M2

ymonbru

May 22, 2024

Introduction

1.1 Total Complexes

Definition 1.1. If $A_0^{\bullet} \to ... \to A_n^{\bullet}$ is a sequence of maps (with $f_i : A_i \to A_{i+1}$) of complex such that the composition of two consecutive maps is 0, then let's denote $[A_0^{\bullet} \to ... \to A_n^{\bullet-n}]$ the total complex of this double complex, defined by the following data:

- The object in degré k is $\bigoplus_{i=0}^{n} A_{i}[-i]^{k}$
- $\bullet \ \, \textit{The differential is given by the matrix} \begin{pmatrix} d_{A_0} & 0 & \dots & \dots & 0 \\ f_0 & -d_{A_1} & \dots & \dots & 0 \\ 0 & f_1 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & (-1)^{n-1}d_{A_{n-1}} & 0 \\ 0 & 0 & \dots & f_{n-1} & (-1)^n d_{A_n} \end{pmatrix}$

Proof. One needs to check that the matrix square is 0. Let M be this matrix and (i, j) be integers.

$$M^2[i,j] = \sum_{k=1}^n M[i,k] M[k,j] = M[i,i] M[i,j] + M[i,i-1] M[i-1,j]$$

One can distinguish four cases:

- If j is not in $\{i-2, i-1, i, \}$ then the two terms are 0.
- If j = i, then $M^2[i, j] = ((-1)^i d_A)^2 + 0 = 0$.
- If j=i-1 then $M^2[i,j]0+(-1)^id_{A_i}\circ f_i+(-1)^{i+1}d_{A_{i+1}}\circ f_i=0$ because f_i is a morphism of complex.

• If j = i - 2 then $M^2[i, j] = f_i \circ f_{i-1} = 0$.

Remark 1.2. In particular, if $f: A^{\bullet} \to B^{\bullet}$ is a morphism of complex then $[A^{\bullet} \to B^{\bullet-1}]$ is the cone of the morphism f.

Lemma 1.3. A morphism of complex $f: A^{\bullet} \to B^{\bullet}$ is a quasi isomorphism if and only if, its cone is acyclic.

Proof. One get's a short exact sequence $0 \to B^{\bullet}[-1] \to [A^{\bullet} \to B^{\bullet-1}] \to A^{\bullet} \to 0$ by using the canonical inclusion and projection over the direct sum. The long exact sequence induced in cohomology is then:

$$\dots H^{k-1}A^{\bullet} \to H^kB^{\bullet}[-1] \to H^k[A^{\bullet} \to B^{\bullet-1}] \to H^kA^{\bullet} \to H^{k+1}B^{\bullet}[-1]\dots$$

By using the fact that $H^kB^{\bullet}[-1] = H^{k-1}B^{\bullet}$ one gets:

$$\ldots \to H^{k-1}A^{\bullet} \to H^{k-1}B^{\bullet} \to H^k[A^{\bullet} \to B^{\bullet-1}] \to H^kA^{\bullet} \to H^kB^{\bullet} \ldots$$

And then the statement is straightforward by reading the exact sequence.

Lemma 1.4. If a complex $[A^{\bullet} \to B^{\bullet - 1} \to C^{\bullet - 2}]$ is acyclic then there is a long exact sequence

$$\ldots \to H^kA \to H^kB \to H^kC \to \ldots$$

Proof. One can see that by construction there is a canonical isomorphism of complexess: $[A^{\bullet} \to B^{\bullet-1} \to C^{\bullet-2}] = [A^{\bullet} \to [B^{\bullet} \to C^{\bullet-1}]^{\bullet-1}].$

Then by the previous lemma: $A^{\bullet} \to [B^{\bullet} \to C^{\bullet-1}]$ is a quasi isomorphism. One can then rewrite the long exact sequence in cohomology given by the short exact sequence $0 \to C^{\bullet}[-1] \to [B^{\bullet} \to C^{\bullet-1}] \to B^{\bullet} \to 0$ wich is (as in the previous lemma):

$$\ldots \to H^{k-1}B^{\bullet} \to H^{k-1}C^{\bullet} \to H^k[B^{\bullet} \to C^{\bullet-1}] \to H^kB^{\bullet} \to H^kC^{\bullet} \to \ldots$$

The result is then a long exact sequence:

$$\dots \to H^{k-1}B^{\bullet} \to H^{k-1}C^{\bullet} \to H^kA^{\bullet} \to H^kB^{\bullet} \to H^kC^{\bullet} \to \dots$$

Presheaves and sheaves

Let X be a locally compact Hausdorf space.

