

Temperature and Humidity control in an Evaporative Cooling based AC system for Residential Applications

Final Report – MENG 5330 Process Control

December 7, 2023

Giovanni Josue Cerrato

Gideon Kwabena Nyarko

Amrit Thapa

Outline of report

Slide number
1
2
4
5
6
8
19
20
22

Introduction

An evaporative cooler (EC) is a device that cools air through the evaporation of water using a heat and mass transfer process.

Evaporative cooling differs from vapor-compression based AC systems by

- Consuming less energy
- Being more environmentally friendly
- Optimal performance in hot and dry climate conditions¹

This project will focus on a direct evaporative cooling AC system with a desiccant wheel for temperature and humidity control.

Fig 1. Operation of the Evaporative cooling system.³

Background

Cooling Effect of an Evaporative Cooler (EC):

- •An EC cools the air by adding humidity to the air at a constant wet bulb temperature.1
- As air passes through the EC, evaporating water cools the air due to the latent heat of vaporization.

Effect of Relative Humidity on EC Effectiveness:

•EC systems are less effective at higher humidity levels, reducing their cooling potential due to limited evaporation. (See Figure 3, compared to Figure 2.)

Fig 2. Evaporative cooling (low humidity) psychometric process

Fig 3. Evaporative cooling (high humidity) psychometric process

Background

Combining EC with a Desiccant Wheel (DW):

- •The integration of a rotating desiccant wheel to enhance EC performance has been explored in various studies ⁶⁻⁹ to achieve **significant** humidity reduction and control.
- A desiccant wheel is a device that removes moisture from the air, by absorbing it onto the desiccant material.

Main types of desiccant wheel systems

- Active
- Passive

The one of choice for this project is the **Active** desiccant wheel (in Fig. 4) ¹⁰

Fig 4. Desiccant Wheel System⁹

Motivation

Evaporative coolers known to work effectively, in reliably dry climates ².

But,

To improve its widespread usage for the diverse US climates, reducing carbon emissions and energy consumption.

What crucially can be done?

•Design a closed-loop control system for residential evaporative cooling AC, managing both temperature and humidity, is currently unavailable in the market.

Fig 5. Efficiency of EC systems across the US.

Source: https://www.newair.com/blogs/learn/what-are-evaporative-coolers

Objectives

- 1. Develop a mathematical model governing the thermal system (house)
- 2. Design a combined evaporative cooling/desiccant wheel (EC/DW) MIMO system to regulate temperature and humidity in residential applications.
- 3. Assess and review energy savings by comparing the combined EC and DW system with a standard vapor-compression AC system.

Methodology – Open-Loop Simulink Model

Open loop plant models for T_H and W_H of the house space based on the differential equations (ODEs) from system's dynamic energy models for Dry Air and Water Vapor.

A. Dynamic Dry air energy equation

$$\frac{dT_{H}}{dt} = \frac{1}{\rho_{da} \forall_{H} C p_{da}} (k(T_{o} - T_{H}) + m_{s-da} C p_{da} T_{s} + m_{o-da} C p_{da} T_{o} - m_{r-da} C p_{da} T_{H})$$

Z81 Ts O.000873 (Cpda_A)Ts Cpda_A Th C_A Th Response of T_H (Cpda_A)TH O.000873 Cpda_A TH Response of T_H Cpda_A_same

Fig 6. T_H for Open Loop Plant

B. Dynamic Water Vapor energy equation

$$\frac{dw_H}{dt} = \frac{1}{\rho_w \forall_H} (m_{s-da}) w_s + m_{o-da} \dot{w}_o - m_{r-da} \dot{w}_H$$

Fig 7. W_H for Open Loop Plant

Methodology – Closed-Loop Block Diagram

Control System Block Diagram for Temperature

Control System Block Diagram for Humidity

Fig 8. ANN Closed-Loop Simulink Model for T_H

Fig 9. ANN Closed-Loop Simulink Model for T_H

Results and Discussion – Open-Loop Model T_H Responses

T_H responses for setpoint changes in T_S

Fig 10. Open-Loop Model Response to T_s changes (A) Base Model (From Annual conditions data) (B) Increased T_s (C) Decreased Ts

