Integrales de funciones elementales

$\int d\mathbf{x} = \mathbf{x} + C$	
$\int k dx = kx + C$	
$\int \mathbf{x}^n d\mathbf{x} = \frac{\mathbf{x}^{n+1}}{n+1} + C, (n \neq -1)$	$\int u^n \cdot u' \cdot dx = \frac{u^{n+1}}{n+1} + C (n \neq -1)$
$\int (1/\mathbf{x}) d\mathbf{x} = \ln \mathbf{x} + C$	$\int (\mathbf{u}'/\mathbf{u}) \cdot d\mathbf{x} = \ln \mathbf{u} + C$
$\int e^x dx = e^x + C$	$\int e^{u} \cdot u' \cdot dx = e^{u} + C$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$\int a^{u} \cdot u' \cdot dx = \frac{a^{u}}{\ln a} + C$
$\int \cos x dx = \sin x + C$	$\int \cos u \cdot u \cdot dx = \sin u + C$
$\int \operatorname{sen} x \mathrm{d} x = -\cos x + C$	$\int \operatorname{sen} u \cdot u' \cdot d\mathbf{x} = -\cos u + C$
$\int \frac{1}{\cos^2 x} dx = tg x + C$	$\int \frac{1}{\cos^2 u} \cdot u' \cdot dx = tg u + C$
$\int (1 + tg^2 x) dx = tg x + C$	$\int (1 + tg^2 u) \cdot u \cdot dx = tg u + C$
$\int \frac{-1}{\sin^2 x} \mathrm{d}x = \cot g x + C$	$\int \frac{-1}{\operatorname{sen}^2 u} \cdot u' \cdot dx = \operatorname{cotg} u + C$
$\int \frac{1}{1 + x^2} dx = \text{arc tg } x + C$	$\int \frac{1}{1 + u^2} \cdot u' \cdot dx = \operatorname{arc} \operatorname{tg} u + C$
$\int \frac{-1}{1+x^2} \mathrm{d}x = \operatorname{arc} \operatorname{cotg} x + C$	$\int \frac{-1}{1+u^2} \cdot u' \cdot dx = \operatorname{arc} \operatorname{cotg} u + C$
$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x + C$	$\int \frac{1}{\sqrt{1-u^2}} \cdot u' \cdot dx = \arcsin u + C$
$\int \frac{-1}{\sqrt{1-x^2}} \mathrm{d}\mathbf{x} = \arccos \mathbf{x} + C$	$\int \frac{-1}{\sqrt{1 - u^2}} \cdot u \cdot dx = \arccos u + C$