

What is claimed is:

1. A compound of formula I

wherein

L is either a direct bond, an -O-, -S-, -S(O)-, -SO₂-, -N(R_{5a})-, -SO₂N(R_{5b})-, -N(R_{5b})SO₂-,
 -C(O)N(R_{5c})- or -N(R_{5c})C(O)- bridge, or a C₁-C₄alkylene, C₂-C₄alkenylene or C₂-C₄alkynylene chain which may be mono- or poly-substituted by R₅ and/or interrupted once or twice by an
 -O-, -S-, -S(O)-, -SO₂-, -N(R_{5d})-, -SO₂N(R_{5e})-, -N(R_{5e})SO₂-, -C(O)N(R_{5f})- and/or -N(R_{5f})C(O)-
 bridge, and when two such bridges are present those bridges are separated at least by one carbon atom, and W is bonded to L by way of a carbon atom or a -N(R_{5g})SO₂- or
 -N(R_{5g})C(O)- bridge when the bridge L is bonded to the nitrogen atom of W;

W is a 4- to 7-membered, saturated, partially saturated or unsaturated ring system U

which contains a ring element U₁, and may contain from one to four further ring nitrogen atoms, and/or two further ring oxygen atoms, and/or two further ring sulfur atoms and/or one or two further ring elements U₂, and the ring system U may be mono- or poly-substituted at a saturated or unsaturated ring carbon atom and/or at a ring nitrogen atom by a group R₈, and two substituents R₈ together are a further fused-on or spirocyclic 3- to 7-membered ring system which may be unsaturated, partially saturated or fully saturated and may in turn be substituted by one or more groups R_{8a} and/or interrupted once or twice by a ring element -O-, -S-, -N(R_{8b})- and/or -C(=O)-; and

U₁ and U₂ are each independently of the other(s) -C(=O)-, -C(=S)-, -C(=NR₆)-, -(N=O)-,
 -S(=O)- or -SO₂-;

R₃ and R₄ are each independently of the other C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy-C₁-C₃alkyl, hydrogen, hydroxy, mercapto, halogen, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, C₁-C₃haloalkylsulfinyl, C₁-C₃haloalkylsulfonyl or C₁-C₃alkylsulfonyloxy;

R₅ is halogen, C₁-C₃alkyl, C₁-C₃alkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃alkoxy-C₁-C₃alkyl or C₁-C₃alkoxy-C₁-C₃alkoxy;

R_{5a}, R_{5b} and R_{5e} are independently hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl, C₃-C₆alkynyl or C₁-C₃alkoxy-C₁-C₃alkyl;

R_{5d} is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₁-C₃alkoxy-C₁-C₃alkyl, benzyl, cyano, formyl, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylsulfonyl or phenylsulfonyl, it being possible for the phenyl-containing groups to be substituted by R₇;

R_{5c} and R_{5f} are each independently of the other hydrogen or C₁-C₃alkyl;

R₆ is C₁-C₆alkyl, hydroxy, C₁-C₆alkoxy, cyano or nitro;

R₇ is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

each R₈ independently is hydrogen, halogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, hydroxy, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₃alkoxy-C₁-C₃alkoxy, mercapto, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆alkylsulfonyloxy, C₁-C₆haloalkylsulfonyloxy, C₃-C₆alkenylthio, C₃-C₆alkynylthio, amino, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, C₁-C₃alkoxy-C₁-C₃alkyl, formyl, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, benzyloxycarbonyl, C₁-C₄alkylthiocarbonyl, carboxy, cyano, carbamoyl, phenyl, benzyl, heteroaryl or heterocyclyl, it being possible for the phenyl, benzyl, heteroaryl and heterocyclyl groups to be mono- or poly-substituted by R_{7a};

each R_{7a} independently is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

each R_{8a} independently is halogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, hydroxy, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, cyano or nitro;

R_{8b} is hydrogen, C₁-C₃alkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₁-C₃alkoxy-C₁-C₃alkyl or benzyl, it being possible for the phenyl group to be substituted by R_{7b};

