Réponses aux questions des étudiants

Pascal WANG, pascal.wang.tao@ecust.edu.cn

Cours du 21 octobre 2024 (Capacité thermique des solides)

Q : Est-ce que la capacité thermique molaire $C_{V,m}$ des gaz diatomiques est la même pour un gaz composé d'un seul type d'atomes (exemple : H_2 , Cl_2 , Br_2 etc.) que pour un gaz composé de deux types d'atomes différents (exemple : HCl, HBr, NO . . .)?

Molécule	T_v (K)	T_r (K)
H ₂ D ₂ HD Cl ₂ Br ₂ O ₂ **) N ₂ CO NO(**) HCl HBr	6215 4394 5382 808 463 2256 3374 3103 2719 4227 3787	85,3 42,7 64 0,35 0,12 2,1 2,9 2,8 2,5 15,0 12,0

(Source: Diu, Physique Statistique)

R : C'est le même raisonnement dans les deux cas. Si la température est grande par rapport à la température de rotation $T\gg T_{rot}$ (noté T_r dans le tableau ci-dessus), alors il faut ajouter R à $C_{V,m}$. Si la température est grande par rapport à la température de rotation $T\gg T_{vib}$ (noté T_v dans le tableau ci-dessus), alors il faut ajouter R à $C_{V,m}$. Ensuite pour différentes espèces, les valeurs de T_{rot} et T_{vib} sont différentes. Typiquement, à température ambiante (300 K), la rotation est activée et la vibration est gelée et donc $C_{V,m}=5R/2$ (exemples : N_2,D_2,H_2,CO,HCl,HBr). Il y a quelques exceptions comme Br_2 où $T_{vib}=463K$ et I_2 où $T_{vib}=310K$ où la vibration commence à être activée et donc la capacité thermique se situe entre 5R/2 et 7R/2.

Cours du 14 octobre 2024 (Théorème d'équipartition, capacité thermique)

Q: We spent almost the whole lecture on (quadratic) degrees of freedom. Why do we care about or need to calculate (quadratic) degrees of freedom? Why calculate <aq²>? How could a coefficient multiplied with the square of a degree of freedom come out an actual, meaningful physical quantity?

R : Degrees of freedom that are quadratic in energy are very common in physics. For example, the expression for the kinetic energy for a particle in a gas $E_c = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2)$ contains three quadratic degrees of freedom v_x , v_y and v_z . So computing $< aq^2 > = k_BT/2$ in an abstract way implies, by setting a = m/2 and $q = v_x$ then $q = v_y$, then $q = v_z$ in succession, that $< E_c > = \frac{3}{2}k_BT$. So multiplying a = m/2 with v_x^2 , v_y^2 and v_z^2 help us compute the kinetic energy, which in turn informs us on other relevant physical quantities like the heat capacity $c_V = \partial < E > /\partial T)_V$ etc. Another seminal example in physics is

the harmonic oscillator, whose energy is $E=\frac{1}{2}m\dot{x}^2+\frac{1}{2}m\omega^2x^2$ and contains two quadratic degrees of freedom x and \dot{x} . By setting $a=m\omega^2/2$ and q=x, $< aq^2>$ then becomes the mean potential energy of the oscillator and the equipartition theorem tells us that in the canonical ensemble, it is equal to $k_BT/2$, which is the same as the mean of the kinetic energy (in 1 dimension), hence the term "equipartition".

Q : Comment passer de l'expression $p_i=e^{-E_i/k_BT}/Z$ à la distribution des vitesses (vectorielles) $\mathrm{d}^3P(\overrightarrow{v})=\mathrm{d}^3P(v_x,v_y,v_z)=C\,.\,e^{-mv^2/2k_BT}\mathrm{d}v_x\mathrm{d}v_y\mathrm{d}v_z\,\mathrm{d}'\mathrm{un}$ gaz parfait classique ? (From $p_i=e^{-E_i/k_BT}/Z$, how do you deduce the following probability $\mathrm{d}^3P(\overrightarrow{v})=\mathrm{d}^3P(v_x,v_y,v_z)=C\,.\,e^{-mv^2/2k_BT}\mathrm{d}v_x\mathrm{d}v_y\mathrm{d}v_z$ for a classical ideal gas?)

