Alankar Kotwal

CONTACT Information Department of Electrical Engineering Indian Institute of Technology Bombay 281, Hostel 09, IIT Bombay

Powai, Mumbai, India 400 076

Phone: (+91) 996 967 8123 E-Mail: alankar.kotwal@iitb.ac.in

alankarkotwal13@gmail.com

Webpage: alankarkotwal.github.io

RESEARCH INTERESTS I am passionate about Computer and Medical Vision, Machine Learning, Optimization, Estimation Theory, Astrophysics and Cosmology. I enjoy learning about and experimenting with Robotics, Computer Networks and Security, Computer Graphics and applications of these fields in one another.

EDUCATION

Indian Institute of Technology Bombay, Mumbai, India

July 2012 - Present

Dual Degree, Bachelor & Master of Technology, Department of Electrical Engineering Specialization: Communication and Signal Processing

- Major CGPA: 8.92/10 (Detailed List of Courses)
- Minor Degree: Department of Computer Science & Engineering

PUBLICATIONS

- Kotwal, A., Bhalodia, R., Awate, S., *Joint Desmoking and Denoising of Laparoscopy Images* (oral), Proc. of the International Symposium on Biomedical Imaging, 2016. Paper here.
- Clarke, J. D. A., Held, J. M., Dahl, A. et al., Field Robotics, Astrobiology and Mars Analogue Research on the Arkaroola Mars Robot Challenge Expedition, Proc. of the 14th Australian Space Research Conference, 2014. Paper here.

RESEARCH Internships

The AIR Lab, Carnegie Mellon University Robotics Institute

Guide: Prof. Sebastian Scherer & Stephen Nuske

Summer 2015

Stereo Odometry From A Downward-Facing Stereo Camera On An Aerial Vehicle For aerial vehicles, odometry is often done by using sensors like the Pixhawk PX4FLOW, which use a single camera doing correlation-based tracking with a sonar for odometry. This has many disadvantages, like small camera field of view (small maximum speeds), bad sonar readings at low range (during take-off), requirement of an inertial unit for angle measurement and height-dependent camera focus. We aimed to replace this with a small-baseline stereo camera. With the field of view parallel to the baseline, the height of the vehicle is obtained from a robust estimate of horizontal disparity. Alternatively, height, pitch and roll are jointly estimated using a robust gradient-descent homography fit between stereo pairs. Similar, rigid tracking across frames is then used to measure position. We obtained better height estimates, maximum speeds and comparable accuracy without an inertial unit as compared to the PX4FLOW. Code here.

Laboratory for Cosmological Data Mining, University of Illinois, Urbana – Champaign Guide: Prof. Robert Brunner, under Google Summer of Code Summer 2014

A Pixel-Level Machine Learning Method for Calculating Source Redshifts

Spectrometry is a prominent distance measurement technique in Astrophysics. Here, features in the spectrum (like emission or absorption lines) can be fit with known lines to obtain redshift, which is a measure of distance at cosmologically significant distances. However, there exist sources which are either very far or very dim, so we do not get enough flux from them to measure their spectrum. Broad-band energies from these sources, as an approximation to the entire spectrum, are used as features for a machine learning algorithm to calculate redshifts, or alternatively classify them. Unlike previous work, we calculate features pixel-wise instead of integrating over entire source area, giving benefits like source de-blending and better background separation. Redshift calculation and source classification from the method are reasonably accurate. Code here.

RESEARCH PROJECTS

A New Bayesian Framework For Laparoscopic Image Dehazing and Denoising

Guide: Prof. Suyash Awate, CSE, IITB

January 2015 - Present

Laparoscopic images in minimally invasive surgery get corrupted by surgical smoke and noise. This degrades the quality of the surgery and the results of further processing for, say, segmentation and tracking. Algorithms for desmoking and denoising laparoscopic images seem to be missing in the medical vision literature. We formulated the problem of joint desmoking and denoising of laparoscopic images as a Bayesian inference problem. This formulation relies on a novel probabilistic graphical model of images, which includes a Markov Random Field (MRF) formulation for color-contrast and another MRF for smoothness on the uncorrupted color image as well as the transmission-map image that indicates color attenuation due to smoke. The results on simulated and real-world laparoscopic images, with clinical expert evaluation, shows the advantages of our method over the state of the art. Code here.

Coded Source Separation for Compressed Video Recovery Guide: Prof. Ajit Rajwade, CSE, and Prof. V. Rajbabu, EE, IITB

Dual Degree Thesis December 2015 – Present

Recent efforts to apply the principles of compressed sensing to video data involve combining frames into coded snapshots while sensing and separating them with an over–complete dictionary. This works well, but needs a dictionary at the same frame—rate and time—smoothness as the video. We try relaxing this constraint using a source—separation approach to this problem where precise error bounds on recovery have been derived. Basis pursuit recovery with Gaussian—random sensing matrices gives excellent results with no ghosting for both similar and radically different images. Unfortunately, the more realizable non—negative sensing matrices don't work as well, because they do not have the nice incoherence properties of Gaussian—random matrices. We aim to design such sensing matrices with low mutual incoherence, making them ideal for compressed video.

