Resolución numérica del problema no lineal de mínimos cuadrados. Aplicaciones a las estimación de parámetros de modelos matemáticos.

Dídac Blanco Morros

14 de febrero de 2023

Índice.

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Implementación en Matlab®

Índice.

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Implementación en Matlab®

Conceptos previos

Un problema de optimización sin restricciones tiene la forma

$$\min_{x} f(x)$$

- $x \in \mathbb{R}^n$ y $f : \mathbb{R}^n \to \mathbb{R}$ es continuamente diferenciable.
- A f se le llama función objetivo.

Conceptos previos

- Norma euclídea: $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$.
- Punto estacionario de f: $\nabla f(x) = 0$.
- Mínimo x^* : existe $\delta > 0$ tal que $f(x^*) \le f(x)$.
- Mínimo estricto x*: existe δ > 0 tal que f(x*) < f(x) con x ≠ x*.
 - Local: para todo $x \in \mathbb{R}^n$ que satisface $||x x^*|| < \delta$.
 - Global: para todo $x \in \mathbb{R}^n$
- Producto escalar de x e y en \mathbb{R}^n : $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$.
- Dirección descendente de f en x: $d \in \mathbb{R}^n$ tal que $\langle \nabla f(x), d \rangle < 0$.

Consideremos el problema inicial

$$\min_{x} f(x)$$

Consideremos el problema inicial

$$\min_{x} f(x)$$

Teorema: Condición Necesaria de Primer Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*) = 0$.

Consideremos el problema inicial

$$\min_{x} f(x)$$

Teorema: Condición Necesaria de Primer Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*) = 0$.

Teorema: Condición Necesaria de Segundo Orden

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ dos veces continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*)=0$ y $\nabla^2 f(x^*)$ es definida positiva.

Consideremos el problema inicial

$$\min_{x} f(x)$$

Teorema: Condición Necesaria de Primer Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*) = 0$.

Teorema: Condición Necesaria de Segundo Orden

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ dos veces continuamente diferenciable en un conjunto abierto D. Si x^* es un mínimo local, entonces $\nabla f(x^*)=0$ y $\nabla^2 f(x^*)$ es definida positiva.

Teorema: Condición Suficiente de Segundo Orden

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ dos veces continuamente diferenciable en un conjunto abierto D. Si $\nabla f(x^*) = 0$ y $\nabla^2 f(x^*)$ es definida positiva, entonces $x^* \in D$ es un mínimo local.

Convexidad

Conjunto convexo D

Sea $S \subset \mathbb{R}^n$ y sean $x_1, x_2 \in S$ cualesquiera. Si $\alpha x_1 + (1-\alpha)x_2 \in S$ para todo $\alpha \in [0,1]$

Función convexa f en S

Sean $S \subset \mathbb{R}^n$ un conjunto convexo no vacío y f una función de S en \mathbb{R} . Si para cualquiera $x_1, x_2 \in S$ y $\alpha \in (0,1)$, se cumple que

$$f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2),$$

Convexidad

Teorema

Sea $S \subset \mathbb{R}^n$ un conjunto convexo no vacío y $f: S \subset \mathbb{R}^n \to \mathbb{R}$ una función convexa. Si x^* es mínimo local, entonces también es mínimo global.

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ convexa y diferenciable, entonces x^* es un mínimo global si y solo si $\nabla f(x^*) = 0$.

• Conjunto de órdenes con normas y condiciones.

- Conjunto de órdenes con normas y condiciones.
- Estructura de bucles iterativos.

- Conjunto de órdenes con normas y condiciones.
- Estructura de bucles iterativos.
- Eficiencia computacional.

- Conjunto de órdenes con normas y condiciones.
- Estructura de bucles iterativos.
- Eficiencia computacional.
- Mínimos locales y globales.

Paso 1. Paso inicial. Se definen las condiciones iniciales, suelen ser el primer punto de la sucesión $\{x_k\}$, valores para definir las condiciones de parada como el número máximo de iteraciones o el error aceptable, y otros parámetros.

- Paso 1. Paso inicial. Se definen las condiciones iniciales, suelen ser el primer punto de la sucesión $\{x_k\}$, valores para definir las condiciones de parada como el número máximo de iteraciones o el error aceptable, y otros parámetros.
- Paso 2. Test de parada. Se comprueba si se cumple alguna condición de parada.

