*	
- Exercice 1	Voir correction —

On lance deux dés équilibrés à 6 faces numérotées de 1 à 6. On note X la somme des faces obtenues et Y le produit des faces obtenues.

- 1) Quels sont les valeurs prises par X? Par Y?
- 2) Déterminer la loi de probabilité de X et de Y
- 3) Calculer l'espérance de X et l'espérance de Y

Exercice 2 — Voir correction —

Un joueur paie 10€ pour jouer à un jeu qui consiste à tirer une carte au hasard dans un paquet de cartes.

- S'il pioche un As, il gagne $a \in$, où a est un réel supérieur ou égal à 15.
- S'il pioche une figure (Roi, Dame, Valet), il gagne 15€
- S'il pioche un 8, un 9 ou un 10, il gagne 5€
- Dans tous les autres cas, il ne gagne rien.

On note X le gain algébrique du joueur.

- 1) Déterminer la loi de X en fonction de a.
- 2) Déterminer la fonction de répartition de X et la tracer
- 3) Calculer l'espérance de X en fonction de a
- 4) Quelle valeur faut-il donner à a pour que le jeu soit équitable, c'est à dire qu'il ait une espérance nulle?

On lance une pièce équilibrée à pile ou face trois fois de suite, et on note X le nombre de Piles obtenus.

- 1) Déterminer les valeurs prises par X
- 2) Déterminer la loi de X sous forme de tableau
- 3) Déterminer la fonction de répartition de X et tracer sa courbe représentative dans un repère.

Exercice 4 — Voir correction —

Une urne contient n boules numérotées de 1 à n. On pioche successivement et avec remise k boules dans l'urne, et on note X la valeur maximale inscrite sur les boules tirées.

- 1) Donner $X(\Omega)$.
- 2) Calculer $\mathbb{P}(X \leq 1)$
- 3) Calculer $\mathbb{P}(X \leq i)$ pour $i \in [1, n]$
- 4) En déduire la loi de X.

Exercice 5 — Voir correction —

Soit a un réel. Pour tout $i \in \mathbb{N}$, on pose $p_i = \frac{3a}{2^{i+2}}$.

1) Déterminer la valeur de a telle qu'il existe une variable aléatoire X à valeurs dans $\mathbb N$ vérifiant :

$$\forall i \in \mathbb{N}, \quad \mathbb{P}(X=i) = p_i$$

- 2) Montrer que X admet une espérance et calculer $\mathbb{E}[X]$.
- 3) Montrer que X admet une variance et calculer V(X).

Exercice 6 — Voir correction —

On appelle **médiane** d'une variable aléatoire X n'importe quel réel $x_{1/2}$ tel que

$$\mathbb{P}\left(X \le x_{1/2}\right) \ge \frac{1}{2}$$
 et $\mathbb{P}\left(X \ge x_{1/2}\right) \ge \frac{1}{2}$

Si $X(\Omega)=\{x_i\mid i\in I\}$ avec I égal à $\mathbb N$ ou une partie de $\mathbb N$ et que les x_i sont rangés dans l'ordre croissante, montrer que $x_{1/2}$ est la plus petite valeur de x_i telle que $\mathbb P(X\leq x_{1/2})\geq \frac{1}{2}.$

Exercice 7 — Voir correction —

On considère une variable aléatoire X à valeurs dans $\mathbb Z$ vérifiant

$$\forall k \in \mathbb{Z}, \quad \mathbb{P}(X = k) = \frac{1}{2 \times 3^{|k|}}$$

- 1) Vérifier que X est une variable aléatoire bien définie.
- 2) Montrer que X admet un moment d'ordre 1 et un moment d'ordre 2, et calculer $\mathbb{E}(X)$ et V(X).
- 3) Montrer que pour tout a > 0, $\mathbb{P}(|X| \ge a) \le \frac{3}{2a^2}$

Exercice 8 — Voir correction –

Soit X une variable aléatoire suivant une loi géométrique de paramètre p. Montrer que :

$$\forall k \in \mathbb{N}, \quad \mathbb{P}(X > k) = (1 - p)^k$$

Exercice 9 — Voir correction —

Soit $q \in]0,1[$ et soit F la fonction définie sur $\mathbb R$ par

$$F(x) = \begin{cases} 1 - q^{\lfloor x \rfloor} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

où |x| est la partie entière inférieure de x, c'est à dire l'unique entier relatif n tel que $n \le x < n+1$.

- 1) Montrer que $\lim_{x \to +\infty} F(x) = 1$ et que $\lim_{x \to -\infty} F(x) = 0$
- 2) Montrer que F est croissante
- 3) Montrer qu'il existe une variable aléatoire X telle que F est la fonction de répartition de X.

Exercice 10 — Voir correction —

Soit $\lambda > 0$ un réel et soit X une variable aléatoire suivant la loi de Poisson de paramètre λ .

- 1) On pose $Y = X^2$. Déterminer pour quelles valeurs de λ la variable aléatoire Y admet une espérance et calculer $\mathbb{E}[Y]$ le cas échéant.
- 2) On pose Z=X!. Déterminer pour quelles valeurs de λ la variable aléatoire Z admet une espérance et calculer $\mathbb{E}[Z]$ le cas échéant.

Exercice 11 — Voir correction —

Soit X une variable aléatoire suivant une loi géométrique de paramètre p avec $p \in]0;1[$. On pose $Y=e^X$. Déterminer une condition nécessaire et suffisante sur l'entier r pour que Y admette un moment d'ordre r et calculer $E[Y^r]$ lorsque c'est possible.

(**D'après oraux ENS 2019**) Un gardien de nuit dispose de 10 clés indiscernables dans l'obscurité, et dont une seule permet d'ouvrir une certaine porte. Selon son état, il a deux méthodes possibles pour ouvrir la porte :

- A. À jeun, il effectue des essais successifs en retirant les clés déjà essayées.
- B. Ivre, à chaque nouvel essai, il utilise une clé prise au hasard parmi les 10 clés.

On note X_A le nombre de clés essayées (y compris la bonne) avant d'ouvrir la porte dans le cas \mathbf{A} et X_B le nombre de clés essayées (y compris la bonne) avant d'ouvrir la porte dans le cas \mathbf{B} .

- 1) Déterminer la loi de la variable aléatoire X_A et son espérance
- 2) Déterminer la loi de la variable aléatoire X_B et son espérance
- 3) On sait que le gardien est ivre un jour sur quatre. Un jour, après avoir essayé 8 clés, il n'a toujours pas réussi à ouvrir la porte. Calculer la probabilité pour qu'il soit ivre.

Une urne contient n boules numérotées de 1 à n indiscernables au toucher. On effectue une suite de tirages avec remise et on note Y_k la variable aléatoire égale au nombre de numéros distincts qui ont été tirées lors des k premiers tirages. On pose $Y_0 = 0$.

Pour tout $k \in \mathbb{N}^*$, soit Z_k la variable aléatoire égale à 1 si le k-ième tirage amène un numéro qui n'a pas encore été tiré, et égale à 0 sinon. On remarque que $Z_1 = 1$.

- 1) Déterminer la loi de Z_2 .
- 2) Soit $k \in \mathbb{N}^*$. Calculer, pour tout $j \in [1, n]$, la valeur de $\mathbb{P}_{\{Y_k = j\}}(Z_{k+1} = 1)$. En déduire : $\mathbb{P}(Z_{k+1} = 1) = 1 \frac{1}{n}\mathbb{E}[Y_k]$
- 3) Soit $k \in \mathbb{N}^*$. En remarquant que $Y_k = \sum_{j=1}^k Z_j$, montrer :

$$\mathbb{P}(Z_{k+1} = 1) = 1 - \frac{1}{n} \sum_{j=1}^{k} \mathbb{P}(Z_j = 1)$$

- 4) En déduire que pour tout $k \in \mathbb{N}^*$, $\mathbb{P}(Z_k = 1) = \left(1 \frac{1}{n}\right)^{k-1}$.
- 5) Déterminer alors, pour tout $k \in \mathbb{N}$, l'espérance de Y_k .

Soit X une variable aléatoire à valeurs dans $\mathbb N$ telle que $\mathbb E[X]$ existe et $\mathbb P(X>0)>0$. Soit Y la variable aléatoire définie par

$$\forall k \in \mathbb{N}, \quad \mathbb{P}(Y = k) = \frac{k\mathbb{P}(X = k)}{\mathbb{E}[X]}$$

- 1) Montrer que la variable aléatoire Y est bien définie.
- 2) On suppose dans cette question que X suit une loi de Poisson. Montrer que X+1 et Y ont la même loi.
- 3) Réciproquement, on suppose dans cette question que Y et X+1 on la même loi. Montrer que X suit une loi de Poisson.

* * * *

Exercice 15 ————— Voir correction —

(**D'après oraux ESCP 2016**) On dispose de deux urnes U_1 et U_2 et de n boules numérotées de 1 à n (avec $n \ge 2$). Soit m un entier fixé tel que $0 \le m \le n$. On place au hasard m boules dans l'urne U_1 et les n-m autres dans l'urne U_2 . On choisit au hasard un entier j de [1, n] et on déplace la boule numéro j de l'urne dans laquelle elle se trouve pour la mettre dans l'autre urne.

On répète indéfiniment cette expérience. Pour tout $k \ge 1$, on note X_k la variable aléatoire égale au nombre de boules contenues dans l'urne U_1 à l'issue des k premières expériences.

- 1) Donner la loi de X_1 et calculer $\mathbb{E}(X_1)$
- 2) Déterminer pour tout k et pour tout i une relation entre $\mathbb{P}(X_{k+1}=i)$, $\mathbb{P}(X_k=i-1)$ et $\mathbb{P}(X_k=i+1)$.
- 3) Soit G_k le polynôme défini par $G_k(t) = \sum_{i=0}^n \mathbb{P}(X_k = i)t^i$.
 - a) Donner une expression de $\mathbb{E}(X_k)$ à l'aide de la fonction G_k
 - b) Déterminer une relation entre $G_{k+1}(t)$, $G_k(t)$ et $G'_k(t)$.
 - c) En déduire l'expression de $\mathbb{E}(X_k)$ en fonction de n. Déterminer $\lim_{k\to +\infty}\mathbb{E}(X_k)$

Exercice 16 — Voir correction —

Soit X une variable aléatoire réelle discrète à valeurs dans $\mathbb N$ qui admet une espérance.

- 1) Montrer que $\lim_{n\to+\infty} n\mathbb{P}(X>n) = 0$
- 2) Montrer que $\mathbb{E}[X] = \sum_{n=0}^{+\infty} \mathbb{P}(X > n)$.

On lance un dé truqué qui tombe sur 6 avec probabilité p. On le lance plusieurs fois de suite et on note X la variable aléatoire égale au nombre de lancers effectués au moment ou on obtient 6 pour la r-ième fois. Déterminer la loi suivie par X.

Un sac contient n pièces numérotées de 1 à n. On pioche une pièce au hasard et on la lance. On note X le numéro de la pièce, et on pose Y = kX avec

$$k = \begin{cases} 1 & \text{si la pièce est tombée sur face} \\ -1 & \text{si la pièce est tombée sur pile} \end{cases}$$

- 1) Déterminer la loi suivie par X
- 2) Calculer l'espérance de X
- 3) Déterminer la loi suivie par Y
- 4) On pose $Z = Y^2 X$. Calculer l'espérance de Z

* * *

Exercise 19 ————— Voir correction —

(**D'après ENS 2017**) On dispose d'une pièce truquée qui renvoie « pile » avec une probabilité $p \in]0,1[$ et on souhaite s'en servir pour générer un pile ou face équilibré. John von Neumann a imaginé l'algorithme suivant (où les lancers successifs de la pièce truquée se font indépendamment) :

On note $T \in \{2, 4, 6, ...\}$ la variable aléatoire donnée par le nombre de lancers néccessaire pour que l'algorithme se termine, et $R \in \{P, F\}$ le résultat de l'algorithme (où on note P pour « pile » et F pour « face »).

- 1) Que valent T et R si on obtient comme premiers tirages PPPFFPPFFP?
- 2) Démontrer que pour tout k > 1,

$$\mathbb{P}(T=2k) = (p^2 + (1-p)^2)^{k-1} 2p(1-p)$$

En déduit que l'algorithme se termine presque sûrement, c'est à dire que $\mathbb{P}(T<+\infty)=1$.

- 3) Démontrer que l'algorithme renvoie bien « pile » ou « face » avec même probabilité, c'est à dire que $\mathbb{P}(R=pile)=\frac{1}{2}$.
- 4) Calculer $\mathbb{E}[T]$.

* * * Exercice 20 —

— Voir correction —

Entropie d'une variable aléatoire discrète (d'après BCE ESSEC 2019)

Partie A: Logarithme de base 2

La fonction logarithme de base 2, notée \log_2 , est définie sur \mathbb{R}_+^* par $\log_2(x) = \frac{\ln x}{\ln 2}$, où ln est la fonction logarithme népérien.

- 1) Montrer que pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, on a $\log_2(xy) = \log_2(x) + \log_2(y)$.
- 2) Vérifier que pour tout réel α , $\log_2(2^{\alpha}) = \alpha$.
- 3) Montrer que la fonction \log_2 est dérivable sur \mathbb{R}_+^* et calculer $\log_2'(x)$.
- 4) On considère la fonction f définie pour tout $t \in [0;1]$ par

$$f(t) = \begin{cases} -t \log_2(t) & \text{si } t > 0 \\ 0 & \text{si } t = 0 \end{cases}$$

- a) Démontrer que f est continue sur [0;1]
- b) Étudier les variations de f sur [0;1]
- c) Montrer que la limite de f'(t) lorsque t tend vers 0 est $+\infty$.
- d) Tracer la courbe représentative de f sur [0;1]. On pourra utilise $0,36 < e^{-1} < 0,37$

Partie B - Entropie Dans cette partie, on considère X une variable aléatoire de loi à support dans $\{0, 1, 2, ..., n\}$ où n est un entier naturel telle que $\forall k \in \{0, 1, ..., \}$, $\mathbb{P}(X = k) > 0$. On appelle **entropie** de X le réel

$$H(X) = \sum_{k=0}^n -\mathbb{P}(X=k)\log_2(\mathbb{P}(X=k))$$

- 5) On définit la fonction $g:\{0,...,n\} \longrightarrow \mathbb{R}$ en posant $g(k) = \log_2(\mathbb{P}(X=k))$ pour k élément de $\{0,1,...,n\}$. Montrer que $H(X) = -\mathbb{E}(g(X))$.
- 6) Montrer que $H(X) \ge 0$
- 7) Soit p un réel tel que 0 . On suppose dans cette question que <math>X suit la loi de Bernoulli de paramètre p.
 - a) Calculer H(X) en fonction de p. On note ψ la fonction qui à p associe H(X).
 - b) Justifier que ψ est deux fois dérivable sur]0;1[et montrer que pour tout $p\in]0;1[$ on a $\psi''(p)<0$
 - c) Calculer $\psi'\left(\frac{1}{2}\right)$ et en déduire la valeur p_0 où ψ est maximale.
- 8) On suppose dans cette question que la loi de X est à support $\{0,1,2,3\}$. Calculer l'entropie de X
 - a) si X suit la loi uniforme sur $\{0, 1, 2, 3\}$
 - b) si X suit la loi :

$$\mathbb{P}(X=0) = \frac{1}{2}$$
 ; $\mathbb{P}(X=1) = \frac{1}{4}$; $\mathbb{P}(X=2) = \mathbb{P}(X=3) = \frac{1}{8}$

Partie C - Entropie maximum

Soit $n \in \mathbb{N}^*$ fixé et soit X une variable aléatoire à support dans $\{1, 2, ..., n\}$. Le but de cette partie est de montrer que l'entropie de X est maximale si X suit la loi uniforme sur $\{1, 2, ..., n\}$. Pour tout $k \in \{1, 2, ..., n\}$, on note p_k le réel $\mathbb{P}(X = x_k)$.

Soit U une variable aléatoire suivant la loi uniforme sur $\{1, 2, ..., n\}$.

- 9) Montrer que $H(U) = \log_2(n)$.
- 10) Montrer que $H(U) H(X) = -\sum_{k=1}^{n} p_k \log_2 \left(\frac{1}{np_k}\right)$.
- 11) Montrer que pour tout x > 0, $\log_2(x) \le \frac{1}{\ln(2)}(x-1)$.

Indication : On pourra étudier la fonction $f: x \mapsto \log_2(x) - \frac{1}{\ln(2)}(x-1)$ définie sur $]0; +\infty[$.

12) Déduire des questions précédentes que $H(U) - H(X) \ge 0$. Conclure.

Correction des exercice

Correction de l'exercice 1 :

1) On peut représenter les résultats possibles de la somme de deux dés sous forme de tableau

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Les valeurs prises par X sont $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

On peut représenter les résultats possibles pour le produit de deux dés sous forme de tableau :

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

les valeurs prises par Y sont $\{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36\}$.

