SEQUENCE LISTING

```
<110> Martin, Gregory B.
     Abramovitch, Robert B.
     Lin, Nai-Chun
      Kim, Young-Jin
<120> BACTERIAL EFFECTOR PROTEINS WHICH INHIBIT PROGRAMMED
     CELL DEATH
<130> 3213/104
<140> 10/524,750
<141> 2003-08-13
<150> 60/404,339
<151> 2002-08-16
<150> 60/425,842
<151> 2002-11-12
<150> PCT/US03/25247
<151> 2003-08-16
<160> 54
<170> PatentIn Ver. 2.1
<210> 1
<211> 1662
<212> DNA
<213> Pseudomonas syringae
<400> 1
atggcgggta tcaatagagc gggaccatcg ggcgcttatt ttgttggcca cacagacccc 60
gagccagtat cggggcaagc acacggatcc ggcagcggcg ccagctcctc gaacaqtccg 120
caggttcagc cgcgaccctc gaatactccc ccgtcgaacg cgcccgcacc gccgccaacc 180
ggacgtgaga ggctttcacg atccacggcg ctgtcgcgcc aaaccaggga gtggctggag 240
cagggtatgc ctacagcgga ggatgccagc gtgcgtcgta ggccacaggt gactgccgat 300
gccgcaacgc cgcgtgcaga ggcaagacgc acgccggagg caactgccga tqccaqcqca 360
ccgcgtagag gggcggttgc acacgccaac agtatcgttc agcaattggt cagtgagggc 420
gctgatattt cgcatactcg taacatgctc cgcaatgcaa tgaatggcga cgcagtcgct 480
ttttctcgag tagaacagaa catatttcgc cagcatttcc cgaacatgcc catgcatgga 540
atcagccgag attcggaact cgctatcgag ctccgtgggg cgcttcgtcg agcggttcac 600
```

caacaggcgg cgtcagcgc agtgaggtcg cccacgccaa caccggccag ccctgcggca 660 tcatcatcgg gcagcagtca gcgttcttta tttggacggt ttgcccgttt gatggcgcca 720 aaccagggac ggtcgtcgaa cactgccgcc tctcagacgc cggtcgacag gagcccgcca 780 cgcgtcaacc aaagacccat acgcgtcgac agggctgcga tgcgtaatcg tggcaatgac 840

gaggeggacgcegegetegggggttagtacaacagggggteaatttagagcacetege900acggeecttgaaagacatgtaatgeagegetecetateeecetegatataggeagegeg960ttgcagaatgttggaattaaeecaagtategaettgggggaaageettgtgcaacateee1020ctgetgaatttgaatgtagegttgaategeatgetggggetgegteecagegetgaaaga1080gegeetegtecageegteeegtggeteeeeaggegaeeggatggtaeg1140cgtgeaacaegattgegggtgatgeeggageggagggtatacgaaaataatgtggettat1200gaagtgegettgettaacetgaaceegggggtggggtaaggeaggetgttgeggeett1260gtaaceegaeegggettgageggecageagtggtggetaatateegggeageeetgaacet1320ategegteaeaatteagteagetgegeaeaatttegaaggeegatgeaettetttttge1440ggagaaattgegetgagtaateeggateagtttggeggtaateegaeg1500gacacegtegeageettacageaggeageeteggegtteatggatatgaaa1560aaacttgeeeaatteetegeaggeaageetgageateegatgaecagagaaaegettaae1620geegaaaatategeeaaatategettttaatgaecagagaaaegettaae1620

<210> 2

<211> 553

<212> PRT

<213> Pseudomonas syringae

<400> 2

Met Ala Gly Ile Asn Arg Ala Gly Pro Ser Gly Ala Tyr Phe Val Gly 1 5 10 \cdot 15

His Thr Asp Pro Glu Pro Val Ser Gly Gln Ala His Gly Ser Gly Ser 20 25 30

Gly Ala Ser Ser Ser Asn Ser Pro Gln Val Gln Pro Arg Pro Ser Asn 35 40 45

Thr Pro Pro Ser Asn Ala Pro Ala Pro Pro Pro Thr Gly Arg Glu Arg
50 55 60

Leu Ser Arg Ser Thr Ala Leu Ser Arg Gln Thr Arg Glu Trp Leu Glu 65 70 75 80

Gln Gly Met Pro Thr Ala Glu Asp Ala Ser Val Arg Arg Pro Gln 85 90 95

Val Thr Ala Asp Ala Ala Thr Pro Arg Ala Glu Ala Arg Arg Thr Pro
100 105 110

Glu Ala Thr Ala Asp Ala Ser Ala Pro Arg Gly Ala Val Ala His 115 120 125

Ala Asn Ser Ile Val Gln Gln Leu Val Ser Glu Gly Ala Asp Ile Ser 130 135 140

His 145	Thr	Arg	Asn	Met	Leu 150	Arg	Asn	Ala	Met	Asn 155	Gly	Asp	Ala	Val	Ala 160	
Phe	Ser	Arg	Val	Glu 165	Gln	Asn	Ile	Phe	Arg 170	Gln	His	Phe	Pro	Asn 175	Met	
Pro	Met	His	Gly 180	Ile	Ser	Arg	Asp	Ser 185	Glu	Leu	Ala	Ile	Glu 190	Leu	Arg	
Gly	Ala	Leu 195	Arg	Arg	Ala	Val	His 200	Gln	Gln	Ala	Ala	Ser 205	Ala	Pro	Val	
Arg	Ser 210	Pro	Thr	Pro	Thr	Pro 215	Ala	Ser	Pro	Ala	Ala 220	Ser	Ser	Ser	Gly	
Ser 225	Ser	Gln	Arg	Ser	Leu 230	Phe	Gly	Arg	Phe	Ala 235	Arg	Leu	Met	Ala	Pro 240	
Asn	Gln	Gly	Arg	Ser 245	Ser	Asn	Thr	Ala	Ala 250	Ser	Gln	Thr	Pro	Val 255	Asp	
Arg	Ser	Pro	Pro 260	Arg	Val	Asn	Gln	Arg 265	Pro	Ile	Arg	Val	Asp 270	Arg	Ala	
Ala	Met	Arg 275	Asn	Arg	Gly	Asn	Asp 280	Glu	Ala	Asp	Ala	Ala 285	Leu	Arg	Gly	
Leu	Val 290	Gln	Gln	Gly	Val	Asn 295	Leu	Glu	His	Leu	Arg 300	Thr	Ala	Leu	Glu	
Arg 305	His	Val	Met	Gln	Arg 310	Leu	Pro	Ile	Pro	Leu 315	Asp	Ile	Gly	Ser	Ala 320	
Leu	Gln	Asn	Val	Gly 325	Ile	Asn	Pro	Ser	11e 330	Asp	Leu	Gly	Glu	Ser 335	Leu	
Val	Gln	His	Pro 340	Leu	Leu	Asn	Leu	Asn 345	Val	Ala	Leu	Asn	Arg 350	Met	Leu	
Gly	Leu	Arg 355	Pro	Ser	Ala	Glu	Arg 360	Ala	Pro	Arg	Pro	Ala 365	Val	Pro	Val	
Ala	Pro 370	Ala	Thr	Ala	Ser	Arg 375	Arg	Pro	Asp	Gly	Thr 380	Arg	Ala	Thr	Arg	
Leu 385	Arg	Val	Met	Pro	Glu 390	Arg	Glu	Asp	Tyr	Glu 395	Asn	Asn	Val	Ala	Tyr 400	

