AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

TCR_EL2, Translation Control Register (EL2)

The TCR EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2, or EL2&0, translation regime:

- When the Effective value of HCR_EL2. E2H is 0, this register controls stage 1 of the EL2 translation regime, that supports a single VA range, translated using TTBR0 EL2.
- When the value of HCR_EL2. E2H is 1, this register controls stage 1 of the EL2&0 translation regime, that supports both:
 - A lower VA range, translated using TTBR0 EL2.
 - A higher VA range, translated using <u>TTBR1 EL2</u>.

Configuration

AArch64 System register TCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HTCR[31:0].

If EL2 is not implemented, this register is res0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

When $HCR_EL2.E2H == 0$:

	63	62	61	60	59	58	57	56	55	54 53 52	51	50494	847464544	43	42	41	40
RES0																	
Ī	RFS1	TCMA	TBID	HWU62	HWU61	HWU60	HWU59	HPD	RFS1	HDHATBI	RESC	PS	TG0SH00)RC	ONF	IRG	NO

RES1TCMATBIDHWU62HWU61HWU60HWU59HPDRES1HDHATBIRES0| PS | TG0|SH0|ORGN0|RGN0 31 30 29 28 27 26 25 24 23 22 21 20 19 18171615141312 11 10 9 8

Any of the bits in TCR_EL2, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to be cached in a TLB.

Bits [63:34]

Reserved, res0.

MTX, bit [33] When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL2 is using AArch64 where the data address would be translated by tables pointed to by <u>TTBR0_EL2</u>.

This control has an effect regardless of whether stage 1 of the EL2 translation regime is enabled or not.

MTX	Meaning
0d0	This control has no effect on the PE.
0b1	Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:
	 Bits[59:56] are treated as 0b0000 when checking if the address is out of range. If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field. A Canonical Tag Check operation is performed on Tag Checked memory accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DS, bit [32] When FEAT_LPA2 is implemented:

This field affects whether a 52-bit output address can be described by the translation tables of the 4KB or 16KB translation granules.

DC	3.4	
1)5	Meaning	
	1-1-Cuilling	

Ob0 Bits[49:48] of translation descriptors are res0.
Bits[9:8] in Block and Page descriptors encode shareability information in the SH[1:0] field.
Bits[9:8] in table descriptors are ignored by hardware.
The minimum value of TCR_EL2.T0SZ is 16. Any memory access using a smaller value generates a stage 1 level 0 translation table fault.
Output address[51:48] is 0b0000.

Bits[49:48] of translation 0b1 descriptors hold output address[49:48]. Bits[9:8] of Translation table descriptors hold output address[51:50]. The shareability information of Block and Page descriptors for cacheable locations is determined by TCR EL2.SH0. The minimum value of TCR EL2.T0SZ is 12. Any memory access using a smaller value generates a stage 1 level 0 translation table fault. All calculations of the stage 1 base address are modified for tables of fewer than 8 entries so that the table is aligned to 64 bytes. Bits[5:2] of TTBR0 EL2 are used to hold bits[51:48] of the output address in all cases.

Note

As FEAT_LVA must be implemented if TCR_EL2.DS == 1, the minimum value of the TCR_EL2.T0SZ field is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of BaseADDR are treated as 0b00.

Note

This forces alignment of the ranges used by the TLBI range instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0, and the Effective value of this bit is 0b0.

Bit [31]

Reserved, res1.

TCMA, bit [30]

When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL2 when address [59:56] = 0b0000.

TCMA	Meaning
ObO This control has no effect on the	
	generation of Unchecked
	accesses.
0b1	All accesses are Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TBID, bit [29] When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

TBID	Meaning
0b0 TCR EL2.TBI applies to	
	Instruction and Data accesses.

0b1	TCR_EL2.TBI applies to Data	
	accesses only.	

This affects addresses where the address would be translated by tables pointed to by <u>TTBRO_EL2</u>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU62, bit [28] When FEAT_HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[62] of the stage 1 translation table Block or Page entry.

HWU62	Meaning
0b0	Bit[62] of each stage 1
	translation table Block or Page
	entry cannot be used by
	hardware for an
	implementation defined
	purpose.
0b1	Bit[62] of each stage 1
	translation table Block or Page
	entry can be used by
	hardware for an
	implementation defined
	purpose if the value of
	TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU61, bit [27] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[61] of the stage 1 translation table Block or Page entry.

