

Prof. Tatiana Landesberger von Antburg Lehrstuhl "Visualisierung und Visual Analytics" an der Universität zu Köln

ÜBUNG ZUR VORLESUNG VISUALISIERUNG

ÜBUNGSBLATT 6

- a) Von welcher Automarke werden die meisten SUVs angeboten?
- b) Von welcher Automarke werden die meisten Kompaktklasse-Fahrzeuge angeboten?
- c) Wie viele SUVs gibt es von Audi?
- d) Gibt es mehr Fahrzeuge, die 5 Jahre alt oder älter sind, als Fahrzeuge, die unter 5 Jahre alt sind?
- e) Von welcher Autoklasse sind die meisten Fahrzeuge verfügbar?
- f) Wie viele Kompaktklasse-Fahrzeuge unter 5 Jahren sind verfügbar?
- g) Sind mehr SUVs älter oder jünger als 5 Jahre?

a) Von welcher Automarke werden die meisten SUVs angeboten?

Vergleich von Flächen schwierig

Man kann sehen, dass Mercedes dunklere + gleiche Farbe hat = mehr Längenvergleich auf "einen Blick" möglich → keine Augenbewegung notwendig

b) Von welcher Automarke werden die meisten Kompaktklasse-Fahrzeuge angeboten?

Versatz der Flächen könnte verwirren oder zu falschen Ablesen führen

Farbvergleich in diesem Fall eindeutig

Längenvergleich von Audi und Mercedes schwieriger als Farbvergleich in KVMap

c) Wie viele SUVs gibt es von Audi?

Direkt ablesbar: 0

Gut ablesbar, aber Achtung vor optischer Täuschung Aufgrund Kontrastes! Farbe könnte heller erscheinen als sie eigentlich ist.

Wenn man etwas sucht, das nicht da ist, dauert es länger.

d) Gibt es mehr Fahrzeuge, die 5 Jahre alt oder älter sind, als Fahrzeuge, die unter 5 Jahre alt sind?

Größenvergleich äußerst schwierig

Farbvergleich über so viele Elemente auch sehr schwierig

Längenvergleich nicht einfach, aber sehr viel besser als KVMap und Mosaic Plot

e) Von welcher Autoklasse sind die meisten Fahrzeuge verfügbar?

Größenvergleich äußerst schwierig

+ Verschiebung der Flächen

Farbvergleich hier in diesem Fall einfacher und eindeutig

Längenvergleich hier sehr einfach

f) Wie viele Kompaktklasse-Fahrzeuge unter 5 Jahren sind verfügbar?

Größe und Addition dieser schwierig

+ keine Legende zur Anzahl

Zahlenwerte aus Farbverlauf ablesen nicht optimal, aber schätzbar:

$$10 + 30 + 30 = 70$$

Wäre mit Legende zur Anzahl wohlmöglich einfacher als aus Mosaic Plot ablesbar

g) Sind mehr SUVs älter oder jünger als 5 Jahre?

In diesem Fall gut erkennbar: Beide male ist Rot größer In diesem Fall gut erkennbar: Beide male ist das rot eingerahmte dunkler

Nur ein Vergleich ist zu machen, jedoch auch nicht optimal mit allen Werten machbar

- a) Von welcher Automarke werden die meisten SUVs angeboten?
 Mercedes-Benz
- b) Von welcher Automarke werden die meisten Kompaktklasse-Fahrzeuge angeboten?

 Mercedes-Benz
- c) Wie viele SUVs gibt es von Audi?
- d) Gibt es mehr Fahrzeuge, die 5 Jahre alt oder älter sind, als Fahrzeuge, die unter 5 Jahre alt sind? Nein, mehr jüngere
- e) Von welcher Autoklasse sind die meisten Fahrzeuge verfügbar? Kompaktklasse
- f) Wie viele Kompaktklasse-Fahrzeuge unter 5 Jahren sind verfügbar?
 70
- g) Sind mehr SUVs älter oder jünger als 5 Jahre? **älter**

