Bachelorarbeit - Hauptvortrag

Der Einfluss der Unterstockvegetation auf das Rebenwachstum in Weinbergen

Quantifizierung durch UAV-basierte Fotoaufnahmen am Beispiel des Wawerner Jesuitenbergs

Nikolaos Kolaxidis

Betreuer: Herr Dr. K.M. Seeger

Universität Trier

19.01.2021

Diverfarming

- Projekt: DIVERFARMING
 - EU-weit, gefördert von EU und Schweiz
 - Zielsetzung:
 - Kombination von lukrativer und ökologischer Nachhaltigkeit im Agrarsektor
 - Neue Arten der Landwirtschaft und **Diversifikation**
- Lehrforschungsprojekt 2018 bis heute im ökologisch bewirtschafteten
 Wawerner Jesuitenberg des Weinguts Dr. Frey

Übersichtskarte Wawerner Jesuitenberg

Datengrundlage: Universität Trier 2020 Luftbild des RP-Basisdienstes Autor: Nikolaos Kolaxidis

Übersichtskarte Wawerner Jesuitenberg

Datengrundlage: Universität Trier 2020 Luftbild des RP-Basisdienstes Autor: Nikolaos Kolaxidis

145

290

580

870

Übersichtskarte Wawerner Jesuitenberg

Datengrundlage: Universität Trier 2020 Luftbild des RP-Basisdienstes Autor: Nikolaos Kolaxidis

30

60

120

180

Lehrforschungsprojekt 2018

- Projekt: DIVERFARMING
 - Zielsetzung: Kombination von **lukrativer** und **ökologischer** Nachhaltigkeit im Agrarsektor durch neue Arten der Landwirtschaft und **Diversifikation**
- Lehrforschungsprojekt 2018 bis heute Idee:
 - → Pflanzen von Kräutern im **Unterstockbereich** (Oregano, Thymian, Eisenkraut/gr. Bergtee)

Messungsplan LfP 2018/19

- * Bodenproben (Lagerungsdichte)
- Bonituren
- Guelph-Permeameter
- ★ Kleinberegnungsanlage
- SingleRing-Infiltrometer
- Tensionsinfiltrometer
- □ Fangkästen
- Feuchtesensor 1-6
- Feuchtesensor EM50
- X Klimastation

19/01/2021

- Lachgaszylinder
- 01-51 Zeilencode

Drohne

- DJI Black Snapper (Bau-Kit)
- DJI Zenmuse X5
 - 16 MP
 - 72 dpi
 - 4608 x 3456 px

Abb. 5: DJI Black Snapper (Seeger 20

Photogrammetrie

- Stereoskopisches Sehen
- Bewusstsein für Tiefe
- Genaues Einschätzen der Entfernung
- "3D-Sehen"

Photogrammetrie

Fragestellung

? Kann mit UAV-basierten Aufnahmen bewiesen werden, dass verschiedene Kräuter einen unterschiedlichen Einfluss auf das Rebenwachstum ausüben?

Was wird benötigt?

- Drohnenfotos des Weinberges über einen Zeitraum
 - Orthomosaike der Reben
 - Orthomosaike des Unterstockbereiches
- Software
 - Structure from Motion (SfM) Agisoft Photoscan
 - Geoinformationssystem (GIS) ArcGIS
 - Tabellenkalkulation MS Excel
 - Statistik-Programm SPSS Statistics

Fragestellungen

? Kann mit UAV-basierten Aufnahmen bewiesen werden, dass verschiedene Kräuter einen unterschiedlichen Einfluss auf das Rebenwachstum ausüben?

- 1. Kann mithilfe vorliegender Drohnenfotos die Unterstockvegetation quantifiziert werden?
- 2. Können in einem multispektralen Orthomosaik Muster erkannt werden, die auf einen Einfluss der Unterstockvegetation auf das Rebenwachstum schließen?

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen
- 5. Klassifizieren
- 6. 3D-Modell berechnen
- 7. DEM/Orthomosaik erstellen

1. Gütebestimmung Drohnenfotos

bb. 11: Drohnenfoto 1 (LfP 2018/19)،

1. Gütebestimmung Drohnenfotos

.bb. 12: Drohnenfoto 2 (LfP 2018/19

1. Gütebestimmung Drohnenfotos

Abb. 12: Drohnenfoto 3 (LfP 2018/19

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen
- 5. Klassifizieren

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen
- 5. Klassifizieren

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen
- 5. Klassifizieren

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen
- 5. Klassifizieren
- 6. Mesh (3D-Modell) berechnen

