Efficient Integer-Linear Decomposition of Multivariate Polynomials

Hui Huang

Symbolic Computation Group University of Waterloo

Joint work with Mark Giesbrecht, George Labahn and Eugene Zima

Outline

- ▶ Bivariate polynomials
- Multivariate polynomials

Outline

- Bivariate polynomials
- ▶ Multivariate polynomials

Notation. R, a UFD with char(R) = 0.

Definition.

$$p = P(\lambda x + \mu y)$$

- $P(z) \in R[z]$ irreducible;
- $(\lambda,\mu) \in \mathbb{Z}^2.$

$$p = P(\lambda x + \mu y)$$

- $P(z) \in R[z]$ irreducible;
- $(\lambda, \mu) \in \mathbb{Z}^2$.

Example.
$$p = 4x - 6y + 2$$

$$p = P(4x - 6y)$$

with
$$P(z) = z + 2$$
.

$$p = P(\lambda x + \mu y)$$

- $P(z) \in R[z]$ irreducible;
- $(\lambda, \mu) \in \mathbb{Z}^2$.

Example.
$$p = 4x - 6y + 2$$

$$p = P(4x - 6y)$$

with
$$P(z) = z + 2$$
.

$$p = P(\lambda x + \mu y)$$

- $P(z) \in R[z]$ irreducible;
- $(\lambda, \mu) \in \mathbb{Z}^2$.

Example.
$$p = 4x - 6y + 2$$

 $p = P(-2x + 3y)$

with
$$P(z) = -2z + 2$$
.

$$p = P(\lambda x + \mu y)$$

- $P(z) \in R[z]$ irreducible;
- $(\lambda, \mu) \in \mathbb{Z}^2$ coprime, $\mu \geq 0$.

Example.
$$p = 4x - 6y + 2$$

 $p = P(-2x + 3y)$

with
$$P(z) = -2z + 2$$
.

Definition. $p \in R[x,y]$ irreducible, is integer-linear over R if

$$p = P(\lambda x + \mu y)$$

- ▶ $P(z) \in R[z]$ irreducible;
- $\blacktriangleright (\lambda, \mu) \in \mathbb{Z}^2 \text{ coprime}, \mu \geq 0.$

Example.
$$p = 4x - 6y + 2$$

$$p = P(-2x + 3y)$$

with
$$P(z) = -2z + 2$$
.

Definition. $p \in R[x,y]$ irreducible, is integer-linear over R if

$$p = \prod_{i=1}^m P_i (\lambda_i x + \mu_i y)^{e_i}$$

- ▶ $P_i(z) \in R[z]$ irreducible; $e_i \in \mathbb{Z}^+$;

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)$$

 $p = P_1(-2x + 3y) \cdot P_2(x + 2y) \cdot P_3(x + 2y)$
with $P_1(z) = -2z + 2$, $P_2(z) = 3z + 1$, $P_3(z) = z^2 + 1$.

Definition. $p \in R[x, y]$ is integer-linear over R if

$$p = \prod_{i=1}^m P_i (\lambda_i x + \mu_i y)^{e_i}$$

- ▶ $P_i(z) \in R[z]$ irreducible; $e_i \in \mathbb{Z}^+$;

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)$$

 $p = P_1(-2x + 3y) \cdot P_2(x + 2y) \cdot P_3(x + 2y)$
with $P_1(z) = -2z + 2$, $P_2(z) = 3z + 1$, $P_3(z) = z^2 + 1$.

Definition. $p \in R[x, y]$ is integer-linear over R if

$$p = \prod_{i=1}^m P_i (\lambda_i x + \mu_i y)^{e_i}$$

- ▶ $P_i(z) \in R[z]$ irreducible; $e_i \in \mathbb{Z}^+$;
- $\blacktriangleright \ \ (\lambda_i, \mu_i) \in \ \ \mathbb{Z}^2 \ \, \text{coprime}, \ \, \mu_i \geq 0.$

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)$$

$$p = P_1(-2x + 3y) \cdot \underbrace{P_2(x + 2y) \cdot P_3(x + 2y)}$$
with $P_1(z) = -2z + 2$, $P_2(z) = 3z + 1$, $P_3(z) = z^2 + 1$.

Definition. $p \in R[x, y]$ is integer-linear over R if

$$p = \prod_{i=1}^m P_i (\lambda_i x + \mu_i y)^{e_i}$$

- ▶ $P_i(z) \in R[z]$ irreducible; $e_i \in \mathbb{Z}^+$;
- $\blacktriangleright \ \ (\lambda_i, \mu_i) \in \ \ \mathbb{Z}^2 \ \, \text{coprime}, \ \, \mu_i \geq 0.$

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)$$

 $p = P_1(-2x + 3y) \cdot P_2(x + 2y)$
with $P_1(z) = -2z + 2$, $P_2(z) = (3z + 1)(z^2 + 1)$.

Definition. $p \in R[x, y]$ is integer-linear over R if

$$p = \prod_{i=1}^{m} P_i(\lambda_i x + \mu_i y)$$

- ▶ $P_i(z) \in R[z]$ irreducible; $e_i \in \mathbb{Z}^+$;
- $\qquad \qquad \blacktriangleright \ \, \boxed{(\lambda_i,\mu_i)} \in \ \, \mathbb{Z}^2 \ \, \text{coprime}, \, \mu_i \geq 0, \, \, \text{distinct}.$

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)$$

 $p = P_1(-2x + 3y) \cdot P_2(x + 2y)$
with $P_1(z) = -2z + 2$, $P_2(z) = (3z + 1)(z^2 + 1)$.

Definition. $p \in R[x, y]$ is integer-linear over R if

$$p = \prod_{i=1}^{m} P_i(\lambda_i x + \mu_i y)$$

- $P_i(z) \in R[z];$
- $(\lambda_i, \mu_i) \in \mathbb{Z}^2 \text{ coprime, } \mu_i \geq 0, \text{ distinct.}$

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)$$

 $p = P_1(-2x + 3y) \cdot P_2(x + 2y)$
with $P_1(z) = -2z + 2$, $P_2(z) = (3z + 1)(z^2 + 1)$

Definition. $p \in R[x, y]$ is integer-linear over R if

$$p = \prod_{i=1}^{m} P_i(\lambda_i x + \mu_i y)$$

- $P_i(z) \in R[z];$
- $(\lambda_i, \mu_i) \in \mathbb{Z}^2 \text{ coprime, } \mu_i \geq 0, \text{ distinct.}$

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)(3xy + 3)$$

$$p = P_1(-2x + 3y) \cdot P_2(x + 2y) \cdot P_0(x, y)$$
with $P_1(z) = -2z + 2$, $P_2(z) = (3z + 1)(z^2 + 1)$, $P_0(x, y) = 3xy + 3$.

Definition. $p \in R[x, y]$ is integer-linear over R if

$$p = \prod_{i=1}^{m} P_i(\lambda_i x + \mu_i y)$$

- $P_{i}(z) \in R[z];$
- $(\lambda_i, \mu_i) \in \mathbb{Z}^2 \text{ coprime, } \mu_i \geq 0, \text{ distinct.}$

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)(3xy + 3)$$

$$p = (-6) \cdot P_1(-2x + 3y) \cdot P_2(x + 2y) \cdot P_0(x, y)$$
with $P_1(z) = z - 1$, $P_2(z) = (3z + 1)(z^2 + 1)$, $P_0(x, y) = xy + 1$.

Definition. $p \in R[x, y]$ admits the integer-linear decomposition

$$p = c \cdot P_0(x, y) \cdot \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$$

- ▶ $c \in R$; $P_0 \in R[x, y]$ primitive and merely having non-integer-linear factors except for constants;
- $P_i(z) \in R[z]$ non-constant and primitive;

Example.
$$p = (4x - 6y + 2)(3x + 6y + 1)((x + 2y)^2 + 1)(3xy + 3)$$

$$p = (-6) \cdot P_1(-2x + 3y) \cdot P_2(x + 2y) \cdot P_0(x, y)$$

with
$$P_1(z) = z - 1$$
, $P_2(z) = (3z + 1)(z^2 + 1)$, $P_0(x, y) = xy + 1$.

