LAB03 Assignment

Your task is to design a decoder circuit that runs a 7-segment display. The circuit must show the numbers from 0 to 9 that is controlled with 4-bit input (ABCD). The steps you should do as follows.

- 1. Fill the truth table in page 2 based on the led statuses given in the picture above.
- 2. **Fill the Karnough Maps** on the page 3 to obtain the simplest Boolean function for each LED (from **a** to **g**) of the 7-segment display. We did first 3 LED (a,b,c) in the Lab class. Fill the karnough maps in page 3 and write the functions you obtained to the last raw of each K-Map table. For each rectangle use different colors on the rectangles to make the table easy to understand (Example tables is given in the first K-Map which is for Fa, Fb, Fc). (To add rectangle you can copy and paste existing ones)

PS: Upload the completed version of this file as a single .pdf file.

3. Finally, design the Boolean functions on Proteus Design Suite. (Use JUMPERS as we did in the lab!). Upload the project file. 7 Segment display must show all the digits (0-9) correctly corresponding to BCD input. A base design file is given in the assignment.

PS: Don't forget to fill your name and student number.

a

Truth Table

	Inputs				Outputs (Seven Segment Led Pins)								
Digit	A	В	C	D	a	b	c	d	e	f	g		
0	0	0	0	0	1	1	1	1	1	1	0		
1	0	0	0	1	0	1	1	0	0	0	0		
2	0	0	1	0	1	1	0	1	1	0	1		
3	0	0	1	1	1	1	1	1	0	0	1		
4	0	1	0	0	0	1	1	0	0	1	1		
5	0	1	0	1	1	0	1	1	0	1	1		
6	0	1	1	0	1	0	1	1	1	1	1		
7	0	1	1	1	1	1	1	0	0	0	0		
8	1	0	0	0	1	1	1	1	1	1	1		
9	1	0	0	1	1	1	1	1	0	1	1		

b

CD CD AB AB X X X X X X X \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} B'D' + BD + C + AC'D' + CD + B'd CD CD AB AB X X X X Χ Χ Χ Χ X X Χ Χ C' + D + BA+BC'D+B'C'D'+CD' CD CD AB AB Χ Χ Χ Χ Χ Χ Χ Χ

10	1	0	Х	Х		10	1	1	Х	
A'CD'+AC+ABC'+B'C'D'						C'D'+BC'+BD'+A				
g										
AB CD	00	01	11	10						
00	0	0	1	1						
01	1	1	0	1						
11	Х	Χ	Х	X						
10	1	1	Х	X						
B'C+BC'+A +CD'										