Modelo de Ciclos Reales Parte 2

Modelo estocástico de crecimiento con oferta variable de trabajo: preferencias y tecnología

Hogar representativo.

Mercados competitivos, completos y sin fricciones.

Modelo

Preferencias:

$$E_t \left[\sum_{i=0}^{\infty} \beta^{t+i} [u(C_{t+i}) - \upsilon(L_{t+i})] \right]$$

Donde

$$u(C) = \frac{1}{1-\gamma}C^{1-\gamma}$$
$$= \log C \text{ iff } \gamma = 1$$

C: consumo L: empleo

$$\upsilon(L) = \frac{1}{1+\varphi} L^{1+\varphi}$$

Con

$$0 < \beta < 1; \gamma > 0; \varphi > 0$$

• Donde γ es el coeficiente de aversión relativa al riesgo; ϕ es la elasticidad Frisch de la oferta de trabajo.

Modelo

Tecnología:

$$Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha} = A_t^{1-\alpha} K_t^{\alpha} L_t^{1-\alpha}$$

- Donde Y es producto, $A^{1-\alpha}$ es la productividad total de los factores y K es capital.
- Restricción de recursos:

$$C_t + K_{t+1} = Y_t + (1 - \delta) K_t$$

• Donde $0 < \delta < 1$ es la tasa de depreciación.

Modelo

• La tecnología sigue es siguiente proceso:

$$A_t/\overline{A}_t = (A_{t-1}/\overline{A}_{t-1})^{\rho} e^{\epsilon_t}$$

 $\overline{A}_t/\overline{A}_{t-1} = G = 1 + g \ge 1$

• Donde \bar{A}_t es la tendencia, $0<\rho<1$ y ϵ_t es un shock i.i.d. con media cero.

Modelo: problema del planificador social

• Sin fricciones en los mercados ni externalidades, la solución del planificador central y el problema descentralizado generan la misma (Pareto óptima) asignación en equilibrio.

• Primero reemplazamos la función de producción en la restricción de recursos para eliminar Y.

Modelo: problema del planificador social

• El problema secuencial que enfrenta el planificador social dado el estado inicial (K_t, A_t) es:

$$V(K_t, A_t) = \max_{\{C_{t+i}, L_{t+i}, K_{t+1+i}\}_{i \ge 0}} E_t \left[\sum_{i=0}^{\infty} \beta^{t+i} \left(\frac{1}{1-\gamma} C_{t+i}^{1-\gamma} - \frac{1}{1+\varphi} L_{t+i}^{1+\varphi} \right) \right]$$

Sujeto a:

$$C_t + K_{t+1} = K_t^{\alpha} (A_t L_t)^{1-\alpha} + (1-\delta) K_t$$
$$A_t / \overline{A} = (A_{t-1} / \overline{A})^{\rho} e^{\epsilon_t}$$
$$K_0 = K$$
$$A_0 = A$$

La ecuación de Bellman

$$V(K_t, A_t) = \max_{C_t, L_t, K_{t+1}} \frac{1}{1 - \gamma} C_t^{1 - \gamma} - \frac{1}{1 + \varphi} L_t^{1 + \varphi} + \beta E_t \{ V(K_{t+1}, A_{t+1}) \}$$

Sujeto a:

$$C_t + K_{t+1} = K_t^{\alpha} (A_t L_t)^{1-\alpha} + (1-\delta) K_t$$

• La solución a este problema nos entrega las policy functions $C(K_t, A_t)$, $L(K_t, A_t)$ y $K_{t+1}(K_t, A_t)$.

- Para solucionar en primer lugar se usa la restricción de recursos para eliminar C en la función objetivo.
- Luego se optimiza con respecto a (K_{t+1}, L_t) y se usa el teorema de la envolvente para encontrar $V_1(K_t, A_t)$

$$C_t = K_t^{\alpha} (A_t L_t)^{1-\alpha} + (1-\delta) K_t - K_{t+1}$$

• Condición de primer orden necesaria (FONC) con respecto a K_{t+1} :

$$C_t^{-\gamma} = \beta E_t \{ V_1(K_{t+1}, A_{t+1}) \}$$

Teorema de la envolvente:

$$V_1(K_t, A_t) = C_t^{-\gamma} \left[\alpha \left(\frac{K_t}{A_t L_t} \right)^{\alpha - 1} + 1 - \delta \right]$$

$$V_1(K_{t+1}, A_{t+1}) = C_{t+1}^{-\gamma} \left[\alpha \left(\frac{K_{t+1}}{A_{t+1} L_{t+1}} \right)^{\alpha - 1} + 1 - \delta \right]$$

Condiciones necesaria y suficientes para la optimalidad

• Condición de primer orden consumo:

$$C_t^{-\gamma} = E_t \{ \beta C_{t+1}^{-\gamma} R_{t+1} \}$$

Donde

$$R_{t+1} = \alpha \left(\frac{K_{t+1}}{A_{t+1}L_{t+1}} \right)^{\alpha - 1} + (1 - \delta)$$

• Condición de primer orden para oferta de trabajo:

$$(1 - \alpha)A_t(\frac{K_t}{A_t L_t})^{\alpha} C_t^{-\gamma} = L_t^{\varphi}$$

Condición de transversalidad:

$$\lim_{t \to \infty} \beta^t C_t^{-\gamma} K_{t+1} = 0$$

Modelo completo

Variables endógenas: $(Y_t, L_t, C_t, R_{t+1}, K_{t+1})$

Estados predeterminados: (K_t, A_t)

Producto:

$$Y_t = A_t^{1-\alpha} K_t^{\alpha} L_t^{1-\alpha}$$

Trabajo:

$$(1 - \alpha)A_t(\frac{K_t}{A_tL_t})^{\alpha} = \frac{L_t^{\varphi}}{C_t^{-\gamma}}$$

Consumo/ahorro:

$$C_t^{-\gamma} = E_t \{ \beta C_{t+1}^{-\gamma} R_{t+1} \}$$

Tasa de retorno del capital:

$$R_{t+1} = \alpha \left(\frac{K_{t+1}}{A_{t+1}L_{t+1}} \right)^{\alpha - 1} + 1 - \delta$$

Restricción de recursos:

$$K_{t+1} = Y_t + (1 - \delta) K_t - C_t$$

Evolución de la tecnología:

$$A_t/\overline{A} = (A_{t-1}/\overline{A})^{\rho} e^{\epsilon_t}$$

Fuerza que genera ciclo: fluctuaciones en

Solución descentralizada

Problema de decisión de los hogares

 $\Gamma_t \equiv \operatorname{estado} \operatorname{macro} (K_t, A_t);$

$$V(K_t(h), \Gamma_t) = \max_{\{C(h), L(h)_t, K(h)_{t+1}\}} E_t \left[\sum_{i=0}^{\infty} \beta^t \left(\frac{1}{1-\gamma} C_t(h)^{1-\gamma} - \frac{1}{1+\varphi} L_t(h)^{1+\varphi} \right) \right]$$

Sujeto a la restricción presupuestaria de período

$$C_t(h) + K_{t+1}(h) = W_t L_t(h) + (Z_t + 1 - \delta) K_t(h)$$

Y la condición terminal para eliminar esquemas de Ponzi

$$\lim_{\tau \to \infty} \beta^{\tau} \left(\frac{C_{\tau}(h)}{C_{\tau}(h)} \right)^{-\gamma} (Z_{\tau} + 1 - \delta) K_{\tau}(h) \geq 0$$

