

Inter**Lab**

FCC Measurement/Technical Report on

WLAN Transceiver

JOYA X1 PLUS

Report Reference: MDE_EOSTE_1201_FCCh

Test Laboratory:

Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Sur	nmary	3
).1).2	Technical Report Summary Measurement Summary	3 4
1	Adr	ministrative Data	6
	1.1	Testing Laboratory	6
	1.2	Project Data	6
	I.3 I.4	Applicant Data Manufacturer Data	6 6
2	res	t object Data	7
	2.1	General EUT Description	7
	2.2	EUT Main components	8
	2.3	Ancillary Equipment	8
	2.4 2.5	Auxiliary Equipment EUT Setups	8 9
	2.6	Operating Modes	9
	2.7	Product labelling	9
3	Tes	t Results	10
3	3.1	Conducted emissions (AC power line)	10
3	3.2	Occupied bandwidth	12
	3.3	Peak power output / conducted average output power	15
	3.4	Spurious RF conducted emissions	20
	3.5	Spurious radiated emissions	24
	3.6	Band edge compliance	30
_	3.7	Power density	34
4	Tes	t Equipment	37
5	Pho	oto Report	43
6	Set	up Drawings	43
7	FCC	and IC Correlation of measurement requirements	44
8	Anr	nex measurement plots	45
۶	3.1	AC Mains conducted	45
	3.2	Occupied bandwidth	46
	3.3	Peak power output	49
	3.4	Band edge compliance conducted and Spurious RF conducted emissi	
8	3.5	Power density	59

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-13 Edition) and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201	Equipment	authorization	requirement
----------	-----------	---------------	-------------

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 October 4, 2012"

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C § 15.2	FCC Part	15, Subpa	rt C	§ 15.20
-------------------------------	-----------------	-----------	------	---------

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.4

OP-Mode Setup Port **Final Result** op-mode 4 Setup_02 AC Port (power line) passed

FCC Part 15, Subpart C § 15.247 (a) (1)

Occupied bandwidth

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Temp.ant.connector	passed
op-mode 1g	Setup_02	Temp.ant.connector	passed
op-mode 1n	Setup_02	Temp.ant.connector	passed
op-mode 2b	Setup_02	Temp.ant.connector	passed
op-mode 2g	Setup_02	Temp.ant.connector	passed
op-mode 2n	Setup_02	Temp.ant.connector	passed
op-mode 3b	Setup_02	Temp.ant.connector	passed
op-mode 3g	Setup_02	Temp.ant.connector	passed
op-mode 3n	Setup_02	Temp.ant.connector	passed

FCC Part 15, Subpart C § 15.247 (b) (1)

Peak power output

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Temp.ant.connector	passed
op-mode 1g	Setup_02	Temp.ant.connector	passed
op-mode 1n	Setup_02	Temp.ant.connector	passed
op-mode 2b	Setup_02	Temp.ant.connector	passed
op-mode 2g	Setup_02	Temp.ant.connector	passed
op-mode 2n	Setup_02	Temp.ant.connector	passed
op-mode 3b	Setup_02	Temp.ant.connector	passed
op-mode 3g	Setup_02	Temp.ant.connector	passed
op-mode 3n	Setup_02	Temp.ant.connector	passed

FCC Part 15, Subpart C

§ 15.247 (d)

Spurious RF conducted emissions

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Temp.ant.connector	passed
op-mode 1g	Setup_02	Temp.ant.connector	passed
op-mode 1n	Setup_02	Temp.ant.connector	passed
op-mode 2b	Setup_02	Temp.ant.connector	passed
op-mode 2g	Setup_02	Temp.ant.connector	passed
op-mode 2n	Setup_02	Temp.ant.connector	passed
op-mode 3b	Setup_02	Temp.ant.connector	passed
op-mode 3g	Setup_02	Temp.ant.connector	passed
op-mode 3n	Setup_02	Temp.ant.connector	passed

