

Predicting Hotel Booking Cancellations with Machine Learning

Leveraging the Kaggle Hotel Booking Demand Dataset

Project Description

Predicting Hotel Booking Cancellations with Machine Learning

Problem: Hotel booking cancellations and no-show lead to lost revenue and inefficiencies in resource planning, including overbooking, underbooking, and misallocated staff.

Solution: Using the Kaggle Hotel Booking Demand dataset, I built a classification model using Python and machine learning techniques.

The model identifies patterns in guest behavior, booking details, and timing to predict cancellations.

Outcome: The final tool deployed as a Streamlit app, predicts booking cancellations, providing actionable insights for better planning and operational efficiency.

Understanding the Data:

A Glimpse into the Kaggle Dataset

Period Covered: July 2015 - August 2017

Entries: 119,390 rows | 32 columns

Hotel Types: City and Resort Hotels

Data Types:

- Categorical: e.g. hotel, is_cancelled, arrival_date_month, reservation_status
- Integer: e.g. lead_time, adults, booking_changes
- Float: e.g. children, adr, agent

Target Variable: is_canceled (1 = canceled, 0 = not canceled)

```
print("--- Initial Data Exploration ---")
print(df.head())
print(df.info())
print("\n--- Missing Values (Initial) ---")
# Count the number of missing values
print(df.isnull().sum())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119390 entries, 0 to 119389
Data columns (total 32 columns):
     Column
                                     Non-Null Count
                                                      Dtype
                                     119390 non-null object
     hotel
     is canceled
                                     119390 non-null object
     lead time
                                     119390 non-null int64
     arrival date year
                                     119390 non-null int64
     arrival date month
                                     119390 non-null object
     arrival_date_week_number
                                     119390 non-null int64
     arrival date day of month
                                     119390 non-null int64
     stays in weekend nights
                                     119390 non-null int64
     stays in week nights
                                     119390 non-null int64
     adults
                                     119390 non-null int64
     children
                                     119386 non-null float64
     babies
                                     119390 non-null int64
                                     119390 non-null object
     meal
     country
                                     118902 non-null object
                                     119390 non-null object
     market_segment
     distribution channel
                                     119390 non-null object
     is_repeated_guest
                                     119390 non-null int64
     previous cancellations
                                     119390 non-null int64
     previous bookings not canceled 119390 non-null int64
     reserved room type
                                     119390 non-null object
     assigned room type
                                     119390 non-null object
     booking_changes
                                     119390 non-null int64
     deposit_type
                                     119390 non-null object
                                     103050 non-null float64
     agent
     company
                                     6797 non-null
                                                      float64
     days in waiting list
                                     119390 non-null int64
     customer type
                                     119390 non-null object
 27
     adr
                                     119390 non-null float64
                                     119390 non-null int64
     required car parking spaces
     total of special requests
                                     119390 non-null int64
                                     119390 non-null object
     reservation_status
    reservation_status_date
                                     119390 non-null object
dtypes: float64(4), int64(15), object(13)
memory usage: 29.1+ MB
```


Explanatory Data Analysis (EDA)

Cancellation Rate: 37% of bookings were canceled (is_canceled).

Lead Time: Positive correlation with cancellations (longer lead time \rightarrow higher cancellation).

Special Requests & Parking: Negative correlation, suggesting more definite plans reduce cancellations.

Repeated Guests: Slightly less likely to cancel.

Booking Changes: Slightly less likely to cancel.

Weak Correlations: Many features have minimal linear impact on cancellations.

	Correlation with Booking Cancellation		
is_canceled -	1		
lead_time -	0.29		
room_type_match -	0.24		
previous_cancellations -	0.11		
adults -	0.056		
days_in_waiting_list -	0.054		
total_guests -			
adr -			
stays_in_week_nights -			
arrival_date_year -			
arrival_date_month -	0.012		
total_stay_duration -	0.011		
arrival_date_week_number -			
children -			
adr_per_person -			
arrival_date_day_of_month -	-0.0063		
stays_in_weekend_nights -	-0.0068		
babies -	-0.032		
agent -	-0.048		
vious_bookings_not_canceled -	-0.055		
is_repeated_guest -	-0.075		
booking_changes -	-0.14		
required_car_parking_spaces -	-0.2		
total_of_special_requests -	-0.24		
	is_canceled		

