#1 (0) Here: fro) = nen + n3 cm

(ii)
$$9_2(x) = \ln\left(\frac{2}{8n+x^3}\right) = n = 1$$

$$\frac{n}{8n-x^3} = e^2 = 1$$

$$= \sqrt{x^2 + x^3} = -x^3$$

(h) For superlinear gry, nee home to use Newton's method

Nm: 8=1x1, = 0,00001. W/s choose to = 0,5

K	ML	YK41=3(4K)	4 (En)	len Mr J
	0.5	0.79 (2)	0.05110	WO
1.	0,79121	0,67878	8.14776	No
-		n (1,070	0.02920	u
	0,67678	0.63610	0,20285	٨
	0,64070	/		
4	0.63610	0.63603	0.00004	4
5	0.6360	3 —	3x 106	Jes

Thurstre [x5 = Xp = 0.63603] W

#2 thue: No:01 X1 = 0.05, X2 = 0.10, X3=0.15, X4=0, 20. fred=0if(x)=1.3,f00)=2.5,f(x)=3.8; -(x)=5.1

Need to find: PI(x) = 00+91X

Mod to find:
$$f_1(x) = a_0 + a_1 x$$
.

Fina: $A = \begin{pmatrix} 1 & x_0 \\ 1 & x_1 \\ 1 & x_2 \end{pmatrix}$; $X = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ and $b = \begin{pmatrix} f_1(x_1) \\ f_1(x_2) \\ f_1(x_2) \\ f_1(x_2) \end{pmatrix}$
 $\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_1 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0.05 \\ 1 & 0.16 \\ 1 & 0.15 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1.3 \\ 2.5 \\ 3.8 \\ 5.1 \end{pmatrix}$$

and
$$ATb = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0.05 & 0.10 & 0.17 & 0.20 \end{pmatrix} \begin{pmatrix} 0 & 1.3 \\ 2.5 \\ 3.6 \\ 5.1 \end{pmatrix} = \begin{pmatrix} 12.7 \\ 1.95 \end{pmatrix}$$

Therefore:
$$(A^TA)_{N} = A^Tb \Rightarrow (5 0.5)(a_0) = (12.7)(1.905)$$

Heree
$$P_i(x) = F(x) = 25.4 \times 2 \times 25.4$$
 A $E = 25.4$ A

(b)
$$A = (u_1 u_2) = 0$$
 $u_1 = (1 | 1 | 1 | 1)^T + u_2 = (0 | 5 | 4.5 | 3.8 | 5.1)^T$
 $\therefore p_1 = u_1 = (1 | 1 | 1 | 1)^T = 1 | p_1 = \sqrt{5} = 7; = \frac{1}{5}(\frac{1}{5})$

$$P_{2} = u_{2}^{-1} - (u_{1}^{-1} q_{1})q_{1} = \begin{pmatrix} 0 \\ 1.3 \\ 2.5 \\ 3.6 \\ 5.1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1.3 \\ 2.5 \\ 3.8 \\ 5.1 \end{pmatrix} - \frac{12.7}{5} \begin{pmatrix} 1 \\ -1.24 \\ -1.04 \\ 1.24 \\ 2.55 \end{pmatrix}$$

$$\begin{array}{c} 1.2 & 0.6324 \\ -0.7087 \\ -0.00996 \\ 0.3137 \\ 0.6374 \end{array}$$

$$\begin{array}{c} 0.3137 \\ 0.6374 \end{array}$$

$$\begin{array}{c} 0.3137 \\ \hline R \end{array}$$

$$\begin{array}{c} 0.3137 \\ \hline 0.6374 \end{array}$$