ENSIIE. Simulation methods

Abass SAGNA, abass.sagna@ensiie.fr

Maître de Conférences à l'ENSIIE, Laboratoire de Mathématiques et Modélisation d'Evry Université d'Evry Val-d'Essonne, UMR CNRS 8071

http://www.math-evry.cnrs.fr/members/asagna/

February 5, 2019

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

Introduction

- → The term
 - Generating a random number x from a r.v. X or Simulating a realization x of X or
 - Sampling a random number x from X

consists on mimicking the r.v. in order to generate one possible value (or observation) $X(\omega)=x$ from X.

- \rightarrow *Example*. Let X be a Bernouilli random variable with success parameter p: $\mathbb{P}(X=1)=p$, $\mathbb{P}(X=0)=1-p$.
 - **1** When we sample a random number x from X, x = 1 or x = 0.
 - ② When the sample is of size $N: X_1(\omega) = x_1, \ldots, X_N(\omega) := x_N$ are iid with $X_i \stackrel{d}{=} X$, it must be in line with the theoretical results as the Law of Large Numbers: $\bar{X}_N := \frac{X_1 + \ldots + X_N}{N} \stackrel{N \to +\infty}{\to} \mathbb{E}(X) = p$, a.s.
- There are many simulation techniques: the inversion method, the rejection method, the transformation method, etc ...

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

Simulation of r.v.: inversion method

Proposition. Let U be a r.v., uniformly distributed on]0,1[and let X be a r.v. with cumulative distribution function (cdf) F and (generalized) inverse function F^{-1} :

$$F^{-1}(u) := \inf\{x \in \mathbb{R} : \quad F(x) \ge u\}, \qquad \forall u \in]0,1[.$$

Then X and $F^{-1}(U)$ have the same distribution: $X \stackrel{d}{=} F^{-1}(U)$.

Proof. We need to prove that $\forall x \in \mathbb{R}$, $\mathbb{P}(X \le x) = \mathbb{P}(F^{-1}(U) \le x)$. We have

$$\forall u \in]0,1[, \ \forall x \in \mathbb{R}, \qquad F^{-1}(u) \leq x \iff u \leq F(x).$$

Then

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x))$$
 (F in nondecreasing)
= $F(x)$

It follows that the cdf of $F^{-1}(U)$ and X are the same.

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

The inversion method: discrete r.v.

Let X be a discrete r.v. taking values in $E = \{x_0, \ldots, x_n, \ldots\}$, with cdf F. Suppose that the x_k are ordered in a nondecreasing order and denote, $\forall k \geq 0$, $p_k = \mathbb{P}(X = x_k)$ and $c_k = p_0 + \ldots + p_k$. Then, for all $u \in]0,1[$,

$$F^{-1}(u) = x_0 \mathbb{1}_{\{u \le c_0\}} + \sum_{k \ge 1} x_k \mathbb{1}_{\{c_{k-1} < u \le c_k\}}.$$

when the cardinality N of E is finite. We stock the values x_k on a table x and those of c_k on a table c. To generate a sample $X(\omega)$ of X we use the following algorithm (rand generate a r.n. from $U \sim \mathcal{U}(]0,1[))$:

$$\mathbf{k} \leftarrow 0$$
; $\mathbf{u} \leftarrow \text{rand}$
while $(u > c[k])$ and $(k < N)$
 $k \leftarrow k + 1$
end
 $X(\omega) \leftarrow x[k]$

The inversion method: example of discrete r.v.

ightharpoonup Bernoulli distribution. Let X be Bernoulli r.v. with success probability $p \in [0,1]$: $\mathbb{P}(X=0) = 1-p$ and $\mathbb{P}(X=1) = p$. In this case,

$$F^{-1}(u) = 0 \times \mathbb{1}_{\{u < 1 - p\}} + 1 \times \mathbb{1}_{\{1 - p \le u\}} = \mathbb{1}_{\{1 - p \le u\}}.$$

We generate a random number (r.n.) $X(\omega) = x$ from X using the following algorithm:

$$u \leftarrow \text{rand}$$
if $(u < 1 - p) \times \leftarrow 0$
else $\times \leftarrow 1$

 \rightsquigarrow *Poisson distribution*. Let *X* be a r.v. having a Poisson distribution with parameter $\lambda > 0$, defined as:

$$p_k = \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k = 0, 1, \dots$$

We remark that

$$p_k = \frac{\lambda}{k} p_{k-1}, \quad \forall k \ge 1.$$

The inversion method: example of discrete r.v.

