# Econometria Propiedades Estadísticas Modelo de Regresión Lineal Simple

Pasquini, Ricardo

IAE Universidad Austral

27 de agosto de 2025

# Modelo de regresión simple

Repaso: Estimadores OLS

$$\underbrace{ \begin{array}{c} Y_i \\ \text{Variable} \end{array} }_{\text{Variable}} = \underbrace{ \begin{array}{c} \beta_0 \\ \text{Constante} \end{array} }_{\text{Constante}} + \underbrace{ \begin{array}{c} X_i \\ \text{Variable} \end{array} }_{\text{Error}} + \underbrace{ \begin{array}{c} \varepsilon_i \\ \text{Error} \end{array} }_{\text{explicativa}}$$
 explicar cepto 1 (independiente)

- $\hat{\beta}_0, \hat{\beta}_1$  surgen de la minimización de la suma de los residuos al cuadrado (OLS).
- Los estimadores OLS son:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

# Estimadores de Mínimos Cuadrados Ordinarios (OLS)

Ejemplo: Ingresos y Años de Escolaridad



# Estimadores de Mínimos Cuadrados Ordinarios (OLS)

Ejemplo: Regresión y CEF



## Insesgadez

- ► Ausencia de Sesgo (Insesgadez): Esta propiedad establece que, en valor esperado, los coeficientes estimados serán iguales a los verdaderos coeficientes poblacionales.
- Formalmente, se define como:

$$E(\hat{\beta}_j) = \beta_j$$

▶ Intuición: Aunque las estimaciones individuales pueden variar debido a la aleatoriedad inherente del muestreo, si pudiéramos repetir esta estimación en múltiples muestras, el promedio de estas estimaciones coincidiría con el valor verdadero.

## Insesgadez



Figura: Simulación. Ver en SimuEcon, com

## Idea de la Simulación

- Objetivo: Mostrar que los coeficientes del modelo OLS son insesgados.
- Pasos de la simulación:
  - ▶ **Definición de parámetros**: Establecemos los valores verdaderos de los coeficientes asumidos verdaderos ( $\beta_0$  y  $\beta_1$ ), tamaño de muestra y número de simulaciones.
  - Iteración: Realizar múltiples simulaciones.
    - Generamos pares (x,y) provenientes de la poblacion (cumplen  $y = \beta_0 + \beta_1 X + \epsilon$ )
    - Ajustamos el modelo de regresión lineal y obtenemos los estimadores de los coeficientes.
    - Almacenar los valores estimados de los coeficientes.
  - Visualización: Construimos histogramas de los valores estimados de los coeficientes.
  - Estadísticas descriptivas: Calculamos media y desviación estándar de los valores estimados de los coeficientes.



# Supuestos de OLS para garantizar que no hay sesgo

## Detalles Técnicos

- Supuestos necesarios para la ausencia de sesgo del estimador OLS:
  - 1. Linealidad en los parámetros (el modelo poblacional es  $y = \beta_0 + \beta_1 X + \varepsilon$ )
  - 2. Muestreo aleatorio (los valores  $(x_i, y_i)$  son variables aleatorias del modelo poblacional)
  - 3. La esperanza condicional del error es cero ( $E(\varepsilon|X)=0$ ). En este caso, garantizado por OLS.
- Demostración:
  - Queremos demostrar que  $E(\hat{\beta}_1) = \beta_1$
  - Partimos de la definición de  $\hat{\beta}_1 = \frac{\sum (x_i \bar{x})\varepsilon_i}{SST_x}$
  - Utilizamos que los datos provienen de la población, por lo que  $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
  - Luego  $E(\hat{\beta}_1|X) = E(\beta_1 + \frac{\sum (x_i \bar{x})\varepsilon_i}{SST_x}|X)$
  - $E(\hat{\beta}_1|X) = \beta_1 + \frac{1}{SST} \sum_{i} (x_i \bar{x}) E(\varepsilon_i|X)$
  - ▶ Como  $E(\varepsilon_i|X) = 0$  (supuesto 3), entonces  $E(\hat{\beta}_1|X) = \beta_1$
  - Luego  $E(\hat{\beta}_1) = \beta_1$



