

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur-603203

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

ACADEMIC YEAR: 2023-2024

EVEN SEMESTER

LAB MANUAL

(REGULATION - 2019)

1922405 – DATA SCIENCE LABORATORY

FOURTH SEMSTER

B. Tech – Artificial Intelligence and Data Science

Prepared By

V. ABARNA, A.P (O.G) / AI&DS

INDEX

E.NO	EXPERIMENT NAME	Pg. No.
A	PEO, PO, PSO	3-5
В	Syllabus	6
С	Introduction/ Description of major Software & Hardware involved in lab	7
D	CO, CO-PO Matrix, CO-PSO Matrix	7
Е	Mode of Assessment	8
1	Write a program in Python to predict the class of the flower based on available attributes.	9-13
2	Write a program in Python to predict if a loan will get approved or not.	14-21
3	Write a program in Python to predict the traffic on a new mode of transport.	22-28
4	Write a program in Python to predict the class of user.	29-35
5	Write a program in Python to identify the tweets which are hate tweets and which are not.	36-41
6	Write a program in Python to predict the age of the actors.	42-48
7	Introduction to Python Libraries-Numpy, Pandas, Matplotlib, Scikit	49-51
8	Perform Data exploration and preprocessing in Python	52-59
9	Implement regularized Linear regression	60-65
10	Mini project to predict the time taken to solve a problem given the current status of the user.	66-72
11	Topic Beyond Syllabus Implementation of Multivariate Regression	73-77

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. To afford the necessary background in the field of Information Technology to deal with engineering problems to excel as engineering professionals in industries.
- 2. To improve the qualities like creativity, leadership, teamwork and skill thus contributing towards the growth and development of society.
- 3. To develop ability among students towards innovation and entrepreneurship that caters to the needs of Industry and society.
- 4. To inculcate and attitude for life-long learning process through the use of information technology sources.
- 5. To prepare then to be innovative and ethical leaders, both in their chosen profession and in other activities.

PROGRAMME OUTCOMES (POs)

After going through the four years of study, Information Technology Graduates will exhibit ability to:

PO#	Graduate Attribute	Programme Outcome
1	Engineering knowledge	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.
2	Problem analysis	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3	Design/development of solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
4	Conduct investigations of complex problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and

		synthesis of the information to provide valid conclusions			
5	Modern tool usage	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities, with an			
		modeling to complex engineering activities, with an understanding of the limitations.			
6	The engineer and society	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional			
		engineering practice			
7	Environment and sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.			
8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice			
9	Individual and team work	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings			
10	Communication	Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions			
11	Project management and finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments			
12	Life-long learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change			

PROGRAMME SPECIFIC OUTCOMES (PSOs)

After the completion of Bachelor of Technology in Artificial Intelligence and Data Science programme the student will have following Program specific outcomes

- 1. Design and develop secured database applications with data analytical approaches of data preprocessing, optimization, visualization techniques and maintenance using state of the art methodologies based on ethical values.
- 2. Design and develop intelligent systems using computational principles, methods and systems for extracting knowledge from data to solve real time problems using advanced technologies and tools.
- 3. Design, plan and setting up the network that is helpful for contemporary business environments using latest software and hardware.
- 4. Planning and defining test activities by preparing test cases that can predict and correct errors ensuring a socially transformed product catering all technological needs.

1922405

DATA SCIENCE LABORATORY

LTPC 0 0 4 2

OBJECTIVES:

This course will enable students to

• Develop a basic understanding of import data sets for various analytical purposes.

• Utilize the various packages available visualization, reporting, data manipulation, and statistical

analysis.

• Create interactive business applications that allow for data querying and data exploration.

• Collect, explore, clean, munge and manipulate data.

• Build data science applications using Python based toolkits.

LIST OF EXPERIMENTS:

1. Write a program in Python to predict the class of the flower based on available attributes.

2. Write a program in Python to predict if a loan will get approved or not.

3. Write a program in Python to predict the traffic on a new mode of transport.

4. Write a program in Python to predict the class of user.

5. Write a program in Python to identify the tweets which are hate tweets and which are not.

6. Write a program in Python to predict the age of the actors.

7. Introduction to Python Libraries-Numpy, Pandas, Matplotlib, Scikit

8. Perform Data exploration and preprocessing in Python

9. Implement regularized Linear regression

10. Mini project to predict the time taken to solve a problem given the current status of the user.

Total: 60 Periods

6

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

SOFTWARE:

Standalone desktops with Python 3 interpreter for Windows / Linux 30 Nos. (or) Server with Python 3 interpreter for Windows/Linux supporting 30 terminals or more.

HARDWARE:

Standalone Desktops: 30 Nos.

COURSE OUTCOMES

1922405.1	Import data sets for various analytical purposes.
1922405.2	Suggest Develop an interactive business application that allow for data querying and data exploration.
1922405.3	Collect, explore, clean, munge and manipulate data.
1922405.4	Develop data science applications using Python based toolkits.
1922405.5	Implement models such as k-nearest Neighbours, Naive Bayes, linear and logistic regression, decision trees, neural networks and clustering

CO-PO-PSO MATRIX

CO	PO									PSO						
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	-	2	3	1	3	-	1	1	1	-	1	ı	2	ı	-	-
2	-	2	3	-	3	-	-	-	-	-	-	2	2	-	-	-
3	-	2	3	-	3	-	-	-	-	-	-	-	3	-	-	-
4	2	2	3	1	3	-	- 1	1	1	-	2	ı	3	ı	2	2
5	2	2	3	-	3	-	-	-	-	-	2	-	3	-	-	2

EVALUATION PROCEDURE FOR EACH EXPERIMENT

S. No	Description	Mark
1.	Aim & Procedure	20
2.	Observation	30
3.	Conduction and Execution	30
4.	Output & Result	10
5.	Viva	10
	Total	100

INTERNAL ASSESSMENT FOR LABORATORY

S. No	No Description						
1.	Conduction & Execution of Experiment	25					
2.	Record	10					
3.	Model Test	15					
	Total						

Ex. No: 1 PREDICT THE CLASS OF THE FLOWER BASED ON AVAILABLE ATTRIBUTES

AIM

To write a Python program to predict the class of the flower based on available attributes using K-Nearest Neighbor.

PROCEDURE

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations.
- 2. Load the dataset containing flower attributes. For Example, iris dataset.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values or encoding categorical variables.
- 4. Split the dataset into features (x) and target variable (y).
- 5. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn.model selection'.
- 6. Initialize a K-Nearest Neighbors model with a specified number of neighbors ('n_neighbors') from 'sklearn. Neighbors'.
- 7. Train the K-Nearest Neighbor model using the training data with the 'fit' method.
- 8. Use the trained KNN model to make predictions on the testing data with the 'predict' method.
- 9. Evaluate the performance of the model using metrics such as accuracy, precision, recall, F1_Score, or others based on the requirements.
- 10. Finally, predict the flower class for new data using the trained model.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\iris.csv")
df. head ()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

df.info()

Output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): Column Non-Null Count Dtype sepal_length 150 non-null float64 0 1 sepal_width 150 non-null float64 petal_length 150 non-null float64 3 petal_width 150 non-null float64 150 non-null species object dtypes: float64(4), object(1) memory usage: 6.0+ KB

df. describe ()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Explore and preprocess the data

df. isnull (). sum ()

Output

sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
petal_width 0
species 0
dtype: int64

Split the data into features (x)

x = df. iloc [:, :-1]

X

Output

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
# Split the data into target variable (y)
```

```
y = df. iloc [:, -1]
```

```
0
          setosa
1
          setosa
2
          setosa
3
          setosa
4
          setosa
       virginica
145
146
      virginica
       virginica
147
       virginica
148
       virginica
149
Name: species, Length: 150, dtype: object
```

Further split the dataset into training and testing sets

from sklearn. model_selection **import** train_test_split x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=0)

Intialize the KNN model

from sklearn. neighbors **import** KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3)

Train the KNN model

model.fit (x train, y train)

Output

KNeighborsClassifier(n_neighbors=3)

Make predictions

