Fraud Detection

SOCAR

CONTENTS

1	목적
2	EDA
3	문제 해결
4	머신러닝 모델링
5	PEVIEW

ABOUT

보험금을 목적으로 렌터카를 이용한 고의로 인한 차량 사고

PURPOSE

DETAILS

프로젝트 개요

- · 쏘카의 사고 데이터 중 클래스(0 : 정상사고 , 1: 사기사고)를 머신러닝을 통해 테스트셋의 클래스를 **분류 예측**
- · 사기 데이터의 경우, 예측 결과가 의사결정에 중대한 영향을 미칠 것으로 판단하여 성능의 지표는 **재현율**과 **정확도에** 우선

활용 솔루션

- 1. 클래스의 분포가 과도하게 불균형하여 샘플링을 활용하여 문제 해결 시도
- 2. 모델의 성능을 향상시키기 위한 다양한 데이터 전처리 진행
- 3. 데이터의 노이즈를 줄일 수 있는 차원축소 기법을 사용

역할

- 1. 다양한 샘플링 기법에 대한 활용을 위한 샘플링 적용
- 2. 데이터 전처리 중 KNN과 imputer 기능 활용
- 3. 하이퍼파라미터 튜닝과 모델 성능 활용에 대한 코드 작업


```
# 사기 데이터 비율
frauds_rate = round(raw_data["fraud_YN"].value_counts()[1]/len(raw_data)*100,2)
print("Frauds rate :", frauds_rate, "%")
```

Frauds rate: 0.26 %

매우 불균형한 데이터 분포

전체 16000건 중 Fraud 데이터는 단, 41건

특정 컬럼에 대한 다른 분포의 모습을 확인

Fraud 유형에 대한 포커스에 맞추어 EDA 진행

EDA 연령대

20대 위주의 사고 비중이 높지만 유독 **20대 초반**의 Fraud 비중이 높음

일반사고사건대비 저녁시간대의 사고 비중이 높아짐

일반사고사건대비 **차대차**사고비중이높아짐

사고장소

도로 및 주차장에서의 사고 비중이 높음

Fraud 유형의 전반적인 사고 패턴

컬럼 간의 **상관관계**가 크게 두드러지지 않음

문제 해결 //

다양한 데이터 가공

결촉치 처리

```
socar.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16000 entries, 0 to 15999
Data columns (total 25 columns):
    Column
                           Non-Null Count Dtype
                           16000 non-null int64
                           16000 non-null int64
 10
                           16000 non-null int64
 11 s
                           16000 non-null int64
12 d
                           16000 non-null int64
 13 a
                           16000 non-null int64
 14
                           16000 non-null float64
                           16000 non-null int64
16 a
                           16000 non-null int64
                           16000 non-null int64
                           16000 non-null int64
18 c
```

데이터상 Nan 데이터는 확인되지 아니함

세부적인 데이터의 skimming 작업을 진행

결촉치 처리

기저가	설명	필드	
지정값	<u> </u>	<u> </u>	
		1 ·	
C		2· ī 3: '[
Cć		3 4: '₌	
		1 : ' 2: '₹ 3: '[4: '≟ 5: 'E	
		0:	
sł		1:4	
		1: 2	
		2: 2	
aį		2: 2 3: 2	
		4: 3	
		5: 4	
hi	유무		
	·· ·	0: 0	
		1: 1	
Cl	횟수	2: 2	
	22.1	3: 6 4: >	
		4: >	
		0: フ	
b:		1:	
		2: 빝	
aı			
		1: ፓ	
pf		2: ス 3: ス	
		3: X	
S(0: 입 1: 있 0: 일 1: 스	
		1: 5	
S(<u>i</u>	U: ¥ 1 · Å	
		1 • 2	
		1:7	
		Z · I	
st	간	ン・1 仏:5	
		5: ⁻	
		1:1 2:1 3:! 4:{ 5:1	

결측치를 대체한 **데이터의 불분명한 값** 발견

결촉치 처리

- 시고시각 중 1 일수없음 에 해당하는 값을 결측치로 정의함
- 범주형 데이터로 최빈값을 통해 결측치를 처리
- 지공구나나 이 이 대에 대 에 대 이는 값을 결측치로 정의함
- 대부분의 데이터의 값이 0에 해당하여 **평균값, 중앙값** 등 1개의 값으로 대체하는 것 외, 사고 차량/사고 부위 개수 등 영향이 있을 것으로 판단하여 KNN imputer 를 사용하여 보완하기로 함
- 보험 비용 'O' null'에 해당하는 값을 결측치로 정의함
- 대부분의 데이터의 값이 0에 해당하여 **평균값, 중앙값** 등 1개의 값으로 대체하는 것 외, 사고 차량/사고 부위 개수 등 영향이 있을 것으로 판단하여 KNN imputer 를 사용하여 보완하기로 함
- 시고장소 5 확인불가 데이터 값에 대해 결측치로 정의함
- 범주형 데이터로 최빈값을 통해 결측치를 처리
- 보험사 출동 유무 중 이 일수 없음 에 해당하는 값을 결측치로 정의함
- 범주형 데이터로 최빈값을 통해 결측치를 처리
- 경찰 출동 유무 중 이 일수 없음 에 해당하는 값을 결측치로 정의함
- 범주형 데이터로 최빈값을 통해 결측치를 처리

PCA

데이터 값 중 '알수없음', '확인불가' 데이터 노이즈로 판단 **PCA 차원축소**를 통해 노이즈 영향 제거

component 1	component_2	target

12874	-574.604341	-1.387728	0
12875	-574.375247	-1.476862	0
12876	-574.788079	-1.382804	0
12877	-574.392880	-1.481290	0
12878	-575.759410	0.437704	0

1 | print (np.sum(pca.explained_variance_ratio_))

0.9999986587449938

데이터 값 중 '알수없음', '확인불가' 데이터 노이즈로 판단 PCA 차원축소를 통해 노이즈 영향 제거

	component_1	component_2	component_3	target
0	-576.356894	-1.492348	-0.873226	0
1	-589.670395	20.317932	-0.240312	0
2	4701.702936	-0.558775	-0.198595	0
3	-576.925943	-0.810789	-0.186182	1
4	-577.163608	-1.484178	-0.757452	0
10298	-578.796602	3.305350	-1.274367	0
10299	-576.862631	-1.466437	-0.254853	0
10300	-576.985163	-1.459670	-0.260107	0
10301	-577.039303	-1.477947	-0.771680	0
10302	-577.013970	-1.472519	-0.676101	0

10303 rows × 4 columns

print (np.sum(pca.explained_variance_ratio_))

0.9999994952197623

샘플링 - 언더샘플링

	Accuracy	precision	recall	f1	roc
LogiReg	0.803183	0.005929	0.428571	0.011696	0.616388
DecisionTree	0.568711	0.005376	0.857143	0.010686	0.712534
RandomFore	0.559006	0.005259	0.857143	0.010453	0.707668
LGBM	0.571817	0.004521	0.714286	0.008985	0.642857
svc	0.817547	0.006397	0.428571	0.012605	0.623589

클래스 간의 오버랩을 방지하지만 **데이터의 유실**이 발생 본 데이터의 데이터 양이 많지 않아 지양하기로 함

샘플링 - 오버샘플링

		Accuracy	precision	recall	f1	roc
	LogiReg	0.685559	0.004932	0.571429	0.009780	0.628649
	DecisionTree	0.604425	0.002947	0.428571	0.005854	0.516738
SMOTE	RandomFore	0.974379	0.000000	0.000000	0.000000	0.488517
SINIOIL	LGBM	0.974767	0.000000	0.000000	0.000000	0.488712
	svc	0.721661	0.005571	0.571429	0.011034	0.646750
	LogiReg	0.687888	0.004969	0.571429	0.009852	0.629817
	DecisionTree	0.668478	0.003517	0.428571	0.006977	0.548852
ADASYN	RandomFore	0.975155	0.000000	0.000000	0.000000	0.488906
חוכאעא	LGBM	0.977096	0.000000	0.000000	0.000000	0.489879
	svc	0.688276	0.004975	0.571429	0.009864	0.630012
	LogiReg	0.140916	0.002705	0.857143	0.005393	0.498054
Dandom	DecisionTree	0.736025	0.004418	0.428571	0.008746	0.582717
Random	RandomFore	0.997283	0.000000	0.000000	0.000000	0.500000
over	LGBM	0.997283	0.000000	0.000000	0.000000	0.500000
	svc	0.139752	0.002701	0.857143	0.005386	0.497470

데이터의 유실이 발생하지 않지만 클래스 간의 **오버랩**되거나 **과적합의 발생** 가능성 시간이 오래 걸림

샘플링 - 복합샘플링

SMOTE
-ENN

	Accuracy	precision	recali	11	100
LogiReg	0.67314	0.00238	0.28571	0.00473	0.47995
DecisionTree	0.83929	0.00244	0.14286	0.00481	0.49202
RandomFore	0.99379	0.00000	0.00000	0.00000	0.49825
LGBM	0.98913	0.00000	0.00000	0.00000	0.49591

SMOTE -Tomek

_		Accuracy	precision	recall	f1	roc
	LogiReg	0.80551	0.00202	0.14286	0.00398	0.47509
_	DecisionTree	0.82415	0.00000	0.00000	0.00000	0.41320
	RandomFore	0.99495	0.00000	0.00000	0.00000	0.49883
	LGBM	0.99301	0.00000	0.00000	0.00000	0.49786

스케일링

Standard Scailing

아웃라이어의 존재의 경우, 민감하게 반응

Log Scailing

큰 이상치에 대해 민감할 수 있음

Minmax Scailing

아웃라이어의 존재의 경우, 민감하게 반응

Robust Scailing

이상치에 대한 영향을 적게 받음

모델링

다양한 모델 사용을 사용하여 적합한 모델링 선정

모델링

		삭제안함	적용안함	처리 안함	-	2	SMOTE	LogiReg	0.4142080745	0.002649006623	0.5714285714	0.005273566249
	동일분포	적용함	accident_hour / a	최빈값	3	ADASYN	DecisionTree	0.3559782609	0.003008423586	0.7142857143	0.005991611744	
#116	MinMax	경찰/보험출동유무				4	random under	RandomFore	0.9906832298	0	0	0
						5	SMOTENN	LGBM	0.9072204969	0.004273504274	0.1428571429	0.008298755187
							랜덤오버샘플링	svc	0.4114906832	0.002636783125	0.5714285714	0.005249343832
		삭제안함	적용안함	처리 안함	-	2	SMOTE	LogiReg	0.5135869565	0.002396166134	0.4285714286	0.004765687053
		동일분포	적용함	accident_hour / a	최빈값	3	ADASYN	DecisionTree	0.514363354	0.001602564103	0.2857142857	0.003187250996
#117	MinMax	경찰/보험출동유무				4	random under	RandomFore	0.9930124224	0	0	0
						5	SMOTENN	LGBM	0.9250776398	0	0	0
							랜덤오버샘플링	svc	0.5093167702	0.002375296912	0.4285714286	0.004724409449
		삭제안함	적용안함	처리 안함	-	2	SMOTE	LogiReg	0.4596273292	0.003584229391	0.7142857143	0.007132667618
		동일분포	적용함	accident_hour / a	최빈값	3	ADASYN	DecisionTree	0.5163043478	0.004003202562	0.7142857143	0.007961783439
#118	MinMax	경찰/보험출동유무				4	random under	RandomFore	0.9972826087	0	0	0
						5	SMOTENN	LGBM	0.9961180124	0	0	0
							랜덤오버샘플링	svc	0.4611801242	0.003594536305	0.7142857143	0.007153075823
		삭제안함	적용안함	처리 안함	-	2	SMOTE	LogiReg	0.4526397516	0.003538570418	0.7142857143	0.007042253521
		동일분포	적용함	accident_hour / a	최빈값	3	ADASYN	DecisionTree	0.3788819876	0.003738317757	0.8571428571	0.007444168734
#119	MinMax	경찰/보험출동유무				4	random under	RandomFore	0.9972826087	0	0	0
						5	SMOTENN	LGBM	0.9968944099	0	0	0
							랜덤오버샘플링	SVC	0.4561335404	0.003561253561	0.7142857143	0.007087172218
		삭제안함	적용안함	처리 안함	-	2	SMOTE	LogiReg	0.3940217391	0.002560819462	0.5714285714	0.005098789038
		동일분포	적용함	accident_hour / a	최빈값	3	ADASYN	DecisionTree	0.4371118012	0.00412371134	0.8571428571	0.008207934337
#120	MinMax	경찰/보험출동유무				4	random under	RandomFore	0.9972826087	0	0	0
						5	SMOTENN	LGBM	0.9965062112	0	0	0
							랜덤오버샘플링	svc	0.3947981366	0.002564102564	0.5714285714	0.005105296745

수 많은 알고리즘 시도와 다양한 전처리 시도

성능평가

불필요 변수 삭제

Standard Scaling

PCA (n=4)

ADASYN

	Accuracy	Precision	Recall	f1	ROC
LogiReg	0.716227	0.006812	0.714286	0.013495	0.715259
DecisionTree	0.701087	0.001307	0.142857	0.002591	0.422733
Random Fore	0.970109	0	0	0	0.486376
LGBM	0.968556	0	0	0	0.485598
SVC	0.719332	0.006887	0.714286	0.013643	0.716816

성능개선

아이퍼파라미터 튜닝

Tuning

n_estimators, max_depth, num_leaves, C 등 변경

결측치처리 다양화

평균값, 중앙값, KNN

StratifiedKFold cv=3, cv=5

Cross Validation

성능평가

불필요 변수 삭제

특정 컬럼 카테고리 축소 One-Hot Encoding

Randoma OverSampling 하이퍼 파라미터 변경

	Valid					Test				
	Accuracy	Precision	Recall	f1	ROC	Accuracy	Precision	Recall	f1	ROC
LogiReg	0.733696	0.007257	0.714286	0.014368	0.724017	0.507850	0.002602	0.571429	0.005181	0.539568
DecisionTree	0.932453	0.000000	0.000000	0.000000	0.467497	0.882409	0.002762	0.142857	0.005420	0.513465
Random Fore	0.996894	0.000000	0.000000	0.000000	0.499805	0.997116	0.000000	0.000000	0.000000	0.499679
LGBM	0.997283	0.000000	0.000000	0.000000	0.500000	0.997116	0.000000	0.000000	0.000000	0.499679
SVC	0.739130	0.005944	0.571429	0.011765	0.655508	0.509452	0.002611	0.571429	0.005198	0.540371

Test data에 대한고민

- 다양한 알고리즘 모델링의 Test-set 성능 저하 결과
- 과적합이 아닌 Train—Test 의 데이터 분포가 크게 상이

Review

실무 데이터를 통한 문제 해결에 대해 좀 더 고민을 해보는 기회

불균형 데이터에 대한 다양한 해결 방법