Solución descentralizada

• Empresas

Problema de decisión de la firma

$$\max_{K_t(f),L_t(f)} Y_t(f) - Z_t K_t(f) - W_t L_t(f)$$

Sujeto a

$$Y_t(f) = A_t^{1-\alpha} K_t(f)^{\alpha} L_t(f)^{1-\alpha}$$

Estado estacionario determinístico (caso sin crecimiento)

Cuatro variables Y, K, C, L:

Producto
$$Y = K^{\alpha}(\overline{A}L)^{1-\alpha}$$

Mercado laboral
$$(1-\alpha)^{Y}_{L}=L^{\varphi}/C^{-\gamma}$$

Consumo/ahorro
$$1=\beta(\frac{C'}{C})^{-\gamma}[\alpha(\frac{K}{\overline{A}L})^{\alpha-1}+1-\delta] \to$$

$$\alpha(\frac{K}{\overline{A}I})^{\alpha-1} + 1 - \delta = \beta^{-1}(=R)$$

Restricción de recursos $K=Y+(1-\delta)K+C
ightarrow$

$$Y = \delta K + C$$

Dinámica de transición:

$$(K_t/\overline{A}L_t) < K/\overline{A}L \to \alpha(\frac{K_t}{\overline{A}L_t})^{\alpha-1} + 1 - \delta > \beta^{-1} \to \text{Aumenta ahorro} \quad (\frac{C'}{C}\uparrow) \to (K_t/\overline{A}L_t) \text{ converge a} \qquad K/\overline{A}L.$$

 $C\downarrow \;$ por aumento en ahorro $\; o L\uparrow o Y\uparrow \;$ lo que acelera convergencia

Estado estacionario determinístico (caso con crecimiento)

Variables estacionarias: $\frac{Y}{K}, \frac{K}{\Delta L}, \frac{C}{K}, L$

$$\frac{Y}{K}, \frac{K}{\overline{A}L}, \frac{C}{K}$$

 $\frac{Y}{K}, \frac{K}{\overline{A} \tau}, \frac{C}{K}$ Determinadas por la función de producción, la relación consumo/ahorro y la restricción de recursos.

$$\frac{Y}{K} = \left(\frac{K}{AL}\right)^{\alpha - 1}$$

$$1 = \beta \left(\frac{C'}{C}\right)^{-\gamma} \left[\alpha \frac{Y}{K} + 1 - \delta\right]$$

$$\frac{Y}{K} = \frac{C}{K} + \delta + g$$

Con
$$\frac{C'}{C} = 1 + g$$

Equilibrio en mercado del trabajo determina L

$$(1 - \alpha)\frac{Y}{L} = L^{\varphi}/C^{-\gamma}$$

Notar que si

 $g>0
ightarrow \gamma=1$ Para que L sea constante en la balance growth path.

Próximos pasos

• Log-linearizar el modelo.

Calibrar los parámetros del modelo.

• Evaluar las dinámicas del ciclo económico versus los datos trimestrales.

Modelo log-linearizado

$$\widetilde{a}_t = (1 - \alpha)a_t; \sigma = \gamma^{-1}$$

Función de producción

$$y_t = \tilde{a}_t + \alpha k_t + (1 - \alpha) l_t$$

Equilibrio mercado del trabajo

$$y_t - l_t = w_t = \varphi l_t + \gamma c_t$$

Consumo/ahorro

$$c_t = -\sigma E_t \left\{ \alpha_{\overline{K}}^{\underline{Y}} (y_{t+1} - k_{t+1}) \right\} + E_t \left\{ c_{t+1} \right\}$$

Evolución del capital

$$k_{t+1} = \frac{Y}{KG}y_t - \frac{C}{KG}c_t + \frac{1-\delta}{G}k_t$$

con $\tilde{a}_t = \rho \tilde{a}_{t-1} + \varepsilon_t$.