h) Rekonstruktion der Daten

A	В	С	D	E	F
Automarke	Autoklasse	Kilometerstand	Hubraum	PS	Erstzulassung
VW	SUV	16200	1.4	125	2016
VW	SUV	22100	1.4	125	2017
VW	SUV	45000	2	320	2016
VW	Kompaktklasse	150200	1.4		2012
VW	Kompaktklasse	12800	1.4	86	2019
VW	Kompaktklasse	82000	2	360	2015
Audi	Oberklasse	36500	4	571	2017
Audi	Oberklasse	5000	4	571	2019
Audi	Mittelklasse	27300	1.4		2016
Audi	Mittelklasse	6800	3		2020
Audi	Mittelklasse	11500	1.4	150	2018
Audi	Kompaktklasse	105000	1	105	2012
Audi	Kompaktklasse	51000	1	105	2017
Audi	Kompaktklasse	122000	1	105	2013
Audi	Kompaktklasse	8000	2.5	400	2020
Audi	Kompaktklasse	2200	2	310	2020
Audi	Kompaktklasse	600	1	110	2021
	z Kompaktklasse	14800	1.3	106	2018
Mercedes-Ben	z Kompaktklasse	7500	1.3	106	2019
	z Kompaktklasse	2100	2		2018
	z Kompaktklasse	182000	1.6		2012
	z Kompaktklasse	102000	1.3	106	2016
	z Kompaktklasse	131000	2	381	2013
Mercedes-Ben	_	265000	3		2011
Mercedes-Ben	z SUV	202000	3	306	2012
Mercedes-Ben	_	265000	5.5		2014
Mercedes-Ben	z SUV	165000	5.5	585	2018

PROGRAMMIERAUFGABE

Aufgabe 7.2.1 Nominale Multivariate Daten: Parallel Sets

Am Ende dieser Aufgabe soll eine Parallel Sets Visualisierung entstehen. Ein Beispiel dafür, wie die Visualisierung aussehen könnte, befindet sich in Abbildung 4. Um die Visualisierung zu erstellen, können Sie die gegebene Funktion drawParallel-Set(combinationCounts, attributeOrder, color, two){...} im Funktionsaufruf von then(){...} verwenden. Offensichtlich erwartet diese Funktion vier Argumente, die Sie für eine erfolgreiche Ausführung des Codes übergeben müssen:

- two: Das two Objekt aus der draw Funktion können Sie weiterreichen.
- attributeOrder: Ein Array, das die Reihenfolge vorgibt, in der die Attribute abgebildet werden sollen.
- color: Eine Farbskala, die die Sets abhängig von der ersten Ebene färbt.
- combinationCounts: Ein Array, dass für jede Kombination von Attributwerten die Häufigkeit enthält.

Aufgabe 7.2.1 Nominale Multivariate Daten: Parallel Sets

a) Schauen Sie sich zunächst die Daten im Browser in der Konsole an. Schauen Sie v.a. welche Attribute vorhanden sind. Geben Sie anschließend eine beliebige Reihenfolge der Attribute vor, indem Sie diese nacheinander in einem Array als Strings auflisten. Dieses Array können Sie nun der drawParallelSets(...) Funktion als attributeOrder übergeben.

Aufgabe 7.2.1 Nominale Multivariate Daten: Parallel Sets

c) Zu guter Letzt müssen die Häufigkeiten der einzelnen Attributwertkombinationen berechnet werden. Schreiben Sie hierfür eine Funktion, die die gegebenen Daten übergeben bekommt und ein Array zurückgibt, das genau diese Anzahlen enthält. Für jede Kombination soll dieses Array ein eigenes Objekt enthalten, dass die einzelnen Attributwerte enthält, sowie die Anzahl als zusätzliches Attribut mit dem Namen value. Gäbe es z.B. 42 Datenpunkte mit der Kombination sunny, hot, normal humidity und windy, dann sollte das Array folgendes Objekt enthalten:

```
{outlook: 'sunny', temperature: 'hot', humidity: 'normal humidity', windy: 'windy', value: 42}.
```

Dieses neu erstellte Array können Sie der *drawParallelSets(...)* Funktion als *combinationCounts* übergeben. *Tipp:* Hier kann die Datenstruktur Map hilfreich sein.

