

Round D APAC Test 2016

A. Dynamic Grid

B. gBalloon

C. IP Address Summarization

D. Virtual Rabbit

Questions asked 1

Submissions

Dynamic Grid

6pt | Not attempted 1392/1881 users correct (74%)

8pt | Not attempted 1288/1368 users correct (94%)

gBalloon

9pt Not attempted 353/666 users correct (53%)

17pt | Not attempted 266/338 users correct (79%)

IP Address Summarization

10pt | Not attempted 123/236 users correct (52%) 19pt | Not attempted 73/118 users correct (62%)

Virtual Rabbit

11pt | Not attempted 18/166 users correct (11%) Not attempted 20pt 3/8 users correct (38%)

Top Scores	
nhho	100
sundar95	80
Shaon	80
ajkrish95	80
ojas.deshpande	80
NAFIS	69
JunoYu	69
wcwswswws	69
karanaggarwal	69
VotBear	69

Problem A. Dynamic Grid

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the Quick-Start Guide to get started.

Small input Solve A-small 6 points Large input

Solve A-large

Problem

8 points

We have a grid with **R** rows and **C** columns in which every entry is either 0 or 1. We are going to perform **N** operations on the grid, each of which is one of the following:

- Operation M: Change a number in one cell of the grid to 0 or 1
- Operation Q: Determine the number of different connected regions of 1s. A connected region of 1s is a subset of cells that are all 1, in which any cell in the region can be reached from any other cell in the region by traveling between cells along edges (**not** corners).

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow. Each test case starts with one line with two integers, R and C, which represent the number of rows and columns in the grid. Then, there are R lines of C characters each, in which every character is either 0 or 1. These lines represent the initial state of the grid.

The next line has one integer, N, the number of operations to perform on the grid. N more lines follow; each has one operation. All operation Ms will be of the form M x y z, meaning that the cell at row x and column y should be changed to the value z. All operation Qs will be of the form Q.

Output

For each test case, output one line containing "Case #x:", where x is the test case number (starting from 1). Then, for every operation Q in the test case, in order, output one line containing the number of connected regions of 1s.

Limits

 $1 \le T \le 10$. $1 \le R$, $C \le 100$. $0 \le \mathbf{x} < \mathbf{R}$. $0 \le \mathbf{y} < \mathbf{C}$. $0 \le \mathbf{z} \le 1$

Small dataset

 $1 \leq N \leq 10$.

Large dataset

 $1 \le N \le 1000$.

Sample

Input	Output
1 4 4 0101 0010 0100 1111 7 Q M 0 2 1 Q M 2 2 0 Q	Case #1: 4 2 2 2
Q Q	

All problem statements, input data and contest analyses are licensed under the <u>Creative Commons Attribution License</u>.

© 2008-2017 Google Google Home - Terms and Conditions - Privacy Policies and Principles

Powered by

Google Cloud Platform