EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

VIDEO ANALYSIS

OPEN CV FOR VIDEO PROCESSING

Date	27 August 2022
Team ID	PNT2022TMID38822
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library import keras from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,ro

```
t ati on_range=180,zoom_range=0.2, horizontal_flip=True)
test_datagen=ImageDataGenerator(rescale=1./255)
Applying ImageDataGenerator functionality to trainset
x_train=train_datagen.flow_from_directory(r'/content/drive/MyDri
v e/ Dataset/train_set',target_size=(128,128),batch_size=32,
class_mode='binary')
Found 436 images belonging to 2 classes.
Applying ImageDataGenerator functionality to testset
x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive
/ Dataset/test_set',target_size=(128,128),batch_size=32,
class_mode='binary')
```

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential from keras.models import Sequential #To add layers import Dense from keras.layers import Dense #To create Convolution kernel import Convolution2D from keras.layers import Convolution2D #import Maxpooling layer from keras.layers import MaxPooling2D #import flatten layer from keras.layers import Flatten import warnings warnings filterwarnings('ignore')

Initializing the model model=Sequential()

Add CNN Layer model.add(Convolution2D(32,

```
(3,3),input shape=(128,128,3),activation='relu'))
#add maxpooling layer
model.add(MaxPooling2D(pool size=(2,2)))
#add flatten layer model.add(Flatten())
Add Hidden Layer
 #add hidden layer model.add(Dense(150,activation='relu'))
#add output layer model.add(Dense(1,activation='sigmoid')
Configure the learning process
model.compile(loss='binary crossentropy',optimizer="adam",metrics=
[ "ac curacy"])
Train
         the model
model.fit generator(x train, steps per epoch=14, epochs=10, validati
on da ta=x test, validation steps=4)
Epoch 1/10
14/14 [======] - 97s 7s/step - loss:
1.3060 - accuracy: 0.7775 - val loss: 0.5513 -
val accuracy: 0.8512
Epoch 2/10
14/14 [======] - 26s 2s/step - loss:
0.3178 - accuracy: 0.8807 - val loss: 0.1299 -
val accuracy: 0.9421
Epoch 3/10
14/14 [======] - 26s 2s/step - loss:
0.2226 -
accuracy: 0.9106 - val loss: 0.1311 - val accuracy: 0.9421
Epoch 4/10
14/14 [==
                                        ===] - 31s 2s/step - loss:
```

```
0.1836 - accuracy: 0.9174 - val loss: 0.1129 -
val accuracy: 0.9339
Epoch 5/10
14/14 [=====] - 30s 2s/step - loss:
0.1675 -
accuracy: 0.9243 - val loss: 0.0925 - val accuracy: 0.9669
Epoch 6/10
14/14 [======] - 26s 2s/step - loss:
0.1884 - accuracy: 0.9289 - val loss: 0.1287 -
val accuracy: 0.9339
Epoch 7/10
14/14 [======] - 28s 2s/step - loss:
0.1724 - accuracy: 0.9335 - val loss: 0.0926 -
val accuracy: 0.9752
Epoch 8/10
14/14 [======] - 26s 2s/step - loss:
0.1510 - accuracy: 0.9404 - val loss: 0.0757 - val accuracy:
0.9752 Epoch 9/10
14/14 [======] - 26s 0.173 -
2s/step - loss:
                                                   2
accuracy: 0.9174 - val loss: 0.0537 - val accuracy: 0.9835
Epoch 10/10
14/14 [=====] - 26s 0.154 -
2s/step - loss: 6 accuracy: 0.9312 - val loss: 0.0573 - val accuracy:
0.9835
 <keras.callbacks.History at 0x7f05d66a9c90>
```

Save The Model model.save("forest1.h5")

```
#import load model from keras.model
from keras.models import load model
#import image class from keras from
tensorflow.keras.preprocessing import
image #import numpy import numpy as
np #import cv2 import cv2
 #load the saved model model = load model("forest1.h5")
 img=image.load img(r'/content/drive/MyDrive/Dataset/t
 e st set/forest/
0.48007200 1530881924 final forest.jpg')
x=image.img to array(img)
                                   res
cv2.resize(x,
                   dsize=(128,
                                     128),
interpolation=cv2.INTER CUBIC)
 #expand the image shape x=np.expand di
 ms(res,axis=0) pred= model.predict(x)
 126ms/step pred
 array([[0.]],
 dtype=float32) OpenCV
 For Video Processing
pip install twilio
Looking in indexes: https://pypi.org/simple, https://us-
python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: twilio in
/usr/local/lib/python3.7/dist-packages (7.15.1)
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-
packages (from twilio) (2022.5)
Requirement already satisfied: requests>=2.0.0 in
/usr/local/lib/python3.7/dist-packages (from twilio) (2.23.0)
Requirement already satisfied: PyJWT<3.0.0,>=2.0.0 in
```

```
/usr/local/lib/python3.7/dist-packages (from twilio) (2.6.0)
Requirement already satisfied:
urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(2022.9.24)
Requirement already satisfied: idna<3,>=2.5 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(2.10)
Requirement already satisfied: chardet<4,>=3.0.2 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(3.0.4)
pip install playsound
Looking in indexes: https://pypi.org/simple, https://us-
python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: playsound in
/usr/local/lib/python3.7/dist-packages (1.3.0)
#import opency library import
cv2 #import numpy import
numpy as np
#import image function from keras from
keras.preprocessing import image
#import load model from keras from
                          load model
keras.models import
#import client from twilio API
from twilio.rest import Client
#import playsound package from
playsound import playsound
WARNING:playsound:playsound is relying on another python
```

subprocess. Please use 'pip install pygobject' if you want playsound to

run more efficiently.

```
#load the saved model model=load_model("forest1.h 5") #define video video=cv2.VideoCapture(0) #define the features name=['forest','with fire']
```