## Children and Time Allocation

Thomas H. Jørgensen

2023

## Plan for today

Introduction

•0

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
  - Unitary model Combines US data.

Introduction

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
  - Unitary model Combines US data.
- Reading guide:
  - 1. What are the main research questions?
  - 2. What is the (empirical) motivation?

3. What are the central mechanisms in the model?

4. What is the simplest model in which we could capture these?

Introduction

## Plan for today

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
  - Unitary model Combines US data.

#### Reading guide:

- 1. What are the main research questions?
  - How do couples allocate time and consumption when having children?
  - How does children affect couples abilities to smooth consumption?
- 2. What is the (empirical) motivation?

3. What are the central mechanisms in the model?

4. What is the simplest model in which we could capture these?

Introduction

0

## Empirical Motivation: Siminski and Yetsenga (2022)

Australian time-use data on panel of couples!



Fig. 1.—Relative domestic work time by relative wage. Each point represents 1 percentile of the female-to-male relative wage distribution among heterosexual couples. A color version of this figure is available online.

## Outline

- Model and Mechanisms
- 2 Estimation
  - Data
  - First Step: MRS
  - Second Step: SMM
- Simulations

## Model Overview

 Write out the recursive formulation of the model States Choices (transitions)

#### Choices:

```
H_{i,t}: work hours, j \in \{1,2\} (2=woman)
L_{i,t}: leisure hours, j \in \{1,2\}
T_{i,t}: Parenting hours, j \in \{1, 2\} (child care)
C_t: Household consumption
```

#### States:

```
A_{+}: wealth
F_{i,t}: permanent income shock, j \in \{1, 2\}
u_{i,t}: transitory income shock, j \in \{1, 2\}
ε: vector of 5 unobserved time-fixed taste-shifters.
(only allow for \varepsilon_{L_2}, wife's leisure, using two-point, fnt 27)
z_t: child (50/50 prob. at age 28, young for 10years)
```

## State Transitions

#### Budget

$$A_{t+1} = (1+r)[A_t + \mathcal{T}(z_t, H_{1,t}W_{1,t} + H_{2,t}W_{2,t}) - C_t]$$

where joint taxation gives

$$\mathcal{T}(z_{t}, H_{1,t}W_{1,t} + H_{2,t}W_{2,t}) = \chi_t(b(z_t) + H_{1,t}W_{1,t} + H_{2,t}W_{2,t})^{1-\mu_t}$$

with  $b(z_t)$  being a consumption floor.

Hours worked are

$$H_{j,t} = \overline{L} - L_{j,t} - T_{j,t}$$

Wages are

$$\log W_{j,t} = x'_{j,t} \beta_W^j + F_{j,t} + u_{j,t}$$
$$F_{j,t} = F_{j,t-1} + v_{j,t}$$

#### **Preferences**

#### • Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where, for  $x \in \{C, L_1, L_2, T_1, T_2\}$ ,

$$\tilde{\phi}_{x}(z_{t},\varepsilon_{t}) = \phi_{x}^{nk} + \phi_{x}^{k}z_{t} + \varepsilon_{x,t}$$

are taste-shifters.

(only  $var(\varepsilon_{L_2,t}) > 0$  so irrelevant in all other)

#### Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where

$$\eta>0$$
 is the consumption Frisch elasticity  $(1/\eta \text{ is the CRRA})$   $\gamma(z_t)$  is cost of work (for women)  $\varphi_x\in(0,1)$  is the curvature wrt  $x$ . (Governs how sensitive  $x$  is to e.g. wage changes.)

# • Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where

 $ho_{x} < 1$  is the complementarity  $(\rho_{x} > 0)$  / substitutability  $(\rho_{x} < 0)$  between men and women

#### Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where

interpreting the last part as "home production of children"

- $\rightarrow$  relative weight on j is their absolute advantage in child production
- $\rightarrow$  if  $\tilde{\phi}_{T_2}(z_t, \varepsilon_t) > \tilde{\phi}_{T_1}(z_t, \varepsilon_t)$  mothers has an absolute advantage

## Outline

- Model and Mechanisms
- 2 Estimation
  - Data
  - First Step: MRS
  - Second Step: SMM
- Simulations

• Zero-step calibration of some parameters (table 2)

- Zero-step calibration of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

- **Zero-step calibration** of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

00000000000000000

 Second-step SMD/SMM estimation of some parameters using solution/simulation from model.

- **Zero-step calibration** of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

00000000000000000

- Second-step SMD/SMM estimation of some parameters using solution/simulation from model.
- I will spend some time on the first-step estimation to give some detail. It takes up a big part of the paper

- Zero-step calibration of some parameters (table 2)
- **First-step estimation** of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

00000000000000000

- Second-step SMD/SMM estimation of some parameters using solution/simulation from model.
- I will spend some time on the first-step estimation to give some detail.
   It takes up a big part of the paper
- Illustrates the amount of hoops one could be willing to jump to reduce the parameter space in the SMD...

# • Panel Study of Income Dynamics (PSID) labor income, and hours worked, $H_{j,t}$ , $\rightarrow w_{j,t}$ Non-durable consumption, $c_t$ , and assets, $A_t$ .

