第8章 格与布尔代数

8.1 格的定义与性质

定义 8.1. 在部分序集 $\langle A, \preceq \rangle$ 中,如果对任意 $a,b \in A$, $\{a,b\}$ 都有一个最大下界和最小上界,则称 $\langle A, \preceq \rangle$ 是格。

通常 $\{a,b\}$ 的最大下界称为a与b的积,记作a*b; $\{a,b\}$ 的最小上界称为a与b的和,记作 $a \oplus b$ 。

A的任意子集,如果有最大下界和最小上界,则它们是唯一的。在定义8.1中可以看出*与 \oplus 是A上的二元运算。格 $\langle A, \preceq \rangle$ 有时也表示为 $\langle A, *, \oplus \rangle$ 。

不是所有的偏序集都是格。例如,图8.1中的每个偏序集都是格。

图 8.1: 格的示例

图8.2列出了五个偏序集,其中(1)中 $\{x,y\}$ 没有上界和下界。(2)中 $\{x,y\}$ 有最小上界,无下界。(3)中 $\{x,y\}$ 无上界,有最大下界。(4)中 $\{x,y\}$ 无上界,有下界但无最大下界。(5)中 $\{x,y\}$ 有最小上界,有下界但无最大下界。所以从(1)到(5)都不是格。

图 8.2: 不是格的偏序集示例

例 8.1. 设A是集合。 $\langle \mathcal{P}(A), \subseteq \rangle$ 是格。格中的运算*和 \oplus 分别是 \cap 和 \cup ,原因如下。任取 $A_1, A_2 \in \mathcal{P}(A)$ 。因为 $A_1 \cap A_2 \subseteq A_1$, $A_1 \cap A_2 \subseteq A_2$,故 $A_1 \cap A_2$ 是{ A_1, A_2 }的下界。设C是{ A_1, A_2 }的任意一个下界,即 $C \subseteq A_1$, $C \subseteq A_2$,故 $C \subseteq A_1 \cap A_2$ 。所以 $A_1 \cap A_2$ 是{ A_1, A_2 }的最大下界,即 $A_1 * A_2 = A_1 \cap A_2$ 。

因为 $A_1 \subseteq A_1 \cup A_2$, $A_2 \subseteq A_1 \cup A_2$, 故 $A_1 \cup A_2 \not\in \{A_1, A_2\}$ 的上界。假设 $B \not\in \{A_1, A_2\}$ 的任意一个上界,即 $A_1 \subseteq B$,故 $A_1 \cup A_2 \subseteq B$ 。所以 $A_1 \cup A_2 \not\in \{A_1, A_2\}$ 的最小上界,即 $A_1 \oplus A_2 = A_1 \cup A_2$ 。

特别地, 当|A|=2时, $\langle \mathcal{P}(A),\subseteq \rangle$ 的Hasse图是图8.1(2); 当|A|=3时, $\langle \mathcal{P}(A),\subseteq \rangle$ 的Hasse图是图8.1(6)。

例 8.2. \mathbb{Z} 是整数集合。 $\langle \mathbb{Z}, | \rangle$ 是格。格中的运算*和 \oplus 分别是求两个整数的最大公约数和最小公倍数运算,原因如下。任取 $a,b \in \mathbb{Z}$,a与b的最大公约数(a,b)满足(a,b)|a, (a,b)|b, 故(a,b)是 $\{a,b\}$ 的下界。若c是 $\{a,b\}$ 的一个下界,即c|a, c|b, 故c|(a,b)。所以(a,b)是 $\{a,b\}$ 的最大下界,即a*b=(a,b)。

a与b的最小公倍数[a,b]满足a|[a,b],b|[a,b],故<math>[a,b]是 $\{a,b\}$ 的上界。若c

是 $\{a,b\}$ 的一个上界,即a|c,b|c,故[a,b]|c。所以[a,b] 是 $\{a,b\}$ 的最小上界,即 $a \oplus b = [a,b]$ 。

特别地,图8.1(2)是格 $\langle \{1,2,3,6\}, | \rangle$ 的Hasse图;图8.1(6)是格 $\langle \{1,2,3,5,6,10,15,30\}, | \rangle$ 的Hasse图;图8.1(7)是格 $\langle \{1,2,3,4,6,8,12,24\}, | \rangle$ 的Hasse图。

例 8.3. 设G是群, $L(G) = \{H|H$ 是G的子群},易见 $\langle L(G), \subseteq \rangle$ 是偏序集。任取 $A, B \in L(G)$,A与B均是G的子群,故 $A \cap B$ 也是G的子群。与例8.1类似, $A \cap B$ 是 $\{A, B\}$ 的最大下界,即 $A*B = A \cap B$ 。

由于A与B都是G的子群,显然 $A = \langle A \rangle \subseteq \langle A \cup B \rangle = \langle A, B \rangle$, $B = \langle B \rangle \subseteq \langle A \cup B \rangle = \langle A, B \rangle$ 。 $\langle A, B \rangle$ 是由 $A \cup B$ 生成的群, $\langle A, B \rangle \subseteq G$,所以 $\langle A, B \rangle$ 是G的子群,即 $\langle A, B \rangle \in L(G)$ 。从而 $\langle A, B \rangle$ 是 $\{A, B\}$ 的上界。假设C是 $\{A, B\}$ 的任一上界,即C是G的子群,且 $A \subseteq C$, $B \subseteq C$,那么, $A \cup B \subseteq C$ 。而 $\langle A, B \rangle$ 是包含 $A \cup B$ 的最小的群,因此 $\langle A, B \rangle \subseteq C$ 。所以, $\langle A, B \rangle$ 是 $\{A, B\}$ 的最小上界,即 $A \oplus B = \langle A, B \rangle$ 。

综上可知 $\langle L(G), \subseteq \rangle$ 是格,被称为子群格。

例 8.4. 设G是群, $N(G)=\{H|H\triangleleft G\}$,易见 $\langle N(G),\subseteq \rangle$ 是偏序集。任取 $A,B\in N(G)$,A与B均是G的正规子群,故 $A\cap B$ 也是G 的正规子群。与例 8.1类似, $A\cap B$ 是 $\{A,B\}$ 的最大下界,即 $A*B=A\cap B$ 。

由于A与B都是G的正规子群,不难证明AB也是G的正规子群,并且 $\langle A,B\rangle=AB$ 。与例8.3类似, $\langle A,B\rangle$ 是 $\{A,B\}$ 的最小上界,即 $A\oplus B=AB$ 。

综上可知 $\langle N(G), \subseteq \rangle$ 是格,被称为正规子群格。

下面研究格的性质。

定理 8.1. 设 $\langle A, \preceq \rangle$ 是格, 集合A中的任意元素a, b, c满足:

- (1) 幂等律: a * a = a, $a \oplus a = a$;
- (2) 交換律: a * b = b * a, $a \oplus b = b \oplus a$;
- (3) 结合律: a*(b*c) = (a*b)*c, $a \oplus (b \oplus c) = (a \oplus b) \oplus c$;
- (4) 吸收律: $a*(a \oplus b) = a$, $a \oplus (a*b) = a$.

证明: 这里只证明(1)和(3),(2)和(4)的证明方法类似,留作习题。

- (1) $\langle A, \preceq \rangle$ 是格, \preceq 是A上的偏序关系。由 \preceq 的自反性知,对任意 $a \in A$ 均有 $a \preceq a$,所以a 是 $\{a,a\}$ 的下界。设x 是 $\{a,a\}$ 的任一下界,即 $x \preceq a$,所以a 是 $\{a,a\}$ 的最大下界,所以a*a=a。同理可证 $a \oplus a=a$ 。
- (3) 令d = a*(b*c),d' = (a*b)*c。所以d是 $\{a,b*c\}$ 的最大下界,故 $d \leq a$, $d \leq b*c$ 。后者说明d是 $\{b,c\}$ 的下界,故 $d \leq b$, $d \leq c$ 。由 $d \leq a$ 和 $d \leq b$ 知, $d \leq a*b$ 。再由 $d \leq a*b$ 和 $d \leq c$ 知, $d \leq (a*b)*c = d'$ 。同理可证 $d' \leq d$ 。由偏序关系的反对称性可得d = d',即a*(b*c) = (a*b)*c。

同理可证 $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ 。证毕。

定理 8.2. 设 $\langle A, \preceq \rangle$ 是格。对于集合A中的任意元素a, b,以下三个命题 是等价的:

- (1) $a \leq b$;
- (2) a * b = a;
- (3) $a \oplus b = b_{\circ}$

证明: $(1) \Rightarrow (2)$ 已知 $a \leq b$,又由 \leq 的自反性知 $a \leq a$,所以 $a \neq \{a,b\}$ 的下界。而 $a*b \neq \{a,b\}$ 的最大下界,所以 $a \leq a*b$ 。另一方面,由a*b 的定义知 $a*b \prec a$ 。由偏序关系 \prec 的反对称性知a*b = a。

- $(2)\Rightarrow (3)$ 已知a*b=a。由定理8.1知, $b=b\oplus (b*a)=b\oplus (a*b)=b\oplus a=a\oplus b$,即 $a\oplus b=b$ 。
- $(3)\Rightarrow (1)$ 已知 $a\oplus b=b$ 。由 $a\oplus b$ 的定义知,b是 $\{a,b\}$ 的最小上界,所以 $a\prec b$ 。

以上证明了三个命题的等价性。证毕。

定理 8.3. 设 $\langle A, \preceq \rangle$ 是格。对于集合A中的任意元素a,b,c,如果 $b \preceq c$,则 $a*b \preceq a*c$, $a \oplus b \preceq a \oplus c$ 。这个性质称为保序性。

