Department of Electrical and Computer Engineering The University of Texas at Austin

EE 382N.1 Fall 2018 Dam Sunwoo, Instructor Pritesh Chhajed, TA Exam 2 November 19, 2018

Name:SOLUTION
Problem 1 (25 points):
Problem 2 (15 points):
Problem 3 (20 points):
Problem 4 (20 points):
Problem 5 (20 points):
Total (100 points):
Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.
Note: The exam is open book, open notes, bring anything type of exam, but there are constraints: Do not ask anyone or anything for help. You may only search for text in PDFs or other material that you have downloaded. NO web searches. Do not share any material related to the exam with anyone (or upload it anywhere). The exam will be made public soon.
Note: Please be sure your name is recorded on each sheet of the exam.
Please read the following sentence, and if you agree, sign where requested: I have not given nor received any unauthorized help on this exam.
Signature:

Name:
Problem 1 (25 points): Answer the following questions.
Part a (5 points):
for (i=1; i<200; i++) A[i] = (A[i-1] + B[i]) * 2;
Is this loop vectorizable using Cray-1-style vector processing covered in the lecture? Circle one: YES / NO Explain why / why not (10 words should be enough).
Each iteration is dependented on the previous one.
Part b (5 points): A 15×10 (rows \times columns) matrix is stored in column-major order in memory. We would like to read out rows of this matrix and store them in vector registers. What should Vector Length Register (VLR) and Vector Stride Register (VST) be set to?
VLR= /0
Part c (5 points): The diameter of an interconnection network is defined as the maximum hops between any two nodes. The bisection bandwidth is the minimum bandwidth of any two halves of the network. What is the diameter of a 4x4 2D Torus? What is the bisection bandwidth of a 4x4 2D Torus (in terms of number of links)?
Diameter= 4 Bisection BW=
Part d (10 points): We are designing a 48KB virtually-indexed physically-tagged (VIPT) L1 data cache with write-back, 32-byte cache lines, and tree-like Pseudo LRU policy for replacement. This cache will be used in a system with 4KB page sizes, a 32-bit virtual address space, and a 30-bit physical address space. All addresses are byte-addressable. We want to make sure we have no synonyms (aliasing) using this cache. We also want to minimize the set-associativity of this cache.
How many tag bits do we need for the entire L1 data cache? Show your work.
To avoid synonyms in VIPT:

To avoid synonyms in VIPT:

Coche size \le page size \times associativity

48 KB \le 4KB \times assoc

min assoc = 12

There are 2° sets, tag bits per block: 30 - 7-5 = 18 bits.

Tree-like pllu: 12-1=11 bits per set.

Total tagstore bits: 2° \times (12 \times (18+1+1)+11) = 128 \times 251

2 Valid wB = 32128 bits

Name:				

Problem 2 (15 points): The memory controller issues DRAM commands to access data from a memory bank. Consider the following commands and latencies:

- ACTIVATE: Loads the row that needs to be accessed into the row buffer. Also called *opening a row*. (Latency: 10ns)
- PRECHARGE: Prepares the bank for the next access and empties the row-buffer. Also called *closing a row*. (Latency: 10ns)
- READ / WRITE: Reads/writes data from/to row. (Latency: 10ns)

The memory controller can schedule the memory requests to increase performance. Consider the following scheduling policies:

- FCFS (First-Come First-Serve): Service memory requests in the order they arrive at the memory controller.
- FR-FCFS (First-Ready, First-Come-First-Serve): Service the oldest request that hits in the current open row, if any, first (i.e., First-Ready). Otherwise, use FCFS.

There are eight memory requests (labeled A through H, where A is the oldest and H is the youngest request) queued up at the memory controller at time 0. The order they are processed under FCFS and FR-FCFS, respectively, are depicted in the figure below.

Assume the following:

- The memory system has one DRAM channel and DRAM bank.
- The row-buffer is closed (empty) at time 0.
- No additional requests arrive at the memory controller.

Part a (5 points): List the memory accesses that resulted in row-buffer hits under FCFS?

D, E, H

Part b (5 points): List the memory accesses that resulted in row-buffer hits under FR-FCFS?

C, O, E, G, H

Part c (5 points): What is the total time it took to process all requests under each scheduling policy?

FCFS: /70 ns

FR-FCFS: 130 ns

Problem 3 (20 points): We have augmented the LC-3b with the memory hierarchy shown below.

Addr(A), Addr(B), and Addr(C) represent addresses that access respectively L1, L2, and Memory. Data(B) and Data(C) each transfer a full cache line.

The table below shows a sequence of five memory accesses from the LC-3b core. If ADDR(A) misses in L1, an access is required to L2. If ADDR(B) misses in L2, an access is required to Memory. Each of the five requests from the LC-3b core must complete before the next access from the LC-3b core is initiated.

