Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного

образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатик	са и управление»	
КАФЕДРА	ИУК4 «Программн	ое обеспечение ЭВ	Μ,
информационн	ые технологии»		
	Лабораторн : для решения ура А: «Моделирование»		пического типа»
Выполнил: студ	дент гр. ИУК4-62Б	(подпись) (подпись)	Калашников А.С. (Ф.И.О.) Никитенко У.В. (Ф.И.О.)
Дата сдачи (заш	циты):		
Результаты сдач	` _		
	- Балльная	оценка:	

- Оценка:

Цель работы: сформировать практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений и визуализации результатов численного или приближенно-аналитического решения ДУЧП2 гиперболического типа на основе сравнения результатов.

Постановка задачи

Вариант 28

Найти решение задачи:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + f(x, t),$$

$$u(x, 0) = \varphi(x), \quad \frac{\partial u}{\partial t} \bigg|_{t=0} = \psi(x), \quad 0 \leqslant x \leqslant 1,$$

$$u(0, t) - \frac{\partial u}{\partial x} \bigg|_{x=0} = \alpha(t), \quad \frac{\partial u}{\partial x} \bigg|_{x=1} = \beta(t), \quad 0 \leqslant t \leqslant 1.$$

используя различные разностные схемы:

- явную схему порядка $O(h^2 + \tau)$ с аппроксимацией производных в граничных условиях с порядком $O(h^2)$;
- явную схему порядка $O(h^2 + \tau^2)$ с аппроксимацией производных в граничных условиях с порядком $O(h^2)$;;
- схему с весами порядка $O(h+\tau)$ и $O(h+\tau^2)$ при $\sigma=0, \sigma=1/2, \sigma=1/4$ (с аппроксимацией производных в граничных условиях с порядком O(h)).

По решению задачи должен быть представлен отчет, содержащий

- 1) Алгоритм решения задачи.
- 2) Тестирование алгоритма на решениях, для которых разностная схема точно аппроксимирует дифференциальную задачу.
- 3) Тестирование алгоритма, например, на решениях $u(x,t) = x^3 + t^3$, sin(2t+1)*cos(2x), на которых разностная схема неточно аппроксимирует дифференциальную задачу.
- 4) Таблицы решения на «крупной» сетке независимо от шагов по t и x, с которыми строится решение, следующего вида (N=5,10,20).
- 5) Таблицы, характеризующие точность решения и внутреннюю сходимость.

Ход решения с явной разностной схемой $O(h^2 + au)$

$$\frac{u_i^{k+1} - 2u_i^k + u_i^{k-1}}{\tau^2} = \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + f_i^k$$

Алгоритм решения

1. Находим u_i^0

$$u_i^0 = u(x_i, 0) = \varphi(x_i)$$

2. Находим u_i^1

$$u_i^1 = \psi(x_i) * \tau + u_i^0$$

3. Находим u_i^{k+1} из

$$\frac{u_i^{k+1} - 2u_i^k + u_i^{k-1}}{\tau^2} = L_h u_i^k + f(x_i, t_k), \quad i = \overline{1, N-1}, \quad k = \overline{1, M-1}.$$

4. Находим u_0^{k+1}

$$u_0^{k+1} = \frac{2h * \alpha(t_{k+1}) + 4u_1 - u_2}{2h + 3}$$

5. Находим u_n^{k+1}

$$1 \frac{-3u_n^{k+1} + 4u_{n-1}^{k+1} - u_{n-2}^{k+1}}{2h} = \beta(t_{k+1})$$

$$\frac{-3u_n^{k+1} + 4u_{n-1}^{k+1} - u_{n-2}^{k+1}}{2h} = \beta(t_{k+1})$$

$$-3u_n^{k+1} = 2h\beta(t_{k+1}) - 4u_{n-1}^{k+1} + u_{n-2}^{k+1}$$

$$u_n^{k+1} = \frac{2h * \beta(t_{k+1}) - 4u_{n-1}^{k+1} + u_{n-2}^{k+1}}{-3}$$

Запишем исходное выражение с использованием узловых значений:

$$\frac{u_i^{k+1} - 2u_i^k + u_i^{k-1}}{\tau^2} = Lu_h u_i^k + f(x_i, t_k)$$

$$\frac{u_i^{k+1} - 2u_i^k + u_i^{k-1}}{\tau^2} = \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + \sin(x) \frac{u_{i+1}^k - u_{i-1}^k}{2h} + f(x_i, t_k)$$

Выразим следующее значение u из предыдущих:

$$u_i^{k+1} = 2u_i^k - u_i^{k-1} + \tau^2 \left(Lu_h u_i^k + f(x_i, t_k) \right)$$

Вычислим остальные функции, подставив значение u:

$$\frac{d^2u}{dt^2} = \frac{d^2u}{dx^2} + f(x,t)$$

$$6t = 6x + f(x,t)$$

$$f(x,t) = 6t - 6x$$

$$\alpha(t) = u(0,t) - \frac{du}{dx}\Big|_{x=0} = t^3 - 3x^2 = t^3$$

$$\beta(t) = \frac{du}{dx}\Big|_{x=1} = 3$$

$$\phi(x) = u(x,0) = x^3$$

$$\psi(x) = \frac{du}{dt}\Big|_{t=0} = 0$$

Подставим эти значения в полученный код и получим следующее решение:

				0.75	
0.0 0.25 0.5 0.75	0.0 0.016 0.125 0.422	0.0 0.016 0.125 0.422	0.08 0.109 0.219 0.516	0.349 0.377 0.5 -0.182 -0.91	1.182 0.927 0.07 -0.925

