Additional Experiments

				1	Dataset		
Methods		E	lec	O	T	Ene	ergy
		MCAR	MAR	MCAR	MAR	MCAR	MAR
	Cov	$0.885\pm_{.0}$	$0.883\pm_{.0}$	0.665±0	0.666±0	$0.952\pm_{.0}$	$0.955\pm_{.0}$
CP-MDA-Exact	Width	$0.602 \pm .0$	$0.593\pm_{.0}$	$21.30 \pm .08$	$21.13 \pm .08$	$300.56\pm_{5.42}$	$302.61\pm_{5.42}$
CP-MDA-Exact	CovGap	$0.016\pm_{.0}$	$0.017\pm_{.0}$	$0.228\pm_{.0}$	$0.227\pm_{.0}$	$0.050\pm_{.0}$	$0.052 \pm .0$
	Winkler	$0.703\pm_{.0}$	$0.705\pm_{.0}$	$37.22\pm_{.13}$	$36.93\pm_{.12}$	$464.78 \pm_{8.14}$	$468.62\pm_{8.02}$
_	Cov	$0.899\pm_{.0}$	$0.902\pm_{.0}$	0.807±0	0.807 ± 0	$0.898\pm_{.0}$	$0.898\pm_{.0}$
CP-MDA-Reweighting	Width	$0.584 \pm_{.0}$	$0.603\pm_{.0}$	$22.89 \pm .13$	$22.68 \pm .12$	$304.32\pm_{6.52}$	$304.32\pm_{6.73}$
	CovGap	$0.002 \pm_{.0}$	$0.004 {\pm}_{.0}$	$0.101 \pm .0$	$0.101\pm_{.0}$	$0.005\pm_{.0}$	$0.005\pm_{.0}$
	Winkler	$0.692 \pm_{.0}$	$0.723\pm_{.0}$	$36.67\pm_{.14}$	$36.42 \pm_{.13}$	$456.25\pm_{8.13}$	$458.13\pm_{8.15}$
	Cov	$0.895\pm_{.0}$	$0.895\pm_{.0}$	$0.894\pm_{.0}$	$0.896\pm_{.0}$	$0.896\pm_{.0}$	$0.896\pm_{.0}$
CP-MDA-Adaptive	Width	$0.605\pm_{.0}$	$0.604\pm_{.0}$	$28.44\pm_{.12}$	$28.42\pm_{.12}$	$296.43 \pm_{5.52}$	$296.62 \pm_{5.63}$
	CovGap	$0.007\pm_{.0}$	$0.007\pm_{.0}$	$0.011\pm_{.0}$	$0.018\pm_{.0}$	$0.008\pm_{.0}$	$0.008\pm_{.0}$
	Winkler	$0.732 \pm .0$	$0.728\pm_{.0}$	$34.12\pm_{.19}$	$34.16\pm_{.18}$	$441.09\pm_{8.13}$	$441.85\pm_{8.16}$
	Cov	$0.898\pm_{.0}$	$0.893\pm_{.0}$	$0.897\pm_{.0}$	$0.909\pm_{.0}$	$0.902\pm_{.0}$	$0.902\pm_{.0}$
MVSC	Width	$0.631 \pm .0$	$0.628\pm_{.0}$	$30.67\pm_{.18}$	$34.34 \pm_{.18}$	576.33 ± 15.6	523.74 ± 15.8
	CovGap	$0.003\pm_{.0}$	$0.010\pm_{.0}$	$0.002 \pm_{.0}$	$0.231\pm_{.0}$	$0.005 \pm_{.0}$	$0.005\pm_{.0}$
	Winkler	$0.764\pm_{.0}$	$0.772 \pm .0$	$38.24 \pm .58$	$40.13 \pm .56$	$741.31 \pm_{13.4}$	698.59 ± 13.1
	Cov	$0.899\pm_{.0}$	$0.900\pm_{.0}$	$0.902\pm_{.0}$	$0.890\pm_{.0}$	$0.894\pm_{.0}$	$0.896\pm_{.0}$
ECP-TSM	Width	$0.592 \pm .0$	$0.588 \pm_{.0}$	$25.71 \pm_{.04}$	$25.80 \pm_{.04}$	$292.53 \pm_{4.32}$	$293.13 \pm_{4.30}$
	CovGap	$0.002 \pm_{.0}$	$0.004 \pm_{.0}$	$0.011\pm_{.0}$	$0.016 \pm_{.0}$	$0.009\pm_{.0}$	$0.003 \pm_{.0}$
	Winkler	$0.695\pm_{.0}$	$0.684 \pm_{.0}$	$27.48 \pm_{.23}$	$27.32 \pm_{.22}$	$406.91 \pm_{7.23}$	$408.33 \pm_{6.96}$

