Assignment 4

Solution (a)

$$C \approx \gamma 2^{A/2}$$

$$\Rightarrow ln(C) \approx ln(\gamma) + A/2 * ln(2)$$

This equation is of the form $y \approx \beta_1 + \beta_2 x$

where
$$y = ln(C), x = A, \beta_1 = 1, \beta_2 = ln(2)/2$$

The coefficent of A - β_2 is $\ln(2)/2 = 0.3465736$

Solution (b)

```
df = read.csv("C:\\temp\\mooreslawdata.csv",header = TRUE)
plot(df$Year, log(df$TransistorCount))
```


#add new columns for year and log of transitor count to be used in JAGS model
df\$A = df\$Year
df\$C_log = log(df\$TransistorCount)

Solution (c)(i)

```
model {
for (j in 1:length(C_log)) {
  C_log[j] ~ dnorm(beta1 + beta2*(A[j] - mean_A), sigmasqinv)
}
beta1 \sim dnorm(0,1/1000^2)
beta2 \sim dnorm(0,1/1000^2)
sigmasqinv \sim dgamma(0.001, 0.001)
sigmasq <- 1/sigmasqinv
mean_A <- mean(A)</pre>
}
inits <- list(list(beta1=10000, beta2=10000, sigmasqinv=0.01, .RNG.name="base::</pre>
Wichmann-Hill", .RNG.seed=2),
                list(beta1=10000, beta2=10000, sigmasqinv=0.00001, .RNG.name="ba
se::Wichmann-Hill",.RNG.seed=3),
                list(beta1=10000, beta2=-10000, sigmasqinv=0.01, .RNG.name="base
::Wichmann-Hill",.RNG.seed=4),
                list(beta1=10000, beta2=-10000, sigmasqinv=0.00001, .RNG.name="b
ase::Wichmann-Hill",.RNG.seed=5),
                list(beta1=-10000, beta2=10000, sigmasqinv=0.01, .RNG.name="base")
::Wichmann-Hill",.RNG.seed=6),
                list(beta1=-10000, beta2=10000, sigmasqinv=0.00001, .RNG.name="b
ase::Wichmann-Hill",.RNG.seed=7),
                list(beta1=-10000, beta2=-10000, sigmasqinv=0.01, .RNG.name="bas
e::Wichmann-Hill", .RNG.seed=8),
                list(beta1=-10000, beta2=-10000, sigmasqinv=0.00001, .RNG.name="
base::Wichmann-Hill", .RNG.seed=9)
library(rjags)
## Warning: package 'rjags' was built under R version 3.6.3
## Loading required package: coda
## Warning: package 'coda' was built under R version 3.6.3
## Linked to JAGS 4.3.0
## Loaded modules: basemod, bugs
m1 <- jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains=8)</pre>
```

```
## Warning in jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains = 8):
## Unused variable "Processor" in data
## Warning in jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains = 8):
## Unused variable "Year" in data
## Warning in jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains = 8):
## Unused variable "TransistorCount" in data
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 178
      Unobserved stochastic nodes: 3
##
##
      Total graph size: 516
##
## Initializing model
update(m1, 1000) # burn-in
x1 <- coda.samples(m1, c("beta1", "beta2", "sigmasq"), n.iter=2000)</pre>
plot(x1)
```

Trace of beta1

Density of beta1

N = 2000 Bandwidth = 0.01348

Trace of beta2

Density of beta2

N = 2000 Bandwidth = 0.0009499

Trace of sigmasq

Density of sigmasq

N = 2000 Bandwidth = 0.02261

acf(x1[[1]])


```
gelman.diag(x1, autoburnin = FALSE)
## Potential scale reduction factors:
##
##
           Point est. Upper C.I.
## beta1
                     1
                                 1
## beta2
                     1
                                 1
## sigmasq
                     1
                                 1
##
## Multivariate psrf
##
## 1
```

We can see from plots, chains are sampling from same regions, have indepdnent samples and gelman factors are 1 hence indicating convergence

Solution (c)(ii)

```
summary(x1)
##
## Iterations = 1001:3000
## Thinning interval = 1
## Number of chains = 8
## Sample size per chain = 2000
##
```

```
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
##
                        SD Naive SE Time-series SE
             Mean
## beta1
          17.4258 0.088159 6.970e-04
                                          6.910e-04
           0.3432 0.006212 4.911e-05
                                          4.922e-05
## beta2
## sigmasq 1.3774 0.148321 1.173e-03
                                          1.185e-03
## 2. Quantiles for each variable:
##
              2.5%
                      25%
                             50%
                                     75%
##
                                           97.5%
## beta1
          17.2521 17.366 17.4259 17.4847 17.5982
## beta2
           0.3311 0.339 0.3432 0.3474 0.3555
## sigmasq 1.1175 1.273 1.3666 1.4710 1.7020
```

Solution (c)(iii)

The slope is β_2 , as we can see from (c)(ii) posterior mean is 0.3432 The 95% posterior interval is (0.3311,0.3555) and contains the value 0.3465736 from part a)

Solution (c)(iv)

The intercept is β_1 , and its posterior mean is 17.4258 The 95% psterior interval is (17.2521, 17.5982)

Solution (d)(i)

```
C_pred_linear <-exp(C_pred_log)</pre>
invention_year <- mean_A - beta1/beta2
}
m1 <- jags.model("C:\\temp\\mooreslawPred.bug", df, inits, n.chains=8, n.adap</pre>
t=1000)
## Warning in jags.model("C:\\temp\\mooreslawPred.bug", df, inits, n.chains =
8, :
## Unused variable "Processor" in data
## Warning in jags.model("C:\\temp\\mooreslawPred.bug", df, inits, n.chains =
8, :
## Unused variable "Year" in data
## Warning in jags.model("C:\\temp\\mooreslawPred.bug", df, inits, n.chains =
## Unused variable "TransistorCount" in data
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 178
##
##
      Unobserved stochastic nodes: 4
##
      Total graph size: 524
##
## Initializing model
update(m1, 1000) # burn-in
x2 <- coda.samples(m1, c("C_pred_log", "C_pred_linear", "invention_year"), n.ite
r=2000)
plot(x2)
```

