

Fonction affine par intervalle

Soit & Pa fonction définie Sur TR par:

$$f(n) = x + 3 - |2n - 2|$$

1) donner le expression de f Svr

Chacun des intervalles]-0,1) et [1,+0[Sw]-0,1]

2) Représenter graphiquement 4 dans

un repere orthonormé -

$$f(n) = x + 3 - (2 - 2x)$$

$$= x + 3 - 2 + 2n$$

$$= 3x + 1$$

2)
$$f(a) = 3xa + 1 = 1$$
 $f(1) = -1 + 5 = 4$
 $f(A) = 3xA + 1 = 4$ $f(2) = -2 + 5 = 3$

Tous droits réservés © TakiAcademy.com

Activitée2: La représentation graphique Ci-dessous est celle d'une fonction f définie Sur TR. Donner L'expression de f

ona
$$A(1,0)$$
 et $B(2,1)$ appartiennent
 $a(e_{\beta})$.

$$J'ov = f(u) = x + b$$

Tous droits réservés © TakiAcademy.com
23390248 - 29862815

AinSi
$$f(n) = x - 1$$
; $f(n) = an + b$.
on a $B(2,1)$ et $C(3,-1)$ appartiennent
 \overline{a} (e. $a = \frac{y_c - y_B}{y_c - x_B} = \frac{-1 - 1}{3 - 2} = \frac{2}{3 - 2}$

AinSi
$$f(n) = -2n + 5$$
 ; $\forall n \in [2,3]$

Sur $[3,+\infty[$; $f(n) = an + b$.

on $\Rightarrow D(3,0)$ et $= (4,1)$ appartienner

a $= (4,1)$ appartienner

b $= (4,1)$ appartienner

a $= (4,1)$ appartienner

a $= (4,1)$ appartienner

b $= (4,1)$ appartienner

b $= (4,1)$ appartienner

a $= ($

Tous droits réservés © TakiAcademy.com
23390248 - 29862815

$$f(n) = x - 3$$
 ; $\forall x \in [3, +\infty[$

$$f(x) = \begin{cases} -2x + 5 & \text{Si } x \in [2,3] \\ x - 3 & \text{Si } x \in [3,+\infty[$$