EXPLORING WEATHER TRENDS

Extracting Data From Databases

SQL Queries used:

1) Extracting Global data:

SELECT * FROM global_data

2) Extracting Data of Cities:

SELECT year, avg_temp FROM city_data WHERE city = 'Boston'

SELECT year, avg_temp FROM city_data WHERE city = 'New York'

SELECT year, avg_temp FROM city_data WHERE city = 'Chicago'

SELECT year, avg_temp FROM city_data WHERE city = 'Dallas'

```
In [21]: # import required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statistics import mean
```

```
In [22]: # import datasets
Boston_temp = pd.read_csv('Boston_temp_data.csv')
Global_temp = pd.read_csv('Global_temp_data.csv')
# read Boston dataset
Boston_temp.head(10)
```

Out[22]:

	year	avg_temp
0	1743	1.19
1	1744	9.63
2	1745	-1.37
3	1746	NaN
4	1747	NaN
5	1748	NaN
6	1749	NaN
7	1750	7.88
8	1751	8.60
9	1752	0.36

```
In [23]: # read Global Tempreture Data
Global_temp.head(10)
```

Out[23]:

	year	avg_temp
0	1750	8.72
1	1751	7.98
2	1752	5.78
3	1753	8.39
4	1754	8.47
5	1755	8.36
6	1756	8.85
7	1757	9.02
8	1758	6.74
9	1759	7.99

Global tempretures are available from 1750, and Boston tempretures are available from 1743.

In Boston tempretures are there are null values for 1746, 1747, 1748, 1749 and 1780. In this we will need the tempreture in year 1780 for comparison with Global tempretures.

```
In [24]: # Filling in null values in Boston_temp dataset by interpolating
Boston_temp['interpolate'] = Boston_temp['avg_temp'].interpolate()
Boston_temp.isna().sum()
```

Out[24]: year 0 avg_temp 5 interpolate 0

dtype: int64

In [25]: # Calculating Moving averages for Boston Tempretures
Boston_temp['Boston_MA7'] = Boston_temp['interpolate'].rolling(7).mean()
Boston_temp['Boston_MA10'] = Boston_temp['interpolate'].rolling(10).mean()
Boston_temp['Boston_MA50'] = Boston_temp['interpolate'].rolling(50).mean()
Boston_temp.head(30)

Out[25]:

	year	avg_temp	interpolate	Boston_MA7	Boston_MA10	Boston_MA50
0	1743	1.19	1.19	NaN	NaN	NaN
1	1744	9.63	9.63	NaN	NaN	NaN
2	1745	-1.37	-1.37	NaN	NaN	NaN
3	1746	NaN	0.48	NaN	NaN	NaN
4	1747	NaN	2.33	NaN	NaN	NaN
5	1748	NaN	4.18	NaN	NaN	NaN
6	1749	NaN	6.03	3.210000	NaN	NaN
7	1750	7.88	7.88	4.165714	NaN	NaN
8	1751	8.60	8.60	4.018571	NaN	NaN
9	1752	0.36	0.36	4.265714	3.931	NaN
10	1753	7.35	7.35	5.247143	4.547	NaN
11	1754	7.75	7.75	6.021429	4.359	NaN
12	1755	4.28	4.28	6.035714	4.924	NaN
13	1756	7.76	7.76	6.282857	5.652	NaN
14	1757	6.65	6.65	6.107143	6.084	NaN
15	1758	6.09	6.09	5.748571	6.275	NaN
16	1759	6.80	6.80	6.668571	6.352	NaN
17	1760	5.53	5.53	6.408571	6.117	NaN
18	1761	8.05	8.05	6.451429	6.062	NaN
19	1762	7.42	7.42	6.900000	6.768	NaN
20	1763	4.99	4.99	6.504286	6.532	NaN
21	1764	7.36	7.36	6.605714	6.493	NaN
22	1765	6.73	6.73	6.697143	6.738	NaN
23	1766	7.96	7.96	6.862857	6.758	NaN
24	1767	6.28	6.28	6.970000	6.721	NaN
25	1768	6.74	6.74	6.782857	6.786	NaN
26	1769	6.94	6.94	6.714286	6.800	NaN
27	1770	6.99	6.99	7.000000	6.946	NaN
28	1771	7.72	7.72	7.051429	6.913	NaN
29	1772	7.44	7.44	7.152857	6.915	NaN

```
In [26]: # Calculating Moving Averages fro Global Tempretures
    Global_temp['Global_MA7'] = Global_temp['avg_temp'].rolling(7).mean()
    Global_temp['Global_MA10'] = Global_temp['avg_temp'].rolling(10).mean()
    Global_temp['Global_MA50'] = Global_temp['avg_temp'].rolling(50).mean()
    Global_temp.head(30)
```

Out[26]:

0	1750	8.72	NaN	NaN	NaN
1	1751	7.98	NaN	NaN	NaN
2	1752	5.78	NaN	NaN	NaN
3	1753	8.39	NaN	NaN	NaN
4	1754	8.47	NaN	NaN	NaN
5	1755	8.36	NaN	NaN	NaN
6	1756	8.85	8.078571	NaN	NaN
7	1757	9.02	8.121429	NaN	NaN
8	1758	6.74	7.944286	NaN	NaN
9	1759	7.99	8.260000	8.030	NaN
10	1760	7.19	8.088571	7.877	NaN
11	1761	8.77	8.131429	7.956	NaN
12	1762	8.61	8.167143	8.239	NaN
13	1763	7.50	7.974286	8.150	NaN
14	1764	8.40	7.885714	8.143	NaN
15	1765	8.25	8.101429	8.132	NaN
16	1766	8.41	8.161429	8.088	NaN
17	1767	8.22	8.308571	8.008	NaN
18	1768	6.78	8.024286	8.012	NaN
19	1769	7.69	7.892857	7.982	NaN
20	1770	7.69	7.920000	8.032	NaN
21	1771	7.85	7.841429	7.940	NaN
22	1772	8.19	7.832857	7.898	NaN
23	1773	8.22	7.805714	7.970	NaN
24	1774	8.77	7.884286	8.007	NaN
25	1775	9.18	8.227143	8.100	NaN
26	1776	8.30	8.314286	8.089	NaN
27	1777	8.26	8.395714	8.093	NaN
28	1778	8.54	8.494286	8.269	NaN
29	1779	8.98	8.607143	8.398	NaN

```
In [27]: # Removing values in Boston tempreture from 1743 to 1749
Boston_temp_new = Boston_temp[(Boston_temp['year']>1749)]
Global_temp_new = Global_temp[(Global_temp['year']<2014)]</pre>
```

Basic Statistics

In [28]: Boston_temp_new.describe()

Out[28]:

	year	avg_temp	interpolate	Boston_MA7	Boston_MA10	Boston_MA50
count	264.000000	263.000000	264.000000	264.000000	262.000000	222.000000
mean	1881.500000	7.303764	7.286136	7.217013	7.208378	7.204987
std	76.354437	1.156479	1.189283	0.826670	0.778408	0.506654
min	1750.000000	-2.310000	-2.310000	4.018571	3.931000	6.021600
25%	1815.750000	6.805000	6.800000	6.780357	6.793500	6.801650
50%	1881.500000	7.360000	7.355000	7.250000	7.228500	7.016200
75%	1947.250000	7.910000	7.910000	7.770357	7.751000	7.772550
max	2013.000000	10.380000	10.380000	9.157143	9.023000	8.237800

In [29]: Global_temp_new.describe()

Out[29]:

	year	avg_temp	Global_MA7	Global_MA10	Global_MA50
count	264.000000	264.000000	258.000000	255.000000	215.000000
mean	1881.500000	8.359394	8.350781	8.344286	8.286762
std	76.354437	0.575184	0.462115	0.440769	0.309308
min	1750.000000	5.780000	7.191429	7.203000	7.810600
25%	1815.750000	8.077500	8.056071	8.053000	8.046400
50%	1881.500000	8.365000	8.303571	8.274000	8.203600
75%	1947.250000	8.700000	8.627500	8.636500	8.556200
max	2013.000000	9.730000	9.588571	9.556000	9.037600

We cna observe from the stats above:

- 1) average temperature for Boston over the years is less than Global average temperature in all these years
- 2) Boston has larger range of temperatures than the Global temperatures

Plotting Line plots for Boston and Global Tempretures for comparison for different moving averages

```
In [30]: # Line plots for 7 year Moving Averages
    plt.plot(Boston_temp_new['year'], Boston_temp_new['Boston_MA7'], label='Bosto
    n')
    plt.plot(Global_temp_new['year'], Global_temp_new['Global_MA7'], label='Globa
    l')
    plt.legend()
    plt.xlabel("Year")
    plt.ylabel("Tempreture(°C)")
    plt.title("Boston & Global Tempreture Comparison from 1750 to 2013")
    plt.show()
```

Boston & Global Tempreture Comparison from 1750 to 2013


```
In [31]: # Line plots for 10 year Moving Averages
    plt.plot(Boston_temp_new['year'], Boston_temp_new['Boston_MA10'], label='Bosto
    n')
    plt.plot(Global_temp_new['year'], Global_temp_new['Global_MA10'], label='Globa
    l')
    plt.legend()
    plt.xlabel("Year")
    plt.ylabel("Tempreture(°C)")
    plt.title("Boston & Global Tempreture Comparison from 1750 to 2013")
    plt.show()
```

Boston & Global Tempreture Comparison from 1750 to 2013


```
In [32]: # Line plots for 50 year Moving Averages
    plt.plot(Boston_temp_new['year'], Boston_temp_new['Boston_MA50'], label='Bosto
    n')
    plt.plot(Global_temp_new['year'], Global_temp_new['Global_MA50'], label='Globa
    l')
    plt.legend()
    plt.xlabel("Year")
    plt.ylabel("Tempreture(°C)")
    plt.title("Boston & Global Tempreture Comparison from 1750 to 2013")
    plt.show()
```


Year

Observations:

Above three graphs attempts to compare average tempreture fluctuations in Boston over the years with Global tempreture fluctuations for different Moving Average Values. We can make following Observations based on the these.