HWU61	Meaning			
0b0	Bit[61] of each stage 1			
	translation table Block or Page			
	entry cannot be used by			
	hardware for an			
	implementation defined			
	purpose.			
0b1	Bit[61] of each stage 1			
	translation table Block or Page			
	entry can be used by			
	hardware for an			
	implementation defined			
	purpose if the value of			
	TCR_EL2.HPD is 1.			

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0 $^{\circ}$

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU60, bit [26] When FEAT_HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[60] of the stage 1 translation table Block or Page entry.

HWU60	Meaning		
0b0	Bit[60] of each stage 1		
	translation table Block or Page		
	entry cannot be used by		
	hardware for an		
	implementation defined		
	purpose.		

0b1	Bit[60] of each stage 1 translation table Block or Page entry can be used by
	hardware for an implementation defined
	purpose if the value of
	TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU59, bit [25] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[59] of the stage 1 translation table Block or Page entry.

HWU59	Meaning
0b0	Bit[59] of each stage 1
	translation table Block or Page
	entry cannot be used by
	hardware for an
	implementation defined
	purpose.
0b1	Bit[59] of each stage 1
	translation table Block or Page
	entry can be used by
	hardware for an
	implementation defined
	purpose if the value of
	TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HPD, bit [24] When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by <u>TTBRO EL2</u>.

HPD	Meaning
0d0	Hierarchical permissions are
	enabled.
0b1	Hierarchical permissions are
	disabled.
	Note
	In this case, bit[61]
	(APTable[0]) and
	bit[59] (PXNTable)
	of the next level
	descriptor
	attributes are
	required to be
	ignored by the PE
	and are no longer
	reserved, allowing
	them to be used by
	software.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [23]

Reserved, res1.

HD, bit [22]

When FEAT HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

HD	Meaning
0b0	Stage 1 hardware management of dirty state disabled.
0b1	Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HA, bit [21]

When FEAT HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL2.

HA	Meaning
0b0	Stage 1 Access flag update disabled.
0b1	Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBRO_EL2 region, or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state'.

TBI	Meaning
0b0	Top Byte used in the address
	calculation.
0b1	Top Byte ignored in the address
	calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL2.
- An exception taken to EL2.
- An exception return to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [19]

Reserved, res0.

PS, bits [18:16]

Physical Address Size.

PS	Meaning	Applies when
0b000	32 bits,	
	4GB.	
0b001	36 bits,	
	64GB.	
0b010	40 bits,	
	1TB.	
0b011	42 bits,	
	4TB.	
0b100	44 bits,	
	16TB.	
0b101	48 bits,	
	256TB.	
0b110	52 bits,	
	4PB.	

0b111	56 bits,	When FEAT_D128
	64PB.	is implemented

All other values are reserved.

The reserved values behave in the same way as the <code>0b101</code> or <code>0b110</code> encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value <code>0b110</code> is treated as reserved.

It is implementation defined whether an implementation that does not implement FEAT_LPA supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

If the value of <u>ID_AA64MMFR0_EL1</u>.PARange is <code>0b0110</code>, and the value of this field is not <code>0b110</code> or a value treated as <code>0b110</code>, then bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are <code>0b00000</code>.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

TG0, bits [15:14]

Granule size for the TTBR0 EL2.

TG0	Meaning
0b00	4KB.
0b01	64KB.
0b10	16KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an implementation defined choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is implementation defined whether the value read back is the value programmed or the value that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using <u>TTBR0 EL2</u>.

SH0	Meaning
0b00	Non-shareable.
0b10	Outer Shareable.
0b11	Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is constrained unpredictable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ORGNO, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using <u>TTBR0 EL2</u>.

ORGN0	Meaning
0000	Normal memory, Outer Noncacheable.
0b01	Normal memory, Outer Write- Back Read-Allocate Write- Allocate Cacheable.
0b10	Normal memory, Outer Write- Through Read-Allocate No Write-Allocate Cacheable.
0b11	Normal memory, Outer Write- Back Read-Allocate No Write- Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IRGNO, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using <u>TTBR0 EL2</u>.

