一种朴素的造机方法

以RISC-V的流水线架构为例

挑战

• 流水线设计目标:

- 正确: 任意该指令集构建的程序都能正确运行
- 性能: 尽可能使流水线充满

• 挑战:

- 如何开始构建? 面对复杂的概念难以入手。
- 代码量大, debug成本高。
- 多人合作,沟通成本高。
- 方法:需要一种定义清晰,产出可控,从设计到实现全程可追溯 的造机方法。

我们有什么?

• 指令级

- 指令语义
- 指令执行过程中对子模块(ALU)的操作
- 数据通路设计图
 - 流水层级
 - 子模块的流水段划分,如:ALU在EXE级
- 流水线的基本原理
 - 流水线时空图
 - 流水线冲突控制方法
 - 转发
 - 暂停

简化问题

• 只关注两个层面:

• 数据层(机制)

• 控制层 (策略)

指导思想: 机制和策略分离!

流水线方法概述

•S1: 数据通路及控制

•S2: 暂停策略及控制

•S3: 转发策略及控制

数据层

- 数据层:面向指令的数据流
 - 仅包含: 功能部件、功能部件间的数据连接关系、数据信息的流水寄存器
 - 数据层负责机制问题, 并为策略提供控制接口
 - 机制:数据层提供各种各样的具体功能,如ALU的加减
 - 策略: 如何组合功能实现指令需求(控制信号)
- 思考:
 - 如何使得数据流可以呈现不同的状态? 多路选择器
 - 什么是控制接口? 多路选择器的控制型号

图片为单周期设计图 流水线更为复杂,但原理相同

从命名开始

名字	位宽	描述	命名原因
A1	5	第1个源寄存器地址	在RF中寻找
A2	5	第2个源寄存器地址	寄存器的 Address
A3	5	目的寄存器地址	Address
V1	32	第1个源寄存器的值	RF中寄存器
V2	32	第2个源寄存器的值	的Value
E32	32	扩展后的立即数	Extend
AO	32	ALU的输出值	ALU Out
DO	32	DM的输出值	DM Out
PC4	32	PC+4	

•"望文生义"

- 让自己明白
- 让深夜debug的自己明白
- 让队友明白 (不分先后)

规划基础数据通路

- 目的
 - 大致清楚CPU中有哪些<mark>部件</mark>
 - 大致清楚不同流水阶段主要职能,即清楚主要部件所在的流水阶段
 - 明确各部件的接口,即输入和输出
 - 大致清楚各级流水寄存器需要保存哪些值(在后续设计中可以查缺补漏)
 - 为形式化的表达准备基础
- 方法
 - 理论上:参考理论课的方法推导出数据通路
 - 操作上: 直接细化理论课数据通路
- 产物
 - 一份部件接口定义明确的流水线设计图

形式化表达数据通路的关键

- 思考
 - 什么是数据通路的关键元素?
 - 如何没有损失地表达数据通路?
 - 如何表示数据通路能够方便代码产出?
- 感性的思考过程
 - 数据通路 == "部件A的输出端1->部件B的输入端1"
 - •若以"->"(连接关系)为主体形式化.接口1冗杂,没有什么启发
 - 考虑以部件为主体形式化描述数据通路
 - 部件的某一个接口可能有多个输入,考虑添加多路选择器给控制层
- 形式化表达
 - 必要元素: 部件, 输入端, 输出端, 输出端->输入端
 - 构建关系表

流水线数据通路描述表

- 纵向标签
 - 部件的输入端
 - 若输入端只有一个则省略(如: PC)
- 横向标签
 - 指令名
- 表格内容(对于表格中的每一列)
 - 某条指令在各流水段执行时
 - 各个部件的输入端数据来源于哪一输出端
- 思考
 - 这样的描述是否能完备地表示数据通路?
 - 这样的描述是否能方便地支持优化关键路径?

	部件的输	入端	某条指令
	PC		
	IM		
	ADD4	1	
	D	IR	
		PC4	
	RF	A1	
	IXI	A2	
	EXT		
	NPC	PC4	
	NPC	IR	
	CMP	D1	
	Crip	D2	
		V1	
		V2	
		A1	
	E	A2	
		А3	
		EXT	
		PC4	
	A1 11	Α	
	ALU	В	
		V2	
		A2	
	М	AO	
		А3	
		PC4	
	DM	Α	
	ויוט	WD	
		А3	
	W	PC4	
	W	AO	
		DR	
	DF	А3	
	RF	WD	

根据RTL填写数据通路描述表

• 以LW指令为例填写数据通路描述表

为什么要传递A1到E级流水为止 ^个

Stage	RTL	Func Control Signal
IF	IR@D ← IM[PC]	
TL	PC ←ADD4(PC)	
	$V1@E \leftarrow RF[IR[rs1]@D]$	
ID	$E32@E \leftarrow EXT(IR[31:20]@D)$	<pre>ImmSel:imm12</pre>
10	A3@E ← IR[rd]@D	
	A2@E ← IR[rs1]@D	
EXE	AO@M ← ALU(V1@E, E32@E)	ALUSel:add
EVE	A3@M ← A3@E	
MEM	DR@W ← DM[AO@M]	
MEM	A3@W ← A3@M	
WB	RF[A3@W] ← DR@W	

	部件的输	入端	LW		
	PC		ADD4		
	IM		PC		
	ADD4	1	PC		
	D	IR	IM		
		PC4	ADD4		
	RF	A1	IR[rs1]@D		
	IXI	A2			
	EXT		IR[31:20]@D		
E'	? NPC	PC4			
	NPC	IR			
	CMP	D1			
	Crip	D2			
`~;	14.4	V1	RF.RD1		
	777	_ V2			
		A1	- IR[rs1]@D		
	E	A2			
		А3	IR[rd]@D		
		EXT	EXT		
		PC4			
	A 1 1 1	Α	V1@E		
	ALU	В	EXT@E		
		V2			
		A2			
	М	AO	ALU		
		А3	A3@E		
		PC4			
	DM	Α	AO@M		
	DM	WD			
		А3	A3@M		
	1.1	PC4			
	W	AO			
		DR	DM		
	D-F	А3	A3@W		
	RF	WD	DR@W		

综合无转发数据通路

对于一个输入端有多个数据来源则在该输入端之前添加多路选择器(如:MPC)。

÷n /↓L	+ Δ		DEO	ADD	7.4.1	NALIV/	0	4	0
	输入端	LW	BEQ	ADD	JAL	MUX	0	1	2
P		ADD4	NPC	ADD4	NPC	MPC	ADD4	NPC	
	М	PC	PC	PC	PC	PC			
AD	D4	PC	PC	PC	PC	PC			
D	IR	IM	IM	IM	IM	IM			
	PC4	ADD4	ADD4	ADD4	ADD4	ADD4			
RF	A1	IR[rs1]@D	IR[rs1]@D	IR[rs1]@D		IR[rs1]@D			
	A2		IR[rs2]@D	IR[rs2]@D		IR[rs2]@D			
EX		IR[31:20]@D	IR[immBEQ]@D		IR[immJAL]@ D	MEXT	IR[31:20]@D	IR[immBEQ]@D	IR[immJAL]@D
NPC	PC		(PC4@D) - 4		(PC4@D) - 4	(PC4@D) - 4			
NPC	IR		IR@D		IR@D	IR@D			
CMP	D1		RF.RD1			RF.RD1			
CMP	D2		RF.RD2			RF.RD2			
	V1	RF.RD1		RF.RD1		RF.RD1			
	V2			RF.RD2		RF.RD2			
	A1	IR[rs1]@D		IR[rs1]@D		IR[rs1]@D			
E	A2			IR[rs2]@D		IR[rs2]@D			
	А3	IR[rd]@D		IR[rd]@D	IR[rd]@D	IR[rd]@D			
	EXT	EXT				EXT			
	PC4				PC4@D	PC4@D			
ALU	Α	V1@E		V1@E		V1@E			
ALU	В	EXT@E		V2@E		MALUB	EXT@E	V2@E	
	V2								
	A2								
М	AO	ALU		ALU		ALU			
	А3	A3@E		A3@E	A3@E	A3@E			
	PC4				PC4@E	PC4@E			
DM	Α	AO@M				AO@M			
ויוט	WD								
	А3	A3@M		A3@M	A3@M	A3@M			
W	PC4				PC4@M	PC4@M			
W	AO			AO@M		AO@M			
	DR	DM				DM			
DE	А3	A3@W		A3@W	A3@W	A3@W			
RF	WD	DR@W		AO@W	PC4@W	MRFWD	DR@W	AO@W	PC4@W

