

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 October 2002 (03.10.2002)

PCT

(10) International Publication Number
WO 02/077204 A2

(51) International Patent Classification⁷: **C12N 5/00**

(74) Agent: **HARRISON GODDARD FOOTE**; 31 St.
Saviourgate, York YO1 8NQ (GB).

(21) International Application Number: **PCT/GB02/01195**

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 25 March 2002 (25.03.2002)

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(25) Filing Language: English

Published:

(26) Publication Language: English

— without international search report and to be republished
upon receipt of that report

(30) Priority Data:

0107299.0 23 March 2001 (23.03.2001) GB
0107296.6 23 March 2001 (23.03.2001) GB
0109346.7 17 April 2001 (17.04.2001) GB

(71) Applicant (for all designated States except US): **AXOR-DIA LIMITED** [GB/GB]; Firth Court, Western Bank,
Sheffield S10 2TN (GB).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): **ANDREWS, Peter** [GB/GB]; University of Sheffield, Western Bank, Sheffield
S10 2TN (GB). **WALSH, James** [GB/GB]; University
of Sheffield, Western Bank, Sheffield S10 2TN (GB).
GOKHALE, Paul [GB/GB]; University of Sheffield,
Western Bank, Sheffield S10 2TN (GB).

WO 02/077204 A2

(54) Title: STEM CELL

(57) Abstract: There is provided a method to modulate the differentiation state of embryonic stem cells in culture by the providing ligands which bind receptors in the *Notch* and *Wnt* pathways.

STEM CELL

The invention relates to a method to modulate the differentiation state of embryonic stem cells.

5

During mammalian development those cells that form part of the embryo up until the formation of the blastocyst are said to be totipotent (e.g. each cell has the developmental potential to form a complete embryo and all the cells required to support the growth and development of said embryo). During the formation of the 10 blastocyst, the cells that comprise the inner cell mass are said to be pluripotential (e.g. each cell has the developmental potential to form a variety of tissues).

Embryonic stem cells (ES cells, those with pluripotentiality) may be principally derived from two embryonic sources. Cells isolated from the inner cell mass are

15 termed embryonic stem (ES) cells. In the laboratory mouse, similar cells can be derived from the culture of primordial germ cells isolated from the mesenteries or genital ridges of days 8.5-12.5 *post coitum* embryos. These would ultimately differentiate into germ cells and are referred to as embryonic germ cells (EG cells). Each of these types of pluripotential cell has a similar developmental potential with 20 respect to differentiation into alternate cell types, but possible differences in behaviour (eg with respect to imprinting) have led to these cells to be distinguished from one another. Hereinafter embryonic stem cells will encompass both these stem cell - types.

25 Typically ES cell cultures have well defined characteristics. These include, but are not limited to; maintenance in culture for at least 20 passages when maintained on fibroblast feeder layers; produce clusters of cells in culture referred to as embryoid bodies; the ability to differentiate into multiple cell types in monolayer culture; and express ES cell specific markers.

30

Until very recently, *in vitro* culture of human ES cells was not possible. The first indication that conditions may be determined which could allow the establishment of human ES cells in culture is described in WO96/22362. The application describes 5 cell lines and growth conditions which allow the continuous proliferation of primate ES cells which exhibit a range of characteristics or markers which are associated with stem cells having pluripotent characteristics.

More recently Thomson *et al* (1998) have published conditions in which human ES 10 cells can be established in culture. The above characteristics shown by primate ES cells are also shown by the human ES cell lines. In addition the human cell lines show high levels of telomerase activity, a characteristic of cells which have the ability to divide continuously in culture in an undifferentiated state. Another group (Reubinoff *et. al.*, 2000) have also reported the derivation of human ES cells from 15 human blastocysts. A third group (Shambtott *et. al.*, 1998) have described EG cell derivation.

A feature of ES cells is that, in the presence of fibroblast feeder layers, they retain the ability to divide in an undifferentiated state for several generations. If the feeder 20 layers are removed then the cells differentiate. The differentiation is often to neurones or muscle cells but the exact mechanism by which this occurs and its control remain unsolved. It would be desirable to have a reliable culture system which does not require the presence of fibroblast feeder cells but includes the addition of a factor(s) which maintain ES cells in an undifferentiated state. A 25 prerequisite to the successful exploitation of ES cells in tissue engineering is to provide a reliable and defined cell culture system which can be used to control the differentiation of ES cells into a selected cell-type. The identification of gene targets involved in maintaining ES cells as ES cells and the identification of gene targets involved in differentiation will facilitate this objective.

We have identified a regulatory pathway involved in the mechanism by which ES cells are maintained as ES cells in culture and which also influences the differentiation of said cells in culture. The regulatory pathway comprises two families of genes referred to as *Notch* and *Wnt*.

5

The *Notch* gene is a *Drosophila* prototype for a family of homologues found in diverse species, encoding large, single-span, transmembrane receptors (reviewed in Weinmaster, 1997). Within the extracellular domain, located distally from the transmembrane region, are found multiple (10-36), tandem arrays of epidermal growth factor-like repeats (Wharton et al., 1985; Kopezynski et al., 1988). More proximally are found 3 cysteine-rich, Lin-12/Notch repeats and two conserved cysteine residues. The intracellular domain contains, from proximal to distal with respect to the transmembrane region, a subtransmembrane region (STR), six ankyrin repeats and a region rich in proline, glutamic acid, serine and threonine (PEST). The generic Notch structure is illustrated in Figure 1.

Wnt genes encode diffusible, extracellular signalling molecules of around 350-400 amino acids in length, defined by a characteristic pattern of conserved cysteine residues, along with other invariant amino acids (see 20 <http://www.stanford.edu/~rnusse/wntwindow.html>).

In the 1970s, the *wingless* (*wg*¹) mutation of *Drosophila melanogaster* was described, in which affected individuals showed aberrant wing and haltere development (Sharma, 1973; Sharma and Chopra, 1976). When the gene disrupted by 25 this mutation was subsequently identified, the predicted 468aa peptide sequence exhibited remarkable similarity to that of a murine gene, *int-1* (Cabrera et al., 1987; Rijsewijk et al., 1987), including an identical pattern of 23 conserved cysteine residues. *int-1* had earlier been identified as a common integration site of the murine mammary tumour virus, and a likely cellular oncogene (Nusse and Varmus, 1982; 30 van Ooyen and Nusse, 1984). Thus, the two prototypic members of the *Wnt* gene family were described. Since that time, numerous homologues of *wingless/int-1* have

been identified in divergent organisms, including *Caenorhabditis elegans*, *Drosophila melanogaster*, *Xenopus laevis*, chicken, mouse and humans (reviewed in Cadigan and Nusse, 1997; Wodarz and Nusse, 1998). Lower organisms appear to possess a limited repertoire of *Wnt* genes in comparison to higher organisms,
5 presumably reflecting their lesser developmental complexity. Additionally, vertebrates appear to express multiple, closely related orthologues of certain *Wnts*. The *Wnt* family is composed of more than 60 members, with 14 human homologues alone. Well-documented roles exist for *Wnt* signalling in a variety of developmental processes, including cell fate specification and patterning within the central nervous
10 system.

Wnt ligands interact with membrane-bound receptors of the frizzled family, leading to activation of a cytoplasmic protein, Dishevelled. Dishevelled inhibits Notch activation (2) and also inhibits the activity of an Axin-APC-GSK-3b complex,
15 promoting formation of a bipartite transcriptional activator comprising b-catenin and TCF (4). Wnt signalling may be antagonised by extracellular molecules that compete for Wnt binding, including frizzled related proteins (FRP), Wnt inhibitory factors (WIF), Dickkopf and Cerberus. Expression of *Wnt* target genes may also be regulated by other proteins that bind to and alter the function of TCF. CREB-Binding Protein (CBP) exhibits a mutually antagonistic binding affinity for TCF with b-catenin and converts TCF into a repressor of target genes (8). Additionally, Notch activation may induce transcriptional repression by TCF, even in the presence of b-catenin, through expression of the TLE class of putative target genes (5,7).

25 As a model system to test the involvement of *Notch* and *Wnt* genes in the differentiation of ES cells we have used embryonal carcinoma cells which are stem cells of teratocarcinomas. The stem cells of early embryos and the stem cells of teratocarcinomas have been demonstrated experimentally to be capable of substituting for one another in their respective roles. Thus, an embryonic stem cell
30 introduced to a syngeneic host may give rise to a teratocarcinoma containing all of the elements that would be found in a spontaneous tumour of this type (Mintz et al

1978). Likewise, embryonal carcinoma cells derived from a spontaneous germ cell carcinoma may participate in embryonic development, and generate normal somatic tissue following injection into a blastocyst (Brinster 1974; Mintz and Illmensee 1975; Papaioannou et al 1975). This clearly demonstrates that murine EC cells may respond
5 to developmental cues in an appropriate manner, and that their differentiation may provide information pertinent to normal embryogenesis. Similarly, human EC cells may provide an insight into the processes that regulate human development.

The TERA2 cell line was derived from a lung metastasis of a human teratocarcinoma
10 in the mid 1970s (Fogh and Trempe, 1975). Morphologically, TERA2 cultures are quite divergent from the characteristic EC phenotype and display significant heterogeneity, suggesting that these cells undergo spontaneous differentiation (Andrews et al., 1980). However, a tumour containing both embryonal carcinoma cells and differentiated derivatives was produced following injection of TERA2 into
15 a nude mouse host (Andrews et al., 1983a; Andrews et al., 1983b; Andrews et al., 1984). A cell line established from the EC component of this tumour, named NTERA2, closely resembled and maintained the characteristic EC phenotype in culture and, unlike the parent line, was able to produce teratocarcinoma in nude mice with high frequency (Andrews et al., 1983a; Andrews et al., 1983b; Andrews et al.,
20 1984). Additionally, various subclones of NTERA2 exhibit the ability to differentiate extensively *in vitro* following treatment with chemical inducers (eg retinoic acid (RA), HMBA) (Andrews, 1984; Andrews et al., 1986).

The expression of human *Notch* homologues were examined in NTERA2 to
25 determine their involvement in ES cell differentiation.

We have discovered that members of the *Notch* gene family, *Notch1*(Genbank accession number AF308602), *Notch2* (Genbank accession number NM_024408) and *Notch3* (Genbank accession number NM_000435) are expressed in EC cells and
30 NTERA2 cells. *Notch1* expression was detected as a mRNA band of around 7Kb in both EC and differentiated cultures of NTERA2. *Notch3*, like *Notch1*, was

examined in EC cells. A transcript of around 8Kb was readily detected in all samples. The endoderm-specific *Notch4* (Genbank accession number XM_004207) was not.

- All three *Notch* homologues expressed by NTERA2 showed altered transcription
5 during differentiation in response to retinoic acid. In each case, however, these changes were modest and expression was evident in both EC and differentiated cultures. The role of the Notch pathway in directing EC/ES differentiation may thus depend to a greater extent on the level of signalling activation rather than the abundance of the receptors. In order to investigate this possibility, the expression of
10 candidate ligands for Notch receptors were examined. For example, *dlk* (Genbank accession number U15979) was detected at high levels in EC cultures, but its expression was almost extinguished by 3 days following RA treatment. Low levels were also observed through 7 and 14 days post-RA. However, by 21 days, *dlk* was up-regulated to the level seen in EC cultures. These profound changes may reflect an
15 important role for *dlk* and other DSL ligands in regulating EC/ES differentiation through altered Notch signalling activation. This data is suggestive that the *Notch* signalling pathway is involved in regulating EC cell differentiation and, by extrapolation, human ES cell differentiation.
- 20 A degenerate PCR strategy was used to investigate the possible expression of novel *Wnt* genes in the NTERA2 system. The expression of a single *Wnt* gene, *Wnt-13*, was detected in NTERA2. *Wnt-13* was absent in EC cells, but showed induction and subsequent up-regulation following both retinoic acid and HMBA treatment. Both of these agents bring about extensive differentiation of NTERA2, accompanied by the
25 loss of typical human EC surface markers.

We have examined the expression of components of the *Wnt* pathway and of transcripts corresponding to other proteins known to interact with *Wnt* signalling in NTERA2 cells. These cells are a model system for aspects of human embryogenesis
30 and differentiate extensively *in vitro* in response to chemical inducers. Among the

cell types produced following retinoic acid treatment are functional, post-mitotic, CNS neurons (1,6,17).

The modulation of the *Notch* and *Wnt* signalling pathways may facilitate
5 manipulation of embryonic stem cell differentiation. The term modulation refers to either the maintenance of embryonic stem cells as embryonic stem cells or the facilitation of differentiation of embryonic stem cells along defined cell lineages.

According to an aspect of the invention there is provided a method to modulate the
10 phenotype of an embryonic stem cell comprising contacting said cell with a ligand binding domain of a polypeptide wherein said domain binds its cognate receptor expressed by said cell to modulate said phenotype.

According to a further aspect of the invention there is provided a method to modulate
15 the differentiation of an embryonic stem cell comprising:

- i) providing a culture of embryonic stem cells;
- ii) providing at least one ligand, or the active binding fragment thereof, capable of binding its cognate receptor polypeptide expressed by said embryonic stem cell;
- 20 iii) forming a culture comprising embryonic stem cells and said ligand; and
- iv) growing said cell culture.

In a preferred method of the invention said ligand is encoded by a nucleic acid molecule selected from the group consisting of:

- 25 i) a nucleic acid molecule as represented in Figure 22;
- ii) a nucleic acid molecule which hybridises to the nucleic acid in (i) and which encodes a ligand capable of binding a Wnt receptor; and
- iii) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (i) and (ii) above.

In a preferred method of the invention said ligand is selected from the group consisting of: WNT 1; WNT 2, WNT 3; WNT 4; WNT 5A; WNT 6; WNT 7A; WNT 8B; WNT 10B; WNT 11; WNT 14; WNT 16.

5 In a further preferred method of the invention said ligand is WNT 13.

In an alternative preferred method of the invention said ligand is encoded by a nucleic acid molecule selected from the group consisting of:

i) a nucleic acid molecule as represented in Figures 2, 4, 5, 7, 10, 12, 14, 16, or
10 18.

ii) a nucleic acid molecule which hybridises to the nucleic acid in (i) and which encodes a ligand capable of modulating embryonic stem cell differentiation; and

iii) nucleic acid molecules which are degenerate as a result of the genetic code to
15 the sequences defined in (i) and (ii) above.

In a further preferred method of the invention said ligand is selected from the group represented by the amino acid sequences in Figures 3, 6, 8, 9, 11, 13, 15, 17, 19, or polypeptide variants thereof.

20

Polypeptide variants are polypeptide sequences having at least 75% identity with the polypeptide sequences as herein disclosed, or fragments and functionally equivalent polypeptides thereof. In one embodiment, the polypeptides have at least 85% identity, more preferably at least 90% identity, even more preferably at least 95% identity, still more preferably at least 97% identity, and most preferably at least 99% identity with the amino acid sequences illustrated herein.

In a further preferred method of the invention said cells are induced to differentiate by the addition of at least one agent selected from the group consisting of: retinoic acid; HMBA ; bone morphogenetic proteins ; bromodeoxyuridine; lithium; sonic hedgehog .

Optionally the inducing agent and the ligand are added simultaneously to a culture of embryonic stem cells. Alternatively, the ligand is added before addition of said inducing agent.

- 5 According to a further aspect of the invention there is provided a method for modulating the differentiation of embryonic stem cells comprising:
- i) providing a cell transfected with a nucleic acid molecule selected from the group consisting of:
 - a) a nucleic acid molecule as represented in Figures 2, 4, 5, 7, 10, 12, 14, 16, 18.
 - b) a nucleic acid molecule which hybridises to the nucleic acid in (ii) and which encodes a ligand capable of modulating embryonic stem cell differentiation; and
 - c) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (a) and (b) above.
 - 10 ii) forming a culture comprising the cell identified in (i) above with an embryonic stem cell; and
 - 15 iii) growing said culture under conditions suitable for the maintenance and/or differentiation of said embryonic stem cell.

According to a yet further aspect of the invention there is provided a method for modulating the differentiation of embryonic stem cells comprising:

- i) providing a cell transfected with a nucleic acid molecule selected from the group comprising:
 - a) a nucleic acid molecule as represented by the sequence in Figure 22;
 - b) a nucleic acid molecule which hybridises to the nucleic acid in (a) and which encodes a ligand capable of binding a Wnt receptor; and
 - c) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (a) and (b) above.
- 25 ii) forming a culture comprising a cell as identified in (i) above with an embryonic stem cell; and
- 30 iii) growing said culture under conditions suitable for the maintenance and/or differentiation of embryonic stem cells.

In a preferred method of the invention said cell expresses Wnt-13.

5 Optionally the cells expressing the ligand(s) are mixed with a culture of undifferentiated embryonic stem cells. This is followed by addition of the inducing agent (eg retinoic acid; HMBA, bone morphogenetic proteins; bromodeoxyuridine; lithium; sonic hedgehog).

10 In a preferred method of the invention said nucleic acid molecule hybridises under stringent hybridisation conditions to the nucleic acid molecules represented in (a), (b) or (c) above.

15 Stringent hybridisation or washing conditions are well known in the art. For example, nucleic acid hybrids that are stable after washing in 0.1xSSC, 0.1% SDS at 60°C. It is well known in the art that optimal hybridisation conditions can be calculated if the sequence of the nucleic acid is known. For example, hybridisation conditions can be determined by the GC content of the nucleic acid subject to hybridisation. Please see Sambrook *et al* (1989) Molecular Cloning; A Laboratory Approach. A common formula for calculating the stringency conditions required to achieve hybridisation 20 between nucleic acid molecules of a specified homology is:

$$T_m = 81.5^0 C + 16.6 \log [Na^+] + 0.41[\% G + C] - 0.63 (\%formamide)$$

25 In a further preferred method of the invention the nucleic acid molecule is genomic DNA or cDNA.

In a preferred method of the invention the nucleic acid molecule encodes a ligand of human origin.

30 In a further preferred method of the invention said embryonic stem cells are of human origin.

In a yet further preferred method of the invention the cell transfected with the nucleic acid according to the invention is a mammalian cell. Preferably the cell is selected from the following group: a chinese hamster ovary cell; murine primary fibroblast cell; human primary fibroblast cell; transformed mouse fibroblast cell-line STO.

According to a further aspect of the invention there is provided a method for inhibiting the differentiation of embryonic stem cells or embryonal carcinoma cells comprising:

10

- i) providing at least one polypeptide, or active fragment thereof, wherein said polypeptide is an inhibitor of the *Wnt* signalling pathway.
- ii) forming a culture comprising the polypeptide identified in (i) above with an embryonic stem cell; and
- 15 iii) growing said culture under conditions suitable for the maintenance of embryonic stem cells in an undifferentiated state.

In a preferred method of the invention said inhibitor of Wnt signalling is selected from the group comprising the active binding fragments thereof of the following 20 polypeptides: frizzled related polypeptides (FRP); Wnt Inhibitory Factors (WIF); Dickkopf; Cerebrus.

In a further preferred method of the invention said inhibitor of Wnt signalling is selected from the group comprising the active binding fragments thereof of the 25 following polypeptides: SFRP1; SFRP4; FRZB; SFRP2; FZD1; FZD2; FZD9; FZD3; FZD5; FZD4; FZD6; FZD7; DVL2; DVL3; GSK3B; AXIN1; APC; TCF1; WIF-1; CER 1; DKK1-4; SARP 2; SARP 3.

According to a further aspect of the invention there is provided a method for 30 inhibiting the differentiation of embryonic stem cells or embryonal carcinoma cells comprising:

- i) providing a cell transfected with a nucleic acid molecule selected from the group consisting of:
 - a) a nucleic acid molecule encoding a Wnt inhibitory polypeptide;
 - 5 b) a nucleic acid molecule which hybridises to the nucleic acid in (a) and which encodes a polypeptide capable of inhibiting *Wnt* signalling; and
 - c) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (a) and (b) above.
- ii) contacting the cell of (i) above with a culture of embryonic stem cells; and
- 10 iii) growing said culture under conditions suitable for the maintenance of embryonic stem cells in an undifferentiated state.

In a preferred method of the invention said cells express at least one Wnt inhibitory polypeptide selected from the group comprising the active binding fragments thereof of the following polypeptides: frizzled related polypeptides (FRP); Wnt Inhibitory Factors (WIF); Dickkopf; Cerebrus. Preferably said cells express at least one Wnt inhibitory polypeptide selected from the group comprising the active binding fragments thereof of the following polypeptides: SFRP1; SFRP4; FRZB; SFRP2; FZD1; FZD2; FZD9; FZD3; FZD5; FZD4; FZD6; FZD7; DVL2; DVL3; GSK3B; 20 AXIN1; APC; TCF1; WIF-1; CER-1; DKK1-4

In a further preferred method of the invention the nucleic acid molecule is encoded by a nucleic acid molecule which hybridises under stringent hybridisation conditions to the nucleic acid molecules represented in (a), (b) or (c) above. Preferably said 25 inhibitors are human.

According to a further aspect of the invention there is provided a vector comprising the nucleic acid molecule according to the invention. Preferably the vector is an expression vector adapted for the expression of the polypeptide encoded by said 30 nucleic acid molecule.

Typically said adaptation includes, by example and not by way of limitation, the provision of transcription control sequences (promoter sequences) which mediate cell/tissue specific expression. These promoter sequences may be cell/tissue specific, inducible or constitutive.

5

- Promoter is an art recognised term and, for the sake of clarity, includes the following features which are provided by example only, and not by way of limitation. Enhancer elements are *cis* acting nucleic acid sequences often found 5' to the transcription initiation site of a gene (enhancers can also be found 3' to a gene sequence or even 10 located in intronic sequences and is therefore position independent). Enhancers function to increase the rate of transcription of the gene to which the enhancer is linked. Enhancer activity is responsive to *trans* acting transcription factors (polypeptides) which have been shown to bind specifically to enhancer elements. The binding/activity of transcription factors (please see Eukaryotic Transcription Factors, 15 by David S Latchman, Academic Press Ltd, San Diego) is responsive to a number of environmental cues which include, by example and not by way of limitation, intermediary metabolites (eg glucose, lipids), environmental effectors (eg light, heat,).
- 20 Promoter elements also include so called TATA box and RNA polymerase initiation selection (RIS) sequences which function to select a site of transcription initiation. These sequences also bind polypeptides which function, *inter alia*, to facilitate transcription initiation selection by RNA polymerase.
- 25 Adaptations also include the provision of selectable markers and autonomous replication sequences which both facilitate the maintenance of said vector in either the eukaryotic cell or prokaryotic host. Vectors which are maintained autonomously are referred to as episomal vectors. Episomal vectors are desirable since these molecules can incorporate large DNA fragments (30-50kb DNA).
- 30 Episomal vectors of this type are described in WO98/07876. Alternatively, the vector is an integrating vector.

Adaptations which facilitate the expression of vector encoded genes include the provision of transcription termination/polyadenylation sequences. This also includes the provision of internal ribosome entry sites (IRES) which function to maximise
5 expression of vector encoded genes arranged in bicistronic or multi-cistronic expression cassettes.

These adaptations are well known in the art. There is a significant amount of published literature with respect to expression vector construction and recombinant
10 DNA techniques in general. Please see, Sambrook et al (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory, Cold Spring Harbour, NY and references therein; Marston, F (1987) DNA Cloning Techniques: A Practical Approach Vol III IRL Press, Oxford UK; DNA Cloning: F M Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, Inc.(1994).

15 Conventional methods to introduce DNA or vector DNA into cells are well known in the art and typically involve the use of chemical reagents, cationic lipids or physical methods. Chemical methods which facilitate the uptake of DNA by cells include the use of DEAE –Dextran (Vaheri and Pagano Science 175: p434) . DEAE-dextran is a
20 negatively charged cation which associates and introduces the DNA into cells but which can result in loss of cell viability. Calcium phosphate is also a commonly used chemical agent which when co-precipitated with DNA introduces the DNA into cells (Graham et al Virology (1973) 52: p456).

25 The use of cationic lipids (eg liposomes, Felgner (1987) Proc.Natl.Acad.Sci USA, 84:p7413) has become a common method since it does not have the degree of toxicity shown by the above described chemical methods. The cationic head of the lipid associates with the negatively charged nucleic acid backbone of the DNA to be introduced. The lipid/DNA complex associates with the cell membrane and fuses
30 with the cell to introduce the associated DNA into the cell. Liposome mediated DNA transfer has several advantages over existing methods. For example, cells which are

recalcitrant to traditional chemical methods are more easily transfected using liposome mediated transfer.

More recently still, physical methods to introduce DNA have become effective means
5 to reproducibly transfect cells. Direct microinjection is one such method which can deliver DNA directly to the nucleus of a cell (Capecchi (1980) Cell, 22:p479). This allows the analysis of single cell transfectants. So called "biolistic" methods physically shoot DNA into cells and/or organelles using a particle gun (Neumann (1982) EMBO J, 1: p841). Electroporation is arguably the most popular method to
10 transfect DNA. The method involves the use of a high voltage electrical charge to momentarily permeabilise cell membranes making them permeable to macromolecular complexes. However physical methods to introduce DNA do result in considerable loss of cell viability due to intracellular damage. These methods therefore require extensive optimisation and also require expensive equipment.

15

More recently still a method termed immunoporation has become a recognised technique for the introduction of nucleic acid into cells, see Bildirici et al, Nature 405, 769. The technique involves the use of beads coated with an antibody to a specific receptor. The transfection mixture includes nucleic acid, typically vector
20 DNA, antibody coated beads and cells expressing a specific cell surface receptor. The coated beads bind the cell surface receptor and when a shear force is applied to the cells the beads are stripped from the cell surface. During bead removal a transient hole is created through which nucleic acid and/or other biological molecules, eg polypeptides, can enter. Transfection efficiency of between 40-50% is achievable
25 depending on the nucleic acid used.

Other non-liposome based, chemical transfectant agents have become available, for example ExGen500 (polyethylenimine), produced by MBI Fermentas. ExGen500 is particularly effective for transfection of human ES cells (Eiges, 2001).

30

According to a further aspect of the invention there is provided a method for the production of the polypeptide encoded by the nucleic acid molecule according to the invention comprising:

- i) providing a cell transformed/transfected with a nucleic acid molecule according to the invention;
- 5 ii) growing said cell in conditions conducive to the manufacture of said polypeptide; and
- i) purifying said polypeptide from said cell, or its growth environment.

In a preferred method of the invention said nucleic acid molecule is the vector 10 according to the invention.

In a further preferred method of the invention said vector encodes, and thus said recombinant polypeptide is provided with, a secretion signal to facilitate purification of said polypeptide.

15

According to a further aspect of the invention there are provided host cells which have been transformed/transfected with the vector according to the invention, so as to include at least part of the polypeptide according to the invention, so as to permit expression of at least the functional part of the polypeptide encoded by said nucleic 20 acid molecule.

Ideally said host cells are eukaryotic cells, for example, insect cells such as cells from a species *Spodoptera frugiperda* using the baculovirus expression system.

25 According to a further aspect of the invention there is provided a therapeutic cell composition comprising differentiated or differentiating embryonic stem cells derived by the method according to the invention. Preferably said composition is for

use in the treatment of: Parkinson's disease; Huntington's disease; motor neurone disease; heart disease; diabetes; liver disease (eg cirrhosis); renal disease; AIDS.

According to a further aspect of the invention there is provided a method of treatment
5 of an animal comprising administering a cell composition comprising embryonic stem cells which have been induced to differentiate into at least one cell-type.

According to a yet further aspect of the invention there is provided condition medium obtained by culturing embryonic stem cells according to any of the methods
10 hereindisclosed.

An embodiment of the invention will know be described by example only and with reference to the following figures:

15 Figure 1 is a schematic representation of conserved domains in Notch polypeptides;

Figure 2 is the nucleic acid sequence of murine notch ligand delta-like 1;

Figure 3 is the amino acid sequence of murine notch ligand delta-like 1;

20

Figure 4 is the nucleic acid sequence of murine notch ligand jagged 1;

Figure 5 is the nucleic acid sequence of human notch ligand jagged 1 (alagille syndrome) (JAG1);

25

Figure 6 is the amino acid sequence of human notch ligand jagged 1 (alagille syndrome);

Figure 7 is the nucleic acid sequence of human notch ligand jagged 2 (JAG2)

30

Figure 8 is the amino acid sequence of human notch ligand jagged 2 (JAG2);

Figure 9 is the amino acid sequence of murine notch ligand jagged 1;

Figure 10 is the nucleic acid sequence of murine notch ligand jagged 2;

5

Figure 11 is the amino acid sequence of murine notch ligand jagged 2;

Figure 12 is the nucleic acid sequence of human notch ligand delta-like 3 (DLL3);

10 Figure 13 is the amino acid sequence of human notch ligand delta-like 3 precursor polypeptide;

Figure 14 is the nucleic acid sequence of human notch ligand delta-1 (DLL1);

15 Figure 15 is the amino acid sequence of murine notch ligand delta- like 1;

Figure 16 is the nucleic acid sequence of human notch ligand delta-like 4 (DLL4);

Figure 17 is the amino acid sequence of human notch ligand delta-like 4 (DLL4);

20

Figure 18 is the nucleic acid sequence of murine notch ligand delta-like 4(DLL4);

Figure 19 is the amino acid sequence of murine notch ligand delta-like 4(DLL4);

25

Figure 20 is a western blot of cell extracts of various EC cell-lines probed with Notch 2 antisera;

Figure 21 represents northern blot analysis of the expression patterns of notch genes (*Notch 1,2,3*) and notch ligands (*Dlk, jagged 1*) in EC cells and EC cells treated with 30 retinoic acid (RA);

Figure 22 represents the nucleic acid sequence of human *Wnt 13*;

Figure 23 is a diagrammatic representation of the Wnt signalling pathway;

5 Figure 24 represents northern blot analysis of *Wnt 13* and mRNA's corresponding to Frizzled receptors and Frizzled related protein antagonists of Wnt signalling in NTERA 2 cells various Wnt inhibitors after exposure of NTERA 2 cells;

10 Figure 25 represents a northern blot analysis of intracellular components of Wnt signalling pathway in NTERA 2 cells;

Figure 26 represents the nucleic acid sequence of human *dickkopf1*;

15 Figure 27 represents the nucleic acid sequence of human *dickkopf2*;

Figure 28 represents the nucleic acid sequence of human *dickkopf3*; and

Figure 29 represents the nucleic acid sequence of human *dickkopf4*;

20 Figure 30 represents the nucleic acid sequence of WNT-1;

Figure 31 represents the amino acid sequence of WNT-1;

Figure 32 represents the nucleic acid sequence of WNT-2;

25

Figure 33 represents the amino acid sequence of WNT-2;

Figure 34 represents the nucleic acid sequence of WNT 2B;

30 Figure 35 represents the amino acid sequence of WNT 2B;

Figure 36 represents the nucleic acid sequence of WNT 3;

Figure 37 represents the amino acid sequence of WNT 3;

5 Figure 38 represents the nucleic acid sequence of WNT 4;

Figure 39 represents the amino acid sequence of WNT 4;

Figure 40 represents the nucleic acid sequence of WNT 5A;

10

Figure 41 represents the amino acid sequence of WNT 5A;

Figure 42 represents the nucleic acid sequence of WNT 6;

15

Figure 43 represents the amino acid sequence of WNT 6;

Figure 44 represents the nucleic acid sequence of WNT 7A;

Figure 45 represents the amino acid sequence of WNT 7A;

20

Figure 46 represents the amino acid sequence of WNT 7B;

Figure 47 represents the nucleic acid sequence of WNT 8B;

25

Figure 48 represents the amino acid sequence of WNT 8B;

Figure 49 represents the nucleic acid sequence of WNT 10B;

Figure 50 represents the amino acid sequence of WNT 10B;

30

Figure 51 represents the nucleic acid sequence of WNT 11;

Figure 52 represents the amino acid sequence of WNT 11;

Figure 53 represents the nucleic acid sequence of WNT 14

5

Figure 54 represents the amino acid sequence of WNT 14;

Figure 55 represents the nucleic acid sequence of WNT 16;

10 Figure 56 represents the amino acid sequence of WNT 16;

Figure 57 represents the nucleic acid sequence of FZD 1;

Figure 58 represents the amino acid sequence of FZD 1;

15

Figure 59 represents the nucleic acid sequence of FZD 2;

Figure 60 represents the amino acid sequence of FZD 2;

20 Figure 61 represents the nucleic acid sequence of FZE 3;

Figure 62 represents the amino acid sequence of FZE 3;

Figure 63 represents the nucleic acid sequence of FZD 4;

25

Figure 64 represents the amino acid sequence of FZD 4;

Figure 65 represents the nucleic acid sequence of FZD 5;

30 Figure 66 represents the amino acid sequence of FZD 5;

Figure 67 represents the nucleic acid sequence of FZD 6;

Figure 68 represents the amino acid sequence of FZD 6;

5 Figure 69 represents the nucleic acid sequence of FZD 7;

Figure 70 represents the amino acid sequence of FZD 7;

Figure 71 represents the nucleic acid sequence of FZD 8;

10

Figure 72 represents the amino acid sequence of FZD 8;

Figure 73 represents the nucleic acid sequence of FZD 9;

15

Figure 74 represents the amino acid sequence of FZD 9;

Figure 75 represents the nucleic acid sequence of FZD 10;

Figure 76 represents the amino acid sequence of FZD 10;

20

Figure 77 represents the nucleic acid sequence of FRP;

Figure 78 represents the amino acid sequence of FRP;

25

Figure 79 represents the nucleic acid sequence of SARP 1;

Figure 80 represents the amino acid sequence of SARP 1;

Figure 81 represents the nucleic acid sequence of SARP 2;

30

Figure 82 represents the amino acid sequence of SARP 2;

Figure 83 represents the nucleic acid sequence of FRZB;

Figure 84 represents the amino acid sequence of FRZB;

5 Figure 85 represents the nucleic acid sequence of FRPHE;

Figure 86 represents the amino acid sequence of FRPHE;

Figure 87 represents the nucleic acid sequence of SARP 3;

10

Figure 88 represents the amino acid sequence of SARP 3;

Figure 89 represents the nucleic acid sequence of CER 1;

15

Figure 90 represents the amino acid sequence of CER 1;

Figure 91 represents the nucleic acid sequence of DKK1;

Figure 92 represents the amino acid sequence of DKK1;

20

Figure 93 represents the nucleic acid sequence of DKK 2;

Figure 94 represents the amino acid sequence of DKK 2;

25 Figure 95 represents the nucleic acid sequence of DKK 3;

Figure 96 represents the amino acid sequence of DKK 3;

Figure 97 represents the nucleic acid sequence of DKK 4;

30 Figure 98 represents the amino acid sequence of DKK 4;

Figure 99 represents the nucleic acid sequence of WIF-1;

Figure 100 represents the amino acid sequence of WIF-1;

5 Figure 101 represents the nucleic acid sequence of SRFP 1;

Figure 102 represents the amino acid sequence of SRFP 1;

Figure 103 represents the nucleic acid sequence of SRFP 4;

10

Figure 104 represents the amino acid sequence of SRFP 4; and

Figure 105 represents a diagram depicting the pCMV-tracer vector.

15 **Materials and Methods**

Table 1 Cell lines derived from germ cell tumours.

Cell Line	Biopsy Site	Biopsy Histology	Xenograph	Reference
Histology				
2102Ep	Testis	EC, T, Y	EC	(Andrews <i>et al.</i> , 1980)
833KE	Testis	EC, T, C, S	EC	(Andrews <i>et al.</i> , 1980)
TERA-1	Lung	EC, T		(Fogh and Trempe, 1975)
NTERA2 cl. D1	Lung	EC, T	EC, T	(Fogh and Trempe, 1975) (Andrews, 1984)

Abbreviations used: EC, embryonal carcinoma, T, teratoma, S, seminoma, C, choriocarcinoma, Y, yolk-sac carcinoma

Cell Lines derived from gestational choriocarcinomas.

BEWO	Corresponds to gestational choriocarcinoma	(Pattillo and Gay, 1968)
------	--	-----------------------------

5 List of Antibodies Used

Antibody	Reference	References
SSEA-3	Andrews et. al., 1982	12
SSEA-4	Kannagi et. al., 1983	18
Tra-1-60	Andrews et. al., 1984	25
Tra-1-81	Andrews et. al., 1984	25
Tra-2-54	Andrews et. al., 1984	20
Tra-2-49	Andrews et. al., 1984	20
A2B5	Fenderson et. al., 1987	
ME311	Fenderson et. al., 1987	
Vin-is-56	Andrews et. al., 1990	44
Vin-is-53	Andrews et. al., 1990	44
Vin-2PB-22	Andrews et. al., 1990	44
Thy-1	Andrews et. al., 1983	10

Expression Vectors

10 The following mammalian expression vectors are used in the expression of ligands hereindisclosed:

Purchased from Stratagene Inc. pExchange-1; pExchange-2; pExchange-3A, 3B, 3C; pExchange-4A, 4B, 4C; pExchange-5A, 5b, 5C; pExchange-6A, 6B, 6C; pExchange module EC-hyg; pExchange module EC-Puro; pExchange module EC-Neo; pCMV-

15 Script; pCMV-Tag1; pCMV-Tag2; pCMV-Tag3; pCMV-Tag4; pCMV-Tag5; pCMVLACI, pOPRSVI/MCS, pOPI3-CAT ; pERV3; pEGSH.

Purchased from Invitrogen Inv.**T-REX System vectors**

20 pcDNA4/TO; pcDNA4/TO/myc-His; pcDNA6/TR; pT-Rex-DEST30; pT-Rex-DEST31; pcDNA4/TO-E; pcDNA5/FRT/TO; pcDNA5/FRT/TO-TOPO.

Geneswitch System vectors

pGene/V5-His A, B, C; pSwitch

5 Ecdysone-Inducible System

PVgRXR; pIND; pIND(SP1); pIND/V5-His; pIND/V5-His-TOPO; pIND/GFP; pIND(SP1)/GFP.

10 PShooter vectors

pRF/Myc/Nuc; pCMV/Myc/nuc; pEF/myc/mito; pCMV/myc/mito; pEF/myc/ER; pCMV/myc/ER; pEF/myc/cyto; pCMV/myc/cyto.

15 INVITROGEN INC

pTet-off; pTet-on; ptTA-2/ /3 /4; pTet-tTS; pTRE2hyg
PTRE2pur; pTRE2; pLP-TRE2; PTRE-Myc; pTRE-HA; pTRE-6xHN
pTRE-d2EGFP; pBI; pBI-EGFP; pBI-G; pBI-L;pTK-Hyg

20

"Living colours" vectors.

pDsRed2-N1; pDsRed2-C1; pECFP-N1; pEGFP-N1; pEGFP-N2; pEGFP-N3
pEYFP-N1; pECFP-C1; pEGFP-C1; pEGFP-C2; pEGFP-C3
pEYFP-C1; pd1EGFP-N1; pd1ECFP-N1; pd2EGFP-N1; pd2EYFP-N1
pd4EGFP-N1; pCMS-EGFP; pHyGEFP; pEGFPLuc; pNF- κ B-dsEGFP
pIRES2-EGFP; pIRES-EYFP

Maintenance of cell lines

30

All cells were grown in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% by volume foetal calf serum (Gibco BRL) and 2mM L-glutamine. Tissue culture flasks were incubated in a humidified atmosphere of 10% CO₂ in air at 37°C.

35

Treatment of NTERA2 Cells**Retinoic acid**

5 Medium was aspirated from confluent flasks of EC cells and the cells rinsed in sterile PBS. 1ml of 0.25% (w/v) trypsin in 2mM EDTA was added per 75cm² flask and the flask incubated at room temperature for up to 5 minutes. Vigorous shaking was subsequently used to dislodge the cells. Cells were suspended in 9ml of supplemented DMEM per ml of trypsin used and counted in a haemocytometer. Cells
10 were seeded at 10⁶ cells per 75cm² flask, in medium containing 10⁻⁵M all-trans-retinoic acid (Eastman Kodak), diluted from a 10⁻²M stock solution in dimethyl sulfoxide (DMSO). Flasks were incubated as described above and the media replaced as and when required.

15 **Hexamethylene bisacetamide (HMBA)**

Cells to be treated with HMBA were prepared as described for retinoic acid, but grown in medium supplemented with 10⁻³M HMBA instead of RA.

Harvesting of cells

20 Cells were dislodged from the culture vessel with trypsin and suspended in 9ml culture medium per ml of trypsin solution used, as described above. The cell suspension was then centrifuged at 400 x g for 3 minutes and the medium aspirated from the resulting cell pellet. Cells were then rinsed in 5ml PBS and centrifuged again at 400 x g for 1 minute. The PBS rinse was aspirated and the cells stored at –
25 80°C or used immediately.

Total RNA preparation

Where possible, all vessels and all solutions used in RNA preparation and storage
30 were treated with a 0.01% (v/v) solution of diethylpyrocarbonate (DEPC) in distilled water, and subsequently autoclaved.

TRI reagent (Sigma) was added to pelleted cells in a quantity corresponding to 1ml per 75cm² flask. The lysate was agitated until homogenous. 0.2ml of chloroform was added per ml of TRI reagent used and the vessel vortexed for 10 seconds. After 10 minutes at room temperature, the lysate was centrifuged at 12000 x g for 15 minutes
5 at 4°C. Following centrifugation, the aqueous (uppermost) phase was transferred to a fresh vessel and 0.5ml of isopropanol added per ml of TRI reagent used. The sample was incubated at room temperature for 10 minutes, then centrifuged at 12000 x g for 10 minutes at 4°C. Following centrifugation, the supernatant was removed and the pellet washed in 70% ethanol. RNA was dissolved in DEPC-treated, double-distilled
10 water.

Isolation of mRNA

100mg oligo dT cellulose (Ambion) was suspended in 25ml binding buffer. Up to
15 2mg of total RNA was then added to the binding buffer and the suspension gently agitated at room temperature for 45 minutes. The suspension was then centrifuged at 3000 x g for 10 minutes and the supernatant discarded. The resulting pellet was re-suspended in a further 25ml of binding buffer and agitated at room temperature for 60 minutes. The suspension was again centrifuged at 3000 x g and the supernatant
20 discarded. The pellet of oligo dT cellulose was transferred to a spin column using a minimal quantity of binding buffer to re-suspend. The column was spun at maximum speed in a desktop microfuge for 30 seconds and the eluate discarded. This was repeated until the cellulose was dry. 200µl of wash buffer was then added to the cellulose and mixed in with a pipette tip. The column was spun at maximum speed
25 for 1 minute and the eluate discarded. 200µl of DEPC-treated, double-distilled H₂O was then added to the cellulose and mixed in, as before. The column was then spun at maximum speed for 2 minutes and the eluted mRNA collected.

Precipitation of RNA

30 To the RNA solution was added 0.1x volume of 5M LiCl and 2.5x volume of 100% ethanol. After vortexing briefly, the sample was incubated at -20°C for >60 minutes

to precipitate. Precipitated RNA was centrifuged at maximum speed in a bench top microfuge for 30 minutes. The supernatant was discarded and the pellet rinsed in 70% ethanol, then dissolved in H₂O.

Quantitation of nucleic acid

5

A Beckman DU 650 spectrophotometer was used for the quantitation of both DNA and RNA. The machine was set to measure absorbence at wavelengths of 260nm and 280nm. After blanking the machine on an appropriate solution, diluted DNA or RNA samples in a volume of 100μl were added to the cuvette and measured. The 10 absorbence at 260nm was used to calculate nucleic acid concentration in μg/μl, as shown below:

$$[\text{Nucleic acid}] = (A^{260} \times N \times DF) \div 1000$$

15 Where N is 33 for single-stranded DNA, 50 for double-stranded DNA and 40 for RNA and DF is the dilution factor for the sample added to the cuvette.

Northern blot analysis

Blot preparation

20 1g of agarose was dissolved in 85ml H₂O by boiling. After cooling to around 70°C, 10ml of 10x MOPS buffer and 5ml of formaldehyde were added, and the gel cast. 1-5μg of each mRNA sample was mixed with an appropriate quantity of 10x RNA loading buffer to give a final volume of no more than 30μl. The RNA was then denatured at 95°C for 2 minutes and quenched on ice for 10 minutes. The gel was 25 placed in an electrophoresis tank containing 1x MOPS buffer and the samples loaded into each well of the gel, along with appropriate molecular weight markers in the outermost wells. 80V were applied across the gel for 2-3 hours or as required. Following electrophoresis, the outermost lanes containing the molecular weight markers were removed using a scalpel and submerged in double-distilled H₂O 30 containing ethidium bromide at 0.5μg/ml. The remainder of the gel was submerged in >5 volumes of double-distilled H₂O, which was replaced every 5 minutes for a total

of 25 minutes. An appropriately sized piece of GeneScreen Plus (DuPont) membrane, just larger than the area of gel to be blotted, was cut. The membrane was hydrated by briefly submerging in double-distilled H₂O, then transferred to 10x SSC, concurrent with the last 15 minutes of gel washing. The blotting apparatus was assembled as
5 shown in Figure 2.1, with the gel upside-down, using 10x SSC transfer buffer. After transfer of at least 6 hours, the absorbent material was removed from the membrane. After marking the position of the wells using a pencil, the membrane was removed from the gel and washed briefly in 2x SSC. Whilst still damp, the RNA was fixed to the membrane by UV crosslinking. The membrane was then baked at 80°C for 3
10 hours.

The excised marker lanes were de-stained by soaking in a large volume of double-distilled H₂O for around 3 hours, after which they were visualised on a UV transilluminator and photographed.
15

Probe preparation

Random-primed DNA labelling was carried out using the Prime-a-Gene kit from Promega. Approximately 25ng of template DNA (PCR or restriction digest product)
20 was denatured at 95°C for 2 minutes, then quenched on ice for 10 minutes. The reaction mix was then assembled on ice, in the order indicated below:

- 10μl of 5x labelling buffer
- H₂O to give a final volume of 50μl
- 25 2μl unlabelled dNTP mix (0.5mM each)
- 25ng of denatured/quenched template DNA
- 2μl 10mg/ml BSA
- 5μl αP³²dATP 3000Ci/mmol (NEN DuPont)
- 1μl DNA polymerase 1 large (Klenow) fragment

30

The labelling reaction mix was incubated at room temperature for 2 hours. After this period, unincorporated nucleotides were removed using Pharmacia S-300 MicroSpin columns. Columns were placed in a microfuge tube and pre-spun at 735 x g for 1 minute. The column was then transferred to a fresh tube and the entire labelling reaction added. The column was then spun at 735 x g for a further 2 minutes and the purified, labelled DNA collected. Labelled DNA was denatured at 95°C for 2 minutes, then quenched on ice for 15 minutes.

Hybridisation and washing procedure

10 Northern blots were equilibrated in 150ml of 2x SSC at 42°C for 15 minutes in a hybridisation oven at 8 RPM. The SSC was exchanged for 25ml of hybridisation buffer, pre-warmed to 42°C, and the filter incubated for a further 30 minutes at the same temperature. The entire volume of purified probe solution was then added to
15 the hybridisation buffer and the blot incubated overnight at 42°C/ 8 RPM. The hybridisation solution was then discarded and the blot washed as follows:

2x SSC at room temperature for 20 minutes

2x SSC at room temperature for 20 minutes

20 2x SSC/1% SDS at 65°C for 45 minutes

2x SSC/1% SDS at 65°C for 45 minutes

0.1x SSC at room temperature for 20 minutes

0.1x SSC at room temperature for 20 minutes

25 Filters were exposed to a Bio Rad BI phosphor-imager screen overnight and, in most cases, subsequently exposed to X-ray film (Kodak X-omat AR).

Loading controls for Northern blots

30 All Northern blots used in this study were probed with β-actin as a loading control. Table 2.5 (overleaf) lists the figures to which each control probing (panel A to T, Figure 2.2) corresponds. Northern blot data presented in this study have not, in all

cases, been subject to repeat experiments using RNA isolated from different batches of cells. These data may not be regarded as conclusive, since reproducibility has not been proven.

5 Method for Analysis of the Requirement for Notch Ligands in the Differentiation of Embryonic Stem, Embryonal Carcinoma and their Differentiated Derivatives.

CHO are transfected with constructs encoding either membrane bound or soluble forms of the Notch ligands. These cell lines are used to support the growth of either Embryonal carcinoma cells (EC) e.g NTERA2/cl.D1 or Human embryonic stem cells (hES).

The transfected CHO cells (CHO(DSL)) are used in the following way. To assess membrane bound forms of the Notch ligands the CHO(DSL) cells are used as feeder cells (i.e. the EC or hES will be grown on top of the CHO(DSL) cells). To assess the soluble forms of the Notch ligands either supernatant from the transfected CHO cells or concentrated ligand molecules derived from the supernatant are added to the culture medium of the EC and hES cells.

20

Notch Ligand Constructs.

The following cloned Notch ligands were obtained from Dr. Shigeru Chiba, Department of Hematology, Oncology and Cell Therapy, Transplantation Medicine.

25 Graduate School of Medicine. University of Tokyo.

Delta1-FLAG

Jagged1-FLAG

Jagged2-FLAG

30

Soluble Delta1-Fc

Soluble Jagged1-Fc

Soluble Jagged2-Fc

These had been cloned into the vector pTRACER-CMV from Invitrogen, Fig 30).

- 5 The clones used consisted either of the full length ligand linked to a histidine tag (FLAG, Kodak Inc.), or a ligand lacking the membrane spanning and intracellular portion of the protein thus rendering the ligand soluble. These had been linked to the Fc portion of human IgG.

10 **Generation of Notch Ligand expressing Cell lines**

The Chinese Hamster Ovary derived cell line AA8 was maintained in MEM Alpha medium with Glutamax-1 supplemented with ribonucleosides and deoxyribonucleosides (Lifetechnologies) and 10% Foetal Bovine Serum 15 (FBS)(Lifetechnologies).

Plasmid was transfected into the AA8 cells using either Fugene (Roche) or Lipofectin (Lifetechnologies) or Superfect (Qiagen) according to manufacturers protocols.

20 **Assessment of Transiently Transfected Cell lines for Ligand Production.**

Both soluble and membrane bound forms of the Notch ligand's production are assayed by western blotting and chemiluminescent detection.

