DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature

Eric Mitchell 1 Yoonho Lee 1 Alexander Khazatsky 1 Christopher D. Manning 1 Chelsea Finn 1

Stanford University ICML'23
Citation 518

Problem

- Large language models are convincing but unreliable
 - Half of model-generated sentences are not fully supported citations.
 - One quarter of citations do not support the associated model-generated claim.
- We're still tempted to use them anyway!

Motivation

It would be helpful to know when we're reading LM-generated text.

But how?

Detecting LM-generated text

Initial ideas

Option 1: Train a second LM specifically for detection

- 1. Gather lots of data from human sources and the model(s) of interest
- 2. Train a binary classifier to distinguish between human/LM text
- 3. Hope it generalizes well
 - + Powerful, expressive model

- Inconvenient (data collection, training)
- Can overfit to domain, model, language, etc.

Detecting LM-generated text

Initial ideas

Option 1: Train a second LM specifically for detection

Option 2: Use the source LM itself to detect its generations "zero-shot"

- 1. Given a candidate passage, compute the log probability of each token
- If avg. log probability is high or avg. rank of observed tokens is low, we probably have a model sample
 - + No training or data collection!

Not so accurate in practice

Detecting LM-generated text

An alternative strategy

Can we improve zero-shot detectors, retaining their convenience?

Idea: leverage the structure of the model's log probability function **around** the candidate passage

Hypothesis:

Model samples lie near **local maxima** of the model's log probability function

"If we slightly rephrase model-generated text, the log probability tends to drop"

DetectGPT

The Perturbation Discrepancy Gap Hypothesis

"The perturbation discrepancy is <u>larger for</u> model <u>samples</u> than for human text"

DetectGPT

The perturbation discrepancy

"How much does the logprob of a sample x drop when I **perturb** (rephrase) it, on average over many **perturbations**?"

$$\mathbf{d}\left(x,p_{\theta},q\right)\triangleq\underbrace{\log p_{\theta}(x)}_{\text{log prob of }x}-\underbrace{\mathbb{E}_{\tilde{x}\sim q(\cdot|x)}}_{\text{avg log prob of perturbations to }x}$$

Testing the hypothesis

Computing the perturbation discrepancy for many human-written and model-generated texts:

Perturbations are generated by randomly masking 2-word spans and sampling replacement with T5-3B

DetectGPT algorithm overivew

Candidate passage x:

"Joe Biden recently made a move to the White House that included bringing along his pet German Shepherd..."

Experiments

XSum				SQuAD					WritingPrompts									
Method	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.
$\log p(x)$	0.86	0.86	0.86	0.82	0.77	0.83	0.91	0.88	0.84	0.78	0.71	0.82	0.97	0.95	0.95	0.94	0.93*	0.95
Rank	0.79	0.76	0.77	0.75	0.73	0.76	0.83	0.82	0.80	0.79	0.74	0.80	0.87	0.83	0.82	0.83	0.81	0.83
LogRank	0.89*	0.88*	0.90*	0.86*	0.81*	0.87*	0.94*	0.92*	0.90*	0.83*	0.76*	0.87*	0.98*	0.96*	0.97*	0.96*	0.95	0.96*
Entropy	0.60	0.50	0.58	0.58	0.61	0.57	0.58	0.53	0.58	0.58	0.59	0.57	0.37	0.42	0.34	0.36	0.39	0.38
DetectGPT	0.99	0.97	0.99	0.97	0.95	0.97	0.99	0.97	0.97	0.90	0.79	0.92	0.99	0.99	0.99	0.97	0.93*	0.97
Diff	0.10	0.09	0.09	0.11	0.14	0.10	0.05	0.05	0.07	0.07	0.03	0.05	0.01	0.03	0.02	0.01	-0.02	0.01

Table 1. AUROC for detecting samples from the given model on the given dataset for DetectGPT and four previously proposed criteria (500 samples used for evaluation). From 1.5B parameter GPT-2 to 20B parameter GPT-NeoX, DetectGPT consistently provides the most accurate detections. **Bold** shows the best AUROC within each column (model-dataset combination); asterisk (*) denotes the second-best AUROC. Values in the final row show DetectGPT's AUROC over the strongest baseline method in that column.

