РОЗРАХУНОК ОДНОФАЗНОГО КОЛА СИНУСОЇДНОГО СТРУМУ.

В електричному колі (*Puc. 76*) діє джерело синусоїдної ЕРС $e = \sqrt{2}E\sin(\omega t + \psi)$. Всі параметри кола наведені в таблицях №1 і №2.

І. Для електричного кола без взаємної індукції:

- а) розрахувати всі струми комплексним методом, <u>визначити покази вольтметра;</u>
- б) скласти баланс активних P і реактивних Q потужностей кола;
- в) побудувати векторну діаграму струмів і топографічну діаграму напруг;
- г) прийняти опір $R_2 = 0$ і, вважаючи реактивний опір цієї вітки невідомим, визначити його за умовою резонансу струмів;
- д) розрахувати струми для резонасного стану кола; <u>визначити покази вольтметра;</u>
- ϵ) перевірити правильність розрахунків за балансом потужностей;
- ж) видаливши із кола активні опори, записати частотну характеристику (ЧХ) вхідного опору кола і побудувати її, знайшовши нулі і полюси.

<u>Увага!</u> Активні опори віток, з'єднані паралельно з ємністю чи індуктив-ністю розірвати ($R = \infty$), всі інші закоротити (R = 0).

II. При наявності магнітного зв'язку між індуктивними елементами L_1 , L_2 (однойменні кінці елементів відмічені на схемі точками):

- а) перетворивши схему до двох незалежних контурів, розрахувати струми у всіх вітках схеми методом контурних струмів, визначити покази вольтметра;
- б) перевірити правильність розрахунків за балансом потужностей, визначити активну і реактивну потужності магнітного зв'язку для кожної з індуктивно звязаних котушок;
- в) побудувати векторну діаграму струмів і топографічну діаграму напруг (на діаграмі показати напруги взаємної індукції).

III. Відкинувши крайню вітку між полюсами 2, 2', зробити розв'язок магнітного зв'язку. Одержану схему розглядати як чотириполюсник з полюсами 1, 1' і 2, 2':

- а) розрахувати коєфіцієнти A, B, C, D ($A_{11},A_{12},A_{21},A_{22}$) 4-полюсника;
- б) визначити ЕРС \dot{E} та струм \dot{I}_1 на вході 4-полюсника, при яких на його виході $U_2=100(B)$, $I_2=1(A)$, а кут зсуву фаз між синусоїдами напруги і струму $\phi_2=30^\circ$. Зробити перевірку, навантаживши 4-полюсник на відповідний опір.
- в) розрахувати параметри R, L, C віток (T чи Π) схеми заміщення;
- г) визначити вторинні параметри чотириполюєника (характеристичні опори \underline{Z}_{C1} , \underline{Z}_{C2} , сталу передачі γ) .
- д) в узгодженому режимі чотириполюсника за вторинними параметрами виз-

начити комплекси напруги \dot{U}_2 і струму \dot{I}_2 (на виході чотириполюсника) при заданій EPC на вході. Зробити перевірку для схеми заміщення.

Увага! 1. Параметри елементів кола нанести на схему.

- 2. Схеми та діаграми виконувати олівцем згідно з правилами технічного креслення.
- 3. Всі розрахунки давати у такому порядку: формула (в буквах), підставити дані, відповідь в одиницях виміру.
- 4. Всі кінцеві вирази для комплексів давати в алгебраїчній і показниковій формах.

<u>Примітка.</u> Варіант даних для розрахунку вибрати згідно з тризначним шифром (№1, №2, №3). Перша цифра відповідає номеру колонки таблиці №1, друга - номеру колонки таблиці №2, третя - номеру схеми. <u>Шифр задається викладачем.</u>

Таблиця №1

Параметр	1	2	3	4	5	6	7	8	9	0
E (B)	100	120	140	160	18	200	220	240	260	280
ψ°	-20	-30	-45	-60	25	35	50	70	80	90
R_1 (OM)	5	7	9	11	12	14	16	18	20	22
R_2 (O _M)	7	9	11	13	10	12	14	16	18	21
R_3 (OM)	9	11	13	15	8	10	12	14	16	6
R_4 (OM)	12	13	15	17	6	8	10	12	11	19

Таблиця №2

Параметр	1	2	3	4	5	6	7	8	9	0
X_{L1} (Ом)	30	35	40	45	50	40	55	60	45	37
X_{L2} (Ом)	35	40	45	50	40	35	45	50	30	27
X_{L3} (Ом)	40	45	50	55	35	25	30	43	25	20
X_{C1} (OM)	10	15	20	25	20	15	17	20	15	13
X_{C2} (Ом)	15	20	25	30	15	10	13	15	12	10
X_{C3} (Ом)	20	25	30	35	12	8	10	13	8	6
$X_{\scriptscriptstyle M}$ (O _M)	20	23	25	27	30	20	22	32	20	15
f(Γų)	50	60	50	60	100	50	60	100	60	50
Тип схеми заміщення	Т	П	Т	П	Т	П	Т	П	T	П

Puc. 76

Список використаної літератури.

Hейман Π , P., Π емирчян K. C. "Теоретические основы электротехники". Т. 1. – M.: Высшая Школа, 1981.

Зевеке Γ . В., Ионкин Π . А., Нетушил А. В., Страхов С. В. "Основы теории цепей". – М.: Энергоатомиздат, 1989.

Шебес М. Р. "Задачник по теории линейных электрических цепей". – М.: Высшая. Школа, 1982.

Антамонов В.Х., Курило И.А. "Избранные задачи по линейным электрическим цепям": Учебное пособие.-К.,: НМК ВО, 1993. – 96 с.

Бойко В, С., Бойко В, В., Видолоб Ю. Ф., Курило І. А., Шеховцов В. І., Шидлов-ська Н. А. "Теоретичні основи електротехніки".Т. 1.- К.: "Політехніка",2004. –269 с.