

ADXL345 Accelerometer

Accelerometer

Measures acceleration (rate of change of velocity) of a body in its own rest frame*

 An accelerometer at rest on the surface of the Earth will measure an acceleration due to the Earth's gravity, straight upwards of g=9.81 m/s²

By contrast, accelerometers in free fall (falling toward the center of the Earth) will

measure zero.

To obtain the acceleration due to motion with respect to the earth, the "gravity offset" must be subtracted.

^{*}Coordinate system (frame of reference) in which the body is at rest

- 3-axis accelerometer
- ±2g, ±4g, ±8g, ±16g
- 13-bit resolution (@ ±16 g)
- Supports both I2C & SPI
- Built in functionality
 - Activity, inactivity sensing
 - Single and double tap sensing
 - Free-fall sensing
- 3 mm x 5 mm x 1 mm package

3-Axis, ±2 g/±4 g/±8 g/±16 g Digital Accelerometer

Data Sheet ADXL345

FEATURES

Ultralow power: as low as 23 μA in measurement mode and 0.1 μA in standby mode at $V_5 = 2.5 \, V$ (typical)

Power consumption scales automatically with bandwidth User-selectable resolution

Fixed 10-bit resolution

Full resolution, where resolution increases with g range, up to 13-bit resolution at ±16 g (maintaining 4 mg/LSB scale factor in all g ranges)

Embedded memory management system with FIFO technology minimizes host processor load

Single tap/double tap detection

Activity/inactivity monitoring

Free-fall detection

Supply voltage range: 2.0 V to 3.6 V

I/O voltage range: 1.7 V to Vs

SPI (3- and 4-wire) and I2C digital interfaces

Flexible interrupt modes mappable to either interrupt pin Measurement ranges selectable via serial command

Bandwidth selectable via serial command

Wide temperature range (-40°C to +85°C)

10,000 g shock survival

Pb free/RoHS compliant

Small and thin: 3 mm \times 5 mm \times 1 mm LGA package

APPLICATIONS

Handsets

Medical instrumentation

Gaming and pointing devices

Industrial instrumentation

Personal navigation devices

Hard disk drive (HDD) protection

GENERAL DESCRIPTION

The ADXL345 is a small, thin, ultralow power, 3-axis accelerometer with high resolution (13-bit) measurement at up to ± 16 g. Digital output data is formatted as 16-bit twos complement and is accessible through either a SPI (3- or 4-wire) or I $^{\circ}$ C digital interface.

The ADXL345 is well suited for mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables measurement of inclination changes less than 1.0°.

Several special sensing functions are provided. Activity and inactivity sensing detect the presence or lack of motion by comparing the acceleration on any axis with user-set thresholds. Tap sensing detects single and double taps in any direction. Freefall sensing detects if the device is falling. These functions can be mapped individually to either of two interrupt output pins. An integrated memory management system with a 32-level first in, first out (FIFO) buffer can be used to store data to minimize host processor activity and lower overall system power consumption.

Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at extremely low power dissipation.

The ADXL345 is supplied in a small, thin, $3 \text{ mm} \times 5 \text{ mm} \times 1 \text{ mm}$, 14-lead, plastic package.

FUNCTIONAL BLOCK DIAGRAM

Itev. E

Document Feedbac

formation furnished by Analog Devices is believed to be accurate and reliable. However, it
sponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or oth
hist of third parties that may result from its use. Socilifications subject to chance without notice. It

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009-2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

https://www.analog.com/en/products/adxl345.html

Output voltage increases when accelerated along the sensitive axis

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

I²C

With CS tied high to V_{DD I/O}, the ADXL345 is in I²C mode, requiring a simple 2-wire connection, as shown in Figure 40. The ADXL345 conforms to the UM10204 I²C-Bus Specification and User Manual, Rev. 03—19 June 2007, available from NXP Semiconductors. It supports standard (100 kHz) and fast (400 kHz) data transfer modes if the bus parameters given in Table 11 and Table 12 are met. Single- or multiple-byte reads/writes are supported, as shown in Figure 41. With the ALT ADDRESS pin high, the 7-bit I2C address for the device is 0x1D, followed by the R/W bit. This translates to 0x3A for a write and 0x3B for a read. An alternate I²C address of 0x53 (followed by the R/W bit) can be chosen by grounding the ALT ADDRESS pin (Pin 12). This translates to 0xA6 for a write and 0xA7 for a read.

