Question Number	Answer		Mark
18(a)(i)	Use of trigonometry to calculate distance Or use of small angle approximation to calculate distance	(1)	
	Distance to Wolf $359 = 7.5 \times 10^{16} (m)$	(1)	2
	Example of calculation		
	Earth 0 1.5 × 10 m		
	Sun d		
	$\tan(2.01 \times 10^{-6}) = \frac{1.50 \times 10^{11} \mathrm{m}}{d}$		
	$\therefore d = \frac{1.50 \times 10^{11} \text{ m}}{2.01 \times 10^{-6}} = 7.46 \times 10^{16} \text{ m}$		
18(a)(ii)	Parallax angle decreases as distance from the Earth increases Or parallax is only suitable for (relatively) close stars	(1)	
	As parallax angle is too small to measure for distant stars	(1)	2
18(b)(i)	λ_{max} read from graph	(1)	
	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$	(1)	
	$T = 2680 \text{ (K)} [\text{accept } 2635 \text{ K} \rightarrow 2760 \text{ K}]$	(1)	3
	Example of calculation		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{1.08 \times 10^{-6} \text{ m}} = 2683 \text{ K}$		
18(b)(ii)	Use of $L = \sigma A T^4$	(1)	
	$L = 4.70 \times 10^{23} \text{ W (allow ecf from (b)(i))}$	(1)	
	Comparison of calculated value of L with $L_{\rm Sun}$ and appropriate conclusion Or comparison of calculated $L/L_{\rm Sun}$ percentage with 0.1% and appropriate conclusion	(1)	3
	Example of calculation		
	$L = 4\pi (0.16 \times 6.96 \times 10^8 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} (2700 \text{ K})^4$		
	$L = 4.70 \times 10^{23} W$		
	$\frac{L}{L_{\text{Sun}}} \times 100\% = \frac{4.70 \times 10^{23} W}{3.83 \times 10^{26} W} \times 100\% = 0.12\%$		