

Machine Learning

Artificial Neural Networks

ADF

Outline

- History and Motivation
 - Linear Regression
 - Linear Classifier
 - Logistic Regression
- Neuron Model
- Neural Network Architectures
- Activation Function

History and Motivation:

Linear Regression

4/5/2021

Linear Regression

- Remember Linear Regression
 - Modelling the relation that best fit the data using a single line (linear function)

$$y = \beta_0 + \beta_1 x$$

• β_0 : Population Y-Intercept (intercept, bias, ...)

• β_1 : Population slope (weight vector,...)

– In a multivariate (multidimensional) x, we'll have

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_d x_d$$

Univariate Linear Regression

Linear Regression

- Intuition:
 - Modelling the relation that best fit the data using a single line (linear function)
- Problem:
 - What is the best weights (parameters)
- 1st Solution: Least Square Error
 - Define a Cost/Loss/Error function (SSE, MSE, etc.)
 - Find weights that minimize the Cost Function
 - Use the First derivative

$$\widehat{w} = \left(X^T X\right)^{-1} X^T y$$

History and Motivation:

Linear Classification

4/5/2021

Linear Classification

- Intuition:
 - Modelling the relation that best fit the data using a single line
 - Find weights that minimize the Cost Function
- Problem:
 - For binary classification, y is categorical $\{-1, +1\}$
- Solution:
 - Use discriminative function to decide which class example

$$\begin{cases}
f(x_i) > 0 & \Leftrightarrow \hat{y}_i = +1 \\
f(x_i) < 0 & \Leftrightarrow \hat{y}_i = -1
\end{cases} \text{ i.e. } \hat{y}_i = sign(f(x_i))$$

y function)

Linear Classification

History and Motivation:

Logistic Regression

Linear Classification

Intuition:

- Modelling the relation that best fit the data using a single line
- Use discriminative (sign) function to decide which class example
- Find weights that minimize the Cost Function

Problem:

- For binary classification, when using linear regression, the examples far from the decision boundary have a huge impact on \hat{y} .
- How to limit their influence?

Linear Classification

Problem:

- For binary classification, when using linear regression, the examples far from the decision boundary have a huge impact on \hat{y} .
- How to limit their influence?

Intuition:

- Modelling the relation that best fit the data using a single line
- Use discriminative (sign) function to decide which class example
- Find weights that minimize the Cost Function

Problem:

- For binary classification, when using linear regression, the examples far from the decision boundary have a huge impact on \hat{y} .
- How to limit their influence?

Solution:

Use a transformation of the values of linear function

Limit output $[0 \le f(x) \le 1]$ by inserting the affine function to a sigmoid function

$$f(x) = \sigma(wx + \beta)$$

where

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

is the sigmoid function (a.k.a logistic function)

$$f(x) = \frac{1}{1 + e^{-(wx+a)}}$$

- Interpretation of the model:
 - -f(x) estimates the probability that x belongs to class 1.
 - Logistic regression is a classification model
 - The discrimination function f(x) itself is not linear anymore; but the decision boundary is still linear!

History and Motivation:

Linear Regression/Classification is a Weighted Sum

Linear Classification

- Weighted Sum to determine YES(1) or NO(0)
 - Receive input from outside
 - Multiplying by the weight connected to it
 - **Sum** up all of them
 - Limit output in the range [0-1]
- If output total high,
 then class = close to YES

- Weight is a feature identifier
 - a value that states the correlation of the attributes associated with it

if its input is important (correlated to class 1),
 then increase it

Preview: Gradient Descent Optimization

- Intuition:
 - Class score \hat{y} = weighted sum of the attributes (x)
 - Use a transformation of the values of linear function
 - Find weights that minimize the Cost Function
- Problem:

$$\widehat{w} = \left(X^T X\right)^{-1} X^T y$$

- Expensive calculation with the increasing of dimension in x,
- Need to come up with another technique
- Solution:
 - Gradient Descent Optimization

Artificial Neural Network

Neuron in our Brain

How Human Brain Works (?)

Neurons

Neuron

- The main component of Neural Network
- Which is, actually, just a simple linear function ("rename" from logistic regression)

"Brain" analogies

- Be very careful with your analogies
- It is **inspired** by how the brain works, but **do not say** that it works like a brain

Biological vs Artificial

Biological Neurons:

- Complex connectivity Pattern
- Many different types
- Dendrites can perform complex nonlinear computations
- Synapses are not a single weight
 but a complex non-linear dynamical system
- Rate code may not be adequate

History and Motivation: Mark I Perceptron

Perceptron Algorithm

- Frank Rosenblatt, ~1957:
 - the first implementation of perceptron algorithm
 - The machine was connected to a camera that used 20 × 20 cadmium sulfide photocells to produce a 400-pixel image.
 - Recognized letters of the alphabet

Perceptron Algorithm

- Ad hoc Learning Rule
 - Online or Offline learning
 - Starts with weights initialized to 0 (or to a small random value)
 - For each example at a step,

calculate

$$f(x_i) = \begin{cases} 1 & if \ w.x + b > 0 \\ 0 & otherwise \end{cases}$$

– Update rule: $w_d(t+1) = w_d(t) + \alpha(y_i - \hat{y}_i(t))x_{id}$

for all features $0 \le d \le D$

Perceptron Algorithm

- Perceptron algorithm eventually finds a hyperplane that separates 2 classes of points, if such a hyperplane exists.
- If no separating hyperplane exists, the algorithm cannot converge and will iterate forever (until max iteration).