- Paso 1. Paso inicial. Se definen las condiciones iniciales, suelen ser el primer punto de la sucesión $\{x_k\}$, valores para definir las condiciones de parada como el número máximo de iteraciones o el error aceptable, y otros parámetros.
- Paso 2. Test de parada. Se comprueba si se cumple alguna condición de parada.
- Paso 3. Proceso principal. Se realizan los cálculos necesarios para avanzar de x_k a x_{k+1} .

- Paso 1. Paso inicial. Se definen las condiciones iniciales, suelen ser el primer punto de la sucesión $\{x_k\}$, valores para definir las condiciones de parada como el número máximo de iteraciones o el error aceptable, y otros parámetros.
- Paso 2. Test de parada. Se comprueba si se cumple alguna condición de parada.
- Paso 3. Proceso principal. Se realizan los cálculos necesarios para avanzar de x_k a x_{k+1} .
- Paso 4. Actualización y bucle. Se actualiza el valor de x_k a x_{k+1} , así como otros parámetros necesarios. Se repite el proceso desde el paso 2.

Búsqueda de línea.

- Se toma el punto inicial x_k (para cada iteración).
- Elige una dirección d_k con la misma dimensión que x_k .
 - La mayoría eligen una dirección de descenso, esto es, $d_k^T \nabla f_k < 0$.
 - Suele tener la forma $d_k = -B_k^{-1} \nabla f_k$.
- Se elige una longitud de paso $\alpha_k \in \mathbb{R}$.
- Se obtiene $x_{k+1} = x_k + \alpha_k d_k$.
 - El objetivo es que $f(x_{k+1}) < f(x_k)$.
 - Si se se soluciona el problema $\min_{\alpha_k} f(x_k + \alpha_k d_k)$, búsqueda de línea exacta.

- Se toma una pequeña región donde es más fácil predecir como se comporta la función.
- Primero se fija una distancia máxima Δ_k para definir una región

$$\Omega_k = \left\{ x : \|x - x_k\| \le \Delta_k \right\}.$$

 Para predecir el comportamiento en esta región, se utilizan aproximaciones como la siguiente:

$$m_k(p) := q^{(k)}(p) = f(x_k) + g_k^T p + \frac{1}{2} p^T G_k p.$$

Subproblema de optimización con restricciones

$$\begin{split} & \underset{p}{\text{min}} & m_k(p) = f(x_k) + g_k^\mathsf{T} p + \frac{1}{2} p^\mathsf{T} B_k p \\ & \text{s.a.} & \|p\| \leq \Delta_k, \end{split}$$

Subproblema de optimización con restricciones

$$\begin{split} & \underset{p}{\text{min}} & m_k(p) = f(x_k) + g_k^\mathsf{T} p + \frac{1}{2} p^\mathsf{T} B_k p \\ & \text{s.a.} & \|p\| \leq \Delta_k, \end{split}$$

Jorge Nocedal y Stephen Wright. *Numerical Optimization*. 2.a ed. New York, NY: Springer, 2006

Wenyu Sun y Ya-Xiang Yuan. *Optimization theory and methods: Nonlinear programming.* 2006.^a ed. New York, NY: Springer, 2006

Teorema: Caracterización de la solución del subproblema El vector p^* es una solución global si y solo si p^* es factible y existe un escalar $\lambda^* > 0$ tal que:

- $(B + \lambda^* I)p^* = -g$,
- $\lambda^*(\Delta ||p^*||) = 0$,
- $(B + \lambda^* I)$ es semidefinida positiva.

Ratio de aceptación

Para tener en cuenta la semejanza entre la aproximación y la función real, se define el ratio de aceptación:

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m(p_k)},$$

el cual será más grande cuanto más parecida sea la aproximación a la función real. Se tiene en cuenta para la elección de Δ_k .

Región de confianza. Esquema.

- Paso 1. Dados $x_0, \bar{\Delta}, \Delta_0 \in (0, \bar{\Delta}), \epsilon \geq 0, 0 < \eta_1 \leq \eta_2 < 1$ y $0 < \gamma_1 < 1 < \gamma_2, k := 0.$
- Paso 2. Si $||g_k|| \le \epsilon$ terminar.
- Paso 3. Aproximar p_k resolviendo según la caracterización.
- Paso 4. Calcular $f(x_k + p_k)$ y ρ_k . Definir

$$x_{k+1} = \begin{cases} x_k + p_k, & \text{si } \rho_k \geq \eta_1, \\ x_k, & \text{en otro caso.} \end{cases}$$

- Paso 5. Si $\rho_k < \eta_1$ entonces $\Delta_{k+1} \in (0, \gamma_1 \Delta_k]$. Si $\rho_k \in [\eta_1, \eta_2)$ entonces $\Delta_{k+1} \in [\gamma_1 \Delta_k, \Delta_k]$. Si $\rho_k \ge \eta_2$ y $\|p_k\| = \Delta_k$ entonces $\Delta_{k+1} \in [\Delta_k, \min\{\gamma_2 \Delta_k, \bar{\Delta}\}]$.
- Paso 6. Calcular B_{k+1} , actualizar $m^{(k)}$ y k := k + 1. Ir al Paso 2.

