AD-A020 924

AN ANALYTICAL INVESTIGATION OF THE EFFECTS OF INCREASED INSTALLED HORSEPOWER ON HELICOPTER AGILITY IN THE NAP-OF-THE-EARTH ENVIRONMENT

Donald J. Merkley

Army Air Mobility Research and Development Laboratory Fort Eustis, Virginia

December 1975

DISTRIBUTED BY:

water and the state of the stat

U. S. DEPARTMENT OF COMMERCE

USAAMRDL-TN-21

AN ANALYTICAL INVESTIGATION OF THE EFFECTS OF INCREASED INSTALLED HORSEPOWER ON HELICOPTER AGILITY IN THE NAP-OF-THE-EARTH ENVIRONMENT

Approved for public release; distribution unlimited.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce

EUSTIS DIRECTORATE

"Sponspladd, VA. 22151"

U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY
Fort Eustis, Va. 23604

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Kniered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT HUMBER 2. SOUT ACCESSION HO.	3. RECIPIENT'S CATALOG HUMBER
USAAMRDL-TN-21	
4. TITLE (and Substitle)	5. TYPE OF REPORT & PERIOD COVERED
AN ANALYTICAL INVESTIGATION OF THE EFFECTS OF INCREASED INSTALLED HORSEPOWER ON	Technical Note
HELICOPTER AGILITY IN THE NAP-OF-THE-EARTH ENVIRONMENT	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Donaid J. Merkley	
9. PERFORMING OFFAKIZATION NAME AND ADDRESS Eustis Directorate	10. PROGRAM ZLEMENT, PROJECT, TASK AREA & BORK UNIT NUMSZRS
U. S. Army Air Mobility R&D Laboratory	62209A 1F262209AH76 00
ATTN: SAVDL-EU-TAA Fort Eustis, Virginia 23604	029 EK
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	Dacember 1975
	19. HUMBER OF PAGES 28
14. MCHITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	184. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different be	a Material
17. DISTRIBUTION STATEMENT (OF MIC CONTINUE IN STORM 29, IT WINDOWN AND	
	•
16. SUPPLEMENTARY HOTES	
TO SUPPLIANT NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
Helicopter Agility	
Engine Power	
Computerized Simulation	
Evasive Maneuvers	
Nap-of-the-Earth 28. ABSTRACT (Combines on reverse olds If necessary and Identify by block number)	
This report describes an investigation of the effects of increase	used horsepower on the agility of
a helicopter in nap-of-the-earth (NOE) maneuvers. A compu	ter program, the Maneuver Criteria
Evaluation Program, was used to simulate the flight of a rep	resentative scout-type helicopter,
the OH-58. Calculations were made for both the standard (OH-58 and an OH-58 with increased
n stalled power. The increased installed power had significant helicopter in evasive-acceleration type maneuvers.	OH-58 and an OH-58 with increased

DD 1700 1473

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

The articles which we have a second of the s

TABLE OF CONTENTS

6	E
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	VEHICLE CHARACTERIZATION
	DESCRIPTION OF THE MANEUVER CRITERIA EVALUATION
	PROGRAM (MCEP) DESCRIPTION OF THE MANEUVERS
	RESULTS AND DISCUSSION
	CONCLUSIONS AND RECOMMENDATIONS
	APPENDIX A - SAMPLE MCEP OUTPUTS
	AFFENDIX A - SAMPLE MICEF OUTFUTS
公 秦	
vis ·	
<i>₹</i> }- 1	
<u>.</u> -	
*- -	
	3

LIST OF ILLUSTRATIONS

Figure		Fage
1	Power required for the level flight of an OH-58	13
2	Bob-up from hover to 50 feet	14
3	Pop-up to 50 feet at 15 knots	15
4	Left lateral acceleration to 30 knots and deceleration to hover	16
5	Lateral acceleration with recovery at 35 knots	17
6	Longitudinal acceleration to 60 knots	18
7	Longitudinal deceleration from 30 knots	19
	LIST OF TABLES	
Table		Page
A-1	OH-58 helicopter input data	21
A-2	Time history of the bob-up raneuver - 420 shr	23

A-3

A-4

A-5

A-6

A-7

Summary of the bob-up maneuver - 420 shp

Histograms for the bob-up maneuver - 420 shp

maneuver - 317 shp.....

maneuver - 317 shp.....

maneuver - 317 shp.....

Time history for the lateral acceleration with recover

Summary of the lateral acceleration with recovery

Histogram for the lateral acceleration with recovery

24

25

25

27

INTRODUCTION

Agility is the capability of an aircraft to quickly perform commanded maneuvers. The agility of helicopters is becoming increasingly important with the recent emphasis on nap-of-the-earth (NOE) tactics in hostile environments. The problem of delivering close support and observation in a mid-intensity conflict is made more difficult by new, sophisticated fire control systems. The vulnerability of the helicopter has been increased by these new weapon systems, which have high rates of fire, are able to penetrate foliage, and are augmented by greatly increased detection abilities that allow sophisticated radar range firing, and automatic range corrections and radar directing. High-speed flight is no longer sufficient alone; it is also necessary to have good agility, through greater acceleration capabilities, to evade the new weapon systems.

