-69-

WO 03/054154 PCT/US02/39873

internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothicate internucleotide linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

10

15

20

25

30

35

5

Example 6

Oligonucleotide Isolation

After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., *J. Biol. Chem.* 1991, 266, 18162–18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothicate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites were purchased from

commercial vendors (e.g. PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected beta-cyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated NH₄OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

Example 8

5

10

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACETM MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACETM 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

Example 9

30

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following 5 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis,

-71-

Ribonuclease protection assays, or RT-PCR.

T-24 cells:

5

10

15

25

30

35

The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Invitrogen Corporation, Carlsbad, CA) supplemented with 10% fetal calf serum ((Invitrogen Corporation, Carlsbad, CA), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Corporation, Carlsbad, CA). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

20 A549 cells:

The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells were routinely cultured in DMEM basal media (Invitrogen Corporation, Carlsbad, CA) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, CA), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Corporation, Carlsbad, CA). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville, MD). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, MD) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

HEK cells:

Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville, MD). HEKs were routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville, MD) formulated as recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

-72-

MCF7:

10

15

20

The human breast carcinoma cell line MCF-7 was obtained from the American Type Culture Collection (Manassas, VA). MCF-7 cells were routinely cultured in DMEM low glucose (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with antisense compounds:

When cells reached 70% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 100 μL OPTI-MEMTM-1 reduced-serum medium (Invitrogen Corporation, Carlsbad, CA) and then treated with 130 μL of OPTI-MEMTM-1 containing 3.75 μg/mL LIPOFECTINTM

(Invitrogen Corporation, Carlsbad, CA) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control

-73-

WO 03/054154 PCT/US02/39873

oligonucleotide is ISIS 13920, TCCGTCATCGCTCCTCAGGG, SEQ ID NO: 1, a 2'-0-methoxyethyl gapmer (2'-0-methoxyethyls shown in bold) with a phosphorothicate backbone which is targeted to human Hras. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAGGA, SEQ ID NO: 2, a 2'-0-methoxyethyl gapmer (2'-0-methoxyethyls shown in bold) with a phosphorothicate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or c-raf (for ISIS 15770) mRNA is then utilized as 10 the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-raf mRNA is then utilized as the oligonucleotide screening 15 concentration in subsequent experiments for that cell line. 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments.

20

Example 10

Analysis of oligonucleotide inhibition of mucin 1, transmembrane expression

Antisense modulation of mucin 1, transmembrane expression can be assayed in a variety of ways known in the art. For 25 example, mucin 1, transmembrane mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. The preferred 30 method of RNA analysis of the present invention is the use of total cellular RNA as described in other examples herein. Methods of RNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, -74-

Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISMTM 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions.

PCT/US02/39873

Protein levels of mucin 1, transmembrane can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to mucin 1, transmembrane can be identified and 10 obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular 15 Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 20 1997.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

Example 11

5

Poly(A) + mRNA isolation

Poly(A) + mRNA was isolated according to Miura et al.,

Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A) +

mRNA isolation are taught in, for example, Ausubel, F.M. et al.,

Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-

-75-

4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μ L of lysate was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 10 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 µL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then 15 transferred to a fresh 96-well plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

20 **Example 12**

25

30

35

Total RNA Isolation

Total RNA was isolated using an RNEASY 96TM kit and buffers purchased from Qiagen Inc. (Valencia, CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 150 μL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 150 μL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96TM well plate attached to a QIAVACTM manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 1 minute. 500 μL of Buffer RW1 was added to each well of the RNEASY 96TM plate and incubated for 15 minutes and the vacuum was again applied for 1 minute. An additional 500 μL of Buffer RW1

-76-

was added to each well of the RNEASY 96TM plate and the vacuum was applied for 2 minutes. 1 mL of Buffer RPE was then added to each well of the RNEASY 96TM plate and the vacuum applied for a period of 90 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 3 minutes. The plate was then removed from the QIAVACTM manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVACTM manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 170 μL water into each well, incubating 1 minute, and then applying the vacuum for 3 minutes.

The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia CA). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

Example 13

10

15

25

30

35

20 Real-time Quantitative PCR Analysis of mucin 1, transmembrane mRNA Levels

Quantitation of mucin 1, transmembrane mRNA levels was determined by real-time quantitative PCR using the ABI $\mathtt{PRISM^{TM}}$ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., FAM, obtained from either Operon Technologies Inc., Alameda, CA or Integrated DNA Technologies Inc., Coralville, IA) is attached to the 5' end of the probe and a quencher dye (e.g.,

-77-

5

10

15

20

25

30

35

TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or Integrated DNA Technologies Inc., Coralville, IA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISMTM 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only ("single-plexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art.

PCR reagents were obtained from Invitrogen, Carlsbad, CA. RT-PCR reactions were carried out by adding 20 μL PCR cocktail

-78-

(2.5x PCR buffer (-MgCl2), 6.6 mM MgCl2, 375 µM each of dATP, dCTP, dCTP and dGTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units RNAse inhibitor, 1.25 Units PLATINUM® Taq, 5 Units MuLV reverse transcriptase, and 2.5x ROX dye) to 96 well plates containing 30 µL total RNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the PLATINUM® Taq, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

10

15

20

25

30

35

Gene target quantities obtained by real time RT-PCR are normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreenTM (Molecular Probes, Inc. Eugene, OR). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreenTM RNA quantification reagent from Molecular Probes. Methods of RNA quantification by RiboGreenTM are taught in Jones, L.J., et al, Analytical Biochemistry, 1998, 265, 368-374.

In this assay, 170 µL of RiboGreenTM working reagent (RiboGreenTM reagent diluted 1:350 in 10mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 30 µL purified, cellular RNA. The plate is read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 480nm and emission at 520nm.

Probes and primers to human mucin 1, transmembrane were designed to hybridize to a human mucin 1, transmembrane sequence, using published sequence information (GenBank accession number NM_002456.1, incorporated herein as SEQ ID NO:3). For human mucin 1, transmembrane the PCR primers were: forward primer: TGACTCTGGCCTTCCGAGAA (SEQ ID NO: 4) reverse primer: GCTGCTTCCGTTTTATACTGATTG (SEQ ID NO: 5) and the PCR probe was: FAM-TACCATCAATGTCCACGACGTGGAGACA-TAMRA (SEQ ID NO: 6) where FAM (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye. For human

-79-

GAPDH the PCR primers were:

forward primer: GAAGGTGAAGGTCGGAGTC(SEQ ID NO:7) reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO:8) and the PCR probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC-TAMRA 3' (SEQ ID NO: 9) where JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Example 14 10

15

20

30

35

Northern blot analysis of mucin 1, transmembrane mRNA levels

Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOL $^{\text{TM}}$ (TEL-TEST "B" Inc., Friendswood, TX). Total RNA was prepared following manufacturer's recommended protocols. micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, OH). RNA was transferred from the gel to $\mathtt{HYBOND^{TM}-N+}$ nylon membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, TX). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER™ UV Crosslinker 2400 (Stratagene, Inc, La Jolla, CA) and then probed using QUICKHYB™ hybridization 25 solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions.

To detect human mucin 1, transmembrane, a human mucin 1, transmembrane specific probe was prepared by PCR using the forward primer TGACTCTGGCCTTCCGAGAA (SEQ ID NO: 4) and the reverse primer GCTGCTTCCGTTTTATACTGATTG (SEQ ID NO: 5). normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceraldehyde-3phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGERTM and IMAGEQUANTTM Software V3.3 (Molecular Dynamics, Sunnyvale, CA). Data was normalized to GAPDH levels

-80-

in untreated controls.

WO 03/054154

Example 15

Antisense inhibition of human mucin 1, transmembrane expression by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

PCT/US02/39873

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human mucin 1, transmembrane RNA, using published sequences 10 (GenBank accession number NM_002456.1, representing the main mRNA of mucin 1, transmembrane, incorporated herein as SEQ ID NO: 3; GenBank accession number AF125525.1, representing the variant MUC1/Y, incorporated herein as SEQ ID NO: 10; GenBank accession number AF348143.1, representing a variant of mucin 1, 15 transmembrane herein designated MUC1-II, incorporated herein as SEQ ID NO: 11; GenBank accession number AI834269.1, representing a variant of mucin 1, transmembrane herein designated MUC1-III, the complement of which is incorporated herein as SEQ ID NO: 12; GenBank accession number AW369441.1, representing a variant of 20 mucin 1, transmembrane herein designated MUC1-IV, incorporated herein as SEQ ID NO: 14; GenBank accession number BG774910.1, representing a variant of mucin 1, transmembrane herein designated MUC1-V, incorporated herein as SEQ ID NO: 16; GenBank accession number J05581.1, representing a variant of mucin 1, 25 transmembrane herein designated MUC1-VI, incorporated herein as SEQ ID NO: 17; GenBank accession number M31823.1, representing a variant of mucin 1, transmembrane herein designated MUC1-VII, incorporated herein as SEQ ID NO: 18; GenBank accession number M61170, representing a genomic sequence of mucin 1, 30 transmembrane, incorporated herein as SEQ ID NO: 19; GenBank accession number U60259.1, representing the variant MUC1/X, incorporated herein as SEQ ID NO: 20; and GenBank accession number Z17325.1, representing the variant MUC1/D, incorporated herein as SEQ ID NO: 21). The oligonucleotides are shown in 35 Table 1. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric

5

10

15

oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothicate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on human mucin 1, transmembrane mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments. If present, "N.D." indicates "no data".

Table 1
Inhibition of human mucin 1, transmembrane mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

ISIS #	REGION	TARGET SEQ ID	TARGET SITE	SEQUENCE	% INHIB	SEQ ID NO
		NO				
199396	5'UTR	3	8	gaacagattcaagcagccag	0	22
199397	Start Codon	3	49	cccggtgtcatggtggtggt	58	23
199398	Start Codon	3	52	gtgcccggtgtcatggtggt	58	24
199399	Coding	3	65	gaaaggagactgggtgcccg	54	25
199400	Coding	3	105	ctgtaacaactgtaagcact	41	26
199401	Coding	3	1.07	acctgtaacaactgtaagca	53	27
199402	Coding	3	187	tcagtagagctgggcactga	55	28
199403	Coding	3	196	gcattcttctcagtagagct	77	29
199404	Coding	3	197	agcattcttctcagtagagc	50	30
199405	Coding	3	210	tggtcatactcacagcattc	42	31
199406	Coding	3	214	ctgctggtcatactcacagc	56	32
199407	Coding	3	227	gctggagagtacgctgctgg	57	33
199408	Coding	3	344	tgggaccgaggtgacatcct	65	34
199409	Coding	3	694	gtgacattgtggactggagg	55	35
199410	Coding	3	697	gaggtgacattgtggactgg	57	36
199411	Coding	3	704	tgaggccgaggtgacattgt	54	37
199412	Coding	3	829	gtggtaggagtatcagagtg	53	38
199413	Coding	3	835	gcaagggtggtaggagtatc	50	39
199414	Coding	3	860	ggcatcagtcttggtgctat	53	40
199415	Coding	3	940	gagaccccagtagacaactg		41
199416	Coding	3	997	tcttccagagaggaattaaa		42
199417	Coding	3	1037	aatgtctctctgcagctctt	41	43
199418	Coding	3	1042	tcagaaatgtctctctgcag		44
199419	Coding	3	1056	tctgcaaaaacatttcagaa	45	45

199420	Coding	3	1065	gtttataaatctgcaaaaac	39	46
199421	Coding	3	1091	attggagaggcccagaaaac	41	47
199422	Coding	3	1095	taatattggagaggcccaga	50	48
199423	Coding	3	1100	gaacttaatattggagaggc	48	49
199424	Coding	3	1112	agatcctggcctgaacttaa	53	50
199425	Coding	3	1115	cacagatectggeetgaact	49	51
199426	Coding	3	1168	acgtcgtggacattgatggt	84	52
199427	Coding	3	1217	gttatatcgagaggctgctt	50	53
199428	Coding	3	1225	atcgtcaggttatatcgaga	47	54
199429	Coding	3	1251	gcacatcactcacgctgacg	50	55
199430	Coding	3	1268	ggcagagaaaggaaatggca	46	56
199431	Coding	3	1371	gacagacagccaaggcaatg	47	- 57
199431	Coding	3	1397	ctgccgtagttctttcggc	43	58
			1412	tggaaagatgtccagctgcc	41	59
199433	Coding	3	1499	gctacgatcggtactgctag	52	60
199434	Coding	3	1540	aggetgetgecaccattacc	<u> </u>	61
199435	Coding	3	1540	aagttggcagaagtggctgc	42	62
199436	Coding	3		ctacaagttggcagaagtgg	35	63
199437	Stop	3	1586	Clacaagiliggcagaagigg	33	5
	Codon		1504	acgtgcccctacaagttggc	57	64
199438	Stop	3	1594	aegtgeeeetacaagttgge	37	0 =
100100	Codon		1,000		36	65
199439	3'UTR	3	1606	gctcagagggcgacgtgccc	56	66
199440	3'UTR	3	1617	ctggccactcagctcagagg	55	67
199441	3'UTR	3	1622	actggctggccactcagctc	60	68
199442	3'UTR	3	1630	ggaatggcactggctggcca	56	69
199443	3 'UTR	3	1635	ggagtggaatggcactggct	7	70
199444	Coding	10	141	aggaattaaaagcattcttc		70
199445	Coding	11	174	cagtagacaaagcattcttc	40	
199446	Coding	11	297	gacagacagccatttcagaa	80	72
199447	Exon:	12	49	catcactcactgaacttaat	1	73
	Exon					
	Junction		<u> </u>		0.0	
199448	Intron 6	19	5327	tttgggttttccaagtaccc	83	74
199449	Intron 6	19	5436	catagtctcctcccaggcct	44	75
199450	Intron 6	19	5588	cattttgcctctgggtgcaa	49	76
199451	Exon:	14	160	cagccccagacatttcagaa	21	77
	Exon					
	Junction				<u> </u>	
199452	Intron 1	19	3289	ttctctctgcccataggcct	42	78
199453	Intron 1	19	3426	gggtctttatgaaggaaaaa	43	79
199454	Exon:	16	455	acatcactcacatttcagaa	62	80
	Exon					1
	Junction					
199455	3 'UTR	17	1776	accacgttttattcagtcca	65	81
199456		18	115	gctgtggtagctgtaagcac	38	82
199457	Coding	20	175	gtgctgggatagcattcttc	15	83
199458	Coding	20	245	agagtcaattgtaccaccac		84
199459	Coding	21	122	ttttctccacctgtaagcac		85
199460	Intron:	19	3489	cctgtaacaactgttgcggg	32	86
	Exon					
1	Junction	<u>. </u>				
199461	Intron:	19	3498	tgaccagaacctgtaacaac	38	87
				1	i.	

