Lineare Algebra 2 Hausaufgabenblatt Nr. 2

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 30, 2023)

Problem 1. Es seien die Punkte x_0, x_1, \ldots, x_n mit $x_i \in \mathbb{R}$ gegeben. Wir definieren den Operator

$$\Phi: \mathbb{R}_{\leq n}[x] \to \mathbb{R}^{n+1}, p \to y, \text{ mit } p(x_i) = y_i, i = 0, \dots, n$$

wobei wir mit $\mathbb{R}_{\leq n}[x]$ den Raum der Polynome mit reellen Koeffizienten vom Grad höchsten n bezeichnen und p(x) die Auswertung des Polynoms p im Punkt x beschreibt.

- (a) Zeigen Sie: Sind die Punkte x_i paarweise verschieden, so ist die Abbildung Φ wohldefiniert und isomorph. (Eine Konsequenz hieraus ist die eindeutige Lösbarkeit der Polynominterpolation.)
- (b) Was passiert, wenn Sie nicht fordern, dass die x_i paarweise verschieden sind? Kann Φ im Allgemeinen noch injektiv (surjektiv) sein?
- Proof. (a) Injektiv: Nehme an, dass es zwei unterschiedliche Polynome p_1 , p_2 gibt, mit $p_1(x_i) = p_2(x_i) \forall i = 0, \ldots, n$. Dann ist $p(x) := p_1(x) p_2(x)$ auch ein Polynom, mit $p(x_i) := 0 \forall i \in \{0, \ldots, n\}$. Weil $\deg(p) \leq n$ ist, folgt daraus, dass $\forall x, p(x) = 0, p_1(x) = p_2(x)$. Das ist ein Widerspruch.

Surjektive: Sei $(y_0, \ldots, y_n) \in \mathbb{R}^{n+1}$. Dann ist

$$p(x) = (x - y_0)(x - y_1) \dots (x - y_n)$$

auch ein Polynom mit $\Phi(p) = (y_0, \dots, y_n)$.

Linearität: Sei $p_1(x), p_2(x) \in \mathbb{R}_{\leq n}[x], a \in \mathbb{R}$. Sei auch $p(x) = p_1(x) + p_2(x)$. Es gilt dann

$$p(x_i) = p_1(x_i) + p_2(x_i), i = 0, \dots, n$$

und daher

$$\Phi(p) = \Phi(p_1 + p_2) = \Phi(p_1) + \Phi(p_2).$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Es gilt auch, für $p(x) := ap_1(x)$, dass

$$p(x_i) = ap_1(x_i), i = 0, \dots, n,$$

und daher

$$\Phi(p) = \Phi(ap_1) = a\Phi(p_1).$$

(b) Nein. Sei, zum Beispiel, $n=1, x_0=x_1=0$. Dann gilt

$$\Phi(x) = (0,0)^T$$

$$\Phi(x^2) = (0,0)^T$$

Aber die zwei Polynome sind ungleich.

Problem 2. (a) Es sei eine Matrix $A \in \mathbb{K}^{n \times n}$ gegeben. Wir bilden die erweiterte Matrix

$$B = (A|1_n)$$

mit 1_n die Einheitsmatrix in \mathbb{R}^n . Zeigen Sie: A ist genau dann invertierbar, wenn A durch elementare Zeilenumformung in die Einheitsmatrix überführt werden kann. Verfizieren Sie weiterhin: Werden die dafür benötigten Zeilenumformungen auf ganz B angewendet, so ergibt sich im hinteren Teil, wo zu Beginn die Einheitsmatrix stand, genau A^{-1} .

(b) Es sei nun

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -2 \\ 3 & 0 & 1 & 2 \end{pmatrix}.$$

Bestimmen Sie A^{-1} .