Gly Val Arg Leu Asn Leu Asn Pro Gly Val Gly Val Arg Gln Ala
405 410 415

Val Ala Ala Phe Val Thr Asp Arg Ala Glu Arg Pro Ala Val Val Ala 420 425 430

Asn Ile Arg Ala Ala Leu Asp Pro Ile Ala Ser Gln Phe Ser Gln Leu 435 440 445

Arg Thr Ile Ser Lys Ala Asp Ala Glu Ser Glu Glu Leu Gly Phe Lys 450 455 460

Asp Ala Ala Asp His His Thr Asp Asp Val Thr His Cys Leu Phe Gly 465 470 475 480

Gly Glu Leu Ser Leu Ser Asn Pro Asp Gln Gln Val Ile Gly Leu Ala 485 490 495

Gly Asn Pro Thr Asp Thr Ser Gln Pro Tyr Ser Gln Glu Gly Asn Lys 500 505 510

Asp Leu Ala Phe Met Asp Met Lys Lys Leu Ala Gln Phe Leu Ala Gly 515 520 525

Lys Pro Glu His Pro Met Thr Arg Glu Thr Leu Asn Ala Glu Asn Ile 530 535 540

Ala Lys Tyr Ala Phe Arg Ile Val Pro 545 550

<210> 3

<211> 1740

<212> DNA

<213> Pseudomonas syringae

<400> 3

atggcgggta tcaatggage gggaccateg ggcgcttatt ttgttggcca cacagaccce 60 gagccagcat cggggggcge acacggatec agcagtggeg cgagatecte gaacagtecg 120 cgcttgccgg cgcctccgga tgcacccgcg tcgcaggcge gagategacg cgaaatgctt 180 ttgcgagca ggccgctgte gcgccaaace agggagtggg tggcgcaggg tatgccgcca 240 acggcggagg ctggagtgce catcaggccg caggagtetg ccgaggctge agcgccgcag 300 gcacgtgcag aggaaagaca cacgccggag gctgatgcag cagcgtcgca tgtacgcaca 360 gagggaggac gcacaccgca ggcgcttgce ggtacctcce cacgccacac aggtgcggtg 420 ccacacgcca atagaattgt tcaacaattg gttgacgcgg gcgctgatet tgccggtatt 480 aacaccatga ttgacaatgc catgcgtcgc cacgcgatag ctcttccttc tcgaacagta 540 cagagtattt tgatcgagca tttccctcac ctgctagcgg gtgaactcat tagtggctca 600

gagetegeta eegegtteeg tgeggetete egtegggagg ttegeeaaca ggaggegtea 660 gccccccaa gaacagcagc gcggtcctcc gtaaggacgc cggagcggtc gacggtgccg 720 cccacttcta cggaatcatc atcgggcagc aaccagcgta cgttattagg gcggttcgcc 780 gggttgatga cgcctaatca gagacgtccg tcgagcgctt cgaacgcgtc tgcctctcaa 840 aggeetgtag acagaageee geeacgegta aaccaggtae eeacaggege taacagggtt 900 gtgatgcgta atcatggtaa taacgaggcc gacgccgcgc tgcaaggatt ggctcagcag 960 ggggttgata tggaggacct gcgcgccgcg cttgaaagac atatattgca tcgccgcccg 1020 atccccatgg atatagcgta cgccttgcag ggtgtgggca ttgcgccaag tatcgatacg 1080 ggagagagcc ttatggaaaa cccgctgatg aatttgagtg ttgcqctqca ccqcqcacta 1140 gggcctcgtc ccgctcgtgc tcaagcgcct cgtccagccg ttccggtggc tcccgcgacc 1200 gtctccaggc gaccagatag cgcgcgtgcc acaagattgc aggtaatacc ggcgcgggag 1260 gattacgaaa ataatgtggc ctacggagtg cgcttgctga gcctgaatcc gggcgcgggg 1320 gtcagggaga ctgttgcggc ctttgtaaac aaccgttacg agcggcaggc ggttgttgcc 1380 gacatacgcg cagccctaaa tttatctaaa caattcaata agttgcgtac ggtctctaag 1440 gccgatgctg cctccaataa accgggcttc aaggatgcgg cggaccaccc agacgacgcg 1500 acgcaatgcc tttttggtga agaattgtcg ctgaccagtt cggatcagca ggtgatcggc 1560 ctggcaggta aggcaacqga catgtcggag tcttacagcc gagaggcaaa taaggacctg 1620 gtgttcatgg atatgaaaaa acttgcccaa ttcctcgcag gcaagcctga gcatccgatg 1680 accagagaaa cgcttaacgc cgaaaatatc gccaagtatg cttttagaat agtcccctga 1740

<210> 4

<211> 579

<212> PRT

<213> Pseudomonas syringae

<400> 4

Met Ala Gly Ile Asn Gly Ala Gly Pro Ser Gly Ala Tyr Phe Val Gly
1 5 10 15

His Thr Asp Pro Glu Pro Ala Ser Gly Gly Ala His Gly Ser Ser Ser 20 25 30

Gly Ala Arg Ser Ser Asn Ser Pro Arg Leu Pro Ala Pro Pro Asp Ala 35 40 45

Pro Ala Ser Gln Ala Arg Asp Arg Glu Met Leu Leu Arg Ala Arg 50 55 60

Pro Leu Ser Arg Gln Thr Arg Glu Trp Val Ala Gln Gly Met Pro Pro 65 70 75 80

Thr Ala Glu Ala Gly Val Pro Ile Arg Pro Gln Glu Ser Ala Glu Ala 85 90 95

Ala Ala Pro Gln Ala Arg Ala Glu Glu Arg His Thr Pro Glu Ala Asp 100 105 110

Ala	Ala	Ala 115	Ser	His	Val	Arg	Thr 120	Glu	Gly	Gly	Arg	Thr 125	Pro	Gln	Ala
Leu	Ala 130	Gly	Thr	Ser	Pro	Arg 135	His	Thr	Gly	Ala	Val 140	Pro	His	Ala	Asn
Arg 145	Ile	Val	Gln	Gln	Leu 150	Val	Asp	Ala	Gly	Ala 155	Asp	Leu	Ala	Gly	Ile 160
Asn	Thr	Met	Ile	Asp 165	Asn	Ala	Met	Arg	Arg 170	His	Ala	Ile	Ala	Leu 175	Pro
Ser	Arg	Thr	Val 180	Gln	Ser	Ile	Leu	Ile 185	Glu	His	Phe	Pro	His 190	Leu	Leu
Ala	Gly	Glu 195	Leu	Ile	Ser	Gly	Ser 200	Glu	Leu	Ala	Thr	Ala 205	Phe	Arg	Ala
Ala	Leu 210	Arg	Arg	Glu	Val	Arg 215	Gln	Gln	Glu	Ala	Ser 220	Ala	Pro	Pro	Arg
Thr 225	Ala	Ala	Arg	Ser	Ser 230	Val	Arg	Thr	Pro	Glu 235	Arg	Ser	Thr	Val	Pro 240
Pro	Thr	Ser	Thr	Glu 245	Ser	Ser	Ser	Gly	Ser 250	Asn	Gln	Arg	Thr	Leu 255	Leu
Gly	Arg	Phe	Ala 260	Gly	Leu	Met	Thr	Pro 265	Asn	Gln	Arg	Arg	Pro 270	Ser	Ser
		275				Ser	280				-	285			
Arg	Val 290	Asn	Gln	Val	Pro	Thr 295		Ala	Asn	Arg	Val 300	Val	Met	Arg	Asn
His 305	Gly	Asn	Asn	Glu	Ala 310	Asp	Ala	Ala	Leu	Gln 315	Gly	Leu	Ala	Gln	Gln 320
Gly	Val	Asp	Met	G1u 325	Asp	Leu	Arg	Ala	Ala 330	Leu	Glu	Arg	His	Ile 335	Leu
His	Arg	Arg	Pro 340	Ile	Pro	Met	Asp	Ile 345	Ala	Tyr	Ala	Leu	Gln 350	Gly	Val
Gly	Ile	Ala 355	Pro	Ser	Ile	Asp	Thr 360	Gly	Glu	Ser	Leu	Met 365	Glu	Asn	Pro