Results and Discussion – Open-Loop Model T_H Responses (CONT'D)

T_H responses for disturbance changes

Fig 11. Open-Loop Model Response to T_o changes (A) Base Model (From Annual conditions data) (B) Increased T_o (C) Decreased T_o

Results and Discussion – Open-Loop Model W_H Responses

W_H responses for setpoint changes in W_S

(A) Base Line

Fig 12. Open-Loop Model Response to W_s changes (A) Base Model (From Annual conditions data) (B) Increased W_s (C) Decreased W_s

Results and Discussion – Open-Loop Model W_H Responses (CONT'D)

W_H responses for disturbance changes

Fig 13. Open-Loop Model Response to W_o changes (A) Base Model (From Annual conditions data) (B) Increased W_o (C) Decreased W_o

Results and Discussion — Closed-Loop PID Model T_H Responses

T_H responses for setpoint and disturbance changes

(A) Base Line

Fig 14. Closed-Loop Model Response to T_{set} changes (A) Base Model (From Annual conditions data) (B) Increased T_{set} (C) Decreased T_{set}

Results and Discussion – Closed-Loop PID Model T_H Responses (CONT'D)

T_H responses for setpoint and disturbance changes

Fig 15. Closed-Loop Model Response to T_o changes (A) Base Model (From Annual conditions data) (B) Increased T_o (C) Decreased T_o

Results and Discussion — Closed-Loop PID Model W_H Responses

W_H responses for setpoint and disturbance changes

Fig 16. Open-Loop Model Response to W_{set} changes (A) Base Model (From Annual conditions data) (B) Increased W_{set} (C) Decreased W_{set}

Results and Discussion – Closed-Loop PID Model W_H Responses (CONT'D)

W_H responses for setpoint and disturbance changes

Fig 22. Closed-Loop Model Response to W_o changes (A) Base Model (From Annual conditions data) (B) Increased W_o (C) Decreased W_o

Results and Discussion – ANN Plots for Temperature

Training model for ANN 3X based on T setpoint and disturbance changes, as elaborated in previous slide

(A) Regression Plot (40 neurons)

(B) Response Plot (40 neurons)

(C) Validation Plot (40 neurons)

Fig 14. ANN plots for Temperature

Results and Discussion – ANN Plots for Humidity

Training model for ANN 3X based on W setpoint and disturbance changes

(A) Regression plot (35 neurons)

(B) Response plot (35 neurons)

(C) Validation (35 neurons)

Fig 15. ANN plots for Humidity

Results and Discussion – Closed-Loop Model T_H Responses

T_H responses for setpoint and disturbance changes

(B) Increased T_{set} (C) Decreased T_{set}

Fig 19. Closed-Loop Model Response to T_{set} changes (A) Base Model (From Annual conditions data) (B) Increased T_{set} (C) Decreased T_{set}

Results and Discussion – Closed-Loop Model T_H Responses (CONT'D)

T_H responses for setpoint and disturbance changes

Fig 20. Closed-Loop Model Response to T_o changes (A) Base Model (From Annual conditions data) (B) Increased T_o (C) Decreased T_o

Results and Discussion – Closed-Loop Model W_H Responses

W_H responses for setpoint and disturbance changes

Fig 21. Open-Loop Model Response to W_{set} changes (A) Base Model (From Annual conditions data) (B) Increased W_{set} (C) Decreased W_{set}

Results and Discussion – Closed-Loop Model W_H Responses (CONT'D)

W_H responses for setpoint and disturbance changes

Fig 22. Closed-Loop Model Response to W_o changes (A) Base Model (From Annual conditions data) (B) Increased W_o (C) Decreased W_o

