The Bayesian viewpoint An introduction

Hari A Ravindran

August 11, 2017

On reasoning

• Generally credited to Aristotle's Organon.

On reasoning

Bayes' theorem

An example Coin flipping

Practicalitie

Potential issues Another examp Conjugate prior Empirical Bayes

- Generally credited to Aristotle's *Organon*.
- ullet If A is true, then B is true.

On reasoning
Bayes' theorem

An example Coin flipping

Potential issues
Another exampl
Conjugate prior
Empirical Bayes

Final thought

• Generally credited to Aristotle's *Organon*.

ullet If A is true, then B is true.

ullet Its inverse: If B is false, then A is false.

Introduction
On reasoning
Bayes' theorem

An example Coin flipping

Potential issues
Another exampl
Conjugate priors
Empirical Bayes

- Generally credited to Aristotle's Organon.
- ullet If A is true, then B is true.
- ullet Its inverse: If B is false, then A is false.
- Do we always have the right kind of information to allow this kind of reasoning?

Introduction
On reasoning

An example

Practicalities

Potential issues

Another example

Conjugate priore

Final though

• Not quite. Sometimes, we need weaker syllogisms.

Introduction
On reasoning
Bayes' theorem

An example Coin flipping

Practicalities
Potential issues
Another examp
Conjugate prior

- Not quite. Sometimes, we need weaker syllogisms.
- ullet If A is true, then B is true.

Introduction
On reasoning
Bayes' theorem

An example Coin flipping

Potential issues
Another exampl
Conjugate priors
Empirical Bayes

- Not quite. Sometimes, we need weaker syllogisms.
- ullet If A is true, then B is true.
- What if we only know that *B* is true?

Introduction
On reasoning
Bayes' theorem

An example Coin flipping

Practicalities
Potential issues
Another exampl
Conjugate priors
Empirical Bayes

- Not quite. Sometimes, we need weaker syllogisms.
- ullet If A is true, then B is true.
- What if we only know that B is true?
- We would like to say: Then, A becomes more plausible.

Introduction
On reasoning
Baves' theorem

Coin flipping

Practicalities
Potential issues
Another example
Conjugate priors
Empirical Bayes

- Not quite. Sometimes, we need weaker syllogisms.
- ullet If A is true, then B is true.
- What if we only know that B is true?
- We would like to say: Then, A becomes more plausible.
- ullet Similar reasoning: If A is false, then B becomes less plausible.

Introduction

On reasoning Bayes' theorem

n example

Com mpping

Practicalities

Potential issues
Another example
Conjugate priore
Empirical Bayes

Final thoughts

• Reasoning from consequence.

Introduction

On reasoning Bayes' theorem

An example

Com mpping

Potential issues Another exampl Conjugate prior Empirical Bayes

- Reasoning from consequence.
- Reasoning from randomness.

Introduction
On reasoning

An example

Coin flipping

Potential issues
Another example
Conjugate priore
Empirical Bayes

- Reasoning from consequence.
- Reasoning from randomness.
- Reasoning from analogy.

Introduction
On reasoning
Bayes' theorem

Coin flipping

Potential issues
Another exampl
Conjugate priors
Empirical Bayes

- Reasoning from consequence.
- Reasoning from randomness.
- Reasoning from analogy.
- In the calculus of plausibility, our prior assessments are all important!

Introduction
On reasoning
Bayes' theorem

• Observed data D.

Practicalities
Potential issues
Another exampl
Conjugate prior
Empirical Bayes

ntroduction
On reasoning
Bayes' theorem

Com mpping

Practicalities
Potential issues
Another example
Conjugate priors

- Observed data D.
- Want to know something about a variable θ .

Introduction
On reasoning
Bayes' theorem

Coin flipping

Potential issues
Another exampl
Conjugate priors
Empirical Bayes

- Observed data D.
- Want to know something about a variable θ .
- Our interest is then in the quantity:

$$p(\theta|D) = \frac{p(D|\theta)\,p(\theta)}{p(D)} = \frac{p(D|\theta)\,p(\theta)}{\int\limits_{\theta} p(D|\theta)\,p(\theta)}$$

ntroduction
On reasoning
Bayes' theorem

Practicalitie

Potential issues Another example Conjugate priors Empirical Bayes

Final though

- Observed data D.
- Want to know something about a variable θ .
- Our interest is then in the quantity:

$$p(\theta|D) = \frac{p(D|\theta) p(\theta)}{p(D)} = \frac{p(D|\theta) p(\theta)}{\int\limits_{\theta} p(D|\theta) p(\theta)}$$

• $p(\theta|D)$ is the posterior distribution of the variable θ in light of the observed data, $p(\theta)$ is the prior, and $p(D|\theta)$ is the generative model/likelihood of the dataset.

Exact binomial probability inference

Coin flipping

• Outcome of a single flip given by a function of parameter θ :

$$p(\gamma|\theta) = \theta^{\gamma} (1-\theta)^{(1-\gamma)}$$

Exact binomial probability inference

Introduction
On reasoning

An example Coin flipping

Potential issues
Another example
Conjugate priors
Empirical Bayes

Final thought

• Outcome of a single flip given by a function of parameter θ :

$$p(\gamma|\theta) = \theta^{\gamma} (1-\theta)^{(1-\gamma)}$$

So, if you have z heads out of N flips:

$$p(\{\gamma_i\}|\theta) = \theta^z (1-\theta)^{(N-z)}$$

where z is $\sum_{i} \gamma_{i}$

Specifying the prior

Coin flipping

Beta distribution:

$$\begin{split} p(\theta|a,b) &= \mathsf{beta}(\theta|a,b) \\ &= \theta^{(a-1)} (1-\theta)^{(b-1)} / B(a,b) \end{split}$$

