第6章 相平衡

本章内容

- □6.1 相平衡基础
- 口6.2 互溶体系的气液平衡关系式
- 口6.3 中低压下气液平衡
- 口6.4 气液平衡数据的热力学一致性检验
- □6.5 液液平衡

- •相平衡是一切分离技术及分离设备开发、设计的理论基础和关键。
- •分离技术:精馏、吸收、吸附、萃取、结晶。

相平衡的概念

相平衡(Phase Equilibrium)

- 两相相互接触时,它们倾向于交换其中的成分直到 各相组成恒定。则此时的相即处于平衡状态。
- 汽液平衡 (VLE) ——精馏
- 气液平衡(GLE)——吸收分离
- 液液平衡(LLE) -- 萃取
- 固液平衡(SLE) --结晶
- 相平衡讲的就是物系组成(x,y)与T、p 间的关系。
- 本章主要内容即为T、p、 x_i , y_i 间的相互推算。

6.1 相平衡基础

平衡依据

相平衡在热力学上意味着整个系统 Gibbs自由能为极小的状态。

$$\left(dG\right)_{T,p}=\mathbf{0}$$

$$d(nG) = -(nS)dT + (nV)dP + \sum \mu_i dn_i$$

针对 α , β相, 则:

$$d(nG)^{\alpha} = -(nS)^{\alpha} dT + (nV)^{\alpha} dP + \sum \mu_{i}^{\alpha} dn_{i}^{\alpha}$$
$$d(nG)^{\beta} = -(nS)^{\beta} dT + (nV)^{\beta} dP + \sum \mu_{i}^{\beta} dn_{i}^{\beta}$$

等温等压下,若体系为仅含α相和β相两相的封 闭体系,则体系总Gibbs自由能为两相之和。

$$d(nG) = d(nG)^{\alpha} + d(nG)^{\beta} = \sum \mu_i^{\alpha} dn_i^{\alpha} + \sum \mu_i^{\beta} dn_i^{\beta} = 0$$

::体系是没有发生化学反应的封闭体系,本身 没有与环境的物质交换。

$$\therefore dn_i^{\alpha} = -dn_i^{\beta}$$

$$\therefore dn_i^{\alpha} = -dn_i^{\beta} \qquad \qquad \iiint \sum (\mu_i^{\alpha} - \mu_i^{\beta}) dn_i^{\alpha} = 0$$

$$\nabla :: dn_i^{\alpha} \neq 0$$

$$\therefore \mu_i^{\alpha} = \mu_i^{\beta}$$

对于多相体系

$$\mu_i^{\alpha} = \mu_i^{\beta} = \dots \mu_i^{\pi}$$
 $(i = 1, 2, \dots N)$

但由于化学位计算不方便, 故在解决相平衡 问题是用组分的逸度来代替化学位。

$$\therefore d\overline{G}_i = d\mu_i = RTd \ln \hat{f}_i$$

$$\hat{f}_i^{\alpha} = \hat{f}_i^{\beta} = \dots = \hat{f}_i^{\pi} \qquad (i = 1, 2, \dots N)$$

--最实用 有N(π-1)方程式

相平衡的判据为: 各相的温度、压力相 等时,各相中组元的分逸度必定相等!

 $F = N - \pi + 2$ 自由度 组分数 相数

例对于二元汽液平衡,自由度F为 F = 2 - 2 + 2 = 2

则在T, P, x₁, x₂, y₁, y₂诸变量中,仅可指定2 个自变量,如T, x₁, 体系即可确定,其余 诸变量需借助相平衡方程求出。

6.2 互溶系统的汽液平衡计算通式

相平衡的判据

$$\hat{f}_{i}^{\alpha} = \hat{f}_{i}^{\beta} = \dots = \hat{f}_{i}^{\pi} \qquad (i = 1, 2, \dots N)$$

组分i的逸度既可以由逸度系数表示,又可以由活度系数表示。

$$\hat{a}_i = \gamma_i x_i = \frac{\hat{f}_i}{f_i^0}$$

$$\hat{f}_i = \hat{\varphi}_i . P_i = \hat{\varphi}_i P x_i$$

$$\hat{f}_i = f_i^0 \gamma_i x_i$$

对于汽相
$$\begin{cases} \hat{f}_i^V = p y_i \hat{\varphi}_i^V \\ \hat{f}_i^V = f_i^0 \gamma_i^V y_i \end{cases}$$

对于液相
$$\begin{cases} \hat{f}_i^L = px_i \hat{\varphi}_i^L & i = 1, 2, 3, \dots N \\ \hat{f}_i^L = f_i^0 \gamma_i^L x_i & i = 1, 2, 3, \dots N \end{cases}$$

汽液平衡的两种计算方法:

状态方程法

$$\begin{cases} \hat{f}_i^V = P y_i \hat{\varphi}_i^V \\ \hat{f}_i^L = P x_i \hat{\varphi}_i^L \end{cases}$$

2) 活度系数法

$$\begin{cases} \hat{f}_i^V = P y_i \hat{\varphi}_i^V \\ \hat{f}_i^L = P x_i \hat{\varphi}_i^L \end{cases} \begin{cases} \hat{f}_i^V = P y_i \hat{\varphi}_i^V \\ \hat{f}_i^L = f_i^0 x_i \gamma_i \end{cases}$$

状态方程法(EOS法)

——汽液两相的逸度均用EOS计算

$$\begin{cases} \hat{f}_i^V = Py_i \hat{\varphi}_i^V \\ \hat{f}_i^L = Px_i \hat{\varphi}_i^L \end{cases}$$

$$\hat{f}_i^V = \hat{f}_i^L (i = 1, 2, \dots, N)$$

$$\hat{\varphi}_i^V y_i = \hat{\varphi}_i^L x_i \quad (i = 1, 2...N) \quad K_i = \frac{y_i}{x_i} = \frac{\phi_i^L}{\hat{\phi}_i^V}$$

