```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df=pd.read_csv("/task3.csv")
```

df.head()

*		age	job	marital	education	default	balance	housing	loan	contact	day	mor
	0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	n
	1	56	admin.	married	secondary	no	45	no	no	unknown	5	n
	2	41	technician	married	secondary	no	1270	yes	no	unknown	5	n
	3	55	services	married	secondary	no	2476	yes	no	unknown	5	n
	4	54	admin.	married	tertiary	no	184	no	no	unknown	5	n

Next steps: View recommended plots

df.tail()

→		age	job	marital	education	default	balance	housing	loan	contact	day
	11157	33	blue- collar	single	primary	no	1	yes	no	cellular	20
	11158	39	services	married	secondary	no	733	no	no	unknown	16
	11159	32	technician	single	secondary	no	29	no	no	cellular	19
	11160	43	technician	married	secondary	no	0	no	yes	cellular	8
	11161	34	technician	married	secondary	no	0	no	no	cellular	9

df.shape

→ (11162, 17)

df.columns

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 11162 entries, 0 to 11161
    Data columns (total 17 columns):
     # Column
                Non-Null Count Dtype
    --- -----
                   -----
     0
                   11162 non-null int64
        age
                   11162 non-null object
     1
        iob
        marital 11162 non-null object
        education 11162 non-null object default 11162 non-null object
        balance
                   11162 non-null int64
                   11162 non-null object
     6
        housing
         loan
                   11162 non-null object
                   11162 non-null object
        contact
     9
         day
                   11162 non-null int64
     10
        month
                   11162 non-null object
     11 duration
                   11162 non-null int64
     12 campaign
                  11162 non-null int64
```

```
13 pdays 11162 non-null int64
14 previous 11162 non-null int64
15 poutcome 11162 non-null object
16 deposit 11162 non-null object
dtypes: int64(7), object(10)
memory usage: 1.4+ MB
```

df.describe()

```
\rightarrow
                                balance
                                                            duration
                                                                                            pdays
                                                   day
                                                                           campaign
                      age
                                                        11162.000000 11162.000000 11162.000000
     count 11162.000000
                            11162.000000 11162.000000
      mean
                41.231948
                            1528.538524
                                             15.658036
                                                          371.993818
                                                                           2.508421
                                                                                        51.330407
       std
                11.913369
                            3225.413326
                                              8.420740
                                                          347.128386
                                                                           2.722077
                                                                                       108.758282
       min
                18.000000
                            -6847.000000
                                              1.000000
                                                             2.000000
                                                                           1.000000
                                                                                         -1.000000
      25%
                32.000000
                              122.000000
                                              8.000000
                                                           138.000000
                                                                           1.000000
                                                                                         -1.000000
      50%
                39.000000
                              550.000000
                                             15.000000
                                                          255.000000
                                                                           2.000000
                                                                                         -1.000000
                                                                           3.000000
      75%
                49.000000
                            1708.000000
                                             22.000000
                                                          496.000000
                                                                                        20.750000
                05 000000 - $1204 000000
                                             21 000000
                                                         2001 000000
                                                                          63 000000
```

df.isnull().sum()

```
→ age
    job
                  0
    marital
                  0
    education
                  0
    default
                  0
    balance
                  0
    housing
                  0
    loan
    contact
                  0
    dav
                  0
    month
                  0
    duration
                  0
    campaign
                  0
    pdays
                  0
    previous
    poutcome
                  0
    deposit
    dtype: int64
```

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import accuracy_score
X = df.drop('deposit', axis=1)
y = df['deposit']
X = pd.get_dummies(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y pred = clf.predict(X test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
Accuracy: 0.780564263322884
plt.figure(figsize=(10, 8))
plot tree(clf, feature names=X.columns, class names=['no', 'yes'], filled=True)
plt.show()
```



```
clf = DecisionTreeClassifier(ccp_alpha=0.01)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

Accuracy: 0.7604120017913122

plt.figure(figsize=(10, 8))
plot_tree(clf, feature_names=X.columns, class_names=['no', 'yes'], filled=True)
plt.show()
```


Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.