EN – 610: HYDROGEN ENERGY

Instructor Prof. Pratibha Sharma

Teaching Assistants

Kapil Kedar Tirpude – 204173003 Chandramani Rai – 214170009 T S Vishnu – 22N0413 Ravi Trivedi – 23D0635

Department of Energy Science and Engineering Indian Institute of Technology Bombay, Mumbai

Course Evaluation

SLOT 6: Wed and Fri: 11-05 AM to 12-30 PM

80% Attendence is Compulsory

- Production from Hydrocarbons
- Oxidative/Non-oxidative Processes
- Gasification
- Nuclear Energy
- Renewables: Solar, Wind, etc

- Pressure Swing Adsorption
- Solvent Based Adsorption
- Membrane Separation
- Cryogenic Separation, etc

- Compressed Storage
- Liquid-state Storage
- Solid-state Storage
- Materials for storage Metal, Complex, Chemical Hydrides, High-surface Area Materials, etc
- Design Aspects

- Distance and Demand Based Transportation Choices
- Pipe-based versus Tank-based transportation
- LOHCs
- Other aspects

- Methods using Thermal-conductivity
- GS;MS-based Measurements; Laser-based Gas Analysis
- Solid-state Sensors: Applications and Industrial Scalability

- History of Accidents
- Physical and Chemical Hazards
- Properties of Hydrogen leading to Hazards
- Hazard Spotting, Evaluation and Safety Guidelines; Hazard Prevention Measures
- Safety Codes and Standards

Study Material

Requirements from a Fuel

Why Hydrogen?

\mathcal{A}	Most Abundant in the Universe
\mathcal{A}	Richest in Energy Density: 140 MJ/kg
	Produces Water as By-product
	Reduced Dependency on Fossil Fuel
	Promotion of Domestic, Sustainable and Diverse Sources
	Reduced GHG Emissions
	More Efficient Power Generation
	Promotion of Hydrogen Technologies such as Fuel Cells
	Viable with existing Conventional Technologies
	Widely Used in Chemical Industries and Refinaries
	Easily integrated with Renewbles
√	Multiple Feedstocks; Matured Production Technologies

- Lightest element with 1 proton and 1 electron
- 14x lighter than air
- Diffuses faster than any other gas in air (diffusion coefficient: 0.61 cm²/s)
- High Buoyancy: Rises Faster than any other gases
- Major Constituent of Water and Organic Compounds
- Isotopes: Deuterium/Tritium Trace in nature but can be prepared by nuclear reactions
- Pronounced Solubility in Metals

- Colourless, odourless, tasteless
- Density of Hydrogen: 0.084 kg / m³ NTP
- Condenses to Liquid at -253°C and Solid at -259°C
- Ionization Potential of -13.54 eV
- Low solubility in solvents

Triple Point	13.8 K (-259°C); 7.2 kPa			
Critical Point	33.2 K (-240°C); 1.3 MPa			
Melting Point	14 K (-259.2°C); 1 atm			
Boiling Point	20 K (-253°C); 1 atm			

Ortho Hydrogen: 75% Abundance

Para Hydrogen: 25% Abundance

Real Gas Equation: PV = ZnRT

Z: Compressibility

For Z = 1: Ideal Behaviour

Hydrogen shows Z close to 1 upto pressures of 10 MPa (100 bar)

DIFFUSIVITY AND DENSITY

- Air Diffusion; Diffusibility (cm²/s) Values in Air:
 - Hydrogen: 0.63
 - Methane: 0.20
 - Gasoline Vapours: 0.08

- Density of Hydrogen Gas at NTP: 0.08 kg/m³ (7% as that of air)
- Liquid Hydrogen Density: 70.8 kg/m³ (7% as that of Water)

