

Departamento de Estatística Universidade Federal de Juiz de Fora

Planejamento de Experimentos Delineamento Fatorial 2^k

Professora Ângela

Experimentos Fatoriais da Série 2^k

- \blacktriangleright O fatorial 2^k é especialmente útil em estágios iniciais de trabalhos experimentais, quando muitos fatores podem ser de interesse;
- Esse delineamento proporciona o menor número de repetições necessárias para estudar todos os fatores em um delineamento fatorial completo;
- Muito utilizado em pesquisa e desenvolvimento industrial;
- Muito utilizado, também, na experimentação agronômica, em experimentos envolvendo nutrição mineral de plantas;
- A base indica o múmero de níveis e o expoente o número de fatores.

Modelo Matemático – Fatorial $2^3\,$ em Blocos Casualizados

- $y_{ijkr} = m + a_i + b_j + c_k + ab_{ij} + ac_{ik} + bc_{jk} + abc_{ijk} + d_r + e_{ijkr};$
- ▶ Em que:
 - \rightarrow m é uma constante (usualmente a média geral);
 - a_i , com i = 1, ..., I, é o efeito do fator A;
 - b_j , com j = 1, ..., J, é o efeito do fator B;
 - c_k , com k = 1, ..., K, é o efeito do fator C;
 - lacktriangle ab_{ij} é o efeito da interação entre os fatores A e B;
 - ac_{ik} é o efeito da interação entre os fatores A e C;
 - bc_{jk} é o efeito da interação entre os fatores B e C;
 - $ightharpoonup abc_{ijk}$ é o efeito da interação entre os fatores A, B e C;
 - d_r , com r = 1, ..., R, é o efeito de blocos; e
 - e_{ijkr} é o erro experimental.

Exemplo de Fatorial 2³ - Tratamentos

Esquema da ANOVA

Causa de Variação	Graus de Liberdade	Soma de Quadrados	Quadrado Médio	F
Fator A	I-1	Q_1	V_1	V_1/V_{10}
Fator B	J-1	Q_2	V_2	V_2/V_{10}
Fator C	K-1	Q_3	V_3	V_3/V_{10}
Int AxB	(I-1)(J-1)	Q_4	V_4	V_4/V_{10}
Int AxC	(I-1)(K-1)	Q_5	V_5	V_5/V_{10}
Int BxC	(J-1)(K-1)	Q_6	V_6	V_6/V_{10}
Int AxBxC	(I-1)(J-1)(K-1)	Q_7	V_7	V_7/V_{10}
(Trat)	(IJK-1)	(Q_8)	(V_8)	(V_8/V_{10})
Blocos	R-1	Q_9	V_9	
Resíduos	(IJK-1)(R-1)	Q_{10}	V_{10}	
Total	IJKR-1	Q_{11}		

Cálculo das Somas de Quadrado – Fatorial 2³

Tuest		T-4-:-			
Trat	I	2	•••	R	Totais
000	y_{000_1}	y_{000_2}	•••	${\mathcal Y}_{000_R}$	T_1
001	y_{001_1}	y_{001_2}	•••	${\mathcal Y}_{001_R}$	T ₂
010			•••		
011			•••		
100			•••		
101			•••		
110			•••		
111	y_{111_1}	y_{111_2}	•••	y_{111_R}	T_{IJK}
Totais	D_1	D_2		D_R	G

Cálculo das Somas de Quadrado – Fatorial 2³

- $SQTotal = \sum_{ijkr} y^2_{ijkr} C;$
- $C = \frac{G^2}{IJKR};$
- $> SQTrat = \frac{1}{R} \sum_{i} T^{2}_{i} C;$
- $> SQBlocos = \frac{1}{IJK} \sum_{r} D^{2}_{r} C;$
- ightharpoonup SQRes = SQTotal SQTrat SQBlocos.

