Ejemplos EconGeo

Luz Yolanda Rivera 10/23/2021

#llamar a Econgeo de biblioteca

library(EconGeo)

##
Please cite EconGeo in publications as:

Balland, P.A. (2017) Economic Geography in R: Introduction to the EconGeo Package, Papers in Evolutionary Economic Geography, 17 (09): 1-75

generate vectors of industrial and population count generar vectores de conteo industrial(ind) y poblacional(pop)

```
ind <- c(0, 10, 10, 30, 50)
pop <- c(10, 15, 20, 25, 30)
```

check the ind vector

#comprobar el vector ind y el vector pop

ind

[1] 0 10 10 30 50

pop

[1] 10 15 20 25 30

run the function (30% of the population produces 50% of the industrial output)

se corre la función hoover.curve y apreciamos como el 30% de la población produce

#el 50% de la producción que genera la industria y se aprecia en la gráfica

Hoover.curve (ind, pop)

Hoover curve

compute the corresponding Hoover Gini

#Se calcula el coheficiente Gini correspondiente (es el 31%)

```
Hoover.Gini (ind, pop)

## [1] 0.31
```

#Ejemplo 2. GINI

generate vectors of industrial count

generar vectores de conteo industrial(ind)

```
ind <- c(0, 10, 10, 30, 50)
```

run the function

#corremos la función para calcuar Gini de la industria

```
Gini (ind)
## [1] 0.48
```

generate a region - industry matrix

generamos una matriz de la industria de la región de 4 columnas (11..14) y cinco renglones de regiones (R1..R5)

```
mat = matrix (
  c (0, 1, 0, 0,
     0, 1, 0, 0,
     0, 1, 0, 0,
     0, 1, 0, 1,
     0, 1, 1, 1), ncol = 4, byrow = T)
rownames(mat) <- c ("R1", "R2", "R3", "R4", "R5")
colnames(mat) <- c ("II", "I2", "I3", "I4")</pre>
```

##revisamos la matriz que se generó

```
mat
```

```
## I1 I2 I3 I4

## R1 0 1 0 0

## R2 0 1 0 0

## R3 0 1 0 0

## R4 0 1 0 1

## R5 0 1 1 1
```

run the function

#Hacemos el cálculo Gini de la matriz que generamos

run the function by aggregating all industries

##agregamos todas las industrias

```
Gini (rowSums(mat))
## [1] 0.25
```

run the function for industry #1 only (perfect equality)

##si ejecutamos Gini solo para la industria 1, obtendremos una igualdad perfecta

```
Gini (mat[,1])

## [1] NaN
```

run the function for industry #2 only (perfect equality)

#Corremos la función para la Industria dos que también presenta igualdad perfecta=0

```
Gini (mat[,2])

## [1] 0
```

run the function for industry #3 only (perfect unequality: max Gini = (5-1)/5)

corremos la función para la industria 4 que presenta desigualdad = .8 ya que solo una región produce todo

#por eso el cálculo de 5-4/5 nos da desigualdad perfecta

```
Gini (mat[,3])

## [1] 0.8
```

run the function for industry #4 only (top 40% produces 100% of the output)

para la industria 4 es producida por el 40% de las regiones

```
Gini (mat[,4])
```

```
## [1] 0.6
```

#Ejemplo 3. HOOVER GINI

utilizamos los vectores que ya habíamos generado antes

##ind <- c(0, 10, 10, 30, 50) ##pop <- c(10, 15, 20, 25, 30) ## run the function (30% of the population produces 50% of the industrial output) #corremos la función (se obtiene que el 30% de la población produce el 50% de la producción industrial)

Hoover.curve (ind, pop)

Hoover curve

Cumulative distribution of population shares

```
Hoover.curve (ind, pop, pdf = TRUE)
```

[1] "Hoover.curve.pdf has been saved to your current working directory"

```
Hoover.curve (ind, pop, plot = F)
```

```
## $cum.reg

## [1] 0.00 0.10 0.30 0.45 0.70 1.00

##

## $cum.out

## [1] 0.0 0.0 0.1 0.2 0.5 1.0
```

generate a region - industry matrix

##generamos una matriz mat

```
mat = matrix (
  c (0, 10, 0, 0,
     0, 15, 0, 0,
     0, 20, 0, 0,
     0, 25, 0, 1,
     0, 30, 1, 1), ncol = 4, byrow = T)
rownames(mat) <- c ("R1", "R2", "R3", "R4", "R5")
colnames(mat) <- c ("II", "I2", "I3", "I4")</pre>
```

