Assignment 4: Data Wrangling

Meg Manning

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Wrangling

Directions

- 1. Rename this file <FirstLast>_A04_DataWrangling.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 6. Ensure that code in code chunks does not extend off the page in the PDF.

The completed exercise is due on Thursday, Sept 28th @ 5:00pm.

Set up your session

- 1a. Load the tidyverse, lubridate, and here packages into your session.
- 1b. Check your working directory.
- 1c. Read in all four raw data files associated with the EPA Air dataset, being sure to set string columns to be read in a factors. See the README file for the EPA air datasets for more information (especially if you have not worked with air quality data previously).
 - 2. Apply the glimpse() function to reveal the dimensions, column names, and structure of each dataset.

```
#1a #load packages
library(tidyverse)
library(lubridate)
library(here)

#1b #check working directory
getwd()
```

[1] "/Users/margaretmanning/Desktop/GitHub/ENVIRON 872/EDE_Fall2023"

```
setwd("/Users/margaretmanning/Desktop/GitHub/ENVIRON 872/EDE_Fall2023/")
#1c #read in 4 data files
```

```
EPAair_PM25_2019 <- read.csv("./Data/Raw/EPAair_PM25_NC2019_raw.csv",</pre>
                         stringsAsFactors = TRUE)
EPAair_PM25_2018 <- read.csv("./Data/Raw/EPAair_PM25_NC2018_raw.csv",
                         stringsAsFactors = TRUE)
EPAair_03_2019 <- read.csv("./Data/Raw/EPAair_03_NC2019_raw.csv",
                       stringsAsFactors = TRUE)
EPAair_03_2018 <- read.csv("./Data/Raw/EPAair_03_NC2018_raw.csv",</pre>
                       stringsAsFactors = TRUE)
#2 #apply glimpse function to data sets
glimpse(EPAair_PM25_2019)
## Rows: 8,581
## Columns: 20
## $ Date
                               <fct> 01/03/2019, 01/06/2019, 01/09/2019, 01/~
## $ Source
                               <fct> AQS, AQS, AQS, AQS, AQS, AQS, AQS, ~
## $ Site.ID
                               <int> 370110002, 370110002, 370110002, 370110~
## $ POC
                               ## $ Daily.Mean.PM2.5.Concentration <dbl> 1.6, 1.0, 1.3, 6.3, 2.6, 1.2, 1.5, 1.5,~
## $ UNITS
                               <fct> ug/m3 LC, ug/m3 LC, ug/m3 LC, ug/m3 LC,~
## $ DAILY_AQI_VALUE
                               <int> 7, 4, 5, 26, 11, 5, 6, 6, 15, 7, 14, 20~
## $ Site.Name
                               <fct> Linville Falls, Linville Falls, Linvill~
## $ DAILY_OBS_COUNT
                               <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ PERCENT_COMPLETE
                               <int> 88502, 88502, 88502, 88502, 88502, 8850~
## $ AQS_PARAMETER_CODE
## $ AQS PARAMETER DESC
                               <fct> Acceptable PM2.5 AQI & Speciation Mass,~
## $ CBSA CODE
                               ## $ CBSA NAME
                               ## $ STATE CODE
## $ STATE
                               <fct> North Carolina, North Carolina, North C~
## $ COUNTY CODE
                               ## $ COUNTY
                               <fct> Avery, Avery, Avery, Avery, Avery, Aver~
                               <dbl> 35.97235, 35.97235, 35.97235, 35.97235,~
## $ SITE LATITUDE
                               <dbl> -81.93307, -81.93307, -81.93307, -81.93~
## $ SITE_LONGITUDE
glimpse(EPAair_PM25_2018)
## Rows: 8,983
## Columns: 20
## $ Date
                               <fct> 01/02/2018, 01/05/2018, 01/08/2018, 01/~
## $ Source
                               <fct> AQS, AQS, AQS, AQS, AQS, AQS, AQS, ~
## $ Site.ID
                               <int> 370110002, 370110002, 370110002, 370110~
## $ POC
                               <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
## $ Daily.Mean.PM2.5.Concentration <dbl> 2.9, 3.7, 5.3, 0.8, 2.5, 4.5, 1.8, 2.5,~
## $ UNITS
                               <fct> ug/m3 LC, ug/m3 LC, ug/m3 LC, ug/m3 LC,~
## $ DAILY AQI VALUE
                               <int> 12, 15, 22, 3, 10, 19, 8, 10, 18, 7, 24~
## $ Site.Name
                               <fct> Linville Falls, Linville Falls, Linvill~
## $ DAILY_OBS_COUNT
                               <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ PERCENT_COMPLETE
                               ## $ AQS_PARAMETER_CODE
                               <int> 88502, 88502, 88502, 88502, 88502, 8850~
```

