Detection of Gauss Markov Random Fields under Routing Energy Constraint

A. Anandkumar¹ L. Tong¹ A. Swami²

¹School of Electrical and Computer Engineering Cornell University, Ithaca, NY 14853

 $^2\mathrm{Army}$ Research Laboratory, Adelphi MD 20783

Forty-fifth Annual Allerton Conference on Communication, Control, and Computing

Supported by the Army Research Laboratory CTA

Detection-Energy Tradeoff

Distributed Detection

- Quantization rule @ sensors
- Inference rule @ fusion center

Classical Routing

- Generic Performance Metric
- Layered architecture

Shortcomings of Classical Detection

- For sensors in a large field, multi-hop routing is needed
- For energy-constrained networks, loss in detection performance

Shortcomings of Classical Routing

Need only likelihood ratio for inference, not raw data at fusion center

Tradeoff between Routing and Detection in Wireless Sensor Networks

Tradeoff: Optimal Detection under Energy Constraint

Optimal Detection of Binary Hypothesis

Neyman Pearson: Min. miss detection subject to false alarm

Large Networks: $n \to \infty$

 $\max - rac{1}{n} \log P_M$ subject to false alarm and avg. routing energy $ar{E}$

Optimal Node Density λ_*

$$\lambda_* \stackrel{\Delta}{=} \arg \max_{\lambda > 0} D_{\lambda}$$
 subject to $\bar{\mathsf{C}} \leq \bar{E}$

 D_{λ} : Neyman-Pearson error exponent

C: Average Routing Energy per node

Node deployments

Setup

- Random: Nodes drawn from uniform or Poisson distribution
- Constant density λ : n nodes in area $\frac{n}{\lambda}$

Factors

- Signal & Energy Model
- Nature of Tradeoff

- $\lambda_* \to 0$ or ∞ : Large/Small area
- $\lambda_* \in (0, \infty)$: Careful Deployment

Node deployments

Setup

- Random: Nodes drawn from uniform or Poisson distribution
- ullet Constant density λ : n nodes in area $\frac{n}{\lambda}$

Factors

- Signal & Energy Model
- Nature of Tradeoff

- $\lambda_* \to 0$ or ∞ : Large/Small area
- $\lambda_* \in (0, \infty)$: Careful Deployment

Node deployments

Const. Density λ

Setup

- Random: Nodes drawn from uniform or Poisson distribution
- ullet Constant density λ : n nodes in area $\frac{n}{\lambda}$

Factors

- Signal & Energy Model
- Nature of Tradeoff

- $\lambda_* \to 0$ or ∞ : Large/Small area
- $\lambda_* \in (0, \infty)$: Careful Deployment

Node deployments

Const. Density λ

Setup

- Random: Nodes drawn from uniform or Poisson distribution
- ullet Constant density λ : n nodes in area $\frac{n}{\lambda}$

Factors

- Signal & Energy Model
- Nature of Tradeoff

- $\lambda_* \to 0$ or ∞ : Large/Small area
- $\lambda_* \in (0, \infty)$: Careful Deployment

Node deployments

$$\lambda^* \to \infty \text{ or } R \to 0$$

Setup

- Random: Nodes drawn from uniform or Poisson distribution
- ullet Constant density λ : n nodes in area $\frac{n}{\lambda}$

Factors

- Signal & Energy Model
- Nature of Tradeoff

- $\lambda_* \to 0$ or ∞ : Large/Small area
- $\lambda_* \in (0, \infty)$: Careful Deployment

Example: Same Variances, No Energy Constraint

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Assumptions

- ullet Uniform signal field: same variance at every node, under \mathcal{H}_0 and \mathcal{H}_1
- ullet Correlation decays with distance under \mathcal{H}_1

Only way to distinguish \mathcal{H}_0 and \mathcal{H}_1 : Correlation

Intuition: to maximize correlation: Minimize inter-node distance In this case, $\lambda_* \to \infty$. What happens when variances are different?

Example: Same Variances, No Energy Constraint

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Assumptions

- \bullet Uniform signal field: same variance at every node, under \mathcal{H}_0 and \mathcal{H}_1
- ullet Correlation decays with distance under \mathcal{H}_1

Only way to distinguish \mathcal{H}_0 and \mathcal{H}_1 : Correlation

Intuition: to maximize correlation: Minimize inter-node distance In this case, $\lambda_* \to \infty$. What happens when variances are different?

