MAS350: Assignment 1

Solutions and discussion are written in blue. A sample mark scheme, with a total of 30 marks, is given in red, with each mark placed after the statement/deduction for which the mark would be given. As usual, mathematically correct solutions that follow a different method would be marked analogously.

1. Recall that the Borel σ -field $\mathcal{B}(\mathbb{R})$ is the smallest σ -field on \mathbb{R} containing all open intervals (a,b) with $-\infty < a < b < \infty$. Define

$$A = \bigcup_{n=1}^{N} [a_n, b_n]$$

where $a_1 \leq b_1 < a_2 \leq b_2 < a_3 \leq b_3 < \dots$ are real numbers.

- (a) Prove, starting from the definition given above, that $A \in \mathcal{B}(\mathbb{R})$.
- (b) Write down a formula for the Lebesgue measure of A, in terms of the a_i and b_i . Is your formula valid if $N = \infty$?
- (c) Consider the following claims.
 - (i) The Borel σ -field is an infinite set.
 - (ii) The Borel σ -field contains an infinite number of infinite sets.
 - (iii) All countable sets are Borel sets with zero Lebesgue measure.
 - (iv) All Borel sets with positive Lebesgue measure contain at least one open interval.
 - (v) The Cantor set is a Borel set.
 - (vi) The Cantor set has Lebesgue measure zero.

In each case (i)-(vi), state whether you believe the claim to be true or false. For claims that you believe are true, give a proof. For claims that you believe are false, give a counterexample. Use parts (a) and (b) to support your arguments.

Solution.

(a) For $b \in \mathbb{R}$, since $(b, n) \in \mathcal{B}(\mathbb{R})$ for all n > b, also $\cup_n (b, n) = (b, \infty) \in \mathcal{B}(\mathbb{R})$. [1] Similarly $(-\infty, a) = \cup_n (-n, a) \in \mathcal{B}(\mathbb{R})$ for all a.

Hence,
$$[a, b] = \mathbb{R} \setminus ((-\infty, a) \cup (b, \infty) \in \mathcal{B}(\mathbb{R})$$
. [1]

Hence also
$$A = \bigcup_{i=1}^{N} [a_i, b_i] \in \mathcal{B}(\mathbb{R})$$
. [1]

Pitfall: Note that here we are using a particular definition of the Borel sets, which doesn't immediately tell us that half-open intervals such as (a, ∞) are Borel. We can deduce it easily, however. There are many different equivalent definitions.

(b) We have

$$\lambda(A) = \sum_{n=1}^{N} (b_n - a_n).$$

[1] By countable additivity of disjoint sets (i.e. the third property in the definition of a measure) this formula is valid when $N = \infty$. [1]

1

- (c) (i) True. For example, $\mathcal{B}(\mathbb{R})$ contains each of the sets (x, x + 1), for $x \in \mathbb{R}$, and there are infinitely many of these. [1]
 - (ii) True. We can use the same example as in (i), because each of the sets (x, x + 1) is infinite. [1] *Pitfall:* Make sure you keep track of the difference between a set and a set of sets.
 - (iii) True. [1] If a set A is countable, the we may write it in the form $A = \bigcup_{n=1}^{\infty} [a_n, a_n]$. By part (a) this means A is a countable union of Borel sets, and hence is itself Borel. Our formula from part (b) shows that A has Lebesgue measure zero. [1]
 - (iv) False. [1] Recall that \mathbb{Q} is countable, and hence also a Borel set by the previous part. Hence the irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ are a Borel set. Since $\lambda(\mathbb{Q}) = 0$ we have $\lambda(\mathbb{R} \setminus \mathbb{Q}) = \infty$, but the irrational numbers do not contain any open intervals. [1]
 - (v) True. Recall the iterative 'middle third' construction of the Cantor set as $C = \cap_n C_n$ (see lecture notes), where $C_1 = [0,1]$ and C_{n+1} is constructed from C_n by removing the middle third of each closed interval. [1] Thus C_n is the disjoint union of 2^n closed intervals, and we can write it in the form $\bigcup_{n=1}^N [a_n, b_n]$. Thus C_n is Borel by part (a), and since σ -fields are closed under countable intersections, we have $C \in \mathcal{B}(\mathbb{R})$ too. [1]
 - (vi) True. In the iterative 'middle third' construction of the Cantor set as $C = \cap_n C_n$, the n^{th} stage C_n is a union of 2^n disjoint closed intervals each with length 3^{-n} . Using part (b), the Lebesgue measure of C_n is therefore $(\frac{2}{3})^n$. [1] Since the first stage $C_1 = [0,1]$ has finite measure, in fact $\lambda(C_1) = 1$, this means $\lambda(C) = \lim_n \lambda(C_n) = \lim_n (\frac{1}{3})^n = 0$. [1]
- 2. Let λ denote Lebesgue measure and let $\mathcal{B}(\mathbb{R})$ denote the Borel σ -field on \mathbb{R} . This question concerns examples of decreasing sequences of Borel sets (B_n) and measures m on $\mathcal{B}(\mathbb{R})$ such that

$$m\left(\bigcap_{n=1}^{\infty} B_n\right) \neq \lim_{N \to \infty} m\left(\bigcap_{n=1}^{N} B_n\right).$$

- (a) Taking $m = \lambda$, show that $B_n = (-\infty, -n]$ is an example of this type.
- (b) Find a second example, with the additional property that $\bigcap_{n=1}^{\infty} B_n$ is non-empty.
- (c) Find a third example, with the additional property that B_1 is countable.

Solution.

