Chapitre

Intégrales

4. Intégrale de Riemann

Définition 1.1 : Subdivision

C'est toute famille de réels $u=(x_i)_{0\leq i\leq n}$ telle que $a=x_0< x_1<\cdots< x_n=b$. Son pas est la quantité $\max(x_1-x_{i-1})$. On dit que v est plus fine, si tout élément de de v est un élément de u.

C'est une subdivision régulière si $x_i = a + i \frac{b-a}{n}$.

nroposition 1.1

Si u et v sont des subdivisions, alors il existe une subdivision plus fine que u et v.

π Définition 1.2

Une fonction est dite en escalier s'il existe une subdivision u telle que la fonction est constante sur chaque intervalle ouvert $]x_{i-1},x_i[$. On dit alors que u est une subdivision adaptée à la fonction.

Définition 1.3 : Fonction continue par morceaux

On dit qu'une fonction est continue par morceaux si on peut trouver une subdivision adaptée à f telle que la restriction de f à chaque intervalle $]x_{i-1},x_i[$ soit continue et ademette des limites finies à droite de x_{i-1} et à gauche de x_i .

Remarque

Si une fonction est cpm, alors $\forall x_0 \in [a,b], \lim_{x \to x_0^+} f(x), \lim_{x \to x_0^-} f(b)$ existent et sont finies.

Exemple : $g(x) = 0 six = 0, sin(\frac{1}{x} six > 0)$

Proposition 1.2

La combinaison linéaire (et produit/division) de fonctions en escaliers est une fonction en escalier.

Proposition 1.3

Une fonction continue par morceaux sur un segment est bornée

Définition 1.4

f est prolongeable par continuité en a si f possède une limite a.

Le prolongement par continuité de f en a est bien définie en a. On rajoute le point duquel la fonction se rapproche.

Théorème 1.1 : Approximation d'une fonction continue par morceaux

Soit f une fonction continue par morceaux sur un segment. Pour tout $\varepsilon > 0, \exists \theta$ en escalier tq

$$\forall x \in [a, b], |f(x) - \theta(x)| < \varepsilon$$

Proposition 1.4

Soit fcpm sur [a,b]. $\forall \varepsilon > 0, \exists \phi, \psi$, en escalier telles que $\forall x \in [a,b], \phi(x) \leq f \leq \psi(x)$ et $\psi - \phi \leq \varepsilon$.

π

Proposition 1.5

On a

$$\int \varphi = \sum_{i=1}^{n} c_i (x_i - x_{i-1})$$

qui ne dépend pas de la subidivisoon choisie, avec c_i la valeur de la fonction entre x_i et x_{i-1} .

 $\hat{\pi}$

Proposition 1.6

Les propriétés de linéarité, de croissance, de positivité et d'additivité sont conservées.

π

Proposition 1.7

On note E^+, E^- l'ensemble des fonctions en escalier supérieures et inférieures à f. La borne supérieure de l'ensemble des E- et la borne inférieure de la borne des E+ sont égales.

Définition 1.5

Si f est cpm, on appelle intégrale de f $\sup(\{\int \varphi, \varphi \in E^-(f)\}) = \inf(\{\int \psi, \psi \in E^+(f)\}).$

 $\hat{\pi}$

Proposition 1.8

On dit que la fonction est intégrable au sens de Riemann si $\sup(I^-)=\inf(I^+(f))$

 $\hat{\pi}$

Proposition 1.9 : VA de l'intégrale

Si f est cpm sur un intervalle, alors |f| l'est aussi et $|\int_I f| \leq \int_I |f|$

Proposition 1.10 : Inégalité de la moyenne

Si f et g sont cpm, alors leur produit l'est aussi et $|\int_I fg| \leq \sup_I (|f|) \times \int_I |g|$

Proposition 1.11 : Corollaire des bornes

Si f est cpm, on a $|\int_{[a,b]} f| \le (b-a) \sup_{[a,b]} (|f|)$

Proposition 1.12 : Valeur moyenne

 $\inf_{[a,b]}(f) \le \frac{1}{b-a} \int_{[a,b]} \le \sup_{[a,b]}(f)$

Théorème 1.2 : Intégrale non nulle

Si f est continue et positive sur [a,b], alors $\int f = 0 \Rightarrow f = 0$ sur [a,b]

4. Somme de Riemann

Définition 2.1

Soit f continue sur [a,b] et u une subidivision. On appelle Somme de Riemann associée à u la quantité $\frac{b-a}{n}\sum_{i=0}^{n-1}f(a+i\frac{b-a}{n})$

Théorème 2.1 : Limite de la somme de Riemann

 $\lim S_R = \int_a^b f(x) dx$

4. Intégrales et primitives

importance de l'intervalle I : arctan(x) + arctan(1/x) a une dérivée nulle mais n'est pas constante.

Théorème 3.1: Théorème fondamental

La fonction F_a définie par $\forall i \in I, F_a(x) = \int_a^x f(t) dt$ est l'unique primitive de f qui s'annule en a

Démonstrations

Théorème 3.2: Intégration par parties

Soient u et v deux fonctions de classe C^1 sur un intervalle [a, b]. $\int_{a}^{b} u(x) v'(x) dx = \left[uv \right]_{a}^{b} - \int_{a}^{b} u'(x) v(x) dx$

Théorème 3.3 : Changement de variable

Soit f une fonction définie sur un intervalle I et $\varphi: J \to I$ une bijection de classe \mathcal{C}^1 . Pour tout $a,b\in J$, on a $\int_{\mathcal{C}(a)}^{\varphi(b)} f(x)\ dx =$ $\int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) dt$

Si F est une primitive de falors $F \circ \varphi$ est une primitive de $(f \circ \varphi) \cdot \varphi'$.

4.4ntégrale à paramètres

Définition 4.1: Fonction continue sur 2 variables

Soit $\bar{x}, \bar{t} \in I \times [a, b]$. On dit que la fonction f est continue en ces 2

$$\forall \varepsilon > 0, \exists \delta > 0, \forall (x, t) \in I \times [a, b], |x - \bar{x}| \le \delta$$

et de même pour t

On retrouve les caractérisations (séquentielle) habituelles de la continuité.

Théorème 4.1 : Continuité des intégrales à paramètres

Si f est continue sur $I \times [a,b]$, F est continue sur I.

Définition 4.2 : Dérivée partielle

On dit que d'admet une dérivée partielle par rapport à la première variable sur I si pour tout $t \in [a,b]$, la focntion

Théorème 4.2 : Dérivabilité des intégrales à paramètre

Si f est continue sur $I \times [a,b]$, admet une dérivée partielle par rapport à la première variable sur I, et la fonction $\frac{\partial f}{\partial x}$ est continue sur $I \times [a,b]$, alors $F: x \in I \to \int_a^b f(x,t) \mathrm{d}t$ est de classe C1 sur I et $F' = \int_a^b \frac{\partial f}{\partial x}(x,t) \mathrm{d}t$