Table 1: Performance of the compared methods for the three benchmark datasets with miscoverage rate α =0.1, under two missing mechanisms. Results were obtained by 5 repetitions with different seeds. Bold numbers indicate the best result, while significant under-coverage is canceled out.

Method	1M	[6M	6M 1Y 5Y		1Y 5		
Method	Coverage	Width	Coverage	Width	Coverage	Width	Coverage	Width
CP-MDA-Adaptive	0.894	1.35	0.893	1.37	0.897	1.37	0.904	1.38
MVSC	0.902	4.12	0.898	4.42	0.903	4.56	0.907	4.72
ECP-TSM	0.895	1.28	0.902	1.32	0.899	1.33	0.898	1.33

Table 2: Comparison of coverage rates and prediction interval widths for large scale high frequency financial time series data under MCAR.

λ_{reg}	0.1		1	10			100		
c	Coverage	Width	Coverage	Width	Coverage	Width	Coverage	Width	
100	0.898	25.68	0.902	25.71	0.897	25.76	0.902	25.83	
1000	0.902	25.78	0.897	25.63	0.904	25.94	0.902	25.82	

Table 3: Comparison of coverage rates and prediction interval widths for Oil Temperature Data under MCAR with different hyperparameters

-			0	1	2	3	4	5
	CP-MDA-Adaptive	Cov	$0.905\pm_{.0}$	$0.892\pm_{.0}$	$0.896\pm_{.0}$	$0.904\pm_{.0}$	$0.894\pm_{.0}$	$0.898\pm_{.0}$
	CI -MDA-Adaptive	Width	$27.63\pm_{.04}$	$27.64\pm_{.04}$	$27.34 \pm .04$	$27.96 \pm .04$	$27.93\pm_{.04}$	$26.82\pm_{.04}$
BRITS	MVSC	Cov	$0.892 \pm .0$	$0.893 \pm .0$	$0.904\pm_{.0}$	$0.902\pm_{.0}$	$0.896 \pm .0$	$0.895\pm_{.0}$
DUITS	MVSC	Width	$32.32\pm_{.23}$	$31.78\pm_{.23}$	$32.23\pm_{.24}$	$31.95\pm_{.24}$	$32.35\pm_{.24}$	$31.84\pm_{.24}$
	ECP-TSF	Cov	$0.896\pm_{.0}$	$0.884\pm_{.0}$	$0.896\pm_{.0}$	$0.902\pm_{.0}$	$0.902\pm_{.0}$	$0.898\pm_{.0}$
	EC1-15F	Width	$25.12 \pm_{.04}$	$25.76 \pm_{.04}$	$25.43 \pm_{.04}$	$26.05 \pm_{.04}$	$25.59 \pm_{.04}$	$25.23 \pm_{.04}$
	CP-MDA-Adaptive	Cov	$0.905\pm_{.0}$	$0.912\pm_{.0}$	$0.898\pm_{.0}$	$0.904\pm_{.0}$	0.903±.0	0.903±.0
	CI -MDA-Adaptive	Width	$30.12\pm_{.04}$	$29.84\pm_{.04}$	$29.14\pm_{.04}$	$29.85\pm_{.04}$	$29.54\pm_{.04}$	$29.23\pm_{.04}$
GRU-D	MVSC	Cov	$0.904\pm_{.0}$	$0.896\pm_{.0}$	$0.898\pm_{.0}$	$0.896\pm_{.0}$	$0.903\pm_{.0}$	$0.892\pm_{.0}$
GIIO-D	IVI V SC	Width	$33.281\pm_{.23}$	$33.86 \pm .23$	$33.12\pm_{.24}$	$33.95\pm_{.23}$	$32.94\pm_{.24}$	$33.32\pm_{.23}$
	ECP-TSF	Cov	$0.895\pm_{.0}$	$0.900\pm_{.0}$	$0.894\pm_{.0}$	$0.908\pm_{.0}$	$0.898\pm_{.0}$	$0.894\pm_{.0}$
	EO1-101	Width	$26.92 \pm_{.04}$	$26.04 \pm_{.04}$	$25.96 \pm_{.04}$	$26.13 \pm_{.04}$	$26.27 \pm_{.04}$	$24.63 \pm_{.04}$