Рисунок 1 – Результат аппроксимации при h = 0.25

x\t	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0	0.0	0.0	0.005	0.022	0.056	0.115	0.204	0.33	0.497	0.713	1.107
0.1	0.001	0.001	0.007	0.024	0.059	0.117	0.206	0.331	0.499	0.714	0.984
0.2	0.008	0.008	0.014	0.032	0.067	0.126	0.214	0.339	0.506	0.722	0.592
0.3	0.027	0.027	0.033	0.051	0.087	0.146	0.235	0.359	0.526	0.343	0.08
0.4	0.064	0.064	0.07	0.088	0.124	0.184	0.273	0.398	0.166	-0.151	-0.458
0.5	0.125	0.125	0.131	0.149	0.185	0.245	0.335	0.061	-0.304	-0.665	-0.987
0.6	0.216	0.216	0.222	0.24	0.276	0.336	0.027	-0.378	-0.787	-1.163	-1.49
0.7	0.343	0.343	0.349	0.367	0.403	0.064	-0.377	-0.827	-1.25	-1.63	-1.959
0.8	0.512	0.512	0.518	0.536	0.173	-0.298	-0.784	-1.249	-1.676	-2.057	-2.386
0.9	0.729	0.729	0.735	0.354	-0.141	-0.657	-1.158	-1.627	-2.056	-2.438	-2.766
1.0	1.0	1.0	0.607	0.094	-0.446	-0.977	-1.482	-1.953	-2.383	-2.765	-3.093

Рисунок 2 – Результат аппроксимации при h = 0.1

Рисунок 3 – Результат аппроксимации при h = 0.05

h				U_{exact}-U_{h}		
0.25				0.0	Ī	5.80198
0.125	l	0.01	Ī	0.48177	Ī	5.87874
0.0625	l	0.01	Ī	0.24772	Ī	5.90305
0.03125	Ī	0.01	Ī	0.12472	Ī	5.90816

Рисунок 4 – Таблица, характеризующая точность решения

Рисунок 5 – График аппроксимированной функции

2. Составим явную схему порядка $O(h^2 + \tau^2)$ с аппроксимацией производных в граничных условиях с порядком $O(h^2)$.

Для решения поставленной задачи, используя ряд Тейлора, получим:

$$u_i^1 = u_i^0 + \tau \psi(x_i) + \tau^2/2 \left(L\phi(x)|_{x=x_i} + f(x_i, 0) \right)$$
, где
$$L\phi(x)|_{x=x_i} = a(x, 0) \frac{d^2\phi(x)}{dx^2} \bigg|_{x=x_i} + b(x, 0) \frac{d\phi(x)}{dx} \bigg|_{x=x_i} + c(x, 0)\phi(x_i)$$

Подставим эти значения в полученный код и получим следующее решение:

	•	•	•	0.75	
0.0	0.0	0.0	0.085	0.331 0.312	1.016
0.5	0.125	0.113	0.154	0.301	-0.169
				-0.421 -1.161	

Рисунок 6 – Результат аппроксимации при h = 0.25

x\t	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0	0.0	0.0	0.006	0.023	0.058	0.116	0.203	0.322	0.48	0.681	1.05
0.1	0.001	0.002	0.008	0.025	0.06	0.117	0.203	0.321	0.477	0.676	0.922
0.2	0.008	0.009	0.015	0.033	0.067	0.122	0.206	0.321	0.475	0.67	0.526
0.3	0.027	0.028	0.034	0.051	0.083	0.137	0.217	0.329	0.478	0.283	0.012
0.4	0.064	0.064	0.069	0.084	0.115	0.166	0.243	0.35	0.108	-0.215	-0.527
0.5	0.125	0.123	0.126	0.139	0.167	0.215	0.287	0.003	-0.367	-0.732	-1.056
0.6	0.216	0.211	0.211	0.221	0.245	0.288	-0.031	-0.443	-0.855	-1.232	-1.559
0.7	0.343	0.334	0.33	0.335	0.354	0.006	-0.442	-0.895	-1.319	-1.7	-2.028
0.8	0.512	0.498	0.488	0.487	0.114	-0.364	-0.852	-1.318	-1.746	-2.127	-2.455
0.9	0.729	0.708	0.691	0.297	-0.206	-0.726	-1.228	-1.698	-2.126	-2.507	-2.835
1.0	1.0	0.97	0.558	0.033	-0.513	-1.047	-1.553	-2.024	-2.453	-2.834	-3.161