#### **Data Sources**

- Panel Study of Income Dynamics (PSID) labor income, and hours worked,  $H_{j,t}$ ,  $\rightarrow w_{j,t}$  Non-durable consumption,  $c_t$ , and assets,  $A_t$ .
- American Time Use Survey (ATUS) Time used for leisure,  $L_{j,t}$ , and child care,  $T_{j,t}$ Only for one respondent (not both partners)
  - ightarrow Use responses of women and *impute* values for their partners:

$$X_{1,t} = f(cohort_1, educ_1), X \in \{L, T\}$$

- Panel Study of Income Dynamics (PSID) labor income, and hours worked,  $H_{j,t}$ ,  $\rightarrow w_{j,t}$  Non-durable consumption,  $c_t$ , and assets,  $A_t$ .
- American Time Use Survey (ATUS)
   Time used for leisure, L<sub>j,t</sub>, and child care, T<sub>j,t</sub>
   Only for one respondent (not both partners)
   → Use responses of women and *impute* values for their partners:

$$X_{1,t} = f(cohort_1, educ_1), X \in \{L, T\}$$

Consumer Expenditure Survey (CEX)
 Non-durable consumption, c<sub>t</sub>.
 (better quality than PSID)

• MRS between wife's and husband's leisure (e.q. 7, x = log(X))

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

• MRS between wife's and husband's leisure (e.q. 7, x = log(X))

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

can give three moments to identify  $K_0$ ,  $\varphi_{L_2}$  and  $\varphi_{L_1}$  (mine...)

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

$$\mathbb{E}[(I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t})(w_{1,t} - w_{2,t})|I_t] = 0$$

$$\mathbb{E}[(I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t})I_{1,t}|I_t] = 0$$

- Requires individual-level data on leisure and wages.
  - ... Not available in any of the data sources...

• MRS between wife's and husband's leisure (e.q. 7, x = log(X))

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{I,t}}I_{1,t}|I_t] = 0$$

can give three moments to identify  $K_0$ ,  $\varphi_{L_2}$  and  $\varphi_{L_1}$  (mine...)

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

$$\mathbb{E}[(I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t})(w_{1,t} - w_{2,t})|I_t] = 0$$

$$\mathbb{E}[(I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{I_1}}I_{1,t})I_{1,t}|I_t] = 0$$

- Requires individual-level data on leisure and wages.
  - ... Not available in any of the data sources...

0 ass.

4.160 ass.

• They use PSID, people with *no children* younger than  $10 \rightarrow L_{j,t} = \overline{L} - T_{j,t} - H_{j,t}$  observed through  $H_{j,t}$ .

#### MRS between wife's leisure and consumption (e.q. 8)

$$\mathbb{E}[I_{2,t} - K_1 + \varphi_{L_2} w_{2,t} - \mu \varphi_{L_2} y - \frac{\varphi_{L_2}}{\eta} c_t - \frac{\varphi_{L_2}}{\varphi_{L_1}} \rho_L (1 - \varphi_{L_1}) I_{1,t}$$

$$+ \varphi_{L_2} \rho_L \frac{\varphi_{L_2} (1 - \varphi_{L_2})}{\varphi_{L_1} (1 - \varphi_{L_1})} \frac{W_{2,t} L_{2,t}}{W_{1,t} L_{1,t}} | I_t] = 0$$

Estimation

where  $\mu$  is "known" tax parameter and  $\gamma$  is household income. Can likewise give three moments to identify  $K_1$ ,  $\eta$  and  $\rho_I$ .

Estimation

## MRS (approximations): 2

MRS between wife's leisure and consumption (e.q. 8)

$$\mathbb{E}[I_{2,t} - K_1 + \varphi_{L_2} w_{2,t} - \mu \varphi_{L_2} y - \frac{\varphi_{L_2}}{\eta} c_t - \frac{\varphi_{L_2}}{\varphi_{L_1}} \rho_L (1 - \varphi_{L_1}) I_{1,t}$$

$$+ \varphi_{L_2} \rho_L \frac{\varphi_{L_2} (1 - \varphi_{L_2})}{\varphi_{L_1} (1 - \varphi_{L_1})} \frac{W_{2,t} L_{2,t}}{W_{1,t} L_{1,t}} | I_t] = 0$$

where  $\mu$  is "known" tax parameter and y is household income. Can likewise give *three* moments to identify  $K_1$ ,  $\eta$  and  $\rho_L$ .

- Requires individual-level data on leisure, wages and consumption.
- They again use PSID, people with *no children* younger than  $10 \rightarrow L_{j,t} = \underbrace{\overline{L}}_{4,160 \text{ ass.}} \underbrace{T_{j,t}}_{0 \text{ ass.}} H_{j,t}$  observed through  $H_{j,t}$ .

• MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's leisure and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t}$$

$$+ \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give five moments to identify  $K_2$ ,  $\varphi_{T_2}$ ,  $\varphi_{T_1}$ ,  $K_3$  and  $\rho_T$ .

# into (approximations): 3

MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's leisure and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give five moments to identify  $K_2$ ,  $\varphi_{T_2}$ ,  $\varphi_{T_1}$ ,  $K_3$  and  $\rho_T$ .

 Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...

MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's leisure and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give five moments to identify  $K_2$ ,  $\varphi_{T_2}$ ,  $\varphi_{T_1}$ ,  $K_3$  and  $\rho_T$ .

- Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...
- **Solution:** Impute consumption from the CEX "into" the ATUS.
  - 1. **Estimate** avg. consumption in CEX:  $\hat{C}(cohort, educ)$
  - 2. **Predict** consumption in ATUS:  $c_{i,t} = \hat{C}(cohort_i, educ_i)$

MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

• MRS between wife's leisure and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give *five* moments to identify  $K_2$ ,  $\varphi_{T_2}$ ,  $\varphi_{T_1}$ ,  $K_3$  and  $\rho_T$ .

- Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...
- Solution: Impute consumption from the CEX "into" the ATUS.
  - 1. **Estimate** avg. consumption in CEX:  $\hat{C}(cohort, educ)$
  - 2. **Predict** consumption in ATUS:  $c_{i,t} = \hat{C}(cohort_i, educ_i)$
- Similarly for the time-use of men (as discussed above)

## Parameter Estimates

TABLE 3 PARAMETER ESTIMATES

|                                    | A. MRS Estimates            |                          |                   |
|------------------------------------|-----------------------------|--------------------------|-------------------|
|                                    | Leisure and Consumption (1) | Parental Time<br>(2)     |                   |
| $arphi_{L_1}$                      | .211<br>(.037)              | $oldsymbol{arphi}_{T_1}$ | .115<br>(.081)    |
| $arphi_{L_2}$                      | .162<br>(.025)              | $arphi_{T_2}$            | .503<br>(.201)    |
| $ ho_L$                            | .535<br>(.099)              | $ ho_T$                  | 197<br>(.123)     |
| η                                  | .903<br>(.049)              |                          |                   |
| Observations                       | 11,195                      |                          | 2,901             |
|                                    | B. Preference Shifters      |                          |                   |
|                                    | With Children               | W                        | ithout Children   |
| $\phi_{L_1}$                       | -8.925                      |                          | -7.680            |
| $\phi_{L_2}$                       | (1.108) -9.397              |                          | (1.013)<br>-8.816 |
| 7 =-9                              | (1.036)                     |                          | (1.024)           |
| $oldsymbol{\phi}_{T_{\mathbf{i}}}$ | -23.993 (10.245)            |                          | N/A               |
| $\phi_{T_2}$                       | -3.957 (1.201)              |                          | N/A               |
| $\sigma^2_{arepsilon_{I_2}}$       | 1.476<br>(.174)             |                          | .700<br>(.087)    |
| γ                                  | (see table 2)               |                          | 4,794<br>(438)    |
| $\phi_{c}$                         | .132<br>(.024)              |                          | Normalized to     |

## Parameter Estimates

TABLE 3 PARAMETER ESTIMATES

|                            |                          | A. MRS Estimates       |                          |                    |
|----------------------------|--------------------------|------------------------|--------------------------|--------------------|
|                            | Leisure a                | nd Consumption<br>(1)  | Pa                       | rental Time<br>(2) |
| $arphi_{L_{\mathfrak{l}}}$ | leisure does not respond | .211<br>(.037)         | $arphi_{T_{\mathrm{i}}}$ | .115<br>(.081)     |
| $arphi_{L_l}$              | alot to wage-changes     | .162<br>(.025)         | $arphi_{T_2}$            | .503<br>(.201)     |
| $\rho_L$                   | '                        | .535<br>(.099)         | $ ho_T$                  | 197<br>(.123)      |
| η                          |                          | .903<br>(.049)         |                          |                    |
| Obse                       | rvations                 | 11,195                 |                          | 2,901              |
|                            |                          | B. Preference Shifters |                          |                    |
|                            | Wit                      | h Children             | With                     | out Children       |
| $\phi_{L_1}$               |                          | -8.925 $-7.680$        |                          |                    |

|                                | With Children | Without Children |
|--------------------------------|---------------|------------------|
| $\phi_{L_i}$                   | -8.925        | -7.680           |
|                                | (1.108)       | (1.013)          |
| $\phi_{L_2}$                   | -9.397        | -8.816           |
|                                | (1.036)       | (1.024)          |
| $\phi_{T_1}$                   | -23.993       | N/A              |
|                                | (10.245)      |                  |
| $\phi_{T_2}$                   | -3.957        | N/A              |
|                                | (1.201)       |                  |
| $\sigma_{\varepsilon_{t_t}}^2$ | 1.476         | .700             |
|                                | (.174)        | (.087)           |
| γ                              | (see table 2) | 4,794            |
| •                              |               | (438)            |
| $\phi_{\scriptscriptstyle C}$  | .132          | Normalized to 0  |
|                                | (.024)        |                  |

A MRS ESTIMATES

## Parameter Estimates

TABLE 3 Parameter Estimates

|                              |                       | A. MKS ESTIMATES        |               |                    |  |
|------------------------------|-----------------------|-------------------------|---------------|--------------------|--|
|                              | Leis                  | ure and Consumption (1) | Pa            | rental Time<br>(2) |  |
| $\varphi_{L_{\mathfrak{l}}}$ | Child-care time of mo | thers .211<br>(.037)    | $arphi_{T_1}$ | .115<br>(.081)     |  |
| $\varphi_{L_2}$              | reponds a bit to wage | .162                    | $arphi_{T_2}$ | .503               |  |
|                              |                       | (.025)                  |               | (.201)             |  |
| $O_L$                        |                       | .535                    | $\rho_T$      | 197                |  |
|                              |                       | (.099)                  |               | (.123)             |  |
| η                            |                       | .903                    |               |                    |  |
|                              |                       | (.049)                  |               |                    |  |
| Obse                         | ervations             | 11,195                  |               | 2,901              |  |
|                              |                       | B. Preference Shifters  |               |                    |  |
|                              |                       | With Children           | With          | out Children       |  |
| $\phi_{L_1}$                 |                       | -8.925                  |               | -7.680             |  |
| -                            |                       | (1.108)                 |               | (1.013)            |  |

