R&D OF A HIGH-PERFORMANCE DIRC DETECTOR FOR USE IN AN ELECTRON-ION COLLIDER

by

S. Lee Allison MS in Physics

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

PHYSICS

OLD DOMINION UNIVERSITY May 2017

Approved by:

Dr. Charles Hyde (Director)

member 1 (Member)

member 2 (Member)

ABSTRACT

R&D OF A HIGH-PERFORMANCE DIRC DETECTOR FOR USE IN AN ELECTRON-ION COLLIDER

S. Lee Allison Old Dominion University, 2016 Director: Dr. Dr. Charles Hyde

text of abstract goes here

Copyright, 2016, by S. Lee Allison, All Rights Reserved.

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

	Р	age
LI	ST OF TABLES	vi
LI	ST OF FIGURES	vii
Ch	napter	
1.	INTRODUCTION	
2.	DIRC TECHNOLOGY 2.1 APPLYING THE CHERENKOV EFFECT TO PARTICLE ID 2.2 DIRC DETECTORS	2
3.	HIGH-PERFORMANCE DIRC@EIC 3.1 EVOLUTION OF THE DIRC@EIC DESIGN 3.2 CURRENT HIGH-PERFORMANCE DIRC DESIGN 3.3 SIMULATED PERFORMANCE 3.4 POTENTIAL OPTIMIZATIONS	3 3 3
4.	TEST BENCH EVALUATION OF DIRC@EIC COMPONENTS. 4.1 OPTICAL PROPERTIES OF 3-LAYER LENS. 4.2 RADIATION HARDNESS OF NLAK33 MATERIAL 4.3 PERFORMANCE OF PHOTOSENSORS IN HIGH MAGNETIC FIELD.	4
5.	3-LAYER LENS PERFORMANCE IN PARTICLE BEAM. 5.1 PROTOTYPE SETUP. 5.2 SIMULATED PERFORMANCE 5.3 DATA ANALYSIS.	5 5
6.	CONCLUSIONS.	6
7.	SUMMARY	7
	BLIOGRAPHY	8
	PPENDICES	9
VI	TA	10

LIST OF TABLES

Table Page

LIST OF FIGURES

Figure Page

INTRODUCTION

1.1 THE ELECTRON-ION COLLIDER

DIRC TECHNOLOGY

- 2.1 APPLYING THE CHERENKOV EFFECT TO PARTICLE ID
- 2.2 DIRC DETECTORS

HIGH-PERFORMANCE DIRC@EIC

- 3.1 EVOLUTION OF THE DIRC@EIC DESIGN
- 3.2 CURRENT HIGH-PERFORMANCE DIRC DESIGN
- 3.3 SIMULATED PERFORMANCE
- 3.4 POTENTIAL OPTIMIZATIONS

TEST BENCH EVALUATION OF DIRC@EIC COMPONENTS

- 4.1 OPTICAL PROPERTIES OF 3-LAYER LENS
- 4.2 RADIATION HARDNESS OF NLAK33 MATERIAL
- 4.3 PERFORMANCE OF PHOTOSENSORS IN HIGH MAGNETIC FIELD

3-LAYER LENS PERFORMANCE IN PARTICLE BEAM

- 5.1 PROTOTYPE SETUP
- 5.2 SIMULATED PERFORMANCE
- 5.3 DATA ANALYSIS
- 5.3.1 ERROR EVALUATION

CONCLUSIONS

$\mathbf{SUMMARY}$

BIBLIOGRAPHY

[1] G. E. Brown and A. D. Jackson, *The Nucleon–Nucleon Interaction* (North–Holland, Amsterdam, 1976).

APPENDIX A

VITA

S. Lee Allison Department of Physics Old Dominion University Norfolk, VA 23529

The text of the Vita goes here.