CSC240 Notes

Week 11

0.1 Languages

Definition. A language over Σ is a subset of Σ^* .

i.e. $L \subseteq \Sigma^*$ is a language of Σ .

Definition. (Kleene Star *)

$$L^* = \bigcup_{k \in \mathbb{N}} L^k$$

- $L^+ = \bigcup_{k \in \mathbb{Z}^+} L^k$ Notice that $L^* = L^+ \cup \{\lambda\}$, so $L^+ = L^*$ iff $\lambda \in L$.

 Let $L_0, L_1 \subseteq \Sigma^*$ be languages. Then $L_0 \cup L_1, L_0 \cap L_1$ are languages.
- The complement of a language $L \subseteq \Sigma^*$, $\bar{L} = \Sigma^* L$, is also a language

0.2**Regular Expressions**

Regular Expressions are a concise way to describe some language.

Definition. Given a finite alphabet Σ , R_{Σ} denotes the set of regular expressions over Σ . R_{Σ} is the smallest set of strings such that

- Base case: $\emptyset \in R_{\Sigma}, \lambda \in R_{\Sigma}$, for every $a \in \Sigma, a \in R_{\Sigma}$.
- Constructor cases: For every $r, r' \in R_{\Sigma}$,

$$(r+r') \in R_{\Sigma}, (r \cdot r') \in R_{\Sigma}, r^* \in R_{\Sigma}.$$

Given a regular expression