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen
- 5. Klassifizieren
- 6. Mesh (3D-Modell) berechnen

19/01/2021

- 1. Gütebestimmung Drohnenfotos
- 2. Fotos ausrichten
- 3. Georeferenzierung
- 4. Dichte Punktwolke erstellen
- 5. Klassifizieren
- 6. 3D-Modell berechnen
- 7. DEM/Orthomosaik erstellen

Andere Methoden

- Orthomosaikerstellung per SfM mit Stellschrauben, weitere Modelle
- Zuschneiden der Fotos
 - Programm bekommt zu wenig Daten
- Dichte Punktwolke mit Höhendaten exportieren → im GIS "cutten"
 - \triangleright kein Orthomosaik mehr möglich (Rasterdaten \rightarrow Vektordaten)
- 3D point cloud and mesh processing software Cloud Compare/Meshlab
 - Probleme mit Koordinaten
 - Exportierte Datei kann nicht in SfM zurück

Auswertung

- ? Kann mithilfe vorliegender Drohnenfotos die Unterstockvegetation quantifiziert werden?
- ! Nein, das ist mit diesen Fotos und diesen probierten Methoden nicht möglich.
- Mögliche Gründe:
 - Auflösung zu gering, Kräuter nicht gut genug entwickelt
 - Keine Frequenzanalysen möglich (nicht multispektral)
 - Methode (Werte) nicht optimiert → keine vergleichbare Literatur
- Keine Verifizierung, ob es schlichtweg nicht möglich ist

Fragestellungen

? Kann mit UAV-basierten Aufnahmen bewiesen werden, dass verschiedene Kräuter einen unterschiedlichen Einfluss auf das Rebenwachstum ausüben?

- 1. Kann mithilfe vorliegender Drohnenfotos die Unterstockvegetation quantifiziert werden?
- 2. Können in einem multispektralen Orthomosaik Muster erkannt werden, die auf einen Einfluss der Unterstockvegetation auf das Rebenwachstum schließen?

Drohne von Geocoptix

- DJI Phantom 4 Pro v2.0
- Micasense RedEdge-M

Band Nr.	Band Name	Zentrale Wellenlänge
1	Blau	475 nm
2	Grün	560 nm
3	Rot	668 nm
4	Red Edge	717 nm
5	Nahes Infrarot	840 nm

Methodik - Vorbereitungen

19/01/2021

1. Rahmensetzung | 2. Fragestellungen | 3. F1 Methodik/Auswertung | 4. F2 Methodik/Auswertung | 5. Fazit

1. NDVI des Weinberges berechnen

1. NDVI des Weinberges berechnen

1. NDVI des Weinberges berechnen

Drohne von Geocoptix

- DJI Phantom 4 Pro v2.0
- Micasense RedEdge-M

Band Nr.	Band Name	Zentrale Wellenlänge
1	Blau	475 nm
2	Grün	560 nm
3	Rot	668 nm
4	Red Edge	717 nm
5	Nahes Infrarot	840 nm

1. NDVI des Weinberges berechnen

- 1. NDVI des Weinberges berechnen
- 2. Raster in Rebpaare einteilen

Abb. 17: Bepflanzungsschema (LfP 2018/19

- 1. NDVI des Weinberges berechnen
- 2. Raster in Rebpaare einteilen
- 3. Reben extrahieren (Reklassifizieren)

Reclassification	
Old values	New values
-1 - 0,85	1
0,85 - 1	2
NoData	NoData

- 1. NDVI des Weinberges berechnen
- 2. Raster in Rebpaare einteilen
- 3. Reben extrahieren (Reklassifizieren)
- 4. Rebenvolumina berechnen