DESIGNÜBUNG FÜR DIE ZULASSUNG ZUR KLAUSUR

Warum ein Klausurzulassungsübung?

- Keine Live-programmieren in Klausur
 - Benötigt Zeit
 - Benötigt Internet
- Keine detaillierte Skizze in Klausur
 - Benötigt Zeit
- Beweisen Ihre Fähigkeit, Visualisierungen zu entwerfen und realisieren in ein Designübung, und nicht in das Klausur.

Was kann in Klausur sein?

- Code lesen
 - Geben Sie eine grobe Beschreibung, was diese Funktion macht.
 - Was ist falsch in dieses Funktion?
 - Beschreib wie man das korrigieren kann (Nur das Idee, keine kompilierte Code)
- Kleine oder gerichtete Skizze
 - Skizze eine parallel Koordinate Plot von diesen Daten.

Ziel ist eine Visualisierung zu machen um ein fiktiven, aber basierend auf realen, Datensatz zu analysieren.

4	А	В	С	D	Е	F	G	Н
1	Time to complete exam	Year	Nachklausur	Grade	Course	Attemptnumber	Bachelor/Master	Study
2	58	2022	No	5	Vis	1	WirtschaftsInformatik	Master
3	61	2022	No	1.7	Vis	1	WirtschaftsInformatik	Bachelor
4	69	2022	No	4	Vis	2	WirtschaftsInformatik	Master
5	68	2022	No	3.7	Vis	1	WirtschaftsInformatik	Bachelor
6	82	2022	No	1.7	Vis	1	WirtschaftsInformatik	Bachelor
7	72	2022	No	5	Vis	1	WirtschaftsInformatik	Bachelor
8	72	2022	No	4	Vis	1	WirtschaftsInformatik	Master
9	61	2022	No	2	Vis	1	WirtschaftsInformatik	Bachelor
10	67	2022	No	5	Vis	1	(Wirtschafts-)Mathematik	Master

3 mögliche Analyseaufgaben:

- 1. Stellen Sie fest, wie sich Studenten, die den Kurs nicht bestehen, von Studenten unterscheiden, die den Kurs bestehen.
- 2. Stellen Sie fest, ob/wie sich die Verteilung der Noten im Laufe der Zeit verändert.
- Stellen Sie fest, ob/welchen Zusammenhang es zwischen der Dauer der Prüfung und der Anzahl der Prüfungsversuche der Studierenden mit deren Noten gibt.

Designübung basiert auf den 5-design sheet methodology. 5 Teilen :

1. Wähle eine der Analyseaufgaben.

- Wähle eine der Analyseaufgaben.
- 2. Skizziere eine Reihe verschiedener möglicher Entwürfe.

- Wähle eine der Analyseaufgaben.
- 2. Skizziere eine Reihe verschiedener möglicher Entwürfe.
- 3. Wähle 3 Entwürfe aus, arbeite diese detaillierter aus, und diskutiere die Vor- und Nachteile der 3 Entwürfe.

- Wähle eine der Analyseaufgaben.
- 2. Skizziere eine Reihe verschiedener möglicher Entwürfe.
- 3. Wähle 3 Entwürfe aus, arbeite diese detaillierter aus, und diskutiere die Vor- und Nachteile der 3 Entwürfe.

- 1. Wähle eine der Analyseaufgaben.
- 2. Skizziere eine Reihe verschiedener möglicher Entwürfe.
- 3. Wähle 3 Entwürfe aus, arbeite diese detaillierter aus, und diskutiere die Vor- und Nachteile der 3 Entwürfe.
- 4. Wähle den besten Entwurf, und implementiere diesen mit JavaScript.