 \rightsquigarrow To generate a r.n. from X, we first stock the values of the cdf F(n), $n \in \{1, 2, ..., N\}$, where N is chosen such that F[N] is high (for example F[N] = 0.999)

 \leadsto Then, we use the following algorithm $(pN \equiv p_N = \mathbb{P}(X = N))$:

```
\begin{array}{l} \mathbf{u} \leftarrow \mathrm{rand} \\ \mathrm{if} \ (\mathbf{u} \leq F[N]) \\ \mathrm{then} \\ k \leftarrow 0 \\ \mathrm{while} \ (\mathbf{u} > F[k]) \ \mathrm{do} \\ k \leftarrow k + 1 \\ \mathrm{end} \\ \mathrm{else} \\ k \leftarrow N, \ p \leftarrow pN, \ F \leftarrow F[N] \\ \mathrm{while} \ (\mathbf{u} > F) \ \mathrm{do} \\ k \leftarrow k + 1, \ p \leftarrow \lambda * p/k, \ F \leftarrow F + p \\ \mathrm{end} \end{array}
```

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

The inversion method: example of continuous r.v.

 \sim The exponential distribution. If X has an exponential distribution with parameter $\lambda > 0$, with density

$$f(x) = \lambda e^{-\lambda x} \mathbb{1}_{]0,+\infty[}(x),$$

so that its cdf reads

$$F(x) = (1 - e^{-\lambda x}) \mathbb{1}_{[0, +\infty[}(x),$$

then, for any $u\in]0,1[$, $F^{-1}(u)=-rac{\ln(1-u)}{\lambda},$ so that if $U\sim \mathcal{U}(]0,1[),$ then,

$$F^{-1}(U) = -\frac{\ln(1-U)}{\lambda} \stackrel{d}{=} -\frac{\ln(U)}{\lambda}$$
 (since $1-U\stackrel{d}{=} U$).

 \sim The Weibull distribution. Let X be a Weibull distribution with parameters (λ, a) , with density

$$f(x) = \lambda a x^{a-1} e^{-\lambda x^a}, \qquad \lambda, a > 0.$$

The inversion method: example of continuous r.v.

Its cdf reads

$$F(x) = (1 - e^{-\lambda x^a}) \mathbb{1}_{]0,+\infty[}(x).$$

It follows that for any $u \in]0,1[$, $F^{-1}(u)=\left(-\ln(1-u)/\lambda\right)^{1/a}$, so that if $U \sim \mathcal{U}(]0,1[)$, then,

$$F^{-1}(U) = (-\ln(1-U)/\lambda)^{1/a} \stackrel{d}{=} (-\ln(U)/\lambda)^{1/a}.$$

As a consequence, if we want to generate a random number from an exponential distribution or a Weibull distribution we just have

- to generate a r.n. $u = U(\omega)$ from a uniform distribution $U \sim \mathcal{U}(]0,1[)$, and
- compute the inverse $F^{-1}(u)$ with respect to the associated distribution.

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

R.n. from $U \sim \mathcal{U}(S)$

 \leadsto Let S be Borel set on \mathbb{R}^d and let $U \sim \mathcal{U}(S)$ with density (w.r.t. the Lebesgues measure λ_d): $f(x) = (1/\lambda_d(S)) \, \mathbbm{1}_S(x)$. For any Borel set $A \subset S$,

$$\mathbb{P}(U \in A) = \int_A \frac{1}{\lambda_d(S)} \lambda_d(dx) = \frac{\lambda_d(A)}{\lambda_d(S)} = \frac{|A|}{|S|}.$$

If d = 2, we have

$$\mathbb{P}(U \in A) = \frac{\operatorname{area}(A)}{\operatorname{area}(S)}, \qquad A \subset S.$$

Proposition. Let $(U_n)_{n\geq 1}$ be sequence of iid r.v. with $U_1 \sim \mathcal{U}(S)$. Let $A \subset S$ and $\tau = \inf\{n \geq 1, \ U_n \in A\}$. Then $U_\tau \sim \mathcal{U}(A)$.

