How to setup monitoring on Kubernetes Cluster using Prometheus and Grafana | Setup monitoring on EKS Cluster using Prometheus and Grafana

What is Prometheus?

- Prometheus is an open source monitoring tool and alerting tool.
- Provides out-of-the-box monitoring capabilities for the Kubernetes container orchestration platform. It can monitor servers and databases as well.
- Collects and stores metrics as time-series data, recording information with a timestamp
- It is based on pull and collects metrics from targets by scraping metrics HTTP endpoints.

What is Grafana?

- Grafana is an open source visualization and analytics software.
- It allows you to query, visualize, alert on, and explore your metrics no matter where they are stored.

Key components:

- 1. Prometheus server Processes and stores metrics data
- 2. Alert Manager Sends alerts to any systems/channels
- 3. Grafana Visualize scraped data in UI

Installation Method

There are many ways you can set up Prometheus and Grafana. You can install in following ways:

1. Create all configuration files of both Prometheus and Grafana and execute them in the right order.

- 2. Prometheus Operator to simplify and automate the configuration and management of the Prometheus monitoring stack running on a Kubernetes cluster
- 3. Helm chart (Recommended) Using helm to install Prometheus Operator including Grafana

Why use Helm?

Helm is a package manager for Kubernetes. Helm simplifies the installation of all components in one command. Install using Helm is recommended as you will not be missing any configuration steps and very efficient.

In helm 3 there is no tiller component. Helm client directly interacts with the Kubernetes API for the helm chart deployment.

Helm 3 can be installed many ways. We will install Helm 3 using the scripts option.

Download scripts

curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3

provide permission

sudo chmod 700 get helm.sh

Execute script to install

sudo ./get helm.sh

```
ubuntu@ip-172-31-31-140:~$ sudo ./get_helm.sh
Downloading https://get.helm.sh/helm-v3.7.2-linux-amd64.tar.g:
Verifying checksum... Done.
Preparing to install helm into /usr/local/bin
helm installed into /usr/local/bin/helm
```

Verify installation

helm version --client

Prerequisites

- kubernetes cluster is setup already
- Install Helm (already installed above)
- EC2 instance to access EKS cluster

Implementation steps

We need to add the Helm Stable Charts for your local client. Execute the below.

command:

helm repo add stable https://charts.helm.sh/stable

ubuntu@ip-172-31-6-100:~\$ helm repo add stable https://charts.helm.sh/stable "stable" has been added to your repositories ubuntu@ip-172-31-6-100:~\$

Add prometheus Helm repo

helm repo add prometheus-community

https://prometheus-community.github.io/helm-charts

ubuntu@ip-172-31-6-100:~\$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts "prometheus-community" has been added to your repositories

helm search repo prometheus-community

Prometheus and grafana helm chart moved to kube prometheus stack

ubuntu@ip-172-31-8-184:~\$ helm search repo prometheus-o NAME	community CHART VERSION	APP VERSION	DESCRIPTION
prometheus-community/alertmanager ient	0.18.0	v0.23.0	The Alertmanager handles alerts sent by cl
prometheus-community/kube-prometheus-stack manif	35.2.0	0.56.2	kube-prometheus-stack collects Kubernetes
prometheus-community/kube-state-metrics	4.7.0	2.4.1	Install kube-state-metrics to generate and
expo prometheus-community/prometheus	15.8.7	2.34.0	Prometheus is a monitoring system and time
seri prometheus-community/prometheus-adapter	3.2.2	v0.9.1	A Helm chart for k8s prometheus adapter
prometheus-community/prometheus-blackbox-exporter	5.8.0	0.20.0	Prometheus Blackbox Exporter

Create Prometheus namespace

kubectl create namespace prometheus

Below is the helm command to install kube-prometheus-stack. The helm repo kube-stack-prometheus (formerly prometheus-operator) comes with a grafana deployment embedded.

helm install stable prometheus-community/kube-prometheus-stack -n prometheus

```
ubuntu@ip-172-31-30-237:~$ helm install stable prometheus-community/kube-prometheus-stack -n prometheus

NAME: stable
LAST DEPLOYED: Fri May 20 23:14:54 2022

NAMESPACE: prometheus
STATUS: deployed
REVISION: 1
NOTES:
kube-prometheus-stack has been installed. Check its status by running:
   kubectl --namespace prometheus get pods -l "release=stable"
```

