.NET App Dev Hands-On Workshop

Lab 6 - Data Initialization

This lab walks you through creating the data initialization code. Prior to starting this lab, you must have completed Lab 5.

Part 1: Create the Sample Data provider

```
    □ Create a new folder named Initialization in the AutoLot.Dal project
    □ Add a file named SampleData.cs to the folder, and update the class to the following:
```

```
namespace AutoLot.Dal.Initialization;
public static class SampleData
  public static List<Customer> Customers => new()
    new() { Id = 1, PersonInformation = new() { FirstName = "Dave", LastName = "Brenner" } },
    new() { Id = 2, PersonInformation = new() { FirstName = "Matt", LastName = "Walton" } },
    new() { Id = 3, PersonInformation = new() { FirstName = "Steve", LastName = "Hagen" } },
    new() { Id = 4, PersonInformation = new() { FirstName = "Pat", LastName = "Walton" } },
    new() { Id = 5, PersonInformation = new() { FirstName = "Bad", LastName = "Customer" } }
  public static List<Make> Makes => new()
    new() { Id = 1, Name = "VW" },
    new() { Id = 2, Name = "Ford" },
    new() { Id = 3, Name = "Saab" },
    new() { Id = 4, Name = "Yugo" },
    new() { Id = 5, Name = "BMW" },
    new() { Id = 6, Name = "Pinto" }
  };
  public static List<Driver> Drivers => new()
    new() { Id = 1, PersonInformation = new() { FirstName = "Fred", LastName = "Flinstone" } },
    new() { Id = 2, PersonInformation = new() { FirstName = "Barney", LastName = "Rubble" } }
  };
```

```
public static List<Car> Inventory => new()
   new() { Id = 1, MakeId = 1, Color = "Black", PetName = "Zippy" },
   new() { Id = 2, MakeId = 2, Color = "Rust", PetName = "Rusty" },
   new() { Id = 3, MakeId = 3, Color = "Black", PetName = "Mel" },
   new() { Id = 4, MakeId = 4, Color = "Yellow", PetName = "Clunker" },
   new() { Id = 5, MakeId = 5, Color = "Black", PetName = "Bimmer" },
   new() { Id = 6, MakeId = 5, Color = "Green", PetName = "Hank" },
   new() { Id = 7, MakeId = 5, Color = "Pink", PetName = "Pinky" },
   new() { Id = 8, MakeId = 6, Color = "Black", PetName = "Pete" },
   new() { Id = 9, MakeId = 4, Color = "Brown", PetName = "Brownie" },
   new() { Id = 10, MakeId = 1, Color = "Rust", PetName = "Lemon", IsDrivable = false }
 public static List<Radio> Radios => new()
   new() {Id= 1, CarId = 1, HasSubWoofers = true, RadioId = "SuperRadio 1", HasTweeters = true },
   new() {Id= 2, CarId = 2, HasSubWoofers = true, RadioId = "SuperRadio 2", HasTweeters = true },
   new() {Id= 3, CarId = 3, HasSubWoofers = true, RadioId = "SuperRadio 3", HasTweeters = true },
   new() {Id= 4, CarId = 4, HasSubWoofers = true, RadioId = "SuperRadio 4", HasTweeters = true },
   new() {Id= 5, CarId = 5, HasSubWoofers = true, RadioId = "SuperRadio 5", HasTweeters = true },
   new() {Id= 6, CarId = 6, HasSubWoofers = true, RadioId = "SuperRadio 6", HasTweeters = true },
   new() {Id= 7, CarId = 7, HasSubWoofers = true, RadioId = "SuperRadio 7", HasTweeters = true },
   new() {Id= 8, CarId = 8, HasSubWoofers = true, RadioId = "SuperRadio 8", HasTweeters = true },
   new() {Id= 9, CarId = 9, HasSubWoofers = true, RadioId = "SuperRadio 9", HasTweeters = true },
   new() {Id=10, CarId=10, HasSubWoofers = true, RadioId = "SuperRadio 10", HasTweeters = true }
 };
 public static List<CarDriver> CarsAndDrivers => new()
   new() { Id = 1, CarId = 1, DriverId = 1 },
   new() { Id = 2, CarId = 2, DriverId = 2 }
 public static List<Order> Orders => new()
   new() { Id = 1, CustomerId = 1, CarId = 5 },
   new() { Id = 2, CustomerId = 2, CarId = 1 },
   new() { Id = 3, CustomerId = 3, CarId = 4 },
   new() { Id = 4, CustomerId = 4, CarId = 7 },
   new() { Id = 5, CustomerId = 5, CarId = 10 }
 public static List<CreditRisk> CreditRisks => new()
 {
   new()
     {
       Id = 1,
        CustomerId = Customers[4].Id,
        PersonInformation = new()
         FirstName = Customers[4].PersonInformation.FirstName,
         LastName = Customers[4].PersonInformation.LastName
       }
 };
}
```

Part 2: Update the Package Reference for Temporal Table Runtime Support

In order to programmatically determine the history table associated with a temporal table at runtime, the Microsoft.EntityFrameworkCore.Design package can't be trimmed, which it is by default.

```
☐ Comment out the IncludeAssets tag in the AutoLot.Dal.csproj file:

<PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="6.0.0">

<!--<IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>-->

<PrivateAssets>all</PrivateAssets>
</PackageReference>
```

