Statistical population genetics

Lecture 6: Mutations

Xavier Didelot
Dept of Statistics, Univ of Oxford
didelot@stats.ox.ac.uk

Occurrence of mutations

- In this lecture we discuss the **occurrence** of mutations without worrying about their **effect**.
- This is possible because we assume that mutations are **neutral**, ie. they do not change the probabilities of death and reproduction.
- Two models for the **effect** of mutations will be considered in the next two lectures: the **infinite alleles model** and the **infinite sites model**.

Occurrence of mutations

Definition (Wright-Fisher model with mutation).

In the Wright-Fisher model with mutation, mutations occur with probability u on offspring between generations.

- The number of mutations occurring in the whole population at each generation is distributed as Binomial(M, u).
- A similar definition could be given for the Moran model with mutation, with the same consequences in the coalescent.

Occurrence of mutations

Mutations in the coalescent

Theorem (Mutations in the coalescent model).

In the coalescent model, mutations happen as a Poisson process on the branches of the coalescent tree with rate $\theta/2 = Mu$.

Mutations in the coalescent

Proof.

• If we consider a single branch of the coalescent model, the time T (in units of M generations) before the first mutation satisfies:

$$\mathbb{P}(T > t) = (1 - u)^{tM} = \left(1 - \frac{\theta}{2M}\right)^{tM} \xrightarrow[M \to \infty]{} \exp(-\theta t/2)$$

- Thus T is exponentially distributed with parameter $\theta/2 = Mu$.
- Mutations occur independently on the branches of the coalescent since they occur independently on disjoint lineages of the Wright-Fisher model.
- Mutations therefore occur as a Poisson process on the branches of the coalescent tree. □

Mutations in the coalescent

Simulation algorithm

- The number of mutations occurring on a branch of length l is **Poisson** distributed with mean $\theta l/2$.
- The following algorithm can be used to **simulate** the coalescent model with mutation:

Algorithm (Coalescent with mutations).

- 1. Simulate a coalescent tree using the algorithm without mutations;
- 2. For each branch of length l, draw the number of mutations from $Poisson(\theta l/2)$;
- 3. For each branch the times of the mutations are chosen uniformly on the branch.

Coalescence and mutation

Theorem (Combining coalescence and mutation).

In the coalescent with mutation, events (either mutation or coalescence) occur at rate $k(k-1+\theta)/2$ where k is the number of lineages. When an event happen, it is a mutation with probability $\theta/(\theta+k-1)$ and a coalescence with probability $(k-1)/(\theta+k-1)$.

- Combining mutation and coalescence is extremely useful to establish recursion equations in the coalescent.
- We will see many examples of this!

Coalescence and mutation

Proof.

• If X and Y are exponentially distributed with parameters λ_1 and λ_2 , min(X, Y) is exponentially distributed with parameter $\lambda_1 + \lambda_2$:

$$\mathbb{P}(\min(X, Y) < t) = \mathbb{P}(X < t) + \mathbb{P}(X > t)\mathbb{P}(Y < t) = 1 - \exp(-(\lambda_1 + \lambda_2)t)$$

- Thus the waiting time before the first event (either coalescence or mutation) is Exponential $(k(k-1)/2 + \theta k/2)$).
- Furthermore the probability that each event is either a mutation or a coalescence follows from:

$$\mathbb{P}(X < Y) = \int_0^\infty f_X(x)(1 - F_Y(x)) dx$$
$$= \int_0^\infty \lambda_1 \exp(-\lambda_1 x) \exp(-\lambda_2 x) dx = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

Simulation algorithm

The following algorithm can be used to **simulate** the coalescent model with mutation:

Algorithm (Coalescent with mutations version 2).

- 1. Start with k = n lines where n is the sample size;
- 2. Wait an exponentially distributed amount of time with parameter $k(k-1+\theta)/2$;
- 3. With probability $(k-1)/(k-1+\theta)$ the event is a coalescence event, otherwise it is a mutation event;
- 4. If the event is a coalescent event, choose a pair of lines randomly and join them. Decrease the value of k;
- 5. If the event is a mutation, choose uniformly a line to mutate;
- 6. If k > 1, go back to step 2.

The following theorem was first obtained by Watterson (1975) and later by Tavaré (1984) using coalescent theory.

Theorem (Mutations on a coalescent tree).

Let S_n denote the number of mutations on a coalescent tree of n genes. Then:

$$\mathbb{P}(S_n = s) = \frac{n-1}{\theta} \sum_{i=1}^{n-1} (-1)^{i-1} \binom{n-2}{i-1} \binom{\theta}{i+\theta}^{s+1}$$

Proof.

