

EP-4793 MINI-PROYECTO DE SOFTWARE

T-CREo: Aplicación de Credibilidad en Twitter

Por:

Daniela Ramírez Jonathan Bautista Ka Fung Valeria Vera

Tutores:

Yudith Cardinale Irvin Dongo Ana Aguilera

TABLA DE CONTENIDO

- DESCRIPCIÓN, TRABAJOS PREVIOS Y OBJETIVOS
- 02 DISEÑO
- 1 IMPLEMENTACIÓN
- 04 PRUEBAS
- CONCLUSIONES 4 TRABAJOS FUTUROS

DESCRIPCIÓN

T-CREo

T-CREo (Twitter CREdibility analysis framework) es un framework (extensión en Google Chrome) que realiza un análisis de credibilidad de tweets, de manera automática y en tiempo real.

T-CREo: Modelo de credibilidad

Clasificación de credibilidad

- Texto: mide el nivel de relevancia y precisión del texto, independientemente del tema referenciado o con respecto a un tema determinado.
- Usuario: calcula la credibilidad de la cuenta de usuario en función de los atributos que la describen, como la fecha de creación de la cuenta, si la cuenta está verificada y si es un bot.
- Social: calcula la credibilidad de una publicación, relacionada o no con un tema, en base a los metadatos disponibles que describen el impacto social de la cuenta de usuario y la publicación en sí, con respecto a otros usuarios. Se calcula en función de datos como el número de seguidores y la cantidad dretweets.
- **Tópicos**: mide el nivel de similitud de tópicos entre el texto del tweet y los hashtags.

TRABAJOS PREVIOS

T-CREo: A Twilter Credibility Analysis Framework

Robayo, G., Cabeza, D. & Medina, S.

Twitter Considering Topic Detection Hernandez, M. & Cornejo, J. 2020

2020 Web Scraping versus Twitter API: A Comparison for a Credibility

Martínez, F., Quintero, Y. & Barrios, S.

CrediBot: Applying Bot **Detection for Credibility** Analysis on Twitter Quinteros, P.

2022

Credibility Analysis on

2021

T-CREo: A Twitter Credibility Analysis Framework

FRONTEND

- Extracción de datos: Twitter API y Scrapping
- Extensión en Chrome: Vista de Popup y Configuraciones

BACKEND

• Credibilidad de texto **O(n)** con n cantidad de palabras:

```
TextCred(p.text) = wSPAM × isSpam(p.text) +

wBadWords × bad_words(p.text) +

wMisspelledWords × misspelling(p.text)
```

Credibilidad de usuario *O(1)*:

```
UserCred(p.user) = Verif _Weight(p.user) + Creation_Weight(p.user)
```

Credibilidad social O(1):

SocialCred(p.user) = FollowersImpact(p.user) + FFProportion(p.user)

Web Scraping versus Twitter API:A Comparison for a Credibility

Web Scraping

Analizar etiquetas de hipertexto y recuperar información de texto sin formato incrustada en ellas

VENTAJAS

 Mucho más rápida, sin necesidad de aplicaciones externas.

DESVENTAJAS

- Se debe buscar cada campo de un tweet o un usuario.
- Programación específica de un sitio web.
- Sensible a los cambios del formato de la misma página web. Requiere de constante mantenimiento.

Twitter API

API que facilita la interacción entre diferentes programas de software y el acceso a los servicios de Twitter

VENTAJAS

- Información más detallada y directa.
- Sólo requiere una solicitud a la API, sin necesidad de buscar cada campo de un tweet o un usuario.

DESVENTAJAS

- Requiere del Tweet ID y del nombre de usuario.
- Límites de volumen y tasa de solicitud.

Credibility Analysis on Twitter Considering **Topic Detection**

- El tweet es preprocesado: Se separan el texto y los hashtags.
- Se identifica el tópico del texto y los tópicos de los hashtags con un modelo de Factorización No Negativa de Matrices (NMF) entrenado con 250 tópicos.
- Se calcula la similitud entre tópicos con la distancia Hellinger.