```
y_pred=model. predict(x_test)
y_pred
```

Evaluate the model

from sklearn. metrics **import** accuracy_score, confusion_matrix confusion_matrix (y_test, y_pred)

Output

accuracy=accuracy_score (y_test, y_pred) *100 print ("Accuracy of the model is {:.2f}". format(accuracy))

Output

Accuracy of the model is 97.37

from sklearn. metrics import classification_report
class_report = classification_report (y_test, y_pred)
print (f"\nClassification Report:\n{class_report}")

Output

Classification Report:

2103311110110	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	13
versicolor	1.00	0.94	0.97	16
virginica	0.90	1.00	0.95	9
accuracy			0.97	38
macro avg	0.97	0.98	0.97	38
weighted avg	0.98	0.97	0.97	38

Predict for new data

Output

array(['setosa'], dtype=object)

RESULT

Thus, the python program to predict the class of the flower based on available attributes was completed successfully using K-Nearest Neighbor model.

Ex. No: 2 PREDICT IF A LOAN WILL GET APPROVED OR NOT

AIM

To write a Python program to predict if a loan will get approved or not using Logistic Regression.

PROCEDURE

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 2. Load the dataset containing loan details. For Example, loan dataset.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 4. Use 'LabelEncoder' to encode categorical columns like 'Gender', 'Married', 'Education', 'Self_employed', etc.
- 5. Use 'SimpleImputer' to replace null values in numeric columns with the most frequent values.
- 6. Split the dataset into features (x) and target variable (y).
- 7. Replace '3+' with 3 and convert the column to float using 'df['Dependents'] = df['Dependents']. replace ('3+', 3). astype(float).
- 8. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 9. Standardize the features using 'StandardScaler' from 'sklearn. preprocessing'.
- 10. Initialize a Logistic Regression model from 'sklearn. linear_model'.
- 11. Train the Logistic Regression model using the training data with the 'fit' method.
- 12. Use the trained Logistic Regression model to make predictions on the testing data with the 'predict' method.
- 13. Evaluate the performance of the model using **metrics** such as accuracy, precision, recall, F1_Score, or others based on the requirements.
- 14. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\loan.csv")
df. head ()

Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0 LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0
1 LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0
2 LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0
3 LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0
4 LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0
										•

df. info ()

Output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 614 entries, 0 to 613 Data columns (total 13 columns): # Column Non-Null Count Dtype 0 Loan_ID 614 non-null object 1 Gender 601 non-null object object 2 Married 611 non-null 599 non-null 3 Dependents object Education 614 non-null object 5 Self_Employed 582 non-null object ApplicantIncome 614 non-null int64 6 7 CoapplicantIncome 614 non-null float64 float64 LoanAmount 592 non-null Loan_Amount_Term 600 non-null float64 9 10 Credit_History 564 non-null float64 11 Property_Area 614 non-null object

object

614 non-null

dtypes: float64(4), int64(1), object(8)

df. describe ()

12 Loan_Status

memory usage: 62.5+ KB

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

Explore and preprocess the data

df. isnull (). Sum ()

Output

Loan_ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

Drop the null values

df = df. drop ('Loan_ID', axis =1)
df. head ()

Output

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Aı
0	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urt
1	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rι
2	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urb
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urt
4	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urb
4											•

Encoding the categorical values

from sklearn. preprocessing import LabelEncoder $\,$

label_encoder = LabelEncoder ()

categorical_columns = ['Gender', 'Married', 'Education', 'Self_Employed', 'Property_Area', 'Loan_Status'] df[categorical_columns] = df[categorical_columns]. apply(label_encoder.fit_transform) df[categorical_columns]

	Gender	Married	Education	Self_Employed	Property_Area	Loan_Status
0	1	0	0	0	2	1
1	1	1	0	0	0	0
2	1	1	0	1	2	1
3	1	1	1	0	2	1
4	1	0	0	0	2	1
609	0	0	0	0	0	1
610	1	1	0	0	0	1
611	1	1	0	0	2	1
612	1	1	0	0	2	1
613	0	0	0	1	1	0

614 rows × 6 columns

Replace the null value

from sklearn. impute import SimpleImputer

numeric_columns = ['Gender', 'Married', 'Dependents', 'Self_Employed', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History']

df[numeric_columns] = SimpleImputer(strategy='most_frequent'). fit_transform(df[numeric_columns]) df[numeric_columns]

Output

	Gender	Married	Dependents	Self_Employed	LoanAmount	Loan_Amount_Term	Credit_History
0	1	0	0	0	120.0	360.0	1.0
1	1	1	1	0	128.0	360.0	1.0
2	1	1	0	1	66.0	360.0	1.0
3	1	1	0	0	120.0	360.0	1.0
4	1	0	0	0	141.0	360.0	1.0
609	0	0	0	0	71.0	360.0	1.0
610	1	1	3+	0	40.0	180.0	1.0
611	1	1	1	0	253.0	360.0	1.0
612	1	1	2	0	187.0	360.0	1.0
613	0	0	0	1	133.0	360.0	0.0

614 rows × 7 columns

Handle special case in 'Dependents' column

df['Dependents'] = df['Dependents']. replace ('3+', 3). astype(float) df['Dependents']

0.0 1 1.0 2 0.0 3 0.0 4 0.0 609 0.0 610 3.0 611 1.0 612 2.0 613 0.0

Name: Dependents, Length: 614, dtype: float64

Split the data into features (x)

x = df. iloc [:, :-1]

X

Output

	-										
	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_
0	1	0	0.0	0	0	5849	0.0	120.0	360.0	1.0	
1	1	1	1.0	0	0	4583	1508.0	128.0	360.0	1.0	
2	1	1	0.0	0	1	3000	0.0	66.0	360.0	1.0	
3	1	1	0.0	1	0	2583	2358.0	120.0	360.0	1.0	
4	1	0	0.0	0	0	6000	0.0	141.0	360.0	1.0	
609	0	0	0.0	0	0	2900	0.0	71.0	360.0	1.0	
610	1	1	3.0	0	0	4106	0.0	40.0	180.0	1.0	
611	1	1	1.0	0	0	8072	240.0	253.0	360.0	1.0	
612	1	1	2.0	0	0	7583	0.0	187.0	360.0	1.0	
613	0	0	0.0	0	1	4583	0.0	133.0	360.0	0.0	

614 rows × 11 columns

Split the data into target variable (y)

y = df. iloc [:, -1]

Output

0 1 1 0 2 1 3 1 4 1 609 1 610 1 1 611 612 1 613

Name: Loan_Status, Length: 614, dtype: int32

Further split the dataset into training and testing sets

```
from sklearn. model_selection import train_test_split
x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=0)
```

Feature scaling using StandardScaler

```
from sklearn. preprocessing import StandardScaler scaler = StandardScaler ()
x_train = scaler.fit_transform(x_train)
x_test = scaler. transform(x_test)
x_train
```

Output

```
array([[ 0.36547961,  0.6622422 ,  0.20631248, ...,  0.27778225,  0.41649656,  1.20186498],
[ 0.36547961, -1.42427431, -0.77207659, ...,  0.27778225,  0.41649656, -1.31684978],
[ 0.36547961, -1.42427431,  1.18470154, ...,  0.27778225,  0.41649656, -1.31684978],
...,
[ 0.36547961,  0.6622422 ,  2.1630906 , ...,  0.27778225,  0.41649656, -0.0574924 ],
[ 0.36547961,  0.6622422 , -0.77207659, ...,  0.27778225,  0.41649656,  1.20186498],
[ -2.00241646,  0.6622422 , -0.77207659, ...,  0.27778225,  0.41649656, -0.0574924 ]])
```

x_test

Output

```
array([[ 0.36547961, -1.42427431, -0.77207659, ..., 0.27778225, 0.41649656, -0.0574924 ],
[-2.00241646, -1.42427431, -0.77207659, ..., 0.27778225, 0.41649656, -0.0574924 ],
[ 0.36547961, 0.6622422, -0.77207659, ..., 0.27778225, 0.41649656, 1.20186498],
...,
[ 0.36547961, 0.6622422, -0.77207659, ..., 0.27778225, 0.41649656, 1.20186498],
[ 0.36547961, -1.42427431, -0.77207659, ..., 0.27778225, 0.41649656, -0.0574924 ],
[ 0.36547961, 0.6622422, 0.20631248, ..., 0.27778225, -2.40098019, -0.0574924 ]])
```

Intialize the Logistic Regression model

from sklearn. linear_model import LogisticRegression model = LogisticRegression ()

Train the Logistic Regression model

model.fit (x_train, y_train)

Output

LogisticRegression ()

Make predictions

y_pred=model. predict(x_test)
y_pred

Output

Evaluate the model

from sklearn. metrics import accuracy_score, classification_report accuracy = accuracy_score (y_test, y_pred) * 100 print ("Accuracy of the model is {:.2f}". format(accuracy))

Output

Accuracy: 84%

from sklearn. metrics import classification_report
class_report = classification_report (y_test, y_pred)
print (f"\nClassification Report:\n{class_report}")

Output

Classification Report:

Classiiic	acioi	precision	recall	f1-score	support
	0	0.91	0.47	0.62	43
	1	0.83	0.98	0.90	111
accur	acy			0.84	154
macro	avg	0.87	0.72	0.76	154
weighted	avg	0.85	0.84	0.82	154

Predict for new data

new_data = [1, 1, 2, 1, 1, 4106.0, 240.0, 253.0, 360.0, 1, 2] predictions = model. predict([new_data]) print(predictions)

Output

[1]

Assuming a label encoder for decoding categorical predictions

decoded_predictions = label_encoder. inverse_transform(predictions)
print(decoded_predictions)

Output

['Y']

RESULT

Thus, the program to predict if a loan will get approved or not was completed successfully using Logistic Regression.

Ex. No:3 PREDICT THE TRAFFIC ON A NEW MODE OF TRANSPORT

AIM

To write a Python program to predict the traffic on a new mode of transport using Support Vector Machine.

PROCEDURE

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 2. Load the dataset containing traffic data. For Example, traffic dataset.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 4. Use 'LabelEncoder' to encode categorical columns like 'Day of the week', and 'Traffic Situation'.
- 5. Split the dataset into features (x) and target variable (y).
- 6. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 7. Standardize the features using 'StandardScaler' from 'sklearn. preprocessing'.
- 8. Initialize a Support Vector Machine model from 'sklearn.svm'.
- 9. Train the Support Vector Machine model using the training data with the 'fit' method.
- 10. Use the trained Support Vector Machine model to make predictions on the testing data with the 'predict' method.
- 11. Evaluate the performance of the model using metrics such as accuracy, precision, recall, F1_Score, or others based on the requirements.
- 12. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np

import warnings

warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\Traffic.csv")
df. head()

	Time	Date	Day of the week	CarCount	BikeCount	BusCount	TruckCount	Total	Traffic Situation
0	12:00:00 AM	10	Tuesday	31	0	4	4	39	low
1	12:15:00 AM	10	Tuesday	49	0	3	3	55	low
2	12:30:00 AM	10	Tuesday	46	0	3	6	55	low
3	12:45:00 AM	10	Tuesday	51	0	2	5	58	low
4	1:00:00 AM	10	Tuesday	57	6	15	16	94	normal

df.info()

Output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2976 entries, Ø to 2975
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Time	2976 non-null	object
1	Date	2976 non-null	int64
2	Day of the week	2976 non-null	object
3	CarCount	2976 non-null	int64
4	BikeCount	2976 non-null	int64
5	BusCount	2976 non-null	int64
6	TruckCount	2976 non-null	int64
7	Total	2976 non-null	int64
8	Traffic Situation	2976 non-null	object
	1		•

dtypes: int64(6), object(3)
memory usage: 209.4+ KB

df. describe ()

	Date	CarCount	BikeCount	BusCount	TruckCount	Total
count	2976.000000	2976.000000	2976.000000	2976.000000	2976.000000	2976.000000
mean	16.000000	68.696573	14.917339	15.279570	15.324933	114.218414
std	8.945775	45.850693	12.847518	14.341986	10.603833	60.190627
min	1.000000	6.000000	0.000000	0.000000	0.000000	21.000000
25%	8.000000	19.000000	5.000000	1.000000	6.000000	55.000000
50%	16.000000	64.000000	12.000000	12.000000	14.000000	109.000000
75%	24.000000	107.000000	22.000000	25.000000	23.000000	164.000000
max	31.000000	180.000000	70.000000	50.000000	40.000000	279.000000

Explore and preprocess the data

df. isnull (). sum ()

Output

Time 0 Date 0 Day of the week 0 CarCount 0 BikeCount 0 BusCount 0 TruckCount Total 0 Traffic Situation 0 dtype: int64

, ·

Drop the null values

df = df. drop ('Time', axis =1)
df. head ()

Output

	Date	Day of the week	CarCount	BikeCount	BusCount	TruckCount	Total	Traffic Situation
0	10	Tuesday	31	0	4	4	39	low
1	10	Tuesday	49	0	3	3	55	low
2	10	Tuesday	46	0	3	6	55	low
3	10	Tuesday	51	0	2	5	58	low
4	10	Tuesday	57	6	15	16	94	normal

Encoding the categorical values

from sklearn. preprocessing import LabelEncoder

label_encoder = LabelEncoder ()

categorical_columns = ['Day of the week', 'Traffic Situation']

df[categorical_columns] = df[categorical_columns]. apply(label_encoder.fit_transform)

df[categorical_columns]

	Day of the week	Traffic Situation
0	5	2
1	5	2
2	5	2
3	5	2
4	5	3
2971	4	3
2972	4	3
2973	4	3
2974	4	3
2975	4	3

2976 rows × 2 columns

Split the data into features (x)

x = df. iloc [:, :-1]

X

	Date	Day of the week	CarCount	BikeCount	BusCount	TruckCount	Total
0	10	5	31	0	4	4	39
1	10	5	49	0	3	3	55
2	10	5	46	0	3	6	55
3	10	5	51	0	2	5	58
4	10	5	57	6	15	16	94
2971	9	4	16	3	1	36	56
2972	9	4	11	0	1	30	42
2973	9	4	15	4	1	25	45
2974	9	4	16	5	0	27	48
2975	9	4	14	3	1	15	33

2976 rows × 7 columns

Split the data into target variable (y)

