CSCI 5654 - Linear Programming Homework - 1

Shreyas Gopalakrishna*

January 2020

1 P1

Step 1

maximize
$$-3x_1 + 5x_2$$

subject to $-4x_1 - x_2 \le 4$
 $-2x_1 + x_2 \le 8$
 $x_1 + 2x_2 \le 4$
 $x_1 \ge 0$

Step 2

maximize
$$-3x_1 + 5x_2$$
subject to
$$-4x_1 - x_2 \le 4$$

$$-2x_1 + x_2 \le 8$$

$$x_1 + 2x_2 \le 4$$

$$x_2 = x_+ + x_-$$

$$x_1 \ge 0, \ x_+ \ge 0, \ x_- \ge 0$$

Step 3 - Standard Form

maximize
$$-3x_1 + 5x_+ - 5x_-$$
subject to
$$-4x_1 - x_+ + x_- \le 4$$

$$-2x_1 + x_+ - x_- \le 8$$

$$x_1 + 2x_+ - 2x_- \le 4$$

$$x_2 = x_+ + x_-$$

$$x_1 \ge 0, \ x_+ \ge 0, \ x_- \ge 0$$

^{*}University of Colorado Boulder, 80302, USA, shreyas.gopalakrishna@colorado.edu.

2 P2

2.a

Step 1 - Adding Slack variables

maximize
$$z = -3x_1 + 5x_+ - 5x_-$$

subject to $-4x_1 - x_+ + x_- + w_1 = 4$
 $-2x_1 + x_+ - x_- + w_2 = 8$
 $x_1 + 2x_+ - 2x_- + w_3 = 4$
 $x_2 = x_+ + x_-$
 $x_1 \ge 0, x_+ \ge 0, x_- \ge 0$

Step 2 - Initial Dictionary

$$w_1 = 4 + 4x_1 + x_+ - x_-$$

$$w_2 = 8 + 2x_1 - x_+ + x_-$$

$$w_3 = 4 - x_1 - 2x_+ + 2x_-$$

$$z = 0 - 3x_1 + 5x_+ - 5x_-$$

2.b

Step 1 - Feasible Test

Setting the non-basic variables x_1, x_+, x_- to 0

By doing this we get the solution: $w_1 = 4$, $w_2 = 8$, $w_3 = 4$, z = 0

Since the solution satisfies the constraints, the dictionary is feasible.

Step 2 - Simplex - Pivot

The variable $+5x_+$ maximizes the objective function

Hence it can be chosen as the incoming variable

Choosing x_+ as entering we see that it the variable x_+ has no constraint on w_1

For $w_2, x_+ \le 8$ and for $w_3, x_+ \le 2$ The variable w_3 imposes lowest constraint.

Hence it can be chosen as the leaving variable

Rearranging and using x_+ we get

$$x_{+} = 2 - 0.5x_{1} + x_{-} - 0.5w_{3}$$

$$w_{1} = 6 + 3.5x_{1} + 0x_{-} - 0.5w_{3}$$

$$w_{2} = 6 + 2.5x_{1} + 0x_{-} + 0.5w_{3}$$

$$z = 10 - 5.5x_{1} + 0x_{-} - 2.5w_{3}$$

2.c

The x_+ variable is the incoming variable and w_3 is the outgoing variable

2.d

Resulting Dictionary

$$w_1 = 6 + 3.5x_1 + 0x_{-} - 0.5w_3$$

$$w_2 = 6 + 2.5x_1 + 0x_{-} + 0.5w_3$$

$$x_{+} = 2 - 0.5x_1 + x_{-} - 0.5w_3$$

$$z = 10 - 5.5x_1 + 0x_{-} - 2.5w_3$$

3 P3

Based on the conditions given in the problem, the following linear program is set up. I have used the python pulp package to solve this problem.

maximize
$$1.451x_1 + 2.683x_2 + 5.898x_3 + 2.102x_4 + 5.709x_5 + 4.519x_6 + 7.176x_7 + 6.075x_8 + 5.718x_9 + 7.442x_10 + 1.234x_11 + 4.680x_12 + 7.229x_13 + 9.589x_14 + 6.497x_15$$

Constraints in next page.

Solving the Linear problem in python an optimal solution is obtained.

Solution is - Profit - 8513.474870720001

x10 = 147.6378, x12 = 53.763441, x14 = 459.68558, x3 = 467.14419 and 0 for all other variables. The given problem is feasible since we have obtained a solution. And it is the optimal solution.

It is bounded since, if unbounded we would obtain infinity as an answer.

