Chem 1141 Fall 2011 Exam 3A

KEY

Name:

	14011011							
	Please write your full name, and which exam version (3A) you have on the scantron sheet.							
	Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet.							
	Q1. Which of the following a) sulfur b)	ng elements are gases at r chlorine c) bromine		pressure? manganese				
	the following							
	65 mm							
	a) 65 mmF	Hg (b) 690 mmHg	c) 755 mmHg	d) 760 mmHg	e) 820 mmHg			
	Q3. 200. mL of a gas at a be?	23. 200. mL of a gas at a pressure of 60.0 mmHg is compressed to a volume of 50.0 mL. What will its new pressure						
	a) 15.0 mmHg	b) 120. mmHg	c) 180. mmHg	d) 240. mmHg	e) 260. mmHg			
	Q4. Which gas law states a) Avogadro's	that the volume of a gas b) Boyle's	is directly proportiona c) Charles	d) Gay-Lussac's	e) Dulong's			
	Q5. What must be increased to increase the average kinetic energy of gas molecules?							
	a) Pressure	b) Volume	c) Moles	d) Gas Constant	(e) Temperature			
	Q6. Which type of thermodynamic system is consistent with the fact that heat may flow between the system and the surroundings, but matter cannot?							
	a) Open	(b) Closed	c) Isolated	d) Universe	e) First			
	$2Fe(s) + \frac{3}{2}$	Given the following thermochemical equation: 2Fe(s) + ³ / ₂ O ₂ (g) → Fe ₂ O ₃ (s) ΔH° = −826.0 kJ/mol How much heat will be released if four moles of iron reacts with an excess of oxygen?						
	a) 206.5 kJ	b) 413.0 kJ	c) 826.0 kJ	d) 1652 kJ	e) 3304 kJ			

```
Q8. Given the following thermochemical equation:
                H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) \Delta H^0 = -241.8 \text{ kJ/mol}
        What will \Delta H^{o} be for the thermochemical equation:
                2H_2O(g) \rightarrow 2H_2(g) + O_2(g)
        a) -241.8 kJ/mol b) +241.8 kJ/mol c) -120.9 kJ/mol
                                                                                 d) +120.9 kJ/mol
      (e) +483.6 kJ/mol
Q9. Which thermochemical equation corresponds to ΔH<sub>f</sub> (N<sub>2</sub>O(g))?
        a) 2N(g) + O(g) \rightarrow N_2O(g)
        b) N_2O(g) \rightarrow 2N(g) + O(g)
        c) N_2(g) + O(g) \rightarrow N_2O(g)
        d) 2N_2(g) + O_2(g) \rightarrow 2N_2O(g)
      (e) N_2(g) + \frac{1}{2} O_2(g) \rightarrow N_2O(g)
Q10. What is the frequency of UV light with a wavelength of 254 nm?
                                                                                  d) 8.47 x 10<sup>-16</sup> Hz
      (a) 1.18 x 10<sup>15</sup> Hz
                               b) 1.18 x 10<sup>6</sup> Hz
                                                         c) 8.47 x 10<sup>-7</sup> Hz
        e) 76.2 Hz
Q11. Which type of EM radiation has the largest energy per photon?
                                                                                  d) Microwaves
        a) Radiowaves
                                b) Red-Light
                                                        (c) Green-Light
        e) Infrared
Q12. Which electron transition in the hydrogen atom would lead to emission of the longest wavelength of light?
                                                                                  d) 5 \rightarrow 1
                                                                                                         e) 6 \rightarrow 5
                                b) 3 \rightarrow 1
                                                         c) 4 \rightarrow 1
Q13. What letter is used for an electron with an angular momentum quantum number (l) of 2?
                                                                                                          e) n
      (a) d
                                b) s
                                                                                  d) m,
                                                         c) p
Q14. Which principle says that electrons are added in lower energy subshells, before entering higher-energy
subshells?
        a) Pauli
                                 b) Heisenberg
                                                        (c) Aufbau
                                                                                  d) Hund
                                                                                                          e) de Broglie
Q15. Which of the following atoms will be paramagnetic?
      (a) hydrogen
                                 b) helium
                                                         c) magnesium
                                                                                  d) neon
                                                                                                          e) beryllium
Short Response.
Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and
write your answers using the correct number of significant figures or decimal places.
Q16. [4 pts.] Write out the FULL electron configuration of the following atoms:
        a) Li |s^2|
        b) Ti |52252p63523p64523d2
       c) Cu |5252p6352p645'3d' (aufbau exception... borrows le from 45 substitution) Br
```

Exam 3A Multiple Choice Some other gaseous elements include: H2, O2, N2, F2, Cl2, He, Ne, Ar, Kr, Xe, Rn Notice: Br2(2) (one of only two liquid element!) Q2. B Clearly, Pgas < 755 mmHg because

[65mm gas is "sucking" mercury up to a
higher level! (Air is pushing Hg ...) o If Mercury levels were equal, Igas = 755 months.

