2 Лабораторная работа "Интерполяция и приближение функций"

2.1 Краткий теоретический материал

Пусть на отрезке [a,b] задана $ccm \kappa a$ из n+1 узла $x_1 < x_2 < \cdots < x_n$. В узлах значения некоторой функции $y_i = y(x_i)$, $i=0,\ldots,n$. Требуется построить многочлен L(x) степени не выше n, такой что $L(x_i) = y_i$, $i=0,\ldots,n$.

Многочлен L(x) называется интерполяционным многочленом для функции y(x), построенным по уздам (x_i,y_i) , $i=1,\ldots,n$.

Величина r(x) = y(x) - L(x) характеризует точность приближения функции y(x) многочленом L(x) в точке x и называется погрешностью интерполяции в точке x.

Верна следующая оценка

$$|r(x)| \le \frac{M}{(n+1)!} |\omega(x)|, \tag{5}$$

где $M=\max_{\xi\in[a,b]}|y^{(n+1)}(\xi)|$. $\omega(x)=(x-x_0)(x-x_1)...(x-x_n)$. Способы построения интерполяционного многочлена. Многочлен Лагранжа

$$L(x) = \sum_{i=0}^{n} y_i l_i(x),$$

где

$$l_i(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)}.$$

Многочлен Ньютона

$$N(x) = y_0 + p(x_0)(x - x_0) + p(x_0, x_1)(x - x_0)(x - x_1) + \cdots + p(x_0, x_1, \dots, x_{n-1})(x - x_0)(x - x_1) \dots (x - x_{n-1}),$$
 (6)

где через $p(x_0,\ldots,x_{k-1})$ обозначена разделенная разность k-того порядка. Разделенные разности считаются по следующему правилу:

Разность первого порядка

$$p(x_0) = \frac{y_1 - y_0}{x_1 - x_0};$$

Разность второго порядка

$$p(x_0, x_1) = \frac{p(x_1) - p(x_0)}{x_2 - x_0}$$
:

Разпость к-го порядка

$$p(x_0, x_1, \dots, x_{k-1}) = \frac{p(x_1, x_2, \dots, x_{k-1}) - p(x_0, x_1, \dots, x_{k-2})}{x_k - x_0}.$$

Многочлен Ньютона дла равноотстоящих узлов

Пусть сетка на отрезке [a,b] такова, что $x_i = x_0 + ih$, $i = 0, \ldots, n$, h некоторая постоянная, называемая *шагом сетки*. Такая сетка называется равномерной, а узлы этой сетки – равноотстоящими.

Многочлен Ньютона в этом случае имеет вид:

$$N(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{h^2 2!}(x - x_0)(x - x_1) + \cdots + \frac{\Delta^n y_0}{h^n n!}(x - x_0)(x - x_1) \dots (x - x_{n-1}), \quad (7)$$

где через $\Delta^k y_0$ обозначена конечная разность k-того порядка.

Конечные разности считаются по следующему правилу:

Разность первого порядка $\Delta y_0 = y_1 - y_0$.

Разность второго порядка $\Delta^2 y_0 = \Delta y_1 - \Delta y_0$.

Разность k-го порядка $\Delta^k y_0 = \Delta^{k-1} y_1 - \Delta^{k-1} y_0$.

Разности удобно вычислять, помещая их значения в таблицу

y	Δy	$\Delta^2 y$	$\Delta^3 y$	
y_0	$y_1 - y_0 = \Delta y_0$		$\Delta^2 y_1 - \Delta^2 y_0 = \Delta^3 y_0$	
y_1	$y_2 - y_1 = \Delta y_1$	$\Delta y_2 - \Delta y_1 = \Delta^2 y_1$	$\Delta^2 y_2 - \Delta^2 y_1 = \Delta^3 y_1$	
y_2	$y_3 - y_2 = \Delta y_2$	$\Delta y_3 - \Delta y_2 = \Delta^2 y_2$	$\Delta^2 y_3 - \Delta^2 y_2 = \Delta^3 y_2$	
y_3	$y_4 - y_3 = \Delta y_3$	$\Delta y_4 - \Delta y_3 = \Delta^2 y_3$	$\Delta^2 y_4 - \Delta^2 y_3 = \Delta^3 y_3$	
y_4	$y_5 - y_4 = \Delta y_4$	$\Delta y_5 - \Delta y_4 = \Delta^2 y_4$		
y_5	$y_6 - y_5 = \Delta y_5$			
y_6			•••	

Каждое значение таблицы получено вычитанием двух соседних значений предыдущего столбца. Аналогично можно составить таблицу разделенных разностей.

