

RR051-14-105547-1-A Ed. 1

This test report cancels and replaces test report RR051-14-105547-1-A Ed. 0

Certification Radio test report

According to the standard: CFR47 FCC PART 15.247

Equipment under test: LOOP KEYFOB

MODEL: BU3001

FCCID: 2ADLABU3001

Company: MYFOX

DISTRIBUTION: Mr CHAFIK (Company: MYFOX)

Number of pages: 36 with 6 appendixes

Ed.	Date	Modified	,	Written by		erification and Approval
		pages	Name	Visa	Name	Visa
1	21-May-2015	See vertical line	S. LOUIS	SL		

Duplication of this test report is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.

DESIGNATION OF PRODUCT: LOOP KEYFOB

Serial number (S/N): BBADG-0000001

Reference / model (P/N): BU3001

Software version: 1.0

MANUFACTURER: MYFOX

COMPANY SUBMITTING THE PRODUCT:

Company: MYFOX

Address: RUE DU LAC 2460 L'OCCITANE

REGENT PARK II 31670 LABEGE

FRANCE

Responsible: Mr CHAFIK

DATE(S) OF TEST: 13 and 26 November 2014

2 and 3 December 2014

TESTING LOCATION: EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE

EMITECH ANGERS open area test site in JUIGNE SUR LOIRE (49)

FRANCE

21 rue de la Fuye 49610 Juigne sur Loire

France

FCC 2.948 Listed Site Registration Number: 90469

FCC Accredited under US-EU MRA Designation Number: FR0009

Test Firm Registration Number: 873677

TESTED BY: S. LOUIS

CONTENTS

TITLE	PAGE
1. INTRODUCTION	4
2. PRODUCT DESCRIPTION	
3. NORMATIVE REFERENCE	4
4. TEST METHODOLOGY	5
5. TEST EQUIPMENT CALIBRATION DATES	6
6. TESTS AND CONCLUSIONS	7
7. RADIATED EMISSION LIMITS	11
8. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS	13
9. MAXIMUM PEAK OUTPUT POWER	15
10. INTENTIONAL RADIATOR	18
11. PEAK POWER DENSITY	21

APPENDIX 1: Photos of the equipment under test

APPENDIX 2: Test set up

APPENDIX 3: Test equipment list

APPENDIX 4: 6 dB bandwidth

APPENDIX 5: 20 dB bandwidth

APPENDIX 6: Band edge

1. INTRODUCTION

This document presents the result of Certification tests carried out on the following equipment: **LOOP KEYFOB**, in accordance with normative reference.

2. PRODUCT DESCRIPTION

Class: B (residential)

Utilization: Alarm system

Antenna type and gain: Integral antenna: gain not communicated

Operating frequency range: from 2400 MHz to 2480 MHz

Number of channels: 40

Channel spacing: 2 MHz

Modulation: Bluetooth Low Energy

Power source: 3Vdc by lithium battery type CR2032

Power level, frequency range and channels characteristics are not user adjustable.

The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2014) Radio Frequency Devices

ANSI C63.4 2009

Methods of measurement of Radio-Noise

Emissions from low-voltage Electrical and Electronic Equipment in the Range

of 9 kHz to 40 GHz.

ANSI C63.10 2013

Testing Unlicensed Wireless Devices.

558074 D01 DTS v03r02 Guidance for Performing Compliance on Digital Transmission

Systems Operating under §15.247

4. TEST METHODOLOGY

Radio performance tests procedures given in CFR 47 part 15:

Subpart A –General

Paragraph 19: labelling requirements Paragraph 21: information to user

Subpart B – Unintentional Radiators

Paragraph 105: information to the user Paragraph 107: Conducted limits Paragraph 109: Radiated emission limits