- 1) Boston is cooler on average compared to the global average
- 2) The difference between average tempretures between global and Boston tempretures chages is constant.
- 3) Both global tempreture and tempreture in Boston is increasing each year, and the difference between tempretures seems to be closing in with a slow rate.
- 4) if we observe the trend of tempreture changes over the years, global tempreture is increasig. Rate of increase in average tempreture for Boston is slightly more than rate of change in Globalaverage tempreture over the years.

```
In [33]: # importing new datasets for New York, Dallas and Chicago
         NewYork temp = pd.read csv('NewYork.csv')
         Dallas temp = pd.read csv('Dallas.csv')
         Chicago temp = pd.read csv('Chicago.csv')
In [34]:
         # Checking for null values in New York dataset and filling those values with i
         nterpolation
         NewYork temp['interpolate'] = NewYork temp['avg temp'].interpolate()
         NewYork temp.isna().sum()
Out[34]: year
                         5
         avg temp
         interpolate
                         0
         dtype: int64
In [35]:
         # Checking for null values in Chicago dataset and filling those values by inte
         rpolation
         Chicago temp['interpolate'] = Chicago temp['avg temp'].interpolate()
         Chicago temp.isna().sum()
Out[35]: year
                         0
         avg temp
                         4
         interpolate
         dtype: int64
In [36]:
         #Checking for null values in Dallas dataset
         Dallas temp.isna().sum()
          # there are no null values present in the Dallas dataset
Out[36]: year
                      0
         avg temp
         dtype: int64
```

```
In [37]: NewYork_temp_new = NewYork_temp[(NewYork_temp['year']>1749)]
    NewYork_temp_new['NewYork_MA50'] = NewYork_temp_new['interpolate'].rolling(50)
    .mean()
    NewYork_temp_new
```

C:\Users\avdho\anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[37]:

	year	avg_temp	interpolate	NewYork_MA50
7	7 1750	10.07	10.07	NaN
8	3 1751	10.79	10.79	NaN
ę	1752	2.81	2.81	NaN
10	1753	9.52	9.52	NaN
11	l 1754	9.88	9.88	NaN
266	2009	10.14	10.14	10.1624
267	7 2010	11.36	11.36	10.1944
268	3 2011	11.27	11.27	10.2192
269	2012	11.97	11.97	10.2722
270	2013	12.16	12.16	10.3290

264 rows × 4 columns

Out[38]:

	year	avg_temp	Dallas_MA50
0	1820	16.88	NaN
1	1821	17.33	NaN
2	1822	17.87	NaN
3	1823	17.46	NaN
4	1824	17.90	NaN
189	2009	18.42	18.3236
190	2010	18.69	18.3432
191	2011	19.69	18.3834
192	2012	19.99	18.4168
193	2013	20.45	18.4490

194 rows × 3 columns

```
In [39]: Chicago_temp_new = Chicago_temp[(Chicago_temp['year']>1749)]
    Chicago_temp_new['Chicago_MA50'] = Chicago_temp_new['interpolate'].rolling(50)
    .mean()
    Chicago_temp_new
```

C:\Users\avdho\anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[39]:

	year	avg_temp	interpolate	Chicago_MA50
7	1750	10.49	10.49	NaN
8	1751	11.19	11.19	NaN
9	1752	4.50	4.50	NaN
10	1753	10.04	10.04	NaN
11	1754	10.64	10.64	NaN
266	2009	10.30	10.30	10.6102
267	2010	11.82	11.82	10.6444
268	2011	11.21	11.21	10.6570
269	2012	12.82	12.82	10.7136
270	2013	11.59	11.59	10.7476

264 rows × 4 columns

```
In [40]: # Line plots for 50 year Moving Averages
    plt.plot(Boston_temp_new['year'], Boston_temp_new['Boston_MA50'], label='Bosto
    n')
    plt.plot(NewYork_temp_new['year'], NewYork_temp_new['NewYork_MA50'], label='Ne
    w York')
    plt.plot(Dallas_temp['year'], Dallas_temp['Dallas_MA50'], label='Dallas')
    plt.plot(Chicago_temp_new['year'], Chicago_temp_new['Chicago_MA50'], label='Ch
    icago')
    plt.plot(Global_temp_new['year'], Global_temp_new['Global_MA50'], label='Globa
    l')
    plt.legend()
    plt.xlabel("Year")
    plt.ylabel("Tempreture(°C)")
    plt.title("Boston & Global Tempreture Comparison from 1750 to 2013")
    plt.show()
```


Observations:

- 1) Compared to Global temperatures over the years, temperatures in New York, Chicago and Dallas are more onan average only Boston's temperature seems to be less than Global temperature
- 2) We can say that New York, Chicago and Dallas are surely hotter than Boston
- 3) Temperatures of Boston and New York do not have much difference between them,on the other hand, Dallas has highest temperatures in all
- 4) Overall trend of Global temperatures and temperatures of other cities is increasing every year.