

In-Situ Plankton Imaging

Charles Cousin, M.S. eng. President Bellamare, LLC

Marina Murzina, Ph.D. President & CTO Traklogik Corporation

www.bellamare-us.com info@bellamare-us.com (858) 578-8108

www.traklogik.com mm@traklogik.com (760) 744-2845

Founded in 2006 to provide engineering services to the University of Miami Marine Biology Department

The goal was to design/manufacture a:

Already Two Major Achievements:

Innovative Imaging System & Innovative ROTVs

Future Developments - Need for less expensive, smaller systems - Skids to Rosette CTD, Hand Deployable Tow Fish, Smaller ROTVs

Replace / Complement Net Systems

Hard work & lots of microscope time...

2 days at sea = 1 man-year of microscope work!

Our Solution

Imaging is a great solution

- Precise location position and time of each organism
- Inform about spatial and vertical distribution of critters (fine-scale distributions of plankton from centimeter- to basin- wide volumes)
- Environmental data of the organisms' surroundings are sampled in sync.
- Imaging does not destroy organisms easier to recognize!

Imaging "LARGE VOLUME OF WATER" (comparable to net tows)

Less abundant taxa is missed when imaging too small of a volume

Imaging tiny organisms at 5 knots...

Our Images

ISIIS uses a line-scan camera.

It creates one single **CONTINUOUS image** representing a real "slice" of the ocean.

When put end to end, images recorded represent one continuous image, several kilometers long, matching the mission profile.

Plankton! Why?

Plankton is the bottom of the ocean's Food Chain (No plankton, no fish, no whales....). It is also a very important part of the Carbon Cycle.

- Climate Change / Pollution: since plankton is not harvested or exploited by humans, adjustments in distribution and abundance can be attributed to changing environmental factors.
- Fish Stocks: the abundance of eggs and larvae is a scientific indicator of population abundance of adults.

Fundamental Science

High Frequency Monitoring of Fish Population

Coastal Construction Permitting / Environmental Monitoring

If high data analysis of collected images is feasible, we can increase sampling frequency which leads to better monitoring and leads to a greater capacity for improved scientific inquiries.

Automated Analysis is a Must!

QuickTime™ and a decompressor are needed to see this picture.

Automated Image Analysis

Recognizing Plankton Creatures

Generally, there are 2 necessary steps for pattern recognition:

Step 1. Segmentation:

find regions/objects of interest (ROI-s) versus background.

Step 2. Recognition:

identify objects of interest as belonging to certain classes.

Step 1. Segmentation for In-Situ High-Volume Imaging

Challenges:

Compared to Lab Imaging scanners (net tows → "Zooscan"), the background is real ocean water:

typical zooscan image

- Non-uniform intensity distribution
- Bubbles
- Unrelated objects.

Compared to other In-Situ Imagers, we look at BIG water VOLUMES:

- Focus quality will vary!

typical VPR image:
focal plane

Step 1. Segmentation

...Continued

"Segmentator" A Powerful Tool in Itself

- 1. Data Reduction > 20 times.
- 2. Can be implemented on parallel hardware for real-time, on board, processing.
- 3. Number of ROIs and their distribution, by size, are already very informative!

original 300 Frames:

1.17 GB Total

Regions of Interest:

57 MB Total

Segmentation Example

Further recognition must be adapted to non-perfect ROIs such as "group portraits".

Step 2. Recognition Manual training

Recognition Done manually, here, for "Training" purposes

Step 2. Recognition

Ambiguities can be numerous...

Need to adapt Recognition to the imaging system's resolution: Smaller, more abundant taxa should be imaged with a secondary system to avoid ambiguities.

Step 2. Recognition Known efforts...

Known Plankton Recognition Approaches

- G. Tsechpenakis, C. Guigand, and R. Cowen, "Image analysis techniques to accompany a new In Situ Ichthyoplankton Imaging System (ISIIS)", 2007.
- Q.Hu, C. Davis, "Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction", Marine Ecology Progress Series, 306: 51–61, 2006

Calculate 30+ features!!

size, aspect ratio, Hu moments, Fourier Coeffs for contour Radius(Angle), texture-based values (mean and range of co-occurrence matrices from different angles, energy, contrast, entropy, etc.) and a support vector machine classifier.

With extensive variety of plankton shapes, and potentially non-perfect ROIs (segmentation), generalization methods of recognition face a big challenge.

Our Approach is different...

Step 2. Recognition Our Vision

Our Approach combines:

- 1) Proprietary analytical methods whenever there is a distinct recognition principle, like "triangular" copepods.

 (includes integrating logical reasoning into distance equation in clustering space as logical polynomials)
- 2) CogniMem: **dedicated hardware** NN non-linear classifier: learn and recognize a 256-bytes vector $< 11 \mu$ sec @27MHz.

Incoming(unknown) vector is broadcasted to all neurons simultaneously

Publication on these results is coming...