4 D L 4 D L 4 E L E L E L SO Q

Example: Same Variances, No Energy Constraint

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Assumptions

- ullet Uniform signal field: same variance at every node, under \mathcal{H}_0 and \mathcal{H}_1
- ullet Correlation decays with distance under \mathcal{H}_1

Only way to distinguish \mathcal{H}_0 and \mathcal{H}_1 : Correlation

Intuition: to maximize correlation: Minimize inter-node distance In this case, $\lambda_* \to \infty$. What happens when variances are different?

Variance Ratio K

K is ratio of variances under alternative and null hypotheses

No Energy constraint

Feasible Energy

Variance Ratio K

Variance Ratio K

Variance Ratio K

Variance Ratio K

Variance Ratio K

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Modeling correlation

- Gauss-Markov random field
- Correlation decays with dist.
- Partial correlation at 0
- Nearest-neighbor dependency

Min. energy routing

- NP-hard (CISS 07)
- 2-approx. algo DFMRF
- Closed-form average energy
- Constraint: bound on λ

Tractable performance metric

Closed-form Neyman Pearson error exponent (ICASSP 07)

Optimal node density

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Modeling correlation

- Gauss-Markov random field
- Correlation decays with dist.
- Partial correlation at 0
- Nearest-neighbor dependency

Min. energy routing

- NP-hard (CISS 07)
- 2-approx. algo DFMRF
- Closed-form average energy
- Constraint: bound on λ

Tractable performance metric

Closed-form Neyman Pearson error exponent (ICASSP 07)

Optimal node density

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Modeling correlation

- Gauss-Markov random field
- Correlation decays with dist.
- Partial correlation at 0
- Nearest-neighbor dependency

Min. energy routing

- NP-hard (CISS 07)
- 2-approx. algo DFMRF
- Closed-form average energy
- Constraint: bound on λ

Tractable performance metric

Closed-form Neyman Pearson error exponent (ICASSP 07)

Optimal node density

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Modeling correlation

- Gauss-Markov random field
- Correlation decays with dist.
- Partial correlation at 0
- Nearest-neighbor dependency

Min. energy routing

- NP-hard (CISS 07)
- 2-approx. algo DFMRF
- Closed-form average energy
- Constraint: bound on λ

Tractable performance metric

Closed-form Neyman Pearson error exponent (ICASSP 07)

Optimal node density

Detection of Correlation

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Modeling correlation

- Gauss-Markov random field
- Correlation decays with dist.
- Partial correlation at 0
- Nearest-neighbor dependency

Min. energy routing

- NP-hard (CISS 07)
- 2-approx. algo DFMRF
- Closed-form average energy
- ullet Constraint: bound on λ

Tractable performance metric

Closed-form Neyman Pearson error exponent (ICASSP 07)

Optimal node density

Previous Results on Detection & Routing

Routing with Aggregation

- Cond indep: Intangoniwat et al. 00, Krishnachari et al. 02
- In-network Proc. Surveys (Giridar & Kumar 06, Rajagopalan & Varshney 06)

Detection of Correlation

- Stationary Gaussian process (Donsker & Varadhan, 85)
- Gen. form exponent (Chen 96)
- Exponent for Gauss-Markov process (Sung et al. 06)

Detection-Routing

- Independent Measurements: (Yang & Blum 07, Appadwedula et al. 05, Yu & Ephremides 06)
- 1-D Gauss-Markov process:
 - Chernoff Routing (Sung et al. 06): Link-metric for detection
 - Optimal node density (Chamberland & Veeravalli 06)
- Markov random field: With 1-bit comm (Kreidl et al. 06)

Previous Results on Detection & Routing

Routing with Aggregation

- Cond indep: Intangoniwat et al. 00, Krishnachari et al. 02
- In-network Proc. Surveys (Giridar & Kumar 06, Rajagopalan & Varshney 06)

Detection of Correlation

- Stationary Gaussian process (Donsker & Varadhan, 85)
- Gen. form exponent (Chen 96)
- Exponent for Gauss-Markov process (Sung et al. 06)

