장 (10)

인터넷

제 목표

- 확인하고 인터넷의 발전에 중요한 역사적으로 중요한 사건에 대해 설명합니다.
- 인터넷의 토폴로지를 토론한다.
- 도메인 이름 시스템을 정의하고 이름 서버의 목적을 설명합니다.
- 목록 및 일반적인 인터넷 프로토콜 및 응용 프로그램을 설명합니다.
- 인터넷 2, 애 빌린 프로젝트 및 인터넷 2 실무 그룹을 토론한다.
- IPv6의 비즈니스 드라이버와 주소 지정 체계를 설명하십시오.

받는 사람 소개

인터넷

- 인터넷은 고등 연구 계획국 (ARPA)의 후원하에 1969년 9월 1일에 "탄생"했다.
- 원래의 형태에서, 그것은으로 알려졌다 ARPANET , ARPA 네트워크에 대한 짧은.
- UCLA에서 컴퓨터는 ARPANET에 연결된 최초의 컴퓨터였습니다.
- 4 컴퓨터는 1969 년 말까지 온라인했다.
- 컴퓨터 (13)는 1970 년 말까지 ARPANET에 접속 하였다.
- 1971 년 16 개 이상의 사이트와 1972 년에 30 개 이상의 사이트.
- 40 개 + 1973 년 사이트 및 ARPANET은 그 해 국제 존재를했다.

받는 사람 소개 인터넷 (계속)

- 빈튼 서프와 로버트 칸에서 TCP를 개발 1973.
- ARPANET의 감독은 1975 년 국방 통신기구 (DCA)으로 옮겨졌다.
- TCP와 IP: TCP는 두 부분으로 1978 년에 재 설계되었다.
- TCP와 IP는 연말 1982으로 마이그레이션을 완료하여 1981 년에 표준 ARPANET 전송 프로토콜이되었다.
- DCA는 1983 년에 두 개의 네트워크에 ARPANET을 분할 -MILNET과 ARPANET, 두 군 감독하에.

받는 사람 소개 인터넷 (계속)

- ARPANET은 MILNET로부터 분할 후 상당한 성장을 경험했다.
- 그만큼 국립 과학 재단 (National Science Foundation) (NSF)은 1980 년대 초에 CSNET과 ARPANET 사이의 자금 조달 연결을 시작했다.
- 1984 년의 NSF는 5 개 지역 슈퍼 컴퓨팅 센터를 건설했다.
- 1985 년 NSF는 NSFNET을 형성하기 위해 함께 그들을 연결.
- NSFNET의 원래 링크는 선 임대 56 Kbps까지했다.
- 1987 연결성은 T1 라인에 업그레이드되었다.

받는 사람 소개 인터넷 (계속)

- 인터넷의 군사 관할권은 1990 년에 끝났다.
- 늦은 1990 년대 초반으로, NSFNET은 여전히 연구와 학술 활동에 제한되었다.
- 개인 이익 상업 TCP에 대해 / IP 데이터 네트워크는 AT & T, MCI, 스프린트 등 이동 통신사에서 생활에 튀었다.
- 이러한 상용 데이터 네트워크 백본 자리에 있었다되면, NSF는 인터넷을 민영화하는 계획을 개발했다.
- 민영화는 1994 년에 발효하고, NSF 백본은 인터넷 ISP에 의해 유지되는 민간 상업 기업 만들기 1995 년 4 월에 해제되었다.

는 ISP에 연결

상에서 정보에 접근 인터넷

- 메인 프레임 컴퓨터와 서버 컴퓨터는 파일, 웹 페이지 또는 스트리밍 미디어로 콘텐츠를 제공하도록 구성 할 수 있습니다.
- 같은 IP, DNS, HTTP 및 FTP와 같은 프로토콜은 인터넷에서 데이터를 찾는데 도움이됩니다.
- 예 : .com, .NET, .ORG, 느슨하게 기능 또는 지역별 데이터 액세스를 구성 .INT 등의 인터넷 도메인.
- DNS는 IP 주소로 친숙한 이름을 해결하여 데이터 액세스를 지원합니다.
- 이메일, 인스턴트 메시징 및 VoIP와 같은 응용 프로그램은 개인 대 개인, 개인 대 togroup, 및 그룹 togroup 통신 기능을 제공합니다.

