Planning with Uncertainty

RYAN SPRING

12/2/2014

Introduction

- Markov Decision Process (MDP) (S, A, T, R)
 - Markov Property The future is dependent only on the current state and action
 - A set of states, S
 - A set of action, A
 - Transition Probability Function T(s'|s,a)
 - Reward Function R(s)

A policy for action uncertainty instead of a plan from start to goal

A policy specifies an action that will lead to the goal from a given state $\pi: S \to A$

Problem

Steerable Medical Needle

Dubins Car with a bang-bang controller

Turn left and right

Move forward distance δ every time step

Action Uncertainty is represented using a Gaussian distribution

Fig. 3. The state of a bang-bang steering car is defined by point p, orientation θ , and turning direction b (a). The car moves forward along an arc of constant curvature and can turn either left (a) or right (b).

Stochastic Motion Roadmap

- 1. Sample configuration space
- 2. Generate an approximation of the action uncertainty
- MDP Value Iteration

Build SMR Graph

Sample n states from the configuration space to form the vertices of the graph - n = 50,000

Transition Model

Generate a sample from a node i using an action U_i

If the sample is valid, find the nearest node j in the SMR graph

If the sample has a collision, then there is a transition to a special obstacle state

Sample each action m times -m = 20

 $P_{ij}(U_i) = \frac{v}{m}$ where v is the number of times the transition from I to J occurs

MDP Value Iteration

Reward 1 for Goal States

Reward 0 for Obstacle States

Use an epsilon ε threshold to terminate value iteration - $\varepsilon = \sim 10^{-7}$

 P_{ij} - Transition Probability from I to J

 $g(i, u_i, j)$ - Reward for transitioning from I to J in state u_j

A negative reward creates a preference for shorter paths

 $J^*(j)$ - Probability of success for state j

$$J^{*}(i) = \max_{U_{i}} \sum_{j \in V} P_{ij}(U_{i}) \left(g(i, u_{i}, j) + J^{*}(j) \right)$$

Results

Environment 1

Environment 3

Results

Actual Success vs. Start Node Prediction

Extensions

The main bottleneck was creating the transition model and performing the MDP Value iteration

About 6x performance improvement with Multi-threaded Support

Original vs. Multi-Threaded

Motivation/Challenges

MDPs are everywhere!

• i.e. Robotics, Machine Learning, Sensing, Control Theory

Sanity Check:

- First, solve the problem without action uncertainty
- Then, incrementally add uncertainty to the problem