Diseño de Filtros digitales

Tema A3 - Primer Recuperatorio

$$H_1(\omega) = A_1(\omega)e^{-j\frac{N_1}{2}}$$

Itro FIR pasa bajos de Tipo II con fre

la respuesta en frecuencia de un filtro FIR pasa bajos de Tipo II con frecuencia de corte ω_{ϕ} $\phi_{7}\phi_{7}$ Por otro lado, sea $H_2(\omega)$ un segundo filtro tal que $h_2[n] = e^{j\pi n}h_1[n]$, donde $h_1[n]$ y $h_2[n]$ son $h_1[n]$ v $h_2[n]$ v $h_2[n]$ v $h_2[n]$ son $h_1[n]$ v $h_2[n]$ v hIn a responsible since the first $H_2(\omega) + 1/(\omega - \pi) = A_{4}\omega e^{-j\frac{N_1}{N_2}(\omega - \pi)} = A_{4}\omega e^{-j\frac{N_1}{N_2}(\omega - \pi)}$

- 1. Determine si $H_2(z)$ es un filtro con fase lineal generalizada. En caso afirmativa, determine el tipo de filtro FLG de $H_2(z)$ y exprese la función amplitud $A_2(\omega)$ en función de $h_1[n]$.
- 2. En un mismo gráfico, dibuje en forma aproximada $|H_1(\omega)|$ y $|H_2(\omega)|$. Justifique su res-
- 3. En un mismo gráfico, dibuje en forma aproximada $h_1[n]$ y $h_2[n]$. Justifique su respuesta.

