

$$\sqrt{(x-a)^2+(y-b)^2}=1$$

$$(z-a)^2 + (y-b)^2 = 1^2$$

a
$$x^2 + y^2 = 16$$

$$x^2 + (y-2)^2 = 25$$

b
$$2x^2 + 2y^2 = 9$$

d
$$(x-5)^2 + (y+3)^2 = 4$$

P(z,y)

c (a, b)

a)
$$x^{2} + y^{2} = 16$$
 b) $2x^{2} + 2y^{2} = 9$

$$(x-0)^{2} + (y-0)^{2} = 4^{2}$$

$$(x-a)^{2} + (y-b)^{2} = Y^{2}$$

Centre:
$$(0,0)$$
 $(2-0)^2 + (y-0)^2 = (\frac{3}{\sqrt{2}})^2$

C)
$$t^{2} + (y-2)^{2} = 25$$
 $(x-0)^{2} + (y-2)^{2} = 5^{2}$
 $(x-\alpha)^{2} + (y-b)^{2} = 7^{2}$
 $(x-\alpha)^{2} + (y-b)^{2} = 7^{2}$
Centre: $(s, -3)$

$$(entre (0, 2))$$
 $t = 2$

- 2 Find the equation of each of the following circles.
 - a centre (0, 0), radius 8

b centre (5, -2), radius 4

c centre (-1, 3), radius $\sqrt{7}$

d centre $\left(\frac{1}{2}, -\frac{3}{2}\right)$, radius $\frac{5}{2}$

Sol a>
$$(x-6)^2 + (y-6)^2 = 8^2$$

 $x^2 + y^2 = 64$

b)
$$(x-s)^2 + (y+2)^2 = 4^2$$

 $(x-s)^2 + (y+2)^2 = 16$

3 Find the equation of the circle with centre (2, 5) passing through the point (6, 8).

$$1 = \sqrt{4^2 + 3^2}$$
 $1 = 5$
 $(2 - 2)^2 + (y - 5)^2 = 25$ And

A diameter of a circle has its end points at A(-6, 8) and B(2, -4). Find the equation of the circle.

General Equation of circle:

$$(x-a)^{2} + (y-b)^{2} = 7^{2}$$

$$x^{2} - 2an + a^{2} + y^{2} - 2by + b^{2} - 7^{2} = 0$$

$$x^{2} + y^{2} - 2an - 2by + a^{2} + b^{2} - 1^{2} = 0$$

Replace $a = -g$ and $b = -f$

$$x^{2} + y^{2} - 2(-g)x - 2(-f)y + (-g)^{2} + (-f)^{2} - y^{2} = 0$$

Centre: (-g,-f)

$$\gamma^2 = g^2 + f^2 - c$$

$$1 = \sqrt{g^2 + f^2 - c}$$

1 Find the centre and the radius of each of the following circles.

$$g x^2 + y^2 - 8x + 20y + 110 = 0$$

$$x^2 + y^2 + 29x + 25y + C = 0$$

$$2g = -8$$
, $2f = 20$, $C = 110$
 $g = -4$, $f = 10$

Centre:
$$(-g, -f) = (4, -10)$$

 $7 = \sqrt{16 + 100 - 110}$

h
$$2x^2 + 2y^2 - 14x - 10y - 163 = 0$$

 $x^2 + y^2 - 7x - 5y - 81.5 = 0$

$$2g = -7$$
, $2f = -5$, $C = -81.5$
 $g = -3.5$, $f = -2.5$

Centre:
$$(3.5, 2.5)$$

 $\gamma = \sqrt{(-3.5)^2 + (-2.5)^2 + 81.5}$

5 Sketch the circle
$$(x-3)^2 + (y+2)^2 = 9$$
.

$$(x-3)^{2} + (y+2)^{2} = 3^{2}$$

 $(x-a)^{2} + (y-b)^{2} = y^{2}$
Cenhe: $(3,-2)$
 $y=3$

8 A circle passes through the points (3, 2) and (7, 2) and has radius $(2\sqrt{2})$. Find the two possible equations for this circle.

$$(1-a)^{2} + (y-b)^{2} = y^{2}$$

$$(3-a)^{2} + (2-b)^{2} = 8/-1$$

$$(1-a)^{2} + (2-b)^{2} = 8 - 2$$

$$(3-a)^{2} - (7-a)^{2} = 0$$

$$(3-a)^{2} - (7-a)^{2} = 0$$

$$(3-a)^{2} = (7-a)^{2}$$

$$(2-b)^{2} = 4$$

	7 - 62+ 0/ = 49 - 142+	
	14a - 6a = 49 - 9	2-b= ±2
	8 a = 40	2-b=2, $2-b=-2$
	a=5	b=0, b=4
		Centre (5,0) & (5,4)
First Eq:		1= 2/2
$(x-5)^{2}+(y-0)^{2}=(2\sqrt{2})^{2}$		
	$(x-5)^2 + y^2 = 8$ Am	
2nd Eq.:		
$(z-5)^2+(y-4)^2=(2\sqrt{2})^2$		
$(x-5)^2 + (y-4)^2 = 8 An$		