FCC Part 15, Subpart C

§ 15.247 (d), § 15.35 (b), § 15.209

Spurious radiated emissions

The measurement was performed according to ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	Enclosure	passed
op-mode 2b	Setup_01	Enclosure	passed
op-mode 3b	Setup_01	Enclosure	passed
op-mode 1g	Setup_01	Enclosure	passed
op-mode 2g	Setup_01	Enclosure	passed
op-mode 3g	Setup_01	Enclosure	passed
op-mode 1n	Setup_01	Enclosure	passed
op-mode 2n	Setup_01	Enclosure	passed
op-mode 3n	Setup_01	Enclosure	passed

FCC Part 15, Subpart C

§ 15.247 (d)

Band edge compliance

The measurement was performed according to FCC § 15.31 /

ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Temp.ant.connector	passed
op-mode 1g	Setup_02	Temp.ant.connector	passed
op-mode 1n	Setup_02	Temp.ant.connector	passed
op-mode 3b	Setup_02	Temp.ant.connector	passed
op-mode 3g	Setup_02	Temp.ant.connector	passed
op-mode 3n	Setup_02	Temp.ant.connector	passed
op-mode 3b	Setup_01	Enclosure	passed
op-mode 3g	Setup_01	Enclosure	passed
op-mode 3n	Setup_01	Enclosure	passed

FCC Part 15, Subpart C

§ 15.247 (e)

Power density

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Temp.ant.connector	passed
op-mode 1g	Setup_02	Temp.ant.connector	passed
op-mode 1n	Setup_02	Temp.ant.connector	passed
op-mode 2b	Setup_02	Temp.ant.connector	passed
op-mode 2g	Setup_02	Temp.ant.connector	passed
op-mode 2n	Setup_02	Temp.ant.connector	passed
op-mode 3b	Setup_02	Temp.ant.connector	passed
op-mode 3g	Setup_02	Temp.ant.connector	passed
op-mode 3n	Setup_02	Temp.ant.connector	passed

This report replaces the 7 Layers test report referenced by: MDE_EOSTE_1201_FCCg. Reasons: Restore to version MDE_EOSTE_1201_FCCf and adding results for conducted average output power. Special software_added_Editorial corrections.

7 layers AG, Borsigstr. 11 40880 Ratingen, German Phone +49 (0)2102 749 0

Responsible for Accreditation Scope:

Responsible for Test Report:

a. Yel

[B. Retka]

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz

Report Template Version: 2014-03-28

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Andreas Petz

Date of Test(s): 2013-07-01 to 2014-03-28

Date of Report: 2014-03-03

1.3 Applicant Data

Company Name: EOStech S.r.I.

Address: Via Larga, 15/7

40138 Bologna

Italy

Contact Person: Mr. Umberto Calari

1.4 Manufacturer Data

Company Name: Datalogic ADC S.r.l.

Address: Via San Vitalino, 13

40012 Lippo di Calderara di Reno

Bologna Italy

Contact Person: Mr. Davide Vaccaneo

2 Test object Data

2.1 General EUT Description

Equipment under Test: WLAN transceiver **Type Designation:** JOYA X1 PLUS

Kind of Device: Handheld / Barcode Scanner

(optional)

Voltage Type: AC (Mains) / DC (USB)

Voltage Level: 120 V / 5.0 V

Tested Modulation Type: DBPSK; OFDM:BPSK; OFDM:64-QAM

General product description:

The WLAN (Wireless Local Area Network) Transceiver is operating in the 2.4 GHz ISM band in the range 2412.0 – 2462.0 MHz and uses the Direct Sequence Spread Spectrum (DSSS) Modulation.

Specific product description for the EUT:

The EUT supports the following modes: IEEE 802.11b, IEEE 802.11g and IEEE 802.11n (up to 72.2 Mbps data rate / MCS7).