Proof. We have for any $B \subset A$,

$$\mathbb{P}(U_{\tau} \in B) = \sum_{k=1}^{+\infty} \mathbb{P}(U_k \in B | \tau = k) \mathbb{P}(\tau = k)$$

R.n. from $U \sim \mathcal{U}(S)$

Now, it follows from the independence of the U_k 's that

$$\mathbb{P}(U_k \in B | \tau = k) = \mathbb{P}(U_k \in B | \{U_1 \notin A\} \cap \ldots \cap \{U_{k-1} \notin A\} \cap \{U_k \in A\}) \\
= \frac{\mathbb{P}(\{U_k \in B\} \cap \{U_k \in A\})}{\mathbb{P}(U_k \in A)} \\
= \frac{\mathbb{P}(U_k \in B)}{\mathbb{P}(U_k \in A)}.$$

On the other hand,

$$\mathbb{P}(\tau = k) = \mathbb{P}(\{U_1 \notin A\} \cap \ldots \cap \{U_{k-1} \notin A\} \cap \{U_k \in A\}))$$
$$= \mathbb{P}(U_1 \notin A)^{k-1} \mathbb{P}(U_k \in A).$$

Then, for any Borel set $B \subset A$,

$$\mathbb{P}(U_{\tau} \in B) = \sum_{k=1}^{+\infty} \left(1 - \frac{|A|}{|S|}\right)^{k-1} \frac{|B|}{|S|} = \frac{|B|}{|A|} \implies U_{\tau} \sim \mathcal{U}(A).$$

R.n. from $U \sim \mathcal{U}(S)$

Example. Random numbers uniformly distributed on the unit circle. Let X be an uniform distribution on the unit sphere $A = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 \le 1\}$ and let S be the square $]-1,+1[^2$ on \mathbb{R}^2 .

- We have $A \subset S$.
- If $U_1, U_2 \sim \mathcal{U}(]-1,1[)$, are independent then, $(U_1,U_2) \sim \mathcal{U}(S)$.
- To sample a r.n. from $\mathcal{U}(A)$ we use the algorithm:

```
do u1 \leftarrow 2^* rand -1

u2 \leftarrow 2^* rand -1

while (u1^*u1 + u2^*u2 > 1)

end

U1 \leftarrow u1 and U2 \leftarrow u2
```

- Introduction
- Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

General rejection method

Let f and g be explicit probability densities in \mathbb{R}^d , $c \geq 1$, and let

$$A_f = \{(x, u) \in \mathbb{R}^d \times \mathbb{R}^+ : 0 \le u \le f(x)\},\$$

 $A_{cg} = \{(x, u) \in \mathbb{R}^d \times \mathbb{R}^+ : 0 \le u \le cg(x)\}.$

We suppose that

- we can simulate a r.n. from the density g but not from f.
- $A_f \subset A_{cg}$ or equivalently, $f(x) \leq cg(x)$, for any $x \in \mathbb{R}^d$.

Then, the following algorithm generates a r.v. X with density f:

- 1. generate a r.n x from X with density g and a r.n u from $U \sim \mathcal{U}(]0,1[)$
- 2. if $c \times u \times g(x) \le f(x)$, go to 3., otherwise go to 1.
- 3. return $X(\omega) = x$.

General rejection method

This previous procedure follows from the result below.

Proposition. Let f and g be two densities and let $c \ge 1$ be so that $f \le cg$. Let $(X_k)_{k \ge 1}$ be an iid sequence of r.v. with density g and let $(U_k)_{k \ge 1}$ be an iid sequence of with distribution $\sim \mathcal{U}(]0,1[)$, independent from X_1 . Let us define a r.v. Z as

$$Z = \begin{cases} X_1 & \text{if} \quad cU_1g(X_1) \leq f(X_1) \\ X_{\tau} & \text{otherwise, where } \tau = \inf\{k \geq 1, \ cU_kg(X_k) \leq f(X_k)\}. \end{cases}$$

Then Z has density f and τ has a geometric distribution with success parameter 1/c.

Proof. We have for every $x \in \mathbb{R}$,

$$\mathbb{P}(Z \leq x) = \mathbb{P}(X_{\tau} \leq x) = \sum_{k=1}^{+\infty} \mathbb{P}(X_k \leq x | \tau = k) \mathbb{P}(\tau = k)$$

General rejection method

 \rightsquigarrow Now, we have (letting h(x) = f(x)/(cg(x)))

$$\mathbb{P}(\tau = k) = (\mathbb{P}(U_1 > h(X_1)))^{k-1}\mathbb{P}(U_k \le h(X_k))$$

and

$$\mathbb{P}(U_1 > h(X_1)) = \int_{-\infty}^{+\infty} g(t)dt \int_{h(t)}^1 du = 1 - 1/c.$$

ightharpoonup In the other hand, $\mathbb{P}(X_k \leq x | \tau = k) = \frac{\mathbb{P}(X_k \leq x; U_k \leq h(X_k))}{\mathbb{P}(U_k \leq h(X_k))}$ and

$$\mathbb{P}(X_k \leq x; U_k \leq h(X_k)) = \int_{-\infty}^x g(t)dt \int_0^{h(t)} du = \int_{-\infty}^x g(t)h(t)dt = \frac{1}{c} \int_{-\infty}^x f(t)dt.$$