|                                | with Children | without Children |
|--------------------------------|---------------|------------------|
| $\phi_{L_1}$                   | -8.925        | -7.680           |
|                                | (1.108)       | (1.013)          |
| $\phi_{L_q}$                   | -9.397        | -8.816           |
|                                | (1.036)       | (1.024)          |
| $\phi_{T_i}$                   | -23.993       | N/A              |
|                                | (10.245)      |                  |
| $\phi_{T_2}$                   | -3.957        | N/A              |
|                                | (1.201)       |                  |
| $\sigma^2_{\varepsilon_{t_k}}$ | 1.476         | .700             |
|                                | (.174)        | (.087)           |
| γ                              | (see table 2) | 4,794            |
| •                              | ,             | (438)            |
| $\phi_C$                       | .132          | Normalized to 0  |
|                                | (.024)        |                  |

## Parameter Estimates

TABLE 3 Parameter Estimates

A MDS Ferry Arres

|                                                                                      | A. MRS ESTIMATES            |                          |                    |
|--------------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------------|
| Lei                                                                                  | sure and Consumption (1)    | Pa                       | rental Time<br>(2) |
| $arphi_{L_{\mathfrak{l}}}$                                                           | .211<br>(.037)              | $oldsymbol{arphi}_{T_1}$ | .115<br>(.081)     |
| $arphi_{L_2}$                                                                        | .162                        | $oldsymbol{arphi}_{T_2}$ | .503<br>(.201)     |
| $ ho_{\scriptscriptstyle L}$ leisure time is complem $_{\eta}$ (enjoy time together) | ents .535<br>(.099)<br>.903 | $ ho_T$                  | 197<br>(.123)      |
| Observations                                                                         | (.049)<br>11,195            |                          | 2,901              |
|                                                                                      | B. Preferen                 | CE SHIFTERS              | 3                  |
|                                                                                      | With Children               | With                     | out Children       |
| $\phi_{L_i}$                                                                         | -8.925<br>(1.100)           |                          | -7.680             |

|                                | With Children | Without Children |
|--------------------------------|---------------|------------------|
| $\phi_{L_1}$                   | -8.925        | -7.680           |
|                                | (1.108)       | (1.013)          |
| $\phi_{L_2}$                   | -9.397        | -8.816           |
|                                | (1.036)       | (1.024)          |
| $\phi_{T_1}$                   | -23.993       | N/A              |
|                                | (10.245)      |                  |
| $\phi_{T_2}$                   | -3.957        | N/A              |
|                                | (1.201)       |                  |
| $\sigma_{\varepsilon_{t_t}}^2$ | 1.476         | .700             |
|                                | (.174)        | (.087)           |
| γ                              | (see table 2) | 4,794            |
| •                              | , , , ,       | (438)            |
| $\phi_C$                       | .132          | Normalized to 0  |
|                                | (.024)        |                  |

## Parameter Estimates

TABLE 3 Parameter Estimates

A. MRS Estimates

|                                    | Leisure and Consumption (1) | Parental Time<br>(2) |                  |
|------------------------------------|-----------------------------|----------------------|------------------|
| $\varphi_{L_{\mathfrak{t}}}$       | .211<br>(.037)              | $arphi_{T_1}$        | .115<br>(.081)   |
| $arphi_{L_2}$                      | .162<br>(.025)              | $arphi_{T_2}$        | .503             |
| $^{ ho_L}$ child-care time is sub  | rar                         | $ ho_T$              | 197<br>(.123)    |
| η                                  | .903<br>(.049)              |                      | (12.00)          |
| Observations                       | 11,195                      |                      | 2,901            |
|                                    | B. Preference Shifters      |                      |                  |
|                                    | With Children               | With                 | nout Children    |
| $\phi_{L_{\mathfrak{t}}}$          | -8.925                      |                      | -7.680           |
| $\phi_{L_2}$                       | (1.108) -9.397              |                      | (1.013) $-8.816$ |
| $oldsymbol{\phi}_{T_{\mathbf{i}}}$ | (1.036) $-23.993$           |                      | (1.024)<br>N/A   |
| $\phi_{T_2}$                       | (10.245) $-3.957$ $(1.201)$ |                      | N/A              |
| $\sigma_{arepsilon_{t_k}}^2$       | 1.476<br>(.174)             |                      | .700<br>(.087)   |
| γ                                  | (see table 2)               |                      | 4,794<br>(438)   |
| $\phi_C$                           | .132<br>(.024)              | Normalized to        |                  |

