LE MODÈLE OSI

Adressage IP

MODÈLE TCP/IP

MODÈLE OSI ET TCP/IP

MODÈLE OSI ET TCP/IP

Modèle OSI

7. Application

6. Présentation

5. Session

4. Transport

3. Réseau

2. Liaison de données

Physique

Le modèle OSI est constitué de 7 couches

 Au sein des couches du modèle O.S.I., l'adressage IP est une des fonctions les plus importantes de la couche réseau.

> 3 - Résegu

Astuce:

Apprendre Pour Savoir Toujours Résoudre Les Problèmes

MODÈLE OSI ET TÇP/IP

Les couches basses

- ▶ 4 Transport
- > 3 Réseau
- 2 Liaison de données
- ▶ 1 Physique

4. Transport

3. Réseau

2. Liaison de données

1. Physique

sont nécessaires à l'acheminement des informations entre les extrémités concernées et dépendent du support physique.

Les couches

- > 3 Réseau
- > 2 Liaison de données
- ▶ 1 Physique

interviennent entre machines voisines, et non entre les machines d'extrémité qui peuvent être séparées par plusieurs routeurs,

Les couches hautes

- ▶ 7 Application
- ▶ 6 Présentation
- > 5 Session

7. Application

6. Présentation

5. Session

sont responsables du traitement de l'information relative à la gestion des échanges entre systèmes informatiques.

Les couches

- > 4 Transport
- > 5 Session
- ▶ 6 Présentation
- ▶ 7 application

7. Application
6. Présentation
5. Session
4. Transport

sont des couches qui n'interviennent qu'entre hôtes distants.

5 a 7

sont responsables du traitement de l'information relative à la gestion des échanges entre systèmes informatiques.

4 a 7

sont des couches qui n'interviennent qu'entre hôtes distants.

1 a 4

sont nécessaires à l'acheminement des informations entre les extrémités concernées et dépendent du support physique.

1 a 3

interviennent entre machines voisines, et non entre les machines d'extrémité qui peuvent être séparées par plusieurs routeurs.

La couche physique

La couche physique s'occupe de la transmission des bits de façon brute sur un canal de communication.

 Elle garantie la transmission des données bits pour bits

La couche liaison de données

 La couche de liaison sert de « liant » de données.

 Elle transforme et fractionne les données d'entrée de l'émetteur en trames.

La couche liaison de données

La couche liaison de données reconnaît les trames et est capable de les renvoyer.

s'il y a eu des problèmes de transmission,

Elle corrige les erreurs de Bits de la couche physique.

La couche liaison de données

- Elle est chargée de l'adressage physique
- > de la topologie de réseau
- ▶ de l'accès au media.

La couche réseau

- C'est la couche qui permet de gérer le sous-réseau,
- ▶ le routage des paquets
- l'interconnexion des différents sous-réseaux entre eux.

La couche réseau

- Elle crée les requêtes qui garnissent les tables ARP.
- L'unité d'information de la couche réseau est le paquet.

Modèle OSI

7. Application

6. Présentation

5. Session

4. Transport

3. Réseau

2. Liaison de données

1. Physique

La couche transport

- Cette couche est responsable du bon acheminement des messages complets au destinataire.
- Elle est responsable de la fiabilité d'une communication réseau entre des nœuds d'extrémité
- Elle fournit des mécanismes pour l'établissement, le maintien et la fermeture de circuits virtuels, ainsi que pour la détection des défaillances.

La couche transport

- Le rôle principal de la couche transport est de prendre les messages de la couche session et le cas échéant de les découper en unités plus petites.
- Elle les transmets a la couche réseau.

La couche transport

- > Elle peut optimiser le réseau.
- ➤ Elle contrôle le flux.
- C'est l'une des couches les plus importantes.
- Elle qui fournit le service de base à l'utilisateur.

La couche transport

- Elle qui gère l'ensemble du processus de connexion.
- L'unité d'information de la couche réseau est le message.

La couche session

- Cette couche organise et synchronise les échanges entre tâches distantes.
- Elle réalise le lien entre les adresses logiques et les adresses physiques des tâches réparties.

- La couche session
- Elle établit une liaison entre deux programmes d'application devant coopérer
- Elle commande leur dialogue (qui doit parler, qui parle...)
- c'est ce que l'on appel « la gestion du jeton ».

Modèle OSI

- 7. Application
- 6. Présentation
 - 5. Session
 - 4. Transport
 - 3. Réseau
- 2. Liaison de données
 - 1. Physique

La couche session

- La couche session permet aussi d'insérer des points de reprise dans le flot de données de manière à pouvoir reprendre le dialogue après une panne.
- Elle se charge de la livraison des données, de la classe de service et de la signalisation des exceptions

La couche présentation

- Cette couche peut convertir les données, les reformater, les crypter et les compresser.
- Elle traite l'information de manière à la rendre compatible entre tâches communicantes.

