Spectral Geometry Processing with Manifold Harmonics

Bruno Vallet Bruno Lévy

Introduction

- II. Harmonics
- III. DEC formulation
- IV. Filtering
- v. Numerics

Results and conclusion

Extend to meshes:

- Fourier transform
- Spectral filtering

Fourier transform

Filtering

Filtering

Filtering on a mesh

Filtering on a mesh

Filtering on a mesh

Filtering
[Taubin 95]

Geometric space Frequency space

[Karni00] mesh compression [Zhang06] shape matching [Dong06] quadrangulation

Introduction

- Harmonics
- DEC formulation
- Filtering
- Numerics

Results and conclusion

Question

FP4 - 16/04/2008

Eurographics 2008

Harmonics and vibrations

sin(kx) are the stationary vibrating modes = harmonics of a string

Manifold Harmonics

FP4 - 16/04/2008

Eurographics 2008

Square Harmonics

Chladni plates

FP4 - 16/04/2008

Eurographics 2008

Chladni plates

FP4 - 16/04/2008

Eurographics 2008

Chladni plates

Discoveries concerning the theory of music, Chladni, 1787

Chladni plates and jpeg

Chladni plates, 1787

Discrete cosine transform (jpeg)

Spherical Harmonics

Manifold Harmonics

Harmonics and vibrations

• Wave equation:

T
$$\partial^2 y/\partial x^2 = \mu \partial^2 y/\partial t^2$$

T: stiffness μ : mass

• Stationary modes:

$$y(x,t) = y(x)\sin(\omega t)$$

$$\partial^2 \mathbf{y}/\partial \mathbf{x}^2 = -\mu \omega^2/T \mathbf{y}$$

eigenfunctions of $\partial^2/\partial x^2$

I Harmonics: recap

- Harmonics are **eigenfunctions** of $\partial^2/\partial x^2$
- On a mesh, $\partial^2/\partial x^2$ is the Laplacian Δ
- We need the eigenfunctions of △
- Let's use DEC

Introduction

- Harmonics
- DEC formulation
- Filtering
- Numerics

Results and conclusion

Discrete Exterior Calculus (DEC)

Discretize equations on a mesh

- Simple
- Rigorous

[Mercat], [Hirani], [Arnold], [Desbrun]

Based on k-forms

k-forms

mesh dual mesh

0-forms

1-forms

2-forms

dual 0-forms

dual 1-forms

dual 2-forms

Hodge star *0

from	to	term
0-forms	dual 2-forms	1 11
		

Hodge star *1

from	to	term	
1-forms	dual 1-forms	Liil/liil = cot(B)+cot(B')	

Exterior derivative d

from	to	term	
0-forms 1-forms		$df(ij) = f_i - f_j$	

jk

Oriented connectivity of the mesh:

FP4 - 16/04/2008

i	j	k	I
-1	+1	0	0
0	-1	+1	0
+1	0	-1	0
-1	0	0	+1
0	+1	0	-1

 f_i f_j f_k

DEC Laplacian

In DEC the Laplacian is $*_0^{-1} d^T *_1 d$

0-form (function) f

DEC Laplacian

$$(\mathbf{f}_{j} - \mathbf{f}_{i})$$

DEC Laplacian

FP4 - 16/04/2008

Eurographics 2008

DEC Laplacian

DEC Laplacian

Manifold Harmonics Basis (MHB)

Eigenfunctions of operator Δ

DEC

Eigenvectors of

matrix $*_0^{-1}d^{\mathsf{T}}*_1d$

II DEC formulation : recap

Introduction

- Harmonics
- DEC formulation
- Filtering
- Numerics

Results and conclusion

Spectral Filtering

- The Manifold Harmonics H^k come with an eigenvalue λ_k
- The $\lambda_k = \omega_k^2$ is a squared spatial frequency
- A filter is a transfer function $F(\omega)$

Color Filtering

Geometry Filtering

Take f = (x,y,z)

Introduction

- Harmonics
- DEC formulation
- Filtering
- Numerics

Results and conclusion

Eigenvalues

- Compute the eigenpairs (H_k, λ_k) of $L = *_0^{-1} d^T *_1 d$
- Solver returns eigenvectors of highest eigenvalue

Problem:

- •We want smallest λ_k
- •We want more than 50

Shift Invert

Eigen solver

Compute a **band** of eigenpairs (H^k, λ^k) around λ_s

Band by band algorithm

Results and conclusion

Introduction

- II. Harmonics
- III. DEC formulation
- IV. Filtering
- v. Numerics

Results and conclusion

Results

Conclusion

We make explicit Fourier Analysis and Filtering tractable

Time to compute MHB ~ Time to compute a filter (5 minutes for 300k vertices)

Time to update filter ~ real time

Acknowledgements

- Ramsay Dyer for personal communication
- •Sivan Toledo for the sparse indefinite Cholesky factorization code

Questions?

FP4 - 16/04/2008

Eurographics 2008