戸田階層と拡大 affine Weyl 群作用

黒木 玄

最終更新: 2003年10月7日15:20 (作成: 2003年10月7日)

目次

1	戸田階層	1
	1.1 可換環 R と $\partial/\partial t_i$ の作用 \ldots	1
	1.2 無限行列環 $M_\infty(R)$ と無限一般線形群 $GL_\infty(R)$	2
	1.3 上三角行列群 $G_+(R)$ と下三角行列群 $G(R)$	3
	1.4 戸田階層の導入	4
2	拡大 Weyl 群の作用	7
	2.1 拡大 Weyl 群 $\widetilde{W}(A_{\infty})$	7
	2.2 $G_+(R)=\{Z\}$ への有理作用	7
	2.3 B_i $(i>0)$ への有理作用	
3	周期的戸田場への周期簡約	8
	3.1 m 周期行列 \ldots	8
	3.2 拡大 affine Weyl 群の作用	Ĝ
4	モノドロミー保存系への相似簡約	9
	4.1 相似簡約	Ĝ
	4.2 拡大 affine Weyl 群の作用	Ĉ

1 戸田階層

1.1 可換環 R と $\partial/\partial t_i$ の作用

R は 1 を持つ $\mathbb C$ 上の commutative associative algebra であるとし, R には互いに可換な次のように表わされる $\mathbb C$ -derivations が作用していると仮定する:

$$\frac{\partial}{\partial t_i}: R \to R \qquad (i \in \mathbb{Z}_{\neq 0}).$$

さらにある $t_i \in R$ が存在して

$$\frac{\partial t_j}{\partial t_i} = \delta_{i,j} \qquad (i, j \in \mathbb{Z}_{\neq 0})$$

2 1. 戸田階層

が成立していると仮定し、不定元 z を含む形式和 $\xi(z)$ 、 $\eta(z)$ を次のように定める:

$$\xi(z) := \sum_{i>0} t_i z^i, \qquad \eta(z) := \sum_{i<0} t_i z^i.$$
 (1.1)

不定元 z に関する R 係数の形式巾級数環を R[[z]] と書き, R 係数の形式 Lautent 級数環を R((z)) と書くことにし, z^{-1} に関するそれらをそれぞれ $R[[z^{-1}]]$, $R((z^{-1}))$ と書くことにする. このとき $\xi(z) \in R[[z]]z$ であり, $\eta(z) \in R[[z^{-1}]]z^{-1}$ である.

R への $\partial/\partial t_i$ の作用は自然に $R((z^{-1})),\ R((z)),\ R((z^{-1}))e^{\xi(z)},\ R((z))e^{\eta(z)}$ に作用する. たとえば $f(z)\in R((z^{-1}))$ に対して、

$$\frac{\partial}{\partial t_i} f(z) e^{\xi(z)} = \begin{cases} \left(\frac{\partial f(z)}{\partial t_i} + z^i f(z)\right) e^{\xi(z)} & (i > 0), \\ \frac{\partial f(z)}{\partial t_i} e^{\xi(z)} & (i < 0). \end{cases}$$

1.2 無限行列環 $M_{\infty}(R)$ と無限一般線形群 $GL_{\infty}(R)$

R の元を成分に持つ $\infty \times \infty$ 行列のなす環 $M_{\infty}(R)$ を次のように定義する:

$$M_{\infty}(R) := \big\{\, A = [a_{ij}] \in R^{\mathbb{Z} imes \mathbb{Z}} \; \big| \; A \;$$
の各行には高々有限個しか $0 \;$ でない元がない $\big\}.$

 $M_\infty(R)$ は行列の積に関して 1 を持つ associative algebra をなす. さらに $R^\mathbb{Z}$ を縦ベクトルの空間とみなすと $M_\infty(R)$ は $R^\mathbb{Z}$ に自然に作用している.