- 25 Cells transfected with the ligand encoding constructs are harvested and the proteins extracted. Due to the tagging of the ligands proteins are able to be run out on an SDS-PAGE gel, blotted and probed with either mouse anti-FLAG antibody and detected using a anti-mouse HRP secondary or an HRP-secondary antibody. Both methods use electro-chemiluminecence (ECL) as the detection method.

30

Concentration of Soluble Notch ligand from the Supernatant of Transfected CHO cells.

Fc-labelled Notch ligand can be purified from transfected CHO cells supernatant
5 using a HiTrap protein G HP column (Amersham Pharmacia Biotech). A sample can be analysed by western blotting as described above.

Embryonic Cell culture.

10 Human Embryonal Carcinoma NTERA2/D1 cells are maintained in Dulbecco's modified Eagles medium (DMEM), supplemented with 2mM L-glutamine, 10% Foetal Bovine Serum (Lifetechnologies) and at 37°C under 10% CO₂ in air. Cells were passaged by scraping from the surface of the tissue culture flask with 3mm glass beads and reseeded at 5 x 10⁶ cells per 75cm³ flask. For specific seeding densities
15 cells were passaged using 0.25% Trypsin (Lifetechnologies) in Dulbecco's Phosphate Buffered Saline (PBS) supplemented with 1mM EDTA.

Human Embryonic Stem Cells are maintained on irradiated mouse embryonic fibroblasts in serum free conditions, with 80% F12:DMEM (Lifetechnologies), 20%
20 Knockout SR (Lifetechnologies), 1% Non-essential amino acid solution (Lifetechnologies), 1 mM L-glutamine, 0.1mM β-mercaptoethanol (Sigma) 4 ng/ml bFGF (Sigma). The cells are passaged using collagenase IV and scraping.

Flow Cytofluorimetry

25 Cells were removed from their adherent culture surface and incubated with suitable primary antibody for 1 hour at 4C. Cells are washed in PBS with 5% FCS and incubated for a further hour with a suitable FITC-conjugated labelled secondary antibody, and analysed on a EPICS Elite ESP Flow Cytometer (Coulter Electronics). Colonies were assessed for the presence of embryonal stem cell markers such as
30 SSEA-3, -4, Tra-1-60 and for appearance of markers of differentiated marker antigens such as A2B5, ME311 and N901.

Design of oligonucleotide primers

Primers for use in PCR were designed on a Macintosh Power PC, using the "Primer Select" program of the DNASTAR software package (DNASTAR Inc.). All primers
5 used in this study are shown in Table 2

Table 2 List of oligonucleotide primers

Gene	GenBank accession	Primer direction	Prinmer location	Primer sequence 5' to 3'
<i>Wnt-13</i>	Z71621	Forward	1159-1178	Tgagtggttccctgtactctg
		Reverse	1503-1484	Actcacactggtaaacacgg
<i>SFRP4</i>	XM_004706	Forward	858-880	Agaggagtggctgcaatgaggtc
		Reverse	1159-1142	Gcgcccggtgttttctt
<i>Waf1</i>	U03106	Forward	487-506	Cagggtcgaaaacggcggca
		Reverse	947-928	Aggagccacacccctccaga
β -actin	NM_001101	Forward	326-357	Atctggcaccacacccttctacaatgagctgcg
		Reverse	1163-1132	Cgtcatactcctgcttgctgatccacatctgc
<i>neuroD1</i>	NM_002500	Forward	240-263	Aagccatgaacgcagaggaggact
		Reverse	818-799	Agctgtccatggtaccgtaa

All PCR data presented in this study were duplicated in independent experiments to
10 eliminate the possibility of methodological error. However, duplicate experiments were performed on identical samples and do not, therefore, control for variability between separate batches of cells. Polymerase chain reactions from which quantitative interpretations were to be made were controlled by parallel amplification of the cyclin-dependent kinase inhibitor, *Waf1*. This transcript has been demonstrated
15 by other workers in the laboratory to be constitutively expressed by NTERA2 EC cells and differentiated derivatives (unpublished data). Furthermore, *Waf1* has been shown to exhibit an approximately 20-fold lower abundance in the NTERA2 system than the more widely used control, β -actin, and is therefore well suited to the analysis of rare transcripts.

20

PCR Reaction conditions

PCR mixes were assembled on ice, with the following components per reaction:

5µl of 25mM MgCl₂
 5µl of 10x reaction buffer
 5µl of 1mM dNTPs
 3µl of forward primer at 5pmol/µl
 5 µl of reverse primer at 5pmol/µl
 0.3µl of Taq polymerase at 1 unit/µl (Promega)
 template and H₂O to give 50µl final volume

A premix was made containing all reaction components bar the template. Premix was
 10 then added to the reaction vessels containing the template, on ice. The reaction
 vessels were then transferred to the thermal cycler. The PCR programs used are
 shown in Table 3, with cycling from T1 → T2 → T3 → T1.

Table 3 PCR thermal cycling programs

15

	Program 1	Program 2	Program 3	Program 4
T1 (temp/duration)	96°C/30 seconds	94°C/60 seconds	94°C/90 seconds	95°C/90 seconds
T2 (temp/duration)	50°C/15 seconds	55°C/90 seconds	60°C/90 seconds	63°C/60 seconds
T3 (temp/duration)	60°C/240 seconds	72°C/60 seconds	72°C/120 seconds	72°C/60 seconds
Cycles	25	35	35	35

List of DNA and protein accession numbers of genes used in results

20

Gene Name	Description	cDNA Accession Number	Protein Accession Number
WNT2B	wingless-type MMTV integration site family, member 2B	AB045116	Q93097

	member 2B		
SFRP1	secreted frizzled-related protein 1	AF056087	AAC12877
SFRP4	secreted frizzled-related protein 4	AF026692	AAC04617
FRZB	frizzled-related protein	NM_001463	NP_001454
SFRP2	secreted frizzled-related protein 2		
FZD1	frizzled (Drosophila) homolog 1	AB017363	BAA34666
FZD2	frizzled (Drosophila) homolog 2	NM_001466	NP_001457
FZD9	frizzled (Drosophila) homolog 9	HSU82169	AAC51174
FZD3	frizzled (Drosophila) homolog 3	Kirikoshi et. al., 2000	Kirikoshi et. al., 2000
FZD5	frizzled (Drosophila) homolog 5		
FZD4	frizzled (Drosophila) homolog 4	NM_012193	NP_036325
FZD6	frizzled (Drosophila) homolog 6	AB012911	BAA25686
FZD7	frizzled (Drosophila) homolog 7	AB017365	BAA34668
DVL2	dishevelled 2 (homologous to Drosophila dsh)	NM_004422	NP_004413
DVL3	dishevelled 3 (homologous to Drosophila dsh)	NM_004423	NP_004414
GSK3B	glycogen synthase kinase 3 beta	NM_002093	NP_002084
AXIN1	axin	AF009674	AAC51624
APC	adenomatosis polyposis coli	NM_000038	NP_000029
TCF1	transcription factor 1, hepatic; LF-B1, hepatic nuclear factor (HNF1), albumin proximal factor	M57732	AAA88077

Examples

Expression of a single Wnt gene, Wnt-13(2B) was detected. This transcript was absent in NTERA2 EC cells, but showed marked up-regulation following RA

5 treatment, figure 24. Members of the FRP family, encoding putative Wnt antagonists,

also showed altered expression during differentiation, figure 24. Both Frp-1 and SARP-1 were down-regulated following RA treatment, whilst FrpHE was absent in EC cells, but expressed at high levels in RA treated cultures.

- 5 Several members of the frizzled family were also detected, providing a candidate receptor system for Wnt-13, figure 24. Two of these, hFz-4 and hFz-6, showed developmental regulation. Transcripts corresponding to intracellular components of the Wnt pathway, including Dishevelled, GSK-3b, Axin, APC and TCF were present at equivalent levels in EC and differentiating cultures. CBP was also ubiquitously
10 expressed.

15

REFERENCES

1. Andrews P.W. and Roberts D.B. (1974) The preparation and characterization of chromatin from third instar larvae of *Drosophila melanogaster*. *Nucleic Acids Res.* 1: 979-997.
- 20 2. Roberts D.B. and Andrews P.W. (1975) *Drosophila* chromatin: An immunological study. *Nucleic Acids Res.* 2:1291-1303.
3. Andrews P.W. and Boyse E.A. (1978) Mapping of an H-2-linked gene that influences mating preference in mice. *Immunogenetics* 6:265-268.
4. Yamazaki K., Yamaguchi M., Andrews P.W., Peake B. and Boyse E.A. (1978)
25 Mating preferences in F_2 segregants of crosses between MHC-congenic mouse strains. *Immunogenetics* 6: 253-259.
5. Andrews P.W. and Wachtel S.S. (1979) Rejection of C57BL skin grafts by (C57BL x *Mus musculus castaneus*) F_1 hybrids. *Transplantation* 27: 43-44.
6. Andrews P.W. and Goodfellow P.N. (1980) Antigen expression by somatic cell
30 hybrids of a murine embryonal carcinoma cell with thymocytes and L cells. *Somat. Cell Genet.* 6: 271-284.

7. Bronson D.L., Andrews P.W., Solter D., Cervenka J., Lange P.H. and Fraley E.E. (1980) A cell line derived from a metastasis of a human testicular germ-cell tumor. *Cancer Res.* 40: 2500 - 2506.
8. *Andrews P.W., Bronson D.L., Benham F., Strickland S. and Knowles B.B. (1980) A comparative study of eight cell lines derived from human testicular teratocarcinoma. *Int. J. Cancer* 26: 269-280.
9. Andrews P.W., Knowles B.B. and Goodfellow P.N. (1981) A human cell surface antigen defined by a monoclonal antibody and controlled by a gene on chromosome 12. *Somat. Cell Genet.* 7: 435-443.
10. 10. Andrews P.W., Bronson D.L., Wiles M.V. and Goodfellow P.N. (1981) The expression of major histocompatibility antigens by human teratocarcinoma derived cells lines. *Tissue Antigens* 17: 493-500.
11. Benham F.J., Andrews P.W., Bronson D.L., Knowles B.B. and Harris H. (1981) Alkaline phosphatase isozymes as possible markers of differentiation in human teratocarcinoma cell lines. *Dev. Biol.* 88: 279-287.
12. Andrews P.W., Goodfellow P.N., Shevinsky L., Bronson D. L. and Knowles B.B. (1982) Cell surface antigens of a clonal human embryonal carcinoma cell line: Morphological and antigenic differentiation in culture. *Int. J. Cancer* 29: 523-531.
13. Andrews P.W. (1982) Human embryonal carcinoma cells in culture do not synthesize fibronectin until they differentiate. *Int. J. Cancer* 30: 567-571.
20. 14. Damjanov I. and Andrews P.W. (1983) Ultrastructural differentiation of a clonal human embryonal carcinoma cell line *in vitro*. *Cancer Res.* 43: 2190-2198.
15. Matthaei K., Andrews P.W. and Bronson D.L. (1983) Retinoic acid fails to induce differentiation in human teratocarcinoma cell lines that express high levels of cellular receptor protein. *Exp. Cell Res.* 143: 471-474.
25. 16. Cossu G., Andrews P.W. and Warren L. (1983) Covalent binding of lactosaminoglycans and heparan sulphate to fibronectin synthesized by a human teratocarcinoma cell line. *Biochem. Biophys. Res. Comm.* 111: 952-957.
17. Tunnacliffe A., Goodfellow P.N., Banting G., Solomon E., Knowles B.B. and Andrews P.W. (1983) Human chromosome 11 carries at least 4 genes controlling expression of cell surface antigens. *Somat. Cell Genet.* 9: 629-642.

18. Kannagi R., Cochran N.A., Ishigami F., Hakomori S.-i., Andrews P.W., Knowles B.B. and Solter D. (1983a) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. *The EMBO J.* 2: 2355-2361.
- 5 19. *Andrews P.W., Damjanov I., Simon D., Banting G., Carlin C., Dracopoli N.C. and Fogh J. (1984b) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2: Differentiation *in vivo* and *in vitro*. *Lab. Invest.* 50: 147-162.
- 10 20. Andrews P.W., Meyer L.J., Bednarz K.L. and Harris H. (1984c) Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. *Hybridoma* 3: 33-39.
- 15 21. *Gönczöl E., Andrews P.W. and Plotkin S.A. (1984) Cytomegalovirus replicates in differentiated but not undifferentiated human embryonal carcinoma cells. *Science* 224: 159-161.
22. *Andrews P.W. (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line *in vitro*. *Dev. Biol.* 103: 285-293.
23. Oosterhuis J.W., Andrews P.W., Knowles B.B. and Damjanov I. (1984) Effects of cisplatinum on embryonal carcinoma cell lines *in vitro*. *Int. J. Cancer* 34: 133-139.
- 20 24. Blaineau C., Connan F., Arnaud D., Andrews P.W., Williams L., McIlhinney R.A.J. and Avner P. (1984) Definition of three species-specific monoclonal antibodies recognizing antigenic structures present on human EC cells which undergo modulation during *in vitro* differentiation. *Int. J. Cancer* 34: 487-494.
- 25 25. Andrews P.W., Banting G.S., Damjanov I., Arnaud D. and Avner P. (1984a) Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. *Hybridoma* 3: 347-361.
26. Damjanov I., Clark C.K. and Andrews P.W. (1984) Cytoskeleton of human embryonal carcinoma cells. *Cell Differentiation* 15: 133-139.
- 30 27. Andrews P.W., Knowles B.B., Parkar M., Pym B., Stanley K. and Goodfellow P.N. (1985) A human cell-surface antigen defined by a monoclonal antibody and controlled by a gene on human chromosome 1. *Ann. Human Genet.* 49: 31-39.

28. Gönczöl E., Andrews P.W. and Plotkin S.A. (1985) The replication of human cytomegalovirus in human teratocarcinoma cell lines. *J. Gen. Virol.* 66: 509-515.
29. Damjanov I., Damjanov A. and Andrews P.W. (1985) Trophectodermal carcinoma: Mouse teratocarcinoma-derived tumor stem cells differentiating into trophoblastic and yolk sac elements. *J. Embryol. Exp. Morph.* 86: 125-141.
- 5 30. Carlin C.R. and Andrews P.W. (1985) Human embryonal carcinoma cells express low levels of functional receptor for epidermal growth factor. *Exp. Cell. Res.* 159: 17-26.
- 10 31. Andrews P.W., Damjanov I., Simon D. and Dignazio M. (1985) A pluripotent human stem cell clone isolated from the TERA-2 teratocarcinoma line lacks antigens SSEA-3 and SSEA-4 *in vitro* but expresses these antigens when grown as a xenograft tumor. *Differentiation* 29: 127-135.
- 15 32. Lee V.M-Y. and Andrews P.W. (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. *J. Neurosci.* 6: 514-521.
- 15 33. Andrews P.W., Gönczöl E., Plotkin S.A., Dignazio M. and Oosterhuis J.W. (1986) Differentiation of TERA-2 human embryonal carcinoma cells into neurons and HCMV permissive cells: Induction by agents other than retinoic acid. *Differentiation* 31: 119-126.
- 20 34. Tippett P., Andrews P.W., Knowles B.B. Solter D. and Goodfellow P.N. (1986) Red cell antigens P (globoside) and Luke: Identification by monoclonal antibodies defining the murine stage-specific embryonic antigens -3 and -4 (SSEA-3 and -4). *Vox Sang.* 51: 53-56.
- 25 35. Swallow D.M., Povey S., Parkar M., Andrews P.W., Harris H., Pym B. and Goodfellow P.N. (1986) Mapping of the gene coding for the human liver/bone/kidney isozyme of alkaline phosphatase to chromosome 1. *Ann. Human Genet.* 50: 229-235.
- 30 36. Andrews P.W., Trinchieri G., Perussia B. and Baglioni C. (1987) Induction of class 1 major histocompatibility complex antigens in human teratocarcinoma cells by interferon without induction of differentiation, growth inhibition or resistance to viral infection. *Cancer Res.* 47: 740-746.

37. *Fenderson B.A., Andrews P.W., Nudelman E., Clausen H. and Hakomori S.-i. (1987) Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. *Dev. Biol.* 122: 21-34.
- 5 38. Zhang X.-Y., Loflin P.T., Gehrke C.W., Andrews P.W. and Ehrlich M. (1987) Hypermethylation of human DNA sequences in embryonal carcinoma cells and somatic tissues but not in sperm. *Nucleic Acids Res.* 15: 9429-9449.
- 10 39. Mavilio F., Simeone A., Boncinelli E. and Andrews P.W. (1988) Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. *Differentiation* 37: 73-79.
40. Williams B.P., Daniels G.L., Pym B., Sheer D., Povey S., Okubo Y., Andrews P.W. and Goodfellow P.N. (1988) Biochemical and genetic analysis of the OKa blood group antigen. *Immunogenetics* 27: 322-329.
- 15 41. Rendt J., Erulkar S. and Andrews P.W. (1989) Presumptive neurons derived by differentiation of a human embryonal carcinoma cell line exhibit tetrodotoxin-sensitive sodium currents and the capacity for regenerative responses. *Exp. Cell Res.* 180: 580-584.
- 20 42. Chen C., Fenderson B.A., Andrews P.W. and Hakomori S.-i. (1989) Glycolipid-glycosyltransferases in human embryonal carcinoma cells during retinoic acid-induced differentiation. *Biochemistry* 28: 2229-2238.
43. Andrews P.W., Gönczöl E., Fenderson B.A., Holmes E.H., O'Malley G., Hakomori S.-i and Plotkin S.A. (1989). Human cytomegalovirus induces stage-specific embryonic antigen-1 in differentiating human teratocarcinoma cells and fibroblasts. *J. Exp. Med.* 169: 1347-1359.
- 25 44. Andrews P.A., Nudelman E., Hakomori S.-i. and Fenderson B.A. (1990). Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR). *Differentiation* 43: 131-138.
45. *Simeone A., Acampora D., Arcioni L., Andrews P.W., Boncinelli E. and Mavilio F. (1990). Sequential activation of human HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. *Nature* 346: 763-766.

46. Hirka G., Prakesh K., Kawashima H., Plotkin S.A., Andrews P.W. and Gönczöl E. (1991). Differentiation of human embryonal carcinoma cells induces human immunodeficiency virus permissiveness which is stimulated by human cytomegalovirus coinfection. *J. Virol.* 65: 2732-2735.
- 5 47. Marrink J., Andrews P.W., van Brummen P.J., de Jong H.J., Sleijfer D., Schraffordt-Koops H. and Oosterhuis J.W. (1991). TRA-1-60: A new serum marker in patients with germ cell tumors. *Int. J. Cancer* 49: 368-372.
48. Zeichner S.L., Hirka G., Andrews P.W. and Alwine J.C. (1992). Differentiation-dependent HIV LTR regulatory elements active in human teratocarcinoma cells. *J. Virol.* 66: 2268-2273.
- 10 49. Fenderson B.A., Radin N. and Andrews P.W. (1993) Differentiation antigens of human germ cell tumors: distribution of carbohydrate epitopes on glycolipids and glycoproteins analysed using PDMP, an inhibitor of glycolipid synthesis. *European Urology*. 23: 30-37.
- 15 50. Giwercman, A., Andrews, P.W., Jørgensen, N., Muller, J., Graem, N., Skakkebaek, N.E. (1993) Immunohistochemical expression of embryonal marker TRA-1-60 in carcinoma *in situ* germ cells and in testicular germ cell tumours. *Cancer*, 72: 1308-1314.
51. Rideg K., Hirka G., Prakash K., Bushar L., Nothias, J-Y, Weinmann R., Andrews P.W. and Gönczöl E. (1994) DNA binding proteins that interact with the 19-base pair (CRE-like) element from the HCMV immediate early promoter in differentiating human embryonal carcinoma cells. *Differentiation*, 56: 119-129.
- 20 52. Wenk, J., Andrews, P.W., Casper, J., Hata, J-I., Pera, M.F., von Keitz, A., Damjanov, I., Fenderson, B.A. 1994. Glycolipids of germ cell tumours: extended globo-series glycolipids are a hallmark of human embryonal carcinoma cells. *Int. J. Cancer*. 58: 108-115.
- 25 53. Ackerman S.L., Knowles B.B., Andrews P.W. (1994). Gene regulation during neuronal and non-neuronal differentiation of NTERA2 human teratocarcinoma-derived stem cells. *Mol. Brain Res.* 25: 157-162.
- 30 54. *Andrews P.W., Damjanov I., Berends J., Kumpf S., Zappavigna V. Mavilio F. and Sampath K. (1994). Inhibition of proliferation and induction of differentiation

- of pluripotent human embryonal carcinoma cells by osteogenic protein-1 (or bone morphogenetic protein-7). *Laboratory Investigation* 71: 243-251.
- 5 55. Damjanov, I., Zhu, Z.M., Andrews, P.W., Fenderson, B.A. (1994). Embryonal carcinoma cells differentiate into parietal endoderm via an intermediate stage corresponding to primitive endoderm. *In Vivo* 8: 967-974.
- 10 56. Squires, P.E., Wakeman, J.A., Chapman, H., Kumpf, S., Fiddock, M.D., Andrews, P.W. and Dunne, M.J. (1996). Regulation of intracellular Ca^{2+} in response to muscarinic and glutamate receptor agonists during the differentiation of NTERA2 human embryonal carcinoma cells into neurons. *European Journal of Neuroscience* 8: 783-793.
- 15 57. Andrews, P.W., Casper, J., Damjanov, I., Duggan-Keen, M., Giwercman, A., Hata, J.I., von Keitz, A., Looijenga, L.H.J., Millán, J.L., Oosterhuis, J.W., Pera, M., Sawada, M., Schmoll, H.J., Skakkaebæk, N.E., van Putten, W. and Stern, P. (1996). Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. *Int. J. Cancer* 66: 806-816.
- 20 58. Gels, M.E., Marrink, J., Visser, P., Sleijfer, D.T., Droste, J.H.J., Hoekstra, H.J., Andrews, P.W., Koops, H.S. (1997). Importance of a new tumour marker TRA-1-60 in the follow-up of patients with clinical state I nonseminomatous testicular germ cell tumours. *Annals of Surgical Oncology* 4; 321-327.
59. Wakeman, J.A., Heath, P.R., Pearson, R.C.A., Andrews, P.W. (1997) MAL mRNA is induced during the differentiation of human embryonal carcinoma cells into neurons, and is also localised within specific regions of the human brain. *Differentiation* 62:97-105.
- 25 60. *Wakeman, J.A., Walsh, J., Andrews, P.W., (1998). Human Wnt-13 is developmentally regulated during the differentiation of NTERA-2 pluripotent human embryonal carcinoma cells. *Oncogene* 17:179-186
61. Giesberts, A.N., Duran, C., Morton, I.E., Piggot, C., White, S.J., Andrews, P.W. (1999). The expression and function of cadherin-mediated cell-to-cell adhesion in human embryonal carcinoma cells. *Mechanisms of Development* 83 115-125.
- 30 62. *Badcock, G., Pigott, C., Goepel, J., Andrews, P.W. (1999). The Human Embryonal Carcinoma Marker Antigen TRA-1-60 Is A Sialylated Keratan Sulphate Proteoglycan.

Cancer Research 59 4715-4719.

63. Gokhale, P.J., Giesberts, A.N., Andrews, P.W. (2000). *Brachyury* is Expressed by Human Teratocarcinoma Cells in the Absence of Mesodermal Differentiation. *Cell Growth and Differentiation* 11 157-162.
5
- 64 *Przyborski, S.A., Morton, I.E., Wood, A., Andrews, P.W. (2000) Developmental Regulation of Neurogenesis in the Pluripotent Human Embryonal Carcinoma Cell Line NTERA-2. *Eur. J. Neurosci.* 12: 3521 - 3528.
- 10
65. Andrews P.W. and Knowles B.B. (1982) Human teratocarcinoma: Tools for human embryology In: *Teratocarcinoma and Embryonic Cell Interactions* (T. Murumatsu, G. Gachelin, A.A. Moscona, and Y. Ikawa, eds). Japan Scientific Societies Press, Tokyo, 15 pp 19-30.
- 66 Andrews P.W., Knowles B.B., Cossu G. and Solter D. (1982) Teratocarcinoma and mouse embryo cell surface antigens: Characterization of the molecule(s) carrying the SSEA-1 antigenic determinant. In: *Teratocarcinoma and embryonic Cell Interactions* (T. Murumatsu, G. Gachelin, A.A. Moscona and Y. Ikawa eds). Japan Scientific Societies Press, Tokyo, pp 103-119.
20
- 67 Goodfellow P.N. and Andrews P.W. (1982) Sexual differentiation and H-Y antigen(s). *Nature, News and Views* 295: 11-13.
68. Andrews P.W. and Goodfellow P.N. (1982) Analysing the mouse T/t complex. *Nature, News and Views* 299: 296-297.
- 25 69. Goodfellow P.N. and Andrews P.W. (1982) The biology of teratocarcinomas. (Meeting Report). *Nature, News and Views* 300: 107-108.
70. Andrews P.W. (1983) The characteristics of cell lines derived from human germ cell tumors. In: *The Human Teratomas: Experimental and Clinical Biology* (I. Damjanov, B.B. Knowles and D. Solter eds). Humana Press, Clifton, NJ, pp 285-311.
30
71. Benham F.J., Wiles, M.V., Banting G., Andrews P.W. and Goodfellow P.N. (1983) Human-mouse teratocarcinoma hybrids: A tool for analysis of gene activity in early

- human development. In: Human Teratomas: Experimental and Clinical Biology (I. Damjanov, B.B. Knowles and D. Solter, eds.). Humana Press, Clifton, NJ, pp 313-314.
72. Andrews P.W., Goodfellow P.N. and Damjanov I. (1983) Human teratocarcinoma cells in culture. *Cancer Surveys* 2: 41-73.
- 5 73. Goodfellow P.N. and Andrews P.W. (1983) Is there a human T/t locus? *Nature, News and Views* 302: 657-658.
74. Andrews P.W., Goodfellow P.N. and Bronson D.L. (1983) Cell surface characteristics and other markers of differentiation of human teratocarcinomas in culture. In: Teratocarcinoma Stem Cells. Cold Spring Harbor Conferences on Cell Proliferation, 10 Vol. 10 (L.M. Silver, G.R. Martin and S. Strickland, eds.) pp 579-590.
75. Goodfellow P.N., Benham F., Andrews P.W., Trowsdale J., Lee J. and Quintero M. (1983) Developmental genetics of MHC expression using human-mouse hybrid cell lines. In: Teratocarcinoma Stem Cells. Cold Spring Harbor Conferences on Cell Proliferation, Vol. 10 (L.M. Silver, G.R. Martin and S. Strickland, eds.), pp 439-449.
- 15 76. Bronson D.L., Andrews P.W., Vessella R.L. and Fraley E.E. (1983) *In vitro* differentiation of human embryonal carcinoma cells. In: Teratocarcinoma Stem Cells. Cold Spring Harbor Conferences on Cell Proliferation, Vol. 10 (L.M. Silver, G.R. Martin and S. Strickland, eds.), pp 597-605.
77. Andrews P.W. (1984) The male specific antigen (H-Y) and sexual differentiation. In: 20 Genetic Analysis of the Cell Surface (P.N. Goodfellow, ed.). Chapman and Hall, London, pp 159-190.
78. Andrews P.W. and Damjanov I. (1985) Immunochemistry of human teratocarcinoma stem cells. In: Monoclonal Antibodies in Cancer (S. Sell and R.A. Reisfeld, eds.). The Humana Press Inc., Clifton, NJ, pp 339-364.
- 25 79. Andrews P.W. (1985) Properties of cloned human embryonal carcinoma cells and their differentiation *in vitro*. In: Germ Cell Tumors II: Proceedings of the 2nd Germ Cell Tumor Conference, Leeds (W.G. Jones, A. Milford-Ward and C.K. Anderson, eds.). Pergamon Press, Oxford, pp 71-75.
80. Damjanov I., Clark R.K. and Andrews P.W. (1985) Expression of keratin polypeptides 30 in human embryonal carcinoma cells. *Ann. NY Acad. Sci.* 455: 732-733.

81. Oosterhuis J.W., Andrews P.W. and de Jong, B. (1986) Mechanisms of therapy related differentiation in testicular germ cell tumors. In: Biochemical Mechanisms of the Platinum Anti-tumor Drugs (D.C.H. McBrien and T.F. Slater, eds.). Proceedings of an Association for International Cancer Research Symposium. IRL Press, Oxford, pp 65-90.
- 5
82. Andrews, P.W., Oosterhuis J.W. and Damjanov I. (1987) Cell lines from human germ cell lines. In: Teratocarcinomas and embryonic stem cells: A practical approach (E.J. Robertson, ed.). IRL Press, Oxford, pp 207-248.
83. Andrews P.W., Fenderson B.A. and Hakomori S.-i. (1987) Human embryonal carcinoma cells and their differntiation in culture. Int. J. Androl. 10: 95-104.
- 10
84. Andrews P.W. (1987) Human teratocarcinoma stem cells: Glycolipid antigen expression and modulation during differentiation. J. Cell Biochem. 35: 321-332.
85. Andrews P.W. (1988) The properties of human teratocarcinoma *in vitro*. In *In Vitro Models for Cancer Research* (M. Webber and L. Sekely, eds.). CRC Press, Boca Raton, FL, pp 191-213.
- 15
86. Andrews P.W. (1988) Induction of differentiation in neoplastic cells. Editorial commentary. In Oncology Overview: Selected Abstracts on Induction of Differentiation in Neoplastic Cells. CIDA-CCB Information Ventures, Inc., Philadelphia, PA.
87. Andrews P.W. (1988) Human teratocarcinoma. Biochim. Biophys. Acta 948: 17-36.
- 20
88. Andrews P.W. and Oliver R.T.D. (1990) (Editors) Germ Cell Tumours of the Testis: Cancer Surveys 9 [Editorial Commentary, pp 239-241].
89. Andrews P.W., Marrink J., Hirka G., von Keitz A., Sleijfer D. and Gönczöl E. (1991) The surface antigen phenotype of human embryonal carcinoma cells: Modulation upon differentiation and viral infection. In: Recent Results in Cancer Research, Vol 123; Pathobiology of Human Germ Cell Neoplasia (J.W. Oosterhuis, H. Walt and I. Damjanov, eds.). Springer-Verlag, pp 63-83.
- 25
90. Bottero L., Simeone A., Arcioni L., Acampora D., Andrews P.W., Boncinelli E. and Mavilio F. (1991) Differential activation of homeobox genes by retinoic acid in human embryonal carcinoma cells. In: Recent Results in Cancer Research, Vol 123; Pathobiology of Human Germ Cell Neoplasia (J.W. Oosterhuis, H. Walt and I. Damjanov, eds.). Springer-Verlag, pp 133-143.
- 30

91. McCarrick J. and Andrews P.W. (1992) Embryonal carcinoma cells and embryonic stem cells as models for neuronal development and function. In: Cell Lines in Neurobiology: A Practical Approach (J. Wood, ed.). IRL Press, Oxford pp 77-104.
92. Fenderson B.A. and Andrews P.W. (1992) Carbohydrate antigens of embryonal carcinoma cells; changes upon differentiation. *Acta Path. Microbiol. Immunol. Scand.* Vol. 100, Suppl. 27 "Carbohydrate Pathology". (Dabelsteen, E. & Clausen, H., eds), Munksgaard Copenhagen, pp 109-118.
93. Andrews, P.W. (1993). Teratomas - the cross roads of embryology and oncology. *Oncology Newsletter (Journal of the Yorkshire Regional Cancer Organisation)*, No. 14 pp 16-17.
94. Andrews P.W., Damjanov I. (1994) Cell lines from human germ cell tumors. In: *Atlas of Human Tumor Cell Lines* (R.J. Hay, J-G Park, A. Gazdar, eds.). Academic Press, pp 443-476.
95. Oosterhuis, J.W., Andrews, P.W. (1996). Differentiation in germ cell tumours. In: *Testicular Cancer* (2nd Edition) (A. Horwich, ed) Chapman & Hall, pp 61-72.
96. Andrews, P.W., Wakeman, J. (1996). Cell differentiation in germ cell tumours. In: "Ares Serono Conference on Sex Differentiation" (I.A. Hughes, ed), *Frontiers in Endocrinology* vol. 20, pp 33-44
97. Andrews, P.W., (1998) Teratocarcinomas and human embryology: pluripotent human EC cell lines. *Acta Pathologica Microbiologica et Immunologica Scandinavica*, 106:158-168.
98. Gokhale, P.J., Eastwood, D., Walsh, J., Andrews, P.W. (1998). The possible role of Notch genes in Germ Cell Tumour Development and Progression. *Germ Cell Tumours IV* (W G Jones, I Appleyard, P Handen & J K Joffee, eds), John Libby, London, pp 69-71.
99. Andrews, P.W. (2001) Life story inside a cell. *Times Higher Education Supplement*. Jan 19th 2001, p21.
100. Andrews, P.W., Przyborski, S.A. and Thomson, J.A. (2000). Embryonal Carcinoma Cells as Embryonic Stem Cells. Cold Spring Harbor Laboratory Press. In press.

CLAIMS

1. A method to modulate the differentiation of an embryonic stem cell
5 comprising:
 - i) providing a culture of embryonic stem cells;
 - ii) providing at least one ligand, or the active binding fragment thereof, capable of binding its cognate receptor polypeptide expressed by said embryonic stem cell;
 - 10 iii) forming a culture comprising embryonic stem cells and said ligand; and
 - iv) growing said cell culture.
2. A method according to Claim 1 wherein said ligand is encoded by a nucleic acid molecule selected from the group consisting of:
 - i) a nucleic acid molecule as represented in Figure 22;
 - ii) a nucleic acid molecule which hybridises to the nucleic acid in (i) and which encodes a ligand capable of binding a Wnt receptor; and
 - iii) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (i) and (ii) above.
- 20 3. A method according to Claim 2 wherein said ligand is encoded by a nucleic acid molecule selected from the nucleic acid sequences represented in: Fig 30; Fig 32; Fig 34; Fig 36; Fig 38; Fig 40; Fig 42; Fig 44; Fig 47; Fig 49; Fig 51; Fig 53; Fig 55.
- 25 4. A method according to Claim 2 or 3 wherein said ligand is encoded by a nucleic acid molecule as represented by the nucleic acid sequence in Fig 22.

5. A method according to Claim 1 wherein said ligand is encoded by a nucleic acid molecule selected from the group consisting of:

i) a nucleic acid molecule as represented in Figures 2, 4, 5, 7, 10, 12, 14, 16, or 18.

5 ii) a nucleic acid molecule which hybridises to the nucleic acid in (i) and which encodes a ligand capable of modulating embryonic stem cell differentiation; and

iii) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (i) and (ii) above.

10

6. A method according to Claim 5 wherein said ligand is selected from the group comprising the amino acid sequences in Figures 3, 6, 8, 9, 11, 13, 15, 17, 19, or polypeptide variants thereof.

15 7. A method according to any of Claims 1-6 wherein said cells are induced to differentiate by the addition of at least one agent selected from the group consisting of: retinoic acid; hexamethylene bisacetamide; bone morphogenetic proteins; bromodeoxyuridine; lithium; sonic hedgehog.

20 8. A method for modulating the differentiation of embryonic stem cells comprising:

i) providing a cell transfected with a nucleic acid molecule selected from the group consisting of:

a) a nucleic acid molecule as represented in Figures 2, 4, 5, 7, 10, 12, 14, 16, 18.

25 b) a nucleic acid molecule which hybridises to the nucleic acid in (ii) and which encodes a ligand capable of modulating embryonic stem cell differentiation; and

c) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (a) and (b) above.

30 ii) forming a culture comprising the cell identified in (i) above with an embryonic stem cell; and

iii) growing said culture under conditions suitable for the maintenance and/or differentiation of said embryonic stem cell.

9. A method for modulating the differentiation of embryonic stem cells
5 comprising:

- i) providing a cell transfected with a nucleic acid molecule selected from the group consisting of:
 - a) a nucleic acid molecule as represented by the sequence in Figure 22;
 - b) a nucleic acid molecule which hybridises to the nucleic acid in (a) and which encodes a ligand capable of binding a Wnt receptor; and
 - c) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (a) and (b) above.
- ii) forming a culture comprising a cell identified in (i) above with an embryonic stem cell; and
- 15 iii) growing said culture under conditions suitable for the maintenance and/or differentiation of embryonic stem cells.

10. A method according to Claim 9 wherein said cell expresses Wnt-13 ligand.

20 11. A method according to any of Claims 9 or 10 wherein said cells are induced to differentiate by the addition of at least one agent selected from the group consisting of: retinoic acid; hexamethylene bisacetamide; bone morphogenetic proteins; bromodeoxyuridine; lithium; sonic hedgehog.

25 12. A method according to any of Claims 1-11 wherein said nucleic acid molecule encodes a ligand of human origin.

13. A method according to any of Claims 1-12 wherein said embryonic stem cells are of human origin.

30

14. A method according to any of Claims 8-13 wherein said transfected cell is a

mammalian cell.

15. A cell according to Claim 14 wherein said cell is selected from the group consisting of: a chinese hamster ovary cell; murine primary fibroblast cell; human 5 primary fibroblast cell; transformed mouse fibroblast cell-line STO.

16. A method for inhibiting the differentiation of embryonic stem cells comprising the steps of:

- i) providing at least one polypeptide, or active fragment thereof, wherein said 10 polypeptide is an inhibitor of the *Wnt* signalling pathway.
- iii) forming a culture comprising the polypeptide identified in (i) above with an embryonic stem cell; and
- iii) growing said culture under conditions suitable for the maintenance of embryonic stem cells in an undifferentiated state.

15

17. A method according to Claim 16 wherein said inhibitor is selected from the group consisting of the active binding fragments thereof of the following polypeptides: frizzled related polypeptides (FRP); Wnt Inhibitory Factors (WIF); Dickkopf; Cerebrus.

20

18. A method according to Claim 17 wherein said inhibitor is encoded by a nucleic acid molecule selected from the nucleic acid sequences represented by: Fig 57; Fig 59; Fig 61; Fig 63; Fig 65; Fig 67; Fig 69; Fig 71; Fig 73; Fig 75; Fig 77; Fig 79; Fig 81; Fig 83; Fig 85; Fig 87; Fig 89; Fig 91; Fig 93; Fig 95; Fig 97; Fig 25 101; or Fig 103.

19. A method for inhibiting the differentiation of embryonic stem cells comprising the steps of:

- i) providing a cell transfected with a nucleic acid molecule selected from the 30 group consisting of:
 - a) a nucleic acid molecule encoding a *Wnt* inhibitory polypeptide;

- b) a nucleic acid molecule which hybridises to the nucleic acid in (a) and which encodes a polypeptide capable of inhibiting *Wnt* signalling; and
 - c) nucleic acid molecules which are degenerate as a result of the genetic code to the sequences defined in (a) and (b) above.
- 5 ii) forming a culture of the cell identified in (i) above with an embryonic stem cell; and
- iii) growing said culture under conditions suitable for the maintenance of embryonic stem cells in an undifferentiated state.
- 10 20. A method according to Claim 19 wherein said cells express at least one *Wnt* inhibitory polypeptide selected from the group consisting of the active binding fragments thereof of the following polypeptides: frizzled related polypeptides (FRP); *Wnt* Inhibitory Factors (WIF); Dickkopf; Cerebrus.
- 15 21. A method according to Claim 19 wherein said cells express at least one *Wnt* inhibitory polypeptide encoded by a nucleic acid molecule selected from the nucleic acid sequences represented by : Fig 57; Fig 59; Fig 61; Fig 63; Fig 65; Fig 67; Fig 69; Fig 71; Fig 73; Fig 75; Fig 77; Fig 79; Fig 81; Fig 83; Fig 85; Fig 87; Fig 89; Fig 91; Fig 93; Fig 95; Fig 97; Fig 99; Fig 101; Fig or 103.
- 20 22. A cell or cell culture obtainable by the method according to any of Claims 1-21.
- 25 23. A therapeutic cell composition obtainable by the method according to any of Claims 1-15.
- 30 24. Use of a cell according to Claim 23 for the manufacture of a composition for use in the treatment of a disease selected from the group consisting of: Parkinson's disease; Huntington's disease; motor neurone disease; heart disease; diabetes; liver disease (eg cirrhosis); renal disease; AIDS.

25. A method of treatment of an animal, preferably a human, comprising administering a cell composition comprising embryonic stem cells which have been induced to differentiate into at least one cell-type by the method according to any of
5 Claims 1-14.

26. Condition medium obtained by culturing embryonic stem cells according to the method of any of Claims 1-21.

10

15

20

25

30

D.melanogaster**Notch****C.elegans****Lin-12****Glp-1****Vertebrate****Notch 1, 2****Notch 3****Notch 4**

Figure 1

Figure 2

GTCCAGCGGTACCATGGGCCGTCGGAGCGCGCTAGCCCTGCCGTGGCTCTGCCCTGC
TGTGCCAGGTCTGGAGCTCCGGCGTATTGAGCTGAAGCTGCAGGAGTTCGTCAACAA
GAAGGGCTGCTGGGAACCGCAACTGCTGCCGCCGGCTCTGGCCCGCCTGC
TGCAGGACCTCTTCGCGTATGCCTCAAGCACTACCAGGCCAGCGTGTACCGGAGCC
ACCTGCACCTACGGCAGTGCTCACGCCAGTGCTGGGTGTCAGTCCCTCAGCCTGC
CTGATGGCGCAGGCATCGACCCCCGCCTCAGCAACCCCCTCCGATTCCCGATG
ACCTGGCCAGGTACCTCTGATCATTGAAGCCCTCCATACAGACTCTCCGATGA
CCTCGCAACAGAAAACCCAGAAAGACTCATCAGCCGCCTGACCACACAGAGGGCACCTC
ACTGTGGGAGAAGAATGGTCTCAGGACCTCACAGTAGCGGCCGCACAGACCTCCGGT
ACTCTTACCGGTTGTGTGACGAGCACTACGGAGAAGGTTGCTCTGTGTTCTGC
CGACCTCGGGATGACGCCCTTGGCCACTTCACCTGCCGGGACAGAGGGAGAAGATGT
GCGACCCCTGGCTGGAAAGGCCAGTACTGCACTGACCCAATCTGCTGCCAGGGTGTGA
TGACCAACATGGATACTGTGACAAACCAGGGAGTGCAAGTGCAGAGTTGGCTGGCAG
GGCCGCTACTGCGATGAGTGCATCCGATACCCAGGTTGTCATGGCACCTGCCAGC
AACCTGGCAGTGTAACTGCCAGGAAGGCTGGGGGGCCTTCTGCAACCAAGACCT
GAACTACTGTACTCACCATAAGCCGTGCAGGAATGGAGGCCACCTGCACCAACACGGGC
CAGGGAGCTACACATGTTCTGCCGACCTGGGTATACAGGTGCCAACTGTGAGCTGG
AAGTAGATGAGTGTGCTCCTAGCCCTGCAAGAACGGAGCGAGCTGCACGGACCTTGA
GGACAGCTCTTGCACCTGCCCTCCGGCTTCTATGGCAAGGTCTGTGAGCTGAGCG
CCATGACCTGTGCAGATGCCCTTGCTTCATGGAGGACGATGTTAGATAACCTGAC
GGAGGCTACACCTGCCATTGCCCTGGCTCTGGCTTAACGGTCCAAGTGTGAGGACCTCGGCAACT
CTTACCTGTGCCGGTGCCAGGCTGGCTCTCCGGAGGTACTGCGAGGACAATGTGGA
TGACTGTGCCTCCTCCCGTGTGCAAATGGGGCACCTGCCGGACAGTGTGAACGAC
TTCTCCTGTACCTGCCACCTGGTACACGGCAAGAACTGCAAGGCCCTGTCAGCAG
GTGTGAGCATGCCACCTGCCATAATGGGCCACCTGCCACAGAGGGCCAGCGCTAC
ATGTGTGAGTGCAGGCTATGGCGGCCCAACTGCCAGTTCTGCTCCCTGAGCC
ACCACCAAGGGCCATGGTGGACCTCAGTGAGAGGCATATGGAGAGGCCAGGGCG
GCCCTCCCTGGGTGCCGTGTGCCGGGGGGCTTGTGCTGCTGCTGCTGG
GCTGTGCTGCTGGTGGCTGCGTCCGGCTGAAGCTACAGAAACACCAGCCTCCACCT
GAACCTGTGGGGAGAGACAGAAACCATGAACAAACCTAGCCAATTGCCAGCGCAG
AAGGACGTTCTGTTAGCATCATTGGGCTACCCAGATCAAGAACACCAACAAGAAG
CGGACTTCACGGGACCATGGAGCCAAGAACAGCAGCTTAAGGTCCGATACCCAC
TGTGGACTATAACCTCGTTGAGACCTCAAGGGAGATGAAGGCCACGGTCAAGGGATACA
CACAGCAAACGTGACACCAAGTGCCAGTCACAGAGCTCTGCAGGAGAACAGAGATC
GCCCAACACTTAGGGTGGGAGATTCCCTGACAGAAAAAGGCCAGAGTCTGTCTACT
CTACTCAAAGGACACCAAGTACCAAGTCCAGTCGGTGTATGTTCTGTCTGCAGAAAAGGATGA
GTGTGTTATAGCGACTGAGGTGTAAGATGGAAGCGATGTGGCAAAATTCCATTCTCT
CAAATAAAATTCCAAGGATATAGCCCCGATGAATGCTGCTGAGAGAGGAAGGGAGAG
GAAACCCAGGGACTGCTGCTGAGAACCAAGGTTCAAGCGAAGCTGGTCTCTCAGAGTT
AGCAGAGGCCCGACACTGCCAGCCTAGGCTTGGCTGCCGCTGGACTGCCCTGCTGG
TTGTTCCATTGCACTATGGACAGTTGCTTGAAGAGTATATATTAAATGGACGAGTG
ACTTGATTGATATAGGAAGCACGCAGTCCACACGTCTATCTGGATTACTATGAGCC
AGTCTTCCTGAACTAGAAACACAACTGCCCTTATTGTCCTTTGATAACTGAGATGTG
TTTTTTTTCTAGACGGAAAAAGAAAACGTGTGTTATTGGGATTGTAAAAA
ATATTGTTCATGATATCTGAAAGCTGAGTATTGACGTTGACGTTGACGTTGATTTATAATT
AAATTGTTGGTAAATATGTACAAAGGCACCTCGGGTCTATGTGACTATATTGTTGAT
ATAAAATGTATTGAGGAAATTGTGCAAATGTTGAGTTTACTGTTGTTAAT
GAAGAAAATTCAATTAAAAATATTGTCAAAATAATATAATGAACTACA

Figure 3

MGRRSALALAVSALLCQVWSSGVFELKLQEFVNKKGLLGNRNCRGSGPPCACRTFFR
VCLKHYQASVSPEPPCTYGSAVTPVLGVDSFLPDGAGIDPAFSNPIRFPFGFT,WPGTFSLIIE
ALHTDSPDDLATEPERLISRLTTQRHDTVGEWSQDLHSSGRDLRYSYRFVCDEHYYGE
GCSVFCRPRDDAFGHFTCGDRGEKMCDCPGWKGQYCTDPICLPGCDDQHGYCDKPGECKC
RVGWQGRYCDECIRYPGCLHGTQCQPWCNCQEGWGGLFCNQDLNYCTHHKPCRNGAT
CTNTGQGSYTCSCRPGYTGANCELEVDECAPSCKNGASCTDLEDTSCTCPPGFYGVCE
LSAMTCADGPCFNGGRCSDNPDGYYTCHCPLGFSGFNCEKKMDLCGSSPCSNGAKCVDL
GNSYLCRCQAGFSGRYCEDNVDDCASSPCANGGTCRDSVNDFSCTCPPGYTGKNCSAPVS
RCEHAPCHNGATCHQRGQRYMCECAQGYGGPNCQFLLEPEPPPMPMVVDLSERHMESQGG
PFPWVAVCAGVVLVLLLLGCAAVVVCVRLKLQKHQPPPPEPCGGETETMNNLANCQREK
DVSVIIGATQIKNTNKKADFHDHGAKKSSFKVRYPTVDYNLVRDLKGDEATVRDTHSK
RDTKCQSQQSSAGEEKIAPTLRGGEIPDRKRPESYSTSKDTKYQSVYVLSAEKDECVIATEV

Figure 4

CGGGCAGAGGTGGAAGAGGGGGAGCGCCTCAAAGAACGATCAGAATAATAAAAGG
AGGCCGGGCTTTGCCTCTGGAACGCGCGGCTCTGAAAGGGCTTTGAAAAGTAGT
GTTGTTTCCAGTCGTGCATGCTCCAATCCACGGAGTATATTAGAGCCGGACGCGCG
GCCGCGGGGGCAGCGACGACGGCAGCCTCGGCGGAGCACCAGCGCTAGCAGCGCG
GCGCGTCCGGAGTGCCCCTGGCGCGCGAGCGATGCGGTCCCCACGGACGCGCG
GCCGGCCCGGGCGCCCCCTGAGTCTCTGCTCGCCCTGCTCTGTGCCCTGCGAGCCAAG
GTGTGCGGGGCCTCGGGTCAGTTGAGCTGGAGATCCTGTCCATGCAGAACGTGAATG
GAGAGCTACAGAATGGGAACTGTTGTGGAGTCCGGAACCCCTGGCGACCGCAAGTG
CACCCGCGACGAGTGTGATACTGACTTCAAAGTGTGCCTCAAGGAGTATCAGTCCCGC
GTCACTGCCGGGGACCCCTGCAGCTCGGCTCAGGGTCTACGCCTGTATCGGGGGTA
ACACCTTCAATCTCAAGGCCAGCCGTGGCAACGACCGTAATCGCATCGTACTGCCTTC
AGTTTGCCTGGCCGAGGTCTACACTTGCTGGTGGAGGCCTGGATTCCAGTAATGA
CACTATTCAACCTGATAGCATAATTGAAAAGGCTCTCACTCAGGCATGATAAAACCTA
GCCGGCAATGGCAGACACTGAAACAAAACACAGGGATTGCCACTTCGAGTATCAGAT
CCGAGTGACCTGTGATGACCACTACTATGGCTTGGCTGCAATAAGTTCTGCGTCCA
GAGATGACTTCTTGGACATTATGCCCTGTGACCAAGAACGGCAACAAAACCTGCATGGA
AGGCTGGATGGGCTTGATTGCAACAAAGCTATCTGCCGACAGGGCTGCAGTCCCAAG
CATGGGTCTTGTAAAACCTCCAGGTGACTGCAGGTGCCAGTACGGTTGGCAGGGCCTGT
ACTGCGACAAGTGCATCCCGCACCCAGGATGTGTCACGGCACCTGCAATGAACCTG
GCAGTGCCTCTGTGAGACCAACTGGGTTGGACAGCTCTGTGACAAAGATCTGAATTAC
TGTGGGACTCATCAGCCCTGTCTCAACCGGGAAACATGTAGCAACACTGGCCTGACA
AATACCAAGTGCCTGCCAGAGGGCTACTCGGGCCCCACTGTGAAATTGCTGAGCA
TGCTTGTCTCTGACCCCTGCCATAACCGAGGCAGCTGCAAGGAGACCTCCTCAGGCT
TTGAGTGTGAGTGTCTCCAGGCTGGACTGGCCCCACGTGTTCCACAAACATCGATGAC
TGTTCTCCAAATAACTGTTCCATGGGGCACCTGCCAGGATCTGGTGAATGGATTCAA
GTGTGTGTGCCCGCCCCAGTGGACTGGCAAGACTGTCAAGTTAGATGCAAATGAGTGC
GAGGCCAAACCTGTGAAATGCCAGATCCTGTAAGAATCTGATTGCCAGCTACTACTG
TGATTGCCTCCTGGCTGGATGGGTAGAAGACTGTGACATAAATATCAATGACTGCCTG
GCCAGTGTCAAGAATGACGCCCTGTCGGATTGGTTAATGGTTATCGCTGTATCTGT
CCACCTGGCTATGCAGGCGATCACTGTGAGAGAGACATCGATGAGTGTGCTAGCAACC
CCTGCTGAATGGGGTCAGTGTCAAATGAAATCAACAGATTCCAGTGTCTGTCCC

