I9 PartialProd2 Tivenan

Stephen Tivenan

February 2019

1 Partial Product

A condition for when a $\prod_{n=1}^{\infty}(1+\frac{f_n}{g_n})$ converge was when $f_n=n$ and $g_n=n^3$. This infinite series converge to 3.668. The function diverged when $f_n=n$ and $g_n=n^2$. Each term in the series increase by 1. The next infinite series, $\prod_{n=1}^{\infty}(1+b^n)$ diverges when b=2. The infinite series seems to diverge very quickly and are extremely large and long. The infinite series converges when b=1/4. The infinite series converges to 1.3559096738634793 and converges relatively quickly. I did notice a pattern with the first infinite series $\prod_{n=1}^{\infty}n/n^3$. If we increase the denominator by an integer of one, the value to which the series converged decrease by to about each time. For example the $\prod_{n=1}^{\infty}1/(n^3+1)$ converges to 2.676, $\prod_{n=1}^{\infty}1/(n^3+2)$ converges to 2.32, $\prod_{n=1}^{\infty}1/(n^3+3)$ converges to 2.136 and $\prod_{n=1}^{\infty}1/(n^3+4)$ converges to 2.016. A interesting fact that I found as well was that when we initially add the 1 to the denominator the infinite product increases.