The object of the investigation described in this report was to determine the effect of increased available power on helicopter agility while performing evasive-acceleration type maneuvers. Increased power should allow faster accelerations, thus making a helicopter more agile.

There are four sources of power for a helicopter: the engine (installed power), rotor inertia (rotational kinetic energy), altitude loss (potential energy), and airspeed loss (kinetic energy). Gains of potential and kinetic energy are impractical in the NOE environment, where the helicopter cannot afford to lose altitude or airspeed. Installed engine power and rotational kinetic energy are the remaining sources. The approach taken in our investigation was limited to increasing the horsepower of the engine. The use of increased rotational kinetic energy was not investigated because we lacked the ability to model rotor inertia effects.

THE THE PROPERTY OF THE PROPER

のでは、1980年の1980年の1980年では、1980年の1980年の1980年の1980年の1980年の1980年の1980年では、1980年の198

A standard OH-58 was chosen as a representative scout-type helicopter to be used as a baseline vehicle. Helicopter flight performance was calculated for selected maneuvers with the aid of the Maneuver Criteria Evaluation Program (MCEP). Then the performance of an OH-58 with increased horsepower was calculated for the same maneuvers to identify the potential improvements in agility.

VEHICLE CHARACTERIZATION

The characterization of the standard OH-58 helicopter, used in this investigation, is as follows:

STANDARD OH-58

Number of blades	2
Rotor radius	17.650 ft
Rotor chord	1.080 ft
Tip speed	654.0 ft/sec
Blade section lift curve slope	6.28/rad
Blade section drag	$C_D = 0.008a + 0.59a^2$
Drag divergent Mach number	0.75
Equivalent flat plate drag $(\beta = 0^{\circ})$	9.7 ft ²
Equivalent flat plate drag ($\beta = 90^{\circ}$)	102 ft ²
Gross weight	2767 lb
Allison T63-A-733 Engine	317 shp

The modified OH-58 with increased power had the same characterization as the standard OH-58 except that the engine produced 420 shp (representing an Allison 250-C-20B).

We assumed that the modified version would have an uprated transmission, that the rotor would have the aerodynamic and dynamic qualities to allow the increased thrust, and that the modification would not change the gross weight of the vehicle. Standard sea level conditions were used in the calculations (US Standard Atmosphere, 1962).

DESCRIPTION OF THE MANEUVER CRITERIA EVALUATION PROGRAM (MCEP)

The MCEP is a digital computer program that solves helicopter flight path equations.¹ The program uses basic work, energy, and power relationships to calculate a helicopter's ability to change its speed and direction. The program predicts how much power is required by the helicopter as a function of the flight condition, the load factor, and certain physical parameters of the helicopter, from a set of closed-form equations. Any excess in engine power over the power required at the specific flight condition may be used by the helicopter to increase altitude, airspeed, or rotor speed, or to change direction. The concept of changing energy levels to control the direction and speed of flight is explained in Reference 2.

The power requirements of an OH-58 as calculated by the MCEP correlate well with data obtained from actual flight tests (Figure 1). Examples of program outputs are given in Appendix A.

t,=

¹T. L. Wood, D. G. Ford, and G. H. Brigman, *Maneuver Criteria Evaluation Program*, Bell Helicopter Company, USAAMRDL Technical Report 74-32, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, May 1974, AD 782209.

²C. D. Wells and T. L. Wood, "Maneuverability-Theory and Application," Journal of the American Helicopter Society, Volume 8, Number 1, January 1973.

DESCRIPTION OF THE MANEUVERS

The maneuvers chosen for the investigation were representative of maneuvers flown in NOE. The selected evasive-acceleration type maneuvers were:

Bob-Up

In this maneuver the helicopter changes altitude while maintaining a constant attitude by climbing vertically from a hover.

Pop-Up

THE PARTY OF THE P

This maneuver is similar to the bob-up except that it is initiated at low airspeeds. The helicopter gains altitude while maintaining a constant attitude and ground speed.

Lateral Acceleration and Deceleration

In this maneuver the helicopter accelerates to the right or left from a hover while maintaining a constant altitude and tracking a target. The helicopter accelerates until the desired sideward velocity is reached; then it decelerates to a hover while still tracking the target. This maneuver is controlled by the bank angle that the helicopter maintains in the acceleration phase of the maneuver.

Lateral Acceleration With Recovery

In this maneuver the helicopter accelerates to the right or left from a hover while maintaining a constant altitude and tracking a target. The helicopter accelerates until a command velocity is reached; then the helicopter stops tracking the target and swings its nose into the wind.

Longitudinal Acceleration

In this maneuver the helicopter accelerates to a specified velocity while maintaining a constant altitude and attitude. The thrust vector of the main rotor is tilted so that the horizontal component is increased until the power required matches the power supplied by the engine.

Longitudinal Deceleration

In this maneuver the helicopter decelerates to a specified velocity while maintaining a constant altitude and attitude, through a power relationship in which the available power is determined by the specified minimum power allowable.

