## Mapping, Alignment and SNP Calling

Heng Li

**Broad Institute** 

MPG Next Gen Workshop 2011

#### Outline

- Mapping
  - Messages from the 1000 Genomes Project
  - A race in throughput
- 2 Alignment
  - Mapping vs. alignment
  - Fixing wrong alignments
- SNP calling
  - Single-sample SNP calling
  - Multi-sample SNP calling

### Outline

- Mapping
  - Messages from the 1000 Genomes Project
  - A race in throughput
- Alignment
  - Mapping vs. alignment
  - Fixing wrong alignments
- SNP calling
  - Single-sample SNP calling
  - Multi-sample SNP calling



#### Submitted Illumina data from the 1000 Genomes Project





#### Illumina sequencing

- >20X increased throughput in 3 years
- ~20Gbp raw sequences per machine day at present





#### Published general-purpose NGS mappers



#### Published general-purpose NGS mappers



uale

## Convergence in mapping algorithms

- Recommended mappers for variant calling:
  - ▶ Illumina: BWA, Eland2, Novoalign, Stampy
  - SOLiD: Bfast, BioScope
  - ▶ 454: SSAHA2, gsMapper, BWA-SW
- Modern short-read mappers are faster than image analysis and base calling.
  - No need for further speed improvements for short reads
  - Long-read and multi-reference alignments still pose challenges

#### Outline

- Mapping
  - Messages from the 1000 Genomes Project
  - A race in throughput
- Alignment
  - Mapping vs. alignment
  - Fixing wrong alignments
- SNP calling
  - Single-sample SNP calling
  - Multi-sample SNP calling



## Ungapped mappers perform badly for SNP calling



## A typical SNP caller sees...

```
10
         aaaC
     а
11
     а
         aaaaa
12
     а
         aaaaaa
13
     а
         aaaaaa
14
    С
         cccTTT
15
     а
         aaaaaa
16
     а
         aaaaaa
17
     t
         AAtttt
18
    t
         ttttt
19
     a
         aaaaaa
20
     а
         aaaaaa
21
```

g

ttt

9 t

Tgggg

## The alignment looks like...

|    |   |                | coor   | 12345678901234                                                             | 5678901234567890123456 |  |
|----|---|----------------|--------|----------------------------------------------------------------------------|------------------------|--|
| 9  | t | ttt            | ref    | aggttttataaaac                                                             | aattaagtctacagagcaacta |  |
| 10 | а | aaaC           | sample | ${\tt aggttttataaaac} \underline{{\tt AAAT}} {\tt aattaagtctacagagcaacta}$ |                        |  |
| 11 | а | aaaaa          | read1  | aggttttataaaac <u>aaAt</u> aa                                              |                        |  |
| 12 | а | aaaaaa         | read2  | ggttttataaaac <u>aaAt</u> aa <mark>T</mark> t                              |                        |  |
| 13 | а | aaaaaa         | read3  | ${	ttataaaaac} {	t AAAT} {	t aattaagtctaca}$                               |                        |  |
| 14 | С | cccTTT         | read4  | <u>CaaaT</u>                                                               | aattaagtctacagagcaac   |  |
| 15 | а | aaaaaa         | read5  | <u>aaT</u>                                                                 | aattaagtctacagagcaact  |  |
| 16 | а | aaaaaa         | read6  | <u>T</u>                                                                   | aattaagtctacagagcaacta |  |
| 17 | t | <b>AA</b> tttt |        |                                                                            |                        |  |
| 18 | t | tttttt         |        |                                                                            |                        |  |
| 19 | а | aaaaaa         |        |                                                                            |                        |  |
| 20 | а | aaaaaa         |        |                                                                            |                        |  |

