

Supervised Learning & Shallow Neural Networks

CAPS A.I Study

허상준 tkdwnsdkdlel@gmail.com

1. Supervised Learning

- Supervised Learning Overview
- Linear Regression
- Loss Function
- Training
- Testing
- Summary

2. Shallow Neural Networks

- Neural Networks
- Universal approximation Theorem
- Multivariate inputs and outputs
- General Case
- Summary
- Activation Function

3. Code

- Supervised Learning Code
- Shallow Neural Network 1
- Shallow Neural Network 2

1. Supervised Learning

Supervised Learning Overview

$$\mathbf{y} = \mathbf{f}[\mathbf{x}].$$
 $\mathbf{y} = \mathbf{f}[\mathbf{x}, \phi].$

Input:x Output:y

Function: model

Input:x
Output:y
Parameter: ϕ Function: model

Aims to build a model that an input x and outputs a prediction y X and Y are vectors of a predetermined and fixed size -> Stuctured or Tabular Data Parameter ϕ determines relationship between input and output

Supervised Learning Overview

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L \left[\boldsymbol{\phi} \right] \right].$$

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} \left(f[x_i, \boldsymbol{\phi}] - y_i \right)^2$$

$$= \sum_{i=1}^{I} \left(\phi_0 + \phi_1 x_i - y_i \right)^2.$$

Training Model -> Attempt to find best parameters ϕ Learn these parameters using a training dataset examples {X, Y} Degree of mismatch = Loss Function $L[\phi]$ Minimalization of Loss $L[\phi]$ -> Best parameter ϕ

Linear Regression Model

$$y=f[x,\phi] = \phi_0+\phi_1x.$$

$$\phi=\left[\phi_0,\phi_1\right]^T$$

$$\phi_0=1.2,\phi_1=-0.1$$

$$\phi_0=1.0,\phi_1=0.4$$

$$\phi_0=1.0,\phi_1=0.4$$

$$\phi_0=1.0,\phi_1=0.4$$

$$\phi_0=1.0,\phi_1=0.4$$

1D Linear Regression model – the relationship between input X and output Y as a straight line Two Parameters, $\phi = [y - intercept, slope]$

Loss

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2.$$
bast – squares Loss

Degree of mismatch = Loss function

Mismatch is the deviation between predictions and truth outputs

The best parameters ϕ minimize the Loss function

Training Model = Search for Best Parameter ϕ

Loss

Orange Point -> Training data
Line -> model prediction
Orange Dashed Line -> loss function

- a) Only Training data b), c) - Large loss between prediction and truth d) - best selection parameter
 - -> d) parameter are the optimal parameters

Loss

Loss function in 3D X,Y -> parameter ϕ Z -> loss

Loss function in 2D with contour line
X,Y -> parameter
Z -> contour line

- a) Only Training data
 b), c) Large loss between prediction and truth
 d) best selection parameter
 - -> d) parameter are the optimal parameters

Training

Randomly choose parameters -> Calculate loss function -> Update parameters that minimize loss

One way: measure gradient of the surface and take a step in the direction that most steeply downhill = gradient descent

 $X,Y \rightarrow Parameter \omega$, $Z \rightarrow Loss$

Testing

Testing with Test data(Not training data)

Underfitting = Can't capture the true relationship

Overfitting = describe statistical peculiarities of the training data, lead to unusual predictions

Testing

Summary

Supervised learning model is a function that relates inputs X to outputs Y

Define Loss function over a training data {X, Y}

Search for the parameters that minimize the loss

Evaluate the model on a different set of test data

2. Shallow Neural Networks

$$y = f[x, \phi]$$

$$= \phi_0 + \phi_1 a[\theta_{10} + \theta_{11}x] + \phi_2 a[\theta_{20} + \theta_{21}x] + \phi_3 a[\theta_{30} + \theta_{31}x].$$

$$\phi = \{\phi_0, \phi_1, \phi_2, \phi_3, \theta_{10}, \theta_{11}, \theta_{20}, \theta_{21}, \theta_{30}, \theta_{31}\}$$

$$a[z] = \text{ReLU}[z] = \begin{cases} 0 & z < 0 \\ z & z \ge 0 \end{cases}.$$

- Shallow Neural Networks = multivariate inputs X to multivariate outputs Y
- Three linear functions of the input data -> pass three results through an a activation function a[z]

- If the input is less than zero -> return zero
 - Else -> return the input unchanged

- Family of functions defined by linear regression

$$\begin{aligned}
\theta_{10} + \theta_{11}x & h_1 &= a[\theta_{10} + \theta_{11}x] \\
\theta_{20} + \theta_{21}x & h_2 &= a[\theta_{20} + \theta_{21}x] & y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3. \\
\theta_{30} + \theta_{31}x & h_3 &= a[\theta_{30} + \theta_{31}x],
\end{aligned}$$

