# Experiment-8 Operational Amplifiers

### Part 1:

(A) To plot the voltage transfer characteristics (VOUT vs VIN) and identify the valid input output region for the circuit to act as an amplifier.

## Schematic circuit:



Where  $V_{DD}$  is 5 V.

## Circuit:



Plot:



Approximate points where gain (Slope of graph) is greater than 1 in magnitude.



Start:  $V_{IN} = 1.28125V$  End:  $V_{IN} = 2.51250V$ 

(B) Schematic circuit:



Observing gain of the circuit for different input values of  $V_{\text{in}}$ .

For Vin: 100mVPP



Vin: 200mVPP



Vin: 300mVPP



Vin: 400mVPP



Vin:500mVPP



| Vin (mVolts) | Vout (Volts) | Gain |
|--------------|--------------|------|
|--------------|--------------|------|

| 100 | 1.6 | 16   |
|-----|-----|------|
| 200 | 2.4 | 12   |
| 300 | 3.9 | 13   |
| 400 | 2.7 | 6.75 |
| 500 | 3.9 | 7.8  |

There is a clip off because for higher values of Vin the circuit reaches in a region where Vin - Vth> Vout, hence it enters triode region hence we instead getting a sinusoidal input get a clip off.

DC values at gate= 756mV and drain= 100mV

## 2. Characterization of an operational amplifier

Schematic view of circuit:



# Opamp:



Vin : 10Vpp and frequency = 5 kHz and VDD = 10 V, VSS = -10 V



## X-Y characteristic:





# Output:





Circuit:

## 3. Non-inverting amplifier

schematic view of the circuit:



Circuit:

(b) Vin = 250mV and frequency = 5 kHz from the function generator, VDD = 12 V, VSS = -12 V

| R1  | R2   | Vout  | Gain(theoretical) | Gain(Practicall) |
|-----|------|-------|-------------------|------------------|
| 10K | 10K  | 530mV | 2                 | 2.12             |
| 10K | 4.7K | 840mV | 3.127             | 3.218            |

# Gain of amplifier when R1 and R2 are shorted is 1.

The voltage follower or unity gain buffer is a special and very useful type of **Non-inverting amplifier** circuit. The use of voltage follower is that it has got very *high input impedance* and very *low output impedance*, which makes it a perfect circuit for *impedance matching*.

Plots:

R1 = R2 = 10K



R1 = 10K, R2 = 4.7K



| Expected gain | R1  | R2  | Vout   | Gain |
|---------------|-----|-----|--------|------|
| 4             | 30K | 10K | 1.01 V | 4.04 |
| 5             | 39K | 10K | 1.27 V | 5.08 |

R1 = 30K, R2 = 10K



R1 = 39K, R2 = 10K



## 4. Inverter amplifier

### schematic view of the circuit:



## Deriving gain relation:

Let current through R2 be i
I = (Vin – Vout) / R2 + R1
Let v2 be voltage at common node of R1 and R2.

$$I = (Vin - V2)/Rin = (V2 - Vout)/Rf$$

| R1  | R2   | Vout  | Gain(Theoretical) | Gain(Practical) |
|-----|------|-------|-------------------|-----------------|
| 10K | 10K  | 261mV | 1                 | 1.044           |
| 10K | 4.7K | 550mV | 2.12              | 2.2             |

| Gain | R1  | R2  | Vout  | Gain(Practical) |
|------|-----|-----|-------|-----------------|
| 4    | 40K | 10K | 1.03V | 4.12            |
| 5    | 50K | 10K | 1.33V | 5.32            |

Gain: 1



Gain: 2.12



Gain: 4



Gain: 5