Paragraph 111: Antenna power conduction limits for receivers

Subpart C – Intentional Radiators

Paragraph 203: Antenna requirement

Paragraph 205: Restricted bands of operation

Paragraph 207: Conducted limits

Paragraph 209: Radiated emission limits; general requirements

Paragraph 212: Modular transmitter

Paragraph 215: Additional provisions to the general radiated emission limitations

Paragraph 247: Operation within the bands 902-928 MHZ, 2400-2483.5 MHz and 5725-5850

MHz

5. TEST EQUIPMENT CALIBRATION DATES

Equipment	Model	Туре	Last verification	Next verification	Validity
0000	BAT-EMC	Software	1	1	/
1406	EMCO 6502	Loop antenna	26/06/2013	26/03/2015	26/05/2015
1922	Microwave DB C020180F- 4B1	Low-noise amplifier	20/08/2014	20/08/2015	20/10/2015
1939	IMC WR42	Antenna	20/04/2012	20/04/2016	20/06/2016
1940	IMC WR42	Antenna	20/04/2012	20/04/2016	20/06/2016
3036	ALC Microwave ALN02- 0102	Low-noise amplifier	14/05/2014	14/05/2015	14/07/2015
4088	R&S FSP40	Spectrum Analyzer	22/08/2013	22/08/2015	22/10/2015
7299	Microtronics BR50702	Reject band filter	25/10/2013	25/10/2015	25/12/2015
8511	HP 8447D	Low noise preamplifier	20/08/2014	20/08/2015	20/10/2015
8526	Schwarzbeck VHBB 9124	Biconical antenna	12/06/2012	12/06/2016	12/08/2016
8535	EMCO 3115	Antenna	29/10/2012	29/10/2016	29/12/2016
8543	Schwarzbeck UHALP 9108A	Log periodic antenna	12/06/2012	12/06/2016	12/08/2016
8593	SIDT Cage 2	Anechoic chamber	1	1	1
8675	AOIP MN5102B	Multimeter	15/01/2013	15/01/2015	15/03/2015
8750	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8896 ACQUISYS GPS8		Satellite synchronized frequency standard	1	1	1
1	GPIBShot V2.4	Software	1	1	1

6. TESTS AND CONCLUSIONS

6.1 general (subpart A)

Test	Description of test	Re	specte	Comment		
procedure		Yes	No	NAp	NAs	
FCC Part 15.19	LABELLING REQUIREMENTS				X	See certification documents
FCC Part 15.21	INFORMATION TO USER				X	See certification documents

NAp: Not Applicable NAs: Not Asked

LABEL SHALL CONTAIN

The label shall be located in a conspicuous location on the device

The label shall not be a stick-on, paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase

§15.19: (can be placed in the user manual if the product is too small)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

USER NOTICE SHALL CONTAIN

The user notice, not provided during tests, shall include the following informations:

§15.21:

Any changes or modifications to this equipment not expressly approved by MYFOX may cause, harmful interference and void the FCC authorization to operate this equipment

6.2 unintentional radiator (subpart B)

Description of test	Re	specte	Comment		
	Yes	Yes No		NAs	
INFORMATION TO THE USER				Х	See certification documents
CONDUCTED LIMITS			Х		
RADIATED EMISSION LIMITS	X				Class B
ANTENNA POWER CONDUCTED LIMITS FOR RECEIVER			X		
	INFORMATION TO THE USER CONDUCTED LIMITS RADIATED EMISSION LIMITS ANTENNA POWER CONDUCTED LIMITS FOR	TYES INFORMATION TO THE USER CONDUCTED LIMITS RADIATED EMISSION LIMITS X ANTENNA POWER CONDUCTED LIMITS FOR	TYES NO INFORMATION TO THE USER CONDUCTED LIMITS RADIATED EMISSION LIMITS X ANTENNA POWER CONDUCTED LIMITS FOR	INFORMATION TO THE USER CONDUCTED LIMITS X RADIATED EMISSION LIMITS X ANTENNA POWER CONDUCTED LIMITS FOR X	TYES NO NAP NAS INFORMATION TO THE USER CONDUCTED LIMITS X RADIATED EMISSION LIMITS X ANTENNA POWER CONDUCTED LIMITS FOR X

