

Power Electronics for Actuators

Power Electronics

- Power Electronics drive all mechatronics devices – Actuators
- Power Electronics devices are
- Diodes and
- Transistors
- that can carry large currents and
- sustain large voltages

Electronics

- Classical / Standard Electronics
 - Electrical quantities carry information
 - Issues: Noise, BER (Bit Error Rate)...
- Power electronics
 - Electrical quantities carry power
 - Issue: Efficiency

Power Electronics

- Electric power
 - Conversion
 - Control and Applications
 - Conditioning
- Power range:
 - From few mW (10-3) to few 100s of MW (106, 108)

Power Electronics

- 1. Power diodes
- 2. Thyristors
- 3. Power Bipolar junction transistors (BJT)
- 4. Insulated-gate bipolar transistors (IGBT)
- 5. Static Induction Transistors (SIT)

Power Electronics Devices

Diode

Thyristor

Gate Turnoff
Thyristor (GTO)

Triac

IGBT

n-channel MOSFET

RMIT University

Power Diodes

- General purpose
 - 3000V, 3500A
- High-speed (fast-recovery)
 - 3000V, 1000A
 - Switching time in 10⁻⁶ sec (μs)
- Schottkey
 - 100V, 300A

 - Switching time in 10⁻⁹ sec (ns)

• $V_D=0.5$ to 1.2V, can be neglected comparing to 300V

Thyristors

- 6000V and 3500A
- Similar to power diodes, but with control
- Gate controls conducting start time
- Starts conducting when
 - gate current > 0, and $V_{AK} > 0$
 - Forward $V_{DROP} = 0.5$ to 2V
 - When conducting starts gate current has no control
- Conducting stops with reverse biasing, $V_{AK} \le 0$

Thyristors

- There are many different types
- Two most popular are:
 - Triac,
 - Control current in either direction

- GTO, Gate turnoff thyristor
 - Turned ON by a short positive pulse
 - Can be turned OFF by a short negative pulse

Power BJTs

- Operate like conventional BJTs, but
- Range 1200V, 400A
- Used in power converter applications
- Frequency up to 10kHZ

Power MOSFETs

- Range 1000V, 50A
- Frequency up to few 10kHZ

Power Electronic Circuits

- Voltage regulators
- Power amplifiers
- Switches
- Diode rectifier
- Power conversion

RMIT University

Power Conversion

- $AC \rightarrow DC$ Converters Rectification
- $DC \rightarrow AC$ Inversion
- $DC \rightarrow DC$ Chopping
- $AC \rightarrow AC$ AC voltage controller

Diode as a Rectifier of AC current

Full-Wave Bridge Rectifier

DC Filtering

AC DC Converter With Thyristor

Thyristor can open at any time

t = [0-T/2] & [T/2-T]

Variable DC output

Used for DC motors power supply

Angle α is firing angle of Thyristor

AC DC Converter With Thyristor

$$v_s(wt) = 0,$$
 $0 \le wt \le \alpha$
 $v_s(wt) = V_m \sin(wt)$ $\alpha \le wt \le \pi$
 $v_s(wt) = 0,$ $\pi \le wt \le \pi + \alpha$
 $v_s(wt) = -V_m \sin(wt)$ $\pi + \alpha \le wt \le 2\pi$

Calculate Average Voltage, RMS

RMS

$$V_{RMS}^2 = \frac{1}{T} \int_0^T v^2 dt$$

• Average value

$$V_{av} = \frac{1}{T} \int_{0}^{T} v dt$$

AC AC Converter

AC AC Converter with Triac

$$v_s(wt) = 0,$$
 $0 \le wt \le \alpha$
 $v_s(wt) = V_m \sin(wt)$ $\alpha \le wt \le \pi$
 $v_s(wt) = 0,$ $\pi \le wt \le \pi + \alpha$
 $v_s(wt) = V_m \sin(wt)$ $\pi + \alpha \le wt \le 2\pi$

DC DC Converter

- Known as Chopper, or Switching regulator
- Converts fixed DC source voltage to a variable DC supply, i.e.
- Converts DC source to a variable-duty-cycle output voltage
- Application: Run DC electric motors used in electric vehicles

RMITUniversity

DC DC Converter

DC to AC, Inversion

- Battery 12V to 240, 50Hz
- Solar panels
- Fuel cells

Applications: AC motor control

Inverter With Electromechanical Switch

Inverter With an Electronic Switch

Ohm's law:

Kirchhoff's current law:

Kirchhoff's voltage law:

Ohm's law: V=R*I

Kirchhoff's current law:

$$\sum_{k=1}^{n} I_k = 0$$

Kirchhoff's voltage law:

$$E=V_1$$

$$\sum_{k=1}^{n} V_k = 0$$

Ohm's law:

Voltage = Resistance * Current

Across Variable = Proportional Element * Through Variable

Find the voltage if I=14mA and $R=1k\Omega$

Our resistance is =?

- What is the value of the resistance Rx, as shown in the Figure 3, if the output voltage is 5V?
- What is the amount of Power dissipation on the resistor R1, R2, Rx?

RMITUniversity

Question 1

How do we call this circuit? Where is it used?

Question 2

Calculate an AC Circuit Impedance:

$$Z=?$$
 $R=200\Omega$, $L=1mH$, $C=1nF$

$$Z = R + jwL - j\frac{1}{wC}$$

$$Z = R + j2\pi fL - j\frac{1}{2\pi fC}$$

$$Z = R + j(2\pi fL - \frac{1}{2\pi fC})$$

Question 3

- What are the period and the frequency of the signal waveform?
- What is the average value of the voltage?
- What is RMS value of the voltage waveform?
 Amplitude is shown in [V].
- 1. Write an analytical expression for the shown waveform.

Thank you, Questions

