Mathematics Department

Course: ATMAA

Student Name:		Date:		
Special Instructions: Calculator Allo 1 page of A4	Time Allow	mins		
		Marks:	/	45
Multiple Choice Identify the choice that best cor	npletes the statement or answers the	question.		
Question 1.				(1 mark)
A time series for the mass of a d	ecomposing pile of leaves is most like	ly to have		
A a seasonal variation D	a cyclic pattern			
B a negative secular trend. E C a positive secular trend	a random pattern			V
Question 2.				(1 mark)

Which of the following is most likely to apply to the time series plot below?

A a positive secular trend

B a negative secular trend

C a cyclic pattern

D a random pattern
a seasonal variation

The height of a plant, in cm, is observed every week and the results recorded in the table below.

Week	1	2	3	4	5	6	7	8	9	10
Height	7.4	7.8	9.8	10.8	11.2	12.1	12.7	13.7	14.2	14.7

Choose the correct time series plot using the data listed.

A

(B) 24

20

109

16

12

8

4

12

1 2 3 4 5 6 7 8 9 10

Weeks

If a three-point moving average is used to smooth the data in the table below, calculate the smoothed values. If necessary, round to the nearest whole number of births.

	Year	1996	1997	1998	1999	2000	2001
	Births	334	365	384	394	405	443
Smooth	ed		361	381	394	414	
				/	V	V	

Question 5.

(4 marks)

If a four-point moving average is used to smooth the data in the table below, calculate the smoothed values. If necessary, round to the nearest whole number of births.

	Year	2001	2002	2003	2004	2005	2006	2007	2008
	Births	253	280	299	335	362	410	454	484
moo	ted		2915	15	35 i.	.5	5	70	
-				3	19	390).25		
			_4	2003	•			= 20	80
ent	rad		1	305	3.	35	371	. 4	-80
					V			l	

Calculate the seasonal index for the four quarters, correct to three decimal places.

Year	Sales for	Sales for	Sales for	Sales for	Yearly
	quarter	quarter	quarter	quarter 4	average (for
	1	2	3		your use)
2011	64	58	26	55	50.75
2012	67	67	32	54	55 V
2013	60	61	37	51	52.25
2014	58	62	32	49	50.25

Yeur	Q,	Qz	Q3	Q4	
2011	1.2611	1.1429	0.5123	100837	
2012	1.2182	1.2182	1,5818	0.9818	
2013	1.1483	1.1675	0.7081	0.9761	
2014	101542	1.2338	0.6368	0.9751	
Tobuls	4-7818	4.7624	3.4390	4.0167	r v
	ė.	X,	Ĺ		
SI	1.1955	1.1906	0.8598	1.0042	
		1			

Find the deseasonalised values for the four quarters, correct to two decimal places.

		T		2000	
Year	Sales for	Sales for	Sales for	Sales for	Yearly
	quarter	quarter	quarter	quarter 4	average (for
	1	2	3		your use)
2011	56	27	34	80	491.25
2012	64	27	29	77	49025
2013	67	35	29	87	54.50
2014	65	30	35	87	54.25

Yeur	C21	QZ	Q3	Q4	
2011	1.1371	0.5482	0.6904	1.6244	/
2012	1.2995	0.5482	0-5888	1.5635	
2013	1.2294	0.6422	0.5321	1.5963	
2014	1.1982	0.5530	0.6452	1.6037	
Totals	4.8642	2.2916	2.4565	6.3879	/
ST	1.2161	0.5729	0.6141	1.5969	
			V		

Deseasonalised dala

Year	Qı	Qz	Q3	Q4
2011	46.05	47.13	55,37	50.10
2012	52.63	47.13	47.22	48.22
2013	55.09	61.09	47.22	54.48
2014	53.45	52.37	56.99	54.48
		'		

Staff in a small country hospital tabulated the number of births recorded over a period of 3 years as shown in the table below.

Year	Q1	Q2	Q3	Q4
2011	0	4	1	5
2012	1	5	1	4
2013	1	2	5	1

a Create a time series plot using the data given.

- **b** Using technology, find the least squares regression line and add it to your time series plot.
- c State the equation of the least squares regression line.

y = 0.04x + 2.23d Use the equation to predict the number of births in the small country hospital in the first quarter of 2014. x = 13