The PAR Process

Problem Statement

We have encountered two definitions of linear independence: one that references spans and removing a vector, and one that talks about non-trivial linear combinations. Call the former, the span definition of linear independence, definition A and the latter, the non-trivial linear combination definition of linear independence, definition B.

- 1. Show that definition A and definition B are equivalent. (To show this, you should show that definition A implies definition B and that definition B implies definition A. Clearly indicate what you intend to show before you show it.)
- 2. Consider the set $X = \{\vec{0}\}$. Is X a linearly independent or a linearly dependent set? Do both definitions apply to X? Do you need to make any assumptions to apply both definitions of linear independence to X?

Feedback Provided By:_

Show All Steps

Explain Why, Not Just What

Avoid Pronouns

Use Correct Definitions

Define Variables, Units, etc.

Create Diagrams

Suggestions Accuracy Strengths

Correct Setup

Accurate Calculations

Solve Multiple Ways

Answer Reasonable

Other (Write Below)