Drop Out & regularization

very huge be artificial neural network have huge weight, huge bias then happens and ten de to over fit the ann data

* under fit will happen only single larger and network

* under fit herer happen in deep neared

network

* over fit herer happen in single lacter heural
network

overAt - high varies

Random Forest

DT -> over fitting

Subset or features

1 readarizzion 4, de

Drop out
wor'then
O Witigh shri vasha
D reasons Hinten

Drop out ratio

0 \le p \le 1

Select
* subset of features

rearon, actuation function then deac timetion then deac timeter in for ward and back ward propagation

everythme select ran

tram data
test data warp

P -> select by using hyper parm

* Form 12 de crees

Weight Initialization

Icey Points

- 1) coelght should be small
- @ weights should not be same because each neur will learn new
- (2) weight & should have good vakience

weight antialization Techniques

O Uniform distribution

wij ~ Uniform [-1 / Tran-box

- 2 Xavier/Gorat

 (1) Xavier Normal

w;;~ N(0,6)

(2) Mauier Unithorn

1) He Normal

wish
$$U = U = \frac{6}{6}$$
 wish $\frac{6}{6}$ $\frac{2}{6}$ $\frac{2}{6}$

stochaetic Gradient Descent

La Idata -> SGD

> 1c data point > on ini ratch

100 (sample)

where = wold - mx 3L

remove noise stocatte up with momentain

Cylobal minima Ve local minima.

O "GD, EGD, Bach SGD = optimizers ugg

2(w) = 5 (4-8)2

Oconvex function :

linear rear (

tearbut

if point present in some curve is called Convex fun & occure in me problem of

2) Non Convertunction?

s beedearning

mostly occure in desplanting

the cue choose two points

and connect both. It

both one present in same

Curve is conver other wife

non convex

Stocartic Gradient Descent conth Momentum:

1

GD optionizers

of Iam take all the dartapoints and it will converge factly

* if data point is more it will take more time and Computational power overcame use uge 5 50

· S 610 =

* select botch Clike, 100, 200 data points select)

* Noise data

A remove Noise using exponentional moving average

500 global معارم الماما global minima

time interval appoint mouling average ti | t2 | t3 | t4 | t5 --- to 0= 7 =1 VE, = 61

V+2 = YxV, +b2 = 0.5 x b, + b2

Vt3 = YXV2 + 63 = Y x (Yxv, + 62) + 62 = Y2+b1 + Yb2+b1 =0.25x 6, +0.5 b2 +1xb3