All of the above maneuvers are limited by the power available and are controlled by the rate at which the power is applied with the exception of the longitudinal deceleration maneuver. In each case, the power was applied at the fastest possible rate, simulating maneuvers of maximum urgency.

RESULTS AND DISCUSSION

The MCEP simulations showed that horsepower has a significant influence on the agility of the OH-58. Selected time histories from the series of simulated maneuvers are presented in Figures 2 *hrough 7.

Bob-Up

Time histories for the bob-up maneuver are shown in Figure 2. In this manevuer, the helicopter was initially hovering and was commanded to rise 50 feet in the minimum time. The simulated maneuver was performed with the maximum power available. Both belicopters had the same vertical jerk limit, which is the rate of change of load factor. This is usually a limit imposed by the pilot and was set at 0.5q/sec for this investigation. This limit can be seen in the time histories of the normal load factors, where the initial slope is the same for both helicopters. The difference between the performance of the helicopters is the ability of the helicopter with 420 shp to attain a maximum load factor of 1.5, resulting in a maximum vertical velocity 11.6 ft/sec; while the helicopter with 317 shp can only reach a 1.27 load factor, resulting in a maximum vertical velocity of 3 ft/sec. This difference in maximum vertical velocity affected a significant parameter in this maneuver: the time it took each helicopter to reach 50 feet. This difference in ability is important in NOE, where a helicopter might bob up from behind ground cover, such as trees, for surveillance or a rapid gun burst. The helicopter with 420 shp was able to stabilize at 50 feet in 6.3 seconds; the helicopter with the standard, 317 shp engine took 17.4 seconds.

Pop-Up

ing the figure of the second o

The pop-up maneuver is controlled in exactly the same manner as the bob-up; however, the helicopter has forward speed in the pop-up maneuver. For the pop-up shown in Figure 3, the forward velocity was set at 15 knots. Because less rotor-induced power is required and because the system has more kinetic energy, more of the engine's total energy is available for the maneuver. The helicopter with 317 shp was able to climb to 50 feet in 7.85 seconds, at a maximum vertical velocity of 8 ft/sec; while the helicopter with 420 shp climbed to 50 feet in 3.45 seconds, attaining a maximum load factor of 1.69 and a maximum vertical velocity of 25.4 ft/sec. In fact, the modified OH-58 overshot and did not arrest its vertical velocity until 5 seconds at an altitude of 57 feet. The differences in performance indicate the value of increased available horsepower. The results of this maneuver also allow an observation relevant to tactics. A helicopter is much more agile in a pop-up maneuver than in a bob-up maneuver: the time needed to reach 50 feet was halved with only 15 knots of forward speed. The resulting longitudinal ground run may be significant when considering the terrain and foliage, and was 199 feet for the standard OH-58 and 127 feet for the increased horsepower model.

Lateral Acceleration and Deceleration

Lateral acceleration and decleration maneuvers are important in NOE tactics. For example, a helicopter could be flown sideways from behind a group of trees to allow the observation

of or to fire at the enemy. Also, the maneuver can be used as an evasive tactic that allows the target to be tracked at the same time.

The simulated maneuver we performed involved a lateral acceleration from hover to 30 knots and, immediately, a deceleration back to hover. In this maneuver the thrust vector accelerates and decelerates the helicopter, and is controlled by the bank angle. The bank angles for acceleration and deceleration were opposite but of equal magnitudes. The bank angle was reversed when the desired sideward velocity was approached.

Increased horsepower did not improve sideward acceleration and deceleration as much as it improved pop-up and bcb-up (see Figure 4). The helicopter with the increased horsepower reached 30 knots about 1/2 second sooner than the standard OH-58.

Lateral Acceleration With Recovery

Additional power improved the performance of the lateral acceleration with recovery maneuver more than it improved the performance of the lateral acceleration and deceleration maneuver. In this maneuver (see Figure 5), when the helicopter approaches the desired 35-knot lateral velocity, it rolls to a bank angle at which the their set vector balances the drag (i.e., no acceleration). Then the helicopter stops tracking the target, swings its nose into the wind, and maintains the commanded recovery velocity. The helicopter with the increased horsepower was 1 second ahead of the standard OH-58 and reached a maximum lateral acceleration of 31 ft/sec², at a bank angle of 45 degrees, while the standard OH-58 was able to reach a maximum lateral acceleration of only 20 ft/sec², at a bank angle of 32.5 degrees. In both lateral acceleration maneuvers, the acceleration of the high power helicopter could have been even better had the helicopter been allowed to bank more than 45 degrees. The bank angle is limited by the pilot; many pilots might exceed 45 degrees bank. The standard OH-58 was limited by its power in each case, having been able to reach bank angles of only 38.4 and 32.5 degrees.