It follows that

$$\mathbb{P}(Z \leq x) = \frac{1}{c} \int_{-\infty}^{x} f(t) dt \sum_{k=1}^{+\infty} \left(1 - \frac{1}{c}\right)^{k-1} = \int_{-\infty}^{x} f(t) dt,$$

so that Z has density f.

General rejection method examples

 \leadsto *The Gamma distribution.* Let $\lambda, a > 0$ and let X be a r.v. with Gamma distribution $\Gamma(\lambda, a)$, with pdf

$$f(x) = rac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x}$$
 where $\Gamma(a) = \int_0^{+\infty} x^{a-1} e^{-x} dx$.

We want to generate a r.n. from the distribution of $X \sim \Gamma(\lambda, a)$. First note that if $Z \sim \Gamma(1, a)$, then $X = Z/\lambda \sim \Gamma(\lambda, a)$, so that it is enough to say how to simulate a r.n. from Z.

- When a = n is an integer number then $Z \stackrel{d}{=} E_1 + \ldots + E_n$, where the E_k 's are iid exponentially distributed r.v. with param. 1: $E_k \sim \mathcal{E}(1)$.
- If $a \in]0,1[$ (and $\lambda = 1$), we have $f(x) \leq cg(x)$, where

$$c = \frac{e+a}{ae\Gamma(a)}$$
 and $g(x) = \frac{ae}{e+a} [x^{a-1}\mathbb{1}_{]0,1[}(x) + e^{-x}\mathbb{1}_{[1,+\infty[}].$

We can apply the rejection algorithm to generate a r.n. from Z.

General rejection method examples

In fact, if X has pdf g its inverse function reads for every $u \in]0,1[$,

$$G^{-1}(u) = \left(\frac{e+a}{e}u\right)^{\frac{1}{a}}\mathbb{1}_{]0,\frac{e}{e+a}[}(u) - \ln\left((1-u)\frac{e+a}{ae}\right)\mathbb{1}_{]\frac{e}{e+a},1[}(u).$$

and h(x) = f(x)/(cg(x)) reads

$$h(x) = e^{-x} \mathbb{1}_{]0,1[}(x) + x^{a-1} \mathbb{1}_{[1,+\infty[}.$$

Then, to generate a r.n. from $Z \sim \Gamma(1, a)$, $a \in]0, 1[$,

- 1. we generate a r.n. V from $\mathcal{U}(]0,1[)$, we compute $X=G^{-1}(V)$ and generate another r.n. U from $\mathcal{U}(]0,1[)$, independent from V.
- 2. If $U \le h(X)$, we set Z = X, otherwise, return to step 1.

General rejection method examples

ightharpoonup The Beta distribution with parameters a,b>0 has pdf

$$f(x) = B(a,b)x^{a-1}(1-x)^{b-1}\mathbb{1}_{]0,1[}(x)$$
 with $B(a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$.

For a, b > 1, we have

$$f(x) \leq cg(x)$$
 where $c = \left(\frac{a-1}{a+b-2}\right)^{a-1} \left(\frac{b-1}{a+b-2}\right)^{b-1}$ and $g(x) = \mathbb{1}_{]0,1[}(x).$

Then, to generate a r.n. from $Z \sim B(a, b)$,

- 1. we generate a r.n. X from $\mathcal{U}(]0,1[)$ and generate another r.n. U from $\mathcal{U}(]0,1[)$, independent from X.
- 2. If $U \le h(X)$, we set Z = X, otherwise, return to step 1.

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

Transformation method: the principle

Nome times, the random variable to generate reads as a function of easy generable random variables. This method is specific to some random variables and we are going to give examples of the Gamma distribution and the Gaussian distribution.

 \leadsto Let $T=(T_1,\ldots,T_d):\mathbb{R}^d\mapsto\mathbb{R}^d$ be a diffeomorphism whose inverse has Jacobian matrix

$$J(z) = \left(\frac{d}{dz_j} T_i^{-1}(z)\right)_{1 \le i, j \le d}.$$

It follows that if Z = T(X), where X is an \mathbb{R}^d -valued random vector with pdf f_X , then, the pdf of Z reads

$$f_Z(z) = f_X(T^{-1}(z)) \times |\det(J(z))|, \qquad z \in \mathbb{R}^d.$$

- Introduction
- Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

Transformation method: example of the Gamma distribution

ightharpoonup Example of the Gamma distribution. Let $\lambda>0$ and $a_i>0$, $i=1,\ldots,n$. Let $X_i\stackrel{\text{iid}}{\sim}\Gamma(\lambda,a_i),\ i=1,\ldots,n$. Then, we know that $Z=X_1+\ldots+X_n\sim\Gamma(\lambda,a_1+\ldots+a_n)$. Suppose that $a_i=1$ for any i.

- Since $\Gamma(\lambda,1) \sim \operatorname{Exp}(\lambda)$, we can represent $Z \sim \Gamma(\lambda,n)$ as: $Z = X_1 + \ldots + X_n$, with $X_i \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\lambda)$.
- We know from the inversion method that if $X_i \sim \operatorname{Exp}(\lambda)$ then $X_i \stackrel{d}{=} \ln(U_i)/\lambda$, where $U_i \sim \mathcal{U}(]0,1[)$.
- Then, $Z=X_1+\ldots+X_n\sim\Gamma(\lambda,n)$ can be written as

$$Z = T(U_1, \ldots, U_n) = -\frac{1}{\lambda} \sum_{i=1}^n \ln(U_i) = -\frac{1}{\lambda} \ln\left(\prod_{i=1}^n U_i\right).$$

- Introduction
- 2 Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

Transformation method: example of the Gaussian vector

Let $Z = (Z_1, Z_2)$ be a two dimensional Gaussian vector. The following result, known as the *Box-Muller* method, say how to simulate Z from independent uniform random variables.

Proposition. Let $U_i \stackrel{\text{iid}}{\sim} \mathcal{U}(]0,1[)$, i=1,2. Then,

$$(Z_1, Z_2) = T(U_1, U_2) = \left(\sqrt{-2\ln(U_1)}\cos(2\pi U_2), \sqrt{-2\ln(U_1)}\sin(2\pi U_2)\right)$$

is a pair of indep. standard Normal distribution: $Z_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$, i=1,2.

Proof. Note that the transformation $T:]0,1[^2 \mapsto \mathbb{R}^2$ is bijective and if $z_1 = \sqrt{-2\ln(u_1)}\cos(2\pi u_2)$ and $z_2 = \sqrt{-2\ln(u_1)}\sin(2\pi u_2)$, we have $z_1^2 + z_2^2 = -2\ln(u_1)$ and $z_2/z_1 = \tan(2\pi u_2)$. Then $(z = (z_1, z_2))$

$$(u_1,u_2)=ig(T_1^{-1}(z),\,T_2^{-1}(z)ig)=ig(e^{-(z_1^2+z_2^2)/2},(2\pi)^{-1}\arctan(z_2/z_1)ig).$$

Transformation method: example of the Gaussian vector

The Jacobian matrix

$$J(z) = \begin{pmatrix} \frac{\partial T_1^{-1}(z)}{\partial z_1} & \frac{\partial T_1^{-1}(z)}{\partial z_2} \\ \frac{\partial T_2^{-1}(z)}{\partial z_1} & \frac{\partial T_2^{-1}(z)}{\partial z_2} \end{pmatrix} = \begin{pmatrix} -z_1 e^{-(z_1^2 + z_2^2)/2} & -z_2 e^{-(z_1^2 + z_2^2)/2} \\ -\frac{1}{2\pi} \frac{z_2}{z_1^2 + z_2^2} & \frac{1}{2\pi} \frac{z_1}{z_1^2 + z_2^2} \end{pmatrix}$$

It follows that $\det(J(z)) = \frac{1}{2\pi} e^{-(z_1^2 + z_2^2)/2}$. Then

$$f_Z(z) = f_{(U_1, U_2)}(T^{-1}(z)) \left| \det(J(z)) \right| = \frac{1}{2\pi} e^{-(z_1^2 + z_2^2)/2} = \frac{1}{\sqrt{2\pi}} e^{-z_1^2/2} \frac{1}{\sqrt{2\pi}} e^{-z_2^2/2}$$

so that $(Z_1, Z_2) \sim \mathcal{N}(0_2, I_2)$: $0_2 = (0, 0)$, I_2 is the 2×2 identity matrix.