Part 3: Create the Store Data Initializer

```
☐ In the Initialization folder, create a new file named SampleDataInitializer.cs.
☐ Change the class to public and static.

namespace AutoLot.Dal.Initialization;
public static class SampleDataInitializer
{
    //Implementation goes here
}

☐ The DropAndCreateDatabase method deletes the database and then creates the database using the migrations:
internal static void DropAndCreateDatabase(ApplicationDbContext context)
{
    context.Database.EnsureDeleted();
    //DON'T USE THIS This doesn't run the migrations, so SQL objects will be missing
    //context.Database.EnsureCreated();
    context.Database.Migrate();
}
```

☐ The ClearData method clears all data in the tables (including the history data) then resets the identity seeds to 1.

```
internal static void ClearData(ApplicationDbContext context)
  var entities = new[]
    typeof(Order).FullName,
    typeof(Customer).FullName,
    typeof(CarDriver).FullName,
    typeof(Driver).FullName,
    typeof(Radio).FullName,
    typeof(Car).FullName,
    typeof(Make).FullName,
    typeof(CreditRisk).FullName
  };
  var serviceCollection = new ServiceCollection();
  serviceCollection.AddDbContextDesignTimeServices(context);
  var serviceProvider = serviceCollection.BuildServiceProvider();
  var designTimeModel = serviceProvider.GetService<IModel>();
  foreach (var entityName in entities)
    var entity = context.Model.FindEntityType(entityName);
    var tableName = entity.GetTableName();
    var schemaName = entity.GetSchema();
    context.Database.ExecuteSqlRaw($"DELETE FROM {schemaName}.{tableName}");
    context.Database.ExecuteSqlRaw($"DBCC CHECKIDENT (\"{schemaName}.{tableName}\", RESEED, 1);");
    if (entity.IsTemporal())
      var strategy = context.Database.CreateExecutionStrategy();
      strategy.Execute(() =>
        using var trans = context.Database.BeginTransaction();
        var designTimeEntity = designTimeModel.FindEntityType(entityName);
        var historySchema = designTimeEntity.GetHistoryTableSchema();
        var historyTable = designTimeEntity.GetHistoryTableName();
        context.Database.ExecuteSqlRaw(
            $"ALTER TABLE {schemaName}.{tableName} SET (SYSTEM VERSIONING = OFF)");
        context.Database.ExecuteSqlRaw($"DELETE FROM {historySchema}.{historyTable}");
        context.Database.ExecuteSqlRaw(
            $"ALTER TABLE {schemaName}.{tableName} SET (SYSTEM_VERSIONING = ON
(HISTORY TABLE={historySchema}.{historyTable}))");
        trans.Commit();
      });
    }
 }
}
```

☐ The SeedData method calls a local function to add data to each table if it's empty: internal static void SeedData(ApplicationDbContext context) { try { ProcessInsert(context, context.Customers, SampleData.Customers); ProcessInsert(context, context.Makes, SampleData.Makes); ProcessInsert(context, context.Drivers, SampleData.Drivers); ProcessInsert(context, context.Cars, SampleData.Inventory); ProcessInsert(context, context.Radios, SampleData.Radios); ProcessInsert(context, context.CarsToDrivers, SampleData.CarsAndDrivers); ProcessInsert(context, context.Orders, SampleData.Orders); ProcessInsert(context, context.CreditRisks, SampleData.CreditRisks); } catch (Exception ex) Console.WriteLine(ex); throw; } static void ProcessInsert<TEntity>(ApplicationDbContext context, DbSet<TEntity> table, List<TEntity> records) where TEntity : BaseEntity { if (table.Any()) { return; } IExecutionStrategy strategy = context.Database.CreateExecutionStrategy(); strategy.Execute(() => using var transaction = context.Database.BeginTransaction(); try { var metaData = context.Model.FindEntityType(typeof(TEntity).FullName); context.Database.ExecuteSqlRaw(\$"SET IDENTITY_INSERT {metaData.GetSchema()}.{metaData.GetTableName()} ON"); table.AddRange(records); context.SaveChanges(); context.Database.ExecuteSqlRaw(\$"SET IDENTITY_INSERT {metaData.GetSchema()}.{metaData.GetTableName()} OFF"); transaction.Commit(); } catch (Exception) transaction.Rollback(); } }); }

☐ The main entry point methods are InitializeData and ClearAndReseendData. The former drops and recreates the database, the latter clears the data. Then both reseed the data:

```
public static void InitializeData(ApplicationDbContext context)
{
    DropAndCreateDatabase(context);
    SeedData(context);
}

public static void ClearAndReseedDatabase(ApplicationDbContext context)
{
    ClearData(context);
    SeedData(context);
}
```

Summary

This lab created data initializer, completing the data access layer.

Next steps

The next lab is optional and adds in integration tests for the data access layer. If you choose to skip lab 7 and integration testing, proceed to Lab 8, where you will build the shared services project.