靜宜大學資訊學院 畢業專題成果 報告書

專題名稱:虛擬偶像

實驗室名稱:515

指導教師:蔡英德

專題學生: 陳柄菽、林佳宜、黄筱媛、趙庭、李珮瑀、吳偲彤

◆ 前言

將 3D 人偶透過 Barracuda 抓取人體骨架並結合,模仿真人,並可將此運用在追星等其他目的上,讓遙不可及的偶像可以更貼近一般人,並且結合你喜歡的二次元形象與現實生活中人物來與使用者互動,讓你的虛擬人偶可以模仿舞蹈以及肢體動作。

◆ 系統功能(本機端)

- ▶ 自行上傳影片並即時捕捉人物的動作
- ▶ 鏡頭即時偵測目標人物動向
- ▶ 自行選擇要儲存的片段

◆ 系統功能(網頁版)

- ▶ 上傳人物圖片進行風格轉換
- ▶ 上傳影片使圖片中的人物動起來

◆ 系統特色

主要是對影片中的人物,以 Barracuda 抓取影片骨架,並將最後學習結果套用到 虚擬 3D 人偶身上,讓屬於自己的 3D 人偶有了自己心目中偶像的肢體動作,也可以讓他 用自己的方式對動作進行演繹。

◆ 使用對象

任何人

◆ 使用環境

- 1. Unity
- 2. PyCharm
- 3. PhpStorm

◆ 開發工具

- 1. Openpose
- 2. Vroid
- 3. Visual Studio
- 4. CartoonGan

◆ 系統架構設計(本機端)

◆ 事件表/使用者需求表 (本機端)

參與者	事件描述(目標描述)	使用案例(UseCase)
使用者	按下"上傳影片",選取一個 影片,上傳至系統	上傳影片

系統	接收使用者上傳的影片,並且在畫面中進行撥放	接收並撥放影片	
. ONNX	分析影片人物骨架	分析骨架	
系統	將分析好的骨架給人偶,讓人 偶動起來	人偶動起來	
使用者	按下"?"跳出說明	?說明	
使用者	按下"開始錄影"開始錄影	開始錄影	
使用者	按下"停止錄影"停止錄影	停止錄影	
使用者	按下" 暫停錄影 " 暫停錄影	暫停錄影	
使用者	按下"繼續錄影"繼續錄影	繼續錄影	
使用者	按下"鏡頭"可以到鏡頭頁面	鏡頭	
使用者	按下"影片"可以到影片頁面	影片	
使用者	按下"返回選單"可以回到選單畫面	返回選單	

使用者	按下" 暫停 " 可以停止影片 與人偶的動作	暫停
使用者	在"繼續撥放"可以繼續撥方 影片及人偶動作	繼續撥放

◆ 系統架構設計(網頁版)

◆ 事件表/使用者需求表 (網頁版)

參與者	事件描述(目標描述)	使用案例(UseCase)	
使用者	按下"選擇圖片", 選取一個圖片,上傳至系 統	上傳圖片	

使用者	按下"風格轉換", 系統抓取上傳圖片, 進行風格轉換。	風格轉換	
CartoonGAN	抓取上傳圖片, 進行風格轉換。	風格轉換	
使用者	按下"下一步", 跳轉至下個頁面	下一步	
使用者	按下"選擇影片", 選取一個影片,上傳至系 統	選擇影片	
使用者	按下"開始跳舞", 系統抓取上傳影片, 進行骨架分析、套用骨架。	開始跳舞	
Everybody Dance Now	抓取上傳影片, 進行骨架分析、套用骨架。	分析並套用骨架	
使用者	按下"回主頁", 畫面回到上傳圖片頁面	回主頁	

◆ 系統畫面(本機端)

◆ 系統畫面(網頁版)

虚擬偶像

現今社會也漸漸進入虛實整合的狀態 虛擬世界的存在並不比現實社會來得弱勢 前景發展也更加多元

迎接這樣的改變虛擬偶像勢必也將會成為一線商機・ 為此我們提出了兩種虛擬偶像的玩法。

網頁版:將卡通化的偶像·輸入影片骨架·進行動作。 下載執行檔:使用3D人偶·輸入影片骨架·進行動作。

網頁版

本地端執行

使用說明

步驟一:上傳圖片。

步驟二:點擊"風格轉換",進行風格轉換,下一步。

步驟三:上傳影片。

步 驟 四 : 點 擊 " D a n c e " , 進 行 骨 架 分 析 ,

即可欣賞Q版偶像跳舞。

也可以點擊下載按鈕,保存影片。

下載執行檔:使用3D人偶,輸入影片骨架,進行動作。

回首頁

卜一負

◆ 成本分析

項目名稱	說明	單位	數量	單 價 臺幣(元)	小 計 臺幣(元)
個人電腦	專案之進行	部	1	190, 000	190, 000
個人電腦	專案之進行	部	1	47, 000	47, 000
繪圖板	專案之進行	部	1	2, 390	2, 390
繪圖板	專案之進行	部	1	2, 590	2, 590
攝像鏡頭	專案之進行	批	1	849	849
雜支費	印刷費、文具等	批	1	151	151
	共		計		242, 980

◆ 結論及未來發展

未來期待可以提供客製化方面的服務,例如應用於懷念親人或好友。現今社會也漸漸進入虛實整合的狀態,虛擬世界的存在並不比現實社會來得弱勢,前景發展也更加多元,迎接這樣的改變虛擬偶像勢必也將會成為一線商機,例如近期蓬勃發展的vtuber,使用動態捕捉技術使影片拍攝者可以以虛擬的樣貌出在觀眾的眼前,但是有些昂貴的設備成本與要穿戴繁瑣的捕捉設備,成為了使用的一大阻礙,本次專題期望可以讓使用者可以僅僅使用攝像頭來捕捉動作,讓這似乎遙不可及的行業更加貼近生活。

甚至未來,能深入研究,開發出虛擬寵物,動物們的壽命相對於人類更加短暫,然而不可否認的是牠們對於飼主來說是有如家人般的存在,這將成為一大慰藉,畢竟我們期待透過深度學習,虛擬人物或寵物是能學習到不管是聲音還是他所習慣的行為模式。

虚擬偶像的發展多元、應用廣泛,對於人類社會將造成一定程度的影響,將是迎接未來不可或缺的重要研究。