FORWARD AND INVERSE KINEMATICS

SCARA ROBOT

Table of contents

Schematic, D-H table	. 3
Homogeneous matrices	. 4
Inverse kinematics	. 5
SCARA robot simulation program description	. 7
Outline	. 7
Model drawing function	. 7
Trajectory generation function (Mode_XXX files)	. 7
Screenshots	8

SCHEMATIC, D-H TABLE

	$\mathbf{\Theta}_{\mathrm{i}}$	ε _i	\mathbf{a}_{i}	$\mathbf{\alpha}_{\mathrm{i}}$
H01	0°	ϵ_1	0	0°
H12	Θ_2^*	0	\mathbf{a}_2	0°
H23	Θ_3^*	0	\mathbf{a}_3	180°
H34	0°	£4*	0	0°
H45	Θ_5^*	E ₅	0	0°

SCARA schematic with coordinate systems (red lines – Z axis, blue lines – X axis; numbers near coordinate systems)

SCARA kinematic diagram

HOMOGENEOUS MATRICES

Homogeneous matrices were created with use of the D-H tables (previous page). They describe positions and orientations of subsequent coordinate systems attached to the robot's joints and links - each relative to previous coordinate systems. Last matrix describes position and orientation of the end-effector, relative to the base coordinate system {0}.

H01= Trans(0,0, ε₁)=

 $\begin{pmatrix} \cos(\theta_3) & \sin(\theta_3) & 0 & a_3 \cos(\theta_3) \\ \sin(\theta_3) & -\cos(\theta_3) & 0 & a_3 \sin(\theta_3) \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

D-H Table (joint variable marked with star *)

 $\Theta_{\scriptscriptstyle 2}{}^{\raisebox{-.4ex}{\tiny \bullet}}$ - rotation angle - joint 1.

 Θ_3^* - rotation angle – joint 2.

 ϵ_4^* - rotation angle - joint 3.

 Θ_5 - rotation angle – joint 4.

H05=H01*H12*H23*H34*H45=

$$\begin{pmatrix} \cos(\theta_2 + \theta_3 - \theta_5) & \sin(\theta_2 + \theta_3 - \theta_5) & 0 & a_3 \cos(\theta_2 + \theta_3) + a_2 \cos(\theta_2) \\ \sin(\theta_2 + \theta_3 - \theta_5) & -\cos(\theta_2 + \theta_3 - \theta_5) & 0 & a_3 \sin(\theta_2 + \theta_3) + a_2 \sin(\theta_2) \\ 0 & 0 & -1 & \epsilon_1 - \epsilon_4 - \epsilon_5 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

INVERSE KINEMATICS

To solve the inverse kinematics we need to find relation between joint variables $(\Theta_2, \Theta_3, \varepsilon_4, \Theta_5)$ and variables describing desired postition of the robot's end effector $(\mathbf{x}_{zad}, \mathbf{y}_{zad}, \mathbf{z}_{zad})$. Below a geometric approach is described to find target variables:

The Law of cosines in $\triangle ADC$ gives:

$$\left(\sqrt{x_{zad}^2 + y_{zad}^2}\right)^2 = l_{L2}^2 + l_{L3}^2 - 2l_{L2}l_{L3}\cos(\pi - \theta_3)$$

$$x_{zad}^2 + y_{zad}^2 = l_{L2}^2 + l_{L3}^2 + 2l_{L2}l_{L3}\cos(\theta_3)$$

$$\cos(\theta_3) = \frac{x_{zad}^2 + y_{zad}^2 - l_{L2}^2 - l_{L3}^2}{2l_{L2}l_{L3}} := D$$

Utilizing the Pythagorean trigonometric identity:

$$\cos^2(\theta_3) + \sin^2(\theta_3) = 1$$

leads to:

$$\sin(\theta_3) = \pm \sqrt{1 - D^2}$$

Thus:

$$\theta_3 = arctg \left(\pm \frac{\sqrt{1 - D^2}}{D} \right)$$

There are two possible robot's elbow configurations, depending on a choice of a sign above. In the MATLAB visualisation code $_{"}+"$ sign was chosen. That implies $_{"}$ elbow down" configuration.

