Primera Tarea-Examen

Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathcal{S} , a menos que se indique lo contrario.

Ejercicio 1 Demuestra que $f: A \rightarrow B$ es mono si y sólo si f es inyectiva.

Ejercicio 2 Sea m: $S \rightarrow A$ un subobjeto y considera su flecha característica $\chi_m \colon A \rightarrow \Omega$. Demuestra que para cualquier elemento generalizado $x \colon X \rightarrow A$ se satisface:

$$x \in_A \mathfrak{m} \iff \chi_{\mathfrak{m}} x = \nu_X,$$

donde ν_X es la composición de $!_X: X \to 1$ con $\nu: 1 \to \Omega$.

ZFC

Ejercicio 3 Demuestre las siguientes equivalencias o implicaciones. En cada inciso indique claramente qué axiomas de ZFC se utilizan durante la prueba.

- I) El axioma de extensionalidad implica el enunciado $\forall x \forall y (\forall w (x \in w \leftrightarrow y \in w) \rightarrow x = y)$.
- II) El enunciado $\forall x \forall y \exists p \forall w ((w = x \lor w = y) \rightarrow w \in p)$ es equivalente al axioma del par.
- III) El enunciado $\forall x \exists p \forall w (\forall z (z \in x \to z \in w) \to w \in p)$ es equivalente al Axioma de potencia.
- IV) El enunciado $\forall x \forall y \exists p \forall w (w \in p \leftrightarrow (p \in x \lor p = y))$ implica el axioma del par.

Ejercicio 4 Todas las colecciones de este ejercicio son conjuntos. Prueba dos de los siguientes incisos:

- I) $x \subseteq \mathcal{P}(y)$ si y sólo si $\bigcup x \subseteq y$.
- II) Si $x \neq \emptyset$, $y \in \bigcap \{ \mathscr{P}(a) \mid a \in x \}$ ocurre sólo si $y \subseteq \bigcup x$.
- $\text{III) } \bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\} \subseteq \mathscr{P}(\bigcup x) \text{ pero no siempre } \bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\} \neq \mathscr{P}(\bigcup x).$
- $\text{iv) } (\bigcup x \big) \cap (\bigcup y) = \bigcup \{\alpha \cap b \, | \, (\alpha,b) \in x \times y \}.$