Oferta de trabajo

• Equilibrio en el mercado del trabajo:

$$l_t = \varphi^{-1}(y_t - l_t) - (\gamma/\varphi)c_t$$
$$= \varphi^{-1}w_t - (\gamma/\varphi)c_t$$

- φ^{-1} es la elasticidad de Frisch de la oferta de trabajo.
- Las estimaciones de esta elasticidad dependen de si l refleja el margen intensivo o extensivo. Para el primero ~ 0.5 y para el segundo ~ 1 .
- El segundo término refleja el efecto de riqueza en la oferta de trabajo. La importancia de este efecto se incrementa con γ (mayor deseo a suavizar consumo).
- Nota: Nuestra interpretación del modelo es que los hogares ajustan L en su margen intensivo (horas).

 Combinando la función de producción con el equilibrio en el mercado del trabajo obtenemos:

$$l_t = \frac{1}{\alpha + \varphi} (\tilde{a}_t + \alpha k_t) - \frac{\gamma}{\alpha + \varphi} c_t$$

$$y_t = \left(1 + \frac{1 - \alpha}{\alpha + \varphi} \right) (\tilde{a}_t + \alpha k_t) - \frac{(1 - \alpha)\gamma}{\alpha + \varphi} c_t \to$$

$$y_t = y(\tilde{a}_t, k_t, c_t)$$

- $\tilde{a}_t + \alpha k_t$ refleja productividad la cual tiene un efecto directo e indirecto (a través de la demanda por trabajo) en y.
- c_t refleja el efecto riqueza en la oferta de trabajo.
- Tres parámetros claves: α , ϕ y γ .

• Si usamos las relaciones previas para y_t para eliminar y_{t+1} , obtenemos el siguiente sistema de dos ecuaciones diferenciales de primer orden para c_t y k_{t+1}

$$c_{t} = -\sigma E_{t} \left\{ \alpha \frac{Y}{K} (y(\tilde{a}_{t+1}, k_{t+1}, c_{t+1}) - k_{t+1}) \right\} + E_{t} \left\{ c_{t+1} \right\}$$
$$k_{t+1} = \frac{Y}{KG} y(\tilde{a}_{t}, k_{t}, c_{t}) - \frac{C}{KG} c_{t} - \frac{1 - \delta}{G} k_{t}$$

- Con $\widetilde{a}_t = \rho \widetilde{a}_{t-1} + \varepsilon_t$
- Y $0 \le \rho \le 1$ y donde \tilde{a}_t y k_t son variables predeterminadas.

 El sistema de dos ecuaciones diferenciales de primer orden tiene dos raíces características: una es mayor a la unidad (inestable) y una es menor a la unidad (estable).

• La inestable está asociada a la variable forward looking (consumo) y la estable al capital.

• La forma reducida de las policy functions para c_t y k_{t+1}

$$c_t = \pi_{ca} \tilde{a}_t + \pi_{ck} k_t$$
$$k_{t+1} = \pi_{ka} \tilde{a}_t + \pi_{kk} k_t$$

• donde los coeficientes π son funciones de los parámetros del modelo y pueden ser obtenidas utilizando el método de los coeficientes indeterminados (ver Campbell, JME 1994).

$$l_{t} = \frac{1}{\alpha + \varphi} (\tilde{a}_{t} + \alpha k_{t}) - \frac{\gamma}{\alpha + \varphi} c_{t}$$
$$= \frac{1 - \gamma \pi_{ca}}{\alpha + \varphi} \tilde{a}_{t} + \frac{\alpha - \gamma \pi_{ck}}{\alpha + \varphi} k_{t}$$

$$y_{t} = \left(1 + \frac{1 - \alpha}{\alpha + \varphi}\right) (\tilde{a}_{t} + \alpha k_{t}) - \frac{(1 - \alpha)\gamma}{\alpha + \varphi} c_{t}$$

$$= \left(1 + (1 - \alpha)\frac{1 - \gamma \pi_{ca}}{\alpha + \varphi}\right) \tilde{a}_{t} + (1 + (1 - \alpha)\frac{\alpha - \gamma \pi_{ck}}{\alpha + \varphi}) \alpha k_{t}$$

$$k_{t+1} = \frac{Y}{KG}y_t - \frac{C}{KG}(\pi_{ca}\tilde{a}_t + \pi_{ck}k_t) + \frac{1-\delta}{G}k_t$$

