

Binárne Rozhodovacie Diagramy

07.04.2021

letný semester 2020/2021

prednášajúci: Lukáš Kohútka

- Binárny strom
- Neslúži ako ADT slovník/dynamická množina
- Slúži na rozhodovanie
 - Rozhodovací strom
- Rozhodovanie prebieha prechodom od začiatku stromu (koreň) do konca (list)
- Každý vnútorný uzol predstavuje jedno čiastkové rozhodnutie, list = výsledné rozhodnutie
- Celkové rozhodnutie = celá cesta koreň → list

Rozhodovací strom

Môže byť binárny, ale nemusí

- Binary Decision Diagram (skratka BDD)
- Dátová štruktúra
- Má tvar ako binárny strom
- Slúži na rozhodovanie (rôzne aplikácie)
- Jednou z najpoužívanejších aplikácií je:
 Reprezentácia ľubovoľnej Booleovskej funkcie

Aký je výsledok pre a = 1, b = 0, c = 0, d = 1?

Reprezentácie Booleovských funkcií

- Pravdivostná tabuľka
- Vektor
 - to isté ako pravdivostná tabuľka, len jej výstupy
- Karnaughova mapa
- Výraz
 - t.j. rovnica (napr. Y = A . B + C)
 - Normálové formy
 - DNF súčet súčinov
 - KNF súčin súčtov
- BDD

XOR Truth Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Binary Decision Diagram (BDD)

- Dá sa ňou reprezentovať ľubovoľná Booleovská funkcia
 - Alternatíva pre pravdivostnú tabuľku, vektor alebo Karnaughovu mapu

$$f(x_1,x_2,x_3)=(\lnot x_1\land\lnot x_2\land\lnot x_3)\lor(x_1\land x_2)\lor(x_2\land x_3)\ ar x_1ar x_2ar x_3+x_1x_2+x_2x_3$$
 (alternatívny zápis)

Zostrojenie nového BDD

- Nový BDD sa môže zostrojiť relatívne jednoducho z ostatných spôsobov opisu Booleovskej funkcie
 - Bez ohľadu na to, akú konkrétnu Booleovskú funkciu opisujeme
- Dva prístupy:
 - Zhora nadol
 - postupnou dekompozíciou (rozkladom) podľa jednotlivých premenných
 - každá premenná predstavuje jednu úroveň v BDD
 - Zdola nahor
 - Postupným skladaním výstupov
 - Tiež každá premenná je jedna úroveň v BDD

Zostrojenie nového BDD - zhora nadol

 Shannonova dekompozícia (Shannon decomposition alebo Shannon extension)

$$f(X_1, X_2, \dots, X_n) = X_1 \cdot f(1, X_2, \dots, X_n) + X_1' \cdot f(0, X_2, \dots, X_n)$$

- Ak vytvárame BDD z výrazu v tvare DNF, napr.:
 - Y = A.!B.!C + A.B.C + !A.B.!C + !A.!B.C
 - 1. Vytvoríme koreň, ktorý reprezentuje celý výraz
 - Vyberieme si jednu premennú, napr. A (čiže koreň je riadený premennou A)
 - 3. $Y = A \cdot (!B \cdot !C + B \cdot C) + !A \cdot (B \cdot !C + !B \cdot C)$
 - 4. Vytvoríme potomkov a vložíme zostatkové časti do nich
 - Opakujeme kroky 2 až 4 pre každú premennú (t.j. N-krát, kde N je počet vstupných premenných Booleovskej funkcie)

Zostrojenie nového BDD - zhora nadol

- Takže vyberieme zase nejakú premennú (napr. B)
- A pre všetky uzly v novej úrovni urobíme opäť Shannonovu dekompozíciu podľa premennej B
- B.!C + !B.C sa rozdelí na B.(!C) + !B.(C)
- !B.!C + B.C sa rozdelí na B.(C) + !B.(!C)
- Nakoniec predstavuje uzol len poslednú premennú alebo jej negovaný tvar

