ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Вопрос по выбору:

Опыт Милликена.

Выполнили студенты:

Сериков Василий Романович

Группа: Б03-102

Сериков Алексей Романович

Группа: Б03-103

Аннотация

Цель работы:

Измерение элементарного заряда методом масляных капель.

В работе используется:

Плоский конденсатор в защитном кожухе, осветитель, измерительный микроскоп, электростатический вольтметр, секундомер, переключатель напряжения, пульверизатор с маслом.

Теоретические сведения:

Если элементарный заряд существует, то все заряды будут ему кратны. В опыте будут измерятся заряды капелек масла, несущих несколько элементарных зарядов.

Для измерения заряда будем исследовать движение капелек в электрическом поле. Уравнение движения капли при свободном падении

$$m\frac{dv}{dt} = mg - F_{\rm pp},\tag{1}$$

где m – масса капли, v – её скорость, $F_{\rm rp}=6\pi\eta rv=kv$ – сила вязкого трения, r – радиус капли, η – коэффициент вязкости воздуха. Отсюда получаем

$$v = \frac{mg}{k} \left(1 - e^{-kt/m} \right). \tag{2}$$

Скорость установится на

$$v_{\text{\tiny yCT}} = \frac{mg}{k} = \frac{2}{9} \frac{\rho}{\eta} g r^2,$$

где ρ – плотность масла. Установление этой скорости происходит с постоянной

$$\tau = \frac{m}{k} = \frac{2}{9} \frac{\rho}{n} r^2$$

Обозначая h путь капли, пройденный за t_0 , получаем формулу для её радуса:

$$r = \sqrt{\frac{9\eta h}{2\rho g t_0}}. (3)$$

В случае движения в электрическом поле конденсатора с разностью потенциалов V и расстоянием l между пластинами получаем уравнение движения

$$m\frac{dv}{dt} = \frac{qV}{l} - mg - kv,\tag{4}$$

Новое слагаемое не влияет на τ , новая установившаяся скорость

$$v_{\rm yct}' = \frac{qV/l - mg}{k}.$$

Если t – время подъёма на высоту h, то можно получить формулу заряда капли:

$$\frac{h}{t} = v'_{\text{yct}} = \frac{qV}{kl} - v_{\text{yct}};$$

$$k = 6\pi \eta r = 6\pi \eta \sqrt{\frac{9\eta h}{2\rho g t_0}};$$

$$\Rightarrow q = 9\pi \sqrt{\frac{2\eta^3 h^3}{g\rho}} \cdot \frac{l(t_0 + t_1)}{V t_0^{3/2} t_1}$$

Экспериментальная установка:

Схема установки представлена на рисунке 1. Масло разбрызгивается пульверизатором, попадает на конденсатор C через небольшое отверстие, приобретая заряд из-за трения о воздух.

Напряжение подаётся с выпрямителя и измеряется вольтметром V. Ключ K позволяет менять направление поля конденсатора. При замыкании конденсатор разряжается в $R \approx 10 \text{ MOm}.$

Для наблюдения за каплями установлен микроскоп, в фокальной плоскости окуляра которого виден ряд горизонтальных линий с предварительно определенным расстоянием между ними. Время движения капель измеряется электронным секундомером.

Рис. 1: Установка для проведения опыта Милликена

Результаты измерений и обработка данных:

1. Запишем начальные данные и погрешности.

h = 1 мм - расстояние, которое проходит капля в эксперименте.

 $\rho = 898 \; {\rm kr/m^3}$ - плотность масла.

 $\eta = 1,83 \cdot 10^{-5} \; \Pi \mathrm{a\cdot c}$ - коэффициент трения воздуха.

l = 0.725 см - расстояние между пластинами конденсатора.

 $V = 500 \; \text{B}$ - напряжение с выпрямителя.

 $\sigma_h = 0, 1 \; \text{мм}$ - погрешность измерения пройденного расстояния.

 $\sigma_{t_1} = \sigma_{t_0} = 0,3$ с - погрешность измерения времени.

 $\sigma_v=20~\mathrm{B}$ - погрешность измерения напряжения.

 $\sigma_q = q \sqrt{(\frac{\sigma_V}{V})^2 + (\frac{\sigma_t t_0}{t(t_0 + t)})^2 + (\frac{\sigma_{t_0(3t + t_0)}}{2t_0(t + t_0)})^2}$ - формула для подсчета относительной среднеквадратичной погрешности значения заряда $\sigma_{q_{\rm cp}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n \left(q_i - q_{\rm cp}\right)^2}$ - формула для подсчета погрешности среднего

$$\sigma_{q_{
m cp}} = \sqrt{rac{1}{n(n-1)} \sum_{i=1}^{n} \left(q_i - q_{
m cp}
ight)^2}$$
 - формула для подсчета погрешности среднего

2. Проведем серию экспериментов по определению времени t_0 и t_1 прохождения расстояния h каплей масла под действием силы тяжести mg и под действием электрической силы qE. По полученным данным определим заряд капель и занесем все результаты в таблицы 1-5.

