- (21) Application No 7943385
- (22) Date of filing 17 Dec 1979
- (43) Application published 24 Jun 1981
- (51) INT CL³
 CO9C 3/00 3/04 3/06
 3/08 3/10
- (52) Domestic classification C4A K C1A J241 J270 J281 J320 J340 J342 J350 J351 J353 J453 J454 J500 J501 J5 N13 N24 N39 PG1S C1H 420 620 715 730 749 752 757 762 768 771 783 785 796 812
- (56) Documents cited GB 1551829 GB 1508576 GB 1486107 GB 1270312 GB 1249912 GB 598861
- (58) Field of search C1A C4A
- (71) Applicant
 Troyfel Products Limited,
 Tannery House, Tannery
 Lane, Send, Woking,
 Surroy
- (72) Inventor Alan Paul Bowden
- (74) Agents
 Marks & Clerk,
 57—60 Lincoln's Inn
 Fields, London, WC2A
 3LS

(54) Method of Producing Cement Colouring Composition

(57) A thixotropic slurry is made by first mixing a dispersant (preferably 0.1 to 3%, based on the weight of slurry), a stabilizer (preferably 0.4 to 15%), and an aqueous carrier (preferably 12 to

77%), then mixing in a soild particulate pigment (preferably 20 to 70%) until the resulting mixture is uniform, and finally subjecting the mixture to high energy processing, e.g. milling, to reduce the pigment particles to a micron size range, preferably 0.5 to 40 microns.

SPECIFICATION

Method of Producing Cement Colouring

Composition

This invention relates to a method of producing a colouring material for cementitious mixes used in making products such as cast concrete, extruded concrete, cement fibre glass, and cement asbestos.

Conventional cement or concrete colouring compositions comprise powders which are added by hand or by a screw conveyor in their dry state to a wet concrete or cement mix in a mixing apparatus. It is difficult to accurately add desired amounts of such powders to the wet concrete mix and there is often waste of such colouring material. Furthermore, with powders it is difficult to obtain a sufficient thorough mixing of the powders into the wet cement mix so as to achieve a homogeneous colour throughout the mixture.

Conventional methods also require the concrete or cement contractor to maintain large inventories of the colouring composition and involve certain health hazards as well.

It is highly desirable to have a system for colouring wet cement and concrete mixes by the addition of the colouring material in a liquid form to the mix, so that the colouring material may be added by liquid pumps to the wet concrete mix. In particular it is desirable to be able to produce a pigment suspension which will not settle out within a relatively short time.

The present invention provides a method of producing a colouring composition for a cementitious mix, comprising making a sthixotropic slurry by the following steps: (a) forming a mixture of a dispersant and a stabilizer in an aqueous carrier; (b) mixing a solid particulate pigment into the mixture from step (a) until the resulting mixture is uniform; and (c) subjecting the mixture from step (b) to high energy processing which reduces the pigment particles to a micron size range.

Preferably, the following amounts of the dispersant, the stabilizer, the aqueous carrier, and the pigment are used, based on the weight of the slurry: dispersent, 0.1 to 3%; stabilizer, 0.4 to 15%; aqueous carrier, 12 to 77%; pigment, 20 to 70%.

The invention will be described further with reference to the following Examples and the accompanying drawing, whose sole Figure is a graph illustrating preferred ranges of viscosity plotted against time for three exemplary iron oxide pigments after they have been processed into slurries.

In the following description all percentages are by weight.

Example 1

A mixing tank having a slow speed or low Gum Arabic energy agitator revolving at 80 to 200 rev/min is 120 Sodium Laurate

partially filled with 47.17% of water (based on the weight of slurry to be produced). A natural gum such as gum arabic in the amount of 5% is then added as well as 0.66% of a dispersant such as sodium laurate, which is a sodium salt of lauric acid sulphonate. At ambient temperatures, the water, dispersant, and stabilizer are premixed until all are dissolved. Then, while the mixer is still running, 47.17% of a pigment such as black iron oxide is added and the entire mixture is then mixed for about one hour, for example, until it is uniform and homogeneous, whereupon it will have a predetermined specific gravity.

