	4.1 증명의 방법론								
교과목명	이산수학	분반		담당교수	김 외 현				
학부(과)		학번		성명					

정의 증명

논리적 법칙을 이용하여 주어진 가정으로부터 결론을 유도해내는 추론의 한 방법으로서, 어떠한 명제나 논증이 적절하고 타당한지를 입증하는 작업

- 추론을 통한 수학적 증명은 대부분의 사람들에게 어렵게 느껴질 수 있음
- 그러나 증명과정을 통하여 공학이나 수학을 비롯한 여러분야에서 논리적 바탕에 기반을 둔 학문적 탐구가 가능함

참고 증명의 단계적 접근 방법

- 1. 아이디어 스케치 단계
 - 문제 해결의 핵심적인 실마리를 찾아내어 기술함
 - 문제를 해결할 수 있는 방법론을 구상하게 되며 개략적인 아이디어를 스케치함
- 2. 구체적인 방법론 제시 단계
 - 아이디어를 묶어서 구체적인 블록 다이어그램 (block diagram) 등으로 표현함
 - 프로그래밍의 경우 유사 코드(pseudo code) 단계까지 구체화하는 단계
- 3. 엄밀한 입증이나 증명의 단계
 - 자기가 내린 결론을 객관적인 증명 방법을 통해 누구나 공감할 수 있게 증명함

4.2 여러 가지 증명 방법 교과목명 이산수학 분반 담당교수 김외현 학부(과)

- 수학이나 공학에서의 증명 문제는 $p \rightarrow q$ 와 같은 논리 함축을 증명함
- 논리 함축 p→q가 참이 되기 위해서는
 p, q가 모두 참이거나
 q에 관계없이 p가 거짓임을 보이면 됨
 - ✓ 증명 방법은 직접 증명법과 간접 증명법 그리고 기타 증명법으로 구분함

- 직접 증명법: $p \rightarrow q$ 를 직접 증명하는 것

- 간접 증명법: 논리적 동치를 이용하거나 다른 특수한 방법으로 증명

✓ 주어진 문제 유형에 따라 다양한 방법으로 접근하는 것이 효율적임

정의 새로운 결과를 얻는 2가지 방법론

(1) 연역법(deduction) 주어진 사실(facts)들과 공리(axioms)들에 입각하여 추론(inference)을 통하여 새로운 사실을 도출하는 것

(2) 귀납법(induction) 관찰과 실험에 기반한 가설을 귀납 추론을 통하여 일반적인 규칙을 입증하는 것

정의 수학적 귀납법

명제 p_1, p_2, \dots, p_n 이 사실이라고 할 때, p_{n+1} 의 경우에도 성립함을 보이면 됨

정리 수학적 귀납법의 원리

p(n): $n \ge 1$ 인 모든 정수에 대해 참임을 증명

 \Rightarrow ① (기초 단계) p(1): 참임을 보임

② (귀납 가정) p(n): 참이라고 가정

③ (귀납 단계) p(n+1): 참임을 보임

예제

1.
$$S_n = \sum_{i=1}^n i = \frac{n(n+1)}{2}$$
 임을 증명해보자.

2.
$$1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
임을 증명해
보자.

3. $n \geq 4$ 인 모든 정수에 대하여 $2^n \geq n^2$ 임을 증명해 보자.

예제

4. 'a, b가 실수일 때, a+b-2>0이면 a>1 또는 b>1' 임을 증명해보자.

5. $\sqrt{2}$ 는 유리수(rational number)가 아님을 증명해 보자.

정의 모순 증명법(귀류법)

주어진 문제의 명제를 일단 부정해 놓고 논리를 전개하여 그것이 모순됨을 보임으로써 본래의 명제가 사실임을 증명하는 방법

참고 $p \rightarrow q$ 의 모순 증명법

 $p \to q$: 참 $\equiv p \land (\sim q)$: 거짓 $p \land (\sim q)$: 참이라 가정 \Rightarrow 결과 모순 유도

6. $1+3\sqrt{2}$ 가 무리수임을 증명해보자.