Area = count * cell-size

Wobei

count: Anzahl Pixel cell-size: Pixelgröße

area: absolute Fläche

Me	sswerte l	NDVI≥0,8	35		Fläche NI	DVI ≥ 0,85	(in m²)	
MeP	Court typ	area_cm ²	area_m ²		Bergtee	Oregano	Thymian	Kontroll
Juni	52544 bL	183904	18,39	Juni	18,39	23,4682	19,3557	27,892
Juni	67638 bM	236733	23.67	Juni	23.67	27.02105	23.5739	27,291
Juni	70677 bR	247369.5	24.74	Juni	24.74	28,38385	26.0456	
June	79692 oL	278922	27.89	Juli	8.8697	9.0013	10.2907	9.00795
Juni	77976 oM	272916	27,29	Juli	9.48185	9.0328	8,7654	6.83029
Juni	84144 oR	294504	29.45	Juli	11,39485	9,7223		
Juni	67052 oL	234682		August	6.83445	6.19185		
Juni	77203 oM	270210.5		August	7.31115	6.20865		
Juni	82811 oF	283838,5		August	9.24105	6,84285		
Juni	55302 (L	193557		September	0.82425	1.4084		72100
Juni	67354 iM	235739		September	1,38915	0.68565		
Juni	74416 iR	260456	26.05	September	1,8886	0.65905		
dell	25342 bl.	88697	8.87	September	1,0000	0,00000	1,0000	0,110
Juli	27091 bM	94818.5	9,48					
Jul	34271 bR	113948,5	11.99					
Juli	25737 oL	90079,5	1,14-4-4	Mi	ttelwerte	NDVID	1 85 lin m	2)
Juli	19515 oM	68302.5	6.83	1411	Bergtee		Thumian	Kontroll
Juli	22438 oR	78743	THE TELE	duni	22.27	26,49		
	25718 oL	30013	14,540,7	Juli	10.12			
Juli			-3			9,25		- 14-
Juli	25808 oM	90328	3455	August	7,80	6,41		
Juli	27778 oA	97223		September	1,37	0,92	1,22	0,5
Juli	29402 fL	102907	10,29					
Juli	25044 tM	87654	8,77					
Juli	31415 (A	109952,5						
August	19527 Ы.	68344,5						
August	20889 ЫМ	73111,5						
August	26403 bR	92410,5	9.24					
August	19837 cL	69429,5						
August	14155 cM	49542,5	4,95					
August	17606 cR	61621						
August	17691 oL	61918,5	6,19					
August	17739 oM	62086,5						
August	19551 oR	68428,5						
August	21839 fL	76436,5						
August	17669 fM	61841,5						
August	23223 fR	81280,5						
September		8242,5	0,82					
September	3969 ЫМ	13891,5						
September	5396 bR	18886	1,89					
September	1894 cL	6629						
September	1099 cM	3846,5	0.38					
September	2044 cR	7154	0.72					
September	4024 oL	14084	1,41					
September	1959 oM	6856,5	0,69					
September	1883 oR	6590,5	0,66					
September	3447 tL	12064,5	1,21					
September		10979,5	1.10					
September	3858 tA	13538	2.5					

- 1. NDVI des Weinberges berechnen
- 2. Raster in Rebpaare einteilen
- 3. Reben extrahieren (Reklassifizieren)
- 4. Rebenvolumina berechnen
- 5. Daten zusammenführen
- 6. Auswertung

	MzP	Mittelwert	Standardabw eichung	N
Bergtee	Juni	22.2667	3.39965	3
	Juli	10.1133	1.65361	3
	August	7.7933	1.27563	3
	September	1.3667	.53538	3
	Juni Juli August September Gesamt Juni Juli August September Gesamt	10.3850	8.09206	12
Oregano	Juni	26.4900	2.79297	3
	Juli	9.2500	.40731	3
	August	4.4133	3.65467	3
	September	.9200	.42462	3
	Gesamt	10.2683	10.44711	12
Thymian	Juni	22.9933	3.38208	3
	Juli	10.0200	1.13925	3
	August	7.3167	1.01441	3
	September	1.2200	.12530	3
	Gesamt	10.3875	8.44828	12
Kontroll	Juni	28.2100	1.11499	3
	Juli	7.9033	1.09038	3
	August	6.0167	1.00271	3
	September	.5867	.18148	3
	Gesamt	10.6792	10.96623	12

	Kraut	Mittelwert	Standardabw eichung	N
Mzp1	Bergtee	22.2667	3.39965	3
	Oregano	26.4900	2.79297	3
	Thymian	22.9933	3.38208	3
	Kontroll	28.2100	1.11499	3
	Gesamt	24.9900	3.51807	12
Mzp2	Bergtee	10.1133	1.65361	3
	Oregano	9.2500	.40731	3
	Thymian	10.0200	1.13925	3
	Kontroll	7.9033	1.09038	3
	Gesamt	9.3217	1.35405	12
Mzp3	Bergtee	7.7933	1.27563	3
	Oregano	4.4133	3.65467	3
	Thymian	7.3167	1.01441	3
	Kontroll	6.0167	1.00271	3
	Gesamt	6.3850	2.22915	12
Mzp4	Bergtee	1.3667	.53538	3
	Oregano	.9200	.42462	3
	Thymian	1.2200	.12530	3
	Kontroll	.5867	.18148	3
	Gesamt	1.0233	.43744	12

Deskriptive Statistik									
	N	Minimum	Maximum	Mittelwert	Std Abweichung	Varianz			
Bergtee	12	.82	24.74	10.3850	8.09206	65.482			
Oregano	12	.21	28.98	10.2683	10.44711	109.142			
Thymian	12	1.10	26.05	10.3875	8.44828	71.373			
Kontroll	12	.38	29.45	10.6792	10.96623	120.258			
Gültige Werte (Listenweise)	12								

Statistischer Beweis

Welcher Test sollte gewählt werden?

