

DART Tutorial Section 9: More on Dealing with Error: Inflation

©UCAR

Some Error Sources in Ensemble Filters

Dealing with Ensemble Filter Errors

Fix 1, 2, 3 independently, HARD but ongoing.

Often, ensemble filters...

1-4: Variance inflation, Increase prior uncertainty to give obs more impact.

5. 'Localization': only let obs. impact a set of 'nearby' state variables.

Often smoothly decrease impact to 0 as function of distance.

1. History of observations and physical system => 'true' distribution.

- 1. History of observations and physical system => 'true' distribution.
- 2. Sampling error, some model errors lead to insufficient prior variance.
- 3. Can lead to 'filter divergence': prior is too confident, obs. Ignored.

- 1. History of observations and physical system => 'true' distribution.
- 2. Sampling error, some model errors lead to insufficient prior variance.
- 3. Can lead to 'filter divergence': prior is too confident, obs. Ignored.

Naïve solution is variance inflation: just increase spread of prior. For ensemble member i, $inflate(x_i) = \sqrt{\lambda}(x_i - \overline{x}) + \overline{x}$

1. History of observations and physical system => 'true' distribution.

- 1. History of observations and physical system => 'true' distribution.
- 2. Most model errors also lead to erroneous shift in entire distribution.
- 3. Again, prior can be viewed as being TOO CERTAIN.

- 1. History of observations and physical system => 'true' distribution.
- 2. Most model errors also lead to erroneous shift in entire distribution.
- 3. Again, prior can be viewed as being TOO CERTAIN.

Inflating can ameliorate this.

Obviously, if we knew E(error), we'd correct for it directly.

Physical Space Variance Inflation

Inflate all state variables by same amount before assimilation.

Capabilities:

- Can be effective for a variety of models.
- 2. Can maintain linear balances.
- Stays on local flat manifolds.
- 4. Simple and cheap.

Liabilities:

- 1. State variables not constrained by observations can 'blow up'. For instance unobserved regions near the top of AGCMs.
- 2. Magnitude of λ normally selected by trial and error.

Physical Space Variance Inflation in Lorenz 63 30. 20

Physical Space Variance Inflation in Lorenz 63

Physical Space Variance Inflation in Lorenz 63

Physical Space Variance Inflation in Lorenz 63

Basic control of inflation in DART is in &filter nml

```
Before
                                                    After
                                               Assimilation
                     Assimilation
inf flavor
                          = 0.
                                                     0,
                                                               Flavor:
                                                                            => NONE
inf initial from restart
                          = .false.,
                                                     .false.,
                                                                             => deprecated
inf sd initial from restart = .false.,
                                                     .false.,
                                                                         2,3 => physical space
inf deterministic
                          = .true.,
                                                     .true.,
inf_initial <
                          = 1.0,
                                                     1.0,
inf sd initial
                                                     0.0,
                          = U.\hat{U}
inf damping
                          = 1.0,
                                                                            Inflation
                                                     1.Û,
inf lower bound
                          = 1.0,
                                                     1.0,
                                                                            Value
inf upper bound
                          = 1000000.0,
                                                     1000000.0,
inf sd lower bound
                          = 0.0,
                                                     0.0,
                          prior
                                                  posterior
                        inflation
                                                  inflation
                         column
                                                   column
```

Initially, we'll change inf_flavor and inf_initial in first column.

Physical space variance inflation in Lorenz 96

models/lorenz_96/work/

Set *inf_flavor* to 3 to use state space inflation. In the first column, set *inf_initial* to values like 1.05, 1.08, 1.10

```
&assim tools nml
  filter kind
  cutoff
                            = 1000000.0
  spread restoration
                            = .false.
  sampling error correction = .false.
&filter nml
  ens size = 20
  perturb from single instance = .false.
  inf flavor
                              = 3,
  inf initial from restart = .false.,
                                            .false.
  inf sd initial from restart = .false.,
                                            .false.
  inf initial
                              = 1.0,
                                             1.0
```

Variance inflation in observation space

1. For observed variable, have estimate of prior-observed inconsistency.

Variance inflation in observation space

- 1. For observed variable, have estimate of prior-observed inconsistency.
- 2. Expected (prior_mean observation) = $\sqrt{\sigma_{prior}^2 + \sigma_{obs}^2}$ Assumes that prior and observation are supposed to be unbiased. Is it model error or random chance?

Variance inflation in observation space

- 1. For observed variable, have estimate of prior-observed inconsistency.
- 2. Expected (prior_mean observation) = $\sqrt{\sigma_{prior}^2 + \sigma_{obs}^2}$
- 3. Inflating increases expected separation.

 Increases 'apparent' consistency between prior and observation.

Variance inflation in observation space: Lorenz 96

Variance inflation in observation space not currently supported.

Try some values and see what happens to Lorenz 96 assimilation. Set *inf_flavor=1*, observation space inflation in first column.

Try some values and see what happens to Lorenz 96 assimilation. Set *inf_initial* to values like 1.05, 1.08, 1.10 in first column.

Make sure that *cutoff=10000000* and *ens_size=20*. (These were settings that diverged without inflation)

DART Tutorial Index to Sections

```
!" #$%\'($) *+#, (+-+, )'+/-($-0\%+123&' 4+
5" 67' +89: 6+8$('; &, (2+6(''+
<" 89: 6+: =)>4'+?, )&(, %-)@+8, :=4')&->, )+
A" B, C+37, =\\(\epsilon\)+, O3' (D->, )3+, E+-+3\(\epsilon\)-\(\&\epsilon\)+D-(\(\sigma\)-0\(\epsilon\)+\(\sigma\)+D-(\(\sigma\)-0\(\epsilon\) G+
    H = \%D - (\$-\$' +-33\$4\$\% > ,)"+
I" ?, 4F('7')3$D'+#$%\'($)*+67', (2J+K, )L\\@')>&2+. O3'(D->, )3+-)@+&7'+\,$)&+O7-3'+1F-;'+
P'' = .87' (+QF@-8' 3+E, (+9) + .03' (D'@+/-($-0\)" +
R" 1, 4'+9@@$>, )-%$, CL. (@'(+H, @'%++
T'' 8' - \%) * + C \% 7 + 1 - 4 F \%) * + U((, (+
V'' H_{,}('+,)+8'-\%)*+C$\&7+U((,(WM)X->,)+
!Y": '*('33$,)+-)@+K,)%)'-(+UZ';&3+
!!" ?('->)*+89: 6+U[';=&-0%3+
!5" 9@-F>D'+M)X->, )+
! < B' (-(;7;-\%)(,=F+\#\%(3+-)@+S,;-\%]->,)+
!A" ^=-\%&2+?,)&(,%+
!I" 89: 6+U[F'($4')&3J+?,)&(, %-)@+8'3$*)+
!P"8$-*), 3>;+.=&F=&+
!R"?('->)*+.03'(D->,)+1'=');'3+
! T" S, 3&+\$) +07-3' +1F-; 'J+67' +?7-\%')*' +, E+K, &+`), C\$)*+&7' +6(=&7+)
!V" 89: 6L?, 4F\%-)&+H, @'\%+-)@+H-a\$)*+H, @'\%+?, 4F\%-)&+
5Y'' H, @' \%0 - (-4' \&' (+U3>4->, )+
5!" . 03'(D->, )+62F'3+-)@+. <math>03'(D)*+123&'4+8'3*)+
23. Location module design (not available)
24. Fixed lag smoother (not available)#
51" 9+3$4F% +! 8+-@D' ;>, )+4, @' %+6(-; '(+8-\&-+933$4$%->, )++
```