

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **04-163528**
 (43)Date of publication of application : **09.06.1992**

(51)Int.Cl. **G02F 1/136**
 G02F 1/1333

(21)Application number : **02-292719**
 (22)Date of filing : **29.10.1990**

(71)Applicant : **SHARP CORP**
 (72)Inventor : **NISHIMURA KENICHI**
TANAKA HIROHISA
HISHIDA TADANORI

(54) ACTIVE MATRIX DISPLAY

(57)Abstract:

PURPOSE: To keep off any possible separation at the time of patterning for a transparent electrode by forming a transparent insulating film into a multilayer film where an organic insulating film and an inorganic insulating film are laminated in order.

CONSTITUTION: A layer insulating film is formed into a two-layer structure consisting of an organic insulating film 10 and an inorganic insulating film 110 interposing between this organic insulating film 10 and a picture element electrode 11. This inorganic insulating film 110 is formed so as to cover the whole upper part of the organic insulating film 10, and there is provided a contact hole for connecting the picture element electrode 11 to a drain electrode 8 as well. In this case, this contact hole is made smaller than another contact hole formed in the insulating film 10. With this constitution, any possible separation at the time of patterning for the picture element electrode is thus preventable.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑩日本国特許庁(JP)

⑪特許出願公開

⑫公開特許公報(A) 平4-163528

⑬Int.Cl.³

G 02 F 1/196
1/1333

識別記号

500
505

府内整理番号

9018-2K
8806-2K

⑭公開 平成4年(1992)6月9日

審査請求 未請求 領求項の数 3 (全6頁)

⑮発明の名称 アクティブマトリクス表示装置

⑯特 願 平2-292719

⑰出 願 平2(1990)10月29日

⑱発明者 西村 健一 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社
内

⑲発明者 田仲 広久 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社
内

⑳発明者 斎田 忠則 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社
内

㉑出願人 シャープ株式会社 大阪府大阪市阿倍野区長池町22番22号

㉒代理人 弁理士 梅田 勝 外2名

明 細 書

1. 発明の名称

アクティブマトリクス表示装置

2. 特許請求の範囲

1. 絶縁性透明基板、該基板上に設けられた薄膜トランジスタアレイ、該薄膜トランジスタアレイを覆うように形成された透明絶縁膜及び該透明絶縁膜に形成されたコンタクトホールを介して前記薄膜トランジスタアレイの各薄膜トランジスタのドレイン電極と電気的に接続している臉電極を有するアクティブマトリクス表示装置にあって、前述透明絶縁膜が有機系絶縁膜、無機系絶縁膜の層に構成された多層膜であることを特徴とするアクティブマトリクス表示装置。
2. 前記有機系絶縁膜がポリイミド樹脂膜またはアクリル樹脂膜であることを特徴とする特許請求の範囲第1項記載のアクティブマトリクス表示装置。
3. 前記無機系絶縁膜が酸化シリコン膜または塗化シリコン膜であることを特徴とする特許請求

の範囲第1項記載のアクティブマトリクス表示装置。

3. 発明の詳細な説明

<産業上の利用分野>

本発明は、アクティブマトリクス表示装置の構造に関するものであり、特に高精細液晶表示装置に用いる薄膜トランジスタ(以下TFTと略称する。)アクティブマトリクス表示装置の構造に関するものである。

<従来の技術>

アクティブマトリクス表示装置、特に液晶を用いるアクティブマトリクス表示装置は表示コントラストが高く、表示容量に制約が少ないので利点があるため研究開発が盛んに行なわれており、実用化も進みつつある。ところがアクティブマトリクス表示装置に用いられるアクティブマトリクス基板は製造工程が複雑で歩留りが低いため、コストが高いという欠点がある。

典型的なアクティブマトリクス基板について、その主要な部分の平面図を第8図に、その部分の

特開平4-163528(2)

断面図を第4図に示す。このアクティブマトリクス基板は、透明絶縁性基板1と、この透明絶縁性基板1上にマトリクス状に配列された給糸電極11と、ゲートバス配線3と、ソースバス配線7と、これら給糸電極11、ゲートバス配線3及びソースバス配線7に接続されているスイッチング素子であるTFTを有する。

