$\oint_{\sigma} d\mathbf{a} \cdot \mathbf{E} = Q_{enc}/\varepsilon_0$ $\nabla \cdot \mathbf{E} = \rho(\mathbf{r})/\varepsilon_0 \quad \nabla \times \mathbf{E} = 0$ $V(\mathbf{r}) = -\int_{\infty/ref}^{\mathbf{r}} d\hat{\ell} \cdot \mathbf{E}$ $\Delta V = \int_a^b d\hat{\ell} \cdot \mathbf{E} \quad \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$ $C \equiv Q/V_{cap}$ $E_{plane} = \sigma/2\varepsilon_0$ $\mathbf{B} = \nabla \times \mathbf{A} \quad W_E = \frac{\varepsilon_0}{2} \int \mathrm{d}\tau E^2$ $\nabla \cdot \mathbf{B} = 0 \quad \mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ $\mathbf{A}_{dp,m}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{r}}{r^3}$ $\mathbf{B}_{dp,m}(\mathbf{r}) = \frac{\vec{\mu}_0}{4\pi} \frac{3\mathbf{m} \cdot \hat{\mathbf{r}}\hat{\mathbf{r}} - \mathbf{m}}{r^3}$ $\mathbf{m} = \frac{1}{2} \int d\tau' \mathbf{r}' \times \dot{\mathbf{J}}(\mathbf{r}')$ $\mathbf{m} = \frac{1}{2} \sum_{i} q_{i} \mathbf{r}_{i} \times \mathbf{v}_{i} \quad \mathbf{p} = \sum_{i} q_{i} \mathbf{r}_{i}$ $\mathbf{m}_{loop} = I\mathbf{a} = I\frac{1}{2} \int \mathbf{r}' \times d\boldsymbol{\ell}'$ $\mathbf{A} = \frac{1}{2} \mathbf{B}_{unif} \times \mathbf{r} \quad m\mathbf{v} = \mathbf{p} - q\mathbf{A}$ $\mathbf{F} = \nabla (\mathbf{m} \cdot \mathbf{B}) \quad \mathbf{D} = \varepsilon \mathbf{E}$ $N = m \times B \quad M \equiv m/d\tau$ $\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0 I_{enc} + \mu_0 \varepsilon_0 \int \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{a}$ $\cos \vartheta_T = i\sqrt{\left(\frac{\sin \vartheta_I}{\sin \vartheta_c}\right)^2 - 1}$ $\mathbf{E} = \operatorname{Re} \tilde{\mathbf{E}} = E_0 \cos(kx - \omega t + \delta_E)\hat{\mathbf{y}}$

 $\mathbf{J} = \frac{nq^2}{m\gamma}\mathbf{f} = \sigma_c\mathbf{f} \equiv \sigma_c\mathbf{E}$ $\varepsilon \equiv \oint \mathbf{f} \cdot d\mathbf{l} \equiv \oint \mathbf{E} \cdot d\mathbf{l} \equiv IR \equiv -\frac{d\Phi_B}{At}$ $\Phi_B = \int \mathbf{B} \cdot d\mathbf{a} \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\oint d\boldsymbol{\ell} \cdot \mathbf{E} = -\frac{d}{dt} \int d\mathbf{a} \cdot \mathbf{B} = -d\Phi_B/dt$ $\Phi_2 = MI_1 \quad I_1 = I_2 \Rightarrow \Phi_1 = \Phi_2$ $\Phi = LI$ $\varepsilon = -L\frac{\mathrm{d}I}{\mathrm{d}t}$ $B^a_{\perp} - B^b_{\perp} = 0 \quad D^{a}_{\perp} - D^b_{\perp} = \sigma_f$ $E_{\parallel}^{a} - E_{\parallel}^{\overline{b}} = 0$ $\mathbf{H}_{\parallel}^{a} - \mathbf{H}_{\parallel}^{b} = \mathbf{K}_{f} \times \hat{\mathbf{n}}$ $\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) \quad P = \int \mathbf{S} \cdot d\mathbf{a}$ $\frac{\partial U}{\partial t} + \overset{\circ}{\nabla} \cdot \mathbf{S} = 0 \quad \mathbf{p}_{eb} = \varepsilon_0 \mathbf{E} \times \mathbf{B}$ $\frac{\partial}{\partial t}(\mathbf{p}_m + \mathbf{p}_{eb}) + \nabla \cdot \overrightarrow{T} = 0$ $T_{ij} = -U_{eb}\delta_{ij} + \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j$ $F_i = \sum_j \oint da^j T_{ij} - \varepsilon_0 \mu_0 \frac{d}{dt} \int S_i d\tau$ $\mathcal{L}_{eb} = \mathbf{r} \times \mathbf{p}_{eb} \quad W_B = \frac{1}{2}LI^2$ $\equiv \frac{1}{2} \int d\tau \mathbf{J} \cdot \mathbf{A} \equiv \frac{1}{2\mu_0} \int d\tau B^2$ $\alpha = \frac{\sqrt{1 - (n_1/n_2)^2 \sin^2 \theta_I}}{1 + (n_1/n_2)^2 \sin^2 \theta_I}$ $\mu_1 \simeq \mu_2$: $\sin^2 \vartheta_B = \frac{\beta^2}{1+\beta^2} \quad \vartheta_B \simeq \tan^{-1} \frac{n_2}{n_1}$ $R = \frac{(\alpha - \beta)^2}{(\alpha + \beta)^2}$ $T = \alpha \beta \left(\frac{2}{\alpha + \beta}\right)$

