Digital Communications SSY125, Lecture 12

Turbo-Like Codes (Chapter 10)

Alexandre Graell i Amat alexandre.graell@chalmers.se https://sites.google.com/site/agraellamat

November 29, 2023

1948195819681978

AWGN channel, BPSK/QPSK transmission

Concatenated Codes

- To approach capacity, large block lengths are required.
- The complexity of block codes and convolutional codes grows exponentially with the block length and the memory of the encoder, respectively.
- Idea: Concatenated codes (David Forney)

- Typically C_0 is a (nonbinary) block code and C_1 a convolutional code.
- Better performance than standalone codes, but still far from capacity.
- Widely used in deep-space communications (NASA and ESA missions).

197819881998

AWGN channel, BPSK/QPSK transmission

Turbo Codes: Parallel Concatenated Convolutional Codes

- Parallel concatenation of two recursive, systematic convolutional encoders through a pseudorandom interleaver (Claude Berrou, 1993).
- The encoders are recursive encoders.

$$G_{\mathsf{U}}(\mathsf{D}) = G_{\mathsf{L}}(\mathsf{D}) = \left(rac{oldsymbol{g}_1(\mathsf{D})}{oldsymbol{g}_2(\mathsf{D})}
ight).$$

• The codeword is $m{c}=(m{u},m{c}_{\sf U},m{c}_{\sf L})$, thus the code rate is $R_{\sf c}=rac{K}{3K}=rac{1}{3}.$

The Original Turbo Codes

• Original turbo code with component encoders with generator matrix $G(\mathsf{D}) = \left(\frac{1+\mathsf{D}^4}{1+\mathsf{D}+\mathsf{D}^2+\mathsf{D}^3+\mathsf{D}^4}\right)$. $K=65536,\ R_\mathsf{c}=1/2.$

Typical BER Curve of Turbo Codes

- 8-state component encoders with $G(D) = \left(\frac{1+D+D^3}{1+D^2+D^3}\right)$, $R_c = 1/3$, and K = 1024 bits. (Turbo code of the 3GPP-LTE standard).
- The performance of aTC is characterized by two well-defined regions:
 - Waterfall region: the BER decreases sharply with E_b/N_0 .
 - Error floor region: flattening of the BER curve for medium-to-high E_b/N_0 . (Dominated by d_{\min} !)

The Need of Recursive Encoders

For feedforward encoders:

- A weight-1 information sequence u will generate a codeword $c_{\rm U}$ of $C_{\rm U}$ of Hamming weight $w_{\rm H}(c_{\rm U}) \le \nu + 1$ (ν is the memory of the encoder).
- The weight of the permuted codeword \tilde{u} is also one.
- \tilde{u} will generate a codeword c_L of C_L of weight $w_H(c_L) \leq \nu + 1$.
- The minimum distance of the turbo code is thus upperbounded by

$$d_{\min} \le 1 + 2(\nu + 1).$$

Idea: Recursive Convolutional Encoders

Weight-1 information sequences are not a problem anymore: They generates an infinite weight codeword at the output of each component encoder.

The Need of Recursive Encoders

Rate-1/3 TC with 4-state feedforward encoders, $G(D) = (1 + D + D^2)$

ullet The codeword at the output of \mathcal{C}_{U} and \mathcal{C}_{L} generated by $oldsymbol{u}(\mathsf{D}) = \mathsf{D}^j$ is

$$c(D) = u(D)G(D) = D^{j}(1 + D + D^{2}) = D^{j} + D^{j+1} + D^{j+2},$$

i.e.,
$$w_{\rm H}(c) = 3$$
.

• The codeword of the turbo code has weight 1+3+3=7, independently of the interleaver size! (the best rate-1/3, 4-state convolutional code has minimum distance $d_{\min} = 8!$)

Rate-1/3 TC with 4-state RSC encoders, $G(D) = \left(\frac{1+D^2}{1+D+D^2}\right)$

ullet The codeword at the output of $\mathcal{C}_{\sf U}$ and $\mathcal{C}_{\sf L}$ generated by $oldsymbol{u}({\sf D})={\sf D}^j$ is

$$c(D) = D^{j} \frac{1 + D^{2}}{1 + D + D^{2}} = D^{j} (1 + D + D^{2} + D^{4} + D^{5} + D^{7} + D^{8} + \dots,$$

i.e., of infinite weight!

