Scores	
1.	
2.	
3.	
4.	
5.	
Total:	

ANA-I Foundations of Analysis 1st Midterm Examination – 18 Nov, 2019

Name

- General Instructions: Please answer the following, showing all your work and writing neatly. You may have 1 handwritten A4-sized sheet of paper, but no other notes, books, or calculators.

 72 total points.
- 1. (6 points each) Limit calculations. For each real-valued sequence, explain whether it is convergent, divergent to $\pm \infty$, or otherwise divergent (not to $\pm \infty$). If it is convergent, find its limit. If it is divergent, find its lim sup and liminf. You may use any theorems we have proved in class or on homework.

(a)
$$s_n = \frac{2n-1}{n-\sqrt{2}}$$

(b)
$$s_n = \frac{(-1)^n \cdot 2n - 1}{4 - 5n}$$

(c)
$$s_n = \frac{(-1)^n \cdot 2\sqrt{n} + 12}{2n - 3}$$

$$(d) s_n = n - n^2$$

- 2. (6 points each) Examples. Justify your answers briefly.
 - (a) Give an example of a bounded sequence that diverges.
 - (b) Using our construction of \mathbb{Z} by the method of order pairs, explain why 2-3=-1.
 - (c) Give the Dedekind cut for $\sqrt{3} + \sqrt{2}$. (Of course, your answer should not directly refer to irrational numbers such as $\sqrt{3}$ or $\sqrt{2}$.)
- 3. (12 points) Let (r_n) be a bounded sequence of real numbers from $[1/10, \infty)$ (that is, each entry r_n is $\geq 1/10$), and (s_n) be a sequence of real numbers with $\lim_{n\to\infty} s_n = \infty$. Working directly from the definitions, show that also $\lim_{n\to\infty} r_n \cdot s_n = \infty$.
- 4. (10 points) Consider the sequence recursively defined by the rule $s_n = 2s_{n-1}/n$ for $n \ge 1$, with the initial value of $s_0 = 1$. Show that s_n converges, and find its limit.
- 5. (8 points) Using any technique from this class that you like, show that if (s_n) is a Cauchy sequence of positive real numbers, then the sequence $(\sqrt{s_n})$ is also Cauchy.