构造功能MUX控制信号表达式

部件的输 入端	LW	BEQ	ADD	JAL	MUX	0	1	2
PC	ADD4	NPC	ADD4	NPC	MPC	ADD4	NPC	

```
PCSe1 = (LW+ADD) ? `ADD4 : (BEQ+JAL) ? `NPC : .....
```

宏定义!

流水线方法概述

•S1: 数据通路及控制

• S2: 暂停策略及控制

•S3: 转发策略及控制

根据Tuse和Tnew构造策略矩阵

- Tuse(time-to-use): 指令进入D级后, 其后的某个功能部件再 经过多少周期就必须要使用寄存器值
 - 特点1: Tuse是静态值
 - 特点2: 同一条指令可以有多个不同的Tuse
- Tnew(time-to-new): 位于E级及其后各级的指令, 再经过多少周期能够产生要写入寄存器的结果
 - 特点1: 动态值, 随着指令的流动, 该值在不断减小, 直至0
 - 特点2: 一条指令可以有多个不同的Tnew
 - 例如,计算类指令的Tnew为1或0
 - 1: 指令位于E级, ALU正在计算
 - 0: 指令位于M级或W级, 结果已经存储在相应级

根据Tuse和Tnew构造策略矩阵

_	E			M			W		
T	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
use \	1	2	0	0	1	0	0	0	0
0	S	S	F	F	S	F	F	F	F
1	F	S	F	F	F	F	F	F	F

```
Stall_RS0_E1 = Tuse_RS0 & (Res_E==`ALU) & (`OPCODE == A3_E)
Stall_RS0_E2 = Tuse_RS0 & (Res_E==`DM) & (`OPCODE == A3_E)
.....
Stall_RS0_M1 = Tuse_RS0 & (Res_M==`DM) & (`OPCODE == A3_M)
```

流水线方法概述

•S1: 数据通路及控制

•S2: 暂停策略及控制

•S3: 转发策略及控制

转发控制的基本分析方法

部件的	输入端	LW	BEQ	ADD	JAL	MUX	0	1	2
Р	С	ADD4	NPC	ADD4	NPC	MPC	ADD4	NPC	MFPC
I	М	PC	PC	PC	PC	PC			
AD	D4	PC	PC	PC	PC	PC			
-	IR	IM	IM	IM	IM	IM			
D	PC4	ADD4	ADD4	ADD4	ADD4	ADD4			
RF	A1	IR[rs1]@D	IR[rs1]@D	IR[rs1]@D		IR[rs1]@D			
KF	A2		IR[rs2]@D	IR[rs2]@D		IR[rs2]@D			
EX	(T	IR[31:20]@D	IR[immBEQ]@D		IR[immJAL]@D	MEXT	IR[31:20]@D	IR[immBEQ]@D	IR[immJAL]@D
NPC	PC		(PC4@D) - 4		(PC4@D) - 4	(PC4@D) - 4			
NPC	IR		IR@D		IR@D	IR@D			
CMP	D1		RF.RD1			MFCMPRD1			
CMP	D2		RF.RD2			MFCMPRD2			
	V1	RF.RD1		RF.RD1		RF.RD1			
	V2			RF.RD2		RF.RD2			
	A1	IR[rs1]@D		IR[rs1]@D		IR[rs1]@D			
E	A2			IR[rs2]@D		IR[rs2]@D			
	А3	IR[rd]@D		IR[rd]@D	IR[rd]@D	IR[rd]@D			
	EXT	EXT				EXT			
	PC4				PC4@D	PC4@D			
ALU	Α	V1@E		V1@E		MFALUA			
ALO	В	EXT@E		V2@E		MALUB	EXT@E	MFALUB 🚤	
	V2					MFV2M			
	A2								
М	AO	ALU		ALU		ALU			
	А3	A3@E		A3@E	A3@E	A3@E			
	PC4				PC4@E	PC4@E			
DM	A	AO@M				AO@M			
	WD	4.2.014		4204	4.2.014	MFDMWD			
	A3	A3@M		A3@M	A3@M	A3@M			
W	PC4			AOOM	PC4@M	PC4@M			
	AO DR	DM		AO@M		AO@M DM			
				A20U	A20U				
RF	A3	A3@W		A3@W	A3@W	A3@W	DDO!	A0011	DC4OLL
ΝΓ	WD	DR@W		AO@W	PC4@W	MRFWD	DR@W	AO@W	PC4@W