R_{7b} is halogen, $C_1\text{-}C_3$ alkyl, $C_1\text{-}C_3$ haloalkyl, hydroxy, $C_1\text{-}C_3$ alkoxy, $C_1\text{-}C_3$ haloalkoxy, cyano or nitro;

p is 0 or 1;

r is 1, 2, 3, 4, 5 or 6;

with the provisos that

- a) R_8 and R_{8a} as halogen or hydrogenmercapto cannot be bonded to a nitrogen atom,
- b) U_1 as $-C(=O)\text{-}$ or $-C(=S)\text{-}$ does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group by way of a $C_1\text{-}C_4$ alkylene, $C_2\text{-}C_4$ alkenylene or $C_2\text{-}C_4$ alkynylene chain L that is interrupted by $-O\text{-}$, $-S\text{-}$, $-S(O)\text{-}$, $-SO_2\text{-}$, $-N(R_{5d})\text{-}$, $-SO_2N(R_{5e})\text{-}$ or $-N(R_{5e})SO_2\text{-}$,
- c) U_1 as $-C(=S)\text{-}$ does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group by way of a $-CH=CH\text{-}$ or $-C\equiv C\text{-}$ bridge L or by way of a $C_1\text{-}C_4$ alkylene chain L that is interrupted by $-O\text{-}$, $-S\text{-}$, $-S(O)\text{-}$, $-SO_2\text{-}$ or $-N(C_1\text{-}C_4\text{alkyl})\text{-}$,
- d) U_1 as $-C(=S)\text{-}$ or $-C(=NR_6)\text{-}$ wherein R_6 is $C_1\text{-}C_6$ alkyl or $C_1\text{-}C_6$ alkoxy does not form a tautomeric form with a substituent R_8 as hydrogen when the radical W is bonded to the pyridyl group directly or by way of a $C_1\text{-}C_4$ alkylene chain L;

either

Q is a group Q₁

wherein

A_1 is $C(R_{11}R_{12})$ or NR_{13} ;

A_2 is $C(R_{14}R_{15})_m$, $C(O)$, oxygen, NR_{16} or $S(O)_q$;

A_3 is $C(R_{17}R_{18})$ or NR_{19} ;

with the proviso that A_2 is other than $S(O)_q$ when A_1 is NR_{13} and/or A_3 is NR_{19} ;

X_1 is hydroxy, $O^+\text{M}^+$, wherein M^+ is a metal cation or an ammonium cation; halogen or $S(O)_nR_g$,

wherein

m is 1 or 2;

q, n and k are each independently of the others 0, 1 or 2;

R₉ is C₁-C₁₂alkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, C₃-C₁₂allenyl, C₃-C₁₂cycloalkyl, C₅-C₁₂cycloalkenyl, R₁₀-C₁-C₁₂alkylene or R₁₀-C₂-C₁₂alkenylene, wherein the alkylene or alkenylene chain may be interrupted by -O-, -S(O)_k- and/or -C(O)- and/or mono- to penta-substituted by R₂₀; or phenyl, which may be mono- to penta-substituted by R_{7c};

R_{7c} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

R₁₀ is halogen, cyano, rhodano, hydroxy, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₂-C₆alkynyoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₂-C₆alkenylthio, C₂-C₆alkynylthio, C₁-C₆alkylsulfonyloxy, phenylsulfonyloxy, C₁-C₆alkylcarbonyloxy, benzoyloxy, C₁-C₄alkoxy-carbonyloxy, C₁-C₆alkylcarbonyl, C₁-C₄alkoxycarbonyl, benzoyl, aminocarbonyl, C₁-C₄alkyl-aminocarbonyl, C₃-C₆cycloalkyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; it being possible for the phenyl-containing groups in turn to be substituted by R_{7d};

R_{7d} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

R₂₀ is hydroxy, halogen, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cyano, carbamoyl, carboxy, C₁-C₄alkoxycarbonyl or phenyl; it being possible for phenyl to be substituted by R_{7e};

R_{7e} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

R₁₁ and R₁₇ are each independently of the other hydrogen, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkoxycarbonyl, hydroxy, C₁-C₄alkoxy, C₃-C₄alkenyloxy, C₃-C₄alkynyoxy, hydroxy-C₁-C₄alkyl, C₁-C₄alkyl-sulfonyloxy-C₁-C₄alkyl, halogen, cyano or nitro;

or, when A₂ is C(R₁₄R₁₅)_m, R₁₇ together with R₁₁ forms a direct bond or a C₁-C₃alkylene bridge;

R₁₂ and R₁₈ are each independently of the other hydrogen, C₁-C₄alkyl or C₁-C₄alkylthio, C₁-C₄alkylsulfinyl or C₁-C₄alkylsulfonyl;

or R₁₂ together with R₁₁, and/or R₁₈ together with R₁₇ form a C₂-C₅alkylene chain which may be interrupted by -O-, -C(O)-, -O- and -C(O)- or -S(O)_r;

R_{13} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or C_1 - C_4 alkoxy;