ACTGGTTCTGGAAACCTCTGTCAGCTGGACATCGATTACTGCGAGCCCAACCCTTG
CCAGAATGGCGCCCAGTGTACAATCGTGCAGTGACTATTCTGCAAGTGCCCGAG
GACTATGAGGGCAAGAACTGCTCACACCTGAAAGACCACTGCCGTACCACCACCTGCG
AAGTGATTGACAGCTGCACTGTGCCATGGCCTCCAACGACACGCCCTGAAGGGGTGCG
GTATATCTCTTAACGTCTGTGGTCCCCATGGGAAGTGCAAGAGCCAGTCGGGAGGC
AAATTCACCTGTGACTGTAACAAAGGCTTCACCGGCACCTACTGCCATGAAAATATCA
ACGACTGCGAGAGCAACCCCTGTAAAAAACGGTGGCACCTGCATCGATGGCGTTAACTC
CTACAAGTGTATCTGTAGTGACGGCTGGGAGGGAGCGCACTGTGAGAACAAACATAAAT
GAETGTAGCCAGAACCCCTGTCACTACGGGGTACATGTCGAGACCTGGTCAATGACT
TTTACTGTGACTGCAAAATGGCTGGAAAGGAAAGACTTGCCATTCCGTGACAGCCA
GTGTGACGAAGCCACGTGTAATAATGGTGGTACCTGCTATGATGAAGTGGACACGTT
AAAGTCATGTGTCCCGBTGGCTGGAAAGGAACAAACTGTAATATAGCTAGAAACAGTA
GCTGCCTGCCGAACCCCTGTCATAATGGAGGTACCTGCGTGGTCAATGGAGACTCCTC
ACCTGTGTCTGCAAAGAAGGCTGGGAGGGGCCTATTGTACTCAAAATACCAACGACT
GCAGTCCCCATCCTGTTACAATAGCGGGACCTGTGTGGACGGAGACAACACTGGTATCG
GTGCGAATGTGCCCGGGTTTGCTGGGCCAGACTGCAGGATAAACATCAATGAGTGC
CAGTCTCCCTTGTGCCTTGGGCCACCTGTGTGGATGAGATCAATGGCTACCACTG
TATCTGCCCTCCAGGACATAGTGGTGCCTGAAGTTCAGGGCGATCTTGCA
TCACCATGGGAGAGTGATACTTGATGGGCCAAGTGGATGATGACTGTAACACCTG
CCAGTGCCTGAATGGACGGTGGCCTGCTCCAAGGTCTGGTGTGGCCCGAGACCTG
AGGCTCCACAAAAGCCACAATGAGTGCCCCAGTGGCAGAGCTGCATCCGGTCC
ATGACCAAGTGTTCGTGCGCCCTGCACTGGTGTGGCAATGTCGGTCCAGCCT
CAGCCAGTGAAGACCAAGTGCACATCTGACTCCTATTACCAAGGATAACTGTGCAA
TCACTTACCTTAACAAAGAGATGATGTCCTCCAGGTCTTACCAACACATTG
AGCGAATTGAGGAATTGAATATCCTGAAGAATGTTCTGCTGAATATCGATCTACAT
AGCCTGTGAGCCTCCCTGTCAGCAAACAATGAAATACACGTGGCCATCTGAGAA
GACATCCGGATGATGGAAACCCCTGTCAAGGAAATTACCGATAAAATAATAGATCTG
TTAGTAAACGGGATGGAAACAGCTCAATTGCTGCGGTTGCAGAAGTCAGAGTCA
GAGCGCTCTGAAAAACAGAACAGATTCCCTGGTCTGCTGAGCTCTGTCTAA
CAGTGGCTGGTCTGGTGTGGACAGCCTCTACTGGTGTACGGAAAGCGGG
AAGCCCAGGCCACACTCACTCCGCCCCGAGGACAACACCACCAACAATGTGCGGG
AGCAGCTGAACCAAATCAAAACCCATCGAGAAACACGGACCAACACGGTCCCC
TTAAGGATTACGAGAACAAAAACTCCAAAATGTCAAAATCAGGACACACAACACTCG
AAGTGGAGGAGGATGACATGGATAAACACCAGCAGAAAGTCCGCTTGCCAAACAGC
CAGTGTATACGCTGGTAGACAGAGAGGGAGAAGGCCCGAGCGGCACGCCGACAAA
ACCCGAACTGGACAAATAAACAGGACAACAGAGACTGGAAAGTGCCAGAGCTGA
ACCGGATGGAATACATCGTATAGCAGACAGTGGCTGCCCATAGGTAGAGTTGAG
GGCACCGCGGGCG

Figure 5

CTGGGGCCGGCCCGAGCTAGGCTGGTTTTCTCCCTCCCTCCCCCTTT
TCCATGCAGCTGATCTAAAAGGGAAATAAAAGGCTGCGCATAATCATAATAATAAAAAGA
AGGGGAGCGCGAGAGAAGGAGAAAGCCGGGAGGTGGAAGAGGGAGGGAGCGTCTC
AAAGAAGCGATCAGAATAATAAAAGGAGGCAGCTTTGCCTCTGGAACGGCCGCT
CTTGAAGGGCTTTGAAAAGTGGTGTGTTCCAGTCGTGCATGCTCCAATCGGC
AGTATATTAGAGCCGGACGCCGGCCAGGGCAGGGCAGCGCAGCACGGCG
GCAGCACCAAGCGCGAACAGCAGCGCGCGTCCCGAGTGCCTCGGGCGCG
GCGATGCGTCCCCACGGACCGCGCGGGTCCGGCGCCCTAAGCCTCTGCTCG
CCTGCTCTGTGCCCTGCGAGCCAAGGTGTGGGGCTCGGGTCAGTCAGTTGGAG
ATCCTGTCCATGCAGAACGTGAACGGGAGCTGCAGAACGGAACTGCTGCGCG

GCCCCGAACCCGGGAGACCGCAAGTGCACCCCGCACGAGTGTGAACATACTTCAAAGT
GTGCCTCAAGGAGTATCAGTCCC CGTCACGGCCGGGGGCCCTGCAGCTCGGCTC
AGGGTCCACGCCTGTCATCGGGGGCACACACCTCAACCTCAAGGCCAGCCGGCAAC
GACCGCAACCCATCGTGCCTTCAGTTGCCTGGCCAGGTCCTATACGTTGCTT
GTGGAGGCCTGGGATTCCAGTAATGACACCCTCAACCTGACAGTATTATTGAAAAGG
CTTCTCACTCGGGCATGATCAACCCAGCCGGCAGTGGCAGACGCTGAAGCAGAAC
GGCGTTGCCACTTGAGTATCAGATCCCGTGCACCTGTGATGACTACTATGGCT
TTGGCTGCAATAAGTCTGCCGCCAGAGATGACTTCTGGACACTATGCCGTG
ACCAGAATGGCAACAAAATGCATGGAAGGCTGGATGGGCCCGAATGTAACAGAG
CTATTGCCAAAGGCTGCAGTCCTAACGATGGCTTGCAAACACTCCCAGGTGACTGCA
GGTGCAGTATGGCTGGCAAGGCCTGTACTGTGATAAGTGCATCCCACACCCGGGATG
CGTCCACGGCATCTGTAATGAGCCCTGGCAGTGCCTCTGTGAGGACCAACTGGGGCGGC
CAGCTCTGTGACAAAGATCTCAATTACTGTGGGACTCATCAGCCGTGTCACGGGG
GAACTTGTAGCAACACAGGCCCTGACAAATATCAGTGTCCCTGCCCTGAGGGGTATT
AGGACCCAATGTGAAATTGCTGAGCACGCCTGCCTCTGATCCCTGTCACAACAGA
GGCAGCTGTAAGGAGACCTCCCTGGGCTTGAGTGTGAGTGTCCCCAGGCTGGACCG
GCCACATGCTCTACAAACATTGATGACTGTTCTCCTAACACTGTTCCCACGGGGC
ACCTGCCAGGACCTGGTAACGGATTAAAGTGTGTCACGGCCCCACAGTGGACTGGGA
AAACGTGCCAGTTAGATGCAAATGAATGTGAGGCCAAACCTGTGAAACGCCAAATC
CTGTAAGAATCTCATTGCCAGCTACTACTGCGACTGTCTCCGGCTGGATGGTCAGA
ATTGTGACATAAAATATTAAATGACTGCCCTGGCCAGTGTGAGAATGACGCCCTGTCGG
GATTGGTTAATGGTATCGCTGTATCTGTCCACCTGGCTATGCAGGCGATCACTGTGA
GAGAGACATCGATGAATGTGCCAGCAACCCCTGTTGAATGGGGTCACTGTGAGAAT
GAAATCAACAGATTCCAGTGTCTGTCCCAGTGGTTCTCTGGAAACCTCTGTCAGCT
GGACATCGATTATTGTGAGCCTAACCTGCCAGAACGGTGGCCAGTGTACAAACCGT
GCCAGTGAATTTCTGCAAGTGCCTGGAGGACTATGAGGGCAAGAACTGTCACACC
TGAAAGACCAACTGCCGCACGACCCCTGTGAAGTGATTGACAGCTGCACAGTGGCCAT
GGCTCCAACGACACACCTGAAGGGTGGTATATTCCCAACGTCTGTGGTCCTC
ACGGGAAGTGCAAGAGTCAGTCGGGAGGCCAAATTCACCTGTGACTGTAACAAAGGCTT
CACGGGAACATACTGCCATGAAAATATTAAATGACTGTGAGAGCAACCCCTGTAGAAC
GGTGGCACTTGCATCGATGGTGTCAACTCCTACAAGTGCATCTGTAGTGACGGCTGG
AGGGGGCCTACTGTGAAACCAATATTAAATGACTGCAAGCCAGAACCCCTGCCACAATGG
GGCACGTGCGACCTGGTCAATGACTCTACTGTGACTGTAAAAATGGGTGGAAAG
GAAAGACCTGCCACTCACGTGACAGTCAGTGTGATGAGGCCACGTGCAACAAACGGTGG
CACCTGCTATGATGAGGGGGATCTTTAAGTGCATGTGTCCTGGCGGCTGGGAAGGAA
CAACCTGTAACATAGCCCAGACTAGTAGCTGCCTGCCAACCCCTGCCATAATGGGGG
CACATGTGTGGTCAACGGCGAGTCCTTACGTGCGTCTGCAAGGAAGGCTGGAGGG
CCCACCTGTGCTCAGAATACCAATGACTGCAGCCCTCATCCCTGTTACAACAGCGGCAC
CTGTGTGGATGGAGACAATGGTACCGGTGCGAATGTGCCCCGGGTTTGCTGGGCC
GAUTGCAGAATAAACATCAATGAATGCCAGTCTCAGCTTGGAGGACAGTGGTCCAAG
TGTGGATGAGATCAATGGTACCGGTGTCCTGCCCTCCAGGGCACAGTGGTCCAAG
TGCCAGGAAGTTCAAGGGAGACCTGCAATCACCATGGGAGTGTGATACCAGATGGGG
CCAAATGGGATGACTGTAATAACCTGCCAGTGCCTGAATGGACGATCGCCTGCTCA
AAGGTCTGGTGTGGCCCTCGACCTTGCCTGCTCCACAAAGGGCACAGCGAGTGCCTC
GCGGGCAGAGCTGCATCCCCATCCTGGACGACCAGTGCTCGTCCACCCCTGCACTGGT
GTGGCGAGTGTGGTCTCCAGTCTCCAGGCCGTGAAGACAAAGTGCACCTCTGACT
CCTATTACCAGGATAACTGTGCGAACATCACATTACCTTAACAAGGAGATGATGTCA
CCAGGTCTTACTACGGAGCACATTGCAGTGAATTGAGGAATTGAATATTGAAGAA
TGTTTCCGCTGAATATTCAATCTACATCGCTTGCAGCCTCCAGGCCCTCAGCGAACAA
AAATACATGTGGCCATTCTGCTGAAGATATAACGGGATGATGGGAACCCGATCAAG
GAAATCACTGACAAAATAATCGATCTGTTAGTAAACGTGATGGAAACAGCTCGCTGA
TTGCTGCCGTTGCAGAAGTAAGAGTTCAGAGGCCCTGCAAGAACAGAACAGATT

CCTTGTCCCTGCTGAGCTCTGTCTTAACGTGGCTGGATCTGTTGCTGGTGACGGC
CTTCTACTGGTGCCTGCGGAAGCGCGGGAGCAGCTGAACCAGATAAAAACCCCATTG
GAGGACAACACCAACAAACGTGCAGGGAGCAGCTGAACCAGATAAAAACCCCATTG
AGAAACATGGGCCAACACGGTCCCCATCAAGGATTACGAGAACAAGAACTCCAAAT
GTCTAAAATAAGGACACACAATTCTGAAGTAGAAGAGAGGACGACATGGACAAACACCA
GCAGAAAGCCCAGGGTTGCCAACAGCAGCCGGCGTATACGCTGGTAGACAGAGAAGAGAA
GCCCCCAACGGCACGCCAACACACCCAAACTGGACAAACAAACAGGACAACAGAG
ACTTGGAAAGTGCCAGAGCTAAACCGAATGGAGACATCGTATAGCAGACCGCGGGC
ACTGCCGCCGCTAGGTAGAGTCTGAGGGCTTGTAGTTCTTAAACTGTCGTGTACT
CGAGTCTGAGGCCGTTGCTGACTAGAATCCCTGTGTTAATTAAAGTTGACAAGCTG
GCTTACACTGGCAATGGTAGTTCTGTTGGCTGGAAATCGAGTGCCGCATCTCAC
AGCTATGCAAAAAGCTAGTCAACAGTACCCCTGGTTGTGTCAGCCGACAC
GGTCTCGGATCAGGCTCCCAGGAGCCTGCCAGCCCCCTGGTCTTGAGCTCCCACCTC
TGCCAGATGTCCTAATGGTAGTCAGTCTTAGATCATAGTTATTATATTATTGACT
CTTGAGTTGTTTGATATTGGTTATGATGACGTACAAGTAGTTCTGTATTGAAAG
TGCCTTGCAGCTCAGAACACAGCAACGATCACAAATGACTTATTATTATTTTTA
ATTGTATTGGTTGTTGGGGAGGGAGACTTGATGTCAGCAGTTGCTGGTAAAATG
AAGAATTAAAGAAAAAAATGTCAAAAGTAGAAACTTGTATAGTTATGTAATAATT
TTTTTATTAATCACTGTGTATATTGATTATTAACTAATAATCAAGAGCCTAAAAC
ATCATTCTTTATTATGTATGTGTTAGAATTGAAAGGTTGATGTCAGCATTGAA
GCGTATGGCTTATTGAACTCTCATTACTGTTGCCTATAAGCCAAAATTAA
GGTGTGAAAATAGTTATTAAAACAATAGGATGGCTGTGCCAGAATACTG
ATGGAATTGTTGACGACGTCAAGATGTTAAAACACCTCTATAGCATCACTTAA
AACACGTTAAGGACTGACTGAGGCAGTTGAGGATTAGTTAGAACAGGTTTTG
TTGTTGTTGTTGTTCTGCTTAGACTGAAAAGAGACAGGCAGGTGATCTGCTG
CAGAGCAGTAAGGGAACAAAGTTGAGCTATGACTAACATAGCCAAAATGTGAGTGGTT
GAATATGATTAAAAATATCAAATTAAATTGTGTGAACTTGGAAAGCACACCAATCTGACTT
TGTAAATTCTGATTCTTACCACTCGTACATAACTGAACCACCTGTAGATTGAT
TTTTTTTAATCTACTGCATTAGGGAGTATTCTAATAAGCTAGTTGAATACTGAACC
ATAAAATGTCCAGTAAGATCACTGTTAGATTGCCATAGAGTACACTGCCTGCCTAA
GTGAGGAAATCAAAGTGCTATTACGAAGTTCAAGATCAAAAAGGCTATAAAACAGAG
TAATCTGTTGGTCACCATTGAGACCGTGAAGATACTTGTATTGCTTATTAGTGTAA
TATGAACATACAAATGCATCTTGTGATGTGTTCTGGCAATAATTGAAAAGTAA
TATTATTAAATTGTTGTATGAAAACATGGAACAGTGTGGCTCTGAGCTGTGTTAATCGGGG
TATAATAGGCTCTGCCTGACAGAGGGATGGAGGAAGAACTGAAAGGCTTTCAACCC
AAAACATCTGGAGTTCTCAAAGACCTGGGGCTGCTGTGAAGCTGGAACTGCGGGAG
CCCCATCTAGGGAGCITGATTCCCTGTTATTCAACAGCAAGTGTGAATACTGCTG
AATAAACACCACTGGATTAAATGGAAAAAAAAAAAAAA

Figure 6

MRSRTRGRSGRPLSLLLALLCALRAKVC GASQFELEILSMQN VNGELQNGNCCGGARN
PGDRKCTRDEC DTYFKVCLKEY QSRVTAGGPCSFGSGSTPVIGGNTFNLKASRGNDRN RIV
LPFSFAWPRS YTL VEAWDSSNDTVQPDSIIEKASHSGMINPSRQWQLKQNTGVAHFEYQ
IRVT CDDYY YFGCNKF CRPRDDFFGHYACDQNGNKT CMEGWMGPECNRAICRQGCSPK
HGSCKLPGDCRCQY GWQGLYCDKCIPHPGVHGICNEPWQCLCETNWGGQLCDKDLNYC
GTHQPC LNGG TCSNTGP DKYQCSCPEGYSGPNCEIAEHACLSDPCHNRGSCKETSLGFECE
CSPGWTGPTCSTNIDD CSPNNCSHGGTCQDLVNGFKCVCPPQWTGKTCQLDANECEAKP
CVNAKSCKNLI ASYY CDCLPGWMGQNCDININDCLGQCQNDASCRDLVNGYRCICPPGYA
GDHCERDI DECASN PCLNGGH CQNEINRFQCLCPTGFSGNLCQLDIDYCEPNPCQNGAQCY

NRASDYFCKCPEDYEGKNCSHLKDHCRTTPCEVIDSCTVAMASNDTPEGVRYISSNVCGPH
GKCKSQSGGKFTCDCNKGFTGYCHENINDCESNPCRNGTCIDGVNSYKCICSDGWEGA
YCETNINDCSQNPCHNGGTCRDLVNDFYCDCKNGWKGKTCHSRDSQCDEATCNGGTCY
DEGDAFKCMCPGGWEGTTCNIAARNSSCLPNPCHNGGTCVNGESFTCVCKEGWEGPICAQ
NTNDSPHPYCNSGTVDGDNWYRCECAPGFAGPDCRININECQSSPCAFGATCVDEIN
GYRCVCPPGHSGAKCQEVSRPCITMGSVIPDGAKWDDDCNTCQCLNGRIACSKVWCGR
PCLLHKGHSECPSGQSCIPILDQCFVHPCTGVGECRSSLQPVTKCTSDSYQDNCANIT
FTFNKEMMSPGLTTEHICSELRLNLILKNVSAEYSTYLACEPSPSANNEIHVAISAEDIRDDGN
PIKEITDKIIDLVSKRDGNSSLIAAVAEVRVQRRPLKNRTDFLVPLLSSVLTVAWICCLVTAF
YWCLRKRRKPGSHSASEDNTTNVREQLNQIKNPIEKHGANTVPIKYENKNSKMSKIR
THNSEVEEDMDKHQQKARFAKQPAYTLVDREEKPPNGPTKHPNWTNKQDNRDLESAQ
SLNRMEYIV

Figure 7

GGAGCGGGCGCGCGGGCGGGCGGGCGGGCGGGCGGGCGGGCGGGCAATGCGG
GCGCAGGGCCGGGGCCTTCCCCCCCCTGGCGCTGCTGCTGCTGGCGCTCTGGGTGCAG
GCGGCCGCCCAGGGCTATTGAGCTGCGAGCTGAGCTGGCGCGGGACAACGCGCGGGGG
CTGCGGCCACGACGAGTGCACACGTACGTGCGCGTGTGCCCTAACAGAGTACCAAGGCCA
AGGTGACGCCACGGGGCCCTGCAGCTACGGCCACGGGCCACGCCGTGCTGGCG
CAACTCCTTCTACCTGCCGCCGGCGCTGCCGGGACCGAGCGCGCGCGGCC
CGGGCCGGCGGACCAAGGACCCGGCTCGTCATCCCCCTCCAGTTCGCCTGGCG
CGCTCCTTACCCCTCATCGTGGAGGCCTGGACTGGACAACGATAACCACCCGAATG
AGGAGCTGCTGATCGAGCGAGTGTGCGATGCCGATGATCAACCCGGAGGACCGCTGG
AAGAGCCTGCACTTCAGCGGCCACGTGGCGACCTGGAGCTGCGATCCCGTGCGCTG
CGACGAGAACTACTACAGCGCCACTTGCAACAAAGTTCTGCCGGCCCCAACGACT
TTTCGGCCACTACACCTGCGACCAGTACGGCAACAAAGGCCTGCATGGACGGCTGGAT
GGGCAAGGAGTGCAAGGAAGCTGTGTAAACAAGGGTGTAAATTGCTCCACGGGG
ATGCACCGTGCCTGGGAGTGCAGTGCAGCTACGGCTGGCAAGGGAGGTTCTGCGATG
AGTGTGTCCTACCCGGCTCGTCATGGCAGTTGTGGAGGCCCTGGCAGTGCAA
CTGTGAGACCAACTGGGGCGGCCTGCTCTGTGACAAAGACCTGAACACTACTGTGGCAGC
CACCAACCCCTGCACCAACGGAGGCACGTGCATCAACGCCAGCCTGACCAACTACCGCT
GCACCTGCCCTGACGGCTACTCGGGCAGGAACGTGAGAAGGCTGAGCACGCCCTGCAC
CTCCAACCCGTGTGCCAACGGGGCTTTGCCATGAGGTGCCGTCCGGCTTCGAATGCC
ACTGCCCATCGGGCTGGAGCGGGCCCACCTGTGCCCTGACATCGATGAGTGTGCTTCG
AACCCGTGTGCCGGCGGTGGCACCTGTGTGGACCAGGTGGACGGCTTGAGTGCATCT
GCCCGAGCAGTGGTGGGGCCACCTGCCAGCTGGACGTCAACGACTGTGAAGGGA
AGCCATGCCTAACGCTTTCTGCAAAAACCTGATTGGCGGCTATTACTGTGATTGC
ATCCCGGGCTGGAAGGGCATCAACTGCCATATCAACGTCAACGACTGTCGCCGGCAGT
GTCAGCATGGGCACCTGCAAGGACCTGGTAACGGTACCAAGTGTGTGCCACGG
GGCTCGGAGGCCGGCATTGCGAGCTGGAACGAGACAAGTGTGCCAGCAGCCCTGCC
ACAGCGCGGGCCTCTGCGAGGACCTGGCCACGGCTCCACTGCCACTGCCACGG
TTCTCCGGGCCTCTGTGAGGTGGATGTCGACCTTGAGGCCAACGCCCCTGCCGGAA
CGGCCTCGCTGCTATAACCTGGAGGGTGAATTACTGCCCTGATGACTTTG
GTGGCAAGAACTGCTCCGTGCCCGAGCCGTGCCCTGGCGGGCCTGCAGAGTGAT
CGATGGCTCGGGTCAGACGCCGGCCTGGGATGCCAGCAGCAGCCTCCGGCGT
TGTGGCCCCCATGGACGCTCGTCAGCCAGCCAGGGCAACTTTCTGCATCTGTGA
CAGTGGCTTACTGGCACCTACTGCCATGAGAACATTGACGACTGCCCTGGCCAGCCCT
GCCGCAATGGGGCACATGCATCGATGAGGTGGACGCCCTCCGCTGCTTCTGCCAG
CGGCTGGAGGGCAGCTGCGACACCAATCCCAACGACTGCCCTCCGATCCCTGC

CACAGCCGGCGCTGCTACGACCTGGTCAATGACTTCTACTGTGCGTGCACGACG
GCTGGAAGGGCAAGACCTGCCACTCACCGCGAGTTCCAGTGCATGCCTACACCTGCAG
CAACGGTGGCACCTGCTACGACAGCGCGACACCTCCGCTGCCCTGCCCGGGC
TGGAAAGGGCAGCACCTGCGCCGTGCCAAGAACAGCAGCTGCCTGCCAACCCCTGTG
TGAATGGTGGCACCTGCGTGGCAGCGGGCCTCCTCTCCTGCATCTGCCGGACGG
CTGGGAGGGTCGTACTTGCACTCACAATACCAACGACTGCAACCCTCTGCCCTGCTACA
ATGGTGGCATCTGTGTTGACGGCGTCAACTGGTCCGCTGCGAGTGTGCACCTGGCTTC
GCAGGGGCCTGACTGCCGATCAACATCGACGAGTGCCAGTCCTGCCCTGCTACG
GGGCCACGTGTGGATGAGATCAACGGGTATCGCTGTAGCTGCCAACCCGGCCGAGC
CGGCCCGGGTGCCAGGAAGTGATCGGTTGGGAGATCCTGCTGGTCCCAGGGCACT
CCGTTCCCACACGGAAAGCTCCTGGGTGGAAGACTGCAACAGCTGCCGCTGCCATG
GCCGCCGTGACTGCAGCAAGGTGTGGTGC GGATGGAAGCCTTGTCTGCTGGCCGGCCA
GCCCGAGGCCCTGAGCGCCCAGTGCCACTGGGGCAAAGGTGCCTGGAGAAGGCC
AGGCCAGTGTCTGGACCACCCCTGTGAGGGCTGGGAGATGCGGCCGAGAACAGGCC
CCGAGCACCCCTGCCCTGCCACGCTCGGCCACCTGGACAATAACTGTGCCGCTCACC
TTGCATTCAACCGTGACCAACGTGAGCCACGTGCCCTGGCACCGGTGGCGCCATTGCTCCGG
GATCCGCTCCCTGCCAGCCACAAGGGCTGTGGCACGGGACCGCCTGCTGGTGTGCTT
GCGACCGGGCGTCCTCGGGGCCAGTGCCGTGGAGGTGGCCGTGCTTCAGCCCTGC
CAGGGACCTGCCCTGACAGCAGCCTGATCCAGGGCGGGCCCACGCCATCGTGGCCGCC
ATCACCCAGCGGGAAACAGCTCACTGCTCCTGGCTGTGACCGAGGTCAAGGTGGAGAC
GGTTGTTACGGCGGCTCTTCCACAGGTCTGCTGGTGCCTGTGCTGTGGTGCCTCA
GCGTGTGTGGCTGGCGTGCCTGTGGTGCCTGTGCGTGTGGTGGACACGCAAGCGCAGGAA
AGAGCGGGAGAGGAGGCCGGCTGCCCGGGAGGAGAGCGCCAACACAGTGGGCC
TCAACCCATCCGCAACCCATCGAGCGGCCGGGGGCCACAAGGACGTGCTCTACCA
GTGCAAGAACTCACGCCGCCCGCGCAGGGCGGACGAGGCGCTGCCGGGGGCC
CGGCCACGCCCGTCAGGGAGGATGAGGAGGACGAGGATCTGGCCGCCGGTGGAG
GACTCCCTGGAGGCAGGAGAAAGTTCTCTCACACAAATTACCAAAAGATCCTGGCCGCTC
GCCGGGAGGCCGGCCACTGGCCTCAGGCCAAAGTGGACAACCGCGGGTCAG
GAGCATCAATGAGGCCCGCTACGCCGGCAAGGAGTAGGGCGCTGCGCTGGCCGG
GACCCAGGCCCTCGTGGAGCCATGCCGTGCCGGACCCGGAGCCGAGGCATGTG
CTAGTTCTTATTGTAAAAAAACACAAAAACAAAAACCAAAATGTTATTTC
TACGTTCTTAACCTGTATAAAATTATTCACTGTCAGGCTGAAAACAATGGAGT
ATTCTCGGATAGTTGCTATTGTAAAGTTCCGTGCGTGGCACTCGCTGTATGAAAG
GAGAGAGCAAAGGGTGTCTGCGTCGTCACCAAATCGTAGCGTTGTTACCAGAGGTTG
TGCACTGTTACAGAATCTCCTTTATTCCCTACTCGGGTTCTGTGGCTCCAGGCC
AAAGTGCCGGTGAGACCCATGGCTGTGGTGGCCATGGCTGTGGGAC
CGTGGCTGATGGTGTGGCCTGTGGCTGCGTGGGACTCGTGGCTGTCAATGGACCTG
TGGCTGCGGTGGGACCTACGGTGGTCGGTGGGACCCCTGGTTATTGATGTGGCCCTGGC
TGCCGGCACGCCGTGGCTGTTGACGCACCTGTGGTGGTATTGAGTGGGCTGAGGTCAT
CGCGTGCCCAAGGCCGGCAGGTCAACCTCGCGCTTGCTGGCCAGTCCACCCCTGCC
CCGTCTGTGCTCCTGCCAGAACGCCGCTCCAGCGATCTCTCCACTGTGCTTCA
GAAGTGCCCTTGCTGCGCAGTCTCCATCCTGGGACGGCGGCAGTATTGAAGCTC
GTGACAAGTGCCTTCACACAGACCCCTCGCAACTGTCCACGCGTGGCTGGCACCAGG
CGCTGCCACCTGCCGGCCGCCCTCGTGAAGTGCATTGTTAAATGT
GTACATATTAAAGGAAGCACTCTGTATAATTGATTGAATAATGCCACCAAAAAAAA
AAAAAAAAAAATTCCCTGCC

Figure 8

MRAQGRGAFPPALLLLALWVQAARPMGYFELQLSALRNVNGELLSGACCDGDGRITTRA
GGCGHDECPTYVRVCLKEYQAKVTPTGPCSYGHGATPVLGGNSFYLPPAGAAGDRARAR

PRAGGDQDPGFVVIPFQAWPRSFTLIVEAWDWDNDTPNEELLIERVSHAGMINPEDRWK
 SLHFSGHVAHLELQIRVRCDENYYSATCNKFCRPRNDFFGHYTCDQYGNKACMDGWMG
 KECKEAVCKQGCNLLHGGCTVPGECRCSYGWQGRFCDECVPPGVHGSCVEPWQCNCET
 NWGGLLCDKDLNYCGSHHPCTNGGTCINAEPDQYRCTCPDGYSGRNCEKAHACTSNPC
 ANGGSACHEVPSGFECHCPSGWSGPTCALDIDEASNPCAAGGTCVDQVDGFECICPEQWV
 GATCQLDVNDCEGKPCLNAFSCKNLIGGYYCDCIPGWKGINCHINVNDRGQCQHGGTCK
 DLVNGYQCVCPRGFGGRHCELERDKCASSPCHSGGLCEDLADGFHCHCPQGFSGPLCEVD
 VDLCEPSPCRNGARCYNLEGDYACPDFFGGKNCSVPREPCPGGACRVIDGCGSDAGPG
 MPGTAASGVCGPHGRCVSQPGGNFSCICDSGFTGYCHENIDDCLGQPCRNGGTCIDEVDA
 FRCFCPSGWEGETCDTNPDCLPDPCHSRGRCYDLVNDFYCACDDGWKGKTCHSREFQC
 DAYTCNSGGTCYDSDGDTFRACPPGWKGSTCAVAKNSSCLPNPCVNGGTCVGSGASFSCI
 CRDGWEGRTCTHNTNDCNPLPCYNGGICVDGVNWFRCECAPGFAGPDCRINIDEQSSPC
 AYGATCVDEINGYRCSCPPGRAGPRCQEIVGFRSCWSRGTPFPHGSSWEDCNSCRCLDG
 RRDCSKVWCGWKPCLLAGQPEALSAQCPLGQRCLEKAPGQCLRPPCEAWGECEAEEPPST
 PCLPRSGHLDNNCARLTLFNRDHVPQGTTVGAICSGIRSLPATRAVARDRLLVLLCDRAS
 SGASAVEVAVSFSPARDLPDSSLIQGAAHAIAVAAITQRGNSSLLLAVTEVKVETVVTGGSST
 GLLVPVLCGAFSVLWLACVVLCVWWTRKRRKERERSRLPREESANNQWAPLNPIRNPIER
 PGGHKDVLYQCKNFTPPPRAADEALPGPAGHAAVREDEEDEDLGRGEEDSLEAEKFLSHK
 FTKDPGRSPGRPAHWASGPKVDNRAVR SINEARYAGKE

Figure 9

MRSPRTRGRPGRPLSLLALLCALRAKVC GASGQFELEILSMQN VNGELQNGNCCGGVRN
 PGDRKCTRDEC DTYFKVCLKEYQSRTAGGPCSFGSGSTPVIGGNTFNLKASRGNDRNRI
 LPFSFAWPRS YTLVEAWDSSNDTIQPDSIEKASHSGMINPSRQWQTLKQNTGIAHF
 VTCDDHYYGFGCNKFCRPRDDFFGHYACDQNGNKTCMEGWMGPDCNKAICRQGCSPKH
 GSCKLPGDCRCQYQWQGLYCDKCIPH PGCVHGT CNEPWQCLCETNWGGQLCDKDLNYC
 GTHQPCLNRGTCNTGPDKYQCSCPEGYSGPNCEIAEHACLSDPCHNRGSCKETSSGFECE
 CSPGWTGPTCSTNIDDCSPNNCSHGGTCQDLVNGFKCVCPPQWTGKTCQLDANECEAKPC
 VNARSCKNLIASYYCDCLPGWMQNC DININDCLGQCQNDASCRDLVNGYRCICPPGYAG
 DH CERDIDEASNPCLNGGHQCNEINRFQCLCPTGFSGNLCQLDIDYCEPNPCQNGAQCY
 RASDYFCKCPEDYEGKNC SHLKDHCR TTCEVIDSCTVAMASNDTPEGVRYISSNVCGPHG
 KCKSQSGGKFTCDCNKGFTGYCHENINDCESNPCKNGGT CIDGVNSYKCICSDGWE
 GAHCENNINDCSQNPCHYGGTCDLVNDFYCDCKNGWKGKTCHSRDSQCDEATCNGGTCY
 DEVDTFKCMCPGGWEGTTCNIARNSSCLPNPCHNGGTCVVNGDSFTCVCKEGWE
 PICTQNTNDCSPHPCYNSGTCVDGDNWYRCECAPGFAGPDCRININECQSSPCAFGATC
 VDEINGYQCICPPGHSGAKCHEVSGRSCITMGRVILDGAKWDDDCNTCQCLNGRVAC
 SKVWCGPRPCRLHKSHNECPSGQSCIPVLDQCFVRPCTGVGE
 CRSSSLQPVTKCTSDSYYQDN CANITFTFNKEMMSPGLTTEH
 ICSELRNLNILKNSAEYSIYIACEPSLSANNEIHVAISAEDIRDDGNP
 VKEITDKIIDLVSKRDGNSSLIAAVAEVRVQRRPLKNRTDFLVPLLSSVLT
 VA WVCC LVTAFYWCVRKRRKPSSHTSAPEDNTTNVREQLNQIKNPIEKHGANT
 VPIKYENKNSKMSKIRTHNSEVEEDMDKHQQKVRFAKQPVYTLVDREEKAPS
 GTPTKHPNWTNKQDN RDLESAQSLNRMEYIV

Figure 10

TCGAGGCGGCGATGCAGGGCACGCCGGCTGGGGACGCC
 ACTGGTTCTGTGCGTGAGCGACGCCATGGGCTATT
 CGAGCTGAGCTGAGC

GCGCTGCGAACGTGAACGGGGAGCTGCTGAGCGGCCCTGCTGTGACGGCGACGGC
CGGACGACGCGCGCGGGGGCTGCGGCCGACGAGTGCACACGTACGTGCGCGTG
TGCCTTAAGGAGTACCAGGCCAAGGTGACGCCACGGGCCCTGCAGCTACGGCTACG
GCGCACGCCGTGCTGGCAACTCCTCTACCTGCCGCCGGCGCTGCGGG
GGACCGAGCGCGCGCGGTCTCGGACCCGGCCACCAGGACCCGGCCTCGTCGTC
ATTCCCTTCAGTCGCCTGGCCGCTTCAACCTCATCGTGGAGGCCTGGACTG
GGACAATGACACCCTCAGATGAGGAGCTGCTGATTGAGCGGGTGTGACGCTGGC
ATGATCAACCCGAGGACCGCTGGAAGAGCCTGCACTCAGCGGCCACGTGGCACACC
TGGAGCTGCAGATCCGAGTGCCTGTGATGAGAACTACTACAGTGCACCTGCAACAA
GTTCTGCCGGCCCCGCAACGACTTCTTGGCCACTATACCTGCGACCAGTACGGCAACA
AGGCCTGCATGGATGGCTGGATGGCAAAGAATGCAAAGAAGCCGTGTAAACAAAG
GATGTAATTGCTCCACGGGGATGCACTGTGCCTGGGAGTGCAGGTGCAGCTACGG
CTGGCAGGGCAAGTTCTGTGACGAGTGTCCCCTACCCCTGGCTGCGCATGGCAGCT
GTGTGGAGCCCTGGCACTGTGACTGTGAGGACCAACTGGGTGGCCTGCTGCGACAA
AGACCTGAACACTGTGGCAGGCCACCACCCCTGTGCAACGGGGTACCTGCATCAAT
GCTGAGCCTGACCAATAACCTCTGCGCCTGCCAGATGGCTACTTGGCAAGAACTGTG
AGCGGGCTGAGCACGCCTGTGCCTCCAACCCGTGTGCCAATGGGGCTCTGCCACGA
AGTGCCATCTGGCTTGAATGCCACTGTCCGTCAAGGATGGAGCGGACCCACCTGTGCG
CTCGACATTGATGAGTGTGCCTCTAACCCATGTGCAAGCGGGTGGTACCTGCGTGGATCA
GGTGGACGGCTCGAGTGCATCTGCCGGAGCAGTGGTGGGGCTACTGCCAGCTG
GACGCCAATGAGTGTGAAGGGAAGCCGTGCCTTAATGCTTTCTGCAAAAACCTGAT
TGGCGGCTATTACTGTGATTGCCTCCCAGGCTGGAAGGGCATCAACTGCCAAATCAAC
ATCAACGATTGTCATGGGCAGTGTCAAGCATGGGGCACCTGCAAGGACCTGGTCAATG
GGTACCAAGTGTGTGCCCCGGGGCTTGGAGGTGCCATTGCGAACTAGAGTACGA
CAAGTGTGCCAGCAGCCCCCTGCCGCCGGGTGGCATCTGCGAGGACCTGGTGGATGGC
TTCCGCTGCCACTGCCAACGGGGCCTCTGGTATATGTGGCCCTCACGGGACTGCCATTG
CTGTGAACCAAGCCCTGCCTCAACGGTGCCTGCTACAAACCTGAGGGTGA
ACTGCGCCTGCCAGAAGACTTGGTGGCAAGAACTGCTCAGTGCCTGCCAGGGACACATG
CCCTGGCGGGGCATGTAGAGTGATCGATGGCTGCGGGTTCGAGGCAGGGTCCAGGGCA
CGCGGTGTGCACTGCCAACGGGGCCTCTGGTATATGTGGCCCTCACGGGACTGCCATTG
GGGAAACTCTCCTGCATCTGTGACAGCGGCTTCACAGGACACTGCCATTG
ATTGACGACTGCATGGGCCAGCCCTGCCAACGGGGCACGTGCATTGACGAAGTGG
ACTCCTTCCGCTGCTTCTGCCAACGGGGCAGTGGCTGGGAAGGAGAACTCTGTGACATCAATCCC
AACGACTGCCTCCCCAACGGGGCCTGCCACAGCCGGCCGCTGCTATGACACTGGTCAATG
ACTTCTACTGTGCCTGTGACGATGGCTGGGAAGGGCAAGACACTGCCACTACCG
CCAGTGTGACGCCTACACCTGCAGCAACGGTGGCACATGCTATGACAGCGGCGACACC
TTCCGCTGCGCGTGCCTCCGGCTGGAAGGGCAGCACCTGCACCATGCCAAGAAC
GCAGCTGTGCCCCAATCCCTGTGAATGGAGGCACCTGCGTGGTAGCGGAGACTC
TTTCTCCTGCATCTGCCGGATGGCTGGAGGGCCGCACCTGCACACATAACACCAAT
GAUTGCAACCCCTCTGCCCTGCTATAACGGAGGCATCTGTGTTGATGGCGTCAACTGGT
CCGCTGCGAGTGTGCGCCTGGCTTGCAGCAACGGTGGCACATGCTATCAACATTGATGAGT
GCCAGTCCTGCCCTGTGCCTACGGAGCCACGTGTGGATGAGATCAACGGGTACCG
CTGCAGCTGCCAACGGTGGCTGGCCCCAGGTGCCAGGAAGTGGTCAATTACG
AGGCCCTGCTGGTCCCAGGGAAATGCTCTCCGCATGGGAGTTGAGCAAGGTATGGTGC
GCAACAGCTGCCCTGCCCTGGATGGCCACCGGGATTGTAGCAAGGTATGGTGC
GAAGCCTGCCCTGCTCTGGTCAGCCCAGCGATCCGAGTGCCTGAGGAGTGGGAGACT
CAGCAATGTCAGGAGAAGGCCGTGGTCAGTGCTGCAGCCACCCCTGTGAGAAGTGG
GGGAGTGTACAGCGGAGGAGCCTGCCCCAGCACCCCTGTCAAGGCCACGGAGCAG
TCATTGGACAACAACACTGTGCCGACTCACACTGCGCTTCAACCGTATCAAGTGCCTC
AGGGCACCAACCGTGGCGCTATCTGCTCTGGAAATCCGAGCCTGCCACCGAGGGC
GGCGGCACACGACCGCCTCCCTGCTGCTTGTGATCGAGCATTGCCACGGAGGTG
CTGTGGAGGTGGCTATGTCTTCAGCCCTGCAAGGGACCTGCCATGACAGCAGCCTGATC

Figure 11 .