Results and Discussion – Economic, Sustainability & Innovation Comparison

Rubric: 1 – Very Low 2 – Low 3 – Normal 4 – High 5 – Very High

Factor	Standard AC	Proposed	Reason
Operational Cost	High	Very Low	 Typical low maintenance costs for EC systems. Main fluid in the governing process is water. Low electrical consumption for Desiccant Wheel (DW) and blower motors because of the very low RPM needed.
Emissions/ Environment Concerns	Very High	Very Low	 Lower energy usage, thus contributing to a lower carbon footprint. A typical evaporation cooling unit has been found to be capable of reducing CO₂ emissions by up to 80% [8]. No hydrocarbon-based coolants being released into the environment.
Innovative Factor	Normal	High	 Proposed system with Temperature and Humidity control will be a novel system on the market.

Conclusion and Future Recommendations

In Conclusion,

- Developed a residential thermal dynamics model for control of temperature and humidity.
- •Introduced an adaptable EC/DW MIMO system for residential spaces, suitable for diverse climates.
- Conducted a comparison and assessment, revealing significant benefits to energy and sustainability compared to vapor-compression AC systems

Future Recommendations

- Explore proposed system integration with renewable energy sources, further enhancing sustainability.
- •Research advanced materials and technologies for improved efficiency and durability of the EC/DW system.
- A more in-depth search into control hardware to implement ANN model

References

- [1] P. M. Cuce, S. Riffat, "A state of the art review of evaporative cooling systems for building applications," Renew. Sustain. Energy Rev., vol. 54, pp. 1240-1249, 2016. [Online]. Available: https://doi.org/10.1016/j.rser.2015.10.066.
- [2] "Evaporative cooling... The rationale evaporates," *Electrical Connection*, Jul. 30, 2015. [Online]. Available: https://electricalconnection.com.au/evaporative-cooling-the-rationaleevaporates/.
- [3] F. J. D. I. Dale, E. Seborg, T. F. Edgar, D. A. Mellichamp, "Process Dynamics and Control," 4th Available: https://www.buildinggreen.com/primer/how-active-dehumidification-works. ed. Wiley India Pvt. Limited, 2016.
- [4] S. J. Qin and T. A. Badgwell, "A survey of industrial model predictive control technology," Control engineering practice, vol. 11, no. 7, pp. 733-764, 2003.
- [5] K. Daou, R. Z. Wang, Z. Z. Xia, "Desiccant cooling air conditioning: a review," Renewable and sustainable energy reviews, vol. 10, no. 2, pp. 55-77, 2006.
- [6] B. Riangvilaikul and S. Kumar, "An experimental study of a novel dew point evaporative cooling system," *Energy and Buildings*, vol. 42, no. 5, pp. 637-644, 2010.
- [7] C. X. Jia, Y. J. Dai, J. Y. Wu, R. Z. Wang, "Use of compound desiccant to develop high performance desiccant cooling system," International journal of refrigeration, vol. 30, no. 2, pp. 345-353, 2007.
- [8] G. Heidarinejad and H. Pasdarshahri, "Potential of a desiccant-evaporative cooling system performance in a multi-climate country," International Journal of Refrigeration, vol. 34, no. 5, pp. 1251-1261, 2011.

- [9] M. M. Rafique, P. Gandhidasan, S. Rehman, L. M. Al-Hadhrami, "A review on desiccant based evaporative cooling systems," Renewable and Sustainable Energy Reviews, vol. 45, pp. 145-159, 2015.
- [10] D. B. Jani, M. Mishra, P. K. Sahoo, "Solid desiccant air conditioning—A state of the art review," Renewable and Sustainable Energy Reviews, vol. 60, pp. 1451-1469, 2016.
- [11] P. Yost, "How Active Dehumidification Works," BuildingGreen, Sep. 3, 2013. [Online].
- [12] Y. Lee, S. Park, S. Kang, "Performance analysis of a solid desiccant cooling system for a residential air conditioning system," Appl. Therm. Eng., vol. 182, p. 116091, 2021, [Online]. Available: doi: 10.1016/j.applthermaleng.2020.116091.
- [13] A. K. Verma, L. Yadav, N. Kumar, A. Yadav, "Mathematical investigation of different parameters of the passive desiccant wheel," Numer. Heat Transf. Part A Appl., vol. 0, no. 0, pp. 1-20, 2023, [Online]. Available: doi: 10.1080/10407782.2023.2172491.
- [14] G. Harriman, M. J. Witte, A. Czachorsk, D. R. Kosar, "Evaluating active desiccant systems for ventilating commercial buildings," ASHRAE J., vol. 41, no. 10, pp. 28-37, 1999.

