Relaxations for solving integer programs.

Consider an IP with arbitrary objective function c and arbitrary feasible region X:

$$z = \max\{c(x) \mid x \in X \subseteq \mathbb{Z}_+^n\}. \tag{1}$$

We typically solve it by finding lower bounds \underline{z} and upper bounds \overline{z} on z, i.e., $\underline{z} \leq z \leq \overline{z}$.

How do we find (good) bounds?

- 1. primal bounds. Any feasible solution $x^* \in X$ gives a lower bound $\underline{z} = c(x^*)$.
- 2. <u>dual bounds</u>. Upper bounds \overline{z} often obtained by solving relaxations.

Matching bounds, i.e., $\underline{z} = \overline{z}$, imply that you have solved the problem.

Definition 1. A problem (RP)

$$z^{R} = \max\{f(x) \mid x \in T \subseteq \mathbb{R}^{n}_{+}\}\tag{2}$$

is a relaxation of problem IP (1) if:

- 1. $X \subseteq T$, and
- 2. $c(x) \le f(x)$ for all $x \in X$.

Proposition 1. If RP (2) is a relaxation of IP (1), then $z \leq z^R$.

There are many types of relaxations, e.g.,

- 1. Linear programming relaxation;
- 2. Combinatorial relaxation;
- 3. Lagrangian relaxation.

Definition 2. A polyhedron is a set of the form $\{x \in \mathbb{R}^n \mid Ax \leq b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Definition 3. A set $P \subseteq \mathbb{R}^n$ is <u>bounded</u> if there exists $d \in \mathbb{R}_{++}$ such that $P \subseteq [-d, d]^n$.

Definition 4. A polyhedron that is bounded is called a polytope.

Definition 5. A polyhedron $P \subseteq \mathbb{R}^{n+d}$ is a <u>formulation</u> for a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^d$ if and only if $X = P \cap (\mathbb{Z}^n \times \mathbb{R}^d)$.

Linear programming relaxation. For the integer program $\max\{c^Tx\mid P\cap\mathbb{Z}^n\}$ with formulation $P=\{x\in\mathbb{R}^n_+\mid Ax\leq b\}$, its linear programming relaxation is $z^{LP}=\max\{c^Tx\mid x\in P\}$.

Definition 6. Given a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^d$ and two formulations P_1 and P_2 for X,

- P_1 is a stronger formulation than P_2 if $P_1 \subsetneq P_2$;
- P_1 is at least as strong as P_2 if $P_1 \subseteq P_2$;
- P_1 and P_2 are incomparable if $P_1 \not\subseteq P_2$ and $P_2 \not\subseteq P_1$;
- P_1 is ideal or perfect if $P_1 = \text{conv}(X)$.

Branch and bound

Variants of branch and bound are the most common way to solve IPs. They are based on the following simple result for the general problem:

$$z = \max\{c(x) \mid x \in S\}.$$

Proposition 2. Let $S = S_1 \cup \cdots \cup S_k$ be a decomposition of S into smaller sets, and let $z_i = \max\{c(x) \mid x \in S_i\}$ for $i = 1, \ldots, k$. Then, $z = \max\{z_i \mid i \in [k]\}$.

Proposition 3. Suppose we have lower and upper bounds for the subproblems: $\underline{z_i} \leq z_i \leq \overline{z_i}$. Then, we can get lower and upper bounds for the original problem:

- $\underline{z} = \max \{\underline{z_i} \mid i \in [k]\};$
- $\overline{z} = \max{\{\overline{z_i} \mid i \in [k]\}}$.

What is the typical decomposition $S = S_1 \cup \cdots \cup S_k$ in LP-based branch-and-bound algorithms?

Solving MIPs via a branch-and-bound approach

In what follows, N_i represents a node in the branch-and-bound tree with corresponding LP relaxation LP_i, and N_0 is the root node.

- 1. Initialize.
 - $\mathcal{L} := \{N_0\};$
 - $z := -\infty$;
 - $\bullet \ (x^*, y^*) := \emptyset;$
- 2. Terminate?
 - if $\mathcal{L} = \emptyset$, the solution (x^*, y^*) is optimal.
- 3. Select node.
 - choose a node N_i in \mathcal{L} and delete it from \mathcal{L} ;
- 4. Bound.
 - solve LP_i ;
 - if LP_i is infeasible, go to step 2;
 - if LP_i is feasible, let (x^i, y^i) be an optimal solution of LP_i and let z_i its objective value;
- 5. Prune.
 - if $z_i \leq \underline{z}$ go to step 2;
 - if (x^i, y^i) is feasible to the MIP, update:
 - $-\underline{z} := z_i;$
 - $-(x^*,y^*) := (x^i,y^i);$
 - go to step 2;
- 6. Branch.
 - from LP_i construct $k \geq 2$ linear programs LP_{i1},..., LP_{ik} with smaller feasible regions whose union does not contain (x^i, y^i) , but contains the solutions of LP_i with $x \in \mathbb{Z}^n$.
 - add the new nodes N_{i_1}, \ldots, N_{i_k} to \mathcal{L} and go to step 2;

Some may say this is not an "algorithm" since some steps are not clearly specified. Like what?