# 第四章:形式谓词演算

沈榆平 yuping.shen.ilc@gmail.com

中山大学逻辑与认知研究所 2015年11月

形式系统K♀

### 形式系统Kg

# 形式系统 $K_{\mathscr{L}}$

由于语言 $\mathcal{L}$ 的定义已给出,下面只给出系统公理:

- (K1)  $(\mathscr{A} \to (\mathscr{B} \to \mathscr{A}))$
- (K2)  $(\mathscr{A} \to (\mathscr{B} \to \mathscr{C})) \to ((\mathscr{A} \to \mathscr{B}) \to (\mathscr{A} \to \mathscr{C}))$
- (K3)  $(\sim \mathscr{A} \rightarrow \sim \mathscr{B}) \rightarrow (\mathscr{B} \rightarrow \mathscr{A})$
- (K4)  $((\forall x_i) \mathscr{A} \to \mathscr{A})$ ,如果 $x_i$ 在 $\mathscr{A}$ 中不自由出现。
- (K5)  $((\forall x_i) \mathscr{A}(x_i) \to \mathscr{A}(x_i/t))$ , 如果 $\mathscr{A}(x_i)$ 是 $\mathscr{L}$ 的一个公式, t是 $\mathscr{L}$ 的一个项, 且对 $\mathscr{A}(x_i)$  中的 $x_i$ 替换自由。
- (K6) (∀x<sub>i</sub>)(A→B)→(A→(∀x<sub>i</sub>)B),如果x<sub>i</sub>不在A中自由出现。

### 及推理规则:

- (1) MP规则。从母, 母→罗可演绎出宠。
- (2) 概括规则。从必可演绎出(∀x<sub>i</sub>)必。

### 形式系统 $K_{\mathscr{L}}$

### 讨论

- (K1-6)都是公理模式,每一条都代表无数条公理。
- 不难看出 $K_{\mathscr{L}}$ 实质上是 $\mathscr{L}$ 的一个扩充。
- 事实上,无论 $x_i$ 是否在公式 $\mathscr{A}$ 中自由出现,我们总有( $\forall x_i$ ) $\mathscr{A} \to \mathscr{A}$ 。如是,则据(K5),把t看成是 $x_i$ 即可得。如否,则据(K4)直接可得。

### 公理实例

- $(\forall x_2)(\forall x_2)(B_1^1(x_2)) \rightarrow (\forall x_2)(B_1^1(x_2))$  是(K4),(K5)的实例
- (∀x<sub>2</sub>)B<sub>1</sub><sup>1</sup>(x<sub>2</sub>) → B<sub>1</sub><sup>1</sup>(x<sub>2</sub>) 不是 (K4)的实例, 因x<sub>2</sub>在B<sub>1</sub><sup>1</sup>(x<sub>2</sub>)中自由出现, 但它是(K5)的实例
- $(\forall x_1)(B_1^1(x_2) \to B_2^1(x_1)) \to (B_1^1(x_2) \to (\forall x_1)B_2^1(x_1))$ 是(K6)的实例

上定义的序列,但其中可包括「的成员。

# 形式系统Kg

### 定义

形式系统 $K_{\mathscr{L}}$ 的一个证明是一个有穷公式序列 $\mathscr{A}_1,\ldots,\mathscr{A}_n$ ,使得对于每一个i,( $1 \leq i \leq n$ ), $\mathscr{A}_i$ 要么是 $K_{\mathscr{L}}$ 的一个公理,要么是由 $\mathscr{A}_i$ 之前的公式通过分离规则或者概括规则得到的。如果 $\Gamma$ 是 $K_{\mathscr{L}}$ 的一个公式集,在 $K_{\mathscr{L}}$ 中从 $\Gamma$ 出发的演**年**,是一个如

一个公式 $\mathscr{A}$ 是 $K_{\mathscr{L}}$ 的定理,如果它是 $K_{\mathscr{L}}$ 中一个证明的最后一个公式。

一个公式A是 $K_{\mathcal{L}}$ 中 $\Gamma$ 的后承,如果它是 $K_{\mathcal{L}}$ 中从 $\Gamma$ 出发的一个演绎的最后一个公式。

我们用 $\vdash_{K_{\mathscr{L}}}$   $\mathscr{A}$  表示  $\mathscr{A}$  是  $K_{\mathscr{L}}$  的定理。  $\Gamma \vdash_{K_{\mathscr{L}}} \mathscr{A}$  表示  $\mathscr{A}$  是  $K_{\mathscr{L}}$  中 从  $\Gamma$  出发的一条推论。

为方便,在以后的叙述中我们将用K代替 $K_{\varphi}$ 。

形式系统Kcp

#### 形式系统Kg

### 命题4.3

如果 $\mathscr{A}$ 是 $\mathscr{L}$ 的一个公式,且 $\mathscr{A}$ 是一个重言式,那么 $\mathscr{A}$ 是 $\mathsf{K}$ 的一条定理。

### 注意

这个命题的逆命题不成立。如( $\forall x_1$ ) $A_1^1(x_1) \rightarrow (\exists x_1)A_1^1(x_1)$ , 是K的定理,但不是重言式。

#### 证明

 $\mathscr{L}$ 的公式是重言式,如果存在一个L的重言式 $\mathscr{A}$ 0,把其中命题变元代入相应的 $\mathscr{L}$ 公式得到 $\mathscr{A}$ 0。令 $\mathscr{A}$ 2 $\mathscr{L}$ 0的重言式,且令 $\mathscr{A}$ 02 $\mathscr{L}$ 0中相应的公式。因 $\mathscr{A}$ 0是重言式,那么 $\mathscr{L}$ 1000。而这个证明过程可以简单地转换成一个 $\mathscr{L}$ 2中的证明。只需把相应的命题变元换成 $\mathscr{L}$ 2中的对应的公式就可。这是因为 $\mathscr{K}$ 5 $\mathscr{L}$ 4中的对应的公式就可。这是因为 $\mathscr{K}$ 5 $\mathscr{L}$ 4中的对应的公式就可。这是因为 $\mathscr{K}$ 5 $\mathscr{L}$ 4中的对应的公式就可。

# 形式系统Kg

我们在学习L系统时已知道,(L1-3)实质都是重言式。类似地,我们证明K(4-6)都是逻辑有效的。

### 命题4.4

公理模式(K4),(K5),(K6)的一切实例都是逻辑有效的。

### 证明

对(K4),令v为某个 $\mathcal{L}$ 中的解释I的一个赋值且满足( $\forall x_i$ ) $\mathscr{A}$ 。那么每个与vi等价的赋值v' 都满足 $\mathscr{A}$ ,v自己也满足 $\mathscr{A}$ ,因它与自己i等价。因此I上每个赋值都满足(( $\forall x_i$ ) $\mathscr{A} \to \mathscr{A}$ ),因此I  $\models$  (( $\forall x_i$ ) $\mathscr{A} \to \mathscr{A}$ )。又因我们对I无任何限制,所以(( $\forall x_i$ ) $\mathscr{A} \to \mathscr{A}$ ) 是逻辑有效的。

# 形式系统Kg

### 证明

对(K5),令t对 $\mathscr{A}(x_i)$ 中的 $x_i$ 替换自由,且令v是某个解释/上的赋值。如果v不满足( $\forall x_i$ ) $\mathscr{A}(x_i)$ ,那么v满足( $\forall x_i$ ) $\mathscr{A}(x_i)$  →  $\mathscr{A}(x_i/t)$ 。再设v满足( $\forall x_i$ ) $\mathscr{A}(x_i)$ ,那么每个与vi等价的赋值满足 $\mathscr{A}(x_i)$ ,特别地,存在一个这样的赋值v', $v'(x_i) = v(x_i/t)$ 。据命题3.23,有v满足 $\mathscr{A}(x_i/t)$ 。所以每一个/中的赋值都满足( $\forall x_i$ ) $\mathscr{A}(x_i)$  →  $\mathscr{A}(x_i/t)$  。又因我们没对/作任何限制,所以对任何解释/都有/ $\models$ ( $\forall x_i$ ) $\mathscr{A}(x_i)$  →  $\mathscr{A}(x_i/t)$ ,即( $\forall x_i$ ) $\mathscr{A}(x_i)$  →  $\mathscr{A}(x_i/t)$ 是逻辑有效的。

# 形式系统Kg

#### 证明

对(K6),令 $\mathscr{A}$ , $\mathscr{B}$ 为 $\mathscr{L}$ 的公式。设 $x_i$ 在 $\mathscr{A}$ 中没有自由出现。令v为某个解释I下的赋值。设v满足( $\forall x_i$ )( $\mathscr{A} \to \mathscr{B}$ )。那么每一个与vi等价的赋值w满足( $\mathscr{A} \to \mathscr{B}$ )。那么w要么不满足 $\mathscr{A}$ ,要么满足 $\mathscr{B}$ 。如果w不满足 $\mathscr{A}$ ,那么所有这样的w都不满足 $\mathscr{A}$ ,包括v自己在内。因为 $x_i$ 不在 $\mathscr{A}$ 中自由出现(命题3.33)。所以:

- 要么V不满足必
- 要么每个与vi等价的w都满足宠,即
- 要么V不满足必要么V满足(∀X<sub>i</sub>)%。

也就是V满足( $\mathscr{A} \to (\forall x_i)\mathscr{B}$ )。所以每个I上的赋值满足( $\forall x_i$ )( $\mathscr{A} \to \mathscr{B}$ )  $\to$  ( $\mathscr{A} \to (\forall x_i)\mathscr{B}$ ),它是逻辑有效的。

形式系统 $K_{\mathcal{L}}$ 

形式系统Kg

### 命题4.5(K的可靠性定理)

对于任何 $\mathcal{L}$ 中的公式 $\mathcal{A}$ ,如果 $\vdash_{\mathcal{K}}\mathcal{A}$ ,那么 $\mathcal{A}$ 是逻辑有效的。

# 证明

对如的证明长度施归纳。基础步:证明长度为1。此时如是一个公理。而K的每条公理都是逻辑有效的。归纳步:设证明长度为n>1,且所有证明步数小于n的定理都是逻辑有效的。必要么是一个公理,要么是由分离或者概括规则得到的。公理都是逻辑有效的。如果必由分离规则应用在 $\mathcal{B} \to \mathcal{A}$ 上得到,那么由于 $\mathcal{B} \to \mathcal{B} \to \mathcal{A}$ 的证明长度都小于n,据归纳假设它们都是逻辑有效的。由注记3.36(a)可知必也是逻辑有效的。如果必通过概括规则应用在 $\mathcal{C}$ 上得到,按归纳假设 $\mathcal{C}$ 逻辑有效,据注记3.36(b),( $\forall x_i$ ) $\mathcal{C}$ ,即必也是逻辑有效的。

形式系统Kg

### 引理4.6(K的一致性定理)

系统K是一致的,即没有公式A使得A与 $\sim A$ 都是K的定理。

### 证明

假设对某个公式 $\mathscr{A} f \vdash_K \mathscr{A} \mathcal{A} \vdash_{K} \sim \mathscr{A}$ 。那么据命 题4.5, $\mathscr{A} f \vdash_{K} \mathscr{A} \mathcal{A} \vdash_{K} \sim \mathscr{A}$ 。也意味着 $\mathscr{A} f \vdash_{K} \mathscr{A} f \vdash_{K} f$  形式系统 $K_{\mathcal{L}}$ 

形式系统Kg

### 讨论

在L中,如果 $\mathcal{B} \vdash_L \mathcal{A}$ ,那 $\mathcal{A} \vdash_L \mathcal{B} \to \mathcal{A}$ 。这是L中的演绎定理。那么在K中也有对任意的 $\mathcal{B} \vdash_K \mathcal{A}$ ,那 $\mathcal{A} \vdash_K \mathcal{B} \to \mathcal{A}$ 吗?答案是**否定**的。

### 例子

据概括原则我们知道,在K中,对任何公式 $\mathscr{A}$ ,都有 $\mathscr{A} \vdash_{\mathcal{K}} (\forall x_i) \mathscr{A}$ 。但 $\vdash_{\mathcal{K}} \mathscr{A} \to (\forall x_i) \mathscr{A}$ 有可能不成立。考虑一个解释I,论域为整数集Z, $\overline{A}_1^1$ 表示谓词"= 0"。那么 $\overline{A}_1^1(x_1)$ 直觉意义为 $x_1=0$ ,显然存在一些赋值v满足 $\overline{A}_1^1(x_1)$ ,不过任何与v1等价的v'但 $v'(x_1) \neq v(x_1)$ 的赋值将不满足 $\overline{A}_1^1(x_1)$ 。所以v不满足 $\forall (x_1) \overline{A}_1^1(x_1)$ 。 $\overline{A}_1^1(x_1) \to (\forall x_1) \overline{A}_1^1(x_1)$ 不是逻辑有效式。

出现这种情况一个原因是这个演绎从一个非逻辑有效式出发。

# 形式系统Kg

### 讨论

上面的例子对应着以下演绎:

- (1)  $A_1(x_1)$  假设(非逻辑有效式)
- (2)  $(\forall x_1)A_1^1(x_1)$  (1)概括

则有 $A_1^1(x_1) \vdash_K (\forall x_1) A_1^1(x_1)$ ,但可观察 到 $\vdash_K A_1^1(x_1) \to (\forall x_1) A_1^1(x_1)$ 不成立。

### 形式系统Kg

#### 讨论

再考虑从逻辑有效式出发的一个演绎:

(1) 
$$A_1^1(x_1) \to A_1^1(x_1)$$
 假设(逻辑有效式)

(2) 
$$(\forall x_1)(A_1^1(x_1) \to A_1^1(x_1))$$
 (1)概括

有
$$A_1^1(x_1) o A_1^1(x_1) \vdash_K (\forall x_1)(A_1^1(x_1) o A_1^1(x_1)),$$
  $\vdash_K (A_1^1(x_1) o A_1^1(x_1)) o (\forall x_1)(A_1^1(x_1) o A_1^1(x_1))$ 成立。

事实上,从任意的逻辑有效式出发,都可以直接应用(命题演算意义上的)演绎定理。可见问题并不是出现在概括原则上,而是在演绎前提的非逻辑有效性上。

形式系统Kc

### 形式系统Kg

#### 问题

是否从非逻辑有效公式出发的演绎,都不能使用演绎定理?答案是否定的。

#### 例子

$$(2) \quad (\forall x)(\forall y)A_1^2(x,y) \to (\forall y)A_1^2(x,y) \tag{K5}$$

(3) 
$$(\forall y)A_1^2(x,y) \to A_1^2(x,y)$$
 (K5)

(4) 
$$A_1^2(x,y)$$
 (1)(2)(3) $MP$ 

(5) 
$$(\forall y)(\forall x)A_1^2(x,y)$$
 (4)概括两次

则有 $(\forall x)(\forall y)A_1^2(x,y)\vdash_K (\forall y)(\forall x)A_1^2(x,y), \vdash_K (\forall x)(\forall y)A_1^2(x,y) \rightarrow (\forall y)(\forall x)A_1^2(x,y)$ 也成立。

# 形式系统 $K_{\mathscr{L}}$

#### 问题

在什么条件下,可以直接应用(命题演算意义上的)演绎定理呢? 一个可行的条件是:对演绎前提中出现的任何自由变元,不能 应用概括原则。

# 例子

(1) 
$$P_1^1(x)$$
 假设(非逻辑有效,有自由变元)

(2) 
$$(\forall y)A_1^1(y) \rightarrow (\exists y)A_1^1(y)$$
 也证

则有 $P_1^1(x) \vdash_K (\forall y) A_1^1(y) \to (\exists y) A_1^1(y)$ , $\vdash_K P_1^1(x) \to (\forall y) A_1^1(y) \to (\exists y) A_1^1(y)$ 成立。在这个公式中,后件是逻辑有效的,所以整个公式逻辑有效。

# 形式系统Kg

### 讨论

- 请考虑,如果公式 $\mathcal{A} \to \mathcal{B}$ 中, $\mathcal{A}$ 不是逻辑有效的,那  $\mathcal{A} \to \mathcal{B}$ 是否逻辑有效?答案是**不一定**。有可能存在一个 解释下的赋值 $\mathcal{V}$ ,  $\mathcal{V}$ 满足 $\mathcal{A}$ 但不满足 $\mathcal{B}$ 。在命题演算中, 若 $\mathcal{A}$ 是永假式,则 $\mathcal{A} \to \mathcal{B}$ 必是永真式。
- ◆ 令 必 为 矛盾式,则 ~ 必 肯定是逻辑有效式,反之亦然。要证明一个公式 必 是逻辑有效式,可以通过证明 ~ 必 的 Skolem 化公式是 矛盾式而得到。

# 形式系统Kg

### 系统K的演绎定理

令 $\mathscr{A}$ 与 $\mathscr{B}$ 为 $\mathscr{L}$ 中的公式, $\Gamma$ 为一个 $\mathscr{L}$ (可能为空)的公式集。如果 $\Gamma \cup \{\mathscr{A}\} \vdash_{\mathsf{K}} \mathscr{B}$ ,并且演绎过程中没有对 $\mathscr{A}$ 中自由出现的任何变元施加概括规则。那么 $\Gamma \vdash_{\mathsf{K}} \mathscr{A} \to \mathscr{B}$ 。

### 证明

施归纳于从 $\Gamma \cup \{\mathscr{A}\}$ 到 $\mathscr{B}$ 的演绎长度n。基始步,n=1。 $\mathscr{B}$ 要么是一个公理,要么是 $\mathscr{A}$ ,要么是 $\Gamma$ 中的一个公式。我们可以像系统L中的证明那样得到 $\Gamma \vdash_L \mathscr{A} \to \mathscr{B}$ 。