2.1 Sheaves

Definition 2.1. A presheave on X is a contravariant functor from the category of open sets of X to abélian groups.

Definition 2.2. If \mathcal{F} is a presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in U} \mathcal{F}(U)$.

Definition 2.3. If \mathcal{F} is a presheaf on X, it is said to be a sheaf if for any $U \subset X$ open and any covering family of U $(U_a)_{a \in A}$ one has the exact sequence:

$$0 \to \mathcal{F}(U) \to \prod_{a \in A} \mathcal{F}(U_a) \to \prod_{a,b \in A} \mathcal{F}(U_a \cap U_b) \tag{2.1}$$

2.2 \mathcal{K} -sheaves

Definition 2.4. A K-presheave on X is a contravariant functor from the category of compact sets of X to abélian groups.

Definition 2.5. If \mathcal{F} is a \mathcal{K} -presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in K \ compact} \mathcal{F}(K) = \mathcal{F}(\{p\}).$

Definition 2.6. If \mathcal{F} is a \mathcal{K} -presheaf on X, it is said to be a \mathcal{K} -sheaf if the following conditions are satisfied:

$$\mathcal{F}(\emptyset) = 0 \tag{2.2}$$

• For K_1 and K_2 two comapets of X the following sequence is exact:

$$0 \to \mathcal{F}(K_1 \cup K_2) \to \mathcal{F}(K_1) \bigoplus \mathcal{F}(K_2) \to \mathcal{F}(K_1 \cap K_2) \tag{2.3}$$

• For any compact K of X, the following natural morphism is an isomorphism

$$\lim_{K \subset U \text{ open } \underset{relatively \text{ compact}}{\longmapsto} \mathcal{F}(\overline{U}) \to \mathcal{F}(K) \tag{2.4}$$

Remark 2.7. (2.4) is well defined because if K is a compact subset of X, then for $x \in K$ let U_x be an open neighborhood relatively compact (wich exists by local compactness), the family $(U_x)_{x\in K}$ covers K then one can extract a finite cover of it: $U_1, ... U_n$ and then $\bigcup_{i=1}^n U_i$ is an open neighborhood, and a finite union of relatively compact, then it's relatively compact. $(\overline{\bigcup_{i=1}^n U_i} = \bigcup_{i=1}^n \overline{U_i})$

2.3 Technical lemmas

Lemma 2.8. If $K_1, \dots K_n$ are comapets of X then $\{U_1 \cap \dots \cap U_n\}_{U_i \supset K_i \text{ open in } X}$ is a cofinal system of neighborhoods of $K_1 \cap \dots \cap K_n$.

Proof. It's the theorem IsCompact.nhdsSet_inter_eq in the File Mathlib/Topology/Separation.lean and the use of Filter.HasBasis.inf in the file Mathlib.Order.Filter.Bases

Lemma 2.9. If \mathcal{C} and \mathcal{D} are two categories, $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ two functors such that (F,G) is an adjoint pair. Then for (F,G) to be an equivalence of category, it's enough to have that thes canonical naturals transformations $id_{\mathcal{D}}\Rightarrow F\circ G$ and $G\circ F\Rightarrow id_{\mathcal{D}}$ are isomorphisms.

Proof. Category Theory. Adjunction. to Equivalence in mathlib

2.4 Equivalence of category

Definition 2.10.

• If \mathcal{F} is a presheaf then let $\alpha^*\mathcal{F}$ be the \mathcal{K} -presheaf:

$$K \mapsto \varinjlim_{K \subset U \ open} \mathcal{F}(U)$$

• If \mathcal{G} is a \mathcal{K} -presheaf then let $\alpha_*\mathcal{G}$ be the presheaf:

$$U \mapsto \varprojlim_{U \supset K} \mathcal{G}(K)$$

Proposition 2.11. The pair (α^*, α_*) is an adjonit pair.

Proof. • Let τ be an element of hom $(\alpha^*\mathcal{F},\mathcal{G})$. It's the data of morphism τ_K for K a compact of X such that for any K and K' compacts

$$\lim_{K \subset U} \mathcal{F}(U) \xrightarrow{\tau_K} \mathcal{G}(K)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\lim_{K \subset U} \mathcal{F}(U) \xrightarrow{\tau_{K'}} \mathcal{G}(K')$$

$$\downarrow \qquad \qquad \downarrow$$

is a commutative square. Then for any U and V opens, by composing with the commutative square

one get's a commutative square:

$$\mathcal{F}(U) \longrightarrow \mathcal{G}(K)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}(V) \longrightarrow \mathcal{G}(K')$$
(2.6)

- . Conversely such data give rise (by taking the limit over U and V) to a commutative square such as in (2.5)
- On the other hand if one takes the limit over K and K' one get's a commutative square

$$\begin{array}{c|c} \mathcal{F}(U) & \longrightarrow & \varprojlim_{K\subset U} \mathcal{G}(K) \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & \mathcal{F}(V) & \longrightarrow & \varprojlim_{K\subset V} \mathcal{G}(K) \end{array}$$

(that allow to recover the previous one in the same as before) wich is the data of an element of $\hom(\mathcal{F}, \alpha_*\mathcal{G})$.

Then the elements of $\hom(\alpha^*\mathcal{F},\mathcal{G})$ and $\hom(\mathcal{F},\alpha_*\mathcal{G})$ are both obtained by a natural construction (in \mathcal{F} and \mathcal{G}) applied to (2.6).

Lemma 2.12.

- α^* send sheaves to K-sheaves
- α^* send K-sheaves to sheaves
- The reistrictions obtained still form an adjoint pair between shaeves and K-sheaves.

Proof.

• Let \mathcal{F} be a sheaf. The condition $\emptyset \subset U$ is always satisfied and \emptyset is minimal among open subset for the inclusion then $(\alpha^*)(\mathcal{F})(\emptyset) = \mathcal{F}(\emptyset)$. One can apply the sheaf condition to the empty family and obtain the exact sequence $0 \to \mathcal{F}(\emptyset) \to \Pi_{\emptyset} = 0$, and then (2.2).

Let K_1, K_2 be two of compacts of X, let U_1, U_2 be a two opens such that $K_i \subset U_i$ for all i. Then the sheaf condition gives an exact sequence (because for abelian groups the product is the direct sum) $0 \to \mathcal{F}(U_1 \cup U_2) \to \mathcal{F}(U_1) \bigoplus \mathcal{F}(U_2) \to \mathcal{F}(U_1 \cap U_2)$. The injective limits are exacts then taking the limits over those opens gives an exact sequence:

$$0 \to \varinjlim_{K_i \subset U_i} \mathcal{F}(U_1 \cup U_2) \to \varinjlim_{K_i \subset U_i} \mathcal{F}(U_1) \bigoplus \mathcal{F}(U_2) \to \varinjlim_{K_i \subset U_i} \mathcal{F}(U_1 \cap U_2) \tag{2.7}$$

An open U contains $K_1 \cup K_2$ if and only if it's of the form $U_1 \cup U_2$ with $K_i \subset U_i$ (one can take $U_1 = U_2 = U$ for the direct implication), then by definition $\lim_{K_i \subset U_i} \mathcal{F}(U_1 \cup U_2) = \alpha^* \mathcal{F}(K_1 \cup K_2)$.

The injective limit commute with the direct product, then:

$$\varinjlim_{K_i \subset U_i} \mathcal{F}(U_1) \bigoplus \mathcal{F}(U_2) = (\varinjlim_{K_i \subset U_i} \mathcal{F}(U_1)) \bigoplus (\varinjlim_{K_i \subset U_i} \mathcal{F}(U_2)) = \alpha^* \mathcal{F}(K_1) \bigoplus \alpha^* \mathcal{F}(K_2)$$

By the lemma 2.8 the limit $\varinjlim_{K_i\subset U_i}\mathcal{F}(U_1\cap U_2)$ compute the same thing as $\varinjlim_{K_1\cap K_2\subset U}\mathcal{F}(U)=\alpha^*\mathcal{F}(K_1\cap K_2).$

Then the exact sequence (??) is in fact (2.3).

Let K be a compact, U a relatively comapct open such that $K \subset U$ and V an open such that $\bar{U} \subset V$ then $K \subset V$. Conversely if V is an open containing K, then K is a comapct of V (locally compact as X is) and then admits an open neighborhood U relatively compact (in V). Thus (because the two limits are over the same set) one has the equality

$$\varinjlim_{K\subset U \text{open relatively compact } \bar{U}\subset V \text{ open}} \mathcal{F}(V) = \varinjlim_{K\subset U \text{ open}} \mathcal{F}(V)$$

- . Wich rewrite by definition as $\lim_{K \subset U \text{ open relatively compact}} \alpha^* \mathcal{F}(\bar{U}) = \alpha^* \mathcal{F}(V)$ i.e. (2.4)
- A morphisme between two $(\mathcal{K}\text{-})$ sheaves is by definition is by definition a morphisme between the two underling $(\mathcal{K}\text{-})$ presheaves then, the natural equality $\hom_{\mathrm{Sh}}(\alpha^*\mathcal{F},\mathcal{G}) = \hom_{\mathrm{Sh}}(\mathcal{F},\alpha_*\mathcal{G})$ is a consequence of 2.11

Lemma 2.13. The previous adjoint pair give rise to an equivalence of category between shaeves and K-sheaves

Proof. By using 2.9, it's enough to show that for any sheaf \mathcal{F} and \mathcal{K} -sheaf \mathcal{G} , the natural maps $\mathcal{F} \to \alpha_* \alpha^* \mathcal{U}$ and $\alpha^* \alpha_* \mathcal{G} \to \mathcal{G}$ are isomorphism. The fact of being a natural isomorphism can be checked locally.

6

• Let U be an open of X. One has to check that $\mathcal{F}(U) \to \varprojlim_{U \supset K \text{ compact } K \subset U' \text{ open}} \mathcal{F}(U')$ is an isomorphism.

•

Homotopy sheaves

Definition 3.1. Let \mathcal{F}^{\bullet} be complex of \mathcal{K} -presheaves then taking the cohomology defines a \mathcal{K} -presheaf denoted $H^{\bullet}\mathcal{F}^{\bullet}$.

Definition 3.2. A morphisme of complex of \mathcal{K} -presheave $\mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet}$ is called quasi-isomorphism if it induces isomorphisms $H^{i}\mathcal{F}^{\bullet} \to H^{i}\mathcal{G}^{\bullet}$ for all i.

Definition 3.3. A complex of K-presheaves \mathcal{F}^{\bullet} is said to be a Homotopy-K-sheave if the following conditions are satisfied:

$$\mathcal{F}^{\bullet}(\emptyset)$$
 is an acyclic complex (3.1)

• For K_1 and K_2 two comapets of X the following complex is acyclic:

$$[\mathcal{F}^{\bullet}(K_1 \cup K_2) \to \mathcal{F}^{\bullet-1}(K_1) \bigoplus \mathcal{F}^{\bullet-1}(K_2) \to \mathcal{F}^{\bullet-2}(K_1 \cap K_2)] \tag{3.2}$$

• For any compact K of X, the following natural morphism is a quasi-isomorphism

$$\lim_{K \subset U \text{ open } relatively compact} \mathcal{F}^{\bullet}(\overline{U}) \to \mathcal{F}^{\bullet}(K)$$
(3.3)

Lemma 3.4. By using 1.4, (3.3) give rise to a "Mayer-Vietoris" long exact sequence:

$$\ldots \to H^k\mathcal{F}^\bullet(K_1 \cup K_2) \to H^k\mathcal{F}^\bullet(K_1) \bigoplus H^k\mathcal{F}^\bullet(K_2) \to H^k\mathcal{F}^\bullet(K_1 \cap K_2) \to \ldots$$

Lemma 3.5. Let \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves. If \mathcal{F}^{\bullet} has a finite filtration whose associated graded is a Homotopy- \mathcal{K} -sheaf, then \mathcal{F}^{\bullet} is a Homotopy- \mathcal{K} -sheaf.

$$Proof.$$
 TODO

Lemma 3.6. If \mathcal{F}^{\bullet} is a homotopy- \mathcal{K} -sheaf, and $H^{-1}\mathcal{F}^{\bullet} = 0$ then $H^0\mathcal{F}^{\bullet}$ is a \mathcal{K} -sheaf Proof.

- $\mathcal{F}^{\bullet}(\emptyset)$ is acyclic then in particular it's cohomology in degre 0 is 0, then one gets (2.2)
- $H^{-1}\mathcal{F}^{\bullet}(K_1 \cap K_2) = 0$ then the first terms 3.4 gives the exact sequence of (2.3)
- TODO

Pushforward, exceptional pushforward, and pullback

Let X and Y be two locally compacts hausdorf spaces and $f: X \to Y$ be a continuous map.

4.1 For Sheaves

Definition 4.1. If \mathcal{F} is a pre-sheaf over X, then the rule $U \mapsto \mathcal{F}(f^{-1}(U))$ defines a pre-shaef over Y.

The functor obtained is denoted f_* and named the pushforward by f.

 f_* send sheaves over X into sheaves over Y.

Proof. TODO

 $\textbf{Definition 4.2.} \ \textit{If \mathcal{F} is a pre-sheaf over Y, then the rule $U \mapsto \varinjlim_{f(U) \subset V} \mathcal{F}(V)$ defines a pre-sheaf over Y.}$

over Y

If $\mathcal F$ is a sheaf, the sheafification of the previous pre-sheaf is a denoted $f^*\mathcal F$ and called the pullback by f.

Proof. TODO

Definition 4.3. If $f: X \to Y$ is the inclusion of an open subset, the exceptional pushforward by $f: f_!$ is defined by $f_! \mathcal{F}(U)$ being the subset of $f_* \mathcal{F}(U)$ of sections that vanish over a neighborhood of Y - X.

It send the sheaves over X into the sheaves over Y

Proof. TODO

4.2 For \mathcal{K} -sheaves

Let's assume that f is proper.

Definition 4.4. If \mathcal{F} is a pre- \mathcal{K} -sheaf over X, then the rule $K \mapsto \mathcal{F}(f^{-1}(K))$ defines a pre- \mathcal{K} -sheaf over Y.

The functor obtained is denoted f_* and named the pushforward by f.

 f_* send \mathcal{K} -sheaves over X into \mathcal{K} -sheaves over Y.

Proof. TODO

Čech cohomology

5.1 Čech cohomology of sheaves

Definition 5.1. If X is a topological space, and \mathcal{F} a sheaf over X, then let $\check{H}^{\bullet}(X;\mathcal{F})$) be the \check{C} ech cohomology of X with coeficient in \mathcal{F}

Definition 5.2. If X is a topological space, K a comapet subset of X and \mathcal{F} a sheaf over X, then let $\check{H}^{\bullet}_{K}(X;\mathcal{F})$ be the Čech cohomology of X with support in K with coefficient in \mathcal{F}

Definition 5.3. Let $f: X \to Y$ be a continuous map between topological spaces, and \mathcal{F} a sheaf over X. f induces a natural map $\check{H}^{\bullet}(Y; f_*\mathcal{F}) \to \check{H}^{\bullet}(X; \mathcal{F})$.

