Color matrices

For each color space is defined a 3x3 forward matrix MX_i for converting an RGB triplet to a CIE XYZ ⁸ tristimulus value. This conversion takes the form $XYZ = MX_i \cdot RGB$. The forward matrices MX are calculated from the color primaries and white point using the equation:

$$MX_{i} = \begin{bmatrix} r_{i} \\ g_{i} \\ b_{i} \end{bmatrix} \times \left(\frac{w_{i}}{w_{i} \cdot y} \cdot \begin{cases} r_{i} \\ g_{i} \\ b_{i} \end{cases}^{-1} \right)^{T}$$

where

i is one of SD, HD and UHD (HDR uses same matrix as UHD),

 r_i , g_i , b_i , and w_i are the xyz triplets for the red, green, blue primaries and the white point of the color space i, w_i . y is the y value of w_i , an xyz value being an xy chromaticity coordinate appended with z = 1 - x - y, and

 \cdot (dot) indicates the matrix product or inner product.

The resulting matrices are

$$MX_{HD} = \begin{cases} 0.412391 & 0.357584 & 0.180481 \\ 0.212639 & 0.715169 & 0.072192 \\ 0.019331 & 0.119195 & 0.950532 \end{cases}$$

$$MX_{SD} = \begin{cases} 0.430554 & 0.341550 & 0.178352 \\ 0.222004 & 0.706655 & 0.071341 \\ 0.020182 & 0.129553 & 0.939322 \end{cases}$$

$$MX_{UHD} = \begin{cases} 0.636958 & 0.144617 & 0.168881 \\ 0.2627 & 0.677998 & 0.059302 \\ 0 & 0.028073 & 1.060990 \end{cases}$$

The matrices for converting from linear RGB values in HD space to linear RGB values in the SD or UHD color space are obtained by combining forward and inverse matrices. The numerical values for the matrices are:

$$M_{S} = (MX_{SD})^{-1} \cdot MX_{HD} = \begin{cases} 0.957815 & 0.0421852 & 0 \\ 0 & 1. & 0 \\ 0 & -0.0119341 & 1.01193 \end{cases}$$

$$M_{U} = (MX_{UHD})^{-1} \cdot MX_{HD} = \begin{cases} 0.627404 & 0.329283 & 0.043313 \\ 0.069098 & 0.919540 & 0.011362 \\ 0.016391 & 0.088013 & 0.895595 \end{cases}$$

Transfer functions

The domain and range are [0,1] for all transfer functions used in this paper.

The current SD, HD and UHD television standards normatively prescribe the same *OETF*, defined in ITU-R Recommendation BT.709, for encoding picture colorimetry into a video signal.

if Luminance
$$\geq 0.018$$
: Voltage = 1.099 Luminance^{0.45} - 0.099 else Voltage = 4.500 Luminance

ITU-R Recommendation BT.1886 9 , in its simplest form, specifies a gamma of 2.4 as the *EOTF* of SD, HD and UHD displays.

$$Luminance = Voltage^{2.4}$$

For HDR displays, the EOTF defined in ST 2084 is used.

Luminance =
$$\left(\frac{max \left[Voltage^{\frac{1}{m}} - c1, 0 \right]}{c2 - c3 \, Voltage^{\frac{1}{m}}} \right)^{\frac{1}{n}}$$