1
2
3

A method for enhancing the resolution of black image regions
rendered at a resolution of color image regions, the black image regions and color
image regions being represented by pixels, the black image regions and color image
regions having a first resolution, the first resolution being lower than a maximum
black printing resolution of a printer, the method comprising:
generating black pixels and color pixels at said first resolution;
for each original pixel of the black image region having the first resolution,
multiplying said pixel in two dimensions to obtain a first array of
pixels, so as to represent the original pixel by a plurality of target
pixels in the first array;
selecting a plurality of neighboring pixels, said target pixels and neighboring
pixels constituting a pixel window;
applying the pixels in the pixel window to a logic circuit having a plurality of
logical conditions;
determining enhanced resolution pixels for the target pixels based on whether
said pixel window meets a logical condition; and
printing said enhanced resolution pixels at a second resolution as well as said
color pixels at said first resolution.
2. The method as recited in claim 1, the method further comprising:
forming a processed pixel image by repeating the selecting through the
determining steps until all of the original pixels have been processed.
The method as recited in claim 1 wherein the first resolution is 300
The means as received an elamina (whereas the mass received in 5 500
dots per inch (dpi) and the second resolution is 600 dpi.
4. The method as recited in claim 1, further comprising empirically

defermining the logical conditions.

1	5. The method as recited in claim 1, wherein said step of printing further
2	comprises printing black pixels rendered at the second resolution.
3	
1	6. The method as recited in claim 1 wherein the pixel window has rows
2	represented by bits equal to or less than a word size.
1	7. The method as recited in claim 1 wherein the pixels in the pixel
2	window form a 13x13 pixel matrix.
1	8. An apparatus for enhancing the resolution of black image regions
2	rendered at a resolution of color image regions, the black image regions and color
3	image regions being represented by pixels, the black image regions and color image
4	regions having a first resolution, the first resolution being lower than a maximum
5	black printing resolution of a printer, the apparatus comprising:
6	an upscaling circuit for multiplying black pixels to form a first array of black
7	pixels, said first array including a group of target pixels;
>8	a logic circuit for receiving said target pixels and neighboring pixels, forming
9	a window of pixels, said logic circuit applying logical conditions to
10	said window of pixels and identifying enhanced resolution pixels for
11	said group of target pixels; and
12	at least one printhead for printing said enhanced resolution pixels at a second
13	resolution and color pixels at said first resolution.
1	9. The apparatus as recited in claim 8, wherein the logic circuit
2	comprises a logic array.
1	10. The apparatus as recited in claim 8 wherein the first resolution is
2	300 dots per inch (dpi) and the second resolution is 600 dpi.
	,

1	11. The apparatus as recited in claim 8 wherein the logical conditions are
2	empirically derived.
1	12. A method for enhancing black image regions of a pixel field that are
2	rendered at the same first resolution of color image regions, the method comprising:
3	separating black pixels from color pixels to form a black pixel field;
4	multiplying the number of pixels in the black pixel field to form a first pixel
5	array;
6	forming a sub-array of the first pixel array, the sub-array including a target
7	group of pixels;
8	applying the sub-array to a logic circuit identifying a plurality of logical
9	conditions;
30>	based on whether the sub-array meets a logical condition, modifying said
11	target group of pixels to reduce jagged edges of said black image
12	regions; and
13	printing the modified target group of pixels at an increased resolution and
14	printing color pixels at said first resolution.
1	1/3. The method as recited in claim 12 wherein said multiplying is
2	performed by upscaling.
1	/ 14. The method of claim 13 wherein the initial resolution of the black
2	pixel field is 300 dots per inch (dpi), and the resolution of the modified target pixels
3	is 600 dpi.
1	
-	