2) Les tableaux représentent 36 issues équiprobables, on en déduit les lois de X et de Y :

x_i	2	3	4	5	6	7	8	9	10	11	12
$\mathbb{P}(X=x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

	y_i	1	2	3	4	5	6	8	9	10	12	15	16	18	20	24	25	30	36
$\mathbb{P}(Y$	$=y_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{4}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{4}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

3) L'espérance de X est

$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + \dots + 12 \times \frac{1}{36}$$
$$= \frac{260}{36}$$
$$= \frac{65}{9}$$

L'espérance de Y est

$$E(Y) = 1 \times \frac{1}{36} + 2 \times \frac{3}{36} + 3 \times \frac{5}{36} + \dots + 36 \times \frac{1}{36}$$
$$= \frac{441}{36}$$
$$= \frac{49}{4}$$

Correction de l'exercice 2 :

1) Les valeurs prises par X sont a-10, 5, -5 et -10. On a

x_i	-10	-5	5	a-10
$\mathbb{P}(X=x_i)$	$\frac{24}{52}$	$\frac{12}{52}$	$\frac{12}{52}$	$\frac{4}{52}$

2) La fonction de répartition de X est

$$\forall x \in \mathbb{R}, \quad F_X(x) = \begin{cases} 0 & \text{si } x < -10 \\ \frac{24}{52} & \text{si } -10 \le x < -5 \\ \frac{36}{52} & \text{si } -5 \le x < 5 \\ \frac{48}{52} & \text{si } 5 \le x < a - 10 \\ 1 & \text{si } a - 10 \le x \end{cases}$$

3)
$$\mathbb{E}[X] = -10 \times \frac{24}{52} - 5 \times \frac{12}{52} + 5 \times \frac{12}{52} + (a - 10)\frac{4}{52} = \frac{4a - 280}{52}$$
.

4) Pour avoir $\mathbb{E}[X] = 0$ il suffit donc d'avoir 4a - 280 = 0 soit $a = \frac{280}{4} = 70$. Si la somme gagnée lorsque le joueur pioche un as est 70€, alors le jeu est équitable.

Correction de l'exercice 3:

- 1) Les valeurs prises par X sont 0, 1, 2 et 3.
- 2) On peut représenter les trois tirages successifs par un arbre :

X suit une loi binomiale de paramètres n=3 et $p=\frac{1}{2}$. La loi de X est donnée par le tableau suivant :

x_i	0	1	2	3
$\mathbb{P}(X=x_i)$	$\frac{1}{8}$	3 8	$\frac{3}{8}$	$\frac{1}{8}$

3) La fonction de répartition de X:

Correction de l'exercice 4:

- 1) $X(\Omega) = [1, n]$.
- 2) $(X \leq 1)$ est l'événement « toutes les boules piochées portent le numéro 1 ».

Ainsi,
$$\mathbb{P}(X \le 1) = \underbrace{\frac{1}{n} \times \frac{1}{n} \times \dots \times \frac{1}{n}}_{k \text{ fois}} = \frac{1}{n^k}$$

3) $\mathbb{P}(X \leq i)$ est l'événement « toutes les boules piochées portent un numéro inférieur ou égal à i ».

Pour une boule tirée, la probabilité que son numéro soit inférieur ou égal à i est $\frac{i}{n}$.

Ainsi
$$\mathbb{P}(X \le i) = \underbrace{\frac{i}{n} \times \dots \times \frac{i}{n}}_{k \text{ fois}} = \frac{i^k}{n^k}$$

4) Soit $i \in [1, k]$, alors

$$\mathbb{P}(X = i) = \mathbb{P}(X \le i) - \mathbb{P}(X \le i - 1)$$

$$= \frac{i^k}{n^k} - \frac{(i - 1)^k}{n^k}$$

$$= \frac{i^k - (i - 1)^k}{n^k}$$

Correction de l'exercice 5 :

1) Soit $N \in \mathbb{N}$, on a $\sum_{i=0}^{N} \frac{3a}{2^{i+2}} = \frac{3a}{2^2} \sum_{i=0}^{N} \frac{1}{2^i}$.

On reconnait une série géométrique convergente, donc cette expression admet une limite lorsque N tend vers $+\infty$ et $\sum_{i=0}^{+\infty} p_i = \frac{3a}{4} \times \frac{1}{1-\frac{1}{2}} = \frac{3a}{2}$.

En posant $a=\frac{2}{3}$, on a donc $\sum_{i=0}^{+\infty}p_i=1$, et comme de plus $\forall i\in\mathbb{N},\ p_i\geq 0$ on en déduit qu'il existe une variable aléatoire X telle que pour tout $i\in\mathbb{N},\ \mathbb{P}(X=i)p_i=\frac{3}{2^{i+2}}\times\frac{2}{3}=\frac{1}{2^{i+1}}$.

2) X admet une espérance si et seulement si la série de terme général kp_k converge. Pour tout $N \in \mathbb{N}$,

$$\sum_{k=0}^{N} k p_k = \sum_{k=0}^{N} \frac{k}{2^{k+1}}$$
$$= \frac{1}{4} \sum_{k=0}^{N} k \times \left(\frac{1}{2}\right)^{k-1}$$

on reconnaît une série géométrique dérivée, donc cette expression converge lorsque N tend vers $+\infty$ et

$$\mathbb{E}[X] = \frac{1}{4} \times \frac{1}{(1 - \frac{1}{2})^2}$$
$$= \frac{1}{4} \times 4$$
$$= 1$$

3) X admet une variance si et seulement si elle admet un moment d'ordre 2, si et seulement si la série de terme général k^2p_k converge. Soit $N \in \mathbb{N}$,

$$\sum_{k=0}^{N} k^2 p_k = \sum_{k=1}^{N} \frac{k^2}{2^{k+1}}$$

$$= \sum_{k=1}^{N} \frac{k^2 - k}{2^{k+1}} + \sum_{k=1}^{N} \frac{k}{2^{k+1}}$$

$$= \frac{1}{2^3} \sum_{k=2}^{N} k(k-1) \left(\frac{1}{2}\right)^{k-2} + \frac{1}{2^2} \sum_{k=1}^{N} k \left(\frac{1}{2}\right)^{k-1}$$

on reconnaît une série géométrique dérivée double et une série géométrique dérivée, donc cette expression converge lorsque N tend vers $+\infty$ et on a

$$\mathbb{E}[X^2] = \frac{1}{8} \times \frac{2}{(1 - \frac{1}{2})^3} + \frac{1}{4} \times \frac{1}{(1 - \frac{1}{2})^2}$$
$$= 3$$

Finalement, d'après la formule de Koenig-Huygens, $V(X)=\mathbb{E}[X^2]-\mathbb{E}[X]^2=3-1^2=2.$

Correction de l'exercice 6 : Soit $k \in \mathbb{N}$ tel que $x_k = x_{1/2}$. Alors par hypothèse on a $\mathbb{P}(X \le x_k) \ge \frac{1}{2}$ et $\mathbb{P}(X \le x_{k-1}) < \frac{1}{2}$ Il suffit de montrer qu'on a aussi $\mathbb{P}(X \geq x_k) \geq \frac{1}{2}$

De plus, $\mathbb{P}(X \ge x_k) = 1 - \mathbb{P}(X \le x_{k-1})$ car c'est la probabilité de l'événement contraire, donc $\mathbb{P}(X \ge x_k) \ge \frac{1}{2}$. Correction de l'exercice 7 :

1) Pour tout $k \in \mathbb{Z}$, posons $p_k = \mathbb{P}(X = k) = \frac{1}{2 \times 3^{|k|}}$.

Pour tout $N \in \mathbb{N}$, on a

$$\sum_{k=-N}^{N} p_k = \sum_{k=-N}^{0} p_k + \sum_{k=1}^{N} p_k$$

$$= \sum_{k=-N}^{0} \frac{1}{2 \times 3^{|k|}} + \sum_{k=1}^{N} \frac{1}{2 \times 3^{|k|}}$$

$$= \sum_{k=0}^{N} \frac{1}{2 \times 3^k} + \sum_{k=1}^{N} \frac{1}{2 \times 3^k}$$

$$= \frac{1}{2} \times \sum_{k=0}^{N} \left(\frac{1}{3}\right)^k + \frac{1}{2 \times 3} \sum_{k=1}^{N} \left(\frac{1}{3}\right)^{k-1}$$

$$= \frac{1}{2} \sum_{k=0}^{N} \left(\frac{1}{3}\right)^k + \frac{1}{2 \times 3} \sum_{k=0}^{N-1} \left(\frac{1}{3}\right)^{k'}$$

On reconnaît deux séries géométriques, donc cette expression converge lorsque N tend vers $+\infty$ et on a

$$\sum_{k=-\infty}^{+\infty} p_k = \frac{1}{2} \times \frac{1}{1 - \frac{1}{3}} + \frac{1}{6} \times \frac{1}{1 - \frac{1}{3}}$$
$$= \frac{1}{2} \times \frac{3}{2} + \frac{1}{6} \times \frac{3}{2}$$
$$= 1$$

ainsi X est une variable aléatoire bien définie.