	Junction					
199462	Exon 2d	19	3530	tctccttttctccacctggg	49	88
199463	Exon 2d	19	3571	ctcagtagagctgggcactg	47	89
199464	Exon 2d	19	3590	tcatactcacagcattcttc	42	90
199465	Exon:	19	3973	agagcctgaggccgaggtga	58	91
	Intron					
	Junction					
199466	Intron:	19	4201	gaccccagtagacaactggg	20	92
	Exon					
	Junction					
199467	Intron:	19	4250	aggaattaaactggaggttt	55	93
	Exon					
	Junction					
199468	Exon 3d	19	4269	gtgctgggatcttccagaga	61	94
199469	Intron:	19	4621	atcctggcctggtcacaggg	39	95
	Exon					
	Junction					
199470	Exon 5	19	4936	cagccccagactgggcagag	41	96
199471	Intron 6	19	5449	ggcccctttcttccatagtc	55	97
199472	Intron 6	19	5889	ccacctggagtggttttcca	42	98
199473	Intron 6	19	5956	aaagccgagagaggtc	51	99

As shown in Table 1, SEQ ID NOs 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 88, 89, 90, 91, 93, 94, 96, 97, 98 and 99 demonstrated at least 41% inhibition of human mucin 1, transmembrane expression in this assay and are therefore preferred. The target sites to which these preferred sequences are complementary are herein referred to as "active sites" and are therefore preferred sites for targeting by compounds of the present invention.

15 **Example 16**

20

Western blot analysis of mucin 1, transmembrane protein levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to mucin 1, transmembrane is used,

with a radiolabelled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGERTM (Molecular Dynamics, Sunnyvale CA).

-84-

PCT/US02/39873

5

Example 17

WO 03/054154

Targeting of individual oligonucleotides to specific variants of mucin 1, transmembrane

It is advantageous to selectively inhibit the expression of one or more variants of mucin 1, transmembrane. Consequently, in 10 one embodiment of the present invention are oligonucleotides that selectively target, hybridize to, and specifically inhibit one or more, but fewer than all of the variants of mucin 1, transmembrane. A summary of the target sites of the variants is shown in Table 2 and includes Genbank accession number 15 NM_002456.1, representing mucin 1, transmembrane (MUC1), incorporated herein as SEQ ID NO: 3; Genbank accession number AF125525.1, representing MUC1/Y, incorporated herein as SEQ ID NO: 10; Genbank accession number AF348143.1, representing MUC1-II, incorporated herein as SEQ ID NO: 11; Genbank accession 20 number AI834269.1, representing MUC1-III, incorporated herein as SEQ ID NO: 12; Genbank accession number AW369441.1, representing MUC1-IV, incorporated herein as SEQ ID NO: 14; Genbank accession number BG774910.1, representing MUC1-V, incorporated herein as SEQ ID NO: 16; Genbank accession number J05581.1, representing 25 MUC1-VI, incorporated herein as SEQ ID NO: 17; Genbank accession number M31823.1, representing MUC1-VII, incorporated herein as SEQ ID NO: 18; Genbank accession number U60259.1, representing MUC1/X, incorporated herein as SEQ ID NO: 20; Genbank accession number Z17325.1, representing MUC1/D, incorporated herein as SEQ 30 ID NO: 21; Genbank accession number S81781.1, representing the variant MUC1/A, incorporated herein as SEQ ID NO: 100; Genbank accession number M32738.1, representing the variant MUC1/REP, incorporated herein as SEQ ID NO: 101; Genbank accession number M35093.1, representing the variant MUC1/SEC, incorporated herein 35 as SEQ ID NO: 102; Genbank accession number U60261.1, representing the variant MUC1/Z, incorporated herein as SEQ ID NO: 103; Genbank accession number Z17324.1, representing the

variant MUC1/C, incorporated herein as SEQ ID NO: 104; Genbank accession number BF876382.1, representing a variant of mucin 1, transmembrane herein designated MUC1-VIII, incorporated herein as SEQ ID NO: 105; Genbank accession number BG541121.1, representing a variant of mucin 1, transmembrane herein designated MUC1-IX, incorporated herein as SEQ ID NO: 106; Genbank accession number AL046435.1, representing a variant of mucin 1, transmembrane herein designated MUC1-X, incorporated herein as SEQ ID NO: 107.

10

Table 2
Targeting of individual oligonucleotides to specific variants of mucin 1, transmembrane

ISIS #	OLIGO SEQ ID	TARGET SITE	VARIANT	VARIANT SEQ ID NO.
	NO.		MUC1	3
199396	22	8	MUC1	3
199397	23	49		11
199397	23	16	MUC1-II	17
199397	23	64	MUC1-VI	
199397	23	58	MUC1-VII	18
199397	23	17	MUC1/X	20
199397	23	65	MUC1/D	21
199397	23	1	MUC1/A	100
199397	23	42	MUC1/REP	101
199397	23	776	MUC1/SEC	102
199397	23	17	MUC1/Z	103
199397	23	65	MUC1/C	104
199397	23	59	MUC1-IX	106
199398	24	52	MUC1	3
199398	24	19	MUC1-II	11
199398	24	67	MUC1-VI	17
199398	24	61	MUC1-VII	18
199398	24	20	MUC1/X	20
199398	24	68	MUC1/D	21
199398	24	4	MUC1/A	100
199398	24	45	MUC1/REP	101
199398	24	779	MUC1/SEC	102
199398	24	20	MUC1/Z	103
199398	24	68	MUC1/C	104
199398	24	62	MUC1-IX	106
199399	25	65	MUC1	3
199399	25	8	MUC1/Y	10
199399	25	32	MUC1-II	11
199399	25	80	MUC1-VI	17
199399	25	74	MUC1-VII	18
199399	25	33	MUC1/X	20

199399	25	81	MUC1/D	21
199399	25	17	MUC1/A	100
199399	25	58	MUC1/REP	101
199399	25	792	MUC1/SEC	102
199399	25	33	MUC1/Z	103
199399	25	81	MUC1/C	104
199399	25	75	MUC1-IX	106
199400	26	105	MUC1	3
199400	26	72	MUC1-II	11
199400	26	120	MUC1-VI	17
199400	26	73	MUC1/X	20
199400	26	73	MUC1/Z	103
199401	27	107	MUC1	3
199401	27	74	MUC1-II	11
199401	27	122	MUC1-VI	17
199401	27	75	MUC1/X	
199401	27	75	MUC1/Z	20
199402	28	187		103
199402	28	121	MUC1	3
199402	28	154	MUC1/Y	10
199402	28	202	MUC1-II	11
199402	28	223	MUC1-VI	17
199402	28	155	MUC1-VII	18
199402	28	166	MUC1/X	20
199402	28		MUC1/A	100
199402	28	207	MUC1/REP	101
199402	28	1413	MUC1/SEC	102
199402	28	155	MUC1/Z	103
199402	28	346	MUC1-VIII	105
199403	29	224	MUC1-IX	106
199403	29	196	MUC1	3
199403	29	130	MUC1/Y	10
199403	29 29	163	MUC1-II	11
199403	29 29	211	MUC1-VI	17
199403	<u>29</u>	232	MUC1-VII	18
199403		164	MUC1/X	20
199403	29	175	MUC1/A	100
	29	216	MUC1/REP	101
199403	29	1422	MUC1/SEC	102
199403	29	164	MUC1/Z	103
199403	29	355	MUC1-VIII	105
199403	29	233	MUC1-IX	106
199404	30	197	MUC1	3
199404	30	131	MUC1/Y	10
199404	30	164	MUC1-II	11
199404	30	212	MUC1-VI	17
199404	30	233	MUC1-VII	18
199404	30	165	MUC1/X	20
199404	30	176	MUC1/A	1.00
199404	30	217	MUC1/REP	101
199404	30	1423	MUC1/SEC	102
199404	30	165	MUC1/Z	103
199404	30	356	MUC1-VIII	105
199404	30	234	MUC1-IX	106

199405	31	210	MUC1	3
199405	31	225	MUC1-VI	17
199405	31	246	MUC1-VII	18
199405	31.	189	MUC1/A	100
199405	31	230	MUC1/REP	101
199405	31	1436	MUC1/SEC	102
199405	31	369	MUC1-VIII	105
199406	32	214	MUC1	3
199406	32	229	MUC1-VI	17
199406	32	250	MUC1-VII	18
199406	32	193	MUC1/A	100
199406	32	234	MUC1/REP	101
199406	32	1440	MUC1/SEC	102
199406	32	373	MUC1-VIII	105
199407	33	227	MUC1	3
199407	33	242	MUC1-VI	17
199407	33	263	MUC1-VII	18
199407	33	206	MUC1/A	100
199407	33	247	MUC1/REP	101
199407	33	1453	MUC1/SEC	102
199407	33	386	MUC1-VIII	105
199408	34	344	MUC1	3
199408	34	359	MUC1-VI	17
199408	34	380	MUC1-VII	18
199408	34	364	MUC1/REP	101
199408	34	1570	MUC1/SEC	102
199409	35	694	MUC1	3
199409	35	93	MUC1-V	16
199409	35	589	MUC1-VI	17
199409	35	1800	MUC1/SEC	102
199410	36	697	MUC1	3
199410	36	96	MUC1-V	16
199410	36	592	MUC1-VI	17
199410	36	1803	MUC1/SEC	102
199411	37	704	MUC1	3
199411	37	103	MUC1-V	16
199411	37	599	MUC1-VI	17
199411	37	1810	MUC1/SEC	102
199412	38	829	MUC1	3
199412	38	228	MUC1-V	16
199412	38	724	MUC1-VI	17
199412	38	1935	MUC1/SEC	102
199412	39	835	MUC1	3
199413	39	234	MUC1-V	16
	39	730	MUC1-VI	17
199413	39	1941	MUC1/SEC	102
199413 199414	40	860	MUC1	3
		259	MUC1-V	16
199414	40	755	MUC1-VI	17
199414	40	1966	MUC1-VI MUC1/SEC	102
199414	40	940	MUC1/SEC	3
199415	41	44	MUC1-IV	14
199415	41			16
199415	41	339	MUC1-V	ΤΩ

I			35704 777	17
199415	41	835	MUC1-VI	17
199415	41	2046	MUC1/SEC	102
199416	42	997	MUC1	3
199416	42	151	MUC1/Y	10
199416	42	238	MUC1-II	11
199416	42	101	MUC1-IV	14
199416	42	396	MUC1-V	16
199416	42	892	MUC1-VI	17
199416	42	2103	MUC1/SEC	102
199416	42	239	MUC1/Z	103
199416	42	254	MUC1-IX	106
199417	43	1037	MUC1	3
199417	43	191	MUC1/Y	10
199417	43	278	MUC1-II	11
199417	43	141	MUC1-IV	1.4
199417	43	436	MUC1-V	16
199417	43	932	MUC1-VI	17
199417	43	206	MUC1/X	20
199417	43	2143	MUC1/SEC	102
199417	43	279	MUC1/Z	103
199417	43	294	MUC1-IX	106
199418	44	1042	MUC1	3
199418	44	196	MUC1/Y	10
199418	44	283	MUC1-II	11
199418	44	146	MUC1-IV	14
199418	44	441	MUC1-V	16
199418	44	937	MUC1-VI	17
199418	44	211	MUC1/X	20
199418	44	2148	MUC1/SEC	102
199418	44	284	MUC1/Z	103
199418	44	299	MUC1-IX	106
199419	45	1056	MUC1	3
199419	45	210	MUC1/Y	10
199419	45	951	MUC1-VI	17
199419	45	298	MUC1/Z	103
199419	45	313	MUC1-IX	106
199420	46	1065	MUC1	3
199420	46	219	MUC1/Y	10
199420	46	3	MUC1-III	12
199420	46	960	MUC1-VI	17
199420	46	2270	MUC1/SEC	102
199420	46	307	MUC1/Z	103
199420	46	322	MUC1-IX	106
199421	47	1091	MUC1	3
199421	47	245	MUC1/Y	10
199421	47	29	MUC1-III	12
199421	47	986	MUC1-VI	17
199421	47	2296	MUC1/SEC	102
199421	47	333	MUC1/Z	103
199421	47	348	MUC1-IX	106
199422	48	1095	MUC1	3
199422	48	249	MUC1/Y	10
199422	48	33	MUC1-III	12

