

EI

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

- (51) International Patent Classification: C12N 15/57, C07K 14/47, C07K 16/18, C07K 19/00, C12N 1/21, C12N 5/10, C12N 9/64, C12N 15/12, C12N 15/62, C12N 15/85, C12Q 1/37, G01N 33/68
- A2 (11) International Publication Number:

WO 00/17369

(43) International Publication Date:

30 March 2000 (30.03.2000)

(21) International Application Number:

PCT/US99/20881

(22) International Filing Date: 23 September 1999 (23.09.1999)

Published

(30) Priority Data:

60/101,594 24 September 1998 (24.09.1998) US

(60) Parent Application or Grant

PHARMACIA & UPJOHN COMPANY [/]; (). GURNEY, Mark, E. [/]; (). BIENKOWSKI, Michael, Jerome [/]; (). HEINRIKSON, Robert, Leroy [/]; (). PARODI, Luis, A. [/]; (). YAN, Riqiang [/]; (). GURNEY, Mark, E. [/]; (). BIENKOWSKI, Michael, Jerome [/]; (). HEINRIKSON, Robert, Leroy [/]; (). PARODI, Luis, A. [/]; (). YAN, Riqiang [/]; (). WOOTTON, Thomas, A.; ().

(54) Title: ALZHEIMER'S DISEASE SECRETASE

(54) Titre: SECRETASE DE LA MALADIE D'ALZHEIMER

(57) Abstract

The present invention provides the enzyme and enzymatic procedures for cleaving the 'beta' secretase cleavage site of the APP protein and associated nucleic acids, peptides, vectors, cells and cell isolates and assays.

(57) Abrégé

La présente invention porte sur l'enzyme et les procédures enzymatiques de clivage du site de clivage de la 'beta' secrétase de la protéine APP et des acides nucléiques, des peptides, des vecteurs, des cellules et des isolats cellulaires associés, et sur des dosages.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/57, 15/62, 15/85, 5/10, 9/64,
C07K 19/00, 14/47, C12N 15/12, C07K
16/18, C12Q 1/37, G01N 33/68, C12N

(43) International Publication Date: 30 March 2000 (30.03.00)

(74) International Application Number: PCT/IIS99/20881 (74) Agent: WOOTTON, Thomas, A.; Pharmacia & Upjohn Com-

(21) International Application Number: PCT/US99/20881 (74) Agent: WOOTTON, Thomas, A.; Pharmacia & Upjohn Cempany, Intellectual Property Legal Services, 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(71) Applicant (for all designated States except US): PHARMACIA

24 September 1998 (24.09.98)

(71) Applicant (for all designated States except US): PHARMACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only); GURNEY, Mark, E. | US/US|; 910 Rosewood Avenue, S.E., Grand Rapids, MI 49506 (US). BIENKOWSKI, Michael, Jerome [US/US]; 3431 Hollow Wood, Portage, MI 49024 (US). HEINRIK-SON, Robert, Leroy [US/US]; 81 South Lake Doster Drive, Plainwell, MI 49080 (US). PARODI, Luis, A. [US/SE]; Grevgafan 24, S-115 43 Stockholm (SE). YAN, Riqiang [US/US]; 5026 Queen Victoria Street, Kalamazoo, MI 49009 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished upon receipt of that report.

(54) Title: ALZHEIMER'S DISEASE SECRETASE

(57) Abstract

(30) Priority Data:

60/101,594

The present invention provides the enzyme and enzymatic procedures for cleaving the β secretase cleavage site of the APP protein and associated nucleic acids, peptides, vectors, cells and cell isolates and assays.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT.	A Ibania	ES	Spain		LS	Lesotho	SI	Slovenia
AM	Atmeria	FI	Finland		LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	_	LU	Luxembourg	SN	Senegal
ΑU	Australia	GΛ	Gabon		LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	CB	United Kingdom		MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia		MD	Republic of Moldova	1 G	Togo
ВВ	Barhados	GH	Ghana		MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea		MK	The former Yugoslav	1M	Turkmenistan
BF	Burkina Faso	GR	Greece			Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary		ML	Mali	TT	Trinidad and Tobago
ВJ	Bonin	IE	Ireiand		MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel		MR	Mauritania	ĽG	Uganda
BY	Belarus	18	Iceland		MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy		MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan		NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya		NL	Netherlands	ΥU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan		NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's		NZ	New Zealand		
CM	Cameroon		Republic of Korea		PL	Poland		
CN	China	KR	Republic of Korea		PT	Portugal		
CU	Cuba	KZ	Kazakstan		RO	Romania		
CZ	Czech Republic	LC	Saint Lucia		RU	Russian Federation		
DE	Germany	LI	Liechtenstein		SD	Sudan		
DK	Denmark	LK	Sri Lanka		SE	Sweden		
BE	Estonia	LŔ	Liberia		SG	Singapore		

Description

Alzheimer's Disease Secretase

5

FIELD OF THE INVENTION

to contribute to AD.

30

10

15

20

25

30

35

40

45

The present invention related to the field of Alzheimer's Disease, APP, amyloid beta peptide, and human aspartyl proteases as well as a method for the identification of agents that modulate the activity of these polypeptides.

BACKGROUND OF THE INVENTION

Alzheimer's disease (AD) causes progressive dementia with consequent formation of amyloid plaques, neurofibrillary tangles, gliosis and neuronal loss. The disease occurs in both genetic and sporadic forms whose clinical course and pathological features are quite similar. Three genes have been discovered to date which when mutated cause an autosomal dominant form of Alzheimer's disease. These encode the amyloid protein precursor (APP) and two related proteins, presenilin-1 (PS1) and presenilin-2 (PS2), which as their names suggest are both structurally and functionally related. Mutations in any of the three enhance proteolytic processing of APP via an intracellular pathway that produces amyloid beta peptide or the Aβ peptide (or sometimes here as Abeta), a 40-42 amino acid long peptide Dysregulation of intracellular that is the primary component of amyloid plaque in AD. pathways for proteolytic processing may be central to the pathophysiology of AD. In the case of plaque formation, mutations in APP, PS1 or PS2 consistently alter the proteolytic processing of APP so as to enhance formation of AB 1-42, a form of the AB peptide which seems to be particularly amyloidogenic, and thus very important in AD. Different forms of APP range in size from 695-770 amino acids, localize to the cell surface, and have a single C-terminal transmembrane domain. The Abeta peptide is derived from a region of APP adjacent to and containing a portion of the transmembrane domain. Normally, processing of APP at the α -secretase site cleaves the midregion of the A β sequence adjacent to the membrane and releases the soluble, extracellular domain of APP from the cell surface. This α -secretase APP processing, creates soluble APP- α , and it is normal and not thought

Pathological processing of APP at the β - and γ -secretase sites produces a very different result than processing at the α site. Sequential processing at the β - and γ -secretase sites releases the A β peptide, a peptide possibly very important in AD pathogenesis. Processing at the β - and γ -secretase sites can occur in both the endoplasmic reticulum (in neurons) and in the endosomal/lysosomal pathway after reinternalization of cell surface

1

55

5

10

15

10

15

25

.0

20

25

30

35

40

45

50

APP (in all cells). Despite intense efforts, for 10 years or more, to identify the enzymes responsible for processing APP at the β and γ sites, to produce the A β peptide, those proteases remained unknown until this disclosure. Here, for the first time, we report the identification and characterization of the β secretase enzyme. We disclose some known and some novel human aspartic proteases that can act as β -secretase proteases and, for the first time, we explain the role these proteases have in AD. We describe regions in the proteases critical for their unique function and for the first time characterize their substrate. This is the first description of expressed isolated purified active protein of this type, assays that use the protein, in addition to the identification and creation of useful cell lines and inhibitors.

SUMMARY OF THE INVENTION

Here we disclose a number of variants of the asp2 gene and peptide.

Any isolated or purified nucleic acid polynucleotide that codes for a protease capable of cleaving the beta (β) secretase cleavage site of APP that contains two or more sets of special nucleic acids, where the special nucleic acids are separated by nucleic acids that code for about 100 to 300 amino acid positions, where the amino acids in those positions may be any amino acids, where the first set of special nucleic acids consists of the nucleic acids that code for the peptide DTG, where the first nucleic acid of the first special set of nucleic acids is, the first special nucleic acid, and where the second set of nucleic acids code for either the peptide DSG or DTG, where the last nucleic acid of the second set of nucleic acids is the last special nucleic acid, with the proviso that the nucleic acids disclosed in SEQ ID NO. 1 and SEQ. ID NO. 5 are not included. The nucleic acid polynucleotide of claim 1 where the two sets of nucleic acids are separated by nucleic acids that code for about 125 to 222 amino acid positions, which may be any amino acids. The nucleic acid polynucleotide of claim 2 that code for about 150 to 172 amino acid positions, which may be any amino acids. The nucleic acid polynucleotide of claim that code for about 172 amino acid positions, which may be any amino acids. The nucleic acid polynucleotide of claim 4 where the nucleotides are described in SEQ. ID. NO. 3 The nucleic acid polynucleotide of claim 2 where the two sets of nucleic acids are separated by nucleic acids that code for about 150 to 196 amino acid positions. The nucleic acid polynucleotide of claim 6 where the two sets of nucleotides are separated by nucleic acids that code for about 196 amino acids (positions). The nucleic acid polynucleotide of claim 7 where the two sets of nucleic acids are separated by the same nucleic acid sequences that separate the same set of special nucleic acids in SEQ. ID. NO. 5. The nucleic acid

5

10

15

20

25

15

20

25

30

30

35

45

40

50

polynucleotide of claim 4 where the two sets of nucleic acids are separated by nucleic acids that code for about 150 to 190, amino acid (positions). The nucleic acid polynucleotide of claim 9 where the two sets of nucleotides are separated by nucleic acids that code for about 190 amino acids (positions). The nucleic acid polynucleotide of claim 10 where the two sets of nucleotides are separated by the same nucleic acid sequences that separate the same set of special nucleotides in SEQ. ID. NO. 1. Claims 1-11 where the first nucleic acid of the first special set of amino acids, that is, the first special nucleic acid, is operably linked to any codon where the nuclic acids of that codon codes for any peptide comprising from 1 to 10,000 amino acid (positions). The nucleic acid polynucleotide of claims 1-12 where the first special nucleic acid is operably linked to nucleic acid polymers that code for any peptide selected from the group consisting of: any any reporter proteins or proteins which facilitate purification. The nucleic acid polynucleotide of claims 1-13 where the first special nucleic acid is operably linked to nucleic acid polymers that code for any peptide selected from the group consisting of: immunoglobin-heavy chain, maltose binding protein, glutathion S transfection, Green Fluorescent protein, and ubiquitin. Claims 1-14 where the last nucleic acid of the second set of special amino acids, that is, the last special nucleic acid, is operably linked to nucleic acid polymers that code for any peptide comprising any amino acids from 1 to 10,000 amino acids. Claims 1-15 where the last special nucleic acid is operably linked to any codon linked to nucleic acid polymers that code for any peptide selected from the group consisting of: any reporter proteins or proteins which facilitate purification. The nucleic acid polynucleotide of claims 1-16 where the first special nucleic acid is operably linked to nucleic acid polymers that code for any peptide selected from the group consisting of: immunoglobin-heavy chain, maltose binding protein, glutathion S transfection, Green Fluorescent protein, and ubiquitin.

Any isolated or purified nucleic acid polynucleotide that codes for a protease capable of cleaving the beta secretase cleavage site of APP that contains two or more sets of special nucleic acids, where the special nucleic acids are separated by nucleic acids that code for about 100 to 300 amino acid positions, where the amino acids in those positions may be any amino acids, where the first set of special nucleic acids consists of the nucleic acids that code for DTG, where the first nucleic acid of the first special set of nucleic acids is, the first special nucleic acid, and where the second set of nucleic acids code for either DSG or DTG, where the last nucleic acid of the second set of special nucleic acids is the last special nucleic acid, where the first special nucleic acid is operably linked to nucleic

5

10

15

20

25

15

20

30

30

35

40

45

50

acids that code for any number of amino acids from zero to 81 amino acids and where each of those codons may code for any amino acid. The nucleic acid polynucleotide of claim 18 , where the first special nucleic acid is operably linked to nucleic acids that code for any number of from 64 to 77 amino acids where each codon may code for any amino acid. The nucleic acid polynucleotide of claim 19, where the first special nucleic acid is operably linked to nucleic acids that code for 71 amino acids. The nucleic acid polynucleotide of claim 20, where the first special nucleic acid is operably linked to 71 amino acids and where the first of those 71 amino acids is the amino acid T. The nucleic acid polynucleotide of claim 21, where the polynucleotide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 11). The nucleic acid polynucleotide of claim 22, where the complete polynucleotide comprises SEQ. ID. (Example 11). The nucleic acid polynucleotide of claim 18, where the first special nucleic acid is operably linked to nucleic acids that code for any number of from 40 to 54 amino acids where each codon may code for any amino acid. The nucleic acid polynucleotide of claim 24, where the first special nucleic acid is operably linked to nucleic acids that code for 47 amino acids. The nucleic acid polynucleotide of claim 20, where the first special nucleic acid is operably linked to 47 codons where the first those 47 amino acids is the amino acid E. The nucleic acid polynucleotide of claim 21, where the polynucleotide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 10). The nucleic acid polynucleotide of claim 22, where the complete polynucleotide comprises SEQ. ID. (Example 10).

Any isolated or purified nucleic acid polynucleotide that codes for a protease capable of cleaving the beta (β) secretase cleavage site of APP that contains two or more sets of special nucleic acids, where the special nucleic acids are separated by nucleic acids that code for about 100 to 300 amino acid positions, where the amino acids in those positions may be any amino acids, where the first set of special nucleic acids consists of the nucleic acids that code for the peptide DTG, where the first nucleic acid of the first special set of amino acids is, the first special nucleic acid, and where the second set of special nucleic acids code for either the peptide DSG or DTG, where the last nucleic acid of the second set of special nucleic acids, the last special nucleic acid, is operably linked to nucleic acids that code for any number of codons from 50 to 170 codons. The nucleic acid polynucleotide of claim 29 where the last special nucleic acid is operably linked to nucleic acids comprising from 100 to 170 codons. The nucleic acid polynucleotide of claim 30 where the last special nucleic acid is operably linked to nucleic acids comprising from 100 to 170 codons.

4

5

10

15

20

25

1.5

20

25

30

30

35

40

45

50

to 163 codons. The nucleic acid polynucleotide of claim 31 where the last special nucleic acid is operably linked to nucleic acids comprising about 142 codons. The nucleic acid polynucleotide of claim 32 where the polynucleotide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 9 or 10). The nucleic acid polynucleotide of claim 33, where the complete polynucleotide comprises SEQ. ID. (Example 9 or 10). The nucleic acid polynucleotide of claim 31 where the last special nucleic acid is operably linked to nucleic acids comprising about 163 codons. The nucleic acid polynucleotide of claim 35 where the polynucleotide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 9 or 10). The nucleic acid polynucleotide of claim 36, where the complete polynucleotide comprises SEQ. ID. (Example 9 or 10). The nucleic acid polynucleotide of claim 31 where the last special nucleic acid is operably linked to nucleic acids comprising about 170 codons. Claims 1-38 where the second set of special nucleid acids code for the peptide DSG, and optionally the first set of nucleic acid polynucleotide is operably linked to a peptide purification tag. Claims 1-39 where the nucleic acid polynucleotide is operably linked to a peptide purification tag which is six histidine. Claims 1-40 where the first set of special nucleic acids are on one polynucleotide and the second set of special nucleic acids are on a second polynucleotide, where both first and second polynucleotides have at lease 50 codons. Claims 1-40 where the first set of special nucleic acids are on one polynucleotide and the second set of special nucleic acids are on a second polynucleotide, where both first and second polynucleotides have at lease 50 codons where both said polynucleotides are in the same solution. A vector which contains a polynucleotide described in claims 1-42. A cell or cell line which contans a polynucleotide described in claims 1-42.

Any isolated or purified peptide or protein comprising an amino acid polymer that is a protease capable of cleaving the beta (β) secretase cleavage site of APP that contains two or more sets of special amino acids, where the special amino acids are separated by about 100 to 300 amino acid positions, where each amino acid position can be any amino acid, where the first set of special amino acids consists of the peptide DTG, where the first amino acid of the first special set of amino acids is, the first special amino acid, where the second set of amino acids is selected from the peptide comprising either DSG or DTG, where the last amino acid of the second set of special amino acids is the last special amino acid, with the proviso that the proteases disclosed in SEQ ID NO. 2 and SEQ. ID NO. 6 are not included. The amino acid polypeptide of claim 45 where the two sets of amino acids are

PCT/US99/20881 WO 00/17369

separated by about 125 to 222 amino acid positions where in each position it may be any 5 amino acid. The amino acid polypeptide of claim 46 where the two sets of amino acids are separated by about 150 to 172 amino acids. The amino acid polypeptide of claim 47 where the two sets of amino acids are separated by about 172 amino acids. The amino acid polypeptide of claim 48 where the protease is described in SEQ. ID. NO. 4 The amino acid 10 polypeptide of claim 46 where the two sets of amino acids are separated by about 150 to 196 amino acids. The amino acid polypeptide of claim 50 where the two sets of amino acids are separated by about 196 amino acids. The amino acid polypeptide of claim 51 15 10 20 25 30

where the two sets of amino acids are separated by the same amino acid sequences that separate the same set of special amino acids in SEQ. ID. NO. 6. The amino acid polypeptide of claim 46 where the two sets of amino acids are separated by about 150 to 190, amino acids. The amino acid polypeptide of claim 53 where the two sets of nucleotides are separated by about 190 amino acids. The amino acid polypeptide of claim 54 where the two sets of nucleotides are separated by the same amino acid sequences that separate the same set of special amino acids in SEQ. ID. NO. 2. Claims 45-55 where the first amino acid of the first special set of amino acids, that is, the first special amino acid, is operably linked to any peptide comprising from 1 to 10,000 amino acids. The amino acid polypeptide of claims 45-56 where the first special amino acid is operably linked to any peptide selected from the group consisting of: any any reporter proteins or proteins which facilitate purification. The amino acid polypeptide of claims 45-57 where the first special amino acid is operably linked to any peptide selected from the group consisting of: immunoglobin-heavy chain, maltose binding protein, glutathion S transfection, Green Fluorescent protein, and ubiquitin. Claims 45-58, where the last amino acid of the second set of special amino acids, that is, the last special amino acid, is operably linked to any peptide comprising any amino acids from 1 to 10,000 amino acids. Claims 45-59 where the last special amino acid is operably linked any peptide selected from the group consisting of any reporter proteins or proteins which facilitate purification. The amino acid polypeptide of claims 45-60 where the first special amino acid is operably linked to any peptide selected

45

25

Any isolated or purified peptide or protein comprising an amino acid polypeptide that codes for a protease capable of cleaving the beta secretase cleavage site of APP that contains two or more sets of special amino acids, where the special amino acids are

from the group consisting of: immunoglobin-heavy chain, maltose hinding protein,

glutathion S transfection, Green Fluorescent protein, and ubiquitin.

50

35

5

10

15

20

10

15

20

25

25

30

35

40

45

50

separated by about 100 to 300 amino acid positions, where each amino acid in each position can be any amino acid, where the first set of special amino acids consists of the amino acids DTG, where the first amino acid of the first special set of amino acids is, the first special amino acid, D, and where the second set of amino acids is either DSG or DTG, where the last amino acid of the second set of special amino acids is the last special amino acid, G, where the first special amino acid is operably linked to amino acids that code for any number of amino acids from zero to 81 amino acid positions where in each position it may be any amino acid. The amino acid polypeptide of claim 62, where the first special amino acid is operably linked to a peptide from about 64 to 77 amino acids positions where each amino acid position may be any amino acid. The amino acid polypeptide of claim 63, where the first special amino acid is operably linked to a peptide of 71 amino acids. The amino acid polypeptide of claim 64, where the first special amino acid is operably linked to 71 amino acids and the first of those 71 amino acids is the amino acid T. The amino acid polypeptide of claim 65, where the polypeptide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 11). The amino acid polypeptide of claim 66, where the complete polypeptide comprises SEQ. ID. (Example 11). The amino acid polypeptide of claim 62, where the first special amino acid is operably linked to any number of from 40 to 54 armino acids (positions) where each amino acid position may be any amino acid. The amino acid polypeptide of claim 68, where the first special amino acid is operably linked to amino acids that code for a peptide of 47 amino acids. The amino acid polypeptide of claim 69, where the first special amino acid is operably linked to a 47 amino acid peptide where the first those 47 amino acids is the amino acid E. The amino acid polypeptide of claim 70, where the polypeptide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 10). The amino acid polypeptide where the polypeptide comprises Example 10).

Any isolated or purified amino acid polypeptide that is a protease capable of cleaving the beta (β) secretase cleavage site of APP that contains two or more sets of special amino acids, where the special amino acids are separated by about 100 to 300 amino acid positions, where each amino acid in each position can be any amino acid, where the first set of special amino acids consists of the amino acids that code for DTG, where the first amino acid of the first special set of amino acids is, the first special amino acid, D, and where the second set of amino acids are either DSG or DTG, where the last amino acid of the second set of special amino acids is the last special amino acid, G, which is operably linked to any number of amino acids from 50 to 170 amino acids, which may be any amino

acids. The amino acid polypeptide of claim 73 where the last special amino acid is operably linked to a peptide of about 100 to 170 amino acids. The amino acid polypeptide of claim 74 where the last special amino acid is operably linked to to a peptide of about 142 to 163 amino acids. The amino acid polypeptide of claim 75 where the last special amino acid is operably linked to to a peptide of about about 142 amino acids. The amino acid polypeptide of claim 76 where the polypeptide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 9 or 10). The amino acid polypeptide of claim 75 where the last special amino acid is operably linked to a peptide of about 163 amino acids. The amino acid polypeptide of claim 79 where the polypeptide comprises a sequence that is at least 95% identical to SEQ. ID. (Example 9 or 10). The amino acid polypeptide of claim 79, where the complete polypeptide comprises SEQ. ID. (Example 9 or 10). The amino acid polypeptide of claim 74 where the last special amino acid is operably linked to to a peptide of about 170 amino acids. Claim 46-81 where the second set of special amino acids is comprised of the peptide with the amino acid sequence DSG. Claims 45-82 where the amino acid polypeptide is operably linked to a peptide purification tag. Claims 45-83 where the amino acid polypeptide is operably linked to a peptide purification tag which is six histidine. Claims 45-84 where the first set of special amino acids are on one polypeptide and the second set of special amino acids are on a second polypeptide, where both first and second polypeptide have at lease 50 amino acids, which may be any amino acids. Claims 45-84 where the first set of special amino acids are on one polypeptide and the second set of special amino acids are on a second polypeptide, where both first and second polypeptides have at lease 50 amino acids where both said polypeptides are in the same vessel. A vector which contains a polypeptide described in claims 45-86. A cell or cell line which contans a polynucleotide described in claims 45-87. The process of making any of the polynucleotides, vectors, or cells of claims 1-44. The process of making any of 25 the polypeptides, vectors or cells of claims 45-88. Any of the polynucleotides, polypeptides, vectors, cells or cell lines described in claims 1-88 made from the processes described in claims 89 and 90.

Any isolated or purified peptide or protein comprising an amino acid polypeptide that codes for a protease capable of cleaving the beta secretase cleavage site of APP that contains two or more sets of special amino acids, where the special amino acids are separated by about 100 to 300 amino acid positions, where each amino acid in each position can be any amino acid, where the first set of special amino acids consists of the amino acids

5

10

15

20

25

30

35

40

45

DTG, where the first amino acid of the first special set of amino acids is, the first special amino acid, D, and where the second set of amino acids is either DSG or DTG, where the last amino acid of the second set of special amino acids is the last special amino acid, G, where the first special amino acid is operably linked to amino acids that code for any number of amino acids from zero to 81 amino acid positions where in each position it may be any amino acid.

The amino acid polypeptide of claim 62, where the first special amino acid is operably linked to a peptide from about 30 to 77 amino acids positions where each amino acid position may be any amino acid. The amino acid polypeptide of claim 63, where the first special amino acid is operably linked to a peptide of 35, 47, 71, or 77 amino acids.

The amino acid polypeptide of claim 63, where the first special amino acid is operably linked to the same corresponding peptides from SEQ. ID. NO. 3 that are 35, 47, 71, or 77 peptides in length, beginning counting with the amino acids on the first special sequence, DTG, towards the N-terminal of SEQ. ID. NO. 3.

The amino acid polypeptide of claim 65, where the polypeptide comprises a sequence that is at least 95% identical to the same corresponding amino acids in SEQ. ID. NO. 4, that is, identical to that portion of the sequences in SEQ.ID. NO. 4, including all the sequences from both the first and or the second special nucleic acids, toward the N-terminal, through and including 71, 47, 35 amino acids before the first special amino acids. (Examples 10 and 11).

The amino acid polypeptide of claim 65, where the complete polypeptide comprises the peptide of 71 amino acids, where the first of the amino acid is T and the second is Q. The nucleic acid polynucleotide of claim 21, where the polynucleotide comprises a sequence that is at least 95% identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to the sequences in SEQ. ID. NO. 3 including the sequences from both the first and or the second special nucleic acids, toward the N-Terminal, through and including 71 amino acids, see Example 10, beginning from the DTG site and including the nucleotides from that code for 71 amino acids).

The nucleic acid polynucleotide of claim 22, where the complete polynucleotide comprises identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to the sequences in SEQ. ID. NO. 3 including the sequences from both the first and or the second special nucleic acids, toward the N-Terminal, through and including 71

amino acids, see Example 10, beginning from the DTG site and including the nucleotides from that code for 71 amino acids).

The nucleic acid polynucleotide of claim 18, where the first special nucleic acid is operably linked to nucleic acids that code for any number of from about 30 to 54 amino acids where each codon may code for any amino acid.

The nucleic acid polynucleotide of claim 20, where the first special nucleic acid is operably linked to 47 codons where the first those 35 or 47 amino acids is the amino acid E or G.

The nucleic acid polynucleotide of claim 21, where the polynucleotide comprises a sequence that is at least 95% identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to that portion of the sequences in SEQ. ID. NO. 3 including the sequences from both the first and or the second special nucleic acids, toward the N-Terminal, through and including 35 or 47 amino acids, see Example 11 for the 47 example, beginning from the DTG site and including the nucleotides from that code for the previous 35 or 47 amino acids before the DTG site). The nucleic acid polynucleotide of claim 22, where the polynucleotide comprises identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to the sequences in SEQ. ID. NO. 3 including the sequences from both the first and or the second special nucleic acids, toward the N-Terminal, through and including 35 or 47 amino acids, see Example 11 for the 47 example, beginning from the DTG site and including the nucleotides from that code for the previous 35 or 47 amino acids before the DTG site).

An isolated nucleic acid molecule comprising a polynucleotide, said polynucleotide encoding a Hu-Asp polypeptide and having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding a Hu-Asp polypeptide selected from the group consisting of Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b), wherein said Hu-Asp1, Hu-Asp2(a) and Hu-Asp2(b) polypeptides have the complete amino acid sequence of SEQ ID No. 2, SEQ ID No. 4, and SEQ ID No. 6, respectively; and
- (b) a nucleotide sequence complementary to the nucleotide sequence 30 of (a).

The nucleic acid molecule of claim 92, wherein said Hu-Asp polypeptide is Hu-Asp1, and said polynucleotide molecule of 1(a) comprises the nucleotide sequence of SEQ ID No. 1. The nucleic acid molecule of claim 92, wherein said Hu-Asp polypeptide is Hu-

5

10

15

20

25

30

35

40

45

50

55

10

20

25

30

Asp2(a), and said polynucleotide molecule of 1(a) comprises the nucleotide sequence of SEQ ID No. 4. The nucleic acid molecule of claim 92, wherein said Hu-Asp polypeptide is Hu-Asp2(b), and said polynucleotide molecule of 1(a) comprises the nucleotide sequence of SEQ ID No. 5. An isolated nucleic acid molecule comprising polynucleotide which hybridizes under stringent conditions to a polynucleotide having the nucleotide sequence in (a) or (b) of claim 92. A vector comprising the nucleic acid molecule of claim 96. The vector of claim 97, wherein said nucleic acid molecule is operably linked to a promoter for the expression of a Hu-Asp polypeptide. The vector of claim 98, wherein said Hu-Asp polypeptide is Hu-Asp1. The vector of claim 98, wherein said Hu-Asp polypeptide is Hu-Asp2(a). The vector of claim 98, wherein said Hu-Asp polypeptide is Hu-Asp2(b). A host cell comprising the vector of claim 98. A method of obtaining a Hu-Asp polypeptide comprising culturing the host cell of claim 102 and isolating said Hu-Asp polypeptide. An isolated Hu-Asp1 polypeptide comprising an amino acid sequence at least 95% identical to a sequence comprising the amino acid sequence of SEQ ID No. 2. An isolated Hu-Asp2(a) polypeptide comprising an amino acid sequence at least 95% identical to a sequence comprising the amino acid sequence of SEQ ID No. 4. An isolated Hu-Asp2(a) polypeptide comprising an amino acid sequence at least 95% identical to a sequence comprising the amino acid sequence of SEQ ID No. 8. An isolated antibody that binds specifically to the Hu-Asp polypeptide of any of claims 104-107.

Here we disclose numerous methods to assay the enzyme.

A method to identify a cell that can be used to screen for inhibitors of $\boldsymbol{\beta}$ secretase activity comprising:

- (a) identifying a cell that expresses a protease capable of cleaving APP at the β secretase site, comprising:
 - i) collect the cells or the supernantent from the cells to be identified
 - ii) measure the production of a critical peptide, where the critical peptide is selected from the group consisting of either the APP Cterminal peptide or soluble APP,
 - iii) select the cells which produce the critical peptide.

The method of claim 108 where the cells are collected and the critical peptide is the APP C-terminal peptide created as a result of the β secretase cleavage. The method of claim 108 where the supernantent is collected and the critical peptide is soluble APP where the soluble APP has a C-terminal created by β secretase cleavage. The method of claim 108

where the cells contain any of the nucleic acids or polypeptides of claims 1-86 and where the cells are shown to cleave the β secretase site of any peptide having the following peptide structure, P2, P1, P1', P2', where P2 is K or N, where P1 is M or L, where P1' is D, where P2' is A. The method of claim 111 where P2 is K and P1 is M.. The method of claim 112 where P2 is N and P1 is L.

Any bacterial cell comprising any nucleic acids or peptides in claims 1-86 and 92-107. A bacterial cell of claim 114 where the bacteria is *E coli*. Any eukaryotic cell comprising any nucleic acids or polypeptides in claims 1-86 and 92-107.

Any insect cell comprising any of the nucleic acids or polypeptides in claims 1-86 and 92-107. A insect cell of claim 117 where the insect is sf9, or High 5. A insect cell of claim 100 where the insect cell is High 5. A mammalian cell comprising any of the nucleic acids or polypeptides in claims 1-86 and 92-107. A mammalian cell of claim 120 where the mammalian cell is selected from the group consisting of, human, rodent, lagomorph, and primate. A mammalian cell of claim 121 where the mammalian cell is selected from the group consisting of human cell. A mammalian cell of claim 122 where the human cell is selected from the group comprising HEK293, and IMR-32. A mammalian cell of claim 121 where the cell is a primate cell. A primate cell of claim 124 where the primate cell is a COS-7 cell. A mammalian cell of claim 121 where cell is selected from a rodent cells. A rodent cell of claim 126 selected from, CHO-K1, Neuro-2A, 3T3 cells. A yeast cell of claim 115. An avian cell of claim 115.

Any isoform of APP where the last two carboxy terminus amino acids of that isoform are both lysine residues. In written descrip. Define isoform is any APP polypeptide, including APP variants (including mutations), and APP fragments that exists in humans such as those desribed in US 5,766,846, col 7, lines 45-67, incorporated into this document by reference. The isoform of APP from claim 114, comprising the isoform known as APP695 modified so that its last two having two lysine residues as its last two carboxy terminus amino acids. The isoform of claim 130 comprising SEQ. ID. 16. The isoform variant of claim 130 comprising SEQ. ID. NO. 18, and 20. Any eukaryotic cell line, comprising nucleic acids or polypeptides of claim 130-132. Any cell line of claim 133 that is a mammaliam cell line (HEK293, Neuro2a, best - plus others. A method for identifying inhibitors of an enzyme that cleaves the beta secretase cleavabe site of APP comprising:

PCT/US99/20881 WO 00/17369

culturing cells in a culture medium under conditions in which the enzyme 5 causes processing of APP and release of amyloid beta-peptide into the medium and causes the accumulation of CTF99 fragments of APP in cell lysates, b) exposing the cultured cells to a test compound; and specifically determining whether the test compound inhibits the function of the enzyme by measuring the amount of 10 APP in cell lysates; c) 15 lysates as Asp2 inhibitors. 10 20 25 30 20 comprising: agent and in the absence of a test agent; and 35 b) determined in the absence of said test agent; 25 40

45

50

55

30

amyloid beta-peptide released into the medium and or the amount of CTF99 fragments of identifying test compounds diminishing the amount of soluble amyloid beta peptide present in the culture medium and diminution of CTF99 fragments of APP in cell The method of claim 135 wherein the cultured cells are a human, rodent or insect cell line. The method of claim 136 wherein the human or rodent cell line exhibits β secretase activity in which processing of APP occurs with release of amyloid beta-peptide into the culture medium and accumulation of CTF99 in cell lysates. A method as in claim 137 wherein the human or rodent cell line treated with the antisense oligomers directed against the enzyme that exhibits β secretase activity, reduces release of soluble amyloid beta-peptide into the culture medium and accumulation of CTF99 in cell lysates. A method for the identification of an agent that decreases the activity of a Hu-Asp polypeptide selected from the group consisting of Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b), the method determining the activity of said Hu-Asp polypeptide in the presence of a test comparing the activity of said Hu-Asp polypeptide determined in the presence of said test agent to the activity of said Hu-Asp polypeptide whereby a lower level of activity in the presence of said test agent than in the absence of said test agent indicates that said test agent has decreased the activity of said Hu-Asp polypeptide. The nucleic acids, peptides, proteins, vectors, cells and cell lines, and assays described herein. The present invention provides isolated nucleic acid molecules comprising a

Hu-Asp2(b). As used herein, all references to "Hu-Asp" should be understood to refer to all of Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b). In addition, as used herein, all references to "Hu-Asp2" should be understood to refer to both Hu-Asp2(a) and Hu-Asp2(b). Hu-Asp1 is expressed most abundantly in pancreas and prostate tissues, while Hu-Asp2(a) and Hu-Asp2(b) are expressed most abundantly in pancreas and brain tissues. The invention also provides isolated Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b) polypeptides, as well as fragments thereof which exhibit aspartyl protease activity.

In a preferred embodiment, the nucleic acid molecules comprise a polynucleotide having a nucleotide sequence selected from the group consisting of residues 1-1554 of SEQ ID NO:1, encoding Hu-Asp1, residues 1-1503 of SEQ ID NO:3, encoding Hu-Asp2(a), and residues 1-1428 of SEQ ID NO:5, encoding Hu-Asp2(b). In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent conditions to a polynucleotide encoding Hu-Asp1, Hu-Asp2(a), Hu-Asp-2(b), or fragments thereof. European patent application EP 0 848 062 discloses a polypeptide referred to as "Asp 1," that bears substantial homology to Hu-Asp1, while international application WO 98/22597 discloses a polypeptide referred to as "Asp 2," that bears substantial homology to Hu-Asp2(a).

The present invention also provides vectors comprising the isolated nucleic acid molecules of the invention, host cells into which such vectors have been introduced, and recombinant methods of obtaining a Hu-Asp1, Hu-Asp2(a), or Hu-Asp2(b) polypeptide comprising culturing the above-described host cell and isolating the relevant polypeptide.