```
y = df. iloc [:, -1]
```

Output

```
0
         2
1
         2
2
         2
3
         2
4
         3
2971
         3
2972
         3
2973
         3
         3
2974
2975
```

Name: Traffic Situation, Length: 2976, dtype: int32

Further split the dataset into training and testing sets

from sklearn. model_selection **import** train_test_split x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=0)

Feature scaling using StandardScaler

from sklearn. preprocessing import StandardScaler scaler = StandardScaler ()

x train = scaler.fit transform(x train)

x test = scaler. transform(x test)

x train

```
array([[-0.33600687, -1.59798223, 1.98010887, ..., 1.00899718, -1.1633432 , 2.0733575 ],
        [ 0.43635908, -1.59798223, 2.30697357, ..., -0.31203497, -1.1633432 , 2.20601196],
        [ 1.42940101, -0.10771914, 1.10846967, ..., 0.66135714, -0.68866549, 0.8628855 ],
        ...,
        [ 1.20872503, -1.59798223, -0.351526 , ..., -0.590147 , -0.02411669, -0.48024096],
        [-1.10837282, -1.10122786, -1.15779226, ..., -1.07684306, 0.83030319, -1.1766769 ],
        [-0.99803483, 0.88578959, 0.01892066, ..., -0.72920302, 1.30498091, -0.09885937]])
```

x_test

Output

```
array([[-0.99803483, 0.88578959, -1.24495618, ..., -1.07684306, 1.21004537, -1.19325871],
[-1.66006278, 1.38254396, 0.38936732, ..., 0.17466108, 1.39991645, 0.43175849],
[-1.32904881, -0.6044735, -0.22078012, ..., 1.2175812, 0.92523874, 0.21619498],
...,
[ 1.31906302, -0.6044735, -1.07062834, ..., -0.17297896, 0.64043211, -0.91136797],
[ 0.32602109, 0.38903523, -1.13600128, ..., -1.00731505, 0.45056102, -1.20984052],
[ -1.4393868, -1.59798223, -0.351526, ..., -0.79873103, -0.02411669, -0.57973181]])
```

Intialize the Support Vector Machine model

from sklearn.svm import SVC model = SVC (kernel = 'linear', random_state = 0)

Train the Support Vector Machine model

model.fit (x_train, y_train)

Output

SVC (kernel='linear', random_state=0)

Make predictions

y_pred=model.predict(x_test)
y_pred


```
array([3, 1, 1, 0, 3, 3, 3, 0, 0, 3, 0, 3, 0, 3, 3, 0, 1, 0, 2, 3,
    0, 0, 3, 3, 3, 0, 3, 3, 0, 3, 1, 3, 2, 2,
    3, 2, 2, 0, 3, 3, 2, 3, 0, 3, 3, 3, 3, 1, 3, 3, 2, 3, 2, 0,
      3, 3, 0, 3, 3, 0, 3, 0, 1, 1, 3, 0, 0, 3, 3, 2, 0,
      3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 0, 0, 1, 2, 3, 3, 3, 0, 3, 1, 3, 3, 0, 3, 3, 3, 0, 3, 2, 2, 3,
      3, 3, 1, 1, 1, 1, 3, 0, 3, 3, 3, 3, 0, 3, 3, 0, 3,
      3, 3, 1, 0, 1, 2, 3, 3, 2, 0, 3, 3, 3, 0, 1, 0, 3,
      3, 1, 3, 0, 3, 3, 3, 3, 3, 0, 0, 2, 0, 0, 3, 2,
    3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 0, 1, 3, 0, 1, 0, 3, 3, 3, 2, 3, 3, 1, 3, 0, 3, 1, 2, 3, 3, 3, 3, 3, 0, 3,
    0, 3, 3, 3, 3, 3, 0, 2, 2, 0, 2, 0, 0, 3, 0, 1, 0, 3,
      3, 3, 1, 0, 3, 3, 3, 0, 0, 0, 0, 3, 1, 3, 0, 3, 3,
      2, 3, 0, 3, 3, 0, 3, 3, 3, 0, 0, 0, 3,
    3, 3, 0, 3, 1, 3, 3, 3, 1, 0, 3, 3, 3, 3, 3, 3, 3,
    2, 3, 1, 3, 3, 3, 0, 1, 3, 0, 3, 3, 3, 0, 3, 3, 3, 1, 2, 3, 3, 0,
    3, 3, 3, 3, 3, 0, 2, 0, 3, 3, 0, 0, 3, 3, 3, 1, 2, 3, 3, 3,
```

Evaluate the model

from sklearn. metrics import accuracy_score, classification_report
accuracy = accuracy_score (y_test, y_pred) * 100
print ("Accuracy of the model is {:.2f}". format(accuracy))

Output

Accuracy: 89%

from sklearn. metrics import classification_report
class_report = classification_report (y_test, y_pred)
print (f"\nClassification Report:\n{class_report}")

Output

Classification	Report: precision	recall	f1-score	support
0	0.95	0.99	0.97	168
1	0.85	0.75	0.79	80
2	0.72	0.68	0.70	73
3	0.90	0.92	0.91	423
accuracy			0.89	744
macro avg	0.86	0.84	0.84	744
weighted avg	0.89	0.89	0.89	744

Predict for new data

new_data = [9, 5, 6, 3, 2, 5, 45]
predictions = model. predict([new_data])
print(predictions)

Output

[0]

Assuming a label encoder for decoding categorical predictions

decoded_predictions = label_encoder.inverse_transform(predictions) print(decoded_predictions)

Output

['heavy']

RESULT

Thus, the program to predict the traffic on a new mode of transport was executed successfully using Support Vector Machine model.

Ex. No: 4 PREDICT THE CLASS OF USER

AIM

To write a Python program to predict the class of user using Decision Tree.

PROCEDURE

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 2. Load the dataset containing trip history data. For Example, Trip dataset.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 4. Use 'LabelEncoder' to encode categorical columns like 'Start date', 'End station', 'Bike number' and 'Member type'.
- 5. Split the dataset into features (x) and target variable (y).
- 6. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 7. Standardize the features using 'StandardScaler' from 'sklearn. preprocessing'.
- 8. Initialize a Decision Tree Classifier model from 'sklearn. tree'.
- 9. Train the Decision Tree Classifier model using the training data with the 'fit' method.
- 10. Use the trained Decision Tree Classifier model to make predictions on the testing data with the 'predict' method.
- 11. Evaluate the performance of the model using metrics such as accuracy, precision, recall, F1_Score, or others based on the requirements.
- 12. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\Trip.csv")
df. head ()

	Duration	Start date	End date	Start station number	Start station	End station number	End station	Bike number	Member type
0	1012	20-09-2010 11:27	20-09-2010 11:43	31208	M St & New Jersey Ave SE	31108	4th & M St SW	W00742	Member
1	61	20-09-2010 11:41	20-09-2010 11:42	31209	1st & N St SE	31209	1st & N St SE	W00032	Member
2	2690	20-09-2010 12:05	20-09-2010 12:50	31600	5th & K St NW	31100	19th St & Pennsylvania Ave NW	W00993	Member
3	1406	20-09-2010 12:06	20-09-2010 12:29	31600	5th & K St NW	31602	Park Rd & Holmead Pl NW	W00344	Member
4	1413	20-09-2010 12:10	20-09-2010 12:34	31100	19th St & Pennsylvania Ave NW	31201	15th & P St NW	W00883	Member

df.info()

Output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 115597 entries, 0 to 115596

Data columns (total 9 columns):
Column Non-Null Co

#	Column	Non-Null Count	Dtype	
0	Duration	115597 non-null	int64	
1	Start date	115597 non-null	object	
2	End date	115597 non-null	object	
3	Start station number	115597 non-null	int64	n
4	Start station	115597 non-null	object	
5	End station number	115597 non-null	int64	b
6	End station	115597 non-null	object	
7	Bike number	115597 non-null	object	
8	Member type	115597 non-null	object	
1.0	1 104/5\ 11 1/6		_	

dtypes: int64(3), object(6)
memory usage: 7.9+ MB

df. describe ()

	Duration	Start station number	End station number
count	115597.000000	115597.000000	115597.000000
mean	1254.649956	31266.213431	31268.042250
std	2914.317998	187.645048	186.194316
min	60.000000	31000.000000	31000.000000
25%	403.000000	31110.000000	31111.000000
50%	665.000000	31213.000000	31214.000000
75%	1120.000000	31301.000000	31238.000000
max	85644.000000	31805.000000	31805.000000

Explore and preprocess the data

df. isnull (). sum ()

Output

Duration Start date End date Start station number Start station 0 End station number 0 End station Bike number Member type dtype: int64

Drop the null values

df = df. drop (['Start date', 'End date'], axis =1) df. head ()

1406

1413

Oı	utput						
	Duration	Start station number	Start station	End station number	End station	Bike number	Member type
0	1012	31208	M St & New Jersey Ave SE	31108	4th & M St SW	W00742	Member
1	61	31209	1st & N St SE	31209	1st & N St SE	W00032	Member
2	2690	31600	5th & K St NW	31100	19th St & Pennsylvania Ave NW	W00993	Member

31602

31201

Park Rd & Holmead Pl NW

15th & P St NW

W00344

W00883

Member

Member

Encoding the categorical values

from sklearn. preprocessing import LabelEncoder

31600

label_encoder = LabelEncoder ()

categorical_columns = ['Start station', 'End station', 'Bike number', 'Member type']

31100 19th St & Pennsylvania Ave NW

df[categorical_columns] = df[categorical_columns]. apply(label_encoder.fit_transform)

5th & K St NW

df[categorical_columns]

	Start station	End station	Bike number	Member type
0	85	50	614	1
1	32	33	41	1
2	52	31	836	1
3	52	94	282	1
4	30	21	734	1
115592	35	65	716	0
115593	63	18	764	1
115594	93	18	819	1
115595	1	14	946	1
115596	1	1	636	0

115597 rows × 4 columns

Split the data into features (x)

x = df. iloc [:, :-1]

X

Output

	Duration	Start station number	Start station	End station number	End station	Bike number
0	1012	31208	85	31108	50	614
1	61	31209	32	31209	33	41
2	2690	31600	52	31100	31	836
3	1406	31600	52	31602	94	282
4	1413	31100	30	31201	21	734
115592	2179	31110	35	31623	65	716
115593	953	31106	63	31401	18	764
115594	737	31602	93	31401	18	819
115595	514	31111	1	31202	14	946
115596	51962	31111	1	31111	1	636

115597 rows × 6 columns

Split the data into target variable (y)