The EUT provides the following ports:

Ports

Temporary antenna connector Enclosure AC Port (power line), provided by external AC/DC adapter (AE02) via cradle (AE01) DC Port, to charge the internal battery

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code:	WLAN transceiver	JOYA X1 PLUS	E13D18175	GEL-7639	1.71.051SS 0003	_
WJ000e01)		vith an integral a	ntenna (gain =	3.7 dBi).	0003	
EUT B	WLAN	JOYA X1	E13E05429	GEL-7639	1.71.051SS	_
(Code:	transceiver	PLUS			0003	
WJ000b01)						
Remark: EUT	B is equipped w	ith a temporary	antenna conne	ector.		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1 (Code: WJ000AE01)	JOYA CRADLE DISPENCER	P/N: 912201000	GEL-2979	Boot Loader V1.01, Application V2.05	E12D02708	-
AE2 (Code: WJ000AE02)	AC/DC adapter	SP-320-12	MW02	-	EB13173773	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
	_	_	_	_	_	_

Test report Reference: MDE_EOSTE_1201_FCCh

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup I	No.	Combination of EUTs	Description and Rationale
Setup_	.01	EUT A	setup for radiated measurements
Setup	02	EUT B + AE1 + AE2	setup for conducted measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

2.6.1 Details of operating modes

Op. Mode	Description of Operating Modes	Remarks
op-mode 1b	TX-mode, the EUT transmits on the lowest channel (2412 MHz)	Worst case data rate 1 Mbps
op-mode 1g	TX-mode, the EUT transmits on the lowest channel (2412 MHz)	Worst case data rate 6 Mbps
op-mode 1n	TX-mode, the EUT transmits on the lowest channel (2412 MHz)	Worst case data rate 54 Mbps
op-mode 2b	TX-mode, the EUT transmits on the mid channel (2437 MHz)	Worst case data rate 1 Mbps
op-mode 2g	TX-mode, the EUT transmits on the mid channel (2437 MHz)	Worst case data rate 6 Mbps
op-mode 2n	TX-mode, the EUT transmits on the mid channel (2437 MHz)	Worst case data rate 54 Mbps
op-mode 3b	TX-mode, the EUT transmits on the highest channel (2462 MHz)	Worst case data rate 1 Mbps
op-mode 3g	TX-mode, the EUT transmits on the highest channel (2462 MHz)	Worst case data rate 6 Mbps
op-mode 3n	TX-mode, the EUT transmits on the highest channel (2462 MHz)	Worst case data rate 54 Mbps
op-mode 4	TX-mode, the EUT transmits on the mid channel (2437 MHz)	representative worst-case op-mode to force a maximal power consumption

Note: Further modes are listed at sub-clause 3.3 but are only used within this sub-clause.

2.6.2 Special software used for testing

The applicant provided a software to operate the EUT in local TX mode.

2.7 Product labelling

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu H \mid\mid 50$ Ohm Line Impedance Stabilization Network (LISN) which meets the requirements of ANSI C63.4, Annex B, in the frequency range of the measurements. The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak - Maxhold

- Frequency range: 150 kHz - 30 MHz

Frequency steps: 5 kHzIF–Bandwidth: 9 kHz

- Measuring time / Frequency step: 20 ms

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

Detector: Quasi-PeakIF-Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz) QP Limit (dB μ V) AV Limit (dB μ V) 0.15 - 0.5 66 to 56 56 to 46 0.5 - 5 56 46 5 - 30 60 50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3.1.3 Test Protocol

Temperature: 23 °C Air Pressure: 1018 hPa Humidity: 39 %

Op. ModeSetupPortop-mode 4Setup_01AC Port (power line)

Power line	Frequency MHz	Measured value QP dBµV	Measured value AV dBµV	QP Limit dBµV	AV Limit dBµV	Margin QP dB	Margin AV dB
N	_	_	_	_	_	_	_
L	_	_	_	_	_	_	_

Remark: No final measurement was performed because no frequencies (peaks) were found within the offset for acceptance analysis during the preliminary scan. Please see annex for the measurement plot.

The chosen operating mode is selected as representative mode to generate "worst-case" conditions, i.e. maximal power consumption.

