Improving interim decisions for singlearm trials by adjusting for baseline covariates and short-term endpoints

Eline Anslot

Joint work with Kelly Van Lancker

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Single-arm trials with multi-stage designs

Single-arm trials often used when:

- Few participants available
- Ethical reasons
- Effect under SoC well known,
 e.g., in oncology

Multi-stage designs allow stopping an ongoing trial for futility and/or efficacy.

Commonly used designs:

- Group sequential designs
- Simon's two-stage designs

Continued/Paused

Interim analysis of two-stage designs

Continued/Paused

Interim analysis: based on the longterm endpoint ⇒ Unadjusted analysis

Simon's two-stage design:

Group sequential designs:

with compared to cut-off to stop a trial for futility or efficacy based on e.g., Pocock (1977), O'Brien and Fleming (1979) or Lan and DeMets (1983) or error spending functions

Can we use more information?

Unadjusted analysis

Reset

Adjusted analysis

Improve decision by short-term endpoint

Calendar time

More precise interim estimator

- Recruitment with a pause:
 Possible as in Kunz et al. (2017) and Zocholl et al. (2023)
- Continuous recruitment:
 - ⇒ Focus of the talk

Continued/Paused

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Proposed method

Step 1: Model fitting in cohort 1:

h(.): canonical link function

Step 2: Predicting in cohort 1 and 2:

Proposed method

Proposed method - Decision at interim

Decision at interim:

In Simon's Two-Stage:

In Group Sequential Design:

compared to cut-off to stop a trial for futility or efficacy based on e.g.,

Pocock (1977), O'Brien and Fleming (1979) or Lan and DeMets (1983) or error spending functions

Proposed method

Decision at interim:

- Adjusting for multiple short-term endpoints and baseline covariates
- Asymptotically unbiased even with misspecified models
 - Under random recruitment
- Asymptotically efficient when models are correct

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Simulation settings

,

Design: two different optimal two-stage designs to generate e.g., and

Design	$\mathbf{p_0}$	$\mathbf{p}_{\mathbf{A}}$	n_{final}	$n_{ m long}$	$\mathbf{r_1}$	$\overline{\mathbf{PET}(\mathbf{p_0})}$
1	.25	.35	149	56	15	.6853
2	.25	.30	$\bf 522$	223	57	.6112

Setting 1:

Design	${f Adjus}$	${f tment}$	$\mathbf{n_{in}}$	terim	Proportion	Degree of
	Baseline covariate(s)	Short-term endpoint	n_{long}	n_{short}	$n_{ m short}$	Predictivity
				15	0.20	
1	7	1	56	25	0.30	Low to High
1	/			58	0.50	
				86	0.60	
				58	0.20	
2	1	1	223	99	0.30	Low to High
	/			228	0.50	
				299	0.60	

Simulation settings

,

Design: two different optimal two-stage designs to generate e.g., and

Design	$\mathbf{p_0}$	$\mathbf{p}_{\mathbf{A}}$	$n_{ m final}$	$n_{ m long}$	$\mathbf{r_1}$	$\mathbf{PET}(\mathbf{p_0})$
1	.25	.35	149	56	15	.6853

Setting 2:

	Adjustment		${ m n_{interim}}$			Degree of	Models	
Design	Baseline covariate(s)	Short-term endpoint	$n_{cohort1}$	$n_{cohort2}$	$n_{cohort3}$	Predictivity	Correct	Misspecified
1	3	1	56	29	29	Low, Moderate, High	1	✓

Setting 1 - Under the null hypothesis

Setting 1 - Under the null hypothesis

Setting 1 - Under the alternative hypothesis

Proportion $n_{short} \rightarrow 0.2 \rightarrow 0.3 \rightarrow 0.5 \rightarrow 0.6$ Design 1 Design 2 n_{final} = 522 and n_{long} = 223, p_A = .30 and p_0 = .25 n_{final} = 149, n_{long} = 56, p_A = .35 and p_0 = .25 Proposed Proposed 0.5 - $PET(H_A)$ 0.0 0.25 0.75 0.00 0.25 0.50 0.75 0.00 0.50 1.00 Proposed Proposed 1.0 -0.9 **Dower** 0.8 0.6 0.5 -0.75 0.25 0.50 1.00 0.00 0.25 0.50 0.75 0.00 Correlation short- and long-term endpoints Correlation short- and long-term endpoints

Setting 2 - Model mispecification

Models	Degree of predictivity	power
	Not predictive	79.7%
Correct	Moderately predictive	82.4%
	Highly predictive	84.6%
	Not predictive	79.6%
Main	Moderately predictive	82.4%
	Highly predictive	84.7%
	Not predictive	79.9%
$ X_1 $	Moderately predictive	80.2%
	Highly predictive	80.8%

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Discussion

Additional gain of the proposed method, depends on:

- Proportion of additional participants in the pipeline
 - But ideally not everybody should be recruited at interim
- Predictivity of baseline covariates and short-term endpoint
- Model misspecification
 - Extension: data-adaptive methods to help build the models (see e.g., Van Lancker et al., 2024)

Calculate sample size as if no power gain occured

Thank you for your attention

Questions?