CrediBot: Applying Bot Detection for Credibility Analysis on Twitter

- Dado un usuario de Twitter, extrae la cantidad de
 - Del usuario: Seguidores, siguiendo, estados, favoritos, listas.
 - De tweets: Texto, lenguaje, favoritos, retweets.
- Se identifica si el usuario es un un bot con un modelo de *Random Forest,* entrenado con un dataset de 500.000 cuentas.
- Si el usuario trata de un bot, se penaliza su puntuación obtenido en la credibilidad del usuario:

$$UserCred'(p.user) = \begin{cases} UserCred(p.user) & Si\ p.user\ no\ es\ bot, \\ 0.85 \times UserCred(p.user)\ Si\ p.user\ es\ bot\ y\ UserCred(p.user)\ mayor\ que\ 50, \\ 0.75 \times UserCred(p.user)\ Si\ p.user\ es\ bot\ yUserCred(p.user)\ entre\ 35\ y\ 50, \\ 0 & De\ lo\ contrario, \end{cases}$$

CrediBot: Applying Bot Detection for Credibility Analysis on Twitter

Análisis semántico

- Dado un tweet, se realiza un análisis de qué tan similares y qué tan relacionadas están las palabras entre sí.
 - Tokenización: Se segmenta el texto en palabras y se realiza una "agregación" de palabras acortadas o abreviadas.
 - Revisión léxica: Cada palabra es identificada como sustantivo, adjetivo, verbo, adverbios. Se genera un árbol de análisis.
 - Revisión semántico:
 - Si tiene entidades (lugar, organización, persona), consulta a DBpedia y Wordnet para comparar coherencia entre entidades.
 - Si no, compara la coherencia entre palabras con Wordnet.
 - Cálculo del promedio de similitud.

OBJETIVOS

PLANTEAMIENTO DEL PROBLEMA

- El empleo de scraping no resulta mantenible dado que varía según las actualizaciones de la aplicación Twitter.
- Desde Enero 2023, Chrome Extension ha modificado el empleo y creación de extensiones, al cambiar de Manifest V2 a Manifest V3.
- Desde Abril 2023, Twitter API ha cambiado de versión de v1.1 a v2.0, como también su uso gratuito a una suscripción mensual.

OBJETIVOS

ARQUITECTURA 02

ARQUITECTURA PREVIA (Con Twitter API)

ARQUITECTURA ACTUAL (Sin Twitter API)

IMPLEMENTACIÓN 03

Familiarización

- Se estudió los trabajos previos.
- Se configuró el ambiente de desarrollo en un repositorio privado en GitHub.
- Se realizó un estudio de las herramientas empleadas y a emplear en el proyecto.
- Se decidió refactorizar el proyecto desde cero, dado:
 - Limitaciones con Twitter API desde Abril 2023.
 - Limitaciones con Chrome Manifest V2 desde Enero 2023.
 - Librerías y frameworks obsoletos, difíciles de actualizar o incompatibles.

HERRAMIENTAS: Twitter Clone

	ANTERIOR	ACTUAL	DESCRIPCIÓN
Lenguaje	-	TypeScript	Se escogió un lenguaje tipado. Más escalable.
Frameworks	-	React JS	Implementación con mayor rapidez y organizado en componentes. Uso de herramientas como Tailwind.
BD	-	MongoDB	Complemento adecuado para TypeScript

Implementación del Twitter Clone

- Se conectó con la base de datos que contiene tweets recolectados.
- Se crearon las vistas de:
 - o Timeline.
 - Usuario de Twitter.
- Dichas vistas se implementaron manteniendo las mismas etiquetas que posee la página de Twitter, para facilitar el scraping en caso de que se quiera migrar con Twitter API.

Twitter Clone Timeline

Twitter Clone Perfil

HERRAMIENTAS: Back-end Extensión

	ANTERIOR	ACTUAL	DESCRIPCIÓN
Lenguaje	TypeScript	TypeScript	Se mantuvo el uso de TypeScript.
Frameworks	Express	Express	Se mantuvo el uso de Express por su flexibilidad.
BD	-	MongoDB	Complemento adecuado para Express

Implementación del Back-end

- Se conectó con la base de datos proporcionada.
- Se instalaron nuevas dependencias:
 - o bad-words para la detección de malas palabras.
 - o dictionary-en, dictionary-es, dictionary-fr para la ortografía.
 - o npell para la creación de verificadores de ortografía
- Se implementó nuevamente las funciones que realizan el análisis de:
 - Credibilidad del Texto
 - Credibilidad Social
 - Credibilidad del Usuario

Módulo de Tópicos Integración en T-CREo

- Configuración de un entorno virtual de Python.
- Instalación de dependencias de Python.
- Modificación de funciones del cálculo de credibilidad de tópicos:
 - Verificación si el tweet posee hashtags.
 - Verificación si los hashtags están presentes en el modelo.
- Integración de Python a Typescript:
 - Uso de node:child_process para generar subprocesos.
- Implementación de la función de la credibilidad de tópicos tanto en el front-end como el back-end de la extensión T-CREo.

