

Dr. Han Huang

South China University of Technology

Chapter 2. Set model

Sets and Set Operations

Section 2.1

Contents

1	Introduction of Sets	
2	Power Sets	
3	Set Operations	

Introduction to Set Theory (§ 1.6)

- A set is an unordered collection of objects.
- Cantor's work:
- Paradoxes Axioms Naive set theory
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of the form of set theory.

- The objects in a set are also called the elements, or members, of the set. A set is said to contain its elements.
- ❖ Example 1: V={a,e,I,o,u}
- ❖ Example 2: O={1,3,5,7,9}
- Example 3: {a,2,Wang,Guang,Zhou}
- Example 4:
 - $N = \{0, 1, 2, ...\}$ The Natural numbers.
 - $Z = \{..., -2, -1, 0, 1, 2, ...\}$ The integers.
- ◆**Q**={ p / q | p ∈ Z, q ∈ Z, q≠0} is the set of rational number.

- Two sets are equal if and only if they have the same elements.
- ❖{1, 3, 5} and {3, 5, 1} are equal.
- *{1, 3, 3, 3, 5, 5, 5, 5} is the same as {1, 3, 5}
- No matter what objects a, b, and c denote,

$${a, b, c} = {a, c, b} = {b, a, c} = ...$$

Multiple listings make no difference:

$${a, a, c, c, c, c} = {a,c}.$$

Basic properties of sets

- ❖ Set builder notation: For any proposition P(x) over any universe of discourse, $\{x|P(x)\}$ is the set of all x such that P(x).
- For example:

```
{1, 2, 3, 4} =
{x | x is an integer where x>0 and x<5 } =
{x | x is a positive integer whose square is >0 and <25}
```

Venn/Euler Diagrams John Venn 1834-1923 **Even-integers-from** Odd integers from to

The Empty Set

- •We have seen that there exists exactly one empty set, so we can give it a name:
- ❖∅ ("the empty set") is the unique set that contains no elements whatsoever.
- $\diamondsuit \emptyset = \{\} = \{x | x \neq x\} = ... = \{x | \text{False}\}$

Subset and Superset Relations

- $S\subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $\diamond S \subseteq T :=_{def} \forall x (x \in S \rightarrow x \in T)$
- What do you think about these?
 - Ø⊆S ?
 - S⊂S ?

Subset and Superset Relations

- $S\subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S\subseteq T:\equiv_{def} \forall x (x\in S \rightarrow x\in T)$
- What do you think about these?
 - Ø⊆S ? Yes
 - S⊆S ? Yes

Subset and Superset Relations

- More notation:
- $S \supseteq T$ ("S is a superset of T") := $_{def} T \subseteq S$. Note $S = T \Leftrightarrow S \subseteq T \land S \supseteq T$.

$$S \nsubseteq T :=_{def} \neg (S \subseteq T), i.e. \exists x(x \in S \land x \notin T)$$

$$\neg (S \subseteq T) \Leftrightarrow \neg \forall x(x \in S \rightarrow x \in T)$$

$$\Leftrightarrow \exists x \neg (\neg (x \in S) \lor (x \notin T))$$

$$\Leftrightarrow \exists x(x \in S \land x \notin T)$$

Proper (Strict) Subsets & Supersets

 $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \not\subseteq S$.

Example: $\{1,2\} \subset \{1,2,3\}$

We have $\{1,2,3\} \subseteq \{1,2,3\}$,

but not $\{1,2,3\} \subset \{1,2,3\}$

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- **❖** *E.g.* let $S=\{x \mid x \subseteq \{1,2,3\}\}$ then S = ...

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- * E.g. let $S=\{x \mid x \subseteq \{1,2,3\}\}$ then $S=\{\emptyset,$ $\{1\}, \{2\}, \{3\},$ $\{1,2\}, \{1,3\}, \{2,3\},$ $\{1,2,3\}\}$
- **⋄** Note that $1 \neq \{1\} \neq \{\{1\}\}$

Cardinality and Finiteness

- ❖|S| (read "the cardinality of S") is a measure of how many different elements S has.
- *E.g., $|\emptyset|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=2$
- ❖If |S| ∈ N, then we say S is *finite*. Otherwise, we say S is *infinite*.

