TTK4150

TTK4150 Nonlinear Systems and Control

Martin Brandt

Learning goals:

* Hello

Contents

1	Seco	ond-order nonlinear time-invariant systems	3
	1.1	Periodic orbits and limit cycles	3
2	Fund	damental properties	4
3	Lyap	ounov stability	4
	3.1	Stability of equilibrium points	4
	3.2	Lyapunov's indirect method	5
	3.3	Lyapunov's direct method	5
	3.4	The invariance principle	6
	3.5	Stability analysis of time-variant systems	
4	Input-to-state stability		7
	4.1	Input-to-state stability	7
	4.2	Input-output stability	7
5	Pass	sivity	7
6	Nonlinear control		7
	6.1	Passivity-based control	7
	6.2	Feedback linearization	7
	6.3	Adaptive control	
	6.4		
Α	Line	ear methods	7

1 | SECOND-ORDER NONLINEAR TIME-INVARIANT SYSTEMS

We first consider the system

$$\dot{x}_1 = f_1(x_1, x_2)
\dot{x}_2 = f_2(x_1, x_2)$$
(1)

Phase-plane analysis: Determine the system behavior by constructing a phase portrait, i.e. plotting different IVP solutions in the phase space.

Local analysis:

- * Linearize about x*.
- * Find egeinvalues $\lambda(A)$.
- * Classify equilibrium points for $f(x^*) = 0$. If λ is real, them we either get a stable node ($\lambda_2 < \lambda_1 < 0$), unstable node ($\lambda_2 < \lambda_1$) or a saddle point ($\lambda_2 < 0 < \lambda_1$). In the complex case $\lambda_{1,2} = \alpha \pm \beta i$, then we either get a center focus ($\alpha = 0$), a stable focus ($\alpha < 0$) or an unstable focus ($\alpha > 0$).

Topological equivalence: if the real part of the eigenvalues are nonzero, then the local phase-portrait corresponds to the phase portrait of the linearized system.

1.1 | Periodic orbits and limit cycles

Definition Periodic orbit: $\exists T > 0$ s.t. $x(t + T) = x(t) \quad \forall t \ge 0$.

Definition Limit cycle: non-trivial isolated periodic orbit.

Lemma 1 Poincaré-Bendixson criterion:

Let M be a closed bounded subset of the plane s.t.:

* M contains no x^* , or it contains only one x^* with the property that the eigenvalues of the Jacobian matrix at x^* have positive real parts (unstable focus or unstable node).

* Every trajectory starting in M stays in M $\forall t > t_0$.

Then M contains a periodic orbit of the system.

Lemma 2 Bendixson negative criterion:

If on a simply connected region D, $\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$ is not identically zero and does not change sign, then the system has no periodic orbits lying entirely in D.

Corollary 3 *C* is a periodic orbit $\implies \Sigma_i I = 1$ (sum of indeces of equilibrium points in *C*, where saddle points have index -1 and others have index 1)

2 | FUNDAMENTAL PROPERTIES

Lipschitz: $||f(t, x) - f(t, y)|| \le L||x - y||$

Either locally Lipschitz on $\mathbb D$ (L varies), Lipschitz in $\mathbb D$ or globally Lipschitz.

Theorem 4 Local existence and uniqueness:

lf

- * f(t, x) is piecewise continuous in t,
- * f(t, x) is Lipschitz $\forall x, y \in B = \{x \in \mathbb{R}^n | ||x x_0|| \le r\} \forall t \in [t_0, t_1],$

Then there exists a unique solution of the IVP x(t) on $t \in [t_0, t_0 + \delta]$.

3 | LYAPUNOV STABILITY

3.1 | Stability of equilibrium points

Asymptotic stabilization problem: Find $\gamma(t, e)$ s.t. e = 0 is an asymptotically stable equilibrium point. Regulation vs. trajectory tracking.

Definition Stability: x = 0 is stable iff $\forall \varepsilon > 0$ $\exists \delta(\varepsilon) > 0$ s.t. $||x(0)|| < \delta \Rightarrow ||x(t)|| < \varepsilon \quad \forall t \ge 0$

Definition Asymptotic stability: x = 0 is (locally) asymptotically stable iff it is stable, and $\exists r > 0$ s.t. $||x(0)|| < r \Rightarrow \lim_{t \to \infty} x(t) = 0$

Definition Region of attraction: $B_r = \{x \in \mathbb{R}^n : ||x|| < r\}$. We denote R_A as the union of all the regions of attraction.

Definition Global asymptotic stability: x = 0 is GAS iff it is stable, and $\lim_{t \to \infty} x(t) = 0 \quad \forall x(0)$

Definition Exponential stability: x = 0 is exponentially stable iff $\exists r, k, \lambda > 0$ s.t. $\|x(0)\| < r \Rightarrow \|x(t)\| \le k \|x(0)\| e^{-\lambda t} \quad \forall t \ge 0$

Definition Global exponential stability: x = 0 is GES iff $\exists k, \lambda > 0$ s.t. $\forall x(0) ||x(t)|| \le k||x(0)||e^{-\lambda t} ||x(t)|| \le k||x(t)||e^{-\lambda t} ||x(t)||e^{-\lambda t} ||$

Remark It is useful to think in terms of stability + convergence to seperate the different stability properties.