TABLE 3 Parameter Estimates

|                     | A. MRS Estimates            |                                     |                |  |  |  |
|---------------------|-----------------------------|-------------------------------------|----------------|--|--|--|
|                     | Leisure and Consumption (1) | Parental Time<br>(2)                |                |  |  |  |
| $arphi_{L_1}$       | .211<br>(.037)              | $oldsymbol{arphi}_{T_{\mathbf{i}}}$ | .115<br>(.081) |  |  |  |
| $arphi_{L_q}$       | .162<br>(.025)              | $arphi_{T_2}$                       | .503<br>(.201) |  |  |  |
| $ ho_L$             | .535<br>(.099)              | $ ho_T$                             | 197<br>(.123)  |  |  |  |
| n CRRA =1/0.903=1.1 |                             |                                     |                |  |  |  |
| Observations        | 11,195                      |                                     | 2,901          |  |  |  |

|                                | B. Prefere                              | NCE SHIFTERS     |
|--------------------------------|-----------------------------------------|------------------|
|                                | With Children                           | Without Children |
| $\phi_{L_1}$                   | -8.925                                  | -7.680           |
|                                | (1.108)                                 | (1.013)          |
| $\phi_{L_2}$                   | -9.397                                  | -8.816           |
|                                | (1.036)                                 | (1.024)          |
| $\phi_{T_1}$                   | -23.993                                 | N/A              |
|                                | (10.245)                                |                  |
| $\phi_{T_2}$                   | -3.957                                  | N/A              |
|                                | (1.201)                                 |                  |
| $\sigma_{\varepsilon_{t_t}}^2$ | 1.476                                   | .700             |
|                                | (.174)                                  | (.087)           |
| γ                              | (see table 2)                           | 4,794            |
| •                              | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (438)            |
| $\phi_C$                       | .132                                    | Normalized to 0  |
|                                | (.024)                                  |                  |

TABLE 3 Parameter Estimates

A MDS Ferry Arres

|                                     | A. MRS E                    | A. MRS Estimates |                     |  |  |  |
|-------------------------------------|-----------------------------|------------------|---------------------|--|--|--|
|                                     | Leisure and Consumption (1) | Pa               | arental Time<br>(2) |  |  |  |
| $\varphi_{L_{i}}$                   | .211                        | $arphi_{T_1}$    | .115                |  |  |  |
|                                     | (.037)                      |                  | (.081)              |  |  |  |
| $arphi_{L_{\mathbf{z}}}$            | .162                        | $arphi_{T_2}$    | .503                |  |  |  |
|                                     | (.025)                      |                  | (.201)              |  |  |  |
| $O_L$                               | .535                        | $\rho_T$         | 197                 |  |  |  |
|                                     | (.099)                      |                  | (.123)              |  |  |  |
| 1                                   | .903                        |                  |                     |  |  |  |
|                                     | (.049)                      |                  |                     |  |  |  |
| Observations                        | 11,195                      |                  | 2,901               |  |  |  |
|                                     | B. Preferen                 | CE SHIFTER       | s                   |  |  |  |
|                                     | With Children               | Wit              | hout Children       |  |  |  |
| b <sub>L</sub> children decrease th | -8.925                      |                  | -7.680              |  |  |  |
|                                     | (1.108)                     |                  | (1.013)             |  |  |  |
| value of leisure                    | -9.397                      |                  | -8.816              |  |  |  |
|                                     | (1.036)                     |                  | (1.024)             |  |  |  |
| $T_{i}$                             | -23.993                     |                  | N/A                 |  |  |  |
|                                     | (10.245)                    |                  |                     |  |  |  |
| $T_2$                               | -3.957                      |                  | N/A                 |  |  |  |
|                                     | (1.201)                     |                  |                     |  |  |  |
| $\frac{2}{\varepsilon_{t_2}}$       | 1.476                       |                  | .700                |  |  |  |
|                                     | (.174)                      |                  | (.087)              |  |  |  |
| (                                   | (see table 2)               |                  | 4,794               |  |  |  |
|                                     |                             |                  | (438)               |  |  |  |
| $b_C$                               | .132                        |                  | Normalized to 0     |  |  |  |
|                                     | (.024)                      |                  |                     |  |  |  |

TABLE 3 Parameter Estimates

. . . . . . . .

|                                     | A. MRS Estimates              |                          |                    |  |  |  |
|-------------------------------------|-------------------------------|--------------------------|--------------------|--|--|--|
| Ī                                   | eisure and Consumption<br>(1) | Pa                       | rental Time<br>(2) |  |  |  |
| $\varphi_{L_i}$                     | .211<br>(.037)                | $oldsymbol{arphi}_{T_1}$ | .115<br>(.081)     |  |  |  |
| $arphi_{L_2}$                       | .162                          | $oldsymbol{arphi}_{T_2}$ | .503               |  |  |  |
| $ ho_L$                             | (.025)<br>.535                | $ ho_T$                  | (.201)<br>197      |  |  |  |
| η                                   | (.099)<br>.903                |                          | (.123)             |  |  |  |
| Observations                        | (.049)<br>11,195              |                          | 2,901              |  |  |  |
|                                     | B. Preferen                   | CE SHIFTER               | s                  |  |  |  |
| _                                   | With Children                 | With                     | nout Children      |  |  |  |
| $\phi_{L_i}$                        | -8.925                        |                          | -7.680             |  |  |  |
|                                     | (1.108)                       |                          | (1.013) $-8.816$   |  |  |  |
| $\phi_{L_{i}}$                      | -9.397 $(1.036)$              |                          | (1.024)            |  |  |  |
| $\phi_{	au_i}$ women have a large a | -23.993                       |                          | N/A                |  |  |  |
| $\phi_{T_n}$ advantage in child-car | e -3.957                      |                          | N/A                |  |  |  |
| $\sigma^2_{\varepsilon_{l_*}}$      | (1.201)<br>1.476              |                          | .700               |  |  |  |
|                                     | (.174)                        |                          | (.087)             |  |  |  |
| γ                                   | (see table 2)                 |                          | 4,794              |  |  |  |
|                                     | 100                           |                          | (438)              |  |  |  |
| $oldsymbol{\phi}_C$                 | .132<br>(.024)                |                          | Normalized to 0    |  |  |  |
|                                     | (.024)                        |                          |                    |  |  |  |