- h1, h2, h3 = hidden unit
- Linear regression -> activation function -> combining hidden units

left is input data X, right is prediction Y

Universal approximation theorem

$$h_{1} = a[\theta_{10} + \theta_{11}x]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x] \longrightarrow h_{d} = a[\theta_{d0} + \theta_{d1}x],$$

$$h_{3} = a[\theta_{30} + \theta_{31}x],$$

$$y = \phi_{0} + \phi_{1}h_{1} + \phi_{2}h_{2} + \phi_{3}h_{3}. \longrightarrow y = \phi_{0} + \sum_{d=1}^{D} \phi_{d}h_{d}.$$

- Generalize and consider the case with D hidden units
- The number of hidden unit = measure of the network capacity

Universal approximation theorem

- Add more hidden unit -> Add another linear region
- Regions become more numerous -> represent smaller sections of the function -> well approximated by a line

Multivariate inputs and outputs

$$\mathbf{x} = [x_1, x_2, \dots, x_{D_i}]^T$$

$$\mathbf{y} = [y_1, y_2, \dots, y_{D_o}]^T$$

- More general case
- The network maps multivariate input X to multivariate input Y

Multivariate inputs and outputs

$$h_1 = a[\theta_{10} + \theta_{11}x]$$

 $h_2 = a[\theta_{20} + \theta_{21}x]$
 $h_3 = a[\theta_{30} + \theta_{31}x]$
 $h_4 = a[\theta_{40} + \theta_{41}x]$

$$y_1 = \phi_{10} + \phi_{11}h_1 + \phi_{12}h_2 + \phi_{13}h_3 + \phi_{14}h_4$$

 $= \phi_{20} + \phi_{21}h_1 + \phi_{22}h_2 + \phi_{23}h_3 + \phi_{24}h_4.$

- This network produces two piecewise linear functions
 - 4 hidden units = 4 joints

Multivariate inputs and outputs

$$h_1 = a[\theta_{10} + \theta_{11}x_1 + \theta_{12}x_2]$$

$$h_2 = a[\theta_{20} + \theta_{21}x_1 + \theta_{22}x_2]$$

$$h_3 = a[\theta_{30} + \theta_{31}x_1 + \theta_{32}x_2],$$

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3.$$

- Two inputs, three hidden units, one outputs
 - 3 hidden units = 3 joints

General Case

$$h_d = \mathbf{a} \left[\theta_{d0} + \sum_{i=1}^{D_i} \theta_{di} x_i \right]$$

- Calculate hidden units
 - Manipulate hidden units

$$y_j = \phi_{j0} + \sum_{d=1}^{D} \phi_{jd} h_d$$

- Calculate outputs
- Manipulate parameters

General Case

- Increasing Number of Regions
- High dimensions -> rapidly increases

General Case

- Input Dimensions
$$= D^i$$
, hilden unt $= D$
 $\rightarrow 2^{D^i} < hear$ region $< 2^D$

Terminology

- Input layer = input data X
- Hidden layer = hidden units or neurons
 - Output layer = output data Y

Activation Function

 Dying ReLU problems: incoming weights is locally flat so we cannot walk downhill

Contents

1. Deep neural networks

- Composing neural networks
- From composing networks to deep networks
- Deep Neural networks
- Matrix Notation
- Shallow vs. deep neural networks

2. Summary

Composing networks

3. Code

- Clipping functions
- Deep networks

1. Deep neural networks

Composing neural networks

First Network

$$h_{1} = a[\theta_{10} + \theta_{11}x]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x]$$

$$h_{3} = a[\theta_{30} + \theta_{31}x]$$

$$y = \phi_{0} + \phi_{1}h_{1} + \phi_{2}h_{2} + \phi_{3}h_{3}$$

Second Network

$$h_{1}' = a[\theta_{10}' + \theta_{11}'y]$$

$$h_{2}' = a[\theta_{20}' + \theta_{21}'y]$$

$$h_{3}' = a[\theta_{30}' + \theta_{31}'y]$$

$$y' = \phi_{0}' + \phi_{1}'h_{1}' + \phi_{2}'h_{2}' + \phi_{3}'h_{3}'$$

- Two shallow networks with three hidden units each
- First network -> input : x , output : y
- Second network -> input : y , output : y'

Composing neural networks

- First network maps inputs $x \in [-1,1]$ to outputs $y \in [-1,1]$
- Multiple inputs x can be mapped to the same output y
- Second network maps inputs $y \in [-1,1]$ to outputs $y' \in [-1,1]$
- Each network has three linear regions

Composing neural networks

- input, output graph of Network 1 + Network 2

- First + Second network -> input : x , output : y'
- Multiple inputs x can be mapped to the same output y'

From composing networks to deep networks

In The Second Network

$$h'_{1} = a[\theta'_{10} + \theta'_{11}y] = a[\theta'_{10} + \theta'_{11}\phi_{0} + \theta'_{11}\phi_{1}h_{1} + \theta'_{11}\phi_{2}h_{2} + \theta'_{11}\phi_{3}h_{3}]$$

$$h'_{2} = a[\theta'_{20} + \theta'_{21}y] = a[\theta'_{20} + \theta'_{21}\phi_{0} + \theta'_{21}\phi_{1}h_{1} + \theta'_{21}\phi_{2}h_{2} + \theta'_{21}\phi_{3}h_{3}]$$

$$h'_{3} = a[\theta'_{30} + \theta'_{31}y] = a[\theta'_{30} + \theta'_{31}\phi_{0} + \theta'_{31}\phi_{1}h_{1} + \theta'_{31}\phi_{2}h_{2} + \theta'_{31}\phi_{3}h_{3}]$$

$$\psi : psi$$

$$\psi_{10} = \theta'_{10} + \theta'_{11}\phi_{0}, \psi_{11} = \theta'_{11}\phi_{1}$$

$$\psi_{12} = \theta'_{11}\phi_{2}, \psi_{13} = \theta'_{11}\phi_{3} \dots$$

$$h'_{1} = a[\psi_{10} + \psi_{11}h_{1} + \psi_{12}h_{2} + \psi_{13}h_{3}]$$

$$h'_{2} = a[\psi_{20} + \psi_{21}h_{1} + \psi_{22}h_{2} + \psi_{23}h_{3}]$$

$$h'_{3} = a[\psi_{30} + \psi_{31}h_{1} + \psi_{32}h_{2} + \psi_{33}h_{3}]$$

- In first equation, parameters are constrained to be products of elements from the vectors $[\theta'_{11}, \theta'_{21}, \theta'_{31}]$ and $[\phi_1, \phi_2, \phi_3]$
- In second equation, ψ_{11} , ψ_{21} , ... , ψ_{33} can take arbitrary value

From composing networks to deep networks

- Neural network with one input, one output, and two hidden layers
- Each layer contains three hidden units

From composing networks to deep networks

- First network has two inputs, one output, three hidden units
- Second network has one input, one output, two hidden units
- b) generates 7 linear regions, c) generates 2 linear regions, d) generates 13 linear reigons

From composing networks to deep networks

First layer Second layer
$$h_1 = a[\theta_{10} + \theta_{11}x] \qquad h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]$$

$$h_2 = a[\theta_{20} + \theta_{21}x] \qquad h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]$$

$$h_3 = a[\theta_{30} + \theta_{31}x] \qquad h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$$

$$output: y = \phi_0 + \phi_1h_1 + \phi_2h_2 + \phi_3h_3 \qquad output: y' = \phi_0' + \phi_1'h_1' + \phi_2'h_2' + \phi_3'h_3'$$

- General Deep Neural network with one input, one output, and two hidden layers
- Each layer contains three hidden units

- Input to the second hidden layer
- joints between linear regions are at the same places

• Each linear function is clipped to zero by the ReLu acvitivate function

- Clipped functions are then weighted with parameters $\phi 1', \phi 2', \phi 3'$ respectively
- Finally, the clipped and weighted functions are summed and offset $\phi 0'$ is added

Hyperparameters

- *K* : the number of layers (depth)
- $D_1, D_2, ..., D_K$: the number of hidden units at each layer (width)

Hyperparameters

- Ω_k : weight matrix
- β_k : bias vector

Matrix notation

First layer
$$h_{1} = a[\theta_{10} + \theta_{11}x]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x]$$

$$h_{3} = a[\theta_{30} + \theta_{31}x]$$

output: $y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3$

First layer
$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = a \begin{pmatrix} \begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} x \end{pmatrix}$$

output:
$$y = \phi_0 + [\phi_1 \phi_2 \phi_3] \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix}$$

Second layer

$$h'_{1} = a[\psi_{10} + \psi_{11}h_{1} + \psi_{12}h_{2} + \psi_{13}h_{3}]$$

$$h'_{2} = a[\psi_{20} + \psi_{21}h_{1} + \psi_{22}h_{2} + \psi_{23}h_{3}]$$

$$h'_{3} = a[\psi_{30} + \psi_{31}h_{1} + \psi_{32}h_{2} + \psi_{33}h_{3}]$$

output:
$$y' = \phi_0' + \phi_1' h_1' + \phi_2' h_2' + \phi_3' h_3'$$

$$\begin{bmatrix} h'_{1} \\ h'_{2} \\ h'_{3} \end{bmatrix} = a \begin{pmatrix} \begin{bmatrix} \psi_{10} \\ \psi_{20} \\ \psi_{30} \end{bmatrix} + \begin{bmatrix} \psi_{11} & \psi_{12} & \psi_{13} \\ \psi_{21} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \\ h_{3} \end{bmatrix}$$

$$output : y' = \phi_{0}' + [\phi_{1}'\phi_{2}'\phi_{3}'] \begin{bmatrix} h'_{1} \\ h'_{2} \\ h'_{3} \end{bmatrix}$$

output :
$$y' = \phi_0' + [\phi_1' \phi_2' \phi_3'] \begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix}$$

Matrix notation

First layer

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = a \left(\begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} x \right)$$

 $\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = a \begin{pmatrix} \begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} x \end{pmatrix}$ $output: y = \phi_0 + [\phi_1 \phi_2 \phi_3] \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix}$

First layer $h = a[\theta_0 + \theta x]$ output: $y = \phi_0 + \phi h$ Second layer

$$\begin{bmatrix} h'_{1} \\ h'_{2} \\ h'_{3} \end{bmatrix} = a \begin{pmatrix} \begin{bmatrix} \psi_{10} \\ \psi_{20} \\ \psi_{30} \end{bmatrix} + \begin{bmatrix} \psi_{11} & \psi_{12} & \psi_{13} \\ \psi_{21} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \\ h_{3} \end{bmatrix}$$

$$output : y' = \phi_{0}' + [\phi_{1}'\phi_{2}'\phi_{3}'] \begin{bmatrix} h'_{1} \\ h'_{2} \\ h'_{3} \end{bmatrix}$$

output :
$$y' = \phi_0' + [\phi_1' \phi_2' \phi_3'] \begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix}$$

Second layer

$$h' = a[\psi_0 + \Psi h]$$

$$output : y' = \phi'_0 + \phi' h'$$

Matrix notation

General formulation

$$h_1 = a[\beta_0 + \Omega_0 x]$$

$$h_2 = a[\beta_1 + \Omega_1 h_1]$$

$$h_3 = a[\beta_2 + \Omega_2 h_2]$$
...
$$h_k = a[\beta_{k-1} + \Omega_{k-1} h_{k-1}]$$

$$y = \beta_k + \Omega_k h_k$$

$$y = \beta_k + \Omega_k a[\beta_{k-1} + \Omega_{k-1} a[...\beta_2 + \Omega_2 a[\beta_1 + \Omega_1 a[\beta_0 + \Omega_0 x]]...]]$$

 eta_k : bias vector Ω_k : weight matrix

- Deep Neural Network as a single function

Ability to approximate different functions

- Deep network with N hidden layers could represent the composition of N shallow networks
- If the second of these(right image) networks computes the identity function, this deep network replicates a single shallow network
 - : Deep neural network can approximate same function as shallow neural networks do

Number of linear regions per parameter

- One input , one output
- D hidden units can create up to D +1 linear regions

- One input , one output
- K layers of D hidden units can create up to $(D + 1)^K$ linear regions

Number of linear regions per parameter

- K: number of layers, x: Number of parameters , y: Number of regions
- Each subsequent point represents 1 hidden unit in a) graph, and 10 hidden units in b) graph
- In graph a), if K=5 , Number of hidden units per layer = 10 has about 500 parameters, and can create more than 10^5 linear regions
- In graph b), if K=5, Number of hidden units per layer = 50 has about 10000 parameters, and can create more than 10^{100} linear regions

Large, structured Input, Training and generalization

- Local-to-global processing is difficult to specify without using multiple layers (chapter 10)
- Deep network is usually easier to train moderately than to train shallow network
- More hidden layers -> More difficult to train
 - : Appropriate training techniques and hyperparameter tuning are necessary

2. Summary

Summary

A deep neural network can be constructed by combining shallow neural networks

Hyperparameter

- *K*: the number of layers (depth)
- $D_1, D_2, ..., D_K$: the number of hidden units at each layer (width)

Shallow vs. deep neural networks

- Both networks can approximately any function given enough capacity
- Deep networks produce more linear regions per parameter
- Some functions can be approximated much more efficiently by deep networks

3. Code

Code

1. Supervised learning

https://colab.research.google.com/drive/1T-8dlHoQJvDffHgiyjX1lKS62jlk19Dg#scrollTo=sfB2oX2RNvuF

2. Composing networks

https://colab.research.google.com/drive/1t7Ha60oqkDcyY0WsHBKAvEQwnpvPsXTC

3. Clipping functions

https://colab.research.google.com/drive/1Pjx2wJJ6W-L2ATySxR9J4h51w409eyjr

4. Deep neural networks

https://colab.research.google.com/drive/1XwE1mHHTSX-sovIvCMoTV1j_2QFR5A3B