

CSEN 402 Computer Organization and System Programming Practice Assignment 10 Spring 2014

NOT to be submitted
To be discussed during tutorial sessions

Exercise 1:

The system shown in the figure below uses a control memory of 1024 word of 32 bits each. The microinstruction has three fields as shown in the diagram. The microoperation field has 16 bits.

- a. How many bits are there in the branch address field and the select field?
- b. If there are 16 status bits in the system, how many bits of the branch logic are used to select a status bit?
- c. How many bits are left to select an input for the multiplexers?

Exercise 2:

If the control memory in the figure above has 4096 words of 24 bits each.

- a. How many bits are there in the control address register?
- b. How many bits are there in each of the four inputs shown going into the multiplexers?
- c. What are the number of the inputs in each multiplexer and how many multiplexers are needed?

Exercise 3:

Using the mapping procedure described in the figure below:

Give the first microinstruction address for the following operation codes:

- (a) 0010
- (b) 1011
- (c) 1111

Exercise 4:

Using the tables below:

Give the 9-bit microoperation field for the following microoperations:

- a. $AC \leftarrow AC + 1$, $DR \leftarrow DR + 1$
- b. $PC \leftarrow PC+1$, $DR \leftarrow M[AR]$
- a. $DR \leftarrow AC, AC \leftarrow DR$

Exercise 5:

Using the tables above, convert the following symbolic microoperations to register transfer statements and to binary:

- (a) READ, INCPC
- (b) ACTDR, DRTAC
- (c) ARTPC, DRTAC, WRITE

Exercise 6:

Suppose that we change the ADD routine listed in the table in the appendix, to the following two microinstructions:

ADD: READ I CALL INDR2
ADD U JMP FETCH

What should be subroutine INDR2?

Exercise 7:

Add the following instructions to the computer you studied (EA is the effective address). Write the symbolic microprogram for each routine as in the table attached. (Note that AC must not change in value unless the instruction specifies a change in the AC).

Symbol	Opcode	Symbolic Function	Description
AND	0100	$AC \leftarrow AC \land M[EA]$	AND
SUB	0101	$AC \leftarrow AC - M[EA]$	Subtract
ADM	0110	$M[EA] \leftarrow M[EA] + AC$	Add to memory
BTCL	0111	$AC \leftarrow AC \land complement(M[EA])$	Bit clear
BZ	1000	If $(AC = 0)$ then $(PC \leftarrow EA)$	Branch if AC Zero
SEQ	1001	If $(AC = M[EA])$ then $(PC \leftarrow PC+1)$	Skip if equal
BPNZ	1010	If $(AC > 0)$ then $(PC \leftarrow EA)$	Branch if positive
			and nonzero

Exercise 8:

Show how outputs 5 and 6 of decoder 3 in the figure below are to be connected to the program counter (PC).

Figure 7-7 Decoding of microoperation fields.

Exercise 9:

A computer has 16 registers, an ALU with 32 operations and a shifter with eight operations, all connected to a common bus system.

- a. Formulate a control word for a microinstruction.
- b. Specify the number of bits in each field of the control word.
- c. Show the bits of the control word that specify the microoperation: $R4 \leftarrow R5+R6$

Appendix: Table needed for Exercises 6 and 7:

TABLE 7-2 Symbolic Microprogram (Partial)

- 1.1 M					
Label	Microoperations	CD	BR	AD	
	ORG 0				
ADD:	NOP	I	CALL	INDRCT	
	READ	U	JMP	NEXT	
	ADD	U	JMP	FETCH	
	ORG 4				
BRANCH:	NOP	S	JMP	OVER	
	NOP	U	JMP	FETCH	
OVER:	NOP	I	CALL	INDRCT	
	ARTPC	U	JMP	FETCH	
	OBC 0				
STORE.	ORG 8		CATT	NIDDOT	
STORE:	NOP	I	CALL	INDRCT	
	ACTDR	U	JMP	NEXT	
	WRITE	U	JMP	FETCH	
	ORG 12				
EXCHANGE:	NOP	I	CALL	INDRCT	
	READ	Ū	JMP	NEXT	
	ACTDR, DRTAC	Ū	JMP	NEXT	
	WRITE	Ū	JMP	FETCH	
	OBC 64				
FETCH:	ORG 64 PCTAR	**	TMD	NEVT	
FEICH:		U	JMP	NEXT	
	READ, INCPC	U	JMP	NEXT	
INDDOT.	DRTAR	U	MAP	NEVE	
INDRCT:	READ	U	JMP DET	NEXT	
	DRTAR	U	RET		