Applications

- Integer-linearity
 - Ore-Sato theorem (Ore1930, Sato1990)
 - Wilf-Zeilberger's conjecture (Abramov&Petkovšek2001, Abramov&Petkovšek2002, Chen&Koutschan2019)
 - Applicability of Zeilberger's algorithm (Abramov2003, Chen, Hou, H., Labahn & Wang2019)

Applications

- Integer-linearity
 - Ore-Sato theorem (Ore1930, Sato1990)
 - Wilf-Zeilberger's conjecture (Abramov&Petkovšek2001, Abramov&Petkovšek2002, Chen&Koutschan2019)
 - Applicability of Zeilberger's algorithm (Abramov2003, Chen, Hou, H., Labahn & Wang2019)

- Integer-linear decomposition
 - Ore-Sato decomposition (Payne1997)
 - Creative telescoping algorithm (Le2003, GHLZ2019)

Goal. Given $p \in R[x,y]$, find $p = cP_0(x,y) \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.

Goal. Given
$$p \in R[x,y]$$
, find $p = cP_0(x,y) \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.

Abramov-Le (2002)

$$r = \lambda_i/\mu_i \iff \operatorname{cont}_x(p(x, y - rx)) \notin R$$

Goal. Given $p \in R[x,y]$, find $p = cP_0(x,y) \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.

Abramov-Le (2002)

$$r = \lambda_i/\mu_i \quad \Longleftrightarrow \quad \operatorname{cont}_x(p(x,y-rx)) \notin R$$

- Find candidates for the (λ_i, μ_i) via resultant
- ▶ Compute $P_i(z) = \operatorname{prim}_z \left(\operatorname{cont}_x \left(p(x, \frac{1}{\mu_i}(z \lambda_i x)) \right) \right)$

Goal. Given $p \in R[x,y]$, find $p = cP_0(x,y) \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.

Abramov-Le (2002)

$$r = \lambda_i/\mu_i \quad \Longleftrightarrow \quad \operatorname{cont}_x(p(x,y-rx)) \notin R$$

- Find candidates for the (λ_i, μ_i) via resultant
- ▶ Compute $P_i(z) = \operatorname{prim}_z \left(\operatorname{cont}_x \left(p(x, \frac{1}{\mu_i}(z \lambda_i x)) \right) \right)$
- Li-Zhang (2013)

kth homogeneous component

$$p = P(\lambda x + \mu y) \iff p = \sum_{k=1}^{d} c_k (\lambda x + \mu y)^k$$

Goal. Given $p \in R[x,y]$, find $p = cP_0(x,y) \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.

Abramov-Le (2002)

$$r = \lambda_i/\mu_i \quad \Longleftrightarrow \quad \operatorname{cont}_x(p(x,y-rx)) \notin R$$

- Find candidates for the (λ_i, μ_i) via resultant
- ▶ Compute $P_i(z) = \operatorname{prim}_z \left(\operatorname{cont}_x \left(p(x, \frac{1}{\mu_i}(z \lambda_i x)) \right) \right)$
- ▶ Li-Zhang (2013)

kth homogeneous component

$$p = P(\lambda x + \mu y) \iff p = \sum_{k=1}^{d} c_k (\lambda x + \mu y)^k$$

- ▶ Full factorization of p
- Check integer-linearity of each irreducible factor
- Group factors of the same type

Given $p \in R[x, y]$ primitive w.r.t. y, want

$$p = P_0(x, y) \cdot \prod_{i=1}^m P_i(\lambda_i x + \mu_i y), \quad \mu_i > 0.$$

Given $p \in R[x, y]$ primitive w.r.t. y, want

$$p = P_0(x, y) \cdot \prod_{i=1}^m P_i(\lambda_i x + \mu_i y), \quad \mu_i > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_0(x,y) \cdot \prod_{i=1}^m (\lambda_i x + \mu_i y)$$

Given $p \in R[x, y]$ primitive w.r.t. y, want

$$p = P_0(x,y) \cdot \prod_{i=1}^m P_i(\lambda_i x + \mu_i y), \quad \mu_i > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_0(x,y) \cdot \prod_{i=1}^m (\lambda_i x + \mu_i y) \quad \Longleftrightarrow \quad \tilde{P}_0(1,z) \cdot \prod_{i=1}^m (\lambda_i + \mu_i z)$$

Given $p \in R[x, y]$ primitive w.r.t. y, want

$$p = P_0(x,y) \cdot \prod_{i=1}^m P_i(\lambda_i x + \mu_i y), \quad \mu_i > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_{0}(x,y) \cdot \prod_{i=1}^{m} (\lambda_{i}x + \mu_{i}y) \iff \tilde{P}_{0}(1,z) \cdot \prod_{i=1}^{m} \underbrace{(\lambda_{i} + \mu_{i}z)}_{z = -\lambda_{i}/\mu_{i}}$$

