

Introduction à l'informatique embarquée

Nano-ordinateurs

François Roland

- 2 Informatique embarquée
- 3 Microcontrôleur et nano-ordinateur
- 4 Démonstration
- 5 Conclusion

Objectifs

Planning des séances

- Comprendre les concepts de base de l'informatique embarquée.
- · Savoir mettre en œuvre un système embarqué.
- Préparer le projet de la semaine atypique.

- 10 séances de 2 h
 - 9 séances avec M. Roland
 - 1 séance avec M. Depreter
- Examen écrit en session

Table des matières

Déroulement d'une séance

- 1 Introduction à l'informatique embarquée
- Bus de communication
- 3 Métrologie et gestion des capteurs
- 4 Perception de l'environnement
- 6 Contrôle de l'environnement

- · Questionnaire formatif sur la séance précédente
- Cours magistral
- Démonstration interactive

Projet non remis dans les délais ⇒ note UE = 0.

- 1 Organisation du cours
- 2 Informatique embarquée
- 4 Démonstration
- **5** Conclusion

Informatique embarquée

Définition

- Système informatique dédié à une tâche spécifique.
- Intégré dans un système plus large.
- · Souvent contraint en ressources.

Exemple de système embarqué

Arduino et Raspberry Pi

Exemple de système embarqué

Ordinateur de bord automobile

Image de Christoph Armster sur Pixabay.

Image de Lynda Sanchez sur Pixabay.

Exemple de système embarqué robots

Image générée par DALL-E.

- 1 Organisation du cours
- 2 Informatique embarquée
- 3 Microcontrôleur et nano-ordinateur
- 4 Démonstration
- **5** Conclusion

Microcontrôleur

Microcontrôleur

Définition

- · Petit ordinateur sur un seul circuit intégré
- CPU, mémoire, entrées/sorties
- Programmable

Image de Vahid Alpha sur Wikipedia.

Avantages

- Faible coût
- Faible consommation d'énergie
- Faible encombrement

Désavantages

- Faible puissance de calcul
- Faible mémoire
- Difficulté à gérer plusieurs tâches en même temps

Schéma bloc du microcontrôleur ATmega328P

Schéma bloc du CPU AVR du microcontrôleur ATmega328P

Nano-ordinateur

Nano-ordinateur

Définition

- · Ordinateur complet sur un seul circuit imprimé (PCB)
- CPU, mémoire, entrées/sorties
- Système d'exploitation

Raspberry Pi 5. http://www.raspberrypi.com consulté le 2025-02-01.

Avantages

- Capacité de traitement supérieure
- Faible consommation d'énergie
- Taille réduite
- Connectivité intégrée

Désavantages

- Performances limitées
- · Fiabilité et robustesse limitées
- · Dissipation de la chaleur difficile

Exercice

- 1 Recherchez 3 projets réalisés avec un microcontrôleur Arduino.
- 2 Recherchez 3 projets réalisés avec un nano-oridineur Raspberry Pi.
- 3 Comparez les projets et expliquez le rôle du microcontrôleur ou du nano-ordinateur.
- 4 Ces projets auraient pu être réalisés avec l'autre type de système embarqué?

- 1 Organisation du cours
- 2 Informatique embarquée
- 4 Démonstration
- **5** Conclusion

Démonstration sur Raspberry Pi

HEH be Sciences et technologies

Brochage du Raspberry Pi

Ø Brancher le RPi

3 Se connecter au RPi

écrire un programme Python pour allumer et éteindre la LED

6 Exécuter le programme

Propriétés d'une LED

- Différence de potentielle constante (mais différente d'une LED à l'autre)
- Courant maximal à ne pas dépasser (souvent 10 mA)

Calcul de résistance pour une LED

$$R = \frac{U_R}{i_R}$$

$$U_S = U_R + U_{LED}$$

$$i_R = i_{LED}$$

$$R = \frac{U_S - U_{LED}}{i_{LED}}$$
$$= \frac{3,3 \text{ V} - 1,7 \text{ V}}{10 \text{ mA}}$$
$$= 160 \Omega$$

Il faut prendre une résistance $R \ge 160 \,\Omega$, par exemple 220 Ω.

- 1 Organisation du cours
- 3 Microcontrôleur et nano-ordinateur
- 4 Démonstration
- 6 Conclusion

Résumé

- Informatique embarquée : intégration de systèmes informatiques dédiés à des tâches spécifiques.
- · Microcontrôleurs vs nano-ordinateurs :
 - microcontrôleurs (ex. Arduino) ⇒ tâches simples, faible coût, faible consommation.
 - nano-ordinateurs (ex. Raspberry Pi) ⇒ capacité de traitement supérieure, connectivité, système d'exploitation.
- · Avantages et limites

Perspectives

Notions d'aujourd'hui = bases pour les prochaines séances :

- bus de communication
- · métrologie et gestion des capteurs
- perception de l'environnement
- contrôle de l'environnement