In another aspect, the invention provides isolated Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b) polypeptides, as well as fragments thereof. In a preferred embodiment, the Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b) polypeptides have the amino acid sequence given in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:6, respectively. The present invention also describes active forms of Hu-Asp2, methods for preparing such active forms, methods for preparing soluble forms, methods for measuring Hu-Asp2 activity, and substrates for Hu-Asp2 cleavage. The invention also describes antisense oligomers targeting the Hu-Asp1, Hu-Asp2(a) and Hu-Asp2(b) mRNA transcripts and the use of such antisense reagents to decrease such mRNA and consequently the production of the corresponding polypeptide. Isolated antibodies, both polyclonal and monoclonal, that binds specifically to any of the Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b) polypeptides of the invention are also provided.

		The invention also provides a method for the identification of an agent that modulates
5		the activity of any of Hu-Asp-1, Hu-Asp2(a), and Hu-Asp2(b). The inventions describes
		methods to test such agents in cell-free assays to which Hu-Asp2 polypeptide is added, as well
		as methods to test such agents in human or other mammalian cells in which Hu-Asp2 is
10	5	present.
		BRIEF DESCRIPTION OF THE SEQUENCE LISTINGS
		Sequence ID No. 1—Human Asp-1, nucleotide sequence
		Sequence ID No. 2—Human Asp-1, predicted amino acid sequence
15		Sequence ID No. 3—Human Asp-2(a), nucleotide sequence
	10	Sequence ID No. 4—Human Asp-2(a), predicted amino acid sequence
		Sequence ID No. 5—Human Asp-2(b), nucleotide sequence
		Sequence ID No. 6—Human Asp-2(b), predicted amino acid sequence
		Sequence ID No. 7—Murine Asp-2(a), nucleotide sequence
20		Sequence ID No. 8—Murine Asp-2(a), predicted amino acid sequence
	15	Sequence ID No. 9—Human APP695, nucleotide sequence
		Sequence ID No.10—Human APP695, predicted amino acid sequence
		Sequence ID No.11—Human APP695-Sw, nucleotide sequence
		Sequence ID No.12—Human APP695-Sw. predicted amino acid sequence
25		Sequence ID No.13—Human APP695-VF, nucleotide sequence
	20	Sequence ID No.14—Human APP695-VF, predicted amino acid sequence
		Sequence ID No.15—Human APP695-KK, nucleotide sequence
		Sequence ID No.16—Human APP605 Sw. KK, predicted amino acid sequence
		Sequence ID No.17—Human APP695-Sw-KK, nucleotide sequence Sequence ID No.18—Human APP695-Sw-KK, predicted amino acid sequence
30	25	Sequence ID No.19—Human APP695-VF-KK, nucleotide sequence
	23	Sequence ID No.20—Human APP695-VF-KK, predicted amino acid sequence
		Sequence ID No.21—T7-Human-pro-Asp-2(a) \(\Delta TM, \text{ nucleotide sequence} \)
		Sequence ID No.22—T7-Human-pro-Asp-2(a) \(\Delta TM, \) matter acid sequence
		Sequence ID No.23—T7-Caspase-Human-pro-Asp-2(a) \(\Delta TM, nucleotide sequence \)
35	30	Sequence ID No.24—T7-Caspase-Human-pro-Asp-2(a) \(\Delta TM, \) amino acid sequence
	50	Sequence ID No.25—Human-pro-Asp-2(a) Δ TM (low GC), nucleotide sequence
		Sequence ID No.26—Human-pro-Asp-2(a) \(\Delta TM, \) (low GC), amino acid sequence
		Sequence ID No.27—T7-Caspase-Caspase 8 cleavage-Human-pro-Asp-2(a)ΔTM,
10		nucleotide sequence
40	35	Sequence ID No.28—T7-Caspase Caspase 8 cleavage-Human-pro-Asp-2(a)ΔTM, amino
		acid sequence
		Sequence ID No.29—Human Asp-2(a)ΔTM, nucleotide sequence
		Sequence ID No.30—Human Asp-2(a)ΔTM, amino acid sequence
45		Sequence ID No.31—Human Asp-2(a) \(\Delta TM(His)_6 \), nucleotide sequence
, ,	40	Sequence ID No.32—Human Asp-2(a)ΔTM(His) ₆ , amino acid sequence
		Sequence ID No.s 33-46 are described below in the Detailed Description of the Invention.

BRIEF DESCRIPTION OF THE FIGURES

50

		Figure 1: Figure 1 shows the nucleotide (SEQ ID NO:1) and predicted amino							
5		acid sequence (SEQ ID NO:2) of human Asp1.							
		Figure 2: Figure 2 shows the nucleotide (SEQ ID NO:3) and predicted amino							
		acid sequence (SEQ ID NO:4) of human Asp2(a).							
10	5	Figure 3: Figure 3 shows the nucleotide (SEQ ID NO:5) and predicted amino							
		acid sequence (SEQ ID NO:6) of human Asp2(b). The predicted transmembrane domain of							
		Hu-Asp2(b) is enclosed in brackets.							
		Figure 4: Figure 4 shows the nucleotide (SEQ ID No. 7) and predicted amino							
15	acid sequence (SEQ ID No. 8) of murine Assp2(a)								
	10	Figure 5: Figure 5 shows the BestFit alignment of the predicted amino acid							
		sequences of Hu-Asp2(a) and murine Asp2(a)							
20		Figure 6: Figure 6 shows the nucleotide (SEQ ID No. 21) and predicted amino							
		acid sequence (SEQ ID No. 22) of T7-Human-pro-Asp-2(a) Δ TM							
		Figure 7 shows the nucleotide (SEQ ID No. 23) and predicted amino							
25	15	acid sequence (SEQ ID No. 24) of T7-caspase-Human-pro-Asp-2(a)ΔTM							
25		Figure 8: Figure 8 shows the nucleotide (SEQ ID No. 25) and predicted amino							
		acid sequence (SEQ ID No. 26) of Human-pro-Asp-2(a) Δ TM (low GC)							
		Figure 9: Western blot showing reduction of CTF99 production by HEK125.3							
30	cells transfected with antisense oligomers targeting the Hu-Asp2 Mma								
	20	Figure 10: Western blot showing increase in CTF99 production in mouse							
		Neuro-2a cells cotransfected with APP-KK with and without Hu-Asp2 only in those cells							
35		cotransfected with Hu-Asp2. A further increase in CTF99 production is seen in cells							
35		cotransfected with APP-Sw-KK with and without Hu-Asp2 only in those cells cotransfected							
		with Hu-Asp2							
	25	Figure 11: Figure 11 shows the predicted amino acid sequence (SEQ ID No. 30)							
40		of Human-Asp2(a)ΔTM							
		Figure 12: Figure 11 shows the predicted amino acid sequence (SEQ ID No. 30)							
		of Human-Asp2(a)ΔTM(His) ₆							
45		DETAILED DESCRIPTION OF THE INVENTION							
,,	30	A few definitions used in this invention follow, most definitions to be used are those							
		that would be used by one ordinarily skilled in the art.							
		When the β amyloid peptide any peptide resulting from beta secretase cleavage of							
50		APP. This includes, peptides of 39, 40, 41, 42 and 43 amino acids, extending from the β -							
		17							

secretase cleavage site to 39, 40, 41, 42 and 43 amino acids. β amyloid peptide also means sequences 1-6, SEQ. ID. NO. 1-6 of US 5,750,349, issued 12 May 1998 (incorporated into this document by reference). A β -secretase cleavage fragment disclosed here is called CTF-99, which extends from β -secretase cleavage site to the carboxy terminus of APP.

5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

When an isoform of APP is discussed then what is meant is any APP polypeptide, including APP variants (including mutations), and APP fragments that exists in humans such as those desribed in US 5,766,846, col 7, lines 45-67, incorporated into this document by reference and see below.

The term "\beta-amyloid precursor protein" (APP) as used herein is defined as a polypeptide that is encoded by a gene of the same name localized in humans on the long arm of chromosome 21 and that includes "βAP - here "β-amyloid protein" see above, within its carboxyl third. APP is a glycosylated, single-membrane spanning protein expressed in a wide variety of cells in many mammaliam tissues. Examples of specific isotypes of APP which are currently known to exist in humans are the 695-amino acid polypeptide described by Kang et. al. (1987) Nature 325:733-736 which is designated as the "normal" APP; the 751-amino acid polypeptide described by Ponte et al. (1988) Nature 331:525-527 (1988) and Tanzi et al. (1988) Nature 331:528-530; and the 770-amino acid polypeptide described by Kitaguchi et. al. (1988) Nature 331:530-532. Examples of specific variants of APP include point mutation which can differ in both position and phenotype (for review of known variant mutation see Hardy (1992) Nature Genet. 1:233-234). All references cited here incorporated by reference. The term "APP fragments" as used herein refers to fragments of APP other than those which consist solely of BAP or BAP fragments. That is, APP fragments will include amino acid sequences of APP in addition to those which form intact 3AP or a fragment of BAP.

When the term "any amino acid" is used, the amino acids referred to are to be selected from the following, three letter and single letter abbreviations - which may also be used, are provided as follows:

Alanine, Ala, A; Arginine, Arg, R; Asparagine, Asn, N; Aspartic acid, Asp, D; Cystein, Cys, C; Glutamine, Gln, Q; lu;E-Glutamic Acid, Glu, E; Glycine, Gly, G; Histidine, His, H; Isoleucine, Ile, I; Leucine, Leu, L; Lysine, Lys, K; Methionine, Met, M; Phenylalanine, Phe, F; Proline, Pro, P; Serine, Ser, S; Threonine, Thr, T; Tryptophan, Trp, W; Tyrosine, Tyr, Y; Valine, Val, V; Aspartic acid or Asparagine, Asx, B; Glutamic acid or Glutamine, Glx, Z; Any amino acid, Xaa, X...

5

10

15

20

25

15

20

30

30

35

40

45

50

55

The present invention describes a method to scan gene databases for the simple active site motif characteristic of aspartyl proteases. Eukaryotic aspartyl proteases such as pepsin and renin possess a two-domain structure which folds to bring two aspartyl residues into proximity within the active site. These are embedded in the short tripeptide motif DTG, or more rarely, DSG. Most aspartyl proteases occur as proenzyme whose N-terminus must be cleaved for activation. The DTG or DSG active site motif appears at about residue 65-70 in the proenzyme (prorenin, pepsinogen), but at about residue 25-30 in the active enzyme after cleavage of the N-terminal prodomain. The limited length of the active site motif makes it difficult to search collections of short, expressed sequence tags (EST) for novel aspartyl proteases. EST sequences typically average 250 nucleotides or less, and so would encode 80-90 amino acid residues or less. That would be too short a sequence to span the two active site motifs. The preferred method is to sean databases of hypothetical or assembled protein coding sequences. The present invention describes a computer method to identify candidate aspartyl proteases in protein sequence databases. The method was used to identify seven candidate aspartyl protease sequences in the Caenorhabditis elegans genome. These sequences were then used to identify by homology search Hu-Asp1 and two alternative splice variants of Hu-Asp2, designated herein as Hu-Asp2(a) and Hu-Asp2(b).

In a major aspect of the invention disclosed here we provide new information about APP processing. Pathogeneic processing of the amyloid precursor protein (APP) via the A β pathway requires the sequential action of two proteases referred to as β -secretase and γ -secretase. Cleavage of APP by the β -secretase and γ -secretase generates the N-terminus and C-terminus of the A β peptide, respectively. Because over production of the A β peptide, particularly the A β_{1-42} , has been implicated in the initiation of Alzheimer's disease, inhibitors of either the β -secretase and/or the γ -secretase have potential in the treatment of Alzheimer's disease. Despite the importance of the β -secretase and γ -secretase in the pathogenic processing of APP, molecular definition of these enzymes has not been accomplished to date. That is, it was not known what enzymes were required for cleavage at either the β -secretase or the γ -secretase cleavage site. The sites themselves were known because APP was known and the A β_{1-42} , peptide was known, see US 5,766,846 and US 5,837,672, (incorporated by reference, with the exception to reference to "soluble" peptides). But what enzyme was involved in producing the A β_{1-42} , peptide was unknown.

5

10

15

10

20

25

30

20

25

30

35

40

45

50

55

The present invention involves the molecular definition of several novel human aspartyl proteases and one of these, referred to as Hu-Asp-2(a) and Hu-Asp2(b), has been characterized in detail. Previous forms of asp1 and asp 2 have been disclosed, see EP 0848062 A2 and EP 0855444A2, inventors David Powel et. al., assigned to Smith Kline Beecham Corp. (incorporated by reference). Herein are disclosed old and new forms of Hu-Asp 2. For the first time they are expressed in active form, their substrates are disclosed, and their specificity is disclosed. Prior to this disclosure cell or cell extracts were required to cleave the β-secretase site, now purified protein can be used in assays, also described here. Based on the results of (1) antisense knock out experiments, (2) transient transfection knock in experiments, and (3) biochemical experiments using purified recombinant Hu-Asp-2, we demonstrate that Hu-Asp-2 is the β-secretase involved in the processing of APP. Although the nucleotide and predicted amino acid sequence of Hu-Asp-2(a) has been reported, see above, see EP 0848062 A2 and EP 0855444A2, no functional characterization of the enzyme was disclosed. Here the authors characterize the Hu-Asp-2 enzyme and are able to explain why it is a critical and essential enzyme required in the formation of $A\beta_{1.42}$, peptide and possible a critical step in the development of AD.

In another embodiment the present invention also describes a novel splice variant of Hu-Asp2, referred to as Hu-Asp-2(b), that has never before been disclosed.

In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a polypeptide selected from the group consisting of human aspartyl protease 1 (Hu-Asp1) and two alternative splice variants of human aspartyl protease 2 (Hu-Asp2), designated herein as Hu-Asp2(a) and Hu-Asp2(b). As used herein, all references to "Hu-Asp2" should be understood to refer to both Hu-Asp2(a) and Hu-Asp2(b). Hu-Asp1 is expressed most abundantly in pancreas and prostate tissues, while Hu-Asp2(a) and Hu-Asp2(b) are expressed most abundantly in pancreas and brain tissues. The invention also provides isolated Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b) polypeptides, as well as fragments thereof which exhibit aspartyl protease activity.

The predicted amino acid sequences of Hu-Asp1, Hu-Asp2(a) and Hu-Asp2(b) share significant homology with previously identified mammalian aspartyl proteases such as pepsinogen A, pepsinogen B, cathepsin D, cathepsin E, and renin. P.B.Szecs, Scand. J. Clin. Lab. Invest. 52:(Suppl. 210 5-22 (1992)). These enzymes are characterized by the presence of a duplicated DTG/DSG sequence motif. The Hu-Asp1 and HuAsp2 polypeptides disclosed

herein also exhibit extremely high homology with the ProSite consensus motif for aspartyl proteases extracted from the SwissProt database.

The nucleotide sequence given as residues 1-1554 of SEQ ID NO:1 corresponds to the nucleotide sequence encoding Hu-Asp1, the nucleotide sequence given as residues 1-1503 of SEQ ID NO:3 corresponds to the nucleotide sequence encoding Hu-Asp2(a), and the nucleotide sequence given as residues 1-1428 of SEQ ID NO:5 corresponds to the nucleotide sequence encoding Hu-Asp2(b). The isolation and sequencing of DNA encoding Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b) is described below in Examples 1 and 2.

As is described in Examples 1 and 2, automated sequencing methods were used to obtain the nucleotide sequence of Hu-Asp1, Hu-Asp2(a), and Hu-Asp-2(b). The Hu-Asp nucleotide sequences of the present invention were obtained for both DNA strands, and are believed to be 100% accurate. However, as is known in the art, nucleotide sequence obtained by such automated methods may contain some errors. Nucleotide sequences determined by automation are typically at least about 90%, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of a given nucleic acid molecule. The actual sequence may be more precisely determined using manual sequencing methods, which are well known in the art. An error in sequence which results in an insertion or deletion of one or more nucleotides may result in a frame shift in translation such that the predicted amino acid sequence will differ from that which would be predicted from the actual nucleotide sequence of the nucleic acid molecule, starting at the point of the mutation. The Hu-Asp DNA of the present invention includes cDNA, chemically synthesized DNA, DNA isolated by PCR, genomic DNA, and combinations thereof. Genomic Hu-Asp DNA may be obtained by screening a genomic library with the Hu-Asp2 cDNA described herein, using methods that are well known in the art, or with oligonucleotides chosen from the Hu-Asp2 sequence that will prime the polymerase chain reaction (PCR). RNA transcribed from Hu-Asp DNA is also encompassed by the present invention.

Due to the degeneracy of the genetic code, two DNA sequences may differ and yet encode identical amino acid sequences. The present invention thus provides isolated nucleic acid molecules having a polynucleotide sequence encoding any of the Hu-Asp polypeptides of the invention, wherein said polynucleotide sequence encodes a Hu-Asp polypeptide having the complete amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, or fragments thereof.

50

55

5

10

15

20

25

30

35

40

45

10

15

20

10 5 p

to

s

11 10 p

20 g

15

20

25

30

25

5

35

40

45

50

Also provided herein are purified Hu-Asp polypeptides, both recombinant and nonrecombinant. Most importantly, methods to produce Hu-Asp2 polypeptides in active form are provided. These include production of Hu-Asp2 polypeptides and variants thereof in bacterial cells, insect cells, and mammalian cells, also in forms that allow secretion of the Hu-Asp2 polypeptide from bacterial, insect or mammalian cells into the culture medium, also methods to produce variants of Hu-Asp2 polypeptide incorporating amino acid tags that facilitate subsequent purification. In a preferred embodiment of the invention the Hu-Asp2 polypeptide is converted to a proteolytically active form either in transformed cells or after purification and cleavage by a second protease in a cell-free system, such active forms of the Hu-Asp2 polypeptide beginning with the N-terminal sequence TQHGIR or ETDEEP. Variants and derivatives, including fragments, of Hu-Asp proteins having the native amino acid sequences given in SEQ ID Nos: 2, 4, and 6 that retain any of the biological activities of Hu-Asp are also within the scope of the present invention. Of course, one of ordinary skill in the art will readily be able to determine whether a variant, derivative, or fragment of a Hu-Asp protein displays Hu-Asp activity by subjecting the variant, derivative, or fragment to a standard aspartyl protease assay. Fragments of Hu-Asp within the scope of this invention include those that contain the active site domain containing the amino acid sequence DTG, fragments that contain the active site domain amino acid sequence DSG, fragments containing both the DTG and DSG active site sequences, fragments in which the spacing of the DTG and DSG active site sequences has been lengthened, fragments in which the spacing has been shortened. Also within the scope of the invention are fragments of Hu-Asp in which the transmembrane domain has been removed to allow production of Hu-Asp2 in a soluble form. In another embodiment of the invention, the two halves of Hu-Asp2, each containing a single active site DTG or DSG sequence can be produced independently as recombinant polypeptides, then combined in solution where they reconstitute an active protease.

Hu-Asp variants may be obtained by mutation of native Hu-Asp-encoding nucleotide sequences, for example. A Hu-Asp variant, as referred to herein, is a polypeptide substantially homologous to a native Hu-Asp polypeptide but which has an amino acid sequence different from that of native Hu-Asp because of one or more deletions, insertions, or substitutions in the amino acid sequence. The variant amino acid or nucleotide sequence is preferably at least about 80% identical, more preferably at least about 90% identical, and most preferably at least about 95% identical, to a native Hu-Asp sequence. Thus, a variant nucleotide sequence which contains, for example, 5 point mutations for every one hundred

nucleotides, as compared to a native Hu-Asp gene, will be 95% identical to the native protein. The percentage of sequence identity, also termed homology, between a native and a variant Hu-Asp sequence may also be determined, for example, by comparing the two sequences using any of the computer programs commonly employed for this purpose, such as the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wisconsin), which uses the algorithm of Smith and Waterman (Adv. Appl. Math. 2: 482-489 (1981)).

Alterations of the native amino acid sequence may be accomplished by any of a number of known techniques. For example, mutations may be introduced at particular locations by procedures well known to the skilled artisan, such as oligonucleotide-directed mutagenesis, which is described by Walder et al. (Gene 42:133 (1986)); Bauer et al. (Gene 37:73 (1985)); Craik (BioTechniques, January 1985, pp. 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press (1981)); and U.S. Patent Nos. 4,518,584 and 4,737,462.

Hu-Asp variants within the scope of the invention may comprise conservatively substituted sequences, meaning that one or more amino acid residues of a Hu-Asp polypeptide are replaced by different residues that do not alter the secondary and/or tertiary structure of the Hu-Asp polypeptide. Such substitutions may include the replacement of an amino acid by a residue having similar physicochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu or Ala) for another, or substitution between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asp, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr. Further information regarding making phenotypically silent amino acid exchanges may be found in Bowie et al., Science 247:1306-1310 (1990). Other Hu-Asp variants which might retain substantially the biological activities of Hu-Asp are those where amino acid substitutions have been made in areas outside functional regions of the protein.

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent conditions to a portion of the nucleic acid molecules described above, e.g., to at least about 15 nucleotides, preferably to at least about 20 nucleotides, more preferably to at least about 30 nucleotides, and still more preferably to at least about from 30 to at least about 100 nucleotides, of one of the previously described nucleic acid molecules. Such portions of nucleic acid molecules having the described lengths refer to, e.g., at least about 15 contiguous nucleotides of the reference nucleic acid molecule.

By stringent hybridization conditions is intended overnight incubation at about 42°C for about 2.5 hours in 6 X SSC/0.1% SDS, followed by washing of the filters in 1.0 X SSC at 65°C, 0.1% SDS.

Fragments of the Hu-Asp-encoding nucleic acid molecules described herein, as well as polynucleotides capable of hybridizing to such nucleic acid molecules may be used as a probe or as primers in a polymerase chain reaction (PCR). Such probes may be used, e.g., to detect the presence of Hu-Asp nucleic acids in *in vitro* assays, as well as in Southern and northern blots. Cell types expressing Hu-Asp may also be identified by the use of such probes. Such procedures are well known, and the skilled artisan will be able to choose a probe of a length suitable to the particular application. For PCR, 5' and 3' primers corresponding to the termini of a desired Hu-Asp nucleic acid molecule are employed to isolate and amplify that sequence using conventional techniques.

Other useful fragments of the Hu-Asp nucleic acid molecules are antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence capable of binding to a target Hu-Asp mRNA (using a sense strand), or Hu-Asp DNA (using an antisense strand) sequence. In a preferred embodiment of the invention these Hu-Asp antisense oligonucleotides reduce Hu-Asp mRNA and consequent production of Hu-Asp polypeptides.

In another aspect, the invention includes Hu-Asp polypeptides with or without associated native pattern glycosylation. Both Hu-Asp1 and Hu-Asp2 have canonical acceptor sites for Asn-linked sugars, with Hu-Asp1 having two of such sites, and Hu-Asp2 having four. Hu-Asp expressed in yeast or mammalian expression systems (discussed below) may be similar to or significantly different from a native Hu-Asp polypeptide in molecular weight and glycosylation pattern. Expression of Hu-Asp in bacterial expression systems will provide non-glycosylated Hu-Asp.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. Hu-Asp polypeptides may be recovered and purified from tissues, cultured cells, or recombinant cell cultures by well-known methods, including ammonium sulfate or ethanol precipitation, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, and high performance liquid chromatography (HPLC). In a preferred embodiment, an amino acid tag is added to the Hu-Asp polypeptide using genetic engineering techniques that are well known to practioners of the art which include addition of six histidine amino acid residues to allow

purification by binding to nickel immobilized on a suitable support, epitopes for polyclonal or monoclonal antibodies including but not limited to the T7 epitope, the myc epitope, and the V5a epitope, and fusion of Hu-Asp2 to suitable protein partners including but not limited to glutathione-S-transferase or maltose binding protien. In a preferred embodiment these additional amino acid sequences are added to the C-terminus of Hu-Asp but may be added to the N-terminus or at intervening positions within the Hu-Asp2 polypeptide.

The present invention also relates to vectors comprising the polynucleotide molecules of the invention, as well as host cell transformed with such vectors. Any of the polynucleotide molecules of the invention may be joined to a vector, which generally includes a selectable marker and an origin of replication, for propagation in a host. Because the invention also provides Hu-Asp polypeptides expressed from the polynucleotide molecules described above, vectors for the expression of Hu-Asp are preferred. The vectors include DNA encoding any of the Hu-Asp polypeptides described above or below, operably linked to suitable transcriptional or translational regulatory sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, mRNA ribosomal binding sites, and appropriate sequences which control transcription and translation. Nucleotide sequences are operably linked when the regulatory sequence functionally relates to the DNA encoding Hu-Asp. Thus, a promoter nucleotide sequence is operably linked to a Hu-Asp DNA sequence if the promoter nucleotide sequence directs the transcription of the Hu-Asp sequence.

Selection of suitable vectors to be used for the cloning of polynucleotide molecules encoding Hu-Asp, or for the expression of Hu-Asp polypeptides, will of course depend upon the host cell in which the vector will be transformed, and, where applicable, the host cell from which the Hu-Asp polypeptide is to be expressed. Suitable host cells for expression of Hu-Asp polypeptides include prokaryotes, yeast, and higher eukaryotic cells, each of which is discussed below.

The Hu-Asp polypeptides to be expressed in such host cells may also be fusion proteins which include regions from heterologous proteins. Such regions may be included to allow, e.g., secretion, improved stability, or facilitated purification of the polypeptide. For example, a sequence encoding an appropriate signal peptide can be incorporated into expression vectors. A DNA sequence for a signal peptide (secretory leader) may be fused in frame to the Hu-Asp sequence so that Hu-Asp is translated as a fusion protein comprising the signal peptide. A signal peptide that is functional in the intended host cell promotes

extracellular secretion of the Hu-Asp polypeptide. Preferably, the signal sequence will be cleaved from the Hu-Asp polypeptide upon secretion of Hu-Asp from the cell. Non-limiting examples of signal sequences that can be used in practicing the invention include the yeast I-factor and the honeybee melatin leader in s19 insect cells.

In a preferred embodiment, the Hu-Asp polypeptide will be a fusion protein which includes a heterologous region used to facilitate purification of the polypeptide. Many of the available peptides used for such a function allow selective binding of the fusion protein to a binding partner. For example, the Hu-Asp polypeptide may be modified to comprise a peptide to form a fusion protein which specifically binds to a binding partner, or peptide tag. Non-limiting examples of such peptide tags include the 6-His tag, thioredoxin tag, hemaglutinin tag, GST tag, and OmpA signal sequence tag. As will be understood by one of skill in the art, the binding partner which recognizes and binds to the peptide may be any molecule or compound including metal ions (e.g., metal affinity columns), antibodies, or fragments thereof, and any protein or peptide which binds the peptide, such as the FLAG tag.

Suitable host cells for expression of Hu-Asp polypeptides includes prokaryotes, yeast, and higher eukaryotic cells. Suitable prokaryotic hosts to be used for the expression of Hu-Asp include bacteria of the genera Escherichia, Bacillus, and Salmonella, as well as members of the genera Pseudomonas, Streptomyces, and Staphylococcus. For expression in, e.g., E. coli, a Hu-Asp polypeptide may include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in a prokaryotic host. The N-terminal Met may optionally then be cleaved from the expressed Hu-Asp polypeptide. Other N-terminal amino acid residues can be added to the Hu-Asp polypeptide to facilitate expression in Escherichia coli including but not limited to the T7 leader sequence, the T7-caspase 8 leader sequence, as well as others leaders including tags for purification such as the 6-His tag (Example 9). Hu-Asp polypeptides expressed in E. coli may be shortened by removal of the cytoplasmic tail, the transmembrane domain, or the membrane proximal region. Hu-Asp polypeptides expressed in E. coli may be obtained in either a soluble form or as an insoluble form which may or may not be present as an inclusion body. The insoluble polypeptide may be rendered soluble by guanidine HCl, urea or other protein denaturants, then refolded into a soluble form before or after purification by dilution or dialysis into a suitable aqueous buffer. If the inactive proform of the Hu-Asp was produced using recombinant methods, it may be rendered active by cleaving off the prosegment with a second suitable protease such as human immunodeficiency virus protease.

50

5

10

15

20

25

30

35

40

45

5

10

15

20

25

Expression vectors for use in prokaryotic hosts generally comprises one or more phenotypic selectable marker genes. Such genes generally encode, e.g., a protein that confers antibiotic resistance or that supplies an auxotrophic requirement. A wide variety of such vectors are readily available from commercial sources. Examples include pSPORT vectors, pGEM vectors (Promega), pPROEX vectors (LTI, Bethesda, MD), Bluescript vectors (Stratagene), pET vectors (Novagen) and pQE vectors (Qiagen).

Hu-Asp may also be expressed in yeast host cells from genera including Saccharomyces, Pichia, and Kluveromyces. Preferred yeast hosts are S. cerevisiae and P. pastoris. Yeast vectors will often contain an origin of replication sequence from a 2T yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Vectors replicable in both yeast and E. coli (termed shuttle vectors) may also be used. In addition to the above-mentioned features of yeast vectors, a shuttle vector will also include sequences for replication and selection in E. coli. Direct secretion of Hu-Asp polypeptides expressed in yeast hosts may be accomplished by the inclusion of nucleotide sequence encoding the yeast I-factor leader sequence at the 5' end of the Hu-Asp-encoding nucleotide sequence.

Insect host cell culture systems may also be used for the expression of Hu-Asp polypeptides. In a preferred embodiment, the Hu-Asp polypeptides of the invention are expressed using an insect cell expression system (see Example 10). Additionally, a baculovirus expression system can be used for expression in insect cells as reviewed by Luckow and Summers, Bio/Technology 6:47 (1988).

In another preferred embodiment, the Hu-Asp polypeptide is expressed in mammalian host cells. Non-limiting examples of suitable mammalian cell lines include the COS-7 line of monkey kidney cells (Gluzman et al., Cell 23:175 (1981)), human embyonic kidney cell line 293, and Chinese hamster ovary (CHO) cells. Preferably, Chinese hamster ovary (CHO) cells are used for expression of Hu-Asp proteins (Example 11).

The choice of a suitable expression vector for expression of the Hu-Asp polypeptides of the invention will of course depend upon the specific mammalian host cell to be used, and is within the skill of the ordinary artisan. Examples of suitable expression vectors include pcDNA3 (Invitrogen) and pSVL (Pharmacia Biotech). A preferred vector for expression of Hu-Asp polypeptides is pcDNA3.1-Hygro (Invitrogen). Expression vectors for use in mammalian host cells may include transcriptional and translational control sequences derived

from viral genomes. Commonly used promoter sequences and enhancer sequences which may be used in the present invention include, but are not limited to, those derived from human cytomegalovirus (CMV), Adenovirus 2, Polyoma virus, and Simian virus 40 (SV40). Methods for the construction of mammalian expression vectors are disclosed, for example, in Okayama and Berg (Mol. Cell. Biol. 3:280 (1983)); Cosman et al. (Mol. Immunol. 23:935 (1986)); Cosman et al. (Nature 312:768 (1984)); EP-A-0367566; and WO 91/18982.

5

10

15

20

25

30

35

40

45

50

55

20

The polypeptides of the present invention may also be used to raise polyclonal and monoclonal antibodies, which are useful in diagnostic assays for detecting Hu-Asp polypeptide expression. Such antibodies may be prepared by conventional techniques. See, for example, Antibodies: A Laboratory Manual, Harlow and Land (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1988); Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, Kennet et al. (cds.), Plenum Press, New York (1980). Synthetic peptides comprising portions of Hu-Asp containing 5 to 20 amino acids may also be used for the production of polyclonal or monoclonal antibodies after linkage to a suitable carrier protein including but not limited to keyhole limpet hemacyanin (KLH), chicken ovalbumin, or bovine serum albumin using various cross-linking reagents including carbodimides, glutaraldehyde, or if the peptide contains a cysteine, N-methylmaleimide. A preferred peptide for immunization when conjugated to KLH contains the C-terminus of **ORRPRDPEVVNDESSLVRHRWK** Hu-Asp2 comprising Hu_Aspl or LRQQHDDFADDISLLK, respectively.

The Hu-Asp nucleic acid molecules of the present invention are also valuable for chromosome identification, as they can hybridize with a specific location on a human chromosome. Hu-Asp1 has been localized to chromosome 21, while Hu-Asp2 has been localized to chromosome 11q23.3-24.1. There is a current need for identifying particular sites on the chromosome, as few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. The relationship between genes and diseases that have been mapped to the same chromosomal region can then be identified through linkage analysis, wherein the coinheritance of physically adjacent genes is determined. Whether a gene appearing to be related to a particular disease is in fact the cause of the disease can then be determined by comparing the nucleic acid sequence between affected and unaffected individuals.

5

10

15

10

20

25

30

20

25

30

35

40

45

50

55

In another embodiment, the invention relates to a method of assaying Hu-Asp function, specifically Hu-Asp2 function which involves incubating in solution the Hu-Asp polypeptide with a suitable substrate including but not limited to a synthetic peptide containing the βsecretase cleavage site of APP, preferably one containing the mutation found in a Swedish kindred with inherited AD in which KM is changed to NL, such peptide comprising the sequence SEVNLDAEFR in an acidic buffering solution, preferably an acidic buffering solution of pH5.5 (see Example 12) using cleavage of the peptide monitored by high performance liquid chromatography as a measure of Hu-Asp proteolytic activity. Preferred assays for proteolytic activity utilize internally quenched peptide assay substrates. Such suitable substrates include peptides which have attached a paired flurophore and quencher including but not limited to coumarin and dinitrophenol, respectively, such that cleavage of the peptide by the Hu-Asp results in increased fluorescence due to physical separation of the flurophore and quencher. Preferred colorimetric assays of Hu-Asp proteolytic activity utilize other suitable substrates that include the P2 and P1 amino acids comprising the recognition site for cleavage linked to o-nitrophenol through an amide linkage, such that cleavage by the Hu-Asp results in an increase in optical density after altering the assay buffer to alkaline pH.

In another embodiment, the invention relates to a method for the identification of an agent that increases the activity of a Hu-Asp polypeptide selected from the group consisting of Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b), the method comprising

- (a) determining the activity of said Hu-Asp polypeptide in the presence of a test agent and in the absence of a test agent; and
- (b) comparing the activity of said Hu-Asp polypeptide determined in the presence of said test agent to the activity of said Hu-Asp polypeptide determined in the absence of said test agent;

whereby a higher level of activity in the presence of said test agent than in the absence of said test agent indicates that said test agent has increased the activity of said Hu-Asp polypeptide. Such tests can be performed with Hu-Asp polypeptide in a cell free system and with cultured cells that express Hu-Asp as well as variants or isoforms thereof.

In another embodiment, the invention relates to a method for the identification of an agent that decreases the activity of a Hu-Asp polypeptide selected from the group consisting of Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b), the method comprising

(a) determining the activity of said Hu-Asp polypeptide in the presence of a test agent and in the absence of a test agent; and

(b) comparing the activity of said Hu-Asp polypeptide determined in the
 presence of said test agent to the activity of said Hu-Asp polypeptide determined in the absence of said test agent;

whereby a lower level of activity in the presence of said test agent than in the absence of said test agent indicates that said test agent has decreased the activity of said Hu-Asp polypeptide. Such tests can be performed with Hu-Asp polypeptide in a cell free system and with cultured cells that express Hu-Asp as well as variants or isoforms thereof.