归纳步,设n > 1。假设如果 $\mathscr{F}$ 是一个可从 $\Gamma \cup \{\mathscr{A}\}$ 出发,且没有对 $\mathscr{A}$ 中的任何自由变元应用概括规则就演绎得到的长度小于n的公式,那么 $\Gamma \vdash_K (\mathscr{A} \to \mathscr{F})$ 。情形 $1: \mathscr{B}$ 是一个公理,或者是 $\mathscr{A}$ ,或者是 $\Gamma$ 的一个成员,或者是演绎中通过先前得到的公式应用MP规则得到的,那么证明与L中一样。

# 形式系统 $K_{\mathscr{L}}$

#### 证明

情形2:  $\mathcal{B}$ 从一个演绎中之前得到的公式通过应用概括规则得到。那么 $\mathcal{B}$ 形如( $\forall x_i$ ) $\mathcal{C}$ ,且 $\mathcal{C}$ 出现在之前的演绎过程中。则 $\Gamma \cup \{\mathscr{A}\} \vdash_{K} \mathcal{C}$ 且此演绎过程长度小于n。据归纳假设,及没有对任何 $\mathscr{A}$ 中的自由变元应用过概括规则,所以有 $\Gamma \vdash_{K} (\mathscr{A} \to \mathscr{C})$ 。注意到 $X_i$ 也不可能在 $\mathscr{A}$ 中自由出现,因为在从 $\Gamma \cup \{\mathscr{A}\}$ 到 $\mathscr{B}$ 的演绎过程中,在 $X_i$ 上应用了概括规则。所以我们有一个如下从 $\Gamma$ 到( $\mathscr{A} \to \mathscr{B}$ )的演绎:

$$\left. \begin{array}{ccc} (1) & \cdots \\ \vdots & \cdots \\ (k) & (\mathscr{A} \to \mathscr{C}) \end{array} \right\}$$
 从 $\Gamma$ 到 $(\mathscr{A} \to \mathscr{C})$ 的演绎

# 形式系统Kg

### 证明

$$(k+1)$$
  $(\forall x_i)(\mathscr{A} \to \mathscr{C})$   $(k)$ , 概括规则  $(k+2)$   $(\forall x_i)(\mathscr{A} \to \mathscr{C}) \to (\mathscr{A} \to (\forall x_i)\mathscr{C})$   $(K6)$   $(k+3)$   $(\mathscr{A} \to (\forall x_i)\mathscr{C})$   $(k+1), (k+2), MP$ 

 $\mathcal{A}\Gamma \vdash_{\mathcal{K}} (\mathscr{A} \to \mathscr{B})$ 。证毕。

#### 推论4.9

若
$$\Gamma \cup \{\mathscr{A}\} \vdash_{\mathsf{K}} \mathscr{B}$$
且 $\mathscr{A}$ 为闭公式,则 $\Gamma \vdash_{\mathsf{K}} (\mathscr{A} \to \mathscr{B})$ 。

### 推论4.10

对于公式 $\mathscr{A},\mathscr{B},\mathscr{C},$  有 $\{(\mathscr{A}\to\mathscr{B}),(\mathscr{B}\to\mathscr{C})\}\vdash_{\mathsf{K}}\mathscr{A}\to\mathscr{C}.$ 

### 形式系统Kg

#### 命题4.11

假设公式 $\mathscr{A}$ ,  $\mathscr{B}$ 是 $\mathscr{L}$ 的公式,  $\Gamma$ 是 $\mathscr{L}$ 的公式集且 $\Gamma$   $\vdash_{\mathsf{K}}$  ( $\mathscr{A} \to \mathscr{B}$ ), 那么 $\Gamma \cup \{\mathscr{A}\} \vdash_{\mathsf{K}} \mathscr{B}$ 。

#### 例子

如果 $X_i$ 不在 $\mathscr{A}$ 中自由出现,那  $(A \to (\forall X_i)\mathscr{B}) \to ((\forall X_i)(\mathscr{A} \to \mathscr{B}))$ 。

(1) 
$$\mathscr{A} \to (\forall x_i)\mathscr{B}$$
 假设

(2) 
$$(\forall x_i)$$
  $\mathcal{B} \to \mathcal{B}$   $(K4)$  或 $(K5)$ 

$$(3) \qquad \mathscr{A} \to \mathscr{B} \qquad (1), (2)HS$$

(4) 
$$(\forall x_i)(\mathscr{A} \to \mathscr{B})$$
 (3)概括

 $x_i$ 不在( $\mathscr{A} \to (\forall x_i)\mathscr{B}$ )中自由出现,应用演绎定理得:  $\vdash_{\mathsf{K}} (\mathscr{A} \to (\forall x_i)\mathscr{B}) \to (\forall x_i)(\mathscr{A} \to \mathscr{B})$ 

形式系统Kco

### 形式系统Kg

# 例子

对任意 $\mathscr{A},\mathscr{B}, \vdash_{\mathsf{K}} (\forall x_i)(\mathscr{A} \to \mathscr{B}) \to ((\exists x_i)\mathscr{A} \to (\exists x_i)\mathscr{B})$ 

$$(1) \qquad (\forall x_i)(\mathscr{A} \to \mathscr{B}) \qquad \qquad 假设$$

$$(2) \qquad (\forall x_i)(\sim \mathscr{B}) \qquad \qquad 假设$$

$$(3) \quad (\forall x_i)(\mathscr{A} \to \mathscr{B}) \to (\mathscr{A} \to \mathscr{B}) \quad (K4)or(K5)$$

$$(4) \qquad (\mathscr{A} \to \mathscr{B}) \qquad (1)(3), MP$$

(5) 
$$(\mathscr{A} \to \mathscr{B}) \to (\sim \mathscr{B} \to \sim \mathscr{A})$$
 重言式  
(6)  $(\sim \mathscr{B} \to \sim \mathscr{A})$  (4)(5), MP

(7) 
$$(\forall x_i)(\sim \mathcal{B}) \to (\sim \mathcal{B})$$
 (K4) or (K5)

(8) 
$$(\sim \mathscr{B})$$
 (2)(7),  $MP$ 

(9) 
$$(\sim \mathscr{A})$$
 (6)(8),  $MP$  (10)  $(\forall x_i)(\sim \mathscr{A})$  (9), 概括

# 形式系统Kg

### 证明

也即有:  $\{(\forall x_i)(\mathscr{A} \to \mathscr{B}), (\forall x_i)(\sim \mathscr{B})\} \vdash_{\kappa} (\forall x_i)(\sim \mathscr{A}),$ 又因 $x_i$ 不  $E(\forall x_i)(\sim \mathscr{B})$ 中自由出现,据演绎定理有:  $(\forall x_i)(\mathscr{A} \to \mathscr{B}) \vdash_{\kappa} (\forall x_i)(\sim \mathscr{B}) \to (\forall x_i)(\sim \mathscr{A})$  据(5)使用的重言式,有 $\vdash_{\kappa} ((\forall x_i)(\sim \mathscr{B}) \to (\forall x_i)(\sim \mathscr{A})) \to (\sim (\forall x_i)(\sim \mathscr{A}) \to \sim (\forall x_i)(\sim \mathscr{B}))$ ,应用MP规则,得 到( $\forall x_i$ )( $\mathscr{A} \to \mathscr{B}$ ) $\vdash_{\kappa} (\sim (\forall x_i)(\sim \mathscr{A}) \to \sim (\forall x_i)(\sim \mathscr{B}))$  即:  $(\forall x_i)(\mathscr{A} \to \mathscr{B}) \vdash_{\kappa} ((\exists x_i)(\mathscr{A}) \to (\exists x_i)(\mathscr{B}))$  再应用演绎定理得 到 $\vdash_{\kappa} (\forall x_i)(\mathscr{A} \to \mathscr{B}) \to ((\exists x_i)\mathscr{A} \to (\exists x_i)\mathscr{B})$ 

练习:

•  $(\exists x_i)(\mathscr{A} \to \mathscr{B}) \to ((\forall x_i)\mathscr{A} \to \mathscr{B}), x_i$ 不在 $\mathscr{B}$ 中自由出现 先证 $\{\mathscr{A}, \sim \mathscr{B}\} \vdash_I \sim (\mathscr{A} \to \mathscr{B})$ 。有以下Fitch证明:



形式系统K♀

# 形式系统Kφ

#### 练习:

因 $L \subseteq K$ , 所以有 $\{\mathscr{A}, \sim \mathscr{B}\} \vdash_{K} \sim (\mathscr{A} \to \mathscr{B})$ 。考虑以下演绎:

$$(2) \quad (\forall x_i) \mathscr{A} \to \mathscr{A} \quad (K4) or(K5)$$

$$(k) \sim (\mathscr{A} \to \mathscr{B}) \qquad \ldots$$

$$(k+1)$$
  $(\forall x_i) \sim (\mathscr{A} \to \mathscr{B})$   $(k)$ 概括

# 形式系统Kg

### 练习:

不难看出,此演绎实质为 $\{ \sim \mathcal{B}, (\forall x_i) \mathscr{A} \} \vdash_K (\forall x_i) \sim (\mathscr{A} \to \mathscr{B}), \ \exists x_i \land \triangle(\forall x_i) \mathscr{A} \neq \emptyset$ 由出现,据演绎定理有: $\sim \mathscr{B} \vdash_K (\forall x_i) \mathscr{A} \to (\forall x_i) \sim (\mathscr{A} \to \mathscr{B})$ 易得。 $\sim \mathscr{B} \vdash_{K} \sim (\forall x_i) \sim (\mathscr{A} \to \mathscr{B}) \to \sim (\forall x_i) \mathscr{A}$ 由演绎定理逆命题可得: $\{ \sim \mathscr{B}, (\exists x_i) (\mathscr{A} \to \mathscr{B}) \} \vdash_{K} \sim (\forall x_i) \mathscr{A}$  $x_i \land \triangle \mathcal{B} \Rightarrow \emptyset \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) \vdash_K (\forall x_i) \mathscr{A} \to \mathscr{B}, \ \exists x_i) (\mathscr{A} \to \mathscr{B}) (\mathscr{A} \to \mathscr{A}) (\mathscr{A} \to \mathscr{B}) (\mathscr{A} \to \mathscr{B}) (\mathscr{A} \to \mathscr{B}) (\mathscr{A} \to \mathscr{A}) (\mathscr{A} \to \mathscr{A})$ 

#### 等价, 代入

#### 注记4.14

为了叙述的方便,我们引入联结词 $\leftrightarrow$ ,定 义 $\mathscr{A}\leftrightarrow\mathscr{B}$ 为 $\sim$  (( $\mathscr{A}\to\mathscr{B}$ )  $\to\sim$  ( $\mathscr{B}\to\mathscr{A}$ ))。但仍需注意 $\mathscr{A}\leftrightarrow\mathscr{B}$ 不是 $\mathscr{L}$ 的公式,只是一种助记缩写。

### 命题4.15

对任意 $\mathcal{L}$ 的公式 $\mathcal{A}$ , $\mathcal{B}$ ,  $\vdash_{\mathsf{K}} \mathcal{A} \leftrightarrow \mathcal{B}$ 当且仅当 $\vdash_{\mathsf{K}} (\mathcal{A} \to \mathcal{B})$ 以及 $\vdash_{\mathsf{K}} (\mathcal{B} \to \mathcal{A})$ 。

#### 证明

⇒ 假设 $\vdash_{K} \mathscr{A} \leftrightarrow \mathscr{B}$ ,  $\mathfrak{P}\vdash_{K} \sim ((\mathscr{A} \to \mathscr{B}) \to \sim (\mathscr{B} \to \mathscr{A}))$ 。由  $f \sim ((\mathscr{A} \to \mathscr{B}) \to \sim (\mathscr{B} \to \mathscr{A})) \to (\mathscr{A} \to \mathscr{B})$ 及 $\sim ((\mathscr{A} \to \mathscr{B}) \to \sim (\mathscr{B} \to \mathscr{A})) \to (\mathscr{B} \to \mathscr{A})$ 都是重言式,则它们是K的定理,由MP易得 $\vdash_{K} (\mathscr{A} \to \mathscr{B})$ 及 $\vdash_{K} (\mathscr{B} \to \mathscr{A})$ 。

### 等价, 代入

#### 证明

$$\leftarrow$$
 假设 $\vdash_K$  ( $\mathscr{A} \to \mathscr{B}$ )及 $\vdash_K$  ( $\mathscr{B} \to \mathscr{A}$ )。因有(重言式)

$$\vdash_{\mathcal{K}} (\mathscr{A} \to \mathscr{B}) \to ((\mathscr{B} \to \mathscr{A}) \to \sim ((\mathscr{A} \to \mathscr{B}) \to \sim (\mathscr{B} \to \mathscr{A}))$$

,易由MP得

$$\vdash_{\mathcal{K}} \sim ((\mathscr{A} \to \mathscr{B}) \to \sim (\mathscr{B} \to \mathscr{A}))$$

0

#### 定义4.16

如果 $\mathscr{A}$ 与 $\mathscr{B}$ 是 $\mathscr{L}$ 的公式且 $\vdash_{\mathsf{K}} (\mathscr{A} \leftrightarrow \mathscr{B})$ ,我们称 $\mathscr{A}$ 与 $\mathscr{B}$ **可证等**价。

等价, 代入

#### 引理4.17

对任何公式 $\mathscr{A}$ , $\mathscr{B}$ , $\mathscr{C}$ ,如果 $\mathscr{A}$ 与 $\mathscr{B}$ 可证等价, $\mathscr{B}$ 与 $\mathscr{C}$ 可证等价,那么 $\mathscr{A}$ 与 $\mathscr{C}$ 可证等价。

### 证明

设 $\vdash_K \mathscr{A} \leftrightarrow \mathscr{B}$ , $\vdash_K \mathscr{B} \leftrightarrow \mathscr{C}$ 。则 $\vdash_K \mathscr{A} \rightarrow \mathscr{B}$ 及 $\vdash_K \mathscr{B} \rightarrow \mathscr{C}$ 。由HS得 $\vdash_K \mathscr{A} \rightarrow \mathscr{C}$ ,同理可证 $\vdash_K \mathscr{C} \rightarrow \mathscr{A}$ 。据命题4.15,有 $\vdash_K \mathscr{A} \leftrightarrow \mathscr{C}$ 。

### 等价, 代入

直觉上, $(\forall x_1)A_1^1(x_1)$ 表达的意思与 $(\forall x_2)A_1^1(x_2)$ 相同。因为它们含义都是:对任意的对象x, $A_1^1(x)$ 成立。从这个层面上理解,它们应当是等价的。

# 命题4.18

如果 $X_i$ 在 $\mathcal{A}(X_i)$ 中自由出现,且 $X_j$ 不在 $\mathcal{A}(X_i)$ 中出现,不管是自由还是约束。那么

$$\vdash_{\mathcal{K}} (\forall x_i) \mathscr{A}(x_i) \leftrightarrow (\forall x_j) \mathscr{A}(x_i/x_j)$$

### 证明

首先注意到,在命题指定的条件下, $x_i$ 对 $\mathcal{A}(x_i/x_j)$ 中的 $x_j$ 替换自由,且 $x_j$ 对 $\mathcal{A}(x_i)$ 中的 $x_i$ 也替换自由。我们来证明两个方向的蕴含式都是K的定理。

形式系统 $K_{\mathscr{L}}$ 

等价, 代入

证明

等价, 代入

#### 命题4.19

令 $\mathscr{A}$ 为一个 $\mathscr{L}$ 的公式,其中自由出现的变元为 $y_1,\ldots,y_n$ 。那 $\Delta \vdash_K \mathscr{A}$ 当且仅当 $\vdash_K (\forall y_1)\ldots(\forall y_n)\mathscr{A}$ 。

### 证明

⇒ 施归纳于《中自由出现的变元个数n。基始步,《中有一个自由变元 $y_1$ ,设 $\vdash_K$ 《 $(y_1)$ 那么有 $\vdash_K$ ( $\forall y_1$ )》( $y_1$ ),通过直接应用一次概括原则可得。归纳步令n>1,且设所有含自由变元数目为n-1的公式《 $y_1$ ,如果 $\vdash_K$ 《 $y_2$ 》…( $\forall y_2$ )…( $\forall y_2$ )。令《含 $y_2$ 0》。因( $y_2$ 0》。为 $y_2$ 0》。因( $y_2$ 0》。为 $y_3$ 0》。因( $y_2$ 0》。为 $y_3$ 0》。因( $y_3$ 0》。《类似,用( $y_3$ 0》)《安有 $y_3$ 0》。《类似,用( $y_3$ 0》)证明。

#### 等价, 代入

#### 定义4.20

如果 $\mathscr{A}$ 是一个包含自由变元仅为 $y_1,\ldots,y_n$ 的 $\mathscr{L}$ 公式。那么( $\forall y_1$ )...( $\forall y_n$ ) $\mathscr{A}$ 称为 $\mathscr{A}$ 的全称封闭。公式 $\mathscr{A}$ 的全称封闭常记为 $\mathscr{A}'$ 。

### 注记

命题4.19称对任何公式 $\mathscr{A}$ ,  $\vdash_{K}\mathscr{A}$ 当且仅当 $\vdash_{K}\mathscr{A}'$ 。但是 $\mathscr{A}$ 与 $\mathscr{A}'$ 一般而言并不一定可证等价。不难看出 $\vdash_{K}(\mathscr{A}'\to\mathscr{A})$ 总是成立的。但演绎定理告诉我们 $\vdash_{K}(\mathscr{A}\to\mathscr{A}')$ 不一定成立。从某个角度而言,在谓词演算中 $\vdash_{K}$ 比 $\to$ 要"弱"。

