Machine learning physics

Phase transitions

Typically, the building blocks of a neural network are **sigmoid neurons**

Logistic activation function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

The network graph defines a concatenation of sigmoid neurons

The network graph defines a concatenation of sigmoid neurons

Neural network is a **highly non-linear mapping** $\vec{x} \rightarrow F(\vec{x}; W)$

$$\vec{x} \rightarrow F(\vec{x}; W)$$

Labeled training dataset

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

Cost function measure

$$C(W) \sim |F(\vec{x}; W) - y(\vec{x})|^2$$

Use **backpropagation** and **stochastic gradient descent** to adjust weights and biases (check out <u>this great video</u>)

Apply image/pattern recognition techniques to physical systems

Carrasquilla, Melko, NPHYS 13 (2017)

Van Nieuwenburg, Liu, Huber, NPHYS 13 (2017)

Broecker, Carrasquilla, Melko, Trebst, arXiv:1608.07848 (2016)

Artificial neural networks have proven to be an extremely powerful tool for feature extraction

Two natural choices for what to take as "image" of the system

Convolutional neural network (CNN) architecture with preprocessing of input image

Learning smaller recurring features

—— matrix reductions —— conventional

Train network **deep in both phases**, predict phase in between.

Point of maximal confusion