3.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 4	passed	

3.2 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz

- Video Bandwidth (VBW): 300 kHz

- Span: 30 MHz

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

Test report Reference: MDE_EOSTE_1201_FCCh

3.2.3 Test Protocol

Temperature: 24 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1b Setup_02 Temp.ant.connector

6 dB bandwidth MHz	Remarks
8.124	_

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_02	Temp.ant.connector

6 dB bandwidth MHz	Remarks
15.216	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1n	Setup_02	Temp.ant.connector

6 dB bandwidth MHz	Remarks
15.156	

Op. Mode	Setup	Port	
op-mode 2b	Setup 02	Temp.ant.connector	

6 dB bandwidth MHz	Remarks
8.124	-

Op. Mode	Setup	Port
op-mode 2g	Setup_02	Temp.ant.connector

6 dB bandwidth MHz	Remarks
15.216	-

Op. Mode	Setup	Port
op-mode 2n	Setup_02	Temp.ant.connector

6 dB bandwidth MHz	Remarks
15.216	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3b	Setup_02	Temp.ant.connector
6 dB bandwidth		Remarks
MHz		
8.124		_

Op. Mode	Setup	Port
op-mode 3g	Setup_02	Temp.ant.connector
6 dB bandwidth		Remarks
MHz		
15.216		-

Op. Mode	Setup	Port
op-mode 3n	Setup_02	Temp.ant.connector

6 dB bandwidth MHz	Remarks
15.216	-

3.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1b	passed
op-mode 1g	passed
op-mode 1n	passed
op-mode 2b	passed
op-mode 2g	passed
op-mode 2n	passed
op-mode 3b	passed
op-mode 3g	passed
op-mode 3n	passed

3.3 Peak power output / conducted average output power

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description peak power output

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:
- Detector: RMS

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

3.3.3 Test Protocol

Temperature: 23° C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1b Setup_02 Temp.ant.connector

Output power dBm	Remarks	
20.4	EIRP output power including antenna directional gain (3.7 dBi)	

Op. ModeSetupPortop-mode 1gSetup_02Temp.ant.connector

Output power dBm	Remarks
25.7	FIRP output power including antenna directional gain (3.7 dBi)

Op. ModeSetupPortop-mode 1nSetup_02Temp.ant.connector

Output power dBm	Remarks
26.6	EIRP output power including antenna directional gain (3.7 dBi)

Op. ModeSetupPortop-mode 2bSetup_02Temp.ant.connector

Output power dBm	Remarks
21.2	EIRP output power including antenna directional gain (3.7 dBi)

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2gSetup_02Temp.ant.connector

Output power dBm	Remarks
27.0	EIRP output power including antenna directional gain (3.7 dBi)

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2nSetup_02Temp.ant.connector

Output power dBm	Remarks
27.2	EIRP output power including antenna directional gain (3.7 dBi)

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3b	Setup_02	Temp.ant.connector
Output power		Remarks
dBm		
21.1	EIRP	output power including antenna directional gain (3.7 dBi)

Op. Mode	Setup	Port
op-mode 3g	Setup_02	Temp.ant.connector

Output power dBm	Remarks
26.4	EIRP output power including antenna directional gain (3.7 dBi)

Op. Mode	Setup	Port
op-mode 3n	Setup_02	Temp.ant.connector

Output power dBm	Remarks
26.5	EIRP output power including antenna directional gain (3.7 dBi)

3.3.4 Test result: Peak power output

FCC Part 15, Subpart C Op. Mode Result

<u> </u>		
op-mode 1b	passed	
op-mode 1g	passed	
op-mode 1n	passed	
op-mode 2b	passed	
op-mode 2g	passed	
op-mode 2n	passed	
op-mode 3b	passed	
op-mode 3g	passed	
op-mode 3n	passed	

3.3.5 Test Description conducted average output power

The following results are listed additionally for information purpose to enable comparisons with average results obtained at previous tests. These results are not compared to any requirement or limit within this test report.

The Equipment Under Test (EUT) was set up to perform the output power measurements. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

The test was performed according to FCC OET KDB 558074, D01 DTS Measurement Guideline v03r01, method AVGSA-1 using the sweep trigger.

