Índice

MÓDULO 1. Procesamiento de texto en el PC	2
Importancia de los vectores en el aprendizaje automático (ML) y el análisis de datos	2
Definición de un vector	2
Utilidades específicas de los vectores en NLP	3
Desafíos y consideraciones al convertir texto en vectores	
Bolsa de palabras (BoW – Bag of Words)	3
Enfoque del NLP	
Representación de las palabras	
Aplicaciones de BoW	
Valor y eficacia de BoW	4
Conteo de palabras	4
Documento	
Método de conteo	
Tokenización	
Mapeo	5
Tokenización	5
ejemplo 1	
Diferentes perspectivas para abordar el tema de tokenización	6
Consideraciones	
Volumen de datos	
Manejo de casos	
ejemplo 2	6
Stop Words	7
ejemplo 3	
ejemplo 4	8
Stemming y Lemmatización	8
Stemming	
Lemmatization	
Aplicación de Stemming y Lemmatization en situaciones reales	
ejemplo 5	
ejemplo 6	
Ejemplo práctico: Proyecto 1 (ver Anexo 1)	10
Similitud de vectores	11
Cálculo de similitud de vectores	
Comparación del ángulo entre vectores y la distancia euclidiana	12
Método TF-IDF	12
Ambigüedad y especificidad de las stop words dependiendo de la aplicación	
Función del TF-IDF	13
Fórmulas de TF-IDF	13

Aplicación del método TF-IDF	
Ejemplo práctico: Proyecto 2 (ver Anexo 2)	14
Neural Word Embeddings	14
Modelos para secuencias de Deep Learning	14
Word Embeddings (Incrustación de palabras)	
Uso práctico de Word Embeddings	16
Aplicación del Word Embeddings – Analogías	
Ejemplo práctico: Proyecto 3 (ver Anexo 3)	
Creación de un Embedding con Word2Vec	16
ejemplo 7: CPU disponible en mi PC	
Ejemplos prácticos: Proyecto 4 (ver Anexo 4)	
Ejemplos prácticos: Proyecto 5 (ver Anexo 5)	
Ejemplos prácticos: Proyecto 6 (ver Anexo 6)	
Ejemplos prácticos: Proyecto 7 (ver Anexo 7)	17
MÓDULO 2. Visión probabilística en Al	18
Introducción a los modelos de Markov en NLP	18
Aplicabilidad universal de los modelos de Markov	18
Propiedad fundamental de los modelos de Markov	18
Estructura y entrenamiento de un modelo de Markov	18
Aplicaciones en NLP	19
Procesos de Markov	19
Representación matemática	
Uso de modelos de Markov para secuencias	
Estados en modelos de Markov	
Transición de estados y matrices de transición	
Implementación computacional y entrenamiento	22
Procesos de Markov – Suavizado de Probabilidades	22
Estimaciones de máxima verosimilitud	
Problemas de valores cero	
Suavizado de probabilidad	
Probabilidad de una secuencia	
Espacio logarítmico	· 24
Construcción de un clasificador de texto	25
Otras aplicaciones de un clasificador de texto	
Aplicación del modelo de Markov y clasificación de textos	
Regla de Bayes	
Aplicación de clasificador de textos	
Ejemplo práctico: Proyecto 8 (ver Anexo 8)	27
Generador de texto	27
Ampliación de los modelos de Markov	
Modelo de Markov de segundo orden	·28

Implicaciones	28
Creación de un generador de texto con Python	29
Ejemplo práctico: Proyecto 9 (ver Anexo 9)	29
Text Spinning	29
Importancia de los motores de búsqueda	29
Formas de hacer spinning de contenido	
Evolución de las técnicas de generación de contenido	
Avances técnicos en NLP	
N-Gram	30
Propuesta de modelo para Spinning	31
Creación de Spinning de texto con python	
Ejemplo práctico: Proyecto 10 (ver Anexo 10)	
MÓDULO 3. Métodos de Machine Learning para NLP	32
Introducción al aprendizaje automático	
Ejemplos de modelos de aprendizaje	32
Detección de Spam	32
Importancia de la detección de Spam	33
Automatización mediante ML para fitrar Spam	
Descripción del proceso	
Regla de Naive Bayes	33
Aplicación de la regla de Bayes en ML	35
Aplicando Naive Bayes en ML	35
Elección del modelo	35
Gaussiano	36
Multinomial	36
Bernoulli	36
Apicación de detector de Spam	37
Ejemplo práctico: Proeyecto 11 (ver Anexo 11)	
Análisis de Sentimientos	37
Clasificación vs Regresión, en el análisis de sentimientos	38
Descripción de la tarea del Análisis de Sentimiento	38
Aplicabilidad y beneficios del Análisis de Sentimiento	38
Regresión Logística	38
Perspectiva vectorial sobre la tarea de clasificación	
Representación lineal	39
Activación	40
Funciones de activación	41
Función Sigmoide	41
Regresión logística Multiclases MLR	41
Función SoftMax	41

