

Team 70: VFD Motor Controller Bi-Weekly Update 1

Mackenzie Miller Andrew Nguyen Aidan Rader Ryan Regan

Sponsor: John Lusher

TA: TA Name

Project Summary

- Problem: Traditional motor control systems cannot adjust to varying load demands, resulting in poor energy efficiency, excessive heat generation, and premature component failure
- Solution: Develop a Variable Frequency Drive (VFD) motor control system to adjust frequency and voltage to load demands

Project/Subsystem Overview

Project/Subsystem Overview

Full Design Review

Planned Physical Orientation

Major Project Changes for 404

No major changes are being made for 404

Project Timeline

2/12	2/19	3/7	3/19	4/2	4/16	4/28
Subsystem PCBv1 Designs & Testing	Auxiliary Power & MCU/Firmware Integration	PWM Control Integration	System Integration	System Testing	System Validation	Demo, Showcase, & Report

Optoelectronics

Mackenzie Miller

Accomplishments since 403 14 hrs of effort	Ongoing progress/problems and plans until the next presentation
Redesigned PCB to prepare for integrationCompleted a Design Review	- Order new PCB and parts and assemble new board
	- Order tachometer and attach to motor

Optoelectronics

Mackenzie Miller

- PCB is functional one digital isolator does not work
- Op-amps were getting hot at the beginning – did not maintain proper isolation between 15V and iso15V during initial testing
- PCB rerouting consisted of moving connectors around for convenience when integration starts

Microcontroller

Andrew Nguyen

Accomplishments since 403 15 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Revised connector, buck converter, and MCU schematics. Rerouted and rearranged PCB layout for easier integration Ordered PCB board. 	Order new partsBegin assembling PCB

Microcontroller

Andrew Nguyen

- Original PCB did not provide MCU with proper voltage and some parts were heating up
- New PCB has updated trace widths as I forgot to increase the width of a few lines along with updated buck converter, MCU, and connector design
- Board layout changed to make integration easier

Power

Aidan Rader

Accomplishments since 403 30.5 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Completed Full Design Review Designed PCBv1 	 Routing PCBv1 (pending Altium access) Ordering PCBv1 Ordering Parts Order 4 Testing iso5V to 3.3V Converter
	 Test Power Control Assemble PCBv1 Start Auxiliary Power Integration (15V, 3.3V, iso15V, iso5V)

Power

Aidan Rader

- Full Design Review
 - Increased board density
 - Changed screw connectors to ribbon
 - Aligned connectors to system's physical orientation
 - Added missing 2 pin connector for 2 phase to 15V Converter
 - Added missing 3.3V to iso5V converter pin
- Rectifier, DC link, 15V to iso15V converter work
- Relay is waiting on parts order 4
- Power control is waiting on parts order 4
 - Short due to connecting power supply to wrong pin

Firmware

Ryan Regan

Accomplishments since 403 15hrs of effort	Ongoing progress/problems and plans until the next presentation
 Verified correct voltage of PWM waves Found a temporary/loophole fix for the problem with the frequency range being too low Discussed integration and validation strategies with team 	 Find out how to display PWM sine wave on oscilloscope, and use it to calibrate the frequency more accurately Integrate with microcontroller PCB and debug

Firmware

Ryan Regan

- Temporary/loophole frequency fix:
 - Change PWM frequency variable used for calculations within code
 - This fix could be permanent if I am able to calibrate it to have to correct frequency bounds for the motor (10-60Hz)
- Need to find out how turn the separate three phases displayed into a singular sine wave on the oscilloscope, this will allow for simpler calibration and a better visualization of the output – specifically frequency changes

Parts Ordering Status

Order PCBv1s

Optoelectronics: 1/30Microcontroller: 1/29

- Power: 1/30 or 1/31 (pending Altium access)

Order Tachometer: 1/30Order Parts Order 4: 1/30

Part Number	Name	Notes	Quantity	\$/unit	Actual (\$)	Receipt	Vendor Link	Delivery Date	Group Member	Block Diagram
2N7002-TP	mosfet	order 4	3	0.13	0.39		mouser		Aidan	Relay
NKE0305SC	3.3/iso5, converter	order 4	1	8.28	8.28		mouser		Aidan	power control
IKCM30F60GD	power control	order 4	1	19.15	19.15		digikey		Aidan	power control

Execution Plan

	1/16	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27	4/3	4/10	4/17	4/24	Date
PCBv1s Design (Full Design Review)																1/28
PCBv1s Order													Not Sta	arted		1/29
Parts Order 4													In Prog	ress		1/29
Status Update Presentation 1													Compl	eted		1/29
PCBv1s Assembly													Behind Schedule		2/12	
Firmware Validation																2/12
Status Update Presentation 2	\top															2/12
Auxilary Power Integration																2/19
MCU/Firmware Integration																2/19
Status Update Presentation 3	\top															2/26
PWM Control Integration	1															3/7
Relay Control Integration																3/7
Power Feedback Integration	\top															3/19
Tachometer Integration	1															3/19
System Integration																3/19
Status Update Presentation 4	\top															3/19
System Testing	1															4/2
System Housing Design																4/2
Status Update Presentation 5	\top															4/2
System Validation																4/16
System Housing Fabrication																4/16
Final Presentation																4/16
Final Demonstration																4/24
Engineering Project Showcase																4/2
Final Report																4/28