Next, the material is pumped into a high speed or high energy mill such as a stone mill, for 75 example, to reduce the particle size of the pigment component of the slurry down into the micron range. This can be checked by the use of a grinding "wedge" or other gauge. Preferably, the pigment particle size distribution in the resulting thixotropic slurry should include largest particles with a maximum dimension of about 40 microns, large particles whose average size is about 25 microns, smaller particles whose average size is in the 1-2 micron range, and smallest particles down to a minimum size of about 0.5 microns. If the particle distribution is generally higher than these ranges, the colouring strength of the slurry is adversely affected. If the sizes of the particles are generally below these ranges they may be washed out of dried concrete by normal weathering.

The procedure described above may also be applied to many other formulations such as are set forth in the following examples:

100	Example 2 Black Iron Oxide Water Gum Arabic Sodium Laurate	47.17% 47.73% 5.00% 0.10%
105	Example 3 Carbon Black Water Gum Arabic Ethylene Oxide Condensate	20.00% 76.60% 0.4% 3.0%
110	Example 4 Carbon Black Water Alginate L.V. Sodium Laurate	25.0% 59.0% 15.0% 1.0%
115	Example 5 Spanish Red Oxide Water Gum Arabic Ethylene Oxide Condensate	80.0% 12.69% 7.0% 0.4%
	Example 6 Red Oxide (Natural) Water Gum Arabic	60.00% 30.00% 9.20%

0.80%

	Example 7			Example 18		
	Red Oxide (Synthetic)	50.00%			47 000/	
	Water		60	Yellow Oxide (Synthetic)	47.00%	
		47.00%	60	Water	49.5%	
_	Gum Arabic	2.80%		Polyvinyl Pyrolidone	3.2%	
5	Sodium Laurate	0.20%	•	Sodium Laurate	0.3%	
	Example 8 The dispersant helps				siurry to keen ite	
10	Yellow Oxide (Synthetic)	47.00%		suspended state for long per	iods of time, and the	
	Water	49.5%	85	facilitate the incorporation of	lous of time, and they	
	Gum Arabic	3.2%	00	niament into the siver. They	large amounts of	
	Sodium Laurate	0.3%		pigment into the slurry. They also tend to prevent flocculation of the pigment when the slurry is		
	Couldin Laurate	0.576		Tiocculation of the pigment w	vhen the slurry is	
	Example 9			added to a cement mix conta	lining free calcium	
		47.000/		ions. Less flocculation makes	s for more intense	
	Yellow Oxide (Synthetic)	47.00%	70			
	Water	49.5%		In each of the above exam	ples the water may	
	Sodium Alginate (Manute RS)	3.2%		be replaced by an aqueous so		
15	Sodium Laurate	0.3%	,	point depressant in such an a	mount that the	
				slurry freezes only below a given subzero		
	Example 10		75	temperature.	VOIT SUDECTO	
	Yellow Oxide (Synthetic)	47.00%	, 5	By way of example, in orde	or to pobleve a	
	Water	49.5%		froming point of 2500 con-		
	Carboxymethyl Cellulose			freezing point of -25°C, any	one of the following	
20	(CMC) High Viscosity			freezing point depressants ca	in be used in the	
	grade	3.2%		following percentages based	on the quantity of	
	Sodium Laurate	0.3%	80	aqueous solution: magnesiur	n sulphate 25%;	
	Codidili Madrate	0.070	•	sodium sulphate 25%; ethyle	ne glycol 15%;	
	Example 11			propylene glycol 17%; glycer	oi 20%; sorbitol	
	Yellow Oxide (Synthetic)	47.00%		20%; ethyl alcohol 30%; met	hyl alcohol 33%:	
25	Water			isopropyl alcohol 33%. Magn	esium and sodium	
25		49.5%	85	sulphate have a slight retard!	ng effect on the	
	Gum Arabic	3.4%		curing of the cementitious pro	nducts The alcohole	
	Triethanolame	0.1%		appear not to affect curing, e		
	5 1 40			high concentrations, e.g. 8 to	10% based on the	
30	Example 12			weight of the cementitious m	do Dased Off tije	
	Yellow Oxide (Synthetic)	47.00%	90	In practice the amount of f		
	Water	49.5%	30	dopressort may be such that	the standard	
	Gum Guar	3.2%		depressant may be such that	the slurry treezes	
	Sodium Laurate	0.3%		only below -5°C, preferably	only below -10°C.	
				The amount is preferably 5 to	35% based on the	
	Example 13			weight of the aqueous solution	on.	
	Yellow Oxide (Synthetic)	47.00%	95	It has been found that with	out the freezing	
35	Water	49.5%	-	point depressant the storage	life of the sivery in	
	Gum Tragacanth	3.2%		sometimes shorter than expe	stad is is believed	
	Sodium Laurate	0.3%		that this is owing to the effect	cted, it is believed	
		,		that this is owing to the effec	t of low	
	Example 14		100	temperatures when storage e	extends into winter.	
40	Yellow Oxlde (Synthetic)	47.00%	100	The inclusion of the freezing	point depressant	
40	Water	49.5%		brings an improvement in sto	rage life which	
	Locust Bean Gum	3.2%		appears to be due not only to	the lower freezing *	
	Sodium Laurate	0.3%		point but also to the fact that,	, if the siurry does	
		•	•	freeze, the way in which it fre	ezes (passing	
	Example 15		105	through a paste-like state) inh	nibits settling out.	
	Yellow Oxide (Synthetic)	47.00%			-	
45	Water	49.5%		It is important that the visc		
	Dextrine	3.2%		formulation be controlled so a		
	Sodium Laurate	0.3%		formulation can be fluidized v		
	_	0.0,0		dispensed, thereby to optimiz		
	Example 16		110	formulation with the cement	or concrete	
	Yellow Oxide (Synthetic)	47.00%		components. The product is t	herefore checked as	
50	Water	49.5%		to its viscosity, which should:		
	Potato Starch	3.2%		within the limits (measured in		
	Sodium Laurate	0.3%		the accompanying drawing. V		
		0.070	115	in the graph just deals with ire	on ovides the	
5 5	Example 17		113	desirable viscosity ranges for		
	Yellow Oxide (Synthetic)	47.00%				
	Water	49.5%		also fall within the maximum		
				ranges shown in the graph. The		
	Polyvinyl Alcohol	3.2%		determined by the use of a "F		
	Sodium Laurate	0.3%	120	viscometer manufactured by	ICI. This viscometer	
	•					

