## 練習問題 1-A

1. (1) 
$$x = 1$$
 のとき,  $y = 1$   $x = 2$  のとき,  $y = 4$ 



 $1 \leq y < 4$ 

$$(2)$$
  $x=-1$  のとき ,  $y=1$   $x=0$  のとき ,  $y=0$   $x=2$  のとき ,  $y=4$ 



 $0 \le y < 4$ 

2. (1) 頂点の座標が(2,1)であるから,求める放物 線の方程式は  $y = a(x-2)^2 + 1$  とおくことがで きる.この放物線が,点(0,3)を通るから

$$3=a(0-2)^2+1$$
 
$$3=4a+1$$
 よって ,  $a=\frac{1}{2}$ 

したがって, 求める放物線の方程式は  $y = \frac{1}{2}(x-2)^2 + 1$ 

(2) 点(1,0)でx軸に接するので,求める放物線 の方程式は  $y = a(x-1)^2$  とおくことができる. この放物線が,点(2,3)を通るから

$$3 = a(2-1)^2$$

したがって, 求める放物線の方程式は

$$y = 3(x-1)^2$$

(3) 軸がx=2であるから,求める放物線の方程 式は  $y = a(x-2)^2 + q$  とおくことができる.こ の放物線が,2点(0,0),(3,6)を通るから

$$\begin{cases} 0 = a(0-2)^2 + q \\ 6 = a(3-2)^2 + q \end{cases}$$

整理すると

$$\begin{cases} 4a + q = 0 \\ a + q = 6 \end{cases}$$

これを解いて, a = -2, q = 8

したがって, 求める放物線の方程式は

$$y = -2(x-2)^2 + 8$$

3. (1)  $y = x^2 - x$  $= \left(x - \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2$  $=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}$ 最大値 なし 最小値  $-rac{1}{4}$   $\left(x=rac{1}{2}$ のときight)

(2) 
$$y = -3\left(x^2 - \frac{4}{3}x\right) + 1$$
$$= -3\left\{\left(x - \frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2\right\} + 1$$
$$= -3\left\{\left(x - \frac{2}{3}\right)^2 - \frac{4}{9}\right\} + 1$$
$$= -3\left(x - \frac{2}{3}\right)^2 + \frac{4}{3} + 1$$
$$= -3\left(x - \frac{2}{3}\right)^2 + \frac{7}{3}$$
よって
$$最大値 \quad \frac{7}{3} \quad \left(x = \frac{2}{3}\text{ のとき}\right)$$

最大値  $\frac{7}{3}$   $\left(x=rac{2}{3}$ のときight)

(3) 
$$y = -\frac{1}{2}(x^2 + 12x) + 1$$
$$= -\frac{1}{2}\{(x+6)^2 - 6^2\} + 1$$
$$= -\frac{1}{2}\{(x+6)^2 - 36\} + 1$$
$$= -\frac{1}{2}(x+6)^2 + 18 + 1$$
$$= -\frac{1}{2}(x+6)^2 + 19$$
よって
最大値 19  $(x=-6 \text{ のとき})$ 

最小値 なし

4. (1) 
$$y = (x-1)^2 - 1^2 - 2$$
  
=  $(x-1)^2 - 3$ 

また

$$x=-1$$
 のとき ,  $y=1$   $x=5$  のとき ,  $y=13$ 



よって

最大値 
$$13 (x = 5 \text{ のとき})$$
最小値  $-3 (x = 1 \text{ のとき})$ 

(2) 
$$y = -2(x^2 + 2x) + 1$$
  
=  $-2\{(x+1)^2 - 1^2\} + 1$   
=  $-2(x+1)^2 + 2 + 1$   
=  $-2(x+1)^2 + 3$ 

また

$$x = -3$$
 のとき ,  $y = -5$   $x = -1$  のとき ,  $y = 3$ 



よって

最大値 
$$3 (x = -1 \text{ のとき})$$
  
最小値  $-5 (x = -3 \text{ のとき})$ 

(3) 
$$y = -(x^2 - 5x) - \frac{1}{4}$$
$$= -\left\{ \left( x - \frac{5}{2} \right)^2 - \left( \frac{5}{2} \right)^2 \right\} - \frac{1}{4}$$
$$= -\left( x - \frac{5}{2} \right)^2 + \frac{25}{4} - \frac{1}{4}$$
$$= -\left( x - \frac{5}{2} \right)^2 + 6$$