MLCDKDLNYCGSHHPCVNGGTCINAEPDQYLCACPDCYLGKNCERAEHACASNPCANG
SCHEVPSGFECHCPSGWSGPTCALDIDECAASNPCAAGGTCVDQVDGFECICPEQWVGATC
QLDANECEGKPCLNAFSCKNLIGGYYCDCLPGWKGINCQITINDCHGQVSAWGHLQGPVN
GYQCVCPRGFGRHCELEYDKCASSPCRRGGICEDLVDGFRCHCPRGLSGLHCEVDMMDLC
EPSPCFNGVRCYNLEGDYYCACPEDFGGKNCSVPRDTCPGGACRVIDGCGFEAGSRARGV
APSGICGPHGHCVSLPGGNFSCICDSGFTGTYCHENIDDCMGQPCRNGGTCIDEVDSFRCFC
PSGWEGELCDINPNDCLPDPCHSRGRCYDLVNDFYCACDDGWKGTCHSREFQCDAYTC
SNGGTCYDSGDTFRCACPPGWKGSTCTIAKNSSCVPNPCVNGGTCVGSGDSFSCICRDGWE
GRTCTHNTNDCNPLPCYNGGICVDGVHWFACECAPGF

Figure 12

GAAGGCCATGGTCTCCCCACGGATGTCCGGGCTCCTCTCCCAGACTGTGATCCTAGCGC
TCATTTCCCTCCCCCAGACACGGCCCGCTGGCGTCTCGAGACTGCAGATCCACTCTTC
GGGCCGGGTCCAGGCCCTGGGGCCCCCGCGGTCCCCCTGCAGCGCCCAGCTCCCTGCC
GCCTCTTCTTCAGAGTCTGCCTGAAGCCTGGGCTCTCAGAGGAGGCCGAGTCCCCG
TGCGCCCTGGCGCGCGCTGAGTGCACGGGACCGGTCTACACCGAGCAGCCCAG
CGCCCGCGCCTGATCTCCACTGCCCGACGGGCTCTTGCAGGTGCCCTCCGGGACG
CCTGGCCTGGCACCTCTTCATCATCGAAACCTGGAGAGAGAGGAGTTAGGAGACCA
GATTGGAGGGCCCGCCTGGAGCCTGCTGGCGCGCGTGGCTGGCAGGGCGCTGGCA
GCCGGAGGCCCGTGGGCCCGGCATTCAAGCGCGCAGGCCCTGGGAGGCTGCGCTCTC
GTACCGCGCGCTGCGAGCCGCTGCCGTGGGACCGCGTGCACGCCCTGCCGT
CCGCGCAGCGCCCCCTCGCGGTGCGGTCCGGACTGCCCTGCCGACCGCTCGAGG
ACGAATGTGAGGCGCCGCTGGTGTGCCGAGCAGGCTGCAGCCCTGAGCATGGCTCTG
TGAACAGCCCGGTGAATGCCGATGCCTAGAGGGCTGGACTGGACCCCTGCACGGTC
CCTGTCTCCACCAAGCAGCTGCCTCAGCCCCAGGGGCCGTCCCTTGCTACCACCGGATG
CCTTGTCCCTGGGCCTGGGCCCTGTGACGGGAACCCGTGTGCCAATGGAGGCAGCTGT
AGTGAGACACCCAGGTCCCTTGAATGCACCTGCCCGCGTGGGTTCTACGGGCTGCCGT
GTGAGGTGAGCGGGGTGACATGTGCAGATGGACCCCTGCTAACGGCG

GCTTGTGTGTCGGGGTGCAGACCCTGACTCTGCCATCTGCCACTGCCACCTGGTTCCAAGGCTCCAACGTGAGAAGAGGGTGGACCGBTGCAGCCATGCCGCAATGGCGGACTCTGCCCTGGACCGGGCACGCCCTGCGCTGCCGCTGCCGCCGGCTTCGCGGTCTCGCTGCGAGCACGACCTGGACGACTGCGCGGGCCGCGCTGCGCTAACGCGGCACGTGTGGAGGGCGGCGCAGCGCAGCGACCCGTGCGCCGCGCCCTGTGCTCACGGCGGCCGACTGCCGCGAGCGCAGCGACCCGTGCGCCGCGCCCTGTGCTCACGGCGGCCGCTGCTACGCCACTTCTCCGGCTCGTCTGCGCTTGCGCTCCGGCTACATGGAGCGCGGTGTGAGTTCCCAGTGCACCCGACGGCGCAAGCGCCTGCCCGCGCCCGCCCGCCGGCTCAGGCCCTCAGCGCTACCTTTGCCTCCGGCTCTGGGACTGCTCGTGGCCGGCTGGGCTGGCTCGCTTGTGCTGGTCCACGTGCGCCGCCGTGGCACACTCCCAGGATGCTGGGTCTCGCTTGCTGGGACCCGGAGCCGTAGTCCACGCACTCCCAGGATGCACTCAACAACCTAACGGACGCAGGAGGGTTCCGGGATGGTCCGGCTCGTCCGTAGATTGGAATGCCCTGAAGAGATGTAGACCCCTCAAGGGATTATGTCATATCTGCTCCTTCCATCTACGCTCGGAGGTAGCGACGCCCTTTCCCCCGCTACACACTGGCGCGCTGGGAGAGGAGCACCTGCTTTCCCTACCCCTCCTGATTCTGTCCGTGAAATGAATTGGGTAGAGTCTCTGGAAGGTTAACGCCCATTTCAGTTCTAACTTACTTTCATCCTATTTCATCCCTTTACGTTTGAGCTACCTGCCATCTCTCTT

Figure 13

MVSPRMSGLLSQTVILALIFLPQTRPAGVFELQIHSFGPGPGAPRSPCSARLPCRLFFRVC
LKPGLEEEAAESPCALGAALSARGPVYTEQPGAPAPDLPLPDGLLQVPFRDAWPGBTFSIIE
TWREELGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQRAGAWELRFSYRARCEPPAVG
TACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTG
PLCTVPVSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLR
CEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLC
LDLGHALRCRCRAGFAGPRCEHLDCCAGRACANGTCVEGGGAHRCSCALFGGRDCR
ERADPCAARPCAHHGRCYAHFSLVVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPG
DPQRYLLPPALGLLVAAGVAGAALLLVHVRGGHSQDAGSRLLAGTPEPSVHALPDALNN
LRTQEKGDGPSVDWNRPEDVDPQGIYVISAPSIYAREVATPLFPPLHTGRAGQRQHLLF
PYPSILSVK

Figure 14

AAACCGAACGGGGCCAACTTCTGGGGCTGGAGAACGGAAACGAAGTCCCCCG
GTTTCCGAGGTGCCTTCCTCGGGCATCCTGGTTCTGGCGACTCGCAGGGCGGA
TATAAAGAACGGCGCTTGGGAAGAGGGCGAGACCGGCTTAAAGAAAGAACGCTTG
GTCCTCGGCTTGGCGAGGCAAGGGCGAGGCAGGGCGCTTCTGCCACGCTCCCC
TGGCCCTACGATCCCCCGCGTCCGCCGCTGTTCTAACGGAGAGAACGAGTGGGGCC
CAGGCTCGCGTGGAGCGAACGATGGCAGTCGGTGCAGCTGGCCCTGGCGT
GCTCTGGCCTTGCTGTCAAGGTCTGGAGCTCTGGGTGTTGAACTGAAGCTGCAGG
AGTCGTCAACAAGAACGGGCTGCTGGGAACCGCAACTGCTGCCGGGGCGCG
GGCCACCGCCGTGCGCCTGCCGACCTCTCCCGTGTGCCTCAAGCACTACCGCCA
GCGTGTCCCCGAGCCGCCCTGCACCTACGGCAGCGCCGTACCCCGTGTGGCGT
CGACTCCTCAGTCTGCCGACGGCGGGCGCCACTCCGCGTTCAGCAACCCATC
CGCTTCCCTCGGCTTCACCTGGCGGGCACCTCTCTGATTATTGAAGCTCTCC
ACACAGATTCTCCTGATGACCTCGAACAGAAAACCCAGAAAGACTCATCAGCCGCT
GGCCACCCAGAGGCACCTGACGGTGGCGAGGAGTGGTCCAGGACCTGCACAGCAG
CGGCCGACGGACCTCAAGTACTCTACCGCTCGTGTGACGAACACTACTACGGAG
AGGGCTGCTCCGTTCTGCCGTCCCCGGGACGATGCCCTGGCCACTCACCTGTGGG
GAGCGTGGGAGAACGTGTGCAACCCTGGCTGGAAAGGGCCACTGACAGAGCCG

ATCTGCCTGCCTGGATGTGATGAGCAGCATGGATTGTGACAAACCAGGGGAATGCA
AGTGCAGAGTGGGCTGGCAGGGCCGGTACTGTGACGAGTGTATCCGCTATCCAGGGCTG
TCTCCATGGCACCTGCCAGCAGCCCTGGCAGTGCAACTGCCAGGAAGGGCTGGGGGGC
CTTTCTGCAACCAGGACCTGAACACTGCACACACCATAAGCCCTGCAAGAATGGAG
CCACCTGCACCAAACACGGGCCAGGGAGCTACACTTCTGCCGGCTGGGTACACA
GGTGCCACCTGCGAGCTGGGATTGACGAGTGTGACCCCAGCCCTGTAAGAACGGAG
GGAGCTGCACGGATCTCGAGAACAGCTACTCCTGTACCTGCCACCCGGCTTACCGG
AAAAATCTGTGAATTGAGTGCCATGACCTGTGCAGGCCCTTGCTTAACGGGGTC
GGTGCAGACAGCCCCGATGGAGGGTACAGCTGCCGCTGCCCTGGCTACTCCGG
CTTCAACTGTGAGAACAGAAAATTGACTACTGCAGCTCTCACCCCTGTTAATGGTGCCA
AGTGTGGACCTCGGTGATGCCTACCTGTGCCGCTGCCAGGCCGGCTTCGGGAG
GCACTGTGACGACAACGTGGACGACTGCCCTCCCCGTGCCAACGGGGCACC
TGCCGGGATGGCGTGAACGACTTCTCCTGCACCTGCCCGCTGGCTACACGGGCAGGA
ACTGCAGTCCCCCGTCAGCAGGTGCGAGCACGCACCCGCCACAATGGGCCACCTG
CCACCAGAGGGCACGGCTATGTGTGCGAATGTGCCGAAGCTACGGGGTCCAACT
GCCAGTTCTGCTCCCCGAGCTGCCCGGCCAGCGGTGGACCTCACTGAGAA
GCTAGAGGGCCAGGGCGGCCATTCCCTGGGTGGCGTGTGCCGGGTATCCTG
TCCTCATGCTGCTGGCTGTGCCGCTGTGGTGGTCTGCGTCCGGCTGAGGCTGCAG
AAGCACCGGCCCCAGCCGACCCCTGCCGGGGAGACGGAGACCATGAACAAACCTG
GCAACTGCCAGCGTGAGAACGACATCTCAGTCAGCATCATGGGCCACGCAGATCAA
AACACCAACAAAAGCGGACTTCCACGGGACCAAGCGCCGACAAGAATGGCTTC
AAGGCCGCTACCCAGCGGTGGACATAACCTCGTGCAGGACCTCAAGGGTGACGACAC
CGCCGTCAGGGACGCGCACAGCAAGCGTGACACCAGTGCCAGCCCCAGGGCTCCTCAG
GGGAGGAGAACGGGACCCGACCACACTCAGGGTGGAGAACATCGAAAGAAAAAA
GGCCGGACTCGGGCTTTCAACTCAAAAGACACCAAGTACCAAGTCGGTGTACGT
ATCCGAGGAGAACGGATGAGTGCCTCATAGCAACTGAGGTGTAAAATGGAAGTGAGAT
GGCAAGACTCCCGTTCTCTAAAATAAGTAAAATTCCAAGGATATATGCCCAACGAA
TGCTGCTGAAGAGGGAGGGAGGCCTCGTGGACTGCTGCTGAGAAACCGAGTTCAGACCG
AGCAGGTTCTCCCTGAGGTCCCTCGACGCCCTGCCACAGCCTGTCGCCGGCCGC
CTGCCGGACTGCCCTCCGTGACGTCGCCGTTGCACATGGACAGTTGCTCTTAAGAGAA
TATATATTAAAATGGGTGAACACTGAATTACGCCTAAGAACGATGCACGTGCCTGAGTGTAT
ATTTGGATTCTATGAGCCAGTCTTCTTGAATTAGAAACACAAACACTGCCCTTATT
GTCCTTTGATACGAAGATGTGCTTTCTAGATGGAAAAGATGTGTGTTATTTGG
ATTTGTAAAAATATTTCATGATATCTGTAAAGCTGAGTATTTGTGATGTTCGTTT
TTATAATTAAAATTGGTAAATATGTACAAAGGCACCTCGGGTCTATGTGACTATATT
TTTTGTATATAAAATGTATTATGGAATTGTGCCAATGTTATTGAGTTTTACTGT
TTGTTAATGAAGAAATTCCCTTTAAAATATTTCCAAAATAAATTATGAGGAATT

Figure 15

MGSRCALALAVSALLCQVWSSGVFELKLQEJVNKKGLLGNRNCRGAGPPPCACRTFF
RVCLKHYQASVSPEPPCTYGSAVTPVLGVDSFSLPDGGGADSAFSNPIRFPFGFTWPGBTFSI
IEALHTDSPDDLATEPERLISRLATQRHLTVGEEWSQDLHSSGRTDLKYSYRFVCDEHYY
GEGCSVFCRPRDDAFGHFTCGERGEKVCNPGWKGPYCTEPICLPGCDEQHGFCDKPG
CRVGWQGRYCDECIRYPGCLHGTCQQPWQCNCQEGWGGLFCNQDLNYCTHHKPCNGA
TCTNTGQGSYTCSCRPGYTGATCELGIDECDPSPCKNGGSCTDLENSYSCTCPPGFY
KICELSAMTCADGPCFNGGRCSDSPDGGYSCRCPVGYSGFNCEKKIDYC
CSSSPCSNGAKCVDLGDAYLCRCQAGFSGRHCDDNVDDCASSPCANG
GTCRDGVNDFSCTCPPGYTGRNCSAPVSRCEHAPCHNGATCHQR
GHGYVCECARSYGGPNCQFLPELPPGPAAVVVDLTEKLEGQGGPFP
WVAVCAGVILVLMLLLGC
AAVVVCVRLRLQKHRPPADPCRGETETMNNLANCQREKDIS

VSIIGATQIKNTKKADFHGDHSADKNGFKARYPAVDYNLVQDLKGDDTAVRDAHSKRD
TKCQPQGSSGEEKGTPTLRGGEASERKRPDSCSTSNDKYQSIVVISEEKDECVIATEV

Figure 16

ATGGCGGCAGCGTCCCGGAGCGCCTCTGGCTGGCGCTACTGCTGCTGGCACTTT
GGCAGCAGCGCGCCGGCTCCGGCGTCTCCAGCTGCAGCTGCAGGAGTTCATCAA
CGAGCGCGCGTACTGCCAGTGGCGGCCCTGCGAGGCCGGCTGCCGGACTTCCTTC
CGCGTCTGCCCTAACGACTTCCAGGCCGTCTGCCCGGACCCCTGCACCTCGGGAC
GTCTCCACGCCGGTATTGGGCACCAACTCCTCGCTGTCCGGGACGACAGTAGCGGCG
GGGGCGCAACCCTCTCCAACTGCCCTCAATTACCTGCCGGTACCTCTCGCT
CATCATCGAAGCTTGGCACGCCAGGAGACGACCTGCGGCCAGAGGCCCTGCCACCA
GATGCACTCATCAGCAAGATGCCATCCAGGGCTCCCTAGCTGTGGTCAGAACTGGT
TATTGGATGAGCAAACCAAGCACCCCTACAAGGCTGCGCTACTCTACCGGGTCATCTGC
AGTACAACATACTATGGAGACAACGTCTCCGCCTGTGCAAGAACGCAATGACCACT
TCGGCCACTATGTGCCAGCCAGATGGCAACTTGTCCCTGCCCTGGACTGG
GAATATTGCCAACAGCCTATCTGTCTTCGGGCTGTGACAAACAGAACGGCTACTGCA
GCAAGCCAGCAGAGTGCCTCTGCCGCCAGGCTGGCAGGGCCGGCTGTGAAACGAATG
CATCCCCCACAATGGCTGTGCCACGGCACCTGCAGCACTCCCTGGCAATGTACTTGT
ATGAGGGCTGGGAGGCCTTTGTGACCAAGATCTCAACTACTGCACCCACCACTC
CCCATGCAAGAACGGCAACGTGCTCCAACAGTGGCAGCGAACAGCTACACCTGCACC
TGCGCCAGGCTACACTGGTGTGGACTGTGAGCTGGAGCTCAGCGAGTGTGACAGCA
ACCCCTGCGCAATGGAGGCAGCTGTAAGGACCAGGAGGATGGCTACCAACTGCCGTG
TCCTCCGGGCTACTATGGCCTGCATTGTGAAACACAGCACCTTGAGCTGCGCCACTCCC
CCTGCTTCAATGGGGCTCCTGCCGGAGCGAACCCAGGGGCCACTATGCTGTGA
ATGTCCCCCAACTTCACCGCTCCAACGTGAGAACAGAAAGTGGACAGGTGCACCAGC
AACCCCTGCGAACAGGGGACAGTGCCTGAACCAAGGTCCAAGCCGATGTGCCGTG
CCGTCCTGGATTCACGGCACCTACTGTGAACTCCACGTGAGCTGTGCCGTAAACC
CTTGCGCCCACGGTGGCAATTGCCATGACCTGGAGAACGGCTCATGTGACCTGCC
TGCGGCTCTGGCGACGCTGTGAGGTGCGGACATCCATCGATGCCTGTGCCCTGA
GTCCCTGCTCAACAGGGCACCTGCTACACCGACCTCTCCACAGAACACCTTGTG
AACTGCCCTATGGCTTGTGGCAGCCGCTGCGAGTTCCCCGTGGCTGCCGCCAG
CTTCCCTGGGTGGCGTCTCGCTGGGTGTGGGCTGGCAGTGCTGCTGGTACTGCTGG
GCATGGTGGCAGTGGCTGTGCGGAGCTGCGGCTTCGACGGCCGGACGACGGCAGCAG
GGAAGCCATGAACAAACTGCGACTTCCAGAACGGACAACCTGATTCCGCCAGC
TTAAAAACACAAACCAGAACAGAAGAAGGAGCTGGAAGTGGACTGTGGCTGGACAAGTCCA
ACTGTGGCAACAGCAAAACCACACATTGGACTATAATCTGGCCCCAGGGCCCTGGGG
CGGGGGACCATGCCAGGAAGTTCCCCACAGTGACAAGAGCTTAGGAGAGAACGGCG
CACTGCGGTTACACAGTGAAAAGCCAGAGTGCGGATATCAGCGATATGCTCCCCAGG
GACTCCATGTACCAAGTCTGTGTTGATATCAGAGGAGAGGAATGAATGTGTCATTGC
CACGGAGGTATAA

Figure 17

MAAASRSASGWALLLVVALWQQRAAGSGVFQLQLQEFINERGVLASGRPCEPGCRTFFRV
CLKHFAQVSPGPCTFGTVSTPVLGTSFAVRDDSSGGGRNPLQLPFNFTWPGTFSLIIEAW
HAPGDDLRLPEALPPDALISKIAIQGSLAVGQNWLDEQTSTLTRLRYSYRVICSDNYYGDN
CSRLCKKRNDHFHYVCQPDGNLSCLPGWTGEYCQQPICLSGCHEQNGYCSKPAECLCRP
GWQGRLCNECIPHNGCRHGTCTPWQCTCDEGWGGLFCDQDLNYCTHSPCKNGATCSN
SGQRSYTCTCRPGYTGVDCLELSECDSNPCRNGGSCKDQEDGYHCLCPPGYYGLHCEHS
TLSCADSPCFNGGSCRERNQGANACECPNFTGSNCEKKVDRCTSNPCANGQCLNR

GPSRMCRCPGFTGYCELHVSDCARNPCAHHGTCHDLENGMCTCPAGFSGRRCEVRTS
IDACASSPCFNATCYTDLSTDTCVNCPYGFVGSRCEFPVGLPPSFPWVAVSLGVGLAVLL
VLLGMVAVA VRQLRLRPDDGSREAMNNLSDFQKDNLIPAAQLKNTNQKKELEVDCGLD
KSNCGKQQNHTLDYNLAPGPLRGTMMPGKFPHSDKSLGEKAPRLHSEKPECRISAICSPR
DSMYQSVCLISEERNECVIATEV

Figure 18

CTCGCAGGCTAGGAACCCGAGGCCAAGAGCTGCAGCAAAGTCACTGGGTGCAGTGT
ACTCCCTCACTAGCCCCCTCGAGACCCTAGGATTGCTCCAGGACACGTACTTAGAGCA
GCCACCGCCCAGTCGCCCTCACCTGGATTACCTACCGAGGCATCGAGCAGCGGAGTT
TTGAGAAGGCGACAAGGGAGCAGCGTCCCAGGGAAATCAGCTTCAGGAACCTCGGCT
GGCAGACGGGACTTGCGGGAGAGCGACATCCCTAACAAAGCAGATTGGAGTCCCAGA
GTGGAGAGGACACCCCAAGGGATGACGCCCTGCCTGGAGCGCCTGCGCTGGCGT
ACTGCTGCTGGCGGTACTGTGGCCGCAGCAGCGCGCTGCAGGGCTCCGGCATCTCCAG
CTGCGGCTGCAGGAGTTCGTCAACCAGCGCGGTATGCTGGCCAATGGCAGTCCTGCG
AACCGGGCTGCCGGACTTCTCGCATTGCCTTAAGCACTCCAGGAACCTCTCC
GAGGGACCCTGCACCTTGGCAATGTCTCCACGCCGGTATTGGCACCAACTCCTCGT
CGTCAGGGACAAGAATAGCGGCAGTGGTCGCAACCCTCTGCAGTTGCCCTCAATTTC
ACCTGGCCGGGAACCTCTCACTCAACATCCAAGCTTGGCACACACACCAGGAGACGACC
TGCAGGCCAGAGACTCGCCAGGAAACTCTCTCATCAGCAAATCATCCAAAGGCTC
TCTTGCTGTGGGTAAGATTGGCGAACAGACGAGCAAATGACACCCTCACCAAGGACTG
AGCTACTCTACCGGGTCATCTGCAGTGACAACACTATGGAGAGAGCTGTTCTCGCCT
ATGCAAGAAGCGCGATGACCACCTCGGACATTATGAGTGCCAGCCAGATGGCAGCCTG
TCCTGCCTGCCGGCTGGACTGGAAAGTACTGTGACCAGCCTATATGCTTTCTGGCTG
TCATGAGCAGAATGGTTACTGCAGCAAGCCAGATGAGTGACATCTGCCGTCCAGGTTGG
CAGGGTCGCCTGTGCAATGAATGTATCCCCCACAATGGCTGTGTCATGGCACCTGCA
GCATCCCCTGGCAGTGTGCCTGCGATGAGGGATGGGAGGTCTGTTGTGACCAAGA
TCTCAACTACTGTACTCACCACTCTCCGTGCAAGAATGGATCAACGTGTTCCAACAGTG
GGCCAAAGGGTATACTGCACCTGTCTCCAGGCTACACTGGTGAGCACTGTGAGCT
GGGACTCAGCAAGTGTGCCAGCAACCCCTGCGAAATGGTGGCAGCTGTAAGGACCAG
GAGAATAGCTACCACTGCCTGTGCCCCAGGCTACTATGGCCAGCACTGTGAGCATA
GTACCTTGACCTGTGCCGACTCACCTGCTCAATGGGGCTCTGCCGGAGCGCAAC
CAGGGTCCAGTTATGCCTGCGAATGCCAAAAACTTACCGGCTCTAAGTGTGAGAA
GAAAGTAGACAGGTGTACCAAGCAACCGTGTGCCAATGGAGGCCAGTGCCTGAACAG
AGGTCCAAGCCGAACCTGCCGCTGCCGGCTGGATTCACAGGCACCCACTGTGAACAG
CACATCAGCGATTGTGCCCGAAGTCCCTGTGCCACGGGGCACTGCCACGATCTGG
AGAATGGGCCTGTGACCTGCCCTGGCTCTGGCAGGCGCTGCGAGGTGCG
GATAACCCACGATGCCTGTGCCCTGGACCCCTGCTCAATGGGCCACCTGCTACACTG
GCCTCTCCCCAAACAACCTCGTCTGCAACTGTCTTATGGCTTGAGGCCAGCGCTGC
GAGTTCCCGTGGCTTGCACCCAGCTCCCTGGTAGCTGTCTCGCTGGCGTGG
GCTAGTGGTACTGCTGGTGTGCTGGCATGGTGGTAGTGGCTGTGCCAGCTGCC
TTCGGAGGCCGATGACGAGAGCAGGGAAAGCCATGAACAAATCTGCAGACTCCAGAA
GGACAACCTAACCTGCCGCCAGCTCAAAAACACAAACCAGAAGAAGGAGCTGGA
GTGGACTGTGGTCTGGACAAGTCCAATTGTGGCAAACACTGCAGAACACACATTGGACT
ACAATCTAGCCCCGGACTCCTAGGACGGGCAGCATGCCCTGGAAAGTATCCTCACAG
TGACAAGAGCTTAGGAGAGAAGTGCCACTCGGTTACACAGTGAGAAGCCAGAGTGTG
GAATATCAGCCATTGCTCTCCAGGGACTCTATGTACCAATCAGTGTTGATATCA
GAAGAGAGGAACGAGTGTGATTGCCACAGAGGTATAAGGCAGAGCCTACTCAGAC
ACCCAGCTCCGGCCAGCAGCTGGCCTTCTGCATTGTTACATTGCATCCTGT
ATGGGACATCTTAGTATGCACAGTGCTGCTGCGAGGAGGAGGAAATGGCATGAA
CTGAACAGACGTGAACCCGCCAAGAGTTGCACCGGCTCTGCACACCTCCAGGAGTCTG

CCTGGCTTCAGATGGGCAGCCCCGCAAGGGAACAGAGTTGAGGAGTTAGAGGAGCAT
CAGTGAGCTGATATCTAAGGTGCCTCTCGAACATTGGACTTGCTCTGCCAACAGTGGTC
ATCATGGAGCTCTGACTGTCTCCAGAGAGTGGCAGTGGCCCTAGTGGGTCTGGCGC
TGCTGTAGCTCCTGTGGGCATCTGTATTCCAAGTGCCTTGCCCAGACTCCATCC
TCACAGCTGGGCCAAATGAGAAAGCAGAGAGGAGGCTTGCAAAGGATAGGCCTCCC
GCAGGCAGAACGCCTGGAGTTGGCATTAAAGCAGGAGCTACTCTGCAGGTGAGGAAA
GCCCGAGGAGGGGACACGTGTGCTCCTGCCAACCCCCAGCAGGTGGGTGCCACCT
GCAGCCTCTAGGCAAGAGTTGGCCTTCCCCTGGCCTGGTGCCTGGCTCATGTGA
ACAGATGGGCTTAGGGCACGCCCTTGCACAGGGTACAGGCCTCACTGGGGA
GCTCAGGGCCTTCATGCTAAACTCCAATAAGGGAGATGGGGGGAAGGGGGCTGTGC
CTAGGCCCTCCCTCCCTCACACCCATTGGGCCCTGAGCCTGGGCTCCACCAGTG
CCCACTGTTGCCCGAGACCAACCTGAAGCCGATTTCAAAAATCAATAATATGAGGT
TTTGTGTTGAGTTATTGGAACTAGTATTGATAATTAAAGAATCAGAAGCACTG
GCCTTCTACATTATAACATTATTGTATATAATGTGTTATAATATGAAACAGA
TGTGTACATAAAAAAAAAAAAAAAAAAAAAAA

Figure 19

MTPASRSACRWALLLAVLWPQQRAAGSGIFQLRLQEFVNQRGM LANGQSCEPGCRTFFR
ICLKHFQATESEGCTFGNVSTPVLGTNSFVRDKNSGRNPLQLPFNFTWPGTFSLNIQA
WHTPGDDLRPETSPGNLSLISQIIQGSLAVGKIWRTDEQNDTLTRLSYSYRVICSDNYYGES
SRLCKKRDDHFGHYECQPDGSLSCLPGWTGKYCDQPICLSGCHEQNGYCSKPDECICRPG
WQGRLCNECIPHNGCRHGTCSIPWQCACDEGWGLFCDDQDLNYCTHSPCKNGSTCSNS
GPKGYTCTCLPGYTGEHCELGLSKCASNPCRNNGSCKDQENSYHCLCPPGYYGQHCEHST
LTCADSPCFNNGSCRERNQGSSYACECPPNFTGSNCEKKVDRCTSNPCANGGQCLNRGPSR
TCRCPGFTGTHCELHISDCARSPCAHGGTCHDLENGPVCTCPAGFSGRRCEVRITHDACA
SGPCFNGATCYTGLSPNNFVCNCPYGFVGSRCEFPVGLPPSFPPWVA VSLGVGLVVLLVLLV
MVVVAVRQLRLRRPDESREAMNNLSDFQKDNLIPAAQLKNTNQKKELEVDCGLDKSNC
GKLQNHTLDYNLAPGLLGRGSMPGKYPHSDKSLGEKVPLRLHSEKPECRISAICSPRDSMY
QSVCLISEERNECVIATEV

Figure 20

Western blot analysis of Notch 2 expression in human germ cell tumour derived cell lines.

Western blot probed with antibody specific for the intracellular portion of human NOTCH2 and visualised using chemiluminescence. Lanes from left to right 1: BeWo, 2: TERA-1, 3: 833KE, 4: 2102 Ep 2A6, 5: 2102 Ep 4D3, 6: NTERA2/D1 8 days exposure to retinoic acid, 7: NTERA2/D1 EC cells. Molecular weight markers are indicated on the right in kDa. Notch2 protein product is visualized at apprx 100 kDa

Figure 21

Figure 22

AAACCCACTCCACCTTACTACCAGACAACCTAGCCAAACCATTACCCAAATAAAGT
ATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG
AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTCTGCATAATG
AATTAACTAGAAATAACTTGCAGGGAGAGTCAAAGCTAAGGCCCGAAACCAGGCG
AGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAG
ATTTATAGGTAGAGGCAGACAAACCTACCGAGCCTGGTAGCTGGTTGTCCAAGATA
GAATCTTAGTTCAACTTTAAATTGCCCACAGAACCCCTCTAAATCCCCTGTAAATTAA
ACTGTTAGTCCAAAGAGGAACAGCTCTTGGACACTAGGAAAAAACCTGTAGAGAGA
GTGTCAAGCCCAATTCCACACTTTCCACATGTTGGATGGCCTTGGAGTGGTAGCCATAA
GCATTTTGGAAATTCAACTAAAAACTGAAGGATCCTTGAGGACGGCAGTACCTGGCAT
ACCTACACAGTCAGCGTTCAACAAGTGTGCAAAGGTACATTGGGGCACTGGGGCA
CGAGTGATCTGTGACAATATCCCTGGTTGGTAGGCCGGCAGCGGCAGCTGTGCCAGC
GTTACCCAGACATCATGCGTTCAAGTGGACTGTACCAACCCCTGGACCAGGGACACACC
GTCTTGGCCGTGTCACTGCTAGAAGTAGCCGAGAGGCAGCTTTGTATATGCCATCTC
ATCAGCAGGGGTGATCCACGCTATTACTCGCGCCTGTAGCCAGGGTAACTGAGTGTG
TGCAGCTGTGACCCCTACACCCGTGGCGACACCAGTACCGAGCTGGACTTTGACT
GGGGTGGCTGCAGTGACAACATCCACTACGGTGTCCGTTGCCAAGGCCTCGTGGAT
GCCAAGGGAGAAGAGGGCTTAAGGATGCCGGCCCTCATGAACCTACATAATAACCGCT
GTGGTCGCACGGCTGTGCGGCGTTGTCAAGCTGGAGTGTAAAGTGCATGGCGTGAG
TGGTTCTGTACTCTGCGCACCTGCTGGCGTGCACCTCAGATTCCGCCACAGGTG
ATTACCTGCGCGACGCTATGATGGGGCTGTGCAAGGTGATGGCCACCCAAGATGGTGC
CAAACCTACCGCAGCCCCCAAGGCTATGCCGTGCCACCCGGAGTGTACTTGTCTACT
TTGACAACCTCCAGATTACTGTGTCTGGACAAAGGCTGCAAGGTTCCCTAGGCACTGCA
GGCCGTGTGCAGCAAGACATCAAAAGGAACAGACAGCGTTGTGAAATCATGTGCTGTG
GCCGAGGGTACGACACAACCTGAGTCACCCGTGTTACCCAGTGTGAGTGCAAATTCCA
CTGGTGCTGTGCTGACGGTGCAAGGAATGCAGAAATACTGTGGACGTCCATACTTGC
AAAGCCCCCAAGAAGGCAGAGTGGCTGGACCAGACCTGAACACACAGATACTCACT
CATCCCTCCAATTCAAGCCTCTCAACTCAAAAGCACAAGATCCTGCATGCACACCTTC
CTCCACCCCTCCACCCCTGGGCTGCTACCGCTTCTATTAAAGGATGTAGAGAGTAATCCAT
AGGGACCATTGGTGTCTGGCTGGCTTAGCCCTGGGAAGGAGTTGTCAAGGGATAT
AAGAAACTGTGCAAGCTCCCTGATTCCCGCTCTGGAGATTGAAGGGAGAGTAGAAG
AGATAGGGGGCTTTAGAGTGAAATGAGTTGCACTAAAGTACGTAGTTGAGGCTCCTT
TTTCTTCCTTGCAACAGCTCCGACACTTCTGGTGTGCAAGAGGAAGGGTACCT
GTAGAGAGCTTTGTTCTACCTGGCAAAGTTAGATGGGACAAAGATGAATGGC
ATGTCCCTCTGAAGTCCGTTGAGCAGAACTACCTGGTACCCGAAAGAAAAATCT
TAGGCTACCACATTCTATTATTGAGAGGCCTGAGATGTTAGCCATAGTGGACAAAGGTCC
ATTCACATGCTCATATGTTATAAAACTGTGTTGTAGAAGAAAAAGAATCATAACAAT
ACAAACACACATTCTCTCTCTCTACCAATTCTCAACCTGTATTGGACAGCA
CTGCCTCTTGCTTACTTGCTGCCTGTTCAAAGTGGAGGTGGAAATGCAGTGGTCCCATG
CTAACAGATCATTAAAACACCCCTAGAACACTCCTAGGATAGATTAAATGT

Fig 23

Figure 24

Dishevelled

GSK-3 β ,Axin,APC

TCF

Figure 25

Figure 26

ACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCGAACCGGCACGGTTCGTGGGGA
CCCAGGCTGCAAAGTGACGGTCATTTCTCTTCTCCCTCTGAGTCCTCTGAG
ATGATGGCTCTGGCGCAGCGGGAGCTACCCGGGTCTTGTGCGATGGTAGCGGCCGG
CTCTCGGCCGCCACCCCTCTGCTGGAGTGAGCGCCACCTGAACTCGGTTCTCAATTCC
AACGCTATCAAGAACCTGCCCGCACCGCTGGCGCGCTGCAGGGCACCCAGGCTCTG
CAGTCAGCGCCGCCGGGAATCCTGTACCCGGCGGGAAATAAGTACCAAGACCATTGA
CAACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCAGGCACTGATGAGTACTGC
GCTAGTCCCACCCGGAGGGACGCAGGCCTGCAAATCTGTCTCGCCTGCAGGAAGC
GCCGAAAACGCTGCATCGTCACGCTATGTGCTGCCCGGGATTACTGCAAAAATGG
AATATGTGTCTTGTGATCAAAATCATTCCGAGGAGAAATTGAGGAAACCATCACTG
AAAGCTTGGTAATGATCATAGCACCTGGATGGTATTCCAGAAGAACCACTTGTCT
TCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTTGTCTCCGGTCATCAGACT
GTGCCTCAGGATTGTGTTGCTAGACACTCTGGTCCAAGATCTGTAAACCTGTCTG
AAAGAAGGTCAAGTGTGTACCAAGCATAAGGAGAAAAGGCTCTCATGGACTAGAAATA
TTCCAGCGTTACTGTGGAGAAGGTCTGTCTGCCGGATACAGAAAGATCACCATCA
AGCCAGTAATTCTTAGGCTTCACACTGTAGAGACACTAAACAGCTATCCAAATG
CAGTGAACCTCTTATATAATAGATGCTATGAAAAACCTTTATGACCTTCATCAAAC
AATCCTAAGGATATACAAGTTCTGTGGTTCTGTTAAGCATTCCAATAACACCTTCAA
AAACCTGGAGTGTAAAGAGCTTGTCTTATGGAACCTCCCTGTGATTGCAGTAAATT
ACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAATGCAATGAAACTTTAATT
TTTTCTAAAGGTGCTGCACTGCCTATTTCCTCTGTTATGTAATTGTACACATT
GATTGTTATCTGACTGACAAATATTCTATATTGAACTGAAGTAAATCATTAGCTTA
TAGTTCTAAAAGCATAACCCTTACCCATTAAATTCTAGAGTCTAGAACGCAAGGAT
CTCTGGAAATGACAAATGATAGGTACCTAAATGTAACATGAAAATACTAGCTTATT
CTGAAATGTAATCTTAAATTATATTCCCTTAGGCTGTGATAGTTTGAA
AATAAAATTAAACATTAAATATCATGAAATGTTATAA

Figure 27

AGAAAGCGGGAGCCCGCGAGCGTAGCGCAAGTCCGCTCCCTAGGCATCGCTGCGC
TGGCAGCGATTGCGTCTTGTGAGTCAGGGACAACGCTCGGGGCAACTGTGAG
TGC CGGTGTGGGGACCTCGATTCTCAGATCTCGAGGATTGGTCCGGGACGTCT
CCTGATCCCCTACTAAAGCGCCTGCTAAGTTGAAAAGGAGCACTGTGTCCTGCAAAGT
TTGACACATAAAGGATAGGAAAAGAGAGAGAGAAAAGCAACTGAGTTGAAGGGAGAA
GGAGCTGATGCCGCCTGATCAATTAAAGAGGGAGAGTTAAACCGCCGAGATCCCGG
CGGGACCAAGGAGGTGCGGGGCAAGAACGGAAGCGGTGCGATCCACAGGGCTG
GGTTTCTGCACCTTGGGTACGCCTCCTGGCGAGAAAGCGCCTCGCATTGATTGC
TTCCAGTTATTGCAGAACTTCCTGCTCCTGGTGGAGAACGCGGTCTCGCTGGGTC
TAATTCTGCTGAGGCAGTGGACTGAGTTCATAGGGCCTGGTCCCCGAACCAGGA
AGGGTGAGGGAACACAATCTGCAAGCCCCCGGACCCAAGTGAGGGGCCCCGTGTTG
GGGCCTCCCTCCCTTGCATTCCCACCCCTCCGGGCTTGCCTGGTCTCCTGGGACCCCC
TCGCCGGGAGATGCCCGCGTTGATGCCAGCAAGGATTGCTGCTGCCTGCTCCTA
CTGGCCCGGGTGTGATGGTGGAGAGCTCACAGATCGGAGTCAGGCCAAACTCA
ACTCCATCAAGTCCTCTGGCGGGAGACGCCTGGTCAGGCCAACTCGATCTGC
GGGCATGTACCAAGGACTGGCATTGGCGGCAGTAAGAACGGCAAAAAACCTGGGCA
GGCCTACCCTGTAGCAGTGATAAGGAGTGTGAAGTTGGAGGTATTGCCACAGTCCC
CACCAAGGATCATGCCCTGCATGGTGTGCGAGAAAAAGAACGCTGCCACCGA
GATGGCATGTGCTGCCAGTACCCGCTGCAATAATGGCATCTGTATCCCAGTTACTGA
AAGCATCTAACCCCTCACATCCCCTGCTGGATGGTACTGGCACAGAGATCGAAC
CACGGTCATTACTCAAACCATGACTTGGGATGGCAGAATCTAGGAAGAACACACTA
AGATGTCACATATAAAAGGGCATGAAGGAGACCCCTGCCTACGATCATCAGACTGCAT
TGAAGGGTTTGCTGTGCTCATTCTGGACCAAAATCTGCAAACCAAGTGCTCCATC
AGGGGAAGTCTGTACCAAACAACGCAAGAACGGTCTCATGGCTGGAAATTCCA
GCGTTGCGACTGTGCGAAGGGCTGTCTGCAAAGTATGGAAAGATGCCACCTACTCC
TCCAAAGCCAGACTCCATGTGTCAGAAAATTGATCACCATTGAGGAACATCATCA
ATTGCAGACTGTGAAGTTGTATTAAATGCATTATAGCATGGTGGAAAATAAGGTTCA
GATGCAGAAGAACGGCTAAAATAAGAACGTGATAAGAACATAGATGATCACAAAAAA
GGGAGAAAGAAAACATGAACTGAATAGATTAGAACGGTGACAAATGCAGTGCAGCC
AGTGTTCATTATGCAACTTGTCTATGTAAATAATGTACACATTGTTGGAAAATGCTA
TTATTAAAGAGAACAGCACACAGTGGAAATTACTGATGAGTAGCATGTGACTTCCAA
GAGTTAGGTTGTGGAGGAGGGTTCTCAGATTGCTGATTGCTTATAACAAATA
ACCTACATGCCAGATTCTATTCAACGTTAGGTTAACAAAATCTCTAGAACAAACT
TGTTATACAATAGGTTCTAAAATAAGGAAATTACCTTTGATTGTAACACTACTCTGCTGTTCAATC
AAGAGTCTGGTAGATAAGAAAAAAATCAGTCAATATTCAAATAATTGCAAATAA
TGGCCAGTTAGGAAGGCCATTAGGAAGACAAATAACAAACAAACAGCCAC
AAATACTTTTTCAAAATTAGTTACCTGTAAATTAAAGAACACTGATACAAGAC
AAAAACAGTCCTCAGATTCTACGGAAATGACAGTATATCTCTTATCCTATGTGAT
TCCTGCTCTGAATGCATTATATTCTCAAACACTATACCCATAAAATTGTGACTAGTAAAAT
ACTTACACAGAGCAGAATTTCACAGATGGCAAAAAAAATTAAAGATGTCCAATATAT
GTGGGAAAAGAGCTAACAGAGAGATCATTATTCTAAAGATTGGCCATAACCTGTAT
TTGATAGAATTAGATTGGTAAATACATGTATTACATACATACTCTGTTGAGGAC
TTGAGCTGGACTGTACTGCACTGGAGTAAGCAAGAAAATTGGGAAAACCTTCTGTT
GTCAGGTTGGCAACACATAGATCATATGTCTGAGGCACAAGTGGCTGTTCATCT
TGAAACCAGGGATGCACAGTCTAAATGAATATGCATGGGATTGCTATCATAATA
TTTACTATGCAGATGAATTCACTGAGGTGAGGCTGTGTCGTAATCCTCAAATTATT
TTTATAGTGTGAGATCCTCAAATAATCTCAATTCACTGAGGTTCACAAAATGGACT

CCTGAAGTAGACAGAGTAGTGAGGTTCATTGCCCTATAAGCTCTGACTAGCCAAT
GGCATCATCCAATTTCCTCCAAACCTCTGCAGCATCTGCTTATTGCCAAAGGGCTA
GTTTCGGTTCTGCAGCCATTGCGGTTAAAAAATATAAGTAGGATAACTTGAAAACC
TGCATATTGCTAATCTATAGACACCAACAGTTCTAAATTCTTGAAACCACTTACTACT
TTTTTAAACTTAACTCAGTTCTAAATACTTGTCTGGAGCACAAAACAATAAAAGGTT
ATCTTATAGTCGTGACTTAAACTTTGTAGACCACAATTCACTTTAGTTCTTTA
CTTAAATCCCCTCTGCAGTCTCAAATTAAAGTTCTCCCAGTAGAGATTGAGTTGAGCC
TGTATATCTATTAAAAATTCAACTTCCCACATATATTACTAAGATGATTAAGACTTA
CATTTCCTGCACAGGTCTGCAAAAACAAAAATTATAAAACTAGTCCATCCAAGAACCAA
AGTTTGTATAAACAGGTTGCTATAAGCTTGGTCAAATGAAAATGGAACATTCAATCA
AACATTCTATATAACAATTATTATTTACAATTGGTTCTGCAATATTCTTAT
GTCCACCCCTTTAAAAATTATTATTGAAGTAATTATTACAGGAAATGTTAATGAGA
TGTATTCTTATAGAGATATTCTTACAGAAAGCTTGTAGCAGAATATATTGCAGCT
ATTGACTTTGTAATTAGGAAAAATGTATAATAAGATAAAATCTATTAAATTCTCC
TCTAAAAACTGAATTCAAAGC

Figure 28

ACACACAGGCGGCGGCTGCGGGCGCAGAGCGGAGATGCAGCGGCTGGGGCCACCC
GCTGTGCCTGCTGCTGGCGGCGGCGTCCCCACGGCCCCCGCGCCGCTCCGACGGCG
ACCTCGGCTCCAGTCAAGCCGGCCGGCTCTCAGCTACCCGCAGGAGGAGGCCACCC
TCAATGAGATGTTCCCGAGGTTGAGGAAGTGTGGAGGACACGCAGCACAAATTGCG
CAGCGCGGTGGAAGAGATGGAGGCAGAAGAAGCTGCTGCTAAAGCATCATCAGAAAGT
GAACCTGGCAAACCTACCTCCCAGCTATCACAATGAGACCAACACAGACACGAAGGTT
GGAAATAATACCATCCATGTGCACCGAGAAATTACAAGATAACCAACAAACCAGACTG
GACAAATGGTCTTTCAGAGACAGTTACATCTGTGGAGACGAAGAAGGCAGAAG
GAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCAGAGGATGCTCTGCACCCGGGACA
AGCTTCCAGTACACCTGCCAGCCATGCCGGGGCCAGAGGATGCTCTGCACCCGGGACA
GTGAGTGCTGTGGAGACCAGCTGTGTCTGGGTCACTGCACCAAAATGGCCACCAAG
GGGCAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGCTGTGCTGT
GCCTTCCAGAGAGGGCTGCTGTTCCCTGTGCACACCCCTGCCGGAGGAGCT
TTGCCATGACCCGCCAGCCGGCTCTGGACCTCATCACCTGGGAGCTAGAGCCTGATG
GAGCCTGGACCGATGCCCTGTGCCAGTGGCCTCCTCTGCCAGCCCCACAGCCACAGC
CTGGTGTATGTGCAAGCCGACCTCGTGGGAGGCCGTGACCAAGATGGGAGATCC
TGCTGCCAGAGAGGGCTCCGATGAGTATGAAGTTGGCAGCTCATGGAGGAGGTGCG
CCAGGAGCTGGAGGACCTGGAGAGGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCC
TGGGGCTGCCGCCGCTGCACTGCTGGGAGGGAGAGATTTAGATCTGGACCAAGGCTG
TGGGTAGATGTGCAATAGAAATAGCTAATTATTCCCCAGGTGTGCTTAGGCGTG
GGCTGACCAAGGCTTCTCCTACATCTCTCCAGTAAGTTCCCCCTGGCTTGACAGC
ATGAGGTGTTGCAATTGTTCAAGCTCCCCCAGGCTGTCTCCAGGCTCACAGTCTGG
TGCTTGGAGAGTCAGGCAGGGTAAACTGCAGGAGCAGTTGCCACCCCTGTCCAGA
TTATTGGCTGCTTGCCTCTACCAAGTTGGCAGACAGCCGTTGTTACATGGCTTGAT
AATTGTTGAGGGAGGAGATGGAAACAAATGTGGAGTCTCCCTCTGATTGGTTGGG
GAAATGTGGAGAAGAGTGCCTGCTTGCAAACATCAACCTGGAAAAATGCAACAAA
TGAATTTCACGCAGTTCTTCCATGGCATAGGTAAGCTGTGCCTCAGCTGTTGCA
GATGAAATGTTCTGTTCACCTGCATTACATGTGTTATTACATCCAGCAGTGTGCTCAG

CTCCTACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATCAATTCCCTCTCAGCA
 CAGCCTGGGGAGGGGGTCATTGTTCTCCTCGTCATCAGGGATCTCAGAGGCTCAGAG
 ACTGCAAGCTGCTTGCCTAACAGTCACACAGCTAGTGAAGACCAGAGCAGTTCATCTGG
 TTGTGACTCTAAGCTCAGTGCTCTCCACTACCCCCACACCAGCCTGGTGCACCAAA
 AGTGCTCCCCAAAAGGAAGGAGAATGGGATTTCTTGAGGCATGCACATCTGGAA
 TTAAGGTCAAACTAATTCTCACATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGT
 GTCTCACAGTGTGGGCAGCCGTCCTCTAATGAAGACAATGATATTGACACTGTCCC
 TCTTGGCAGTTGCATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCATACAGGTT
 AACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTGCA
 AAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAG
 CAGGGCTGTGTGAAACATGGTTGAATATGCGACTGCGAACACTGAACCTACGCCAC
 TCCACAAATGATGTTTCAGGTGTCACTGGACTGTTGCCACCATGTATTCATCCAGAGTT
 CTTAAAGTTAAAGTTGCACATGATTGTATAAGCATGCTTCTTGAGTTAAATTATG
 TATAAACATAAGTTGCATTAGAAATCAAGCATAAAACTCAACTGCTCTTCT

Figure 29

GACAAACAGACGACGTGCTGAGCTGCCAGCTTAGTGGAAAGCTCTGCTCTGGTGGAGA
 GCAGCCTCGCTTGGTGACGCACAGTGCTGGGACCCCTCCAGGAGCCCCGGATTGAAG
 GATGGTGGCGGCCGTCCTGCTGGGCTGAGCTGGCTCTGCTCTCCCTGGGAGCTCTGG
 TCCTGGACTTCAACAAACATCAGGAGCTCTGACCTGCATGGGCCCCGGAAGGGCTC
 ACAGTGCCTGTCTGACACGGACTGCAATACCAGAAAGTTCTGCCTCCAGCCCCGCGAT
 GAGAAGCCGTTCTGTGCTACATGTCGTGGGTTGCCGGAGGGAGGTGCCAGCGAGATGCCA
 TGTGCTGCCCTGGGACACTCTGTGTGAACGATGTTACTACGATGGAAGATGCAACC
 CCAATATTAGAAAGGCAGCTTGATGAGCAAGATGGCACACATGCAGAAGGAACAACT
 GGGCACCCAGTCCAGGAAAACCAACCCAAAAGGAAGCCAAGTATTAAGAAATCAA
 GGCAGGAAGGGACAAGAGGGAGAAAGTTGTCTGAGAACTTTGACTGTGGCCCTGGAC
 TTTGCTGTGCTCGTCATTGGACGAAAATTGTAAGCCAGTCCTTGGAGGGACAG
 GTCTGCTCCAGAAGAGGGCATAAAGACACTGCTCAAGCTCCAGAAATCTCCAGCGTT
 GCGACTGTGGCCCTGGACTACTGTGTCGAAGCCAATTGACCAGCAATGGCAGCATGC
 TCGATTAAGAGTATGCCAAAAAATAGAAAAGCTATAAAATATTCAAAATAAAGAAGAA
 TCCACATTGCATTGAG

Figure 30

ATGGGGCTCTGGCGCTGTTGCCTGGCTGGTTCTGCTACGCTGCTGGCGCTGGC
 CGCTCTGCCCGCAGCCCTGGCTGCCAACAGCAGTGGCCGATGGTGGGTATTGTGAAC
 GTAGCCTCCTCCACGAACCTGCTTACAGACTCCAAGAGTCTGCAACTGGTACTCGAGCC
 CAGTCTGCAGCTGTTGAGCCGAAACAGCGGCCCTGATACGCCAAATCCGGGGATC
 CTGCACAGCGTGAGTGGGGGCTGCAGAGTGCCTGCCAGGGCCCCACCTCTCGGCAAGATCGTC
 GGAATGCCGCTGGAACTGTCCCAGTGCCTCAGGGCCCCACCTCTCGGCAAGATCGTC
 AACCGAGGCTGTCGAGAAACGGCGTTATCTCGCTATCACCTCCGCCGGGTACCC
 ATTGGTGGCGCTCGCTGCTCAGAAGGTTCCATCGAACCTGCACGTGTGACTACCGG
 CGCGCGGCCCGGGGGCCCGACTGGCACTGGGGCTGCAGCGACAACATTGACT
 TCGGCCGCTCTCGGCCGGAGTTGACTCCGGGAGAAGGGCGGGACCTGCG
 CTTCCTCATGAACCTTCACAACAAACGAGGCAGGCCGTACGACCGTATTCTCCGAGATG
 CGCCAGGAGTGCAAGTGCCACGGGATGTCCGGCTCATGCACGGTGCACGTGCTGGA
 TCGGGCTGCCACGCTGCGCGCCGTGGCGATGTGCTGCGACCGCTCGACGGCG

CTCGCGCGTCTGTACGGCAACCGCGGCAGCAACCGCGCTCGCAGCGGAGCTGCTG
 CGCCTGGAGCCGGAAGACCCGGCCCACAAACCGCCCTCCCCCACGACCTCGTCTACT
 TCGAGAAATGCCAACCTCTGCACGTACAGCGGACGCCTGGCACAGCAGGCACGGC
 AGGGCGCGCTGTAACAGCTCGTCCCGCGCTGGACGGCTGCGAGCTGCTTGCTGC
 GGCAGGGGCCACCGCACGCGACGCAGCGCTCACCGAGCGCTGCAACTGCACCTTCC
 ACTGGTGTGCCACGTCAGCTGCCGCAACTGCACGCACACGCGCGTACTGCACGAGTG
 TCTGTGA

Figure 31

MGLWALLPGWVSATLLLALAALPAALAANSSGRWWGIVNVASSTNLLDSKSLQLVLEPS
 LQLLSRKQRRLIRQNPGILHSVSGGLQSAVRECKWQFRNRRWCNCPTAPGPHLFGKIVNRGC
 RETAFIFAITSAAGVTIHSVARSCSEGSIESCTCDYRRRGPGPDWHWGCSDNIDFGRLFGRE
 FVDSGEKGRDLRFLMNLHNNEAGRRTVFSEMRQECKCHGMSGCTVRTCWMRLPTLRAV
 GDVLRDRFDGASRVLYGNRGSNRASRAELLRLEPEDPAHKPPSPHDLVYFEKSPNFCTYS
 RLGTAGTAGRACNSSSPALDGCELLCCGRHRTRTQRVTERCNCTFWCCHVSCRNCTHT
 RVLHECL

Figure 32

AGCAGAGCGGACGGCGCGCGGGAGGCAGAGCTTCGGGCTGCAGGCCTCGC
 TGCCGCTGGGAATTGGGCTGTGGCGAGGCAGGTCCGGCTGGCCTTATCGCTCGCT
 GGGCCATCGTTGAAACTTATCAGCGAGTCGCCACTCGTCGCAGGACCGAGCGGGGG
 GGCAGGGCGCGAGGCAGGCAGGTGACGAGGCCTCCGGAGCTGAGCGCTTC
 TGCTCTGGGACGCATGGCGCCGCACACGGAGTCTGACCTGATGCAGACGCAAGGGG
 GTTAATATGAACGCCCTCTGGTGGAACTGGCTCTGGCTCCCTTGCTCTGACCTG
 GCTCACCCCGAGGTCAACTCTCATGGTGGTACATGAGAGCTACAGGTGGCTCCTCCA
 GGGTGTGCGATAATGTGCCAGGCCTGGTGGAGCAGCCAGCGAGCTGTGTCACCG
 ACATCCAGATGTGATGCGTGCATTAGCCAGGGCGAGTGGACAGCAGAATGC
 CAGCACCAAGTCCGCCAGCACCGCTGGAATTGCAACACCCCTGGACAGGGATCACAGCC
 TTTTGGCAGGGCCTACTCCGAAGTAGTCGGGAATCTGCCTTGTATGCCATCTCCT
 CAGCTGGAGTTGTATTGCCATCACCAAGGGCTGTAGCCAAGGAGAAGTAAAATCCTG
 TTCTGTGATCAAAGAAGATGGGAAGCGCCAAGGACAGCAAAGGCATTGATTGG
 GGTGGCTGCAGTGATAAACATTGACTATGGGATCAAATTGCCCGCGCATTTGTGGATGC
 AAAGGAAAGGAAAGGAAAGGATGCCAGAGCCCTGATGAATCTCACAAACAACAGAGC
 TGGCAGGAAGGCTGTAAAGCGGTTCTGAAACAAGAGTGCAAGTGCCACGGGTGAG
 CGGCTCATGTACTCTCAGGACATGCTGGCTGGCCATGGCCACTTCAGGAAAACGGGC
 GATTATCTCTGGAGGAAGTACAATGGGCATCCAGGTGGTATGAACCAGGATGGCA
 CAGGTTCACTGTGGCTAACGAGAGGTTAAGAAGCCAACGAAAAATGACCTCGTGT
 TTTGAGAATTCTCCAGACTACTGTATCAGGGACCGAGAGGCAGGCTCCCTGGGTACA
 GCAGGCCGTGTGCAACCTGACTTCCCAGGGCATGGACAGCTGTGAAGTCATGTGCT
 GTGGGAGAGGCTACGACACCTCCATGTCACCCGGATGACCAAGTGTGGGTGTAAGTT
 CCACTGGTGTGCCGTGCGCTGTCAGGACTGCCTGGAAGCTCTGGATGTGCACACA
 TGCAAGGCCCAAGAACGCTGACTGGACAACCGCTACATGACCCAGCAGCGTCAC
 CATCCACCTCCCTTACAAGGACTCCATTGGATCTGCAAGAACACTGGACCTTGGG
 TTCTTCTGGGGGATATTCTAACGGCATGTGGCTTATCTAACGGAAAGCCCCCTC
 TTCCTCCCTGGGGCCACACGCTGCACCTAAAGCCTACCCCTAT