199422	48	990	MUC1-VI	17
199422	48	2300	MUC1/SEC	102
199422	48	337	MUC1/Z	103
	48	352	MUC1-IX	106
199422				3
199423	49	1100	MUC1	
199423	49	254	MUC1/Y	10
199423	49	38	MUC1-III	12
199423	49	995	MUC1-VI	17
199423	49	2305	MUC1/SEC	102
199423	49	342	MUC1/Z	103
199423	49	357	MUC1-IX	106
199424	50	1112	MUC1	3
199424	50	266	MUC1/Y	10
199424	50	1007	MUC1-VI	17
199424	50	354	MUC1/Z	103
199424	50	369	MUC1-IX	106
199425	51	1115	MUC1	3
199425	51	269	MUC1/Y	10
199425	51	1010	MUC1-VI	17
199425	51	357	MUC1/Z	103
199425	51	372	MUC1-IX	106
199426	52	1168	MUC1	3
199426	52	1063	MUC1-VI	17
199426	52	281	MUC1/X	20
199426	52	2524	MUC1/SEC	102
199426	52	410	MUC1/Z	103
199426	52	425	MUC1-IX	106
199427	53	1217	MUC1	3
199427	53	371	MUC1/Y	10
199427	53	1112	MUC1-VI	17
199427	53	330	MUC1/X	20
199427	53	2573	MUC1/SEC	102
199427	53	459	MUC1/Z	103
199427	53	473	MUC1-IX	106
199428	54	1225	MUC1	3
199428	54	379	MUC1/Y	10
199428	54	1120	MUC1-VI	17
199428	54	338	MUC1/X	20
199428	54	2581	MUC1/SEC	102
199428	54	467	MUC1/Z	103
199428	54	481	MUC1-IX	106
199429	55	1251	MUC1	3
199429	55	405	MUC1/Y	10
199429	55	1146	MUC1-VI	17
199429	55	364	MUC1/X	20
199429	55	493	MUC1/Z	103
199429	55	507	MUC1-IX	106
199430	56	1268	MUC1	3
199430	56	422	MUC1/Y	10
199430	56	69	MUC1-III	12
199430	56	474	MUC1-V	16
199430	56	1163	MUC1-VI	17
199430	56	381	MUC1/X	20

199430	56	510	MUC1/Z	103
199431	57	1371	MUC1	3
199431	57	525	MUC1/Y	10
199431	57	250	MUC1-IV	14
199431	57	577	MUC1-V	16
199431	57	1266	MUC1-VI	17
199431	57	484	MUC1/X	20
199431	57	613	MUC1/Z	103
199431	57	76	MUC1-X	107
199432	58	1397	MUC1	3
199432	58	551	MUC1/Y	10
199432	58	276	MUC1-IV	14
199432	58	603	MUC1-V	16
199432	58	1292	MUC1-VI	17
199432	58	510	MUC1/X	20
199432	58	2977	MUC1/SEC	102
199432	58	639	MUC1/Z	103
199432	58	102	MUC1-X	107
199433	59	1412	MUC1	3
199433	59	566	MUC1/Y	10
199433	59	291	MUC1-IV	14
199433	59	618	MUC1-V	16
199433	59	1307	MUC1-VI	17
199433	59	525	MUC1/X	20
199433	59	2992	MUC1/SEC	102
199433	59	654	MUC1/Z	103
199433	59	117	MUC1-X	107
199434	60	1499	MUC1	3
199434	60	653	MUC1/Y	10
199434	60	425	MUC1-II	11
199434	60	378	MUC1-IV	14
199434	60	704	MUC1-V	16
199434	60	1394	MUC1-VI	17
199434	60	612	MUC1/X	20
199434	60	3078	MUC1/SEC	102
199434	60	741	MUC1/Z	103
199434	60	204	MUC1-X	107
199435	61	1540	MUC1	3
199435	61	694	MUC1/Y	10
199435	61	466	MUC1-II	11
199435	61	419	MUC1-IV	14
199435	61	1435	MUC1-VI	17
199435	61	653	MUC1/X	20
199435	61	782	MUC1/Z	103
199436	62	1582	MUC1	3
199436	62	736	MUC1/Y	10
199436	62	508	MUC1-II	11
199436	62	786	MUC1-V	16
199436	62	1477	MUC1-VI	17
199436	62	695	MUC1/X	20
199436	62	824	MUC1/Z	103
199437	63	1586	MUC1	3
199437	63	740	MUC1/Y	10

10040			75504 55	T
199437	63	512	MUC1-II	11
199437	63	790	MUC1-V	16
199437	63	1481	MUC1-VI	17
199437	63	699	MUC1/X	20
199437	63	828	MUC1/Z	103
199438	64	1594	MUC1	3
199438	64	520	MUC1-II	11
199438	64	798	MUC1-V	16
199438	64	1489	MUC1-VI	17
199438	64	707	MUC1/X	20
199438	64	836	MUC1/Z	103
199439	65	1606	MUC1	3
199440	66	1617	MUC1	3
199441	67	1622	MUC1	3
199441	67	1517	MUC1-VI	17
199442	68	1630	MUC1	3
199442	68	833	MUC1-V	16
199442	68	1525	MUC1-VI	17
199443	69	1635	MUC1	3
199443	- 69	514	MUC1-IV	14
199443	69	1530	MUC1-VI	17
199444	70	141	MUC1/Y	10
199444	· 70	244	MUC1-IX	106
199445	71	174	MUC1-II	11
199445	71	175	MUC1/Z	103
199446	72	297	MUC1-II	11
199447	73	49	MUC1-III	12
199448	74	3171	MUC1/SEC	102
199448	74	298	MUC1-X	107
199449	75	3279	MUC1/SEC	102
199449	75 75	407	MUC1-X	107
199450	76	559	MUC1-X	107
199451	77	160	MUC1-IV	14
199452	78	1134		102
199452	78	65	MUC1/SEC	102
199453	79	1269	MUC1-VIII	
199453			MUC1/SEC	102
	79	202	MUC1-VIII	105
199454	80	455 1776	MUC1-V	16
199455	81	1776	MUC1-VI	17
199456	82	115	MUC1-VII	18
199456	82	58	MUC1/A	100
199456	82	99	MUC1/REP	101
199456	82	116	MUC1-IX	106
199457	83	175	MUC1/X	20
199458	84	1132	MUC1	3
199458	84	286	MUC1/Y	10
199458	84	1027	MUC1-VI	17
199458	84	245	MUC1/X	20
199458	84	2488	MUC1/SEC	102
199458	84	374	MUC1/Z	103
199458	84	389	MUC1-IX	106
199459	85	122	MUC1/D	21
199460	86	85	MUC1/A	100

199460	86	126	MUC1/REP	101
199460	86	1332	MUC1/SEC	102
199461	87	115	MUC1	3
199461	87	82	MUC1-II	11
199461	87	130	MUC1-VI	17
199461	87	83	MUC1/X	20
199461	87	94	MUC1/A	100
199461	87	135	MUC1/REP	101
199461	87	1341	MUC1/SEC	102
199461	87	83	MUC1/Z	103
199462	88	147	MUC1	3
199462	88	81	MUC1/Y	10
199462	88	114	MUC1-II	11
199462	88	162	MUC1-VI	17
199462	88	183	MUC1-VII	18
199462	88	115	MUC1/X	20
199462	88	126	MUC1/A	100
199462	88	167	MUC1/REP	101
199462	88	1373	MUC1/SEC	102
199462	88	115	MUC1/Z	103
199462	88	154	MUC1/C	104
199462	88	306	MUC1-VIII	105
199462	88	184	MUC1-IX	106
199463	89	188	MUC1	3
199463	89	122	MUC1/Y	10
199463	89	155	MUC1-II	11
199463	89	203	MUC1-VI	17
199463	89	224	MUC1-VII	18
199463	89	156	MUC1/X	20
199463	89	167	MUC1/A	100
199463	89	208	MUC1/REP	101
199463	89	1414	MUC1/SEC	102
199463	89	156	MUC1/Z	103
199463	89	347	MUC1-VIII	105
199463	89	225	MUC1-IX	106
199464	90	207	MUC1	3
199464	90	222	MUC1-VI	17
199464	90	243	MUC1-VII	18
199464	90	186	MUC1/A	1.00
199464	90	227	MUC1/REP	101
199464	90	1433	MUC1/SEC	102
199464	90	366	MUC1-VIII	105
199465	91	710	MUC1	3
199465	91	109	MUC1-V	16
199465	91	605	MUC1-VI	17
199465	91	1816	MUC1/SEC	102
199466	92	938	MUC1	3
199466	92	42	MUC1-IV	14
199466	92	337	MUC1-V	16
199466	92	833	MUC1-VI	17
199466	92	2044	MUC1/SEC	102
199467	93	987	MUC1	3
199467	93	228	MUC1-II	11.
		<u></u>		

199467	93	91	MUC1-IV	14
199467	93	386	MUC1-V	16
199467	93	882	MUC1-VI	17
199467	93	2093	MUC1/SEC	102
199467	93	229	MUC1/Z	103
199468	94	1006	MUC1	3
199468	94	160	MUC1/Y	10
199468	94	247	MUC1-II	11
199468	94	110	MUC1-IV	14
199468	94	405	MUC1-V	16
199468	94	901	MUC1-VI	17
199468	94	2112	MUC1/SEC	102
199468	94	248	MUC1/Z	103
199468	94	263	MUC1-IX	106
199469	95	2466	MUC1/SEC	102
199470	96	1281	MUC1	3
199470	96	435	MUC1/Y	10
199470	96	82	MUC1-III	12
199470	96	487	MUC1-V	16
199470	96	1176	MUC1-VI	17
199470	96	394	MUC1/X	20
199470	96	523	MUC1/Z	103
199470	96	538	MUC1-IX	106
199471	97	3292	MUC1/SEC	102
199471	97	420	MUC1-X	107

What is claimed is:

15

20

35

- 1. A compound 8 to 50 nucleobases in length targeted to a nucleic acid molecule encoding mucin 1, transmembrane, wherein said compound specifically hybridizes with said nucleic acid molecule encoding mucin 1, transmembrane and inhibits the expression of mucin 1, transmembrane.
- 10 2. The compound of claim 1 which is an antisense oligonucleotide.
 - 3. The compound of claim 2 wherein the antisense oligonucleotide has a sequence comprising SEQ ID NO: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42,
 - 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
 - 60, 61, 62, 64, 66, 67, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 88, 89, 90, 91, 93, 94, 96, 97, 98 or 99.
 - 4. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
 - 5. The compound of claim 4 wherein the modified internucleoside linkage is a phosphorothicate linkage.
 - 6. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
- 7. The compound of claim 6 wherein the modified sugar moiety is a 2'-0-methoxyethyl sugar moiety.
 - 8. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 9. The compound of claim 8 wherein the modified 30 nucleobase is a 5-methylcytosine.
 - 10. The compound of claim 2 wherein the antisense oligonucleotide is a chimeric oligonucleotide.
 - 11. A compound 8 to 50 nucleobases in length which specifically hybridizes with at least an 8-nucleobase portion of an active site on a nucleic acid molecule encoding mucin 1, transmembrane.
 - 12. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.

WO 03/054154 -95-

5

15

20

25

30

13. The composition of claim 12 further comprising a colloidal dispersion system.

PCT/US02/39873

14. The composition of claim 12 wherein the compound is an antisense oligonucleotide.

- 15. A method of inhibiting the expression of mucin 1, transmembrane in cells or tissues comprising contacting said cells or tissues with the compound of claim 1 so that expression of mucin 1, transmembrane is inhibited.
- 16. A method of treating an animal having a disease or condition associated with mucin 1, transmembrane comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of mucin 1, transmembrane is inhibited.
 - 17. The method of claim 16 wherein the disease or condition is a hyperproliferative disorder.
 - 18. The method of claim 16 wherein the disease or disorder is an inflammatory disorder.
 - 19. The compound of claim 1 targeted to a nucleic acid molecule encoding mucin 1, transmembrane, wherein said compound specifically hybridizes with and differentially inhibits the expression of one of the variants of mucin 1, transmembrane relative to the remaining variants of of mucin 1, transmembrane.

1

SEQUENCE LISTING

<110> Kenneth W. Dobie Susan J. Myers Isis Pharmaceuticals, Inc. <120> ANTISENSE MODULATION OF MUCIN 1, TRANSMEMBRANE EXPRESSION <130> RTSP-0442 <150> 10/029,517 <151> 2001-12-20 <160> 107 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 1 20 tccgtcatcg ctcctcaggg <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 2 20 atgcattctg cccccaagga <210> 3 <211> 1721 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (58)...(1605) <400> 3 gaattccctg gctgcttgaa tctgttctgc cccctcccca cccatttcac caccacc 57 atg aca ccg ggc acc cag tct cct ttc ttc ctg ctg ctc ctc aca 105

									_							
Met 1	Thr	Pro	Gly	Thr 5	Gln	Ser	Pro	Phe	Phe 10	Leu	Leu	Leu	Leu	Leu 15	Thr	
gtg Val	ctt Leu	aca Thr	gtt Val 20	gtt Val	aca Thr	ggt Gly	tct Ser	ggt Gly 25	cat His	gca Ala	agc Ser	tct Ser	acc Thr 30	cca Pro	ggt Gly	153
gga Gly	gaa Glu	aag Lys 35	gag Glu	act Thr	tcg Ser	gct Ala	acc Thr 40	cag Gln	aga Arg	agt Ser	tca Ser	gtg Val 45	ccc Pro	agc Ser	tct Ser	201
act Thr	gag Glu 50	aag Lys	aat Asn	gct Ala	gtg Val	agt Ser 55	atg Met	acc Thr	agc Ser	agc Ser	gta Val 60	ctc Leu	tcc Ser	agc Ser	cac His	249
agc Ser 65	ccc Pro	ggt Gly	tca Ser	ggc Gly	tcc Ser 70	tcc Ser	acc Thr	act Thr	cag Gln	gga Gly 75	cag Gln	gat Asp	gtc Val	act Thr	ctg Leu 80	297
gcc Ala	ccg Pro	gcc Ala	acg Thr	gaa Glu 85	cca Pro	gct Ala	tca Ser	ggt Gly	tca Ser 90	gct Ala	gcc Ala	acc Thr	tgg Trp	gga Gly 95	cag Gln	345
gat Asp	gtc Val	acc Thr	tcg Ser 100	gtc Val	cca Pro	gtc Val	acc Thr	agg Arg 105	cca Pro	gcc Ala	ctg Leu	ggc Gly	tcc Ser 110	acc Thr	acc Thr	393
ccg Pro	cca Pro	gcc Ala 115	cac His	gat Asp	gtc Val	acc Thr	tca Ser 120	gcc Ala	ccg Pro	gac Asp	aac Asn	aag Lys 125	cca Pro	gcc Ala	ccg Pro	441
ggc	tcc Ser 130	Thr	gcc Ala	ccc Pro	cca Pro	gcc Ala 135	His	ggt Gly	gtc Val	acc Thr	tcg Ser 140	gcc Ala	ccg Pro	gac Asp	acc Thr	489
agg Arg 145	Pro	ccc Pro	ccg Pro	ggc Gly	tcc Ser 150	Thr	gcc Ala	ccc Pro	cca Pro	gcc Ala 155	His	ggt Gly	gtc Val	acc Thr	tcg Ser 160	537
gcc Ala	ccg Pro	gac Asp	acc Thr	agg Arg 165	Pro	ccc	ccg Pro	ggc Gly	tcc Ser 170	acc Thr	gcg Ala	ccc Pro	gca Ala	gcc Ala 175	HIS	585
ggt Gly	gto Val	acc Thr	tcg Ser 180	: Ala	ccg Pro	gac Asp	acc Thr	agg Arg 185	Pro	gcc Ala	ccg Pro	ggc Gly	tcc Ser 190	Thr	gcc Ala	633
ccc	cca Pro	gco Ala 195	His	ggt Gly	gtc Val	aco Thr	tcg Ser 200	: Ala	ccg Pro	gac Asp	aac Asn	agg Arg 205	Pro	gcc Ala	ttg Leu	681
gco	tco Ser 210	Thr	gco Ala	c cct a Pro	cca Pro	gto Val	L His	aat Asr	gto Val	acc Thr	tcg Ser 220	: Ата	tca Ser	Gl ⁷	tct Ser	729
gca Ala 225	a Sei	a ggo	tca Y Sei	a gct r Ala	tct Ser 230	Th	cto Lei	g gto ı Val	g cac His	aac Asr 235	J GTZ	acc Thr	tct Ser	gco Ala	agg Arg 240	777

									5							
gct Ala	acc Thr	aca Thr	acc Thr	cca Pro 245	gcc Ala	agc Ser	aag Lys	agc Ser	act Thr 250	cca Pro	ttc Phe	tca Ser	att Ile	ccc Pro 255	agc Ser	825
cac His	cac Hìs	tct Ser	gat Asp 260	act Thr	cct Pro	acc Thr	acc Thr	ctt Leu 265	gcc Ala	agc Ser	cat His	agc Ser	acc Thr 270	aag Lys	act Thr	873
gat Asp	gcc Ala	agt Ser 275	agc Ser	act Thr	cac His	cat His	agc Ser 280	acg Thr	gta Val	cct Pro	cct Pro	ctc Leu 285	acc Thr	tcc Ser	tcc Ser	921
aat Asn	cac His 290	agc Ser	act Thr	tct Ser	ccc Pro	cag Gln 295	ttg Leu	tct Ser	act Thr	GJÀ ààà	gtc Val 300	tct Ser	ttc Phe	ttt Phe	ttc Phe	969
ctg Leu 305	tct Ser	ttt Phe	cac His	att Ile	tca Ser 310	aac Asn	ctc Leu	cag Gln	ttt Phe	aat Asn 315	tcc Ser	tct Ser	ctg Leu	gaa Glu	gat Asp 320	1017
ccc Pro	agc Ser	acc Thr	gac Asp	tac Tyr 325	tac Tyr	caa Gln	gag Glu	ctg Leu	cag Gln 330	aga Arg	gac Asp	att Ile	tct Ser	gaa Glu 335	atg Met	1065
ttt Phe	ttg Leu	cag Gln	att Ile 340	tat Tyr	aaa Lys	caa Gln	Gly ggg	ggt Gly 345	ttt Phe	ctg Leu	ggc Gly	ctc Leu	tcc Ser 350	aat Asn	att Ile	1113
aag Lys	ttc Phe	agg Arg 355	cca Pro	gga Gly	tct Ser	gtg Val	gtg Val 360	gta Val	caa Gln	ttg Leu	act Thr	ctg Leu 365	gcc Ala	ttc Phe	cga Arg	1161
gaa Glu	ggt Gly 370	acc Thr	atc Ile	aat Asn	gtc Val	cac His 375	gac Asp	gtg Val	gag Glu	aca Thr	cag Gln 380	ttc Phe	aat Asn	cag Gln	tat Tyr	1209
aaa Lys 385	acg Thr	gaa Glu	gca Ala	gcc Ala	tct Ser 390	cga Arg	tat Tyr	aac Asn	ctg Leu	acg Thr 395	atc Ile	tca Ser	gac Asp	gtc Val	agc Ser 400	1257
gtg Val	agt Ser	gat Asp	gtg Val	cca Pro 405	ttt Phe	cct Pro	ttc Phe	tct Ser	gcc Ala 410	cag Gln	tct Ser	Gly	gct Ala	ggg Gly 415	gtg Val	1305
cca Pro	ggc Gly	tgg Trp	ggc Gly 420	Ile	gcg Ala	ctg Leu	ctg Leu	gtg Val 425	ctg Leu	gtc Val	tgt Cys	gtt Val	ctg Leu 430	gtt Val	gcg Ala	1353
ctg Leu	gcc Ala	att Ile 435	Val	tat Tyr	ctc Leu	att Ile	gcc Ala 440	Leu	gct Ala	gtc Val	tgt Cys	cag Gln 445	Cys	cgc Arg	cga Arg	1401
aag Lys	aac Asn 450	Tyr	. GJA aaa	cag Gln	ctg Leu	gac Asp 455	Ile	ttt Phe	cca Pro	gcc Ala	cgg Arg 460	gat Asp	acc Thr	tac Tyr	cat His	1449
cct Pro 465	Met	agc Ser	gag Glu	tac Tyr	Pro	Thr	tac Tyr	cac His	acc Thr	cat His	Gly	cgc Arg	tat Tyr	gtg Val	ccc Pro 480	1497

<212> DNA

4

cct agc agt acc gat cgt agc ccc tat gag aag gtt tct gca ggt aat Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn 485 490 495	1545
ggt ggc agc agc ctc tct tac aca aac cca gca gtg gca gcc act tct Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser 500 505	1593
gcc aac ttg tag gggcacgtcg ccctctgagc tgagtggcca gccagtgcca Ala Asn Leu 515	1645
ttocactoca etcagggete tetgggecag teeteetggg ageececace acaacaette ecaggeatgg aattee	1705 1721
<210> 4 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 4 tgactctggc cttccgagaa	20
<210> 5 <211> 24 <212> DNA <213> Artificial Sequence	,
<220>	
<223> PCR Primer	
<400> 5 gctgcttccg ttttatactg attg	24
<210> 6 <211> 28 <212> DNA <213> Artificial Sequence	
<220>	
<223> PCR Probe	
<400> 6 taccatcaat gtccacgacg tggagaca	28
<210> 7 <211> 19	

WO 03/054154	PCT/US02/39873								
5									
<213> Artificial Sequence									
<220>									
<223> PCR Primer									
<400> 7 gaaggtgaag gtoggagto	19								
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence									
<220>									
<223> PCR Primer									
<400> 8 gaagatggtg atgggatttc	20								
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence									
<220>									
<223> PCR Probe									
<400> 9 caagetteee gtteteagee	20								
<210> 10 <211> 759 <212> DNA <213> Homo sapiens									
<220> <221> CDS <222> (1)(759)									
<pre><400> 10 atg aca ccg ggc acc cag tct cct ttc ttc ctg ctg c Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu I</pre>	etg ctc ctc aca 48 Leu Leu Thr 15								
gtg ctt aca ggt tct ggt cat gca agc tct acc cca g Val Leu Thr Gly Ser Gly His Ala Ser Ser Thr Pro G 20 25	ggt gga gaa aag 96 Gly Gly Glu Lys 30								

gag act tcg gct acc cag aga agt tca gtg ccc agc tct act gag aag Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys 35 40 45

144

WO 03/054154 PCT/US02/39873 6 at get tit aat tee tet etg gaa gat eee age ace gae tae tae caa 192

aat Asn	gct Ala 50	ttt Phe	aat Asn	tcc Ser	tct Ser	ctg Leu 55	gaa Glu	gat Asp	ccc Pro	agc Ser	acc Thr 60	gac Asp	tac Tyr	tac Tyr	caa Gln	192
gag Glu 65	ctg Leu	cag Gln	aga Arg	gac Asp	att Ile 70	tct Ser	gaa Glu	atg Met	ttt Phe	ttg Leu 75	cag Gln	att Ile	tat Tyr	aaa Lys	caa Gln 80	240
ggg Gly	ggt Gly	ttt Phe	ctg Leu	ggc Gly 85	ctc Leu	tcc Ser	aat Asn	att Ile	aag Lys 90	ttc Phe	agg Arg	cca Pro	gga Gly	tct Ser 95	gtg Val	288
gtg Val	gta Val	caa Gln	ttg Leu 100	act Thr	ctg Leu	gcc Ala	ttc Phe	cga Arg 105	gaa Glu	ggt Gly	acc Thr	atc Ile	aat Asn 110	gtc Val	cac His	336
gac Asp	atg Met	gag Glu 115	aca Thr	cag Gln	ttc Phe	aat Asn	cag Gln 120	tat Tyr	aaa Lys	acg Thr	gaa Glu	gca Ala 125	gcc Ala	tct Ser	cga Arg	384
tat Tyr	aac Asn 130	ctg Leu	acg Thr	atc Ile	tca Ser	gac Asp 135	gtc Val	agc Ser	gtg Val	agt Ser	gat Asp 140	gtg Val	cca Pro	ttt Phe	cct Pro	432
ttc Phe 145	tct Ser	gcc Ala	cag Gln	tct Ser	ggg Gly 150	gct Ala	ggg	gtg Val	cca Pro	ggc Gly 155	tgg Trp	ggc Gly	atc Ile	gcg Ala	ctg Leu 160	480
ctg Leu	gtg Val	ctg Leu	gtc Val	tgt Cys 165	gtt Val	ctg Leu	gtt Val	gcg Ala	ctg Leu 170	gcc Ala	att Ile	gtc Val	tat Tyr	ctc Leu 175	att Ile	528
gcc Ala	ttg Leu	gct Ala	gtc Val 180	tgt Cys	cag Gln	tgc Cys	cgc Arg	cga Arg 185	aag Lys	aac Asn	tac Tyr	GJA āāā	cag Gln 190	ctg Leu	gac Asp	576
atc Ile	ttt Phe	cca Pro 195	gcc Ala	cgg Arg	gat Asp	acc Thr	tac Tyr 200	His	cct Pro	atg Met	agc Ser	gag Glu 205	Tyr	ccc Pro	acc Thr	624
tac Tyr	cac His 210	Thr	cat His	GJA	cgc Arg	tat Tyr 215	Val	ccc Pro	cct Pro	agc Ser	agt Ser 220	Thr	gat Asp	cgt Arg	agc Ser	672
ccc Pro 225	Tyr	gag Glu	aag Lys	gtt Val	tct Ser 230	Ala	ggt Gly	aat Asn	ggt Gly	ggc Gly 235	Ser	ago Ser	cto Leu	tct Ser	tac Tyr 240	720
aca Thr	aac Asn	cca Pro	gca Ala	gtg Val 245	Ala	gcc Ala	act Thr	tct Ser	gcc Ala 250	Asn	ttg Lev	tag I	Ī			759

<210> 11 <211> 543 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (25)(531)														
<pre><400> 11 ctccccaccc atttcaccac cacc atg aca ccg ggc acc cag tct cct ttc</pre>														
ttc ctg ctg ctc ctc aca gtg ctt aca gtt gtt aca ggt tct ggt Phe Leu Leu Leu Leu Thr Val Leu Thr Val Val Thr Gly Ser Gly 10 15 20 25	99													
cat gca agc tct acc cca ggt gga gaa aag gag act tcg gct acc cag His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala Thr Gln 30 35 40	147													
aga agt toa gtg coc ago tot act gag aag aat got ttg tot act ggg Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Leu Ser Thr Gly 45 50 55	195													
gtc tct ttc ttt ttc ctg tct ttt cac att tca aac ctc cag ttt aat Val Ser Phe Phe Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn 60 65 70	243													
tcc tct ctg gaa gat ccc agc acc gac tac tac caa gag ctg cag aga Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg 75 80 85	291													
gac att tct gaa atg gct gtc tgt cag tgc cgc cga aag aac tac ggg Asp Ile Ser Glu Met Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly .90 95 100 105	339													
ctg ctg gac atc ttt cca gcc cgg gat acc tac cat cct atg agc gag Leu Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu 110 115 120	387													
tac ccc acc tac cac acc cat ggg cgc tat gtg ccc cct agc agt acc Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr 125 130 135	435													
gat cgt agc ccc tat gag aag gtt tct gca ggt aat ggt ggc agc agc Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser 140 145 150	483													
ctc tct tac aca aac cca gca gtg gca gcc act tct gcc aac ttg tag Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 155 160 165	531													
gggcacgtcg cc	543													

<210> 12 <211> 122 <212> DNA <213> Homo sapiens

<220>

8

```
<221> exon:exon junction
<222> (58)...(59)
<223> exon 4:exon 6
<400> 12
atgtttttgc agatttataa acaagggggt tttctgggcc tctccaatat taagttcagt
gagtgatgtg ccattteett tetetgeeca gtetgggget ggggtgeeag getggggeat
                                                                    120
                                                                    122
cq
<210> 13
<211> 000
<212> DNA
<213> Homo sapiens
<220>
<400> 13
000
<210> 14
<211> 577
<212> DNA
<213> Homo sapiens
<220>
<221> exon:exon junction
<222> (169)...(170)
<223> exon 3c:exon 6b
<400> 14
cgtgtcgcga ctgctcacct cctccaatca cagcacttct ccccagttgt ctactggggt
                                                                      60
ctettettt tteetgtett tteacattte aaaceteeag tttaatteet etetggaaga
                                                                     120
teccageace gactactace aagagetgea gagagacatt tetgaaatgt etggggetgg
                                                                     180
ggtgccaggc tggggcatcg cgctgctggt gctggtctgt gttctggttg cgctggccat
                                                                     240
tgtctatctc attgccttgg ctgtctgtca gtgccgccga aagaactacg ggcagctgga
                                                                     300
catctttcca geeegggata ectaecatee tatgagegag taccecaect accaecca
                                                                     360
tgggcgctat gtgccccta gcagtaccga tcgtagcccc tatgagaagg tttctgcagg
                                                                     420
taatggtggc agcagcetet ettacacaaa eccagcagtg geagecaett ettgeaactt
                                                                     480
gtaggggcac gtcgcccgct gagctgagta gccagccagt gccattccac tccactcagg
                                                                     540
                                                                     577
ttcttcaggg ccagagcccc tgcaccctgt ttgggct
 <210> 15
 <211> 000
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 15
 000
 <210> 16
 <211> 981
 <212> DNA
```

<213> Homo sapiens

```
<220>
<221> exon:exon junction
<222> (464)...(465)
<223> exon 3b:exon 4
<400> 16
gggacaccag geoggeceeg ggetecaccg coccecage ceatggtgte accteggece
                                                                     60
eggacaacag geeegeettg ggetecaceg eceetecagt ecaeaatgte aceteggeet
                                                                    120
caggetetge atcaggetea gettetacte tggtgcacaa cageacetet gecagggeta
                                                                    180
ccacaacccc agccagcaag agcactccat tctcaattcc cagccaccac tctgatactc
                                                                    240
ctaccaccct tgccagccat agcaccaaga ctgatgccag tagcactcac catagcacgg
                                                                    300
tacctcctct cacctcctcc aatcacagca cttctcccca gttgtctact ggggtctctt
                                                                     360
tettttteet gtetttteac attteaaace teeagtttaa tteetetetg gaagateeca
                                                                     420
gcaccgacta ctaccaagag ctgcagagag acatttctga aatgtgagtg atgtgccatt
                                                                     480
teetttetet geecagtetg gggetggggt geeaggetgg ggeategege tgetggtget
                                                                     540
ggtctgtgtt ctggttgcgc tggccattgt ctatctcatt gccttggctg tctgtcagtg
                                                                     600
ccgccgaaag aactacgggc agctggacat ctttccagcc cgggatacct accatcctat
                                                                     660
gagcgagtac cccacctacc aacccatggg cgctatgtgc cccctagcag taccgatcgt
                                                                     720
agcccctatg agacaggttt ctgcaggtaa tggtggcagc agctctctta cacaaaccag
                                                                     780
cagtggcage cacttetgce aacttgtagg ggcacgttgc cgctgacctg agtggccage
                                                                     840
cagtgccatt ccacttccac tcagggttct tcaggggcca gagccctgca ccctgtttgg
                                                                     900
cctggtgagc tggacttcaa ggtgggctgt cacagcctct tcaaaggccc acaattcttc
                                                                     960
                                                                     981
gacatcctca ggtgtggaag c
<210> 17
<211> 1804
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (73)...(1500)
egetecacet etcaageage eagegeetge etgaatetgt tetgeceeet eeceacecat
                                                                      60
ttcaccacca cc atg aca ccg ggc acc cag tct cct ttc ttc ctg ctg
                                                                     111
              Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu
ctc ctc aca gtg ctt aca gtt gtt aca ggt tct ggt cat gca agc tct
                                                                     159
Leu Leu Thr Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser
     15
                          20
acc cca ggt gga gaa aag gag act tcg gct acc cag aga agt tca gtg
                                                                     207
Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val
 30
ecc age tet act gag aag aat get gtg agt atg ace age age gta ete
                                                                     255
Pro Ser Ser Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu
                                      55
                  50
                                                                     303
tee age cae age eee ggt tea gge tee tee ace act eag gga eag gat
 Ser Ser His Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp
                                  70
```

gtc Val	act Thr	ctg Leu 80	gcc Ala	ccg Pro	gcc Ala	acg Thr	gaa Glu 85	cca Pro	gct Ala	tca Ser	ggt Gly	tca Ser 90	gct Ala	gcc Ala	acc Thr	351
tgg Trp	gga Gly 95	cag Gln	gat Asp	gtc Val	acc Thr	tcg Ser 100	gtc Val	cca Pro	gtc Val	acc Thr	agg Arg 105	cca Pro	gcc Ala	ctg Leu	ggc Gly	399
tcc Ser 110	acc Thr	acc Thr	ccg Pro	cca Pro	gcc Ala 115	cac His	gat Asp	gtc Val	acc Thr	tca Ser 120	gcc Ala	ccg Pro	gac Asp	aac Asn	aag Lys 125	447
cca Pro	gcc Ala	ccg Pro	ggc Gly	tcc Ser 130	acc Thr	gcc Ala	ccc Pro	cca Pro	gcc Ala 135	cac His	ggt Gly	gtc Val	acc Thr	tcg Ser 140	gcc Ala	495
ccg Pro	gac Asp	acc Thr	agg Arg 145	ccg Pro	gcc Ala	ccg Pro	ggc Gly	tcc Ser 150	acc Thr	gcc Ala	ccc Pro	cca Pro	gcc Ala 155	cat His	ggt Gly	543
gtc Val	acc Thr	tcg Ser 160	gcc Ala	ccg Pro	gac Asp	aac Asn	agg Arg 165	ccc Pro	gcc Ala	ttg Leu	ggc Gly	tcc Ser 170	acc Thr	gcc Ala	cct Pro	591
cca Pro	gtc Val 175	cac His	aat Asn	gtc Val	acc Thr	tcg Ser 180	gcc Ala	tca Ser	ggc Gly	tct Ser	gca Ala 185	tca Ser	ggc Gly	tca Ser	gct Ala	639
tct Ser 190	act Thr	ctg Leu	gtg Val	cac His	aac Asn 195	ggc	acc Thr	tct Ser	gcc Ala	agg Arg 200	gct Ala	acc Thr	aca Thr	acc Thr	cca Pro 205	687
gcc Ala	agc Ser	aag Lys	agc Ser	act Thr 210	cca Pro	ttc Phe	tca Ser	att Ile	ccc Pro 215	agc Ser	cac His	cac His	tct Ser	gat Asp 220	act Thr	735
cct Pro	acc Thr	acc	ctt Leu 225	gcc Ala	agc Ser	cat His	agc Ser	acc Thr 230	Lys	act Thr	gat Asp	gcc Ala	agt Ser 235	Ser	act Thr	783
cac His	cat His	ago Ser 240	acg Thr	gta Val	cct Pro	cct Pro	ctc Leu 245	Thr	tcc Ser	tcc Ser	aat Asn	cac His 250	Ser	act Thr	tct Ser	831
ccc Pro	cag Gln 255	Leu	tct Ser	act Thr	ej A aaa	gtc Val 260	Ser	ttc Phe	ttt Phe	ttc Phe	ctg Leu 265	Ser	ttt Phe	cac His	att Ile	879
tca Ser 270	Asn	cto Lev	cag Gln	ttt Phe	aat Asn 275	Ser	tct Ser	ctg Leu	gaa Glu	gat Asp 280	Pro	agc Ser	acc Thr	gac Asp	tac Tyr 285	927
tac Tyr	caa Gln	ı gaçı Glü	g ctg Lev	cag Gln 290	Arg	gac Asp	att Ile	tct Ser	gaa Glu 295	. Met	ttt Phe	tto Lev	g cag Glr	att Ile 300	tat Tyr	975
aaa Lys	caa Glr	r GlŽ	g ggt	ttt Phe	cto Lev	ı Gl? ı ggc	cto Lev	tco Ser	aat Asr	att Ile	aaç Lys	tto Phe	ago Aro	g cca g Pro	gga Gly	1023

	305	3	310	315		
tct gtg gtg Ser Val Val 320	gta caa ttg Val Gln Leu	act ctg of Thr Leu A	gcc ttc cga Ala Phe Arg	gaa ggt acc Glu Gly Thr 330	atc aat Ile Asn	1071
gtc cac gac Val His Asp 335	gtg gag aca Val Glu Thr	cag ttc a Gln Phe A 340	aat cag tat Asn Gln Tyr	aaa acg gaa Lys Thr Glu 345	gca gcc Ala Ala	1119
tct cga tat Ser Arg Tyr 350	aac ctg acg Asn Leu Thr 355	atc tca q	gac gtc ago Asp Val Ser 360	gtg agt gat Val Ser Asp	gtg cca Val Pro 365	1167
ttt cct ttc Phe Pro Phe	tct gcc cag Ser Ala Gln 370	tct ggg G Ser Gly A	gct ggg gtg Ala Gly Val 375	g cca ggc tgg L Pro Gly Trp	ggc atc Gly Ile 380	1215
gcg ctg ctg Ala Leu Leu	gtg ctg gtc Val Leu Val 385	Cys Val 1	ctg gtt gcg Leu Val Ala 390	g ctg gcc att a Leu Ala Ile 395	gtc tat Val Tyr	1263
ctc att gcc Leu Ile Ala 400	Leu Ala Val	tgt cag f Cys Gln 0 405	tgc cgc cga Cys Arg Arg	a aag aac tac g Lys Asn Tyr 410	ggg cag Gly Gln	1311
ctg gac atc Leu Asp Ile 415	ttt cca gcc Phe Pro Ala	cgg gat a Arg Asp 4	acc tac cat Thr Tyr Hi:	t cct atg agc s Pro Met Ser 425	gag tac Glu Tyr	1359
ccc acc tac Pro Thr Tyr 430	cac acc cat His Thr His 435	ggg cgc	tat gtg cco Tyr Val Pro 44	c cct agc agt o Pro Ser Ser 0	acc gat Thr Asp 445	1407
cgt agc ccc Arg Ser Pro	tat gag aag Tyr Glu Lys 450	gtt tct Val Ser	gca ggt aa Ala Gly As: 455	t ggt ggc agc n Gly Gly Ser	agc ctc Ser Leu 460	1455
tct tac aca Ser Tyr Thr	a aac cca gca c Asn Pro Ala 465	. Val Ala	gcc act tc Ala Thr Se 470	t gcc aac ttg r Ala Asn Leu 475		1500
gggcacgtcg cccgctgagc tgagtggcca gccagtgcca ttccactcca ctcaggttct 1 tcagggccag agcccctgca ccctgtttgg gctggtgagc tgggagttca ggtgggctgc 1 tcacaccgtc cttcagaggc cccacaatt tctcggacac ttctcagtgt gtggaagctc 1 atgtgggccc ctgaggctca tgcctgggaa gtgttgtggt gggggctccc aggaggactg 1 gcccagagag ccctgagata gcggggatcc tgaactggac tgaataaaac gtggtctccc 1 actg						
<210> 18 <211> 572 <212> DNA <213> Homo	sapiens					
<220> <221> CDS <222> (67)	(572)					

