

AAE2004 Introduction to Aviation Systems AAE Design of Path Planning Algorithm for Aircraft Operation

Week 8 (Introduction to the project)

Dr. Li-Ta Hsu, Dr. Guohao Zhang, and Dr. Weisong Wen Assisted by

Miss Hiu Yi HO (Queenie), Miss Yan Tung LEUNG (Nikki), Mr Hoi Fung NG (Ivan) and Mr Feng HUANG (Darren)

✓ Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Lecturer's Information

Instructor	Dr Li-Ta Hsu	Dr Guohao Zhang	Dr Weisong Wen
Office	QR828	TU435a	PQ502
Phone	3400-8061	3400-8488	3400-8234
Email	lt.hsu@polyu.edu.hk	gh.zhang@polyu.edu.hk	welson.wen@polyu .edu.hk
Office Hour	by appointment	by appointment	by appointment

Li-Ta HŚŪ

1985.08 – Born in a fish farmer family in Tainan, Taiwan

2003.06 - Graduated from Kang Ming Senior High School, Taiwan

2007.06 – Bachelor of NCKU Department of Aeronautics and Astronautics (DAA), Taiwan

2010.09 – Ph.D. Candidate of NCKU DAA, Taiwan

2012.02 – Visiting Researcher in University College London, UK

2012.06 – Part-time Consultant for Spirent, UK

2013.07 – Visiting Researcher in Tokyo Marine University, Japan

2013.12 – Ph.D. of NCKU DAA, Taiwan

2014.04 – Postdoctoral Researcher in the University of Tokyo, Japan

2017.05 – Assistant Professor in AAE of PolyU, Hong Kong

2021.07 – Associate Professor in AAE of PolyU, Hong Kong

Ground Rules

For students

- Try to speak as much English as possible.
- Participate the class activates assigned.

For teaching staffs

- Reply your email with 3 working day.
- Open to any question regards to the subject

For us!

- ➤ Keep an open mind—enter the classroom dialogue with the expectation of learning something new. Look forward to learning about—and being challenged by—ideas, questions, and points of view that are different than your own.
- Arrive on time to the class and finish the class on time

Necessary Information

- ➤ Course Repository (project download) link:
- https://github.com/IPNL-POLYU/PolyU_AAE2004_Github_Project

- >TA Information & Contact:
 - Group 1-3: Queenie Ho queenie-hy.ho@connect.polyu.hk
 - Group 4-6: Nikkie Leung <u>nikkie-yt.leung@connect.polyu.hk</u>
 - Group 7-9: Ivan Ng hf-ivan.ng@connect.polyu.hk
 - Group 10-12: Darren Huang <u>darren-f.huang@connect.polyu.hk</u>

Week 1 Content

- 1. Introduction to Path Planning
- 2. Introduction to GitHub (Background)
- 3. Introduction to GitHub Operations
- 4. Software Installation and setup Guide

Introduction to Path Planning

What is Path Planning?

How to go from A to B considering factors!

➤ Path planning (also known as the navigation problem) is computational problem to find a sequence of valid configurations that moves the object from the source to destination. The term is used in aviation, robotics and computer games.

How is Path Planning important to Aviation Engineering?

> Private pilots do the path plan before the flight to make sure the

navigation aid is available

How is Path Planning important to Aviation Engineering?

For ATC near airports, collaborative path planning is required to make

the best use of the crowded airspace

Objective: Safe and least delay

How is Path Planning important to Aviation Engineering?

> Commercial pilot follow the path that plan based on different cost index designed by airlines. Objective: Safe and Minimum Cost

Figure 2. Distribution of operating costs

Trip cost

Without having to resort to complicated mathematics we can readily appreciate that the total cost of a specific trip is the sum of fixed and variable costs:

$$C = C_F \times \Delta F + C_T \times \Delta T + C_c$$

 $C_F = cost of fuel per kq$

 C_T = time-related cost per minute of flight

C_c = fixed costs independent of time

 ΔF = trip fuel ΔT = trip time

In order to minimize C or the total trip cost we therefore need to minimize the variable cost:

$$C_F \times \Delta F + C_T \times \Delta T$$

Cost-Index Published by Aircraft Manufacturer

getting to grips with the COST index

Issue II - May 1998

SAIRBUS

3.1 A300/A310 Family

Considering, with good approximation, that the following range of time-related costs cover the maintenance cost difference between A300 and A310 as well as the cabin crew contingent (plus or minus two) difference, the following cost brackets result:

6 < Hourly maintenance cost < 12 (US\$/min)

+ 7 < Crew cost < 14 (US\$/min)

13 < Time-related cost < 26 (US\$/min)

NB : Crew composition = 2 cockpit crews + 8 (± 2) cabin crews.

In turn, the following cost index tables reflect these cost ranges for the A300 and for the A310.

Table 1. A300/A310 cost index

(kg/min) (Honeywell FMS)

TIME COST (US\$/min)	LOW	MEDIUM	HIGH > 20	
FUEL COST (US\$/USG)	< 15	15 < to < 20		
LOW	65	85	100	
< 0.7	65	85	100	
MEDIUM	50	G.E.	00	
0.7 < < 0.9	50	65	80	
HIGH			0.5	
> 0.9	40	55	65	

https://ansperformance.e u/library/airbus-costindex.pdf

Path Planning

- ➤ Optimization Problem:
- > To optimize a path that fulfilling all the constrains and by a set of certain criteria.
- ➤ Goal of this project, to select the best aircraft models with an optimized route that minimized the cost of the aircraft operation under given scenario.
- > Design the cost of the aircraft operation
- > Design an aircraft model (virtually) with different cost coefficients to fly safe and cheapest.
- > Design the path planning algorithm considering 3D, 2D + time, scenarios.

Expected Outcome: Every Group have different scenarios

We are airline. We wish to find a route with minimized cost.

What tasks we do?

How is the Freshman Project related to the <u>ATE</u> programme study?

- Mathematics & Physics
- Computer Science
- Aeronautical and Aviation

 The plan should be planned considering the practical limitation (aviation system) of the aircraft

	Year 1 (30 + 4 t		,
Semester 1 (15 + 2 training credits)		Semester 2 (15 +2 training credits)	
AAE2004	Introduction to Aviation System and Air Transport Regulation	AAE2003	Introduction to Aircraft Systems
AMA1110	Basic Mathematics I	AMA1120	Basic Mathematics II
AMA1600	Fundamentals of AI and Data Analytics (2 credits) (GUR-AIDA)	AP10006	Physics II
AP10005	Physics I	APSS1L01	Tomorrow's Leaders
LCR I	English Language Subject	CAR I ^	
MM1031	Introduction to Innovation and Entrepreneurship (1 credit) (GUR-IE)		
	Healthy Lifestyle (n	on-credit bea	ring) ^
	IC2105 Engineering Communication and Fu IC2133 Aircraft Manufacturing and Mainten		
	Year 2 (30 + 3 t	raining cred	its)
Sei	mester 1 (15 + 3 training credits)		Semester 2 (15 credits)
AAE3103 / IC381	Appreciation of Aircraft Manufacturing Processes (3 training credits)	AAE2005	Electrics and Electronic for Aeronauti Engineering
AMA2111	Mathematics I	AMA2112	Mathematics II
ENG2001	Fundamentals of Materials Science and Engineering / Chemistry / Biology	CAR II^	
ENG2002	Computer Programming	ENG2003	Information Technology
LCR II	English Language Subject	LCR III	Chinese Language Subject
ME23001	Engineering Mechanics		
	Year 3 (32 + 3 t	raining cred	its)
Semester 1 (17 + 1.5 training credits)		Semester 2 (15 + 1.5 training credits)	
AAE3012	Air Traffic Management and Airport Operations	AAE3011	Aircraft Performance and Flight Management
AAE3009	Operations Research and Computational Analytics in Air Transport Operations	AAE3006	Safety, Reliability and Compliance
AAE3009	TT TO A CONTROL OF	AAE4301	Avionics Systems
AAE4903	Human Factors in Aviation		
	Human Factors in Aviation	AF3625	Engineering Economics

Aircraft Operation in Flight Control System

How is the Freshman Project related to the <u>AE</u> programme study?

- Mathematics & Physics
- Computer Science
- Aeronautical and Aviation

 The plan should be planned considering the physical limitation (dynamic) of the aircraft

	Year 1 (30 +		,
:	Semester 1 (15 + 2 training credits)	Se	mester 2 (15 + 2 training credits)
AAE2004	Introduction to Aviation System and Air Transport Regulation	AAE2003	Introduction to Aircraft Systems
AMA1110	Basic Mathematics I	AMA1120	Basic Mathematics II
AMA1600	Fundamentals of AI and Data Analytics (2 credits) (GUR-AIDA)	AP10006	Physics II
AP10005	Physics I	APSS1L01	Tomorrow's Leaders
LCR I	English Language Subject	CAR I ^	
MM1031	Introduction to Innovation and Entrepreneurship (1 credit) (GUR-IE)		
	Healthy Lifestyle (r	non-credit bea	aring) ^
	IC2105 Engineering Communication and Fu IC2133 Aircraft Manufacturing and Mainter		
	Year 2 (30 + 3 t	training cred	lits)
Se	mester 1 (15 + 3 training credits)	Semester 2 (15 credits)	
AAE3103 / IC381	Appreciation of Aircraft Manufacturing Processes (3 training credits)	AAE2005	Electrics and Electronic for Aeronautica Engineering
AMA2111	Mathematics I	AMA2112	Mathematics II
ENG2001	Fundamentals of Materials Science and Engineering / Chemistry / Biology	CAR II^	
ENG2002	Computer Programming	ENG2003	Information Technology
ENGZUUZ			
LCR II	English Language Subject	LCR III	Chinese Language Subject
	English Language Subject Engineering Mechanics	LCR III	Chinese Language Subject
LCR II	0 00 /		
LCR II ME23001	Engineering Mechanics	training cred	
LCR II ME23001	Engineering Mechanics Year 3 (32 + 3 t	training cred	lits)
LCR II ME23001 Ser	Engineering Mechanics Year 3 (32 + 3 to mester 1 (17 + 1.5 training credits)	raining cred Ser AAE3001	lits) nester 2 (15 + 1.5 training credits)
LCR II ME23001 Ser AAE3002	Engineering Mechanics Year 3 (32 + 3 to mester 1 (17 + 1.5 training credits) Aircraft Structures and Materials	Ser AAE3001 AAE3003	nester 2 (15 + 1.5 training credits) Fundamentals of Aerodynamics
LCR II ME23001 Ser AAE3002 AAE3004	Engineering Mechanics Year 3 (32 + 3 to mester 1 (17 + 1.5 training credits) Aircraft Structures and Materials Dynamical Systems and Control	Ser AAE3001 AAE3003 AAE4006	nester 2 (15 + 1.5 training credits) Fundamentals of Aerodynamics Aircraft Propulsion Systems
LCR II ME23001 Ser AAE3002 AAE3004 AAE3008	Engineering Mechanics Year 3 (32 + 3 to mester 1 (17 + 1.5 training credits) Aircraft Structures and Materials Dynamical Systems and Control	Ser AAE3001 AAE3003 AAE4006	nester 2 (15 + 1.5 training credits) Fundamentals of Aerodynamics Aircraft Propulsion Systems Flight Mechanics and Control Systems Avionics Systems

What you are expected to learn?

Academic level of algorithm designs

- ➤ Design of a path planning algorithm and aircraft model cost function
 - 2D path planning for simplicity

Make use of the **open-resource** to work on coding-project **remotely**.

- > Programming and coding
 - Python
- ➤Online coding collaboration
 - GitHub

☐ AtsushiSakai / PythonRobotics

Assessments

- > (40%) Demonstration and Presentation
- > (40%) Report & reflective essay one report per group, with individual reflective essay
- > (20%) Performance/participation in in-class activities (Confidential peer evaluation)

In this project, students will be acted as

- Technical Lead/Members (MUST be the one who is interested at coding)
 - Develop the math behind the compulsory tasks.
 - Write the codes (Compulsory Tasks 1, 2 and 3)
 - Write the codes (Additional Tasks)
- Project Lead/Members (manage the project report and video presentation [slide])
 - Study the "numbers" related to aviation context.
 - Prepare report using GitHub Readme format.
 - Prepare PowerPoint slide and record the presentation video.

Deadline to submit the work

- Codes uploads to GitHub project created yourself
- ➤ Project report written in GitHub readme format.
- > Peer review assessment
- ➤ YouTube video (20 minutes).
 - Everyone has to present about 3 minutes.
 - Must have a slide
- ➤ DEADLINE 23:50pm on 27 Nov (Sun).