

# Adversarially Learned Representations for Information Obfuscation and Inference

Martin Bertran<sup>1</sup>, Natalia Martinez<sup>1</sup>, Afroditi Papadaki<sup>2</sup> Qiang Qiu<sup>1</sup>, Miguel Rodrigues<sup>2</sup>, Galen Reeves<sup>1</sup>, Guillermo Sapiro<sup>1</sup>

- 1. Duke University
- 2. University College London

Why do users share their data?



Why do users share their data?



Can we do better?

#### Can we do better?



Learn **space-preserving** representations that **obfuscate** sensitive information while **preserving** utility.

#### Example: Preserve gender & obfuscate emotion

#### **Original**

P(Male) = 0.98P(Smile) = 0.78



P(Female) = 0.99P(Serious) = 0.98



#### **Filtered**

P(Male) = 0.98 =P(Smile) = 0.38 =



P(Female) = 0.99

P(Serious) = 0.31 **↓** 



#### Example: Preserve subject & obfuscate gender

#### Original

P(Male) = 0.99 Subject verified



P(Female) = 0.99
Subject verified



#### **Filtered**

P(Male) = 0.70 ↓
Subject verified ✓



P(Female) = 0.54

Subject verified ✓



# Sample of related work

- (2003) Chechik et al. Extracting relevant structures with side information.
- (2016) Basciftci et al. On privacy-utility tradeoffs for constrained data release mechanisms.
- (2018) Madras et al. Learning adversarially fair and transferable representations.
- (2018) Sun et al. A hybrid model for identity obfuscation by face replacement.











Want to learn  $Y \sim p(Y|X)$  such that :

- $p(S|Y) \sim p(S)$
- $p(U|Y) \sim p(U|X)$



Want to learn  $Y \sim p(Y|X)$  such that :

- $p(S|Y) \sim p(S) \longrightarrow \min D_{KL}[p(S|Y)||p(S)]$
- $p(U|Y) \sim p(U|X)$



Want to learn  $Y \sim p(Y|X)$  such that :

- $p(S|Y) \sim p(S) \longrightarrow \min D_{KL}[p(S|Y)||p(S)]$
- $p(U|Y) \sim p(U|X) \longrightarrow \min D_{KL}[p(U|X)||p(U|Y)]$

Want to learn  $Y \sim p(Y|X)$  such that:

- $min D_{KL}[p(S|Y)||p(S)]$
- $min D_{KL}[p(U|X)||p(U|Y)]$

Want to learn  $Y \sim p(Y|X)$  such that:

• 
$$min D_{KL}[p(S|Y)||p(S)]$$
  $E_Y[.]$   $I(S;Y)$ 

•  $min D_{KL}[p(U|X)||p(U|Y)]$ 

Want to learn  $Y \sim p(Y|X)$  such that:

• 
$$min D_{KL}[p(S|Y)||p(S)]$$
  $E_Y[.]$   $I(S;Y)$ 

• 
$$min D_{KL}[p(U|X)||p(U|Y)] \xrightarrow{E_{X,Y}[.]} I(U;X|Y)$$

Want to learn  $Y \sim p(Y|X)$  such that:

- $min D_{KL}[p(S|Y)||p(S)]$   $E_Y[.]$  I(S;Y)
- $min D_{KL}[p(U|X)||p(U|Y)] \xrightarrow{E_{X,Y}[.]} I(U;X|Y)$



Want to learn  $Y \sim p(Y|X)$  such that:

• 
$$min D_{KL}[p(S|Y)||p(S)]$$
  $E_Y[.]$   $I(S;Y)$ 

$$E_Y[.]$$
  $I(S;Y)$ 

• 
$$min D_{KL}[p(U|X)||p(U|Y)] \xrightarrow{E_{X,Y}[.]} I(U;X|Y)$$





#### Objective:

$$\min_{p(Y|X)} I(U;X|Y)$$

s.t. 
$$I(S;Y) \leq k$$

Want to learn  $Y \sim p(Y|X)$  such that:

• 
$$min D_{KL}[p(S|Y)||p(S)]$$
  $E_Y[.]$   $I(S;Y)$ 

$$E_Y[.]$$
  $I(S;Y)$ 

• 
$$min D_{KL}[p(U|X)||p(U|Y)] \xrightarrow{E_{X,Y}[.]} I(U;X|Y)$$



#### Objective:

$$\min_{p(Y|X)} I(U;X|Y) \longrightarrow \max_{p(Y|X)} I(U;Y)$$

s.t. 
$$I(S;Y) \leq k$$

Given the objective 
$$\min_{p(Y|X)} I(U;X|Y)$$
 s.t.  $I(S;Y) \leq k$ 

Given the objective 
$$\min_{p(Y|X)} I(U;X|Y)$$
 s.t.  $I(S;Y) \leq k$ 

What are the intrinsic limits on the trade-offs for this problem?

Given the objective 
$$\min_{p(Y|X)} I(U;X|Y)$$
 s.t.  $I(S;Y) \leq k$ 

What are the intrinsic limits on the trade-offs for this problem?

#### Lemma 1.

 $(U, S) \in \mathcal{U} \times \mathcal{S}$  finite alphabets,  $X \sim p(X|U, S)$ . Then:

$$\min_{p(Y|X)} I(U;X|Y) \geq \min_{p(Y|U,S)} I(U;X) - I(U;Y)$$

$$s.t. \quad I(S;Y) \leq k \qquad s.t. \quad I(S;Y) \leq k$$

$$I(U;Y) \leq I(U;X)$$

• With  $|\mathcal{Y}|$  finite we can compute a sequence of upper bounds: Restricted cardinality sequence (RCS).

Given the objective 
$$\min_{p(Y|X)} I(U;X|Y)$$
 s.t.  $I(S;Y) \leq k$ 

What are the intrinsic limits on the trade-offs for this problem?

**Lemma 2.** Given 
$$(X, U, S) \sim p(X, U, S)$$

$$I(U; X|Y) \ge -I(S; Y) + I(U; S) - I(U; S|X)$$

Given the objective 
$$\min_{p(Y|X)} I(U;X|Y)$$
 s.t.  $I(S;Y) \leq k$ 

What are the intrinsic limits on the trade-offs for this problem?

**Lemma 2.** Given  $(X, U, S) \sim p(X, U, S)$ 

$$I(U; X|Y) \ge -I(S; Y) + I(U; S) - I(U; S|X)$$

**Lemma 3.** Given  $(X, U, S) \sim p(X, U, S)$ ,  $\forall k \geq 0 \exists p(Y|X)$  such that:

$$I(S;Y) \le k$$

$$I(U; X|Y) = max(0, 1 - \frac{k}{I(S; X)})I(U; X)$$

Lemmas 1, 2 and 3 can be approximated using contingency tables.



<sup>\*</sup> Sketch under the assumption that I(U; S|X) = 0

# Proposed framework



# Proposed framework



#### **Objective:**

$$egin{aligned} & min \ I(U;X|Y) \ & _{p(Y|X)} \sim q_{ heta}(X,Z) \ & s.t.: \ I(S;Y) \leq k \end{aligned}$$

# Proposed framework



#### **Objective:**

$$egin{aligned} & min \ I(U;X|Y) \ _{p(Y|X)} \sim q_{ heta}(X,Z) \ & s.t.: \ I(S;Y) \leq k \end{aligned}$$

Optimization objective:

$$min \ [I(U;X|Y) + \lambda max\{I(S;Y) - k, 0\}^2]$$
 $p(Y|X) \sim q_{\theta}(X,Z)$ 



Optimization objective:

$$\min_{q_{\theta}(X,Z)} [I(U;X|Y) + \lambda \max\{I(S;Y) - k, 0\}^2]$$



Optimization objective:

$$\min_{q_{\theta}(X,Z)} [I(U;X|Y) + \lambda \max\{I(S;Y) - k, 0\}^2]$$

Learning the stochastic mapping  $Y = q_{\theta}(X, Z)$ :

$$p(U|X) \sim p_{\phi}(U|X) \longrightarrow \hat{\phi} = \operatorname{argmin}_{\phi} E_{X,U} \left[ -\log(p_{\phi}(U \mid X)) \right]$$

$$p(U|Y) \sim p_{\psi}(U|Y) \longrightarrow \hat{\psi} = \operatorname{argmin}_{\psi} E_{X,U,Z} \left[ -\log(p_{\psi}(U \mid q_{\hat{\theta}}(X,Z))) \right]$$

$$p(S|Y) \sim p_{\eta}(S|Y) \longrightarrow \hat{\eta} = \operatorname{argmin}_{\eta} E_{X,S,Z} \left[ -\log(p_{\eta}(S \mid q_{\hat{\theta}}(X,Z))) \right]$$



