MATH 210B

Name: Quin Darcy
Due Date: 2/19/20
Instructor: Dr. Shannon
Assignment: Homework 4

1. Prove that $\mathbb{Q}(i, \sqrt{2}) = \mathbb{Q}(\sqrt{i})$.

Proof. We begin by noting that a basis for $\mathbb{Q}(i,\sqrt{2})$ is $B_1 = \{1, i, \sqrt{2}, \sqrt{2}i\}$ and a basis for $\mathbb{Q}(\sqrt{i})$ is $B_2 = \{1, \sqrt{i}, i\}$. Now since $\mathbb{Q}(i, \sqrt{2})$ is a field, then both $1/\sqrt{2}$ and $i/\sqrt{2}$ are elements. Moreover, it is closed under addition and multiplication. With this in mind consider

$$\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^2 = \left(\frac{1+2i-1}{2}\right) = i.$$

From this is follows that

$$\sqrt{i} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \in \mathbb{Q}(i, \sqrt{2}).$$

Thus, $B_2 \subseteq \mathbb{Q}(i, \sqrt{2})$ and hence $\mathbb{Q}(\sqrt{i}) \subseteq \mathbb{Q}(i, \sqrt{2})$. Similarly, we have shown that

$$\sqrt{i} - \frac{i}{\sqrt{2}} = \frac{1}{\sqrt{2}} \in \mathbb{Q}(\sqrt{i}),$$

and so this element has a multiplicative inverse, namely, $\sqrt{2} \in \mathbb{Q}(i)$. Lastly, since $\sqrt{2}(\sqrt{i})^2 = \sqrt{2}i \in \mathbb{Q}(\sqrt{i})$, then $B_1 \subseteq \mathbb{Q}(\sqrt{i})$ and thus $\mathbb{Q}(i, \sqrt{2}) \subseteq \mathbb{Q}(\sqrt{i})$. Therefore, $\mathbb{Q}(i, \sqrt{2}) = \mathbb{Q}(\sqrt{i})$.

3. The Möbious function, μ , is defined by the following: $\mu(1) = 1$; if t > 1, then let $t = p_1^{r_1} \cdots p_m^{r_m}$ be the prime factorization of t. $\mu(t) = (-1)^m$, if $r_i = 1$ for all $i, 1 \le i \le m$, and $\mu(t) = 0$, if $r_i > 1$ for some i. Then

$$\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}.$$

Using this result, find Φ_3 , Φ_4 , Φ_5 , Φ_6 .

Solution. Using the given formula, we get:

$$\Phi_3(x) = \prod_{d \mid 3} (x^{3/d} - 1)^{\mu(d)} = (x^3 - 1)(x - 1)^{-1} = x^2 + x + 1.$$

$$\Phi_3(x) = \prod_{d \mid A} (x^{4/d} - 1)^{\mu(d)} = (x^4 - 1)(x^2 - 1)^{-1} = x^2 + 1.$$

$$\Phi_5(x) = \prod_{d \mid 5} (x^{5/d} - 1)^{\mu(d)} = (x^5 - 1)(x - 1)^{-1} = x^4 + x^3 + x^2 + x + 1.$$

$$\Phi_6(x) = \prod_{d \mid 6} (x^{6/d} - 1)^{\mu(d)} = \frac{x^7 - x^6 - x + 1}{x^5 - x^3 - x^2 + 1}.$$

MATH 210B Darcy

- 4. Assume that F is a finite field.
 - (a) Explain (one sentence) why char(F) is a prime number, p, and why F contains a subfield that is isomorphic to \mathbb{Z}_p .

Solution. Since F is a field, then it has no zero divisors and so if the characteristic were composite, say ab, then either $a1_F$ or $b1_F$ is zero, contradicting the definition of characteristic. Moreover, the set $\{a1_F : a \in \mathbb{Z}\}$ is a subfield of F with order p, and thus isomorphic to \mathbb{Z}_p .

(b) By (a), F is a vector space over \mathbb{Z}_p . Assume that $[F:\mathbb{Z}_p]=n$. Determine (with proof) |F|.