1. Physique

La couche présentation

- Elle va assurer
 l'indépendance entre
 l'utilisateur et le transport de l'information.
- Elle est chargée des structures de données et de la négociation de la syntaxe de transfert des données

1. Physique

La couche application

Cette couche est le point de contact entre l'utilisateur et le réseau.

Exemple : le transfert de fichier, la messagerie...

 Elle apporte à l'utilisateur les services de base offerts par le réseau.

Cheminement

Les données sont segmentées puis mise en paquet et envoyer en trames sous forme de bits.

La couche hôte réseau /
 Accès au réseau

Cette couche est assez "étrange".

 Elle regroupe les couches physiques et liaison de données du modèle OSI.

La couche hôte réseau / Accès au réseau

- Elle permet, à un hôte, d'envoyer des paquets IP sur le réseau.
- Ethernet est une implémentation de la couche hôte-réseau.

La couche internet / Réseau

- Comme aucune connexion n'est établie au préalable, les paquets peuvent arriver dans le désordre ; le contrôle de l'ordre de remise est éventuellement la tâche des couches supérieures.
- Point critique de cette couche : »le routage ».

La couche internet / Réseau

- Elle réalise l'interconnexion des réseaux (hétérogènes) distants sans connexion.
- Elle permettre l'injection de paquets dans n'importe quel réseau

La couche internet / Réseau

- Elle achemine des paquets indépendamment les uns des autres jusqu'à destination.
- On peut se permettre de comparer cette couche avec la couche réseau du modèle OSI.
- Son Protocol officiel: le protocole IP (Internet Protocol).

La couche transport

- Son rôle est le même que celui de la couche transport du modèle OSI : permettre à des entités paires de soutenir une conversation.
- Elle utilise le protocole TCP (Transmission Control Protocol)
- et le protocole UDP (User Datagram Protocol).

La couche application

Contrairement au modèle OSI, c'est la couche immédiatement supérieure à la couche transport, tout simplement parce que les couches présentation et session sont apparues inutiles.

Application Transport Internet

Accès réseau

La couche application

Cette couche contient tous les protocoles de haut niveau.

- Telnet, TFTP (trivial File Transfer Protocol),
- > SMTP (Simple Mail Transfer Protocol).
- HTTP (HyperText Transfer Protocol).
- TFTP (surtout utilisé sur réseaux locaux) utilisera UDP

LE MODÈLE TCP/IP

Application Transport Internet Accès réseau

La couche application

- on part du principe que les liaisons physiques sont suffisamment fiables et les temps de transmission suffisamment courts pour qu'il n'y ait pas d'inversion de paquets à l'arrivée.
- Ce choix rend TFTP plus rapide que le protocole FTP qui utilise TCP.
- SMTP utilise TCP, car pour la remise du courrier électronique, on veut que tous les messages parviennent intégralement et sans erreurs.

LE MODÈLE TCP/IP

Comparaison des modèles OSI et TCP/IP

Les principales similitudes concernent les couches transport et réseau. Toutefois, les deux modèles diffèrent dans leurs relations avec les couches supérieures et inférieures à chaque couche.

Fonctionnement des protocoles en matière d'envoi d'un message

Termes d'encapsulation de protocole

Fonctionnement des protocoles en matière de réception d'un message

Termes d'encapsulation de protocole

Comment est vu une adresse ipV4 au sein des protocoles.

adresse binaire

11000000 10101000 00001010 00001010

est exprimée en décimale à point de la manière suivante :

192.168.10.10

Il nous faut dans un 1er temps,

vérifier si la valeur décimale

est comprise

entre 0 et 255.

- Le bit le plus à gauche d'un octet est désigné par l'appellation de « bit fort »
- C'est la valeur la plus haute de la série de 8 nombres.

- ▶ Le premier octet a une valeur comprise entre 1 et 126
- > soit un bit de poids fort égal à 0
- L'adresse réseau 127.0.0.0 est réservée pour les communications en boucle locale

- ▶ Le premier octet a une valeur comprise entre 128 et 191
- 2 bits de poids fort égaux à 10

- ▶ Le premier octet a une valeur comprise entre 192 et 223
- > 3 bits de poids fort égaux à 110

- ▶ Le premier octet a une valeur comprise entre 224 et 239
- > 3 bits de poids fort égaux à 111
- zone d'adresses dédiées aux services de multidiffusion

- ▶ La Classe E existe mais ...
- ▶ Le premier octet a une valeur comprise entre 240 et 255.
- Il s'agit d'une zone d'adresses réservées aux expérimentations.

SUBNETTING

- > 1 AND 1 = 1
- > 0 AND 1 = 0
- > 0 AND 0 = 0
- > 1 AND 0 = 0

Seul 1 AND 1 retourne 1

L'OPERATEUR AND

Propriétés d'interface LAN

Configuration d'une adresse IPv4 statique

► Le Dynamic Host Configuration Protocol (DHCP) - RFC 2131

> DHCP, est un protocole applicatif

▶ il utilise UDP au niveau de la couche transport.