Longitudinal Acceleration

STATES OF THE PROPERTY OF THE

The longitudinal acceleration of the helicopter was significantly affected by the additional horsepower. Time histories for a typical longitudinal acceleration run are presented in Figure 6. As can be seen in the figure, the high horsepower helicopter was run at 378 shp, although the actual installed horsepower was still 420 shp. The maneuver was run with 90 percent of the available engine power since the application of full power caused the high powered helicopter to assume an angle of attack exceeding -90 degrees in an effort to use all of the power available. This is unrealistic, of course, and the maximum power setting was consequently reduced. The results of the standard helicopter reflect the maximum performance of *hat helicopter since the power setting was 100 percent. With 378 shp, the modified helicopter attained the desired speed of 60 knots 1.5 seconds before the 317 shp helicopter.

Longitudinal Decelerations

The effect of increased horsepower on the results of the longitudinal decelerations is inconclusive (Figure 7). This is a result of the manner in which the longitudinal deceleration is modeled in the MCEP. In this program, longitudinal deceleration is controlled by the minimum power allowed from the engine during the maneuver, while the maximum

deceleration is restricted to a negative 0.5g. The deceleration is not a function of the flare attitude and maximum power available. The minimum power allowed is specified by the user; whereas the restriction on the maximum deceleration is specified within the MCEP. For the maneuvers presented in Figure 7, it was specified that both helicopters be allowed 10 percent of their maximum installed horsepower. Thus the standard OH-58 had a minimum power limit of 31.7 shp, and the modified OH-58, a minimum power limit of 42 shp. This resulted in the standard OH-58's decelerating to a hover sooner than the modified one. In practice, the pilot determines what his lower limit should be; if he had a maximum installed power equal to 420 shp and limited his power to 7.4 percent, the results would be identical to those obtained with 10 percent of 317 shp. Furthermore, in practice, the pilot is more likely to decelerate the helicopter by flaring to a pitch-up attitude and increasing the thrust vector, providing a force in opposition to its motion. If this were allowed, the agility would improve with increased horsepower.

のでは、100mmのでは、100mmで

CONCLUSIONS AND RECOMMENDATIONS

Increased installed power has significant effects upon the agility of the OH-58. This is shown in the results from the bob-up, pop-up, and lateral and longitudinal accelerations, where increased installed power produced improved agility. This is particularly important in NOE missions where, in general, agility cannot be gained through other sources of energy. The gaining of energy through airspeed and altitude losses is impractical in the NOE environment.

While the longitudinal deceleration results did not indicate improved agility, due to the manner in which longitudinal deceleration was modeled, in actual NOE flight the pilot would probably use a technique that would result in improved agility if a minimum deceleration time was essential.

Piloc' techniques and limitations play an important role in the performance of a helicopter. This can be seen from several of the maneuvers in this investigation. The pilot possesses certain limits with respect to rates and reaction times. The helicopter possesses another set of limits. If the helicopter's abilities are improved so that its limits are beyond those of the pilot's limits will obviously prevail, and the improvements to the helicopter will go unnoticed.

To establish helicopter design criteria that reflect the limitations of the pilot, the following exestigations should be made with the use of a ground-based simulator:

- An investigation of the pilot's tolerance to angular rates and accelerations experienced in lateral and longitudinal manauvers.
- An investigation of the effects of angular rates and accelerations on the pilot's ability to maintain control of the aircraft.

Another source of power, increased rotor inertia, should also have a beneficial effect on maneuverability and agility. It has been estimated that an OH-58 with approximately 50 pounds of weight added to each blade tip would have 30 to 50 percent more power available for guick maneuvers than a standard OH-58.

To facilitate research into the effects of rotor inertia on agility, the MCEP should be modified to handle variable main rotor inertia and rate of rotor revolution. This would also allow an investigation of a potential "reserve" maneuverability in the event of a power failure during NOE and improved autorotation landings.

Figure 1. Fower required for the level flight of an OH-58.

Figure 2. Bob-up from hover to 59 feet.

Commence of the second second

SECTION OF THE PROPERTY OF THE

Figure 3. Pop-up to 50 feet at 15 knots.

and the second s

A CONTRACTOR OF THE PROPERTY OF THE PARTY OF

A PARTICULAR PROPERTY OF THE P

Figure 4. Left lateral acceleration to 30 knots and deceleration to hover.

Figure 5. Lateral acceleration with recovery at 35 knots.

*378 shp reflects the 90 percent limit placed on the 420 shp available.

Figure 6. Longitudinal acceleration to 60 knots.

THE STATE OF THE S

Figure 7. Longitudinal deceleration from 30 knots.

APPENDIX A SAMPLE MCEP OUTPUTS

This appendix contains examples of the outputs provided by the MCEP. The required input data for the OH-58 helicopter and the initial conditions are given in Table A-1. A time history of the bob-up maneuver for the 420-shp helicopter is shown in Table A-2. While calculations were made every .05 second, only every fifth time-history computation was printed. Table A-3 is a summary of the bob-up. For convenience, the format of this output has been standardized. In some cases this means that labels such as "DESIRED", "ACTUAL", and "ERROR" are not meaningful but simply identify end points of the maneuver segment. Power and altitude histograms for the bob-up are shown in Table A-4. The "RELATIVE FREQUENCY" gives the fraction of total flight time spent in each interval of the histogram, while the "RELATIVE CUMULATIVE FREQUENCY" gives the fraction of flight time spent in the current interval and all preceding intervals. The MCEP also prints load factor and velocity histograms.