Given $p \in R[x,y]$ primitive w.r.t. y, want

$$p = P_0(x,y) \cdot \prod_{i=1}^m P_i(\lambda_i x + \mu_i y), \quad \mu_i > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_{0}(x,y) \cdot \prod_{i=1}^{m} (\lambda_{i}x + \mu_{i}y) \iff \tilde{P}_{0}(1,z) \cdot \prod_{i=1}^{m} \underbrace{(\lambda_{i} + \mu_{i}z)}_{z = -\lambda_{i}/\mu_{i}}$$

▶ Require: R admits effective rational root finding

Given $p \in R[x,y]$ primitive w.r.t. y, want

$$p = P_0(x,y) \cdot \prod_{i=1}^m P_i(\lambda_i x + \mu_i y), \quad \mu_i > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_{0}(x,y) \cdot \prod_{i=1}^{m} (\lambda_{i}x + \mu_{i}y) \iff \tilde{P}_{0}(1,z) \cdot \prod_{i=1}^{m} \underbrace{(\lambda_{i} + \mu_{i}z)}_{z = -\lambda_{i}/\mu_{i}}$$

Require: R admits effective rational root finding e.g., \mathbb{Z} , $\mathbb{Z}[x_1, \dots, x_n]$, $\mathbb{Q}(\alpha)$ with α an algebraic number

Input. $p \in R[x, y]$ and R admits effective rational root finding.

Input. $p \in R[x, y]$ and R admits effective rational root finding.

- 1 If $p \in R$, return p; else $c = cont_{x,y}(p)$ and $P_0 = p/c$.
- **2** If $\operatorname{cont}_x(P_0)$ or $\operatorname{cont}_u(P_0) \neq 1$, update $P_m(\lambda_m x + \mu_m y)$ and P_0 .
- 3 If $P_0=1$, return $c\prod_{i=1}^m P_i(\lambda_i x + \mu_i y).$

Input. $p \in R[x, y]$ and R admits effective rational root finding.

- 1 If $p \in R$, return p; else $c = cont_{x,y}(p)$ and $P_0 = p/c$.
- **2** If $\operatorname{cont}_x(P_0)$ or $\operatorname{cont}_u(P_0) \neq 1$, update $P_m(\lambda_m x + \mu_m y)$ and P_0 .
- 3 If $P_0 = 1$, return $c \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.
- **4** Compute the leading homogeneous component \tilde{g} of P_0 .

Input. $p \in R[x, y]$ and R admits effective rational root finding.

- 1 If $p \in R$, return p; else $c = cont_{x,y}(p)$ and $P_0 = p/c$.
- **2** If $\operatorname{cont}_x(P_0)$ or $\operatorname{cont}_y(P_0) \neq 1$, update $P_{\mathfrak{m}}(\lambda_{\mathfrak{m}} x + \mu_{\mathfrak{m}} y)$ and P_0 .
- 3 If $P_0 = 1$, return $c \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.
- **4** Compute the leading homogeneous component \tilde{g} of P_0 .
- **5** Find all nonzero rational roots $\{-\lambda/\mu\}$ of $\tilde{g}(1,z)$.

Algorithm BivariateILD

Input. $p \in R[x, y]$ and R admits effective rational root finding.

Output. The integer-linear decomposition of p.

- 1 If $p \in R$, return p; else $c = cont_{x,y}(p)$ and $P_0 = p/c$.
- **2** If $\operatorname{cont}_x(P_0)$ or $\operatorname{cont}_y(P_0) \neq 1$, update $P_{\mathfrak{m}}(\lambda_{\mathfrak{m}} x + \mu_{\mathfrak{m}} y)$ and P_0 .
- 3 If $P_0 = 1$, return $c \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.
- **4** Compute the leading homogeneous component \tilde{g} of P_0 .
- **5** Find all nonzero rational roots $\{-\lambda/\mu\}$ of $\tilde{g}(1,z)$.
- **6** For each $-\lambda/\mu$, if $\operatorname{cont}_x(P_0(\mu x, z \lambda x)) \notin R$, update

$$P_m(\lambda_m x + \mu_m y) \quad \text{and} \quad P_0 = P_0/P_m(\lambda x + \mu y).$$

Algorithm BivariateILD

Input. $p \in R[x, y]$ and R admits effective rational root finding.