	0	1	2	3
MFALUBE	V2@E	DR@W	AO@W	AO@M

- 0. 有几个转发点?
- 1. 转发优先级?
- 2.0号寄存器的转发?

```
`define M2E_ALU 3
`define W2E_ALU 2
`define W2E_DM 1
```

综合控制层

- 控制层:面向指令的控制流
- 控制器架构
 - 主控制器
 - 运行时所需参数编码器
 - 冲突检测与控制器: 将D级指令信息与E、M、W级指令信息进行比较
 - 转发控制器: 控制各转发多路选择器
 - 暂停控制器: 控制流水线是否暂停
- 思考
 - 为什么需要分为3个控制器? 如何划分更"好"? "好"的标准是什么?
 - 为什么在D级进行比较?
 - 暂停流水时如何确定寄存器应保持原值或写入新值?

其他注意事项

模块实例化注意事项

• 模块间的信号应显式定义后再使用

```
module pipeline( clk, rst );
 wire [31:0] instr;
 wire [4:0] A3;
                                                注意信号名在各模块中的正确顺序
 wire RFWr, DMWr;
                                                或者按名传输
  wire PCEn, DEn, Eclr;
  datapath U_datapath( ..., instr, A3, RFWr, ... );
  controller U_controller( ..., instr, A3, RFWr, ... );
 endmodule
```

MUX设计

• 可以在一个设计文件中定义多种MUX

```
// multiplexor.v
// 2-1 module
MUX2to1( in0, in1, sel, out );
endmodule
// 3-1 module
MUX3to1( in0, in1, in2, sel, out );
endmodule
// 4-1 module
MUX4to1( in0, in1, in2, in3, sel, out );
endmodule
```

• 为了灵活支持多种位宽的MUX,应使用 parameter定义位宽

```
module MUX3to1( in0, in1, in2, sel, out );

parameter WIDTH_DATA = 32;

input [WIDTH_DATA:1] in0;
...
 output [WIDTH_DATA:1] out;
 assign out = (sel==2'b10) ? in2 :
(sel==2'b01) ? in1 : in0;

endmodule
```

• 实例化时,用defparam设置实际参数

```
MUX3to1 MRFA3(ir[15:11], ir[20:16], 5'd31, A3Sel, A3); defparam MRFA3.WIDTH_DATA = 5;
```

流水线寄存器实例化

• 流水线寄存器有多种实现方式,其中比较直观的是采用**实例化方式**。

```
module datapath( ..... ) ;
wire [31:0] ..., AO_M, AO_W, DR_W;
// E级功能部件
ALU U ALU(..., AO, ...);
// M级流水寄存器
R_Pipe PIPE_AO_M(AO, AO_M, clk);
defparam PIPE AO M.WIDTH DATA = 32;
// M级功能部件
DM U DM(..., AO M, DMO, ...);
// W级流水寄存器
R Pipe PIPE AO W(DMO, DR W, clk);
defparam PIPE AO W.WIDTH DATA = 32 ;
```

实例化方式实现流水线寄存器,可以使得代码结构布局尽可能与设计布局保持一致。

Thanks