# Climate change, Water Scarcity and Food Security in South Asia: Global-to-local analysis

Amanda Palazzo and Michiel van Dijk

December 16, 2016

#### Introduction

**Title**: Climate change, Water Scarcity and Food Security in South Asia: Global-to-local analysis

**Objective**: to examine the impact of climate change and water scarecity on food security in South Asia using a global economic land use model and regional macroeconomic development insights from regional stakeholder developed scenarios.

Target journal: Regional Environmental Change (PIC)?

### Interesting literature

- ▶ Nelson (2010), Food security, farming, and climate change to 2050, IFPRI
- ▶ World Bank (2013), Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience.
- Various articles in REC

### Framework but no modelling

Vinke et al. (2016), Climatic risks and impacts in South Asia: extremes of water scarcity and excess, Regional Environmental Change



## Tackling climate issues we do not consider?

- ► Flooding
- Tropical Cyclones
- Glacial loss and river flow

### Outline paper

- 1. Introduction
  - Refer to Vinke (2016) for context
  - Stress participatory scenario development and SAS methodology
- 2. Background
- 3. Methods
  - Participatory scenario development
  - ► GLOBIOM: Water extension
- 4. Baseline scenarios
- Results
  - Water issues:?
  - Agriculture: production and land use?
  - Food security: Prices and undernourishment
  - 5.6 Discussion/Conclusions

### Country summary

| name                                                            | Bangladesh | India | Nepal | Pakistan | Sri Lanka |
|-----------------------------------------------------------------|------------|-------|-------|----------|-----------|
| Agricultural irrigated land (% of total agricultural land)      | 53         | 36    | 30    | 52       | NA        |
| Agricultural land (% of land area)                              | 70         | 61    | 29    | 47       | 44        |
| Annual freshwater withdrawals, total (% of internal resources)  | 34         | 53    | 5     | 334      | 25        |
| GDP per capita, PPP (current international \$)                  | 3333       | 6089  | 2458  | 5042     | 11739     |
| Malnutrition prevalence, weight for age (% of children under 5) | 33         | 44    | 29    | 32       | 26        |
| Population, total                                               | 161        | 1311  | 29    | 189      | 21        |
| Poverty gap at national poverty line (%)                        | 6          | 4     | 5     | 6        | 1         |
| Prevalence of undernourishment (% of population)                | 16         | 15    | 8     | 22       | 22        |
| Rural population (% of total population)                        | 66         | 67    | 81    | 61       | 82        |

#### Baseline



#### **Calories**



### Rice prices



# Irrigated area



#### Discussion points

- ▶ Preference for four four explorative baseline scenarios
- What is the BAU climate scenario, if any?
- Are baseline scenarios good enough?
- ▶ What can we add on the water side?
- What can we add on the food security side
- Present only numbers for total region or per sub-region/country/grid cell?