Output. The integer-linear decomposition of p.

- 1 If $p \in R$, return p; else $c = cont_{x,y}(p)$ and $P_0 = p/c$.
- **2** If $\operatorname{cont}_x(P_0)$ or $\operatorname{cont}_y(P_0) \neq 1$, update $P_{\mathfrak{m}}(\lambda_{\mathfrak{m}} x + \mu_{\mathfrak{m}} y)$ and P_0 .
- 3 If $P_0 = 1$, return $c \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.
- **4** Compute the leading homogeneous component \tilde{g} of P_0 .
- **5** Find all nonzero rational roots $\{-\lambda/\mu\}$ of $\tilde{g}(1,z)$.
- **6** For each $-\lambda/\mu$, if $\operatorname{cont}_x(P_0(\mu x, z \lambda x)) \notin R$, update

$$P_m(\lambda_m x + \mu_m y) \quad \text{and} \quad P_0 = P_0/P_m(\lambda x + \mu y).$$

7 return $cP_0 \prod_{i=1}^m P_i(\lambda_i x + \mu_i y)$.

Complexity over \mathbb{Z} (word operations)

Given $p \in \mathbb{Z}[x,y]$ with $\deg_{x,y}(p) = d$ and $||p||_{\infty} = \beta$.

BivariateILD	Abramov-Le	Li-Zhang
$O^{\sim}(d^3\log\beta)$	$O^{\sim}(d^4+d^3\log\beta)$	$O^{\sim}(d^7 \log \beta)$

Recall

- word length of nonzero $a \in \mathbb{Z}$: $O(\log |a|)$;
- \blacktriangleright max-norm of $p=\sum_{i,j\geq 0}p_{ij}x^iy^j\in \mathbb{Z}[x,y]\colon \|p\|_\infty=\max_{i,j\geq 0}|p_{ij}|.$

Multivariate integer-linear decomposition

Definition. $p \in R[x_1, ..., x_n]$ admits the integer-linear decomposition

$$p = c \cdot P_0(x_1, \dots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n)$$

with

- $c \in R$:
- ▶ $P_0 \in R[x_1,...,x_n]$ primitive and merely having non-integer-linear factors except for constants;
- $P_i(z) \in R[z]$ non-constant and primitive;
- $(\lambda_{i1}, \dots, \lambda_{in}) \in \mathbb{Z}^n$ distinct integer-linear types.

Multivariate integer-linear decomposition

Definition. $p \in R[x_1, ..., x_n]$ admits the integer-linear decomposition

$$p = c \cdot P_0(x_1, \dots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n)$$

with

- $c \in R$:
- ▶ $P_0 \in R[x_1,...,x_n]$ primitive and merely having non-integer-linear factors except for constants;
- $P_i(z) \in R[z]$ non-constant and primitive;
- $\overbrace{(\lambda_{i1},\ldots,\lambda_{in})} \in \mathbb{Z}^n \text{ distinct integer-linear types.}$ $\gcd(\lambda_{i1},\ldots,\lambda_{in})=1 \text{ and } \lambda_{in} \geq 0$

Multivariate integer-linear decomposition

Definition. $p \in R[x_1, ..., x_n]$ admits the integer-linear decomposition

$$p = c \cdot P_0(x_1, \dots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n)$$

with

- $c \in R$:
- ▶ $P_0 \in R[x_1,...,x_n]$ primitive and merely having non-integer-linear factors except for constants;
- ▶ $P_i(z) \in R[z]$ non-constant and primitive;
- $(\lambda_{i1},\ldots,\lambda_{in})\in\mathbb{Z}^n$ distinct integer-linear types.

$$\gcd(\lambda_{i1},\ldots,\lambda_{in})=1$$
 and $\lambda_{in}\geq 0$

 $p \text{ is integer-linear over } R \quad \Longleftrightarrow \quad P_0 = 1$

Given $p \in R[x_1, ..., x_n]$ primitive w.r.t. x_n , want

$$p = P_0(x_1, \ldots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \cdots + \lambda_{in}x_n), \quad \lambda_{in} > 0.$$