第五章已学过逸度用EOS计算的方法:

$$\ln \hat{\varphi}_i = \int_0^P \frac{\overline{Z_i} - 1}{P} dP = \frac{1}{RT} \int_0^P (\overline{V_i} - \frac{RT}{P}) dP$$

状态方程法(逸度系数法)

采用状态方程法的重点在于 $\hat{\boldsymbol{\theta}}_{i}^{V}$, $\hat{\boldsymbol{\theta}}_{i}^{L}$ 的求取:

$$\ln \hat{\phi}_i^V = \ln \frac{\hat{f}_i^V}{py_i} = \frac{1}{RT} \int_0^{V_m^V} \left[\frac{RT}{V_m^V} - \left(\frac{\partial p}{\partial n_i} \right)_{T,V,n_j[i]} \right] dV_m^V - \ln Z^V$$

$$\ln \hat{\phi}_i^l = \ln \frac{\hat{f}_i^l}{px_i} = \frac{1}{RT} \int_0^{V_m^l} \left[\frac{RT}{V_m^l} - \left(\frac{\partial p}{\partial n_i} \right)_{T,V,n_j[i]} \right] dV_m^l - \ln Z^l$$

其中,需要使用($状态方程+混合规则)求混合物的 <math>V_m$ 及 Z <u>优点</u>:不需要计算活度,不需要标准态,免除超过临界温度 T_c 时的计算困难。

 $<u>难点</u>: 对状态方程的要求很高,其中混合物的交互作用项<math>k_{ij}$ 计算困难。

活度系数 法(yi法)

-液相逸度用活度系数计算:汽相逸度用EOS计算

$$\begin{cases} \hat{f}_i^V = P y_i \hat{\varphi}_i^V \\ \hat{f}_i^L = f_i^0 x_i \gamma_i \end{cases}$$

$$\therefore P\hat{\varphi}_i^V y_i = f_i^0 x_i \gamma_i \quad (i = 1, 2...N)$$

 f_i^0 ——标准态逸度。

以Lewis-Randall定则为标准态,即纯 液体i在体系温度,压力下的逸度。

$$f_i^0 = P_i^S \varphi_i^S \exp \int_{P_i^S}^P \frac{V_i^L dP}{RT}$$

$$\hat{\varphi}_i^V y_i P = x_i \gamma_i f_i^0 = x_i \gamma_i P_i^S \varphi_i^S \exp \int_{P_i^S}^P \frac{V_i^L dP}{RT}$$

由于基于溶液理论推导的活度系 数方程中没有考虑压力对活度系 数的影响,因此活度系数法不适 用高压汽液平衡的计算。

低中压下
$$\hat{\boldsymbol{\varphi}}_{i}^{V} y_{i} p = x_{i} \gamma_{i} p_{i}^{s} \boldsymbol{\varphi}_{i}^{s}$$

1) 完全理想系: 汽相—理想气体, 液相—理想液体

$$\hat{\boldsymbol{\varphi}}_i^V = 1 \qquad \boldsymbol{\varphi}_i^S = 1 \qquad \boldsymbol{\gamma}_i = 1$$

$$y_i P = x_i P_i^S$$

$$py_i\hat{\boldsymbol{\varphi}}_i^V = p_i^s \boldsymbol{\varphi}_i^s \boldsymbol{\gamma}_i \boldsymbol{x}_i$$

2) 部分理想系: 汽—理想气体, 液相—非理想溶液

3) 非理想系:

中低压、极性强
$$py_i\hat{\boldsymbol{\varphi}}_i^V = p_i^s \boldsymbol{\varphi}_i^s \boldsymbol{\gamma}_i \boldsymbol{x}_i$$

中高压、极性强
$$py_i\hat{\varphi}_i^V = p_i^s\varphi_i^s\gamma_ix_i \exp\int_{P_i^s}^P \frac{V_i^LdP}{RT}$$

VLE两种算法的比较:

1) 状态方程法

$$\hat{\varphi}_i^V y_i = \hat{\varphi}_i^L x_i$$

$$(i = 1, 2...N)$$

特点

- 1)适用于任何压力的 VLE,包括高压
- 2) 不适合强极性,缔合体系
- 3)选择既适合汽相又适合液相的EOS和相应的混合规则

2) 活度系数法

$$\hat{\varphi}_i^V P y_i = x_i \gamma_i P_i^S \varphi_i^S \exp \int_{P_i^S}^P \frac{V_i^L dP}{RT}$$

$$(i = 1, 2...N)$$

特点

- 1)适用于强极性,缔合体系
- 2)适用于低、中压VLE, 不适合高压
- 3)选择适合的活度系数γ_i模型,如Wilson,NRTL,UNIQUAC方程

$$\ln \hat{\varphi}_i^V = \frac{1}{RT} \int_0^P (\overline{V_i} - \frac{RT}{P}) dP \qquad \ln \gamma_1 = [A_{12} + 2(A_{21} - A_{12})x_1]x_2^2 \\ \ln \gamma_2 = [A_{21} + 2(A_{12} - A_{21})x_2]x_1^2$$

Margules eq.

$$\hat{\varphi}_i^V P y_i = x_i \gamma_i P_i^S \varphi_i^S \qquad (i = 1, 2...N)$$

$$\ln P_i^S = A_i - \frac{B_i}{T + C_i} (Antoine 方程) \qquad \ln \varphi_i^S = \frac{1}{RT} \int_0^{P_i^S} (V_i - \frac{RT}{P}) dP$$

$$\ln \varphi_i^S = \frac{1}{RT} \int_0^{P_i^S} (V_i - \frac{RT}{P}) dP$$

6.3 中低压下气液平衡

中低压下二元汽液平衡相图

对于二组分体系, N = 2; $F = N - \pi + 2$. π 至少为1,则 F最 多为3。这三个变 量通常是T, p 和组 成x。所以要表示 二组分体系状态图, 需用T, p, x三个坐 标的立体图表示。