There are no internal pull-up or pull-down resistors for any unused pins; therefore, there is no known state or default state for the \overline{CS} or ALT ADDRESS pin if left floating or unconnected. It is required that the \overline{CS} pin be connected to $V_{DD I/O}$ and that the ALT ADDRESS pin be connected to either $V_{DD I/O}$ or GND when using I^2C .

12C -mode

Figure 40. I²C Connection Diagram (Address 0x53)

Table 19.

Address					
Hex	Dec	Name	Туре	Reset Value	Description
0x00	0	DEVID	R	11100101	Device ID
0x01 to 0x1C	1 to 28	Reserved			Reserved; do not access
0x1D	29	THRESH_TAP	R/W	00000000	Tap threshold
0x1E	30	OFSX	R/W	00000000	X-axis offset
0x1F	31	OFSY	R/W	00000000	Y-axis offset
0x20	32	OFSZ	R/W	00000000	Z-axis offset
0x21	33	DUR	R/W	00000000	Tap duration
0x22	34	Latent	R/W	00000000	Tap latency
0x23	35	Window	R/W	00000000	Tap window
0x24	36	THRESH_ACT	R/W	00000000	Activity threshold
0x25	37	THRESH_INACT	R/W	00000000	Inactivity threshold
0x26	38	TIME_INACT	R/W	00000000	Inactivity time
0x27	39	ACT_INACT_CTL	R/W	00000000	Axis enable control for activity and inactivity detection
0x28	40	THRESH_FF	R/W	00000000	Free-fall threshold
0x29	41	TIME_FF	R/W	00000000	Free-fall time
0x2A	42	TAP_AXES	R/W	00000000	Axis control for single tap/double tap
0x2B	43	ACT_TAP_STATUS	R	00000000	Source of single tap/double tap
0x2C	44	BW_RATE	R/W	00001010	Data rate and power mode control
0x2D	45	POWER_CTL	R/W	00000000	Power-saving features control
0x2E	46	INT_ENABLE	R/W	00000000	Interrupt enable control
0x2F	47	INT_MAP	R/W	00000000	Interrupt mapping control
0x30	48	INT SOURCE	R	00000010	Source of interrupts
0x31	49	DATA_FORMAT	R/W	00000000	Data format control
0x32	50	DATAX0	R	00000000	X-Axis Data 0
0x33	51	DATAX1	R	00000000	X-Axis Data 1
0x34	52	DATAY0	R	00000000	Y-Axis Data 0
0x35	53	DATAY1	R	00000000	Y-Axis Data 1
0x36	54	DATAZ0	R	00000000	Z-Axis Data 0
0x37	55	DATAZ1	R	00000000	Z-Axis Data 1
0x38	56	FIFO_CTL	R/W	00000000	FIFO control
0x39	57	FIFO_STATUS	R	00000000	FIFO status

Register 0x00—DEVID (Read Only)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	0	0	1	0	1

The DEVID register holds a fixed device ID code of 0xE5 (345 octal).

Read device ID register to make sure that the communication with the ADXL345 is working

read_from_i2c_device(0x53,0x0,1,&data);

Register 0x2D—POWER_CTL (Read/Write)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	Link	AUTO_SLEEP	Measure	Sleep	Wak	eup

Measure Bit

A setting of 0 in the measure bit places the part into standby mode, and a setting of 1 places the part into measurement mode. The ADXL345 powers up in standby mode with minimum power consumption.

write_to_i2c_device(0x53,0x2d,1,0x8);

Standby Mode

For even lower power operation, standby mode can be used. In standby mode, current consumption is reduced to $0.1~\mu A$ (typical). In this mode, no measurements are made. Enter standby mode by clearing the measure bit (Bit D3) in the POWER_CTL register (Address 0x2D). Placing the device into standby mode preserves the contents of FIFO.

Register 0x31—DATA_FORMAT (Read/Write)

D7	D6	D5	D4	D3	D2	D1	D0
SELF_TEST	SPI	INT_INVERT	0	FULL_RES	Justify	Rar	nge

INT_INVERT Bit

A value of 0 in the INT_INVERT bit sets the interrupts to active high, and a value of 1 sets the interrupts to active low.

FULL_RES Bit

When this bit is set to a value of 1, the device is in full resolution mode, where the output resolution increases with the *g* range set by the range bits to maintain a 4 mg/LSB scale factor. When the FULL_RES bit is set to 0, the device is in 10-bit mode, and the range bits determine the maximum *g* range and scale factor.

Range Bits

These bits set the *g* range as described in Table 21.