Leu Met Asn Leu Ser Val Ala Leu His Arg Ala Leu Gly Pro Arg Pro 370 380

Ala Arg Ala Gln Ala Pro Arg Pro Ala Val Pro Val Ala Pro Ala Thr 385 390 395 400

Val Ser Arg Arg Pro Asp Ser Ala Arg Ala Thr Arg Leu Gln Val Ile 405 410 415

Pro Ala Arg Glu Asp Tyr Glu Asn Asn Val Ala Tyr Gly Val Arg Leu
420 425 430

Leu Ser Leu Asn Pro Gly Ala Gly Val Arg Glu Thr Val Ala Ala Phe 435 440 445

Val Asn Asn Arg Tyr Glu Arg Gln Ala Val Val Ala Asp Ile Arg Ala 450 455 460

Ala Leu Asn Leu Ser Lys Gln Phe Asn Lys Leu Arg Thr Val Ser Lys 465 470 475 480

Ala Asp Ala Ala Ser Asn Lys Pro Gly Phe Lys Asp Ala Ala Asp His 485 490 495

Pro Asp Asp Ala Thr Gln Cys Leu Phe Gly Glu Glu Leu Ser Leu Thr 500 505 510

Ser Ser Asp Gln Gln Val Ile Gly Leu Ala Gly Lys Ala Thr Asp Met 515 520 525

Ser Glu Ser Tyr Ser Arg Glu Ala Asn Lys Asp Leu Val Phe Met Asp 530 535 540

Met Lys Lys Leu Ala Gln Phe Leu Ala Gly Lys Pro Glu His Pro Met 545 550 555 560

Thr Arg Glu Thr Leu Asn Ala Glu Asn Ile Ala Lys Tyr Ala Phe Arg 565 570 575

Ile Val Pro

<210> 5

<211> 1740

<212> DNA

<213> Pseudomonas syringae

```
<220>
<221> unsure
<222> (1100)
<223> N at position 1100 can be A, C, T, or G
<400> 5
atggcgggta tcaatggagc gggaccatcg ggcgcttatt ttgttggcca cacagacccc 60
gagccagcat cggggggcgc acacggatcc agcagtggcg caagctcctc gaacagtccg 120
egettgeegg egeeteegga tgeaceegeg tegeaggege gagategaeg egaaatgett 180
ttgcgagcca ggccgctgtc gcgccaaacc agggagtggg tggcgcaggg tatgccgcca 240
acggcggagg ctggagtgcc catcaggccg caggagtctg ccgaggctgc agcgccgcag 300
gcacgtgcag aggaaagaca cacgccggag gctgatgcag cagcgtcgca tgtacgcaca 360
gagggaggac gcacaccgca ggcgcttgcc ggtacctccc cacgccacac aggtgcggtg 420
ccacacgcca atagaattgt tcaacaattg gttgacgcgg gcgctgatct tgccggtatt 480
aacaccatga ttgacaatgc catgcgtcgc cacgcgatag ctcttccttc tcgaacagta 540
cagagtattt tgatcgagca tttccctcac ctgctagcgg gtgaactcat tagtggctca 600
gagetegeta cegegtteeg tgeggetete eqtegggagg ttegeeaaca ggaggegtea 660
gecececaa gaacaacage geggteetee gtaaggaege eggageggte gaeggtgeeg 720
cccacttcta cggaatcatc atcgggcage aaccagegta cgttattagg gcggttcgcc 780
gggttgatga cgcctaatca gagacgtccg tcgagcgctt cgaacgcgtc tgcctctcaa 840
aggeetgtag acagaageee geeaegegta aaceaggtae eeaeaggege taacagggtt 900
gtgatgcgta atcatggtaa taacgaggcc gacgccgcgc tgcaaggatt ggctcagcag 960
ggggttgata tggaggacct gcgcgccgcg cttgaaagac atatattqca tcqccqcccq 1020
atccccatgg atatagcgta cgccttgcag ggcqtqqqca ttqcqccaaq tatcqatacq 1080
ggagagagcc ttatggaaan cccgctgatg aatttgagtg ttgcgctgca ccgcgcacta 1140
gggcctcgtc ccgctcgtgc tcaagcgcct cgtccagccg ttccqqtqqc tcccqcqacc 1200
gtctccaggc gaccagatag cgcgcgtgcc acaagattgc aggtaatacc ggcgcgggag 1260
gattacgaaa ataatgtggc ctacggagtg cgcttgctga gcctgaatcc gggcgcgtgg 1320
gtcagggaga ctgttgcggc ctttgtaaac aaccgttacq aqcqqcaqqc qqttqttqcc 1380
gacatacgcg cagccctaaa tttatctaaa caattcaata agttgcgtac ggtctctaag 1440
geogatgetg cetecaataa accgggette aaggatetgg eggaceaece agacgaegeg 1500
acgcaatgcc tttttggtga agaattgtcg ctgaccagtt cggttcagca ggtgatcggc 1560
ctggcaggta aggcaacgga catgtcggag tcttacagcc gagaggcaaa taaggacctg 1620
gtgttcatgg atatgaaaaa acttgcccaa ttcctcgcag gcaagcctga gcatccgatg 1680
accagagaaa cgcttaacgc cgaaaatatc gccaagtatg cttttagaat agtcccctga 1740
<210> 6
<211> 579
<212> PRT
<213> Pseudomonas syringae
<220>
<221> UNSURE
<222> (367)
<223> Xaa at position 367 can be any amino acid
<400> 6
```

