LITERATURE SURVEY: Predicting the energy output of wind turbine based on weather condition

S.NO	PAPER	AUTHORS	ADVANTAGES	REFERENCELINK
	TITLE			
1.	Predicting	Ekaterina	wind energy	https://www.researchga
	the Energy	(Katya)	output can be	te.net/publication/2298
	Output of	Vladislavlev	predicted from	12149_Predicting_the_
	Wind Farms	a,	publicly available	Energy_Output_of_Wi
	Based on	Tobias	weather data with	nd_Farms_Based_on_
	Weather	fedriech,	accuracy at best	Weather_Data_Importa
	Data:	Frank	80% R2on the	nt_Variables_and_their
	Important	Neumann,	training range	_Correlation
	Variables	Markus	and at best 85,5%	
	and their	Wagner	on the	
	Correlation		unseen test data	
2.	Current	A. M.	Firstly, numerical	https://www.sciencedir
	methods and	Foley, P. G.	wind prediction	ect.com/science/article/
	advances in	Leahy	methods from	abs/pii/S096014811100
	forecasting	,A.Marvugli	global to local	2850
	of wind	a, and E.	scales, ensemble	
	power	J.	forecasting,	
	generation.	McKeogh.	upscaling and	
			downscaling	
			processes are	
			discussed. Then	
			the	
			techniques used	
			for benchmarking	
			and	
			uncertainty	

			analysis of	
			analysis of	
			forecasts are	
			overviewed,	
			and the	
			performance of	
			various	
			approaches over	
			different forecast	
			time horizons is	
			examined.	
			Finally, current	
			research	
			activities,	
			challenges	
			and potential	
			future	
			developments are	
			appraised.This	
			paper presents an	
			in-depth review	
			of the	
			current methods	
			and advances in	
			wind power	
			forecasting and	
			prediction	
3.	Short-term	A. Kusiak,	This paper	https://ieeexplore.ieee.o
	prediction	Zheng, and	examines time	rg/document/4749292
	of wind	Z.	series models for	8
	farm power:	Song.	predicting the	
	A data		power of a wind	
	mining		farm at different	
	approach		time scales, i.e.,	
	approach		10-min and hour-	
			long	
			iong	

intervals. The time series models are built with data mining algorithms. Five different data mining algorithms have been tested on various wind farm datasets. Two of the five algorithms performed particularly well. The support vector machine regression algorithm provides accurate predictions of wind power and wind speed at 10-min intervals up to 1 h into the future, while the multilayer perceptron algorithm is accurate in predicting power

			over hour-long intervals up to 4 h ahead. Wind speed can be predicted fairly accurately based on its historical value	
4.	Analysis of wind energy time series with kernel methods and neural networks	O. Kramer and F. Gieseke.	This article shows how kernel methods and neural networks can serve as modeling, forecasting and monitoring techniques, and, how they contribute to a successful integration of wind into smart energy grids. First, we will employ kernel density estimation for modeling of wind data. Kernel density estimation allows a statistically sound modeling	https://ieeexplore.ieee.org/document/6022597

			of time series	
			data.	
			The orresponding	
			experiments are	
			based on	
			real data of wind	
			energy time	
			series from the	
			NREL western	
			wind resource	
			dataset. Second,	
			we will show	
			how prediction of	
			wind energy can	
			be accomplished	
			with the help of	
			support vector	
			regression. Last,	
			we will use self-	
			organizing	
			feature maps to	
			map high	
			dimensional wind	
			time series to	
			colored	
			Sequences that	
			can be used for	
5	The	Androw	error detection.	https://xxxxxx.ocion.ocdin
5.	The	Andrew Kusiak Wan	The rapid	https://www.sciencedir ect.com/science/article/
	prediction and	Kusiak,Wen yan Li	expansion of wind farms has	abs/pii/S096014811000
	diagnosis of	yan Li	drawn attention	2338?via%3Dihub
	wind turbine		to operations and	2330: v1a703DIIIUU
	faults		maintenance	
	Tautis		issues. Condition	
			issues. Condition	

			·. •	\neg
			monitoring	
			solutions have	
			been developed	
			to detect and	
			diagnose	
			abnormalities of	
			various wind	
			turbine	
			subsystems with	
			the goal of	
			reducing	
			operations and	
			maintenance	
			costs. This paper	
			explores fault	
			data provided by	
			the supervisory	
			control and data	
			acquisition	
			system and offers	
			fault prediction at	
			three levels: (1)	
			fault and no-fault	
			prediction; (2)	
			fault category	
			(severity); and	
			(3) the specific	
			fault prediction.	
6.	Predicting	S.Preethi,H.	In this paper, an	
	the Wind	Prithika,M.	end-to-end web	
	Turbine	Pramila,S.B	application has	
	Power	irundha	been developed	
	Generation		to predict and	
	based on		forecast the wind	
	Weather		turbine's power	
	, , calloi		toronie a po mer	

	Conditions		generation based	
			on the weather	
			conditions. The	
			prediction model	
			has been	
			developed using	
			Bidirectional	
			Long Short-Term	
			Memory which is	
			a unique kind of	
			RNN (Recurrent	
			Neural Network).	
			It performs	
			admirably in	
			terms of	
			capturing long-	
			term	
			dependencies	
			along with the	
			time steps and is	
			hence ideal for	
			wind power	
			forecasting.	
7.	Machine	Justin	This paper	https://www.sciencedir
	learning	Heinnerman	propose the use	ect.com/science/article/
	ensembles	,Oliver	of heterogeneous	abs/pii/S096014811530
	for wind	Krammer	machine learning	4894?via%3Dihub
	power		ensembles for	
	prediction		wind power	
			prediction.	