Studiendesign?	Gruppenunterschiede
Design?	Between-Subjects Design
Wie viele unabhängigen Variablen?	2 (wenn MzP als UV gesehen wird)
Kovariate kontrollieren?	Nein
Mehrere AVs in einem Modell?	Nein

- → Zweifaktorielle ANOVA (ZANOVA)
- → Einfaktorielle ANOVA mit Messwiederholung (rmANOVA)

Zweifaktorielle ANOVA

SPSS - Variablenansicht

	Name	Тур	Breite	Dezimal	Beschriftung	Werte	Fehlend	Spalten	Ausrichtung	Messniveau	Rolle
1	MzP	Numerisch	8	2		{1.00, Juni}	Ohne	8	≣ Rechts	& Nominal	➤ Eingabe
2	Kraut	Numerisch	8	2		{1.00, Oreg	Ohne	8	■ Rechts	& Nominal	→ Eingabe
3.	NDVI_area	Numerisch	8	2		Ohne	Ohne	8	≅ Rechts	Metrisch	> Eingabe
4											

SPSS - Datenansicht

	& Mz₽	💰 Kraut	NDVI_are a	1
1	1.00	1.00	23.47	
2	1.00	1.00	27.02	
3	1.00	1.00	28.98	
4	1.00	2.00	19.36	
5	1.00	2.00	23.57	
6	1.00	2.00	26.05	
7	1.00	3.00	18.39	
8	1.00	3.00	23.67	
9	1.00	3.00	24.74	
10	1.00	4.00	27.89	
11	1.00	4.00	27.29	
12	1.00	4.00	29.45	
13	2.00	1.00	9.00	
14	2.00	1.00	9.03	
15	2.00	1.00	9.72	
16	2.00	2.00	10.29	
17	2.00	2.00	2 77	

ZANOVA – Test der Zwischensubjekteffekte

Tests der Zwischensubjekteffekte

Abhängige Variable:	NDVI_area
---------------------	-----------

Quelle	Typ III Quadratsum me	df	Mittel der Quadrate	F	Sig.	Partielles Eta- Quadrat	Dezentr. Parameter	Beobachtete Trennschärfe b
Korrigiertes Modell	3919.989 ^a	15	261.333	76.078	.000	.973	1141.169	1.000
Konstanter Term	5221.675	1	5221.675	1520.110	.000	.979	1520.110	1.000
Kraut	1.105	3	.368	.107	.955	.010	.322	.067
MzP	3816.833	3	1272.278	370.380	.000	.972	1111.139	1.000
Kraut * MzP	102.051	9	11.339	3.301	.006	.481	29.709	.945
Fehler	109.922	32	3.435					
Gesamt	9251.586	48						
Korrigierte Gesamtvariation	4029.911	47						

a. R-Quadrat = ,973 (korrigiertes R-Quadrat = ,960)

Kraut: F(3, 32) = 0.11, p = .955, $\eta_p^2 = .01$ \rightarrow es wird <u>kein signifikanter Unterschied</u> zwischen den Kräutern festgestellt

MzP: F(3, 32) = 370.38, p < .001, $\eta_p^2 = .97$ \rightarrow es wird ein <u>signifikanter Unterschied</u> zwischen den Messzeitpunkten festgestellt Kraut*MzP: F(9, 32) = 3.30, p = .006, $\eta_p^2 = .48$ \rightarrow es wird ein <u>signifikanter Unterschied</u> zwischen den Kräutern in Abhängigkeit vom Messzeitpunkt festgestellt

b. Unter Verwendung von Alpha = ,05 berechnet

ZANOVA – PostHoc nach Tukey (1949)

