- § 3. 2正则文法和状态转换图
- § 3.2.1 由正则文法构造状态转换图
 - 1、状态图:

是一个由正则文法确定的有限的方向图,结点对应状态,含有一个初始状态和若干个终止状态.

2、右线性文法的状态图

右线性文法的规则呈:

 $A \rightarrow aB$ **X** $A \rightarrow a$ $A, B \in Vn , a \in Vt$

(1) 状态图

A → a B 或 A → a $A, B \in V_n$, $a \in V_t$

- (1)G[S]的每一个非终结符号代表一结点(状态)
- ②开始符号S作为初始状态 设一符号『不属于』作为终止状态

- ③形如A→aB的规则

④形如A→a的规则

特别:A → ε

未曾在A的射出弧中

191:G[Z]: Z→0U | 1V

 $U \rightarrow 1Z \mid 1$

 $V \rightarrow 0Z \mid 0$

状态图:

0101

1010

-0011

1100

151: G[Z]: $Z \rightarrow 0U \mid 1V$ $U \rightarrow 1Z \mid 1$ $V \rightarrow 0Z \mid 0$

捯: $\omega = 011001$

通过状态图可以确定 ω 是文法的句子.

分析过程是自上而下 (推导) ?

自下而上(归约)?

191: G[Z]: Z→0U | 1V

$$U \rightarrow 1Z \mid 1$$

$$V \rightarrow 0Z \mid 0$$

珍:
$$\omega = 011001$$

②此过程是一种推导过程. (最右(左)推导)

相当于: Z=>0U

=>01Z

=>011V

=>0110Z

=>01100U

=>011001

小 结

- 右线性文法的状态转换图对符号串₩的识别的方法是一个自顶向下的分析算法
- 2. 推导过程中产生的句型都是规范句型
- 3. 右线性文法的状态转换图能识别的恰好是对应文法的全部句子

3、左线性文法的状态图

左线性文法的规则呈:

A→Ba或A→a A,B∈Vn,a∈Vt

(1) 状态图

- (1)G[S]的每一个非终结符号代表一结点(状态)(A)(B)
- ②开始符号S作为终止状态 S 设一符号R不属于V作为初始状态 R
- ③形如A→Ba的规则

 $\begin{array}{c}
a \\
\end{array}$

④形如A→a的规则

 $R \longrightarrow S$

:G[Z]: $Z \rightarrow U0 \mid V1$ $U \rightarrow Z1 \mid 1$ $V \rightarrow Z0 \mid 0$

珍:G[Z]:

 $Z \rightarrow U0 \mid V1$

 $U \rightarrow Z1 \mid 1$

 $V \rightarrow Z0 \mid 0$

状态图:

狗: $\omega = 100110$

通过状态图可以确定 ω 是文法的句子.

分析过程是自上而下(推导)?

自下而上(归约)?

珍:G[Z]:

 $Z \rightarrow U0 \mid V1$

 $U \rightarrow Z1 \mid 1$

 $V \rightarrow Z0 \mid 0$

状态图:

191: $\omega = 100110$

此过程是一种归约过程 最左归约

<u>1</u>00110

U00110

Z0110

<u>V1</u>10

<u>Z1</u>0

<u>U0</u>

Z

4、状态转换图的一种实现

状态转换矩阵是状态图在计算机实现的一种方法

	a_1	a_2	• • •	a_{j}	$a_{\rm m}$
S_1	B ₁₁	B ₁₂	• • •		B_{1m}
		B ₂₂	• • • •		B _{2m}
• • •					
S _i				B_{ij}	
S_n	\mathbf{B}_{n1}	B _{n2}	• • • • •	,	B_{nm}

$$B_{ij}$$
= $B[I,j]$ S_k 当前状态 $S_{i,}$ 读输入符号 a_j 的下一状态 空白 (error) 当前状态 $S_{i,}$ 不能读输入符号 a_j

```
例: G「〈无符号数〉]: 右线性正则文法
0〈无符号数〉\rightarrowd〈余留无符号数〉1.〈小数部分〉1d
1\langle余留无符号数\rangle \rightarrow d\langle余留无符号数\rangle 1. \langle十进小数\rangle
            E 〈指数部分〉 d
2〈十进小数〉→E〈指数部分〉 d 〈十进小数〉 d
3〈小数部分〉→d〈十进小数〉 d
4〈指数部分〉→d〈余留指数部分〉 +〈整指数〉
       -〈整指数〉 d
5〈整指数〉→d〈余留整指数〉 d
6〈佘留整指数〉→d〈佘留整指数〉 d
```


无符号数写成

 $N=w*10^{e*p-n}$

无符号数一般形式: $d_m d_{m-1} \cdots d_1 d_0 \cdot d_{-1} d_{-2} \cdots d_{-n} E + dd \cdots d$

改写为: $d_m d_{m-1} \cdots d_1 d_0 d_{-1} d_{-2} \cdots d_{-n} X 1 0^{\pm dd \cdots d-n}$

₩: 尾数累加器 (初值为0)

p:指数累加器 (初值为0)

n:十进小数累加器(初值为0)

e:十进指数的符号(初值为1, 遇负号为-1) 遇到整数部分中d: w=w*10+d

遇到小数点后d: w=w*10+d

n=n+1

遇到E后负号: e=-1

遇到指数部分中d: p=p*10+d

遇到终态: 计算N=w*10e*p-n

无符号数写成

 $N=w*10^{e*p-n}$

当前状态	扫描符号	语义程序	下一状态
0	d	n=0;p=0;e=1;w=d;	1
	•	n=0;p=0;e=1; w=0;	2
	other	error	NULL
1	d	w=w*10+d	1
	•		2
	Е		4
	other	计算N=w*10 ^{e*p-n}	结束
• • • • •			