Tencent submission for WMT20 Quality Estimation Shared Task

Haijiang Wu Zixuan Wang Qingsong Ma Xinjie Wen Ruichen Wang Xiaoli Wang Yulin Zhang Zhipeng Yao Siyao Peng

PCG & CSIG, Tencent Inc, China

Highlights

- Our submission ranks first (tied) on the WMT20 Quality Estimation Shared Task -- Sentence-Level Post-editing for English-Chinese, achieving Pearson of .679 on dev and .664 on test [4].
- We employ an ensemble architecture of two SOTA predictor-estimator models using the OpenKiwi framework [2]: a transformer-based [1], and a cross-lingual language model (XLM) based model [3].

Architecture

Figure 1: Our Predictor-Estimator ensemble model.

Details

XLM Predictor

- Finetuned XLM with both Masked and Translation Language Modeling tasks.
- Used non-mask & masked representation.

XLM Estimator

- Implemented a multi-layer LSTM-estimator and a Transformer-estimator.
- Proposed top-K and multi-head attention to optimize the sentence features.

Transformer Predictor & Estimator

- Improved Transformer-based architecture by using multi-decoding in the MT module of the predictor.
- Created a second model by replacing the predictor by an XLM and took a weighted average of the two models as output.

Ensemble

• Included predictions from both Pred-Est systems and used 5-fold cross validation with several regression algorithms to optimize the task on Pearson correlation.

Results

- XLM Pred-Est Models (Table 1): The model with both masked and non-masked representations (both), using an LSTM-estimator with multi-head attention (attn) strategy ranks top with a Pearson score of .635 on dev.
- Trans Pred-Est Models (Table 2): Models integrated XLM-based estimators achieve highest correlation regardless of whether or not (1) the XLM-estimator has been fine-tuned; (2) source texts are included.
- Ensemble (Table 3): The ensemble model using Logistic Regression achieves the best Pearson of .679 on dev, and .664 on test, ranking first (tied) on the shared task.
- [1] K. Fan, J. Wang, B. Li, F. Zhou, B. Chen, and L. Si. 2019. "Bilingual Expert" Can Find Translation Errors. In *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 33. 6367–6374.
- [2] F. Kepler, J. Trénous, M. Treviso, M. Vera, and A. F. Martins. 2019. OpenKiwi: An open source framework for quality estimation. *arXiv preprint arXiv:1902.08646* (2019).
- [3] G. Lample and A. Conneau. 2019. Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291 (2019).
- [4] L. Specia, F. Blain, M. Fomicheva, E. Fonseca, V. Chaudhary, F. Guzmán, and A. F. Martins. 2020. Findings of the WMT 2020 shared task on Quality Estimation. In *Proceedings of the Fifth Conference on Machine Translation:* Shared Task Papers.

Tables

Repr.	Opt.	LSTM Est Corr	Trans Est Corr
masked	attn	.623	.614
masked	topK	616	.626
non-mask	attn	.614	.623
non-mask	topK	.622	.627
both	attn	.635	.622
both	topK	.624	.628

Table 1: Correlation of XLM-based on dev.

#	Trans	Χl	Corr.		
	Est	Incl.?	ft.?	Input	COII.
1	'	/	/	both	.646
2	'	/	/	tgt	.647
3	/	/	×	tgt	.647
4	/	×	/	/	.633

Table 2: Correlation of Transformer-based on dev.

Best single models	Corr
XLM	.635
Transformer	.647
Ensemble methods	Corr
simple average	.652
Powell's	.652
Quantile Regr.	.670
Support Vector Regr.	.674
Logistic Regr.	.679

Table 3: Correlation of ensembles on dev.