DHCP

Attribution d'une adresse IPv4 dynamique

Vérification d'une adresse IPv4 dynamique

```
C:\.
C:\> ipconfig
Ethernet adapter Local Area Connection:
   IP Address . . . . . . 10.1.1.101
   Subnet Mask . . . . . . 255.255.255.0
   Default Gateway . . . . . 10.1.1.1
   DNS Servers . . . . . . 172.16.99.150
                         172.16.99.151
C:\>
```

- Monodiffusion : processus consistant à envoyer un paquet d'un hôte à un autre hôte spécifique.
- La monodiffusion est utilisée dans les communications normales d'hôte à hôte

- Diffusion: processus consistant à envoyer un paquet d'un hôte à tous les hôtes du réseau.
- Le trafic de diffusion est possible grâce à l'adresse de diffusion du réseau.

Multidiffusion: processus consistant à envoyer un paquet d'un hôte à un groupe d'hôtes en particulier (qui peuvent se trouver sur différents réseaux).

 Dans une transmission multidiffusion, l'hôte source peut envoyer un seul paquet, qui parviendra à des milliers d'hôtes de destination

Exemples de transmission multidiffusion:

- Echange d'informations de routage entre des protocoles de routage.
- ▶ Diffusions vidéo et audio.
- Distribution de logiciels.
- ▶ Jeu en ligne.

plages d'adresses privées :

- ▶ 10.0.0.0 à 10.255.255.255 (10.0.0.0/8)
- > 172.16.0.0 à 172.31.255.255 (172.16.0.0/12)
- > 192.168.0.0 à 192.168.255.255(192.168.0.0/16)

ADRESSES PRIVÉES

Les adresses privées ne peuvent pas être routées sur Internet.

> dans chaque réseau,

la première et la dernière adresse ne peuvent pas être attribuées à des hôtes.

Il s'agit respectivement de l'adresse réseau et de l'adresse de diffusion.

ADRESSES RÉSEAU ET DE DIFFUSION

- L'adresse de bouclage IPv4 **127.0.0.1** est une autre adresse réservée.
- Il s'agit d'une adresse spéciale que les hôtes utilisent pour diriger le trafic vers eux-mêmes.
- Vous pouvez envoyer une requête ping à l'adresse de bouclage afin de tester la configuration TCP/IP de l'hôte local.

BOUCLAGE

Les adresses IPv4 du bloc d'adresses

169.254.0.0 à 169.254.255.255 (169.254.0.0/16)

sont conçues comme des adresses link-local.

ADRESSES LINK-LOCAL

- Le bloc d'adresses 192.0.2.0 à 192.0.2.255 (192.0.2.0/24) est réservé à des fins pédagogiques.
- Contrairement aux adresses expérimentales, les périphériques réseau accepteront ces adresses dans leur configuration.

ADRESSES TEST-NET

Les adresses du bloc

240.0.0.0 à 255.255.255.254

sont répertoriées comme étant réservées pour une utilisation future (RFC 3330).

ADRESSES EXPÉRIMENTALES

- L'attribution par classe des adresses IP gaspillait souvent de nombreuses adresses, ce qui épuisait la disponibilité des adresses IPv4.
- Par exemple, une entreprise avec un réseau de 260 hôtes pourrai se voir attribuer une adresse de classe B avec plus de 65 000 adresses.

LIMITES DE L'ADRESSAGE PAR CLASSE

- Le système utilisé aujourd'hui porte le nom d'adressage sans classe.
- Son nom formel est le routage CIDR

(Classless Inter-Domain Routing, routage interdomaine sans classe).

 L'attribution par classe d'adresses IPv4 était inefficace

ADRESSAGE SANS CLASSE

L'IETF savait que le CIDR était uniquement une solution temporaire et qu'un nouveau protocole IP devait être développé pour s'adapter à la croissance rapide du nombre d'utilisateurs d'Internet.

En 1994, l'IETF a commencé à chercher un successeur à l'IPv4, à savoir le futur protocole IPv6.

ADRESSAGE SANS CLASSE

Les trois niveaux de FAI - niveau 1 Réseau fédérateur Internet Fiabilité garantie par de multiples connexions S'adressent Niveau 1 directes au principalement aux (p. ex. Sprint, réseau très grandes Savvis) fédérateur entreprises et aux Internet FAI de niveau 2 Niveau 2 Niveau 2 (p. ex. nLayer) (France Telecom) Niveau 3 Niveau 3 (p. ex. Fortress ITX) (p. ex. Beachcomputers)

Les trois niveaux de FAI - niveau 2 Réseau fédérateur Internet S'adressent Niveau 1 principalement aux (p. ex. Sprint, grandes entreprises Savvis) Connexion à et aux FAI de Internet via un niveau 3 FAI de niveau 1 Niveau 2 Niveau 2 (p. ex. nLayer) (France Telecom) Niveau 3 Niveau 3 (p. ex. Fortress ITX) (p. ex. Beachcomputers)

