

8.反馈放大电路

反馈的基本概念

一、反馈的基本结构

二、反馈电路的分类

三、反馈类型的判断

四、负反馈放大器的性能

一、反馈的基本结构

反馈电路的基本结构

二、反馈电路的分类

反馈的分类

- ■直流反馈与交流反馈
- 反馈极性的分类:
 - 负反馈和正反馈
- 反馈组态的分类:
 - 输入端: 串联反馈与并联反馈
 - 负载端: 电压反馈与电流反馈

1直流反馈与交流反馈

❖<u>直流反馈</u>:存在于放大电路直流通路中的反馈,影响电路的直流性能,如静态工作点。

*<u>交流反馈</u>:存在于放大电路交流通路中的反馈,影响电<u>路的交流</u>性能,如

增益、输入输出电阻、带宽等.

直流反馈

2 正反馈、负反馈

正反馈: 反馈信号与输入信号同相,反馈对输入起增强的作用

负反馈: 反馈信号与输入信号反相, 反馈将抵消部分输入信号

3. 反馈电路的组态

a (负载端) 电压反馈与电流反馈

(a) 电压取样

(b) 电流取样

b (输入端) 串联反馈与并联反馈

c四种负反馈组态

d不同组态的信号特征

	1			
信号	组态形式			
	电压串联	电压并联	电流串联	电流并联
外部输入信号	电压	电流	电压	电流
输出信号	电压	电压	电流	电流
基本放大器 输入信号	电压	电流	电压	电流
反馈信号	电压	电流	电压	电流
基本放大器 传递函数	电压增益	跨阻	跨导	电流增益
反馈系数	电压比	跨导	跨阻	电流比

三、反馈类型的判断

1.反馈极性的分析

瞬时极性法:从输入端开始,沿着信号流向,标出某一时刻有关节点 电压变化的斜率(用"↑"、"↓",或"+"、"-"号表示)。

负反馈的实例

$$v_s \uparrow \rightarrow v_i \uparrow \rightarrow i_{c1} \uparrow \rightarrow v_{c1} \downarrow \rightarrow v_{c3} \uparrow \rightarrow v_o \uparrow \qquad i_s \uparrow \rightarrow i_i \uparrow \rightarrow i_{c1} \uparrow \rightarrow v_{c1} \downarrow \rightarrow v_{e2} \downarrow \rightarrow i_f \downarrow - i_i \downarrow \leftarrow i_{c1} \downarrow \rightarrow v_{c2} \downarrow \rightarrow i_f \downarrow - i_{c1} \downarrow \rightarrow v_{c2} \downarrow \rightarrow i_f \downarrow - i_{c2} \downarrow \rightarrow i_f \downarrow - i_{c1} \downarrow \rightarrow v_{c2} \downarrow \rightarrow i_f \downarrow - i_{c2} \downarrow \rightarrow i_f \downarrow - i_{c1} \downarrow \rightarrow v_{c2} \downarrow \rightarrow i_f \downarrow - i_{c2} \downarrow \rightarrow i_f \downarrow - i_f \downarrow$$

$$\begin{array}{c}
i_s \uparrow \to i_i \uparrow \to i_{c1} \uparrow \to v_{c1} \downarrow \to v_{e2} \downarrow \to i_f \downarrow \\
i_i \downarrow \longleftarrow \\
\end{array}$$

正反馈的实例

2.1技能:

(输出端) 电压反馈与电流反馈的判定

判断方法: 负载短路法

将<mark>负载</mark>短路(未接负载时输出对地短路),反馈量为零— —电压反馈。

将负载短路,反馈量仍然存在——电流反馈。

2.2技能:

(输入端) 串联反馈与并联反馈

A.由反馈网络在放大电路输入端的连接方式判定

串联:输入以电压形式求和(KVL) $-v_i+v_{id}+v_f=0$ 即 $v_{id}=v_i-v_f$

并联:输入以电流形式求和 (KCL) i_i - i_{id} - i_{f} =0 即 i_{id} = i_i - i_f

B.由信号在输入端的连接方式判定

并联: 反馈量x;和输入量x;接于同一输入端。

串联:反馈量x_i和输入量x_i接于不同的输入端。

判例: 判断电路中的级间交流反馈是串联反馈还是并联反馈

并联反馈

判例: 判断电路中的级间交流反馈是串联反馈还是并联反馈

3.1 负反馈具体电路

绿色表示电流

,红色表示电压

电压串联负反馈

电流并联负反馈

3.2 负反馈具体电路

电流串联负反馈

电压并联负反馈

3.3 集成运放构成的负反馈电路

23