Generative Adversarial Network

Instructor: Seunghoon Hong

Course logistics

- New assignment will be out today
 - o Deadline: 23:59:59 November 22th
 - O Quiz: Nov. 27th

Recap: objective of generative models

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathbb{E}_{x \sim p_{ ext{data}}} \log p_{ heta}(x)$$

Recap: Autoregressive models

Explicit optimization of likelihood based on chain rule

$$\log p_{\theta}(x) = \sum_{t=1}^{d} \log p_{\theta}(x^{t}|x^{1}, \dots, x^{t-1})$$

For d-dimensional data $x=(x^1,x^2,\ldots,x^d)$

- Advantages:
 - Optimizing exact likelihood
- Disadvantages:
 - Sequential generation process (O(n))
 - No latent variable to control the generation process

Recap: Variational Autoencoder

Explicit optimization of variational lower-bound of likelihood

$$\log p(x) \ge \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p(z))$$

Advantage:

- Latent variable model (i.e. we can control generation via z)
- Feedforward generation

Disadvantages:

- Lower-bound optimization (there is a gap between actual likelihood and lower-bound if q≠p).
- Generally not satisfactory generation qualtiy

Explicit density models

- Explicitly modeling the likelihood of data
- Autoregressive models and VAEs are both explicit density models

$$\log p_{\theta}(x) = \sum_{t=1}^{a} \log p_{\theta}(x^t|x^1,\dots,x^{t-1})$$

Variational Autoencoder

$$\log p(x) \ge \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p(z))$$

Challenges in explicit density models

- What if we cannot measure the likelihood?
- Example: conditional generation (e.g. machine translation)
 - In some cases we do not have a paired data
 - Example: unaligned data for machine translation → pion は したして mensur とから
 - o In this case, we cannot measure the conditional probability

Implicit density model

Modeling distribution without explicit likelihood estimation

Today's agenda

Generative Adversarial Network (GAN)

17 End: Equilibrium (50%)

Generation task as an adversarial game

(귀조지대)

Intuitive example: a game of counterfeiting

Note: money of gualty &

Adversarial game between two players

VS

HIZAIN BATE AITH &

Goal of police officer

Detect counterfeit money from real one

Goal of counterfeiter

Make fake money as realistic as possible
경찰 속일정도로 만들면 충분

Generator

Discriminator

Generative Adversarial Network (GAN)

Learning to generate via minimax optimization

Generative Adversarial Network (GAN)

Learning to generate via minimax optimization

Discriminator (D) tries to tell if its input is real or fake

Generative Adversarial Network (GAN)

• Learning to generate via minimax optimization

- Discriminator (D)
 tries to tell if
 its input is real or fake
- Generator (G)
 tries to fool
 the discriminator

Learning objective

Minimax objective function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator output for for real input x

Given a generator $G(z; \theta_a)$

• Discriminator tries to maximize the objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake) \rightarrow solves binary classification problem

Given a discriminator $D(x; \theta_d)$

 Generator tries to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Learning objective

Minimax objective function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. **Gradient descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Optimization challenge

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. **Gradient descent** on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \frac{\log(1 - D_{\theta_d}(G_{\theta_g}(z)))}{\log(1 - D_{\theta_d}(G_{\theta_g}(z)))}$$

Optimization challenge

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient ascent on generator but different using different objective

$$\max_{ heta_g} \mathbb{E}_{z \sim p(z)} \frac{\log(D_{ heta_d}(G_{ heta_g}(z)))}{\log(D_{ heta_d}(G_{ heta_g}(z)))}$$

Also known as **non-saturating loss**

GAN training algorithm

for number of training iterations do for k steps de

- Sample minibatch of m noise samples $\{\boldsymbol{z}^{(1)},\dots,\boldsymbol{z}^{(m)}\}$ from noise prior $p_g(\boldsymbol{z})$.

 2m.
 Sample minibatch of m examples $\{\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(m)}\}$ from data generating distribution $p_{\text{data}}(\boldsymbol{x})$.
 - Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

The very first GAN results

Get harp image

Goodfellow et al., Generative adversarial networks, In NIPS, 2014

Synthesized images by the generator

Nearest neighbors in a training set (of the rightmost generated example)

The very first GAN results

Goodfellow et al., Generative adversarial networks, In NIPS, 2014

Case study: DCGAN

Techniques to improve GAN training

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Case study: DCGAN

Generator architecture

Radford et al., unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016

Generated images - LSUN bedroom dataset

Radford et al., unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016

Sample interpolation

interpolate

Radford et al., unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016

Sample interpolation

Radford et al., unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016

Arithmetic on latent variable

Radford et al., unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016

Arithmetic on latent variable

Radford et al., unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016

Progressive growing of GAN

• Improve the generation quality through hierarchical generation

Kerras et al., Progressive Growing Of Gans For Improved Quality, Stability, And Variation, In ICLR, 2018

Progressive growing of GAN

Kerras et al., Progressive Growing Of Gans For Improved Quality, Stability, And Variation, In ICLR, 2018

Progressive growing of GAN

lamge source: https://hackmd.io/@_XGVS6ZYTL2p6MEHmqMvsA/HJ1BBDtP4?type=view

BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, In ICLR, 2019

StyleGAN

- Improved version of progressive GAN
- Deep embedding layers of latent variable
- Injecting latent variable via modulation

Kerras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, In CVPR, 2019

StyleGAN: results

StyleGAN: sample interpolation

Kerras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, In CVPR, 2019

StyleGAN: try yourself

Challenges in GAN

• Is adversarial game stable?

Challenges in GAN

combre modes. blurted imaging

- Is adversarial game stable? \rightarrow it is turned out to be not
- One representative problem: mode-collapse (It dog not hunger)

(It does not happy autoencedor)

True Data

GAN output

When mode-collapse happens, the generator models **only part of** the true data distribution (e.g. one data mode)

Why does it happens?

→ intuitively, a single mode is also indistinguishable from the real data