宿題の解答例

問題1

クーロン積分、共鳴積分をそれぞれ α 、 β とし、エネルギー固有値を ε とする。

(1)直鎖状のH3の場合

解くべき連立方程式の構成は省略。いきなり永年方程式を書き下すと、(略)となり、これを解くと、 $\varepsilon = \alpha$ 、 $\varepsilon = \alpha \pm \sqrt{2\beta}$ の3つの根(エネルギー準位)が得られる。

(2)環状のH3の場合

永年方程式は同様に (略)となり、これを解くと、 $\varepsilon = \alpha - \beta$ (2重根)、 $\varepsilon = \alpha + 2\beta$ の3つの根が得られる。

講義でも触れたが、 β は通常負なので、エネルギー準位の順番は低い順に、(1)直鎖の場合 $\alpha + \sqrt{2}\beta$ 、 α 、 $\alpha - \sqrt{2}\beta$ 、(2)環状の場合、 $\alpha + 2\beta$ 、 $\alpha - \beta$ となる。

これらの準位に、下から電子を入れていき、全エネルギーを計算して、どちらの構造のほうがエネルギーが低くなるかを計算すればよい。

- (a) H_3 +の場合: 電子は2個。全エネルギーは、直鎖 $2(\alpha + \sqrt{2\beta}) >$ 環状 $2(\alpha + 2\beta)$ なので環状のほうが安定。
- (b) H_3 の場合: 電子は3個。全エネルギーは、直鎖 $2(\alpha + \sqrt{2\beta}) + \alpha = 3\alpha + 2\sqrt{2\beta} > 環状2(\alpha + 2\beta) + (\alpha \beta) = 3\alpha + 3\beta$ なので環状のほうが安定。
- (c) H_3 -の場合: 電子は4個。全エネルギーは、直鎖 $2(\alpha + \sqrt{2}\beta) + 2\alpha = 4\alpha + 2\sqrt{2}\beta < 環状2$ $(\alpha + 2\beta) + 2(\alpha \beta) = 4\alpha + 2\beta$ なので直鎖のほうが安定。

問題2

(図はAtkins, "Physical Chemistry" 8th editionより引用) 3σ 軌道の順番が N_2 と O_2 の間で交代することに注意。縮重した軌道に不完全に電子が入る場合は、Hund則により1つずつ別の軌道に入り、不対電子となる。よって、 O_2 と O_2 が磁性をもつ。

14.28 The molecular orbital energy level diagram for homonuclear diatomic molecules. As remarked in the text, this diagram should be used for O_2 and F_2 .

14.29 The variation of the orbital energies of Period 2 homonuclear diatomics.