<400 acct acca	ctca cc a	ag c	ca c	ca c	idc s	icc c	ag t	at c	:ct t	tc t	itc c	cccc tg c eu I	tg c	itg c	tcacc tc eu	60 108
ctc Leu 15	aca Thr	gtg Val	ctt Leu	aca Thr	gct Ala 20	acc Thr	aca Thr	gcc Ala	cct Pro	aaa Lys 25	ccc Pro	gca Ala	aca Thr	gtt Val	gtt Val 30	156
acg Thr	ggt Gly	tct Ser	ggt Gly	cat His 35	gca Ala	agc Ser	tct Ser	acc Thr	cca Pro 40	ggt Gly	gga Gly	gaa Glu	aag Lys	gag Glu 45	act Thr	204
tcg Ser	gct Ala	acc Thr	cag Gln 50	aga Arg	agt Ser	tca Ser	gtg Val	ccc Pro 55	agc Ser	tct Ser	act Thr	gag Glu	aag Lys 60	aat Asn	gct Ala	252
gtg Val	agt Ser	atg Met 65	acc Thr	agc Ser	agc Ser	gta Val	ctc Leu 70	tcc Ser	agc Ser	cac His	agc Ser	ccc Pro 75	ggt Gly	tca Ser	ggc Gly	300
tcc Ser	tcc Ser 80	acc Thr	act Thr	cag Gln	gga Gly	cag Gln 85	gat Asp	gtc Val	act Thr	ctg Leu	gcc Ala 90	ccg Pro	gcc Ala	acg Thr	gaa Glu	348
cca Pro 95	gct Ala	tca Ser	ggt Gly	tca Ser	gct Ala 100	gcc Ala	acc Thr	tgg Trp	gga Gly	cag Gln 105	gat Asp	gtc Val	acc Thr	tcg Ser	gtc Val 110	396
cca Pro	gtc Val	acc Thr	agg Arg	cca Pro 115	gcc Ala	ctg Leu	ggc Gly	tcc Ser	acc Thr 120	acc Thr	ccg Pro	cca Pro	gcc Ala	cac His 125	gat Asp	444
gtc Val	acc Thr	tca Ser	gcc Ala 130	ccg Pro	gac Asp	aac Asn	aag Lys	cca Pro 135	gcc Ala	ccg Pro	ggc Gly	tcc Ser	acc Thr 140	gcc Ala	ccc Pro	492
caa Gln	gcc Ala	cac His 145	ggt Gly	gtc Val	acc Thr	tcg Ser	gcc Ala 150	ccg Pro	gac Asp	acc Thr	agg Arg	ccg Pro 155	gcc Ala	ccg Pro	ggc Gly	540
tcc Ser	acc Thr 160	gcc Ala	ccc Pro	caa Gln	gcc Ala	cac His 165	ggt Gly	gtc Val	acc Thr	tc						572

<210> 19

<211> 8186

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 6899

<223> unknown

<221> unsure

```
<222> 7155
<223> unknown
<221> unsure
<222> 7184
<223> unknown
<221> unsure
<222> 7957
<223> unknown
<221> intron
<222> (2997)...(3498)
<223> intron 1
<221> intron:exon junction
<222> (3498) ... (3499)
<223> intron 1:exon 2
<221> exon
<222> (3508)...(3599)
<223> exon 2d
<221> exon:intron junction
<222> (3982)...(3983)
<223> exon 2a:intron 2a
<221> intron:exon junction
<222> (4205)...(4206)
<223> intron 2c:exon 3c
<221> intron:exon junction
<222> (4259)...(4260)
<223> intron 2d:exon 3d
<221> exon
<222> (4260) ... (4328)
<223> exon 3d
<221> intron:exon junction
<222> (4632) ... (4633)
<223> intron 3:exon 4
<221> exon
<222> (4914)...(5035)
<223> exon 5
<221> intron
<222> (5266) ... (6293)
<223> intron 6
<400> 19
gaattcagaa ttttagaccc tttggccttg gggtccatcc tggagaccct gaggtctaag
                                                                       60
ctacagcccc tcagccaacc acagaccctt ctctggctcc caaaaggagt tcagtcccag
                                                                      120
agggtggtca cccaccette agggatgaga agttttcaag gggtattact caggcactaa
                                                                      180
ccccaggaaa gatgacagca cattgccata aagttttggt tgttttctaa gccagtgcaa
                                                                      240
ctgcttattt tagggatttt ccgggatagg gtggggaagt ggaaggaatc ggcgagtaga
                                                                      300
agagaaagcc tgggagggtg gaagttaggg atctagggga agtttggctg atttggggat
                                                                      360
gegggtgggg gaggtgctgg atggagttaa gtgaaggata gggtgcctga gggaggatgc
                                                                      420
```

ccgaagtcct cccagaccca cttactcacg gtggcagcgg cgacactcca gtctatcaaa 540 gatccgccgg gatggagagc caggaggcgg gggctgcccc tgaggtagcg gggaggccgg 600 ggggccgggg ggcggacggg acgagtgcaa tattggcggg ggaaaaaaca acactgcacc 660 gegtecegte ectecegece geceggece ggateceget ecceaecgee tgaageegge ccgacccgga acccgggccg ctggggagtt gggttcacct tggaggccag agagacttgg 720 cgcccggaag caaagggaat ggcaaggggg aggggggagg gagaacggga gtttgcggag 780 tocagaagge egettteega egecegggeg ttgegegege ttgetettta agtaeteaga 840 ctgcgcggcg cgagccgtcc gcatggtgac gcgtgtccca gcaaccgaac tgaatggctg 900 ttgcttggca atgccgggag ttgaggtttg gggccgccca cctagctact cgtgtttct 960 ceggectgeg agttgggggg cteeegecte eeeggeeege teetgggege getgaegtea 1020 gatgtcccca ccccgcccag cgcctgcccc aagggtctcg ccgcacacaa agctcggcct 1080 cgggcgccgg cgcgcgggcg agagcggtgg tctctcgcct gctgatctga tgcgctccaa 1140 tecegtgeet egeegaagtg titttaaagt gttetteea acetgtgtet tiggggetga 1200 gaactgtttt ctgaatacag gcggaactgc ttccgtcggc ctagaggcac gctgcgactg 1260 cgggacccaa gttccacgtg ctgccgcggc ctgggatagc ttcctccct cgtgcactgc 1320 tgccgcacac acctcttggc tgtcgcgcat tacgcacctc acgtgtgctt ttgccccccg 1380 ctacgtgcct acctgtcccc aataccactc tgctccccaa aggatagttc tgtgtccgta 1440 aatcccattc tgtcacccca cctactctct gccccccct tttttgtttt gagacggage 1500 tttgctctgt cgcccaggct ggagtgcaat ggcgcgatct cggctcactg caacetccgc 1560 ctcccgggtt caagcgattc tcctgcctca gcctcctgag tagctggggt tacagcgccc 1620 gccaccacgc teggetaatt tttgtagttt ttagtagaga egaggtttca ecatettggc 1680 caggetggte ttgaacceet gacettgtga tecaetegee teggeettee aaagtgttgg 1740 gattacgggc gtgacgaccg tgccacgcat ctgcctctta agtacataac ggcccacaca 1800 gaacgtgtcc aactcccccg cccacgttcc aacgtcctct cccacatacc tcggtgcccc 1860 cytecoggag tycccoctec taaageteec ageegtecae catgetyte gtteeteect 1980 coetggccae ggcagtgace ettetetece gggccetget tecetetege gggetetget 2040 gcctcactta ggcagcgctg cccttactcc tctccgcccg gtccgagcgg cccctcagct 2100 teggegeea gecegeaag geteeeggtg accaetagag ggegggagga geteetggee 2160 agtggtggag agtggeaagg aaggaeeeta gggtteateg gageeeaggt ttaeteeett 2220 aagtggaaat tetteeee acteetett ggettetee aaggagggaa eecaggetge 2280 tggaaagtee ggetggggg gggaetgtg gtteagggga gaaeggggtg tggaaeggga 2340 eagggagegg ttagaagggt ggggetatte egggaagtgg tgggggagg gageeeaaaa 2400 etageaceta gteeacteat tateeagge tettattet gggaaegetg ceeteaget 2160 2220 2280 ctagcaccta gtccactcat tatccagccc tcttatttct cggccgctct gcttcagtgg 2460 accoggggag ggcggggaag tggagtggga gacctagggg tgggcttccc gaccttgctg 2520 tacaggacct cgacctagct ggctttgttc cccatcccca cgttagttgt tgccctgagg 2580 ctaaaactag agcccagggg ccccaagttc cagactgccc etccccctc ccccggagcc 2640 agggagtggt tggtgaaagg gggaggccag ctggagaaca aacgggtagt cagggggttg 2700 agcgattaga gcccttgtac cctacccagg aatggttggg gaggaggagg aagaggtagg 2760 aggtaggga ggggggggg ttttgtcacc tgtcacctgc tcgctgtgcc tagggcgggc 2820 gggcggggag tggggggacc ggtataaagc ggtaggcgcc tgtgcccgct ccacctctca 2880 agcagccagc geetgeetga atetgttetg eccetteece acceatttea ecaccaceat 2940 gacaccgggc acccagtete ettetteet getgetgete etcacagtge ttacaggtga 3000 ggggcacgag gtggggagtg ggctgccctg cttaggtggt cttcgtggtc tttctgtggg 3060 ttttgctccc tggcagatgg caccatgaag ttaaggtaag aattgcagac agaggctgcc 3120 ctgtctgtgc cagaaggagg gagaggctaa ggacaggctg agaagagttg cccccaaccc 3180 tgagagtggg taccaggggc aagcaaatgt cctgtagaga agtctagggg gaagagagta 3240 gggagaggga aggcttaaga ggggaagaaa tgcaggggcc atgagccaag gcctatgggc 3300 agagagaagg aggctgctgc agggaaggag gcttccaacc caggggttac tgaggctgcc 3360 cactccccag tectectggt attattete tggtggccag agettatatt ttettettge 3420 tottattttt cottcataaa gacccaaccc tatgacttta acttcttaca gotaccacag 3480 cccctaaacc cgcaacagtt gttacaggtt ctggtcatgc aagctctacc ccaggtggag 3540 aaaaggagac ttcggctacc cagagaagtt cagtgcccag ctctactgag aagaatgctg 3600 tgagtatgac cagcagcgta ctctccagcc acagccccgg ttcaggctcc tccaccactc 3660 agggacagga tgtcactctg gccccggcca cggaaccagc ttcaggttca gctgccacct 3720 ggggacagga tgtcacctcg gtcccagtca ccaggccage cctgggctcc accaccccgc 3780 cageceaega tgteaectea geeceggaea acaageeage eeegggetee aeegeeeeee 3840 cageceaegg tgteaecteg geeceggaca ceaggeegge eeegggetee acegeeeeee 3900 cageceatgg tgteaceteg geeeeggaca acaggeeege ettgggetee acegeeeete 3960