Proof. (a) Definiert $(x, y), x \in \mathbb{K}^n, y \in \mathbb{K}^m$ durch $\mathbb{K}^{n+m} \ni (x, y) = (x_1, \dots, x_n, y_1, \dots, y_n)$. Eine solche erweiterte Matrix bedeutet eine Gleichungssystem durch

$$B(x, -y) = Ax - 1_n y = 0,$$

wobei $x, y \in \mathbb{K}^n$. Für jeder $x \in \mathbb{K}^n$ gibt es $y \in \mathbb{K}^n$, so dass B(x, -y) = 0. Nehme an, dass wir durch elementare Zeilenumformung

$$B = (A|1_n) \to (1_n, A') := B'$$

kann. Die Gleichungssystem ist dann x=A'y. Dadurch können wir für jeder $y\in\mathbb{K}^n$ eine $A'y=x\in\mathbb{K}^n$ rechnen, für die gilt, dass Ax=y. Das heißt, dass $A'=A^{-1}$.

$$\begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 3 & 0 & 1 & 2 & | & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_4 - 3R_1} \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \leftrightarrow R_4} \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & | & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_2 + 2R_3} \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & | & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -2 & | & & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_4 \times -\frac{1}{2}} \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_4 \times -\frac{1}{2}} \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix} \xrightarrow{R_3 + R_4} \xrightarrow{R_3 + R_4} \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix} \xrightarrow{R_3 + R_4} \xrightarrow{R_3 + R_4 + R_4 + R_4 + R_4 + R_4 + R_4 + R_4} \xrightarrow{R_3 + R_4 + R_$$

Problem 3. Es seien die Vektorräume V, W über \mathbb{K} gegeben mit $\dim(V) = n$ und $\dim(W) = m$. Wir betrachten eine lineare Abbildung

$$T: V \to W, v \to T(v)$$

Seien B_V und B_W Basen von V, bzw. W. Wir nehmen an T ist nicht die konstante Nullabbildung. Beweisen Sie:

- (a) Der Kern von $B_W[T]_{B_V}$ ist entweder trivial (d.h. nur die 0) oder hängt nur von der Wahl von B_V ab, aber nicht von B_W .
- (b) Das Bild von $B_W[T]_{B_V}$ ist entweder der ganze \mathbb{K}^m oder hängt nur von der Wahl von B_W ab, aber nicht von B_v .
- (c) Der Rang von $B_W[T]_{B_V}$ ist unabhängig von B_W und B_V . aber nicht von B_W .

Proof. Nach Korollar 5.43 gilt, für $A, A' \subseteq V$ und $B, B' \subseteq W$ Basen der Vektorräume V und W über \mathbb{K} , und $\Phi \in \operatorname{Hom}(V, W)$.

$$_{B'}[\Phi]_{A'} = _{B'}[\mathrm{id}_W]_{B} \cdot _{B}[\Phi]_{A} \cdot _{A}[\mathrm{id}_V]_{A'}.$$

Lemma 1. Jeder Basiswechsel für sowohl B_V als auch B_W kann als zwei Basiswechseln interpretiert werden, wobei eine Basiswechsel nur B_V verändert, und die andere nur B_W .

Proof.

$$_{B'}\left[\Phi\right]_{A'} = _{B'}\left[\mathrm{id}_{W}\right]_{B} \cdot _{B}\left[\Phi\right]_{A} \cdot _{A}\left[\mathrm{id}_{V}\right]_{A'} = _{B'}\left[\mathrm{id}_{W}\right]_{B} \left(_{B}\left[\mathrm{id}_{W}\right]_{B} \cdot _{B}\left[\Phi\right]_{A} \cdot _{A}\left[\mathrm{id}_{V}\right]_{A'} \right) _{A}\left[\mathrm{id}_{V}\right]_{A}.$$

(In den Klammern gibt es zuerst ein Basiswechsel in V, dann ein Basiswechsel in W). Ein ähnliche Argument zeigt, dass wir zuerst ein Basiswechseln in W betrachten kann.

Corollary 2. In die Aufgabe muss man nur das Fall betrachten, in dem entweder B_V oder B_W sich verändert.

- (a) Nehme an, $\ker(B_W[T]_{B_V}) \neq 0$. Die zwei Fälle
 - (i) Nur B_W sich verändert.

Sei
$$v \in \mathbb{K}^n$$
, ${}_B[\Phi]_A v = 0$. Es gilt

$$_{B'}[\Phi]_A = _{B'}[\mathrm{id}_W]_B[\Phi]_{AA}[\mathrm{id}_V]_A v = _{B'}[\mathrm{id}_W]_{BB}[\Phi]_A v = _{B'}[\mathrm{id}_W]_B(0) = 0.$$

Sei jetzt $_{B}[\Phi]_{A}v \neq 0$. Solange wir zeigen, dass