1. Problem

Container with Most Water

Input: A non-negative integers array.

Output: An integer which corresponds to the maximum area of water that can be contained.

Example: Input: A = [1, 8, 6, 2, 5, 4, 8, 3, 7]

Output: Area of blue section: 49

2021/6/10

	Time complexity	Space complexity
Naive brute force	$O(n^2)$	O(1)
Two pointer	$\mathrm{O}(n)$	O(1)

2021/6/10 2/7

1) Naive approach (Brute Force)

Pseudocode:

maxArea (A[0..(n - 1)])

Input: A non-negative integers array: A

Output: The max area that can be contained.

- 1. $area_max \leftarrow 0$
- 2. **for** start $\leftarrow 0$ **to** n 2 **do**
- 3. **for** end \leftarrow start + 1 **to** n 1 **do**
- 4. height_curr \leftarrow min(A[start], A[end])
- 5. $area_curr \leftarrow height_curr * (end start)$
- 6. $area_max \leftarrow max(area_max, area_curr)$
- 7. **return** area_max

Time complexity: $O(n^2)$

Space complexity: O(1)

Visualization:

Area_curr =
$$7 * (8 - 1) = 49$$

2) Two pointers

Intuition:

Get started with maximum width: take 2 pointers at the left and right boundary

2) Two pointers

Pseudocode:

$\max Area (A[0..(n-1)])$

Input: A non-negative integers array: A

Output: The max area that can be contained.

- 1. $area_max \leftarrow 0$; $left \leftarrow 0$; $right \leftarrow n 1$
- 2. **while** left < right **do**
- 3. height_curr \leftarrow min(A[left], A[right])
- 4. $area_curr \leftarrow height_curr * (right left)$
- 5. $area_max \leftarrow max(area_max, area_curr)$
- 6. **if** $A[left] \le A[right]$ **do**
- 7. left = left + 1
- 8. else
- 9. right = right 1
- 10. **return** area_max

Time complexity: O(n) Space complexity: O(1)

2021/6/10 5/7

	Time complexity	Space complexity
Naive brute force	$O(n^2)$	O(1)
Two pointer	$\mathrm{O}(n)$	O(1)

2021/6/10 6/7

Trapping Rainwater

Input: A non-negative integers array.

Output: The maximum area the given structure can trap.

Example: Input: 3 0 2 0 4

Output: Area of blue section: 7

