```
A U G

30 C A B

C — G
G — C
A — U
G — C 39

C U
G — C 6
G — C
A — U
G — C
A — U
C — G
C — G
G — C — Rhodamine
5' 3'
```


FIGURE 2

FIGURE 6

Scheme I

$$H_2N$$
 CO_2H
 OH
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CO_2H
 OH
 CH_3

a. CH₃COCl-AlCl₃/Nitrobenzene, 100 °C, 6 h; b. Fmoc-OSu-Na₂CO₃/Dioxane-H₂O

Scheme II