Harti cu auto-organizare (retele Kohonen)

Exemplu de retea Kohonen cu 4x4 noduri, 3 intrari

Exemplu: Retea Kohonen 4x4 noduri de iesire, 3 intrari

Algoritmul de invatare (invatare nesupervizata)

Date de intrare: N intrari, M noduri de iesire

- a) se initializeaza ponderile asociate fiecarui nod al retelei (valori mici, aleatoare)
 - b) se intitializeaza rata de invatare α
 - c) se initializeaza vecinatatea $R = R_0$
- pentru fiecare valoare de antrenare x^s din setul datelor de antrenare
 - •determina nodul j* al retelei cel mai apropiat (ca pondere) de valoarea de antrenare.
 - d_i distanta intre sablonul curent de antrenare si fiecare nod din retea \mathbf{j} (j=1,M)
 - $\mathbf{x}^{\mathbf{s}}_{i}$ componenta i a sablonului curent de antrenare
 - $w_{ij}(t)$ ponderea intre intrarea i si nodul de iesire j (i= 1 .. N)

$$d_{j} = \sum_{i=1,N} (\mathbf{x}^{s}_{i} - \mathbf{w}_{ij}(\mathbf{t}))^{2}$$

nodul j* este nodul cu d_i minima

•actualizeaza ponderile nodurilor **j** ale retelei aflate in vecinatatea R a nodului **j*** (inclusiv nodul j*)

$$w_{ij}(t+1) = w_{ij}(t) + \alpha(t) * (x_i^s - w_{ij}(t)), i = 1 ... N$$

se reduce R, α

$$R(t) = R_0 \exp(-t/T)$$

t reprezinta iteratia curenta

T = constanta, $T = ITER/R_0$, ITER = numar iteratii

• repeta de la pasul 2 pentru ITER iteratii

Resurse

1. http://www.ai-junkie.com/ann/som/som1.html