1. (Teórico)

(a) Sea $\mathbf{X} = (X_1, \dots, X_n)$ una muestra aleatoria con distribución P_{θ} . Suponga una distribución a priori T para θ , con $T \sim \tau$. Sea $\delta_{\Lambda}(\mathbf{X})$ el estimador Bayes para θ . Si es insesgado, pruebe que

$$\mathbb{E}((\delta_{\Lambda}(\mathbf{X}) - T)^2) = 0.$$

- (b) Mostrar que \bar{X} no es un estimador de Bayes de θ para ninguna distribución a priori Λ cuando $X|_{T=\theta} \sim N(\theta,1)$ y se usa pérdida cuadrática.
- 2. (Calculo de posteriori) Sea una m.a. X_1, \ldots, X_n donde $X_i|_{=\theta} \sim \mathcal{P}(\theta)$ y $\sim \Gamma(r, \lambda), r, \lambda > 0$.
 - (a) Encontrar el estimador Bayes δ_{Λ} y calcular el riesgo de Bayes $r(\delta_{\Lambda}, \Lambda)$.
 - (b) Mostrar que δ_{Λ} puede escribirse como un promedio ponderado entre \bar{X} y $\frac{r}{\lambda}$. Interprete.
- 3. (Empirical Bayes)
 - (a) Usar el dataset Batting del paquete Lahman (playerID, H, AB). Obtenga el número total de hits e intentos por jugador.
 - (b) ¿Elegiría como "mejor jugador" a quienes tienen promedio 1? ¿Por qué?
 - (c) Para jugadores con más de 1000 intentos, estime la distribución de promedios usando una Beta. Llame a esto Λ . Sugerencia: use fitdistr de MASS o método de momentos.
 - (d) Fije la distribución del punto anterior como prior para los valores p_i ("probabilidad REAL de hit" del jugador i). Para cada jugador, obtenga el estimador Bayes para p_i .
 - (e) Rankee los jugadores usando los estimadores Bayes p_i obtenidos.
 - (f) Grafique y compare la estimación frecuentista (p_i empírico) y la de Empirical Bayes para todos los jugadores.
- 4. (Modelado bayesiano con STAN). Se mide el efecto de un método educativo en 8 escuelas: el archivo schools.csv contiene estimaciones Y_1, \ldots, Y_8 y desvíos estándar $\sigma_1, \ldots, \sigma_8$. Se modela:
 - $\mu \sim N(0, 10000)$
 - $\theta_i \sim N(\mu, 1)$
 - $Y_i \sim N(\theta_i, \sigma_i^2)$
 - (a) Implemente el modelo en STAN.
 - (b) Fittear y obtenga estimaciones de los θ_i .
 - (c) ¿Qué se esperaría si σ_i se multiplica por una constante muy pequeña? ¿Y si se multiplica por una constante grande?