O Modelo de Dados Relacional Banco de Dados

Charles Tim Batista Garrocho

Instituto Federal do Paraná – IFPR Campus Goioerê

charles.garrocho.com/BD

charles.garrocho@ifpr.edu.br

Técnico em Informática

Conceitos do Modelo Relacional

O Modelo de Dados Relacional foi introduzido por Codd (1970).

Entre os modelos de dados de implementação, o modelo relacional é o mais simples, com estrutura de dados uniforme, e também o mais formal.

O modelo de dados relacional representa os dados da base de dados como uma **coleção de relações**. Informalmente, cada relação pode ser entendida como uma tabela ou um simples arquivo de registros.

Por exemplo, a base de dados de arquivos representada pela Figura do próximo slide, é considerada estando no modelo relacional. Porém, existem diferenças importantes entre relações e arquivos.

Exemplo de uma base de dados relacional

ESTUDANTE	Nome	Número	Classe	Departamento
	Soares	17	1	DCC
	Botelho	8	2	DCC

	CURSO	Nome	Número	Créditos	Departamento
		Introd. Ciências de Comp.	DCC1310	4	DCC
Estrutura de Dados		Estrutura de Dados	DCC3320	4	DCC
	Matemática Discreta		MAT2410	4	MAT
Base de Dados		Base de Dados	DCC3380	4	DCC

PRÉ-REQUISITO	Número	Pré-requisito	
	DCC3380	DCC3320	
	DCC3380	MAT2410	
	DCC3320	DCC1310	

SEÇÃO	Número	Curso	Semestre	Ano	Professor	
	85	MAT2410	1	86	Kotaro	
	92	DCC1310	1	86	Alberto	
	102	DCC3320	2	87	Kleber	
	112	MAT2410	1	87	Carlos	
	119	DCC1310	1	87	Alberto	
	135	DCC3380	1	87	Souza	

HISTÓRICO	NúmeroEstudante	NúmeroSeção	Nível
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	Α

Terminologia de Base de Dados Relacional

Na terminologia de base de dados relacional, a linha é chamada de **tupla**, a coluna é chamada de **atributo** e a tabela de **relação**. O tipo de dado que especifica o tipo dos valores que podem aparecer em uma coluna é chamado de **domínio**.

Uma **relação esquema** é um conjunto de atributos. Cada atributo indica o nome do papel de algum domínio na relação esquema.

O grau de uma relação é o número de atributos da relação. Considere o exemplo de uma relação esquema de grau 7, que descreve estudantes universitários:

ESTUDANTE(NOME, NSS, TELEFONE, ENDEREÇO, TELCOMERCIAL, ANOS, MPA)

Terminologia de Base de Dados Relacional

A Figura abaixo mostra um exemplo de uma relação ESTUDANTE, que corresponde ao esquema estudante especificado anteriormente.

ESTUDANTE	Nome	NSS	Telefone	Endereço	TelComercial	Anos	MPA
tuplas	Joaquim	305	555-444	R. X, 123	null	19	3.21
	Katarina	381	555-333	Av. K, 43	null	18	2.89
	Daví	422	null	R. D, 12	555-678	25	3.53
	Carlos	489	555-376	R. H, 9	555-789	28	3.93
	Barbara	533	555-999	Av. f, 54	null	19	3.25

Cada **tupla** na relação representa uma entidade estudante.

A **relação** é mostrada em forma de tabela, onde cada tupla é representada pelas linhas e cada **atributo** na linha de cabeçalho indicando os papéis ou a interpretação dos valores encontrados em cada coluna.

Generalização e Especialização

A **generalização** e a **especialização** são conceitos usados para representar objetos do mundo real que possuem os mesmos atributos.

Exemplo:

SECRETARIA, ENGENHEIRO, TECNICO é uma **especialização** de EMPREGADO ou EMPREGADO é uma **generalização** de SECRETARIA, ENGENHEIRO, TECNICO

Generalização: indicado quando existe algum atributo que seja aplicável a mais de uma entidade.

Especialização: indicado quando temos atributos específicos para um determinado sub-conjunto de ocorrências dentro de uma Entidade.

Restrições de Integridade

As **restrições** especificam as chaves-candidatas de cada relação esquema; os valores das chaves-candidatas devem ser únicos para todas as tuplas de quaisquer instâncias da relação esquema.

A restrição de **integridade** de entidade estabelece que nenhum valor da chave-primária pode ser nulo. Isso porque, o valor de uma chave-primária é utilizado para identificar tuplas em uma relação.

Exercício Prático

Gere o modelo relacional de todos os exercícios da **Lista de Exercícios MER e DER**. Exercício a) da Lista:

- Um programador pode trabalhar em vários programas e cada programa pode ser elaborado por um conjunto de programadores.
- A gerência da empresa deseja saber, no início de cada trabalho, quais os programadores alocados para realizá-lo.
- ► Ao término de um programa, um analista avalia o trabalho de cada programador em cada programa atribuindo-lhe uma nota.
- Um analista pode avaliar vários programadores em vários programas.

Resolução

Programador (CodProgramador, NomeProgramador)

 $Programa \ (\underline{CodPrograma}, \ NomePrograma)$

Analista (CodAnalista, NomeAnalista)

Faz (#CodProgramador, #CodPrograma, #CodAnalista, Nota)