Índice.

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Implementación en Matlab®

$$\min_{x\in\mathbb{R}^n} f(x) = \frac{1}{2} \sum_{i=1}^m r_i^2(x), \quad m \geq n,$$

$$\min_{x\in\mathbb{R}^n} f(x) = \frac{1}{2} \sum_{i=1}^m r_i^2(x), \quad m \geq n,$$

• Residuos:

$$r_i(x) = \phi_x(t_i) - y_i$$
,
para $i = 1, \dots, m$.

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} \sum_{i=1}^m r_i^2(x), \quad m \ge n,$$

• Residuos:

$$r_i(x) = \phi_x(t_i) - y_i$$
,
para $i = 1, \dots, m$.

 x es el parámetro a estimar de dimensión
 n.

$$\min_{x\in\mathbb{R}^n} f(x) = \frac{1}{2} \sum_{i=1}^m r_i^2(x), \quad m \geq n,$$

- Residuos:
 - $r_i(x) = \phi_x(t_i) y_i$, para $i = 1, \dots, m$.
- x es el parámetro a estimar de dimensión n.
- $\phi_X(t)$ es la función a ajustar.

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} \sum_{i=1}^m r_i^2(x), \quad m \ge n,$$

- Residuos: $r_i(x) = \phi_x(t_i) - y_i$, para i = 1, ..., m.
- x es el parámetro a estimar de dimensión
 n.
- $\phi_x(t)$ es la función a ajustar.

Figura: Ejemplo de ajuste de una recta a una muestra de puntos

Ejemplo de ajuste de una recta a una muestra de puntos.

Ejemplo de ajuste de una exponencial a una muestra de puntos.

El método de Gauss-Newton.

 Se trata de una linealización del problema de mínimos cuadrados.

El método de Gauss-Newton.

- Se trata de una linealización del problema de mínimos cuadrados.
- Para linealizar, se desprecia el término cuadrático de $r_i(x)$ y se obtiene el caso lineal:

$$f(x) = \frac{1}{2} ||Jx - y||^2.$$

$$\nabla f(x) = J^T (Jx - y), \qquad \nabla^2 f(x) = J^T J.$$

El método de Gauss-Newton.

- Se trata de una linealización del problema de mínimos cuadrados.
- Para linealizar, se desprecia el término cuadrático de $r_i(x)$ y se obtiene el caso lineal:

$$f(x) = \frac{1}{2} ||Jx - y||^2.$$

$$\nabla f(x) = J^T (Jx - y), \qquad \nabla^2 f(x) = J^T J.$$

• Se resuelve el sistema lineal $J^T J x = J^T y$.

El método de Gauss-Newton.

- Se trata de una linealización del problema de mínimos cuadrados.
- Para linealizar, se desprecia el término cuadrático de $r_i(x)$ y se obtiene el caso lineal:

$$f(x) = \frac{1}{2} ||Jx - y||^2.$$

$$\nabla f(x) = J^T (Jx - y), \qquad \nabla^2 f(x) = J^T J.$$

- Se resuelve el sistema lineal $J^T J x = J^T y$.
- Convergencia local y cuadrática.

El método de Gauss-Newton.

- Paso 1. Dados x_0 y $\epsilon > 0$, k := 0.
- Paso 2. Si $||g_k|| \le \epsilon$, terminar.
- Paso 3. Obtener el paso p_k resolviendo

$$J(x_k)^T J(x_k) p_k = -J(x_k)^T r(x_k). \tag{1}$$

Paso 4. Definimos $x_{k+1} = x_k + p_k$ y actualizamos k = k + 1. Ir a Paso 2.

Índice.

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Implementación en Matlab®

• Se mantiene la idea de la linealización de Gauss-Newton.

- Se mantiene la idea de la linealización de Gauss-Newton.
- Se cambia de enfoque a región de confianza.