10

15

20

works by detecting mechanical shear, not by the detection of heat generation.

The colour quality of the slurry may be tested by adding to it a predetermined quantity of titanium dioxide (white) in the 3:1 to 5:1 ratio range. This measures the relative value of the colour, since a given sample may require a different amount of the colouring pigment to produce the same tint as another betch of the slurry.

Other usable stabilizers include active clays such as bentonite, kieselgur, or benagel, uncooked corn or wheat starch, water-soluble celluloses such as hydroxy ethyl cellulose or methyl cellulose, and polyvinyl pyrolidone.

Other usable dispersants include other fatty amines and alkylamines. Cationic surfactants, such as "Wetfix SE" (trade merk), are particularly suiteble for compositions to be used for colouring cement asbestos.

Optionally, other substances may also be added to impart desired characteristics to the composition. For example, a small percentage, say 4 to 7%, of an anti-efflorescence agent such as barium carbonate can be added. Or small percentages (say about 2%) of water-repellent chemicals such as calcium stearate, aluminium stearate, or silicones cen be added to the pre-mlx of the dispersant and the stabilizer in the aqueous 30 carrier.

The premixing step may be alternatively accomplished by using a hydraulic, variable speed cavitation mixer such as those marketed by Torrance & Sons of Bristol, England, or by Cowles 35 in the United States. Present cavitation mixers are, however, somewhat limited in processing capacity.

The reduction of the particle size of the original slurry by high energy processing may be done by mills other than the stone mill. Alternatively, a Premier brand colloid mill manufactured by Premier Colloid Mills or other types of comminuting apparatus may be employed. Stone mills may be those menufactured by Moorhouse 45 in the United States or by Fryma In Switzerland. Ball mills or rod mills have also been satisfactorily used, but they have the disadvantage of requiring more processing time. Attrition mills such as sand mills or pearl mills also ere effective, but also usually take longer than high speed mills or colloid mills.