 $\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d\tau' \mathbf{M}(\mathbf{r}') \times \frac{2}{2^2}$ $\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\pi} d\tau' \frac{\mathbf{J}_b(\mathbf{r}')}{2} + \frac{\mu_0}{4\pi} \oint_{\pi} da' \frac{\mathbf{K}_b(\mathbf{r}')}{2}$ $\mathbf{K}_{b}^{4\pi}(\mathbf{r}') = \mathbf{M}' \times \hat{\mathbf{n}}'$ $\mathbf{J}_b(\mathbf{r}') = \nabla' \times \mathbf{M}(\mathbf{r}')$ $\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$ $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$ $\oint d\ell \cdot \mathbf{H} = I_{f,enc} \stackrel{or}{=} \int d\mathbf{a} \cdot \mathbf{J}_f$ $\mathbf{M} = \chi_m \mathbf{H} \mathbf{B} = \mu \mathbf{H}$ $\chi_{m,dia} = -\frac{n\mu_0}{6} \sum_i \frac{q_i^2}{m_i} r_i^2$ $B_s = \mu_0 NI \quad B(r)_{tr} = \frac{\mu_0 NI}{2\pi r}$ $\mathbf{F} = \int d\tau [\rho \mathbf{E} + \mathbf{J} \times \mathbf{B}]$ $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ $U_{eb} = \frac{1}{2} (\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2)$ $abla rac{1}{2} = -rac{\hat{\mathbf{z}}}{2^2} \quad
abla \cdot \mathbf{D} = \rho_f$ $\left[\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \left(\frac{\omega}{c}\right)^2 - k^2\right] \begin{pmatrix} E_x \\ B_x \end{pmatrix} = 0$ $-\nabla^2 G(\mathbf{r}, \mathbf{r}') = 4\pi \delta(\mathbf{r} - \hat{\mathbf{r}'})$

 $\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} = 0 \quad n = \frac{c}{v}$ $\tilde{\mathbf{E}} = \tilde{\mathbf{E}}_0 e^{i(kx - \omega t)}$ $\tilde{\mathbf{B}} = \tilde{\mathbf{B}}_0 e^{i(kx - \omega t)}$ $\tilde{\mathbf{B}} = \frac{1}{c}\hat{\mathbf{x}} \times \tilde{\mathbf{E}} \quad \hat{\mathbf{n}} \equiv \cos\vartheta\hat{\mathbf{y}} + \sin\vartheta\hat{\mathbf{z}}$ $\tilde{\mathbf{E}} = \tilde{\mathbf{E}}_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \hat{\mathbf{n}} \quad v_k = \omega / k$ $\tilde{\mathbf{B}} = \frac{1}{c} \dot{\tilde{\mathbf{E}}}_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \hat{\mathbf{x}} \times \hat{\mathbf{n}} = \frac{1}{c} \hat{\mathbf{x}} \times \tilde{\mathbf{E}}$

