MODUL IV INTEGRASI NUMERIK

Tujuan:

- Dapat menentukan penyelesaian Integrasi Numerik dengan metode Trapesium, metode Mid Point dan Metode Simpson 1/3
- 2. Mencari besarnya kesalahan dari suatu perhitungan solusi Integrasi Numerik dengan Dengan metode Trapesium, metode Mid Point dan Metode Simpson 1/3.

Petunjuk Praktikum:

- 1. Lengkapi penggal program di bawah ini serta cetak keluarannya.
- 2. Buatlah laporan praktikum. Adapun isi laporan meliputi :
 - a. Dasar teori untuk menentukan penyelesaian Integrasi Numerik tersebut di atas
 - b. Pembahasan Program
 - c. Pembahasan hasil/keluaran

Dalam kalkulus dasar kita belajar cara mengevaluasi integral bermacam-macam fungsi dan kita mengenal teknik-teknik integral. Sayangnya tidak semua fungsi dapat dengan mudah diintegrasikan secara analitik. Dengan bantuan computer, kita dapat mengatasi kesulitan itu dengan memanfaatkan metode-metode numeric yang berkaitan dengan integrasi.

Integrasi numeric dikenal juga sebagai kuadratur; persoalan integrasi numeric ialah menghitung secara numeric integral tertentu

$$I = \int_{a}^{b} f(x) dx$$

Yang dalam hal ini *a* dan *b* adalah batas-batas integral, *f* adalah fungsi yang dapat diberikan secara eksplisit dalam bentuk persamaan ataupun secara empiric dalam bentuk tabel nilai.Dalam praktikum modul ini membahas teknik integrasi numeric menurut Kaidah Trapesium dan Kaidah Simpson.

a. Kaidah Trapesium

Pandang sebuah pias bernbentuk trapesium dari $x = x_0$ sampai $x = x_l$.

Luas satu trapezium adalah

$$\int_{x_{l}}^{x_{l}} f(x)dx = \frac{h}{2} [f(x_{0}) + f(x_{l})]$$

Bila selang [a,b] dibagi atas n buah pias trapezium, kaidah integrasi yang diperoleh adalah

```
\int_{a}^{b} f(x)dx = \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]
```

Algoritma:

Masukan:

fungsi yang diintegrasikan , y = f(x)

Batas bawah dan batas atas integral, a, b

Jumlah panel, n

Keluaran:

I = hasil integrasi fungsi.

Proses:

1. Tetapkan lebar panel

$$h = (b - a)/n$$

2. Nilai awal total

$$Sum = f(a)$$

3. Untuk i=1 sampai n-1 kerjakan :

$$Sum = sum + 2f(a+i*h)$$

4. Hitung hasil integral

$$I = h/2*(sum + f(b))$$

5. Selesai

Program Integrasi Numerik Metode Trapesium. 111111

Integrasi numerik - Metode Trapesium def trapesium(f, a, b, n): h = float(b-a)/nresult = 0.5*f(a) + 0.5*f(b)for i in range(1, n): result += f(a + i*h)result *= h return result