NOTE:

```
If you encounter an error, run: curl -L https://git.io/get_helm.sh |
bash -s -- --version v3.8.2
```

Lets check if prometheus and grafana pods are running already

kubectl get pods -n prometheus

jenkins@ip-172-31-4-244:~\$ kubectl get podsnamespace prometheus					
NAME	READY	STATUS	RESTARTS	AGE	
alertmanager-stable-kube-prometheus-sta-alertmanager-0	2/2	Running	0	21m	
prometheus-stable-kube-prometheus-sta-prometheus-0	2/2	Running	0	21m	
stable-grafana-cbb58869b-8kb4g	3/3	Running	0	21m	
stable-kube-prometheus-sta-operator-6b565466fb-vr6f4	1/1	Running	0	21m	
stable-kube-state-metrics-65bcb89bd9-j8hg4	1/1	Running	0	21m	
stable-prometheus-node-exporter-grhwj	1/1	Running	0	21m	
stable-prometheus-node-exporter-qcjp4	1/1	Running	0	21m	
jenkins@ip-172-31-4-244:~\$					

kubectl get svc -n prometheus

ubuntu@ip-172-31-30-237:~\$ kubectl get svc -n prometheus					
NAME	TYPE	CLUSTER-IP	EXTERNAL-IP	PORT(S)	AGE
alertmanager-operated	ClusterIP	None	<none></none>	9093/TCP,9094/TCP,9094/UDP	2m45s
prometheus-operated	ClusterIP	None	<none></none>	9090/TCP	2m45s
stable-grafana	ClusterIP	10.100.4.90	<none></none>	80/TCP	2m49s
stable-kube-prometheus-sta-alertmanager	ClusterIP	10.100.148.169	<none></none>	9093/TCP	2m49s
stable-kube-prometheus-sta-operator	ClusterIP	10.100.64.78	<none></none>	443/TCP	2m49s
stable-kube-prometheus-sta-prometheus	ClusterIP	10.100.121.15	<none></none>	9090/TCP	2m49s
stable-kube-state-metrics	ClusterIP	10.100.19.32	<none></none>	8080/TCP	2m49s
stable-prometheus-node-exporter	ClusterIP	10.100.9.3	<none></none>	9100/TCP	2m49s

This confirms that prometheus and grafana have been installed successfully using Helm.

In order to make prometheus and grafana available outside the cluster, use load balancer or NodePort.

Edit Prometheus Service

kubectl edit svc stable-kube-prometheus-sta-prometheus -n prometheus

```
selector:
    app.kubernetes.io/name: prometheus
    prometheus: stable-kube-prometheus-sta-prometheus
    sessionAffinity: None
    type: LoadBalancer
status:
    loadBalancer: {}
```

Edit Grafana Service

kubectl edit svc stable-grafana -n prometheus

Verify if service is changed to LoadBalancer and also to get the Load Balancer URL.

kubectl get svc -n prometheus

Access Grafana UI in the browser

Get the URL from the above screenshot and put in the browser

UserName: admin

Password: prom-operator

Create Dashboard in Grafana

In Grafana, we can create various kinds of dashboards as per our needs.

How to Create a Kubernetes Monitoring Dashboard?

For creating a dashboard to monitor the cluster:

Click the '+' button on the left panel and select 'Import'.

Enter 12740 dashboard id under Grafana.com Dashboard.

Click 'Load'.

Select 'Prometheus' as the endpoint under prometheus data sources drop down. Click 'Import'.

This will show monitoring dashboard for all cluster nodes

How to Create Kubernetes Cluster Monitoring Dashboard?

For creating a dashboard to monitor the cluster:

Click the '+' button on the left panel and select 'Import'.

Enter 3119 dashboard id under Grafana.com Dashboard.

Click 'Load'.

Select 'Prometheus' as the endpoint under prometheus data sources drop down. Click 'Import'.

This will show monitoring dashboard for all cluster nodes

Create POD Monitoring Dashboard

For creating a dashboard to monitor the cluster:

Click the '+' button on the left panel and select 'Import'.

Enter 6417 dashboard id under Grafana.com Dashboard.

Click 'Load'.

Select 'Prometheus' as the endpoint under prometheus data sources drop down. Click 'Import'.

This will show a monitoring dashboard for all cluster nodes.

