

Er = /Tr x 4) 2 mr c 2

Mr = $\frac{m_{\alpha} m_{\alpha}}{2m_{\alpha}} = \frac{1}{2} m_{\alpha} = 31.4 \text{ MeV}$ and at $\frac{1}{2} m_{\alpha} = \frac{1}{2} m_{\alpha} = 31.4 \text{ MeV}$ and at $\frac{1}{2} m_{\alpha} = \frac{1}{2} m_{\alpha} = 31.4 \text{ MeV}$ as this is a purely stong reaction, let's given that it know that standard form for a non-reconsist reaction, namely, a center energy

 $E_0 = \left(\frac{E_G(kT)^2}{4}\right)^{1/3} \approx 83 \text{ keV} \left(\frac{T}{10^8}\right)^{1/3}$

Now the Be ground state is 91.8 keV above the 11ter 11te mun and so, unie TZ 108 k or so, the funion to form 8Be can begin to take place. Now this element is unitable and decays with 2.6 × 10-16 sec.

Me wowl go into detail here, but at high I & genorigh the formation of 8BE is fant enough relative for decays, that we can presume a statistical equilibrium.

"He + "He = 8Be.

My + My = M8

$$U_{4} = M_{4} c^{2} - kT \ln \left(\frac{g n_{0,4}}{n_{4}} \right)$$

$$U_{8} = M_{8}c^{2} - kT \ln \left(\frac{g n_{0,8}}{n_{8}} \right).$$

$$2M_{4}c^{2} - 2kT \ln \left(\frac{g n_{0,4}}{n_{4}} \right) = M_{8}c^{2} - kT \ln \left(\frac{g n_{0,8}}{n_{8}} \right)$$

$$\left[\frac{2m_{4}c^{2} - m_{8}c^{2}}{KT} \right] = 2 \ln \left(\frac{g n_{0,4}}{n_{4}} \right) - \ln \left(\frac{g n_{0,8}}{n_{8}} \right)$$

$$exp\left[\frac{(2m_{4}-m_{8})c^{2}}{kT}\right] = \left(\frac{gn_{Q,4}}{n_{4}}\right)^{2}\frac{n_{8}}{gn_{Q,8}}$$

$$N_{Q} = \left(\frac{2\pi m_{k}T}{h^{2}}\right)^{3/2}$$

$$\exp\left[\frac{f_2m_4-m_8)c^2}{kT}\right] = \frac{n_8}{n_4^2} \left(\frac{2\pi m_4 kT}{k^2}\right)^2 \left(\frac{m_4}{2m_4}\right)^3$$

$$= \frac{1}{n_y^2} = 2^{3/2} \left(\frac{h^2}{2\pi m_x k_T} \right)^{3/2} \left(\frac{-1m_8 - 2m_y c^3}{KT} \right)$$

189

Now, if Marxing $S = 10^4 \text{ ar/cm}^3 \text{ uf}$ Pure Then $S = 1.5 \times 10^{27} \text{ cm}^{-3}$ and $N_8 = 20.1-6/10^8 \text{ }/3 \text{ }/3$

 $\frac{N_8}{N_4} = 2.8 \times 10^{-6} \left(\frac{10^8}{T}\right)^{\frac{3}{6}} \left(\frac{3}{10^4}\right) \exp\left[-\frac{91.8 \text{ keV}}{\text{KT}}\right]$

 $\frac{n_8}{n_4} = 2.8 \times 10^{-6} \left(\frac{10^8}{T}\right)^{3/5} \left(\frac{9}{10^4}\right) e \times p \left(-\frac{10.64}{T8}\right)$

So at 2 × 10° we get 10°° of the Nuclei are spe. Now, we want to see if there is anything we can do with this. Inded there is something, which is one more a cupture, name

x + 8Be > 12C + 8

7.366 8Be+4He

7.644 > energy difference = 280 keV.

 $E_{G} = (\pi \times 2.4)^{\frac{2}{3}} 2c^{\frac{2}{3}} m_{p}$ $M_{r} = \frac{m_{4} m_{8}}{12 m_{p}} = \frac{32}{12} m_{p} = \frac{8}{3} m_{p}$

E=168 MeV

=> Eo= 146 KeV / T/108 3/3 = 231 W

Now, Hoyle made the brilliant suggestion that there must be an excited state in the month of an excited state in a non-removed to, and the contest for a non-remove too slow. How a such a state was found namely the one at 7.644 MeV. In this case the itex state can actually reach equilibrium so that we get SAHA abundance agges,

4 He + 8 Be = 12C*

In which come we could also just write down

4He+4He+4He= 12C*

 $C^{2}m_{12}^{*} = 3m_{y}c^{2} + 3\pi v \text{ keV}$ $\int_{-\infty}^{\infty} excess energy.$