In another embodiment, the invention relates to a novel cell line (HEK125.3 cells) for measuring processing of amyloid β peptide $(A\beta)$ from the amyloid protein precursor (APP). The cells are stable transformants of human embryonic kidney 293 cells (HEK293) with a bicistronic vector derived from pIRES-EGFP (Clontech) containing a modified human APP cDNA, an internal ribosome entry site and an enhanced green fluorescent protein (EGFP) cDNA in the second cistron. The APP cDNA was modified by adding two lysine codons to the carboxyl terminus of the APP coding sequence. This increases processing of AB peptide from human APP by 2-4 fold. This level of AB peptide processing is 60 fold higher than is seen in nontransformed HEK293 cells. HEK125.3 cells will be useful for assays of compounds that inhibit Aβ peptide processing. This invention also includes addition of two lysine residues to the C-terminus of other APP isoforms including the 751 and 770 amino acid isoforms, to isoforms of APP having mutations found in human AD including the Swedish KM→NL and V717→F mutations, to C-terminal fragments of APP, such as those beginning with the β-secretase cleavage site, to C-terminal fragments of APP containing the β-sccretase cleavage site which have been operably linked to an N-terminal signal peptide for membrane insertion and secretion, and to C-terminal fragments of APP which have been operably linked to an N-terminal signal peptide for membrane insertion and secretion and a reporter sequence including but not limited to green fluorescent protein or alkaline phosphatase, such that β-secretase cleavage releases the reporter protein from the surface of cells expressing the polypeptide.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

50

55

45

5

10

15

20

25

30

35

40

5

10

15

20

25

EXAMPLES

Example 1: Development of a Search Algorithm Useful for the Identification of Aspartyl Proteases, and Identification of C. elegans Aspartyl Protease Genes in Wormpep 12:

Materials and Methods:

Classical aspartyl proteases such as pepsin and renin possess a two-domain structure which folds to bring two aspartyl residues into proximity within the active site. These are embedded in the short tripeptide motif DTG, or more rarely, DSG. The DTG or DSG active site motif appears at about residue 25-30 in the enzyme, but at about 65-70 in the proenzyme (prorenin, pepsinogen). This motif appears again about 150-200 residues downstream. The proenzyme is activated by cleavage of the N-terminal prodomain. This pattern exemplifies the double domain structure of the modern day aspartyl enzymes which apparently arose by gene duplication and divergence. Thus;

 $\mathsf{NH_2}\text{-----}X\text{-----}D^{25}\mathsf{TG}\text{-----}Y\text{-----}D^{Y+25}\mathsf{TG}\text{------}C$

where X denotes the beginning of the enzyme, following the N-terminal prodomain, and Y denotes the center of the molecule where the gene repeat begins again.

In the case of the retroviral enzymes such as the HIV protease, they represent only a half of the two-domain structures of well-known enzymes like pepsin, cathepsin D, renin, etc. They have no prosegment, but are carved out of a polyprotein precursor containing the gag and pol proteins of the virus. They can be represented by:

This "monomer" only has about 100 aa, so is extremely parsimonious as compared to the other aspartyl protease "dimers" which have of the order of 330 or so aa, not counting the N-terminal prodomain.

The limited length of the eukaryotic aspartyl protease active site motif makes it difficult to search EST collections for novel sequences. EST sequences typically average 250 nucleotides, and so in this case would be unlikely to span both aspartyl protease active site motifs. Instead, we turned to the *C. elegans* genome. The *C. elegans* genome is estimated to contain around 13,000 genes. Of these, roughly 12,000 have been sequenced and the corresponding hypothetical open reading frame (ORF) has been placed in the database Wormpep12. We used this database as the basis for a whole genome scan of a higher eukaryote for novel aspartyl proteases, using an algorithm that we developed

specifically for this purpose. The following AWK script for locating proteins containing two DTG or DSG motifs was used for the search, which was repeated four times to recover all pairwise combinations of the aspartyl motif.

```
BEGIN{RS=">"} /* defines ">" as record separator for FASTA format */

{
pos = index($0,"DTG") /*finds "DTG" in record*/

if (pos>0) {
    rest = substr($0,pos+3) /*get rest of record after first DTG*/
    pos2 = index(rest,"DTG") /*find second DTG*/
    if (pos2>0) printf ("%s%s\n",">",$0)} /*report hits*/

}
}
```

The AWK script shown above was used to search Wormpep12, which was downloaded from ftp.sanger.ac.uk/pub/databases/wormpep, for sequence entries containing at least two DTG or DSG motifs. Using AWK limited each record to 3000 characters or less. Thus, 35 or so larger records were eliminated manually from Wormpep12 as in any case these were unlikely to encode aspartyl proteases.

Results and Discussion:

The Wormpep 12 database contains 12,178 entries, although some of these (<10%) represent alternatively spliced transcripts from the same gene. Estimates of the number of genes encoded in the *C. elegans* genome is on the order of 13,000 genes, so Wormpep12 may be estimated to cover greater than 90% of the *C. elegans* genome.

Eukaryotic aspartyl proteases contain a two-domain structure, probably arising from ancestral gene duplication. Each domain contains the active site motif D(S/T)G located from 20-25 amino acid residues into each domain. The retroviral (e.g., HIV protease) or retrotransposon proteases are homodimers of subunits which are homologous to a single eukaryotic aspartyl protease domain. An AWK script was used to search the Wormpep12 database for proteins in which the D(S/T)G motif occurred at least twice. This identified >60 proteins with two DTG or DSG motifs. Visual inspection was used to select proteins in which the position of the aspartyl domains was suggestive of a two-domain structure meeting the criteria described above.

In addition, the PROSITE eukaryotic and viral aspartyl protease active site pattern PS00141 was used to search Wormpep12 for candidate aspartyl proteases. (Bairoch A., Bucher P., Hofmann K., The PROSITE database: its status in 1997, *Nucleic Acids Res.* 24:217-221(1997)). This generated an overlapping set of Wormpep12 sequences. Of these,

seven sequences contained two DTG or DSG motifs and the PROSITE aspartyl protease active site pattern. Of these seven, three were found in the same cosmid clone (F21F8.3, F21F8.4, and F21F8.7) suggesting that they represent a family of proteins that arose by ancestral gene duplication. Two other ORFs with extensive homology to F21F8.3, F21F8.4 and F21F8.7 are present in the same gene cluster (F21F8.2 and F21F8.6), however, these contain only a single DTG motif. Exhaustive BLAST searches with these seven sequences against Wormpep12 failed to reveal additional candidate aspartyl proteases in the C.

BLASTX search with each *C. elegans* sequence against SWISS-PROT, GenPep and TREMBL revealed that R12H7.2 was the closest worm homologue to the known mammalian aspartyl proteases, and that T18H9.2 was somewhat more distantly related, while CEASP1, F21F8.3, F21F8.4, and F21F8.7 formed a subcluster which had the least sequence homology to the mammalian sequences.

elegans genome containing two repeats of the DTG or DSG motif.

Discussion:

APP, the presentilins, and p35, the activator of cdk5, all undergo intracellular proteolytic processing at sites which conform to the substrate specificity of the HIV protease. Dysregulation of a cellular aspartyl protease with the same substrate specificity, might therefore provide a unifying mechanism for causation of the plaque and tangle pathologies in AD. Therefore, we sought to identify novel human aspartyl proteases. A whole genome scan in *C. elegans* identified seven open reading frames that adhere to the aspartyl protease profile that we had identified. These seven aspartyl proteases probably comprise the complete complement of such proteases in a simple, multicellular eukaryote. These include four closely related aspartyl proteases unique to *C. elegans* which probably arose by duplication of an ancestral gene. The other three candidate aspartyl proteases (T18H9.2, R12H7.2 and C11D2.2) were found to have homology to mammalian gene sequences.

Example 2: Identification of Novel Human Aspartyl Proteases Using Database Mining by Genome Bridging

Materials and Methods:

Computer-assisted analysis of EST databases, cDNA, and predicted polypeptide sequences:

Exhaustive homology searches of EST databases with the CEASP1, F21F8.3, F21F8.4, and F21F8.7 sequences failed to reveal any novel mammalian homologues. TBLASTN searches with R12H7.2 showed homology to cathepsin D, cathepsin E, pepsinogen A, pepsinogen C and renin, particularly around the DTG motif within the active site, but also failed to identify any additional novel mammalian aspartyl proteases. This indicates that the *C. elegans* genome probably contains only a single lysosomal aspartyl protease which in mammals is represented by a gene family that arose through duplication and consequent modification of an ancestral gene.

TBLASTN searches with T18H9.2, the remaining *C. elegans* sequence, identified several ESTs which assembled into a contig encoding a novel human aspartyl protease (Hu-ASP1). As is described above in Example 1, BLASTX search with the Hu-ASP1 contig against SWISS-PROT revealed that the active site motifs in the sequence aligned with the active sites of other aspartyl proteases. Exhaustive, repetitive rounds of BLASTN searches against LifeSeq, LifeSeqFL, and the public EST collections identified 102 EST from multiple cDNA libraries that assembled into a single contig. The 51 sequences in this contig found in public EST collections also have been assembled into a single contig (THC213329) by The Institute for Genome Research (TIGR). The TIGR annotation indicates that they failed to find any hits in the database for the contig. Note that the TIGR contig is the reverse complement of the LifeSeq contig that we assembled. BLASTN search of Hu-ASP1 against the rat and mouse EST sequences in ZooSeq revealed one homologous EST in each database (Incyte clone 700311523 and IMAGE clone 313341, GenBank accession number W10530, respectively).

TBLASTN searches with the assembled DNA sequence for Hu-ASP1 against both LifeSeqFL and the public EST databases identified a second, related human sequence (Hu-Asp2) represented by a single EST (2696295). Translation of this partial cDNA sequence reveals a single DTG motif which has homology to the active site motif of a bovine aspartyl protease, NM1.

BLAST searches, contig assemblies and multiple sequence alignments were performed using the bioinformatics tools provided with the LifeSeq, LifeSeqFL and LifeSeq Assembled databases from Incyte. Predicted protein motifs were identified using either the ProSite dictionary (Motifs in GCG 9) or the Pfam database.

Full-length cDNA cloning of Hu-Asp1

The open reading frame of *C. elegans* gene T18H9.2CE was used to query Incyte LifeSeq and LifeSeq-FL databases and a single electronic assembly referred to as 1863920CE1 was detected. The 5' most cDNA clone in this contig, 1863920, was obtained from Incyte and completely sequenced on both strands. Translation of the open reading frame contained within clone 1863920 revealed the presence of the duplicated aspartyl protease active site motif (DTG/DSG) but the 5' end was incomplete. The remainder of the Hu-Asp1 coding sequence was determined by 5' Marathon RACE analysis using a human placenta Marathon ready cDNA template (Clonetech). A 3'-antisense oligonucleotide primer specific for the 5' end of clone 1863920 was paired with the 5'-sense primer specific for the Marathon ready cDNA synthetic adaptor in the PCR. Specific PCR products were directly sequenced by cycle sequencing and the resulting sequence assembled with the sequence of clone 1863920 to yield the complete coding sequence of Hu-Asp-1 (SEQ ID No. 1).

Several interesting features are present in the primary amino acid sequence of Hu-Asp1 (Figure 1, SEQ ID No. 2). The sequence contains a signal peptide (residues 1-20 in SEQ ID No. 2), a pro-segment, and a catalytic domain containing two copies of the aspartyl protease active site motif (DTG/DSG). The spacing between the first and second active site motifs is about 200 residues which should correspond to the expected size of a single, eukaryotic aspartyl protease domain. More interestingly, the sequence contains a predicted transmembrane domain (residues 469-492 in SEQ ID No.2) near its C-terminus which suggests that the protease is anchored in the membrane. This feature is not found in any other aspartyl protease.

Cloning of a full-length Hu-Asp-2 cDNAs:

As is described above in Example 1, genome wide scan of the *Caenorhabditis* elegans database WormPep12 for putative aspartyl proteases and subsequent mining of human EST databases revealed a human ortholog to the *C. elegans* gene T18H9.2 referred to as Hu-Asp1. The assembled contig for Hu-Asp1 was used to query for human paralogs using the BLAST search tool in human EST databases and a single significant match

PCT/US99/20881 WO 00/17369

(2696295CE1) with approximately 60% shared identity was found in the LifeSeq FL database. Similar queries of either gb105PubEST or the family of human databases available from TIGR did not identify similar EST clones. cDNA clone 2696295, identified by single pass sequence analysis from a human uterus cDNA library, was obtained from Incyte and completely sequence on both strands. This clone contained an incomplete 1266 10 bp open-reading frame that encoded a 422 amino acid polypeptide but lacked an initiator ATG on the 5' end. Inspection of the predicted sequence revealed the presence of the duplicated aspartyl protease active site motif DTG/DSG, separated by 194 amino acid 15 residues. Subsequent queries of later releases of the LifeSeq EST database identified an additional ESTs, sequenced from a human astrocyte cDNA library (4386993), that appeared 10 to contain additional 5' sequence relative to clone 2696295. Clone 4386993 was obtained from Incyte and completely sequenced on both strands. Comparative analysis of clone 20 4386993 and clone 2696295 confirmed that clone 4386993 extended the open-reading frame by 31 amino acid residues including two in-frame translation initiation codons. Despite the presence of the two in-frame ATGs, no in-frame stop codon was observed 25 upstream of the ATG indicating that the 4386993 may not be full-length. Furthermore, alignment of the sequences of clones 2696295 and 4386993 revealed a 75 base pair insertion in clone 2696295 relative to clone 4386993 that results in the insertion of 25 additional amino acid residues in 2696295. The remainder of the Hu-Asp2 coding sequence 30 was determined by 5' Marathon RACE analysis using a human hippocampus Marathon ready cDNA template (Clonetech). A 3'-antisense oligonucleotide primer specific for the shared 5'-region of clones 2696295 and 4386993 was paired with the 5'-sense primer 35 specific for the Marathon ready cDNA synthetic adaptor in the PCR. Specific PCR products were directly sequenced by cycle sequencing and the resulting sequence assembled with the sequence of clones 2696295 and 4386993 to yield the complete coding sequence 25 of Hu-Asp2(a) (SEQ ID No. 3) and Hu-Asp2(b) (SEQ ID No. 5), respectively. 40

5

45

50

55

Several interesting features are present in the primary amino acid sequence of Hu-Asp2(a) (Figure 2 and SEQ ID No. 4) and Hu-Asp-2(b) (Figure 3, SEQ ID No. 6). Both sequences contain a signal peptide (residues 1-21 in SEQ ID No. 4 and SEQ ID No. 6), a pro-segment, and a catalytic domain containing two copies of the aspartyl protease active site motif (DTG/DSG). The spacing between the first and second active site motifs is variable due to the 25 amino acid residue deletion in Hu-Asp-2(b) and consists of 168versus-194 amino acid residues, for Hu-Asp2(b) and Hu-Asp-2(a), respectively. More

interestingly, both sequences contains a predicted transmembrane domain (residues 455-477 in SEQ ID No.4 and 430-452 in SEQ ID No. 6) near their C-termini which indicates that the protease is anchored in the membrane. This feature is not found in any other aspartyl protease except Hu-Asp1.

Example 3. Molecular cloning of mouse Asp2 cDNA and genomic DNA. Cloning and characterization of murine Asp2 cDNA—The murine ortholog of Hu_Asp2 was cloned using a combination of cDNA library screening, PCR, and genomic cloning. Approximately 500,000 independent clones from a mouse brain cDNA library were screened using a ³²P-labeled coding sequence probe prepared from Hu_Asp2. Replicate positives were subjected to DNA sequence analysis and the longest cDNA contained the entire 3' untranslated region and 47 amino acids in the coding region. PCR amplification of the same mouse brain cDNA library with an antisense oligonucleotide primer specific for the 5'—most cDNA sequence determined above and a sense primer specific for the 5' region of human Asp2 sequence followed by DNA sequence analysis gave an additional 980 bp of the coding sequence. The remainder of the 5' sequence of murine Asp-2 was derived from genomic sequence (see below).

Isolation and sequence analysis of the murine Asp-2 gene—A murine EST sequence encoding a portion of the murine Asp2 cDNA was identified in the GenBank EST database using the BLAST search tool and the Hu-Asp2 coding sequence as the query. Clone g3160898 displayed 88% shared identity to the human sequence over 352 bp.

Oligonucleotide primer pairs specific for this region of murine Asp2 were then synthesized and used to amplify regions of the murine gene. Murine genomic DNA, derived from strain 129/SvJ, was amplified in the PCR (25 cycles) using various primer sets specific for murine Asp2 and the products analyzed by agarose gel electrophoresis. The primer set Zoo-1 and Zoo-4 amplified a 750 bp fragment that contained approximately 600 bp of intron sequence

based on comparison to the known cDNA sequence. This primer set was then used to

screen a murine BAC library by PCR, a single genomic clone was isolated and this cloned was confirmed contain the murine Asp2 gene by DNA sequence analysis. Shotgun DNA sequencing of this Asp2 genomic clone and comparison to the cDNA sequences of both Hu_Asp2 and the partial murine cDNA sequences defined the full-length sequence of murine Asp2 (SEQ ID No. 7). The predicted amino acid sequence of murine Asp2 (SEQ ID No. 8) showed 96.4% shared identity (GCG BestFit algorithm) with 18/501 amino acid residue substitutions compared to the human sequence (Figure 4).

Example 4: Tissue Distribution of Expression of Hu-Asp2 Transcripts: Materials and Methods:

The tissue distribution of expression of Hu-Asp-2 was determined using multiple tissue Northern blots obtained from Clonetech (Palo Alto, CA). Incyte clone 2696295 in the vector pINCY was digested to completion with *EcoRI/Not*I and the 1.8 kb cDNA insert purified by preparative agarose gel electrophoresis. This fragment was radiolabeled to a specific activity > 1 X 10⁹ dpm/μg by random priming in the presence of [α-³²P-dATP] (>3000 Ci/mmol, Amersham, Arlington Heights, IL) and Klenow fragment of DNA polymerase I. Nylon filters containing denatured, size fractionated poly A⁺ RNAs isolated from different human tissues were hybridized with 2 x 10⁶ dpm/ml probe in ExpressHyb buffer (Clonetech, Palo Alto, CA) for 1 hour at 68 °C and washed as recommended by the manufacture. Hybridization signals were visualized by autoradiography using BioMax XR film (Kodak, Rochester, NY) with intensifying screens at -80 °C.

Results and Discussion:

Limited information on the tissue distribution of expression of Hu-Asp-2 transcripts was obtained from database analysis due to the relatively small number of ESTs detected using the methods described above (< 5). In an effort to gain further information on the expression of the Hu-Asp2 gene, Northern analysis was employed to determine both the size(s) and abundance of Hu-Asp2 transcripts. PolyA⁺ RNAs isolated from a series of peripheral tissues and brain regions were displayed on a solid support following separation under denaturing conditions and Hu-Asp2 transcripts were visualized by high stringency hybridization to radiolabeled insert from clone 2696295. The 2696295 cDNA probe visualized a constellation of transcripts that migrated with apparent sizes of 3.0kb, 4.4 kb and 8.0 kb with the latter two transcript being the most abundant.

Across the tissues surveyed, Hu-Asp2 transcripts were most abundant in pancreas and brain with lower but detectable levels observed in all other tissues examined except thymus and PBLs. Given the relative abundance of Hu-Asp2 transcripts in brain, the regional expression in brain regions was also established. A similar constellation of transcript sizes were detected in all brain regions examined [cerebellum, cerebral cortex, occipital pole, frontal lobe, temporal lobe and putamen] with the highest abundance in the medulla and spinal cord.

Example 5: Northern Blot Detection of HuAsp-1 and HuAsp-2 Transcripts in Human Cell Lines:

A variety of human cell lines were tested for their ability to produce Hu-Asp1 and Asp2 mRNA. Human embryonic kidney (HEK-293) cells, African green monkey (Cos-7) cells, Chinese harnster ovary (CHO) cells, HELA cells, and the neuroblastoma cell line IMR-32 were all obtained from the ATCC. Cells were cultured in DME containing 10% FCS except CHO cells which were maintained in α-MEM/10% FCS at 37 °C in 5% CO₂ until they were near confluence. Washed monolayers of cells (3 X 10⁷) were lysed on the dishes and poly A⁺ RNA extracted using the Qiagen Oligotex Direct mRNA kit. Samples containing 2 μg of poly A⁺ RNA from each cell line were fractionated under denaturing conditions (glyoxal-treated), transferred to a solid nylon membrane support by capillary action, and transcripts visualized by hybridization with random-primed labeled (³²P) coding sequence probes derived from either Hu-Asp1 or Hu-Asp2. Radioactive signals were detected by exposure to X-ray film and by image analysis with a PhosphorImager.

The Hu-Asp1 cDNA probe visualized a similar constellation of transcripts (2.6 kb and 3.5 kb) that were previously detected is human tissues. The relative abundance determined by quantification of the radioactive signal was Cos-7 > HEK 292 = HELA > IMR32.

The Hu-Asp2 cDNA probe also visualized a similar constellation of transcripts compared to tissue (3.0 kb, 4.4 kb, and 8.0 kb) with the following relative abundance: HEK 293 > Cos 7 > IMR32 > HELA.

Example 6: Modification of APP to increase $A\beta$ processing for in vitro screening

Human cell lines that process $A\beta$ peptide from APP provide a means to screen in cellular assays for inhibitors of β - and γ -secretase. Production and release of $A\beta$ peptide into the culture supernatant is monitored by an enzyme-linked immunosorbent assay (EIA). Although expression of APP is widespread and both neural and non-neuronal cell lines

process and release AB peptide, levels of endogenous APP processing are low and difficult

to detect by EIA. A β processing can be increased by expressing in transformed cell lines mutations of APP that enhance A β processing. We made the screndipitous observation that addition of two lysine residues to the carboxyl terminus of APP695 increases A β processing still further. This allowed us to create a transformed cell line that releases A β peptide into the culture medium at the remarkable level of 20,000 pg/ml.

Materials And Methods

Materials:

Human embryonic kidney cell line 293 (HEK293 cells) were obtained internally. The vector pIRES-EGFP was purchased from Clontech. Oligonucleotides for mutation using the polymerase chain reaction (PCR) were purchased from Genosys. A plasmid containing human APP695 (SEQ ID No. 9 [nucleotide] and SEQ ID No. 10 [amino acid]) was obtained from Northwestern University Medical School. This was subcloned into pSK (Stratagene) at the *Not*1 site creating the plasmid pAPP695.

Mutagenesis protocol:

The Swedish mutation (K670N, M671L) was introduced into pAPP695 using the Stratagene Quick Change Mutagenesis Kit to create the plasmid pAPP695NL (SEQ ID No. 11 [nucleotide] and SEQ ID No. 12 [amino acid]). To introduce a di-lysine motif at the C-terminus of APP695, the forward primer #276 5' GACTGACCACTCGACCAGGTTC (SEQ ID No. 47) was used with the "patch" primer #274 5' CGAATTAAATTCCAGCACACTGGCTACTTCTTGTTCTGCATCTCAAAGAAC (SEQ ID No. 48) and the flanking primer #275 CGAATTAAATTCCAGCACACTGGCTA (SEQ ID No. 49) to modify the 3' end of the APP695 cDNA (SEQ ID No. 15 [nucleotide] and SEQ ID No. 16 [amino acid]). This also added a BstX1 restriction site that will be compatible with the BstX1 site in the multiple cloning site of pIRES-EGFP. PCR amplification was performed with a Clontech HF Advantage cDNA PCR kit using the polymerase mix and buffers supplied by the manufacturer. For "patch" PCR, the patch primer was used at 1/20th the molar concentration of the flanking primers. PCR amplification products were purified using a QIAquick PCR purification kit (Qiagen). After digestion with restriction enzymes, products were separated on 0.8% agarose gels and

then excised DNA fragments were purified using a QIAquick gel extraction kit (Qiagen).

To reassemble a modified APP695-Sw cDNA, the 5' Not1-Bgl2 fragment of the APP695-Sw cDNA and the 3' Bgl2-BstX1 APP695 cDNA fragment obtained by PCR were

ligated into pIRES-EGFP plasmid DNA opened at the Not1 and BstX1 sites. Ligations were performed for 5 minutes at room temperature using a Rapid DNA Ligation kit (Boehringer Mannheim) and transformed into Library Efficiency DH5a Competent Cells (GibcoBRL Life Technologies). Bacterial colonies were screened for inserts by PCR amplification using primers #276 and #275. Plasmid DNA was purified for mammalian cell transfection using a QIAprep Spin Miniprep kit (Qiagen). The construct obtained was designated pMG125.3 (APPSW-KK, SEQ ID No. 17 [nucleotide] and SEQ ID No. 18 [amino acid]).

Mammalian Cell Transfection:

HEK293 cells for transfection were grown to 80% confluence in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum. Cotransfections were performed using LipofectAmine (Gibco-BRL) with 3 μg pMG125.3 DNA and 9 μg pcDNA3.1 DNA per 10 x 10⁶ cells. Three days posttransfection, cells were passaged into medium containing G418 at a concentration of 400 μg/ml. After three days growth in selective medium, cells were sorted by their fluorescence.

Clonal Selection of 125.3 cells by FACS:

Cell samples were analyzed on an EPICS Elite ESP flow cytometer (Coulter, Hialcah, FL) equipped with a 488 nm excitation line supplied by an air-cooled argon laser. EGFP emission was measured through a 525 nm band-pass filter and fluorescence intensity was displayed on a 4-decade log scale after gating on viable cells as determined by forward and right angle light scatter. Single green cells were separated into each well of one 96 well plate containing growth medium without G418. After a four day recovery period, G418 was added to the medium to a final concentration of 400 μg/ml. After selection, 32% of the wells contained expanding clones. Wells with clones were expanded from the 96 well plate to a 24 well plate and then a 6 well plate with the fastest growing colonies chosen for expansion at each passage. The final cell line selected was the fastest growing of the final six passaged. This clone, designated 125.3, has been maintained in G418 at 400 ug/ml with passage every four days into fresh medium. No loss of Aβ production of EGFP fluorescence has been seen over 23 passages.

$A\beta$ EIA Analysis (Double Antibody Sandwich ELISA for hA β 1-40/42):

Cell culture supernatants harvested 48 hr after transfection were analyzed in a standard Aβ EIA as follows. Human Aβ 1-40 or 1-42 was measured using monoclonal antibody (mAb) 6E10 (Senetek, St. Louis, MO) and biotinylated rabbit antiserum 162 or

5

10

15

20

25

30

35

40

45

50

164 (New York State Institute for Basic Research, Staten Island, NY) in a double antibody sandwich ELISA. The capture antibody 6E10 is specific to an epitope present on the Nterminal amino acid residues 1-16 of hAB. The conjugated detecting antibodies 162 and 164 are specific for hAB 1-40 and 1-42, respectively. Briefly, a Nunc Maxisorp 96 well immunoplate was coated with 100 μl/well of mAb 6E10 (5μg/ml) diluted in 0.1M carbonate-bicarbonate buffer, pH 9.6 and incubated at 4°C overnight. After washing the plate 3x with 0.01M DPBS (Modified Dulbecco's Phosphate Buffered Saline (0.008M sodium phosphate, 0.002M potassium phosphate, 0.14M sodium chloride, 0.01 M potassium chloride, pH 7.4) from Pierce, Rockford, II) containing 0.05% of Tween-20 (DPBST), the plate was blocked for 60 min with 200µl of 10% normal sheep serum (Sigma) in 0.01M DPBS to avoid non-specific binding. Human Aß 1-40 or 1-42 standards 100µl/well (Bachem, Torrance, CA) diluted, from a 1mg/ml stock solution in DMSO, in culture medium was added after washing the plate, as well as 100µl/well of sample, e.g.conditioned medium of transfected cells. The plate was incubated for 2 hours at room temperature and 4°C overnight. The next day, after washing the plate, 100µl/well biotinylated rabbit antiserum 162 1:400 or 164 1:50 diluted in DPBST + 0.5% BSA was added and incubated at room temperature for 1hr 15 min. Following washes, 100µl/well neutravidin-horseradish peroxidase (Pierce, Rockford, II) diluted 1:10,000 in DPBST was applied and incubated for 1 hr at room temperature. After the last washes 100µl/well of ophenylnediamine dihydrochloride (Sigma Chemicals, St. Louis, MO) in 50mM citric acid/100mM sodium phosphate buffer (Sigma Chemicals, St. Louis, MO), pH 5.0, was added as substrate and the color development was monitored at 450nm in a kinetic microplate reader for 20 min. using Soft max Pro software. All standards and samples were run in triplicates. The samples with absorbance values falling within the standard curve were extrapolated from the standard curves using Soft max Pro software and expressed in pg/ml culture medium.

Results:

15

25

30

Addition of two lysine residues to the carboxyl terminus of APP695 greatly increases A β processing in HEK293 cells as shown by transient expression (Table 1). Addition of the di-lysine motif to APP695 increases A β processing to that seen with the APP695 containing the Swedish mutation. Combining the di-lysine motif with the Swedish mutation further increases processing by an additional 2.8 fold.

Cotransformation of HEK293 cells with pMG125.3 and pcDNA3.1 allowed dual selection of transformed cells for G418 resistance and high level expression of EGFP. After clonal selection by FACS, the cell line obtained, produces a remarkable 20,000 pg A β peptide per ml of culture medium after growth for 36 hr in 24 well plates. Production of A β peptide under various growth conditions is summarized in Table 2.

TABLE 1. Release of Aβ peptide into the culture medium 48 hr after transient transfection of HEK293 cells with the indicated vectors containing wildtype or modified APP. Values tabulated are mean + SD and P-value for pairwise comparison using Student's t-test assuming unequal variances.

APP Construct	Aβ 1-40 peptide (pg/ml)	Fold Increase	P-value	
pIRES-EGFP vector	147 + 28	1.0		
wt APP695 (142.3)	194 + 15	1.3	0.051	
wt APP695-KK (124.1)	424 + 34	2.8	3 x 10-5	
APP695-Sw (143.3)	457 + 65	3.1	2 x 10-3	
APP695-SwKK (125.3)	1308 + 98	8.9	3 x 10-4	

TABLE 2. Release of $A\beta$ peptide from HEK125.3 cells under various growth conditions.

Type of Culture	Volume of	Duration of	Ab 1-40	Ab 1-42
Plate	Medium	Culture	(pg/ml)	(pg/ml)
24 well plate	400 ul	36 hr	28,036	1,439

Example 7: Antisense oligomer inhibition of Abeta processing in HEK125.3 cells The sequences of Hu-Asp1 and Hu-Asp2 were provided to Sequitur, Inc (Natick,

MA) for selection of targeted sequences and design of 2nd generation chimeric antisense oligomers using prorietary technology (Sequitur Ver. D Pat pending #3002). Antisense oligomers Lot# S644, S645, S646 and S647 were targeted against Asp1. Antisense oligomers Lot# S648, S649, S650 and S651 were targeted against Asp2. Control antisense oligomers Lot# S652, S653, S655, and S674 were targeted against an irrelevant gene and antisense oligomers Lot #S656, S657, S658, and S659 were targeted against a second irrelevant gene.

For transfection with the antisense oligomers, HEK125.3 cells were grown to about 50% confluence in 6 well plates in Minimal Essential Medium (MEM) supplemented with 10% fetal calf serum. A stock solution of oligofectin G (Sequitur Inc., Natick, MA) at 2 mg/ml was diluted to 50 µg/ml in serum free MEM. Separately, the antisense oligomer stock solution at 100 µM was diluted to 800 nM in Opti-MEM (GIBCO-BRL, Grand

Island, NY). The diluted stocks of oligofectin G and antisense oligomer were then mixed at a ratio of 1:1 and incubated at room temperature. After 15 min incubation, the reagent was diluted 10 fold into MEM containing 10% fetal calf serum and 2 ml was added to each well of the 6 well plate after first removing the old medium. After transfection, cells were grown in the continual presence of the oligofectin G/antisense oligomer. To monitor Ab peptide release, 400 µl of conditioned medium was removed periodically from the culture well and replaced with fresh medium beginning 24 hr after transfection. Data reported are from culture supernatants harvested 48 hr after transfection.

Results:

The 16 different antisense oligomers obtained from Sequitur Inc were transfected separately into HEK125.3 cells to determine their affect on A β peptide processing. Only antisense oligomers targeted against Asp1 & Asp2 reduced Abeta processing by HEK125.3 cells with those targeted against Asp2 having a greater inhibitory effect. Both A β (1-40) and A β (1-42) were inhibited by the same degree. In Table 3, percent inhibition is calculated with respect to untransfected cells. Antisense oligomer reagents giving greater than 50% inhibition are marked with an asterisk. Of the reagents tested, 3 of 4 antisense oligomers targeted against ASP1 gave an average 52% inhibition of A β 1-40 processing and 47% inhibition of A β 1-42 processing. For ASP2, 4 of 4 antisense oligomers gave greater than 50% inhibition with an average inhibition of 62% for A β 1-40 processing and 60% for A β 1-42 processing.

Table 3. Inhibition of A β peptide release from HEK125.3 cells treated with antisense oligomers.

Gene Targeted	Antisense Oligomer	Abeta (1-40)	Abeta (1-42)
Asp1-1	S 644	62%*	56%*
Asp1-2	S 645	41%*	38%*
Asp1-3	S646	52%*	46%*
Asp1-4	S647	6%	25%
Asp2-1	S648	71%*	67%*
Asp2-2	S649	83%*	76%*
Asp2-3	S650	46%*	50%*
Asp2-4	S651	47%*	46%*
Con1-1	S652	13%	18%
Con1-2	\$653	35%	30%
Con1-3	S655	9%	18%
Con1-4	S674	29%	18%
Con2-1	S656	12%	18%
Con2-2	S657	16%	19%
Con2-3	S658	8%	35%

WO 00/17369

PCT/US99/20881

Con2-4 S659 3% 18%

PCT/US99/20881 WO 00/17369

Example 8. Demonstration of Hu-Asp2 β- Secretase Activity in Cultured Cells

Several mutations in APP associated with early onset Alzheimer's disease have been shown to alter AB peptide processing. These flank the N- and C-terminal cleavage sites that release A□ from APP. These cleavage sites are referred to as the β-secretase and γ-5 secretase cleavage sites, respectively. Cleavage of APP at the β -secretase site creates a Cterminal fragment of APP containing 99 amino acids of 11,145 daltons molecular weight. The Swedish KM→NL mutation immediately upstream of the β-secretase cleavage site causes a general increase in production of both the 1-40 and 1-42 amino acid forms of AE peptide. The London VF mutation (V717-)F in the APP770 isoform) has little effect on 10 total A peptide production, but appears to preferentially increase the percentage of the longer 1-42 amino acid form of AD peptide by affecting the choice of γ-secretase cleavage site used during APP processing. Thus, we sought to determine if these mutations altered the amount and type of A peptide produced by cultured cells cotransfected with a construct directing expression of Hu-Asp2.

Two experiments were performed which demonstrate Hu-Asp2 β-secretase activity in cultured cells. In the first experiment, treatment of HEK125.3 cells with antisense oligomers directed against Hu-Asp2 transcripts as described in Example 7 was found to decrease the amount of the C-terminal fragment of APP created by \(\beta\)-secretase cleavage (CTF99) (Figure 9). This shows that Hu-Asp2 acts directly or indirectly to facilitate β -20 secretase cleavage. In the second experiment, increased expression of Hu-Asp2 in transfected mouse Neuro2A cells is shown to increase accumulation of the CTF99 βsecretase cleavage fragment (Figure 10). This increase is seen most easily when a mutant APP-KK clone containing a C-terminal di-lysine motif is used for transfection. A further increase is seen when Hu-Asp2 is cotransfected with APP-Sw-KK containing the Swedish 25 mutation KM \rightarrow NL. The Swedish mutation is known to increase cleavage of APP by the β secretase.

50

55

5

10

15

20

25

30

35

40

45

A second set of experiments demonstrate Hu-Asp2 facilitates γ-secretase activity in cotransfection experiments with human embryonic kidney HEK293 cells. Cotransfection of Hu-Asp2 with an APP-KK clone greatly increases production and release of soluble Aβ1-40 and Aβ1-42 peptides from HEK293 cells. There is a proportionately greater increase in the release of Aβ1-42. A further increase in production of Aβ1-42 is seen when Hu-Asp2 is cotransfected with APP-VF (SEQ ID No. 13 [nucleotide] and SEQ ID No. 14 [amino acid]) or APP-VF-KK SEQ ID No. 19 [nucleotide] and SEQ ID No. 20 [amino acid]) clones containing the London mutation V717→F. The V717→F mutation is known to alter cleavage specificity of the APP γ-secretase such that the preference for cleavage at the Aβ42 site is increased. Thus, Asp2 acts directly or indirectly to facilitate γ-secretase processing of APP at the β42 cleavage site.