정의 직접 증명법

통상 주어진 유용한 정보로부터 추론을 통하여 목적하는 결론에 도달할 수 있도록 유도하는 증명법

참고 $p \rightarrow q$ 의 직접 증명법

p: 참이라 가정 $\Rightarrow q$: 참임을 보임

예제

8. 만약 6x + 9y = 7이라면 x 또는 y가 정수가 아님을 증명해보자.

9. |a| > |b|일 때 $a^2 > b^2$ 임을 증명해보자.

10. 두 짝수의 합은 항상 짝수가 됨을 증명해보자.

7. n이 자연수이고 n이 2가 아닌 소수(prime number)일 경우, n은 반드시 홀수가 됨을 증명해보자.

정의 대우 증명법

명제가 참이 되는 것을 논리적 동치 관계인 대우를 이용하여 간접적으로 보여주는 증명법

참고 $p \rightarrow q$ 의 대우 증명법

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

$$\sim q \rightarrow \sim p \colon \text{참임을 증명}$$

13. 모든 정수 n에 대해 n^2 이 짝수라고 가정하면 n도 짝수임을 증명해보자.

예제

11. x가 짝수이면 x는 2이거나 소수가 아님을 증명 해보자.

14. n이 자연수이고 n이 2가 아닌 소수라면 n이 홀수임을 증명해보자.

12. 완전수는 소수가 아님을 증명해보자.

정의 존재 증명법 p(x): 변수 x를 가지는 명제일 때, ∃ xp(x)를 보이는 증명법 EM 증명 p(x)를 만족하는 x가 존재하는가? 단하나의 x값을 찾기

예제

15. p(x)가 술어 'x는 정수이고 $x^2 = 289$ '일 때 이 식을 만족하는 x가 존재함을 증명해보자.

16. a가 0이 아닌 실수이고 b가 실수일 때, 방정식 ax+b=0을 만족시키는 실수 x가 존재함을 증명 해보자.

정의 반례 증명법

어떤 명제가 참 또는 거짓임을 입증하기가 상당히 어려운 경우, 주어진 명제에서 모순이 되는 간단한 하나의 예를 보이는 증명법

참고 $\forall x p(x)$ 거짓 증명

 $\sim (\,\forall\, x\, p(x)) \equiv \, \exists\, x (\sim p(x))$ 반례 x가 적어도 하나 존재함을 보임

예제

17. 'p가 양의 정수이고 $x = p^2 + 1$ 이면 x는 소수이 다'란 명제가 거짓임을 증명해보자.

18. 모든 실수 x에 대해 $(x+1)^2 \ge x^2$ 이 성립하지 않음을 증명해보자.

19. '모든 실수 a와 b에 대하여 $a^2 = b^2$ 이면 a = b이 다'가 거짓임을 증명해보자.

예제

20. 모든 정수 n에 대해, n-1이 짝수임과 n이 홀수임이 동치라는 것을 증명해보자.

4.3 프로그램의 입증								
교과목명	이산수학	분반		담당교수	김 외 현			
학부(과)		학번		성명				

참고 프로그램의 입증

- 증명 못지않게 엄밀한 정확성이 요구되는 컴퓨터 프로그램을 입증하는 것 또한 매우 중요함
- 정확한 프로그램이 되기 위해서는 구문 오류 (syntax error)를 포함하지 않아야 함
- 예상치 못하게 끝나서도 안 되며, 주어진 입력에 대해 정확한 결과를 도출해야 함
- 프로그램의 정확성에 대한 입증이 필요함

정의 프로그램의 제어 구조

- 1. 순서문(Sequential statements)
- 2. 조건문(Conditional statements)
- 3. 반복문(Repeated statements)
- 4. 무조건적 이동문(Unconditional transfer

statements)

예제

21. 다음과 같이 1부터 n까지의 정수값을 합하는 C언어 프로그램에서 정확성을 입증해보자.

```
void Sum_n()
{
  int i, n, sum = 0;
  scanf("%d", &n);
  for (i = 1; i <= n; i++)
     sum += i;
  printf("%d, %d", n, sum);
}</pre>
```

22. *n*개의 양의 정수 중에서 가장 작은 수를 찾는 다음과 같은 프로그램을 입증해보자.

```
Find_Min (int array[], int MIN)
{
    int i;
    MIN = array[0];
    for (i = 1; i < n; i++)
        if (MIN > array[i]) MIN = array[i];
    return (MIN);
}
```