cagtccacaa tgtcacctcg gcctcaggct ctgcatcagg ctcagcttct actctggtgc acaacggcac ctctgccagg gctaccacaa ccccagccag caagagcact ccattctcaa ttcccagcca ccactctgat actcctacca cccttgccag ccatagcacc aagactgatg ccagtagcac tcaccatagc acggtacctc ctctcacctc ctccaatcac agcacttctc 4200 cccagttgtc tactggggtc tctttctttt tcctgtcttt tcacatttca aacctccagt 4260 ttaattcctc tctggaagat cccagcaccg actactacca agagctgcag agagacattt 4320 ctgaaatggt gagtategge ettteettee ceatgeteee etgaageage cateagaact 4380 gtccacaccc tttgcatcaa gcccgagtcc tttccctctc accccagttt ttgcagattt 4440 ataaacaagg gggttttctg ggcctctcca atattaagtt caggtacagt tctgggtgtg 4500 gacccagtgt ggtggttgga gggttgggtg gtggtcatga ccgtaggagg gactggtgca 4560 cttaaggttg ggggaagagt gctgagccag agctgggacc cgtggctgaa gtgcccattt 4620 ccctgtgacc aggccaggat ctgtggtggt acaattgact ctggccttcc gagaaggtac 4680 catcaatgtc cacgacgtgg agacacagtt caatcagtat aaaacggaag cagcctctcg 4740 atataacctg acgateteag acgteagegg tgaggetact tecetggetg cagecageae 4800 catgeegggg ececteteet tecagtgtet gggteecege tettteetta gtgetggeag 4860 egggaggggc geeteetetg ggagaetgee etgaceaetg etttteettt tagtgagtga 4920 tgtgccattt cctttctctg cccagtctgg ggctggggtg ccaggctggg gcatcgcgct 4980 getggtgetg gtetgtgtte tggttgeget ggceattgte tateteattg cettggtgag 5040 tgcagtccct ggccctgatc agagccccc ggtagaaggc actccatggc ctgccataac 5100 ctcctatctc cccaggctgt ctgtcagtgc cgccgaaaga actacgggca gctggacatc 5160 tttccagccc gggataccta ccatcctatg agcgagtacc ccacctacca cacccatggg 5220 cgctatgtgc cccctagcag taccgatcgt agcccctatg agaaggtgag attggcccca 5280 caggccaggg gaagcagagg gtttggctgg gcaaggattc tgaagggggt acttggaaaa 5340 cccaaagagc ttggaagagg tgagaagtgg cgtgaagtga gcaggggagg gcctggcaag 5400 gatgagggc agaggtcaga ggagttttgg gggacaggcc tgggaggaga ctatggaaga 5460 aaggggcctc aagagggagt ggccccactg ccagaattcc taaaaagatc attggccgtc 5520 5580 tgcttttttg cacccagagg caaaatgggt ggagcactat gcccagggga gcccttcccg 5640 aggagtccag gggtgagcct ctgtgatccc ctaatcaatc tcctaggaat ggagggtaga 5700 ccgagaaaag gctggcatag ggggagtcag tttcccaggt agaagcaaga agaagtgtca 5760 gcagaccagg tgagcgtggg tgccagtggg gttcttggga gcttcaagga agcaaggaac 5820 geteceteet teeteteetg gtetttetet atgggaceta gtaaataatt actgeageca 5880 cctgaggctg gaaaaccact ccaggtgggg gaggagagag tttagttttc ttgctcctat 5940 tttcctcctc ctggagacct ccctctctcg gctttacaaa gacacagata caccccgccc 6000 cccaaaacac acacacacac acacacacac acacctcctt aggctggaac agcagagaat 6060 ggagggacaa gggggctgat tagagccaag aagagggagt gaaggagagc agagggagga 6120 gggcagccct gtttacagtc acctggctgg tggggtggca ggtgctctct ctgaattaac 6180 cetttgagag etggecagga etetggaetg attaccccag cetggggtgg catccagggg 6240 ctctaggagg taccttttgc tcctcaccct ggatctcttt tccttccacc caggtttctg 6300 caggtaatgg tggcagcagc ctctcttaca caaacccagc agtggcagcc acttctgcca 6360 caggittette agggeeagag eccetgeace etgittggge tggtgagetg ggagtteagg 6480 tgggctgctc acacgtcctt cagaggcccc accaatttct cggacacttc tcagtgtgtg 6540 gaagetcatg tgggcccctg aggetcatge ctgggaagtg ttgtggtggg ggetcccagg 6600 aggactggcc cagagagccc tgagatagcg gggatcctga actggactga ataaaacgtg 6660 gtctcccact ggcgccaact tctgatcttt catctgtgac ccgtgggcag cagggcgtca 6720 gaatgtgtgt gagggggctg ggggaggaga cagggaggcc aggaggcagt aaggagcgag 6780 tttgtttgag aagcaggaga tgtgaggagg aggtgacatt ggggagtagg ggtggcctga 6840 ggagccacct ctggctaacc ctggcagcac aagaggaagg aggaaacgaa acccaggcng 6900 getttggagg getagegtga etgggeteeg tgactgaget etgtgtgeea gtggetetee 6960 cetetecteg eetggeecac geecteettg eccetggeat ggtgeecece aggtggetet 7020 attettaget gteegggtgt gaagtaaate ettgggeagt gataacagee cagagteaac 7080 agggttgaga taagcagagg ctgggtcaga tccgggcgct ggcaccaggc ccagcccct 7140 cectgacece ggetneecea ceagectget geecetgggg tggnetecae aacaccetgg 7200 gaatggggaa gtggttctgg ttccctgacc cctttggccc aggcacgttg cctgtccctc 7260 gaccgcattc ccccagggcc tgtgctgcag gcctggaagc cctgattggg gcctgccacc 7320 agcagccaga gagctatgtt ccctggcagc tgtgatgcgc tcaggccggg ccaggacacg 7380 tgtggcagga ggcttagagc acctgcctgg ggccttcctc tctcaggcac cagatccatt 7440 ggttgctcct gcctagaacc acagcctagc acccctgctc cctcccgcct accacaccca 7500

			0			
gcacagaaac tcagtttattgtt tage cactgcaggg ggaaaggactca aggaaataaata aaaccagcccaa aggaaggcaagggaaggg	taaaccat gac acggcagc ggg tgggtccc caa agggagaa gag gcaggatg aca cctgcctg tcc gcagagct gga cacaggac agg ccatccag aga	aataaca g caccaga g gggagac t ggacata a gggtccc c caaggct g gatcatg c gatggag a actcagt g ggttggc a	getgttgete ggeettgeet ttggeacatt aggggeatge etteecetea gtagtteage eccagtntte aaggggetet gggggtggg	agcacaggcc to ggcccaaccc aggcatgggtg to caggaatgc atcaacaggg caggtgccct accatggct agcctggctaa	cagcagagcc aatgggaaca cgggacaggt cgttgggacc ctgacagcgt cagggagctt ccctcccaat cggtaacat	7560 7620 7680 7740 7800 7860 7920 7980 8040 8100 8160 8186
<210> 20 <211> 730 <212> DNA <213> Homo sa	piens					
<220> <221> CDS <222> (26)	(718)					
<400> 20 cctccccacc ca	tttcacca cca	icc atg ac Met Th	ca ccg ggc hr Pro Gly	acc cag tct Thr Gln Ser 5	cct ttc Pro Phe	52
ttc ctg ctg c Phe Leu Leu L 10	etg ctc ctc a seu Leu Leu T 15	ica gtg ct Thr Val Le	tt aca gtt eu Thr Val 20	gtt aca ggt Val Thr Gly	tct ggt Ser Gly 25	100
cat gca agc t His Ala Ser S	ct acc cca g Ser Thr Pro G 30	ggt gga ga Gly Gly G	aa aag gag lu Lys Glu 35	act tcg gct Thr Ser Ala	acc cag Thr Gln 40	148
aga agt tca g Arg Ser Ser V	gtg ccc agc t Val Pro Ser S 45	Ser Thr G	ag aag aat lu Lys Asn 50	gct atc cca Ala Ile Pro 55	Ala Pro	196
act act acc a Thr Thr Thr I 60	aag agc tgc a Lys Ser Cys <i>F</i>	aga gag a Arg Glu Tl 65	ca ttt ctg hr Phe Leu	aaa tgg cca Lys Trp Pro 70	gga tct Gly Ser	244
gtg gtg gta c Val Val Val G 75	caa ttg act o Gln Leu Thr I	etg gee t Leu Ala Pi 80	tc cga gaa Phe Arg Glu	ggt acc atc Gly Thr Ile 85	aat gtc Asn Val	292
cac gac gtg g His Asp Val G 90	gag aca cag t Glu Thr Gln F 95	ctc aat c Phe Asn G	ag tat aaa Gln Tyr Lys 100	acg gaa gca Thr Glu Ala	gcc tct Ala Ser 105	340
cga tat aac o Arg Tyr Asn I	ctg acg atc t Leu Thr Ile S 110	tca gac g Ser Asp V	ytc agc gtg Val Ser Val 115	agt gat gtg Ser Asp Val	cca ttt Pro Phe 120	388
cct ttc tct o	gcc cag tct (Ala Gln Ser (125	Gly Ala G	ggg gtg cca Gly Val Pro 130	ggc tgg ggc Gly Trp Gly 135	Ile Ala	436

ctg ctg gtg ctg gtc tgt gtt ctg gtt gcg ctg gcc att gtc tat ctc Leu Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val Tyr Leu 140 145 150	484						
att gcc ttg gct gtc tgt cag tgc cgc cga aag aac tac ggg cag ctg Ile Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu 155 160 165	532						
gac atc ttt cca gcc cgg gat acc tac cat cct atg agc gag tac ccc Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro 170 175 180	580						
acc tac cac acc cat ggg cgc tat gtg ccc cct agc agt acc gat cgt Thr Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg 190 195 200	628						
agc ccc tat gag aag gtt tct gca ggt aat ggt ggc agc agc ctc tct Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser 205 210 215	676						
tac aca aac cca gca gtg gca gcc act tct gcc aac ttg tag gggcacgtcg Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu 220 225 230	728						
cc	730						
<210> 21 <211> 177 <212> DNA <213> Homo sapiens							
<220> <221> CDS <222> (74)(177)							
<pre><400> 21 ccgctccacc tctcaagcag ccagcgcctg cctgaatctg ttctgccccc tccccaccca tttcaccacc acc atg aca ccg ggc acc cag tct cct ttc ttc ctg ctg</pre>							
ctg ctc ctc aca gtg ctt aca ggt gga gaa aag gag act tcg gct acc Leu Leu Leu Thr Val Leu Thr Gly Gly Glu Lys Glu Thr Ser Ala Thr 15 20 25	157						
cag aga agt tca gtg ccc ag Gln Arg Ser Ser Val Pro 30	177						
<210> 22 <211> 20 <212> DNA <213> Artificial Sequence							
<220>							

WO 03/054154	PCT/US02/39873
	18
<223> Antisense Oligonucleotide	
<400> 22 gaacagatte aagcagccag	20
<210> 23 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 23 cccggtgtca tggtggtggt	20
<210> 24 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 24 gtgcccggtg tcatggtggt	20
<210> 25 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 25 gaaaggagac tgggtgcccg	20
<210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220>	
<223> Antisense Oligonucleotide	
<400> 26	

ctgtaacaac tgtaagcact

WO 03/054154	PCT/US02/39873
19	
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 27 acctgtaaca actgtaagca	20
<210> 28 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 28 tcagtagagc tgggcactga	20
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 29 gcattcttct cagtagagct	20
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 30 agcattette teagtagage	20
<210> 31 <211> 20 <212> DNA <213> Artificial Sequence	

<220>

WO 03/054154	PCT/US02/39873	
	20	
<223> Antisense Oligonucleotide		
<400> 31 tggtcatact cacagcattc	20	
tygicalact cacaycatte		
<210> 32		
<211> 20 <212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 32		
ctgctggtca tactcacagc	20	
<210> 33		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 33	0.0	
gctggagagt acgctgctgg	20	
<210> 34	•	
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 34	0.0	
tgggaccgag gtgacatcct	20	
<210> 35		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 35	^^	
gtgacattgt ggactggagg	20	
<210> 36		

WO 03/054154	PCT/US02/39873
21	
<211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 36 gaggtgacat tgtggactgg	20
<210> 37 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide '	
<400> 37 tgaggccgag gtgacattgt	20
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 38 gtggtaggag tatcagagtg	20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 39 gcaagggtgg taggagtatc	20
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence	

<220>

<223> Antisense Oligonucleotide

WO 03/054154	PCT/US02/39873
	22
<400> 40 ggcatcagtc ttggtgctat	20
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 41 gagaccccag tagacaactg	20
<210> 42 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 42 tcttccagag aggaattaaa	20
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 43 aatgtctctc tgcagctctt	20
<210> 44 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 44 tcagaaatgt ctctctgcag	20

<210> 45 <211> 20

	23	
<212> <213>	DNA Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400> tctgca		20
<210> <211> <212> <213>	20	
<220>		
<223>	Antisense Oligonucleotide	
<400> gtttat		20
<210> <211> <212> <213>	20	
<220>		
<223>	Antisense Oligonucleotide	
<400> attgga		20
<210> <211> <212> <213>	20	
<220>		
<223>	Antisense Oligonucleotide	
<400> taatat		20
<210> <211> <212> <213>	20	
<220>		
<223>	Antisense Oligonucleotide	

WO 03/054154	PCT/US02/39873
	24
<400> 49 gaacttaata ttggagaggc	20
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 50 agatcctggc ctgaacttaa	20
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 51 cacagatect ggeetgaact	20
<210> 52 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 52 acgtcgtgga cattgatggt	20
<210> 53 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 53 gttatatcga gaggctgctt	20
<210> 54 <211> 20 <212> DNA	

<213> A:	rtificial Sequence	
<220>		
<223> Ai	ntisense Oligonucleotide	
<400> 50 atcgtcag		20
<210> 55 <211> 20 <212> DI <213> A:	0	
<220>		
<223> Ar	ntisense Oligonucleotide	
<400> 55 gcacatca		20
<210> 50 <211> 20 <212> Di <213> Ai	0	
<220>		
<223> Ar	ntisense Oligonucleotide	
<400> 56 ggcagaga		20
<210> 5° <211> 20 <212> Dì <213> Ai	0	
<220>		
<223> Ar	ntisense Oligonucleotide	
<400> 5		20
<210> 58 <211> 20 <212> D1 <213> A1	0	
	ntisense Oligonucleotide	
<400> 58		
	·	

