Exam

80 points, 80 minutes. Closed books, notes, calculators. Indicate your reasoning. Use BOTH clearly written words and math.

- 1. (30 pts) A firm produces output q from inputs $z=(z_1,\ldots,z_n)$ using a strictly increasing C^2 production function f. Let c(w,q) be the firm's cost function, z(w,q) be its conditional factor demand function, and $D_w z(w,q) = [\partial z_i/\partial w_j]$ be the Jacobian matrix of z(w,q) with respect to w. For each property below, state further assumptions that imply it is true, and prove your answer.
 - (a) (10 pts) c(w, q) is convex in q.
 - (b) (10 pts) c(w, q) is linear in q.
 - (c) (10 pts) $D_w z(w,q) w = 0$.
- 2. (20 pts) Robinson Crusoe has an endowment $e \in \mathbb{R}_{++}$ of bananas that he can consume or use to make clothing. If he uses $x \in [0,e]$ bananas to make clothing, his utility will be u(e-x,f(x)), where $u:\mathbb{R}^2_+\to\mathbb{R}$ and $f:\mathbb{R}_+\to\mathbb{R}_+$ are strictly increasing functions. Let

$$x^*(e) := \arg\max_{0 \le x \le e} u(e - x, f(x)).$$

- (a) (10 pts) Show that x^* (e) is convex if u is quasiconcave and f is concave.
- (b) (10 pts) Assume now that $x^*(e)$ is a singleton for any e > 0, u and f are C^2 functions, f and u are concave, and $u_{12} \ge 0$. Prove that $x^*(e)$ is a nondecreasing function, stating any further (minor) assumptions you need.
- 3. (30 pts) Let $\tilde{x} = a + \tilde{\epsilon}$ be a gamble, where $a \in \mathbb{R}$ and $\tilde{\epsilon}$ is a random variable with mean zero. A consumer has a C^2 Bernoulli utility function, $u : \mathbb{R} \to \mathbb{R}$, satisfying u' > 0 and $u'' \le 0$. Her sale price for the gamble is the minimum amount she would sell the gamble for: it is the number s(a) satisfying

$$u(s(a)) = \mathbb{E}u(a + \tilde{\varepsilon}).$$

- (a) (10 pts) If u exhibits constant absolute risk aversion, what can you say about the derivative s'(a)? Prove your answer.
- (b) (20 pts) If u exhibits decreasing absolute risk aversion (DARA), what can you say about the derivative s'(a)? Prove your answer.