Tables A-5, A-6, and A-7 provide typical outputs for the lateral acceleration with recovery maneuver for the OH-58 with 317 shp.

TABLE A-1. OH-58 HELICOPT	ER INPUT D	ATA	
HANEUVER CRITERIA EVALUAT	IDN PROCE	IAH	
HELICOPTER INPUT			
VARIABLE	DIGITAL NAME	VALUE-	UNITS
	111111111111111111111111111111111111111	,,,,,,,,	04210
NUMBER OF BLADES		2,000	N,D,
ROTOR RADIUS		1,080	
MAIN ROTOR INDUCED VELOCITY FACTOR	R - K3	17,650	FT
TIP SPEED	NR	654,000	PT/SEC
BLADE SECTION LIFT CURVE SLOPE	- 420	 6,280	
BLADE DRAG COEFFICIENT	****		, n-v
	DELU		N.D.
	DELI	0.0	/RAD
BAAD BAUGUSTAN MAGIL WASHINGTON	DELE	0;590-	-/RAD+RAD
DRAG DIVERGENT MACH NUMBER	MÇRO	0,750	H.D.
DIVERGENT THRUST GOEFFICIENT CURVS			
	TC1	0,100	٠,
MAXIMUM THRUST COEFFICIENT CURVE	162	0,200	., 3
- The second of	TCH1	0.36 0-	N.O.
	TCM2	0.0	N.D.
GLIMB/DESCENT EFFICIENCY FACTOR	HPEFF		
PUSELAGE ANGLE OF ATTACK COEFFICIENTS		•	V - V
	KAF1	8,643	·
	KAFZ	2,478	1/G±G
	KAF5	10,422	1/8
	XAF4	1,600	000 150
	KAF5 Kaf6	17,539	- 3EC/FT
		0,800 	N.D.
	KAFB	240,000	N.D.
HING AREA	- 3H		 ۴7**2 -
WING INCIDENCE	IN	0.0	DEG
INDUCED VELOCITY FACTOR	- KW		-N.D
HING ASPECT RATIO	ASR	0.0	N.D.
HING COEFFICIENT OF DRAS AT ZERO LIFT	_		-N.D.
WING LIFT CURVE SLOPE	ALZD	0,0	/RAD
PLAT PLATE DRAS CUEFFICIENT	-COFP	0.0	- N.D.
WING EFFICIENCY FACTOR WING INCIDENCE CHANGE WITH LOAD FACTOR	WEFF	0,0	N.D.
MAXIMUM POSITIVE LIFT COEFFICIENT	CLMAXP	0,0	DEG/6
MAXIMUM NEBATIVE LIFT COEFFICIENT	CEHAXN	0,0	N,D. -N.D
LIHIT DIVE VELOCITY	VDL	190,000	XT
MAXIMUM VELOCITY TO THE RIGHT		60.000	- KT
MAXIMUM VELOCITY TO THE LEFT	VHLT	-60.000	KT

TABLE A-1. CON	TINUED		
VARIABLE	DIGITAL NAME	VALUÉ	UNITS
	.,,,,,,	V 1 6 0 -	0.02.10
TIME PROPERTY FOR PANIA	-AUD	1 400	SEC
ITIME CONSTANT FOR GAMMA TIME CONSTANT FOR ROLL	TAUP Taur	1,000 0,550	SEC
TIME CONSTANT FOR CHI	TAUY	5,000	SEC
MAXIMUM RATE FOR GAMMA	ARPMX	30.000	
MAXIMUM RATE FOR BANDA	ARRHX	60,000	
MAXIMUM RATE FOR CHI	ARYMX	60,000	
MAXIMUM ANGLE FOR GAMMA	GAMMP	60,000	
MINIMUM ANGLE FOR GAMMA	GAMMN	-60,000	
	VJERK	0,500	
VERTICAL JERK LIMIT ERROR IN ANGLE CALCULATION	EPA	0.080	
ERROR IN ANGLE CALCULATION -	EPAV		· DEG/3EC- ~
AIRCRAFT FLIGHT CO	NDITIUN		
	- bigital	municipation of a light blooding at a light of	
VARIABLE	BRAN	VALUE	Un115
WALLE TO THE PROPERTY OF THE P	-		
GROSS WEIGHT	GH	-27 67 000-	-L B
EQUIVALENT FLAT PLATE DRAG(BETA=0)	FO	9,700	FT##2
EQUIVALENT FLAT-PLATE-DRAG(BETA=90) -	#4	102,000-	F¥442
VELOCITY	V	0.0	
ALTITUDE	H	0-0-	. FT
	77		
HEADING	CHI	0.0	DEG
HEADING AIR DENSITY	•	0.0	DEG - Slugs/F7++3

