Réseau : modèle OSI

L. Nana Université de Bretagne Occidentale

Plan

- ✓ Introduction
- Concepts réseaux
- Modèle OSI
- Mise en œuvre de réseaux
- Réseau locaux
- Conclusion

Modèle OSI – Open System Interconnection

- Motivations et généralités
- Principes
- Encapsulation
- Protocoles
- Rôle des différentes couches

Motivations et généralités

- Modèle proposé en 1984 par l'ISO (International Standard Organization)
- Motivation: nécessité d'un modèle de référence permettant de répondre au besoin d'ouverture des réseaux
- Consiste en 7 couches réseau qui doivent être présentes sur chaque station souhaitant transmettre de l'information.

Motivations et généralités

- Chaque couche dispose de fonctionnalités propres et fournit des services aux couches adjacentes
- Très peu implémenté, mais sert toujours de référence pour identifier le niveau de fonctionnement d'un composant réseau: c'est par exemple le cas des protocoles TCP/IP dont l'usage est répandu.

Modèle OSI – Open System Interconnection

- Motivations et généralités
- Principes
- Encapsulation
- Protocoles
- Rôle des différentes couches

- Le modèle OSI est destiné à normaliser les échanges entre deux machines
- Il définit ce que doit être une communication réseau complète
- Le modèle est hiérarchique, avec un niveau d'abstraction croissant de la couche la plus basse (couche 1) à la couche la plus haute (couche 7).
- Les fonctions associées à chaque couche du modèle sont précisément définies

7-	APPLICATION
6	PRESENTATION
5-	SESSION
4-	TRANSPORT
3-	RESEAU
2-	LIAISON
1-	PHYSIQUE

Les sept couches du modèle OSI

- Chaque couche se comporte comme un prestataire de service pour la couche supérieure.
- Pour transmettre des données à une autre couche de même niveau, une couche doit constituer une information et lui faire traverser toutes les couches inférieures, chacune d'elle ajoutant un en-tête spécifique à ce qui devient une sorte de train, jusqu'à la couche physique qui achemine l'information vers celle du côté du destinataire.

 A l'arrivée du côté du destinataire, l'information remonte dans les couches supérieures et est décodée au fur et à mesure jusqu'à la libération des données à la couche de niveau équivalent à la couche émettrice.

Modèle OSI – Open System Interconnection

- Motivations et généralités
- ✓ Principes
- Encapsulation
- Protocoles
- Rôle des différentes couches

Encapsulation

- Lors de la transmission d'une donnée D_N par la couche N à la couche N-1, la couche N ajoute des consignes pour la couche N du destinataire sous forme d'entête E_N
- La donnée transmise par la couche N à la couche N-1 est donc la donnée D_{N-1} = (E_N,D_N)
- On parle d'encapsulation: D_N est encapsulée dans D_{N-1}
- Du côté de l'expéditeur, le processus d'encapsulation se poursuit jusqu'à la couche la plus basse: D₁= (E₂, E₃, ..., E_N, D_N)

Encapsulation

- Du côté du récepteur, la donnée D₁= (E₂, ..., E_N, D_N) est reçue par la couche 1 et remontée à la couche 2, qui extrait la consigne la concernant (entête E₂) et récupère puis remonte la donnée D₂ = (E₃, ..., E_N) à la couche 3 en respectant la consigne
- Le processus d'extraction d'entête, de récupération et remontée de donnée se poursuit jusqu'à la récupération de la donnée D_N par la couche N du récepteur.

Encapsulation

Encapsulation dans le modèle OSI

Modèle OSI – Open System Interconnection

- Motivations et généralités
- ✓ Principes
- Encapsulation
- Protocoles
- Rôle des différentes couches

Protocoles

- La concrétisation du modèle en couches OSI est faite à travers la définition de protocoles de communication
- Les protocoles précisent les formats de transmission de données à travers le réseau
- L'idéal théorique du modèle OSI est de mettre en œuvre un protocole par couche

Protocoles

 En pratique, il y a des protocoles qui sont mis en œuvre sur plusieurs couches, certains sur une seule couche et d'autres sur des parties de couches telles que définies dans le modèle OSI.