Thank you!

Appendix A – Files & Video Presentation link

<u>Video</u>

https://uthsct.sharepoint.com/sites/ProcessControlCourseProject/Shared%20Documents/Generall/Recordings/Meeting%20in%20 General -20231207 231634-Meeting%20Recording.mp4?web=1

Simulink and MATLAB models

Open and closed loop models

All relevant project documents

Project documents

Appendix B – Gantt Chart

Task Estimated Start Finish Estimated Work (in hours) Work (in hours) Finish Fin	▼
Project topics shortlisting 8/31/2023 9/7/2023 4 7 7 Completion	eted
	Cica
Salasting analytic antrol project	eted
9/7/2023 9/14/2023 4 7 6 Compl and system	eted
Scope Report and Project 9/7/2023 9/26/2023 12 19 25 Completives	eted
Mathematical model and 9/21/2023 10/5/2023 9 14 40 Complete Validation	eted
Control system design 10/5/2023 10/19/2023 9 14 32 Compl	eted
Progress report video submission 10/8/2023 10/22/2023 9 14 25 Compl	eted
NN predictive control for 10/23/2023 11/6/2023 9 13 35 Completion of the control for distrubances	eted
Control sytem validation 11/7/2023 11/16/2023 5 9 20 Compl	eted
Economic validation 11/17/2023 11/26/2023 5 9 10 Compl	eted
Final project submission 11/27/2023 12/7/2023 6 10 30 Compl	leted

100%

Percent Over/Under to Flag

Appendix C – New Relevant Changes Made from Progress Report

Changes Based On Instructor Feedback

- Implemented ANN Empirical Model
- References were modified completely to meet
 IEEE referencing style standards
- Clearly defined inputs and references in response plots
- Graphs labels are shown
- Contents in Results and Methodology slides from previous report have been rectified

Changes Completed As Project Requirements

- Implemented ANN Empirical Model
- Perform the controller design with appropriate assumptions
- Completed a quality oral video report

Changes / Additions Based On Project Objectives and Team's Preferred Changes

- New plant model based on ODE with Initial conditions
- Energy savings assessment and comparison between standard AC system and Proposed EC/DW system.
- Future Recommendations on Project

III. VIDEO REPORT CHECKLIST

Name: Giovanni Cerrato, Amrit Thapa, Gideon Nyarko

Please complete this checklist and include in Appendix when you submit the pdf file for this report in Canvas course.

- _X_ I have addressed all parts of the assignment.
- _X__ I have met course expectations and requirements and <u>solve</u> some of the given set of problems/questions.
- _X__ I have defined Project Motivation and Objectives
- _X__ I have sufficient pertinent literature review (~10 publications) for to meet the project objective(s) for Background and References
- _X_ I have described some Specifications, Constraints, Limitations, etc. relevant to Background or Methodology
- _X__ I have appropriate design steps (both synthesis and analysis) with thorough considerations and explanation of economic, environmental or societal contexts (relevant to Results and Discussion).
- _X__ Most ideas in every section are logically developed and directly linked to the main point of the section. Most ideas in every section are connected by transitions.
- X Oral presentation has clear and appropriate syntax, diction, tone, and non-verbal elements.
- _X_ The visual, audio, or other presentation materials meet professional standards, are integrated into the presentation, and do not substitute for but instead balance oral components.
- _X_ My presentation meets the time limit.
- _X__ I have revised my paper _10_ times to improve its organization, structure, and style as needed.
- X I have created a video link to be included in Appendix.
- _X_ I have not used anyone else's work, ideas, or language without citing them appropriately
- _X_ All my sources are in References slide(s), which is properly formatted in IEEE style.
- _X__ I have read the plagiarism statement in the syllabus, understand it, and agree to abide by the definitions and penalties described in the course. (Note: Unicheck will be used to via Canvas to check if <25%, which cannot be exceeded to avoid penalties, for plagiarism and similarities)</p>
- _X_ I have created, updated and included Gantt Chart in Appendix.
- _X__ I have completed this checklist and included it in Appendix.

