

LoRa's physical What is layer LoRaBlink **LoRaWAN** an idea link layer

Expected around 75 billion IoT devices
By 2025

Need for LPWAN

low-power wide-area network

Two types of technologies, Non-cellular-based technologies
Sigfox and LoRaWAN®

Cellular-based technologies

LTE-M and NB-IoT

70%

According to the report of Exploding Topics in 2024, around 70% of all devices around the globe are IoT devices, reaching a total of 30 billion, with an increase of 14% in 2022 and it will not stop any time soon.

LoRa Alliance

- Open
- Non-profit association

LoRa

- Small packets
- Long ranges

LPWAN Modules

• MKR FOX 1200, BN 1500, WAN 1310

LoRa PHY

- Chirp Spread Spectrum (CSS)
- Frequency Shift Keying (FSK)

Benefits

- Resiliance, robustness
- Simple, low power consumption
- Long-range, linear frequency modulation

Frequency Shift – Chirp Spread Spectrum (FS-CSS)

Signal form:

$$x(t) = e^{j\pi\mu t^2}$$

The complex function used by LoRa:

$$x(t) = e^{j(\pi\mu t^2 + 2\pi f t + \theta)}$$

Three changeable parameters:

- Phase θ
- Frequency $\omega = 2\pi f$
- Chirp rate µ

Use of frequency for modulation

$$f_m = mf_1$$
 , $f_1 = \frac{B}{M}$

Protocol specifications:

- Carrier Frequency
- Bandwidth
- Symbol Rate
- Chirp Rate
- Chip Rate

Two types of packets

1. explicit

2. implicit

Preamble PHDR PHDR_CRC PHYPayload CRC

Preamble BCNPayload

LoRaWAN link layer

LoRaWAN

Range from 3km to 15km

LoRaWAN architecture:

- Endpoint
- Gateway
- Network server
- Application server

LoRaWAN

LoRaWAN device classes

- Class A
 Lowest power
 Short downlink receives windows
- Class B Downlink windows in scheduled times
- Class C Minimum delay Always receiving

MOKOSmart LoRaWAN sensors

LoRaBlink

Goals:

- Multi-Hop
- Low-Energy
- > Resilience
- Low-Latency

Slotted channel access Optional Ack Possible relaying

LoRaBlink

Figure 4. LoRaBlink: Protocol example using a 4 node network.

LoRaBlink

Feature/Aspect	LoRaWAN	LoRaBlink
Topology	Star topology where all nodes communicate directly with the gateway.	Multi-hop communication supporting data relaying via nodes.
Routing	Gateway-based centralized communication; no routing between nodes.	Decentralized; integrates MAC and routing for multi-hop communication.
Unique Features Used	Uses LoRa's physical layer features like long range and low power, but focused on single-hop communication.	Exploits LoRa features like concurrent transmissions and carrier activity detection for robust multi-hop communication.
Applications	Meter reading, environmental monitoring, and city-wide IoT solutions.	IoT deployments in challenging environments requiring multi-hop communication, such as rural or large campus networks.
		ango campao networke.

Conclusion

Need of communication

Low Power Wide Area Networks

LoRa Alliance

LoRa PHY
Use of FSK and CSS
Physical layer packets

recsourses

IoT for all

Arduino101

The things network

Wireless pi

LoRaBlink