TABLE 3 PARAMETER ESTIMATES

| _                                                | A. MRS Estimates           |                          |                   |  |  |  |
|--------------------------------------------------|----------------------------|--------------------------|-------------------|--|--|--|
| Ī                                                | eisure and Consumption (1) | Parental Time<br>(2)     |                   |  |  |  |
| $\varphi_{L_i}$                                  | .211<br>(.037)             | $arphi_{T_{\mathrm{i}}}$ | .115<br>(.081)    |  |  |  |
| $arphi_{L_2}$                                    | .162<br>(.025)             | $arphi_{T_2}$            | .503<br>(.201)    |  |  |  |
| $ ho_L$                                          | .535<br>(.099)             | $ ho_T$                  | 197<br>(.123)     |  |  |  |
| η                                                | .903<br>(.049)             |                          |                   |  |  |  |
| Observations                                     | 11,195<br>B. Preferen      | CE SHIFTER               | 2,901             |  |  |  |
| -                                                | With Children              | Without Childre          |                   |  |  |  |
| $\phi_{L_1}$                                     | -8.925<br>(1.108)          |                          | -7.680<br>(1.013) |  |  |  |
| $\phi_{L_2}$                                     | -9.397<br>(1.036)          |                          | -8.816<br>(1.024) |  |  |  |
| $\phi_{T_{i}}$                                   | -23.993<br>(10.245)        |                          | N/A               |  |  |  |
| φ <sub>T<sub>i</sub></sub> random pref. shocks   | -3.957<br>(1.201)          |                          | N/A               |  |  |  |
| $\sigma_{\epsilon_{t_k}}^2$ more varince when ch | nildren (.174)             |                          | .700<br>(.087)    |  |  |  |
| <sup>γ</sup> are present                         | (see table 2)              |                          | 4,794<br>(438)    |  |  |  |
| $\phi_{c}$                                       | .132<br>(.024)             |                          | Normalized to     |  |  |  |

TABLE 3 Parameter Estimates

Leigure and Congumption

A. MRS Estimates

Parental Time

|                                    | Leisure and Consumption (1)      | Pa                                  | Parental Time<br>(2) |  |  |
|------------------------------------|----------------------------------|-------------------------------------|----------------------|--|--|
| $arphi_{L_1}$                      | .211                             | $oldsymbol{arphi}_{T_{\mathrm{i}}}$ | .115                 |  |  |
|                                    | (.037)                           |                                     | (.081)               |  |  |
| $arphi_{L_2}$                      | .162<br>(.025)                   | $oldsymbol{arphi}_{T_2}$            | .503                 |  |  |
|                                    | .535                             |                                     | (.201)<br>197        |  |  |
| $ ho_L$                            | (.099)                           | $ ho_T$                             | (.123)               |  |  |
| 99                                 | .903                             |                                     | (.123)               |  |  |
| η                                  | (.049)                           |                                     |                      |  |  |
| Observations                       | 11,195                           |                                     | 2,901                |  |  |
|                                    | B. Preferen                      | CE SHIFTER                          | :S                   |  |  |
|                                    | With Children                    | Wit                                 | hout Children        |  |  |
| $\phi_{L_1}$                       | -8.925                           |                                     | -7.680               |  |  |
|                                    | (1.108)                          |                                     | (1.013)              |  |  |
| $\phi_{L_2}$                       | -9.397                           |                                     | -8.816               |  |  |
|                                    | (1.036)                          |                                     | (1.024)              |  |  |
| $\phi_{T_i}$                       | -23.993                          |                                     | N/A                  |  |  |
|                                    | (10.245)                         |                                     |                      |  |  |
| $\phi_{T_2}$                       | -3.957                           |                                     | N/A                  |  |  |
|                                    | (1.201)                          |                                     |                      |  |  |
| $\sigma^2_{e_{I_t}}$               | 1.476                            |                                     | .700                 |  |  |
| fived sect line                    | (174)                            |                                     | (087)                |  |  |
| $\gamma$ Tixed cost (in $\epsilon$ | cons.) of worksee table 2) 2,900 |                                     | 4,794                |  |  |
|                                    |                                  |                                     | (438)                |  |  |
| $\phi_{c}$                         | .132                             |                                     | Normalized to        |  |  |
|                                    | (.024)                           |                                     |                      |  |  |