Cálculo das Somas de Quadrado – Fatorial 2³

	$\mathbf{B_0}$	B_1	Σ
$\mathbf{A_0}$	x_{00}	x_{01}	T_{A_0}
A ₁	<i>x</i> ₁₀	<i>x</i> ₁₁	T_{A_1}
Σ	T_{B_0}	T_{B_1}	

	C_0	C_1
A_0	Z_{00}	z_{01}
A ₁	Z_{10}	z_{11}
Σ	T_{C_0}	T_{C_1}

	C_0	C ₁
B_0	w_{00}	w_{01}
B ₁	w_{10}	w_{11}

$$OSQA = \frac{1}{IKR} (T^{2}_{A_{0}} + T^{2}_{A_{1}}) - C;$$

$$OSQB = \frac{1}{IKR} (T^2_{B_0} + T^2_{B_1}) - C;$$

$$OSQC = \frac{1}{IJR} (T^{2}_{C_{0}} + T^{2}_{C_{1}}) - C;$$

$$OSQA \times B = \frac{1}{KR}(x^2_{00} + x^2_{01} + x^2_{10} + x^2_{11}) - C - SQA - SQB;$$

$$OSQA \times C = \frac{1}{IR} (z^{2}_{00} + z^{2}_{01} + z^{2}_{10} + z^{2}_{11}) - C - SQA - SQC;$$

$$\circ SQA \times B \times C = SQTrat - SQA - SQB - SQC - SQA \times B - SQA \times C - SQB \times C.$$

Alternativa para a Obtensão das Somas de Quadrados

▶ Pode-se utilizar os contrastes ortogonais:

Contrastes	000	100	010	001	110	101	011	111
$Y_1 = Y_A = \text{efeito de } A$	-	+	-	-	+	+	-	+
$Y_2 = Y_B$ = efeito de B	-	-	+	-	+	-	+	+
$Y_3 = Y_C$ = efeito de C	-	-	-	+	-	+	+	+
$Y_4 = Y_{AB}$ = efeito de AxB	+	-	-	+	+	-	-	+
$Y_5 = Y_{AC}$ = efeito de AxC	+	-	+	-	-	+	-	+
$Y_6 = Y_{BC}$ = efeito de BxC	+	+	-	-	-	-	+	+
$Y_7 = Y_{ABC}$ = efeito de AxBxC	=	+	+	+	-	-	-	+

Para cada linha de fator principal coloca-se o sinal (+) se o elemento relativo ao contraste está representado por 1, ou (-) se representado por 0. Para as interações multiplica-se os sinais dos elementos que compõem a interação.

Alternativa para a Obtensão das Somas de Quadrados

- As somas de quadrados são obtidas pela seguinte expressão:
- $SQ\widehat{Y}_i = \frac{(\widehat{Y}_i)^2}{r\sum_i c^2_i},$
- ▶ Em que,
 - \hat{Y}_i é o valor do contraste obtido com os totais de tratamentos;
 - r é o número de repetições;
 - c_i são os coeficientes dos totais de tratamentos no contraste.

- ▶ Com o intuito de estudar a adubação (NPK) da cultura do cafeeiro foi montado um experimento em blocos casualizados no esquema fatorial 2³. As produções de café, em kg/parcela de 105 m² (12 covas no espaçamento 3,5x2,5 m) foram observadas.
- ▶ Foram considerados 2 níveis de cada nutriente: 0 nutriente ausente; e I – uma dose do nutriente;
- A combinação dos 2 níveis de cada fator resulta em 8 tratamentos;
- No total foram formados 6 blocos.

Took	Blocos						Takaia
Trat	I	2	3	4	5	6	Totais
000	31,8	40,5	25,7	25,7	37,2	45,3	206,2
001	25,6	32,4	39,6	48,9	20,6	33,7	200,8
010	36,2	37,8	40,9	44,8	32,4	38,4	230,5
011	37, I	53	36,4	43	19,7	30,4	219,6
100	35,3	39	36	33,5	28,2	42,4	214,4
101	51,5	66, I	51,7	52	56,5	58,2	336
110	43,8	32,7	43,3	41,8	31,9	37,7	231,2
111	47	49,9	50,9	49,I	71,7	39,6	308,2
Totais	308,3	351,4	324,5	338,8	298,2	325,7	1946,9

