#### Introduction to Data Science

# K-Nearest Neighbors

**Gordon Anderson** 

#### KNN Characteristics

- Mainly used for classification tasks, but can be used for regression.
- Input: numeric values, or values for which a *distance metric* can be calculated.
- Classification output: a categorical value, or "class label".
- Regression output: a numeric value- generally the average of the values of the k-nearest neighbors.

## KNN Algorithm

- Beautiful as it is so simple!
- The value of k, the number of nearest neighbors, and a distance metric must be specified beforehand.
- Considered a "lazy" algorithm as it only computes when it has to.
- The algorithm (for classification) has training and classification phases.
  - The training data is of the form:  $\langle y_i, \vec{X}_i \rangle$ , where each y represents a class label, and X represents a vector of predictors, or as we often say in ML, "features".
  - Note this is a supervised type of ML as examples of outcomes are provided.
  - The test data is of the form:  $\langle \vec{X}_i \rangle$ , just feature vectors. The algorithm outputs a vector of class labels that correspond to its predicted class labels for each feature vector.

## KNN Algorithm

- Training phase: just store the training data- that's it!
- Classification phase:
- For each feature vector  $X_{test}$  in the test data:
  - Find the distance from  $X_{test}$  to each vector in the training set:

$$d_i = distance(X_{test}, X_{train})$$

- Select the training data with the k shortest distances.
- Collect the set of class labels from this subset.
- The prediction is the most frequently occurring label in this subset (majority vote).

## KNN Example

|   | age ‡ | income † | credit ‡ |
|---|-------|----------|----------|
| 1 | 69    | 3        | low      |
| 2 | 66    | 57       | low      |
| 3 | 49    | 79       | low      |
| 4 | 49    | 17       | low      |
| 5 | 58    | 26       | high     |
| 6 | 44    | 71       | high     |

Predict credit rating based on age (years) and Income (thousands of dollars).

Training data:

class label: credit {"low", "yes"}

Features:

age: numeric

income: numeric

We need to specify k and the distance metric: Let k=5, use Euclidean distance.

## KNN Example

|   | age ‡ | income ‡ | credit ‡ |
|---|-------|----------|----------|
| 1 | 69    | 3        | low      |
| 2 | 66    | 57       | low      |
| 3 | 49    | 79       | low      |
| 4 | 49    | 17       | low      |
| 5 | 58    | 26       | high     |
| 6 | 44    | 71       | high     |
| 7 | 57    | 37       | NA       |

#### Classification:

What label to assign the feature vector:

Need to find the 5 nearest feature vectors using Euclidean distance, then look at the labels for those rows and then take majority vote.

## KNN Example

|   | 1        | 2        | 3         | 4        | 5        | 6         | 7        |
|---|----------|----------|-----------|----------|----------|-----------|----------|
| 1 | 0.00000  | 54.08327 | 78.587531 | 24.41311 | 25.49510 | 72.449983 | 36.05551 |
| 2 | 54.08327 | 0.00000  | 27.802878 | 43.46263 | 32.01562 | 26.076810 | 21.93171 |
| 3 | 78.58753 | 27.80288 | 0.000000  | 62.00000 | 53.75872 | 9.433981  | 42.75512 |
| 4 | 24.41311 | 43.46263 | 62.000000 | 0.00000  | 12.72792 | 54.230987 | 21.54066 |
| 5 | 25.49510 | 32.01562 | 53.758720 | 12.72792 | 0.00000  | 47.127487 | 11.04536 |
| 6 | 72.44998 | 26.07681 | 9.433981  | 54.23099 | 47.12749 | 0.000000  | 36.40055 |
| 7 | 36.05551 | 21.93171 | 42.755117 | 21.54066 | 11.04536 | 36.400549 | 0.00000  |

The distance matrix calculated by Euclidean distance.

The vector we are predicting

The training vectors in order closest to farthest: 5, 4, 2, 1, 6, 3

These are the 5 nearest vectors: 5, 4, 2, 1, 6

Their labels are: "high", "low", "low", "low", "high"

The majority vote picks "low" as the predicted label for the vector <57, 37>

So, for age=57, income =\$37,000 KNN predicts "low" credit rating.

#### KNN Issues

- The example predicted "low" since there were 3 "low"s and 2 "high"s in the 5 nearest neighbors. What happens if there is a tie? Toss a coinalso, don't pick even k.
- The 3 versus 2 seems pretty close- could have gone the other way...
- This is a toy data set- so very small, but, could happen in a larger set.
- We hope that on average, the classifier gets it right more often than not (see following slide on evaluation metrics).
  - Can adjust the value of k and run again-this is almost always the case.
  - Can try a different distance metric.
  - Can weight the neighbors based on their distance.
- KNN is very flexible- can try a lot of things.

### KNN classifier evaluation

- The simplest way to evaluate a classifier is to look at all possible outcomes of the true labels from the test set against the predicted labels from the classifier.
- This forms a table called a "confusion matrix":



### KNN classifier evaluation

- Common evaluation metrics:
- Misclassification rate: incorrect/total = 42/100 = .42 or 42%
- Correct classifications(accuracy): correct/total = 58/100 = .52 or 58%

Predicted low high low high high 23 20

Misclassifications

Not great results- try different values of k.

The correct classifications are on the diagonal

Total data size: N=100

### Other classifier evaluation metrics:

#### **Actual Values**

|                  |                      | Positive       | Negative       |
|------------------|----------------------|----------------|----------------|
| Predicted Values | Positive<br>Negative | True Positive  | False Positive |
|                  |                      | False Negative | True Negative  |

#### **Actual Values**

|                  |          | Positive | Negative |
|------------------|----------|----------|----------|
| Predicted Values | Positive | 38       | 19       |
|                  | Negative | 23       | 20       |

True positive rate = TP/TP+FN = 38/61 = 62% *Sensitivity (recall)* 

False positive rate = FP/FP+TN = 19/39 = 49%

True negative rate = TN/TN+FP = 20/39 = 51% *Specificity* 

False negative rate = FN/TP+FN = 23/61 = 38%

More about these later on.

## KNN Summary

- Very simple- can be adapted in many ways.
- Can use for regression and classification tasks.
- Wide range of distance metrics available.
- Can add weighting to nearest neighbors.
- Basic version- requires large storage for the data in training phase.
- Low use of computational resources.