Derivate

definizione di derivata

rette nel piano

\$ y = mx+q \qquad \text{oppure} \qquad x=a \qquad \text{rette verticali} \$\$

- \$m\$ corrisponde al **coefficente angolare** (\$m = \frac{\Delta y}{\Delta x}\$)
- \$m = tan(\alpha)\$ dove \$\alpha\$ è l'angolo tra \$y=0\$ e la retta
- \$q\$ è l'**intercetta** (intersezione con l'asse \$x=0\$)

rette per un punto

dato il punto $P_0=(x_0, y_0) \in \mathbb{R}^2$ le rette passanti per p_0 hanno equazione:

\$ y = m(x-x_0)+q \qquad \text{oppure} \qquad \text{rette verticali} \$\$

retta per due punti

la retta passante per $P_0=(x_0, y_0)$ e per $P_1=(x_1, y_1)$ ha equazione:

 $\ \$ \begin{cases} y = m(x-x_0)+ y_0 x = x_0 \end{cases} \$\$

rapporto incrementale $f(x) = \frac{f(x) - f(x_0)}{x - x_0}$

derivata di un punto

 $h = x-x_0$ se $\lim_{h \to 0} \frac{f(x_0+h)-f(h)}{h}$ esiste finito allora f è derivabile in x_0 e la derivata è:

 $f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}$

derivate delle funzioni elementari

funzioni potenza

\$f(x)\$	\$f'(x)\$	Dominio di \$f'\$
\$c\$	0	\$\mathbb{R}\$
\$x\$	1	\$\mathbb{R}\$
\$x^n\$	\$nx^{n-1}\$	\$\mathbb{R}\$
\$x^{-n}\$	\$-nx^{-n-1}\$	
\$\sqrt{x}\$	\$\frac{1}{n}x^{-\frac{n-1}{n}}\$	
\$x^\alpha\$	\$\alpha x ^{\alpha - 1}\$	

funzioni trigonometriche

\$f(x)\$	\$f'(x)\$	Dominio di \$f'\$
\$sin(x)\$	\$cos(x)\$	\$\mathbb{R}\$
\$cos(x)\$	\$-sin(x)\$	\$\mathbb{R}\$
tan(x)\$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	

funzioni esponenziali e logaritmiche

\$f(x)\$	\$f'(x)\$	Dominio di \$f'\$
\$e^x\$	\$e^x\$	\$\mathbb{R}\$
\$a^x\$	\$log(a) \cdot a^x\$	\mathbb{R}\$
\$log(x)\$	\$\frac{1}{x}\$	\$x > 0\$
\$log_a(x)\$	\$\frac{1}{xlog(a)}\$	\$x > 0\$

algebra delle derivate

date due funzioni \$f\$ e \$g\$ derivabili in \$x_0\$, allora:

- f+q è derivabile in x_0 : $D(f+g)(x_0) = f'(x_0) + g'(x_0)$
- $f \cdot g$ è derivabile in x_0 : $D(f \cdot g)(x_0) = f(x_0)g(x_0) + f(x_0)g'(x_0)$
- $\frac{f}{g}\$ con $g(x_0) = \frac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{g^2(x_0)}$
- $D(\alpha f + \beta (x_0)) \cdot dot g'(x_0)$

proprietà locali e teoremi sulle funzioni derivabili

proprietà locali

le proprietà locali riguradano l'andamento di una funzione in vicinanza (o in un intorno) di un punto x_0 . Data la funzione f: A \rarr \mathbb{R}\ e $x_0 \in A$, se esiste un intorno di x_0 si ha:

- se $x < x_0 \in f(x)$ allora $f(x_0)$ allora $f(x_0)$
- se $x < x_0 \leq f(x_0)$ allora f è **decrescente** in x_0
- se \$f(x_0) \ge f(x)\$ allora \$x_0\$ è masimo relativo
- se \$f(x_0) \le f(x)\$ allora \$x_0\$ è minimo relatico

massimi, minimi relativi e punti di flesso

data \$f\$ derivabile in \$x_0\$:

- se x_0 è un punto di massimo o minimo relativo allora $f'(x_0) = 0$
- se $f'(x_0) = 0$ \$ e f\$ non è costante attorno a x_0 \$ allora x_0 \$ è **punto stazionario**
 - se \$f(x)\$ è crescente per \$x \lt x_0\$ e decrescente per \$x \gt x_0\$ allora \$x_0\$ è massimo relativo

- se \$f(x)\$ è decrescente per \$x \lt x_0\$ e crescente per \$x \gt x_0\$ allora \$x_0\$ è **minimo relativo**
- se \$f(x)\$ è crescente (o decrescente) sia per \$x \lt x_0\$ che per \$x \gt x_0\$ allora \$x_0\$ è punto di flesso

teorema di Weierstrass

sia \$f: [a,b] \rarr \mathbb{R}\$ allora esistono sicuramente i punti di **massimo** e **minimo**.

asintoti verticali, orizzontali e obliqui

asintoto verticale data la funzione $f: A \cdot R$ e un punto x_0 di accumulazione per A, la retta $x=x_0$ è **asintoto verticale** per f se:

 $\$ \lim_{x \to x_0^-}f(x) = \pm \infty \qquad \text{oppure} \qquad \lim_{x \to x_0^+}f(x) = \pm \infty \$\$

asintoto orizzontale

data la funzione $f : A \cdot mathbb{R}$, la retta y = q è asintoto orizzontale per $f : A \cdot mathbb{R}$

 $\ \int_{x \to \infty} \int_{x \to \infty} f(x) = q \qquad \text{f(x)} = q$

asintoto obliquo

data la funzione $f: A \cdot R$, la retta y = mx + q è **asintoto obliquo** per f se:

 $\$ $\lim_{x \to -\infty} (f(x) - mx - q) = 0 \qquad \text{yquad } \lim_{x \to -\infty} (f(x) - mx - q) = 0$

come calcolare asintoto obliquo La retta y = mx + q è asintoto obliquo per f se e solo se:

 $\$ \lim_{x \to +\infty} \frac{f(x)}{x} = m \qquad \text{e} \qquad \lim_{x \to +\infty}(f(x) - mx) = q \$\$

(la stessa procedura è valida per \$x \to -\infty\$)

teoremi fondamentali per le funzioni derivabili in un intervallo teorema di Lagrange

sia $f: [a, b] \$ una funzione continua in [a,b] e derivabile ib [a,b] allora esiste un punto [a,b] tale che:

 $f'(c) = \frac{f(b) - f(a)}{b - a}$

teorema di Rolle sia $f: [a, b] \operatorname{mathbb}{R}\$ una funzione continua in $[a,b]\$ e derivabile ib $[a,b]\$ tale che $f(a) = f(b)\$ allora esiste un punto $c \in f(c) = 0\$ questo teorema è una conseguenza diretta del *teorema di Lagrange*

teorema di de l'Hôpital

siano \$f\$ e \$g\$ definite e derivabili, allora:

• se $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = 0$ e se $\lim_{x \to x_0} f(x) = 1$ allora:

 $\ \int x \cot x_0 \frac{g(x)}{g(x)} = I \cdot \frac{x \cot x_0}{f(x)}$

• se $\lim_{x \to x_0}f(x) = \lim_{x \to x_0}g(x) = \inf y = se \lim_{x \to x_0}f(x) = l$ allora:

 $\ \int x \cot x_0 f(x) g(x) = I \cdot (\cot x_0) f(x)$