Cayley-Hamilton 定理

叶卢庆*

2014年9月7日

设 V 是 \mathbb{C} 上的一个 $m(m \ge 1)$ 维线性空间.T 是 V 上的线性算子. 设 α 是 V 里的一组有序基, 线性算子 T 在 α 下的矩阵为 $[T]_{\alpha}^{\alpha}$. 下面我们来看关于 $[T]_{\alpha}^{\alpha}$ 的多项式

$$P([T]^{\alpha}_{\alpha}) = a_n([T]^{\alpha}_{\alpha})^n + \dots + a_1[T]^{\alpha}_{\alpha} + a_0I,$$

其中 $a_n, \dots, a_0 \in \mathbb{C}$. 如果 $[T]^{\alpha}_{\alpha}$ 是可对角化矩阵, 则存在 V 的一组基 β , 使得 $[T]^{\beta}_{\alpha}$ 是对角阵, 且

$$[T]^{\alpha}_{\alpha} = [I]^{\alpha}_{\beta} [T]^{\beta}_{\beta} [I]^{\beta}_{\alpha},$$

于是,

$$P([T]^{\alpha}_{\alpha}) = P([I]^{\alpha}_{\beta}[T]^{\beta}_{\beta}[I]^{\beta}_{\alpha}) = [I]^{\alpha}_{\beta}P([T]^{\beta}_{\beta})[I]^{\beta}_{\alpha}.$$

由于 $[T]^{\beta}_{\beta}$ 是对角阵,因此 $P([T]^{\beta}_{\beta})$ 的计算会变得特别容易,详细地说,此时,关于矩阵 $[T]^{\beta}_{\beta}$ 的多项式 $P([T]^{\beta}_{\beta})$ 已经变成了关于 $[T]^{\beta}_{\beta}$ 的所有的特征值的一组同样的多项式. 由于对角阵 $[T]^{\beta}_{\beta}$ 的对角线上的每个数都是 T 的特征值,因此特别地,如果 P 是关于线性映射 T 的特征多项式,那么 $P([T]^{\beta}_{\beta})=\mathbf{0}$,于是,

$$P([T]^{\alpha}_{\alpha}) = P([I]^{\alpha}_{\beta}[T]^{\beta}_{\beta}[I]^{\beta}_{\alpha}) = [I]^{\alpha}_{\beta}P([T]^{\beta}_{\beta})[I]^{\beta}_{\alpha} = \mathbf{0}.$$

这就是关于对角阵的 Cayley-Hamilton 定理.

当 $[T]_{\alpha}^{\alpha}$ 不是可对角化矩阵,那么 $[T]_{\alpha}^{\alpha}$ 不再可对角化,但是可上三角化.也就是说,存在 V 的一组基 γ ,使得 $[T]_{\gamma}^{\gamma}$ 是一个上三角矩阵,该上三角矩阵对角线上的元素都是 T 的特征值.然后,设上三角矩阵 $[T]_{\gamma}^{\gamma}$ 的对角线的第 $1,2,\cdots,m$ 行的特征值分别为 $\lambda_1,\lambda_2,\cdots,\lambda_m$. 对上三角矩阵 $[T]_{\gamma}^{\gamma}$ 的对角线进行微扰,使得其对角线上的元素的第 $1,2,\cdots,m$ 行分别变为 $\lambda_1+\varepsilon_1,\lambda_2+\varepsilon_2,\cdots,\lambda_m+\varepsilon_m$. 这样上三角矩阵 $[T]_{\gamma}^{\gamma}$ 就变成了另一个上三角矩阵 $[T']_{\gamma}^{\gamma}$. 通过恰当地选取 $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_m$,能使的 $[T']_{\gamma}^{\gamma}$ 的对角线上的元素互不相同. 这样线性算子 T' 就成了一个可对角化线性变换. 因此,对于 T' 的特征多项式 P' 来说, $P([T']_{\tau}^{\tau})=\mathbf{0}$,其中 $[T']_{\gamma}^{\tau}$ 是 T' 关于 V 的任意一组基 τ 的矩阵.令 $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_m$ 趋于 0 的同时,保持 T' 的可对角化性不变,此时,T' 的特征多项式 P' 会趋于 T 的特征多项式 P,T' 会趋于 T. 于是,即便当 T 不是可对角化的矩阵,T Cayley-Hamilton 定理对于 T 依然是成立的.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com