Leveraging NGS for Population Studies: RAD-seq style

Genomic Tools Workshop

June 29, 2015

Tammy R Wilbert

Today's Talk

Why am I interested in this?

Restriction-site Associated DNA Sequencing

Going from raw data to analysis

Population Analysis Tools

Source-Sink Dynamics of a migratory bird: wood thrush (*Hylocichla mustelina*)

Project Design

- Three types of sampling sites
 - Big Oaks National Wildlife Refuge (4)
 - CRANE Naval Base (4)
 - Indiana Dept. Natural Resources (4)
- Intensive surveys for 4 years
- Data collection:
 - Demographics
 - Reproductive rates
 - Blood samples → Isotopes & Genetics

Source-Sink Dynamics of a migratory bird: wood thrush (*Hylocichla mustelina*)

Connectivity

- 1. Genetic diversity of "residents"
- 2. Population structure
- 3. Gene flow & bottlenecks
- 4. Compare between sites

Source-Sink Dynamics of a migratory bird: wood thrush (*Hylocichla mustelina*)

Connectivity

- 1. Genetic diversity of "residents"
- 2. Population structure
- 3. Gene flow & bottlenecks
- 4. Compare between sites

<u>Dispersal</u>

- 1. Genetic diversity of Second Year birds
- 2. Genetic assignment to natal site
- 3. Identify dispersal events
- 4. Compare between sites

Restriction-site Associated DNA Sequencing

Restriction-site Associated DNA Sequencing

- RAD-seq (Miller et al. 2007, Baird et al. 2008)
- ddRAD (Peterson et al. 2012)
- GBS (Elshire et al. 2011)
- 2bRAD (Wang et al. 2012)
- ezRAD (Toonen et al. 2013)

Restriction-site Associated DNA Sequencing

ddRAD: double digest RAD

P1 Adapter = restriction site 1
P2 Adapter = restriction site 2

Pooled & Size selection PCR enrichment

GBS: Genotype by Sequencing

http://www.biotech.cornell.edu/brc/genomic-diversity-facility

Adapters

- > specific to overhang produced by enzyme digestion
- → include barcode and common adapter

2bRAD - type IIB restriction endonucleases

Enzymes cleave genomic regions upstream & downstream of recognition site (examples: BsaXI, Alfl)

Adaptors with degenerate cohesive ends 5'-NNN-3'

Modify to sub-select fragments with more specific overhangs
5'-NNG-3'

PCR amplification with barcoding

ezRAD: Isoschizomer Enzymes

Cleave genomic regions with 2 high-frequency isoschizomer enzymes example: Mbol and Sau3AI both cut /GATC

Clean reaction

TruSeq DNA Kit:

End repair
Add A to 3' end
Ligate TruSeq adapters
Size Selection

Method

RAD

Pros/Cons of RAD-seq methods

ddRAD	Customization – number SNPs or fragment sizes by enzymes & size selection	Allelic dropout from size selection, need high-quality DNA		
GBS	Simple protocol, Cost-effective, Customization	Optimization can be difficult, ADO, need high-quality DNA		
2bRAD	Simple protocol, Cost-effective, No fragment size biases	SHORT sequences may be hard to map to genome, cannot build large contigs		
ezRAD	Easy, Illumina support, with Illumina PCR-free TruSeq kit -> no PCR bias	ADO, Expensive, Sequencing can fail or create errors from starting bases		

Pros

Shearing allows identification of PCR

duplicates & creation of longer contigs

Cons

Technically challenging, more

equipment, Sequencing depth biased

to fragment length

Comparing Cost & Scalability

Table 3 Comparison of most commonly	ised RAD sequencing n	nethodologies and associated costs.
-------------------------------------	-----------------------	-------------------------------------

	No. of enzymes	Cut frequency	Shearing required	Size selection	Library prep time & required expertise	Initial outlay cost	Subsequent library cost per sample	Scalability to reduce overall cost per sample
ezRAD	1 or more	Frequent	No	Yes	Low	Very Low	Moderate	Low
RAD tags	1	Rare	Yes	Yes	High	High	Low	Low
GBS	1	Rare or frequent	No	No	Moderate	High	Moderate to very low	Low
2-enzyme GBS	2	Rare + frequent	No	No	Moderate	High	Moderate to very low	Low
ddRAD	2	Frequent	No	Yes	Moderate	High	Very low	Moderate
2b-RAD	1	Frequent	No	No	Moderate	High	Low	Moderate

Library preparation of samples can range from \$5 – \$60 per sample

Illumina Sequencing costs:

MiSeq \$900 in house \$1300 at facility

\$1300 at facility \$2500 at facility 10 million reads

HiSeq

\$2000?

