Zrážacie titrácie

- ich základom sú zrážacie reakcie s rýchlym a kvantitatívnym priebehom
- 2 základné typy:
 - o argentometria (AgNO₃)
 - mekurimetria (Hg(NO₃)₂)
- priebeh:
 - $\circ \quad NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$
 - o na začiatku
 - v roztoku len NaCl
 - $pCl = -\log c_0$
 - o pred ekvivalentným bodom
 - v roztoku:
 - NaCl, NaNO₃
 - $pCl = -\log c_{Cl}$
 - $c_{Cl^-} = \frac{c_0.V_0 (c.V)_{Ag}}{V_0 + V_{Ag}}$
 - v ekvivalentnom bode
 - v roztoku:
 - NaNO₃
 - ⊗AgCl (už nezanedbávame)
 - $[Ag^+] = [Cl^-]$
 - $K_S = [Ag^+][Cl^-]$
 - $[Cl^-] = \sqrt{K_S}$
 - za ekvivalentným bodom
 - v roztoku:
 - NaNO₃, AgNO₃
 - ⊗AgCl
 - - $\bullet \quad c_{Ag} = \frac{(c.V)_{Ag} c_0.V_0}{V_0 + V_{Ag}}$
- indikácia:
 - Mohrova metóda
 - indikátor vytvorí málo rozpustnú zrazeninu s nadbytkom činidla
 - využíva sa prídavok K₂CrO₄, ktorý s iónmi Ag⁺ vytvára červenohnedú zrazeninu (pH = 6 – 10)
 - $K_2CrO_4 + 2AgNO_3 \rightarrow Ag_2CrO_4 + 2KNO_3$
 - stanovenie chloridov, bromidov
 - o Fajansova metóda
 - využívajú sa tu adsorpčné indikátory
 - fluoresceín (Cl⁻, Br⁻, l⁻, SCN⁻)
 - eozín (Br⁻, I⁻, SCN⁻)
 - indikátory sa naadsorbujú na povrch zrazeniny, čím dôjde k zmene sfarbenia roztoku

- Volhardova metóda
 - pri spätnej titrácii
 - pridá sa nadbytok titračného činidla, ktorý sa spätne titruje KSCN
 - $Ag^+ + KSCN \rightarrow AgSCN + K^+$
 - na indikáciu ekvivalentného bodu sa používa železitá soľ (najčastejšie NH₄Fe(SO₄)₂)
 - s nadbytkom KSCN vytvára červený komplex Fe[Fe(SCN)₆]

$$\circ$$
 6SCN⁻ + Fe³⁺ \to [Fe(SCN)₆]³⁻

- Gay-Lussacova zákalová metóda
 - ak nad zrazeninou po prídavku činidla nevzniká zákal, sústava dosiahla ekvivalentný bod

Argentometria

- založená na vzniku málo rozpustných strieborných solí
 - $\circ \quad Ag^+ + X^- \to AgX$

$$X = CI, Br, I, SCN$$

- odmerné činidlo:
 - o AgNO₃ (pri priamej)
 - NH₄SCN/KSCN (pri spätnej)
- štandarizácia
 - o základná látka
 - NaCl, KCl štandardizácia AgNO₃ podľa Mohra
 - NH₄SCN (nie je základná látka) podľa Volharda
- využitie:
 - stanovenie striebra podľa Volharda
 - o stanovenie halogenidov podľa Volharda (aj fosforečnany, jodičnany, arzeničnany)ň

Merkurimetria

• $Hg^{2+} + 2X^- \rightarrow HgX_2$

$$X = CI, Br, I, SCN, CN$$

- odmerné činidlo:
 - \circ Hg(NO₃)₂, Hg(ClO₄)₂
- indikátor:
 - Na[Fe(CN)₅NO]
- využitie:
 - stanovenie X⁻
 - o stanovenie Hg²⁺

Komplexotvorné titrácie

- princíp spočíva vo vzniku málo disociovaných komplexov
- ako odmerné činidlo sa používajú komplexóny (chelatóny)
 - KI − kys. nitrilo 3-octová N(CH₂COOH)₃
 - o KII EDTA (kys. etyléndiammintetraoctová) 6 donorový ligand
 - o KIII disodná soľ EDTA
- KIII vo vodných roztokoch disociuje podľa rovnice:
 - $\circ Na_2H_2Y \rightleftharpoons 2Na^+ + H_2Y^{2-}$
- vznik komplexov s kovmi:
 - $0 M^{2+} + H_2 Y^{2-} \rightarrow M Y^{2-} + 2H^+$

- $\circ M^{3+} + H_2 Y^{2-} \rightarrow M Y^- + 2 H^+$
- $M^{4+} + H_2 Y^{2-} \rightarrow MY + 2H^+$
- jeden mól kovu reaguje vždy s jedným mólom KIII bez ohľadu na mocenstvo kovu
 - jednotkový stechiometrický pomer
- pre stabilitu komplexov je dôležité pH, preto sa reakcie uskutočňujú v prostredí tlmivých roztokov
 - $M + L \rightarrow ML$ M voľný kovový ión, L ligand, ML komplex 0
 - $\beta = \frac{[ML]}{[M][L]}$ (konštanta stability)
 - koncentrácia voľných kovových iónov:
 - $pM = -\log M$
- titračná krivka
 - \circ pM = f(V)
 - o roztok c₀, V₀
 - titračné činidlo c_L, V_L
- priebeh:
 - na začiatku 0
 - v roztoku len M
 - $pM = -\log c_0$
 - pred ekvivalentným bodom
 - v roztoku M a ML (disociáciu komplexu zanedbávame)
 - $[M] = \frac{c_0 \cdot V_0 (c \cdot V)_L}{V_0 + V_L}$
 - v ekvivalentnom bode
 - v roztoku ML všetok kov je zrážaný do komplexu (disociáciu komplexu nemôžeme zanedbať)
 - $c_0.V_0 = c_L.V_L \quad [M] = [L]$