Tgggg

21 g

## But what is really happening is...

|    |   |                | coor   | 12345678901234                                                  | 5678901234567890123456          |  |
|----|---|----------------|--------|-----------------------------------------------------------------|---------------------------------|--|
| 9  | t | ttt            | ref    | aggttttataaaac                                                  | aattaagtctacagagcaacta          |  |
| 10 | а | aaaC           | sample | ${\tt aggttttataaaaac} {\tt AAAT} {\tt aattaagtctacagagcaacta}$ |                                 |  |
| 11 | а | aaaaa          | read1  | aggttttataaaac                                                  | <u>aaAt</u> aa                  |  |
| 12 | а | aaaaaa         | read2  | ggttttataaaac                                                   | <u>aaAt</u> aa <mark>T</mark> t |  |
| 13 | а | aaaaaa         | read3  | ${	ttataaaaac}$                                                 |                                 |  |
| 14 | С | cccTTT         | read4  | C <u>aaaT</u>                                                   | aattaagtctacagagcaac            |  |
| 15 | а | aaaaaa         | read5  | <u>aaT</u>                                                      | aattaagtctacagagcaact           |  |
| 16 | а | aaaaaa         | read6  | <u>T</u>                                                        | aattaagtctacagagcaacta          |  |
| 17 | t | <b>AA</b> tttt | read1  | aggttttataaaac <u>aaat</u> aa                                   |                                 |  |
| 18 | t | ttttt          | read2  | ggttttataaaacaaataatt                                           |                                 |  |
| 19 | а | aaaaaa         | read3  | ttataaaacaaataattaagtctaca                                      |                                 |  |
| 20 | а | aaaaaa         | read4  | caaataattaagtctacagagcaac                                       |                                 |  |
| 21 | g | Tgggg          | read5  | <u>aat</u> aattaagtctacagagcaact                                |                                 |  |
|    |   |                | read6  |                                                                 | taattaagtctacagagcaacta         |  |

## Mapping vs. alignment

#### Mapping

- A mapping is the region where a read sequence is placed.
- A mapping is regarded to be correct if it overlaps the true region.

#### Alignment

- An alignment is the detailed placement of each base in a read.
- An alignment is regarded to be correct only if each base is placed correctly.

#### The problem

- A read mapper is fairly good at mapping, may not be good at alignment.
- This is because the true alignment minimizes differences between reads, but the read mapper only sees the reference.

## Mapping vs. alignment

#### Mapping

- A mapping is the region where a read sequence is placed.
- A mapping is regarded to be correct if it overlaps the true region.

#### Alignment

- An alignment is the detailed placement of each base in a read.
- An alignment is regarded to be correct only if each base is placed correctly.

#### The problem

- A read mapper is fairly good at mapping, may not be good at alignment.
- This is because the true alignment minimizes differences between reads, but the read mapper only sees the reference.

## Fixing wrong alignments

### Multi-sequence realignment

- Perform multi-seq alignment to minimize differences between reads.
- Effective for long gaps.

### Base Alignment Quality (BAQ)

- Measure the probability of a read base being misaligned
  - BAQ is low if the read base is aligned to a different reference base in a suboptimal alignment.
  - Bases with low BAQ ignored or downweighted in SNP calling.
- Effective even if no reads are mapped with gaps.
- Work by traversing all the possible alignment between the read and the reference.
- Computed efficiently with an HMM.



## Fixing wrong alignments

#### Multi-sequence realignment

- Perform multi-seq alignment to minimize differences between reads.
- Effective for long gaps.

## Base Alignment Quality (BAQ)

- Measure the probability of a read base being misaligned
  - BAQ is low if the read base is aligned to a different reference base in a suboptimal alignment.
  - Bases with low BAQ ignored or downweighted in SNP calling.
- Effective even if no reads are mapped with gaps.
- Work by traversing all the possible alignment between the read and the reference.
- Computed efficiently with an HMM.



#### Evaluation on simulated data

| GATKrealn | BAQ | FNR  | # false SNPs |
|-----------|-----|------|--------------|
| No        | No  | 7.3% | 116          |
| Yes       | No  | 7.6% | 4            |
| No        | Yes | 8.3% | 2            |
| Yes       | Yes | 8.3% | 0            |

- No filtering applied except a quality cutoff
- BAQ and multi-sequence realignment complement each other:
  - BAQ is less effective given long gaps.
  - ► The current realignment algorithm is less effective if no reads are mapped with gaps.