2) X admet une espérance si et seulement si la série $\sum_{k \in \mathbb{Z}} k p_k$ converge absolument, c'est à dire si et seulement si la série $\sum_{k \in \mathbb{Z}} |k| p_k$ converge.

Pour $k \ge 0$, $kp_k = \frac{1}{6} \times k \times \left(\frac{1}{3}\right)^{k-1}$ et on reconnait un terme général proportionnel au terme général d'une série géométrique dérivée convergente.

Pour k < 0 on a $|k|p_k = \frac{1}{6}(-k)\left(\frac{1}{3}\right)^{-k}$ donc $\sum_{k < 0} |k|p_k$ converge pour la même raison. Ainsi, $\sum_{k \in \mathbb{Z}} kp_k$ converge absolument donc X admet une espérance.

Pour tout $N \in \mathbb{N}$, on a

$$\sum_{k=-N}^{N} k p_k = \sum_{k=-N}^{0} \frac{k}{2 \times 3^{|k|}} + \sum_{k=1}^{N} \frac{k}{2 \times 3^{|k|}}$$
$$= \sum_{k'=0}^{N} \frac{-k'}{2 \times 3^{k'}} + \sum_{k=1}^{N} \frac{k}{2 \times 3^{k}}$$
$$= 0$$

car tous les termes s'annulent

donc $E(X) = \lim_{N \to +\infty} \sum_{k=-N}^{N} k p_k = 0$ donc $\mathbb{E}[X] = 0$.

La série $\sum k^2 p_k$ est une série positive donc elle converge absolument si et seulement si elle converge.

$$\sum_{k=-N}^{N} k^2 p_k = \sum_{k=-N}^{0} \frac{k^2}{2 \times 3^{|k|}} + \sum_{k=1}^{N} \frac{k^2}{2 \times 3^k}$$

$$= \sum_{k'=0}^{N} \frac{(k')^2}{2 \times 3^k} + \sum_{k=1}^{N} \frac{k^2}{2 \times 3^k}$$

$$= 2 \times \sum_{k=1}^{N} \frac{k^2}{2 \times 3^k}$$

$$= \sum_{k=1}^{N} \frac{k^2}{3^k}$$

$$= \sum_{k=1}^{N} \frac{k(k-1)}{3^k} + \sum_{k=1}^{N} \frac{k}{3^k}$$

$$= \frac{1}{3^2} \sum_{k=1}^{N} k(k-1) \left(\frac{1}{3}\right)^{k-2} + \frac{1}{3} \sum_{k=1}^{N} k \left(\frac{1}{3}\right)^{k-1}$$

on reconnaît une série géométrique dérivée convergente et une série géométrique dérivée seconde convergente, donc cette expression converge lorsque N tend vers $+\infty$ et

$$\sum_{k=-\infty}^{+\infty} k^2 p_k = \frac{1}{3^2} \times \frac{2}{(1-\frac{1}{3})^3} + \frac{1}{3} \times \frac{1}{(1-\frac{1}{3})^2}$$
$$= \frac{3}{4} + \frac{3}{4}$$
$$= \frac{3}{2}$$

On en déduit que X admet un moment d'ordre 2 et que $\mathbb{E}[X^2] = \frac{3}{2}$

Finalement, d'après le théorème de Kœnig-Huygens :

$$V(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$= \frac{3}{2} - 0^2$$
$$= \frac{3}{2}$$

3) Comme X admet une variance, on peut appliquer l'inégalité de Bienaymé-Tchebychev à X:

$$\forall a > 0, \quad \mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{V(X)}{a^2}$$

$$\mathbb{P}(|X| \ge a) \le \frac{3}{2a^2}$$

Correction de l'exercice 9 :

1) Pour tout x > 0, $q^{\lfloor x \rfloor} = e^{x \ln(q)}$ avec $q \in]0,1[$ donc $\ln(q) < 0$.

On en déduit que $\lim_{x\to +\infty} x \ln q = -\infty$ donc par composition $\lim_{x\to +\infty} \mathrm{e}^{x \ln q} = 0$. Ainsi, par somme de limites on a bien $\lim_{x\to +\infty} 1-q^{\lfloor x\rfloor}=1$.

Pour tout x < 0 on a F(x) = 0 donc $\lim_{x \to -\infty} F(x) = 0$.

2) Soient a, b deux réels avec a < b.

Si a < b < 0, alors F(a) = F(b) = 0

Si $a < 0 \le b$, alors $F(a) = 0 \le F(b)$ car $1 - q^{\lfloor b \rfloor} \ge 0$.

Si $0 \le a \le b$, alors $\lfloor a \rfloor \le \lfloor b \rfloor$ car la fonction $x \mapsto \lfloor x \rfloor$ est croissante. Ainsi, $\lfloor a \rfloor \ln(q) \ge \lfloor b \rfloor \ln(q)$ car $\ln(q) < 0$, donc $e^{\lfloor a \rfloor \ln(q)} \ge e^{\lfloor b \rfloor \ln(q)}$ et ainsi $q^{\lfloor a \rfloor} \ge q^{\lfloor b \rfloor}$.

On en déduit que $1 - q^{\lfloor a \rfloor} \le 1 - q^{\iota floorb \rfloor}$, donc $F(a) \le F(b)$.

Dans tous les cas, on a bien $F(a) \leq F(b)$, donc F est croissante sur \mathbb{R} .

3) Posons pour tout $k \in \mathbb{N}^*$, $p_k = F(k) - F(k-1)$.

Si la série $\sum p_k$ converge et que sa somme vaut 1, alors il existe une variable aléatoire X telle que pour tout $k \in \mathbb{N}$, $\mathbb{P}(X = k) = p_k$ et la fonction de répartition de X est alors la fonction F.

Pour tout $k \in \mathbb{N}^*$, on a

$$p_k = 1 - q^k - (1 - q^{k-1})$$
$$= q^{k-1} - q^k$$
$$= q^{k-1}(1 - q)$$

En posant p = 1 - q, on a $\forall k \in \mathbb{N}^*$, $p_k = p(1 - p)^{k-1}$. On reconnaît une loi géométrique de paramètre p donc il existe une variable aléatoire X dont la fonction de répartition est F.

Correction de l'exercice 10:

1) $X \hookrightarrow \mathcal{P}(\lambda)$ donc X admet une espérance et $E(X) = \lambda$.

D'après le théorème de transfert, Y admet une espérance si et seulement si la série de terme général $k^2\mathbb{P}(X=k)$ converge absolument (donc si et seulement si elle converge car c'est une série positive).

$$k^{4}\mathbb{P}(X=k) = e^{-\lambda} k^{4} \frac{\lambda^{k}}{k!} \underset{k \to \infty}{\sim} e^{-\lambda} k(k-1)(k-2)(k-3) \frac{lambda^{k}}{k!} \underset{k \to \infty}{\sim} e^{-\lambda} \lambda^{4} \frac{\lambda^{k-4}}{(k-4)!}.$$

Or $\lim_{n\to+\infty}\frac{\lambda^n}{n!}=0$ car c'est le terme général d'une série exponentielle convergente, donc $\lim_{k\to+\infty}\frac{\lambda^{k-4}}{(k-4)!}=0$. On en

conclut que $k^2\mathbb{P}(X=k)=o\left(\frac{1}{k^2}\right)$. La série de terme général $\frac{1}{k^2}$ est une série de Riemann convergente car 2>1 donc

la série de terme général $k^2\mathbb{P}(X=k)$ converge selon le théorème de comparaison pour les séries positives.

Ainsi X^2 admet une espérance, donc $X^2 - X$ aussi. On calcule

$$E[X(X-1)] = \sum_{k=2}^{+\infty} k(k-1)\mathbb{P}(X=K)$$
 selon le théorème de transfert
$$= \sum_{k=2}^{+\infty} k(k-1) e^{-\lambda} \frac{lambda^k}{k!}$$

$$= e^{-\lambda} \lambda^2 \sum_{k=2}^{+\infty} \frac{\lambda^{k-2}}{(k-2)!}$$
$$= e^{-\lambda} \lambda^2 \sum_{k=0}^{+\infty} \frac{\lambda^k}{k!}$$
$$= \lambda^2$$

On en conclut que $E(Y) = E(X^2) = E(X^2 - X) + E(X) = \lambda^2 + \lambda$.

