MATH 503: Mathematical Statistics

Lecture 7: Hypothesis Testing II Reading: C&B Chp. 8, HMC Sec. 6.3

Kimberly F. Sellers
Department of Mathematics & Statistics

Today's Topics

- Maximum likelihood tests
 - Likelihood Ratio Test
 - Wald Test
 - (Rao's) Score Test
- Uniformly most powerful (UMP) tests
 - Monotone Likelihood Ratio

Lecture 7

Likelihood Ratio Test (LRT)

- Let $X_1, ..., X_n$ be iid with pdf $f(x; \theta)$
- Consider $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_0'$
- Let $\hat{\theta}$ denote the MLE of θ
- · Consider the ratio of two likelihoods, namely

$$\Lambda = \frac{\sup_{\Theta_0} L(\theta \mid x)}{\sup_{\Theta} L(\theta \mid x)} \xrightarrow{\text{largest likelihood}}_{\text{value in general}}$$

Question: what are the bounds for Λ?

[0,1]

Likelihood Ratio Test (cont.)

• For specified significance level α , decision rule says to reject H_0 in favor of H_1 if $\Lambda \leq c$, where c chosen st. $\alpha = P_{\theta_0}[\Lambda \leq c]$

tato test statistic is statistically significantly small

Steps to Performing LRT

- Identify hypotheses
- Determine likelihood function, $L(\theta; x)$
- Find associated MLEs $\hat{\theta} \in \Theta$, and $\hat{\theta}_0 \in \Theta_0$
- Determine likelihood ratio Λ (simplify as necessary)
- Determine appropriate decision rule based on $\Lambda \leq c$

Example 1

Let $X_1, ..., X_n$ be iid Exponential(θ). Determine the appropriate LRT for testing $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. $f_{X_{\overline{c}}}(x) = \frac{1}{\theta} e^{-\frac{x}{2}x} \Rightarrow L(\theta, x) = \frac{1}{\theta^n} e^{-\frac{x}{2}x} = \frac{1}{\theta^n} e^{-\frac{x}{2}x}$

$$\Lambda = \frac{1}{\theta_{0}^{n}} e^{-\Sigma X_{1}/Q_{0}} = (\frac{\overline{X}}{\theta_{0}})^{n} \exp\left(-\frac{\Sigma X_{1}}{\theta_{0}} + n\right) = (\frac{\overline{X}}{\theta_{0}})^{n} e^{-n(\frac{\overline{X}}{\theta_{0}} - 1)} = \frac{n - nt}{\varepsilon} e^{-n(\frac{\overline{X}}{\theta_{0}} - 1)} = \frac{n - nt}{\varepsilon$$

Lecture 7

- Let $X_1, ..., X_n$ be iid with pdf $f(x \mid \theta) = e^{-(x-\theta)}, \quad x \ge \theta, \quad -\infty < \theta < \infty$
- Consider $H_0: \theta \le \theta_0$ vs. $H_1: \theta > \theta_0$. Determine the appropriate LRT.

SEE ATTACHED

Example 3

Let $X_1, ..., X_n$ be iid Normal (θ, σ^2) , $-\infty < \theta < \infty$ unknown, $\sigma^2 > 0$ known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. Determine the appropriate LRT.

SEE ATTACHED

$$X_{1}, -i \times_{n} \qquad f(x_{j}, \theta) = e \qquad , \quad x \ge \theta$$

$$Z(\theta_{j}, x) = \prod_{i=1}^{n} f(x_{i}, \theta) = \prod_{i=1}^{n} e^{(x_{i} - \theta)} I_{[\theta_{j}, \infty)}(x_{i})$$

$$= e^{\sum_{i=1}^{n} x_{i} + n\theta} I_{[\theta_{j}, \infty)}(x_{(i)})$$

$$= e^{\sum_{i=1}^{n} x_{i} + n\theta} I_{[\theta_{j}, \infty)}(x_{(i)})$$

$$= e^{\sum_{i=1}^{n} x_{i} + n\theta} I_{[\theta_{j}, \infty)}(x_{(i)})$$

$$\Lambda = \frac{\sup_{\mathbb{R}} \mathcal{L}(\theta_{j} X)}{\sup_{\mathbb{R}} \mathcal{L}(\theta_{j} X)} = \frac{\sup_{\mathbb{R}} \mathcal{L}(\theta_{j} X)}{e^{\frac{\pi}{2} X} e^{\pi X_{(1)}}}. \quad \text{What is } \sup_{\mathbb{R}} \mathcal{L}(\theta_{j} X)?$$