 $\triangle ADC$ angles analysis gives:

$$\alpha = \beta + \theta_2 \rightarrow \theta_2 = \alpha - \beta$$

$$\alpha = \arctan\left(\frac{y_{zad}}{x_{zad}}\right)$$

$$\gamma + \beta + (\pi - \theta_3) = \pi \rightarrow \gamma = \beta - \theta_3$$

From the Law of sines in $\triangle ADC$:

$$\frac{l_{L3}}{\sin\beta} = \frac{l_{L2}}{\sin\gamma}$$

$$\frac{l_{L3}}{\sin\beta} = \frac{l_{L2}}{\sin(\beta - \theta_3)}$$

$$\frac{l_{L3}}{\sin\beta} = \frac{l_{L2}}{\sin\theta_3 \cos\beta - \sin\beta \cos\theta_3}$$

$$l_{L3}\sin\theta_3\cos\beta - l_{L3}\sin\beta\cos\theta_3 = l_{L2}\sin\beta$$

$$l_{L3}\sin\theta_3\cos\beta = l_{L3}\sin\beta\cos\theta_3 + l_{L2}\sin\beta$$

$$(l_{L3}\sin\theta_3)\cos\beta = (l_{L3}\cos\theta_3 + l_{L2})\sin\beta$$

To get tangent of β angle:

$$\frac{\sin\beta}{\cos\beta} = \frac{l_{L3}\sin\theta_3}{l_{L3}\cos\theta_3 + l_{L2}}$$

$$tg\beta = \frac{l_{L3}\sin\theta_3}{l_{L3}\cos\theta_3 + l_{L2}}$$

$$\beta = arctg \left(\frac{l_{L3} \sin \theta_3}{l_{L3} \cos \theta_3 + l_{L2}} \right)$$

Having α and β and using $\theta_2 = \alpha - \beta$ leads to :

$$\theta_2 = arctg \left(\frac{y_{zad}}{x_{zad}} \right) - arctg \left(\frac{l_{L3} \sin \theta_3}{l_{L3} \cos \theta_3 + l_{L2}} \right)$$

After analysis of the schematic one can write:

$$\varepsilon_4 = l_{L1} - l - z_{zad}$$

Last joint variable Θ_5 orients the end-effector in space. It is a rotation angle (Z axis) of the local coordinate system $\{5\}$. By fixing Θ_5 angle as 0, end-effector rotation angle with respect to coordinate system $\{0\}$ equals $\Theta_2 + \Theta_3$.

If one want to control a global rotation angle of the end-effector, following formula shall be used:

$$\theta_5 = \theta_{5glob.} + \theta_2 + \theta_3$$

where : Θ_{5glob} - desired angle of the end-effector relative to global coordinate system {1}, $(\Theta_2 + \Theta_3)$ - compensation term

The use of "+" sign in the compensation term should be clarified. Coordinate system {5} is oriented "upside-down" relative to a global coordinate system {0}, thus positive local angle of the end-effector implies negative global rotation angle of the end-effector. This concludes to:

$$\theta_5 \neq \theta_{5glob.} - (\theta_2 + \theta_3)$$

SCARA ROBOT SIMULATION PROGRAM DESCRIPTION

OUTLINE

Simulation program is divided into following main parts:

- 1. Init the workspace (function: InitSpace)
- 2. Load robot's dimensions, scale factor and robot's global orientation
- 3. Choice of one of the demo trajectories (variable: mode):
 - 3.1. Static configuration (mode=0)
 - 3.2. Trajectory 1: Circle (mode=1)
 - 3.3. Trajectory 2: Line (mode=2)
 - 3.4. Trajectory 3: "Fish" (mode=3)
 - 3.5. Trajectory 4: Quadrifolium (mode=4)
 - 3.6. Trajectory 5: Archimedean spiral (mode=5)
- 4. Model animation, trajectory trace drawing, coordination system assignment (functions: SCARA_3Dmodel and plot3)

MODEL DRAWING FUNCTION

SCARA_3Dmodel (H_{loc} , Q, s) – inputs H_{loc} homogeneous matrix (which places the robot in desired position and with desired orientation), vector of joint variables Q and scale factor s. In the code user can define joints and links dimensions and their orientation in space defining forward kinematics (homogeneous matrices). SCARA_3Dmodel function calls four subfunctions: two for drawing linear and rotational joints (J_ROT3D and $J_TRANS3D$), one for drawing links (L_BOX3D) and one responsible for drawing the end-effector (L_TOOL3D).

TRAJECTORY GENERATION FUNCTION (MODE_XXX FILES)

In each for loop iteration current trajectory point in space is computed and joint variable recalculated via inverse kinematics.

SCREENSHOTS

References

- Jezierski E.: *Dynamika robotów*, Wydawnictwa Naukowo-Techniczne, 2006
 http://www.mathworks.com/help/rptgenext/ug/documentation.html
 www.wolframalpha.com (parametric curves)