Most important settings of the spectrum analyser:

Detector: RMSTrace: Average

- Trace Mode: Power averaging

Sweep time: autoNumber of sweeps: 100

Resolution / Video Bandwidth: 1 / 3 MHzTrigger: Gated to power (sweep trigger)

- Power integration method (channel power over nominal bandwidth)

3.3.6 Test Protocol

Temperature: 24 °C Air Pressure: 1010 hPa Humidity: 36 %

RMS pow	RMS power at antenna terminal (without antenna gain) / dBm								
Mode	802.11b		Data Rate / Mbps						
Freq.	Channel	1	2	5.5	11	_	-	_	1
/ MHz									
2412	1	15.0	15.3	15.3	15.1	_	_	_	_
2437	6	15.6	15.3	15.6	15.6	_	-	_	-
2462	11	15.7	15.7	15.8	15.8	_	-	_	-
Mode	802.11g				Data Rat	e / Mbps	5		
Freq.	Channel	6	9	12	18	24	36	48	54
/ MHz									
2412	1	14.2	14.0	14.2	14.3	13.9	13.7	13.8	13.7
2437	6	14.8	14.9	14.9	14.8	14.0	13.9	13.9	13.9
2462	11	13.4	13.9	14.0	14.0	14.0	13.8	13.9	13.7
Mode	802.11n				Data Rat	e / Mbps	5		
Freq.	Channel	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
/ MHz									
2412	1	14.1	14.1	14.2	13.9	13.7	13.7	13.7	13.6
2437	6	14.8	14.7	14.8	14.7	13.9	13.9	13.8	13.8
2462	11	13.9	13.8	13.8	13.8	13.9	13.7	13.7	13.7

3.3.7 Test plots (examples, highest result)

3.4 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.4.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.6). This value is used to calculate the 20 dBc limit.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.4.3 Test Protocol

Temperature: 24 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1b Setup_02

Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	ı	1	_

Remark: No spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 1gSetup_02Temp.ant.connector

٠	Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
	6705.41	-32.9	6.9	-13.1	19.8

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 1nSetup_02Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
6705.41	-32.8	7.1	-12.9	19.9

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 2bSetup_02Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port

op-mode 2g Setup_02 Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode Setup Port

op-mode 2n Setup_02 Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode Setup Port

op-mode 3b Setup_02 Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode Setup Port

op-mode 3g Setup_02 Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
6735.37	-32.6	6.7	-13.3	19.3

Remark: No further spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
an made in	Satur 02	Tomp ant connec

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
6705.410	-32.7	6.9	-13.1	19.6

Remark: No further spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

3.4.4 Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1b	passed
op-mode 1g	passed
op-mode 1n	passed
op-mode 2b	passed
op-mode 2g	passed
op-mode 2n	passed
op-mode 3b	passed
op-mode 3g	passed
op-mode 3n	passed

3.5 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from both AC and DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 – 0.15 MHz and 0.15 – 30 MHz

Frequency step: 0.1 and 5 kHzIF Bandwidth: 0.2 and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 – 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

Antenna distance: 3 mDetector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 μs
Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

A Character and a second and the second and the

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by $+/-22.5^{\circ}$ around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/-25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -22.5° to +22.5° around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak(< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement	Calculated	Limits (dBµV/m)
		distance (m)	Limits (dBµV/m @10m)	@10m
0.009 - 0.49	2400/F (kHz)	300 59.1 dB	(48.5 – 13.8) + 30 dB	78.5 – 43.8
0.49 - 1.705	24000/F (kHz)	30 19.1 dB	(48.9 – 23.0) + 10 dB	58.9 – 33.0
1.705 – 30	30	30 19.1 dB	29.5 + 10 dB	39.5

Frequency in MHz	Limits (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.5.3 Test Protocol

Temperature: 25 °C Air Pressure: 1023 hPa Humidity: 49 %

3.5.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 2b	Setup_01	Enclosure

Antenna Position	Frequency MHz	Corrected value dBµV/m			mit V/m	Margin dB	
		PK	AV	PK	AV	PK	AV
0°	_	_	_	_	_	_	_
90°	_	_	_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed.

