Álgebra Lineal - Clase 24

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

Variedades lineales en espacios euclídeos.

- Ortogonalidad de variedades lineales.
- Ángulo entre rectas y planos.
- Distancia de un punto a una variedad lineal.
- Distancia entre variedades lineales.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 9 (Sección 9.3).

Ortogonalidad de variedades lineales

Definición.

Sea (V,\langle,\rangle) un espacio euclídeo. Sean $M_1=S_1+p_1$ y $M_2=S_2+p_2$ (con S_1,S_2 subespacios de V y $p_1,p_2\in V$) variedades lineales en V. Se dice que M_1 y M_2 son ortogonales si $S_1\perp S_2$, es decir, si $\forall s_1\in S_1$, $s_2\in S_2$, $\langle s_1,s_2\rangle=0$.

Ejemplo.

$$L_1 = \langle (1,2,3) \rangle + (1,5,4)$$
 y $L_2 = \langle (1,1,-1) \rangle + (1,0,0)$ son rectas ortogonales en \mathbb{R}^3 (con el p.i. canónico), porque $\langle (1,2,3), (1,1,-1) \rangle = 0$.

Definición.

Sea M una variedad lineal en un espacio euclídeo V de dimensión finita y sea $q \in V$.

El complemento ortogonal a M por q es la variedad lineal $M_q^{\perp} = S^{\perp} + q$, donde S es el subespacio de V asociado a M. Escribiremos M^{\perp} para el complemento ortogonal a M por q=0.

Ejemplos.

1. Hallar $L_{(1,1,2)}^{\perp}$ para $L = \langle (1,2,3) \rangle + (1,5,4) \subseteq \mathbb{R}^3$.

$$L_{(1,1,2)}^{\perp} = \langle (1,2,3) \rangle^{\perp} + (1,1,2)$$

$$= \{ (x,y,z) \in \mathbb{R}^3 / x + 2y + 3z = 0 \} + (1,1,2)$$

$$= \{ (x,y,z) \in \mathbb{R}^3 / x + 2y + 3z = 9 \}.$$

2. Hallar $\Pi_{(1,0,1)}^{\perp}$ para $\Pi = \{(x,y,z) \in \mathbb{R}^3 / 3x - 2y + z = 7\}.$

$$\Pi = \{(x, y, z) \in \mathbb{R}^3 / 3x - 2y + z = 0\} + (0, 0, 7)$$
$$= \langle (3, -2, 1) \rangle^{\perp} + (0, 0, 7).$$

$$\Pi_{(1,0,1)}^{\perp} = \left(< (3,-2,1) >^{\perp} \right)^{\perp} + (1,0,1)$$

= $< (3,-2,1) > + (1,0,1).$

Ángulo entre rectas y planos

Definición.

Sea (V,\langle,\rangle) un espacio euclídeo. Sean $L_1=< v_1>+p_1$ y $L_2=< v_2>+p_2$, con $v_1,v_2\in V$ no nulos. Se define el ángulo entre L_1 y L_2 como el (único) número real en $[0,\frac{\pi}{2}]$ que coincide con el ángulo entre v_1 y v_2 o con el ángulo entre $-v_1$ y v_2 .

Ejemplo.

$$L_1 = \langle (1, 1, 0) \rangle + (0, 1, 2) \text{ y}$$

 $L_2 = \langle (0, 1, 1) \rangle + (0, 1, 0)$

$$v_1 = (1,1,0), \ v_2 = (0,1,1)$$

$$\cos(\theta) = \frac{\langle (1,1,0), (0,1,1) \rangle}{\|(1,1,0)\|.\|(0,1,1)\|} = \frac{1}{2}$$

 $heta=rac{\pi}{3}$ es el ángulo entre L_1 y L_2

Definición.

Sea (V, \langle, \rangle) un espacio euclídeo con dim V = 3.

- Si L es una recta y Π un plano en V, se define el ángulo entre L y Π como $\frac{\pi}{2} \alpha$, con α el ángulo entre las rectas L y Π^{\perp} .
- Si Π_1 y Π_2 son planos en V, se define el ángulo entre Π_1 y Π_2 como el ángulo entre las rectas Π_1^{\perp} y Π_2^{\perp} .

Ejemplo.

$$L = < (1,1,0) > + (0,1,2),$$

 $\Pi = \{(x,y,z) \in \mathbb{R}^3 : y+z = 1\}$
 $\Pi^{\perp} = < (0,1,1) >$

$$\theta(L,\Pi^{\perp}) = \frac{\pi}{3} \Rightarrow \theta(L,\Pi) = \frac{\pi}{6}$$

Distancia de un punto a una variedad lineal

Sea V un espacio euclídeo de dimensión finita.