6.3.1二元体系汽液平衡的相图

从立体图上得到平面截面图(保持一个变量为常量)

- (1) 保持温度不变,得 p-x 图 较常用
- (2) 保持压力不变,得 T-x 图 常用
- (3) 保持组成不变,得 T-p 图 不常用。

汽液平衡体系的类型——与理想体系的偏差

- 1)一般正偏差
- 2)一般负偏差
- 3)正偏差、最低恒沸点
- 4)负偏差、最高恒沸点

1)一般正偏差:

- •溶液中各组分的分压均大于Raoult定律的计算值
- •溶液的蒸汽压介于两纯组分的蒸汽压之间。
- •如甲醇-水体系、呋喃-四氯化碳体系。

2) 一般负偏差

- •溶液中各组分的分压均小于Raoult定律的计算值
- •溶液的蒸汽压介于两纯组分的蒸汽压之间。
- •如氯仿-苯体系、四氯呋喃-四氯化碳体系。

- 3)正偏差、最大压力恒沸物(最低恒沸点)
- •正偏差较大,溶液的总压在P-x曲线上出现最高点
- •最高点压力大于两纯组分的蒸汽压。
- •在T-x曲线上出现最低点,该点y=x,称为恒沸点。
- •如乙醇-水体系、乙醇-苯体系。对于这种体系,用一般精馏法是不能将此分离开的,必须要采用特殊分离法。

- 4)负偏差,最小压力恒沸物(最高恒沸点)
- •负偏差较大,溶液的总压在P-x曲线上出现最低点
- •最低点压力小于两纯组分的蒸汽压。
- •在T-x曲线上出现最高点,该点y=x,称为恒沸点。
- •如氯化氢-水体系、氯仿-丙酮体系。对于这种体系,用一般精馏法是不能将此分离开的,必须要采用特殊分离法。

2、压力变 化,则恒组 放和温度 随之相 变化;

• 工程上需解决的VLE计算类型

计算类型	独立变量	待定变量
1)等温泡点 计算	已知 $T, x_1, x_2 x_{N-1}$	求 $P_{ abla}, y_1, y_2 y_N$
2)等压泡点 计算	已知 $P, x_1, x_2 x_{N-1}$	求 $T_{\mathbb{A}}, y_1, y_2 \dots y_N$
3)等温露点 计算	已知 $T, y_1, y_2 y_{N-1}$	求 $P_{\mathbb{B}}, x_1, x_2 x_N$
4)等压露点 计算	已知 $P, y_1, y_2 y_{N-1}$	$T_{\mathrm{gg}}, x_1, x_2 \dots x_N$
5) 闪蒸计算	已知 $T,P,z_1,z_2,\ldots,z_{N-1}$	求 $x_1, x_2x_N;$ y_1, y_2y_N 和 e

$$\ln P_i^S = A_i - \frac{B_i}{T + C_i} (Antoine 方程)$$

 γ_i 一活度系数模型 (与T, P, x_i 有关)

Wilson方程 NRTL方程 UNIQUAC Margules方程 Van Laar方程 UNIFAC

$$\begin{cases}
Py_i \hat{\varphi}_i^V = x_i \gamma_i P_i^S \varphi_i^S & Py_i \hat{\varphi}_i^V = x_i \gamma_i P_i^S \varphi_i^S \\
\sum y_i = 1 & \sum x_i = 1
\end{cases}$$
(i=1, 2.....N)

6.3.2 低压下泡、露点计算

- ▶典型的汽液平衡计算为<mark>泡点计算和露点</mark>计算,这是精馏过程逐板 计算中需反复进行的基本运算内容。
- ▶精馏过程大多在<mark>常压或低压</mark>下操作,因此研究与解决低压下的汽 液平衡计算具有一定的实际意义。

$$\hat{\phi}_{i}^{V} P y_{i} = x_{i} \gamma_{i} P_{i}^{S} \phi_{i}^{S} \exp \int_{P_{i}^{S}}^{P} \frac{V_{i}^{L} dP}{RT} (i = 1, 2...N)$$

低压下的简化:

1) 汽相为理想气体,即
$$\hat{\boldsymbol{\varphi}}_i^V = 1$$
 $\boldsymbol{\varphi}_i^s = f_i^s / p_i^s = 1$

$$2) \quad \exp \int_{p_i^s}^p \frac{V_i^L}{RT} dp = 1$$

$$py_i = p_i^s \gamma_i x_i$$

$$py_i = p_i^s \gamma_i x_i$$

1) 纯组分的饱和蒸汽压 P_i 由Antoine方程等饱和蒸汽压方程求

$$\ln P_i^s = A_i - \frac{B_i}{T + C_i}$$

- 2) 活度系数:
- ①当液相的分子间作用力差异较小时,液相可视为理想溶液

$$\gamma_i = 1$$
 $py_i = p_i^s x_i$

②液相分子间的相互作用力差异较大时,液相不能视为理想溶液 $\gamma_i \neq 1$,活度系数用第四章由wilson或Van Laar方程求得。

Case1 已知系统的泡点温度T下的液相组成 $\{x_i\}$, 计算泡点压力p和气相组成{v;}

$$y_i p = \gamma_i x_i p_i^s$$

>对于泡点压力的计算:
$$p = \sum \gamma_i x_i p_i^s$$
 $y_i = \frac{\gamma_i x_i p_i^s}{p}$

