More on Graphs

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 10

- Graph G = (V, E)
 - V set of vertices
 - $E \subseteq V \times V$ set of edges

- Graph G = (V, E)
 - V set of vertices
 - $E \subseteq V \times V$ set of edges
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$

- Graph G = (V, E)
 - V set of vertices
 - $E \subseteq V \times V$ set of edges
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$
- Vertex v is reachable from vertex u if there is a path from u to v

- Graph G = (V, E)
 - V set of vertices
 - $E \subseteq V \times V$ set of edges
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$
- Vertex v is reachable from vertex u if there is a path from u to v
- What more can we do with graphs?

- Assign each state a colour
- States that share a border should be coloured differently

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

3/8

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

3/8

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

3/8

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours
- Only need the underlying graph

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours
- Only need the underlying graph
- Abstraction: if we distort the graph, problem is unchanged

■ Graph G = (V, E), set of colours C

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For graphs derived from geographical maps, 4 colours suffice

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?
 - Courses and timetable slots

English

Math

History

Science

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?
 - Courses and timetable slots
 - Graph: Edges are overlaps in slots

English

Math

History

Science

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?
 - Courses and timetable slots
 - Graph: Edges are overlaps in slots
 - Colours are classrooms

English

Math

History

Science

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera at the intersection of corridors can monitor all those corridor.

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera at the intersection of corridors can monitor all those corridor.
- Minimum number of cameras needed?

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera at the intersection of corridors can monitor all those corridor.
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera at the intersection of corridors can monitor all those corridor.
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections
- Vertex cover
 - Marking *v* covers all edges from *v*
 - Mark smallest subset of V to cover all edges

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera at the intersection of corridors can monitor all those corridor.
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections
- Vertex cover
 - Marking v covers all edges from v
 - Mark smallest subset of V to cover all edges

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera at the intersection of corridors can monitor all those corridor.
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections
- Vertex cover
 - Marking v covers all edges from v
 - Mark smallest subset of V to cover all edges

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?
- Represent the dances as a graph
 - V dances
 - *E* sets of dancers overlap

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?
- Represent the dances as a graph
 - V dances
 - *E* sets of dancers overlap
- Independent set

 Subset of vertices such that no two are connected by an edge

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?
- Represent the dances as a graph
 - V dances
 - *E* sets of dancers overlap
- Independent set

 Subset of vertices such that no two are connected by an edge

- Class project can be done by one or two people
 - If two people, they must be friends

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset $M \subseteq E$ of mutually disjoint edges

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset $M \subseteq E$ of mutually disjoint edges
- Find a maximal matching in G

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset M ⊆ E of mutually disjoint edges
- Find a maximal matching in G
- Is there a perfect matching, covering all vertices?

7/8

Summary

- Graphs are useful abstract representations for a wide range of problems
- Reachability and connectedness are not the only interesting problems we can solve on graphs
 - Graph colouring
 - Vertex cover
 - Independent set
 - Matching
 -