РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ ВАРИАНТ 1

1. Подредете функциите по порядък: $5n^3 \cdot 8^n$, $3n^2 \cdot 9^n$, $\log^{12} n$, 2^{3^n} , 2^{n^3} .

Отговор:
$$\log^{12} n \prec 5n^3.8^n \prec 3n^2.9^n \prec 2^{n^3} \prec 2^{3^n}$$
.

Упътване: Първото и второто неравенство се доказват с помощта на граница на частното (прилага се и теоремата на Лопитал). Третото и четвъртото неравенство се доказват с логаритмуване.

2. Решете рекурентните уравнения:

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + 8n$$
; $T(n) = 64T\left(\frac{n}{4}\right) + 100 n^3$; $T(n) = 32T\left(\frac{n}{2}\right) + 5^n$.

OTF.
$$T(n) = \Theta(n^2)$$
. **O**TF. $T(n) = \Theta(n^3 \log n)$. **O**TF. $T(n) = \Theta(5^n)$.

Упътване: И трите уравнения се решават с помощта на различните случаи на мастър-теоремата.

3.
$$T(n) = 10T(n-1) - 21T(n-2) + 9n^2 5^n$$
 Otrobop: $T(n) = \Theta(7^n)$.
$$T(n) = T(n-1) + \sqrt[3]{n}$$
 Otrobop: $T(n) = \Theta(n^{4/3})$.

Решение:

Уравнението $T(n) = 10T(n-1) - 21T(n-2) + 9n^2 5^n$ е линейно-рекурентно и се решава с помощта на характеристичното уравнение $x^n = 10x^{n-1} - 21x^{n-2}$, което при $x \neq 0$ е равносилно на $x^2 - 10x + 21 = 0$ с корени 3 и 7. Те заедно с три петици от свободния член образуват мултимножество: $\left\{7;3;5;5;5\right\}_{\rm M}$. От това мултимножество се получава общото решение на уравнението: $T(n) = C_1 7^n + C_2 3^n + C_3 5^n + C_4 n 5^n + C_5 n^2 5^n \end{tabular}$

Уравнението $T(n) = T(n-1) + \sqrt[3]{n}$ не може да се реши чрез характеристично уравнение заради дробната степен на свободния член. Вместо това се прилага развиване: $T(n) = T(n-1) + n^{1/3} = T(n-2) + (n-1)^{1/3} + n^{1/3} = \dots =$

$$= T(0) + 1^{\frac{1}{3}} + 2^{\frac{1}{3}} + \ldots + (n-1)^{\frac{1}{3}} + n^{\frac{1}{3}} \simeq n^{\frac{4}{3}}.$$

4. Какво връща следният алгоритъм? **Отг.** $(A[1])^2 + ... + (A[n])^2$.

Формулирайте използваема инварианта на цикъла:

OTT.
$$s = (A[1])^2 + ... + (A[k-1])^2$$
.

Alg(A[1...n]: array of integers): integer
$$s \leftarrow 0$$
 for $k \leftarrow 1$ to n $s \leftarrow s + A[k] * A[k]$ return s

Доказателство на инвариантата: чрез индукция.

База: При k=1 сумата е нула, защото е празна (не съдържа събираеми); s също е нула (начална стойност). Затова равенството е s сила s сила s сила s сила s също е нула s съ

Поддръжка: Нека $s = (A[1])^2 + \ldots + (A[k-1])^2$ при някоя от проверките за край на цикъла и нека $k \le n$. Тялото на цикъла ще се изпълни още веднъж и s ще получи стойност $(A[1])^2 + \ldots + (A[k])^2$. След това k се увеличава с единица и s (без да променя стойността си) променя своя запис: тъй като старото k е равно на новото k минус единица, то $s = (A[1])^2 + \ldots + (A[k-1])^2$, което трябваше да се докаже.

Доказателство за върнатата стойност: Цикълът завършва при k = n + 1 и алгоритъмът връща текущата стойност на s, която (според току-що доказаната инварианта) е равна на $(A[1])^2 + \ldots + (A[k-1])^2 = (A[1])^2 + \ldots + (A[n])^2$.

ВАРИАНТ 2

1. Подредете по порядък: $n^{12} \cdot \log^{25} n$, (2n)!, 17^n , $n^{19} \cdot \log^{21} n$, \sqrt{n} .

