El concepto de Medición

En la vida diaria estamos acostumbrados a realizar un sinnúmero de operaciones y actividades que corresponden a procesos de medición, sin que, muchas veces, nos percatemos de ello. Así, cuando decimos que "hace frío" o que "hace calor", quizá sin advertirlo, estamos dando un resultado que conlleva todos los conceptos de una medición. Lo mismo cuando vamos a adquirir cierta cantidad de cualquier producto.

¿Qué es Medir?

Medir es comparar una cantidad de una determinada magnitud con otra considerada unidad.

Definición de los Términos Principales

Magnitud

Toda propiedad de un cuerpo que pueda ser medida: Peso, Longitud, Intensidad de Corriente, etc.

Cantidad

Número que indica cuántas veces cabe la incógnita en la que se ha tomado como unidad.

Resultado de la Medición: Cantidad x Unidad

MEDIR

- ¿Qué es lo que vamos a medir?
- ¿Cómo vamos a hacerlo?

¿Quién o quiénes, y con qué elementos?

Errores de Medición

Ejemplo:

Una persona, se pesa en una balanza común, y expresa su resultado de las cuatro formas siguientes:

$$P_1 = 77 \text{ kg}$$
 $P_2 = 77,1 \text{ kg}$
 $P_3 = 77,13 \text{ kg}$
 $P_4 = 77,134 \text{ kg}$

- El valor verdadero no será único sino que se ajustará a las necesidades del caso.
- No existe una regla única para determinar hasta qué punto es necesario acercarse al valor verdadero, si éste fuera conocido.
- Cuanto más cercano a él se quiera llegar, tanto mayor será el esfuerzo (costo).

En la Técnica de la Mediciones el **"Error"** no tiene el significado que se le da en el lenguaje diario.

Un **"Error"** es una indicación de cuán buena es la medida efectuada, en el sentido de aproximación a la verdad, entendiendo por tal al *"valor verdadero"* (no siempre existente), de la cantidad que estamos midiendo.

Llamaremos:

 X_m : valor medido (resultado de la medición)

 X_v : valor verdadero (si existe)

Error absoluto: $E_X = X_m - X_v$

¿A qué llamaremos Valor Verdadero Convencional, X_{vc} ?

Número de cifras significativas

Ejemplo de medición de una cierta tensión:

$$U_m = 1,529V$$
 $U_{vc} = 1,415V (= U_v)$ $\Rightarrow E_U = (1,529 - 1,415)V = 0,114V$

<u>Convención:</u> escribiremos el error absoluto con una sola cifra significativa, y el resultado de la medición con cifras que lleguen hasta la del orden del error, redondeando, no truncando, los resultados.

$$\Rightarrow U_m = 1.5 V$$
 y $E_U = 0.1 V$

Existen otras convenciones, p. e.:

$$I_m = 17,32_3 A$$

Número de cifras significativas

Ejemplo de medición de una corriente:

$$I_m = 3,663 A$$
 $I_{vc} = 3,489 A$ $(= I_v)$
 $\Rightarrow E_I = (3,663 - 3,489) A = 0,174 A$

Convención: error absoluto con una sola cifra significativa, y el resultado de la medición con cifras que lleguen hasta la del orden del error, redondeando, no truncando, los resultados.

$$\Rightarrow I_m = 3.7 A$$
 y $E_I = 0.2 A$

Número de cifras significativas

Ejemplo de medición de una resistencia:

$$R_{m} = 4884 \Omega \qquad R_{vc} = 4700 \Omega (= R_{v})$$

$$\Rightarrow E_{R} = (4884 - 4700) \Omega = 184 \Omega$$

Convención: error absoluto con una sola cifra significativa, y resultado de la medición con cifras que lleguen hasta la del orden del error, redondeando, no truncando, los resultados.

