Numer indeksu:		(Grupa ¹ :							
Wersja: Λ			s. 4	s. 5	s. 103	s. 104				
wersja: A			s. 105	s. 139	s. 140	s. 141				
Logika dla inf	ormatykó	w								
Sprawdzian nr 1, 17 listopada 2017 Czas pisania: 30+60 minut										
Zadanie 1 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q, \ \neg q \lor \neg r, \ p \lor s, \ s \lor r, \ \neg s \lor p\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.										
Zadanie 2 (2 punkty). Rozważmy funkcję bool ną w taki sposób, że $majority(x_1, x_2, x_3) = T$ wte z argumentów x_1, x_2, x_3 ma wartość T .	edy i tylko	wte	edy, gdy	większoś	ć (tzn. 2	lub 3)				
Jeśli istnieje formuła rachunku zdań zbudow majority to w prostokąt poniżej wpisz dowolną t słowo "NIE".										

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Jeśli istnieje formuła zbudowana tylko ze zmiennych zdaniowych spójników \Rightarrow i \neg (oraz nawiasów) równoważna formule $p \lor q$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 4 (2 punkty). Powiemy, że formuła φ jest $uproszczeniem$ formuły ψ jeśli obie formuły są równoważne oraz w φ występuje mniej spójników logicznych niż w ψ . W prostokąt poniże wpisz formułę będącą uproszczeniem formuły $(p \land q \land r) \lor (p \land \neg q \land r)$ lub słowo "NIE", jeśl taka formuła nie istnieje.
Zadanie 5 (2 punkty). W prostokąt poniżej wpisz trzy różne zupełne zbiory spójników.

		Numer indeksu:	. (Grupa ¹ :			
Wersja:	$oxed{A}$			s. 4	s. 5	s. 103	s. 104
				s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Dla dowolnego ciągu formuł $\varphi_1, \varphi_2, \ldots$ i dowolnej liczby naturalnej $n \geq 1$ uogólniona alternatywa $\bigvee_{i=1}^{n} \varphi_i$ jest zdefiniowana indukcyjnie w następujący sposób.

$$\bigvee_{i=1}^{1} \varphi_i = \varphi_1, \quad \bigvee_{i=1}^{n+1} \varphi_i = (\bigvee_{i=1}^{n} \varphi_i) \vee \varphi_{n+1}.$$

Udowodnij indukcyjnie, że dla dowolnych formuł $\psi, \varphi_1, \varphi_2, \dots$ i dla wszystkich dodatnich liczb naturalnych n formuły $\bigvee_{i=1}^{n} (\psi \wedge \varphi_i)$ oraz $\psi \wedge (\bigvee_{i=1}^{n} \varphi_i)$ są równoważne.

Zadanie 7 (5 punktów). Zbiór \mathcal{F} formuł zbudowanych ze zmiennych zdaniowych, negacji i alternatywy jest zdefiniowany indukcyjnie jako najmniejszy zbiór spełniający warunki:

- dla dowolnej zmiennej zdaniowej p formuła $p \in \mathcal{F}$,
- dla dowolnej formuły $\varphi \in \mathcal{F}$ formuła $(\neg \varphi) \in \mathcal{F}$ oraz
- dla dowolnych formuł $\varphi_1, \varphi_2 \in \mathcal{F}$ formuła $(\varphi_1 \vee \varphi_2) \in \mathcal{F}$.

Niech \uparrow będzie takim spójnikiem, że formuła $p \uparrow q$ jest równoważna $\neg (p \land q)$. Definiujemy operator τ przyporządkowujący formułom z \mathcal{F} formuły zbudowane ze zmiennych zdaniowych i spójnika \uparrow w następujący sposób:

- dla dowolnej zmiennej zdaniowej p mamy $\tau(p) = p$,
- dla dowolnej formuły $\varphi \in \mathcal{F}$ mamy $\tau(\neg(\varphi)) = (\tau(\varphi) \uparrow \tau(\varphi))$ oraz
- dla dowolnych formuł $\varphi_1, \varphi_2 \in \mathcal{F}$ mamy $\tau(\varphi_1 \vee \varphi_2) = (\tau(\neg \varphi_1) \uparrow \tau(\neg \varphi_2)).$

Udowodnij indukcyjnie, że dla każdej formuły $\varphi \in \mathcal{F}$ formuła $\tau(\varphi)$ jest równoważna formule φ oraz formuła $\tau(\neg \varphi)$ jest równoważna formule $\neg \varphi$.

Zadanie 8 (5 punktów). Rozważmy dowolne formuły φ i ψ rachunku zdań. Podaj definicję logicznej konsekwencji zbioru formuł a następnie udowodnij, że formuła $\neg \varphi$ jest logiczną konsekwencją zbioru formuł $\{\varphi \Rightarrow \psi, \ \neg \psi\}$.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	Numer indeksu:		Grupa ¹ :						
Wersja: D			s. 4	s. 5	s. 103	s. 104			
			s. 105	s. 139	s. 140	s. 141			
	Logika dla informat	yków							
Sprawdzian nr 1, 17 listopada 2017 Czas pisania: 30+60 minut									
Zadanie 1 (2 punkty). Rozważmy funkcję boolowską $parity: \{T,F\}^3 \to \{T,F\}$ zdefiniowaną w taki sposób, że $parity(x_1,x_2,x_3) = T$ wtedy i tylko wtedy, gdy wśród argumentów x_1,x_2,x_3									
parzyście wiele (tzn. 0 lub 2) ma wartość T . Jeśli istnieje formuła rachunku zdań zbudowana ze zmiennych p_1, p_2, p_3 opisująca funkcję parity to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".									
Siowo "IVIE".									
Zadanie 2 (2 punkty). Powiemy, że formuła φ jest $uproszczeniem$ formuły ψ jeśli obie formuły są równoważne oraz w φ występuje mniej spójników logicznych niż w ψ . W prostokąt poniżej wpisz formułę będącą uproszczeniem formuły $(p \wedge q \wedge r) \vee (p \wedge q \wedge \neg r)$ lub słowo "NIE", jeśli taka formuła nie istnieje.									

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor r, \ \neg q \lor r, \ p \lor q, \ \neg s \lor \neg r, \ \neg r \lor s\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.
Zadanie 4 (2 punkty). W prostokąt poniżej wpisz trzy różne zbiory spójników, które <i>nie</i> są zupełne.
Zadanie 5 (2 punkty). Jeśli istnieje formuła zbudowana tylko ze zmiennych zdaniowych spójników \Rightarrow i \neg (oraz nawiasów) równoważna formule $p \land q$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

		Numer indeksu:	(Grupa ¹ :			
Wersja:	$oxed{\mathbf{D}}$			s. 4	s. 5	s. 103	s. 104
				s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Zbiór \mathcal{F} formuł zbudowanych ze zmiennych zdaniowych, negacji i koniunkcji jest zdefiniowany indukcyjnie jako najmniejszy zbiór spełniający warunki:

- dla dowolnej zmiennej zdaniowej p formuła $p \in \mathcal{F}$,
- dla dowolnej formuły $\varphi \in \mathcal{F}$ formuła $(\neg \varphi) \in \mathcal{F}$ oraz
- dla dowolnych formuł $\varphi_1, \varphi_2 \in \mathcal{F}$ formuła $(\varphi_1 \wedge \varphi_2) \in \mathcal{F}$.

Niech \downarrow będzie takim spójnikiem, że formuła $p \downarrow q$ jest równoważna $\neg (p \lor q)$. Definiujemy operator τ przyporządkowujący formułom z \mathcal{F} formuły zbudowane ze zmiennych zdaniowych i spójnika \downarrow w następujący sposób:

- dla dowolnej zmiennej zdaniowej p mamy $\tau(p) = p$,
- dla dowolnej formuły $\varphi \in \mathcal{F}$ mamy $\tau(\neg(\varphi)) = (\tau(\varphi) \downarrow \tau(\varphi))$ oraz
- dla dowolnych formuł $\varphi_1, \varphi_2 \in \mathcal{F}$ mamy $\tau(\varphi_1 \wedge \varphi_2) = (\tau(\neg \varphi_1) \downarrow \tau(\neg \varphi_2)).$

Udowodnij indukcyjnie, że dla każdej formuły $\varphi \in \mathcal{F}$ formuła $\tau(\varphi)$ jest równoważna formule φ oraz formuła $\tau(\neg \varphi)$ jest równoważna formule $\neg \varphi$.

Zadanie 7 (5 punktów). Dla dowolnego ciągu formuł $\varphi_1, \varphi_2, \ldots$ i dowolnej liczby naturalnej $n \ge 1$ uogólniona koniunkcja $\bigwedge_{i=1}^n \varphi_i$ jest zdefiniowana indukcyjnie w następujący sposób.

$$\bigwedge_{i=1}^{1} \varphi_i = \varphi_1, \quad \bigwedge_{i=1}^{n+1} \varphi_i = (\bigwedge_{i=1}^{n} \varphi_i) \wedge \varphi_{n+1}.$$

Udowodnij indukcyjnie, że dla dowolnych formuł $\psi, \varphi_1, \varphi_2, \dots$ i dla wszystkich dodatnich liczb naturalnych n formuły $\bigwedge_{i=1}^{n} (\psi \vee \varphi_i)$ oraz $\psi \vee (\bigwedge_{i=1}^{n} \varphi_i)$ są równoważne.

Zadanie 8 (5 punktów). Rozważmy dowolne formuły α , β i γ rachunku zdań. Podaj definicję logicznej konsekwencji zbioru formuł a następnie udowodnij, że formuła $\alpha \Rightarrow \gamma$ jest logiczną konsekwencją zbioru formuł $\{\alpha \Rightarrow \beta, \ \beta \Rightarrow \gamma\}$.

¹Proszę zakreślić właściwą grupę ćwiczeniową.