

Sistemas de Control por Computador (SCC)

Práctica Final

Diseño y realización digital de controladores

Curso 2008-09

18/12/2008

El objetivo de esta práctica es realizar un programa de ordenador en MATLAB que sea capaz de hacer lo siguiente:

- Diseñar un sistema de control continuo en lazo cerrado para satisfacer unos ciertos requisitos de respuesta transitoria y error en estado estable.
 Se contemplarán tres posibles acciones de control:
 - Control P
 - Control PID
 - Control de retardo-adelanto
- Determinar el modelo discreto equivalente de los sistemas continuos diseñados anteriormente y simular su comportamiento. Comparar la respuesta del sistema continuo y del sistema discreto.

Como punto de partida consideraremos el diagrama de bloques de un sistema de control en lazo cerrado como el de la figura

Figura 1:

Uno de los datos de entrada al programa debe ser la función de transferencia de la planta, $G_p(s)$, que se debe especificar en términos de los coeficientes del numerador y denominador de la función de transferencia. A continuación se especifica detalladamente las tareas que debe realizar el programa.

1. Control P

El programa debe diseñar un sistema de control en lazo cerrado con control P a partir de las siguiente especificaciones

• Uno de los siguientes parámetros de la respuesta transitoria: porcentaje de sobrepaso, tiempo de pico y tiempo de asentamiento.

El programa debe realizar lo siguiente:

- Calcular la constante K del controlador.
- Calcular el valor de los dos parámetros de la respuesta transitoria que no han sido especificados.
- Calcular el error en estado estable ante un escalón y una rampa.
- Dibujar la respuesta a un escalón y una rampa del sistema en lazo cerrado.

2. Control PID

El programa debe diseñar un sistema de control en lazo cerrado con control PID a partir de las siguientes especificaciones:

- Dos de los siguientes parámetros de la respuesta transitoria: porcentaje de sobrepaso, tiempo de pico y tiempo de asentamiento.
- Posición del cero de la parte PI

El programa debe realizar lo siguiente:

- Calcular la función de transferencia del controlador.
- Calcular el valor del parámetro de la respuesta transitoria que no ha sido especificado.
- Calcular el error en estado estable ante un escalón y una rampa.
- Dibujar la respuesta a un escalón y una rampa del sistema en lazo cerrado.

3. Control de retardo-adelanto

En este apartado sólo se considerarán plantas de tipo 0 y tipo 1. El programa debe diseñar un sistema de control en lazo cerrado con control de retardo-adelanto a partir de las siguientes especificaciones:

- Dos de los siguientes parámetros de la respuesta transitoria: porcentaje de sobrepaso, tiempo de pico y tiempo de asentamiento.
- Error en estado estable cuando la entrada es un escalón (sistemas tipo 0) y cuando la entrada es una rampa (sistemas tipo 1).

- Posición del cero de la parte de retardo
- Posición del polo de la parte de adelanto

El programa debe realizar lo siguiente:

- Calcular la función de transferencia del controlador.
- Calcular el valor del parámetro de la respuesta transitoria que no ha sido especificado.
- Calcular el error en estado estable ante un escalón y una rampa.
- Dibujar la respuesta a un escalón y una rampa del sistema en lazo cerrado.

4. Discretización de sistemas de control

El programa debe determinar el sistema discreto equivalente del sistema de control continuo diseñado anteriormente. Las especificaciones de entrada del programa correspondientes a este apartado deben ser:

- Periodo de muestreo.
- Método de discretización: adaptación de la respuesta al escalón o transformación bilineal de Tustin.

El programa debe realizar lo siguiente:

- Calcular el sistema discreto equivalente correspondientes al controlador y la planta.
- Calcular la función de transferencia del sistema discreto en lazo cerrado.
- Dibujar las respuestas a un escalón y una rampa. Es deseable que este dibujo se realice sobre la respuesta del sistema continuo para comparar resultados.