Congratulations! You passed!

Grade received 100\% Latest Submission Grade 100\% To pass 80\% or higher

Go to next item

1.	Consider the following five events:				
	1. Correctly guessing a random 128-bit AES key on the first try.				
	2. Winning a lottery with 1 million contestants (the probability is $1/10^6$).				
	3. Winning a lottery with 1 million contestants 5 times in a row (the probability is $(1/10^6)^5$).				
	4. Winning a lottery with 1 million contestants 6 times in a row.				
	5. Winning a lottery with 1 million contestants 7 times in a row.				
	What is the order of these events from most likely to least likely?				
	2, 4, 3, 1, 5				
	2,3,4,1,5				
	2, 3, 5, 4, 1				
	3, 2, 5, 4, 1				
	 Correct The probability of event (1) is 1/2^128. 				
	• The probability of event (5) is 1/(10^6)^7 which is about 1/2^{139}. Therefore, event (5) is the least likely.				
	• The probability of event (4) is 1/(10^6)^6 which is about 1/2^{119.5} which is more likely than event (1).				
	• The remaining events are all more likely than event (4).				
2.	Suppose that using commodity hardware it is possible to build a computer	1/1 point			
	for about \$200 that can brute force about 1 billion AES keys per second.				
	Suppose an organization wants to run an exhaustive search for a single				
	128-bit AES key and was willing to spend 4 trillion dollars to buy these				
	machines (this is more than the annual US federal budget). How long would				
	it take the organization to brute force this single 128-bit AES key with				
	these machines? Ignore additional costs such as power and maintenance.				
	\bigcirc More than a million years but less than a billion (10^9) years				
	More than a day but less than a week				
	More than a 100 years but less than a million years				

More than a	billion	(10^9)	vear

O More than a month but less than a year

⊘ Correct

The answer is about 540 billion years.

- # machines = 4*10^12/200 = 2*10^10
- # keys processed per sec = 10^9 * (2*10^10) = 2*10^19
- # seconds = 2^128 / (2*10^19) = 1.7*10^19

This many seconds is about 540 billion years.

3. Let $F:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n$ be a secure PRF (i.e. a PRF where the key space, input space, and output space are all $\{0,1\}^n$) and say n=128.

Which of the following is a secure PRF (there is more than one correct answer):

$$F'((k_1,k_2),\ x) = egin{cases} F(k_1,x) & ext{when } x
eq 0^n \ k_2 & ext{otherwise} \end{cases}$$

⊘ Correct

Correct. A distinguisher for F^\prime gives a distinguisher for F .

(here | denotes concatenation)

$$lacksquare F'((k_1,k_2),\ x)=F(k_1,x)\ \parallel\ F(k_2,x)$$
 (here \parallel denotes concatenation)

⊘ Correct

Correct. A distinguisher for F^\prime gives a distinguisher for F .

$$\ \, \square \ \, F'(k,x)=F(k,\,x)\, \bigoplus \, F(k,\,x\oplus 1^n)$$

$$\square F'(k, x) = k \bigoplus x$$

$$ightharpoonup F'(k,x) = F(k,x)[0,\ldots,n-2]$$

(i.e., $F^\prime(k,x)$ drops the last bit of F(k,x))

⊘ Correct

Correct. A distinguisher for F^\prime gives a distinguisher for F.

4. Recall that the Luby-Rackoff theorem discussed in <u>The Data Encryption Standard lecture</u> states that applying a **three** round Feistel network to a secure PRF gives a secure block cipher. Let's see what goes wrong if we only use a **two** round Feistel.

1/1 point

Let
$$F: K imes \{0,1\}^{32} o \{0,1\}^{32}$$
 be a secure PRF.

Recall that a 2-round Feistel defines the following PRP

$$F_2:K^2 imes\{0,1\}^{64} o\{0,1\}^{64}$$
:

Here R_0 is the right 32 bits of the 64-bit input and L_0 is the left 32 bits.

One of the following lines is the output of this PRP F_2 using a random key, while the other three are the output of a truly random permutation $f:\{0,1\}^{64} \to \{0,1\}^{64}$. All 64-bit outputs are encoded as 16 hex characters.

Can you say which is the output of the PRP? Note that since you are able to distinguish the output of F_2 from random, F_2 is not a secure block cipher, which is what we wanted to show.

Hint: First argue that there is a detectable pattern in the xor of $F_2(\cdot, 0^{64})$ and $F_2(\cdot, 1^{32}0^{32})$. Then try to detect this pattern in the given outputs.

lacktriangle On input 0^{64} the output is "290b6e3a 39155d6f".

On input $1^{32}0^{32}$ the output is "d6f491c5 b645c008".

On input 0^{64} the output is "5f67abaf 5210722b".

On input $1^{32}0^{32}$ the output is "bbe033c0 0bc9330e".

On input 0^{64} the output is "9d1a4f78 cb28d863".

On input $1^{32}0^{32}$ the output is "75e5e3ea 773ec3e6".

On input 0^{64} the output is "7b50baab 07640c3d".

On input $1^{32}0^{32}$ the output is "ac343a22 cea46d60".

✓ Correct

Observe that the two round Feistel has the property that

the left of
$$F(\cdot, 0^{64}) \bigoplus F(\cdot, 1^{32}0^{32})$$
 is 1^{32} .

The two outputs in this answer are the only ones with this property.

5. Nonce-based CBC. Recall that in <u>Lecture 4.4</u> we said that if one wants to use CBC encryption with a non-random unique nonce then the nonce must first be encrypted with an **independent** PRP key and the result then used as the CBC IV.

1 / 1 point

Let's see what goes wrong if one encrypts the nonce with the **same** PRP key as the key used for CBC encryption.

Let $F:K imes\{0,1\}^\ell o\{0,1\}^\ell$ be a secure PRP with, say, $\ell=128$. Let n be a nonce and suppose one encrypts a message m by first computing IV=F(k,n) and then using this IV in CBC encryption using $F(k,\cdot)$. Note that the same key k is used for computing the IV and for CBC encryption. We show that the resulting system is not nonce-based CPA secure.

The attacker begins by asking for the encryption of the two block message $m=(0^\ell,0^\ell)$ with nonce $n=0^\ell$. It receives back a two block ciphertext (c_0,c_1) . Observe that by definition of CBC we know that $c_1=F(k,c_0)$.	
Next, the attacker asks for the encryption of the one block message $m_1=c_0\bigoplus c_1$ with nonce $n=c_0$. It receives back a one block ciphertext c_0' .	
What relation holds between c_0,c_1,c_0^\prime ? Note that this relation lets the adversary win the nonce-based CPA game with advantage 1.	
$left{ } c_1=c_0'$	
$\bigcirc c_0' = c_0 igoplus 1^\ell$	
$\bigcirc \ \ c_0 = c_1 igoplus c_0'$	
$igcirc$ $c_1=c_0$	
✓ Correct This follows from the definition of CBC with an encrypted nonce as defined in the question.	
Let m be a message consisting of ℓ AES blocks	1/1 point
(say $\ell=100$). Alice encrypts m using CBC mode and transmits	
the resulting ciphertext to Bob. Due to a network error,	
ciphertext block number $\ell/2$ is corrupted during transmission.	
All other ciphertext blocks are transmitted and received correctly.	
Once Bob decrypts the received ciphertext, how many plaintext blocks	
will be corrupted?	
\bigcirc $\ell/2$	
O 3	
2	
O 0	
\bigcirc ℓ	
Correct Take a look at the CBC decryption circuit. Each ciphertext blocks affects only the current plaintext block and the next.	
stocks affects only the earliest plaintext block and the flext.	

7. Let m be a message consisting of ℓ AES blocks (say $\ell=100$). Alice encrypts m using randomized counter mode and

1/1 point

6.

	ti ui i	sints the resulting apprehent to bob. But to a network error,	
	ciph	ertext block number $\ell/2$ is corrupted during transmission.	
	All o	ther ciphertext blocks are transmitted and received correctly.	
	Once	e Bob decrypts the received ciphertext, how many plaintext blocks	
	will	be corrupted?	
	0	$1+\ell/2$	
	0	0	
	0	$\ell/2$	
	•	1	
	0	3	
	\odot	Correct Take a look at the counter mode decryption circuit. Each	
		ciphertext block affects only the current plaintext block.	
8.	Reca	all that encryption systems do not fully hide the length of	1/1 point
		smitted messages. Leaking the length of web requests <u>hasbeen used</u> to eavesdrop on encrypted HTTPS ic to a number of	
	web	sites, such as tax preparation sites, Google searches, and	
	heal	thcare sites.	
	Supp	pose an attacker intercepts a packet where he knows that the	
	pack	set payload is encrypted using AES in CBC mode with a random IV. The	
	encr	ypted packet payload is 128 bytes. Which of the following	
	mes	sages is plausibly the decryption of the payload:	
	0	'The significance of this general conjecture, assuming its truth, is	
		easy to see. It means that it may be feasible to design ciphers that	
		are effectively unbreakable.'	
	•	'In this letter I make some remarks on a general principle	
		relevant to enciphering in general and my machine.'	
	0	'If qualified opinions incline to believe in the exponential	
		conjecture, then I think we cannot afford not to make use of it.'	
	0	'The most direct computation would be for the enemy to try	
		all 2^r possible keys, one by one.'	
	Q	Correct	

The length of the string is 107 bytes, which after padding becomes 112 bytes,

9. Let $R:=\{0,1\}^4$ and consider the following PRF $F:R^5 imes R o R$ defined as follows:

$$F(k,x) := \left\{egin{array}{l} t = k[0] \ ext{for i=1 to 4 do} \ ext{if } (x[i-1] == 1) \ ext{ } t = t \oplus k[i] \ ext{output } t \end{array}
ight.$$

That is, the key is k=(k[0],k[1],k[2],k[3],k[4]) in R^5 and the function at, for example, 0101 is defined as $F(k,0101)=k[0]\oplus k[2]\oplus k[4]$.

For a random key k unknown to you, you learn that

$$F(k,0110) = 0011$$
 and $F(k,0101) = 1010$ and $F(k,1110) = 0110$.

What is the value of F(k, 1101)? Note that since you are able to predict the function at a new point, this PRF is insecure.

1111

⊘ Correct