COMBINING MULTIPLE LEARNERS -many différent algorithms/leorners -NO FREE LUNCH THEOREM > no single algorithm is always the best one. 1 E-NN (3-NN, 5-NN, 7-NN,---) -several algorithms >MLP (# of hidden nodes, activation functions) several hyperperameters $\frac{f_1}{x_1}$ $\frac{f_2}{t}$ $\frac{f_2}{t}$ $\frac{f_2}{t}$ majority voting $\frac{f_1}{t}$ $\frac{f_2}{t}$ $\frac{f_3}{t}$ $\frac{f_4}{t}$ $\frac{f_5}{t}$ $\frac{f_5}{t}$ if negatives have the majority of posstnes have the mopersty (+) (-)

2) How to we combine the outputs of base-learners for obtaining the maximum accouracy? Generating Diverse Learners: 1) Different Algorithms MLP+K-NN+SVM+DT "Inductive bioss" Jone oprama har 1 mg manned I one porametric + one nonparametric 2) Différent Hyperperameters k-NN k=3 k=17 (simpler) (more complex)late sensor (USION =) audion + video x = [Xe | Xu | Yesion | xovenents | early rusion | xovenents | early rusion | xovenents | early rusion | xovenents | xovenent

RANDOM FOREST: Low gowns biogs 1 P features Nderton Points randomly picked D features? DT Different input whons
represent whons f(f1, f2, . - rondom forest

: Me con learn W1, W2, ---, WL Globel Fussion using enother learner. con be cost into on linear problem regression problem Note that wil, wz, --, wz 31 32.

ere not functions of XN+1.

Local Fusion: w1, w2, -- we are functions of XN+1.

$$f_1 \rightarrow g_1$$
 $f_2 \rightarrow g_2$
 $f_1 \rightarrow g_2$
 $f_2 \rightarrow g_2$
 $f_1 \rightarrow g_2$
 $f_2 \rightarrow g_2$
 $f_2 \rightarrow g_2$
 $f_3 \rightarrow g_4$
 $f_4 \rightarrow g_2$
 $f_4 \rightarrow g_2$
 $f_4 \rightarrow g_2$
 $f_5 \rightarrow g_4$
 $g_6 \rightarrow g_6$
 $g_7 \rightarrow g_2$
 $g_7 \rightarrow g_7$
 g_7

f = w1 (xn+1). ŷ1 + w2 (xn+1). ŷ2 + --- . + WL (xn+1). ŷL

MULTISTAGE COMBINATION: (Seriel approach)

N
$$\{y\}$$
 \times f_1 y g_1 \times f_2 g_2 g_3 g_4 g_4 g_5 $g_$

VOTING:
$$\hat{y}_i = \sum_{J=1}^{L} w_j f_j(x_i)$$
 linear opinion me dels, ensembles

Convex combination
$$\Rightarrow$$
 $\underset{J=1}{\text{wij}} 0 \quad \forall j$