Table 4: Group conditional coverage of the compared CP algorithms ($\alpha = 0.1$). Each column represents a group categorized by the number of missing values.

Method	5 ste	ps	10 ste	eps	25 ste	25 steps 50 steps		
Method	Coverage	Width	Coverage	Width	Coverage	Width	Coverage	Width
CP-MDA-Adaptive	0.891	28.63	0.901	28.52	0.896	28.32	0.903	29.03
MVSC	0.894	33.15	0.898	33.46	0.902	34.67	0.897	33.75
ECP-TSM	0.891	25.90	0.892	25.96	0.892	25.81	0.889	25.58

Table 5: Comparison of coverage rates and prediction interval widths for multi-step forecasting tasks on the Oil Temperature dataset under the MCAR missingness mechanism. Bold values indicate the best (smallest) prediction interval width.

	MCAR				MAR			MNAR		
Methods	Cov	Width	CovGap	Cov	Width	CovGap	Cov	Width	CovGap	
Ours	89.66	25.40	0.032	89.73	25.80	0.016	90.23	26.14	0.018	
w.o. Group Features	89.23	25.38	0.083	89.62	26.12	0.036	89.45	26.02	0.057	

Table 6: Ablation studies under different missing data mechanisms for Oil Temperature Data.

	MCAR				MAR		MNAR		
Methods	Cov	Width	CovGap	Cov	Width	CovGap	Cov	Width	CovGap
Ours	89.40	292.53	0.009	89.60	293.13	0.003	89.58	293.06	0.004
w.o. Group Features	89.56	292.86	0.005	89.42	293.05	0.006	89.47	293.15	0.006

Table 7: Ablation studies under different missing data mechanisms for Energy Data.