- On each branch of length l, the number of mutations is Poisson distributed with rate $\theta l/2$.
- Furthermore, the convolution of Poisson distributions with rates $\lambda_1, ..., \lambda_m$ is a Poisson distribution with rate $\sum_{i=1}^m \lambda_i$.
- Therefore, S_n is Poisson distributed with parameter $\theta T_{\text{total}}/2$. Integrating over the distribution of T_{total} gives:

$$\mathbb{P}(S_n = s) = \int_{t=0}^{\infty} \frac{(\theta t/2)^s}{s!} e^{-\theta t/2} \mathbb{P}(T_{\text{total}} = t) dt$$

• Injecting the formula for the distribution of $T_{\rm total}$ gives the required result.

- Another approach is to use the recursive form of the coalescent with mutations.
- The s mutations can occur in two ways: with the last event being either a coalescence or a mutation.
- If the last event was a mutation, then just before that we had n lineages and s-1 mutations in the tree.
- If the last event was a coalescence, then just before that we had n-1 lineages and s mutations in the tree.
- We deduce from this the following recursion Equation:

$$\mathbb{P}(S_n = s) = \frac{n-1}{n-1+\theta} \mathbb{P}(S_{n-1} = s) + \frac{\theta}{n-1+\theta} \mathbb{P}(S_n = s-1)$$

• This can be solved with limiting condition $\mathbb{P}(S_1 = 0) = 1$ to give the desired result.

Mean and variance

Theorem (Mean and variance of the number of mutations).

Let S_n denote the number of mutations on a coalescent tree of n genes. Then:

$$\mathbb{E}(S_n) = \theta \sum_{i=1}^{n-1} \frac{1}{i}$$

$$\text{var}(S_n) = \theta \sum_{i=1}^{n-1} \frac{1}{i} + \theta^2 \sum_{i=1}^{n-1} \frac{1}{i^2}$$

Mean and variance

Proof.

- The mean and variance of S_n can be calculated from the probability density function above.
- It is also possible to use the fact that S_n is Poisson distributed with parameter $\theta T_{\rm total}/2$.
- We can also use the fact that $S_n = \sum_{i=2}^n s_i$ where s_i is the number of mutations occurring when there are i lineages. We have:

$$\mathbb{P}(s_i = 0) = \frac{i-1}{\theta + i - 1} \text{ and } \mathbb{P}(s_i = s > 0) = \frac{\theta}{\theta + i - 1} \mathbb{P}(s_i = s - 1)$$

Mean and variance

• By induction this leads to:

$$\mathbb{P}(s_i = s) = \left(\frac{\theta}{\theta + i - 1}\right)^s \frac{i - 1}{\theta + i - 1}$$

- This is a shifted geometric distribution with parameter $p = (i-1)/(\theta+i-1)$, so that the mean is (1-p)/p and the variance $(1-p)/p^2$.
- The mean of s_i is therefore equal to $\theta/(i-1)$ and the variance to $\theta/(i-1) + \theta^2/(i-1)^2$.
- Summing from i = 2 to n gives the result.

Example

- Dorit *et al.* (1995) **sequenced** a sample of 38 ZFY genes from the human population.
- They observed **no mutation** between the sequences.
- Donnelly $et\ al.$ (1996) used this data in a **Bayesian coalescent** framework to estimate T, the TMRCA of the human population.

Example

- Let T_i denote the time during which i ancestral lines are present and S_i the number of mutations occurring during that time.
- We have $T = \sum_{i=2}^{38} T_i$ and $\forall i \in [2..38], S_i = 0$.
- We want to compute $\mathbb{E}(T|S=0)$.
- The prior distribution of T_i is exponential with parameter i(i-1)/2:

$$\mathbb{P}(T_i = t) = \frac{i(i-1)}{2} \exp\left(\frac{-ti(i-1)}{2}\right)$$

• Furthermore:

$$\mathbb{P}(S_i = 0 | T_i = t) = \exp\left(\frac{-t\theta i}{2}\right)$$

Example

• Using Bayes' rule, we get:

$$\mathbb{P}(T_i = t | S_i = 0) = \frac{\mathbb{P}(S_i = 0 | T_i = t) \mathbb{P}(T_i = t)}{\mathbb{P}(S_i = 0)} \propto \exp\left(\frac{-ti(\theta + i - 1)}{2}\right)$$

• Thus the conditional distribution of $T_i|S_i=0$ is exponential with mean $2/(i(\theta+i-1))$.

$$\mathbb{E}(T|S=0) = \sum_{i=2}^{n} \frac{2}{i(\theta + i - 1)}$$

- Taking $u = 2 \cdot 10^{-5}$ and M = 5000, we get $\theta = 2Mu = 0.2$.
- This implies $\mathbb{E}(T|S=0)=1.72$.
- If we assume that each generation lasts on average 20 years, we get an estimate of 172,000 years for the TMRCA of the sample.

Summary

- **Mutations** occur as a Poisson process with rate $\theta/2$ on the branches of the coalescent tree
- Combining mutation and coalescence is a powerful tool to derive recursion equations
- We have found a recursion to calculate the number of mutations on a coalescent tree
- The Dorit dataset is a first example of **inference** from genetic data