また

$$x=1$$
 のとき ,  $y=\frac{15}{4}$   $x=5$  のとき ,  $y=-\frac{1}{4}$ 



よって

最大値 
$$6$$
  $\left(x=rac{5}{2}$ のとき $ight)$ 最小値  $-rac{1}{4}$   $(x=5$  のとき $)$ 

5. ( 1 ) 両辺に -1 をかけて ,  $x^2+x+1 \leq 0$   $x^2+x+1=0$  の判別式を D とすると  $D=1^2-4\cdot 1\cdot 1$  =-3<0



よって ,  $y=x^2+x+1$  のグラフは , x 軸と共 有点をもたず , つねに y>0 である . したがって ,  $x^2+x+1\leq 0$  を満たす x は存在しないから , 解なし .

(2) 
$$6x^2-5x-6=0$$
 の判別式を  $D$  とすると  $D=(-5)^2-4\cdot6\cdot(-6)$   $=25+144>0$   $6x^2-5x-6=0$  を解くと  $(3x+2)(2x-3)=0$   $x=-\frac{2}{3},\ \frac{3}{2}$ 



$$y=6x^2-5x-6$$
 のグラフより, $6x^2-5x-6<0$  の解は $-rac{2}{3}< x<rac{3}{2}$ 

6.  $y=x^2-5x+6$  のグラフを , x 軸の正の方向に p 平 行移動させたグラフの式は

$$y = (x - p)^2 - 5(x - p) + 6$$

このグラフが原点を通るので

$$0 = (0-p)^2 - 5(0-p) + 6$$

これを解くと

$$0 = p^2 + 5p + 6$$
$$(p+3)(p+2) = 0$$

$$p = -3, -2$$

よって,x軸の正の方向に,-2または-3平行移動 すればよい.

7. 
$$\begin{cases} y = x^2 - 4x + 4 & \cdots \\ y = x^2 + 2x + 3 & \cdots \\ \end{cases}$$
 とする.

②のグラフを,x軸方向にp,y軸方向にq平行移動 したグラフの式は

$$y - q = (x - p)^{2} + 2(x - p) + 3$$
$$y = x^{2} - 2px + p^{2} + 2x - 2p + 3 + q$$
$$= x^{2} + (-2p + 2)x + (p^{2} - 2p + q + 3)$$

これが, ①と一致するので

$$\begin{cases}
-2p + 2 = -4 & \cdots \text{ } \\
p^2 - 2p + q + 3 = 4 & \cdots \text{ } 
\end{cases}$$

$$-2p = -6$$

$$p = 3$$

$$p = 3$$

④に代入して

$$3^2 - 2 \cdot 3 + q + 3 = 4$$

$$9 - 6 + q + 3 = 4$$

$$q = -2$$

したがって

x 軸方向に 3 , y 軸方向に -2 平行移動 したもの である.

[別解]

$$x^2 - 4x + 4 = (x - 2)^2$$

であるから,①のグラフの頂点は,(2,0)

$$x^{2} + 2x + 3 = (x+1)^{2} - 1 + 3$$
$$= (x+1)^{2} + 2$$

であるから,②のグラフの頂点は,(-1,2)

②のグラフを x 軸方向に p, y 軸方向に q 平行移動 したものが①に重なるとすると

$$-1 + p = 2$$
 ,  $2 + q = 0$ 

よって , 
$$p=3,\ q=-2$$

したがって

x 軸方向に 3, y 軸方向に -2 だけ平行移動 した ものである.

