CMOS 32-Stage Static Left/Right Shift Register High-Voltage Types (

The RCA-CD40100B is a 32-stage shift register containing 32 D-type master-slave flip-flops.

The data present at the SHIFT-RIGHT INPUT is transferred into the first register stage synchronously with the positive CLOCK edge, provided the LEFT/RIGHT CONTROL is at a low level, the RECIRCULATE CONTROL is at a high level, and the CLOCK INHIBIT is low. If the LEFT/RIGHT CONTROL is at a high level and the RECIRCULATE CON-TROL is also high, data at the SHIFT-LEFT INPUT is transferred into the 32nd register stage synchronously with the positive CLOCK transition, provided the CLOCK INHIBIT is low. The state of the LEFT/RIGHT CON-TROL, RECIRCULATE CONTROL, and CLOCK INHIBIT should not be changed when the CLOCK is high.

Data is shifted one stage left or one stage right depending on the state of the LEFT/RIGHT CONTROL, synchronously with the positive CLOCK edge. Data clocked into the first or 32nd register states is available at the SHIFT-LEFT or SHIFT-RIGHT OUTPUT respectively, on the next negative CLOCK transition (see Data Transfer Table). No shifting occurs on the positive CLOCK edge if the CLOCK INHIBIT line is at a high level. With the RECIRCULATE CONTROL low, data in the 32nd stage is shifted into the

High-Voltage Types (20-Volt Rating)

Features:

- Fully static operation
- Shift left/Shift right capability
- Multiple package cascading
- Recirculate capability
- LIFO or FIFO capability
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package-temperature range;
 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =

- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

first stage when the LEFT/RIGHT CONTROL is low and from the 1st stage to the 32nd stage when the LEFT/RIGHT CONTROL is high.

The CD40100B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead ceramic flat packages (K suffix), and in chip form (H suffix).

Applications:

- Serial shift registers
- Time delay circuits
- Expandable N-bit data storage stack (LIFO operation)

Fig. 1 - 'Typical output low (sink) current characteristics.

Fig. 2 — Minimum output low (sink) current characteristics.

Fig. 3 - Logic diagram.

Fig. 4 - Timing diagram defining setup, hold, and propagation delay times.

Fig. 5 - Typical output high (source) current characteristics.

Fig. 6 – Minimum output high (source) current characteristics.

LOAD CAPACITANCE (C_L)—gF s2CS - 2art

Fig. 7 — Typical propagation delay time

(CLOCK to SHIFT LEFT/RIGHT)

as a function of load capacitance.

Fig. 8 — Typical transition time as a function of load capacitance.

RECOMMENDED OPERATING CONTITIONS at $T_A = 25^{\circ}\text{C}$, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIN	UNITS		
	(V)	Min.	Max.		
Supply-Voltage Range (For T _A = Full Package- Temperature Range)		3	18	٧	
	5	100	-		
Data Setup Time, t _S	10	20	-	ns	
	15	10	-		
	5	275	-		
Data Hold Time, t _H	10	100	-	ns	
	15	75			
	5		1		
Clock Input Frequency, fCL	10	dc	2.5	mHz	
<u> </u>	15	L	3		
	5	Γ-	15		
Clock Input Rise or Fall Time, trCL, tfCL	10	-	15	μs	
	15	-	15	}	
	5	450	_		
Clock Input Pulse Width:	10	230	-	ns	
Low Level, t _{WL}	15	190	-	Į.	
	5	280	-		
High Level, t _{WH}	10	150	i –	ns	
	15	140	_		

CONTROL TRUTH TABLE

LEFT/RIGHT CONTROL	CLOCK INHIBIT	RECIRCULATE CONTROL	ACTION	INPUT BIT ORIGIN
1	0	1	Shift left	Shift left input
1	0	0	Shift left	Stage 1
0	0	1	Shift right	Shift right input
0	0	0	Shift right	Stage 32
X	1	x	No shift	_

DATA TRANSFER TABLE*

INITIAL STATE			CLOCK	RESULTING STATE			
DATA INPUT	CLOCK INHIBIT	INTERNAL STAGE	LEVEL CHANGE	INTERNAL STAGE Q	OUTPUT		
0	0	х		0	NC		
×	0	0		NC	0		
1	0	х		1	NC		
X	0	1		NC	1		
Х	1	1	Х	NC	NC		

0 = Low level 1 = High level X = Don't care

* For Shift-Right Mode

Data Input = SHIFT-RIGHT INPUT (Term. 11) Internal Stage = Stage 1 (Q₁)
Output = SHIFT-LEFT OUTPUT (Term. 4)

NC = No change

For Shift-Left Mode Data Input = SHIFT-LEFT INPUT (Term. 6)

Internal Stage = Stage 32 (Q₃₂)
Output = SHIFT-RIGHT OUTPUT (Term. 12)

Fig. 9 - Typical dynamic power dissipation as a function of CLOCK frequency.