Mehrere Vergleiche

Abhängige Variable: NDVI_area

Tukey-HSD

		Mittelwertdiffe			95% Konfidenzintervall		
(I) Kraut	(J) Kraut	renz (I-J)	The state of the s		Untergrenze	Obergrenze	
(I) Kraut Oregano Thymian Bergtee Kontroll	Thymian	1192	.75664	.999	-2.1692	1.9309	
	Bergtee	1167	.75664	.999	-2.1667	1.9334	
	Kontroll	4108	.75664	.948	-2.4609	1.6392	
Thymian	Oregano	.1192	.75664	.999	-1.9309	2.1692	
	Bergtee	.0025	.75664	1.000	-2.0475	2.0525	
	Kontroll	2917	.75664	.980	-2.3417	1.7584	
Oregano Thymian Bergtee	Oregano	.1167	.75664	.999	-1.9334	2.1667	
	Thymian	0025	.75664	1.000	-2.0525	2.0475	
	Kontroll	2942	.75664	980	-2.3442	1.7559	
Kontroll	Oregano	.4108	.75664	.948	-1.6392	2.4609	
	Thymian	.2917	.75664	.980	-1.7584	2.3417	
	Bergtee	.2942	.75664	.980	-1.7559	2.3442	

Grundlage: beobachtete Mittelwerte.

Der Fehlerterm ist Mittel der Quadrate(Fehler) = 3.435.

Auswertung

- 1. Kräuter im Unterstockbereich haben einen Einfluss auf das Rebenwachstum.
- 2. Bergtee und Thymian verhalten sich ähnlich, Oregano weist einen anderen Einfluss auf das Rebenwachstum auf.
- 3. Der Einfluss kann (bisher) nicht näher beschrieben werden.

Fazit

- 1. Kann mithilfe vorliegender Drohnenfotos die Unterstockvegetation quantifiziert werden?
 - Nein, mit den vorliegenden Drohnenaufnahmen und den benutzten Methoden kann die Unterstockvegetation nicht erfasst werden.
- 2. Können in einem multispektralen Orthomosaik Muster erkannt werden, die auf einen Einfluss der Unterstockvegetation auf das Rebenwachstum hinweisen?
 - Ja, das ist möglich. Durch multispektrale Analysen von Kräutergruppen, eingeteilt in Rebpaaren, können die Rebenvolumina über einen Zeitraum bestimmt und quantitativ miteinander verglichen werden.
 - Einflüsse sind erkennbar, jedoch nicht direkt quantifizierbar.

Fazit

- ? Kann mit UAV-basierten Aufnahmen bewiesen werden, dass verschiedene Kräuter einen unterschiedlichen Einfluss auf das Rebenwachstum ausüben?
 - Durch Analysen des NDVI einzelner Rebpaare kann ausgesagt werden, dass Kräuter einen scheinbaren Einfluss auf das Rebenwachstum haben.
 - Der Einfluss kann (noch) nicht näher bestimmt werden.

Ohne quantitative Daten der Unterstockvegetation (Kräutervolumina) ist es nicht möglich, gezielte Aussagen darüber zu treffen, welche Kräuter besser für die Zielsetzung des Diverfarming-Projektes geeignet sind.

Quellenverzeichnis für Abbildungen

- DJI (2021): Zenmuse x5. URL: https://www.dji.com/de/zenmuse-x5/info#downloads [18.01.2021].
- Geocoptix (2020): LeguTec Mechanische Beikrautregulierung im Sojaanbau in Luxemburg. Deutscher Auszug aus dem englischen Abschlussbericht. IBLA Luxemburg. S. 29-33.
- Hill, J. (2015): Grundlagen der Fernerkundung. Vorlesung. Universität Trier.
- LfP (2018/19): Lehrforschungsprojekt Bachelor of Science Angewandte Physische Geographie. Abschlussbericht. Universität Trier.
- Mkansi, R. (2017): Spectral reflectance of soil, vegetation and water. URL https://mkansireminder.wordpress.com/2017/04/24/spectral-reflectance-of-soil-vegetation-water/
 [18.01.2021].
- Spektrum (2000): Bildüberdeckung. URL: https://www.spektrum.de/lexikon/geowissenschaften/bildueberdeckung/1756 [18.01.2021].
- Tukey, J.W. (1949): Comparing Individual Means in the Analysis of Variance. International Biometric Society
- Wissen (2021): Tiefensehen. URL: https://www.wissen.de/medizin/tiefensehen [18.01.2021].

