

Friday 10 May 2019 9.30 am – 11.30 am Duration: 2 Hours

DEGREES of MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

Database Systems H

(Answer All Questions)

This examination paper is worth a total of 60 marks

The use of a calculator is not permitted in this examination

INSTRUCTIONS TO INVIGILATORS

Please collect all exam question papers and exam answer scripts and retain for school to collect. Candidates must not remove exam question papers.

Note: The Exam Duration is Two (2) HOURS

Part A: Relational Modelling and SQL [Total: 20 Marks]

1. (a) Can the foreign key of a relation be NULL? Explain briefly your answer.

[2]

(b) Consider the following SQL CREATE TABLE statements:

```
CREATE TABLE Runner (
RunnerID INT NOT NULL,
RunnerName VARCHAR(50),
PRIMARY KEY(ID));

RaceEvent VARCHAR(10),
WinnerID INT,
PRIMARY KEY(RaceID),
FOREIGN KEY(WinnerID) REFERENCES
Runner(RunnerID));
```

We issue the SQL1 query:

SQL1: SELECT * FROM Runner,

and obtain the results in Table 1. Then, we issue the SQL2 query:

SQL2: SELECT * FROM Race,

and obtain the results in Table 2.

Table 1

Table 2

RunnerName
Chris
John
Ian
Alice
Jane

RaceID	RaceEvent	WinnerID
1	100 meter dash	2
2	500 meter dash	3
3	Triathlon	NULL
4	Triathlon	NULL

(i). Based on the results in Table 1 and Table 2, which will be the results if we issue the SQL3?

Explain briefly you answer.

[5]

SQL3: SELECT * FROM Runner

WHERE RunnerID NOT IN (SELECT WinnerID FROM Race);

(ii). If you raise any issues with SQL3 in 1.b.(i), provide a modified version of the SQL3, which fixes the named issues. Explain briefly your answer.

[3]

Continued Overleaf/

2. Consider the following relational schema:

Author(AuthorID, Name)

Authoring(ARTID, AID)

Article(ArticleID, PublicationYear, Title)

where the attribute AID is a *foreign key* in Authoring referencing to AuthorID in Author relation, and the attribute ARTID is *a foreign key* in Authoring referencing to ArticleID in Article relation. The primary key is underlined in each relation.

(a) Given that an author can have written one or more articles, write a SQL query that shows the number of co-authors with the author 'Chris', i.e., the number of authors who have written at least one article together with Chris.

[5]

(b) For each author who has written more than 50 articles, show how many of these articles have been published since 2016.

[5]

Part B: File Organization and Indexing Methods [20 Marks]

- Assume the relation **EMPLOYEE**(\underline{ID} , Name, Address, DNO) which is stored in a file on a disk. We need 100 bytes for the integer Primary Key attribute ID, 100 bytes for the Name attribute, 50 bytes for the Address attribute, and 6 bytes for the department number (DNO) attribute. Consider that the relation has only r = 7 tuples and the size of the file block is 512 bytes.
 - (a) Given that the database system adopts fixed-length records, such that each file record corresponds to each tuple of the relation, which will be the **blocking** factor (bfr) of the file block to accommodate the relation EMPLOYEE?

[1]

- (b) We adopt external hashing for storing the relation EMPLOYEE using M = 3 buckets and the hash function $y = h(DNO) = DNO \mod M$, i.e., we hash the DNO attribute. We assume that the size of each bucket is equal to the size of a block, i.e., 512 bytes, and that *all* buckets are equiprobable to be selected given any random selection query over the DNO attribute.
 - (i) Design the structure of the M = 3 buckets of the corresponding hash file (which tuples belong to which bucket) that accommodates r = 7 tuples with DNO values: **0**, **2**, **3**, **4**, **6**, **8**, **9**. If a bucket is *full*, then you can use overflow buckets connected through *chain pointers*.

[2]

(ii) Calculate the *expected* number of **block accesses** (I/O blocks read/write) for a random SQL selection query using the hashing structure:

SOL4: SELECT * FROM EMPLOYEE WHERE DNO = x.

for any random x value, in the best-case scenario and worst-case scenario.

[3]

Note: In the best-case scenario, the tuple is found in the *main* bucket, while in the worst-case scenario the tuple is found in the *last* overflown bucket of the block chain, if exists.

(iii) Calculate the expected number of block access for the SQL4 query in **Question 3(b).(ii)** assuming that the EMPLOYEE relation is stored in a **Sequential File** ordered by DNO and in a **Heap File**, in the *best-case* scenario and *worst-case* scenario.

[2]

(iv) Given that the EMPLOYEE relation has *only* the tuples whose DNO values are provided in **Question 3(b).(i)**, calculate the expected number of block accesses for the range query:

SQL5: SELECT * FROM EMPLOYEE

WHERE DNO >= 3 AND DNO <= 8

using: your Hash File Stricture in **Question 3(b).(i)**, a Sequential File ordered by DNO, and a Heap File, in the *worst-case* scenario.

[3]

Consider a clustering index over the **ordering non-key** DNO attribute (department number) of the relation **EMPLOYEE**(<u>SSN</u>, Name, DNO). The size of the DNO attribute is 5 bytes, while the total tuple size of the relation is R = 100 bytes. The relation has r = 1000 tuples, the block size is B = 256 bytes, and a pointer has size P = 5 bytes. There are n = 4 departments, where the employees are *uniformly* distributed over the departments.

A data analyst investigates the expected cost in terms of block accesses of the following SQL6 query given **any random** DNO value x and decides whether to use the clustering index or a serial scan of the file for that query.

SQL6: SELECT * FROM EMPLOYEE WHERE DNO = x

(a) Calculate the blocking factor of the data file (bfr) and the clustering index file (ibfr).

[1]

(b) Calculate the number of blocks of the data file and the number of blocks of the clustering index file.

[1]

(c) Which is the additional storage due to the clustering index?

[1]

(d) Given the SQL6 query, which is the expected number of block accesses using the clustering index?

[1]

(e) Given the SQL6 query, which is the expected number of block accesses using serial file scan? Based on this information, which is the final decision for the data-analyst?

[5]

Part C: Query Processing and Optimization [20 Marks]

5. Consider the relation EMPLOYEE(<u>SSN</u>, Salary, DNO), where SSN is the social security number and DNO is the department number, and the selection query SQL7:

SQL7: SELECT * FROM EMPLOYEE

```
WHERE Salary >= 35000 AND DNO = 5
```

Consider also the following information of the database system:

- Clustering Index on the Salary non-key ordering attribute with $x_{\text{Salary}} = 3$ levels.
- **B+ Tree Secondary Index** on the DNO non-key non-ordering attribute with $x_{DNO} = 2$ levels. We need only 1 block with data block-pointers per DNO value.
- The number of the distinct values of DNO is 125.
- The maximum and minimum Salary values are 50000 and 5000, respectively.
- The relation EMPLOYEE has r = 10000 tuples, the corresponding file has b = 2000 blocks, the blocking factor is f = 5 records/block.
- The available memory in the database system is 100 blocks.

For convenience: 1/125 = 0.008; 0.008/3 = 0.0027

(a) Estimate the selection cardinality of the SQL7 query, i.e., the number of tuples that satisfy the condition in the WHERE clause.

[3]

(b) Propose **two** *query processing plans* for implementing the SQL7 query using the provided access paths over the Salary and DNO attributes and select the *best* in terms of the number of block accesses.

[7]

- **6.** Consider two relations **EMPLOYEE** E and **DEPENDENT** P such that:
 - relation E has $n_E = 100$ blocks and $r_E = 1000$ records,
 - relation P has $n_P = 50$ blocks and $r_P = 50$ records.

The SSN (Social Security Number) is the Primary Key of the relation Employee (E). The non-unique attribute E_SSN is the Foreign Key in relation Dependent (P) referencing to relation E on the SSN attribute. The number of distinct values of the E_SSN is NDV(E_SSN) = 10. The blocking factor for the join-results block is bfrRS = 10 records per block. Assume that we join the two relations E and P with respect to the primary-foreign keys SSN and E_SSN, as shown in the following SQL-JOIN.

SQL-JOIN: SELECT * FROM EMPLOYEE E, DEPENDENT P WHERE E.SSN = P.E SSN

(a) Estimate the *join cardinality* of the SQL-JOIN, i.e., the number of matching tuples.

[2]

(b) Estimate the *total* expected cost in I/O block accesses based on the naïve join strategy, i.e., the strategy producing the Cartesian product.

[2]

(c) Assume that there is a **Clustering Index** over the non-unique ordering attribute E_SSN of the Dependent (P) relation with level $x_P = 2$, the number of the distinct values of the E_SSN attribute is **NDV(E_SSN)** = 10. Moreover, assume a **Primary Index** over the Employee (E) relation on the primary key SSN with level $x_E = 2$. Propose **two index-based nested-loop join strategies** and select the *best* in terms of block accesses.

[6]