3.2 | Lyapunov's indirect method

Theorem 5 Lyapunov's indirect method:

Let x = 0 be an equilibrium point for

$$\dot{x} = f(x), \quad f: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^n \quad \text{is} \quad C^1$$
 (2)

- **1.** Linearize about x = 0, $\dot{x} = Ax$, where $A = \frac{\partial f}{\partial x}\Big|_{x=0}$.
- **2.** Find the eigenvalues $\lambda_1(A), \ldots, \lambda_n(A)$.
- 3. Categorize the eigenvalues:
- * $\forall i$ Re (λ_i) < 0 \Rightarrow asymptotically(exponentially) stable
- * $\exists i$ Re $(\lambda_i) > 0 \Rightarrow$ unstable
- * $\forall i \quad \text{Re}(\lambda_i) \leq 0 \Rightarrow \text{inconclusive}$

While Lyapunov's indirect method is simple to use, the results are only local and often inconclusive. Let's see if we can do better ey?

3.3 | Lyapunov's direct method

Definition Lyapunov function:

V is a Lyapunov function for x = 0 iff

- * V is C^1
- * V(0) = 0, V(x) > 0 in $\mathbb{D} \setminus \{0\}$
- * $\dot{V}(0) = 0$, $\dot{V}(x) \leq 0$ in $\mathbb{D} \setminus \{0\}$

If $\dot{V}(x) < 0$ in $\mathbb{D} \setminus \{0\}$ then V is a strict Lyapunov function for x = 0.

Theorem 6 Lyapunov's stability theorem:

- * If $\exists V(x)$ for x = 0, then x = 0 is stable.
- * If \exists strict V(x) for x = 0, then x = 0 is asymptotically stable.

Theorem 7 Chetaev's instability theorem:

If $\dot{V}(x) > 0$ in a set $U = \{x \in B_r | V(x) > 0\}$, then x = 0 is unstable.

Definition Radially unboundedness: $||x|| \to \infty \implies V(x) \to \infty$

Theorem 8 If \exists strict $V : \mathbb{R}^n \to \mathbb{R}$ for x = 0 and V is radially unbounded, then x = 0 is GAS.

Theorem 9 If there exist a function $V: \mathbb{D} \to \mathbb{R}$ and constants $a, k_1, k_2, k_3 > 0$ s.t.

- * V is C1
- $* k_1 ||x||^a \le V(x) \le k_2 ||x||^a \quad \forall x \in \mathbb{D}$
- * $\dot{V}(x) \leq -k_3 ||x||^a \quad \forall x \in \mathbb{D}$

then x=0 is exponentially stable. If these conditions hold for $\mathbb{D}=\mathbb{R}^n$, then x=0 is GES.

Remark $\lambda_{min}(P) \|x\|^2 \le x^{\top} P x \le \lambda_{max}(P) \|x\|^2$

Remark How to deal with indeterminate signs in \dot{V} ?

- * Completion of squares: $x_1x_2 \le \frac{1}{2}(x_1^2 + x_2^2)$
- * Young's inequality: $x_1x_2 \le \epsilon x_1^2 + \frac{1}{4\epsilon}x_2^2$
- * Cauchy-Schwarz' inequality: $|a_1x_1 + a_2x_2 + \cdots + a_nx_n| \le \sqrt{\left(a_1^2 + a_2^2 + \cdots + a_n^2\right)} ||x||_2$

3.4 | The invariance principle

Definition Invariant set: $x(0) \in M \implies x(t) \in M \quad \forall t \in \mathbb{R}$

Definition Positively invariant set: $x(0) \in M \implies x(t) \in M \quad \forall t \ge 0$

Definition Level set: $\Omega_c = \{x \in \mathbb{R}^n : V(x) \le c\}$

Theorem 10 La Salle's theorem:

If $\exists V : \mathbb{D} \to \mathbb{R}$ s.t.

- * V is C1
- * $\exists c > 0$ such that $\Omega_c = \{x \in \mathbb{R}^n | V(x) \le c\} \subset \mathbb{D}$ is bounded
- * $\dot{V}(x) \leq 0 \quad \forall x \in \Omega_c$

Let $E = \{x \in \Omega_c | \dot{V}(x) = 0\}$. Let M be the largest invariant set contained in E. Then $x(0) \in \Omega_c \Rightarrow x(t) \xrightarrow{t \to \infty} M$.

Definition Region of attraction:

Let x=0 be an asymptotically stable equilibrium point of the system $\dot{x}=f(x)$, where $f:\mathbb{D}\to\mathbb{R}^n$ is locally Lipschitz and $\mathbb{D}\subset\mathbb{R}^n$ contains the origin. Let $\phi(t,x_0)$ be the solution. Then the region of attraction is

$$R_A = \{x_0 \in \mathbb{D} \mid \phi(t, x_0) \text{ is defined } \forall t \ge 0 \text{ and } \phi(t, x_0) \to 0 \text{ as } t \to \infty\}$$
 (3)

(I.e. all the points with a corresponding solution that converges to the origin).

Remark GAS iff $R_A = \mathbb{R}^n$.

Estimate of R_A : choose the largest set Ω_c in $\mathbb D$ which is bounded, and only the connected component of Ω_c that contains the origin. Then this subset is a subset of R_A .

3.5 | Stability analysis of time-variant systems

4 | INPUT-TO-STATE STABILITY

- 4.1 | Input-to-state stability
- 4.2 | Input-output stability
- 5 | PASSIVITY
- 6 | NONLINEAR CONTROL
- 6.1 | Passivity-based control
- 6.2 | Feedback linearization
- 6.3 | Adaptive control
- 6.4 | Backstepping
- A | LINEAR METHODS

Definition We define the p-norm as:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad p \in [1, \infty]$$
 (4)

Theorem 11 Schwarz' inequality:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$
 (5)

Definition $f: \mathbb{R}^n \to \mathbb{R}^m$, then the Jacobian is defined as:

$$\frac{\partial f}{\partial x} \triangleq \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$
 (6)

Which in the scalar case m=1 is the gradient.