Correlation with Booking Cancellation

5/12/2025

WBS CODDING SCHOOL

Our Machine Learning Pipeline

- Missing Values Imputed: children, country, agent → filled with median or mode
- Dropped Column: company (too many missing values)
- Data Type Conversion:
 children → integer, reservation_status_date → datetime
- Removed Invalid Entries:
 - o Bookings with **0 total guests**
 - o Rows with ADR = 0
- Standardization & Filtering:
 - Standardized 'Undefined' in meal
 - Removed 'Undefined' from market_segment and distribution_channel

Our Machine Learning Pipeline

One-Hot Encoding (Nominal):
hotel, meal, market_segment, distribution_channel, deposit_type, customer_type

Label Encoding (Ordinal / Tree-friendly):
arrival date month, reserved room type, assigned room type

Standardized the numerical features using **StandardScaler** to ensure:

- \circ Mean = 0.
- Standard Deviation = 1
- Scaled Features

lead_time, arrival_date_year, arrival_date_month, arrival_date_week_number, arrival_date_day_of_month, stays_in_weekend_nights, stays_in_week_nights, adults, children, babies, is_repeated_guest, previous_cancellations, previous_bookings_not_canceled, reserved_room_type, assigned_room_type, booking_changes, agent, days_in_waiting_list, adr, required_car_parking_spaces, total_of_special_requests, total_stay_duration, total_guests, adr per person, room type match

Encoding Scaling

Our Machine Learning Pipeline

Data split:

- 80% total training data
 - 70% training, 10% validation
- 20% test set

Models Trained:

- Logistic Regression
- K-Nearest Neighbors (KNN)
- Decision Tree
- Random Forest
- XGBoost
- CatBoost
- Random Forest selected as best-performing model
 - → Optimized using RandomizedSearchCV
- SMOTE used to handle class imbalance in training data

Our Machine Learning Pipeline

Model	Accuracy	ROC AUC
Random Forest	0.8767	0.9387
Logistic Regression	0.7893	0.8690
KNN	0.8071	0.8819
Decision Tree	0.8275	0.8218
XGBoost	0.8599	0.9279
CatBoost	0.8637	0.9313

- Best Model: Random Forest with an accuracy of 0.8704 and ROC AUC of 0.9387 on the test set.
- Model Performance: Consistent across training, validation, and test sets, indicating strong generalization.
- Feature Importance: Identified key booking characteristics influencing cancellations.
- Evaluation Metrics: Accuracy, ROC AUC, and other metrics confirmed model reliability.

Conclusion and Looking Ahead

A Random Forest model was developed to predict hotel booking cancellations with high accuracy. The model is deployed in a Streamlit app for real-time cancellation predictions.

Limitations:

- Model performance relies on historical data and may degrade with significant shifts in booking patterns.
- Limited by lack of external factors like weather, competitor pricing, and realtime events.
- Predicts probabilities, not definitive outcomes; human judgment still needed.

Future Directions:

- Incorporate additional real-time data sources (weather, reviews, etc.)
- Explore more advanced techniques (ensemble methods, deep learning)
- Streamlit app developed for real-time cancellation prediction and interactive use

Hotel Booking Cancellation Prediction

Developed by Amanuel Agajjie Wasihun

Enter Booking Details:

Lead Time	3	Booking Changes	3
30	- +	0	- +
Weekend Nights	@	ADR (Avg Daily Rate)	3
1	- +	100,00	- +
Week Nights	0	Parking Spaces	0
2	- +	0	- +
Adults	0	Special Requests	0
2	- +	0	- +
Children	0	Arrival Week Number	0
0	- +	1	- +
Babies	0	Arrival Day of Month	@
0	- +	1	- +
Previous Cancellations	0	Deposit Type (Non Refund)	@
0	- +	0	~
Previous Non-Cancellations	0	Customer Type	•
0	- +	Transient	~

Predict Cancellation

Thank you!

Happy to answer any questions or hear your thoughts.