Generamos las curvas

```
Hoover.curve (mat, pop)
```

Hoover curve I1

Cumulative distribution of population shares

Hoover curve I2

Hoover curve I3

Cumulative distribution of population shares

Hoover curve I4


```
#Hoover.curve (mat, pop, pdf = TRUE) para generar el pdf
Hoover.curve (mat, pop, plot = FALSE)

## $cum.reg
## [1] 0.00 0.10 0.25 0.45 0.70 1.00
##
## $cum.out
## [1] NaN NaN NaN NaN NaN NaN
```

run the function by aggregating all industries

#agregamos todas las industrias

Hoover.curve (rowSums(mat), pop)

Hoover curve

Cumulative distribution of population shares

 $\#Hoover.curve\ (rowSums(mat),\ pop,\ pdf=TRUE)\ si\ queremos\ generar\ el\ pdf$ $Hoover.curve\ (rowSums(mat),\ pop,\ plot=FALSE)$

```
## $cum.reg

## [1] 0.00 0.10 0.25 0.45 0.70 1.00

##

## $cum.out

## [1] 0.00000000 0.09708738 0.24271845 0.43689320 0.68932039 1.000000000
```

run the function for industry #1 only

#sólo para la idustria uno

```
Hoover.curve (mat[,1], pop)
```

Hoover curve

Cumulative distribution of population shares

```
#Hoover.curve (mat[,1], pop, pdf = TRUE) sólo si queremos generar el pdf Hoover.curve (mat[,1], pop, plot = FALSE)
```

```
## $cum.reg
## [1] 0.00 0.10 0.25 0.45 0.70 1.00
##
## $cum.out
## [1] NaN NaN NaN NaN NaN
```

run the function for industry #2 only (perfectly proportional to population)

#para la industrai dos que es proporcional a la población

```
Hoover.curve (mat[,2], pop)
```

Hoover curve

Cumulative distribution of population shares

```
#Hoover.curve (mat[,2], pop, pdf = TRUE) para generar el pdf
Hoover.curve (mat[,2], pop, plot = FALSE)
```

```
## [1] 0.00 0.10 0.25 0.45 0.70 1.00
## $cum.out
## [1] 0.00 0.10 0.25 0.45 0.70 1.00
```

run the function for industry #3 only (30% of the pop. produces 100% of the output)

#para la industria tres

```
Hoover.curve (mat[,3], pop)
```

Hoover curve

Cumulative distribution of population shares

```
#Hoover.curve (mat[,3], pop, pdf = TRUE)
Hoover.curve (mat[,3], pop, plot = FALSE)
```

```
## $cum.reg
## [1] 0.00 0.10 0.25 0.45 0.70 1.00
##
## $cum.out
## [1] 0 0 0 0 0 1
```

run the function for industry #4 only (55% of the pop. produces 100% of the output)

##para la industria 4

```
Hoover.curve (mat[,4], pop)
```

Hoover curve

Cumulative distribution of population shares

```
#Hoover.curve (mat[,4], pop, pdf = TRUE)
Hoover.curve (mat[,4], pop, plot = FALSE)
```

```
## $cum.reg
## [1] 0.00 0.10 0.25 0.45 0.75 1.00
##
## $cum.out
## [1] 0.0 0.0 0.0 0.0 0.5 1.0
```

#Compare the distribution of the #industries Comparamos la distribución de las industriaas

```
par(mfrow=c(2,2))
Hoover.curve (mat[,1], pop)
Hoover.curve (mat[,2], pop)
Hoover.curve (mat[,3], pop)
Hoover.curve (mat[,4], pop)
```


#Ejemplo 4. locational Gini curve

Hoover curve 9.0 0.4 0.0 1.0 0.0 0.2 0.4 0.6 8.0 Cumulative distribution of population shares

generate a region - industry matrix

#generamos una otra matriz de industria región y la nombramos mat2

```
mat2 = matrix (
  c (100, 0, 0, 0, 0,
     0, 15, 5, 70, 10,
     0, 20, 10, 20, 50,
     0, 25, 30, 5, 40,
     0, 40, 55, 5, 0), ncol = 5, byrow = T)
rownames(mat2) <- c ("R1", "R2", "R3", "R4",
                                               "R5")
colnames(mat2) <- c ("I1", "I2", "I3", "I4", "I5")</pre>
```

run the function (shows industry #5)

