CE394M: Linear Elasticity

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

Isotropic linear elastic stress-strain relations

The relationship between the stress and strain tensor is a linear one. The stress component is a linear combination of the strain tensor. The most general form for *linear* stress-strain relations for a *Cauchy elastic* material is given by:

Where σ_{ij}^0 is the components of initial stress tensor corresponding to the initial strain free (when all strain components $\varepsilon_{kl} = 0$). D_{ijkl} is the tensor of material *elastic constants*.

If it is assumed that the initial strain free state corresponds to an *initial* stress free state, that is $\sigma_{ii}^0 = 0$, the equations reduces to:

Observation on linear elasticity

- ① $\sigma_{ij} = D_{ijkl} \varepsilon_{kl}$ is a general expression relating stress to strains for a linear solid.
- ② D_{ijkl} is a 4th order tensor containing 81 terms (we trick using symmetry and reduce order).
- **1** D_{ijkl} material response functions having dimensions F/L^2 .
- \bigcirc Homogeneous: D_{ijkl} independent of position
- **1** Isotropic: D_{ijkl} independent of frame of reference.
- **3** Because the stress is symmetric: $\sigma_{ij} = \sigma_{ji}$, $D_{ijkl} = D_{jikl}$. Strain is symmetric $\varepsilon_{kl} = \varepsilon_{lk}$ and $D_{ijkl} = D_{ijlk}$. Hence the number of independent variables drop from 81 to 36.
- Oboth the stress and the strain tensor have only 6 independent values, therefor write them as vectors, then the stiffness tensor can be written as a matrix (compromise I can not rotate tensor).

Stress-strain relationship

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} \\ D_{21} & D_{22} & D_{23} & D_{24} & D_{25} & D_{26} \\ D_{31} & D_{32} & D_{33} & D_{34} & D_{35} & D_{36} \\ D_{41} & D_{42} & D_{43} & D_{44} & D_{45} & D_{46} \\ D_{51} & D_{52} & D_{53} & D_{54} & D_{55} & D_{56} \\ D_{61} & D_{62} & D_{63} & D_{64} & D_{65} & D_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{23} \\ \varepsilon_{31} \end{bmatrix}$$

 D_{ijkl} is a tensor of material *elastic constants*. However, the above [**D**] is not a tensor anymore. So we can not rotate the matrix to another frame of reference. This relationship is useful for isotropic materials, where **D** is independent of the frame of reference.

The inverse of the relationship (Compliance matrix):

Hooke's law

Empirical observation:

Where *E* is defined as the *Young's modulus*. The lateral strains are defined as:

Using superposition for principal stresses:

$$\varepsilon_{11} = (1/E) \left[\sigma_{11} - \nu \sigma_{22} - \nu \sigma_{33} \right]$$

$$\varepsilon_{22} = (1/E) \left[-\nu \sigma_{11} + \sigma_{22} - \nu \sigma_{33} \right]$$

$$\varepsilon_{33} = (1/E) \left[-\nu \sigma_{11} - \nu \sigma_{22} + \sigma_{33} \right]$$

Hooke's law

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \end{cases} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu \\ -\nu & 1 & -\nu \\ -\nu & -\nu & 1 \end{bmatrix} \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \end{cases}$$

It is possible to invert the matrix to obtain the generalized Hooke's law:

$$\begin{cases}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{cases} = \alpha \begin{bmatrix}
(1 - \nu) & \nu & \nu & 0 & 0 & 0 \\
& (1 - \nu) & \nu & 0 & 0 & 0 \\
& & (1 - \nu) & 0 & 0 & 0 \\
& & & \frac{(1 - 2\nu)}{2} & 0 & 0 \\
& & & & \frac{(1 - 2\nu)}{2} & 0 \\
& & & & \frac{(1 - 2\nu)}{2}
\end{bmatrix} \begin{cases}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
2\varepsilon_{12} \\
2\varepsilon_{13} \\
2\varepsilon_{23}
\end{cases}$$

Where $\alpha = E/((1+\nu)(1-2\nu))$. Similarly, we can obtain the inverse matrix.

Hooke's law

The matrices [C] and [D] contains two indepdent variables E and μ , where E>0 and $-1 \le \nu \le 0.5$. The matrix can also be defined in terms of Lame's constants.

$$\begin{cases} \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} & \text{Lame's modulus (wave propagation)} \\ \mu = G = \frac{E}{2(1+\nu)} & \text{Shear modulus (shear behavior)} \\ K = \frac{E}{3(1-2\nu)} & \text{Bulk modulus (volumetric behavior)} \end{cases}$$

Behavior of isotropic linear elastic material in simple tests: (a) hydrostatic compression test ($\sigma_{11} = \sigma_{22} = \sigma_{33} = p$) and (b) simple tension test (Chen 1994)

Hydrostatic compression test The non-zero components of stress: The *Bulk modulus*, K, is defined as the ratio between the *hydrostatic pressure* p nd the corresponding volume change $\delta \varepsilon_{v} = \varepsilon_{kk}$.

Simple tension test The only non-zero components of stress: The *Young's modulus*, E, and *Poisson's ratio*, ν as.

Behavior of isotropic linear elastic material in simple tests: (c) pure shear test, and (d) uniaxial strain test (Chen 1994)

Simple shear test

The non-zero components of stress:

The *Shear modulus, G or* μ , is defined as:

Uniaxial strain test The test is carried out by applying a uniaxial stress component σ_{11} in the axial direction of a cylindrical sample, whose lateral surface is *restrained* against lateral movement (Oedometer test). Axial strain ε_{11} is the only nonvanishing component. The *constrained modulus* M or as PLAXIS calls it E_{oed} is defined as the ratio between σ_{11} and ε_{11} .

Plane stress v Plane strain

For a frame with an axis perpendicular to the plane of interest, x_3 or z: **Plane stress**

.

The strain in z is written as:

Plane strain

.

The stress in z is written as:

Elastic solution for settlement under foundations

Elastic solutions

- Ease of use Only two parameters, choose equivalent values representative of stran/stress levels.
- Oisadvantage: No failure criteria.
- Validate code with chart solutions ("Exact solutions")., e.g., Poulos and Davis (1974).
- Useful to get feeling of problem (low stress levels) not wide distribution of plastic zones.

Stiffness: small to large strains

Local gauges

Bender element (GDS)

Stiffness: small to large strains

(a) Toyoura and Tocino sands

(b) Kaolin clay

Stiffness at intermediate strains

Undrained strength

Triaxial compression test data of homogeneous clay (Ladd & Foott, 1974)

Normalized undrained strength

Normalised triaxial compression test data of homogeneous clay (Ladd & Foott, 1974)

Stress History and Normalized Soil Engineering Properties (SHANSEP) (Ladd and Foote, 1974)

Isotropic Linear Elastic Stress-strain relationship

The isotropic tensor D_{ijkl} :

$$D_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) + \alpha (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk})$$

Where λ, μ , and α are scalar constants. Since D_{ijkl} must satisfy symmetry, $\alpha = 0$.

So the stress:

Hence for an isotropic linear elastic material, there are only two independent material constants, λ and μ , which are called *Lame's constants*.

SHANSEP procedure