形式系统 $K_{\mathcal{L}}$ 

等价, 代入

### 命题4.22

令 $\mathscr{A}$ 与 $\mathscr{B}$ 为 $\mathscr{L}$ 的公式。假设 $\mathscr{B}$ 0是通过将 $\mathscr{A}$ 0中一个或者多个 $\mathscr{A}$ 的出现用 $\mathscr{B}$ 代入而得到的。那么

$$\vdash_{\mathcal{K}} ((\mathscr{A} \leftrightarrow \mathscr{B})' \rightarrow (\mathscr{A}_0 \leftrightarrow \mathscr{B}_0))$$

#### 证明

施归纳于 $\mathscr{A}$ 0的长度,即联结词与量词的个数。基始步, $\mathscr{A}$ 0就是 $\mathscr{A}$ 0,那么 $\mathscr{B}$ 0就是 $\mathscr{B}$ 0。易见( $\mathscr{A} \leftrightarrow \mathscr{B}$ )'  $\vdash_{\kappa}$  ( $\mathscr{A} \leftrightarrow \mathscr{B}$ )(K4或者K5,加MP),由演绎定理可得 $\vdash_{\kappa}$  ( $\mathscr{A} \leftrightarrow \mathscr{B}$ )'  $\to$  ( $\mathscr{A} \leftrightarrow \mathscr{B}$ )。归纳步:设 $\mathscr{A}$ 2是 $\mathscr{A}$ 0的一个严格的子公式且原命题对所有比 $\mathscr{A}$ 0短且包含 $\mathscr{A}$ 作为子公式的公式成立。情形一: $\mathscr{A}$ 0形如 $\sim$   $\mathscr{C}$ 0。那么 $\mathscr{B}$ 0形如 $\sim$   $\mathscr{D}$ 0,其中 $\mathscr{D}$ 0是将 $\mathscr{C}$ 0中的 $\mathscr{A}$ 换成 $\mathscr{B}$ 得到的。现在 $\mathscr{C}$ 0比 $\mathscr{A}$ 0短,则有 $\vdash_{\kappa}$  ( $\mathscr{A} \leftrightarrow \mathscr{B}$ )'  $\to$  ( $\mathscr{C}$ 0  $\leftrightarrow$   $\mathscr{D}$ 0),

### 等价, 代入

### 证明

由于 $(\mathscr{C}_0 \leftrightarrow \mathscr{D}_0) \rightarrow (\sim \mathscr{C}_0 \leftrightarrow \sim \mathscr{D}_0)$ 是一个重言式,所以它是一 个K的定理,使用HS可以得 到:  $\vdash_{\mathcal{K}} (\mathscr{A} \leftrightarrow \mathscr{B})' \rightarrow (\sim \mathscr{C}_0 \leftrightarrow \sim \mathscr{D}_0),$  $\mathbb{P}_{\mathsf{K}}(\mathscr{A} \leftrightarrow \mathscr{B})' \rightarrow (\mathscr{A}_{\mathsf{0}} \leftrightarrow \mathscr{B}_{\mathsf{0}})$ 。情形二:  $\mathscr{A}_{\mathsf{0}}$ 形如 $(\mathscr{C}_{\mathsf{0}} \rightarrow \mathscr{D}_{\mathsf{0}})$ 。 那么 $\mathcal{B}_0$ 形如( $\mathcal{E}_0 \to \mathcal{F}_0$ ),其中 $\mathcal{E}_0$ 与 $\mathcal{F}_0$ 分别是将 $\mathcal{E}_0$ 与 $\mathcal{D}_0$ 中的 $\mathcal{A}$ 分 别用 $\mathcal{B}$ 代替而得到的公式。现在 $\mathcal{C}_0$ 与 $\mathcal{D}_0$ 比 $\mathcal{L}_0$ 短,因 此 $\vdash_{\kappa} ((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\mathscr{C}_0 \leftrightarrow \mathscr{E}_0)),$  $\mathcal{A} \vdash_{\kappa} ((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\mathscr{D}_0 \leftrightarrow \mathscr{F}_0))$ , 可证  $\mathcal{A}: \vdash_{\mathcal{K}} ((\mathscr{A} \leftrightarrow \mathscr{B})' \rightarrow ((\mathscr{C}_{\mathsf{D}} \rightarrow \mathscr{D}_{\mathsf{D}}) \leftrightarrow (\mathscr{E}_{\mathsf{D}} \rightarrow \mathscr{F}_{\mathsf{D}}))),$ 即 $\vdash_K ((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\mathscr{A}_0 \leftrightarrow \mathscr{B}_0))$ 。情形三:  $\mathscr{A}_0$ 形如 $(\forall x_i)\mathscr{C}_0$ 。那  $(\mathcal{B}_0$ 形如 $(\forall x_i)\mathcal{D}_0$ 。其中 $\mathcal{D}_0$ 为将 $\mathcal{C}_0$ 中的 $\mathcal{A}$ 换成 $\mathcal{B}$ 得到的。由 于 $\mathcal{C}_0$ 长度比 $\mathcal{A}_0$ 短,所以有 $\mathcal{L}_K((\mathcal{A} \leftrightarrow \mathcal{B})' \to (\mathcal{C}_0 \leftrightarrow \mathcal{D}_0))$ 。使用 概括规则得到 $\vdash_{\kappa} (\forall x_i)((\mathscr{A} \leftrightarrow \mathscr{B})' \rightarrow (\mathscr{C}_0 \leftrightarrow \mathscr{D}_0))$ 。

等价, 代入

### 证明

使用概括规则得到 $\vdash_K (\forall x_i)((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\mathscr{C}_0 \leftrightarrow \mathscr{D}_0))$ 。注意 到 $x_i$ 不在 $(\mathscr{A} \leftrightarrow \mathscr{B})'$ 中自由出现,所以据 $(\mathsf{K6})$ 有: $\vdash_K (\forall x_i)((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\mathscr{C}_0 \leftrightarrow \mathscr{D}_0)) \to ((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\forall x_i)(\mathscr{C}_0 \leftrightarrow \mathscr{D}_0))$ ,由MP可得: $\vdash_K ((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\forall x_i)(\mathscr{C}_0 \leftrightarrow \mathscr{D}_0))$ ,进一步可得: $\vdash_K ((\mathscr{A} \leftrightarrow \mathscr{B})' \to ((\forall x_i)\mathscr{C}_0 \leftrightarrow (\forall x_i)\mathscr{D}_0))$ ,也就是 $\vdash_K ((\mathscr{A} \leftrightarrow \mathscr{B})' \to (\mathscr{A}_0 \leftrightarrow \mathscr{B}_0))$ 。证毕。

#### 等价, 代入

#### 推论4.23

令 $\mathscr{A}$ ,  $\mathscr{B}$ ,  $\mathscr{A}_0$ ,  $\mathscr{B}_0$ 为命题4.22所述。如果 $\vdash_K$  ( $\mathscr{A} \leftrightarrow \mathscr{B}$ )那 么 $\vdash_K$  ( $\mathscr{A}_0 \leftrightarrow \mathscr{B}_0$ )。

#### 证明

设 $\vdash_K (\mathscr{A} \leftrightarrow \mathscr{B})$ , 那么由命题4.19有 $\vdash_K (\mathscr{A} \leftrightarrow \mathscr{B})'$ 。由命题4.22得 $\vdash_K ((\mathscr{A} \leftrightarrow \mathscr{B})' \rightarrow (\mathscr{A}_0 \leftrightarrow \mathscr{B}_0))$ 。由MP可得 $\vdash_K (\mathscr{A}_0 \leftrightarrow \mathscr{B}_0)$ 。

### 推论4.24

如果 $x_j$ 不出现(不论自由或者约束)在公式 $\mathscr{A}(x_i)$ 中,且 $\mathscr{B}_0$ 是 将 $\mathscr{A}_0$ 中一个或者多个( $\forall x_i$ ) $\mathscr{A}(x_i)$ 的出现替换成( $\forall x_j$ ) $\mathscr{A}(x_j)$ 得到的公式。那么 $\vdash_K \mathscr{A}_0 \leftrightarrow \mathscr{B}_0$ 。

由命题4.18及推论4.23得。

### 前束范式

### 讨论

在命题演算中,我们研究过一些特别结构的公式,如合取范式, 析取范式。这些特别结构的公式, 对公式本身的逻辑含义给出一 些比较清晰的表示。在谓词演算中, 也有类似的概念, 其中一个 就是前束范式。简单地说, 前束范式考虑将一个公式中的量词 进行一些重新安排(集中到公式前方), 使公式更直观, 同时在理 论及实际问题的研究上也有重要意义。

# 前束范式

我们先来看以下的一些结论:

### 命题4.25

令母与努为是的公式:

- 如果X;不在৶中自由出现, 那么:
  - $\bullet \vdash_{\kappa} (\forall x_i)(\mathscr{A} \to \mathscr{B}) \leftrightarrow (\mathscr{A} \to (\forall x_i)\mathscr{B}) \tag{1}$
  - $\vdash_{\mathcal{K}} (\exists x_i)(\mathscr{A} \to \mathscr{B}) \leftrightarrow (\mathscr{A} \to (\exists x_i)\mathscr{B})$  (2)
- 如果X;不在3中自由出现,那么:
  - $\vdash_{\mathcal{K}} (\forall x_i)(\mathscr{A} \to \mathscr{B}) \leftrightarrow ((\exists x_i)\mathscr{A} \to \mathscr{B})$  (3)
  - $\bullet \vdash_{\mathsf{K}} (\exists \mathsf{X}_i)(\mathscr{A} \to \mathscr{B}) \leftrightarrow ((\forall \mathsf{X}_i)\mathscr{A} \to \mathscr{B}) \ \ (4)$

### 证明

第(1)由(K6)公理的一个实例,及之前的例4.12得证。其它的留为作业。

### 例子

证明

$$(\forall x_1)A_1^1(x_1) \to (\forall x_2)(\exists x_3)A_1^2(x_2,x_3)$$

与

$$(\exists x_1)(\forall x_2)(\exists x_3)(A_1^1(x_1) \to A_1^2(x_2, x_3))$$

可证等价。注意,后者将所有的量词都集中到了公式前方。从原公式开始我们一步步给出一个可证等价的公式:

- $\bullet \ (\exists x_1)(A_1^1(x_1) \to (\forall x_2)(\exists x_3)A_1^2(x_2,x_3)) \ \ (4) \leftarrow$
- $\bullet \ (\exists x_1)(\forall x_2)(A_1^1(x_1) \to (\exists x_3)A_1^2(x_2,x_3)) \ \ (1) \leftarrow$
- $(\exists x_1)(\forall x_2)(\exists x_3)(A_1^1(x_1) \to A_1^2(x_2, x_3))$  (2)  $\leftarrow$

谓词演算的公式可以非常复杂,尤其是在量词分散的情况下很难 看出其直观含义。我们可以利用上述结论及代入原则来得到一种 量词全部出现在公式前方且与原公式可证等价的公式。

## 前束范式

## 定义4.27

一个 $\mathcal{L}$ 的公式称为前束范式,如果它形如:

$$(Q_1x_{i1})(Q_2x_{i2})\dots(Q_kx_{ik})\mathcal{D}$$

其中 $\mathcal{D}$ 是一个不含量词的公式,每一个 $Q_i$ 要么是 $\forall$ 要么是 $\exists$ 。

#### 讨论

- 一个没有量词的公式也是前束范式
- 前束范式以一串连续的量词(及其变元)作为公式的开始,中间及之前不含其它逻辑符号。

### 前束范式

#### 讨论

我们之前已经有了一些结论,比如:

- $(\forall x_1)A_1^1(x_1)$ 与 $(\forall x_2)A_1^1(x_2)$ 是可证等价的(约束变元换名)
- (∀x<sub>1</sub>)A<sub>1</sub><sup>1</sup>(x<sub>1</sub>) → A<sub>1</sub><sup>1</sup>(x<sub>1</sub>)与(∀x<sub>2</sub>)A<sub>1</sub><sup>1</sup>(x<sub>2</sub>) → A<sub>1</sub><sup>1</sup>(x<sub>1</sub>)可证等价(代入原则)

不难看出,一个公式可以将所有约束变元换成互不相同,也不与自由变元相同的等价的一个公式。

### 命题4.28

对任何一个 $\mathcal{L}$ 的公式 $\mathcal{A}$ ,都存在一个前束范式 $\mathcal{B}$ 与之可证等价。

#### 证明

根据以前的结论,我们可以把《中的约束变元改变成互不相同,也与所有的《中的自由变元不同,这样得到的公式》[与《可证等价,即 $_K$ 》  $\leftrightarrow$   $\mathscr{A}_1$ 。现在我们在《1的长度n(联结词与量词的个数)上施归纳法。基始步:n=0,《1是原子公式。据定义,原子公式也是前束范式。归纳步,《1不是原子公式,设所有长度短于《1的公式都有一个等价的前束范式。情况1:《1形如~  $\mathscr{C}_0$ 。显然 $\mathscr{C}$ 比《1短,据归纳假设,有一个与之等价的前束范式》[。那么有 $_K$ 》  $_1\leftrightarrow$ ~  $_1\leftrightarrow$ 

### 证明

范式。情形2:  $\triangle$  形如( $\mathcal{C} \rightarrow \mathcal{D}$ )。可见 $\mathcal{C}$ ,  $\mathcal{D}$  长度短于 $\mathcal{A}$ , 据归 纳假设. 存在前束范式公及分分别与它们可证等价。据代入原 理先有:  $\vdash_K (\mathscr{C} \to \mathscr{D}) \leftrightarrow (\mathscr{C}_1 \to \mathscr{D})$  再代入 即 $\vdash_K$  ( $\mathscr{A}$   $\leftrightarrow$  ( $\mathscr{C}_1$   $\leftrightarrow$   $\mathscr{D}_1$ ))。现在 $\mathscr{C}_1$   $\to$   $\mathscr{D}_1$ 实质形 如:  $(Q_1x_{i1})\dots(Q_kx_{ik})\mathscr{C}_2\to (R_1x_{i1})\dots(R_kx_{ik})\mathscr{D}_2$ , 按照例子中 的办法,可以把它化成一个前束范式。情形3:4/形 如 $(\forall X_i)$ 化。 化也比 $A_1$ 短。按归纳假设C与一个前束范式可证等 价, 即 $\vdash_K \mathscr{C} \leftrightarrow (Q_1 X_{i1}) \dots (Q_k X_{ik}) \mathscr{D}$ ), 那么经概括原则 有 $\vdash_K (\forall x_i)(\mathscr{C} \leftrightarrow (Q_1x_{i1})...(Q_kx_{ik})\mathscr{D})$  据之前的结论 有 $\vdash_K ((\forall x_i)\mathscr{C} \leftrightarrow (\forall x_i)(Q_1x_{i1})...(Q_kx_{ik})\mathscr{D})$ 。证毕。

### 前束范式

### 例子

- 看书上例4.29(a),(b)
- 注意:一个公式可证等价的前束范式不一定只有一个,如例(b)就至少有两个。
- 一个前束范式,是不是量词越多,这个公式表示的信息越复杂?答案是否定的。事实上,人们研究的结论是,量词交替越多的公式包含的信息越复杂。(基于P不等于NP的假设)

我们来介绍在逻辑学与计算机科学中非常重要的两类前束范式:

# 定义4.30

- $\Diamond n > 0$ 。一个前束范式被称为是 $\Pi_n$ 公式如果它从( $\forall$ )出发并有n-1次的量词交替。
- $\Diamond n > 0$ 。一个前束范式被称为是 $\Sigma_n$ 公式如果它从( $\exists$ )出发并有n-1次的量词交替。

## 例子

- $(\forall x_1)(\forall x_2)(\exists x_3)A_1^3(x_1,x_2,x_3)$ 是一个 $\Pi_2$ 公式。
- $(\exists x_1)(\forall x_2)(\exists x_3)(\exists x_4)(A_1^2(x_1,x_2) \to A_1^2(x_3,x_4))$ 是 $\Sigma_3$ 公式。
- $\Pi_n$ 公式与 $\Sigma_n$ 公式与目前计算复杂性理论中悬而未决的重大问题有直接关系。

#### 回顾

- L的完全性定理是指: 每一个命题逻辑的**重言式**(命题逻辑中的"真理")都是L的定理。
- 类似地, K的完全性定理是指:每一个谓词演算的**逻辑有效** 式(谓词演算中的"真理")都是K的定理。
- 这次课我们将沿着L中证明完全性的方法,进一步给出(相对更复杂)K的完全性证明。

我们沿用L中系统扩充的定义,给出K中对应的定义:

### 定义4.34

一个K的扩充是一个通过增加或者更改K的公理集而得到的形式系统,K的所有定理仍然是定理(新的定理可能被引入了)。

K的完全性

### K的完全性定理

### 注意

- K是自己的扩充. 可以理解为新增加了空的公理集。
- 更一般地说,两个系统 $K_1, K_2$ ,称 $K_1$ 是 $K_2$ 的扩充如果 $K_2$ 的 定理集是 $K_1$ 的定理集的子集( $\subseteq$ 关系)。

### 定义4.35

一个一阶系统是一个系统K的扩充。

## 讨论

可以把K理解成一个最小的一阶系统,它仅表示了最基础的谓词演算。事实上,有很多理论在K中不能表示,我们须在它的基础上增加各类公理来达到我们的要求。例如,下一章要介绍的带等词的数学系统,人工智能中的情景演算(Situation Calculus,带框架公理的系统)等,都是K的扩充,因此都称为一阶系统。