TABLE 3 Parameter Estimates

|                                                                           | A. MRS I                    | A. MRS Estimates                     |                   |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------|--------------------------------------|-------------------|--|--|--|--|
|                                                                           | Leisure and Consumption (1) | Parental Time<br>(2)                 |                   |  |  |  |  |
| $arphi_{L_{\mathrm{l}}}$                                                  | .211<br>(.037)              | $oldsymbol{arphi}_{T_1}$             | .115<br>(.081)    |  |  |  |  |
| $arphi_{L_2}$                                                             | .162<br>(.025)              | $arphi_{T_2}$                        | .503<br>(.201)    |  |  |  |  |
| $ ho_L$                                                                   | .535<br>(.099)              | $ ho_T$                              | 197<br>(.123)     |  |  |  |  |
| η                                                                         | .903<br>(.049)              |                                      |                   |  |  |  |  |
| Observations                                                              | 11,195  B. Preferen         | 11,195 2,901  B. Preference Shifters |                   |  |  |  |  |
|                                                                           | With Children               | Without Children                     |                   |  |  |  |  |
| $\phi_{L_1}$                                                              | -8.925                      |                                      | -7.680            |  |  |  |  |
| $\phi_{L_2}$                                                              | (1.108) $-9.397$            |                                      | (1.013)<br>-8.816 |  |  |  |  |
| $\phi_{T_i}$                                                              | (1.036) $-23.993$           |                                      | (1.024)<br>N/A    |  |  |  |  |
| $\phi_{T_2}$                                                              | (10.245) $-3.957$ $(1.201)$ |                                      | N/A               |  |  |  |  |
| $\sigma_{arepsilon_{arepsilon_{t_t}}}^2$                                  | 1.476<br>(.174)             |                                      | .700<br>(.087)    |  |  |  |  |
| γ                                                                         | (see table 2)               |                                      | 4,794<br>(438)    |  |  |  |  |
| $_{\phi_c}$ marg. util. of ${\mathfrak c}{\mathfrak c}$<br>higher when ch | .132                        |                                      | Normalized to     |  |  |  |  |

#### Outline

- Model and Mechanisms
- 2 Estimation
  - Data
  - First Step: MRS
  - Second Step: SMM
- Simulations

#### Simulations

- Simulate transitory and permanent wage changes.
   Men and women separately
- Transitory: Approximate Frisch (since little income effect)
- Permanent: Approximate Marshall

## Consumption and Labor Supply Responses

Age 30 response from 10% increase in wage in two models
 With child from age 28 + Without child from age 28 (elasticities)

TABLE 5

CONSUMPTION AND LABOR SUPPLY RESPONSES TO TRANSITORY AND PERMANENT SHOCKS

|                        |                  | TOTAL RESPONSE      |                  |                     |                  |                     | Ex               | TENSIVE VS. IN      | TENSIVE M        | ARGIN                |
|------------------------|------------------|---------------------|------------------|---------------------|------------------|---------------------|------------------|---------------------|------------------|----------------------|
|                        |                  | $C$ $H_1$           |                  | $H_2$               |                  | $E_2$               |                  | $H_2$  Employed     |                  |                      |
|                        | With Kids<br>(1) | Without Kids<br>(2) | With Kids<br>(3) | Without Kids<br>(4) | With Kids<br>(5) | Without Kids<br>(6) | With Kids<br>(7) | Without Kids<br>(8) | With Kids<br>(9) | Without Kids<br>(10) |
| Transitory:<br>Husband | .119             | .123                | .180             | .222                | 076              | .001                | 051              | .005                | 041              | .006                 |
| Wife<br>Permanent:     | .130             | .135                | .000             | 006                 | .703             | .394                | .574             | .280                | .329             | .167                 |
| Husband<br>Wife        | .393<br>.353     | .410<br>.375        | .105<br>070      | .116<br>106         | 296<br>.531      | 140<br>.304         | 193<br>.491      | 065<br>.266         | 170 $.208$       | 088<br>.086          |

Note.—Model-simulated responses for transitory and permanent shocks.

- 1. Consumption response consistent with buffer-stock theory: transitory shocks have little effect
- 2. Women have larger responses than men
- 3. Children increases response for women
- 4. Extensive margin important (for women)

TABLE 6
LEISURE AND PARENTAL TIME RESPONSES TO TRANSITORY AND PERMANENT SHOCKS

|             | $L_1$               |                        |                     | $L_2$                  | $T_1$               | $T_2$               |  |
|-------------|---------------------|------------------------|---------------------|------------------------|---------------------|---------------------|--|
|             | With<br>Kids<br>(1) | Without<br>Kids<br>(2) | With<br>Kids<br>(3) | Without<br>Kids<br>(4) | With<br>Kids<br>(5) | With<br>Kids<br>(6) |  |
| Transitory: |                     |                        |                     |                        |                     |                     |  |
| Husband     | 230                 | 231                    | 003                 | 001                    | 095                 | .131                |  |
| Wife        | 007                 | .006                   | 217                 | 309                    | .033                | 538                 |  |
| Permanent:  |                     |                        |                     |                        |                     |                     |  |
| Husband     | 131                 | 120                    | .078                | .110                   | 067                 | .261                |  |
| Wife        | .085                | .110                   | 151                 | 238                    | .058                | 443                 |  |

Note.—Model-simulated responses for transitory and permanent shocks.

- 1. Leisure elasticities similar between men/women w/w.o. kids and compliments (same-sign cross trans ela)
- 2. Permanent  $\rightarrow$  reduction in both own leisure and child care time and opposite sign cross elasticity  $\rightarrow$  specialization.
- 3. Women have large responses on child-care time from own and male wages.