Ho: $\theta \leq \theta_0 \Rightarrow$ consider cases $\theta = \theta_0$ where outcome sample can lie

 $\mathbb{O} \Rightarrow \mathbb{X} < \theta < \theta_0$. Then $\mathcal{L}(\theta, \mathbb{X}) = 0$ because \mathbb{X} 's are less than θ .

Q ⇒ 0 < X < 0. Then L(O, X) maximized at x(1)

(3) => 0 < 00 < X. We are only interested in the likelihood under Ho: 0 < 00.

Since L(t); \(\times \) is increasing function with 0, under Ho,

L(t); \(\times \) is maximized at to.

$$\frac{1}{e^{-\sum x_{i}}} e^{nX_{(i)}} = 1, \quad \theta \leq x_{(i)} \leq \theta_{0}$$

$$\frac{e^{-\sum x_{i}}}{e^{nX_{(i)}}} = e^{n(\theta_{0} - X_{(i)})}, \quad \theta \leq \theta_{0} \leq x_{(i)}$$

Example 2 (cont.)

$$\Lambda \leq C$$

$$e^{n(\theta_{0}-X_{(1)})} \leq C$$

$$n(\theta_{0}-X_{(1)}) \leq \ln C$$

$$\theta_{0}-X_{(1)} \leq \frac{1}{n} \ln C$$

$$X_{(1)} \geq \theta_{0} - \frac{1}{n} \ln C$$

Example 3
$$X_{(1)} - X_{n} \sim N(\theta, \sigma^{2}) \text{ where } \sigma^{2} \text{ known}$$

$$f(x_{i}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\theta)^{2}}$$

$$\mathcal{L}(\theta, X) = \frac{1}{\left(\frac{1}{2}\right)^{2}} f(x_{i}, \theta) = \left(2\pi\sigma^{2}\right)^{\frac{-N_{2}}{2}} \exp\left(\frac{-1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\theta)^{2}\right)$$

$$\ln \mathcal{L}(\theta, X) = -\frac{N}{2} \ln\left(2\pi\sigma^{2}\right) - \frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\theta)^{2}$$

$$\frac{\partial \ln \mathcal{L}}{\partial \theta} = +\frac{1}{\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\theta) = 0$$

$$\sum X_{i} = n\theta$$

$$\hat{\theta} = X \text{ is the MLE}$$

$$H_{0}: \theta = \theta_{0} \text{ vs. } H_{1}: \theta \neq \theta_{0}$$

$$\Rightarrow \Lambda = \frac{(2\pi\sigma^{2})^{\frac{1}{2}} \exp\left(\frac{1}{2\sigma^{2}} \sum (X_{1} - \theta_{0})^{2}\right)}{(2\pi\sigma^{2})^{\frac{1}{2}} \exp\left(\frac{1}{2\sigma^{2}} \sum (X_{1} - \theta_{0})^{2}\right)} = e^{\frac{1}{2}\sigma^{2}} \left[\sum_{i=1}^{n} (X_{i} - \theta_{0})^{2} - \sum_{i=1}^{n} (X_{i} - X_{i})^{2}\right]}$$
where
$$\sum_{i=1}^{n} (X_{i} - \theta_{0})^{2} - \sum_{i=1}^{n} (X_{i} - X_{i})^{2} = \sum_{i=1}^{n} \left[X_{i}^{2} - 2X_{i}\theta_{0} + \theta_{0}^{2} - (X_{i}^{2} - 2X_{i}X_{i} + X_{i}^{2})\right]$$

$$= -2n\overline{X}\theta_{0} + n\theta_{0}^{2} + 2n\overline{X}^{2} - n\overline{X}^{2}$$

$$= n\overline{X}^{2} - 2n\overline{X}\theta_{0} + n\theta_{0}^{2}$$

$$= n\left(\overline{X} - \theta_{0}\right)^{2}$$

$$\therefore \Lambda = \exp\left(\frac{-1}{2\sigma^{2}}\left\{n\left(\overline{X} - \theta_{0}\right)^{2}\right\}\right) = \exp\left(\frac{-n\left(\overline{X} - \theta_{0}\right)^{2}\right) = \exp\left(\frac{-1}{2}\left(\frac{\overline{X} - \theta_{0}}{\sigma_{0}}\right)^{2}\right)$$