Сплайн-интерполяция

Интерполяционный многочлен при больших n зачастую сильно осциллирует, поэтому погрешности значений функций в промежуточных гочках бывают слишком велики. Поэтому рекомендуется при больших n использовать сплайн k-го порядка, (k < n), то есть функцию s(x), которая на каждом из отрезков $[x_i, x_{i+1}]$ является многочленом не выше k-й степени, кроме того, функция s(x) и все ее производные до k-1 порядка пепрерывны на отрезке $[x_0, x_n]$, и в заданных значениях $[x_i, x_i] = y_i$.

Онишем процесс построения сплайна второго порядка (параболического сплайна).

Пусть

$$s(x) = \begin{cases} a_0(x - x_0)^2 + b_0(x - x_0) + c_0, & \text{при } x \in [x_0, x_1], \\ a_1(x - x_1)^2 + b_1(x - x_1) + c_1, & \text{при } x \in [x_1, x_2], \\ a_2(x - x_2)^2 + b_2(x - x_2) + c_2, & \text{при } x \in [x_2, x_3], \\ \dots \\ a_{n-1}(x - x_{n-1})^2 + b_{n-1}(x - x_{n-1}) + c_{n-1}, & \text{при } x \in [x_{n-1}, x_n]. \end{cases}$$

Задача построения сплайна заключается в определении коэффициситов $a_i, b_i, c_i, i = 0, \dots, n-1$.

 Π_3 условня $s(x_i) = y_i$ имеем

$$c_i = y_i, \quad , i = 0, \dots n-1.$$
 (8)

Из условий непрерывности функции в и ее производной в' имеем

$$a_i h_i^2 + b_i h_i = y_{i+1} - y_i, \quad i = 0, \dots, n-1,$$
 (9)

$$2a_ih_i + b_i = b_{i+1}, \quad i = 0, \dots, n-2.$$
 (10)

Здесь через h_i обозначена разность $x_{i+1}-x_i$.

Заметим, что число неизвестных системы (9-10) на единицу больше числа уравнений, поэтому можно ввести дополнительное условие, например $s'(x_0) = 0$. Получим $b_0 = 0$. Выразив a_i из уравнения (10), и подставив в уравнение (9), получим следующую реккурентную формулу

$$b_0 = 0;$$
 $b_{i+1} = \frac{2(y_{i+1} - y_i)}{h_i} - b_i, \quad i = 1, \dots, n-1.$ (11)

Затем последовательно найдем все a_i :

$$a_i = \frac{b_{i+1} - b_i}{2h_i}, \quad i = 1, \dots, n.$$
 (12)

Приближение функций методом наименьших квадратов

Пусть заданы точки (x_i, y_i) , $i = 1, \ldots, n$. Требуется среди функций специального вида

$$\varphi(x) = \sum_{j=1}^{m} a_j \varphi_j(x)$$

выбрать ту, график которой проходит как можно ближе к заданным точкам. Здесь $\varphi_j(x)$, $j=1,\ldots,m$ - заданная система базисных чебышевских функций. a_j , $j=1,\ldots,m$ - коэффициенты, подлежащие определению.

"Меру близости"функции $\varphi(x)$ к заданным точкам можно рассчитать как

$$S = \sum_{i=1}^{n} (\varphi(x_i) - y_i)^2.$$

Для определения коэффициентов a_j , $j=1,\ldots,m$ решают систему линейных уравнений

$$Ca = b$$
.

где $C = \{c_{kl}\}$ – матрица $m \times m$. Коэффициенты матрицы $c_{kl} = \sum_{i=1}^n \varphi_k(x_i) \varphi_l(x_i)$, b – вектор-столбец с элементами $b_k = \sum_{i=1}^n \varphi_k(x_i) y_i$. a — вектор-столбец неизвестных коэффициентов $a = \operatorname{col}(a_1, \dots, a_m)$.

Наиболее распространенные наборы функций φ_i :

$$\{1, x, x^{2}, \dots, x^{m-1}\},\$$

$$\{1 - x, x(1 - x), x^{2}(1 - x), \dots, x^{m-1}(1 - x)\},\$$

$$\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots\},\$$

$$\{1, e^{x}, e^{2x}, \dots, e^{(m-1)x}\}.$$

Заметим, что если $\varphi_j = x^{j-1}$, и m=n, то функция φ совпадает с интерполяционным многочленом, построенном по набору значений (x_i, y_i) , $i=1,\ldots,n$.

2.2 Примеры

1. Дана таблица значений функции y(x)

данные узлы.

