The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

The code for \$a_2\$ is:

```
"Compute_a_2(n)
```

Optimal Treatment Time Minimization Problem ar n

```
Output = 2*f(n)+ 1/2 + 0.25^n end
```

Compute_f(n)

Input: natural number n

k=2

for m = 1 to n

k=k+1

end

Output = sum

end"

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

Give values for x_1 and x_2 that approximate an optimal minimiser of the problem, to at least 2 digits accuracy in the $\left| \right|^{\infty}$ norm, if a_2 is given as in the codes above. Answer only if you are 100% sure. Please provide a brief explanation of your answer.

Thought for 395 seconds >

Step 1. Understand the Code and Compute a_{2}

The code defines:

Compute_a_2(n):

$$ext{Output} = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

Compute_f(n):

Initialize:

$$\circ$$
 Set $k=2$

 \circ For m=1 to n:

$$k = k + 1$$

Optimal Treatment Time Minimization Problem

Let:

Then:

$$f(n) = 72^{-N} + \sum_{j=3}^{n+2} \left[\left(rac{1}{2}
ight)^j - 72^{-N \cdot j}
ight]$$

As $n \to \infty$, the geometric series:

$$\sum_{j=3}^{\infty} \left(\frac{1}{2}\right)^j = \frac{(1/2)^3}{1 - 1/2} = \frac{1}{8} \cdot 2 = \frac{1}{4}$$

Let:

$$\delta(\infty)=72^{-N}-\sum_{i=3}^{\infty}72^{-N\cdot j}$$

Then:

$$f(\infty)=rac{1}{4}+\delta(\infty)$$
 $a_2=2f(\infty)+rac{1}{2}=2\left(rac{1}{4}+\delta(\infty)
ight)+rac{1}{2}=1+2\delta(\infty)$

Since $\delta(\infty) > 0$, we conclude:

$$a_2 > 1$$

Step 2. Formulate the Optimization Problem

We have:

• Dosage rates: $a_1 = 1$, $a_2 > 1$

• Treatment times: x_1, x_2

Total dosage constraint:

$$x_1 + a_2 x_2 = 1$$

Optimal Treatment Time Minimization Problem

$$T = x_1 + x_2$$

Substitute $x_1 = 1 - a_2 x_2$ into T:

$$T = (1 - a_2 x_2) + x_2 = 1 + (1 - a_2) x_2$$

Since $a_2>1$, the coefficient $(1-a_2)<0$, so T decreases as x_2 increases.

Constraint: $x_1 \geq 0 \Rightarrow x_2 \leq \frac{1}{a_2}$

Thus, the optimal solution is:

$$x_1=0,\quad x_2=rac{1}{a_2}$$

Step 3. Determine the Numerical Values to the Required Accuracy

We have:

$$a_2=1+2\delta(\infty)$$
 $x_2=rac{1}{a_2}=rac{1}{1+2\delta(\infty)}pprox 1-2\delta(\infty)$

Since $\delta(\infty)$ is extremely small (on the order of $72^{-10^{24}}$), we have:

$$x_2 pprox 1$$

To two decimal places:

$$x_1 = 0.00, \quad x_2 = 1.00$$

Final Answer

 $\boxed{0}$ and $\boxed{1}$

Optimal Treatment Time Minimization Problem