Modèle OSI – Open System Interconnection

- Motivations et généralités
- ✓ Principes
- Encapsulation
- ✓ Protocoles
- Rôle des différentes couches

Couche physique

- Transmission, sur un support physique, des bits de données (0 et 1) entre l'émetteur et le récepteur, sous forme de signaux électriques, électromagnétiques ou lumineux
- Définit le mode de propagation des signaux et gère les circuits physiques
- Exemples d'équipements faisant partie de la couche physique: modems, répéteurs, connectique de cartes réseaux, etc.

Couche liaison

- Traduction des données numériques en signal
- Organisation des bits de données en trames, avec des marqueurs de début et de fin
- Création d'un entête contenant les adresses physiques permettant d'identifier l'expéditeur et le destinataire
- Ajout d'un code de redondance cyclique (CRC Cyclic Redundancy Check) permettant de détecter certains problèmes de transmission : le destinataire recalcule le CRC et ne reçoit la trame que s'il est identique au CRC source
- Le modèle OSI propose une mise en œuvre High level Data Link Control (HDLC) pour la couche liaison

Couche réseau

- Gère le routage et l'acheminement des blocs de données à travers un ou plusieurs réseaux/sous-réseaux
- Routage: choix du meilleur chemin pour atteindre le destinataire, en se basant sur un coût calculé sur la base de critères (nombres de réseaux à traverser, durée du transport, coût de communication, charge de la ligne, ...).
- Acheminement: les blocs de données sont acheminés de la source jusqu'au destinataire
- Gère l'engorgement et la congestion.

Couche réseau

- Une adresse logique, différente de l'adresse physique, permet d'identifier un composant de manière globale
- Certains protocoles utilisent par exemple un numéro réseau et 1 numéro de poste dans ce réseau pour identifier les périphériques dans le réseau
- Suivant le protocole, le bloc de données transmis sur le réseau peut être nommé message, datagramme, cellule ou paquet

Couche réseau

Couche transport

- C'est le cœur du modèle OSI
- Fournit des mécanismes pour établir un mode connecté
- Ce mode permet de s'assurer que toutes les informations ont été correctement transmises :
 - 1 accusé de réception doit être transmis dans un délai (2 x durée normale d'1 aller-retour), pour chaque paquet reçu
 - Le paquet est considéré égaré et retransmis si l'accusé de réception n'est pas reçu dans les délais fixés

Couche transport

- Le mode connecté ajoute de la fiabilité dans la transmission des données
- Le protocole le plus connu au niveau de la couche transport est TCP (Transport Control Protocol)

Couche session

- Elle gère également un mode connecté
- Elle gère les points de synchronisation (sauvegarde de contextes et sous-contextes) permettant la reprise en cas d'incident
- Elle gère la connexion à une ressource partagée sur le réseau
- Les appels de procédures distantes (RPC Remote Procedure Call) constituent un protocole au niveau de la couche session

Couche présentation

- Assure la mise en forme des données (syntaxe et sémantique de l'information): paramètres internationaux, pages de codes, formats divers, etc:
 - Exemple typique: langage HTML (HyperText Markup Language)
- Peut également exploiter les fonctions de chiffrement et de compression, par exemple:
 - Codage MIME (Multipurpose Internet Mail Extensions)
 - Codage ASCII (American Standard Code for Information Interchange)
 - ASN.1 (Abstract Syntax Notation number One)

La couche application

- Assure l'interface de communication avec l'utilisateur, à travers des logiciels adéquats
- Gère la communication entre applications, par exemple celles du courrier électronique.
- Exemples d'implémentations disponibles:
 - FTAM (File Transfer Access and Management)
 - CMIP (Common Management Information Protocol): suivi ou administration à distance de ressources
 - MHS (Message Handling Systems) ou X.400 : méthode normalisée internationale pour le transport de messages