Bergtee Oregano Thymian Kontroll & MzP Var 23.47 19.36 27.89 1.00 18.39 1 23.67 27.29 2 1.00 27.02 23.57 3 1.00 24.74 28.98 26.05 29.45 2.00 8.87 9.00 10.29 9.01 4 9.48 8.77 6.83 5 2.00 9.03 11.99 7.87 6 2.00 9.72 11.00 6.83 7.64 6.94 3.00 6.19 3.00 7.31 .21 6.18 4.95 8 9.24 9 3.00 6.84 8.13 6.16 10 .82 1.21 .66 4.00 1.41 11 4.00 1.39 .69 1.10 .38 12 .72 4.00 1.89 .66 1.35 13

Tests der Innersubjekteffekte

Quelle		Typ III Quadratsum me	df	Mittel der Quadrate	F	Sig.
Kraut	Sphärizität angenommen	1,105	3	.368	.258	.855
	Greenhouse-Geisser	1.105	2.193	.504	.258	.795
	Huynh-Feldt (HF)	1,105	3.000	.368	.258	.855
	Untergrenze	1.105	1.000	1.105	.258	.625
Kraut * MzP	Sphärizität angenommen	102.051	9	11.339	7.938	.000
	Greenhouse-Geisser	102.051	6.580	15.509	7.938	.000
	Huynh-Feldt (HF)	102.051	9.000	11.339	7.938	.000
	Untergrenze	102.051	3.000	34.017	7.938	.009
Fehler(Kraut)	Sphärizität angenommen	34.283	24	1.428		
	Greenhouse-Geisser	34.283	17.547	1.954		
	Huynh-Feldt (HF)	34.283	24.000	1.428		
	Untergrenze	34.283	8.000	4.285		

Tests der Zwischensubjekteffekte

Maß: NDVI_area

Transformierte Variable: Mittel

Quelle	Typ III Quadratsum me	df	Mittel der Quadrate	F	Sig.	
Konstanter Term	5221.675	1	5221.675	552.274	.000	
MzP	3816.833	3	1272.278	134.563	.000	
Fehler	75.639	8	9.455			

Mehrere Vergleiche

Maß: NDVI_area

	(I) MzP		Mittelwertdiffe			95% Konfid	enzintervall
		(J) MzP	renz (I-J)	StdFehler	Sig.	Untergrenze	Obergrenze
Tukey-HSD	Juni	Juli	15.6683	1.25531	.000	11.6484	19.6883
		August	18.6050	1.25531	.000	14.5850	22.6250
		September	23.9667*	1.25531	.000	19.9467	27.9866
	Juli	Juni	-15.6683	1.25531	.000	-19.6883	-11.6484
		August	2.9367	1.25531	.168	-1.0833	6.9566
		September	8.2983*	1.25531	.001	4.2784	12.3183
	August	Juni	-18.6050 [*]	1.25531	.000	-22.6250	-14.5850
		Juli	-2.9367	1.25531	.168	-6.9566	1.0833
		September	5.3617*	1.25531	.012	1.3417	9.3816
	September	Juni	-23.9667*	1.25531	.000	-27.9866	-19.9467
		Juli	-8.2983 [*]	1.25531	.001	-12.3183	-4.2784
		August	-5.3617 [*]	1.25531	.012	-9.3816	-1.3417
Games-Howell	Juni	Juli	15.6683	1.53755	.013	6.8165	24.5201
		August	18.6050 [*]	1.71100	.003	10.8305	26.3795
		September	23.9667*	1.46686	.009	13.8656	34.0677
	Juli	Juni	-15.6683	1.53755	.013	-24.5201	-6.8165
		August	2.9367	.99998	.167	-1.8493	7.7227
		September	8.2983*	.47338	.007	5.2000	11.3967
	August	Juni	-18.6050 [*]	1.71100	.003	-26.3795	-10.8305
		Juli	-2.9367	.99998	.167	-7.7227	1.8493
		September	5.3617	.88745	.063	6859	11.4092
	September	Juni	-23.9667*	1.46686	.009	-34.0677	-13.8656
		Juli	-8.2983*	.47338	.007	-11.3967	-5.2000
		August	-5.3617	.88745	.063	-11.4092	.6859

Grundlage: beobachtete Mittelwerte.

Der Fehlerterm ist Mittel der Quadrate(Fehler) = 2,364.

ANOVA-PostHoc

^{*.} Die Mittelwertdifferenz ist in Stufe ,05 signifikant.

rmANOVA

& Kraut Vai 1.00 18.39 8.87 6.83 .82 2 1.00 23.67 9.48 7.31 1.39 3 1.00 24.74 11.99 9.24 1.89 4 2.00 23.47 9.00 6.19 1.41 2.00 9.03 .69 5 27.02 .21 2.00 28.98 9.72 6.84 .66 6 7.64 1.21 3.00 19.36 10.29 8 3.00 23.57 8.77 6.18 1.10 9 3.00 26.05 11.00 8.13 1.35 10 .66 4.00 27.89 9.01 6.94 11 4.00 27.29 6.83 4.95 .38 12 4.00 29.45 7.87 6.16 .72 13