Theorem

- Assume that the appropriate regularity conditions hold:
 - Pdfs are distinct, i.e. $\theta \neq \theta' \Rightarrow f(x_i; \theta) \neq f(x_i; \theta')$
 - Pdfs have common support for all θ
 - The point θ_0 is an interior point in Ω
 - Pdf is twice differentiable as a function of θ
 - Integral $\int f(x;\theta) dx$ can be differentiated twice under the integral sign as a function of θ
 - The pdf $f(x; \theta)$ is three times differentiable as a function of θ . Further, for all $\theta \in \Omega$, there exists a constant c and function M(x) s.t. $\left|\frac{\partial^3}{\partial \theta^3}\log f(x;\theta)\right| \leq M(x)$, with $E_{\theta_0}[M(x)] < \infty$, for all $\theta_0 c < \theta < \theta_0 + c$ and all x in the support of X.

Theorem (cont.)

- Under H_0 , $-2 \log \Lambda \rightarrow \chi_1^2$ in distribution.
- Decision rule: Reject H_0 in favor of H_1 if $\chi_L^2 = -2\log\Lambda \ge \chi_1^2(\alpha)$

Use chi-square chart to find critical value.

Wald Test

- The Wald Test statistic: $\chi_W^2 = \left[\sqrt{nI(\hat{\theta})} (\hat{\theta} \theta_0) \right]^2$
- Taylor expansion implies

$$-2\log\Lambda = 2(l(\hat{\theta}) - l(\theta_0)) = \left[\sqrt{nI(\theta_0)}(\hat{\theta} - \theta_0)\right]^2 + \underbrace{R_n^*}_{p_0}$$

where
$$I(\hat{\theta}) \stackrel{p}{\to} I(\theta_0)$$
 $\therefore \chi_W^2 = \left[\sqrt{nI(\hat{\theta})} (\hat{\theta} - \theta_0) \right]^2 \stackrel{d}{\to} \chi_1^2$

- Decision rule: Reject H_0 in favor of H_1 if $\chi_W^2 \ge \chi_1^2(\alpha)$
- Under H_0 , $\chi_W^2 \chi_L^2 \xrightarrow{p} 0$

Rao's Score Test

- $\chi_R^2 = \left(\frac{l'(\theta_0)}{\sqrt{nI(\theta_0)}}\right)^2$, where scores are $S(\theta) = \left(\frac{\partial \log f(X_1;\theta)}{\partial \theta}, ..., \frac{\partial \log f(X_n;\theta)}{\partial \theta}\right)'$ and $l'(\theta_0) = \sum_{i=1}^n \frac{\partial \log f(X_i;\theta)}{\partial \theta}$
- Decision rule: Reject H_0 in favor of H_1 if $\chi_R^2 \ge \chi_1^2(\alpha)$

• Let $X_1, ..., X_n$ be a random sample from Poisson(θ), $\theta > 0$. Test $H_0: \theta = 2$ vs. $H_1: \theta \neq 2$ using (a) $-2 \log \Lambda$, (b) a Wald-test statistic, (c) Rao's score statistic.

SEE ATTACHED

Uniformly Most Powerful Tests

- The critical region C is a <u>uniformly most powerful</u> (<u>UMP</u>) <u>critical region</u> of size α for testing the simple hypothesis H_0 against an alternative composite hypothesis H_1 if the set C is a best critical region of size α for testing H_0 against each simple hypothesis in H_1 .
- A test defined by this critical region C is called a uniformly most power (UMP) test, with significance level α , for testing the simple hypothesis H_0 against the alternative composite hypothesis H_1 .

