

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 4 Teoría de categorías

1. Considerar los siguientes diagramas. En ambos casos, probar que si los dos triángulos conmutan, también conmuta el cuadrado.

- ${f 2.}~~{
 m Sea}~X$ un conjunto ordenado. Mostrar que X puede considerarse como una categoría.
- **3.** Verificar que un monoide M define una categoría con un único objeto cuyas flechas son los elementos de M.
- **4.** Dada una categoría \mathcal{C} , podemos definir \mathcal{C}^{op} con los mismos objetos que \mathcal{C} pero las flechas con sentido inverso, es decir, ob $(\mathcal{C}^{op}) = \text{ob}(\mathcal{C})$ y $\text{Hom}_{\mathcal{C}^{op}}(X,Y) = \text{Hom}_{\mathcal{C}}(Y,X)$. Verificar que \mathcal{C}^{op} es una categoría.
- **5.** Sean \mathcal{C} y \mathcal{D} dos categorías. Se define $\mathcal{C} \times \mathcal{D}$ cuyos objetos son pares ordenados de la forma (C, D) con $C \in \text{ob}(\mathcal{C})$ y $D \in \text{ob}(\mathcal{D})$ y $\text{Hom}_{\mathcal{C} \times \mathcal{D}}((C, D), (C', D')) = \text{Hom}_{\mathcal{C}}(C, C') \times \text{Hom}_{\mathcal{D}}(D, D')$. Verificar que $\mathcal{C} \times \mathcal{D}$ es una categoría.
- **6.** Definamos C^{\rightarrow} como la categoría de las flechas de una categoría C, es decir, los objetos de C^{\rightarrow} son las flechas de C. Una flecha de C^{\rightarrow} de $f \colon A \rightarrow B$ en $g \colon D \rightarrow E$ es un par (a,b) de flechas de C tales $g \circ a = b \circ f$.
 - a) Expresar las flechas de C^{\rightarrow} en términos de diagramas conmutativos.
 - b) Probar que si en el diagrama los cuadrados conmutan, entonces también conmuta el rectángulo exterior.

- c) Utilizar b) para definir la composición en C^{\rightarrow} .
- d) Verificar que C^{\rightarrow} es una categoría.
- 7. Sean C una categoría y A un objeto de C. Definimos C|A como la categoría cuyos objetos son las flechas f de C tales que cod(f) = A. Una flecha g en C|A de $f: X \to A$ en $h: Y \to A$ es una flecha $g: X \to Y$ de C tal que $f = h \circ g$.
 - a) Expresar las flechas de C|A en términos de diagramas conmutativos.

- **b)** Verificar que C|A es una categoría.
- c) Si P es la categoría definida por un conjunto ordenado y $x \in P$, determinar P|x.
- 8. Probar que en Set los monomorfismos (epimorfismos) son exactamente las funciones inyectivas (resp. sobreyectivas).
- 9. Sean C una categoría y f, g flechas de C. Probar que
 - a) Si f y g son monomorfismos, entonces $g \circ f$ también lo es.
 - b) Si $g \circ f$ es un monomorfismo, f también lo es.
 - c) Si f y g son epimorfismos, entonces $g \circ f$ también lo es.
 - d) Si $g \circ f$ es un epimorfismo, g también lo es.
 - e) Si f^{-1} es la inversa de f y g^{-1} es la inversa de g, entonces $f^{-1} \circ g^{-1}$ es la inversa de $g \circ f$.
- 10. Mostrar que una flecha de una categoría puede ser mono y epimorfismo y no isomorfismo.
- 11. Mostrar que una flecha de una categoría concreta puede ser epimorfismo y no sobreyectiva.
- 12. Mostrar que dos objetos terminales en una categoría son isomorfos. Por dualidad, ¿qué se puede decir de los objetos iniciales?
- 13. ¿Cuáles son los objetos iniciales y terminales en Set × Set? ¿Cuáles en Set→?
- 14. Dar una categoría sin objetos iniciales. Dar una sin objetos finales. Dar una donde los objetos finales e iniciales coincidan.
- **15.** Sea $\mathcal C$ una categoría. Probar que si dos objetos admiten producto (coproducto), éste es único salvo isomorfismo.
- 16. Determinar objetos iniciales, objetos terminales, productos y coproductos en las siguientes categorías: un Poset P visto como categoría, Set, Poset, Mon y Grp.
- 17. Dar una categoría donde algún par de objetos carecen de producto.
- **18.** Sea \mathcal{C} una categoría y sean A, B, C, D objetos de \mathcal{C} . Mostrar que en caso de existir $A \times B, C \times D$ y dos morfismos $f : A \to C$ y $g : B \to D$, entonces puede definirse un morfismo $f \times g : A \times B \to C \times D$.