Definición.

Sea M una variedad lineal en V y sea $q \in V$. Se define la distancia de q a M como $d(q, M) = \inf\{d(q, z) \mid z \in M\}$.

Si
$$M = S + p$$
 con S un subespacio de V y $p \in V$,

$$d(q, M) = \inf\{d(q, z) / z \in M\} = \inf\{d(q, s + p) / s \in S\}$$

$$= \inf\{\|q - (s + p)\| / s \in S\}$$

$$= \inf\{\|q - p - s\| / s \in S\} = d(q - p, S)$$

$$= d(q - p, p_S(q - p)) = \|p_{S^{\perp}}(q - p)\|,$$

donde p_S y $p_{S^{\perp}}$ denotan las proyecciones ortogonales sobre S y S^{\perp} .

$$d(q, M) = ||q - (p_S(q - p) + p)||$$

$$\Rightarrow p_S(q - p) + p \text{ es el punto de } M \text{ más cercano a } q.$$

Ejemplo.

Calcular la distancia de q=(-3,2,2) a M=<(1,1,0),(0,-1,1)>+(0,3,1) y hallar el punto de M más cercano a q.

$$S = \langle (1,1,0), (0,-1,1) \rangle, p = (0,3,1)$$

$$d(q, M) = ||p_{S^{\perp}}(q - p)||$$

$$S^{\perp} = < (-1, 1, 1) >$$

$$= \frac{\langle (-3,-1,1),(-1,1,1)\rangle}{\|(-1,1,1)\|^2}(-1,1,1) = \frac{3}{3}(-1,1,1) = (-1,1,1)$$

$$\Rightarrow d(q,M) = \|p_{S^{\perp}}(q-p)\| = \|(-1,1,1)\| = \sqrt{3}$$

 $p_{S^{\perp}}(q-p) = p_{S^{\perp}}((-3,2,2)-(0,3,1)) = p_{S^{\perp}}(-3,-1,1)$

► El punto de
$$M$$
 más cercano a q es $q' = p_S(q - p) + p$.

$$p_S(q - p) = p_S(-3, -1, 1) = (-3, -1, 1) - p_{S^{\perp}}(-3, -1, 1)$$

$$= (-3, -1, 1) - (-1, 1, 1) = (-2, -2, 0)$$

$$= (-3, -1, 1) - (-1, 1, 1) - (-2, -2, 0)$$

$$\Rightarrow q' = p_S(q - p) + p = (-2, -2, 0) + (0, 3, 1) = (-2, 1, 1)$$

$$d(q, M) = ||q - q'|| = ||(-3, 2, 2) - (-2, 1, 1)|| = ||(-1, 1, 1)|| = \sqrt{3} \checkmark$$

$$M\cap M_q^{\perp}=\{p_S(q-p)+p\}.$$

Distancia entre variedades lineales

Definición.

Sea (V, \langle, \rangle) un espacio euclídeo de dimensión finita. Si M_1 y M_2 son variedades lineales en V, la distancia entre M_1 y M_2 es

$$d(M_1, M_2) = \inf\{d(m_1, m_2) / m_1 \in M_1, m_2 \in M_2\}.$$

Ejemplo.

$$L_1=\{x\in\mathbb{R}^3\,/\,x_1=1,x_2=1\}$$
 $L_2=\{x\in\mathbb{R}^3\,/\,x_1=2,x_3=3\}.$ Hallar $d(L_1,L_2).$

$$\begin{array}{lcl} d(L_1,L_2) & = & \inf\{d(m_1,m_2) \, / \, m_1 \in L_1, m_2 \in L_2\} \\ & = & \inf\{d((1,1,\alpha),(2,\beta,3)) : \alpha,\beta \in \mathbb{R}\} \\ & = & \inf\{\sqrt{1 + (1-\beta)^2 + (\alpha-3)^2} : \alpha,\beta \in \mathbb{R}\} \ = \ 1. \end{array}$$

El conjunto posee mínimo, que se alcanza para $\alpha=3,\ \beta=1.$ $\Rightarrow d(L_1,L_2)$ coincide con la distancia entre los puntos $Q=(1,1,3)\in L_1\ y\ R=(2,1,3)\in L_2.$

Proposición.

Sea (V, \langle, \rangle) un espacio euclídeo de dimensión finita. Si $M_1 = S_1 + p_1$ y $M_2 = S_2 + p_2$, con S_1, S_2 subespacios de V y $p_1, p_2 \in V$, entonces $d(M_1, M_2) = \|p_{(S_1 + S_2)^{\perp}}(p_1 - p_2)\|$.

