Some details of high-order spectral method

Chanwoo Lee, July 12, 2021

Let us consider $\mathcal{Y} = \mathcal{X} + \mathcal{E} \in \mathbb{R}^{d_1 \times \cdots \times d_m}$ where \mathcal{E} follows i.i.d. sub-Gaussian noise with $\sigma^2 = 1$ without loss of generality. For each k = 1, ..., n, denote

$$X_k = \mathcal{M}_k(\mathcal{X}), \quad E_k = \mathcal{M}_k(\mathcal{E}), \quad Y_k = \mathcal{M}_k(\mathcal{Y}).$$

We consider the high-order spectral method with threshold. Define the $r_k := \max_{r' \in [d_k]} \{ \sigma_{r'}(Y_k) \geq 1 \}$ $c_0d^{m/4}$ for all $k \in [m]$. Based on threshold r_k , for all $k \in [m]$, define Current truncation is L-1 truncation: threshold on singular values.

 $ilde{U}_k = \mathrm{SVD}_{r_k}(Y_k)$ How about use L-0 truncation: threshold on rank. $\begin{array}{l} \text{Set r_k = sqrt(d) from beginning. So all hat U, check U,, are easier to} \\ \hat{U}_k = \text{SVD}_{r_k} \left(\mathcal{M}_k \left(\stackrel{\bullet}{\mathcal{M}}_k \stackrel{\bullet}{\mathcal{U}}_1^T \times \cdots \times_{k-1} \tilde{U}_{k-1}^T \times_k \tilde{U}_{k+1}^T \times \cdots \times_m \tilde{U}_m^T \right) \right). \end{array}$

Then we estimate true \mathcal{X} by

$$\hat{\mathcal{X}} := \mathcal{Y} \times_1 (\hat{U}_1 \hat{U}_1^T) \times \dots \times_m (\hat{U}_m \hat{U}_m^t). \tag{1}$$

Then the following (psuedo) theorem holds.

Theorem 0.1 (Tensor estimation error bound). Suppose $\mathcal{Y} = \mathcal{X} + \mathcal{E} \in \mathbb{R}^{d_1 \times \cdots \times d_m}$ where \mathcal{E} follows i.i.d. sub-Gaussian noise with $\sigma^2 = 1$ without loss of generality. Let $\hat{\mathcal{X}}$ defined according to (1). Then, with probability at least $1 - C \exp(-cd)$,

$$\|\hat{\mathcal{X}} - \mathcal{X}\|_F \lesssim \sqrt{\prod_k r_k} + \sqrt{\max_k d_k \max_k r_k} + \sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(Y_k)} + \sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(X_k)}.$$

Much previous work available on this topic.

Under the conditions spectral norm (E_k) < $d^{m/4}$, the two in yellow differ by an additive error $d^{m/4}$.

Remark 1. We need to bound $\sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(Y_k)}$ with respect to $\sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(X_k)}$. This can be done using the relationship $Y_k = X_k + E_k$ but not sure how to bound tightly. I will think about this more.

Remark 2. I guess that $\sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(X_k)}$ will have the order of $\mathcal{O}\left(\frac{d^m}{r^2}\right)$ under some \mathcal{X} classes such as α -smooth function classes

Proof. We start by introducing several notations and assumptions. Denote $U_k = SVD_{r_k}((X_k))$ and $U_k = \text{SVD}_{r_k}(Y_k)$. For some constant $c_1 > c_0$ which will be specified later, define

$$r'_k = \max\{r' \in \{0, \dots, d_k\} : \sigma_{r'}(X_k) \ge c_1 d^{m/4}\}.$$

We set r' = 0 if $\sigma_1(X_k) < c_1 d^{m/4}$ We use U_k to denote the leading r_k singular vectors of U_k and use V_k to denote the rest $r_k - r'_k$ singular vectors and thus U_k can be written as $[U_k, V_k]$. We next define

$$X_k' = X_k \left(\mathbb{P}_{U_{k+1}'} \otimes \cdots \otimes \mathbb{P}_{U_m'} \otimes \cdots \otimes \mathbb{P}_{U_{k-1}'} \right),$$
 Set $r = \operatorname{sqrt}(d)$ as a pre-specified rank.

