

# Statistical Hypothesis Testing

Tuesday 29<sup>th</sup> November, 2016

# Israellëch challenge

1 Introduction

- 2 Testing
  - Common Errors
  - Multiple Testing

3 Conclusion



- new job
- night watch monitor at a nuclear power plant
- task: raise the alarm if anything is out of the ordinary







- new job
- night watch monitor at a nuclear power plant
- task: raise the alarm if anything is out of the ordinary
- Specifically watch two meters heat and pressure







- new job
- night watch monitor at a nuclear power plant
- task: raise the alarm if anything is out of the ordinary
- Specifically watch two meters heat and pressure
- on your first night various readings
- when and if do you raise the alarm?

discuss



#### Twist - Nuclear plant has two states

- heat and pressure mostly low
  - working condition
- Heat high and pressure varying wildly
  - "Then you should worry..."

When do you raise the alarm?

#### Twist - Nuclear plant has two states

- heat and pressure mostly low
  - working condition
- ▶ Heat high and pressure varying wildly
  - "Then you should worry..."

## When do you raise the alarm?

- You can use MLE
- ▶ You can derive a prior and use MAP



## **Original setting**

- only one state is known working condition
- can't decide which state (hypothesis) is more probable
- what can we do?

discuss



## **Original setting**

- only one state is known working condition
- can't decide which state (hypothesis) is more probable
- what can we do?
- we can raise the alarm when our (only) hypothesis becomes improbable

# Null and Alternative Hypotheses

Israel<mark>lëch</mark> challenge

null hypothesis  $H_0$ 

the hypothesis we test for improbability

## alternative hypothesis $H_1$

- competing hypothesis
- frequently unknown

# Israellëch challenge

1 Introduction

- 2 Testing
  - Common Errors
  - Multiple Testing

3 Conclusion

# The Night is Dark and Full of Error



Sitting at the control room, late at night, what are you afraid of?

discuss

# The Night is Dark and Full of Error



Sitting at the control room, late at night, what are you afraid of?

- Not raising an alarm on time possible catastrophe
- Raising an alarm for nothing the boy who cried wolf

# The Night is Dark and Full of Error



Sitting at the control room, late at night, what are you afraid of?

| name           | in our scenario                 | description                        |
|----------------|---------------------------------|------------------------------------|
| false negative | not raising an alarm on time    | failure to detect an event/anomaly |
| false positive | raising an alarm<br>for nothing | detecting an event/anomaly falsely |

# Mythbusters







- ▶ Claim able to predict outcome of coin tosses
- test with fair coin (p = 0.5)
- toss coin 6 times
- Null hypothesis prediction is random

- ▶ Claim able to predict outcome of coin tosses
- test with fair coin (p = 0.5)
- toss coin 6 times
- Null hypothesis prediction is random
- predicts 6/6
- ▶ probability of this event  $P(X \mid H_0) = 0.5^6$
- do you accept his claim?



- ▶ Claim able to predict outcome of coin tosses
- test with fair coin (p = 0.5)
- toss coin 6 times
- Null hypothesis prediction is random
- ▶ predicts 5/6
- ▶ probability of event  $P(X \mid H_0) = 0.5^6$

- ▶ Claim able to predict outcome of coin tosses
- test with fair coin (p = 0.5)
- toss coin 6 times
- Null hypothesis prediction is random
- predicts 5/6
- ▶ probability of event  $P(X \mid H_0) = \binom{6}{1}0.5^6$
- do you accept his claim?



- ▶ predicts 5/6
- ▶ probability of event  $P(X \mid H_0) = \binom{6}{1}0.5^6$
- do you accept his claim?

## What's you probability of wrongfully accepting?

▶ If you would accept for 5/6 you would also for 6/6

$$P_{FP} = P(6/6 \mid H_0) + P(5/6 \mid H_0)$$

#### **Definition**

The probability of seeing a result <u>at least as extreme</u> as the one observed

- the probability of being wrong when rejecting the null hypothesis
- $ightharpoonup Pval = P_{FP}$

#### The Correct Procedure



- 1. Determine a significance level  $\alpha$ 
  - maximal allowed False positive probability
- 2. Choose a Null hypothesis
- 3. Perform experiment
- 4. Calculate P-Value
- 5. Reject null hypothesis **if and only** if  $Pval < \alpha$

# Why Reject



- 1. Determine a significance level  $\alpha$ 
  - maximal allowed False positive probability
- 2. Choose a Null hypothesis
- 3. Perform experiment
- 4. Calculate P-Value
- 5. Reject null hypothesis **if and only** if  $Pval < \alpha$

can't we also accept?