IRGN0	Meaning
0b00	Normal memory, Inner Non-
	cacheable.
0b01	Normal memory, Inner Write-
	Back Read-Allocate Write-
	Allocate Cacheable.
0b10	Normal memory, Inner Write-
	Through Read-Allocate No
	Write-Allocate Cacheable.
0b11	Normal memory, Inner Write-
	Back Read-Allocate No Write-
	Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [7:6]

Reserved, res0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by <u>TTBR0_EL2</u>. The region size is 2^(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

When FEAT VHE is implemented and HCR EL2.E2H == 1:

63 62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	
RES0	MTX1	MTXC	DS	ГСМА1	TCMA0	E0PD1	E0PD0	NFD1	NFD0	TBID1	TBID0	HWU162	HWU161	HWU160	Н۷
TG1	SH	11	OF	RGN1	IRG	N1	EPD1	A1		,		T1SZ			
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	

Any of the bits in TCR EL2 are permitted to be cached in a TLB.

Bits [63:62]

Reserved, res0.

MTX1, bit [61] When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL0 and EL2 are using AArch64 where the data address would be translated by tables pointed to by TTBR1 EL2.

This control has an effect regardless of whether stage 1 of the EL2&0 translation regime is enabled or not.

MTX1	Meaning
000	This control has no effect on the PE.
0b1	Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:
	 Bits[59:56] are treated as 0b1111 when checking if the address is out of range. If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field. A Canonical Tag Check operation is performed on Tag Checked memory accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

MTX0, bit [60] When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT MTE CANONICAL TAGS is implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL0 and EL2 are using AArch64 where the data address would be translated by tables pointed to by TTBR0 EL2.

This control has an effect regardless of whether stage 1 of the EL2&0 translation regime is enabled or not.

MTX0	Meaning
0d0	This control has no effect on the PE.
0b1	Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:
	 Bits[59:56] are treated as 0b0000 when checking if the address is out of range. If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field. A Canonical Tag Check operation is performed on Tag Checked memory accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DS, bit [59] When FEAT_LPA2 is implemented:

This field affects whether a 52-bit output address can be described by the translation tables of the 4 KB or 16 KB translation granules.

DS	Meaning
0b0	Bits[49:48] of translation
	descriptors are res0.
	Bits[9:8] in Block and Page
	descriptors encode shareability
	information in the SH[1:0] field.
	Bits[9:8] in table descriptors are
	ignored by hardware.
	The minimum value of the
	TCR EL2.{T0SZ, T1SZ} fields is
	16. Any memory access using a
	smaller value generates a stage 1
	level 0 translation table fault.
	Output address[51:48] is 0b0000.

- Ob1 Bits[49:48] of translation descriptors hold output address[49:48].

 Bits[9:8] of Translation table descriptors hold output address[51:50].

 The shareability information of Block and Page descriptors for cacheable locations is determined by:
 - TCR_EL2.SH0 if the VA is an address that is translated using tables pointed to by TTBR0 EL2.
 - TCR_EL2.SH1 if the VA is an address that is translated using tables pointed to by TTBR1 EL2.

The minimum value of the TCR_EL2.{TOSZ, T1SZ} fields is 12. Any memory access using a smaller value generates a stage 1 level 0 translation table fault. All calculations of the stage 1 base address are modified for tables of fewer than 16 entries so that the table is aligned to 64 bytes. Bits[5:2] of TTBR0_EL2 or TTBR1_EL2 are used to hold bits[51:48] of the output address in all cases.

Note

As FEAT_LVA must be implemented if TCR_EL2.DS == 1, the minimum value of the TCR_EL2. {T0SZ, T1SZ} fields is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of BaseADDR are treated as 0b00.

Note

This forces alignment of the

This field is res0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0, and the Effective value of this bit is 0b0.

TCMA1, bit [58] When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when address[59:55] = 0b11111.

TCMA1	Meaning
0b0	This control has no effect on
	the generation of Unchecked
	accesses at EL2 or EL0.
0b1	All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCMA0, bit [57] When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR EL2.TGE=1, when address[59:55] = 0b000000.

TCMA0	Meaning
0b0	This control has no effect on
	the generation of Unchecked
	accesses at EL2 or EL0.
0b1	All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EOPD1, bit [56] When FEAT EOPD is implemented:

Faulting control for Unprivileged access to any address translated by <u>TTBR1 EL2</u>.

E0PD1	Meaning
0b0	Unprivileged access to any
	address translated by
	TTBR1_EL2 will not generate a
	fault by this mechanism.
0b1	Unprivileged access to any
	address translated by
	TTBR1_EL2 will generate a
	level 0 Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for performance monitoring. The fault should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EOPDO, bit [55] When FEAT_EOPD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR0 EL2.

