Login

GraphPad Curve Fitting Guide

Contents Index Search

View the User or Statistics Guide PRINCIPLES OF CURVE FITTING

Understanding mathematical models

Principles of linear regression Getting started with nonlinear regression

Weighted nonlinear regression

The many uses of global nonlinear regression

Comparing fits of nonlinear models Outlier elimination and robust nonlinear regression

How nonlinear regression works

CURVE FITTING WITH PRISM 6

What's new in Prism 6 (regression)?

Linear regression with Prism
Interpolating from a standard curve
Nonlinear regression tutorials
Nonlinear regression with Prism
Interpreting nonlinear regression
results

Interpreting results: Nonlinear regression

Standard errors and confidence intervals of parameters

Normality tests of residuals

R squared

Sum-of-squares

GraphPad Curve Fitting Guide

R squared

Meaning of R²

Key points about R²

- The value R² quantifies goodness of fit.
- It is a fraction between 0.0 and 1.0, and has no units. Higher values indicate that the model fits the data better.
- When R² equals 0.0, the best-fit curve fits the data no better than a
 horizontal line going through the mean of all Y values. In this case,
 knowing X does not help you predict Y.
- When R²=1.0, all points lie exactly on the curve with no scatter. If you know X you can calculate Y exactly.
- You can think of R² as the fraction of the total variance of Y that is explained by the model (equation). With experimental data (and a sensible model) you will always obtain results between 0.0 and 1.0.
- There is really no general rule of thumb about what values of R² are high, adequate or low. If you repeat an experiment many times, you will know what values of R² to expect, and can investigate further when R² is much lower than the expected value.
- By tradition, statisticians use uppercase (R²) for the results of nonlinear and multiple regression and lowercase (r²) for the results of linear regression, but this is a distinction without a difference.

Don't overemphasize R2

A common mistake is to use R^2 as the main criteria for whether a fit is reasonable. A high R^2 tells you that the curve came very close to the points. That doesn't mean the fit is "good" in other ways. The best-fit values of the parameters may have values that make no sense (for example, negative rate constants) or the confidence intervals may be very wide. The fit may be ambiguous. You need to look at all the results to evaluate a fit,