SEQUENZPROTOKOLI. <110> Degussa AG <120> Neue für das menE-Gen kodierende Nukleotidsequenzen <130> 000551 BT <140> 10 <141> <160> 4 <170> PatentIn Ver. 2.1 15 <210> 1 <211> 1570 <212> DNA <213> Corynebacterium glutamicum 20 <220> <221> CDS <222> (230)..(1357) <223> menE-Gen 25 <400> 1 ttcgttgcca tagacatgct cttcgcagca ctgtttgcgc acgtctcctc cggcatcttt 60 gtcaccaaca atggttggga actcaccggc gcaatcggcg ctggcgcgct gcttctcatc 120 30 gcagttggcg caggtgcatg gagcatcgac ggggttctgg caaaacgcaa ggcctaaatc 180 tagogocaca actoogaatt otgaaccato ggoactagaa totoggaat atg aat act 238 Met Asn Thr 35 1 ege gte ete gaa gea eta eet gtt gat ett gea gat eee ace gea att 286 Arg Val Leu Glu Ala Leu Pro Val Asp Leu Ala Asp Pro Thr Ala Ile 40 ctg gga gat etc gag gac gca atc tet ggg aag aaa act tte etc ecc 334 Leu Gly Asp Leu Glu Asp Ala Ile Ser Gly Lys Lys Thr Phe Leu Pro 25 45 atc cct gta caa gat aaa acc cgt gca cag ttg ctg cgc gat tct caa 382 Ile Pro Val Gln Asp Lys Thr Arg Ala Gln Leu Leu Arg Asp Ser Gln 40 cga gtt ggc ctc gcc atc gat cct tcg atc gct ttg gtg atg gcc act 430 Arg Val Gly Leu Ala Ile Asp Pro Ser Ile Ala Leu Val Met Ala Thr 55 tet ggt tet aca ggt acc ceg aag ggc get cag etc act eeg ttg aat Ser Gly Ser Thr Gly Thr Pro Lys Gly Ala Gln Leu Thr Pro Leu Asn 55 70

		ttg Leu	gtg Val 85	agt Ser	tcc Ser	gcc Ala	gat Asp	gct Ala 90	acg Thr	cat His	cag Gln	ttt Phe	tta Leu 95	ggt Gly	ggc Gly	gaa Glu	ggc Gly	526
	5	cag Gln 100	tgg Trp	ttg Leu	ctt Leu	gcc Ala	atg Met 105	cca Pro	gca Ala	cac His	cac His	att Ile 110	gca Ala	ggc Gly	atg Met	cag Gln	gtg Val 115	574
	10	ctt Leu	ctt Leu	cga Arg	agc Ser	ctc Leu 120	att Ile	gct Ala	gga Gly	gtt Val	gag Glu 125	cca Pro	cta Leu	gct Ala	att Ile	gat Asp 130	ctc Leu	622
	15	agc Ser	aca Thr	ggt Gly	ttt Phe 135	cac His	att Ile	gac Asp	gct Ala	ttc Phe 140	gca Ala	ggc Gly	gcc Ala	gcg Ala	gca Ala 145	gaa Glu	ctg Leu	670
	20	aaa Lys	aat Asn	acc Thr 150	ggc Gly	gac Asp	cgc Arg	gtc Val	tat Tyr 155	aca Thr	tcc Ser	ttg Leu	act Thr	cca Pro 160	atg Met	cag Gln	tta Leu	718
		ctt Leu	aaa Lys 165	gca Ala	atg Met	gac Asp	tcc Ser	ttg Leu 170	caa Gln	ggc Gly	att Ile	gaa Glu	gcc Ala 175	ctg Leu	aaa Lys	ctt Leu	ttt Phe	766
	25	gat Asp 180	gtc Val	att Ile	ctt Leu	gtt Val	ggc Gly 185	ggt Gly	gct Ala	gca Ala	ttg Leu	tct Ser 190	aag Lys	cag Gln	gcc Ala	cga Arg	att Ile 195	814
	30	tct Ser	gcg Ala	gag Glu	cag Gln	cta Leu 200	gac Asp	atc Ile	aac Asn	att Ile	gtc Val 205	acc Thr	acc Thr	tac Tyr	ggc Gly	tcc Ser 210	tca Ser	862
	35	GIU	IIIE	ser	ggt Gly 215	GIŸ	Cys	vaı	Tyr	220	Gly	Lys	Pro	Ile	Pro 225	Gly	Ala	910
	40	aaa Lys	gtc Val	cgt Arg 230	att Ile	tcg Ser	gat Asp	gag Glu	cgc Arg 235	att Ile	gag Glu	ttg Leu	ggt Gly	ggc Gly 240	ccg Pro	atg Met	att Ile	958
		gcg Ala	cag Gln 245	ggc Gly	tac Tyr	aga Arg	aat Asn	gca Ala 250	cct Pro	gaa Glu	cat His	ccg Pro	gat Asp 255	ttc Phe	gcc Ala	aac Asn	gag Glu	1006
	45	ggt Gly 260	tgg Trp	ttt Phe	acc Thr	acc Thr	tct Ser 265	gat Asp	tca Ser	ggt Gly	gaa Glu	ctc Leu 270	cac His	gac Asp	ggg Gly	att Ile	ctc Leu 275	1054
	50	acc Thr	gtg Val	act Thr	ggt Gly	cgc Arg 280	gtg Val	gat Asp	acc Thr	gtc Val	att Ile 285	gat Asp	tcc Ser	ggt Gly	gga Gly	ttg Leu 290	aag Lys	1102
	55	ttg Leu	cac His	cca Pro	gag Glu 295	gta Val	ctg Leu	gaa Glu	cgt Arg	gcc Ala 300	atc Ile	gca Ala	gat Asp	att Ile	aaa Lys 305	ggt Gly	gtc Val	1150
		acc Thr	gcg Ala	gcg Ala 310	tgt Cys	gtt Val	gtg Val	ggt Gly	att Ile 315	ccc Pro	gat Asp	ccc Pro	cga Arg	tta Leu 320	ggc Gly	caa Gln	gca Ala	1198