R : L'expression $p_i = e^{-E_i/k_BT}/Z$ est utilisée pour des niveaux d'énergie <u>discrets</u>. Pour des niveaux d'énergie <u>continus</u> comme l'énergie cinétique d'une particule d'un gaz parfait $E = E_c = \frac{1}{2} m \overrightarrow{v}^2$, il faut adapter cette expression en considérant l'<u>espace des phases (phase space)</u>, c'est-à-dire l'<u>espace des degrés de liberté (space spanned by the degrees of freedom)</u>, qui est aussi <u>l'espace des micros-états (space constituted by the microstates)</u>. Ici, les degrés de liberté sont (v_x, v_y, v_z) donc l'espace des phases est à 3 dimensions (équivalent à \mathbb{R}^3). Les propriétés de l'ensemble canonique se traduisent par : la probabilité $p(\overrightarrow{v} \in [v_x, v_x + \mathrm{d}v_x] \times [v_y, v_y + \mathrm{d}v_y] \times [v_z, v_z + \mathrm{d}v_z]$) qui est la probabilité de l'événement "le vecteur vitesse \overrightarrow{v} appartient au cube de micro-états centré en (v_x, v_y, v_z) et de taille $\mathrm{d}v_x \cdot \mathrm{d}v_y \cdot \mathrm{d}v_z$ " est proportionnelle au facteur de Boltzmann. Cette probabilité s'écrit

$$p(\overrightarrow{v} \in [v_x, v_x + \mathrm{d}v_x] \times [v_y, v_y + \mathrm{d}v_y] \times [v_z, v_z + \mathrm{d}v_z]) = \frac{e^{-mv^2/2k_BT}}{Z} \mathrm{d}v_x \mathrm{d}v_y \mathrm{d}v_z$$
 avec Z la fonction de partition (en fait la constante C est l'inverse de la fonction de partition $C = 1/Z$). Autrement dit, les résultats dans l'ensemble canonique impliquent que $\frac{e^{-mv^2/2k_BT}}{Z}$ est la densité de probabilité dans l'espace des micro-états (v_x, v_y, v_z) .

Ensuite, dans un second temps, pour trouver la densité de probabilité en énergie f(E) telle que la probabilité que l'énergie du système se trouve dans [E,E+dE] soit égale à $p(Energie \in [E,E+dE]) = f(E) \mathrm{d}E$, il faut trouver la densité d'état $\rho(E)$ et alors $f(E) = \rho(E) \cdot e^{-E/k_BT}/Z$. Pour un exemple de calcul de $\rho(E)$, voir le TD1 et son corrigé (année 2022) où l'espace des micro-états est constitué du vecteur d'onde (k_x,k_y,k_z) et le lien entre $\mathrm{d}E$ et $\mathrm{d}k$ permet de calculer $\rho(E)$.

TD2 - Modern physics - 12 octobre 2024

Q: Pourquoi $e^{-\beta\mu_B B_z} + e^{+\beta\mu_B B_z} = 2ch(\beta\mu_B B_z)$?

R: Le cosinus hyperbolique (hyperbolic cosine) est défini par $ch(x) = \cosh(x) = (e^x + e^{-x})/2$.

Q : Nombre quantique azimutal ℓ ?

R : Pour une orbitale s, ℓ =0. Pour une orbitale p, ℓ =1. Pour une orbitale d, ℓ =2. A une couche de nombre quantique principal n est associée des nombres quantiques azimutaux qui vont de ℓ =0 à ℓ =n-1.

Q : Pourquoi le champ magnétique \overrightarrow{B} dépend de la température?

