CPSC 121 Quiz 1 September 25th, 2007

- [12] 1. Propositional Logic and Circuits
 - [3] a. Using a sequence of known logical equivalences (not a truth table), prove that \to distributes over \land . That is, prove that $p \to (q \land r) \equiv (p \to q) \land (p \to r)$.

Solution:

$$p \to (q \land r) \equiv (\sim p) \lor (q \land r)$$
$$\equiv (\sim p \lor q) \land (\sim p \lor r)$$
$$\equiv (p \to q) \land (p \to r)$$

[3] b. Does \wedge distribute over \rightarrow ? That is, is $p \wedge (q \rightarrow r)$ logically equivalent to $(p \wedge q) \rightarrow (p \wedge r)$? Explain why or why not.

Solution: No, \wedge does not distribute over \to . If p is false, then $p \wedge (q \to r)$ is also false. However when p is false, $(p \wedge q)$ is false, which means that $(p \wedge q) \to (p \wedge r)$ is true. Therefore $p \wedge (q \to r)$ is not logically equivalent to $(p \wedge q) \to (p \wedge r)$.

[6] c. Prove that the output of the following circuit is logically equivalent to $x \lor y \lor z$.

Solution: The output from the circuit is (x nor y) nand (y nor z). Moreover

$$\begin{array}{ll} (x \ \mathrm{nor} \ y) \ \mathrm{nand} \ (y \ \mathrm{nor} \ z) & \equiv & \sim ((x \ \mathrm{nor} \ y) \wedge (y \ \mathrm{nor} \ z)) \\ & \equiv & \sim (x \ \mathrm{nor} \ y) \vee \sim (y \ \mathrm{nor} \ z) \\ & \equiv & \sim \sim (x \vee y) \vee \sim \sim (y \vee z) \\ & \equiv & (x \vee y) \vee (y \vee z) \\ & \equiv & ((x \vee y) \vee y) \vee z \\ & \equiv & (x \vee (y \vee y)) \vee z \\ & \equiv & (x \vee y) \vee z \\ & \equiv & x \vee y \vee z \end{array}$$

[8] 2. Determine the validity of the following argument. Fully justify your answer.

- 1. $t \rightarrow \sim p$
- 2. $s \to \sim (q \land r)$ 3. $(p \land u) \to v$
- 4. $p \wedge q \wedge r$
- 5. $s \lor t \lor u$

 $\therefore v$

Solution: The argument is valid.

	\mathbf{Step}	Reason
6.	$q \wedge \overset{-}{r}$	Simplification from (4)
7.	$\sim \sim (q \wedge r)$	Double-negation law from (6)
8.	$\sim s$	Modus tollens from (2),(7)
9.	$t \vee u$	Disjunctive syllogism from (5), (8)
10.	p	Simplification from (4)
11.	$\sim \sim p$	Double-negation law from (10)
12.	$\sim t^{-}$	Modus tollens from (1),(11)
13.	u	Disjunctive syllogism from (5), (12)
14.	$p \wedge u$	From (10) and (13)
15.	v	Modus ponens from (3), (14)