Modèle OSI – Open System Interconnection

- Motivations et généralités
- ✓ Principes
- Encapsulation
- Protocoles
- Rôle des différentes couches

Plan

- Introduction
- Concepts réseaux
- ✓ Modèle OSI
- Mise en œuvre de réseaux
- Réseau locaux
- Conclusion

Mise en œuvre de réseaux: approche pragmatique du modèle OSI

- Couche physique
- Couche liaison de données
- Couche réseau
- Couche transport
- Couches supérieures

Niveau 1 - Couche physique

- Cas de 2 ordinateurs souhaitant partager des informations à travers un câble les reliant directement
- Il s'agit d'une connexion point à point semblable à celle téléphonique:
 - Échange simultané possible dès établissement de la connexion
 - Aucun besoin de préciser qui est le destinataire, car aucune ambiguïté
 - Aucun identifiant d'émetteur/récepteur n'est nécessaire

Niveau 2 - Couche liaison de données

Cas d'ordinateurs en réseau local
 Ethernet en étoile, avec paire torsadée

Couche liaison de données

- Tous les ordinateurs sont équipés d'une carte réseau
- La carte réseau :
 - Est l'interface entre l'ordinateur (système d'exploitation et configuration logicielle réseau) et l'extérieur
 - Agit comme composant d'interconnexion entre l'ordinateur et l'extérieur
 - Sert à communiquer avec les autres entités connectées au réseau

Couche liaison de données

- Un applicatif logiciel réseau nommé pilote réseau permet de faire la liaison entre la carte réseau et les couches logicielles supérieures
- Le lien avec la couche physique se matérialise par le connecteur disponible sur la carte réseau

Couche liaison de données

- Lorsqu'un ordinateur souhaite envoyer des données il utilise sa carte réseau:
 - Un signal correspondant aux données est émis à partir de la carte réseau émettrice à destination de toutes les cartes réseaux présentes
 - Contrairement au cas de la liaison directe, à ce niveau, un identifiant unique doit être défini pour chaque carte réseau
 - Dans chaque trame envoyée, il est nécessaire de préciser le destinataire; l'émetteur se fait également connaître et son identifiant est inclus dans la trame
 - Un système de nommage est donc utile: on parle d'adresse physique pour rappeler le lien avec la carte réseau

Couche liaison de données

- Toute carte réseau Ethernet dispose d'une adresse physique, également appelée adresse MAC (Medium Access Control), qui constitue son identifiant de niveau 2.
- Exemple d'adresse MAC : 08:00:27:05:a1:88
- Remarque:
 - Les niveaux 1 et 2 forment souvent, pour l'administrateur réseau, une couche unique dite de base: provient des protocoles TCP/IP très utilisés, dans lesquels ces 2 niveaux sont fusionnés dans une couche appelée Interface réseau.

Couche liaison de données

Remarque:

- Le niveau 2 concerne un environnement où les équipements matériels (carte réseau, concentrateurs) et la méthode d'accès au support physique restent les mêmes.
- Un réseau de niveau 2 est qualifié par son débit, avec des trames dont les longueurs maximales et minimales sont connues.

Niveau 3 - Couche réseau

- Permet l'interconnexion de réseaux physiques différents
- Dans le modèle TCP/IP, il constitue la deuxième couche appelée couche Internet dans laquelle on retrouve IP.

- L'adresse logique, qui permet d'identifier un composant du réseau, définit une décomposition hiérarchique à 1 niveau: une composante « numéro du réseau » et 1 composante « numéro de l'hôte » dans le réseau.
- Le principe est semblable à celui des adresses de maisons:

Réseau 👄 Ensemble de maisons sur une rue

Adresse du réseau ⇔ la rue

Machine du réseau ⇔ Maison sur la rue

Adresse d'une machine \Leftrightarrow adresse de la maison

Notons:

- ADR1 = adresse logique du réseau 1

- ADR2 = adresse logique du réseau 2

Les adresses logiques des hôtes seraient:

- (ADR1, 1) pour l'hôte 1 du réseau 1
- (ADR1, 2) pour l'hôte 2 du réseau 1
- (ADR2, 1) pour l'hôte 1 du réseau 2
- (ADR2, 2) pour l'hôte 2 du réseau 2

