MIPS reference card

add rd, rs, rt	Add	rd = rs + rt	R 0 / 20	registers	SLS
rd,	Subtract	= rs	R 0 / 22	0 %	\$zero
addi rt, rs, imm	Add Imm.	$rt = rs + imm \pm$	8 I	\$1	\$at
addu rd, rs, rt	Add Unsigned	rd = rs + rt	R0/21	\$2-\$3 \$1	\$v0-\$v1
rd,	Subtract Unsigned	= rs -	R 0 / 23		\$a0-\$a3
-	Add Imm. Unsigned	$rt = rs + imm \pm$	6 I		\$t0-\$t7
mult rs, rt	Multiply	{hi, lo} = rs * rt	R 0 / 18	\$16-\$23 \$	\$50-\$37
div rs, rt	Divide	lo = rs / rt; hi = rs % rt	R 0 / 1a	\$24—\$25 \$t	\$t8-\$t9
multurs, rt	Multiply Unsigned	{hi, lo} = rs * rt	R0/19	\$26-\$27 \$k	\$k0-\$k1
divu rs, rt	Divide Unsigned	lo = rs / rt; $hi = rs % rt$	R 0 / 1b	\$28	\$gp
mfhi rd	Move From Hi	rd = hi	R0/10	\$29	ds\$
mflo rd	Move From Lo	rd = 10	R0/12	\$30	\$fp
and rd, rs, rt	And	rd = rs & rt	R 0 / 24	\$31	şra
or rd, rs, rt	Or	$rd = rs \mid rt$	R 0 / 25	hi	
nor rd, rs, rt	Nor	rd = ~(rs rt)	R 0 / 27	٦o	1
XOF rd, rs, rt	eXclusive Or	rd = rs * rt	R 0 / 26		
i rt, rs,	And Imm.	= rs &	٦ - - ا		c0_cause
rt, rs,	Or Imm.	- «	l d I ê	CO \$14 C	c0_epc
rt,	eActusive Or Imm.	II	e		,
rt,	Shirt Left Logical	= rt << s	K0/0	syscall codes	codes .
rd, rt,	Shift Night Logical	rd = rt >>>	R0/2	_	S/SPIM
Sra rd, rt, sh	Shift Right Annimenc Shift Left Logical Variable	rd = rt >>	R 0 / 3		eger
) 7	Shift Edit Logical Variable Chift Right Logical Variable	ו ו ז ג	4/0X		at -1-1-
, ל ל	Shift Right Arithmetic Variable	ן ו בי ב	R 0 / 7	3 print double	uble inc
	Set if I acc Than	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P 0 / 2a		SIII S
STT rd. rs. rt	Set if Less Than Unsigned	1 L 1 L 1 L	R 0 / 2h	5 read integer	ger •
rt. rs.		rt = rs < imm + 2 1 .	I a	0 Icad Iloat 7 read double	11 1419
urt, rs,	Set if Less Than Imm. Unsigned	rt = rs < imm + ? 1:	I b		301
addr	dunf	PC = PC&0x	J 2		c mem
	Jump And Link	= PC + 8; PC = PC&0xF0000000 (addrn<<	$\frac{5}{1}$	_	
ម្នា	Jump Register	. RS	R	11 print character	racter
	Jump And Link Register	II	R0/9	12 read character	racter
beq rs, rt, imm	Branch if Equal	$rs == rt) PC += 4 + (imm \pm <<$	2) I 4	13 open file	4)
bne rs, rt, imm	Branch if Not Equal	if (rs != rt) PC += $4 + (imm \pm << 2$	2) I 5	14 read file	
syscall	System Call	c0_cause = 8 << 2; c0_epc = PC; PC = 0x80000080	DBO R0/c	15 write to file	file
Lui rt, imm	Load Upper Imm.	rt = imm << 16	J I	16 close file	1)
1b rt, imm(rs)	Load Byte	$rt = SignExt(M_1[rs + imm\pm])$	I 20		
3	Load Byte Unsigned	= $M_1[rs + imm\pm]$ &	I 24	exception causes	canses
rt,	Load Half	= SignExt(M2[rs + :	1 21	0 interrupt	
rt,	Load Half Unsigned	= M ₂ [rs +	1 25	1 TLB protection	ection
rt,	Load Word	4[rs + 11	1 23	2 TLB miss L/F	, L/F
	Store Byte Store Unit	+ -	1 20	3 TLB miss S	S
SK rt. imm(rs)	Store Word	- [# mm i	1 2h	4 bad address L/F	ss L/F
ţ	Load Linked	[4 [rs + ::	1 30	5 bad address 5	SS S
	Store Conditional	rs + imm±] =	I 38	6 bus error F	. Y
	•			8 svscall	ı İ
	pseudo-instructions	6 bits 5 bits 5 bits 5 bits 5	F		
bot rx, ry, imm	Branch if Greater Than	IIS DI II SI do H	Idilic	a reserved instr.	nstr.
X	Branch if Less or Equal	s 5 bits	16 bits	b coproc. unusable	nusable
rx,	Branch if Less Than	l op rs rt im	imm	c arith. overflow	rflow
rx,	Load Address	6 bits 26 bits		F: fetch instr.	ıstr.
li rx, imm	Load Immediate			L: load data	ata
move rx, ry	Move register			S: store data	ata
dou	No Operation				