Specifying the prior

Introduction
On reasoning

An example

Coin flipping

Potential issues
Another exampl
Conjugate priors
Empirical Bayes

Final though

Beta distribution:

$$\begin{split} p(\theta|a,b) &= \mathsf{beta}(\theta|a,b) \\ &= \theta^{(a-1)} (1-\theta)^{(b-1)} / B(a,b) \end{split}$$

• In terms of the mode ω and concentration κ ,

$$a = \omega(\kappa - 2) + 1$$
 and $b = (1 - \omega)(\kappa - 2) + 1$

where $\kappa > 2$

Final thought

Posterior is also a beta:

$$\begin{split} p(\theta|z,N) &= \frac{p(z,N|\theta)\,p(\theta)}{p(z,N)} \\ &= \theta^z\,(1-\theta)^{N-z}\;\,\frac{\theta^{(a-1)}(1-\theta)^{(b-1)}}{B(a,b)}\bigg/p(z,N) \\ &= \mathrm{beta}(\theta|z+a,N-z+b) \end{split}$$

Final thought

Posterior is also a beta:

$$\begin{split} p(\theta|z,N) &= \frac{p(z,N|\theta)\,p(\theta)}{p(z,N)} \\ &= \theta^z\,(1-\theta)^{N-z}\,\,\frac{\theta^{(a-1)}(1-\theta)^{(b-1)}}{B(a,b)} \bigg/p(z,N) \\ &= \mathrm{beta}(\theta|z+a,N-z+b) \end{split}$$

• The posterior is a compromise of prior and likelihood.

Example 1

On reasoning Bayes' theorer

Coin flipping

Potential issues
Another example
Conjugate priors
Empirical Bayes

Example 2

On reasoning Bayes' theorem

An example Coin flipping

Another example Conjugate priors Empirical Bayes

Example 3

Introduction
On reasoning
Bayes' theorem

An example Coin flipping

Potential issues Another example Conjugate priors Empirical Bayes

Example3.jpg

Introduction

Bayes' theore

An example

_

Potential issues

Potential issues

Conjugate priors

Einal +baughta

• What are your priorities?

Introduction

An example

Com mpping

Potential issues
Another example

Conjugate priors Empirical Bayes

inal thought

• What are your priorities?

• Subjective vs. objective priors.

ntroduction On reasoning Bayes' theorem

Coin flipping

Practicalities
Potential issues
Another example
Conjugate priors

Empirical Baye

• What are your priorities?

• Subjective vs. objective priors.

• Are analytical solutions always viable?

ntroduction
On reasoning
Bayes' theorem
.

Practicalities
Potential issues
Another example
Conjugate priors

- What are your priorities?
- Subjective vs. objective priors.
- Are analytical solutions always viable?
- (Nope!) MCMC methods to the rescue.

Non-beta prior

On reasoning Bayes' theorem

Practicalitie

Another example
Conjugate priors
Empirical Bayes

Conjugate prior distributions

Conjugate priors

• Let
$$f_{\mu}(x)=e^{n[\alpha\, \bar x-\psi(\alpha)]}f_0(x)$$
, and

Conjugate prior distributions

Introduction
On reasoning

Bayes' theorer An example

Practicalities
Potential issues
Another example

Potential issues Another example Conjugate priors Empirical Bayes

• Let
$$f_{\mu}(x) = e^{n[\alpha \, \bar{x} - \psi(\alpha)]} f_0(x)$$
, and

•
$$g_{n_0,x_0}(\mu) = c e^{n_0[\alpha x_0 - \psi(\alpha)]} / V(\mu).$$

Conjugate prior distributions

On reasoning

An example
Coin flipping

Practicalities
Potential issues
Another example
Conjugate priors
Empirical Bayes

Final though

• Let $f_{\mu}(x)=e^{n[\alpha\, ar x-\psi(\alpha)]}f_0(x)$, and

•
$$g_{n_0,x_0}(\mu) = c e^{n_0[\alpha x_0 - \psi(\alpha)]} / V(\mu).$$

• Then,

$$g(\mu|x)=g_{n_+,\bar{x}_+}(\mu)\text{, where}$$

$$n_+=n_0+n \text{ and } \bar{x}_+=\frac{n_0}{n_+}\,x_0+\frac{n}{n_+}\,\bar{x}$$

Robbins' Formula

ntroduction On reasoning Bayes' theorem

Coin flipping

Practicalitie

Another example Conjugate priors Empirical Bayes

Final though

• Consider following claims data for a European automobile insurance company circa 1950s:

Claims	0	1	2	3	4	5	6	7
Counts y_x	7840	1317	239	42	14	4	4	1

Robbins' Formula

ntroduction On reasoning Bayes' theorem

Practicalities
Potential issues
Another example
Conjugate priors
Empirical Bayes

Final though

• Consider following claims data for a European automobile insurance company circa 1950s:

Claims	0	1	2	3	4	5	6	7
Counts y_x	7840	1317	239	42	14	4	4	1

• **Key idea** Large data sets of parallel situations carry within them their own Bayesian information.

Last but not least

Introduction

On reasoning

An example

Coin flipping

Potential issues
Another examp
Conjugate prior

Final thoughts

• Bayesian Learning (BIC, etc.)

Last but not least

Introduction

On reasoning Bayes' theorem

An example Coin flipping

Coin flipping

Potential issues Another examp Conjugate prior Empirical Bayes

- Bayesian Learning (BIC, etc.)
- Frequentist vs. Bayesian comparisons