3.5.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port
op-mode 1b	Setup_01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV	
	2331	-	51.2	42.2	ı	74.0	54.0	22.8	11.8	
Hor. + Vert.	2493	-	53.1	43.8	I	74.0	54.0	20.9	10.2	
	4824	_	41.3	37.0	_	74.0	54.0	32.7	17.0	

Remark: No further spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port	
op-mode 2b	Setup_01	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	ΑV
Ilan Vant	2356	_	51.1	41.5	_	74.0	54.0	22.9	12.5
Hor. + Vert.	7310	_	44.4	37.4	_	74.0	54.0	29.6	16.6

Remark: No further spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode Setup Port

op-mode 3b Setup_01 Enclosure

Polari-	Frequency	Corrected value				Limit		Margin	
sation	MHz	dBµV/m			dBμV/m			dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	_	_	_	_	_	74.0	54.0	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. ModeSetupPortop-mode 1gSetup_01Enclosure

Polari-	Frequency	Cor	Corrected value			Limit		Margin	
sation	MHz	dBµV/m			dBμV/m			dB	
		QP	PK	AV	QP	PK	AV	QP/PK	ΑV
Hor. + Vert.	_	_	_	_	_	74.0	54.0	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. ModeSetupPortop-mode 2gSetup_01Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	_	_	_	_	_	74.0	54.0	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

 Op. Mode
 Setup
 Port

 op-mode 3q
 Setup_01
 Enclosure

Polari- sation	Frequency MHz		Corrected value dBµV/m			Limit dBµV/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV	
Hor. + Vert.	_	_	_	_	_	74.0	54.0	_	_	

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Test report Reference: MDE_EOSTE_1201_FCCh

Op. Mode	Setup	Port	

op-mode 1n Setup_01 Enclosure

Polari-	Frequency	Cor	Corrected value			Limit		Margin	
sation	MHz	dBµV/m			dBµV/m			dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	_	_	_	_	_	74.0	54.0	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port
op-mode 2n	Setup_01	Enclosure

Polari-	Frequency	Corrected value			Limit			Mar	gin
sation	MHz	dBµV/m		dBµV/m		dB			
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	_	_	_	_	_	74.0	54.0	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port
op-mode 3n	Setup_01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m		Margin dB			
		QP	PK	AV	QP	PK	AV	QP/PK	ΑV
Hor. + Vert.	_	-	_	ı	_	74.0	54.0	_	1

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

3.5.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C

Op. Mode	Result	
op-mode 1b	passed	
op-mode 2b	passed	
op-mode 3b	passed	
op-mode 1g	passed	
op-mode 2g	passed	
op-mode 3g	passed	
op-mode 1n	passed	
op-mode 2n	passed	
op-mode 3n	passed	

3.6 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4, FCC §15.31

3.6.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The EUT is set to transmit on the lowest channel (2412 MHz). The lower band edge is 2400 MHz and the EUT is set to transmit on the highest channel (2462 MHz). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Show compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

Test report Reference: MDE_EOSTE_1201_FCCh

3.6.3 Test Protocol

3.6.3.1 Lower band edge

Conducted measurement

Temperature: 24 °C Air Pressure: 1020 hPa Humidity: 43 %

Op. Mode Setup Port

op-mode 1b Setup_02 Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Margin
MHz	dBm	dBm	dBm	dB
2400.00	-38.7	9.4	-10.6	28.0

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 1gSetup_02Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Margin
MHz	dBm	dBm	dBm	dB
2400.00	-27.1	6.9	-13.1	

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 1nSetup_02Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Margin
MHz	dBm	dBm	dBm	dB
2400.00	-28.1	7.1	-12.9	

Remark: Please see annex for the measurement plot.

3.6.3.2 Higher band edge

Conducted measurement

Temperature: 23 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 3b Setup_02 Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Margin
MHz	dBm	dBm	dBm	dB
2483.50	-39.8	9.7	-10.3	29.5

Op. Mode	Setup	Port			
op-mode 3g	Setup_02	Temp.ant.connector			
Frequency	Measured value	Reference value	Limit	Margin	
MHz	dBm	dBm	dBm	dB	
2402 EO	24.0	/ 7	10.0	21 5	

Op. Mode	Setup	Port
op-mode 3n	Setup_02	Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Margin
MHz	dBm	dBm	dBm	dB
2483.50	-36.0	6.9	-13.1	22.9