 $\mathbf{B} = \frac{E_0}{c}\cos(kx - \omega t + \delta_B)\hat{\mathbf{z}} \quad \delta = \delta$ $S = c \dot{U}_{eb}$ $\mathbf{p}_{eb} = \mathbf{S}/c^2 = \hat{\mathbf{x}} U_{eb}/c$ $\langle U \rangle = \frac{1}{2} \varepsilon_0 E_0^2 \quad \langle \mathbf{S} \rangle = c \langle U \rangle \,\hat{\mathbf{x}}$ $\langle \mathbf{p} \rangle = \frac{\langle U \rangle}{c} \hat{\mathbf{x}} \quad I = \langle S \rangle = \frac{1}{2} c \varepsilon_0 E_0^2$ $\mathbf{\hat{E}}_1 = \mathbf{\hat{E}}_I + \mathbf{\hat{E}}_R \quad \mathbf{\hat{E}}_2 = \mathbf{\hat{E}}_T$ $\frac{v_2}{v_1} = \frac{n_1}{n_2} = \frac{\sin \vartheta_T}{\sin \vartheta_I}$ $\alpha \equiv \frac{\cos \theta_T}{\cos \theta_I}$

 $\langle \mathbf{S} \rangle_c = \hat{\mathbf{x}} \frac{k_+}{2\mu\omega} E_0^2 e^{-2k_- x}$ $\frac{\mathrm{d}W}{\mathrm{d}t} = \int_V \bar{\mathrm{d}}\tau \mathbf{J} \cdot \mathbf{E} \quad \tilde{\mathbf{p}} = q\tilde{\mathbf{r}}$ $(-\omega^2 + \omega_0^2 - i\gamma\omega)\tilde{\mathbf{r}} = \frac{q}{m}e^{-i\omega t}\tilde{\mathbf{E}}_0$ $n \simeq 1 + \frac{1}{2} \frac{Nq^2}{m\varepsilon_0} \sum_i \frac{f_i(\omega_i^2 - \omega^2)}{(\omega_i^2 - \omega^2)^2 + (i\gamma\omega)^2}$

 $\tilde{\varepsilon} = \varepsilon + \frac{i\sigma_c}{\omega}$ $\nabla \times \mathbf{B} = \tilde{\varepsilon}\mu \frac{\partial \mathbf{E}}{\partial t}$

 $k_{\pm} = \omega \sqrt{\frac{\varepsilon \mu}{2}} \sqrt{\sqrt{1 + \left(\frac{\sigma_c}{\omega \varepsilon}\right)^2 + 1}}$

 $k = \omega \sqrt{\tilde{\varepsilon}\mu} = k_+ + ik_-$

 $\sin \vartheta_c = \frac{n_2}{n_1} \equiv \frac{\sin \vartheta_I}{\sin \vartheta_T}$

 $G(\mathbf{r}, \mathbf{r}') = \int \frac{\mathrm{d}\mathbf{k} e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}}{2\pi^2 k^2} = \frac{1}{|\mathbf{r}-\mathbf{r}'|}$ Lorenz: $\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial V}{\partial t} = 0$ $-\Box^2 \begin{pmatrix} V \\ \mathbf{A} \end{pmatrix} = \begin{pmatrix}
ho/arepsilon_0 \\ \mu_0 \mathbf{J} \end{pmatrix} \quad t_r = t - \frac{2}{c}$ $G_{ret} = \frac{1}{2} \delta \left(\frac{2}{c} - (t - t') \right)$ $V = \int d\tau' \frac{\rho(\mathbf{r}', t_r)}{4\pi\varepsilon_0 2} \quad \mathbf{A} = \int d\tau' \frac{\mu_0 \mathbf{J}(\mathbf{r}', t_r)}{4\pi 2}$ $\mathbf{B} = -\frac{\hat{\mathbf{r}}}{c} \frac{\mu_0}{4\pi r} \int_{\mathbf{r}}^{\mathbf{r}} d\tau' \frac{\partial \mathbf{J}(\mathbf{r}', t_r)}{\partial t} P = \frac{\mu_0 q^2 a^2}{2}$ $\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{\mu_0}{(4\pi)^2 c} \left[\hat{\mathbf{r}} \times \int \mathrm{d}\tau' \frac{\partial \mathbf{J}(\mathbf{r}', t_r)}{\partial t} \right]^2$ $P = \frac{\mu_0}{6\pi c} \left[\ddot{p}^2(t_r) + \frac{1}{c^2} \ddot{m}^2(t_r) \right]$ $\begin{pmatrix} \mathbf{p} \\ \mathbf{m} \end{pmatrix} = \begin{pmatrix} p_0 \\ m_0 \end{pmatrix} \hat{\mathbf{z}} \cos \omega t$ $B_i = \partial_j A_k - \partial_k A_j \quad \overline{F^{\mu\mu}} = 0$ $F^{0i} = E^i/c \quad \varepsilon^{123} \equiv 1 \quad F^{\mu\nu} = -F^{\nu\mu}$

