

Analisi I - Prova Scritta (simulazione)

Cognome: Matricola:

Regole d'esame. La prova è composta di tre parti: Quiz, Esercizi e Domande. Per superare la prova è necessario soddisfare <u>tutti</u> i requisiti seguenti.

- Quiz con almeno 4 risposte corrette.
- Esercizi con un punteggio di almeno 8/15.
- Domande con un punteggio di almeno 8/15.
- Esercizi e Domande con un punteggio complessivo di almeno 18/30.

Il voto dell'esame corrisponde al punteggio complessivo degli Esercizi e delle Domande.

Formulari.

DERIVATE						
f(x)	f'(x)					
x^{α}	$\alpha x^{\alpha-1}$					
a^x	$a^x \log a$					
$\log_a x $	$\frac{1}{x \log a}$					
$\sin x$	$\cos x$					
$\cos x$	$-\sin x$					
$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$					
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$					
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$					
$\arctan x$	$\frac{1}{1+x^2}$					

EQUAZIONI DIFFERENZIALI I ORDINE

$$y'(x) + a(x)y(x) = g(x)$$

 $a, g: I \to \mathbb{R}$ continue

$$y(x) = (K(x) + c)e^{-A(x)}$$

A primitiva di a, K primitiva di $ge^A, c \in \mathbb{R}$

SVILUPPI PER $x \to 0$							
$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$							
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$							
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$							
$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$							
$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \dots + {\alpha \choose n}x^n + o(x^n)$							

EQUAZIONI DIFFERENZIALI II ORDINE

$$y''(x) + ay'(x) + by(x) = g(x)$$

 $g(x)=p_n(x)e^{\mu x}\sin(\theta x)$ oppure $g(x)=p_n(x)e^{\mu x}\cos(\theta x),$ p_n polinomio di grado $n,\,a,b\in\mathbb{R}.$

$$y_p(x) = x^m e^{\mu x} (q_{1,n}(x) \sin(\theta x) + q_{2,n}(x) \cos(\theta x))$$

 $q_{1,n}$ e $q_{2,n}$ polinomi di grado $\leq n$

$$m = \begin{cases} 1 & \text{se } \Delta > 0, \, \theta = 0 \text{ e } \mu \in \{\lambda_1, \lambda_2\} \\ 2 & \text{se } \Delta = 0, \, \theta = 0 \text{ e } \mu = \lambda \\ 1 & \text{se } \Delta < 0, \, \theta = \omega \text{ e } \mu = \sigma \text{ } (\lambda = \sigma \pm i\omega) \\ 0 & \text{altrimenti} \end{cases}$$

 $\mathbf{Quiz}\ \mathbf{1}.$ La parte reale del numero complesso

$$z = \frac{i+5}{2i-3}$$

è

 $\Box -\frac{5}{3}$

 \Box -1

 \Box 1

 $\Box \frac{17}{5}$

Quiz 2. Il dominio della funzione

$$\frac{e^{-x}}{\sqrt{x^2 - 6x + 9}}$$

è

 \square \mathbb{R}

 $\Box \{x>0\}$

 $\square \{x \neq 0\}$

 $\Box \{x \neq 3\}$

Quiz 3. L'integrale definito

$$\int_0^\pi \frac{\cos x}{1 + \sin x} \, dx$$

vale

 \Box 0

 \Box 1

 $\square \log(2)$

 $\Box \log(1+\pi)$

Quiz 4. L'equazione differenziale

$$y'(x) = 2y(x) + 2$$

 \Box non ha soluzioni

 \square ha come unica soluzione $y(x) \equiv -1$

 \square ha due sole soluzioni

 \square ha infinite soluzioni

Quiz 5. La definizione del limite $\lim_{x\to 1} f(x) = 1$ è

 $\square \ \, \forall \epsilon > 0 \ \exists \delta > 0 \ {\rm tale} \ {\rm che} \ \forall x \in {\rm dom}(f) \ {\rm e} \ 0 < |x-1| < \delta \ {\rm si} \ {\rm ha} \ |f(x)-1| \le \epsilon$

 $\square \ \exists \delta > 0 \ \forall \epsilon > 0$ tale che $\forall x \in \mathrm{dom}(f)$ e $0 < |x+1| < \delta$ si ha $|f(x)+1| \leq \epsilon$

 $\Box \ \forall \epsilon > 0 \ \exists \delta > 0$ tale che $\forall x \in \mathrm{dom}(f)$ e $|x-1| < \delta$ si ha $|f(x)-1| \leq \epsilon$

 $\square \ \exists \epsilon > 0 \ \forall \delta > 0$ tale che $\forall x \in \mathrm{dom}(f)$ e
 $0 < |x-1| < \delta$ si ha $|f(x)-1| \le \epsilon$

Quiz 6. Sia $f: \mathbb{R} \to \mathbb{R}$ continua e strettamente crescente. Allora

 \square f ha almeno uno zero in $\mathbb R$

 \Box f ha un unico zero in \mathbb{R}

 \Box f non ha zeri in \mathbb{R}

 \square f ha al massimo uno zero in \mathbb{R} .

Esercizio 1 (6 punti). Stabilire il carattere dell'integrale improprio

$$\int_0^\infty \frac{\log(1+\sin^4(2x))}{3x(1+\sqrt{x})} \, dx.$$

Esercizio 2 (9 punti). Studiare il grafico della seguente funzione

$$f(x) = -\frac{|1 - e^x|}{1 + |x|},$$

rispondendo ai seguenti punti.

(2a) Dominio, simmetrie e periodicità.

(2b) Limiti agli estremi del dominio.

(2c) Segno e zeri.

(2d) Derivata e intervalli di monotonia.

(3a) Scrivere la definizione di punto di massimo locale $x_0 \in [a, b]$ di f.

(3b) Dimostrare che, se $x_0 \in (a, b)$ è punto di massimo locale e f è derivabile in x_0 , allora $f'(x_0) = 0$.

(3c) Scrivere un esempio esplicito di funzione derivabile in [a,b] tale che $x_0 = a$ è punto di massimo locale per $f \in f'(a) \neq 0$.

D 1.0	/ 0			D: 1	11		
Domanda 2	(9)	punti).	Rispondere	alle	seguenti	domande.

(4a) Enunciare il teorema fondamentale del calcolo integrale.

(4b) Dimostrare il teorema fondamentale del calcolo integrale.

(4c) Sia $F: \mathbb{R} \to \mathbb{R}$ la funzione definita da

$$F(x) = \int_0^x e^{-t^2} dt.$$

Dimostrare che x=0 è un punto di flesso (a tangente obliqua) per ${\cal F}.$