HW5

R06921062 蘇楷鈞

Default setting

■ Feature extractor

Resnet50 , training on Imagenet. Feature shape is [1,1,2048].

ReadShortVideo(downsample_factor=12,rescale_factor=1)

Slice Video until length is shorter than 50.

Objective function	Optimizer	Batch size	Earlystopping	Max time stamp
Categorical	Adam	32	25	50
Cross-Entropy	lr=1e-4			

Learning curve

■ Comment

最好的準確率為 0.47388,在考量 CNN 缺少像 RNN 一樣讀取時間資訊的架構,因此想說已個動作的資訊融合來找出屬於這動作的 feature,因此設計兩個 fully-connected 的模型來分別輸出動作資訊以及其權重,最後做 weight-sum 取出資訊。而這樣的架構也比直接取平均來的好。

• Problem 2 : Trimmed action recognition (55%)

Describe RNN models

Model setting

Objective function	Optimizer	Batch size	Earlystopping	Max time stamp
Categorical	Adam	32	25	50
Cross-Entropy	lr=1e-4	32	25	30

Learning curve

Visualize

Comment

RNN 模型和 CNN 的模型,除了很明顯地在 accuracy 上前者勝過後者,從模型取出的 feature(RNN 為 last state_h,CNN 為 weight-sum)來看,前者較能把各類別在空間中區隔開來,後者類別常混在一塊。以模型設計的角度來看,CNN 不包含時間資訊,而 RNN 則有時間上順序的資訊,以 take 和 put 這兩動作來說,就必須有時間上順序才知道是 take 還是 put。

	CNN	RNN
Accuracy	0.4738878143133462	0.586073500967118

Problem 3 : Temporal action segmentation (25%)

■ Describe Seq2Seq model

Model setting

Objective function	Optimizer	Batch size	Earlystopping	Max time stamp
Categorical	Adam	32	25	192
Cross-Entropy	lr=1e-4	32		

Preprocessing

把影片切成最小長度 160,對大 192,視影片總長而定,另外訓練資料集再亂數 挑取區間,訓練資料共有317筆。

Learning curve

Temporal action segmentation

影片擷取自 ContinentalBreakfast 第 199 張到第 459 張的圖片,上方是 ground truth, 中間是以間格 35 從第十張開始抽取,下方是預測的標籤,可以看出對於 other 都很好辨 認,take 也相較其他標籤,辨認出來的機會較高,可能是因為在資料集中,other 的 label 佔了多數。

Bonus

Trimmed action recognition

模型和第二題大致相同,但在過完第一層 LSTM 後,將最後的 state_h 和第一層 LSTM 的輸出做合併,經過 attention network 後產生 50x1 的向量,而不實作對每個 time stamp 的原因是,對每筆影片都只對應一個類別,因此以 attention 的架構去找出該注意 的時間點。

下圖是隨機取五筆 valid data 做實驗,發現大部分都給第一層 LSTM 最後的輸出最大的權重,可能是一層 LSTM 就足以產生出足夠的資訊,因此 attention network 幾乎都給後面的 time stamp 較大的權重。其 label 分別為[5:Put,7:Move Around,3:Take,3:Take,10:Transfer]。

■ Temporal action segmentation

將 Resnet50 最後一層 Conv2D 取出 feature map(8x10x2048)當 Seq2Seq 模型的 Input,將第一層 LSTM 每個時間點的 state_h(512)複製成 80x512,和 flatten feature map(80x2048)合併,經過 attention network(fully-connected 512>128>1)後,產生出 8x10x1 的 score 和 feature map 相乘(註:score 總合為 1),最後經過 global average 產生 2048 維的 feature。雖然準確率只有 0.54025,並沒有比第三題好,可能是加輸入的 feature 經過 attention 後分布可能更廣,在直接挪弄第二題的模型可能無法完整學習。

下圖代表著連續從 valid dataset 取出的 10 張相片所計算出的 score(每次影片的長度 為 1 60 至 192 不等),例如 open 就關注在開口附近,還有當要準備 take 時,會擴大注意範圍到手的動作。

Put Put Put Open Open Take Take Take Take