				I	Dataset		
Methods		El	lec	O	$^{\mathrm{T}}$	Ene	ergy
		MCAR	MAR	MCAR	MAR	MCAR	MAR
	Cov	$0.895\pm_{.0}$	$0.895\pm_{.0}$	$0.894\pm_{.0}$	$0.896\pm_{.0}$	$0.896\pm_{.0}$	$0.896\pm_{.0}$
CP-MDA-Adaptive	Width	$0.605\pm_{.0}$	$0.604\pm_{.0}$	$28.44\pm_{.12}$	$28.42\pm_{.12}$	$296.43 \pm_{5.52}$	$296.62 \pm_{5.63}$
	CovGap	$0.007\pm_{.0}$	$0.007\pm_{.0}$	$0.011\pm_{.0}$	$0.018\pm_{.0}$	$0.008\pm_{.0}$	$0.008\pm_{.0}$
	Cov	$0.898\pm_{.0}$	$0.893\pm_{.0}$	$0.897\pm_{.0}$	$0.909\pm_{.0}$	$0.902\pm_{.0}$	$0.902\pm_{.0}$
MVSC	Width	$0.631\pm_{.0}$	$0.628\pm_{.0}$	$30.67\pm_{.18}$	$34.34\pm_{.18}$	576.33 ± 15.6	$523.74 \pm_{15.8}$
	CovGap	$0.003\pm_{.0}$	$0.010\pm_{.0}$	$0.002 \pm_{.0}$	$0.231\pm_{.0}$	$0.005 \pm_{.0}$	$0.005\pm_{.0}$
	Cov	$0.896\pm_{.0}$	$0.897\pm_{.0}$	$0.897\pm_{.0}$	$0.903\pm_{.0}$	$0.892\pm_{.0}$	$0.904\pm_{.0}$
CP-MDA-SPCI	Width	$0.597\pm_{.0}$	$0.598\pm_{.0}$	$27.62 \pm .14$	$27.64 \pm .14$	298.15 ± 4.03	298.73 ± 4.11
	CovGap	$0.003\pm_{.0}$	$0.008\pm_{.0}$	$0.006\pm_{.0}$	$0.006 \pm_{.0}$	$0.012\pm_{.0}$	$0.008\pm_{.0}$
	Cov	$0.899\pm_{.0}$	$0.900\pm_{.0}$	$0.902\pm_{.0}$	$0.890\pm_{.0}$	$0.894\pm_{.0}$	$0.896\pm_{.0}$
ECP-TSM	Width	$0.592 \pm .0$	$0.588 \pm_{.0}$	$25.71 \pm_{.04}$	$25.80 \pm_{.04}$	$292.53 \pm_{4.32}$	$293.13 \pm_{4.30}$
	CovGap	$0.002 \pm_{.0}$	$0.004 {\pm}_{.0}$	$0.011 \pm .0$	$0.016 {\pm}_{.0}$	$0.009\pm_{.0}$	$0.003 \pm_{.0}$

Table 8: Performance of the compared methods for the three benchmark datasets with miscoverage rate $\alpha = 0.1$, under two missing mechanisms. Results were obtained by 5 repetitions with different seeds. Bold numbers indicate the best result, while significant under-coverage is canceled out.

	MCAR				MAR		MNAR		
Methods	Cov	Width	CovGap	Cov	Width	CovGap	Cov	Width	CovGap
Ours	89.66	25.40	0.032	89.73	25.80	0.016	90.23	26.14	0.018
w.o. coverage loss	86.82	25.20	0.056	87.05	25.12	0.053	86.68	24.45	0.063
w.o. inefficiency loss	92.72	26.62	0.013	92.35	26.82	0.025	92.13	26.46	0.024

Table 9: Ablation studies under different missing data mechanisms for Oil Temperature Data.

]	Dataset			
Methods		Elec		O	$^{\mathrm{T}}$	Energy		
		MCAR	MAR	MCAR	MAR	MCAR	MAR	
	Cov	$0.903\pm_{.0}$	$0.894\pm_{.0}$	$0.903\pm_{.0}$	$0.892\pm_{.0}$	$0.899\pm_{.0}$	$0.904\pm_{.0}$	
CP-MDA-Adaptive	Width	$0.603\pm_{.0}$	$0.604\pm_{.0}$	$27.85\pm_{.12}$	$28.23 \pm .12$	298.33 ± 4.83	298.73 ± 4.88	
	CovGap	$0.007\pm_{.0}$	$0.007\pm_{.0}$	$0.012\pm_{.0}$	$0.016\pm_{.0}$	$0.006\pm_{.0}$	$0.007\pm_{.0}$	
	Cov	$0.903\pm_{.0}$	$0.902\pm_{.0}$	$0.896\pm_{.0}$	$0.895\pm_{.0}$	$0.898\pm_{.0}$	$0.904\pm_{.0}$	
MVSC	Width	$0.633 \pm .0$	$0.629\pm_{.0}$	$32.23\pm_{.18}$	$32.35\pm_{.18}$	565.37 ± 14.7	545.67 ± 14.7	
	CovGap	$0.003\pm_{.0}$	$0.08\pm_{.0}$	$0.005 \pm_{.0}$	$0.212\pm_{.0}$	$0.007 \pm_{.0}$	$0.009\pm_{.0}$	
	Cov	$0.902\pm_{.0}$	$0.898\pm_{.0}$	$0.902\pm_{.0}$	$0.897\pm_{.0}$	$0.903\pm_{.0}$	$0.898\pm_{.0}$	
ECP-TSM	Width	$0.598 \pm_{.0}$	$0.592 \pm_{.0}$	$26.42 \pm_{.04}$	$26.35 \pm_{.04}$	$293.58 \pm_{4.25}$	$293.46 \pm_{4.22}$	
	CovGap	$0.002 \pm_{.0}$	$0.006 \pm_{.0}$	$0.008\pm_{.0}$	$0.012 \pm_{.0}$	$0.009\pm_{.0}$	$0.006 \pm_{.0}$	