Moreover if f is proper, one gets a natural map $\check{H}^{\bullet}_{c}(Y; f_{*}\mathcal{F}) \to \check{H}^{\bullet}_{c}(X; \mathcal{F})$

Lemma 5.4. Let $f: X \to Y$ be an inclusion of open subset, then there is a natural isomorphism $f_!: \check{H}^{\bullet}_{c}(X; \mathcal{F}) \to \check{H}^{\bullet}(Y; f_!\mathcal{F})$

Proof.

5.2 Čech cohomology of complex of \mathcal{K} -sheaves

Definition 5.5. Let \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves on a compact space X then we define the Čech cohomology $\check{H}(X; \mathcal{F}^{\bullet})$ by TODO

Remark 5.6. By using the inclusion of \mathcal{K} -presheaves into complexes of \mathcal{K} -presheave, one get's a definition of Čech cohomology for \mathcal{K} -presheave.

Lemma 5.7. Let mathcal F^{\bullet} be an acyclic complex of \mathcal{K} -presheaves, then $\check{H}^k(X; mathcal F^{\bullet}) = 0$

Lemma 5.8. Let $0 \to \mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet} \to \mathcal{H}^{\bullet} \to 0$ be a short exact sequence of complex of \mathcal{K} -presheaves. Then there is a long exact sequence in čech cohomology:

$$\dots \to \check{H}^k(X; \mathcal{F}^{\bullet}) \to \check{H}^k(X; \mathcal{G}^{\bullet}) \to \check{H}^k(X; \mathcal{H}^{\bullet}) \to \dots$$

Proof. TODO

isomorphims.*Proof.* By 1.3, the complex $[\mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet-1}]$ is acyclic then by 5.7, it's čech cohomology is zero. But there is a short exact sequence $0 \to \mathcal{G}^{\bullet}[-1] \to [\mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet-1}] \to \mathcal{F}^{\bullet} \to 0$, then the long exact sequence induced by 5.8 gives the claimed isomorphisms. **Proposition 5.10.** Let \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves that verify (3.1) and (3.2) then the canonical map $H^{\bullet}\mathcal{F}^{\bullet} \to \check{H}^{\bullet}(X; \mathcal{F}^{\bullet})$ is an isomorphism. Proof. TODO Čech cohomology is determined by stalks **Lemma 5.11.** Let \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves that verify (2.4) and such that all the stalks are 0 then $\check{H}^{\bullet}(X;\mathcal{F})=0$ Proof. **Lemma 5.12.** Let \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves that verify (3.3) and $H^{i}\mathcal{F}^{\bullet} = 0$ for i << 0. Then if the stalks of \mathcal{F}^{\bullet} are acyclics, $\check{H}^{\bullet}(X; \mathcal{F}^{\bullet}) = 0$ Proof. TODO **Proposition 5.13.** Let \mathcal{F}^{\bullet} and \mathcal{G}^{\bullet} be complexes of \mathcal{K} -presheaves that verify (3.3) and $H^{i}\mathcal{F}^{\bullet}$ = $H^i\mathcal{G}^{\bullet} = 0$ for i small enough. Then if a morphism $\mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet}$ induces a quasi-isomorphism on stalks, $\check{H}^{\bullet}(X; \mathcal{F}^{\bullet}) = \check{H}^{\bullet}(X; \mathcal{G}^{\bullet})$

Proof.

Lemma 5.9. If $\mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet}$ is a quasi-isomorphism then the induced maps $\check{H}^i\mathcal{F}^{\bullet} \to \check{H}^i\mathcal{G}^{\bullet}$ are

Purehomotopy \mathcal{K} -sheaves

Definition 6.1. A homotopy \mathcal{K} -sheaf \mathcal{F}^{\bullet} is said to be pure on X if:

- For $p \in X$ and $i \neq 0$, $(H^i \mathcal{F}^{\bullet})_p = 0$
- $H^i\mathcal{F}^{\bullet} = 0$ for i << 0 locally on X: ie for all $p \in X$ there is an open neighbourhoud U of p and an integer N such that for $i \leq N$ and $K \subset U$: $H^i\mathcal{F}^{\bullet}(K) = 0$

Lemma 6.2. Let \mathcal{F}^{\bullet} be a pure-homotopy \mathcal{K} -sheaf. Then:

- For i < 0 $H^i \mathcal{F}^{\bullet} = 0$
- $H^0\mathcal{F}^{\bullet}$ is a \mathcal{K} -sheaf.

