Curs: Statistică (2017 - 2018) Instructori: A. Amărioarei, S. Cojocea

Examen

11 Februarie 2018

Timp de lucru 2h. Toate documentele, computerele personale, telefoanele mobile și/sau calculatoarele electronice de mână sunt autorizate. Orice modalitate de comunicare între voi este **strict** interzisă. Aveți 3 subiecte, fiecare valorând 10 puncte. Mult succes!

Exercițiul 1

Fie X o variabilă aleatoare repartizată

$$\mathbb{P}_{\theta}(X=k) = A(k+1)\theta^k, \quad k \in \mathbb{N}$$

unde $\theta \in (0,1)$ un parametru necunoscut și $A \in \mathbb{R}$ este o constantă.

1. Determinați constanta A și calculați $\mathbb{E}[X]$ și Var(X).

Dorim să estimăm pe θ plecând de la un eșantion X_1, X_2, \dots, X_n de talie n din populația dată de repartiția lui X.

- 2. Determinați estimatorul $\tilde{\theta}$ a lui θ obținut prin metoda momentelor și calculați $\mathbb{P}_{\theta}(\tilde{\theta}=0)$.
- 3. Determinați estimatorul de verosimilitate maximă $\hat{\theta}$ a lui θ și verificați dacă acesta este bine definit.
- 4. Studiați consistența estimatorului $\tilde{\theta}$ și determinați legea lui limită.

Exercitiul 2

Fie X_1, X_2, \dots, X_n un eșantion de talie n din populația f_{θ} unde

$$f_{\theta}(x) = \frac{1}{\theta} e^{-\frac{x-\theta}{\theta}} \mathbf{1}_{[\theta, +\infty)}(x)$$

cu $\theta > 0$, parametru necunoscut.

- 1. a) Determinați repartiția lui $\frac{X_1}{\theta} 1$.
 - b) Determinați estimatorul $\tilde{\theta}$ a lui θ obținut prin metoda momentelor și calculați eroarea pătratică medie a acestuia.
 - c) Găsiți legea limită a lui θ .
- 2. a) Determinați estimatorul $\hat{\theta}$ a lui θ obținut prin metoda verosimilității maxime.
 - b) Calculați eroarea pătratică medie a lui $\hat{\theta}$ și verificați dacă estimatorul este consistent.
 - c) Construiți un interval de încredere pentru θ de nivel de încredere $1-\alpha$.
 - d) Pe care dintre cei doi estimatori îl preferați?

Grupele: 301, 311 Pagina 1

Universitatea din București Facultatea de Matematică și Informatică

Curs: Statistică (2017 - 2018) Instructori: A. Amărioarei, S. Cojocea

Exercitiul 3

Fie X_1, X_2, \dots, X_n un eșantion de talie n din populația f_θ unde

$$f_{\theta}(x) = \frac{3}{(x-\theta)^4} \mathbf{1}_{[1+\theta,+\infty)}(x)$$

- 1. a) Calculați $\mathbb{E}_{\theta}[X_1]$, $Var_{\theta}(X_1)$ și funcția de repartiție $F_{\theta}(x)$ a lui X_1 .
 - b) În cazul în care $\theta = 2$ dorim să generăm 3 valori aleatoare din repartiția lui $X \sim f_{\theta}(x)$. Pentru aceasta dispunem de trei valori rezultate din repartiția uniformă pe [0, 1]: $u_1 = 0.25$, $u_2 = 0.4$ și $u_3 = 0.5$. Descrieți procedura.
- 2. a) Determinați estimatorul $\hat{\theta}_n^M$ a lui θ obținut prin metoda momentelor și calculați eroarea pătratică medie a acestui estimator. Care este legea lui limită ?
 - b) Găsiți un interval de încredere asimptotic de nivel de încredere de 95% pentru θ .
- 3. a) Exprimați în funcție de θ mediana repartiției lui X_1 și plecând de la aceasta găsiți un alt estimator $\hat{\theta}_n^Q$ al lui θ .
 - b) Determinați legea lui limită a lui $\hat{\theta}_n^Q$ și arătați că, asimptotic, acesta este mai bun decât $\hat{\theta}_n^M$.
 - c) Găsiți un interval de încredere asimptotic de nivel de încredere de 95% pentru θ .
- 4. a) Determinați estimatorul de verosimilitate maximă $\hat{\theta}_n^{VM}$ a lui θ și verificați dacă este deplasat.
 - b) Calculați funcția de repartiție a lui $\hat{\theta}_n^{VM} \theta$.
 - c) Pe care dintre cei trei estimatori îl preferați?

Grupele: 301, 311 Pagina 2

Exercished 2

1.
$$x_1, \dots, x_n = f_0(x) = \frac{1}{0}e^{-\frac{x-0}{0}} f(x)$$
 (evantion, $f_0(x) = \frac{1}{0}e^{-\frac{x-0}{0}} f(x)$)

1. $f_0(x) = f_0(x) = f_0(x) = f_0(x) = f_0(x)$

1. $f_0(x) = f_0(x) = f_0(x) = f_0(x) = f_0(x)$

1. $f_0(x) = f_0(x) = f_0(x) = f_0(x)$

1. $f_0(x) = f_0(x) = f_0(x) = f_0(x)$

2. $f_0(x) = f_0(x) = f_0(x) = f_0(x)$

2. $f_0(x) = f_0(x) = f_0(x) = f_0(x) = f_0(x) = f_0(x)$

2. $f_0(x) = f_0(x) = f_0(x)$

2. $\hat{\Theta} = ?$ (ortinateud prin met. verodimitirlatii maxime)

a). $L(\Theta, x_1, \dots x_N) = \frac{1}{11} \int_{\mathbb{R}^2} \Phi(x_1) = \frac{e^{\frac{1}{N}}}{\Theta^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(\Theta, \infty)}(x_1) = > \frac{x_1 \in (\Theta, \infty)}{e^{\frac{1}{N}}} = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{x_1 \in (\Theta, \infty)}{e^{\frac{1}{N}}} = > \frac{x_1 \in (\Theta, \infty)}{e^{\frac{1}{N}}} = > \frac{x_1 \in (\Theta, \infty)}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \frac{u}{11} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{1}{N}} \chi_{(O, x_1)}(x_1) = > \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \chi_{(O, x_1)}(x_1) = \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \chi_{(O, x_1)}(x_1) = \frac{e^{\frac{1}{N}}}{e^{\frac{1}{N}}} \cdot e^{-\frac{\sum x_1}{2}} \chi_{(O, x_1)}(x_1) = \frac{e^{\frac{1}$

61. Evoqua pahatica medie MSE, estimator consistent?