R_{14} is hydrogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 hydroxyalkyl, C_1 - C_4 alkoxy- C_1 - C_3 alkyl, C_1 - C_4 alkylthio- C_1 - C_3 alkyl, C_1 - C_4 alkylcarbonyloxy- C_1 - C_3 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_3 alkyl, tosyloxy- C_1 - C_3 alkyl, di(C_1 - C_4 alkoxy)- C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, C_3 - C_5 oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_4 dithiacycloalkyl, C_3 - C_4 oxathiacycloalkyl, formyl, C_1 - C_4 alkoxyiminomethyl, carbamoyl, C_1 - C_4 alkylaminocarbonyl or di(C_1 - C_4 alkyl)aminocarbonyl;

or R_{14} together with R_{11} , R_{12} , R_{13} , R_{15} , R_{17} , R_{18} or R_{19} or, when m is 2, also together with R_{14} forms a direct bond or a C_1 - C_4 alkylene bridge;

R_{15} is hydrogen, C_1 - C_3 alkyl or C_1 - C_3 haloalkyl;

R_{16} is hydrogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylcarbonyl or N,N -di(C_1 - C_4 alkyl)aminocarbonyl;

or

Q is a group Q_2

wherein

R_{21} and R_{22} are hydrogen or C_1 - C_4 alkyl;

X_2 is hydroxy, O^-M^+ , wherein M^+ is an alkali metal cation or ammonium cation; halogen, C_1 - C_{12} alkylsulfonyloxy, C_1 - C_{12} alkylthio, C_1 - C_{12} alkylsulfinyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_{12} haloalkylthio, C_1 - C_{12} haloalkylsulfinyl, C_1 - C_{12} haloalkylsulfonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkylthio, C_1 - C_6 alkoxy- C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkoxy- C_1 - C_6 alkylsulfonyl, C_3 - C_{12} alkenylthio, C_3 - C_{12} alkenylsulfinyl, C_3 - C_{12} alkenylsulfonyl, C_3 - C_{12} alkynylthio, C_3 - C_{12} alkynylsulfinyl, C_3 - C_{12} alkynylsulfonyl, C_1 - C_4 alkoxycarbonyl- C_1 - C_4 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkoxycarbonyl- C_1 - C_4 alkylsulfonyl, benzylxy or phenylcarbonylmethoxy; it being possible for the phenyl-containing groups to be substituted by R_{71} ;

R_{71} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

or

Q is a group Q_3

- 147 -

wherein

R_{31} is $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_6$ haloalkyl, $\text{C}_3\text{-}\text{C}_6$ cycloalkyl or halo-substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

R_{32} is hydrogen, $\text{C}_1\text{-}\text{C}_4$ alkoxycarbonyl, carboxy or a group $\text{S}(\text{O})_s\text{R}_{33}$;

R_{33} is $\text{C}_1\text{-}\text{C}_6$ alkyl or $\text{C}_1\text{-}\text{C}_3$ alkylene, which may be substituted by halogen, $\text{C}_1\text{-}\text{C}_3$ alkoxy, $\text{C}_2\text{-}\text{C}_3$ alkenyl or by $\text{C}_2\text{-}\text{C}_3$ alkynyl; and

s is 0, 1 or 2;

or

Q is a group Q_4

wherein

R_{41} is $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_6$ haloalkyl, $\text{C}_3\text{-}\text{C}_6$ cycloalkyl or halo-substituted $\text{C}_3\text{-}\text{C}_6$ cycloalkyl;

or an agrochemically acceptable salt or any stereoisomer or tautomer of a compound of formula I.

2. A compound of formula II

wherein Y is chlorine, cyano, hydroxy, $\text{C}_1\text{-}\text{C}_4$ alkoxy, benzyloxy, phenoxy, allyloxy, a group

- 148 -

or a group Q₀, wherein Q₀ is accordingly a group Q linked to oxygen and Q, L, U₁, R₁, R₂, R₃, R₄, R₃₁, R₃₂, R₃₃ and p are as defined for formula I in claim 1.

3. A herbicidal and plant-growth-inhibiting composition, which comprises a herbicidally effective amount of a compound of formula I on an inert carrier.

4. A method of controlling undesired plant growth, which comprises applying a herbicidally effective amount of a compound of formula I, or of a composition comprising such a compound, to the plants or to the locus thereof.

5. A method of inhibiting plant growth, which comprises applying a herbicidally effective amount of a compound of formula I, or of a composition comprising such a compound, to the plants or to the locus thereof.