# Israellëch challenge

- ightharpoonup coin suspected of p > 0.5
- ightharpoonup choose  $\alpha=0.1$
- $\blacktriangleright$   $H_0$  -

# Israel<mark>lëch</mark> challenge

- ightharpoonup coin suspected of p > 0.5
- ightharpoonup choose  $\alpha = 0.1$
- $ightharpoonup H_0$  coin is fair

# Israel<mark>lëch</mark> challenge

- ightharpoonup coin suspected of p > 0.5
- ightharpoonup choose  $\alpha=0.1$
- $ightharpoonup H_0$  coin is fair
- ▶ Toss a coin 3 times 2 heads
- $Pval = \binom{3}{1}0.5^3 + 0.5^3 = 0.5$
- Ignoring advice you accept the null hypothesis

# Israel<mark>lëch</mark> challenge

- ightharpoonup coin suspected of p > 0.5
- ightharpoonup choose  $\alpha=0.1$
- $ightharpoonup H_0$  coin is fair
- Toss a coin 3 times 2 heads
- ➤ Your boss tosses coin 4 more times 4 heads
- Overall  $Pval = \binom{7}{1}0.5^7 + 0.5^7 = 0.0625$

# Why Reject

# Israellëch challenge



# You Don't Know What You Dont Know



- $ightharpoonup Pval > \alpha$ 
  - $\blacksquare$  result not unlikely given  $H_0$
  - $ightharpoonup P(X \mid H_0)$  not very small

# You Don't Know What You Dont Know



- $\triangleright Pval > \alpha$ 
  - result not unlikely given  $H_0$
  - $P(X \mid H_0)$  not very small
- we know nothing about  $P(H_0 \mid X)$
- $\triangleright$  we don't know the alternative hypothesis  $H_1$

possible 
$$\begin{cases} P(X \mid H_1) > P(X \mid H_0) \\ P(H_1 \mid X) > P(H_0 \mid X) \end{cases}$$

challenge

# You Don't Know What You Dont Know

In the previous example:

▶ 
$$H_1$$
 may be  $p = \frac{2}{3}$ 

$$P(X \ge 2 \mid H_1) = {3 \choose 1} \frac{2^2}{3} \cdot \frac{1}{3} + \frac{2^3}{3}$$
  
\$\approx 0.741\$

$$P(X \ge 2 \mid H_0) = 0.5$$



## Disease - pineapple pen induced headaches

- Duration almost always two weeks
- You're testing a new cure plugear
- $ightharpoonup H_0$  plugear doesn't work
- $\sim \alpha$  0.05
- A large test group is given plugear



## Disease - pineapple pen induced headaches

- ightharpoonup 40% show major improvement in 1 day
- ➤ Only 0.0005 in the population show such an improvement
- Is plugear any good?

# Misstating The Null hypothesis



## Disease - pineapple pen induced headaches

- ightharpoonup 40% show major improvement in 1 day
- ➤ Only 0.0005 in the population show such an improvement
- Is plugear any good?

Not necessarily

# Misstating The Null hypothesis



## Disease - pineapple pen induced headaches

▶ Why did our procedure fail?

# Misstating The Null hypothesis



#### Disease - pineapple pen induced headaches

- Why did our procedure fail?
- Misstated null hypothesis
- No correction for a intrinsic bias

# Misstating The Null hypothesis



#### The Placebo Effect

- ▶ Considering the effect
- $ightharpoonup H_0 = \text{plugear}$  is no better than a placebo

experimental design



- You are rehired
- $\blacktriangleright$  task find coins with p > 0.5
  - Choose  $\alpha = 0.01$
  - Null hypothesis for a coin coin is fair p = 0.5
  - You only reject
- ► You test 1000 coins



- ▶ You find a coin with  $Pval = 0.001 < \alpha = 0.01$
- Reject?

## A coin inspector once more



- ▶ You find a coin with  $Pval = 0.001 < \alpha = 0.01$
- Reject?