Radiated measurement

Temperature: 24 °C Air Pressure: 1023 hPa Humidity: 47 %

Op. Mode Setup Port

op-mode 3b Setup_01 Enclosure

Frequency MHz	Polari- sation	Corrected value dBµV/m		Limit dBµV/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	_	_	74.0	54.0	_	_

Op. Mode Setup Port

op-mode 3g Setup_01 Enclosure

Frequency MHz	Polari- sation	Corrected value dBµV/m		Limit dBµV/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	_	-	74.0	54.0	_	_

Op. Mode Setup Port

op-mode 3n Setup_01 Enclosure

Frequency MHz	Polari- sation	Corrected value dBµV/m		Limit dBµV/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	_	_	74.0	54.0	_	_

Remark: Please see annex for the measurement plot.

3.6.4 Test result: Band edge compliance

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1b	passed
op-mode 1g	passed
op-mode 1n	passed
op-mode 3 b	passed
op-mode 3 g	passed
op-mode 3 n	passed

3.7 Power density

Standard FCC Part 15 Subpart C

The test was performed according to: FCC §15.31

3.7.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

3.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.7.3 Test Protocol

Temperature: 23 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode	Setup	Port	
op-mode 1b	Setup_02	Temp.ant.connector	
Power density dBm/3 kHz		Remarks	

Op. Mode	Setup	Port
op-mode 1g	Setup_02	Temp.ant.connector
Power density dBm/3 kHz		Remarks
-9.9		_

Op. Mode	Setup	Port
op-mode 1n	Setup_02	Temp.ant.connector
•	• —	·
Power density		Remarks
dBm/3 kHz		
-8.2		<u>-</u>

Op. Mode	Setup	Port
op-mode 2b	Setup_02	Temp.ant.connector
Power density		Remarks

Power density dBm/3 kHz	Remarks
1.6	-

Op. Mode	Setup	Port
op-mode 2g	Setup_02	Temp.ant.connector

Power density dBm/3 kHz	Remarks
-6.8	4

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2n	Setup_02	Temp.ant.connector

Power density dBm/3 kHz	Remarks
-6.3	1

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3b	Setup_02	Temp.ant.connector
Power density	Remarks	
dBm/3 kHz		
4.4		-

Op. Mode	Setup	Port
op-mode 3g	Setup_02	Temp.ant.connector
Power density	Remarks	
dBm/3 kHz		
-7.3		-

Op. Mode	Setup	Port
op-mode 3n	Setup_02	Temp.ant.connector

Power density dBm/3 kHz	Remarks
-7.4	-

3.7.4 Test result: Power density

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1b	passed
op-mode 1g	passed
op-mode 1n	passed
op-mode 2b	passed
op-mode 2g	passed
op-mode 2n	passed
op-mode 3b	passed
op-mode 3g	passed
op-mode 3n	passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 1Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

 Calibration Details
 Last Execution
 Next Exec.

 NSA (FCC, IC)
 2011/01/10
 2014/01/10

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18 IC listing 3699A-1 3m		2011/01/11 2014/01/10 2011/02/07 2014/02/06
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/06/04 2014/06/03
iconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration Standard Calibration		2008/10/27 2013/10/26 2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26

Test report Reference: MDE_EOSTE_1201_FCCh

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab 1D: Lab 1, Lab 2
Manufacturer: see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Broadband Power Divide N (Aux)	r1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2011/10/19 2013/10/18
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG
Spectrum Analyser	FSU 3.6	200046	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2013/06/20 2014/06/19

Test Equipment Digital Signalling Devices

Lab 1D: Lab 1, Lab 2

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit	t CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Initial factory calibration		2012/01/26 2014/01/25
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	B53-2, B56V14, B68 3v04, PCMCIA, L Software: K21 4v21, K22 4v21, K23 4v21, K24 4 K43 4v21, K53 4v21, K56 4v22, K57 4 K59 4v22, K61 4v22, K62 4v22, K63 4 K65 4v22, K66 4v22, K67 4v22, K68 4 Firmware: μP1 8v50 02.05.06	4v21, K42 4v21, 4v22, K58 4v22, 4v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B B54V14, B56V14, B68 3v04, B95, PCN SW options: K21 4v11, K22 4v11, K23 4v11, K24 4 K28 4v10, K42 4v11, K43 4v11, K53 4 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	MCIA, U65V02 4v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/03 2014/05/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/04/30 2014/04/29
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2011/05/12 2014/05/11
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2011/12/05 2013/12/04
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 du	ring calibration	2009/12/03

