0.1 Обход препятствия

Учёт фазовых ограничений в интегральной части функционала качества J, представленный в работе, позволяет лишь приближенно описать условия вида

$$g_i(x) \leqslant 0$$
,

которые возникают естественным образом в задаче обхода препятствия. Для этого фазовое условие q выбирается таким образом, чтобы штрафовать за приближение траектории к препятствию.

Замечание 1. Для формального решения задачи с подобными условиями, необходимо пользоваться методами расширенного лангранжиана [?], которые предполагают решение серии задач типа (??)-(??). Это приводит к ухудшению асимптотики алгоритмов и тем самым существенному увеличению времени работы программного решения.

Пусть задано некоторое точечное препятствие с центром $e^{
m obstacle}$ и радиусом $r_{
m obstacle}$. Тогда зададим интегральное условие в виде:

$$q(x) = \left(\left\| e^3(x) - e^{\text{obstacle}} \right\|^2 - r_{\text{obstacle}} \right)^{-2}. \tag{0.1}$$

Рис. 1 и Рис. 2 демонстрируют траекторию руки при построенном управлении, а также траектории схвата при управлениях, полученных на различных итерациях алгоритма для решения задачи целевого состояния (??) с фазовым ограничением (0.1) при различных весах на фазовое условие.

Рис. 1: Траектория системы при оптимальном управлении и итеративные траектории схвата для задачи обхода препятствия. Вес фазового условия $w_1=10^{-1}$. Алгоритм сошёлся на 10 итерации.

Рис. 2: Траектория системы при оптимальном управлении и итеративные траектории схвата для задачи обхода препятствия. Вес фазового условия $w_1=2\cdot 10^{-2}$. Алгоритм сошёлся на 8 итерации.