NAp: Not Applicable NAs: Not Asked

USER NOTICE SHALL CONTAIN

The user notice, not provided during tests, shall include the following informations:

§ 15.105:

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference's by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- -Increase the separation between the equipment and the receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

6.3 intentional radiator (subpart C)

Test	Description of test	Re	espect	Comment			
procedure	2000, p.100.	Yes	No	NAp	NAs		
FCC Part 15.203	ANTENNA REQUIREMENT	Χ				Note 1	
1001 att 13.203	ANTENNA NEGOINEMENT					TVOLG T	
FCC Part 15.205	RESTRICTED BANDS OF OPERATION	Χ					
FCC Part 15.207	CONDUCTED LIMITS			Χ			
FCC Part 15.209	RADIATED EMISSION LIMITS; general requirements	X				Note 2	
FCC Part 15.212	MODULAR TRANSMITTERS			Χ			
FCC part 15.215	ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS						
	(a) Alternative to general radiated emission limits	Χ					
	(b) Unwanted emissions outside of §15.247 frequency bands	Х				Note 3	
	(c) 20 dB bandwidth and band-edge compliance	Χ					
FCC Part 15.247	OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz						
	(a) (1) Hopping systems			Х			
	(a) (2) Digital modulation techniques	Χ				Note 4	
	(b) Maximum peak output power	Χ				Note 5	
	(c) Operation with directional antenna gains > 6 dBi			X			
	(d) Intentional radiator	Χ					
	(e) Peak power spectral density	Χ					
	(f) Hybrid system			X			
	(g) Frequency hopping requirements			X			
	(h) Frequency hopping intelligence			X			
	(i) RF exposure compliance	Χ					

NAp: Not Applicable NAs: Not Asked

Note 1: Integral and dedicated antenna. Professionally installed equipment.

Note 2: See FCC part 15.247 (d).

<u>Note 3</u>: See FCC part 15.209. Unwanted emissions levels are all below the fundamental emission field strength level.

Note 4: The minimum 6 dB bandwidth of the equipment is 623.25 kHz (see appendix 4).

<u>Note 5</u>: Conducted measurement is not possible (integral antenna), so we used the radiated method in open field.

RF EXPOSURE:

Maximum measured power = 90.4 dBµV/m = 0.329 mW

In accordance with KDB 447498 D01 General RF Exposure Guidance v05r02, Paragraph 4.3.1.

The product must respect the exclusion limit for 10-g extremity SAR:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f(GHz)}] \le 3$

min. test separation distance, $mm \ge [(max. power of channel, including tune-up tolerance, <math>mW)] * [\sqrt{f(GHz)/3}]$ min. test separation distance, $mm \ge 0.329(mW) * [\sqrt{(2.44)/3}]$ min. test separation distance, $mm \ge 0.17 \ mm$

The minimum distance between the user and the antenna is more than 5mm (see photos in appendix 1).

7. RADIATED EMISSION LIMITS

Standard: FCC Part 15

Test procedure: paragraph 109

Limit class: Class B

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 30 MHz to 5th harmonic of the highest frequency used (2.48 GHz).

Detection mode: Quasi-peak (F < 1 GHz) Average (F > 1 GHz)

Bandwidth: 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment is blocked in reception mode.

RR051-14-105547-1-A Ed. 1

Results:

Ambient temperature (°C): 20.3 Relative humidity (%): 41

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

Percentage of voltage drop during the test (%):

2.48

Sample N° 1

Not any spurious has been detected.

