<u>烧结实时</u> 主界面

> 原料成分 数据查询

<u>过程参数</u> 管理界面

能效信息 可视化

<u>历史案例</u> 分析界面

低碳技术 搜索引擎

<u>烧结实时</u> 主界面 混合矿信息

名称

矿粉A

矿粉B

矿粉C

矿粉D 矿粉E

矿粉F

矿粉G

名称

焦粉A

焦粉B

名称

石灰石 白云石

生石灰

混合燃料信息

混合熔剂信息

配比%

配比%

配比%

<u>原料成分</u> 数据查询

<u>过程参数</u> 管理界面

能效信息 可视化

<u>历史案例</u> 分析界面

低碳技术 搜索引擎

实际工序能耗

- (据此调整技术与理论的参数)

 烧结实时
 一次配水比%

 主界面
 抽风过剩系数

 点火能耗
 原料温度

 数据查询
 原料温度

过程参数

管理界面

能效信息

热损失% 漏风率% 烧结矿FeO 烧结矿碱度 烟气温度 燃烧率%

余热回收率%

口七吐△旦

技术极致能耗

烧结矿温度

扳矿率%

 可视化
 一次配水比%

 历史案例
 一次配水比%

 分析界面
 抽风过剩系数

 点火能耗
 原料温度

 機索引擎
 烧结矿温度

热损失% 漏风率% 烧结矿FeO 烧结矿碱度 烟气温度 燃烧率% 余热回收率%

理论极致能耗

返矿率%

一次配水比% 一次配水比% 抽风过剩系数-点火能耗 原料温度 烧结矿温度 返矿率% 热损失% 漏风率% 烧结矿FeO 烧结矿碱度 烟气温度 燃烧率% 余热回收率%

通用热力学参数

日長時今里

	C饱和度系数:		UA3 X6		口孙打口事			0.10	
			0.9431 -		C饱和度系数: Fe在铁水中的分配系数:			0.9431	
Fe在铁水中的分配系数:			0.99 -						
	S在铁水中的分配系数:		0.0865 -	· S在铁水中的经		分配系数:		0.0865	
	在铁水中的分配系数 铺底料平均比热容			C a	底料	0.8368	kJ/kg•°C kJ/kg		
	Mn元素在铁水中的分配	生成 1kg FeS2 放热	ţ	qFeS2		6901.018			
生成 1k		生成 1kgFeO 吸热			ő	1952.06	kJ/kg		
		生成 1kgH2O 吸热				2487.1 kJ/kg			
	公式ηH2/ηCO=A-B ηC	生成 1kgCaO 吸热		q _{CaO} q _{MgO}		3189.3 kJ/kg 2516.4 kJ/kg			
	全焦冶炼时的直接还原	生成 1kgMgO 吸热	!						
空气密度			ρ _{空气}		1.288 kg		m3		
	全焦冶炼时的顶煤气温	氧气密度		ρο ₂ <i>C</i> _{烟气}		1.429	kg/m3 kJ/kg•°C		
	公式 (日产量=A*每分	烟气的平均比热容				1.436			
	公式 (日产量=A*每分								
					this age			f	
	吨铁炉 尘质量		20 korteM		吨铁炉尘质量:			20	ka/tH

阿铁炉全质量: 20 kg/tHM 炉全含碳质量分数: 30 % 硅含量修正系数: 05 煤粉喷吹量时间偏移量(x/小时前): 4 h 鼓风参数时间偏移量(x/小时前): 6 h 料速时间偏移量(x/小时前): 7 h 总体热负荷时间偏移量(x/小时前): 7 h

炉尘含碳质量分数	30	%
硅含量修正系数:	0.9	
煤粉喷吹量时间偏移量 (x小时前):	4	h
鼓风参数时间偏移量 (x小时前):	6	h
料速时间偏移量 (x小时前):	7	h
总体热负荷时间偏移量 (x小时前):	7	h

实际工序能耗

55.45

kgce/t-s

<u>烧结实时</u> 主界面

> 原料成分 数据查询

> <u>过程参数</u> 管理界面

<u>能效信息</u> <u>可视化</u>

<u>历史案例</u> 分析界面

低碳技术 搜索引擎 燃料消耗kg

BOF消耗Nm3

🍦 燃料折算系数(默认数据库、

COG消耗Nm3 可以更改

实时更新给后端)

电力消耗kwh COG折算系数

H2O消耗kg BOF折算系数

| 电力折算系数

技术极致能耗

N2折算系数 _ _ _

燃料消耗kg

II N2介质kg

燃料折算系数

COG消耗Nm3

COG折算系数

BOF消耗Nm3

BOF折算系数

电力消耗kwh

电力折算系数

H2O消耗kg

H2O折算系数

N2介质kg

N2折算系数

理论极致能耗

37.45

kgce/t-s

燃料消耗kg

燃料折算系数 (默认数据库)

COG消耗Nm3

COG折算系数

BOF消耗Nm3

BOF折算系数

电力消耗kwh H2O消耗kg

N2介质kg

电力折算系数 H2O折算系数 N2折算系数

<u>烧结实时</u> 主界面

> <u>原料成分</u> 数据查询

<u>过程参数</u> 管理界面

能效信息 可视化

历史案例 分析界面

低碳技术 搜索引擎

2020/11/10

结束时间

2020/11/16

〇 查询

烧结实时 主界面

> 原料成分 数据查询

过程参数 管理界面

能效信息 可视化

历史案例 分析界面

关键词

名称列表

〇 查询 文档阅读区 import re

名称 时间 文章名A 文章名B

文章名C 文章名D 文章名E

```
def read_excel(path):
   確取[xco]中的信息
   :param path: Excel文件商经
   :return: Excel中的信息
   # 打开execl
   workbook = xlrd.open workbook(path)
   # 根鎖sheet索引或者名称获取sheet内容
   data_sheet = workbook.sheets()[0]
   row num = data sheet nrows # sheet行数
   col_num = data_sheet.ncols # sheet列数
   list = []
   for i in range(1, row num):
       rowlist = []
       for j in range(col_num):
           if j ww 1:
               date_value paled.aldate_as_tuple(data_sheet.cell_calue(i, j), workhook.dates
              roulist.append(date_value[0:3])
           else:
              rowlist.append(data_sheet.cell_value(i, j))
       list.append(rowlist)
   # 输出所有单元格的内容
   return list
```