5	att Ile	gtg Val 325	gcc Ala	gcg Ala	tac Tyr	tcc Ser	gga Gly 330	tcg Ser	atc Ile	agt Ser	ccg Pro	tct Ser 335	gaa Glu	gtt Val	att Ile	gaa Glu	1246
	ggc Gly 340	ctc Leu	gac Asp	gat Asp	cta Leu	cct Pro 345	cgt Arg	tgg Trp	cag Gln	ctt Leu	ccc Pro 350	aaa Lys	cgg Arg	ctg Leu	aag Lys	cat His 355	1294
10	ctg Leu	gaa Glu	tct Ser	ttg Leu	ccc Pro 360	agc Ser	att Ile	ggt Gly	cct Pro	gga Gly 365	aaa Lys	gct Ala	gat Asp	cga Arg	cgt Arg 370	gct Ala	1342
15	atc Ile	gcg Ala	aag Lys	ctg Leu 375	ttt Phe	tagt	ctt	cat t	tette	gctg	ge to	gcaa	ctagi	tt!	tgcca	acat	1397
	ctto	cato	ggt (gtaca	acttt	tg go	gato	ctgct	cat	catt	tcc	acco	catga	agg (gtgtt	tgccaa	1457
20	caa	ctagi	tgc 1	ccca	actto	gg gt	ggt	gggca	a cga	acago	gaa	gtgt	cgg	ggc .	tgago	cgtaga	1517
	cct	ggcga	aat a	agggt	gato	ca ga	agcgo	cagto	g cgo	caggo	catg	cago	ccata	acg ·	tca		1570
25	<211 <212	0> 2 1> 3' 2> PI 3> Co	RT	∍bact	eri	um gi	Lutar	nicum	n								
30		0> 2 Asn	Thr	Arg	Val 5	Leu	Glu	Ala	Leu	Pro 10	Val	Asp	Leu	Ala	Asp 15	Pro	
35	Thr	Ala	Ile	Leu 20	Gly	Asp	Leu	Glu	Asp 25	Ala	Ile	Ser	Gly	Lys 30	Lys	Thr	
	Phe	Leu	Pro 35	Ile	Pro	Val	Gln	Asp 40	Lys	Thr	Arg	Ala	Gln 45	Leu	Leu	Arg	
40		50		Arg			55					60					
45	Met 65	Ala	Thr	Ser	Gly	Ser 70	Thr	Gly	Thr	Pro	Lys 75	Gly	Ala	Gln	Leu	Thr 80	
	Pro	Leu	Asn	Leu	Val 85	Ser	Ser	Ala	Asp	Ala 90	Thr	His	Gln	Phe	Leu 95	Gly	
50	Gly	Glu	Gly	Gln 100	Trp	Leu	Leu	Ala	Met 105	Pro	Ala	His	His	Ile 110	Ala	Gly	
	Met	Gln	Val 115	Leu	Leu	Arg	Ser	Leu 120	Ile	Ala	Gly	Val	Glu 125	Pro	Leu	Ala	
55	Ile	Asp 130	Leu	Ser	Thr	Gly	Phe 135	His	Ile	Asp	Ala	Phe 140	Ala	Gly	Ala	Ala	
	Ala 145	Glu	Leu	Lys	Asn	Thr 150	Gly	Asp	Arg	Val	Tyr 155	Thr	Ser	Leu	Thr	Pro 160	