Zostrojenie nového BDD - zdola nahor

- Videli sme, že výsledný riadok s nulami a jednotkami je totožný s vektorom
- Preto ak máme zostrojiť BDD z Booleovskej funkcie opísanej formou vektora (alebo pravdivostnej tabuľky), môžeme tak urobiť prístupom zdola nahor
- Majme napr. vektor 01101001
- Najprv vytvoríme koncové uzly (listy) s týmito hodnotami v rovnakom poradí
 - Vytvoríme ako pole (koncových) uzlov

Zostrojenie nového BDD - zdola nahor

- Vezmeme vždy dvojicu susediacich uzlov a spojíme ich dokopy pridaním rodiča
- Rodič reprezentuje zlúčenú kombináciu hodnôt potomkov
- Opakujeme
- Poradie premenných je fixne dané podľa poradia vektora

Zostrojenie nového BDD - zhora nadol

- Vektor → BDD
 - možné tiež realizovať prístupom zhora nadol
- Vektor delíme vždy na polovice
- Poradie je fixne dané, tak ako vo vektore
- Napr. vektor 01101001

Problém Booleovských funkcií

- Pravdivostná tabuľka, vektor aj Karnaughova mapa sú reprezentácie, ktorých veľkosť je 2ⁿ pričom N je počet premenných Booleovskej funkcie
 - Exponenciálna zložitosť je problematická už pre N > 20
- Rovnaký problém má aj BDD
- Pridanie jednej premennej znamená pridanie ďalšej úrovne v BDD
- Jedná sa o úplný strom
- Neefektívne
- Ako to zlepšiť?
 - Redukciou BDD

Redukcia BDD

- Počet uzlov by sme chceli minimalizovať
- Nie všetky uzly naozaj potrebujeme
- Odstránime redundantné (nadbytočné/zbytočné) uzly
- Redukcia exponenciálnej zložitosti až na lineárnu

Zlúčenie koncových uzlov

- Konzový uzol (list) je vždy len 0 alebo 1 (apoň v prípade jedno-výstupových Booleovských funkcií)
- Takže nám stačia len dva
- Zlúčime všetky jednotky dokopy a všetky nuly dokopy, upravíme pointre

Zlúčenie vnútorných uzlov

- Ak je nejaký uzol nadbytočný, odstránime aj ten
- Ako zistíme, že uzol je nadbytočný?
 - Buď nemá žiadnu pridanú hodnotu
 - Alebo už taký istý uzol (s tou istou funkcionalitou) existuje

Zlúčenie vnútorných uzlov

- Ak je nejaký uzol nadbytočný, odstránime aj ten
- Ako zistíme, že uzol je nadbytočný?
 - Buď nemá žiadnu pridanú hodnotu
 - Alebo už taký istý uzol (s tou istou funkcionalitou) existuje

Zlúčenie vnútorných uzlov

- Ak je nejaký uzol nadbytočný, odstránime aj ten
- Ako zistíme, že uzol je nadbytočný?
 - Buď nemá žiadnu pridanú hodnotu
 - Alebo už taký istý uzol (s tou istou funkcionalitou) existuje

Ako zistíme, že uzol je nadbytočný?

- Buď nemá žiadnu pridanú hodnotu
 - Kedy nemá žiadnu pridanú hodnoty?
 - Keď ľavý_potomok == pravý_potomok
 - Porovnávame ľavú polovicu funkcie s pravou
 - Porovnáme pointre na potomky
- Alebo už taký istý uzol (s tou istou funkcionalitou) existuje
 - Treba porovnať všetky dvojice uzlov medzi sebou a zistiť, či sú rovnaké
 - Stačí porovnávať len uzly v rámci jednej úrovne (jednej premennej)
 - Kedy sú 2 uzly rovnaké?
 - Bud' máme v uzle napísaný opis funkcie, ktorú uzol realizuje
 - Porovnáme priamo opisy oboch uzlov
 - Alebo zistíme, či ľavý_potomok(uzol_1) == ľavý_potomok(uzol_2) a zároveň pravý_potomok(uzol_1) == pravý_potomok(uzol_2)
- Pozor!!! Porovnávanie pointrov je použiteľné len vtedy, ak už nižšia úroveň bola celá zredukovaná (t.j. redukcia smerom zdola nahor)

