MATH 60604 Modélisation statistique § 7c - Estimateur de Kaplan—Meier

HEC Montréal Département de sciences de la décision

Notation

On considère T une variable aléatoire continue et un échantillon de taille n.

- Supposons qu'il y a *D* temps distincts de défaillance.
- Soit $0 \le t_1 < t_2 < \cdots < t_D$ ces *D* temps en ordre croissant.
- Soit r_j le nombre d'individus **à risque** d'expérimenter l'événement au temps t_i .
 - C'est-à-dire, ces individus n'ont toujours pas expérimenté l'événement (et n'ont pas été censuré) avant le temps t_i .
 - Donc, r_j est le nombre de survivants juste avant le temps t_j qui sont à risques d'expérimenter l'événement au temps t_j.
- Soit $d_j \in \{0, ..., r_j\}$ le nombre d'individus qui expérimentent l'événement au temps t_i (par exemple, il y a d_i décès au temps t_i).

Dérivation de l'estimateur de Kaplan-Meier

La probabilité de mourir dans l'intervalle $(t_j, t_{j+1}]$ étant donné que l'individu a survécu jusqu'à t_j est

$$h_j = P(t_j < T \le t_{j+1} \mid T > t_j) = \frac{S(t_j) - S(t_{j+1})}{S(t_j)}.$$

d'où une récursion qui donne

$$S(t) = \prod_{j:t_i < t} (1 - h_j).$$

L'estimateur de Kaplan-Meier est non-paramétrique,

- on ne fait pas d'hypothèse sur la loi de probabilité sous-jacente de T_i .
- on considère plutôt les $\{h_j\}_{j=1}^D$ comme des paramètres du modèle.

Vraisemblance pour données discrètes

- Chacun des décès au temps t_i contribue h_i à la vraisemblance
 - la probabilité de défaillance à t_j sachant qu'un individu a survécu jusque là.
- Les survivants au temps t_i contributent $1 h_i$.
- On peut donc écrire la log vraisemblance comme

$$\ell(h) = \sum_{j=1}^{D} \{d_j \ln(h_j) + (r_j - d_j) \ln(1 - h_j)\},\,$$

soit la somme des contributions de variables binomiales du risque au temps t_i .

Optimisation des différents probabilité de survie

- Si on différencie $\ell(h)$ par rapport à h_j , on trouve $\widehat{h}_j = d_j/r_j$.
- L'estimateur de Kaplan-Meier pour la fonction de survie est

$$\widehat{S}(t) = \prod_{t_j < t} \left(1 - \frac{d_j}{r_j} \right)$$

• Intuition: d_j/r_j représente la probabilité conditionnelle de survivre jusqu'avant le temps t_j et d'expérimenter l'événement au temps t_j .

Exemple

Les données cancersein tirées de Sedmak *et al.* (1989) traitent de survie de patients atteints du cancer du sein et contiennent les variables suivantes:

- temps: temps de survie ou temps écoulé à la fin de l'étude (en mois)
- mort: variable indicatrice pour la mort, 0 pour censure, 1 pour décès
- repimmuno: réaction à un examen immunohistochimique, soit négative (0) ou positive (1)

Statistiques descriptives pour cancersein

	Variable d'analyse : temps							
N	Moyenne		Ec-type	Minimum		Maximu		
45	98.33		51.84		19.00		189.0	
	mort Fré		quence Po		ourcentage			
	0		21		46.67			
	1		24		53.33			
re	repimmuno		Fréquen	ce	Pource	enta	ige	
	1		36		80.00		.00	
	2		9		20.0		.00	

En pratique, l'utilisation de l'estimateur de Kaplan–Meier avec si peu de données est déconseillée. La qualité de l'approximation dépend fortement du nombre d'observations (correct si $n \gg 1000$).

Les observations censurées fournissent beaucoup moins d'information que les temps de défaillance observés.

Estimation de la fonction de survie

Code SAS pour ajuster l'estimateur de Kaplan-Meier

```
proc lifetest data=modstat.cancersein method=km plots=(s(cl));
time temps*mort(0);
run;
```

L'argument time indique la variable de temps T_i (temps) et l'indicateur de censure δ_i , incluant la valeur de référence pour les observations censurées à droite (mort=0)

Estimé de la fonction de survie

Valeurs estimées de survie de Kaplan-Meier							
temps		Survie	Echec	Erreur type de survie	Nombre d'échecs		
0.000		1.0000	0	0	0	45	
19.000		0.9778	0.0222	0.0220	1	44	
22.000		0.9556	0.0444	0.0307	2	43	
23.000		0.9333	0.0667	0.0372	3	42	
25.000		0.9111	0.0889	0.0424	4	41	
				:			
				•			
165.000	*				24	2	
182.000	*				24	1	
189.000	*				24	0	

Note: The marked survival times are censored observations.

Graphique de la fonction de survie

La courbe de survie estimée est déficiente: $\widehat{S}(t)$ ne descend jamais à 0 parce que le temps de survie le plus long dans les données est censuré à droite.

Durée de l'allaitement

La base de données allaitement contient des données provenant de l'Enquête longitudinale nationale sur les jeunes sur la durée de la période d'allaitement de mères depuis la naissance de leur bébé. On se concentre sur les variables suivantes:

- duree: durée de l'allaitement (en semaines)
- delta: variable indicatrice de la fin de l'allaitement,
 - soit observée (1)
 - soit censurée (0)

Récapitulatif du nombre de valeurs
censurées et non censurées

	Α		Pourcentage
Total	échoué	Censuré	censuré
927	892	35	3.78

Courbe de survie pour les données allaitement

 $\widehat{S}(t)$ atteindra zéro puisque le plus grand temps de survie est observé.

La médiane de survie

La médiane du temps de survie est le temps t_M auquel $S(t_M) = 0.5$.

• C'est-à-dire, le temps médian t_M est tel que 50% des individus survivent jusqu'au temps t_M .

On peut facilement trouver la médiane du temps de survie en cherchant le temps t où la ligne horizontale $\widehat{S}(t)=0.5$ croise la courbe de survie.

Estimations du quartile									
	Intervalle de confiance à 95%								
	Valeur estimée								
Pourcentage	du point	Transformation	[Inférieur	Supérieur)					
75		LOGLOG							
50	89.000	LOGLOG	66.000						
25	51.000	LOGLOG	34.000	67.000					

Moyenne de la survie

Pour une variable aléatoire positive, T > 0, on peut démontrer que

$$\mathsf{E}\left(T\right) = \int_{0}^{\infty} S(t) \mathrm{d}t$$

On peut estimer l'espérance du temps de survie E (T) en calculant l'aire sous la courbe de survie estimée $\widehat{S}(t)$.

- Par exemple, le temps de survie moyen pour les données d'allaitement est 16.89 semaines avec erreur-type 0.614 semaines.
- Si le temps observé le plus long est censuré, la courbe de survie estimée $\widehat{S}(t)$ va atteindre un plateau et ne descendra jamais à 0. L'aire sous la courbe est infinie.
- Dans ce cas, on peut plutôt estimer le temps de survie moyen limité: E $(\min\{\mathcal{T},\tau\})$ pour une valeur choisie τ . C'est-à-dire, nous calculerons le temps de survie moyen comme si la courbe descendait à 0 au temps τ (option rmst dans SAS).