Abstract Algebra Day 1: The \mathbb{Z} Axioms

Nathan Bloomfield

January 2, 2016

The \mathbb{Z} Axioms

There is a set \mathbb{Z} , whose elements are called *integers*, which is equipped with two operations + and \cdot and a binary relation \leq which satisfy the following properties.

A1.
$$a + (b + c) = (a + b) + c$$
 for all $a, b, c \in \mathbb{Z}$.

A1.
$$a+(b+c)=(a+b)+c$$
 for all $a,b,c\in\mathbb{Z}$.

A2. There is an integer 0 such that a + 0 = 0 + a = a for all $a \in \mathbb{Z}$.

- A1. a+(b+c)=(a+b)+c for all $a,b,c\in\mathbb{Z}$.
- A2. There is an integer 0 such that a + 0 = 0 + a = a for all $a \in \mathbb{Z}$.
- A3. For every $a \in \mathbb{Z}$ there is a unique integer, denoted -a, such that a + (-a) = (-a) + a = 0.

- A1. a+(b+c)=(a+b)+c for all $a,b,c\in\mathbb{Z}$.
- A2. There is an integer 0 such that a + 0 = 0 + a = a for all $a \in \mathbb{Z}$.
- A3. For every $a \in \mathbb{Z}$ there is a unique integer, denoted -a, such that a + (-a) = (-a) + a = 0.
- A4. a + b = b + a for all $a, b \in \mathbb{Z}$.

- A1. a+(b+c)=(a+b)+c for all $a,b,c\in\mathbb{Z}$.
- A2. There is an integer 0 such that a+0=0+a=a for all $a\in\mathbb{Z}$.
- A3. For every $a \in \mathbb{Z}$ there is a unique integer, denoted -a, such that a + (-a) = (-a) + a = 0.
- A4. a + b = b + a for all $a, b \in \mathbb{Z}$.
 - M. a(bc) = (ab)c for all $a, b, c \in \mathbb{Z}$.

- A1. a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{Z}$.
- A2. There is an integer 0 such that a+0=0+a=a for all $a\in\mathbb{Z}$.
- A3. For every $a \in \mathbb{Z}$ there is a unique integer, denoted -a, such that a + (-a) = (-a) + a = 0.
- A4. a + b = b + a for all $a, b \in \mathbb{Z}$.
- M. a(bc) = (ab)c for all $a, b, c \in \mathbb{Z}$.
- D. a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in \mathbb{Z}$.

- A1. a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{Z}$.
- A2. There is an integer 0 such that a + 0 = 0 + a = a for all $a \in \mathbb{Z}$.
- A3. For every $a \in \mathbb{Z}$ there is a unique integer, denoted -a, such that a + (-a) = (-a) + a = 0.
- A4. a + b = b + a for all $a, b \in \mathbb{Z}$.
- M. a(bc) = (ab)c for all $a, b, c \in \mathbb{Z}$.
- D. a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in \mathbb{Z}$.
- C. ab = ba for all $a, b \in \mathbb{Z}$.

- A1. a+(b+c)=(a+b)+c for all $a,b,c\in\mathbb{Z}$.
- A2. There is an integer 0 such that a + 0 = 0 + a = a for all $a \in \mathbb{Z}$.
- A3. For every $a \in \mathbb{Z}$ there is a unique integer, denoted -a, such that a + (-a) = (-a) + a = 0.
- A4. a + b = b + a for all $a, b \in \mathbb{Z}$.
- M. a(bc) = (ab)c for all $a, b, c \in \mathbb{Z}$.
- D. a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in \mathbb{Z}$.
- C. ab = ba for all $a, b \in \mathbb{Z}$.
- U. There is an integer 1 such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in \mathbb{Z}$.

- A1. a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{Z}$.
- A2. There is an integer 0 such that a + 0 = 0 + a = a for all $a \in \mathbb{Z}$.
- A3. For every $a \in \mathbb{Z}$ there is a unique integer, denoted -a, such that a + (-a) = (-a) + a = 0.
- A4. a + b = b + a for all $a, b \in \mathbb{Z}$.
- M. a(bc) = (ab)c for all $a, b, c \in \mathbb{Z}$.
- D. a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in \mathbb{Z}$.
- C. ab = ba for all $a, b \in \mathbb{Z}$.
- U. There is an integer 1 such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in \mathbb{Z}$.
- **Z**. If ab = 0, then either a = 0 or b = 0 for all $a, b \in \mathbb{Z}$.

P1. $a \leq a$ for all $a \in \mathbb{Z}$.

- P1. $a \leq a$ for all $a \in \mathbb{Z}$.
- P2. If $a \le b$ and $b \le a$ then a = b for all $a, b \in \mathbb{Z}$.

- P1. a < a for all $a \in \mathbb{Z}$.
- P2. If $a \le b$ and $b \le a$ then a = b for all $a, b \in \mathbb{Z}$.
- P3. If $a \le b$ and $b \le c$ then $a \le c$ for all $a, b, c \in \mathbb{Z}$.

- P1. a < a for all $a \in \mathbb{Z}$.
- P2. If $a \le b$ and $b \le a$ then a = b for all $a, b \in \mathbb{Z}$.
- P3. If $a \le b$ and $b \le c$ then $a \le c$ for all $a, b, c \in \mathbb{Z}$.
- P4. Either $a \leq b$ or $b \leq a$ for all $a, b \in \mathbb{Z}$.