E0PD0	Meaning
0b0	Unprivileged access to any
	address translated by
	TTBR0_EL2 will not generate a
	fault by this mechanism.
0b1	Unprivileged access to any
	address translated by
	TTBR0 EL2 will generate a
	level 0 Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for performance monitoring. The fault should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NFD1, bit [54]

When FEAT SVE is implemented or FEAT TME is implemented:

Non-fault translation timing disable for stage 1 translations using <u>TTBR1 EL2</u>.

This bit controls how a TLB miss is reported in response to a non-fault unprivileged access for a virtual address that is translated using TTBR1 EL2.

If SVE is implemented, the affected access types include:

- All accesses due to an SVE non-fault contiguous load instruction.
- Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses due to an SVE firstfault contiguous load instruction are not affected.
- Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If FEAT_TME is implemented, the affected access types include all accesses generated by a load or store instruction in Transactional state.

NFD1	Meaning
0d0	Does not affect the handling of a TLB miss on accesses translated using <u>TTBR1_EL2</u> .

that is translated using

TTBR1_EL2 due to the specified access types causes the access to fail without taking an exception. The failure should take the same amount of time to be handled as a Permission fault on a TLB entry that is present in the TLB, to mitigate attacks that use fault timing.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NFD0, bit [53] When FEAT_SVE is implemented or FEAT_TME is implemented:

Non-fault translation timing disable for stage 1 translations using <u>TTBR0_EL2</u>.

If SVE is implemented, the affected access types include:

- All accesses due to an SVE non-fault contiguous load instruction.
- Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses due to an SVE firstfault contiguous load instruction are not affected.
- Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If FEAT_TME is implemented, the affected access types include all accesses generated by a load or store instruction in Transactional state.

NFD0	Meaning
0b0	Does not affect the handling of a
	TLB miss on accesses translated
	using <u>TTBR0_EL2</u> .

0b1	A TLB miss on a virtual address that is translated using
	TTBR0 EL2 due to the specified
	access types causes the access
	to fail without taking an
	exception. The failure should
	take the same amount of time to
	be handled as a Permission fault
	on a TLB entry that is present in
	the TLB, to mitigate attacks that
	use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TBID1, bit [52] When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

TBID1	Meaning
0b0	TCR_EL2.TBI1 applies to
	Instruction and Data accesses.
0b1	TCR EL2.TBI1 applies to Data
	accesses only.

This affects addresses where the address would be translated by tables pointed to by <u>TTBR1_EL2</u>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TBID0, bit [51] When FEAT PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For more information, see 'Address tagging in AArch64 state'.

TBID0	Meaning
0b0	TCR_EL2.TBI0 applies to
	Instruction and Data accesses.
0b1	TCR_EL2.TBI0 applies to Data
	accesses only.

This affects addresses where the address would be translated by tables pointed to by <u>TTBRO EL2</u>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU162, bit [50] When FEAT_HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations using TTBR1 EL2.

HWU162	Meaning
0b0	For translations using
	TTBR1_EL2, bit[62] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.
0b1	For translations using
	TTBR1 EL2, bit[62] of each
	stage 1 translation table
	Block or Page entry can be
	used by hardware for an
	implementation defined
	purpose if the value of
	TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU161, bit [49] When FEAT_HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations using <u>TTBR1_EL2</u>.

HWU161	Meaning
0b0	For translations using
	TTBR1 EL2, bit[61] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.
0b1	For translations using
	TTBR1_EL2, bit[61] of each
	stage 1 translation table
	Block or Page entry can be
	used by hardware for an
	implementation defined
	purpose if the value of
	TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU160, bit [48] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using <u>TTBR1_EL2</u>.

HWU160	Meaning
0b0	For translations using
	TTBR1 EL2, bit[60] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.
0b1	For translations using
	TTBR1 EL2, bit[60] of each
	stage 1 translation table
	Block or Page entry can be
	used by hardware for an
	implementation defined
	purpose if the value of
	TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU159, bit [47] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations using TTBR1 EL2.

HWU159	Meaning
0b0	For translations using
	TTBR1_EL2, bit[59] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.

0b1	For translations using TTBR1_EL2 , bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an implementation defined
	purpose if the value of
	TCR EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU062, bit [46] When FEAT_HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations using <a href="https://doi.org/10.2016/j.jch.2016/10.2016/j.jch.2016

HWU062	Meaning
0b0	For translations using
	TTBR0 EL1, bit[62] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.
0b1	For translations using
	TTBR0 EL1, bit[62] of each
	stage 1 translation table
	Block or Page entry can be
	used by hardware for an
	implementation defined
	purpose if the value of
	TCR EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU061, bit [45] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations using <u>TTBRO_EL1</u>.

