Mechanics of Materials

Lecture 25 - Superposition

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

22 Apr, 2020

1

schedule

- 22 Apr Beam Deflection (superposition)
- 24 Apr Recitation, HW9 Due
- 27 Apr Statically Indeterminate Beams
- 29 Apr Beam Review
- 1 May Recitation, HW 10 Due

outline

- discontinuity functions
- group problems
- superposition

3

discontinuity functions

discontinuity functions

- Direct integration can be very cumbersome if multiple loads or boundary conditions are applied
- Instead of using a piecewise function, we can use discontinuity functions

4

Macaulay functions

 Macaulay functions can be used to describe various loading conditions, the general definition is

$$\langle x-a\rangle^n = \begin{cases} 0 & \text{for } x < a \\ (x-a)^n & \text{for } x \geq a \end{cases} n \geq 0$$

singularity functions

 Singularity functions are used for concentrated forces and can be written

$$w = P\langle x - a \rangle^{-1} = \begin{cases} 0 & \text{for } x \neq a \\ P & \text{for } x = a \end{cases}$$

6

discontinuity functions

TABLE 12–2			
Loading	Loading Function $w = w(x)$	Shear $V = \int w(x)dx$	Moment $M = \int V dx$
M_0 $x \rightarrow a$	$w = M_0 \langle x - a \rangle^{-2}$	$V = M_0 \langle x - a \rangle^{-1}$	$M = M_0 \langle x - a \rangle^0$
P	$w = P\langle x - a \rangle^{-1}$	$V = P\langle x - a \rangle^0$	$M = P\langle x - a \rangle^1$
$ \begin{array}{c c} & w_0 \\ \hline & x \longrightarrow \\ & a \longrightarrow \end{array} $	$w = w_0 \langle x - a \rangle^0$	$V = w_0 \langle x - a \rangle^1$	$M = \frac{w_0}{2} \langle x - a \rangle^2$
slope = m	$w = m\langle x - a \rangle^1$	$V = \frac{m}{2} \langle x - a \rangle^2$	$M = \frac{m}{6} \langle x - a \rangle^3$

discontinuity functions

- 1. We add these up for each loading case along our beam
- 2. We integrate as usual to find displacement from load, slope, or moment

8

integration

- discontinuity functions follow special rules for integration
- when $n \ge 0$, they integrate like a normal polynomial
- ullet when n<0, they instead follow

$$\int \langle x - a \rangle^n dx = \langle x - a \rangle^{n+1}$$

signs

- we need to be careful to match the sign convention
- loads are defined as positive when they act upward
- moments are defined as positive when they act clockwise

10

example 12.5

11

group problems

group one

Find the maximum deflection using either direct integration or discontinuity functions.

Find the maximum deflection using either direct integration or discontinuity functions.

13

group three

Find the maximum deflection using either direct integration or discontinuity functions.

superposition

superposition

- The differential equation Eld4v/dx4 = w(x) satisfies the requirements for superposition
- w(x) is linearly related to v(x)
- Load does not significantly change the shape of the beam

superposition

- This means we can superpose multiple deflection solutions from simpler cases
- Appendix C in the text has many solutions that can be superposed

16

example 12.13

Use superposition to find the displacement at C and the slope at A

example 12.15

Use superposition to find the displacement at C

18

example 12.16

The steel bar is supported by springs with k=15 kip/ft originally unstretched. For the force shown, determine the displacement at C. Take $E_{st}=29$ Msi and I=12 in 4 .