Not necessarily

## A coin inspector once more



- ightharpoonup event A Pval > 0.01
- ightharpoonup event  $\overline{A}$  Pval < 0.01

$$P(A \mid H_0) = 1 - P(\overline{A} \mid H_0)$$
$$= 0.99$$



#### you tested 1000 coins

- event B Pval < 0.01 for at least one coin
- event  $\overline{B}$   $Pval \geq 0.01$  for all coins

$$P(B \mid H_0) = 1 - P(\overline{B} \mid H_0)$$
  
= 1 - 0.99<sup>1000</sup>  
> 0.9999

# Multiple Testing



#### Setting

- ▶ *m* experiments
- lacksquare  $\forall i=1,\ldots,m$  test  $H_0^i$  against unknown  $H_1^i$

|               | $H_0$ not rejected | $H_0$ rejected | Total   |
|---------------|--------------------|----------------|---------|
| $H_0$ is true | U                  | V              | $m_0$   |
| $H_1$ is true | T                  | S              | $m-m_0$ |
| Total         | m-R                | R              | m       |

# Israel<mark>tëch</mark> challenge

#### **Procedure**

- ▶ m experiments
- $ightharpoonup P_i$  P-Value for the  $i^{th}$  experiment
- ▶ reject  $H_0^i$  if  $P_i < \frac{\alpha}{m}$



- ► Controls the Family Wise Error Rate
- event A for at least one i  $H_0^i$  is falsely rejected

- ► Controls the Family Wise Error Rate
- event A for at least one i  $H_0^i$  is falsely rejected

$$\begin{split} P\left(A\right) &= P\left(\bigcup_{i=1}^{m_0} \left\{P_i \leq \frac{\alpha}{m}\right\}\right) \\ \text{[union bound]} &\leq \sum_{i=1}^{m_0} P\left(P_i \leq \frac{\alpha}{m}\right) \\ &\leq m_0 \frac{\alpha}{m} \\ &\leq \alpha \end{split}$$



- no assumptions about dependence
- extremely conservative
  - coin example
  - per coin Pval < 0.00001
  - increased rate of false negatives



#### Control Procedure

- a mission to mars
  - Family Wise Error Rate (FWER)
- manufacturing, surveillance
  - FWER is too strict
  - you must allow some false positives
  - why?



In some cases it's about proportion



#### In some cases it's about proportion





you work 1000 shifts (experiments)

▶ raise 10 false alarms out of 11 alarms ...



you work 1000 shifts (experiments)

- ▶ raise 10 false alarms out of 11 alarms ...
- raise 10 false alarms out of 200 alarms

# Multiple Testing - FDR



|               | $H_0$ not rejected | $H_0$ rejected | Total   |
|---------------|--------------------|----------------|---------|
| $H_0$ is true | U                  | V              | $m_0$   |
| $H_1$ is true | T                  | S              | $m-m_0$ |
| Total         | m-R                | R              | m       |

- $ightharpoonup \left| Q = rac{V}{R} \right|$  proportion of false discoveries R = 0

 $ightharpoonup \left\lceil FDR = E\left[Q
ight] 
ight
ceil$  - false discovery rate

order (rank) P-Values for all tests

$$P_{(1)} \le \ldots \le P_{(m)}$$

▶ define threshold for each (i)

$$l_{(i)} = \frac{k}{m \cdot c\left(m\right)} \alpha$$

- independent tests c(m) = 1
- dependence  $c\left(m\right) = \sum_{i=1}^{m} \frac{1}{i}$



#### **Decision**

- ▶ find largest k such that  $P_{(k)} \leq l_{(k)}$
- ightharpoonup reject null hypothesis for  $P_{(1)}, \ldots, P_{(k)}$

Under independence and some forms of dependence

$$FDR_{BH} \le \frac{m_0}{m} \alpha \le \alpha$$

# Israellëch challenge

1 Introduction

- 2 Testing
  - Common Errors
  - Multiple Testing

3 Conclusion

# Discover, detect but don't over do it



- a new kind of statistical reasoning
- how do you say surprise in statistics
- how not to be a bad (data) scientist
- multiple testing

exercise - batch

#### Credits



#### figures

- ► Homer at work feelgood.network/author/cattownsend/
- Pressure dial commons.wikimedia.org/wiki/File:Psidial.jpg
- Clairvoyant www.quickmeme.com/baby-psychic