100 million reads

SEQUENCING DEPTH IS CRUCIAL!!

One step further: RNA-seq and eRAD

Genetic-diversity GBS Protocol

gd-GBS Protocol Diversity Sample Library Sequencing SNP Assembly on MiSea Calling Analysis Preparation **DNA Extraction Pool Samples** Collapse Reads Load Library onto Examples: (DNeasy Plant Mini) (Clean and Concentrator) Reagent Cartridge (fastx_collapser) Heterozygosity Genetic Quantification Size Selection Load Flow Cell and Assemble Contigs Distance (PicoGreen) (Pippin Prep) Reagent Cartridge on (Minia) Instrument Genetic Restriction Digest Relationship Quantification Align Reads to (Pstl, Mspl) (PicoGreen) Upload Sample Sheet Contigs Genetic to Instrument (Bowtie 2) Differentiation Ligation Adjust Concentration Genetic (Enzyme-Specific and Combine into Begin Run Summarize Structure Adapters) Library Alignments and Call SNPs in VCF Download FASTQ (SAMtools, BCFtools) Sample Clean-up Denature and Dilute Files (AMPure XP Beads) Library Generate and Format PCR Amplification Add PhiX Control Genotype Data (Indexed Primers) Library (5%) (custom scripts)

Quantification

(PicoGreen)

Prepare Sample Sheet

Going from raw data to analysis

Stacks

Julian Catchen

- 1. Process_radtags
- 2. Ustacks de novo lociPstacks alignment
- 3. Cstacks
- 4. Sstacks
- Individual/Population files for next analyses
- perl scripts
- mySQL database

dDocent: A guide to ddRAD sequencing

Quality Filtering De Novo Assembly Read Mapping SNP Calling SNP Filtering

FreeBayes https://github.com/ekg/freebayes

STACKS http://creskolab.uoregon.edu/stacks/

PEAR http://sco.h-its.org/exelixis/web/software/pear/

Trimmomatic http://www.usadellab.org/cms/?page=trimmomatic

Mawk http://invisible-island.net/mawk/

BWA http://bio-bwa.sourceforge.net

SAMtools <u>http://samtools.sourceforge.net</u>

VCFtools v.1.11** http://vcftools.sourceforge.net/index.html

Rainbow http://sourceforge.net/projects/bio-rainbow/files/

seqtk https://github.com/lh3/seqtk

CD-HIT http://weizhong-lab.ucsd.edu/cd-hit/

gnu-parallel http://www.gnu.org/software/parallel/

bedtools https://code.google.com/p/bedtools/

vcflib https://github.com/ekg/vcflib

gnuplot http://www.gnuplot.info/

Going from raw data to analysis

VCF for all samples (from GATK)

FILTER SNPs: MAF, position, quality, depth

FILTER INDIVIDUALS:

% missing, Mendelian inheritance

Add info: age, location, habitat

→ Formatting

GREAT MANUAL!!

Heidi Lischer

Shaun Purcell

ANGSD

Thorfinn Sand Korneliussen Anders Albrechtsen Rasmus Nielsen

Heidi Lischer

ANGSD

Korneliussen Albrechtsen Nielsen

- Summary statistics (contamination, alleles, depth, quality)
- SNPs and genotypes (likelihoods, errors, allele freq)
- Population genetics (Site frequency spectrum, Theta, HWE)
- Population structure (admixture, Fst, PCA, ABBABABA, Relatedness)
- Medical genetics association tests
- Outputs for Beagle & Plink

→ Input files: BAM/CRAM

Genotype likelihood file

Beagle files

VCF files

Shaun Purcell

- Data Management (SNPs, individuals, subsets, filtering)
- Summary Statistics (HWE, allele freq, linkage disequilibrium)
- Population stratification (clustering, IBS, IBD, inbreeding)
- Association & statistics (Heterogeneity, QTL, modeling)
- Family-based Association
- Permutation tests
- Multi-marker tests (Haplotype frequencies, association)
- Simulations
- R plugin

... and more

→ Merlin file – program KING: multi-dimensional scaling with IBS

Shaun Purcell

.ped file