Optimization objective:

$$\min_{q_{\theta}(X,Z)} [I(U;X|Y) + \lambda \max\{I(S;Y) - k, 0\}^2]$$

Learning the stochastic mapping  $Y = q_{\theta}(X, Z)$ :

$$p(U|X) \sim p_{\phi}(U|X) \longrightarrow \hat{\phi} = \operatorname{argmin}_{\phi} E_{X,U} \left[ -\log(p_{\phi}(U \mid X)) \right]$$

$$p(U|Y) \sim p_{\psi}(U|Y) \longrightarrow \hat{\psi} = \operatorname{argmin}_{\psi} E_{X,U,Z} \left[ -\log(p_{\psi}(U \mid q_{\hat{\theta}}(X,Z))) \right]$$

$$p(S|Y) \sim p_{\eta}(S|Y) \longrightarrow \hat{\eta} = \operatorname{argmin}_{\eta} E_{X,S,Z} \left[ -\log(p_{\eta}(S \mid q_{\hat{\theta}}(X,Z))) \right]$$

$$\hat{\theta} = \operatorname{argmin}_{\theta} E_{X,Z} \left[ D_{KL} \left[ p_{\hat{\phi}}(U \mid X) \mid |p_{\hat{\psi}}(U \mid q_{\theta}(X,Z))) \right] \right]$$

$$+ \lambda \max(E_{X,Z} \left[ D_{KL} \left[ p_{\hat{\eta}}(S \mid q_{\theta}(X,Z)) \mid |P(S)| \right] - k, 0 \right]^{2}$$



Optimization objective:

$$\min_{q_{\theta}(X,Z)} [I(U;X|Y) + \lambda \max\{I(S;Y) - k, 0\}^{2}]$$

Learning the stochastic mapping  $Y = q_{\theta}(X, Z)$ :

$$p(U|X) \sim p_{\phi}(U|X) \longrightarrow \hat{\phi} = \operatorname{argmin}_{\phi} E_{X,U} \left[ -\log(p_{\phi}(U \mid X)) \right]$$

$$p(U|Y) \sim p_{\psi}(U|Y) \longrightarrow \hat{\psi} = \operatorname{argmin}_{\psi} E_{X,U,Z} \left[ -\log(p_{\psi}(U \mid q_{\hat{\theta}}(X, Z))) \right]$$

$$p(S|Y) \sim p_{\eta}(S|Y) \longrightarrow \hat{\eta} = \operatorname{argmin}_{\eta} E_{X,S,Z} \left[ -\log(p_{\eta}(S \mid q_{\hat{\theta}}(X, Z))) \right]$$

$$\hat{\theta} = \operatorname{argmin}_{\theta} E_{X,Z} \left[ D_{KL} \left[ p_{\hat{\phi}}(U \mid X) \mid\mid p_{\hat{\psi}}(U \mid q_{\theta}(X, Z))) \right] \right]$$

$$+ \lambda \max(E_{X,Z} \left[ D_{KL} \left[ p_{\hat{\eta}}(S \mid q_{\theta}(X, Z)) \mid\mid P(S) \right] \right] - k, 0)^{2}$$
U-NET + noise



#### Emotion obfuscation vs gender detection

k**SENSITIVITY** FIXED ADVERSARIAL FIXED  $\infty$ **TOLERANCE EMOTION GENDER EMOTION** k**ACCURACY ACCURACY ACCURACY** 91.8%91.8%94.9% $\infty$ 0.5 0.568.4%91.4%89.3%0.458.6%85.8%88.0% 0.356.8%81.5%86.7%0.3 0.2 $\mathbf{51.9}\%$ 83.9%74.3%51.9%51.9%60.7%**GUESSING** 