	P_0	P_1	Totais - N
N_0	407	450, I	857, I
N_1	550,4	539,4	1089,8
Totais - P	957,4	989,5	

	K ₀	K_1
N_0	436,7	420,4
N_1	445,6	644,2
Totais - K	882,3	1064,6

	P_0	P_1
K_0	420,6	461,7
$\mathbf{K_1}$	536,8	527,8

Causa de Variação	GL	Soma de Quadrados	Quadrado Médio	F
Nitrogênio (N)	I	1128,11	1128,11	17,08
Fósforo (P)	1	21,46	21,46	0,325 ns
Potássio (K)	I	692,36	692,36	10,49
Int NxP	I	60,98	60,98	0,924 ns
Int NxK	1	962,12	962,12	14,57 *
Int PxK	ĺ	52,29	52,29	0,792 ns
Int NxPxK	ĺ	31,85	31,85	0,482 ns
(Trat)	(7)	(2949,17)	(421,31)	(6,38)
Blocos	5	235,45	47,09	
Resíduos	35	2310,93	66,03	
Total	47	5495,55		

- Como a Interação tripla foi não significativa temos que os fatores podem interagir dois a dois, porém, eles não interagem como um trio;
- Das interações duplas, a única significativa é a interação entre Nitrogênio e Potássio, sendo assim, não é possível tirar conclusões separadamente para Nitrogênio e Potássio, é possível, no entanto tirar conclusões sobre Fósforo independentemente dos outros 2 nutrientes;
- Como o efeito de Fósforo foi não significativo, conclui-se que a produção de café não é afetada pela presença ou ausência de uma dose de fósforo;
- Falta estudar o efeito de Nitrogênio dentro de Potássio e viceversa para saber como esses dois nutrientes afetam a produção.

Cálculos

	K ₀	K ₁
N_0	436,7	420,4
N_1	445,6	644,2

Efeito de Nitrogênio dentro de Potássio

CV	GL	SQ	QM	F
N d. K ₀	I	3,3	3,3	<
N d. K ₁	I	2086,93	2086,93	31,6 **
Resíduo	35	2310,93	66,03	

Efeito de Potássio dentro de Nitrogênio

CV	GL	SQ	QM	F
K d. N ₀	I	11,07	11,07	<
K d. N ₁	1	1643,42	1643,42	24,89 **
Resíduo	35	2310,93	66,03	

- ▶ O estudo de Nitrogênio (N) dentro de Potássio (K) e de K dentro de N nos mostra que a adubação por N só afeta a produção de café na presença de K, ou alternativamente, a adubação por K só afeta a produção de café na presença de N.
- A tabela de dupla entrada contendo os totais da produção de café para as combinações de N e K, indica que a interação entre N e K é positiva, e a utilização de ambos na adubação do cafeeiro aumenta significativamente a produção de café.

Confundimento – Introdução

- Considere um experimento fatorial que será instalado segundo um delineamento em blocos casualizados;
- Isso implica que houve a necessidade de dividir as unidades experimentais em grupos, sendo que dentro de um mesmo grupo essas unidades são consideradas homogêneas, e entre grupos, heterogêneas;
- Para termos um delineamento em Blocos Completos, é necessário que haja uma repetição de cada tratamento dentro de cada um dos blocos;
- A grande quantidade de tratamentos proveniente de um Fatorial, muitas vezes impossibilita a presença de uma repetição de cada tratamento dentro de cada bloco;
- Nesses casos, utiliza-se a técnica do CONFUNDIMENTO.

Confundimento em Fatoriais 2^k

- Utilizado com a intenção de reorganizar um delineamento Fatorial em blocos completos, quando o tamanho do bloco é menor do que o número de combinações de tratamentos que completariam uma repetição.
- Essa técnica faz com que algumas informações, geralmente sobre o efeito de interações de alta ordem, sejam indistinguíveis de, ou confundidas com, o efeito de blocos.