 $M_{\infty}(R)$ の単元全体のなす群を $GL_{\infty}(R)$ と書くことにする:

$$GL_{\infty}(R) = M_{\infty}(R)^{\times} = \{ A \in M_{\infty}(R) \mid \exists B \in M_{\infty}(R) \text{ s.t. } AB = BA = 1 \}.$$

 $GL_{\infty}(R)$ は自然に群をなす. その Lie 代数 $gl_{\infty}(R)$ を次のように定義する:

$$\operatorname{gl}_{\infty}(R) := M_{\infty}(R).$$

第 (i,j) 成分だけが 1 で他の成分が 0 の行列を E_{ij} と書き、第 i 成分だけが 1 で他の成分が 0 の縦ベクトルを e_i と書くことにする. また $\infty \times \infty$ の単位行列をも 1 と書くことにする.

例 1.1 (シフト行列 Λ) 行列 Λ を次のように定めると $\Lambda \in GL_{\infty}(R)$ である:

$$\Lambda := [\delta_{i,i+1}] = \sum_{i \in \mathbb{Z}} E_{i,i+1} = \begin{bmatrix} \ddots & \ddots & & & & 0 \\ & 0 & 1 & & & \\ & & 0 & 1 & & \\ & & & 0 & 1 & \\ & & & & 0 & 1 \\ & & & & 0 & 1 \\ & & & & 0 & \ddots \\ 0 & & & & \ddots \end{bmatrix}.$$

このとき $\Lambda^{-1}=[\delta_{i,i-1}]$ である. この Λ は今後何度も登場する. $\ \ \, \Box$

例 1.2 $\infty \times \infty$ 行列 A, B を次のように定めると $A, B \in GL_{\infty}(R)$ でかつ AB = BA = 1 である:

A, B はともに各行に高々 2 個しか 0 でない成分を持たないが、双方の第 0 列のすべての成分は 0 ではない.

1.3 上三角行列群 $G_+(R)$ と下三角行列群 $G_-(R)$

 $\infty \times \infty$ な上三角行列で構成された群 $G_+(R)$ と対角成分がすべて 1 であるような下三角行列で構成された群 $G_-(R)$ を次のように定める:

$$G_{+}(R) := \{ Z = [z_{ij}] \in R^{\mathbb{Z} \times \mathbb{Z}} \mid z_{ij} = 0 \ (i > j), \ z_{ii} \in R^{\times} \},$$

$$G_{-}(R) := \{ W = [w_{ij}] \in R^{\mathbb{Z} \times \mathbb{Z}} \mid w_{ij} = 0 \ (i < j), \ w_{ii} = 1 \}.$$

 $Z \in G_+(R), W \in G_-(R)$ は次のような形をしている:

$$Z = Z_0 + Z_1 \Lambda + Z_2 \Lambda^2 + \dots = \begin{bmatrix} \ddots & \ddots & \ddots & & * \\ & z_{i-1,i-1} & z_{i-1,i} & z_{i-1,i+1} & & \\ & & z_{i,i} & z_{i,i+1} & \ddots \\ & & & z_{i+1,i+1} & \ddots \end{bmatrix} \in G_+(R),$$

$$W = 1 + W_{-1} \Lambda^{-1} + W_{-2} \Lambda^{-2} + \dots = \begin{bmatrix} \ddots & & & 0 \\ \ddots & 1 & & & \\ & \ddots & w_{i,i-1} & 1 & & \\ & & w_{i+1,i-1} & w_{i+1,i} & 1 \\ & * & & \ddots & \ddots & \ddots \end{bmatrix} \in G_-(R).$$

4 1. 戸田階層

ここで $z_{i,i} \in R^{\times}$ でかつ Z_j, W_{-j} は次のように定義された対角行列である:

$$Z_j = \sum_{i \in \mathbb{Z}} z_{i,i+j} E_{ii}, \qquad W_{-j} = \sum_{i \in \mathbb{Z}} w_{i,i-j} E_{ii}.$$

 $G_{\pm}(R)$ の Lie 代数 $\mathfrak{g}_{\pm}(R)$ を次のように定義する:

$$\mathfrak{g}_{+}(R) := \{ B = [b_{ij}] \in R^{\mathbb{Z} \times \mathbb{Z}} \mid b_{ij} = 0 \ (i > j) \},$$