HWU061	Meaning
0b0	For translations using
	TTBR0_EL1, bit[61] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.
0b1	For translations using
	TTBR0_EL1, bit[61] of each
	stage 1 translation table
	Block or Page entry can be
	used by hardware for an
	implementation defined
	purpose if the value of
	TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU060, bit [44] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using <u>TTBRO_EL1</u>.

HWU060	Meaning
0b0	For translations using
	TTBR0 EL1, bit[60] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.
0b1	For translations using
	TTBR0_EL1, bit[60] of each
	stage 1 translation table
	Block or Page entry can be
	used by hardware for an
	implementation defined
	purpose if the value of
	TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU059, bit [43] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations using <u>TTBRO EL1</u>.

HWU059	Meaning
0b0	For translations using
	TTBR0_EL1, bit[59] of each
	stage 1 translation table
	Block or Page entry cannot
	be used by hardware for an
	implementation defined
	purpose.

0b1	For translations using TTBR0_EL1 , bit[59] of each stage 1 translation table Block or Page entry can be
	used by hardware for an implementation defined
	purpose if the value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HPD1, bit [42] When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by <u>TTBR1 EL2</u>.

HPD1	Meaning
0d0	Hierarchical permissions are enabled.
0b1	Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HPD0, bit [41] When FEAT HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by <a href="https://dx.ncbi.nlm.ncbi.

HPD0	Meaning
0d0	Hierarchical permissions are enabled.
0b1	Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HD, bit [40] When FEAT HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

HD	Meaning
0b0	Stage 1 hardware management of dirty state disabled.
0b1	Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HA, bit [39] When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL2.

HA	Meaning
0b0	Stage 1 Access flag update disabled.
0b1	Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TBI1, bit [38]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the <u>TTBR1_EL2</u> region, or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state'.

TBI1	Meaning
0b0	Top Byte used in the address
	calculation.
0b1	Top Byte ignored in the address
	calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data accesses.

If the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set to 1 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL0 or EL1.
- An exception taken to EL1.
- An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TBIO, bit [37]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the <u>TTBRO_EL2</u> region, or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state'.

TBI0	Meaning
0d0	Top Byte used in the address
	calculation.
0b1	Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by <a href="https://doi.org/10.21/10.21/2

If FEAT_PAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data accesses.

If the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL0 or EL1.
- An exception taken to EL1.
- An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

AS, bit [36]

ASID Size.

AS	Meaning
0b0	8 bit - the upper 8 bits of
	TTBR0_EL2 and TTBR1_EL2 are
	ignored by hardware for every
	purpose except reading back the
	register, and are treated as if they
	are all zeros for when used for
	allocation and matching entries in
	the TLB.

0b1	16 bit - the upper 16 bits of
	TTBR0_EL2 and TTBR1_EL2 are
	used for allocation and matching in
	the TLB.

If the implementation has only 8 bits of ASID, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [35]

Reserved, res0.

IPS, bits [34:32]

Intermediate Physical Address Size.

_ IPS	Meaning	Applies when
0b000	32 bits,	
	4GB.	
0b001	36 bits,	
	64GB.	
0b010	40 bits,	
	1TB.	
0b011	42 bits,	
	4TB.	
0b100	44 bits,	
	16TB.	
0b101	48 bits,	
	256TB.	
0b110	52 bits,	When FEAT LPA
	4PB.	is implemented

All other values are reserved.

The reserved values behave in the same way as the <code>0b101</code> or <code>0b110</code> encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is implementation defined whether an implementation that does not implement FEAT_LPA supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

If the value of <u>ID_AA64MMFR0_EL1</u>.PARange is <code>0b0110</code>, and the value of this field is not <code>0b110</code> or a value treated as <code>0b110</code>, then bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are <code>0b00000</code>.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

TG1, bits [31:30]

Granule size for the TTBR1 EL2.

TG1	Meaning
0b01	16KB.
0b10	4KB.
0b11	64KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an implementation defined choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is implementation defined whether the value read back is the value programmed or the value that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using <u>TTBR1_EL2</u>.

SH1	Meaning
0b00	Non-shareable.
0b10	Outer Shareable.
0b11	Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is constrained unpredictable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using <u>TTBR1_EL2</u>.

