Recherche de motifs: Hash Table

Cours 4

Plan du cours

- Algorithme : Table de Hachage
- Exemple
- Complexité

Algorithme: Table de hachage

- On cherche un motif de taille k dans les séquences régulatrices.
- Nous allons utiliser l'algo Table de hachage pour trouver les motifs de taille k, les plus fréquents.

Exemple: k=3, sequence = ACCATACCAGGCACC

k=3

ACCATACCAGGCACC

ACCATACCAGGCACC

ACC = 1

Table hachage

k=3	ACCATACCAGGCACC	Motif	frequence
	ACCATACCAGGCACC	ACC	1
	ACCATACCAGGCACC	CCA	1
	ACCATACCAGGCACC	CAT	1
	ACCATACCAGGCACC	ATA	1

k=3 ACCATACCAGGCACC

ACCATACCAGGCACC

ACCATACCAGGCACC

ACCATACCAGGCACC

ACCATACCAGGCACC

ACCATACCAGGCACC

Table hachage

Motif	freq	uence
ACC	2	
CCA	1	
CAT	1	
ATA	1	-

l. o	ACCATACCACCCACC	Table hac	hage
k=3	ACCATACCAGGCACC		
1	ACC ATACCAGGCACC	Motif	frequence
2	ACCATACCAGGCACC	ACC	2
3	ACCATACCAGGCACC	CCA	2
4	ACCATACCAGGCACC		1
5	ACCAT <mark>ACC</mark> AGGCACC	CAT	l
6	ACCATACCAGGCACC	ATA	1

k=3	ACCATACCAGGCACC	Table hac	hage
1	ACCATACCAGGCACC	Motif	frequence
2	ACCATACCAGGCACC	ACC	2
3	ACCATACCAGGCACC	CCA	2
4	ACCATACCAGGCACC	CAT	1
5	ACCAT <mark>ACC</mark> AGGCACC	<u> </u>	1
6	ACCATACCAGGCACC	ATA	
7	ACCATACCAGGCACC	CAG	1

k=3	ACCATACCAGGCACC	Table hachage
1	ACCATACCAGGCACC	ACC 3
2	ACCATACCAGGCACC	CCA 2
3	ACCATACCAGGCACC	CAT 1
4	ACCATACCAGGCACC	ATA 1
5	ACCAT <mark>ACC</mark> AGGCACC	
6	ACCATACCAGGCACC	CAG 1
7	ACCATAC <mark>CAG</mark> GCACC	AGG 1
8	ACCATACCAGGCACC	GGC 1
9	ACCATACCAGGCACC	GCA 1
10	ACCATACCAGGCACC	CAC 1
11	ACCATACCAGGCACC	
12	ACCATACCAGGCACC	

Le motif de taille 3 le plus fréquent es ACC

Hash Table : complexité

$$(n - k + 1)*(k) = O(n*k - k^2 + k)$$

A retenir

- L'algorithme table de Hachage peut trouver des motifs invariables de taille k dans les séquences régulatrices.
- Il trouve les f motifs les plus fréquents, f>=1
- Complexité ~ O (n*k)