

Poker Hand Induction: Multi-class classification of extreme imbalanced data with neural networks

Problem statement

Train a neural network to accurately assess poker hands of 5 cards from a 52 card deck.

Some info

- 52 unique cards in a deck.
- Each hand dealt contains 5 cards.
- 10 distinct, ranked poker hands.
- When order matters, There are 311 875 200 unique poker hands.
- 1 Royal Flush for every 649 740 hand dealt.

HAND	PROBABILITY	COMBINATIONS
Royal flush	0.00000154	480
Straight flush	0.00001385	4,320
Four of a kind	0.00024010	74,880
Full house	0.00144058	449,280
Flush	0.00196540	612,960
Straight	0.00392465	1,224,000
Three of a kind	0.02112845	6,589,440
Two pair	0.04753902	14,826,240
Pair	0.42256903	131,788,800
Nothing	0.50117739	156,304,800

Cards (Predictors)

13 ranks

4 suits

Poker hands (Classes)

Dataset (derived from)

Title: Poker Hand Data Set

Abstract: Purpose is to predict poker hands

Source: https://archive.ics.uci.edu/ml/datasets/Poker+Hand

Robert Cattral (cattral@gmail.com)

Franz Oppacher (oppacher@scs.carleton.ca)

Carleton University, Department of Computer Science

Intelligent Systems Research Unit

1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S5B6

Data Set Characteristics:	Multivariate
Attribute Characteristics:	Categorical, Integer
Associated Tasks:	Classification
Number of Instances:	1025010
Number of Attributes:	11
Missing Values	0
Date	2007-01-01

Dataset structure

In a hand with *n* cards, each card is denoted by a S[n] (suit, 1-4) value and C[n] (rank, 1-13) value.

CLASS is assigned a value between 0 to 9 and represents how good the hand is.

Example:

S1 ▼	C1 ▼	S2 ▼	C2 ▼	S3 ▼	C3 ▼	S4 ▼	C4 🌱	S5 🔻	C5 🔻	CLASS ▲ ▼
3	8	1	7	3	3	2	4	3	11	0
3	9	4	12	4	6	2	10	2	3	0
2	11	2	6	2	5	4	7	3	2	0
4	4	3	13	3	6	2	7	1	12	0
2	12	4	4	2	6	2	2	4	8	0
4	4	4	12	3	2	2	13	4	6	0
3	7	3	13	3	11	1	3	2	2	0
4	11	3	12	3	7	1	7	4	3	1
4	3	4	1	2	2	3	- 11	2	3	1
2	8	2	1	4	12	4	10	1	12	1
4	10	2	12	4	1	2	1	3	9	1
2	4	1	5	2	10	4	11	4	10	1

Dataset

Problem: Class distribution is very imbalanced.

Attempted to solve this by;

- generating a new dataset programmatically;
- extracting a stratified sample from the generated dataset;
- using under- and over sampling;
- using early stopping, i.e using evaluation set;
- using sample weights; and
- using f1 and geometric mean as evaluation metric.

López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113–141. https://doi.org/10.1016/J.INS.2013.07.007

Preprocessing

"The SMOTE approach can improve the accuracy of classifiers for a minority class."

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2011). SMOTE: Synthetic Minority Over-sampling Technique. Journal Of Artificial Intelligence Research. https://doi.org/10.1613/jair.953

In our testing: SMOTE increased geometric mean for neural networks, but not for decision trees and boosted trees.

SMOTE is used on the last four classes to train our best model.

Classifiers

- TensorFlow Keras (python)
- feedforwardnet (Matlab)

TensorFlow Keras model

- Network structure
 - 1 input layer
 - 4 hidden layers (1024-1024-1024-1024)
 - 1 output layer
- Loss function: Sparse Categorical Cross Entropy
- Metrics: Accuracy and F1
- Optimizer: Adam with default parameters
- Activation function in hidden layers: ReLu
- Activation function in output layer: SoftMax
- Epochs: 1000 or end if no improvement is made after 25 epochs.
- Batch size: 4096
- Callback with Early Stopping and Model Checkpoint.

Evaluation metrics

Accuracy is not a good indicator for multi-classification on imbalanced data. Geometric mean is.

G_{mean} reflects the ability to classify positive samples and negative samples at the same time.

$$G_{mean} = \sqrt{R_{t+} \cdot R_{t-}},$$

where R_{t+} represents true positive rate, which is calculated by $R_{t+} = N_{TP} / N_P$. R_{t-} represents true negative rate, which is formulated as $R_{t-} = N_{TN} / N_N$.

The higher the geometric mean, the better ability of the classifier to recognize positive class and negative class samples at the same time.

Observations while training...

- Other optimizers where considered, and while testing showed less zig-zagging and loss spikes with AdaDelta and Adamax, plain Adam achieved the highest score overall in our testing.
- · Loss spikes during training
 - Accuracy decreases.
 - F-measure increases.
- Using class weights.
 - It yielded bad results in our testing with default Adam learning rate.
 - Decreasing the learning rate improved the score.
- Custom loss function: Focal loss for dealing with class imbalance.
 - Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense Object Detection. Retrieved from http://arxiv.org/abs/1708.02002
 - It yielded bad results in our testing.
- When we increased the number of neurons and layers, more stress was put on the GPU and less stress was put on the CPU.

Tensorflow Keras SMOTE (sample to highest) - geometric mean: 0.858669

Tensorflow Keras 100k US + 100k OS (SMOTE) - geometric mean: 0.858083

Tensorflow Keras with weights - geometric mean: 0.903304

Tensorflow Keras 100k OS on 4 last (SMOTE) - geometric mean: 0.934816

Matlab with standard dataset and 2% sample

Comparing trees with neural networks (our results)

Boosted trees: Catboost

Neural networks: TensorFlow Keras

Summary

Model	Sample size (%)	Sample distr. (%)	Accuracy	Geometric mean
AdaBoost	2	20/00/70	0.660446	0.690570
C5.0	2	20/00/70	0.738000	-
RandomForest	2	20/00/70	0.779012	0.826485
Matlab	2	20/10/70	84.50000	-
TF Keras (w/ SMOTE)	2	20/10/70	0.992779	0.858669
XGBoost	2	20/10/70	0.998940	0.861604
LightGBM	2	20/10/70	0.998926	0.866858
TF Keras (w/ weights)	2	20/10/70	0.999373	0.903304
CatBoost	2	20/10/70	0.993507	0.906385
TF Keras (w/ OS & US)	2	20/10/70	0.999836	0.934816

Results by others with neural networks

- 92.4% accuracy with 80/10/10 in Matlab.
 - Dişken, G. (2010). Predicting Poker Hands With Artificial Neural Networks. Adana. Retrieved from https://eembdersler.files.wordpress.com/2010/09/2014913024-gc3b6kaydic59fken-ann-proposal.pdf
- 57% accuracy.
 - Sihota, J. S. (2015). Poker Rule Induction. Retrieved February 5, 2019, from http://rstudio-pubs-static.s3.amazonaws.com/59520 f25e40618a3a442ca45b110b57a24a6f.html
- 94% accuracy with two hidden layers with 18 neurons and 10 neurons, respectively.
 - Garg, A. (2016). Predicting Poker hand using neural networks. Retrieved March 20, 2019, from https://medium.com/@akashg/predicting-poker-hand-using-neural-networks-83ed7d0bfc6a

Suggestions for future development

- Use custom classifiers or custom loss functions that focuses primarily on multi-class classification imbalance.
 - Bi, J., & Zhang, C. (2018). An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme. Knowledge-Based Systems, 158, 81–93. https://doi.org/10.1016/J.KNOSYS.2018.05.037
 - Li, F., Zhang, X., Zhang, X., Du, C., Xu, Y., & Tian, Y.-C. (2018). Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets. Information Sciences, 422, 242–256. https://doi.org/10.1016/J.INS.2017.09.013
 - Oh, K., Jung, J.-Y., & Kim, B. (2018). Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles AU Kim, Aekyung. International Journal of Computer Integrated Manufacturing, 31(8), 701–717. https://doi.org/10.1080/0951192X.2017.1407447
 - Du, J., Vong, C.-M., Pun, C.-M., Wong, P.-K., & Ip, W.-F. (2017). Post-boosting of classification boundary for imbalanced data using geometric mean. Neural Networks, 96, 101–114. https://doi.org/10.1016/J.NEUNET.2017.09.004
 - Kim, M.-J., Kang, D.-K., & Kim, H. B. (2015). Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction. Expert Systems with Applications, 42(3), 1074–1082. https://doi.org/10.1016/J.ESWA.2014.08.025

Code repositories (ours)

Generating new data set (C#):

https://github.com/Alvtron/PokerData

R code:

https://github.com/Alvtron/ITI43210-Machine-Learning

Python code:

https://github.com/Alvtron/PythonMachineLearning

(11) Østfold University College