

© WPI / Thomson

AN - 1984-193064 [31]
TI - 2-Fluoro-alkyl-benzothiazolium quat. ammonium salts - prep'd. by condensing ortho-alkyl-amino-thiophenol and corr esp. fluorine-contg. acid chloride, are fungicides and bactericides
AB - Cpd's. of formula (I): (where R1 is Me, R2 is CF₃, R3 is NO₂ and X is methylsulphate; or R1 is Me, R2 is beta,beta-trifluoro ethyl, R3 is H and X is Cl anion; or R1 is Et, R2 is CF₂H, R3 is H and X is Cl anion) are prep'd. by proposed condensn. reaction (in benzene at 0 deg. C.) or by alkylation of 2-fluoroalkylbenzthiazole with dimethyl sulphate at 120 deg. C.
The prods. are crystalline colourless cpds. soluble in hot and cold water, alcohol, and acetone, and insoluble in benzene and ether.
- USE :
In agricultural and medical applications.
IW - FLUORO ALKYL BENZOTIAZOLIUM QUATERNARY AMMONIUM SALT PREPARATION
CONDENSATION ORTHO AMINO THIOPHENOL CORRESPOND FLUORINE CONTAIN ACID CHLORIDE
FUNGICIDE BACTERIA
PN - SU822513 A 19840223 DW198431
IC - A01N43/78; A61K31/42; C07D277/64
MC - B06-F01 C06-F01
DC - B02 C02
PA - (AUOR) AS UKR ORG CHEM INST
- (VLAN-R) VOLG ANTIPLAQUE RES INST
IN - CHEREPENKO T I; TRUSHANINA L I; YAGUPOLSKI L M
AP - SU19792887962 19791130
PR - SU19792887962 19791130

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(9) SU (D) 822513 A

350 С 07 Д 277/64; А 01 Н 43/78;
А 61 К 31/425

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

М.И. ОНДРЕНЯ
НАУЧНО-ТЕХНИЧЕСКАЯ
БИБЛИОТЕКА
13

(21) 2887962/23-04
 (62) 2673680/05.
 (22) 30.11.79.
 (23) 20.07.78.
 (46) 23.02.84. Бюл. № 7
 (72) Л.И. Трушанина, Л.М. Ягупольс-
 кий, Т.И. Черепенко, А.В. Агафо-
 нов, Б.Г. Вальков и В.Н. Салеева
 (71) Институт органической химии
 АН Украинской ССР и Волгоградский
 научно-исследовательский противо-
 чумный институт
 (53) 547.789.6.03. (088.8)
 (56) 1. Мельников Н.Н. Химия пести-
 цидов. М., "Химия", 1968, с. 133.
 2. Машковский М.Д. Лекарствен-
 ные средства. М., "Медицина", 1972,
 т. 2, с. 436.
 3. Там же, с. 459.
 4. Там же, с. 460.

(54) ЧЕТВЕРТИЧНЫЕ СОЛИ 2-ФТОРАЛКИЛ-
 БЕНЗИАЗОЛИЯ, ОБЛАДАЮЩИЕ ФУНГИЦИД-
 НОЙ И БАКТЕРИЦИДНОЙ АКТИВНОСТЬЮ.

(57) Четвертичные соли 2-фторалкил-
 бензизазолия. Формула (1)

где R¹ - метил;
 R² - фторметил;
 R³ - нитрогруппа;
 X - метилсульфат;
 или R¹ - метил;
 R² - β,β,β-трифторэтил;
 R³ - водород;
 X - анион хлора;
 или R¹ - этил;
 R² - дигфторметил;
 R³ - водород;
 X - анион хлора,

обладающие фунгицидной и бактери-
 цидной активностью.

(9) SU (D) 822513 A

Изобретение относится к новым химическим соединениям, конкретно, к четвертичным солям 2-фторалкилбензтиазола, общей формуле (1)

где

- R^1 - метил;
- R^2 - фторметил);
- R^3 - нитрогруппа;
- X - метилсульфат;
- или
- R^1 - метил;
- R^2 - β, β, β -трифторэтил;
- R^3 - водород;
- X - анион хлора;
- или
- R^1 - этил;
- R^2 - дифторметил;
- R^3 - водород;
- X - анион хлора,

обладающим fungицидной и бактерицидной активностью.

Указанные свойства предполагают возможность применения их в сельском хозяйстве и медицине.

Известен фигон-2,3-дихлорнафтохинон-1,4, проявляющий свойства fungицида [1].

Известны также бензосульфохлорамид-натрий (хлорамин) [2], фенол [3] и лизол (раствор крезола в каплином мыле) [4], обладающие бактерицидными свойствами.

Целью изобретения является расширение арсенала средств воздействия на живой организм.

Цель достигается четвертичными солями 2-фторалкилбензтиазола формулы (1), обладающими fungицидной и бактерицидной активностью.

Соединения формулы (1) получают конденсацией о-алкиламинофенола с хлорангидридом соответствующей фторсодержащей кислоты в бензоле при температуре 0°C или алкилированием 2-фторалкилбензтиазола диметилсульфатом при 120°C .

Синтезированные четвертичные соли представляют собой кристаллические бесцветные вещества, растворимые на холду или при нагревании в воде, спирте, ацетоне, не растворимые в бензоле, эфире.

Пример 1. Метилсульфат 2-фторметил-3-метил-6-нитробензтиазола (I).

1,5 г 2-фторметил-6-нитробензтиазола, 1,5 г диметилсульфата нагревают 1,5 ч при $112-120^\circ\text{C}$. Растирают с абсолютным эфиром. Фильтруют, сушат в экскаторе над P_2O_5 . Выход 98,3% Т.пл. $178-180^\circ\text{C}$ (осталование).

Найдено, %: F 18,24; 18,45.
 $\text{C}_{10}\text{H}_9\text{N}_1\text{O}_2\text{S}_2$
 Вычислено, %: F 18,93.

Пример 2. Хлорид 2-(β, β, β -трифторэтил)-3-метилбензтиазола (II).

К раствору 3,5 г хлорангидрида трифторпропионовой кислоты в 5 мл бензола добавляют при охлаждении до 0°C 3 г N -метил- α -аминофенола. Через 2 ч отфильтровывают, промывают бензolem, ацетоном. Выход 68%. Т.пл. $160-162^\circ\text{C}$ (с разложением).

Найдено, %: F 21,05; 21,17
 $\text{C}_{10}\text{H}_9\text{ClF}_3\text{NS}$
 Вычислено, %: F 21,30.

Пример 3. Хлорид 2-дифторметил-3-этилбензтиазола (III).

Аналогично примеру 2 получают вышеуказанное соединение. Выход 24,7%. Т.пл. 206°C .

Найдено, %: F 15,91; 16,09
 $\text{C}_9\text{H}_9\text{ClF}_2\text{NS}$
 Вычислено, %: F 16,14.

Биологические свойства новых веществ подтверждаются примерами.

Пример 4. Фунгицидные свойства определяют по методу торможения роста мицелия чистых культур фитопатогенных грибов (*Alternaria radicina* M.D. et E., *Aspergillus niger* van Tiegh., BKMF-412, Fusarium Oryzoprum Schlecht BKMF-1182, *Helminthosporium sativum* P.K. et al., BHUUA 160 A, *Venturia inaequalis* (cke.) Kint) на твердой картофельно-глюкозной среде. В расплавленный агар вносят растворенную в ацетоне на весуку вещества, перемешивают и разливают в чашки Петри. После застывания инокулируют агар кусочками мицелия. Повторность четырехкратная. Через 70 ч роста при $25-26^\circ\text{C}$ измеряют диаметр колоний и определяют энергию роста грибов в процентах к контролю. Указанные в таблице эталонные препараты берут в концентрации по действующему веществу. В контрольные чашки вносят адекватное количество чистого ацетона.

Полученные результаты показывают, что соединения формулы (1) обладают выраженным fungицидным действием, превосходящим активность хлорамина, лизола, фигона. Наиболее активными являются соединения (I) и (II).

Пример 4. Фунгицидность соединений формулы (1) определяют на конидиях гриба *N. Sativum* по методу контактного прорастания в волной среде. Экспозиция 19-21 ч при $23-24^\circ\text{C}$, повторность четырехкратная. В таблице представлены минимальные, ингибирующие прорастание спор концентрации. Наиболее токсичным для спор гриба, не уступающим по активности эталону-фигону, является соединение II. Выраженная активность обладают соединения I, III, превы-

шакющие действие эталонов-лизола, хлорамина.

Пример 5. Бактериостатическую активность определяют по методу серийных разведений на питательном бульоне. Тест-объект - возбудитель чумы *Yersenia pestis* штамм 72/1458 (не споровая форма). Действие исследуемых веществ определяют по отсутствию мутности бульона в течение 24 ч при 28°C. В таблице приведены минимальные разведения, ингибирующие развитие бактерий в течение 24 ч. Результаты таблицы показывают, что новые соединения не уступают или превышают действие эталонов хлорамина, фенола, лизола. Наиболее активным является препарат II.

Пример 6. Бактерицидное (дезинфицированное) действие определяют по методу батистовых тестов, разработанному Всесоюзным научно-исследовательским институтом дезинфекции и стерилизации. Стерильные батистовые тесты (5-10 мм) заливают 2 млрд бактериальной извесью на 20 мин. Заряженные тесты подсушивают сначала на фильтровальной бумаге, затем в чашках Петри при

37°C в течение 15-20 мин. В колбах готовят серийное разведение препараторов и в эти растворы опускают заряженные тесты (из расчета 0,5 мл на 1 тест). Затем через каждые

5 мин "обеззараженные" тесты извлекают из растворов, дважды промывают по 5 мин в стерильной водопроводной воде и по одному засевают в пробирки со стерильным бульоном. Посевы инкубируют при 37°C в течение

24-48 ч, снимая показатели роста культуры в бульоне. Контрольные тесты повторяют таким же образом в стерильной водопроводной воде.

Результаты таблицы показывают, что соединения формулы (1) обладают высоким дезинфицированным действием, превосходящим действие лизола и фенола.

20 Как следует из приведенных примеров, соединения формулы (1) обладают фунгицидной активностью по отношению к фитопатогенным грибам и бактерицидной - по отношению к возбудителю чумы (не споровая форма). По антимикробному действию на изученных тест-объектах новые соединения превосходят или приближаются к действию эталонных препаратов.

Фунгицидная и бактериальная активность соединений общей формулы (1)

Соединение	Молекулярный вес	Торможение роста мицелия, % к контролю						Разведение (в тыс.), нигирирующее развитие		
		Концентрация в среде 0,05%								
		A. radiicans	Asp. niger	F. oxysporum	H. sativum	V. inaequalis	H. sativum	бактериостатическое	бактерицидное	
I	388	75	100	96	97	96	1:2	1:20	1:0,1(20 мин)	
II	267,5	-	27	44	98	96	1:20	1:50	1:1(20 мин)	
III	249,5	77	30	64	60	50	1:2	1:20	1:1(20 мин)	
Хлорамины	266	41	38	38	18	13	1:2	1:20	1:1(10 мин)	
Лизол	-	32	31	57	40	94	1:1	1:5	1:0,1(10 мин)	
Фенол	94	48	54	86	97	100	1:1	1:10	1:0,1(10 мин)	
Фигон	227	94	100	58	92	99	1:20	-	-	