#### Outline

- Mapping
  - Messages from the 1000 Genomes Project
  - A race in throughput
- 2 Alignment
  - Mapping vs. alignment
  - Fixing wrong alignments
- SNP calling
  - Single-sample SNP calling
  - Multi-sample SNP calling

## Single-sample Bayesian caller: a toy example

#### Input

Reference is C, observing 4C and 2T, all with base quality 30.

- $P(D|CC) = Pr\{two Q30 errors\} = 10^{-(30+30)/10} = 10^{-6}$
- $P(D|TT) = Pr\{\text{four Q30 errors}\} = 10^{-(30*4)/10} = 10^{-12}$
- $P(D|CT) = Pr\{\text{sample 6 reads from 2 chr}\} = 1/2^6 = 1.56 \times 10^{-2}$

• Prior: P(CC) = 0.9985, P(CT) = 0.001 and P(TT) = 0.0005

$$P(CC|D) = \frac{P(D|CC)P(CC)}{P(D|CC)P(CC) + P(D|CT)P(CT) + P(D|TT)P(TT)}$$

• Get: P(CC|D) = 0.06, P(CT|D) = 0.94 and  $P(TT|D) = 3 \times 10^{-11}$ 

## Single-sample Bayesian caller: a toy example

#### Input

Reference is C, observing 4C and 2T, all with base quality 30.

#### Likelihood of data

- $P(D|CC) = Pr\{two Q30 errors\} = 10^{-(30+30)/10} = 10^{-6}$
- $P(D|TT) = Pr\{\text{four Q30 errors}\} = 10^{-(30*4)/10} = 10^{-12}$
- $P(D|CT) = Pr\{\text{sample 6 reads from 2 chr}\} = 1/2^6 = 1.56 \times 10^{-2}$

• Prior: P(CC) = 0.9985, P(CT) = 0.001 and P(TT) = 0.0005

$$P(CC|D) = \frac{P(D|CC)P(CC)}{P(D|CC)P(CC) + P(D|CT)P(CT) + P(D|TT)P(TT)}$$

• Get: P(CC|D) = 0.06, P(CT|D) = 0.94 and  $P(TT|D) = 3 \times 10^{-11}$ 

## Single-sample Bayesian caller: a toy example

#### Input

Reference is C, observing 4C and 2T, all with base quality 30.

#### Likelihood of data

- $P(D|CC) = Pr\{two Q30 errors\} = 10^{-(30+30)/10} = 10^{-6}$
- $P(D|TT) = Pr\{\text{four Q30 errors}\} = 10^{-(30*4)/10} = 10^{-12}$
- $P(D|CT) = Pr\{\text{sample 6 reads from 2 chr}\} = 1/2^6 = 1.56 \times 10^{-2}$

#### Posterior

• Prior: P(CC) = 0.9985, P(CT) = 0.001 and P(TT) = 0.0005

$$P(CC|D) = \frac{P(D|CC)P(CC)}{P(D|CC)P(CC) + P(D|CT)P(CT) + P(D|TT)P(TT)}$$

• Get: P(CC|D) = 0.06, P(CT|D) = 0.94 and  $P(TT|D) = 3 \times 10^{-11}$ 

## Multi-sample Bayesian caller: an overview

- Similar to single-sample calling except replacing the individual genotype with the genotype configuration of multiple samples.
- Math magic to accelerate computation.
- Allele frequency estimated at the same time.

## Multi-sample vs. pooled SNP calling

#### An example

- 1 sample covered by 3 Q20 C bases (1% error rate); 99 samples covered by 297 Q20 T bases.
- Very unlikely for 3 errors appear in one sample.
- Without sample information, the 3 C look like perfect sequencing errors.

#### Combining pooling and barcoding

• Pool less than 100 samples together, barcode each pool and then sequence.

## Acknowledgements

- 1000 Genomes Project analyses group
  - Mark Depristo and the GSA group at Broad
- SAMtools/Picard users
- Altshuler/Daly lab and Reich lab

# Thank You

