## Homework 2 - Espressioni regolari, Equivalenze con automi, Conversioni

## Gabriel Rovesti

- 1. Fornite espressioni regolari per i seguenti linguaggi:
  - $L_1 = \{ w \mid w \text{ ha un numero pari di "a" e una o due "b"} \}$ - (aa)\*((b|bb))
  - $L_1 = \{w \mid w \text{ stringhe binarie il cui quarto simbolo è uno zero.}\}$ - (0+1)(0+1)(0+1)0(0+1)
  - $L_1 = \{ w \mid w \text{ ha un numero pari di "a" e un numero dispari di "b"} \}$ 
    - -(b+a(aa+bb)\*(ab+ba))((ab+ba)(aa+bb)\*(ab+ba)+(aa+bb))\*
  - $L_1 = \{ w \mid w \text{ inizia con } 0, \text{ ha una lunghezza dispari oppure inizia con } 1 \text{ e ha lunghezza pari} \}$ 
    - (0(00)\*1|(1(11)\*0)\*)+
  - $L_1 = \{ w \mid w \text{ accetta tutte le stringhe su } \Sigma = a, b \text{ che contengono}$ esattamente 2 oppure 3 lettere 'b'}
    - $-a^*ba^*ba^* + a^*ba^*ba^*ba^*$
  - $L_1 = \{ w \mid w \text{ accetta tutte le stringhe con numero di 0 multiplo di 5} \}$ 
    - -(1+(01\*01\*01\*01\*0))\*

- 2. Convertite le seguenti espressioni regolari in automi a stati finiti:
  - $a(a^* + b^*) + c$



• (ab + a)\*



• 0\* + 1\* + (01)\*



3. Convertite i seguenti automi DFA in un'espressione regolare usando l'algoritmo di eliminazione degli stati:



Primo automa



Eliminiamo q6



Eliminiamo poi q4



Eliminiamo quindi q5 e la regex finale è: (a,b)(a,bb,(a,b)ab))\*(b(ab))





Secondo automa



Primo passaggio



Secondo passaggio



Terzo passaggio



Quarto passaggio