Рисунок 7 – Результат аппроксимации при h=0.1

x \ t	0.0	0.05	0.1	0.15		0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1.0
0.0	0.0	0.0	0.001	0.003			0.026	0.042	0.063	0.09	,		0.212			0.412	,	0.598	0.708	0.832	1.032
0.05	0.0	0.0	0.001	0.003	0.008	0.015	0.027	0.042	0.063	0.09	0.123	0.163	0.212	0.269	0.335	0.411	0.498	0.597	0.707	0.83	0.967
0.1	0.001	0.001	0.002	0.004	0.009	0.016	0.028	0.043	0.064	0.09	0.124	0.164	0.212	0.269	0.335	0.411	0.498	0.596	0.706	0.829	0.767
0.15	0.003	0.004	0.005	0.007	0.011	0.019	0.03	0.045	0.066	0.092	0.125	0.166	0.214	0.27	0.336	0.412	0.498	0.596	0.706	0.63	0.502
0.2	0.008	0.008	0.009	0.012	0.016	0.024	0.035	0.05	0.07	0.097	0.129	0.169	0.217	0.273	0.339	0.414	0.5	0.597	0.508	0.367	0.217
0.25	0.016	0.016	0.017	0.019	0.024	0.031	0.042	0.057	0.077	0.103	0.136	0.175	0.223	0.279	0.344	0.419	0.504	0.403	0.248	0.085	-0.071
0.3	0.027	0.027	0.028	0.03	0.035	0.042	0.053	0.068	0.088	0.114	0.146	0.185	0.232	0.287	0.352	0.426	0.313	0.146	-0.031	-0.201	-0.359
0.35	0.043	0.043	0.044	0.046	0.05	0.057	0.068	0.083	0.103	0.128	0.16	0.198	0.245	0.3	0.364	0.24	0.06	-0.129	-0.312	-0.484	-0.642
0.4	0.064	0.064	0.065	0.067	0.071	0.078	0.088	0.103	0.122	0.147	0.178	0.217	0.263	0.317	0.182	-0.008	-0.209	-0.405	-0.59	-0.763	-0.921
0.45	0.091	0.091	0.091	0.093	0.097	0.104	0.114	0.128	0.147	0.172	0.203	0.24	0.286	0.141	-0.059	-0.271	-0.479	-0.677	-0.863	-1.035	-1.193
0.5	0.125	0.125	0.125	0.126	0.13	0.136	0.146	0.16	0.179	0.203	0.233	0.27	0.117	-0.094	-0.316	-0.535	-0.745	-0.943	-1.129	-1.301	-1.459
0.55	0.166	0.166	0.165	0.167	0.17	0.176	0.185	0.199	0.217	0.241	0.271	0.109	-0.111	-0.343	-0.572	-0.793	-1.004	-1.202	-1.388	-1.56	-1.717
0.6	0.216	0.215	0.214	0.215	0.218	0.224	0.233	0.246	0.263	0.286	0.117	-0.11	-0.352	-0.591	-0.822	-1.044	-1.254	-1.453	-1.638	-1.81	-1.967
0.65	0.275	0.273	0.272	0.272	0.275	0.28	0.288	0.301	0.318	0.142	-0.093				-1.064			-1.694	-1.879	-2.051	-2.208
0.7	0.343	0.341	0.339	0.339	0.341	0.345	0.353	0.365	0.183	-0.059	-0.316	-0.572	-0.822	-1.064	-1.296	-1.517	-1.727	-1.925	-2.111	-2.282	-2.439
0.75	0.422	0.419	0.417	0.416	0.417	0.421	0.428	0.241	-0.007	-0.271	-0.534	-0.793	-1.044	-1.285	-1.517	-1.738	-1.948	-2.146	-2.331	-2.503	-2.66
0.8	0.512	0.508	0.506	0.504	0.504	0.507	0.315	0.062	-0.208	-0.478	-0.744	-1.003	-1.254	-1.495	-1.727	-1.948	-2.158	-2.356	-2.541	-2.712	-2.869
0.85	0.614	0.61	0.606	0.604	0.603	0.407	0.149	-0.126	-0.403	-0.676	-0.942	-1.201	-1.452	-1.693	-1.925	-2.146	-2.356	-2.553	-2.738	-2.91	-3.067
0.9	0.729	0.724	0.719	0.716	0.516	0.254	-0.026	-0.309	-0.588	-0.861	-1.128	-1.387	-1.637	-1.879	-2.11	-2.331	-2.54	-2.738	-2.923	-3.094	-3.252
0.95	0.857	0.851	0.845	0.643	0.377	0.092	-0.195	-0.48	-0.759	-1.033	-1.3	-1.559	-1.809	-2.05	-2.282	-2.502	-2.712	-2.909	-3.094	-3.266	-3.423
1.0	1.0	0.992	0.787	0.518	0.23	-0.061	-0.351	-0.637	-0.917	-1.19	-1.457	-1.716	-1.966	-2.207	-2.439	-2.659	-2.869	-3.066	-3.251	-3.423	-3.58

Рисунок 8 – Результат аппроксимации при h=0.05

h	tau	U_{exact}-U_{h}	U_{2h}-U_{h}}
0.25	0.01	0.0	5.80613
0.125	0.01	0.48162	5.88441
0.0625	0.01	0.24764	5.90915
0.03125	0.01	0.12467	5.91437

Рисунок 9 – Таблица, характеризующая точность решения

Рисунок 10 – График аппроксимированной функции

3. Составим схему с весами порядка $O(h+\tau)$ и $O(h+\tau^2)$ при $\sigma=0$, $\sigma=1/2$, $\sigma=1/4$ (с аппроксимацией производных в граничных условиях с порядком O(h)).

Алгоритм решения

1. Находим u_i^0

$$u_i^0 = u(x_i, 0) = \varphi(x_i)$$

2. Находим u_i^1

$$u_i^1 = \psi(x_i) * \tau + u_i^0$$

3. Находим u_0^{k+1}

$$u_0^{k+1} = \frac{h * \alpha(t_{k+1}) + u_1^{k+1}}{h+1}$$

$$u_0^{k+1} \frac{(h+1)}{h} - \frac{u_1^{k+1}}{h} = \alpha(t_{k+1})$$

4. Находим u_n^{k+1}

$$u_N^{k+1} = h\beta(t_{k+1}) + u_{N-1}^{k+1}$$

$$\frac{u_N^{k+1}}{h} - \frac{u_{N-1}^{k+1}}{h} = \beta(t_{k+1})$$

Так как к моменту определения решения на (k+1)-ом слое решение на предыдущих слоях (k-1) и k уже известно, систему (12) перепишем следующим образом: $\frac{u_i^1-u_i^0}{\tau}=\psi(x)\Rightarrow u_i^1=\psi(x)\tau+u_i^0$