Tests der Innersubjekteffekte

Quelle		Typ III Quadratsum me	df	Mittel der Quadrate	F	Sig.
Zeit	Sphärizität angenommen	3816.833	3	1272.278	474.284	.000
	Greenhouse-Geisser	3816.833	1.744	2188.922	474.284	.000
	Huynh-Feldt (HF)	3816.833	3.000	1272.278	474.284	.000
	Untergrenze	3816.833	1.000	3816.833	474.284	.000
Zeit* Kraut	Sphärizität angenommen	102.051	9	11.339	4.227	.002
	Greenhouse-Geisser	102.051	5.231	19.509	4.227	.014
	Huynh-Feldt (HF)	102.051	9.000	11.339	4.227	.002
	Untergrenze	102.051	3.000	34.017	4.227	.046
Fehler(Zeit)	Sphärizität angenommen	64.381	24	2.683		
	Greenhouse-Geisser	64.381	13.950	4.615		
	Huynh-Feldt (HF)	64.381	24.000	2.683		
	Untergrenze	64.381	8.000	8.048		

Tests der Zwischensubjekteffekte

Maß: NDVI_area

Transformierte Variable: Mittel

Quelle	Typ III Quadratsum me	df	Mittel der Quadrate	F	Sig.
Konstanter Term	5221.675	1	5221.675	917.259	.000
Kraut	1.105	3	.368	.065	.977
Fehler	45.542	8	5.693		

Mehrere Vergleiche

Maß: NDVI_area

			Mittelwertdiffe			95% Konfid	enzintervall
	(I) Kraut	(J) Kraut	renz (I-J)	StdFehler	Sig.	Untergrenze	Obergrenze
Tukey-HSD	Bergtee	Oregano	.1167	.97405	.999	-3.0026	3.2359
		Thymian	0025	.97405	1.000	-3.1218	3.1168
		Kontroll	2942	.97405	.990	-3.4134	2.8251
	Oregano	Bergtee	1167	.97405	.999	-3.2359	3.0026
		Thymian	1192	.97405	.999	-3.2384	3.0001
		Kontroll	4108	.97405	.973	-3.5301	2.7084
	Thymian	Bergtee	.0025	.97405	1.000	-3.1168	3.1218
		Oregano	.1192	.97405	.999	-3.0001	3.2384
		Kontroli	2917	.97405	.990	-3.4109	2.8276
	Kontroll	Bergtee	.2942	.97405	.990	-2.8251	3,4134
		Oregano	.4108	.97405	.973	-2.7084	3.5301
		Thymian	.2917	.97405	.990	-2.8276	3.4109
Games-Howell	Bergtee	Oregano	.1167	1.15599	1.000	-4.8210	5.0544
		Thymian	0025	1.12650	1.000	-4.9323	4.9273
		Kontroll	2942	1.02086	.990	-5.5632	4.9748
	Oregano	Bergtee	-,1167	1.15599	1.000	-5.0544	4.8210
		Thymian	1192	.92488	.999	-3.8959	3.6575
		Kontroll	4108	.79283	.950	-4.0168	3.1951
	Thymian	Bergtee	.0025	1.12650	1.000	-4.9273	4.9323
		Oregano	.1192	.92488	.999	-3.6575	3.8959
		Kontroll	2917	.74916	.977	-3.6033	3.0200
	Kontroll	Bergtee	.2942	1.02086	.990	-4.9748	5.5632
		Oregano	.4108	.79283	.950	-3.1951	4.0168
		Thymian	.2917	.74916	.977	-3.0200	3.6033

Grundlage: beobachtete Mittelwerte. Der Fehlerterm ist Mittel der Quadrate(Fehler) = 1,423.