Contenido de los campos de instrucción según su tipo

- Rellenar campos de instrucción:
 - Correspondencia direcciones de registros
 - Códigos de operación y de función

	inst.	op.	funct.			MIPS reference card	
				add rd, rs, rt	Add	rd = rs + rt	R 0 / 20
Tipo-R	add	0	32	sub rd, rs, rt	Subtract	rd = rs - rt	R 0 / 22
	sub	0	34	addi rt, rs, imm	Add Imm.	$rt = rs + imm \pm$	I 8
	slt	0	42	addu rd, rs, rt	Add Unsigned	rd = rs + rt	R 0 / 21
H .		U	72	subu rd, rs, rt	Subtract Unsigned	rd = rs - rt	R 0 / 23
	s11	0	0	addiu rt, rs, imm	Add Imm. Unsigned	$rt = rs + imm_{\pm}$	I 9
	1w	35		mult rs, rt	Multiply	$\{hi, lo\} = rs * rt$	R 0 / 18
Tipo-I	1 77	33		div rs, rt	Divide	lo = rs / rt; hi = rs % rt	R 0 / 1a
	SW	43		multu rs, rt	Multiply Unsigned	$\{hi, lo\} = rs * rt$	R 0 / 19
	addi	8		divu rs, rt	Divide Unsigned	lo = rs / rt; hi = rs % rt	R 0 / 1b
	auuı	0		mfhi rd	Move From Hi	rd = hi	R 0 / 10
	slti	10		mflo rd	Move From Lo	rd = lo	R 0 / 12
	l	4		and rd, rs, rt	And	rd = rs & rt	R 0 / 24
	beq	4		or rd, rs, rt	Or	rd = rs rt	R 0 / 25
	bne	5		nor rd, rs, rt	Nor	rd = ~(rs rt)	R 0 / 27
L-odiT	<u>.</u>	2		XOT rd, rs, rt	eXclusive Or	rd = rs ^ rt	R 0 / 26
	j	2		andi rt, rs, imm	And Imm.	$rt = rs \& imm_0$	Ιc
	jal	3		ori rt, rs, imm	Or Imm.	$rt = rs \mid imm_0$	I d
H .	J			xori rt, rs, imm	eXclusive Or Imm.	$rt = rs ^ imm_0$	I e

Convertir a código máquina

Instrucciones tipo-R

tipo-R	op(6)	rs (5)	rt (5)	rd (5)	shamt (5)	funct (6)
Decim						
Bin						
Hex						

Instrucciones tipo-I

tipo-l	op (6)	rs (5)	rt (5)	imm/offset (16)
Decim				
Bin				
Hex				

Instrucciones tipo-J

tipo-J	ор (6)	address (26)
Decim		
Bin		
Hex		

Camino de Datos y Unidad de Control

Valores ALU Op y ALU Control

• Señales ALU Op y ALU Control según instrucción

Instrucc.	ALU Op	ALU control	Función ALU
lw sw	00	010	suma
beq bne	01	110	resta
add	10	010	suma
sub	10	110	resta
and	10	000	multiplicación lógica
or	10	001	suma lógica
slt	10	111	menor que

Camino de Datos y Unidad de Control

Camino de Datos y Unidad de Control

