Technische Universität Berlin Fakultät II – Institut für Mathematik Kato, Penn-Karras, Peters, Winkler

WS 08/09 06.04.2009

April – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:				
MatrNr.:	Studienga	ing:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt mit I	Notizen	sind k	eine Hi	lfsmittel
Die Lösungen sind in Reinschrift a geschriebene Klausuren können nicht			zugebe	n. Mit	Bleistift
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechenauf	gaben.	Geben	Sie im	mer den
Die Bearbeitungszeit beträgt eine St	unde.				
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens			,	·	
Korrektur					
	1	2	3	4	Σ

1. Aufgabe 10 Punkte

Sei die stetige Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Bestimmen Sie an allen Stellen, an denen f partiell differenzierbar ist, die partiellen Ableitungen.

2. Aufgabe 10 Punkte

Bestimmen Sie die globalen Extrema von $f: K \to \mathbb{R}$,

$$f(x,y) = (x+1)^2 + y^2$$
,

wobei $K := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 9\}.$

3. Aufgabe 10 Punkte

Berechnen Sie

$$\iiint_T (x^2 + y^2) \ dxdydz$$

über das Tortenstück

$$T = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 4, \ 0 \le z \le 2, \ 0 \le x, \ 0 \le y\}.$$

Tipp: Verwenden Sie Zylinderkoordinaten.

4. Aufgabe 10 Punkte

Sei $B=[0,2]\times [0,1].$ Das Flächenstück Fsei durch die Parametrisierung $\vec x\colon B\to \mathbb{R}^3$ mit

$$\vec{x}(s,t) = \begin{pmatrix} s \\ t \\ st \end{pmatrix}, \quad (s,t) \in B$$

beschrieben. Berechnen Sie den Fluss des Vektorfeldes $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$\vec{v}(x,y,z) = \begin{pmatrix} z \\ z \\ x^2 + y^2 \end{pmatrix}$$

durch das Flächenstück F.