#### 定义4.36

一个一阶系统S被称为是一致的,如果不存在一个公式 $\mathcal{A}$ ,使得 $\mathcal{A}$ 与( $\sim \mathcal{A}$ )都是S的定理。

在系统L中, 我们介绍过一种扩充系统但不会引入不一致的方法, 这个方法也可以用在一阶系统上:

### 命题4.37

令S为一个一致的一阶系统且令A为一个不是S定理的**闭公式**。那么,通过在S中添加( $\sim A$ )作为公理而得到的系统S\*也是一致的。

#### 证明

假设 $S^*$ 不一致。则存在公式 $\mathcal{B}$ , $\vdash_{S^*} \mathcal{B}$ 且 $\vdash_{S^*} (\sim \mathcal{B})$ . 因 $\vdash_{S^*} (\sim \mathcal{B} \to (\mathcal{B} \to \mathscr{A}))$ , $\mathsf{MP}$ 两次可得 $\vdash_{S^*} \mathscr{A}$ 。这意味着在S中从 $(\sim \mathscr{A})$ 出发可证得 $\mathscr{A}$  K的完全性

## K的完全性定理

### 证明

即有 $(\sim \mathscr{A}) \vdash_S \mathscr{A}$ 。因 $(\sim \mathscr{A})$ 为闭公式,由演绎定理得 $\vdash_S (\sim \mathscr{A}) \to \mathscr{A}$ 。又因 $\vdash_S (\sim \mathscr{A} \to \mathscr{A}) \to \mathscr{A}$ (它是L的定理),MP可得 $\vdash_S \mathscr{A}$ 。这与假设中 $\mathscr{A}$ 不是S的定理相矛盾。原题得证。

注意,与L中对应的证明相比,此处要求必是一个闭公式,但这并不会影响我们的结论。

#### 定义4.38

一个一阶系统S是极大的,如果对于任何闭公式 $\mathscr{A}$ ,要 $\Delta \vdash_S \mathscr{A}$ 要 $\Delta \vdash_S (\sim \mathscr{A})$ 。

容易看出K不是极大的。比如K既推不出 $(\forall x_1)A_1^1(x_1)$ 也推不出 $(\forall x_1)A_1^1(x_1)$ 。

### 命题4.39

 $\Diamond S$ 为一个一致的一阶系统,存在一个S的一致的极大的扩充。

这个命题通常也表述为:存在一个极大一致的一阶系统。

## 证明

K的完全性

### K的完全性定理

### 讨论

我们将证明一个重要的命题:任何一个一致的一阶系统S. 都存 在一个解释使得S的所有定理在其中为真。这个证明将采用一种 扩大语言字母表的方法。注意到, 增加一些新常元符 号:  $b_0, b_1, \ldots$ ,到语言 $\mathcal{L}$ 中,将在K中引入一些新公理。因为公 理模式中可"填充"的对象增加了。例如:  $A_1^1(b_0) \rightarrow A_1^1(b_0)$ 之前 就不是K的定理。注意,如果S是一致的,那么利用这种方法扩 大的系统仍是一致的。假设其不一致, 那么同时存 在.从与~.从的证明。根据定义证明都是有穷长的,新常元符最 多只有有穷出现, 而它们可以用原系统中没有使用过的变元去代 替(常元, 变元都构成项, 地位一样), 从而得到原系统 中৶与~৶的证明。这与原系统一致是矛盾的。

### 命题4.40

令S为 $K_{\mathcal{L}}$ 的一个一致扩充。那么存在一个 $\mathcal{L}$ 的解释使得每一个S的定理都为真。

### 证明

首先将语言 $\mathcal{L}$ 通过增加一个无穷的常元符号序列 $b_0,b_1,\ldots$ ,而扩大成为语言 $\mathcal{L}^+$ 。令 $S^+$ 与 $K^+$ 为随之扩大的S与 $K_{\mathcal{L}}$ 。那么如之前所讨论, $S^+$ 是一致的。从 $S^+$ 出发,我们来构造一个一阶系统的序列 $S_0,S_1,\ldots$ 。将 $\mathcal{L}^+$ 中只含一个自由变元的的公式枚举出来,不妨记为: $\mathscr{F}_0(x_{i0}),\mathscr{F}_1(x_{i1}),\ldots$ 。注意, $x_{i0},x_{i1},\ldots$ 并非完全互不相同。现在从序列 $b_0,b_1,\ldots$ ,出发构造一个新序列 $c_0,c_1,\ldots$ ,使得:

- c₀不出现在ℱ₀(xᵢ₀)中,
- 对n > 0,  $C_n \notin \{C_0, \ldots, C_{n-1}\}$ 且 $C_n$ 不出现在任何 $\mathcal{F}_0(x_{i0}), \ldots, \mathcal{F}_n(x_{in})$ 中。

### 证明

这是可以做到的, 因为每个公式的长度是有穷的. 因而至多包含 有穷多个bi。对任何k. 今见为公 式:  $\sim (\forall x_{ik}) \mathscr{F}_k(x_{ik}) \rightarrow \sim \mathscr{F}_k(c_k)$ 。现在令 $S_0$ 为 $S^+$ ,令 $S_1$ 为 从So出发增加So为新公理得到的系统。我们接下来将要证明这 样构造的每一个 $S_n$ 都是一致的,由此得到的 $S_\infty$ 是一个一致系 统,且存在一个 $S_{\infty}$ 的极大一致扩充。首先, $S_{0}$ 是一致的。  $\Diamond n > 0$ 且设 $S_n$ 是一致的,但 $S_{n+1}$ 不是。即存在一个 $\mathcal{L}^+$ 的公式 使得 $\vdash_{S_{n+1}}$  《且 $\vdash_{S_{n+1}} \sim \mathscr{A}$ 。易得 $\vdash_{S_{n+1}} \sim \mathscr{B}($ 矛盾推出一切),其 中  $\mathcal{B}$  是任意公式。特别的,有 $\vdash_{S_{n,1}} \sim \mathcal{G}_n$ 。也就是 $\mathcal{G}_n \vdash_{S_n} \sim \mathcal{G}_n$ 。 又因 $\mathcal{G}_n$ 是封闭的,由演绎定理有 $\vdash s_n \mathcal{G}_n \to \sim \mathcal{G}_n$ ,也易 

#### 证明

但又

#### 证明

现令T为一个 $S_{\infty}$ 的极大一致扩充, 我们来构造一个符合要求的 $\mathcal{L}^+$ 的解释I(注意从理论上说, 解释的域是非空集即可):

- I的域 $D_I$ 是所有 $\mathcal{L}^+$ 的封闭项(即不含自由变元的项)。
- 如果 $\vdash_T A_i^n(d_1,\ldots,d_n)$ 那么令 $\bar{A}_i^n(d_1,\ldots,d_n)$ 成立,如果 $\vdash_T \sim A_i^n(d_1,\ldots,d_n)$ 那么令 $\bar{A}_i^n(d_1,\ldots,d_n)$ 不成立,其中 $d_1,\ldots,d_n \in D_i$ 。这是没有问题的。因为对所有的闭公式,T可推出它或者它的否定。(注意 $\bar{A}_i^n(d_1,\ldots,d_n)$ 中 $d_i$ 都是"不戴帽子的",即自己解释成自己)
- $\overline{f}_i^n(d_1,\ldots,d_n)$ 的值定义为项 $\mathbf{f}_i^n(\mathbf{d}_1,\ldots,\mathbf{d}_n)$ 。 我们将证明如此定义的解释/中,所有S的定理都为真。为此先证明一个引理:对所有 $L^+$ 的封闭公式 $\mathcal{A}_i$ ,  $\vdash_T \mathcal{A}$ 当且仅当 $I \models \mathcal{A}_i$ 。

### 证明

仍施归纳干☑中联接词与量词的个数。基始步☑是一个原子公 式 $A_i^n(d_1,\ldots,d_n)$ , 其中 $d_1,\ldots,d_n$ 是封闭的项(因 $\mathscr{A}$ 是封闭的)。 如果 $\vdash_T \mathscr{A}$ 即 $\vdash_T A_i^n(d_1,\ldots,d_n)$ 。根据之前I的构造,显然 有 $\bar{A}_{i}^{n}(d_{1},...,d_{n})$ 成立,即 $I \models \mathscr{A}$ 。反之易见若有 $I \models \mathscr{A}$ 那么 有 $\vdash_{\mathsf{T}} \mathscr{A}$ 。归纳步,设 $\mathscr{A}$ 不是原子公式并且对所有比 $\mathscr{A}$ 短的公 式. 原命题都成立。情形1:  $\mathscr{A}$  是 $\sim \mathscr{B}$ .  $\Rightarrow \vdash_{\mathsf{T}} \mathscr{A}$  即是 $\vdash_{\mathsf{T}} \sim \mathscr{B}$ . 由 于T是一致的,可知 $\mathscr{D}$ 不是T的定理,因 $\mathscr{D}$ 比 $\mathscr{D}$ 短,据归纳假 设, 罗在1中不为真。又因罗封闭, 所以~ 罗在1中为真, 即 $I \models \mathscr{A}$ 。←若 $I \models \mathscr{A}$ ,即 $I \models \sim \mathscr{B}$ ,则 $\mathscr{B}$ 在I中不真, 因 $\mathcal{B}$ 比 $\mathcal{A}$ 短,据归纳假设, $\mathcal{B}$ 不是 $\mathcal{T}$ 的定理。因 $\mathcal{T}$ 是极大的,那 么~  $\mathcal{B}$ 是T的定理, 即 $\vdash_{T}$ ~  $\mathcal{B}(\mathcal{A})$ . 情形2:  $\mathcal{A}$ 是( $\mathcal{B}$  →  $\mathcal{C}$ ). ⇒设 $\checkmark$ 在/中不真。可知 $\checkmark$ 多为真而 $\checkmark$ 为假。 $\checkmark$ 8, $\checkmark$ 都比 $\checkmark$ 4短,据归纳假 设有トナ 男及并非トナ 8.

