Mathématiques discrètes et applications Discrete Mathematics and Applications

Problem Session 2

Peterson Yuhala

Instituts d'informatique et de mathématiques Université de Neuchâtel

Automne 2025 / Fall 2025

Contact information

Peterson Yuhala Office B119 peterson.yuhala@unine.ch

Exercise 1: 2-1 multiplexer

S	I ₁	I_2	М
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$M(S, I_1, I_2)_{DNF} = \overline{S}\overline{I_1}I_2 + \overline{S}I_1I_2 + SI_1\overline{I_2} + SI_1I_2$$

Note: some documents suggest the DNF form does not necessarily have to contain all the boolean variables. However, the expression in **full DNF form** has all the input variables appearing exactly once.

Exercise 1: Circuit for 2-1 multiplexer

Simplification of M:

$$\begin{split} M(S,I_1,I_2) &= \bar{S}\bar{I_1}I_2 + \bar{S}I_1I_2 + SI_1\bar{I_2} + SI_1I_2 \\ &\equiv \bar{S}I_2 \cdot (\bar{I_1} + I_1) + SI_1 \cdot (\bar{I_2} + I_2) \\ &\equiv SI_1 + \bar{S}I_2 \end{split} \qquad \begin{array}{l} \textbf{Distributive law} \\ \textbf{Negation law} \end{split}$$

Exercise 1: 2-1 multiplexer with NAND gates only

$$M(S, I_1, I_2) = SI_1 + \overline{S}I_2$$

$$\equiv \overline{\overline{SI_1 + \overline{S}I_2}}$$

$$\equiv \overline{(\overline{SI_1} \cdot \overline{\overline{S}I_2})}$$
Double negative law
$$\equiv \overline{(\overline{SI_1} \cdot \overline{\overline{S}I_2})}$$
De Morgan's law

Exercise 1: M in conjunctive normal form (CNF)

Hint: To obtain the (full) CNF, we look at the rows of the truth table where $\overline{M}=1$, i.e., where M=0. We find the DNF for \overline{M} and then use the property $\overline{\overline{M}}\equiv M$ to obtain M in conjunctive normal form.

$$\begin{split} \overline{M}(S, I_1, I_2) &= \overline{S} \overline{I_1} \overline{I_2} + \overline{S} I_1 \overline{I_2} + S \overline{I_1} \overline{I_2} + S \overline{I_1} I_2 \\ \rightarrow M(S, I_1, I_2) &= \overline{\overline{S}} \overline{I_1} \overline{I_2} + \overline{S} I_1 \overline{I_2} + S \overline{I_1} \overline{I_2} + S \overline{I_1} I_2 \\ &= \overline{(\overline{S}} \overline{I_1} \overline{I_2}) \cdot \overline{(\overline{S}} I_1 \overline{I_2}) \cdot \overline{(\overline{S}} \overline{I_1} \overline{I_2}) \cdot \overline{(\overline{S}} \overline{I_1} I_2) \\ &= (S + I_1 + I_2) \cdot (S + \overline{I_1} + I_2) \cdot (\overline{S} + I_1 + I_2) \cdot (\overline{S} + I_1 + \overline{I_2}) \end{split}$$

$$M(S, I_1, I_2)_{CNF} = (S + I_1 + I_2) \cdot (S + \overline{I_1} + I_2) \cdot (\overline{S} + I_1 + I_2) \cdot (\overline{S} + I_1 + \overline{I_2})$$

Exercise 1: M with NOR gates only

$$M(S, I_1, I_2) = \overline{(S + I_1 + I_2) \cdot (S + \overline{I_1} + I_2) \cdot (\overline{S} + I_1 + I_2) \cdot (\overline{S} + I_1 + \overline{I_2})}$$

$$\equiv \overline{(S + I_1 + I_2) + (\overline{S} + \overline{I_1} + I_2) + (\overline{S} + I_1 + I_2) + (\overline{S} + \overline{I_1} + \overline{I_2})}$$

Ex-2: useful terms

- · An **implicant** (I) is a conjunction of literals (in sum-of-product form) or disjunction of literals (in product-of-sums form) in the expression of a boolean function F. That is, I $true \rightarrow F$ true. Two or more implicants can be combined to obtain implicants with fewer literals.
- · A **prime implicant** (PI) is one which cannot be combined further to obtain another implicant.
- · An **essential prime implicant** (EPI) is a prime implicant which covers a minterm alone. That is, no other PI covers that minterm; an EPI MUST be part of the minimized form of a boolean function.

Ex-2a: F(x, y) in DNF

<i>x</i> ₁	<i>x</i> ₂	y 1	y ₂	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$F(x_1, x_2, y_1, y_2)_{DNF} = \overline{x_1} x_2 \overline{y_1} \overline{y_2} + x_1 \overline{x_2} \overline{y_1} \overline{y_2} + x_1 \overline{x_2} \overline{y_1} y_2 + x_1 x_2 \overline{y_1} \overline{y_2} + x_1 x_2 \overline{y_1} y_2 + x_1 x_2 y_1 \overline{y_2}$$

Ex-2b: Minimization of F with Quine-McCluskey

Table: Stage 1

Num. of 1_s	Minterm	Bit String
1	m_4	0100√
	m_8	1000√
2	m_9	1001√
	m_{12}	1100√
3	m_{13}	1101√
3	m_{14}	1110√

Table: Stage 2

Size 2 Implicants	Bits
m(4,12)	-100*
m(8,9)	100-√
m(8, 12)	1-00√
m(9, 13)	1-01√
m(12, 13)	110-√
m(12, 14)	11-0*

Ex-2b: Minimization of F with Quine-McCluskey

Stage 3: m(8, 9, 12, 13) 1-0-* m(8, 12, 9, 13) 1-0-*

 $F(x, y)_{min} = x_2\overline{y_1}\overline{y_2} + x_1x_2\overline{y_2} + x_1\overline{y_1}$

NB: The goal here is to cover all the minterms with the smallest subset of prime implicants. All essential prime implicants must be part of the minimized expression.

Minterms	4	8	9	12	13	14
4,12	X			Χ		
12,14				Χ		X
8,9,12,13		X	X	Χ	X	
	4,12 12,14	4,12 X 12,14	4,12 (X) 12,14	4,12 (X) 12,14	4,12 (X) X 12,14 X	4,12 (X) X 12,14 X

Ex-2b: Circuit of F_{min} with NOT, AND, and OR gates

Ex-2b: Circuit of F_{min} with NAND gates only

$$F(x,y) = \overline{(x_2\overline{y_1}\overline{y_2}) + (x_1x_2\overline{y_2}) + (x_1\overline{y_1})}$$

$$\equiv \overline{(x_2\overline{y_1}\overline{y_2}) \cdot (x_1x_2\overline{y_2}) \cdot (x_1\overline{y_1})}$$

Double negative law De Morgan's law

End

For more exercises and notes, see Rosen 7th Edition Chap. 12.