CE232 DIGITAL SYSTEM

Topic 2. Boolean Algebra and Canonical Form

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

2.1 Boolean Algebra

2.2 Sum of Product

2.4 Basic
Canonical Form

- Set of rules used to simplify the given logic expression without changing its functionality – should be check using truth table
- Used when number of variables are less (1,2,3 variable. More than that, use K-MAP Method)
- "Laws of Boolean" use to both reduce and simplify a complex Boolean expression in an attempt to reduce the number of logic gates required

- The variables used in Boolean Algebra only have one of two possible values, a logic "0" and a logic "1"
- However, expression can have an infinite number of variables all labelled individually

For example, variables A, B, C etc, giving us a logical expression of A + B = C, but each variable can ONLY be a 0 or a 1.

Truth Table

- Truth table shows relationship, in tabular form, between the input values and the result of a specific Boolean operator or function on the input variables
- Some operator → AND, OR, NOT

AND OPERATOR

- Also known as a Boolean product
- The Boolean expression xy is equivalent to the expression x * y and is read "x and y."

Input	ts	Outputs
X	y	xy
0 (0	0
0	1	0
1 (0	0
1	1	1

OR OPERATOR

- Often referred to as a Boolean sum
- The expression x+y is read"x or y"

Inpu	ts	Outputs
X	y	x+y
0	0	0
0	1	1
1	0	1
1	1	1

NOT OPERATOR

- Both \bar{x} and x are read as "NOT x
- The rule of precedence for Boolean operators give NOT top priority, followed by AND, and then OR

Inputs	Outputs
X	\bar{x}
0	1
1	0

Example

Truth table for F(x, y, z) = x + y'z

Ir	npu	ts			Outputs
X	У	Z	ÿ	ÿΖ	$x + \bar{y}z = F$
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

Boolean Laws/Identities

 To simplified Boolean expression

Identity Name	AND Form	OR Form	
Identity Law	1x = x	0+x=x	
Null (or Dominance) Law	0x = 0	1+x = 1	
Idempotent Law	XX = X	X+X=X	
Inverse Law	$x\overline{x} = 0$	$x + \overline{x} = 1$	
Commutative Law	xy = yx	x+y=y+x	
Associative Law	(xy)z=x(yz)	(x+y)+z=x+(y+z)	
Distributive Law	x+yz=(x+y)(x+z)	x(y+z) = xy + xz	
Absorption Law	X(X+Y)=X	x+xy=x	
DeMorgan's Law	$(\overline{xy})=\overline{x}+\overline{y}$	$(\overline{X+Y}) = \overline{X}\overline{Y}$	
Double Complement Law	$\bar{x}=x$		

 DeMorgan's law provides an easy way of finding the complement of a Boolean function.

$$(\overline{xy}) = \overline{x} + \overline{y}$$
 and $(\overline{x+y}) = \overline{x}\overline{y}$

X	у	(xy)	(\overline{xy})	\overline{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Boolean Simplification

- There is no defined set of rules for using these identities to minimize a Boolean expression: it is simply something tat comes with experience
- To prove the equality of two Boolean expressions, you can also create the truth tables for each and compare. If the truth tables are identical, the expressions are equal.

Example.

Proof	Identity Name		
$(x+y)(\overline{x}+y) = x\overline{x}+xy+y\overline{x}+yy$	Distributive Law		
$= 0+xy+y\overline{x}+yy$	Inverse Law		
$= 0 + xy + y\overline{x} + y$	Idempotent Law		
$= xy + y\overline{x} + y$	Identity Law		
$= y(x+\overline{x})+y$	Distributive Law (and Commutative Law)		
= y(1)+y	Inverse Law		
= y+y	Identity Law		
= <i>y</i>	Idempotent Law		

F(x, y, z) = x' + yz' and its complement, F'(x, y, z) = x(y' + z)

Complements

x	у	z	уz	x̄+yz̄	$\bar{y}+z$	$x(\bar{y}+z)$
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	0	1	1	0
1	0	0	0	0	1	1
1	0	1	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	0	1	1

2.2 Sum of Product

2.2 Sum of Product

SoP is a group of product terms, summed together

PRODUCT TERMS

AB + AB'C + BC

SUM

Also called disjunctive normal form (DNF)

2.3 Product of Sum

2.3 Product of Sum

PoS is group of sum terms multiplied together

Also called as Conjunctive Normal Form (CNF)

