Übungen zu Analysis 1 für Ingenieure und Informatiker

(Abgabe: Dienstag, 03.05.2016, bis 14:15 Uhr, H22)

- 1. Es sei die Folge $(a_n)_{n\in\mathbb{N}}$ gegeben durch $a_n:=\frac{2n^2-3}{3n^2+2n-1}$.
 - a) Zeige mit Hilfe der Grenzwertsätze 2.2.10, dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert und bestimme den Grenzwert.
 - b) Zeige mit der Definition der Konvergenz, dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert.

(4+5 Punkte)

- 2. Untersuche die nachstehenden Folgen $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz und bestimme gegebenenfalls den Grenzwert. Falls die Folge nicht konvergiert, zeige, dass sie nicht beschränkt ist.
 - a) $a_n = \sqrt{n^2 + n} n$
 - b) $a_n = \sum_{k=1}^n (\sqrt{3} 1)^k$

c)
$$a_n = \frac{4n^3 - 2n^2 + 5n - 7}{5n^2 - 3n + 2}$$
 (3+3+3 Punkte)

3. Es sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge mit $a_n>0 \ \forall n\in\mathbb{N}$ und $\lim_{n\to\infty}=a\geq 0$. Zeige, dass dann $\lim_{n\to\infty}\sqrt{a_n}=\sqrt{a}$.

(6 Punkte)

- 4. Es sei die reelle Folge $(a_n)_{n\in\mathbb{N}}$ gegeben durch $a_n:=\frac{2n+3}{n^2}$ für $n\in\mathbb{N}$.
 - a) Zeige mit der Definition der Konvergenz, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert.
 - b) Es sei $\epsilon > 0$ vorgegeben. Bestimme das kleinstmögliche $n_0 \in \mathbb{N}$, so dass $|a_n| < \epsilon$ für alle $n \in \mathbb{N}, n \ge n_0$ erfüllt ist.

Hinweis: Folgende Definition könnte nützlich sein: Für eine reelle Zahl x ist $\lceil x \rceil$ die kleinste ganze Zahl, die größer oder gleich x ist, d.h. $\lceil x \rceil := \min\{k \in \mathbb{Z} : k \geq x\}$.

(2+6 Punkte)

- 5. a) Es seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ Folgen mit $a_n \leq b_n \leq c_n$ für $n \geq N$ für ein $N \in \mathbb{N}$. Es gelte $a_n \to a$, $c_n \to a$ für $n \to \infty$. Zeige, dass dann $b_n \to a$ für $n \to \infty$ gilt.
 - b) Es sei die Folge $(a_n)_{n\in\mathbb{N}}$ gegeben durch $a_n = \left(1 \frac{1}{n^2}\right)^n$. Zeige, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert und bestimme den Grenzwert.

(4+4 Punkte)

Bonus 1) (a) Zeige, dass es genau eine Zahl $h \in (0,1)$ mit $\frac{1}{h} = \frac{h}{1-h}$ gibt und bestimme diese Zahl.

(b) Bestimme $g = \frac{h}{1-h}$ und zeige, dass g irrational ist.

(c) Durch $f_0 := 0$, $f_1 := 1$ und $f_{n+1} := f_n + f_{n-1}$ für $n \in \mathbb{N}$ ist eine rekursiv definierte Zahlenfolge gegeben. Zeige $\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = g$.

(d) Zeige $f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$ für $n \in \mathbb{N}$.

Bonus 2) Zeige folgende Aussagen:

(a) Für alle $x \in \mathbb{R}$ existiert der Grenzwert $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$.

(b) Für alle $x \in \mathbb{Q}$ gilt die Grenzwertbeziehung $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$.