Met 1	Ala	Gly	Ile	Asn 5	Gly	Ala	Gly	Pro	Ser 10	Gly	Ala	Tyr	Phe	Val 15	Gly
His	Thr	Asp	Pro 20	Glu	Pro	Ala	Ser	Gly 25	Gly	Ala	His	Gly	Ser 30	Ser	Ser
Gly	Ala	Ser 35	Ser	Ser	Asn	Ser	Pro 40	Arg	Leu	Pro	Ala	Pro 45	Pro	Asp	Ala
Pro	Ala 50	Ser	Gln	Ala	Arg	Asp 55	Arg	Arg	Glu	Met	Leu 60	Leu	Arg	Ala	Arg
Pro 65	Leu	Ser	Arg	Gln	Thr 70	Arg	Glu	Trp	Val	Ala 75	Gln	Gly	Met	Pro	Pro 80
Thr	Ala	Glu	Ala	Gly 85	Val	Pro	Ile	Arg	Pro 90	Gln	Glu	Ser	Ala	Glu 95	Ala
Ala	Ala	Pro	Gln 100	Ala	Arg	Ala	Glu	Glu 105	Arg	His	Thr	Pro	Glu 110	Ala	Asp
Ala	Ala	Ala 115	Ser	His	Val	Arg	Thr 120	Glu	Gly	Gly	Arg	Thr 125	Pro	Gln	Ala
Leu	Ala 130	Gly	Thr	Ser	Pro	Arg 135	His	Thr	Gly	Ala	Val 140	Pro	His	Ala	Asn
Arg 145	Ile	Val	Gln	Gln	Leu 150	Val	Asp	Ala	Gly	Ala 155	Asp	Leu	Ala	Gly	Ile 160
Asn	Thr	Met	Ile	Asp 165	Asn	Ala	Met	Arg	Arg 170	His	Ala	Ile	Ala	Leu 175	Pro
Ser	Arg	Thr	Val 180	Gln	Ser	Ile	Leu	Ile 185	Glu	His	Phe	Pro	His 190	Leu	Leu
Ala	Gly	Glu 195	Leu	Ile	Ser	Gly	Ser 200	Glu	Leu	Ala	Thr	Ala 205	Phe	Arg	Ala
Ala	Leu 210	Arg	Arg	Glu	Val	Arg 215	Gln	Gln	Glu	Ala	Ser 220	Ala	Pro	Pro	Arg
Thr 225	Thr	Ala	Arg	Ser	Ser 230	Val	Arg	Thr	Pro	Glu 235	Arg	Ser	Thr	Val	Pro 240

Pro Thr Ser Thr Glu Ser Ser Ser Gly Ser Asn Gln Arg Thr Leu Leu

														_	
Gly	Arg	Phe	Ala 260	Gly	Leu	Met	Thr	Pro 265	Asn	Gln	Arg	Arg	Pro 270	Ser	Ser
Ala	Ser	Asn 275	Ala	Ser	Ala	Ser	Gln 280	Arg	Pro	Val	Asp	Arg 285	Ser	Pro	Pro
Arg	Val 290	Asn	Gln	Val	Pro	Thr 295	Gly	Ala	Asn	Arg	Val 300		Met	Arg	Asn
His 305	Gly	Asn	Asn	Glu	Ala 310	Asp	Ala	Ala	Leu	Gln 315	Gly	Leu	Ala	Gln	Gln 320
Gly	Val	Asp	Met	Glu 325	Asp	Leu	Arg	Ala	Ala 330	Leu	Glu	Arg	His	Ile 335	Leu
His	Arg	Arg	Pro 340	Ile	Pro	Met	Asp	Ile 345	Ala	Tyr	Ala	Leu	Gln 350	Gly	Val
Gly	Ile	Ala 355	Pro	Ser	Ile	Asp	Thr 360	Gly	Glu	Ser	Leu	Met 365	Glu	Xaa	Pro
Leu	Met 370	Asn	Leu	Ser	Val	Ala 375	Leu	His	Arg	Ala	Leu 380	Gly	Pro	Arg	Pro
Ala 385	Arg	Ala	Gln	Ala	Pro 390	Arg	Pro	Ala	Val	Pro 395	Val	Ala	Pro	Ala	Thr 400
Val	Ser	Arg	Arg	Pro 405	Asp	Ser	Ala	Arg	Ala 410	Thr	Arg	Leu	Gln	Val 415	Ile
Pro	Ala	Arg	Glu 420	Asp	Tyr	Glu	Asn	Asn 425	Val	Ala	Tyr	Gly	Val 430	Arg	Leu
Leu	Ser	Leu 435	Asn	Pro	Gly	Ala	Trp 440	Val	Arg	Glu	Thr	Val 445	Ala	Ala	Phe
Val	Asn 450	Asn	Arg	Tyr	Glu	Arg 455	Gln	Ala	Val	Val	Ala 460	Asp	Ile	Arg	Ala
Ala 465	Leu	Asn	Leu	Sér	Lys 470	Gln	Phe	Asn	Lys	Leu 475	Arg	Thr	Val	Ser	Lys 480
Ala	Asp	Ala	Ala	Ser 485	Asn	Lys	Pro	Gly ·	Phe 490	Lys	Asp	Leu	Ala	Asp 495	His
Pro	Asp	Asp	Ala 500	Thr	Gln	Cys	Leu	Phe 505	Gly	Glu	Glu	Leu	Ser 510	Leu	Thr

Ser Ser Val Gln Gln Val Ile Gly Leu Ala Gly Lys Ala Thr Asp Met 515 520 525

Ser Glu Ser Tyr Ser Arg Glu Ala Asn Lys Asp Leu Val Phe Met Asp 530 535 540

Met Lys Lys Leu Ala Gln Phe Leu Ala Gly Lys Pro Glu His Pro Met 545 550 555 560

Thr Arg Glu Thr Leu Asn Ala Glu Asn Ile Ala Lys Tyr Ala Phe Arg 565 570 575

Ile Val Pro

<210> 7

<211> 1740

<212> DNA

<213> Pseudomonas syringae

<400> 7

atggcgggta tcaatggagc gggaccatcg ggcgcttatt ttgttggcca cacagacccc 60 gagccagcat cggggggcgc acacggatcc agcagtggcg caagctcctc gaacagtccg 120 cgcttgccgg cgcctccgga tgcacccgcg tcgcaggcgc gagatcgacg cgaaatgctt 180 ttgcgagcca ggccgctgtc gcgccaaacc agggagtggg tqqcqcaggg tatqccqcca 240 acggcggagg ctggagtgcc catcaggccg caggagtctg ccgaggctgc agcgccgcag 300 gcacgtgcag aggaaagaca cacgccggag gctgatgcag cagcgtcgca tgtacgcaca 360 gagggaggac gcacaccgca ggcgcttgcc ggtacctccc cacgccacac aggtgcggtg 420 ccacacgcca atagaattgt tcaacaattg gttgacgcgg gcgctgatct tgccggtatt 480 aacaccatga ttgacaatgc catgcgtcgc cacgcgatag ctcttccttc tcgaacagta 540 cagagtattt tgatcgagca tttccctcac ctgctagcgg qtgaactcat tagtqgctca 600 gagctcgcta ccgcgttccg tgcggctctc cgtcgggagg ttcgccaaca ggaggcgtca 660 gccccccaa gaacagcagc gcggtcctcc gtaaggacgc cggagcggtc gacggtgccg 720 cccacttcta cggaatcatc atcgggcagc aaccagcgta cgttattagg gcggttcqcc 780 gggttgatga cgcctaatca gagacgtccg tcgagcgctt cgaacgcgtc tgcctctcaa 840 aggeetgtag acagaageee geeacgegta aaccaggtae eeacaggege taacagggtt 900 gtgatgcgta atcatggtaa taacgaggcc gacgccgcgc tqcaaqqatt qqctcaqcaq 960 ggggttgata tggaggacct gcgcgccgcg cttgaaaqac atatattqca tcqccqcccq 1020 atccccatgg atatagcgta cgccttgcag ggtgtgggca ttgcgccaag tatcgatacg 1080 ggagagagcc ttatggaaaa cccgctgatg aatttgagtg ttgcgctgca ccgcgcacta 1140 gggcctcgtc ccgctcgtgc tcaagcgcct cgtccagccg ttccggtggc tcccgcgacc 1200 gtctccaggc gaccagatag cgcgcgtgcc acaagattgc aggtaatacc ggcgcgggag 1260 gattacgaaa ataatgtggc ctacggagtg cgcttgctga gcctgaatcc gggcgcgggg 1320 gtcagggaga ctgttgcggc ctttgtaaac aaccgttacg agcggcaggc ggttgttgcc 1380 gacatacgcg cagccctaaa tttatctaaa caattcaata agttgcgtac ggtctctaag 1440 geogatgetg cetecaataa accgggette aaggatetgg eggaceaece agacgacgeg 1500 acgcaatgcc tttttggtga agaattgtcg ctgaccagtt cggttcagca ggtgatcggc 1560