Detection-Routing

- Independent Measurements: (Yang & Blum 07, Appadwedula et al. 05, Yu & Ephremides 06)
- 1-D Gauss-Markov process:
 - Chernoff Routing (Sung et al. 06): Link-metric for detection
 - Optimal node density (Chamberland & Veeravalli 06)
- Markov random field: With 1-bit comm (Kreidl et al. 06)

Previous Results on Detection & Routing

Routing with Aggregation

- Cond indep: Intangoniwat et al. 00, Krishnachari et al. 02
- In-network Proc. Surveys (Giridar & Kumar 06, Rajagopalan & Varshney 06)

Detection of Correlation

- Stationary Gaussian process (Donsker & Varadhan, 85)
- Gen. form exponent (Chen 96)
- Exponent for Gauss-Markov process (Sung et al. 06)

Detection-Routing

- Independent Measurements: (Yang & Blum 07, Appadwedula et al. 05, Yu & Ephremides 06)
- 1-D Gauss-Markov process:
 - Chernoff Routing (Sung et al. 06): Link-metric for detection
 - Optimal node density (Chamberland & Veeravalli 06)
- Markov random field: With 1-bit comm (Kreidl et al. 06)

Outline

- Introduction
- Gauss-Markov Random Field
- Minimum Energy Routing
- 4 Effect of Node Density on Exponent

Outline

- Introduction
- Gauss-Markov Random Field
- Minimum Energy Routing
- 4 Effect of Node Density on Exponent

Model for Correlated Data: Graphical Model

 $X_{i-1} \perp X_{i+1} | X_i$

Linear graph corresponding to autoregressive process of order 1

Graph of German states and states with common borders are neighbors

Temporal signals

- Conditional independence based on ordering
- Fixed number of neighbors
- Causal (random processes)

Spatial signals

- Conditional independence based on (undirected)
 Dependency Graph
- Variable set of neighbors
- Maybe acausal

Remark

Dependency graph is NOT related to communication capabilities, but to the correlation structure of data!

Markov Random Field

Definition : MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$

 $\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if PDF satisfies positivity condition and Markov property

Markov Property

- A, B, C are disjoint
- ullet A, B non-empty
- C separates A, B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$

Markov Random Field

Definition : MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$

 $\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if PDF satisfies positivity condition and Markov property

Markov Property

- A, B, C are disjoint
- ullet A, B non-empty
- C separates A, B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$

Markov Random Field

Definition : MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$

 $\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if PDF satisfies positivity condition and Markov property

Markov Property

- A, B, C are disjoint
- ullet A, B non-empty
- C separates A, B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$

Likelihood Function of MRF

Hammersley-Clifford Theorem (1971)

For a MRF \mathbf{Y} with dependency graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E}_d)$,

$$\log \mathbb{P}(\mathbf{Y}; \mathcal{G}_d) = Z + \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c), \ Z \stackrel{\Delta}{=} e^{-\int \prod_{\mathbf{Y}} \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)},$$

where ${\mathcal C}$ is the set of all cliques in ${\mathcal G}_d$ and Ψ_C the clique potential

Dependency Graph

Potential Matrix of GMRF

Potential Matrix

- Inverse of covariance matrix of a GMRF
- Non-zero elements of Potential matrix correspond to graph edges

Dependency Graph

× : Non-zero element of Potential Matrix

Form of Log-Likelihood of zero-mean GMRF with potential matrix ${\bf A}$

$$-\log P(\mathbf{Y}_n; \mathcal{G}_d, \mathbf{A}) = \frac{1}{2} \left(-n \log 2\pi + \log |\mathbf{A}| + \sum_{(i,j) \in \mathcal{E}_d} \mathbf{A}(i,j) \mathbf{Y}_i \mathbf{Y}_j + \sum_{i \in \mathcal{V}} \mathbf{A}(i,i) \mathbf{Y}_i^2 \right)$$

Acyclic Dependency Graph

Given Covariance matrix, closed-form expression of likelihood

Hypothesis Testing for Independence

 \mathcal{H}_1 : GMRF with dep. graph \mathcal{G}_d

 \mathcal{H}_0 : IID Gaussian

LLR=Node + Edge Potentials

$$\mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}.$$

Dependency Graph

Proximity graph: Nearest-neighbor

Nearest-Neighbor Graph

(i, j): i nearest nbr of j, vice-versa

Correlation fn.