 $eta \equiv rac{\mu_1 n_2}{\mu_2 n_1} \ ilde{E}_0^T = rac{2 ilde{E}_{0I}}{lpha + eta} \ ilde{E}_0^R = rac{lpha - eta}{lpha + eta} ilde{E}_0^I$ $\alpha^2 = \beta^2 \to \vartheta_I = \vartheta_B \to E_{0R} = 0$ $\gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}} \quad x' = \gamma(x - vt)$ $y' = \dot{y}$ z' = z $t' = \gamma(t - \frac{v}{c^2}x)$ $u_x' = \frac{\mathrm{d}x'}{\mathrm{d}t'} = \frac{u_x - v}{1 - v u_x / c^2}$ $u_y' = \frac{\mathrm{d}y'}{\mathrm{d}t'} = \frac{u_y}{\gamma(1 - vu_x/c^2)}$ $u_z' = \frac{\mathrm{d}z'}{\mathrm{d}t'} = \frac{u_z}{\gamma(1 - vu_x/c^2)}$ $\beta^{(\prime)} \equiv u_x^{(\prime)}/c \quad \beta_r = v/c$ $\beta = \tanh \vartheta$ $\vartheta = \vartheta' + \vartheta_r$ $\Delta x = \Delta x' \cosh \vartheta_r + c\Delta t' \sinh \vartheta_r$ $c\Delta t = c\Delta t' \cosh \vartheta_r + \Delta x \sinh \vartheta_r$ $\sinh \vartheta = \tanh \vartheta \cosh \vartheta$ $\vartheta \equiv i\vartheta : \sinh i\tilde{\vartheta} \equiv i\sin\tilde{\vartheta}$ $\cosh i\vartheta \equiv \cos \vartheta \quad T = ict$ $X = X' \cos \vartheta + T' \sin \vartheta$ $T = -X'\sin\tilde{\vartheta} + T\cos\tilde{\vartheta}$

 $d\tau \equiv dt/\gamma \quad \beta \equiv v/c$ $x^{\mu} = (ct, x, y, z) \quad x_{\mu} = g_{\mu\nu}x^{\nu}$ $g_{\mu\nu} \equiv \eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$ $ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$ $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ $\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}} \quad \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}}$ $F'^{\mu\nu} = \Lambda^{\mu}_{\kappa} \Lambda^{\nu}_{\lambda} F^{\kappa\lambda} \quad \mathrm{d}s^2 = -c^2 \, \mathrm{d}\tau^2$ $\eta^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \quad \dot{\eta} = \eta^{\mu} \eta_{\mu} = -c^2$ $p^{\mu} \equiv m \eta^{\mu} \quad p^0 = E/c \quad E = \gamma mc^2$ $p^2 = p^i p_i$ $E^2 = p^2 c^2 + m^2 c^4$ $\begin{array}{l} \sum_i p_i^\mu = \sum_j p_j^\nu \quad J^\mu \equiv (c\rho, \vec{J}) \\ F^{\mu\nu} \equiv \partial^\mu A^\nu - \partial^\nu A^\mu \quad \partial_\mu J^\mu = 0 \end{array}$ $A^{\mu} = (V/c, \vec{A}) \quad F^{ij} = \varepsilon^{ijk} B_k$

 E_x/c E_y/c E_z/c $-E_x/c$ 0 $-B_y$ $F^{\mu\nu} \equiv$ $-E_y/c$ $-B_z$ 0 B_x $-E_z/c$ B_y $-B_x$ 0 B_x E_y/c $-B_y$ E_z/c 0 $-B_z$ $-E_y/c$ E_x/c $-E_x/c$ $ec{E}
ightarrow cec{B} \quad ec{B}
ightarrow -ec{E}/c \quad G^{\mu
u} = rac{1}{2}arepsilon^{\mu
ulphaeta}F_{lphaeta}$ $\partial_{\nu}F^{\mu\nu} = \mu_0 J^{\mu} \quad \partial_{\nu}\dot{G}^{\mu\nu} = 0$ $\begin{array}{ll} B_3' = \gamma (b_3 - \frac{v}{c^2} E_2) & B_2' = \gamma (B_2 + \frac{v}{c^2} E_3) \\ E_x' = E_x & B_x' = B_x & -\partial^{\mu} \partial_{\mu} A^{\nu} = \mu_0 J^{\nu} \end{array}$