ctggcaggta aggcaacgga catgtcggag tcttacagcc gagaggcaaa taaggacctg 1620 gtgttcatgg atatgaaaaa acttgcccaa ttcctcgcag gcaagcctga gcatccgatg 1680 accagagaaa cgcttaacgc cgaaaatatc gccaagtatg cttttagaat agtcccctga 1740

<210> 8

<211> 579

<212> PRT

<213> Pseudomonas syringae

<400> 8

Met Ala Gly Ile Asn Gly Ala Gly Pro Ser Gly Ala Tyr Phe Val Gly
1 5 10 15

His Thr Asp Pro Glu Pro Ala Ser Gly Gly Ala His Gly Ser Ser Ser 20 25 30

Gly Ala Ser Ser Ser Asn Ser Pro Arg Leu Pro Ala Pro Pro Asp Ala 35 40 45

Pro Ala Ser Gln Ala Arg Asp Arg Glu Met Leu Leu Arg Ala Arg 50 55 60

Pro Leu Ser Arg Gln Thr Arg Glu Trp Val Ala Gln Gly Met Pro Pro 65 70 75 80

Thr Ala Glu Ala Gly Val Pro Ile Arg Pro Gln Glu Ser Ala Glu Ala 85 90 95

Ala Ala Pro Gln Ala Arg Ala Glu Glu Arg His Thr Pro Glu Ala Asp 100 105 110

Ala Ala Ser His Val Arg Thr Glu Gly Gly Arg Thr Pro Gln Ala 115 120 125

Leu Ala Gly Thr Ser Pro Arg His Thr Gly Ala Val Pro His Ala Asn 130 135 140

Arg Ile Val Gln Gln Leu Val Asp Ala Gly Ala Asp Leu Ala Gly Ile 145 150 155 160

Asn Thr Met Ile Asp Asn Ala Met Arg Arg His Ala Ile Ala Leu Pro 165 170 175

Ser Arg Thr Val Gln Ser Ile Leu Ile Glu His Phe Pro His Leu Leu 180 185 190

Ala Gly Glu Leu Ile Ser Gly Ser Glu Leu Ala Thr Ala Phe Arg Ala

Ala	Leu 210	Arg	Arg	Glu	Val	Arg 215	Gln	Gln	Glu	Ala	Ser 220	Ala	Pro	Pro	Arg
Thr 225	Ala	Ala	Arg	Ser	Ser 230	Val	Arg	Thr	Pro	Glu 235	Arg	Ser	Thr	Val	Pro 240
Pro	Thr	Ser	Thr	Glu 245	Ser	Ser	Ser	Gly	Ser 250	Asn	Gln	Arg	Thr	Leu 255	Leu
Gly	Arg	Phe	Ala 260	Gly	Leu	Met	Thr	Pro 265	Asn	Gln	Arg	Arg	Pro 270	Ser	Ser
Ala	Ser	Asn 275	Ala	Ser	Ala	Ser	Gln 280	Arg	Pro	Val	Asp	Arg 285	Ser	Pro	Pro
Arg	Val 290	Asn	Gln	Val	Pro	Thr 295	Gly	Ala	Asn	Arg	Val 300	Val	Met	Arg	Asn
His 305	Gly	Asn	Asn	Glu	Ala 310	Asp	Ala	Ala	Leu	Gln 315	Gly	Leu	Ala	Gln	Gln 320
Gly	Val	Asp	Met	Glu 325	Asp	Leu	Arg	Ala	Ala 330	Leu	Glu	Arg	His	Ile 335	Leu
His	Arg	Arg	Pro 340	Ile	Pro	Met	Asp	Ile 345	Ala	Tyr	Ala	Leu	Gln 350	Gly	Val
Gly	Ile	Ala 355	Pro	Ser	Ile	Asp	Thr 360	Gly	Glu	Ser	Leu	Met 365	Glu	Asn	Pro
Leu	Met 370	Asn	Leu	Ser	Val	Ala 375	Leu	His	Arg	Ala	Leu 380	Gly	Pro	Arg	Pro
Ala 385	Arg	Ala	Gln	Ala	Pro 390	Arg	Pro	Ala	Val	Pro 395	Val	Ala	Pro	Ala	Thr 400
Val	Ser	Arg	Arg	Pro 405	Asp	Ser	Ala	Arg	Ala 410	Thr	Arg	Leu	Gln	Val 415	Ile
Pro	Ala	Arg	Glu 420	Asp	Tyr	Glu	Asn	Asn 425	Val	Ala	Tyr	Gly	Val 430	Arg	Leu
Leu	Ser	Leu 435	Asn	Pro	Gly	Ala	Gly 440	Val	Arg	Glu	Thr	Val 445	Ala	Ala	Phe
Val	Asn	Asn	Arg	Tyr	Glu	Arg	Gln	Ala	Val	Val	Ala	Asp	Ile	Arg	Ala