- 도메인 이름 시스템의 기원
 - 원래 ARPANET 컴퓨터는 ARPANET에있는 다른 컴퓨터를 찾을 수 HOSTS.TXT 파일이 필요합니다.
 - 사이트가 컴퓨터를 추가 할 때마다 새 항목은 네트워크 정보 센터 (NIC) 컴퓨터의 스탠포드 연구소에서 메인 HOSTS.TXT에 추가 위치했고, 다음 새 HOSTS.TXT을 다운로드해야했다 각 사이트 및 각 사이트에서 각 컴퓨터에 설치되어 있어야합니다.

- 업데이트 및 다운로드 HOSTS.TXT 진짜 가능성이 새 컴퓨터에 같은 이름을했다 생성하는 두 개 이상의 사이트, 잠재력을 ARPANET 트래픽 증가 및 확장 ARPANET 일관된 HOSTS.TXT 파일을 유지 ARPANET이 성장함에 따라 더 어려워지고 있었다

.

- 도메인 이름 시스템의 기원 (계속)
 - HOSTS.TXT 유지와 관련된 문제는 1980 년대 초에 ARPANET에 심각한 파괴 위협을 발표했다.
 - 1983 년, 폴 모 카페 트리스와 존 포스텔은 HOSTS.TXT를 대체 할 수있는 호스트 이름과 주소의 분산 데이터베이스를 공식화.
 - 이 대체 도메인 이름 시스템 (DNS) 기술로 알려지게되었다 원래 코멘트 (RFC) 882 요청에 지정되었습니다.
 - DNS에 기능을 추가 한 최신의 RFC는 원래 DNS의 RFC를 대신하다.

- 도메인 이름 시스템의 기원 (계속)
 - DNS의 도입으로, 호스트 이름과 주소의 제어는 분산 제어 중앙 집중식 컨트롤에서 이동했다.

- DNS는 네트워크를 통해 DNS 서버에 자동으로 호스트 정보를 배포합니다.
- 인터넷 호스트는 IP 주소로 호스트 이름을 해결하기 위해 분산 데이터베이스를 사용합니다.

이름 서버

- 인터넷의 DNS 서버로 알려져있다.
- 일반적으로 모든 지방, 지역, 국가 ISP에 쌍에 있습니다.
- 요청 된 웹 사이트의 IP 주소 공급 클라이언트 컴퓨터.
- 운영 체제 소프트웨어 및 DNS 소프트웨어로 구성됩니다.
- DNS 데이터베이스의 일부를 저장합니다.
- 적어도 하나 개의 다른 DNS 서버와 통신하도록 구성되어 있습니다.
- 다른 DNS 서버의 쿼리 동안받은 웹 사이트 주소 정보를 캐시 할 수있는 능력을 가지고있다.

• 인터넷 도메인

- 인터넷에 조직과 계층 구조를 제공합니다.
- 최상위 도메인 (TLD를)은 다음과 같습니다 : .COM, .NET, .ORG, .GOV, 비즈, 그리고 다른 사람을.
- 수백만 개 이상의 도메인이 TLD의 아래에 존재한다.
- A와 표현 우리는 루트 도메인에서 인터넷 시작에 액세스 할 때 우리가 사용하는 도메인 공간 "."
- TLD를 루트 도메인 아래에 존재한다.
- 도메인 네임의 최대 길이는 255 개 문자 제외 도트이고, 도트의 도메인 네임의 일부는 63 개 문자로 제한된다.

DNS 이름 공간

- 인터넷 도메인 (계속)
 - 일반적인 TLD를 (gTLD를)로 알려진 원래 7 TLD를이 있었다 :
 - .닷컴, 에듀, .GOV, .INT, .MIL, .NET, .ORG, 그리고 .arpa
 - 새로운 TLD를 중 일부는 국가 코드 TLD를 (ccTLD를)뿐만 아니라 다양한 조직 유형을 포함하여 다음과 같습니다 :
 - .비행기, 비즈, .INFO, .museum, .name을, .PRO, 등.

