Compte-rendu Partie 2

Question 2 : Analyser le trafic réseau

Q2.1 Analyse avec traceroute

1. Résultats de la commande "tracert legs.cnrs.fr":

Tableau des routeurs traversés :

Destination	IP	Entité Propriétaire	Numéro AS
legs.cnrs.fr	192.168.1.254	Ma passerelle par défaut	
legs.cnrs.fr	31.33.160.2	Bouygues Telecom	<u>AS5410</u>
legs.cnrs.fr	62.34.2.250	Bouygues Telecom	AS5410
legs.cnrs.fr	37.49.237.108	FRANCEIX - PARIS-PEERING	AS61955
legs.cnrs.fr	93.187.44.2	CNRS	<u>AS33930</u>

2. Résultats de la commande "tracert www.youtube.com":

Tableau des routeurs traversés :

Destination	IP	Entité Propriétaire	Numéro AS
www.youtube.com	2001:861:3a82:b8c0:4970:e9ac:6386:1c6	Bouygues Telecom (mon réseau local)	AS5410
www.youtube.com	2a00:1450:4006:80e::200e	Google LLC	AS15169

3. Résultats de la commande "tracert www.nyu.edu":

Tableau des routeurs traversés :

Destination	IP	Entité Propriétaire	Numéro AS
www.nyu.edu	2001:861:3a82:b8c0:4970:e9ac:6386:1c6	Bouygues Telecom AS5410	
	2001.001.3a02.b0c0.4770.e7ac.0300.1c0	(mon réseau local)	<u>A00410</u>

www.nyu.edu 20	2600:9000:269b:d400:1:f7e2:cb00:93a1	Amazon	AS16509
----------------	--------------------------------------	--------	---------

Q2.2 Analyse avec capture Wireshark

1. Analyse Wireshark:

- a. **Ethernet:** Il y a 5 autres machines qui échangent des trames avec la mienne.
- b. IPv4:

Le nombre d'adresses IP est plus élevé parce que mon routeur utilise une seule adresse MAC pour gérer plein d'adresses IP.

c. TCP: Les IP avec qui j'ai le plus communiqué:

2a00:1450:4006:5::9 (Google LLC), 162.159.136.234 (Discord).

Question 3 : Énergie

Q3.1 Un exemple simple

- 1. Modèle du frigo: Haier HSW59F18EIPT.
- 2. **URL:**

https://www.darty.com/nav/achat/encastrable/grand_refrigerateur/refrigerateur_americain/haier_hsw59f18eipt.html

3.

- 4. Consommation d'énergie: 334 kWh/an.
- 5. Consommation instantanée:
 - a. Puissance = énergie(kwh) / durée (en heure)
 P = 334 / 365*24 = 38.1W

Q3.2 Un ordinateur portable

- 1. **URL:** <a href="https://www.dell.com/fr-fr/shop/ordinateurs-portables-dell/nouveau-dell-pro-14-plus-ordinateur-portable/spd/dell-pro-pb14250-2-in-1-laptop/bts203_pb14250_fr?ref=variantstack
 - a. Capacité énergétique de la batterie : 55 Wh.
 - b. Puissance du chargeur: 65 W.
- 2. Temps de charge estimé:

t (h) = E(Wh) / P(W) t = 55 / 65 = 0.846heures t× $60 \approx 0.846 \times 60 =$ **50.8minutes**

3. Temps de charge :

Le temps de charge est plus long en vrai à cause des pertes d'énergie, de la chauffe, et parce que la batterie charge plus lentement vers sa fin de vie.

Q3.3 Faisons chauffer la CPU

1.

Nombre de cœurs actifs	Consommation (W)	Utilisation CPU (%)
0	4	3
1	13	9
2	20	13
3	25	20
4	30	26
5	36	30
6	41	36
7	43	42
8	48	46
9	48	48
10	52	57
11	52	63
12	54	70

2. Proportionalité:

a. La consommation est plus ou moins proportionnelle au nombre de cœurs actifs mais vers les derniers cœurs la consommation stagne.

3. Comparaison avec le frigo:

- a. Consommation frigo = 38,1 W.
- b. Consommation CPU = 41 W (pour 6 cœurs).Ils consomment donc presque autant d'énergie.

Q3.4 Des kWhs au g de CO2

1. Estimations d'émissions de CO2:

Selon Electricity Maps la France a un indice de 32gCO₂eq/kWh.

Donc l'ordi Dell émet à sa recharge complète : 0.055 * 32 = 1,76 grammes de CO₂

Et pour la Pologne : 793 CO₂eq/kWh

Donc l'ordi Dell émet à sa recharge complète : 0.055 * 793 = 43,615 grammes de CO₂

Tableau des résultats

Pays	Emissions CO2 par recharge (gCO2)	Emissions CO2 pour 300 recharges (gCO2)	Emissions CO2 annuelles du réfrigérateur (gCO2)
France	1,76	528	10 688
Pologne	43,615	13 084,5	264 862