 $\mathfrak{g}_{-}(R) := \{ C = [c_{ij}] \in R^{\mathbb{Z} \times \mathbb{Z}} \mid c_{ij} = 0 \ (i \le j) \}.$

何の制限もおかない無限次の行列の空間 $R^{\mathbb{Z}\times\mathbb{Z}}$ は R 加群として $\mathfrak{g}_+(R)$ と $\mathfrak{g}_-(R)$ の加群になる. $R^{\mathbb{Z}\times\mathbb{Z}}$ からそれぞれへの射影を次のように表わす:

$$X = [X]_{+} - [X]_{-}, \qquad X \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}, \quad [X]_{\pm} \in \mathfrak{g}_{\pm}(\mathbb{R}).$$
 (1.2)

[X]_ の前にマイナスがついていることに注意せよ.

注意 1.3 無限次の行列特有の以下の事情には注意せよ:

- $1.~G_{\pm}(R)\not\subset M_{\infty}(R)$ である. したがって $G_{\pm}(R)\not\subset GL_{\infty}(R)$ である. $Z\in G_{+}(R)$ も $W\in G_{-}(R)$ も無限個の 0 でない成分を含む行を持つことがありえる.
- $2. \ \Lambda \in GL_{\infty}(R)$ であったが $\Lambda \not\in G_{\pm}(R)$ である. しかし, $G_{\pm}(R)$ は Λ による conjugation で閉じている. Λ による conjugation は無限次の正方行列全体の空間 $R^{\mathbb{Z} \times \mathbb{Z}}$ に作用し、行列の成分を左斜め上にシフトする. その作用は $G_{+}(R)$ の外部自己同型を与える.
- $3.~U \in GL_{\infty}(R),~Z \in G_{+}(R),~W \in G_{-}(R)$ に対して行列の積 UZ,~UW の各成分は有限 和になるので well-defined である.

1.4 戸田階層の導入

 $f_i \in R((z^{-1})), g_i \in R((z)) \ (i \in \mathbb{Z})$ であるとし、無限縦ベクトル $\Phi \in [R((z^{-1}))e^{\xi(z)}]^{\mathbb{Z}},$ $\Psi \in [R((z))e^{\eta(z)}]^{\mathbb{Z}}$ を次のように定める:

$$\Phi := \begin{bmatrix} \vdots \\ f_{i-1}e^{\xi(z)} \\ f_{i}e^{\xi(z)} \\ f_{i+1}e^{\xi(z)} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ f_{i-1} \\ f_{i} \\ f_{i+1} \\ \vdots \end{bmatrix} e^{\xi(z)}, \qquad \Psi := \begin{bmatrix} \vdots \\ g_{i-1}e^{\eta(z)} \\ g_{i}e^{\eta(z)} \\ g_{i+1}e^{\eta(z)} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ g_{i-1} \\ g_{i} \\ g_{i+1} \\ \vdots \end{bmatrix} e^{\eta(z)}.$$

ここで $\xi(z)$, $\eta(z)$ は (1.1) で定義された.

定義 1.4 (戸田階層) 上のように定められた Φ , Ψ の組が戸田階層の R における解であるとは以下の条件が成立することである:

(a) f_i , g_i は次の形をしている:

$$f_i = \dots + w_{i,i-\nu} z^{i-\nu} + \dots + w_{i,i-1} z^{i-1} + z^i \qquad \in z^i (1 + R[[z^{-1}]] z^{-1}),$$

$$g_i = z_{i,i} z^i + z_{i,i+1} z^{i+1} + \dots + z_{i,i+\nu} z^{i+\nu} + \dots \qquad \in z^i (R^{\times} + R[[z]] z).$$

ただし $w_{ij}, z_{ij} \in R$ かつ $z_{ii} \in R^{\times}$.

