HOMOLOGY 3-SPHERES AND TORELLI

Fix $S_g \subset S^3$ standard \longrightarrow Heegaard splitting. $f \in Mod(S_g) \longrightarrow$ new manifold M(f): change the gluing of the two handlebodies by f.

Fact. M(f) is a homology $S^3 \iff f \in I(S_g)$.

Since every closed, orientable 3-manifold is an MIF) for some f (in some Mod/Sg)), all homology 3-spheres arise this way.

Let K(Sg) = ker T

Thm (Morita). Every homology 3-sphere is M(f) for some f in some K(Sg).

In particular, since Dehn twists correspond to Dehn surgeries and K(Sg) is gen. by Dehn twists (later in the course), the following graph is connected: vertices - hom. 3-spheres edges - Dehn surgery on a knot

HANDLEBODY GROUPS

$$V_g = \text{handlebody}, S_g = \partial V_g$$

 $H(S_g) = \{ f \in Mod(S_g) : f \text{ extends over } V_g \}$
 $\leq Mod(S_g)$

Fact. If c=Sg bounds a disk in Vg then Tc € H(Sg). (converse also true.)

Dragging Feet

Handle Swaps

Bounding Pair Maps

HANDLEBODY GROUPS & HEEGAARD SPLITTINGS

Say $S_g \subseteq S^3$ Heegaard $H^+(S_g)$, $H^-(S_g)$ the two hardlebody groups.

Fact.
$$M(f) = M(h) \iff h = k_- f k_+$$

$$k_- \in H^-(S_g), k_+ \in H^+(S_g)$$

HANDLEBODY TORELLI GROUPS

$$V_g = handlebody$$

 $S_g = \partial V_g$
 $HI(S_g) = H(S_g) \cap I(S_g)$

Sample Elements

HANDLEBODY TORELLI UNDER JOHNSON

Let $W_Y \subseteq \Lambda^3 H$ subspace spanned by basis elts with a Y.

Prop. T(HI(Sg)) = Wy. (only need 2).

Pf. = HI(Sg) preserves & Bi»...

By naturality & existence of handle swaps in H(Sg), enough to exhibit:

XINYINX2, XINYINY2, XINX2NY3, XINY2NY3, and YINY2NY3

The first 2 are given by the sample elts of HI(Sg).

The foot drag above acts on H by:

Yi > Yi + Y3, X3 > X3-Xi

Apply to the first 2 targets gives next 2.

Finally apply the twist:
The action on H takes

the second target to the

sum of the second & fifth.

THE PROOF OF MORITA'S THEOREM

$$5g \leq 5^3$$
 stal/Heegaard.

$$H^{+}(Sg) = H(Sg)$$

 $H^{-}(Sg) = \iota H^{+}(Sg) \iota^{-}$ where ι_{*} (action on H)
swaps x's & y's.

bounds a disk on other.

L bounds a disk on one side

But then
$$Z(\langle H^+(S_g), H^-(S_g) \rangle = W_{\times} \cup W_{Y}$$

= $\Lambda^3 H$.

So can modify a given M(f) so that T(f') = 0.