QM Scattering Feb 15

We have an incident flux at \hat{z} direction (plane wave) with a spherically symmetric potential.

Now, the plane wave is going to be scattered. We can put a detector at distance r away with $d\Omega = d\phi d\theta \sin\theta$ (solid angle)

And the scattering cross-section

$$\sigma(heta,\phi) = rac{r^2 J_{
m scatt}}{J_{
m inc}}$$

Given $V(r) \implies$ compute $\sigma(\theta, \phi)$ as a function of energy.

1-D Scenario

We have a wave traveling to the right Ae^{ikx} After scattering, there will be a reflected wave Re^{-ikx} and a translated wave Te^{ikx} We then use Schrodinger Equation to solve for $\frac{T}{R}$ The Asymptotic behavior is given.

3-D Scenario

Physics intuition TM`

the wave traveling in every direction, so we first find the asymptotic behavior, then solve the Schrodinger equation.

The Asymptotic at $r o \infty$ form of the wave function is

$$\psi
ightarrow A \left(e^{ikz} + f(heta,\phi) rac{e^{ikr}}{r}
ight)$$

Where the first term described the incoming wave front toward \hat{z} direction, and the second term describes a radially outward wave. The $\frac{1}{r}$ is due to probability conservation.

Math Derivation

Incident

$$\psi_{
m inc}(r) = A e^{ec{k}\cdotec{r}} = A e^{ikz}, E = rac{\hbar^2 k^2}{2m}$$

Scattering

$$k^2=rac{2mE}{\hbar^2}, k>0 \ U(r)=rac{2m}{\hbar}V(r)$$

By Schrodinger Equation

$$\Delta \psi + (k^2 - U(r))\psi = 0$$

Where Δ is the spherical polar coordinate By separation of variable

$$\psi(ec{r}) = \sum_{l,m} c_{l,m} Y_l^m(heta,\phi) rac{u_l(r)}{r}$$

Therefore,

$$rac{d^2u}{dr^2}+iggl[k^2-U(r)-rac{l(l+1)}{r^2}iggr]u_l(r)=0$$

Asymptotic behavior $r \to \infty \implies \frac{l(l+1)}{r} \to 0, U(r) \to 0 \forall U(r)$ decaying faster than $\frac{1}{r}$ Thus, we have

$$u_l^{\prime\prime}+k^2u_l=0$$

with the solution

$$rac{u_l}{r} \sim rac{e^{ikr}}{r} \ \sim rac{e^{-ikr}}{r}$$

However, we ignore the second solution as the wave function can only be "scattered out". Therefore,

$$\psi_{ ext{scatt}}(r) \sim \sum_{l,m} c_{l,m} Y_l^m(heta,\phi) rac{e^{ikr}}{r} \sim f(heta,\phi) rac{e^{ikr}}{r}$$

We will prove $\sigma(\theta, \phi) = |f(\theta, \phi)|^2$. The name of $f(\theta, \phi)$ is "scattering amplitude".

Probability Current

In QM. Fluxes are probability current densities.

$$ec{J} = rac{\hbar}{m} {
m Im} (\psi^* ec{
abla} \psi)$$

$$egin{aligned} \psi_{
m inc} &= A e^{ikz} \implies ec{J}_{inc} = |A|^2 \hbar rac{k}{m} \hat{z} \ \psi_{
m scat} \sim f(heta,\phi) rac{e^{ikr}}{r} = ec{J}_{scatt} \end{aligned}$$

$$ec{
abla}\psi=rac{\partial\psi}{\partial r}\hat{r}+rac{1}{r}rac{\partial\psi}{\partial heta}\hat{ heta}+rac{1}{r\sin heta}rac{\partial\psi}{\partial\phi}\hat{\phi}$$

Check that $\hat{ heta},\hat{\phi}$ component of $\vec{J}_{
m scatt}$ are negligible when $r o\infty$ Compute $\vec{J}_{
m scatt}$ and show that

$$ec{J}_{
m scatt} pprox |A|^2 rac{\hbar k}{m} rac{|f(heta,\phi)|^2}{r^2}$$

Therefore,

$$\sigma(heta,\phi) = r^2 rac{|ec{J}_{
m scatt}|^2}{|ec{J}_{
m scatt}|^2}$$

and check that

$$\sigma(\theta,\phi) = |f(\theta,\phi)|^2$$

Using Green's function so solve SE

Need to solve

$$(\vec{
abla}^2 + k^2)\psi_k(\vec{r}) = U(r)\psi_k(\vec{r})$$
 (*)

with suitable B.C.

Claim: It is easier to solve this problem by re-writing it as an integral equation.

$$\psi_k(ec{r}) = \psi_k^0(ec{r}) + \int G_k(ec{r} - ec{r}') U(r') \psi_k(ec{r}') \, d^3 ec{r}' \qquad \qquad (**)$$

where ψ_k^0 is the solution for homogeneous PDE, and G is a Green's function satisfying

$$(
abla^2+k^2)G_k(ec r-ec r')=\delta(ec r-ec r')$$