TASK 1:Apply Exploratory Data Analysis (Univariate and Bivariate) using plotly.express library.

In [1]: import pandas as pd
import numpy as np

df=pd.read_csv(r"C:\Users\Suri\Downloads\dataset.csv")

In [2]: df.head()

Out[2]:	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District	DOL Vehicle ID	Vehicle Location	Electric Utility	2020 Census Tract
	0 JTMEB3FV6N	Monroe	Key West	FL	33040	2022	TOYOTA	RAV4 PRIME	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	42	0	NaN	198968248	POINT (-81.80023 24.5545)	NaN	12087972100
	1 1G1RD6E45D	Clark	Laughlin	NV	89029	2013	CHEVROLET	VOLT	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	38	0	NaN	5204412	POINT (-114.57245 35.16815)	NaN	32003005702
	2 JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	15.0	218972519	POINT (-120.50721 46.60448)	PACIFICORP	53077001602
	3 1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	238	0	39.0	186750406	POINT (-121.7515 48.53892)	PUGET SOUND ENERGY INC	53057951101
	4 3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	26	0	38.0	2006714	POINT (-122.20596 47.97659)	PUGET SOUND ENERGY INC	53061041500

In [3]: import plotly.express as px

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 112634 entries, 0 to 112633 Data columns (total 17 columns): Non-Null Count Dtype Column VIN (1-10) 112634 non-null object 112634 non-null object County City 112634 non-null object 112634 non-null object State 112634 non-null int64 Postal Code Model Year 112634 non-null int64 112634 non-null object Make Model 112614 non-null object Electric Vehicle Type 112634 non-null object Clean Alternative Fuel Vehicle (CAFV) Eligibility 112634 non-null object 10 Electric Range 112634 non-null int64 11 Base MSRP 112634 non-null int64 12 Legislative District 112348 non-null float64 13 DOL Vehicle ID 112634 non-null int64 112610 non-null object 14 Vehicle Location 15 Electric Utility 112191 non-null object

dtypes: float64(1), int64(6), object(10)
memory usage: 14.6+ MB

16 2020 Census Tract

In [5]: #scatter plot
 px.scatter(df,x="Model Year",y="Electric Range")

112634 non-null int64

Observation : Electric range of vechiles got increased till year 2020 , high in year 2020 and got decreased in next 3 years

In [6]: # remvoing all the rows which contains null values for the Model
 df=df[df["Model"].notnull()]

In [6]: #box plot
 px.box(df,x="Model",y="Model Year")

In [7]: #pie chart

px.pie(df,names="Electric Vehicle Type")

Battery Electric Vehicle (BEV)

Plug-in Hybrid Electric Vehicle (PHEV)