به نام خدا

امتحان پایانترم درس طراحی و تحلیل الگوریتمها (بهمن ۹۶) مدت امتحان: ۱۵۰ دقیقه

۱. الگو ریتم Ford-Fulkerson را بروی گراف زیر اجرا کنید. برای هر مرحله گراف القایی و مسیر افزایشی را مشخص کنید. در اجرای الگوریتم و هنگام بررسی همسایهها، همسایهها را به ترتیب الفبایی بررسی کنید.

- ۲. هدف از این سوال اثبات درستی الگوریتم Ford-Fulkerson است. فرض کنید شبکه جریان (G,c,s,t) به منبع s و مقصد t داده شده است به طوری که برای هریان e مقدار e گنجایش یال e را نشان می دهد. ابتدا تعاریف زیر را برای شبکه جریان e مقدار e گنجایش یال e را نشان می دهد. ابتدا تعاریف زیر را برای شبکه جریان e می کنیم:
 - جریان f یک جریان سازگار است اگر دو شرط زیر را داشته باشد:
 - $0 \le f(e) \le c(e)$ برای هر یال e داشته باشیم: -
 - $f^-(u) = \sum_{e=(u,v)} f(e) = \sum_{e=(v,u)} f(e) = f^+(u)$ برای هر راس $u \neq s,t$ داشته باشیم: $u \neq s,t$
 - $|f|=f^-(s)-f^+(s)$ انشان می دهیم برابر است با: |f| نشان می دهیم برابر است با: •
 - $c(S,T) = \sum_{e=(u,v)|u\in S,v\in T} c(e)$ برابر است با: (S,T) برابر است با
 - $f(S,T) = \sum_{e=(u,v)|u\in S,v\in T} f(e) \sum_{e=(u,v)|u\in T,v\in S} f(e)$ برابر است با: (S,T) برابر است با خریان برش
 - $f(S,T) \leq c(S,T)$:خواهیم داشت (S,T) خواهیم داآن برای هر برش
 - |f| = f(S,T) :برای هر برش (S,T)خواهیم داشت:
 - f(S,T)=c(S,T) وجود دارد که Ford-Fulkerson باشد، آنگاه یک برش f(S,T)=f(S,T) وجود دارد که باشد، آنگاه یک برش
 - (د) الگوريتم Ford-Fulkerson جريان سازگار f با بيشينه مقدار |f| را پيدا مي كند.
- ۳. شبکه جریان G داده شده است. ثابت کنید اگر جریانی به اندازه f از مبدا s به مقصد t و جریانی به اندازه f از مبدا t به مقصد u وجود داشت. داشته باشند، آنگاه جریان به اندازه t از مبدا t به مقصد u وجود خواهد داشت.
- ۴. گراف بدون جهت و وزندار G با n راس و زیردرخت فراگیر کمینه آن به نام T به عنوان ورودی داده شدهاند. فرض کنید وزن یال e در این گراف از مقدار w_e به w_e کاهش پیدا کرده است. الگوریتم از مرتبه زمانی O(n) طراحی کنید که زیر درخت فراگیر کمینه گراف جدید را پیدا کند.
- ۵. فرض کنید ماتریس D ماتریس فاصفه ها در گراف وزن دار G است. در حقیقت D[i,j] اندازه کوتاه ترین مسیر بین i و j را نشان می دهد. ماتریس D و گراف وزن دار G داده شده اند. وزن یال e از w_e به w_e کاهش پیدا کرده است. یک الگوریتم با زمان اجرای $O(n^2)$ ارائه دهید که ماتریس D را با توجه به کاهش وزن یال e به روز رسانی کند.
 - ۶. درستی یا نادرستی هریک از گزارههای زیر را تعیین کنید. برای ادعای خود اثبات مختصری ارائه دهید.

- (آ) اگر برای دو مسئله B و B داشته باشیم $A \leq_p B$ و الگوریتمی وجود داشته باشد که مسئله B را در زمان خطی حل کند انگاه مسئله A نیز در زمان خطی حل خواهد شد.
 - NP-Complete $\subseteq NP$ (\smile)
 - $B \in \text{NP-Complete}$ و $A \leq_p B$ و $A \in \text{NP-Complete}$ گرفت $A \leq_p B$ و $A \in \text{NP-Complete}$
 - . P ⊂ NP (د)

۷. مسئله های SAT و INDEPENDENT-SET و INDEPENDENT-SET به این صورت تعریف شدهاند:

- مسئله x_1, x_2, \cdots, x_n و x_1, x_2, \cdots, x_n و x_1, x_2, \cdots, x_n و x_1, x_2, \cdots, x_n داده شدهاند. در هر عبارت منطقی حداکثر از x_1, x_2, \cdots, x_n منطقی حداکثر از x_1, x_2, \cdots, x_n منطقی حداکثر از x_1, x_2, \cdots, x_n منطقی میتواند به صورت x_1, x_2, \cdots, x_n باشد. مسئله این است که آیان امکان مقداردهی به متغیرها وجود دارد به طوری که تمام عبارتهای منطقی در نهایت مساوی x_1, x_2, \cdots, x_n شوند.
- مسئله INDEPENDENT-SET: گراف بدون جهت G و عدد k به عنوان ورودی داده شدهاند. مسئله این است که آیا میتوان k راس از گراف را طوری انتخاب کرد که بین هیچ تو راس انتخاب شده یالی نباشد.

$^{\mathsf{M}}$ -SAT \leq_p INDEPENDENT-SET ثابت کنید

7	6	5	4	3	2	1	سوال
15	20	15	15	15	20	10	نمره