Materials

5

10

15

20

25

30

35

40

45

50

55

Antibodies 6E10 and 4G8 were purchased from Senetek (St. Louis, MO). Antibody 369 was obtained from the laboratory of Paul Greengard at the Rockefeller University.

Antibody C8 was obtained from the laboratory of Dennis Selkoe at the Harvard Medical School and Brigham and Women's Hospital.

APP Constructs used

The APP constructs used for transfection experiments comprised the following

20	APP	wild-type APP695 (SEQ ID No. 9 and No. 10)
	APP-Sw	APP695 containing the Swedish KM \rightarrow NL mutation (SEQ ID No. 11 and No. 12),
	APP-VF	APP695 containing the London V→F mutation (SEQ ID No. 13 and No. 14)
25	APP-KK	APP695 containing a C-terminal KK motif (SEQ ID No. 15 and No. 16),
	APP-Sw-KK	APP695-Sw containing a C-terminal KK motif (SEQ ID No. 17 and No. 18).
	APP-VF-KK	APP695-VF containing a C-terminal KK motif (SEQ ID No. 19 and
30		No. 20).

These were inserted into the vector pIRES-EGFP (Clontech. Palo Alto CA) between the Not1 and BstX1 sites using appropriate linker sequences introduced by PCR.

Transfection of antisense oligomers or plasmid DNA constructs in HEK293 cells, HEK125.3 cells and Neuro-2A cells,

Human embryonic kidney HEK293 cells and mouse Neuro-2a cells were transfected with expression constructs using the Lipofectamine Plus reagent from Gibco/BRL. Cells were seeded in 24 well tissue culture plates to a density of 70-80% confluence. Four wells per plate were transfected with 2 μg DNA (3:1, APP:cotransfectant), 8μl Plus reagent, and 4μl Lipofectamine in OptiMEM. OptiMEM was added to a total volume of 1 ml, distributed 200 μl per well and incubated 3 hours. Care was taken to hold constant the ratios of the two plasmids used for cotransfection as well as the total amount of DNA used in the transfection. The transfection media was replaced with DMEM, 10%FBS, NaPyruvate, with antibiotic/antimycotic and the cells were incubated under normal conditions (37°, 5% CO₂) for 48 hours. The conditioned media were removed to polypropylene tubes and stored at -80°C until assayed for the content of Aβ1-40 and Aβ1-42 by EIA as described in the preceding examples. Transfection of antisense oligomers into HEK125.3 cells was as described in Example 7.

Preparation of cell extracts, Western blot protocol

Cells were harvested after being transfected with plasmid DNA for about 60 hours. First, cells were transferred to 15-ml conical tube from the plate and centrifuged at 1,500 rpm for 5 min to remove the medium. The cell pellets were washed with PBS for one time. We then lysed the cells with lysis buffer (10 mM HEPES, pH 7.9, 150 mM NaCl, 10% glycerol, 1 mM EGTA, 1 mM EDTA, 0.1 mM sodium vanadate and 1% NP-40). The lysed cell mixtures were centrifuged at 5000 rpm and the supernatant was stored at -20°C as the cell extracts. Equal amounts of extracts from HEK125.3 cells transfected with the Asp2 antisense oligomers and controls were precipitated with antibody 369 that recognizes the C-terminus of APP and then CTF99 was detected in the immunoprecipitate with antibody 6E10. The experiment was repeated using C8, a second precipitating antibody that also recognizes the C-terminus of APP. For Western blot of extracts from mouse Neuro-2a cells cotransfected with Hu-Asp2 and APP-KK, APP-Sw-KK, APP-VF-KK or APP-VF, equal amounts of cell extracts were electrophoresed through 4-10% or 10-20% Tricine gradient gels (NOVEX, San Diego, CA). Full length APP and the CTF99 β-secretase product were detected with antibody 6E10.

30 Results

Transfection of HEK125.3 cells with Asp2-1 or Asp2-2 antisense oligomers reduces production of the CTF β-secretase product in comparison to cells similarly transfected with control oligomers having the reverse sequence (Asp2-1 reverse & Asp2-2 reverse)

In cotransfection experiments, cotransfection of Hu-Asp2 into mouse Neuro-2a cells with the APP-KK construct increased the formation of CTF99. This was further increased if Hu-Asp2 was coexpressed with APP-Sw-KK, a mutant form of APP containing the Swedish

KM→NL mutation that increases β-secretase processing.

Cotransfection of Hu-Asp2 with APP has little effect on Λβ40 production but increases Aβ42 production above background (Table 4). Addition of the di-lysine motif to the C-terminus of APP increases Aβ peptide processing about two fold, although Aβ40 and Aβ42 production remain quite low (352 pg/ml and 21 pg/ml, respectively). Cotransfection of Asp2 with APP-KK further increases both Aβ40 and Aβ42 production. The stimulation of Aβ40 production by Hu-Asp2 is more that 3 fold, while production of Aβ42 increases by more than 10 fold. Thus, cotransfection of Hu-Asp2 and APP-KK constructs preferentially increases Aβ42 production.

The APP V717→F mutation has been shown to increase γ-secretase processing at the Aβ42 cleavage site. Cotransfection of Hu-Asp2 with the APP-VF or APP-VF-KK constructs increased Aβ42 production (a two fold increase with APP-VF and a four-fold increase with APP-VF-KK, Table 4), but had mixed effects on Aβ40 production (a slight decrease with APP-VF, and a two fold increase with APP-VF-KK in comparison to the pcDNA cotransfection control. Thus, the effect of Asp2 on Aβ42 production was proportionately greater leading to an increase in the ratio of Aβ42/total Aβ. Indeed, the ratio of Aβ42/total Aβ reaches a very high value of 42% in HEK293 cells cotransfected with Hu-Asp2 and APP-VF-KK.

Western blot showing reduction of CTF99 production by HEK125.3 cells transfected with antisense oligomers targeting the Hu-Asp2 mRNA. (right) Western blot showing increase in CTF99 production in mouse Neuro-2a cells cotransfected with Hu-Asp2 and APP-KK. A further increase in CTF99 production is seen in cells cotransfected with Hu-Asp2 and APP-

5 Sw-**KK**.

Table 4. Results of cotransfecting Hu-Asp2 or pcDNA plasmid DNA with various APP constructs containing the V717 \rightarrow F mutation that modifies γ -secretase processing. Cotransfection with Asp2 consistently increases the ratio of A β 42/total A β . Values tabulated are A β peptide pg/ml.

П	(

		pcDNA Cotransfection		Asp2 Cotransfection		
	Αβ40	Αβ42	Aβ42/Total	Αβ40	Αβ42	Aβ42/Total
APP	192 <u>+</u> 18	<4	<2%	188 <u>+</u> 40	8 <u>+</u> 10	3.9%
APP-VF	118 <u>+</u> 15	15 <u>+</u> 19	11.5%	85 <u>±</u> 7	24 <u>+</u> 12	22.4%
APP-KK	352 <u>+</u> 24	2.1 <u>+</u> 6	5.5%	1062 <u>+</u> 101	226 <u>+</u> 49	17.5%
APP-VF-KK	230±31	88 <u>+</u> 24	27.7%	491±35	355 <u>+</u> 36	42%
		-				

Example 9. Bacterial expression of human Asp2L

Expression of recombinant Hu_Asp2L in E. coli.

Hu-Asp2L can be expressed in E. coli after addition of N-terminal sequences such as a T7 tag (SEQ ID No. 21 and No. 22) or a T7 tag followed by a caspase 8 leader sequence (SEQ ID No. 23 and No. 24). Alternatively, reduction of the GC content of the 5' sequence by site directed mutagenesis can be used to increase the yield of Hu-Asp2 (SEQ ID No. 25 and No. 26). In addition, Asp2 can be engineered with a proteolytic cleavage site (SEQ ID No. 27 and No. 28). To produce a soluble protein after expression and refolding, deletion of the transmembrane domain and cytoplasmic tail, or deletion of the membrane proximal region, transmembrane domain, and cytoplasmic tail is preferred.

Methods

PCT/US99/20881 WO 00/17369

PCR with primers containing appropriate linker sequences was used to assemble fusions of Asp2 coding sequence with N-terminal sequence modifications including a T7 tag (SEQ ID Nos, 21 and 22) or a T7-caspase 8 leader (SEQ ID Nos, 23 and 24). These constructs were cloned into the expression vector pet23a(+) [Novagen] in which a T7 promoter directs 10 expression of a T7 tag preceding a sequence of multiple cloning sites. To clone Hu-Asp2 sequences behind the T7 leader of pet23a+, the following oligonucleotides were used for amplification of the selected Hu-Asp2 sequence: #553=GTGGATCCACCCAGCACGGCATCCGGCTG (SEQ ID No. 35), 15 #554=GAAAGCTTTCATGACTCATCTGTCTGTGGAATGTTG (SEQ ID No. 36) which placed BamHI and HindIII sites flanking the 5' and 3' ends of the insert, respectively. The Asp2 sequence was amplified from the full length Asp2(b) cDNA cloned into pcDNA3.1 20 using the Advantage-GC cDNA PCR [Clontech] following the manufacturer's supplied protocol using annealing & extension at 68°C in a two-step PCR cycle for 25 cycles. The insert and vector were cut with BamHI and HindIII, purified by electrophoresis through an 15 agarose gel, then ligated using the Rapid DNA Ligation kit [Boerhinger Mannheim]. The 25 ligation reaction was used to transform the E. coli strain JM109 (Promega) and colonies were picked for the purification of plasmid (Qiagen,Qiaprep minispin) and DNA sequence analysis. For inducible expression using induction with isopropyl b-D-30

thiogalactopyranoside (IPTG), the expression vector was transferred into E. coli strain BL21 (Statagene). Bacterial cultures were grown in LB broth in the presence of ampicillin at 100 ug/ml, and induced in log phase growth at an OD600 of 0.6-1.0 with 1 mM IPTG for 4 hour at 37°C. The cell pellet was harvested by centrifugation.

To clone Hu-Asp2 sequences behind the T7 tag and caspase leader (SEQ ID Nos. 23 and 24), the construct created above containing the T7-Hu-Asp2 sequence (SEQ ID Nos. 21 and 22) was opened at the BamH1 site, and then the phosphorylated caspase 8 leader oligonucleotides #559=GATCGATGACTATCTCTGACTCTCCGCGTGAACAGGACG (SEQ ID No. 37), #560=GATCCGTCCTGTTCACGCGGAGAGTCAGAGATAGTCATC (SEQ ID No. 38) were annealed and ligated to the vector DNA. The 5' overhang for each set of oligonucleotides was designed such that it allowed ligation into the BamHI site but not subsequent digestion with BamHI. The ligation reaction was transformed into JM109 as above for analysis of protein expression after transfer to E. coli strain BL21.

50

45

35

40

20

25

In order to reduce the GC content of the 5' terminus of asp2, a pair of antiparallel oligos 5 were designed to change degenerate codon bases in 15 amino acid positions from G/C to A/T (SEQ ID Nos. 25 and 26). The new nucleotide sequence at the 5' end of asp2 did not change the encoded amino acid and was chosen to optimize E. Coli expression. The sequence of the sense linker is 5' 10 CGGCATCCGGCTGCCCTGCGTAGCGGTCTGGGTGGTGCTCCACTGGGTCTGCG TCTGCCCGGGAGACCGACGAA G 3' (SEQ ID No. 39). The sequence of the antisense linker is: 5' 15 CTTCGTCGGTCTCCCGGGGCAGACGCAGACCCAGTGGAGCACCACCCAGACCG CTACGCAGGGGCAGCCGGATGCCG 3' (SEQ ID No. 40). After annealing the phosphorylated linkers together in 0.1 M NaCl-10 mM Tris, pH 7.4 they were ligated into unique Cla I and Sma I sites in Hu-Asp2 in the vector pTAC. For inducible expression 20 using induction with isopropyl b-D-thiogalactopyranoside (IPTG), bacterial cultures were grown in LB broth in the presence of ampicillin at 100 ug/ml, and induced in log phase growth at an OD600 of 0.6-1.0 with 1 mM IPTG for 4 hour at 37°C. The cell pellet was 25 harvested by centrifugation. To create a vector in which the leader sequences can be removed by limited proteolysis with caspase 8 such that this liberates a Hu-Asp2 polypeptide beginning with the N-terminal sequence GSFV (SEQ ID Nos. 27 and 28), the following procedure was 30 followed. Two phosphorylated oligonucleotides containing the caspase 8 cleavage site IETD, #571=5' GATCGATGACTATCTCTGACTCTCCGCTGGACTCTGGTATCGAAACCGACG 35 (SEQ ID No. 41) and #572= GATCCGTCGGTTTCGATACCAGAGTCCAGCGGAGAGTCAGAGATAGTCATC (SEQ ID No. 42) were annealed and ligated into pET23a+ that had been opened with 25 BamHI. After transformation into JM109, the purified vector DNA was recovered and 40 orientation of the insert was confirmed by DNA sequence analysis. +, the following oligonucleotides were used for amplification of the selected Hu-Asp2 sequence: #573=5'AAGGATCCTTTGTGGAGATGGTGGACAACCTG, (SEQ ID No. 43) 45 #554=GAAAGCTTTCATGACTCATCTGTCTGTGGAATGTTG (SEQ ID No. 44) which placed BamHI and HindIII sites flanking the 5' and 3' ends of the insert, respectively. The Asp2 sequence was amplified from the full length Asp2 cDNA cloned into pcDNA3.1

using the Advantage-GC cDNA PCR [Clontech] following the manufacturer's supplied

50

5

10

15

aga liga 5 wer ana thio

10

20

25

protocol using annealing & extension at 68°C in a two-step PCR cycle for 25 cycles. The insert and vector were cut with BamHI and HindIII, purified by electrophoresis through an agarose gel, then ligated using the Rapid DNA Ligation kit [Boerhinger Mannheim]. The ligation reaction was used to transform the E. coli strain JM109 [Promega] and colonies were picked for the purification of plasmid (Qiagen,Qiaprep minispin) and DNA sequence analysis. For inducible expression using induction with isopropyl b-D-thiogalactopyranoside (IPTG), the expression vector was transferred into E. coli strain BL21 (Statagene). Bacterial cultures were grown in LB broth in the presence of ampicillin

at 100 ug/ml, and induced in log phase growth at an OD600 of 0.6-1.0 with 1 mM IPTG for

4 hour at 37°C. The cell pellet was harvested by centrifugation.

To assist purification, a 6-His tag can be introduced into any of the above constructs

following the T7 leader by opening the construct at the BamHI site and then ligating in the
annealed, phosphorylated oligonucleotides containing the six histidine sequence

#565=GATCGCATCACCATCACCATG (SEQ ID No. 45),

#566=GATCCATGGTGATGGTGATGATGC (SEQ ID No. 46). The 5' overhang for each set of oligonucleotides was designed such that it allowed ligation into the BamHI site but not subsequent digestion with BamHI.

Preparation of Bacterial Pellet:

30

25

36.34g of bacterial pellet representing 10.8L of growth was dispersed into a total volume of 200ml using a 20mm tissue homogenizer probe at 3000 to 5000 rpm in 2M KCl, 0.1M Tris, 0.05M EDTA, 1mM DTT. The conductivity adjusted to about 193mMhos with water.

35

After the pellet was dispersed, an additional amount of the KCl solution was added, bringing the total volume to 500 ml. This suspension was homogenized further for about 3 minutes at 5000 rpm using the same probe. The mixture was then passed through a Rannie high-pressure homogenizer at 10,000psi.

40

45

In all cases, the pellet material was carried forward, while the soluble fraction was discarded. The resultant solution was centrifuged in a GSA rotor for 1hr. at 12,500 rpm. The pellet was resuspended in the same solution (without the DTT) using the same tissue homogenizer probe at 2,000 rpm. After homogenizing for 5 minutes at 3000 rpm, the volume was adjusted to 500ml with the same solution, and spun for 1hr. at 12,500 rpm. The pellet was then resuspended as before, but this time the final volume was adjusted to

52

1.5L with the same solution prior to homogenizing for 5 minutes. After centrifuging at the 5 same speed for 30 minutes, this procedure was repeated. The pellet was then resuspended into about 150ml of cold water, pooling the pellets from the six centrifuge tubes used in the GSA rotor. The pellet has homogenized for 5 minutes at 3,000 rpm, volume adjusted to 250ml with cold water, then spun for 30 minutes. Weight of the resultant pellet was 10 17.75g. Summary: Lysis of bacterial pellet in KCl solution, followed by centrifugation in a GSA rotor was used to initially prepare the pellet. The same solution was then used an 15 additional three times for resuspension/homogenization. A final water wash/homogenization was then performed to remove excess KCl and EDTA. 10 Solublization of rHuAsp2L: A ratio of 9-10ml/gram of pellet was utilized for solubilizing the rHuAsp2L from the pellet 20 previously described. 17.75g of pellet was thawed, and 150ml of 8M guanidine HCl, 5mM βME, 0.1% DEA, was added. 3M Tris was used to titrate the pH to 8.6. The pellet was initially resuspended into the guanidine solution using a 20mm tissue homogenizer probe at 25 1000 rpm. The mixture was then stirred at 4°C for 1 hour prior to centrifugation at 12,500rpm for 1 hour in GSA rotor. The resultant supernatant was then centrifuged for 30min at 40,000 x g in an SS-34 rotor. The final supernatant was then stored at -20°C, except for 50ml. 30 Immobilized Nickel Affinity Chromatography of Solubilized rHuAsp2L: The following solutions were utilized: 6M Guanidine HCl, 0.1M NaP, pH 8.0, 0.01M Tris, 5mM β ME, 0.5mM Imidazole A) 6M Urea, 20mM NaP, pH 6.80, 50mM NaCl A') 6M Urea, 20mM NaP, pH 6.20, 50mM NaCl, 12mM Imidazole 35 B') 6M Urea, 20mM NaP, pH 6.80, 50mM NaCl, 300mM Imidazole C') 25 Note: Buffers A' and C' were mixed at the appropriate ratios to give intermediate concentrations of Imidazole. The 50ml of solubilized material was combined with 50ml of buffer A prior to adding to 40 100-125ml Qiagen Ni-NTA SuperFlow (pre-equilibrated with buffer A) in a 5 x 10cm Bio-Rad econo column. This was shaken gently overnight at 4°C in the cold room.

Chromatography Steps:

45

50

- 1) Drained the resultant flow through.
- 2) Washed with 50ml buffer A (collecting into flow through fraction)
- 3) Washed with 250ml buffer A (wash 1)
- 35 4) Washed with 250ml buffer A (wash 2)
 - 5) Washed with 250ml buffer A'

10	5	6) Washed with 250ml buffer B' 7) Washed with 250ml buffer A' 8) Eluted with 250ml 75mM Imidazole 9) Eluted with 250ml 150mM Imidazole (150-1) 10) Eluted with 250ml 150mM Imidazole (150-2) 11) Eluted with 250ml 300mM Imidazole (300-1) 12) Eluted with 250ml 300mM Imidazole (300-2) 13) Eluted with 250ml 300mM Imidazole (300-3)		
	10	Chromatography Results:		
		The rHuAsp eluted at 75mM Imidazole through 300mM Imidazole. The 75mM fraction, as		
15		well as the first 150mM Imidazole (150-1) fraction contained contaminating proteins as		
		visualized on Coomassie Blue stained gels. Therefore, fractions 150-2 and 300-1 will be		
		utilized for refolding experiments since they contained the greatest amount of protein (see		
20	15	Coomassie Blue stained gel).		
		Refolding Experiments of rHuAsp2L:		
		Experiment 1:		
		Forty ml of 150-2 was spiked with 1M DTT, 3M Tris, pH 7.4 and DEA to a final		
25		concentration of 6mM, 50mM, and 0.1% respectively. This was diluted suddenly (while		
	20	stirring) with 200ml of (4°C) cold 20mM NaP, pH 6.8, 150mM NaCl. This dilution gave a		
		final Urea concentration of 1M. This solution remained clear, even if allowed to set open to		
30		the air at RT or at 4°C.		
		After setting open to the air for 4-5 hours at 4°C, this solution was then dialyzed overnight		
		against 20mM NaP, pH 7.4, 150mM NaCl, 20% glycerol. This method effectively removes		
	25	the urea in the solution without precipitation of the protein.		
35		Experiment 2:		
		Some of the 150-2 eluate was concentrated 2x on an Amicon Centriprep, 10,000 MWCO,		
		then treated as in Experiment 1. This material also stayed in solution, with no visible		
40		precipitation.		
	30			
4 5				
50				

Experiment 3:

10

15

25

30

5

10

15

20

25

30

35

40

45

50

55

89ml of the 150-2 eluate was spiked with 1M DTT, 3M Tris, pH 7.4 and DEA to a final concentration of 6mM, 50mM, and 0.1% respectively. This was diluted suddenly (while stirring) with 445ml of (4°C) cold 20mM NaP, pH 6.8, 150mM NaCl. This solution appeared clear, with no apparent precipitation. The solution was removed to RT and stirred for 10 minutes prior to adding MEA to a final concentration of 0.1mM. This was stirred slowly at RT for 1hr. Cystamine and CuSO₄ were then added to final concentrations of 1mM and 10μM respectively. The solution was stirred slowly at RT for 10 minutes prior to being moved to the 4°C cold room and shaken slowly overnight, open to the air.

The following day, the solution (still clear, with no apparent precipitation) was centrifuged at 100,000 x g for 1 hour. Supernatants from multiple runs were pooled, and the bulk of the stabilized protein was dialyzed against 20mM NaP, pH 7.4, 150mM NaCl, 20% glycerol. After dialysis, the material was stored at -20°C.

Some (about 10ml) of the protein solution (still in 1M Urea) was saved back for biochemical analyses, and frozen at -20°C for storage.

Example 10. Expression of Hu-Asp2 and Derivatives in Insect Cells

Expression by baculovirus infection—The coding sequence of Hu-Asp2 and several derivatives were engineered for expression in insect cells using the PCR. For the fulllength sequence, a 5'-sense oligonucleotide primer that modified the translation initiation site to fit the Kozak consensus sequence was paired with a 3'-antisense primer that contains the natural translation termination codon in the Hu-Asp2 sequence. PCR amplification of the pcDNA3.1(hygro)/Hu-Asp2 template (see Example 12). Two derivatives of Hu-Asp2 that delete the C-terminal transmembrane domain (SEQ ID No. 29 and No. 30) or delete the transmembrane domain and introduce a hexa-histidine tag at the C-terminus (SEQ ID No. 31 and No. 32) were also engineered using the PCR. The same 5'-sense oligonucleotide primer described above was paired with either a 3'-antisense primer that (1) introduced a translation termination codon after codon 453 (SEQ ID No. 3) or (2) incorporated a hexahistidine tag followed by a translation termination codon in the PCR using pcDNA3.1(hygro)/Hu_Asp-2L as the template. In all cases, the PCR reactions were performed amplified for 15 cycles using PwoI DNA polymerase (Boehringer-Mannheim) as outlined by the supplier. The reaction products were digested to completion with BamH1 and NotI and ligated to BamHI and NotI digested baculovirus transfer vector pVL1393 (Invitrogen). A portion of the ligations was used to transform competent E. coli DH5a cells

followed by antibiotic selection on LB-Amp. Plasmid DNA was prepared by standard alkaline lysis and banding in CsCl to yield the baculovirus transfer vectors pVL1393/Asp2, pVL1393/Asp2 Δ TM and pVL1393/Asp2 Δ TM(His)₆. Creation of recombinant baculoviruses and infection of sf9 insect cells was performed using standard methods.

Expression by transfection—Transient and stable expression of Hu-Asp2ΔTM and Hu-Asp2ΔTM(His)₆ in High 5 insect cells was performed using the insect expression vector pIZ/V5-His. The DNA inserts from the expression plasmids vectors pVL1393/Asp2, pVL1393/Asp2ΔTM and pVL1393/Asp2ΔTM(His)₆ were excised by double digestion with BamHI and NotI and subcloned into BamHI and NotI digested pIZ/V5-His using standard methods. The resulting expression plasmids, referred to as pIZ/Hu-Asp2ΔTM and pIZ/Hu-Asp2ΔTM(His)₆, were prepared as described above.

For transfection, High 5 insect cells were cultured in High Five serum free medium supplemented with 10 μ g/ml gentamycin at 27 °C in sealed flasks. Transfections were performed using High five cells, High five serum free media supplemented with 10 μ g/ml gentamycin, and InsectinPlus liposomes (Invitrogen, Carlsbad, CA) using standard methods.

For large scale transient transfections 1.2×10^7 high five cells were plated in a 150 mm tissue culture dish and allowed to attach at room temperature for 15-30 minutes. During the attachment time the DNA/liposome mixture was prepared by mixing 6 ml of serum free media, $60 \mu g Asp2\Delta TM/pIZ$ (+/- His) DNA and 120 μ l of Insectin Plus and incubating at room temperature for 15 minutes. The plating media was removed from the dish of cells and replaced with the DNA/liposome mixture for 4 hours at room temperature with constant rocking at 2 rpm. An additional 6 ml of media was added to the dish prior to incubation for 4 days at 27 °C in a humid incubator. Four days post transfection the media was harvested, clarified by centrifugation at 500 x g, assayed for Asp2 expression by Western blotting. For stable expression, the cells were treated with 50 μ g/ml Zeocin and the surviving pool used to prepared clonal cells by limiting dilution followed by analysis of the expression level as noted above.

Purification of Hu-Asp2ΔTM and Hu-Asp2ΔTM(His)₆—Removal of the transmembrane segment from Hu-Asp2 resulted in the secretion of the polypeptide into the culture medium. Following protein production by either baculovirus infection or transfection, the conditioned medium was harvested, clarified by centrifugation, and dialyzed against Tris-HCl (pH 8.0). This material was then purified by successive

chromatography by anion exchange (Tris-HCl, pH 8.0) followed by cation exchange chromatography (Acetate buffer at pH 4.5) using NaCl gradients. The elution profile was monitored by (1) Western blot analysis and (2) by activity assay using the peptide substrate described in-Example 12. For the Hu-Asp2 Δ TM(His)₆, the conditioned medium was dialyzed against Tris buffer (pH 8.0) and purified by sequential chromatography on IMAC resin followed by anion exchange chromatography.

Sequence analysis of the purified Hu-Asp 2Δ TM(His)₆ protein revealed that the signal peptide had been cleaved [TQHGIRLPLR].

Example 11. Expression of Hu-Asp2 in CHO cells

Heterologous expression of Hu_Asp-2L in CHO-K1 cells—The entire coding sequence of Hu-Asp2 was cloned into the mammalian expression vector pcDNA3.1(+)Hygro (Invitrogen, Carlsbad, CA) which contains the CMV immediate early promotor and bGH polyadenylation signal to drive over expression. The expression plasmid, pcDNA3.1(+)Hygro/Hu-Asp2, was prepared by alkaline lysis and banding in CsCl and completely sequenced on both strands to verify the integrity of the coding sequence.

Wild-type Chinese hamster ovary cells (CHO-K1) were obtained from the ATCC. The cells were maintained in monolayer cultures in α-MEM containing 10% FCS at 37°C in 5% CO₂. Two 100 mm dishes of CHO-K1 cells (60% confluent) were transfected with pcDNA3.1(+)/Hygro alone (mock) or pcDNA3.1(+)Hygro/Hu-Asp2 using the cationic liposome DOTAP as recommended by the supplier. The cells were treated with the plasmid DNA/liposome mixtures for 15 hr and then the medium replaced with growth medium containing 500 Units/ml hygromycin B. In the case of pcDNA3.1(+)Hygro/Hu-Asp2 transfected CHO-K1cells, individual hygromycin B-resistant cells were cloned by limiting dilution. Following clonal expansion of the individual cell lines, expression of Hu-Asp2 protein was accessed by Western blot analysis using a polyclonal rabbit antiserum raised

5

10

15

20

10

15

20

25

30

35

40

45

50

55

against recombinant Hu-Asp2 prepared by expression in E. coli. Near confluent dishes of each cell line were harvested by scraping into PBS and the cells recovered by centrifugation. The cell pellets were resuspended in cold lysis buffer (25 mM Tris-HCl (8.0)/5 mM EDTA) containing protease inhibitors and the cells lysed by sonication. The soluble and membrane fractions were separated by centrifugation (105,000 x g, 60 min) and normalized amounts of protein from each fraction were then separated by SDS-PAGE. Following electrotransfer of the separated polypeptides to PVDF membranes, Hu_Asp-2L protein was detected using rabbit anti-Hu-Asp2 antiserum (1/1000 dilution) and the antibody-antigen complexes were visualized using alkaline phosphatase conjugated goat anti-rabbit antibodies (1/2500). A specific immunoreactive protein with an apparent Mr value of 65 kDa was detected in pcDNA3.1(+)Hygro/Hu-Asp2 transfected cells and not mock-transfected cells. Also, the Hu-Asp2 polypeptide was only detected in the membrane fraction, consistent with the presence of a signal peptide and single transmembrane domain in the predicted sequence. Based on this analysis, clone #5 had the highest expression level of Hu-Asp2 protein and this production cell lines was scaled up to provide material for purification.

Purification of recombinant Hu_Asp-2L from CHO-K1/Hu-Asp2 clone #5—In a typical purification, clone #5 cell pellets derived from 20 150 mm dishes of confluent cells, were used as the starting material. The cell pellets were resuspended in 50 ml cold lysis buffer as described above. The cells were lysed by polytron homogenization (2 x 20 sec) and the lysate centrifuged at 338,000 x g for 20 minutes. The membrane pellet was then resuspended in 20 ml of cold lysis buffer containing 50 mM β -octylglucoside followed by rocking at 4°C for 1hr. The detergent extract was clarified by centrifugation at 338,000 x g for 20 minutes and the supernatant taken for further analysis.

The β-octylglucoside extract was applied to a Mono Q anion exchange column that was previously equilibrated with 25 mM Tris-HCl (pH 8.0)/50 mM β-octylglucoside. Following sample application, the column was eluted with a linear gradient of increasing NaCl concentration (0-1.0 M over 30 minutes) and individual fractions assayed by Western blot analysis and for β-secretase activity (see below). Fractions containing both Hu_Asp-2L immunoreactivity and β-secretase activity were pooled and dialyzed against 25 mM NaOAc (pH 4.5)/50 mM β-octylglucoside. Following dialysis, precipitated material was removed by centrifugation and the soluble material chromatographed on a MonoS cation exchange column that was previously equilibrated in 25 mM NaOAc (pH 4.5)/50 mM β-octylglucoside. The column was eluted using a linear gradient of increasing NaCl concentration (0-1.0 M over 30 minutes) and individual fractions assayed by Western blot analysis and for β-secretase activity. Fractions containing both Hu-Asp2 immunoreactivity and β-secretase activity were combined and determined to be >90% pure by SDS-PAGE/Coomassie Blue staining.

Example 12. Assay of Hu-Asp2 β-secretase activity using peptide substrates β-secretase assay—β-secretase activity was measured by quantifying the hydrolysis of a synthetic peptide containing the APP Swedish mutation by RP-HPLC with UV detection. Each reaction contained 50 mM Na-MES (pH 5.5), 1% β-octylglucoside, peptide substrate (SEVNLDAEFR, 70 μM) and enzyme (1-5 μg protein). Reactions were incubated at 37 °C for various times and the reaction products were resolved by RP-HPLC using a linear gradient from 0-70 B over 30 minutes (A=0.1% TFA in water,

B=).1%TFA/10%water/90%AcCN). The elution profile was monitored by absorbance at 214 nm. In preliminary experiments, the two product peaks which eluted before the intact peptide substrate, were confirmed to have the sequence DAEFR and SEVNL using both

Edman sequencing and MADLI-TOF mass spectrometry. Percent hydrolysis of the peptide substrate was calculated by comparing the integrated peak areas for the two product peptides and the starting material derived from the absorbance at 214 nm. The specificity of the protease cleavage reaction was determined by performing the β-secretase assay in the presence of a cocktail of protease inhibitors (8 μM pepstatin A, 10 μM leupeptin, 10 μM

E64, and 5 mM EDTA).

An alternative β-secretase assay utilizes internally quenched fluorescent substrates to monitor enzyme activity using fluorescence spectroscopy in a single sample or multiwell format. Each reaction contained 50 mM Na-MES (pH 5.5), peptide substrate MCA-EVKMDAEF[K-DNP] (BioSource International) (50 μM) and purified Hu-Asp-2 enzyme. These components were equilibrated to 37 °C for various times and the reaction initiated by addition of substrate. Excitation was performed at 330 nm and the reaction kinetics were monitored by measuring the fluorescence emission at 390 nm. To detect compounds that modulate Hu-Asp-2 activity, the test compounds were added during the preincubation phase of the reaction and the kinetics of the reaction monitored as described above. Activators are scored as compounds that increase the rate of appearance of fluorescence while inhibitors decrease the rate of appearance of fluorescence.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples.

Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the invention.

The entire disclosure of all publications cited herein are hereby incorporated by reference.

Claims

PCT/US99/20881 WO 00/17369

What is claimed is:

50

55

5 Any isolated or purified nucleic acid polynucleotide that codes for a protease 1. capable of cleaving the beta (b) secretase cleavage site of APP that contains two or more sets of special nucleic acids, where the special nucleic acids are separated by 5 10 nucleic acids that code for about 100 to 300 amino acid positions, where the amino acids in those positions may be any amino acids, where the first set of special nucleic acids consists of the nucleic acids that code for the peptide DTG, where the 15 first nucleic acid of the first special set of nucleic acids is, the first special nucleic acid, and where the second set of nucleic acids code for either the peptide DSG or 10 DTG, where the last nucleic acid of the second set of nucleic acids is the last special nucleic acid, with the proviso that the nucleic acids disclosed in SEQ ID NO. 1 and 20 SEQ. ID NO. 5 are not included. The nucleic acid polynucleotide of claim 1 where the two sets of nucleic acids are 2. 15 25 separated by nucleic acids that code for about 125 to 222 amino acid positions, which may be any amino acids. The nucleic acid polynucleotide of claim 2 that code for about 150 to 172 amino 3. 30 acid positions, which may be any amino acids. 20 The nucleic acid polynucleotide of claim that code for about 172 amino acid 4. 35 positions, which may be any amino acids. The nucleic acid polynucleotide of claim 4 where the nucleotides are described in 25 5. SEQ. ID. NO. 3 40 The nucleic acid polynucleotide of claim 2 where the two sets of nucleic acids are 6. separated by nucleic acids that code for about 150 to 196 armino acid positions. 45 30

The nucleic acid polynucleotide of claim 6 where the two sets of nucleotides are 7. separated by nucleic acids that code for about 196 amino acids (positions).