2) D'après le théorème de transfert, Z admet une espérance si et seulement si la série de terme général $k!p_k$ converge absolument (si et seulement si elle converge car c'est une série positive). Soit $N \in \mathbb{N}$, on a

$$\sum_{k=0}^{N} k! p_k = \sum_{k=0}^{N} \lambda^k e^{-\lambda}$$
$$= e^{-\lambda} \sum_{k=0}^{N} \lambda^k$$

on reconnaît une série géométrique, celle si converge si et seulement si $|\lambda| < 1$ et dans ce cas on a

$$\mathbb{E}[Z] = e^{-\lambda} \sum_{k=0}^{+\infty} \lambda^k$$
$$= \frac{e^{-\lambda}}{1-\lambda}$$

Correction de l'exercice 11 : X est à valeurs dans N^* donc Y admet un moment d'ordre r si et seulement si la série $\sum_{k\geq 1} (\mathrm{e}^k)^r \mathbb{P}(X=k)$ converge absolument (d'après le théorème de transfert).

Pour tout $k \in \mathbb{N}^*$, $|(e^k)^r \mathbb{P}(X = k)| = e^{kr} p(1-p)^{k-1} = p e^r (e^r (1-p))^{k-1}$.

Or la série géométrique de terme général $(e^r(1-p))^k$ converge si et seulement si $e^r(1-p) < 1$ (car $e^r(1-p) > 0$).

$$e^{r}(1-p) < 1 \iff e^{r} < \frac{1}{1-p}$$

 $\iff r < -\ln(1-p)$

et en cas de convergence on a :

$$\mathbb{E}[Y^r] = p e^r \sum_{k=1}^{+\infty} (e^r (1-p))^{k-1}$$

$$= \frac{p e^r}{1 - e^r (1-p)}$$

En particulier, Y admet une espérance si et seulement si $\ln(1-p) < -1$ et $\mathbb{E}[Y] = \frac{p e}{1 + (p-1) e}$

Correction de l'exercice 12:

1) X_A est le rang du premier essai où le gardien insère la bonne clé. Les valeurs prises par X_A sont [1, 10]. Si on note C_k l'événement « le gardien insère la bonne clé au k-ième essai, alors pour tout $k \in [1, 10]$.

$$\mathbb{P}(X_A = k) = \mathbb{P}(\overline{C_1} \cap \overline{C_2} \cap \dots \cap \overline{C_{k-1}}, \cap C_k)$$
$$= \frac{9}{10} \times \frac{8}{9} \times \dots \times \frac{10 - k}{10 - k + 1} \times \frac{1}{10 - k}$$

$$=\frac{1}{10}$$

donc X_A suit la loi uniforme sur [1, 10].

Ainsi,
$$\mathbb{E}[X_A] = \frac{1+10}{2} = \frac{11}{2}.$$

2) Les valeurs prises par X_B sont [1, +infty] $llbracket = \mathbb{N}^*$.

Pour tout $k \in \mathbb{N}^*$,

$$\mathbb{P}(X_B = k) = \mathbb{P}(\overline{C_1} \cap \overline{C_2} \cap \dots \cap \overline{C_{k-1}}, \cap C_k)$$

$$= \underbrace{\frac{9}{10} \times \frac{9}{10} \times \dots \times \frac{9}{10}}_{k-1 \text{ fois}} \times \frac{1}{10}$$

$$= \underbrace{\frac{1}{10} \times \left(\frac{9}{10}\right)^{k-1}}_{k-1}$$
car les répétitions sont indépendantes

 X_B admet une espérance si et seulement si la série de terme général $k \times \frac{1}{10} \times \left(\frac{9}{10}\right)^{k-1}$ converge. On reconnait une série géométrique dérivée donc elle converge, ainsi X_B admet une espérance et

$$\mathbb{E}[X_B] = \frac{1}{10} \times \frac{1}{(1 - \frac{9}{10})^2}$$
$$= 10$$

3) Notons I l'événement « Le gardien est ivre »et notons X le nombre d'essai nécessaire pour ouvrir la porte. D'après l'énoncé, $\mathbb{P}(I)=\frac{1}{4}.$

Il faut calculer $\mathbb{P}(I|[X \geq 4])$. D'après la formule de Bayes,

$$\mathbb{P}(I\mid [X\geq 4]) = \mathbb{P}([X\geq 4]\mid I) \times \frac{\mathbb{P}(I)}{\mathbb{P}[X\geq 4]} = \mathbb{P}(X_B\geq 4) \times \frac{1/4}{\mathbb{P}(I) \times \mathbb{P}(X_B\geq 4) + \mathbb{P}(\overline{I}) \times \mathbb{P}(X_A\geq 4)}$$

Calculons chacun de ces termes :

•
$$\mathbb{P}(X_B \ge 4) = \sum_{k=4}^{+\infty} \frac{1}{10} \times \left(\frac{9}{10}\right)^k = \frac{1}{10} \times \left(\frac{9}{10}\right)^4 \times \sum_{k=0}^{+\infty} \left(\frac{9}{10}\right)^k = \frac{9^4}{10^5} \times \frac{1}{1 - \frac{9}{10}} = \frac{9^4}{10^4}$$

•
$$\mathbb{P}(X_A \ge 4) = \frac{7}{10}$$
.
On en déduit

$$\mathbb{P}(I \mid [X \ge 4]) = \frac{9^4}{10^4} \times \frac{\frac{1}{4}}{\frac{1}{4} \times \frac{9^4}{10^4} + \frac{3}{4} \times \frac{7}{10}}$$

$$= \frac{9^4}{10^4} \times \frac{1}{\frac{9^4}{10^4} + \frac{21}{10}}$$

$$= \frac{9^4}{9^4 + 21000}$$

$$= \frac{6561}{27561}$$

$$= \frac{2187}{9187}$$

La probabilité que le gardien soit ivre sachant qu'il a mis plus de 4 essais pour ouvrir la porte est $\frac{2187}{9187}$

Correction de l'exercice 13:

1) Les valeurs prises par \mathbb{Z}_2 sont 0 et 1.

L'événement $Z_2=0$ est l'événement « le second numéro tiré est le même que le premier ». Quel que soit le numéro tiré en premier, on a $\mathbb{P}(Z_2=0)=\frac{1}{n}$, donc $\mathbb{P}(Z_2=1)=\frac{n-1}{n}$.

 Z_2 suit la loi $\mathcal{B}\left(\frac{n-1}{n}\right)$

2) Si l'événement $\{Y_k = j\}$ est réalisé, c'est que exactement j numéros distincts sont apparus lors des k premiers tirages, donc que n-j numéros ne sont jamais sortis.

La probabilité d'obtenir un numéro qui n'a pas encore été tiré lors du k+1-ème tirage est donc $\frac{n-j}{n}$. Ainsi,

 $\mathbb{P}_{\{Y_k=j\}}(Z_{k+1}=1) = \frac{n-j}{n}.$

On en déduit que :

$$\mathbb{P}(Z_{k+1} = 1) = \sum_{j=1}^{n} j = 1^{n} \mathbb{P}(Z_{k+1} = 1, Y_{k} = j)$$

$$= \sum_{j=1}^{n} \mathbb{P}(Y_{k} = j) \mathbb{P}_{\{Y_{k} = j\}}(Z_{k+1})$$

$$= \sum_{j=1}^{n} \mathbb{P}(Y_{k} = j) \left(1 - \frac{j}{n}\right)$$

$$= \sum_{j=1}^{n} \mathbb{P}(Y_{k} = j) - \frac{1}{n} \sum_{j=1}^{n} j \mathbb{P}(Y_{k} = j)$$

$$= 1 - \frac{\mathbb{E}[Y_{k}]}{n}$$

3) dans la somme $\sum_{j=1}^k Z_j$, chaque Z_j vaut 1 si le j-ième numéro tiré n'est pas encore apparu et 0 sinon, donc le total de cette somme est le nombre de nouveaux numéros apparus au cours des k premiers tirages, autrement dit le nombre de numéros différents obtenus lors des k premiers tirages. On a donc bien $Y_k = \sum_{j=1}^k Z_j$.

Par linéarité de l'espérance, on a $\mathbb{E}[Y_k] = \sum_{j=1}^k \mathbb{E}[Z_j] = \sum_{j=1}^k \mathbb{P}(Z_j = 1)$ car l'espérance d'une variable de Bernoulli X est $\mathbb{P}(X = 1)$ et les variables Z_j sont des variables de Bernoulli.

On en conclut finalement que $\mathbb{P}(Z_{k+1}=1)=1-\frac{1}{n}\sum_{j=1}^{k}\mathbb{P}(Z_{j}=1).$

- 4) On raisonne par récurrence sur k,
 - Initialisation : $\mathbb{P}(Z_2=1)=1-\frac{1}{n}$ donc la propriété est vraie au rang k=2
 - **Hérédité :** Supposons que $\mathbb{P}(Z_k = 1) = \left(1 \frac{1}{n}\right)^{k-1}$ soit vraie pour un certain rang k.