Given $p \in R[x_1, ..., x_n]$ primitive w.r.t. x_n , want

$$p = P_0(x_1, \dots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n), \quad \lambda_{in} > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_0(x_1,\ldots,x_n)\cdot\prod_{i=1}^m(\lambda_{i1}x_1+\cdots+\lambda_{in}x_n)$$

Given $p \in R[x_1, ..., x_n]$ primitive w.r.t. x_n , want

$$p = P_0(x_1, \dots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n), \quad \lambda_{in} > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_0(x_1,\ldots,x_n) \cdot \prod_{i=1}^m (\lambda_{i1}x_1+\cdots+\lambda_{in}x_n)$$

Given $p \in R[x_1, ..., x_n]$ primitive w.r.t. x_n , want

$$p = P_0(x_1, \dots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n), \quad \lambda_{in} > 0.$$

Squarefree part of leading homogeneous component

$$\tilde{P}_0(x_1,\ldots,x_n)\cdot\prod_{i=1}^m\underbrace{(\lambda_{i1}x_1+\cdots+\lambda_{in}x_n)}$$

▶ Compute $P_i(z)$ from $cont_{x_1,...,x_{n-1}}$ of

$$p(\lambda_{in}x_1,\ldots,\lambda_{in}x_{n-1},z-\lambda_{i1}x_1-\cdots-\lambda_{i,n-1}x_{n-1})$$

Given $p \in R[x_1, ..., x_n]$ primitive w.r.t. x_n , want

$$p = P_0(x_1, \dots, x_n) \cdot \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n), \quad \lambda_{in} > 0.$$

> Squarefree part of leading homogeneous component

$$\tilde{P}_0(x_1,\ldots,x_n)\cdot\prod_{i=1}^m\underbrace{(\lambda_{i1}x_1+\cdots+\lambda_{in}x_n)}$$

• Compute $P_i(z)$ from $cont_{x_1,...,x_{n-1}}$ of

$$p(\lambda_{in}x_1,...,\lambda_{in}x_{n-1},z-\lambda_{i1}x_1-\cdots-\lambda_{i,n-1}x_{n-1})$$

Inefficient in high dimension!!!

A proposition by Abramov-Petkovšek (2002)

Let
$$p \in R[x_1, ..., x_n]$$
. Then

$$p = P(\lambda_1 x_1 + \dots + \lambda_n x_n)$$

1

$$p = P_{\mathfrak{i}\mathfrak{j}}(\alpha_{\mathfrak{i}\mathfrak{j}}x_{\mathfrak{i}} + \beta_{\mathfrak{i}\mathfrak{j}}x_{\mathfrak{j}}) \quad \text{for any } 1 \leq \mathfrak{i} < \mathfrak{j} \leq n$$

where

- $P(z) \in R[z], \lambda_i \in \mathbb{Z};$
- $P_{ij}(z) \in R[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{j-1}, x_{j+1}, \dots, x_n][z];$
- $\lambda \alpha_{ij}, \beta_{ij} \in \mathbb{Z}.$

$$((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)$$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p \in \mathbb{Z}[x_3, x_4][x_1, x_2]$$

$$((x_1 - 2x_2)x_3 + x_4)((4x_1 - 8x_2 - 6x_3 + 5x_4)^2 + 1)(2x_1 - 4x_2 - 3x_3)$$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$\qquad \qquad p \in \mathbb{Z}[x_3, x_4][x_1, x_2]$$

$$(x_1 - 2x_2)x_3 + x_4)((4x_1 - 8x_2) - 6x_3 + 5x_4)^2 + 1)(2x_1 - 4x_2) - 3x_3)$$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

Consider

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

 $P(z) \in \mathbb{Z}[x_4][z, x_3]$

$$(-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

Consider

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

 $P(z) \in \mathbb{Z}[x_4][z, x_3]$

$$(-zx_3+x_4)((-4z-6x_3+5x_4)^2+1)(-2z-3x_3)$$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$P(z) = P'_0(z, x_3) \cdot P'_1(2z + 3x_3)$$
 with

$$P_0'(z, x_3) = -zx_3 + x_4$$
 and $P_1'(z) = ((-2z + 5x_4)^2 + 1)(-z)$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$P(z) = P'_0(z, x_3) \cdot P'_1(2z + 3x_3) \text{ with}$$

$$P'_0(z, x_3) = zx_3 + zx_3 - zx_3 + zx_3 +$$

$$P_0'(z, x_3) = -zx_3 + x_4$$
 and $P_1'(z) = ((-2z + 5x_4)^2 + 1)(-z)$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$p = P_0 \cdot P_1'(-2x_1 + 4x_2 + 3x_3)$$
 with