Recapitulação

Quadro de sinais para os contrastes de interesse em um experimento fatorial 2³:

Contrastes	000	100	010	001	110	101	011	111
$Y_1 = Y_A = \text{efeito de A}$	-	+	-	-	+	+	-	+
$Y_2 = Y_B$ = efeito de B	_	-	+	-	+	-	+	+
$Y_3 = Y_C$ = efeito de C	_	-	-	+	-	+	+	+
$Y_4 = Y_{AB}$ = efeito de AxB	+	-	-	+	+	-	-	+
$Y_5 = Y_{AC}$ = efeito de AxC	+	-	+	-	-	+	-	+
$Y_6 = Y_{BC}$ = efeito de BxC	+	+	-	-	-	-	+	+
$Y_7 = Y_{ABC}$ = efeito de AxBxC	_	+	+	+	-	-	-	+

Confundimento no Fatorial 2³ - Exemplo

- Num experimento de nutrição mineral de plantas, geralmente, a interação tripla N × P × K não é significativa;
- Logo, é o efeito dessa interação que costuma-se confundir com o efeito de blocos;
- Pelo quadro de sinais dos contrastes tem-se:

Contrastes	000	100	010	001	110	101	011	111
$Y_7 = Y_{ABC}$ = efeito de AxBxC	-	+	+	+	-	-	-	+

È esse o contraste que mede o efeito da interação tripla.

Confundimento no Fatorial 2³

- Tem-se, então:
- $\hat{Y}_7 = -T_{000} + T_{100} + T_{010} + T_{001} T_{110} T_{101} T_{011} + T_{111} \text{ ou } \hat{Y}_7 = (T_{100} + T_{010} + T_{001} + T_{111}) (T_{000} + T_{110} + T_{101} + T_{011});$
- Para efetuar o confundimento deste contraste com o efeito de blocos, deve-se repartir um bloco com os 8 tratamentos, em dois blocos (ou sub-blocos) de 4 tratamentos cada um;
- De modo que:
 - Um deles tenha os tratamentos com sinal (+) no contraste \hat{Y}_7 , e
 - ▶ O outro, com os tratamentos com sinal (−).

Confundimento no Fatorial 2³

I° Bloco	2° Bloco	Total
100	000	
010	110	
001	101	
111	011	
T_{B_1}	T_{B_2}	T_G

Neste caso,

$$\triangleright SQ\hat{Y}_7 = SQBlocos = \frac{1}{4} (T^2_{B_1} + T^2_{B_2}) - \frac{(T_G)^2}{8}$$

Método Alternativo - Geometria Finita

- Pode-se utilizar a geometria finita como ferramenta para fazer o confundimento;
- Utiliza-se as seguintes equações:

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 1 \end{cases}$$

- ▶ Em que:
- $\rightarrow x_1$ representa os níveis de N (0, I);
- $\rightarrow x_2$ representa os níveis de P (0, I);
- $\rightarrow x_3$ representa os níveis de K (0, I).
- Admite-se o módulo 2, toda soma cuja divisão por 2 der resto zero terá os tratamentos em um bloco. As divisões cujos restos forem 1, terão os tratamentos no outro bloco

Método Alternativo - Geometria Finita

Em outras palavras, toda soma par terá os tratamentos em um sub-bloco, e toda soma ímpar terá os tratamentos no outro sub-bloco:

x_1	x_2	x_3	Σ		Bloco
0	0	0	0	Par	2°
0	0	I	I	Ímpar	I°
0	I	0	1	Ímpar	I°
0	I	I	2	Par	2°
1	0	0	1	Ímpar	I°
1	0	I	2	Par	2°
1	I	0	2	Par	2°
1	I	I	3	Ímpar	I°

Método Alternativo – Geometria Finita

I° Bloco	2° Bloco
100	000
010	110
001	101
111	011

OBS: Ambos os métodos chegam ao mesmo resultado.

