Chapter 13 Properties of Triangle

ee24btech11015 - Dhawal

B. JEE Main / AIEEE 3) The sum of the radii of inscribed and circumscribed circles for an n sided regular

4) In a triangle $\triangle ABC$, medians AD and BE are drawn. If AD= 4, $\angle DAB$ =

6) The sides of a triangle are $\sin \alpha$, $\cos \alpha$ ad $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$. Then

c) $\frac{16}{3}$

c) are in G.P.

c) 120°

c) $\frac{a}{2} \cot \left(\frac{\pi}{2n}\right)$ d) $a \cot \left(\frac{\pi}{2n}\right)$

(2003)

(2003)

(2003)

(2004)

d) $\frac{32}{3\sqrt{2}}$

d) 60°

d) are in H.P.

polygon of side a, is

a) $\frac{a}{4} \cot \left(\frac{\pi}{2n} \right)$

a) $\frac{64}{3}$

a) 150°

b) $a \cot \left(\frac{\pi}{n}\right)$

 $\frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of the $\triangle ABC$ is

b) $\frac{8}{3}$

b) 90°

a) satisfy a + b = c b) are in A.P.

the greatest angle of the triangle is

5) If in $\triangle ABC$ $a\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c

top of a tree	on the opposite bank of	river observes that the f the river is 60° and w vation becomes 30°. The	hen he retires 4	0 meters
a) 60 <i>m</i>	b) 30m	c) 40m	d) 20m	
	$\triangle ABC$, let $\angle C = \frac{\pi}{2}$. If r C, then $2(R+r)$ equals	is the inradius and R is	s the circumradi	us of the (2005)
a) $b + c$	b) $a+b$	c) $a+b+c$	d) $c + a$	
	let the altitudes from to B , sin C are in	he vertices A , B , C on o	opposite sides are	e in H.P., (2005)
a) <i>G.P.</i>	b) <i>A.P.</i>	c) <i>A.P.</i> – <i>G.P.</i>	d) <i>H.P.</i>	
of the park s	uch that AB $(= a)$ sub	lar park. A and B are tw tends an angle of 60° of the tower from A o	at the foot of the	ne tower,

d) $2a\sqrt{3}$

AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation the point A from a certain point C on the ground is 60° . He moves away from the pole along the line BC to a point D such that CD = $7m$. From D the angle of elevation of point A is 45° . Then the height of the pole is (2008)				
a) $\frac{7\sqrt{3}}{2} \frac{1}{\sqrt{3}-1}m$ b) $\frac{7\sqrt{3}}{2} \left(\sqrt{3}+1\right)m$ c) $\frac{7\sqrt{3}}{2} \left(\sqrt{3}-1\right)m$ d) $\frac{7\sqrt{3}}{2} \frac{1}{\sqrt{3}+1}m$				
12) For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is (2010) a) There is a regular polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$ b) There is a regular polygon with $\frac{r}{R} = \frac{2}{3}$ c) There is a regular polygon with $\frac{r}{R} = \frac{\sqrt{3}}{2}$ d) There is a regular polygon with $\frac{r}{R} = \frac{1}{2}$				
13) A bird is sitting on the top of a vertical pole $20m$ high and its elevation from a point \mathbf{O} on the ground is 45° . It flies off horizontally straight away from the point \mathbf{O} . After one second, the elevation of the bird from \mathbf{O} is reduced to 30° . Then the speed in $(in\ m/s)$ of the bird is				
a) $20\sqrt{2}$ b) $20(\sqrt{3}-1)$ c) $40(\sqrt{2}-1)$ d) $40(\sqrt{3}-\sqrt{2})$				
14) If the angle of elevation of the top of a tower from three colinear points $\bf A, B$ and $\bf C$ on a line leading to foot of the tower, are 30°, 45° and 60° respectively, then the ratio, AB: BC, is: (<i>JEEM</i> 2015)				
a) $1:\sqrt{3}$ b) $2:3$ c) $\sqrt{3}:1$ d) $\sqrt{3}:\sqrt{2}$				
15) Let a vertical tower AB have its end A on the level ground. Let C be the mid-point of AB and P be a point on the ground such that $AP = 2AB$. If $\angle BPC = \beta$, then $\tan \beta$ is equal to: (<i>JEEM</i> 2017)				

c) $\frac{2a}{\sqrt{3}}$

b) $a\sqrt{3}$

a) $\frac{a}{\sqrt{3}}$

a) $\frac{4}{9}$

16) ΔPQR is a triangular park with PQ = PR = 200m. A T.V. tower stands at the midpoint of QR. If the angles of the elevation of the top of the tower at **P**, **Q** and **R** are respectively 45°, 30° and 30°, then the height of the tower (*in m*) is: (*JEEM*2018)

c) $\frac{1}{4}$

d) $\frac{2}{9}$

a) 50 b) $100\sqrt{3}$ c) $50\sqrt{2}$ d) 100

b) $\frac{6}{7}$