Alors, d'après l'égalité établie à la question précédente,

$$\mathbb{P}(Z_{k+1} = 1) = 1 - \frac{1}{n} \sum_{j=1}^{k} \mathbb{P}(Z_j = 1)$$

$$= 1 - \frac{1}{n} \sum_{j=1}^{k} \left(1 - \frac{1}{n}\right)^{j-1}$$

$$= 1 - \frac{1}{n} \sum_{j=0}^{k-1} \left(1 - \frac{1}{n}\right)^{j}$$

$$= 1 - \left(1 - \left(1 - \frac{1}{n}\right)^{k}\right)$$

$$= \left(1 - \frac{1}{n}\right)^{k}$$

donc la propriété est vraie au rang k+1

- Conclusion : par principe de récurrence, on en conclut que pour tout entier strictement positif k, $\mathbb{P}(Z_k = 1) = \left(1 \frac{1}{n}\right)^{k-1}$.
- 5) D'après les questions précédentes, pour tout $k \in \mathbb{N}^*$,

$$\mathbb{E}[Y_k] = \sum_{j=1}^k \mathbb{E}[Z_j]$$

$$= \sum_{j=1}^k \mathbb{P}(Z_j = 1)$$

$$= \sum_{j=1}^k \left(1 - \frac{1}{n}\right)^j$$

$$= \sum_{j=0}^{k-1} \left(1 - \frac{1}{n}\right)^j$$

$$= \frac{1 - \left(1 - \frac{1}{n}\right)^k}{1 - \left(1 - \frac{1}{n}\right)}$$

$$= n - n\left(1 - \frac{1}{n}\right)^k$$

Correction de l'exercice 14:

1) $\mathbb{E}[X]$ existe et X est à valeurs dans \mathbb{N} avec $\mathbb{P}(X>0)>0$ donc $\mathbb{E}[X]>0$. Vérifions que $\sum_{k\in\mathbb{N}}\mathbb{P}(Y=k)$ converge et que sa somme vaut 1. Pour tout $N\in\mathbb{N}$, on a :

$$\sum_{k=0}^{N} \mathbb{P}(Y = k) = \sum_{k=0}^{N} \frac{k \mathbb{P}(X = k)}{\mathbb{E}[X]}$$
$$= \frac{1}{\mathbb{E}[X]} \sum_{k=0}^{N} k \mathbb{P}(X = k)$$

on reconnait la série qui converge vers $\mathbb{E}[X]$, donc $\sum \mathbb{P}(Y=k)$ converge et :

$$\sum_{k=0}^{+\infty} \mathbb{P}(Y=k) = \frac{1}{\mathbb{E}[X]} \sum_{k=0}^{+\infty} k \mathbb{P}(X=k) = \frac{1}{\mathbb{E}[X]} \times \mathbb{E}[X] = 1$$

donc Y est une variable aléatoire bien définie.

2) Pour montrer que X+1 et Y ont la même loi il faut montrer que pour tout $k \in \mathbb{N}$, $\mathbb{P}(X+1=k) = \mathbb{P}(Y=k)$. $X \sim \mathcal{P}(\lambda)$ donc $\mathbb{E}[X] = \lambda$. Pour tout entier $k \in \mathbb{N}$, on a :

$$\mathbb{P}(Y = k) = \frac{k\mathbb{P}(X = k)}{\mathbb{E}[X]}$$

$$= \frac{k e^{-\lambda} \frac{\lambda^k}{k!}}{\lambda}$$

$$= e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \mathbb{P}(X = k-1) = \mathbb{P}(X + 1 = k)$$

donc Y et X + 1 suivent la même loi.

3) Supposons que X + 1 et Y suivent la même loi. Alors, pour tout $k \in \mathbb{N}$,

$$\begin{split} \mathbb{P}(X=k) &= \mathbb{P}(X+1=k+1) \\ &= \mathbb{P}(Y=k+1) \\ &= \frac{(k+1)\mathbb{P}(X=k+1)}{\mathbb{E}[X]} \end{split}$$

Ainsi, la suite $(P(X=k))_{k\in\mathbb{N}}$ vérifie la relation de récurrence : $\forall k\in\mathbb{N}, \mathbb{P}(X+1)=\frac{\mathbb{E}[X]}{k+1}\mathbb{P}(X=k)$.

- Si $\mathbb{P}(X=0)=0$, alors $\forall k\in\mathbb{N}, \mathbb{P}(X=k)=0$, donc X n'est pas une variable aléatoire, ce cas est donc impossible.
- Si $\mathbb{P}(X=0) > 0$, posons $a = \mathbb{P}(X=0)$. On a alors par récurrence immédiate $\mathbb{P}(X=k) = \frac{\mathbb{E}[X]^k a}{k!}$

La série $\sum \mathbb{P}(X=k)$ converge en tant que série exponentielle, et $\sum_{k=0}^{+\infty} \frac{\mathbb{E}[x]^k a}{k!} = a \sum_{k=0}^{+\infty} \frac{\mathbb{E}[X]^k}{k!} = a e^{\mathbb{E}[X]}$.

Puisque X est une variable aléatoire cette somme vaut 1 donc $a = e^{-\mathbb{E}[X]}$. On en déduit que pour tout $k \in \mathbb{N}$, $\mathbb{P}(X=k) = \mathrm{e}^{-\mathbb{E}[X]} \, \frac{\mathbb{E}[X]^k}{k!} \, \text{donc que } X \text{ suit une loi de Poisson de paramètre } \lambda = \mathbb{E}[X].$

Correction de l'exercice 15:

1) À l'issue de la première expérience, le nombre de boules dans l'urne U_1 a soit augmenté de 1 soit diminué de 1, donc $X_1(\Omega) = \{m-1, m+1\}$. De plus, on a :

$$\mathbb{P}(X_1 = m - 1) = \frac{\binom{m-1}{n-1}}{\binom{m}{n}} = \frac{m}{n}$$

et

$$\mathbb{P}(X_1 = m+1) = \frac{\binom{m-1}{n}}{\binom{m}{n}} = \frac{n-m}{n}$$

donc
$$E(X_1) = (m-1)\frac{m}{n} + (m+1)\frac{n-m}{n} = m+1-\frac{2m}{n}$$

2) L'événement $(X_k = i)$ est réalisé si et seulement si l'urne U_1 contient i-1 boules à l'issue de la (k-1)-ème expérience et que le numéro choisi est dans l'urne U_2 , ou l'urne U_1 contient i+1 boules à l'issue de la (k-1)-ème expérience et que le numéro choisi est dans l'urne U_1 . Ainsi :

$$\mathbb{P}(X_k = i) = \mathbb{P}(X_{k-1} = i - 1) \times \frac{n - (i - 1)}{n} + \mathbb{P}(X_{k-1} = i + 1) \times \frac{i + 1}{n}$$

et cette formule est encore vraie pour i = 0 et i = n car $\mathbb{P}(X_k = -1) = \mathbb{P}(X_k = n + 1) = 0$.

- a) On constate que $G'_k(t) = \sum_{i=1}^n i \mathbb{P}(X_k = i) t^{i-1}$ donc $G'_k(1) = E(X_k)$. b) On a $G'_k(t) = \sum_{i=0}^n i \mathbb{P}(X_k = i) t^{i-1} = \sum_{i=1}^n i \mathbb{P}(X_k = i) t^{i-1}$. En appliquant le résultat de la question 2) on obtient

$$G_{k+1}(t) = \sum_{i=0}^{n} \mathbb{P}(X_{k+1} = i)t^{i}$$

$$= \sum_{i=0}^{n} \left[\mathbb{P}(X_{k} = i - 1) \frac{n - i + 1}{n} + \mathbb{P}(X_{k} = i + 1) \frac{i + 1}{n} \right] t^{i}$$

$$= \sum_{i=1}^{n} \mathbb{P}(X_{k} = i - 1) \frac{n - (i - 1)}{n} t^{i} + \sum_{i=0}^{n} \mathbb{P}(X_{k} = i + 1) \frac{i + 1}{n} t^{i}$$

$$= \sum_{i=0}^{n-1} \mathbb{P}(X_{k} = i) \frac{n - i}{n} t^{i+1} + \sum_{i=1}^{n} \mathbb{P}(X_{k} = i) \frac{i}{n} t^{i-1}$$

$$= t \sum_{i=0}^{n} \mathbb{P}(X_{k} = i) t^{i} - \frac{t^{2}}{n} \sum_{i=0}^{n} i \mathbb{P}(X_{k} = i) t^{i-1} + \frac{1}{n} \sum_{i=1}^{n} i \mathbb{P}(X_{k} = i) t^{i-1}$$

$$= t G_{k}(t) + \frac{1 - t^{2}}{n} G'_{k}(t)$$

c) En dérivant l'égalité obtenue à la question précédente on obtient :

$$G'_{k+1}(t) = G_k(t) + tG'_k(t) - \frac{2t}{n}G'_k(t) + \frac{1-t^2}{n}G''_k(t)$$

