

實驗	名	稱	:	實驗	五	穩	定月	支	成	積	:		
組別	:												
班級	•												
學號	:										_		
姓名	:										_		
日期	:		左	F	月		日						

實驗五 系統穩定度分析

目的:練習 MATLAB 的方塊圖化簡操作及求轉移函數的應用,由方塊圖求轉移函數、再由轉移函數求特性方程式的根,判斷系統的穩定度、由穩定度判斷控制器的 K 值範圍,應用於解控制相關的問題可作為日後控制系統設計及分析的參考。

使用設備:PC及MATLAB模擬軟體。

實驗步驟:1.開機後進入視窗,找 MATLAB 點兩下進入系統。

- 2.逐項做實驗項目,並記錄結果。
- 3.做完各實驗項目後關閉 MATLAB 系統,再按關機程序 關機,最後關電腦電源。

實驗項目如下(以 MATLAB 做即可) (題中的未知數 C 等於組別,例如:第5組則 C=5)

1. 請寫出下列閉迴路系統的轉移函數有多少個根分別位在 S 平面的右半平面、左半平面及 $j\omega$ 的軸上,並判斷系統是否穩定。

(a)
$$\frac{C(S)}{R(S)} = \frac{S+8}{S^5 - S^4 + 4S^3 - 4S^2 + 3CS - 2}$$

(b)
$$\frac{C(S)}{R(S)} = \frac{S^2 + 4S - 3}{S^4 + 4S^3 + 8S^2 + 20CS + 15}$$

(c)
$$\frac{C(S)}{R(S)} = \frac{S^3 + 2S^2 + 7S + 21}{S^5 - S^4 + 3S^3 - 3S^2 + 2CS - 2}$$

答:

(a) 右半平面 ____ 個根、左半平面 ____ 個根、 $j\omega$ 的軸上 ____ 個根、系統是否穩定 。

(b) 右半平面 ____ 個根、左半平面 ____ 個根、 $j\omega$ 的軸上 ____ 個根、系統是否穩定 ____ 。

(c)右半平面 ____ 個根、 $j\omega$ 的軸上 ____ 個根、 $j\omega$ 的軸上 ____ 個根、系統是否穩定

2. 請寫出下列單位負迴授系統((a)、(b)小題)((c) 小題含迴授

 $H(S) = \frac{1}{S}$)的轉移函數及有多少個根分別位在 S 平面的右半平面、左半平面及 $j\omega$ 的軸上,並判斷系統是否穩定。

(a)
$$G(S) = \frac{4}{S(S^6 - 2S^5 + 2S^4 - 4S^3 - S^2 + 2CS - 2)}$$

(b)
$$G(S) = \frac{8}{S(S^6 - 2S^5 - S^4 + 2S^3 + 4S^2 - 8CS - 4)}$$

(c)
$$G(S) = \frac{507}{S^4 + 3S^3 + 10S^2 + 30CS + 169}$$

答:

(a) 轉移函數

$$\frac{Y(S)}{R(S)} = \frac{}{}$$

右半平面 ____ 個根、左半平面 ____ 個根、 $j\omega$ 的軸上 ____ 個根、系統是否穩定 。

(b) 轉移函數

$$\frac{Y(S)}{R(S)} = -$$

右半平面 ____ 個根、左半平面 ____ 個根、 $j\omega$ 的軸上 ____ 個根、系統是否穩定 。

(c) 轉移函數

$$\frac{Y(S)}{R(S)} = -$$

右半平面 ____ 個根、左半平面 ____ 個根、 $j\omega$ 的軸上 ____ 個根、系統是否穩定 。

3. 請寫出下列單位負迴授系統穩定的 K 值範圍及系統臨界穩定時的 振盪頻率。(請寫程式算出精確值)

(a)
$$G(S) = \frac{K(S+6)}{S(S+C)(S+3)}$$

(b)
$$G(S) = \frac{KC(S+1)}{S(S+2)(S+3)(S+4)}$$

(c)
$$G(S) = \frac{KC(S+2)}{(S^2+1)(S-1)(S+4)}$$

答:

- (a) 系統穩定的 K 值範圍 _____、振盪頻率 ω = ____ rad/s。
- (b) 系統穩定的 K 值範圍 _____、振盪頻率 ω = ____ rad/s。
- (c)系統穩定的 K 值範圍 _____ 、振盪頻率 ω = ____ rad/s。
- 4. 某系統狀態方程式如下,有多少個根分別位在 S 平面的右半平面、 左半平面及 jω 的軸上,並判斷系統是否穩定。

$$\dot{x}(t) = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 4 & 6 \\ -6 & -5 & -C \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} r(t)$$

$$y(t) = \begin{bmatrix} 2 & 5 & 3 \end{bmatrix} x(t)$$

答:

右半平面 ____ 個根、左半平面 ____ 個根、 $j\omega$ 的軸上 ____ 個根、 $j\omega$ 的軸上 ____ 個根、 $j\omega$ 的軸上 ____ 個根、

5. 某飛機的傾斜迴路模式如圖 1.所示,求控制飛機穩定的 K 值範圍 及臨界穩定時的振盪頻率。(請寫程式算出精確值)

答:

系統穩定的 K 值範圍	、振盪頻率 <i>ω</i> =	rad/s 。
6. 以下的系統分別為(a)化學程序控	:制系統圖 2. (b)軟性手臂	系統圖3.
(c)自動導航器滾動控制系統圖 4	l. ,保持滾動角度穩定。	分別求轉
移函數、控制系統穩定的 K 值範	屋及臨界穩定時的振盪。	頻率。(請
寫程式算出精確值)		
答:		
(a) 轉移函數		
$\frac{T_{out}(S)}{S}$ =		
$\frac{T_{out}(S)}{T_{in}(S)} = -$		
系統穩定的 K 值範圍	、振盪頻率 ω=	rad/s °
(b) 轉移函數		
C(S)		
$\frac{C(S)}{R(S)} = -$		_
系統穩定的 K 值範圍	、振盪頻率 <i>ω</i> =	rad/s 。
(c) 轉移函數		
$\phi(S)$		
$\frac{\phi(S)}{\phi_c(S)} = -$		_
系統穩定的 K 值範圍	、振盪頻率 <i>ω</i> =	rad/s °

圖 3