Hence, the problem is feasible, bounded and has an optimal solution.

```
SUBJECT TO
 _C1: 2.563 x1 + 10.16 x10 + 1.961 x11 + 9.3 x12 + 11.672 x13 + 10.877 x14
 + 12.137 x15 + 4.307 x2 + 6.422 x3 + 3.488 x4 + 6.581 x5 + 8.993 x6
 + 11.481 x7 + 11.73 x8 + 9.27 x9 <= 10000
_C2: 2.563 x1 + 10.16 x10 + 1.961 x11 + 9.3 x12 + 11.672 x13 + 10.877 x14
 + 12.137 x15 + 4.307 x2 + 6.422 x3 + 3.488 x4 + 6.581 x5 + 8.993 x6
 + 11.481 \times 7 + 11.73 \times 8 + 9.27 \times 9 >= 0
C3: 2.563 \times 1 + 10.16 \times 10 + 11.672 \times 13 + 3.488 \times 4 \le 3500
C4: 2.563 \times 1 + 10.16 \times 10 + 11.672 \times 13 + 3.488 \times 4 >= 1500
_C5: 10.877 x14 + 4.307 x2 + 6.581 x5 + 11.73 x8 + 9.27 x9 <= 6500
_C6: 10.877 x14 + 4.307 x2 + 6.581 x5 + 11.73 x8 + 9.27 x9 >= 4500
_C7: 1.961 x11 + 12.137 x15 + 6.422 x3 + 7.176 x7 <= 3000
C8: 1.961 \times 11 + 12.137 \times 15 + 6.422 \times 3 + 7.176 \times 7 >= 1000
_C9: 9.3 x12 + 8.993 x6 <= 2500
_C10: 9.3 \times12 + 8.993 \times6 >= 500
C11: 2.563 x1 + 1.961 x11 + 11.73 x8 <= 3000
_C12: 2.563 x1 + 1.961 x11 + 11.73 x8 >= 0
C13: 12.137 \times 15 + 4.307 \times 2 + 6.422 \times 3 + 6.581 \times 5 + 8.993 \times 6 + 11.481 \times 7
 <= 4000
C14: 12.137 \times 15 + 4.307 \times 2 + 6.422 \times 3 + 6.581 \times 5 + 8.993 \times 6 + 11.481 \times 7 >= 0
_C15: 11.672 x13 + 3.488 x4 + 9.27 x9 <= 5000
_C16: 11.672 \times13 + 3.488 \times4 + 9.27 \times9 >= 0
_C17: 10.16 x10 + 9.3 x12 + 10.877 x14 <= 7000
C18: 10.16 \times 10 + 9.3 \times 12 + 10.877 \times 14 >= 0
 C19: 2.563 \times 1 + 10.16 \times 10 + 1.961 \times 11 + 11.672 \times 13 + 4.307 \times 2 + 6.422 \times 3
+ 8.993 x6 + 11.481 x7 + 11.73 x8 + 9.27 x9 <= 10000
_C20: 2.563 x1 + 10.16 x10 + 1.961 x11 + 11.672 x13 + 4.307 x2 + 6.422 x3
 + 8.993 \times 6 + 11.481 \times 7 + 11.73 \times 8 + 9.27 \times 9 >= 2000
```

Figure 1: Constraints for the problem P3

4 P4

4.a

It is given that a set S is considered convex if any two points $x_1, x_2 \in S$ and the point

$$\lambda x_1 + (1 - \lambda)x_2 \in S$$
 for all $\lambda \in [0, 1]$

Let Set F be a set of feasible solutions F: $\{x \mid Ax \leq b\}$. Now consider 2 points $x_1, x_2 \in F$.

Using the above conditions, F can be set to be convex if the point $\lambda x_1 + (1 - \lambda)x_2 \in F$.

Which means $\lambda x_1 + (1 - \lambda)x_2$ must be one of the feasible solutions. Hence it should satisfy $Ax \le b$.

Since x_1 and x_2 are feasible solutions, we have $Ax_1 \le b$ and $Ax_2 \le b$

$$\lambda A x_1 \le \lambda b$$

 $(1 - \lambda)A x_2 \le (1 - \lambda)b$

Adding the above equations we get

$$\lambda Ax_1 + (1 - \lambda)Ax_2 \le \lambda b + (1 - \lambda)b$$

$$A(\lambda x_1 + (1 - \lambda)x_2) \le \lambda b + b - \lambda b$$

$$A(\lambda x_1 + (1 - \lambda)x_2) \le b$$

From above equation we see that even $(\lambda x_1 + (1 - \lambda)x_2)$ is a feasible solution and so it \in F.

Hence F is a Convex set.

