COMP2610 / COMP6261 - Information Theory ASSLasting Beautif, Broinia Maxoto Like Macard Narelp

https://eduassistpro.github.

Add Ween are du_assist_pr

6 August 2018

Last time

Assignment Project Exam Help

- Exa
 - https://eduassistpro.github.
- Frequentist vs Bayesian probabilities

Add WeChat edu_assist_pr

The Bayesian Inference Framework

Bayesian Inference

Bayesian inference provides us with a a mathematical framework

Explaining how to change our (Prior) beliefs if the light of new evidence p

likelihood prior

https://eduassistpro.github.

Add WeChatxedu_assist_pr

Prior: Belief that someone is sick

Likelihood: Probability of testing positive given someone is sick

Posterior: Probability of being sick given someone tests positive

This time

As Signature Bromal light the (tre will Xale fruch Listed has henceforth in studying binary channels)

https://eduassistpro.github.

Esti

Add WeChat edu_assist_pr

Bayesian inference for parameter estimati

Outline

Assignment Project Exam Help

- 2 The Bi
- Para https://eduassistpro.github.
- BayesiA drahet With at edu_assist_pr
- Wrapping up

Assignment Project Exam Help

- Para https://eduassistpro.github.
- Add WeChat edu_assist_pr
- Wrapping up

Introduction

Consider a binary variable X (0,1) It could represent many things: AS Wileger archive and the add on a left Exam Help

- https://eduassistpro.github.
- The Act of Weethat edu_assist_pr

Often, these outcomes (0 or 1) are not equally likely

What is a general way to model such an X?

Assignment Project Exam Help

https://eduassistpro.github.

Here, $0 \le \theta \le 1$ is a parameter representing the

For highe And of the color of t

• e.g. a biased coin

Assignment Project Exam Help

More suchttps://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam Help

More suchttps://eduassistpro.github.

This is known as a Bernovilli distribution over bidary o assist properties
$$p(X = x|\theta) = \text{Bern}(x|\theta) =$$

Note the use of the conditioning symbol for θ ; will revisit later

Mean and Variance

The expected value (or mean) is given by:

Assignment Project Exam Help

https://eduassistpro.github.

The variance (or squared standard deviation) is giv

 $=\theta(1-\theta).$

Add EW-exhat edu_assist_prediction
$$= \mathbb{E}[(X - \theta)^2]$$

= $(0 - \theta)^2 \cdot p(X = 0|\theta) + (1 - \theta)^2 \cdot p(X = 1|\theta)$

Example: Binary Symmetric Channel

Suppose a sender transmits messages s that are sequences of bits

Assignment Project Exam Help

https://eduassistpro.github.

Example: Binary Symmetric Channel

We can think of r as the outcome of a random variable, with conditional Assignment Project Exam Help https://eduassistpro.github.i Add WeChat edu_assist_pr

$$p(E = e) = Bern(e|f), e \in \{0, 1\}.$$

Assignment Project Exam Help

- Para https://eduassistpro.github.
- Add WeChat edu_assist_pr
- Wrapping up

The Binomial Distribution

Introduction

Suppose we perform N independent Bernoulli triefs X am Help

https://eduassistpro.github. Each trial h

What is the distribution with the further attine du_assist_pr

- e.g. the number of times we obtained
- e.g. the number of errors in the transmitted sequence

The Binomial Distribution

Let

Assignment Project Exam Help

Then Y https://eduassistpro.github.

$$\underset{\text{for } m \in \{0,1,\ldots,N\}. \text{ Here}}{ \underset{\text{for } m}{Add}} \overset{p(Y=m)=\text{Bin}(m|N,\theta)=}{\underset{\text{Here}}{WeChat}} \text{ edu_assist_pr}$$

$$\binom{N}{m} = \frac{N!}{(N-m)!m!}$$

is the # of ways we can we obtain m heads out of N coin flips

The Binomial Distribution:

Mean and Variance

It is easy to show that:

Assignment Project Exam Help

https://eduassistpro.github.

Follows from linearity of mean and variance

$$Add W Chat edu_assist_problem = \sum_{i=1}^{|E|} X_i = \sum_{i=1}^{|E|} E_i$$

$$\mathbb{V}[Y] = \mathbb{V}\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \mathbb{V}[X_i] = N\theta(1-\theta)$$

The Binomial Distribution:

Example

Ashton is an excellent off spinner. The probability of him getting a wicket August 1 grant a life probability of him getting a wicket prob

His coach

https://eduassistpro.github.

- What is the prevent to be draited to g assist p $\mathbb{E}[Y]$, where $Y \sim \text{Bin}(\cdot|10,0.25)$.
- What is the probability that he will get at least one wicket? $\sum_{m=1}^{10} \text{Bin}(m|N=10, \theta=0.25) = 1 \text{Bin}(m=0|N=10, \theta=0.25)$

The Binomial Distribution:

Example: Distribution of the Number of Wickets

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Histogram of the binomial distribution with $\emph{N}=$ 10 and $\theta=$ 0.25. From Bishop (PRML, 2006)

Assignment Project Exam Help

- Para https://eduassistpro.github.
- Add WeChat edu_assist_pr
- Wrapping up

Assignment of observations $\mathcal{D} = \{x_i, x_i\}$ with $x_i \in \{0,1\}$ let p

whhttps://eduassistpro.github.

Each observation is the outcome of a random variab tion $Add_{(x)} \underbrace{W_{x} e C_{e} h_{(x)} t_{e} e du_assist_pr}_{\text{local}}$

for some parameter θ

 $\underset{X \sim \text{Bern}(x|\theta)}{\text{We know that}} \underbrace{Project}_{X \sim \text{Bern}(x|\theta)} \underbrace{Exam}_{Y \sim \text{Bern}(x|\theta)} \underbrace{Exa$

- The https://eduassistpro.github.
- The partial of the sports and the sports are the sports and the sports are the

What would be a reasonable estimate for θ from \mathcal{D} ?

