Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all polynomials with the operations, for any $f,g\in V,\,c\in\mathbb{R},$

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

Determine if the vectors
$$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2.

Determine if the set $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3

Additional Notes/Marks