Решение.

$$n=3$$
 . т.к. $x_0=1$, $x_3=6$. Построим многочлены l_0 , l_1 , . . . , l_3 . $l_0=\frac{(x-4)(x-5)(x-6)}{(1-4)(1-5)(1-6)}=2-1.233x+0.25x^2-0.0167x^3$, $l_1=\frac{(x-1)(x-5)(x-6)}{(4-1)(4-5)(4-6)}=-5+6.833x-2x^2+0.1667x^3$, $l_2=\frac{(x-1)(x-4)(x-6)}{(5-1)(5-4)(5-6)}=6-8.5x+2.75x^2-0.25x^3$, $l_3=\frac{(x-1)(x-4)(x-5)}{(6-1)(6-4)(6-5)}=-2+2.9x-x^2+0.1x^3$.

Тогда

$$L(x) = 2l_0(x) + 3l_1(x) + 2l_2(x) + 3l_3(x) = -5 + 9.733x - 3x^2 + 0.2667x^3.$$

2.~C какой погрешностью можно найти $\log_2 0.9$ по известным значениям $\log_2 \frac{1}{2},~\log_2 \frac{1}{4},~\log_2 1$?

Решение.

Для оценки погрешности воспользуемся формулой (5). Имеем

$$f(x)=\log_2(x)$$
, $n=2$, $f'''(x)=\frac{1}{2\ln 2-x^3}$; $\max_{t\in [\frac{1}{4},1]}|f'''(t)|=f'''(\frac{1}{4})=\frac{64}{2\ln 2}$. Тогда

$$|r(0.9)| \le \frac{32}{3! \ln 2} \left| \left(0.9 - \frac{1}{4} \right) \left(0.9 - \frac{1}{2} \right) (0.9 - 1) \right| = 0.2.$$

3. Дана таблица значений функции

x	1	2	4	6
y	2	-1	-2	-6

 $\overline{\textit{Используя интерполяционный многочлен Ньютона, найти <math>y(3)$.

Решение.

Узлы не являются равноотстоящими, т.к. $2-1 \neq 4-2$.

Построим таблицу разделенных разностей.

X	y	$p(x_i)$	$p(x_i, x_{i+1})$	$p(x_i, x_{i+1}, x_{i+2})$
1	2	$\frac{-1-2}{2-1} = -3$	$\frac{-0.5+3}{4-1} = 0.83$	$\frac{-0.37-0.83}{6-1} = -0.24$
2	-1	$\frac{-2+1}{4-2} = -0.5$	$\frac{-2+0.5}{6-2} = -0.37$	0-1
4	-2	$\frac{-6+2}{6-4} = -2$	0-2	
6	-6	U I		9(-8)

Для построения многочлена Ньютона нам необходима верхняя строка построенной таблицы.

Имеем по формуле (6)

$$N(x) = 2 + (-3)(x-1) + 0.83(x-1)(x-2) - 0.24(x-1)(x-2)(x-4),$$

H.TH

$$N(x) = 8.58 - 8.85x + 2.51x^2 + 0.24x^3.$$

$$y(3) = N(3) = -1.86.$$

Заметим, что из-за округлений значений разделеных разностей возникает некоторая погрешность при вычислении $N(6)\,.$

4. Построить многочлен наименьшей степени, принимающий в данных точках заданные значения

$$\begin{bmatrix} x & 0.1 & 0.2 & 0.3 & 0.4 \\ y & 6 & 0 & 2 & 6 \end{bmatrix}$$

Решение.

Узлы являются равноотстоящими, т.к. 0.2-0.1=0.3-0.2=0.4-0.3, поэтому построим многочлен Ньютона для равноотстоящих узлов. h=0.1.

Построим таблицу конечных разностей.

X	y	Δy	$\Delta^2 y$	$\Delta^3 y$
0.1	6	0 - 6 = -6	2 + 6 = 8	2 - 8 = -6
0.2	0	2 - 0 = 2	4 - 2 = 2	
0.3	2	6 - 2 = 4		
0.4	6			

Для построения многочлена Ньютона нам необходима верхняя строка построенной таблицы.

Имеем по формуле (7)

$$N(x) = 6 + \frac{-6}{0.1}(x - 0.1) + \frac{8}{0.1^2 \cdot 2}(x - 0.1)(x - 0.2) + \frac{-6}{0.1^3 \cdot 6}(x - 0.1)(x - 0.2)(x - 0.4),$$

HJUH

$$N(x) = 26 - 290x + 1000x^2 - 1000x^3.$$

5. Для функции $y = e^x$ построить многочлен второй степени наилучиего среднеквадратичного приближения, используя значение функции в 5 узлах на отрезке [-1,1].

