由已知, $x_1x_2\cdots x_n(x_1+x_2+\cdots+x_n)=100n$.

显然 $x_1 + x_2 + \dots + x_n \ge 1 + 1 + \dots + 1 = n$, 故 $x_1 x_2 \dots x_n \le 100$. 显然等号无法成立, 故 $x_1 x_2 \dots x_n \le 99$. 而

$$x_1 x_2 \cdots x_n = [(x_1 - 1) + 1][(x_2 - 1) + 1] \cdots [(x_n - 1) + 1]$$

$$\geq (x_1 - 1) + (x_2 - 1) + \cdots + (x_n - 1) + 1$$

$$= x_1 + x_2 + \cdots + x_n - n + 1,$$

故

$$x_1 + x_2 + \dots + x_n \le x_1 x_2 \dots x_n + n - 1 \le n - 98.$$

于是 $99(n-98) \ge 100n$, 解得 $n \le 99 \times 98 = 9702$.

此时取
$$x_1 = 99, x_2 = x_3 = \cdots = x_{9702} = 1$$
 可使等号成立.

3. 如图,在 $\triangle ABC$ 中, D 为边 BC 上一点,设 $\triangle ABD$ 和 $\triangle ACD$ 的内心分别为 I_1 和 I_2 , $\triangle AI_1D$ 和 $\triangle AI_2D$ 的外心分别为 O_1 和 O_2 , 直线 I_1O_2 与 I_2O_1 交 于点 P. 求证: $PD \perp BC$.

(张端阳 供题)

证明 因为 $O_1A = O_1I_1 = O_1D$, 所以由内心的性质, O_1 是 $\triangle ABD$ 外接圆弧 AD 的中点. 延长 BI_1 , DI_2 交于点 J_1 , 则 J_1 是 $\triangle ABD$ 角 B 内的旁心, 且 O_1 是 I_1J_1 的中点. 同理, 延长 DI_1 , CI_2 交于点 J_2 , 则 J_2 是 $\triangle ACD$ 角 C 内的旁心, 且 O_2 是 I_2J_2 的中点.

过 D 作 $DP' \perp BC$, 只需证明 I_1O_2, I_2O_1, DP' 三线共点. 对 $\triangle DI_1I_2$ 用角元塞瓦定理知, 只需证明

$$\frac{\sin \angle P'DI_2}{\sin \angle P'DI_1} \cdot \frac{\sin \angle DI_1O_2}{\sin \angle O_2I_1I_2} \cdot \frac{\sin \angle O_1I_2I_1}{\sin \angle DI_2O_1} = 1.$$

事实上, 由 $O_2J_2 = O_2I_2$ 知 $S_{\triangle O_2I_1J_2} = S_{\triangle O_2I_1I_2}$, 所以

$$\frac{\sin \angle DI_1O_2}{\sin \angle O_2I_1I_2} = \frac{\sin \angle O_2I_1J_2}{\sin \angle O_2I_1I_2} = \frac{\frac{2S_{\triangle O_2I_1J_2}}{I_1J_2\cdot I_1O_2}}{\frac{2S_{\triangle O_2I_1I_2}}{I_1I_2\cdot I_1O_2}} = \frac{I_1I_2}{I_1J_2}.$$

同理, $\frac{\sin \angle O_1 I_2 I_1}{\sin \angle D I_2 O_1} = \frac{I_2 J_1}{I_1 I_2}$. 又 $\frac{\sin \angle P' D I_2}{\sin \angle P' D I_1} = \frac{\cos \angle C D I_2}{\cos \angle B D I_1}$, 所以只需证明 $\frac{I_2 J_1 \cdot \cos \angle C D I_2}{I_1 J_2 \cdot \cos \angle B D I_1} = 1,$

即 I_2J_1 和 I_1J_2 在 BC 上的投影长度相同.