5		8.	The nucleic acid polynucleotide of claim 7 where the two sets of nucleic acids are separated by the same nucleic acid sequences that separate the same set of special nucleic acids in SEQ. ID. NO. 5.
10	5	9.	The nucleic acid polynucleotide of claim 4 where the two sets of nucleic acids are separated by nucleic acids that code for about 150 to 190, amino acid (positions).
15	10	10.	The nucleic acid polynucleotide of claim 9 where the two sets of nucleotides are separated by nucleic acids that code for about 190 amino acids (positions).
20		11.	The nucleic acid polynucleotide of claim 10 where the two sets of nucleotides are separated by the same nucleic acid sequences that separate the same set of special nucleotides in SEQ. ID. NO. 1.
25	15	12.	Claims 1-11 where the first nucleic acid of the first special set of amino acids, that is, the first special nucleic acid, is operably linked to any codon where the nuclic acids of that codon codes for any peptide comprising from 1 to 10,000 amino acid (positions).
30	20	13.	The nucleic acid polynucleotide of claims 1-12 where the first special nucleic acid is operably linked to nucleic acid polymers that code for any peptide selected from the group consisting of: any any reporter proteins or proteins which facilitate
35			purification.
40	25	14.	The nucleic acid polynucleotide of claims 1-13 where the first special nucleic acid is operably linked to nucleic acid polymers that code for any peptide selected from the group consisting of: immunoglobin-heavy chain, maltose binding protein, glutathion S transfection, Green Fluorescent protein, and ubiquitin.
45	30	15.	Claims 1-14 where the last nucleic acid of the second set of special amino acids, that is, the last special nucleic acid, is operably linked to nucleic acid polymers that code for any peptide comprising any amino acids from 1 to 10,000 amino acids.
50			

5		16.	Claims 1-15 where the last special nucleic acid is operably tinked to any codon linked to nucleic acid polymers that code for any peptide selected from the group consisting of: any reporter proteins or proteins which facilitate purification.
10	5	17.	The nucleic acid polynucleotide of claims 1-16 where the first special nucleic acid is operably linked to nucleic acid polymers that code for any peptide selected from the group consisting of: immunoglobin-heavy chain, maltose binding protein, glutathion
15			S transfection, Green Fluorescent protein, and ubiquitin.
	10	18.	* Any isolated or purified nucleic acid polynucleotide that codes for a protease capable of cleaving the beta secretase cleavage site of APP that contains two or
20			more sets of special nucleic acids, where the special nucleic acids are separated by nucleic acids that code for about 100 to 300 amino acid positions, where the amino acids in those positions may be any amino acids, where the first set of special
25	15		nucleic acids consists of the nucleic acids that code for DTG, where the first nucleic acid of the first special set of nucleic acids is, the first special nucleic acid, and where the second set of nucleic acids code for either DSG or DTG, where the last nucleic acid of the second set of special nucleic acids is the last special nucleic acid
30	20		where the first special nucleic acid is operably linked to nucleic acids that code for any number of amino acids from zero to 81 amino acids and where each of those codons may code for any amino acid.
35	25	19.	The nucleic acid polynucleotide of claim 18, where the first special nucleic acid is operably linked to nucleic acids that code for any number of from 64 to 77 amino acids where each codon may code for any amino acid.
40	23	20.	The nucleic acid polynucleotide of claim 19, where the first special nucleic acid is operably linked to nucleic acids that code for about 71 amino acids peptide.
45	30	21.	The nucleic acid polynucleotide of claim 20, where the first special nucleic acid is
			operably linked to 71 amino acid peptide and where the first of those 71 amino acid is the amino acid T.
50			

5		22.	The nucleic acid polynucleotide of claim 21, where the polynucleotide comprises a sequence that is at least 95% identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to the sequences in SEQ. ID. NO. 3 including the
10	5		sequences from both the first and or the second special nucleic acids, toward the N-Terminal, through and including 71 amino acids, see Example 10, beginning from the DTG site and including the nucleotides from that code for 71 amino acids).
15	10	23.	The nucleic acid polynucleotide of claim 22, where the complete polynucleotide comprises identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to the sequences in SEQ. ID. NO. 3 including the sequences from both
20			the first and or the second special nucleic acids, toward the N-Terminal, through and including 71 amino acids, see Example 10, beginning from the DTG site and including the nucleotides from that code for 71 amino acids).
25	15	24.	The nucleic acid polynucleotide of claim 18, where the first special nucleic acid is operably linked to nucleic acids that code for any number of from about 30 to 54 amino acids where each codon may code for any amino acid.
30	20	25.	The nucleic acid polynucleotide of claim 20, where the first special nucleic acid is operably linked to 47 codons where the first those 35 or 47 amino acids is the amino acid E or G.
35	25	26.	The nucleic acid polynucleotide of claim 21, where the polynucleotide comprises a sequence that is at least 95% identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to that portion of the sequences in SEQ. ID. NO.
40			3 including the sequences from both the first and or the second special nucleic acids, toward the N-Terminal, through and including 35 or 47 amino acids, see Example 11 for the 47 example, beginning from the DTG site and including the
45	30		nucleotides from that code for the previous 35 or 47 amino acids before the DTG site).

The nucleic acid polynucleotide of claim 22, where the polynucleotide comprises 27. 5 identical to the same corresponding amino acids in SEQ. ID. NO. 3, that is, identical to the sequences in SEQ. ID. NO. 3 including the sequences from both the first and or the second special nucleic acids, toward the N-Terminal, through and including 35 or 47 amino acids, see Example 11 for the 47 example, beginning from 5 10 the DTG site and including the nucleotides from that code for the previous 35 or 47 amino acids before the DTG site). 15 Any isolated or purified nucleic acid polynucleotide that codes for a protease 28. capable of cleaving the beta (\beta) secretase cleavage site of APP that contains two or 10 more sets of special nucleic acids, where the special nucleic acids are separated by nucleic acids that code for about 100 to 300 amino acid positions, where the amino 20 acids in those positions may be any amino acids, where the first set of special nucleic acids consists of the nucleic acids that code for the peptide DTG, where the first nucleic acid of the first special set of amino acids is, the first special nucleic 15 25 acid, and where the second set of special nucleic acids code for either the peptide DSG or DTG, where the last nucleic acid of the second set of special nucleic acids, the last special nucleic acid, is operably linked to nucleic acids that code for any number of codons from 50 to 170 codons. 30 20 The nucleic acid polynucleotide of claim 29 where the last special nucleic acid is 29. operably linked to nucleic acids comprising from 100 to 170 codons. 35 The nucleic acid polynucleotide of claim 30 where the last special nucleic acid is 30. operably linked to nucleic acids comprising from 142 to 163 codons. 25 40 31. The nucleic acid polynucleotide of claim 31 where the last special nucleic acid is operably linked to nucleic acids comprising about 142 codons. 45 The nucleic acid polynucleotide of claim 32 where the polynucleotide comprises a 30 32. sequence that is at least 95% identical to SEQ. ID. # (Example 9 or 10).

50

5		33.	The nucleic acid polynucleotide of claim 33, where the complete polynucleotide comprises SEQ. ID. # (Example 9 or 10).
10	5	34.	The nucleic acid polynucleotide of claim 31 where the last special nucleic acid is operably linked to nucleic acids comprising about 163 codons.
15		35.	The nucleic acid polynucleotide of claim 35 where the polynucleotide comprises a sequence that is at least 95% identical to SEQ. ID. # (Example 9 or 10).
	10	36.	The nucleic acid polynucleotide of claim 36, where the complete polynucleotide comprises SEQ. ID. # (Example 9 or 10).
20		37.	The nucleic acid polynucleotide of claim 31 where the last special nucleic acid is operably linked to nucleic acids comprising about 170 codons.
25	15	38.	Claims 1-38 where the second set of special nucleid acids code for the peptide DSG, and optionally the first set of nucleic acid polynucleotide is operably linked to a
30	20	39.	Peptide purification tag. Claims 1-39 where the nucleic acid polynucleotide is operably linked to a peptide purification tag which is six histidine.
35		40.	Claims 1-40 where the first set of special nucleic acids are on one polynucleotide and the second set of special nucleic acids are on a second polynucleotide, where
40	25	41.	both first and second polynucleotides have at lease 50 codons. Claims 1-40 where the first set of special nucleic acids are on one polynucleotide.
45	30		and the second set of special nucleic acids are on a second polynucleotide, where both first and second polynucleotides have at lease 50 codons where both said polynucleotides are in the same solution.
50		42.	A vector which contains a polynucleotide described in claims 1-42.

5		43.	A cell or cell line which contans a polynucleotide described in claims 1-42.
		44.	Any isolated or purified peptide or protein comprising an amino acid polymer that is
			a protease capable of cleaving the beta (β) secretase cleavage site of APP that
10	5		contains two or more sets of special amino acids, where the special amino acids are
			separated by about 100 to 300 amino acid positions, where each amino acid
			position can be any amino acid, where the first set of special amino acids consists of
			the peptide DTG, where the first amino acid of the first special set of amino acids is,
15			the first special amino acid, where the second set of amino acids is selected from the
	10		peptide comprising either DSG or DTG, where the last amino acid of the second set
			of special amino acids is the last special amino acid, with the proviso that the
20			proteases disclosed in SEQ ID NO. 2 and SEQ. ID NO. 6 are not included.
		45.	The amino acid polypeptide of claim 45 where the two sets of amino acids are
	15		separated by about 125 to 222 amino acid positions where in each position it may be
25			any amino acid.
		46.	The amino acid polypeptide of claim 46 where the two sets of amino acids are
30			separated by about 150 to 172 amino acids.
	20		
		47.	The amino acid polypeptide of claim 47 where the two sets of amino acids are
			separated by about 172 amino acids.
35			
		48.	The amino acid polypeptide of claim 48 where the protease is described in SEQ. ID.
	25		NO. 4
40			
		49.	The amino acid polypeptide of claim 46 where the two sets of amino acids are
			separated by about 150 to 196 amino acids.
45	30	50.	The amino acid polypeptide of claim 50 where the two sets of amino acids are
		- **	separated by about 196 amino acids.
			•
_1			

5		51.	The amino acid polypeptide of claim 51 where the two sets of amino acids are separated by the same amino acid sequences that separate the same set of special amino acids in SEQ. ID. NO. 6.
10	5	52.	The amino acid polypeptide of claim 46 where the two sets of amino acids are separated by about 150 to 190, amino acids.
15	10	53.	The amino acid polypeptide of claim 53 where the two sets of nucleotides are separated by about 190 amino acids.
20		54.	The amino acid polypeptide of claim 54 where the two sets of nucleotides are separated by the same amino acid sequences that separate the same set of special amino acids in SEQ. ID. NO. 2.
25	15	55.	Claims 45-55 where the first amino acid of the first special set of amino acids, that is, the first special amino acid, is operably linked to any peptide comprising from 1 to 10,000 amino acids.
30	20	56.	The amino acid polypeptide of claims 45-56 where the first special amino acid is operably linked to any peptide selected from the group consisting of: any any reporter proteins or proteins which facilitate purification.
35	25	57.	The amino acid polypeptide of claims 45-57 where the first special amino acid is operably linked to any peptide selected from the group consisting of: immunoglobin-heavy chain, maltose binding protein, glutathion S transfection.
40			Green Fluorescent protein, and ubiquitin.
45	30	58.	Claims 45-58, where the last amino acid of the second set of special amino acids, that is, the last special amino acid, is operably linked to any peptide comprising any amino acids from 1 to 10,000 amino acids.

5		5 9.	Claims 45-59 where the last special amino acid is operably linked any peptide
			selected from the group consisting of any reporter proteins or proteins which
			facilitate purification.
10	5	60.	The amino acid polypeptide of claims 45-60 where the first special amino acid is
			operably linked to any peptide selected from the group consisting of:
			immunoglobin-heavy chain, maltose binding protein, glutathion S transfection.
			Green Fluorescent protein, and ubiquitin.
15			
	10	61.	* Any isolated or purified peptide or protein comprising an amino acid
			polypeptide that codes for a protease capable of cleaving the beta secretase cleavage
20			site of APP that contains two or more sets of special amino acids, where the special
			amino acids are separated by about 100 to 300 amino acid positions, where each
			amino acid in each position can be any amino acid, where the first set of special
	15		amino acids consists of the amino acids DTG, where the first amino acid of the first
25			special set of amino acids is, the first special amino acid, D, and where the second
			set of amino acids is either DSG or DTG, where the last amino acid of the second
			set of special amino acids is the last special amino acid, G, where the first special
20			amino acid is operably linked to amino acids that code for any number of amino
30	20		acids from zero to 81 amino acid positions where in each position it may be any
			amino acid.
35		62.	The amino acid polypeptide of claim 62, where the first special amino acid is
		02.	operably linked to a peptide from about 30 to 77 amino acids positions where each
	25		amino acid position may be any amino acid.
	23		annio acid position may be any annio acid.
40		62	The amino acid polypeptide of claim 63, where the first special amino acid is
		63.	
			operably linked to a peptide of 35, 47, 71, or 77 amino acids.
45			my the state of th
10	30	64.	The amino acid polypeptide of claim 63, where the first special amino acid is
			operably linked to the same corresponding peptides from SEQ. ID. NO. 3 that are
			35, 47, 71, or 77 peptides in length, beginning counting with the amino acids on the
50			first special sequence, DTG, towards the N-terminal of SEQ. ID. NO. 3.

PCT/US99/20881 WO 00/17369

5		65.	The amino acid polypeptide of claim 65, where the polypeptide comprises a sequence that is at least 95% identical to the same corresponding amino acids in SEQ. ID. NO. 4, that is, identical to that portion of the sequences in SEQ.ID. NO. 4
10	5		including all the sequences from both the first and or the second special nucleic acids, toward the N- terminal, through and including 71, 47, 35 amino acids before the first special amino acids. (Examples 10 and 11).
15	10	66.	The amino acid polypeptide of claim 65, where the complete polypeptide comprises the peptide of 71 amino acids, where the first of the amino acid is T and the second is Q.
20	15	67.	The amino acid polypeptide of claim 62, where the first special amino acid is operably linked to any number of from 40 to 54 amino acids (positions) where each amino acid position may be any amino acid.
25		68.	The amino acid polypeptide of claim 68, where the first special amino acid is operably linked to amino acids that code for a peptide of 47 amino acids.
30	20	69.	The amino acid polypeptide of claim 69, where the first special amino acid is operably linked to a 47 amino acid peptide where the first those 47 amino acids is the amino acid E.
35	25	70.	The amino acid polypeptide of claim 70, where the polypeptide comprises a sequence that is at least 95% identical to SEQ. ID. # (Example 10).
40		71.	The amino acid polypeptide of claim 71, where the complete polypeptide comprises SEQ. ID. # (Example 10).
45	30	72.	* Any isolated or purified amino acid polypeptide that is a protease capable of cleaving the beta (β) secretase cleavage site of APP that contains two or more sets of special amino acids, where the special amino acids are separated by about 100 to
50			300 amino acid positions, where each amino acid in each position can be any amino

PCT/US99/20881 WO 00/17369

-			acid, where the first set of special amino acids consists of the amino acids that code
5			for DTG, where the first amino acid of the first special set of amino acids is, the
			first special amino acid, D, and where the second set of amino acids are either DSG
			or DTG, where the last amino acid of the second set of special amino acids is the
10	5		last special amino acid, G, which is operably linked to any number of amino acids
			from 50 to 170 amino acids, which may be any amino acids.
		73.	The amino acid polypeptide of claim 73 where the last special amino acid is
15			operably linked to a peptide of about 100 to 170 amino acids.
	10		
		74.	The amino acid polypeptide of claim 74 where the last special amino acid is
20			operably linked to to a peptide of about 142 to 163 amino acids.
		75.	The amino acid polypeptide of claim 75 where the last special amino acid is
25	15		operably linked to to a peptide of about about 142 amino acids.
		76.	The amino acid polypeptide of claim 76 where the polypeptide comprises a
			sequence that is at least 95% identical to SEQ. ID. # (Example 9 or 10).
30			
	20	7 7.	The amino acid polypeptide of claim 75 where the last special amino acid is
			operably linked to a peptide of about 163 amino acids.
35		78.	The amino acid polypeptide of claim 79 where the polypeptide comprises a
			sequence that is at least 95% identical to SEQ. ID. # (Example 9 or 10).
	25		
40		79.	The amino acid polypeptide of claim 79, where the complete polypeptide comprises
			SEQ. ID. # (Example 9 or 10).
		80.	The amino acid polypeptide of claim 74 where the last special amino acid is
45	20	δU.	operably linked to to a peptide of about 170 amino acids.
	30		operatory finaces to to a perform of about 170 minute actions.
		81.	Claim 46-81 where the second set of special amino acids is comprised of the peptide
50			with the amino acid sequence DSG.
			. 71

5		82.	Claims 45-82 where the amino acid polypeptide is operably linked to a peptide purification tag.
10	5	83.	Claims 45-83 where the amino acid polypeptide is operably linked to a peptide purification tag which is six histidine.
15	10	84.	Claims 45-84 where the first set of special amino acids are on one polypeptide and the second set of special amino acids are on a second polypeptide, where both first and second polypeptide have at lease 50 amino acids, which may be any amino acids.
20		85.	Claims 45-84 where the first set of special amino acids are on one polypeptide and the second set of special amino acids are on a second polypeptide, where both first
25	15		and second polypeptides have at lease 50 amino acids where both said polypeptides are in the same vessel.
30		86.	A vector which contains a polypeptide described in claims 45-86.
	20	87.88.	A cell or cell line which contans a polynucleotide described in claims 45-87. The process of making any of the polynucleotides, vectors, or cells of claims 1-44
35	25	89.	The process of making any of the polypeptides, vectors or cells of claims 45-88
40		90.	Any of the polynucleotides, polypeptides, vectors, cells or cell lines described in claims 1-88 made from the processes described in claims 89 and 90.
4 5	30		* An isolated nucleic acid molecule comprising a polynucleotide, said acleotide encoding a Hu-Asp polypeptide and having a nucleotide sequence at least dentical to a sequence selected from the group consisting of:
50			•

5		(a) a nucleotide sequence encoding a Hu-Asp polypeptide selected from the group consisting of Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b), wherein said Hu-Asp1,
		Hu-Asp2(a) and Hu-Asp2(b) polypeptides have the complete amino acid sequence of SEQ
		ID NO:2, SEQ ID NO:4, and SEQ ID No:6, respectively; and
10	5	(b) a nucleotide sequence complementary to the nucleotide sequence
, ,		of (a).
		92. The nucleic acid molecule of claim 92, wherein said Hu-Asp polypeptide is Hu-
15		Asp1, and said polynucleotide molecule of 1(a) comprises the nucleotide sequence of SEQ
	10	ID NO:1.
20		93. The nucleic acid molecule of claim 92, wherein said Hu-Asp polypeptide is Hu-
		Asp2(a), and said polynucleotide molecule of 1(a) comprises the nucleotide sequence of SEQ ID NO:4.
	15	
25		94. The nucleic acid molecule of claim 92, wherein said Hu-Asp polypeptide is Hu-
		Asp2(b), and said polynucleotide molecule of 1(a) comprises the nucleotide sequence of
		SEQ ID NO:5.
30		
30	20	95. An isolated nucleic acid molecule comprising polynucleotide which hybridizes
		under stringent conditions to a polynucleotide having the nucleotide sequence in (a) or (b)
		of claim 92.
35		
		96. A vector comprising the nucleic acid molecule of claim 96.
	25	
40		97. The vector of claim 97, wherein said nucleic acid molecule is operably linked to a
		promoter for the expression of a Hu-Asp polypeptide.
15		98. The vector of claim 97, wherein said Hu-Asp polypeptide is Hu-Asp1.
45	30	99. The vector of claim 97, wherein said Hu-Asp polypeptide is Hu-Asp2(a).
50		100. The vector of claim 97, wherein said Hu-Asp polypeptide is Hu-Asp2(b).
		. 73

PCT/US99/20881 WO 00/17369

5		101.	A hos	st cell co	omprising the vector of claim 98.
		102.	A me	thod of	obtaining a Hu-Asp polypeptide comprising culturing the host cell of
10	5	claim	102 an	d isolati	ing said Hu-Asp polypeptide.
		103.	An is	olated F	Hu-Asp1 polypeptide comprising an amino acid sequence at least 95%
15		identi	cal to a	sequen	ce comprising the amino acid sequence of SEQ ID NO:2.
	10	104.	An is	olated F	fu-Asp2(a) polypeptide comprising an amino acid sequence at least
		95% i	identica	l to a se	quence comprising the amino acid sequence of SEQ ID NO:4.
20		105.	An is	olated F	Hu-Asp2(a) polypeptide comprising an amino acid sequence at least
		95% i	identica	l to a se	equence comprising the amino acid sequence of SEQ ID NO:8.
25	15	106	An is	olated a	ntibody that binds specifically to the Hu-Asp polypeptide of any of
			s 104-1		of SEO ID NO.8
		seque	nce cor	nprising	g the amino acid sequence of SEQ ID NO:8.
30	20	107	A n is	olated a	intibody that binds specifically to the Hu-Asp polypeptide of any of
		claim	s 104-1	07.	
35		108.	*	A me	thod to identify a cell that can be used to screen for inhibitors of β
		secret	ase act	ivity cor	mprising:
	25		a)	identi	fying a cell that expresses a protease capable of cleaving APP at the β
40				secret	tase site,
				comp	rising:
				i)	collect the cells or the supernantent from the cells to be identified
4.5				ii)	measure the production of a critical peptide, where the critical
45	30				peptide is selected from the group consisting of either the APP C-
					terminal peptide or soluble APP,
				iii)	select the cells which produce the critical peptide.
50					
					74

5		109. The method of claim 108 where the cells are collected and the critical peptide is the APP C-terminal peptide created as a result of the β secretase cleavage.
10	5	110. The method of claim 108 where the supernantent is collected and the critical peptide is soluble APP where the soluble APP has a C-terminal created by β secretase cleavage.
15	10	111. The method of claim 108 where the cells contain any of the nucleic acids or polypeptides of claims 1-86 and where the cells are shown to cleave the β secretase site of any peptide having the following peptide structure, P2, P1, P1', P2', where P2 is K or N, where P1 is M or L, where P1' is D, where P2' is A.
20		112. The method of claim 111 where P2 is K and P1 is M.
25	15	The method of claim 112 where P2 is N and P1 is L. 114 * Any bacterial cell comprising any nucleic acids or peptides in claims 1-86 and 92-107.
30	20	115 A bacterial cell of claim 114 where the bacteria is <i>E coli</i> .
35	20	Any eukaryotic cell comprising any nucleic acids or polypeptides in claims 1-86 and 92-107.
	25	117 * Any insect cell comprising any of the nucleic acids or polypeptides in claims 1-86 and 92-107.
40		A insect cell of claim 117 where the insect is sf9, or High 5.
45	30	A insect cell of claim 100 where the insect cell is High 5.
50	50	120 A mammalian cell comprising any of the nucleic acids or polypeptides in claims 1-86 and 92-107.
		75

5		group consisting of, human, rodent, lagomorph, and primate.
10	5	122 A mammalian cell of claim 121 where the mammalian cell is selected from the group consisting of human cell.
15		123 A mammalian cell of claim 122 where the human cell is selected from the group comprising HEK293, and IMR-32.
	10	A mammalian cell of claim 121 where the cell is a primate cell.
20		125 A primate cell of claim 124 where the primate cell is a COS-7 cell.
		126 A mammalian cell of claim 121 where cell is selected from a rodent cells.
25	15	127 A rodent cell of claim 126 selected from, CHO-K1, Neuro-2A, 3T3 cells.
		128 A yeast cell of claim 115.
30	20	129 An avian cell of claim 115.
35		130. * Any isoform of APP where the last two carboxy terminus amino acids of that isoform are both lysine residues.
40	25	The isoform of APP from claim 130 comprising the isoform known as APP695 modified so that its last two having two lysine residues as its last two carboxy terminus amino acids.
45	30	The isoform of claim 131 comprising SEQ. ID. 16.
50		The isoform variant of claim 1301comprising SEQ. ID. NO. 18, and 20.

5		134 Any eukaryotic cell line, comprising nucleic acids or polypeptides of claim 130- 133.
10	5	135 Any cell line of claim 134 that is a mammaliam cell line (HEK293, Neuro2a, are preferred plus any others.)
15		136 A method for identifying inhibitors of an enzyme that cleaves the beta secretase cleavabe site of APP comprising: a) culturing cells in a culture medium under conditions in which the enzyme
20	10	causes processing of APP and release of amyloid beta-peptide into the medium and causes the accumulation of CTF99 fragments of APP in cell lysates, b) exposing the cultured cells to a test compound; and specifically
25	15	determining whether the test compound inhibits the function of the enzyme by measuring the amount of amyloid beta-peptide released into the medium and or the amount of CTF99 fragments of APP in cell lysates; c) identifying test compounds diminishing the amount of soluble amyloid beta
30	20	peptide present in the culture medium and diminution of CTF99 fragments of APP in cell lysates as Asp2 inhibitors. The method of claim 136 wherein the cultured cells are a human, rodent or insect
35	25	cell line. $138 \text{The method of claim 137 wherein the human or rodent cell line exhibits } \beta \text{ secretase} \\ \text{activity in which processing of APP occurs with release of amyloid beta-peptide into the} \\$
40		culture medium and accumulation of CTF99 in cell lysates.
4 5	30	139. A method as in claim 138 wherein the human or rodent cell line treated with the antisense oligomers directed against the enzyme that exhibits β secretase activity, reduces release of soluble amyloid beta-peptide into the culture medium and accumulation of CTF99 in cell lysates.
50		

		140. A method for the identification of an agent that decreases the activity of a Hu-Asp
5		polypeptide selected from the group consisting of Hu-Asp1, Hu-Asp2(a), and Hu-Asp2(b), the
		method comprising
		(a) determining the activity of said Hu-Asp polypeptide in the presence of a test
10	5	agent and in the absence of a test agent; and
		(b) comparing the activity of said Hu-Asp polypeptide determined in the
		presence of said test agent to the activity of said Hu-Asp polypeptide
		determined in the absence of said test agent;
15		whereby a lower level of activity in the presence of said test agent than in the absence of said
	10	test agent indicates that said test agent has decreased the activity of said Hu-Asp polypeptide
20		141. The nucleic acids, peptides, proteins, vectors, cells and cell lines, and assays described
		herein.
25		
30		
35		
40		
45		
50		

FIGURE 1 (1)

ATGGCCCACTGCCCGGGCGCTGCTGCTGCTCTGCTGGCCAGTGGCTCCTCCGCGCC M G A L A R A L L L P L L A Q W L L R A GCGCTCGCCCTGGAGCCTGCCCTGGCGTCCCCCGGGGGGCGCCGCCAACTTCTTGGCCATG A L A L E P A L A S P A G A A N F L A M GTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTACCTGGAGATGCTGATCGGGACC DNLQGDSGRGYYLEMLIG CCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAGTAACTTTGCCGTGGCAGGA PPQKLQILVDTGSSNFAVAG ACCCCCACTCCTACATAGACACGTACTTGACACAGAGAGGTCTAGCACATACCGCTCC T P H S Y I D T Y F D T E R S S T Y R S AAGUGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACGGGCTTCGTTGGGGAA K G F D V T V K Y T Q G S W T G F V G E GACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAACATTGCCACTATT D L V T I P K G F N T S F L V N I A T I TTTGAATCAGAGAATTTCTTTTTGCCTGGGATTAAATGGAATGGAATACTTGGCCTAGCT SENFFLPGIKWNGILGLA TATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCCCTGGTGACA Y A T L A K P S S S L E T F F D S L V CAAGCAAACATCCCCAACGTTTTCTCCATGCAGATGTGTGGAGCCGGCTTGCCCGTTGCT O A N I P N V F S M Q M C G A G L P GGATCTGGGACCAACGGAGGTAGTCTTGTCTTGGGTGGAATTGAACCAAGTTTGTATAAA SGTNGGSLVLGGIE? GGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTGAAA T P I K E E W Y Y Q I E I L K TTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGCC L E I G G Q S L N L D CREYNADKA ATCHTGGACAGTGGCACCACGCTGCTGCGCCCAGAAGGTGTTTGATGCGGTGGTG V F D A T L L R L P Q K V D S G T GAAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCC EAVARASLIPEFSDGFWTGS CAGCTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATC Q L A C W T N S E T P W S Y F P K I S I TACCTGAGAGATGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTAC YLRDENSSRSFRITILPQLY ATTCAGCCCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCA 1 2 P M M G A G L N Y E C Y R F G I S P TCCACAAATGCGCTGGTGATCGGTGCCACGGTGATGGAGGGCTTCTACGTCATCTTCGAC V M E G F T G A T AGAGCCCAGAAGAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCA

FIGURE 1 (2)

AAAA

FIGURE 2 (1)

ATGGCCCAAGCCCTGCCTGGCTCCTGCTGTGGATGGGCGCGGGAGTGCTGCCCAC M A Q A L P W L L L W M G A G V L P A H G T Q H G I R L P L R S G L G G A P L G $\verb|CTGCGGCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTTT||$ LRLPRETDEEPEEPGRRGSF $\tt GTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATGACC$ VEMVDNLRGKSGQGYYVEMT $\tt GTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCA$ V G S P P Q T L N I L V D T G S S N F A GTGGGTGCTGCCCCCACCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACA V G A A P H P F L H R Y Y Q R Q L S S T TACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGGGAG Y R D L R K G V Y V P Y T Q G K W E G E L G T D L V S I P H G P N V T V R A N I GCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTG A A I T E S D K F F I N G S N W E G I L GGGCTGGCCTATGCTGAGATTGCCAGGCTTTGTGGTGCTGGCTTCCCCCTCAACCAGTCT G L A Y A E I A R L C G A G F P L N Q S GAAGTGCTGGCCTCTGTCGGAGGGAGCATGATCATTGGAGGTATCGACCACTCGCTGTAC E V L A S V G G S M I I G G I D H S L Y ACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTATGAGGTGATCATTGTG TGSLWYTPIRREWYYEVIIV $\tt CGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAGTACAACTATGACAAG$ R V E I N G Q D L K M D C K E Y N Y D K AGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAGAAAGTGTTTGAAGCTGCA S I V D S G T T N L R L P K K V F E A A GTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGATGGTTTCTGGCTAGGA V K S I K A A S S T E K F P D G F W L G ${\tt GAGCAGCTGGTGTGCAGCAAGCAGGCACCCCTTGGAACATTTTCCCAGTCATCTCA}$ EQLVCWQAGTTPWNIFPVIS CTCTACCTAATGGGTGAGGTTACCAACCAGTCCTTCCGCATCACCATCCTTCCGCAGCAA TACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGTTACAAGTTTGCCATC

FIGURE 2 (2)

FIGURE 3 (1)

M A Q A L P W L L L W M G A G V L P A H GGCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCCCCTGGGG $\hbox{\tt G} \ \hbox{\tt T} \ \hbox{\tt Q} \ \hbox{\tt H} \ \hbox{\tt G} \ \hbox{\tt I} \ \hbox{\tt R} \ \hbox{\tt L} \ \hbox{\tt P} \ \hbox{\tt L} \ \hbox{\tt R} \ \hbox{\tt S} \ \hbox{\tt G} \ \hbox{\tt L} \ \hbox{\tt G} \ \hbox{\tt G} \ \hbox{\tt A} \ \hbox{\tt P} \ \hbox{\tt L} \ \hbox{\tt G}$ $\tt CTGCGGCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTTT$ L R L P R E T D E E P E E P G R R G S F GTGGAGATGGTCGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATGACC V E M V D N L R G K S G Q G Y Y V E M T GTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCA V G S P P Q T L N I L V D T G S S N F A GTGGGTGCTGCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACA V G A A P H P F L H R Y Y Q R Q L S S T Y R D L R K G V Y V P Y T Q G K W E G E LGTDLVSIPHGPNVTVRANI ${\tt GCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTG}$ A A I T E S D K F F I N G S N W E G I L G L A Y A E I A R P D D S L E P F F D S $\tt CTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCTGGCTTC$ LVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGI GACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTAT D H S L Y T G S L W Y T P I R R E W Y Y GAGGTCATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAG E V I I V R V E I N G Q D L K M D C K E TACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAGAAA Y N Y D K S I V D S G T T N L R L P K K GTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGAT V F E A A V K S I K A A S S T E K F P D

FIGURE 3 (2)

 ${\tt GGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCACCCCTTGGAACATT}$ G F W L G E Q L V C W Q A G T T P W N I FPVISLYLMGEVTNQSFRIT ATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGT I L P Q Q Y L R P V E D V A T S Q D D C ${\tt TACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATCATGGAG}$ Y K F A I S Q S S T G T V M G A V I M E ${\tt GGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCGCTTGC}$ G F Y V V F D R A R K R I G F A V S A C ${\tt CATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTGGACATG}$ H V H D E F R T A A V E G P F V T L D M GAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCAACCCTCATGACCATAGCCTAT E D C G Y N I P Q T D E S T L M T I A Y GTCATGGCTGCCATCTGCGCCCTCTTCATGCTGCCACTCTGCCTCATGGTGTCTCAGTGG V M A A I C A L F M L P L C L M V C Q W CGCTGCCTCCGCTGCCCCAGCAGCATGATGACTTTGCTGATGACATCTCCCTGCTG R C L R C L R Q Q H D D F A D D I S L L AAGTGAGGAGGCCCATGGGCAGAAGATAGAGATTCCCCTGGACCACACCTCCGTGGTTCA ĸ

FIGURE 4

M A P A L H W L L L W V G S G M L P A Q GGAACCCATCTGGCATCCGGCTGCCCCTTGGCAGCGCCTGGCAGGGCCACCCCTGGCG SGLA THLGIR CTGAGGCTGCCCGGGAGACTGACGAGGAATCGGAGGAGCCTGGCCGGAGAGGCAGCTTT L R L P R E T D E E S E E P G R R G S F GTGGAGATGGTGGACACCTGAGGGGAAAGTCCGGCCAGGGCTACTATGTGGAGATGACC V V D N L R G K S 0 GTAGGCAGCCCCCACAGACGCTCAACATCCTGGTGGACACGGGCAGTAGTAACTTTGCA L N I L V D T G STGGGGGCTGCCCCACACCCTTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACA V G A A P H P F L H R Y Y Q R C L S S T TATCGAGACCTCCGAAAGGGTGTATGTGCCCTACACCCAGGGCAAGTGGAGGGGAA Y E D L R K G V Y V P Y T Q G K W E G E L G T D L V S I P H G P N V T V R A N I GOTGCCATCACTGGACCAGGACAAGCTCTTCATCAATGGTTCCAACTGGGAGGGCATCCTA A A I T E S D K F F I N G S N W E G I L GGGTTGGCCTATGCTGAGATTGCCAGGCCCGACGACTCTTTGGAGCCCTTCTTTGACTCC EIARPDDS CTGSTGAAGCAGACCACATTCCCAACATCTTTTCCCTGCAGCTCTGTGGGGTGGCTTC L V K Q T H I P N I F S L Q L C G A G F CCCTCAACCAGACCGAGGCACTGGCCTCGGTGGGAGGAGCATGATCATTGGTGGTATC P L N Q T E A L A S V G G S M I I G G I GACCACTCGCTATACACGGGCAGTCTCTGGTACACACCCATCCGGCGGGGGGTGGTATAT E H S L Y T G S L W Y T P I R R E W Y Y GAABTGATCATTGTACGTGTGGAAATCAATGGTCAAGATCTCAAGATGGACTGCAAGGAG R VEIN TACAACTACGACAAGAGCATTGTGGACAGTGGGACCACCAACCTTCGCTTGCCCAAGAAA Y N Y D K S I V D S G T T N L R L P K K GTATTTGAAGCIGCCGTCAAGTCCATCAAGGCAGCTCCTCGACGAGAAAGTTCCCGGAT V F E A A V K S I K A A S S T E K F P D
GGCTTTTGGCTAGGGGGGCAGCTGGTGTGCTGCAAGCAGGCACGACCCCTTGGAACATT
G F W L G E Q L V C W Q A G T T P W N I TTCCCAGTCATTTCACTTTACCTCATGGGTGAAGTCACCAATCAGTCCTTCCGCATCACC F P V I S L Y L M G E V T N Q S F R I T ATCCTTCCTCAGCAATACCTACGGCCGGTGGAGGACGTGGCCACGTCCCAAGACGACTGT TACAAGTTCGCTGTCTCACAGTCATCCACGGGCACTGTTATGGGAGCCGTCATCATGGAA Y K F A V S 2 S S T G T V M G A V I M E GGTTCTATGTCGTCTTCGATCGAGCCCGAAAGCGAATTGGCTTTGCTGTCAGCGCTTGC G F Y V V F D R A R K R I G F A V 5 A C CATGTGCACGATGAGTTCAGGACGGCGGCAGTGGAAGGTCCGTTTGTTACGGCAGACATG H V H D E F R T A A V E G P F V T A D M GAAGACTGTGGCTACAACATTCCCCAGACAGATGAGTCAACACTTATGACCATAGCCTAT E D C G Y N I P Q T D E S T L M T I A Y GTCATGCCGCCATCTGCGCCCTCTTCATGTTTGCACTCGCTCATGGTATGTCAGTGG CGCTGCCTGCGTTGCCTGCGCCACCAGCACGATGACTTTGCTGATGACATCTCCCTGCTC F C L R C L F H Q H D D F A D D I S L L AAGTAAGGAGGCTCGTGGGCAGATGATGGAGACGCCCTTGGACCACATCTGGGTGGTTCC CTTTGGTCACATGAGTTGGAGCTATGGATGGTACCTGTGGCCAGAGCACCTCAGGACCCT CACCAACCTGCCAATGCTTCTGGCGTGACAGAACAGAGAAATCAGGCAAGCTGGATTACA GGCTTGCACCTGTAGGACACAGGAGAGGGAAGGAAGCACCTTCTGGTGGCAGGAATAT CCTTAGGCACCACAAACTTGAGTTGGAAATTTTGCTGGTTGAAGCTTCAGCCTGACCCT CTGCCCAGCATCCTTTAGAGTCTCCAACCTAAAGTATTCTTTATGTCCTTCCAGAAGTAC TGGCGTCATACTCAGGCTACCCGGCATGTGTCCCTGTGGTACCCTGGCAGAGAAAGGGCC AATCTCATTCCCTGCTGGCCAAAGTCAGCAGAAGAAGGTGAAGTTTGCCAGTTGCTTTAG TGATAGGGACTGCAGACTCAAGCCTACACTGGTACAAAGACTGCGTCTTGAGATAAACAA

