

COMP 225 Network and System Administration

Notes #5: File System, Storage and Backup

K. L. Eddie Law, PhD

Macao Polytechnic Institute
School of Applied Sciences
Academic Year 2020-2021, 2nd Semester

Topics

- Understanding basic disk systems designs
- Managing server storage system and backup are vital
- Associated basic Linux file systems briefly discussed
- Types of backups pros and cons
- Practicing backup and restore in Linux
 - Archival utility: tar
 - Task scheduler: crontab

Basic Storage Systems

- Magnetic drive
 - Disk specifications
 - Dimensions
 - Capacity
 - RPM (revolutions per minute)
 - IOPS (input/output per second)
 - Seek time and latency
 - Hot swappable
- SSD (solid state drive)
 - No moving parts
 - Quiet, faster, and more durable

Eddie Law

Storage Technologies

- DAS: direct-attached storage, traditional hard drives
- NAS: network-attached storage
- SAN: storage area network (high speed sophisticated independent network)
- JBOD: just a bunch of disks (to form one large volume)

Capacity Planning Considerations

- OS growth
 - Patches
 - Service packs
 - Log files
 - Temp files

- Data growth
 - Customer data
 - Archived data
 - Recovery data

Eddie Law

Mitigation Strategies

- Disk quotas
 - Soft quotas users get alerts
- Compression
 - Loss of performance
 - For backups and archived data
- Regular cleanup
- Routine archival

Compress - Uncompress

- {gzip, gunzip} filename(.gz)
- {bzip2, bunzip2} filename(.bz2)
- {xz, unxz} filename(.xz)
- zip filename.zip filename, and unzip filename.zip

Eddie Law

-

Legacy System

- Boot with a BIOS
- Master boot record (MBR)
- Four real primary partitions
- Accessible size up to 2 TB
- One extended partition permitted
- Logical partitions in extended partition

• MBR partition numbering

Partition Type	Partition Numbers
Primary or extended partitions	1–4
Logical partitions	5–11

Modern Systems

- Boot with a Unified Extensible Firmware Interface (UEFI)
- Use GUID (Globally Unique Identifier) Partition Tables (GPTs)
- Unlimited number of partitions (commercial products may offer up to 128 in general)
- For current implementation, e.g., for Microsoft, the accessible size of 18 exabytes partition (1 EB = 10^{18} bytes)
- The theoretical upper limit is 9.4 zettabytes partition (1 ZB = 10^{21} bytes)

Eddie Law

Checking Hard Drives

Hard drives are block devices.

```
elaw@zorin:~$ cat /proc/partitions
major minor #blocks name
                 59724 sr0
             25165824 sda
              25163776 sda1
elaw@zorin:~$ lsblk
      MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
NAME
       8:0 0 24G 0 disk
sda
            0
-sda1
       8:1
                 24G 0 part /
       11:0
              1 58.3M 0 rom
elaw@zorin:~$
```

Can also try out

```
$ df -h
$ sudo fdisk -1
```

Commands - Partition Tools

- Legacy systems
 - fdisk
- Example, to list partitions
 - \$ sudo fdisk -l
 - \$ sudo fdisk -1 /dev/sda
- Modern systems
 - gdisk
 - parted
- Run gdisk
 - \$ sudo gdisk /dev/sda

Eddie Law 11

Typical Linux File System

(Remark: logical volume manager (LVM) not discussed)

- Typical Linux file system formatting: Ext2/3/4
- Advantages with ext4
 - Improved file system size
 - Larger number of files
 - Support for solid-state disks
 - Journal checksumming
- Reformat the entire drive, e.g.,
 - \$ sudo mkfs -t ext4 /dev/sda1
 - \$ sudo lsblk -f

Typical Linux File Systems

FS	Maximum FS Size	Maximum File Size	Notes
ext2	16–32 TiB	2 TiB	Not journalized
ext3	16–32 TiB	2 TiB	ext2 with a journal
ext4	1 EiB	16 TiB	Supports solid-state disks, larger disks, robust
XFS	8 EiB	8 EiB	Cannot be shrunk, supports snapshots
Btrfs	16 EiB	16 EiB	Supports automatic defragmentation, copy-on-write, RAID, subvolumes, online data correction, snapshots

