Formale Grundlagen der Informatik II 3. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Alexander Kreuzer Carsten Rösnick

SS 2011 15.06.11

Minitest Lösung

Betrachten Sie die Formeln in der Tabelle.

- Welche Formel ist in KNF, welche in DNF?
- Welche Formel/Formeln sind äquivalent zu der Formel

$$\varphi = r \wedge (s \vee t) \vee \neg s$$

und sind damit eine DNF bzw. KNF von φ ?

	KNF	DNF	$\equiv \varphi$
$r \wedge t$	\boxtimes	\boxtimes	
$(r \lor s) \land (r \lor t)$			
$r \vee \neg s$	\boxtimes	\boxtimes	
$r \vee (s \wedge (r \vee q))$			
$\neg r \lor (\neg s \land \neg t)$		\boxtimes	

Begründung: Für die Einteilung in DNF und KNF siehe Skript 3.2.

Zu der Äquivalenz mit φ : Es gilt

$$r \wedge (s \vee t) \vee \neg s \stackrel{(1)}{\equiv} \neg s \vee (r \wedge s) \vee (r \wedge t) \stackrel{(1)}{\equiv} ((\neg s \vee r) \wedge \overbrace{(\neg s \vee s)}) \vee (r \wedge t) \equiv r \vee (r \wedge t) \vee \neg s \stackrel{(2)}{\equiv} r \vee \neg s$$

mit (1) Distributivgesetz und (2) Absorption.

Gruppenübung

Aufgabe G1

Finden Sie mittels Beweissuche im Sequenzenkalkül \mathcal{SK} für folgende Formeln bzw. Sequenzen entweder eine Herleitung oder eine nicht-erfüllende Belegung.

(a)
$$\vdash (p \land q) \lor \neg (q \lor r) \lor r \lor \neg p$$

(b)
$$p, q \lor r \vdash (p \land q) \lor (p \land r)$$

(c)
$$\vdash \neg(\neg(p \land q) \land r) \lor (q \land r)$$

Aufgabe G2

(a) Weisen Sie semantisch die Korrektheit der folgenden Sequenzenregel nach:

$$\frac{\varGamma \vdash (\varphi \to \psi) \to \varphi, \varDelta}{\varGamma \vdash \varphi, \varDelta}$$

(b) Leiten Sie die folgende Sequenz in SK ab:

$$\vdash ((\varphi \to \psi) \to \varphi) \to \varphi$$

Aufgabe G3

Sei $\mathcal{R}=(\mathbb{R},+^{\mathbb{R}},-^{\mathbb{R}},\cdot^{\mathbb{R}},<^{\mathbb{R}},0,1)$. Eine Formel $\varphi(x,y)$ definiert in \mathcal{R} die Relation

$$\varphi := \{ (a, b) \in \mathbb{R}^2 : \mathcal{R} \models \varphi[a, b] \}.$$

Geben Sie Formeln an, die die folgenden Relationen in \mathbb{R}^2 definieren:

- (a) Einen Kreis mit Radius 2 um den Ursprung.
- (b) Eine Gerade durch den Ursprung mit Steigung 2/3.
- (c) Die Strecke, welche vom Punkt (1,2) bis zum Kreis aus (i) führt und senkrecht auf diesem steht.
- (d) Einen Smiley.

Hausübung

Aufgabe H1 (6 Punkte)

- (a) Zeigen Sie, dass folgende Regeln korrekt sind. (i) $\frac{\Gamma \vdash \emptyset}{\Gamma \vdash \varphi}$ (ex falso quodlibet)
- (ii) $\frac{\Gamma, \varphi \lor \psi \vdash \chi}{\Gamma \ \varphi \vdash \gamma}$
- (b) Geben Sie eine "direkte Simulation" von Regel (ii) in \mathcal{SK}^+ an.
- (Extra) Begründen Sie, warum Regel (ii) in SK nicht direkt simulierbar ist. D.h. zeigen Sie, dass es keinen \mathcal{SK} Ableitungsbaum mit Wurzel $\Gamma, \varphi \vdash \chi$ gibt, dessen Blätter nur mit Axiomen oder $\Gamma, \varphi \lor \psi \vdash \chi$ beschriftet sind.

Hinweis: Betrachten Sie hierfür die Länge der Formeln von Prämisse und Konklusion der \mathcal{SK} Regeln.

Aufgabe H2

Wir definieren folgende partielle Ordnung auf aussagenlogischen \mathcal{V}_n -Interpretationen:

$$\mathfrak{I} \leq \mathfrak{I}'$$
 :gdw. $\mathfrak{I}(p) \leq \mathfrak{I}'(p)$ für alle Variablen $p \in \mathcal{V}_n$

Eine AL_n-Formel φ heißt monoton, wenn für alle Interpretationen $\mathfrak{I} \leq \mathfrak{I}'$ gilt:

$$\varphi^{\Im} \leq \varphi^{\Im'}$$
.

Beweisen Sie per Induktion über den Formelaufbau, dass jede aussagenlogische Formel φ , in der kein Negationszeichen vorkommt, monoton ist.

Bemerkung: Jede monotone Formel ist äquivalent zu einer Formel ohne Negationszeichen.