

Álgebra Lineal II Escuela Profesional de Matemática Faculdad de Ciencias Universidad Nacional de Ingeniería

Lista 3 de Ejercicios

Tema: Operadores auto-adjuntos Ciclo: 2016.1

A lo largo de esta lista, E y F denotarán e.p.i. de dimensión finita (salvo se diga lo contrario), $\mathcal{L}(E,F):=\{A:E\to F\;;\;A\text{ es lineal}\}, \operatorname{End}(E):=\mathcal{L}(E,E),$ y un operador $A\in\operatorname{End}(E)$ será llamado de **normal** si A y A^* conmutan, **diagonalizable** si E posee una base formada por autovectores de A e **involución** si $A^2=I$.

- 1. Sean $P,Q \in \text{End}(E)$ proyecciones. Pruebe que P=Q sii tienen los mismos autovectores con los mismos autovalores.
- 2. Sean $P \in \text{End}(E)$ una proyección. Pruebe que P es auto-adjunta sii P es normal.
- 3. Sean $A, B \in \text{End}(E)$. Pruebe que A es auto-adjunto si B es invertible y BAB^* es auto-adjunto.
- 4. Sea $A \in \text{End}(E)$ auto-adjunto y sea $v \in E$. Pruebe que para todo $k \in \mathbb{N}$:

$$A^k v = 0 \quad \Rightarrow \quad Av = 0.$$

- 5. Sean $A, B \in \text{End}(E)$ involuciones auto-adjuntas. Pruebe que AB es una involución auto-adjunta sii AB = BA.
- 6. Dados los vectores v = (2, -1, -2) y w = (3, -6, -6), determine el operador auto-adjunto $A \in \text{End}(\mathbb{R}^3)$ tal que Av = (1, 1, 13) y Aw = (3, 21, 33), sabiendo que la traza de A es 5.
- 7. Dados los vectores u = (4, 4, -2), v = (4, -2, 4) y w = (1, -2, -2). Sea $A \in \text{End}(\mathbb{R}^3)$ tal que Au = (10, -2, -2), Av = (-2, 10, -2) y Aw = (1, 1, -5). Pruebe que A es auto-adjunto.
- 8. Sea $A \in \text{End}(E)$, $v \mapsto Av = \langle v, a \rangle b$ con $a, b \in E \setminus \{0\}$. Pruebe que A es auto-adjunto sii b es múltiplo de a.
- 9. Sea $A \in \text{End}(E)$.
 - (a) Si $A^*A = -A$, pruebe que los autovalores de A pertenecen al conjunto $\{0, -1\}$.
 - (b) Dé una matriz $\mathbf{a} \in \mathcal{M}(2 \times 2)$ tal que $a_{11} = -1/3$ y $\mathbf{a}^{\top} \mathbf{a} = -\mathbf{a}$.
 - (c) ¿Cuántas matriz del tipo del ítem anterior existen?
- 10. Sea $A \in \text{End}(E)$. Si E posee una base formada por autovectores de A, pruebe que es posible definir en E un producto interno en relación al cual A es auto-adjunto.
- 11. Sea $A \in \text{End}(E)$ diagonalizable. Si $F \subset E$ es un subespacio invariante por A, pruebe que la restricción de A al subespacio F es un operador diagonalizable en F.

- 12. Sea $A \in \text{End}(E)$ diagonalizable y sea $F \subset E$ subespacio. Si F es invariante por A, pruebe que existe un subespacio $G \subset E$ también invariante por A tal que $E = F \oplus G$.
- 13. Sean $A, B \in \text{End}(E)$ auto-adjuntos.
 - (a) Pruebe que AB + BA es autoadjunto.
 - (b) ¿Qué se puede decir sobre AB BA?
- 14. Sean $A, B \in \text{End}(E)$ auto-adjuntos. Pruebe que A y B conmutan sii E posee una base ortonormal formada por autovectores comunes a B y A.