9 Das Eigenwertproblem und die Jordansche Normalform

9.1 Das Eigenwertproblem

Ähnliche Matrizen Zwei Matrizen $A, B \in \mathbb{K}^{n \times n}$ heißen ähnlich, wenn es eine reguläre Matrix $T \in \mathbb{K}^{n \times n}$ gibt mit

$$(9.1) A = T^{-1}BT.$$

Ähnlichkeit ist eine Äquivalenzrelation auf dem Raum der $(n \times n)$ -Matrizen. Wegen $A = E_n A E_n$ ist A zu sich selber ähnlich. In der Definition (9.1) wurde implizit die Symmetrie der Ähnlichkeit vorausgesetzt. Wir können aber in (9.1) nach B auflösen, $B = TAT^{-1}$, also ist auch B zu A ähnlich. Ist A zu B und B zu C ähnlich, so

$$A = T^{-1}BT, \ B = T'^{-1}CT' \ \Rightarrow A = T^{-1}T'^{-1}CT'T = (T'T)^{-1}C(T'T).$$

Nullstellen von Polynomen Sei

$$p(x) = a_n x^n + \ldots + a_1 x + a_0, \quad a_i \in \mathbb{C}, \ a_n \neq 0$$

ein Polynom vom Grad n. Wir sagen, q besitzt in x_0 eine Nullstelle der Vielfachheit k, wenn es ein Polynom q vom Grade n-k gibt mit

(9.2)
$$p(x) = (x - x_0)^k q(x) \quad \text{mit } q(x_0) \neq 0.$$

Der Fundamentalsatz der Algebra besagt, dass die Summe der Vielfachheiten der Nullstellen gerade n ergibt. Im Reellen ist dieser Satz nicht richtig, wie das Polynom $p(x) = x^2 + 1$ beweist, das im Reellen keine Nullstellen besitzt.

In (9.2) können wir aufgrund dieses Fundamentalsatzes auch die n-k Nullstellen von q ausklammern. Sind x_1, \ldots, x_n die Nullstellen von p, die hier nicht alle verschieden sein müssen, so können wir schreiben

(9.3)
$$p(x) = a_n(x - x_1) \dots (x - x_n).$$

Wir betrachten Eigenwertprobleme nur über dem Körper \mathbb{C} . Wenn eine Matrix reellwertig ist, ist sie auch eine Matrix über \mathbb{C} .

Sei $A \in \mathbb{C}^{n \times n}$. $\lambda \in \mathbb{C}$ heißt *Eigenwert* von A, wenn

$$Ax = \lambda x$$
 für ein $x \in \mathbb{C}^n \setminus \{0\}$.

x ist dann Eigenvektor zu λ . Insbesondere ist $U = \operatorname{span}\{x\}$ ein invarianter Raum, d.h. $AU \subset U$.

 λ ist genau dann Eigenwert, wenn die Matrix $A - \lambda E_n$ singulär ist und damit das charakteristische Polynom von A

$$\phi(\mu) = \det(A - \mu E_n)$$

in λ eine Nullstelle besitzt.

Die Größe

$$\sigma(\lambda) = \text{Vielfachheit der Nullstelle } \lambda \text{ in } \phi$$

heißt algebraische Vielfachheit von λ . Nach dem im vorigen Abschnitt Gesagten ist die Summe der algebraischen Vielfachheiten der Eigenwerte n. Der Vektorraum

$$L(\lambda) = \{ x \in \mathbb{C}^n : Ax = \lambda x \}$$

heißt Eigenraum zu λ . Ferner heißt

$$\rho(\lambda) = \dim L(\lambda)$$

geometrische Vielfachheit von λ . $\rho(\lambda)$ ist die Zahl der linear unabhängigen Eigenvektoren zu λ .

Satz 9.1 (a) Ist $p(\mu)$ ein Polynom und gilt $Ax = \lambda x$ für ein $x \neq 0$, so besitzt p(A) ebenfalls den Eigenvektor x zum Eigenwert $p(\lambda)$.

- (b) λ ist genau dann Eigenwert von A, wenn $\overline{\lambda}$ Eigenwert von \overline{A} ist. Insbesondere: Ist die Matrix A reellwertig, so ist mit einem komplexen Eigenwert λ von A auch $\overline{\lambda}$ Eigenwert von A.
- (c) A und A^T besitzen die gleichen Eigenwerte.
- (d) Die Determinante von A stimmt mit dem Produkt aller Eigenwerte von A überein.
- (e) Ähnliche Matrizen besitzen das gleiche charakteristische Polynom, also auch die gleichen Eigenwerte. Wenn

$$B = T^{-1}AT$$

und A besitzt den Eigenwert λ mit Eigenvektor x, so besitzt B den Eigenwert λ mit Eigenvektor $T^{-1}x$

Beweis: (a) Aus $Ax = \lambda x$ folgt $A^k x = \lambda^k x$ und

$$p(A)x = a_m A^m x + \ldots + a_0 x = p(\lambda)x.$$

(b) Nach Satz 7.14(b) gilt

$$\det(\overline{A} - \overline{\lambda}E_n) = \overline{\det(A - \lambda E_n)}.$$

- (c) Das folgt aus 7.14(c)
- (d) In

$$\phi(\mu) = \det(A - \mu E_n) = (-1)^n (\mu - \lambda_1) \dots (\mu - \lambda_n)$$

(vergleiche (9.3)) setze man $\mu = 0$.

