

Learning Constraints for Personnel Rostering Problems Using Tensors

Mohit Kumar, Stefano Teso, Luc De Raedt, Patrick De Causmaecker

Overview

- Problem Introduction
- Algorithm COUNT-OR
- Experiments
- Results
- Submissions
- Future Work

Problem Introduction

Objective

		Mon			Tue		-		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie	1	0	1	0	0	0	-	-	-
Hanna	0	1	0	0	0	0	-	-	-
Ruben	1	0	1	0	0	0	-	-	-
Sam	0	0	0	1	0	0	-	-	-

Constraints

- Max/Min number of working days
- Max/Min number of employees each day/shift
- Max/Min number of consecutive working days
- Max/Min number of shifts per day

Why is it useful?

© Randy Glasbergen /glasbergen.com

"We had a scheduling conflict, so tomorrow's meeting has been moved to yesterday."

- Removes the dependency on domain experts
- Saves a lot of time and money
- Reduces the chances of making any error

Algorithm – COUNT-OR

Data Representation

Tensor Slices

$$D' = \{Nurses, Days\}$$

		Mon			Tue		•		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie	1	0	1	0	0	0	-	-	-
Hanna	0	1	0	0	0	0	-	-	-
Ruben	1	0	1	0	0	0	-	-	-
Sam	0	0	0	1	0	0	-	-	-

Tensor Slices

$$D' = \{Shifts, Days\}$$

		Mon			Tue		•		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie	1	0	1	0	0	0	-	-	-
Hanna	0	1	0	0	0	0	-	-	-
Ruben	1	0	1	0	0	0	-	-	-
Sam	0	0	0	1	0	0	-	-	-

Tensor Slices

$$D' = \{Days\}$$

		Mon			Tue		•		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie	1	0	1	0	0	0	-	-	-
Hanna	0	1	0	0	0	0	-	-	-
Ruben	1	0	1	0	0	0	-	-	-
Sam	0	0	0	1	0	0	-	-	-

Function Definitions – NonZero

$$D' = \{Nurses, Days\}$$

		Mon			Tue		-		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie	1	0	1	0	0	0	-	-	-
Hanna	0	1	0	0	0	0	-	-	-
Ruben	1	0	1	0	0	0	-	-	-
Sam	0	0	0	1	0	0	-	-	-

$$Y[e] = I(X[e] \neq 0)$$
 for each $e \in \otimes(D')$

Function Definitions – NonZero

$$D' = \{Nurses, Days\}$$

		Mon			Tue		-		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie		1			0		-	-	-
Hanna		1			0		-	-	-
Ruben		1			0			-	-
Sam		0			1		-	-	-

$$Y[e] = I(X[e] \neq 0)$$
 for each $e \in \otimes(D')$

Function Definitions – Sum

$$D' = \{Nurses, Days\}$$

		Mon			Tue		-		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie	1	0	1	0	0	0	-	-	-
Hanna	0	1	0	0	0	0	-	-	-
Ruben	1	0	1	0	0	0	-	-	-
Sam	0	0	0	1	0	0	-	-	-

 $Y[e] = Sum \ of \ values(X[e]) \ for \ each \ e \in \otimes(D')$

Function Definitions – Sum

$$D' = \{Nurses, Days\}$$

		Mon			Tue		•		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie		2			0		-	-	-
Hanna		1			0		-	-	-
Ruben		2			0			-	-
Sam		1			1		-	-	-

 $Y[e] = Sum \ of \ values(X[e]) \ for \ each \ e \in \otimes(D')$

$$M = \{Nurses\}$$
 $S = \{Days\}$

		Mon			Tue				
Nurse	S1	S2	S3	S1	S2	S 3	-	-	-
Sophie	1	0	1	0	0	0	-	-	-
Hanna	0	1	0	0	0	0	-	-	-
Ruben	1	0	1	0	0	0	-	-	-
Sam	0	0	0	1	0	0	-	-	-

 $COUNT(X, M, S) = Sum(NonZero(X, M \cup S), S)$

$$M = \{Nurses\}$$
 $S = \{Days\}$

		Mon			Tue		-		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie		1			0		-	-	-
Hanna		1			0		-	-	-
Ruben		1			0			-	-
Sam		0			1			-	-

 $COUNT(X, M, S) = Sum(NonZero(X, M \cup S), S)$

$$M = \{Nurses\}$$
 $S = \{Days\}$

		Mon			Tue		•		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Sophie		1		0			-	-	-
Hanna		1			0		-	-	-
Ruben		1		0			-	-	-
Sam		0			1			-	-

 $COUNT(X,M,S) = \textbf{Sum}(NonZero(X,M \cup S),S)$

$$M = \{Nurses\}$$
 $S = \{Days\}$

		Mon S1 S2 S3			Tue		-		
Nurse	S1	S2	S3	S1	S2	S3	-	-	-
Count		3			1		-	-	-

 $COUNT(X, M, S) = Sum(NonZero(X, M \cup S), S)$

Constraints List

M	S	Count
{Days}	{Nurses}	# of working days/Nurse
{Days, Shifts}	{Nurses}	# of working shifts/Nurse
{Days}	{Nurses}	# of employees / day
{Shifts}	{Days}	# of shifts for each day with at least one nurse working
{Slots}	{Nurses, Days}	# of working shifts per day / nurse
{Days}	{Nurses, Slots}	# of working days in the same shift / nurse
{Nurses}	{Days, Shifts}	# of nurses pre shift per day

 $COUNT(X, M, S) = Sum(NonZero(X, M \cup S), S)$

Background Knowledge

		Mon		Tue			
Nurse	S1	S2	S3	S1	S2	S3	
Sophie	1	0	1	0	1	0	
Hanna	0	1	0	0	1	0	
Ruben	0	0	1	0	0	1	
Sam	0	0	0	0	0	0	

	Mon			Tue		
Nurse	S1	S2	S3	S1	S2	S3
Sophie	1	0	1	0	1	0
Sam	0	0	0	0	0	0

Experiments

Experiments

Results

Results – Representable Hard Constraint

Results – Non-Representable Hard Constraint

Submissions & Future Work

Submissions

- Abstract accepted in EURO 2018 29th European Conference on Operational Research
- Workshop paper accepted in IJCAI 2018 Data Science meets Optimization

Future Work

Extend the algorithm to support other problems

Make the algorithm interactive

Learning Soft Constraints

Careful omission of constraints

THANK YOU

QUESTIONS?

