

Gestão

2014 / 2015

Exercícios Práticos

Módulo 1

Gestão da Produção

Questão 01

A empresa Triple X produz o produto alfa que vende a € 2.00 / unidade. Os custos fixos são € 20.000 e os custos variáveis são € 1.50 / unidade. Determine o breakeven point (ponto de equilíbrio) desta empresa.

Solução

BP = 20.000 / (2.00 - 1.50) = 40.000 unidades

Questão 02

Qual a eficiência econômica de uma empresa que incorreu em custos de €150.000,00 para gerar uma receita de €176.000,00?

Solução

e = 176.000/150.000 = 1.17 ou 117%

Questão 03

Determinar a produtividade parcial da mão-de-obra da empresa Ceu Azul, SA que faturou € 70 milhões em certo ano no qual 350 colaboradores trabalharam, em média, 170 h/mês.

Solução

Mão-de- obra = 350h x 170h/mês x 12mês/ano = 714.000 h.hora/ano Faturação: 70.000.000,00 euros

Produtividade = 70.000.000,00 (€/ano) /714.000 h.hora/ano = 98,04 € /ano x ano/h.hora = 98,04 € /h.hora

Questão 04

A empresa Céu Azul, SA produziu 1.400.000 ton de produto por ano que fabrica e comercializa. Qual a produtividade parcial da mão-de-obra?

Solução Mão-de-obra – 714.000 h.hora/ano $Produto - 1.400.000 ton/ano \\ Produtividade = 1.400.000 / 714.000 = 1,96 t/h.hora$

Questão 05

Achar a produtividade total da empresa Céu Azul, SA sabendo-se que produziu 1.400.000 ton de produto por ano e incorreu em custos totais de €66 milhões/ano.

Exercícios Práticos 1

Solução

Input – 66×10^6 €/ano

 $Output-1.400.000\ t/ano$

Prod. Total = 1.400.000 /66*10⁶ = 0,021 t/€ ou 21 kg/€

Questão 06

Achar a produtividade total da empresa ABC fabricante de auto-peças, no período de um mês, quando produziu 35000 unidades. Que foram vendidas a € 12,00 a unidade. Foram gastos € 357.000,00 mês.

Solução

Saídas – 35000 unidades x € 12,00 / unidade = € 420000,00

Custos – € 357.000,00

Produção = 420.000 / 357.000 = 1.18 ou 118%

Questão 07

Em Janeiro, a empresa ABC produziu 1.250 unidades do produto Alfa e empregou 800 homens/hora. Em Fevereiro, produziu 1.100 unidades e usou 700 Hh. Determinar a produtividade total em Janeiro e Fevereiro, assim como sua variação.

Solução

PT Jan = 1250 u / 800 H.h = 1,56 u/H.h

PT Fev = 1100 u / 700 H.h = 1,57 u/H.h

 $\Delta PT = 1,57 / 1,56 = 1,006$

Questão 08

Com base na seguinte informação divulgada para uma empresa 3Ds:

	Capital	Terra	Trabalho	Produto	СТ	СМ
Escala A	5	3	4	100		
Escala B	10	6	8	300		

Assuma cada unidade de capital $= \le 5$, terra $= \le 8$ and trabalho $= \le 2$. Determine os custos desta empresa para duas diferentes escalas e comente as economias de escala (scale economies). Comente.

Solução

	Capital	Terra	Trabalho	Produto	СТ	СМ
Escala A	5	3	4	100	57	0.57
Escala B	10	6	8	300	164	0.54

Duplicando a escala da produção (acréscimo de 100%) conduz a uma acréscimo na produção de 200% . No entanto, o custo médio por unidade decresce.

Questão 09

A empresa 3Ds produz os produtos Q_1 e Q_2 com os custos de produção de 12 milhões de euros e 8 milhões de euros respectivamente. Esta empresa reestruturou o processo de produção e os dois produtos passaram a ser produzidos conjuntamente e com um custo de 17 milhões de euros. Determine o valor das economias gama (scope economies) deste empresa. Comente.

Solução

 $C(Q_1) = 12$ milhões; $C(Q_2) = 8$ milhões; e $C(Q_1,Q_2) = 17$ milhões.

$$SC = \frac{C(Q_1) + C(Q_2) - C(Q_1, Q_2)}{C(Q_1) + C(Q_2)}$$

SC =
$$\frac{12 + 8 - 17}{12 + 8} = \frac{3}{20} = 0,15$$

A produção conjunta de Q1 e Q2 resulta numa redução de 15% no custo total.