원래 최상위 도메인

TABLE 10.1 Original Top-Level Domains

TLD	Original Purpose		
.com	Commercial organizations		
.edu	U.S. educational organizations		
.gov	U.S. government organizations		
.int	International organizations		
.mil	U.S. military organizations		
.net	Network infrastructure organizations		
.org	Nonprofit organizations		
.arpa	ARPANET hosts		
New TLD	Purpose		
.aero	Air transport organizations		
.biz	Businesses		
info	Information		
.museum	Museums		
.name	Individuals		
.pro	Professionals		

• 인터넷 프로토콜

- TCP와 IP는 ARPANET에서 효율적인 데이터 전송을 제공하기 위해 1970 년대에 개발 된 원본했다.
- 오늘날, 인터넷 프로토콜의 전체 제품군이있다.
 - 주소 확인 프로토콜 (ARP)은 IP 주소로 각각의 MAC 주소를 매핑하는 데 사용됩니다.
 - DHCP는 자동으로 클라이언트 컴퓨터에 IP 주소 정보를 할당합니다.
 - DNS 이름 확인을 제공합니다.
 - iSCSI는 산세에서 데이터 전송을 제공한다
 - LDAP는 데이터베이스 디렉토리 지원 및 액세스를 제공합니다.
 - HTTP는 웹 페이지에 액세스 할 수 있도록 지원합니다.

은 OSI 내에서 TCP / IP 프로토콜 모델 레이어

Application	HTTP HTTPS FTP	Telnet SMTP PoP3	IMAP4 RTSP SLP	SNMP XMPP SIMPLE
Presentation				
Session	DNS iSCSI LDAP			
Transport	TCP UDP	RTP RTCP		
Network	IP DHCP			
Data link	ARP			
Physical				

- 인터넷 응용 프로그램
 - 파일 전송 FTP 및 HTTP는 인터넷 사용자가 위치간에 파일을 전송할 수 OSI 응용 계층 프로토콜이다.
 - 원격 컴퓨팅 텔넷 사용자가 원격 컴퓨터 및 네트워킹 장치에 로그인 할수있는 OSI 어플리케이션 계층 프로토콜이다. SSH는 장치들 사이의 데이터 전송을 암호화 제외 셸 (SSH)에 훨씬 텔넷처럼 고정.
 - 스트리밍 미디어 예 : RTP, UDP, 및 RTCP하지만, 미디어 스트리밍과 RTSP이다 돕는 OSI 응용 계층 프로토콜로 기본 전송 및 제어 프로토콜을 이용한다.

- 인터넷 응용 프로그램 (계속)
 - <mark>이메일</mark> SMTP, POP3 및 IMAP4 이메일을 지원하는 세 가지 기본 OSI 애플리케이션 계층 인터넷 프로토콜입니다.
 - 인스턴트 메시징 확장 메시징 및 현재 상태 프로토콜 (XMPP) 및 인스턴트 메시징 세션 개시 프로토콜 및 현재을 활용합니다 확장 (SIMPLE)는, 인스턴트 메시징 및 이메일, 음성 메일, 그룹 일정 등의 여러 데이터 통신 기술의 융합을 지원하는 표준화 된 프로토콜입니다 인스턴트 메시징을 통해 화상 회의, 화이트 보드, 일정, 음성 및 비디오 채팅.

vBNS

- MCI는 매우 초고속 백본 네트워크 서비스 (vBNS)는 NSF의 슈퍼 컴퓨팅 센터를 연결하기 위해 1995 년에 온라인으로 온 고속 네트워크를 실행합니다.
- 개발 작업은 기존의 대역폭 업그레이드 (현재 2.4 Gbps의)와 vBNS에 계속 없지만, vBNS 더 이상 NSF에 의해 지원된다.

(계속)

• 인터넷 2

- 인터넷 응용 프로그램 및 기술의 다음 세대를 만들기 위해 34 개 대학으로 1996 년에 시작.
- 오늘은 정부와 건설 민간 부문, 테스트와 협력하여 200 개이상의 대학의 컨소시엄, 그리고 고급 애플리케이션과 기술을 배포 할 수 있습니다.
- 인터넷 2는 네트워크 인프라가 아닙니다.

- 인터넷 2 (계속)
 - 그만큼 <mark>애 빌린 프로젝트</mark> 인터넷 2의 활동을 지원하는 실제 물리적 통신 네트워크이다.
 - 애 빌린 테스트하고 인터넷 2의 고급 기술과 응용 프로그램을 구현하는 대역폭과 대학 및 연구 기관을 제공합니다.
 - 애 빌린 대역폭의 2.4 Gbps의를 제공하는 SONET OC-48 회로 1999 년에 라이브 갔다.
 - 2004 년 초, 애 빌린은 10Gbps 대역폭을 제공하는 OC-192 회로로 업그레이드되었습니다.
 - 애 빌린은 현재 인터넷을 구성하는 상용 ISP 네트워크와 상호 연결되어 있지 않습니다.

애 빌린 네트워크

- 인터넷 2 (계속)
 - 수많은 워킹 그룹 (실무) 지원 고급 서비스, 응용 프로그램 및 기술 개발.
 - 실무 그룹은 다음과 같습니다:
 - 캠퍼스 대역폭 관리, 디지털 비디오, 인스턴트 메시징을위한 통합 인프라, IPv6를, MACE-표어, MACE-WebISO, 멀티 캐스트, 정형 외과, 현재 상태 및 통합 커뮤니케이션, VidMid 화상 회의, IP를 통해 주문 VidMid 비디오, 음성, 및 다른 사람.

- 차세대 인터넷 프로토콜
 - 인터넷 애플리케이션 및 서비스를위한 기반은 인터넷 2에서 개발되고 있습니다.
 - IPv4의 IP 어드레싱의 현재 세대는 각 호스트를 정의하는 32 비트를 사용한다.
 - IPv6를 IP 어드레싱의 차세대이며, 조 조 조 (340)를 통해 주소를 제공하기 위해 128 비트를 사용한다.
 - IPv6은 현재 vBNS와 애 빌린를 활용 수많은 사이트를 구현됩니다.
 - IPv6은 인터넷 2의 IPv6 워킹 그룹에 의해 모니터링됩니다.

- IPv6의 비즈니스 드라이버
 - 필요성은 기기의 증가에 IP 주소를 제공합니다.
 - 차세대 비즈니스 애플리케이션.
 - 모바일 및 무선 장치의 사용이 증가.
 - 그것은 인터넷을 통해 전송되는 데이터의 노출을 증가.

- IPv6 주소
 - IPv6 주소는 8-16 비트 섹션으로 구분되어 128 비트를 사용한다.
 - IPv4의 정의 된 같은 클래스 A, 클래스 B와 클래스 C 주소와 같은 어떤 주소 클래스가 없습니다.
 - IPv6 주소는 특정 노드를 식별하는 글로벌 사이트 내 링크를 식별하기 위해, 서브넷 비트 라우팅 정보를 식별 라우팅 프리픽스 비트 및 인터페이스 ID 비트 구성된다.

IPv6의 일반 주소 형식

(계속)

- IPv6의 주소 (계속)
 - IPv6 주소는 일부 약어가 포함되어 있습니다.
 - 주소:

```
FE80:0000:0000:ABCD:FF32:030C:1234 0000
```

로 축약 할 수있다

FE80:0:0:0:ABCD:FF32:30C:1234

또는

FE80 :: ABCD : FF32 : 30C : 1234

- 조직에 미치는 영향
 - timecritical 애플리케이션을위한 향상된 전송 성능을 제공합니다.
 - QoS는 실질적으로 향상 될 것이다.
 - 인터넷 2 응용 프로그램은 언제 어디서나에서에 언제
 어디서나에서에서 실시간 수업을 제공 할 것을 약속드립니다.
 - IPv6은 차세대 서비스 및 응용 프로그램을 지원합니다.

- 조직에 미치는 영향 (계속)
 - 응용 프로그램 개발자는 인증 및 웹 로그온 사양을 개발
 오히려 낭비 시간보다 응용 프로그램의 중요한 기능에 초점을
 맞출 수있을 것입니다.
 - 오디오, 비디오, 음성 및 텍스트로 모든 종류의 데이터를 동시에 대화식으로 공유 할 수있는 세계 - 인스턴트 메시징 통합 서비스의 인터넷을 약속드립니다.