Example 4

$$X_{1}, -\gamma X_{n} \sim \text{Poisson}(\theta) = \frac{e^{-\theta} \theta^{X}}{\chi!}$$
 $L(\theta, \overline{\chi}) = \frac{e^{-n\theta} \theta^{\Sigma_{X_{1}}}}{\prod_{i=1}^{n} \chi_{i}!}$
 $ln L(\theta, \overline{\chi}) = -n\theta + (\Sigma_{X_{1}}) ln \theta - \sum_{i=1}^{n} ln(\chi_{i}!)$
 $\frac{\partial ln L}{\partial \theta} = -n + \frac{\Sigma_{X_{1}}}{\theta} = 0$
 $\frac{\Sigma_{X_{1}}}{\theta} = n$
 $\frac{\delta}{\theta} = \frac{\Sigma_{X_{1}}}{\eta} = \overline{\chi} \text{ is MLE.}$

Consider Ho: 0=2 vs. Hi: 0 =2.

(A)
$$\Lambda = \frac{\mathcal{L}(2, \overline{X})}{\mathcal{L}(\overline{x}, \overline{X})} = \frac{e^{-2n} 2^{\overline{X} \cdot \overline{X}}}{\overline{\Pi} \overline{X} + \overline{X}} \cdot \frac{\overline{\Pi} \overline{X} + \overline{X}}{\overline{e}^{n \overline{X}} \overline{X}^{\overline{\Sigma} \overline{X}}} = e^{-n(2-\overline{X})} \left(\frac{2}{\overline{X}}\right)^{\Sigma X_{:}} \le c$$

$$\log \Lambda = -n(2-\overline{X}) + (\Sigma X_{:}) \left(\log 2 - \log \overline{X}\right) \le \log c$$

$$-2\log \Lambda = 2n(2-\overline{X}) - 2(\Sigma X_{:}) \left(\log 2 - \log \overline{X}\right) \ge -2\log e = \chi^{2}(\alpha)$$

$$\frac{\partial \log f(x_{:},\theta) = -\theta + x_{:} \log \theta - \log (x_{:}!)}{\partial \theta} = -1 + \frac{x_{:}}{\theta}$$

$$\frac{\partial^{2} \log f(x_{:},\theta)}{\partial \theta^{2}} = \frac{-x_{:}}{\theta^{2}} \implies \underline{T}(\theta) = -\underline{E}\left(\frac{\partial^{2} \log f}{\partial \theta^{2}}\right) = \underline{E}(x_{:}) = \frac{\theta}{\theta^{2}} = \frac{1}{\theta}$$

$$\Rightarrow \chi_{W}^{2} = \sqrt{n}\underline{T}(\hat{\theta})^{2} (\hat{\theta} - \theta_{0})^{2} = \left[\sqrt{\frac{n}{\theta}} (\hat{\theta} - \theta_{0})^{2}\right]^{2} = n(\overline{X} - 2)^{2} = \left(\frac{\overline{X} - 2}{\overline{X}/n}\right)^{2}$$

(c)
$$\chi^2_R = \left(\frac{l'(\theta_0)}{\sqrt{n} I(\theta_0)}\right)^2$$
 where $l'(\theta_0) = \sum_{i=1}^n \frac{\partial \log_i f(x_i; \theta_0)}{\partial \theta}$

$$= \sum_{i=1}^n \left(-1 + \frac{x_i}{\theta_0}\right)$$

$$= -n + \frac{\sum x_i}{\theta} = -n + \frac{\sum x_i}{2}$$

$$\mathbb{I}(\theta_o) = \frac{1}{\theta_o} = \frac{1}{2}$$

$$\frac{1}{2} = \sqrt{\frac{1}{n}} = \frac{1}{2} \left(\frac{\sum x_i}{2} - n \right)^2 = \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{\sum x_i - 2n}{2} \right)^2$$

Notes re. UMP Tests

- UMP tests don't always exist
- When they do exist, Neymann-Pearson can help determine them.
- UMP tests are based on sufficient statistics

How do we determine the best critical region?