1.4. 戸田階層の導入

5

(b) 各 $i \in \mathbb{Z}_{\neq 0}$ に対してある $B_i \in M_{\infty}(R)$ が存在して

$$\frac{\partial \Phi}{\partial t_i} = B_i \Phi, \qquad \frac{\partial \Psi}{\partial t_i} = B_i \Psi \qquad (i \in \mathbb{Z}_{\neq 0}).$$

条件(b)の線形微分方程式を戸田階層の線形問題表示と呼ぶ. □

注意 1.5 定義 1.4 の流儀による戸田階層の取り扱いには無限次元 Lie 群の定義およびその Gauss 分解に関係した曖昧さがまったく存在しない 1 . \square

注意 1.6 (条件 (a) の言い換え) 定義 1.4 の条件 (a) は Φ , Ψ が次のように表わされること と同値である:

$$\Phi = W \vec{z} e^{\xi(z)}, \qquad \Psi = Z \vec{z} e^{\eta(z)}.$$

ここで

$$\vec{z} = \sum_{i \in \mathbb{Z}} z^{i} e_{i} = \begin{bmatrix} \vdots \\ z^{i-1} \\ z^{i} \\ \vdots \end{bmatrix},$$

$$Z = \sum_{i \leq j} z_{ij} E_{ij} = \begin{bmatrix} \ddots & \ddots & \ddots & & * \\ & z_{i-1,i-1} & z_{i-1,i} & z_{i-1,i+1} & \ddots \\ & & z_{i,i} & z_{i,i+1} & \ddots \\ & & & z_{i+1,i+1} & \ddots \end{bmatrix} \in G_{+}(R),$$

$$W = 1 + \sum_{i > j} w_{ij} E_{ij} = \begin{bmatrix} \ddots & & & 0 \\ & \ddots & 1 & & \\ & \ddots & w_{i,i-1} & 1 & & \\ & & w_{i+1,i-1} & w_{i+1,i} & 1 & \\ * & & \ddots & \ddots & \ddots \end{bmatrix} \in G_{-}(R).$$

さらに $\vec{z}z = \Lambda \vec{z}$ が成立するので, Φ , Ψ を形式的に次のように表わすこともできる:

$$\Phi = W e^{\xi(\Lambda)} \vec{z}, \qquad \Psi = Z e^{\eta(\Lambda)} \vec{z}.$$
(1.3)

ここで $\xi(\Lambda) = \sum_{i>0} t_i \Lambda^i, \, \eta(\Lambda) = \sum_{i<0} t_i \Lambda^i.$

注意 1.7 (条件 (b) の言い換え 1) 定義 1.4 の条件 (a) を仮定し, 条件 (b) を言い換えよう. まず \mathcal{V} を次のように定める:

$$\mathcal{V} := [R((z^{-1}))e^{\xi(z)}] \times [R((z))e^{\eta(z)}].$$

 $\mathcal V$ は自然に R 加群をなし、 $\partial/\partial t_i$ は $\mathcal V$ に自然に作用する. さらに $\phi_i \in \mathcal V$ を

$$\phi_i := (f_i e^{\xi(z)}, g_i e^{\eta(z)}) \in \mathcal{V} \qquad (i \in \mathbb{Z}).$$

¹戸田階層に関する詳しい解説に関しては高崎 [2] を参照せよ.

6 1. 戸田階層

と定め、V の R 部分加群 \mathcal{F} を次のように定める:

$$\mathcal{F} := \sum_{i \in \mathbb{Z}} R\phi_i \subset \mathcal{V}.$$

条件 (a) より ϕ_i は $\mathcal F$ の R 自由基底になっている 2 . 条件 (b) は $\partial \phi_j/\partial t_i$ が ϕ_i たちの有限 R 一次結合で表わされることを意味している. よって条件 (b) は $\mathcal F$ が $\partial/\partial t_i$ の作用で閉じていることと同値である:

(b)
$$\iff \frac{\partial}{\partial t_i} \mathcal{F} \subset \mathcal{F} \quad (i \in \mathbb{Z}_{\neq 0}).$$

行列 B_i の第 j 行がその一次結合の係数になっている. 特に条件 (a) のもとで条件 (b) の B_i は存在するとすれば一意的である.