Applicable limits: for 30 MHz \leq F \leq 88 MHz : 40 dB μ V/m at 3 meters

 $\begin{array}{ll} \text{for 88 MHz} < F \leq 216 \text{ MHz}: & 43.5 \text{ dB}\mu\text{V/m at 3 meters} \\ \text{for 216 MHz} < F \leq 960 \text{ MHz}: & 46 \text{ dB}\mu\text{V/m at 3 meters} \\ \text{Above 960 MHz}: & 54 \text{ dB}\mu\text{V/m at 3 meters} \\ \end{array}$

Note: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily

reported.

Test conclusion:

RESPECTED STANDARD

8. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS

Standard: FCC Part 15

Test procedure: Paragraph 15.215

Test set up:

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power

Test operating condition of the equipment:

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 22 Relative humidity (%): 48

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

Percentage of voltage drop during the test (%):

4.58

Lower Band Edge: band from 2398 MHz to 2400 MHz

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

2.97

Percentage of voltage drop during the test (%):

4.81

Upper Band Edge: band from 2483.5 MHz to 2485.5 MHz

Sample N° 1:

Fundamental frequency (MHz)	Field strength level of fundamental (dBµV/m)	Detector (peak or average)	Frequency of maximum band-edges emission (MHz)	Delta marker (dB)*	Calculated max out-of- band emission level	Limit (dBµv/m)	Margin (dB)
2402	89.8	nook	2399.72	-30.62	(dBµV/m) 59.18	69.8	10.62
		peak					
2480	88.3	peak	2483.81	-33.39	54.91	74	19.09
2480	88.3	average	2483.81	-39.11	49.19	54	4.81

^{*} Marker-Delta method

20 dB bandwidth curves are given in appendix 5; band-edge curves are given in appendix 6.

Test conclusion:

RESPECTED STANDARD

9. MAXIMUM PEAK OUTPUT POWER

Standard: FCC Part 15

Test procedure: paragraph 15.247 (b)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

The measurement of the electro-magnetic field is realized, with a resolution bandwidth adjusted at 3 MHz and video bandwidth at 10 MHz.

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.6 Relative humidity (%): 48

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

Percentage of voltage drop during the test (%):

3.20

3.10

3.10

Sample N° 1 Low Channel

	Electro-magnetic field (dBµV/m):	Conducted power * (W)	Limit (W)
Nominal supply voltage:	90.1	0.000307	0.125

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 247 degrees)

Ambient temperature (°C): 20.7 Relative humidity (%): 43

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

Percentage of voltage drop during the test (%):

3.29

3.17

Sample N° 1 Central Channel

	Electro-magnetic field (dBµV/m):	Conducted power * (W)	Limit (W)
Nominal supply voltage:	90.4	0.000329	0.125

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 234 degrees)

^{*} $P = (E \times d)^2 / (30 \times Gp)$ with d = 3 m and Gp = 1

^{*} $P = (E \times d)^2 / (30 \times Gp)$ with d = 3 m and Gp = 1

Ambient temperature (°C): 21.6 Relative humidity (%): 48

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

2.88

Percentage of voltage drop during the test (%):

4.63

Sample N° 1 High Channel

	Electro-magnetic field (dBµV/m):	Conducted power * (W)	Limit (W)
Nominal supply voltage:	88.6	0.000217	0.125

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 271 degrees)

Test conclusion:

RESPECTED STANDARD

^{*} $P = (E \times d)^2 / (30 \times Gp)$ with d = 3 m and Gp = 1

10. INTENTIONAL RADIATOR

Standard: FCC Part 15

Test procedure: paragraph 15.205, paragraph 15.209, paragraph 15.247 (d)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 9 kHz to 10th harmonic of the highest fundamental frequency (2.48GHz).