Since mercury levels are not equal,

Pgas = 755 months © 65 months = 690 months.

gas is lower in pressure than air

by this amount.

Q3. D. Lang Method: P, V, = P, Vz = P, Vz = 600 months × 200 ml.

= 240 months. Easy method: (Boyle) Vol=4x smaller => Pres=4xlarger = 4 + 60 = 240 mm /6 Charles: VXT Avogados: VXn
Boyle: PX'V Know your gas ABC's. Q4.C Q5. E For gases, KE & T(K) Q6. B Open: matter () Closed: energy () Isolated: enogy < X>

```
Q7. D. 2 Fe (s) + \(\frac{2}{2}\O_2(g) \rightarrow \) Fe \(\O_3(g)\) ; \(\Delta H^\circ = -826.0 \) \(\O_{mol}\)
   AH° is a convesion factor! -826.0k7 -826.0k7 -826.0k7 | 1 mol Fe203
      4 mol Fe -826.0 kg = -1652 KJ 
2 mol Fe L releand!
Q9. F. Remember: AHE refers to formation of I make
            of substance from its elements in their most stable form
             Hydrogen: Hz(g), Oxygen: Oz(g)
Q10. A. C=V2 = 2-00 x108 x/s 754 x10-9x1
                                     = 1.18 x 10 15 1/s
QII. C E=hc => ET IV
   X-ray, UV VIBGYOR infrared microwaves radiowaves
                 smallest 7
                 largest E
```


Q17. [6 pts.] 25.0 mL of an ideal gas at a temperature of 285 K and a pressure of 451 mmHg is allowed to warm up to a temperature of 371 K, while its pressure drops to 232 mmHg. What will its final volume be?

$$\frac{\frac{P_1V_1}{T_1}}{T_2} = \frac{P_2V_2}{T_2} \implies V_2 = \frac{P_1V_1}{T_1} \times \frac{T_2}{P_2} = \frac{45 \text{ lmy/fg} \times 25 \cdot \text{OnL} \times 371 \text{ K}}{285 \text{ K} \times 232 \text{ my/fg}} = 63.3 \text{ mL} \quad (35.f.)$$
(Combined sp. (au)

Q18. [10 pts.] Write formulas for the following compounds:

Q19. [10 pts.] Determine the empirical formula of a compound that is 29.0% sodium, 40.5% sulfur, and 30.4% oxygen by weight.

Assume
$$|OO_g|$$
 sample

$$\frac{29 \, O_g \, N_a \, |I_{mol} \, N_a|}{|1.26 \, w_o|} = |.26 \, w_o| \, N_a \\
22.99 \, N_a = |.26 \, w_o| \, N_a \\
22.99 \, N_a = |.26 \, w_o| \, N_a = |.26 \, w_o| \, N_a \\
22.99 \, N_a = |.26 \, w_o| \, N_a = |.26$$

Q20. [8 pts.] 20.0 mL of 3.00 M HCl(aq) is added to an excess of Na₂CO₃(aq). What volume of gas is formed at a temperature of 301 K and a pressure of 1.03 atm? Hint: Start by writing a balanced chemical equation!

Q21. [10 pts.] An electron in a hydrogen atom undergoes a transition from n = 3 to n = 4. Calculate the wavelength of the photon of light emitted/absorbed (state which).

$$\Delta E = R_{H} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right) = 2.(8 \times 10^{-18}) \left(\frac{1}{3^{2}} - \frac{1}{14^{2}} \right) = +1.06 \times 10^{-18}$$

$$E = \frac{hc}{2} \implies 7 = \frac{hc}{E} = \frac{6.626 \times 10^{-34} \text{ J.s.} \times 3.00 \times 10^{3} \text{ m.s.}^{-1}}{1.06 \times 10^{-19} \text{ J}}$$

$$= 1.88 \times 10^{-6} \text{ m}$$

Q22. [7 pts.] Given the following thermochemical equations:

$$\begin{array}{ll} \text{(i)} \ \ N_2(g) + 3H_2(g) \to 2NH_3(g); & \Delta H^0 = -91.8 \ kJ/mol \\ \text{(2)} \ \ C(s, graphite) + 2H_2(g) \to CH_4(g); & \Delta H^0 = -74.9 \ kJ/mol \\ \text{(3)} \ \ H_2(g) + 2C(s, graphite) + N_2(g) \to 2HCN(g); & \Delta H^0 = +270.3 \ kJ/mol \\ \end{array}$$