```
y = df. iloc [:, -1]
```

Output

```
0
           1
1
           1
2
           1
3
           1
           1
4
115592
           0
115593
           1
115594
           1
115595
           1
115596
           0
```

Name: Member type, Length: 115597, dtype: int32

Further split the dataset into training and testing sets

from sklearn. model_selection **import** train_test_split x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=0)

Feature scaling using StandardScaler

from sklearn. preprocessing import StandardScaler scaler = StandardScaler ()

x_train = scaler.fit_transform(x_train)

 $x_{test} = scaler. transform(x_{test})$

x_train

```
array([[ 0.54640202, -1.40804138, -0.50762432, 1.8909801 , 0.11621975, -1.36635173],
[-0.32533639, -1.41337456, -0.81044688, -1.36975376, 0.69092124, -1.47913197],
[-0.14892163, -0.28274243, -0.84409383, -0.89702793, -1.10079519, 1.07843294],
...,
[-0.21022131, -0.16007951, -0.13750786, -0.30074876, -0.35706384, -1.51915077],
[-0.18028425, 1.85052573, 0.77095983, 1.86949256, -0.05281011, 0.57637894],
[-0.35277869, -0.35207365, 1.30931104, -0.35983949, -0.93176534, 0.82740594]])
```

x_test

Output

Intialize the Decision Tree model

from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier ()

Train the Decision Tree model

model.fit (x_train, y_train)

Output

DecisionTreeClassifier ()

Make predictions

y_pred=model.predict(x_test)
y_pred

Output

array ([1, 1, 1, ..., 1, 1, 0])

Evaluate the model

from sklearn. metrics **import** accuracy_score, classification_report accuracy = accuracy_score (y_test, y_pred) * 100 print ("Accuracy of the model is {:.2f}". format(accuracy))

Output

Accuracy: 80%

from sklearn. metrics import classification_report
class_report = classification_report (y_test, y_pred)
print (f"\nClassification Report:\n{class_report}")

Output

Classification Report:

	precision	recall	f1-score	support
0	0.52	0.54	0.53	6089
1	0.88	0.87	0.87	22811
accuracy			0.80	28900
macro avg weighted avg	0.70 0.80	0.70 0.80	0.70 0.80	28900 28900
weighten avg	0.00	0.00	0.00	20000

Predict for new data

new_data = [737, 31110, 63, 31623, 18, 636]
predictions = model. predict([new_data])
print(predictions)

Output

[1]

Assuming a label encoder for decoding categorical predictions

decoded_predictions = label_encoder. inverse_transform(predictions)
print(decoded_predictions)

Output

['Member']

RESULT

Thus, the program to predict the class of user was completed successfully using Decision Tree Classifier.

Ex. No: 5 IDENTIFY THE TWEETS WHICH ARE HATE TWEETS AND WHICH ARE NOT.

AIM

To write a Python program to identify the tweets which are hate tweets and which are not using Multinomial Naïve Bayes model.

PROCEDURE

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 2. Load the dataset containing twitter data. For Example, Twitter dataset.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 4. Split the dataset into features (x) and target variable (y).
- 5. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 6. Use CountVectorizer from sklearn to convert the text features in the training data into a matrix of token counts and apply the same CountVectorizer to transform the text feature in the test data.
- 7. Initialize a Multinomial Naïve Bayes model from 'sklearn. naive_bayes'.
- 8. Train the Multinomial Naïve Bayes model using the training data with the 'fit' method.
- 9. Use the trained Multinomial Naïve Bayes model to make predictions on the testing data with the 'predict' method.
- 10. Evaluate the performance of the model using metrics such as accuracy, precision, recall, F1_Score, or others based on the requirements.
- 11. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\Twitter.csv")
df. head ()

	status_id	text	created_at	favorite_count	retweet_count	location	followers_count	friends_count	statuses_count	category
0	1046207313588236290	Entitled, obnoxious, defensive, lying weasel	2018-09- 30T01:17:15Z	5	1	McAllen, TX	2253	2303	23856	0
1	1046207328113086464	Thank you and for what you did for the women	2018-09- 30T01:17:19Z	5	2	Tampa, FL	2559	4989	19889	0
2	1046207329589493760	Knitting (s) & getting ready for January 1	2018-09- 30T01:17:19Z	0	0	St Cloud, MN	16	300	9	0
3	1046207341283168256	Yep just like triffeling women weaponized thei	2018-09- 30T01:17:22Z	1	0	flyover country	3573	3732	38361	1
4	1046207347016826880	No, the President wants to end movement posin	2018-09- 30T01:17:23Z	0	0	World	294	312	7635	0

df.info()

Output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 807174 entries, 0 to 807173 Data columns (total 10 columns):

Data	corumns (cocar .	ra corumns):	
#	Column	Non-Null Count	Dtype
0	status_id	807174 non-null	int64
1	text	803638 non-null	object
2	created_at	807174 non-null	object
3	favorite_count	807174 non-null	int64
4	retweet_count	807174 non-null	int64
5	location	616394 non-null	object
6	followers_count	807174 non-null	int64
7	friends_count	807174 non-null	int64
8	statuses_count	807174 non-null	int64
9	category	807174 non-null	int64

memory usage: 61.6+ MB

9 category dtypes: int64(7), object(3)

df. describe ()

_							
	status_id	favorite_count	retweet_count	followers_count	friends_count	statuses_count	category
count	8.071740e+05	807174.000000	807174.000000	8.071740e+05	807174.000000	8.071740e+05	807174.000000
mean	1.061411e+18	6.466671	2.557508	4.663755e+04	6306.597207	4.793559e+04	0.118108
std	1.428176e+16	159.865656	50.724140	6.111813e+05	40549.763583	1.646474e+05	0.322737
min	1.046207e+18	0.000000	0.000000	0.000000e+00	0.000000	1.000000e+00	0.000000
25%	1.050184e+18	0.000000	0.000000	1.070000e+02	160.000000	1.663250e+03	0.000000
50%	1.054643e+18	0.000000	0.000000	5.390000e+02	528.000000	8.007000e+03	0.000000
75%	1.071177e+18	1.000000	0.000000	2.844000e+03	1756.000000	3.317500e+04	0.000000
max	1.097647e+18	70385.000000	17484.000000	5.457643e+07	899383.000000	9.565126e+06	1.000000

Explore and preprocess the data

df. isnull (). sum ()

Output

status id 0 text 3536 created at 0 favorite_count 0 retweet count 0 location 190780 followers count 0 friends_count 0 statuses count 0 category dtype: int64

Replace the null value

df['text']. fillna (", inplace=True)
df['text']

Output

```
0
         Entitled, obnoxious, defensive, lying weasel. ...
1
         Thank you and for what you did for the women...
2
         Knitting (s) & amp; getting ready for January 1...
         Yep just like triffeling women weaponized thei...
3
         No, the President wants to end movement posin...
4
         Let's not forget that this "iconic kiss" was u...
807169
         DEFINITELY....the only one any of us should su...
807170
         Did the movement count the dollars of Erin An...
807171
         This is one of my all time fav songs & amp; vid...
807172
          I watched your news on the death of the sailo...
807173
Name: text, Length: 807174, dtype: object
```

df['location']. fillna (", inplace=True) df['location']

0	McAllen, TX		
1	Tampa, FL		
2	St Cloud, MN		
3	flyover country		
4	World		
807169	South Florida		
807170			
807171	Philly		
807172	Berlin, Deutschland		
807173	Massachusetts, USA		
Name: loc	ation, Length: 807174,	dtype:	object

Drop the null values

df = df. drop (['status_id', 'created_at'], axis =1)
df. head ()

Output

	text	favorite_count	retweet_count	location	followers_count	friends_count	statuses_count	category
0	Entitled, obnoxious, defensive, lying weasel	5	1	McAllen, TX	2253	2303	23856	0
1	Thank you and for what you did for the women	5	2	Tampa, FL	2559	4989	19889	0
2	Knitting (s) & amp; getting ready for January 1	0	0	St Cloud, MN	16	300	9	0
3	Yep just like triffeling women weaponized thei	1	0	flyover country	3573	3732	38361	1
4	No, the President wants to end movement posin	0	0	World	294	312	7635	0

Split the data into features (x)

x = df. iloc [:, :-1]

X

Output

	text	favorite_count	retweet_count	location	followers_count	friends_count	statuses_count
0	Entitled, obnoxious, defensive, lying weasel	5	1	McAllen, TX	2253	2303	23856
1	Thank you and for what you did for the women	5	2	Tampa, FL	2559	4989	19889
2	Knitting (s) & amp; getting ready for January 1	0	0	St Cloud, MN	16	300	9
3	Yep just like triffeling women weaponized thei	1	0	flyover country	3573	3732	38361
4	No, the President wants to end movement posin	0	0	World	294	312	7635
807169	Let's not forget that this "iconic kiss" was u	2	0	South Florida	206	412	1247
807170	DEFINITELYthe only one any of us should su	3	0		63	6	137
807171	Did the movement count the dollars of Erin An	0	0	Philly	2721	3509	66966
807172	This is one of my all time fav songs & amp; vid	1	1	Berlin, Deutschland	2683	1011	15455
807173	I watched your news on the death of the sailo	1	0	Massachusetts, USA	237	741	789

807174 rows × 7 columns

Split the data into target variable (y)

y = df. iloc [:, -1]

Output

Name: category, Length: 807174, dtype: int64

Further split the dataset into training and testing sets

from sklearn. model_selection **import** train_test_split x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=0)

Use CountVectorizer for text feature on training data

from sklearn. feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
x_train_text = vectorizer.fit_transform(x_train['text'])
x_train_text

Output

<605380x119250 sparse matrix of type '<class 'numpy.int64'>'
 with 10994435 stored elements in Compressed Sparse Row format>

Apply the same CountVectorizer to transform the text feature in the test data

x_test_text = vectorizer. transform(x_test['text'])
x_test_text

Output

<201794x119250 sparse matrix of type '<class 'numpy.int64'>'
 with 3641705 stored elements in Compressed Sparse Row format>

Intialize the Naïve Bayes model

from sklearn. naive_bayes import MultinomialNB model = MultinomialNB ()

Train the Naïve Bayes model

model.fit (x_train, y_train)

Output

MultinomialNB ()

Make predictions

y_pred = model. predict(x_test_text)
y_pred

Output

array ([0, 0, 0, ..., 0, 0, 0], dtype=int64)

Evaluate the model

from sklearn. metrics import accuracy_score, classification_report
accuracy = accuracy_score (y_test, y_pred) * 100
print ("Accuracy of the model is {:.2f}". format(accuracy))

Output

Accuracy: 93%

from sklearn. metrics import classification_report
class_report = classification_report (y_test, y_pred)
print (f"\nClassification Report:\n{class_report}")

Output

Classification	Report: precision	recall	f1-score	support
0	0.96	0.96	0.96	178149
1	0.70	0.71	0.71	23645
accuracy			0.93	201794
macro avg	0.83	0.84	0.83	201794
weighted avg	0.93	0.93	0.93	201794

RESULT

Thus, the program to identify the tweets which are hate tweets and which are not was completed successfully using Multinomial Naïve Bayes model.

PREDICT THE AGE OF THE ACTORS

AIM

To write a Python program to predict the age of the actors using Linear Regression.

PROCEDURE

Ex. No: 6

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 2. Load the dataset containing age of actor's data. For Example, age dataset.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 4. In the preprocessing, convert the 'birthday' column to a datetime format and also extract the birth year from the 'birth year' from the 'birthday' column to create a new 'birth_year' column.
- 5. Use 'LabelEncoder' to encode categorical columns like 'name', and 'Character_gender'.
- 6. Use 'SimpleImputer' fro, sklearn to replace null values in numerical columns ('birth_year', 'actor_age') with the most frequent values.
- 7. Split the dataset into features (x) and target variable (y).
- 8. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 9. Initialize a Linear Regression model from 'sklearn. linear_model'.
- 10. Train the Linear Regression model using the training data with the 'fit' method.
- 11. Use the trained Linear Regression model to make predictions on the testing data with the 'predict' method.
- 12. Evaluate the performance of the model using **metrics** such as mean_squared_error, or others based on the requirements.
- 13. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\age.csv")
df. head ()

	name	birthday	title	character_name	character_year	characterage	character_gender	love_interest	release_date	actor_age
0	Ben Platt	24-09- 1993	The Politician	Payton Hobart	hs senior	NaN	М	Alice Charles, Astrid Sloan, River Barkley	27-09-2019	26.0
1	Zoey Deutch	10-11- 1994	The Politician	Infinity Jackson	hs senior	NaN	F	NaN	27-09-2019	24.0
2	Lucy Boynton	17-01- 1994	The Politician	Astrid Sloan	hs senior	NaN	F	Payton Hobart, River Barkley	27-09-2019	25.0
3	Julia Schlaepfer	03-03- 1995	The Politician	Alice Charles	hs senior	NaN	F	Payton Hobart, James Sullivan	27-09-2019	24.0
4	Laura Dreyfuss	22-08- 1988	The Politician	McAfee Westbrook	hs senior	NaN	F	Skye Leighton	27-09-2019	31.0

df.info()

Output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 243 entries, 0 to 242
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	name	243 non-null	object
1	birthday	227 non-null	object
2	title	243 non-null	object
3	character_name	243 non-null	object 📉 🧍
4	character year	111 non-null	object
5	characterage	131 non-null	float64
6	character_gender	243 non-null	object
7	love_interest	132 non-null	object
8	release date	243 non-null	object
9	actor_age	227 non-null	float64
والمراجع والمطالح	£1+c4/2\ -b-	:+(o)	

dtypes: float64(2), object(8)

memory usage: 19.1+ KB

df. describe ()

	characterage	actor_age
count	131.000000	227.000000
mean	16.580153	21.977974
std	1.518877	3.908743
min	10.000000	11.000000
25%	16.000000	20.000000
50%	17.000000	22.000000
75%	17.000000	24.000000
max	25.000000	32.000000

Explore and preprocess the data

df. isnull (). sum ()

Output

