Thoughts about modeling time since infection

SMB 2019

Jonathan Dushoff

https://github.com/dushoff/Generation_talks

Why might we care about modeling TSI

- Questions
- Systems
- Mechanisms
- ► Implementation?

Questions

- ► Size, speed and strength
- Periodic dynamics
- ► Troughs and persistence
- Intervention and control
- Surveillance and elimination

Mechanisms

- ► Realistic distributions
- ► Incubation periods
- Courses of disease and routes of transmission
- Dormancy mechanisms

Implementation

- ► Boxes (Linear chain trick etc.)
- ► PDEs
- What specific distributions or mathematical mechanisms reflect the biology

- We measure epidemic speed using little r:
- $lackbox{ We measure epidemic "strength" } using <math>\mathcal R$
- ► These are linked by the distribution of generation times

Conditional effect of generation time

- ightharpoonup Given the reproductive number ${\cal R}$
 - ▶ faster generation time *G* means faster growth rate *r*
 - More danger
- Given the growth rate r
 - faster generation time G means smaller $\mathcal R$
 - Less danger

Generations and ${\cal R}$

Generations and ${\cal R}$

Linking framework

- ▶ Epidemic speed (r) is a product:
 - ▶ (something to do with) generation speed ×
 - (something to do with) epidemic strength
- ▶ How much does "generation speed" depend on the details of how infected people change through time?
- ▶ When can we just use the mean generation interval?
 - Not infectious period!

Euler-Lotka equation

- ightharpoonup Provides the $r\mathcal{R}$ link during an exponential period
- $1 = \int k(\tau) \exp(-r\tau) \, d\tau$
 - ▶ i.e., the total of *discounted* contributions is 1
- $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) \, d\tau$

Interpretation: "effective" generation times

Define the effective generation time so that

$$\mathcal{R} = \exp(r\hat{G})$$

► Then:

$$1/\mathcal{R} = \int g(au) \exp(-r au) \, d au$$

$$\exp(-r\hat{G}) = \langle \exp(-r\tau) \rangle_g$$
.

- A filtered mean:
 - ▶ The discounted value of \hat{G} is the expectation of the discounted values across the distribution

Linking framework

- ▶ Epidemic speed (*r*) is a *product*:
 - ightharpoonup (something to do with) generation speed imes
 - (something to do with) epidemic strength
- In particular:
 - $r = (1/\hat{G}) \times \log(\mathcal{R})$
 - $ightharpoonup \hat{G}$ is the effective mean generation time

An approximation

- We connect these quantities with a moment approximation
- ▶ Define $\kappa = \sigma_G^2/\mu_G^2$ the squared coefficient of variation of the generation distribution
- $ightharpoonup \mathcal{R} pprox (1 + r\kappa \bar{G})^{1/\kappa}$
 - **Equal** when $g(\tau)$ has a gamma distribution
 - Simple and straightforward
 - When is it a useful approximation?

Compound-interest interpretation

- ▶ Define $\mathcal{R} \approx (1 + r\kappa \bar{G})^{1/\kappa} \equiv X(r\bar{G}; 1/\kappa)$
- ▶ X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)
 - lacktriangle Approaches exponential as $\kappa o 0$

Exponential growth rate (per generation)

Qualitative response

- ▶ For a given value of \bar{G} , smaller values of κ mean:
 - less variation in generation interval
 - less compounding of growth
 - ightharpoonup greater $\mathcal R$ required for a given r

Fitting to Ebola

- Simulate generation intervals based on data and approach from WHO report
- ► Use both lognormals and gammas
 - WHO used gammas
 - Lognormals should be more challenging

Approximating the distribution

Single-gamma approximation

Approximating the curve

Exponential growth rate (per generation)