450 455 460

Ala Leu Asn Leu Ser Lys Gln Phe Asn Lys Leu Arg Thr Val Ser Lys 465 470 475 480

Ala Asp Ala Ala Ser Asn Lys Pro Gly Phe Lys Asp Leu Ala Asp His
485 490 495

Pro Asp Asp Ala Thr Gln Cys Leu Phe Gly Glu Glu Leu Ser Leu Thr 500 505 510

Ser Ser Val Gln Gln Val Ile Gly Leu Ala Gly Lys Ala Thr Asp Met 515 520 525

Ser Glu Ser Tyr Ser Arg Glu Ala Asn Lys Asp Leu Val Phe Met Asp 530 540

Met Lys Lys Leu Ala Gln Phe Leu Ala Gly Lys Pro Glu His Pro Met 545 550 555 560

Thr Arg Glu Thr Leu Asn Ala Glu Asn Ile Ala Lys Tyr Ala Phe Arg 565 570 575

Ile Val Pro

<210> 9

<211> 16

<212> PRT

<213> Pseudomonas syringae

<400> 9

Ala Gly Pro Ser Gly Ala Tyr Phe Val Gly His Thr Asp Pro Glu Pro 1 5 10 15

<210> 10

<211> 9

<212> PRT

<213> Pseudomonas syringae

<400> 10

Ser Gly Ala Ser Ser Ser Asn Ser Pro 1 5

<210> 11

```
<211> 8
<212> PRT
<213> Pseudomonas syringae
<400> 11
Leu Ser Arg Gln Thr Arg Glu Trp
<210> 12
<211> 6
<212> PRT
<213> Pseudomonas syringae
<400> 12
Ile Val Gln Gln Leu Val
 1
<210> 13
<211> 5
<212> PRT
<213> Pseudomonas syringae
<400> 13
Ser Ser Ser Gly Ser
 1
<210> 14
<211> 11
<212> PRT
<213> Pseudomonas syringae
<400> 14
Pro Val Asp Arg Ser Pro Pro Arg Val Asn Gln
 1
                 5
                                      10
<210> 15
<211> 12
<212> PRT
<213> Pseudomonas syringae
<400> 15
Ala Pro Arg Pro Ala Val Pro Val Ala Pro Ala Thr
                                      10
```

```
<210> 16
<211> 5
<212> PRT
<213> Pseudomonas syringae
<400> 16
Ser Arg Arg Pro Asp
<210> 17
<211> 5
<212> PRT
<213> Pseudomonas syringae
<400> 17
Arg Ala Thr Arg Leu
 1
<210> 18
<211> 15
<212> PRT
<213> Pseudomonas syringae
<400> 18
Arg Glu Asp Tyr Glu Asn Asn Val Ala Tyr Gly Val Arg Leu Leu
                  5
                                      10
<210> 19
<211> 5
<212> PRT
<213> Pseudomonas syringae
<400> 19
Val Ala Ala Phe Val
 1
<210> 20
<211> 5
<212> PRT
<213> Pseudomonas syringae
<400> 20
Ile Arg Ala Ala Leu
```

<210> 21 <211> 5 <212> PRT <213> Pseudomonas syringae <400> 21 Ser Lys Ala Asp Ala 1 <210> 22 <211> 8 <212> PRT <213> Pseudomonas syringae <400> 22 Gln Gln Val Ile Gly Leu Ala Gly 5 <210> 23 <211> 38 <212> PRT <213> Pseudomonas syringae <400> 23 Phe Met Asp Met Lys Lys Leu Ala Gln Phe Leu Ala Gly Lys Pro Glu 5 His Pro Met Thr Arg Glu Thr Leu Asn Ala Glu Asn Ile Ala Lys Tyr 20 30 25 Ala Phe Arg Ile Val Pro 35 <210> 24 <211> 553

<211> 553 <212> PRT

<213> Pseudomonas syringae

<220>
<221> UNSURE
<222> (1)..(6)

1

<223> Xaa at positions 1-6 can be any amino acid

```
<220>
<221> UNSURE
<222> (23)..(31)
<223> Xaa at positions 23-31 can be any amino acid
<220>
<221> UNSURE
<222> (41)..(70)
<223> Xaa at positions 41-70 can be any amino acid
<220>
<221> UNSURE
<222> (79)..(131)
<223> Xaa at positions 79-131 can be any amino acid
<220>
<221> UNSURE
<222> (138)..(220)
<223> Xaa at positions 138-220 can be any amino acid
<220>
<221> UNSURE
<222> (226)..(253)
<223> Xaa at positions 226-253 can be any amino acid
<220>
<221> UNSURE
<222> (265)..(360)
<223> Xaa at positions 265-360 can be any amino acid
<220>
<221> UNSURE
<222> (373)
<223> Xaa at position 373 can be any amino acid
<220>
<221> UNSURE
<222> (379)..(380)
<223> Xaa at positions 379-380 can be any amino acid
<220>
<221> UNSURE
<222> (386)..(390)
<223> Xaa at positions 386-390 can be any amino acid
<220>
<221> UNSURE
```

<222> (406)..(433)

<223> Xaa at positions 406-433 can be any amino acid

<220>

<221> UNSURE

<222> (439)..(451)

<223> Xaa at positions 439-451 can be any amino acid

<220>

<221> UNSURE

<222> (457)..(489)

<223> Xaa at positions 457-489 can be any amino acid

<220>

<221> UNSURE

<222> (498)..(515)

<223> Xaa at positions 498-515 can be any amino acid

<400> 24

Xaa Xaa Xaa Xaa Xaa Ala Gly Pro Ser Gly Ala Tyr Phe Val Gly
1 5 10 15

His Thr Asp Pro Glu Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser 20 25 30

Xaa Xaa Xaa Xaa Xaa Xaa Leu Ser Arg Gln Thr Arg Glu Trp Xaa Xaa 65 70 75 80

Xaa Xaa Xaa Ile Val Gln Gln Leu Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa 130
135
140

Xaa	Xaa	Xaa	Xaa	Xaa 165	Xaa	Xaa	Xaa	Xaa	Xaa 170	Xaa	Xaa	Xaa	Xaa	Xaa 175	Xaa
Xaa	Xaa	Xaa	Xaa 180	Xaa	Xaa	Xaa	Xaa	Xaa 185	Xaa	Xaa	Xaa	Xaa	Xaa 190	Xaa	Xaa
Xaa	Xaa	Xaa 195	Xaa	Xaa	Xaa	Xaa	Xaa 200	Xaa	Xaa	Xaa	Xaa	Xaa 205	Xaa	Xaa	Xaa
Xaa	Xaa 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Xaa	Xaa 220	Ser	Ser	Ser	Gly
Ser 225	Xaa	Xaa	Xaa	Xaa	Xaa 230	Xaa	Xaa	Xaa	Xaa	Xaa 235	Xaa	Xaa	Xaa	Xaa	Xaa 240
Xaa	Xaa	Xaa	Xaa	Xaa 245	Xaa	Xaa	Xaa	Xaa	Xaa 250	Xaa	Xaa	Xaa	Pro	Val 255	Asp
Arg	Ser	Pro	Pro	Arg	Val	Asn	Gln	Xaa 265	Xaa	Xaa	Xaa	Xaa	Xaa 270	Xaa	Xaa
Xaa	Xaa	Xaa 275	Xaa	Xaa	Xaa	Xaa	Xaa 280	Xaa	Xaa	Xaa	Xaa	Xaa 285	Xaa	Xaa	Xaa
Xaa	Xaa 290	Xaa	Xaa	Xaa	Xaa	Xaa 295	Xaa	Xaa	Xaa	Xaa	Xaa 300	Xaa	Xaa	Xaa	Xaa
Xaa 305	Xaa	Xaa	Xaa	Xaa	Xaa 310	Xaa	Xaa	Xaa	Xaa	Xaa 315	Xaa	Xaa	Xaa	Xaa	Xaa 320
Xaa	Xaa	Xaa	Xaa	Xaa 325	Xaa	Xaa	Xaa	Xaa	Xaa 330	Xaa	Xaa	Xaa	Xaa	Xaa 335	Xaa
Xaa	Xaa	Xaa	Xaa 340	Xaa	Xaa	Xaa	Xaa	Xaa 345	Xaa	Xaa	Xaa	Xaa	Xaa 350	Xaa	Xaa
Xaa	Xaa	Xaa 355	Xaa	Xaa	Xaa	Xaa	Xaa 360	Ala	Pro	Arg	Pro	Ala 365	Val	Pro	Val
Ala															
	Pro 370	Ala	Thr	Xaa	Ser	Arg 375	Arg	Pro	Asp	Xaa	Xaa 380	Arg	Ala	Thr	Arg
	370	Ala Xaa				375					380				