- Ex. 6.1 在30℃下, 求组成为 x_1 =0.3的两组分混合物的泡点压力,已知: $p_1^s = 0.380 \times 10^5 Pa$; $p_2^s = 0.042 \times 10^5 Pa$; $\gamma_1^{\infty} = 6.65$; $\gamma_2^{\infty} = 6.01$

解: a)假设上述混合物为理想溶液,则有
$$\gamma_1 = \gamma_2 = 1$$

$$p = x_1 p_1^s + x_2 p_2^s = (0.3 \times 0.38 + 0.7 \times 0.042) \times 10^5 = 0.1434 \times 10^5 Pa$$

$$y_1 = x_1 p_1^s / p = 0.3 \times 0.38 / 0.1434 = 0.7950$$

$$y_2 = x_2 p_2^s / p = 0.7 \times 0.042 / 0.1434 = 0.2050$$

b)若为非理想溶液

采用Margules方程: $\ln \gamma_1^{\infty} = A$, $\ln \gamma_2^{\infty} = B$; A = 1.8946, B = 1.7934

$$\ln \gamma_1 = x_2^2 \left[A + 2x_1 \left(B - A \right) \right] = 0.7^2 [1.8946 + 2 \times 0.3(1.7934 - 1.8946)] = 0.8986, \ \gamma_1 = 2.4562$$

$$\ln \gamma_2 = x_1^2 \left[B + 2x_2 \left(A - B \right) \right] = 0.3^2 \left[1.7934 + 2 \times 0.7 \left(1.8946 - 1.7934 \right) \right] = 0.1742, \ \gamma_2 = 1.1902$$

$$p = \gamma_1 x_1 p_1^s + \gamma_2 x_2 p_2^s = 2.4562 \times 0.3 \times 0.380 \times 10^5 + 1.1902 \times 0.7 \times 0.042 \times 10^5 = 0.3150 \times 10^5 Pa$$

$$y_1 = \gamma_1 x_1 p_1^s / p = 2.4562 \times 0.3 \times 0.380 \times 10^5 / 0.3150 \times 10^5 = 0.8889$$

$$y_2 = \gamma_2 x_2 p_2^s / p = 1.1902 \times 0.7 \times 0.042 \times 10^5 / 0.3150 \times 10^5 = 0.1111$$

Ex.6.2 在77.6℃和1.013bar下,苯(1)和环己烷(2)以组成为 x_1 =0.525的共沸物,已知 p_1 \$=0.993 bar, p_2 \$=0.980 bar,用van Laar方程计算p-x-y关系图? $py_i = x_i \gamma_i p_i^s$

解: 在共沸点时, $x_i = y_i$ $\gamma_i = p / p_i^S$ $\gamma_1 = \frac{1.013}{0.993} = 1.020$; $\gamma_2 = \frac{1.013}{0.980} = 1.034$

$$A = \ln \gamma_1 \left(1 + \frac{x_2 \ln \gamma_2}{x_1 \ln \gamma_1} \right)^2 = \ln 1.02 \left(1 + \frac{0.475 \ln 1.034}{0.525 \ln 1.02} \right)^2 = 0.1265$$

$$B = \ln \gamma_2 \left(1 + \frac{x_1 \ln \gamma_1}{x_2 \ln \gamma_2} \right)^2 = \ln 1.034 \left(1 + \frac{0.525 \ln 1.02}{0.475 \ln 1.034} \right)^2 = 0.0915$$

因此有,
$$\ln \gamma_1 = 0.1265 \left(1 + 1.3825 \frac{x_1}{1 - x_1} \right)^{-2}$$
 $\ln \gamma_2 = 0.0915 \left(1 + 0.7233 \frac{1 - x_1}{x_1} \right)^{-2}$

最终有,
$$p = \sum x_i \gamma_i p_i^s$$
 $y_i = \frac{x_i \gamma_i p_i^s}{p}$

x_1	γ_1	γ_2	\mathcal{Y}_1	<i>p</i> (bar)
0.00001	1.1348	1.0000	0.0000	0.9800
0.1	1.0997	1.0016	0.1100	0.9926
0.2	1.0724	1.0061	0.2126	1.0017
0.3	1.0511	1.0127	0.3107	1.0079
0.4	1.0348	1.0213	0.4063	1.0116
0.5	1.0225	1.0313	0.5012	1.0130
0.525	1.0200	1.0340	0.5249	1.0131
0.6	1.0135	1.0425	0.5964	1.0125
0.7	1.0071	1.0548	0.6930	1.0101
0.8	1.0030	1.0678	0.7920	1.0061
0.9	1.0007	1.0815	0.8940	1.0003
0.99999	1.0000	1.0958	1.0000	0.9930

例. 采用Wilson方程计算正戊醇 (1)—正己烷 (2) 溶液的活度系数,其中:

$$g_{12} - g_{11} = 1718.3$$
cal/mol $g_{21} - g_{22} = 188.6$ cal/mol

假设理想气体, 计算 x_{Edg} = 0.2的溶液在30℃下的压力p:

$$V_{m1} = 109.2 \text{cm}^3/\text{mol}$$
 $V_{m2} = 132.5 \text{cm}^3/\text{mol}$ $p_1^s = 3.23 mmHg$ $p_2^s = 187.1 mmHg$

