1. TABLAS

1.1. p=2

h	Error Norma L2	Error Norma infinito	Error Norma H1	Tiempo de ejecución(ns)
10	1,0984e - 04	1,9700e - 04	7,7051e - 03	1150300
20	1,5722e - 05	$3{,}1000e - 05$	1,6852e - 03	1979700
40	1,9573e - 06	4,0000e - 06	4,1137e - 04	3639500
80	4,5354e - 07	1,0000e - 06	1,4515e - 04	5977700

1.2. p=4

h	Error Norma L2	Error Norma infinito	Error Norma H1	Tiempo de ejecución(ns)
10	5,9898e - 07	1,0000e - 06	2,0412e - 05	1409000
20	0	0	$5{,}1158e - 06$	3111600
40	0	0	2,7355e - 07	4555700
80	0	0	3,8227e - 15	9696100

2. CAMBIO DE VARIABLE 1D

2.1. Formulación clasica

Espacio parametrico:

$$-u''(x) = f(x), \quad x \in \Omega.$$

Espacio fisico:

$$-\frac{1}{J(\xi)}\frac{d}{d\xi}\left(\frac{1}{J(\xi)}u'(r(\xi))\right) = f(r(\xi)), \quad \xi \in \Omega^{\xi}.$$

Equivalentemente:

$$-\frac{d}{d\xi}\left(\frac{1}{J(\xi)}u'(r(\xi))\right)=f(r(\xi))J(\xi),\quad \xi\in\Omega^{\xi}.$$

2.2. Formulación variacional

suponemos $\Omega = (0,L)$, spg Espacio parametrico:

$$\int_{\Omega} u'(x)v'(x)dx - u'(L)v(L) + u'(0)v(0) = \int_{\Omega} f(x)v(x)dx, \quad x \in \Omega.$$

Espacio fisico:

$$\begin{split} & \int_{\Omega^{\xi}} \frac{1}{J(\xi)} u'(r(\xi)) \frac{1}{J(\xi)} v'(r(\xi)) J(\xi) d\xi x - \frac{1}{J(L)} u'(r(L)) v(r(L)) + \frac{1}{J(0)} u'(r(0)) v(r(0)) = \\ & = \int_{\Omega^{\xi}} f(r(\xi)) v(r(\xi)) J(\xi) d\xi, \quad \xi \in \Omega^{\xi}. \end{split}$$

Simplificando obtenemos:

$$\int_{\Omega^{\xi}} \frac{1}{J(\xi)} u'(r(\xi)) v'(r(\xi)) d\xi x - \frac{1}{J(L)} u'(r(L)) v(r(L)) + \frac{1}{J(0)} u'(r(0)) v(r(0)) =$$

$$= \int_{\Omega^{\xi}} f(r(\xi)) v(r(\xi)) J(\xi) d\xi, \quad \xi \in \Omega^{\xi}.$$

Donde $J(\xi) = ||r'(\xi)||_2$.