Estadistica la venganza

Importar datos

```
load("../../Utils4SP/Datasets/S5_Estadistica101_LaVenganza.mat");
```

Plots exploratorios

```
figure
stackedplot(atmosfera,'XVariable','DateTime')
```


summary(atmosfera)

```
Variables:
```

Fecha: 137522×1 cell array of character vectors

Hora: 137522×1 cell array of character vectors

Pres_kpa: 137522×1 double

Values:

Min 77.55 Median 78.06 Max 78.46

Temp_C: 137522×1 double

Values:

 Min
 13.38

 Median
 21.01

 Max
 100

 NumMissing
 11

Hum_perc: 137522×1 double

Values:

 Min
 15.27

 Median
 50.16

 Max
 99.97

 NumMissing
 61

DateTime: 137522×1 datetime

Values:

Min 20210518 06:00:03 Median 20210522 05:59:48 Max 20210526 05:59:55

%Exploración de números faltantes
%Todos los lecturas de atmosfera
% Tal que existan NaN's en Su campo "Humedad"
% Y que sean todos los campos
atmosfera(ismissing(atmosfera.Hum_perc),:)

ans = 61×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210519'	'01:55:14'	77.8600	16.5900	NaN	20210519 0
2	'210523'	'04:27:47'	78.2000	17.2300	NaN	20210523 0
3	'210523'	'05:17:37'	78.2000	17.2000	NaN	20210523 0
4	'210524'	'02:32:46'	78.3800	100	NaN	20210524 0
5	'210524'	'02:32:56'	78.3800	100	NaN	20210524 0
6	'210524'	'02:33:06'	78.3800	100	NaN	20210524 0
7	'210524'	'02:33:11'	78.3800	100	NaN	20210524 0
8	'210524'	'02:33:16'	78.3900	100	NaN	20210524 0
9	'210524'	'02:33:21'	78.3800	100	NaN	20210524 0
10	'210524'	'02:33:26'	78.3800	100	NaN	20210524 0
11	'210524'	'02:33:31'	78.3700	100	NaN	20210524 0
12	'210524'	'02:33:36'	78.3700	100	NaN	20210524 0
13	'210524'	'02:33:41'	78.3600	100	NaN	20210524 0
14	'210524'	'02:33:47'	78.3600	100	NaN	20210524 0

:

```
%Exploración de números faltantes
%Todos los lecturas de atmosfera
% Tal que existan NaN's en Su campo "Temperatura"
% Y que regrese todos los campos
atmosfera(ismissing(atmosfera.Temp_C),:)
```

ans = 11×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210518'	'17:59:58'	77.7100	NaN	49.6800	20210518 1
2	'210520'	'09:27:14'	77.9500	NaN	38.9700	20210520 0
3	'210520'	'09:37:27'	77.9500	NaN	39.4700	20210520 0
4	'210520'	'21:22:43'	77.8400	NaN	44.8400	20210520 2
5	'210521'	'20:50:27'	78.0400	NaN	48.0700	20210521 2
6	'210522'	'20:57:34'	78.0700	NaN	51.3400	20210522 2
7	'210522'	'20:57:44'	78.0800	NaN	51.2100	20210522 2
8	'210522'	'20:58:39'	78.0700	NaN	51.2900	20210522 2
9	'210523'	'10:19:08'	78.3200	NaN	53.7100	20210523 1
10	'210523'	'21:44:54'	78.0100	NaN	52.8200	20210523 2
11	'210525'	'18:14:48'	78	NaN	61.0600	20210525 1

```
%Exploración de números faltantes
%Todos los lecturas de atmosfera
% Tal que existan NaN's en Su campo "Temperatura"
% Y que regrese dateTime y Humedad
atmosfera(ismissing(atmosfera.Temp_C),["DateTime" "Hum_perc"])
```

ans = 11×2 table

	DateTime	Hum_perc
1	20210518 1	49.6800
2	20210520 0	38.9700
3	20210520 0	39.4700
4	20210520 2	44.8400
5	20210521 2	48.0700
6	20210522 2	51.3400
7	20210522 2	51.2100
8	20210522 2	51.2900
9	20210523 1	53.7100
10	20210523 2	52.8200
11	20210525 1	61.0600

```
%Quitar NaNs
atmosfera_clean=rmmissing(atmosfera);
figure
stackedplot(atmosfera_clean,'XVariable','DateTime')
```


Métricas de tendencia central

```
%Una gráfica con boxplot y histograma
figure
tiledlayout(1,2)
%subplot(1,2)
nexttile
%subplot(1,1,2)
boxplot(atmosfera_clean.Hum_perc)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Humedad relativa")
ylabel("%")

nexttile
%subplot(2,1,2)
histogram(atmosfera_clean.Hum_perc,'BinWidth',5,'Normalization',"probability")
```

```
xlabel("Humedad relativa [%]")
%ylabel("Cuentas")
ylabel("Probabilidad")

%Serie de tiempo
figure
plot(atmosfera_clean.DateTime,atmosfera_clean.Hum_perc)
ylabel("Humedad relativa [%]")
grid on
grid minor
```



```
%Mediana y promedio
%Promedio
```

- Calcular mediana, media y moda
- Colocarlos en línea verticales y horizonales en el histograma y series de tiempo

```
hum_mean=mean(atmosfera_clean.Hum_perc)
hum_mean = 49.6841
```

```
hum_median=median(atmosfera_clean.Hum_perc)
```

 $hum_median = 50.1550$

hum_mode=mode(atmosfera_clean.Hum_perc)

```
%Cuantiles
%Primer cuartil
hum_1Q=quantile(atmosfera_clean.Hum_perc,0.25)
```

 $hum_1Q = 29.8800$

hum_3Q=quantile(atmosfera_clean.Hum_perc,0.75)

 $hum_3Q = 66.9600$

Tarea para estos 5 minutos

- Tercer cuartil
- Plotear la línea del 1Q y 3Q en el histograma y serie de tiempo

```
%Una gráfica con boxplot y histograma
figure
tiledlayout(1,2)
%subplot(1,2)
nexttile
%subplot(1,1,2)
boxplot(atmosfera_clean.Hum_perc)
```



```
xlabel("Humedad relativa")
ylabel("%")

nexttile
%subplot(2,1,2)
histogram(atmosfera_clean.Hum_perc,'BinWidth',5,'Normalization',"probability")
hold on
xline(hum_median,'--r','Mediana')
xline(hum_mean,'--k','Promedio',"LabelHorizontalAlignment","left")
xline(hum_mode,'--b','Moda',"LabelHorizontalAlignment","left")
xline(hum_1Q,'--m','25 %',"LabelHorizontalAlignment","right")
xline(hum_3Q,'--m','75 %',"LabelHorizontalAlignment","left")
hold off

xlabel("Humedad relativa [%]")
%ylabel("Cuentas")
ylabel("Probabilidad")
```



```
%Matplotlib lo hace nativamente
%plot(x,y,'linecolor',[ 1 2 6])
%plot(x,y,'linecolor',rgb('navyblue'))
```

```
Promedio

80

70

80

70

40

40

May 18

May 20

May 22

May 24

May 26

2021
```

```
%Serie de tiempo
figure
plot(atmosfera_clean.DateTime,atmosfera_clean.Hum_perc)
hold on
yline(hum_median,'--r','Mediana')
yline(hum_mean,'--k','Promedio',"LabelHorizontalAlignment","left")
yline(hum_mode,'--b','Moda',"LabelVerticalAlignment","bottom")
yline(hum_1Q,'--m','25 %',"LabelHorizontalAlignment","left")
yline(hum_3Q,'--m','75 %',"LabelHorizontalAlignment","left")
hold off

ylabel("Humedad relativa [%]")
grid on
grid minor
```