解:对于由理想气体和真实液体溶液构成的汽液相平衡体系,有:

$$y_1 p = x_1 \gamma_1 p_1^s$$
 $y_2 p = x_2 \gamma_2 p_2^s$

由上两式可得: $p = x_1 \gamma_1 p_1^s + x_2 \gamma_2 p_2^s$

$$\lambda_{12} = \frac{V_2^L}{V_1^L} \exp\left(-\frac{\left(g_{12} - g_{11}\right)}{RT}\right) = \frac{132.5}{109.2} \exp\left(-\frac{1718.3}{1.987 \times 303.15}\right) = 0.070$$

$$\lambda_{21} = \frac{V_1^L}{V_2^L} \exp \frac{-(g_{21} - g_{22})}{RT} = \frac{109.2}{132.5} \exp \frac{-166.6}{1.987 \times 303.15} = 0.625$$

$$\ln \gamma_1 = -\ln(x_1 + x_2 \lambda_{12}) + x_2 \left(\frac{\lambda_{12}}{x_1 + x_2 \lambda_{12}} - \frac{\lambda_{21}}{x_2 + x_1 \lambda_{21}} \right) \qquad \gamma_1 = 2.831$$

$$= \ln\left(0.2 + 0.8 \times 0.07\right) + 0.8 \left(\frac{0.07}{0.2 + 0.8 \times 0.07} - \frac{0.625}{0.8 + 0.2 \times 0.625}\right) = 1.0408$$

$$\ln \gamma_2 = -\ln(x_2 + x_1 \lambda_{21}) + x_2 \left(\frac{\lambda_{12}}{x_1 + x_2 \lambda_{12}} - \frac{\lambda_{21}}{x_2 + x_1 \lambda_{21}} \right) \qquad \gamma_2 = 1.176$$

$$= \ln\left(0.8 + 0.2 \times 0.625\right) + 0.2 \left(\frac{0.07}{0.2 + 0.8 \times 0.07} - \frac{0.625}{0.8 + 0.2 \times 0.625}\right) = 0.1619$$

$$y_1 p = x_1 \gamma_1 p_1^s$$
 $y_1 = \frac{x_1 \gamma_1 p_1^s}{p} = \frac{0.2 \times 2.831 \times 3.23}{177.8} = 0.0103$

$$p = x_1 \gamma_1 p_1^s + x_2 \gamma_2 p_2^s = 0.2 \times 2.831 \times 3.23 + 0.8 \times 1.176 \times 187.1 = 177.8 mmHg$$

Case2 已知露点温度T下的气相组成 $\{y_i\}$,计算露点压力p和液相 组成 {x;} $y_i p = \gamma_i x_i p_i^s$

对于理想溶液,
$$\gamma_1 = \gamma_2 = 1$$
, 可得式
$$p = \frac{1}{\sum_i \frac{y_i}{\gamma_i p_i^s}} \qquad \text{化简为 } p = \frac{1}{\sum_i \frac{y_i}{p_i^s}}$$

于是有 $x_i = \frac{y_i p}{p_i^s}$ 无需进行迭代计算

解: 在60°C时 $p_1^s = 1.419 \times 10^5 Pa$; $p_2^s = 0.519 \times 10^5 Pa$

$$p = \frac{1}{\sum_{i} \frac{y_{i}}{p_{i}^{s}}} = \frac{1}{\frac{y_{1}}{p_{1}^{s}} + \frac{y_{2}}{p_{2}^{s}}} = \frac{1}{\frac{0.3}{1.419} + \frac{0.7}{0.519}} = 0.641 \times 10^{5} Pa$$

$$x_1 = \frac{y_1 p}{p_1^s} = \frac{0.3 \times 0.641}{1.419} = 0.1355$$
 $x_2 = \frac{y_2 p}{p_2^s} = \frac{0.7 \times 0.641}{0.519} = 0.8645$

> 对于非理想溶液:

$$y_i p = \gamma_i x_i p_i^s$$

$$x_i = \frac{y_i p}{\gamma_i p_i^s}$$

$$p = \frac{1}{\sum_{i} \frac{y_{i}}{\gamma_{i} p_{i}^{s}}}$$

$$\gamma_i = \gamma_i(T, x_{1,}, x_2, \cdots,)$$

Case3 已知泡点压力p下的液相组成 $\{x_i\}$,计算泡点温度T和气相组成 $\{y_i\}$

$$y_i p = \gamma_i x_i p_i^s$$

$$1.T_i^s = \frac{B_i}{A_i - \ln P} - C_i$$

2.温度初值
$$T = \sum x_i T_i^s$$

$$y_i = \frac{\gamma_i x_i p_i^s}{p}$$

3.T怎么调整?

$$\sum_{i} y_{i} > 1, \quad 则T \downarrow$$

$$\sum_{i} y_{i} < 1, \quad 则T \uparrow$$

Case4 已知露点压力p和气相组成 $\{y_i\}$,计算露点温度T和液相组成 $\{x_i\}$

$$y_i p = \gamma_i x_i p_i^s$$

✓饱和蒸汽压的比值与温度的相关性较弱

将式
$$p = \frac{1}{\sum_{i} \frac{y_{i}}{\gamma_{i} p_{i}^{s}}}$$
 两边乘以 p_{j}^{s} 得

$$p_j^s = p \sum_i \frac{y_i}{\gamma_i} \left(\frac{p_j^s}{p_i^s} \right)$$

温度以Antoine方程表示: $T = \frac{B_j}{A_j - \ln p_j^s} - C_j$

Home Work

5.8 5.10

6.3.3 中压下泡、露点计算

$$\hat{\varphi}_i^V P y_i = x_i \gamma_i P_i^S \varphi_i^S \exp \int_{P_i^S}^P \frac{V_i^L dP}{RT}$$