- P1. a < a for all $a \in \mathbb{Z}$.
- P2. If $a \le b$ and $b \le a$ then a = b for all $a, b \in \mathbb{Z}$.
- P3. If $a \le b$ and $b \le c$ then $a \le c$ for all $a, b, c \in \mathbb{Z}$.
- P4. Either $a \leq b$ or $b \leq a$ for all $a, b \in \mathbb{Z}$.
- O1. If $a \le b$ then $a + c \le b + c$ for all $a, b, c \in \mathbb{Z}$.

- P1. a < a for all $a \in \mathbb{Z}$.
- P2. If $a \le b$ and $b \le a$ then a = b for all $a, b \in \mathbb{Z}$.
- P3. If $a \le b$ and $b \le c$ then $a \le c$ for all $a, b, c \in \mathbb{Z}$.
- P4. Either $a \leq b$ or $b \leq a$ for all $a, b \in \mathbb{Z}$.
- O1. If $a \le b$ then $a + c \le b + c$ for all $a, b, c \in \mathbb{Z}$.
- O2. If $0 \le a$ and $0 \le b$ then $0 \le ab$ for all $a, b \in \mathbb{Z}$.

The Z Axioms: Order

- P1. $a \leq a$ for all $a \in \mathbb{Z}$.
- P2. If $a \le b$ and $b \le a$ then a = b for all $a, b \in \mathbb{Z}$.
- P3. If $a \le b$ and $b \le c$ then $a \le c$ for all $a, b, c \in \mathbb{Z}$.
- P4. Either $a \leq b$ or $b \leq a$ for all $a, b \in \mathbb{Z}$.
- O1. If $a \le b$ then $a + c \le b + c$ for all $a, b, c \in \mathbb{Z}$.
- O2. If $0 \le a$ and $0 \le b$ then $0 \le ab$ for all $a, b \in \mathbb{Z}$.
- $03. \ 0 < 1.$

The Z Axioms: Well-Ordering Property

We call

$$\mathbb{N} = \{ a \in \mathbb{Z} \mid 0 \le a \}$$

the set of natural numbers.

The Z Axioms: Well-Ordering Property

We call

$$\mathbb{N} = \{a \in \mathbb{Z} \mid 0 \le a\}$$

the set of natural numbers.

WOP. Every nonempty subset of \mathbb{N} has a \leq -least element.

The Z Axioms: Well-Ordering Property

We call

$$\mathbb{N} = \{ a \in \mathbb{Z} \mid 0 \le a \}$$

the set of natural numbers.

WOP. Every nonempty subset of \mathbb{N} has a \leq -least element.

That is, if $S \subseteq \mathbb{N}$ is not empty, there is a natural number $m \in S$ such that $m \leq s$ for all $s \in S$.

These 17 axioms uniquely characterize the "integers" we know and love; any other provably true statement about $\mathbb Z$ can be derived from them. For example:

• $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$.

These 17 axioms uniquely characterize the "integers" we know and love; any other provably true statement about $\mathbb Z$ can be derived from them. For example:

• $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$.

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$. (Use D)

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$. (Use D)
- There is no integer t such that 0 < t < 1.

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$. (Use D)
- There is no integer t such that 0 < t < 1. (Use WOP; $t^2 < t$)

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$. (Use D)
- There is no integer t such that 0 < t < 1. (Use WOP; $t^2 < t$)
- If a < b then $a + 1 \le b$

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$. (Use D)
- There is no integer t such that 0 < t < 1. (Use WOP; $t^2 < t$)
- If a < b then $a + 1 \le b$
- Exactly one of a < 0, a = 0, and a > 0 is true.

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$. (Use D)
- There is no integer t such that 0 < t < 1. (Use WOP; $t^2 < t$)
- If a < b then a + 1 < b
- Exactly one of a < 0, a = 0, and a > 0 is true.
- Every element of $\mathbb N$ is either 0 or of the form n+1 where $n\in\mathbb N$.

- $a \cdot 0 = 0 \cdot a = 0$ for all $a \in \mathbb{Z}$. (Use D)
- $(-1) \cdot a = -a$ for all $a \in \mathbb{Z}$.
- If $a \le b$ and $0 \le c$, then $ac \le bc$. (Use D)
- There is no integer t such that 0 < t < 1. (Use WOP; $t^2 < t$)
- If a < b then a + 1 < b
- Exactly one of a < 0, a = 0, and a > 0 is true.
- Every element of $\mathbb N$ is either 0 or of the form n+1 where $n \in \mathbb N$.
- ... etc.

Principle of Mathematical Induction

Theorem (Induction)

Suppose $B \subseteq \mathbb{N}$ is a subset such that

- $0 \in B$ (the Base Case) and
- If $n \in B$, then $n + 1 \in B$ (the Inductive Step).

Then $B = \mathbb{N}$.

Theorem (Strong Induction)

Suppose $B \subseteq \mathbb{N}$ is a subset such that

- $0 \in B$ and
- If $k \in B$ for all $0 \le k \le n$, then $n + 1 \in B$.

Then $B = \mathbb{N}$.

Proof: Use WOP. These two statements are equivalent in power, but sometimes Strong Induction is convenient.

Principle of Mathematical Induction: Examples

Proposition

For all natural numbers n, we have

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}.$$

Principle of Mathematical Induction: Examples

Proposition^b

For all natural numbers n, we have

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}.$$

Proposition

For all natural numbers n, we have

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

(Hint: Use two base cases, 0 and 1.)

