

Aula 14: AutoML

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos a serem abordados

- Como selecionar o algoritmo mais adequado para uma dada tarefa
- Algoritmo mestre
- AutoML
- Meta-aprendizado
- Otimização
- Híbrida
- Meta-atributos

Tarefas preditivas

Aprendizado de máquina

- Existem dezenas de milhares de algoritmos de aprendizado de máquina
 - o Além disso, centenas de novos são propostos a cada ano
 - Levando em conta novos aspectos
 - Usando novas abordagens ou alterando abordagens existentes
 - Gerais ou adaptados para domínios específicos de aplicações ou problemas teóricos

Questão chave

- Como ter o melhor desempenho para uma nova tarefa de aplicação de aprendizado de máquina?
 - Qual algoritmo aprendizado de máquina pode induzir o melhor modelo para um novo conjunto de dados?

Questão chave

- Como ter o melhor desempenho para uma nova tarefa de aplicação de aprendizado de máquina?
 - Qual algoritmo aprendizado de máquina pode induzir o melhor modelo para um novo conjunto de dados?
 - Duas hipóteses:
 - Há um algoritmo mestre
 - O algoritmo mais adequado é o domínio (dados) dependente

Algoritmo Mestre (Master Algorithm)

Existe um algoritmo que pode superar todos os outros em qualquer tarefa de análise de dados

Pedro Domingos, University of Washington

"Panacea: Deusa da cura (mitologia grega)"

Problema da superioridade seletiva

- Cada algoritmo é melhor do que outros em um subconjunto de tarefas (Brodley 1995)
 - Não há almoço grátis (boca livre)
 - o Cada algoritmo aprendizado de máquina tem um viés indutivo
 - Preferências de busca e representação
 - Necessário para que o aprendizado ocorra
- Hipótese: É possível selecionar o algoritmo mais apropriado para uma nova tarefa

É ainda mais complicado...

- Aplicação de aprendizado de máquina a um problema inclui mais do que apenas indução de modelo
- Limpeza de dados
- Pré-processamento de dados
- Ajuste de hiperparâmetros
- ...
- Pós-processamento
- Implementação e identificação de bugs

É ainda mais complicado

- Aplicação de aprendizado de máquina a um problema inclui mais do que apenas indução de modelo
- Limpeza de dados
- Pré-processamento de dados
- Ajuste de hiperparâmetros
- ...
- Pós-processamento
- Implementação e identificação de bugs

Aprendizado de Máquina de ponta-a-ponta

Aprendizado de máquina de ponta-a-ponta

Inclui vários aspectos

Lidar com valores ausentes

Lidar com dados desbalanceados

Extrair atributos

Selecionar atributos

Escolher/Modificar algoritmo de AM

Ajustar hiperparâmetros

Verificar overfitting

Descobrir bugs

Aprendizado de máquina de ponta-a-ponta

Inclui vários aspectos interdependentes

Lidar com valores ausentes

Lidar com dados desbalanceados

Extrair atributos

Selecionar atributos

Adaptado de Rick Caruana, Research opportunities in AutoML Microsoft Research

Escolher/Modificar algoritmo de AM

Ajustar hiperparâmetros

Verificar overfitting

Descobrir bugs

Questão chave revisitada

- Como ter o melhor desempenho para uma nova tarefa de aplicação aprendizado de máquina?
 - Qual algoritmo aprendizado de máquina pode induzir o melhor modelo para um novo conjunto de dados?
 - Quais são as melhores técnicas de pré-processamento?
 - Quais são os melhores valores para os hiperparâmetros?
 - O ...
 - Qual é o melhor pipeline experimental?

A solução mais apropriada

- Nova hipótese:
 - É possível selecionar não apenas o algoritmo mais adequado para uma nova tarefa,
 mas também
 - Técnicas de pré-processamento (pós-processamento)
 - Valores para os hiperparâmetros
 - **...**
- Aprendizado de máquina automático (automatizado) AutoML

AutoML

Ferramentas de AutoML

Ferramentas de AutoML

AutoML

- Automatiza aplicação de aprendizado de máquina a problemas reais
 - o Apoia tanto leigo quanto especialista
- Engloba vários tópicos:
 - Otimização Bayesiana
 - o Otimização combinatória
 - Aprendizado de máquina
 - Meta-aprendizado
 - Transferência de aprendizado

Principais abordagens de AutoML

- Otimização
 - Algoritmos e/ou hiperparâmetros
 - o Propõe o que pode não existir
- Meta-aprendizado (MtL)
 - Algoritmos e/ou hiperparâmetros
 - Seleciona entre o que já existe
- Híbrido
 - Combina abordagens anteriores

Otimização

- Ajuste de hiperparâmetros
 - Redes neurais artificiais
 - o Máquinas de vetores de suporte
- Ajustar modelos
 - o Árvores de decisão
- Projeto de novos algoritmos
 - Algoritmos de aprendizado de conjuntos de regras
 - o Algoritmos de indução de árvores de decisão
 - o Algoritmos de classificação bayesiana

Ajuste de modelos

- Buscar pela melhor árvores de decisão para um conjunto de dados de treinamento
 - Utilizar técnicas de otimização para costruir, a partir de um conjunto de árvores, uma árvore melhor
 - Desemprenho preditivo
 - Interpretação
 - Árvores podem ser geradas pelo mesmo algoritmo ou por diferentes algoritmos de indução de árvores de decisão
 - Ex.: CART, C4.5