Demostración.

 $M_1 = S_1 + p_1$ y $M_2 = S_2 + p_2$, con S_1, S_2 subespacios de V.

Sea $S = S_1 + S_2$.

Si $v = p_S(p_1 - p_2) \in S$ y $u = p_{S^{\perp}}(p_1 - p_2) \in S^{\perp}$, entonces $p_1 - p_2 = v + u$.

▶
$$u \in S^{\perp}$$
 no depende $p_1 \in M_1$ y $p_2 \in M_2$, es decir, $\forall p_1' \in M_1, p_2' \in M_2$, vale $p_{S^{\perp}}(p_1' - p_2') = u$:

$$p_1'\in M_1$$
 y $p_2'\in M_2\Rightarrow \exists s_1'\in S_1$ y $s_2'\in S_2$ tales que $p_1'=s_1'+p_1$ y $p_2'=s_2'+p_2.$

$$p'_1 - p'_2 = s'_1 + p_1 - (s'_2 + p_2) = s'_1 - s'_2 + (p_1 - p_2)$$

= $s'_1 - s'_2 + v + u = v' + u$.

con
$$v' = s'_1 - s'_2 + v \in S$$
.
 $\Rightarrow p_{S\perp}(p'_1 - p'_2) = p_{S\perp}(v' + u) = u$.

▶
$$d(x, y) \ge ||u|| \ \forall x \in M_1, \ y \in M_2$$
:

Para $x \in M_1$, $y \in M_2$, se tiene que $x - y = v_{xy} + u$, para algún $v_{xy} \in S$.

$$v_{xy} \in S, \ u \in S^{\perp} \Rightarrow \langle v_{xy}, u \rangle = 0$$

 $\Rightarrow ||x - v||^2 = ||v_{xy}||^2 + ||u||^2 > ||u||^2.$

$$\Rightarrow d(x,y) \geq ||u||.$$

► Existen $m_1 \in M_1$ y $m_2 \in M_2$ tales que $d(m_1, m_2) = ||u||$: Si $p_1 - p_2 = v + u$, con $v \in S = S_1 + S_2$ y $u \in S^{\perp}$, existen $s_1 \in S_1$ y $s_2 \in S_2$ tales que $v = s_1 + s_2$. Sean $m_1 = -s_1 + p_1 \in M_1$ y $m_2 = s_2 + p_2 \in M_2$.

$$d(m_1, m_2) = ||m_1 - m_2|| = ||(-s_1 + p_1) - (s_2 + p_2)||$$

= $||(p_1 - p_2) - (s_1 + s_2)||$
= $||(v + u) - v|| = ||u||$.

$$\Rightarrow d(M_1, M_2) = d(m_1, m_2) = ||u|| = ||p_{(S_1 + S_2)^{\perp}}(p_1 - p_2)||.$$

Ejemplo.

 $L_1=<(2,1,0)>+(1,0,2)$ y $L_2=<(0,1,1)>+(-2,-5,3)$. Calcular $d(L_1,L_2)$ y hallar $q_1\in L_1$ y $q_2\in L_2$ tales que $d(L_1,L_2)=d(q_1,q_2)$.

►
$$S = S_1 + S_2 = \langle (2,1,0), (0,1,1) \rangle \Rightarrow S^{\perp} = \langle (1,-2,2) \rangle$$

► $p_1 - p_2 = (1,0,2) - (-2,-5,3) = (3,5,-1)$

 $p_1 - p_2 = v + u \text{ con } v = (3, 5, -1) - (-1, 2, -2) = (4, 3, 1)$

$$| d(L_1, L_2) = ||u|| = ||(-1, 2, -2)|| = 3$$

$$v = p_S(p_1 - p_2) \in S$$
 $v = s_1 + s_2 = (4, 2, 0) + (0, 1, 1) \text{ con } (4, 2, 0) \in S_1, (0, 1, 1) \in S_2$

$$q_1 = -s_1 + p_1 = (-4, -2, 0) + (1, 0, 2) = (-3, -2, 2) \in L_1$$

$$q_1 = s_1 + p_1 = (1, 1, 2, 3) + (1, 3, 2) = (3, 2, 2) \in \mathbb{Z}$$

 $q_2 = s_2 + p_2 = (0, 1, 1) + (-2, -5, 3) = (-2, -4, 4) \in L_2$

Verificación:

$$d(q_1,q_2) = ||q_1 - q_2|| = ||(-1,2,-2)|| = 3 = d(L_1,L_2).$$