Ruiqi Chen

E-mail: crq@pku.edu.cn Website: rq-chen.github.io Phone: (+86) 13432001762 Address: 5 Yiheyuan Road, Peking University, Beijing, China, 100871

EDUCATION

Bachelor of Science, School of EECS, Peking University

2017.9 - Present

- · Major: Intelligence Science and Technology (degree expected in 2021.7)
- · Overall GPA: 3.59/4.0 Psychology & Neuroscience GPA: 3.78/4.0
- · English skills: GRE Verbal 168 (98%), Quantitative 170 (96%), AW 4 (57%); TOEFL 112 (Speaking 23)

RESEARCH EXPERIENCE

Summer Intern (Remote), Institute of Neurology, University College London

2020.7 - Present

- · Advisor: Prof. Sven Bestmann
- · Project (Independent): Simulation & Detection of Cortical Traveling Waves (Link)
 - **Experiment 2:** Simulated mesoscopic cortical traveling waves of different speeds, in different frequency bands under different levels of Signal-to-Noise-Ratio (SNR), with more than 300,000 trials in total
 - Quantified the precision of linear-regression-based estimation of wave orientation and speed
 - Illustrated that the estimation of orientation improved as SNR and spatial frequency increased, but there
 might be an optimal spatial frequency interval for the estimation of speed
 - Found that performing a single regression at each time point would be generally better than over the whole trial, and estimating by the median of speed distribution would be more accurate than the mean
 - **Experiment 1:** Simulated macroscopic spherical traveling wave with rapidly changing sources, and evaluated the performance of different traveling wave detection algorithms on the dataset (<u>Link</u>)
 - Revealed that neither the clustering method in (Alexander et. al., 2016) nor the PCA method in (Alexander et. al., 2019) could reliably classify the spatial structure of the traveling wave
 - Demonstrated that directly clustering the data samples at each time point provided satisfactory results and common phase offset removal might increase the sensitivity of the clustering algorithm

Summer Intern, Department of Biomedical Engineering, Tsinghua University 2019.7 – 2020.2

- · Advisor: Prof. Bo Hong (PI)
- · Project (Leader): EEG Functional Connectivity Microstates (Link)
 - **Experiment 2:** Analyzed a large resting-state EEG <u>dataset</u> with functional connectivity microstates
 - Discovered the spatially hierarchical, temporally self-similar structure of functional connectivity microstates using different number of clusters and different sliding window length
 - Illustrated the consistency between functional-connectivity-based and voltage-distribution-based EEG microstates by their similarity in spatial topology and temporal dynamics
 - Established the link between the proportion/stability/connectivity profile of a specific microstate and activity of the Default Mode Network (DMN) in different mental states
 - Explored the interaction between alpha oscillation and microstate dynamics
 - **Experiment 1:** Recorded EEG signals from subjects resting/listening to a story/listening to music, with eyes open or closed, and compared the microstate dynamics across different conditions (Link)
 - Identified the microstates by voltage distributions or functional connectivity patterns
 - Analyzed results with mathematic tools including dynamic Generalized Linear Model (dynamic GLM),
 Multidimensional Scaling (MDS), and unsupervised machine learning (Codes)

Undergraduate Researcher, IDG/McGovern Institute, Peking University

2019.3 - Present

- · Advisor: Prof. Huan Luo (PI)
- · Project (Independent): Sequential Working Memory (Link)

2019.4 - Present

- Designed an EEG experiment to explore the neural mechanism underlying the manipulation of contents in auditory working memory and collected data from 16 subjects (<u>Codes</u>)
- Pre-processed the data with EEGLAB and performed ERP & time-frequency analysis with Fieldtrip (Codes); results being consistent with (Albouy et al., 2017)
- Decoded the memory content with an LSTM network and found that the neural representation is relatively consistent during the delay period
- Wrote an intensive review about the temporal organization in working memory, and another for the computational models and functions of neural oscillation in attention and working memory (<u>Link</u>)
- · Working Memory Decoding Analysis (Link)

2019.3

- Implemented an Inverted Encoding Model (IEM) based on an EEG visual working memory experiment
- Reconstructed the tuning curve for the orientation of two Gabor stimuli

PROGRAMMING PROJECTS

Word Embedding Strategies & RNN Decoders for Sentiment Classification (Link)

2020.4

- · Compared the performance of three word embedding strategies (Skip-gram, CBOW & Task-oriented) and three decoding networks (LSTM, GRU, simple RNN) on the IMDb dataset after controlling the number of parameters
- · Found that LSTM generalized best while simple RNN was highly unstable; Task-oriented encoding is optimal

Training a Deep Convolutional Neural Network on CIFAR-10 (Link)

2019.12

· Implemented a ResNet-20 model with Keras and TensorFlow and practiced parameter tuning

Visualization of NSFC Funding 2018 (Link)

2019.10

- · Revealed the disparity in funding received among different academic institutions and regions in China vividly
- · Acquired visualization skill to facilitate high-dimensional big data analysis

ACTIVITIES

Summer Program for Neural and Cognitive Science, Tsinghua University

2019.8

· Learnt about the principles, methodology and frontiers of neuroscience (Link)

SELECTED COURSES

- **Cognitive Neuroscience:** Neuropsychology (96/100), The Brain and Cognitive Science (92), Experimental Psychology (90), Physiological Psychology (90), Psychological Statistics II (90)
- **Computational Modeling:** Computational Modeling for Psychology and Neuroscience (92), Computational Neuroscience (89), Computational Perception and Scene Analysis (86)
- **Mathematics:** Probability Theory and Statistics (90), Introduction to Stochastic Processes (84), Signals and Systems (84), Introduction to Pattern Recognition (83), Set Theory and Graph Theory (81.5)

SKILLS

- **Programming**: (Proficient) MATLAB (EEGLAB, Fieldtrip, Psychtoolbox), Python (TensorFlow, OpenCV); (Intermediate) C/C++, HTML, CSS, JavaScript (d3), SVG; (Basic) R, SPSS
- **Signal Analysis**: EEG recording & preprocessing, ERP & time frequency analysis, MVPA, dynamic GLM, clustering & classification, connectivity, microstates, traveling wave
- · Modeling: Bayesian modeling & MCMC, Inverted Encoding Model, Convolutional & Recurrent Neural Network