2

- 19. Mostrar las siguientes identidades:
 - a) $\langle \pi_1, \pi_2 \rangle = id$
 - **b)** $\langle f \circ h, g \circ h \rangle = \langle f, g \rangle \circ h$
 - c) $(f \times h) \circ \langle g, k \rangle = \langle f \circ g, h \circ k \rangle$
 - **d)** $(f \times h) \circ (g \times k) = (f \circ g) \times (h \circ k)$
 - e) $\langle [f,g],[h,k]\rangle = [\langle f,h\rangle,\langle g,k\rangle]$
- 20. Probar los siguientes isomorfismos:
 - a) $A \times B \cong B \times A$

Página 2

- **b)** $A \times 1 \cong A$
- c) $A \times (B \times C) \cong (A \times B) \times C$

¿Cuáles son los enunciados duales?

21. Probar que si dos morfismos $f, g: X \to Y$ admiten ecualizador (coecualizador), éste es único salvo isomorfismo.

22. Encontrar el ecualizador en Set.

23. Sean $f, g: X \to Y$ dos morfismos en Set. Probar que el coecualizador de f y g es el cociente de Y por la relación de equivalencia $y \equiv z$ si y sólo si existe $x \in X$ tal que y = f(x) y z = g(x) o bien y = g(x) y z = f(x).

24. Probar que en una categoría \mathcal{C} todo ecualizador e es monomorfismo. Mostrar que si además e es epimorfismo, entonces se tiene un isomorfismo.

25. El pullback de dos morfismos $f: X \to Z$ y $g: Y \to Z$ consiste en un objeto P junto con dos morfismos $p_1: P \to X$, $p_2: P \to Y$ tal que $f \circ p_1 = g \circ p_2$, y además si es dado un objeto Q con dos morfismos $q_1: Q \to X$, $q_2: Q \to Y$ tal que $f \circ q_1 = g \circ q_2$, entonces existe un único morfismo $u: Q \to P$ tal que $p_1 \circ u = q_1$ y $p_2 \circ u = q_2$. A continuación, un diagrama que muestra la situación:

Probar que el pullback de dos morfismos, si existe, es único salvo isomorfismo.

- 26. Encontrar el pull-back en Set.
- **27.** Sea \mathcal{C} una categoría con exponenciales,
 - a) Probar $curry(eval_{A,B}) = id_{BA}$.
 - **b)** Dado un morfismo $f: B \to C$, construir un morfismo $B^A \to C^A$.
 - c) Dado un morfismo $f: A \to C^B$, construir un morfismo $uncurry(f): A \times B \to C$.

3

- **d)** Probar uncurry(curry(f)) = f y curry(uncurry(f)) = f.
- **28.** Sea \mathcal{C} una CCC y sean A, B objetos de \mathcal{C} . Probar:
 - a) B^A es único salvo isomorfismo.
 - **b**) $1^A \cong 1$.
 - c) $B^1 \cong B$.

Página 3

- 29. Hallar los exponenciales en Set.
- **30.** Demostrar que un álgebra de Boole es una CCC.
- **31.** En una categoría con coproductos y objeto final, podemos definir los booleanos como el objeto Bool=1+1. En este caso, a i_1 le llamamos true y a i_2 le llamamos false. Escribir un morfismo $not:Bool\to Bool$ tal que

$$not \circ true = false$$

 $not \circ false = true$

Suponiendo que la categoría tiene exponenciales, ¿puede escribir un morfismo and : $Bool \times Bool \rightarrow Bool$ que se comporte como la conjunción?

32. Una categoría se dice distributiva si tiene productos finitos, coproductos finitos, y para todos objetos A, B, C, los morfismos

$$!`_{0\times A}: 0 \to 0 \times A$$
$$[\iota_1 \times id_C, \iota_2 \times id_C]: A \times C + B \times C \to (A+B) \times C$$

4

son isomorfismos.

Probar que toda CCC con coproductos finitos es distributiva.

Página 4