Algorithm 1 BTI-MVCSL

Input:

- Number of Epochs *E*;
- Brain Features *X*;
- Prior Topology A_p or A_I (optional);
- Decay Rate μ ;
- Update Interval *n*;
- Instructor / Learner Feature Masking Ratio $p(X)_I / p(X)_L$;
- Topological Masking Ratio p(a);
- Contrastive loss temperature t

Output:

- Learned Brain Topology $A_{Learner}$
- 1: Initialize parameters w (graph learner), F_{GNN} (GNN encoder), F_{MLP} (MLP projector);
- 2: **if** A is available **then**
- 3: Initialize "instructor"-view topology $A_{instructor}$ as A_p ;
- 4: **else**
- 5: Initialize "instructor"-view topology $A_{instructor}$ as A_I ;
- 6: end if
- 7: **for** each $i \in [1, 2, 3, ..., E]$ **do**
- 8: Calculate $A_{BTI} \leftarrow$ BTI by Eq. (1) or Eq. (2);
- 9: Calculate A_{norm} by Eq. (7) Eq. (9);
- 10: Generate two views G_I , G_L ;
- 11: Calculate spatial brain representations H_I^{GNN} and H_L^{GNN} by F_{GNN} ;
- 12: Calculate brain projections H_I^{MLP} and H_L^{MLP} by F_{MLP} ;
- 13: Calculate whole contrastive loss L_{total} ;
- 14: Update parameters w, F_{GNN} , F_{MLP} ;
- 15: **if** $e \mod n = 0$ **then**
- 16: Update A_{norm} by Eq. (10) (Self-Learning Mechanism, SLM);
- 17: **end if**
- 18: end for