在一个班级的 50 个学生中,有 26 人在离散数学的考试中取得了优秀的成绩; 21 人在程序设计的考试中取得了优秀的成绩。假如有 17 人在两次考试中都没有取得优秀成绩,问有多少人在两次考试中都取得了优秀成绩?

分别用 A, B 表示在离散和程序设计的考试中取得优秀成绩的学生集合, U 表示全体学生集合:则 |A|=26,|B|=21, $|A\cup B|=50-17=33$,则两次考试中都取得了优秀成绩的学生人数为 26+21-33=14 人。

$|A \cup B| = |A| + |B| - |A \cap B|$

This version of Set Theory is inconsistent

Russell's paradox:

❖Consider the set that corresponds with the predicate x ∉ x :

$$S = \{x \mid x \notin x \}.$$

❖Now ask: is $S \in S$?

Russell's paradox

- \star Let $S = \{x \mid x \notin x\}$. Is $S \in S$?
- **♦** If $S \in S$, then S is one of those objects x for which $x \notin x$. In other words, $S \notin S$ By Reductio, we have $S \notin S$
- **♦** If $S \notin S$, then S is not one of those objects x for which $x \notin x$. In other words, $S \in S$ By Reductio, we have $S \in S$
- ♦ We conclude that both S∈S and S∉S
- Paradox! (There's no assumption that we can blame, so we cannot Reductio again)

The *Power Set* Operation

- The power set P(S) of a set S is the set of all subsets of S. $P(S) :≡ \{x \mid x ⊆ S\}$.
- $Arr E.g. P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Sometimes P(S) is written 2^{S} , because $|P(S)| = 2^{|S|}$.
- \star It turns out $\forall S: |P(S)| > |S|, e.g. |P(N)| > |N|.$

- $P(\{0, 1, 2\})$ = $\{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\}$
- $P(\{\emptyset\})=\{\emptyset, \{\emptyset\}\}$
- $P(\emptyset) = \{\emptyset\}$

Cartesian Products of Sets

- ❖ For sets A, B, their Cartesian product $A \times B := \{(a, b) \mid a \in A \land b \in B \}$.
- $Arr E.g. \{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

在计算机内,一个字(或单元)有固定的 \mathbf{n} 个有序二进制位所组成,它可以表示成有序 \mathbf{n} 元组形式: (a_1, a_2, \cdots, a_n) ,其中 a_i 表示字中第 \mathbf{i} 位二进制的数字。而每个 a_i 所取之值为 $\mathbf{0}$ 或 $\mathbf{1}$,亦即取自集合 $A=\{0,1\}$ 作为字的内容。所以,这些 \mathbf{n} 位长的字的全体可表示为 $\underline{A} \times \underline{A} \times \cdots \times \underline{A} = \{(a_1, a_2, \cdots, a_n) | a_i \in A, i = 1, \cdots, n\}$ 这也可以写为 \underline{A}^n 。

Cartesian Products of Sets

- Note that
 - for finite set A, B, $|A \times B| = |A| \cdot |B|$
 - the Cartesian product is *not* commutative: *i.e.*, $\neg \forall AB$: $A \times B = B \times A$.

Using Set Notation with Quantifiers

- $\forall x \in S$ P(x) denotes the universal quantification
- $\Rightarrow \exists x \in S P(x)$ denotes the existential quantification
- ❖ ∀x∈R (x^2≥0) and ∃ x∈Z (x^2=1)

Start § 2.2: The Union Operator

- For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, or (" \vee ") in B (or, of course, in both).
- **♦** Formally, $\forall A,B$: $A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that $A \cup B$ is a **superset** of both A and B (in fact, it is the smallest such superset):

 $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$

Union Examples

- $\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}$
- $\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$

The Intersection Operator

- ❖ For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("∧") in B.
- ❖ Formally, $\forall A,B$: $A \cap B = \{x \mid x \in A \land x \in B\}$.
- Note that $A \cap B$ is a **subset** of both A and B (in fact it is the largest such subset):

$$\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$$

Intersection Examples

$$*{a,b,c} \cap {2,3} =$$

$$(2,4,6) \cap (3,4,5) = (4)$$

Think "The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on *both* streets."

Set Difference

❖ For sets A, B, the difference of A and B, written as A−B, is the set of all elements that are in A but not in B. Formally:

$$A - B := \{x \mid x \in A \land x \notin B\}$$

Also called:

The complement of B with respect to A.

Set Difference Examples

```
* {(1)4,3(4),6(6)} - {2,3,5,7,9,11} =
             {1,4,6}
*Z - N = {..., -1, 0, 1, 2, ...} - {0, 1, ...}
           = \{x \mid x \text{ is an integer but not a nat. } \#\}
           = \{x \mid x \text{ is a negative integer}\}\
           = \{ \dots, -3, -2, -1 \}
```


Set Difference - Venn Diagram

❖ A-B is what's left after B "takes a bite out of A"

Set Complements

- The universe of discourse itself can be considered a set, called U.
- ♦ When the context clearly defines U, we say that for any set $A \subseteq U$, the complement of A, written \overline{A} , is the complement of A w.r.t. U, i.e., it is U–A.
- **❖** *E.g.,* If *U*=**N**,

$$\overline{\{3,5\}} = \{0,1,2,4,6,7,\dots\}$$

Set Identities

$$A \cup \emptyset = A = A \cap U$$

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

$$A \cup A = A = A \cap A$$

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$\stackrel{\diamondsuit}{A} \cap (B \cap C) = (A \cap B) \cap C$$

$$(\overline{A}) = A$$

(don't worry about their names)

- ❖ Identity: $A \cup \emptyset = A = A \cap U$
- ❖ Domination: $A \cup U = U$, $A \cap \emptyset = \emptyset$
- ❖ Idempotent: $A \cup A = A = A \cap A$
- *Double complement: $(\overline{A}) = A$
- **Commutative**: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- *Associative: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$

DeMorgan's Law for Sets

Exactly analogous to (and provable from) DeMorgan's Law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \{x | x \in U \land x \notin (A \cup B)\}$$

$$= \{x | x \notin (A \cup B)\}$$

$$= \{x | \neg (x \in A \cup B)\}$$

$$= \{x | \neg (x \in A \lor x \in B)\}$$

$$= \{x | x \notin A \land x \notin B\}$$

$$= \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \{x | x \in U \land x \notin (A \cap B)\}$$

$$= \{x | x \notin (A \cap B)\}$$

$$= \{x | \neg (x \in A \cap B)\}$$

$$= \{x | \neg (x \in A \land x \in B)\}$$

$$= \{x | x \notin A \lor x \notin B\}$$

$$= \overline{A} \cup \overline{B}$$

Proving Set Identities

- To prove statements about sets, of the form $E_1 = E_2$ (where the E_3 are set expressions), here are three useful techniques:
- 1.Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- 2.Use set builder notation & logical equivalences.
- 3.Use a membership table.

Method 1: Mutual subsets

- Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- \diamond Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- $Assume x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
- We know that $x \in A$, and either $x \in B$ or $x \in C$.
- ❖ Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
- ❖ Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
- ❖ Therefore, $x \in (A \cap B) \cup (A \cap C)$.
- ❖ Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- **Part 2: Show** $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. (analogous)

Method 2: Logic equality

- A variant of this method: translate into propositional logic, then reason within propositional logic, and finally translate back into set theory. E.g.,
- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Suppose $x \in A \land (x \in B \lor x \in C)$. Prove $(x \in A \land x \in B) \lor (x \in A \land x \in C)$.

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Example

Prove $(A \cup B) - B = A - B$.

\boldsymbol{A}	B	$A \cup B$	$(A \cup B) - B$			<u> </u>	3
0	0	0	()		0	
0	1	1	()		0	
1	0	1]			1	
1	1	1)		0	

Prove
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	B-C	$(A-C)\cup (B-C)$
0 0 0					
0 0 1					
0 1 0					
0 1 1					
1 0 0					
1 0 1					
1 1 0					
1 1 1					

Prove
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	В-С	$(A-C)\cup (B-C)$
0 0 0					
0 0 1					
0 1 0		1			
0 1 1					
1 0 0		1			
1 0 1					
1 1 0		1			
1 1 1					

Prove
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	В-С	$(A-C)\cup (B-C)$
0 0 0					
0 0 1					
0 1 0		1		1	
0 1 1					
1 0 0		1	1		
1 0 1					
1 1 0		1	1	1	
1 1 1					

Prove
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	В-С	$(A-C)\cup (B-C)$
0 0 0					
0 0 1					
0 1 0		1		1	1
0 1 1					
1 0 0		1	1		1
1 0 1					
1 1 0		1	1	1	1
1 1 1					

Generalized Union

- ❖Binary union operator: A∪B
- ❖ n-ary union:

$$A \cup A_2 \cup ... \cup A_n := ((...((A_1 \cup A_2) \cup ...) \cup A_n))$$

(grouping & order is irrelevant)

- *"Big U" notation: $\bigcup_{i=1}^{n} A_i$
- \diamond Or for infinite sets of sets: $\bigcup_{A \in X} A$

Generalized Intersection

- ❖Binary intersection operator: A∩B
- n-ary intersection:

$$A_1 \cap A_2 \cap ... \cap A_n \equiv ((...((A_1 \cap A_2) \cap ...) \cap A_n))$$

(grouping & order is irrelevant)

- *"Big Arch" notation: $\bigcap_{i=1}^{n} A_i$
- \diamond Or for infinite sets of sets: $\bigcap_{A \in X} A$

某个研究所有170名职工,其中120人会英语,80人会法语,60人会 日语,50人会英语和法语,25人会英语和日语,30人会法语和日语, 10人会英语、日语和法语。问有多少人不会这三种语言?

Example 1

某个研究所有170名职工,其中120人会英语,80人会法语,60人会 日语,50人会英语和法语,25人会英语和日语,30人会法语和日语,10人会英语、日语和法语。问有多少人不会这三种语言?

解:令U为全集, E、F、J分别为会英语、法语和日语人的集合。|U|=170

|E|=120 |F|=80 |J|=60 |E∩F|=50

|E∩J|=25 |F∩J|=30 |E∩F∩J|=10

 $|E \cup F \cup J| = |E| + |F| + |J| - |E \cap F| - |E \cap J| - |F \cap J| + |E \cap F \cap J|$

= 120 + 80 + 60 - 50 - 25 - 30 + 10 = 165

|U-(EUFUJ)|=170-165=5 即有5人不会这三种语言。

75 名儿童到游乐场去玩,他们可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中 20 人这三种东西都玩过,其中 55 人至少乘坐过其中的两种,若每样乘坐一次的费用是 5 元,游乐场总收入 700 元,试确定有多少儿童没有乘坐其中任何一种。

Example 2

设
$$A_1 = \{x \mid x$$
骑过木马 $A_2 = \{x \mid x$ 坐过滑行铁道 $A_3 = \{x \mid x$ 乘过宇宙飞船 $A_3 = \{x \mid x$

$$E = \{x \mid x$$
为来到游乐场的儿童 $\}$,则 E 为全集,且 $|E| = 75$ 。

设 x 为没玩过以上 3 种游乐种任何一种的人数,则
$$x = |E| - |A_1 \cup A_2 \cup A_3|$$

$$|A_1 \cup A_2 \cup A_3| = (|A_1| + |A_2| + |A_3|) - (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) + |A_1 \cap A_2 \cap A_3|$$

又因为
$$|A_1| + |A_2| + |A_3| = 700 \div 5 = 140$$
, $|A_1 \cap A_2 \cap A_3| = 20$,

$$55 = |(A_1 \cap A_2) \cup (A_1 \cap A_3) \cup (A_2 \cap A_3)|$$

$$= (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) - 3|A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

$$= (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) - 2|A_1 \cap A_2 \cap A_3|$$

$$|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3| = 95$$

所以
$$|A_1 \cup A_2 \cup A_3| = 140-95+20=65$$
,则 $x = 75-65=10$ 。

1. Which of these statements is true. ()

- **⋄**A) 0 ∈ Ø
- $^{\diamond}$ C) $\{0\} \subset \emptyset$

- B) $\emptyset \in \{0\}$
- D) $\emptyset \subset \{0\}$

- 1. Which of these statements is true. (D)
- **⋄**A) 0 ∈ Ø
- $^{\diamond}$ C) $\{0\} \subset \emptyset$

- B) $\emptyset \in \{0\}$
- D) $\emptyset \subset \{0\}$

2. Which argument is true? ()

- $A \cap A \cap A = B$
- $\bullet B$) $(A \cap B) A = \emptyset$
- $^{\bullet}$ C) $(A B) \cup B = A$
- \bullet D) $\emptyset \cup \{\emptyset\} = \emptyset$

♦•2. Which argument is true? (B)

- $A \cap A \cap A = B$
- \Rightarrow B) $(A \cap B) A = \emptyset$
- $^{\bullet}$ C) $(A B) \cup B = A$
- \bullet D) $\emptyset \cup \{\emptyset\} = \emptyset$

- ❖ 3. Which of the following options is true? ()
- ❖a) | ø | = 1
- b | { x, x } | = 2
- ★c) | {x} \cap ø | = 0
- ♣d) | Ø | = Ø

- **❖ 3.** Which of the following options is true? (C)
- ❖a) | Ø | = 1
- ♦ b) | { x, x } | = 2
- $\diamond c$) | $\{x\} \cap \emptyset$ | = 0
- ♣d) | Ø | = Ø

- .4. Let A and B be sets. Which is not true? U is the universal set.()
- $A \cap A \cup \emptyset = A$
- $*B) A \cap U = A$
- $^{\bullet}$ C) A \cup A = A
- \bullet D) A-Ø = Ø

- .4. Let A and B be sets. Which is not true? U is the universal set.(D)
- $A \cap A \cup \emptyset = A$
- $*B) A \cap U = A$
- $^{\bullet}$ C) A \cup A = A
- \bullet D) A-Ø = Ø

- **◆5.** Assume that $S = \{2, a, \{3\}, 4\}$ and $T = \{\{a\}, 3, 4, 1\}$, which statement is wrong? ()
- **❖**A. $\{\{a\}, 1, 3, 4\}$ ⊆ *T*
- **❖**B. $\{a\}$ ⊆ T
- \bullet C. $\phi \subseteq \{\{a\}\} \subseteq T$
- **❖**D. ϕ ⊆ {{3}, 4}

- **◆5.** Assume that $S = \{2, a, \{3\}, 4\}$ and $T = \{\{a\}, 3, 4, 1\}$, which statement is wrong? (B)
- **❖**A. $\{\{a\}, 1, 3, 4\}$ ⊆ *T*
- **❖**B. $\{a\}$ ⊆ T
- \bullet C. $\phi \subseteq \{\{a\}\} \subseteq T$
- **❖**D. ϕ ⊆ {{3}, 4}

- 6. Determine which of these statements is true.()
- $A) \emptyset \in \{a, b, c\}$
- $\bullet B$) $\exists x (B \to A(x)) \iff B \to \forall x A(x)$
- るC) {∅} ∈ {∅, {∅}}
- **❖**D) $\{a\}$ ⊆ $\{\{a\}, 1, 2, 3\}$

- 6. Determine which of these statements is true.(C)
- $A) \emptyset \in \{a, b, c\}$
- $\bullet B$) $\exists x (B \to A(x)) \iff B \to \forall x A(x)$
- $^{\bullet}$ C) $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}$
- **❖**D) $\{a\}$ ⊆ $\{\{a\}, 1, 2, 3\}$

- ❖7. Let the set A=B. Which of the following is true?()
- A $A = \{\{a\}\}\ , B = \{a, \{a\}\}\}$
- *****B) $A = \{\emptyset, a, b\}, B = \{a, b\}$
- $^{\bullet}$ C) A = {a, b} \cup Ø, B = {a, b} \cup {Ø}
- \bullet D) A = {Ø, {a}, {b}, {a, b}}, B = {x| x is the subset of {a, b}}

- ❖7. Let the set A=B. Which of the following is true?(D)
- A A = {{a}} , B = {a, {a}}
- $A = \{\emptyset, a, b\}, B = \{a, b\}$
- *C) A = {a, b} \cup Ø, B = {a, b} \cup {Ø}
- ❖D) A = {∅, {a}, {b}, {a, b}}, B = {x| x is the subset of {a, b}}

- ❖ 8. For each of the following sets, determine whether 2 is an element of that set. ()
- **❖**A) {2, {2}}
- **❖**B) {{2}, {{2}}}
- **⋄**C) {{2}, {2,{2}}}
- ❖D) {{{2}}}

- ❖ 8. For each of the following sets, determine whether 2 is an element of that set. (A)
- **❖**A) {2, {2}}
- **❖**B) {{2}, {{2}}}
- **⋄**C) {{2}, {2,{2}}}
- ❖D) {{{2}}}

- 9. Determine which of these statements is false.()
- A $\{x\} \subseteq \{x\}$
- $\bullet B$) $\{x\} \subseteq \{x, \{x\}\}$
- $^{\bullet}$ C) $\{x\} \in \{x, \{x\}\}$
- \diamondsuit D) $\{x\} \in \{x\}$

- 9. Determine which of these statements is false.(D)
- A $\{x\} \subseteq \{x\}$
- $\bullet B$) $\{x\} \subseteq \{x, \{x\}\}$
- $^{\bullet}$ C) $\{x\} \in \{x, \{x\}\}$
- \diamondsuit D) $\{x\} \in \{x\}$

- *10. $|A \cup B \cup C| = ()$
- **⋄**A. |A|+|B∪C|
- ◆B. |A|+|B|+|C|-|A∩B|-|C∩B|-|A∩C|+|A∩B∩C|
- ❖D. |A|+|B|+|C|+|A∩B|+|C∩B|+|A∩C|-|A∩B∩C|

- *10. $|A \cup B \cup C| = (B)$
- **⋄**A. |A|+|B∪C|
- ◆B. |A|+|B|+|C|-|A∩B|-|C∩B|-|A∩C|+|A∩B∩C|
- ❖D. |A|+|B|+|C|+|A∩B|+|C∩B|+|A∩C|-|A∩B∩C|

- **♦11.** Suppose that A, B and C are all sets such that $A \cap C = B \cap C$. Which answer is correct? U is the universal set. ()
- A = B
- $\bullet B$) $A \neq B$
- \bullet C) if A C = B C, then A = B
- \bullet D) if C = U, then $A \neq B$

- **♦11.** Suppose that A, B and C are all sets such that $A \cap C = B \cap C$. Which answer is correct? U is the universal set. (C)
- A = B
- **❖**B) *A* ≠ *B*
- $^{\bullet}$ C) if A C = B C, then A = B
- \bullet D) if C = U, then $A \neq B$

$$4$$
 12 $A \subseteq B \Leftrightarrow ()$

$$A \cup B = B$$

$$\bullet B$$
) $A \cap B = A$

$$\bullet$$
C) $\overline{A} \supseteq \overline{B}$

$$\bullet D$$
) $(B - A) \cup A \supseteq B$

$$412 A \subseteq B \Leftrightarrow (D)$$

$$A \cup B = B$$

$$\bullet B$$
) $A \cap B = A$

$$\bullet$$
C) $\overline{A} \supseteq \overline{B}$

$$\bullet D$$
) $(B - A) \cup A \supseteq B$

* 14 A = $\{\emptyset, \{\emptyset\}\}$ and $\rho(A)$ is the set of powers of the set A, then $\rho(A)$ =

* 14 A = $\{\emptyset, \{\emptyset\}\}\$ and $\rho(A)$ is the set of powers of the set A, then $\rho(A) = \{\emptyset, \{\emptyset\}, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\$

*** 15** The power set $P(A) \subseteq P(B)$ holds if and only if $A \subseteq B$, True or False____

*** 15** The power set $P(A) \subseteq P(B)$ holds if and only if $A \subseteq B$, True or False ____True___

4 16 List the members of the set $\{x \mid x \text{ is a real number such that } x^2 = 1\}$

40 16 List the members of the set $\{x \mid x \text{ is a real number such that } x^2 = 1\}$

- **17** Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$
- **♦**A∩B =?

- **17** Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$
- **♦**A∩B =?

◆ 18 The cardinality of set {∅, {∅}, {∅, {∅}}} is

◆ 18 The cardinality of set {∅, {∅}, {∅, {∅}}} is

19
$$A = \{\phi, a, \{a\}\}, \rho(A)$$
 is the power set of A. $\rho(A) = \underline{\hspace{1cm}}$.

19 $A = \{\phi, a, \{a\}\}, \rho(A)$ is the power set of A. $\rho(A) = \underline{\hspace{1cm}}$.

 $\{\phi, \{\phi\}, \{a\}, \{\{a\}\}, \{\phi, a\}, \{\phi, \{a\}\}, \{a, \{a\}\}, \{\phi, a, \{a\}\}\}\}$

20 If $A - B = \{1,5,7,8\}$, $B - A = \{2,10\}$ and $B \cap A = \{3,6,9\}$, then $A = \{3,6,9\}$, then $A = \{3,6,9\}$

20 If
$$A - B = \{1,5,7,8\}$$
, $B - A = \{2,10\}$ and $B \cap A = \{3,6,9\}$, then A=____

\${1,3,5,6,7,8,9}

- **21** Let $A = \{1,2,3,4,5\}$ and $B = \{0,3,6\}$.
- \Rightarrow Find A B=?

- **21** Let $A = \{1,2,3,4,5\}$ and $B = \{0,3,6\}$.
- ❖ Find A B=?

*****{1,2,4,5}

- * 22 $S\subseteq T :=_{def} \forall x (x \in S \underline{\hspace{1cm}} x \in T);$
- $A B := \{x \mid x \in A \underline{\hspace{1cm}} x \notin B\}$

- *22. $S\subseteq T :=_{def} \forall x (x \in S \underline{\hspace{1cm}} x \in T);$
- $A B := \{x \mid x \in A \underline{\hspace{1cm}} x \notin B\}$

23. 150 out of 200 people speak English or German or both, if there are 85 people who speak English and 60 who speak both, how many people speak German_____

23. 150 out of 200 people speak English or German or both, if there are 85 people who speak English and 60 who speak both, how many people speak German__125____

解:令E、G分别为会英语和德语的人的集合。 |EUG|=150 |E|=85 |ENG|=60 |因为|EUG|= |E|+|G|-|ENG| |所以|G|=|EUG|+|ENG|-|E|= 150+60-85=125

24 Prove $(A - B) - C = A - (B \cup C)$ by predicate expression

24 Prove $(A - B) - C = A - (B \cup C)$ by predicate expression

$$(A-B)-C$$

$$= \{x \mid x \in A - B \land x \notin C\}$$

$$= \{x \mid x \in A \land x \notin B \land x \notin C\}$$

$$= \{x \mid x \in A \land \neg (x \in B) \land \neg (x \in C)\}$$

$$= \{x \mid x \in A \land \neg (x \in B \lor x \in C)\}$$

$$= \{x \mid x \in A \land \neg (x \in B \lor x \in C)\}$$

$$= \{x \mid x \in A \land x \notin B \cup C\}$$

$$= A - (B \cup C)$$

25 Let A, B and C be any sets. Prove or disprove: $A \cap (B - C) = (A \cap B) - (A \cap C)$

- **25** Let A, B and C be any sets. Prove or disprove: $A \cap (B C) = (A \cap B) (A \cap C)$
- $(A \cap B) (A \cap C)$
- $\Rightarrow = \{x \mid x \in A \land x \in B \land \neg(x \in A \land x \in C)\}$
- $\Rightarrow = \{x \mid x \in A \land x \in B \land (\neg x \in A \lor \neg x \in C)\}$
- $\Rightarrow = \{x \mid x \in A \land x \in B \land (x \notin A \lor x \notin C)\}$
- $\Rightarrow = \{x \mid x \in A \land x \in B \land x \notin C\}$
- $\Rightarrow = \{x \mid x \in A \land x \in B \land \neg x \in C\}$
- $\Rightarrow = A \cap (B C)$

End of the Section 2.1