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 2

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/03 2014/05/02
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Calibration Details		Last Execution Next Exec.
	Standard calibration Standard calibration		2012/06/21 2013/06/23 2013/06/24 2014/06/23
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/04/30 2014/04/29
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2012/03/12 2014/03/11

Test report Reference: MDE_EOSTE_1201_FCCh

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz) equipment from FCC and IC standards (Status: January 2014).

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.247 (a) (2)	RSS-210 Issue 8: A8.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-210 Issue 8: A8.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 3: 7.2.5; RSS-210 Issue 8: A8.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Power density	§ 15.247 (e)	RSS-210 Issue 8: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	_	RSS-210 Issue 8: 2.3; RSS Gen Issue 3: 6 *)

^{*)} Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

Annex measurement plots 8

8.1 AC Mains conducted

Op. Mode

op-mode 4

Start Step Transducer Stop Detector Meas. IF Frequency Frequency Width Time Bandw. 150.0 kHz 30.0 MHz

ESH3-Z5 5.0 kHz MaxPeak 20.0 ms 9 kHz

Test report Reference: MDE_EOSTE_1201_FCCh

8.2 Occupied bandwidth

Op. Mode

op-mode 1b

Title: 6dB Bandwidth

Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):8124

Date: 1.JUL.2013 15:00:13

op-mode 1g

Title: 6dB Bandwidth

Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):15216

Date: 1.JUL.2013 16:37:39

op-mode 2n

Title: 6dB Bandwidth

Comment A: CH M: 2437 MHz; 6dB bandwidth (kHz):15216

Date: 2.JUL.2013 10:23:27

8.3 Peak power output

Op. Mode

op-mode 2b

Date: 28.JUN.2013 10:01:20

Date: 2.JUL.2013 13:46:21

op-mode 2n

Date: 1.JUL.2013 14:00:15

8.4 Band edge compliance conducted and Spurious RF conducted emissions

8.4.1 Band edge compliance conducted operating mode 1b

Op. Mode

op-mode 1b

Title: Band Edge Compliance

Comment A: CH B: 2412 MHz
Date: 1.JUL.2013 14:45:53

8.4.2 Band edge compliance conducted operating mode 1g

Op. Mode

op-mode 1g

Title: Band Edge Compliance

Comment A: CH B: 2412 MHz
Date: 1.JUL.2013 16:23:58

8.4.3 Band edge compliance conducted operating mode 1n

Op. Mode

op-mode 1n

Title: Band Edge Compliance

Comment A: CH B: 2412 MHz
Date: 2.JUL.2013 09:06:41

8.4.4 Spurious RF conducted emission operating mode 1b

Title: spurious emissions
Comment A: CH M: 2437 MHz
Date: 1.JUL.2013 15:29:33

8.4.5 Spurious RF conducted emission operating mode 3g

Op. Mode

op-mode 3g

Title: spurious emissions
Comment A: CH T: 2462 MHz
Date: 2.JUL.2013 08:46:36

8.4.6 Spurious RF conducted emission operating mode 3n

Op. Mode

op-mode 3n

Title: spurious emissions
Comment A: CH T: 2462 MHz
Date: 2.JUL.2013 10:56:34

8.4.7 Band edge compliance radiated operating mode 3

Op. Mode higher band edge

op-mode 3n

8.5 Power density

Op. Mode

op-mode 3b

Title: Power Density
Comment A: CH T: 2462 MHz;
Date: 1.JUL.2013 16:21:38

op-mode 2g

Title: Power Density
Comment A: CH M: 2437 MHz;
Date: 2.JUL.2013 08:26:24

op-mode 2n

Title: Power Density
Comment A: CH M: 2437 MHz;
Date: 2.JUL.2013 10:38:09