# 证明

因T是极大的.则有 $\vdash$  $\tau$ ~ C. 由 于 $\vdash_{\tau} (\mathscr{B} \to (\sim \mathscr{C} \to \sim (\mathscr{B} \to \mathscr{C})))$ (重言式),MP可 得 $\vdash_{T}$ ~ ( $\mathscr{B}$  →  $\mathscr{C}$ ),即 $\vdash_{T}$ ~  $\mathscr{A}$ . 由于T是一致的,所以 $\mathscr{A}$ 不是T的定 理.  $\leftarrow$  设必不是T的定理. 那么 $\vdash_{T} \sim \mathscr{A}$ ,也即有 $\vdash_{T} \sim (\mathscr{B} \rightarrow \mathscr{C})$ . 由 重言式 $(\sim (\mathcal{B} \to \mathcal{C}) \to \mathcal{B})$ 及 $(\sim (\mathcal{B} \to \mathcal{C}) \to \sim \mathcal{C})$ , MP可 得 $\vdash_{\mathsf{T}} \mathscr{B}$ 及 $\vdash_{\mathsf{T}} \sim \mathscr{C}$ ,据归纳假设可得 $\mathsf{I} \models \mathscr{B}$ ,并非 $\mathsf{I} \models \mathscr{C}$ . 据注 记3.25的结果,  $(\mathscr{B} \to \mathscr{C})$ 在/中为假(不为真). 情形3:  $\mathscr{A}$ 是( $\forall x_i$ ) $\mathscr{B}(x_i)$ . 考虑两种子情况. 首先,设 $x_i$ 不在 $\mathscr{B}$ 中自由出 现,那么 $\mathcal{B}$ 是封闭的. 据归纳假设 $\vdash_{\mathsf{T}}\mathcal{B}$ 当且仅当 $\mathsf{I} \models \mathcal{B}$ . 又因有概 括原则及K5,易见 $\vdash_T$   $\mathscr{B}$ 当且仅当 $\vdash_T$  ( $\forall x_i$ ) $\mathscr{B}$ , 那么 $I \models \mathscr{B}$ 当且仅 当I ⊨ ( $\forall x_i$ ) $\mathscr{B}$ ,  $\mathfrak{P}$  ⊢ $_{\mathsf{T}}$   $\mathscr{A}$  当且仅当I ⊨  $\mathscr{A}$ . 另一种情形, $x_i$ 在 $\mathscr{B}$ 中自 由出现. 那它肯定是 $\mathcal{B}$ 中唯一的自由变元,因为 $\mathcal{A}$ 即( $\forall x_i$ ) $\mathcal{B}$ 是封闭 的. 那么 $\mathcal{B}$ 出现在之前我们定义的序列 $\mathcal{F}_0(X_{i0}), \mathcal{F}_1(X_{i1}), \ldots, \mathbf{P}$ . 不妨设罗是 $\mathscr{F}_m(x_{im})$ . 那么 $\mathscr{A}$ 是 $(\forall x_{im})\mathscr{F}_m(x_{im})$ .

## 证明

 $\leftarrow$ 设 $I \models \mathscr{A}$ . 由命题4.4(K5)有 $I \models (\forall x_{im})\mathscr{F}_m(x_{im}) \rightarrow \mathscr{F}_m(c_m)$ . 因 此 $I \models \mathscr{F}_m(c_m)$ . 显然 $\mathscr{F}_m(C_m)$ 比 $\mathscr{A}$ 短,据归纳假设, $\vdash_{\mathsf{T}}\mathscr{F}_m(C_m)$ . 我们要证的 是 $\vdash$ <sub>T</sub>  $\checkmark$   $\checkmark$  ,用反证法先设 $\vdash$ <sub>T</sub> $\sim$   $\checkmark$  (因T是极大的). 即 有 $\vdash_{T}$ ~ ( $\forall x_i m$ ) $\mathscr{F}_m(x_{im})$ , 又因 $\mathscr{G}_m$ 是T的一条公理,所以 有 $\vdash_{T}$ ~ ( $\forall x_i m$ ) $\mathscr{F}_m(x_{im})$  →~  $\mathscr{F}_m(c_m)$ . MP可得 $\vdash_{T}$ ~  $\mathscr{F}_m$ ,这与T的 一致性矛盾. 则必有 $\vdash_{\mathsf{T}} \mathscr{A}$ . ⇒设 $\vdash_{\mathsf{T}} \mathscr{A}$ 且 $\mathscr{A}$ 在 $\mathsf{I}$ 中不为真, 即并 非 $I \models (\forall x_{im}) \mathscr{F}_m(x_{im})$ . 那么至少有一个项 $d \in D_I$ 使 得I ⊨~  $\mathscr{F}_m(d)$ . 但由K5与MP可 从 $\vdash_T (\forall x_{im} \mathscr{F}_m(x_i m))$ 得 $\vdash_T \mathscr{F}_m(d)$ . 由归纳假设, $I \models \mathscr{F}_m(d)$ .出现 了矛盾. 所以如果 $\vdash_{\mathsf{T}} \mathscr{A}$ 那么 $\mathsf{I} \models \mathscr{A}$ . 引理证明结束. 因此所有 $\mathsf{T}$ 的 定理都在这个解释I中为真, 注意所有S的定理也是T的定理, 因 为T包含了所有S的公理,且T的语言 $\mathcal{L}^+$ 也真包含 $\mathcal{L}$ ,现在我们 把/中对bo, b1...及相关的项的解释(那些相关的映射)去掉.但保

网络由的云素及上石的物件的关系 山叶山地的南北 (1)的解释 点

K的完全性

### K的完全性定理

# 命题 $4.41(K_{\mathcal{L}}$ 的完全性)

如果 $\mathscr{A}$ 是逻辑有效的 $\mathscr{L}$ 的公式,那么 $\mathscr{A}$ 是 $K_{\mathscr{L}}$ 的一条定理.

# 证明

令風为逻辑有效的 $\mathcal{L}$ 的公式, $\mathcal{A}'$ 为其全称封闭. 由推论3.28可知 $\mathcal{A}'$ 也必然是逻辑有效的. 假设 $\mathcal{A}$ 不是 $\mathcal{K}_{\mathcal{L}}$ 的定理. 那么由命题4.19, $\mathcal{A}'$ 不是 $\mathcal{K}_{\mathcal{L}}$ 的定理. 如果说我们把 $\sim \mathcal{A}'$ 当成额外的公理,我们可得到一个一致的扩充 $\mathcal{K}_{\mathcal{L}}'$ . 由刚才证明的命题4.40可知,存在一个 $\mathcal{L}$ 的解释使所有 $\mathcal{K}_{\mathcal{L}}'$ 的定理为真. 特别的 $\sim \mathcal{A}'$ 在这解释下是真的,也即 $\mathcal{A}'$ 为假( $\mathcal{A}'$ 封闭). 这与 $\mathcal{A}'$ 的逻辑有效性相矛盾. 因此 $\mathcal{A}$ 必是 $\mathcal{K}_{\mathcal{L}}$ 的定理.

下面我们介绍一些与K的完全性有关的结论.

#### 定义4.42

- $\Diamond \Gamma$ 为 $\mathscr{L}$ 的一个公式集.一个使得 $\Gamma$ 中的公式全部为真的 $\mathscr{L}$ 的解释被称为 $\Gamma$ 的模型.
- 如果S是一个一阶系统,一个S的模型就是个使所有S的定理都为真的解释.

## 命题

- 命题4.43: 令S为一个一阶系统,令/为一个使所有S的公理都 为真的解释,那么/是S的一个模型.
- 命题4.44: 一个一阶系统S是一致的当且仅当它有一个模型.
- 命题4.45: 令S为一个一致的一阶系统,令《为一个封闭的公式且在S的所有解释中为真.那么《是S的定理.

注意:每一个 $\mathcal{L}$ 的解释都是 $K_{\mathcal{L}}$ 的一个模型,因为K的公理在所有解