ADDR(A)	ADDR(B)	ADDR(C)	Read/Write
0x3000			Read
	0x100		Read
		0x100	Read
0x3003			Write
0x3004			Read
	0x104		Read
0x3008			Read
	0x108		Read
		0x108	Read
0x8000			Read
	0x100		Write
	0x200		Read
	//	0x200	Read

You may make the following assumptions:

- Virtual addresses are 16 bits and the page size is 256B.
- The TLB has 2 entries and is fully associative.
- · All accesses to the TLB are hits.
- The L1 and L2 are both physically-indexed, physically-tagged.
- The L1 contains 64 sets.
- If a cache line is present in the L1, it will also be present in the L2 (although the contents of L2 may not be correct).
- The caches are initially empty.

Name:				
Part a (2 points): How many by	tes are in an L1 cache line?		4	Bytes
Part b (2 points): How many by	rtes are in an L2 cache line?		8	Bytes
Part c (2 points): Fill in the VP	Ns and the PFNs of the two	TLB entries.		
	VPN	PFN		
	0430	0×1		
	0 × 80	Ox2		
Part d (3 points): Is the L1 each	e write through or write bac	ck? (Circle one)		
			Write Through / W	rite Back
Explain	0 2 2 6	. ~51		
The write to	0x300) is n	iot Written	through to	204
			CZ 01 1 101	4-
Part e (3 points): Is the L2 cach	e write through or write bac	k? (Circle one)		
arte (3 points). Is the L2 each	e write unough of write bac	k! (Chele one)	XX 24. (Th	-14. P 1
Explain			Write Through \(\text{W} \)	пте васк
The write to	0×100 at L2	in not w	ritten through to	o memory.
Part f (4 points): What is the ass	sociativity of the L1 cache?			7
Zvaloia				Way(s)
Reading Ox 800	00 caused an (on	eviction of	Ox3000	
	(on	ly other ent	ery in set)	
Part g (4 points): What is the m	inimum possible associativii	ty of the L2 cache?	1	Way(s)
Explain				
Williamt know	ing more deta	ils of the	L2, all accesses	;
to LL can be	ing more deta to different s	ets. This is	a possible path	en
		f.	Edd a Neath	

Name:

Problem 4 (20 points): Let us use one of the unused opcodes to add an instruction DOTPRODUCT (i.e., dot product) to the LC-3b ISA. Its format will be

The DOTPRODUCT of two vectors is computed as shown below:

$$\sum_{i=0}^{n-1} A[i] \times B[i]$$

The two vectors are stored in memory. Their starting addresses are contained in SRA and SRB, and their length is specified as an immediate 5-bit value (vlen5). The instruction stores the result of the dot product in the register specified by DR. Assume vlen5 is not zero.

For this problem, you can assume no overflow will occur. Note: execution of this instruction will destroy the initial contents of SRA and SRB.

Your job: augment the LC-3b state machine, data path and microsequencer shown on the next three pages to add DOTPRODUCT to the LC-3b ISA.

Name:			
ranic.			

Part a, The state machine (10 Points): From decode (state 32), ten states are needed to complete the execution of DOTPRODUCT. One of the states (state 44) has been partially specified. Your job is to complete the specifications of all the states and add the missing state numbers.

Name:

Part b, The data path (7 Points): We have added GateIR[4:0], ALUMUX, made changes to DRMUX, provided registers for CTR (with built-in decrement functionality), TEMP, and SUM as well as a multiply-and-accumulate (MAC) unit. The MAC computes $M1 \times M2 + A1$. Your job is to implement the changes you made in Part a by connecting the necessary structures to the LC-3b datapath. You are free to add control signals and tri-state buffers as needed.

Part c, The microsequencer (3 Points): To make this work, we need to add a COND2 control signal to the microsequencer. The only thing missing to complete the change to the microsequencer is the box labeled A. Your job: fill in the box labeled A.

Name:

Problem 5 (20 points): Suppose the LC-3b ISA had a 12-bit, byte-addressable, virtual address space with two levels of virtual to physical translation, similar to the VAX.

A PTE is shown below:

V M ACC	00	PFN
---------	----	-----

It includes a Valid bit, a Modify bit, a 2 bit Access Control field, some number of unused bits (i.e., 0..0), and the PFN. The low bits of the PTE are used for the PFN.

The access control bits are defined as follows:

00: none

01: read-only

10: read-write

11: —

The virtual address space is divided evenly into two regions. The first half is user space, the second half is system space.

The user space page table starts at the beginning of a page. The system space page table starts at the beginning of a frame. We require 1/4 of physical memory to store the entire system page table.

A user program fetches and executes one LC-3b instruction, resulting in six accesses to physical memory, as shown by the following table:

VA	PA	Data
_	x00EA	x94
x08B0	x090	x92
x0100	x040	x 2862
	x00EE	x95
x08F6	×OB6	x91
x0572	× 032	x10A0

Note: Since the size of the PTE has not been given, entire PTEs are not shown in the above table.

Part a (10 points): Fill in the entries for the following (UBR=User Base Register):

Name:			
i tuitto.			

Part b (5 points): After the instruction is executed, the register file is as shown:

Register	Value
R0	x0550
R1	x0590
R2	x00A0
R3	x0200
R4	xFFA0
R5	x000C
R6	x0010
R7	x0100

What LC-3b instruction was executed?

LDB R4, R1, 0x-1E (#-30)

Part c (5 points): Complete the entries in the memory access table shown on the previous page.

Figure 1: LC-3b Instruction Encodings