FIGURE 5

1	MAQALPWLLLWMGAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEE	50
1		50
51	PEEPGRRGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFA	100
51		100
01	VGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTOGKWEGELGTDLVSIPH	150
L01	VGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPH	150
L51	GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS	200
L51	GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS	200
01	LVKCTHVPNLFSLOLCGAGFPLNOSEVLASVGGSMIIGGIDHSLYTGSLW	250
01	LVKCTHIPNIFSLQLCGAGFPLNQTEALASVGGSMIIGGIDHSLYTGSLW	250
251	YTPIRREWYYEVIIVRVEINGODLKMDCKEYNYDKSIVDSGTTNLRLPKK	300
251	YTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKK	300
301	VFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMG	350
301	VFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMG	350
351	EVTNOSFRITILPOOYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIME	400
351	EVTNOSFRITILPQQYLRPVEDVATSQDDCYKFAVSQSSTGTVMGAVIME	4 00
401	GFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPOT	450
401	GFYVVFDRARKRIGFAVSACIIVHDEFRTAAVEGPFVTADMEDCGYNIPQT	450
451	DESTLMTIAYVMAAICALFMLPLCLMVCQWRCLRCLRQQHDDFADDISLL	500
451	DESTLMTTAYVMAAICALFMLPLCLMVCQWRCLRCLRHQHDDFADDISLL	500
501	K 501	
501	к 501	

FIGURE 6 (1)

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCACCCAGCACGGCATCCGG MASMTGGQQKGRGSTQHGIR L P L R S G L G G A P L G L R L P R E T GACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTTTGTGGAGATGGTGGACAACCTG DEEPEEPGRRGSFVEMVDNL AGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATGACCGTGGGCAGCCCCCCGCAGACG R G K S G Q G Y Y V E M T V G S P P Q T CTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCAGTGGGTGCTGCCCCCCACCCC L N I L V D T G S S N F A V G A A P H P TTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACATACCGGGACCTCCGGAAGGGC $\begin{smallmatrix} \Gamma & L & H & R & Y & Y & \mathbb{Q} & R & \mathbb{Q} & L & S & S & T & Y & R & D & L & R & K & G \\ \end{smallmatrix}$ GTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGGGAGCTGGGCACCGACCTGGTAAGC V Y V P Y T Q G K W E G E L G T D L V S ATCCCCCATGGCCCCAACGTCACTGTGCGTGCCAACATTGCTGCCATCACTGAATCAGAC I P H G P N V T V R A N I A A I T E S D ${\tt AAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTGGGGCTGGCCTATGCTGAGATT}$ K F F I N G S N W E G I L G L A Y A E I GCCAGGCCTGACGACTCCCTGGAGCCTTTCTTTGACTCTCTGGTAAAGCAGACCCACGTT ARPDDSLEPFFDSLVKQTHV CCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCTGGCTTCCCCCTCAACCAGTCTGAAGTG PNLFSLQLCGAGFPLNQSEV CTGGCCTCTGTCGGAGGAGCATGATCATTGGAGGTATCGACCACTCGCTGTACACAGGC L A S V G G S M I I G G I D H S L Y T G AGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTATGAGGTCATCATTGTGCGGGTG S L W Y T P I F R E W Y Y E V I I V R V GAGATCAATGGACAGGATUTGAAAATGGACTGCAAGGAGTACAACTATGACAAGAGCATT E I N G Q D L F M D C K E Y N Y D K S I GTGGACAGTGGCACCACCAACCTTCGTTTCCCCAACAAACTGTTTGAAGCTGCAGTGAAA S I K A A S S \square E K F P D G F W \square G E Q CTGGTGTGCTGGCAAGCAGGCACCCCTTGGAACATTTTCCCAGTCATCTCACTCTAC L V C W Q A G T T P W N I F P V I S L Y CTAATGGGTGAGGTTACCAACCAGTCCTTCCGCATCACCATCCTTCCGCAGCAATACCTG L M G E V T N Q S F R I T I L P Q Q Y L CGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGTTACAAGTTTGCCATCTCACAG

FIGURE 6 (2)

CCACAGACAGATGAGTCATGA
P Q T D E S *

FIGURE 7 (1)

ATGGETAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCGATGACTATCTCTGACTCT MASMTGGQQMGRGSMTISDS CCGCGTGAACAGGACGGATCCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTG PREQDGSTQHGIRLPLRSGL GGGGGCGCCCCTGGGGCTGCCGCTGCCCCGGCAGACCGACGAAGACCCCGAGGAGCCC G G A P L G L R L P R E T D E E P E E P G F R G S F V E M V D N L R G K S 3 Q G TACTACGTGGAGATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACA Y Y V E M T V G S P P Q T L N I L V D T GGCAGCAGTAACTTTGCAGTGGGTGCTGCCCCCCACCCCTTCCTGCATCGCTACTACCAG G S S N F A V G A A P H P F L H R Y Y Q AGGCAGCTGTCCAGCACATACCGGGACCTCCGGAAGGGCGTGTATGTGCCCTACACCCAG R Q L S S T Y F D L R K G V Y V P Y T Q GGCAAGTGGGAAGGGGAGCTGGGCACCGACCTGGTAAGCATCCCCCATGGCCCCAACGTC G N W E G E L G T D L V S I P H G P N ACTGTGCGTGCCAACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCC T V R A N I A A I T E S D K F F I N G S AACTGGGAAGGCATCCTGGGGCTGGCCTATGCTGAGATTGCCAGGCCTGACGACTCCCTG $\hbox{\tt N} \quad \hbox{\tt W} \quad \hbox{\tt E} \quad \hbox{\tt G} \quad \hbox{\tt I} \quad \hbox{\tt G} \quad \hbox{\tt L} \quad \hbox{\tt A} \quad \hbox{\tt Y} \quad \hbox{\tt A} \quad \hbox{\tt E} \quad \hbox{\tt I} \quad \hbox{\tt A} \quad \hbox{\tt R} \quad \hbox{\tt P} \quad \hbox{\tt D} \quad \hbox{\tt D} \quad \hbox{\tt S} \quad \hbox{\tt L}$ GAGCCTTTCTTTGACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAG L C G A G F P L N Q S E V L A S V G G 3 ATGATCATTGGAGGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCCATC M I I G G I D H S L Y T G S L W Y T P I CGGCGGGAGTGGTATTATGAGGTCATCATTGTGCGGGTGGAGATCAATGGACAGGATCTG R R E W Y Y E V I I V R V E I N G Q D L K M D C K E Y N Y D K S I V D S G T T N CTTCGTTTGCCCAAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCC L E L P K K V F E A A V K S I K A A S S TEKFPDGFWLGEQLVCWQAG ACCACCCTTGGAACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCAAC TTPWNIFPVISLYLMGEVTN

FIGURE 7 (2)

FIGURE 8 (1)

ATGACTCAGCATGGTATTCGTCTGCCACTGCGTAGCGGTCTGGGTGGTGCTCCACTGGGT M T-Q H G I R L P L R S G L G G A P L G TTGCGTCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTT*T L R L P R E T D E E P E E P G R R G S F STIGGAGATIGGTGGACAACCTGAGGGGGCAAGTCGGGGGCAGGGCTACTACGTGGAGATGACC VEMVDNLRGKSGQGYYVEMT GTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGCAGTAACTTTGCA V G S P P Q T L N I L V D T G S S N F A GTGGGTGCTGCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGGACA Y G A A P H P F L H R Y Y Q R Q L S S T TACCGGGACCTCCGGAAGGGCGTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGGGAG Y R D L R K G V Y V P Y T Q G K W E G E -L G T D L V S I P H G P N V T V R A N I GCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTG A A I T E S D K F F I N G S N W E G I L G L A Y A E I A R P D D S L E P F F D S CTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCACCTTTCTCGCTGCTTC LVKOTHVPNLFSLQLCGAGF ${\tt GACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTAT}$ $\begin{smallmatrix} D \end{smallmatrix} \ \, H \ \, S \ \, L \ \, Y \ \, T \ \, G \ \, S \ \, L \ \, W \ \, Y \ \, T \ \, P \ \, I \ \, R \ \, E \ \, W \ \, Y \ \, Y$ GAGGTCATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAG E V I I V R V E I N G Q D L K M D C K E TACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAGAAA Y N Y D K S I V D S G T T N L R L P K K GTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGAT V F E A A V K S I K A A S S T E K F P D GGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCACCCCTTGGAACATT G F W L G E Q L V C W Q A G T T P W N I ${\tt TTCCCAGTCATCTACCTAATGGGTGAGGTTACCAACCAGTCCTTTCGCATCACC}$ FPVISLYLMGEVTNQSFRIT $\tt ATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGT$ I L P Q Q Y L R P V E D V A T S Q D D C

FIGURE 8 (2)

н

FIGURE 9

FIGURE 10

FIGURE 11

MAQALPWLLLWMGAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEE PEEPGRRGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFA VGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPH GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS LVKQTHVPNLFSLQLCGAGFPLNQSEVLASVGGSMIIGGIDHSLYTGSLW YTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKK VFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMG EVTNQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIME GFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQT DES

FIGURE 12

MAOALPWLLLWMGAGVLPAHGTOHGIRLPLRSGLGGAPLGLRLPRETDEE
PEEPGRRGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFA
VGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPH
GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS
LVKQTHVPNLFSLQLCGAGFPLNQSEVLASVGGSMIIGGIDHSLYTGSLW
YTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKK
VFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMG
EVTNQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIME
GFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQI
DESHHHHHH

18/18

SEQUENCE LISTING

```
+110> Gurney, Mark E.
     Bienkowski, Michael J.
     Heinrikson, Robert L.
     Parodi, Luis A.
     Yan, Rigiang
      Pharmacia & Upjohn Company
<120> Alzheimer's Disease Secretase
<130> 6177.P CP
<140>
<141>
<150> 60/101,594
<151> 1998-09-24
<150> 49
<170> PatentIn Ver. 2.0
<210> 1
211> 1804
<212> DNA
<213> Homo sapiens
·400> 1
utygyegeac tygeceggge getgetgetg cetetgetgg cecagtyget cetgegegee 60
geoeggage tggeococge geneticang etgeocotec gggtggeoge ggeoacgaac 120
```

egegtagity egeceaecce gggaceeggg assestgeeg agegeeaege egaeggetty 180 dedetegeed tagaacetae estagegtee eseggagaga esgecaactt ettagecata 240 gtagadaadd tgdaggggga ctotggddgd ggdtadtadd tggagatgdt gatogggadd 300 occoograga agotacagat totogtigad actygaagda gtaacttigd cytygdagga 360 accocycaet cetaeataga caeytaettt gacacagaga gytetageae ataccyctee 420 aagggettty acgteaeagt gaagtacaca caaggaaget ggacgggett egttggggaa 480 gacctoqtea coatcoccaa aggetteaat acttettite tiqicaacai iqeeactaii 540 tttgaateag agaatttett titgeetggg attaaatgga atggaataet tggeetaget 600 tatgocacae tigecaagee atcaagitet eiggagaeet teitegaete eeiggigaea 660 caagcaaaca teeccaacyt ittetecaty cagatytyty yageegyett geeegtiget 720 ggatotggga ocaacggagg tagtottgto ttgggtggaa ttgaaccaag tttgtataaa 780 rgagacatot ggtalacece tattaaggaa gagtggtaet accagataga aattetgaaa 840 ttggaaatrg gaggooaaag cottaatotg gaotgoagag agtataacgo agacaaggoo 900 atogtggaca gtggcaccae getgetgege etgececaga aggtgtttga tgeggtggtg 960 quagetgtgg ecogogoate tetgatteea gaattetetg atggtttetg gaetgggtee 1020 pagetggogt getggaegaa tteggaaaca eettggtett aetteeetaa aateteeate 1080 tacotgagag atgagaacto cageayytea tteeytatea caateetgee teagetttae 1140 atteagesea tgatggggge eggeetgaat tatgaatgit acegattegg eattteecea 1200 tocacaaatg ogotgytgat oggtgocaog gtgatggagg gottotaogt catottogac 1260 agageceaga agagggtggg ettegeageg ageceetgtg eagaaattge aggtgetgea 1320 gtgtotgaaa titcogggoo titcicaaca gaggaigtag ocagcaacig igicoccgci 1380 cagtotttga gogagoccat tttgtggatt gtgtoctatg ogotoatgag ogtotgtgga 1440 quoatected tigitettaat egicetgetg eigetgeegt teeggigtea gegiegeeec 1500 ngtgaccotg aggtegteaa tgatgagtee tetetggtea gaeategetg gaaatgaata 1560 iccaggeeig accteaagea accatgaact cagetattaa gaaaateaca titteeaggge 1620 agcageeggg ategatggtg gegetitete etgtgeecae eegteticaa tetetgitei 1680 gotocoagat goottotaga ticacigist titgatioti gattitaaag cittcaaaic 1740 1804 aaaa

<210> 2

<211> 518 <212> PRT _ +213> Homo sapiens <400> 2 Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Glm Trp 10 Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro 23 25 30 Leu Arg Val Ala Ala Ala Thr Ash Arg Val Val Ala Pro Thr Pro Gly 4C 45 Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu 55 60 Olu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met 65 70 75 Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met 90 95 85 Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly 100 105 110 Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr 115 120 125 Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp 130 - 135 140

Val Thr Val Lys Tyr Thr Gin Gly Ser Trp Thr Gly Phe Val Gly Glu 155 145 150 Asp Leu Val Thr lle Pro Lys Gly Phe Asr Thr Ser Phe Leu Val Asr. 170 165 Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys 180 195 190 Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Prc Ser 195 200 Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile 210 215 Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala 230 Gly Ser Gly Thr Ash Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro 250 245 Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp 260 265 270 lyr Tyr Gin Ile Glu Ile Leu Lys Leu Giu Ile Giy Giy Gin Ser Leu 275 285 280 Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val 315 320 310 305 Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe 325 330 Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp 345 350 340 Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser 355 360 3 6 5 Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met 380 370 375 Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro 395 390 385 Ser Thr Asn Ala Leu Val Ile Cly Ala Thr Val Met Glu Cly Phe Tyr 410 415 405 Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro 430 425 420 Cys Ala Glu He Ala Gly Ala Ala Val Ser Glu He Ser Gly Pro Phe 440 445 435 Ser Thr Glu Asp Val Ala Ser Ash Cys Val Pro Ala Gln Ser Leu Ser 450 455 460 Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly

435 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Leu Pro Phe Arg Cys
485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu
500 505 510

Val Arg His Arg Trp Lys

515

<210> 3

<211> 2070

-212> DNA

<213> Homo sapiens

~403> 3

```
gaggteatea ttgtgegggt ggagateaat ggaeaggate tgaaaatgga etgeaaggag 840
tacaactaty acaagagcat tytygadagt dgcaccacca accttcqttt gcccaagaaa 900
gtgtttgaag otgoagtoaa atecatoaag goagootoot ceaeggagaa gttcootgat 960
gytttotyge tägyagayea yetyytytye tyycaagcag yeaccaccee ttygaacatt 1020
titoccagica totoactota octaatgggt gaggitacca accagicott cogcatoacc 1080
atecttocgo agcaatacet geggecagtg gaagatgtgg ccaegtecca agaegaetgt 1140
tacaagtitg coatsicaea qteatecaeq ggeaetqita tqqqaqetqt tateatqqaq 1200
ygottotacg ttgtotitga togggoooga aaacgaattg gotttgotgt cagogottgo 1260
catytycacy atgayttcay gacyycaycy ytgyaaggco ottitytcac ottygacaty 1320
qaagactgtg gotacaacat tocacagaca gatgagtcaa cootcatgae catagoctat 1380
{\tt gtcatggctg} \ {\tt ccatctgcgc} \ {\tt cctcttcatg} \ {\tt ctgccactct} \ {\tt gcctcatggt} \ {\tt gtgtcagtgg} \ 1440
egetgeetee getgeetgeg ccageageat gatgaetttg etgatgaeat etecetgetg 1500
angigangan geocatggge agaagataga gatteenetg gaecacacet cogiggitea 1560
otttggtcac aagtaggaga cacagatggo acctgtggcc agagcacete aggaccetec 1620
scaeccasca aatgestety eettgatgga gaaggaaaag getggcaagg tgggttecag 1680
gaetgtace igtaggaaac agaaaagaga agaaagaagc acteigeigg egggaatact 1740
sttggtoace toaaatttaa gtogggaaat tetyetgett gaaaetteag seetgaacet 1800
ttgtccacca ttcctttaaa ttctccaacc caaagtatte ttettttctt agtttcagaa 1860
gtactggcat cacacgeagg ttaccttggc gtgtgtccct gtggtaccct ggcagagaag 1920
agaccaaget tgtttesetg etggecaaag teagtaggag aggatgeaca gtttgetatt 1980
tgetttagag acagggaetg tataaacaay eetaacatty gtgeaaagat tgeetettga 2040
attaaaaaaa aaaaaaaaaa aaaaaaaaaa
```

<210> 4 -211> 501

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val

1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser . 20 Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 40 Olu Glu Pro Glu Glu Pro Gly Arg Arg Oly Ser Phe Val Glu Met Val 50 55 Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 70 Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110 Tyr Glr. Arg Glr Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 125 115 120 Tyr Val Pro Tyr Thr 3ln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 150 155 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 170 175

Clu	Cly	Ile	Leu	сіу	l eu	A_a	Туr	λla	Clu	Ilo	Λla	Arg	Pro	qaA	Asp
			180					185					190		
,.			٠.												
Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Tr.r	His	Val	Pro
		195					200					205			
^ Asn	Leu	Phe	Sei	Leu	Fis	Leu	Cys	Gly	Ala	Gly	Phe	Pro	Leu	Asn	Gln
•	210					215					220				
~															
Ser	Glu	Val	Leu	Ala	Ser	Val	Glv	Glv	ser	Met	lle	Ile	Gly	Gly	Ile
225					230		,	,		235					240
					233										
	174	0	T	Ш	Mh w	C 1	cor	LOU	mrn.		mer	Dro	TIA	Ara	Δra
wab	HIS	ser	Leu		TEL	GIĀ	Set	heu		. yı	1111	PIO	116	255	Arg
-				245					250					255	
-								_							
Glu	Trp	Туr		Glu	Va!	Ile	Ile		Arg	Val	Glu	Ile		GIY	Gln
			260					265					270		
·															
Asp	Leu	Lys	Met	Asp	caz	Lys	Glu	Tyr	Asn	Tyr	Asp	ľàs	Ser	Ile	Val
		273					280					285			
·															
Asp	Ser	Glγ	Thr	Thr	Asr.	Leu	Arg	Leu	Pro	Lys	Lys	Va l	Phe	Glu	Ala
	290					295					300				
Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	Pro	Asp
305					310					315					320
•															
Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	Thr	Thr
•				325					330					335	
~															
 Pro	Trp	Asn	Ile	Phě	Pro	Val	Ile	ser	Leu	Tyr	Leu	Met	Gly	Glu	Val
	-														

340 345 350 Thr Ash Gln Ser Phe Arg I'e Thr fle Leu Pro Glr Gln Tyr Leu Arg 360 355 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 370 375 380 Ile Ser Glm Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 390 .385 395 400 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 410 415 405 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 425 420 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 445 440 435 Gin Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala 455 The Cys Ala Len Phe Met Len Pro Len Cys Len Met Val Cys Glr. Trp 475 465 480 470 Arg Cys Leu Arg Cys Leu Arg Cln Gln His Asp Asp Phe Ala Asp Asp 485 490 495

10

Ile Ser Leu Leu Lys

500

-400> 5 atggcccaag coetgenetg geteengetg tggatgggeg egggagtget geetgeccae 60 ggcaeecage aeggeateeg getgeeectg egeageggee tggggggege coeectgggg 120 etgeggetye ecegggagae egaegaagag ecegaggage eeggeeggag gggeagettt 180 gtggagatgg tggacaacct gaggggcaag teggggcagg getactacgt ggagatgace 240 ytgggcagec coccgeagas geteaacate etggtggata caggeageag taaetttgca 300 giggggetg ecceccaces effectycat egelactace agaggeaget giccageaca 360 tacogggaco teoggaaggg tgtgtatgtg coctacacco agggcaagtg ggaaggggag 420 stgggeaeeg acetggtaar cateeeceat ggeescaaeg teaetgtgeg tgeeaacatt 480 gotyccatea otgaatbaga caagttette atsaacgget ccaactggga aggeateetg 540 iggetggeet atgetgagat tgecaggett tgtggtgetg getteceeet caaccagtet 600 gaagtgotgg colotytogy agggagoaty atsattggag gtatogacca otogotytac 660 adaggeagte tetggtatae acceateegg egggagtggt attatgaggt gateattgtg 720 iyggtggaga tcaatggaca ggatotgaaa atggactgca aggagtacaa ctatgacaag 780 agoattytyy acagtygeac caccaacett cyttigeeca agaaagiyii igaayetyea 340 gtdaaateda tcaaggeago ofdotodaog gagaagited ofgatggtti ofggotagga 900 gageagetgg tgtgetggea ageaggeace accepttgga acattiticec agteatetea 960 ctotacctaa tgggtgaggt taccaaccag toottoogca toaccateet toegcagcaa 1020 tachtgoggo cagtggaaga tgtggchacg toccaagacg actgttacaa gtttgccato 1080 tranagical ocaegggeae igitalggga gelgitalea iggagggeri elaegilgie 1140 rttgategyg eeegaaaaeg aattggettt gefgteageg ettgecafyt geaegatgag 1200 ttcaggacgg cageggtgga aggeeettit gicaeettgg acaiggaaga eigiggetae 1260 aacattocad agadagatga gidaacdeto atgaccatag ootaigidat ggcigodato 1320 tgegecetet teatgetgee actetgeete atggtgtgte agtggegetg eeteegetge 1380

etgegocage ageatgatga etetgetgat gacatetece tgetgaagtg ageaggeese 1440
tgggoagaag atagagatte coetggacca caceteegtg giteactitig giteacagaga 1500
ggagacacag atggeacetg tggecagage aceteaggae ceteoccace caceaaatge 1560
cletgentig atggagaagg aaaaggetgg caaggigggt tecagggaet giteactitig 1620
gaaacagaaa agagaagaaa gaagcactet getggeggga alactetigg tecaceteaa 1690
titaagteeg gaaattetge tgettgaaac tecageeetg aacetitigte caceatteet 1740
titaagteeg gaaattetge tecetgtgi aceetggeag agaaggace ggeatcacae 1800
geaggitace titggegtgi tecetgtgi aceetggeag agaaggace aagetigtii 1960
geotgetgge caaagteagt aggagagat geacagtitig etatitiget tagagacagg 1920
gactgtataa acaagcetaa cattggtgca aagattgeet etigaaaaaa aaaaaaa 1977

+210> b

<211> 476

<212> PRT

-213> Homo sapiens

·400> 6

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val

s 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser

20 25 30

ply Leu Cly Cly Ala Pro Leu Cly Leu Arg Leu Pro Arg Glu Thr Asp

35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 135 100 Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val . 115 120 125 Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 155 145 150 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Ash Gly Ser Ash Trp 165 170 175 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly 185 183 190 Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly 195 200 205 Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu 210 215 Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val 225 230 235 240

Arg Val Clu Ilc Asn Cly Cln Asp Lou Lys Met Asp Cys Lys Clu Tyr 250 245 Ash Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Ash Leu Arg Leu 270 265 260 Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser 285 275 280 Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val 295 300 Cys Trp Gin Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser 310 315 320 Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile 330 325 Leu Pro Gin Gin Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gin 345 340 Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val 355 360 365 Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala 370 375 380 Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu 390 395 385 Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu

405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr
420 425 430

Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu
435 440 445

cys Leu Met Val Cys Glr Trp Arg Cys Leu Arg Cys Leu Arg Gl
n Gln 450 460

His Asp Asp Phe Ala Asp Asp Ile Ser Lea Leu Lys

<210> 7

-211> 2043

<212> DNA

<213> Mus musculus

<400> 7

ctggtgaage agaeceacat teccaacate tittecetge agetetgtgg egetggette 660 coorteaacc agaecgagge actggeotog gtgggaggga geatgateat tggtggtate ${\it Tr}\,0$ gaccactogo tatadacggg dagtototgg tadadaccoa todggoggga giggtatuat 780 gaagtgatea ttgtaegtgt ggaaateaat ggteaagate teaagatgga etgeaaggag 840 tacaactacg acaagagcat tqtggacagt ggqaccacca acettegett geceaagaaa 900 gtatttgaag etgeegteaa gteeateaag geageeteet egaeggagaa gtteeeggat 960 ggotttttggo taggggagda gotggtgtgo tgydaagdag gdadgaddoo ttggaadatt 1020 ttoocagtca tttcacttta cotcatgggt gaagtcacca atcagtcott cogcatcacc 1980 atcottecto agcaatacet acggeeggtg gaggaegtgg ceacgteeca agacgactgt 1140 racaagttog etgleteaen gleatecaeg ggeaetgtta tgggageegt cateatggaa 1200 ngtttotaty togicitoga togageroga aagogaatig gottigeigt cagegotige 1260 catgtgcacg atgagttcag gacggcggca gtggaaggto cgtttgttac ggcagacatg 1320 uaaqaetqtq qotacaacat tooccagaca gatgagtcaa cacttatgac catagoctat 1380 qtcatggogg ccatctgogo cotottcatg ttgocactct gcctcatggt atgtcagtgg 1440 egotycotyc gttgootgag coaccagoac gatgacttty otgatgacat ofecotycte 1500 aagtaaggag getegtggge agatgatgga gaegeeeetg gaedacatet gggtggttee 1560 etttggteac atgagttgja getatggatg gtacetgtgg ceagageacs teaggacest 1620 raccaacety coaatgette tygeytyaca gaacagagaa atcaggeaay etggattaca 1680 uggottgeac otgtaggaca caggagaggg saggaagcag ogttotggtg geaggaatat 1740 cottaggoac cacaaacttg agttggaaat tittgetgett gaagetteag coetgaecot 1800 Etgoscagea teotitagag tetecaacet aaagtattet tratgteett ecagaagtae 1860 tggegteata eteaggetae eeggeatgtg tesetgtggt accetggeag agaaagggee 1920 aatotoatto ootgotggoo aaagtoagoa gaagaaggtg aagtttyooa gttgotttag 1980 tgatagggac tgcagactca agcctacact ggtacaaaga stgcgtsttg agataaacaa 2040 2043 gaa

<210> 8

<211> 501

^{-212&}gt; PRT

<213> Mus musculus

<400 ~)> હૈ														
Met	Ala	Pro	Ala	Leu	His	Trp	Leu	Leu	Leu	Trp	Val	Gly	Ser	Gly	Met
_ 1				5					10					15	
- Leu	Pro	Ala	Gln	Gly	Thr	His	Leu	Gly	Ile	Arg	Leu	Pro	Leu	Arg	Ser
~			20					25					30		
Gly	Leu	Ala	Gly	Pro	Pro	Leu	Gly	Leu	Arg	Leu	Pro	Arg	Glu	Thr	Asp
~		35					4 0					45			
Glu ″	Glu	Ser	Clu	Glu	Prc	Gly	Arg	Arg	Gly	Ser	Phe	Val	Glu	Met	Val
	5 C					55					60				
~															
Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly		Tyr	Val	Glu	Met	
65					70					75					80
	>	_	_	_	.	55)	•	3	71.0	Lav	Val.) = n	Thr	Clu	Sar
yaı	GIA	ser	Pro		Gln	inr	_eu	ASI	90		vai	ASP	1111	95	561
				85					<i>J J</i>					,,,	
Ser	Asn	Phe	Ala	۷a :	Gly	Alā	Ala	Pro	Hle	Pro	Plie	Leu	His	Arg	туг
			100					105					110		
Tyr	Gln	Arg	Gln	Leu	ser	ser	Thr	Tyr	Arq	Asp	Leu	Arg	Lys	Gly	Val
		115					120					125			
Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu	Gly	Thr	Asp
	130					135					140				
~															
Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asr.	Val	Thr	Val	Arg	Ala	Asn	
145					150					155					160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Eer Asn Trp 170 176 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 190 180 185 Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Ile Pro 195 205 200 Ash Ile Phe Ser Leu Gin Leu Cys Gly Ala Gly Phe Pro Leu Ash Gin 210 215 220 Thr Glu Ala Leu Ala Ser Val Gly Gly Ser Met lle Ile Gly Gly Ile 235 230 240 225 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 250 245 Blu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asr. Gly Gln 27€ 265 260 Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 275 280 285 Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 290 295 300 Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp 310 315 305 320 Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr

~				325					330					335	
Pro	Trp	Asn	Ile 340	Pho	Pro	Val	Ile	Ser ط45	Leu	Tyr	Leu	Met	Gly 350	Glu	Val
Thr	Asn	Gln 355	Ser	Phe	Arg	Ile	Thr 360	Ile	Leu	Pro	Gln	Gln 365	Tyr	Leu	Arg
Pro	Val 370	Glu	Asp	Val	Ala	Thr 375	Ser	Gln	Asp	Asp	Cys 380	Туг	Lys	Phe	Ala
Val 385	Ser	Gln	Ser	ser	Thr 390	Gly	Thr	Val	Met	Gly 395	Ala	Va l	Ile	Met	Glu 400
gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg 410	LYs	Arg	Ile	Gly	Phe 415	Ala
Val	Ser	Ala	Суs 420	His	Val	His	Asp	Glu 425	Ph≘	Arg	Thr	Ala	Ala 430	Val	Glu
ġ)y	Pro	Phe	Vā l	Thr	Ala	Asp	Met.	Glu	Asp	Cys	Gly	Tyr 445	Asn	Ile	Pro
Gln	Thr 450	Asp	Glu	Ser	Thr	Leu 455	Met	Thr	Ile	Ala	Tyr 460	Val	Met	Ala	Ala
 Ile 		Ala	Leu	Phe	M et	Leu	Pro	Leu	Cys	Leu 475		Val	Cys	Gln	Trp
~	Суз	Leu	Arç	Cys 485		Arg	His	Gln	His	Asp		Plie	Ala	Asp 495	Asp

- 100 > 9

atgotgodog gittiggdadi gotodigelg godgodigga oggotogggs goiggaggia 60 receastgatg gtaatgetgg cetgetgget gaaceeeaga trgeeatgtr etgtggeaga 120 ttgaacatgo acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 190 abotgoatty ataocaagga aggeatecty cagtattyce aagaagtota coetgaacty 240 dagatcaeca atgtggtaga agecaaccaa coagtgacca tecagaactg gtgcaagegg 300 ggoogbaage agtgeaagae coateecoac tttgtgatte betaccycty ettagttggt 360 sagittiglaa gigatgeeet tetegitteet gaeaagigea aattettaea eeaggagagg 420rtggatgttt gogaaactca tettcactgg cacacegteg seadagagae atgeagtgag 48%aagaglabca acttgcatga ctaeggeatg ttgetgeeet geggaattga caagtteega 540 ggggfagagt thgtgtgttg occaetgget gaagaaagtg acaatgtgga tidigetgat 600 yoggaggagg atgastogga tgtstggtgg ggsggagsag asasagasta tgsagatggg 660 aqtqaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 paageegatg atgaegagga egatgaggat ggtgatgagg tagaggaaga ggetgaggaa 780 ucebacgaag aagecacaga gagaaccace ageabbgeca seaccaccac caccaccaca 840 jagtotgtgg aagaggtggt togagttoot acaacageag coagtaccoo tgatgccgtt 900 gacaagtate tegagacace tggggatgag aatgaacatg secattteea gaaagecaaa 960 gagaggettg aggeeaagea cegagagaga atgteecagg teatgagaga atgggaagag $1020\,$ yeagaacgte aagcaaagaa ettgeetaaa getgataaga aggeagttat seageattte 1080 daggagadag tggaatotti ggaacaggaa gcagedaacg agagacagca getgglggag 1140 acacacatgg ccagagtgga agccatgcte aatgaeegee geegeetgge eetggagaae 1200

tacateaceg etetgeagge tgtteeteet eggeetegte aegtgtteaa tatgetaaag 1260 aagtatgicc gegeagaaca gaaggacaga cagcacacec taaagcatit egagcatgig 1320 egeatggtgg ateccaagaa ageogeteag ateeggtees aggttatgas acaceteegt 1380 gtgatttatg agegoatgaa toagtetete teeetgetet acaacgtgee tgeagtggee 1440 uaggagatto aggatgaagt tgatgagotg ottoagaaag agcaaaacta ttoagatgac 1500 gtottggosa acatgattag tgaacsaagg atcagttacg gaaacgatgo totcatgosa 1560 icittgaceg aaacgaaaac caccgiggag ciecticecg igaaiggaga gitcagecig 1620 Jacgatetre agecytggea ttettitggy getgaetetg tgecayceaa cacagaaaaa 1680 jaagttyage etgttgatge eegeestget geegaeegag gaetgaceae tegaeeaggt 1740 ictgggttga caaatatcaa gaeggaggag atetetgaag tgaagatgga tgcagaatte 1800 egacatgast caggatatga agtteateat caaaaattgg tgttetttge agaagatgtg 1860 gottcaaasa aaggtgcaat castggactc atggtgggcg gtgttgtcat agcgacagtg 1920 atogtoatoa oottggtgat gotgaagaag aaacagtaca catocattca tcatggtgtg 1980 guggaggtig acgoogotgi caccocagag gagogocaco igiocaagai gcagcagaac 2040 2088 yyotacgaaa atocaaccta caagttottt gagcagatgo agaactag

