Valuation fields

1 Absolute values and completion

Definition 1. Let **k** be a field. An *absolute value* on **k** is a function $\|\cdot\|$: $\mathbf{k} \to \mathbb{R}_{\geq 0}$ satisfying the following properties for all $x, y \in \mathbf{k}$:

- (a) ||x|| = 0 if and only if x = 0;
- (b) $||xy|| = ||x|| \cdot ||y||$;
- (c) $||x + y|| \le ||x|| + ||y||$.

A field **k** equipped with an absolute value $\|\cdot\|$ is called a *valuation field*.

Remark 2. Let **k** be a field. Recall that a valuation on **k** is a function $v: \mathbf{k}^{\times} \to \mathbb{R}$ such that

- $\forall x, y \in \mathbf{k}^{\times}, v(xy) = v(x) + v(y);$
- $\forall x, y \in \mathbf{k}^{\times}, v(x+y) \ge \min\{v(x), v(y)\}$

We can extend v to the whole field \mathbf{k} by defining $v(0) = +\infty$. Fix a real number $\varepsilon \in (0, 1)$. Then v induces an absolute value $|\cdot|_v : \mathbf{k} \to \mathbb{R}_+$ defined by $|x|_v = \varepsilon^{v(x)}$ for each $x \in \mathbf{k}$.

In some literature, the valuation v is called an *additive valuation* and the induced absolute value $|\cdot|_v$ is called a *multiplicative valuation*. In this note, the term *valuation* always refers to the additive valuation.

Example 3. Let \mathbf{k} be a field. The *trivial absolute value* on \mathbf{k} is defined as

$$||x|| := \begin{cases} 0, & x = 0; \\ 1, & x \neq 0. \end{cases}$$

Definition 4. Let **k** be a field. Two absolute values $\|\cdot\|_1$ and $\|\cdot\|_2$ on **k** are said to be *equivalent* if there exists a real number $c \in (0,1)$ such that

$$||x||_1 = ||x||_2^c, \quad \forall x \in \mathbf{k}.$$

Note that equivalent absolute values induce the same topology on the field \mathbf{k} . Moreover, the following lemma shows that the converse is also true.

Lemma 5. Let **k** be a field and $\|\cdot\|_1$, $\|\cdot\|_2$ be two absolute values on **k**. Then the following statements are equivalent:

- (a) $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent;
- (b) $\|\cdot\|_1$ and $\|\cdot\|_2$ induce the same topology on ${\bf k};$
- (c) The unit disks $D_1=\{x\in\mathbf{k}:\,\|x\|_1<1\}$ and $D_2=\{x\in\mathbf{k}:\,\|x\|_2<1\}$ are the same.

Date: November 1, 2025, Author: Tianle Yang, My Homepage

Valuation Fields

Proof. The implications (a) \Rightarrow (b) is obvious. Now we prove (b) \Rightarrow (c). For any $x \in D_1$, we have $x^n \to 0$ as $n \to \infty$ under the absolute value $\|\cdot\|_1$ and thus under $\|\cdot\|_2$. Therefore, $\|x\|_2^n \to 0$ as $n \to \infty$, which implies that $||x||_2 < 1$, i.e., $x \in D_2$. Similarly, we can prove that $D_2 \subseteq D_1$.

Finally, we prove (c) \Rightarrow (a). If $\|\cdot\|_1$ is trivial, then $D_1=\{0\}$ and thus $\|\cdot\|_2$ is also trivial. In this case, they are equivalent. Suppose that both $\|\cdot\|_1$ and $\|\cdot\|_2$ are non-trivial. Pick any $x,y\notin D_1=D_2$. Then there exist real numbers $\alpha, \beta > 0$ such that $\|x\|_1 = \|x\|_2^{\alpha}$ and $\|y\|_1 = \|y\|_2^{\beta}$. Suppose the contrary that $\alpha \neq \beta$. Consider the domain $\Omega \subseteq \mathbb{Z}^2$ defined by

$$\begin{cases} n \log ||x||_2 < m \log ||y||_2; \\ n\alpha \log ||x||_2 > m\beta \log ||y||_2. \end{cases}$$

Since $\alpha \neq \beta$, the two lines defined by the equalities are not parallel. Thus Ω is non-empty. Pick $(n,m)\in\Omega$ and set $z:=x^ny^{-m}$. Then we have $\|z\|_2<1$ and $\|z\|_1>1$, a contradiction.

Definition 6. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. We say that **k** is *complete* if the metric d(x, y) := $\|x - y\|$ makes **k** a complete metric space.

Lemma 7. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field and $(\hat{\mathbf{k}}, \|\cdot\|)$ its completion as a metric space. Then the operations of addition and multiplication on \mathbf{k} can be extended to $\hat{\mathbf{k}}$ uniquely, making $(\hat{\mathbf{k}}, \|\cdot\|)$ a complete valuation field containing \mathbf{k} as a dense subfield.