TCTATCCATCTCCTGGTGTCTGCAGTCATCTCCCTCCTGGCGAGTTCTCTTGAAAT
 AGCATGACAGGGCTGTTAGCCGGGAGGGTGGTGGGCCAGACCACTGTCTCCACCCAC
 CTTGACGTTCTTCTTAGAGCAGTTGCCAAGCAGAAAAAAAGTGTCTCAAAGG
 AGCTTCTCAATGTCTCCCACAAATGGTCCAATTAAAGAAATTCCATACTCTCAG
 ATGGAACAGTAAAGAAAGCAGAATCAACTGCCCTGACTTAACCTTAACCTTGAAAGA
 GACCAAGACTTTGTCTACAAGTGGTTACAGCTACCACCCCTAGGGTAATTGGTA
 ATTACCTGGAGAAGAATGGCTTCAATACCTTAAGTTAAAATGTGTATTTCAA
 GGCATTATTGCCATATTAAAATCTGATGTAACAAGGTGGGAGCTGTGTCCTTGGTA
 CTATGGTGTGTATCTTGTAAGAGCAAAAGCCTCAGAAAGGGATTGCTTGCATTA
 CTGTCCCCCTGATATAAAAAATCTTAGGGAATGAGAGTTCTCCTCACTAGAATCTG
 AAGGGAATTAAAAAGAAGATGAATGGTCTGGCAATATTCTGTAACTATTGGGTGAATA
 TGGTGGAAAATAATTAGTGGATGGAATATCAGAAGTATATCTGTACAGATCAAGAAA
 AAAAGGAAGAATAAAATTCCATATCAT

Figure 33

MNAPLGGIWLWLPLLTWLTPEVNSSWWYMRATGGSSRVMCDNVPGLVSSQRQLCHRH
 PDVMRAISQGVAEWTAECQHQFRQHRWCNTLDRDHSLFGRVLLRSSRESAFVYAISSAG
 VVFAITRACSQGEVKSCSCDPKKMGSAKDSKGIFDWGGCSDNIDYGIKFARAFVDAKERK
 GKDALALMNLHNRRAGRKAIVKRFLKQECKCHGVSGSCTLRTCWLAMADFRKTGDYLW
 RKYNGAIQVVMNQDGTGFTVANERFKKPTKNDLVYFENSPDYCIRDREAGSLGTAGRVC
 NLTSRGMDSCVMCCRGYDTSHVTRMTKCGCKFHGCCAVRCQDCLEALDVHTCKAPK
 NADWTTAT

Figure 34

CGGGAGTCTCGGGGAGCTATGCTGAGACCGGGTGGTGGAGGAAGCTGCGCAGCTC
 CCGCTCGGCGCGCCAGCGCCCCGGTCCCTGTGCCGTGCCCGGCCCGACGGCTC
 CCGGGCTTCGGCCCGCTAGGTCTGCCTGCCTCTGCTCCTGCTGCTGCTGACGCTGC
 CGGCCCGCGTAGACACACGTCCTGGTGGTACATTGGGGCACTGGGGCACGAGTGATCTG
 TGACAATATCCCTGGTTGGTGAGCCGGCAGCGGCAGCTGTGCCAGCGTTACCCAGAC
 ATCATGCGTTCAGTGGCGAGGGTGCCCAGAAATGGATCCGAGAGTGTCAGCACCAAT
 TCCGCCACCCGCTGGAACTGTACCACCCCTGGACCAGGGACACACCGCTTGGCCGT
 GTCATGCTCAGAAGTAGCCGAGAGGCAGCTTTGTATATGCCATCTCATCAGCAGGGG
 TAGTCCACGCTATTACTCGCGCCTGTAGCCAGGGTAAGTGAGTGTGCAGCTGTGAC
 CCCTACACCGTGGCCGACACCATGACCAGCGTGGGACTTGACTGGGGTGGCTGCA
 GTGACAACATCCACTACGGTGTCCGTTGCCAAGGCCTCGTGGATGCCAAGGAGAA
 GAGGCTTAAGGATGCCGGCCCTCATGAACCTACATAATAACCGCTGGTGCACG
 GCTGTGGCGGTTCTGAAGCTGGAGTGAAAGTGCATGGCGTGAAGTGGTCTGTAC
 TCTGCACCTGCTGGCGTGCACCTCAGATTCCCGCACAGGTGATTACCTGCGGC
 GACGCTATGATGGGCTGTGCAGGTGATGCCACCCAGATGGGCCAAGCTCACCAC
 AGCCCGCCAAGGCTATGCCGTGCCACCCGGACTGATCTGTCTACTTGACAACCTCTC
 CAGATTACTGTGTCTGGACAAGGCTGCAGGTTCCCTAGGCACAGGCCGTGTCTGC
 AGCAAGACATCAAAAGGAACAGACAGGGTTGTGAAATCATGTGCTGTGGCGAGGGTAC
 GACACAACCTGAGTCACCGTGTACCCAGTGAGTGCAAATTCAACTGGTGCTGTG
 TGTACGGTGCAAGGAATGCAGAAATACTGTGGACGTCCATACTGCAAAGCCCCAAG
 AAGGCAGAGTGGCTGGACCAGACCTGAACACACAGATACCTCACTCATCCCTCCAATT
 CAAGCCTCTCAACTCAAAAGCACAAGATCCTGCATGCACACCTCCTCCACCCCTCCAC
 CCTGGGCTGCTACCGCTTCTATTAAAGGATGTAGAGAGTAATCCATAGGGACCATGGT
 TCCTGGCTGGTCTAGCCCTGGGAAGGAGTTGTCAGGGGATATAAGAAACTGTGCA
 AGCTCCCTGATTCCCGCTCTGGAGATTGAAGGGAGAGTAGAAGAGATAGGGGTCT
 TTAGAGTGAATGAGTTGCACTAAAGTACGTAGTTGAGGGCTCCTTTCTTGC

ACCAAGCTTCCCGACACTCTGGTGTGCAAGAGGAAGGGTACCTGTAGAGAGCTTCTTT
 TTGTTTCTACCTGGCCAAAGTTAGATGGGACAAAGATGAATGGCATGTCCCTCTCTGA
 AGTCCGTTGAGCAGAACTACCTGGTACCCCGAAAGAAAAATCTTAGGCTACCACATT
 CTATTATTGAGAGGCCTGAGATGTTAGCCATAGTGGACAAGGTTCCATTCACATGCTCAT
 ATGTTATAAACTGTGTTGTAGAAGAAAAGAACATACAAACACACACATT
 CATTCTCTCTTCTCTACCATTCTAACCTGTATTGGACAGCACTGCCTCTTGCT
 TACTTGCTGCCTGTTCAAACGTAGGTTGAATGCAGTGGTCCCAGCTTAACAGATCAT
 TAAAACACCCTAGAACACTCCTAGGATAGATTAATGT

Figure 35

MLDGLGVVAISIFGIQLKTE GSLRTAVPGIPTQSAFNKCLQR YIGALGARVICDNIPGLVSRQ
 RQLCQRYPDIMRSVGEGAREWIRECQHQFRHHRWNCTTLDRDHTVGRVMLRSSREAAF
 VYAISSAGVIHAITRACSQGELSVCSCDPYTRGRHHDQRGTFDWGGCSDNIHYGVRFKAFAF
 VDAKEKRLKDARALMNLHNNRCRTAVRRFVKLECKCHGVSGSCTLRTCWRALSDFRR
 GDYLRRRYDGAVQVMATQDGANFTAARQGYRRA TRSDLVYFDNSPDYCVDKAAGSLG
 TAGRVC SKTSKGTDGCEIMCCRGYDTTRVTRVTQCECKFH WCCAVRCKECRNTVDVHT
 CKAPKKA EWLDQT

Figure 36

GCGCTTCTGACAAGCCCCGAAAGTCATTCCAATCTCAAGTGGACTTGTCCAAC TATT
 GGGGGCGTCGCTCCCCCTCYTCATGGTCGCGGGCAAACCTCCTCGGCCCTCT
 AATGGAGCCCCACCTGCTCGGCTGCTCCTCGGCCCTGCTCGGTGGCACCAAGGGTCC
 TCGCTGGCTACCCAAATTGGTGGTCCCTGGCCCTGGGCCAGCAGTACACATCTGGGC
 TCACAGCCCCCTGCTCTGCGGCTCCATCCCAGGCCTGGTCCCCAAGCAACTGCGCTTCTG
 CCGCAATTACATCGAGATCATGCCAGCGTGGCCGAGGGCGTGAAGCTGGCATCCAG
 GAGTGCCAGCACCAGTTCCGGGGCCGCGCTGGAACTGCACCACCATAGATGACAGCC
 TGGCCATCTTGGGCCGTCCTCGACAAAGCCACCCCGCGAGTCGGCCTCGTTACGCC
 ATCGCCTCGGCCGGCGTGGCCTCGCCGTACCCGCTCCTCGGCCGAGGGCACCTCCAC
 CATTGCGGCTGTGACTCGCATCATAAGGGCCGCTGGCGAAGGCTGGAAAGTGGGC
 GGCTGCAGCGAGGACGCTGACTCGCGTGTAGTGTCCAGGGAGTTCGCGGATGCGC
 GCGAGAACAGGCCGGACCGCGCTCGGCCATGAACAAAGCACAAACGAGGCGGGCC
 GCACGACTATCCTGGACCACATGCACCTCAAATGCAAGTGCACCGGGCTGCGGGAG
 CTGTGAGGTGAAGACCTGCTGGTGGCGCAGCCTGACTTCCGTGCCATCGGTGACTTCC
 TCAAGGACAAGTATGACAGCGCCTCGGAGATGGTAGTAGAGAAGCACC GTGAGTCCCG
 AGGCTGGGTGGAGACCCCTCCGGGCCAAGTACTCGCTCTCAAGCCACCCACGGAGAGG
 GACCTGGTCTACTACGAGAACTCCCCAACCTTGAGGCCAACCCAGAGACGGGTT
 CCTTGCGACAAGGGACCGGACTTGCAATGTCACCTCCCACGGCATCGATGGCTGCGA
 TCTGCTCTGCTGTGGCCGGGCCACAACACGAGGACGGAGAAGCGGAAGGAAAATG
 CCACTGCATCTTCCACTGGTGCTGCTACGTCAGCTGCCAGGAGTGTATT CGCATCTACG
 ACGTGCACACCTGCAAGTAGGGCACCAG

Figure 37

MEPHLLGLLLGGTRVLAGYPIWWSLALGQQYTSLGSQPLLCGSIPGLVPKQLRFCRN
 YIEIMPSVAEGVKLGHQECQHQFRGRRWNCTTIDDSLAIFGPVLDKATRESAFVHAIASAGV
 AFAVTRSCAEGTSTICGCDSHHKGPPGEGWKWGGCSEDADFGVLVSREFADARENRPDAR
 SAMNKHNEAGRRTILDHMHLKCKCHGLSGSCEVKTCWWAQPDFRAIGDFLKDKYDSAS
 EMVVEKHRESRGWVETRAKYSLFKPPTERDLVYYENSPNFCEPNPETGSFGTRDRTCNV
 SHGIDGCDLLCCGRGHNTRTEKRKEKCHCI

Figure 38

ATGAGTCCCCGCTCGTGCCTCGCTCGCCTCGTCTCGCCGTCTCAGCC
 GCCCGAGCAACTGGCTGTACCTGGCCAAGCTGTCGTCGGTGGGGAGCATCTCAGAGG
 AGGAGACGTGCGAGAAACTCAAGGGCCTGATCCAGAGGCAGGTGCAGATGTGCAAGC
 GGAACCTGGAAGTCATGGACTCGGTGCGCCGCGTGGAACTGCTCCACACTCGACTCCTGCCGTCT
 CCAGTACCAGTTCCCGAACCGGCGCTGGAACTGCTCCACACTCGACTCCTGCCGTCT
 TCGGCAAGGTGGTGACGCAAGGGATTGGAGGGAGGCCCTGGTGTACGCCATCTCTC
 GGCAGGTGTGGCCTTGCAGTGACGCCGGCGTGCAGCAGTGGGAGCTGGAGAAAGTGC
 GGCTGTGACAGGACAGTGCATGGGTGAGCCCACAGGGCTCCAGTGGTCAGGATGCT
 CTGACAACATCGCCTACGGTGTGGCCTCTCACAGTCGTTGTGGATGTGCGGGAGAGA
 AGCAAGGGGGCCTCGTCCAGCAGGCCCTCATGAACCTCCACAACAATGAGGCCGGCA
 GGAAGGCCATCCTGACACACATGCGGGTGGAAATGCAAGTGCCACGGGTGTCAGGCTC
 CTGTGAGGTAAAGACGTGCTGGCGAGCCGTGCCGCCCTCCGCCAGGTGGTCACGCA
 CTGAAGGAGAAGTTGATGGTGCCACTGAGGTGGAGGCCACGCCGGTGGCTCCTCCA
 GGGCACTGGTGCCACGCAACGCACAGTTCAAGCCGCACACAGATGAGGACTTGGTGA
 CTTGGAGCCTAGCCCCACTCTGTGAGCAGGACATGCGCAGCGCGTGGCACG
 AGGGGCCGACATGCAACAAGACGTCCAAGGCCATGACGGCTGTGAGCTGCTGTGCT
 GTGGCCGGCTTCCACACGGCGCAGGTGGAGCTGGCTGAACGCTGCAGCTGCAAATT
 CCACTGGTGCTGCTCGTCAAGTGCCGGCAGTGCCAGCGGCTCGTGGAGTTGCACACG
 TGCCGATGA

Figure 39

MSPRSCLRSLRLLVFAVFSAAAASNWLYLAKLSSVGSISEEETCEKLKGLIQRQVQMCKRNL
 EVMDSVRRGAQLAIEECQYQFRNRRWCNCSTLDSLPVFGKVVTQGIREAALVYAISSAGVA
 FAVTRACSSGELEKCGCDRTVHGVPQGFQWSGCSDNIAYGVAFSQSFDVRERSKGASSS
 RALMNLHNNEAGRKAITHMRVECKCHGVSGSCEVKTCWRAVPPFRQVGHALKEKFDG
 ATEVEPRRVGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSVGLGTRGRTCNKTS
 KAIDGCELLCCGRGFHTAQVELAERCSCFKHWCCFVKCRQCQLVELHTCR

Figure 40

ATTAATTCTGGCTCCACTTGTGCTGGCCCAGGTGGGGAGAGGAGGGACGGAGGGTGGCC
 GCAGCGGGTTCCCTGAGTGAATTACCCAGGAGGGACTGAGCACAGCACCAACTAGAGA
 GGGGTCAAGGGGTGCGGGACTCGAGCGAGCAGGAAGGAGGCAGCGCCTGGCACCAAGG
 GCTTGACTCAACAGAATTGAGACACGTTGTAATCGCTGGCGTCCCCCGCGCACAGG
 ATCCCAGCGAAAATCAGATTCTGGTGAGGTGCGTGGGTGGATTAAATTGGAAAAAA
 GAAACTGCCTATATCTGCCATCAAAAAACTCACGGAGGAGAAGCGCAGTCAATCAAC
 AGTAAACTTAAGAGACCCCCGATGCTCCCTGGTTAACTGTATGCTGAAAATTATC
 TGAGAGGAAATAAACATCTTCCCTCTCCAGAAGTCCATTGGAATATTAAG
 CCCAGGAGTTGCTTGGGATGGCTGGAAGTGCAATGTCTCCAAGTTCTCCTAGTGG

CTTG GCC AT ATT T C C T C G C C C A G G T G T A A T T G A A G C C A A I T C T G G T G G T C G C
T A G G T A T G A A T A A C C C T G T C A G A T G T C A G A A G T A T A T T A T A G G A G C A C A G C C T C T C
T G C A G C C A A C T G G C A G G A C T T C T C A A G G A C A G A A G A A A C T G T G C C A C T T G T A T C A G G
A C C A C A T G C A G T A C A T C G G A G A A G G C G C G A A G A C A G G C A T C A A A G A A T G C C A G T A T C
A A T T C C G A C A T C G A C G G T G G A C T G C A G C A C T G T G G A T A A C A C C T C T G T T T G G C A G G
G T G A T G C A G A T A G G C A G C C G C G A G A C G G C C T T C A C A T A C G C C G T G A G C G C A G C A G G G
G T G G T G A A C G C C A T G A G C C G G C G T G C C G C G A G G G C G A G C T G T C C A C C T G C G G C T G C A
G C C G C G C G C G C G C C C A A G G A C C T G C C G C G G A C T G G C T C T G G G C G G C T G C G G C G A
C A A C A T C G A C T A T G G C T A C C G C T T G C C A A G G A G T C G T G G A C G C C C G C G A G C G G G A G
C G C A T C C A C G C C A A G G G C T C T A C G A G A G T G C T C G C A T C C T C A T G A A C C T G C A C A A C A
A C G A G G C C G G C C G C A G G A C G G T G T A C A A C A C C T G G C T G A T G T G G C C T G C A A G T G C C A T G G
G G T G T C C G G C T C A T G T A G C C T G A A G A C A T G C T G G C T G C A G C T G G C A G A C T T C C G C A A G
G T G G G T G A T G C C C T G A A G G A G A A G T A C G A C A G C G C G G C C A T G C G G C T C A A C A G C
C G G G G C A A G T T G G T A C A G G T C A A C A G C C G C T T C A A C T C G C C C A C C A C A A G A C C T G G
T C T A C A T C G A C C C C A G C C C T G A C T A C T G C G T G C G C A A T G A G A G C A C C G G C T C G C T G G G
C A C G C A G G G C C G C T G C A A C A A G A C G T C G G A G G G C A T G G A T G G C T G C G A G C T C A T G
T G C T G C G G C C G T G G G T A C G A C C A G T C A A G A C C G T G C A G A C G G A G C G C T G C C A C T G C A
A G T T C C A C T G G T G C T G C T A C G T C A A G T G C A A G A A G T G C A C G G A G A T C G T G G A C C A G T T
T G T G T G C A A G T A G T G G G T G C C A C C C A G C A C T C A G C C C C G C T C C A G G A C C C G C T T A T T
A T A G A A A G T A C A G T G A T T C T G G T T T T G G T T T T A G A A A T A T T T T A T T T T C C C C A A G
A A T T G C A A C C G G A A C C A T T T T T C C T G T T A C C A T C T A A G A A C T C T G T G G T T A T T A T T
A A T A T T A T A T T A T T A T T G G C A A T A A T G G G G G T G G G A A C C A C G A A A A A T A T T A T T
G T G G A T C T T G A A A A G G T A A T A C A A G A C T T C T G G A T G A T G A T A T G A A T G A A G G G G G A
A A T A A C A C A T A C C C T A A C T T A G C T G T G G G A C A T G G T A C A C A T C C A G A A G G T A A A G A
A A T A C A T T T C T T T C T C A A A T A T G C C A T C A T A T G G G A T G G G T A G G T C C A G T G A A A
G A G G G T G G T A G A A A T C T A T T C A C A A T T C A G C T T C T A T G A C C A A A T G A G G T G T A A A T T C
T C T G G T G C A A G A T A A A A A G G T C T T G G G A A A A C A A A A C A A A A C A A C C T C C C T C
C C C A G G G C T G C T A G C T G C T T C T G C A T T T C A A A T G A T A T T A C A A T G G A A G G
A C A A G A A T G T C A T A T T C T C A A G G A A A A A A G G T A T A T C A C A T G T C T C A T T C C T C
A T T C C A T T G C A G A C A G A C C G T C A T A T T C T A A T A G C T C A T G A A A T T G G G C A G C A G G G A
G G A A A G T C C C C A G A A A T T A A A A A T T A A A A C T C T T A T G T C A A G A T G T G A T T G A A G
C T G T T A A A G A A T T G G G A T T C C A G A T T G T A A A A A G A C C C C C A A T G A T T C T G G A C A C T A
G A T T T T T G T T G G G G A G G T T G G C T T G A A C A T A A T G A A A T A T C C T G T A T T T C T T A G G
G A T A C T T G G T T A G T A A A T T A A T A T A G T A G A A A T A A T A C A T G A A T C C C A T T C A C A G G T T
C T C A G C C C A A G C A A C A A G G T A A T T G C G T G C C A T T C A G C A C T G C A C C A G A G C A G A C A A C
C T A T T G A G G A A A A A C A G T G A A A T C C A C C T C C T C T C A C A C T G A G G C C T C T G A T T C
C T C C G T G T G T G A T G T G A T G C T G G C C A C G T T C C A A A C G G C A G C T C C A C T G G G T C C C C T
T T G G T T G T A G G A C A G G A A A T G A A A C A T T A G G A G G C T C T G C T T G G A A A A C A G T T C A C T A C
T T A G G G A T T T T G T T C C T A A A A C T T T A T T T G A G G A G G C A G T A G T T T C T A T G T T T A A
T G A C A G A A C T T G G C T A A T G G A A T T C A C A G A G G T G T G C A G C G T A T C A C T G T T A T G A T C C
T G T G T T A G A T T A T C C A C T C A T G C T T C C T C T T G T A C T G C A G G T G T A C C T T A A A A C T G T
T C C C A G T G T A C T T G A A C A G T G C A T T T A A A G G G G G A A A T G T G G T T A A T G G T G C C T G
A T A T C T C A A A G T C T T T G T A C A T A A C A T A T A T A T A C A T A T A T A A A T A T A A A
T A T A A A T A T A T C T C A T T G C A G C C A G T G A T T A G G A T T A C A G C T T A C T C T G G G G T T A T C
T C T G T C T A G A G C A T T G T G T C C T C A C T G C A G T C C A G T G G G A T T A T C C A A A A G T T T
T G A G T C T G A G C T T G G G C T G T G G C C C C G C T G T G A T C A T A C C C T G A G C A C G A C G A A G C A
A C C T C G T T C T G A G G A A G A A G C T T G A G G T C T G A C T C A C T G A A A T G C G T G T G G G G T G A A
G A T A T C T T T T T C T T T G C C T C A C C C C T T G T C T C C A A C C T C C A T T C T G T T C A C T T
G T G G A G A G G G C A T T A C T T G T T C G T T A T A G A C A T G G A C G T T A A G A G A T A T C A A A A C T C
A G A A G C A T C A G C A A T G T T C T C T T T C T T G A G T C A T T C T G C A G A A T G G A A A C C C A T G C C
T A T T A G A A A T G A C A G T A C T T A T T A A T T G A G T C C C T A A G G A A T A T T C A G C C C A C T A C A T A
G A T A G C T T T T T T T T T T A A T A A G G A C A C C T C T C C A A A C A G G C C A T C A

AATATGTTCTTATCTCAGACTTACGGTGTAAAGTTGGAAAGATAACACATCTTTCA
 ATACCCCCCTTAGGAGGGTGGGCTTCATATCACCTCAGCCAACGTGGCTCTTAATT
 TATTGCATAATGATATCCACATCAGCCAACGTGGCTCTTAATTATTGCATAATGAT
 ATTACACATCCCCTCAGTGCAGTGAATTGTGAGCAAAAGATCTGAAAGCAAAAAGCA
 CTAATTAGITTAAGATGTCACTTTGTTATTATACAAAAACCATGAAGTACTTT
 TTTTATTGCTAAATCAGATTGTTCTTTAGTGAACATGTTATGAAGAGAGTTGAG
 TTAAACAATCCTAGCTTAAAGAAACTATTTAATGTAAAATATTCTACATGTCATT
 AGATATTATGTATATCTCTAGCCTTATTCTGTACTTTAATGTACATATTCTGTCTG
 CGTGATTGTATATTCACTGGTTAAAAAACAAACATCGAAAGGCTTATTCCAAATGG
 AAG

Figure 41

MAGSAMSSKFFLVALAIFFSFAQVVIEANSWWSLGMNNPVQMSEVYIIGAQPLCSQLAGLS
 QGQKKLCHLYQDHMQYIGEAKTGIKECQYQFRHRRWNCSTVDNTSVFGRVMQIGSRET
 AFTYAVSAAGVVNAMSRACREGELSTCGCSRAARPKDLPDWLWGCGDNIDYGYRFA
 KEFVDARERERIHAKGSYESARILMNLHNNEAGRRTVYNLADVACKCHGVSGCSLKT
 WLQLADFRKVGDALKEKYDSAAAMRLNSRGKLVQVNSRFNSPTQDLVYIDPSPDYCVR
 NESTGSLGTQGRNCNKTEGMDGCELMCCGRGYDQFKTVQTERCHCKFWCCYVKCK
 CTEIVDQFVCK

Figure 42

GGCACGAGCGCAGGAGACACAGGCCTGGCTGCCCGTCCGCTCTCCGCCTCCGCCGC
 GCCCTCCTCGCCCCGGATGGGCCCCCGCCGCCGGATCCCTCGCCTCCGGCCGC
 CGCCGTTGCGCTGCCGCGCTCGCACTGAAGCCGGCCCTCGCGCCGCCGGTTCGC
 CCCGCAGCCTCGCCCCCTGCCACCCGGCCGTAGGGCGGTACGATGCTGCCGC
 CCTTACCCCTCCGCCTCGGGCTGCTGCTGCTGCTGCTCCTGTGCCCGCGCACGTCGGC
 GGACTGTGGTGGGCTGTGGGCAGCCCTGGTTATGGACCCTACAGCATCTGCAGGA
 AGGCACGGCGGCTGGCCGGCGCAGGCCGAGTTGTGCCAGGCTGAGCCGGAAGTGG
 TGGCAGAGCTAGCTGGGGCGCCCGCTCGGGGTGCGAGAGTGCCAGTCCAGTCCG
 CTTCCGCCGCTGGAATTGCTCCAGCCACAGCAAGGCCTTGGACGCATCCTGCAACAG
 GACATTGGGAGACGGCCTCGTGTGCCATCACTGCCGGCCGCCAGCCACGCC
 TCACGCAGGCCTGTTCTATGGGCAGGCTGCTGCACTGCCGGCTGCCAGGCCGG
 GCAGGCCCTCCCCGGCCCTCCGGCCTGCCGGCACCCCGGACCCCTGGCCCGCG
 GGCTCCCCGGAAAGGCAGCGCCGCTGGGAGTGGGGAGGCTGCCGGACGACGTGGAC
 TTCGGGGACGAGAAGTCGAGGCTTTATGGACGCCGGCACAGCGGGAGGCTGGCG
 GACATCCCGCGCGTGGTGCACACTGCACAACAACGAGGCCGGCAGGCTGGCG
 AGCCACACGCCGACCGAGTGCAAATGCCACGGCTGTCGGGATCATGCCGCTGCG
 CCTGCTGGCAGAAGCTGCCATTGCGAGGTGGCGCGGGCTGCTGGAGCGCTT
 CCACGGCGCCTCACCGCTCATGGGCACCAACGACGGCAAGGCCCTGCTGCCCG
 CGCACGCTCAAGCCGGCCGGAGCGGACCTCCTACGCCGCCATTGCCCGACT
 TTTGCCCGCCCAACCGACGCACCGCTCCCCGGCACGCCGGTCCGCCCTGCAATAG
 CAGCGCCCCGGACCTCAGCGGCTGCGACCTGCTGTGCTGCCGCCGGCACCG
 CAG

GAGAGCGTGCAGCTCGAAGAGAACTGCCTGTGCCGCTTCACTGGTGCTGCGTAGTAC
 AGTGCCACCCTGCCGTGCGCAAGGAGCTCAGCCTCTGCCTGTGACCCGCC
 CGGCCGCTAGACTGACTCGCGCAGCGGTGGCTCGCACCTGTGGGACCTCAGGGCACC
 GGCACCGGGCGCCTCTGCCGCTCGAGCCCAGCCTCTCCCTGCCAAAGCCCAACTCCC
 AGGGCTCTGGAAATGGTGAGGCGAGGGGCTTGAGAGGAACGCCAACCAACGAAGGCC
 CAGGGCGCCAGACGGCCCCGAAAAGGCGCTGGGGAGCGTTAAAGGACACTGTACA
 GGCCCTCCCTCCCCCTGGCCTCTAGGAGGAAACAGTTTTAGACTGGAAAAAGCCA
 GTCTAAAGGCCTCTGGATACTGGCTCCCCAGAACTGCTGGCCACAGGATGGTGGGTG
 AGGTTAGTATCAATAAAGATATTAAACAAAAAAAAAAAAAA

Figure 43

MLPPLPSRLGLLLLLLCPAHVGLWWAVGSPLVMDPTSICRKARRLAGRQAEQCQAEPE
 VVAELARGARLGVRRECQFQFRFRRWCNSHSKAFGRILQQDIRETAFFVFAITAAGASHAVT
 QACSMGELLQCGCQAPRGRAPPRPSGLPGPPGPAGSPEGSAWEWGGCGDDVDFGD
 EKSRLFMDARHKRGGRGDIRALVQLHNNEAGRLAVRSHTRECKCHGLSGSCALRTCWQK
 LPPFREVGARLLERFHGASRVMGTNDGKALLPAVRTLKPPGRADLLYAADSPDFCAPNRR
 TGSPGTRGRACNSSAPDLGCDLLCCGRHRQESVQLEENCLCRFWCCVVQCHRCVRK
 ELSLCL

Figure 44

CACGCGTCCGGGCAATCGGGACTATGAACCGGAAAGCGCTGCGCTGCCCTGGGCCACC
 TCTTCCTCAGCCTGGCATGGTCTGCCTCCGGATCGGTGGCTCTCCTCAGGGTAGCTC
 TGGCGCAACGATCATCTGTAAACAAGATCCCAGGCCTGGCTCCCAGACAGCGGGCGAT
 CTGCCAGAGCCGGCCGACGCCATCATCGTCATAGGAGAAGGCTCACAAATGGGCTG
 GACGAGTGTCAAGTTCAAGTCCGCAATGGCCGCTGGAAGTGCCTCTGCACTGGGAGAGC
 GCACCGTCTCGGGAAAGGAGCTCAAAGTGGGGAGGCCAGGGTGCCTCACCTACGC
 CATCATTGCCGCCGGCGTGGCCCACGCCATCACAGCTGCCTGTACCCATGGCAACCTG
 AGCGACTGTGGCTGCGACAAAGAGAAGCAAGGCCAGTACCAACCAGGACGAGGGCTGG
 AAGTGGGGTGGCTGCTCTGCCGACATCCGCTACGGCATCGGCTCGCCAAGGTCTTGT
 GGATGCCCGGGAGATCAAGCAGAATGCCGGACTCTCATGAACCTGCACAAACAACGAG
 GCAGGCCGAAAGATCCTGGAGGGAGAACATGAAGCTGGAATGTAAGTGCACGGCGTG
 TCAGGCTCGTGCACCACCAAGACGTGCTGGACCACACTGCCACAGTTGGGGAGCTGG
 GCTACGTGCTCAAGGACAAGTACAACAGAGGCCGTTCACGTGGAGCCTGTGCGTGCAG
 CCGCAACAAAGCGGCCACCTCCTGAAGATCAAGAACGCCACTGTGCTACCGCAAGCCC
 ATGGACACGGACCTGGTACATCGAGAAGTCGCCCAACTACTGCGAGGAGGACCCGG
 TGACCGGCAGTGTGGCACCCAGGGCGCGCTGCAACAAAGACGGCTCCCCAGGCCAG
 CGGCTGTGACCTCATGTGCTGTGGCGTGGCTACAACACCCACCAAGTACGCCCGCGTG
 TGGCAGTGCAACTGTAAGTCCACTGGTGCTGCTATGTCAAGTGCAACACGTGAGCG
 AGCGCACGGAGATGTACACGTGCAAGTGAGGCCGTGTCACACCACCCCTCCGCTGC
 AAGTCAGATTGCTGGAGGACTGGACCCTCAAGCTGCGGGCTCCCTGGCAGGATG
 CTGAGCTGTCTTGCTGAGGAAGGTACTTTCTGGGTTCTGCAGGCATCCGTG
 GGGGAAAAAAATCTCTCAGAACCCCTCAACTATTCTGTTCCACACCCAAATGCTGCTCCA
 CCCTCCCCCAGACACAGCCCAAGTCCCTCCGCGGCTGGAGCGAAGCCTCTGCAGCAG
 GAACTCTGGACCCCTGGGCCTCATCACAGCAATATTAAACAATTATTCTGATAAAAAT
 AATATTAAATTATTAAATTAAAAAGAATTCTCCACCTCAAAAAAAAAAAAAAA
 AAAAAAAAGGGGGGG

Figure 45

MNRKARRCLGHLFLSLGMVYLIGGFSSVALGASIICNKIPGLAPRQRAICQSRPDAIIIG
EGSQMGLDECQFQFRNGRWNCSALGERTVFGKELVGSREAAFTYAIIAAGVAHITAAC
TQGNLSDCGCDKEKQGQYHRDEGWKWGGCSADIRYGIGFAKVFDAREIKQNARTLMNL
HNNEAGRKILEENMKLECKCHGVSGSCTTKTCWTLQFRELGYVLKDKYNEAVHVEPV
RASRNKRPTFLKIKKPLSYRKPMETDLVYIEKSPNYCEEDPVTGSGTQGRACNKTA
GCQDLMCCGRGYNTHQYARVWQCNCFKHWCCYVKCNTCSERTEMYTCK

Figure 46

MHRNFRKWIFYVFLCFGVLVKGALSSVVALGANIICNKIPGLAPRQRAICQSRPDAIIIG
EGAQMGINECQYQFRFGRWNCSALGEKTVFGQELRVGSREAAFTYAITAAGVAHAVTAA
CSQGNLNSNCGCDREKQGYYNQAEGWKWGGCSADVRYGIDFSRRFVDAREIKKNARRLM
NLHNNEAGRKVLEDRMQLECKCHGVSGSCTTKTCWTLPKFREVGHLLKEKYNAAVQVE
VVRASRLRQPTFLRIKQLRSYQKPMETDLVYIEKSPNYCEEDAATGSVGTQGRLCNRTSPG
ADGCDTMCCGRGYNTHQYTKVWQCNCFKHWCCFVKCNTCSERTEVFTCK

Figure 47

TCCGCTTACACACCAAGGAAAGTTGGGCTTGAAAGAATTCCATCCCCATGCCACTGG
AGGAAGAACATATTCNCCCGTCTGCTTACCCATCTCCCCAGTTTTGGAATTTC
GCTGTTACTCCAGAGGATTATGTTCTTCAAAGCCTCTGTGTACATCTGTCTTC
CTGTGTCTCCAACTCAGGCCACAGCTGGTCGGTGAACAATTCTGATGACTGGT
AGGCTTACCTGATTACTCCAGCAGTGTGGCAGCTGGGCCAGAGTGGTATTGA
ATGCAAGTATCAGTTGCCTGGGACCGCTGGAACGCCCTGAGAGAGGCC
TCCAGCCATGGTGGGCTTCGCAGTGCCAACCGAGACAGCATTGTGCATGCC
GTTCTGCTGGAGTCATGTACACCCCTGACTAGAAACTGCAGCCTGGAGATT
TGTGGCTGTGATGACTCCCGAACGGCAACTGGGGGACAAGGCTGGCTGGGAG
GCTGCAGTGACAATGTGGGCTTCGGAGAGGCATTCCAAGCAGTTGTCATGCC
GGAAACAGGACAGGATGCACGGCAGCCATGAACCTGCACAACAACGAGGCTGG
CAAGGGGTGAAGGGCACCATGAAACGCACGTGTAAGTGCATGGCGTGTGG
TGCACCACGCAGACCTGTTGGCTGCAGCTGCCAGTCCCGAGTCCGAGGTGG
TGAAGGAGAAGTACCAACCGCAGCACTCAAGGTGGACCTGCTGCAGGG
GCGCGGCCGCCGCCAGCCATCGCCGACACCTTCGCTCCATCTACCCGGAGCT
GTGCACCTGGAGGACTCCCCGGACTACTGCCTGGAGAACAAAACGCTAGGG
GCACCGAAGGCCGAGAGTGCCTAACCGCGGGCCCTGGGTCGCTGGGA
GCAGCTGCCGCCGGCTTCGGGGACTGCAGCTGGCTGTGCAGTCCGCTGC
AGACCGTGTCCAGCTGCAACTGCAAGTTCACTGGTGTGCAGTCCGCTGC
GTGCCGCCGGAGGGTCACCAAGTACTTCTGTAGCCCGCAGAGCGGCC
GCTGCGCACAAACCCGGAGAAAACCTAACGGTTCTCTGCCCTCTTCCC
TGGTTCTGGCTTCCTTAGAGAACCCGGTAATTGTGGAACCTAGGG
GCTCTCCAGACCTAGGGATCCTGAAAGGGAAAAACTGCAATTCTCAA
ACTTTCCAGCCTGTTCCCCAATTCCCTGTGCTCTCCTAAAGCTCTGT
CAGCCACACCTAGGTCTGAAAACTCAGGCTTGAGTTACTGATCT
AAACAGGTGTCCTCCCTCCCTCCTACAGCCCTAACCTCTGAC
CCTTAGGCGCTGGAAAAACCTCTACACGCAGGACCCAGGTT
AACTCAAAGCTT

GCCCTTTGCCACTGTCTGCTACCAGGGCTCACCTCTGCTGCACCTCTTCTGCAC
 AGCTCCTCCCTGCTACTGCTGACCAAATTCCCAGGAATCTGAATGCTTCTCCTCT
 TCTCCCTTCCAAAAGGGAAACTGAGGAAACTGGCCCCGGAAAAGCATGTCTTG
 GGGTGGTCCTAGAGGCAGAGGTGAAGATGGAAGAGGGAGCTCTGGAGTGCTA
 TGAACACCAAGGGTGCTACTCATCCCTATGGTATCATATCATGAATGGACTTACTAG
 GGGGCAATGACTTCCTAGACAATAACCCGAGGGACTCCAGATAACATACCCCGAAGGT
 CTAGGAAATACGTTAAGGGCAGATTACAGTCATTCCCTACCCCTAAAGGTAACTTCTC
 CCTTCTCCTGACCTACTCCTCCTAGCAACCAACTTACCTCTTCTCCAAAGGATCT
 TTGTTCTCTGAGCCAAGACTGAGGTAAATAAGCCACTTCCTCAGATCCTGGTC
 TGCACCTCTAGA

Figure 48

MFLSKPSVYICLFTCVLQLSHWSVNNFLMTGPKAYLIYSSVAAGAQSGIEECKYQFAWD
 RWNC PERALQLSSHGGLRSANRETAFVHAISSAGVMYTLTRNCSLGDFDNCGDDSRNGQ
 LGGQGWLWGGCSDNVGFGEAISKQFVDALETGQDARAAMNLHNNEAGRKAVKGTMKR
 TCKCHGVSGSCTTQTCWLQLPEFREVGAHLKEKYHAALKVDLLQGAGNSAAARGAIADT
 FRSISTRELVHLEDSPDYCLENKTLGLLTERGRECLRRGRALGRWELRSCRLCGDCGLAV
 EERRAETVSSCNCKFHGCCAVRCEQCRRRTKYFCSRAERPRGGAAHKPGRKP

Figure 49

GC GGCCCGTCGACGGAGGGCTGCAGCTCCGT CAGCCCGCAGAGCCACCCCTGAGCT
 CGGTGAGAGCAAAGCCAGAGCCCCAGTCCTTGCCTGCCGGCTTGCTATCTCTCTGA
 TCACTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCC
 GTGAAGAGGAGTGGCCCGCCCTGGAAGAACATGCGGCTCTGACAAGGGGACAGAACCC
 AGCGCAGTCTCCCCACGGTTAACGCACTAGTGAAGCCCAGGCAACCCAACCGTGC
 CTGTCTCGGACCCCGCACCCAAACCAACTGGAGGTCTGATCGATCTGCCAACCGGAGC
 CTCCGGGCTTCGACATGCTGGAGGAGCCCCGGCCGCGCCTCCGCCCTCGGGCCTCGC
 GGGTCTCCTGTTCTGGCGTTGTGCAGTCGGCTCTAACGAAATGAGATTCTGGGCCTGA
 AGTTGCCTGGCGAGCCGCCGCTGACGGCCAACACCGTGTGCTTGACGCTGTCCGGCCT
 GAGCAAGCGGCAGCTAGACCTGTGCCTGCGCAACCCGACGTGACGGCGTCCCGCGCTT
 CAGGGTCTGCACATCGCGGTCCACGAGTGTCAAGCACCAGCTGCGCGACCAGCGCTGGA
 ACTGCTCCCGCGCTTGAGGGCGGCCGCTGCCGCACCAAGCGCCATCCTCAAGCG
 CGGTTCCGAGAAAGTGCCTTCTCCATGCTGGCTGCTGGGTGATGCACCGCAG
 TAGCCACGGCCTGCAGCCTGGCAAGCTGGTAGCTGTGGCTGGCTGGAAGGGCAG
 TGGTAGCAGGATCGGCTGAGGGCAAACACTGCTGCAGCTGCAGGCAGTCCCAGGC
 AAGAGTTCCCCACTCTGCCCCAGCCCTGGCCCTGGCTCAAGCCCCAGCCCTGGCCC
 CCAGGACACATGGGAATGGGGTGGCTGTAACCATGACATGGACTTGGAGAGAAAGTC
 TCTCGGGATTCTGGATTCCAGGGAAAGCTCCCCGGACATCCAGGCACGAATGCGAA
 TCCACAACAACAGGGTGGGCCAGGTGTAACTGAAAACCTGAAGCGGAAATGCA
 AGTGTCACTGGCACATCAGGCAGCTGCCAGTTCAAGACATGCTGGAGGGCGGCCAGA
 GTCCGGGCAGTGGGGCGCGTTGAGGGAGCGGGCTGGGCCATCTTCATTGAT
 ACCCACAACCGCAATTCTGGAGGCCTCCAGCCCCGTCTGCGTCCCCGTGCCCTCAGG
 AGAGCTGGTCACTTTGAGAAGTCTCCTGACTTCTGTGAGCGAGACCCACTATGGGCT
 CCCAGGGACAAGGGGCCGGCCTGCAACAAGACCAAGCCGCCTGTTGGATGGCTGTGG
 CAGCCTGTGCTGTGGCCGTGGCACAACGTGCTCCGGCAGACACGAGTTGAGCGCTGC
 CATTGCCGCTCCACTGGTGCTGCTATGTGCTGTGATGAGTGCAAGGTTACAGAGTG
 GGTGAATGTGTGTAAGTGAGGGTCAGCCTACCTGGGGCTGGGAAGAGGGACTGTGT
 GAGAGGGCGCCTTCAAGGTCACTCTGGTCTGATTCCCTCAAGGTCACTCTGGTCCCT

GGAAGCTTAAAGTATCTACCTGGAAACAGCTTAGGGGTGGTGGGGTCAGGTGGACT
 CTGGGATGTGTAGCCTCTCCCCAACATTGGAGGGTCTGAGGGAAAGCTGCCACCC
 CTCTCTGCTCCTAGACACCTGAATGGACTAAGATGAAATGCACTGTATTGCTCCTCC
 CACTCTCAACTCCAGAGCCCCTTAACCCTGATTCTACTCCTTTGGCTGGGAGTC
 CCTATAGTTCACCACTCCTCTCCCTGAGGGATAACCCCAGGCAGTGGTGGAGCCAT
 AAGATCTGTATCTAGAAAGAGATCACCCACTCCTATGTACTATCCCCAAACTCCTTAC
 TGCAGCCTGGGCTCCCTCTTGTGGGATAATGGGAGACAGTGGTAGAGAGGGTTTCTG
 GGAAAGAGACAGAGTGCTGAGGGCACTCTCCCTGAATCCTCAGAGAGTTGTCTGTC
 CAGGCCCTAGGGAAAGTTGTCTCCTCCATTCAAGATGTTAATGGGACCCCTCAAAGGA
 AGGGGTTTCCCATTGACTCTGGAGCCTCTTCTTCAGCAGGAAGGGTGGGAA
 GGGATAATTATCATACTGAGACTTGTCTGGTCTGTTGAAACTAAAATAAATTA
 AGTTACTGGAAAAAAAAAAAAAA

Figure 50

MLEEPRPRPPPSGLAGLLFLALCSRALSNEILGLKLPGEPPLTANTVCLTLSGLSKRQLDLCL
 RNPDVTA SALQGLHIAVHECQHQQLRDQRWNCSALEGGRLPHHSAILKRGFRESAFSFSM
 LAAGVMHAVATACSLGKL VSCCGWKGSGEQDRLRAKLLQLQALSRGKSFPHSPLSPGP
 GSSPSPGPQDTWEWGNCNDMDFGEKFSRDFLDSREAPRDIQARMRIHNNRVGRQVVTEN
 LKRKCKCHGTSGSCQFKTCWRAAPEFRAVGAALRERLGRAIFIDTHNRNSGAFQPRLRPRR
 LSGELVYFEKSPDFCERDPTMGSPGTRGRACNKTSLLDGCGSLCCGRGHNVLRQTRVER
 CHCRFWCCYVLCD ECKVTEWVNVC K

Figure 51

TAACCCGCCCTCCGCTCTCCCCGGCTGCAGGCCGGCGTGCAGGACCAAGCGGGCGGCC
 TGCAGGCCGGAGGACTTCGGCGCGCTCCTGGGTGTGACCCCGGGCGCGCCCG
 CGCGACGATGAGGGCGCGGCCGCAGGTCTGCGAGGCCTGCTCTCGCCCTGGCGCTC
 CAGACCGCGTGTGCTATGGCATCAAGTGGCTGGCGCTGTCCAAGACACCATCGGCC
 TGGCACTGAACCAGACGCAACACTGCAAGCAGCTGGAGGGTCTGGTGTGCACAGGT
 GCAGCTGTGCCAGCAACCTGGAGCTCATGCACACGGTGGTGCACGCCGCCCGAG
 GTCATGAAGGCCTGTCGCCGGCCTTGCCGACATGCGCTGGAACTGCTCCTCCATTGA
 GCTCGCCCCAACTATTGCTTGACCTGGAGAGAGGGACCCGGAGTCGGCCTCGTG
 TATGCGCTGTCGCCGACCACATCAGGCCACGCCATGCCCGGGCTGCACCTCCGGCG
 ACCTGCCCGGCTGCTCCTGCGGCCCGTCCAGGTGAGCCACCCGGGCCGGAACCG
 CTGGGAAGATGTGGGACAACCTCAGCTACGGCTCCTCATGGGGCCAAGTTTCC
 GATGCTCCTATGAAGGTAAAAAACAGGATCCAAGCCAATAAAACTGATGCGTCTAC
 ACAACAGTGAAGTGGGGAGACAGGCTCTGCGCCCTCTGGAAATGAAGTGTAAAGTG
 CCATGGGGTGTCTGGCTCTGCTCCATCCGCACCTGCTGGAAAGGGCTGCAGGAGCTG
 CAGGATGTGGCTGCTGACCTCAAGACCCGATACCTGTCGGCCACCAAGGTAGTGCACC
 GACCCATGGGCACCCGCAAGCACCTGGTGCCAAGGACCTGGATATCCGGCCTGTGAA
 GGACTGGGAACCTGTTATTGCAGAGCTCACCTGACTTTGCATGAAGAATGAGAAG
 GTGGGCTCCACGGGACACAAGACAGGCAGTGCAACAAGACTCCAACGGAAAGCGAC
 AGCTGCGACCTTATGTGCTGCGGGCGTGGCTACAACCCCTACACAGACCGCGTGGTCG
 AGCGGTGCCACTGTAAGTACCACTGGTGTGCTACGTACCTGCCAGGTGTGAGCGT
 ACCGTGGAGCGCTATGTCTGCAAGTGAGGCCCTGCCCTCCGCCACGCAGGAGCGAG
 GACTTGCTCAAGGACCCCTCAGCAACTGGGCCGGGCTGGAGACACTCCATGGAG
 CTCTGCTTGTGAATTCCAGATGCCAGGCATGGGAGGCGGCTTGTGCTTGCCTTCAC
 GGAAGGCCACCAGGAACAGAAGGTCTGGCCACCCCTGGAAGGAGNGCAGGACATCAAAG
 GAAACCGACAAGATTAAAAATAACTGGCAGCCTGAGNTCTGGAGTGCACAGNNTG

GTGTAAGGAGCGGGGCTGGGATCGGTGAGACTGATAACAGACTTGACCTTCAGGGCC
 ACAGAGACCAGCCTCCGGAAAGGGTCTGCCCGCCTTCAGAATGTTCTGCAGGGAC
 CCCCTGGCCCACCCCTGGGGTCTGAGCCTGCTGGGCCACCACATGGAATCACTAGCTCG
 GGTTGTAAATGTTCTTTGTTINTGCTTTCTCCTTGGGATGTTGGAAGCTACA
 GAAATATTATAAAACATAGCTTTCTTGGGGTGGCACTTCTCAATTCTCTTATAT
 ATTTANATATATAAAATATATGTATATATAATGATCTCAATNTAAAAGCTTAGCTT
 TTAAGCAGCTGTATGAAATAATGCTGAGTGAGCCCCAGCCCCCTGCAGITCCC
 GCCCTCGTCAAGTGAACTCGGCAGACCCCTGGGCTGGCAGAGGGAGCTCCAGTT
 CGGGCA

