∟ınea'

Beyond Ligero and Brakedown:

Building a Fast Prover Based on List-Polynomial Commitments

Azam Soleimanian Bogdan Ursu

Linea^{*}

About Us

Staff Cryptography Researcher

Consensys, for 3 years
PhD in Cryptography

Cryptography Researcher

Linea, Prover Team for 1.5 years

PhD in Cryptography, ETH Zurich

Outline

How to make proofs?

∟ınea**ʻ**

Outline

Outline

Layer 2: zero-knowledge rollups arithmetise the state transition, and compute a proof.

Linea^{*}

Outline

Layer 2: zero-knowledge rollups arithmetise the state transition, and compute a proof.

Not all nodes need to perform the transitions themselves. Instead, they can just verify proofs (a much cheaper operation).

Outline

Layer 2: zero-knowledge rollups arithmetise the state transition, and compute a proof.

Not all nodes need to perform the transitions themselves. Instead, they can just verify proofs (a much cheaper operation).

How to construct such a proof system?

Outline

- Part 1: Our polynomial commitment scheme (Vortex)
- Part 2: From EVM execution to proof generation using Vortex and other components.

Polynomial Commitments

Polynomial Commitments

Polynomial Commitments

Linea^{*}

Security of Polynomial Commitments

The prover cannot convince the verifier in the case when $P(x) \neq y$.

Linea^{*}

Batched Polynomial Commitments

Reed-Solomon Codes

Finite field \mathbb{F} and a subset of elements $a_1...a \subseteq \mathbb{F}$.

The degree of P must be \leq n for the encoding to contain enough information about P.

Linea^{*}

The Ligero/Breakdown Protocol

Setup

pp = h, a hash function

Open

Prover

Verifier

The Ligero/Breakdown Protocol

Setup

pp = h, a hash function

Open

Verifier

$$\mathbf{u} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})$$

u

Linea^{*}

The Ligero/Breakdown Protocol

Setup

pp = h, a hash function

Open

Prover $\mathbf{u} = \mathrm{Enc}(P_0) + \beta \cdot \mathrm{Enc}(P_1) + \ldots + \underline{\beta^{n-1} \cdot \mathrm{Enc}(P_{n-1})} \qquad \mathbf{u}$ $\mathbf{i} \qquad \mathrm{Pick an index } \mathbf{i} \in \{\mathrm{O...n}\}$

The Ligero/Breakdown Protocol

This only ensures that all the rows are codewords.

The Ligero/Breakdown Protocol

Open

Prover

Verifier

$$\mathbf{u} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \underbrace{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})} \qquad \mathbf{u}$$

i col

Pick an index $i \in \{0...n\}$

Check
$$h(\mathbf{col}_i) \stackrel{?}{=} h_i$$
 $\sum_i \beta^i \cdot \mathbf{col}_i \stackrel{?}{=} \mathbf{u}_i$

Observation: interpolate \mathbf{u} to obtain $P_{\mathbf{u}}$ check $P_{\mathbf{u}}(x) = \sum_i \beta^i \cdot y_i$

The Vortex Protocol

Open

Prover $\mathbf{u} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf{u}}$ $\mathbf{v} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \ldots + \frac{\beta^{n-1} \cdot \operatorname{Enc}(P_1)}{\mathbf$

Observation: interpolate
$$\mathbf{u}$$
 to obtain $P_{\mathbf{u}}$ check $P_{\mathbf{u}}(x) = \sum \beta^i \cdot y_i$

This additional check ensures that $P_1(x) = y_1...P_n(x) = y_n$.

The Vortex Protocol

Open

Prover Verifier $\mathbf{u} = \operatorname{Enc}(P_0) + \beta \cdot \operatorname{Enc}(P_1) + \dots + \beta^{n-1} \cdot \operatorname{Enc}(P_{n-1})$ u

Pick an index $i \in \{0...n\}$

col

Check
$$h(\mathbf{col}_i) \stackrel{?}{=} h_i$$
 $\sum \beta^i \cdot \mathbf{col}_i \stackrel{?}{=} \mathbf{u}_i$

Observation: interpolate \mathbf{u} to obtain $P_{\mathbf{u}}$ $\operatorname{check} P_{\mathbf{u}}(x) = \sum \beta^i \cdot y_i$

This additional check ensures that $P_1(x) = y_1 ... P_n(x) = y_n$.

However, the code parameters are not optimal

From Unique Decoding to List Decoding

From Unique Decoding to List Decoding

Unique decoding regime

From Unique Decoding to List Decoding

From Unique Decoding to List Decoding

In the list decoding regime, the security guarantee is that there exist polynomials of small degree which evaluate correctly:

$$P_1(x) = y_1 ... P_n(x) = y_n.$$

And the commitments to the polynomials have only a small number of coordinates different from the target commitment: $h_1...h_n$.

Proof of security in eprint.iacr.org/2024/185

Line<u>a</u>ʻ

Part 2: from EVM Execution to Proof Generation

The journey of Linea

- Arithmetization: mathematical modeling of EVM via columns
- Constraints among columns
- H(x)=y
- ColumnX, ColumnX₁, ColumnX₂, ..., ColumnX_n, ColumnY

Type of constraints

- LookUps: Column A is Included in Column B
- Local: ColumnA[0] = ColumnB[0]
- Global: columnA[i] = columnA[i-1] + columnA[i-2]

columnX, columnX₁, ..., columnX₁, columnY

Polynomial Commitment

- Column = Polynomial
- Polynomial :

$$\circ$$
 $F(P_1(X),\ldots,P_n(X)) \stackrel{?}{=} (X^n-1) \cdot Q(X)$ for every X

- Commitment: c_i instead of $P_i(X)$, can not be changed later.
- Schwartz-Zippel lemma: $F(P_1(\alpha), \dots, P_n(\alpha)) \stackrel{?}{=} (\alpha^n 1)Q(\alpha)$

∟ınea•

SNARK from PIOP

Theorem: Polynomial Commitment resembles to Oracle, thus it is a good replacement.

List Property of Vortex

Aggregatable LPC

Batching at the Same-Point

Evaluation over the same point

Applications
$$\longrightarrow$$
 $P_1(x_1), P_2(x_2), \dots, P_n(x_n)$

UniEval Compiler

Multi-Point to Single-Point reduction

Putting All Together

Finally, Here is the Proof

Example of Parameters

- Security bits = 128 bits
- Field Size =256 bits
- Codeword size = 2^20
- Blow-up factor of the code = 2^8
- Number of Polynomials =2^20
- Degree of polynomials = 2^ 12
- Number of chosen columns = 44 (versus 190 for unique decoding)
- List size = 151
- Soundness loss in PIOP = 8 bits of security? Maybe No!
- 15M constraints for the verifier of Vortex in Plonk with 100 bits of security.

$$E_{\text{soundness}} \leq E_{\text{collision}} + (1 - \theta)^t + E$$

$$\theta = 1 - \sqrt{\rho} - \frac{\sqrt{\rho}}{2m'}$$

$$E \leq (m - 1) \frac{(m' + 1/2)^7}{3\rho^{3/2}} \frac{|D|^2}{|E|}$$

$$Pr(E^{AoK}) \le |L| \cdot Pr(E^{PIOP}) + Pr(E^{aLPC}) + Pr(z \in D)$$

 $k \cdot d/\mathbb{F}$

Further Reading

For more details, see eprint.iacr.org/2024/185