证明: 由定理 $8.2 \text{知} b \leq c$ 等价于b * c = b。另外,格中*运算满足幂等律、结合律和交换律,故有

$$(a*b)*(a*c) = (a*a)*(b*c) = a*(b*c) = a*b.$$

由定理8.2知, $a*b \leq a*c$ 。

同理可证 $a \oplus b \leq a \oplus c$ 。证毕。

定理 8.4. 设 $\langle A, \preceq \rangle$ 是格。集合A中的任意元素a, b, c满足下面的分配不等式:

$$a \oplus (b * c) \preceq (a \oplus b) * (a \oplus c),$$

 $a * (b \oplus c) \succeq (a * b) \oplus (a * c).$

证明: 由 \oplus 的定义知 $a \leq a \oplus b$, $a \leq a \oplus c$ 。再由*的定义可得 $a \leq (a \oplus b)*(a \oplus c)$ 。又因为

$$b*c \leq b \leq a \oplus b$$
,
 $b*c \leq c \leq a \oplus c$,

和*的定义可得, $b*c \leq (a \oplus b)*(a \oplus c)$ 。 这说明 $(a \oplus b)*(a \oplus c)$ 是 $\{a,b*c\}$ 的上界,而 $a \oplus (b*c)$ 是 $\{a,b*c\}$ 的最小上界,因此

$$a \oplus (b * c) \preceq (a \oplus b) * (a \oplus c).$$

同理可证 $a*(b\oplus c)\succeq (a*b)\oplus (a*c)$ 。证毕。

定理 8.5. 设 $\langle A, \preceq \rangle$ 是格。对于集合A中的任意元素a, b, c,

$$a \leq b \Leftrightarrow a \oplus (b * c) \leq b * (a \oplus c).$$

证明: 已知 $a \leq b$ 。在定理8.4的第一个分配不等式 $a \oplus (b*c) \leq (a \oplus b)*$ $(a \oplus c)$ 中代入与 $a \leq b$ 等价的 $a \oplus b = b$,得到 $a \oplus (b*c) \leq b*(a \oplus c)$ 。

反之,已知
$$a \oplus (b*c) \prec b*(a \oplus c)$$
,由

$$a \prec a \oplus (b * c)$$
,

$$b*(a\oplus c) \leq b$$
,

以及偏序关系\的传递性知 $a \prec b$ 。证毕。

定理 8.6. 设 $\langle A, \preceq \rangle$ 是格。集合A的任意有限子集S均有最大下界和最小上界。

证明: 对A的有限子集S中的元素个数作归纳证明。

(1) 当|S|=2时,因为 $\langle A, \preceq \rangle$ 是格,所以任意二元子集 $\{a,b\}$ 均有最大下界和最小上界,命题成立。

(2) 假设|S| = n-1时命题成立。当|S| = n时,不妨假设 $S = \{a_1, a_2, \cdots, a_{n-1}, a_n\}$ 。令 $S' = \{a_1, a_2, \cdots, a_{n-1}\}$,|S'| = n-1。由归纳假设,S' 有最小上界b'。因为 $\langle A, \preceq \rangle$ 是格, $\{b', a_n\}$ 有最小上界b,即 $b' \preceq b$, $a_n \preceq b$ 。而 $a_i \preceq b'$, $i = 1, 2, \cdots, n-1$,所以 $b \in S$ 的上界。若c 也是S的上界, $a_i \preceq c$, $1 \leq i \leq n$,所以c也是S'的上界;而 $b' \in S'$ 的最小上界,故 $b' \preceq c$ 。又 $a_n \preceq c$, $b \in \{b', a_n\}$ 的最小上界,故 $b \preceq c$,即 $b \in S$ 的最小上界。

同理可证S有最大下界。证毕。

定理8.6的证明实际上给出了一种求集合A的有限子集最大下界和最小上界的方法。这种证明叫做构造性证明。

设 $\langle A, \leq \rangle$ 是偏序集。在集合A上定一个新的关系 \leq_1 ,对于 $a,b \in A$,

$$a \leq_1 b \Leftrightarrow b \leq a$$
.

显然, $\langle A, \preceq_1 \rangle$ 也是偏序集。 $\langle A, \preceq_1 \rangle$ 的Hasse图恰好是把 $\langle A, \preceq \rangle$ 的Hasse图上下颠倒过来。A的二元子集 $\{a,b\}$ 在 $\langle A, \preceq_1 \rangle$ 中的最大下界和最小上界分别是它在 $\langle A, \preceq \rangle$ 中的最小上界和最大下界。如果 $\langle A, \preceq \rangle$ 是格,那么 $\langle A, \preceq_1 \rangle$ 也是格。前者的二元运算分别记为*和 \oplus ,后者的二元运算分别记为*'和 \oplus' 。在 $\langle A, \preceq \rangle$ 中的命题

$$a \prec b \Leftrightarrow a \oplus b = b$$
,

 $在\langle A, \preceq_1 \rangle$ 中表示成

$$a \leq_1 b \Leftrightarrow a \oplus' b = b.$$

把它翻译成 $\langle A, \preceq \rangle$ 中的语言,则是

$$a \succ b \Leftrightarrow a * b = b$$
.

从这个例子,可以看出如下的对偶原理:一个在所有格中都成立的命题,将其中的 \succeq , \preceq ,*, \oplus 分别换成 \preceq , \succeq , \oplus ,*,则得到该命题的对偶命题,对偶命题在所有格中也都成立。例如,分配不等式 $a \oplus (b*c) \preceq (a \oplus b)*(a \oplus c)$ 的对偶命题是分配不等式 $a*(b \oplus c) \succeq (a*b) \oplus (a*c)$,两者同时成立。

8.2 几种特殊的格

8.2.1 完全格和有界格

定义 8.2. 如果在格 $\langle A, \preceq \rangle$ 中,对于集合A的任意子集都有最大下界和最小上界,则称该格是完全格。

显然, 当A是有限集合时, 定理8.6保证了格 $\langle A, \preceq \rangle$ 时完全格。

定义 8.3. 在格 $\langle A, \preceq \rangle$ 中,若存在最大元和最小元,分别记为1和0,即A中的任意元素a都满足 $0 \le a \le 1$,则称该格是**有界格**,记为 $\langle A, \preceq , 0, 1 \rangle$ 。

显然, 完全格必是有界格。

在有界格 $\langle A, \leq, 0, 1 \rangle$ 中,对于A的任意元素a,

$$a\oplus 0=a, \qquad a*0=0,$$

$$a \oplus 1 = 1,$$
 $a * 1 = a.$

在有界格中, 可以引进元素补元的概念。

一般地,在有界格中,一个元素可能没有补元,也可能有多个补元。例如图8.3中,左图里的 a_1,a_2,a_3 都没有补元;右图里的 a_1,a_2,a_3 互为补元, a_1 有两个补元 a_2,a_3 。

在有界格中,最大元1是最小元0的唯一补元,最小元0是最大元1的唯一补元。这是因为1是有界格 $\langle A, \preceq, 0, 1 \rangle$ 的最大元,对于A中的任意元素a, $a \oplus 1 = 1$, a*1 = a。特别地,取a = 0, $0 \oplus 1 = 1$, 0*1 = 0,所以0与1互为补元。又若 $b \in A$ 也是0的补元,即 $0 \oplus b = 1$;而0是最小元,故有 $0 \preceq b$, $0 \oplus b = b$ 。因此b = 1,所以1是0的唯一补元。

8.2.2 有补格

定义 8.5. 在有界格 $\langle A, \preceq, 0, 1 \rangle$ 中,如果A中每个元素都至少有一个补元、则称该格是**有补格**。

图 8.3: 有界格示例

例 8.5. 令 $L = \{0,1\}$ 。在集合 L^3 上定义关系 \preceq_3 ,对任意 $a_1,a_2,a_3,b_1,b_2,b_3 \in L$,

$$(a_1, a_2, a_3) \preceq_3 (b_1, b_2, b_3) \Leftrightarrow a_1 \preceq b_1, a_2 \preceq b_2, a_3 \preceq b_3.$$

 $\langle L^3, \preceq_3 \rangle$ 是有序数组格, 其最小元和最大元分别为(0,0,0)和(1,1,1)。 L^3 中元素 (a_1,a_2,a_3) 的补元为 (b_1,b_2,b_3) , 其中

$$b_i = \begin{cases} 1 & a_i = 0, \\ 0 & a_i = 1, \end{cases} \quad 1 \le i \le 3.$$

因此, $\langle L^3, \preceq_3 \rangle$ 是有补格, 它的Hasse图如图8.4所示。

图 8.4: 有序数组格 $\langle L^3, \preceq_3 \rangle$

例 8.6. 设A是集合, $\langle \mathcal{P}(A), \subseteq \rangle$ 是有界格,其最小元和最大元分别是 \emptyset 和A, $\mathcal{P}(A)$ 的任意元素B的补元是A-B。所以 $\langle \mathcal{P}(A), \subseteq \rangle$ 是有补格。

8.2.3 分配格

定义 8.6. 在格 $\langle A, \prec \rangle$ 中,如果A中任意元素a, b, c有

$$a*(b \oplus c) = (a*b) \oplus (a*c),$$

$$a \oplus (b*c) = (a \oplus b)*(a \oplus c),$$

则称 $\langle A, \preceq \rangle$ 是**分配格**。

例 8.7. 设A是集合, $\langle \mathcal{P}(A), \subseteq \rangle$ 的二元运算*和 \oplus 分别是集合的交 \cap 和并 \cup 运算。集合的交和并运算满足分配律,故 $\langle \mathcal{P}(A), \subseteq \rangle$ 是分配格。

例 8.8. \mathbb{Z}^+ 是正整数集合, $\langle \mathbb{Z}^+, | \rangle$ 的二元运算*和 \oplus 分别是求最大公因子和最小公倍数运算,它们满足分配律,故 $\langle \mathbb{Z}^+, | \rangle$ 是分配格。

例 8.9. 图8.5中, 左图是有补格, 但不是分配格。这是因为

$$a_1 * (a_2 \oplus a_3) = a_1 * 1 = a_1,$$

 $(a_1 * a_2) \oplus (a_1 * a_3) = 0 \oplus 0 = 0,$

不满足分配律等式 $a_1 * (a_2 \oplus a_3) = (a_1 * a_2) \oplus (a_1 * a_3)$ 。

图 8.5的右图是有界分配格,但不是有补格,因为 a_1 没有补元。 所以,有补格不一定是分配格,分配格也不一定是有补格。

定理 8.7. 任意线性序集都是分配格。

证明: 设 $\langle A, \preceq \rangle$ 是线性序集, A中的任意两个元素a, b, 或者 $a \preceq b$, 或者 $b \preceq a$ 。故

$$a*b = \begin{cases} a & \text{w} \mathbb{R} a \leq b, \\ b & \text{w} \mathbb{R} b \leq a; \end{cases} \quad a \oplus b = \begin{cases} b & \text{w} \mathbb{R} a \leq b, \\ a & \text{w} \mathbb{R} b \leq a. \end{cases}$$

因此, $\langle A, \preceq \rangle$ 是格。

图 8.5: 有补格与分配格示例

对于A的任意元素a,b,c,它们之间的关系可能有以下两种情况:

- (1) $a \succeq b$ 且 $a \succeq c$ 。即a是 $\{b,c\}$ 的上界,所以 $b \oplus c \preceq a$ 。于是, $a*(b \oplus c) = b \oplus c$ 。又由 $a \succeq b$ 和 $a \succeq c$ 知,a*b = b,a*c = c,所以 $(a*b) \oplus (a*c) = b \oplus c$ 。 因此, $a*(b \oplus c) = (a*b) \oplus (a*c)$ 。
- (2) $a \leq b$ 或 $a \leq c$ 。即a是 $\{b,c\}$ 的下界,所以 $a \leq b*c \leq b \oplus c$ 。于是, $a*(b \oplus c) = a$ 。又由 $a \leq b$ 和 $a \leq c$ 知,a*b = a,a*c = a,所以 $(a*b) \oplus (a*c) = a$ 。因此, $a*(b \oplus c) = (a*b) \oplus (a*c)$ 。

同理可证 $a \oplus (b * c) = (a \oplus b) * (a \oplus c)$ 。证毕。

定理 8.8. 设 $\langle A, \preceq \rangle$ 是分配格。对于A的任意元素a,b,c,如果a*c=b*c, $a\oplus c=b\oplus c$,则a=b。

证明: $\langle A, \preceq \rangle$ 是分配格。根据*和 \oplus 运算的吸收律,分配律和交换律,有

$$a = a * (a \oplus c) = a * (b \oplus c) = (a * b) \oplus (a * c)$$

= $(a * b) \oplus (b * c) = b * (a \oplus c) = b * (b \oplus c) = b$.

所以a = b。证毕。

推论 8.1. 在有界分配格 $\langle A, \preceq, 0, 1 \rangle$ 中,如果A的元素a有补元,则它的补元是唯一的。

证明: 假设a'和a''都是元素a的补元,则

$$a \oplus a' = 1, \qquad a * a' = 0,$$

$$a \oplus a'' = 1, \qquad a * a'' = 0.$$

所以, $a \oplus a' = a \oplus a''$,a * a' = a * a''。由定理8.8知,a' = a'',即a的补元是唯一的。证毕。

定理 8.9. (摩根律) 设 $\langle A, \preceq \rangle$ 是有界分配格,若集合A中的元素a,b的补元分别为a',b',则

$$(a*b)' = a' \oplus b',$$
$$(a \oplus b)' = a' * b'.$$

证明: 因为

$$(a * b) \oplus (a' \oplus b') = ((a * b) \oplus a') \oplus b' = (a' \oplus b) \oplus b' = 1,$$

 $(a * b) * (a' \oplus b') = a * (b * (a' \oplus b') = a * (b * a') = 0.$

所以 $a' \oplus b'$ 是a*b的补元,再由推论8.1知a*b的补元是唯一的,故 $(a*b)' = a' \oplus b'$ 。同理可证, $(a \oplus b)' = a'*b'$ 。证毕。

定义 8.7. 有补分配格称为布尔格。

8.2.4 模格

定义 8.8. 在格 $\langle A, \preceq \rangle$ 中,对于A的任意元素a,b,c,如果 $a \preceq b$ 均使 $a \oplus (b*c) = b*(a \oplus c)$,则称 $\langle A, \preceq \rangle$ 是模格。

特别地,在分配格 $\langle A, \preceq \rangle$ 中,若 $a \preceq b$,则 $a \oplus b = b$,故有

$$a \oplus (b * c) = (a \oplus b) * (a \oplus c) = b * (a \oplus c).$$

所以每个分配格都是模格。

定理 8.10. $\langle A, \preceq \rangle$ 是模格的充要条件是对于A的任意元素a,b,c,如果 $a \preceq b \perp a * c = b * c$, $a \oplus c = b \oplus c$,则必有a = b。

证明: 已知 $\langle A, \preceq \rangle$ 是模格,对于A的任意元素a,b,c,如果 $a \preceq b$ 且a*c=b*c, $a \oplus c=b \oplus c$,那么必有

$$a=a\oplus(a*c)=a\oplus(b*c)=b*(a\oplus c)=b*(b\oplus c)=b.$$

反之,令 $x = a \oplus (b*c)$, $y = b*(a \oplus c)$ 。因为 $a \leq b$,由定理8.5知, $x \leq y$ 。 下面证明 $x \oplus c = y \oplus c$,x*c = y*c。

$$x \oplus c = (a \oplus (b * c)) \oplus c = a \oplus ((b * c) \oplus c) = a \oplus c,$$

$$y \oplus c = (b * (a \oplus c)) \oplus c.$$

由于 $a \leq b \Rightarrow a \leq a \oplus c$, 所以 $a \leq b * (a \oplus c) \leq a \oplus c$, 从而有

$$a \oplus c \preceq (b * (a \oplus c)) \oplus c \preceq (a \oplus c) \oplus c$$
,

即

$$a \oplus c \preceq y \oplus c \preceq a \oplus c$$
.

由偏序关系<u>\(\leq \)</u>的反对称性知, $y \oplus c = a \oplus c$,因此 $x \oplus c = y \oplus c$ 。 我们已经证明了在格中,当a < b时,

$$(a \oplus (b * c)) \oplus c = (b * (a \oplus c)) \oplus c.$$

它的对偶命题是: 当 $a \succeq b$ 时,

$$(a*(b\oplus c))*c = (b\oplus (a*c))*c.$$

把后者的a与b互换位置,即得,当 $b \geq a$ 时,

$$(b*(a\oplus c))*c = (a\oplus (b*c))*c.$$

这就是说, 当 $a \leq b$, x*c = y*c。

现在有了 $x \leq y$, $x \oplus c = y \oplus c$, x * c = y * c, 由已知条件知x = y。也就是说, 当 $a \leq b$ 时, $a \oplus (b * c) = b * (a \oplus c)$, 所以 $\langle A, \preceq \rangle$ 是模格。证毕。

8.3 格——代数系统

集合以及集合上的一个或多个运算所组成的系统叫做代数系统,前几章介绍了群、环、域等代数系统,本章介绍的格是与它们不同的一个新的代数系统。

173

8.3.1 基本定义

定义 8.9. *和 \oplus 是集合A上的两个二元运算。如果集合A的任意元素a,b,c满足下述条件,则称代数系统 $\langle A,*,\oplus \rangle$ 是格:

- (1) 结合律: a * (b * c) = (a * b) * c, $a \oplus (b \oplus c) = (a \oplus b) \oplus c$;
- (2) 交換律: a * b = b * a, $a \oplus b = b \oplus a$;
- (3) 吸收律: $a*(a \oplus b) = a$, $a \oplus (a*b) = a$.

定理 8.11. 定义8.1和定义8.9中定义的格是等价的。

证明: 设 $\langle A, \preceq \rangle$ 是定义8.1中定义的格,即对集合A中的任意二元子集 $\{a,b\}$ 有唯一的最大下界和最小上界,分别记作a*b和 $a \oplus b$ 。*和 \oplus 是A上的两个二元运算。定理8.1证明了这两个运算满足结合律、交换律和吸收律,所以 $\langle A, *, \oplus \rangle$ 也是定义8.9中定义的格。

若 $\langle A, *, \oplus \rangle$ 是定义8.9中定义的格,我们在集合A上定义关系 \preceq :

$$a \prec b \Leftrightarrow a * b = a$$
.

当a*b=a时, $a\oplus b=(a*b)\oplus b=b(根据定义8.9$ 中的吸收律), 当 $a\oplus b=b$ 时, $a*b=a*(a\oplus b)=a$ 。故 $a*b=a\Leftrightarrow a\oplus b=b$, 因此有

$$a \preceq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$$
.

易证如此定义的关系≺是集合A上的偏序关系。

任取A中的元素a,b, 由于 $a*(a \oplus b) = a$ 和 $b*(a \oplus b) = b$ 知, $a \leq a \oplus b$, $b \leq a \oplus b$ 。 因此, $a \oplus b \not\in \{a,b\}$ 的上界。如果A中的元素c 也是 $\{a,b\}$ 的上界,即 $a \leq c$, $b \leq c$, 那么 $a \oplus c = c$, $b \oplus c = c$ 。

$$(a \oplus b) \oplus c = (a \oplus c) \oplus (b \oplus c) = c \oplus c = c.$$

这意味着 $a \oplus b \leq c$,从而 $a \oplus b \not\in \{a,b\}$ 的最小上界。同理可证, $a*b \not\in \{a,b\}$ 的最大下界。因此, $\langle A, \preceq \rangle$ 是定义8.1中定义的格。综上所述,定义8.1和定义8.9是等价的。证毕。

8.3.2 子格和格的直积

定义 8.10. 设 $\langle A, *, \oplus \rangle$ 是格,B是A的非空子集。如果集合B对*和 \oplus 运算是封闭的,则称 $\langle B, *, \oplus \rangle$ 是 $\langle A, *, \oplus \rangle$ 的**子格**。

易证, 子格本身也是格。

例 8.10. 设 \mathbb{Z}^+ 是正整数集合。在 \mathbb{Z}^+ 上定义二元运算:

$$a*b=(a,b)$$
 $a\oplus b=[a,b].$

 $\langle \mathbb{Z}^+, *, \oplus \rangle$ 是格。令T是正偶数集合。两个偶数的最大公因子仍是偶数,两个偶数的最小公倍数也是偶数,所以 $\langle T, *, \oplus \rangle$ 是 $\langle \mathbb{Z}^+, *, \oplus \rangle$ 的子格。

例 8.11. 设 $\langle A, *, \oplus \rangle$ 是格。对A中的两个元素 $a, b, a \leq b$ 。令

$$I[b, a] = \{x | x \in A, a \le x \le b\}.$$

任取 $x_1, x_2 \in I[b, a]$, 即 $a \leq x_1, x_2 \leq b$, 故有

$$a * x_i = a,$$
 $x_i * b = x_i,$ $a \oplus x_i = x_i,$ $x_i \oplus b = b, \ 1 \le i \le 2.$

所以,

$$a * (x_1 * x_2) = (a * x_1) * x_2 = a * x_2 = a,$$

 $(x_1 * x_2) * b = x_1 * (x_2 * b) = x_1 * x_2,$

即 $a \leq x_1 * x_2 \leq b$, 因此 $x_1 * x_2 \in I[b, a]$ 。

同理可证 $a \leq x_1 \oplus x_2 \leq b$,因此 $x_1 \oplus x_2 \in I[b,a]$ 。所以, $\langle I[b,a],*, \oplus \rangle$ 是 $\langle A,*, \oplus \rangle$ 的子格。

例 8.12.
$$\langle \mathcal{P}(\{1,2,3\}), \cap, \cup \rangle$$
 是格。 令
$$A_1 = \{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\},$$

$$A_2 = \{\emptyset, \{1\}, \{3\}, \{1,3\}\},$$

$$A_3 = \{\emptyset, \{1,2\}, \{2,3\}, \{1,2,3\}\},$$

 $\langle A_1,\cap,\cup\rangle$ 和 $\langle A_2,\cap,\cup\rangle$ 是 $\langle \mathcal{P}(\{1,2,3\}),\cap,\cup\rangle$ 的子格。而 A_3 中 $\{1,2\}\cap\{2,3\}=\{2\}\notin A_3$,所以 A_3 不是 $\mathcal{P}(\{1,2,3\})$ 的子格。由此可见,并非A的每个子集都是 $\langle A,*,\oplus\rangle$ 的子格。

定义 8.11. 设 $\langle A_1, *, \oplus \rangle$ 和 $\langle A_2, \wedge, \vee \rangle$ 是两个格。构造一个新的代数系统 $\langle A_1 \times A_2, \cdot, + \rangle$, 其中•和+运算的定义是: $(a_1, a_2), (b_1, b_2) \in A_1 \times A_2$,

$$(a_1, a_2) \cdot (b_1, b_2) = (a_1 * b_1, a_2 \wedge b_2),$$

 $(a_1, a_2) + (b_1, b_2) = (a_1 \oplus b_1, a_2 \vee b_2).$

在此定义中, $A_1 \times A_2$ 中的·和+运算是由第一分量按 A_1 中的*和 \oplus 运算,第二分量按 A_2 中的 \wedge 和 \vee 运算来实现的。 $\langle A_1, *, \oplus \rangle$ 和 $\langle A_2, \wedge, \vee \rangle$ 是格,所以 $A_1 \times A_2$ 中的·和+运算也满足结合律、交换律和吸收律。因此两个格的直积也是格,并且是用小规模的格构造成的大规模格。

例 8.13. 设 $A = \{0,1\}$ 。在A上定义关系 \leq_1 , $a,b \in A$,

$$a \leq_1 b \Leftrightarrow a \leq b$$
.

 $\langle A, \preceq_1 \rangle$ 是格。在 A^2 上定义关系 \preceq_2 , $(a,b), (c,d) \in A^2$,

$$(a,b) \preceq_2 (c,d) \Leftrightarrow a \preceq_1 c, b \preceq_1 d.$$

 $\langle A^2, \preceq_2 \rangle$ 是两个格 $\langle A, \preceq_1 \rangle$ 与 $\langle A, \preceq_1 \rangle$ 的直积。类似地在 A^3 上定义关系 \preceq_3 , $(a,b,c),(d,e,f) \in A^3$,

$$(a,b,c) \preceq_3 (d,e,f) \Leftrightarrow a \preceq_1 d,b \preceq_1 e,c \preceq_1 f.$$

 $\langle A^3, \preceq_2 \rangle$ 是两个格 $\langle A, \preceq_1 \rangle$ 与 $\langle A^2, \preceq_2 \rangle$ 的直积。它们的Hasse图如图8.6所示。

8.3.3 格的同态与同构

定义 8.12. 设 $\langle A_1, *, \oplus \rangle$ 和 $\langle A_2, \wedge, \vee \rangle$ 是两个格。如果存在从 A_1 到 A_2 的映射 $f: A_1 \to A_2$,对于 A_1 中的任意元素a, b,

$$f(a * b) = f(a) \land f(b),$$

$$f(a \oplus b) = f(a) \lor f(b),$$

则称f是从 A_1 到 A_2 的格同态映射。

若f是从 A_1 到 A_2 的格同态映射,并且为双射,则称f是从 A_1 到 A_2 的格同构映射。如果两个格之间存在格同构映射,则称这两个格是同构的。

图 8.6: 格的直积示例

设f是从 $\langle A_1, *, \oplus \rangle$ 到 $\langle A_2, \wedge, \vee \rangle$ 的格同态映射,对于 $a, b \in A_1$, $a \preceq_1 b$,由于 $a \preceq_1 b \Leftrightarrow a * b = a$,故

$$f(a) = f(a * b) = f(a) \wedge f(b).$$

所以 $f(a) \leq_2 f(b)$,即格的同态映射是一种保序映射。反之则不一定成立。例如,令 $A_1 = A_2 = \{1,2,3,4,6,12\}$, $\langle A_1, | \rangle$ 和 $\langle A_2, \preceq \rangle$ 是格,它们的Hasse图如图8.7所示。令 $f: A_1 \to A_2$,f(x) = x是保序映射,但不是格同态映射。这是因为

$$f(3*4) = f(1) = 1,$$

 $f(3) \land f(4) = 3 \land 4 = 3,$

 $\mathbb{P} f(3*4) \neq f(3) \land f(4)$.

定理 8.12. f是从集合 A_1 到集合 A_2 的双射。f是从格 $\langle A_1, \preceq_1 \rangle$ 到格 $\langle A_2, \preceq_2 \rangle$ 的同构映射当且仅当对于 A_1 的元素a,b,

$$a \leq_1 b \Leftrightarrow f(a) \leq_2 f(b)$$
.

证明: 已知f是从 $\langle A_1, \preceq_1 \rangle$ 到 $\langle A_2, \preceq_2 \rangle$ 的格同构映射。在格 $\langle A_1, \preceq_1 \rangle$ 中,对 $a, b \in A_1$, $a \preceq_1 b \Leftrightarrow a * b = a$ 。

当a*b=a时, $f(a*b)=f(a)\cdot f(b)=f(a)$,故 $f(a)\preceq_2 f(b)$ 。而 当 $f(a)\preceq_2 f(b)$ 时, $f(a)=f(a)\cdot f(b)=f(a*b)$ 。因为f是单射,所以a=

图 8.7: {1,2,3,4,6,12}上的两个格

a*b。从而

$$a * b = a \Leftrightarrow f(a) \leq_2 f(b)$$
.

故, $a \leq_1 b \Leftrightarrow f(a) \leq_2 f(b)$ 。

反之,已知 $f: A_1 \to A_2$ 是双射。任取 $a,b \in A_1$, $a*b \preceq_1 a$, $a*b \preceq_1 b$ 。由f的保序性可得, $f(a*b) \preceq_2 f(a)$, $f(a*b) \preceq_2 f(b)$ 。从而 $f(a*b) \preceq_2 f(a)$,存 $a,b \in A_1$,使得f(a) = x, $f(a) \cdot f(b)$ 。任取 $x,y \in A_2$,由于f是满射,存 $a,b \in A_1$,使得f(a) = x,f(b) = y。 A_2 是格, $x \cdot y = f(a) \cdot f(b) \in A_2$,因此存 $a,b \in A_1$,使得 $a,b \in A_2$,使 $a,b \in A_2$,所以 $a,b \in A_3$,有 $a,b \in A_4$,使得 $a,b \in A_4$,所以 $a,b \in A_4$,使得 $a,b \in A_4$,使用 $a,b \in A_4$,使用

引理 8.1. 格 $\langle A, *, \oplus \rangle$ 是模格当且仅当A的每个 $I[b, a] = \{x | x \in A, a \leq x \leq b\}$ 中,如果有两个元素可比较且有公共补元,那么这两个元素必相等。

证明: 如果在格 $\langle A, *, \oplus \rangle$ 中, $u \leq v$,I[v, u]中有两个可比较但不相等的元素 a_0, b_0 ,不妨假设 $a_0 \prec b_0$,它们有一个公共补元c,即

$$a_0 * c = b_0 * c = u,$$

$$a_0 \oplus c = b_0 \oplus c = v,$$

那么

$$a_0 \oplus (b_0 * c) = a_0 \oplus u = a_0 \prec b_0 = b_0 * v = b_0 * (a_0 \oplus c),$$

也就是说 $a_0 \prec b_0$,但是 $a_0 \oplus (b_0 * c) \neq b_0 * (a_0 \oplus c)$,所以 $\langle A, *, \oplus \rangle$ 不是模格。 这意味着,如果格 $\langle A, *, \oplus \rangle$ 是模格,则A的每个I[b, a]中,若有两个元素可 比较并且有公共补元,则这两个元素必相等。

如果格 $\langle A, *, \oplus \rangle$ 不是模格,那么必存在 $a_0, b_0 \in A$,且 $a_0 \prec b_0$,使得 $a_0 \oplus (b_0 * c) \prec b_0 * (a_0 \oplus c)$ 。令 $x = a_0 \oplus (b_0 * c)$, $y = b_0 * (a_0 \oplus c)$,显然 $a_0 \preceq x, y \preceq b_0$, $b_0 * c \preceq x \prec y \preceq a_0 \oplus c$, $b_0 * c \preceq c \preceq a_0 \oplus c$,

$$c * y = c * (b_0 * (a_0 \oplus c)) = c * b_0.$$

由于 $y \leq a_0 \oplus c$, $a_0 \prec y$,

$$c \oplus y \leq c \oplus (a_0 \oplus c) = a_0 \oplus c \leq y_0 \oplus c$$

得到

$$c \oplus y = a_0 \oplus c$$
.

同理可证 $x*c=b_0*c$, $x\oplus c=a_0\oplus c$ 。这说明在 $I[a_0\oplus c,b_0*c]$ 中 $x\prec y$, x与y有公共补元c, 与题设矛盾,所以假设不成立,即 $\langle A,*,\oplus \rangle$ 是模格。证毕。

利用引理8.1可以证明下面的定理。

定理 8.13. 格是模格当且仅当它不包含一个与图8.8(1)同构的五元子格。

与此定理类似的还有如下定理, 其证明略去。

定理 8.14. 格是分配格当且仅当它是模格且不包含一个与图8.8(2)同构的五元子格。

8.4 布尔代数

8.4.1 布尔代数

在格中可以定义两个*和⊕二元运算。在有补分配格中,每个元素有补 元且补元唯一,这样就可以在有补分配格中定义求补元的运算。另外,有补

图 8.8: 两个五阶格

分配格有最大元1和最小元0。所以布尔格可以看作代数系统 $\langle A, *, \oplus, ', 0, 1 \rangle$,并称为由布尔格 $\langle A, \prec \rangle$ 诱导出来的代数系统。

定义 8.13. 设A是至少有两个元素的集合,*和 \oplus 是集合A上的二元运算。如果集合A的任意元素a,b,c满足下述条件:

- (1) a * b = b * a, $a \oplus b = b \oplus a$;
- (2) $a * (b \oplus c) = (a * b) \oplus (a * c), \ a \oplus (b * c) = (a \oplus b) * (a \oplus c);$
- (3) $0,1 \in A$, 对A中任意元素a, a * 1 = a, $a \oplus 0 = a$;
- (4) 对A中任意元素a,存在 $a'\in A$,使得a*a'=0,a*a'=1。则称 $\langle A,*,\oplus,',0,1\rangle$ 为布尔代数。

显然, 由布尔格诱导出来的代数系统为布尔代数。

定理 8.15. 与布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 相应的 $\langle A, *, \oplus \rangle$ 是布尔格。

证明: 由布尔代数定义可看出,要证明 $\langle A, *, \oplus \rangle$ 是布尔格,只需证明 $\langle A, *, \oplus \rangle$ 是格,并且0和1分别是该格的最小元和最大元。

已知 $\langle A,*,\oplus,',0,1\rangle$ 是布尔代数,在代数系统 $\langle A,*,\oplus\rangle$ 中,二元运算*和 \oplus 满足交换律。任取 $a,b\in A$,

$$a * (a \oplus b) = (a \oplus 0) * (a \oplus b) = a \oplus (0 * b) = a \oplus ((0 * b) \oplus (b' * b))$$

= $a \oplus ((0 \oplus b') * b)) = a \oplus (b' * b) = a \oplus 0 = a$.

同理可证 $a \oplus (a * b) = a$ 。所以二元运算*和 \oplus 满足吸收律。

令
$$x = a * (b * c), y = (a * b) * c, 显然$$

 $x = x \oplus 0 = x \oplus (a * a') = (x \oplus a) * (x \oplus a'),$
 $y = y \oplus 0 = y \oplus (a * a') = (y \oplus a) * (y \oplus a'),$

其中

$$x \oplus a = (a*(b*c)) \oplus a = a,$$

$$y \oplus a = ((a * b) * c) \oplus a = ((a * b) \oplus a) * (c \oplus a) = a * (a \oplus c) = a,$$

$$x \oplus a' = (a * (b * c)) \oplus a' = (b * c) \oplus a',$$

$$y \oplus a' = ((a * b) * c) \oplus a' = ((a * b) \oplus a') * (c \oplus a') = (b \oplus a') * (c \oplus a') = (b * c) \oplus a'.$$

于是, 由 $x \oplus a = y \oplus a$ 和 $x \oplus a' = y \oplus a'$ 推出x = y, 即

$$a * (b * c) = (a * b) * c.$$

同理可证, $a\oplus(b\oplus c)=(a\oplus b)\oplus c$ 。所以二元运算*和 \oplus 满足结合律。从而 $\langle A,*,\oplus \rangle$ 是格。

在布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 中,对任意元素 $a \in A$ 均有

$$a*1=a, \qquad a\oplus 0=a.$$

 $A(A,*,\oplus)$ 中的偏序关系是,对 $A(b)\in A$,

$$a \prec b \Leftrightarrow a \oplus b = b \Leftrightarrow a * b = a$$
.

于是在格 $\langle A, *, \oplus \rangle$ 中, $0 \leq a \leq 1$,即0和1分别是该格的最小元和最大元。 综上分析知, $\langle A, *, \oplus \rangle$ 是布尔格。证毕。

从这个定理可以看出在有补分配格中,存在最小元和最大元,每个元素有补元,二元运算满足交换律和结合律是其最核心的性质。

8.4.2 布尔代数的子代数

定义 8.14. 设 A_1 是布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 中集合A的子集。如果 $0, 1 \in A_1$,并且 A_1 对于 $*, \oplus, '$ 运算是封闭的,那么称 $\langle A_1, *, \oplus, ', 0, 1 \rangle$ 是 $\langle A, *, \oplus, ', 0, 1 \rangle$ 的子代数。

例 8.14. $A = \{1,2,3\}$, $\langle \mathcal{P}(A), \subseteq \rangle$ 是有补分配格, 其上的*, \oplus , '运算分别为 \cap , \cup , "运算,最小元和最大元分别为 \emptyset 和A,故 $\langle \mathcal{P}(A), \cap, \cup, ^-, \emptyset, A \rangle$ 是布尔代数。令 $A_1 = \{\emptyset, \{1\}, \{2,3\}, A\}$,则 A_1 是A的子代数。

例 8.15. $\langle A, *, \oplus, ', 0, 1 \rangle$ 是布尔代数。 $a, b \in A \coprod a \leq b$,定义A的子集 $I[b, a] = \{x | x \in A, a \leq x \leq b\}$ 。 易证,I[b, a]对运算*和 \oplus 是封闭的。由于 $\langle A, *, \oplus \rangle$ 是分配格,所以 $\langle I[b, a], *, \oplus \rangle$ 也是分配格。但是I[b, a]的最大元是b,最小元是a,与布尔代数A的最大元和最小元不同。另外,I[b, a]对求补元运算不一定封闭,所以I[b, a]不是A的子代数。

对I[b,a]中的任意元素x,定义 $\overline{x}=(a\oplus x')*b$ 。显然 $\overline{x}\preceq b$ 。

$$\overline{x} * a = (a \oplus x') * b * a = a,$$

故 $a \leq \overline{x}$ 。 而

$$\overline{x} \oplus x = ((a \oplus x') * b) \oplus x = x \oplus b = b,$$

 $\overline{x} * x = ((a \oplus x') * b) * x = a * x * b = a,$

所以 \overline{x} 是x在I[b,a]中的补元,因此 $\langle I[b,a],*,\oplus,^-,a,b\rangle$ 是布尔代数,但不是 $\langle A,*,\oplus,',0,1\rangle$ 的子代数。

8.4.3 布尔代数的同态与同构

定义 8.15. $\langle A_1, *, \oplus, ', 0, 1 \rangle = \langle A_2, \wedge, \vee, ^-, \widetilde{0}, \widetilde{1} \rangle$ 是布尔代数。对于映射 $f: A_1 \to A_2$,如果对于 A_1 中的任意元素a, b,

$$f(a * b) = f(a) \land f(b),$$

$$f(a \oplus b) = f(a) \lor f(b),$$

$$f(a') = \overline{f(a)}$$

则称f是从布尔代数 A_1 到布尔代数 A_2 的**同态映射**。特别地,当f是双射时,称f是同构映射,并称布尔代数 A_1 与 A_2 同构。

定理 8.16. $\langle A_1, *, \oplus, ', 0, 1 \rangle$ 是布尔代数,对于A的任意元素a,布尔代数I[a', 0]与布尔代数I[1, a]是同构的。

证明: 任取 $a \in A$, 有 $a' \in A$ 且 $0 \prec a' \prec 1$ 。

$$I[a', 0] = \{x | x \in A, 0 \le x \le a'\},$$

$$I[1, a] = \{x | x \in A, a \le x \le 1\}.$$

当 $x \in I[a',0]$ 时, $0 \le x \le a'$,由于⊕运算是保序的, $0 \oplus a \le x \oplus a \le a' \oplus a$,故 $a \le x \oplus a \le 1$,所以 $x \oplus a \in I[1,a]$ 。令 $f:I[a',0] \to I[1,a]$, $f(x) = x \oplus a$ 。任取 $y \in I[1,a]$,令x = y * a',因为 $a \le y \le 1$ 并且*是保序的,故 $a * a' \le x = y * a' \le 1 * a'$,即 $0 \le x \le a'$ 。 $f(x) = x \oplus a = (y * a') \oplus a = y \oplus a = y$,这表明 $x \not\in y$ 的原像,所以f是满射。又若 $x_1, x_2 \in I[a',0]$ 都是 $y \in I[1,a]$ 的原像,即 $f(x_1) = x_1 \oplus a = x_2 \oplus a = f(x_2)$ 。

$$x_1 = x_1 * a' = (x_1 \oplus a) * a' = (x_2 \oplus a) * a' = x_2 * a' = x_2,$$

所以f是单射。从而,f是从I[a',0] 到I[1,a]的双射。

任取
$$x_1, x_2 \in I[a', 0]$$
,

$$f(x_1 * x_2) = (x_1 * x_2) \oplus a = (x_1 \oplus a) * (x_2 \oplus a) = f(x_1) * f(x_2),$$

$$f(x_1 \oplus x_2) = (x_1 \oplus x_2) \oplus a = (x_1 \oplus a) \oplus (x_2 \oplus a) = f(x_1) \oplus f(x_2),$$

$$f(\overline{x_1}) = f((0 \oplus x_1') * a') = (x_1' * a') \oplus a = x_1' \oplus a,$$

$$\overline{f(x_1)} = \overline{x_1 \oplus a} = (a \oplus (x_1 \oplus a)') * 1 = a \oplus (x_1' * a') = x_1' \oplus a.$$

所以,f是布尔代数I[a',0]与布尔代数I[1,a]的同构映射,且 $I[a',0]\cong I[1,a]$ 。证毕。

定义 8.16. $\langle A_1, *, \oplus, ', 0, 1 \rangle$ 与 $\langle A_2, \wedge, \vee, ^-, \widetilde{0}, \widetilde{1} \rangle$ 是布尔代数。在 $A_1 \times A_2$ 上定义 $\widetilde{*}, \widetilde{\oplus}, ^{\circ}$ 运算,对 $(a_1, a_2), (b_1, b_2) \in A_1 \times A_2$,

$$(a_1, a_2)\widetilde{*}(b_1, b_2) = (a_1 * b_1, a_2 \wedge b_2),$$

$$(a_1, a_2)\widetilde{\oplus}(b_1, b_2) = (a_1 \oplus b_1, a_2 \vee b_2),$$

$$(a_1, a_2)^{\circ} = (a'_1, \overline{a_2}),$$

 $\langle A_1 \times A_2, \widetilde{*}, \widetilde{\oplus}, \circ, (0, \widetilde{0}), (1, \widetilde{1}) \rangle$ 是布尔代数 A_1 和 A_2 的**直积**。

容易证明, 两个布尔代数的直积仍是布尔代数。证明留作习题。

定理 8.17. $\langle A,*,\oplus,',0,1\rangle$ 是布尔代数, $a\in A$, 则A与直积 $(A)=I[a,0]\times I[1,a]$ 同构。

证明: 任取 $x \in A$, 即 $0 \le x \le 1$ 。由于*和⊕运算是保序的,故 $0 = 0 * a \le x * a \le 1 * a = a$, $a = 0 \oplus a \le x \oplus a \le 1 \oplus a = 1$ 。定义 $f : A \to I[a,0] \times I[1,a]$, $f(x) = (x * a, x \oplus a)$ 。任取 $x_1, x_2 \in A$,

$$f(x_{1} \oplus x_{2}) = ((x_{1} \oplus x_{2}) * a, (x_{1} \oplus x_{2}) \oplus a)$$

$$= ((x_{1} * a) \oplus (x_{2} * a), (x_{1} \oplus a) \oplus (x_{2} \oplus a))$$

$$= (x_{1} * a, x_{1} \oplus a) \oplus (x_{2} * a, x_{2} \oplus a) = f(x_{1}) \oplus f(x_{2}),$$

$$f(x_{1} * x_{2}) = ((x_{1} * x_{2}) * a, (x_{1} * x_{2}) \oplus a)$$

$$= ((x_{1} * a) * (x_{2} * a), (x_{1} \oplus a) * (x_{2} \oplus a))$$

$$= (x_{1} * a, x_{1} \oplus a) * (x_{2} * a, x_{2} \oplus a) = f(x_{1}) * f(x_{2}),$$

$$\overline{f(x_{1})} = (\overline{x_{1} * a}, \overline{x_{1} * a}) = ((0 \oplus (x_{1} * a)') * a, (a \oplus (x_{1} \oplus a)') * 1)$$

$$= ((x'_{1} \oplus a') * a, a \oplus (x'_{1} * a'))$$

$$= (x'_{1} * a, x'_{1} \oplus a) = (f(x_{1}))',$$

所以f是同态映射。

任取 $(y,z)\in I[a,0]\times I[1,a]$, $0\preceq y\preceq a$, $a\preceq z\preceq 1$, 令 $x=y\oplus (z*a')\in A$,

$$f(x) = f(y \oplus (z * a')) = ((y \oplus (z * a')) * a, (y \oplus (z * a')) \oplus a)$$

= $(y * a, y \oplus z \oplus a) = (y, z),$

即x是(y,z)的原像,故f是满射。

设 $x_1, x_2 \in A$ 都是 $(y, z) \in I[a, 0] \times I[1, a]$ 的原像,即

$$f(x_1) = (x_1 * a, x_1 \oplus a) = (x_2 * a, x_2 \oplus a) = f(x_2),$$

所以,

$$x_1 = x_1 * (a \oplus a') = (x_1 * a) \oplus (x_1 * a')$$

= $(x_1 * a) \oplus ((x_1 \oplus a) * a') = (x_2 * a) \oplus ((x_2 \oplus a) * a')$
= $x_2 * (a \oplus a') = x_2$,

即f是单射,所以f是双射,故A与 \widetilde{A} 是同构的。证毕。

例 8.16. 设 $A = \{1, 2, \dots, n\}$, $A_1 = \{1, 2, \dots, k\}$, $\overline{A_1} = \{k + 1, k + 2, \dots, n\}$, $\langle \mathcal{P}(A), \cap, \cup, ^-, \emptyset, A \rangle$ 是布尔代数。

$$I[A_1, \emptyset] = \{x | x \in \mathscr{P}(A), \emptyset \subseteq x \subseteq A_1\} = \mathscr{P}(A_1),$$

$$I[A, A_1] = \{x | x \in \mathscr{P}(A), A_1 \subseteq x \subseteq A\} = \mathscr{P}(\overline{A_1}).$$

由定理8.16知, $I[\overline{A_1},\emptyset]\cong I[A,A_1]$ 。由定理8.17知, $\mathscr{P}(A)\cong I[A_1,\emptyset]\times I[A,A_1]=\mathscr{P}(A_1)\times\mathscr{P}(\overline{A_1})$ 。

定理 8.18. 设A是有限布尔代数, $|A|=2^n$ 。 令 $B=\{1,2,\cdots,n\}$,则 布尔代数A与 $\langle \mathcal{P}(B),\cap,\cup,^-,\emptyset,B\rangle$ 是同构的。

证明: 对集合A的元素个数进行归纳证明。

- (1) 当|A|=2时, $A=\{0,1\}$, $f:A\to \mathscr{P}(\{1\})$, $f(0)=\emptyset$, $f(1)=\{1\}$ 。 易证,f是同构映射,所以 $A\cong \mathscr{P}(\{1\})$ 。
- (2) 假设|A| < k时命题成立。现设|A| = k。取 $a \in A$,且 $0 \prec a \prec 1$ 。由定理8.17知, $A \cong I[a,0] \times I[1,a]$ 。再由定理8.16, $A \cong I[a,0] \times I[a',0]$ 。注意到|I[a,0]| < k,|I[a',0]| < k,有归纳假设知,布尔代数I[a,0]和I[a',0]分别与 $\mathcal{P}(B_1)$ 和 $\mathcal{P}(B_2)$ 同构,其中 $|B_1| = k_1$, $|B_2| = k_2$ 。由例8.16知,如果 $A \cong \mathcal{P}(B_1) \times \mathcal{P}(B_2)$,那么存在 $k_1 + k_2$ 个元素的集合B使得 $A \cong \mathcal{P}(B)$ 。证毕。

从这个定理可以看出,|A|=n, $\langle \mathscr{P}(A), \cap, \cup, ^-, \emptyset, A \rangle$ 是有 2^n 个元素的布尔代数,它穷尽了所有的有限布尔代数。

8.4.4 布尔代数的原子表示

如果在格 $\langle A, \preceq \rangle$ 中有最小元0,那么最小元的控制元素称为**原子**。

在格 $\langle A, \preceq \rangle$ 的Hasse图(图8.9)中 a_1, a_2, \cdots, a_k 是原子。显然, $a_i * a_j = 0 (i \neq j)$ 。

引理 8.2. 格 $\langle A, \preceq \rangle$ 是有限格,0是它的最小元。对于A中任意非零元素b, 至少存在一个原子a使得 $a \prec b$ 。

证明: 对于A中任意非零元素b, 有以下两种情况:

图 8.9: 原子示例图

- (1) b是原子。那么显然 $b \prec b$,取a = b即可。
- (2) b不是原子。0是有限格 $\langle A, \preceq \rangle$ 的最小元,即 $0 \prec b$,b不是0的控制元素,所以必存在 $b_1 \in A$ 使得 $0 \prec b_1 \prec b$ 。 b_1 又有两种情况:
 - (2.1) b_1 是原子。取 $a = b_1$ 即可。
- (2.2) b_1 不是原子。0是 $\langle A, \preceq \rangle$ 的最小元,即 $0 \prec b_1$, b_1 不是0的控制元素,那么必存在 $b_2 \in A$ 使得 $0 \prec b_2 \prec b_1 \prec b$ 。这里 $b_2 \neq b_1, b$ 。 b_2 又有两种情况, \dots 。

由于A是有限集合,这个过程不可能无限地进行下去。也就是说,在有限步之后 b_i 本身就是原子,取 $a=b_i$ 即可。证毕。

引理 8.3. 设 $\langle A, *, \oplus, ', 0, 1 \rangle$ 是有限布尔代数。b是A中的非零元素,假设 a_1, a_2, \cdots, a_k 是A中满足 $a_i \prec b$ 的所有原子,则 $b = a_1 \oplus a_2 \oplus \cdots \oplus a_k$ 。

证明: a_1, a_2, \cdots, a_k 是A的原子并且 $a_i \leq b$, $1 \leq i \leq k$ 。显然, $a_1 \oplus a_2 \oplus \cdots \oplus a_k \leq b$ 。下面证明 $b \leq a_1 \oplus a_2 \oplus \cdots \oplus a_k$ 。由于在有补分配格中 $c \leq d \Leftrightarrow c * d' = 0$ (证明留作习题),所以只需证明 $b * (a_1 \oplus a_2 \oplus \cdots \oplus a_k)' = 0$ 。

用反证法进行证明。假设 $b*(a_1\oplus a_2\oplus\cdots\oplus a_k)'\neq 0$ 。由引理8.2知,存在原子a使得 $a\preceq b*(a_1\oplus a_2\oplus\cdots\oplus a_k)'$ 。这里a是原子,且 $a\preceq b$, $a\preceq (a_1\oplus a_2\oplus\cdots\oplus a_k)'$,而 a_1,a_2,\cdots,a_k 是小于等于b的全部原子,所以 $a\in\{a_1,a_2,\cdots,a_k\}$ 。故 $a\preceq a_1\oplus a_2\oplus\cdots\oplus a_k$ 。因此, $a\preceq (a_1\oplus a_2\oplus\cdots\oplus a_k)'=0$,这与a是原子矛盾,所以假设不成立,因此 $b*(a_1\oplus a_2\oplus\cdots\oplus a_k)'=0$ 。

以上证明表明A的任意非零元素b都可以表示成满足 $a_i \leq b$ 的所有原子 a_1, a_2, \cdots, a_k 之和。下面证明这种表示形式是唯一的。假设 b_1, b_2, \cdots, b_l 是原子并且 $b = b_1 \oplus b_2 \oplus \cdots \oplus b_l$ 。由 \oplus 的定义知 $b_1, b_2, \cdots, b_l \leq b$ 且 b_1, b_2, \cdots, b_l 是原子,而 a_1, a_2, \cdots, a_k 是小于等于b的全部原子,故 $\{b_1, b_2, \cdots, b_l\} \subseteq \{a_1, a_2, \cdots, a_k\}$ 。如果l < k,即存在 $a_m \notin \{b_1, b_2, \cdots, b_l\}$,

$$a_m = a_m * b = a_m * (b_1 \oplus b_2 \oplus \cdots \oplus b_l)$$
$$= (a_m * b_1) \oplus (a_m * b_2) \oplus \cdots \oplus (a_m * b_1),$$

其中 a_m, b_i 都是原子,且 $a_m \neq b_i$,故 $a_m * b_i = 0$, $1 \leq i \leq l$ 。从而得出, $a_m = 0$,这与 a_m 是原子矛盾,故假设不成立,所以l = k,即b表示成原子之和的形式是唯一的。证毕。

引理 8.4. 在布尔格 $\langle A, \preceq \rangle$ 中若任取非零元素b和原子a,则 $a \preceq b$ 和 $b \preceq a$,两者必有一个且只有一个成立。

证明: $b n a \beta$ 别是A的非零元素和原子。显然, $0 \le a * b \le a$ 。由于a是原子,即a是0的控制元素,不可能存在非零元素b使得0 < a * b < a。所以a * b = a或0。如果a * b = a,则 $a \le b$ 。又在布尔格中 $a \le b$ '当且仅当a * (b')' = 0,即a * b = 0。所以当a * b = 00时,必有 $a \le b'$ 。而 $a \le b$ 和 $a \le b'$ 不可能同时成立,否则 $a \le b * b' = 0$,与a是原子矛盾。所以 $a \le b$ 和 $b \le a$ 两者必居其一且只有一个成立。证毕。

定理 8.19. 设 $\langle A, *, \oplus, ', 0, 1 \rangle$ 是有限布尔代数。若S是A中所有原子构成的集合,那么布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 与 $\langle \mathcal{P}(S), \cap, \cup, ^-, \emptyset, S \rangle$ 同构。

证明: 在两个布尔代数A与 $\mathcal{P}(S)$ 之间构造映射 $f: A \to \mathcal{P}(S)$, 对任意 $a \in A$,

由引理8.2知, A中非零元素a的像f(a)是唯一确定的。任取 $\{a_{i_1}, a_{i_2}, \cdots, a_{i_p}\}\subseteq S$, $\{a_{i_1}, a_{i_2}, \cdots, a_{i_p}\} \neq \emptyset$,令 $b = a_{i_1} \oplus a_{i_2} \oplus \cdots \oplus a_{i_p}$ 。显然, $b \in A$,且 $f(b) = \{a_{i_1}, a_{i_2}, \cdots, a_{i_p}\}$,故b是 $\{a_{i_1}, a_{i_2}, \cdots, a_{i_p}\}$ 的原像。所以,f是满

射。假设a,b都是 $\{a_{i_1},a_{i_2},\cdots,a_{i_p}\}$ 的原像,由引理8.3知, $a=a_{i_1}\oplus a_{i_2}\oplus\cdots\oplus a_{i_p}=b$,所以f是单射。因此,f是双射。下面证明f保持 $*,\oplus,'$ 运算。

 $(1)\ f(a*b) = f(a)\cap f(b)$: 当a = 0或b = 0时, $f(a*b) = f(0) = \emptyset$; 另一方面,a = 0或b = 0意味着 $f(a) = \emptyset$ 或 $f(b) = \emptyset$,所以, $f(a)\cap f(b) = \emptyset = f(a*b)$ 。

当 $a \neq 0$ 且 $b \neq 0$ 时, $f(a) = \{a_1, a_2, \cdots, a_k\}$, $f(b) = \{b_1, b_2, \cdots, b_l\}$ 。 也就是说, a_1, a_2, \cdots, a_k 是小于等于a的所有原子, b_1, b_2, \cdots, b_l 是小于等于b的所有原子。如果a * b = 0,则有 $f(a * b) = \emptyset$ 。假若 $f(a) \cap f(b) \neq \emptyset$,则存在 $x \in f(a) \cap f(b)$,即x是小于等于a的原子,同时也是小于等于b的原子,所以 $x \leq a * b = 0$,这与x是原子矛盾,故 $f(a) \cap f(b) = \emptyset = f(a * b)$ 。如果 $a * b \neq 0$,令 $f(a * b) = \{c_1, c_2, \cdots, c_m\}$,所以原子 $c_i \leq a * b \leq a$, $c_i \leq a * b \leq b$,故有 $c_i \in \{a_1, a_2, \cdots, a_k\}$ 且 $c_i \in \{b_1, b_2, \cdots, b_l\}$, $1 \leq i \leq m$ 。从而,

$$\{c_1, c_2, \cdots, c_m\} \subseteq \{a_1, a_2, \cdots, a_k\} \cap \{b_1, b_2, \cdots, b_l\}.$$

反之,任取 $x \in \{a_1, a_2, \cdots, a_k\} \cap \{b_1, b_2, \cdots, b_l\}$, $x \leq a \perp x \leq b$,于是 $x \leq a * b$ 。所以 $x \in \{c_1, c_2, \cdots, c_m\}$ 。这表明

$$\{a_1, a_2, \cdots, a_k\} \cap \{b_1, b_2, \cdots, b_l\} \subseteq \{c_1, c_2, \cdots, c_m\}.$$

综上, $\{c_1, c_2, \dots, c_m\} = \{a_1, a_2, \dots, a_k\} \cap \{b_1, b_2, \dots, b_l\}$, 即

$$f(a*b) = f(a) \cap f(b).$$

(2) $f(a \oplus b) = f(a) \cup f(b)$: 当a = 0或b = 0时, $a \oplus b = b$ 或 $a \oplus b = a$,故 $f(a \oplus b) = f(b)$ 或 $f(a \oplus b) = f(a)$;另一方面,a = 0或b = 0意味着 $f(a) = \emptyset$ 或 $f(b) = \emptyset$,故 $f(a) \cup f(b) = f(b)$ 或 $f(a) \cup f(b) = f(a)$ 。于是 $f(a \oplus b) = f(a) \cup f(b)$ 。

当 $a \neq 0$ 且 $b \neq 0$ 时,令 $f(a \oplus b) = \{d_1, d_2, \cdots, d_n\}$, d_1, d_2, \cdots, d_n 是满足 $d_i \leq a \oplus b (1 \leq i \leq n)$ 的全部原子。根据引理8.4,对于原子 d_i 和非零元素a,b, $d_i \leq a$ 和 $d_i \leq a'$ 有且只有一个成立; $d_i \leq b$ 和 $d_i \leq b'$ 有且只有一个成立。这样就有四种组合:1) $d_i \leq a$ 且 $d_i \leq b$,2) $d_i \leq a$ 且 $d_i \leq b'$,3) $d_i \leq a'$ 且 $d_i \leq b$,4) $d_i \leq a'$ 且 $d_i \leq b'$ 。其中第四种组合不可能,否

则由 $d_i \leq a'$ 和 $d_i \leq b'$,得到 $d_i \leq a' * b' = (a \oplus b)'$,而 $d_i \leq a \oplus b$,故有 $d_i \leq (a \oplus b)' * (a \oplus b) = 0$,与 d_i 是原子矛盾。在其他三种组合中,或者 $d_i \leq a$ 成立或者 $d_i \leq b$ 成立,即 $d_i \in \{a_1, a_2, \cdots, a_k\} \cup \{b_1, b_2, \cdots, b_l\}$,所以 $\{d_1, d_2, \cdots, d_n\} \subseteq \{a_1, a_2, \cdots, a_k\} \cup \{b_1, b_2, \cdots, b_l\}$ 。反之,任取 $x \in \{a_1, a_2, \cdots, a_k\} \cup \{b_1, b_2, \cdots, b_l\}$,显然 $x \leq a \leq a \oplus b$,求 $d \leq a \oplus b$,于是 $d \in \{d_1, d_2, \cdots, d_n\}$,从而 $d \in \{a_1, a_2, \cdots, a_k\} \cup \{b_1, b_2, \cdots, b_l\}$,即

$$f(a \oplus b) = f(a) \cup f(b).$$

(3) $f(a')=\overline{f(a)}$: 当a=1时, $f(a')=f(0)=\emptyset$; 而 $\overline{f(a)}=\overline{S}=\emptyset$,所以 $f(a')=\overline{f(a)}$ 。

当 $a \neq 1$ 时, $f(a') \neq \emptyset$ 。这时对于原子x,

$$x \in f(a') \Leftrightarrow x \leq a' \Leftrightarrow x \leq a$$
不成立 $\Leftrightarrow x \notin f(a) \Leftrightarrow x \in \overline{f(a)}$,

由此得到 $f(a') = \overline{f(a)}$ 。

由以上讨论可知,f是从布尔代数A到 $\mathscr{P}(S)$ 的同构映射,所以两个布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 与 $\langle \mathscr{P}(S), \cap, \cup, ^-, \emptyset, S \rangle$ 同构。证毕。

从以上讨论可知,有限布尔代数中集合A的元素个数是 2^n ,其中n就是布尔代数A中的原子个数。任何具有 2^n 个元素的布尔代数都是同构的。

8.4.5 布尔环

在布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 中,现在分别看其中一个二元运算。 $\langle A, * \rangle$ 中,*满足交换律和结合律。对于A中任意元素a均有a*1=a,所以1是*运算的单位元。对于元素a,如果存在 $b \in A$ 使a*b=1,那么 $a=a \oplus (a*b)=a \oplus 1=1$,也就是说集合A中只有当a=1时有关于*运算的逆元,所以 $\langle A, * \rangle$ 构成含幺半群。 $\langle A, \oplus \rangle$ 中, \oplus 满足交换律和结合律。对于A中任意元素a均有 $a \oplus 0=a$,所以0是 \oplus 运算的单位元。对于元素a,如果存在 $b \in A$ 使 $a \oplus b=0$,那么 $a=a*(a \oplus b)=a*0=0$,也就是说集合A中只有当a=0时有关于 \oplus 运算的逆元,所以 $\langle A, \oplus \rangle$ 也是含幺半群。

如果同时看A上的两个二元运算,根据上述分析, $\langle A, *, \oplus \rangle$ 是布尔格,但不能构成环。为此在A上定义新的二元运算+,对任意的 $a,b \in A$,

$$a+b=(a*b')\oplus (a'*b).$$

易见,+运算满足交换律和结合律。0是零元。由于 $a+a=(a*a')\oplus(a'*a)=0\oplus 0=0$,所以a是a的负元。从而A,+B之换群。又

$$(a+b)*c = ((a*b') \oplus (a'*b))*c = (a*b'*c) \oplus (a'*b*c),$$

$$(a*c) + (b*c) = ((a*c)*(b*c)') \oplus ((a*c)'*(b*c))$$

$$= (a*c*(b' \oplus c')) \oplus ((a' \oplus c')*b*c)$$

$$= (a*b'*c) \oplus (a'*b*c),$$

所以(a+b)*c = (a*c)+(b*c),即*对+有右分配律。同理可证c*(a+b) = (c*a)+(c*b),即*对+有左分配律。

因此, $\langle A, +, * \rangle$ 是环,称之为**布尔环**。在布尔环中,对A中任意元素a,有 $a^2 = a * a = a$ 。

反之,已知 $\langle A,+,* \rangle$ 是布尔环,重新定义二元运算 \oplus 和一元运算',对 $a,b \in A$.

$$a \oplus b = a + b + a * b,$$
$$a' = 1 + a,$$

那么 $\langle A, *, \oplus, ', \cdots \rangle$ 构成布尔代数。该布尔代数最小元和最大元的求解留作习题。

8.4.6 布尔表达式

定义 8.17. 布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 上的布尔表达式定义为:

- (1) A中任何元素都是布尔表达式;
- (2) 任何变元是布尔表达式:
- (3) 若 e_1 和 e_2 是布尔表达式,则 e'_1 ,($e_1 \oplus e_2$),($e_1 * e_2$)是布尔表达式。

有n个不同变元的布尔表达式叫做n元布尔表达式,记作 $E(x_1,x_2,\cdots,x_n)$, 其中 x_1,x_2,\cdots,x_n 是变元。用A中元素代替 x_i ($1 \le i \le n$),则 $E(x_1,x_2,\cdots,x_n)$ 就 是A中的一个元素。所以E是从 A^n 到A的映射。如果 $f:A^n \to A$,f能用A上的n元布尔表达式表示,那么f就叫做n元**布尔函数**。

 $\langle \{0,1\}, \cdot, +, ^-, 0, 1 \rangle$ 是二元集合上的布尔代数。任何n元开关函数f: $\{0,1\}^n \to \{0,1\}$,与函数值1对应的n元有序数组都能写出小项表达式。因此,每个开关函数都是布尔函数。可以证明,一般的布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 上的任意布尔表达式 $E(x_1, x_2, \cdots, x_n)$ 可以表示成

$$E(x_1, x_2, \cdots, x_n) = \bigoplus_{(a_1, a_2, \cdots, a_n)} E(a_1, a_2, \cdots, a_n) * x_1^{a_1} * x_2^{a_2} * \cdots * x_n^{a_n},$$

其中 $a_i = 0$ 或1, $x_i^0 = x_i'$, $x_i^1 = x_i$, $1 \le i \le n$ 。

下面举例说明并非所有从 A^n 到A的映射都是A上的布尔函数。令 $A=\{0,1,2,3\}$,布尔代数 $\langle A,*,\oplus,',0,1\rangle$ 的Hasse图如图8.10,其中2与3互为补元。令映射 $g:A^2\to A$ 定义如表8.1所示。

图 8.10: 四阶布尔代数的Hasse图

如果q是布尔函数,应该能有下面的小项表达式

$$g(x_1, x_2) = (g(1, 1) * x_1 * x_2) \oplus (g(1, 0) * x_1 * x_2')$$
$$\oplus (g(0, 1) * x_1' * x_2) \oplus (g(0, 0) * x_1' * x_2')$$
$$= (x_1 * x_2) \oplus (x_1 * x_2') \oplus (x_1' * x_2').$$

当 $x_1 = x_2 = 3$ 时,有

$$g(3,3) = (3*3) \oplus (3*2) \oplus (2*2) = 3 \oplus 0 \oplus 2 = 1,$$

与g的定义中g(3,3)=2(见表8.1)不同,矛盾。故g不是布尔函数。

表 8.1: 从 A 2 到 A 的映射

$g(i, j) \setminus j$	0	1	2	3
0	1	0	0	3
1	1	1	0	3
2	2	0	1	1
3	3	0	2	2

习题

1. 令 $R_1 = \{x | x \in \mathbb{R}, 0 \leq x \leq 1\}$, $\leq \mathbb{R}$, 上的小于等于关系。证明 $\langle R_1, \leq \rangle$ 是格。该格的*和 \oplus 运算是什么?

- 2. $\langle A, \preceq \rangle$ 是格, a, b, c 是A 中任意元素, 证明:
- (1) a * b = b * a, $a \oplus b = b \oplus a$;
- $(2) \ a*(a \oplus b) = a, \ a \oplus (a*b) = a.$
- 3. 证明: 在格中, 如果 $a \leq b$, $c \leq d$, 则有 $a * c \leq b * d$ 。
- 4. 证明: 在格中, 如果 $a \leq b \leq c$, 则有
- (1) $a \oplus b = b * c$;
- (2) $(a * b) \oplus (b * c) = b = (a \oplus b) * (b \oplus c)$.
- 5. 证明: 在格中,

$$(a*b) \oplus (c*d) \prec (a \oplus c) * (b \oplus d),$$

$$(a*b) \oplus (b*c) \oplus (c*a) \preceq (a \oplus b) * (b \oplus c) * (c \oplus a).$$

6. $\langle A, \preceq \rangle$ 是格。取A中的元素 $a, b, a \prec b$ 。令

$$B = \{x | x \in A, a \le x \le b\},\$$

证明: $\langle B, \preceq \rangle$ 是格。

- 7. $\langle A, *, \oplus \rangle$ 是格,A的元素个数大于1。如果该格有最小元0和最大元1,那么它们必然是A的不同元素。
- 8. 设 $S = \{1,3,5,15,25,75\}$, $\langle S, | \rangle$ 是格。请列出S中有补元的元素并写出它们的补元。
 - 9. 在具有两个或更多个元素的格中, 没有元素自身是自身的补元。
 - 10. 具有三个或更多个元素的线性序集不是有补格。
 - 11. 五阶格中哪些是分配格?
- 12. 证明: 格A是分配格当且仅当对任意 $a,b,c\in A$, $(a*b)\oplus (b*c)\oplus (c*a)=(a\oplus b)*(b\oplus c)*(c\oplus a)$ 。
 - 13. 证明: 在有补分配格中,
 - (1) $a \leq b \Leftrightarrow a * b' = 0$;
 - (2) $b' \prec a' \Leftrightarrow a' \oplus b = 1$.
- 14. f是从集合A到集合B的映射。令 $S=\{f(c)|c\in \mathcal{P}(A)\}$ 。证明: $\langle S, \subset \rangle$ 是 $\langle \mathcal{P}(B), \subset \rangle$ 的子格。
- 15. $\langle A, \preceq \rangle$ 是分配格。 $a, b \in A$ 且 $a \prec b$ 。令 $B = \{x | x \in A, a \preceq x \preceq b\}$ 。证明: $f(x) = (x \oplus a) * b$ 是从A到B的同态映射。
 - 16. $\langle S, \preceq \rangle$ 是模格, $a, b \in S$ 。令

$$X = \{x | x \in S, a * b \leq x \leq a\},$$
$$Y = \{y | y \in S, b \leq y \leq a \oplus b\},$$
$$f = x \oplus b.$$

证明: f是从X到Y的同构映射。

- 17. 在布尔代数 $\langle A, *, \oplus, ', 0, 1 \rangle$ 中, 对A中任意元素a, b,
- (1) $a \oplus (a' * b) = a \oplus b$;
- $(2) \ a * (a' \oplus b) = a * b.$
- 18. 证明: 在布尔代数中, $x \prec y \Leftrightarrow y' \prec x'$ 。
- $19. \langle A_1, *, \oplus, ', 0, 1 \rangle = \langle A_2, \wedge, \vee, ^-, \widetilde{0}, \widetilde{1} \rangle$ 是两个布尔代数。证明它们的直积 $\langle A_1 \times A_2, \widetilde{*}, \widetilde{\oplus}, ^\circ, (0, \widetilde{0}), (1, \widetilde{1}) \rangle$ 是布尔代数。
- 20. A,B是两个不相交的集合。任取 $S\subseteq A,\ T\subseteq B,\ \diamondsuit f(S\cup T)=(S,T)$ 。证明: f是布尔代数 $\langle \mathcal{P}(A\cup B),\subseteq \rangle$ 到 $\langle \mathcal{P}(A)\times \mathcal{P}(B),\subseteq \rangle$ 的同构映射。

- 21. 找出8阶布尔代数的所有子代数。
- 22. \(\{1,2,3,4,6,12\}, |\)和\\(\{1,2,3,4,6,8,12,24\}, |\)是布尔代数吗?

 $a \prec b_1 \oplus b_2 \oplus \cdots \oplus b_r \Leftrightarrow$ 存在i, 使得 $a = b_i$, 1 < i < r.

24. 若 b_1, b_2, \dots, b_n 是有限布尔代数中的所有原子,证明:

$$y = 0 \Leftrightarrow \forall i, y * b_i = 0, 1 \le i \le n.$$

 $25.\ \langle A,+,* \rangle$ 是布尔环。在A上定义二元运算 \oplus 和一元运算'如下,对 $a,b \in A$,

$$a \oplus b = a + b + a * b,$$
$$a' = 1 + a.$$

证明: $\langle A, *, \oplus, ', \cdots \rangle$ 构成布尔代数,并确定其最小元和最大元。

Bibliography