Relative Frequency

- $f_k(n) = \frac{N_k(n)}{n} \leftarrow$ Relative Frequency
 k is the outcome

 - $-N_k(n)$ is the number of times outcome k
- $\lim_{n \to \infty} f_k(n) = p_k \leftarrow \textbf{Statistical Regularity}$
 - $-p_k$ is the probability of event k occurring

Properties of Relative Frequencies

- 1. $f_k(n) = \frac{N_k(n)}{n}$
- $2. \ 0 \le N_k(n) \le n$
- 3. $0 \le f_k(n) \le 1 = \frac{0}{n} \le \frac{N_k(n)}{n} \le \frac{n}{n}$ 4. $\sum_{k=1}^k f_k(n) = \sum_{k=1}^k \frac{N_k(n)}{n} = \frac{\sum_{k=1}^k N_k(n)}{n} = \frac{n}{n} = 1$ 5. $\sum_{k=1}^k f_k(n) = 1$
- 6. If events A and B are disjoint and event C is "A or B", then $F_C = F_A(n) + F_B(n)$

Set Theory $\mathbf{2}$

- A set is a collection of objects, denoted by capital letters
- Denote the universal set, U; consisting of all possible objects of interest in a given setting/application
- For any set A, we say that "x is an element of A", denoted $x \in A$ if object x of the universal set U is contained in A
- We say that "x is not an element of A", denoted $x \notin A$ if object x of the universal set U is not contained in A
- We say that "A is a subset of B", denoted $A \subset B$ if every element in A also belongs to $B, x \in A \to x \in B$
- The *empty set*, \emptyset is defined as the set with no elements
 - The empty set is a subset of every set
- Sets A and B are equal if they contain the same elements. To show this:
 - 1. Enumerate the elements of each set
 - 2. Thm: $A = B \iff A \subset B \text{ AND } B \subset A$
- The union of 2 sets A, B, denoted $A \cup B$ is defined as the set of outcomes that are either in A, or in B, or both
- The intersection fo 2 sets, A, B, denoted $A \cap B$ is defined as the set of outcomes in A and B
- The 2 sets A, B are said to be disjoint or mutually exclusive if $A \cap B = \emptyset$
- The complement of a set A, denoted A^C is defined as the set of elements of U not in A $-A^C = \{x \in U | x \notin A\}$
- Relative complement or difference, denoted A-B, is the set of elements in A that are not in B
 - $-A B = A \cap B^C$
 - $-\ A^C = U A$

Properties of Set Operations 2.1

Set Operators are:

1. Commutative, Equation (1)

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$
(1)

2. Associative, Equation (2)

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$
(2)

3. Distributive, Equation (3)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
(3)

4. Set Operations obey De Morgan's Laws, Equation (4)

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$
(4)

Additionally,

Defn 1 (Union of n Sets). The union of n sets $\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$ is the set consisting of all elements such that $x \in A_k$ for some $1 \le k \le n$.

• All sets need to be empty to make $\bigcup_{k=1}^n A_k = \emptyset$

3 Probability Theory

There are 3 main components to Probability Theory.

- 1. Set Theory
- 2. Axioms of Probability
- 3. Conditional Probability and Independence

3.1 Random Experiments

Defn 2 (Random Experiment). A random experiment is an experiment whose outcome varies in an unpredictable fashion when performed under the same conditions.

Defn 3 (Sample Space). A sample space, S of a random experiment is the set of all possible experiments.

Defn 4 (Outcome/Sample Point). An *outcome*, or *sample point* of a random experiment is a result that cannot be decomposed into other results.

Defn 5 (Event). An *event* corresponds to a subset of the sample space. We say an event occurs if and only if (iff) the outcome of the experiment is in the subset representing the event.

Defn 6 (Event Classes). An *event class* \mathcal{F} is the collection of the all the events' sets. \mathcal{F} should be closed under unions, intersections, and complements.

- For S finite, or countably infinite, then we can let \mathcal{F} be all subsets of S.
- For S uncountably infinite, instead we can let \mathcal{F} consist of the subsets that can be obtained as countable unions and intersections of some sets of \mathcal{F} .

Defn 7 (Probability Law). A probability law for a random experiment E, with sample space S, and an event class \mathcal{F} is a rule that assigns to each event $A \in \mathcal{F}$ a number P[A], called the probability of A that satisfies the axioms:

Axiom I: $0 \le P[A]$ Axiom II: P[S] = 1

Axiom III: If $A \cap B = \emptyset$, then $P[A \cup B] = P[A] + P[B]$

Axiom III': If A_1, A_2, \ldots is a sequence of events such that $A_i \cap A_j = \emptyset$ for all $i \neq j$, then $P[\bigcup_{k=1}^{\infty} A_k] = \sum_{k=1}^{\infty} P[A_k]$

3.2 Probability Law Corollaries

Axiom I: $0 \le P[A]$

Axiom II: P[S] = 1

Axiom III: If $A \cap B = \emptyset$, then $P[A \cup B] = P[A] + P[B]$

Axiom III': If A_1, A_2, \ldots is a sequence of events such that $A_i \cap A_j = \emptyset$ for all $i \neq j$, then $P\left[\bigcup_{k=1}^{\infty} A_k\right] = \sum_{k=1}^{\infty} P\left[A_k\right]$

Corollary 3.1. $P[A^C] = 1 - P[A]$

Corollary 3.2. $P[A] \leq 1$

Corollary 3.3. $P[\emptyset] = 0$

Corollary 3.4. If $A_1, A_2, ..., A_n$ are pairwise mutually exclusive $(A_1 \cap A_2 \cap ... \cap A_n = \emptyset)$, then $P[\bigcup_{k=1}^n] = \sum_{k=1}^n P[A_k]$ for $n \ge 2$

Corollary 3.5. $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

Corollary 3.6. $P[A \cup B] = \sum_{j=1}^{n} P[A_j] - \sum_{j \le k} P[A_j \cap A_k] + \dots + (-1)^{n+1} P[A_1 \cap \dots \cap A_n]$

Corollary 3.7. If $A \subset B$, then $P[A] \leq P[B]$

3.3 Conditional Probability

Defn 8 (Conditional Probability). The *conditional probability* of event A **GIVEN THAT** event B occurred is denoted P[A|B] and is defined as $P[A|B] = \frac{P[A \cap B]}{P[B]}$

Theorem 1 (Theorem of Total Probability). Let $B_1, B_2, ..., B_n$ be mutually exclusive events whose union equals the sample space S, i.e. $B_1, B_2, ..., B_n$ is a partition of S.

Defn 9 (Baye's Rule). Let $B_1, B_2, ..., B_n$ be a partition of sample space S. $P[B_j|A] = \frac{P[A \cap B_j]}{P[A]} = \frac{P[A|B_j] * P[B_j]}{\sum_{k=1}^n P[A|B_k] * P[B_k]}$