Chapter 1 Module

1.1 Exercise

1.4 Let N, K be submodules of R module M, we define $(N:K) = \{a \in R \mid aK \subseteq N\}.$

(1) Prove that (N:K) is an ideal of R.

Proof. Step 1. Show (N:K) is a subgroup

Suppose $a, b \in (N:k)$, then $ak \subseteq N$, $bk \subseteq N$. For any $k \in K$, $ak, bk \in N$, thus $ak-bk=(a-b)\cdot k \in N$. $\Rightarrow a-b \in (N:K)$.

Step 2. Show $R \cdot (N; K) \subseteq (N; K)$

For $r \in R$ and $\alpha \in (N:K)$, we have $r \cdot \alpha \cdot K \subseteq r \cdot N \subseteq N$.

(2) A special case is $Ann(M) = (0:M) = \{b \in R \mid bx = 0, x \in M\}$, called annihilator of M. For an ideal C of R, if $C \subseteq Ann(CM)$, show that $(\alpha + C) \cdot x := \alpha x$ makes M an R/C module.

Proof. Step 1. Show that $(a+c)\cdot x$ is well-defined.

If $a, b \in a+c$, $a-b \in c \subseteq Ann(M)$, $(a-b) \cdot x = 0$. Thus $a \cdot x = b \cdot x$.

Step 2. The axioms of module is easy to check.

- 1.5 Prove the following
- (1) $Ann(N+K) = Ann(N) \cap Ann(K)$
- (2) $(N:K) = A_{nn}((K+N)/N)$

proof. (1) "Ann (N+K) = Ann (N) 1 Ann (K)"

For $\alpha \in Ann(N+K) = 0$. Since $N, K \subseteq N+K$, $\alpha \cdot N = \alpha \cdot K = 0$. Thus $\alpha \in Ann(N) \cap Ann(K)$

" Ann(N) A Ann CK) S Ann (N+K)

For α such that $a \cdot N = \alpha \cdot K = 0$, we have $\alpha \cdot (x+y) = 0$ for all $x \in N$ and $y \in K$.

(2) Notice $Ann((k+N)/N) = \{a \in R \mid a \cdot \overline{x} = \overline{0} \mid \forall \overline{x} \in (k+N)/N \}$, where $\overline{x} = x+N$ and $a \cdot \overline{x} = \overline{a \cdot x} = ax+N$.

"(N: F) \subseteq Ann (CN+F)/N)": For $\alpha \in (N:F)$, $\alpha K \subseteq N$. We have $\alpha \cdot \overline{\chi} = \overline{\alpha \cdot \chi} = \alpha \cdot \chi + N$, $\chi = y_1 + y_2$ with $y_1 \in F$ $y_2 \in N$. $\alpha \cdot \chi \in N$.

Thus $\alpha \cdot \overline{\chi} = \overline{O} = O + N$.

- "Ann ((N+K)/N) \subseteq N: F": For $\alpha \in Ann((N+K)/N)$, $\alpha \cdot \overline{\alpha} = \overline{0}$ for all $\overline{\chi} \in (N+K)/N$. Let $\chi = y_1 + y_2$ with $y_1 \in K$ and $y_2 \in N$, we have $\alpha \cdot y_1 + \alpha \cdot y_2 \in N \implies \alpha \cdot y_1 \in N$ for all $y_1 \in K$.
- 1.7 When R is not an itegral domain, give an example of module M whose TCM) is not a submodule. Solution. Consider $R = M = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, $T(M) = \{0, 2, 3, 4\}$. $2+3=5 \notin TCM$. Thus T(M) is not a submodule.
- 1.10 Prove that nonzero module is simple iff M is generated by arbitrary nonzero element X, viz, M=(X).

 Proof. " \Rightarrow ": Take an $0 \neq m \in M$, $R \nmid m \mid = (m)$ is a submodule of M, since M is simple, $(m) \neq 0$, we have (m) = M.

 " \neq " Suppose $m \neq 0$ generate M, i.e. M=(m). If $0 \neq N$ is a submodule of M=(m), there is $n \in N$ and $n \neq 0$. Since $n \in M$, we also have (n)=M by assumption.

Thus $(n) \subseteq N \subseteq M = (n)$, N = M.