Analysis Appendinx **Equation List**

$$H = n_I(LS)^{-1}V_s(1)$$

$$B = RC(n_2A_c)^{-1}V_s(2)$$

$$P = AVf(3)$$

$$V = L * Area of sample face (4)$$

$$B = \mu_0 \mu_r H (5)$$

$$\mu_0 = 4\pi * 10^{-7} (6)$$
flux density = $H\mu_r(7)$

Apparatus Measurements

n1 = 160 turns n2 = 150 turns S = 0.1 +/- 5% Ohms R = 1e6 +/- 5% OhmsC = 0.5e-6 +/- 2% F

Sample Measurements

Iron Magnetic Length: 333 +/- 5mm

Iron Cross Sectional Area: 759.08 +- 0.5 mm² Carbon Magnetic Length: 78 mm +/- 0.5 mm² Carbon Cross Sectional Area: 844.32 mm²

Table 1 – Series Resistor Voltage and Capacitor Voltage for Iron Sample with C = 0.5e-6 +/-2% F and S = 0.1 +/-5% Ohms (Small sample of full dataset with 2000 points)

Time [s]	Vc [V]	Vc [V]
-2.50E-02	3.42E-01	-3.40E-01
-2.50E-02	3.38E-01	-3.39E-01
-2.50E-02	3.34E-01	-3.39E-01
-2.49E-02	3.31E-01	-3.39E-01
-2.49E-02	3.27E-01	-3.39E-01
-2.49E-02	3.22E-01	-3.38E-01
-2.49E-02	3.18E-01	-3.38E-01
-2.48E-02	3.13E-01	-3.38E-01
-2.48E-02	3.09E-01	-3.38E-01
-2.48E-02	3.06E-01	-3.37E-01
-2.48E-02	3.01E-01	-3.37E-01
-2.47E-02	2.96E-01	-3.36E-01
-2.47E-02	2.91E-01	-3.36E-01

Table 2 - Series Resistor Voltage and Capacitor Voltage for Carbon Steel Sample with C=0.5e-6+/-2% F and S=0.1+/-5% Ohms (Small sample of full dataset with 2000 points)

Time [s]	Vc [V]	Vc [V]
-2.50E-02	3.58E-01	1.78E-01
-2.50E-02	3.56E-01	1.78E-01
-2.50E-02	3.55E-01	1.77E-01
-2.49E-02	3.53E-01	1.78E-01
-2.49E-02	3.51E-01	1.77E-01
-2.49E-02	3.49E-01	1.77E-01
-2.49E-02	3.46E-01	1.76E-01
-2.48E-02	3.44E-01	1.76E-01
-2.48E-02	3.40E-01	1.75E-01
-2.48E-02	3.39E-01	1.75E-01
-2.48E-02	3.35E-01	1.73E-01
-2.47E-02	3.34E-01	1.75E-01
-2.47E-02	3.30E-01	1.72E-01

Table 3 - Hysteresis Saturation Point for Iron Sample with

C = 0.5e-6 + /- 2% F and S = 0.1 + /- 5% Ohms

Variac			Error in	Error in
Voltage	Top-right corner X	Top-right corner Y	corner X	corner Y
[V]	[mV]	[mV]	[mV]	[mV]
3	13.75	26.87	0.5	1
5	18.25	43.75	0.5	2
7	21	56.25	0.5	2
10	25.5	72.5	0.5	2
13	33.5	95.3	1	5
17	42	118.8	1	5
20	50.5	139.1	1	5
23	61.5	160.9	1	5
25	68	170.3	2	5
30	88	196.9	2	10
35	120	228.1	2	10
40	167.5	259.4	5	10
45	227.5	284.4	5	10
50	315	303.1	10	10
55	460	318.8	10	10

Sample Calculations

H and B Values:

```
Hi = (n1/(Li*S)).*Vsi;

Bi = (R*C/(n2*Aci)).*Vci;

Hs = (n1/(Ls*S)).*Vss;

Bs = (R*C/(n2*Acs)).*Vcs;
```

Remanence and Coercive Forces:

```
remi = [];
coerci = [];
for i=1:length(Hi)-1
    if (Hi(i) >= 0 && Hi(i+1) < 0)
        remi(end + 1) = Bi(i);
        remi(end + 1) = Bi(i + 1);
    end

if (Bi(i) >= 0 && Bi(i+1) < 0)
        coerci(end + 1) = Hi(i);
        coerci(end + 1) = Hi(i + 1);
    end
end</pre>
```

Iron Remanence (mean) = 0.838 +/- 0.003 T Iron Coercive Force (SEM) = -252 +/- 1 A/m Steel Remanence (mean) = 0.440 +/- 0.002 T Steel Coercive Force (SEM) = -3390 +/- 10 A/m

Power Dissipated By Steel Sample:

```
Ps1 = (2.11e-2 - 1.24e-2)*2;

Ps2 = (2.11e-2 - 4.49e-3);

fs = 0.5*((1/Ps1)+(1/Ps2));

Ps err = Ps * (0.002/Ls + Ac err/Acs + 2/fs);
```

```
P = 100 + / - 6 W
```

Maximum Relative Permeability and Flux Density:

```
Uo = 4*pi*(10^-7); %http://physics.info/constants/
Ur = Bi4./Hi4./Uo;
Ur_err = Ur .* (Bi4_err./Bi4 + Hi4_err./Hi4)./2;
Flux = Ur_max*Hi4(ind);
Flux err = Flux .* (Ur err(ind)./Ur max + Hi4 err(ind)./Hi4(ind))
```

Relative permeability= 1900 +/- 200 H/m Calculated as: 333000 +/- 6000 N/(Am)