Applied Regression Lecture Notes

Zuletzt aktualisiert: 8. November 2023

Applied Regression

About

This repository contains the lecture notes for the course Applied Regression at the Technical University of Munich during the winter semester 2023/24.

You can download the merged file at merge.pdf

How to Contribute

- 1. Fork this Repository
- 2. Commit and push your changes to your forked repository
- 3. Open a Pull Request to this repository
- 4. Wait until the changes are merged

Contributors

Inhaltsverzeichnis

Applied Regression					 											
About															 	
How to Contribute .															 	
Contributors													•			
Lecture 1: Simple Regress	ion															
Data															 	
Least squares															 	
Assumptions															 	
Estimates for β_0 , β_1																
Variance of $\hat{\beta}_0$ and $\hat{\beta}_1$															 	

Lecture 1: Simple Regression

Data

Often in applications we would like to see if there is an association or trend of one variable with another. For example: How does the price of a house depend on its size?

A dataset for this very simple example would contain only two columns: - Size of the house (in square meters) - Price of the house (in \in)

A scatter plot of such data can be used to visually interpret the association between the two variables and to get a first impression of the data. On this data, different models can be fitted to describe the association between the two variables, the simplest of which is a linear model. Such models can be used to predict the price of a house based on its size. For linear models we want to fit a line to the data, which is described by the equation

$$y = \beta_0 + \beta_1 x$$

Least squares

The idea is to find $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimizes

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where $\hat{y}_i = \hat{\beta_0} + \hat{\beta_1} x_i$

This overall minimizes the vertical distances between the data points and the fitted line.

This minimazation problem can be solved by setting the partial derivatives of the sum (w.r.t. $\hat{\beta}_0$ and $\hat{\beta}_1$) to zero and yields the following results:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Assumptions

The model $y = \beta_0 + \beta_1 x + \epsilon$ and $\epsilon \sim N(0, \sigma^2)$ requires some assumptions to be valid:

- Independence of y
 - Each sample is independent of the others
- Linearity of mean of y
 - The mean of y is linearly dependent on x
- Homogeneity of variance of y
 - The variance of y is constant for all x
- Normal distribution of y
 - The distribution of y is normal for all x

Estimates for β_0 , β_1 and σ^2

Under these conditions it can be shown, that (using the previous formulas) $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators for β_0 and β_1 .

Given an independent set of observations (x_i, y_i) that follow the regression model $y = \beta_0 + \beta_1 x_i + \epsilon_i$ $\epsilon_i \sim N(0, \sigma^2)$,

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

is an unbiased estimator for σ^2 which is called the variability.

Variance of $\hat{\beta}_0$ and $\hat{\beta}_1$

Since $\hat{\beta}_0$ and $\hat{\beta}_1$ are linear combinations of the y_i which are generally normally distributed random variables, they are normally distributed as well. As such their variance can be calculated to be:

$$Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)$$
$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

 σ^2 can then be substituted by s^2 to get the estimated variance of $\hat{\beta}_0$ and $\hat{\beta}_1$.