- \leadsto Generating a Gaussian vector $X \sim \mathcal{N}(0_d, I_d)$. One way of generating a r.n. from $X \sim \mathcal{N}(0_d, I_d)$ is
 - to call d times the function generating a gaussian pair $(Z_1, Z_2) \sim \mathcal{N}(0_2, I_2)$ (using for example the *Box-Muller* method)
 - and to set $X = (Z_1^1, \dots, Z_1^d)$, where Z_1^i is the value of Z_1 at the *i*-th call of the function generating (Z_1, Z_2) .

Transformation method: example of the Gaussian vector

 $ightharpoonup Drawing a Gaussian vector <math>Z \sim \mathcal{N}(\mu, \Sigma)$, where $\mu \in \mathbb{R}^\ell$ and Σ is a $\ell \times d$ matrix. We can write $Z = \mu + \Sigma^{1/2} X$, where $X \sim \mathcal{N}(0_d, I_d)$. We have seen how to draw a sample from X. It remains to say how to compute $\Sigma^{1/2}$. Several methods exist but we recall here the two main methods.

- **1** In the non degenerated case where Σ is positive-definite we may use the *Cholesky* decomposition: find a lower triangular matrix L so that $LL^T = \Sigma$ and $\Sigma^{1/2} = L$.
- ② In general (including the degenerated case) we may use $L = UA^{1/2}$ where A and U are obtained from the spectral (or eigenvalue) decomposition $\Sigma = UAU^{-1}$ of Σ . Then, $\Sigma^{1/2} = L$.

- Introduction
- Inversion method
 - Examples of discrete r.v.
 - Examples of continuous r.v.
- Rejection method
 - ullet The case of the uniform distribution on \mathbb{R}^d
 - The general rejection method
 - Example: the Gamma distribution
 - Example: the Beta distribution
- Transformation method
 - The Gamma distribution
 - The Gaussian vector
- Mixed density

Mixed density: the principle

 \sim Let X be an \mathbb{R}^d -valued random variable with pdf $f=\sum_{n\geq 0}p_nf_n$, where $\mathbb{Q}:=(p_n,n\geq 0)$ is a probability on \mathbb{N} and f_n is pdf for every $n\geq 0$.

 \leadsto Let $(X_n)_{n\geq 0}$ be an iid sequence of r.v. such that for every $n\geq 0$, X_n has pdf f_n .

 \leadsto Let $\nu: \Omega \mapsto \mathbb{N}$ be a r.v. with distribution \mathbb{Q} , independent from $(X_n)_{n\geq 0}$.

Proposition. The random variable X_{ν} has pdf f.

Proof. For any Borel set $A \subset \mathbb{R}^d$, we have

$$\mathbb{P}(X_{\nu} \in A) = \sum_{n \geq 0} \mathbb{P}(\nu = n) \mathbb{P}(X_{\nu} \in A | \nu = n)$$
$$= \sum_{n \geq 0} p_n \int_A f_n(x) dx$$
$$= \int_A \sum_{n \geq 0} p_n f_n(x) dx = \int_A f(x) dx.$$

Mixed density: example

Example. Let $(p_1, p_2, p_3) = (1/6, 1/3, 1/2)$ and X be a random variable with pdf

$$f(x) = p_1 f_1(x) + p_2 f_2(x) + p_3 f_3(x)$$

where

$$f_1(x) = \mathbb{1}_{]0,1]}(x), \quad f_2(x) = \frac{1}{2}(2x-1)\mathbb{1}_{]1,2]}(x), \quad f_3(x) = \frac{2}{3}(-3x+9)\mathbb{1}_{]2,3]}(x).$$

Propose an algorithm to generate a sample from X.

Example. Let $X_1 \sim \mathcal{N}(-3,1)$ and $X_2 \sim \mathcal{N}(3,1)$ be two independent r.v. with resp. pdf f_1 and f_2 . Let X be a r.v. with pdf

$$f(x) = p_1 f_1(x) + p_2 f_2(x),$$
 $p_1, p_2 \in [0, 1], p_1 + p_2 = 1.$

- Plot the graphs of f for $(p_1, p_2) = (\frac{1}{2}, \frac{1}{2})$, $(p_1, p_2) = (\frac{1}{4}, \frac{3}{4})$, $(p_1, p_2) = (\frac{3}{4}, \frac{1}{4})$.
- Plot in the same graph (w.r.t (p_1, p_2)) the densities estimates from a sample of f.