Student Signature: Giovanni Cerrato, Amrit Thapa, Gideon Nyarko

Date: 12/07/2023

Appendix D – Video Check List

Appendix E - Methodology (System Schematic)

PROPOSED EC AND DW AC SYSTEM

- (1-2) Dehumidification by DW
- (2-3) Sensible Heat Exchange
- (3-4) Direct Evaporative Cooling
- (4-5) Conditioned Space Cooling

After Recirculation

- (5-6) Sensible Heat Exchange
- (6-7) Gas Furnace Air heating
- (7-8) DW regeneration with Hot Dry Air

- 1 Outdoor air 4 Cold humid air into room <math>7 Hot dry air from furnace
- 2 Dry air 5 Cool humid air exhaust 8 Hot humid air
- 3 Cool dry air 6 Mild heated less humid air

Appendix F - Methodology (Load Calculations of Space)

Latent Heat Load:
$$Q_L = (W_o - W_H)M_{o-da}h_{fg} + (W_H - W_{Ec})M_{s-da}h_{fg}$$

Sensible Heat Load:
$$Q_S = K(T_o - T_H) + M_{o-da}Cp_{da}(T_o - T_H)$$
; $K = (UA)_{House-Total}$

Envelope Heat Transfer Coefficient:

$$K = \{ (A_{window}U_{window}) + (A_{roof}U_{roof}) + (A_{wall}U_{wall}) (A_{floor}U_{floor}) + (A_{door}U_{door}) \}$$

Sensible Heat Ratio:
$$SHR = \frac{Q_S}{Q_T} = \frac{Q_S}{Q_S + Q_L}$$

Supply Volumetric flowrate required to maintain setpoint T :
$$CFM = \frac{Q_S}{1.08(T_H - T_S)}$$

Appendix G - Methodology (Dynamic Model of Space)

Dynamic Dry air energy equation

$$\frac{d(\rho VCp - da T)}{dt} = K(T_o - T_H) + M_{s-da}h_s + M_{o-da}h_o - m_{r-da}h_H$$

$$\frac{dT_H}{dt} = \frac{1}{\rho_{da} \forall_H Cp_{da}} (k(T_o - T_H) + m_{s-da}Cp_{da}T_s + m_{o-da}Cp_{da}T_o - m_{r-da}Cp_{da}T_H)$$

For Temperature, $\% Error_{steady-state} = 2.65\%$

Dynamic Water vapor energy equation

$$\begin{split} \frac{d(\rho VWh_w)}{dt} &= M_{s-da}w_s\,h_w + M_{o-da}w_oh_oh_w - m_{r-da}w_rh_w\\ \frac{dw_H}{dt} &= \frac{1}{\rho_w \forall_H}((m_{s-da})w_s + m_{o-da}\dot{w}_o - m_{r-da}\dot{w}_H)\\ &\text{For Humidity, } \% \underbrace{Error_{steady-state}} = 4.04\% \end{split}$$

- Equations depict the energy balance in residential spaces, encompassing thermal energy from dry air and water vapor in supply, return, and outdoor air streams.
- Q represents sensible heat transferred into the system via building envelope conduction..

