Key Observations

- $\max_{i} \mathbf{e}_{i}^{-1} \lambda_{i} \equiv \mathbf{e}^{-1} (\sum_{i} \lambda_{i})$
 - Define $\lambda_i = x_i^p = (\sum_{j \in [s]} x_i(j))^p$

• median($e^{-1} \cdot \sum_{i} x_{i}^{p}$) = $\sum_{i} x_{i}^{p} / (\ln 2)$

• Can we compute
$$i^* = \operatorname{argmax}_i \mathbf{e}_i^{-1} \cdot x_i^p$$
 in one round?

• Can then compute $\mathbf{e}_{i^*}^{-1}x_{i^*}^p = \mathbf{e}_{i^*}^{-1}\left(\sum_j x_{i^*}(j)\right)^p$ in the second round

Useful property:

• $\sum_{i} \mathbf{e}_{i}^{-1} \lambda_{i} \leq O(\log^{2} n) \max_{i} \mathbf{e}_{i}^{-1} \lambda_{i}$ -- the largest value is significant

Global

Local $\mathbf{e}_{1}^{-1} x_{1}(1)^{p} \qquad \mathbf{e}_{1}^{-1} x_{1}(s)^{p}$

 $\mathbf{e}_{n}^{-1} x_{n}(1)^{p}$ $\mathbf{e}_{n}^{-1} x_{n}(s)^{p}$

Key Observations

•
$$\max_{i} \mathbf{e}_{i}^{-1} \lambda_{i} \equiv \mathbf{e}^{-1} (\sum_{i} \lambda_{i})$$

• Define
$$\lambda_i = x_i^p = (\sum_{j \in [s]} x_i(j))^p$$

• median(
$$e^{-1} \cdot \sum_{i} x_{i}^{p}$$
) = $\sum_{i} x_{i}^{p} / (\ln 2)$

- Can we compute $i^* = \operatorname{argmax}_i \mathbf{e}_i^{-1} \cdot x_i^p$ in one round?
 - Can then compute $\mathbf{e}_{i^*}^{-1}x_{i^*}^p = \mathbf{e}_{i^*}^{-1}\left(\sum_j x_{i^*}(j)\right)^p$ in the second round
- Useful property:
 - $\sum_{i} \mathbf{e}_{i}^{-1} \lambda_{i} \leq O(\log^{2} n) \max_{i} \mathbf{e}_{i}^{-1} \lambda_{i}$ -- the largest value is significant

Global

Local

$$\mathbf{e}_n^{-1} x_n(s)^p$$

High Level Ideas