Math 3500 Assignment #2 Solutions University of Lethbridge, Fall 2014

Sean Fitzpatrick

September 22, 2014

- 1. Let S and T be nonempty bounded subsets of \mathbb{R} .
 - (a) Prove that if $S \subseteq T$, then $\inf T \le \inf S \le \sup S \le \sup T$.

Solution: Suppose that S and T are nonempty subsets of \mathbb{R} . If $a = \inf T$, then $a \leq s$ for all $s \in S$, since if $s \in S$, then $s \in T$ and a is a lower bound for T. But this means that $\inf S \geq \inf T = a$, since $\inf S$ is the greatest lower bound. Similarly, the supremum of T is an upper bound for S, since $S \subseteq T$, so $\sup S \leq \sup T$, since $\sup S$ is the least upper bound of S. Finally, since S is nonempty, we can take any $s \in S$, and then (as we saw in class), we have $\inf S \leq s \leq \sup S$, by definition of the infimum and supremum. The result now follows by the transitivity of the order relation on \mathbb{R} .

(b) Prove that $\sup S \cup T = \max\{\sup S, \sup T\}$. (Do not assume that $S \subseteq T$ for part (b).)

Solution: Let $a = \sup S$ and $b = \sup T$. Let $c = \max\{a, b\}$, so that $c \ge a$ and $c \ge b$. If $x \in S \cup T$, then either $x \in S$, and $x \le a \le c$ or $x \in T$, and $s \le b \le c$. Therefore c is an upper bound for $S \cup T$.

If d is an upper bound for $S \cup T$ then, since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, d is an upper bound for both S and T. Thus $d \ge a$ and $d \ge b$, since a and b are the least upper bounds for S and T, respectively. Thus $d \ge max\{a,b\} = c$. Since d was an arbitrary upper bound, we can conclude that $c = \sup(S \cup T)$.

2. Let $\mathcal{B}[a,b]$ denote the set of all bounded functions defined on the interval [a,b]. (That is, for each $f \in \mathcal{B}[a,b]$, there exist constants $k,l \in \mathbb{R}$ such that $k \leq f(x) \leq l$ for all $x \in [a,b]$.) The *norm* of a function $f \in \mathcal{B}[a,b]$ is defined by

$$||f|| = \sup\{|f(x)| : x \in [a, b]\}.$$

Prove that $||f + g|| \le ||f|| + ||g||$ for any $f, g \in \mathcal{B}[a, b]$.

Solution: By the triangle inequality, for any $x \in [a, b]$ we have

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f|| + ||g||,$$

since $|f(x)| \le ||f||$ and $|g(x)| \le ||g||$ for all $x \in [a,b]$. Thus, ||f|| + ||g|| is an upper bound for $\{|f(x) + g(x)| | x \in [a,b]\}$. Since |f+g| is defined to be the *least* upper bound of this set, we have

$$||f + g|| \le ||f|| + ||g||,$$

as required.

Note: In this problem it's important to distinguish between the function f and its value f(x) at a particular $x \in [a,b]$. To establish that a particular fact holds for the function, you need to verify that it is true for all values of x.

3. Prove that if A is any nonempty open subset of \mathbb{R} , then $A \cap \mathbb{Q} \neq \emptyset$.

Solution: Suppose $A \subseteq \mathbb{R}$ is open, and $A \neq \emptyset$. (Again, note that A being open does **not** imply that A is an interval!) Then there exists and $a \in A$ and $\epsilon > 0$ such that $N_{\epsilon}(a) = (a - \epsilon, a + \epsilon) \subseteq A$. But since \mathbb{Q} is dense in \mathbb{R} , we know that there exists a $q \in \mathbb{Q}$ with $a - \epsilon < q < a + \epsilon$. Therefore $q \in N_{\epsilon}(a) \subseteq A$, so $A \cap \mathbb{Q} \neq \emptyset$.

- 4. For any set $S \subseteq \mathbb{R}$, let \overline{S} denote the intersection of all the closed sets containing S.
 - (a) Prove that \overline{S} is a closed subset of \mathbb{R} .

Solution: Let $\mathcal{F} = \{F \subseteq \mathbb{R} | S \subseteq F \text{ and } F \text{ is closed}\}$. We know that the intersection of any family of closed subsets is closed (e.g. via Corollary 3.4.11 in the text). Therefore, $\overline{S} = \bigcap_{F \in \mathcal{F}} F$ is closed.

(b) Prove that \overline{S} is the *smallest* closed set containing S. That is, show that $S \subseteq \overline{S}$, and if C is any closed set containing S, then $\overline{S} \subseteq C$.

Solution: Let C be any closed set containing S. Then $C \in \mathcal{F}$, and we know that for any collection of sets \mathcal{F} , the intersection $\bigcap_{F \in \mathcal{F}} F$ is a subset of each set in the collection. Thus, $\overline{S} \subseteq C$, as required.

(c) Prove that \overline{S} is equal to the closure of S.

Solution: Let cl S denote the closure of S. Since cl S is closed (e.g. via Theorem 3.4.17 in the text), and $S \subseteq \operatorname{cl} S$, we know that $\overline{S} \subseteq \operatorname{cl} S$, by part (b). Now, we need to show that $\operatorname{cl} S \subseteq \overline{S}$. If $x \in \operatorname{cl} S$, then either $x \in S$, in which case we have $x \in \overline{S}$, since $S \subseteq \overline{S}$, or x is a limit point of S. If we know that $x \in F$ for all $F \in \mathcal{F}$, then we'd have $x \in \overline{S}$ and we'd be done. Thus, it suffices to prove the following lemma:

Lemma: If x is a limit point of a set S, then $x \in F$ for any closed set F with $S \subseteq F$.

Proof: Suppose x is a limit point of S, and $S \subseteq F$, with F closed. Suppose that $x \notin F$. Then $x \in F^c$, the complement of F, which is open, since F is closed. Thus, there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq F^c$. But $F^c \subseteq S^c$, since $S \subseteq F$, which means that $N_{\epsilon}(x) \subseteq S^c$, or $N_{\epsilon}(x) \cap S = \emptyset$. Since this contradicts the assumption that x is a limit point of S, it must be the case that $x \in F$.

(d) Prove that if S is bounded, then \overline{S} is bounded as well.

Solution: If S is bounded, then $S \subseteq [a, b]$ for some $a, b \in \mathbb{R}$. But then [a, b] is a closed set containing S, so $[a, b] \in \mathcal{F}$ and thus $\overline{S} \subseteq [a, b]$ by part (b).

5. The Nested Intervals Theorem (from the September 10th worksheet, and also mentioned on Piazza) states that if $\{A_n : n \in \mathbb{N}\}$ is a collection of closed bounded intervals (of the form [a, b]), and we have $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$, then the intersection $\bigcap A_n$ is nonempty.

Show that the intervals A_n need to be **both** closed and bounded by giving examples where the theorem fails (that is, where $\bigcap A_n = \emptyset$), if

(a) The intervals A_n are closed, but not bounded.

Solution: Consider the intervals $A_n = [n, \infty)$, for $n \in \mathbb{N}$. Each A_n is closed, since $\partial A_n = \{n\} \subseteq A_n$, and the A_n are not bounded. Moreover, we have that

$$\bigcap_{n=1}^{\infty} A_n = \emptyset,$$

since for any $x \in \mathbb{R}$ there exists $N \in \mathbb{N}$ with N > x (by the Archimedean property of \mathbb{R}), and thus $x \notin A_N$, so x cannot be in the intersection.

(b) The intervals A_n are bounded, but not closed.

Solution: This time we let $A_n = (0, 1/n)$, for $n \in \mathbb{N}$. Each A_n is bounded, since we have $A_n \subseteq [0, 1]$ for all n, but none of the A_n are closed, since $0 \in \partial A_n$ for all n, but $0 \notin A_n$. We then have that

$$\bigcap_{n=1}^{\infty} A_n = \emptyset,$$

since any $x \in \mathbb{R}$ with $x \leq 0$ belongs to none of the A_n , and if x > 0, then there exists $N \in \mathbb{N}$ such that 1/N < x, by the Archimedean property of \mathbb{R} , and hence $x \notin A_N$, and thus $x \notin \bigcap A_N$.

Note: Pointing out that A_n is open is **not** the same as saying that it's not closed! There are sets which are both open and closed (i.e. \mathbb{R} and \emptyset), and many sets which are neither open nor closed (e.g. [0,1)).

6. An important theorem regarding compact sets is that if $S \subseteq \mathbb{R}$ is compact, and T is a closed subset of S, then T is compact. Prove this fact using:

3

(a) The definition of compactness.

Solution: We will use the same argument obtained during our class discussion: Let $S \subseteq \mathbb{R}$ be compact, and suppose $T \subseteq S$, with T closed in \mathbb{R} . Let $\{G_{\alpha}\}_{{\alpha} \in I}$ be

an open cover of T, for some index set I. We need to show that there are finitely many $\alpha_1, \ldots, \alpha_k \in I$ such that

$$T \subseteq G_{\alpha_1} \cup \cdots \cup G_{\alpha_k}$$
.

Since T is closed, $\mathbb{R} \setminus T$ is open. Since $T \cup (\mathbb{R} \setminus T) = \mathbb{R}$ and $T \subseteq \bigcup G_{\alpha}$, it follows that $S \subseteq (\bigcup G_{\alpha}) \cup (R \setminus T)$, so that $\{G_{\alpha}\}_{\alpha \in I} \cup \{\mathbb{R} \setminus T\}$ is an open cover of S. Since S is compact, this open cover must admit a finite subcover. Thus, we have

$$S \subseteq G_{\alpha_1} \cup \cdots G_{\alpha_k} \cup (\mathbb{R} \setminus T)$$

for some $\alpha_1, \ldots, \alpha_k \in I$. Since $T \cap (\mathbb{R} \setminus T) = \emptyset$, we must have $T \subseteq G_{\alpha_1} \cup \cdots \cup G_{\alpha_k}$, which is what we needed to show.

(b) The Heine-Borel theorem.

Solution: Let $S \subseteq \mathbb{R}$ be compact, and suppose $T \subseteq S$, with T closed in \mathbb{R} . Since S is compact, it is closed and bounded, by the Heine-Borel theorem. Since $T \subseteq S$, T must be bounded as well. (Any upper bound for S will be an upper bound for T, and likewise for lower bounds.) Since T is also assumed to be closed, we must have that T is compact, by the Heine-Borel theorem.