CLASS 17, OCTOBER 19: T4/NORMAL SPACES

Today, we will study the notion of normalcy. On Homework 5, we have shown that every metric space is normal. On the other hand, given a specific space (such as problem 3 of the same homework), it is often difficult 'by hand' to show that a space is normal. Here we give two additional criteria to ensure normality.

Theorem 17.1. A T3/regular second-countable space X is normal.

Since regularity can be checked using open neighborhoods of points, whereas normality requires open neighborhoods of closed sets, this is a vast simplification. Also, combined with Theorem 16.5, this implies subspaces and finite products of regular and second countable spaces are themselves normal!

Proof. Suppose $\mathcal{B} = \{U_1, U_2, \ldots\}$ is a countable basis for X, and A and B are closed disjoint subsets. For any fixed point $a \in A$, there exists U_a and V_a disjoint open sets such that $a \in U_a$ and $B \subseteq V$. By the neighborhood criteria, we can choose $U'_a \subseteq U_a$ a neighborhood of a such that $\overline{U'_a} \subseteq U_a$. Furthermore, since \mathcal{B} is a basis, we note that there is some $U_{i(a)} \subseteq U'_a$ lying in \mathcal{B} . This allows us to choose a countable cover of A in \mathcal{B} such that the closure of each set is disjoint from B.

Symmetrically, choose $V_{j(a)}$ covering B whose closures are disjoint from A.

$$A \subseteq \bigcup_{i(a)} U_{i(a)} = U \qquad \qquad B \subseteq \bigcup_{j(b)} V_{j(b)} = V$$

These are countable covers of their respective sets that need not be disjoint. Enumerate the i(a) with i_1, i_2, \ldots and the j(b) by j_1, j_2, \ldots By subtracting closed sets (e.g. intersecting with their open complements), we can form the desired open sets:

$$U'_{i_k} = U_{i_k} \setminus \bigcup_{l=1}^{i_k} \bar{V}_{j_l}$$
 $V'_{j_k} = V_{j_k} \setminus \bigcup_{l=1}^{j_k} \bar{U}_{i_l}$

Let U' and V' be the unions of the U'_{i_k} and V'_{j_k} respectively. Note these new sets still cover their respective spaces, since $a \notin V_{i_k}$ and $b \notin U_{i_k}$ for any $k \in \mathbb{N}$, $a \in A$, and $b \in B$. Furthermore, they are disjoint. If $x \in U' \cap V'$, then $x \in U'_{i_k} \cap V'_{j_{k'}}$. But one of these sets was removed from the other! This completes the proof.

Next up, we can also upgrade T2/Hausdorff to normal if we assume the space is compact.

Theorem 17.2. Every compact Hausdorff space X is normal.

Proof. You've actually proved a more general version of this on the midterm. Indeed, if A, B are closed subsets of a compact space, they are themselves compact. Therefore, by problem 9 on the midterm, you can separate A, B by open sets.

Finally, I add one statement about normality of the order topology:

Theorem 17.3. If X is totally ordered set, then X with the order topology is normal¹.

¹In fact, it is T5.

This can be viewed as a generalization of the fact that \mathbb{R} is normal.

Proof. Let A and B be closed subsets of X. We may assume WLOG that no element of A or B is an endpoint of X, i.e. A and B don't contain a largest or smallest element of X (If it does, add ∞ and $-\infty$ to X to enlarge the set). For $a \in A$, choose (invoking the axiom of choice) p_a, q_a satisfying the following conditions:

- 1) $p_a < a < q_a$.
- 2) $(p_a, q_a) \cap B \neq \emptyset$.
- 3) $(a, q_a) = \emptyset$ or $q_a \in A$ or $(q_a \notin B \text{ and } (a, q_a) \cap A = \emptyset)$.
- 4) $(p_a, a) = \emptyset$ or $p_a \in A$ or $(p_a \notin B \text{ and } (p_a, a) \cap A = \emptyset)$.

It goes to verify such points exist. 1) is satisfied by our assumption of non-max/minimality of A. 2) is by virtue of the fact that B^c is open and $a \in B^c$. For 3, we proceed as follows. Let q > a satisfy the 2 previous properties. If $(a,q) = \emptyset$, let $q_a = q$. If $(a,q) \cap A \neq \emptyset$, choose $q_a \in (a,q) \cap A$. Lastly, if $(a,q) \neq \emptyset$ but is disjoint from A, choose $q_a \in (a,q)$. A similar argument shows p_a exists.

Now, we may consider $U = \bigcup_{a \in A} (p_a, q_a)$. This open set necessarily contains A. We can furthermore construct an open set $V = \bigcup_{b \in B} (p_b, q_b)$ containing B. Consider the intersection:

$$U \cap V = \left(\bigcup_{a \in A} (p_a, q_a)\right) \cap \left(\bigcup_{b \in B} (p_b, q_b)\right)$$

$$= \bigcup_{a \in A} \bigcup_{b \in B} (p_a, q_a) \cap (p_b, q_b)$$

$$= \bigcup_{a \in A} \bigcup_{b \in B} ((p_a, a) \cup \{a\} \cup (a, q_a)) \cap ((p_b, b) \cup \{b\} \cup (b, q_b))$$

$$= \bigcup_{a \in A} \bigcup_{b \in B} ((p_a, a) \cap (p_b, b)) \cup ((p_a, a) \cap (b, q_b)) \cup ((a, q_a) \cap (p_b, b)) \cup ((a, q_a) \cap (b, p_b))$$

Conditions 3/4 imply that each pairwise intersection must be empty. In particular, the last of the **or** conditions is the only one that isn't completely obvious.

Example 17.4. The space of *ordinal numbers* is naturally ordered by size. We have notions of $0, 1, 2, 3, \ldots$, but then we reach countable infinity: $\omega, \omega + 1, \omega + 2, \ldots$ Next we reach $2\omega, 2\omega + 1, \ldots, n\omega$ for all integers n, ω^2 as their limit, etc. This is excellently illustrated by a picture from wikipedia:

The set of such things, even up to ω^2 , is in bijection with \mathbb{R} , thus the whole space is horribly uncountable. However, there is some interesting topology/geometry here. Endowing it with the order topology, we get a set which is normal while not being second countable or compact (even if we restrict to $[0, \omega]$).