

DS-DC-13 LECTURE NOTES

Jim Simpson Data Scientist, Sotera

LESSON 06

LESSON 6:

LINEAR REGRESSION

LEARNING OBJECTIVES

- DEFINE SIMPLE LINEAR REGRESSION
- D BUILD A LINEAR REGRESSION MODEL USING SCIKIT-LEARN
- UNDERSTANDING MULTICOLLINEARITY IN

 A MULTIPLE REGRESSION

Dependent Variable Causes (ndependent) Change Input datpat Feature Prediction Factor (categorical) Covariate (continuous) Effect Cause Predictor Outcome Explained Explanatory Measured Manipulated Responding Controlled

Addressing non-linearly

Non-linear Model

non-linear of Transformation) -> linear > [Linear)

Normalization Standardization

M20 621

ACTIVITY: GENERATE SINGLE VARIABLE LINEAR MODEL PLOTS

DIRECTIONS (15 minutes)

- Update and complete the code in the starter notebook to use Implot and display correlations between body weight, bodywt and two dependent variables: sleep_rem and awake.
- 2. For each, generate linear models for the variables as-is and log-transformed.

DELIVERABLE

Two plots 1,9

SLIKIT-LEARN FIT-PREDICT MODEL

Instantian of an Estimator Object > [fit] Xnew > predict() / ynew
model Im = Linear Regression()

Instantiation Object

vector χ y = mx + cmatrix χ $y = \beta \chi + \alpha$