

Capstone Project - 2 Team 2 Taxi Mobility Surge Price Prediction

Team Members

Bhanu Pratap Shahi Sanchita Paul Shubham Kumar Sumanta Muduli

Content

pTHeyOlem

Title

- Problem Statement
- Data Summary
- Comparing features with Surge Pricing Type
- Feature Selection
- Models used
- Which model did we choose and why?
- Challenges
- Conclusion

Problem Statement

OF

- The goal is to build a predictive model which can help Sigma Cabs in predicting Surge Pricing Type proactively.
- This will help them in matching the right priced cabs with the right customers quickly and efficiently.

Data Summary:

Data set name Data Sigma Cabs Shape

- Rows -- 131,662
- Columns--14

Features

Trip_ID,Trip_Distance,Type_of_Cab,Customer_since_months, Life_Style_Index,Confidence_Life_Style_Index,Destination_Type, Customer_Rating,Cancellation_Last_1Month,Var1,Var2,Var3,Gender, Surge_Pricing_Type

Comparing Trip Distance with Surge Pricing Type:

Comparing Customer Rating with Surge Pricing Type:

Count of Type of Cab with Gender Filter

Features selection:

Methods used:

- Extra Tree Classifier
- ANOVA
- Chi-Square

Extra Trees Classifier:

ANOVA:

Chi-Square:

Models used:

- Logistic Regression Classifier
- SVM Classifier
- Random Forest Classifier
- XGBoost Classifier

One vs One and One vs Rest:

One vs One

One vs Rest

Logistic Regression:

- One vs Rest approach ("ovr")
- Hyperparameter Tuning (Bayesian
 Optimisation)-C:0.001, solver:"lbfgs",penalty=12
- Metric Scores- Accuracy=72%, Precision=72%, Recall=70% & fl_score=71%

Support Vector Machine:

- One vs One approach ("ovo")
- Parameters C:1, degree = 3,
- Kernel Poly Kernel is giving us the best results. Accuracy i.e 72%, Precision=73%, Recall=70% & fl_score=70%

Random Forest Classifier:

- Hyper parameter Tuning (Bayesian Search) ('max_depth', 8),
 ('min_samples_leaf', 10),
 ('min_samples_split', 50),
 ('n_estimators', 100)
- accuracy= 72%,
 precision=73%,
 recall=70%,fi_score=71%

XGBoost Classifier:

 Hyperparameters-gamma=0, learning_rate=0.1, max_depth=15, n_estimators=100, objective='multi:softprob'

 Metric Scores- accuracy=72%, precision=73%, recall=70%,fl_score=71%

SHAP Values:

Which model did we choose and why?

- We choose logistic regression as it's evaluation scores is very similar to other complicated models but it is computationally cheaper and more interpretable.
- Accuracy: 72%
- Recall: 72%
- Precision: 72%
- This is the most consistent performing model with same scores for all metrics.

Challenges

- Lots of NaN values in the dataset.
- Some features like Var1, Var2, Var3 are not clearly explained.
- Choosing the right encoding technique for categorical features.
- Choosing the right features for modelling.
- Faced issues while running the models as the dataset is large.
- Choosing the right models as there is not much difference in accuracy.

Conclusion

- We build a predictive model which can help Sigma Cabs in predicting Surge Pricing Types proactively.
- This will helps in matching the right cab with the right customer quickly and efficiently
- They can increase their customer base and profit by providing better services.

Q&A