Eddie Law

RAID 0

- Disk striping
- No fault tolerance
- Minimum two disks
- Increased read performance
- 100% drive space utilization

Eddie Law

RAID 1

- Disk mirroring
- Exactly two disks
- Increased read performance
- 50% drive space utilization
- Provides fault tolerance in of single-drive failure

RAID 5

- Disk striping with parity
- Minimum three disks
- Increased read performance
- Efficient disk space utilization
 - 75% disk space utilization if 4 disks are used
 - 90% disk space utilization if 10 disks are used
- Provides fault tolerance in case of single-drive failure

Eddie Law

Putting RAIDs Together

- RAID 1+0 (or RAID 10)
 - Two or more mirrors that are striped

- RAID 0+1 (or RAID 01)
 - Two stripes that are mirrored

Disasters and Backup

Disaster Recovery

- Business continuity plan
- Disaster recovery plan
- Business impact analysis

Replication Methods

- Disk to disk (disk mirroring)
- Server to server (failover) clustering)
- Site to site

- Types of sites
 - Hot site
 - Cold site
 - Warm site

Eddie Law

Why Backing up Files?

- With "backup and restore" operations, can protect data from loss
- Backup offers more than one copy of system files
- Purpose of restoration is to recover data that is temporarily unavailable due to some unexpected event

Is It Good to Do Backup?

- Backup is not free
- No backup is risky
- Nowadays, in fact, cost of backing up is diminishing, value of data is growing

Eddie Law

Factors on Making Backups

- Determine which data is critical
 - Recovery point objective (RPO) How much data can be lost? An hour, a week of data?
- Determine frequency and types of backups to be used
 - Recovery time objective (RTO) How fast should data be recovered? Can we continue to operate without recovering data for a day, a week...?
- Determine categories of data, and schedule the backups accordingly

Factors on Making Backups (cont'd)

- Determine which data is static and which is dynamic
 - Some OS installations are changed infrequently, i.e., few backups required
 - Some applications may require continuous backups, e.g., online market places
 - Understand the changing state of your client's data to determine an appropriate backup schedule
- Determine appropriate backup storage media:
 - · CD/DVD
 - Tape
 - Hard Disk
 - Online

Eddie Law 25

On File System Backup

- Backing up user and system files on a single-user Linux system is a good routine operation of an ordinary user
- For complex multi-user systems, it is a necessary procedure for anyone responsible for the administration of the system
- As a system administrator, an easy-to-remember set of considerations is in the form of How, What, Why, When, Where, and Who?

Questions on System Backup

- "How" the commands, utilities, applications, or combination of hardware and software to accomplish the backup and archive; the strategies such as incrementally, in a rolling fashion, or across the entire file system structure totally, etc.
- "What" the selected data for backup, such as user files, user account files, certain kinds of documents, the whole disk drive, multiple disk drives, subset or all of system files, etc.
- "Why" the decisions on the relative importance of "What" for backing up

Eddie Law 27

Questions on System Backup (cont'd)

- "When" how often to backup, e.g., hourly, daily, once a week, once a month, or at what time to save a particular file, etc.
- "Where" the locations of the backup data, e.g., local disk, Cloud storage, a USB thumb drive, another computer or Network Attached Storage (NAS), etc. manually or automatically, etc.
- "Who" the backup is carried out by a person, an automated software, or an automated process through the Cloud vendors, etc.

Proper Backup Procedure

- Choose your application
- Scheduling
- Implementation
- Inventory (content and media)
- Verify
- Automate
- Secure

Eddie Law 29

Backup Choices

- Full or normal backup all data is backed up and the archive bit is reset
- Copy backup all data is backed up, but the archive bit is not reset
- Incremental backup all data that has been changed since the last full or incremental backup is backed up, and the archive bit is reset
- Differential backup all data that has been changed since the last full backup is backed up, and the archive bit is not reset
- Among file's attributes (or metadata), one bit called "archive flag"
 - This flag informs the backup program about which files need backing up
 - 0 for has been backed up recently; 1 for needs to be backed up

Full Backup

- Pros
 - Provides a complete copy of all files
 - Easy to manage
 - Done less frequently than other types of backups due to cost and resource requirements, e.g., monthly, quarterly, semi-annually, annually