### Varianza

- Aunque insesgadas, nuestras estimaciones siempre exhibirán cierto grado de varianza, que cuantifica la incertidumbre alrededor del coeficiente estimado.
- Formalmente, se define como:

$$Var(\hat{eta}_j) = rac{\sigma^2}{\sum_{i=1}^n (X_{ij} - \bar{X}_j)^2}$$

- $ightharpoonup \sigma^2$  es la varianza de los residuos.
- $\sum_{i=1}^{n} (X_{ij} \bar{X}_j)^2$  es la suma de los cuadrados de las desviaciones de la variable independiente  $X_j$  con respecto a su media.
- ➤ Con múltiples variables se incorporará un factor de corrección adicional que dependerá de la correlación entre las variables independientes. (próxima clase)

#### Varianza

- ► La teoria indica que la varianza de nuestras estimaciones está influenciada por dos factores clave:
  - ▶ Error en el modelo: La presencia de variación no explicada en la variable dependiente (Y) contribuye a la varianza de nuestras estimaciones. Este error puede atribuirse a factores no incluidos en el modelo o a la aleatoriedad inherente en los datos.
  - ▶ Variabilidad de la variable independiente: Una mayor dispersión en los valores de nuestra variable independiente (X) conduce a una menor varianza en nuestras estimaciones de coeficientes. Esto se debe a que un rango más amplio de valores de X proporciona más información para estimar la relación con Y.

## Varianza del Estimador OLS - Derivación

- Para derivar este resultado partimos de  $\hat{\beta}_1 = \beta_1 + \frac{\sum (x_i \bar{x})\varepsilon_i}{SST_x}$
- ▶ Luego  $Var[\hat{\beta}_1|x] = \frac{1}{SST_c^2} \sum (x_i \bar{x})^2 Var(\varepsilon_i)$

Distribución de probabilidad de los Coeficientes

Bajo ciertos supuestos, los coeficientes siguen una distribución normal:

$$\hat{\beta} \sim N(\beta, Var(\beta))$$

El valor estandarizado sigue una Normal Estándar:

$$Z = rac{\hat{eta} - eta}{\sqrt{ extsf{Var}(eta)}} \sim extsf{N}(0,1)$$

En la práctica, usamos:

$$T = \frac{\hat{\beta} - \beta}{\sqrt{Var(\beta)}} \sim T_{n-1}$$



Figura: Distribución del estadístico T bajo  $H_0$ 

► Test típico:

$$\begin{cases} H_0: \beta = 0 \\ H_a: \beta \neq 0 \end{cases}$$

- ▶ Interpretación: Si H₀ es válida, X no tiene efecto sobre Y
- Lógica del Test:
  - 1. Asumimos  $\beta = 0$  (Hipótesis nula)
  - 2. Derivamos la distribución de probabilidad según esa hipótesis
  - 3. Observamos nuestra estimación  $\hat{\beta}$  y construímos el estadístico de prueba  $\hat{\mathcal{T}}$
  - 4. Si  $\hat{T}$  es muy atípico, rechazamos  $H_0$
- ▶ Cuán atípico es  $\hat{T}$ ? **P-valor:** Probabilidad de observar un valor tan extremo como  $\hat{T}$  bajo  $H_0$