<fct> Acceptable PM2.5 AQI & Speciation Mass,~

\$ AQS_PARAMETER_DESC

\$ CBSA_CODE

```
## $ CBSA_NAME

## $ STATE_CODE

## $ STATE

COUNTY_CODE

## $ COUNTY

## $ COUNTY

## $ COUNTY

## $ STE_LATITUDE

## $ SITE_LONGITUDE

**County

**County
```

glimpse(EPAair_03_2019)

```
## Rows: 10,592
## Columns: 20
## $ Date
                                          <fct> 01/01/2019, 01/02/2019, 01/03/201~
                                          <fct> AirNow, AirNow, AirNow, Ar
## $ Source
## $ Site.ID
                                          <int> 370030005, 370030005, 370030005, ~
## $ POC
                                          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ Daily.Max.8.hour.Ozone.Concentration <dbl> 0.029, 0.018, 0.016, 0.022, 0.037~
## $ UNITS
                                          <fct> ppm, ppm, ppm, ppm, ppm, ppm, ppm~
## $ DAILY_AQI_VALUE
                                          <int> 27, 17, 15, 20, 34, 34, 27, 35, 3~
## $ Site.Name
                                          <fct> Taylorsville Liledoun, Taylorsvil~
## $ DAILY OBS COUNT
                                          <int> 24, 24, 24, 24, 24, 24, 24, 24, 2~
## $ PERCENT COMPLETE
                                          <dbl> 100, 100, 100, 100, 100, 100, 100~
## $ AQS PARAMETER CODE
                                          <int> 44201, 44201, 44201, 44201, 44201~
## $ AQS PARAMETER DESC
                                          <fct> Ozone, Ozone, Ozone, Ozone, Ozone~
                                          <int> 25860, 25860, 25860, 25860, 25860~
## $ CBSA_CODE
## $ CBSA_NAME
                                          <fct> "Hickory-Lenoir-Morganton, NC", "~
## $ STATE_CODE
                                          <int> 37, 37, 37, 37, 37, 37, 37, 37, 3~
## $ STATE
                                          <fct> North Carolina, North Carolina, N~
## $ COUNTY_CODE
                                          <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ~
## $ COUNTY
                                          <fct> Alexander, Alexander, ~
## $ SITE_LATITUDE
                                          <dbl> 35.9138, 35.9138, 35.9138, 35.913~
## $ SITE_LONGITUDE
                                          <dbl> -81.191, -81.191, -81.191, -81.19~
```

glimpse(EPAair_03_2018)

```
## Rows: 9,737
## Columns: 20
## $ Date
                                           <fct> 03/01/2018, 03/02/2018, 03/03/201~
## $ Source
                                           <fct> AQS, AQS, AQS, AQS, AQS, AQS, AQS~
## $ Site.ID
                                           <int> 370030005, 370030005, 370030005, ~
## $ POC
                                           <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ Daily.Max.8.hour.Ozone.Concentration <dbl> 0.043, 0.046, 0.047, 0.049, 0.047~
## $ UNITS
                                           <fct> ppm, ppm, ppm, ppm, ppm, ppm, ppm~
## $ DAILY_AQI_VALUE
                                           <int> 40, 43, 44, 45, 44, 28, 33, 41, 4~
## $ Site.Name
                                           <fct> Taylorsville Liledoun, Taylorsvil~
## $ DAILY_OBS_COUNT
                                           <int> 17, 17, 17, 17, 17, 17, 17, 17, 1~
## $ PERCENT_COMPLETE
                                           <dbl> 100, 100, 100, 100, 100, 100, 100~
## $ AQS PARAMETER CODE
                                          <int> 44201, 44201, 44201, 44201, 44201~
                                          <fct> Ozone, Ozone, Ozone, Ozone, Ozone~
## $ AQS_PARAMETER_DESC
## $ CBSA CODE
                                          <int> 25860, 25860, 25860, 25860, 25860~
## $ CBSA_NAME
                                          <fct> "Hickory-Lenoir-Morganton, NC", "~
## $ STATE CODE
                                          <int> 37, 37, 37, 37, 37, 37, 37, 37, 3~
                                           <fct> North Carolina, North Carolina, N~
## $ STATE
```

Wrangle individual datasets to create processed files.

