ASSIGNMENT 9

APPLIED COMPUTATIONAL METHODS IN MECHANICAL SCIENCES

RAJAT A CHANDAVAR – 16ME156 22-Oct-19

Answer

Validation was done with a uniform grid of 100 elements.

Code(C++)

```
1 #include<iostream>
 2 #include<cmath>
 3 #include<fstream>
 4 #include<time.h>
 5 using namespace std;
 6 main()
 7
 8
        clock t start=clock();
 9
        fstream f;
10
        f.open("DATA.txt", ios::out);
11
        int n=51,i;
        double rho=1, u=1, T=0.02, l=1, r=1, dx0, dxi, dxi 1, Ap[n-2], Aw[n-2], Ae[n-2]
2], B[n-2]=\{\}, phi[n], factor, dist=0;
13
        phi[0]=0;
14
        phi[n-1]=1;
15
        dx0=0.02;
        //dx0=1*(1-r)/(1-pow(r,n-1));
16
17
        for (i=1; i<n-1; ++i)</pre>
18
             dxi=pow(r,i)*dx0;
19
20
             dxi 1=pow(r,i-1)*dx0;
21
             Aw[i-1] = (1/(dxi+dxi 1))*(-rho*u-(2*T/dxi 1));
             Ae[i-1] = (1/(dxi+dxi_1))*(rho*u-(2*T/dxi));
22
             Ap[i-1]=2*T/(dxi+dxi 1)*(1/dxi+1/dxi 1);
23
24
             if(i==1)
25
                 B[0] = -phi[0] *Aw[0];
26
             if(i==n-2)
27
                 B[n-3] = -phi[n-1] *Ae[n-3];
28
        for (i=1; i<n-2; ++i)</pre>
29
30
31
             factor=Aw[i]/Ap[i-1];
32
             Ap[i]=Ap[i]-factor*Ae[i-1];
33
             B[i]=B[i]-factor*B[i-1];
34
35
        phi[n-2]=B[n-3]/Ap[n-3];
36
        for(i=n-3;i>=1;--i)
37
             phi[i] = (B[i-1] - Ae[i-1] * phi[i+1]) / Ap[i-1];
        f<<'0'<<" "<<phi[0];
38
        for (i=1; i<n-1; ++i)</pre>
39
40
41
             dist+=pow(r,i-1)*dx0;
42
             f<<"\n"<<dist<<" "<<phi[i];
43
44
        f<<"\n"<<l<" "<<phi[n-1];
        f.close();
45
46
        clock t stop=clock();
        double timespent = (double) (stop-start) / (double) CLOCKS PER SEC;
47
48
        cout<<"\nCPU Time:"<<timespent<<" seconds";</pre>
49
```

Output

Computational Times (s)

	N=11	N=51	N=101
Uniform Grid	0.003	0.005	0.006
Non-uniform grid	0.003	0.004	0.004

For r=0.7, reasonably good accuracy is found with the uniform grid. For r=0.2, significant deviation was found. This is because the first Δx is very huge (0.8 units) leading to incorrect results whereas in the former case first Δx was just 0.30872 units. Results seemed to almost coincide for different grid sizes in both cases.

As expected, the uniform grid took more computational time for a more number of elements. For lower no. of elements, much differnece wasn't found.