Предел функции

Предел функции в точке

• Определение Коши (в терминах $\varepsilon - \delta$) Число A называется пределом функции y = f(x) в точке x_0 (при $x \to x_0$), если для любого $\varepsilon > 0$ найдётся число $\delta > 0$, что для всех $x \neq x_0$, удовлетворяющих неравенству $|x - x_0| < \delta$, выполняется неравенство $|f(x) - A| < \varepsilon$

$$|f(x) - A| < \varepsilon) \Leftrightarrow \lim_{x \to x_0} f(x) = A$$

Обозначение предела функции в точке

$$\mathop{Lim}_{x \to x_0} f(x) = A$$

$$(\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x : |x - x_0| < \delta, x \neq x_0 \Rightarrow$$
$$\Rightarrow |f(x) - A| < \varepsilon) \Leftrightarrow \lim_{x \to x_0} f(x) = A$$

Геометрический смысл предела: для всех x из δ – окрестности точки x_0 точки графика функции лежат внутри полосы, шириной 2ε , ограниченной прямыми: $y = A + \varepsilon$, $y = A - \varepsilon$.

• Функция f(x) имеет в точке x_0 бесконечный предел, если $\forall M > 0$ (сколь угодно большого) $\exists \delta > 0$ такое что $\forall x: |x-x_0| < \delta$ выполняется неравенство |f(x)| > M

Обозначение:
$$\underset{x \to x_0}{Lim} f(x) = \infty$$

▶ Функция f(x) имеет в точке x_0 , своим пределом $+\infty$, если $\forall M>0$ (сколь угодно большого) $\exists\,\delta>0$ такое что $\forall\,x:\!|x-x_0|\!<\!\delta$ выполняется неравенство $f(x)\!>\!M$

Обозначение: $\underset{x \to x_0}{Lim} f(x) = +\infty$

Геометрически определение означает, все точки графика функции y=f(x) для которых $x\in (x_0-\delta;x_0+\delta)$ лежат выше прямой y=M

▶ Функция f(x) имеет в точке x_0 , своим пределом $-\infty$, если $\forall M>0$ (сколь угодно большого) $\exists\,\delta>0$ такое что $\forall\,x:\!|x-x_0|\!<\!\delta$ выполняется неравенство $f(x)\!<\!-M$

Обозначение: $\underset{x \to x_0}{Lim} f(x) = -\infty$

Геометрически определение означает, все точки графика функции y=f(x) для которых $x\in (x_0-\delta;x_0+\delta)$ лежат ниже прямой y=-M

Конечный предел функции на бесконечности

• Число A называется пределом функции f(x) при $x \to \infty$ (на бесконечности), если $\forall \, \varepsilon > 0$ $\exists \, P \in R, P > 0$ такое что $\forall \, |x| > P$ выполняется неравенство $|f(x) - A| < \varepsilon$

Обозначение:
$$\underset{x\to\infty}{Lim} f(x) = A$$

Геометрический смысл предела функции на бесконечности

$$\underset{x\to\infty}{Lim} f(x) = A$$

Конечный предел функции на бесконечности

Приписывая знаку ∞ арифметические знаки + или - можно получить еще два определения

$$\underset{x \to +\infty}{\operatorname{Lim}} f(x) = A \qquad \underset{x \to -\infty}{\operatorname{Lim}} f(x) = A$$

$$\underset{x \to +\infty}{Lim} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists P > 0 : \forall x > P \Rightarrow |f(x) - A| < \varepsilon$$

$$\lim_{x \to -\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \exists P > 0 : \forall x < -P \Rightarrow |f(x) - A| < \varepsilon$$

Бесконечный предел функции на бесконечности

$$\underset{x\to\infty}{Lim}\,f(x) = \infty$$

$$\lim_{x\to -\infty} f(x) = -\infty$$

$$\lim_{x\to-\infty} f(x) = +\infty$$

$$\underset{x\to+\infty}{Lim} f(x) = -\infty$$

$$\underset{x\to+\infty}{\operatorname{Lim}} f(x) = +\infty$$

Бесконечный предел функции на бесконечности

$$\underset{x \to \infty}{Lim} f(x) = \infty \Leftrightarrow \forall M > 0 \exists P > 0 : \forall |x| > P \Rightarrow |f(x)| > M$$

$$\underset{x\to-\infty}{Lim} f(x) = -\infty \Leftrightarrow$$

$$\underset{x\to-\infty}{Lim} f(x) = +\infty \Leftrightarrow$$

$$\underset{x\to+\infty}{Lim} f(x) = -\infty \Leftrightarrow$$

$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow$$