<213> Artificial Sequence

<220>	
<223> Antisense Oligonucleotide	
<400> 63	20
ctacaagttg gcagaagtgg	20
<21.0> 64	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 64 acgtgccct acaagttggc	20
<210> 65	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 65	20
geteagaggg egaegtgeee	20
<210> 66	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 66	0.0
ctggccactc agctcagagg	20
<210> 67	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 67	0.0
actggctggc cactcagctc	20

<210> 68 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 68 ggaatggcac tggctggcca	20
<210> 69 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 69 ggagtggaat ggcactggct	20
<210> 70 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 70 aggaattaaa agcattcttc	20
<210> 71 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 71 cagtagacaa agcattette	20
<210> 72 <211> 20 <212> DNA <213> Artificial Sequence	

WO 03/054154	PCT/US02/39873
	29
<220>	
<223> Antisense Oligonucleotide	
<400> 72	
gacagacagc catttcagaa	20
<210> 73	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 73	
catcactcac tgaacttaat	20
<210> 74	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 74	
tttgggtttt ccaagtaccc	20
<210> 75	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 75	
catagtetee teccaggeet	20
<210> 76	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 76	
cattttgcct ctgggtgcaa	20

<210> 77 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 77 cagccccaga catttcagaa	20
<210> 78 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 78 ttetetetge ceataggeet	20
<210> 79 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 79 gggtctttat gaaggaaaaa	20
<210> 80 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 80 acatcactca catttcagaa	20
<210> 81 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	

WO 03/054154		PCT/US02/39873
	31	

	<223> Antisense Oligonucleotide	
	<400> 81	
	accacgtttt attcagtcca	20
	<210> 82	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	4	
	<220>	
	<223> Antisense Oligonucleotide	
	1223/ Antisense Offgonucieotide	
	<400> 82	
	gctgtggtag ctgtaagcac	20
	Z0105 02	
	<210> 83 <211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	valor instituted boddenos	
	<220>	
	4000 m	
	<223> Antisense Oligonucleotide	
	<400> 83	
	gtgctgggat agcattcttc	20
	(01.0) . 0.4	
	<210> 84 <211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	Valor Millitoral Doguenoo	
	<220>	
	<223> Antisense Oligonucleotide	
	<400> 84	
	agagtcaatt gtaccaccac	20
	<210> 85	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
•		
	<223> Antisense Oligonucleotide	
	<400> 85	
	ttttctccac ctgtaagcac	20
		2.0

WO 03/054154	PCT/US02/39873
	32
<210> 86 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 86 cctgtaacaa ctgttgcggg	20
<210> 87 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 87 tgaccagaac ctgtaacaac	20
<210> 88 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 88 tctccttttc tccacctggg	20
<210> 89 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 89 ctcagtagag ctgggcactg	20
<210> 90 <211> 20 <212> DNA <213> Artificial Sequence	

WO 03/054154	PCT/US02/39873	
	33	
<223> Antisense Oligonucleotide		
<400> 90 tcatactcac agcattcttc	20	
<210> 91 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 91 agagcctgag gccgaggtga	20	
<210> 92 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 92 gaccccagta gacaactggg	20	
<210> 93 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 93 aggaattaaa ctggaggttt	20	
<210> 94 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 94 gtgctgggat cttccagaga	20	
<210> 95		

WO 03/054154	PCT/US02/39873
	34
<211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 95 atcetggeet ggteaeaggg	20
<210> 96 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 96 cagccccaga ctgggcagag	20
<210> 97 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 97 ggcccctttc ttccatagtc	20
<210> 98 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 98 ccacctggag tggttttcca	20
<210> 99 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oliconucleotide	

```
<400> 99
aaagccgaga gagggaggtc
                                                                      20
<210> 100
<211> 336
<212> DNA
<213> Homo sapiens
<220>
<400> 100
accaccacca tgacaccggg cacccagtct cctttcttcc tgctgctgct cctcacagtg 60
cttacageta ccacageece taaaceegea acagttgtta caggttetgg teatgcaage 120
tctaccccag gtggagaaaa ggagacttcg gctacccaga gaagttcagt gcccagctct 180
actgagaaga atgctgtgag tatgaccagc agcgtactct ccagccacag ccccggttca 240
ggctcctcca ccactcaggg acaggatgtc actctggccc cggccacgga accagcttca 300
ggttcagctg ccacctgggg acaggatgtc acctcg
                                                                  336
<210> 101
<211> 518
<212> DNA
<213> Homo sapiens
<220>
<400> 101
gegeetgeet gaatetgtte tgeeceetee ceaeceattt caccaccace atgacacegg 60
gcacccagte teettette etgetgetge teetcacagt gettacaget accacagece 120
ctaaacccgc aacagttgtt acaggttctg gtcatgcaag ctctacccca ggtggagaaa 180
aggagactic ggctacccag agaagticag tgcccagctc tactgagaag aatgctgtga 240
gtatgaccag cagcgtactc tccagccaca qccccgqttc agqctcctcc accactcagq 300
gacaggatgt cactotggcc ccggccacgg aaccagette aggtteaget gccacctggg 360
gacaggatgt cacctoggtc ccagtcacca ggccagcct gggctccacc accccgccag 420
cccacqatqt cacctcaqcc ccqqacaaca aqccaqccc qqqctccacc qccccccaq 480
cccacqqtqt cacctcqqcc ccqqacacca qqccqqcc
                                                                  518
<210> 102
<211> 3343
<212> DNA
<213> Homo sapiens
<220>
<400> 102
gageteetgg ceagtggtgg agagtggeaa ggaaggaeee tagggtteat eggageeeag 60
gtttactccc ttaagtggaa atttcttccc ccactcccct ccttggcttt ctccaaggag 120
ggaaccccag gctgctggaa agtccggctg gggcggggac tgtgggtttc agggtagaac 180
tgcgtgtgga acgggacagg gagcggttag aagggtgggg ctattccggg aagtggtggt 240
ggggggaggg agcccaaaac tagcacctag tccactcatt atccagccct cttattctc 300
ggccgcctct gcttcagtgg acccggggag ggcggggaag tggagtggga gacctagggg 360
tgggcttecc gacettgctg tacaggacet egacetaget ggetttgtte eccatececa 420
gttagttgtt gccctgaggc taaaactaga gcccaggggc cccaagttcc agactgcccc 480
tececeetee eeeggageea gggagtggtt ggtgaaaggg ggaggeeage tggagaagaa 540
acgggtagtc agggttgca gcattagagc ccttqtaqcc ctaqcccagg aatggttqqa 600
gagagaagag tagagtaggg aggggggttt gtcacctgtc acctgctcgg ctgtgcctag 660
ggcgggcggg ggggagtggg gggaccggta taaagcggta ggcgcctgtg cccgctccac 720
ctctcaagca gccagcgcct gcctgaatct gttctgcccc ctccccaccc atttcaccac 780
caccatgaca cogggeacce agteteettt etteetgetg etgeteetea cagtgettae 840
```

aggtgagggg	cacgaggtgg	ggagtgggct	gccctgctta	ggtggtcttc	gtggtctttc	900
tgtgggtttt	geteeetgge	agatggcaee	agaagicaag	gradyaarry	cagacagagg	1000
ergecergre	tgtgccagaa	ggagggagag	getaaggaea	ggctgagaag	agttgcccc	1020
					agggggaaga	
					ccaaggccta	
					ttactgaggc	
tgeecactee	tttaattaat	aggraciati	coctatoact	ttaacttctt	attttcttct acagctacca	1320
cacccctca	acccacaaca	attattacaa	attataata	tacaaactct	accccaggtg	1380
					gagaagaatg	
					tectecacea	
					tcagctgcca	
cctggggaca	ggatgtcacc	tcggtcccag	tcaccaggcc	agccctgggc	tccaccaccc	1620
					tccaccgccc	
					tecacegeee	
ccccagccca	tggtgtcacc	teggegeegg	acaacaggcc	cgccttggcg	tccaccgccc	1800
ctccagtcca	caatgtcacc	tcggcctcag	gctctgcatc	aggctcagct	tctactctgg	1860
					actccattct	
					accaagactg	
atgccagtag	cactcaccat	agcacggtac	ctcctctcac	ctcctccaat	cacagcactt	2040
					tcaaacctcc	
					cagagagaca	
					agccatcaga	
					tttttgcaga	
					agttctgggt	
					ggagggactg	
					ctgaagtgcc cttccgagaa	
					ggaagcagcc	
					tgctgcagcc	
					ccttagtgct	
					ccttttagtg	
					ctggggcatc	
					cattgccttg	
					atggcctgcc	
					gggcagctgg	
					taccacaccc	
atgggcgcta	tgtgccccta	gcagtaccga	tcgtagcccc	tatgagaagg	tgagattggg	3120
					gggtacttgg	
aaaacccaaa	gagcttggaa	gaggtgagaa	gtggcgtgaa	gtgagcaggg	gagggctggc	3240
			•		agactatgga	3300
agaaaggggc	ccctcaaaag	ggagtgcccc	actgccagaa	ttc		3343
<210> 103						
<211> 859						
<212> DNA						
<213> Homo	sapiens					
	T. T					
<220>						
.400						
<400> 103					tattastast	60
					tcttcctgct	
†agagaaaa	acagtgctta	cagilgitac	aggittetggt	catgeaaget	ctaccccagg ctgagaagaa	100
					acctccagtt	
					gagacatttc	
					atattaagtt	
					ccatcaatgt	
					gatataacct	
55-5	5-5-5-5-	5	- 55	J J -		

```
gacgatetea gacgteageg tgagtgatgt gecattteet ttetetgeee agtetgggge 540
tggggtgcca ggctggggca tcgcgctgct ggtgctggtc tgtgttctgg ttgcqctqqc 600
cattgtctat ctcattgcct tggctgtctg tcagtgccgc cgaaagaact acgggcaqct 660
ggacatettt ccageeeggg atacetaeca teetatgage gagtaeecea eetaeeae 720
ccatgggcgc tatgtgcccc ctagcagtac cgatcgtagc ccctatgaga cggtttctgc 780
aggtaatggt ggcagcagcc tctcttacac aaacccagca gtggcagcca cttctgccaa 840
cttqtaqqqq cacqtcqcc
<210> 104
<211> 204
<212> DNA
<213> Homo sapiens
<220>
<400> 104
ccgctccacc tctcaagcag ccagcgcctg cctgaatctg ttctgccccc tccccaccca 60
tttcaccacc accatgacac cgggcaccca gtctcctttc ttcctgctgc tgctcctcac 120
agtgcttaca ggttctggtc atgcaagctc taccccaggt ggagaaaagg agacttcggc 180
tacccagaga agttcagtgc ccag
                                                                   204
<210> 105
<211> 556
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 5
<223> n = A, T, C or G
<400> 105
acggnggaag agagtaggga gagggaaggc ttaagagggg aagaaatgca ggggccatga 60
gccaaggcct atgggcagag agaaggaggc tgctgcaggg aaggaggcgg ccaacccagg 120
ggttactgag gctgcccact ccccagtcct cctggtatta tttctctggt ggccagagct 180
tatattttct tcttgctctt atttttcctt cataaagacc caaccctatg actttaactt 240
cttacageta ccacagecee taaaccegea acagttgtta egggttetgg teatqeaaqe 300
tctaccccag gtggagaaaa ggagacttcg gctacccaga gaagttcagt gcccagctct 360
actgagaaga atgctgtgag tatgaccagc agcgtactct ccagccacag ccccggttca 420
ggetecteca ceaeteaggg acaggatgte actetggece eggecaegga accagettea 480
ggttcaaget gccaectggg acaggatgte accttegtee cagtcaccag gccagecetq 540
ggctccacca ccccgc
                                                                   556
<210> 106
<211> 772
<212> DNA
<213> Homo sapiens
<220>
<400> 106
gacctctcaa gcagccageg cctgcctgaa tctgttctgc ccctcccca cccatttcac 60
caccaccatg acacegggca eccagtetee tttetteetg etgetgetee teacagtget 120
tacagetace acagececta aaccegeaac agttgttacg ggttetggte atgeaagete 180
taccccaggt ggagaaaagg agacttcggc tacccagaga agttcagtgc ccagctctac 240
tgagaagaat gettttaatt cetetetgga agateecage accgaetaet accaagaget 300
gcagagagac atttctgaaa tgtttttgca gatttataaa caagggggtt ttctgggcct 360
ctccaatatt aagttcaggc caggatctgt ggtggtacaa ttgactctgg ccttccgaga 420
```

aggtaccate aatgtecaeg aegtggagae aeagtteaet eagtataaae ggaageagee 480 tetegatata aeetgaegat eteagaegte agegtgagtg atgtgeeatt teetttete 540 tgeecagtet ggggetgggg ttgeeagget ggggeatege ggetgetggt getgggtetg 600 tgteetggtt gegetggeea ttgtetatet eattgeettg egetgteetg teagtgeege 660 ggaeagaaea egggeegetg gaeetettte eegeeeggga taeetaeate etttgagggg 720 agteeceaet aeaeaecatg gggggattgt geecettage gtteegateg ac 772

<210> 107 <211> 635 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> 472, 482 <223> n = A,T,C or G

<400> 107