- Se mantiene la idea de la linealización de Gauss-Newton.
- Se cambia de enfoque a región de confianza.

$$\begin{split} & \min_{p} \quad m_{k}(p) = \frac{1}{2} \, \|r_{k}\|^{2} + p^{T} J_{k}^{T} r_{k} + \frac{1}{2} p^{T} J_{k}^{T} J_{k} p, \\ & \text{s.a.} \quad \|p\| \leq \Delta_{k}. \end{split}$$

- Se mantiene la idea de la linealización de Gauss-Newton.
- Se cambia de enfoque a región de confianza.

$$\min_{p} \quad m_{k}(p) = \frac{1}{2} \|r_{k}\|^{2} + p^{T} J_{k}^{T} r_{k} + \frac{1}{2} p^{T} J_{k}^{T} J_{k} p,$$
s.a. $\|p\| \leq \Delta_{k}.$

Lema: Caracterización de la solución.

El vector p es solución del subproblema si y solo si p es factible y existe un $\lambda \geq 0$ tal que

$$(J^{T}J + \lambda I)p = -J^{T}r,$$

$$\lambda(\Delta - ||p||) = 0.$$

Propiedades del método de Levenberg-Marquardt.

- Convergencia global bajo ciertas condiciones.
- El ratio de convergencia es variable (ver Teorema 3.7).

Wenyu Sun y Ya-Xiang Yuan. *Optimization theory and methods: Nonlinear programming.* 2006.^a ed. New York, NY: Springer, 2006

Versión de Moré

Disponemos de la implementación de este método propuesta por Jorge J. Moré, con un estudio detallado del mismo en su artículo¹.

¹Jorge J Moré. "The Levenberg-Marquardt algorithm: Implementation and theory". En: *Lecture Notes in Mathematics*. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, págs. 105-116.

Actualización del radio Δ_k

En este caso particular el ratio viene dado por

$$\rho = \frac{\|r(x_k)\|^2 - \|r(x_k + p_k)\|^2}{\|r(x_k)\|^2 - \|r(x_k) + J(x_k)p_k\|^2},$$

y obtenemos la siguiente expresión explícita:

$$\rho = \frac{1 - \left[\frac{\|r(x_k + p_k)\|}{\|r(x_k)\|}\right]^2}{\left[\frac{\|J_k p\|}{\|r(x_k)\|}\right]^2 + 2\left[\frac{\lambda^{1/2}\|D_k p\|}{\|r(x_k)\|}\right]^2}.$$

El parámetro Levenberg-Marquardt

En esta implementación, se acepta $\alpha>0$ como parámetro de Levenberg-Marquardt Si

$$|\phi(\alpha)| \leq \sigma \Delta$$
,

siendo

$$\phi(\alpha) = \left\| D(J^T J + \alpha D^T D)^{-1} J^T r \right\| - \Delta,$$

y $\sigma \in (0,1)$ es un parámetro que controla la aceptación de α .

- Paso 1. Definir valores iniciales α_0 , l_0 y u_0 . Definir coeficiente de parada σ .
- Paso 2. Si $\alpha_k \notin (I_k, u_k)$, definir $\alpha_k = \max\{0.001u_k, (I_k u_k)^{1/2}\}$.
- Paso 3. Calcular $\phi(\alpha_k)$ y $\phi'(\alpha_k)$. Si $|\phi(\alpha)| < \sigma \Delta$, terminar.
- Paso 4. Actualizar l_k y u_k :

$$I_{k+1} = \max\{I_k, \alpha_k - \frac{\phi(\alpha_k)}{\phi'(\alpha_k)}\},$$

$$u_{k+1} = \begin{cases} \alpha_k, & \text{si } \phi(\alpha_k) < 0, \\ u_k, & \text{en otro caso.} \end{cases}$$

Paso 5. Actualizar α_{k+1} según

$$\alpha_{k+1} = \alpha_k - \left\lceil \frac{\phi(\alpha_k) + \Delta}{\Delta} \right\rceil \left\lceil \frac{\phi(\alpha_k)}{\phi'(\alpha_k)} \right\rceil.$$

Volver al Paso 2.

Escalado

Para reducir posibles problemas de escalado, se utiliza una matriz diagonal D_k definido de la siguiente forma:

$$D_k = diag(d_1^{(k)}, \ldots, d_n^{(k)}),$$

con

$$d_i^{(k)} = \|\partial_i r(x_k)\|, k \geq 0.$$

En cada paso, se actualiza cada $d_i^{(k)}$ si este aumenta, es decir,

$$d_i^{(k)} = \max\{d_i^{(k-1)}, \|\partial_i r(x_k)\|\}, k \ge 1.$$

Índice.

Fundamentos de la optimización sin restricciones

Mínimos Cuadrados

El método de Levenberg-Marquardt

Implementación en Matlab®