Figure 52

MRARPQVCEALLFALALQTGV CYGIKWLALS KTPS ALALN QTQHCK QLEGLVSAQVQLCR
 SNLELMHTVVHAAREVMKACRRAFADMRWCNSIELAPNYLLDLERGTRESAFVYALSA
 ATISHAIARACTSGDLPGCSCGPVPGEPPGPGRWGRCADNL SYGLMGAKFSDAPMKVK
 KTGSQANKLMRLHNSEVGRQALRASLEMKCKCHGVSGSCSIRTCWKGLQELQDVAA DLK
 TRYLSATKV VHRPMGTRKHLVPKDLDIPVKD WELVYLQSSPDFCMKNEKGSHGTQDR
 QCNKTSNGSDSCDLMCCGRGYNPYTD RVVERCHCKYHWCCYVTCRR CERTVERYVCK

Figure 53

GGCGCGGCAAGATGCTGGATGGGCTCCCGCTGGCGCCTGGCTGGCCGGCCTTCGG
 GCTGACGCTGCTCGCCGCGCTCGGCCCTTCGGCCCTACTTCGGGCTGACGGGCA
 GCGAGCCCTGACCATCCTCCCGCTGACCCCTGGAGCCAGAGGCGGCCAGGGCA
 CTACAAGGCCTGCGACCGGCTGAAGCTGGAGCGGAAGCAGCGCGCATGTGCGCCG
 GGACCCGGCGTGGCAGAGACGCTGGTGGAGGCCGTGAGCATGAGTGCGCTCGAGTG
 CCAGTTCCAGTTCCGCTTGAGCGCTGGAACTGCACGCTGGAGGGCCGCTACCGGGCC
 AGCCTGCTCAAGCGAGGCTTCAAGGAGACTGCCTCCTCTATGCCATCTCCTCGGCTGG
 CCTGACGCACGCACTGGCCAAGGGCGTGCAGCGCGGCCGATGGAGCGCTGTACCTGC
 GATGAGGCACCCGACCTGGAGAACCGTGAGGCCCTGGCAGTGGGGGGCTGCGGAGAC
 AACCTTAAGTACAGCAGCAAGTTCGTCAAGGAATTCTGGCAGACGGTCAAGCAAGG
 ATCTCGAGCCC GTGGACTTCCACAACAACCTCGTGGGTGTGAAGGTGATCAAGGC
 TGGGGTGGAGACCACCTGCAAGTGCCACGGCGTGTCAAGGCTCATGCACGGTGC GGACC
 TGCTGGCGGCAGTTGGCGCCTTCCATGAGGTGGCAAGCATTGAAGCACAAAGTATG
 AGACGGCACTCAAGGTGGCAGCACCAATGAAGCTGCCGGCGAGGCAGGTGCCA
 TCTCCCCACCACGGGGCCGTGCCTCGGGGCAGGTGGCAGCGACCCGCTGCCCGCAC
 TCCAGAGCTGGTGCACCTGGATGACTCGCCTAGCTTCTGCCTGGCTGGCCGCTTCTCCC
 CGGGCACCGCTGGCCGTAGGTGCCACCGTGAGAAGAACTGCGAGAGCATCTGCTGTGG
 CCGCGGCCATAACACACAGAGGCCGGTGGTACAAGGCCCTGCCAGTGC CAGGTGCGT
 TGGTGCTGCTATGTGGAGTGCAAGGCAGTGACGCAGCGTGAAGGAGGTCTACACCTGCA
 AGGGCTGAGTTCCCAGGCCCTGCCAGCCCTGCTGCACAGGGTGAGGCATTGCACACAG
 GTGTGAAGGGTCTACACCTGCACAGGCTGAGTTCTGGCTCGACCAGCCAGCTGCG
 TGGGGTACAGGCATTGCACACAGTGTAATGGGTCTACACCTGCATGGCTGAGTCCC
 TGGGCTCAGACCTAGCAGCGTGGGGTAGTCCCTGGGCTCAGTCCTAGCTGCATGGG
 GCAGGCATTGCACAGAGCATGAATGGGCCTACACCTGCCAAGGCTGAATCCCTGGG
 CAGCCAGCCCTGCTGCACATGGCACAGGCATTGCACACGGTGTGAGGAGGTACACCT
 GCAAGGGCTGAGGCCCTGGGCCAGTCAGCCCTGCTGCTCAGAGTGCAAGGCATTGCAC
 ATGGTGTGAGAAGGTCTACACCTGCAAGGGACGAGTCCCCGGCCTGGCCAACCC
 TGTGCAGGGTGAGGGCATGCATGCTAGTATGAGGGTCTACACCTGCAAGGACTGAG
 AGGCTTT

Figure 54

MLDGSPALARWLAAFGLTLLAALRPSAAYFGLTGSEPLTILPLTLEPEAAAQAHYKACDR
 LKLERKQRRMCRRDPGVAETLVEAVSMSALECQFQFRFERWNCTLEGYRASLLKRGFKE
 TAFLYAIISSAGLTHALAKACSAGRMERCTCDEAPDLENREAQWGGCGDNLKYSSKFVK
 EFLGRRSSKDLRARVDFHNNLVGVKVIKAGVETTCKCHGVSGSCTVRTCWRQLAPFHEVG
 KHLKHKYETALKVGSTTNEAAGEAGAISPPRGRASGAGGSDFPLPRTPELVHLDSDSFCLA
 GRFSPGTAGRRCREKNCESICCGRHNTQSRVVTRPCQCQVRWCCYVECRQCTQREEVY
 TCKG

Figure 55

AGCCTGCAAAAACCACAGAGGGCAAAGCCAGAAAGATGGAAAGGCACCCACCCATGC
 AGCTCACCACTTGCCTCAGGGAGACCCCTCTCACAGGGGCTCTCAAAAGACCTCCCTA
 TGGTGGTTGGGCATTGCCTCCTCGGGGTTCCAGAGAAGCTGGGCTGCCAATTGCC
 GCTGAACAGCCGCCAGAAGGAGCTGTCAAGAGGAAACCGTACCTGCTGCCAGCAT
 CCGAGAGGGCGCCCGCTGGCATTCAAGGAGTGCAGGAGCCAGTCAGACACGAGAG
 ATGGAACTGCATGATCACCGCCGCCACTACCGCCCCGATGGCGCCAGCCCCCTC
 TTTGGCTACGAGCTGAGCAGCGGCACCAAAGAGACAGCATTATTATGCTGTGATGG
 CTGCAGGCCTGGTGCATTCTGTGACCAGGTATGCAGTGCAGGCAACATGACAGAGTG
 TTCCTGTGACACCACCTTGCAGAACGGCGGCTCAGCAAGTGAAGGCTGGCACTGGGG
 GGCTGCTCCGATGATGTCCAGTATGGCATGTGGTCAGCAGAAAGTCCTAGATTCCC
 CATCGGAAACACCACGGCAAAGAAAACAAAGTACTATTAGCAATGAACCTACATAA
 CAATGAAGCTGGAAGGCAGGCTGCGCCAAGTTGATGTCAGTAGACTGCCGCTGCCAC
 GGAGTTCCGGCTCCTGTGCTGTGAAAAACATGCTGGAAAACATGCTTCTTGAAAAA
 GATTGGCCATTGTAAGGATAAAATGAAAACAGTATCCAGATATCAGACAAAATA
 AAGAGGAAAATGCGCAGGAGAGAAAAAGATCAGAGGAAAATACCAATCCATAAGGAT
 GATCTGCTCTATGTTAATAAGTCTCCAACTACTGTGAGAAGATAAGAAACTGGGAAT
 CCCAGGGACACAAGGCAGAGAATGCAACCGTACATCAGAGGGTGCAGATGGCTGCAA
 CCTCCTCTGCTGTGGCCGAGGTTACAACACCCATGTGGTCAGGCACGTGGAGAGGTGT
 GAGTGTAAAGTCATCTGGTGCATGTCCGTTGCAGGAGGTGTGAAAGCATGACTG
 ATGTCCACACTTGCAAGTAACCACTCCATCCAGCCTTGGCAAGATGCCTCAGCAATAT
 ACAATGGCATTGCAACCAGAGAGAGGTGCCATCCCTGTGCAGCGCTAGTAAAGTTGACT
 CTTGCAGTGGAAATCCC

Figure 56

MDRAALLGLARLCALWAALLVLFPYGAQGNWMWLGIASFVPEKLGCANLPLNSRQKEL
 CKRKPYLLPSIREGARLGIQECGSQFRHERWNCMITAATTAPMGASPLFGYELSSGTKET
 AFTYAVMAAGLVHSVTRSCSAGNMTECSCDTTLQNGGSASEGWHWGGCSDDVQYGMWF
 SRKFLDFPIGNTTGKENKVLLAMNLHNNEAGRQAVAKLMSVDCRCHGVSGSCAVKTCWK
 TMSSFEKIGHLLDKYENSIQISDKTKRKMRRREKDQRKIPHIKDDLLVNKSPNYCVEDK
 KLGINGTQGRECNRTSEGADGCNLLCCGRGYNTHVVRHVERCECKFIWCCYV
 RCRRCESMTDVHTCK

Figure 57

AGTTGAGGGATTGACACAAATGGTCAGGCAGGCGGGAGAAGGAGGGAGGCG
 CAGGGGGAGCCGAGCCCGCTGGGCTGCAGAGAGTTGCGCTCTACGGGGCCGCGGC

CACTAGCGGGCGCCAGCCGGGAGCCAGCGAGCCGAGGGCCAGGAAGGCAGGAC
ACGACCCCAGCGCCCTAGCCACCCGGGTTCTCCCCGCCGCCGCGCTTCATGAATCG
CAAGTTCCCGCGGGCGGGCTGCAGGTACGCAGAACAGGAGCCGGGGAGCGGGC
CGAAAGCGGCTTGGGCTCGACGGAGGGCACCCGCGCAGAGGTCTCCCTGGCCGCAGG
GGGAGCCGCCGGCCCGTGCCTGGCAGCCCCAGCGGAGCGGCCAAGAGAGGA
GCCGAGAAAGTATGGCTGAGGAGGAGGCCTAAGAACAGTCCCAGGGCCGCCGGTG
GCGCGAGCTGGGAACTTGTGCCGGGGCGCTCTCGGCCGGCTGGCGGAGGAGGGCAG
CGGGGACGCCGGTGGCCGCCGCCGCCAGTTGACCCCCGGCGATTGGCGGCCAG
CTGCTGCTGCTGCTTGGCTGCTGGAGGCTCCGCTGCTGCTGGGGTCCGGGCCAGGC
GGCGGGCCAGGGGCCAGGCCAGGGGCCGGGGCAGCAACCGCCGCCGCC
TCAGCAGCAACAGAGCGGGCAGCAGTACAACGGCGAGCGGGCATCTCCGTCCCGA
CCACGGCTATTGCCAGCCCATCTCCATCCCGCTGTGCACGGACATCGCGTACAACCAG
ACCATCATGCCAACCTGCTGGGCCACACGAACCAGGAGGACGCCGGCTGGAGGTGC
ACCAGTTCTACCCCTCTAGTGAAAGTGCAGTGTCCGCTGAGCTCAAGTTCTCCTGTGC
TCCATGTACCGCGCCCGTGTGCACCGTGCTAGAGCAGGCGCTGCCGCCCTGCCCT
GTGCGAGCGCGCGCCAGGGCTGCAGGGCGCTCATGAACAAGTCCGGCTCCAGTGG
CCAGACACGCTCAAGTGTGAGAAGTCCCGGTGCACGGCGCCGGAGCTGTGCGTGG
GCCAGAACACGTCCGACAAGGGCACCCGACGCCCTCGCTGCTCCAGAGTTCTGGAC
CAGCAACCCTCAGCACGGCGGGAGGGCACCGTGGCGCTCCGGGGGCCGG
CGCGTGGAGCGAGGCAAGTTCTGCCGCCGCCCTCAAGGTGCCCTACCTCA
ACTACCACCTCCTGGGGGAGAAGGACTGCCGCACCTTGTGAGGCCACCAAGGTGTA
TGGGCTCATGTACTTCGGGCCAGGGAGCTGCGCTTCTCGCGCACCTGGATTGGCATT
GGTCAGTGCTGTGCTGCCCTCACGCTTCAAGGTGCTTACGTACCTGGTGGACATG
CGCGCTTCAGCTACCCGGAGCGGCCATCATCTTCTGTCCGGCTGTTACACGGCCGT
GGCGTGGCTACATGCCGGCTCCTGGAAAGACCGAGTGGTGTGTAATGACAAG
TTCGCCGAGGACGGGCACGCACGTGGCGCAGGGCACCAAGAAGGAGGGCTGCACC
ATCCTCTCATGATGCTCTACTTCAAGCATGGCCAGCTCCATCTGGTGGTGATCCTG
TCGCTCACCTGGTCTGGCGGCTGGCATGAAGTGGGCCACGAGGCCATCGAACCCA
ACTCACAGTATTTCACCTGGCCCTGGCTGTGCCGGCATCAAGACCATCACCATC
CTGGCGCTGGGCCAGGTGGACGGCGATGTGCTGAGGGAGTGTGCTGGGGCTTA
ACAACGTGGACGCGCTGCGTGGCTTCGTGCTGGCGCCCTCTCGTGTACCTGTTATC
GGCACGTCCTTCTGCTGGCCGGCTTGTGTCGCTTCCGCATCCGACCATCATGAA
GCACGATGGCACCAAGACCGAGAAGCTGGAGAAGCTCATGGTGCCTGGCGTCTTC
AGCGTGTGACTGTGCCAGCCACATCGTCATCGCCTGCTACTTCTACGAGCAGGC
CTTCCGGGACCAGTGGAACGCAGCTGGGGCCAGAGCTGCAAGAGCTACGCTATC
CCCTGCCCTCACCTCCAGGCAGGGAGGCCCGCCGCACCCGCCATGAGGCCGG
ACTTCACGGTCTTCATGATTAAGTACCTTATGACGCTGATCGTGGCATCACGTCGGG
TTCTGGATCTGGTCCGGCAAGACCCCTCAACTCCTGGAGGAAGTCTACACGAGGCTCA
CCAACAGCAAACAAGGGAGACTACAGTCTGAGACCCGGGCTCAGCCATGCCAG
GCCTCGGCCGGGGCGCAGCGATCCCCAAAGCCAGCGCCGTGGAGTTGTCGCCAATCC
TGACATCTCGAGGTTCTCACTAGACAACCTCTTCTGCAAGGCTCCTTGAACAACTC
AGCTCCTGCAAAAGCTCCGTCCCTGAGGCAAAAGGACACGAGGGCCGACTGCCAGA
GGGAGGATGGACAGACCTCTGCCCTCACACTCTGGTACCAAGGACTGTTGCTTTATG
ATTGTAAATAGCCTGTGTAAGATTGTAAGTATTTGTATTAAATGACGACCGAT
CACCGCTTTCTTCAAAAGTTTAATTATTAGGGCGGTTAACCATTTGAGGCT
TTCTGGTCTGCCCTTCTGGAGTATTGCAAAGGAGCTAAACTGGTGTGCAACCGC
AGCGCTCCTGGTCGCTCGCGCCCTCCCTACCACGGGTGCTGGACGGCTGGGC
GCCAGCTCCGGGGCGAGTCAGCACTGCAGGGTGCAGTAGGGCTGCGCTGCCAGGGT
CACTTCCCGCCTCCTTGCCTTGCCTCCCTCCCTCCTGCTGCTCCCTCCCTTCTG
GCTTGAGGTAGGGCTCTAAGGTACAGAACCTCACAAACCTCAAATCTGGAGGAG
GGCCCCATACATTACAATTCCCTTGCTCGCGGTGGATTGCGAAGGCCCGTCCCT
TCGACTCCTGAAGCTGGATTAACTGTCCAGAACTTCCTCCAACCTCATGGGGC

CCACGGGTGTGGCGCTGGCAGTCTCAGCCTCCCTCACGGTCACCTCAACGCCAG
 ACACTCCCTCTCCCACCTTAGTTGGTTACAGGGTGAGTGAGATAACCAATGCCAAACT
 TTTGAAGTCTAATTTGAGGGTGAGCTCATTCTAGTGTCTAAAACCTGGT
 ATGGGTTGGCCAGCGTCATGGAAAGATGTGGTTACTGAGATTGGGAAGAACATGA
 AGCTTGTGTGGGTGGAAGAGACTGAAGATATGGGTATAAAATGTTAATTCTAATTG
 CATA CGGATGCCTGGCACACCTGCCTTGAGAATGAGACAGCCTGCGCTAGATTTAC
 CGGTCTGTAAAATGGAAATGTTGAGGTACACCTGGAAAGCTTGTAAAGGAGTTGATGTT
 TGCTTCCTTAACAAGACAGCAAAACGTAAACAGAAATTGAAAACCTGAAGGATATT
 CAGTGTCTGGACTTCCTCAAAATGAAGTGCTATTCTTATTTAATCAAATAACTA
 GACATATATCAGAAACTTAAAATGTAAAAGTTGACACTTCAACATTTATTACGAT
 TATTATTCA GCAGCACATTCTGAGGGGGAAACAATTCACACCACCAATAAACCTGG
 TAAGATTTCAGGAGGTAAAGAAGGTGGAATAATTGACGGGGAGATAGCGCCTGAAAT
 AAACAAAATATGGGCATGCATGCTAAAGGGAAAATGTGTGCAGGTCTACTGCATTAAA
 TCCTGTGTGCTCCTCTTGGATTACAGAAATGTGTCAAATGTAATCTTCAAAGCC
 ATTAAAAAATATTCACTTAGTTCTGTGAAGAAGAGGGAGAAAAGCAATCCTCCTGAT
 TGTATTGTTAAACTTAAAGAATTATCAAATGCCGGTACTTAGGACCTAAATTAT
 CTATGTCTGTCTACGCTAAAATGATATTGGTCTTGAATTGGTATACATTATTCTGT
 TCACTATCACAAAATCATCTATATTAGAGGAATAGAAGTTATATATATAATAC
 CATATTAAATTCAACAAATAAAAATTCAAAGTTGTACAAAATTATATGGATT
 GTGCCTGAAAATAATAGAGCTGAGCTGTGAACATTACATTATGGTGTCTCA
 TAGCCAATCCCACAGTGTAAAAATTCA

Figure 58

MAEEEAPKKSRAAGGGASWELCAGALSARLAEGSGDAGGRRRPPVDPRLARQLLLL
 WLLEAPLLGVRAQAAGQGPQGPQGPQPPPQQQSGQQYNGERGISVPDHGYCQPI
 SIPLCTDIAYNQTIMPNLGHTNQEDAGLEVHQFYPLVKVQCSAELKFFLCSMYAPVCTVL
 EQALPPCRSLCERARQGCEALMNKFGFWPDTLKCEKFPVHGAGELCVGQNTSDKGTP
 SLLPEFWTSNPQHGGGGHRGGFPGGAGASERGKFSCPRALKVPSYLNHFLGEKDCGAPC
 EPTKVYGLMYFGPEELRFSTWIGIWSVLCCASTLFTVLTLYVDMRRFSYPERPIIFLSGCYT
 AVAVAYIAGFLLEDRVVCNDKFAEDGARTVAQGKTKEGCTILFMMLYFFSMASSIW
 VILSLTWFLAAGMKWGHEAJEANSQYFHAAWA VPAIKTITILALGQVDGDVLSGVCFVG
 LNNVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMHDGTKEKLMVRIGVFSV
 LYTVPATIVIACYFYEQ
 FRDQWERSWVAQSCKSYAIPCPLQAGGGAPPHPMSPDFTVFMKYLMTLIVGITSGFWI
 WSGKTLNSW RKFYTRLTN SKQGETTV

Figure 59

CGAGTAAAGTTGCAAAGAGGCGCGGGAGGCGGCAGCCGCAGCGAGGAGGCAGGG
 GAAGAAGCGCAGTCTCCGGGTGGGGCGGGGGCGGGGCCAAGGAGGCCGG
 TGGGGGGCGGCCAGCATGCAGGCCCTGCCCCGCTGCTGCCGC
 TGCTGCTGCTGCCGCCAGCCATCTCCATCCGCTGTGCACGGACATGCCCTACA
 CCCGGACCACGGCTCTGCCAGCCATCTCCATCCGCTGTGCACGGACATGCCCTACA
 ACCAGACCATCATGCCAACCTCTGGGCCACACGAACCAGGAGGACGCAGGCCTAGA
 GGTGCACCAGTTCTATCCGCTGGTGAAGGTGCAGTGCTCGCCGA
 ACTGCGCTTCC
 TGTGCTCCATGTACGCACCGTGTGCACCGTGTGGAACAGGCCATCCCGCCGTGCCGC
 TCTATCTGTGAGCGCGCCAGGGCTCGAAGCCCTCATGAACAAGTCGGTT
 GTGGCCGAGCGCCTCGCGAGCACTCCCGCCACGGCGCCAGCAGATCTGC
 GTCGGCCAGAACACTCCGAGGACGGAGCTCCCGCGCTACTCACCA
 ACCACCAGGCCGC

CGGGACTGCAGCCGGGTGCCGGGGCACCCCGGGTGGCCCGGGCGGCGCGCTC
 CCCCGCGCTACGCCACGCTGGAGCACCCCTCCACTGCCCGCGCCTCAAGGTGCCA
 TCCTATCTCAGCTACAAGTTCTGGCGAGCGTGATTGTGCTGCCCTGCGAACCTGC
 GCGGCCCGATGGTCCATGTTCTCTCACAGGAGGAGACGCGTTCGCGCCTCTGGA
 TCCTCACCTGGTCGGTGTGCTGCCACCTCTCACTGTCACCACGTACTTGG
 TAGACATGCAGCGCTTCCGCTACCCAGAGCGGCCTATCATTTCTGTCGGGCTGCTAC
 ACCATGGTGTGCGGTGGCCTACATCGCGGGCTCGTGTCCAGGAGCGCGTGGTGTGCA
 ACGAGCGCTTCTCCGAGGACGGTACCGCACGGTGGTGCAGGGCACCAAGAAGGAGG
 GCTGCACCATCCTCTTCATGATGCTCTACTTCTTCAGCATGGCCAGCTCCATCTGGTGG
 GTCATCCTGTCGCTCACCTGGTCCTGGCAGCCGGCATGAAGTGGGCCACGAGGCCA
 TCGAGGCCAACTCTCAGTACTTCCACCTGGCCGCTGGCCGTGCCGGCGTCAAGAC
 CATCACCATCCTGGCCATGGGCCAGATCGACGGCGACCTGCTGAGCGGCGTGTGCTTC
 GTAGGCCTCAACAGCCTGGACCCGCTGCGGGGCTCGTGTAGCGCCGCTTCGTGTA
 CCTGTTCATCGGCACGTCTCCTCCTGGCCGGCTCGTGTGCTCTCCGATCCGCAC
 CATCATGAAGCACGACGGCACCAAGACCGAAAAGCTGGAGCGGCTCATGGTGCAC
 CGCGTCTCTCCGTGCTCTACACAGTGCCGCCACCATCGTCATCGCTGCTACTTCTA
 CGAGCAGGCCTCCCGAGCAGTGGAGCGCTCGTGGGTGAGGCCAGCACTGCAAGAGC
 CTGGCCATCCCCTGCCCGCGCACTACACGCCCGCATGTCGCCGACTTCACGGTCTA
 CATGATCAAATACCTCATGACGCTCATCGTGGGCATCACGTCGGCTCTGGATCTGGT
 CGGGCAAGACGCTGCACTCGTGGAGGAAGTTCTACACTCGCCTACCAACAGCCGACA
 CGGTGAGACCACCGTGTGAGGGACGCCAGGCCGGAACCGCGCGCTTCCTCC
 GCCCGGGGTGGGGCCCTACAGACTCCGTATTTATTTAAATAAAACGATCGA
 AACCATTCACTTTAGGTTGCTTTAAAAGAGAACTCTGCCAACACCCCC

Figure 60

MRPRSAIPRLPLLLLPAAGPAQFHGEKGISIPDHGFCQPISIPLTDIAYNQTIMPNLLGHT
 NQEDAGLEVHQFYPLVKVQCSPELRFFLCSMYAPVCTVLEQAIPPCRSICERARQGCEALM
 NKFGFQWPERLRCEHFPRHGAEQICVGQNHSEDGAPALLTAPPPGLQPGAGGTPGGPGG
 GGAPPYATLEHPFHCPRVLKVP SYKFLGERDCAAPCEPARPDGSMFFSQEETRFARL
 WILTWSVLCCASTFFT VTTYLVD MQRFRYPERPIIFLSGCYTMVSVAYIAGFVLQERVVCN
 ERFSEDGYRTVVQGTKEGCTILFMMLYFFSMASSIWVWVILSLTWFLAAGMKWGHEAIEA
 NSQYFH LA AWAVPAVKTITILAMGQIDGDLLSGVCFVGLNSDPLRGFVLAPLFVYLFIGTS
 FLLAGFVSLFRIRTIMKHDGTKEKLERLMVRIGVFSVLYTVPATIVIACYFYEQAFREHW
 ERSWVSQHCKSLAIPC PAHYTPRMSPDFTVYMIKYLMTLIVGITSGFWIWSGKTLHSWRKF
 YTRLTNSRHGETTV

Figure 61

GCCGCTCCGGGTACCTGAGGGACGCCGCCGCCGCCAGGCAGGTGCAGCCCCCCC
 CCACCCCTGGAGCCAGGCCGCCGGGTCTGAGGATAGCATTCTCAAGACCTGACTTA
 TGGAGCACTGTAACCTGAGATATTCAGTTGAAGGAAGAAATAGCTCTCTCTTAAGA
 TGGAATCTGTGGTTGGGAATGTGGTGATCAACTGATATGTTGGCCAATGTGCC
 ATGTAATAAAATGAAAAGAAGAGACAAGATGATGTCATTTCCATATTGTGAAACCA
 AAAACAAACGCCCTTGAGACCAAGCTAACAAACCTCTGACGGTGCAGAGTATT
 TAACTGTTGAAGAATTAAACAGTAAGATA CAGAAGAAGTACCTCGAGCTGAGACCT
 GCAGGTGTATAATCTAAAATACATATTGAATAGGCCTGATCATCTGAATCTCCTTC
 AGACCCAGGAAGGATGGCTATGACTGGATTGTCTCTCTTGGCCCTGACTGTGT
 TCATGGGCATATAGGTGGCACAGTTGTTCTGTGAACCTATTACCTTGAGGATG
 TGCCAAGATTGCCTATAACTACCTCATGCCTAATCTCTGAATCATTATGACCAA
 CAGACAGCAGCTTGGCAATGGAGCCATTCCACCCATGGTGAATCTGGATTGTTCTCG

GGATTCCGGCCTTGTGCACTCTACGCTCCTATTGTATGGAATATGGACGTGT
CACACTCCCTGTCGTAGGCTGTGCAGCGGGCTTACAGTGAGTGTGAAAGCTCATGG
AGATGTTGGTGTCCCTGGCCTGAAGATATGGAATGCAGTAGGTTCCCAGATTGTGAT
GAGCCATATCCTCGACTTGTGGATCTGAATTAGCTGGAGAACCAACTGAAGGAGCCC
CAGTGGCAGTGCAGAGAGACTATGGTTTGGTGTCCCCGAGAGTTAAAAATTGATCCT
GATCTGGGTTATTCTTCTGCATGTGCGTGATTGTTCACCTCCTGTCCAAATATGTAC
TTCAAGAAGAGAAGAACTGTCATTGCTCGCTATTCTAGGATTGATTCAATCATTG
CCTCTCGGCCACATTGTTACTTTAACCTTTGATTGATGTCACAAGATTCCGTTA
TCCTGAAAGGCCTATTATATTATGCAGTCTGCTACATGATGGTATCCTTAATTCTT
CATTGGATTGGCTTGAAGATCGAGTAGCCTGCAATGCATCCATCCCTGCACAATATA
AGGCTTCCACAGTGACACAAAGGATCTCATAATAAAAGCCTGTACCATGCTTTATGATA
CTCTATTTTTACTATGGCTGGCAGTGTATGGGGTAATTCTTACCATCACATGGTT
TTAGCAGCTGCCAAAGTGGGGTAGTGAAGCTATTGAGAAGAAAGCATTGCTGTT
ACGCCAGTGCATGGGCATCCCCGGAACCTCTAACCATCATTCTTAGCGATGAATAA
AATTGAAGGTGACAATTAGTGGCGTGTGTTGTTGCCTCTACGATGTTGATGCAT
TGAGATATTGTTCTGCTCCCTCTGCCTGTATGTGGTAGTTGGGTTCTCCTCT
AGCTGGCATTATATCCCTAAACAGAGTTGCAATTGAGATTCCATTAGAAAAGGAGAAC
CAAGATAAAATTAGTGAAGTTATGATCCGGATCGGTGTTTCAGCATTCTTATCTCGT
ACCACTCTGGTTGTAATTGGATGCTACTTTATGAGCAAGCTTACCGGGGCATCTGG
AAACAAACGTGGATACAAGAACGCTGCAGAGAATATCACATTCCATGTCCATATCAGGT
TACTCAAATGAGTCGTCCAGACTTGATTCTCTTGATGAAATACCTGATGGCTCTCA
TAGTTGGCATTCCCTCTGTATTGGGGTTGGAAGCAAAAGACATGCTTGAATGGGCC
AGTTTTTCATGGTCGTAGGAAAAAGAGATAGTGAATGAGAGCCGACAGGTACTCC
AGGAACCTGATTGCTCAGTCTCCTGAGGGATCCAAATACTCCTATCATAAGAAAG
TCAAGGGGAACCTCCACTCAAGGAACATCCACCATGCTTCAACTCAGCTGGCTAT
GGTGGATGATCAAAGAACGAGCAGGAAGCATCCACAGCAAAGTGAGCAGCTACCA
CGGCAGCCTCCACAGATCACGTGATGGCAGGTACACGCCCTGCAGTTACAGAGGAATG
GAGGAGAGACTACCTCATGGCAGCATGTCACGACTAACAGATCAGCTCCAGGCATAGTA
GTTCTCATCGGCTCAATGAACAGTCACGACATAGCAGCATCAGAGATCTCAGTAATAA
TCCCATGACTCATATCACACATGGCACCAGCATGAATGGGTTATTGAAGAAGATGGA
ACCAGTGCTTAATTGTCCTGCTAAGGTGGAAATCTTGTGCTGTTAAAAAGCAGATT
TTATTCTTGCCTTGCATGACTGATAGCTACTCACAGTTAACATGCTTCAAGTCAA
GTACAGATTGTCCTGGAAAGGTAAATGATTGCTTTATATTGCATCAAACATTG
GAACATCAAGGCATCCAAAACACTAAGAATTCTATCATCACAAAATAATTGCTCTTC
TAGGTTATGAAGAGATAATTATTGTCGGTAAGCATTATAAAACCCACTCATT
ATTAGAAAAACCTAAATGTGTGGTAGCTGCTTGTAGTGAACATTCACTATAACTATAA
ACTAGTTGTGAGATAAACATTCTGGTAGCTCAGTTAACAAAACAATTTCAGAATTAAAG
AAATTCTATGCAAGGTTACTCTCAGATGAACAGTAGGACTTTGTAGTTATTCC
ACTAAGTAAAAAGAACTGTGTTTAAACTGTAGGAGAATTAAATAATCAGCAAG
GGTATTAGCTAATAGAATAAAAGTGCAACAGAAGAATTGATTAGTCTATGAAAGG
TTCTCTAAAATTCTATCGAAATAATCTCATGCGAGAGATATTGAGGTTGGATTAGC
AGTGGAAATAAAGAGATGGCATTGTTCCCTATAATTGTCGTGTTTATAACTTTGT
AAATATTACTTTCTGGCTGTGTTTATAACTTATCCATATGCATGATGGAAAAATT
TAATTGTAGCCATCTTCCCAGTAATAGTATTGATTGATAGAGAACTTAATGTTCAA
AATTGCTTGTGGAGGCATGTAATAAGATAAACATCATACTATTAAAGTAACCACA
ATTACAAAATGGCAAAACA

Figure 62

MAMTWIVFSLWPLTVFMGHIGGHSLFSCEPILRMCQDLPYNTTFMPNLLNHYDQQTAAL
AMEPFHPMVNLDCSRDFRPFLCALYAPICMEYGRVTPCRRLCQRAYSECSKLMEMFGVP

WPEDMECSRFPDCDEPYPRLVDLNLAEGEPTEGAPAVQRDYGFWCPRRELKIDPDLGYSFL
HVRDCSPPCPNMYFRREELSFARYFIGLISIICLSATLFTFLIDVTRFRYPERPIIFYAVCY
MMVSLIFFIGFLLEDRVACNASIPAQYKASTVTQGSHNKACTMLFMILYFFTMAGSVWWVI
LTITWFLAAVPKGSEAIKKALLFHASAWGIPGTLTIILLAMNKIEGDNISGVCFVGLYDV
DALRYFVLAPLCLYYVVGVSLLAGIISLNVRVIEIPLEKENQDKLVKFMIRIGVFSILYLVPL
LVVIGCYFYEQAYRGIWETTWIQCERCREYHIPCPYQVTQMSRPDLILFLMKYLMALIVGIPS
VFWVGSKKTCFEWASFFHGRRKKEIVNESRQVLQEPDFAQSLLRDPNTPIRKSRGTSTQGT
STHASSTQLAMVDDQRSKAGSIHSKVSSYH GSLHRSRDGRYTPCSYRGMEERLPHGMSR
LTDHSRHSSSHRLNEQSRHSSIRDLSNNPMTHITHGTSMNRVIEEDGTS

Figure 63

GCTGCGCAGCGCTGGCTGGCTGGCCTCGCGGAGACGCCAACGGACGCCGGCCGGC
GCCGGCTTGTGGGCTGCCGCCTGCAGCCATGACCCCTCGCAGCCTGTCCCTCGGCCCTCG
GCCCGGGACGTCTAAAATCCCACACAGTCGCGCGCAGCTGCTGGAGAGCCGGCCGCTG
CCCCCTCGTCGCCGCATCACACTCCCGTCCCGGGAGCTGGGAGCAGCGCGGGCAGCCG
GCGCCCCCGTGCAAACACTGGGGGTGCTGCCAGAGCAGCCCCAGCCGCTGCCGCTGCTA
CCCCCGATGCTGCCATGGCCTGGCGGGCGCAGGGCCAGCGTCCCGGGGGCGCCCG
GGGGCGTCGGTCTCAGTCTGGGGTTGCTCCTGCAGTGCTGCTGCTCCTGGGGCCGGCG
CGGGGCTTCGGGGACGAGGAAGAGCGGGCGCTGCGACCCATCCGCATCTCATGTGCC
AGAACCTCGGCTACAACGTGACCAAGATGCCAACCTGGTTGGCACGAGCTGCAGAC
GGACGCCAGCTGCAGCTGACAACATTACACCCGCTCATCCAGTACGGCTGCTCCAGC
CAGCTGCAGTTCTCCTTGTCTGTTATGTGCCAATGTGCACAGAGAAGATCAACAT
CCCCATTGGCCCATGCGGCCATGTGCATGGAAAGGGCCAGGTGATGAAGAGGTGCCCTACCT
TGAAGGAATTGGATTGCCTGGCCAGAGAGTCTGAAGTGCAGCAAATTCCCACCACA
GAACGACCACAACCACATGTGCATGGAAAGGGCCAGGTGATGAAGAGGTGCCCTACCT
CACAAAACCCCCATCCAGCCTGGGAAGAGTGTCACTCTGTGGAAACCAATTCTGATC
AGTACATCTGGGTGAAAGGAGCCTGAACGTGTGCTCAAGTGTGGCTATGATGCTGG
CTTATAACAGCCGCTCAGCCAAGGAGTTCACTGATATCTGGATGGCTGTGGCCAGCC
TGTGTTCATCTCCACTGCCTCACAGTACTGACCTCCTGATCGATTCTCTAGGTTT
CCTACCCCTGAGCGCCCCATCATATTCTCAGTATGTGCTATAATATTATAGCATTGCTT
ATATTGTCAGGCTGACTGTAGGCCGGAAAGGATATCCTGTGATTGAAGAGGCAGC
AGAACCTGTTCTCATCCAAGAAGGACTTAAGAACACAGGATGTGCAATAATTCTTGC
TGATGTACTTTGGAAATGCCAGCTCCATTGGTGGTTATTCTGACACTCACTGGT
TTTGGCAGCAGGACTCAAATGGGGTCATGAAGCCATTGAAATGCACAGCTCTTATTTC
CACATTGCAGCCTGGCCATCCCCGCACTGAAAACCATTGTCATCTGATTATGAGACT
GGTGGATGCAGATGAACGTGGCTTGCTATGTTGGAAACCAAAATCTCGATGCC
CTCACCGGGTCTGGTGGCTCCCTTACTTATTGGTCATTGGAACCTTGTTCATT
GCTGCAGGTTGGTGGCCTTGTCAAAATCTGGTCAAATCTCAAAAGGATGGACAA
AGACAGACAAGTTAGAAAGACTGATGGTCAAGATTGGGGTGTCTCAGTACTGTACAC
AGTTCTGCAACGTGTGATTGCCTGTTATTGAAATCTCAAACGGCACTTT
TCGGTATTCTGCAGATGATTCCAACATGGCTGTTGAAATGTTGAAAACCTTATGTCTT
GTTGGTGGGCATCACTCAGGCATGTGGATTGGTCTGCCAAAAGTCTCACACGTGGC
AGAAGTGTCCAACAGATTGGTAATTCTGGAAAGGTAAAGAGAGAGAGAGAGGAA
ATGGTTGGGTGAAGCCTGGAAAAGGCAGTGAGACTGTGGTATAAGGCTAGTCAGCCTC
CATGCTTCTCATTTGAAGGGGGAAATGCCAGCATTGGAGGAAATTCTACTAAAAA
GTTTATGCAGTGAATCTCAGTTGAACAAACTAGCAACAAATTAGTGACCCCCGTCAA
CCCACTGCCTCCCACCCGACCCAGCATAAAAACCAATGATTGCTGCAGACTTT
GGAATGATCCAAAATGGAAAAGCCAGTTAGAGGCTTCAAAGCTGTGAAAATCAA
ACGTTGATCACTTAGCAGGTTGCAGCTGGAGCGTGGAGGTCTGCCTAGATTCCAGG
AAGTCCAGGGCGATACTGTTCCCTGCAGGGTGGATTGAGCTGTGAGTTGGTAAC
TAGCAGGGAGAAATATTAACCTTTAACCTTACCAATTAAACTAACTGGGTCT

TTCAGATAGCAAAGCAATCTATAAACACTGGAAACGCTGGGTTCAGAAAAGTGTACA
AGAGTTTATAGTTGGCTGATGTAACATAAACATCTCTGTGGTGCCTGTGCTGTT
TAGAACCTTGACTGCACTCCAAAGAAGTGGTGTAGAATCTTCAGTGCCTTGTC
ATAAAACAGTTATTGAACAAACAAAGTACTGTACTCACACACATAAGGTATCCAGT
GGATTTCCTCTGTCTCCTCTAAATTCAACATCTCTTCTGGCTGCTGCTG
TTTCTTCATTATGTTAATGACTCAAAAAAGGTATTATAGAATTGGTACTGCA
GCATGCTTAAAGAGGGAAAAGGAAGGGTGTGATTCACTTCTGACAACTCACTTAATTCA
GAGGAAAATGAGATTACTAAGTTGACTTACCTGACGGACCCCAGAGACCTATTGCAT
TGAGCAGTGGGGACTTAATATATTACTTGTGTGATTGCATCTATGCAGACGCCAGTC
TGGAAAGAGCTGAAATGTTAAGTTCTGGCAACTTGCATTCACACAGATTAGCTGTGT
AATTTTGTGTCAATTACAATTAAAGCACATTGTTGGACCATGACATAGTATACTC
AACTGACTTAAAAACTATGGTCAACTTCAACTTGCATTCTCAGAATGATAGTGCCTTTA
AAATTTTTATTAAAGCATAGAATGTTATCAGAATCTGGTCTACTTAGGACAA
TGGAGACTTTCAAGTTATAAAGGAACTGAGGACAGCTAACCAACTACTGGTGC
TGTAAATTGTTCTAGTAATTGGCAAAGGCTCCTGTAAGATTCACTGGAGGCAGTGT
GCCCTGGAGTATTATATGGTGCTTAATGAATCTCCAGAATGCCAGCCAGAACGCTGAT
TGGTAGTAGGAAATAAGTGTAGACCATATGAAACTGCAAACACTCTAATAGCCC
AGGTCTTAATTGCCTTAGCAGAGGTATCCAAAGCTTTAAAATTATGCATACGTTCT
TCACAAGGGGGTACCCCCAGCAGCCTCTCGAAAATTGCACTCTCTAAAACGTAACT
GCCCTTCTCTACCTGCCTAGGCCTCTAATCATGAGATCTGGGGACAAATTGACT
ATGTCACAGGTTGCTCTCCTGTAACTCATACCTGTCTGCTCAGCAAACGTCTGCAAT
GACATTATTATTAAATTCATGCCTAAAAAAATAGGAAGGAAAGCTTTTTCTT
TTTTTTTTCAATCACACTTGTGGAAAAACATTCCAGGGACTCAAAATTCCAAAAAA
GGTGGTCAAATTCTGGAAGTAAGCATTCCCTTTGTTTTGTGTTGAGCCTTAT
GCCCATAGTTGACATTCCCTTCTTCTTCTTCTTGTGTTGAGCCTTGTGAGCTC
TCTGACATCAAGATGCATGTAAGTCGATTGTATGTTGAAGGCAAAGTCTGGCTT
TGAGACTGAAGTTAAGTGGGCACAGGTGGCCCTGCTGCTGTGCCAGTCTGAGTACC
TTGGCTAGACTCTAGGTCAAGCCTCCAGGAGCATGAGAATTGATCCCCAGAACCAT
TTAACTCCATCTGATACTCCATTGCCTATGAAATGTAAAATGTGAACCTCCCTGTGCTG
CTTGTAGACAGTCCATAACTGTCCACGCCCTGGAGCAGCACCCAGGGCAGAGC
CTGCCCTACTCAGCCTCTGCTCTGGTCTTGGAGTTGTGCAGGGACTCTGGCCAG
GCAGGGGAAGGAAGACCAGGCGTAGGGACTGGTCTGCTAGAGTATAGAGGTT
TGTAAATGCAGTTCTTCATAATGTGTCAGTGATTGTGACCAAGGCAGCATCTAGCA
GAAAGCCAGGCATGGAGTAGGTGATCGATACTGTCAATGACTAAATAACAATAA
AAGAGCACTGGGTGAATCTGGCACCTGATTCTGAGTTGAGTTGAGTCTGGAGCTAGT
TTTGACAATGCTTGGTTTGACATGCCTTCCACAAATCTCTGCCTTTCAGGGC
AAAGTGTATTGATCAGAAGTGGCCATTGGATTAGTAGCCTAGCAATGCTACAGGGT
TATAGGCCCTCTCCCTTCACATTCCAGACAATGGAGAGTGTATGGTTCAAGGAAA
AGAACTTGTGGCTGAGGGTCAGTTACCAAGTGCACCTCAATCAACTCCATCACTCTT
AAATCGGTATTGTTAAAAAAATCAGTTATTATTGAGTGCCGACTGTAGTAAA
GCCCTGAAATAGATAATCTCTGTTCTAAGTCAACTGATCTAGGATGGGACGCACCCAGGT
CTGCTGAACCTTACTGTTCTCTGGAAAAGGAGCAGGGACCTCTGGAATTCCCACCTGT
TTCACTGTCTCCATTCCATAAAATCTCTTCTGTGAGGCCACCACACCCAGCCTGGTCT
CTCTACTTTAACACATCTCTCATCCCTTCCAGGACTCCTCCAAGTCAGTTACAGG
TGGTTTAAACAGAAAGCATCAGCTCTGCTCGTACAGTCTCTGGAGAAATCCCTAGG
AAAGACTATGAGAGTAGGCCACAAGGACATGGGCCACACATCTGCTTGGCTTGC
GCAATTCAAGGGCTGGGTATTCCATGTGACTGTATAAGGTATATTGAGGACAGCATC
TTGCTAGAGAAAAGGTGAGGGTGTGTTCTCTGAAACCTACAGTAAATGGGTAT
GATTGTAGCTCCTCAGAAATCCCTGGCCTCCAGAGATTAAACATGGTGCAATGGCAC
CTCTGTCCAACCTCCTTCTGGTAGATTCTTCTCCTGCTCATATAGGCCAAACCTCA
GGCAAGGGAACATGGGGTAGAGTGGTGTGGCCAGAACCATCTGCTTGAGCTACTT
GGTGATTCATATCCTCTTATGGAGACCCATTCTGATCTGAGACTGTG

TGAACGGCAACTTACTGGGCCTGAAACTGGAGAAGGGGTGACATTTTTAATTCA
GAGATGCTTCTGATTTCTCCCAGGTCACTGTCTCACCTGCACTCTCCAAACTCAG
GTTCCGGGAAGCTTGTGTCTAGATACTGAATTGAGATTCTGTCAGCACCTTAGC
TCTATACTCTGGCTCCCTCATCCTCATGGTCACTGAATTAAATGCTTATTGTATTGA
GAACCAAGATGGGACCTGAGGACACAAAGATGAGCTAACAGTCTCAGCCCTAGAGG
AATAGACTCAGGGATTTCACCAGGTGGTGCAGTATTGAGTCTGGTGGAGGTGACCAC
AGCTGCAGTTAGGAAGGGAGCCATTGAGCACAGACTTGGAAAGGAACCTTTTGT
GTTGTTGTTGTTGTTGTTGAGACAGGGCTTGCTCTGCTACCCAGG
CTGGGGCGCAATGGCACCGATCTGGCTCACTGCAACCTCTGCCCTGGGTTCAAGTGA
TTCTCCTGCCACAGCCTCTGAGGAGCTGGACTACAGGTGGTGCCTACACGCCAG
CTACTTCTGTATTTAGTAGAGACGGGTTCACTGTGTTGCCAGGCTGGTCTCGAA
CTCCTGACCTCATGATCTGCCGCTCAGCCTCCAAAGTGCTGGATTACAAGTGTGA
GCCACCACACCTGGCCTGGAAGGAACCTCTAAAATCAGTTACGTCTGTATTTGTT
CTGTGATGGAGGACACTGGAGAGAGTTGCTATTCCAGTCAATCATGTCGAGTCAGTGG
ACTCTGAAAATCCTATTGGTCCTTATTTATTTGAGTTAGAGTTCCCTCTGGGTT
GTATTATGTCTGGCAAATGACCTGGGTTATCACTTTCCAGGTTAGATCATAGAT
CTTGGAAACTCCTAGAGAGCATTGCTCCTACCAAGGATCAGATACTGGAGCCCCAC
ATAATAGATTCACTCACTCTAGCCTACATAGAGCTTCTGCTGTCTGCCATG
CACTTGTGCGGTGATTACACACTTGACAGTACCAAGGAGACAAATGACTACAGATCCC
CCGACATGCCCTTCCCTGGCAAGCTCAGTGGCCCTGATAGTAGCATGTTCTGTT
TGATGTACCTTTCTCTCTTGCATCAGCCAATTCCAGAATTCCCCAGGCAA
TTFGTAGAGGACCTTTGGGTCCTATATGAGCCATGTCCTCAAAGCTTTAACACCTC
CTTGCTCTCCTACAATATTCACTGACATGACACTGTCATCCTAGAAGGCTCTGAAAAG
AGGGGCAAGAGCCACTCTGCCACAAAGGTTGGATCCATCTCTCCGAGGTTGTG
AAAGTTTCAAATTGTACTAATAGGCTGGGCCCTGACTTGGCTGGCTGGGTTGGAGG
GGTAAGCTGCTTCTAGATCTCCCAGTGAGGCATGGAGGTGTTCTGAATTGTCT
ACCTCACAGGGATGTTGAGGCTTGGAAAAGGTCAAAATGATGGCCCTTGAGCTC
TTGTAAGAAAGGTAGATGAAATATCGGATGTAATCTGAAAAAGATAAAATGTGAC
TTCCCTGCTCTGTGCAGCAGTCGGCTGGATGCTCTGTCNTTCTGGTCCTCATG
CCACCCCCACAGCTCCAGGAACCTGAAAGCCAATCTGGGACTTCAGATGTTGACAA
AGAGGTACCAAGGCAAACCTCCTGCTACACATGCCCTGAATGAATTGCTAAATTCAA
GGAAATGGACCCCTGCTTTAAGGATGTACAAAGTATGTCATCGATGTCTGACTG
TAAATTCTAATTACTGTACAAAGAAAACCCCTGCTATTAAATTGTATTAAAG
GAAAATAAAGTTGTTGGTAAAAAA

Figure 64

MAWRGAGPSVPGAPGGVGLSLGLLQLLLLGPARGFDEEERRCDPIRISMQNLGYNV
TKMPNLVGHELQTDaelQLTTFTPLIQQYGCSSQLQFFLCSVYVPMCTEKINIPIGPCGGMCL
SVKRRCEPVLKЕFGFAWPESLNCSKFPPQNDHNMCMEGPGDEEVPLPHKTPIQPGEECHS
VGTNSDQYIWVKRSLNCKVLCGYDAGLYSRSAKEFTDIWMAWWASLCFISTAFTVLTFLID
SSRFSYPERPIIFLSMCYNIYSIAYIVRLTVGRERISCDFEAAEPVLIQEGLKNTGCAIIFLLM
YFFGMASSIWVWVILTLTWFLAAGLKWGHEAIEMHSSYFHIAAWAIPAVKTVILIMRLVDA
DELTGLCYVGNQNLDALTGFVVAPLFTYLVIGTLFIAAGLVALFKIRSNLQKDGTKTDKLE
RLMVKIGVFSVLYTVPATCVIACYFYEISNWALFRYSADDNSMAVEMLKTFMSLLVGIT
SGMWIWSAKSLHTWQKCSNRLVNSGKVREKRGNGWVKPGKGSETVV

Figure 65

ACCCAGGGACGGAGGACCCAGGCTGGCTGGGACTGTCTGCTCTCGGCGGGAGC
CGTGGAGAGTCCTTCCCTGGAATCCGAGCCCTAACCGTCTCTCCCCAGCCCTATCCGG
CGAGGGAGCGGAGCGCTGCCAGCGGAGGCAGCGCCTCCGAAGCAGTTATCTTGGA
CGGTTTCTTAAAGGAAAAACGAACCAACAGGTTGCCAGCCCCGGGCCACACACGA
GACGCCGGAGGGAGAAGCCCCGGCCGGATT CCTCTGCCTGTGCGTCCCTCGCGGG
CTGCTGGAGGCAGGGAGGGAGGGAGGGCGATGGCTCGGCCTGACCCATCCCGCCGC
CCTCGCTGTTGCTGCTGCTCCTGGCGCAGCTGGTGGGCCGGCGCCGCGTCAA
GGCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGCCATCGGCTACAACCTG
ACGCACATGCCAACCAACCAGTTCAACCACGACACGCAGGACGAGGCCCTGGAGGTG
CACCAAGTTCTGGCCGCTGGTGGAGATCCAATGCTGCCGGACCTGCGCTTCTCCTATG
CACTATGTACACGCCCATCTGTCTGCCGACTACCACAAGCCGCTGCCGCCCTGCCGCT
CGGTGTGCGAGCGCGCCAAGGCCGGCTGCTGCCGCTGATGCCAGTACGGCTTCGC
CTGGCCCAGCGCATGAGCTGCGACCGCCTCCGGTGCTGGGCCGACGCCGAGGTC
CTCTGCATGGATTACAACCGCAGCGAGGCCACCACGGGCCCGGGCTCGGGGGCGAATGCCCGC
CCAAGCCCACCCTCCAGGCCGCCAGGGGCCCGCCGGCTCGGGGGCGAATGCCCGC
TGGGGGCCCGTGTGCAAGTGTGCGAGCCCTCGTGTGCCATTCTGAAGGAGTCAC
ACCCGCTCTACAACAAAGGTGCGGACGGGCCAGGTGCCAACTGCGCGGTACCCCTGCTA
CCAGCCGTCTTCAGTGCCGACGAGCGCACGTTGCCACCTCTGGATAGGCCTGTGGT
CGGTGCTGTGCTTCATCTCCACGTCCACCACAGTGGCCACCTCCTCATCGACATGGAC
ACGTTCCGCTATCCTGAGCGCCCCATCATCTTCTGTGCTACGCTGCTACCTGTGCGTGT
GCTGGGCTTCCTGGTGCCTGGTGTGGCCATGCCAGCGTGGCCTGCAGCCGAG
CACAAACCACATCCACTACGAGACCACGGGCCCTGCACTGTGCAACCACGTCTCCTCCT
GGTCTACTTCTCGGCATGGCCAGCTCCATCTGGTGGTCATCCTGCTCACCTGGTT
CCTGGCCGCCGCGATGAAGTGGGCAACGAGGCCATCGCAGGCTACGCCAGTACTTC
CACCTGGCTGCGTGGCTCATCCCCAGCGTCAAGTCCATCAGGCACTGGCGCTGAGCTC
CGTGGACGGGGACCCAGTGGCCGGCATCTGCTACGTGGCAACCAGAACCTGAACACTCG
CTGCGCGCTCGTGTGGCTGGCCTGGTGTGGCTTACCTGCTGGTGGCACGCTCTCCT
GCTGGCGGGCTCGTGTGCTCTCCGCATCCGCAGCGTCAAGCAGGGCGGAC
AAGACGGACAAGCTGGAGAAGCTCATGATCCGCATCGGCATCTCACGCTGCTCTACA
CGGTCCCCGCCAGCATTGTGGTGGCCTGCTACCTGTACGAGCAGCACTACCGCGAGAG
CTGGGAGGCAGCGCTCACCTGCGCCTGCCGGGCCACGACACCAGGCCAGCCGCGGCC
AAGCCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATGTGCCTGGTGGCATCAC
GTCGGCGTCTGGATCTGGTGGCAAGACGGTGGAGTCGTGGCGGCGTTACCGAC
CGCTGCTGCCGCCCGCGCGGCCACAAGAGCGGGGCCATGGCCCGAGGG
GAATACCCCGAGGCAGCGCCGCGCTCACAGGCAGGACCGGGGCCGGCCCCGCC
GCCACCTACCACAAGCAGGTGTCCCTGCGCACGTGTAAGGAGGCTGCCGCCAGGGAC
TCGGCCGGAGAGCTGAGGGAGGGGGCGTTTGTGTTGGTAGTTGCCAAGGTCACT
TCCGTTACCTCATGGTGTGCTGTTGCCCTCCCGCGCGACTTGGAGAGAGGGAAAGAG
GGCGTTTCGAGGAAGAACCTGTCCCAGGTCTCCAAGGGGCCAGCTCACGTGT
ATTCTATTTGCCTTCTTACCTGCCTTATGGAAACCCTTTAATTATATGTA
T

Figure 66

MARPDP SAPP SLLL LLAQLVGR AAAASKAPVCQEITVPMCRGIGYNLTHMPNQFNHDTQ
DEAGLEVHQFWPLVEIQCSPDLRFFLCTMYTPICLPDYHKPLPPCRSVCERAKAGCSPLMR
QYGFAWPERMSCDRLPVLRDAEVLCMDYNRSEATTAPPRPFPAKPTLPGPPGAPASGGE
CPAGGP FVCKCREPFVPILKESHLNKVRTGQVPNCAPCYQPSFSADERTFATFWIGLW
SVLCFISTSTTVATFLIDMDTFRYPERPIIFLSACYLCVSLGFLVRLVVGHASVACSREHNHH
YETTGPA LCTIVFLLVYFFGMASSIWWVILSLTWFLAAAMKWGN EAIA GYGQYFH LA AWL
IPSVKSITALALSSVDGDPVAGICYVGNQNLSLRRFVLGPLVLYLLVGTLFLLAGFVSLFRI
RSVIKQGGTKTDKLEKL MIRIGIFTLLYTV PASIVVAC YLYEQHYRESWEAALTCA CP GHD
TGQPRAKPEYWV LMLKYFMCLVVGITSGVWIWSGKTVESWRRFTSRCCCRPRRGHKSGG
AMAAGDYPEASAALTGR TGPPGPAATYHKQVSLSHV

Figure 67

GCAGCTCCAGTCCCGGACGCAACCCGGAGCCGTCTCAGGTCCCTGGGGGAACGGTG
GGTTAGACGGGGACGGGAAGGGACAGCGGCCCTCGACC GCCCCCGAGTAATTGACCC
AGGACTCATTT CAGGAAAGCCTGAAAATGAGTAAAATAGT GAAATGAGGAATTGAA
CATT TTATCTTGGATGGGGATCTTCTGAGGATGCAAAGAGTGATT CATCCAAGCCATG
TGGTAAAATCAGGAATTGAAAGAAAATGGAGATGTTACATT TTGTTGACGTGTATT
TTCTACCCCTCTAAGAGGGCACAGTCTTCACCTGTGAACCAATTACTGTTCCCAGA
TGTATGAAAATGGCCTACAACATGACGTTTCCCTAATCTGATGGGT CATTATGACCA
GAGTATTGCCGCGGTGGAAATGGAGCATT TCTCGCAAATCTGGAATGTTCAC
CAAACATTGAAACTT CCTCTGCAAAGCATTG TACCAACCTGCATAGAACAAATTCA
GTGGTTCCACCTTGTCAAACCTTGTGAGAAAGTATATTCTGATTGCAAAAAATTAA
TGACACATTGGGATCCGATGGCCTGAGGAGCTGAAATGTGACAGATTACAATTG
ATGAGACTGTT CCTGTAACCTTGTGAGCTAGAGTTGCAAAGTTCAGGATCTTCA
ACAGAACAAAGTCCAAAGAGACATTGGATT TGGTCCAAGGCATCTTAAAGACTCTG
GGGGACAAGGATATAAGTTCTGGGAATTGACCAGTGTGCGCCTCCATGCCCAACAT
GTATT TAAAAGT GATGAGCTAGAGTTGCAAAGTTATTGGAACAGATTCA
TTTGTCTTGTGCAACTCTGTCACATT CCTTACTTTTAATTGATGTTAGAAGATTCA
GATA CCCAGAGAGACCAATTATATATTACTCTGTCTGTTACAGCATTGTATCTTATG
TACTTCATTGGATT TGTGCTGGCGATAGCACAGCCTGCAATAAGGCAGATGAGAAC
TAGAACTTGGTGACACTGTTGCTCTAGGCTCTCAA AATAAGGCTGCACCGTTGTT
ATGCTTTGTATT TTT CACAATGGCTGGCACTGTGTGGTGGGTGATTCTTACCTTACT
TGGTTCTTAGCTGCAGGAAGAAAATGGAGTTGTGAAGCCATCGAGCAAAGCAGTGT
GGTTCATGCTGTTGCATGGGGAACACCAGGTTCTGACTGTTATGCTTGTCTGA
ACAAAGTTGAAGGAGACAACATTAGTGGAGTTGCTTGTGGCTTATGACCTGGAT
GCTTCTCGCTACTTGTACTCTGCCACTGTGCCTTGTGTGTTGTGGCTCTCTTC
TTTAGCTGGCATT ATT CCTTAAATCATGTTGACAAGTCATACAACATGATGGCCGG
AACCAAGAAAAACTAAAGAAATTATGATT CGAATTGGAGTCTCAGCGGCTGTATC
TTGTGCCATTAGTGACACTCTCGGATGTTACGTCTATGAGCAAGTGAACAGGATTACC
TGGGAGATAACTTGGGTCTCTGATCATTGTCGTCA GTACC ATCCC ATGTCCTTATCA
GGCAAAAGCAAAAGCTCGACCAGAATTGGCTTATTATGATAAAATACCTGATGACA
TTAATTGTTGGCATCTCTGCTGTCTGGTTGGAAAGCAAAGACATGCACAGAATG
GGCTGGGTTTTAAACGAAATCGCAAGAGAGATCCAATCAGTGAAGTCAAGAG
CTACAGGAATCATG TGAGTTCTAAAGCACAATTCTAAAGTAAACACAAAAAGA
AGCACTATAAACCAAGTTCACACAAAGCTGAAGGTCAATTCCAAATCCATGGGAACCAG
CACAGGAGCTACAGCAAATCATGGCACTCTGCAGTAGCAATTACTAGCCATGATTAC
CTAGGACAAGAAA ACTTGACAGAAATCCAAACCTCACCAGAAACATCAATGAGAGAG
GTGAAAGCGGACGGAGCTAGCACCC CAGGTTAAGAGAACAGGACTGTGGTGAACCT
GCCTCGCCAGCAGCATCCATCTCCAGACTCTCTGGGGAACAGGTCGACGGGAAGGGCC
AGGCAGGCAGTGTATGAAAGTGC GCGGAGTGAAGGAAGGATTAGTCCAAAGAGTG

ATATTACTGACACTGGCCTGGCACAGAGCAACAATTGCAGGTCCCCAGTTCTTCAGAA
 CCAAGCAGCCTCAAAGGTTCCACATCTCTGCTTGTACCCAGTTCAGGAGTGAGAAA
 AGAGCAGGGAGGTGGTTGTCATTCAAGATACTTGAAGAACATTCTCTCGTTACTCAGA
 AGCAAATTGTGTTACACTGGAAGTGACCTATGCACTGTTGTAAAGAACACTGTTAC
 GTTCTCTTTGCACTAAAGTTGCATTGCCTACTGTTACTGGAAAAAATAGAGTTCA
 AAGAATAATATGACTCATTCACACAAAGGTTAATGACAACAATATACTGAAAACAG
 AAATGTGCAGGTTAATAATATTGAAATAGTGTGGGAGGACAGAGTTAGAGGAATC
 TTCCTTTCTATTATGAAGATTCTACTCTGGTAAGAGTATTAAAGATGTACTATGCT
 ATTTACCTTTGATATAAAATCAAGATATTCTTGCTGAAGTATTAAATCTTATCC
 TTGTATCTTTATACATATTGAAAATAAGCTTATATGTATTGAACCTTTGAAATC
 CTATTCAAGTATTATCATGCTATTGTGATATTAGCACTTGGTAGCTTACACT
 GAATTCTAAGAAAATTGAAAATAGTCTCTTTATACTGTAAGAACAGATACCAA
 AAAGTCTTATAATAGGAATTAACTTAAAAACCCACTTATTGATACCTTACCATCTAA
 AATGTGTGATTTTATAGTCTCGTTAGGAATTACAGATCTAAATTATGTAACGTGA
 AATAAGGTGCTTACTCAAAGAGTGTCCACTATTGATTGTATTATGCTGCTCACTGATCC
 TTCTGCATATTAAAATAAAATGTCCTAAAGGGTTAGTAGACAAAATGTTAGCTTTG
 TATATTAGGCCAAGTGCAATTGACTTCCCTTTAATGTTCATGACCACCCATTGATT
 GTATTATAACCACTACAGTTGCTTATATTGTTAACCTTGTCTAACATTAGA
 GAATATTACATTGTATTATACAGTACCTTCTCAGACATTGTAG

Figure 68

MEMFTLLTCIFLPLLRGHSLFTCEPITVPRCMKMAYNMTFPNLMGHYDQSIAAVEMEHF
 LPLANLECSPIETFLCKAFVPTCIEQIHVVPPCRKLCEKVYSDCKKLIDTFGIRWPEELECD
 RLQYCDETVPVTFDPHTEFLGPQKKTEQVQRDIGFWCPRHLKTSQQQGYKFLGIDQCAPP
 PNMYFKSDELEFAKSFIGTVSIFCLCATLFTFLIDVRRFRYPERPIYYSVCSIVSLMYFI
 GFLLGDSTACNKADEKLELGDTVVLGSQNKAETVLFMLLYFFTMAVTWWVILITWFLA
 AGRKWSCEAIEQKAVWFHAVAWGTPGFLTVMILLALNKVEGDNISGVCFVGLYDLDASRY
 FVLLPLCLCVFVGLSLLAGIISLNHVRQVIQHDGRNQEKLKKFMIRIGVFSGLYLVPLVTLL
 GCYVYEQVNRTWEITWVSDHCRQYHIPCPYQAKAKARPELALFMIKYLMTLIVGISA
 VFWVGSKKTCTEWAGFFKRNRKDPISESRRVLQESCEFFLKHSKVKHKKHYKPSSHK
 LKVISKSMGTSTGATANHTSAVAITSHDYLQETLTEIQTSPETSMREVKADGASTPRLRE
 QDCGEPAASPAAISISRLSGEQVDGKGQAGSVSEARSEGRIISPKSDITDTGLAQSNLQVPS
 EPSSLKGSTSLLVHPVSGVRKEQGGGCHSDT

Figure 69

CTCTCCAACCGCCTCGCACTCCTCAGGCTGAGAGCACCGCTGACTCGCGGCCGG
 CGATGCGGGACCCCGGCCGCGCTCCGCTTGTCCCTGGGCCTCTGTGCCCTGGT
 CTGGCGCTGCTGGCGCACTGTCCGCCGGCGCAGCCGTACCAACGGAGAGA
 AGGGCATCTCCGTGCCGGACCACGGCTTGTCCAGCCCCTCCATCCGCTGTGCACG
 GACATCGCCTACAACCAGACCATCCTGCCAACCTGCTGGGCCACACGAACCAAGAGG
 ACGCGGGCCTCGAGGTGCACCAGTTCTACCCGCTGGTAAGGTGCAGTGTCTCCGA
 ACTCCGCTTTCTATGCTCCATGTATGCGCCGTGTGCACCGTGCATCAGGCCAT
 CCCGCCGTGCTCTGTGCAGCGCGCCAGGGCTGCGAGGCCTCATGAAC
 AAGTCGGCTCCAGTGGCCCGAGCGGCTGCGCTGCGAGAACCTCCGGTGCACGGTG
 CGGGCGAGATCTGCGTGGGCCAGAACACGTCGGACGGCTCCGGGCCAGGC
 GCCCCACTGCCTACCCCTACCGCGCCCTACCTGCCGGACCTGCCCTCACCGC
 CGGGGGCCTCAGATGGCAGGGCGTCCGCCTCCCTCATGCCCGTCAGCT

CAAGGTGCCCGTACCTGGGCTACCGCTCCTGGGTGAGCGCGATTGTGGCGCCCGT
GCGAACCGGGCCGTGCCAACGGCCTGATGTACTTTAAGGAGGAGGGAGAGGC
CCGCCTCTGGTGGCGTGTGGTCCGTGCTGTGCTGCCCTCGACGCTCTTACCG
TCACCTACCTGGTGGACATGCGGCCTCAGCTACCCAGAGCGGCCATCATCTC
TCGGGCTGCTACTCATGGTGGCCGTGGCGCACGTGGCCGGCTCCTCTAGAGG
CGCCGTGTGCGTGGAGCGCTCTCGGACGATGGCTACCGCACGGTGGCGAGGG
AAGAAGGAGGGCTGCACCACCTCTCATGGTGCCTACTTCTCGGCATGGCCAG
CATCTGGTGGTCATTCTGTCTCACTTGGTCCCTGGCGCCGGCATGAAGTGG
ACGAGGCCATCGAGGCCAACTCGCAGTACTTCCACCTGGCCGCGTGGCCGC
CGTCAAGACCATCACTATCCTGGCATGGCCAGGTAGACGGGACCTGCTGAG
GTGTGCTACGTTGGCCTCTCCAGTGTGGACGCGCTGCCGGCTTCGTGCTGG
GTCGTCTACCTCTCATAGGCACGTCCCTCTTGCTGGCCGGCTTCGTGCTCC
TATCCGCACCATCATGAAACACGACGGCACCAAGACCGAGAAGCTGGAGAAG
GGTGCATCGCGTCTCAGCGTGCCTACACAGTGCACCGGCACCTGGCCTGC
GCTACTTCTACGAGCAGGCCTCCCGAGCAGCAGTGGAGCGCACCTGGCCTGC
GTGCAAGAGCTATGCCGTGCCCTGCCGCCGGCCACTTCCCACCATGAGCCCC
TCACCGTCTTCATGATCAAGTACCTGATGACCATGATCGTCGGCATCACCA
TGGATCTGGTGGCAAGACCCCTGCAGTCGTGGCGCCGCTTCTACCACAGA
ACAGCAGCAAGGGGAGACTGCGGTATGAGCCCCGGCCCTCCCCACCTTCCC
CAGCCCTTTGCAAGAGGAGAGGACGGTAGGGAAAAGAACTGCTGGGTGG
GTTCTGTAACCTTCTCCCCCTCTACTGAGAAGTGAACCTGGAAAGTGAGA
AGATTGGCGAGGGTGATTGGAAAAGAAAGACCTGGTGGAAAGCGGTTGG
GAAAAGATTCAAGCAAAGACTGCAGGAAGATGATGATAACGGCGATGT
AAAGGTACGGGCCAGCTTGTGCTTAATAGAAGGTTGAGACCAGCAGAGA
GTGGCCTGTCCAGACCCCTGTGAGGCCGGAAAGGTACAGCCCTGTGCGG
CTGCTTGTGGAAAGAGGGAGGGCCTCTGCGGTGTGCTGTCAAGCAGTGG
CCATAATCTCTTCACTGGGCCAAACTGGAGCCCAGATGGTTAATTCCAGGG
GACATTACGGTCTCCTCCCTGCCCTCCCGCTGTTTCTCCGTACTGCTTC
AGGTCTTGTAAAATAAGCATTGGAAGTCTTGGAGGCCTGCCTGCTAGA
TGAGGATGCAAAAGAAATGATGATAACATTGAGATAAGGCCAAGGAG
TAGGTATTTCGCTACTTTCAATTCTGGGAAGGCAGGAGGCAGAAAGACGG
TTTATTGGCTAATACCCGAAAGAAGTGTGACTTGTGCTTCAAAACAGGA
GCATTCTCCCTGTCTTGTGTAAGAGACAAAAGAGGAAACAAAAGTGT
TGGAAAGGCATAACTGTGACGAAAGCAACTTATAGGCAAAGCAGCG
GTTTCCGTTGGTGTAAATTGGTGTGAGATAAACATTCTTTAAGGAAAAGT
AGCAGTGTGCTGTCACACACCGTTAAGCCAGAGGTTCTGACTTCG
AAGAGGTTTGTCTGTTAAATAAAATTAAATTGGAAACACATGATCCA
ATGTTAAAATATTCAAGGGAAATCTCTCCCTCATTTACTTTCTGCTATA
TTAGGTTCTTCTATTCTCCATTGGATCCTTGGAGGTAAAAAACATA
GTCTCAGCCTCATATAAAAGGAAAGTTAATTAAAAAAAAAGCAAAGAG
GTCCTGTTCTGGTCCATCAATCTGTTATTAAACATCATCCATATGCT
CTCTGTGGTTGGGAGGCGATCAGCAGATAACCATACTGAACGAAGAG
TTGAACCATGGGCCCATCTTAAAGAAAGTCATTAAAAGAAGGTAAACT
GATTCTGGAGTTCTTGAATGTGCTGGAAAGACTAAATTATTAAATCT
ACTTTCTGTAATAGAACTCGGATTCTTGCATGATGGGTAAAGCTTAG
AATCATGGGAGCTAACCTTATCCCACCTTGACACTACCCTCAATCT
TCCTGTTCTCAGAACAGTTAAATGCCAATCATAGAGGGTACTGT
GTTACTTATATGTAATGTTCACTGAGTGGAACTGCTTTACATTAAAG
CGATCTGTGTTCTCAACCTTCAAAACTATCTCATCTGTCAGATT
CACAGGTTTGGCATCTTGTGCTGATCTTTAAGTCATGTGAAATTG
AGATAAGTACAGTATGTATTTGTAAGAAAATATATTG

TATTATACATTTACTTGGATTTGTTGGCTTAAAGGTCTACCCCACTTA
TCACATGTACAGATCACAAATAAATTTTAAATAC

Figure 70

MRDPGAAAPLSSLGLCALVLALLGALSAGAGAQPYHGEKGISVPDHGFCQPISIPLCTDIAY
NQTILPNLLGHTNQEDAGLEVHQFPLVKVQCSPELRFFLCSMYAPVCTVLDQAIPPCRSLC
ERARQGCEALMNKFGFWPERLRCENFPVHGAGEICVGQNTSDGSGGPGGGPTAYPTAPY
LPDLPFTALPPGASDGRGRPAFPFSCPRQLKVPPYLGYRFLGERDCGAPCEPGRANGLMYF
KEEERRFARLWVGWVWSVLCCASTLFTVLTYLVDMRRFSYPERPIIFLSGCYFMVAVAHVA
GFLLEDRAVCVERFSDDGYRTVAQGTKKEGCTILFMVLYFFGMASSIWVVILSLTWFLAA
GMKGWGHEAIEANSQYFHLLAAWAVPAVKTITILAMQVDGDLLSGVCYVGLSSVDA
LRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHDGTKEKLMVRIGVFSVLYTVPAT
IVLACYFYEQAFREHWERTWLLQTCKSYAVPCPPGHFPPMSPDFTVFMIKYLMTMIVGITT
GFWIWSGKTLQSWRRFYHRLSHSSKGETAV

Figure 71

ACAGCATGGAGTGGGGTTACCTGTTGGAAGTGACCTCGCTGGCCGCCCTGGCGCT
GCTGCAGCGCTCTAGCGGCGCTGCGGCCCTCGGCCAAGGAGCTGGCATGCCAAGAG
ATCACCCTGCGCTGTGAAGGGCATCGGCTACAACACTACACCTACATGCCAATCAGTT
CAACCACGACACGCAAGACGAGGCAGGGCTGGAGGTGCACCAGTTCTGGCCGCTGGTG
GAGATCCAGTGCTCGCCGATCTCAAGTTCTCCTGTGCAGCATGTACACGCCATCTG
CCTAGAGGACTACAAGAACGCGCTGCCCTGCCGCTCGGTGTGCAGCGCGCCAAG
GCCGGCTGCGCGCCGCTCATGCGCCAGTACGGCTTCGCGCTGGCCCGACCGCATGCGCT
GCGACCGGCTGCCGAGCAAGGCAACCTGACACGCTGTGCATGGACTACAACCGCAC
CGACCTAACCAACCGCCCGCCCAGCCCCGCCGCGCCCTGCCGCCGCCGCCGGC
GAGCAGCCCTCGGGCAGCGGCCACGGCCCGCCGGGGCCAGGCCCCCGCACC
GCGGAGGCGGCAGGGCGGTGGCGGGACGCGGGCGCCAGCTCGCG
GCGCGGTGGCGGGAAAGCGCGGCCCTGGCGGCGCGGGCTCCCTGCGAGCCCG
GGTGCCAGTGCCCGCGCCTATGGTGAGCGTGTCCAGCGAGCGCCACCCGCTCTACAA
CCCGGTCAAGACAGGCCAGATCGCTAACTGCGCGCTGCCCTGCCACAACCCCTTTCA
GCCAGGGACGAGCGCGCCTCACCGTCTTCTGGATCGGCCTGTGGTGGCTCTGCTTC
GTGTCCACCTCGCCACCGTCTCCACCTTCTTATCGACATGGAGCGCTCAAGTACCC
GGAGCGGCCATTATCTTCCTCTCGGCCTGCTACCTCTCGTGTGGTGGCTACCTAG
TGCCTGGTGGCGGGCACGAGAAGGTGGCGTGCAGCGGTGGCGCCGGCGCG
GGGGCGCTGGGGCGCGGGCGCGGGCGAGTACGAGGAGCTGGCGCGGTGGAGCAGCACG
CGGGCGCCGGCGGGCGAGTACGAGGAGCTGGCGCGGTGGAGCAGCACG
TGCCTGGTGGCGCCAGCTCCATCTGGTGGTGATCTTGTGCGCTCACATGGTCTGGCG
TTCGGCATGGCCAGCTCCATCTGGTGGTGATCTTGTGCGCTCACATGGTCTGGCG
CGGTATGAAGTGGGGCAACGAAGCCATCGCCGGCTACTCGCAGTACTCCACCTGGCC
GCGTGGCTTGTGCCAGCGTCAAGTCCATCGCGGTGCTGGCGCTCAGCTGGTGGACG
GCGACCCGGTGGCGGGCATCTGCTACGTGGCAACCAGAGCCTGGACAACCTGCGCG
CTTCGTGCTGGCGCCGCTGGTCATCTACCTCTTCATCGCACCATGTTCTGCTGGCG
GCTTCGTGTCCTGTTCCGCATCCGCTCGGTATCAAGCAACAGGACGGCCCCACCAAG
ACGCACAAGCTGGAGAAGCTGATGATCCGCCTGGGCCTGTTCACCGTGTCTACACCG
TGCCCCGCCGGTGGTGGTCGCTGCCTGCCTCTACGAGCAGCACAACCGCCCGCTG
GGAGGCCACGCACAAGTGCCTGGCGGGACCTGCAGCGGACCGAGGCACGCAG
GCCCGACTACGCCGTCTTCATGCTCAAGTACTTCATGTGCCTAGTGGTGGGCATCACCT
CGGGCGTGGGTCTGGTCCGGCAAGACGCTGGAGTCCTGGCGCTCCCTGTGCACCCG
CTGCTGCTGGGCCAGCAAGGGCGCCGGTGGCGGGGGCGCGGCCACGGCCGC
GGGGGGTGGCGGGCGGGCGGGGGGGACCCGGCGGGCGGGGG

GGCCGGGGCGGCGGGGGCTCCCTACAGCGACGTAGCACTGGCCTGACGTGGCG
 GTCGGGCACGGCGAGCTCCGTCTTATCCAAGCAGATGCCATTGTCCCAGGTCTGA
 GC GGAGGGAGGGGGCGCCAGGAGGGTGGGGAGGGGGCGAGGAGACCAAGTG
 CAGCGAAGGGACACTTGATGGGCTGAGGTTCCCACCCCTCACAGTGTGATTGCTATT
 AGCATGATAATGAACTCTTAATGGTATCCATTAGCTGGACTTAAATGACTCACTTAGA
 ACAAAAGTACCTGGCATTGAAGCCTCCCAGACCCAGCCCCTTCCATTGATGTGCG
 GGGAGCTCCTCCGCCACCGCTTAATTCTGTTGGCTGCACTTGGCTGGGTTGCAGTCAG
 ATACACAGATTCACCTGGGAGAACCTCTTCTCCCTCGACTCTCCTACGTAAACTC
 CCACCCCTGACTTACCCCTGGAGGAGGGTGACCGCCACCTGATGGATTGCACGGTT
 GGGTATTCTTAATGACCAGGAAATGCCTTAAGTAAACAAACAAGAAATGTCTTAATT
 ATACACCCCACGTAAATACGGGTTCTACATTAGAGGATGTATTATATAATTATTG
 TTAAATTGAAAAAAAAAAAGTGTAAAATATGTATATATCAAAGATAAGTGTAC
 ATTTTTGTAAAAAGTTAGAGGCTTACCCCTGTAAGAACAGATATAAGTATTCTATT
 TTGTCATAAAATGACTTTGATAATGATTAAACCATTGCCCTCTCCCCGCCTCT
 GAGCTGTACACCTTAAAGTGCTGCTAAGGACGCATGGGGAAAATGGACATTCTGG
 CTTGTCATTCTGTACACTGACCTTAGGCATGGAGAAAATTACTGTTAAACTCTAGTTC
 TTAAGTTTAGCCAAGTAAATATCATTGTTGAACGTAAATCAAAGATATTGAGTTTGCA
 CCTTCCCCAAAGACGGTGTTCATGGGAGCTTTCTGATCCATGGATAACAAACTC
 TCACTTAGTGGATGTAATGGAACCTCTGCAAGGCAGTAATTCCCCTAGGCCTGTT
 ATTATCCTGCATGGTATCACTAAAGGTTCAAAACCCCTGAAAAAA

Figure 72

MEWGYLLEVTSLLAALALLQRSSGAAAASAKELACQEITVPLCKGIGYNYTYPNQFNHD
 TQDEAGLEVHQFWPLVEIQCSPDLKFFLCMSYTPICLEDYKKPLPPCRSVCERAKAGCPL
 MRQYGFAWPDRMRCDRLPEQGNPDLCMDYNRTDLTTAAPSPPRRLPPPGEQPPSGSG
 HGRPPGARPPHRGGGRGGGGDAAAPPARGGGGGGKARPPGGGAAPCEPGCQCRAPMVS
 VSSERHPLYNRVKTGQIANCALPCHNPFFSQDERAFTFWIGLWSVLCFVSTFATVSTFLID
 MERFKYPERPIIFLSACYLGVSVGYLVRLVAGHEKVACSGGAPGAGGAGGAGGAAAGAG
 AAGAGAGGPGGRGEYEELGAVEQHVRYETTGPALCTVVFLVYFFGMASSIWWVILSLT
 WFLAAGMKWGNEALAGYSQYFHLLAALVPSVKSIAVLALSSVDGDPVAGICYVGNQSLD
 NLRGFVLAPLVIYFIGTMFLLAGFVSLFRIRSVIKQQDGPTKTHKLEKLMIRLGLFTVLYTV
 PAAVVVACLFYEQHNRPRWEATHNCPLRDLQPDQARRPDYAVFMLKYFMCLVVGITSG
 VVWWSGKTLESWRSLCTRCCWASKGAAVGGGAGATAAGGGGGPGGGGGGGPGGGGGP
 GGGGSLYSDVSTGLTWRSGTASSVSYPKQMPLSQLV

Figure 73

CCGCCTTCGGCCCGGGCTCCCGGGATGGCCGTGGCGCCTCTGCAGGGGGCGCTGCTG
 CTGTGGCAGCTGCTGGCGGGCGGGCGCCAGGCGGTGGAGATCGGCCGCTCGACCCGG
 AGCGCGGGCGCGGGCTGCGCCGTGCCAGGCGGTGGAGATCCCCATGTGCCCGGCAT
 CGGCTACAACCTGACCCGCATGCCAACCTGCTGGGCCACACGTCGCAGGGCGAGGCG
 GCTGCCGAGCTAGCGGAGTTCGCGCCGCTGGTGCAGTACGGCTGCCACAGCCACCTGC
 GCTTCTCCTGTGCTCGCTACGCGCCCATGTGCACCGACCAGGTCTCGACGCCATT
 CCCGCCTGCCGGCCATGTGCGAGCAGGCGCCGTGCGCTGCCACGCCACGGAGC
 AGTTCAACTTCGGCTGGCCGGACTCGCTCGACTGCGCCCGCTGCCACGCCAACGA
 CCCGCACGCGCTGTGCATGGAGGCGCCGAGAACGCCACGGCCGGCCCGGGAGGCC
 CACAAGGGCCTGGCATGCTGCCGTGGCGCCGCCGCGCCCTCCCAGGAGACC

TGGGCCCCGGGCGCGGGCAGTGGCACCTGCGAGAACCACGAGAAGTTCCAGTACGT
 GGAGAAGAGGCCGCTCGTGCACCGCGCTGCGGGCCCGCGTCGAGGTGTTCTGGTCC
 CGGCGCGACAAGGACTTCGCGCTGGTCTGGATGGCCGTGCGCTGTGCTTCTT
 CTCCACCGCCTCACTGTGCTCACCTCTTGCTGGAGCCCCACCGCTTCCAGTACCCCG
 AGCGCCCCATCATCTTCTCCATGTGCTACAACGCTACTCGCTGGCCTCCTGATCC
 GTGCGGTGGCCGGAGCGCAGAGCGTGGCCTGTGACCGAGGAGGCAGGCGCTACGT
 GATCCAGGAGGGCCTGGAGAACACAGGGCTGCACGCTGGTCTTACTGCTACTAC
 TTCGGCATGGCCAGCTCGCTCTGGTGGGTGCGTACGCTCACCTGGTCCCTGGCTGC
 CGGGAAAGAAATGGGGCCACGAGGCCATCGAGGCCACGGCAGCTATTCCACATGGCT
 GCCTGGGGCCTGCCCGCGCTCAAGACCATCGTCATCCTGACCCCTGCGCAAGGTGGCG
 GTGATGAGCTGACTGGGCTTGCTACGTGGCCAGCACGGATGCAGCAGCGCTCACGGG
 CTTCGTGTGGTGCCCTCTGGCTACCTGGTGTGGCAGTAGTTCCCTGACCG
 GCTTCGTGGCCCTTCCACATCCGAAGATCATGAAGACAGGGCGGACCAACACAGA
 GAAGCTGGAGAACGCTCATGGTCAAGATCGGGCTTCTCCATCCTACACGGTGGCC
 GCCACCTGCGTCATCGTTGCTATGTCTACGAACGCCCAACATGGACTCTGGCGCCT
 TCGGCCACAGAGCAGCCATGCGCAGCGGCCGCGGGGCCGGAGGCCGGAGGGACTG
 CTCGCTGCCAGGGGCTCGGTGCCACCGTGGCGTCTCATGCTCAAATTTCATGT
 CACTGGTGGTGGGATCACCAAGCGCGTCTGGGTGTGGAGGCTCCAAGACTTCCAGAC
 CTGGCAGAGCCTGTGCTACCGCAAGATAGCAGCTGGCCGGGCCAAGGCCCTGC
 CGCGCCCCCGGGAGCTACGGACGTGGCACGCACGCCACTATAAGGCTCCCACCGTGG
 TCTTGCACATGACTAACAGACGGACCCCTCTTGAGAACCCACACACCTCTAGCCACAC
 AGGCCTGGCGCGGGGTGGCTGCTGCCCTCCCTGCCCTCCACGCCCTGCCCTGCAT
 CCCCTAGAGACAGCTGACTAGCAGCTGCCAGCTGTCAAGGTAGGCAAGTGAGCAC
 GGGGACTGAGGATCAGGGCGGGACCCCGTGAGGCTCATTAGGGAGATGGGGTCTC
 CCCTAATGCGGGGGCTGGACCAGGCTGAGTCCCCACAGGGCTTAGTGGAGGATGTGG
 AGGGCGGGGGCAGAGGGTCCAGCCGGAGTTATTAAATGATGTAATTATTGTTGCG
 TTCCTCTGGAAGCTGTGACTGGAATAAACCCCGCGTGGCACTGCTGATCCTCTGGC
 TGGGAAGGGGGAGGTAGGAGGTGAGGC

Figure 74

MAVAPLRGALLWQLLAAGGAALEIGRFDPERGRGAAPCQA
 VEIPMCRGIGYNLTRMPNL
 LGHTSQGEAAAELAEFAPLVQYGCHSHLRFFLCSLYAPMCDQVSTPIPACRPMCEQARLR
 CAPIMEQFNFGWPDSLDCAFLPTRNDPHALCMEA
 PENATAGPAEPHKGLGMLPVAPRPAR
 PPGDLGPAGGSCTCENPEKFQYVEKSRS
 CAPRCGPVEFWSSRRDKDFALVWMAVWSA
 LCFFSTAFTVLTFLLEPHRFQYPERPIFLSMCYNVYSLAFLIRAVAGAQSVACDQEAGALY
 VIQEGLENTGCTLVFLYYFGMASSLWWVVLTLTWFLAAGKKWGHEAIEAHGSYFHMA
 AWGLPALKTIVILTRKVAGDELTGLCYVASTDAAALTGFVLVPLSGYLVLGSSFLLTG
 FVALFHIRKIMKTGGTNTEKLEMVKIGVFSILYTVPATCVIVCYVYERLNMDFWRLRAT
 EQPCAAAAGPGGRRDCSLPGGSVPTVAVFMLKIFMSL
 VVGITSGVWWSSKTFQTWQSLC
 YRKIAAGRARAKACRAPGSYGRGTHCHYKAPT
 VVLHMTKTDPSLENPTHL

Figure 75

ACACGTCCAACGCCAGCATGCAGCGCCGGCCCCCGCCTGTGGCTGGCCTGCAGGT
 GATGGGCTCGTGCAGGCCATCAGCTCCATGGACATGGAGCGCCGGCGACGGAAA
 TGCCAGCCCATCGAGATCCCGATGTGCAAGGACATCGGCTACAACATGACTCGTATGC
 CCAACCTGATGGGCCACGAGAACCAAGCGCGAGGCAGCCATCCAGTTGCACGAGTCGC
 GCCGCTGGTGGAGTACGGCTGCCACGGCACCTCCGCTTCCCTGTGCTCGCTGTACG
 CGCCGATGTGCACCGAGCAGGTCTACCCCATCCCCGCGTGCAGGTCATGTGCGA
 GCAGGCCGGCTCAAGTGCTCCCCGATTATGGAGCAGTTCAACTCAAGTGCCCCGAC

TCCCTGGACTGCCGGAAACTCCCCAACAAAGAACGACCCCAACTACCTGTGCATGGAGG CGCCCAACAAACGGCTCGGACGAGCCCACCCGGGGCTCGGGCCTGTTCCCGCCGCTGTT CCGGCCGCGAGCGGCCCCACAGCGCGCAGGAGCACCCGCTGAAGGACGGGGGCCCCGG GCGCGGCGGCTGCGACAACCCGGCAAGTTCCACCACGTGGAGAAGAGCGCGTCGTG CGCGCCGCTCTGCACGCCGGCGTGGACGTGTACTGGAGCCCGAGGACAAGCGCTTC GCAGTGGTCTGGCTGGCCATCTGGCGGTGCTGTGCTTCTTCCAGCGCCTTCACC GT GCTCACCTCCTCATCGACCCGGCCGCTTCCGCTACCCCGAGCGCCCATCATCTTCC TCTCCATGTGCTACTGCGTCTACTCCGTGGGCTACCTCATCCGCCTTCGCCGGCGCC GAGAGCATCGCCTGCGACCGGGACAGCGGCCAGCTATGTCATCCAGGAGGGACTGG AGAGCACCGGCTGCACGCTGGCTTCCTGGTCTACTACTACTTCGGCATGGCCAGCTCG CTGTGGTGGGTGGTCCTCACGCTCACCTGGTCTGGCCGCCGGCAAGAAGTGGGGCC ACGAGGCCATCGAACGCAAACAGCAGCTACTTCCACCTGGCAGCCTGGCCATCCC GG TGGAAGACCATCCTGATCCTGGTCATGCGCAGGGTGGCGGGGACGAGCTCACCGGG GTCTGCTACGTGGCAGCATGGACGTCAACCGCCTACCGGCTTCGTGCTCATTCCCT GGCCTGCTACCTGGTCATGGCACGTCCTCATCCTCTCGGGCTTCGTGGCCCTGTTCC ACATCCGGAGGGTGATGAAGACGGCGCGAGAACACGGACAAGCTGGAGAAGCTCA TGGTGCATCGGGCTCTTCTCTGTGCTGTACACCGTGCCGGCACCTGTGTGATGCC TGCTACTTTACGAACGCCCTAACATGGATTACTGGAAGATCCTGGCGCGCAGCAC AAGTGCAAAATGAACAAACCAGACTAAAACGCTGGACTGCCTGATGGCCGCCTCCATCCC CGCCGTGGAGATCTTCATGGTAAGATCTTATGCTGCTGGTGGGGATCACCAAGCG GGATGTGGATTGGACCTCCAAGACTCTGCAGTCCTGGCAGCAGGTGTGCAGCCGTAG GTTAAAGAAGAAGAGCCGGAGAAAACCGGCCAGCGTGTACCAAGCGGTGGGATTAA CAAAAAAAGCCAGCATCCCCAGAAAACCTACCAACGGGAAATATGAGATCCCTGCCAG TCGCCCACCTGCGTGTGAACACAGGGCTGGAGGGCACAGGGCGCCGGAGCTA AGATGTGGTCTTTCTGGTTGTGTTTCTTCTTCTTCTTCTTCTTCTTCTTATAAA AAGCAAAAGAGAAATACATAAAAAGTGTAAAGGGTTTGTGTTCCAGCGAAGGGA AGCTCCTCCAGTGAAGTAGCCTCTGTGTAACTAATTGTGGTAAAGTAGTTGATTCA CCCTCAGAAGAAAACCTTGTGTTAGAGCCCTCCGTAAATATACATCTGTGTTGAGT TGGCTTGCTACCCATTACAAATAAGAGGACAGATAACTGCTTGCAAATTCAAGAGC CTCCCCCTGGGTTAACAAATGAGCCATCCCCAGGGCCCACCCCCAGGAAGGCCACAGTG CTGGCGGCATCCCTGCAGAGGAAAGACAGGACCCGGGGCCCTCACACCCAGTG GATTGGAGGTGCTAAAATAGACTCTGGCCTCACCAATAGTCCTCTGCAAGACAGA AACCTCCATCAAACCTCACATTGTGAACTCAAACGATGTGCAATACATTCTCTT TCCTTGAAAATAAAAAGAGAAACAAGTATTGCTATATATAAGACAACAAAAGAAA TCTCCTAACAAAAGAACTAACAGAGGCCAGCCCTCAGAAACCCCTCAGTGCTACATT GTGGCTTTAACGGAAACCAAGCCAATGTTAGACGTTGGACTGATTGTGGAAAG GAGGGGGGAAGAGGGAGAAGGATCATTCAAAGTTACCCAAAGGGCTTATTGACTCT TCTATTGTTAAACAAATGATTCCACAAACAGATCAGGAAGCACTAGGTTGGCAGAGA CACTTGTCTAGTGTATTCTCTCACAGTGCCAGGAAAGAGTGGTTCTGCGTGTAT ATTGTAAATATGATATTTCATGCTCCACTATTATTAAAAATAAAATATGTTCTT TAAAAAAA

Figure 76

MQRPGPRLWLVLQVMGSCAAISSMDMERPGDGKCQPIEIPMCKDIGYNMTRMPNLMGHE NQREAAIQLHEFAPLVEYGCHGLRFLCSLYAPMCTEQVSTPIPACRVMCEQARLKCSPI MEQFNFKWPDSLDCRKLPNKNDPNYLCMEAPNNGSDEPTRGSGLFPPLFRPQRPHSAQEHI PLKDGGPGRGGCDNPGKFHHVEKSASCAPLCTPGVDVYWSREDKRFAVVWLAIWAVLCF FSSAFTVLTFLIDPARFRYPERPIIFLSMCYCVYSVGYLIRLFAGAESIACDRDSGQLYVIQEG LESTGCTLVFLVYYFGMASSLWWVVLTLTWFLAAGKKWGHEAIEANSSYFHLLAAWAIP AVKTILILVMRRVAGDELTGVVCYVGSMVNALTGFVLIPLAGCYLVIGTSFILSGFVAL

FHIRRVMKTGGENTDKLEKLMVRIGLFSVLYTVPATCVIACYFYERLNMDYWKLAAQHK
 CKMNNQTKTLDCLMAASIPAVEIFMVKIFMLLVVGITSGMWIWTSLQSWQQVCSRLK
 KKSRRKPASVITSGGIYKKAQHPQKTHHGKYEIPAQSPTCV

Figure 77

CCTGCAGCCTCCGGAGTCAGTGCGCGCCCCGCCGCCCCGCCCTTGCTCGCCGC
 ACCTCCGGGAGCCGGGCGCACCCAGCCCAGCGCCCTCCCCGCCGCCCCGCCT
 CCGACCGCAGGCCGAGGGCCACTGGCCGGGGACCGGGCAGCAGCTTGCGGCC
 GCGGAGCCGGCAACGCTGGGACTGCGCCTTTGTCCCCGGAGGTCCCTGGAAGTT
 GCAGCAGGACGCCGGGGAGGCAGGCCGAGGAGAAGCAGCCCCGACGTCGGAGAACAGG
 GCGCAGAGCCGGCATGGGCATCGGGCGCAGCGAGGGGGCCGCCGGGGCCCTGGG
 CGTGTGCTGGCGCTGGCGCGCTCTGGCCGTGGCTGGCCAGCGAGTACGAC
 TACGTGAGCTTCCAGTCGGACATCGGCCGTACCAGAGCAGGGCGCTTACACCAAAGC
 CACCTCAGTGCCTGGACATCCCCGGGACCTGCCGGCTGTGCCACAACGTGGCTACAA
 GAAGATGGTGCTGCCAACCTGCTGGAGCACGAGACCATGGCGGAGGTGAAGCAGCA
 GGCCAGCAGCTGGGTGCCCTGCTCAACAAGAACTGCCACGCCGGACCCAGGTCTC
 CTCTGCTCGCTTCGCGCCGTCTGCCCTGGACCGGCCATCTACCCGTGTCGCTGGCT
 CTGCGAGGCCGTGCGACTCGTGCAGGCCGGTCATGCAGTTCTCGGCTTACTGGC
 CCGAGATGCTTAAGTGTGACAAGTTCCGGAGGGGGACGTCTGCATGCCATGACGCC
 GCCCAATGCCACCGAACGCCTCCAAGGCCAACGGCACAAACGGTGTGTCCTCCGTGAC
 AACGAGTTGAAATCTGAGGCCATCATTGAACATCTGTGCCAGCGAGTTGCACTGA
 GGATGAAAATAAAAGAAGTGAAGAAAGAAAATGGCGACAAGAAGATTGTCCCCAAGA
 AGAAGAAGCCCTGAAGTTGGGGCCATCAAGAAGAAGGACCTGAAGAAGCTGTG
 TGTACCTGAAGAATGGGGCTGACTGTCCCTGCCACCAGCTGGACAACCTCAGGCCACCA
 CTTCCCTCATCATGGGCCGCAAGGTGAAGAGCCAGTACTGCTGACGCCATCCACAAG
 TGGGACAAGAAAAACAAGGAGTTCAAAACTTCATGAAGAAAATGAAAAACCATGAG
 TGCCCCACCTTCAGTCAGTCCGTTTAAGTGATTCTCCGGGGCAGGGTGGGAGGGAG
 CCTCGGGTGGGTGGGAGCGGGGGGACAGTGCCGGGAACCCGTGGTCACACACAC
 GCACTGCCCTGTCAGTAGTGGACATTGTAATCCAGTCGGCTTGCAGCATTCCC
 GCTCCCTTCCCTCCATAGCCACGCTCCAAACCCAGGGTAGCCATGCCGGTAAAG
 CAAGGGCCATTTAGATTAGGAAGGTTTTAAGATCCGCAATGTGGAGCAGCCACT
 GCACAGGAGGAGGTGACAAACCATTCCAACAGCAACACAGCCACTAAAACACAAAAA
 AGGGGGATTGGCGGAAGTGAGAGGCCAGCAGCAAAACTACATTGCAACTGTTG
 GTGTGGATCTATTGGCTGATCTATGCCTTCAACTAGAAAATTCTAATGATTGGCAAGT
 CACGTTGTTTCAGGTCCAGAGTAGTTCTGTGCTTAAATGGAAACAGACTC
 ATACCACACTACAATTAAAGGTCAAGCCCAGAAAGTGATAAGTGCAGGGAGGAAAAG
 TGCAAGTCCATTATCTAATAGTGACAGCAAAGGGACCAGGGAGAGGCATTGCCCTCT
 CTGCCACAGTCTTCCGTGTGATTGTCTTGAATCTGAATCAGCCAGTCTCAGATGCC
 CCAAAGTTCGGTTCCATGAGCCGGGCATGATCTGATCCCCAAGACATGTGGAGG
 GGCAGCCTGTGCCTGCCTTGTGTCAGAAAAAGGAAACCACAGTGAGCCTGAGAGAGA
 CGGCGATTTCGGGCTGAGAAGGCAGTAGTTCAAAACACATAGTTA

Figure 78

MGIGRSEGRRGAALGVLLALGAALLAVGSASEYDYVSFQSDIGPYQSGRFYTKPPQCVDI
 PADLRLCHNVGYKKMVLPNLLEHETMAEVKQQASSWVPLLNKNCHAGTQVFLCSLFAPV
 CLDRPIYPCRWLCEAVRDSCEPVMQFFGFYWPEMPLKCDKFPEGDVCIAMTPPNATEASKP
 QGTTVCPPCDNELKSEAIIEHLCASEFGLSLKMIVGSSHNSCCTLGPSPNSSKRQEQLGTP
 ERRLGYGLLHFIQGNLPPPQAQARSRMRLKTEATPLALGRSAPGLFADC PERPLPVCSFPH