KE YF TT	000000000000000000000000000000000000000	6A H LE C C C C C C C C C C C C C C C C C C	PH ALPHO 000 000 000 000 000 000 000 000 000 0	A S S S S S S S S S S S S S S S S S S S	FACTOR 1000 1000 1000 1000 1000 1000	× 0000 × 000	##MXX - VZE SEC SEC SEC SEC SEC SEC SEC SEC SEC SE	ETANKE SECOND	00000000000000000000000000000000000000	00000000000000000000000000000000000000		TANKER TO THE TA
W. 97000000000				44 NANANANA	LOAD 1.00 1.10 1.10 1.10 1.10 1.10 1.10 1.00	>		4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000000000000000000000000000000000000			Noon og
970903099703				* * * * * * * * * * * * * * * * * * *	00737400	0000000	:	2 000000		'		N 90 1 9 9 9
27000000000			caeaeae	******	00737.00	000000	2400-40	900000	00000	000000	000000	V 00 0 0 0 0 0
709020000	0000000		200 000 000 000 000 000 000 000 000 000	444444	2777 500	00000		00000	9000	00000	00000	007000
000000000000000000000000000000000000000	000000		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	*****	7375	0 0 0 0 0 0	99-n	3000		0000	00000	2733
9090909	000000		0.00 0.10 0.10 0.10		7-7-08	~~~~	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0000	909	939		
0000000	2722		2018	******	7.500	~~ 0 0	-13-	000	000	20	000	290
000000	7 7 7 7		20.00	4 5 5	500	700	2:3:	٩٠	- -	4		9 .
20000	000	90.0	C. 14.		000	0 0	٠: -	<			0	ا ج
2723	; ; ;		91				4	•	0.0	•	<	
303	,	0.00	5.16	5.1.	00.1	6.0	9				, 0	•
00	F . 0	0.0	.0 21.5	51.	9	4	4-11-	d.	d	0	9	
• •			.0 -91.5	5.1-	00.1	6.9	9.	0	0	0	0	.69 288
•	9.4	1	2-16- 016	44	43.1	8		٩	٩	9	9	
	0.	0.04	1.0 -91.5	4.1.	1.00	6.9	9::	0	0.0	0.0	0.0	.44 288
3.20	1 0.7	90.0	1.0 -91.5	*L.S .	00.1.	. 6.4.	-11.6-	0.3	-0.0-	0.0	0.0	İ
3.45	٥.	0.06	- 91.5	-1.5	°°-	••	9.11.	0.0	0.0	•	0.0	
22.4	0.4	90.0	-91.5	-1.5	00.	0.0	£	0.0	0.0	0.0	0.0.0	54.
97. 9	٠. د	40.0	5.1.5	 	0.0	· ·	• • •	0.0	0.0	0	?	•
	 - -	3	10 H		1 1:		 	0.0	١	,	9	
	o :	0.04	\$1.50 0.10	· ·	E .		~ · · ·	0	0.0	0	0.0	.
				۲		9	\ . \ . \	0	1	0.0	0.0	
9	.	0.0	211.5	· ·	0.0		-1.7	٠ •	0.0	0.	0	
	o.	30.0	5.1.5		0.70	7.7		<u>۔</u> ه	0.0	0.0-	0 0	١
5.45	o. •	0.0	2.10-0.1	-1.S	0.77	٥.	-3.2	0.0	٠. د.	0.0	0.0	97.
9	9.3	3	5-16-	ייליי.	20.9	999	4:1	6.0	اً	٥٥١	0 0 0	48.

的现在分词,这种是一种,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人

	TABLE A-3. S	SUMMARY	THE BO	B-UP MAI	NEUVER – 42
ROLL IN ACHIEVE HOLD G	G 0.0		RGET LOCA E YE		
ENTRY		¥Ε	ΥE	7E	VELUCITY KNUTS
EXII		SLANT .	O	108=G	- AFFOCITA-
DESIRED ACTUAL ERROR	0.0 90.0 -90.0		0.500 0.686 -0.186	1,566	-0,0 -0,0 -0,0
	BANK ANGLE	xe			ZE
DESIRED ACTUAL ERROR	0.1 0.0		0.	0 ·	=50, =50,

