

UNIVERSIDADE FEDERAL DO CEARÁ - UFC

Campus de Sobral

Departamento de Engenharia Elétrica

Disciplina: Variáveis Complexas SBL0095

Prof. Ailton Campos

Data: 30/03/2023 Período: 2023.1

7A T		
	Oma:	
1.3	OIIIC.	

1^a Lista de Exercícios

- 1. Fazer todos os exercícios ímpares dos capítulos 1,2 e 3 do livro texto.
- 2. Escreva cada um dos seguintes números na forma algébrica x + iy:
 - a) $\frac{1}{i}$.
 - b) i^{4n+3} , $n \in \mathbb{N}$.
 - c) $\frac{4+i}{6-3i}.$
 - $d) \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^8.$
 - e) $\left(\frac{1+i}{\sqrt{2}}\right)^{25}$.
- 3. Encontre a parte real e a parte imaginária de
 - a) $(i+1)^2 \cdot (i-1)$.
 - b) $z^4 + 2z + 6$.
 - c) $\frac{z}{z^2 + 1}$.
 - d) $\frac{i^2}{i^3 4i + 6}$.
- 4. Calcule o módulo de
 - a) $(2 i)^2 \cdot (4 + 6i)$.
 - b) $(i+1) \cdot (i+2) \cdot (i+3)$.
 - c) $\frac{i+2}{i-2}$.
 - d) $\frac{3-i}{(6+2i)^2}$.
- 5. Responda os seguintes itens.
 - a) Resolva a equação $z^2 + z + 1 = 0$ em z = (x, y) escrevendo (x, y)(x, y) + (x, y) + (1, 0) = (0, 0) e então resolvendo um par de equações simultaneamente em $x \in y$.
 - b) Em cada caso, esboçe o conjunto de pontos determinados pela condição dada
 - i) |z-1+i|=1.
 - ii) $|z+i| \leq 3$.
 - iii) $|\arg z| < \frac{\pi}{4}$.
 - iv) $|z| = \arg z$.
 - v) $\log |z| = -2\arg z$.

- 6. Para qual n temos que i é uma raíz n-ésima da unidade?
- 7. Resolva os seguintes itens
 - a) Encontre todas as seis raízes de 2.
 - b) Encontre todas as raízes cúbicas de i.
 - c) Encontre e esboce no plano complexo as raízes quadradas de 4i.
 - d) Encontre e esboce no plano complexo as raízes cúbicas de 1 + i.
- 8. Suponha que $f(z) = x^2 y^2 2y + i(2x 2xy)$, em que z = x + iy. Use as expressões

$$x = \frac{z + \overline{z}}{2} e x = \frac{z - \overline{z}}{2i}$$

para escrever f(z) em termos de z e simplifique o resultado.

9. Mostre que

$$e^{\overline{z}} = \overline{e^z}$$
.

10. Use as regras de derivação para encontrar f'(z) se

a)
$$f(z) = 3z^2 - 2z + 4$$
.

b)
$$f(z) = \frac{z-1}{2z+1}$$
.

c)
$$f(z) = (2z^2 + i)^5$$
.

d)
$$f(z) = \frac{(1+z^2)^4}{z^2}$$
.

11. Se a função f(z) = u(x,y) + iv(x,y) for definida pelas equações

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z}, & \text{se } z \neq 0, \\ 0, & \text{se } z = 0. \end{cases}$$

Resolva os seguintes itens.

a) Verifique que
$$u(x,y) = \frac{x^3 - 3xy^2}{x^2 + y^2}$$
 e $v(x,y) = \frac{y^3 - 3x^2y}{x^2 + y^2}$.

- b) Mostre que as funções \mathbf{u} e \mathbf{v} acima satisfazem as equações de Cauchy-Riemann em z=0.
- c) Verifique que não existe f'(0).

A questão acima ilustra o fato que se f satisfaz as equações de Cauchy-Riemann em um ponto $z = z_0$ isto não implica que exista $f'(z_0)$.

12. Escreva

$$\frac{\partial}{\partial z} \quad e \quad \frac{\partial}{\partial \overline{z}}$$

em coordenadas polares.

Bom Trabalho!!!