

The BEV Smart Charging Adoption Project

Pingfan Hu, Brian Tarroja, Matthew Dean, Kate Forrest, Eric Hittinger, Alan Jenn, John Paul Helveston

Department of Engineering Management and Systems Engineering

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Introduction

- **BEV** (Battery Electric Vehicle) helps to reduce carbon dioxide and air pollution. As BEVs gain popularity, managing their load on the grid will become increasingly important.
- With **smart charging**, utilities can smooth out this demand to avoid overload caused by BEV charging, and integrate more renewable energy.
- There are 2 ways of smart charging. **SMC** (Supplier-Managed Charging) monitors and controls the timing of charging, and **V2G** (Vehicle-to-Grid) enables BEVs to send power back to the grid.
- To enable smart charging, utilities must educate and incentivize BEV owners to participate in these programs. A **conjoint survey** is a great approach to collect users' willingness.

Objective

This project aims to understand **BEV** owners' preferences to **participate** in the **smart charging** programs to improve **grid** resilience and enable greater integration of **renewable** energy onto the grid.

The team will conduct a **simulation** with the grids to see theoretical results of smart charging implementation.

The Smart Charging Programs

SMC (Supplier-Managed Charging)

V2G (Vehicle-to-Grid)

In a V2G event, BEVs can charge the grid when necessary.

Supplier-managed charging avoids overload caused by BEV charging.

Method

Conjoint Surveys

- Conjoint surveys pack attributes. Users make choices based on their preferences.
- Fielding strategy includes survey panels, social medias, and EV forums.
- We also collect ownership, charging preferences, and demographics data.

Logit Models

 $P_j=rac{e^{v_j}}{e^{v_j}+e^{v_k}}$

- Highest coefficient: No choice.
- Most significant: override and monthly cash.
- Compare every utility with no choice.
- Correlation between no choice and other attributes.

Demographic Results

- Survey panels: Incentivize for fast response.
- Social medias: Users are willing to share voluntarily.
- Most users have 2 or more cars, with at least one being BEV, and regularly charge at home.
- Most users have charge management approaches using App or SMC.
- Most users are interested in V2G and want to pay for V2G charger.

Conjoint Results

- This is the result of the pilot study.
- Range anxiety is the top most attribute that affects users' adoption.
- Recurring cash back is more important than one-time payment.
- Override allowance is somewhat important but not vital.

Future Work

User Preference Modeling:

- Complete survey analysis and data cleaning.
- Unobserved heterogeneity will be revealed by mixed logit model.
- Observed heterogeneity is detected by interaction model.
- Latent class model is a detective model to indicate the maximum possible interactions considering heterogeneity.

Discussions:

- What can we learn from the summary statistics?
- How to move forward to smart charging program simulation for the grids?

