- 33. Considere as seguintes proposições, nas quais o universo de cada quantificação é o conjunto dos números reais.
 - a) $\forall_x \exists_y \ x + y = 0$
 - b) $\exists_x \forall_y \ x + y = 0$
 - c) $\exists_x \forall_y \ x + y = y$
 - d) $\forall_x (x > 0 \rightarrow \exists_y xy = 1)$

Relativamente a cada uma destas proposições,

- i) diga, justificando, se é verdadeira ou não;
- ii) apresente uma proposição equivalente à sua negação, sem recorrer ao conetivo ~.
- 34. Prove que as seguintes afirmações são falsas:
 - a) Para todos os primos p e q, $p^2 + q^2$ é também primo.
 - b) Quaisquer que sejam os números $a, b \in \mathbb{R}$, se a > b então $a^2 > b$.
 - c) Para todo o $x \in \mathbb{R}$, se $x^4 = 1$ então x = 1.
- 35. Prove, por indução, as seguintes propriedades dos números naturais:
 - a) $1 + 2 + 3 + ... + n = \frac{1}{2} n (n + 1)$
 - b) $1+3+5+...+(2n-1)=n^2$
 - c) 2+4+6+...+2n=n(n+1)
 - d) $1+3+9+27+...+3^n = \frac{3^{n+1}-1}{2}$
 - e) $\sum_{i=1}^{n} (2i-1)^2 = \frac{n(4n^2-1)}{3}$
 - f) $n^2 > 2n + 1$, para todo $n \ge 3$
 - g) $2^n > n^2$, para todo $n \ge 5$
 - h) $n! > n^2$, para todo $n \ge 4$
 - i) $3^{2n} 1$ é múltiplo de 8
- 36. Para cada $n \in \mathbb{N}$, seja P(n) a propriedade: $n^2 + 5n + 1$ é par.
 - a) Mostre que, para cada $k \in \mathbb{N}$, se P(k) é verdadeira, então P(k+1) é verdadeira.
 - b) Diga, justificando, para que naturais n a propriedade $P\left(n\right)$ é verdadeira.
- 37. Prove que para todo o $n \in \mathbb{N}$ se tem

a)
$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

b)
$$1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

c)
$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$

d)
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

e) $8^n - 3^n$ é divisível por 5.

38. Prove que

- a) para todo o $n \in \mathbb{N}$, n + 1 é primo ou pode ser fatorizado em primos.
- b) para todo o $n \in \mathbb{N}$ tal que $n \ge 2$, o número de fatores primos de n é menor do que $2\log n$.
- 39. Indique o erro na seguinte "demonstração" de que quaisquer dois números naturais são iguais:

Seja P(n) a propriedade 'se a e b forem números naturais tais que máx $\{a, b\} = n$, então a = b.

- 1. P(1) é claramente verdadeira.
- 2. Suponhamos que P(k) é verdadeira. Sejam a e b números naturais quaisquer tais que $\max\{a,b\} = k+1$; sejam $\alpha = a-1$ e $\beta = b-1$; então $\max\{\alpha,\beta\} = k$, donde $\alpha = \beta$ e portanto a = b e P(k + 1) é verdadeira.

Fica assim provado que a propriedade P(n) é verdadeira para todo o $n \in \mathbb{N}$ e, portanto, dados dois números naturais a, b quaisquer, como máx $\{a,b\}$ é um número natural, temos a = b.

40. Seja $P = \{0, 1, -1, -\frac{1}{2}, 3, \frac{1}{4}\}$. Identifique os conjuntos seguintes:

$$A = \{c^{2} \mid c \in P\}$$

$$C = \{x \in \mathbb{R} \mid \exists_{c \in P} : c = x^{2}\}$$

$$E = \{x \in \mathbb{R} \mid \exists_{a \in \mathbb{Z}} : xa = 1\}$$

$$G = \{x \in \mathbb{Z} \mid \exists_{a \in \mathbb{Z}} : xa = 1\}$$

$$B = \{c \in P \mid c^{2} \in P\}$$

$$D = \{y \in \mathbb{Z} \mid y^{2} \in P\}$$

$$F = \{x \in \mathbb{Z} \mid \exists_{a \in \mathbb{R}} : xa = 1\}$$

$$H = \{a \in \mathbb{Z} \mid \forall_{b \in \mathbb{Z}}, a + b = 0\}$$

41. De entre os conjuntos seguintes, indique aqueles que são iguais.

```
a) \{x \in \mathbb{R} \mid x^2 - 3x + 2 = 0\}, \{1, 2\} \in \{n \in \mathbb{N} \mid 0 < n^2 \le 4\}.
```

- b) $\{r, t, s\}, \{s, t, r, s\}, \{t, s, t, s\} \in \{s, t, r, t\}.$
- c) \emptyset , $\{0\}$, $\{\emptyset\}$ e $\{\}$.

42. Dê exemplos de conjuntos A e B tais que se tenha simultaneamente

- a) $A \in B$ e $A \subseteq B$.
- b) $A \in B$ e $A \nsubseteq B$.
- c) $A \notin B$ e $A \subseteq B$.

43. Diga se é verdadeira ou falsa cada uma das afirmações seguintes:

- a) $1 \in \{1\}$
- b) $1 \in \{\{1\}\}$
- c) $\{1\} \in \{1\}$

- d) $\{1\} \in \{\{1\}\}$
- e) $\{1\} \subseteq \{1\}$
- f) $\{1\} \subseteq \{\{1\}\}$

- g) $\{1\} \in \{1, \{1\}\}$ h) $\{1, \{1\}\} \subseteq \{\{1\}\}$ i) $\{1\} \subseteq \{1, \{1\}\}$

44. Considere que A é um subconjunto de B e que B é um subconjunto de C. Considere ainda que $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$ e $f \notin C$. Quais das afirmações seguintes são necessariamente verdadeiras?

- a) $a \in C$
- b) $b \in A$
- c) $c \notin A$
- d) $d \in B$
- e) *e* ∉ *A*
- f) *f* ∉ *A*

45. Determine $\mathcal{P}(X)$, em que $X = \{3, \{1, 4\}\}$.