Analisi e Predizione della

Employee Retention

Modelli di machine learning per il turnover aziendale

Introduzione

- O Problema: Il turnover dei dipendenti è un problema costoso per le aziende.
- Obiettivo: costruire un modello predittivo in grado di determinare se un dipendente dovrebbe rimanere nell'organizzazione o lasciarla.

Colonna	Descrizione
Education	Qualifiche educative, inclusi titolo di studio,
	istituzione e campo di studio
JoiningYear	Anno di assunzione, indica la durata del servizio
City	Città di base o lavoro del dipendente
PaymentTier	Classificazione in diverse fasce salariali
Age	Età del dipendente, fornisce informazioni demografiche
Gender	Identità di genere, utile per analisi di diversità
EverBenched	Indica se il dipendente è stato temporaneamente senza lavoro assegnato
${\bf Experience In Current Domain}$	Anni di esperienza nel dominio attuale
LeaveOrNot	Variabile target: 0 (rimane), 1 (lascia)

Caratteristiche del Dataset

- Righe: **5653**
- O Colonne: 9
- O Variabili principali:
 - O Età (Numerica)
 - O Genere (Categoriale)
 - Istruzione (Categoriale)
 - Anni di Esperienza (Numerica)
 - O Fascia Salariale (Numerica)
 - O Anno di assunzione (Numerica)
 - Cittá (Categoriale)
 - O Temporaneamente inutilizzato (Numerica)

Distribuzione della variabile target

Classe 0 (Rimane): 65%

Classe 1 (Lascia): 35%

Dataset sbilanciato: necessità di bilanciamento delle classi.

LeaveOrNot

target column

0

Preparazione dei dati

Trattamento dei valori mancanti:

Riempimento con Media Riempimento con Moda Eliminazione righe critiche

Encoding delle variabili categoriali:

One-Hot Encoding Label Encoding

Distribuzione dei valori mancanti:

- O Education: 108 valori mancanti.
- O JoiningYear: 105 valori mancanti.
- O City: 115 valori mancanti.
- PaymentTier: 104 valori mancanti.
- O Age: 95 valori mancanti.
- O Gender: 114 valori mancanti.
- EverBenched: 99 valori mancanti.
- ExperienceInCurrentDom ain: 102 valori mancanti.
- LeaveOrNot: 118 valori mancanti.

Visualizzazione delle correlazioni:

PaymentTier

I dipendenti con un livello di pagamento inferiore (tier basso) sono maggiormente propensi ad abbandonare l'azienda

Eucation Masters

I dipendenti con un titolo di studio di livello Master mostrano una maggiore probabilità di abbandono rispetto ad altri livelli educativi.

Gender Female

Il genere femminile ha un leggero incremento nella probabilità di abbandono rispetto al genere maschile. Dopo aver eseguito l'encoding delle variabili categoriali, é stata effettuata l'analisi della correlazione tra tutte le variabili del dataset.

Individuazione potenziali bias

- Lo sbilanciamento tra i livelli educativi implica che le categorie Masters e PhD siano sottorappresentate rispetto a Bachelors. Questo potrebbe distorcere i risultati dei modelli predittivi, riducendone l'affidabilitá
- Il divario tra maschi e femmine nel dataset potrebbe portare a modelli predittivi con prestazioni diseguali per i due generi, enfatizzando caratteristiche prevalenti nei maschi e trascurando quelle delle femmine.

I modelli scelti

Logistic Regression:

Semplice, interpretabile, veloce

Random Forest:

Robusto, cattura relazioni non lineari

Come valutiamo i modelli

- Metriche principali:
 - Accuracy
 - O Precision
 - O Recall
 - O F1-Score
 - O ROC-AUC

 La curva ROC-AUC e le confusion matrix mostrano i risultati di entrambi i modelli prima e dopo il bilanciamento

Divisione del dataset

 É stata adottata una divisione 80%-20%, riservando l'80% dei dati all'addestramento e il 20% al testing

Confronto dei risultati

 Nota: Random Forest si conferma più performante su tutte le metriche principali.

Sintesi

Random Forest risulta più performante rispetto alla Logistic Regression su tutte le metriche chiave

> L'utilizzo del metodo SMOTE per generare dati sintetici ha migliorato il Recall della classe minoritaria e ridotto i falsi negativi, rendendo il modello più affidabile per identificare i dipendenti a rischio.