$3a\partial aua$ 1. Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство, W_t — броуновское движение. Показать, что для любой эквивалентной меры $\mathbb{Q} \sim \mathbb{P}$ выполнено:

$$[W]_t = t$$

Q-почти наверное.

 $3a\partial a$ ча 2. Найти стоимость дериватива $\Phi(S_T) = S_T \mathbb{I}(S_T \geq K)$ с помощью замены меры при $N_t = S_t$.

Задача 3. Рассмотрим рынок с тремя активами:

$$dB_t = 0$$

$$dS_t^1 = S_t^1 \sigma_1 dW_t^1$$

$$dS_t^2 = S_t^2 \sigma_2 dW_t^2$$

где W_t^1, W_t^2 — два броуновских движения с корреляцией ρ . Найти стоимость обменного опциона с пэйоффом:

$$\Phi(S_T^1, S_T^2) = (S_T^1 - S_T^2)^+$$

Задача 4. Реплицировать с помощью ванильных опционов пэйофф:

$$\Phi(S_T) = q(S_T)$$

где g(x) – гладкая финитная функция. Найти стоимость дериватива с таким пэйоффом. $3a\partial a va$ 5 (Variance swap). Пусть $dX_t = X_t \sigma_t dB_t$ – процесс Ито, σ_t – согласованный процесс.

Покажите, что:

$$\int_{0}^{T} \sigma_{t}^{2} dt = -2 \ln \frac{X_{T}}{X_{0}} + \int_{0}^{T} \frac{2}{X_{t}} dX_{t}$$