Fresh Product Price Inform Service - NUGU FRESH

Kim Kwang Yeon, Kim Jin Hyeok Kim Bong Kyun, Choi Hyun Ji

Contents

Steps for showing

1. Introduction

Introduction - Motivation

Motivation

- ① 코로나19 사태 이후로 폭발적으로 증가하고 있는 비대면 배송 서비스
- ② 전자기기에 익숙한 2030 이용자 뿐만 아니라 4060의 중장년층에서도 큰 인기

BUT 플랫폼 별로 가격을 비교하는 서비스가 없고, 마트의 가격보다 저렴한지 파악 불가능

Introduction - Goals

Goals

① 중장년층도 접근하기 쉬운 NUGU 스피커와 휴대폰 문자 메시지로 가격 비교 정보를 제공

② 다음주(7일치)의 가격을 예측해 가격 동향을 알고 구매시기를 결정 가능

SO 접근하기 가장 쉬운 플랫폼으로 현재 및 미래 가격을 비교해 합리적인 소비를 가능하게 하는 서비스 제공

Introduction - Service Scenario

[Web발신]

Sent from your Twilio trial account - *NUGU-FRESH* 감자 1kg의 현재가: 3280원 다음 주 가격: 4530원 가격 변동: -1250 SSG 가격: 2280원 URL: https:// www.ssg.com/item/ itemView.ssg?itemId=100 0005329157&siteNo=600 1&salestrNo=2033&tlidSr chWd=%EB%B0%B0%EC %B6%94&srchPqNo=1&sr

[Web발신]

c area=elist

account - *NUGU-FRESH* 쌀 10kg의 현재가: 25471원 쿠팡 가격: 24890원 URL: https:// www.coupang.com/vp/ products/166996432?ite mld=478240933&vendorl temld=4200250100&q=% EC%8C%80+10kg&items Count=36&searchId=272 7ecb3b78c40c8bd7db7cf da442379&rank=0&isAdd edCart=

Sent from your Twilio trial

2. Datasets & Data Preprocessing

Datasets

	VIF Factor	features
0	1.312380	Rain
1	5.450449	Wind
2	11.243204	Sup
3	14.792895	Temp
4	13.400769	Oil
5	8.095756	sobimul
6	9.725722	nongmul
7	5.187378	Price
8	7.827645	Avg_Price
9	7.898909	Produced

- 1. 농산물 가격 정보 데이터 (KAMIS)
- 2. 기상 정보 데이터 (기상청)
- 3. 전체 및 농산물 물가 상승률 (KOSIS)
- 4. 전년도 생산량 정보 (KOSIS)

Data Preprocessing (with Apache Airflow)

"Automates data processing"

"Resolving dependency issues"

"Easy to identify errors
with own UI"

3. AI Algorithm & Evaluation

AI Algorithm (with Keras)

"10 years of utilization of price, weather, price information, etc"

"Long-term memory retention through LSTM stateful mode"

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Activation
from tensorflow import keras
from tensorflow.keras import layers
input_columns = 10

def build_model(hp):
    model = keras.Sequential()
    model.add(layers.LSTM(units=hp.lnt('units', min_value=32, max_value=64, step=32), batch_input_shape=(7, 7, input_columns), stateful=True, return_sequences=True))
    model.add(Dropout(0.1))
    for i in range(hp.lnt('hidden_depth', min_value=1, max_value=2, step=1)):
        model.add(LSTM(units=hp.lnt('hidden_units', min_value=32, max_value=64, step=32), return_sequences=True, stateful=True))
    model.add(Dropout(0.1))
    model.add(Dropout(0.1))
    model.add(Dropout(0.1))
    model.add(Dense(1))
    model.compile( optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', values=[1e-2, 1e-3])), loss='mse', metrics=['mae'])
    return model
```

AI Evaluation

	Potato	Onion	Cabbage	Radish	Rice
RMSE	0.0638934	0.0697005	0.0433391	0.0664019	0.0317641

	Potato	Onion	Cabbage	Radish	Rice
RMSE	0.0646031	0.0738700	0.1027203	0.0408240	0.0556046

RMSE of training data

RMSE of test data

Graph of Cabbage price training data

Graph of Cabbage price test data

4. Methodology

System Architecture

Methodology - NUGU Play Builder

1. Create NUGU FRESH Play

Create NUGU FRESH PLAY and Enter basic information

Set up NUGU FRESH Play start-up and end-time utterance settings

2. Define User Utterance Model

The process of anticipating what the user will say, creating training data, and learning the engine based on that data

1) Create Intent

"Intent" refers to the user's intention, and a specific "Action" is performed according to Intent. There are Intent called "ask.price" that asks the first question and other intents that bring up different "Branch actions" through subsequent answers.

2) Set Entity Types

"CROP" with 5 kinds of agricultural product information and "DATE" with date information are set as their respective Entities.

Methodology - NUGU Play Builder

5. Conclusion & Scalability

NUGU FRESH 함께라면 최적의 구매시기, 플랫폼으로 합리적인 신선 제품 구매가 가능합니다!

Scalability

Connect with menu recommendation and recipe functions existing in NUGU APP

→ More reasonable consumption

Including a variety of other crops and fruits for prediction

→ Wider use

Response information not only to SMS but also to be printed

Thank you !!!

