Consider a generic multiple Gaussian einen model Y = X B + E $E \bowtie N_h(Q, \sigma^2 I_h)$

Y rector of response variables

X hap matrix of covoriates

B = [Ps B ... Pp] " vector of repression poromoters

We have seen the statistical tests to evaluate the model's adequacy:

· test about an individual coefficient

If I do not reject $\beta = 0$ for some j, I can remove that convolists from the model specification and estimate a new one with one less covoriate but the same accuracy at predicting y.

· Icst about a subset of coefficients

$$\begin{cases} H_0: \ \beta_{R+1} = \beta_{R+2} = \dots = \beta_{p} = 0 \\ H_1: \ \text{at east one is } \neq 0 \end{cases}$$

similarly, if I do not reject to, I can remove that subset of covariates without losing accuracy

· Test about the overall significance

in this case, the model is useless.

R² and R²adj (adjusted R²)

We have seen how the coefficient R^2 describes the proportion of volimbility explained by the model. Hence, we could think of using R^2 to chook between different model specifications.

However, If I we R^2 to compose nested models (i.e. one can be obtained storing from the other through a set of earstraints), R^2 is not a valid measure.

consider: (a) $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 \times \hat{\beta}_1$

(b) $\hat{y}_{i} = \hat{\beta}_{1} + \hat{\beta}_{2} \times i + \hat{\beta}_{3} w_{i}$ | add one covariance

 $R^{2}_{(a)} \leq R^{2}_{(b)}$ By construction!

Recall that $R^2 = \frac{SSR}{SST}$

SST = $\sum_{i=1}^{n} (3i - \overline{3})^2$ does not depend on the model \Rightarrow SST(a) = SST(b)

However, SSR(b) > SSR(a)

the SSR of troolel (b) can not be smaller than SBR (a).

If we is useful to product y, SSR(b) > SSR(a)

in the worst case (if we is really resolutes), I get $\beta_3 = 0$ and I obtain $SSR_{(b)} = SSR_{(a)}$.

The more voriables I include in the model, the larger R2 will be.

So we can not use it to compone, for example, models (a) and (b) - or, in general, NESTED HODELS.

In general:

HORE COVARIATES

R2 increases

eess interpretable

overlit

FEWER COVARIATES < parsimony interpretable

of course, we wont few cononiates, but not too few !

ADJUSTED
$$R^2$$
 $R^2_{adj} = 1 - (1-R^2) \cdot \frac{n-1}{n-p}$

it is "adjusted" for the model dim. p

pendizes models with many covariates.

when I introduce a new convicte:

- R² can remain the same or increase

Radj can increase, remain the same, or decrease

Rady can be < 0!