

Desenvolvimento de Sistemas 2

Prof.: Sidney Silva

Todos estão ouvindo bem?

Por favor desativar microfone do dispositivo

Apresentação do Professor

Fiquem tranquilos!

Apresentação da Unidade curricular

Módulo III

Perfil Profissional: Técnico em Desenvolvimento de Sistemas

Unidade Curricular: Desenvolvimento de Sistemas II

Carga Horária: 72 horas

Unidade de Competência

Programar softwares, aplicando metodologias e padrões de desenvolvimento, normas técnicas, de qualidade

Objetivo Geral: Propiciar desenvolvimento de capacidades técnicas e de gestão requeridas para criação de aplicativos por meio de linguagem de programação, de acordo padrão de qualidade, robustez, integridade e segurança.

58h – online 14 - FAD

DS2

DS2

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL

https://dotnet.microsoft.com/download

.NET Core 3.1

.NET Core is a cross-platform version of .NET for building websites, services, and console apps.

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL

DS2 Criando um novo projeto

https://docs.microsoft.com/pt-br/dotnet/core/tutorials/with-visual-studio-code

Crie um projeto de aplicativo de console do .NET Core chamado "HelloWorld".

- 1. Inicie o Visual Studio Code.
- 2. Selecione arquivo > abrir pasta (arquivo > aberto... no MacOS) no menu principal.
- Na caixa de diálogo abrir pasta , crie uma pasta HelloWorld e clique em Selecionar pasta (aberta no MacOS).

O nome da pasta torna-se o nome do projeto e o nome do namespace por padrão. Você adicionará código posteriormente no tutorial que assume que o namespace do projeto é Helloworld.

- 4. Abra o terminal no Visual Studio Code selecionando Exibir > terminal no menu principal.
 - O terminal é aberto com o prompt de comando na pasta HelloWorld .
- 5. No **terminal**, digite o seguinte comando:

dotnet new console

DS2 Criando um novo projeto

O modelo cria um simples aplicativo "Olá, Mundo". Ele chama o Console.WriteLine(String) método para exibir "Olá, mundo!" na janela do console.

O código de modelo define uma classe, Program , com um único método, Main , que usa uma String matriz como um argumento:

```
using System;

namespace HelloWorld
{
    class Program
    {
        static void Main(string[] args)
         {
            Console.WriteLine("Hello World!");
        }
    }
}
```

Main é o ponto de entrada do aplicativo, o método que é chamado automaticamente pelo runtime quando ele inicia o aplicativo. Quaisquer argumentos de linha de comando fornecidos quando o aplicativo for iniciado estão disponíveis na matriz args.

DS2 Rodando código

Execute o seguinte comando no **terminal**:

dotnet run

O programa exibe "Olá, Mundo!" e termina.

C# e .NET

- C#: uma linguagem de programação (regras sintáticas)
- NET (2002): uma plataforma de desenvolvimento para se criar diversos tipos de aplicações, podendo usar várias linguagens de programação
 - https://www.microsoft.com/net/learn/what-is-dotnet

DS2

.NET

BCL - Base Class Library

https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx

- CLR Common Language Runtime (Máquina Virtual)
 - Nota: possui garbage collection (objetos não utilizados são automaticamente desalocados da memória)

https://www.microsoft.com/net/download

https://docs.microsoft.com/pt-br/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed

DS2 Características

- C# é uma linguagem estaticamente tipada
- Tipos valor pré-definidos em C#
- Tipos referência pré-definidos em C#
- Variável não atribuída
- Overflow
- Padrão para float: sufixo "f"
- Padrão para char: aspas simples
- Padrão para string: aspas duplas
- Padrão para bool: true, false

C# Type	.Net Framework Type	Signed	Bytes	Possible Values
sbyte	System.Sbyte	Yes	1	-128 to 127
short	System.Int16	Yes	2	-32768 to 32767
int	System.Int32	Yes	4	-2 ³¹ to 2 ³¹ - 1
long	System.Int64	Yes	8	-263 to 263 - 1
byte	System.Byte	No	1	0 to 255
ushort	System.Uint16	No	2	0 to 65535
uint	System.Uint32	No	4	0 to 2 ³² - 1
ulong	System.Uint64	No	8	0 to 2 ⁶⁴ - 1
float	System.Single	Yes	4	±1.5 x 10 ⁻²⁵ to ±3.4 x 10 ²⁵ with 7 significant figures
double	System.Double	Yes	8	±5.0 x 10 ⁻³³⁴ to ±1.7 x 10 ³⁰⁸ with 15 or 1 significant figures
decimal	System.Decimal	Yes	12	±1.0 x 10 ⁻²⁸ to ±7.9 x 10 ²⁸ with 28 or 29 significant figures
char	System.Char	N/A	2	Any Unicode character
bool	System.Boolean	N/A	1/2	true or false

Tipo C#	Tipo .NET	Descrição
string	System.String	Uma cadeia de caracteres Unicode IMUTÁVEL (segurança, simplicidade, thread safe)
object	System.Object	Um objeto genérico (toda classe em C# é subclasse de object) GetType Equals GetHashCode ToString

```
bool completo = false;
char genero = 'F';
char letra = '\u0041';
byte n1 = 126;
int n2 = 1000;
int n3 = 2147483647;
long n4 = 2147483648L;
float n5 = 4.5f;
double n6 = 4.5;
String nome = "Maria Green";
Object obj1 = "Alex Brown";
Object obj2 = 4.5f;
Console.WriteLine(completo);
Console.WriteLine(genero);
Console.WriteLine(letra);
Console.WriteLine(n1);
Console.WriteLine(n2);
Console.WriteLine(n3);
Console.WriteLine(n4);
Console.WriteLine(n5);
Console.WriteLine(n6);
Console.WriteLine(nome);
Console.WriteLine(obj1);
Console.WriteLine(obj2);
```

Funções para valores mínimos e máximos

- int.MinValue
- int.MaxValue
- sbyte.MaxValue
- long.MaxValue
- decimal.MaxValue
- etc...

Restrições para nomes de variáveis

- Não pode começar com dígito: use uma letra ou _
- · Não usar acentos ou til
- Não pode ter espaço em branco
- Sugestão: use nomes que tenham um significado

```
int 5minutos;
int salário;
int salario do funcionario;
```

```
int _5minutos;
int salario;
int salarioDoFuncionario;
```

Convenções

- Camel Case: lastName (parâmetros de métodos, variáveis dentro de métodos)
- Pascal Case: LastName (namespaces, classe, properties e métodos)
- Padrão _lastName (atributos "internos" da classe)

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL

DS2 Tipo de dados

Conversão implícita entre tipos

https://docs.microsoft.com/pt-br/dotnet/csharp/language-reference/keywords/implicit-numeric-conversions-table

• Casting: conversão explícita entre tipos COMPATÍVEIS

Exemplo 1 Exemplo 2 Exemplo 3 double a; double a; int a = 5; float b; int b; int b = 2; a = 5.1;a = 5.1; double resultado = (double) a / b; b = (float)a;b = (int)a;Console.WriteLine(resultado); Console.WriteLine(b); Console.WriteLine(b);

Imprimir na saída padrão (console)

- Comandos
 - Console.WriteLine(valor);
 - Console.Write(valor);

```
using System;
using System.Globalization;
namespace PrimeiroProjeto {
    class Program {
       static void Main(string[] args) {
           char genero = 'F';
           int idade = 32;
           double saldo = 10.35784;
           String nome = "Maria";
           Console.Write("Bom dia!");
           Console.WriteLine("Boa tarde!");
           Console.WriteLine("Boa noite!");
           Console.WriteLine("----");
           Console.WriteLine(genero);
           Console.WriteLine(idade);
           Console.WriteLine(saldo);
           Console.WriteLine(nome);
           Console.WriteLine(saldo.ToString("F2"));
           Console.WriteLine(saldo.ToString("F4"));
           Console.WriteLine(saldo.ToString("F4", CultureInfo.InvariantCulture));
```

Placeholders, concatenação e interpolação

Exercício de fixação

Em um novo programa, inicie as seguintes variáveis:

```
string produto1 = "Computador";
string produto2 = "Mesa de escritório";

byte idade = 30;
int codigo = 5290;
char genero = 'M';

double preco1 = 2100.0;
double preco2 = 650.50;
double medida = 53.234567;
```

Em seguida, usando os valores das variáveis, produza a seguinte saída na tela do console:

```
Produtos:
Computador, cujo preço é $ 2100,00
Mesa de escritório, cujo preco é $ 650,50

Registro: 30 anos de idade, código 5290 e gênero: M

Medida com oito casas decimais: 53,23456700
Arredondado (três casas decimais): 53,235
Separador decimal invariant culture: 53.235
```

Console.ReadLine();

- Lê da entrada padrão até a quebra de linha.
- Retorna os dados lidos na forma de string.

```
int n1 = int.Parse(Console.ReadLine());
char ch = char.Parse(Console.ReadLine());
double n2 = double.Parse(Console.ReadLine(), CultureInfo.InvariantCulture);
```

- Ler um texto até a quebra de linha e armazenar em uma variável
- Ler três palavras, uma em cada linha, armazenando cada uma em uma variável
- Ler três palavras na mesma linha, separadas por espaço, armazenando cada uma em uma variável

Console:

```
Bom dia!
Vermelho
Verde
Azul
Amarelo Laranja Cinza
```

Memória:


```
string frase = Console.ReadLine();
string x = Console.ReadLine();
string y = Console.ReadLine();
string z = Console.ReadLine();
string[] v = Console.ReadLine().Split(' ');
string a = v[0];
string b = v[1];
string c = v[2];
Console.WriteLine("Você digitou: ");
Console.WriteLine(frase);
Console.WriteLine(x);
Console.WriteLine(v);
Console.WriteLine(z);
Console.WriteLine(a);
Console.WriteLine(b);
Console.WriteLine(c);
```

- · Ler um número inteiro
- Ler um caractere
- Ler um número double.
- Ler um nome (única palavra), sexo (caractere F ou M), idade (inteiro) e altura (double) na mesma linha, armazenando-os em quatro variáveis com os devidos tipos

Console:

```
35
F
4.32
Maria F 23 1.68
```

Memória:

```
35 'F' 4.32
n1 ch n2

"Maria" 'F' 23 1.68
nome sexo idade altura
```

```
int n1 = int.Parse(Console.ReadLine());
char ch = char.Parse(Console.ReadLine());
double n2 = double.Parse(Console.ReadLine(), CultureInfo.InvariantCulture);
string[] vet = Console.ReadLine().Split(' ');
string nome = vet[0];
char sexo = char.Parse(vet[1]);
int idade = int.Parse(vet[2]);
double altura = double.Parse(vet[3], CultureInfo.InvariantCulture);
Console.WriteLine("Você digitou:");
Console.WriteLine(n1);
Console.WriteLine(ch);
Console.WriteLine(n2.ToString("F2", CultureInfo.InvariantCulture));
Console.WriteLine(nome);
Console.WriteLine(sexo);
Console.WriteLine(idade);
Console.WriteLine(altura.ToString("F2", CultureInfo.InvariantCulture));
```

Exercício de fixação

Fazer um programa para executar a seguinte interação com o usuário, lendo os valores destacados em vermelho, e depois mostrar os dados na tela:

```
Entre com seu nome completo:
Alex Green
Quantos quartos tem na sua casa?
3
Entre com o preço de um produto:
500.50
Entre seu último nome, idade e altura (mesma linha):
Green 21 1.73
```

SAÍDA ESPERADA (NÚMEROS REAIS COM DUAS CASAS DECIMAIS):

Alex Green 3 500.50 Green 21

1.73

Operadores aritméticos

Operador	Significado
+	adição
-	subtração
*	multiplicação
/	divisão
%	resto da divisão

NOTAS:

Faça um programa para ler dois valores inteiros, e depois mostrar na tela a soma desses números com uma mensagem explicativa, conforme exemplos.