Proof. Let $\{r_0, \ldots, r_{n-1}\}$ be a basis for F over \mathbb{Z}_p and consider any $w \in F$. Then for $a_0, \ldots, a_{n-1} \in \mathbb{Z}_p$, we have

$$w = a_0 r_0 + \dots + a_{n-1} r_{n-1}.$$

since there are n many basis elements and p many choices for each coefficient, then it follows that there are p^n many elements in F. Thus, $|F| = p^n$.

(c) Give a field with 125 elements.

Solution. By HW3, $x^3 + x + 1$ is irreducible over \mathbb{Z}_5 . Thus, $\mathbb{Z}_5/(x^3 + x + 1)_i$ is a field. We know that $\{I + 1, I + x, I + x^2\}$ is a basis and so $I + (a + bx + cx^2)$ represents any elements of this field. There are 5 choices for a, b and c. Thus, there are $5^3 = 125$ elements in this field.

5. Factor $x^3 - 2$ into irreducible factors over \mathbb{Q} , over \mathbb{R} , over \mathbb{C} , over \mathbb{Z}_3 , and over $\mathbb{Z}_5/(x^2 + 3x + 4)_i$.

Solution.

Q:
$$x^3 - 2$$
;
R: $(x - 2^{1/3})(x^2 + 2^{1/3}x + 2^{2/3})$;
C: $(x - 2^{1/3})(x + \frac{1 - i\sqrt{3}}{2^{2/3}})(x + \frac{1 + i\sqrt{3}}{2^{2/3}})$;
 \mathbb{Z}_3 : $(x - 2)^2(x + 1)$;
 $\mathbb{Z}_5/(x^2 + 3x + 4)_i$: $(I + 3)(I + x)(I + 4x + 2)$.

6. Assume that E is a field and F is a subfield of E. Let $K = \{a \in E : a \text{ is algebraic over } F\}$. Prove that K is a subfield of E that contains F.

Proof. To begin we note that for any $a \in F$, a is algebraic over F since a is a root of $x - a \in F[x]$. Thus, $F \subseteq K$. Now let $a, b \in K$. Then $x - a \mid f(x)$ and $x - b \mid g(x)$ for some $f(x), g(x) \in F[x]$. Thus, for $q_1(x), q_2(x) \in F[x]$, we have that

$$f(x) = q_1(x)(x - a)$$
 and $g(x) = q_2(x)(x - b)$.

MATH 210B Darcy

Since F[x] is a ring, then the addition and multiplication of any of the nonzero polynomials in F[x] will result in another element of F[x]. From this we can first show that $-g(x) + 2xq_2(x) = q_2(x)(x+b)$ and so $-b \in K$. Furthermore, it follows that

$$f(x) + g(x) + q_1(x)a - q_2(x)b + (q_1(x) + q_2(x))(-a + b) = (q_1(x) + q_2(x))(x - (a - b)).$$

Thus, there is some polynomial in F[x] for which (x-(a-b)) is a factor. Hence, $a-b\in K$. Now we must show that $ab^{-1}\in K$. First, we observe that if $g(x)=c_0+c_1x+\cdots+c_nx^n$, then $g(b)=c_0+c_1b+\cdots+c_nb^n=0$. Multiplying both sides by b^{-n} , we get $c_0b^{-n}+c_1b^{-n+1}+\cdots+c_n=0$. Hence, for the polynomial $g(x)b^n\in F[x]$, b^{-1} is a root and thus $b^{-1}\in K$. Finally, since ab^{-1} is a root of $bx-a\in F[x]$, then $ab^{-1}\in K$. It also follows that since E is a field and $K\subseteq E$, then K has no zero divisors. Thus, K is a commutative ring with identity, no zero divisors and every nonzero element has a multiplicative inverse. Therefore, K is a subfield of E.

7. Prove that if [E:F] is finite, then every element of E is algebraic over F.

Proof. By Theorem 2, for all $c \in E$, c is algebraic over F iff [F(c): F] is finite. Thus, since $F(c) \subseteq E$ for all $c \in E$, then [F(c): F] is finite for all $c \in E$. Therefore, for all $c \in E$, c is algebraic over F.

