Proposition 1. Es seien $A, B \in \mathbb{C}^{n,n}$ hermitesch und B invertierbar. Ist $(\lambda, x) \in \mathbb{C} \times \mathbb{C} \setminus \{0\}$ ein Paar, welches der verallgemeinerten Eigenwertgleichung

$$Ax = \lambda Bx$$

genügt, so ist λ reell.

Beweis. Wir bemühen das euklidische Skalarprodukt: Ist $(\lambda, x) \in \mathbb{C} \times \mathbb{C} \setminus \{0\}$ ein zulässiges Eigenpaar, so gilt

$$\lambda(x, Bx) = (x, Ax) = (Ax, x) = \bar{\lambda}(Bx, x)$$

nach Voraussetzung. Der Hermitizität und der Invertierbarkeit von ${\cal B}$ wegen, gilt

$$(x, Bx) = (Bx, x) \neq 0$$

und daher folgt aus $\lambda = \bar{\lambda}$ die Behauptung.