Для решения на каждом последующем слое необходимо решить систему уравнений. Составим коэффициенты для этой системы.

$$\sigma L_h u_i^{k+1} - rac{1}{ au^2} u_i^{k+1} = G_i^{k+1}$$
, где
$$G_i^{k+1} = rac{-2u_i^k - u_i^{k-1}}{ au^2} - (1 - 2\sigma) L_h u_i^{k-1} - f(x_i, t_k)$$

Подставим значение $L_h u_i^{k+1}$ из прошлого случая:

$$\begin{split} \sigma\bigg(\frac{u_{i+1}^{k+1}-2u_i^{k+1}+u_{i-1}^{k+1}}{h^2}\bigg) - \frac{1}{\tau^2}u_i^{k+1} &= G_i^{k+1} \\ u_{i+1}^{k+1}\left(\frac{\sigma}{h^2}\right) - u_i^{k+1}\left(\frac{(2\tau^2+h^2)}{h^2\tau^2}\right) + u_{i-1}^{k+1}\left(\frac{\sigma}{h^2}\right) &= G_i^{k+1} \end{split}$$

Исходя из полученного уравнения и граничных условий, можно составить следующую систему:

$$0 \quad u_0^{k+1} \frac{(h+1)}{h} \quad -\frac{u_1^{k+1}}{h}$$

$$(\frac{\sigma}{h^2}) u_{i-1}^{k+1} \quad -\left(\frac{(2\tau^2 + h^2)}{h^2\tau^2}\right) u_i^{k+1} \qquad \left(\frac{\sigma}{h^2}\right) u_{i+1}^{k+1} = G_i^{k+1}$$

$$\dots$$

$$-\frac{u_{N-1}^{k+1}}{h} \quad \frac{u_N^{k+1}}{h} \quad 0$$

$$\beta(t_{k+1})$$

Для того, чтобы получить необходимые значения u, нужно решить эту систему. Так как матрица будет являться трёхдиагональной, воспользуемся методом прогонки.

В зависимости от значения σ разностная схема будет менять свой вид.

Вычислим значения u при $\sigma = 0$.

	0.0				
0.0	0.0	0.0	0.112	0.412	0.992
0.25	0.016	0.016	0.109	0.409	0.99
0.5	0.125	0.125	0.219	0.5	2.988
0.75	0.422	0.422	0.516	2.703	2.984
1.0	1.0	1.0	3.0	3.0	3.0

Рисунок 11 – Результат аппроксимации при h = 0.25

x \ t	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0	0.0	0.0	0.007	0.026	 0.063	0.124	0.215	0.342	0.511	0.729	1.0
0.1	0.001	0.001	0.007	0.026	0.063	0.124	0.215	0.342	0.511	0.728	1.0
0.2	0.008	0.008	0.014	0.032	0.069	0.13	0.221	0.348	0.517	0.734	2.999
0.3	0.027	0.027	0.033	0.051	0.087	0.148	0.239	0.366	0.535	2.746	2.999
0.4	0.064	0.064	0.07	0.088	0.124	0.184	0.275	0.402	2.565	2.764	2.999
0.5	0.125	0.125	0.131	0.149	0.185	0.245	0.335	2.456	2.607	2.788	2.999
0.6	0.216	0.216	0.222	0.24	0.276	0.336	2.42	2.528	2.661	2.818	2.999
0.7	0.343	0.343	0.349	0.367	0.403	2.457	2.529	2.619	2.727	2.854	2.999
0.8	0.512	0.512	0.518	0.536	2.566	2.608	2.662	2.728	2.806	2.896	2.999
0.9	0.729	0.729	0.735	2.747	2.765	2.789	2.819	2.855	2.897	2.945	2.999
1.0	1.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

Рисунок 12 – Результат аппроксимации при h = 0.1

x\t	0.0	0.05			0.2			0.35									0.8			0.95	1.0
0.0	0.0	0.0	0.001	0.003	0.008	0.016	0.027	0.043	0.064	0.091	0.125	0.166	0.216	0.275	0.343	0.422	0.512	0.614	0.729	0.857	1.0
0.05 0.1	0.0 0.001	0.001																			
0.15 0.2		0.003 0.008																			
0.25	0.016	0.016	0.016	0.019	0.023	0.031	0.042	0.058	0.079	0.106	0.14	0.181	0.231	0.29	0.358	0.437	0.527	2.628	2.741	2.865	3.0
		0.027 0.043																			
0.4	0.064	0.064 j	0.065	0.067	0.072	0.079	0.09	0.106	0.127	0.154	0.188	0.229	0.279	0.338	2.405	2.482	2.567	2.662	2.766	2.878	3.0
		0.091 0.125																			
		0.166 0.216																			
0.65	0.275	0.275	0.275	0.278	0.282	0.29	0.301	0.317	0.338	2.364	2.395	2.432	2.474	2.521	2.574	2.632	2.695	2.763	2.837	2.916	3.0
0.7 0.75		0.343 0.422																			
	0.512	0.512	0.513	0.515	0.519	0.527	2.537	2.551	2.567	2.587	2.609	2.635	2.663	2.695	2.729	2.767	2.807	2.851	2.898	2.947	3.0
		0.614 0.729						2.649 2.756													
0.95	0.857	0.857																	2.972	2.986	3.0
1.0	1.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

Рисунок 13 – Результат аппроксимации при h = 0.05

h	tau	U_{exact}-U_{h}	U_{2h}-U_{h}}
0.05	0.01	0.08206	2.4933
0.025	0.01	0.77699	2.53364
0.0125	0.01	0.65919	2.53459
0.00625	0.01	0.48118	2.54551

Рисунок 14 – Таблица, характеризующая точность решения

При $\sigma = 0$ разностная схема приобретает вид такой же, как и в пункте 1 (за исключением начальных условий, аппроксимируемых на порядок ниже).