前記透明絶縁性基板1上に形成されたTFT近傍の断面構造は、第4図に示す通りである。透明絶縁性基板1上にゲート電極2が形成され、ゲート電極2は基板1上の全面に形成されているゲート絶縁膜4によって覆われている。ゲート電極2の上方のゲート絶縁膜4上には、アモルファスシリコン(以下ではa-Siと略称する)からなる半導体層5が形成されている。半導体層5上には開端部において \pm a-Siからなるコンタクト層(図示していない。)が形成され、コンタクト層上にはそれぞれソース電極6とドレイン電極8が形成されている。ソース電極6はドレイン電極8とは反対側の部分においてソースバス配線7

に接続している。このソースバス配線7はソース電極6の上記部分と同様にゲート絶縁膜4上に形成されている。そして、前記給糸電極11は大部分が絶縁膜4上に形成される一方で一部分が前記ドレイン電極8上に重畳して形成されている。なお、前記ゲート電極2はゲートバス配線(図示せず)に接続されている。

このようにして形成されているTFT上には保護膜(図示せず)が形成され、更にこのようにして形成された透明絶縁性基板1上の全面には配向膜(図示せず)が形成され、この基板を配向膜、透明電極等が形成されている透明絶縁性基板(図示せず)との間に液晶層を封入することによりアクティブマトリクス液晶表示装置が形成される。

ところが、前記のように形成されたアクティブマトリクス基板には不良の発生があることがある。この不良の原因につきソースバス配線7と給糸電極11との間のショートがある。これは、ソースバス配線7と給糸電極11とは同じゲート絶縁膜4上に形成されているばかりでなく、相互の間

隔が高精度にすればする程接近することが要因と考えられる。

そこで、このソースバス配線7と給糸電極11との間のショートを防止するためには、当該配線7と給糸電極11とを異なる層上に形成する構造が提案される。

第5図は、ソースバス配線と給糸電極を別の層に形成したアクティブマトリクス基板の断面図を示す。第5図において第4図と同等部分は同一符号で示す。層間絶縁膜10は、TFTが形成されている透明絶縁性基板1のほぼ全面に形成されている。この層間絶縁膜10はTFTのドレイン電極8の端部の中央部上面において欠如しているホールが形成されており、このホールが層間絶縁膜10上に形成されている給糸電極11をドレイン電極8に電気的に接続するためのコンタクトホール12として寄与している。即ち、給糸電極11は層間絶縁膜10上から上記ドレイン電極8の端部上を離すよう形成されている。

このような構造のアクティブマトリクス基板は、

ソースバス配線7と給糸電極11はそれらの間に層間絶縁膜10が存在する立体的構造をしていることから、平面に投影した場合の間隔をなくすることは可能となる。この構造のアクティブマトリクス基板の平面図を第6図に示しており、この図から明らかのようにソースバス配線7と給糸電極11が重なっている。左、重なっている部分は第6図に斜線で示す。又、ゲートバス配線3と給糸電極が重なっている部分も斜線で示す。従って給糸電極11の面積を大きくすることができる。給糸電極11の面積が大きいと、表示位置に用いた場合の開口率が大きくなり表示品位が高まるという利点もある。更に、この層間絶縁膜10をボリミド樹脂などの樹脂を露布することにより形成すると、アクティブマトリクス基板表面の段差を平坦化することができ、既製表示装置に用いた場合に問題となる段差による液晶の配向不良を低減することができる。

このようなアクティブマトリクス基板は、以下のようにして製造される。まず、ガラス等の透明

特開平4-163528(8)

絶縁性の基板1の上にTa・Cr等から成るゲート電極2を形成する。次に、SiNx、SiOx等から成るゲート絶縁膜4、非晶質シリコン(以下、-Siと略す)、多結晶シリコン、CdSe等から成る半導体層5を複層する。更に、Ti、Mo、Al等から成るソース電極6及びドレイン電極8を形成する。通常、オーミックコンタクトを取るために半導体層5とソース電極6及びドレイン電極8の間にリンをドープした⁺-Si(以下、⁺-Siと略す)が設けられる。最後に、ポリイミド樹脂・ケタリル樹脂等から成る有機系遮断絶縁膜10、ITO等の透明導電膜から成る絶縁電極11を形成する。