8.  $y = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$  $=\left(x+rac{b}{2}
ight)^2-rac{b^2}{4}+c$ よって , 与えられた放物線の頂点は

$$\left(-\frac{b}{2}, -\frac{b^2}{4} + c\right)$$

この頂点を,x軸方向に-1,y軸方向に3平行移動 させた点が (0, 1) になるので

$$\begin{cases} -\frac{b}{2} - 1 = 0 & \cdots \\ -\frac{b^2}{4} + c + 3 = 1 & \cdots \\ 2 & \cdots \end{cases}$$

$$-\frac{b}{2} = 1$$

$$b = -2$$

②に代入して

$$-\frac{(-2)^2}{4} + c + 3 = 1$$
$$-1 + c + 3 = 1$$
$$c = -1$$

よって, b = -2, c = -1

与えられた2次方程式の判別式をDとすると

$$D = (-2)^{2} - 4 \cdot 1 \cdot (k+3)$$
$$= 4 - 4(k+3)$$
$$= -4k - 8$$

i) D > 0, f

$$-4k - 8 > 0$$

$$-4k > 8$$

k < -2 のとき,実数解の個数は2個

$$ii)$$
  $D=0$  , すなわち  $-4k-8=0$   $-4k=8$ 

$$k=-2$$
 のとき,実数解の個数は $1$  個

iii) 
$$D < 0$$
 , すなわち 
$$-4k - 8 < 0$$
 
$$-4k < 8$$

$$k>-2$$
 のとき,実数解の個数は $0$  個

以上より

$$\left\{egin{array}{ll} k<-2\, { t o}$$
とき  $2\, { t d} \ k=-2\, { t o}$ とき  $1\, { t d} \ k>-2\, { t o}$ とき  $0\, { t d} \end{array}
ight.$ 

## 練習問題 1-B

- 1. 2式を上から①,②とする.
  - (1)より

$$y = (x-1)^2 - 1 + a$$

よって,①の頂点の座標は,(1, a-1)

②は放物線の方程式なので, $b \neq 0$  であるから  $y = b\left(x^2 - \frac{3}{b}x\right) + 1$   $= b\left(\left(x - \frac{3}{2b}\right)^2 - \frac{9}{4b^2}\right) + 1$   $= b\left(x - \frac{3}{2b}\right)^2 - \frac{9}{4b} + 1$ 

$$=b\left(x-rac{3}{2b}
ight)^2+rac{4b-9}{4b}$$
よって,②の頂点の座標は, $\left(rac{3}{2b},\;rac{4b-9}{4b}
ight)$ 

2 つの放物線の頂点が一致するので

$$\begin{cases} 1 = \frac{3}{2b} & \cdots \text{ } \\ a - 1 = \frac{4b - 9}{4b} & \cdots \text{ } \end{cases}$$

(3) L 1)

$$2b = 3$$
$$b = \frac{3}{2}$$

④に代入して

$$a = \frac{4 \cdot \frac{3}{2} - 9}{4 \cdot \frac{3}{2}} + 1$$

$$= \frac{6 - 9}{6} + 1$$

$$= -\frac{1}{2} + 1 = \frac{1}{2}$$
よって,  $a = \frac{1}{2}$ ,  $b = \frac{3}{2}$ 

2. 
$$y = a(x^2 - 2x) + b$$
  
=  $a\{(x-1)^2 - 1\} + b$   
=  $a(x-1)^2 - a + b$ 



よって ,  $-2 \le x \le 1$  において , 図のように x = -2 で最大値 , x = 1 で最小値をとる .

$$x=-2$$
 のとき ,  $y=a(-2-1)^2-a+b=8a+b$   $x=1$  のとき ,  $y=a(1-1)^2-a+b=-a+b$ 

であるから

$$\begin{cases} 8a+b=6\\ -a+b=1 \end{cases}$$

これを解いて, $a=rac{5}{9},\;b=rac{14}{9}$ 

- 3. 与えられた不等式は 2 次不等式であるから ,  $a \neq 0$  .  $y = ax^2 + 2x + a$  とおく .
  - i) a < 0 のとき

この 2 次関数のグラフは上に凸の放物線となり,すべての x について y>0 となることはないから,このときの a の値は存在しない.

ii) a > 0 のとき

この 2 次関数のグラフは下に凸の放物線となり, $ax^2+2x+a=0$  の判別式を D とするとき,すべての x に対して y>0 となるための条件は,D<0 となることである.