ORGN1	Meaning
00d0	Normal memory, Outer Non-cacheable.
0b01	Normal memory, Outer Write- Back Read-Allocate Write- Allocate Cacheable.
0b10	Normal memory, Outer Write- Through Read-Allocate No Write-Allocate Cacheable.
0b11	Normal memory, Outer Write- Back Read-Allocate No Write- Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using $\underline{\text{TTBR1_EL2}}$.

IRGN1	Meaning
0b00	Normal memory, Inner Non-
	cacheable.
0b01	Normal memory, Inner Write-
	Back Read-Allocate Write-
	Allocate Cacheable.
0b10	Normal memory, Inner Write-
	Through Read-Allocate No
	Write-Allocate Cacheable.
0b11	Normal memory, Inner Write-
	Back Read-Allocate No Write-
	Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EPD1, bit [23]

Translation table walk disable for translations using <u>TTBR1_EL2</u>. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using <u>TTBR1_EL2</u>. The encoding of this bit is:

EPD1	Meaning
0b0	Perform translation table walks
	using <u>TTBR1_EL2</u> .
0b1	A TLB miss on an address that is
	translated using <u>TTBR1_EL2</u>
	generates a Translation fault. No
	translation table walk is
	performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

A1, bit [22]

Selects whether <u>TTBR0_EL2</u> or <u>TTBR1_EL2</u> defines the ASID. The encoding of this bit is:

A1	Meaning
0b0	TTBR0_EL2.ASID defines the ASID.
0b1	TTBR1_EL2.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by <u>TTBR1_EL2</u>. The region size is 2^(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TG0, bits [15:14]

Granule size for the TTBR0 EL2.

TG0	Meaning
0b00	4KB.
0b01	64KB.
0b10	16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an implementation defined choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is implementation defined whether the value read back is the value programmed or the value that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using <u>TTBR0 EL2</u>.

SH0	Meaning	
0b00	Non-shareable.	
0b10	Outer Shareable.	
0b11	Inner Shareable.	

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is constrained unpredictable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ORGNO, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0 EL2.

ORGN0	Meaning
0b00	Normal memory, Outer Non-
	cacheable.
0b01	Normal memory, Outer Write-
	Back Read-Allocate Write-
	Allocate Cacheable.
0b10	Normal memory, Outer Write-
	Through Read-Allocate No
	Write-Allocate Cacheable.
0b11	Normal memory, Outer Write-
	Back Read-Allocate No Write-
	Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IRGNO, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using <u>TTBR0 EL2</u>.

IRGN0	Meaning
0b00	Normal memory, Inner Non-
	cacheable.
0b01	Normal memory, Inner Write-
	Back Read-Allocate Write-
	Allocate Cacheable.
0b10	Normal memory, Inner Write-
	Through Read-Allocate No
	Write-Allocate Cacheable.
0b11	Normal memory, Inner Write-
	Back Read-Allocate No Write-
	Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EPD0, bit [7]

Translation table walk disable for translations using <u>TTBR0_EL2</u>. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using <u>TTBR0_EL2</u>. The encoding of this bit is:

EPD0	Meaning
0b0	Perform translation table walks
	using <u>TTBR0_EL2</u> .
0b1	A TLB miss on an address that is
	translated using <u>TTBR0_EL2</u>
	generates a Translation fault. No
	translation table walk is
	performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [6]

Reserved, res0.

TOSZ, bits [5:0]

The size offset of the memory region addressed by <u>TTBR0_EL2</u>. The region size is $2^{(64-T0SZ)}$ bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing TCR EL2

When <u>HCR_EL2</u>.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or TCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0010	0b0000	0b010

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        X[t, 64] = TCR_EL2;
elsif PSTATE.EL == EL3 then
        X[t, 64] = TCR_EL2;
```

MSR TCR EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0010	0b0000	0b010

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    TCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    TCR_EL2 = X[t, 64];
```

When FEAT_VHE is implemented MRS <Xt>, TCR EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0000	0b010

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1'
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x120];
    else
        X[t, 64] = TCR\_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
       X[t, 64] = TCR\_EL2;
    else
        X[t, 64] = TCR\_EL1;
elsif PSTATE.EL == EL3 then
   X[t, 64] = TCR\_EL1;
```

When FEAT_VHE is implemented MSR TCR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0000	0b010

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TCR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x120] = X[t, 64];
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.