Context-Free Languages: Review

Chapter 16

Languages and Machines

Regular and CF Languages

Regular Languages

- regular exprs.
- regular grammars
- = DFSMs
- recognize
- minimize FSMs
- closed under:
 - ◆ concatenation
 - ♦ union
 - ♦ Kleene star
 - ♦ complement
 - ♦ intersection
- pumping theorem
- D = ND

Context-Free Languages

- context-free grammars
- = NDPDAs
- parse
- find unambiguous grammars
- closed under:
 - ◆ concatenation
 - ♦ union
 - ♦ Kleene star
 - ♦ intersection w/ reg. langs
- pumping theorem
- \bullet D \neq ND

Example

 $\{$ ba m1 ba m2 ba m3 ... ba mn : $n \geq 2$, m_1 , m_2 , ..., $m_n \geq 0$, and $m_i \neq m_j$ for some $i,j\}$

A PDA:

A CFG:

Is L regular?

$L = \{a^ib^j: j = 4i + 2\}$

Is L Regular, Context Free, or Neither?

$$L = \{x \ x_{\text{neg}} : x \in \{0, 1\}^*\}.$$

 $x_{\text{neg}} = x$ with all 0's replaced by 1's and 1's replaced by 0's.

Is L Regular, Context Free, or Neither?

 $L = \{w \in \{0, 1\}^* : \exists k \text{ (}w \text{ is a binary encoding, leading zeros allowed, of } 2k+1)\}$

Is L Regular, Context Free, or Neither?

 $L = \{w \in \{a, b, c\}^* : every a has a matching b and a matching c somewhere in <math>w$ (and no b or c is considered to match more than one a)}

An Example

 $L = \{a^i b^j c^k : k \le i \text{ or } k \le j\}$

Construct a context-free grammar for *L*.

Functions on Languages

Again, let $L = \{a^i b^j c^k : k \le i \text{ or } k \le j\}.$

Describe *precisely* the language L' = maxstring(L), where:

$$maxstring(L) =$$

$$\{x: x \in L \text{ and } (\forall y \in \Sigma^* (y \neq \varepsilon) \rightarrow (xy \notin L))\}$$

Is L' = maxstring(L) context free?

Are the context-free languages closed under *maxstring*?

Regular, Context Free or Neither?

$$L_1 = \{a^n b^m c^k : m \leq \min(n, k)\}.$$

$$L_2 = \{a^n b^m c^k : n = m + k \text{ or } m = n + k\}.$$