Boximator: Generating Rich and Controllable Motions for Video Synthesis

(ICML 2025)

2024.12.03

Limitations of text-based motion control (1)

• Imperfect model is not always able to comply to all text prompts

ours

Text: "Adding wine to a glass."

Limitations of text-based motion control (2)

• Position, shape, size, trajectory are **not easy to express** in text

Text: "A handsome man is taking out a rose from his pocket with his right hand and looking at the rose."

ours Pika Gen-2

Suggestion : **Boximator**

"A girl in red is covering her face with a skull."

"A dog is chasing a red ball."

"The character made of pixels is dancing."

Intro. Boximator: How to move?

Intro. Boximator: Two type constraints

Hard box : Object

- For object selection
- For <u>rigorously</u> define final state

Soft box : Region

- For <u>roughly</u> define object's final state
- For <u>roughly</u> define moving trajectory

Inference

- <u>User</u> draw boxes or motion path in first and last frames
- Algorithm automatically inserts soft boxes in intermediary frames to achieve better control

Soft boxes provide both guidance and flexibility

Method: Model architecture

we freeze the original model parameters and solely focus on training the newly incorporated motion control

- TS(·) is a token selection operation that exclusively considers visual tokens
- h_{box} is a sequence of <u>control tokens</u>
- Each token represents a box and is defined by:

$$m{t}_b = \mathrm{MLP}(\mathrm{Fourier}([b_{\mathrm{loc}}, b_{\mathrm{id}}, b_{\mathrm{flag}}]))$$

Method: Self-tracking & Multi-Stage training

 A significant challenge in video motion control lies in associating box coordinates with objects and maintaining temporal consistency across frames

self-tracking

- (1) **generating a bounding box** for each object with the right color
- **(2) aligning these boxes with the Boximator constraints** in every frame

Figure 4. Self-tracking: train the model to track every constrained object. This figure shows 3 frames where the black horse and the yellow box surrounding it are generated together.

Multi-stage training

- (1) <u>Stage 1</u>, the model is **trained** using all the provided ground truth bounding boxes as **hard box constraints**
- (2) <u>Stage 2</u>, we substitute 80% of these **hard boxes with soft boxes**
- (3) <u>Stage 3</u>, we continue the Stage 2 **training** but **without self-tracking**
 - → Although these boxes are no longer visually present, their <u>internal representation persists</u>, enabling the model to <u>continue aligning with Boximator constraints</u>.

Experiments: quantitative measurement

- Fre´chet Video Distance (FVD : evaluate the quality and temporal motion dynamics of generated videos
- **CLIP**: similarity between text and generated video frames
- AP : alignment accuracy between the objects generated by the video generation model and the bounding boxes

Models	Extra Input	FVD(↓)	CLIPSIM(↑)	mAP/AP ₅₀ /AP ₇₅ (†)
MagicVideo [43]	-	1290	-	-
LVDM [12]	-	742	0.2381	-
ModelScope [31]	-	550	0.2930	-
Show-1 [42]	-	538	0.3072	-
PixelDance [41]	-	381	0.3125	-
Phenaki [30]	-	384	0.2870	-
FACTOR-traj [15]	Box	317	0.2787	0.290*/-/-
PixelDance + Boximator	-	237	0.3039	0.094/0.193/0.076
	Box	174	0.2947	0.349/0.479/0.359
	F0	113	0.2890	0.194/0.330/0.177
	F0 + Box	102	0.2874	0.365/0.521/0.384
ModelScope + Boximator	-	239	0.3013	0.096/0.195/0.084
	Box	216	0.2948	0.312/0.470/0.309
	F0	142	0.2865	0.141/0.260/0.126
	F0 + Box	132	0.2852	0.300/0.456/0.299

Experiments: qualitative measurement

A young mom holding her baby is leaving the scene.

Thank you

Q&A

Figure 3. Training data: all bounding boxes are projected to the cropped region (white dashed box).