##utilizamos la función locational gini para hacer el gráfico

```
locational.Gini.curve (mat2)
```

Locational Gini curve I1

Cumulative distribution of total industrial shares

Locational Gini curve I2

Cumulative distribution of total industrial shares

Locational Gini curve I3

Cumulative distribution of total industrial shares

Locational Gini curve I4

Cumulative distribution of total industrial shares

Locational Gini curve 15

#locational.Gini.curve (mat2, pdf = TRUE)sólos si queremos generar el pdf

#Ejemplo 5. Lorenze curve

generate vectors of industrial count

##utilizamos el vector que ya habíamos creado #ind <- c(0, 10, 30, 50) ## run the function #corremos la función y generamos la curva del vector

Lorenz.curve (ind)

Lorenz curve


```
#Lorenz.curve (ind, pdf = TRUE) sólo si queremos generar un pdf de la curva
Lorenz.curve (ind, plot = FALSE)
```

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## [1] 0.0 0.0 0.1 0.2 0.5 1.0
```

generate a region - industry matrix

ocupamos la matriz mat que ya habíamos generado

#mat = matrix (c (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1), ncol = 4, byrow = T) rownames(mat) <- c ("R1", "R2", "R3", "R4", "R5") colnames(mat) <- c ("I1", "I2", "I3", "I4") ## run the function ## corremos la función para la matriz

Lorenz.curve (mat)

Lorenz curve I1

Lorenz curve I2

Lorenz curve I3

Lorenz curve I4


```
#Lorenz.curve (mat, pdf = TRUE) sólo si queremos generar un pdf de la curva
Lorenz.curve (mat, plot = FALSE)
```

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0 NaN NaN NaN NaN
```

run the function by aggregating all industries

#corremos la función y le agragamos las industrias que esta en los renglones

Lorenz.curve (rowSums(mat))

Lorenz curve

#Lorenz.curve (rowSums(mat), pdf = TRUE) sólo si queremos generar un pdf de la curva Lorenz.curve (rowSums(mat), plot = FALSE)

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0.00000000 0.09708738 0.24271845 0.43689320 0.68932039 1.00000000
```

run the function for industry #1 only (perfect equality)

#graficamos y hacemos los cálculos sólo para la industria 1

```
Lorenz.curve (mat[,1])
```

Lorenz curve


```
#Lorenz.curve (mat[,1], pdf = TRUE) sólo si queremos generar un pdf de la curva
Lorenz.curve (mat[,1], plot = FALSE)
```

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0 NaN NaN NaN NaN NaN
```

run the function for industry #2 only (perfect equality)

#graficamos y hacemos los cálculos sólo para la industria 2

```
Lorenz.curve (mat[,2])
```

Lorenz curve


```
#Lorenz.curve (mat[,2], pdf = TRUE) sólo si queremos generar un pdf de la curva
Lorenz.curve (mat[,2], plot = FALSE)
```

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0.00 0.10 0.25 0.45 0.70 1.00
```

run the function for industry #3 only (perfect unequality)

#graficamos y hacemos los cálculos sólo para la industria 3

Lorenz.curve (mat[,3])

Lorenz curve

#Lorenz.curve (mat[,3], pdf = TRUE) sólo si queremos generar un pdf de la curva
Lorenz.curve (mat[,3], plot = FALSE)

```
## $cum.reg

## [1] 0.0 0.2 0.4 0.6 0.8 1.0

##

## $cum.out

## R1 R2 R3 R4 R5

## 0 0 0 0 0 1
```

run the function for industry #4 only (top 40% produces 100% of the output)

#graficamos y hacemos los cálculos sólo para la industria 4

```
Lorenz.curve (mat[,4])
```

Lorenz curve

 $\#Lorenz.curve\ (mat[,4],\ pdf=TRUE)\ s\'olo\ si\ queremos\ generar\ un\ pdf\ de\ la\ curva$ Lorenz.curve\ (mat[,4],\ plot=FALSE)

```
## $cum.reg

## [1] 0.0 0.2 0.4 0.6 0.8 1.0

##

## $cum.out

## R1 R2 R3 R4 R5

## 0.0 0.0 0.0 0.0 0.5 1.0
```

#Compare the distribution of the #industries #comparamos todas la industrias en una sola cuadrícula

```
par(mfrow=c(2,2))
Lorenz.curve (mat[,1])
Lorenz.curve (mat[,2])
Lorenz.curve (mat[,3])
Lorenz.curve (mat[,4])
```


0.8

0.8

1.0

1.0