The Quest for Prof. Dodds' Age

Nick Grisanti and Josh Cheung

The Quest for Prof. Dodds' Age

Waddles Grisanti and Josh Cheung

Vision

Can we use **Machine Learning** to estimate someone's age?

Vision

Can we use **Machine Learning** to estimate someone's age?

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 42

Age: 11

Age: 42

Age: 109

Age: 42

Age: 42

Age: 11

Age: 42

Age: 109

Age: 2

Dataset

Dataset: <u>from Kaggle</u>

# age F Age of the person in the image	# ethnicity = Specifies the ethnicity of the person	# gender == Gender of the person	▲ img_name =	▲ pixels = Array to String of the image pixels
1 116	0 4	0 1	23479 unique values	23315 unique values
1	2	θ	20161219203650636.jp g.chip.jpg	129 128 128 126 127 130 133 135 139 142 145 149 147 145 146 147 148 149 149 150 153 153 153 152 153
1	2	0	20161219222752047.jp g.chip.jpg	164 74 111 168 169 171 175 182 184 188 193 199 200 199 200 196 198 192 193 188 187 186 187 188 183 1
1	2	0	20161219222832191.jp g.chip.jpg	67 70 71 70 69 67 70 79 90 103 116 132 145 155 161 166 169 175 177 178 179 180 183 186 187 188 192 1

Libraries

Progress

Preprocessing Data:

- Needed to reformat data to include just the person's age and the image
- We had trouble downloading the jpgs, so we had to reformat the space separated string of pixel values into a saved jpg

Training the Model

Start with pre-trained general vision models (ResNet, DenseNet)

Vary network depth

Overfitting for larger networks

First Attempts

He old!

Classification vs. Regression

Prof. Dodds is 41.7028 years old!
Rounded to the nearest integer, Prof. Dodds is 42 years old!

Age: 25

Age: 39

Age: 34

Age: 46

Age: 17

Age: 35

Next Steps

Try more pretrained models

Use more data

Pop-Tarts: Releases a new flavor

Dodds:

