

8W CAR RADIO AUDIO AMPLIFIER

The TDA2002 is a class B audio power amplifier in Pentawatt[®] package designed for driving low impedance loads (down to 1.6Ω).

The device provides a high output current capability (up to 3.5A), very low harmonic and cross-over distortion.

In addition, the device offers the following features:

- very low number of external components
- assembly ease, due to Pentawatt[®] power package with no electrical insulation requirement
- space and cost saving
- high reliability
- flexibility in use

Protection against:

- a) short circuit:
- b) thermal over range;
- c) fortuitous open ground;
- d) load dump voltage surge.

See TDA 2003 for more complete information.

ABSOLUTE MAXIMUM RATINGS

٧¸	Peak supply voltage (50 ms)	40	٧
V _s	DC supply voltage	28	V
V _s	Operating supply voltage	18	V
10	Output peak current (repetitive)	3.5	Α
l _o	Output peak current (non repetitive)	4.5	Α
P _{tot}	Power dissipation at T _{case} = 90°C	15	W
T_{stg}, T_{j}	Storage and junction temperature	-40 to 150	°C

Fig. 1 - Application circuit

ELECTRICAL CHARACTERISTICS (V_s= 14.4V, T_{amb}= 25°C unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
DC CI	HARACTERISTICS (Refer to DC te	st circuit)				
V _s	Supply voltage		8		18	V
v _o	Quiescent output voltage (pin 4)		6.4	7.2	8	V
ld	Quiescent drain current (pin 5)			45	80	mA

AC CHARACTERISTICS (Refer to AC test circuit, G_v = 40 dB)

Po	Output power		d = 10%	$f = 1 \text{ kHz}$ $R_{\perp} = 4\Omega$ $R_{\perp} = 2\Omega$	4.8 7	5.2 8		w
			V _s = 16V	$R_L = 4\Omega$ $R_L = 2\Omega$		6.5 10		w w w
Vi(rms)	Input saturation voltage				600	•		mV
Vi	Input sensitivity		P _o = 0.5W P _o = 0.5W P _o = 5.2W P _o = 8W	f = 1 kHz R _L = 4Ω R _L = 2Ω R _L = 4Ω R _L = 2Ω		15 11 55 50		m > m > m > m >
В	Frequency response (-3 dB)		R _L = 4Ω	P _o = 1W	40 to 15 000			Hz
d	Distortion		P _o = 0.05 to 3 P _o = 0.05 to 5	f = 1 kHz 3.5W R _L = 4Ω 5W R _L = 2Ω	·	0.2 0.2		% %
Ri	Input resistance (pin 1)		f = 1 kHz		70	150		kΩ
G _V	Voltage gain (open loop)		R _L = 4Ω	f = 1 kHz		80		dB
G _V	Voltage gain (closed loop)		R _L = 4Ω	f = 1 kHz	39.5	40	40.5	dB
e _N	Input noise voltage	(*)				4		μ٧
iN	Input noise current	(*)				60		рΑ
η	Efficiency		P _o = 5.2W P _o = 8W	f = 1 kHz R _L = 4Ω R _L = 2Ω		68 58		% %
SVR	Supply voltage rejection		$R_{L} = 4\Omega$ $R_{g} = 10 \text{ k}\Omega$ $f_{ripple} = 100 \text{ k}\Omega$	Hz	30	35		dB

^(*) Filter with noise bandwidth: 22 Hz to 22 KHz.