

Practical Image Matching

CS510 Lecture #18 March 22, 2002

2D Fourier Transform

- In answer to Aaron's question...(this slide is now part of the Sampling lecture, #8)
- For 2D signals, the Fourier transform is essentially the same:

$$F(u,v) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \left[\cos(2\pi(ux+vy)) - i\sin(2\pi(ux+vy)) \right]$$

- Note that frequencies are now two-dimensional (u= frequency in x, v = frequency in y)
- For every frequency (u,v), there is a single real and imaginary value

Practical Image Matching

- Idealized mugshot scenario:
 - All images of frontal human faces
 - Two diffuse illuminants, one on each side
 But not always consistent
 - Blank backgrounds
 - Ideally, although not perfect. "Big Hair" also a problem
 - Scale, position, rotation approximately fixed
 - But subjects shift slighty, so images not registered
 - Task: match new mugshot to known fugitives, exconvicts

Mugshot Processing

- General Approach: Subspace Projection
 - One-to-many
 - Efficiency matters (large data base)
- Problem #1: Images not registered
 - Near registration → similarity transform (rotation, translation, scale) is sufficient
 - Two points are enough
 - Common practice: identify eye centers by hand

Mugshot (II)

- Problem #2: Hair, background imperfections as distractors
 - All faces are approximately the same shape
 - After registration, apply an oval mask that eliminates all background and most hair pixels
- Problem #3: Inconsistent lighting
 - Created by non-uniform set-ups, minor changes in subject positions
 - Ideal solution: zero-mean, unit-length images
 - More often used: histogram equalization (similar results)

Mugshot Images (Processed)

As a result, the actual images look like:

9995

- Hand registration not totally accurate
- Preprocessing seems to obscure some useful information....
- A hack: many systems dismiss the first eigenvector, because it is often lighting

Mugshot Matching

- Once the subspace is computed
 - All gallery images projected into subspace
 - Probe (test) image projected into subspace
 - Nearest neighbor retrieval in subspace
 - Distance measures
 - = L1: $\frac{1}{n}\sum_{i}|(P_i-G_i)|$
 - = L2: $\frac{1}{n}\sqrt{\sum_{i}(P_{i}-G_{i})^{2}}$
 - = Angle: $\frac{P \cdot G}{|P \cdot G|}$
 - Mahalanobis: $\frac{1}{n} \sqrt{\sum_{i} \frac{(P_i G_i)^2}{\sigma_i^2}}$

Opportunities for Improvement

- Better registration:
 - Use Fourier matching (to average face?) to register images.
 - Increase/decrease mask size
 - Add original average intensity/st dev as a feature.
 - Select subset of eigenvectors (search)
 - Select distance measure
 - Use alternate classifier (other than nearest neighbor)

Cat & Dog

- Cat & Dog is a harder scenario
 - Images are registered (by hand)
 - Not as "head on" as mugshots
 - Lighting is uncontrolled
 - No masking: cat & dog faces have different shapes!

HumanID at a distance

- Current Challenges:
 - Subjects at a distance (and non-cooperative)
 - In essence, just walking by
 - Uncontrolled (possibly outdoor) lighting
 - Occlusion
 - Subjects in motion

HumanID needs

- Face detection
 - Separate faces from other scene clutter
 - Scale, angle unknown
- Automatic face registration
 - Localize three or more points for registration
- Face recognition
 - Similar to mugshot scenario
- How?