Heat Exchangers - Introduction

Concentric Pipe Heat Exchange

Energy Balance on Cold Stream (differential)

$$dQ_{C} = (wC_{p})_{C} dT_{C} = C_{C} dT_{C}$$

Energy Balance on Hot Stream (differential)

$$dQ_{H} = \left(wC_{p}\right)_{H} dT_{H} = C_{H} dT_{H}$$

Overall Energy Balance (differential)

For an adiabatic heat exchanger, the energy lost to the surroundings is zero so what is lost by one stream is gathered by the other.

$$dQ_C + dQ_H = 0$$

Heat Exchange Equation

It follows that the heat exchange from the hot to the cold is expressed in terms of the temperature difference between the two streams.

$$dQ_{H} = U(T_{H} - T_{C}) dA$$

The proportionality constant is the "Overall" heat transfer coefficient (discussion later)

Solution of the Energy Balances

The Energy Balance on the two streams provides a delation for the differential temperature change.

$$dT_{\rm H} = \frac{dQ_{\rm H}}{C_{\rm H}}$$
 and $dT_{\rm C} = \frac{dQ_{\rm C}}{C_{\rm C}}$

However, we should recall that we have an adiabatic heat exchanger so that

$$d(T) = -\frac{dQ_H}{C_H} \left(1 + \frac{C_H}{C_C}\right)$$

Overall Energy balances on each stream

Hot Fluid

$$Q_{H} = C_{H} \left(T_{H1} - T_{H2} \right)$$

Cold fluid

$$Q_{C} = C_{C} \left(T_{C2} - T_{C1} \right)$$

Overall Energy balance on the Exchanger

$$Q_C + Q_H = 0$$

The equation for T can be modified using the overall energy balances to yield

$$d(T) = \frac{dQ_{H}}{C_{H}} \frac{T_{2} - T_{1}}{(T_{H1} - T_{H2})}$$

The denominator is the energy lost by the hot stream, so

$$d(T) = \frac{dQ_H}{Q_H}(T_2 - T_1)$$

Application of the relation for energy transfer between the two streams yields

$$d(T) = -\frac{UdA T}{Q_H} (T_2 - T_1)$$

Integration of the relation is the basis of a design equation for a heat exchanger.

$$\ln\left(\frac{T_2}{T_1}\right) = \frac{UA}{Q_H} \left(T_2 - T_1\right)$$

Rearrangement of the equation leads to

The Design Equation for a Heat Exchanger

$$Q_{H} = UA \frac{\left(T_{2} - T_{1} \right)}{ln \left(T_{2} \right)} = UA T_{lm}$$

Design of a Parallel Tube Heat Exchanger

The Exchanger

The Design Equation for a Heat Exchanger

$$Q_{H} = UA \frac{\left(T_{2} - T_{1} \right)}{ln \left(T_{2} \right)} = UA T_{lm}$$

Glycerin-water solution with a Pr = 50 (at 70 °C) flows through a set of parallel tubes that are plumbed between common headers. We must heat this liquid from 20 °C to 60°C with a uniform wall temperature of 100 °C. The flow rate, F, is $0.002 \text{ m}^3/\text{sec}$ (31.6 gal/sec.).

- How many parallel tubes are required?
- How do we select L and D for these tubes?

Data

The heat capacity, C_p, is 4.2 kJ/kg-°K

The density, , is $11^{\circ}00 \text{ kg/m}^{3}$

The liquid has a kinematic viscosity, $= 10^3 \text{ cm}^2/\text{sec}$.

Step 1

Calculate the heat load

$$Q_{c} \ = \ FC_{p}\!\!\left(T_{out} \, - \, T_{out}\right)$$

$$Q_{c} = \left(1100 \frac{\text{kg}}{\text{m}^{3}}\right) \left(0.002 \frac{\text{m}^{3}}{\text{sec}}\right) \left(4.2 \frac{\text{kJ}}{\text{kg}^{-8}\text{K}}\right) \frac{1^{8}\text{K}}{1^{8}\text{C}} \left(60 - 20\right)^{8}\text{C}$$

$$Q_c = 369.6 \frac{kJ}{sec} = 369.6 \text{ kWatts}$$

Step 2

Calculate the heat transfer coefficient

If the flow is laminar, likely since glycerin is quite viscous, and the Re < 2000 the Nusselt number relation for laminar flow can be expressed as

Nu =
$$\left[(3.66)^3 + (1.61)^3 Gz \right]^{1/3}$$

The Graetz number is

$$Gz = Re Pr \frac{D}{L}$$

If the flow is turbulent (Re > 2000), the Nusselt numberr is given by Nu $= 0.023 \ Re^{0.8} Pr^{0.4}$

We do not know the flow per tube and therefore we do not know the Re. However we don't need to know that. In Lecture 27 we observed for Heat Transfer in a Tube that

$$\frac{T - T_R}{T_1 - T_R} = \exp -\frac{Dhz}{wC_p} = \exp -4St\frac{z}{D}$$

The definition of the Stanton Number is:

$$St = \frac{h}{C_p U} = \frac{Nu}{RePr} = \frac{Nu}{Pe}$$

Given a Re and Pr, we can calculate the Nu and the Stanton Number, the latter prviding us with the temperature at length L from the previous equation. Let's examine several configurations at L/D = 50, 100, 200. The Excel table below can be used to specify a design chart.

	Desig	n Chart		
	Desig	ii Chai t		
$\mathbf{Pr} = 50$)	L/D = 50		
Re	Nu	St	cm	
1	3.7610	7.52E-02	0.0233	
3	3.9482	2.63E-02	0.2682	
6	4.1996	1.40E-02	0.4966	
10	4.4940	8.99E-03	0.6380	
20	5.0980	5.10E-03	0.7750	
30	5.5852	3.72E-03	0.8301	
100	7.7548	1.55E-03	0.9254	
200	9.5962	9.60E-04	0.9532	
500	12.8779	5.15E-04	0.9746	
1000	16.1628	3.23E-04	0.9840	
2000	20.3244	2.03E-04	0.9899	
5000	100.1133	4.00E-04	0.9802	
10000	174.3074	3.49E-04	0.9827	
20000	303.4868	3.03E-04	0.9849	
30000	419.7714	2.80E-04	0.9861	

To obtain the numbers in the spreadsheet, we used the Nusselt number relation for laminar flow expressed as

Nu =
$$\left[(3.66)^3 + (1.61)^3 Gz \right]^{1/3}$$

and for turbulent flow as

$$Nu \ = \ 0.023 \ Re^{\,0.8} Pr^{0.4}$$

Step 3

Calculate the Area required

Base case

$$D = 2$$
 cm. and $L = 100$ $D = 2$ meters

For this case we observe that from the calculations for cm

Reduced Temperature					
Re	L/D = 50	L/D = 100	L/D = 200		
1	0.0233	0.0006	0.0000		
3	0.2682	0.0789	0.0069		
8.8	0.5000	0.3966	0.1718		
10	0.6380	0.4387	0.2099		
12	0.6800	0.4966	0.2682		
12.3	0.6854	0.5042	0.2763		
24.4	0.8040	0.6836	0.5017		
50	0.8805	0.8073	0.6888		
60	0.8945	0.8301	0.7254		
70	0.9050	0.8473	0.7532		
100	0.9254	0.8805	0.8073		
200	0.9532	0.9254	0.8805		
500	0.9746	0.9596	0.9358		
1000	0.9840	0.9746	0.9596		
2000	0.9899	0.9840	0.9746		
5000	0.9802	0.9913	0.9862		
6000	0.9809	0.9923	0.9878		
8000	0.9819	0.9936	0.9899		
9000	0.9824	0.9941	0.9907		

We can observe that the flow rate per tube is given by

$$F_{nt} = \frac{F}{n_t}$$

so that the Reynolds' number is

$$Re = \frac{4F}{D n_t}$$

As a consequence we can observe that the total length of tubing is not dependent on D alone but on othere considerations that might set a condition for Re, e.g. a pressure drop limitation. Wv find that for this base case, we find

$$n_t L = A = \frac{4F}{Re} \frac{L}{D}$$

We find that $_{cm} = 0.5$

L/D	Re	$n_t L$	\boldsymbol{n}_t
50	8.8	14.47	14.46
100	12.3	20.70	10.35
200	24.4	20.87	5.21

Does it make sense?

Maximum Cooling Capacity of an Exchanger of Fixed Area

Water is available for use as a coolant for an oil stream in a double-pipe heat exchanger.

The flow rate of the water is 500 lb_m/hr.

The heat exchanger has an area of 15 ft^2 .

The oil heat capacity, C_{po}, is 0.5 BTU/lb-°F

The overall heat transfer coefficient, U, is 50 BTU/hr-ft²-°F

The initial temperature of the water, T_{w0} , is $100^{\circ}F$

The maximum temperature of the water is 210°F

The initial temperature of the oil, T_{w0} , is 250°F

The minimum temperature of the oil, T_{w0} , is 140°F

Estimate the maximum flow rate of oil that may be cooled assuming a fixed flow rate of water at 500 lb_m/hr

There are two possible modes of operation

Co-current flow

Counter-current flow

Let us look at both cases

Co-current flow

Constraints

$$T_{\rm w} < 210 \; ; \; T_{\rm w} < T_{\rm o} \; ; \; T_{\rm o} = 140$$

Energy balances

Oil

$$Q_o = F_o C_{po} (T_{o1} - T_{o2}) = F_o (0.5) (250 - T_{o2})$$

Water

$$Q_{w} = F_{w}C_{pw}(T_{w1} - T_{w2})$$

$$F_{o}C_{p0}(T_{o1} - T_{o2}) = 500(1.0)(210 - 100) = 55,000 \text{ BTU / hr}$$

Recall the Design equation

$$Q_{H} = UA \frac{\left(T_{2} - T_{1} \right)}{ln \left(T_{2} \right)} = UA T_{lm}$$

Now the T_{lm} is given by

$$T_{lm} = \frac{\left(T_2 - T_1\right)}{ln\left(\frac{T_2}{T_1}\right)} = \frac{Q_w}{UA} = \frac{55000}{(50)(15)} = 73.3$$

Using the temperatures, we obtain $T_{0max} = 238.5$ °F and from the heat balance for oil, we obtain

$$F_o = \frac{C_{po}}{Q_o} (T_{o1} - T_{o2}) = \frac{(0.5)(250 - 238.5)}{55000} = 9560 \text{ lb / h}$$

Counter-current Flow

Constraints

$$T_{\rm w} < 210 \; ; \; T_{\rm w} < T_{\rm o} \; ; \; T_{\rm o} \; 140$$

Energy balances Oil

$$Q_o = F_o C_{po} (T_{o1} - T_{o2}) = F_o (0.5) (250 - T_{o2})$$

Water

$$Q_{w} = F_{w}C_{pw}\left(T_{w1} - T_{w2}\right)$$

 $F_{o}C_{p0}\!\!\left(T_{o1}-T_{o2}\right)=500(1.0)(210-100)=55,\!000\;BTU\,/\;hr$ Recall the Design equation

$$Q_{\rm H} = UA \frac{\left(T_2 - T_1 \right)}{ln \left(T_2 \over T_1 \right)} = UA T_{lm}$$

Now the T_{lm} is given by

$$T_{lm} = \frac{\left(T_2 - T_1\right)}{ln\left(\frac{T_2}{T_1}\right)} = \frac{Q_w}{UA} = \frac{55000}{(50)(15)} = 73.3$$

Using the temperatures, we obtain $T_{0max} = 221$ °F and from the heat balance for oil, we obtain the oil flow rate as 3800 lbm/hr.

I thought that countercurrent flow was supposed to be more efficient. What is the problem ?