Questão 10

A empresa WWW utiliza a curva de aprendizagem para estimar os tempos de produção. Nessa aplicação, observou-se que conforme a produção dobrava, havia uma redução de 20% nas horas de trabalho de produção por unidade, a cada unidade duplicada. Por conseguinte, se forem necessárias 100000 horas para o produto 1, seriam necessárias 80000 horas para o produto 2, 64000 horas para o produto 4, e assim por diante. O produto 4 levou apenas 80% do tempo de necessários para o poruto 2. Com base na tabela — Curvas de Melhoria — Tabela de Valores por

Exercícios Práticos 3

Unidade, calcule as horas de trabalho direto para as unidades 1,2,4,8,16,32,64,128 e 256 para uma curva de aprendizagem de 80%.

Solução:

Número da Unidade	Horas de Trabalho Diretas por Unidade
1	100.000
2	80.000
4	64.000
8	51.200
16	40.960
32	32.768
64	26.214
128	20.972
256	16.777

Por exemplo, o valor das horas de trabalho directo para a unidade 8 foi calculada da seguinte maneira:

- 1 Da tabela Curvas de Melhoria Tabela de Valores por Unidade (página 6) e para curva de aprendizagem de 80% e para a unidade 8, retiramos o valor 0,5120; e,
- 2 Em seguida multiplicamos o valor 0,5120 por 100000 e obtemos o valor de 51200 que representa o valor das horas de trabalho direto por unidade. E, assim sucessivamente para as restantes unidades.
- 3 Se a curva de aprendizagem for de 70% ou 90% etc, o procedimento é o idêntico.

Questão 11

O administrador da empresa Triple XXX está confuso. Ele está confuso, porque assinou um contrato para fabricar 11 barcos e já terminou quatro deles. Notou que o gestor de produção está redistribuindo as tarefas para um número cada vez maior de pessoas, para acelerar a produção após a construção dos quatro primeiros barcos. Para o primeiro barco, por exemplo, foram recrutados 225 operários, cada qual com uma jornada de 40 horas semanais de trabalho, enquanto para o segundo barco foram necessários 45 operários a menos. O gestor disse, "isto é só um começo", e que ele terminaria o último barco desse contrato com apenas 100 operários. O gestor de produção baseia-se na curva de aprendizagem, mas não estará exagerando?

α	1		~	
Sc	١lı	110	20	7
L)(,,,	uu	a	.,

Como o segundo barco precisou de 180 operários, trata-se de uma curva de aprendizagem de 80% (180 / 225). Para descobrir quantos trabalhadores são necessários para o 11° barco, procuramos na tabela Curvas de Melhoria – Tabela de Valores por Unidade (página 6) para uma melhoria de 80% e multiplicamos esse valor pelo número requerido para o primeiro barco. Fazendo uma interpolação entre a unidade 10 e a unidade 12, descobrimos que o factor de melhoria é de 0,4629. Isso resulta em 104,15 operários. O gestor de produção errou na estimativa em 4 operários.

Interpolação:

$$2(12-10)$$
 ----- $0.0272(0.4765-0.4493)$

$$1(12-11)$$
 ----- $X-0,4765$

$$X = 0.4629$$

Questão 12

Suponha que o resultado de um teste a dois candidatos para um emprego consta da seguinte figura:

Qual dos dois candidatos contrataria? Justifique.

