计算机组成原理

第三讲

刘松波

哈工大

模式识别与智能系统研究中心

第2章 计算机的发展及应用

2.1 计算机的发展史

2.2 计算机的应用

2.3 计算机的展望

2.1 计算机的发展史

一、计算机的产生和发展

1946年 美国 ENIAC 1955年退役

十进制运算

18 000 多个电子管

1 500 多个继电器

150 千瓦

30 吨

1500 平方英尺

5000 次加法 / 秒

用手工搬动开关和拔插电缆来编程

2.1

世界上第一台电子计算机 ENIAC(1946)

硬件技术对计算机更新换代的影响

2.1

代	时间	硬件技术	速度/(次/秒)
_	1946—1957	电子管	40 000
	1958—1964	晶体管	200 000
	1965—1971	中小规模 集成电路	1 000 000
四	1972—1977	大规模 集成电路	10 000 000
五	1978一现在	超大规模 集成电路	100 000 000

第一台von Neumann 系统结构的计算机 2.1

IBM System / 360

2.1

2.1

二、微型计算机的出现和发展

微处理器芯片	1971年	存储器芯片	1970年
4位(40	04)	256位	
8位		1K位	
16位		4K位	
32位		16 K 位	
64位		64K 位	
		256K位	
		1M位	
		4M 位	
		16M位	

64M位

Intel 公司的典型微处理器产品

2.1

8080	8位	1974年	
8086	16位	1979年	2.9 万个晶体管
80286	16位	1982年	13.4 万个晶体管
80386	32位	1985年	27.5 万个晶体管
80486	32位	1989年	120.0 万个晶体管
Pentium	64位(准)	1993年	310.0 万个晶体管
Pentium Pro	64位(准)	1995年	550.0 万个晶体管
Pentium II	64位(准)	1997年	750.0 万个晶体管
Pentium III	64位(准)	1999年	950.0 万个晶体管
Pentium IV	64位	2000年	4 200.0 万个晶体管

目前 芯片上可集成 超过 30亿 个晶体管

Moore 定律

Intel 公司的缔造者之一 Gordon Moore 提出

微芯片上集成的

晶体管数目每三年翻两番

2.1

1. 各种语言

机器语言 面向机器

汇编语言 面向机器

高级语言 面向问题

FORTRAN 科学计算和工程计算

PASCAL 结构化程序设计

C++ 面向对象

Java 适应网络环境

2. 系统软件

语言处理程序

汇编程序 编译程序 解释程序

操作系统

DOS UNIX Windows

服务性程序

装配 调试 诊断 排错

数据库管理系统 数据库和数据库管理软件

网络软件

3. 软件发展的特点

- (1) 开发周期长
- (2) 制作成本昂贵
- (3) 检测软件产品质量的特殊性

软件是程序以及开发、使用和

维护程序所需要的所有文档

2.2 计算机的应用

- 一、科学计算和数据处理
- 二、工业控制和实时控制
- 三、网络技术
 - 1. 电子商务
 - 2. 网络教育
 - 3. 敏捷制造

四、虚拟现实

五、办公自动化和管理信息系统

六、CAD/CAM/CIMS

七、多媒体技术

八、人工智能

2.3 计算机的展望

一、计算机具有类似人脑的一些超级 智能功能

要求计算机的速度达1015/秒

- 二、芯片集成度的提高受以下三方面的限制
 - 芯片集成度受物理极限的制约
 - 按几何级数递增的制作成本
 - 芯片的功耗、散热、线延迟

三、?替代传统的硅芯片

1. 光计算机

利用光子取代电子进行运算和存储

2. DNA生物计算机

通过控制DNA分子间的生化反应

3. 量子计算机

利用原子所具有的量子特性

第3章 系统总线

- 3.1 总线的基本概念
- 3.2 总线的分类
- 3.3 总线特性及性能指标
- 3.4 总线结构
- 3.5 总线控制

- 3.1 总线的基本概念
- 一、为什么要用总线
- 二、什么是总线

总线是连接各个部件的信息传输线,

是各个部件共享的传输介质

三、总线上信息的传送

四、总线结构的计算机举例

3.1

1.单总线结构框图

单总线 (系统总线)

2.面向 CPU 的双总线结构框图

3.1

3.1

3. 以存储器为中心的双总线结构框图

3.2 总线的分类

1. 片内总线 芯片内部的总线

2. 系统总线 计算机各部件之间 的信息传输线 双向 与机器字长、存储字长有关 地址总线 单向 与存储地址、 I/O地址有关 控制总线 有出 有入

中断请求、总线请求

存储器读、存储器写总线允许、中断确认

3. 通信总线

用于 计算机系统之间 或 计算机系统 与其他系统(如控制仪表、移动通信等) 之间的通信

3.3 总线特性及性能指标

一、总线物理实现

二、总线特性

3.3

1. 机械特性 尺寸、形状、管脚数及排列顺序

2. 电气特性 传输方向 和有效的 电平 范围

3. 功能特性 每根传输线的 功能 { 数据 控制

4. 时间特性 信号的时序关系

三、总线的性能指标

3.3

- 1. 总线宽度 数据线的根数
- 2. 标准传输率 每秒传输的最大字节数 (MBps)
- 3. 时钟同步/异步 同步、不同步
- 4. 总线复用 地址线与数据线复用
- 5. 信号线数 地址线、数据线和控制线的总和
- 6. 总线控制方式 突发、自动、仲裁、逻辑、计数
- 7. 其他指标 负载能力

模块

系统

标准界面

模块

系统

总线标准

ISA
EISA
VESA(VL-BUS)
PCI
AGP

USB

RS-232

四、总线标准

3.3

总线标准	数据线	总线时钟	带宽
ISA	16	8 MHz(独立)	16 MBps
EISA	32	8 MHz(独立)	33 MBps
VESA (VL-BUS)	32	32 MHz (CPU)	133 MBps
PCI	32 64	33 MHz (独立) 66 MHz (独立)	132 MBps 528 MBps
AGP	32	66.7 MHz(独立) 133 MHz(独立)	266 MBps 533 MBps
RS-232	串行通信 总线标准	数据终端设备(计算机)和数据通信设备 (调制解调器)之间的标准接口	
USB	串行接口 总线标准	普通无屏蔽双绞线 带屏蔽双绞线 最高	1.5 Mbps (USB1.0) 12 Mbps (USB1.0) 480 Mbps (USB2.0)

3.4 总线结构

一、单总线结构

单总线 (系统总线)

二、多总线结构

3.4

1. 双总线结构

3.4

2. 三总线结构

3. 三总线结构的又一形式

4. 四总线结构

3.4

三、总线结构举例

3.4

1. 传统微型机总线结构

2. VL-BUS局部总线结构

3.4

3. PCI 总线结构

3.4

4. 多层 PCI 总线结构

3.4

- 3.5 总线控制
- 一、总线判优控制
 - 1. 基本概念
 - 主设备(模块) 对总线有 控制权
 - 从设备(模块) 响应 从主设备发来的总线命令

• 总线判优控制

集中式 计数器定时查询 独立请求方式 分布式

3.5

2. 链式查询方式

3. 计数器定时查询方式

3.5

4. 独立请求方式

3.5

分布式控制

✓将总线控制逻辑分布在连接到总线的 各个部件中。