Menyelesaikan Integrasi Numerik menggunakan metode Trapesium from math import exp

```
v = lambda t: 3*(t**2)*exp(t**3) # Fungsi yang diintegralkan dari 0 sd 1
n = eval(input('n = ')) # jumlah pias
numerical = trapesium(v, 0, 1, n)
```

```
# Penyelesaian exact dan error
V = lambda t: exp(t**3)
solusi exact = V(1) - V(0)
error = solusi_exact - numerical
error_relatif = abs(error/solusi_exact)*100
# Cetak Hasil
print('Solusi Numerik = {:7.6f} '.format(numerical))
print('Solusi exact = {:7.6f} '.format(numerical))
                 = {:7.6f} '.format(error))
print('galat
print('galat relatif = {:7.6f} '.format(error_relatif))
.....
Program Integrasi Numerik
Metode Midpoint
# Integrasi numerik - Metode Midpoint
def midpoint(f, a, b, n):
  h = float(b-a)/n
  result = 0
  for i in range(n):
    result += f((a + h/2.0) + i*h)
  result *= h
  return result
# Menyelesaikan Integrasi Numerik menggunakan metode MIdpoint
from math import exp
v = lambda t: 3*(t**2)*exp(t**3) # Fungsi yang diintegralkan dari 0 sd 1
n = eval(input('n = ')) # jumlah pias
numerical = midpoint(v, 0, 1, n)
# Penyelesaian exact dan error
V = lambda t: exp(t**3)
solusi exact = V(1) - V(0)
error = solusi exact - numerical
error_relatif = abs(error/solusi_exact)*100
# Cetak Hasil
print('Solusi Numerik = {:7.6f} '.format(numerical))
print('Solusi exact = {:7.6f} '.format(numerical))
print('galat
                 = {:7.6f} '.format(error))
print('galat relatif = {:7.6f} '.format(error_relatif))
from trapezoidal import trapezoidal
from midpoint import midpoint
from math import exp
g = lambda y: exp(-y**2)
a = 0
```

```
b = 2
                             trapezoidal")
print(" n
            midpoint
for i in range(1, 21):
  n = 2**i
  m = midpoint(g, a, b, n)
  t = trapezoidal(g, a, b, n)
  # Menyelesaikan Integrasi Numerik menggunakan metode Trapesium
from math import exp
v = lambda t: 3*(t**2)*exp(t**3) # Fungsi yang diintegralkan dari 0 sd 1
n = eval(input('n = ')) # jumlah pias
numerical = trapezoidal(v, 0, 1, n)
# Penyelesaian exact dan error
V = lambda t: exp(t**3)
solusi exact = V(1) - V(0)
error = solusi exact - numerical
error relatif = abs(error/solusi exact)*100
# Cetak Hasil
print('Solusi Numerik = {:7.6f} '.format(numerical))
print('Solusi exact = {:7.6f} '.format(numerical))
                = {:7.6f} '.format(error))
print('galat relatif = {:7.6f} '.format(error_relatif))
code gabungan
from trapezoidal import trapezoidal
from midpoint import midpoint
from math import exp
g = lambda y: exp(-y**2)
a = 0
b = 2
print(" n
                             trapezoidal")
            midpoint
for i in range(1, 21):
  n = 2**i
  m = midpoint(g, a, b, n)
  t = trapezoidal(g, a, b, n)
  print('{:7d} {:20.16f} {:20.16}'.format(n, m, t))
```

b. Kaidah Simpson 1/3

Menurut kaidah Simpson, luas bidang di bawah kurva f(x) dalam selang [a,b], dapat didekati dengan

$$\int_{x_0}^{x_l} f(x)dx = \frac{h}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Bila selang [a,b] dibagi atas n buah pias, kaidah integrasi yang diperoleh adalah

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$

Algoritma:

Masukan:

fungsi yang diintegrasikan , y = f(x)

Batas bawah dan batas atas integral, a, b

Jumlah panel, n

Keluaran:

I = hasil integrasi fungsi.

Proses:

1. Tetapkan lebar panel

$$h = (b - a)/n$$

$$x = a$$

2. Nilai awal total

$$I = f(a) + f(b)$$

$$sigma = 0$$

3. Untuk i=1 sampai n-1 kerjakan:

$$x = x + h$$

If $i \mod 2 = 1$ then

$$sigma = 4 * f(x)$$

else

$$sigma = 2 * f(x)$$

end

$$I = I + sigma$$

4. Hitung hasil integral

$$I = h/3*(I)$$

5. Selesai

Tugas 06: Dengan kedua metode tersebut,

- a. Tentukan integral dari fungsi $y = x * \sin(x)$ dengan interval [0.0, pi] dengan n= 128.
- b. Tentukan galatnya!

Format Luaran Program adalah :

Hasil Program untuk Menyelesaian Integrasi Numerik
Int $x * sin(x)dx$; syarat $x(0) = 0.0$, $x(1) = pi$
dengan Metode Trapesium dan Simpson 1/3
Dibuat oleh :
Nama :
NIM :
Prog.Studi :
N H Int Trapesium Err IT % Int Simpson 1/3 Err IS 1/3 %
#.### ######### #####.##