- A Boolean function can be uniquely described by its truth table, or in one of the canonical forms.
- Two dual canonical forms of a Boolean function are available:
 - Standard SoP (SSOP) or Sum of Minterms
 - Standard PoS (SSOP) or Sum of Maxterms

SSOP

- Each Product term contains all the variables of the function
- Example:

$$f(A, B, C) = A'BC + ABC' \rightarrow \text{SOP and SSOP Form}$$

 $f(A, B, C) = AB + BC'A' \rightarrow \text{SOP but not SSOP Form}$

SPOS

- Each sum terms contains all the variables of the function
- Example:

$$f(A,B,C) = (A+B'+C) \cdot (A'+B'+C') \rightarrow POS$$
 and SPOS form $f(A,B,C) = (A+B) \cdot (A'+B+C') \rightarrow POS$ but not SPOS Form

Now your turn!

- $\bullet \ f(A,B) = A \cdot (A+B')$
- f(A,B,C,D) = A'B'CD + ABC
- f(A,B,C) = ABC' + AB'C + A'B'C'
- $f(A,B,C) = (A+B'+C') \cdot (A'+B+C')$

MINTERMS AND MAXTERMS

- MINTERMS is each individual term in SSOP
- MAXTERMS is each individual term in SPOS

Example of 2 variables minterms and maxterms

Varia A ar	able nd B	Minterms SSOP	Maxterms SPOS
0	0	A' B' $ ightarrow m_0$	$A + B \rightarrow M_0$
0	1	$A' B \rightarrow m_1$	$A + B' \rightarrow M_1$
1	0	A B' $\rightarrow m_2$	$A' + B \rightarrow M_2$
1	1	$A B \rightarrow m_3$	$A' + B' \rightarrow M_3$

Index keypoints

• For Minterms:

"1" → "Not Complemented"

"0" → "Complemented"

• For Maxterms:

"0" → "Not Complemented"

"1" \rightarrow "Complemented".

Example of 3 variable minterms and maxterms

			M	interms	Maxte	erms
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Example of 4 variables minterms and maxterms

Index	Binary 1	Minterm	Maxterm
i	Pattern	$\mathbf{m_i}$	$\mathbf{M_{i}}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\overline{c}+\overline{d}$
5	0101	abcd	$a+\overline{b}+c+\overline{d}$
7	0111	?	$a + \overline{b} + \overline{c} + \overline{d}$
10	1010	abcd	$\bar{a} + b + \bar{c} + d$
13	1101	abcd	?
15	1111	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Write SSOP using minterms

$$f(A,B) = AB + A'B$$

$$f(A,B) = \sum_{i=1}^{n} m(1,3)$$

Write SSOP using minterms

In general, you can write the equation as

$$y = f(x_{n-1}, \dots, x_0) = \sum_{\text{for all } j \text{ such that } y_j = 1} m_j$$

Write SPOS using maxterms

$$f(A,B) = (A+B) + (A'+B)$$
$$f(A,B) = \prod M(0,2)$$

Write SPOS using maxterms

In general, you can write the equation as

$$y = f(x_{n-1}, \dots, x_0) = \prod_{\text{for all } j \text{ such that } y_j = 0} M_j$$

Convert SOP to SSOP

Steps

- Identify the missing variables in product terms
- Multiply with the missing variables + its complements
- Neglect the repeated terms

Example

$$f(A,B,C) = AB + AB'C + BC$$

$$\downarrow \qquad \qquad \downarrow$$
Missing C Missing A
$$= AB (C + C') + ABC' + BC(A + A')$$

$$= ABC + ABC' + ABC' + ABC + BCA'$$

$$= ABC + ABC' + A'BC$$

$$= \sum m(7,6,3)$$

Convert POS to SPOS

Steps

- Identify the missing variables in product terms
- Add with the missing variables and its complements separately
- Neglect the repeated terms

Example

Convert SSOP to SPOS

$$f(A,B,C) = \sum m (0,1,3,4,7)$$

$$\overline{f(A,B,C)} = \prod_{010 \ 101 \ 110} M(2,5,6)$$

$$= (A+B'+C).(A'+B+C').(A'+B'+C)$$

Convert SSOP to SPOS

Example of POS to SSOP :
$$f(A,B) = A(A+B)$$

In SPOS form = $(A+B)$. $(A+B')$. $(A+B) = (A+B)$. $(A+B')$
 00 01
= $\prod_{10,11} M(0,1)$

In SSOP form =
$$(AB') + (AB)$$

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, **Chapter 2**

Next Topic: Logic Gates