以上の言い換えを利用すれば、R として具体的な函数環をうまく選んで、 $\partial/\partial t_i$ の作用で閉じている具体的な函数空間 $\mathcal F$ とその R 基底 ϕ_i の組をうまく構成して、 ϕ_i の $z=\infty$ での展開と z=0 での展開の組 $(f_ie^{\xi(z)},g_ie^{\eta(z)})$ が (a) の条件を満たしていれば戸田階層の解が構成できたことになる。この方法の要点は函数ではなく、函数空間を構成するという発想である。抽象的には函数よりも函数空間の方が構成し易いことが多い。コンパクトRiemann 面に付随した Baker-Akhiezer 函数の理論の代数幾何的解釈 (Krichever 構成) はまさにこのような方法の一例になっている。

注意 1.8 (条件 (b) の言い換え 2) 定義 1.4 の条件 (b) では $B_i \in M_\infty(R)$ の存在のみを仮定したが、条件 (a) のもとで条件 (b) の B_i の形には強い制限がつく. まず、注意 1.7 で述べたように条件 (a) のもとで条件 (b) の B_i は一意的である. さらに B_i は次を満たしている:

$$B_{i} = [W\Lambda^{i}W^{-1}]_{+} = \frac{\partial W}{\partial t_{i}}W^{-1} + W\Lambda^{i}W^{-1} = \frac{\partial Z}{\partial t_{i}}Z^{-1} \qquad (i > 0),$$

$$B_{i} = -[Z\Lambda^{i}Z^{-1}]_{-} = \frac{\partial W}{\partial t_{i}}W^{-1} = \frac{\partial Z}{\partial t_{i}}Z^{-1} + Z\Lambda^{i}Z^{-1} \qquad (i < 0).$$

ここで $[\]_{\pm}$ は (1.2) で定義された. 実際 (1.3) より, i > 0 のとき

$$B_{i}\Phi = \frac{\partial \Phi}{\partial t_{i}} = \frac{\partial}{\partial t_{i}} (We^{\xi(\Lambda)}\vec{z}) = \left[\frac{\partial W}{\partial t_{i}} W^{-1} + W\Lambda^{i}W^{-1} \right] \Phi,$$

$$B_{i}\Psi = \frac{\partial \Psi}{\partial t_{i}} = \frac{\partial}{\partial t_{i}} (Ze^{\eta(\Lambda)}\vec{z}) = \left[\frac{\partial Z}{\partial t_{i}} Z^{-1} \right] \Psi$$

であるから.

$$B_i = \frac{\partial Z}{\partial t_i} Z^{-1} \in \mathfrak{g}_+, \quad \frac{\partial W}{\partial t_i} W^{-1} \in \mathfrak{g}_-, \quad W \Lambda^i W^{-1} = B_i - \frac{\partial W}{\partial t_i} W^{-1}.$$

同様にして i < 0 のとき

$$B_{i}\Phi = \frac{\partial \Phi}{\partial t_{i}} = \frac{\partial}{\partial t_{i}} \left(W e^{\xi(\Lambda)} \vec{z} \right) = \left[\frac{\partial W}{\partial t_{i}} W^{-1} \right] \Phi,$$

$$B_{i}\Psi = \frac{\partial \Psi}{\partial t_{i}} = \frac{\partial}{\partial t_{i}} \left(Z e^{\eta(\Lambda)} \vec{z} \right) = \left[\frac{\partial Z}{\partial t_{i}} Z^{-1} + Z \Lambda^{i} Z^{-1} \right] \Psi$$

 $^{^2}$ 実は条件(a)も \mathcal{F} の言葉で言い換えることができるがここでは省略した.

であるから、

$$\frac{\partial Z}{\partial t_i} Z^{-1} \in \mathfrak{g}_+, \quad B_i = \frac{\partial W}{\partial t_i} W^{-1} \in \mathfrak{g}_-, \quad -Z\Lambda^i Z^{-1} = \frac{\partial Z}{\partial t_i} Z^{-1} - B_i.$$

以上のように条件 (b) の B_i は条件 (a) に登場する $z_{ij},\,w_{ij}$ の多項式で表わされる. したがって戸田階層の線形問題表示は $z_{ij},\,w_{ij}$ たちに関する非線形偏微分方程式系とみなされる. \square

2 拡大 Weyl 群の作用

この節では R は体になっていると仮定する.