The Role of the Interleaver

- Main role: Ensure a large minimum distance.
- Main idea: If u is such that it produces a codeword $c_{\mathbb{U}}$ of low weight, it should be permuted to \tilde{u} such that it generates a codeword $c_{\mathbb{L}}$ of large weight.
- Special attention must be payed to weight-2 information words → tend to yield low-weight codewords at the output of C_U if the two ones are close to each other.

Good Design Rule

Guarantee that if two input bits of u in positions i and j are within S positions to each other, i.e., $|i-j| \leq S$, then they should be spread further apart in \tilde{u} , i.e., $|\pi(i) - \pi(j)| > S \to \text{will likely generate a high-weight codeword } c_{\mathsf{L}}$.

Decoding Turbo Codes: Iterative (Turbo) Decoding

Optimum decoding rule (MAP rule),

$$\hat{u}_i = \arg\max_{u_i} p(u_i|\boldsymbol{y}).$$

• Goal: Compute the a posteriori probabilities $P_{\text{APP}}(u_i|y) \triangleq p(u_i|y)$ based on the received (noisy) sequence $y = (y^u, y^{c_0}, y^{c_0})$. Decision rule:

$$\hat{u}_i = \left\{ \begin{array}{ll} 1 & \text{if } P_{\mathsf{APP}}(u_i = 1 | \boldsymbol{y}) > P_{\mathsf{APP}}(u_i = 0 | \boldsymbol{y}) \\ 0 & \text{if } P_{\mathsf{APP}}(u_i = 0 | \boldsymbol{y}) < P_{\mathsf{APP}}(u_i = 1 | \boldsymbol{y}) \end{array} \right..$$

Typically, decoders work with so-called log-likelihood ratios (LLRs),

$$L_{\mathsf{APP}}(u_i|\boldsymbol{y}) \triangleq \ln \frac{P_{\mathsf{APP}}(u_i=0|\boldsymbol{y})}{P_{\mathsf{APP}}(u_i=1|\boldsymbol{y})}.$$

Then, the decision rule is

$$\hat{u}_i = \begin{cases} 1 & \text{if } L_{\mathsf{APP}}(u_i|\boldsymbol{y}) < 0 \\ 0 & \text{if } L_{\mathsf{APP}}(u_i|\boldsymbol{y}) > 0 \end{cases}.$$

Iterative (Turbo) Decoding

MAP decoding of turbo codes is unfeasible!

- Turbo decoding: A low-complexity, suboptimal iterative decoding algorithm to compute $L_{\text{APP}}(u_i|y)$ approximately.
- Two soft-input soft-output (SISO) decoders (matched to the two encoders) exchange information about the reliability of their estimates (soft information) iteratively.

Iterative (Turbo) Decoding

 Each SISO decoder performs MAP decoding of the corresponding component encoder. They compute the log-APPs

$$\begin{split} L_{\text{APP}}^{\mathcal{C}_{\text{U}}}(u_i|\boldsymbol{y^u},\boldsymbol{y^{c_{\text{U}}}}) &= \ln \frac{P_{\text{APP}}(u_i=0|\boldsymbol{y^u},\boldsymbol{y^{c_{\text{U}}}})}{P_{\text{APP}}(u_i=1|\boldsymbol{y^u},\boldsymbol{y^{c_{\text{U}}}})} \\ L_{\text{APP}}^{\mathcal{C}_{\text{L}}}(u_i|\boldsymbol{y^u},\boldsymbol{y^{c_{\text{L}}}}) &= \ln \frac{P_{\text{APP}}(u_i=0|\boldsymbol{y^u},\boldsymbol{y^{c_{\text{L}}}})}{P_{\text{APP}}(u_i=1|\boldsymbol{y^u},\boldsymbol{y^{c_{\text{L}}}})}. \end{split}$$

The two decoders work with different channel observations.