TA	BLE A-4.	HISTOGRAMS FOR	THE BOB-UP MA	NEUVER - 420 SHP
		HURSEPOWER I	HISTOGRAM	
HORSEPO		NUMBER OF		
INTERVA	L=HP	OCCURRENCES	FREQUENCY	FREQUENCY
	20.00	V	0.0	0,0
40.00-		0	0.0	0,0
60.00-	80.00	0	0.0	
80.00-	100.00	0	0.0	0.0
100.00-			0.0	0.0
-00.051	140.00	O	0.0	0 • 0
140.00-	160,00		0,0	0,0
160.00-	180.00	Ü	0.0	0.0
180.00-			0.1339	0,1339
200.00=	220.00	10	0.0787	0,2126
220.00- 240.00-	260.00	9 6	0.0709 0.0472	0,2835 0,3307
250.00=			0.0472	0.3937
280.00-	300.00	60	0,4724	0.8661
500.00-		<u>_</u>	0.0157	0.8819
320.00-	340.00	5	0.0157	0.8976
340.00-		2	0.0157	0.9134
360.00-	380,00	1	0.0079	0,9213
380.00-	400,00	2	0.0157	0,9370
400.00-	420.00	8	0.0630	1,0000
		ALTITUDE H	ISTOGRAM	
ALTITUD				RELATIVE CUMULATIVE
INTERVA	L-FT	OCCURRENCES	FREQUENCY	FREQUENCY
0.0 -	5,00	24	0.1890	0,1890
5.00=		9	0,0709	0.2598
10.00-		8 8	0.0630	0,3228 0,3937
20.00	25.00	9	0.0709	0,4646
25. 3-	30-00		0.0630	0,5276
30.00-	35.00	9	0.0709	0,5984
35,00-	40.00	<u> </u>	0.0709	0.6693
40.00-	45,00	9	0.0709	0.7402
45.00-	50,00	18	0.1417	0.8819
50.00-	55,00	14	0.1102	0,9921
55.40-	60.00		0.0	0.9921
60.00=	65,00	0	0.0	0.9921
-05,00-	70,00		<u>_</u>	0,9921
70.00-	75.00	U	0.0	0,9921

YABLE A.S. TIME HISTORY FOR THE LATERAL ACCELERATION WITH MECOVERY MANEUVER - 317 SHP

		SIDEMARD ACCE	ACCELE RATIO	TION AND R	ECOVERY												
Teleunt Data	-		9	VC * 35.	מפריים	A A	000	I PHYRICAL SECTION	3,5	46.00	HPMAX - 3	17.0	KOVER	ام 1			
		30.000001 B VKVI	2	- 1	• [!]	:	•	.;	؛ ع'		•]		.	1		
3424	بو	34	32	1H2	GAM	PHT	THEYA	COAD	^	YZE	- AXA	CHID	Q.Y.S	PRIO	80	TOTAL	HOG
0 M	gen de:	14	<u>ب</u>	050	920	OEG	020	FACTOR	×	F1/	ST/SEC	PEG/	DEE'	DEG/		PUMER	DE
			!							SEC	7985	SEC	SEC	SE.	<u>}</u>	Q.	
WA SK	K	- 46	0 1	750 06	0	0_0	15.1.	00	0.0	0.0	0.0	0	0.0	0.0	0v. 1	230	6
20.00	> <			20.00			5	00	0.0	0.0	11.0	0 0	0.0	4		2.30	0.0
74 - 32	>		-	0000	0	7	5	00	-	0.0	1.82	0.0-	0	27.4	00.1	230	0
72.50	> <	17.	2	900			5	200	0.7	0	9.40	0.0	0.0	39.7	0.83	235	0.0
63.40	٥				ا		• •		1	9	9	ار م	٥	17.0	98	251	٥
40.00	> •	9 1) (0.0					7 7		1.96			>	96.0	275	0
23.70	>	4.4	1 X			ا. م	-			0	,		•			286	0
C 1 3 2 C	э (2 6	2 5		•	, ,				•	400					4	3
64.40	2	40.	•		, , ,				; ,		9		֓֞֜֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֓֡֓֡֓֡֓֡֓֡֓	•	5		9
24.65	~	ģ	,	70.07	•	ָ ער ני	200	1		•	0 4		•			200	
24.40	0	-56	2	40,05		ا ۱	֓֞֝֝֝֝֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓	-		اد		اد در	ء!، و	٠	; ; ;		
25.15	Ç.	05-	2.50	90.05	91	75.0	.,	91.	2	•	^ ·	9.0	•	•		, v	•
25.40	9	-42	-20	90.02	•	26.5	?	•	2	2			0	٠	3 's		، ا خ
25.65	0	-32	-20	90°05	0	25.0	•	C! .		•	70.01	9.0	•) ×	7 6	, e	9 0
25.90	3	-21	2	90.01	•	2	ا،		بار د	٥			•	70	2		
20.15	Þ	6 *	250	16.06	0	21.0) : 	1.15	×	0 0	10.00	•	9 6	, ,	- C	200	•
26.40	•	•	-20	90.01	0.0	ا د ا د	֓֞֝֝֓֓֓֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֡֓֡֓	8	م الأ	•	֓֞֜֜֜֝֓֜֝֓֓֓֓֓֓֓֓֓֓֜֝֓֓֓֓֓֓֓֓֓֓֡֓֜֝֓֓֓֓֡֓֜֝֡֓֡֓֡֓֡֓	٥			֓֞֝֞֜֜֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֜֜֝֓֡֓֡֓֡֓֡		
28.65	_	11	05-	40.01	0	· ·	7 ·	10.1	9 :	9 0		0	2 0	40.0	5 6	200	2
25.90	0	ñ	25	90.01	0.0	- - -	- I	3	2	: 	2	֓֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡֓) -
27,15	þ	46	501	40.01	0.0	7	S .	1.00	34,7	9	0.72	0	0	•		174	•
27.40	0	61	220	10.06	0.0	6.7	-4.5	1.00	34.7	0.0	60.0	! د	•	ا د د د د د د د د د د د د د د د د د د د	0	اِءِ اُ)
51.65	P	75	205	40.01	9.0	۲. ا	-4.5	1.00	-	0.0		0	6.5	20.		100	•
27.90	•	96	-50	90.01	0.0	9.	2.5	1.00	34.7	0.0	0.03	6	0	-0-	2	167	2
28.25	5	104	2	40.01	٦	۲	-4.5	ا ا	, ,	٥٠	-0.05	0.0	0.0	٠.	85.0	166	
28.40	•	613	-50	10.06		7.8	5.	1.00	34.7	0.0	-0.07	: د	ء د	دو دو		163	13.0
28.65	2	134	-20	10.04	0.0	ا ا	-4.5	1.00	34.7	0 0	-0-03	0	0			180	7
. 28.90	•	148	-50	90.01		9.1	-4.5	1.00	34.7	0.0	0	0	•	9	0	155	28.0
24.15	,	163	-50	90.01	ء ما	ا ا	-1.5	1.00	34.7	0.0	0.14	٠	0.0	٠	0.32	149	34.5
29.40	0	178	• 50	90.01	••	o.	-4.5	1.00	34,0	0.0	٦ ،	0.0	٠	24.3	0	240	63.0
29.65	•	192	-50	40.01	0.0	ا ا	2.4.5	60:	, T	٥	0.25	•	0.0	7.7	0.47	138	7
29.90	0	207	-50	90.01	0.0	<u>.</u>	2.4.5	1.00	34.0	0.0	Cu'	0,0	•	9.	9,	133	56.0
30.13		222	-50	40.01	0.0	-	.4.5	60.1	34.9	0.0	0.0	0.0	0	A	0.45	125	66.3
30.40	9	237	-50	90.01	0.0	0.0	5.8	1.00	A 4.	0.0	6.08	0	2	8	20	152	73.0
50.65	6	152	2	10.06	٥٠٥	7	4.5	1.00	34.9	6.0	0.03	0.0	0.0	-0.6	0	50	7
30.90	9	992	50	90.01	0.0		-4.5	1.00	34.0	0.0	9	•	ا د	, co.	; i	2	
131.13	6	192	2	48.01		٥	24.5	1.00	34.9	0.0	00.0	0	0.0	10-	9	124	
31.40	•	295	-50	90.01	0.0	•	2.4.	000.	34.9	0.0	0000	0	0.0	0	6.0	122	200