2.1 拡大 Weyl 群 $\widetilde{W}(A_{\infty})$

 A_{∞} 型の拡大 Weyl 群 $\widetilde{W}(A_{\infty})$ とは生成元 ϖ , r_i $(i \in \mathbb{Z})$ と基本関係式

$$r_i r_{i+1} r_i = r_{i+1} r_i r_{i+1}, \qquad r_i^4 = 1, \qquad \varpi r_i \varpi^{-1} = r_{i+1}$$

で定義される無限離散群のことである.

無限次の行列 $S_i \in GL_{\infty}(R)$ を次のように定義する:

$$S_i := E_{i,i+1} - E_{i+1,i} + \sum_{j \neq i, i+1} E_{jj} \qquad (i \in \mathbb{Z}).$$

このとき、 Λ 、 S_i は以下の関係式を満たしている:

$$S_i S_{i+1} S_i = S_{i+1} S_i S_{i+1}, \qquad S_i^4 = 1, \qquad \Lambda^{-1} S_i \Lambda = S_{i+1}.$$

 $S_i^2=-E_{ii}-E_{i+1,i+1}+\sum_{j\neq i,i+1}E_{jj}\neq 1$ なので実際に $S_i^2\neq 1$ である. よって $\Lambda^{-1},\,S_i$ $(i\in\mathbb{Z})$ は A_∞ 型の拡大 Weyl 群 $\widetilde{W}(A_\infty)$ の $GL_\infty(R)$ における実現になっている.

2.2 $G_+(R) = \{Z\}$ への有理作用

対角成分が可逆であるような無限次上三角行列のなす群 $G_+(R)$ への $\widetilde{W}(A_\infty)$ の有理作用を構成しよう 3 .

任意に generic な $Z=[z_{ij}]\in G_+(R)$ を取る. $ZS_i^{-1}
ot\in G_+(R)$ であるが, $G_i(Z)$ を

$$G_i(Z) := 1 - \frac{z_{i+1,i+1}}{z_{i,i+1}} E_{i+1,i} \in G_-(R)$$

と定めると

$$\rho_{r_i}(Z) := G_i(Z)ZS_i^{-1} \in G_+(R)$$

が成立する. ρ_{r_i} たちの $G_+(R)$ への有理作用は r_i $(i\in\mathbb{Z})$ で生成される $\widetilde{W}(A_\infty)$ の部分群の $G_+(R)$ への有理作用を定める. (証明の概略: $Zg^{-1}=G_q(Z)^{-1}\rho_q(Z)$ のとき

$$Z(gh)^{-1} = G_{gh}(Z)^{-1}\rho_{gh}(Z),$$

³以下の説明は野海[1]第7章に含まれている.

$$Zh^{-1}g^{-1} = G_h(Z)^{-1}\rho_h(Z)g^{-1} = G_h(Z)^{-1}G_g(\rho_h(Z))^{-1}\rho_g(\rho_h(Z))$$
$$= [G_g(\rho_h(Z))G_h(Z)]^{-1}(\rho_g\rho_h)(Z).$$

よって $G_{gh}(Z)=G_g(\rho_h(Z))G_h(Z)$ かつ $\rho_{gh}=\rho_g\rho_h$ が成立する.) そこで $\rho_{r_i}(Z)$ を $r_i(Z)$ と書くことにする.