Pravidlá redukcie BDD

 Typ I - odstránenie nadbytočných uzlov porovnávaním dvojíc

 Typ S - odstránenie zbytočných uzlov porovnaním jeho potomkov

Redukovaný a zoradený = ROBDD

- Majme napr. funkciu Y = x1.x2 + x3.x4 + x5.x6 + x7.x8
- Zvolíme nejaké poradie premenných
- ROBDD môže vyzerať takto

Redukovaný a zoradený = ROBDD

Alebo aj takto ...

Ako je to možné?

Poradie premenných

- Poradie premenných dokáže výrazne ovplyvniť výslednú veľkosť ROBDD (t.j. počet uzlov)
- Prirodzene, chceme počet uzlov čo najmenší

Optimálne poradie premenných

- Použitím optimálneho poradia premenných dostaneme najmenší možný počet uzlov
- Ale ako zistíme optimálne poradie premenných?
- Väčšinou sa to robí systémom pokus-omyl
 - Vyskúšame nejaké poradie a pre toto poradie vytvoríme ROBDD
 - Zapamätáme si pre dané poradie počet uzlov
 - Zmeníme poradie premenných a znovu zostrojíme ROBDD
 - Porovnáme počet uzlov, ak sa zlepšil, pamätáme si toto poradie ako doteraz najlepšie
 - Opakujeme
 - Lenže koľko-krát?

Možnosti výberu poradia premenných

- Brute-force vyskúšame všetky možné poradia premenných
 - Koľko ich je?
 - Máme N premenných, skúšame všetky permutácie, čiže N!
 - To je ale O(N!) realistické tak pre N = 10 alebo menej
- Náhodne náhodne vygenerujeme nejaké poradie (pomocou generátora náhodných čísel), X-krát opakujeme, X si zvolíme podľa toho, koľko času/úsilia sme ochotní tomu venovať
 - Problém opakovania toho istého poradia plytvanie
- Lineárne skúsime N možných poradí premenných, rotáciou premenných, napr. 12345, 23451, 34512, 45123, 51234
 - O(N) zložitosť, neopakujeme tie isté poradia
- Kvadratické podobné ako lineárne, len s kvadratickou zložitosťou
- Pokročilejšie metódy (napr. hillclimbing, simulated annealing, genetic algorithms, ...)

Multiplexorový strom

- Výsledný ROBDD môžeme použiť ako schému pre automatickú realizáciu (logickú syntézu) ľubovoľnej funkcie
- Výsledkom je kombinačný obvod (na čipe), ktorý dokáže realizovať zadanú Booleovsku funkciu
- Tento obvod sa nazýva multiplexorový strom
 - Strom multiplexorov (jednoduchých súčiastok)
- Mapovanie je 1:1
 - Každý uzol ROBDD sa transformuje na jeden 2kanálový MUX
 - Hrany medzi uzlami budú vodiče spájajúce MUX-y (rovnakým zapojením)
- Riadiace vstupy do MUX-u sú jednotlivé premenné Booleovskej funkcie

Multiplexorový strom

- Čím menej uzlov má BDD, tým menej multiplexorov potrebujeme na realizáciu obvodu
 - Menšia plocha čipu, lacnejší, spoľahlivejší, s nižšou spotrebou energie

■ Koreň BDD → výstup obvodu

■ Uzol → MUX

■ Hrana → vodič

Ďakujem za pozornosť