4.b

It is given that optimal objective value $z^* = c^t x_1 = c^t x_2$ and both $x_1 x_2$ satisfy $Ax \le b$

$$Ax_1 \le b$$
$$Ax_2 \le b$$

Adding the above equations we get

$$Ax_1 + Ax_2 \le 2b$$
$$A\frac{(x_1 + x_2)}{2} \le b$$

So, $\frac{(x_1+x_2)}{2}$ is another point which satisfies the linear program and is equal to z^*

In other words, the mid point satisfies the program and results in the same optimal value.

We can now choose another new point x_i which is between x_1 and $\frac{(x_1+x_2)}{2}$.

This new point x_i will also provide us with the same z^* .

Hence, by continuing this method we can obtain infinite distinct points which provide the same optimal solutions for the problem.

5 P5

5.a

Given x_5 must be between x_1 and x_3 . So, $x_1 \le x_5 \le x_3$ or $x_3 \le x_5 \le x_1$

If $x_1 \le x_5 \le x_3$ Then the linear program can be expressed as

$$x_1 - x_5 \le 0$$

 $x_5 - x_3 \le 0$
 $x_1, x_3, x_5 \ge 0$

If $x_3 \le x_5 \le x_1$ Then the linear program can be expressed as

$$x_3 - x_5 \le 0$$

$$x_5 - x_1 \le 0$$

$$x_1, x_3, x_5 \ge 0$$

5.b

x1 must be between 40% and 60% of the $\sum_{i=1}^{n} x_i$

$$0.4 \sum_{i=1}^{n} x_i \le x_1 \le 0.6 \sum_{i=1}^{n} x_i$$

Then the linear program can be expressed as

$$-0.6x_1 + 0.4 \sum_{i=2}^{n} x_i \le 0$$

$$0.4x_1 - 0.6 \sum_{i=2}^{n} x_i \le 0$$

$$x_1, x_2, \dots x_n \ge 0$$

5.c

Given at least one of $x_1, ..., x_n$ must be 0

Which can be expressed as $\prod_{i=1}^{n} x_i = 0$. Which cannot be expressed as a linear program.

Let Set F be a set of feasible solutions F : $\{x \mid Ax \leq b\}$

Consider that all points which satisfy $\prod_{i=1}^{n} x_i = 0$ form a convex set of feasible solutions F.

Now consider 2 points x_1 and x_2 where the points are of dimension n = 2.

The points are $x_1 = (x_a, x_b)$ and $x_2 = (x_c, x_d)$

In order for F to be a convex set it must satisfy $\lambda x_1 + (1 - \lambda)x_2 \in F$.

According to the constraint, in the point x_1 either $x_a = 0$ or $x_b = 0$ and in point x_2 either $x_c = 0$ or $x_d = 0$, we can see for any $\lambda = (0,1)$ we get a new point which does not satisfy $\prod_{i=1}^{n} x_i = 0$

For example when $\lambda = 0.5$, we get the point as $(0.5x_a, 0.5x_d)$

Thus, for any $\lambda != 0.1$ we get points not in the set F.

So, proof by contradiction, we can say F is not convex.

Also, since we got points for n=2 which doesn't belong to set F, by proof of induction we can show that for n=n also we can find similar points which does not make F convex.

Hence proved that, since F is not a convex set, the initial equation, $\prod_{i=1}^{n} x_i = 0$ is not a convex constraint and the problem cannot be expressed as a linear program.

6 P6

Given $0 \le x_1 \le 10$ and $0 \le x_2 \le 15$. We also have indicator variables $w_1, w_2 \in 0, 1$. Goal is to express $x_1x_2 = 0$ as linear inequalities

Using the hint provided in question, We can force x_1 to be 0 when $w_1 = 1$ and $w_1 = 0$ places no constraint on x_1 .

This can be expressed by the equations,

$$x_1 + 10w_1 \le 10$$

$$x_2 + 15w_2 \le 15$$

By doing this when $w_1 = 1$,

$$x_1 + 10 \le 10$$

$$x_1 \le 0$$

which forces $x_1 = 0$ since x_1 must be ≥ 0 .

Similarly when $w_2 = 1$,

$$x_2 + 15 \le 15$$

$$x_2 \le 0$$

which forces $x_2 = 0$ since x_2 must be ≥ 0 .

This can be applied to both equations forces the conditions provided in the hint.

By adding the condition, $w_1 + w_2 = 1$ we can force either w_1 or w_2 to be 1 at a particular time.

Hence, $x_1x_2 = 0$ as linear inequalities as below,

$$x_1 + 10w_1 \le 10$$

 $x_2 + 15w_2 \le 15$
 $w_1 + w_2 = 1$
 $x_1, x_2, w_1, w_2 \ge 0$