Trabajo Práctico N° 3

Diseño de etapa amplificador diferencial

Alumno: MUGNI, Juan Mauricio

1. Para el siguiente circuito diseñar la polarización y el par diferencial de acuerdo a las especificaciones:

$$\begin{split} L_{1} &= L_{2} = 0.15 \, \mu m \\ I_{SS} &= I_{Ref} = 100 \, \mu \, A \\ V_{CMin} &= V_{CMout} = 1.2 \, V \\ L_{0} &= 0.75 \, \mu m \\ V_{DD} &= 1.8 \, V \\ \frac{g m_{1,2}}{I_{D1,2}} &\geqslant 10 \\ f_{en} &= 50 \, MHz \end{split}$$

Obtener:

$$\begin{array}{lll} R_{D1,2} \! = \! 12 \, k \, \Omega & \leftarrow \\ W_{1,2} \! = \! 4 \, \mu m & \leftarrow \\ g m_{1,2} \! = \! 700 \, \mu \, S & \leftarrow \\ A_{V\!D\!C} \! = \! 5.5 \big[veces \big] & \leftarrow \\ V_{pp DiffOutMax} \! = \! 0.7 \big[V \big] & \leftarrow \end{array}$$

El circuito simulado es el siguiente, con los valores correspondientes indicados:

donde los valores del espejo de corriente (M_0 y M_1) son:

$$\begin{array}{l} W_{0,1}{=}21\mu m \\ L_{0,1}{=}0.75\,\mu m \\ \text{y del diferencial (}~M_2~\text{y}~M_3~\text{) son:} \\ W_{2,3}{=}4\mu m \\ L_{2,3}{=}0.15\,\mu m \end{array}$$

Se debe notar que la tensión en el punto $V_p \approx 0.5 V$ es mayor que el V_{Th} de la fuente de corriente, por lo tanto, M_1 (en el circuito simulado) o M_0 (en el circuito dado como guía), no opera en la región de triodo.

De igual manera se esta cumpliendo la condición solicitada: $\frac{gm}{I_D} = \frac{700 \,\mu}{49 \,\mu} = 14.3 \ge 10$

Para calcular la ganancia se colocaron $20\,mV$ en las entradas del modo diferencial, y se procedió a calcular la ganancia en veces, a partir de la gráfica de la tensión de salida y de entrada en el tiempo. Esto nos dió un valor de $5.5\,veces$ aproximadamente. Una vez que tenemos la ganacia de tensión, se razona cual debe ser la tensión máxima de salida, para poder calcular la tensión máxima de entrada:

$$V_{inMax} = \frac{V_{outMax}}{A_{VDC}} = \frac{V_{CMout} - (V_p + V_{DSsatM3})}{A_{VDC}} = \frac{1.2 - (0.5 + 0.3)}{5.5} \approx 70 \, mV$$

La gráfica en el tiempo al aplicarle una tensión diferencial de $V_{inMD} = 70 \, mV$ es:

Podemos ver que la señal de entrada (mostrada en rojo) está sobre una continua de 1.2V que es del modo común. Y su amplitud sube y baja $\pm 70\,mV$ que es el modo diferencial. La señal azúl es la de salida $V_{out\,2}$, que también tiene 1.2V de continua y oscila $\pm 350\,mV$. La suma de esta amplitud es $700\,mV = V_{ppDiffOutMax}$.

Donde podemos comprobar que la ganancia de tensión en veces es proxima a: 5 veces .

Al pasar esto a decibel nos da 14 dB y la gráfica de Bode es:

En rojo la magnitud, y en azúl la fase. Notar que no estamos obteniendo la misma ganancia en dB.

¿Qué cambios propone para duplicar la ganancia $A_{V\!D\!C}$ previamente obtenida, manteniendo la especificación de $A_{C\!Min} = V_{C\!Mout} = 1.2\,V$?

Justificar analíticamente la estimación de la nueva ganancia y simular los nuevos parámetros para demostrar que se cumple el incremento de ganancia esperado.

Como la ganancia se la puede escribir aproximadamente de la siguiente manera:

$$A_{VDC} \approx -gmR_D$$

vemos que para aumentarla podemos subir gm o R_D .