Fig. 10 - Quiescent-device-current test circuit.

Fig. 11 - Input-current test circuit.

Fig. 12 - Input-voltage test circuit.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C) Values at -55, +25, +125 Apply to D, F, K, H. Packages Values at -40, +25; +85 Apply to E Package						UNITS	
ISTIC	Vo	VIN	V _{DD} (V)	Ĺ				+25			DNIIS
	(v)	(V)		55	-40	+85	+125	Min.	Түр.	Max.	L
Quiescent Device	_]	0,5	5	5	5	150	150	-	0.04	5	μΑ
Current,	~	0,10	10	10	10	300	300	_	0.04	10	
IDD Max.		0,15	15	20	20	600	600	_	0.04	20	μΑ.
	-	0,20	20	100	100	3000	3000	-	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1		
(Sink) Current	0,5	0,10	10	1.6	1,5	1.1	0.9	1.3	2.6	-	}
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	ı	mA
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		
(Source)	2.5	0,5	5	-2	-1.8	-1.3	1.15	-1.6	-3.2	-	
Current, IOH Min.	9,5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	~2.6	-	
тОН ******	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	_	0,5	5	0.06			-	0	0.05	>	
Low-Level, VOL Max.	_	0,10	10	0.05				_	0		0.05
AOF Max	- 1	0,15	15	0.05			-	0	0.05		
Output Voltage:	-	0,5	5	4.95			4.95	5	-		
High-Level,		0,10	10		9	.95		9.95	10	-	}
VOH Min.		0,15	15	14.95			14.95	15			
Input Low	0.5, 4.5	_	5	1.5 — — 1.5					1.5		
Voltage, VIL Max.	1,9	_	10	3				_	-	3	V
	1.5,13.5	_	15	4					4		
Input High	0.5, 4.5		5			3.5		3.5	-	-	ľ
Voltage,	1,9		10	7			7	-	=	1	
VIH Min.	1.5,13.5	-	15			11		11			
Input Current IN Max.	-	0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μА

The photographs and dimensions of each CMOS chip represent a chip when it is part of the water. When the water is separated into individual chips, the angle of cleavage may vary with respect to the chip face for different chips. The actual dimensions of the isolated chip, therefore, may differ slightly from the nominal dimensions shown. The user should consider a tolerance of ~3 mils to +16 mils applicable to the nominal dimensions shown.

Dimensions and pad layout for CD40100BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3} \, \text{inch})$.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r, t_f = 20 ns, $\rm C_L$ = 50 pF, R_L = 200 k Ω

Trop couply one I						
	TEST COND	LIMITS			}	
CHARACTERISTIC		V _{DD} V	Min.	Тур.	Max.	UNITS
Propagation Delay Time:		5		360	720	
Clock to Shift Left/Right		10		165	330	ns
Output, tpLH, tpHL		15		115	230	ł
Transition Time, t _{THL} , t _{TLH}		5		100	200	
	1	10		50	100	ns
		15		40	80	L
Minimum Data Setup Time, t _S		5		50	100	1
		10		10	20	ns
		15		5	10	<u> </u>
		5		170	275	
Minimum Data Hold Time, t _H		10		75	100	ns
		15		50	75	Ĺ
		5	1	2		
Maximum Clock Input Frequency, fCL		10	2.5	5		MHz
		15	3	6		
Minimum Clock Input Pulse Width:		5		225	450	
Low Level, tWL		10		115	230	ns
		15		95	190	
		5		140	280	
High Level, t _{WH}		10)	75	150	ns
		15		70	140	
Input Capacitance, C _{IN}	Any Input	-		5	7.5	pF

TERMINAL ASSIGNMENT