R : Dans le TD, le champ magnétique est indépendant de la température, il est fixé séparément. On examine les limites haute/basse température et champ fort/champ faible. Comme la fonction de partition ne dépend que du seul paramètre sans dimension $x=\mu_B B/k_B T$, diminuer la température T a un effet équivalent sur le système à faire augmenter B et vice-versa.

Q : Pourquoi une entropie nulle S=0 implique des spins alignés avec \overrightarrow{B} ?

R : De manière générale, une entropie nulle signifie une <u>information complète</u> sur le système : le sytème est dans un certain <u>état avec probabilité 1</u>. Ici, cet état correspond à celui qui <u>minimise l'énergie du système</u>, c'est-à-dire lorsque les spins sont alignés avec le champ magnétique \overrightarrow{B} (ce qui minimise $E=-\overrightarrow{\mu}\cdot\overrightarrow{B}$ avec $\overrightarrow{\mu}$ le moment magnétique). Lorsqu'au contraire, la température est plus élevée, l'agitation thermique fait que le système peut prendre d'autres états que celui qui minimise l'énergie.

Q: Comment distinguer les ensembles (statistiques)?

R : Il faut regarder quels paramètres sont fixés : par exemple si E, V, N sont fixés, cela correspond à l'ensemble microcanonique. Si T, V, N, sont fixés, cela correspond à l'ensemble canonique.

Q : Dans l'exercice 1, pourquoi $Z_N = Z_1^N$?

R : Les atomes d'argents sont indépendants donc on peut factoriser la fonction de partition comme $Z_N = \prod_{i=1}^N Z_i$. Comme ils sont aussi identiques, $\forall i, Z_i = Z_1$ donc $Z_N = Z_1^N$.

Q : Comment obtenir la densité d'état ρ à partir du TD1?

R : Voici les grandes étapes pour arriver à la densité d'états

Vous pouvez aussi voir le fichier - TD1 Corrigé.pdf dans le dossier "2021-1学期课件" pour un raisonnement plus détaillé.

Pour le gaz parfait dans une boîte de taille LxLxL, l'energie cinétique quantifiée d'une particule s'écrit $E = \frac{h^2 k^2}{2m}, \quad \text{avec} \quad k = \left(\frac{m_{\chi}}{L}, \frac{2\pi}{L}, \frac{m_{\chi}}{L}, \frac{2\pi}{L} \right) \quad \text{of} \quad \frac{m_{\chi}}{m_{\chi}}, \frac{m_{\chi}}{m_{\chi}}, \frac{\pi}{m_{\chi}} \in \mathbb{Z} \quad \text{des entiers}$

donc dans l'espace des vecteurs d'onde \vec{k} , un mode occupe un volume $\left(\frac{277}{L}\right)^3$ et donc la densité d'états $g(\vec{k})$ dans l'espace \vec{k} est $dN = g(\vec{k}) d^3 \vec{k} = \frac{1}{\left(\frac{2\pi}{2\pi}\right)^3} d^3 \vec{k} = \left(\frac{L}{2\pi}\right)^3 d^3 \vec{k}$

on déduit p(E) en changeaut de variable de R vers k=1R1 puis vers 1'énergie E

$$dN = \left(\frac{L}{2\pi}\right)^3 d^3\vec{k} = \left(\frac{L}{2\pi}\right)^3 4\pi k^2 dk = \left(\frac{L}{2\pi}\right)^3 4\pi \frac{2mE}{\hbar^2} \frac{1}{\hbar} \sqrt{\frac{m}{2E}} dE = \frac{3m^3 k^2}{\pi^2 \sqrt{2} + 3} \sqrt{\frac{E}{2m}} dE$$

$$\frac{Coordonnes}{spheriques}, k = |\vec{k}| = \frac{\hbar^2 k^2}{2m}, dE = \frac{\hbar^2 k}{m} \sqrt{\frac{2mE}{\hbar^2}} dk$$

$$= \hbar \sqrt{\frac{2E}{m}} dk$$

$$= \hbar \sqrt{\frac{2E}{m}} dk$$