CS 511 Formal Methods for High-Assurance Software Engineering Homework Assignment 06 - Selected Solution

Jiawen Liu

Problem 1.

1.
$$\phi_{gdc}(x, y, v) \stackrel{\text{def}}{=} (v|x) \wedge (v|y) \wedge \forall w. ((w|x) \wedge (w|y)) \rightarrow (v \approx w \vee \phi_{<}(w, v))$$

2.
$$\phi_{gdc}(x, y, v) \stackrel{\text{def}}{=} \forall w. ((w|x) \land (w|y)) \leftrightarrow (w|v)$$

Problem 2. We know x < y is first order definable in $(\mathbb{N}, 0, +)$ by wff $\phi_{<}(x, y)$. We also know succ(x) = y is definable in $(\mathbb{N}, <)$ by wff $\phi_{succ}(x, y)$.

1.
$$\phi_{prime}(x) = \exists v. \exists u. (\phi_{<}(0, v) \land \phi_{<}(0, u) \land (v + u \approx x)) \qquad (x > 1)$$
$$\land \forall w. ((w|x) \rightarrow (\phi_{succ}(0, w) \lor x \approx w)) \qquad (x \text{ is prime})$$

2.

$$\phi_{coprime}(x, y) = \forall w. (\phi_{gcd}(x, y, w) \rightarrow (\phi_{succ}(0, w)))$$

Problem 3.

1. This is invalid.

Let domain be $\{a, b\}$, $S = \{(a, b), (a, a), (b, a)\}$, we then have $\forall x. \forall y. (S(x, y) \rightarrow S(y, x))$ is true. However, there exists x = a s.t. S(x, x) is also true.

2.

1 $\forall x. P(x)$	assumption
$P(x_0)$	(e∀ <i>x</i> .)1
$3 (\forall x. \ P(x)) \to P(x_0)$	→i1-2
4 $\exists y. ((\forall x. P(x)) \rightarrow P(y))$	(i∃ <i>y</i> .)3

3.

	1	$\forall x. (P(x) \rightarrow \exists y. Q(y))$	assumption
x_0	2		fresh
	3	$P(x_0) \to \exists y. \ Q(y)$	∀ <i>x</i> . e 1
	4	$P(x_0)$	assumption
	5	$\exists y. \ Q(y)$	→e 3,4
$ y_0 $	6		fresh
	7	$Q(y_0)$	assumption
	8	$Q(y_0)$	∃ <i>y</i> . e 5,6−7
	9	$P(x_0) \to Q(y_0)$	→i 4 – 8
	10	$\exists y. \ (P(x_0) \to Q(y))$	∃ <i>y</i> . i 9
	11	$\forall x. \exists y. \ (P(x_0) \to Q(y))$	$\forall x. i 2-10$
	12	$\forall x. (P(x) \rightarrow \exists y. Q(y)) \rightarrow \forall x. \exists y. (P(x_0) \rightarrow Q(y))$	→i 1-11

Problem 4.

- Let $\phi(x, y, z)$ defined inductively as follows: $\phi(x, 0, 1)$ $\phi(x, y, z) \stackrel{\text{def}}{=} j. \exists w. (j + 1) = y \land (w \times x = z) \land \phi(x, j, w).$
- By the hint from piazza, assume the existence of a binary function D on the natural numbers which can encode finite sequences of natural numbers, in the following sense:
 For every finite sequence (a₀, a₁, ···, a_n) of length n, there is an s such that D(s, i) = a_i for every i ≤ n. We first have φ'(s, x, y) defined as:

$$\phi'(s, x, y) \stackrel{\text{def}}{=} (D(s, 0) \approx 1 \land \forall i. ((i < y) \rightarrow D(s, i + 1) \approx D(s, i) \times x)).$$

Then, we have the $m = x \uparrow y$ defined by $\phi(m, x, y)$ as:

$$\phi_{\uparrow}(m,x,y) \stackrel{\text{def}}{=} \phi'(m,x,y) \wedge \forall s. \left(\phi'(s,x,y) \rightarrow (s \approx m) \vee (\phi_{<}(m,s)) \right)$$

- Problem 5. https://github.com/jiawenliu/CS511/blob/master/homework/hw6/hw6-p5.py
- Problem 6. https://github.com/jiawenliu/CS511/blob/master/homework/hw6/hw6-p6.py