Oscillation et ensemble des points de continuité d'une fonction

Soit (X,d) un espace métrique et $f:X\to\mathbb{R}$ une fonction. Pour tout $x\in X$, l'oscillation de f en x est définie par

$$\omega_f(x) = \inf_{\delta > 0} \left(\sup_{d(t,x) < \delta, d(u,x) < \delta} |f(t) - f(u)| \right)$$

- 1. Démontrer que f est continue en x si et seulement si $\omega_f(x) = 0$.
- 2. Montrer que, pour tout $\epsilon > 0$, l'ensemble $\Omega_{\epsilon} = \{x \in X, \omega_f(x) < \epsilon\}$ est un ouvert de X.
- 3. En déduire que l'ensemble C des points où f est continue est un borélien de X.
- 1. Supposons que f est continue en $x \in X$, alors pour tout $\epsilon > 0$, il existe $\alpha > 0$ tel que $|f(t) f(x)| < \epsilon$ si $d(x,t) \le \alpha$. Soient t,u tels que $d(t,x) \le \alpha$ et $d(u,x) \le \alpha$, alors d'après l'inégalité triangulaire $|f(t) f(u)| < 2\epsilon$, puis $\omega_f(x) \le 2\epsilon$ et cela pour tout $\epsilon > 0$, donc $\omega_f(x) = 0$. Réciproquement, supposons que $\omega_f(x) = 0$. Il s'en suit par définition de la borne inf que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que $|f(t) f(u)| < \epsilon$ pour tous t,u vérifiant $d(t,x) \le \delta$ et $d(u,x) \le \delta$, il suffit de choisit u = x pour trouver que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que $|f(t) f(x)| < \epsilon$ si $d(t,x) < \delta$, et c'est la définition de la continuité de f en x. En conclusion, f est continue en $x \in X$ si et seulement si $\omega_f(x) = 0$.
- 2. Soit $\epsilon > 0$, il existe $\delta > 0$ tel que si $d(t,x) \le \delta$ et $d(u,x) \le \delta$, alors $|f(t) f(u)| < \epsilon$. Montrons que si $y \in X$ $d(y,x) \le \delta/2$, on a aussi $\omega_f(y) < \epsilon$. Pour cela, on pose $\delta' = \delta/2$ et considérons $t,u \in X$ avec $d(t,y) \le \delta'$ et $d(u,y) \le \delta'$. Par l'inégalité triangulaire, on a $d(t,x) \le \delta' + \delta' = \delta$ et $d(u,x) \le \delta$. On en déduit que $|f(t) f(u)| < \epsilon$, ou encore que $\omega_f(y) < \epsilon$.
- 3. On a

$$C = \{x \in X, \omega_f(x) = 0\} = \bigcap_{n \ge 1} \Omega_{1/n}$$

Donc l'ensemble C est une intersection dénombrable d'ouverts, il s'en suit que C est un borélien. C'est donc une partie mesurable de l'espace mesurable (X, B(X)) où B(X) est la tribu de Borel de l'espace métrique X.