- Les hôtes peuvent être des ordinateurs, des imprimantes, des box internet, des routeurs.
- Dans un adressage de type IPv4, on pourrait avoir par exemple
 - 192.168.1.1, 192.168.1.2 pour les 2 hôtes du réseau 1, où 192.168.1 correspond à la partie « adresse du réseau » et le dernier chiffre à l'adresse de la machine.
 - 192.168.2.1 et 192.168.2.2 pour les 2 hôtes du réseau 2, où où 192.168.2 correspond à la partie « adresse du réseau » et le dernier chiffre à l'adresse de la machine.

- Intersection de 2 réseaux analogue à l'intersection de 2 rues.
- Transfert de données d'un réseau logique vers 1 autre :
 - Assuré au niveau réseau par une passerelle: la passerelle par défaut représente le moyen de sortie du réseau.
 - Nécessite que l'information soit spécifiée dans chaque hôte
 - La passerelle peut également être qualifiée de routeur

- Dans le schéma précédent, R est une passerelle entre le réseau 1 et le réseau 2.
 - Comme une maison à l'intersection de 2 rues, R a une adresse logique au sein du réseau 1 (ADR1, 3) par exemple et 1 adresse logique au sein du réseau 2 (ADR2, 3) par exemple et peut donc se charger de transférer les informations entre les 2 sous-réseaux.
- Remarque: un sous-réseau peut avoir plusieurs passerelles (cas d'intersections avec plusieurs autres sous-réseaux).

- Transmission d'un datagramme entre 2 hôtes: 2 cas à distinguer
 - L'émetteur et le destinataire sont sur le même sous-réseau: la communication est de niveau 2 car aucune sortie du sous-réseau n'est nécessaire
 - L'émetteur et le destinataire sont sur des sousréseaux distincts: la communication implique le niveau 3
 - L'émetteur peut distinguer les 2 cas en comparant l'identifiant réseau présent dans son adresse à celui du destinataire.

Transmission de datagramme au sein d'un sous-réseau

- Pour obtenir l'adresse MAC du destinataire à partir de son adresse logique IPv4, l'émetteur utilise le protocole ARP (Address Resolution Protocol):
 - envoi d'une courte trame à tous les hôtes de son sous-réseau dans laquelle:
 - l'adresse physique du destinataire est remplacée par une adresse spéciale (exemple: FF:FF:FF:FF:FF) signifiant que tous les hôtes sont concernés.
 - Il demande au destinataire possédant l'adresse logique de donner son adresse physique.

Transmission de datagramme au sein d'un sous-réseau

- L'hôte concerné répond et envoie son adresse physique
- L'émetteur utilise son adresse MAC et celle du destinataire, ainsi que son adresse logique et celle du destinataire, pour construire le datagramme et le transmettre au destinataire.

Transmission de datagramme à un hôte d'un autre sous-réseau

- Une recherche de l'adresse physique du routeur est effectuée si elle n'est pas encore connue.
- L'émetteur transmet ensuite le datagramme au routeur
- Le routeur possède une table de routage contenant les informations vers le destinataire ou vers le prochain routeur.

Transmission de datagramme à un hôte d'un autre sous-réseau

- Le routeur vérifie dans sa table de routage, si le destinataire est dans un même sousréseau que lui et si c'est le cas, il reconstruit un datagramme et le lui transmet.
- Si ce n'est pas le cas, le routeur vérifie s'il y a dans sa table de routage un chemin et donc un routeur adjacent permettant d'atteindre le sous-réseau du destinataire.
- Dans le cas défavorable, le routeur met fin à la communication et informe l'émetteur de l'impossibilité de joindre le destinataire.

Transmission de datagramme à un hôte d'un autre sous-réseau

- Dans le cas favorable, le routeur demande lui-même l'adresse physique correspondant à la passerelle de destination s'il ne l'a pas, puis construit une nouvelle trame contenant les informations du destinataire final et la lui transmet.
- Remarque: une table de routage peut contenir un chemin de routage par défaut. Lorsqu'aucun chemin vers le destinataire n'est disponible dans la table, ce dernier est systématiquement utilisé.

Niveau 4 - Couche transport

- Dans le modèle TCP/IP, constitue la 3^{ème} couche
- Les niveaux 3 et 4 sont parfois regroupés sous l'appellation couches moyennes
- Les applications de type client/serveur utilisant TCP/IP peuvent utiliser 2 modes de transport:
 - Connecté, grâce à TCP (Transport Control Protocol)
 - Non connecté, ou datagramme, avec UDP (User Datagram Protocol)

Le mode connecté TCP

- Permet l'échange d'informations brutes (flot non formaté d'octets).
- MTU (Maximum Transfer Unit) = taille maximale des buffers utilisés pour émettre et recevoir les segments échangés (définie en accord entre émetteur et récepteur).

Le mode connecté TCP

- Etablissement de connexion basée sur un mécanisme de poignée de main à 3 phases (3 Ways Handshake)
 - Phase 1: L'hôte 1 choisit un numéro de séquence initial x et envoie à l'hôte 2 un segment CR (CONNECTION REQUEST) contenant x.
 - Phase 2: L'hôte 2 retourne une confirmation ACK avec un segment CONNECTION ACCEPTED accusant réception de x et donnant son propre numéro de séquence initial y.
 - Phase 3: L'hôte 1 confirme le choix de l'hôte 2 en lui signalant qu'il a pris bonne note de y.

Le mode connecté TCP: établissement de connexion

Le mode connecté TCP: Protocole de déconnexion symétrique

- Protocole de déconnexion à 4 phases
 - Phase 1: L'hôte 1 envoie à l'hôte 2 un segment DR (DISCONNECT REQUEST) et déclenche un temporisateur au cas où son DR se perdrait.
 - Phase 2: A la réception l'hôte 2 retourne également un segment DR et déclenche un temporisateur au cas où son DR se perdrait.
 - Phase 3: A la réception de DR par l'hôte 1, ce dernier retourne un segment accusé de réception ACK à l'hôte 2 et se déconnecte.
 - Phase 4: A la réception de ACK, l'hôte 2 se déconnecte (il retire de ses tables de connexion ouvertes les informations concernant la connexion et en informe l'hôte 1)

Le mode connecté TCP: Protocole de déconnexion symétrique

Le mode connecté TCP: Gestion de service après connexion

- Contrôle d'erreurs: s'assurer que les données sont transférées avec le niveau d'intégrité souhaité, en général que toutes les données sont livrées sans erreur.
- Contrôle de flux: éviter qu'un émetteur plus rapide mette un destinataire plus lent en saturation.

Le mode connecté TCP: Gestion de service après connexion

- Utilisation de mécanismes similaires aux mécanismes suivants utilisés au niveau de la couche liaison, avec toutefois une adaptation (contrôle de bout-en-bout, ie, tout au long du chemin réseau: prise en compte des routeurs, etc.):
 - Association d'un code à une trame pour la détection d'erreur (par exemple CRC ou somme de contrôle)
 - Ajout d'un numéro de séquence à la trame pour l'identifier et retransmission jusqu'à réception de l'accusé de réception (mécanisme appelé ARQ – Automatic Repeat reQuest).
 - L'expéditeur autorise un nombre maximal de trames à être en circulation en même temps.

Le mode non connecté UDP

- Objectif : faire simplement remonter les données (datagrammes) des couches réseau vers les couches applicatives
- Permet de transmettre des données plus rapidement sans contrôle de fiabilité.
- Pas d'accusé de réception, ni de contrôle de flux, ni de connexion de type 3 ways handshake.

Niveau 5 et supérieurs: session, présentation et application

- Les couches supérieures ou hautes constituent la seule couche applicative sous TCP/IP
- La couche applicative permet aux processus s'exécutant sur les ordinateurs distincts de communiquer en utilisant le mode connecté ou non connecté.