Cons

- Usually requires more media space than either differential or incremental
- Takes a long duration to recover the full backup to a new disk

Eddie Law

Differential Backup

- Copy modified files since the last full backup
- Differential backups grow with time, they can eventually grow larger than the last full backup
- Scheduled more frequently than a full backups: Weekly, monthly

Differential Backup (cont'd)

- Pros
 - Redundancy
 - In general, takes up less time and space than a full backup
 - If the differential backup grows to the size of the last full backup, then schedule a new full backup
- Cons
 - Redundancy potentially many unneeded copies of the same data
 - Subsequent differentials take longer and use more media space

Eddie Law

Incremental Backups

- A backup of what has changed since using any type of backup the last time
- Frequency of incremental backups depends on the client needs: weekly, daily, hourly, continuously

Incremental Backups (cont'd)

- Pros
 - Keeps a revision history of actively changing files
 - Fastest backup type
 - Uses the least amount of media to complete a single backup
- Cons
 - Much more difficult to manage
 - Failure in the chain of backup?

Eddie Law

25

Backup Strategies

- Full backups only
 - Slowest backup, fastest recovery
- Full and incremental backups
 - Once a week a full backup, each weekday an incremental backup
 - Quick backup daily, could be lengthy recovery
- Full and differential backups
 - Once a week a full backup, each weekday a differential backups
 - Backup and recovery times in-between the other two

Example of Scheduling

- Full backup twice per year
- Differential each first Saturday morning of each month that is not scheduled for a full backup
- Incremental each Saturday morning that is not scheduled for a Full or Differential

Eddie Law

37

Backup Considerations

- Backups slow down service
 - Files should be write-locked during backup
- Avoid doing backups during peak service hours
- Schedule during early AM hours on the weekend and holidays
- Other schedule considerations
 - Consider completing a backup in conjunction with and before any major system changes are scheduled

Backup Automation

- Automation reduces human errors
- Many pre-packaged applications include automatic scheduling
- Linux/Unix backup scripts can be submitted using the cron utility
- Logs can be kept in /var/log, and e-mail can be sent to the admin

Eddie Law

20

Data Compression

- Risks if the media is damaged, recovery may be difficult or impossible
- Lossy
 - Some data tolerates degradation (loss of information)
- No-loss
 - Some data should not be compressed. Know your data!

Restoration of Data

- Common reasons for restores
 - Accidental file deletion
 - Disk failure
 - Disaster recovery: fire, flood, earthquake, hacker attack, sabotage, terrorist attack, etc.

Eddie Law

Files and Times

- Three different times for each file (in Linux)
 - mtime modification time; this value is changed when the content of the file is changed
 - atime access time; the value of this is changed when the file is accessed. The atime can change when a backup utility or script read the file as well as when a use reads the file
 - ctime change time; the value is updated whenever the attributes of the file change. This can be ownership or permissions
- Note: file system backups change atime while raw device backups will not. If implementing incremental or differential backups, this is **important**

Choose your Backup Tools: Examples

- Many commercial apps are available for different OSes
- Linux/Unix

Linux File Backup Facilities

Backup Facility	Description	
tar	Command and options to pack a file or a directory hierarchy as an ordinary disk file for backup, archiving, or moving to another location or system. gtar is the Gnu version	
cpio	Less popular than tar, but with much of the same functionality	
rsync	A disk space-efficient command to copy files and directories	
dd	A simple and abbreviated backup utility	
zfs snapshot	Built-in commands and options in zfs that offer a variety of backup modes	
Script files	Administrator or user-written shell scripts or other programming language backup systems, that can use all of the earlier commands in them	
3rd party software	Many products, both local and online. Two examples that are most significant for ordinary use are Clonezilla and Filezilla	

tar - Linux Backup Utility

- tar (tape archiver) is a powerful backup and restore utility
- Most Linux files are downloaded as compressed .tar files