 $G_+(R)$ に対する ϖ の作用を

$$\varpi(Z) := \Lambda^{-1} Z \Lambda \in G_+(R) \qquad (Z \in G_+(R))$$

と定める. この作用は $\varpi(r_i(Z)) = r_{i+1}(\varpi(Z))$ をみたしている. 実際

$$\Lambda^{-1}ZS_i\Lambda = \Lambda^{-1}G_i(Z)^{-1}r_i(Z)\Lambda = \Lambda^{-1}G_i(Z)^{-1}\Lambda\varpi(r_i(Z)),$$

$$\Lambda^{-1}ZS_i\Lambda = \Lambda^{-1}Z\Lambda\Lambda^{-1}S_i\Lambda = \varpi(Z)S_{i+1} = G_{i+1}(\varpi(Z))r_{i+1}(\varpi(Z))$$

であるから

$$\Lambda^{-1}G_i(Z)^{-1}\Lambda = G_{i+1}(\varpi(Z)), \qquad \varpi(r_i(Z)) = r_{i+1}(\varpi(Z)).$$

したがって $G_+(R)$ への ϖ , r_i の作用は $\widetilde{W}(A_\infty)$ の基本関係式を満たしている. 以上によって $\widetilde{W}(A_\infty)$ の $G_+(R)=\{Z\}$ への有理作用が定義された.

2.3 B_i (i > 0) への有理作用

3 周期的戸田場への周期簡約

3.1 m 周期行列

無限次の行列 $A=[a_{ij}]_{i,j\in\mathbb{Z}}$ が m 周期的であるとは $a_{i+m,j+m}=a_{i,j}$ が成立することである. A が m 周期的であることと $\Lambda^m A \Lambda^{-m}=A$ が成立することは同値である. m 周期的な行列 A は次の形をしている:

$$A = \begin{bmatrix} \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & A_0 & A_1 & A_2 & A_3 & \ddots & \ddots \\ \ddots & A_{-1} & A_0 & A_1 & A_2 & A_3 & \ddots \\ \ddots & A_{-2} & A_{-1} & A_0 & A_1 & A_2 & \ddots \\ \ddots & A_{-3} & A_{-2} & A_{-1} & A_0 & A_1 & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

$$(3.1)$$

ここで A_i は $m \times m$ 行列である.

群 G_m , $G_{m,\pm}$ を次のように定義する:

$$G_m(R) := \{ A \in GL_\infty(R) \mid A \text{ は } m \text{ 周期的 } \},$$

 $G_{m,\pm}(R) := \{ A \in G_\pm(R) \mid A \text{ は } m \text{ 周期的 } \}.$

さらにこれらの Lie 代数を $\mathfrak{g}_m(R)$, $\mathfrak{g}_{m,\pm}$ を次のように定義する:

$$\mathfrak{g}_m(R):=\{\,A\in\operatorname{gl}_\infty(R)\mid A$$
 は m 周期的 $\,\},$ $\mathfrak{g}_{m,\pm}(R):=\{\,A\in\mathfrak{g}_\pm(R)\mid A$ は m 周期的 $\,\}.$

もしも $A\in \mathrm{gl}_\infty(R)=M_\infty(R)$ が m 周期的であれば上の表示 (3.1) において 0 でない A_i は高々有限個になる. したがって A に対して $\sum_i A_i z^i$ を対応させることによって次のような同一視が可能である:

$$\mathfrak{g}_m \cong \mathrm{gl}_m(R[z, z^{-1}) = M_m(R[z, z^{-1}]).$$

たとえば $\Lambda \in M_{\infty}(R)$ は次の $\Lambda(z) \in M_m(R[z,z^{-1}])$ と同一視される:

$$\Lambda(z) = \sum_{i=1}^{m-1} E_{i,i+1} + z E_{m,1} = \begin{bmatrix} 0 & 1 & & 0 \\ & 0 & \ddots & \\ & & \ddots & 1 \\ z & & & 0 \end{bmatrix}.$$

- 3.2 拡大 affine Weyl 群の作用
- 4 モノドロミー保存系への相似簡約
- 4.1 相似簡約
- 4.2 拡大 affine Weyl 群の作用

参考文献

- [1] 野海正俊: パンルヴェ方程式 対称性からの入門 , すうがくの風景 4, 朝倉書店, 2000.
- [2] 高崎金久: 可積分系の世界 戸田格子とその仲間 , 共立出版, 2001.