Using Hess's Law, determine ΔH° for the following equation:

BONUS Questions:

a) What is the de Broglie wavelength of a 2.0 kg ball travelling at a speed of 135 m/s?

$$\int = \frac{h}{m \cdot u} = \frac{6.626 \times (0^{-34} \text{ J.} 5)}{2.0 \text{ Kg} \times (35 \text{ m/s})} = 2.4 \text{ f} \times (0^{-34} \text{ m})$$
(sing $|J = 1 \text{ Kg m}^2/\text{s}^2$)

b) Write out the orbital diagram for an oxygen atom.

Chem 1141 Fall 2011 Exam 3B

Name: KEY							
Please write your full name, and which exam version (3B) you have on the scantron sheet.							
Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet.							
Q1. Which type of thermodynamic system is consistent with the fact that heat may flow between the system and the surroundings, but matter cannot?							
a) Open	b) Closed	c) Isolated	d) Universe	e) First			
Q2. Given the following thermochemical equation: $ 2Fe(s) + {}^{5}\!\!\!/_{2} O_{2}(g) \rightarrow Fe_{2}O_{3}(s) \Delta H^{o} = -826.0 \text{ kJ/mol} $ How much heat will be released if four moles of iron reacts with an excess of oxygen? a) 206.5 kJ b) 413.0 kJ c) 826.0 kJ d) 1652 kJ e) 3304 kJ							
Q3. Given the following thermochemical equation:							
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) \Delta H^o = -241.8 \text{ kJ/mol}$ What will ΔH^o be for the thermochemical equation:							
$2H_2O(g) \rightarrow 2$ a) -241.8 kJ/mol e) $+483.6 \text{ kJ/mol}$	$2H_2(g) + O_2(g)$ b) +241.8 kJ/mol	c) -120.9 kJ/mol	d) +120.9 kJ/mol				
Q4. Which thermochemical equation corresponds to $\Delta H_i^{\circ}(N_2O(g))$?							
a) $2N(g) + O(g) \rightarrow N_2O(g)$ b) $N_2O(g) \rightarrow 2N(g) + O(g)$							
c) $N_2(g) + O(g) \rightarrow N_2(g) + \frac{1}{2} O_2(g) - \frac{1}{2} O_$		$N_2(g) + O_2(g) \rightarrow 2N_2O(g)$	g)				
Q5. What is the frequency of UV light with a wavelength of 254 nm?							
(a) 1.18 x 10 ¹⁵ Hz (e) 76.2 Hz	b) 1.18 x 10 ⁶ Hz	c) 8.47 x 10 ⁻⁷ Hz	d) 8.47 x 10 ⁻¹⁶ Hz				
Q6. Which type of EM radia a) Radiowaves e) Infrared	tion has the largest ene b) Red-Light	rgy per photon? c) Green-Light	d) Microwaves				
Q7. Which electron transition in the hydrogen atom would lead to emission of the longest wavelength of light?							
a) 2 → 1	b) 3 → 1	c) 4 → 1	d) 5 → 1	e) 6 → 5			
Q8. What letter is used for an electron with an angular momentum quantum number (l) of 2?							
(a) d	b) s	c) p	d) m ₁	e) n			

```
| Nam 3B | Multiple Choice.
| Exam 3B | Sexam 3A |
| Q1 | Q6 |
| 2 | 7 |
| 3 | 8 |
| 4 | 9 |
| 5 | 10 |
| 6 | 11 |
| 7 | 12 |
| 8 | 13 |
| 9 | 14 |
| 10 | 15 |
| 11 | 1 |
| 12 | 2 |
| 13 | 3 * First Volume is 100.mL ⇒ final Pressure |
| 14 | 4 | is 120 mm Hg (½V, 2×P ~ BOYLE!)
| 15 | 5 |
```

