital letters, like P,Q,R,S etc. are used to represent multiple wffs
 - [(A V B) \wedge C] \rightarrow (B V C') can be represented by P \rightarrow Q
 - where,
 - P is the wff [(A V B) ∧ C]
 - Q represents B V C'

Fall 2022

CSE2315: Abhishek Santra

Truth tables for some wffs

- \triangleright P: A V B' \rightarrow (A V B)'
- ➤ Main connective (according to the rules of precedence): implication.

A	В	B'	AVB'	AVB	(A V B)'	$A V B' \rightarrow (A V B)'$
Т	T	F	T	T	F	F
Т	F	T	Т	T	F	F
F	T	F	Т	T	F	F
F	F	T	T	F	T	T

Is every column correct?

Fall 2022

CSE2315: Abhishek Santra

18

18

Truth tables for some wffs

- ightharpoonup P: A V B' ightharpoonup (A V B)'
- ➤ Main connective (according to the rules of precedence): implication.

A	В	B'	AVB'	AVB	(A V B)'	$A V B' \rightarrow (A V B)'$
Т	Т	F	T	T	F	F
Т	F	Т	T	T	F	F
F	Т	F	F	Т	F	T
F	F	Т	T	F	T	T

Fall 2022

CSE2315: Abhishek Santra

Wff with *n* statement letters

- ➤ How many rows in truth table?
- The total number of rows in a truth table for n statement letters is 2^n .

Statement letters	Choices
1	$2 = 2^1$ branches
2	$4 = 2^2$ branches
3	$8 = 2^3$ branches
:	ŧ

Fall 2022

CSE2315: Abhishek Santra

20

 2^n branches

20

Tautology and Contradiction

- ➤ Tautology: A wff that is intrinsically *true*, i.e. no matter what the truth value of the statements that comprise the wff.
 - e.g. It will rain today or it will not rain today (A V A')
- Contradiction: A wff that is intrinsically false, i.e. no matter what the truth value of the statements that comprise the wff.
 - e.g. It will rain today and it will not rain today (A Λ A')
- Usually, tautology represented by 1 and contradiction by 0

Fall 2022

CSE2315: Abhishek Santra

Tautological Equivalences

- Two statement forms are called logically equivalent if, and only if, they have identical truth values for each possible substitution of statements for their statement variables.
- **Logical equivalence** of statement forms P and Q is denoted by writing $P \Leftrightarrow Q$ or $P \equiv Q$. In this case, P and Q are *equivalent wffs*
- > Truth table for (A V B) V C and A V (B V C)?

A	В	С	AVB	BVC	(AVB)VC	AV (BV C)
Т	T	T	T	T	T	T
T	T	F	T	T	T	T
Т	F	T	T	T	T	T
Т	F	F	T	F	T	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	F	T	T	T
F	F	F	F	F	F	F

Fall 2022

CSE2315: Abhishek Santra

22

22

Some common equivalences (Imp Laws)

- ➤ Equivalences are listed in *pairs*, called duals of each other.
- \triangleright One equivalence can be obtained from another by replacing V with Λ and 0 with 1 or vice versa.

Commutative	$A \lor B \Leftrightarrow B \lor A$	$A \land B \Leftrightarrow B \land A$	
Associative	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	
Distributive	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$	$A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$	
Identity	$A \lor 0 \Leftrightarrow A$	A ∧ 1 ⇔ A	
Complement	A V A' ⇔ 1	A ∧ A' ⇔ 0	

Fall 2022

CSE2315: Abhishek Santra

De Morgan's Laws

- 1. $(A \lor B)' \Leftrightarrow A' \land B'$
- 2. (A ∧ B)' ⇔ A' V B'

Α	В	A'	B'	AVB	(A∨B)′	A' A B'
Т	Т	F	F	Т	F	T
Т	F	F	Т	Т	F	T
F	Т	Т	F	Т	F	T
F	F	Т	Т	F	T	T

Fall 2022

CSE2315: Abhishek Santra

2/

24

Logical Connectives in the Real World

- ➤ Conditional Statements in programming use logical connectives with statements.
- Example

if((outflow > inflow) and not(pressure < 1000))

do something;

else

do something else;

Fall 2022

CSE2315: Abhishek Santra

Algorithm

- How to enroll for a course?
- A set of instructions that can be mechanically executed in a finite amount of time in order to solve some problems
- Algorithms are the state in between the verbal form of a problem and the computer program
- ➤ Algorithms are usually **represented by pseudocode**
- Pseudocode should be easy to understand even if you have no idea of programming

Fall 2022

CSE2315: Abhishek Santra

26

26

Pseudocode example

```
j=1 // initial value

Repeat

read a value for k

if ((j < 5) \text{ AND } (2^*j < 10) \text{ OR } ((3^*j)^{1/2} > 4)) then

write the value of j

otherwise

write the value of 4^*j

end if statement

increase j by 1

Until j > 6
```

Fall 2022

CSE2315: Abhishek Santra