Table 10: Performance of the compared methods for the three benchmark datasets with miscoverage rate α =0.1, under two missing mechanisms with 20% missingness. Results were obtained by 5 repetitions with different seeds. Bold numbers indicate the best result, while significant under-coverage is canceled out.

				D	ataset			
Methods		E	.ec	O	$^{\mathrm{T}}$	Energy		
		MCAR	MAR	MCAR	MAR	MCAR	MAR	
	Cov	$0.892\pm_{.0}$	$0.901\pm_{.0}$	$0.897\pm_{.0}$	$0.909\pm_{.0}$	$0.904\pm_{.0}$	$0.906\pm_{.0}$	
CP-MDA-Adaptive	Width	$0.612 \pm .01$	$0.618\pm_{.01}$	$28.50 \pm .32$	$28.59 \pm .31$	303.03 ± 4.03	307.49 ± 4.07	
	CovGap	$0.015\pm_{.0}$	$0.012\pm_{.0}$	$0.014\pm_{.0}$	$0.005 \pm_{.0}$	$0.012\pm_{.0}$	$0.012\pm_{.0}$	
	Cov	$0.905\pm_{.0}$	$0.902\pm_{.0}$	$0.900\pm_{.0}$	$0.897\pm_{.0}$	$0.908\pm_{.0}$	0.910±.0	
MVSC	Width	$0.623\pm_{.00}$	$0.627\pm_{.0}$	$32.78 \pm_{.31}$	$32.26\pm_{.29}$	509.69 ± 4.10	$506.80 \pm_{4.07}$	
	CovGap	$0.010\pm_{.0}$	$0.008\pm_{.0}$	$0.011\pm_{.0}$	$0.009\pm_{.0}$	$0.007 \pm_{.0}$	$0.008\pm_{.0}$	
	Cov	$0.899\pm_{.0}$	$0.903\pm_{.0}$	$0.905\pm_{.0}$	$0.899\pm_{.0}$	$0.900\pm_{.0}$	$0.901\pm_{.0}$	
ECP-TSM	Width	$0.605 \pm_{.01}$	$0.603 \pm_{.01}$	$26.80 \pm_{.30}$	$26.92 \pm_{.30}$	$297.68 \pm_{3.98}$	$299.23 \pm_{3.99}$	
	CovGap	$0.008 \pm_{.0}$	$0.007 \pm_{.0}$	$0.006 \pm_{.0}$	$0.005 \pm_{.0}$	$0.009\pm_{.0}$	$0.007 \pm_{.0}$	

Table 11: Performance of the compared methods for the three benchmark datasets with miscoverage rate $\alpha = 0.1$, under two missing mechanisms. Results were obtained by 5 repetitions with different seeds. Bold numbers indicate the best result, while significant under-coverage is canceled out.

Method	0% Mis	ssing	20% Mi	ssing	40% Mi	40% Missing 60% Missi		
Method	Coverage	Width	Coverage	Width	Coverage	Width	Coverage	Width
CP-MDA-Adaptive	0.897	28.50	0.903	27.85	0.894	28.44	0.904	28.41
MVSC	0.887	32.26	0.896	32.23	0.897	30.67	0.907	31.80
ECP-TSM	0.905	26.80	0.902	26.42	0.902	25.71	0.898	26.40

Table 12: Comparison of coverage rates and prediction interval widths for different missing rates across three methods for Oil Temperature Data under MCAR.