Q9. Which principle says that electrons are added in lower energy subshells, before entering higher-energy subshells? a) Pauli b) Heisenberg c) Aufbau d) Hund e) de Broglie Q10. Which of the following atoms will be paramagnetic? a) hydrogen b) helium c) magnesium d) neon e) beryllium Q11. Which of the following elements are gases at room temperature and pressure? (b) chlorine c) bromine d) beryllium e) manganese Q12. If the atmospheric pressure is 755 mmHg, then what is the pressure of the gas contained in the following mercury-filled manometer? (Note: This manometer is OPEN to the atmosphere!) a) 65 mmHg (b) 690 mmHg c) 755 mmHg d) 760 mmHg e) 820 mmHg Q13. 200. mL of a gas at a pressure of 60.0 mmHg is compressed to a volume of 100. mL. What will its new pressure be? a) 15.0 mmHg b) 120. mmHg c) 180. mmHg d) 240. mmHg e) 260. mmHg Q14. Which gas law states that the volume of a gas is directly proportional to its temperature? e) Dulong's a) Avogadro's b) Boyle's (c) Charles d) Gay-Lussac's Q15. What must be increased to increase the average kinetic energy of gas molecules? a) Pressure b) Volume c) Moles d) Gas Constant e) Temperature Short Response. Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places. Q16. [4 pts.] Write out the FULL electron configuration of the following atoms: b) Cr |52252p63523p6453d5 (aufban exception)
c) Ga |5252p63523p6453d164p6
d) Y |5252p6353p6453d164p65524d1

Q17. [6 pts.] 35.0 mL of an ideal gas at a temperature of 285 K and a pressure of 451 mmHg is allowed to warm up to a temperature of 371 K, while its volume is compressed to 25.0 mL. What will its final pressure be?

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \implies P_{2} = \frac{P_{1}V_{1}}{T_{1}} \times \frac{T_{2}}{V_{2}} = \frac{45 \text{ lmmHy}}{285 \text{ K}} \times \frac{35.0 \text{ ML}}{250 \text{ ML}} \times \frac{371 \text{ K}}{250 \text{ ML}} = 822 \text{ mmHy}$$

Q18. [10 pts.] Write formulas for the following compounds:

a) ammonium sulfate

b) tetrachlorine decanitride

Fe (NOs) c) iron(II) nitrate

HBr (ag) d) hydrobromic acid

Q19. [10 pts.] Determine the empirical formula of a compound that is 24.2 % sodium, 33.7 % sulfur, and 42.1 % oxygen by weight.

-hydrobromic acid! (See Q182)

Q20. [8 pts.] 42.0 mL of 3.00 M HBr(aq) is added to an excess of K₂CO₃(aq). What volume of gas is formed at a temperature of 321 K and a pressure of 1.09 atm? Hint: Start by writing a balanced chemical equation!

Q21. [7 pts.] Given the following thermochemical equations:

$$C(s, graphite) + 2H_2(g) \rightarrow CH_4(g);$$

$$\Delta H^{\circ} = -74.9 \text{ kJ/mol}$$

$$H_2(g) + 2C(s, graphite) + N_2(g) \rightarrow 2HCN(g); \Delta H^\circ = +270.3 \text{ kJ/mol}$$

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g);$$

$$\Delta H^{\circ} = -91.8 \text{ kJ/mol}$$

Use Hess's Law to determine ΔH^o for the following equation: $HCN(g) + 3H_2(g) \longrightarrow CH_4(g) + NH_3(g)$

Q22. [10 pts.] An electron in a hydrogen atom undergoes a transition from n = 2 to n = 4. Calculate the wavelength of the photon of light emitted/absorbed (state which).

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{p}^{2}} \right) = 2.8 \times 10^{-18} \text{J} \left(\frac{1}{2^{2}} - \frac{1}{4^{2}} \right) = + 4.09 \times 10^{-19} \text{J}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{p}^{2}} \right) = 2.8 \times 10^{-18} \text{J} \left(\frac{1}{2^{2}} - \frac{1}{4^{2}} \right) = + 4.09 \times 10^{-19} \text{J}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{p}^{2}} \right) = 2.8 \times 10^{-18} \text{J} \left(\frac{1}{2^{2}} - \frac{1}{4^{2}} \right) = + 4.09 \times 10^{-19} \text{J}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{p}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J} \cdot \text{J} \cdot \text{J} \cdot \text{J} \cdot \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{p}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J} \cdot \text{J} \cdot \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{p}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J} \cdot \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{p}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J} \cdot \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J} \cdot \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J} \cdot \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = R_{1} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}} \right) = \frac{6.626 \times 10^{-34} \text{J}}{4.09 \times 10^{-19} \text{J}}$$

$$\Delta E = \frac{1}{n_{1}^{2}} + \frac{1}$$

BONUS Questions:

a) Write the thermochemical equation corresponding to the standard enthalpy of formation of C2H3N(g).

b) Write out the orbital diagram for a nitrogen atom.