Common Options for tar

Full optional operation name

-c (--create) creates a new archive

-V)--verbose lists the files being processed

-x --extract extracts/restores the archived file

-r --append adds the single file or directory to the archive

-p -preserve-permissions extracts information about file permissions

-f --file specifies the name of archive file or device location

--acls enables POSIX ACLs that the directory has

--xattrs enables extended attributes support

Eddie Law

Data Compression for tar

- There are different compression algorithms, the popular ones are
 - -z --gzip --gunzip : compress or decompress using gzip function
 - -j --bzip2 : compress or decompress using bzip2 function
 - -J --xz : compress or decompress using xz function
- Keeping all original attributes (including security setup in Ses//Linux)
 - --xattrs

Examples

- The simplest command to create an archive file from a directory
 - \$ tar --create --verbose --file archive name.tar directory name
- Backup an entire computer
 - \$ sudo tar -cvpzf backup.tar.gz --exclude=/mnt /
- Backup up content of a web site excluding the video files
 - \$ sudo tar -cvpzf wwwbackup.tar.gz
 - --exclude=/var/www/video /var/www
- Restore files
 - \$ sudo tar -xvpzf wwwbackup.tar.gz -C /recover

Change to directory

Eddie Law

Job Scheduling with crontab

- Many administrative tasks must be done frequently and regularly
 - Rotating log files, backing up data
- In Linux, running jobs at regular intervals is managed by cron facility
 - Consists of the crond daemon and a set of tables describing what work is to be done and with what frequency
 - The daemon wakes up every minute and checks the crontabs to determine what needs to be done
 - The crond daemon is usually started by the init process at system startup
- Use the crontab command

Job Scheduling

- How often to do a job?
- Many administrative tasks must be done frequently and regularly, e.g.,
 - Rotating log files, backing up data
- In Linux, running jobs at regular intervals can be managed with the cron (Ubuntu) or crond (Red Hat) facility
 - A crond daemon and a set of tables describing what work to do and its frequency
 - The daemon wakes up every minute and checks the crontabs to check what to do
 - The crond daemon starts when the system boots and runs as long as the system is up

Eddie Law

10

Use the crontab Command

- A cron configuration file is "crontab" which we call it cron table
- Containing lists of command lines and times at which they are to be invoked
- Crontabs for individual users are stored under /var/spool/cron (Linux) or /var/cron/tabs (FreeBSD)
- There is at most one crontab file per user

Editing crontab

- To create or edit a crontab, use the crontab command with the option -e (for "edit")
 - \$ sudo crontab -e
- We can select our editor of choice using the command
 - \$ sudo select-editor
 - Or it may ask you upon creating a cron table at the first time
- Each crontab entry contains six fields
 - Comments are introduced with a pound sign (#) in the first column of a line
 - Each non-comment line contains six fields and represents one command

minute hour dom month weekday command

Eddie Law

The Fields

- 1. Minute of the hour (0-59)
- 2. Hour of the day (0-23)
- 3. Day of the month (dom) (1-31)
- 4. Month of the year (1-12)
- 5. Day of the week (0-6 for Sun, Mon, Tue, Wed, Thu, Fri, Sat)
- 6. String to be executed by bash

- For each time-related field
 - A star, which matches everything
 - A single integer, which matches exactly
 - Two integers separated by a dash, matching a range of values
 - A range followed by a slash and a *step value*, e.g., 1-10/2
 - A comma-separate list of integers or ranges, matching any value

Examples

- * 1-5 [a bash command] • 45
 - "10:45 a.m., Monday through Friday."
- 0,20,40 22-23 * 7 Fri-Sat /home/ian/mycrontest.sh
 - Runs mycrontest.sh shell script at 10 pm, 10:20 pm, 10:40 pm, 11 pm, 11:20 pm, 11:40 pm, in July on Fridays and Saturdays

Eddie Law 53

Automatic Backup

- Combining crontab and tar to make an automatic backup
- Back up www web site files every minute (crazy!) * * * * * sudo tar -cvpzf /backupfolder/wwwbackup.tar.gz /var/www
- Back up www web site files at 3 am on Tuesdays 0 3 * * 2 sudo tar -cvpzf /backupfolder/wwwbackup.tar.gz /var/www

Remarks

- Discussed backup and "crontab"
- Run command "at" is for scheduling single event
- Logical volume group good for scalable file systems (not discussed though)

Eddie Law 55

