CSE331: Introduction to Networks and Security

Lecture 9

Fall 2006

Announcements

- Project 1 Due TODAY
- HW 1 Due on Friday
- Midterm I will be held next Friday, Oct. 6th.
 - Will cover all course material up to next Weds.

Today: Reliable Transmission

- Now we can detect errors...
 - CRC
 - Checksum
- What do we do when we find one?
- Corrupt frames/packets must be discarded.
- Need to recover them.

Fundamental mechanisms

- Acknowledgments (ACK)
 - Small control frame/packet (little data)
 - When sender gets an ACK, recipient has successfully gotten a frame
- Timeouts
 - If sender doesn't get an ACK after "reasonable" time it retransmits the original
- General strategy called Automatic Repeat Request (ARQ)

Stop-and-Wait

- Simplest scheme
 - After transmitting one frame, sender waits for an ACK
 - If the ACK doesn't arrive, sender retransmits

Sequence numbers

Stop-and-Wait

- Inefficient use of link's capacity
- Sends 1 frame per RTT
- Example:
 - 10Mbs Link
 - 16ms RTT
 - Delay x Bandwidth product is about 20KB
 - Frame size of 1K yields about 5% link capacity

More efficient solution

Time

CSE331 Fall 2004

Sliding Window Algorithm

- Sender assigns a sequence number to each frame: SeqNum
 - For now, assume SeqNum can grow infinitely
- Send Window Size (SWS)
 - Upper bound on # of unacknowledged frames sender can transmit
- Last ACK Received (LAR)
 - Sequence number of last ACK
- Last Frame Sent (LFS)

Sender Invariant

- LFS LAR ≤ SWS
- Associates timeout with each frame sent
 - Retransmits if no ACK received before timout
- When ACK arrives, increase LAR
 - Means another frame can be sent

- Receive Window Size (RWS)
 - Number of out-of-order frames it will accept
- Largest Acceptable Frame (LAF)
- Largest Frame Received (LFR)
- LAF LFR ≤ RWS

Receiver Algorithm

- When packet numbered SeqNum arrives
 - If (SeqNum ≤ LFR) or (SeqNum > LAF) discard
 - Else accept the packet
- Define: SeqNumToAck
 - Largest unACK'ed sequence # s.t. all earlier frames have been accepted
- Receiver sends ACK(SeqNumToAck)
- LFR = SeqNumToAck
- Laf = LFR + RWS

Receiver gets frame 1
SeqNumToAck = 1
Receiver sends ACK(1)

Sender

CSE331 Fall 2004

While ACK(1) is in transit, frame 2 is lost and frame 3 is accepted.

Sender

CSE331 Fall 2004

SeqNumToAck = 1 Receiver sends another Ack(1) message.

Sender

CSE331 Fall 2004

SWS = RWS = 3

Sender transmits frame 4 and then the timer for frame 2 expires, so it resends.

Sender Receiver

Receiver gets frame 2 SeqNumToAck = 4 Receiver sends ACK(4)

$$LFR = 4$$

$$LAF = LFR + RWS$$

Sender

CSE331 Fall 2004

Variants on Sliding Window

- Receiver doesn't transmit redundant ACKs
- Receiver transmits selective ACKS
 - ACK indicates exactly which frames have been accepted

Window Sizes

- If RTT x Bandwidth product is known then SWS = RTT x Bandwidth / Framesize
- Receive window size:
 - -1 = no buffering of out-of-order frames
 - RWS = SWS buffers as many as can be in flight
 - Note that RWS > SWS is not sensible

Finite Sequence Numbers

- Recall that for Stop-and-Wait we needed two sequence numbers.
- How many do we need for Sliding Window?
- Suppose SWS=RWS
 - How many sequence numbers should there be?
 - Is SWS + 1 sufficient?

Sufficient MaxSeqNum

- Frame i's sequence num is i%MaxSeqNum
- Assuming SWS = RWS
- SWS < (MaxSeqNum + 1)/2
- Why?
 - Consider case where all the ACKS are lost.
 - Suppose SWS = RWS = 3
 - MaxSeqNum = 5 (sequence numbers = 0,1,2,3,4) is insufficient

Roles of Sliding Window Algorithm

Reliable delivery

 It provides an efficient retransmission protocol for dealing with errors

In-order delivery

 The receiver buffers frames and delivers them in sequence number order

Flow control

- It sends ACKs back to give hints to sender
- More sophisticate version could give # of frames the receiver has room for—throttles the sender.

Sliding window in practice

- TCP (Transmission Control Protocol)
 - Transportation layer protocol
 - Uses sliding window algorithm
 - More complex because it's used in an Internetwork – not over a direct link
 - Bandwidth x delay not known
 - Dynamically changes timeouts
 - Larger buffers for in-order delivery