<発明が解決しようとする課題>

前記遮断絶縁膜となる有機系絶縁膜上に直接絶縁電極となる透明電極膜例えば金属酸化物例えばITO (Indiumtin oxide) の膜をバーナーングすると、有機系絶縁膜とITOの膜の密着性が悪いため、ITOのはがれが起こる。このようなはがれが発生するとアクリティブマトリクス基

板の歩留りを低下させ、コスト高を招き、このアクティブマトリクス基板を用いている表示装置の問題となる。

<作 用>

本発明によれば、有機系絶縁膜と絶縁電極膜である透明電極膜との間に無機系絶縁膜が介在しており、絶縁電極膜は無機系絶縁膜上に配置されたために密着性が高まり、はがれが防止できる。ここで、無機系絶縁膜を酸化シリコン膜、窒化シリコン膜等の無機系材料であるが、実施例ではポリイミド樹脂の例を挙げる。そして、前記無機系絶縁膜110は酸化シリニン膜、窒化シリコン膜等の無機系材料であるが、実施例では酸化シリコンの例を挙げる。又、有機系絶縁膜10の膜厚は3000~20000Å程度とすることができる。無機系絶縁膜110の膜厚は500~6000Å程度とすることができる。そして絶縁電極11の膜厚は500~2000Åとすることができる。この無機系絶縁膜110は、有機系絶縁膜10の上方全面を覆うよう形成されており、絶縁電極11がドレイン電極8と接続するためのコンタクトホールは絶縁膜110に形成されているコンタクトホールよ

板の歩留りを低下させ、コスト高を招き、このアクティブマトリクス基板を用いている表示装置の問題となる。

そこで、本発明はアクティブマトリクス表示装置に用いるアクティブマトリクス基板にあって、絶縁電極である透明電極のバーナーニング時のはがれが防止しうるアクティブマトリクス基板の提供を目的とする。

<課題を解決するための手段>

本発明のアクティブマトリクス表示装置によれば、絶縁透明基板、該基板上に設けられた薄膜トランジスタアレイ、該薄膜トランジスタアレイを覆うように形成された透明絶縁膜及び該透明絶縁膜に形成されたコンタクトホールを介して前記薄膜トランジスタアレイの各薄膜トランジスタのドレイン電極と電気的に接続している給電電極を有するアクティブマトリクス表示装置にあって、前記透明絶縁膜が有機系絶縁膜、無機系絶縁膜の順に構成された多層膜とすることによって上記目的が達成される。なお、ここで前記有機系絶縁膜

を第1図に示す。第1図において、第5図と同等部分は同一符号にて示している。第1図において層間絶縁膜が有機系絶縁膜10と、その有機系絶縁膜10と給電電極11との間に介在する無機系絶縁膜110との2層構造となっている。

この有機系絶縁膜10はポリイミド樹脂、アクリル樹脂等の有機系材料であるが、実施例ではポリイミド樹脂の例を挙げる。そして、前記無機系絶縁膜110は酸化シリニン膜、窒化シリコン膜等の無機系材料であるが、実施例では酸化シリコンの例を挙げる。又、有機系絶縁膜10の膜厚は3000~20000Å程度とすることができる。無機系絶縁膜110の膜厚は500~6000Å程度とすることができる。そして絶縁電極11の膜厚は500~2000Åとすることができる。この無機系絶縁膜110は、有機系絶縁膜10の上方全面を覆うよう形成されており、絶縁電極11がドレイン電極8と接続するためのコンタクトホールは絶縁膜110に形成されているコンタクトホールよ

特開平4-163528(4)

り小さくされている。なお、該基板絶縁膜110は、この実施例では有機系絶縁膜10の全面を覆うように形成されている例を説明したが、給電電極11のはがれ防止の目的からは給電電極11に対応する部分乃至それより一まわり大きく形成することもできる。

第1図に示す、本発明の一実施例であるアクティピマトリクス基板の製造方法を第2図(a), (b), (c)に従って説明する。まず、ガラス基板1上に、スパッタリング法により 3000 \AA のTa膜を形成して、フォトリソグラフィによりパターニングしてゲート電極2とする。次に、プラズマCVD法により 4000 \AA のSiNxから成るゲート絶縁膜4、 1600 \AA のn-Siから成る半導体層5及び 400 \AA のn⁺-S1層9を連続して形成して、パターニングする。更に、スパッタリング法により 2000 \AA のMoを形成して、ソース電極6及びドレイン電極8の形状にパターニングするととによりTFTアレイをマトリクス状に形成する(第2図(c))。このときソース電極6と接続