$$\Rightarrow R_m = 4.9 \ k\Omega$$
 y $E_R = 0.2 \ k\Omega$

Error relativo:

$$e_X = \frac{X_m - X_v}{X_v} = \frac{E_X}{X_v}$$

Para el ejemplo de la medición de tensión anterior:

$$e_U = \frac{(1,529 - 1,415)V}{1,415V} = 0,08$$

O

$$e_{U}$$
 [%] = 8

(Observaciones sobre el error de redondeo)

Error Límite

Como casi nunca conocemos el valor verdadero, pero sí el medido, nuestro objetivo será determinar cierta zona en la que, conocido el error, sabemos que se hallará el valor verdadero.

$$X \in \left[X_m - \delta_i, X_m + \delta_s\right]$$

Con δ_i , δ_s cotas superior e inferior del error absoluto límite.

$$\left| \mathcal{S}_i \right| = \left| \mathcal{S}_s \right| = \left| \mathcal{S} \right| \implies X = X_m \pm \mathcal{S}$$

$$\circ \quad X = X_m \pm E_X \qquad \text{Con } E_X \text{ error absoluto limite.}$$

El valor verdadero se encontrará en un punto del intervalo de amplitud $2 E_X$, centrado en X_m .

Ejemplo: medición del peso de un determinado objeto en una balanza de resortes.

Datos básicos de la balanza, garantizados por el fabricante:

- Alcance (fondo de escala): 50 kg
- Error máximo (e_P) : ± 0,5 % de su fondo de escala (constante para toda la escala)

$$P_m = 48,32 \text{ kg}$$

Error absoluto límite:

$$E_P = e_P * 50 \ kg = \pm \frac{0.5}{100} * 50 \ kg = \pm 0.25 \ kg \approx \pm 0.3 \ kg$$

$$\Rightarrow P = (48,3 \pm 0,3) kg$$

Ejemplo: estimar, en los dos casos siguientes, con qué error se ha medido el perímetro de un autódromo, admitiendo que las cifras con las que se expresa el resultado responden a las reglas básicas vistas antes.

a) Dato suministrado:
$$l_m = 3.567,123m$$

Error absoluto estimado: $E_{l_m} = \pm 0,001 \, m$ (En el mejor de los casos)

$$\Rightarrow e_{l_m} = \pm \frac{0,001 \, m}{3.567,123 \, m} * 100 = \pm 2,8 * 10^{-5} \%$$

b) Dato suministrado: $l_m = 3.57 \, km$

Error absoluto estimado: $E_{l_m}=\pm~0.01 km$ (En el mejor de los casos)

$$\Rightarrow e_{l_m} = \pm \frac{0.01 \text{ km}}{3.57 \text{ km}} * 100 = \pm 0.3 \%$$

Ejemplo: estimar, en los dos casos siguientes, con qué error se ha medido la corriente por un dado conductor, admitiendo que las cifras con las que se expresa el resultado responden a las reglas básicas vistas antes.

a) Dato suministrado:
$$I_m = 424.8 A$$

Error absoluto estimado: $E_{I_m} = \pm 0.1 A$ (En el mejor de los casos)

$$\Rightarrow e_{I_m} = \pm \frac{0.1 \text{ A}}{424.8 \text{ A}} *100 = \pm 0.02\%$$

b) Dato suministrado: $I_m = 0.42 \, kA$

Error absoluto estimado: $E_{I_m} = \pm 0.01 kA$ (En el mejor de los casos)

$$\Rightarrow e_{I_m} = \pm \frac{0.01 \ kA}{0.42 \ kA} * 100 = \pm 2 \%$$

Exactitud y Precisión

Exactitud:

Cercanía al valor verdadero (qué tan cercano está el valor medido o calculado al verdadero).

Precisión:

Tiene en cuenta la repetibilidad de la medida (qué tan cercano está cada valor medido o calculado a los restantes).

(La precisión es un requisito de todo sistema de medida exacto, pero por sí sola no asegura la exactitud)

Clasificación de los errores

Sistemáticos:

también llamados constantes, en igualdad de condiciones de medida, se repiten en módulo y signo. (desafectables del resultado, bajo ciertas condiciones)

Fortuitos:

también llamados residuales, siguen en general las leyes del azar.