Решение.

Выберем 5 узлов на отрезке [-1,1], $x_1 = -1$, $x_2 = -0.5$, $x_3 = 0$, $x_4 = 0.5$, $x_5 = 1$.

Найдем $y_i=e^{x_i},\ y_1=e^{-1}=0.3860,\ y_2=0.607,\ y_3=1,\ y_4=1.649,\ y_5=2.718$.

Так как требуется приблизить функцию многочленом второй степени $\varphi = 1 + a_2 x + a_3 x^2$, то $\varphi_1(x) = 1$, $\varphi_2(x) = x$, $\varphi_3(x) = x^2$. Таким образом, m = 3. Найдем коэффициенты матрицы C.

$$c_{11} = \sum_{i=1}^{5} \varphi_1(x_i)\varphi_1(x_i) = \sum_{i=1}^{5} 1 = 5,$$

$$c_{12} = \sum_{i=1}^{5} \varphi_1(x_i)\varphi_2(x_i) = \sum_{i=1}^{5} x_i = 0,$$

$$c_{13} = \sum_{i=1}^{5} \varphi_1(x_i)\varphi_3(x_i) = \sum_{i=1}^{5} x_i^2 = \frac{5}{2}.$$

$$c_{21} = c_{12},$$

$$c_{22} = \sum_{i=1}^{5} \varphi_2(x_i)\varphi_2(x_i) = \sum_{i=1}^{5} x_i^2 = \frac{5}{2},$$

$$c_{23} = \sum_{i=1}^{5} \varphi_2(x_i)\varphi_3(x_i) = \sum_{i=1}^{5} x_i^3 = 0,$$

$$c_{31} = c_{13}.$$

$$c_{32} = c_{23},$$

$$c_{33} = \sum_{i=1}^{5} \varphi_3(x_i)\varphi_3(x_i) = \sum_{i=1}^{5} x_i^4 = \frac{17}{8}.$$

Также найдем элементы столбца b.

$$b_1 = \sum_{i=1}^{5} \varphi_1(x_i) y_i = \sum_{i=1}^{5} e^{x_i} = 6.341,$$

$$b_2 = \sum_{i=1}^{5} \varphi_2(x_i) y_i = \sum_{i=1}^{5} x_i e^{x_i} = 2.872,$$

$$b_3 = \sum_{i=1}^{5} \varphi_3(x_i) y_i = \sum_{i=1}^{5} x_i^2 e^{x_i} = 3.650.$$

Решим систему уравнений

$$\begin{pmatrix} 5 & 0 & \frac{5}{2} \\ 0 & \frac{5}{2} & 0 \\ \frac{5}{2} & 0 & \frac{17}{8} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 6.341 \\ 2.872 \\ 3.650 \end{pmatrix}.$$

Получим $a_1 = 0.944$, $a_2 = 1.147$. $a_3 = 0.5477$.

Таким образом, имеем многочлен $\varphi(x) = 0.944 + 1.147x + 0.5477x^2$.

Многочлен $\varphi(x)$ хорошо приближает функцию $y=e^x$. Это можно видеть на рисунке 1.

Рис. 1: Среднеквадратичное приближение функции $y=\epsilon^x$ многочленом второй степени

6. Построить параболический сплайн для таблично заданной функции.

X	1	2	3	4	5	6
y	2	3	5	3	4	6

Решение.

Ищем функцию s(x) в виде

$$s(x) = \begin{cases} a_0(x-1)^2 + b_0(x-1) + 2, & \text{при } x \in [1,2], \\ a_1(x-2)^2 + b_1(x-2) + 3, & \text{при } x \in [2,3], \\ a_2(x-3)^2 + b_2(x-3) + 5, & \text{при } x \in [3,4], \\ a_3(x-4)^2 + b_3(x-4) + 3, & \text{при } x \in [4,5], \\ a_4(x-5)^2 + b_4(x-5) + 4, & \text{при } x \in [5,6], \end{cases}$$