 Val
 Ala
 Phe
 Val
 Xaa
 X

Xaa Xaa Xaa Ser Lys Ala Asp Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 450 455 460

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Val Ile Gly Leu Ala 485 490 495

Xaa Xaa Phe Met Asp Met Lys Lys Leu Ala Gln Phe Leu Ala Gly 515 520 525

Lys Pro Glu His Pro Met Thr Arg Glu Thr Leu Asn Ala Glu Asn Ile 530 535 540

Ala Lys Tyr Ala Phe Arg Ile Val Pro 545 550

<210> 25

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 25

gtaatgcagc gcctccctat c

21

<210> 26

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 26				
tcagggga	ct attctaaaag c		2	21
<210> 27				
<211> 21				
<212> DN				
<213> Ar	tificial Sequence			
.000				
<220>				
<223> De	scription of Artificial	Sequence:	primer	
<400> 27				
				21
arggeggg	ta tcaatagage g		•	21
<210> 28				
<211> 23				
<212> DN				
	tificial Sequence			
(210) 111	crractar bequence			
<220>				
	scription of Artificial	Sequence:	primer	
		4	r	
<400> 28				
tcacaccc	gc aatcgtgttg cac		:	23
<210> 29	1			
<211> 23				
<212> DN	TA .			
<213> Ar	tificial Sequence			
<220>				
<223> De	scription of Artificial	Sequence:	primer	
<400> 29				
tcatacat	gt ctttcaaggg ccg		;	23
1010: 00				
<210> 30				
<211> 22				
<212> DN				
<213> Ar	tificial Sequence			
-000				
<220>	nomination of Bulletinia	C		
<223> De	scription of Artificial	sequence:	primer	

<400> 30	
gtatcaatag agcgggacca tc	22
<210> 31	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	primer
- -	-
<400> 31	
cactgaccac ttgctgaacg	20
<210> 32	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
in the control of the	
<220>	
<pre><223> Description of Artificial Sequence:</pre>	primer
boquenoe.	primor
<400> 32	
tgtcgcgcca aaccagggcg tg	22
<210> 33	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence:</pre>	primer
or indulational bodacinoc.	primor
<400> 33	
ccatcaccag ggcaaacc	18
· ·	10
<210> 34	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
uncriticial pedaeuce	
<220>	
<pre><220> <223> Description of Artificial Sequence:</pre>	nrimor
VESON DESCRIPTION OF WITTITIES SEGMENCE:	brimer

<400>	34			
gtatc	gttca gcaattggtc agtg		2	4
<210>	35			
<211>	21			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial Se	equence:	primer	
		-	•	
<400>	35			
acgcg	tatgg gtctttggtt g		2	1
		•	_	_
<210>	36			
<211>	17			
<212>	DNA			
<213>	Artificial Sequence			
	-			
<220>				
<223>	Description of Artificial Se	quence:	primer	
	_	-	•	
<400>	36	•		
acgat	tgcgg gtgatgc		1	7
<210>	37			
<211>	20			
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial Se	equence:	primer	
<400>	37			
cctct	tggct gtaaggctgc		2	0
<210>				
<211>				
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial Sec	quence:	primer	

<400>	38	
atggcg	ggta tcaatagagc gg	22
<210>	39	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: primer	
	• •	
<400>	39	
gaatto	gata tcaagcttat cgataccgtc gacctcgag	39
<210>	40	
<211>	46	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: primer	
<400>	40	
gaatto	gaat tgggatatca agcttatcga taccgtcgac ctcgag	46
<210>		
<211>		
<212>	•	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: primer	
<400>		
gaatte	gaat tgatatcaag cttatcgata ccgtcgacct cgag	44
/21A\	42	
<210>		
<211>		
<212>		
~ ∠13>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: primer	
\ \\\\	peacribation of Withingtal Seddence: bilmer	

<400> 42 cggaggcgaa cagccgagca g	21
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 43 gcaattcgaa gtggcagtga	20
<210> 44 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 44 ttatgcttta ttggtatttt tagagg	26
<210> 45 <211> 20 <212> DNA	
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer	
<400> 45 atggcgggta tcaatagagc	20
<210> 46	
<211> 26 <212> DNA <213> Pseudomonas syringae	
<220>	

```
<222> (7)..(22)
<223> N at positions 7-22 can be A, C, T, or G
<400> 46
ggaactnnnn nnnnnnnnn nnccac
<210> 47
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 47
Met Ala Gly Ile Asn Arg Ala Gly
<210> 48
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: consensus
      sequence
<220>
<221> UNSURE
<222> (2)
<223> Xaa at position 2 can be any amino acid except E
<220>
<221> UNSURE
<222> (3)
<223> Xaa at position 3 can be any amino acid except D
<220>
<221> UNSURE
<222> (4)
<223> Xaa at position 4 can be any amino acid except R
<220>
<221> UNSURE
<222> (5)
<223> Xaa at position 5 can be any amino acid except K
```

```
<220>
<221> UNSURE
<222> (6)
<223> Xaa at position 6 can be any amino acid except H
<220>
<221> UNSURE
<222> (7)
<223> Xaa at position 7 can be any amino acid except P
<220>
<221> UNSURE
<222> (8)
<223> Xaa at position 8 can be any amino acid except F
<220>
<221> UNSURE
<222> (9)
<223> Xaa at position 9 can be any amino acid except Y
<220>
<221> UNSURE
<222> (10)
<223> Xaa at position 10 can be any amino acid except W
<220>
<221> UNSURE
<222> (11)..(12)
<223> Xaa at positions 11-12 can be any amino acid
<220>
<221> UNSURE
<222> (19)
<223> Xaa at position 19 can be any amino acid except P
<400> 48
Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Thr Ala Gly
 1
                  5
                                                          15
Cys Asn Xaa
<210> 49
<211> 16
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: consensus
      sequence
<220>
<221> UNSURE
<222> (2)..(3)
<223> Xaa at positions 2-3 can be any amino acid
<220>
<221> UNSURE
<222> (5)..(6)
<223> Xaa at positions 5-6 can be any amino acid
<220>
<221> UNSURE
<222> (8)..(9)
<223> Xaa at positions 8-9 can be any amino acid
<220>
<221> UNSURE
<222> (11)
<223> Xaa at position 11 can be any amino acid
<220>
<221> UNSURE
<222> (13)..(15)
<223> Xaa at positions 13-15 can be any amino acid
<400> 49
Arg Xaa Xaa Leu Xaa Xaa Ser Xaa Xaa Leu Xaa Arg Xaa Xaa Glu
  1
                  5
                                      10
                                                          15
<210> 50
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: consensus
      sequence
<220>
<221> UNSURE
<222> (2)
<223> Xaa at position 2 can be any amino acid
```

```
<220>
<221> UNSURE
<222> (4)
<223> Xaa at position 4 can be any amino acid
<400> 50
Ser Xaa Arg Xaa Arg
<210> 51
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: consensus
      sequence
<220>
<221> UNSURE
<222> (4)..(8)
<223> Xaa at positions 4-8 can be any amino acid
<400> 51
Asn Pro Ser Xaa Xaa Xaa Xaa Ser
<210> 52
<211> 539
<212> PRT
<213> Pseudomonas syringae
<400> 52
Met Pro Gly Ile Asn Gly Ala Gly Pro Ser Asn Phe Phe Trp Gln Trp
                                     10
Arg Thr Asp Gly Glu Pro Val Thr Glu Arg Glu His Asp Ser Ser Arg.
             20
                                 25
Ser Ala Ser Ser Ala Asn Ser Pro Glu Leu Pro Pro Pro Ala Ser Pro
         35
                             40
Ala Glu Ser Gly Arg Gln Arg Leu Leu Arg Ser Ser Ala Leu Ser Arg
     50
                         55
                                             60
```