Set
$$r = \operatorname{sqrt}(d)$$
 as a pre-spective where $\mathbb{P}_U = UU^T$ for any orthonormal matrix $U \in \mathbb{R}^{d \times r}$. We also denote Write $\mathsf{X} = \mathsf{X}(\operatorname{good}) + \mathsf{X}(\operatorname{bad})$, $\bar{X}_k = X_k \left(\tilde{U}_{k+1} \otimes \cdots \otimes \tilde{U}_m \otimes \tilde{U}_m \otimes \cdots \otimes \tilde{U}_m \otimes \tilde{U}_m$

(2) [X(bad) + E] satisfy the 5 conditions in Lemma

0.1 (this is the intent of my beta-approximatable assumption)

$$\bar{Y}_k = Y_k \left(\tilde{U}_{k+1} \otimes \cdots \otimes \tilde{U}_m \otimes \cdots \otimes \tilde{U}_{k-1} \right),$$

 $\bar{E}_k = E_k \left(\tilde{U}_{k+1} \otimes \cdots \otimes \tilde{U}_m \otimes \cdots \otimes \tilde{U}_{k-1} \right).$

Now we bound

$$\|\hat{\mathcal{X}} - \mathcal{X}\|_F \leq \underbrace{\|\mathcal{X} \times_1 (\hat{U}_1 \hat{U}_1^T) \times \dots \times_m (\hat{U}_m \hat{U}_m^T) - \mathcal{X}\|_F}_{(*)} + \underbrace{\|\mathcal{E} \times_1 \hat{U}_1^T \times \dots \times_m \hat{U}_m^T\|_F}_{(**)}.$$

Notice that (**) term is bounded by $C(\sqrt{\prod_k r_k} + \sum_{\ell \in [m]} \sqrt{d_\ell r_\ell})$. For (*), we have

$$(*) \leq \sum_{k \in [m]} \| (I - \hat{U}_k \hat{U}_k^T) X_k \|_F$$

$$= \| \hat{U}_{k,\perp}^T X_k \|_F$$

$$\leq \| \hat{U}_{k,\perp}^T X_K' \|_F + \| X_k - X_k' \|_F.$$
(2)

Therefore, it suffices to bound $\|\hat{U}_{k,\perp}^T X_k'\|_F$ and $\|X_k - X_k'\|_F$.

1. Bound of $\|\hat{U}_{k,\perp}^T X_k'\|_F$: Combining equation (44) and (45) in [1] gives us

$$\|\hat{U}_{k,\perp}^T \bar{X}_k\|_F + \|X_k - X_k'\|_F \ge \|\hat{U}_{k,\perp}^T X_k'\|_F \prod_{\ell \ne k} \sqrt{1 - \|\tilde{U}_{k,\perp} U_k'\|_{\text{sp}}^2}$$
(3)

For $\|\hat{U}_{k,\perp}^T \bar{X}_k\|_F$, Combination of Lemma 0.2 and the fact that $\bar{Y}_k = \bar{X}_k + \bar{E}_k$ yields,

$$\|\hat{U}_{k,\perp}^{T} \bar{X}_{k}\|_{F} \leq \sqrt{\sum_{i=r_{k}+1}^{d_{k}} \sigma_{i}^{2}(\bar{Y}_{k})} + \|\bar{E}_{k}\|_{F}$$

$$\leq \sqrt{\sum_{i=r_{k}+1}^{d_{k}} \sigma_{i}^{2}(Y_{k})} + C(\sqrt{d_{k}r_{k}}),$$
(4)

where the last line uses the definition of \bar{E}_k and Lemma 0.1.

For $\|\tilde{U}_{k,\perp}U_k'\|_{\mathrm{sp}}^2$, we use the proof of Lemma 2 in [1]. The main difference is that we did not use rank of X_k but use the new definition of $r_k := \max_{r' \in [d_k]} \{\sigma_{r'}(Y_k) \geq c_0 d^{m/4}\}$. Adapting this fact, we can show that with high probability

$$\|\tilde{U}_{k,\perp}U_k'\|_{\mathrm{sp}}^2 \le \frac{1}{\sqrt{2}},\tag{5}$$

by carefully choosing constants $c_0, c_1 > 0$ (I will fill the details later).

Finally combining (3),(4),(5), we have

$$\|\hat{U}_{k,\perp}^T X_k'\|_F \lesssim 2^{(m-1)/2} \left(\sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(Y_k)} + \sqrt{d_k r_k} + \|X_k - X_k'\|_F \right). \tag{6}$$

2. Bound of $||X_k - X'_k||_F$: For notation simplicity, we focus on k = 1, while the analysis for other modes can be similarly carried on.

$$||X_{1} - X'_{1}||_{F} \leq ||X_{1} \left((\mathbb{P}_{U'_{2}} + \mathbb{P}_{V'_{2}}) \otimes \cdots \otimes (\mathbb{P}_{U'_{m}} + \mathbb{P}_{U'_{m}}) - \mathbb{P}_{U'_{2}} \otimes \cdots \otimes \mathbb{P}_{U'_{m}} \right) ||_{F}$$

$$\leq \sum_{k=2}^{m} ||V'^{T}_{k}X_{k}||_{F}$$

$$\leq \sum_{k=2}^{m} \sqrt{\sum_{i=r_{k}+1}^{d_{k}} \sigma_{i}^{2}(X_{k})}$$

$$\leq m \sqrt{\sum_{i=r_{k}+1}^{d_{k}} \sigma_{i}^{2}(X_{k})}$$

Finally, plugging (6) and (7) into (2) yields,

$$\|\hat{\mathcal{X}} - \mathcal{X}\|_F \lesssim \sqrt{\prod_k r_k} + \sqrt{\max_k d_k \max_k r_k} + \sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(Y_k)} + \sqrt{\sum_{i=r_k+1}^{d_k} \sigma_i^2(X_k)}.$$

I like your current proof layout. Separating lemma 0.1 from main proof is good.

Lemma 0.1 (Lemma 8 in [1]). Let $E \in \mathbb{R}^{d_1 \times \cdots \times d_m}$ be a noise tensor whose each entry has independent mean-zero sub-Gaussian distribution with $\sigma = 1$ without loss of generality. Fix $U_k^* \in \mathbb{O}_{d_k, r_k}$. Then with probability at least $1 - \exp(-cp)$, the following holds.

$$\begin{split} \|E_k \left(U_{k+1}^* \otimes \cdots \otimes U_m^* \otimes U_1^* \otimes \cdots \otimes U_{k-1}^*\right)\|_{\mathrm{sp}} &\leq C(\sqrt{d_k} + \sqrt{r_{-k}}), \\ \|E_k \left(U_{k+1}^* \otimes \cdots \otimes U_m^* \otimes U_1^* \otimes \cdots \otimes U_{k-1}^*\right)\|_F &\leq C\sqrt{d_k r_{-k}}, \\ \sup_{\substack{U_\ell \in \mathbb{O}_{d_\ell, r_\ell} \\ \ell \neq [m]}} \|E_k \left(U_{k+1} \otimes \cdots \otimes U_m \otimes U_1 \otimes \cdots \otimes U_{k-1}\right)\|_{\mathrm{sp}} &\leq C(\sqrt{d_k} + \sqrt{r_{-k}} + \sum_{\ell \neq k} \sqrt{d_\ell r_\ell}), \\ \sup_{\substack{U_\ell \in \mathbb{O}_{d_\ell, r_\ell} \\ \ell \neq [m]}} \|E_k \left(U_{k+1} \otimes \cdots \otimes U_m \otimes U_1 \otimes \cdots \otimes U_{k-1}\right)\|_F &\leq C(\sqrt{d_k r_{-k}} + \sum_{\ell \neq k} \sqrt{d_\ell r_\ell}), \\ \sup_{\substack{U_\ell \in \mathbb{O}_{d_\ell, r_\ell} \\ \ell \neq [m]}} \|\mathcal{E} \times_1 U_1^T \times \cdots \times_m U_m^T\|_F &\leq C(\sqrt{r_*} + \sum_{\ell \in [m]} \sqrt{d_\ell r_\ell}) \end{split}$$

Lemma 0.2 (Projection bound of perturbation). Suppose $X, E \in \mathbb{R}^{m \times n}$. Let $U \in \mathbb{O}_{m,r}$ be the leading r singular vectors of Y = X + E. Then,

$$\begin{split} &\|(I-UU^T)X\|_{\mathrm{sp}} \leq \sigma_{r+1}(Y) + \|E\|_{\mathrm{sp}} \\ &\|(I-UU^T)X\|_F \leq \sqrt{\sum_{i\equiv r+1}^{m\wedge n} \sigma_i^2(Y) + \|E\|_F}. \\ &\text{this is the key step where} \end{split}$$

Proof. For matrix norm bound we have,

$$||(I - UU^T)X||_{\text{sp}} \le ||(I - UU^T)Y||_{\text{sp}} + ||E||_{\text{sp}} \le \sigma_{r+1}(Y) + ||E||_{\text{sp}}.$$

Similarly we bound Frobenius norm,

$$||(I - UU^T)X||_F \le ||(I - UU^T)Y||_F + ||E||_F \le \sqrt{\sum_{i=r+1}^{m \wedge n} \sigma_i^2(Y)} + ||E||_F.$$

References

[1] Rungang Han, Yuetian Luo, Miaoyan Wang, and Anru R Zhang. Exact clustering in tensor block model: Statistical optimality and computational limit. arXiv preprint arXiv:2012.09996, 2020.