Вычислим значения u при $\sigma = 0.5$.

x\t	0.0	0.25	0.5	0.75	1.0
0.25	0.016	0.016	0.152 0.159	0.6	1.529
			0.359		
0.75	0.422	0.422	1.027	1.827	2.9
1.0	1.0	1.0	3.0	3.0	3.0

Рисунок 15 – Результат аппроксимации при h = 0.25

x \ t	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0	0.0	0.0	0.007	0.026	0.064	0.13	0.235	0.402	0.663	1.066	1.66
0.1	0.001	0.001	0.007	0.026	0.064	0.13	0.237	0.407	0.678	1.099	1.726
0.2	0.008	0.008	0.014	0.033	0.072	0.143	0.265	0.468	0.795	1.296	2.005
0.3	0.027	0.027	0.033	0.053	0.097	0.183	0.342	0.616	1.053	1.68	2.473
0.4	0.064	0.064	0.071	0.094	0.151	0.274	0.51	0.909	1.497	2.238	3.019
0.5	0.125	0.125	0.134	0.168	0.26	0.464	0.837	1.406	2.123	2.848	3.403
0.6	0.216	0.216	0.232	0.298	0.474	0.831	1.398	2.107	2.785	3.234	3.364
0.7	0.343	0.343	0.387	0.538	0.891	1.473	2.188	2.818	3.145	3.127	2.953
0.8	0.512	0.512	0.661	1.008	1.641	2.378	2.936	3.106	2.943	2.739	2.77
0.9	0.729	0.729	1.269	1.899	2.688	3.12	3.064	2.807	2.706	2.858	3.08
1.0	1.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

Рисунок 16 – Результат аппроксимации при h = 0.1

x\t	0.0	0.05		0.15								0.55								0.95	1.0
0.0	0.0											0.167									
0.05	0.0	0.0	0.001	0.003	0.008	0.016	0.027	0.043	0.064	0.091	0.125	0.167	0.218	0.28	0.357	0.455	0.585	0.762	1.01	1.357	1.83
0.1	0.001	0.001	0.002	0.004	0.009	0.016	0.028	0.044	0.065	0.092	0.126	0.168	0.22	0.285	0.367	0.475	0.621	0.824	1.108	1.497	2.011
0.15	0.003	0.003	0.004	0.006	0.011	0.018	0.03	0.046	0.067	0.094	0.129	0.172	0.227	0.297	0.391	0.52	0.701	0.954	1.301	1.757	2.32
0.2	0.008	0.008	0.009	0.011	0.016	0.023	0.034	0.05	0.072	0.099	0.135	0.181	0.241	0.323	0.439	0.605	0.842	1.169	1.599	2.125	2.716
0.25	0.016	0.016	0.016	0.019	0.023	0.031	0.042	0.058	0.079	0.108	0.146	0.197	0.269	0.373	0.527	0.752	1.068	1.486	1.997	2.563	3.119
0.3	0.027	0.027	0.028	0.03	0.035	0.042	0.053	0.069	0.092	0.122	0.165	0.227	0.321	0.464	0.678	0.986	1.398	1.904	2.459	2.992	3.415
0.35	0.043	0.043	0.044	0.046	0.05	0.058	0.069	0.086	0.11	0.145	0.198	0.282	0.414	0.62	0.921	1.329	1.833	2.384	2.901	3.294	3.493
0.4	0.064	0.064	0.065	0.067	0.072	0.079	0.091	0.109	0.137	0.182	0.256	0.379	0.575	0.871	1.278	1.782	2.33	2.835	3.199	3.356	3.312
0.45	0.091	0.091	0.092	0.094	0.099	0.107	0.12	0.141	0.178	0.243	0.357	0.545	0.837	1.244	1.75	2.298	2.791	3.125	3.239	3.151	2.974
0.5	0.125	0.125	0.126	0.128	0.133	0.142	0.158	0.187	0.244	0.348	0.53	0.818	1.227	1.739	2.286	2.766	3.068	3.136	3.006	2.809	2.713
0.55	0.166	0.166	0.167	0.17	0.175	0.186	0.209	0.258	0.353	0.528	0.815	1.228	1.747	2.297	2.761	3.028	3.046	2.874	2.666	2.594	2.748
0.6	0.216	0.216	0.217	0.22	0.227	0.244	0.285	0.372	0.541	0.827	1.248	1.777	2.329	2.777	3.002	2.967	2.756	2.547	2.512	2.708	3.035
0.65	0.275	0.275	0.276	0.279	0.291	0.325	0.404	0.567	0.854	1.286	1.829	2.385	2.811	2.988	2.896	2.652	2.457	2.471	2.708	3.023	3.225
0.7	0.343	0.343	0.344	0.352	0.378	0.448	0.606	0.897	1.343	1.904	2.464	2.863	2.982	2.831	2.564	2.4	2.476	2.747	3.025	3.134	3.06
0.75	0.422	0.422	0.425	0.444	0.505	0.657	0.954	1.421	2.005	2.568	2.93	2.98	2.768	2.495	2.388	2.534	2.818	3.025	3.028	2.901	2.834
0.8	0.512	0.512	0.523	0.573	0.719	1.026	1.521	2.136	2.697	3.007	2.974	2.708	2.456	2.432	2.644	2.904	3.003	2.909	2.78	2.795	2.974
0.85	0.614	0.614	0.653	0.789	1.113	1.649	2.302	2.852	3.083	2.953	2.652	2.467	2.549	2.797	2.973	2.943	2.797	2.736	2.85	3.032	3.117
0.9	0.729	0.729	0.873	1.207	1.814	2.514	3.024	3.136	2.905	2.622	2.563	2.746	2.953	2.982	2.854	2.754	2.812	2.963	3.047	3.006	2.936
0.95	0.857	0.857	1.394	2.014	2.786	3.197	3.115	2.826	2.689	2.798	2.973	3.013	2.917	2.833	2.865	2.965	3.015	2.978	2.927	2.941	3.01
1.0	1.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