Appendix H – Development of Process ANN Model

A. Plant is trained with three set of data for three different scenarios.

- Firstly, data set for scenario 1st is trained using 10 neurons using "trailm" function
- Secondly, trained model with scenario 1st data set again trained with data set for scenario 2nd using 20 neurons
- Finally, the 2nd trained model is again trained with data set for scenario 3rd using 30 neurons
- B. Steps for Training and Model Development
- Configure settings for Plant scenario
- Import Data (Generated from ODEs)
- Train Network
- Validation

Appendix Fig. 1: Plant Identification configuration

APPENDIX J — OVERALL DIAGRAM AND PERFORMANCE

Training Progress						
Unit	Initial Value	Stopped Value	Target Value			
Epoch	0	4	50	4		
Elapsed Time	-	00:00:00	-			
Performance	0.118	1e-23	0	1		
Gradient	0.718	6.96e-13	1e-10			
Mu	0.001	1e-07	1e+10			
Validation Checks	0	0	6	,		

Appendix Fig 2. Neural Network Diagram Temperature (T)

Appendix Fig.3 Neural Network Diagram Humidity (W)

Appendix K – NN PC Configuration

Maximum and Minimum Plant input (Ts) range is based on the EC max capacity for minimum and SHR line to maintain Ts.

- Cost Horizon Time of predictions
- Control Horizon Number of times you want to optimize your control (CFM) within cost horizon
- Weight Factor 0 (Closer to setpoint) 1 (Energy Savings)

Appendix Fig. 4 NN PC Configuration Box

Appendix L – Evaporative capacity formula (EC)

Type in Ts as a function of CFM.

$$T_{S} = T_{EC,in} - \frac{Q_{cap}}{1.008*\forall_{H}}$$

Where, Q_{cap} cooling capacity of evaporative cooler

• \forall_H volume of house

Appendix M – Desiccant wheel humidity removal function (DW)

The equation of the plot relates the humidity entering the system to the rpm of the desiccant wheel

Appendix N – Sensor/ Transmitter Technical Data

Measuring range

Relative Humidity (RH) 0...100 %RH, non-condensing

Temperature (T) -30...+60 °C (-22...+140 °F)

Outputs

Temperature 0 - 10 V

Relative Humidity (RH) 4 - 20 mA (2-wire)

NB: Ranges of temperature and humidity control from technical data is utilized in calculating the gain of Sensor. Shown in subsequent slide.

E+E

Room Sensor for Relative Humidity and Temperature

HTS201

The HTS201 room sensor is dedicated for accurate and reliable measurement of relative humidity (RH) and temperature (T) in residential and commercial building automation. The elegant enclosure is available in two sizes (EU and US format) and features an optional display.

Appendix Fig. 6 Sensor Type for Technical Data for Proposed System

PID Controller tuning

To tune the PID controllers, gains, ti, and td constants were given from open-loop responses using Ziegler Nichols method.

Ziegler–Nichols method ^[1]	
---------------------------------------	--

Control Type	K_p	T_i	T_d	K_{i}	K_d
Р	$0.5K_u$	_	-	_	_
PI	$0.45K_u$	$0.8\overline{3}T_u$	-	$0.54K_u/T_u$	_
PD	$0.8K_u$	_	$0.125T_u$	_	$0.10K_uT_u$
classic PID ^[2]	$0.6K_u$	$0.5T_u$	$0.125T_u$	$1.2K_u/T_u$	$0.075K_uT_u$
Pessen Integral Rule ^[2]	$0.7K_u$	$0.4T_u$	$0.15T_u$	$1.75K_u/T_u$	$0.105K_uT_u$
some overshoot ^[2]	$0.3\overline{3}K_u$	$0.50T_u$	$0.3\overline{3}T_u$	$0.6\overline{6}K_u/T_u$	$0.1\overline{1}K_uT_u$
no overshoot ^[2]	$0.20K_u$	$0.50T_u$	$0.3\overline{3}T_u$	$0.40K_u/T_u$	$0.06\overline{6}K_uT_u$

Appendix Fig. 6 Ziegler-Nichols Tuning parameter table

Appendix Fig. 7 PID Controller tuning parameters input window

Closed-loop using PID control