d'où pour t = 1:

$$G_{k+1}(1) = G_k(1) + G'_k(1) - \frac{2}{n}G'_k(1)$$

c'est à dire

$$\mathbb{E}(X_{k+1}) = 1 + \frac{n-2}{n} \mathbb{E}(X_k)$$

La suite $(E(X_k))_{k\in\mathbb{N}^*}$ est donc une suite arithmético-géométrique, en posant $r=\frac{1}{1-\frac{n-2}{n}}=\frac{n}{2}$ puis pour tout $k\in\mathbb{N}^*,\ u_k=\mathbb{E}(X_k)-r,$ on a :

$$\forall k \in \mathbb{N}^*, \quad u_{k+1} = \mathbb{E}(X_{k+1}) - \frac{n}{2}$$

$$= 1 + \frac{n-2}{n} \mathbb{E}(X_k) - \frac{n}{2}$$

$$= 1 + \frac{n-2}{n} \left(u_k + \frac{n}{2}\right) - \frac{n}{2}$$

$$= \frac{n-2}{n} u_k$$

donc $(u_k)_{k\in\mathbb{N}^*}$ est une suite géométrique, pour tout $k\in\mathbb{N}^*$ on a :

$$E(X_k) = \left(\frac{n-2}{n}\right)^{k-1} u_1 + r$$

$$= \left(\frac{n-2}{n}\right)^{k-1} \left(E(X_1) - \frac{n}{2}\right) + \frac{n}{2}$$

$$= \left(\frac{n-2}{n}\right)^{k-1} \left(m + 1 - \frac{2m}{n} - \frac{n}{2}\right) + \frac{n}{2}$$

et
$$\lim_{k \to +\infty} \mathbb{E}(X_k) = \frac{n}{2}$$

Correction de l'exercice 16:

- 1) X admet une espérance donc la série de terme général $n\mathbb{P}(X=n)$ converge. Pour tout $n \in \mathbb{N}$, $n\mathbb{P}(X>n) = n\sum_{k=n+1}^{+\infty}\mathbb{P}(X=k) = \sum_{k=n+1}^{+\infty}n\mathbb{P}(X=k) \leq \sum_{k=n+1}^{+\infty}k\mathbb{P}(X=k)$ car pour tout $k \geq n+1$ on a n < k. La série $\sum n\mathbb{P}(X=n)$ converge donc $\lim_{n \to +\infty} \sum_{k=n+1}^{+\infty}k\mathbb{P}(X=k) = 0$ donc par comparaison $\lim_{n \to +\infty}n\mathbb{P}(X>n) = 0$.
- 2) Pour tout $N \in \mathbb{N}$, on a :

$$\begin{split} \sum_{n=1}^{N} n \mathbb{P}(X = n) &= \sum_{n=1}^{N} n \left(\mathbb{P}(X > n - 1) - \mathbb{P}(X > n) \right) \\ &= \sum_{n=1}^{N} n \mathbb{P}(X > n - 1) - \sum_{n=1}^{N} n \mathbb{P}(X > n) \\ &= \sum_{n=0}^{N-1} (n+1) \mathbb{P}(X > n) - \sum_{n=1}^{N} n \mathbb{P}(X > n) \\ &= \mathbb{P}(X > 0) - N \mathbb{P}(X > N) + \sum_{n=1}^{N} (n+1-n) \mathbb{P}(X > n) \\ &= \sum_{n=0}^{N} \mathbb{P}(X > n) - N \mathbb{P}(X > N) \end{split}$$

Or $\lim_{N\to+\infty}N\mathbb{P}(X>N)$ d'après la question 1, et comme X admet une espérance le membre de gauche de l'égalité tend vers $\mathbb{E}[X]$ lorsque N tend vers $+\infty$. On en conclut finalement que $\sum_{n\geq0}\mathbb{P}(X>n)$ converge et que $\mathbb{E}[X]=\sum_{n=0}^{+\infty}\mathbb{P}(X>n)$.

Correction de l'exercice 17 : On a $X(\Omega) = [r, +\infty[$.

Pour $k \ge r$, l'événement (X = k) est réalisé si et seulement si le k-ème lancers donne un 6, et si parmi les k-1 premiers lancers on a obtenu r-1 fois pile.

Il y a $\binom{k-1}{r-1}$ façons d'obtenir r-1 piles parmi les k-1 premiers lancers. Pour chacune de ces façons, la probabilité est de $p^{r-1}(1-p)^{(k-1)-(r-1)}=p^{r-1}(1-p)^{k-r}$.

Finalement:

$$\mathbb{P}(X = k) = p \times \binom{k-1}{r-1} \times p^{r-1} (1-p)^{k-r} = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

Correction de l'exercice 18:

- 1) X suit la loi uniforme sur $\{1, 2, ..., n\}$.
- $2) \ \mathbb{E}[X] = \frac{n+1}{2}.$
- 3) Les valeurs prises par Y sont $\{-n, -(n-1), \ldots, -1, 1, 2, \ldots, n\}$.

On note P l'événement « la pièce tombe sur pile » et F l'événement « la pièce tombe sur face ».

Pour tout $k \in \llbracket -n, -1 \rrbracket$, $\mathbb{P}(Y = k) = \mathbb{P}((X = -k) \cap P) = \frac{1}{2} \times \frac{1}{n}$ car ces événements sont indépendants.

Pour tout $k \in [1, n]$, $\mathbb{P}(Y = k) = \mathbb{P}((X = k) \cap F) = \frac{1}{2} \times \frac{1}{n}$

Finalement, pour tout $k \in \{-n, -(n-1), ..., -1, 1, 2, ..., n\}$, $\mathbb{P}(Y = k) = \frac{1}{2n}$ donc Y suit la loi uniforme sur cet ensemble

4) Quelle que soit l'issue ω , $Y(\omega)^2 = X(\omega)^2$, donc $Y^2 = X^2$. Ainsi, $Z = X^2 - X$. $\mathbb{E}[Z] = \mathbb{E}[X^2] - \mathbb{E}[X]$

$$\mathbb{E}[X^2] = \sum_{k=1}^n k^2 \mathbb{P}(X = k)$$

$$= \frac{1}{n} \sum_{k=1}^n k^2$$

$$= \frac{1}{n} \times \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{(n+1)(2n+1)}{6}$$

Finalement, $\mathbb{E}[Z] = \frac{(n+1)(2n+1)}{6} - \frac{n+1}{2} = \frac{2n^2 - 2}{6}$

Correction de l'exercice 20 : Partie A

1) Soient $(x,y) \in (\mathbb{R}_+^*)^2$. Alors $\log_2(xy) = \frac{\ln(xy)}{\ln(2)} = \frac{\ln x + \ln y}{\ln(2)} = \frac{\ln x}{\ln 2} + \frac{\ln y}{\ln 2} = \log_2(x) + \log_2(y)$.

On en conclut que pour tout $(x, y) \in (\mathbb{R}_+^*)^2$, $\log_2(xy) = \log_2(x) + \log_2(y)$

- 2) Soit $\alpha \in \mathbb{R}$. Alors $\log_2(2^{\alpha}) = \frac{\ln(2^{\alpha})}{\ln(2)} = \frac{\alpha \ln(2)}{\ln(2)} = \alpha$. Ainsi, pour tout $\alpha \in \mathbb{R}$, $\log_2(2^{\alpha}) = \alpha$.
- 3) $x \mapsto \ln x$ est dérivable sur $]0, +\infty[$ donc \log_2 aussi et pour tout $x \in]0, +\infty[$, $\log_2'(x) = \frac{1}{\ln(2)x}$
- 4) a) \underline{f} est continue sur]0,1] comme produit de fonctions continues. Il suffit donc de montrer que f est continue en 0. f(0) = 0 par définition, et $\lim_{t\to 0} f(t) = \lim_{t\to 0} -\frac{t\ln(t)}{\ln(2)} = 0$ par croissance comparée.

Ainsi, f est continue en 0.

Finalement, f est bien continue sur l'intervalle [0;1].

b) f est dérivable sur [0,1] comme produit de fonctions dérivables, et pour tout $t \in [0,1]$ on a

$$f'(t) = -\log_2(t) - t \log_2'(t)$$

$$= -\log_2(t) - t \times \frac{1}{t \ln(2)}$$

$$= -\log_2(t) - \frac{1}{\ln(2)}$$

$$= -\frac{1}{\ln(2)}(\ln(t) + 1)$$

Or 2 > 1 donc $\ln(2) > \ln(1) = 0$, ainsi f est du signe de $-\ln(t) - 1$. $-\ln(t) - 1 \ge 0 \iff \ln(t) \le -1 \iff t \le e^{-1}$.

