

Suppose that Arthur chooses an arbitrary subset $A \subseteq [n]$, and Bri attempts to discover it by repeatedly asking questions of the form, "How many elements does A have in common with $B_i \subseteq [n]$?"

Figure 1: A strategy that Bri can use to discover A in four guesses or fewer, note that the cases where A is size 3, 4, or 5 follow by symmetry.

Question. Let a(n) = k be the least integer k such that there exists a strategy where Bri can always determine A in k guesses or fewer. What is a(n)?

Related.

- 1. What if instead of giving the size of the intersection, Arthur gives the size of the symmetric difference?
- 2. What if A is a multiset? Where i can occur with multiplicity at most a_i ?
- 3. What are some upper and lower bounds?
- 4. How many (essentially different) optimal strategies exist? (e.g., do you always have to start by guessing the entire set?)
- 5. What is the best average case strategy?
- 6. What if there are restrictions on Bri's subsets? For example, if the size of Bri's subsets must be weakly decreasing, or if Bri's subsets cannot simultaneously contain both i and i + 1?
- 7. What if Arthur instead picks a column from a given matrix, how many questions of the form "what is the *i*th entry" does Bri have to ask in order to determine the column?

References.

https://math.stackexchange.com/a/25297/121988