Proof. TODO

Proposition 6.3. Let \mathcal{F}^{\bullet} be a pure-homotopy \mathcal{K} -sheaf. Then there is a canonical isomorphism:

$$H^{\bullet}\mathcal{F}^{\bullet}(X) = \check{H}^{\bullet}(X; H^{0}\mathcal{F}^{\bullet})$$

More generaly: Let $[\mathcal{F}_0^{\bullet} \to \dots \mathcal{F}_n^{\bullet - n}]$ be a complex of pure-homotopy \mathcal{K} -sheaves, then there is a canonical isomorphism:

$$H^{\bullet}[\mathcal{F}^{\bullet}_{0}(X) \rightarrow \dots \mathcal{F}^{\bullet-n}_{n}(X)] = \check{H}^{\bullet}(X; [H^{0}\mathcal{F}^{\bullet}_{0} \rightarrow \dots \rightarrow (H^{0}\mathcal{F}^{\bullet}_{n})[n]])$$

Proof. TODO □

Poincaré-Lefschetz duality

Uses chech cohomology with compact supports for sheaves

Definition 7.1. Let M be a topological manifold, the rule $\mathfrak{o}_M : K \mapsto H_{\dim M}(M, M \setminus K)$ defines a \mathcal{K} -sheaf, called the orientation \mathcal{K} -sheaf of M.

If M is a manifold with boundary, let $j: M \setminus \partial M \to M$ denote the canonical inclusion. The the orientation shaeves of M are defined as follows:

- $\bullet \quad \mathfrak{o}_M := j_* \mathfrak{o}_{M \backslash \partial M}$
- $\bullet \quad \mathfrak{o}_{M} \quad {}_{rel\partial} := j_{!}\mathfrak{o}_{M \backslash \partial M}$

Definition 7.2. Singular chains

Lemma 7.3. Let X be a topological manifold, then we have:

- $C_{\bullet}(X,X)$ is an acyclic complex
- For A and B two closed subsets of X the following complex is acyclic:

$$[C_{\bullet}(X,X\backslash(A\cup B))\to C_{\bullet+1}(X,X\backslash A)\bigoplus C_{\bullet+1}(X,X\backslash B)\to C_{\bullet+2}(X,X\backslash(A\cap B))]$$

• For a family $(K_a)_{a\in A}$ of closed subsets of X wich is filtered (for any $a,b\in A$ there is $c\in A$ such that $K_c\subset K_a\cap K_b$) any compact K of X, the following natural morphism is a quasi-isomorphism

$$\varinjlim_{a\in A} C_{\bullet}(X,X\backslash K_a) \to C_{\bullet}(X,X\backslash (\bigcap_{a\in A} K_a))$$

Proof. TODO

Lemma 7.4. Let M be a topological manifold of dimension n with boundary, $i: X \to M$ a closed subset, and $N \subset \partial M$ a closed subset that locally looks like $\emptyset \subset \mathbb{R}^{n-1}, \mathbb{R}_{>0} \times R^{n-2} \subset \mathbb{R}^{n-1}$ or \mathbb{R}^{n-1} . Let $j: \mathring{M} \cup \mathring{N} \to M$ be the canonical inclusion. Then there is a canonical isomorphism:

$$H^{\bullet}[C_{n-1-\bullet}(N,N\backslash X)\to C_{n-1-\bullet}(M,M\backslash X)]=\check{H}^{\bullet}_{c}(X;i^{*}j_{!}j^{*}\mathfrak{o}_{M})$$

Proof. uses tout les poussé en avatn, tiré en arière et tout ça, la cohomologie à support compact

Homotopy colimits

8.1 Homotopy colimits

Definition 8.1.

Definition 8.2.

8.2 Homotopy colimits of pure homotopy $\mathcal{K}\text{-sheaves}$

Lemma 8.3.

Proof.

Lemma 8.4.

Steenrod homology