Cours 1 : Introduction à la microbiologie moléculaire

Qu'est-ce que la microbiologie moléculaire ?

Microorganismes et phylogénie

Structure bactérienne

Quelques bactéries modèles

La microbiologie moléculaire : pour quoi faire ?

Quelques avantages d'utiliser les bactéries comme modèle biologique :

- haploïdie
- temps de génération court
- fission binaire
- identification et sélection

Discussion autour d'exemples historiques de découvertes issues de la microbiologie

Découverte	Equipe	Année
L'ADN est le support de l'hérédité	Griffith ; Avery, McLeod	1928 ; 1945
	& McCarty	
L'apparition d'une mutation est un	Delbrück & Luria	1945
événement spontané		
La réplication de l'ADN est semi-	Meselson & Stahl	1958
conservative		
Régulation de l'expression génétique	Jacob, Lwoff & Monod	1961
Allostérie enzymatique	Monod, Wyman &	1965
	Changeux	
Enzymes de restriction et génie	Arber, Cohen, Berg &	Années 1970
génétique	Smith	
Réaction de polymérisation en chaîne	Mullis	1986
(PCR)		
CRISPR-Cas9	Charpentier & Doudna	Années 2010

Cours 2 : Réplication de l'ADN bactérien

Rappels sur la structure de l'ADN
La fourche de réplication
Polymérisation de brins antiparallèles
Initiation et terminaison de la réplication
Réplication et cycle cellulaire
Chronologie de la réplication
L'expérience de Meselson et Stahl
Problèmes et QCM d'entraînement

Cours 3: Mutations et réparation de l'ADN

Les mutations comme moteur de l'évolution Le paradoxe de la structure de l'ADN Imperfections des systèmes de réplication Mésappariement et édition des bases

Système MMR

Étude de papier : Robert et al. (2018) Les différents systèmes de réparation Exemple : Le 8-oxoG (MutM, MutY, MutT)

Exemple: Réponse adaptative au stress alkylant

Histoire de la réponse SOS et introduction à la régulation

L'expérience de Luria et Delbrück Problèmes et QCM d'entraînement

Cours 4: Transcription

L'ARN polymérase bactérienne Structure du promoteur Étapes de la transcription Terminaison de la transcription

Étude de papier : Effet de la rifampicine sur le nucléoïde et smFISH

Problèmes et QCM d'entraînement

Cours 5 : Régulation de l'expression génique

Introduction générale
Diauxie et contrôle catabolique
Opérons et régulons
L'opéron lac
L'opéron trp
Effet polaire

Études de papiers : Elowitz et al. (2002) ; papiers sur les régulons SOS et OxyR

Problèmes et QCM d'entraînement