-2.6%

+.7%

#### Consumption Insurance

Parental time

TABLE 7 Insurance Effects

| Consumption<br>After-tax and transfers household earnings<br>Before-tax (after-transfers) household earnings | -3.9<br>-5.0<br>-5.0 | 0%    |
|--------------------------------------------------------------------------------------------------------------|----------------------|-------|
|                                                                                                              | Husband              | Wife  |
| Earner's average share of before-tax earnings                                                                | .66                  | .34   |
| Earner's before-tax and transfers earnings response:                                                         | -10.7%               | +2.0% |
| Hours                                                                                                        | -1.0%                | +3.0% |
| Leisure                                                                                                      | +1.3%                | 8%    |

NOTE.—Insurance decomposition calculations based on model-simulated responses to a 10 percent permanent decline in the husband's wage.

- 1. Some consumption insurance (3.9% drop from 10% drop in wages)
- 2. Substitution effect dominates (-1% in hours worked)
- 3. Sizable cross-effect (+3% in work hours of women)
- 4. Leisure margin most active for men, parent time most for women.

#### Counterfactual Simulations

#### Two counterfactuals with same budget effects:

- 1. unconditional child-subsidy,  $b(z) \uparrow$
- 2. employment subsidy,  $\gamma(z)\downarrow$

|                                      | P        |                    | LE 10<br>XPERIMEN  | NTS                |           |                 |                    |                    |
|--------------------------------------|----------|--------------------|--------------------|--------------------|-----------|-----------------|--------------------|--------------------|
|                                      | C<br>(1) | H <sub>1</sub> (2) | H <sub>2</sub> (3) | E <sub>2</sub> (4) | $L_1$ (5) | $L_2$ (6)       | T <sub>1</sub> (7) | T <sub>2</sub> (8) |
|                                      | A. 1     | Experim            |                    | condition          |           | ubsidy fo<br>en | r Fami             | lies               |
| Total                                | .6%      | 4%                 | 7%                 | 4%                 | .4%       | .3%             |                    |                    |
| Before young children                | .9%      | 4%                 | 5%                 | 2%                 | .4%       | .4%             |                    |                    |
| With young children                  | 1.3%     | 6%                 | -1.8%              | -1.0%              | .8%       | .7%             | .2%                | 1.0%               |
| After young children                 | .1%      | 1%                 | 1%                 | 1%                 | .1%       | .1%             |                    |                    |
| Consumption equivalent utility value | .95%     |                    |                    |                    |           |                 |                    |                    |
|                                      | В        | . Experi           |                    | Employn<br>Young ( |           | ubsidy fo<br>en | r Wive             | es                 |
| Total                                | .1%      | 2%                 | 1.9%               | 4.6%               | .2%       | 5%              |                    |                    |
| Before young children                | .9%      | 4%                 | 5%                 | 1%                 | .4%       | .4%             |                    |                    |
| With young children                  | 3%       | 3%                 | 6.5%               | 13.1%              | .3%       | -1.7%           | .3%                | -5.6%              |
| After young children                 | .1%      | 1%                 | 1%                 | ~0%                | .1%       | .1%             |                    |                    |
| Consumption equivalent utility value | .17%     |                    |                    |                    |           |                 |                    |                    |

## Exam: Upload

#### You should hand in a single zip-file with all assignments and the exam.

The zip-file should be named after your KU username (e.g. abs123) and have the following folder and file structure:

#### ${\bf Assignment\_1} \setminus$

 $Assignment\_1.pdf - with \ text \ and \ all \ results$ 

\*files for reproducing the results\*

#### Assignment\_2\

Assignment\_2.pdf - with text and all results

\*files for reproducing the results\*

#### Assignment\_3\

Assignment\_3.pdf - with text and all results

\*files for reproducing the results\*

#### Exam\

Exam.pdf - with text and all results

\*files for reproducing the results\*

Individual exam!

Similar flavor as assignments

### Exam: Tips

Try to answer all questions
 48 hours, but thought of as 2 × 9 work days
 Make sure that your computer+Python works!

## Exam: Tips

- Try to answer all questions
   48 hours, but thought of as 2 × 9 work days
   Make sure that your computer+Python works!
   Similar flavor as assignments
- If stuck: Move on

### Exam: Tips

- Try to answer all questions
  - 48 hours, but thought of as  $2 \times 9$  work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:Move on
- If dependency across questions:

Write clearly how you move forward Often you can "easily" go back and change stuff if time

#### Exam: Tips

- Try to answer all questions
  - 48 hours, but thought of as  $2 \times 9$  work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:
- Move on
- If dependency across questions: Write clearly how you move forward Often you can "easily" go back and change stuff if time
- Write clearly! I can only grade based on what you write!

# Try to answer all questions

- 48 hours, but thought of as  $2 \times 9$  work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck: Move on
- If dependency across questions:
   Write clearly how you move forward
   Often you can "easily" go back and change stuff if time
- Write clearly!I can only grade based on what you write!
- If unsure about how to understand the question: Write clearly what you do and why!

- Try to answer all questions
  - 48 hours, but thought of as  $2 \times 9$  work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:

Move on

- If dependency across questions:
  - Write clearly how you move forward Often you can "easily" go back and change stuff if time
- Write clearly! I can only grade based on what you write!
- If unsure about how to understand the question: Write clearly what you do and why!
- Thanks for now Good luck!

#### References I

- Blundell, R., L. Pistaferri and I. Saporta-Eksten (2018): "Children, Time Allocation, and Consumption Insurance," Journal of Political Economy, 126(S1), S73-S115.
- SIMINSKI, P. AND R. YETSENGA (2022): "Specialization, ComparativeAdvantage, and the Sexual Divisionof Labor," Journal of Labor Economics, 40(4), 851–887.