Рисунок 17 – Результат аппроксимации при h = 0.05

h	tau	U_{exact}-U_{h}	U_{2h}-U_{h}}
0.05	0.01	0.07716	2.4933
0.025	0.01	0.77699	2.53364
0.0125	0.01	0.65919	2.53459
0.00625	0.01	0.48118	2.54551

Рисунок 18 – Таблица, характеризующая точность решения

При $\sigma=0.5$ получаем неявную разностную схему с семиточечным шаблоном и точность, превосходящую $\sigma=0.$

Вычислим значения u при $\sigma = 0.25$.

				0.75	
0.0 0.25 0.5	0.0 0.016 0.125	0.0 0.016 0.125	0.124 0.124 0.124 0.276	0.493 0.511 0.873	1.358 1.447 2.14
				2.002 3.0	

Рисунок 19 – Результат аппроксимации при h=0.25

x \ t	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0	0.0	0.0	0.007	0.026	0.063	0.125	0.22	0.364	0.59	0.963	1.579
0.1	0.001	0.001	0.007	0.026	0.063	0.125	0.22	0.366	0.598	0.987	1.637
0.2	0.008	0.008	0.014	0.032	0.069	0.133	0.237	0.409	0.709	1.222	2.021
0.3	0.027	0.027	0.033	0.051	0.089	0.159	0.29	0.54	0.996	1.724	2.673
0.4	0.064	0.064	0.07	0.089	0.132	0.226	0.434	0.853	1.556	2.467	3.309
0.5	0.125	0.125	0.131	0.153	0.217	0.388	0.777	1.471	2.37	3.137	3.437
0.6	0.216	0.216	0.224	0.261	0.398	0.766	1.467	2.367	3.054	3.192	2.96
0.7	0.343	0.343	0.359	0.462	0.817	1.55	2.463	3.042	2.999	2.704	2.753
0.8	0.512	0.512	0.577	0.926	1.731	2.664	3.073	2.843	2.587	2.77	3.125
0.9	0.729	0.729	1.077	2.06	2.965	3.073	2.756	2.695	2.924	3.049	2.984
1.0	1.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

Рисунок 20 – Результат аппроксимации при h = 0.1

x \ t																			0.9 0	
0.0	0.0	0.0	0.001	0.003	0.008	0.016	0.027	0.043	0.064	0.091	0.125	0.166	0.216	0.275	0.346	0.431	0.538	0.684	0.897 1	.22 1.71
0.05 0.1																			0.905 1. 1.013 1.	
																			1.245 1.	
																			1.631 2. 2.164 2.	
0.3	0.027	0.027	0.028	0.03	0.035	0.042	0.053	0.069	0.09	0.118	0.154	0.205	0.279	0.402	0.608	0.944	1.441	2.078	2.749 3.	276 3.502
																			3.181 3. 3.234 3.	
0.45	0.091	0.091	0.092	0.094	0.099	0.106	0.118	0.135	0.161	0.208	0.297	0.473	0.791	1.291	1.941	2.6	3.047	3.122	2.888 2	.64 2.685
																			2.509 2. 2.57 2.	
0.6	0.216	0.216	0.217	0.219	0.224	0.234	0.257	0.318	0.466	0.775	1.3	1.989	2.636	2.964	2.851	2.508	2.344	2.571	2.966 3.	135 3.006
																			3.015 2. 2.709 2.	
0.75	0.422	0.422	0.423	0.429	0.461	0.58	0.893	1.482	2.248	2.856	2.969	2.635	2.324	2.426	2.78	2.927	2.761	2.646	2.826 3.	067 3.075
																			3.022 2. 2.837 2.	
0.9	0.729	0.729	0.789	1.124	1.903	2.798	3.16	2.873	2.548	2.652	2.916	2.912	2.739	2.746	2.91	2.952	2.859	2.856	2.974 3.	027 2.978
0.95	0.857 1.0								2.906 3.0										2.969 2. 3.0 3	

Рисунок 21 – Результат аппроксимации при h = 0.05

h	tau	U_{exact}-U_{h}	U_{2h}-U_{h}}
	0.01	0.0	2.4933
	0.01	0.77699	2.53364
	0.01	0.65919	2.53459
	0.01	0.48118	2.54551

Рисунок 22 – Таблица, характеризующая точность решения

При $\sigma = 0.25$ получаем неявную разностную схему с девятиточечным шаблоном и точность, превосходящую $\sigma = 0$.

Вывод: в ходе выполнения работы были сформированы практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений и визуализации результатов численного или приближенно-аналитического решения ДУЧП2 гиперболического типа на основе сравнения результатов.

