Contrôle d'analyse II N°1

Durée	: 1	heure	30	minutes

Barème sur 15 points

NOM:		-
_		Groupe
PRENOM:		

1. Soit x l'angle défini par $\sin x = -\frac{12}{13}$ et $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$. Calculer, sans machine, la valeur de $\operatorname{tg}\left(\frac{\pi - x}{2}\right)$.

2,5 pts

5 pts

37

73

- 2. On considère un système constitué de deux roues et d'une chaîne tendue qui enserre les deux roues. La petite roue est de rayon r, la grande roue est de rayon R=4r et la distance entre les centres des deux roues est d=6r.
 - a) Déterminer la distance x en fonction de r (c.f. figure), justifier rigoureusement votre calcul, puis en déduire que la mesure de l'angle α vaut $\frac{\pi}{3}$.
 - b) Calculer la longueur de la chaîne en fonction de r.
 - c) Si la petite roue tourne d'un angle de 1500 tours, combien de tours effectue la grande roue ?

2.4r= 9 2.4r= 9 2.4x= 0.4 42 = 0

1600

d' = 211 1500

3. Résoudre sur \mathbb{R} l'inéquation

 $\frac{\sin(5x) + \sin x}{\cos(2x)} \ge 0.$

3 pts

(h) 17 4. Soit
$$f(x) = \sqrt{12} \cos(2x) + 6 \sin(2x) - 2\sqrt{3}$$
.

- a) Résoudre l'équation f(x) = 0 sous la condition $x \in [-2\pi, -\frac{\pi}{2}]$.
- b) Résoudre l'inéquation f(x) < 0 sous la condition $x \in \left[\frac{3\pi}{2}, 4\pi\right]$.

4,5 pts

Quelques formules de trigonométrie

Formules d'addition:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \qquad \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$tg(x+y) = \frac{tg x + tg y}{1 - tg x tg y}$$

Formules de bissection:

$$\sin^2(\frac{x}{2}) = \frac{1 - \cos x}{2} \qquad \cos^2(\frac{x}{2}) = \frac{1 + \cos x}{2} \qquad \operatorname{tg}^2(\frac{x}{2}) = \frac{1 - \cos x}{1 + \cos x}$$

Expressions de $\sin x$, $\cos x$ et $\operatorname{tg} x$ en fonction de $\operatorname{tg}(\frac{x}{2})$:

$$\sin x = \frac{2 \operatorname{tg}(\frac{x}{2})}{1 + \operatorname{tg}^{2}(\frac{x}{2})} \qquad \cos x = \frac{1 - \operatorname{tg}^{2}(\frac{x}{2})}{1 + \operatorname{tg}^{2}(\frac{x}{2})} \qquad \operatorname{tg} x = \frac{2 \operatorname{tg}(\frac{x}{2})}{1 - \operatorname{tg}^{2}(\frac{x}{2})}$$

Formules de transformation somme-produit :

$$\cos x + \cos y = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})$$

$$\cos x - \cos y = -2\sin(\frac{x+y}{2})\sin(\frac{x-y}{2})$$

$$\sin x + \sin y = 2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2})$$

$$\sin x - \sin y = 2\cos(\frac{x+y}{2})\sin(\frac{x-y}{2})$$