Otras clasificaciones de los errores.

Errores Sistemáticos y Fortuitos

(Con Referencia)

Fortuito: pequeño Sistemático: pequeño

Fortuito: pequeño Sistemático: grande

Error fortuito pequeño sistemático ¿?

Fortuito: grande Sistemático: pequeño

Fortuito: grande Sistemático: grande

Error Límite y Tolerancia

¿Cumple un dado producto con sus especificaciones?

Propagación de los errores

Mediciones Directas e Indirectas.

Ejemplo:
$$R = \frac{U}{I}$$

$$E_U$$
 ; E_I $\Rightarrow E_R$

Propagación elemental:

$$R_{m\acute{a}x} = \frac{U + E_U}{I - E_I} \qquad R_{m\acute{i}n} = \frac{U - E_U}{I + E_I}$$

Resultado general de una medición indirecta:

$$X=f(x_1, x_2, x_3, ... x_n)$$

Aplicando el desarrollo en serie de Taylor (considerando que los errores son lo suficientemente pequeños como para despreciar los términos de orden superior):

$$dX = \frac{\partial X}{\partial x_1} dx_1 + \frac{\partial X}{\partial x_2} dx_2 + \dots + \frac{\partial X}{\partial x_n} dx_n$$

Para errores pequeños, podemos pasar de diferenciales a incrementos finitos :

$$dx_i \approx \Delta x_i \approx E_{x_i}$$

$$\Rightarrow E_X = \frac{\partial X}{\partial x_1} E_{x_1} + \frac{\partial X}{\partial x_2} E_{x_2} + \dots + \frac{\partial X}{\partial x_n} E_{x_n}$$

La expresión general para la propagación de errores absolutos *límites* será entonces:

$$E_X = \pm \left(\left| \frac{\partial X}{\partial x_1} \right| E_{x_1} + \left| \frac{\partial X}{\partial x_2} \right| E_{x_2} + \dots + \left| \frac{\partial X}{\partial x_n} \right| E_{x_n} \right)$$

Y el error relativo:

$$e_X = \pm \frac{E_X}{X}$$

Volviendo al ejemplo de la medición de resistencia: $R=rac{U}{I}$

El error absoluto límite será:

$$E_R = \pm \left(\left| \frac{\partial R}{\partial U} \right| E_U + \left| \frac{\partial R}{\partial I} \right| E_I \right) =$$

$$=\pm\left(\left|\frac{1}{I}\right|E_{U}+\left|\frac{-U}{I^{2}}\right|E_{I}\right)=\pm\frac{U}{I}\left(\left|\frac{1}{U}\right|E_{U}+\left|\frac{-1}{I}\right|E_{I}\right)$$

$$\Rightarrow E_R = \pm R * (e_U + e_I)$$

Y el error relativo: $e_R = \pm \frac{E_R}{R} = \pm \left(e_U + e_I\right)$

Casos particulares de propagación de errores

El error relativo de un producto o de un cociente es igual a la suma de los errores relativos de los factores (o términos).

$$X = X_1 * X_2$$
 o $X = \frac{X_1}{X_2}$ $\Rightarrow e_X = \pm (e_{X_1} + e_{X_2})$

El error relativo de una potencia es igual al producto del exponente de la misma por el error relativo de la base (se aplica igualmente a los exponentes fraccionarios).

$$X = X_1^n \qquad \Rightarrow e_X = \pm n * e_{X_1}$$

El error absoluto de una suma o de una diferencia es igual a la suma de los errores absolutos de los términos.

$$X = X_1 + X_2 \qquad \circ \qquad X = X_1 - X_2$$

$$\Rightarrow E_X = \pm (E_{X_1} + E_{X_2})$$

Casos especiales de propagación de errores

Error de una Diferencia:

$$X = X_1 - X_2$$

Según lo dicho antes el error absoluto límite será:

$$E_X = \pm \left(E_{X_1} + E_{X_2} \right)$$

Y el relativo:
$$e_X = \pm \frac{E_{X_1} + E_{X_2}}{X_1 - X_2}$$

Si la diferencia es muy pequeña, el error relativo crecerá correspondientemente

$$X_1 \to X_2 \implies e_X \to \infty$$

Métodos de medida Diferenciales

Repetibilidad de corto término. Errores con componentes comunes.