Proof. Recall that

$$\hat{\mathbf{k}} := \{\text{Cauchy sequences in } \mathbf{k}\}/\sim$$

where $(x_n) \sim (y_n)$ if $\lim_{n\to\infty} \|x_n - y_n\| = 0$. For any two elements $x = [(x_n)], y = [(y_n)] \in \hat{\mathbf{k}}$, we set

$$x + y := [(x_n + y_n)], \quad xy := [(x_n y_n)], \quad -x := [(-x_n)], \quad x^{-1} := [(x_n^{-1})],$$

where the last one is defined only when $x \neq 0$. We have

$$\begin{split} \|(x_n+y_n)-(x_m+y_m)\| &\leq \|x_n-x_m\|+\|y_n-y_m\|;\\ \|-x_n-(-x_m)\| &= \|x_n-x_m\|;\\ \|x_ny_n-x_my_m\| &\leq \|x_n\|\|y_n-y_m\|+\|y_m\|\|x_n-x_m\|;\\ \|x_n^{-1}-x_m^{-1}\|\frac{1}{\|x_n\|\|x_m\|}\left(\|x_n-x_m\|\right). \end{split}$$

Hence

Yang: To be added.

Unlike the real number field \mathbb{R} , even a valuation field is complete, we can not expect the theorem of nested intervals to hold.

Definition 8. A valuation field $(\mathbf{k}, \|\cdot\|)$ is called *spherically complete* if every decreasing sequence of closed balls in \mathbf{k} has a non-empty intersection.

Example 9. The field \mathbb{C}_p of p-adic complex numbers is not spherically complete, see Yang: to be added.

Valuation Fields

2 Non-archimedean fields

Definition 10. Let $(\mathbf{k}, \| \cdot \|)$ be a valuation field. We say that \mathbf{k} is non-archimedean if its absolute value $\| \cdot \|$ satisfies the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}, \quad \forall x, y \in \mathbf{k}.$$

Otherwise, we say that \mathbf{k} is archimedean.

Let **k** be a non-archimedean field. Then easily see that $\{x \in \mathbf{k} : ||x|| \le 1\}$ is a subring of **k**. Moreover, it is a local ring whose maximal ideal is $\{x \in \mathbf{k} : ||x|| < 1\}$.

Definition 11. Let \mathbf{k} be a non-archimedean field. The ring of integers of \mathbf{k} is defined as

$$\mathbf{k}^{\circ} := \{ x \in \mathbf{k} : ||x|| \le 1 \}.$$

Its maximal ideal is

$$\mathbf{k}^{\circ \circ} := \{ x \in \mathbf{k} : ||x|| < 1 \}.$$

The residue field of \mathbf{k} is defined as

$$\mathcal{k}_{\mathbf{k}} := \widetilde{\mathbf{k}} := \mathbf{k}^{\circ}/\mathbf{k}^{\circ \circ}.$$

Yang: Is the valuation on residue field trivial?

Lemma 12. Recall that a metric space is *totally bounded* if for every $\varepsilon > 0$, it can be covered by finitely many balls of radius ε . A metric space is compact if and only if it is complete and totally bounded.

Proof. Yang: To be added.

Definition 13. Let **k** be a non-archimedean field. The *residue absolute value* on the residue field $\mathcal{R}_{\mathbf{k}}$ is defined as

$$|x| := \inf_{y \in \varphi^{-1}(x)} ||y||, \quad \forall x \in \mathcal{K}_{\mathbf{k}},$$

where $\varphi: \mathbf{k}^{\circ} \to \mathscr{K}_{\mathbf{k}}$ is the canonical projection.

Proposition 14. Let k be a non-archimedean field. Then the residue absolute value on the residue field \mathcal{R}_k is trivial.

Proof. For any $x \in \mathcal{K}_{\mathbf{k}}$, if x = 0, then by definition |x| = 0. If $x \neq 0$, then $\forall y \in \varphi^{-1}(x)$, we have $y \in \mathbf{k}^{\circ} \setminus \mathbf{k}^{\circ \circ}$, i.e., ||y|| = 1. Thus by definition |x| = 1.

Proposition 15. Let **k** be a non-archimedean field. Set $I_r := \{x \in \mathbf{k} : ||x|| < r\}$ for each $r \in (0,1)$. They are ideals of the ring of integers \mathbf{k}° . Then we have

$$\widehat{\mathbf{k}}^{\circ} \cong \underset{r>0}{\varprojlim} \mathbf{k}^{\circ}/I_r.$$

Yang: To be checked.

Slogan Locally compact \iff pro-finite.

Proposition 16. Let **k** be a non-archimedean field. Then **k** is totally bounded iff \mathbf{k}°/l_{r} is finite for each $r \in (0,1)$.

Proposition 17. k° is noetherian iff k is a discrete valuation field. and complete. Yang: To be revised.