• Si asumimos que k_t (la desviación del stock de capital de su valor de estado estacionario) es pequeño a lo largo del ciclo económico, podemos asumir que:

$$c_t pprox \pi_{ca} \widetilde{a}_t
ightarrow$$
 $l_t pprox rac{1 - \gamma \pi_{ca}}{\alpha + \varphi} \widetilde{a}_t$ $y_t pprox \left(1 + (1 - \alpha) rac{1 - \gamma \pi_{ca}}{\alpha + \varphi}\right) \widetilde{a}_t$

Dado

$$I_{t} = K_{t+1} - (1 - \delta)K_{t} = Y_{t} - C_{t} \to \frac{I}{Y}inv_{t} = y_{t} - \frac{C}{Y}c_{t} \to inv_{t} = \frac{Y}{I}y_{t} - \frac{C}{I}c_{t} \to inv_{t} \approx \frac{Y}{I}[(1 + (1 - \alpha)\frac{1 - \sigma\pi_{ca}}{\alpha + \varphi}) - \frac{C}{Y}\pi_{ca}]\tilde{a}_{t}$$

• Notar que inv_t es probablemente más volátil que c_t . ¿Por qué?

Dado

$$I_{t} = K_{t+1} - (1 - \delta)K_{t} = Y_{t} - C_{t} \to \frac{I}{Y}inv_{t} = y_{t} - \frac{C}{Y}c_{t} \to inv_{t} = \frac{Y}{I}y_{t} - \frac{C}{I}c_{t} \to inv_{t} \approx \frac{Y}{I}[(1 + (1 - \alpha)\frac{1 - \sigma\pi_{ca}}{\alpha + \varphi}) - \frac{C}{Y}\pi_{ca}]\tilde{a}_{t}$$

- Notar que inv_t es probablemente más volátil que c_t . ¿Por qué?
- π_{ca} no debiese ser muy grande debido a suavizamiento del consumo. Especialmente si el shock de productividad es menos persistente. Y/I es mayor a 1.

Calibración

• Use filtro HP para sacarle a tendencia a los datos.

• Obtenga
$$\tilde{a}_t = y_t - \alpha k_t - (1 - \alpha)l_t$$

• Use la data obtenida para estimar $\tilde{a}_t = \rho \tilde{a}_{t-1} + \epsilon_t$.

Elección de parámetros

• Parámetros:

$$(\beta, \gamma = \sigma^{-1}, \varphi, \alpha, \delta, g, \rho, \sigma_a^2)$$

- $\beta = 0.9375$ anual (0.984 trimestral)
- g = 0.016 anual (0.004 trimestral)
- $\alpha = 0.33$ participación del capital
- $\delta = 0.1$ (0.025 trimestral)
- $\varphi^{-1} = 1$
- $\gamma = 1$

Propiedades

 Un modelo RBC razonablemente calibrado puede generar una desviación estándar del producto que es un 70% de la desviación estándar del producto en los datos.

• El modelo puede generar la mitad de la volatilidad de las horas observadas en los datos.

 La inversión es más volátil que el consumo como en los datos.

Defectos del modelo RBC

- No hay propagación interna de los shocks (el producto es driven por la productividad).
- El residuo de Solow que se estima puede contener muchos factores más allá de shocks a la PTF.
- La correlación entre la productividad y las horas ha pasado a ser negativa después de 1984 en EEUU (recuperaciones sin trabajo).
- El modelo no puede explicar la magnitud de las fluctuaciones en empleo.
- No hay papel para la política monetaria y las fricciones financieras no están presentes en el modelo.