Detection mode: Quasi-peak (F < 1 GHz) Peak / Average (F > 1 GHz)

Bandwidth: 200Hz (9 kHz < F < 150kHz)

9 kHz (150 kHz < F < 30MHz) 120 kHz (30 MHz < F < 1 GHz) 100 kHz / 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.2 Relative humidity (%): 42

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

Percentage of voltage drop during the test (%):

4.41

Sample N° 1 Low Channel

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBµV/m)		
	Peak							
	Av: Average							
4806(*)	Р	150	92	1000	Н	51.3**	74	22.7
7206	P	150	114	100	V	48.9	70.4	21.5

Sample N° 1 Central Channel

FREQUENCIES (MHz)	Detector P: Peak QP: Quasi- Peak	Antenna height (cm)	Azimuth (degree)	Resolution bandwidth (kHz)	Polarization H: Horizontal V: Vertical	Field strength (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	Av: Average							
4881(*)	Р	150	86	1000	V	52.1**	74	21.9
7320(*)	Р	150	117	1000	V	53.6**	74	20.4

Sample N° 1 High Channel

No spurious has been detected.

<u>Note</u>: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

^{*} restricted bands of operation in 15.205

^{**}the peak level is lower than the average limit (54 dB μ V/m).

Applicable limits:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 90.4dBµV/m on central channel.

So the applicable limit is $70.4 \text{ dB}\mu\text{V/m}$.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

Test conclusion:

RESPECTED STANDARD

11. PEAK POWER DENSITY

Standard: FCC Part 15

Test procedure: paragraph 15.247 (e)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in anechoic chamber. The EUT is placed on a rotating table, 1.5m from a ground plane. Zero degree azimuth corresponds to the front of the device under test.

The measuring distance between the equipment and the test antenna is 3 m. The test antenna has been oriented in two polarizations (Vertical and Horizontal) and raised and lowered from 1m to 4m above the ground level. Only the highest level of each measurement is reported.

We used the same method of the peak output power measurement, but the equipment under test power level is recorded with the spectrum analyzer.

Resolution bandwidth: 3 kHz Video bandwidth: 10 kHz

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.6 Relative humidity (%): 48

Power source:

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (V):

Voltage at the end of test (V):

2.8

Percentage of voltage drop during the test (%):

4.63

Sample N° 1 Low Channel:

	Peak power density at frequency: 2402 MHz
Normal test conditions	-7.03 dBm
Limits	+8 dBm

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 247 degrees)

Sample N° 1 Central Channel:

	Peak power density at frequency: 2440 MHz	
Normal test conditions	-6.53 dBm	
Limits	+8 dBm	

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 234 degrees)

Sample N° 1 High Channel:

	Peak power density at frequency: 2480 MHz
Normal test conditions	-9.33 dBm
Limits	+8 dBm

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 271 degrees)

Test conclusion:

RESPECTED STANDARD

 $\square\square\square$ End of report, 6 appendixes to be forwarded $\square\square\square$

APPENDIX 1: Photos of the equipment under test

Page 23 out of 36

APPENDIX 2: Test set up

Page 26 out of 36

APPENDIX 3: Test equipment list

Radiated emission limits

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Biconical antenna VHBB 9124	Schwarzbeck	8526
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Antenna 3115	EMCO	8535
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

Additional provisions to the general radiated emission limitations

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Antenna 3115	EMCO	8535
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	GPIBShot V2.4	-

Maximum peak output power

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Antenna 3115	EMCO	8535
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

Intentional radiator

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		4000
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Loop antenna 6502	EMCO	1406
Biconical antenna VHBB 9124	Schwarzbeck	8526
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Antenna 3115	EMCO	8535
Antenna WR42	IMC	1939
Antenna WR42	IMC	1940
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
Low-noise amplifier ALN02-0102	ALC Microwave	3036
Reject band filter BRM50702	Microtronics	7299
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

Peak power density

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Antenna 3115	EMCO	8535
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

APPENDIX 4: 6 dB bandwidth

Low Channel

Central Channel

High Channel

APPENDIX 5: 20 dB bandwidth

Low Channel

Central Channel

High Channel

APPENDIX 6: Band edge

Lower Band edge

Upper Band edge