HTEEVGKLRHSFLQVKGFSMKGLCAPSTLRYLYYLKTSMQHVHQEYQAHSAQVWANM
PPAERCKDEEDKAMFSK

Figure 79

GAATTCGTTCAGCCTGGTTAAGTCCAAGCTGGCTCATTCTGCTCCCCGGGTGGAGCC
CCCCGGAGCTGCGCGCGGGCTTGCAGCGCCTCGCCCGCGCTGTCTCCGGTGTCCC
TTCTCCGCGCCCCAGCCGCCGGCTGCCAGCTTTCGGGGCCCCGAGTCGCACCCAGCGA
AGAGAGCAGGGCCCGGGACAAGCTCGAACCTCCGGCCCTGCCCTTAACCAGCTCC
CCCTCTACCCCTAGGGGTCGCGCCCACGATGCTGCAGGGCCCTGGCTCGCTGCTG
CTCTTCCTCGCCTCGCACTGCTGCCCTGGCTCGCGCGGGCTCTCCTCTTGGCCA
GCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCATCCGGCCAACCTGCAGCTG
TGCCACGGCATCGAACATACCAAGAACATGCGGCTGCCAACCTGCTGGGCCACGAGACCA
TGAAGGAGGTGCTGGAGCAGGCCGGCGCTGGATCCCGCTGGTCAAGCAGTGCCA
CCCGGACACCAAGAACAGTCCCTGTGCTCGCTTCGCCCCCGTCTGCCTCGATGACCTAG
ACGAGACCATCCAGCCATGCCACTCTCGNTCGGTGCAGGTGAAGGATCGCTGCGCCCC
GGTCATGTCCGCCTTCCCTGGCCCGACATGCTTGAGTGCAGCCGGTTCCCCCAGGACA
ACGACCTTGCATCCCCCTCGCTAGCAGCGACCACCTCCTGCCAGCCACCGAGGAAGC
TCCAAAGGTATGTGAAGCCTGCAAAAATAAAAATGATGATGACAACGACATAATGGA
AACGCTTGTAAAAATGATTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACATC
AACCGT

Figure 80

MLQPGSLLLLFLASHCCLGSARGFLFGQPDSYKRSNCKPIPANLQLCHIEYQNMRLP
NLLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSRCVQV
KDRCAPVMSAFWPDMLECDRFPQNDLCIPLASSDHLLPATEEAPKVEACKNKNDDDN
DIMETLCKNDFALKIKVKEITYINR

Figure 81

CCGGGTCGGAGCCCCCGGAGCTGCAGCGCCTCGCCCGCGCTGTCC
TCCCGGTGCTCCGCTTCTCCGCGCCCCAGCCGCCGGCTGCCAGCTTTCGGGGCCCCGA
GTCGCACCCAGCGAACAGAGAGCGGGCCGGACAAGCTCGAACCTCCGGCCGCCCTCGCCC
TTCCCCGGCTCCGCTCCCTCTGCCCTCGGGGTCGCGCGCCACGATGCTGCAGGGCC
CTGGCTCGCTGCTGCTCTCCTCGCCTCGCACTGCTGCCCTGGCTCGCGCGGG
CTCTTCCTCTTGGCCAGCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCATC
CCTGCCAACCTGCAGCTGTGCCACGGCATCGAACATACAGAACATGCGGCTGCCAAC
TGCTGGGCCACGAGACCATGAAGGAGGTGCTGGAGCAGGCCGGCGCTGGATCCCGCT
GGTCATGAAGCAGTGCCACCCGGACACCAAGAACAGTCCCTGTGCTCGCTTCGCC
GTCTGCCTCGATGACCTAGACGAGACCATCCAGCCATGCCACTCGCTCGCGTGCAGGT
GAAGGACCGCTGCAGCCGGTCATGTCCGCCTCGGCTTCCCTGGCCCGACATGCTTG
AGTGCAGCCGTTCCCCCAGGACAACGACCTTGCACTCCCCCTCGCTAGCAGCGACCA
CCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATGTGAAGCCTGCAAAAATAAAAT
GATGATGACAACGACATAATGGAAACGCTTGTAAAAATGATTTGCACTGAAAATAA
AAGTGAAGGAGATAACCTACATCAACCGAGATACCAAAATCATCCTGGAGACCAAGA

GCAAGACCATTACAAGCTGAACGGTGTCCGAAAGGGACCTGAAGAAAATCGGTGCT
 GTGGCTCAAAGACAGCTGCAGTGCACCTGTGAGGAGATGAACGACATCAACGCGCCC
 TATCTGGTCATGGGACAGAAACAGGGTGGGGAGCTGGTGATCACCTCGGTGAAGCGGT
 GGCAGAAGGGGCAGAGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCTGCAGT
 GCTAGTCCCGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGGCTGACCATT
 CTGCTCCGGGATCTCAGCTCCGTTCCAAAGCACACTCCTAGCTGCTCCAGTCTCAGC
 CTGGCAGCTCCCCCTGCCTTTGCACGTTGCATCCCCAGCATTCCGTAGTTATAAG
 GCCACAGGAGTGGATAGCTGTTCACCTAAAGGAAAAGCCCACCCGA
 ATCTTGTAGAAATATTCAAACATAAAATCATGAATATTATGAAGTT

Figure 82

MLQGPGLLLLFLASHCCLGSARGLFLFGQPDSYKRSNCKPIPANLQLCHIEYQNMRLP
 NLLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQV
 KDRCAPVMSAF GFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKKNDD
 DNDIMETLCKNDFALKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSDL
 QCTCEEMNDINAPYLVMGQKQGGELVITSVKRWQKGREFKRISRSIRKLQC

Figure 83

ACGGGGCCTGGCGGSAGGGCGGTGGCTGGAGCTCGTAAAGCTCGTGGGACCCAT
 TGGGGGAATTGATCCAAGGAAGCGGTGATTGCCGGGGAGGAGAACGCTCCCAGATCC
 TTGTGTCCACTTGCAGCGGGGGAGGCAGACGCCAGCGGGCTTTGGCGTCCACT
 GCGCGGCTGCACCCCTGCCCATCCTGCCGGATCATGGTCTGCCAGGCCAGGG
 ATGCTGCTGCTGCCGGCCGGCTGCTGCCCTGGCTGCTCTGCCTGCTCCGGGTGCC
 CGGGGCTCGGGCTGCAGCCTGTGAGGCCGTCCGCATCCCCCTGTGCAAGTCCCTGCCCT
 GGAACATGACTAAGATGCCAACCAACCTGCACCACAGCACTCAGGCCAACGCCATCCT
 GGCCATCGAGCAGTCGAAGGTCTGCTGGCACCCACTGCAGCCCCGATCTGCTCTCT
 TCCTCTGTGCCATGTACGCCCATCTGCACCATTGACTTCCAGCACGAGGCCATCAAC
 CCCTGTAAGTCTGTGCGAGCGGGCCGGCAGGGCTGTGAGCCCATACTCATCAAGT
 ACCGCCACTCGTGGCCGGAGAACCTGGCCTGCGAGGAGCTGCCAGTGTACGACAGGG
 CGTGTGCATCTCTCCGAGGCCATCGTTACTGCCAGGGCTGAGCTGATTTCTATGGATT
 CTAGTAACGGAAACTGTAGAGGGCAAGCAGTGAACGCTGTAAATGTAAGCCTATTAG
 AGCTACACAGAACGACCTATTCCGGAACAATTACAACATGTCATTGGCTAAAGTT
 AAAGAGATAAAAGACTAAGTGCATGATGTGACTGCAGTAGTGGAGGTGAAGGAGATT
 CTAAAGTCCTCTGGTAAACATTCCACGGGACACTGTCAACCTCTATACCAGCTCTGG
 CTGCCCTGCCCTCCACTTAATGTTAATGAGGAATATATCATCATGGCTATGAAGATG
 AGGAACGTTCCAGATTACTCTGGTGGAAAGGCTCTAGCTGAGAACGTTGGAGGATCG
 ACTCGGTAAAAAAAGTTAACGCCTGGGATATGAAGCTTCGTCTGGACTCAGTAAA
 AGTGAATTCTAGCAATAGTGAATTCCACTCAGAGTCAGAACGCTGGCAGGAACATCGAAC
 CCCGGCAAGCACGCAACTAAATCCGAAATACAAAAAGTAACACACAGTGGACTCCTAT
 TAAGACTTACTGCATTGCTGGACTAGCAAAGGAAAATTGCACTATTGCACATCATATT
 CTATTGTTACTATAAAATCATGTGATAACTGATTATTACTCTGTTCTCTTTGGTT
 CTGCTCTCTCTCAACCCCTTGTAAATGGTTGGGGCAGACTCTTAAGTATATT
 GTGAGTTCTATTCAACTAATCATGAGAAAAACTGTTCTTGCAATAATAATAATT
 AACATGCTGTTA

Figure 84

MVCSPGGMLLRAGLLALAALCLLRVPGARAAACEPVRIPLCKSLPWNMTKMPNHLHH
STQANAILAIEQFEGLLGTHCSPDLLFLCAMYAPICTIDFQHEPIKPCKSVCERARQGCEPIL
IKYRHSWPENLACEELPVYDRGVCISPEAVTADGADFPMDSSNGNCRGASSERCKCKPIR
ATQKTYFRNNNYVIRAKVKEIKTKCHDVTAVVEVKEILKSSLVNIPRDTVNLYTSSGCLC
PPLNVNEEYIMGYEDEERSRLLVEGSIAEKWKDRLGKKVWRWDMKLRLHLGLSKSDSSN
SDSTQSQKSGRNSNPRQARN

Figure 85

CAGCGGCCGCTGAATTCTAGGGCGGGTCGCAGCCCGAAGGCTGAGAGCTGGCGCTGC
TCGTGCCCTGTGCCAGACGGCGGAGCTCCGCAGGCCGACCCCGCGCCCCGCTTG
CTGCCGACTGGAGTTGGGGAAAGAAACTCTCCTGCAGCCCGAAGAGATTCTCCTCGG
CGAAGGGACAGCGAAAGATGAGGGTGGCAGGAAGAGAAGGCGCTTCTGTCTGCCGG
GGTCGCAGCGAGAGGGCAGTGCATGTTCCCTCCATCCTAGTGGCGCTGTGCCTGT
GGCTGCACCTGGCGCTGGCGTGCAGGCCGCGCCCTGCAGGGCGTGCATCCCTAT
GTGCCGGCACATGCCCTGGAACATCACCGGGATGCCAACCAACCACCTGCACCAAGCACG
CAGGAGAACGCCATCCTGGCCATCGAGCAGTACGAGGAGCTGGTGGACGTGAACACTGC
AGCGCCGTGCTGCGCTTCTTCTGTGCCATGTACCGCCTGCACCCCTGGAGTT
CCTGCACGACCCATCAAGCCGTGCAAGTCGGTGTGCCAACCGCGCGCGACGACTGC
GAGCCCCTCATGAAGATGTACAACCACAGCTGGCCGAAAGCCTGGCCTGCGACGAGC
TGCCTGTCTATGACCGTGGCGTGCATTGCCCTGAAGCCATCGTACGGACCTCCCG
GAGGATGTTAAGTGGATAGACATCACACCAGACATGATGGTACAGGAAAGGCCTTTG
ATGTTGACTGTAAACGCCATAAGCCCCGATCGGTGCAAGTGTAAAAAGGTGAAGCCAAC
TTTGGCAACGTATCTCAGCAAAACTACAGCTATGTTATTGATGCCAAAATAAAAGCTG
TGCAGAGGAGTGGCTGCAATGAGGTACAACCGGTGGATGTAAGAGATCTCAA
GTCCTCATACCCATCCCTCGAACTCAAGTCCGCTCATTACAAATTCTTGTCCAGT
GTCCACACATCCTGCCCATCAAGATGTTCTCATCATGTGTTACGAGTGGCGTTCAAGG
ATGATGCTTCTGAAAATTGCTTAGTTGAAAAATGGAGAGATCAGCTAGTAAAAGAT
CCATACAGGGAGAGAGGCTGCAAGAACAGCGGAGAACAGTTCAGGACAAGAAGA
AAACAGCCGGCGCACAGTCGTAGTAATCCCCCAAACCAAGGGAAAGCCTCCTGC
TCCCAAACCAAGCCAGTCCCAGAAGAACATTAAAAGTAGGAGTGCCAGAACAGAAC
AAACCCGAAAAGAGTGTGAGCTAACTAGTTCCAAAGCGGAGACTCCGACTCCTTA
CAGGATGAGGCTGGCATTGCCCTGGACAGCCTATGTAAGGCCATGTGCCCTTGCC
TAACAAACTCACTGCAGTGCTCTCATAGACACATCTGCAGCATTTCTTAAGGCTAT
GCTTCAGTTTCTTGTAAGCCATCACAAGCCATAGTGGTAGGTTGCCCTTGGTACA
GAAGGTGAGTTAAAGCTGGAAAAGGCTTATTGCATTGCAGAGTAACCTGTG
TGCATACTCTAGAAGAGTAGGGAAAATAATGCTTACAATTGACCTAATATGTG
ATTGTTAAAATAATGCCATATTCAAACAAACACGTAATTGTTACAGTATGTTTA
TTACCTTTGATATCTGTTGCAATGTTAGTGTGTTAAAATGTGATGAAAATATA
ATGTTTTAAGAAGGAACAGTAGTGGAAATGAATGTTAAAAGATCTTATGTGTTATGG
TCTGCAGAAGGATTGTTGATGAAAGGGATTGTTAAAATTAGAGAACAGTAC
ATGGAAAATTATAATGTGTTTACCAATGACTCAGTTCTGTTTAGCTAGAAC
TTAAAAACAAAAATAATAATAAGAAAAATAAAATAAAAGGAGAGGCAGACAATGTC
TGGATTCCGTGTTGGTACCTGATTCCATGATCATGATGCTCTGTCAACACCC
CTTAAGCAGCACCAGAACAGTGAGTTGTCTGTACCATTAGGAGTTAGGTACTAATTA
GTTGGCTAATGCTCAAGTATTATACCCACAAGAGAGGATGTCACTCATCTTACTTC
CCAGGACATCCACCCTGAGAATAATTGACAAGCTTAAAATGGCCTCATGTGAGTG
CCAAATTGTTCTCATTTAAATATTCTTGCCTAAATACATGTGAGAGGAGTT
AAATATAAAATGTACAGAGAGGAAAGTTGAGTCCACCTCTGAAATGAGAAC
CAGTTGGGATACTTAATCAGAAAAAGAACCTATTGCAGCATTATCAACAAATT
TCATAATTGTGGACAATTGGAGGCATTATTAAAAACAATTATTGGCCTTGCT

AACACAGTAAGCATGTATTTATAAGGCATTCAATAAAATGCACAACGCCAAAGGAAA
 TAAAATCCTATCTAATCCTACTCTCCACTACACAGAGGTAACTCACTATTAGTATTTGG
 CATATTATTCTCCAGGTGTTGCTTATGCACTATAAAATGATTGAACAAATAAAACT
 AGGAACCTGTATACATGTGTTCATAACCTGCCTCCTTGCTGGCCCTTATTGAGATA
 AGTTTCCTGTCAAGAAAGCAGAAACCATCTCATTCTAACAGCTGTGTTATATTCCAT
 AGTATGCATTACTCAACAAACTGTTGTGCTATTGGACTTAGGTGGTTCTCACTGA
 CAATACTGAATAAACATCTCACCGGAATT

Figure 86

MFLSILVALCLWLHLALGVRGAPCEAVRIPMCRHMPWNITRMPNHLHHSTQENAILAIEQY
 EELVDVNCSAVLRFFLCAMYAPICTLEFLHDPIKPKSVQRARDDCEPLMKMYNHSWPE
 SLACDELPVYDRGVCISPEAVTDLPEDVKWIDITPDMMVQERPLDVDCKRLSPDRCKCKK
 VKPTLATYLSKNYSYVIHAKIKAVQRSGCNEVTVVDVKEIFKSSSPRTQVPLITNSSCQC
 PHILPHQDVLMCYEWRSRMMLENCLVEKWRDQLSKRSIQWEERLQEQRRTVQDKKKT
 AGRTSRSNPPKPKGPPAPKPASPKKNIKTRSAQKRTNPKRV

Figure 87

AAGCTTGATATCGAATTGGCGCGTCGACGGGAGGCAGGATCAGTCGGGGCA
 CCCGCAGCGCAGGCTGCCACCCACCTGGGCGACCTCCGGCGGGCGGGCG
 GGGTAGAGTCAGGGCCGGGGCGCACGCCGGAACACACCTGGGCCGGGACCGAGC
 GTCGGGGGGCTGCGCGCGACCCCTGGAGAGAGGGCGCAGCCGATGCGGGCG
 GCAGGGGGGGCGTGGACGGCCGCGCTGGCGCTGCTGCTGGGGCGCTGCACTGG
 GCGCCGGCGCGCTGCGAGGAGTACGACTACTATGGCTGGCAGGCCGAGCCGCTGCACG
 GCCGCTCCTACTCCAAGCCGCCGAGTGCCTGACATCCCTGCCGACCTGCCGCTCTGC
 CACACGGTGGGCTACAAGCGCATGCGCTGCCAACCTGCTGGAGCACGAGAGCCTGG
 CCGAAGTGAAGCAGCAGGCGAGCAGCTGGCTGCCGCTGGCCAAGCGCTGCCACTC
 GGATACGCAGGTCTCCTGTGCTCGCTTTGCGCCCGTCTGTCTCGACCGGCCCAC
 ACCCGTGCCGCTCGCTGTGCGAGGCCGTGCGCGCCGGCTGCGCGCCGCTCATGGAGGC
 CTACGGCTTCCCTGGCCTGAGATGCTGCACTGCCACAAGTTCCCCCTGGACAACGACC
 TCTGCATGCCGTGCAGTTGGCACACTGCTGACGGCCTCATGGAGCACGATGTGCTCCA
 TGCGCCCAGTGTGAGATGGAGCACAGTGCTGACGGCCTCATGGAGCACGATGTGCTCCA
 GTGACTTTGGTCAAAATGCGCATCAAGGAGATCAAGAGATAGAGAATGGGGACCGGA
 AGCTGATTGGAGCCCAGAAAAAGAAGAAGAGCTGCTCAAGCCGGCCCTGAAGCGCA
 AGGACACCAAGCGGCTGGTGCTGCACATGAAGAATGGCGGGCTGCCCTGCCACA
 GCTGGACAGCCTGGCGGGCAGCTCCTGGTCATGGGCCGAAAGTGGATGGACAGCTG
 CTGCTCATGCCGTCTACCGCTGGACAAGAAGAATAAGGAGATGAAGTTGCAGTCA
 AATTGATGTTCTCCTACCCCTGCTCCCTACTACCCCTTCTACGGGGCGGCAGAGC
 CCCACTGAAGGGCACTCCCTGCCAGCTGCTGCCAGCTGCTGCTGCCCTGGCCCC
 GCCCCAACTCCAGGCTGACCCGGCCACTGGAGGGTGTTCACGAATGTTGTTACT
 GGCACAAGGCCTAACGGGATGGGCACGGAGCCCAGGCTGCTTGTACGGAGCAGGGCT
 CTGGGGTCCCTGGGATGTTGGCTTCTCTCAGGAGCAGGGCTTCTCATCTGGGTG
 AAGACCTCAGGGTCTCAGAAAGTAGGCAGGGAGGGAGAGGGTAAGGGAAAGGTGGAG
 GGGCTCAGGGCACCCCTGAGGCAGGGTTTCAGAGTAGAAGGTGATGTCAGCTCCAGCT
 CCCCTCTGCGGTGGTGGGCCCTCACCTGAAGAGGAAGTCTCAATATTAGGCTAAG
 CTATTGGAAAGTTCTCCCCACCGCCCTGTACGCGTCATCCTAGCCCCCTTAGGAA
 AGGAGTTAGGGTCTCAGTGCCTCCAGCCACACCCCTGCCTCCCCAGCTTGCCTCG
 CCCTGCCCAAGGCCAGAGCTCCCCCAGACTGGAGAGCAAGCCCAGGCCAGCCTCG
 GCATAGACCCCTCTGGTCCGCGGTGATTCCCAGGATTCTCAGCCTCAGCCTC

TGCTTCTCCCTTTATCCAATAAGTTATTGCTACTGCTGTGAGGCCATAGGTACTAGAC
AACCAATAACATGCAGGGTTGGGTTCTAATTAACTTTAATTAAATCAAAGGT
CGACGCGCGCCGCGGAATT CCTGCAGCCC GGGAATCCC CGGTACCGAGCTCGAAT
TC

Figure 88

TEILPALCVLIHHTDVNILVDTVWALSY LTDAGNEQIQMVIDSGIVPHLVPLL SHQEVKVQT
AALRAVGNIVTGTDEQTQVVLNCDALSHFPALLTHPKEKINKEAVWFLSNITAGNQQVQ
AVIDANLVPMIHLLDKGDFGTQKEAAWAISNL TISGRKDQVAYLIQQNVIPPFCNLLTVKD
AQVVQVVL DGLS NILKMAEDEAETIGNLIEECGLEKIEQLQNHENEDIYKLA YEIIDQFFSS
DDIDEDPSLVPEAIQGGTFGFNSSANVPTEGFQF

Figure 89

ATGCATCTCCTCTTATTCAGCTGCTGGTACTCCTGCCTCTAGGAAAGACCACACGGCA
CCAGGATGGCCGCCAGAACATCAGAGTTCTCTTCCCCGTACTCCTGCCAAGGAATCAA
AGAGAGCTTCCCACAGGCAACC ATGAGGAAGCTGAGGAGAACGCCAGATCTGTTGTCG
CAGTGCCACACCTGTAGCCACCAGCCCTGCAGGGGAAGGCCAGAGCAGAGAGAGA
AGATGCTGTCCAGATTGGCAGGTTCTGGAAGAACGCTGAGAGAGAAATGCATCCATC
CAGGGACTCAGATAGTGAGCCCTCCCACCTGGGACCCAGTCCCTCATCCAGCCGATA
GATGGAATGAAAATGGAGAAATCTCCTCTCGGGAAAGAACCCAAGAAATTCTGGCACC
ACTTCATGTT CAGAAAAACTCCGGCTTCTCAGGGGGTCATCTGCCCATCAAAAGCCAT
GAAGTACATTGGGAGACCTGCAGGACAGTGCCCTCAGCCAGACTATAACCCACGAAG
GCTGTGAAAAAGTAGTTGTT CAGAACACAACCTTGCTTGGGAAATGCGGGTCTGTTCAT
TTCCCTGGAGCCCGCAGCACTCCACACCTCCTGCTCTCACTGTTGCCCTGCCAAGTTC
ACCACGATGCAC TTGCCACTGA ACTGC ACTGA ACTTTCCCTCGT GATCAAGGTGGTGAT
GCTGGTGGAGGAGTGCCAGTGCAAGGTGAAGACGGAGCATGAAGAGATGGACACATCCT
ACATGCTGGCTCCCAGGATT CCTTATCCCAGGAGTT CAGCTGA

Figure 90

MHLLL FQLL VLLPLGKTTRHQ DGRQNQSSLSPVLLPRNQRELPTGNHEEAEKPD LFVA VP
HLVATSPAGEGQRQR EKMLSRFRFWKKPEREMHPSR DSDSEPFP PG TQLI QPIDGMKME
KSPLREEAKKF WHFMFRKTPASQGVILPIKSHEVHWETCRTV PFSQTITHEGCEKVVVQN
NLCFGKCGSVHF PGAAQHSHTSCSHCLPAKFTTMHLPLNCTELSSVIKVVM LVEECQCKV
KTEHEDGHILHAGSQDSFIPGVSA

Figure 91

CGGCACGGTT CGTGGGACCCAGGCTTGCAAAGTGACGGCATTCTCTTCTTCT
CCCTCTTGAGTCCTCTGAGATGATGGCTCTGGCGCAGCGGGAGCTACCCGGGTCTT
GTCGCGATGGTAGCGGCGCTCTGGCGGCCACCCCTCTGCTGGAGTGAGCGCCACCT
TGA ACTCGGTTCTCAATTCCAACGCTATCAAGAACCTGCC CACCGCTGGCGCGCT
GC GGGGCACCCAGGCTCTGCAGTCAGCGCCGCCGGGAATCCTGTACCCGGGCGGG
ATAAGTACCA GACCA ATTGACA ACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTG
CGGC ACTGATGAGTACTGC GCTAGTCC CACCC CGGGAGGGACGCAGGC GTGCAAATC
TGTCTCGCCTGCAGGAAGCGCCGAAAACGCTGCATGCGTCACGCTATGTGCTGCCCG

GGAATTACTGCAAAATGGAATATGTGTCTTCTGATCAAAATCATTCCGAGGAGA
 AATTGAGGAAACCACACTGAAAGCTTGGTAATGATCATAGCACCTGGATGGGTAT
 TCCAGAAGAACCAACCTGTCTCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTG
 TTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTAGACACACTTCTGGTCCA
 AGATCTGTAAACCTGCTGAAAGAAGGTCAAGTGTGTAACCAAGCATAAGGAGAAAAGG
 CTCTCATGGACTAGAAATATTCCAGCGTTACTGTGGAGAAGGTCTGTCTGCCGGA
 TACAGAAAGATCACCATCAAGCCAGTAATTCTCTAGGCTCACACTGTAGAGACAC
 TAAACCAGCTATCCAAATGCAGTGAACCTCTTATATAATAGATGCTATGAAAACCTT
 TTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGGTTCAAGTAAGCA
 TTCCAATAACACCTCCAAAAACCTGGAGTGTAAAGAGCTTGTCTTATGGAACCTCC
 CCTGTGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTACCTGTAAAT
 GCAATGAAACTTTAATTATTTCTAAAGGTGCTGCACTGCCTATTTCTCTGTAA
 TGTAAATTGTACACATTGATTGTATCTGACTGACAAATATTCTATATTGAACGTGA
 AGTAAATCATTTCAGCTTATAGTTCTAAAGCATAACCCTTACCCCATTAAATTCTAG
 AGTCTAGAACGCAAGGATCTCTGGAAATGACAAATGATAGGTACCTAAATGTAACAT
 GAAAATACTAGCTATTTCTGAAATGTACTATCTTAATGCTAAATTATATTCCCTT
 AGGCTGTGATAGTTTGAAATAAAATTAAACATTAAATATCATGAAATGTTATAAGTA
 GACAT

Figure 92

MMALGAAGATRVFVAMVAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSA
 VSAAPGILYPGGNKYQTIDNYQPYPKAEDEECGTDEYCASPTRGGDAGVQICLACRKRRK
 RCMRHAMCCPGNYCKNGICVSSDQNHFREIEETITESFGNDHSTLDGYSRRTTLSSKMYH
 TKGQECSVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCG
 EGLSCRIQKDHHQASNSSLHTCQRH

Figure 93

GC GG GTCT CGCTTGGTCCGCTAATTCTGTCTGAGGCGTGAGACTGAGTCATAGG
 GTCCTGGTCCCCGAACCAGGAAGGGTTGAGGGAACACAATCTGCAAGCCCCCGCGAC
 CCAAGTGAGGGGCCCCGTGTTGGGGCTCCCTCCCTTGCATTCCCACCCCTCCGGGC
 TTTGCGTCTCCTGGGGACCCCCTGCCGGGAGATGGCCGCGTTGATGCGGAGCAAGG
 ATT CGTCTGCTGCCTGCTCCTACTGGCCGGTGCTGATGGTGGAGAGCTCACAGATC
 GGCAGTTCGCGGCCAAACTCAACTCCATCAAGTCCTCTGGGGGGAGACGCCCTG
 GTCAGGCCCAATCGATCTGCCGATGTACCAAGGACTGGCATTGGCGGCAGTAA
 GAAGGGAAAAACCTGGGCAGGCCTACCCCTGTAGCAGTGATAAGGAGTGTGAAGTT
 GGGAGGTATTGCCACAGTCCCCACCAAGGATCATGGCCTGCATGGTGTGCGGAGAA
 AAAAGAACGCTGCCACCGAGATGGCATGTGCTGCCAGTACCCGCTGCAATAATGG
 CATCTGTATCCCAGTTACTGAAAGCATCTTAACCCCTCACATCCCGCTCTGGATGGTA
 CTCGGCACAGAGATCGAAACCACCGTCATTACTCAAACCATGACTGGGATGGCAGAA
 TCTAGGAAGACCACACACTAAGATGTCACATATAAAAGGCATGAAGGAGACCCCTGC
 CTACGATCATCAGACTGCATTGAAGGGTTTGCTGTGCTCGTCATTCTGGACCAAAT
 CTGCAAACCAAGTGCTCCATCAGGGGAAGTCTGTACCAAAACAACGCAAGAACGGTTCT
 CATGGGCTGGAAATTTCAGCGTTGCGACTGTGCGAAGGGCCTGTCTGCAAAGTATG
 GAAAGATGCCACCTACTCCTCCAAAGCCAGACTCCATGTGTCAGAAAATTGATCA
 CCATTGAGGAACATCATCAATTGCAGACTGTGAAGTTGTGATTAAATGCATTATAGCA
 TGGTGGAAAATAAGGTTAGATGCAGAAGAACGGCTAAAATAAGAACGTGATAAGA
 ATATAGATGATCAC

Figure 94

MAALMRSKDSSCCLLLAAVLMVESSQIGSSRAKLSIKSSLGGETPGQAANRSAGMYQG
LAFFGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQSSACMVRRKKRCHRDGMCCPS
TRCNNGICIPVTESILTPHIPALDGTRHRDRNIGHYSNHLGWQNLGRPHTKMSHIKGHEG
DPCLRSSDCIEGFCCARHFWTICKPVLHQGEVCKQRKKGSHGLEIFQRCDCAKGLSCKV
WKDATYSSKARLHVCQKI

Figure 95

CTATCACAAATGAGACCAACACAGACACGAAGGTTGGAAATAATACCATCCATGTGCAC
CGAGAAAATTACAAGATAACCAACAACCAGACTGGACAAATGGTCTTCAGAGACAG
TTATCACATCTGTGGGAGACGAAGAAGGCAGAAGGAGGCCACGAGTCATCATCGACG
AGGACTGTGGGCCAGCATGTACTGCCAGTTGCCAGCTCCAGTACACCTGCCAGCC
ATGCCGGGCCAGAGGATGCTCTGCACCCGGGACAGTGAGTGCTGTGGAGACCAGCTG
TGTGTCTGGGTCACTGCACAAATGCCACCAAGGGCAGCAATGGGACCATCTGTG
ACAACCAGAGGGACTGCCAGCCGGGCTGTGCTGTGCCCTCCAGAGAGGGCTGCTGTT
CCCTGTGTGCACACCCCTGCCGTGGAGGGCGAGCTTGCCATGACCCGCCAGCCGG
CTTCTGGACCTCATCACCTGGGAGCTAGAGCCTGATGGAGCCTGGACCGATGCCCTG
TGCCAGTGGCCTCCTGCCAGCCCCACAGCACAGCCTGGTGTATGTGTGCAAGCCG
ACCTCGTGGGAGCCGTGACCAAGATGGGAGATCCTGCTGCCAGAGAGAGGTCCCCG
ATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGGAGGACCTGGA
GAGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCAGGCTGCCGCCACTG
CTGGGAGGGAAAGAGATTAGATCTGGACCAGGCTGTGGTAGATGTGCAATAGAAAT
AGCTAATTATTCCCCAGGTGTGCTTAGGCCTGGCTGACCAGGCTTCTCCTAC
ATCTTCTCCCAGTAAGTTCCCTCTGGCTTGACAGCATGAGGTGTTGCAATTGTT
AGCTCCCCCAGGCTGTTCTCCAGGCTCACAGTCTGGTGTGCTGGAGAGTCAGGCAGG
GTTAAACTGCAGGAGCAGTTGCCACCCCTGTCCAGATTATTGGCTGCTTGCCTCTAC
CAGTGGCAGACAGCCGTTGTTCTACATGGCTTGATAATTGTTGAGGGGAGGAGAT
GGAAACAAATGTGGAGTCTCCCTCTGATTGGTTGGAAATGTGGAGAAGAGTGC
TGCTTGCAAACATCAACCTGGAAAAATGCAACAAATGAATTTCACGCAGTCAGTCTT
CCATGGCATAGGTAAGCTGTGCCCTCAGCTGTCAGATGAAATGTTCTGTTCACCT
GCATTACATGTGTTATTCATCCAGCAGTGTGCTCAGCTCCTACCTCTGTGCCAGGGC
AGCATTTCATATCCAAGATCAATTCCCTCTCAGCACAGCCTGGGGAGGGTCATT
GTTCTCCTCGTCCATCAGGGATCTCAGAGGNCTCAGAGACTGCAAGCTGCTGCC
GTCACACAGCTAGTGAAGACCAGAGCAGTTCATCTGGTGTGACTCTAACGTCAGTGC
TCTCTCCACTACCCACACCAGCCTGGGCCACAAAAGTGCTCCCCAAAAGGAAGG
AGAATGGGATTTCTTGAGGCATGCACATCTGGAAATTAAAGGTCAAACATTCTCA
CATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGTGTCTCACAGTGTGGGCAG
CCGTCCTCTAATGAAGACAATGATATTGACACTGTCCTCTTGGCAGTTGCATTAGT
AACTTGAAAGGTATATGACTGAGCGTAGCATACAGGTTAACCTGCAGAACAGTACT
TAGGTAATTGTAGGGCGAGGATTATAAAATGAAATTGCAAAATCACTTAGCAGCAACT
GAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGAAACAT
GGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATTTCA
GGTGTGATGGACTGTTGCCACCATGTATTCCAGAGTTCTAAAGTTAAAGTTGCA
CATGATTGTATAAGCATGCTTCTTGAGTTAAATTATGTATAAACATAAGTTGCATT
TAGAAATCAAGCATAAAATCAC

Figure 96

MQRLGATLLCLLAAA VPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDT
 QHKLRSAVEEMEAEEAAKASSEVNLANLPPSYHNETNTDKVGNNNTIHVHREIHKITNNQ
 TGQMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRQQRMLCTRDE
 CCGDQLCVWGHCTKMATRGNSNGTICDNQRDCQGPLCCAFQRGLFPVCTPLPVEGELHD
 PASRLLDLITWELEPDGALDRCPASCGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVP
 DEYEVGSFMEEVRQELEDLERSLTEEMALGEPAAAAAALLGEEI

Figure 97

AGACGACGTGCTGAGCTGCCAGCTTAGTGGAAAGCTCTGCTCTGGGTGGAGAGCAGCCT
 CGCTTGTTGACGCACAGTGCTGGGACCCTCCAGGAGCCCCGGATTGAAGGATGGTG
 GCGGCCGTCTGCTGGGGCTGAGCTGGCTCTGCTCTCCCCTGGAGCTGGTCCTGGA
 CTTCAACAAACATCAGGAGCTTGCTGACCTGCATGGGGCCCGAAGGGCTCACAGTGC
 CTGTCTGACACGGACTGCAATACCAAGAAAGTTCTGCCTCCAGCCCCCGATGAGAAC
 CGTTCTGTGCTACATGTCGTGGGTTGCGGAGGGAGGTGCCAGCGAGATGCCATGTGCTG
 CCCTGGGACACTCTGTGTGAACGATGTTGACTACGATGGAAGATGCAACCCAAATAT
 TAGAAAGGCAGCTTGATGAGCAAGATGGCACACATGCAGAAGGAACAACGGCACC
 CAGTCCAGGAAAACCAACCCAAAAGGAAGCCAAGTATTAAGAAATACAAGGCAGGA
 AGGGACAAGAGGGAGAAAGTTGCTGAGAACTTTGACTGTGGCCCTGGACTTGCTG
 TGCTCGTCATTTGGACGAAAATTGTAAGCCAGTCCTTGGAGGGACAGGTCTGCT
 CCAGAAGAGGGCATAAAGACACTGCTCAAGCTCCAGAAATCTCCAGCGTGCAGTG
 TGGCCCTGGACTACTGTGTCGAAGCCAATTGACCAGCAATCGGCAGCATGCTCGATTA
 AGAGTATGCCAAAAAATAGAAAAGCTATAAATATTCAAAATAAGAAGAATCCACAT
 TGC

Figure 98

MVAAVLLGLSWLCSPPLGALVLDFNIRSSADLHGARKGSQCLSDTCNTRKFCLQPRDEK
 PFCATCRGLRRRCQRDAMCCPGTLCVNDVCTTMEDA TPILERQLDEQDGTHAEGTTGHPV
 QENQPKRKPSSIKKSQGRKGQEGESCLRTFDGPGLCCARHFWTICKPVLLLEGQVCSSRRGH
 KDTAQAPEIFQRCDCGPGLLSQLTSNRQHARLRVCQKIEKL

Figure 99

AGGCAGAATACTTCTATGAATT CCTGTCCTGCGCTCCCTGGATAAAGGCATCATGGCA
 GATCCAACCGTCAATGTCCTCTGCTGGAACAGTGCCCTACAAGGCATCAGTTGTCA
 AGTTGGTTCCATGTCTGGAAAACAGGATGGGGTGGCAGCATTGAAGTGGATGTG
 ATTGTTATGAATTCTGAAGGCAACACCATTCTCAAACACCTCAAAATGCTATCTTCTT
 TAAAACATGTCAACAAAGCTGAGTGCCAGGCAGGTGCCAAATGGAGGGCTTTGTAAT
 GAAAGACGCATCTGCGAGTGTGCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCC
 TTTGTACCCACGATGTATGAATGGTGGACTTGTGACTCCTGGTTCTGCATCTGCC
 CACCTGGATTCTATGGAGTGAACTGTGACAAAGCAAACGCTCAACCACCTGCTTAAT
 GGAGGGACCTGTTCTACCCTGGAAAATGTATTGCCCTCCAGGACTAGAGGGAGAGC

AGTGTGAAATCAGCAAATGCCACAACCCCTGTCGAAATGGAGGTAAATGCATTGGTAA
 AAGCAAATGTAAGTGTCCAAAGGTTACCAGGGAGACCTCTGTTCAAAGCCTGTCTGC
 GAGCCTGGCTGTGGTGCACATGGAACCTGCCATGAACCCAACAAATGCCAATGTCAAG
 AAGGTTGGCATGGAAGACACTGCAATAAAAGGTACGAAGCCAGCCTCATACATGCCCT
 GAGCGCAGCAGCGCCCAGCTCAGGCAGCACACGCCCTCACTTAAAAAGGCCGAGGAG
 CGGCCGCATCCACCTGAATCCAATTACATCTGGTGAACTCCGACATCTGAAACGTTTA
 AGTTACACCAAGTTCATAGCCTTGTAAACCTTCATGTGTTGAATGTTCAAATAATGTT
 CATTACACTTAAGAATACTGGCCTGAATTATTAGCTTCATTATAAATCACTGAGCTG
 ATATTACTCTCCTTTAAGTTCTAAGTACGTCTGTAGCATGATGGTATAGATTTC
 TTGTTTAGTGCTTGGGACAGATTATATTATGTCAATTGATCAGGTTAAAATTTC
 GTGTGTAGTTGGCAGATATTCAAAATTACAATGCATTATGGTGTCTGGGGCAGGG
 GAACATCAGAAAGGTTAAATTGGCAAAAATGCGTAAGTCACAAGAATTGGATGGT
 CAGTTAATGTTGAAGTTACAGCATTTCAGATTATTGTCAGATATTAGATGTT
 CATTTTAAAAATTGCTCTTAATTAACTCTCAATACAATATATTGACCTTACCA
 TTATTCCAGAGATTCACTTAAACACAAATGAAATAGGGAATATAATGTATGAACCTT
 TTGGCTTGAAGCAATATAATATTGTAAACAAAACACAGCTTACCTAATAAACATT
 TTATACTGTTGTATGTATAAAATAAGGTGCTGCTTAGTTTC

Figure 100

MARRSAFPAAALWLWSILLCLLALRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGK
 MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVP
 LLGTVPHKASVVQVGFPCLGKQDGVAAFEVDVIMNSEGNTILQTPQNAIFFKTCLQAECP
 GGCRNGGFCNERRICECPDGFHGPHECEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDK
 ANCSTTCFNGGTCFYPGKICPPGLEGEQCEISKCPQPCRNGGKIGSKCKCSKGYQGDL
 CSKPVCEPGCGAHTCNEPNKCQCQEGWHGRHCNKRYEASLIHALR
 PAGAQLRQHTPSLKKAEEERRDPPESNYIW

Figure 101

ATGGGCATCGGGCGCAGCGAGGGGGCCGCCGGGGCAGCCCTGGCGTGCTGCTG
 GCGCTGGCGCGCGCTCTGGCCGTGGCTCGGCCAGCGAGTACGACTACGTGAGCT
 TCCAGTCGGACATCGGCCCCGTACCAAGAGCGGGCGCTCTACACCAAGCCACCTCAGTG
 CGTGGACATCCCCGGACCTGCGGCTGTGCCACAAACGTGGCTACAAGAAGATGGTG
 CTGCCAACCTGCTGGAGCACGAGACCATGGCGGAGGTGAAGCAGCAGGCCAGCAGC
 TGGGTGCCCTGCTCAACAAGAACTGCCACGCCGACCCAGGTCTCCTCTGCTCGCT
 CTTCGCGCCCGTCTGCCTGGACCAGGCCATCTACCCGTGCTGGCTCTGCGAGGCCG
 TGCGCGACTCGTGCAGGCCGGTCACTGCAGTTCTCGCTTCACTGGCCCGAGATGCTT
 AAGTGTGACAAGTTCCCCGAGGGGACGTCTGCATGCCATGACGCCAACATGCCA
 CCGAAGCCTCCAAGCCCCAAGGCACAACGGTGTCTCCCTGTGACAACGAGTTGAA
 ATCTGAGGCCATCATTGAACATCTCTGTGCCAGCGAGTTGGCTGAGTTAAAGATGA
 TTGTGGTAGCTCCCATAACTCATGCTGCACGCTGGCTCTCATCCAACTCCTCA
 AAGCGGCAGGAGCAGGAACCTGGGACTCCTGAGAGAAGGCTGGATATGGCCTTTAT
 TACACTCATCCAAGGAAACTGCCACCCCTGTGCCAGGCCGATCACGCATGAG
 GCTAAAGACGGAGGCCACTCCGCTGGCTCTGGTAGATCTGCCCTGGACTGTTGCC
 GACTGCCGGAGGCCCTCTGCCGTCTGCAGCTCCACACCACACGGAAAGAAGTGG
 GGAAACTGAGGATACATTCTTCCTCCAGGTAAAGGGATTCTCAATGAAGGGCTTG
 TGTGCACCTCCACACTTAGATACCTCTACTACCTGAAAACCAGCATGCAGCATGTACA
 TCAAGAGTACCAGGCACATAGTGCCTAAGTCTGGCTAATATGCCACCTGCAGAGAGA
 TGTAAAGATGAAGAACAAAGCCATGTTCAAAGTGA

Figure 102

MGIGRSEGGRRGAALGVLLALGAALLAVGSASEYDYVSFQSDIGPYQSGRFYTKPPQCVDI
PADLRLCHNVGYKKMVLPNLEHETMAEVKQQASSWVPLLNKNCHAGTQVFCLCSLFAPV
CLDRPIYPCRWLCEAVRDSCEPVMQFFGFYWPEMLKCDKFPEGDVCIAMTPPNATEASKP
QGTTVCPPCDNELKSEAIIEHLCASEFGLSLKMIVGSSHNSCCTLGPSPNSSKRQESELGTP
ERRLGYGLLHFIQGNLPPPQAQARSRMRLKTEATPLALGRSAPGLFADC PERPLPVCSFPH
HTEEVGKLRHSFLQVKGFSMKGLCAPSTLRYLYLKTSMQHVHQEYQAHSAQVWANM
PPAERCKDEEDKAMFSK

Figure 103

GGCGGGTCGCGCCCGAAGGCTGAGAGCTGGCGCTGCTCGTGCCCTGTGTGCCAGAC
GGCGGAGCTCCCGGGCCGGACCCCGGGCCCCGTTGCTGCCACTGGAGTTGGGG
GAAGAAACTCTCCTCGGCCCGAGAACAGATTCTTCCTCGGCCAGGGACAGCGAAAGAT
GAGGGTGGCAGGAAGAGAACGGCGCTTCTGTCTGCCGGGTCGCAGCGAGAGGGC
AGTGCCATGTTCCCTCCATCCTAGTGGCGCTGTGCCTGTGGCTGCACCTGGCGCTGG
CGTGC CGCGCGCCCTGCGAGGCGGTGCGCATCCCTATGTGCCGGCACATGCCCTGG
AACATCACCGGGATGCCAACCAACCACCTGCACCA CAGCACGCAGGAGAACGCCATCCTGG
CCATCGAGCAGTACGAGGAGCTGGTGGACGTGAAC TGCGAGCGCCGTGCTGCGCTTCTT
CTTCTGTGCCATGTACGCCCTTGACCCCTGGAGTTCCCTGCACGACCCATCAAGC
CGTGCAGTCGGTGTGCCAACCGCGCGACGACTGCGAGGCCCTCATGAAGATGTA
CAACCACAGCTGGCCCAGAACGCCTGGCCTGCGACGAGCTGCCTGTCTATGACCGTGGC
GTGTGCATTTCG CCTGAAGCCATCGTCACGGACCTCCCGAGGATGTTAGTGGATAGA
CATCACACCAGACATGATGGTACAGGAAAGGCCTCTGATGTTGACTGTAACGCCA
AGCCCCGATCGGTGCAAGTGTAAAAAGGTGAAGCCAAC TTGGCAACGTATCTCAGCA
AAA ACTACAGCTATGTTATT CATGCCAAAATAAAAGCTGTGCAGAGGAGTGGCTGCAA
TGAGGTCACAACGGTGGATGTTAAAAGAGATCTCAAGTCCTCATCACCCATCCCTC
GAACTCAAGTCCCCTCATTACAAATTCTCTTGCCAGTGTCCACACATCCCTGCCCAT
CAAGATGTTCTCATCATGTTACGAGTGGCGTTCAAGGATGATGCTTCTGAAAATTG
CTTAGTTGAAAAATGGAGAGATCAGCTTAGTAAAAGATCCATACAGTGGGAAGAGAG
GCTGCAGGAACAGCGGAGAACAGTCAGGACAAGAACAGCCGGCGCACCAG
TCGTAGTAATCCCCCAAACCAAAGGGAAAGCCTCCTGCTCCAAAACCAGCCAGTCCC
AAGAAGAACATTAAA ACTAGGAGTGCCTAGAACAGAGAACAAACCCGAAAAGAGTGTGA
GCTAACTAGTTCCAAAGCGGAGACTCCGACTTCCCTACAGGATGAGGCTGGCATTG
CCTGGGACAGCCTATGTAAGGCCATGTGCCCTTGCTTAACAAACTCACTGCAGTGCTC
TTCATAGACACATCTGCAGCATTGTTAAGGCTATGCTCAGTTTCTTGTAAAGC
CATCACAAGCCATAGGGTAGGTTGCCATTAGAACAGTAACCTGTGTGCATACTCTAGAAGAGTAG
GGAAAAGGCTTATTGCATTGCATTAGAACAGTAACCTGTGTGCATACTCTAGAAGAGTAG
GGAAAATAATGCTTGTACAATTGACCTAATATGTGCATTGTTAAAATAATGCCATAT
TTCAAACAAAACACGTAATTGTTACAGTATGTTATTACCTTGTATCTGTTGTT
GCAATGTTAGTGTGTTAAAATGTGATGAAAATATAATGTTTAAGAAGGAACAGT
AGTGGAAATGAATGTTAAAAGATCTTATGTTATGGTCTGCAGAAGGATTTGTGA
TGAAAGGGGATTTTGTAAAAATTAGAGAACAGTACATGGAAAATTATAATGTT
TTTACCAATGACTTCAGTTCTGTTAGCTAGAAACTAAAAACAAAAATAATAAT
AAAGAAAATAAAATAAAAAGGAGAGGCAGACAATGTCTGGATT CCTGTTTGTGTTA

CCTGATTCCATGATCATGATGCTTGTCAACACCCCTTAAGCAGCACCAGAAACA
GTGAGTTGTCTGTACCATTAGGAGTTAGGTACTAATTAGTTGGCTAATGCTCAAGT
ATTTATAACCCACAAGAGAGGTATGTCACTCATCTTACTTCCCAGGACATCCACCCTGA
GAATAATTGACAAGCTTAAAAATGGCCTTCATGTGAGTGCCAAATTGTTTTCTTC
ATTTAAATATTCTTGCCTAAATACATGTGAGAGGGAGTTAAATATAAAATGTACAGAG
AGGAAAAGTTGAGTCCACCTCTGAAATGAGAATTACTTGACAGTTGGGATACTTAATC
AGAAAAAAAAGAACATTATTGCAGCATTATCAACAAATTCTATAATTGTGGACAATTG
GAGGCATTATTAAAAACAATTATTATTGGCCTTGCTAACACAGTAAGCATGTAT
TTTATAAGGCATTCAATAAATGCACACGCCAAAGGAAATAATCCTATCTAACATCC
TACTCTCCACTACACAGAGGTAATCACTATTAGTATTGGCATATTATTCTCCAGGTGT
TTGCTTATGCACCTATAAAATGATTGAACAAATAAAACTAGGAACCTGTATACATGTG
TTTCATAACCTGCCTCCTTGCTTGGCCCTTATTGAGATAAGTTCTGTCAAGAAAAG
CAGAAACCATCTCATTCTAACAGCTGTGTTATTCCATAGTATGCATTACTAACAA
ACTGTTGTGCTATTGGACTTAGGTGGTTCTCACTGACAATACTGAATAAACATCT
CACCGGAATT

Figure 104

MFLSILVALCLWLHLALGVRGAPCEAVRIPMCRHMPWNITRMPNHLHHSTQENAILAIEQY
EELVDVNCSAVLRRFFCAMYAPICTLEFLHDPIKPCSKVCQRARDDCEPLMKMYNHSPWES
LACDELPVYDRGVCISPEAIVTDLPEDVKWIDITPDMMVQERPLDVEDCKRLSPDRCKKKV
KPTLATYLSKNYSYVIHAKIKAVQRSGCNEVTTVVDVKEIFKSSSPIPRTQVPLITNSSCQCP
HILPHQDVLIIMCYEWRSRMMILLENCLVEKWRDQLSKRSIQWEERLQEQRRTVQDKKKTA
GRTRSNPPPKPKGKPPAPKPASPKKNIKTRSAQKRTNPKRV

66/66

Figure 105