- Fn. of NNG edge length
- $g(0) = M < 1, \quad g(\infty) = 0$
- Decreasing, convex in edge-length

Hypothesis Testing for Independence

 \mathcal{H}_1 : GMRF with dep. graph \mathcal{G}_d

 \mathcal{H}_0 : IID Gaussian

LLR=Node + Edge Potentials

$$\mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}.$$

Dependency Graph

Proximity graph: Nearest-neighbor

Nearest-Neighbor Graph

(i, j): i nearest nbr of j, vice-versa

Correlation fn.

- Fn. of NNG edge length
- $g(0) = M < 1, \quad g(\infty) = 0$
- Decreasing, convex in edge-length

Hypothesis Testing for Independence

 \mathcal{H}_1 : GMRF with dep. graph \mathcal{G}_d

 \mathcal{H}_0 : IID Gaussian

LLR=Node + Edge Potentials

$$\mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}.$$

Dependency Graph

Proximity graph: Nearest-neighbor

Nearest-Neighbor Graph

(i, j): i nearest nbr of j, vice-versa

Correlation fn.

- Fn. of NNG edge length
- $g(0) = M < 1, \quad g(\infty) = 0$
- Decreasing, convex in edge-length

Hypothesis Testing for Independence

 \mathcal{H}_1 : GMRF with dep. graph \mathcal{G}_d

 \mathcal{H}_0 : IID Gaussian

LLR=Node + Edge Potentials

$$\mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}.$$

Dependency Graph

Proximity graph: Nearest-neighbor

Nearest-Neighbor Graph

(i, j): i nearest nbr of j, vice-versa

Correlation fn.

- Fn. of NNG edge length
- $g(0) = M < 1, \quad g(\infty) = 0$
- Decreasing, convex in edge-length

Outline

- Introduction
- Gauss-Markov Random Field
- 3 Minimum Energy Routing
- 4 Effect of Node Density on Exponent

Minimum Energy Routing for Optimal Inference

Minimum Energy Routing for Inference

Minimize total energy of routing such that LLR is delivered to fusion center

LLR=Node + Edge Potentials

$$\mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}$$

DFMRF: data fusion in MRF

2-Approximation: $\frac{C(DFMRF)}{C(G_*)} \le 2$

Network and Energy Model

- Connected UDG, Power control
- Transmission: Power law attenuation

Minimum Energy Routing for Optimal Inference

Minimum Energy Routing for Inference

Minimize total energy of routing such that LLR is delivered to fusion center

LLR=Node + Edge Potentials

$$\mathsf{LLR}(\mathbf{Y}_n;\mathcal{G}_d) = \sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}$$

DFMRF: data fusion in MRF

2-Approximation:
$$\frac{\mathsf{C}(\mathsf{DFMRF})}{\mathsf{C}(\mathcal{G}_*)} \leq 2$$

Network and Energy Model

- Connected UDG, Power control
- Transmission: Power law attenuation

A. Anandkumar, L.Tong, A. Swami (Cornell)

Minimum Energy Routing for Optimal Inference

Minimum Energy Routing for Inference

Minimize total energy of routing such that LLR is delivered to fusion center

LLR=Node + Edge Potentials

$$\mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}$$

DFMRF: data fusion in MRF

2-Approximation:
$$\frac{\mathsf{C}(\mathsf{DFMRF})}{\mathsf{C}(\mathcal{G}_*)} \leq 2$$

Network and Energy Model

- Connected UDG, Power control
- Transmission: Power law attenuation

A. Anandkumar, L.Tong, A. Swami (Cornell)

Raw-data transmission phase

Tx raw data over NNG, compute edge potential locally

Raw-data transmission phase

Tx raw data over NNG, compute edge potential locally

- Init: Leaves of AG transmit local contribution
- ullet Recursion: If i has received from all predecessors, transmits sum
- Stop: Fusion center computes its aggregate

Raw-data transmission phase

Tx raw data over NNG, compute edge potential locally

- Init: Leaves of AG transmit local contribution
- Recursion: If i has received from all predecessors, transmits sum
- Stop: Fusion center computes its aggregate

Raw-data transmission phase

Tx raw data over NNG, compute edge potential locally

- Init: Leaves of AG transmit local contribution
- Recursion: If i has received from all predecessors, transmits sum
- Stop: Fusion center computes its aggregate