TABLE	A-6. SUMMANFI	ARY OF TH JVER - 317	E LATERA SHP	L ACCELER	ATION WITH	RECOV
71.71	F OF HAMEU	VER: SIDE	WARD ACC	EL & TURI	IIW OTKI K	ND
,	EXECUTI TIME =3			CATION - I		
ENTRY ENTRY EXIT DESIRED ACTUAL ERROR DESIRED ACTUAL ERROR	G 0.0	100	000 .	0.	V.	
	TIME SEC.	AIRCRAFY XE	LOCATIO	IN * FEET	VELOCITY KNOT	
ENTRY	22.70 31.45	0 •	=77, 299,	=50. =50.	0 • (34 • (9 3
	FLT PATK ANGLE	SLANT RANGE	LOAD FA	CTDRSG MAX	VELUCITY:	₩KT MAX
DESIRED ACTUAL ERROR	0.0 0.0 0.0	0. 0. 0.	1.000 1.000 0.0	1.186 1.181 0.005	0.0 0.0 -q.0	35.0 34.9 0,1
	BANK ANGL	E XE	AIM POI	NT - FEET	ZE	
DESIRED ACTUAL ERROR	32.5 32.5 0.0		0. -0.	299 <u>.</u> -249 <u>.</u>	-50. 50.	
•						
			2	7		

		-	A	
		HORSEPOWER	HISTOGRAM	
HORSEPU INTERVA		NUMBER OF OCCURRENCES	RELATIVE PREQUENCY	RELATIVE CUMULAYIYE FREQUENCY
0.0 -	20.00	G	0.0	0.0
50.00-	40.00	0	0,0	0.0
49.00-	60.00	0	0.0	0.0
50.00-	80,00	J	5.6	0.0
80,00~	100,00	O	0.0	0.0
100.00	120.00	0	0.0	0.0
130,00-	140.00	38	0,2159	0.2159
140.00-	160.00	18	0.1023	0.3182
160.000	180,00	32	0.1818	0.5000
190-60-	30.00	4	0.0227	0.5227
200.000	220.00	\$	0,0114	0.5341
550.00+	240.00	17	0.0956	0.6307
240.00-	260,00	7	0.0398	0.6705
260.00=	280,00	8	9.0455	0.7159
886°00°	300,00	38	0.2159	0,9318
300.000	350.00	15	0.0682	1.0000
320.00-	340,00	0	0.0	1.0000
340.00-	360.00	Ú	0.0	1.0000
360.00-	380.00	Ų	9.0	1 = 0000
300.00=	400,00	0	0.0	1.0000
400.00-	420.00	U	0.0	1-0000

28 163-76

THE PROPERTY OF THE PROPERTY O