```
0
name
                     16
birthday
title
                      0
character name
                      0
character_year
                    132
characterage
                    112
character_gender
                    0
love_interest
                    111
release_date
                     0
                     16
actor_age
dtype: int64
```

Preprocessing

Extract year from birthday

df['birthday'] = pd.to_datetime(df['birthday'])
df['birthday']

Output

```
0
      1993-09-24
1
      1994-11-10
2
      1994-01-17
3
     1995-03-03
4
     1988-08-22
238
             NaT
239
      1991-10-19
240
      1994-11-09
241
    1998-04-20
242
             NaT
Name: birthday, Length: 243, dtype: datetime64[ns]
```

df['birth_year'] = df['birthday'].dt. year
df['birth_year']

```
0
      1993.0
1
      1994.0
2
      1994.0
3
      1995.0
4
      1988.0
238
        NaN
239
      1991.0
240
      1994.0
241
      1998.0
242
         NaN
Name: birth_year, Length: 243, dtype: float64
```

Drop the null values

df

Output

	name	character_gender	actor_age	birth_year
0	Ben Platt	М	26.0	1993.0
1	Zoey Deutch	F	24.0	1994.0
2	Lucy Boynton	F	25.0	1994.0
3	Julia Schlaepfer	F	24.0	1995.0
4	Laura Dreyfuss	F	31.0	1988.0
238	Thomas Mitchell Barnet	M	NaN	NaN
239	Kevin Alves	M	28.0	1991.0
240	Asha Bromfield	F	25.0	1994.0
241	Felix Mallard	M	21.0	1998.0
242	Hallea Jones	F	NaN	NaN

243 rows × 4 columns

Encoding the categorical values

from sklearn. preprocessing import LabelEncoder

label_encoder = LabelEncoder ()

categorical_columns = ['name', 'character_gender']

df[categorical_columns] = df[categorical_columns]. apply(label_encoder.fit_transform) df[categorical_columns]

Output

	name	character_gender
0	24	1
1	239	0
2	151	0
3	126	0
4	142	0
238	229	1
239	135	1
240	18	0
241	80	1
242	94	0

243 rows × 2 columns

Explore the null values in the data

df. isnull (). sum ()

Output

name 0
character_gender 0
actor_age 16
birth_year 16
dtype: int64

Replace the null values

from sklearn. impute import SimpleImputer
numeric_columns = ['birth_year','actor_age']
df[numeric_columns] = SimpleImputer(strategy='most_frequent'). fit_transform(df[numeric_columns])
df[numeric_columns]

Output

	birth_year	actor_age
0	1993.0	26.0
1	1994.0	24.0
2	1994.0	25.0
3	1995.0	24.0
4	1988.0	31.0
238	1996.0	22.0
239	1991.0	28.0
240	1994.0	25.0
241	1998.0	21.0
242	1996.0	22.0

243 rows × 2 columns

Split the data into features (x)

x = df[['name', 'character_gender', 'birth_year']]
x

	name	character_gender	birth_year
0	24	1	1993.0
1	239	0	1994.0
2	151	0	1994.0
3	126	0	1995.0
4	142	0	1988.0
238	229	1	1996.0
239	135	1	1991.0
240	18	0	1994.0
241	80	1	1998.0
242	94	0	1996.0

243 rows × 3 columns

Split the data into target variable (y)

y = df['actor_age'] y

Output

0 26.0 1 24.0 2 25.0 3 24.0 4 31.0

238 22.0 239 28.0

240 25.0 241 21.0

22.0

242

Name: actor_age, Length: 243, dtype: float64

Further split the dataset into training and testing sets

from sklearn. model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split (x, y, test_size=0.2, random_state=42)

Intialize the Linear Regression model

from sklearn. linear_model import LinearRegression model = LinearRegression ()

Train the Linear Regression model

model.fit (x_train, y_train)

Output

LinearRegression ()

Make predictions

```
y_pred = model. predict(x_test)
y_pred
```

Output

```
array([20.09904337, 23.90720926, 20.81859233, 17.27447575, 20.69497398, 19.17478424, 20.17372696, 19.32125732, 26.15894389, 20.06672071, 23.63164979, 26.99190733, 23.06216532, 20.95792124, 21.86855069, 20.60029112, 21.8311261, 26.20693847, 19.70247812, 20.88760364, 21.86063193, 21.31628731, 21.96911008, 20.55001143, 19.37308618, 20.47177507, 28.29322551, 20.24192505, 20.99893724, 20.76190441, 21.17414158, 20.93918962, 20.9083775, 22.36906249, 21.07435678, 21.26959902, 23.92308542, 20.81785638, 23.86149981, 21.93115378, 22.94291295, 20.06312931, 20.71599071, 21.13390016, 20.34685042, 22.32955702, 20.15422076, 20.61032939, 21.4240295])
```

Evaluate the model

from sklearn. metrics import mean_squared_error mse = mean_squared_error (y_test, y_pred) print (f"Mean Squared Error: {mse}")

Output

Mean Squared Error: 9.760123797821025

Predict the new data

```
new_data = pd. DataFrame ({"name": [142], "character_gender": [1], "birth_year": [1996.0]}) predicted_age = model. predict(new_data) print (f"Predicted Actor Age: {predicted_age [0]}")
```

Output

Predicted Actor Age: 21.007426345958265

RESULT

Thus, the program to predict the age of the actors was completed successfully using Linear Regression.

Ex. No: 7 INTRODUCTION TO PYTHON LIBRARIES - NUMPY, PANDAS, MATPLOTLIB, SCIKIT

AIM

The aim to study the Python Libraries such as Numpy for numerical operations, Pandas for data manipulation and analysis, Matplotlib for data visualization, Scikit – Learn for machine learning tasks.

PROCEDURE

1. Numpy

- Numpy is used for numerical operations in Python.
- It provides support for large, multi-dimensional arrays, along with mathematical functions to operate on these arrays.

Program

```
import numpy as np
arr = np. array ([1, 2, 3, 4, 5])
print ("Numpy Array:", arr)
```

Output

Numpy Array: [1 2 3 4 5]

2. Pandas

- Pandas is a powerful library for data manipulation and analysis.
- It introduces two primary data structures: Series (1D labeled array) and DataFrame (2D labeled table).
- Procedures including loading data, exploring data using methods like info (), head (), and performing operations like dropping null values.

Program

```
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd. DataFrame(data)
print ("Pandas DataFrame:")
print(df)
```

```
Pandas DataFrame:
Name Age
Alice 25
Bob 30
Charlie 35
```

3. Matplotlib

- Matplotlib is a popular plotting library for creating static, interactive, and animated visualizations.
- The focus is on using Matplotlib to create basic plots like line plots, scatter plots, and bar plots.

Program

```
import numpy as np
import matplotlib. pyplot as plt
x = np. linspace (0, 10, 100)
y = np. sin (x)
plt. plot (x, y)
plt. title ("Matplotlib Plot")
plt. xlabel ("X-axis")
plt. ylabel ("Y-axis")
plt. show ()
```

Output

4. Scikit-Learn

- Scikit-Learn is a machine learning library that provides simple and efficient tools for data analysis and modeling.
- Procedures involve splitting data into training and testing sets using **train_test_split**, initializing and training a machine learning model (e.g., Linear regression), making predictions, and evaluating model performance.

Program

Dataset

```
x = np. array ([1, 2, 3, 4, 5]). reshape (-1, 1) 
y = np. array ([2, 4, 5, 4, 5])
```

Split the training and testing sets

