This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIMS

claim:

1

2

3

4

5

1

2

3

4

1	 A welding power source capable of
2	recaiving a range of input voltages, comprising:
3	an input rectifier configured to receive an ac
4	input and providing a first dc signal;
5	a dc voltage stage configured to receive the
6	first dc signal and providing a second dc signal;
7	an inverter configured to receive the second do
8	signal and providing a second ac signal and
٠9	configured to receive at least one control input;
.0	an output transformer configured to receive the
L 1 .	second ac signal and providing a third ac signal
	having a current suitable for welding;
13	an output circuit configured to receive the
1.4	third ac signal and providing a welding signal;
15	e controller configured to provide at least one
16	control signal to the inverter; and
17	an auxiliary power controller configured to
18	receive a range of input voltages and providing a
19	control power signal to the controller.
 ,	

- The apparatus of claim 1, wherein the auxiliary power controller is capable of providing the control power signal at a preselected control signal voltage, regardless of the magnitude of the ac input signal.
- The apparatus of claim 2, further including an auxiliary transformer with a plurality of primary taps, wherein the auxiliary power controller is in electrical communication with the plurality of primary 5. taps. .
- 40° The apparatus of claim 1, wherein the dc 1. voltage stage includes a boost circuit. 2

1	5. The apparatus of claim 1, wherein the
2	inverter includes a pulse width modulator.
1	6. The apparatus of claim 1, wherein the
2	range of input voltages is 230 volts to 575 volts.
1	7. The apparatus of claim 1 wherein the
2	output circuit includes a rectifier.
1	ε. The apparatus of claim 1 wherein the
2	output circuit includes a cycloconverter.
1	9. A method of providing a welding current
2	from a range of input voltages, comprising:
3	rectifying an ac input and providing a first do
4	signal;
.5	converting the dc signal to a second ac signal;
`6	transforming the second ac signal into a third
7.	ac signal having a current suitable for welding; and
8	receiving the ac input and providing an
9	auxiliary power signal source at a preselected
10	control power signal voltage, regardless of the
11	magnitude of the ac input signal.
1	10. The method of claim 9, wherein the step of
2	converting the dc signal includes the steps of converting
3,	the dc signal to a second dc signal and inverting the
4	second dc signal to provide the second ac signal.
1	1.1. The method of claim 9 further including
2	the step of providing control signals to an inverter.
1	1.2. The method of claim 9, wherein the step of
2 .	providing the auxiliary power signal includes the step of

transforming the ac input signal.

	•
1	13. The method of claim 10, wherein the step
2	of converting the first dc signal to a second dc signal
3 .	includes boosting the voltage of the first do signal.
1	14. The method of claim 10, wherein the step
2	of inverting includes the step of pulse width modulating.
1	15. The method of claim 10 further including
2 .	the step of rectifying the third ac signal.
1	16. The method of claim 10 further includes
2	the step of cycloconverting the third ac signal.
1	17. A welding power source for providing a
2	welcing current from a range of input voltages,
3	comprising:
4	rectifier means for receiving an ac input and
5	providing a first dc signal;
6	converting means for converting the dc signal
7	to a second ac signal;
8.	transforming means for transforming the second
9	ac signal into a third ac signal having a current
10	suitable for welding;
11	output means for providing a welding current;
12	and · ·
13	auxiliary power means for receiving the ac
14	input and providing an auxiliary power signal at a
15	preselected control power signal voltage, regardless
16	of the magnitude of the ac input signal.
1	18. The apparatus of claim 17, wherein the
2	means for converting includes means for converting the do
-3	signal to a second dc signal and means for inverting the
4	second do signal to provide the second ac signal.
. 1	19: The apparatus of claim 17 further
2	including means for providing control signals to an

3

inverter.

l		20. The apparatus of claim 17, wherein the
		providing the auxiliary power signal includes
3	means for	transforming the ac input signal into the
4	auxiliary	power signal.

- 21. The apparatus of claim 17, wherein the means for converting the dc signal to a second dc signal includes means for boosting the voltage.
- 1 22. The apparatus of claim 17, wherein the means for inverting includes means for pulse width modulating.

1

2

. 3

- 1 23. The apparatus of claim 17, wherein the output means includes means for rectifying the third ac signal.
- 1 24. The apparatus of claim 17, wherein the output means includes means for cycloconverting the third ac signal.