Отговор: $\sqrt{n} \prec n^{12} \cdot \log^{25} n \prec n^{19} \cdot \log^{21} n \prec 17^n \prec (2n)!$

2. Решете рекурентните уравнения:

$$T(n) = 81T\left(\frac{n}{3}\right) + 28 n;$$
 $T(n) = 36 T\left(\frac{n}{6}\right) + 5 n^3;$ $T(n) = 64T\left(\frac{n}{4}\right) + n^3.$

OTT.
$$T(n) = \Theta(n^4)$$
. **O**TT. $T(n) = \Theta(n^3)$. **O**TT. $T(n) = \Theta(n^3 \log n)$.

3.
$$T(n) = 11T(n-1) - 18T(n-2) + 4n \cdot 15^n$$
 Otrobop: $T(n) = \Theta(n \cdot .15^n)$.
$$T(n) = T(n-1) + n^{9/31}$$
 Otrobop: $T(n) = \Theta(n^{40/31})$.

ВАРИАНТ 3

1. Подредете функциите по порядък: 5^{2n} , 8^n , $\log^{2015} n$, n^6 , $\sqrt{n^{15}}$.

Отговор: $\log^{2015} n \prec n^6 \prec \sqrt{n^{15}} \prec 8^n \prec 5^{2n}$.

2. Решете рекурентните уравнения:

$$T(n) = 3T\left(\frac{n}{\sqrt{3}}\right) + n^2; \qquad T(n) = 64T\left(\frac{n}{4}\right) + \log(3n); \qquad T(n) = 15T\left(\frac{n}{5}\right) + n!.$$

OTF.
$$T(n) = \Theta(n^2 \log n)$$
. **OTF.** $T(n) = \Theta(n^3)$. **OTF.** $T(n) = \Theta(n!)$.

3.
$$T(n) = 7T(n-1) - 6T(n-2) + 8^n$$
 Otrobop: $T(n) = \Theta(8^n)$.
$$T(n) = T(n-1) + \sqrt[5]{n}$$
 Otrobop: $T(n) = \Theta(n^{6/5})$.

ВАРИАНТ 4

1. Подредете функциите по порядък: 3^{n^2} , 5^n , n^{4n} , $\log^6 n$, n^5 .

Отговор: $\log^6 n \prec n^5 \prec 5^n \prec n^{4n} \prec 3^{n^2}$.

2. Решете рекурентните уравнения:

$$\overline{T(n)} = 1000T\left(\frac{n}{10}\right) + n^3; \qquad T(n) = 5T\left(\frac{n}{3}\right) + \log\log n; \qquad T(n) = 6T\left(\frac{n}{19}\right) + n^n.$$

OTF. $T(n) = \Theta(n^3 \log n)$. **OTF.** $T(n) = \Theta(n^{\log_3 5})$. **OTF.** $T(n) = \Theta(n^n)$.

3.
$$T(n) = 9T(n-1) - 20T(n-2) + 8n^3 2^n$$
; $T(n) = T(n-1) + n^{3/7}$.

OTI.
$$T(n) = \Theta(5^n)$$
. **O**TI. $T(n) = \Theta(n^{10/7})$.

ВАРИАНТИ НА ЧЕТВЪРТАТА ЗАДАЧА

4. Какво връща следният алгоритъм?

Отг. Индекса на първата нула.

Формулирайте използваема инварианта на цикъла:

OTT. A[i]
$$\neq 0$$
, $\forall i = 1, 2, 3, ..., k-1$.

return -1

4. Какво връща следният алгоритъм?

Отг. true \Leftrightarrow всички елементи на масива са равни.

Формулирайте използваема инварианта на цикъла:

OTF.
$$A[1] = A[2] = ... = A[k]$$
.

Alg(A[1...n]: array of integers): boolean for
$$k \leftarrow 1$$
 to n-1 if $A[k] \neq A[k+1]$ return false

return true

4. Какво връща следният алгоритъм? Отг. Най-малката стойност в масива.

Формулирайте използваема инварианта на цикъла:

OTT.
$$s = min \{ A[1], ..., A[k-1] \}$$
.

Alg(A[1...n]: array of integers): integer
$$s \leftarrow A[1]$$
 for $k \leftarrow 2$ to n if $A[k] < s$ $s \leftarrow A[k]$

return s