The Soft-Input Soft-Output Decoder

The SISO decoder (decoder \mathcal{D}_U) has three inputs:

The channel LLRs of the information bits u,

$$L_{\mathsf{ch}}(y_i^u|u_i) = \ln \frac{P(y_i^u|u_i=0)}{P(y_i^u|u_i=1)}.$$

ullet The channel LLRs of the bits of codeword $c_{
m U}$,

$$L_{\mathsf{ch}}(y_i^{c_{\mathsf{u}}}|c_{\mathsf{u},i}) = \ln \frac{P(y_i^{c_{\mathsf{u}}}|c_{\mathsf{u},i}=0)}{P(y_i^{c_{\mathsf{u}}}|c_{\mathsf{u},i}=1)}.$$

The a priori information on the information bits,

$$L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_i) = \ln \frac{P_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_i = 0)}{P_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_i = 1)},$$

provided by the companion decoder \mathcal{D}_L .

The Soft-Input Soft-Output Decoder

The SISO decoder (decoder \mathcal{D}_{U}) has two outputs:

• The log-APPs of the information bits.

$$L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_i|\boldsymbol{y^u},\boldsymbol{y^{c_{\mathsf{U}}}}) = \ln \frac{P_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_i=0|\boldsymbol{y^u},\boldsymbol{y^{c_{\mathsf{U}}}})}{P_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_i=1|\boldsymbol{y^u},\boldsymbol{y^{c_{\mathsf{U}}}})}.$$

Applying Bayes', it can be rewritten as

$$\begin{split} L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_{i}|\boldsymbol{y^{u}},\boldsymbol{y^{c_{\mathsf{U}}}}) &= \ln \frac{P(\boldsymbol{y^{u}},\boldsymbol{y^{c_{\mathsf{U}}}}|u_{i}=0)}{P(\boldsymbol{y^{u}},\boldsymbol{y^{c_{\mathsf{U}}}}|u_{i}=1)} + \ln \frac{P(u_{i}=0)}{P(u_{i}=1)} \\ &= \ln \frac{P^{\mathcal{C}_{\mathsf{U}}}(\boldsymbol{y^{u}},\boldsymbol{y^{c_{\mathsf{U}}}}|u_{i}=0)}{P^{\mathcal{C}_{\mathsf{U}}}(\boldsymbol{y^{u}},\boldsymbol{y^{c_{\mathsf{U}}}}|u_{i}=1)} + \ln \frac{P_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_{i}=0)}{P_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_{i}=1)}. \end{split}$$

The second term is the a priori information on u provided by \mathcal{D}_{L} .

The Soft-Input Soft-Output Decoder

The SISO decoder (decoder \mathcal{D}_U) has two outputs (cont'd):

• The extrinsic information,

$$L_{\mathsf{E}}^{\mathcal{C}_{\mathsf{U}}}(u_i) = L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_i) - L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_i) - L_{\mathsf{ch}}(u_i),$$

obtained by removing the a priori knowledge that \mathcal{D}_{U} has about the bit, $L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_i)$, and the channel observation $L_{\mathsf{ch}}(u_i)$ from $L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_i)$.

This extrinsic information (after interleaving) will be used by decoder D_L
as a priori information,

$$L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{L}}}(\tilde{u}_i) = L_{\mathsf{E}}^{\mathcal{C}_{\mathsf{U}}}(\pi^{-1}(\tilde{u}_i)).$$

Iterative (Turbo) Decoding

- 1. Iteration 1.
 - 1.1 Decode \mathcal{C}_{U} running \mathcal{D}_{U} , with inputs $L_{\mathsf{ch}}(\boldsymbol{u})$ and $L_{\mathsf{ch}}(\boldsymbol{c}_{\mathsf{U}})$. $L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}},(1)}(\boldsymbol{u})$ is set to zero. The decoder outputs are $L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}},(1)}(\boldsymbol{u})$ and $L_{\mathsf{E}}^{\mathcal{C}_{\mathsf{U}},(1)}(\boldsymbol{u})$.
 - 1.2 Decode \mathcal{C}_{L} running \mathcal{D}_{L} , with inputs $L_{\mathsf{ch}}(\tilde{\boldsymbol{u}})$, $L_{\mathsf{ch}}(\boldsymbol{c}_{\mathsf{L}})$, and $L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{L}},(1)}(\tilde{\boldsymbol{u}}) = L_{\mathsf{F}}^{\mathcal{C}_{\mathsf{U}},(1)}(\pi^{-1}(\tilde{\boldsymbol{u}}))$.
- 2. Iteration $\ell > 1$.
 - 2.1 Decode \mathcal{C}_{U} running \mathcal{D}_{U} , with inputs $L_{\mathsf{ch}}(\boldsymbol{u})$, $L_{\mathsf{ch}}(\boldsymbol{c}_{\mathsf{U}})$, and $L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}},(\ell)}(\boldsymbol{u}) = L_{\mathsf{E}}^{\mathcal{C}_{\mathsf{L}},(\ell-1)}(\pi(\boldsymbol{u}))$. The decoder outputs are $L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}},(\ell)}(\boldsymbol{u})$ and $L_{\mathsf{E}}^{\mathcal{C}_{\mathsf{U}},(\ell)}(\boldsymbol{u})$.
 - 2.2 Decode C_L running \mathcal{D}_L , with inputs $L_{\mathsf{ch}}(\tilde{u})$, $L_{\mathsf{ch}}(c_L)$, and $L_{\mathsf{ch}}^{\mathcal{C}_L,(\ell)}(\tilde{u}) = L_{\mathsf{F}}^{\mathcal{C}_U,(\ell)}(\pi^{-1}(\tilde{u}))$.
- 3. Repeat Step 2 until a maximum number of iterations $\ell_{\rm max}$ is reached. Then make decisions on the bits u_i according to