Módulo de Bots Integración en T-CREo

- Instalación y actualización de dependencias de *Python*.
- Modificación de funciones del cálculo de credibilidad de bots:
 - Eliminación del uso de Twitter API en Python (Tweepy).
 - Cambios menores en funciones de retorno de la predicción.
- Integración de Python a Typescript:
 - Uso de node:child_process para generar subprocesos.
- Incorporación de la identificación de bot en el cálculo de credibilidad del usuario.

HERRAMIENTAS: Front-end Extensión

	ANTERIOR	ACTUAL	DESCRIPCIÓN
Lenguaje	JavaScript	TypeScript	Se escogió un lenguaje tipado. Más escalable.
Frameworks	-	React JS	Implementación con mayor rapidez y organizado en componentes. Uso de herramientas como Tailwind.
Chrome	V2	V3	V2 se encuentra obsoleto.

Implementación: Front-end de T-CREo

- Se reestructuró el front-end del trabajo previo para que sea adecuado con el framework de React.
- Se crearon las vistas de:
 - Popup: Vista principal de la extensión.
 - Options: Vista para la configuración de parámetros.
- Se conectó con Chrome Extension con Manifest v3, lo cual requirió actualizar la configuración y reestructurar el código.
- Se conectó el Front-end con el Back-end.

FASE II: Popup de T-CREo

FASE II: Configuración de T-CREo

Twitter Clone + T-CREo

PRUEBAS

Pruebas de limpieza de texto

Prueba	Estado	Tiempo ejec. BD cloud	Tiempo ejec. BD local
Pruebas de remoción de hashtags	Pasó	73 ms	104 ms
Prueba de remoción de menciones	Pasó	17 ms	21 ms
Prueba de remoción de emojis	Pasó	37 ms	43 ms
Prueba de remoción de puntuación	Pasó	68 ms	25 ms
Prueba de remoción de espaciado extra	Pasó	39 ms	15 ms
Prueba de remoción de enlaces	Pasó	30 ms	15 ms

Pruebas de credibilidad de texto

Prueba	Estado	Tiempo ejec. BD cloud	Tiempo ejec. BD local
Textos con malas palabras	Pasó	6371 ms	248 ms
Textos con spam	Pasó	132 ms	70 ms
Textos con errores ortográficos	Pasó	245 ms	111 ms
Textos con mezcla de pruebas mencionadas	Pasó	194 ms	102 ms

Pruebas de manejos de errores

Prueba	Estado	Tiempo ejec. BD cloud	Tiempo ejec. BD local
Retornar Error 400	Pasó	20 ms	15 ms
Retornar Error 401	Pasó	31 ms	3 ms
Retornar Error 403	Pasó	31 ms	2 ms
Retornar Error 404	Pasó	31 ms	3 ms
Retornar Error 500	Pasó	33 ms	3 ms

Pruebas de validación de credibilidad de texto

Prueba	Estado	Tiempo ejec. BD cloud	Tiempo ejec. BD local
Pruebas de validación en textos simples	Pasó	6898 ms	428 ms
Pruebas de validación en tweets	Pasó	15536 ms	10628 ms

Prueba de estatus del endpoint

Prueba	Estado	Tiempo ejec. BD cloud	Tiempo ejec. BD local
/health endpoint retorna status 200	Pasó	11720 ms	154 ms

Comparación de los tiempos de ejecución con BD local y en cloud

N. de tweets analizados	Tiempo ejec. nube	Tiempo ejec. local
5	15679 ms	41881 ms
10	18724 ms	78548 ms
20	94255 ms	147700 ms
30	48222 ms	210320 ms
40	47787 ms	309684 ms
50	70222 ms	353782 ms

N. de tweets analizados	Tiempo ejec. nube	Tiempo ejec. local
60	82833 ms	418230 ms
70	56231 ms	392061 ms
80	72855 ms	434683 ms
90	81209 ms	475613 ms
100	106087 ms	589190 ms
AVG	63059,45	313,790.18

CONCLUSIONES Y TRABAJOS FUTUROS 05

CONCLUSIONES Y TRABAJOS FUTUROS

- Se presenta una nueva versión del framework capaz de crear análisis de credibilidad más concisos gracias a la detección de tópicos y detección de bots.
- Considerar nuevos parámetros que puedan surgir con los constantes cambios en Twitter y puedan mejorar el framework.
- Continuar con T-CREo en redes similares a Twitter, tales como Facebook Threads y Mastodon.

GRACIAS POR SU ATENCIÓN