	Met	Gln	Leu	Leu	Lys 165	Ala	Met	Asp	Ser	Leu 170	Gln	Gly	Ile	Glu	Ala 175	Leu	
5	Lys	Leu	Phe	Asp 180	Val	Ile	Leu	Val	Gly 185	Gly	Ala	Ala	Leu	Ser 190	Lys	Gln	
10	Ala	Arg	Ile 195	Ser	Ala	Glu	Gln	Leu 200	Asp	Ile	Asn	Ile	Val 205	Thr	Thr	Tyr	
	Gly	Ser 210	Ser	Glu	Thr	Ser	Gly 215	Gly	Cys	Val	Tyr	Asp 220	Gly	Lys	Pro	Ile	
15	Pro 225	Gly	Ala	Lys	Val	Arg 230	Ile	Ser	Asp	Glu	Arg 235	Ile	Glu	Leu	Gly	Gly 240	
	Pro	Met	Ile	Ala	Gln 245	Gly	Tyr	Arg	Asn	Ala 250	Pro	Glu	His	Pro	Asp 255	Phe	
20	Ala	Asn	Glu	Gly 260	Trp	Phe	Thr	Thr	Ser 265	Asp	Ser	Gly	Glu	Leu 270	His	Asp	
25	Gly	Ile	Leu 275	Thr	Val	Thr	Gly	Arg 280	Val	Asp	Thr	Val	Ile 285	Asp	Ser	Gly	
	Gly	Leu 290	Lys	Leu	His	Pro	Glu 295	Val	Leu	Glu	Arg	Ala 300	Ile	Ala	Asp	Ile	
30	Lys 305	Gly	Val	Thr	Ala	Ala 310	Cys	Val	Val	Gly	Ile 315	Pro	Asp	Pro	Arg	Leu 320	
	Gly	Gln	Ala	Ile	Val 325	Ala	Ala	Tyr	Ser	Gly 330	Ser	Ile	Ser	Pro	Ser 335	Glu	
35	Val	Ile	Glu	Gly 340	Leu	Asp	Asp	Leu	Pro 345	Arg	Trp	Gln	Leu	Pro 350	Lys	Arg	
40	Leu	Lys	His 355	Leu	Glu	Ser	Leu	Pro 360	Ser	Ile	Gly	Pro	Gly 365	Lys	Ala	Asp	
	Arg	Arg 370	Ala	Ile	Ala	Lys	Leu 375	Phe									
45	<210)> 3															
	<212	L> 19 2> DN 3> Co	IA	bact	eriu	ım g]	lutam	nicum	ı								
50	<220> <223> Primer menE-intl																
55	<400 ctca)> 3	gt t	gaat	ttgg	J											19

<210> 4 <211> 19

HORENOUS HAISON

5

<212> DNA <213> Corynebacterium glutamicum <220> <223> Primer menE-int2 <400> 4 caggtgcatt tctgtagcc

. ...

10

10

15

20

Patentansprüche

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das menE-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält.
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität der O-Succinylbenzoesäure-CoA-Ligase aufweist.

- Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
- Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid
 eine RNA ist.
 - Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend

5

- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz
 (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
- Replizierbare DNA gemäß Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
 - Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 8. Coryneforme Bakterien, in denen das menE-Gen abgeschwächt, insbesondere ausgeschaltet wird.
 - 9. Integrationsvektor pCR2.1menEint, der
 - ein 520 bp großes internes Fragment des menE-Gens trägt,
- 9.2. dessen Restriktionskarte in Figur 1 wiedergegeben wird, und
 - 9.3. der in dem E. coli-Stamm Top10/pCR2.lmenEint unter der Nr. DSM 14080 bei der Deutschen Sammlung für Mikroorganismen und Zellenkulturen hinterlegt ist.
 - 10. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, d a d u r c h g e k e n n z e i c h n e t, daß man folgende Schritte durchführt:

10

- a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das menE-Gen oder dafür kodierende Nukleotidsequenzen abschwächt, insbesondere ausschaltet:
- Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
- c) Isolieren der L-Aminosäure.
- 11. Verfahren gemäß Anspruch 10, d a d u r c h
 g e k e n n z e i c h n e t, daß man Bakterien
 einsetzt, in denen man zusätzlich weitere Gene des
 Biosyntheseweges der gewünschten L-Aminosäure
 verstärkt.
- 12. Verfahren gemäß Anspruch 10, d a d u r c h

 g e k e n n z e i c h n e t, daß man Bakterien
 einsetzt, in denen die Stoffwechselwege zumindest
 teilweise ausgeschaltet sind, die die Bildung der
 gewünschten L-Aminosäure verringern.
- 13. Verfahren gemäß Anspruch 10, d a d u r c h

 20 g e k e n n z e i c h n e t, daß man die Expression des
 (der) Polynukleotides (e), das (die) für das menE-Gen
 kodiert (kodieren) abschwächt, insbesondere
- 14. Verfahren gemäß Anspruch 10, dadurch
 gekennzeich net, daß man die katalytischen
 Eigenschaften des Polypetids (Enzymprotein) verringert,
 für das das Polynukleotid menE kodiert.
- 15. Verfahren gemäß Anspruch 10, d a d u r c h
 g e k e n n z e i c h n e t, daß man zur Herstellung
 30 von L-Aminosäuren coryneforme Mikroorganismen
 fermentiert, in denen man gleichzeitig eines oder
 mehrere der Gene, ausgewählt aus der Gruppe

15.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA, 15.2 das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap, 5 15.3 das für die Triosephosphat-Isomerase kodierende Gen tpi, 15.4 das für die 3-Phosphoglycerat-Kinase kodierende Gen pak, 15.5 das für die Glucose-6-Phosphat-Dehydrogenase 1.0 kodierende Gen zwf. 15.6 das für die Pyruvat-Carboxylase kodierende Gen pyc, 15.7 das für die Malat-Chinon-Oxidoreduktase kodierende Gen mgo, 1.5 15.8 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 15.9 das für den Lysin-Export kodierende Gen lysE, 15.10 das für die Homoserin-Dehydrogenase kodierende Gen hom, 20 15.11 das für die Threonin-Dehydratase kodierende Gen ilvA oder das für eine feed back resistente Threonin-Dehydratase kodierende Allel ilvA(Fbr). 15.12 das für die Acetohydroxysäure-Synthase 25 kodierende Gen ilvBN, 15.13 das für die Dihydroxysäuredehydratase kodierende Gen ilvD, und 15.14 das für das Zwal-Protein kodierende Gen zwal

10

verstärkt bzw. überexprimiert.

- 16. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
 - 16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck.
 - 16.2 das für die Glucose-6-Phosphat-Isomerase
 kodierende Gen pgi,
 - 16.3 das für die Pyruvat-Oxidase kodierende Gen poxB, und
 - 16.4 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
- 15 17. Coryneforme Bakterien, die einen Vektor enthalten, der Teile des Polynukleotids gemäß Anspruch 1, mindestens aber 15 aufeinanderfolgende Nukleotide der beanspruchten Sequenz, trägt.
- 18. Verfahren gemäß einem oder mehreren der vorhergehenden 20 Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
 - 19. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu
- 25 isolieren, die für die O-Succinylbenzoesäure-CoA-Ligase kodieren oder eine hohe Ähnlichkeit mit der Sequenz des menE-Gens aufweisen, d a d u r c h
 - g e k e n n z e i c h n e t, daß man das Polynukleotid, enthaltend die Polynukleotidsequenzen gemäß den Ansprüchen
- 30 1, 2, 3 oder 4, als Hybridisierungssonden einsetzt.

Zusammenfassung

Die Erfindung betrifft ein isoliertes Polynukleotid enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

und ein Verfahren zur fermentativen Herstellung von L20 Aminosäuren unter Verwendung von coryneformen Bakterien, in
denen zumindest das menE-Gen abgeschwächt vorliegt, und die
Verwendung von Polynukleotiden, die die erfindungsgemäßen
Sequenzen enthalten, als Hybridisierungssonden.