

Ценеров диод

Въведение

Ценеровият диод е специфичен силициев диод, оптимизиран да работи в областта на **електрически пробив**.

При настъпване на пробив, напрежението U_Z върху ценеровия диод остава почти постоянно независимо от промяната на тока през диода.

Приложения

Стабилизатор на напрежение.

Защита от пренапрежение.

Символ на ценеров диод

Ценеровият диод има два електрода – анод и катод. *p*-областта се нарича анод, а *n*-областта - катод.

За да работи в областта на пробив, катодът на ценеровия диод трябва да е положително поляризиран спрямо анода му, т.е. диодът трябва да е в обратно свързване.

Принцип на действие

Когато се достигне пробивното напрежение, в обеднения слой на прехода, се получават голям брой неосновни токоносители и диодът започва да провежда значителен ток.

Появата на множеството неосновни токоносители се дължи на два механизма, известни като лавинен и ценеров пробив.

Лавинен пробив

Лавинен пробив настъпва в широки *pn* преходи и се характеризира с **пробивно напрежение** над **7V**.

Ценерови диоди, използващи този механизъм на пробив са известни като високоволтови.

Ценеров пробив

Ценеров пробив настъпва в тесни *pn* преходи и се характеризира с пробивно напрежение по-малко от **5V**.

Ценерови диоди, използващи този механизъм на пробив са известни като нисковолтови.

VA характеристика

При **право включване** той се отпушва при 0.7 V, точно като Si диод с p-n преход.

При обратно включване обратният ток преди пробива е много малък.

В областта на пробив се наблюдава рязко нарастване на тока при оставащо почти постоянно напрежение.

Област на пробив

Ценеровият диод поддържа постоянно напрежение при значителна промяна на входното напрежение и тока през дода.

В областта на пробив ценеровият диод действа като източник на постоянно напрежение с големина U_Z .

Товарна права и работна точка

Товарната права може да се построи с отрезите си от хоризонталната и вертикална ос на характеристиката в областта на пробив.

Точката на пресичане на товарната права с волтамперната характеристика определя работната точка Q.

Прагов модел

1. Като използвате прагов модел на ценеров диод, определете токовете, падовете на напрежение и разсейваните мощности върху резистора и диода.

$$Uz = 8V$$
, $U1 = 10V$, $R1 = 2k\Omega$

- 1) Източникът на напрежение U1, диодът D1 и резисторът R1 са свързани последователно => през тях тече еднакъв ток I.
- 2) Диодът е включен в обратна посока и U1 > Uz => диодът е в режим на пробив и Ud = Uz.
- 3) От законът на Кирхоф за напреженията => U1 = Ur + Ud; Ur = U1 Ud = 10V 8V = 2V
- 4) От законът на Ом => I = Ur / R1 = 2V / 1kOhm = 2mA
- 5) Мощността, разсейвана върху резистора е Pr = Ur . I = 2V . 2mA = 4mW
- 6) Мощността, разсейвана върху диода е Pd = Ud . I = 8V . 2mA = 16mW

Елемент	U	I	Р	
D1	8V	2mA	16mW	
R1	2V	2mA	4mW	

2. Като използвате прагов модел на ценеров диод, определете токовете, падовете на напрежение и разсейваните мощности върху резистора и диода.

$$Uz = 10V$$
, $U1 = 8V$, $R1 = 2k\Omega$

- 1) Източникът на напрежение U1, диодът D1 и резисторът R1 са свързани последователно => през тях тече еднакъв ток I.
- 2) Диодът е включен в обратна посока и U1 < Uz => диодът е запушен и през него не тече ток, т.е. I = 0A.
- 3) От законът на Ом => Ur = R1 . I = 1kOhm . 0 = 0V
- 4) От законът на Кирхоф за напреженията => U1 = Ur + Ud; Ud = U1 Ur = 8V 0V = 8V
- 5) Мощността, разсейвана върху резистора е Pr = Ur . I = 0W
- 6) Мощността, разсейвана върху диода е Pd = Ud . I = 0W

Елемент	U	I	Р
D1	8V	0	0
R1	0	0	0

Какво ще покава волтметъра, ако U1=10V, R1=100Ohm, а D1 е ценеров диод с Uz=8V.

- 10V
- 8V
- 2V
- OV

Какво ще покава волтметъра, ако U1=8V, R1=100Ohm, а D1 е ценеров диод с Uz=10V.

- 10V
- 8V
- 2V
- OV

Параметри – напрежение на пробив

Ценеровите диоди се характеризират с напрежение на пробив U_Z , което се задава за конкретен ток I_Z .

Пробивното напрежение U_Z е от порядъка на няколко волта до няколко стотици волта. За всеки ценеров диод се задават и толерансите за ценеровото напрежение.

• Characteristic $(T_a = 25^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Zener Voltage	V_Z	$I_Z = 2mA$	34.00	-	38.00	V
Reverse Current	IR	V _R = 25.0V	-	-	0.1	μA
Dynamic Impedance	Z_{Z}	$I_Z = 2mA$	-	-	90	Ω
Temperature Coefficient	YZ	$I_Z = 2mA$	28.5	-	34.0	mV/°C

Динамично съпротивление r_z

$$r = \frac{dU_Z}{dI_Z} \approx \frac{U_{Z2} - U_{Z1}}{I_{Z2} - I_{Z1}}$$

Динамичното (променливотоково) \mathbf{c} \mathbf{c} \mathbf{n} $\mathbf{n$

Колкото по-малко е динамичното съпротивление, толкова характеристиката е по-стръмна и диодът е по-добър като стабилизатор на напрежение.