Confundimento no Fatorial 2³

Somas de Quadrados

- As SQ's para esse esquema com confundimento e duas repetições são obtidas pelas expressões:
- $\triangleright SQTotal = \sum_{i,j,k,r} y^2_{ijkr} C;$
- $C = \frac{G^2}{IJKR};$
- $SQTrat = \frac{1}{R} \sum_{i} T^{2}_{i} C \left[\frac{1}{IIK} (T^{2}_{sb1} + T^{2}_{sb2}) C \right];$
- $> SQBlocos = \frac{1}{(IJK/2)} \sum_{r} (T^2_{b_r}) C;$
- ightharpoonup SQRes = SQTotal SQTrat SQBlocos.
- O método de calcular as somas relativas ao fatorial não muda, lembrando que não se calcula a soma da interação tripla.

Esquema da ANOVA Supondo 2 Repetições

Causa de Variação	GL – Sem Confundimento	GL – Com Confundimento
Nitrogênio (N)	I	
Fósforo (P)	Ī	I
Potássio (K)	1	I
Int NxP	1	1
Int NxK	1	1
Int PxK	ĺ	I
Int NxPxK	1	
(Trat)	(7)	(6)
Blocos	I	3
Resíduos	7	6
Total	15	15

Uma companhia divulga seus produtos por carta. Um experimento foi conduzido para estudar os efeitos de 3 fatores na taxa de resposta dos clientes para um produto em particular. Os 3 fatores foram: A = tipo de correspondência usada (terceira classe, primeira classe), B = tipo de folheto (colorido, preto e branco), e C = preço ofertado (\$19,95; \$24,95). A empresa tem uma lista de clientes que foram sorteados para participarem do experimento. As parcelas consistem de grupos de 1000 clientes com mesmo perfil e renda. As correspondências foram enviadas para 4 grupos de 4000 clientes selecionados da lista. Cada grupo de clientes foi considerado como um bloco, tendo mesmo perfil e renda. A variável resposta é o número de pedidos feitos. Os dados são dados no próximo slide.

Sub-bloco I (clientes de renda alta)					
Fatore	es codi	ficados	Númer	o de Pedidos	Total
Α	В	С	Renda Média	Alta Renda Alta	Total
0	0	0	50	54	104
1		0	42	43	85
1	0	1	48	45	93
0		1	47	48	95
	Total		187	190	377
	S	ub-bloc	o 2 (clientes d	e renda média)	
Fatore	es codi	ficados	Númer	o de Pedidos	Total
Α	В	С	Renda Média	Renda Média Baixa	Total
I	0	0	44	42	86
0	I	0	46	48	94
0	0	1	49	46	95
	1	1	56	54	110
	Total		195	190	385

	A0	ΑI	
В0	199	179	378
ВІ	189	195	384
	388	374	762

	A0	ΑI	
C0	198	171	369
CI	190	203	393
	388	374	762

	В0	ВІ	
C0	190	179	369
CI	188	205	393
	378	384	762

CV	GL	SQ	QM	F
A	1	12,25	12,25	3,7215
В	1	2,25	2,25	0,6835
С	1	36	36	10,9367
AB	1	42,25	42,25	12,8354*
AC	Ĭ	100	100	30,3798 *
ВС	Ĭ	49	49	14,8861 *
ABC	-	-	-	-
(Tratamento)	(6)	(241,75)		
Bloco	3	8,25		
Res	6	19,75	3,2917	
Total	15	269,75		

CV = 3,81%
$$F_{tab} \begin{cases} n_1 = 1 \\ n_2 = 6 \\ \alpha = 5\% \end{cases}$$

Interação entre:

- (A) Tipo de Correspondência; e
- (B) Tipo de Panfleto.

	A0	ΑI	
В0	199	179	378
ВІ	189	195	384
	388	374	762

Interação entre:

- (A) Tipo de Correspondência; e
- (B) Tipo de Panfleto.