#### OLS Regression Results

| ============      |              | =======   |              |           |             |
|-------------------|--------------|-----------|--------------|-----------|-------------|
| Dep. Variable:    | ing          | reso R-so | quared:      |           | 0.176       |
| Model:            |              | OLS Adj   | . R-squared: |           | 0.176       |
| Method:           | Least Squ    | ares F-si | tatistic:    |           | 1609.       |
| Date:             | Wed, 27 Aug  | 2025 Prob | (F-statist   | ic):      | 4.94e-324   |
| Time:             | 11:5         | 7:44 Log  | -Likelihood: |           | -1.1779e+05 |
| No. Observations: |              | 9062 AIC  | :            |           | 2.356e+05   |
| Df Residuals:     |              | 9060 BIC: | :            |           | 2.356e+05   |
| Df Model:         |              | 1         |              |           |             |
| Covariance Type:  |              | HC0       |              |           |             |
|                   |              |           |              |           |             |
|                   |              | z         | P> z         | [0.025    | 0.975]      |
| Intercept -4.489  |              |           |              | -5.25e+04 | -3.73e+04   |
| aesc 1.325        | e+04 330.296 | 40.115    | 0.000        | 1.26e+04  | 1.39e+04    |
|                   |              | =======   |              |           |             |
| Omnibus:          | 7371         | .512 Durt | oin-Watson:  |           | 1.790       |
| Prob(Omnibus):    | 0            |           | que-Bera (JB | ):        | 361472.985  |
| Skew:             | 3            |           | o(JB):       |           | 0.00        |
| Kurtosis:         | 33           | .113 Cond | d. No.       |           | 50.6        |
| ============      |              | =======   |              |           |             |

#### Notes:

[1] Standard Errors are heteroscedasticity robust (HC0)

Figura: Interpretación del P-valor. Ver en SimuEcon.com

## Ejemplo Pay-for-Performance - Lazear 2000

VOL. 90 NO. 5

#### LAZEAR: PERFORMANCE PAY AND PRODUCTIVITY

1353

TABLE 3-REGRESSION RESULTS

| Regression<br>number | Dummy for<br>PPP person-<br>month<br>observation | Tenure           | Time<br>since<br>PPP | New<br>regime    | $R^2$ | Description                                                                                    |
|----------------------|--------------------------------------------------|------------------|----------------------|------------------|-------|------------------------------------------------------------------------------------------------|
| 1                    | 0.368<br>(0.013)                                 |                  |                      |                  | 0.04  | Dummies for month and year included                                                            |
| 2                    | 0.197<br>(0.009)                                 |                  |                      |                  | 0.73  | Dummies for month and year; worker-<br>specific dummies included (2,755<br>individual workers) |
| 3                    | 0.313 (0.014)                                    | 0.343<br>(0.017) | 0.107<br>(0.024)     |                  | 0.05  | Dummies for month and year included                                                            |
| 4                    | 0.202<br>(0.009)                                 | 0.224<br>(0.058) | 0.273<br>(0.018)     |                  | 0.76  | Dummies for month and year; worker-<br>specific dummies included (2,755<br>individual workers) |
| 5                    | 0.309<br>(0.014)                                 | 0.424<br>(0.019) | 0.130<br>(0.024)     | 0.243<br>(0.025) | 0.06  | Dummies for month and year included                                                            |

Notes: Standard errors are reported in parentheses below the coefficients.

Dependent variable: In output-per-worker-per-day.

Number of observations: 29,837.

Figura: Lazear 2000

# **Takeaways**

- Reducir el error del modelo ayuda a mejorar la precisión de los coeficientes individuales
- Buscar ampliar la varianza de las variables explicativas incrementa la precisión.
- ► El test de hipótesis se realiza bajo una distribución de probabilidades centrada en la hipótesis nula (típicamente de 0 efecto). La rechazamos si encontramos un valor atípicamente alto (bajo). El p-valor, es la medida de cuán atípico es el valor encontrado.

# **Takeaways**

Puesto que solo podemos testear usando el estadístico T, y este estadístico considera el efecto en relación a su standard error, la \*significatividad estadística\* solo habla de un concepto relativo: cuan grande o chico es un efecto en relación a la precisión con la que fue estimado.