CISC 260 Machine Organization and Assembly Language

Assignment # 2 Solution

Simplified solution: W = X'Z' + XY'Z

2.
$$Y = B'C' + AB'$$

= $B'(A + C')$

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

3. 2's complement subtraction:

a. Truth table:

S_x	S_y	S_z	0
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

b.
$$O = S_x'S_yS_z + S_xS_y'S_z'$$

c. Circuit diagram:

4. It is sufficient to show that any of the universal gate can be generated by the set of gate types {LT, NOT}.

$$A NAND B = NOT((NOT A)LT B)$$

 $A NOR B = NOT(A LT (NOT B))$

Otherwise, you can show how you can generate the AND gate and OR gate using only LT and NOT gates.

$$A AND B = (NOT A)LT B)$$

 $A OR B = NOT (A LT (NOT B))$