Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (original) A chromophore having the following structural formula (I):

wherein Ar_1 , Ar_2 and Ar_3 are each independently a substituted or non-substituted aromatic hydrocarbon or aromatic heterocyclic ring; Ak_1 , Ak_2 , Ak_3 and Ak_4 are each independently a substituted or non-substituted alkyl or alkylene group; R_1 , R_2 and R_3 are each independently a substituted or non-substituted alkyl group; and X_1 is a counter anion.

- 2. (original) The chromophore of claim 1 wherein Ar_1 , Ar_2 and Ar_3 are single aromatic rings.
- 3. (original) The chromophore of claim 2 wherein Ar_1 , Ar_2 and Ar_3 are benzene rings.
- 4. (original) The chromophore of claim 1 wherein Ar₂ includes a donor or acceptor group.
- 5. (currently amended) The chromophore of claim 1 wherein Ak_1 , Ak_2 , Ak_3 and Ak_4 are each $(CH_2)_{n_1}$, where n is from 1 to 10, and R_1 , R_2 and R_3 are each $[[CH_2)_m$ -H]] $\underline{(CH_2)_m}$ -H, where m is from 1 to 10.
- 6. (original) A distyrylbenzene chromophore having the following structural formula (II):

wherein A_1 and A_2 are each independently a hydrogen, or a donor or acceptor group; and R is $[(CH_2)_n]_6$ -NR'₃X, where R' is $(CH_2)_m$ -H, X is any anion, n is from 1 to 10 and m is from 1 to 10.

- 7. (original) The chromophore of claim 6 in which the donor group is selected from the group consisting of I, Br, CI, OC(O)R", SH, OH, SR", OR", NHC(O)R", NH₂, NH"R, S⁻, and O₋, where R" refers to an alkyl group containing 1-50 carbon atoms.
- 8. (original) The chromophore of claim 6 in which the acceptor group is selected from the group consisting of F, C(O)NR"₂, C(O)NHR", C(O)NH₂, C(O)OR", C(O)OH, C(O)R", C(O)H, CN, S(O₂)R", and NO₂, and where R" refers to an alkyl group containing 1-50 carbon atoms.
- 9. (original) The chromophore of claim 6 in which A_1 and A_2 are each hydrogen and n=1.
- 10. (original) A distyrylbenzene chromophore having the following structural formula (III):

wherein R is $(CH_2)_6$ -NR'₃ X , R' is CH_3 , and X is any anion.

11. (original) A distyrylbenzene chromophore having the following structural formula (IV):

wherein R is (CH₂)₆-NR'₃X, R' is CH₃ and X is any anion.

- 12. (original) A method of preparing a distyrylbenzene chromophore, comprising reacting a 1,4-dibenzylphosphonate with a haloalkylamino-benzaldehyde and adding a trialkylamine by condensation to said distyrylbenzene chromophore whereby to provide water solubility to said chromophore.
- 13. (original) The method of claim 12 in which said haloalkylamino-benzaldehyde is a N,N-bis-(6-iodoalkyl)-4-amino-benzaldehyde where the alkyl group has from 1 to 10 carbon atoms.

- 14. (original) The method of claim 13 in which said N,N-bis-(6-iodohexyl)-4-amino-benzaldehyde is prepared by reacting N,N-bis-(6-hydroxyhexyl)-benzaldehyde with phosphorous oxychloride.
- 15. (original) The method of claim 14 in which said N,N-bis-(6-hydroxyhexyl)-benzaldehyde is prepared by reacting aniline and 6-chloro-1-hexanol with a carbonate.
- 16. (currently amended) A method of preparing a water-soluble two-photon absorbing distyrylbenzene chromophore, comprising the following reaction steps:

a) reacting analine, 6-chloro-1-hexanol and potassium carbonate to yield N,N-Bis-(6-hydroxyhexyl)-aniline of the formula:

b) reacting N,N-Bis-(6-hydroxyhexyl)-aniline and phosphorous oxychloride to yield N,N-Bis-(6-chlorohexyl)-4-amino)-benzaldehyde of the formula:

c) reacting N,N-Bis-(6-chlorohexyl)-4-amino)-benzaldehyde and sodium iodide to yield N,N-Bis-(6-iodohexyl)-4-amino-benzaldehyde of the formula:

<u>d) reacting N,N-Bis-(6-iodohexyl)-4-amino-benzaldehyde and</u> 1,4-dibenzylphosphonate of the formula

to yield a precursor chromophore of the formula:

e) reacting the precursor chromophore with trimethylamine to yield a distyrylbenzene chromophore of the formula:

$$[IMe_3N(H_2C)_6]_2-N$$