Singular Value Thresholding for Matrix Completion

Sriram Ganesan*

Nitin Garg

gargn@umich.edu

Jeeheh Oh
jeeheh@umich.edu

Jonathan Stroud stroud@umich.edu

Abstract

1 Introduction

Collaborative Filtering is the process of learning patterns by aggregating information over multiple sources of data, typically multiple users of the same system. These techniques have been applied effectively on many difficult problems, most notably on recommender systems such as those found on Netflix, Amazon, Spotify, and others. The goal of these systems is to produce targeted product recommendations for individual users given the products the user has previously viewed or rated. Users have typically viewed or rated only a small subset of the available products, and different users typically have not rated the same set of products. These problems do not easily lie into any supervised learning framework, so we instead employ the framework of matrix completion.

In matrix completion, we reconstruct a matrix M from a set of known entries M_{ij} , $(i,j) \in \Omega$. Relying on the assumption that M has low rank, we can pose this as a constrained rank-minimization problem

In this project, we explore several algorithms for matrix completion via rank-minimization and compare their performance on collaborative filtering baselines. We provide an implementation of the method described in "A Singular Value Thresholding Algorithm for Matrix Completion" [1] and reproduce their experiments. We also provide an implementation of a competing algorithm from "Matrix Completion from a Few Entries" [2].

2 Different Algorithms

2.1 Eigentaste

Eigentaste is a collaborative filtering algorithm which applies principal component analysis to the dense subset of user ratings, thus facilitating dimensionality reduction for offline clusters and rapid computation of recommendations. Mean rating of the jth item in the gauge set is given by

$$\mu_{ij} = \frac{1}{n} \sum_{i \in U_j} \widetilde{r}_{ij}$$

$$\sigma_j^2 = \frac{1}{n-1} \sum_{i \in U_i} (\widetilde{r}_{ij} - \mu_j)^2$$

^{*}The names are printed in alphabetical order by last name.

In A, the normalized rating r_{ij} is set to $(\tilde{r}_{ij}-\mu_j)/\sigma_j$. The global correlation matrix is given by

$$C = \frac{1}{n-1}A^T A = E^T \Lambda E$$

The data is projected along the first v eigenvectors $x = RE_v^T$

Recursive Rectangular Clustering:

- 1. Find the minimal rectangular cell that encloses all the points in the eigenplane.
- 2. Bisect along x and y axis to form 4 rectangular sub-cells.
- 3. Bisect the cells in step 2 with origin as a vertex to form sub-cells at next hierarchial level.

Online Computation of Recommendations

- 1. Collect ratings of all items in gauge set.
- 2. Use PCA to project this vector to eigenplane.
- 3. Find the representative cluster.
- 4. Look up appropriate recommendations, present them to the new user, and collect ratings.

2.2 SMC

2.3 Singular Value Thresholding

Singular Value Thresholding (SVT) [1] is an algorithm proposed for *nuclear norm minimization* of a matrix. Formally, SVT addresses the optimization problem

$$\label{eq:minimize} \begin{aligned} & \underset{X}{\text{minimize}} & & \|X\|_* \\ & \text{subject to} & & \mathcal{P}_{\Omega}(X) = \mathcal{P}_{\Omega}(M), \end{aligned}$$

where $\|\cdot\|_*$ is the *nuclear norm*, or the sum of the singular values and $\mathcal{P}_{\Omega}(\cdot)$ makes zero all entries $(i,j) \notin \Omega$. This can be thought of as a convex relaxation to the rank minimization problem, and the two are formally equivalent under some conditions. The rank minimization problem is, however, highly non-convex and therefore not a suitable candidate for black-box optimization algorithms.

Singular Value Thresholding works by iteratively constructing X using a low-rank, low-singular value approximation to an auxiliary sparse matrix Y. Y is then adjusted to ensure the resulting approximation in the subsequent step has matching entries $X_{ij} = M_{ij}$. Each iteration consists of the inductive steps

$$\begin{cases} X^k = \operatorname{shrink}(Y^{k-1}, \tau) \\ Y^k = Y^{k-1} + \delta_k \mathcal{P}_{\Omega}(M - X^k), \end{cases}$$

where $\operatorname{shrink}(\cdot,\cdot)$ is the *singular value shrinkage operator*. Given a singular value decomposition $X = U\Sigma V^T$, $\Sigma = \operatorname{diag}(\{\sigma_i\}_{1\leq i\leq r})$, we can write this as

$$\operatorname{shrink}(X,\tau) = U\Sigma_{\tau}V^{T}, \ \Sigma_{\tau} = \operatorname{diag}(\{(\sigma_{i} - \tau)_{+}\}).$$

These two operations, when repeated, approach a low-nuclear norm solution by repeatedly shrinking the singular values of X. This algorithm has shown success in recovering accurate low-rank solutions when the source of M is also low-rank, even though it does not optimize this objective directly. The original authors discuss its theoretical guarantees in detail, but we choose to omit them in this discussion.

In practice, this system has a number of hyperparameters that must be carefully tuned to guarantee convergence. The shrinkage value τ must be set fairly high in order for the algorithm to converge quickly, but not too high that it dwarfs the true singular values. The stepsizes δ_k are similarly sensitive. These can be set dynamically as well, though we choose to maintain a fixed stepsize throughout. We compute the decomposition of Y^K in batches, which introduces a new batch size parameter l. Also important is the initialization of Y^0 , for which the authors provide helpful strategies. Finally, we use the relative error $\|\mathcal{P}_{\Omega}(X^k-M)\|_F/\|\mathcal{P}_{\Omega}(M)\|$ as a stopping criterion. We terminate when this drops below a small ϵ .

3 Results and Discussion

- 3.1 Synthetic Data
- 3.2 Jester Dataset
- 4 Conclusions
- 5 Future Work

References

- [1] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. *SIAM Journal on Optimization*, 20(4):1956–1982, 2010.
- [2] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few entries. *Information Theory, IEEE Transactions on*, 56(6):2980–2998, 2010.

size $(n \times n)$	rank (r)	m/d_r	m/n^2	time (s)	#iters	relative error
1000	10	6	0.119	279.1	250.0	86.59246×10^{-4}
1000	50	4	0.390	800.4	220.4	0.99209×10^{-4}
1000	100	3	0.570	604.6	163.8	0.98189×10^{-4}
5000	10	6	0.024	12934.9	250.0	611.42446 x 10 ⁻⁴
5000	50	5	0.100	-	-	-
5000	100	4	0.158	-	-	-
10000	10	6	0.012	-	1	-
10000	50	5	0.050	-	-	-
10000	100	4	0.080	-	ı	-
20000	10	6	0.006	-	1	-
20000	50	5	0.025	-	-	-
30000	10	6	0.004	-	ı	-

Table 1: Performance of Singular Value Thresholding on synthetic matrices of known rank. We generate two $n \times r$ matrices U and V whose entries are i.i.d. gaussian. We choose m random entries from $M = UV^T$ and measure convergence rates of SVT. m/d_r is the ratio of sampled entries m and the "true dimensionality" $d_r = r(2n-r)$.