- (a) We have $\lambda(B_n) = \sum_{j=n}^{\infty} \lambda((-j-1,-j]) = \infty$ and thus $\lim_n \lambda(B_n) = \infty$, [1] but $\bigcap_n (-\infty,-n] = \emptyset$ which has measure zero. [1]
- (b) Take e.g. $B_n = (-\infty, -n] \cup [0, 1]$. Then $\lambda(B_n) = \infty$ as before, but now $\cap_n B_n = [0, 1]$ which is non-empty with Lebesgue measure 1. [1]
- (c) Take m to be counting measure on \mathbb{N} (the σ -field can be $\mathcal{P}(\mathbb{N})$ here) and let $B_n = \{n, n+1, \ldots, \infty\}$. and then $m(B_n) = \infty$ but $m(\cap_n B_n) = m(\emptyset) = 0$. [1]

Pitfall: Remember the conditions of the theorem! In general, $m(\cap_n B_n) = \lim_n m(B_n)$ for decreasing B_n only if $m(B_1)$ is finite. Once you remember this, you know to start by trying (any) example where $m(B_1)$ is infinite, and from there you don't have far to go.

3. Let S be a finite set and Σ be a σ -field on S. Consider the set

$$\Pi = \{ A \in \Sigma : \text{ if } B \in \Sigma \text{ and } B \subseteq A \text{ then either } B = A \text{ or } B = \emptyset \}.$$
 (*)

- (a) Show that Π is a finite set.
- (b) Using (a), let us enumerate the elements of Π as $\Pi = {\Pi_1, \Pi_2, \dots, \Pi_k}$, where each Π_i is distinct from the others.
 - (i) Show that $\Pi_i \cap \Pi_j = \emptyset$ for $i \neq j$. Hint: Could $\Pi_i \cap \Pi_j$ be an element of Π ?
 - (ii) Show that $\bigcup_{i=1}^k \Pi_i = S$. Hint: If $C = S \setminus \bigcup_{i=1}^k \Pi_i$ is non-empty, is $C \in \Pi$?
 - (iii) Let $A \in \Sigma$. Show that

$$A = \bigcup_{i \in I} \Pi_i$$

where $I = \{i = 1, ..., k : A \cap \Pi_i \neq \emptyset\}$

Solution.

- (a) Note that each element of Π is a subset of S. Hence Π itself is a subset of the power set P(S) of S. [1] Since S is a finite set, P(S) is also a finite set, hence Π is also finite. [1] Pitfall: Part (b) of this question is difficult. It requires you to keep a very clear head. To solve a question like this you have to explore what you have deduce from what else, with lots of thinking 'if I knew this then I would also know that' and then trying to fit a bigger picture together, connecting your start point to your desired end point. Analysis can often be like this.
- (b) i. Suppose $\Pi_i \cap \Pi_j \neq \emptyset$. Note that $\Pi_i \cap \Pi_j$ is a subset of both Π_i and Π_j . [1] By definition of Π , any subset of Π_i is either equal to Π_i or is equal to \emptyset . Since we assume that $\Pi_i \cap \Pi_j \neq \emptyset$, we therefore have $\Pi_i = \Pi_i \cap \Pi_j$. [1] Similarly, $\Pi_j = \Pi_i \cap \Pi_j$. Hence $\Pi_i = \Pi_j$, but this contradicts the fact that the Π_i are distinct from each other. [1] Thus we have a contradiction and in fact we must have $\Pi_i \cap \Pi_j = \emptyset$.
 - ii. By definition of Π we have $\bigcup_{i=1}^k \Pi_i \subseteq S$. Suppose $\bigcup_{i=1}^k \Pi_i \neq S$. Then $C = S \setminus \bigcup_{i=1}^k \Pi_i$ is a non-empty set in Σ . Since C is disjoint from all the Π_i , we must have $C \notin \Pi$. [1] Noting that $C \in \Sigma$,

by definition of Π this implies that there is some¹ $B_1 \subset C$ such that $B_1 \neq \emptyset$. [1] We have that B_1 is disjoint from all the Π_i , so we must have $B_1 \notin \Pi$. Thus by the same reasoning (as we gave for C) there exists $B_2 \subset B_1$ such that $B_2 \neq \emptyset$. Iterating, we construct an infinite decreasing sequence of sets $C \supset B_1 \supset B_2 \supset B_3 \ldots$ each strictly smaller than the previous one, none of which are empty. However, this is impossible because $C \subseteq S$ is a finite set. [1]

iii. Let $i \in I$. So $\Pi_i \cap A \neq \emptyset$. Noting that $\Pi_i \cap A \subseteq \Pi_i$, by definition of Π we must have $\Pi_i \cap A = \Pi_i$. That is, $\Pi_i \subseteq A$. Since we have this for all $i \in I$, we have $\bigcup_{i \in I} \Pi_i \subseteq A$. [1]

Now suppose that $A \setminus \bigcup_{i \in I} \Pi_i \neq \emptyset$. Since by (ii) we have $S = \bigcup_{i=1}^k \Pi_i$, and the union is disjoint by (i), this means that there is some Π_j with $j \notin I$ such that $A \cap \Pi_j \neq \emptyset$. [1] However $A \cap \Pi_j \subseteq \Pi_j$ so by definition of Π we must have $\Pi_j \cap A = \Pi_j$. That is $\Pi_j \subseteq A$, but then we would have $j \in I$, which is a contraction. [1]

Thus $A \setminus \bigcup_{i \in I} \Pi_i$ must be empty, and we conclude that $A = \bigcup_{i \in I} \Pi_i$.

 $^{{}^1}X \subset Y$ means that $X \subseteq Y$ and $X \neq Y$ i.e. X is strictly smaller than the set Y