中压下的简化

$$\hat{\boldsymbol{\varphi}}_{i}^{V} P y_{i} = x_{i} \gamma_{i} P_{i}^{S} \boldsymbol{\varphi}_{i}^{S}$$

$$\hat{\boldsymbol{\varphi}}_{i} = \boldsymbol{\varphi}(T, P, y_{1}, y_{2}, \dots, y_{N-1})$$

$$\gamma_{i} = \gamma(T, x_{1}, x_{2}, \dots, x_{N-1})$$

$$P_{i}^{sat} = f(T)$$

与低压计算的最大不同:要计算 选度系数; 计算 逸点、露点压力 需要试差。 其他步骤相同。

- 1)已知T,可得到各组分的 P_i^S
- 2)已知 x_i ,选用合适的 $y_i \sim x_i$ 关系式,求得 y_i 。
- 3) 求 $\hat{\varphi}_{i}^{V}$, φ_{i}^{S} 需要P,:: 需假设P,再试差.

$$y_i = \frac{\gamma_i x_i P_i^S \varphi_i^S}{P \hat{\varphi}_i^V} \qquad \sum_{i} y_i = 1?$$

4.露点温度计算—— 已知 P, y_i, 求T, x_i

• 方法与前三种差不多。

➤ 已知泡点温度T和液相组成x, 求泡点压力p和气相组成 y:

$$py_i \Phi_i = x_i \gamma_i p_i^s$$

$$p = \sum_{i} \frac{x_{i} \gamma_{i} p_{i}^{s}}{\Phi_{i}}$$

$$y_i = \frac{x_i \gamma_i p_i^s}{\Phi_i p}$$

 \triangleright 已知露点温度T下的气相组成y,求露点压力p和液相组成x.

$$py_i \Phi_i = x_i \gamma_i p_i^s$$

 \triangleright 已知泡点压力p下的液相组成x,求泡点温度T和气相组成y.

$$py_i \Phi_i = x_i \gamma_i p_i^s$$

$$y_i = \frac{x_i \gamma_i p_i^s}{\Phi_i p}$$

$$p_{j}^{s} = \frac{p}{\sum_{i} \frac{x_{i} \gamma_{i}}{\Phi_{i}} \left(\frac{p_{i}^{s}}{p_{j}^{s}}\right)}$$

已知露点压力p下的气相组成y,求露点温度T和液相组成x.

$$py_i\Phi_i = x_i\gamma_i p_i^s$$

$$x_i = \frac{y_i \Phi_i p}{\gamma_i p_i^s}$$

$$p_{j}^{s} = p \sum_{i} \frac{y_{i} \Phi_{i}}{\gamma_{i}} \left(\frac{p_{j}^{s}}{p_{i}^{s}} \right)$$

$$T = \frac{B_j}{A_i - \ln p_i^S} - C_j$$

Example 6.5

计算液相组成为 x_1 =0.4,温度分别为311.65K和411.65K下甲醇(1)-苯(2) 溶液的泡点压力,以及与其共存的气相组成.

Parameters for methanol (1) -- benzene (2) system

1,

		, , , , , , , , , , , , , , , , , , ,
Parameters	methanol (1)	benzene (2)
Antoine constant A	16.4948	14.1603
Antoine constant B	3593.39	2948.78
Antoine constant C	-35.2249	-44.5633
$p_{\rm c}/{\rm Pa}$	8100000	4890000
$V_{\rm c}$ / m ³ •mol ⁻¹	0.000118	0.000259
$T_{\rm c}$ / K	512.6	562.1
$Z_{ m c}$	0.224	0.271
ω	0.559	0.212
Margules parameters	2.1873	1.6654
Van Laar parameters	2.2350	1.6871
Wilson parameters	7187.6873	823.5087
NRTL parameters	3351.6647	4813.0347
α_{12}	0.5011	
UNIQUAC parameters	-310.3963	4639.0050
Surface area parameters q	1.4320	2.4000
Volumetric parameters r	1.4311	3.1878
Molar volume of liquid V_m / m ³ ·mole ⁻¹	0.00004073	0.00008941

液体活度计算模型

Margules, van Laar, Wilson, NRTL, UNIQUAC

ightharpoonup 在 x_1 =0.4000和T=311.65K的条件下,采用不同方法的计算结果:

Margules方程: y_1 =0.5598, y_2 =0.4402, p=44532.82 Pa

van Laar方程: y_1 =0.5571, y_2 =0.4429, p=44447.95 Pa

Wilson方程: y_1 =0.5548, y_2 =0.4452, p=44548.76 Pa

NRTL方法: y_1 =0.5555, y_2 =0.4445, p=44493.83 Pa

UNIQUAC方法: y_1 =0.5557, y_2 =0.4443, p=44467.98 Pa

▶ 在温度为411.65K的条件下,采用不同方法的计算结果:

Margules方程: y_1 =0.6651, y_2 =0.3349, p=1184743.59 Pa

van Laar方程: y_1 =0.6626, y_2 =0.3374, p=1181078.64 Pa

Wilson方程: y_1 =0.6668, y_2 =0.3332, p=1111502.58 Pa

NRTL方法: y_1 =0.6596, y_2 =0.3404, p=1102959.42 Pa

UNIQUAC方法: y_1 =0.6692, y_2 =0.3308, p=1108413.53 Pa

6.3.4 烃类系统的K值法和闪蒸计算

烃类系统的K值法

- K值法就是用 $y_i=K_ix_i$ 描述汽液平衡关系的方法。
- K_i 为汽液平衡比 $K_i = \frac{y_i}{x_i}$
- · K_i并不是常数,为何要引入K值法?
- 描述石油化工中的烃类系统的汽液平衡时非常简便。

• 烃类系统的混合物,接近理想混合物 $\gamma_{i}=1$, $\hat{\boldsymbol{\rho}}_{i}^{V}=\boldsymbol{\rho}_{i}$; 而且石油化工涉及的汽液 平衡,绝大多数压力不大高

$$\therefore K_i = \frac{y_i}{x_i} = \frac{p_i^s \varphi_i^s}{p \varphi_i}$$

- · 即K_i值与x_i,y_i无关,仅与T、p有关。
- 根据德一普列斯特(De-Priester)的 p-T-K图,
 查得K,用y_i=K_ix_i即可得到y_i。
- Ki值法是的简化的泡露点计算,满足工程需要。

6.3.4 烃类系统的K值法和闪蒸计算

■闪蒸计算

- 闪蒸:液体混合物的压力降低至泡点与露点压力之间,会出现部分汽化的现象。
- 闪蒸是一种单级平衡分 离过程。
- 闪蒸计算既要满足相平 衡,又要满足物料平衡。

Figure 10.1 Pxy diagram for acetonitrile(1)/nitromethane(2) at 75°C as given by Raoult's law.