Salidas esperadas de la regresión logística multiclase	42
Aplicación de Análisis de Sentimiento	42
Ejemplo práctico: Proyecto 12 (ver Anexo 12)	42
Ejemplo práctico: Proyecto 13 (ver Anexo 13)	
Resumen de texto	43
Sumarización con Inteligencia Artificial	
Aplicaciones en motores de búsqueda	
Categorización de la sumarización de texto	
Proceso de sumarización	44
Resumen de texto con vectores	44
Ventajas	
Pasos básicos en la técnica TF-IDF para sumarización	
Selección de sentencias para hacer el resumen	
Consideraciones de cada método	46
Aplicación de resumen de texto con vectores	46
Ejemplo práctico: Proyecto 14 (ver Anexo 14)	46
Resumen con TextRank	47
Comparación de TextRank con TF-IDF	47
¿Cómo funciona PageRank de Google?	47
Aplicación de TextRank	48
Proceso del TextRank	48
Paso a paso del TextRank	49
Aplicación de resumen de textos utilizando TextRank	49
Ejemplo práctico: Proyecto 15 (ver Anexo 15)	49
Modelación de temas con LDA	50
Aplicaciones del LDA	50
Aprendizaje No supervisado con LDA	50
Outputs and Inputs of LDA	51
Método de conteo	51
LDA	51
Aplicación de modelado de temas con LDA	52
Ejemplo práctico: Proyecto 16 (ver Anexo 16)	52
MÓDULO 4. Deep Learning y redes neuronales para NLP	53
Introducción al Doon Lograing (Aprondiccio profundo)	50
Introducción al Deep Learning (Aprendizaje profundo) Introducción a TensorFlow	53
Redes Neuronales Convolucionales CNN's	
Redes Neuronales Convolucionales CNN's	
Regresión Lineal con TensorFlow	
Ejemplo práctico: Proyecto 17 (ver Anexo 17)	
Ljempto practico. Proyecto 17 (ver Allexo 17)	33

Clasificador de texto con TensorFlow	55
Modelado y TensorFlow	56
Entropía Cruzada Binaria	56
Estabilidad numérica	56
Aplicación de clasificador con TensorFlow	57
Ejemplo práctico: Proyecto 18 (ver Anexo 18)	57
La Neurona	57
De la regresión a las Neuronas	
Neurona Artificial	
Aplicaciones de las neuronas artificiales	59
¿Cómo aprende un modelo?	59
Tasa de aprendizaje	60
Redes Neuronales Artificiales	60
Forward Propagation	61
Importancia de las Redes Neuronales	62
Funciones de Activación	62
Función Sigmoidal	
Función Tangente	
Hiperbólica Función ReLu	
Función SoftMax	<i></i> 63
Embeddings	64
Codificación One-Hot	
¿Cómo funcionan los Embeddings en una red neuronal?Geometría de los Embeddings	
Ocomotha de los Embeddings	00
Redes Neuronales Convolucionales CNN Convolución de redes neuronales	66
¿Cómo funciona la convolución	
Pattern Matching (Emparejamiento de patrones)	
Weight Sharing (Comparación de pesos)	
Ventajas del Weight Sharing	
Convolución con imágenes a Color	
Filtros 3D	
Arquitectura de una CNN	
¿Por qué es importante el pooling?	
Convenciones y estrategias en la estructura CNN	
Pérdida de información	
Flexibilidad de la arquitectura	
CNN's para textos	71
Arquitectura en Textos	72

Ejemplo práctico: Proyecto 21 (ver Anexo 21)	72
Ejemplo práctico: Proyecto 22 (ver Anexo 22)	72
Redes Neuronales Recurrentes RNN	73
Ventajas de las RNN's	74
Representación matemática de una RNN	75
Aplicaciones de las RNN's	75
Aplicación de un clasificador de texto con RNN	76
Ejemplo práctico: Proyecto 23 (ver Anexo 23)	76
Ejemplo práctico: Proyecto 24 (ver Anexo 24)	76
MÓDULO 5. Aplicaciones robustas con AI	76
Ejemplo práctico: Proyecto 25 (ver Anexo 25)	76