One of the main advantages of the present invention is that thixotropic slurries of various main colours produced according to the present invention may be packaged in drums or other containers and the suspensions will not settle out 120 for reletively long periods of time, i.e. of the order of 6 to 12 months. Thus, if the concrete or cement contractor wishes, he can keep perhaps 3 60 to 5 pigment slurries in individual drums, each slurry being operatively connected to a batching system which controls the amounts of the slurries to be added to the concrete mix. A charging pump may be inserted into each drum of slurry 65 connected through a delivery tube to a metering

container or tube. The tube may, for example, contain a first (higher) measuring probe connected to a batching control unit whose height is adjustable (or predetermined) depending 70 upon the amount of slurry to be measured out. Operation of the charging pump delivers the slurry to the metering tube until it touches the lower end of the first measuring probe whereupon a circult is actuated which cuts off the pump. The charging 75 pump for applying the slurry to the metering tube may be an air-operated positive displacement piston pump such as those marketed by Graco, Inc. of Minneapolis, Minnesota. Then the contents of the metering tube start to be withdrawn from 80 the metering tube by the action of a dispensing pump (controlled by the batching unit) and to be applied (with water) to a concrete mixer of any conventional type. When the level of the metered slurry falls below the lower end of a second probe 85 coupled to the batching unit, a signal is generated which stops the dispensing pump.

If the contents of the slurry drum have not been used for excessive lengths of time, it may be advisable to insert a recycling valve branching off 90 from the output of the charging pump and being connected to a recycling tube which returns to the drum. The return of the slurry beck to the drum will produce a certain amount of agitation of the contents of the drum.

Instead of the batching system described above, it is also possible to use a positive displacement pump of the said Graco type or of the "Mono" brand type marketed by Mono Pumps Ltd. of Great Britain. The latter pump is also 100 marketed in the United States under the "Moyno" brand by Robbins and Meyers. The pump is set to run for a timed period so thet, since the rate of flow is known, the amount of pumping time required to produce a given volume can easily be 105 calculated. The timers may be wired to the electric motor starters of the pumps.

Still another method is to pump the slurry around a continuous circuit via a three-way valve which is air or electrically operated. The valve is connected to a timer that can switch it from 110 continuous circuit to injection by-pess, either straight into the mixing apparatus or indirectly, via a weighing scale, into the mixer so as to provide a double check on the quantity required for 115 addition.

Claims

95

- A method of producing e colouring composition for a cementitious mix, comprising making e thixotropic slurry by the following steps:
- (a) forming a mixture of a dispersant and a stabilizer in an aqueous carrier;
- (b) mixing a solid particulate pigment into the mixture from step (a) until the resulting mixture is uniform: and
- (c) subjecting the mixture from step (b) to high energy processing which reduces the pigment particles to a micron size range.
 - 2. A method as claimed in claim 1, in which the following amounts of the dispersant, the stabilizer,

the aqueous carrier, and the pigment are used, based on the weight of the slurry: dispersant, 0.1 to 3%; stabilizer, 0.4 to 15%; aqueous carrier, 12 to 77%; pigment, 20 to 70%.

3. A method as claimed in claim 1 or 2, in which the stabilizer comprises at least one of the following: active clays, natural products of the alginate group, hydrolysed starches, watersoluble celluloses, natural starches, synthetic polymers of the polyvinyl type, and water-soluble natural gums.

4. A method as claimed in any of claims 1 to 3, in which the pigment comprises at least one of the following: metallic oxides, metallic saits, and carbon black.

5. A method as claimed in any of claims 1 to 4, in which the pigment particle sizes are substantially within the range 0.5 to 40 microns.

 A method as claimed in any of claims 1 to 5, in which the dispersant comprises at least one of the following: ethylene oxide condensates, fatty amines, alkylamines, and sulfonated soaps in the form of a metal derivative salt.

 A method as claimed in any of claims 1 to 5, for producing a composition for colouring cement asbestos, in which the dispersant is a cationic surfactant.

8. A method as claimed in any of claims 1 to 7, in which the aqueous carrier is water.

30 9. A method as claimed in any of claims 1 to 7, in which the aqueous carrier contains a freezing point depressant in such an amount that the slurry freezes only below —5°C.

10. A method as claimed in claim 9, in which
 35 the amount of freezing point depressant is such that the siurry freezes only below -10°C.

11. A method as claimed in claim 9 or 10, in which the aqueous carrier contains 5 to 35% by weight of the freezing point depressant.

 A method as claimed in any of claims 1 to
 in which the freezing point depressant comprises an alcohol.

Printed for Her Majesty's Stationery Office by the Courier Press, Leemington Spa, 1981. Published by the Petent Office. 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

40