NOVA- PostHoc

Paarweise Vergleiche

			Mittelwertdiffe				nfidenz Differe	zintervall für nz ^a					MA	NOVA	
Abhängige Variable	(I) Kraut	(J) Kraut	renz (I-J)	StdFehler	Sig.a	Untergren:	ze	Obergrenze							_
Mzp1	Bergtee	Oregano	-4.223	2.311	.630	-12.	Mzp3	3	Bergtee	Oregano	3.380	1.684	.478	-2.479	9.239
		Thymian	727	2.311	1.000	-8.				Thymian	.477	1.684	1.000	-5.382	6.336
		Kontroll	-5.943	2.311	.198	-13.				Kontroll	1.777	1.684	1.000	-4.082	7.636
	Oregano	Bergtee	4.223	2.311	.630	-3.			Oregano	Bergtee	-3.380	1.684	.478	-9.239	2.479
		Thymian	3.497	2.311	1.000	-4.				Thymian	-2.903	1.684	.738	-8.762	2.956
		Kontroll	-1.720	2.311	1.000	-9.				Kontroll	-1.603	1.684	1.000	-7.462	4.256
	Thymian	Bergtee	.727	2.311	1.000	-7,:			Thymian	Bergtee	477	1.684	1.000	-6.336	5.382
		Oregano	-3.497	2.311	1.000	-11.				Oregano	2.903	1.684	.738	-2.956	8.762
		Kontroll	-5.217	2.311	.324	-13.				Kontroll	1.300	1.684	1.000	-4.559	7.159
	Kontroll	Bergtee	5.943	2.311	.198	-2.			Kontroll	Bergtee	-1.777	1.684	1.000	-7.636	4.082
		Oregano	1.720	2.311	1.000	-6.				Oregano	1.603	1.684	1.000	-4.256	7.462
	Thymian 5.217 2.311 .324 -2.			Thymian	-1.300	1.684	1.000	-7.159	4.559						
Mzp2	Bergtee	Oregano	.863	.948	1.000	-2.	Mzp4		Bergtee	Oregano	.447	.293	.996	573	1.466
		Thymian	.093	.948	1.000	-3.				Thymian	.147	.293	1.000	873	1.166
		Kontroll	2.210	.948	.288	-1.				Kontroll	.780	.293	.173	240	1.800
	Oregano	Bergtee	863	.948	1.000	-4.			Oregano	Bergtee	447	.293	.996	-1.466	.573
		Thymian	770	.948	1.000	-4.				Thymian	300	.293	1.000	-1.320	.720
		Kontroll	1.347	.948	1.000	-1.				Kontroll	.333	.293	1.000	686	1.353
	Thymian	Bergtee	093	.948	1.000	-3.			Thymian	Bergtee	147	.293	1.000	-1.166	.873
		Oregano	.770	.948	1.000	-2.				Oregano	.300	.293	1.000	720	1.320
		Kontroll	2.117	.948	.336	-1.				Kontroll	.633	.293	.376	386	1.653
	Kontroll	Bergtee	-2.210	.948	.288	-5.			Kontroll	Bergtee	780	.293	.173	-1.800	.240
		Oregano	-1.347	.948	1.000	-4.			Oregano	333	.293	1.000	-1.353	.686	
		Thymian	-2.117	.948	.336	-5.				Thymian	633	.293	.376	-1.653	.386

Basiert auf geschätzten Randmitteln

a. Anpassung für Mehrfachvergleiche: Bonferroni.

MANOVA

			M	ehrere Vergle	iche			
Abhängige Variable		(I) Kraut	(J) Kraut	Mittelwertdiffe renz (I-J)	StdFehler	Sig.	95% Konfid Untergrenze	enzintervall Obergrenz
Mzp1	Tukey-HSD	Bergtee	Oregano	-4.2233	2.31084	.328	-11.6235	3.176
MZP I	Tukey-HSD	Delglee		7267	2.31084	.988	-8.1268	6.673
			Thymian				9000	37000
			Kontroll	-5.9433	2.31084	.122	-13.3435	1.456
		Oregano	Bergtee	4.2233	2.31084	.328	-3.1768	11.623
			Thymian	3.4967	2.31084	.473	-3.9035	10.896
			Kontroll	-1.7200	2.31084	.877	-9.1201	5.680
		Thymian	Bergtee	.7267	2.31084	.988	-6.6735	8.126
			Oregano	-3.4967	2.31084	.473	-10.8968	3.903
			Kontroll	-5.2167	2.31084	.188	-12.6168	2.183
		Kontroll	Bergtee	5.9433	2.31084	.122	-1.4568	13.343
			Oregano	1.7200	2.31084	.877	-5.6801	9.120
			Thymian	5.2167	2.31084	.188	-2.1835	12.616
	Games-Howell	Bergtee	Oregano	-4.2233	2.54023	.446	-14.7608	6.314
			Thymian	7267	2.76864	.993	-11.9975	10.544
			Kontroll	-5.9433	2.06566	.208	-17.7355	5.848
		Oregano	Bergtee	4.2233	2.54023	.446	-6.3141	14.760
			Thymian	3.4967	2.53240	.570	-6.9982	13.991
			Kontroll	-1.7200	1.73627	.768	-10.9945	7.554
		Thymian	Bergtee	.7267	2.76864	.993	-10.5442	11.997