Raw-data transmission phase

Tx raw data over NNG, compute edge potential locally

- Init: Leaves of AG transmit local contribution
- Recursion: If i has received from all predecessors, transmits sum
- Stop: Fusion center computes its aggregate

Outline

- Introduction
- Gauss-Markov Random Field
- Minimum Energy Routing
- 4 Effect of Node Density on Exponent

LLN for graph functionals (Penrose & Yukich, 02)

Pictorial Representation of result

Remarks

LLN states that limit is a localized effect around origin

Use LLN to find error exponent

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \lim_{n \to \infty} \frac{1}{n} [\sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}] \quad \mathbf{Y}_n \sim \mathcal{H}_0$$

Closed-form D: Correlation + IID terms

$$D(\lambda,K;g) = \frac{1}{2}\mathbb{E}_{\lambda}\,h\big(Z\lambda^{-0.5},K;g\big) + D_{IID}(K)$$

Variance Ratio K of Signal Model

K is ratio of mean signal powers under alternative and null hypotheses

Avg. energy for DFMRF

Tran. + Proc. Energies
$$\bar{C} = \lambda^{-\frac{\nu}{2}} C_{r,c}(\nu)$$

$$\bar{\mathsf{C}} \leq \bar{E} \Rightarrow \lambda \geq \lambda_E \stackrel{\triangle}{=} \left(\frac{(\bar{E} - C_p)^+}{C_t c_c(\nu)} \right)$$

Use LLN to find error exponent

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \lim_{n \to \infty} \frac{1}{n} [\sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}] \quad \mathbf{Y}_n \sim \mathcal{H}_0$$

Closed-form D: Correlation + IID terms

$$D(\lambda, K; g) = \boxed{\frac{1}{2} \mathbb{E}_{\lambda} h(\lambda^{-0.5} Z, K; g)} + D_{IID}(K)$$

Variance Ratio K of Signal Model

K is ratio of mean signal powers under alternative and null hypotheses

Tran. + Proc. Energies
$$\bar{C} = \lambda^{-\frac{\nu}{2}} C_t c_e(\nu) + C_r$$

$$\bar{\mathsf{C}} \leq \bar{E} \Rightarrow \pmb{\lambda} \geq \pmb{\lambda}_{\underline{E}} \stackrel{\triangle}{=} \Big(\frac{(\bar{E} - C_p)^+}{C_t c_e(\nu)}\Big)^{\frac{2}{\nu}}$$

Use LLN to find error exponent

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \lim_{n \to \infty} \frac{1}{n} [\sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}] \quad \mathbf{Y}_n \sim \mathcal{H}_0$$

Closed-form D: Correlation + IID terms

$$D(\lambda,K;g) = \frac{1}{2}\mathbb{E}_{\lambda} \, h\!\left(Z\lambda^{-0.5},K;g\right) + \boxed{D_{IID}(K)}$$

Variance Ratio K of Signal Model

K is ratio of mean signal powers under alternative and null hypotheses

Tran. + Proc. Energies
$$\bar{C} = \lambda^{-\frac{\nu}{2}} C_t c_e(\nu) + C_n$$

$$\bar{\mathsf{C}} \leq \bar{E} \Rightarrow \pmb{\lambda} \geq \pmb{\lambda}_{\underline{E}} \stackrel{\triangle}{=} \Big(\frac{(\bar{E} - C_p)^+}{C_t c_e(\nu)}\Big)^{\frac{2}{\nu}}$$

Allerton 2007

Use LLN to find error exponent

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) = \lim_{n \to \infty} \frac{1}{n} [\sum_{i \in \mathcal{V}} \Phi_i + \sum_{(i,j) \in \mathcal{E}_d} \Phi_{i,j}] \quad \mathbf{Y}_n \sim \mathcal{H}_0$$

Closed-form D: Correlation + IID terms

$$D(\lambda,K;g) = \frac{1}{2}\mathbb{E}_{\lambda} h(Z\lambda^{-0.5},K;g) + D_{IID}(K)$$

Variance Ratio K of Signal Model

K is ratio of mean signal powers under alternative and null hypotheses

Avg. energy for DFMRF

Tran. + Proc. Energies
$$\bar{\mathsf{C}} = \textcolor{red}{\lambda}^{-\frac{\nu}{2}}\,C_t c_e(\nu) + C_p$$