Neural Nets Architectures

Single Layer Perceptron

- 1-layer processing
 - 1 layer containing neuron set
 - Input layer is not counted as Layer
 - If it only has a single output neuron,
 it can be seen as single linear function

Single Layer Perceptron

Input: $X \in \mathbb{R}^d$

• Output: $y \in \{0,1\}$

i	x_1	x_2	:	x_d	y
1	0.5	0.2	:	0.7	1
2	0.1	0.3		0.2	0
3	0.2	0.6		0.8	1
N					1

Single Layer Perceptron

Input: $X \in \mathbb{R}^d$

• Output: $y \in \mathbb{R}^1 \{0,1\}$

Multiclass Classification

Input: $X \in \mathbb{R}^d$

• Output: $y \in \{1, 2, ..., C\}$

i	x_1	x_2		x_d	у
1	0.5	0.2	:	0.7	1
2	0.1	0.3		0.2	2
3	0.2	0.6		0.8	1
4	0.2	0.5		0.2	3
N					3

Input: $X \in \mathbb{R}^d$

• Output: $y \in C \times \{0,1\}$

i	x_1	x_2	•••	x_d	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
1	0.5	0.2	:	0.7	1	0	0
2	0.1	0.3	:	0.2	0	1	0
3	0.2	0.6		0.8	1	0	0
4	0.2	0.5		0.2	0	0	1
N					0	0	1

- 1-layer processing
 - 1 layer containing neuron set
 - If it has multiple neurons, it can be seen as multiple linear functions

Input: $X \in \mathbb{R}^d$

• Output: $y \in \mathbb{R}^1 \{1, 2, 3\}$

i	x_1	x_2	 x_d	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
1	0.5	0.2	 0.7	1	0	0
2	0.1	0.3	 0.2	0	1	0
3	0.2	0.6	 0.8	1	0	0
4	0.2	0.5	 0.2	0	0	1
N				0	0	1

Input: $X \in \mathbb{R}^d$

• Output: $y \in \mathbb{R}^1 \{1, 2, 3\}$

- N layer processing
 - Stacked of layers containing neuron set
 - Each connection between neuron is precedented by a non-linear function
 - The intermediate layer(s)
 behind output layer is often
 called hidden layer

Before, if one neuron was able to make a line to divide class
 1 and 0,

- Then two neurons can create two lines
- And combine them back to a single classification

Neural Network

• (Before) Linear Score Function $-\hat{y} = W \cdot x$

Now) 2-Layer Neural Network $-\hat{y} = W_2. f(W_1. x)$

Neural Network

(and further) 3-Layer Neural Network

$$-\hat{y} = W_3.f(W_2.f(W_1.x))$$

Neural Network Naming

- 1-layer Neural Net
 - Single Layer Perceptron
- 2-layer Neural Net
 - 1 Hidden Layer Neural Net
- 3-layer Neural Net
 - 2 Hidden Layer Neural Net
 - And so on

layer 2

Layer 1

Neural Network Naming

- Layer is where the weights attached
- A network with two or more layers is referred to as a Multi-Layer Perceptron (MLP)

Layer Number and Sizes

Layer Number and Size

- Increase the size and number == increase the network capacity
 - Neural Networks with more neurons can express more complicated functions
 - Can learn to classify more complicated data
- Tradeoff:
 - More likely to overfit the training data

Layer Number and Size

more neurons = more capacity

Layer Number and Size

Neural Network Architectures

- Single Layer Perceptron
- Multi Layer Perceptron
 - Basic Neural Network Architecture
 - Feed Forward Neural Network
 - Deep Neural Network
- Radial Basis Function Neural Network
- Recurrent Neural Network
- Convolutional Neural Network

Neural Network Architectures

- Boltzmann Machine
- Hopfield Network
- Deep Belief Network

Activation Functions

Neural Network

- Neural Network is just a series (stacks) of neuron
- Each connection between neuron is precedented by a nonlinear function

Activations Functions

Sigmoid

$$\frac{1}{1+e^{-(v)}}$$

tanh(x)

ReLU

 $\max(0, x)$

0

Sigmoid Function

Forward function

$$\sigma(x) = \frac{1}{1 + e^{-(v)}}$$

Backward function

$$\sigma'^{(x)} = \sigma^{(x)} - \sigma(x)^2$$

- Squashes numbers to range [0, 1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

Tanh Function

Forward function

$$f(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)} = \tanh(x)$$

Backward function

$$f'^{(x)} = 1 - \tanh^2(x)$$

Squashes numbers to range [-1, 1]

[LeCun et al., 1991]

Rectified Linear Unit

Forward function

$$f(x) = \max(0, x)$$

Backward function

$$f'(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}$$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice

[Krizhevsky et al., 2012]

Why use Activation Function?

- Without activation function, the neural network will be just a single linear sandwich
- The capacity is the same as just a linear classifier

$$\begin{bmatrix} x \\ x \end{bmatrix} * \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} y \\ y \end{bmatrix} \equiv \begin{bmatrix} x \\ x \end{bmatrix} * \begin{bmatrix} w_1 * w_2 \\ y \end{bmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$$

Question?

Next Agenda

- Neural Network Training
- Gradient Descent
- Backpropagation
- Advanced Techniques

7HANK YOU