Obtamos por modificar R_D , ya que el gm depende de los siguientes factores:

$$gm \propto \sqrt{\frac{W}{I_L} I_D}$$

y también implica cambiar la respuesta en frecuencia.

Si solamente multiplicamos por dos R_D la ganancia no se aumentaría al doble, porque la corriente se vería disminuida a la mitad y el gm quedaría:

$$gm \propto \sqrt{\frac{W}{L} \frac{I_D}{2}} = \frac{\sqrt{\frac{W}{L} I_D}}{\sqrt{2}}$$

entonces al obtener la ganancia, nos queda:

$$A_{V\!D\!C} \!pprox \! rac{-\sqrt{rac{W}{L}I_D}}{\sqrt{2}} 2R_D$$

y esto, como vemos, se soluciona multiplicando en vez del doble la resistencia, al cuádruple.

De esta forma, obtenemos:

$$A_{VDC} \approx \frac{-\sqrt{\frac{W}{L}I_D}}{\sqrt{4}} 4R_D = \frac{-\sqrt{\frac{W}{L}I_D}}{2} 4R_D = -2R_D\sqrt{\frac{W}{L}I_D}$$

Y haciendo los siguientes cambios en la simulación $R_{D1,2}=48\,k\Omega$ e $I_{\it Ref}=25\,\mu\,A$, nos queda:

Gráfica en el tiempo:

La señal roja sigue siendo la de entrada con amplitud $\pm 70\,mV$. La señal azúl es la salida con $\pm 405\,mV$. Donde podemos comprobar que la ganancia de tensión en veces es proxima a: $5.8\,veces$.

Al pasar esto a decibel nos da 15.25 dB

Gráfica de Bode:

En rojo la magnitud, y en azúl la fase.

Notar que no estamos obteniendo la misma ganancia en dB.

2. Para el siguiente circuito diseñar la polarización y el par diferencial de acuerdo a las especificaciones en corner TT, luego evalúe en SS y TF (ver debajo tabla de variaciones PVT).

$$L_{0}=0.75 \,\mu\text{m} \\ L_{1,2}=0.15 \,\mu\text{m} \\ L_{3,4,5,6}=0.75 \,\mu\text{m} \\ V_{CMIn/Out}=1.2 \,V \\ V_{DD}=1.8 \,V \\ \frac{gm_{1,2}}{I_{D1,2}} \ge 10 \,V$$

Obtener:

$$W_{1,2}$$
=5 μm \leftarrow $W_{3,4,5,6}$ =1.5 μm \leftarrow A_{VDC} =6.73[veces] \leftarrow $V_{ppDiffOutMax}$ = \dot{c} \leftarrow

El circuito simulado es el siguiente:

Podemos ver que se cumple la condición:

$$\frac{gm_{1,2}}{I_{D1,2}} = \frac{1.33 \, m}{55.1 \, \mu} = 24.21 \ge 10 \, V$$

La ganancia $A_{V\!D\!C}$ se obtuvo a partir del gráfico de la señal diferencial de entrada y la señal diferencial de salida.

¿Qué ventajas presenta un circuito respecto al otro? Elabore una lista y explique cada una de ellas.

El agregado de una fuente de corriente me permite disminuir el gm_3 y gm_4 , de los correspondientes diodos M_3 y M_4 . Esto me beneficia para aumentar la ganancia, porque se encuentran en su denominador.

Tabla de variaciones PVT:

Proceso	$V_{DD}[V]$	$V_{CM}[V]$	$I_{Ref}[\muA]$	Temperatura [°C]
TT	1.8	1.2	50	65
FF	1.98	1.32	55	0
SS	1.62	1.08	45	125

Proceso TT:

Señal diferencial de salida (azúl) y de entrada (rojo) en el tiempo:

Gráfica de Bode, (Magnitud - Rojo) y (Fase - Azúl):

Proceso FF:

Señal diferencial de salida (azúl) y de entrada (rojo) en el tiempo:

Proceso SS:

Señal diferencial de salida (azúl) y de entrada (rojo) en el tiempo:

