Trigonometric Fourier Series

Theorem

The orthonormal sequence $\varphi_n(t)=\frac{1}{\sqrt{2\pi}}e^{int}$ for $n\in\mathbb{Z}$ is complete in $L^2[-\pi.\pi]$. Thus, $\forall\,f\in L^2[-\pi.\pi],\,f$ can be written as:

$$f \sim \sum_{n=-\infty}^{\infty} \langle f, \varphi_n \rangle \varphi_n$$

Proving completeness is non-trivial and requires Fejér kernels.

Note that this is convergence in the ${\cal L}^2$ sense:

$$\left\| f - \sum_{n=-N}^{N} \left\langle f, \varphi_n \right\rangle \varphi_n \right\| \to 0$$

$$\int_{-\pi}^{\pi} \left| f(t) - \sum_{n=-N}^{N} \langle f, \varphi_n \rangle e^{int} \right|^2 dt \to 0$$

Meaning $S_n \stackrel{L^2}{\to} f$.

However, L^2 convergence does not guarantee pointwise convergence.

Theorem: Carleson

Fourier series of L^2 periodic functions converge pointwise a.e.