

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Maestría en Robótica

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIG	NATURA				
William Was		Robótica d	e Manipuladores		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primero	252102	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno adquirirá los conocimientos y las habilidades para realizar el análisis cinemático y dinámico de robots con arquitectura serial, así como para resolver el problema de la planificación de trayectorias.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1 Perspectiva histórica de la robótica
- 1.2 Arquitectura general de un robot
- 1.3 Clasificación y tipos de robots

2. Descripciones espaciales y transformaciones

- 2.1 Localización (pose) de un cuerpo rígido
- 2.2 Matrices de rotación
- 2.3 Diferentes representaciones para la orientación de un cuerpo rígido
- 2.4 Coordenadas y transformaciones homogéneas

3. Cinemática directa

- 3.1 Formalismo de Denavit-Hartenberg
- 3.2 Cinemática de estructuras robóticas típicas (2, 3 y 6 GDL)

4. Cinemática inversa

- 4.1 Desacoplamiento cinemático
- 4.2 El problema del posicionamiento
- 4.3 El problema de la orientación
- 4.4 Ejemplos

5. Cinemática diferencial y fuerzas estáticas

- 5.1 El Jacobiano geométrico
- 5.2 Singularidades cinemáticas
- 5.3 Análisis de redundancia
- 5.4 Cinemática diferencial inversa
- 5.5 El Jacobiano analítico
- 5.6 Fuerzas estáticas

6. Dinámica

- 6.1 Cinemática de la aceleración
- 6.2 El método de Newton-Euler
- 6.3 El método de Euler-Lagrange
- 6.4 Dinámica inversa y directa6.5 Ejemplos de modelos dinámicos

. 7. Planificación de trayectorias

- 7.1 Trayectorias en el espacio de juntas
- 7.2 Trayectorias en el espacio operacional

Desirett ...

Agrilla.

ACTIVIDADES DE APRENDIZAJE

Exposición por parte del maestro. Trabajos de investigación y/o prácticos. Proyectos en los que se aplique lo visto en clase. Exposición por parte del alumno de los proyectos realizados. Simulaciones en paquetes computacionales especializados (Robotics Toolbox Matlab, ADAMS, Solidworks, Simmechanics).

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Instrumentos formales y prácticos de evaluación: exámenes parciales y examen final; Tareas a lo largo del curso; Proyecto final.

Promedio de los tres exámenes parciales 50% de la calificación final

Examen final y/o proyecto final 50% de la calificación final

Cada evaluación parcial se calificará con un examen escrito y tareas ponderadas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Reza N. Jazar (2010). Theory of Applied Robotics Kinematics, Dynamics and Control, , 2nd Ed. Springer.
- 2. Siciliano Bruno, Lorenzo Sciavicco, Luigi Villani and Giuseppe Oriolo (2010), **Robotics Modelling, Planning and Control**, Springer.
- 3. Angeles Jorge (2014), Fundamentals of Robotic Mechanical Systems, , 4th Edition, Springer.

Consulta

- 1. Mark W. Spong, Seth Hutchinson, M. Vidyasagar (206) Robot Modeling and Control, Wiley.
- 2. Peter Corke (2013), Robotics, Vision and Control, Springer.
- 3. Craig John J. (2006). Robótica, Tercera Edición, Pearson.
- 4. Subir Kumar Saha (2008). (2008). Introducción a la Robótica, McGraw Hill.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Mecánico, Electrónico o Mecatrónico con estudios de Doctorado en Robótica, Mecatrónica o área afín.

DIVISION DE ESTUDIOS
DE POSGRADO

, Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR
JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO