Demographic modeling with fastsimcoal2

Aims and principle of demographic modeling

Test which of different evolutionary scenarios fits the data best Estimate model parameters such as strength of gene flow, divergence time, or population sizes

Example: Did the rare piscivorous brown trout (ferox) in Scotland evolve in the face of gene flow with normal brown trout or in allopatry?

Rattlesnakes and oak tree evolutionary history

Best model

2 equally good models:

Ortego et al., 2017, New Phytologist

Sovic et al., 2016, Heredity

Aims and principle of demographic modeling

Test which of different evolutionary scenarios fits the data best

Estimate model parameters such as strength of gene flow, divergence

time, or population sizes Compare

Aims and principle of demographic modeling

Test which of different evolutionary scenarios fits the data best

Estimate model parameters such as strength of gene flow, divergence

time, or population sizes

"All models are wrong but some are useful"

George Box

How can we infer the demographic history using sequencing data?

Coalescent theory

- The coalescent is a model of the ancestral relationships of individuals from an idealized population
- Wright-Fisher population: consists of haploid individuals with non-overlapping generations and random mating. Allele frequencies change randomly due to drift (no selection).

Shape of the genealogy is informative on the population history

Shape of the genealogy is informative on the population history

Expected SFS shapes under different demographic histories

Efficient summary of the genome-wide data

Frequency of derived allele

Efficient summary of the genome-wide data

Frequency of derived allele

Efficient summary of the genome-wide data

Frequency of derived allele

Efficient summary of the genome-wide data

Frequency of derived allele

Efficient summary of the genome-wide data

Frequency of derived allele

Efficient summary of the genome-wide data

F_{ST}, Tajima's D, pi, etc are summaries of the SFS

Each diploid individual provides two haploid sequences

Linkage information is not used -> SNPs are assumed to be independent

As the ancestral state is known, we can infer the derived SFS -> of derived allele frequency (DAF)

If the ancestral state is not known, we infer the minor allele frequency / folded SFS

Frequency of derived allele

SFS for more than one population

- For 2 populations: 2D SFS
- With more populations, a multidimensional SFS or multiple pairwise 2D SFS can be used

Expected SFS under different evolutionary scenarios

Composite likelihood

Given *S* polymorphic sites (SNPs) out of *L* sites (Adams and Hudson, 2004) the composite likelihood is:

The exact same SFS can be obtained with a long or short tree

 We need a mutation rate and the number of monomorphic sites to distinguish among the two!

Τ,

Τ,

 T_{I}

 T_{I}

• Or we need to fix some parameters, e.g. the splitting time

 T_{I}

 T_{I}

 p_i

fastsimcoal

- Fastsimcoal2 can estimate parameters from the SFS using coalescent simulations
- Maximum (composite) likelihood method
- It approximates the expected SFS by performing coalescent simulations (>50,000)
- Uses a conditional expectation (CEM) maximization algorithm to find parameter combinations that maximize the likelihood

Input files for fastsimcoal

Observed SFS

Model template file

Parameter file

NPOP logunif 1000 100000 TEXP logunif 500 50000 RESIZE logunif 0.1 100

Input files for fastsimcoal2: observed SFS

• 1D, 2D or multidimensional/joint SFS

```
example_DAFpop0.obs
1 observations
d0_0 d0_1 d0_2 d0_3 d0_4 d0_5 d0_6 d0_7 d0_8 d0_9 d0_10
19973842 24630 810 173 145 111 88 84 61 56 0
```

Input files for fastsimcoal2: Model template file

example.tpl

```
//Parameters for the coalescence simulation program : fsimcoal2.exe
1 samples to simulate:
//Population effective sizes (number of genes)
                                                                                         NANC
NPOP
//Samples sizes and samples age
10
                                                                                                    TEXP
                                                                                         NPOP
//Growth rates: negative growth implies population expansion
//Number of migration matrices : 0 implies no migration between demes
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
index
1 historical event
TEXP 0 0 0 NANC 0 0 absoluteResize
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous loci
//per Block: data type, number of loci, per generation recombination and mutation rates and optional
parameters
         0 2.5e-8 OUTEXP
FREO
```

Input files for fastsimcoal2: Parameter estimation (.est) file

```
example.est
// Search ranges
 ******
[PARAMETERS]
//#isInt? #name #dist.#min #max
//all Ns are in number of haploid individuals
           logunif 1000 1e7 output
 NPOP
          logunif 1000 1e8 output
  NANC
      unif 10 1e5 output
  TEXP
[COMPLEX PARAMETERS]
```

Input files for fastsimcoal2: Model template file Migration matrices

Migration is from index in row to index in column **backwards** in time.

The entry m_{ij} lists the **migration rates backward in time** from population i to population j. The above-mentioned matrix states that, for each generation backward in time, any gene from population 0 has probability MIG_01 to be sent to population 1, and that a gene from population 1 has a probability MIG_10 to move to population 0.

Historical events in fastsimcoal2

//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix index

- Change the size of a given population
- Change the growth rate of a given population
- Change the migration matrix

- One or more of these events can occur at the same time
- In the end, all populations must have fused to a single population

Example: Change of population size

```
//historical event: time, source, sink, migrants, new deme size, new
growth rate, migration matrix index
1 historical event
1000 0 0 1000 0 0
```

Recent instantaneous demographic contraction

- 1000 generations ago, 0% (migrants=0) of lineages in pop0 (source) migrated to pop0 (sink). This means that 100% of lineages remained in pop0.
- The sink population (pop0) has a size 1000 larger after the event (new size=1000). Given that N0=500 diploids at time zero, it implies that NA=500000 diploids.
- The migration matrix valid after the event is the migration rate 0.

Example: Population split (merge backwards in time)

```
//Number of migration matrices : 0 implies no migration between demes
2
//Migration matrix 0
0 0
1e-4 0
//Migration matrix 1: No migration
0 0
0 0
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix index
1 historical event
5000 1 0 1 0.075 0 1
```


- At generation 5000 in the past, 100% (migrants=1) of lineages migrated from pop1 (source=1) to pop0 (sink=0).
- After the population split, the deme size of the sink population (pop0) is 1500 (new deme size=1500/20000=0.075).
- After the historical event the growth rate of the sink population pop0 is zero.
- After the historical event the migration rate matrix was set to matrix 1, i.e. no migration between populations.

Example: inbred individuals and/or ancient samples

```
//Number of population samples (demes)
2
//Population effective sizes (number of genes)
20000
0
//Sample sizes, ages and inbreeding
3
2 1000 0.125
```


Principle of demographic parameter inference with fastsimcoal2

These operations are done by fastsimcoal2 to estimate parameters

- 1. Read the *tpl* and *est* files
- 2. Read the observed SFS (must have same generic name as tpl file)
- 3. Draw random initial values of parameters to be estimated, as defined in est file
- 4. Compute complex parameters function of simple parameters
- 5. Use the current parameter values to perform coalescent simulations necessary to estimate the expected SFS
- 6. Compute the likelihood of the parameters using a multinomial distribution
- 7. For each parameter in turn, use an optimization algorithm to find the parameter value that maximizes the lhood, keeping all other parameters constant
- 8. Loop step 7 for all parameters
- 9. Repeat steps 7 and 8 (loops) as many times as specified in the command line
- 10. Output parameter values with final best associated lhood

Now, let's write our own model

Model with early gene flow (isolation after migration)

First, we test if a model of speciation with divergence with gene flow and then complete reproductive isolation fits the data well.

We need to produce three input files:

- Observed pairwise SFS:
 early geneflow jointMAFpop1 0.obs
- Model specification: early_geneflow.tpl
- Estimated parameters: early_geneflow.est

We can modify the example.tpl and example.est files to represent our model. As we do not have a reliable mutation rate, we will fix the divergence time to 6,000 generations.

All models

Steps to infer the best model

- Run each model at least 100 times to find the best run (highest likelihood -> likelihood is given in units of log10. Hence, the closer to zero the higher the likelihood)
- Compare models to infer the best model
 - AIC
 - Likelihood distributions
- Best model:
 - Bootstrapping to get confidence intervals for parameter estimates

Model comparison

AIC (Akaike information criterion)

Gene flow model	Two gene flow matrices (recent and early)	Recent gene flow	Early gene flow	Constant gene flow	No gene flow
NMR	5,910	7,070	5,879	7,421	67,998
NMB	5,332	5,541	4,935	6,209	67,629
Nanc	3,637	3,723	3,089	4,785	41,549
Tmig	420	925	1	NA	NA
early mig B->R	4.2x10 ⁻⁶ /0.02	NA	3.3x10 ⁻⁴ /1.64	NA	NA
early mig R->B	3.3x10 ⁻⁴ /1.96	NA	6.8x10 ⁻⁴ /4.00	NA	NA
recent mig B->R	9.4x10 ⁻⁴ /5.00	4.4x10 ⁻⁴ /2.42	NA	2.4x10 ⁻⁴ /1.51	NA
recent mig R->B	7.1x10 ⁻⁴ /4.22	9.4x10 ⁻⁴ /6.66	NA	5.3x10 ⁻⁴ /3.91	NA
ΔLhood	601	654	1,059	1,069	3,363
AIC	3,124,032	3,124,274	3,126,138	3,126,179	3,136,742
ΔΑΙC	-	242	2,106	2,147	12,710

Likelihood distributions

Confidence intervals for the best parameter estimates