ПРИЛОЖЕНИЯ

Листинг решения пункта 1

```
import numpy as np
import matplotlib.pyplot as plt
from prettytable import PrettyTable
def f(x, t):
    return 6 * t - 6 * x
def lu(u: np.array, x: np.linspace, t: np.linspace,i, k, h):
    return (u[i + 1, k] - 2 * u[i, k] + u[i - 1, k]) / pow(h, 2)
def solve(h, tau):
   x \min = 0
   x max = 1
    xs = np.arange(x min, x max + h, h)
   n_x = len(xs)
    t min = 0
    t max = 1
    ts = np.arange(t min, t max + tau, tau)
   n t = len(ts)
   phi = lambda x: x ** 3
   psi = lambda x: 0
   alpha = lambda t: t ** 3
   beta = lambda x: 3
   U = np.zeros((n x, n t))
    U[:, 0] = [phi(x) \text{ for } x \text{ in } xs]
    U[:, 1] = [tau * psi(x) + phi(x) for x in xs]
    for k in range(1, n t - 1):
       for i in range(1, n_x - 1):
           ts, i, k, h) + f(xs[i], ts[k]))
       U[0, k + 1] = (2 * h * alpha(ts[k + 1]) - U[2, k + 1] + 4 * U[1, k + 1]
1]) / (2 * h + 3)
       U[-1, k+1] = (2 * h * beta(ts[k+1]) - 4 * U[-2, k+1] + U[-3, k]
+ 11) / -3
   return [xs, ts, U]
def makeTableFromResult(xs, ts, U):
   table = PrettyTable()
   ts = ts.round(3)
   xs = xs.round(3)
   U = U.round(3)
    table.add column("x \ t", xs)
    for k in range(len(ts)):
       table.add_column(f"{ts[k]}", U[:, k])
    return table
```

```
[xs, ts, U] = solve(0.05, 0.05) #Измение шага
print("Результат:")
print(makeTableFromResult(xs, ts, U))
fig = plt.figure()
ax = plt.axes(projection='3d')
X, Y = np.meshgrid(ts, xs)
ax.plot surface(X, Y, U, rstride=1, cstride=1, cmap='viridis',
edgecolor='none')
ax.set xlabel('$t$')
ax.set_ylabel('$x$')
ax.set_zlabel('$u$')
plt.show()
def makeTableFromStep(hs, taus, diff, exact diff):
    table = PrettyTable()
    table.add column("h", hs)
    table.add column("tau", taus)
    table.add column("||U {exact}-U {h}||", diff)
    \label{local_column} \mbox{table.add\_column("||U_{2h}-U_{h}}||", \mbox{ exact\_diff)}
    return table
h = 0.25
tau = 0.01
hs = []
taus = []
exact diff = []
last_diff = []
[\_, \_, last_u] = solve(h, tau)
last u = last u[0::2]
for i in range(4):
    [xs, ts, U] = solve(h, tau)
    u = lambda t, x: x ** 3 + t ** 3
    U exact = np.array([[u(t, x) for t in ts] for x in xs])
    hs.append(h)
    taus.append(tau)
    exact diff.append(np.amax(np.abs(U - U exact)))
    last diff.append(np.amax(np.abs(last u - U[0::2])))
    h /= 2
    last u = U
hs = np.array(hs).round(5)
taus = np.array(taus).round(5)
exact diff = np.array(exact diff).round(5)
last diff = np.array(last diff).round(5)
print(makeTableFromStep(hs, taus, last diff, exact diff))
```

Листинг решения пункта 2

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import approximate taylor polynomial
from prettytable import PrettyTable
def f(x, t):
    return 6 * t - 6 * x
def lu(u: np.array, x: np.linspace, t: np.linspace,i, k, h):
    return (u[i + 1, k] - 2 * u[i, k] + u[i - 1, k]) / pow(h, 2)
def lphi(phi, x):
    return approximate_taylor_polynomial(phi, 0, 2, 1)(x)
def solve(h, tau):
    x \min = 0
    x max = 1
    xs = np.arange(x min, x max + h, h)
    n x = len(xs)
    t min = 0
    t max = 1
    ts = np.arange(t_min, t_max + tau, tau)
    n t = len(ts)
    phi = lambda x: x ** 3
    psi = lambda x: 0
    alpha = lambda t: t ** 3
    beta = lambda x: 3
    U = np.zeros((n x, n t))
    U[:, 0] = [phi(x) \text{ for } x \text{ in } xs]
    U[:, 1] = [tau * psi(x) + phi(x) + tau ** 2 / 2 * (lphi(phi, x) * f(x, x) ]
0)) for x in xs]
    for k in range(1, n t - 1):
        for i in range (1, n \times - 1):
            U[i, k + 1] = 2 * U[i, k] - U[i, k - 1] + 
                          tau ** 2 * (lu(U, xs, ts, i, k, h) + f(xs[i],
ts[k]))
       U[0, k+1] = (2 * h * alpha(ts[k+1]) - U[2, k+1] + 4 * U[1, k+1]
1]) \
                      / (2 * h + 3)
        U[-1, k+1] = (2 * h * beta(ts[k+1]) - 4 * U[-2, k+1] + U[-3, k]
+ 1]) / -3
    return [xs, ts, U]
def makeTableFromResult(xs, ts, U):
    table = PrettyTable()
    ts = ts.round(3)
    xs = xs.round(3)
    U = U.round(3)
    table.add column("x \ t", xs)
    for k in range(len(ts)):
        table.add column(f"{ts[k]}", U[:, k])
    return table
```