するソースバス配線7も形成される。ポリイミド樹脂を1μm塗布し、バーニングし、右側系絶縁膜10を形成する。次に、スパッタリング法により、 1000 \AA のS10₁膜を形成し、コンタクトホールの径がポリイミド樹脂バーニングしたときのマスクよりも小さいマスクを用いてバーニングし、無機系絶縁膜110を形成する。

(第2図(d))最後に、スパッタリング法により、 1000 \AA のITO膜を形成し、給電電極の形状にバーニングし、給電電極11を形成する(第2図(e))。

前記実施例のアクティピマトリクス基板においては、層間絶縁膜が有機系絶縁膜10であるポリイミド樹脂膜10の上面に形成された、無機系絶縁膜110であるS10₁膜110の上面に、更に給電電極11であるITO11が形成されているため、ITOはS10₁膜との密着性が良くはがれが防止される。そして、このアクティピマトリクス基板を液晶表示電子に用いる場合には、該アクティピマトリクス基板上に液晶の配向膜として更

にポリイミド樹脂が塗布されることとなるが、ポリイミド樹脂膜10の上面が酸化シリコン膜110で覆われるのでポリイミド樹脂膜10に悪影響を及ぼすことがない。即ち、第5図に示すアクティピマトリクス基板のように給電電極11が層間絶縁膜10を部分的に覆っている場合、液晶の配向膜として更にポリイミド樹脂を直接塗布すると、該ポリイミド樹脂が層間絶縁膜10であるポリイミド樹脂に接着するため、層間絶縁膜10用のポリイミド樹脂が膨潤し、クラックや剥離が生じやすくなる。

＜発明の効果＞

本発明のアクティピマトリクス表示装置に用いるアクティピマトリクス基板によれば、給電電極がバーニング時の剥がれが防止できる。この結果、アクティピマトリクス基板の歩留まりが向上し、アクティピマトリクス表示装置の実用性を高

めることができる効果がある。

4. 図面の簡単な説明

第1図は本発明のアクティピマトリクス表示装置に用いるアクティピマトリクス基板の一実施例を示す断面図を示し、

第2図(a), (b), (c)は本発明の実施1実施例の製造工程を示す断面図を示し、

第3図は従来構造のアクティピマトリクス基板の要部平面図を示し、

第4図は従来構造のアクティピマトリクス基板の前面図を示し、

第5図は従来構造を改良したアクティピマトリクス基板の断面図を示し、

第6図は改良されたアクティピマトリクス基板の要部平面図を示す。

1：透明絶縁性基板	2：ゲート電極
3：ゲートバスライン	4：ゲート絶縁膜
5：n-Si膜	6：ソース電極
7：ソースバスライン	8：ドレイン電極
9：n ⁺ -S1膜	10：有機系絶縁膜 (有機系絶縁膜)

特開平 4-163528(5)

111：絶縁電極 112：コンタクトホール
110：熱機系絶縁膜

代理人弁理士梅田勝(他2名)

第1図

第2図

第3図

特開平 4-163528(6)

図 4 図

図 5 図

図 6 図

特開平4-163528

Ⅲ 特許請求の範囲

1. 電解池電極、該電極とに取付けられた電極トランシスタアレイ、該電極トランシスタアレイを複数ように配置された均等部及び均温部に形成されたコンタクトホールを介して所述電極トランシスタアレイの各電極トランシスタウドライン状態と導通状態とに遮断している構造電極を有するアクティブマトリクス液晶装置にあって、
前記构造部が荷電部端子と該构造部熱障壁を備て厚みをもつた熱吸収板部との接触部であることを特徴とするアクティブマトリクス液晶装置。
2. 前記荷電部端子がダイレクト接続またはアクティブ駆動部であることを特徴とする既存技術の現実的且は実用的かつ技術的リスクを考慮。
3. 前記构造部熱障壁が電化シコン部または被覆シコン部であることを特徴とする既存技术の現実的且は実用的かつ技術的リスクを考慮。