等温闪蒸计算

在T、P条件下, 总组成为zi的混合物分 为相互成平衡的汽、 液两相,闪蒸计算的 液两相,闪蒸计算的 目的是确定汽、液相 组成(yi, xi)及汽化分 率e。

汽化分率
$$e = \frac{V}{F}$$
 液化分率 $l = \frac{I}{F}$

$$e+l=1$$

■ 1) 组分i的物料平衡方程

$$Fz_i = x_i L + y_i V$$

■ 2) 组分i的相平衡方程

$$y_i = K_i x_i \quad (i = 1, 2, ... N)$$

■ 3)组分归一方程

$$\sum z_{F_i} = \sum x_i = \sum y_i = 1$$

- 汽化分率 $e = \frac{V}{F}$
- ■联立求解

三类闪蒸计算

6.4 汽液平衡数据的热力学一致性检验

- ●实验测定的T、P、y、x汽液平衡数据,会产生测定误差,数据是否可靠需用Gibbs-Duhem方程来检验判断。
- ●若实验数据与Gibbs-Duhem方程符合,则称此汽液平衡数据具有热力学一致性。
 - 1.积分检验法(面积检验法)
 - 2. 微分检验法(点检验法)

对于敞开、均匀体系的Gibbs-Duhem方程:

$$\left(\frac{\partial G}{\partial T}\right)_{p,x} dT + \left(\frac{\partial G}{\partial p}\right)_{T,x} dp - \sum_{i=1}^{N} x_i d\overline{G}_i = 0$$

1.积分检验法(面积检验法)

1) 恒温汽液平衡数据

$$x_1 d \ln \gamma_1 + x_2 d \ln \gamma_2 = 0$$
 (1)

对(1)式积分可得:

$$\int_{x_1=0}^{x_1=1} \ln \frac{\gamma_1}{\gamma_2} dx_1 = 0$$
 (2)

以 $\ln \left(\frac{\gamma_1}{\gamma_2} \right)$ 对 x_1 作图,总面积应为 **0**

即当 $S_A = S_B$ 时,VLE数据满足热力学一致性

事实上,由于实验误差, S_A 不可能完全等于 S_B

对于中等非理想体系,只要:

$$\left|\frac{S_A - S_B}{S_A + S_B}\right| < 0.02$$

即可认为等温汽液平衡数据符合热力学一致性。

2) 等压汽液平衡数据

$$\int_{x_1=0}^{x_2=1} \ln \frac{\gamma_1}{\gamma_2} dx_1 = -\int_{x_1=0}^{x_2=1} \frac{H^E}{RT^2} dT$$

由于缺乏HE数据,Herington推荐半经验方法:

$$D = 100 \times \left| \frac{S_A - S_B}{S_A + S_B} \right|$$

$$J = 150 \times \frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{min}}}$$

$$D = 100 \times \frac{S_A - S_B}{S_A + S_B}$$

$$T_{\text{max}}, T_{\text{min}}$$
—最高、最低沸点

$$J = 150 \times \frac{T_{\text{max}} - T_{\text{min}}}{T}$$
 当 $D - J < 10$ 时,即满足一致性

面积检验法的缺点:由于全浓度范围内,实验 误差相互抵消,造成虚假现象。

2. 微分检验法(点检验法)

点检验法是以实验数据作出GE/RT~x₁曲线为基础,进行的逐点检验。 精度比面积检验法高。

对于二元系:

$$\frac{G^E}{RT} = x_1 \ln \gamma_1 + x_2 \ln \gamma_2$$

$$a = \frac{G^E}{RT} + x_2 \frac{d(G^E/RT)}{dx_1}$$
$$b = \frac{G^E}{RT} - x_1 \frac{d(G^E/RT)}{dx_1}$$

经推导可得: $a = \ln \gamma_1$ $b = \ln \gamma_2$ ①

- •由(1)式截距a,b得到的 γ_1 γ_2 为热力学检验值,如果实验数据与之相符,则称该VLE实验数据符合热力学一致性。
- •对每一点实验数据均要按以上方法检验。

- •需要指出的是: 热力学一致性是判断实验数据可靠性的必要条件, 但不是充分条件。
- •即符合热力学一致性的数据,不一定是正确可靠的
- •但不符合热力学一致性的数据,一定是不正确可靠的

6.5 液液平衡

- ❖ 气体能够以任何比例实现互溶,而液体不具有该性质;
- ❖ 两个稳定液相;
- ❖ 液液萃取.

6.5.1 LLE phase diagrams液液平衡相图

- ❖ 两种液体混合,混合物呈现单相或两相;
- ❖ 对于两组分系统,自由度最大可以为3. 如果忽略压力,则自由度为2;
- ❖ 混合物的状态可以采用T~ x_1 图描述.

> 两组分系统

(1) 具有UCST的系统 (上临界溶解温度), 如: 苯甲酰胺/水系统:

- √ 低温下,两组分部分互溶,并 形成水相和油相;
- ✓随着温度增加,苯甲酰胺在水中的溶解度沿着DAU曲线增加;
- ✓在相同温度下,水在苯甲酰胺中的溶解度沿着EBU曲线增加;
- ✓随着温度继续增加, 最终达到U点, 混合物成为均相.

