修士論文

2領域成長界面の実現と界面ゆらぎの解析

竹内研究室 伊藤 康文

2018年2月15日

目次

- 1. 研究背景
- 2. 研究目的
- 3. 実験
- 4. 数値シミュレーション
- 5. まとめ

界面成長

身近にありふれた非平衡現象である

なぜ重要なのか

- → スケーリング則
- ➡ 普遍性・普遍クラス

スケーリング則と普遍クラス

スケール変換

$$t \to bt$$

$$x \to b^{1/z} x$$

$$\delta h \to b^{\beta} \delta h$$

の下で統計的に不変

スケーリング指数 β ,zの値によって普遍クラスに分類される

Kardar-Parisi-Zhang 普遍クラス

Kardar-Parisi-Zhang (KPZ) 方程式

$$\frac{\partial}{\partial t}h(x,t) = \nu \nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \sqrt{D}\eta(x,t)$$

$$eta=rac{1}{3},\quad z=rac{3}{2}$$
 1+1 次元

実験系

理論モデル

バクテリアコロニー

遅い紙の燃焼 液晶乱流

非対称単純排他過程 多核成長モデル

Kardar-Parisi-Zhang 普遍クラス

$$h \simeq v_{\infty}t + \frac{(\Gamma t)^{1/3}\chi}{\phi_{\mathfrak{S}}}$$

 $v_{\infty}, \; \Gamma$:系依存パラメータ

 χ :確率変数

空間相関関数

$$C_{\rm s} := \langle h(x_0 + x, t)h(x_0, t) \rangle - \langle h(x_0 + x, t) \rangle \langle h(x_0, t) \rangle$$

理論結果

	ゆらぎの分布	空間相関関数
平面界面	GOE Tracy-Widom 分布	Airy ₁ 相関
円形界面	GUE Tracy-Widom 分布	Airy2 相関

Tracy-Widom分布:

ガウス型ランダム行列の最大固有値分布

液晶乱流とKPZ普遍クラス

液晶電気対流系

乱流状態

実験的証拠

空間相関関数 $C_{\rm s}'(\zeta) \equiv C_{\rm s}(I) / (\Gamma I)^{2/3}$ 7.0 8.0 8.0 8.0 Circular, Airy,

 $\zeta \equiv (Al/2)(\Gamma t)^{-2/3}$

Flat, Airy

 $^{0}_{0}$

界面形状に応じた普遍サブクラス構造

KPZ半空間問題

ガウス型ランダム行列の基本タイプ

先行理論研究

半円界面 + 境界で正の傾き ↓ 境界でGSE

しかし、 実験系で境界条件を 制御するのは困難

研究目的

2領域界面成長

- 系を 2 領域に分割
- 成長速度の異なる界面を生成

2領域界面成長を実現し、半空間問題との関係を調べる

実験

フォトリソグラフィ

液晶電気対流系を2分割する方法

紫外線に感光する 化学物質を用いて 膜電極を加工

2領域界面の実現

300Hz x3 speed

1 mm

22 V 24 V

実験

界面の平均形状

(1165サンプル)

境界で正の傾きをもつ

界面の平均形状

クラスターの侵入

なめらかにする効果

スケーリング指数

$$\delta h \sim \sqrt{\langle h(\theta,t)^2 \rangle_{\rm c}} \sim t^{\beta} \qquad \beta = \frac{1}{3} \quad \text{(KPZ)}$$

$$10^2 \qquad \qquad t^{1/3} \qquad \qquad t^{1/3} \qquad \qquad \theta = 0^\circ \qquad \qquad \theta = 30^\circ \qquad \qquad \theta = 60^\circ \qquad \qquad \theta = 60^\circ \qquad \qquad \theta = 90^\circ \qquad \qquad \delta = 90^\circ \qquad \qquad t({\rm s})$$

境界でもKPZクラスの成長

ゆらぎの分布

誤差が大きく、分布が決定できない

ゆらぎの分布

低次のキュムラントの比

$$rac{\langle h^2
angle_{
m c}}{(\langle h
angle_{
m c} - \underline{v_{\infty}} t)^2} \simeq rac{\langle \chi^2
angle_{
m c}}{\langle \chi
angle_{
m c}^2}$$
 実験データから見積もる

 $v_{\infty} = 37.84(40) \, \mu \text{m/s}$

(2295サンプル)

分布を決定するには高い精度で v_{∞} を見積もる必要

実験

本研究の課題点

サンプル数が少ない

 v_∞ を高い精度で見積もる必要

等方性の高い界面の生成

数値 シミュレーション

モデルの定義

離散多核成長モデル (Polynuclear growth: PNG)

$$h(x, t+1) = \max\{h(x-1, t), h(x, t), h(x+1, t)\} + \omega(x, t+1)$$

$$Prob[\omega(x,t) = k] = \begin{cases} (1 - q_{L})q_{L}^{k} & x < 0\\ (1 - q_{R})q_{R}^{k} & x \ge 0 \end{cases}$$

からいい シミュレーション

リスケール

このモデルのメリット

・・・系に依存するパラメータが厳密にわかっている

$$h \simeq v_{\infty}t + (\Gamma t)^{1/3}\chi$$

$$v_{\infty} = \frac{\sqrt{q}}{1 - \sqrt{q}}, \quad \Gamma = \frac{\sqrt{q}(1 + \sqrt{q})}{2(1 - \sqrt{q})^3}$$

リスケールした界面高さ

$$H(X,t) := \frac{h(x = AX, t) - v_{\infty}t}{(\Gamma t)^{1/3}} \simeq \chi$$

本研究では $q=q_{
m R}$

数値 シミュレーション

2領域界面の実現

実験と同様の界面形状が実現!

数値 シミュレーション

ゆらぎの分布

2領域界面では半空間のゆらぎが出現!

クロスオーバー

リスケール時間 $(\Delta q)^{\mu} \cdot t$ でプロット $\Delta q := q_{\rm R} - q_{\rm L}$

 $\mu = 1.4 \pm 0.1$ でプロットしたときに1本に乗る

数值 シミュレーション

クロスオーバー

 $t \ll t_{\rm c}$

ほぼ全空間

本源的な高さの差 $\Delta vt \sim \Delta qt$

 $t\gg t_{\rm c}$

ほぼ半空間

ゆらぎの振幅の大きさ $(\Gamma t)^{1/3}$

$$\Delta qt \sim (\Gamma t)^{1/3}$$

$$(\Delta q)^{3/2} \cdot t \sim 1$$

まとめ

実験とシミュレーションを用いて、 2領域問題と半空間問題の関係を調べた

実験

- 液晶電気対流系を2分割し、2領域界面成長を実現
- 界面の平均形状から、境界で傾きをもつ
- 境界でKPZスケーリング則が見えた

シミュレーション

- 2領域離散多核成長モデルを調べた
- 境界でのゆらぎは漸近的に半空間の結果に
- 全空間→半空間のクロスオーバーはKPZの指数から説明
- 実験でどこまで見えるか