Trace of C_pred_linear

Density of C_pred_linear

N = 2000 Bandwidth = 5.862e+09

Trace of C_pred_log

Density of C_pred_log

N = 2000 Bandwidth = 0.1792

Trace of invention_year

Density of invention_year

N = 2000 Bandwidth = 0.1472

acf(x2[[1]])


```
gelman.diag(x2, autoburnin = FALSE)
## Potential scale reduction factors:
##
##
                   Point est. Upper C.I.
## C_pred_linear
                         1.01
                                     1.01
## C_pred_log
                         1.00
                                     1.00
## invention_year
                         1.00
                                     1.00
##
## Multivariate psrf
##
## 1
```

We can see from plots, chains are sampling from same regions, have indepdnent samples and gelman factors are close to 1 hence indicating convergence

Solution (d)(ii)

```
summary(x2)
##
## Iterations = 1001:3000
## Thinning interval = 1
## Number of chains = 8
## Sample size per chain = 2000
##
```

```
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
##
                                   SD Naive SE Time-series SE
                       Mean
## C_pred_linear 5.802e+10 9.874e+10 7.806e+08
                                                     7.721e+08
## C pred log
                  2.410e+01 1.172e+00 9.263e-03
                                                     9.213e-03
## invention year 1.951e+03 9.628e-01 7.612e-03
                                                     7.612e-03
## 2. Quantiles for each variable:
##
                                  25%
                                            50%
                                                      75%
##
                       2.5%
                                                              97.5%
## C pred linear 2.899e+09 1.345e+10 2.947e+10 6.482e+10 2.821e+11
                  2.179e+01 2.332e+01 2.411e+01 2.489e+01 2.637e+01
## C pred log
## invention_year 1.949e+03 1.950e+03 1.951e+03 1.951e+03 1.953e+03
```

Solution (d)(iii)

95% posterior predictive confidence interval for year 2021 is (2.899e+09,2.821e+11)

Solution (d)(iv)

The year indicated by $\overline{A} - \beta 1/\beta 2$ is the solution to the regression equation

 $log(C) \approx \beta_1 + \beta_2(A_i - \overline{A})$ when when log(C) = 0 i.e. C = 1 (transitor count of 1)

The 95% posterior interval for invention year is (1949,1953)

Solution (e)(i)

```
m1 <- jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains=8, n.adapt=10</pre>
00)
## Warning in jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains = 8,
## Unused variable "Processor" in data
## Warning in jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains = 8,
## Unused variable "Year" in data
## Warning in jags.model("C:\\temp\\mooreslaw.bug", df, inits, n.chains = 8,
## Unused variable "TransistorCount" in data
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 178
##
##
      Unobserved stochastic nodes: 3
##
      Total graph size: 516
```

```
##
## Initializing model
df$adjusted_year = df$Year - mean(df$Year)
update(m1, 1000) # burn-in
x3 <- coda.samples(m1, c("beta1", "beta2", "sigmasq"), n.iter=2000)
beta1_sim <- as.matrix(x3)[, "beta1"]</pre>
beta2_sim <- as.matrix(x3)[, "beta2"]</pre>
#combine beta1 and beta2 into a matrix
beta.sim <- cbind(beta1 sim,beta2 sim)</pre>
sigma2_sim <- as.matrix(x3)[, "sigmasq"]</pre>
Nsim <- nrow(beta.sim)</pre>
mod <- lm(C log ~adjusted year, data=df)</pre>
X <- model.matrix(mod)</pre>
error.std.sim <- matrix(NA,Nsim,nrow(df))</pre>
#Simulated standard Error
for (s in 1:Nsim)
  error.std.sim[s,] <- (df$C log - X %*% cbind(beta.sim[s,])) /sqrt(sigma2 si
m[s])
```

Solution (e)(ii)

Replicate standard error is expected to have a standard normal distribution. Hence rnorm can be used to generate it.

```
#Simulate replicate Error from rnrom
error.rep.std.normal <-matrix(rnorm(Nsim*nrow(df)),Nsim,nrow(df))

Solution (e)(iii)

Compute T(y,X,\theta) and T(y^{rep},X,\theta)

T_y <- apply(abs(error.std.sim), 1, max)

T_y_rep<- apply(abs(error.rep.std.normal), 1, max)

Solution (e)(iv)
plot(T_y,T_y_rep,xlim = c(2,12), ylim = c(2,12))
abline(0,1,col = "red")</pre>
```


Solution (e)(v)

Compute p value for the outlier test statistic

```
mean(T_y_rep >= T_y)
## [1] 0.000125
```

Since p value is very low it indicates presence of outliers

Solution (e)(vi)

The exterme outlier can be defined as microprocessor that achieves the maximum difference for each simulation from standard normal error with highest probablity

```
N_y <- apply(abs(abs(error.std.sim) - abs(error.rep.std.normal)), 1, which.ma
x)

#Sort by highest incidence of a uP being maximum outlier wrt to the metric an
d print top 3
sort(table(N_y),decreasing=TRUE)[1:3]

## N_y
## 63 55 66
## 9730 5900 347</pre>
```

Index no 63 (F21 processor) has the highest occurrence (9730) out of 16000 simulations as extreme i.e. probability .608 for it bring the extreme outlier