CV	GL	SQ	QM	F
$A d.B_0$	I	50	50	15,1899 *
$A d.B_1$	I	4,5	4,5	1,3671 ns
Resíduos	0	19,75	3,2917	

CV	GL	SQ	QM	F
$B d.A_0$	I	12,5	12,5	3,7975 ns
$B d.A_1$	I	32	32	9,7215 *
Resíduos	0	19,75	3,2917	

Conclusão

- Se o panfleto fosse em preto e branco o fato da correspondência ser de primeira classe ou de terceira classe influenciou o resultado, sendo que as correspondências de terceira classe e em preto e branco geraram mais pedidos do que as de primeira classe e em preto em branco;
- Panfletos coloridos receberam números de pedido que não diferem entre si para correspondências de terceira ou primeira classe;
- Já para correspondências de terceira classe, o fato de serem coloridas, ou em preto e branco não trouxe diferença significativa para o número de pedidos;
- Correspondências de primeira classe geraram mais pedidos quando coloridas.

Interação entre:

- (A) Tipo de Correspondência; e
- (C) Preço do Produto.

	A0	ΑI	
C0	198	171	369
CI	190	203	393
	388	374	762

Interação entre:

- (A) Tipo de Correspondência; e
- (C) Preço do Produto.

CV	GL	SQ	QM	F
$A d. C_0$	I	91,125	91,125	27,6835 *
$A d. C_1$	I	21,125	21,125	6,4177 *
Resíduos	0	19,75	3,2917	

CV	GL	SQ	QM	F
$C d.A_0$	I	8	8	2,4304 ns
$C d. A_1$	I	128	128	38,886 I *
Resíduos	0	19,75	3,2917	

Conclusão

- A diferença entre o tipo de correspondência causou diferença no número de pedidos dentro de ambos os preços ofertados, porém o efeito foi o inverso em ambos os casos:
 - Para \$19,95 o número de pedidos foi maior para correspondência de terceira classe;
 - Para \$24,95 o número de pedidos foi maior para correspondência de primeira classe.
- Para correspondência de terceira classe, a diferença de preço não afetou o número de pedidos;
- Iá para correspondência de primeira classe, o número de pedidos foi significativamente maior para panfletos considerando o valor de \$24,95.

Interação entre:

- (B) Tipo de Panfleto; e
- (C) Preço do Produto.

	В0	ВΙ	
C0	190	179	369
CI	188	205	393
	378	384	762

Interação entre:

- (B) Tipo de Panfleto; e
- (C) Preço do Produto.

CV	GL	SQ	QM	F
$B d.C_0$	I	15,125	15,125	4,5949 ns
$B d.C_1$	I	36,125	36,125	10,9747 *
Resíduos	0	19,75	3,2917	
CV	GL	SQ	QM	F
$C d.B_0$	I	0,5	0,5	0,1519 ns
$C d.B_1$	1	84,5	84,5	25,6709 *
Resíduos	0	19,75	3,2917	

Conclusão

- Para o valor ofertado de \$19,95, o número de pedidos não foi afetado pelo fato do panfleto ser colorido ou não;
- Iá para o valor ofertado de \$24,95, o número de pedidos foi significativamente maior para os panfletos coloridos;
- Para panfletos em preto e branco o valor ofertado não teve influência sobre o número de pedidos;
- No entanto, para panfletos coloridos o número de pedidos foi significativamente maior para o maior valor ofertado (\$24,95).

Interpretação Final

- As combinações de fatores que causaram um maior número de pedidos foram:
 - ▶ Panfleto preto e branco X correspondência de terceira classe;
 - Panfleto preto e branco X \$19,95;
 - Panfleto colorido X correspondência de primeira classe;
 - Panfleto colorido X \$24,95;
 - Correspondência de terceira classe X \$19,95;
 - Correspondência de primeira classe X \$24,95.
- Sendo assim, teria que ser estudado o lucro obtido ao enviar correspondência de primeira classe, colorida e com valor ofertado de \$24,95 e o lucro obtido ao enviar correspondência de terceira classe, preta e branca e com valor ofertado de \$19,95. Já que essas duas combinações foram as com maior número de pedidos, porém uma custa mais com um maior faturamento e a outra custa menos mas com um faturamento menor.