

Chapter 14 Reliability Growth Testing

Reliability Growth Process Duane Growth Model AMSAA Model

The Reliability Growth Cycle

The Beginnings

In 1962, J. T. Duane while with GE Jet Engines published a report in which he presented failure data of different systems during their development programs.

While analyzing the data, it was observed that the cumulative MTBF versus cumulative operating time followed a straight line when plotted on log-log paper

Duane, J. T., "Learning Curve Approach To Reliability Monitoring," *IEEE Transactions on Aerospace*, Vol. 2, pp. 563-566, 1964.

Duane Growth Model

T/n(T) is the cumulative MTTF.

n(T) = accumulated failures through time T.

n(T)/T is the cumulative failure rate

Duane Growth Model

$$ln[T/n(T)] = a + b ln T$$

$$MTTF_c = T/n(T) = e^{a+b \ln T} = e^a T^b = kT^b$$

$$n(T) = (1/k) \times T^{1-b}$$

$$\frac{d n(T)}{dT} = \lambda(T) = \frac{(1-b)}{k} T^{-b}$$

$$MTTF_i = k \frac{T^b}{1-b} = \frac{MTTF_{cum}}{1-b}$$

Least-Squares Curve Fit

n

let
$$x_i = \ln(t_i)$$
, $y_i = \ln[t_i/n(t_i)]$; and $\sum_{x=\frac{i-1}{n}}^{n} x_i$, $y_i = \sum_{x=\frac{n}{n}}^{n} y_i$

Least-Squares Curve Fit

Then

L-S Estimates

$$k = e^{\hat{a}}$$

A new product still in the development stage undergoes reliability growth testing. Each test-fix cycle consists of 50 hours of testing with the following failures per cycle observed in order: 24, 17, 9, 5, 3, 2, 1.

Estimate the current MTTF and the additional test time required to obtain an MTTF goal of 20 hours.

T	N(T)	T/N(T)	LOG T	LOG T/N(T)	x(i)y(i)	x(i) ²
50.0	24.0	2.0833	3.9120	0.7340	2.8713	15.3039
100.0	41.0	2.4390	4.6052	0.8916	4.1060	21.2076
150.0	50.0	3.0000	5.0106	1.0986	5.5047	25.1065
200.0	55.0	3.6364	5.2983	1.2910	6.8400	28.0722
250.0	58.0	4.3103	5.5215	1.4610	8.0670	30.4865
300.0	60.0	5.0000	5.7038	1.6094	9.1799	32.533
350.0	61.0	5.7377	5.8579	1.7471	10.2342	34.3154
		TOTALS=	35.90933	8.832679	46.80305	187.025

Chapter 14 10

xbar = 5.1299 and ybar = 1.261811

$$b = [46.803 - 5.1299 (8.832679)] / [187.0252-7(5.1299)^2 = .53, \\ a = 1.261811 - .53 (5.1299) = -1.457 \\ therefore K = e^{-1.457} = .233 \ .$$

$$MTTF_c = .233 (350)^{.53} = 5.196$$

 $MTTF_i = 5.196/(1-.53) = 11.0$.
 $r = .97$

$$T_{20} = \left[\frac{(1 - .53)20}{.233} \right]^{\frac{1}{.53}} = 1071$$
 1071 - 350 = 721 additional hr.

More about the Duane Model

- The Duane model has been used throughout the 1960s and 1970s.
- It models reliability growth well enough to predict the future reliability
- It is strictly an empirical model
- Provides no insight into the cause of any growth (or deterioration)
- It assumes that having a reliability growth program will result in a growth curve that is log-linear

Chapter 14 12

Along Came Crow

- L. H. Crow derived the maximum likelihood estimates to the Duane model
 - "Reliability Analysis for Complex, Repairable Systems" (1974),
- This provided for statistical analysis such as hypothesis testing and confidence interval estimation.
- This statistical based parameterization is referred to as the AMSAA (N.H.P.P.) model
- The AMSAA model is also the power-law process model

More to do with the AMSAA Model

- The AMSAA model has the same mathematical form as the Duane model
 - i.e. the cumulative number of failures is linear when plotted on In-In scale.
- However the AMSAA model is statistically based and the Duane model is empirically based
 - The Duane model: failure rate is linear on In-In scale.
 - The AMSAA model: failure intensity of the underlying nonhomogeneous Poisson process (NHPP) is linear on In-In scale.