Entrada:	Saída:
10	SOMA = 40
30	

Entrada:	Saída:
-30	SOMA = -20
10	

Entrada:	Saída:
0	SOMA = 0
0	

Faça um programa para ler o valor do raio de um círculo, e depois mostrar o valor da área deste círculo com quatro casas decimais conforme exemplos.

Fórmula da área: area = π . raio²

Considere o valor de π = 3.14159

Entrada:	Saída:
2.00	A=12.5664

Entrada:	Saída:
100.64	A=31819.3103

Entrada:	Saída:
150.00	A=70685.7750

Fazer um programa para ler quatro valores inteiros A, B, C e D. A seguir, calcule e mostre a diferença do produto de A e B pelo produto de C e D segundo a fórmula: DIFERENCA = (A * B - C * D).

Entrada:	Saída:
5	DIFERENCA = -26
6	
7	
8	

Entrada:	Saída:
5	DIFERENCA = 86
6	
-7	
8	

Fazer um programa que leia o número de um funcionário, seu número de horas trabalhadas, o valor que recebe por hora e calcula o salário desse funcionário. A seguir, mostre o número e o salário do funcionário, com duas casas decimais.

Entrada:	Saída:
25	NUMBER = 25
100	SALARY = U\$ 550.00
5.50	

Entrada:	Saída:
1	NUMBER = 1
200	SALARY = U\$ 4100.00
20.50	

Entrada:	Saída:
6	NUMBER = 6
145	SALARY = U\$ 2254.75
15.55	

Fazer um programa para ler o código de uma peça 1, o número de peças 1, o valor unitário de cada peça 1, o código de uma peça 2, o número de peças 2 e o valor unitário de cada peça 2. Calcule e mostre o valor a ser pago.

Entrada:	Saída:
12 1 5.30	VALOR A PAGAR: R\$ 15.50
16 2 5.10	

Entrada:	Saída:
13 2 15.30	VALOR A PAGAR: R\$ 51.40
161 4 5.20	

Entrada:	Saída:
1 1 15.10	VALOR A PAGAR: R\$ 30.20
2 1 15.10	

Fazer um programa que leia três valores com ponto flutuante de dupla precisão: A, B e C. Em seguida, calcule e mostre:

- a) a área do triângulo retângulo que tem A por base e C por altura.
- b) a área do círculo de raio C. (pi = 3.14159)
- c) a área do trapézio que tem A e B por bases e C por altura.
- d) a área do quadrado que tem lado B.
- e) a área do retângulo que tem lados A e B.

Entrada:	Saída:
3.0 4.0 5.2	TRIANGULO: 7.800
	CIRCULO: 84.949
	TRAPEZIO: 18.200
	QUADRADO: 16.000
	RETANGULO: 12.000

Entrada:	Saída:
12.7 10.4 15.2	TRIANGULO: 96.520
	CIRCULO: 725.833
	TRAPEZIO: 175.560
	QUADRADO: 108.160
	RETANGULO: 132.080

DS2 Operadores

Operadores comparativos

Operador	Significado	
>	maior	
<	menor	
>=	maior ou igual	
<=	menor ou igual	
==	igual	
!=	diferente	

```
int a = 10;
bool c1 = a < 10;
bool c2 = a < 20;
bool c3 = a > 10;
bool c4 = a > 5;
Console.WriteLine(c1);
Console.WriteLine(c2);
Console.WriteLine(c3);
Console.WriteLine(c4);
Console.WriteLine("----");
bool c5 = a <= 10;
bool c6 = a >= 10;
bool c7 = a == 10:
bool c8 = a != 10;
Console.WriteLine(c5);
Console.WriteLine(c6);
Console.WriteLine(c7);
Console.WriteLine(c8);
```