Now, the 1°C* nucleus almost always decoyn to 11te+ Be as that reaction is purely strong. However lets first find the abundance of the

$$\frac{3m_{4}c^{2}-6k\pi ln\left(\frac{9n_{0.4}}{n_{y}}\right)}{8m_{4}c^{2}-m_{1.2}c^{2}}=ln\left[\frac{n_{12}a_{1.2}}{n_{12}a}+\frac{n_{4}a_{12}}{n_{4}a}\right]$$

$$\frac{3m_{4}c^{2}-m_{1.2}c^{2}}{kT}=ln\left[\frac{n_{12}a_{12}}{n_{12}a}+\frac{n_{4}a_{12}}{n_{4}a}\right]$$

$$\exp\left(\frac{(3m_{4}-m_{12})c^{2}}{kT}\right)=\frac{n_{12}}{n_{4}}-\frac{n_{4}a_{12}}{n_{4}a}$$

$$but \qquad n_{0}=\left(\frac{2\pi m_{1}kT}{h^{2}}\right)^{2}/a$$

$$\frac{n_{12}}{n_{4}}=\frac{3h_{12}}{n_{4}}=\frac{3h_{12}}{2\pi m_{4}kT}exp\left(\frac{3m_{4}-m_{12}}{kT}\right)$$

$$\frac{n_{12}}{n_{4}}=\left(\frac{g}{4m_{p}}\right)^{3}\sqrt{\frac{3}{2\pi m_{4}kT}}exp\left(\frac{44}{Tg}\right)$$

$$\frac{n_{12}}{n_{4}}=5.2\times 10^{-10}\left[\frac{g}{10^{5}}\right]^{2}\left(\frac{10^{8}}{Tg}exp\left(\frac{44}{Tg}\right)\right)$$

Now, this is the steady www, state population of 'act of Now,

$$T_{\rm rad} = 3.67 \,\text{meV}$$
 $r = \frac{\Gamma}{\hbar} = 5.56 \,\text{xio}^{12}$

The 12C* - 12C (g.s.) with 1 = 1.79x1013

mean time of T= h/r. = 1.79x1013

so which is much slower than
the decay of particles to
The Particles to
The Production
of 12C in g.s. is thus just

$$\frac{dn_{12}}{dt} = \frac{n_{12}^{*} \Gamma}{\tau}$$

Which gives us an energy release of 7.65 MeV, 50 we get

$$\frac{\text{ergs}}{\text{cm}^3 \cdot \text{Sec}} = \frac{n_{\text{b}}^{\text{t}} E}{T}$$

$$E = \frac{1}{S} \frac{n_{12}^{*}E}{T} = \frac{n_{12}^{*}(E)}{n_{11}(E)} \frac{1}{T}$$

 $E = 5.3 \times 10^{21} \frac{\text{ergs}}{\text{gr.sec}} \left[\frac{3}{10^{5}} \right]^{2} \left(\frac{10^{8}}{10^{8}} \right)^{3}$ exp (- 44/

Le Amost drumatique take protofold of sixty Let 2 crude masive He s

188 N

The only other competing renttion going or is X+12C > 160+8

And tpically we find a little of bothe going on. The higher reaction get tougher For Example. (Ev= (Trx 2, 22)2mrc2)=782kev[2,23]m example. EG (MeV) Eo [T=2x1V) exp(-3/4kT)

X + 12C 424. 315 keV 1.3 x10-24

5,5 x10-38 at 160 80415 390

460 1.5 ×10-44 x+20Ne 1310.0

So the additional reactions one favorably with 32-12 Centley leading 2 C + 160.

So the final products of Helina burning are 120 the Mix of the mix clerending on where in (9, T) space things are happening.

Helinu Burning in Marrison Stan

There zoon across during the kH contraction of the code until Helium igniter (no on-degenerate environment.

is The picture for the marrive stares

There stars undergo multiple loops during the the burning phase and all. Rathere, I will not go into just sketch:

Rathere, I will sketching

5/Mu

1841

the core generates LHe = Lo (MHe) 11" 1 = 24 Lo [8 Mma] + () (+ 8 / M3 2983 + 4 + 8 - 26)] Helium Main seguence which would look like L × M3w4 LH (MHE) = (1/3) = 24 D/log L= 1,3 We can imagine constructing what is called a constructing Main segment, have MHC &M MH (1-1)M

So Something like: HC 1-1-164 Burning. now + not just much detail go sketch this for 4-0-2 1=0,9 He Ms HMs. The stan live slightly longer while He burning than you would imagine. This is mostly due to harming of He extensive should Coops back & forth in the HR distribution and the will not go into Reminder on

e-deg E05

Px 85/3

Lo Rc x 1/3

and the second s