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
 and $P'_1(z) = ((-2z + 5x_4)^2 + 1)(-z)$

Consider

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with }$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$p = P_0 \cdot P_1'(-2x_1 + 4x_2 + 3x_3)$$
 with

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
 and $P'_1(z) = ((-2z + 5x_4)^2 + 1)(-z)$

 $P_1'(z) \in \mathbb{Z}[\underline{z}, \underline{x_4}]$

$$((-2z + 5x_4)^2 + 1)(-z)$$

Consider

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with }$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$p = P_0 \cdot P_1'(-2x_1 + 4x_2 + 3x_3) \text{ with }$$

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
 and $P'_1(z) = ((-2z + 5x_4)^2 + 1)(-z)$

 $P_1'(z) \in \mathbb{Z}[z, x_4]$

$$(-2z+5x_4)^2+1)(-z)$$

Consider

$$\underbrace{((x_1 - 2x_2)x_3 + x_4)((4x_1 - 8x_2 - 6x_3 + 5x_4)^2 + 1)(2x_1 - 4x_2 - 3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with }$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

 $p = P_0 \cdot P_1'(-2x_1 + 4x_2 + 3x_3)$ with

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
 and $P'_1(z) = ((-2z + 5x_4)^2 + 1)(-z)$

 $P'_1(z) = P_1(-2z + 5x_4) \cdot P_2(z)$ with

$$P_1(z) = z^2 + 1$$
 and $P_2(z) = -z$

$$\underbrace{((x_1 - 2x_2)x_3 + x_4)((4x_1 - 8x_2 - 6x_3 + 5x_4)^2 + 1)(2x_1 - 4x_2 - 3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$p = P_0 \cdot P_1' \left(-2x_1 + 4x_2 + 3x_3 \right)$$
 with

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
 and $P'_1(z) = ((-2z + 5x_4)^2 + 1)(-z)$

$$P_1'(z) = P_1(-2z + 5x_4) \cdot P_2(z)$$
 with

$$P_1(z) = z^2 + 1$$
 and $P_2(z) = -z$

$$\underbrace{((x_1-2x_2)x_3+x_4)((4x_1-8x_2-6x_3+5x_4)^2+1)(2x_1-4x_2-3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with}$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$p = P_0 \cdot P_1'(-2x_1 + 4x_2 + 3x_3)$$
 with

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
 and $P'_1(z) = ((-2z + 5x_4)^2 + 1)(-z)$

$$p = P_0 \cdot P_1(4x_1 - 8x_2 - 6x_3 + 5x_4) \cdot P_2(-2x_1 + 4x_2 + 3x_3)$$
 with

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
, $P_1(z) = z^2 + 1$ and $P_2(z) = -z$

$$\underbrace{((x_1 - 2x_2)x_3 + x_4)((4x_1 - 8x_2 - 6x_3 + 5x_4)^2 + 1)(2x_1 - 4x_2 - 3x_3)}_{p}$$

$$p = P(-x_1 + 2x_2) \text{ with }$$

$$P(z) = (-zx_3 + x_4)((-4z - 6x_3 + 5x_4)^2 + 1)(-2z - 3x_3)$$

$$\ \ \, p = P_0 \cdot P_1'(-2x_1 + 4x_2 + 3x_3) \text{ with }$$

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
 and $P'_1(z) = ((-2z + 5x_4)^2 + 1)(-z)$

$$p = P_0 \cdot P_1(4x_1 - 8x_2 - 6x_3 + 5x_4) \cdot P_2(-2x_1 + 4x_2 + 3x_3)$$
 with

$$P_0 = (x_1 - 2x_2)x_3 + x_4$$
, $P_1(z) = z^2 + 1$ and $P_2(z) = -z$

Algorithm MultivariateILD

Input. $p \in R[x_1, \dots, x_n]$ and R admits effective rational root finding.

Output. The integer-linear decomposition of p.