Neymann-Pearson Thm.: Let $X_1, ..., X_n$ (n, a positive fixed integer) denote a random sample from a distribution that has pdf/pmf $f(x; \theta)$. Then the likelihood of $X_1, ..., X_n$ is

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f(x_i; \theta).$$

Let θ' and θ'' be distinct fixed values of θ s.t. $\Omega = \{\theta : \theta = \theta', \theta''\}$, and let k be a positive number.

Neymann-Pearson Thm. (cont.)

Let C be a subset of the sample space s.t.

- a) $\frac{L(\theta';x)}{L(\theta'';x)} \le k$, for each point $x \in C$
- b) $\frac{L(\theta';x)}{L(\theta'';x)} \ge k$, for each point $x \in C^c$
- c) $\alpha = P_{H_0}[X \in C]$

Then *C* is a best critical region of size α for testing the simple hypothesis H_0 : $\theta = \theta'$ vs. H_1 : $\theta = \theta''$.

Example 5

Let $X_1, ..., X_n$ be a random sample from a distribution that is $N(0,\theta)$, where the variance θ is an unknown positive number. Show that there exists a UMP test with significance level α for testing $H_0: \theta = \theta'$ vs. $H_1: \theta > \theta'$. $f(X_1:\theta) = (2\pi\theta)^{\frac{1}{2}} e^{-\frac{1}{2}\theta X_1^2} = f(\theta; T) = f(\theta; T$

$$\Sigma X^{2} \geq k_{3} \text{ where } \mathbb{P}(\Sigma X^{2} \geq k_{3}) = \alpha \text{ for some } k_{3}$$

$$X_{1} \sim N(0, \theta) = \sum_{i=1}^{n} \frac{X_{i}^{2}}{\theta} \sim \chi_{h}^{2} \Rightarrow \mathbb{P}_{H}(\Sigma X_{i}^{2} \geq k_{3}) = \mathbb{P}(\Sigma \frac{X_{i}^{2}}{\theta'} \geq \frac{k_{3}}{\theta'}) = \alpha$$

$$\frac{k_{3}}{\theta'} = \chi_{h}^{2}(\alpha) \text{ or } k_{3} = \theta' \chi_{h}^{2}(\alpha)$$

Lecture 7

Let $X_1, ..., X_n$ be a random sample from a normal distribution $N(\theta, 1)$, where θ is unknown. Does a UMP test of $H_0: \theta = \theta'$ vs. H_0 : $\theta \neq \theta'$ exist?

SEE ATTACHED

Example 7

Let $X_1, ..., X_{10}$ be a random sample of size 10 from a Poisson(θ) distribution. Find a best critical region for testing H_0 : $\theta = 0.1$ vs. H_1 : $\theta = 0.5$. Is this region uniformly most powerful for H_0 : $\theta = 0.1$ vs. $H_1: \theta > 0.1$?

$$f(x) = \frac{e^{-\theta} \theta^{x}}{x!} \implies f(\theta, x) = \frac{e^{-n\theta} \theta^{x}}{|f(x)|}$$

Consider general test
$$H: \Theta = \Theta' \text{ vr. } H: \Theta = \Theta'' \text{ where } \Theta'' > \Theta'.$$

By Neymann-Pearson Theorem,
$$\frac{\mathcal{L}(\Theta'; \mathbb{X})}{\mathcal{L}(\Theta'; \mathbb{X})} = \frac{e^{-n\Theta'}\Theta'}{\Pi_{K}} \cdot \frac{\Sigma X}{e^{-n\Theta''}\Theta'' \Sigma X} = \left(\frac{\Theta'}{\Theta''}\right)^{\Sigma} \times n(\Theta'' - \Theta') \leq K$$

$$\frac{\mathcal{L}(\Theta'; \mathbb{X})}{\mathcal{L}(\mathbb{X})} \cdot \left(\ln \Theta' - \ln \Theta''\right) + n(\Theta'' - \Theta') \leq \ln k = k,$$

(taking la of both sides

$$\Rightarrow \sum_{i=1}^{n} x_{i} \geq k_{2}$$

Because this critical region was derived for any $\theta''>\theta'$, the 10 region is UMP, i.e. this is a UMP test for $H_0: \theta'=\theta'$ vs. $H_1: \theta>\theta'$ where K_2 satisfies $P_{\theta'}(\tilde{\Sigma}_X: \geq_{K_2}) = \alpha$. Lecture 7

Example 6
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-\theta)^{2}}$$

$$\mathcal{L}(\theta; x) = (2\pi)^{-\frac{1}{2}} \exp\left(\frac{1}{2}\sum_{i=1}^{n}(x-\theta)^{2}\right)$$
For $\theta^{i} > \theta^{i}$, $\frac{\mathcal{L}(\theta'; x)}{\mathcal{L}(\theta'; x)} = \frac{(2\pi)^{\frac{n}{2}} \exp\left(\frac{1}{2}\sum(x-\theta)^{2}\right)}{(2\pi)^{\frac{n}{2}} \exp\left(\frac{1}{2}\sum(x-\theta')^{2}\right)}$

$$= \exp\left[\frac{1}{2}\left(\sum_{i=1}^{n}(x-\theta')^{2} - \sum_{i=1}^{n}(x-\theta'')^{2}\right)\right] \le k$$

$$\Rightarrow \sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) - \sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) \ge k$$

$$\frac{\sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) - \sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) \ge k$$

$$\frac{\sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) - \sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) \ge k$$

$$\frac{\sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) \le k$$

$$\frac{\sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) \le k$$

$$\frac{\sum_{i=1}^{n}(x^{2} - 2x \cdot \theta^{i} + \theta^{i}^{2}) \le k$$

$$\frac{\sum_{i=1}^{n}(x^{2} - \theta^{i}) + n(\theta^{i}^{2} - \theta^{i}^{2}) + n(\theta^{i}^{2} - \theta^{i}^{2}) \ge k$$

$$\frac{\sum_{i=1}^{n}(x^{2} - \theta^{i}) + n(\theta^{i}^{2} - \theta^{i}^{2}) \ge k}{k!}$$
For $\theta^{i} < \theta^{i}$, $\frac{\mathcal{R}(\theta^{i}; x)}{\mathcal{R}(\theta^{i}; x)} \le k \Rightarrow 2(\sum_{i=1}^{n}(x^{2} - \theta^{i}) + n(\theta^{i}^{2} - \theta^{i}^{2}) \ge k}$

For
$$\theta'' < \theta'$$
, $\frac{\mathcal{L}(\theta'; \mathbf{x})}{\mathcal{L}(\theta''; \mathbf{x})} \le \mathbf{k} \implies 2(\sum X_{-})(\underline{\theta''} - \theta') + n(\underline{\theta'}^{2} - \underline{\theta''}^{2}) \ge \mathbf{k}_{1}$

$$\sum_{i=1}^{n} X_{i} \le \mathbf{k}_{2} \text{ if } \underline{\theta''} < \underline{\theta'}$$

Because the resulting critical region is not the same under both conditions, this test is NOT UMP.

For One-sided Hypotheses...

- Consider $H_0: \theta \leq \theta'$ vs. $H_1: \theta > \theta'$ [or, analogously, $H_0: \theta \geq \theta'$ vs. $H_1: \theta < \theta'$]
- For some families of pdfs and hypotheses, we can obtain general forms of UMP tests
- Introduce the monotone likelihood ratio....

Monotone Likelihood Ratio

[In CB] A family of pdfs or pmfs $\{g(t \mid \theta): \theta \in \Theta\}$ for a univariate random variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if, for every $\theta_2 > \theta_1$, $g(t \mid \theta_2)/g(t \mid \theta_1)$ is a monotone (nonincreasing or nondecreasing) function of t on $\{t: g(t \mid \theta_1) > 0 \text{ or } g(t \mid \theta_2) > 0\}$

[In HMC] The likelihood $L(\theta; x)$ has monotome likelihood ratio (MLR) in the statistic y = u(x), if for $\theta_1 < \theta_2$, the ratio $L(\theta_1; x)/L(\theta_2; x)$ is a monotone function of y = u(x).

Let X_1, \dots, X_n be a random sample from a Bernoulli distribution with parameter $p = \theta$, where $0 < \theta < 1$. Show that this distribution satisfies the MLR property.

SEE ATTACHED

Karlin-Rubin Theorem

Consider testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\{g(t \mid \theta): \theta \in \Theta\}$ of T has a nondecreasing MLR*. Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$.