Chapter 14 14

AMSAA Model

AMSAA MODEL

Poisson process

$$mean = \lambda_i (s_i - s_{i-1}).$$

 N_i = number of failures during ith test period

Nonhomogeneous Poisson Process (NHPP)

Prob[
$$n(t) = n$$
] = $\frac{\lambda(t)^n e^{-\lambda(t)}}{n!}$

$$\lambda_{1}t \text{ for } 0 \leq t < s_{1}$$

$$\lambda_{1}s_{1} + \lambda_{2}(t - s_{1}) \text{ for } s_{1} \leq t < s_{2}$$

$$\lambda_{1}s_{1} + \lambda_{2}s_{2} + \lambda_{3}(t - s_{2}) \text{ for } s_{2} \leq t < s_{3}$$

$$etc.$$

intensity function: $\rho(t) = \lambda_i$ for $s_{i-1} < t < s_i$

Power Law Process

approximate intensity function with:

$$\rho(t) = abt^{b-1} ; t > 0 ; a,b > 0$$

expected cumulative number of failures:

$$m(t) = \int_{0}^{t} abx^{b-1} dx = at^{b}$$

$$MTTF = \left[abt_{0}^{b-1}\right]^{-1}$$

MLE - Parameter Estimation

Type I data:

$$\hat{b} = \frac{n}{n \ln T - \sum_{i=1}^{n} \ln t_i}$$

$$\hat{a} = \frac{n}{T^{\hat{b}}}$$

Type II data:

$$\hat{b} = \frac{n}{(n-1)\ln t_n - \sum_{i=1}^{n-1} \ln t_i}$$

$$\hat{\rho}(T) = \hat{ab} T^{\hat{b}-1}$$

$$\stackrel{\wedge}{MTTF}_{i} = \frac{1}{\hat{\rho}(T)}$$

Confidence Intervals
$$\frac{L}{\hat{\rho}(T)} \le MTTF \le \frac{U}{\hat{\rho}(T)}$$

Type I Testi	ing deg	gree of confid	ence	
sample N	0.90	0.90	0.95	0.95
	L	U	L	U
8	.436	2.981	.382	3.609
9	.457	2.750	.403	3.285
10	.476	2.575	.421	3.042
11	.492	2.436	.438	2.852

Example 14.3 - Type I test

Two prototype engines are tested concurrently with Type I testing with T=500 hours. The first engine accumulates a total of 200 hours and the second engine accumulates 300 hours. Times of failures (*) on each engine are identified below:

Engine #1	Engine #2	Cumulative
<u>hours</u>	<u>hours</u>	<u>hours</u>
5.6*	0	5.6
10.2	8.6*	18.8
20.4*	18.1	38.5
41.8*	36.0	77.8
72.3	61.5*	133.8
88.5*	75.0	163.5
120.0*	105.4	225.4
170.7	152.8*	323.5
190.2	181.3*	371.5
200.0	256.6*	456.6
200.0	300.0	500.0

Chapter 14 20

Failure Time	(natural)Log Failure Time	solution:
5.6	1.722767	
18.8	2.933857	$\hat{h} = \frac{10}{10}$
38.5	3.650658	10 ln(500) - 45.89302
77.8	4.354141	= .615268
133.8	4.896346	013200
163.5	5.096813	
225.4	5.417876	$\hat{a} = \frac{10}{500^{.615268}} = .218479$
323.5	5.779199	$\hat{a} = \frac{10}{615260} = .218479$
371.5	5.917549	$500^{.613268}$
456.6	6.123808	
	total 45.89302	
	$\rho(T) =$	$.218479x.615268t^{.615268-1}$
	= .1344	23 t ⁻ .384732

Example 14.3 - Type I test

at the conclusion of the testing:

solution:

$$\rho(500) = .134423 (500)^{-.384732} = .012305$$

$$MTTF_i = \frac{1}{\rho(500)} = 81.265 \, hrs$$

A 90 percent confidence interval for the MTTF:

$$(.476 \times 81.26, 2.575 \times 81.26) = (38.68, 209.24)$$

Example 14.4 - Type II test

	Failure Time (1	natural) Log Failure Time
Tatimata the ANACAA neremeters t	From 3	1.098612
Estimate the AMSAA parameters f	10m ₁₅	2.70805
the following failure times:	35	3.555348
(test terminated after 15 failures.	58	4.060443
(toot torrimiated artor 10 randroor	113	4.727388
15	187	5.231109
$\hat{b} = -$	225	5.4161
$\hat{b} = \frac{15}{14 \ln(12035) - 79.24599}$	465	6.142038
= .28685	732	6.595781
	1123	7.023759
15	1587	7.369601
$\hat{a} = \frac{15}{12035^{.28685}} = 1.013$	2166	7.680638
$12035^{.28685}$	5423	8.598404
	8423	9.038721
	T	otal 79.24599
$\hat{\rho}(t) = 1.013 \times .28685 t^{-0.28}$	8685-1) = .290	$058t^{71315}$