(2) 具有LCST的系统 (下临界溶解温度), 如: 三乙基胺/ 水系统:

- \checkmark 在温度T, 过两相区的水平 线与临界溶解温度线相交 于点A和点B, 交点分别表 示两相的组分 x_1^{α} 和 x_1^{β} ;
- ✓点L对应的温度T_L为下 临界溶解温度(LCST).

(3) 具有UCST和LCST的系统 (下临界溶解温度), 如: 烟碱/水系统:

- ✓ 岛形曲线所包围的是两 液相共存区;
- ✓左侧曲线UAL表示组分1 在组分2中的溶解度;
- ✓右侧曲线UBL代表组分1 在组分2中的溶解度.

(4) 完全互溶系统,如: 乙醇水溶液系统

> 三组分系统

✓三角坐标:

• 任意点到三边的平行距离等于等边 $CH_3COOH(C)$ 三角形的边长. 如果设边长为1, 则 满足组分约束条件; • 三个顶点代表纯组分; • 曲线APB代表溶解度; $C_6H_6(A)$ $H_2O(B)$ x(B)

 $C_6H_6(A)/H_2O(B)/CH_3COOH(C)$ 三组分系统平衡相图

> 两对部分互溶系统

6.5.2 Solution stability 溶液的稳定性

- ▶ 自发过程的条件: $\Delta G \leq 0$
- ▶ 曲线下凹处,有:

$$\frac{d^2G_{\rm m}}{dx_1^2} > 0$$

▶ 曲线隆起处,表示系统不稳定,相 分离

$$\frac{d^2G_{\rm m}}{dx_1^2} < 0$$

两组分溶液的稳定度

$$\left(\frac{d^2G_m}{dx_1^2}\right)_{T,p} > 0$$
 混合物为稳态均一单相溶液

$$\left(\frac{d^2G_m}{dx_1^2}\right)_{T,p} < 0$$
 溶液将自发分离为两相

$$\left(\frac{d^2G_m}{dx_1^2}\right)_{T,P} = 0$$
 混合物位于岛形曲线的边界线上,即处于一种相变过渡状态

例6.9 证明理想溶液是稳定的.

证明: 若溶液将形成两相体系,则:

$$\frac{\mathrm{d}^2 G_m}{\mathrm{d}x_1^2} < 0$$

理想溶液的Gibbs函数与组成的关系如下:

$$G_{m} = G_{m} = x_{1}G_{m1} + x_{2}G_{m2} + x_{1}RT \ln x_{1} + x_{2}RT \ln x_{2}$$

$$\left(\frac{\partial G_{m}}{\partial x_{1}}\right)_{T,p} = G_{m1} - G_{m2} + RT \ln x_{1} + RT - RT \ln x_{2} + RT$$

$$\left(\frac{\partial^{2} G_{m}}{\partial x_{1}^{2}}\right)_{T} = \frac{RT}{x_{1}} + \frac{RT}{x_{1}} = \frac{2RT}{x_{1}} > 0$$

因此,理想溶液时稳定的,且不能形成两相或多相体系。

6.5.3 L-L Equilibrium Calculations 液液平衡计算

- ▶相平衡下有: $(\gamma_i x_i)^{\alpha} = (\gamma_i x_i)^{\beta}$
 - ✓因此,对于多组分系统,有如下关系式:

$$(\gamma_i x_i)^{\alpha} = (\gamma_i x_i)^{\beta} = (\gamma_i x_i)^{\pi} = \cdots \quad i = 1, 2, 3, \cdots$$

若
$$(\gamma_i)^{\alpha} = (\gamma_i)^{\beta} = (\gamma_i)^{\pi} = \cdots = 1$$

则
$$x_i^{\alpha} = x_i^{\beta} = x_i^{\pi} = \cdots$$

* 如果混合物为理想溶液,则各组分形成均相溶液,即:溶液为单相体系。

(1) LLE calculation for binary system 二元液液平衡的计算

未知量: x_1^{α} , x_1^{β} , x_2^{α} , x_2^{β}

已知方程:
$$x_1^{\alpha} \gamma_1^{\alpha} = x_1^{\beta} \gamma_1^{\beta}$$
 $x_2^{\alpha} \gamma_2^{\alpha} = x_2^{\beta} \gamma_2^{\beta}$

$$x_1^{\alpha} + x_2^{\alpha} = 1$$
 $x_1^{\beta} + x_2^{\beta} = 1$

- a. 选择活度模型,解方程,进而获得相平衡时的各相组成;
- b. 实验测量液相组成, 计算活度模型中的常量, 进而计算各组分的活度, 利用上述关系式计算相平衡时其他相的组成。

(2) 对于三元系统:

$$F = C - \pi + 2 = 3 - 2 + 2 = 3$$

$$x_1^{\alpha} \gamma_1^{\alpha} = x_1^{\beta} \gamma_1^{\beta}$$

$$x_2^{\alpha} \gamma_2^{\alpha} = x_2^{\beta} \gamma_2^{\beta}$$

$$x_1^{\alpha} + x_2^{\alpha} + x_3^{\alpha} = 1$$

$$x_3^{\alpha} \gamma_3^{\alpha} = x_3^{\beta} \gamma_3^{\beta}$$

$$x_1^{\beta} + x_2^{\beta} + x_3^{\beta} = 1$$

8个变量: x_1^{α} 、 x_1^{β} 、 x_2^{α} 、 x_2^{β} 、 x_3^{α} 、 x_3^{β} 、T、P.

如果各相中的T, p和 x_i 都为已知量,则可求得另外5个未知量.