```
from sklearn. model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split (x, y, test_size = 0.2, random_state = 42)
```

Initialize the Linear Regression Model

from sklearn. linear_model import LinearRegression model = LinearRegression ()

Train the Linear regression Model

model.fit (x_train, y_train)

Output

LinearRegression ()

Make Predictions

print ("Scikit-Learn Prediction:", prediction)

Evaluate the model

from sklearn. metrics import mean_absolute_error, mean_squared_error, root_mean_sqerr, R_squared mae = mean_absolute_error (y_test, y_pred) print (f'Mean Absolute Error: {mae}')

mse = mean_squared_error (y_test, y_pred)
print (f'Mean Squared Error: {mse}')

Output

Mean Absolute Error: 85.71428571428572 Mean Squared Error: 73.46938775510206

Result

Thus, the basic usage of Numpy, Pandas, Matplotlib, and Scikit-Lear for machine learning tasks was studied successfully.

Ex. No: 8 PERFORM DATA EXPLORATION AND PREPROCESSING IN PYTHON

AIM

The aim is to perform the data exploration and preprocessing techniques in Python using a real-world dataset.

PROCEDURE

1. Import necessary libraries

Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations.

Program

import numpy as np import pandas as pd

2. Load the dataset

Load the real-world sample dataset to explore and preprocess the data for better understanding. For Example, Data.CSV dataset.

Program

dataset = pd. read_csv ("C:\\Users\\HP\\Documents\\DSC LAB\\Dataset\\Data.csv") dataset

	Country	Age	Salary	Purchased
0	France	44.0	72000.0	No
1	Spain	27.0	48000.0	Yes
2	Germany	30.0	54000.0	No
3	Spain	38.0	61000.0	No
4	Germany	40.0	NaN	Yes
5	France	France 35.0 58000.0		Yes
6	Spain	NaN	52000.0	No
7	France	48.0	79000.0	Yes
8	Germany	50.0	83000.0	No
9	France	37.0	67000.0	Yes

3. Display the few rows to understand the data structure

Display the few rows to understand the data structure of the data using **head** () method.

Program

dataset. head (10)

Output

	Country	Age	Salary	Purchased
0	France	44.0	72000.0	No
1	Spain	27.0	48000.0	Yes
2	Germany	30.0	54000.0	No
3	Spain	38.0	61000.0	No
4	Germany	40.0	NaN	Yes
5	France	35.0	58000.0	Yes
6	Spain	NaN	52000.0	No
7	France	48.0	79000.0	Yes
8	Germany	50.0	83000.0	No
9	France	37.0	67000.0	Yes

4. Analyze and view the information in tha data

To view the information of the data using **info** () method.

Program

dataset.info ()

Output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 4 columns): Non-Null Count Dtype Column Country 10 non-null object 0 9 non-null float64 1 Age 9 non-null float64 2 Salary Purchased 10 non-null object

dtypes: float64(2), object(2) memory usage: 452.0+ bytes

5. Analyze and view the statistics information of the data

To view the statistics information of the data using **describe** () method.

Program

dataset. describe ()

Output

	Age	Salary
count	9.000000	9.000000
mean	38.777778	63777.777778
std	7.693793	12265.579662
min	27.000000	48000.000000
25%	35.000000	54000.000000
50%	38.000000	61000.000000
75%	44.000000	72000.000000
max	50.000000	83000.000000

6. Split the dataset into features (x)

From the dataset, split the independent variable (x).

Program

x = dataset. iloc [:, :-1].values
print(x)

7. Split the dataset into target variable (y)

From the dataset, split the dependent variable (y).

Program

y = dataset. iloc [:, 3].values print(y)

Output

['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']

8. Handling missing Data

Identify missing values using 'dataset. isnull (). sum ()'.

Program

```
print (dataset. isnull (). sum ())
```

Output

Country 0 Age 1 Salary 1 Purchased 0 dtype: int64

9. Drop missing values

Drop missing values from the dataset using 'dataset. dropna ()'.

Program

```
dataset. dropna (inplace = True) print(dataset)
```

Output

```
Country Age
               Salary Purchased
0
  France 44.0 72000.0
                             No
1
    Spain 27.0 48000.0
                            Yes
2 Germany 30.0 54000.0
                             No
    Spain 38.0 61000.0
                             No
5
  France 35.0 58000.0
                            Yes
7 France 48.0 79000.0
                            Yes
8 Germany 50.0 83000.0
                             No
  France 37.0 67000.0
                            Yes
```

10. Replace missing values

Use 'SimpleImputer' from scikit-learn to replace missing values with the mean of the respective columns.

Program

Taking care of missing data (replacing with the mean)

```
from sklearn. impute import SimpleImputer
imputer = SimpleImputer (missing_values = np.nan, strategy = 'mean')
```

Fitting the imputer object to the matrix of features X

imputer.fit(x[:,1:3])

Replacing the missing data by the mean of the column

```
x[:,1:3] = imputer.transform(x[:,1:3])
print(x[:,1:3])
```

```
[[44.0 72000.0]

[27.0 48000.0]

[30.0 54000.0]

[38.0 61000.0]

[40.0 63777.77777777778]

[35.0 58000.0]

[38.77777777777778 52000.0]

[48.0 79000.0]

[50.0 83000.0]

[37.0 67000.0]]
```

11. Encoding the categorical data

• Apply one-hot encoding to the 'Country' column using 'ColumnTransfomer' and 'OneHotEncoder'.

Program

```
from sklearn. compose import ColumnTransformer
from sklearn. preprocessing import OneHotEncoder
ct = ColumnTransformer (transformers = [('encoder', OneHotEncoder (), [0])], remainder =
"passthrough")
x = np. array(ct.fit_transform(x))
print(x)
```

Output

```
[[1.0 0.0 0.0 44.0 72000.0]

[0.0 0.0 1.0 27.0 48000.0]

[0.0 1.0 0.0 30.0 54000.0]

[0.0 0.0 1.0 38.0 61000.0]

[0.0 1.0 0.0 40.0 63777.77777777778]

[1.0 0.0 0.0 35.0 58000.0]

[0.0 0.0 1.0 38.7777777777778 52000.0]

[1.0 0.0 0.0 48.0 79000.0]

[0.0 1.0 0.0 50.0 83000.0]

[1.0 0.0 0.0 37.0 67000.0]]
```

• Apply Label encode to the 'Purchased' column using 'LabelEncoder'.

Program

```
from sklearn. preprocessing import LabelEncoder le = LabelEncoder ()
y=le.fit_transform(y)
print(y)
```

```
[0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1]
```

12. Splitting the Dataset

Use 'train_test_split' from scikit-learn to split the dataset into training and testing sets.

Program

```
from sklearn. model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split (x, y, test_size = 0.25, random_state = 1) print(x_train)
```

Output

```
[[0.0 1.0 0.0 40.0 63777.77777777778]

[1.0 0.0 0.0 44.0 72000.0]

[0.0 0.0 1.0 38.0 61000.0]

[0.0 0.0 1.0 27.0 48000.0]

[1.0 0.0 0.0 48.0 79000.0]

[0.0 1.0 0.0 50.0 83000.0]

[1.0 0.0 0.0 35.0 58000.0]]
```

Program

print(x_test)

Output

```
[[0.0 1.0 0.0 30.0 54000.0]
[1.0 0.0 0.0 37.0 67000.0]
[0.0 0.0 1.0 38.777777777778 52000.0]]
```

Program

print(y_train)

Output

[1001101]

Program

print(y_test)

Output

[0 1 0]

13. Feature Scaling

Standardize the numerical features using 'StandardScaler' from scikit-learn.

Program

```
from sklearn. preprocessing import StandardScaler
scaler = StandardScaler ()
x_train[:,2:]=scaler.fit_transform(x_train[:,2:])
x_test[:,2:]=scaler.fit_transform(x_test[:,2:])
print(x_train)
print(x_test)
```

```
[[0.0 1.0 -0.6324555320336758 -0.038910211282047996 -0.22960023388015188]
[1.0 0.0 -0.6324555320336758 0.5058327466666259 0.49120534884662787]
[0.0 0.0 1.5811388300841895 -0.3112816902563849 -0.4731156334500103]
[0.0 0.0 1.5811388300841895 -1.809324824615238 -1.6127677034369463]
[1.0 0.0 -0.6324555320336758 1.0505757046152997 1.1048641557626704]
[0.0 1.0 -0.6324555320336758 1.3229471835896367 1.455526331143266]
[1.0 0.0 -0.6324555320336758 -0.7198389087178904 -0.736112264985457]]
[[0.0 1.0 -0.7071067811865475 -1.3880272079128577 -0.5513801778287937]
[1.0 0.0 -0.7071067811865475 0.4594174561401711 1.40351317992784]
[0.0 0.0 1.4142135623730951 0.9286097517726866 -0.8521330020990451]]
```

14. Data Visualization

Visualize the distribution of the 'Age' column using a histogram.

Program

import matplotlib. pyplot as plt
plt. hist(dataset['Age'], bins=15)
plt. show ()

Output

15. Identify outliers

Identify the outliers using the quantile method.

Program

lowerLimit=dataset['Age']. quantile (0.05) print(lowerLimit)

Output

28.05

Program

print(dataset[dataset['Age'] < lowerLimit])</pre>

Output

```
Country Age Salary Purchased
1 Spain 27.0 48000.0 Yes
```

Program

```
upperLimit=dataset['Age']. quantile (0.95)
print(upperLimit)
```

Output

49.3

Program

print(dataset[dataset['Age']>upperLimit])

Output

```
Country Age Salary Purchased
8 Germany 50.0 83000.0 No
```

16. Remove outliers from the dataset

Remove the outliers from the dataset using quantile method.

Program

```
dataset = dataset[(dataset['Age']>lowerLimit) & (dataset['Age'] <upperLimit)]
print(dataset)</pre>
```

Output

