Eager Learners vs Lazy Learners

- Eager learners, when given a set of training tuples,
 - will construct a generalization model before receiving
- new (e.g., test) tuples to classify.

 Lazy learners simply stores data (or does only a little
 - minor processing) and waits until it is given a
- test tuple.
 - Lazy learners store the training tuples or "instances," they are also referred to as instance based learners, even though all learning is essentially based on

-k- Nearest Neighbor Classifier

-Case Based Classifier

Simple Analogy..

• Tell me about your friends(who your neighbors are) and I will tell you who you are.

Instance-based Learning

k- Nearest Neighbor Classifier

History

- It was first described in the early 1950s.
- The method is labor intensive when given large training sets.
- Gained popularity, when increased computing power became available.
- Used widely in area of pattern recognition and statistical estimation.

What is k- NN??

- Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing a given test tuple with training tuples that are similar to it.
- The training tuples are described by n attributes.
- When k = 1, the unknown tuple is assigned the class of the training tuple that is closest to it in pattern space.

Closeness

 The Euclidean distance between two points or tuples, say,

X1 = (x11,x12,...,x1n) and X2 = (x21,x22,...,x2n), is

$$dist(X_1, X_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}.$$

 Min-max normalization can be used to transform a value v of a numeric attribute A to v0 in the range [0,1] by computing $v' = \frac{1}{max_A - min_A}$

$$v' = \frac{v - min_A}{max_A - min_A},$$

Distance measure for Continuous Variables

Distance functions Euclidean $\sqrt{\sum_{i=1}^{k} (x_{i} - y_{i})^{2}}$ Manhattan $\sum |x_i - y_i|$ Minkowski $\left(\sum_{i=1}^{k} (|x_i - y_i|)^q\right)^{1/q}$

How to determine a good value for k?

- Starting with k = 1, we use a test set to estimate the error rate of the classifier.
- The k value that gives the minimum error rate may be selected.

KNN Algorithm and Example

KNN Classifier Algorithm

Example

 We have data from the questionnaires survey and objective testing with two attributes (acid durability and strength) to classify whether a special paper tissue is good

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Y = Classification
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

Now the factory produces a new paper tissue that passes the laboratory test with X1 = 3 and X2 = 7. Guess the classification of this new tissue.

Step 1 : Initialize and Define k.

Lets say, k = 3

(Always choose k as an odd number if the number of attributes is even to avoid a tie in the class prediction)

- Step 2 : Compute the distance between input sample and training sample
 - Co-ordinate of the input sample is (3,7).
- Instead of calculating the Euclidean distance, we calculate the Squared Euclidean distance.

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Squared Euclidean distance
7	7	$(7-3)^2 + (7-7)^2 = 16$
7	4	$(7-3)^2 + (4-7)^2 = 25$
3	4	$(3-3)^2 + (4-7)^2 = 09$
1	4	$(1-3)^2 + (4-7)^2 = 13$

• Step 3: Sort the distance and determine the nearest neighbours based of the Kth minimum distance:

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Squared Euclidean distance	Rank minimum distance	Is it included in 3-Nearest Neighbour?
7	7	16	3	Yes
7	4	25	4	No
3	4	09	1	Yes
1	4	13	2	Yes

- Step 4 : Take 3-Nearest Neighbours:
- Gather the category Y of the nearest neighbours.

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Squared Euclidean distance	Rank minimum distance	Is it included in 3-Nearest Neighbour?	Y = Category of the nearest neighbour
7	7	16	3	Yes	Bad
7	4	25	4	No	-
3	4	09	1	Yes	Good
1	4	13	2	Yes	Good

Step 5 : Apply simple majority

 Use simple majority of the category of the nearest neighbours as the prediction value of the query instance.

 We have 2 "good" and 1 "bad". Thus we conclude that the new paper tissue that passes the laboratory test with X1 = 3 and X2 = 7 is included in the "good" category.

Advantages of KNN classifier :

- Can be applied to the data from any distribution for example, data does not have to be separable with a linear boundary
- Very simple and intuitive
- Good classification if the number of samples is large enough

Disadvantages of KNN classifier :

- Choosing k may be tricky
- Test stage is computationally expensive
- No training stage, all the work is done during the test stage
- This is actually the opposite of what we want. Usually we can afford training step to take a long time, but we want fast test step

Applications of KNN Classifier

- Used in classification
- Used to get missing values
- Used in pattern recognition
- Used in gene expression
- Used in protein-protein prediction
- Used to get 3D structure of protein
- Used to measure document similarity

CASE STUDY

Car manufacturer company that has manufactured a new SUV car. The company wants to give the ads to the users who are interested in buying that SUV.

So for this problem, we have a dataset that contains multiple user's information through the social network.

The dataset contains lots of information but the **Estimated Salary** and **Age** we will consider for the independent variable and the **Purchased variable** is for the dependent variable. Below is the dataset

User ID	Gender	Age	EstimatedSalary	Purchased
15624510	Male	19	19000	О
15810944	Male	35	20000	О
15668575	Female	26	43000	О
15603246	Female	27	57000	О
15804002	Male	19	76000	О
15728773	Male	27	58000	О
15598044	Female	27	84000	О
15694829	Female	32	150000	1
15600575	Male	25	33000	О
15727311	Female	35	65000	О
15570769	Female	26	80000	О
15606274	Female	26	52000	О
15746139	Male	20	86000	О
15704987	Male	32	18000	О
15628972	Male	18	82000	О
15697686	Male	29	80000	О
15733883	Male	47	25000	1
15617482	Male	45	26000	1
15704583	Male	46	28000	1
15621083	Female	48	29000	1
15649487	Male	45	22000	1
15736760	Female	47	49000	1

Steps to implement the K-NN algorithm:

- Data Pre-processing step
- •Fitting the K-NN algorithm to the Training set
- Predicting the test result
- Test accuracy of the result(Creation of Confusion matrix)
- •Visualizing the test set result.