On en déduit le tableau de variations suivant :

x	0		e^{-1}		1
f'(t)		+	Ö	_	
f	0 —		$\rightarrow \frac{e^{-1}}{\ln(2)}$		→ 0

avec
$$f(0) = 0 = f(1)$$
 et $f(e^{-1}) = -e^{-1} \times \frac{\ln(e^{-1})}{\ln(2)} = \frac{e^{-1}}{\ln(2)}$.

- c) $\lim_{t\to 0} \ln(t) = -\infty$, donc par somme $\lim_{t\to 0} (\ln(t)+1) = -\infty$, et par produit $\lim_{t\to 0} -\frac{1}{\ln(2)} (\ln(t)+1) = +\infty$.
- d) Courbe représentative de f sur [0;1]:

Partie B

5) D'après la formule de transfert,

$$-\mathbb{E}[g(X)] = -\sum_{k=0}^{n} g(k)\mathbb{P}(X=k)$$
$$= \sum_{k=0}^{n} -\log_2(P(X=k))P(X=k)$$
$$= H(X)$$

- 6) Pour tout $k \in \{0, 1, 2, ..., n\}$, $0 < \mathbb{P}(X = k) \le 1$ donc $\ln(\mathbb{P}(X = k)) \le 0$, et ainsi $\log_2(\mathbb{P}(X = k)) \le 0$. On en conclut que pour tout $k \in \{0, 1, 2, ..., n\}$, $-\mathbb{P}(X = k) \log_2(\mathbb{P}(X = k)) \ge 0$, donc par somme $H(X) \ge 0$.
- 7) a) On a

$$\begin{split} H(X) &= -\mathbb{P}(X=0) \log_2(\mathbb{P}(X=0)) - \mathbb{P}(X=1) \log_2(\mathbb{P}(X=1)) \\ &= -(1-p) \log_2(1-p) - p \log_2(p) \\ \\ &= \frac{1}{\ln(2)} \left(-(1-p) \ln(1-p) - p \ln(p) \right) \end{split}$$

b) On a $\psi(p) = \frac{1}{\ln(2)} (-(1-p)\ln(1-p) - p\ln(p))$. Pour tout $p \in]0,1[$ on a $1-p \in]0,1[$ donc $p \mapsto \ln(1-p)$ est dérivable sur]0,1[. Ainsi $,\psi$ est dérivable sur]0,1[comme produit et composée de fonctions dérivables, et pour tout $p \in]0,1[$ on a

$$\psi'(p) = \frac{1}{\ln(2)} \left(\ln(1-p) + 1 - \ln(p) - 1 \right)$$
$$= \frac{1}{\ln(2)} \ln \left(\frac{1-p}{p} \right)$$

De même, ψ' est dérivable comme produit et composée de fonctions dérivables et pour tout $p \in]0;1[$ on a

$$\psi''(p) = \frac{1}{\ln(2)} \left(-\frac{1}{1-p} - \frac{1}{p} \right)$$
$$= -\frac{1}{\ln(2)} \left(\frac{1}{1-p} + \frac{1}{p} \right)$$

Or, pour tout $p \in]0,1[, \frac{1}{1-p} > 0 \text{ et } \frac{1}{p} > 0 \text{ donc } \psi''(p) < 0.$

c) On
$$\psi'\left(\frac{1}{2}\right) = \frac{1}{\ln(2)} \ln\left(\frac{1 - \frac{1}{2}}{\frac{1}{2}}\right) = \frac{1}{\ln(2)} \ln(1) = 0$$

Comme $\psi''(p) < 0$ sur]0; 1[, on en déduit que ψ' est strictement décroissante sur]0; 1[. Ainsi, $\psi'(p)$ est positif sur $]0; \frac{1}{2}[$ et négatif sur $]\frac{1}{2}; 0[$.

On en conclut que ψ est croissante sur $[0; \frac{1}{2}]$ et décroissante sur $[\frac{1}{2}; 1]$, ainsi ψ atteint son maximum en $p_0 = \frac{1}{2}$.

8) a) Si X suit la loi uniforme sur $\{0,1,2,3\}$, alors $\mathbb{P}(X=0)=\mathbb{P}(X=1)=\mathbb{P}(X=2)=\mathbb{P}(X=3)=\frac{1}{4}$. Pour tout $k\in\mathbb{N}^*$, $\log_2\left(\frac{1}{2^k}\right)=\log_2(2^{-k})=-k$ d'après la question 10. Ainsi,

$$H(X) = -\frac{1}{4}(\log_2(1/4) + \log_2(1/4) + \log_2(1/4) + \log_2(1/4))$$
$$= -\frac{1}{4} \times 4 \times (-2)$$

b) Si X suit la loi donnée dans l'énoncé :

$$\begin{split} H(X) &= -\frac{1}{2}\log_2(1/2) - \frac{1}{4}\log_2(1/4) - 2 \times \frac{1}{8}\log_2(1/8) \\ &= -\frac{1}{2} \times (-1) - \frac{1}{4} \times (-2) - 2 \times \frac{1}{8} \times (-3) \\ &= \frac{1}{2} + \frac{1}{2} + \frac{6}{8} \end{split}$$

$$=\frac{7}{4}$$

Partie C

9) On a:

$$H(U) = -\sum_{k=1}^{n} \mathbb{P}(U = k) \log_2(\mathbb{P}(U = k))$$

$$= -\sum_{k=1}^{n} \frac{1}{n} \log_2\left(\frac{1}{n}\right)$$

$$= \sum_{k=1}^{n} \frac{1}{n} \log_2(n)$$

$$= (n+1) \times \frac{1}{n} \log_2(n)$$

$$= \log_2(n)$$

10) On a

$$H(U) - H(X) = \log_2(n) + \sum_{k=1}^n p_k \log_2(p_k)$$

$$= \sum_{k=1}^n p_k \log_2(n) - \sum_{k=1}^n p_k \log_2(\frac{1}{p_k}) \qquad \text{car } \sum_{k=0}^n p_k = 1$$

$$= -\sum_{k=1}^n p_k \log_2\left(\frac{1}{n}\right) - \sum_{k=1}^n p_k \log_2\left(\frac{1}{p_k}\right)$$

$$= -\sum_{k=1}^n p_k \log_2\left(\frac{1}{np_k}\right)$$

11) On pose la fonction f définie sur $]0\,;+\infty[$ par $f(x)=\log_2(x)-\frac{1}{\ln(2)}(x-1).$ Alors f est dérivable sur $]0\,;+\infty[$ comme somme de fonctions dérivables sur $]0\,;+\infty[$, et $f'(x)=\frac{1}{\ln(2)x}-\frac{1}{\ln(2)}=\frac{1}{\ln(2)}\left(\frac{1}{x}-1\right)=\frac{1}{\ln(2)}\frac{1-x}{x}.$ Ainsi, sur $]0\,;+\infty[$, f'(x) est du même signe que 1-x, donc positive sur $]0\,;1[$ et négative sur $]1\,;+\infty[$. On en conclut que f est croissante sur $]0\,;1[$ et décroissante sur $]1\,;+\infty[$, donc que f admet son maximum en f0 et que ce maximum vaut f1 et que ce maximum vaut f2 est definition f3.

On en conclut que pour tout $x > 0, f(x) \le 0$ et donc $\log_2(x) \le \frac{1}{\ln(2)}(x-1)$.

12) D'après la question 19, on sait que pour tout x > 0 on a $\log_2(x) \le \frac{1}{\ln(2)}(x-1)$. On a donc pour tout $k \in \{1, 2, ..., n\}$, $\log_2\left(\frac{1}{np_k}\right) \le \frac{1}{\ln(2)}\left(\frac{1}{np_k}-1\right)$, donc par somme et produit on a

$$\sum_{k=1}^{n} p_k \log_2 \left(\frac{1}{np_k} \right) \le \sum_{k=1}^{n} \frac{p_k}{\ln(2)} \left(\frac{1}{np_k} - 1 \right)$$

$$\le \frac{1}{\ln(2)} \sum_{k=1}^{n} \left(\frac{1}{n} - p_k \right)$$

$$\le \frac{1}{\ln(2)} \left(\sum_{k=1}^{n} \frac{1}{n} - \sum_{k=1}^{n} p_k \right)$$

$$\le \frac{1}{\ln(2)} (1 - 1)$$

$$\leq 0$$

ainsi on a
$$H(U) - H(X) = -\sum_{k=1}^{n} p_k \log_2 \left(\frac{1}{np_k}\right) \ge 0$$

ainsi on a $H(U) - H(X) = -\sum_{k=1}^{n} p_k \log_2 \left(\frac{1}{np_k}\right) \ge 0.$ On en conclut que quelle que soit la loi suivie par X, son entropie est inférieure ou égale à l'entropie de U, ainsi la loi uniforme est la loi pour laquelle l'entropie est maximale.