<210> 10

<211> 695

<212> PRT

<213> Homo sapiens

<400> 10

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg

1 5 10

Ala Leu Giu Val Pro Thr Asp Giy Ash Ala Giy Leu Leu Aia Giu Pro

20 25 30

Oln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Glm

35 40 45

15

Asn	Glу	Lys	Trp	Asp	ser	Asp	Pro	Ser	Cly	Thir	Lys	Thr	Сув	Ile	Asp
	50					55					6 C				
Thr	Lys	Glu	Gly	Ile	Leu	Gln	Туг	Суз	Glr	Glu	Val	Тут	Pro	Glu	Leu
65					70					75					30
•															
Gln	Ile	Thr	Asn	Val	Val	Glu	Alā	Asn	Gln	Pro	Val	Thr	Ile	Gln	Asn
•				85					90					95	
r Trp	Cys	Lys	Arg	Gly	Arg	Lys	Gln	Cys	Lys	Thr	His	Pro	His	Phe	Val
	-		100					105					110		
Ile	Pro	Tvr	Ard	Cys	Leu	Val	Glv	Glu	Phe	Val	Ser	Asp	Ala	Leu	Leo
•		115	5				120					125			
*		113													
, (/21	Dra	Acn	Live	Cys	Lve	2ha	I est	His	Gln	Glu	A~a	Met	Asp	Val	Cvs
·aı		мър	пур	CYS	Бүр	135	Lea	1,13	G111	314	140		,		7,2
~	130					133					140				
,			_				m)	7 F - 1		T	21	mh ac	C. ra	C	C'u
	Thr	His	Leu	His		HIS	unr	val	Ala		GIU	1111	CYS	261	Glu
145					150					155					160
ГЛЗ	Ser	Thr	Asn	Leu	His	Asp	Tyr	Gly			Leu	Pro	СЛа		Ile
				165					170					175	
Asp	Lys	Ph∈	Arg	Glγ	Val	Glu	Phe	Va1	Cys	Суз	Pro	Leu	Ala	Glu	Glu
			180					185					190		
,															
ser	Asp	Asn	Val	Asp	Ser	Ala	Asp	Ala	Glu	Glu	Asp	Asp	Ser	Asp	Val
		195					200					205			
,															
Trp	Trp	Gly	Gly	Ala	Asp	Thr	Asp	Tyr	Ala	Asp	Gly	Ser	Glu	Asp	Lys

210 215 220 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 230 235 240 Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 250 245 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 270 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 275 280 285 Val Pro Inr Thr Ala Ala Ser Ihr Pro Asp Ala Val Asp Lys Tyr Leu 290 295 300 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 310 315 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 325 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 350 340 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 380

Arg Val Glu Ala Met Leu Ash Asp Arg Arg Arg Leu Ala Leu Glu Ash 395 385 390 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 410 405 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 420 425 430 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 445 440 435 Ala Glm Ile Arg Ser Glm Val Met Thr His Leu Arg Val Ile Tyr Glu 455 460 **4**50 Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 475 47C Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 490 495 Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 500 505 510 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 520 515 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Clu Asn 555 550 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 570 565 Thr Arg Prc Gly Ser Gly Leu Thr Ash Ile Lys Thr Glu Glu Ile Ser 585 590 Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 60C 605 595 His His Gln Tys Leu Val Pho Phe Ala Glu Asp Val Gly Ser Asn Lys 610 615 620 Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 635 63 C lle Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile 650 635 645 His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 6**6**0 665 670 His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys 630 675 Phe Phe Glu Gln Met Gln Asn 695 690

<210> 11

<211> 2088

• 31.2> DNA

-213 > Homo sapiens

-400> 11

atgotgooog gttoggoact gotootgotg googootgga oggotogggo gotggaggta 60 occastgatg gtaatgetgg congetgget gaaceccaga tigecatgit eigiggmaga 120 otgaacatgo acatgaatgt coagaatggg aagtgggatt cagatcoatc agggaccaaa 180 acctgoattg ataccaagga aggeatectg cagtattgee aagaagteta coetgaactg 240 cagateacea atgtggtaga agecaaceaa coagtgacea tocagaactg gigcaagegg 300 ggeogeaage agtgeaagae eealeeesae titgtgatte cetacegetg ettagtiggt 360 gaghttgtaa gtgatgoorf torogthict gadaagtgda aattottada cdaggagagg 420 atggatgttt gegaaactea tetteactgg cacacegteg ecaaagagas atgeagtgag 430 aagagtacca acttgcatga ctacggcatg ttgctgccct geggaattga caagtteega 540 ggggtagagt tigtgigitg occaetgget gaagaaagig acaatgigga tietgeigai 600 goggaggagg atgaetegga tgtetggtgg ggeggageag acaeagaeta tgeagatggg 660 agtgaagaca aajtagtada agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 gaageegatg atgaegagga egatgaggat ggtgatgagg tagaggaaga ggetgaggaa 780 ocotacgaag aagcoacaga gagaaccaco agcattgoca obaccaccac caccaccaca 840 gagtetgtgg aagaggtggt tegagtteet acaacageag ceagtaceed tgatgeegtt 900 gacaagtato togagacaco tggggatgag aatgaacatg cocatttoca gaaagccaaa 960 qagaggettg aggecaagea eegagagaga atgteecagg tealgagada atgggaagag 1020 goagaaegto aagcaaagaa ettgeetaaa gotgataaga aggeagttat ceagcattte 1080 caggagamag tggamicttt ggmacaggma gcagccamacg agagmacagcm gctggtggmag 1140 acadadatgg ddagagtgga ageeatgoto aatgadegod gddgdctggd ddtggagaad 1200 tacatcaccg etetgeagge tgtteeteet eggeetegte aegtgtteaa tatgetaaag 1260 aagtatgtee gegeagaaca gaaggacaga cagcacaece taaagcattt egageatgtg 1320 egeatggtgg ateceaagaa ageegeteag ateeggteee aggttatgae acaceteegt 1380 jtgatttatg agogoatgaa teagtetete teeetyetet acaaegtyce tgeagtggee 1440 gaggagatto aggatgaagt tgatgagotg ottoagaaag agcaaaacta ttoagatgac 1500

-210> 12

+211> 695

-212> PRT

·213> Homo sapiens

<400≥ 12

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg

1 5 10

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro

20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Ash Met His Met Ash Val Gin $\frac{1}{35}$ 40 45

Ash Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 655 70 75 80

Glm lie Thr Ash Val Val Glu Ala Ash Glm Pro Val Thr Ile Glm Ash Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 105 110 100 lle Pro Tyr Arg Cys Leu Vai Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 155 145 150 Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 185 190 180 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 220 215 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 235 240 230

Glu Ala Asp Asp Asp Glu Asp Asp Clu Asp Cly Asp Clu Val Clu Clu 250 245 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 270 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala val Asp Lys Tyr Leu 295 300 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 315 320 305 310 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Prc Lys Ala Asp 340 345 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 380 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 385 390 395 400 Tyr lie Thr Ala Leù Gln Ala Val Pro Pro Arg Pro Arg His Val Pre

405 416 415 Ash Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 430 420 425 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 445 Ala Glm Ile Ary Ser Glm Val Met Thr His Leu Arg Val Ile Tyr Glu 460 450 455 Arg Met Ash Gln Ser Leu Ser Leu Lei Tyr Ash Val Pro Ala Val Ala 475 470 Blu Glu The Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 490 495 485 Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 505 510 500 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 520 515 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 540 535 Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 555 560 545 550 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 570 565

Thr Arg Pro Gly Ser Gly Leu Thr Asm Ile Lys Thr Glu Glu Ile Ser **58**5 580 Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 595 600 His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 610 615 Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 635 630 lle Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile 650 645 His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 660 665 670 His Leu Ser Lys Met Gln Gln Ash Gly Tyr Glu Ash Pro Thr Tyr Lys 675 680 685 Phe Phe Glu Gln Met Gln Asn 690 695 -210> 13 <211> 2088 <212> DNA <213> Homo sapiens

31

<400> 13 atgetgedeg gittggeact getectgetg geogeologga eggeleggge gelggaggla 60 occaetgaty gtaatgetyy eetyetyyet gaaseeeaya ttyeeatytt etytyyeaya 120 otgaacatgo acatgaatgi ocagaatggg aagtyggati cagatocato agggaccaaa 180 anotycatty ataccaayya aggeatecty cagtattyce aagaagtota dectyaacty 240 cagateacea atgtggtaga agecaaceaa ceagtgacea tecagaactg gtgcaagegg 300 ggoogcaago agtgcaagae ccateeccae titigtgatto ectacegotg ettagttggt 360 gagtttgtaa gtgatgeeet teteytteet gaeaagtgea aattettaea eeaggagagg 420 atgyatgttt gegaaactea tetteaetg; cacacegteg ccaaagagae atgeagtgag 480 aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 ggggtagagt ttgtgtgttg occaetgget gaagaaagtg acaatgtgga ttetgetgat 600 geggaggagg atgaetegga tgtetggtgg ggeggageag acasagaeta tgeagatggg 560 agtgaagada aagtagtaga agtagdagag gaggaagaag tggdtgaggt ggaagaagaa 720 yaagoogatg atgacgagga ogatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780 coctacgaag aagccacaga gagaaccace agcattgcca ccaccaccac caccaccaca 840 gagtetgtgg aagaggtggt tegajtteet acaacagcag ceagtacece tgatgeegtt 900 gacaagtato togagacado tggggatgag aatgaadatg docatttoda gaaagddaaa 960 gagaggettg aggceaagea eegajagaga atgteecagg teatgagaga atgggaagag 1020 gcagaacgte aagcaaagaa ettgeetaaa getgataaga aggeagttat eeagcattte 1080 paggagaaag tggaatettt ggaacaggaa geageeaacg agagacagca getggtggag 1140 acacacatgg coagagtgga agecatgete aatgacegee geegeetgge cotggagaac 1200 tacatcaccy ctctgcagge tgttcctcct eggcetegte aegtgtteaa tatgetaaag 1260 aagtatgtee gegeagaaca gaaggaeaga cagcacacee taaagcattt egageatgtg 1320 egeatgytgy atoccaagaa ageogotoag atocygtose aggttatgae acaceteegt 1330 gtgatttatg agegeatgaa teagtetete teeetgetet acaaegigee tgeagtggee 1440 gaggagatte aggatgaagt tgatgagetg etteagaaag ageaaaaeta tteagatgae 1500 gtottggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc totcatgcca 1560 tetttgaeeg aaaegaaaae caeegtggag eteetteeeg tgaatggaga gtteageetg 1620 jacgatotec ageogtggca ttettttggg getgaetetg tgecagecaa cacagaaaac 1690 raagttgago etgttgatge eegecetget geegaeegag gaetgaeeae tegaeeaggt 1740 totgggttga caaatatoaa gaoggaggag atototgaag tgaagatgga tgoagaatto 1800

egaratgact caggatatga agtteateat caaaaattgg tgttettige agaagatgg 1860 ggtteaaaca aaggtgeaat cattggacte atggtgggeg gtgttgteat agegacagtg 1920 atetteatea cettggtgat getgaagaag aaacagtaca catecattea teatggtgt 1980 gtggaggttg acgeegetgt caccecagag gagegecace tgteeaagat geageagaac 2040 ggetacgaaa atceaaceta caagttettt gageagatge agaactag 2088

- · 210> 14
- <211> 695
- -212> PRT
- ·213> Homo sapiens
- ·400> 14

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg

Ala Leu Glu Val Pro Thr Asp Gly Asm Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln $$^{\circ}_{\circ}$$ 35 \$40\$ 45

Ash Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly He Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln lle thr Asn Val Val Glu Ala Asn Gln Pro Val Thr lle Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val

100 105 110 lle Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 125 120 115 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 155 143 150 Lys Ser Thr Asn Let His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 170 165 Asp Lys Phe Arg Cly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 185 180 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 215 220 Val Val Glu Val Ala Glu Glu Glu Glu Val Ala Glu Val Glu Glu Glu 230 235 225 240 Glu Ala Asp Asp Asp Glu Asp Glu Asp Cly Asp Clu Val Glu Clu 250 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 275 280 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 290 300 295 Glu Thr Pro Gly Asp Glu Ash Glu His Ala His Phe Gln Lys Ala Lys 305 310 315 320 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 325 Olu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 340 Lys Lys Ala Val Ile Glr His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 365 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 390 395 385 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 410 405 Ash Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 420 425

Thr	Leu	Lys	His	Phe	Glu	His	Val	Arg	Met	Val	Asp	Pro	Lys	Lys	Ala
		4 35					44C					445			
Ala	Gln	Ile	Arg	ser	Gln	Val	Met	Thr	His	Leu	Arg	Val	Ile	Туr	Glu
	450		5			455					460			•	
	ر) در. 🛥					4 33					400				
Arg	Met	Asn	GIn	Ser	Leu	Ser	≟eu	Leu	Tyr	Asn	Val	Pro	Ala	Val	A_a
- €5					47C					475					480
Glu	Glu	Ile	Gln	Asp	Ğlu	Val	Asp	Glu	Leu	Len	Gln	Lys	Glu	Gln	Asn
				485					4 90					495	
Tyr	Ser	Asp	qzA	Val	Leu	Ala	Asn	Met	Ile	Ser	Glu	Pro	Arg	Ile	Ser
2.7			500					505					510		
~			300												
-									_					5)	
Tyr	GIĀ		Asp	Ala	Leu	Met		ser	шeu	Thr	GIU		Lys	Thr	Thr
-		515					520					525			
~															
ya1	Glu	Leu	Leu	Pro	Val	Asn	Gly	Glu	Phe	Ser	Leu	Asp	Asp	Leu	Gln
~	530					535					540				
Pro	Trp	His	Ser	Phe	Gly	Ala	Asp	Ser	Val	Pro	Ala	Asn	Thr	Glu	Asn
 545					550					555					560
e ette	1121	Clin	Dro	Val	Acn	Λla	Ara	bro	Δla	Δla	Asn	Ara	Glv	Leu	Thr
911,	val	(3 T cr	PIO			MIG	My	FIU			rop	nrg	Oly	575	****
•				565					570					5/5	
-															
Thr	Arg	Pro	Gly	Ser	Cly	Leu	Thr	Asn	lle	Lуs	Thr	Glu	Glu	Ile	Ser
			580					585					590		
,															
glu	Val	Lys	Met	Asp	Ala	Glu	Phe	Arg	His	Asp	Ser	Gly	Tyr	Glu	Val

600 605 595 His His Glm Lys Leu Val The Phe Ala Glu Asp Val Gly Ser Asn Lys 515 620 610 Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 635 630 Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile 650 655 645 His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 670 665 His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys 680 675 685 Fhe Phe Glu Gln Met Gln Asn 695 630 -210> 15 <211> 2094 +212> DNA <213> Homo sapiens

<400> 15

atgotgode gtttggaact getoetgetg geogeetgga eggeteggge getggaggta 60
ceaetgatg gtaatgetgg eetgetgget gaaceeeaga ttgeeatgtt etgtggeaga 120
ctgaacatge acatgaatgt eeagaatggg aagtggatt eagateeate aggaecaaa 180
acetgoattg ataceaagga aggeateetg eagtattgee aagaagteta eeetgaactg 240

cagatcacea atgtggtaga	agccaaccaa	ccagtgacca	tesagaastg	gtgcaagcgg	300
ggccgcaage agtgcaagac	ccatcoccac	tttgtgattc	cctaccqctq	cttagttggt	360
gagtttgtaa gtgatgccct	tatagttaat	gacaagtgca	aattottaca	ccaggagagg	420
atggatgitt gegaaactea	tottcactgg	cacaccyteg	ccaaagagac	atycagtgag	480
aagagtansa acttgcatga	ctacggcatg	ttgatgaaat	gcggaattga	caagttccga	540
qjggtagagt ttgtgtgttg	eccactgget	gaagaaagtg	acaatgtgga	ttetgetgat	600
qeqqaqqaqq atqacteqqa	tgtctqqtqq	gqcqqaqcaq	acacagacta	tqcaqatqqq	660
njtgaagada aagtagtaga	agtagcagag	gaggaagaag	tggstgaggt	ggaagaagaa	720
gaagoogatg atgacgagga	cgatgaggat	ggtgatgagg	tagaygaaga	ggctgaggaa	780
ccctacgaag aagccacaga	gagaaccacc	ageattgeca	ccaccaccac	caccaccaca	340
gagtotgtgg aagaggtggt	togagttost	acaacagcag	ccagtacecc	tgatgeogtt	960
pacaagtate tegagacace	tggggatgag	aatgaacatg	cccatttcca	gaaagccaaa	960
gagaggottg aggocaagca	nagagagaga	atgtoscagg	tcatgagaga	atgggaagag	1020
gcagaacgtc aagcaaagaa	cttgcctaaa	gctgataaga	aggcagttat	ccagcatttc	1080
caggagaaag tggaatctit	ggaacaggaa	gcagccaacg	agagacagca	gctggtggag	1140
acacacatgg ccagagtgga	agccatgete	aatgaccgcc	geegeetgge	cctggagaac	1200
tacatcáceg etetgeagge	tytteetect	eggeetegte	acgtgttcaa	tatyctaaay	1260
aagtatgtoo gogcagaaca	gaaggacaga	cagcacaccc	taaagcattt	cgagcatgtg	1320
ogcatggtyg atoccaagaa	ageegeteag	atccggtccc	aggttatgac	acasctccgt	1380
gigatitatg agegeatgaa	teagtetete	tocctgatet	acaacgtgcc	tgcagtggcc	1440
gaggagatto aggatgaagt	tyatgagetg	cttcagaaag	agcaaaacta	ttcagatgac	1500
gtottggosa acatgattag	tgaaccaagg	atcagttacg	gaaacgatgc	totsatgoca	1 530
totttgacog aaacgaaaac	caccgtggag	ctccttcccg	tgaatggaga	gttcagectg	1620
gacgatotoe ageogtggea	ttattttggg	getgaetetg	tgccagccaa	cacagaaaac	1630
jaagttgago otgutgatgo	degedetgat	gecgaccgag	gactgaccac	togaccaggt	1740
totgggttga caaatatdaa	gacggaggag	atctctgaag	tgaagatgga	Lycayaatto	1800
tgacatgact caggatatga	agttcatcat	camaaattgg	tgttctttgc	agaagatgtg	1860
ggttcaaaca aaggtgcaat	cattggactc	atgytygycy	gtgttgtcat	agegaeagtg	1920
ategicatea ecitggigat	gctgaagaag	aaacagtaca	catccattca	tcatggtgtg	1980
utggaggttg acgeegetgt	caceceagag	gagogocaco	tgtccaagat	geageagaac	2040
ggetaegaaa atecaaeeta	caagttettt	gaçcagatgc	agaacaagaa	gtag	2094

<210> 16 <211> 697 <212> PRT <213> Hemo sapiens <400> 1€ Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 10 Ala Leu Giu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 25 20 Gln lle Ala Met Phe Cys Gly Arg Leu Ash Met His Met Ash Val Gln . 35 40 Ash Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60 Thr Lys Glu Gly Ile Lea Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 75 7 C Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 9 0 8 5 Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 105 110 lle Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 120 115 125

Val	Pro	A⊧r	Lys	Cys	Lys	Phe	Leu	His	Gln	Glu	At q	Met	Asp	Val	Сўз
,	130					135					140				
glu j	Thr	His	Leu	His	Trp	His	Thr	Val	Ala	Lys	Glu	Thr	Суз	Ser	Glu
145					150					155					160
•															
Lys	Ser	Thr	Asn	Leu	His	Asp	Tyr	GIĄ	Met	Leu	Leu	Pro	Cys	Gly	Ile
				165					170					175	
Asp	Lys	Ph÷	Arg	Gly	Val	Glu	Phe	Val	Cys	Cys	Pro	Seu	Ala	Glu	Glu
			180					185					190		
Ser	Asp	Asn	Val	Asp	ser	Ala	Asp	Ala	Glu	Glu	Asp	Asp	Ser	Asp	Val
		195					200					205			
Trp	Trp	Gly	Gly	Ala	Asp	Thr	Asp	Tyr	Ala	Asp	Gly	Ser	Glu	Asp	Lys
	210					215					220				
Val	Val	Glu	Val	Ala	Glu	Glu	Glu	Glu	Va1	Ala	Glu	Val	Glu	Glu	Glu
225					230					235					240
•															
Glu	Ala	Asp	Asp	Asp	Glu	QzA	Asp	Glu	Asp	Gly	Asp	Glu	Val	Glu	G1u
•				245					250					255	
-															
Glu	Ala	Glu	Glu	Pro	Tyr	Glu	Glu	Ala	Thr	Glu	Arg	Thr	Thr	ser	Ile
~			260					265					270		
~															
Ala	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Glu	Ser	Val	Glu	Glu	Val	Val	Arg
•		275					280					285			
•															
, 17- "	D	m\	шъ	א ז -	א ז <i>–</i>	00-	ም ኤ~	D۲۰	Der	<u>1</u> 1-	V=1	300	Lare	ייר ינו	T ₁ 211
val	Pro	Thr	Inr	Ala	Alā	ser	Inr	PIO	ASP	мта	val	Asp	Lys	TAT	neu

290 295 300 Glu Thr Pro Gly Asp Glu Ash Glu His Ala His Phe Gln Lys Ala Lys 310 315 320 305 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 325 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 340 345 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 360 365 355 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 Arg Val Glu Ala Met Leu Ash Asp Arg Arg Arg Leu Ala Leu Glu Ash 390 395 385 Tyr Ile Thr Ala Leu Gln Ala Val Pro Prc Arg Pro Arg His Val Phe 410 405 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 420 425 430 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 445

460

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu

455

450

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 465 470 Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Prc Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys

Gly Ala lle fle Gly Leu Met Val Gly Gly Val Val fle Ala Thr Val 625 630 635 640

lle Vai Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile $645 \hspace{1.5cm} 650 \hspace{1.5cm} 655$

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

Wis Let: Ser Lys Met Gln Gln Asr. Gly Tyr Glu Asn Pro Thr Tyr Lys 675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys

690 695

-210> 17

<211> 2094

<212> DNA

<213> Homo sapiens

<400> 17

atgetgeceg gettggeact getenegtig geografiga eggeteggig gettggaggia 60 geografigat geaatgetig geaatgetig gaacccaa tegeoatgi eetggaactig eetgaactig aagtggatt eagatecate agggaccaaa 180 acctgoattig atarcaagga aggcatectig eagtattgee aagaagteta eeetgaactig geografigate atgegatgaa eeateccaa eeggetgaaca atgegatgaa eeateccaa tettggatte eetaacgetig etragtiggi 300 ggccgeaage agtjeaagaa eeateccaa tettgtgatte eetaacgetig etragtiggi 360 gagtittgaa gegaaactaa teetgatee gacaagtgaa aatteetaa eeaggaaggi 420 atggatgtt gegaaactaa tetteactig eacacgteg eeaaaggaac atgeagtgaa 480 aagaagtacaa acttgcatiga etaacggaatg tegetgeeet geggaattga eaagtteega 540

```
ggggtagagt ttgtgtgttg cocactgget gaagaaagtg acaatgtgga ttetgetgat 600
doggaggagg atgaotogga tgtotggtgg ggoggagdag acadagadta tgdagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagcegatg atgaeyagga egatgaggat ggtgatgagg tayaggaaga ggetgaggaa 780
roctacgaag aagedabaga gagaabcaec ageattgeea eeaccaecae daecaecada 840
gagtetgtgg aagaggtggt tegagtteet acaacagcag ecagtacece tgatgeegtt 900
qacaagtato togagacaco tggggatgag aatgaacatg cocatttoca qaaagccaaa 960
gagaggettg aggecaagca eegagagaga atgteeeagg teatgagaga atgggaagag 1020
gragaacgto aagcaaagaa ottgootaaa gotgataaga aggcagttat coagcattto 1080
caggagaaag tggaatottt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140
acacacatgg ccagagtgga agccatgete aatgacegee geegeetgge cetgjagaae 1200
lacatbabby ototgoaggo tyttoctoot oggoblogic adytyticaa tatydiaaag 1260
aagtatgtoo gogcagaada gaaggadaga dagdadadoo taaagdattt ogagdatgtg 1320
egeatggtgg atoccaagaa ageegeteag ateeggtese aggttatgae acaceteegt 1380
gtgatttatg agegeatgaa teagtetete teeetgetet acaaegtgee tgeagtggee 1440
qaggagatto aggatgaagt tgatgagotg ottoagaaag agcaaaacta ttoagatgac 1500
gtottygood acatgatlag tgaaccaagg atcagttacg gaaacgatgo totcatgoca 1560
totttgacog aaacgaaaac cacegtggag ctcottcccg tgaatggaga gttcageetg 1620
gacgatetee ageogtygea tictitiggg getgaetetg tgecagecaa cacagaaaac 1680
gaagttgago otgitgatgo oogoootgot googasegag gastgassas tegassaggi 1740
rotgggttga caaatateaa gaeggaggag atetetgaag tgaatetgga tgeagaatte 1300
ggacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860
ugttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920
ategicatea eetiggigal geigaagaag aaacagtaca catecaitea teatggigig 1980
utggaggttg acgeegetgt caccecagag gagegeeace tgtecaagat geageagaac 2040
                                                                  2094
gotacgaaa atocaacota caagttottt gagcagatgo agaacaagaa gtag
```

<210> 18

<211> 697

<212> PRT

<213> Homo sapiens

<400> 18 Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 1 10 Ala Leu Glu Val Pro Thr Asp Gly Ash Ala Gly Leu Leu Ala Glu Pro 25 3.0 Gln Ile Ala Met Phe Cys Gly Arg Lei Asn Met His Met Asn Val Gln 35 4.0 Ash Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 53 Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 70 75 Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95 Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Prc His Phe Val 105 100 Ile Pro Tyr Arg Cys Leu Val Gly Glu Pho Val Ser Asp Ala Leu Leu 120 115 125 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 150 155 145

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 173 165 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 185 190 180 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 215 220 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 235 225 230 Clu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 250 255 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 270 265 26C Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 275 280 285 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 290 295 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 315 305 310 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 325 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 34C Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 Gin Glu Ala Ala Asn Glu Arg Gin Gin Leu Val Glu Thr His Met Ala 370 375 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 385 39C 395 Tyr Ilo Thr Ala Leu Cln Ala Val Pro Pro Arg Pro Arg His Val Phe 410 405 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 425 430 420 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 445 Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 455 460 Arg Met Ash Glr Ser Leu Ser Leu Leu Tyr Ash Val Pro Ala Val Ala 475 **4**65 **4**70 480 Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn

				485					4 90					495	
lyr	Ser	Asp	Asp	Val	Leu	Ala	Asn	Met	Ile	Ser	Glu	Pro	Arg	Ile	S∈r
			500					505					510		
Туг	Gly	Asn	Asp	Ala	Leu	Met	Pro	Ser	Leu	Thr	Glu	Thr	Lys	Thr	Thr
.*		515					520					525			
Val	Glu	Leu	Leu	Pro	Val	Asn	Glv	Glu	Phe	Ser	Leu	Asp	Asp	Leu	Gln
	530					535					540				
•	220														
-	7		~~~	Phe	6:11	ת דת	n an	Sor	Val	Pro	מ־מ	Acn	יי איי	clu.	Acr
	Trp	HIS	261	File		Ala	ASP	3e.	Va1	555	n_a	Vali	1111	Jiu	560
545					550					202					300
Glu	Val	Glu	Pro	Val	Asp	Ala	Arg	Pro	Ala	Ala	Asp	Arg	Gly		Thr
				565					570					575	
Thr	Arg	Pro	Gly	Ser	Gly	Leu	Thr	Asn	Ile	Lys	Thr	Glu	Glu	Ile	Ser
			580					585					59C		
Şlu	Val	Asn	Leu	Asp	Ala	Glu	Phe	Arg	His	Asp	ser	Gly	Туг	Glu	Val
		595					600					605			
His	His	Gln	Lys	Leu	Val	Phe	Phe	Ala	Glu	Asp	Val	зіу	ser	Asn	Lys
•	610					615					620				
•															
31v	Ala	Ile	Ile	Gly	Leu	Met	Val	Gly	Gly	Val	Val	Ile	Ala	Thr	Val
625			_ = -	1	630			,	,	635					640
, 43															

645 650 655

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg

660 665

670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys

675

680

585

The Phe Glu Gln Met Gln Asn Lys Lys

690

695

<210> 19

<211> 2094

<212> DNA

<213> Homo sapiens

<400> 19

gagtetgtgg aagaggtggt tegagtteet acaacageag ceagtaceee tgatgeegtt 900 gacaagtato rogagacaco rggggargag aatgaacarg cocattroca gaaagccaaa 960 gagaggetty aggeeaagea eegagagaga atgteeeagg teatgagaga atgggaagag 1010 ocagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080 caggagaaag tggaatottt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140 adádanatgy deagagtgga agadatgath aatyannyon geogeotggo detggagaad 1200 tacateacog ototgoaggo tyttootoot oggootoyto acytyttoaa tatyotaaag 1260aagtatgtoo gogcagaaca gaaggacaga cagcacacco taaagcattt cgagcatgtg 1320 ogcatggtgg atoccaagaa agoogotoag atocggtocc aggttatgac acacetocgt 1380 jtgatttatg agegeatgaa teagtetete teeetgetet acaaegtgee tgeagtggee 1440 gaggagatic aggatgaagt tgatgagetg etteagaaag ageaaaacta tteagatgae 1500 utottggoda adatgattag tgaaddaagg atdagttadg gaaacgatgo totcatgoda 1560 tetttgaceg aaacgaaaac cacegtggag etectteeeg tgaatggaga gtteageetg 1620 gacgatotoc agoogtggea itottttggg golgaeletg tgccagocaa cacagaaaac 1680 gaagttgage etgttgatge eegeeetget geegaeegag gaetgaeeae tegaeeaggt 1740 totgggttga caaatatcaa gacggaggag atototgaag tgaagatgga tgcagaatto 1800 egacatgact caggatatga agticateat caaaaattgg tgitetiitge agaagatgig 1860 ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920 atottoatea cottggtgat gotgaagaag aaacagtaca catcoattoa toatggtgtg 1980 ctggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040 ggotacgaaa atocaaceta caagttottt gagcagatgo agaacaagaa gtag

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg

<210> 20

<211> 697

<212> PRT

<213> Homo sapiens

<400> 20

^{1 5 10 15 ...}

Ala	Leu	Glu	Val	Pro	Thr	Asp	Gly	Asn	Ala	Gly	Leu	Leu	Ala	Glu	Pro
,			20					25					3.0		
Gln	Ile	Ala	Met	Phe	Cys	Gly	Arg	Leu	Asn	Met	His	Met	Asn	Val	Gln
		35					40					45			
Asn	GΙΆ	Lys	Trp	Asp	Ser	Asp	Pro	Ser	GIY	Tnr	Lys	Thr	Суѕ	Ile	Asp
	50					55					60				
Thr	Гуз	Glu	Gly	Tle	Leu	Gln	туг	Суя	Glr.	Glu	Val	Тут	Pro	Glu	Leu
65					70					75					9.0
Gln	Ile	Thr	Asn	Va1	Val	Glu	Ala	Asn	Gln	Pro	Val	Thr	Ile	Gln	Asn
				85					90					95	
Trp	Cys	Lys	Arg	Gly	Arg	Lys	Gln	Сув	Lys	Thr	His	Pro	His	Phe	Val
			100					105					110		
lle	Pro	Tyr	Arg	СЛЗ	Leu	Val	Gly	Glu	Phe	Val	Ser	Asp	Ala	Leu	Leu
•		115					120					125			
Val	Pro	Asp	Lys	Cys	Lys	Phe	Leu	His	Gln	Glu	Arg	Met	Asp	Val	Cys
	130					135					140				
Jlu	Thr	His	Leu	His	Trp	His	Thr	Val	Ala	Lys	Glu	Thr	Суз	ser	Glu
145					150					155					160
Ъуs	Ser	Thr	Asn	Leu	His	Asp	Tyr	Gly	Met	Leu	Leu	Pro	Cys	Gly	Ile
				165					170					175	
Asp	Lys	Phe	Arg	Gly	Val	Glu	Phe	Val	Cys	Cys	Pro	Leu	Ala	Glu	Glu

			180					185					190		
,															
ger	Asp	Asn	Val.	Asp	Ser	Ala	Asp	Ala	Glu	Glu	qzA	Asp	Ser	Asp	Val
~		195					200					205			
Trp	Trp	Gly	Gly	Ala	Asp	Thr	Asp	Tyr	Ala	Asp	Gly	Ser	Glu	Asp	Lys
	210					215					220				
Val	Val	Glu	Val	Ala	Glu	Glu	Glu	Glu	Val	Ala	Glu	Val	Glu	Glu	Glu
125					230					235					240
- Glu	Ala	Asp	Asp	Asp	Glu	asp	dsA	Glu	qzA	Gly	Asp	Glu	Vai	Glu	Glu
-				245		•	•		250		·			255	
-	21-	(11)	(2) 12	Oro	Thur.	Olu	Clu	Λla	Thr	(2111	Ara	ጥከታ	Thr	Ser	Ile
i+1u	Ala	سلوا		PIO	lyr	GIU	GIU	265	1111	GIU	arg	11.11	270	Der	110
-			260					265					270		
-															
Ala "	Thr		Thr	Thr	Thr	Thr		Glu	Ser	Val	Glu		Val	Vai	Arg
-		275					280					285			
~															
yal *	Pro	Thr	Thr	Ala	Ala	Ser	Thr	Pro	Asp	Ala	Val	Asp	Lys	Tyr	Leu
	290					295					3 C D				
J															
Glu	Thr	Pro	Gly	Asp	Glu	Asn	Glu	His	Ala	His	Phe	Gln	Lys	Ala	Lys
305					310					315					320
Ų.															
Glu	Arg	Leu	Glu	Ala	Lys	His	Arg	Glu	Arg	Met	Ser	Gln	Val	Met	Arg
•				325					330					335	
~															
Glu	Trp	Glu	Glu	Ala	Gìh	Arg	Gln	Ala	Lys	Asn	Leu	Pro	Lys	Ala	Asp
•			340					345					350		

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gin Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Vai Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Let Lys His Phe Glu His Val Arg Met Val Asp Pic Lys Lys Ala 435 440 445 Ala Gin Ile Arg Ser Gin Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 65 Glu Glu He Gln Asp Glu Val Asp Glu Leu Gln Lys Glu Gln Asn 9C Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 505 510

Tyr Gly Ash Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Ash Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Prp His Ser Phe Gly Ala Asp Ser Val Pro Ala Ash Thr Glu Ash Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Oly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 630 635 lle Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile His His G.y Val Val Giu Val Asp Ala Ala Val Thr Pro Giu Glu Arg

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys

67C

675 680 685

Phe Phe Glu Gln Met Gln Ash Lys Lys 690 695

<210> 21

<211> 1341

-212 DNA

4213→ Homo sapiens

<400 > 21

atggatagea tgactggtgg adagdaaatg ggtogoggat cdaccdagna oggoatdogg 60 stgesectge geageggeet ggggggegee ceeetgggge tgeeggetgee eegggagaee 120 gacgaagage eegaggagee eggeeggagg ggeagetttg tggagatggt ggacaacetg 180 agggycaagt eggggeaggg etactaegtg gagatgaeeg tgggeageee eeegeagaeg 240 rtcaacatec tggtggatac aggeageagt aactttgeag tgggtgetge eccecacece 300 thoolgoato gotactacca gaggeagotg todagoacat acogggacot coggaagggt 360 gtgtatgtgc cetacaccca gggcaagtgg gaaggggagc tgggcaccga cetggtaagc 420 atcorcoatg goodcaacgt castgtgogt godaacattg otgocatoas tgaatcagas 480 aagttottoa toaacggoto caactgggaa ggoatcotgg ggotggoota tgotgagatt 540 queaggeotg acgaetecet ggageottte titgaetete tggtaaagea gacceaegit 600 cocaacotot totoootgea cottigiggi geiggeitee cocteaacea giolgaagig 660 ctggcctctg tcggagggag catgateatt ggaggtateg accaeteget gtacacagge 720 agtolotggt atacacccat coggegggag tggtattatg aggteateat tgtgegggtg 780 gagateaaty gacaggatet gaaaatggae tgcaaggagt acaactatga caagagcatt 840 ytggacagtg gcaccaccaa cottegtttg cocaagaaag tgtttgaagc tgcagtcaaa 900 tocatcaagg cagosteete caeggagaag tteeetgatg gittetgget aggagageag 96%stygtgtgct ggcaagcagg caccacccct tggaacattt teccagtcat ctcactctac 1020 otäalgggtg aggittaccaa coayteette egcalcacca teetteegca gcaataccig 1080 eggecagtgg aagatgtgge cacgteecaa gaegaetgtt acaagtttge cateteacag 1140

toatecacgy geaetyttat gggagetytt ateatggagg gettetaegt tytettyat 1200 egggeeegaa aacgaattyg etttgetyte agegettyee atgtgeaega tygaatteagy 1260 aeggeagegg tygaaggeee titttgteaec titggaeatyg aagaetytyg etacaacatt 1320 eeacayacay atgageeaty a 1341