(e) Mit dem Determinantenmultiplikationssatz folgt

$$\det(B - \lambda E_n) = \det(T^{-1}AT - \lambda E_n) = \det(T^{-1}(A - \lambda E_n)T)$$
$$= \det T^{-1}\det(A - \lambda E_n)\det T = \det(A - \lambda E_n).$$

Ferner gilt

$$BT^{-1}x = T^{-1}Ax = T^{-1}(\lambda x) = \lambda T^{-1}x.$$

Beispiel 9.2 Das Jordan-Kästchen der Länge ν zum Eigenwert λ ist definiert durch

(9.4)
$$C_{\nu}(\lambda) = \begin{pmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix} \in \mathbb{C}^{\nu \times \nu}.$$

Wegen

$$\det(C_{\nu}(\mu) - \lambda E_n) = (\mu - \lambda)^{\nu}$$

ist λ Eigenwert mit $\sigma(\lambda) = \nu$, aber $x = e_1$ ist einziger Eigenvektor von C_{ν} , also $\rho(\lambda) = 1$. \square

Damit ist gezeigt, dass algebraische und geometrische Vielfachheit nicht übereinstimmen müssen. Es gilt aber $\rho(\lambda) \leq \sigma(\lambda)$.

9.2 Die Jordansche Normalform Es sei an die Definition des Jordan-Kästchens $C_{\nu}(\lambda)$ in (9.4) erinnert.

Satz 9.3 Sei $A \in \mathbb{C}^{n \times n}$, $\lambda_1, \ldots, \lambda_k$ seien die Eigenwerte von A mit geometrischen bzw. algebraischen Vielfachheiten $\rho(\lambda_i)$ und $\sigma(\lambda_i)$. Zu jedem λ_i gibt es Zahlen $\nu_1^{(i)}, \ldots, \nu_{\rho(\lambda_i)}^{(i)}$ mit

$$\sigma(\lambda_i) = \nu_1^{(i)} + \ldots + \nu_{\rho(\lambda_i)}^{(i)}$$

und eine reguläre Matrix $T \in \mathbb{C}^{n \times n}$ mit $J = T^{-1}AT$,

$$J = \begin{pmatrix} C_{\nu_1^{(1)}}(\lambda_1) & & & & \\ & \ddots & & & & 0 \\ & & C_{\nu_{\rho(\lambda_1)}^{(1)}}(\lambda_1) & & & \\ & & & C_{\nu_1^{(2)}}(\lambda_2) & & \\ & & & & \ddots & \\ & & & & C_{\nu_{\rho(\lambda_k)}^{(k)}}(\lambda_k) \end{pmatrix}$$

J ist bis auf die Reihenfolge der Jordan-Kästchen eindeutig bestimmt.

Beweis: Der Beweis ist sehr aufwändig. \square

Diagonalisierbare Matrizen Eine Matrix heißt diagonalisierbar, wenn für alle Eigenwerte λ_i gilt $\rho(\lambda_i) = \sigma(\lambda_i)$. Wenn man dann mehrfache Eigenwerte auch mehrfach zählt, folgt wegen $\nu_i^{(i)} = 1$,

$$J = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

Anders ausgedrückt: Im diagonalisierbaren Fall gibt es eine Basis aus Eigenvektoren $\{x_1, \ldots, x_n\}$ und die Matrix T hat die Gestalt

$$T=(x_1|\ldots|x_n).$$

Beispiel 9.4 Wir bestimmen die Eigenwerte und Eigenvektoren der Matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Wir berechnen das charakteristische Polynom

$$\det(A - \lambda E_3) = \det\begin{pmatrix} 1 - \lambda & 2 & 1\\ 1 & 2 - \lambda & 2\\ 0 & 0 & 2 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)(2 - \lambda)^2 - 1 \cdot 2(2 - \lambda) = (2 - \lambda)((1 - \lambda)(2 - \lambda) - 2)$$
$$= (2 - \lambda)(2 - 3\lambda + \lambda^2 - 2) = (2 - \lambda)\lambda(\lambda - 3).$$

Wir haben also die drei einfachen Eigenwerte $\lambda_1 = 2$, $\lambda_2 = 0$, $\lambda_3 = 3$.

Die Kernvektoren von $A - \lambda_i E_3$ bestimmen wir mit dem Gauß-Algorithmus.

$$A - 2E_3 = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Die ersten beiden Spaltenvektoren spannen das Bild auf. Wir setzen daher $x_3 = 1$ und erhalten aus $(A - 2E_3)x = 0$ für die anderen Komponenten $x_2 = -\frac{3}{2}$, $x_1 = -2$. Man kann hier noch die Probe machen:

$$Ax = \begin{pmatrix} -4 \\ -3 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -2 \\ -3/2 \\ 1 \end{pmatrix}.$$

$$A - 0E_3 = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hier spannen die Spalten 1 und 3 das Bild auf. Wir setzen daher $x_2 = 1$ und erhalten $x_3 = 0$ und $x_1 = -2$. Die Probe kann man leicht im Kopf durchführen.

$$A - 3E_3 = \begin{pmatrix} -2 & 2 & 1 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} -2 & 2 & 1 \\ 0 & 0 & 5/2 \\ 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} -2 & 2 & 1 \\ 0 & 0 & 5/2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Wie zuvor setzen wir $x_2 = 1$ und erhalten $x_3 = 0$, $x_1 = 1$.

Insgesamt erhalten wir eine Basis aus Eigenvektoren

$$T = \begin{pmatrix} -2 & -2 & 1\\ -3/2 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix}$$

und es gilt

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} = T^{-1}AT.$$