Example 14.4 - Type II test

$$MTTF = \frac{1}{\hat{\rho}(12035)} = 2797$$

A 90% confidence interval for the MTTF is given by:

$$(.6299 \times 2797, 2.182 \times 2797) = (1762, 6103)$$

$$\hat{\rho}(t) = 1.013 \times .28685 t^{-(.28685-1)} = .29058 t^{-.71315}$$

Estimated MTTF_i at the conclusion of the test program (25,000 cumulative hours):

$$MTTF_i = [.29058 (25,000)^{-.71315}]^{-1} = 4,711$$

Total test hrs to reach goal (5,000 hr.):

$$t = [(5,000 \text{ x} .29058)^{-1}]^{-1/.71315} = 27,176$$

Additional test hrs required = 27,176 - 25,000 = 2176.

Another Example - Machine Failures under Minimal Repair

A drill press manufactured by the Kanot Faile Company and costing \$ 1200 has experienced **minimal** repairable failures on the following days since it was first installed 2 1/4 years ago (820 days):

150 280 378 490 552 601 641 690 726 770 790

Management Displeasure

Management is displeased with the recent increase in the number of failures. It cost them \$160 a failure for labor and parts. Should it be replaced?

Chapter 14 27

Machine Failures Power Law Intensity Function

AMSAA Reliability Growth Model & Power Law Process (NHPP)

	<i>J</i>	,
CUM	LOG CUM	
FAILURE TIME	FAILURE TIME	
150	5.010635	
280	5.634789	$\hat{h} = \frac{11}{20000000000000000000000000000000000$
378	5.934894	$b = \frac{11}{11\ln(820) - 68.392} = 2.033$
490	6.194406	11111(020) 00.372
552	6.313548	
601	6.398595	$\hat{a} = \frac{11}{820^{2.033}} = 1.308 x 10^{-5}$
641	6.463029	$\hat{a} = \frac{11}{2.022} = 1.308 \times 10^{-5}$
690	6.536692	$820^{2.033}$
726	6.58755	
770	6.64639	
790	6.672033	
TOTAL	68.39256	
(Nbr data pts) N	$\sqrt{1 - 11}$	

(Nor data pts) N = 11

LOG T OR LOG T(N) = 6.709304

Analysis of the situation

- 1. Current (instantaneous) MTBF = 36 2/3 days
- 2. Since b = 2.03 > 1, drill is deteriorating
- 3. The expected number of failures over the next 6 months (days 820 1000) is:

Time	Cum nbr failures	MTBF	Reliability
820 1000	11.0 16.5	36.6 inst 29.8 inst	1.647E-05 6.900E-08
Interval	5.5	32.9 cum	0.900E-08 .0042 (no failures)

90% CI: $18.0 < MTBF_I < 89.3$

Chapter 14 29

Replacement & PM Model

Power law process

unit of time:

days

a = 0.00001308

b = 2.033

replacement cost

Cu = 1,200

cost of a failure

Cf = \$160

cost of a PM =\$85

time to replace =669.2

days

min cost per day

\$3.53

time between PM

=182.0

days

min cost per day

\$0.92

Graphical Analysis

cost per unit of time

cost per unit of time

Parameter Estimation with Grouped Data

Let n_i be the number of failures that occurred in the interval (t_{i-1}, t_i) where t_i is the accumulated test time at the end of the i^{th} test cycle, i = 1,...,N. Assuming a NHPP with the power law intensity function $\rho(t) = abt^{b-1}$, the maximum likelihood estimates are found from:

$$\hat{a} = \frac{\sum_{i=1}^{N} n_i}{t_N^{\hat{b}}} \qquad \sum_{i=1}^{N} n_i \left[\frac{t_i^{\hat{b}} \ln t_i - t_{i-1}^{\hat{b}} \ln t_{i-1}}{t_i^{\hat{b}} - t_{i-1}^{\hat{b}}} - \ln t_N \right] = 0$$
 solve numerically for \hat{b} .

Using the data in Example 14.2, Eq. (14.27) was solved numerically for $\hat{b} = .4185$

thereby giving
$$\hat{a} = \frac{61}{350^{.4185}} = 5.2558$$

The intensity function is $\rho(t) = (5.2558)(.4185)t^{-.5815}$

The instantaneous MTBF at the end of the last test cycle is

$$\left[(5.2558)(.4185)(350)^{-.5815} \right]^{-1} = 13.71$$

Compared to the estimated MTTF_i from the Duane model of 11.0.

Chapter 14 Reliability Growth Testing

Reliability Growth Process Duane Growth Model AMSAA Model