- 1. Wähle eine der Analyseaufgaben.
- 2. Skizziere eine Reihe verschiedener möglicher Entwürfe.
- 3. Wähle 3 Entwürfe aus, arbeite diese detaillierter aus, und diskutiere die Vor- und Nachteile der 3 Entwürfe.
- 4. Wähle den besten Entwurf, und implementiere diesen mit JavaScript.
- 5. Verwende die Visualisierung, um die gewählte Analyseaufgabe durchzuführen.

Deadline

- Hochladen vor 12:00, 25 Januar 2024
 - PDF-Datei mit den zusammengestellten Ergebnissen aus jedem Teil der Designübung. Relevante Ergebnisse sind in blaue Schrift.
 - ZIP-Datei mit dem Code für die implementierte Visualisierung.

Suchen Sie sich eine Aufgabe aus, für die Sie einen Entwurf erstellen werden, und dokumentieren Sie, welche Aufgabe Sie ausgewählt haben.

Bewertungsrichtlinien

- ■7 Punkte benötigt für die Zulassung zur Klausur.
- Designübung geht nicht in die Endnote der Veranstaltung ein.

Aufgabe	0 (schlecht)	1 (unzureichend)	2 (gut)	3 (sehr gut)
Skizzieren Sie mindestens 3 Entwürfe, mit denen Ihre Auf- gabe gut gelöst werden kann.	Nichtvorhandensein von mindestens 3 Entwürfen verschiedener Visualisierungen.	Mindestens 3 detaillierte Skizzen sind angefertigt, aber entweder (1) es ist nicht klar, wie die Aufgabe damit gut gelöst werden kann, oder (2) es fehlen viele Details, um eine Visualisierung zu erreichen.	Mindestens 3 Skizzen können zur Erfüllung der Aufgabe verwen- det werden und es ist klar, wie die Um- setzung aussehen würde und welchen 3 Skizzen gewählt	Die 3 Skizzen zeigen eine klare Berücksichtigung der Bedeutung verschiedener visueller. Nicht standardmäßige Designs wurden
Diskutieren Sie die Vor- und Nachteile Ihrer Entwürfe.	Nicht mindestens einen Vor- und einen Nachteil pro Skiz- ze diskutiert oder die Skizze ist nicht geeignet für die Aufgabe.	Vorteile und Nachteile werden er- wähnt, aber es ist unklar, wie diese mit der Aufgabe zusammenhängen.	werden. Vor- und Nachteile werden genannt, und es ist klar, wie sie sich auf die Aufgabe beziehen.	berücksichtigt. Verschiedene Entwürfe werden miteinander ver- glichen und es ist klar und deutlich, warum der Ent- wurf ausgewählt wurde.
Wählen Sie den besten Entwurf und imple- mentieren Sie ihn.	Die Skizze ist nicht implementiert oder die Implementierung ist nicht geeignet für Ihre Aufgabe, oder es gibt mehr als drei Fehler.	Die Skizze ist nicht vollständig im- plementiert und es gibt zwei Fehler in der Implementierung	Die Skizze ist nicht vollständig imple- mentiert und es gibt einen Fehler in der Implementierung (fehlende Farben, falsch ausgerichtete Achsen/Texte, keine Interaktion, etc.).	Die Skizze ist vollständig im- plementiert (Farben, In- teraktionen, vollständig ab- gedeckte Skizze, usw.).
Nutzen Sie Ihre Implementie- rung, um die Aufgabe zu erfüllen, und berichten Sie über die Erkenntnisse, die Sie gewinnen konnten.	Kein Bericht über Er- kenntnisse oder Er- kenntnisse, die nicht mit den Aufgaben zu- sammenhängen.	Triviale Erkenntnisse, oder unklar wie die Erkenntnis gewonnen wer- den kann	Es wird mindestens von einer Erkenntnis berichtet und es ist klar, wie diese gewonnen werden kann.	Weitergehende Analyse (anhand der Implemen- tierung) der Ursachen oder Folgen.

Tabelle 1: Groben Bewertungsrichtlinien. Achtung: Alles, was in blau geschrieben ist, muss in Ihrer Einreichung enthalten sein um die Designübung für die Zulassung zur Klausur zu bestehen.