Assignment Project Exam Help

Say that w

Maximum Likelihood

https://eduassistpro.github.

Add We Charlible: # edu_assist_pr

Maximum Likelihood

Say that we observe

Assignment Project Exam Help

```
If it were tr

https://eduassistpro.github.l

p(\mathcal{D}|\theta) = p(x_i \theta)

Add WeChat_edu_assist_pr

= \frac{1}{2^{10}}
```

 ≈ 0.001 .

Maximum Likelihood

If it were https://eduassistpro.github.

Add WeChat edu_assist_prediction
$$= \begin{pmatrix} 1 \\ \frac{1}{5} \end{pmatrix} \cdot \frac{1}{5}$$
 $\approx 0.007.$

Maximum Likelihood

We can write down how likely Disunder the Bellowlli model Als I mindpinder independent observations.

https://eduassistpro.github.

We call $L(\theta) = p(\mathcal{D}|\theta)$ the likelihood function

Add WeChat edu_assist_pr

Maximum Likelihood

We can write down bow-likely Disturbes the Be noulli model Assiming pindependent observations.

https://eduassistpro.github.

We call $L(\theta) = p(\mathcal{D}|\theta)$ the likelihood function

Maximum And do photo-Chat edu_assist_pr

The parameter for which the observed sequence has the highest probability

Maximum Likelihood

Assignmenta Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Maximum Likelihood

Assignment Project Exam Help

https://eduassistpro.github. Setting $\frac{d\mathcal{L}}{d\theta} = 0$ we obtain:

Add WeChatedu_assist_predu_assist_predu_assist_preduction \overline{N}

Maximum Likelihood

Assignmenta Project Exam Help

https://eduassistpro.github. Setting
$$\frac{d\mathcal{L}}{d\theta} = 0$$
 we obtain:

The proportion of times x = 1 in the dataset \mathcal{D} !

Parameter Estimation — Issues with Maximum Likelihood

Consider the following scenarios:

Assitgament we obtange of Exam Help ▶ What is the estimate of the probability of a coin flip resulting in 'heads'?

In a s ce never

*https://eduassistpro.github.

Add WeChat edu_assist_pr

Parameter Estimation — Issues with Maximum Likelihood

Assistant Help

What is the estimate of the probability of a coin flip resulting in 'heads'?

- In a s ce never
 - *https://eduassistpro.github.
- Tittps://eduassistpro.gitriub

Need to smooth out our parameter estimat __assist__pr

 Alternatively, we can do Bayesian inference by considering priors over the parameters

Assignment Project Exam Help

- Para https://eduassistpro.github.
- Bayesian Parameter Estimation Add WeChat edu_assist_pr
- Wrapping up

Parameter Estimation: Bayesian Inference

Recall:

Assignment Projecte Exam Help

If we treathttps://eduassistpro.github.about its value

• e.g. we believe disprobably close to 0 Add WeChat edu_assist_pr

Our prior on θ quantifies what we believe the data

Our posterior on θ quantifies what we believe θ is likely to be, after looking at the data

Parameter Estimation: Bayesian Inference

Answing in the project Exam Help Bern $(x \theta) = \theta^{x}(1 \theta)^{1-x}$

For the phttps://eduassistpro.github.distribution:

We can tune a, b to reflect our belief in the range of likely values of θ

Beta Prior
Examples

Beta Posterior Distribution

Recall that for $\mathcal{D} = \{x_1, \dots, x_N\}$, the likelihood under a Bernoulli model is:

Assignment Project Exam Help

where m

https://eduassistpro.github.

Add WeChat edu_assist_pr

Beta Posterior Distribution

Recall that for $\mathcal{D} = \{x_1, \dots, x_N\}$, the likelihood under a Bernoulli model is:

Assignment Project Exam Help

where m

For the Phttps://eduassistpro.github.

$$p(\theta|\mathcal{D}, a, b) = \frac{|\mathcal{D}|}{p(\mathcal{D}|)}$$

 $p(\theta|\mathcal{D},a,b) = \frac{\mathcal{D}|}{p(\mathcal{D}|)}$ Add WeChatledu_assist_pr

= Beta($\theta | m + a, \ell + b$).

Beta Posterior Distribution

Recall that for $\mathcal{D} = \{x_1, \dots, x_N\}$, the likelihood under a Bernoulli model is:

Assignment Project Exam Help

where m

def

For the Phttps://eduassistpro.github.

$$p(\theta|\mathcal{D},a,b) = \frac{\mathcal{D}|}{p(\mathcal{D}|)}$$
Add WeChatledu_assist_pr

= Beta $(\theta|m+a,\ell+b)$.

Can use this as our new prior if we see more data!

Beta Posterior Distribution

Now suppose we choose θ_{MAP} to maximise $p(\theta|\mathcal{D})$

Assignment Project Exam Help
One can show that

https://eduassistpro.github.

Add WeChāredu_assist_pr

The prior parameters a and b can be seen a

What values of a and b ensure $\theta_{MAP} = \theta_{ML}$? a = b = 1. Make sense? (Note that the choice of the beta distribution was not accidental here — it is the "conjugate prior" for the binomial distribution.)

Assignment Project Exam Help

- Para https://eduassistpro.github.
- Add WeChat edu_assist_pr
- Wrapping up

Summary

Assignment biProjecta Exam Help Bernoulli distribution

https://eduassistpro.github.

- Bayesian inference: Full posterior on the par
- Reading: Mackay §23.1 and §23.5; Bis

Assignment Project Exam Help

• Ent https://eduassistpro.github.

Add WeChat edu_assist_pr