<i>N</i> º 1				Nº 2				
t_0 , c	t_1 , c	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл	t_0 ,	t_1	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл	
63,8	6,2	3,39		58,2	7,3	3,09		
62,9	6,5	3,27		57,8	7,2	3,14		
64,1	6,5	3,24	3,31	58,4	7,2	3,12	3,13	
63,3	6,3	3,36		59,1	7,1	3,14		
63,3	6,4	3,31		58,9	7,1	3,15		

<i>№</i> 3				<i>№</i> 4			
t_0 , c	t_1 , c	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл	t_0 ,	t_1	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл
69,3	11,8	1,82		51,2	4,8	4,81	
68,8	11,6	1,86		52,3	4,9	4,72	
68,9	11,9	1,82	1,80	51,8	4,7	4,93	4,90
71,2	12,1	1,75		51,5	4,7	4,95	
70,4	12,3	1,73		51,4	4,6	5,05	

<i>№</i> 5				№ 6			
t_0 , c	t_1 , c	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл	t_0 ,	t_1	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл
52,3	8,0	3,05		61,2	13,5	1,77	
51,9	7,9	3,10		61,4	13,7	1,74	
51,7	8,0	3,07	3,10	61,5	13,7	1,74	1,75
51,4	7,8	3,15		61,8	13,5	1,76	
51,5	7,8	3,15		62,0	13,6	1,74	

№ 7				<i>№</i> 8			
t_0 , c	t_1 , c	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл	t_0 ,	t_1	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл
50,1	4,6	5,07		53,5	7,5	3,18	
50,8	4,6	5,04		53,6	7,4	3,21	
50,7	4,7	4,95	5,06	53,8	7,5	3,17	3,17
51,5	4,4	5,20		53,7	7,6	3,14	
51,0	4,6	5,02		54,0	7,6	3,13	

№ 9				№ 10				
t_0 , c	t_1 , c	$q, \cdot 10^{-19} \text{ Kл}$	\bar{q} , ·10 ⁻¹⁹ Кл	t_0 ,	t_1	$q, \cdot 10^{-19} \text{ Kл}$	\overline{q} , ·10 ⁻¹⁹ Кл	
51,1	14,4	1,9		58,9	7,3	3,07		
51,8	14,8	1,85		58,0	7,2	3,14		
51,5	14,7	1,86	1,85	58,4	7,2	3,12	3,12	
51,4	14,9	1,83		59,1	7,1	3,14		
51,9	14,8	1,84		58,9	7,1	3,15		

Таблицы 1-5: Полученные данные времени (t_0,t_1) движения капель под действием силы тяжести и электрической силы соответственно, рассчитанные значения заряда капель. $\varepsilon_q \approx 8\%, \ \varepsilon_{\overline{q}} \approx 10\%$

3. Построим прямую, на которой изобразим полученные значения для \bar{q} .

Рис. 2-4: Прямые с полученными значениями \bar{q}

4. Определим среднее значение $q_{\rm cp}$ в каждой группе и найдем величину элементарного заряда.

$$e_1=q_{\rm cp_1}=(1,8\pm0,2)\cdot10^{-19}~{\rm K}\mbox{ K}\mbox{ K}\mbox{ }$$

$$q_{\rm cp_2}=(3,2\pm0,3)\cdot10^{-19}~{\rm K}\mbox{ K}\mbox{ }->e_2=q_{\rm cp_2}/2=(1,6\pm0,2)\cdot10^{-19}~{\rm K}\mbox{ K}\mbox{ }$$

$$q_{\rm cp_3}=(5,0\pm0,5)\cdot10^{-19}~{\rm K}\mbox{ K}\mbox{ }->e_3=q_{\rm cp_3}/3=(1,7\pm0,2)\cdot10^{-19}~{\rm K}\mbox{ K}\mbox{ }$$

Тогда получим величину элементарного заряда: $e=(1,7\pm0,3)\cdot 10^{-19}$ Кл, $\varepsilon_e=18\%$

Обсуждение результатов:

В данной работы мы определили величину элементарного заряда методом заряженных капель - метод Милликена. Полученный нами результат сходится с известным $e=1,6\cdot 10^{-19}$ Кл. Отметим, что эксперимент самая сложная часть работы, так как определение

необходимой капли масла и корректное слежение за ее положением трудная задача. Также отметим, что для получения более точных результатов необходимо уменьшать ошибку измерения времени, так как она вносит наибольший вклад в результирующую погрешность.

Литература:

- 1. Кириченко Н.А. Электричество и магнетизм. Москва : МФТИ, 2017. \S 7.3.
- 2. Гладун А.Д Лабораторный практикум по общей физике. Электричество и магнетизм. Москва : МФТИ, 2019. Раздел 3, работа 3.3.3