- 3. Change the Date columns to be date objects.
- 4. Select the following columns: Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC, COUNTY, SITE LATITUDE, SITE LONGITUDE
- 5. For the PM2.5 datasets, fill all cells in AQS_PARAMETER_DESC with "PM2.5" (all cells in this column should be identical).

```
6. Save all four processed datasets in the Processed folder. Use the same file names as the raw files but
    replace "raw" with "processed".
#3 #change the date column to dates
class(EPAair_03_2018$Date)
## [1] "factor"
class(EPAair_03_2019$Date)
## [1] "factor"
class(EPAair_PM25_2018$Date)
## [1] "factor"
class(EPAair_PM25_2019$Date)
## [1] "factor"
EPAair_03_2018$Date <- as.Date(EPAair_03_2018$Date, format = "%m/%d/%Y")
EPAair_03_2019\$Date \leftarrow as.Date(EPAair_03_2019\$Date, format = "%m/%d/%Y")
EPAair_PM25_2018$Date <- as.Date(EPAair_PM25_2018$Date, format ="%m/%d/%Y")
EPAair_PM25_2019$Date <- as.Date(EPAair_PM25_2019$Date, format = "%m/%d/%Y")
#4 #select Date, DAILY_AQI_VALUE, Site.Name,
#AQS_PARAMETER_DESC, COUNTY, SITE_LATITUDE, SITE_LONGITUDE
EPAair_03_2018_parsed <- select(EPAair_03_2018,</pre>
                                 Date, DAILY_AQI_VALUE, Site.Name,
                                 AQS_PARAMETER_DESC, COUNTY, SITE_LATITUDE,
                                 SITE_LONGITUDE)
EPAair_03_2019_parsed <- select(EPAair_03_2019, Date, DAILY_AQI_VALUE,
                                 Site.Name, AQS_PARAMETER_DESC, COUNTY,
                                 SITE LATITUDE, SITE LONGITUDE)
EPAair_PM25_2018_parsed <- select(EPAair_PM25_2018, Date, DAILY_AQI_VALUE,
```

```
Site.Name, AQS_PARAMETER_DESC, COUNTY,
SITE_LATITUDE, SITE_LONGITUDE)

EPAair_PM25_2019_parsed <- select(EPAair_PM25_2019, Date, DAILY_AQI_VALUE,
Site.Name, AQS_PARAMETER_DESC, COUNTY,
SITE_LATITUDE, SITE_LONGITUDE)

#5 For the PM2.5 datasets, fill all cells in AQS_PARAMETER_DESC with "PM2.5"

EPAair_PM25_2018_parsed <- mutate(EPAair_PM25_2018_parsed, AQS_PARAMETER_DESC = "PM2.5")

EPAair_PM25_2019_parsed <- mutate(EPAair_PM25_2019_parsed, AQS_PARAMETER_DESC = "PM2.5")

#6 Save all four processed datasets in the Processed folder. Use the same file names as the raw files b
write.csv(EPAair_03_2018_parsed, file = "./Data/Processed/EPAair_03_2018_parsed.csv")
write.csv(EPAair_03_2018_parsed, file = "./Data/Processed/EPAair_03_2019_parsed.csv")
write.csv(EPAair_PM25_2018_parsed, file = "./Data/Processed/EPAair_PM25_2018_parsed.csv")
write.csv(EPAair_PM25_2019_parsed, file = "./Data/Processed/EPAair_PM25_2019_parsed.csv")
write.csv(EPAair_PM25_2019_parsed, file = "./Data/Processed/EPAair_PM25_2019_parsed.csv")
```