```
Country Age Salary Purchased
0 France 44.0 72000.0 No
2 Germany 30.0 54000.0 No
3 Spain 38.0 61000.0 No
5 France 35.0 58000.0 Yes
7 France 48.0 79000.0 Yes
9 France 37.0 67000.0 Yes
```

Result

Thus, the performance of the data exploration and preprocessing techniques in Python using a real-world dataset was successfully completed.

Ex. No: 9 IMPLEMENTATION OF REGULARIZED LINEAR REGRESSION

AIM

To write a Python program to implement a regularized linear regression on housing dataset.

PROCEDURE

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 2. Load the dataset containing housing dataset from the specified file location.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 4. Replace missing values in specific numeric columns with the mean using 'SimpleImputer'.
- 5. Split the dataset into features (x) and target variable (y).
- 6. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 7. Standardize the features using 'StandardScaler' from 'sklearn. preprocessing'.
- 8. Initialize a Ridge Regression model from 'sklearn. linear_model'.
- 9. Train the Ridge Regression model using the training data with the 'fit' method.
- 10. Use the trained Ridge Regression model to make predictions on the testing data with the 'predict' method.
- 11. Evaluate the performance of the model using **metrics** such as mean_squared_error, or others based on the requirements.
- 12. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\Housing.csv")
df

		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NaN	36.2
5	01	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	NaN	22.4
5	02	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.6
5	03	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.9
5	04	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.0
5	05	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90	7.88	11.9

506 rows × 14 columns

df.info()

Output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

	0014	(cocar r. coramii	~/·
#	Column	Non-Null Count	Dtype
0	CRIM	486 non-null	float64
1	ZN	486 non-null	float64
2	INDUS	486 non-null	float64
3	CHAS	486 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	486 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	int64
9	TAX	506 non-null	int64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	486 non-null	float64
13	MEDV	506 non-null	float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

df. describe ()

Output

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	L
count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000	506.000000	506.000000	506.000000	506.000000	506.000000	486.00
mean	3.611874	11.211934	11.083992	0.069959	0.554695	6.284634	68.518519	3.795043	9.549407	408.237154	18.455534	356.674032	12.71
std	8.720192	23.388876	6.835896	0.255340	0.115878	0.702617	27.999513	2.105710	8.707259	168.537116	2.164946	91.294864	7.15
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.73
25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500	45.175000	2.100175	4.000000	279.000000	17.400000	375.377500	7.12
50%	0.253715	0.000000	9.690000	0.000000	0.538000	6.208500	76.800000	3.207450	5.000000	330.000000	19.050000	391.440000	11.43
75%	3.560263	12.500000	18.100000	0.000000	0.624000	6.623500	93.975000	5.188425	24.000000	666.000000	20.200000	396.225000	16.95
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.97
4													•

Explore and preprocess the data

df. isnull (). sum ()

Output

CRIM	20
ZN	20
INDUS	20
CHAS	20
NOX	0
RM	0
AGE	20
DIS	0
RAD	0
TAX	0
PTRATIO	0
В	0
LSTAT	20
MEDV	0
dtype: into	54

Replace the null values

 $from \ sklearn. \ impute \ import \ SimpleImputer \\ numeric_columns = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'AGE', 'LSTAT'] \\ df[numeric_columns] = SimpleImputer(strategy='mean').fit_transform(df[numeric_columns]) \\ df[numeric_columns]$

	CRIM	ZN	INDUS	CHAS	AGE	LSTAT	
0	0.00632	18.0	2.31	0.0	65.200000	4.980000	
1	0.02731	0.0	7.07	0.0	78.900000	9.140000	
2	0.02729	0.0	7.07	0.0	61.100000	4.030000	
3	0.03237	0.0	2.18	0.0	45.800000	2.940000	
4	0.06905	0.0	2.18	0.0	54.200000	12.715432	
501	0.06263	0.0	11.93	0.0	69.100000	12.715432	
502	0.04527	0.0	11.93	0.0	76.700000	9.080000	
503	0.06076	0.0	11.93	0.0	91.000000	5.640000	
504	0.10959	0.0	11.93	0.0	89.300000	6.480000	
505	0.04741	0.0	11.93	0.0	68.518519	7.880000	

506 rows × 6 columns

Split the data into features (x)

x = df. iloc [:, :-1]

X

Output

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.200000	4.0900	1	296	15.3	396.90	4.980000
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.900000	4.9671	2	242	17.8	396.90	9.140000
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.100000	4.9671	2	242	17.8	392.83	4.030000
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.800000	6.0622	3	222	18.7	394.63	2.940000
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.200000	6.0622	3	222	18.7	396.90	12.715432
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.100000	2.4786	1	273	21.0	391.99	12.715432
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.700000	2.2875	1	273	21.0	396.90	9.080000
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.000000	2.1675	1	273	21.0	396.90	5.640000
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.300000	2.3889	1	273	21.0	393.45	6.480000
505	0.04741	0.0	11.93	0.0	0.573	6.030	68.518519	2.5050	1	273	21.0	396.90	7.880000

506 rows × 13 columns

```
# Split the data into target variable (y)
```

```
y = df. iloc[:, -1]
y
```

```
24.0
1
       21.6
2
       34.7
3
       33.4
       36.2
       . . .
501
       22.4
       20.6
502
503
       23.9
504
       22.0
       11.9
505
Name: MEDV, Length: 506, dtype: float64
```

Further split the dataset into training and testing sets

from sklearn. model_selection import train_test_split x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=0)

Intialize the Regularized Linear Regression model

from sklearn. linear_model import Ridge

Train a Ridge Regression model

Regularization strength, adjust as needed

```
alpha = 1.0
model = Ridge(alpha=alpha)
```

Train the Regularized Linear Regression model

model.fit (x_train, y_train)

Output

Ridge ()

Make predictions

```
y_pred = model. predict(x_test)
y_pred
```

```
array([26.34156898, 22.20793785, 28.81921868, 11.47348568, 21.04408706,
       20.07024517, 19.92297674, 21.98467322, 19.4284628, 19.78080258,
        4.16412665, 15.12289492, 17.09792351, 5.05900886, 38.91946091,
       32.92319545, 21.24037396, 36.10602752, 31.81994714, 23.86720827,
       25.23529707, 22.88616194, 20.79907381, 30.51097382, 22.69975385,
        7.89770805, 17.85693177, 18.79114443, 35.85644296, 20.64459013,
       17.22799563, 17.71776841, 19.12617187, 22.88297321, 28.53952139,
       19.82099868, 11.05567273, 23.90734107, 16.91704535, 14.40178292,
       25.90653761, 21.42101506, 23.7896341, 13.97022376, 24.14528817,
       24.67733954, 19.26650784, 24.12468236, 11.09047876, 24.65867603,
      22.77081575, 19.26975343, 24.25327367, 31.6500543 , 12.84562266,
       22.28345771, 21.23812988, 16.08306186, 11.65101825, 22.23665653,
       18.60898999, 22.10455726, 32.35772086, 31.57758771, 17.12779565,
       32.87589474, 19.54848641, 19.28578883, 19.20291078, 24.09782582,
       21.94365685, 23.69076767, 30.63340076, 29.0446177, 24.44329987,
        5.35195943, 37.02566061, 24.09822246, 27.67967687, 19.90269748,
       28.43908868, 18.85735312, 17.29445352, 37.82901475, 39.31585098,
       24.74164818, 25.00022374, 16.02274095, 26.54988516, 16.73956103,
       16.46269817, 13.41520098, 24.63687876, 30.64557876, 22.71383635,
       20.562259 , 0.09343784, 25.64117227, 15.50351612, 17.61209673,
       25.92059772, 22.30531336, 32.48071611, 22.28998171, 27.57238428,
       23.45701196, 6.11176901, 14.10019865, 22.60348397, 29.02334184,
       31.92622327, 12.03657088, 19.53895825, 21.18421153, 12.1825899,
       23.82100592, 5.79235568, 19.29551109, 9.01036856, 45.15731178,
       30.5553796 , 17.34563703 , 17.515943 , 22.17927199 , 23.41151526 ,
       18.70788687, 34.97867185])
```

Evaluate the model

from sklearn. metrics import mean_squared_error mse = mean_squared_error (y_test, y_pred) print (f'Mean Squared Error: {mse}')

Output

Mean Squared Error: 32.12855445696262

Predict the new data

