Deep Generative Models in Vision: An Introduction

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

Supervised Learning

- Learning a mapping between data (inputs) to label (output).
- Data is given in the form of input-label pairs $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}.$
- The goal is to learn a function to map x to y i.e., f(x) = y.

Let's see some examples!

Supervised Learning: Examples in Computer Vision

Credit: Fei Fei Li, J Johnson and S Yeung, CS231n, Stanford Univ

Going Beyond Supervised Learning

Unsupervised Learning/ Data Understanding

Detecting Outliers

Generating Data

Unsupervised Learning

- Capturing the underlying structure of the data
- \bullet Only data (x) is provided; since no labels are required, training data is cheaper to obtain

Dimensionality Reduction

Generative Models

• Goal: Generate data samples similar to the ones in the training set

Generative Models

• Goal: Generate data samples similar to the ones in the training set

- Assume training data $X=\{x_1,x_2,...,x_n\}$ comes from an underlying distribution $p_D(x)$, and a generative model samples data from a distribution $p_M(x)$
- Our aim is to **minimize** some notion of **distance** between $p_D(x)$ and $p_M(x)$

Aim: To minimize some notion of distance between $p_D(x)$ and $p_M(x)$; how?

• Given a dataset $X = x_1, x_2, x_3, ..., x_N$ from an underlying distribution $p_D(x)$

Aim: To minimize some notion of distance between $p_D(x)$ and $p_M(x)$; how?

- Given a dataset $X = x_1, x_2, x_3, ..., x_N$ from an underlying distribution $p_D(x)$
- Consider an approximating distribution $p_M(x)$ coming from a family of distributions M, i.e. we need to find the best distribution in M, parametrized by θ , which minimizes distance between p_M and p_D , i.e.:

$$\theta^* = \arg\min_{\theta \in M} \mathsf{dist}(p_\theta, p_D)$$

Aim: To minimize some notion of distance between $p_D(x)$ and $p_M(x)$; how?

- Given a dataset $X = x_1, x_2, x_3, ..., x_N$ from an underlying distribution $p_D(x)$
- Consider an approximating distribution $p_M(x)$ coming from a family of distributions M, i.e. we need to find the best distribution in M, parametrized by θ , which minimizes distance between p_M and p_D , i.e.:

$$\theta^* = \arg\min_{\theta \in M} \mathsf{dist}(p_\theta, p_D)$$

• What distance to choose?

Aim: To minimize some notion of distance between $p_D(x)$ and $p_M(x)$; how?

- Given a dataset $X = x_1, x_2, x_3, ..., x_N$ from an underlying distribution $p_D(x)$
- Consider an approximating distribution $p_M(x)$ coming from a family of distributions M, i.e. we need to find the best distribution in M, parametrized by θ , which minimizes distance between p_M and p_D , i.e.:

$$\theta^* = \arg\min_{\theta \in M} \mathsf{dist}(p_\theta, p_D)$$

- What distance to choose?
- If KL-divergence is the distance function, the above problem becomes one of maximum likelihood estimation!

$$\theta^* = \arg\min_{\theta \in M} \mathbb{E}_{x \sim p_D}[-\log p_{\theta}(x)]$$

Aim: To minimize some notion of distance between $p_D(x)$ and $p_M(x)$; how?

- Given a dataset $X = x_1, x_2, x_3, ..., x_N$ from an underlying distribution $p_D(x)$
- Consider an approximating distribution $p_M(x)$ coming from a family of distributions M, i.e. we need to find the best distribution in M, parametrized by θ , which minimizes distance between p_M and p_D , i.e.:

$$\theta^* = \arg\min_{\theta \in M} \mathsf{dist}(p_\theta, p_D)$$

- What distance to choose?
- If KL-divergence is the distance function, the above problem becomes one of maximum likelihood estimation!

$$\theta^* = \arg\min_{\theta \in M} \mathbb{E}_{x \sim p_D}[-\log p_{\theta}(x)]$$

Why? Homework!

• This is the idea in a few methods (e.g. PixelCNN/PixelRNN, which we will see later)

Image Super Resolution

Image Colorization

Cross-domain Image Translation

Generating Realistic Face Datasets

Learn good generalizable latent features

- Learn good generalizable latent features
- Augment small datasets

- Learn good generalizable latent features
- Augment small datasets
- Enable mixed-reality applications such as Virtual Try-on

- Learn good generalizable latent features
- Augment small datasets
- Enable mixed-reality applications such as Virtual Try-on
- Many more...

What are Generative Models

- Discriminative models: aim to learn differentiating features between various classes in a dataset
- Generative models aim to learn underlying distribution of each class in a dataset

 Consider a binary classification problem of classifying images of 1s and 0s

· Discriminative Model

Generative Model

Discriminative Model

· Generative Model

- Consider a binary classification problem of classifying images of 1s and 0s
- A discriminative classifier directly models the **posterior** i.e. p(y|x); x is always given as input

Discriminative Model

· Generative Model

- Consider a binary classification problem of classifying images of 1s and 0s
- A discriminative classifier directly models the **posterior** i.e. p(y|x); x is always given as input
- A generative classifier models the joint distribution i.e. p(x,y)

Discriminative Model

· Generative Model

- Consider a binary classification problem of classifying images of 1s and 0s
- A discriminative classifier directly models the posterior i.e. p(y|x); x is always given as input
- A generative classifier models the joint distribution i.e. p(x,y)
- Recall: posterior and joint are related as:

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{p(x)}$$

Generative Models

Two main kinds of generative models:

Fully Visible Models: Directly model observations without introducing extra variables; e.g. considering each pixel value of an image as an observation

Generative Models

Two main kinds of generative models:

- Fully Visible Models: Directly model observations without introducing extra variables; e.g. considering each pixel value of an image as an observation
- 2 Latent Variable Models: Defining hidden variables which generate observed data:
 - Explicit Likelihood Estimation Models: Explicitly define and learn likelihood of data; e.g. Variational Autoencoders (VAEs)
 - Implicit Models: Learn to directly generate samples from model's distribution, without explicitly defining any density function; e.g. Generative Adversarial Networks (GANs)

Taxonomy of Generative Models

Credit: Fei-Fei Li, J Johnson, CS231n, Stanford Univ

Homework

Readings

- Aditya Grover, Stefano Ermon, Tutorial on Deep Generative Models, IJCAI-ECAI 2018
- (Optional) Shakir Mohamed, Danilo Rezende, Deep Generative Models Tutorial, UAI 2017

Exercise

• Why does using KL-divergence in finding the generative model simplify to maximum likelihood estimation?