Combine datasets

- 7. Combine the four datasets with rbind. Make sure your column names are identical prior to running this code.
- 8. Wrangle your new dataset with a pipe function (%>%) so that it fills the following conditions:
- Include only sites that the four data frames have in common: "Linville Falls", "Durham Armory", "Leggett", "Hattie Avenue", "Clemmons Middle", "Mendenhall School", "Frying Pan Mountain", "West Johnston Co.", "Garinger High School", "Castle Hayne", "Pitt Agri. Center", "Bryson City", "Millbrook School" (the function intersect can figure out common factor levels but it will include sites with missing site information, which you don't want...)
- Some sites have multiple measurements per day. Use the split-apply-combine strategy to generate daily means: group by date, site name, AQS parameter, and county. Take the mean of the AQI value, latitude, and longitude.
- Add columns for "Month" and "Year" by parsing your "Date" column (hint: lubridate package)
- Hint: the dimensions of this dataset should be $14,752 \times 9$.
- 9. Spread your datasets such that AQI values for ozone and PM2.5 are in separate columns. Each location on a specific date should now occupy only one row.
- 10. Call up the dimensions of your new tidy dataset.
- 11. Save your processed dataset with the following file name: "EPAair O3 PM25 NC1819 Processed.csv"

```
EPAair_processed <- EPAair_data %>%
  filter(Site.Name %in% c("Linville Falls", "Durham Armory", "Leggett", "Hattie Avenue",
                          "Clemmons Middle", "Mendenhall School", "Frying Pan Mountain",
                          "West Johnston Co.", "Garinger High School", "Castle Hayne",
                          "Pitt Agri. Center", "Bryson City", "Millbrook School")) %>%
  group_by(Date, Site.Name, AQS_PARAMETER_DESC, COUNTY) %>%
  summarize(meanAQI = mean(DAILY_AQI_VALUE),
           meanLAT = mean(SITE LATITUDE),
           meanLONG = mean(SITE LONGITUDE)) %>%
  mutate(Month = month(Date)) %>%
  mutate(Year = year(Date))
## 'summarise()' has grouped output by 'Date', 'Site.Name', 'AQS_PARAMETER_DESC'.
## You can override using the '.groups' argument.
## Warning: There were 14752 warnings in 'mutate()'.
## The first warning was:
## i In argument: 'Month = month(Date)'.
## i In group 1: 'Date = 2018-01-01', 'Site.Name = Bryson City',
##
     'AQS_PARAMETER_DESC = PM2.5'.
## Caused by warning:
## ! tz(): Don't know how to compute timezone for object of class factor; returning "UTC".
## i Run 'dplyr::last_dplyr_warnings()' to see the 14751 remaining warnings.
## Warning: There were 14752 warnings in 'mutate()'.
## The first warning was:
## i In argument: 'Year = year(Date)'.
## i In group 1: 'Date = 2018-01-01', 'Site.Name = Bryson City',
## 'AQS_PARAMETER_DESC = PM2.5'.
## Caused by warning:
## ! tz(): Don't know how to compute timezone for object of class factor; returning "UTC".
## i Run 'dplyr::last_dplyr_warnings()' to see the 14751 remaining warnings.
#9 Spread your datasets such that AQI values for ozone and PM2.5 are in separate columns
#Each location on a specific date should now occupy only one row.
EPAair_spread <- pivot_wider(EPAair_processed, names_from = AQS_PARAMETER_DESC,
                             values_from = meanAQI)
#10 #call dimensions
dim(EPAair spread)
## [1] 8976
#11 Save dataset with the following file name: "EPAair_O3_PM25_NC1819_Processed.csv"
write.csv(EPAair_spread, file = "./Data/Processed/EPAair_03_PM25_NC1819_Processed.csv")
```

Generate summary tables

- 12. Use the split-apply-combine strategy to generate a summary data frame. Data should be grouped by site, month, and year. Generate the mean AQI values for ozone and PM2.5 for each group. Then, add a pipe to remove instances where mean **ozone** values are not available (use the function **drop_na** in your pipe). It's ok to have missing mean PM2.5 values in this result.
- 13. Call up the dimensions of the summary dataset.

'summarise()' has grouped output by 'Site.Name', 'Month'. You can override
using the '.groups' argument.

```
#13 dimensions of dataset

dim(EPAair_summary)
```

```
## [1] 182 5
```

14. Why did we use the function drop_na rather than na.omit?

Answer: When you use drop_na it drops just the NA values of the argument that you specify whereas na.omit omits all of the NA values within your data frame.