How Imaging Systems Work

Birgit Reissland and Frank Ligterink

Band pass filter X-ray CrimeLite Auto Video Spectral Comparator 8000HS Hyper Spectral Imaging FCIR reflectography VIS **RGB** Spectral resolution n_{anometer} MSI UV Phase One Osiris

The electromagnetic spectrum

The observer triangle

About color

The human eye is an RGB device

Spectral sensitivity functions for our three types of cone cells.

Color mixing

Additive color mixing with Red, Green and Blue primaries

Subtractive color mixing with Yellow, Magenta and Cyan primaries

Block spectra

Color checker exercise

Color checker answers

Traveling the photon path

Pigments versus dyes

Imaging systems

UV Fluorescence Imaging

UV fluorescence (right) reveals retouching areas in a potential Ruisdael painting

UV Fluorescence Imaging

UV Fluorescence

- Powerful way to see retouches!
- Low tech
- Need darkness
- Protect your eyes

VIS Fluorescence

to improve readability 550nm 550nm X-RAY UV IR X-RAY UV IR 400nm 700nm 400nm 700nm

Long-pass camera filter blocks green to improve readability

IR Reflectography

Black lace made visible with VSC long pass filter >850nm

IR Reflectography

IR Reflectography

Hyper Spectral Imaging

CrimeLite Auto

Video Spectral Comparator

