Problem 4.5. Consider the $n \times n$ matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & 0 & \cdots & 0 & -a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & 0 & -a_2 \\ 0 & 0 & 0 & \cdots & 1 & -a_1 \end{pmatrix},$$

with $a_n \neq 0$.

(1) Find a matrix P such that

$$A^{\top} = P^{-1}AP$$

What happens when $a_n = 0$?

Hint. First, try n = 3, 4, 5. Such a matrix must have zeros above the "antidiagonal," and identical entries p_{ij} for all $i, j \ge 0$ such that i + j = n + k, where k = 1, ..., n.

(2) Prove that if $a_n = 1$ and if a_1, \ldots, a_{n-1} are integers, then P can be chosen so that the entries in P^{-1} are also integers.

Problem 4.6. For any matrix $A \in M_n(\mathbb{C})$, let R_A and L_A be the maps from $M_n(\mathbb{C})$ to itself defined so that

$$L_A(B) = AB$$
, $R_A(B) = BA$, for all $B \in M_n(\mathbb{C})$.

(1) Check that L_A and R_A are linear, and that L_A and R_B commute for all A, B.

Let $\mathrm{ad}_A \colon \mathrm{M}_n(\mathbb{C}) \to \mathrm{M}_n(\mathbb{C})$ be the linear map given by

$$\operatorname{ad}_A(B) = L_A(B) - R_A(B) = AB - BA = [A, B], \text{ for all } B \in \operatorname{M}_n(\mathbb{C}).$$

Note that [A, B] is the Lie bracket.

(2) Prove that if A is invertible, then L_A and R_A are invertible; in fact, $(L_A)^{-1} = L_{A^{-1}}$ and $(R_A)^{-1} = R_{A^{-1}}$. Prove that if $A = PBP^{-1}$ for some invertible matrix P, then

$$L_A = L_P \circ L_B \circ L_P^{-1}, \quad R_A = R_P^{-1} \circ R_B \circ R_P.$$

(3) Recall that the n^2 matrices E_{ij} defined such that all entries in E_{ij} are zero except the (i, j)th entry, which is equal to 1, form a basis of the vector space $M_n(\mathbb{C})$. Consider the partial ordering of the E_{ij} defined such that for i = 1, ..., n, if $n \ge j > k \ge 1$, then then E_{ij} precedes E_{ik} , and for j = 1, ..., n, if $1 \le i < k \le n$, then E_{ij} precedes E_{hj} .

Draw the Hasse diagram of the partial order defined above when n = 3.

There are total orderings extending this partial ordering. How would you find them algorithmically? Check that the following is such a total order:

$$(1,3), (1,2), (1,1), (2,3), (2,2), (2,1), (3,3), (3,2), (3,1).$$