- 1 If $p \in R$, return p; else $c = \cot_{x_1,...,x_n}(p)$ and p = p/c.
- **2** If n = 1, return. If n = 2, call **BivariateILD** on p and return.
- **3** Call algorithm recursively on $cont_{x_1,x_2}(p)$ and update P_i, p .
- 4 If p=1, return $cP_0 \prod_{i=1}^m P_i(\lambda_{i1}x_1+\cdots+\lambda_{in}x_n)$.
- 5 Set $\Lambda_1 = \{((1), p(x_0, x_2, \dots, x_n))\}$ with x_0 an indeterminate.
- $\begin{array}{l} \textbf{6} \ \ \text{For} \ k=1,\dots,n-1 \ \ \text{and} \ \left((\mu_1,\dots,\mu_k),h(x_0,x_{k+1},\dots,x_n)\right) \in \Lambda_k, \\ \text{call} \ \ \textbf{BivariateILD} \ \ \text{with input} \ \ h(x_0,x_{k+1}) \ \ \text{and} \ \ \text{update} \ \ P_0,\Lambda_{k+1}. \end{array}$
- 7 For $((\mu_1, \ldots, \mu_n), h(x_0)) \in \Lambda_n$, update $P_m(\lambda_{m1}x_1 + \cdots + \lambda_{mn}x_n)$.
- 8 return $cP_0 \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \cdots + \lambda_{in}x_n)$.

Complexity over \mathbb{Z}

Let $p \in \mathbb{Z}[x_1, \dots, x_n]$. Then the algorithm **MultivariateILD** takes

$$\left(n + \log \|\boldsymbol{p}\|_{\infty} + \deg_{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n}(\boldsymbol{p})\right)^{\mathrm{O}(1)}$$

word operations.

13/15

Timings (in seconds)

Test suite:
$$p = P_0(x_1, \dots, x_n) \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n)$$

- $P_{i}(z) = f_{i1}(z)f_{i2}(z)f_{i3}(z), n, m \in \mathbb{N},$
- $\blacktriangleright \ \deg_{x_1,...,x_n}(P_0) = d_0 \text{ and } \deg_z(f_{ij}) = j \cdot d.$

(n, m, d_0, d)	AL	LZ	MILD
(2, 2, 5, 10)	2.25	3.39	0.77
(2, 2, 5, 15)	9.72	13.80	2.82
(2, 2, 5, 20)	44.20	35.80	6.68
(2, 3, 10, 10)	10.80	13.40	3.14
(2, 3, 20, 10)	17.10	16.00	3.80
(2, 3, 30, 10)	19.40	18.00	5.32
(2, 2, 20, 15)	15.20	16.00	3.34
(2, 3, 20, 15)	129.00	62.00	14.80
(2, 4, 20, 15)	801.00	181.00	47.40
(3, 2, 5, 5)	6.71	10.80	2.52
(4, 2, 5, 5)	710.00	657.00	440.00

Timings (in seconds)

Test suite:
$$p = P_0(x_1, \dots, x_n) \prod_{i=1}^m P_i(\lambda_{i1}x_1 + \dots + \lambda_{in}x_n)$$

- $P_{i}(z) = f_{i1}(z)f_{i2}(z)f_{i3}(z), n, m \in \mathbb{N},$
- $\blacktriangleright \ \deg_{x_1,...,x_n}(P_0) = d_0 \text{ and } \deg_z(f_{ij}) = j \cdot d.$

(n, m, d_0, d)	AL	LZ	MILD
(2, 2, 5, 10)	2.25	3.39	0.77
(2, 2, 5, 15)	9.72	13.80	2.82
(2, 2, 5, 20)	44.20	35.80	6.68
(2, 3, 10, 10)	10.80	13.40	3.14
(2, 3, 20, 10)	17.10	16.00	3.80
(2, 3, 30, 10)	19.40	18.00	5.32
(2, 2, 20, 15)	15.20	16.00	3.34
(2, 3, 20, 15)	129.00	62.00	14.80
(2, 4, 20, 15)	801.00	181.00	47.40
(3, 2, 5, 5)	6.71	10.80	2.52
(4, 2, 5, 5)	710.00	657.00	440.00

Summary

Results.

- An efficient algorithm for bivariate integer-linear decomposition
- ▶ Generalized to handle general multivariate polynomials as well

Future work.

• q-Integer-linear decomposition for multivariate polynomials