 - $\bullet \quad \beta = \frac{[ML]}{[M]^2} \quad \Rightarrow \quad [M] = \sqrt{\frac{[ML]}{\beta}}$
 - $pM = -\log[M] = \frac{1}{2}(\log\beta \log[ML])$
 - za ekvivalentným bodom
 - v roztoku ML a L

 - - $(c_M = [M] + [ML])$ a dosadenie zo vzťahu pre β)
- indikácia:
 - objektívna
 - potenciometricky, konduktometricky
 - subjektívna
 - metalochrómne indikátory
 - pridávajú sa v tuhej fáze (v malom množstve) priamo do roztoku
 - ich vodné roztoky sa nepoužívajú, lebo v nich polymerizujú
 - tvoria farebné komplexy s kovovým iónmi

- βind < β(KIII) t.j. v ekvivalentnom bode sú všetky katióny kovu viazané do pevnejšieho komplexu s chelatónom, čo sa prejaví zmenou sfarbenia roztoku
- napr. murexid (červenofialové → modrofialové, pH = 6),
 eriochrómčerň T, pyrokatechínová violeť

• štandardizácia:

o základné látky: CaCl₂, MgSO₄.7H₂O

• spôsoby titrácie:

- o priama (priamo KIII)
- o **nepriama** (nadbytok KIII titrovaný ⊙ MgSO₄)
- o vytláčacia
 - využíva vznik slabého komplexu horčíka s KIII, ktorý je pri titrácii v komplexe nahradený (vytlačený) stanovovaným iónom kovu

• využitie:

- o stanovenie kovov: Mg, Ca, Cu, Ni, Pb
- stanovenie celkovej tvrdosti vody
 - vyjadruje sa v stupňoch (nemecké, francúzske, anglické)
 - obsah horčíka a vápnika

Spracovanie výsledkov meraní

- chyby meraní môžu byť:
 - náhodné
 - spôsobujú odlišnosť výsledkov opakovaných meraní
 - nemožno ich odstrániť
 - ich veľkosť charakterizuje presnosť meraní
 - súhlas nájdenej hodnoty so skutočnou hodnotou
 - systematické
 - zapríčinené chybou meracích postupov, zlyhaním prístroja, nesprávnym výberom metódy, chybou pracovníka
 - ich veľkosť charakterizuje **správnosť** meraní
 - rozdiely medzi jednotlivými nameranými výsledkami
- výsledky meraní teda môžu byť:

	správne	nesprávne
presné	μ	μ ••••
nepresné	μ	μ

- <u>veľkosť chyby sa vyjadruje vo forme:</u>
 - o absolútna chyba
 - $d = |x_i \mu|$ kde x_i nameraná hodnota, μ skutočná hodnota
 - o relatívna chyba

$$r = \frac{100d}{\mu} \%$$

rozdelenie výsledkov

- pravdepodobnosť výskytu výsledkov s určitou hodnotou je daná distribučnou funkciou alebo funkciou rozdelenia pravdepodobnosti
- najčastejšie sa jedná o normálne rozdelenie, ktoré je reprezentované Gaussovou krivkou:

- μ stredná hodnota
- σ smerodajná odchýlka
- o najvhodnejším odhadom strednej hodnoty je **aritmetický priemer** \overline{x}

- niekedy je vhodnejšie použiť robustný odhad medián
 - hodnota rozdeľujúca podľa veľkosti usporiadaný súbor na 2 rovnaké časti
- o odhadom smerodajnej odchýlky je **výberová smerodajná odchýlka** s

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (\bar{x} - x_i)^2$$

- lacktriangle často sa udáva ako relatívna hodnota: $s_r=rac{s}{ar{x}}$
- robustným odhadom s² je *variačné rozpätie*

•
$$R = x_{max} - x_{min}$$

spracovanie analytických výsledkov

- \circ z nameraných výsledkov určiť $ar{x}$ a s
- o testovanie extrémnych hodnôt Grubbsov test (95%)
- o výpočet intervalu spoľahlivosti, v ktorom leží skutočná hodnota:

•
$$\mu_{D,H} = \bar{x} \pm t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}$$

• $t_{\frac{1+\gamma}{2}}$ - kvantil Studentovho rozdelenia o n-1 stupňoch voľnosti

• nepriame metódy

- všetky metódy, ktoré využívajú kalibračnú závislosť
 - koncentrácia (resp. hmotnosť) sa zisťuje prostredníctvom meranej fyzikálnej veličiny
- závislosť:
 - regresívna
 - ak je známa hodnota nezávisle premennej a hodnoty závisle premennej sa určia experimentálne
 - korelácia
 - ak hodnoty oboch premenných sú určené experimentálne