$$\hat{u}_i = \left\{ \begin{array}{ll} 1 & \text{if } L_{\mathsf{APP}}^{\mathsf{C}_\mathsf{U},(\ell_{\mathsf{max}})}(u_i) < 0 \\ 0 & \text{if } L_{\mathsf{APP}}^{\mathsf{C}_\mathsf{U},(\ell_{\mathsf{max}})}(u_i) > 0 \end{array} \right..$$

Performance of Turbo Codes

- Beyond a number of iterations there is a marginal gain: The decisions of the two decoders become too correlated so there is not much more to gain by running further iterations!
- Typically, around 8-10 iterations are enough to fully exploit the potential of a turbo code.

The Use of Extrinsic Information

Why the component decoders exchange extrinsic information and not APPs?

- The APP generated by \mathcal{D}_{L} on bit u_i is computed based on the channel observations $L_{\mathsf{ch}}(\boldsymbol{u})$ and $L_{\mathsf{ch}}(\boldsymbol{c}_{\mathsf{L}})$, as well as on soft information generated by \mathcal{D}_{U} .
- But...the APPs generated by \mathcal{D}_{U} also use $L_{\mathsf{ch}}(u)$. Since decoder \mathcal{D}_{L} is already fed with $L_{\mathsf{ch}}(u)$ directly, the soft information that \mathcal{D}_{U} passes to \mathcal{D}_{L} should not contain $L_{\mathsf{ch}}(u)$. Thus, should consider passing

$$L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_i) - L_{\mathsf{ch}}(u_i).$$

• Want to pass truly a priori (independent) information to \mathcal{D}_{L} . But $L^{\mathcal{C}_{\mathsf{DP}}}_{\mathsf{LPP}}(u_i) - L_{\mathsf{ch}}(u_i)$ includes data from \mathcal{D}_{L} itself: The a priori information that \mathcal{D}_{L} passes to \mathcal{D}_{U} ! Therefore, \mathcal{D}_{U} should pass to \mathcal{D}_{L}

$$L_{\mathsf{APP}}^{\mathcal{C}_{\mathsf{U}}}(u_i) - L_{\mathsf{A}}^{\mathcal{C}_{\mathsf{U}}}(u_i) - L_{\mathsf{ch}}(u_i),$$

i.e., extrinsic information!

The Rationale Behind Turbo Codes

Shannon:

- To achieve capacity very large (infinite, indeed) block lengths are required.
- Shannon's proof of the channel coding theorem uses a random coding argument.

Unfortunately...decoding complexity increases exponentially with block length and random codes are not decodable in practice.

Turbo codes' response:

- Randomness. Make the code appear random while maintaining enough structure to permit decoding: pseudo-random interleaver!
- Decoding complexity. Powerful code that can be decoded in practice by breaking the decoding into simpler steps: turbo decoding.

Other Code Constructions: Turbo-Like Codes

- Other concatenations of convolutional codes through random interleavers are possible: turbo-like codes.
 - Serially concatenated codes [Benedetto, Montorsi, '96]
 - Hybrid concatenated codes [Divsalar, Pollara '97], [Berrou, GiA, Mouhamedou, Saouter '07]