Q1 According to the scaling model proposed by Dennard et al., in every subsequent generation, all three physical dimensions  $(W, L, t_{ox})$ , the power supply voltage  $V_{DD}$  and the threshold voltage,  $V_t$  are downscaled by factor of x (x > 1). Show that in this scenario, the clock frequency can be increased by a factor of x while keeping the chip power density (in W/cm<sup>2</sup>) keeping the same. [25 pts]

|                       | · · · · · · · · · · · · · · · · · · · | [20 Pto | 1         |              |                              |             |          |
|-----------------------|---------------------------------------|---------|-----------|--------------|------------------------------|-------------|----------|
| The                   | CLiP                                  | २० ० थ  | Densi     | ty is        | a f                          | cretion     | Of       |
| ARCA                  | A.                                    | The #   | of        | TRASISTO     | u 21                         | for g       | 'a croto |
| n (1                  | Nn)                                   | is      | Nn =      | <u>A</u>     |                              |             |          |
|                       |                                       | Δ       |           | wnin         |                              |             |          |
| નિ                    | NATI =                                | (%)(%)  | => 1      | )~ Xz        |                              |             |          |
| The                   | Delay                                 | 7       | 1 1 1 1 2 |              | 8 By                         | X           |          |
|                       |                                       |         | Ian       |              |                              |             |          |
| as I                  | Ion (n+1) =                           | Tan     | and       | $L_{nH} = X$ | $\frac{C_{\text{H}}}{X} = 0$ | tn+1 =      | tu<br>×  |
| 0                     | f - P                                 | ×       |           | X            | _P                           |             |          |
| Jn=                   | In 2 F                                | nel tap | = tn/x    | tor          | - <u>In</u>                  | <b>&gt;</b> |          |
| if in                 | e Sea                                 | e The f | M. 1      | C: P F       | ower,n=                      | C/ $U$      | 2 }      |
|                       |                                       |         |           |              |                              |             |          |
| * SCa                 | 13 F.                                 | UI BY   | ~         | ()           | n+1 = C                      | ~ ×5        | \$nX     |
| RCCPS                 | 72                                    | Power D | 0317      |              | 14 = Pa                      |             |          |
| COVSTALT. = NATI PATI |                                       |         |           |              |                              |             |          |
| C 721                 | 771 •                                 |         |           |              |                              |             |          |
|                       |                                       |         |           | Pe           | ai Patl =                    | NN          | Ya Ya    |
|                       |                                       |         |           |              |                              |             |          |
|                       |                                       |         |           |              |                              |             |          |
|                       |                                       |         |           |              |                              |             |          |

Goodnotes

Q2 In the scenario where, in each subsequent generation, you could downscale only the three physical dimensions  $(W, L, t_{ox})$  by a factor of x but had to keep  $V_{DD}$  and  $V_t$  fixed, how would you have changed the clock frequency? [25 pts]

| [25 p     | usj      |            |                  |          |         |        |
|-----------|----------|------------|------------------|----------|---------|--------|
| Beevso    | - Re     | # of       | tra os ista      | ?is ?is  | Depart  | set on |
| Aran      | and Pa   | ysice I Di | nersions         | WL       | tox =)  | # 06   |
| Trarsis   | tors 3   | cales B    | y x <sup>2</sup> | Stiu.    |         |        |
| Capacitan |          | Sa (es     | s By /           | X        |         |        |
| PMI =     | CLM Ve   | 2 fn+1     | = ( P~ =         | n+1 ) Nn | 14      |        |
| if Ca;    | X        |            | In X             | xta      | rr_ = 1 | =>     |
|           |          | is con     | 2 favd =         | 2 fa     | T   L   | -/     |
| J n + 1   | = In = x |            |                  |          |         |        |
|           |          | J          |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |
|           |          |            |                  |          |         |        |

Q3 Consider an inverter with its input voltage  $V_{in} = 0$ . Why would the inverter dissipate power even in this case? [15 pts]



Q4 In an inverter, how will the power dissipated due to the short circuit current change if the inverter delay becomes larger? [20 pts]



Goodnotes

| Power : | s = IV    | ør         | P=       |              |
|---------|-----------|------------|----------|--------------|
| î       | Delay     | is increas | ed Diane | tically, ne  |
| Current | Sw itaing | 6,000      | Be n     | you zero for |
| longer  | as I      |            |          | leay infries |
|         |           |            |          | 4. ia 72-    |
|         |           | Physics    |          |              |
| is here | tsc 5     | THE SUBT   | - CET DU | putior.      |
| 1 to =  | > 1 P D:  | SSIPutal   |          |              |
|         |           |            |          |              |
|         |           |            |          |              |

Q5 Consider an inverter operating at  $V_{DD}$ =5 V. For the following cases, determine whether  $\mathrm{NM}_L$ = $\mathrm{NM}_H$  or  $\mathrm{NM}_L$ > $\mathrm{NM}_H$  or  $\mathrm{NM}_L$ < $\mathrm{NM}_H$ ? Assume that both the NMOSFET and PMOSFET has the same  $t_{ox}$  and  $\mu_n$ = $3\mu_p$ . The analysis requires calculation of the middle voltage  $V_M$  and comparison of the transfer curves for different cases. [15 pts]

[Q1.1] 
$$W_p = W_n$$
,  $V_{t,n} = |V_{t,p}| = 1$  V.  
[Q1.2]  $W_p = 3 \times W_n$ ,  $V_{t,n} = |V_{t,p}| = 1$  V.  
[Q1.3]  $W_p = 3 \times W_n$ ,  $V_{t,n} = 1.5$  V,  $|V_{t,p}| = 0.5$  V.



⊩ Goodnotes