Caso típico: caja de décadas de resistencias

Caja con 10 décadas de 10 k Ω , 10 de 1 k Ω , 10 de 100 Ω , 10 de 10 Ω , 10 de 1 Ω y 10 de 0,1 Ω

Ejemplo de una caja formada por 10 décadas de 1 Ω , 10 de 10 Ω y 10 de 100 Ω , con tolerancia ± 0,1 % para todas.

Ajuste 1:
$$R_1 = (5*100 + 4*10 + 3*1) \Omega = 543 \Omega$$

$$e_{R_I} = \pm 0.1 \% \implies E_{R_I} = \pm \frac{0.1}{100} 543 \Omega = \pm 0.543 \Omega = \pm 0.5 \Omega$$

Ajuste 2:
$$R_2 = (5*100 + 4*10 + 5*1) \Omega = 545 \Omega$$

$$e_{R_2} = \pm 0.1 \%$$
 $\Rightarrow E_{R_2} = \pm \frac{0.1}{100} 545 \Omega = \pm 0.545 \Omega = \pm 0.5 \Omega$

Error de una diferencia con componentes comunes

$$X = R_2 - R_1 = (545 - 543) \Omega = 2 \Omega$$

$$\Rightarrow e_X = \pm \frac{E_{R_2} + E_{R_1}}{R_2 - R_1} * 100 = \pm \frac{(0.5 + 0.5)\Omega}{2\Omega} * 100$$

$$\Rightarrow e_X = \pm 50 \% !!!$$

Si los ajustes se efectuaran uno a continuación del otro, en un breve lapso, se llegará a un error total en la medida de sólo el ± 0,1%.

Podemos escribir:

$$R_2 = 545 \Omega = (543 + 2) \Omega$$
 y $R_1 = (543 + 0) \Omega$

En forma general:

$$R_2 = (c + r_2) \Omega$$
 y $R_1 = (c + r_1) \Omega$
 $X = R_2 - R_1 = (c + r_2) - (c + r_1) \Omega = r_2 - r_1$

$$\Rightarrow e_X = \pm \frac{E_{r_2} + E_{r_1}}{r_2 - r_1} * 100$$

Con
$$E_{r_2} = \pm \frac{0.1}{100} 2 \Omega = \pm 0.002 \Omega$$
 y $E_{r_1} = 0 \Omega$

$$\Rightarrow e_X = \pm \frac{0,002}{2} * 100 = \pm 0,1\%$$

El error de una diferencia con componentes comunes, se puede expresar en forma general como:

$$e_{X} = \pm \frac{\sum erroresabsolutos de las partes no comunes}{X_{2} - X_{1}}$$

Los razonamientos anteriores pueden extenderse a otras relaciones funcionales entre variables.

Resumiendo:

Expresión del resultado de una medición considerando los *Errores Límites*

(interpretación pesimista del resultado de la medición)

$$X = X_m \pm E_X$$
 $X=f(x_1, x_2, x_3, ... x_n)$

$$E_X = \pm \left(\left| \frac{\partial X}{\partial x_1} \right| E_{x_1} + \left| \frac{\partial X}{\partial x_2} \right| E_{x_2} + \dots + \left| \frac{\partial X}{\partial x_n} \right| E_{x_n} \right)$$

$$e_X = \pm \frac{E_X}{X_m}$$

Casos particulares

$$X = X_1 + X_2$$

$$X = X_1 + X_2$$
$$X = X_1 - X_2$$

$$E_X = \pm (E_{X_1} + E_{X_2})$$

$$X = X_1 * X_2$$

$$X = \frac{X_1}{X_2}$$

$$e_X = \pm \left(e_{X_I} + e_{X_2}\right)$$