DS2 Operadores

Operadores lógicos

Operador	Significado
&&	E
ll ll	OU
!	NÃO

C1	C2	C1 E C2
F	F	F
F	V	F
V	F	F
V	V	V

C1	C2	C1 OU C2
F	F	F
F	V	V
V	F	V
V	V	V

```
bool c1 = 2 > 3 || 4 != 5; // true
bool c2 = !(2 > 3) && 4 != 5; // true
Console.WriteLine(c1);
Console.WriteLine(c2);

Console.WriteLine("-----");

bool c3 = 10 < 5; // false
bool c4 = c1 || c2 && c3; // true
Console.WriteLine(c3);
Console.WriteLine(c4);</pre>
```

Estrutura condicional

Simples

```
if ( condição ) {
    comando 1
    comando 2
}
```

Composta

```
if ( condição ) {
    comando 1
    comando 2
}
else {
    comando 3
    comando 4
}
```

Nota: se o bloco de comandos possuir apenas um comando, as chaves são opcionais.

Encadeamentos

```
if ( condição 1 ) {
    comando 1
    comando 2
}
else if ( condição 2 ) {
    comando 3
    comando 4
}
else if ( condição 3 ) {
    comando 5
    comando 6
}
else {
    comando 7
    comando 8
}
```

```
Entre com um número inteiro:
10
Par!
```

```
Entre com um número ímpar?
15
Ímpar!
```

```
Qual a hora atual?

10

Bom dia!
```

hora < 12

```
Qual a hora atual?
14
Boa tarde!
```

12 <= hora < 18

```
Qual a hora atual?
19
Boa noite!
```

hora >= 18

```
using System;
namespace Course {
    class Program {
        static void Main(string[] args) {
            Console.WriteLine("Qual a hora atual?");
            int hora = int.Parse(Console.ReadLine());
            if (hora < 12) {
                Console.WriteLine("Bom dia!");
            else if (hora < 18) {
                Console.WriteLine("Boa tarde!");
            else {
                Console.WriteLine("Boa noite!");
```

switch-case

Estrutura opcional a vários if-else encadeados, quando a condição envolve o teste do valor de uma variável.

Sintaxe:

```
var minhaVariavel = (...);

switch (minhaVariavel) {
   case 1:
        Console.WriteLine("Caso 1");
        break;
   case 2:
        Console.WriteLine("Caso 2");
        break;
   default:
        Console.WriteLine("Caso padrão");
        break;
}
```

```
int x = int.Parse(Console.ReadLine());
string day;
if (x == 1) {
    day = "Sunday";
else if (x == 2) {
   day = "Monday";
else if (x == 3) {
    day = "Tuesday";
else if (x == 4) {
    day = "Wednesday";
else if (x == 5) {
    day = "Thursday";
else if (x == 6) {
    day = "Friday";
else if (x == 7) {
    day = "Saturday";
else {
    day = "Invalid value";
Console.WriteLine("Day: " + day);
```

```
int x = int.Parse(Console.ReadLine());
string day;
switch (x) {
    case 1:
        day = "Sunday";
        break;
    case 2:
        day = "Monday";
        break;
    case 3:
        day = "Tuesday";
        break;
    case 4:
        day = "Wednesday";
        break:
    case 5:
        day = "Thursday";
        break;
    case 6:
        day = "Friday";
        break;
    case 7:
        day = "Saturday";
        break;
    default:
        day = "Invalid value";
        break;
Console.WriteLine("Day: " + day);
```

Expressão condicional ternária

Estrutura opcional ao if-else quando se deseja decidir um **VALOR** com base em uma condição.

