第七章 参数估计

- 1. 设 $\hat{\theta}_1$, $\hat{\theta}_2$ 是参数 θ 的两个相互独立的无偏估计, 且 $D(\hat{\theta}_1) = 2D(\hat{\theta}_2) > 0$, 若 $\hat{\theta} = 0$ $k_1 \hat{\theta}_1 + k_2 \hat{\theta}_2$ 也是 θ 的无偏估计量,则下列四个估计量中方差最小的是 (

- (A) $\frac{1}{2}\widehat{\theta}_1 + \frac{1}{2}\widehat{\theta}_2$ (B) $\frac{2}{3}\widehat{\theta}_1 + \frac{1}{3}\widehat{\theta}_2$ (C) $\frac{1}{3}\widehat{\theta}_1 + \frac{2}{3}\widehat{\theta}_2$ (D) $\frac{1}{4}\widehat{\theta}_1 + \frac{3}{4}\widehat{\theta}_2$
- 2. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知, 而 μ 为未知参数, X_1, X_2, \cdots, X_n 为样本, 记 $\overline{X} =$ $\frac{1}{n}\sum_{i=1}^{n}X_{i}$,则 $\left(\overline{X}-\frac{S}{\sqrt{n}}t_{0.025}(n-1),\overline{X}+\frac{S}{\sqrt{n}}t_{0.025}(n-1)\right)$ 为 μ 的区间,其置信水平为(
 - (A) 0.90
- **(B)** 0.95
- **(C)** 0.975
- **(D)** 0.05
- **3.** 设总体 $X \sim B(m, p)$, 其中 p(0 为未知参数, 从总体 <math>X 中抽取简单随机样 本 $X_1, X_2, ..., X_n$, 记 p 的矩量估计为 \hat{p} ,则 $E[\hat{p}]=$
- **4.** 设总体 $X \sim N(\mu, 1)$, x_1, x_2 为来自总体 X 的一个样本, 估计量 $\widehat{\mu}_1 = \frac{1}{2}x_1 + \frac{1}{2}x_2$, $\hat{\mu}_2 = \frac{1}{3}x_1 + \frac{2}{3}x_2$,则方差较小的估计量是______.
- 5. 设 $\hat{\theta}_1$, $\hat{\theta}_2$ 是参数 θ 的两个无偏估计, 如果 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 更有效,则 $D(\hat{\theta}_1)$ 和 $D(\hat{\theta}_2)$ 的大 小关系是_____.
- **6.** 设 X_1, X_2, \dots, X_n 是取自总体 $X \sim N(\mu, \sigma^2)$ 的一个样本, 且 $C \sum_{i=1}^{n-1} (X_{i+1} X_i)^2$ 是参 数 σ^2 的无偏估计量,则常数 C =
- 7. 已知来自容量为 n = 49 的正态总体 $N(\mu, 7.3^2)$ 的一个样本, 其样本均值 $\bar{x} = 28.8$, 则 μ 的置信水平为0.95的置信区间是
- 8. 设总体 X 的概率密度函数为: $f(x;\beta) = \begin{cases} \frac{\beta}{x^{\beta+1}}, & x>1 \\ 0, & \text{其中 } \beta > 1 \text{ 为未知参数,} \end{cases}$ 又 (X_1, X_2, \dots, X_n) 是来自总体 X 的容量 n 的简单随机样本,试求

- (1)参数 β 的矩估计量;
- (2)参数 β 的极大似然估计量.
- 9. 设总体 X 的概率密度函数为

$$f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}} & x > 0\\ 0 & x \le 0 \end{cases},$$

其中 $\theta > 0$ 是未知参数**.** (X_1, X_2, \dots, X_n) 是来自总体 X 的容量 n 的简单随机样本**,** 试求:

- $(1)\theta$ 的矩估计量;
- $(2)\theta$ 的极大似然估计量.
- **10.** 设总体 X 服从指数分布, 其概率密度函数 $f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 其中 $\lambda > 0$, 是未知参数. $x_1, x_2 \cdots, x_n$ 是来自总体 X 的一组样本观测值, 求参数 λ 的最大似然估计值.
- **11.** 设某行业的一项经济指标服从正态分布 $N(\mu, \sigma^2)$, 其中 μ , σ 均未知. 今获取了 该指标的 20 个数据作为样本, 并算得样本均值 $\overline{x} = 56.93$, 样本方差 $s^2 = (0.93)^2$. 试求:
 - (1)该项经济指标标准差 σ 的置信水平为98%置信区间;
 - (2)该项经济指标均值 μ 的置信水平为 95% 的(单侧)置信下限.

$$(\chi_{0.01}^2(19) = 36.19, \chi_{0.99}^2(19) = 7.63, t_{0.05}(19) = 1.729, t_{0.025}(19) = 2.093)$$

12. 设总体 X 具有概率密度

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1} & 0 < x < 1 \\ 0 & \text{ 其他} \end{cases} (\theta > 0)$$

 X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本,

- (1)求参数 θ 的矩估计;
- (2)求参数 θ 的极大似然估计.
- **13.** 某校大二学生线性代数考试成绩 X 服从正态分布 $N(\mu, \sigma^2)$, 从中随机地抽取 20 份考卷, 算得平均成绩 $\overline{x} = 72$ 分, 样本方差 $s^2 = 16$ 分, 试求:
 - (1)学生线性代数考试成绩标准差 σ 的置信水平为98%置信区间;
 - (2)学生线性代数成绩均值 μ 的置信水平为 95% 的(单侧)置信上限.

$$(\chi_{0.01}^2(19) = 36.19, \chi_{0.99}^2(19) = 7.63, t_{0.05}(19) = 1.729, t_{0.025}(19) = 2.093)$$

14. 设总体 X 具有概率密度

$$f(x;\theta) = \begin{cases} (\theta+1)x^{\theta} & 0 < x < 1 \\ 0 & 其他 \end{cases} (\theta > -1),$$

 X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本,

- (1)求参数 θ 的矩估计;
- (2)求参数 θ 的极大似然估计.
- **15.** 某校大二学生概率统计成绩 X 服从正态分布 $N(\mu, \sigma^2)$, 从中随机地抽取 25 位 考生的成绩, 算得平均成绩 $\overline{x} = 72.2$ 分, 样本标准差 s = 18 分, 试求:
 - (1)学生概率统计成绩标准差 σ 的置信水平为95% 置信区间;
 - (2)学生概率统计成绩均值 μ 的置信水平为 95% 的(单侧)置信上限.

$$(\chi_{0.025}^2(24) = 39.36, \chi_{0.05}^2(24) = 36.42, \chi_{0.975}^2(24) = 12.40, \chi_{0.95}^2(24) = 13.85, t_{0.05}(24) = 1.71, t_{0.025}(24) = 2.06)$$

- **16.** 设总体 X 具有概率密度 $f(x) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$
 - (1)求参数 θ 的矩估计;
 - (2)求参数 θ 的极大似然估计.