Formal Languages and Translation Techniques. Solutions

Mateusz Pelechaty

November 2022

Lemma 1. L is regular language \iff L^R is also regular language.

Proof. Done in class \Box

Exercise 5

Does Language $L = \{aa^Rb : a, b \in \{0,1\}^* \land b, a \neq \epsilon\}$ is regular? Note that a^R means reversing letters in a

Solution

We will solve the question by contradiction, so let's assume L is regular

By **Lemma 1**, if L is regular then $L^R = \{ba^Ra : b, a \in \{0,1\}^* \land b, a \neq \epsilon\}$ is also regular.

Let's pick p from pumping lemma. If $2 \nmid p$, then let p := p + 1, to be able to divide by 2. We can also pick word $w = 0(10)^p(01)^p$.

We see that $w \in L^R$ and $|w| \ge p$. Note that |w| = 4p + 1

Because of it we can use pumping lemma and w = xyz such that

- $|y| \ge 1$
- $|xy| \le p$
- $(\forall n > 0)(xy^nz \in L^R)$

Consider $xy^0z = xz$ for any x and y

As $|xy| \leq p$ we are sure that $xz = C(10)^{\frac{p}{2}}(01)^p$ for some $C \in (0|1)^p$, because we cannot delete characters with index higher than p. Note that $|xz| \leq 4p$, because $|y| \geq 1$ and |w| = |xyz| = 4p + 1 We know that $xz \in L^R \iff \exists a, b \neq \epsilon : xz = ba^R a \iff \exists a, b \neq \epsilon : C(10)^{\frac{p}{2}}(01)^p = ba^R a$

Let's consider connection of a^R and a. We can see that it has to contain two the same symbols next to each other, thus it cannot be in $(01)^p$ part.

But if end of a^R is in the end of $(10)^{\frac{p}{2}}$ part or on previous indexes, then

|a|>=2p and $|ba^Ra|\geq 1+2a+2a=1+4a>|xz|$. So we cannot find suitable place for connection between a^R and a, thus $xz\notin L^R$, which is contradiction.

Thus L is not regular.