Dispersión

```
buho_left=buho(:,1);
plot(buho_left)

%Una gráfica con boxplot y histograma
figure
tiledlayout(1,2)
%subplot(1,2)
nexttile
%subplot(1,1,2)
boxplot(buho_left)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Audio buho")
ylabel("V")

nexttile
%subplot(2,1,2)
histogram(buho_left,20,'Normalization', "probability")
xlabel("Audio buho [V]")
%ylabel("Cuentas")
ylabel("Probabilidad")
```

```
%Serie de tiempo
figure
plot(buho_left)
ylabel("Audio buho [V]")
grid on
grid minor
```


- Sacar dev est y var y promedio
- Colocar promedio
- Colocar promedio + σ y promedio - σ

```
buho_var=var(buho_left) %V^2
```

 $buho_var = 0.0451$

buho_std=std(buho_left) %V

 $buho_std = 0.2124$

buho_mean=mean(buho_left) %V

 $buho_mean = 8.1547e-08$

```
% var(2.*buho_left) %V^2
% std(2.*buho_left) %V
```

```
%
% 2*buho_var
% 2*buho_std

%Una gráfica con boxplot y histograma
figure
tiledlayout(1,2)
%subplot(1,2)
nexttile
%subplot(1,1,2)
boxplot(buho_left)
```


Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Audio buho")
ylabel("V")

nexttile
%subplot(2,1,2)
histogram(buho_left,20,'Normalization',"probability")
hold on
xline(buho_mean,'k--','Promedio')
xline(buho_mean+buho_std,'r--','+\sigma')
xline(buho_mean-buho_std,'r--','-\sigma','LabelHorizontalAlignment',"left")
hold off
xlabel("Audio buho [V]")
%ylabel("Cuentas")
ylabel("Probabilidad")
```



```
%Serie de tiempo
figure
plot(buho_left)
hold on
yline(buho_mean,'k--','Promedio')
yline(buho_mean+buho_std,'r--','+\sigma 34%')
yline(buho_mean-buho_std,'r--','-\sigma 34%','LabelVerticalAlignment',"bottom")
yline(buho_mean+2.*buho_std,'b--','+2\sigma 47.5%')
yline(buho_mean-2.*buho_std,'b--','-2\sigma 47.5%','LabelVerticalAlignment',"bottom")
hold off
ylabel("Audio buho [V]")
grid on
grid minor
```


Ajustes

```
plot(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'.')
xlabel("Temperatura [C]")
ylabel("Humedad [%]")
grid on
[fit_realacion,gof]=fit(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'poly1')
fit_realacion =
    Linear model Poly1:
    fit_realacion(x) = p1*x + p2
    Coefficients (with 95% confidence bounds):
               -2.772 \quad (-2.781, -2.763)
      p2 =
                113.2 (112.9, 113.4)
gof = struct with fields:
          sse: 1.5967e+07
      rsquare: 0.7212
          dfe: 137448
   adjrsquare: 0.7212
         rmse: 10.7783
[fit_realacion_2,gof]=fit(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'poly2')
fit_realacion_2 =
    Linear model Poly2:
    fit_realacion_2(x) = p1*x^2 + p2*x + p3
```

```
Coefficients (with 95% confidence bounds):

p1 = 0.088 (0.08654, 0.08946)

p2 = -7.097 (-7.169, -7.024)

p3 = 162.6 (161.8, 163.5)

gof = struct with fields:

sse: 1.4498e+07

rsquare: 0.7468

dfe: 137447

adjrsquare: 0.7468

rmse: 10.2703
```

```
figure
plot(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'.')
hold on
plot(fit_realacion,'r')
plot(fit_realacion_2,'b')
```



```
hold off
xlabel("Temperatura [C]")
ylabel("Humedad [%]")
legend("Data", "Ajuste de línea", "Ajuste polinomio grado 2")
grid on
```