Gln 65	Thr	Arg	Glu	Trp	Leu 70	Glu	Ala	Thr	Pro	Ala 75	Arg	Val	Gln	Gly	Ala 80
Thr	Pro	Pro	Ala	Glu 85	Ala	Arg	Gln	Ser	Pro 90	Glu	Ala	Gln	Gln	Ala 95	Glu
Arg	Ile	Val	Gln 100	Glu	Leu	Val	Arg	Gly 105	Gly	Ala	Asp	Leu	Asn 110	Asn	Val
Arg	Thr	Met 115	Leu	Arg	Asn	Val	Met 120	Asp	Asn	Asn	Ala	Val 125	Ala	Phe	Ser
Arg	Val 130	Glu	Arg	Asp	Ile	Leu 135	Leu	Gln	His	Phe	Pro 140	Asn	Met	Pro	Met
Thr 145	Gly	Ile	Ser	Ser	Asp 150	Ser	Val	Leu	Ala	Asn 155	Glu	Leu	Arg	Gln	Arg 160
Leu	Arg	Gln	Thr	Val 165	Arg	Gln	Gln	Arg	Ile 170	Gln	Ser	Ser	Thr	Pro 175	Ala
Arg	Leu	Ala	Asp 180	Ser	Ser	Ser	Gly	Ser 185	Ser	Gln	Arg	Ser	Leu 190	Ile	Gly
Arg	Ser	Thr 195	Met	Leu	Met	Thr	Pro 200	Gly	Arg	Ser	Ser	Ser 205	Ser	Ser	Ala
Ala	Ala 210	Ser	Arg	Thr	Ser	Val 215	Asp	Arg	His	Pro	Gln 220	Gly	Leu	Asp	Leu
Glu 225	Ser	Ala	Arg	Leu	Ala 230	Ser	Ala	Ala	Arg	His 235	Asn	His	Ser	Ala	Asn 240
Gln	Thr	Asn	Glu	Ala 245	Leu	Arg	Arg	Leu	Thr 250	Gln	Glu	Gly	Val	Asp 255	Met
Glu	Arg	Leu	Arg 260	Thr	Ser	Leu	Gly	Arg 265	Tyr	Ile	Met	Ser	Leu 270	Glu	Pro
Leu	Pro	Pro 275	Asp	Leu	Arg	Arg	Ala 280	Leu	Glu	Ser	Val '	Gly 285	Ile	Asn	Pro
Phe	Ile 290	Pro	Glu	Glu	Leu	Ser 295	Leu	Val	Asp	His	Pro 300	Val	Leu	Asn	Phe
Ser 305	Ala	Ala	Leu	Asn	Arg 310	Met	Leu	Ala	Ser	Arg 315	Gln	Thr	Thr	Thr	Asn 320

Ser Pro Glu Leu Pro Pro Leu Ala Ser Ser Ala Glu Ser Gly Arg Arg 325 330 335

Arg Leu Leu Arg Ser Pro Pro Leu Leu Ser Gly Gln Arg Glu Trp Ile 340 345 350

Glu Gln Ser Met Arg Gln Glu Ala Glu Pro Gln Ser Ser Arg Leu Asn 355 360 365

Arg Ala Val Arg Leu Ala Val Met Pro Pro Gln Asn Glu Asn Glu Asp 370 375 380

Asn Val Ala Tyr Ala Ile Arg Leu Arg Arg Leu Asn Pro Gly Ala Asp 385 390 395 400

Val Ser Arg Val Val Ala Ser Phe Ile Thr Asp Pro Ala Ala Arg Gln 405 410 415

Gln Val Val Asn Asp Ile Arg Ala Ala Leu Asp Ile Ala Pro Gln Phe 420 425 430

Ser Gln Leu Arg Thr 'Ile Ser Lys Ala Asp Ala Glu Ser Glu Glu Leu 435 440 445

Gly Phe Arg Asp Ala Ala Asp His Pro Asp Asn Ala Thr Ser Cys Leu 450 455 460

Phe Gly Glu Glu Leu Ser Leu Ser Asn Pro Asp Gln Gln Val Ile Gly 465 470 475 480

Leu Ala Val Asn Pro Thr Asp Lys Pro Gln Pro Tyr Ser Gln Glu Val
485 490 495

Asn Lys Ala Leu Thr Phe Met Asp Met Lys Lys Leu Ala Gln Tyr Leu
500 505 510

Ala Asp Lys Pro Glu His Pro Leu Asn Arg Gln Arg Leu Asp Ala Lys 515 520 525

Asn Ile Ala Lys Tyr Ala Phe Lys Ile Val Pro 530 535

<210> 53

<211> 158

<212> PRT

<213> Pseudomonas syringae

<400> 53

Met Gly Asn Ile Cys Val Gly Gly Ser Arg Met Ala His Gln Val Asn 1 5 10 15

Ser Pro Asp Arg Val Ser Asn Asn Ser Gly Asp Glu Asp Asn Val Thr
20 25 30

Ser Ser Gln Leu Leu Ser Val Arg His Gln Leu Ala Glu Ser Ala Gly 35 40 45

Leu Pro Arg Asp Gln His Glu Phe Val Ser Ser Gln Ala Pro Gln Ser 50 55 60

Leu Arg Asn Arg Tyr Asn Asn Leu Tyr Ser His Thr Gln Arg Thr Leu 65 70 75 80

Asp Met Ala Asp Met Gln His Arg Tyr Met Thr Gly Ala Ser Gly Ile 85 90 95

Asn Pro Gly Met Leu Pro His Glu Asn Val Asp Asp Met Arg Ser Ala 100 105 110

Ile Thr Asp Trp Ser Asp Met Arg Glu Ala Leu Gln His Ala Met Gly . 115 120 125

Ile His Ala Asp Ile Pro Pro Ser Pro Glu Arg Phe Val Ala Thr Met 130 135 140

Asn Pro Ser Gly Ser Ile Arg Met Ser Thr Leu Ser Pro Ser 145 150 155

<210> 54

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: consensus
 sequence

<220>

<221> UNSURE

<222> (2)

<223> Xaa at position 2 can be any amino acid

<220>

<221> UNSURE

```
<222> (4)..(5)
<223> Xaa at positions 4-5 can be any amino acid
<220>
<221> UNSURE
<222> (7)..(8)
<223> Xaa at positions 7-8 can be any amino acid
<220>
<221> UNSURE
<222> (10)..(11)
<223> Xaa at positions 10-11 can be any amino acid
<220>
<221> UNSURE
<222> (13)
<223> Xaa at position 13 can be any amino acid
<220>
<221> UNSURE
<222> (15)..(17)
<223> Xaa at positions 15-17 can be any amino acid
<400> 54
Ser Xaa Arg Xaa Xaa Leu Xaa Xaa Ser Xaa Xaa Leu Xaa Arg Xaa Xaa
 1
                  5
                                      10
```

Xaa Glu