```
[xs, ts, U] = solve(0.05, 0.05)
print("Результат:")
print(makeTableFromResult(xs, ts, U))
fig = plt.figure()
ax = plt.axes(projection='3d')
X, Y = np.meshgrid(ts, xs)
ax.plot_surface(X, Y, U, rstride=1, cstride=1,
                 cmap='viridis', edgecolor='none')
ax.set xlabel('$t$')
ax.set_ylabel('$x$')
ax.set_zlabel('$u$')
plt.show()
def makeTableFromStep(hs, taus, diff, exact diff):
    table = PrettyTable()
    table.add column("h", hs)
    table.add column("tau", taus)
    table.add column("||U {exact}-U {h}||", diff)
    \label{local_column} \mbox{table.add\_column("||U_{2h}-U_{h}}||", \mbox{ exact\_diff)}
    return table
h = 0.25
tau = 0.01
hs = []
taus = []
exact diff = []
last_diff = []
[\_, \_, last_u] = solve(h, tau)
last u = last u[0::2]
for i in range(4):
    [xs, ts, U] = solve(h, tau)
    u = lambda t, x: x ** 3 + t ** 3
    U exact = np.array([[u(t, x) for t in ts] for x in xs])
    hs.append(h)
    taus.append(tau)
    exact diff.append(np.amax(np.abs(U - U exact)))
    last diff.append(np.amax(np.abs(last u - U[0::2])))
    h /= 2
    last u = U
hs = np.array(hs).round(5)
taus = np.array(taus).round(5)
exact diff = np.array(exact diff).round(5)
last diff = np.array(last diff).round(5)
print(makeTableFromStep(hs, taus, last diff, exact diff))
```

Листинг решения пункта 3

```
import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits import mplot3d
import scipy.linalg as la
from prettytable import PrettyTable
def f(x, t):
    return 6 * t - 6 * x
def lu(u: np.array, x: np.linspace, t: np.linspace,i, k, h):
    return (u[i + 1, k] - 2 * u[i, k] + u[i - 1, k]) / pow(h, 2)
def solve(h, tau, sigma):
    x \min = 0
    x max = 1
    xs = np.arange(x min, x max + h, h)
    n x = len(xs)
    t min = 0
    t max = 1
    ts = np.arange(t_min, t_max + tau, tau)
    n t = len(ts)
    phi = lambda x: x ** 3
    psi = lambda x: 0
    alpha = lambda t: t ** 3
    beta = lambda x: 3
    U = np.zeros((n x, n t))
    G = np.zeros((n_x, n_t))
    U[:, 0] = [phi(x) \text{ for } x \text{ in } xs]
    U[:, 1] = [tau * psi(x) + phi(x) for x in xs]
    A = np.zeros((n x - 1))
    B = np.zeros((n x))
    C = np.zeros((n_x - 1))
    for k in range(1, n t - 1):
        for i in range(1, n \times - 1):
            G[i, k + 1] = (-2 * U[i, k] + U[i, k - 1]) / tau ** 2 
                           - (1 - 2 * sigma) * lu(U, xs, ts, i, k, h) 
                           - sigma * lu(U, xs, ts, i, k - 1, h) \
                           - f(xs[i], ts[k])
            A[i - 1] = (sigma / h ** 2)
            B[i] = (-2 / h ** 2) * sigma - 1 / tau ** 2
            C[i] = (sigma / h ** 2)
        B[0] = (1 + 1 / h)
        C[0] = -1 / h
        A[-1] = 0
        B[-1] = 1
        G[0, k + 1] = alpha(ts[k + 1])
        G[-1, k + 1] = beta(ts[k + 1])
        matrix = np.array([[0, *C], B, [*A, 0]])
```

```
U[:, k + 1] = la.solve banded((1, 1), matrix, G[:, k + 1])
    return [xs, ts, U]
def makeTableFromResult(xs, ts, U):
    table = PrettyTable()
    ts = ts.round(4)
    xs = xs.round(4)
    U = U.round(5)
    table.add column("x \ t", xs)
    for k in range(len(ts)):
        table.add_column(f"{ts[k]}", U[:, k])
    return table
[xs, ts, U] = solve(0.25, 0.25, 0.25)
fig = plt.figure()
ax = plt.axes(projection='3d')
X, Y = np.meshgrid(ts, xs)
ax.plot_surface(X, Y, U, rstride=1, cstride=1,
                cmap='viridis', edgecolor='none')
ax.set xlabel('$t$')
ax.set ylabel('$x$')
ax.set_zlabel('$u$')
plt.show()
def makeTableFromStep(hs, taus, diff, exact diff):
    table = PrettyTable()
    table.add column("h", hs)
    table.add_column("tau", taus)
    table.add column("||U {exact}-U {h}||", diff)
    table.add column("||U|{2h}-U {h}}||", exact diff)
    return table
def makeTableFromResult(xs, ts, U):
    table = PrettyTable()
    ts = ts.round(3)
    xs = xs.round(3)
    U = U.round(3)
    table.add column("x \ t", xs)
    for k in range(len(ts)):
        table.add column(f"{ts[k]}", U[:, k])
    return table
[xs, ts, U] = solve(0.25, 0.25, 0.25)
print("Результат:")
print(makeTableFromResult(xs, ts, U))
h = 0.25
tau = 0.01
hs = []
taus = []
exact diff = []
last diff = []
```

```
[ , , last u] = solve(h, tau, 0.25)
last_u = last_u[0::2]
for i in range(4):
    [xs, ts, U] = solve(h, tau, 0.25)
    u = lambda t, x: x ** 3 + t ** 3
    U_{exact} = np.array([[u(t, x) for t in ts] for x in xs])
    hs.append(h)
    taus.append(tau)
    exact_diff.append(np.amax(np.abs(U - U_exact)))
    last_diff.append(np.amax(np.abs(last_u - U[0::2])))
    h /= 2
    last u = U
hs = np.array(hs).round(5)
taus = np.array(taus).round(5)
exact_diff = np.array(exact_diff).round(5)
last_diff = np.array(last_diff).round(5)
print(makeTableFromStep(hs, taus, last_diff, exact_diff))
```