Projeto de algoritmos: algoritmo HEAD-DT

- Algoritmo baseado em heurísticas evolutivas
 - Automatiza o projeto de novos algoritmos de indução de árvores de decisão
 - o Diferente do ajuste de modelos (árvores de decisão)
- HEAD-DT pode projetar novos algoritmos em segundos
 - Algoritmos de indução de árvores de decisão levam meses ou anos para serem projetados por especialistas em aprendizado de máquina
 - o Combina componentes de algoritmos existentes usando computação evolutiva
 - Algoritmos Genéticos (GA)
 - Programação Genética (GP)

Exemplo de algoritmo gerado

Algorithm

- 1. Recursively split nodes using the Chandra-Varghese criterion
- 2. Aggregate nominal splits in binary subsets
- 3. Perform step 1 until class-homogeneity or the minimum number of 5 instances is reached
- 4. Perform **MEP pruning** with m = 10
- 5. When dealing with missing values:

Calculate the split of missing values by performing unsupervised imputation Distribute missing values by assigning the instance to all partitions

Meta-aprendizado

- Aprenda com experiências de aprendizado
 - o Aprende uma função (meta-modelo) associando:

Entrada Características extraídas de um conjunto de dados

Saída Recomendação de um ou mais algoritmos de aprendizado de máquina

- Meta-modelo pode
 - Prever os melhores algoritmos para novos conjuntos de dados
 - o Fazer parte de um sistema de recomendação
- Aprendizado de nível básico e de nível meta

Meta-aprendizado

- Semelhante à aplicação convencional de um algoritmo de AM
 - o Algoritmo de AM induz um modelo preditivo a partir de um conjunto de dados
 - Meta conjunto de dados (meta-dados)
 - Modelo induzido pode ser usado para prever resposta para dados novos
 - Recomenda técnicas para novos conjuntos de dados
 - o Níveis de aprendizado base e meta

Tabela atributo-valor

USF

Tabela para meta-aprendizado

Recomendação de técnicas

Adapted from P. Brazdil, C. Giraud Carrier, C. Soares and R. Vilalta, Metalearning: Applications to Data Mining, Springer

Indução de meta-modelos

- Aplicação convencional de AM
 - o Aprende relação implícita entre meta-atributos e meta-alvo
 - Induz um meta-modelo preditivo
 - o Atributos preditivos: meta-atributos
 - o Atributo alvo: meta-alvo (desempenho de algoritmos de AM)
 - Regressão
 - Classificação

Indução e uso de meta-modelos

Geração de meta-dados

- Meta-exemplos
 - Atributo alvo (meta-atributo alvo, meta-alvo)
 - Desempenho de um conjunto de algoritmos (validação)
 - Melhor(es) algoritmo(s)
 - Atributos preditivos (meta-atributos preditivos)
 - Características do conjunto de dados
 - Caracterização direta
 - Baseada em modelos
 - Landmarking

Caracterização direta

- Selecionar as descrições diretamente de cada conjunto de dados
 - o Descrever os principais aspectos dos conjuntos de dados
- Meta-atributos
 - Medidas gerais
 - Medidas baseadas em estatística
 - o Medidas baseadas em teoria da informação

Caracterização direta

- Exemplos de meta-atributos:
 - Número de classes
 - Número de atributos
 - #exemplos/#atributos
 - o Correlação entre atributos preditivos
 - o Correlação entre atributos preditivos e atributo alvo
 - Média da entropia das classes

Caracterização baseada em modelo

- Caracteriza um conjunto de dados pelas propriedades do modelo induzido
- Exemplos de meta-atributos:
 - o Propriedades de uma AD induzida por um algoritmo de AM para um conjunto de dados
 - Número de nós folha
 - Formato da árvore
 - Profundidade da árvore
 - Largura da árvore
 - Grau de balanceamento da árvore

Landmarking

- Informação obtida ao executar um conjunto de algoritmos simples e rápidos (landmarkers)
 - Executar landmarkers por um curto período
 - Landmarks devem ter diferentes vieses
 - o Desempenhos dos algoritmos caracterizam um conjunto de dados
 - Conjuntos são semelhantes quando landmarkers apresentam desempenhos semelhantes

Landmarking

- Exemplos de meta-atributos:
 - o Revocação para algoritmo landmark 1
 - o Precisão para algoritmo landmark 1
 - AUC para algoritmo landmark 1
 - o Revocação para algoritmo landmark 2
 - Precisão para algoritmo landmark 2
 - o AUC para algoritmo *landmark* 2
 - 0 ...

Atributo alvo

- Medidas de desempenho
 - Desempenho preditivo
 - Acurácia, AUC, medida-F, MSE, ...
 - o Custo de processamento
 - Tempo (aprendizado / uso)
 - o Custo de armazenamento do modelo
 - Complexidade do modelo
 - Conhecimento (interpretabilidade)
 - Multiobjectivo

Formas de recomendação

- Melhor algoritmo
 - Se não estiver disponível ou não puder ser usado?
- Bons (estatisticamente equivalentes) algoritmos
 - Recomendação mais flexível
 - Permite selecionar algoritmo de acordo com preferências
- Ranking dos N melhores algoritmos
 - De acordo com uma medida de avaliação

Fim do módulo