Validation Plan

		Vallac	tion i ian		
Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
3.2.1.1		Motor shall operate within speed range of 0RPM to 1800RPM and torque range of 0lb-ft to 0.729lb-ft.	Input motor with voltage and check if it achieves ORPM and Olb-ft . Repeat for 300RPM, 600RPM, 900RPM, 1200RPM, 1500RPM, 1800RPM.	Untested	Andrew, Ryan
3.2.1.2		System shall operate within frequency range of 5Hz to 60Hz.	Input system with frequency generator set to 5Hz and check if the motor runs smoothly. Repeat for 10Hz, 20Hz, 30Hz, 40Hz, 50Hz, 60Hz.	Untested	All
3.2.1.3		System shall operate within temperature range of 0°C to 70°C.	Place system in freezer set to 0 °C and check if the motor runs smoothly. Repeat with oven set to 70 °C.	Untested	All
3.2.3.2	Input Voltage Level	System input voltage shall be 208Vac.	Measure with multimeter and check if the voltage is 208Vac.	Untested	Aidan
3.2.3.3	1 '	System shall not exceed ripple range of 0V to 0.165V.	Measure with multimeter and check if the voltage exceeds 0V to 0.165V.	Untested	Andrew
3.2.3.4		External commands shall be documented in appropriate ICD.	Show to teaching team and check with them for approval.	Untested	All
3.2.3.5	1	Oscilloscope displays each of the three phases of the PWM sine wave.	Connect oscilloscope probes to the set output pins for the PWM signals, ensure that the signals' duty cycles span from 0-100% and are rougly separated by thirds.	Tested	Ryan
3.2.3.6		System shall use terminal blocks for power and signal connections.	Observe power and signal connections and check if they are are terminal blocks.	Untested	Mackenzie, Andrew, Aidan
3.2.3.7		System shall automatically shut down if sensor exceeds temperature range of 0 °C to 70 °C.	Place sensor in freezer set to -1°C and check if sensor is triggered. Repeat with oven set to 71°C.	Untested	Mackenzie
3.2.3.8		System shall generate and evaluate test signals to assess failure status.	Compare generated values with known values and check if the failure statuses match. Repeat for six additional sets of values.	Untested	All
3.2.3.9	Voltage	The optoelectronics subsystem shall convert the voltage it receives down to a voltage in the range of 15-20 V.	Test at full power where the opto receives ~60 V. Use a multimeter to measure voltage level on other side of opto barrier.	Untested	Mackenzie
3.2.3.10	Continuity	The digital to power opto-isolators shall have a voltage of 0V across each component when connecting input to output.	Use a multimeter to ensure that the voltage across each digital isolator is zero.	Tested- retest with new parts	Mackenzie

Validation Plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
3.2.3.11	Continuity	The power to digital opto-isolators shall have a voltage of 0V across each component when connecting input to output	Use a multimeter to ensure that the voltage across each power isolator is zero.	Tested- retest with new parts	Mackenzie
TBD	Inputs	The parameters are within the expected range.	Confirm that all electrical parameters (voltage, current, power) remain within safe and expected ranges under varying conditions.	Untested	All
TBD		MPLab firmware successfully compiles without errors or warnings	Attempt to compile code in MPLab and examine output logs to check for errors or warnings	Tested	Ryan
TBD	Controller Performance	Motor spins according to user defined parameters.	Validate that the system operates efficiently and delivers accurate motor control across the expected range of operating conditions.	Untested	All
TBD	MCU Voltage Step Down	MCU converts the voltage it is given to 3.3V.	Measure the voltage of the signals being sent to the MCU and measure that the MCU converts it to 3.3V.	Untested	Mackenzie, Andrew
TBD		System input voltage shall be rectified from 208VAC to 295VDC.	Measure with multimeter and check if the voltage after the rectifier is 295Vpc.	Untested	Aidan
TBD		System input voltage shall be rectified from 5VAC to 7.1 VDC.	Input 5VAC at differing angles of 120° on three waveform generators. Measure with multimeter and check if the voltage after the rectifier is 7.1 VDC.	Tested	Aidan
TBD	Isolated 15V Conversion	System shall convert 15Vpc to isolated 15Vpc.	Input 15Vpc on a dc power supply. Measure with multimeter and check if the voltage after the converter is 15Vpc.	Tested	Aidan
TBD	Isolated 5V Conversion	System shall convert 3.3Vpc to isolated 5Vpc.	Input 3.3Vpc on a dc power supply. Measure with multimeter and check if the voltage after the converter is 5Vpc.	Untested	Aidan
TBD	User Interface	User is able to change the speed of the rotating PWM values by turning the potentiometer.	to observe that the target frequency of the system is close to 60, 10, and 35 respectively, and the rotating PWM values change pace accordingly	Tested	Ryan
TBD	1	Code properly changes the frequency of the PWM signals	Use oscilloscope or a timer to measure the PWM waves to ensure that the program's target frequency is similar to the actual frequency of the PWM signals.	Untested	Ryan
TBD	Debugger Connection	The Microcontroller shall be able to properly communicate with Pickit4 debugger	Connect the Pickit4 Debugger to microcontroller PCB using the 5 pin connector and ensure that MPLAB X IDE can recognize the device.	Untested	Andrew

Thank You