Constraint leads to bound on λ

$$\bar{\mathsf{C}} \leq \bar{E} \Rightarrow \textcolor{red}{\textcolor{blue}{\lambda}} \geq \textcolor{blue}{\textcolor{blue}{\lambda_E}} \underline{\overset{\Delta}{=}} \Big(\frac{(\bar{E} - C_p)^+}{C_t c_e(\nu)} \Big)^{\frac{2}{\nu}}$$

Results on Optimal Node Density

Modified Optimization

$$\lambda_* \stackrel{\Delta}{=} \arg\max_{\lambda>0} D_\lambda \quad \text{subject to } \bar{\mathsf{C}} \leq \bar{E} \text{ becomes } \lambda_* = \arg\max_{\lambda>0} D_\lambda \text{, } \lambda \geq \lambda_E$$

Thresholds in terms of M: correlation at zero

$$K_t(M) = -\frac{1}{\log(1 - M^2)} \frac{2M^2}{1 - M^2}, \quad K'_t(M) = \frac{2}{1 - M^2}$$

Idea of Proof: Behavior at $\lambda = \infty$

Tight Energy Constraint: $\bar{E} \rightarrow 0$

Energy constraint satisfied when $\lambda \to \infty$ and Max. correlation at $\lambda = \infty$

At $\lambda = \infty$: Contribution from corr. has a threshold

Contribution from correlation at
$$\lambda = \infty$$
 $\left\{ \begin{array}{ll} <0, & \text{ for } K>K_t(M) \\ \geq 0, & \text{ for } K< K_t(M) \end{array} \right.$

Conclusion

Summary

- Characterized node density λ_* that maximizes detection error exponent subject to a average energy constraint
- Measurement variance ratio is crucial
 - Determines whether energy constraint limits detection performance
 - Optimal density displays a threshold behavior
- Derived threshold value analytically and verified it with simulations

Outlook

- Selection of nodes with "useful" data, node and link failures
- Extend to other dependency models
- Quantization of measurements
- Mobility of nodes/ coverage area of nodes

Conclusion

Summary

- Characterized node density λ_* that maximizes detection error exponent subject to a average energy constraint
- Measurement variance ratio is crucial
 - Determines whether energy constraint limits detection performance
 - Optimal density displays a threshold behavior
- Derived threshold value analytically and verified it with simulations

Outlook

- Selection of nodes with "useful" data, node and link failures
- Extend to other dependency models
- Quantization of measurements
- Mobility of nodes/ coverage area of nodes

Thank You!

LLR

$$\begin{aligned} \mathsf{LLR}(\mathbf{Y}_n, \mathcal{V}) & \stackrel{\Delta}{=} & \log \frac{p[\mathbf{Y}_n, \mathcal{V}; \mathcal{H}_0]}{p[\mathbf{Y}_n, \mathcal{V}; \mathcal{H}_1]} = \log \frac{p[\mathbf{Y}_n; \mathcal{H}_0]}{p[\mathbf{Y}_n | \mathcal{V}; \mathcal{H}_1]}, \\ & = & \frac{1}{2} \Big(\log \frac{|\mathbf{\Sigma}_{1, \mathcal{V}}|}{|\sigma_0^2 \mathbf{I}|} + \mathbf{Y}_n^T [\mathbf{\Sigma}_{1, \mathcal{V}}^{-1} - (\sigma_0^2 \mathbf{I})^{-1}] \mathbf{Y}_n \Big), \\ \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d) & = \sum_{i \in \mathcal{V}} \phi_i(Y_i) + \sum_{(i, j) \in \mathcal{E}_d} \phi_{i, j}(Y_i, Y_j) \\ \phi_{i, j}(i, j) & \stackrel{\Delta}{=} & \frac{1}{2} \log[1 - g^2(R_{ij})] - \frac{g(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i Y_j}{\sigma_1^2} \\ & + \frac{g^2(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i^2 + Y_j^2}{2\sigma_1^2} \\ \phi_i(Y_i) & \stackrel{\Delta}{=} \log \frac{\sigma_1}{\sigma_0} + \frac{1}{2} \Big(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2} \Big) Y_i^2 \to D_{IID}(K) \end{aligned}$$

26 / 26