Сравнение на диодите

- Ф Ценеров пробив U_Z < 5V</p>
- Ф Лавинен пробив U₇ > 6V

Ценеровият пробив настъпва при обратно напрежение по-малко от 5V.

Лавиният пробив изисква обратно напрежение над 6V.

Динамичното съпротивление за диоди с лавинен пробив е по-малко от това при ценеров пробив.

Температурен коефициент

$$TKU_{z}[V/^{\circ}C] = \frac{U_{Z2} - U_{Z1}}{T_{2} - T_{1}}$$

$$I_Z$$
= const

$$TKU_{z}[\%/^{\circ}C] = \frac{U_{Z2} - U_{Z1}}{(T_{2} - T_{1})U_{z}}$$

Температурният коефициент на напрежението на пробив TKU_Z отчита влиянието на температурата върху стойността на пробивното напрежение в mV/°C или %/ °C.

Той може се дефинира и с процентното изменение на напрежението U_Z спрямо промяната на температурата.

Влияние на температурата

Figure 4. Typical Breakdown Diode Characteristics. Note Effects of Temperature for Each Mechanism

Максимална мощност

• Absolute Maximum Rating $(T_a = 25^{\circ}C)$

Parameter	Symbol	Limits	Unit
Power dissipation	P_{D}	150	mW
Junction temperature	Tj	150	°C
Storage temperature	T _{stg}	- 55 ∼ 150	င

Мощността, отделена в ценеровия диод, работещ в режим на пробив е $P_Z = U_z I_z$.

Максимално допустимата мощност P_{Zmax} е най-голямата мощност, разсейвана от p-n прехода, при която не възниква топлинен пробив.

Докато отделената мощност P_Z не надвиши максимално допустимата мощност $P_{Z_{max}}$ ценеровият диод работи в областта на електрически пробив без да се разруши.

Максимална мощност

Токоограничаващ резистор

Предназначението на токоограничаващия резистор R1 е да поддържа тока през ценеровия диод, такъв че $P_Z = U_z I_z < P_{Zmax}$

В противен случай ценеровият диод ще се разруши подобно на всеки елемент, който надвиши максимално допустимата си мощност.

Приложения – стабилизатор

Товарът R_{LOAD} се свързва паралелно на ценеровия диод. Ценеровият диод поддържа **постоянно напрежение** върху товара $U_{LOAD} = U_Z$ независимо от промениtе в захранващия токоизточник или в товарното съпротивление.

Съпротивлението *R1* е токоограничаващо съпротивление.

Условия за нормална работа

Критични стойности на токоограничаващия резистор

Граници на областта на пробив

За да се поддържа постоянно изходно напрежение ценеровият диод **трябва да** остава в областта на пробив при всички условия на работа — т.е. токът да е поголям от I_{zmin} и по-малък от I_{zmax} .

Токоограничаващият резистор трябва да е между R_{\min} и R_{\max} .

Изчисляване на R_{min} и R_{max}

Критични стойности на токоограничаващия резистор Граници на областта на пробив

Най-лош случай настъпва при минимално напрежение на източника и максимален товарен ток – тогава токът през ценеровия диод става по-малък от $I_{Z\min}$. Последователното съпротивление R_{\max} се изчислява да поддържа стойността на I_Z по-висока от $I_{Z\min}$.

Аналогично R_{\min} трябва да поддържа I_Z по-малко от $I_{Z\max}$.

Ограничител на напрежение

Ограничителят на напрежение отрязва напреженията на сигнала над и под специфицирано ниво. Той е полезен не само за ограничаване нивото на сигнала, но и за защита от пренапрежение на схемата, получаваща сигнала.

По време на положителния полупериод, когато входното напрежение надвиши напрежението на пробив U_Z на ценеровия диод, диодът D1 работи в режим на пробив и ограничава изходния сигнал на нивото на ценерово напрежение U_Z .

За напрежения по-малки от U_Z диодът е в обратно включване, действа като отворен ключ и изходното напрежение следва входното.

По време на отрицателния полупериод, ценеровият диод е в право включване, действа като нормален диод и ограничава изходното напрежение до обичайната стойност -0,7 V.

Едностранен ограничител

При положителен входен сигнал (от 0V до 10V), където V1< U_Z , ценеровият диод е в обратно включване, действа като отворен ключ и изходното напрежение следва входното напрежение.

Когато входното напрежение достигне напрежението на пробив U_Z и е повисоко от него, ценеровият диод работи в режим на пробив и изходното напрежение се ограничава до U_Z = 10V.

Когато входното напрежение стане по-малко от Uz, изходното напрежение отново следва входа, защото диодът е в обратно включване.

Двустранен ограничител

През положителния полупериод, диодът Z_1 работи в областта на пробив, а диодът Z_2 е включен в права посока. Нивото, на което се ограничава изходният сигнал, се формира от сумата на пробивното напрежение на ценеровия диод U_{Z_1} и 0.7V на право свързания диод Z_2 или + (U_{Z_1} + 0.7).

През отрицателния полупериод диодът Z_2 работи в областта на пробив, диодът Z_1 е в право свързване и нивото се ограничава на $-(U_{Z2}+0.7)$.

Пример

През положителния полупериод D1 е в пробив, а диодът D2 е в право включване. Изходното напрежение се ограничава до $U_{Z1} + U_o = 10 + 0.7 = +10.7$ V.

По време на отрицателния полупериод D2 е в пробив, D1 – в право включване и изходното напрежението се ограничава до -10.7V

Когато входното напрежение е по-малко от напрежението на пробив, съответният ценеров диод е в обратно включване, действа като отворен ключ и и изходното напрежение следва входното.