Exercícios Práticos 5

		Curva	as de Melhoria	: Tabela de Val	ores por Unida	de			
	Fator de Melhoria de Unidade								
Unidade	60%	65%	70%	75%	80%	85%	90%	95%	
1	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	
2	0,6000	0,6500	0,7000	0,7500	0,8000	0,8500	0,9000	0,9500	
3	0,4450	0,5052	0,5682	0,6338	0,7021	0,7729	0,8462	0,9219	
4	0,3600	0,4225	0,4900	0,5625	0,6400	0,7225	0,8100	0,9025	
5	0,3054	0,3678	0,4368	0,5127	0,5956	0,6857	0,7830	0,8877	
6	0,2670	0,3284	0,3977	0,4754	0,5617	0,6570	0,7616	0,8758	
7	0,2383	0,2984	0,3674	0,4459	0,5345	0,6337	0,7439	0,8659	
8	0,2160	0,2746	0,3430	0,4219	0,5120	0,6141	0,7290	0,8574	
9	0,1980	0,2552	0,3228	0,4017	0,4930	0,5974	0,7161	0,8499	
10	0,1832	0,2391	0,3058	0,3846	0,4765	0,5828	0,7047	0,8433	
12	0,1602	0,2135	0,2784	0,3565	0,4493	0,5584	0,6854	0,8320	
14	0,1430	0,1940	0,2572	0,3344	0,4276	0,5386	0,6696	0,8226	
16	0,1290	0,1785	0,2401	0,3164	0,4096	0,5220	0,6561	0,8145	
18	0,1188	0,1659	0,2260	0,3013	0,3944	0,5078	0,6445	0,8074	
20	0,1099	0,1554	0,2141	0,2884	0,3812	0,4954	0,6342	0,8012	
22	0,1025	0,1465	0,2038	0,2772	0,3697	0,4844	0,6251	0,7955	
24	0,0961	0,1387	0,1949	0,2674	0,3595	0,4747	0,6169	0,7904	
25	0,0933	0,1353	0,1908	0,2629	0,3548	0,4701	0,6131	0,7880	
30	0,0815	0,1208	0,1737	0,2437	0,3346	0,4505	0,5963	0,7775	
35	0,0728	0,1097	0,1605	0,2286	0,3184	0,4345	0,5825	0,7687	
40	0,0660	0,1010	0,1498	0,2163	0,3050	0,4211	0,5708	0,7611	
45	0,0605	0,0939	0,1410	0,2060	0,2936	0,4096	0,5607	0,7545	
50	0,0560	0,0879	0,1336	0,1972	0,2838	0,3996	0,5518	0,7486	
60	0,0489	0,0785	0,1216	0,1828	0,2676	0,3829	0,5367	0,7386	
70	0,0437	0,0713	0,1123	0,1715	0,2547	0,3693	0,5243	0,7302	
80	0,0396	0,0657	0,1049	0,1622	0,2440	0,3579	0,5137	0,7231	
90	0,0363	0,0610	0,0987	0,1545	0,2349	0,3482	0,5046	0,7168	
100	0,0336	0.0572	0.0935	0,1479	0,2271	0,3397	0,4966	0,7112	
120	0,0294	0,0510	0,0851	0,1371	0,2141	0,3255	0,4830	0,7017	
140	0,0262	0,0464	0.0786	0.1287	0,2038	0.3139	0.4718	0,6937	
160	0.0237	0,0427	0,0734	0,1217	0,1952	0,3042	0,4623	0,6869	
180	0,0237	0,0397	0,0691	0,1159	0,1879	0,2959	0,4541	0,6809	
200	0,0210	0,0371	0,0655	0,1109	0,1816	0,2887	0,4469	0,6757	
250	0,0201	0,0371	0,0584	0,1103	0,1691	0,2740	0,4320	0,6646	
300	0,0171	0,0323	0,0531	0,0937	0,1594	0,2625	0,4320	0,6557	
350	0,0143	0,0262	0,0331	0,0937	0,1517		0,4202	0,6482	
	1		·	·	·	0,2532			
400	0,0121	0,0241	0,0458	0,0832	0,1453	0,2454	0,4022	0,6419	
450	0,0111	0,0224	0,0431	0,0792 0,0758	0,1399	0,2387	0,3951	0,6363	
500	· · ·	0,0210	0,0408		0,1352	0,2329	0,3888	0,6314	
700	0,0090	0,0188	0,0372	0,0703	0,1275	0,2232	0,3782	0,6229	
700	0,0080	0,0171	0,0344	0,0659	0,1214	0,2152	0,3694	0,6158	
800	0,0073	0,0157	0,0321	0,0624	0,1163	0,2086	0,3620	0,6098	
900	0,0067	0,0146	0,0302	0,0594	0,1119	0,2029	0,3556	0,6045	
1.000	0,0062	0,0137	0,0286	0,0569	0,1082	0,1980	0,3499	0,5998	
1.200	0,0054	0,0122	0,0260	0,0527	0,1020	0,1897	0,3404	0,5918	
1.400	0,0048	0,0111	0,0240	0,0495	0,0971	0,1830	0,3325	0,5850	
1.600	0,0044	0,0102	0,0225	0,0468	0,0930	0,1773	0,3258	0,5793	
1.800	0,0040	0,0095	0,0211	0,0446	0,0895	0,1725	0,3200	0,5743	
2.000	0,0037	0,0089	0,0200	0,0427	0,0866	0,1683	0,3149	0,5698	
2.500	0,0031	0,0077	0,0178	0,3890	0,0806	0,1597	0,3044	0,5605	
3.000	0,0027	0,0069	0,0162	0,0360	0,0760	0,1530	0,2961	0,5530	