```
new_data = [0.02731, 0.0, 7.07, 0.0, 0.469, 6.421, 78.900000, 4.9671, 2, 242, 17.8, 396.90, 9.140000] predictions = model. predict([new_data]) print(predictions)
```

Output

[24.67733954]

RESULT

Thus, the implementation of regularized linear regression was completed successfully.

Ex. No: 10 MINI PROJECT TO PREDICT THE TIME TAKEN TO SOLVE A PROBLEM GIVEN THE CURRENT STATUS OF THE USER

AIM

The Mini Project to predict the time taken to solve a problem given the current status of the user using Random Forest Regressor Model.

PROCEDURE

- 1. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 2. Load the user data from the specified file location.
- 3. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 4. Replace missing values in specific numeric columns with the mean using 'SimpleImputer'.
- 5. Use 'LabelEncoder' to encode categorical columns like 'Country', and 'rank'.
- 6. Drop null values from the dataset, specifically the 'user_id' column.
- 7. Split the dataset into features (x) and target variable (y).
- 8. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 9. Initialize a Random Forest Regression model from 'sklearn. ensemble'.
- 10. Train the Random Forest Regression model using the training data with the 'fit' method.
- 11. Use the trained Random Forest Regression model to make predictions on the testing data with the 'predict' method.
- 12. Evaluate the performance of the model using **metrics** such as mean_squared_error, Score, or others based on the requirements.
- 13. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

df = pd. read_csv("C:\\Users\\Documents\\user_data.csv")
df

	user_id	submission_count	problem_solved	contribution	country	follower_count	last_online_time_seconds	max_rating	rating	rank	regis
0	user_3311	47	40	0	NaN	4	1504111645	348.337	330.849	intermediate	
1	user_3028	63	52	0	India	17	1498998165	405.677	339.450	intermediate	
2	user_2268	226	203	-8	Egypt	24	1505566052	307.339	284.404	beginner	
3	user_480	611	490	1	Ukraine	94	1505257499	525.803	471.330	advanced	
4	user_650	504	479	12	Russia	4	1496613433	548.739	486.525	advanced	
3566	user_2685	161	120	0	Bangladesh	42	1505409069	306.193	246.560	beginner	
3567	user_1548	41	30	0	NaN	0	1504026868	331.135	218.463	beginner	
3568	user_1929	58	51	0	NaN	0	1505552744	330.275	262.901	beginner	
3569	user_2772	148	137	0	NaN	2	1496606504	409.977	345.757	intermediate	
3570	user_2179	163	115	6	South Korea	40	1502074467	392.775	288.704	beginner	

3571 rows × 11 columns

df.info()

Output

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3571 entries, 0 to 3570
Data columns (total 11 columns):

vata	columns (total 11 columns)	:		
#	Column	Non-Null Count	Dtype	
0	user_id	3571 non-null	object	
1	submission_count	3571 non-null	int64	
2	problem_solved	3571 non-null	int64	
3	contribution	3571 non-null	int64	
4	country	2418 non-null	object	
5	follower_count	3571 non-null	int64	
6	<pre>last_online_time_seconds</pre>	3571 non-null	int64	
7	max_rating	3571 non-null	float64	
8	rating	3571 non-null	float64	
9	rank	3571 non-null	object	
10	registration_time_seconds	3571 non-null	int64	
dtyp	es: float64(2), int64(6), o	bject(3)		
momo	ry usago: 207 At VP			

memory usage: 307.0+ KB

df. describe ()

	submission_count	problem_solved	contribution	follower_count	last_online_time_seconds	max_rating	rating	registration_time_seconds
count	3571.000000	3571.000000	3571.000000	3571.000000	3.571000e+03	3571.000000	3571.000000	3.571000e+03
mean	299.481098	267.894427	4.102492	46.690563	1.502680e+09	390.374392	350.165578	1.434961e+09
std	366.102887	344.139688	16.552256	211.494638	5.114850e+06	92.428788	106.592503	4.750758e+07
min	1.000000	0.000000	-64.000000	0.000000	1.484237e+09	303.899000	0.000000	1.264761e+09
25%	66.500000	53.000000	0.000000	4.000000	1.502691e+09	317.661000	279.243000	1.416323e+09
50%	169.000000	146.000000	0.000000	13.000000	1.505054e+09	355.791000	329.702000	1.449085e+09
75%	390.000000	349.000000	0.000000	40.000000	1.505551e+09	444.954000	413.417500	1.470379e+09
max	4570.000000	4476.000000	171.000000	10575.000000	1.505595e+09	983.085000	911.124000	1.484236e+09

Explore and preprocess the data

df. isnull (). sum ()

Output

user_id	0
submission_count	0
problem_solved	0
contribution	0
country	1153
follower_count	0
last_online_time_seconds	0
max_rating	0
rating	0
rank	0
registration_time_seconds	0
dtype: int64	

Encoding the categorical values

from sklearn. preprocessing import LabelEncoder
label_encoder = LabelEncoder ()
categorical_columns = ['country', 'rank']
df[categorical_columns] = df[categorical_columns].apply(label_encoder.fit_transform)
df[categorical_columns]

Output

	country	rank
0	79	3
1	31	3
2	21	1
3	73	0
4	57	0
3566	5	1
3567	79	1
3568	79	1
3569	79	3
3570	62	1

3571 rows × 2 columns

Replace the null values

from sklearn. impute import SimpleImputer
numeric_columns = ['country']
df[numeric_columns] = SimpleImputer(strategy='mean'). fit_transform(df[numeric_columns])
df[numeric_columns]

Output

	country
0	79.0
1	31.0
2	21.0
3	73.0
4	57.0
3566	5.0
3567	79.0
3568	79.0
3569	79.0
3570	62.0

3571 rows × 1 columns

Drop the null values

df = df. drop ('user_id', axis =1)
df. head ()

	submission_count	problem_solved	contribution	country	follower_count	last_online_time_seconds	max_rating	rating	rank	registration_time_seconds
0	47	40	0	79.0	4	1504111645	348.337	330.849	3	1466686436
1	63	52	0	31.0	17	1498998165	405.677	339.450	3	1441893325
2	226	203	-8	21.0	24	1505566052	307.339	284.404	1	1454267603
3	611	490	1	73.0	94	1505257499	525.803	471.330	0	1350720417
4	504	479	12	57.0	4	1496613433	548.739	486.525	0	1395560498

Split the data into features (x)

x = df. iloc [:, :-1]

X

Output

	submission_count	problem_solved	contribution	country	follower_count	last_online_time_seconds	max_rating	rating	rank
0	47	40	0	79.0	4	1504111645	348.337	330.849	3
1	63	52	0	31.0	17	1498998165	405.677	339.450	3
2	226	203	-8	21.0	24	1505566052	307.339	284.404	1
3	611	490	1	73.0	94	1505257499	525.803	471.330	0
4	504	479	12	57.0	4	1496613433	548.739	486.525	0
3566	161	120	0	5.0	42	1505409069	306.193	246.560	1
3567	41	30	0	79.0	0	1504026868	331.135	218.463	1
3568	58	51	0	79.0	0	1505552744	330.275	262.901	1
3569	148	137	0	79.0	2	1496606504	409.977	345.757	3
3570	163	115	6	62.0	40	1502074467	392.775	288.704	1

3571 rows × 9 columns

Split the data into target variable (y)

y = df. iloc[:, -1]

y

0	1466686436
1	1441893325
2	1454267603
3	1350720417
4	1395560498
3566	 1455055521
3566 3567	 1455055521 1465142933
2200	1.55055521
3567	1465142933

Name: registration_time_seconds, Length: 3571, dtype: int64

Further split the dataset into training and testing sets

from sklearn. model_selection import train_test_split x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=0)

Intialize the Random Forest Regression model

from sklearn. ensemble import RandomForestRegressor model = RandomForestRegressor (n_estimators=100, random_state=42)

Train the Random Forest Regression model

model.fit (x_train, y_train)

Output

RandomForestRegressor(random_state=42)

Make predictions

```
y_pred = model. predict(x_test)
y_pred
```

Output

```
array([1.45455496e+09, 1.43392280e+09, 1.39042627e+09, 1.45241261e+09,
       1.45483615e+09, 1.42245957e+09, 1.46665441e+09, 1.40576063e+09,
       1.45182356e+09, 1.40803296e+09, 1.44347665e+09, 1.45527652e+09,
       1.45833179e+09, 1.41039747e+09, 1.40353994e+09, 1.43335683e+09,
       1.45930505e+09, 1.48396266e+09, 1.45175827e+09, 1.46663339e+09,
       1.45883224e+09, 1.39686707e+09, 1.37510170e+09, 1.45583003e+09,
       1.43567271e+09, 1.46697796e+09, 1.42782285e+09, 1.35167334e+09,
       1.45055875e+09, 1.45104392e+09, 1.47095946e+09, 1.43119661e+09,
       1.39180426e+09, 1.45824164e+09, 1.44051569e+09, 1.46181146e+09,
       1.43774071e+09, 1.41057693e+09, 1.41982014e+09, 1.41032514e+09,
       1.46102952e+09, 1.44531362e+09, 1.44408272e+09, 1.43312909e+09,
       1.44923526e+09, 1.45480931e+09, 1.46493558e+09, 1.38739107e+09,
       1.46522130e+09, 1.34720321e+09, 1.44306016e+09, 1.43258882e+09,
       1.45973789e+09, 1.44872871e+09, 1.41464911e+09, 1.43173064e+09,
       1.47030693e+09, 1.41554286e+09, 1.45349140e+09, 1.45890839e+09,
       1.37963785e+09, 1.39024897e+09, 1.46494454e+09, 1.39503257e+09,
       1.36973396e+09, 1.46910568e+09, 1.45365958e+09, 1.44598027e+09,
       1.45992361e+09, 1.39585475e+09, 1.36215790e+09, 1.44300388e+09,
       1.42957886e+09, 1.45861093e+09, 1.39488787e+09, 1.46234938e+09,
```

Evaluate the model

```
from sklearn. metrics import mean_squared_error mse = mean_squared_error (y_test, y_pred) print (f'Mean Squared Error: {mse}')
```

Output

Mean Squared Error: 1269410250004051.2

Predict the new data

new_data = [161, 120, 0, 5.0, 42, 1505409069, 306.193, 246.560,1] predictions = model. predict([new_data]) print(predictions)

Output

[1.45716732e+09]

RESULT

Thus, the mini project to predict the time taken to solve a problem given the current status of the user was completed successfully using Random Forest Regression model.

Ex. No: 10 IMPLEMENTATION OF MULTIVARIATE REGRESSION

AIM

To create a machine learning model to predict the profit of a startup company using Multivariate Regression.

PROCEDURE

1. Multivariate linear regression resembles simple linear regression except that in multivariate linear regression, multiple independent variables contribute to the dependent variables and so multiple coefficients are used in the computation.

```
y = c + m_1x_1 + m_2x_2 + \dots + m_nx_n
```

- 2. Importing the necessary libraries, including 'pandas' for data manipulation, and 'numpy' for numerical operations and warnings.
- 3. Load the dataset containing startup company data. For Example, startup company dataset.
- 4. Explore the dataset to understand its structure and features. Preprocess the data if needed, such as handling missing values.
- 5. Split the dataset into features (x) and target variable (y).
- 6. Further split the dataset into training and testing sets using 'train_test_split' from 'sklearn. model selection'.
- 7. Initialize a Mutivariate Regression model from 'sklearn. linear_model'.
- 8. Train the Mutivariate Regression model using the training data with the 'fit' method.
- 9. Use the trained Mutivariate Regression model to make predictions on the testing data with the 'predict' method.
- 10. Evaluate the performance of the model using **metrics** such as mean_absolute_error, mean_squared_error, root_mean_square, R_Squared, or others based on the requirements.
- 11. Finally, use the trained model to predict the outcome for the new data.

PROGRAM

Import Libraries

import pandas as pd
import numpy as np
import warnings
warnings. Simplefilter ("ignore")

Load the Dataset

```
df = pd. read_csv("C:\\Users\\Documents\\50_Startups.csv")
df. head ()
```

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

df.info()

Output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	R&D Spend	50 non-null	float64
1	Administration	50 non-null	float64
2	Marketing Spend	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64
dtyp	es: float64(4), o	bject(1)	

dtypes: float64(4), obj
memory usage: 2.1+ KB

df. describe ()

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

Explore and preprocess the data

df. isnull (). sum ()

Output

R&D Spend 0
Administration 0
Marketing Spend 0
State 0
Profit 0

dtype: int64

Encoding the categorical values

from sklearn import preprocessing

Using Label Encoder to convert the categorical values

le = preprocessing. LabelEncoder ()
state_encoded = le.fit_transform(data['State'])
data['State'] = state_encoded
data. head ()

Output

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	2	192261.83
1	162597.70	151377.59	443898.53	0	191792.06
2	153441.51	101145.55	407934.54	1	191050.39
3	144372.41	118671.85	383199.62	2	182901.99
4	142107.34	91391.77	366168.42	1	166187.94

Split the data into features (x)

x = df. iloc [:, :-1]

 \mathbf{X}

	R&D Spend	Administration	Marketing Spend	State
0	165349.20	136897.80	471784.10	2
1	162597.70	151377.59	443898.53	0
2	153441.51	101145.55	407934.54	1
3	144372.41	118671.85	383199.62	2
4	142107.34	91391.77	366168.42	1

Split the data into target variable (y)

```
y = df. iloc[:, -1]
y
```

Output

```
0 192261.83
1 191792.06
2 191050.39
3 182901.99
4 166187.94
Name: Profit, dtype: float64
```

Further split the dataset into training and testing sets

```
from sklearn. model_selection import train_test_split x_train, x_test, y_train, y_test=train_test_split (x, y, random_state=355)
```

Intialize the Multivariate Regression model

from sklearn. Linear_model import LinearRegression model = LinearRegression

Train the Random Forest Regression model

model.fit (x_train, y_train)

Output

LinearRegression ()

Make predictions

```
y_pred = model. predict(x_test)
y_pred
```

Output

```
array([126720.66150723, 84909.08961912, 98890.31854876, 46479.31240248, 129113.18318813, 50968.88397762, 109015.01626803, 100893.57078084, 97713.73821431, 113085.59056068])
```

Evaluate the model

```
from sklearn. metrics import mean_squared_error, mean_absolute_error mse = mean_squared_error (y_test, y_pred) print (f"Mean Squared Error: {mse}")
```

Mean Squared Error: 80929465.49097784

mae = mean_absolute_error (y_test, y_pred)
print (f"Mean Absolute Error: {mae}")

Output

Mean Absolute Error: 6979.17574672139

RESULT

Thus, a machine learning model for profit prediction using Multivariate Regression model was implemented successfully.