$$rac{D}{4}=1^2-a\cdot a$$
  $=1-a^2<0$   $a^2-1>0$   $(a+1)(a-1)>0$   $a<-1,\ 1< a$   $a>0$  であるから, $a>1$ 

以上より,定数aの範囲は,a>1

4. 点 C の座標を  $(t,\ 0)$  とおくと,D は放物線上の点なので, $CD=4-t^2$  ただし,0< t< 2 また,BC=2t であるから,長方形の周の長さを L とすると

$$L = 2(4 - t^{2}) + 2 \cdot 2t$$

$$= -2t^{2} + 4t + 8$$

$$= -2(t^{2} - 2) + 8$$

$$= -2\{(t - 1)^{2} - 1\} + 8$$

$$= -2(t - 1)^{2} + 10$$



よって , t=1 のとき , 周の長さ L は最大となり , このとき ,  $\mathbf{BC}=2t$  より ,  $\mathbf{BC}=\mathbf{2}$ 

5. 
$$y=(x-m)^2-m^2+4m$$
 よって , 最小値は $-m^2+4m$  であるから 
$$s=-m^2+4m$$
  $s=-(m^2-4m)$  
$$=-\{(m-2)^2-4\}$$
 
$$=-(m-2)^2+4$$

したがって,m=2 のとき,s は最大となり,その最大値は4 である.

6.



 ${
m AP}>0$  であるから, ${
m AP}^2$  の値が最小となるとき, ${
m AP}$  も最小となる.

$$A(0, a)$$
,  $P(x, y)$  とすると

$$AP^{2} = (x - 0)^{2} + (y - a)^{2}$$

$$= x^{2} + (y - a)^{2}$$

$$= y + y^{2} - 2ay + a^{2}$$

$$= y^{2} - (2a - 1)y + a^{2}$$

$$= \left(y - \frac{2a - 1}{2}\right)^{2} - \left(\frac{2a - 1}{2}\right)^{2} + a^{2}$$

$$= \left(y - \frac{2a - 1}{2}\right)^{2} - \frac{(2a - 1)^{2} - 4a^{2}}{4}$$

$$= \left(y - \frac{2a - 1}{2}\right)^{2} + \frac{4a - 1}{4}$$

ただし ,  $y \ge 0$ 軸の位置によって , 場合分けをする .

$$(a)$$
  $\frac{2a-1}{2} < 0$  すなわち  $2a-1 < 0$   $2a < 1$   $a < \frac{1}{2}$   $0 < a < \frac{1}{2}$  のとき

y=0 のとき, $\mathrm{AP}^2$  は最小値  $a^2$  をとる.a>0であるから,このときの  $\mathrm{AP}$  の最小値は  $\sqrt{a^2}=a$ 

$$(a)$$
  $\frac{2a-1}{2} \ge 0$  すなわち  $2a-1 \ge 0$   $2a \ge 1$   $a \ge \frac{1}{2}$ のとき



 $y=rac{2a-1}{2}$  のとき, $\mathrm{AP^2}$  は最小値  $rac{4a-1}{4}$  をとる. $a\geq rac{1}{2}$  より,4a-1>0 であるから,このときの  $\mathrm{AP}$  の最小値は  $\sqrt{rac{4a-1}{4}}=rac{\sqrt{4a-1}}{2}$ 

以上より

$$\left\{egin{aligned} 0 < a < rac{1}{2} \mathfrak{O}$$
とき  $y=0$  で最小値  $a$   $a \geq rac{1}{2} \mathfrak{O}$ とき  $y=rac{2a-1}{2}$  で最小値  $rac{\sqrt{4a-1}}{2}$ 

7. 
$$y = a\left(x^2 + \frac{b}{a}x\right) + c$$

$$= a\left\{\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\right\} + c$$

$$= a\left\{\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}\right\} + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$
よって
標準形  $y = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$ 
軸の方程式  $x = -\frac{b}{2a}$ 
頂点の座標  $\left(-\frac{b}{2a}, -\frac{b^2 - 4ac}{4a}\right)$