* as defined in CB.

$$f(x) = \theta^{x} (1-\theta)^{n-x}$$

$$\chi(\theta; \overline{x}) = \theta^{\Sigma x_{i}} (1-\theta)^{n-\Sigma x_{i}} = \theta^{t} (1-\theta)^{n-t} \text{ where } T = \Sigma x_{i}$$

$$= g(t | \theta)$$

Let 0, <02.

$$\frac{g(t|\theta_1)}{g(t|\theta_1)} = \frac{\theta_2^t(1-\theta_2)^{n-t}}{\theta_1^t(1-\theta_1)^{n-t}} = \left(\frac{\theta_2(1-\theta_1)}{\theta_1(1-\theta_2)}\right)^t \left(\frac{1-\theta_2}{1-\theta_1}\right)^n$$

Because
$$\theta_1 < \theta_2$$
, $1-\theta_1 > 1-\theta_2$. Thus, $\frac{1-\theta_2}{1-\theta_1} < 1$ and $\frac{1-\theta_1}{1-\theta_2} > 1$
and $\frac{\theta_2}{\theta_1} > 1$ $\Rightarrow \frac{\theta_2}{\theta_1} \cdot \frac{(1-\theta_1)}{(1-\theta_2)} > 1$

g(tla) is monotonically increasing as t increases.

Alternatively, we can show as follows:
$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \begin{pmatrix} \theta_2(1-\theta_1) \\ \theta_1(1-\theta_2) \end{pmatrix} = \begin{pmatrix} 1-\theta_2 \\ 1-\theta_1 \end{pmatrix} = c_1^t c_2 \text{ where } c_1>1 \text{ and } 0< c_2<1$$

Consider
$$h(t) = c_1^t c_2 = c_2 e^{t \ln c_1}$$

 $h'(t) = c_2(\ln c_1) e^{t \ln c_1} = c_2(\ln c_1) c_1^t > 0$

:
$$h(t) = \frac{g(t|\theta_2)}{g(t|\theta_1)}$$
 monotonically increasing as t increases

Let $X_1, ..., X_n$ be a random sample whose distribution can be represented as an exponential family. Show that this distribution satisfies the MLR property, if $p(\theta)$ is monotone.

$$f(x) = \exp\left[p(\theta)K(x) + S(x) + q(\theta)\right]$$

$$\mathcal{L}(\theta; X) = \exp\left[p(\theta)\sum_{i=1}^{n}K(x_i) + \sum_{i=1}^{n}S(x_i) + nq(\theta)\right]$$
Let $\theta_i < \theta_2$.

$$\frac{\mathcal{K}(\theta_{2}; X)}{\mathcal{L}(\theta_{1}; X)} = \exp\left[p(\theta_{2}) \sum_{i=1}^{n} k(x_{i}) + \sum_{i=1}^{n} S(x_{i}) + nq(\theta_{2}) - \left(p(\theta_{1}) \sum_{i=1}^{n} k(x_{i}) + \sum_{i=1}^{n} S(x_{i}) + nq(\theta_{1})\right)\right]$$

$$= \exp\left[\left(p(\theta_{2}) - p(\theta_{1})\right) \sum_{i=1}^{n} k(x_{i}) + n\left(q(\theta_{2}) - q(\theta_{1})\right)\right]$$

$$= \frac{1}{n} \left[p(\theta) \text{ is monotone. then } \frac{\mathcal{K}(\theta_{2}; X)}{\mathcal{K}(\theta_{2}; X)} \text{ is monotone in } T = \sum_{i=1}^{n} k(x_{i}).$$

If $p(\theta)$ is monotone, then $\mathcal{L}(\theta_2; X)$ is monotone in $T = \sum_{i=1}^{n} K(x_i)$.

Note: if $p(\theta)$ is monotone increasing, then Karlin-Rubin Thin. implies

UMP level α test $T > t_0$ so that $P(T > t_0) = \alpha$.

Unbiased Tests

- A test is <u>unbiased</u> if its power never falls below the significance level
- Examples:
 - MP test of simple H_0 vs. simple H_1
 - One-sided tests based on MLR pdfs