- 8. Find the minimal polynomial over \mathbb{Q} of each of the following:
 - (a) $3 + \sqrt{2}$.

Solution. To begin we let $x = 3 + \sqrt{2}$ and so $(x-3)^2 = 2$. Thus, $x^2 - 6x + 7 = 0$. Letting p = 3, then by the \mathbb{Z}_p test, we see that $\varphi(x^2 - 6x + 7) = x^2 + [1]$. This does not have a root in \mathbb{Z}_3 and is therefore irreducible over \mathbb{Z}_3 and therefore over \mathbb{Q} . Thus, $x^2 - 6x + 7$ is the minimal polynomial.

(b)
$$\sqrt{-1+\sqrt{2}}$$
.

Solution. Letting $x = \sqrt{-1 + \sqrt{2}}$, we get that $x^4 + 2x - 1 = 0$. Using the \mathbb{Z}_p test, with p = 3 we get that $\varphi(x^4 + 2x - 1) = x^4 + 2x + 2$. It is clear that this has no linear factors since no element of \mathbb{Z}_3 is a root for the polynomial. Thus, if it is reducible, then for some $a, b, c, d, e, f \in \mathbb{Z}_3$ we have

$$x^{4} + 2x + 2 = (ax^{2} + bx + c)(dx^{2} + ex + f).$$

This yields the following conditions

i.
$$ad = 1$$

ii.
$$ae + bd = 0$$

iii.
$$af + be + cd = 2$$

iv.
$$bf + ce = 0$$

v.
$$cf = 2$$

MATH 210B Darcy

With some calculation we can determine that there are 8 possible polynomials in \mathbb{Z}_3 that satisfy the first three conditions, namely (when written as an ordered 6-tuples e.g 2x+1 is (2,1)), are (1,2,2,1,1,1), (1,2,0,1,1,0), (1,0,0,1,0,2), (1,0,1,1,0,1), (2,2,2,2,1,1), (2,2,0,2,1,0), (2,0,1,2,0,0), (2,0,2,2,0,2). However, all of these polynomials either fail conditions iv. or v. Therefore, there is no factors of x^4+2x+2 in \mathbb{Z}_3 . Thus, the polynomial is irreducible in \mathbb{Z}_3 and therefore irreducible in \mathbb{Q} . Thus, x^4+2x-1 is the minimal polynomial of $\sqrt{-1+\sqrt{2}}$.

10. Prove that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) = \mathbb{Q}(\sqrt{3} + \sqrt{5})$.

Proof. It follows immediately that $\mathbb{Q}(\sqrt{3} + \sqrt{5}) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Thus we must show that $\sqrt{3}, \sqrt{5} \in \mathbb{Q}(\sqrt{3} + \sqrt{5})$. Since $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ is a field, then $(\sqrt{3} + \sqrt{5})^{-1}$ is an element of this field. Thus,

$$(\sqrt{3} + \sqrt{5})^{-1} = \frac{1}{\sqrt{3} + \sqrt{5}}$$

$$= \frac{1}{\sqrt{3} + \sqrt{5}} \frac{(\sqrt{3} - \sqrt{5})}{(\sqrt{3} - \sqrt{5})}$$

$$= -\frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{5}.$$

And so $-\frac{1}{2}(\sqrt{3}-\sqrt{5})\in\mathbb{Q}(\sqrt{3}+\sqrt{5})$. $(-2)(-\frac{1}{2}(\sqrt{3}-\sqrt{5}))=\sqrt{3}-\sqrt{5}\in\mathbb{Q}(\sqrt{3}+\sqrt{5})$. This implies $\sqrt{3}-\sqrt{5}+\sqrt{3}+\sqrt{5}=2\sqrt{3}\in\mathbb{Q}(\sqrt{3}+\sqrt{5})$ and so $\sqrt{3}\in\mathbb{Q}(\sqrt{3}+\sqrt{5})$. A similar argument shows that $\sqrt{5}\in\mathbb{Q}(\sqrt{3}+\sqrt{5})$. Therefore, $\mathbb{Q}(\sqrt{3},\sqrt{5})=\mathbb{Q}(\sqrt{3}+\sqrt{5})$.