#### Emotion obfuscation vs gender detection





| SENSITI<br>Toler <i>a</i> |     | FIXED<br>EMOTION | ADVERSARIAL EMOTION | Fixed<br>Gender |
|---------------------------|-----|------------------|---------------------|-----------------|
| k                         |     | ACCURACY         | ACCURACY            | ACCURACY        |
| ∞                         |     | <b>91.8</b> %    | <b>91.8</b> %       | <b>94.9</b> %   |
| 0.5                       |     | 68.4%            | 91.4%               | 89.3%           |
| 0.4                       |     | 58.6%            | 85.8%               | 88.0%           |
| 0.3                       |     | 56.8%            | 81.5%               | 86.7%           |
| 0.2                       | }   | <b>51.9</b> %    | 74.3%               | <b>83.9</b> %   |
| GUESS                     | ING | 51.9%            | 51.9%               | 60.7%           |



#### Gender obfuscation vs subject verification



| ENSITIVITY COLERANCE | Fixed<br>Gender       | Adversarial<br>Gender | FIXED<br>SUBJECT | RETRAINED<br>SUBJECT |
|----------------------|-----------------------|-----------------------|------------------|----------------------|
| k                    | ACCURACY              | ACCURACY              | TOP-5 ACCURACY   | TOP-5 ACCURACY       |
| ∞                    | <b>98.6</b> %         | 98.6%                 | 98.8%            | <b>98.8</b> %        |
| 0.5                  | 59.5%                 | 90.2%                 | 93.5%            | 96.8%                |
| 0.4                  | 60.3%                 | 85.3%                 | 88.1%            | 94.9%                |
| 0.3                  | 54.0%                 | 79.4%                 | 81.4%            | 92.8%                |
| 0.2                  | $\boldsymbol{56.1\%}$ | 74.6%                 | <b>81.6</b> %    | <b>91.0</b> %        |
| 0.1                  | 51.6%                 | 67.1%                 | 74.5%            | 89.6%                |
| GUESSING             | 54.8%                 | 54.8%                 | 2.5%             | 2.5%                 |



#### Gender obfuscation vs subject verification





| SENSITIVITY<br>TOLERANCE | FIXED<br>GENDER       | ADVERSARIAL<br>GENDER | FIXED SUBJECT  | RETRAINED<br>SUBJECT |
|--------------------------|-----------------------|-----------------------|----------------|----------------------|
| k                        | ACCURACY              | ACCURACY              | TOP-5 ACCURACY | TOP-5 ACCURACY       |
| ∞                        | <b>98.6</b> %         | <b>98.6</b> %         | <b>98.8</b> %  | <b>98.8</b> %        |
| 0.5                      | 59.5%                 | 90.2%                 | 93.5%          | 96.8%                |
| 0.4                      | 60.3%                 | 85.3%                 | 88.1%          | 94.9%                |
| 0.3                      | 54.0%                 | 79.4%                 | 81.4%          | 92.8%                |
| 0.2                      | $\boldsymbol{56.1\%}$ | 74.6%                 | <b>81.6</b> %  | <b>91.0</b> %        |
| 0.1                      | 51.6%                 | 67.1%                 | 74.5%          | 89.6%                |
| GUESSING                 | 54.8%                 | 54.8%                 | 2.5%           | 2.5%                 |



#### Subject within Subject

#### Consenting User

k Subject verified



Subject verified



Nonconsenting User

Subject verified



Subject verified X



| SENSITIVITY<br>TOLERANCE | CONSENTING<br>USERS   | NONCONSENTING<br>USERS |
|--------------------------|-----------------------|------------------------|
| k                        | TOP-5 ACCURACY        | TOP-5 ACCURACY         |
| ∞                        | $\boldsymbol{98.7}\%$ | <b>97.9</b> %          |
| 3                        | 98.3%                 | 9.38%                  |
| 1                        | 97.8%                 | 6.25%                  |
| 0.5                      | <b>97.6</b> %         | <b>4.69</b> %          |
| GUESSING                 | 2.5%                  | 2.5%                   |

# Concluding remarks



- Learned representations that preserve utility and obfuscate sensitive information.
- Transformations are *space-preserving*. Can reuse existing pipelines.
- Derived easy-to-compute bounds.
- Experimental results show representations compare favorably against derived bounds.

#### Limitations:

- Expectation-based approach.
- Reliance on adversary as a proxy for information.

## Thanks!

Please visit us at poster #81