Linux 下 socket 编程基本知识

1 概念

1.1 套接字 (socket)

Socket (套接字)是一种通讯机制,它包含一整套的调用接口和数据结构的定义,它给应用进程提供了使用如 TCP/UDP 等网络协议进行网络通讯的手段。

Linux 中的网络编程通过 socket 接口实现, socket 既是一种特殊的 IO, 提供对应的文件描述符。一个完整的 socket 都有一个相关描述, 简称 五元组(协议、本地地址、本地端口、远程地址、远程端口), 每一个 socket 有一个本地的唯一的 socket, 由操作系统分配。

1.2 字节序

字节序分为大端字节序和小端字节序,网络协议使用网络字节序即大端字节序。

内部字节表示顺序和网络字节顺序不一样的机器,要对数据进行转换。

1.2.1 字节序转换常用函数

uint32_t htonl(uint32_t hostlong); 将一个 32 位整数由主机字节序转换为网络字节序 uint16_t htons(uint16_t hostshort); 将一个 16 位整数由主机字节序转换成网络字节序

uint32_t ntohl(uint32_t netlong); 将一个 32 位整数由网络字节序转成主机字节序 uint16_t ntohs(uint16_t netshort); 将一个 16 位整数由网络字节序转换成主机字节序

1.3 数据结构

1.3.1 通用地址结构(一般不使用,但是内核中是使用的,所以需要 强制转换为此种数据结构)

#include <sys/socket.h>
struct sockaddr{
 unsigned short sa_family;
 char sa_data[14];
};

sa_data:包含了一些远程电脑的地址、端口和套接字的数目,它里面的数据是杂糅在一起的。

sa_family: 一般来说 IPv4 使用 AF_INET。

在传递给需要地址结构的函数时,把指向该结构的指针转换成 struct sockaddr *传递进去。

1.3.2 因特网地址结构

struct scokaddr_in{

struct in_addr{
 in_addr_t s_addr //IPv4 地址
};

short int sin_family; //Internet 地址族如 AF_INET (主机字节序)

unsigned short int sin_port; //端口号, 16bit (网络字节序)

struct in_addr sin_addr; //Internet 地址,32bit IPv4 地址(网络字节序)

unsigned char sin zero[8]; //添 0 (为了格式对其的填充位)

};

通用地址结构和因特网地址结构数据类型是等效的,可以相互转换,通常使用 sockaddr in 更为方便。

2 基本函数

2.1 创建 socket

#include <sys/socket.h>

int socket(int domain, int type, int protocal)

返回: 成功返回文件描述符, 出错返回-1。

socket 创建在内核中,若创建成功返回内核文件描述表中的 socket 描述符。

参数:

domain: AF_INET IPv4 因特网域、AF_INET6 IPv6 因特网域、AF_UNIX unix 域、AF_UNSPEC 未指定。

protocol: 通常为 0,表示按给定的域和套接字类型选择默认协议 type: SOCK_STREAM 流式套接字,可以提供可靠的、面向连接的的 通讯流,它使用 TCP 协议,TCP 保证了数据传输的正确性和顺序性。 SOCK_DGRAM 数据报套接字,定义了一种无连接的服务,数据通过 相互独立的报文进行传输,是无序的,并且不保证可靠、无差错,使 用数据报协议 UDP 协议。SOCK_RAW 原始套接字,允许对低层协议 如 IP 或 ICMP 直接访问,主要用于新的网络协议实现的测试等。 SOCK_SEQPACKET 长度固定的、有序、可靠的面向连接报文传递。

2.2 IPv4 地址族和字符地址间的转换函数

#include <arp/inet.h>

功能:将网络字节序转换位点分十进制

const char* inet_ntop(int domain, const void *restrict_addr, char *restrict_str,

socklen_t size);

功能:将点分十进制转换为网络字节序

const char* inet_pton(int domain, const void *restrict str, char *restrict addr);

参数:

domain: Internet 地址族,如 AF_INET

addr: Internet 地址, 32 位 IPv4 地址 (网络字节序)

str: 地址字符串(点分十进制) 指针

size: 地址字符串大小

2.3 填写 IPv4 地址族结构案例

struct sockaddr_in sin; //定义一个 sockaddr_in 结构体

char buf[16];

memset(&sin, 0, sizeof(sin));

```
sin.sin_family = AF_INET; //填写 Internet 地址族
sin.sin_port = htons((short)3001); //填写端口号(网络字节序)
//填写 sin_addr
if (inet_pton(AF_INET, "192.168.2.1", &sin.sin_addr.s_addr) <=0)
{
    //错误处理
}
printf("%s\n", inet_ntop(AF_INET, &sin.sin_addr.s_addr, buf, sizeof(buf)));
```