Table 21. g Range Setting

	C - 44!	
Setting		
D1	D0	g Range
0	0	±2 g
0	1	±4 g
1	0	±8 g
_1	1	±2 g ±4 g ±8 g ±16 g

alt_u8 set_accel_config = 0x20 | 0x8 | 0x1; write_to_i2c_device(0x53,0x31,1,set_accel_config);

Register 0x32 to Register 0x37—DATAX0, DATAX1, DATAY0, DATAY1, DATAZ0, DATAZ1 (Read Only)

These six bytes (Register 0x32 to Register 0x37) are eight bits each and hold the output data for each axis.

Register 0x32 and Register 0x33 hold the output data for the x-axis, Register 0x34 and Register 0x35 hold the output data for the y-axis, and Register 0x36 and Register 0x37 hold the output data for the z-axis.

The output data is twos complement, with DATAx0 as the least significant byte and DATAx1 as the most significant byte, where x represent X, Y, or Z.

The DATA_FORMAT register (Address 0x31) controls the format of the data. It is recommended that a multiple-byte read of all registers be performed to prevent a change in data between reads of sequential registers.

```
alt_u8 data[6] ={0};
read_from_i2c_device(0x53,0x32,6,&data[0]);
```

Resolution & sensitivity

Table 1 in datasheet

-	I	ı			
OUTPUT RESOLUTION	Each axis				
All g Ranges	10-bit resolution		10		Bits
±2 g Range	Full resolution		10		Bits
±4 g Range	Full resolution		11		Bits
±8 g Range	Full resolution		12		
±16 g Range	Full resolution		13		
SENSITIVITY	Each axis				
Sensitivity at Xout, Yout, Zout	All g-ranges, full resolution	230	256	282	LSB/g
	$\pm 2 g$, 10-bit resolution	230	256	282	LSB/g
	$\pm 4 g$, 10-bit resolution	115	128	141	LSB/g
	±8 g, 10-bit resolution	57	64	71	LSB/g
	±16 g, 10-bit resolution	29	32	35	LSB/g
Sensitivity Deviation from Ideal	All g-ranges		±1.0		%
Scale Factor at Xout, Yout, Zout	All g-ranges, full resolution	3.5	3.9	4.3	mg/LSB
	$\pm 2 g$, 10-bit resolution	3.5	3.9	4.3	mg/LSB
	±4 g, 10-bit resolution	7.1	7.8	8.7	mg/LSB
	±8 g, 10-bit resolution	14.1	15.6	17.5	mg/LSB
	±16 g, 10-bit resolution	28.6	31.2	34.5	mg/LSB
Sensitivity Change Due to Temperature			±0.01		%/°C
	i				

Resolution & sensitivity

Full resolution

$$\pm 2g \rightarrow 10$$
-bit $(2^{10} = 1024)$
 $\pm 4g \rightarrow 11$ -bit $(2^{11} = 2048)$
 $\pm 8g \rightarrow 12$ -bit $(2^{12} = 4096)$
 $\pm 16g \rightarrow 13$ -bit $(2^{13} = 8192)$

Sensitivity

```
4g / 1024 = 0.0039 g/LSB
8g / 2048 = 0.0039 g/LSB
16g / 4096 = 0.0039 g/LSB
32g / 8192 = 0.0039 g/LSB
```

1g / 256 = 0.0039 g/LSB

Preparing the output

```
alt 16 ax, ay, az;
float axf, ayf, azf;
float scale = 1.0/256 // 1g/LSB
alt u8 data[6] ={0};
read from i2c device(0x53,0x32,6,&data[0]);
ax = (alt 16) (data[1] << 8 | data[0]);
ay = (alt 16) (data[3] << 8 | data[2]);
az = (alt 16) (data[5] << 8 | data[4]);
axf = ax * scale;
ayf = ay * scale;
azf = az * scale;
```

What to expect

DE10-Lite placed on table

```
alt_u16
         alt 16
                   float
0xffff,
           -1, -0.00391)
                         ay:
                              (0xfff3,
                                         -13, -0.05078)
                                                                         249, +0.97266)
                                                          az:
            0, +0.00000) ay:
                              (0xfff3,
                                                              (0xf8
                                       -13, -0.05078)
                                                                         248, +0.96875)
                                                          az:
           -1, -0.00391) ay: (0xfff7, -9, -0.03516)
0xffff,
                                                          az: (0xf6
                                                                         246, +0.96094)
            0, +0.00000) ay: (0xfff4,
                                       -12, -0.04688)
                                                          az:
                                                              (0xfa
                                                                         250, +0.97656)
```