Property	Hydrogen	Petroleum	Methanol	Methane	Propane	Ammonia
Boiling point [K]	20.3	350–400	337	111.7	230.8	240
Liquid density [kg⋅m ⁻³] NTP	70.8	702	797	425	507	771
Gas density [kg·m ⁻³] NTP	0.0899	_	_	0.718	2.01	0.77
Heat of vaporization [kJ·kg ⁻¹]	444	302	1168	577	388	1377
Higher heating value [MJ·kg ⁻¹]	141.9	46.7	23.3	55.5	48.9	22.5
Lower heating value [MJ·kg ⁻¹]	120.0	44.38	20.1	50.0	46.4	18.6
Lower heating value (liquid) [MJ·kg ⁻³]	8520	31170	16020	21250	23520	14350
Diffusivity in air [cm ² ·s ⁻¹]	0.63	0.08	0.16	0.20	0.10	0.20
Lower flammability limit [vol% (in air)]	4	1	7	5	2	15
Upper flammability limit [vol% (in air)]	75	6	36	15	10	28
Ignition temperature in air [°C]	585	222	385	534	466	651
Ignition energy [mJ]	0.02	0.25	_	0.30	0.25	_
Flame velocity [cm·s ⁻¹]	270	30	_	34	38	_

ENERGY CONTENT

- Energy Per Unit Mass:
 - Hydrogen: 140.4 MJ/kg
 - Natural Gas: 55 MJ/kg
 - Gasoline: 48.6 MJ/kg

- Energy Per Unit Volume:
 - Compressed Hydrogen
 - 10 MJ/m³ (1 bar, 15°C)
 - 1825 MJ/m³ (200 bar, 15°C)
 - 4500 MJ/m³ (690 bar, 15°C)
 - Liquid Hydrogen: 8491 MJ/m³
 - Gasoline: **31,150** MJ/m³

FLAMMABILITY

- Flammability in ambient air (volume %):
 - Hydrogen: 4 75%
 - Gasoline: 1 7.6%
 - Explosives: 15- 59%

- Equivalence Ratio (φ): Ratio of Fuel to Oxidizer in Stoichiometric Proportions.
- Given by Mass Flow Rates of Fuel with that of Air/Oxygen
 - Hydrogen: $0.1 < \phi < 7.1$
 - Gasoline: $0.7 < \phi < 4$
- Hydrogen-fuelled IC can work stably even at dilute conditions
- Advantages:
 - Ease of Ignition/Start
 - Better Combustion
 - Better control on Engine operations and Emissions

FLAMMABILITY

IGNITION AND AUTO-IGNITION

- Ignition Energy of Hydrogen is 0.02 mJ; of Gasoline: 0.24 mJ
- Prompt ignition even for leaner mixtures
- Hot spots or hot gases can serve as means of ignition premature ignition and flashback
- Auto-ignition Temperature: Minimum temperature at which a fuel initiates a <u>self-sustained</u> combustion in a combustible mixture, in <u>absence</u> of external source of ignition

• Hydrogen: 585°C

• Gasoline: 240 - 460°C

 Difficult to ignite hydrogen – air mixture on basis of heat alone without some additional ignition source.

FLAME SPEED

- Flame Speed: The rate at which the flame-front advances further when ignited
- At stoichiometric ratio:
 - Hydrogen: 3.46 m/s
 - Gasoline: 0.42 m/s
- Hydrogen engine can more closely approach the Thermodynamic cycle

QUENCHING DISTANCE

- Quenching Distance: Minimum distance from a parallel surface to the flame (or two parallel surfaces) at which the flame extinguishes
- Typically provides the idea of the point at which heat losses from the flame are greater than the heat produced in the combustion
- Quenching Distances:
 - Hydrogen: 0.64 mm
 - Gasoline: 2 mm
- Hydrogen flames are difficult to extinguish and have a tendency of back-firing

EMBRITTLEMENT AND LEAKAGES

- Materials show embrittlement due to constant exposure to Hydrogen
- Affecting Factors:
 - Concentration of Hydrogen, Purity, Pressure, Temperature
 - Stress Level, Stress Rate, Tensile Strength
 - Grain Structure, Microstructure
 - Material Composition, Annealing History
- Leakage:
 - Low density and High Diffusivity of Hydrogen makes it prone to Leakages, dispersing much faster than Gasoline
 - Forms uniform air-hydrogen mixture
 - Fast dispersion also makes it diffuse to belowflammability limits in open spaces

Source: Annuzzi et al (2017)