Evaluate various zero-shot detectors on **news**, wikipedia-style articles, and creative writing

DetectGPT is consistently most discriminative

Results averaged across 6 models from **1.5B to 20B**

	XS	um	SQu	ıAD	WritingPrompts		
Method	top-p	top-k	top-p	top-k	top-p	top-k	
$\log p(x)$ Rank LogRank Entropy	0.92 0.76 0.93* 0.53	0.87 0.76 0.90* 0.55	0.89 0.81 0.92* 0.54	0.85 0.80 0.90* 0.56	0.98 0.84 0.98 0.32	0.96 0.83 0.97 0.35	
DetectGPT	0.98	0.98	0.94	0.93	0.98	0.97	

Table 3. AUROC for zero-shot methods averaged across the five models in Table 1 for both top-k and top-p sampling, with k=40 and p=0.96. Both settings enable slightly more accurate detection, and DetectGPT consistently provides the best detection performance. See Appendix Tables 4 and 5 for complete results.

Experiments

0.981

0.9

Detection AUROC

XSum GPT-2 Detection

0.889

DetectGPT generalizes to diverse text distributions

0.946

0.888

WMT16-en mGPT Detection

0.957

0.863

0.991

0.915

For **news articles in English**, DetectGPT is as good or better than existing detectors

For biomedical texts or news articles in German. **DetectGPT** outperforms by a larger margin

Related works

Metric \rightarrow	Sim ↑	Detection Accuracy ↓								
$Detector \to$		Watermarks	DetectGPT	OpenAI	GPTZero	RankGen				
GPT2-1.5B	_	100.0	70.3	21.6	13.9	13.5				
+ DIPPER 20L	99.2	97.1	28.7	19.2	9.1	15.8				
+ DIPPER 40L	98.4	85.8	15.4	17.8	7.3	18.0				
+ DIPPER 60L	96.9	68.9	8.7	13.3	7.1	19.8				
+ DIPPER 60L, 60O	94.3	57.2	4.6	14.8	1.2	28.5				
OPT-13B	-	99.9	14.3	11.3	8.7	3.2				
+ DIPPER 20L	99.1	96.2	3.3	11.8	5.4	5.2				
+ DIPPER 40L	98.6	84.8	1.2	11.6	3.8	6.6				
+ DIPPER 60L	97.1	63.7	0.8	9.1	6.3	9.3				
+ DIPPER 60L, 60O	94.6	52.8	0.3	10.0	1.0	13.5				
GPT-3.5-175B, davinci-003	-	-	26.5*	30.0	7.1	1.2				
+ DIPPER 20L	97.6	-	12.5*	20.6	4.3	1.7				
+ DIPPER 40L	96.7	-	8.0*	22.4	4.8	2.0				
+ DIPPER 60L	94.2	-	7.0*	15.6	6.1	3.9				
+ DIPPER 60L, 60O	88.4	-	4.5*	15.6	1.8	7.3				
Human Text	_	1.0	1.0	1.0	1.0	1.0				

detectgpt — openai …… random detectgpt (pp) — openai (pp) — sim retrieval (pp) gptzero — watermark — bm25 retrieval (pp) gptzero (pp) — watermark (pp)

How AI Detection at GPTZero works

GPTZero's technology uses deep learning to keep pace with Al advancements to deliver precise, reliable results that help you understand and interpret the origin of a piece of text.

Input Text

GPTZero accepts copy and pasted text, docx, pdf, and image files, analyzing up to 50 files at a time.

Deep Learning

We employ an end-to-end deep learning approach, trained on text datasets from the web, education, and AI- generated from a range of LLMs.

Sentence Classifier

A sentence-by-sentence classification model determines the probability and confidence that a text was created by Al.

Paraphraser Shield

We defend against tools looking to exploit Al detectors. Our model shields against common methods to bypass Al detection, such as paraphrasing and homoglyph attacks.

Output Result

You can view easy-tointerpret results in our dashboard, with premium features to detect AI vocabulary, plagiarism, and citeable sources.

Thanks