Sintaxe:

```
( condição ) ? valor_se_verdadeiro : valor_se_falso
```

```
(2 > 4) ? 50: 80
```

```
( 10 != 3 ) ? "Maria" : "Alex" | "Maria"
```

```
double preco = 34.5;
double desconto;
if (preco < 20.0) {
    desconto = preco * 0.1;
}
else {
    desconto = preco * 0.05;
}</pre>
```

```
double preco = 34.5;
double desconto = (preco < 20.0) ? preco * 0.1 : preco * 0.05;</pre>
```

Fazer um programa para ler um número inteiro, e depois dizer se este número é negativo ou não.

Exemplos:

Entrada: Saída:
-10 NEGATIVO

Entrada: Saída:
8 NAO NEGATIVO

Entrada: Saída:
0 NAO NEGATIVO

Fazer um programa para ler um número inteiro e dizer se este número é par ou ímpar.		
Exemplos:		
Entrada:	Saída:	
12	PAR	
Entrada:	Saída:	
-27	IMPAR	
	10-11-	
Entrada:	Saída:	
0	PAR	

Leia 2 valores inteiros (A e B). Após, o programa deve mostrar uma mensagem "Sao Multiplos" ou "Nao sao Multiplos", indicando se os valores lidos são múltiplos entre si. Atenção: os números devem poder ser digitados em ordem crescente ou decrescente.

Entrada:	Saída:
6 24	Sao Multiplos

Entrada:	Saída:
6 25	Nao sao Multiplos

Entrada:	Saída:
24 6	Sao Multiplos

Com base na tabela abaixo, escreva um programa que leia o código de um item e a quantidade deste item. A seguir, calcule e mostre o valor da conta a pagar.

CODIGO	ESPECIFICAÇÃO	PREÇO
1	Cachorro Quente	R\$ 4.00
2	X-Salada	R\$ 4.50
3	X-Bacon	R\$ 5.00
4	Torrada simples	R\$ 2.00
5	Refrigerante	R\$ 1.50

Entrada:	Saída:
3 2	Total: R\$ 10.00

Entrada:	Saída:
2 3	Total: R\$ 13.50

Em um país imaginário denominado Lisarb, todos os habitantes ficam felizes em pagar seus impostos, pois sabem que nele não existem políticos corruptos e os recursos arrecadados são utilizados em benefício da população, sem qualquer desvio. A moeda deste país é o Rombus, cujo símbolo é o R\$.

Leia um valor com duas casas decimais, equivalente ao salário de uma pessoa de Lisarb. Em seguida, calcule e mostre o valor que esta pessoa deve pagar de Imposto de Renda, segundo a tabela abaixo.

Renda	Imposto de Renda
de 0.00 a R\$ 2000.00	Isento
de R\$ 2000.01 até R\$ 3000.00	8 %
de R\$ 3000.01 até R\$ 4500.00	18 %
acima de R\$ 4500.00	28 %

Lembre que, se o salário for R\$ 3002.00, a taxa que incide é de 8% apenas sobre R\$ 1000.00, pois a faixa de salário que fica de R\$ 0.00 até R\$ 2000.00 é isenta de Imposto de Renda. No exemplo fornecido (abaixo), a taxa é de 8% sobre R\$ 1000.00 + 18% sobre R\$ 2.00, o que resulta em R\$ 80.36 no total. O valor deve ser impresso com duas casas decimais.

Entrada:	Saída:
3002.00	R\$ 80.36

Entrada:	Saída:
1701.12	Isento

Entrada:	Saída:
4520.00	R\$ 355.60

Leia 2 valores com uma casa decimal (x e y), que devem representar as coordenadas de um ponto em um plano. A seguir, determine qual o quadrante ao qual pertence o ponto, ou se está sobre um dos eixos cartesianos ou na origem (x = y = 0).

Se o ponto estiver na origem, escreva a mensagem "Origem".

Se o ponto estiver sobre um dos eixos escreva "Eixo X" ou "Eixo Y", conforme for a situação.

Entrada:	Saída:
4.5 -2.2	Q4

Entrada:	Saída:
0.1 0.1	Q1

Entrada: Saída:	
0.0 0.0 Origem	
0.0 0.0 Urigem	