<210> 23

<21% 446

<212> PRT

-213→ Homo sapiens

<400> 22

Met Ala Ser Met Thr Gly Gly Gln Gln McL Gly Arg Gly Ser Thr Gln

10 15

His Gly lie Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu

20 25

Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly

35 40 49

Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser

50 55 60

Gly 3ln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr

65 70 75 80

Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala

85 90 9

Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser

100 105 110

Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly 115 120 Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly 140 135 Fro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp 145 150 155 iys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala 170 165 Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp 185 180 Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu 195 200 205 Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val 210 215 Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly 235 240 _25 230 Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile 250 245 lle Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys 265 270 260

Clu Tyr Asn Tyr Asp Lys Sor Ilo Val Asp Ser Gly Thr Thr Asn Leu 285 280 Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala 290 300 295 Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Glm 315 320 310 Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val 330 335 325 He Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile 345 350 340 Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr 355 360 3 6 5 Ber Gln Asp Asp Dys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly **37**0 375 380 Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp 385 390 395 400 Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His 410 405 Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp 420 425 430

Met Glu Asp Cys Glý Tyr Asn Ile Pro Gln Thr Asp Glu Ser

435 440 445

-

<210≻ 23

<211> 1380

<212 - DNA

<213> Homo sapiens

<400 · 23

atggitagea tgaetggtgg acageaaatg ggtegeggat egatgaetat etetgaetet 60 cagestgaae aggaeggate caeecageae ggeateegge tgeecetgeg cageggeetg 120 ggggggccc coetgggget geggetgeed egggagadeg acgaagaged egaggagede 180 ggccggaggg gcagctttgt ggagatggtg gacaacctga ggggcaagtc ggggcagggc 240 tactacgtgg agatgaccgt gggcagcccc cegeagaege teaacateet ggtggataca 300 ggcageagta actitgcagt gggtgetgcc seccaceest teetgcateg stactassag 360 aggragetyt ccagcacata regggarete eggaagggty tytatytyse etacacceay 420 gjcaagtggg aaggggaget gggcaeegae etggtaagea teeeccatgg ceecaacgte 480 actgtgegtg edaacattge tgecateact gaateagada agttetteat caaeggetee 540 aactyggaag gcatectggg gctggectat getgagattg ceaggeetga egacteestg 600 gageotitet itgaeletet ggiaaageag aeeeaegtte eeaaeetett eteeetgeae 660 otttgtggtg etggetteen deteaaceag tetgaagtge tggeetetgt eygagggage 720 atgateattg gaggtatega coactegetg tacacaggea gtetetggta tacacceate 780 eggegggagt ggtattatga ggteateatt gigegggtgg agateaatgg acaggatetg 840 aaaatggact gcaaggagta caactatgac aagagcattg tggacagtgg caccaccaac 900 cttogtitge ccaagaaagt gtttyaaget geagteaaat ccateaagge ageeteetee 960 aeggagaagt teestgatgg titetggeta ggagageage tggtgtgetg geaageagge 1020 accaeceett ggaacatttt eccagteate teactetace taatgggtga ggttaccaae 1080 caqteettee geateaceat cetteegeaq caatacetqe qqeeaqtqqa agatqtggee 1140 acgteccaag acgaetgtta caagtttgee ateteacagt eatecaeggg caetgttatg 1200 ggagetytta teatggaggg ettetaegtt gtetttgate gggeeegaaa acgaattggs 1260 tttgetgtea gegetigeea tgtgeaegat gagtteagga eggeageggt ggaaggeeet 1320

```
tttgtcacct tggacatgga agactgtggc tacaacattc cacagacaga tgagtcatga 1380
<310> 24
<211> 459
<212> PRT
<213> Homo sapiens
.:CC> 24
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr
      5
                     10
He ser Asp Ser Pro Arg Glu Gln Asp Gly Ser Thr Gln His Gly He
                          25
Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg
35
                      40
Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Pro Gly Arg Arg Gly
                          60
    50 55
Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly
                                75
                70
65
Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile
            85
                     90
Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His
                         105
         100
Pro Phe Lei His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg
                      120
      115
                                     125
```

Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu 130 ... 135 Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asm Val **15**5 150 Thr Val Arg Ala Ash Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe 165 170 175 lle Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu 185 180 lle Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val 195 200 Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala 210 215 220 Gly Phe Pro Leu Ash Glr. Ser Glu Val Leu Ala Ser Val Gly Gly Ser 125 230 235 Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp 245 250 255 Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg 265 260 Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn 280 275

Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro 295 290 Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser 3.05 310 315 Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys 330 335 Trp Gln Ala Gly Thr Thr Pro Trp Ash Ile Phe Pro Val Ile Ser Leu 34C 345 Tyr Leu Met Gly Glu Val Thr Ash Gln Ser Phe Arg Ile Thr Ile Leu 355 360 Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp 370 375 Asp Cys Tyr Lyc Phe Ala Ile Ser Gin Ser Ser Thr Gly Thr Val Met 395 400 385 390 Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg 405 410 415 Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe 420 430 425 Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp 440 445 435 Cys Gly Tyr Asn Ilê Pro Gln Thr Asp Glu Ser

PCT/US99/20881 WO 00/17369

450 455

.210> 25

-211> 1302

<212> DNA

+313> Homo sapiens

< 100> 25

atgactcage atggtatteg tetgecastg egtageggte tgggtggtgd tecantgggt 60 etgegtetge ecegggagae egaegaagag eeegaggage eeggeeggag gggeagettt 120 qiggaqatqq tqqacaacci gaqqqqcaaq tcqqqqcaqq qctactacqi qqaqatqacc 180 atgggbages eccegbagae gotbaabatb otggtggata baggbagbag taabittgba 240 gtgggtgoty ecoccoacce etteotycat egetactace agaggeaget gtecageaca 300 tacogggaco tooggaaggg tgtgtatgtg cootacaeco agggcaagtg ggaaggggag 360 stgggsaseg acetggtaag catececcat ggssssaacg teastgtgeg tgssaacatt 420 yetgecatea etgaateaga caagiteite ateaaeggei eeaaeiggga aggeateetg 480 gjgetggeet atgetgagat tgeeaggeet gaegaeteee tggageettt etttgaetet 540 stggtaaage agacceaegt toccaacete ttetecetge acettigtgg tgetggette 600 coorteaacc actorgaagt gorggootet groggaggga goargareat tggaggrate 560 gaccactege tgtacacagg eagtetetgg tatacaccea teeggeggga gtggtattat 720 maggicatea tigigegggi ggagateaat ggacaggate igaaaatgga eigeaaggag 780 tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa 840 ştgtttgaag etgeagteaa atecateaag geageeteet eeaeggagaa gtteeetgat 900 ggtttotggo taggagagea gotggtgtgo tggcaagsag geascaeeee ttggaacatt 950 ttopoagtea totoacteta ectaatgggt gaggttapea accagteett eegeateace 1020 atcottcogo agcaatacot goggocagtg gaagatgtgg ccacgtcoca agacgactgt 1)80 tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagetgt tatcatggag 1140agottotacg tigtotitga togggoodga aaacgaatig gottigotgi cagogotigo 1200 tatgtgcacq atgagttcag gacggcageg gtggaaggee ettttgtcac ettggasatg 1260 1302 gaagactgtg gctacaacat tecacagaca gatgagtcat ga

```
<210> 26
+211> 433
-212> PRT
•213> Homo sapiens
·400> 26
Met Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly
1
                  10
                               15
Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu
        20 25
Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg
           4 C
                           45
     35
Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro
                 55
                               60
Fro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala
                            75
65
              70
Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln
           85 90 95
Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr
     100
              105
Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile
115 120 125
```

64

Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thi 130 135 Glu Ser Asp Lys Phe Phe Ile Ash Gly Ser Ash Trp Glu Gly Ile Leu 150 155 145 Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro 17C 165 Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser 185 180 Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu 195 200 Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu 210 215 Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ite Arg Arg Glu Trp Tyr Tyr 230 235 240 225 Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met 245 250 255 Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser lle Val Asp Ser Gly Thr 260 265 270 Thr Asn Leo Arg Leo Pro Tys Lys Val Phe Glu Ala Ala Val Lys Ser 275 280 285 fle Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu

290 295 300 Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile 310 315 320 305 Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser 325 330 335 Phe Arg Ile Thr Ile Leu Pro Gla Gla Tyr Leu Arg Pro Val Glu Asp 345 350 340 Mal Ala Thr Ser Glm Asp Asp Cys Tyr Lys Phe Ala lie Ser Glm Ser 360 365 Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val 370 375 380 Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys 385 390 395 His Val His Asp Clu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val 410 405 Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu 425 420 Ser 210> 27

66

```
<211> 1278
<312> DNA
-213> Homo sapiens
<4C0> 27
atggetagea tgaetggtgg acageaaatg ggtegeggat egatgaetat etetgaetet 60
cogetggaet etggtatega aacegaegga teettt<br/>gtgg agatggtgga caacetgagg 120\,
gycaagtogg ggoagggota ctaogtggag atgacogtgg gcagcoccoo gcagacgete 180
adcatcotgg tggatacagg cageagtaac tittgeagtgg gigetgeece ceaecectic 240
rtgcateget actaecagag geagetgtee ageacatace gggaceteeg gaagggtgtg 300
tatgtgeset acacceaggy caagtgggaa ggggagetgy geaccgaeet ggtaagcate 360
seccatggee ecaaegicae tgtgegigee aacatigetg ecaicaetga ateagacaag 410
thetteatea aeggetheaa etgggaagge ateetgggge tggeetatge tgagattgee 480
aggeotyacg actocotyga gootttettt gastatotyg taaagcagas caacyttees 540
aacctettet coetgeacet tigtggtget ggetteecee teaaccagte tgaagtgetg 600
geotetgteg gagggageat gateattgga ggtategaec actegetgta cacaggcagt 660
stotggtata caccoatoog gegggagtgg tattatgagg teatcattgt gegggtggag 720
atcaatggac aggatetgaa aatggaetge aaggagtaca actatgacaa gagcattgtg 780
qacagtggca coaccaacct togtttgcoc aagaaagtgt ttgaagctgc agtcaaatcc 840
atcaaggcag cotoctocae ggagaagtte cotgatggtt tetggetagg agagcagetg 900
gigtgotggo aagcaggoad caccootigg aacattitied cagicalete actolaceta 950
atgggtgagg ttaccaacca gtccttccgc atcaccatcc ttccgcagca atacctgcgg 1020
ccagtggaag atgtggedac gtoccaagac gactgttaca agtttgccat otcacagtca 1080
tocaegggea etgttatggg agetgttate atggaggget tetaegttgt etttgategg 1140
geoegaaaac gaattggett tgetgteage gettgesatg tgeasgatga gttsaggaeg 1200
goageggtgg aaggecettt tgteacettg gaeatggaag aetgtggeta caasatteca 1260
dagacagatg agteatga
<210> 28
<211> 425
```

<212> PRT

<213> Homo sapiens **~4**00> 28 Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr lle Ser Asp Ser Pro Leu Asp Ser Gly Ile Glu Thr Asp Gly Ser Phe Val Glu Met Val Asp Ash Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr 35 40 Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val 50 55 Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe 75 **.**65 70 Leu His Arg Tyr Tyr Glr. Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu 90 Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu 100 105 110 Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val 120 125 Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn 130 135 140

Gly Ser Ash Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala

150 155 160 145 Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln 165 170 175 Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe 185 180 Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile 200 205 195 He Gly Gly He Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr 215 220 Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu 235 230 Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp 250 255 245 Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys 265 260 Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Sor Ser Thr Glu 280 285 275 Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln 290 295 300 Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu 305 310 315

Met Gly Glu Val Thr Asn Glm Ser Phe Arg Ile Thr Ile Leu Pro Glm 330 Gin Tyr Leu Arg Prc Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys 345 340 Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala 360 355 Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg 3/0 375 380 Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr 395 385 390 Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly 410 415 405 Tyr Ash Ile Pro Gln Thr Asp Glu Ser 420 425 <210> 29 <211> 1362 <212> DNA -213> Homo sapiens <400> 29

atggeceaag eeetgeeetg geteetgetg tygatgggeg egggagtget geetgeeeae 60 tggaceeage aeggeateeg getgeeeetg egeageggee tgggggggge eeeeetgggg 120

```
otgogyetge cesgggagae egaegaagag eeegaggage eeggoeggag gggeagettt 180
gtggajatgg tggacaacet gaggggcaag tegyggeagg getaetaegt ggagatgace 240
gtgggdagec eccegeagac getcaacate etggtggata caggeageag taactttgca 300
glgggtgctg coeeccaecc ollectgcal egotactaec agaggcaget qtccageaca 360
tacogggaec tooggaaggg tytgtatgtg tootacacco agygcaagtg ggaaggggag 420
ctgggeaeeg acctggtaag cateeeccat ggeeccaaeg teactgtgeg tgeeaacatt 480
yotgodatda otgaatdaga daagttotto atdaacggot ccaactggga agccatesig 540
eggetggest atgetgagat tgscaggest gaegaetese tggagesttt etttgastet 600
:tggtaaage agabecaegt teccaacete thetecetge acctttgtgg tgetggette 600
incofraano agtofgaagt gotggootot gteggaggga geatgateat tggaggtate 720
vaccaetege tytasaeagy caytototyy tatacaecea teeggegyga ytyytättät 780
daggtoatoa tigitgogggi ggagaloaat ggadaggalo igaaaatgga oigdaaggag 840
tacaactaty acaagageat tgtggacagt ggcaccacca accttegttt gcccaagaaa 900
jtytttgaag etgeagteaa atesateaag gsagesteet ssasygagaa gttseetgat 960
ygitteigge taggagagea getggtgige tyycaaycag geaccaccce itggaacatt 1020
tteccagtea teteasteta estaatgggt gaggttasea assagteett eegsatsass 1080
atecttoege agcaataeet geggeeagig gaagaigigg eeaegiceea agaegaeigi 1140
tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag 1200
ygottotacg tigtotitga togggoodga aaacgaatig geitigotgi dagogotigs 1260
catgigeacg algagiteag gaeggeageg giggaaggee ettitigteac citiggaeatg 1320
                                                                  1362
gaagactgtg gctacaacat tocacagaca gatgagtcat ga
```

<210> 30

· 211> 453

·212> PF.T

<213> Homo sapiens

~400> 30

Met Ala Gin Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val

1

5

10

1

Leu Pro Ala His Gly Thr Gln His Gly The Arg Leu Pro Leu Arg Ser 25 30 20 Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 3.5 40 Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 55 Asp Ash Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 70 65 Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95 Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 105 Tyr Glm Arg Glm Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 125 120 Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 150 135 140 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 150 155 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Ash Gly Ser Ash Trp 165 170 175 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp

180 185 190 Ser Leu Clu Pro Phe Phe Asp Ser Lou Val Lys Cln Thr His Val Pro 200 205 Ash Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Ash Gln 215 220 Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 235 230 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Ard Arg 250 255 245 Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln 265 260 Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 275 280 285 Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 300 295 Ala Val Lys Scr Ile Lys Ala Ala Ser Ser Thr Glu Lyc Phe Pro Asp 315 °C5 310 My Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val

325 330 335

Thr Ash Gin Ser Phe Arg Ile Thr Ile Leu Pro Gin Gir Tyr Leu Arg 355 360 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 370 375 380 The Ser Glm Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 390 395 385 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 410 405 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 425 420 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 440 445 435 Gln Thr Asp Glu Ser 450 <210> 31 <211> 1380 <212> DNA <213> Homo sapiers ·400> 31 atggeceaag ecctgecetg getectgetg tggatgggeg egggagtget geetgeecae 60

ggcacccage acggeateeg getgeecety egeageggee tgggggggege ceceetgggg 120

```
otgoggotus ecogogaque equegaugus congaggags coggeoggus gageagottt 180
gtggagatgg tggacaacct gaggggcaag teggggcagg getactaegt ggagatgacc 240
gtgggeages eesegeagae geteaacate etggtggata caggeageag taaetttgea 300
gtgggtgotg occoccacoo ottootgoat ogotactaco agaggcagot gtocagcaca 360
tabogggabb teoggaaggg tgtgtatgtg cootabacco agggcaagtg ggaaggggag 420
ctgggcacog acctggtaag catoocccat ggccccaacg tcactgtgcg tgccaacatt 480
gotgodatea otgaatoaga caagttotto atcaacggot ccaactggga aggcatoctg 540
gggetggest atgetgagat tgeeaggeet gaegaetees tggageettt etttgaetet 600
etggtaaage agaseeaegt teecaaecte treteeetge acetttgtgg tgetggette 660
coccidance agrengaagt getggeetet greggaggga geatgateat tggaggtate 720
caccactere tgtacacagg cagtetetgg tatacaceca teeggeggga gtggtattat 780
gaggteatea tigigegggi ggagaicaai ggacaggaic igaaaaigga cigcaaggag 840
tacaactaig acaagageat igiggacagi ggcaccacca acciicgitt gcccaagaaa 900
gtgtttgaag etgeagteaa atceateang geageeteet eeaeggagaa gtteeetgat 960
egittetgge taggagagea getggtgte tggcaageag geaccacces tiggaacatt 1020
rteecagtea teteaeteta eetaatgggt gaggttaeca accagteett cegeateace 1080
atoctteege ageaatacet geggeeagtg gaagatgtgg ccaegteeca agaegaetgt 1140
tacaagtitg coatcicaca gicatocacg ggcactgita igggagetgi tatcaiggag 1200
igettetacg ttgtetttga tegggeeega aaaegaattg gettlgetgt eagegettge 1260
catgtgcacg atgagiteag gaeggeageg gtggaaggee etittgteae cilggaealg 1320
yaagactyty gotacaacat todacagada gatgaytdad agcaydagda gcaydaytya 1380
-110> 32
.211> 459
::212> PRT
<213> Homo sapiens
```

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val

·400> 32

Lou Pro Ala His Cly Thr Cln His Cly Ilc Arg Lou Pro Lou Arg Ser 25 Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 40 3.5 Glu Glu Pro Gli Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Ash Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 75 80 7 C Val Gly Ser Pro Pro Glm Thr Leu Ash Ile Leu Val Asp Thr Gly Ser 9 0 8.5 Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 105 100 110 Tyr 3ln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 120 125 115 Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 2.55 150 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 170 165 Glu Gly He Leu Gly Leu Ala Tyr Ala Glu He Ala Arg Pro Asp Asp

180 185 190 Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro 195 200 Ash Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Ash Gln 215 220 Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 235 124 230 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Ard Arg 245 250 255 Giu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln 265 270 26C Asp Leu Lys Met Asp Cys Lys Glu Tyr Asp Tyr Asp Lys Ser Ile Val 275 280 285 Asp Ser Gly Thr Thr Ash Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 290 295 Ala Val Lyo Ser Ile Lyo Ala Ala Ser Ser Thr Clu Lyo Phe Pro Asp 310 315 305 Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 325 330 335 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val

345

340

Thr Ash Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg 355 360 365 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 375 380 Ile Ser Gin Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 395 395 400 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 410 405 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 425 430 420 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tvr Asn Ile Pro 440 445 435 Gln Thr Asp Glu Ser His His His His His His 450 455 <210> 33 -211> 25 ·212> PRT <213> Homo sapiens <400> 33 Ser Glu Gln Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu 10

```
Ser Ser Leu Val Arg His Arg Trp Lys
20
<210> 34
<211> 19
<212> PRT
<213> Homo sapiens
<400> 34
Ser Glu Gln Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser
                    19
                                     15
1 5
Leu Leu Lys
<210> 35
<211> 29
<212> DNA
<213> Homo sapiens
<400> 35
                                                        29
gtggatccac ccagcacgge atccggctg
<210> 36
<211> 36
:212> DNA
<213> Homo sapiens
```

79

<400> 36	
gaaagstiis aigacisais igistygga aigiig	36
·210> 37	
<2115 39	
<212> DNA	
·213> Homo sapiens	
×460× 37	
gatogatgae tatototgae totoogegig aacaggaeg	39
<210× 38	
~211> 33	
<pre><212> DNA</pre>	
-213> Homo sapiens	
-400> 38	
patoogtoot githacgogg agagtoagag atagtoato	3.9
<21€> 39	
<211> 77	
- 212> DNA	
<pre>%213> Artificial Sequence</pre>	
-320>	
-223> Description of Artificial Sequence: Hu-Asp2	
<400> 39	
aggeateegg etgecoctge gtageggtet gggtggtget ceaetgggte tgegtetgee	60
deaddaaac daccaad	77

WO 00/17369

PCT/US99/20881

```
<210> 40
<211> 77
.112> DNA
<213> Artificial Sequence
· 220>
<223> Description of Artificial Sequence: Hu-Asp2
<400> 40
ettegteggt etecegggge agaegeagae ceagtggage accanceaga regetaegea 60
                                                                77
ggggcageeg gatgeeg
._10> 41
<211> 51
<012> DNA
<213> Artificial Sequence
<220>
<J23> Description of Artificial Sequence: Caspase 8
   Cleavage Site
<400> 41
gategatgae batetetgae teteegetgy aetetggtat egaaacegae g 51
+310> 42
-211: 51
+212> DNA
<313> Artificial Sequence
-.220>
<223> Description of Artificial Sequence: Caspase 8
```

Cleavage Site	
.400> 42	
uatocqtcqq tttcqatacc agagtccagc ggagaqtcag agataqtcat c	51
.210> 43	
.211> 32	
-212> DNA	
-113> Homo sapiens	
_	
·400> 43	
aaggatoott tgtggagatg gtggacaacc tg	3.2
<210> 44	
<211> 36	
212> DNA	
<213> Homo sapiens	
<400> 44	
qaaagctttc atgactcatc tgtctgtgga atgttg	3 6
k210> 45	
<211> 24	
-212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: 6-His tag	
<400> 45	
gategoatea teaecateae eatg	24

```
1210> 46
<211> 24
<212> DNA
<213 > Artificial Sequence
-220:-
<223> Description of Artificial Sequence: 6-His tag
<4005 46
                                                                  24
gatécatggt gatggtgatg atgc
-210> 47
<211/ 354
<212 - DNA
<213 Artificial Sequence
<220>
<223 > Description of Artificial Sequence: Introduce KK
      motif
<400> 47
hottaanvtt nnnnngaetg aecaetegae eaggttebnr maemhadata ragrahntsn 60
ayrsksOsna yrtawsddog tmsnwrmans ymbarahrOg actgaccact cgaccaggtt 120
esnayrshay rhodtgactg accaetegae eaggtteact snayretesn asnanrmadt 180
csnayrtona morstwrd0t dthharmaca hngactgacc actegaccag gttcttdgda 240
n0bd0cda00 a0ca0rtntr ygtabwrddc mntsmmaryn rmatndcmnt smmarynrma 300
thsks0yeme abetrhygrn cer0rsmers twrddemntm swrddewrdd emnt 354
<210> 48
<211> 462
```

<212> DNA

+213> Artif cial Sequence

<220>

.223> Description of Artificial Sequence: Introduce KK motif

~400> 48

bbttaanttn nnnknegaat taaattedag eacactgget acttettgtt etgeatetea 60 aagaachnrm acmhadatar agrahntsna yrsks0snay rtawsddegt msnwrmansy 120 mbarahr0eg aattaaatte eageacactg getattett gttetgeate teaaagaacs 180 nayrsnayrn Ohtegaatta aattecagea eactggetae teettgttet geateteaaa 240 gaacgaasna yrttesnash anrmadtesn ayrtenamer stwrd0egks kdhharmaca 300 hnegaatta attecageae actggetae teettgttetg eateleaaag aactedgdan 360 cb0cda00a0 ca0rtntryh kktabwrdde mmtsmmaryn rmathdemnt smmarynrma 420 tntdeembbe tekkmerstw rddemntmsw rddewrddem nt 462

<210> 49

<211> 380

<212> DNA

-213> Artificial Sequence

< 220>

<400> 49

hbhtaanttn nnnmncgaat taaatteeag cacaetgget abnrmaemha dataragrah 60 ntsnayrsks Osnayrtaws ddegtmsnwr mansymbara hrücgaatta aatteeagea 120 caetggetas nayrsnayrh Odhegaatta aatteeagea caetggetag aasnayrtte 180 snasnanrma dtesnayrte namerstwrd Oemdhharma cahnegaatt aaatteeage 240

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International Patent Classification:	- A3	(11)	International Publication Number:	WO 00/17369
()	C12N 15/57, C07K 14/47,		(43)	International Publication Date:	30 March 2000 (30.03.2000)
	C07K 16/18, C07K 19/00,				
	C12N 1/21, C12N 5/10,				
	C12N 9/64, C12N 15/12,	1	1		
	C12N 15/62, C12N 15/85,	į			
	C12O 1/37, G01N 33/68				
			<u>.</u>		

(21) International Application Number: PCT/US99/20881 Published

(22) International Filing Date: 23 September 1999 (23.09.1999)

(30) Priority Data:

60/101,594 24 September 1998 (24.09.1998) US

(60) Parent Application or Grant

PHARMACIA & UPJOHN COMPANY [/]; (). GURNEY, Mark, E. [-]; (). BIENKOWSKI, Michael, Jerome [-]; (). HEINRIKSON, Robert, Leroy [-]; (). PARODI, Luis, A. [-]; (). YAN, Riqiang [-]; (). GURNEY, Mark, E. [-]; (). BIENKOWSKI, Michael, Jerome [-]; (). HEINRIKSON, Robert, Leroy [-]; (). PARODI, Luis, A. [-]; (). YAN, Riqiang [-]; (). WOOTTON, Thomas, A.; ()

(54) Title: ALZHEIMER'S DISEASE SECRETASE

(54) Titre: SECRETASE DE LA MALADIE D'ALZHEIMER

(57) Abstract

The present invention provides the enzyme and enzymatic procedures for cleaving the 'beta' secretase cleavage site of the APP protein and associated nucleic acids, peptides, vectors, cells and cell isolates and assays.

(57) Abrégé

La présente invention porte sur l'enzyme et les procédures enzymatiques de clivage du site de clivage de la 'beta' secrétase de la protéine APP et des acides nucléiques, des peptides, des vecteurs, des cellules et des isolats cellulaires associés, et sur des dosages.

PCT

(22) International Filing Date:

(30) Priority Data:

60/101,594

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:	CBEIGHEE	$\overline{}$	11) International Publication Number:	WO 00/17369
C12N 15/57, 15/62, 15/85, 5/10, 9/6 C07K 19/00, 14/47, C12N 15/12, C 16/18, C12Q 1/37, G01N 33/68, C1 1/21	C07K		43) International Publication Date:	30 March 2000 (30.03.00)
(21) International Application Number:	PCT/US99/20	881	(74) Agent: WOOTTON, Thomas, A.; pany, Intellectual Property Le	

US

23 September 1999 (23.09.99)

24 September 1998 (24.09.98)

- (71) Applicant (for all designated States except US): PHARMACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).
- (72) Inventors; and
 (75) Inventors/Applicants (for US only): GURNEY, Mark, E. [US/US]; 910 Rosewood Avenue, S.E., Grand Rapids, MI 49506 (US). BIENKOWSKI, Michael, Jerome [US/US]; 3431 Hollow Wood, Portage, MI 49024 (US). HEINRIK-SON, Robert, Leroy [US/US]; 81 South Lake Doster Drive, Plainwell, MI 49080 (US). PARODI, Luis, A. [US/SE]; Grevgafan 24, S-115 43 Stockholm (SE). YAN, Riqiang [US/US]; 5025 Queen Victoria Street, Kalamazoo, MI 49009 (US).
- (74) Agent: WOOTTON, Thomas, A.; Pharmacia & Objoin: Company, Intellectual Property Legal Services, 301 Henrietta Street, Kalamazoo, MI 49001 (US).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI paten: (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 23 November 2000 (23.11.00)

(54) Title: ALZHEIMER'S DISEASE SECRETASE

(57) Abstract

The present invention provides the enzyme and enzymatic procedures for cleaving the θ secretase cleavage site of the APP protein and associated nucleic acids, peptides, vectors, cells and cell isolates and assays.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	- LU	Luxembourg	SN	Senegal
AU	Australia	$G\Lambda$	Gabon	LV	La:v:a	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
UB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	T'R	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	II.	Tsrael	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mex:co	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugosiavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
ÇI	Côte d'Ivone	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Licchtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/US 99/20881

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/57 C12N15/62 C12N15/85 C12N5/10 C12N9/64 C07K19/00 CO7K14/47 C12N15/12 C07K16/18 C12Q1/37 C12N1/21 G01N33/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K C12Q G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, STRAND, WPI Data, BIOSIS, CHEM ABS Data, MEDLINE, EMBL C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to daim No. Category * EP 0 848 062 A (SMITHKLINE-BEECHAM 5-21,24, CORPORATION) 17 June 1998 (1998-06-17) 25, 28-31, cited in the application 34, 37-47, 49-64, 66-69, 72-75, 77, 80-91, 95-97, 114-129, 140,141 page 2, line 10 -page 3, line 40 page 4, line 20 - line 33 page 5, line 8 - line 20 page 8, line 1 -page 9, line 25; tables Patent family members are listed in annex X Further documents are listed in the continuation of box C. Special categories of cited documents "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory, underlying the invention. "A" document defining the general state of the land which is not considered to be of particular relevance. "F" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is Taken alone "U" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an invention extend the combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international litting date but later than the priority date claimed. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report D 2. 08. 00 26 July 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epc nl, Fax: (+31-70) 340-3018 Montero Lopez, B

3

Interna .ai Application No PCT/US 99/20881

	Relevant to plain the
Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
page 10, line 28 - line 44 page 11, line 10 -page 12, line 8	
EP 0 855 444 A (SMITHKLINE-BEECHAM P.L.C.) 29 July 1998 (1998-07-29) cited in the application	1-3, 5-21,24, 25, 28-31, 34, 37-47, 49-64, 66-69, 72-75, 77, 80-91, 95-97, 114-129, 140,141
page 2, line 8 -page 3, line 44 page 5, line 3 - line 15 page 5, line 49 -page 6, line 3; tables	140,141
page 7, line 34 - line 50 page 10, line 20 -page 11, line 1 page 12, line 1 - line 19 page 12, line 45 -page 13, line 44	
WO 96 40885 A (ATHENA NEUROSCIENCES) 19 December 1996 (1996-12-19)	1-4,6,7, 9,10, 12-21, 24,25, 28-31, 34, 37-47, 49,50, 52,53, 55-63, 67,68, 72-75, 77, 80-90, 108-129, 136-139, 141
page 3, line 1 -page 5, line 26 page 8, line 1 - line 34 page 14, line 19 -page 17, line 22 page 23, line 31 -page 25, line 20 page 28, line 7 -page 48, line 13 -/	141
	page 11, line 10 -page 12, line 8 EP 0 855 444 A (SMITHKLINE-BEECHAM P.L.C.) 29 July 1998 (1998-07-29) cited in the application page 2, line 8 -page 3, line 44 page 5, line 3 - line 15 page 5, line 49 -page 6, line 3; tables 1,2 page 7, line 34 - line 50 page 10, line 20 -page 11, line 1 page 12, line 1 - line 19 page 12, line 45 -page 13, line 44 WO 96 40885 A (ATHENA NEUROSCIENCES) 19 December 1996 (1996-12-19) page 3, line 1 - line 34 page 14, line 19 -page 17, line 26 page 8, line 11 - line 34 page 14, line 19 -page 17, line 22 page 23, line 31 -page 25, line 20

Intern: al Application No PCT/US 99/20881

1-4,6,7, 9,10, 12-21, 24,25, 28-31, 34,
37-47, 49,50, 52,53, 55-63, 67,68, 72-75, 77, 80-90, 108-129, 136-139,
1-4,6,7, 9-20,24, 28-31, 34, 37-47, 49,50, 52-63, 67,68, 72-75, 77, 80-92, 95-98, 101-103, 106,107, 114-117, 120,141

Interno al Application No PCT/US 99/20881

		PC1/US 99/20881				
	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT alegory * Citation of document, with indication where appropriate, of the relevant passages Relevant to claim No					
Category	CHARON OF ODCOMBUIL, WIRI WIGICARON WHERE ADDIODINATE, 51 the Peters of DUSSINGS					
P,X	WO 99 46281 A (GENENTECH, INC.) 16 September 1999 (1999-09-16)	1-4,6,7, 9-12, 18-20, 24, 28-31, 34,37, 38, 40-47, 49,50, 52-54, 61-63, 67,68, 72-75, 77,80, 81, 84-92, 95-98, 101-103, 106,107, 114-118, 120-128, 140,141				
	page 15, line 10 - line 23 page 65, line 5 - line 25 page 130, line 30 - line 35 page 149, line 3 -page 155, line 6 page 160, line 20 - line 22 page 173, line 35 -page 175, line 23; figures 72,73; examples 32,99-107					
A	US 5 795 963 A (MICHAEL JOHN MULLAN) 18 August 1998 (1998-08-18) column 3, line 58 -column 6, line 21	130-135, 141				
T	YAN RIGIANG ET AL.: "Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity" NATURE, vol. 402, 2 December 1999 (1999-12-02), pages 533-537, XP002136300 LONDON GB					

Inten._.onal application No. PCT/US 99/20881

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: See FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This international Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box 1.2

Claims Nos.: claims 32, 33, 35, 36, 70, 71, 76, 78 and 79 and partially claims 1, 18, 28, 44, 61, 72 and 141

Present claims 1, 18, 28, 44, 61, 72 and 141 relate to an extremely large number of possible products. In fact, the claims encompass so many possible compounds that a lack of clarity (and/or conciseness) within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible.

Moreover, in view of the large number and also the wording of the claims presently on file, which renders it difficult, if not impossible, to determine the matter for which protection is sought, the present application fails to comply with the clarity and conciseness requirements of Article 6 PCT (see also Rule 6.1(a) PCT) to such an extent that a meaningful search is impossible.

In addition, the obscure definition of claims 32, 33, 35, 36, 70, 71, 76, 78 and 79, relating to an unidentified SEQ ID. and referring to the examples renders as well the search of these claims impracticable.

Consequently, the search has been carried out for those parts of the application which do appear to be clear, namely the particular sequences SEQ ID NOs.: 1, 2, 3, 4, 5, 6, and 8, variants, and uses thereof

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/SA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-31, 34, 37-69, 72-75, 77, 80-129, 136-140 and partially 141

Proteases capable of cleaving the beta secretase cleavage site of APP, variants thereof; polynucleotides encoding them; vectors and host cells comprising the same; antibodies for the polypeptides and uses of the foregoing in screening tests.

2. Claims: 130-135 and partially 141

APP isoform wherein the last two carboxy terminus amino acids are Lysine residues.

Information on patent family members

Intern: al Application No PCT/US 99/20881

	itent document i in search report		Publication date		Patent family member(s)	Publication date
EP	848062	Α	17-06-1998	JP	11069981 A	16-03-1999
				US	6025180 A	15-02-2000
EP	855444	Α	29-07-1998	CA	2221686 A	28-07-1998
				JP	10327875 A	15-12-1998
				JP	2000060579 A	29-02-2000
WO	9640885	Α	19-12-1996	US	5744346 A	28-04-1998
				AU	6383396 A	30-12-1996
				EP	0871720 A	21-10-1998
				JP	11507538 T	06-07-1999
				US	5942400 A	24-08-1999
WO	9826059	A	18-06-1998	AU	1684097 A	03-07-1998
WO	9934004	Α	08-07-1999	AU	1726199 A	19-07-1999
				AU	2014899 A	19-07-1999
				WO	9933963 A	08-07-1999
WO	9946281	Α	16-09-1999	AU	3072199 A	27-09-1999
				AU	3075099 A	11-10-1999
				WO	9947677 A	23-09-1999
				AU	1532499 A	15-06-1999
				WO	99270 9 8 A	03-06-1999
				AU	3757099 A	08-11-1999
				WO	9954467 A	28-10-199
				AU	1070399 A	10-05-1999
				MO	9920756 A	29-04-199
US.	5795963	Α	18-08-1998	US	5455169 A	03-10-199