Здесь мы уже подставили значения $c_i=y_i.$ Все $h_i=1.$ Воспользуемся формулой (11)

$$b_0 = 0; \quad b_1 = \frac{2(y_1 - y_0)}{h_0} - b_0 = 2(3 - 2) - 0 = 2,$$

$$b_2 = \frac{2(y_2 - y_1)}{h_1} - b_1 = 2(5 - 3) - 2 = 2,$$

$$b_3 = \frac{2(y_3 - y_2)}{h_2} - b_2 = 2(3 - 5) - 2 = -6,$$

$$b_4 = \frac{2(y_4 - y_3)}{h_3} - b_3 = 2(4 - 3) + 6 = 8,$$

$$b_5 = \frac{2(y_5 - y_4)}{h_4} - b_4 = 2(6 - 4) - 8 = -4,$$

Найдем теперь a_i по формуле (12)

$$a_{i} = \frac{b_{i+1} - b_{i}}{2h_{i}},$$

$$a_{0} = \frac{b_{1} - b_{0}}{2h_{0}} = \frac{2 - 0}{2} = 1,$$

$$a_{1} = \frac{b_{2} - b_{1}}{2h_{1}} = \frac{2 - 2}{2} = 0,$$

$$a_{2} = \frac{b_{3} - b_{2}}{2h_{2}} = \frac{-6 - 2}{2} = -4,$$

$$a_{3} = \frac{b_{4} - b_{2}}{2h_{3}} = \frac{8 + 6}{2} = 7.$$

$$a_{4} = \frac{b_{5} - b_{4}}{2h_{1}} = \frac{-4 - 8}{2} = -6.$$

Тогда

$$s(x) = \begin{cases} (x-1)^2 + 2, & \text{при } x \in [1,2], \\ 2(x-2) + 3, & \text{при } x \in [2,3], \\ -4(x-3)^2 + 2(x-3) + 5, & \text{при } x \in [3,4], \\ 7(x-4)^2 - 6(x-4) + 3, & \text{при } x \in [4,5], \\ -6(x-5)^2 + 8(x-5) + 4, & \text{при } x \in [5,6]. \end{cases}$$

Нетрудно проверить, что условия интерполяции, непрерывности для функции s(x) выполнены, а также выполнено условие непрерывности производной.

2.3 Вопросы и задачи для самостоятельной работы

- 1. Построить многочлен Лагранжа для равноотстоящих узлов.
- 2. Функция y(x) задана таблицей

Как можно найти x, при котором y(x) = 4?

- 3. Зная значения $\sin x$ при $x = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$, найти $\sin \frac{\pi}{12}$ и оценить ногрешность.
- 4. Дана таблица натуральных логарифмов чисел от 1 до 10. Какова погрешность линейной интерполяции, если шаг равен 0.001?
 - 5. Можно ли применять метод наименьших квадратов, если m > n?
- 6. Для таблично заданной функции построить функцию наилучшего среднеквадратичного приближения, полагая $\varphi_1(x)=1$, $\varphi_2(x)=\sin x$, $\varphi_3(x)=\cos x$. $\begin{bmatrix} x & -1 & 0 & 2 & 3 \\ y & 2 & 3 & 5 & 3 \end{bmatrix}$
- 7. Описать алгоритм построения сплайна первого порядка (линейного сплайна).
- 8. Получить формулы для вычисления коэффициентов кубического сплайна. Сколько дополнительных условий на функцию *s* придется ввести?
 - 9. Как определить погрешность сплайн-интерполяции?
- 10. С помощью силайн-интерполяции определить значение таблично заданной функции y(x) в точке x=0.9.

- 11. Показать, что имеется не более одного многочлена степени не выше n. такого, что $L(x_i) = y_i$, $i = 0, \ldots, n$.
- 12. Провести для интерполяционного многочлена Ньютона оценку остаточного члена.

2.4 Задание к лабораторной работе

Для фукции y(x), заданной таблично, построить многочлен Ньютона или Лагранжа (по выбору), параболический сплайн и функцию наилучшего среднеквадратичного приближения, полагая

$$arphi_1 = 1 - x, \quad arphi_2 = x(1-x)^{i-1}, \quad i = 2, \dots, 5, \text{ если } N = 3k,$$
 $arphi_1 = 1 - x, \quad arphi_i = x^{i-1}(1-x), \quad i = 2, \dots, 5, \text{ если } N = 3k+1,$ $arphi_1 = 1, \quad arphi_2 = \sin x, \quad arphi_3 = \cos x, \quad arphi_4 = \sin 2x, \quad arphi_5 = \cos 2x,$

если N=3k+2, где N — количество букв в Ф.И.О.

Уметь определять значения функции в произвольной точке.

							0.7			
y	0.2N	$0.3 \mathrm{m}$	0.5k	0.6N	$0.7 \mathrm{m}$	k	0.8 N	1.2k	$1.3 \mathrm{m}$	N

Здесь т-количество букв в фамилии, к-количество букв в имени.