The IITB Mars Rover Project

May 2013 - Present

The IITB Mars Rover project is a student initiative at IIT Bombay to build a prototype Mars rover capable of extra-terrestrial robotics and to participate in the University Rover Challenge. We designed and developed a rover with a rocker-bogie suspension and novel air-filled beach tires. The electrical and software team designed power, logic and communication circuits for on-board control. We developed localization and autonomous navigation. The role of machine vision for automating rover operations was explored. We participated in a simulated Martian expedition and test Rover capabilities in the Australian outback, at the Arkaroola Mars Robot Challenge and at the Mars Society's Mars Desert Research Station, Utah.

Course Projects

Improved Methods for Compressed Sensing Recovery

CS709: Convex Optimization Autumn 2015-16

Guide: Prof. Ganesh Ramakrishnan, CSE, IITB

Using convex approximations to the compressed sensing recovery problem, we reconstructed near-exact versions of images at extremely low compressions, with proofs of correctness. Code here.

Hidden Markov Model Part-of-Speech Tagging

EE638: Estimation and Identification Autumn 2015-16

We implemented part-of-speech tagging with support for unknown words. An error rate of around 5% and capabilities of the system to discern context were observed. Code here.

Laparoscopic Image Dehazing With Dark Channel Prior CS736: Medical Image Processing Guide: Prof. Suyash Awate, CSE, IITB Spring 2014-15

We applied the Dark Channel Prior method for landscape image dehazing to surgical smoke-affected laparoscopic images, accelerated it in time and got good results. Code here.

Stereo Odometry Via Point Cloud Registration

Guide: Prof. Ajit Rajwade, CSE, IITB

Guide: Prof. Navin Khaneja, EE, IITB

CS763: Computer Vision Spring 2014-15

Maximizing kernel density correlation with gradient-ascent and coherent point drift, we registered pointclouds and observed good convergence behavior for small transformations. Code here.

Gravitational Lens Separation With PCA

Guide: Prof. Suyash Awate and Prof. Ajit Rajwade, CSE, IITB

Autumn 2014-15

CS663: Digital Image Processing

Gravitationally lensed images of galaxies have rare arc-like artifacts that can be used to calculate the mass of the lens. We used Anscombe denoising followed by PCA to build a basis for galaxy images and used the top few eigengalaxies to subtract sources and detect arcs. Code here.

Processor Design

Guide: Prof. Virendra Singh, EE, IITB

Autumn 2014-15

EE309: Microprocessors

We designed, simulated and implemented (on a DE0-Nano board from Terasic) a multi-cycle RISC processor following the LC-3b ISA. Following this, we designed and simulated a pipelined RISC processor using the Little Computer Architecture.

ASTROPHYSICS PROJECTS

Detecting Short Gamma Ray Bursts in Astrosat CZTI Data Guide: Prof. Vikram Rentala, PH, IITB

PH426: Astrophysics Spring 2015-16

We did a literature survey on the phenomenon of Gamma Ray bursts, including observations, the internal mechanisms, observational techniques and open problems in the field. Among the open problems and new datasets in the field, we tackle detecting short gamma-ray bursts from data acquired by the CZTI Hard X-Ray Imager on board the Astrosat.

Processing and Inference from CCD Images

NIUS, Astronomy

Guide: Prof. Priya Hasan, MANUU, Hyderabad

December 2015

We analyzed raw data for the globular cluster NGC2419 taken at the HCT, post-processed it to correct for detector bias and flat-fielding, inverted the effect of atmospheric mass and extracted the variation of magnitudes of stars in the cluster on the scale of a day. Code here.

An X-Ray Study of Black Hole Candidate X Norma X-1

NIUS, Astronomy

Guide: Prof. Manojendu Choudhury, Center for Basic Sciences

December 2013

We analyzed spectral data from the RXTE for the low-mass X-Ray Binary 4U 1630-47, in a period that corresponds to an outburst in the source. We extracted 3-30 keV spectra and fit them with a model accounting for thermal emission from a geometrically thin and optically thick disk, and non-thermal radiation modeled by a power-law, and interstellar extinction. We obtained best fit values of various system parameters like internal radius, temperature and so on. Report here.

Estimation of Photometric Redshifts Using Machine Learning

observed clustering of galaxy colors as a function of increasing redshift.

NIUS, Astronomy December 2012

Guide: Prof. Ninan Sajeeth Philip, IUCAA, Pune

Here, we trained a neural network to calculate photometric redshifts for objects whose spectroscopic redshifts cannot be measured, given data for sources whose spectrum has been measured, with their redshifts, viewed at various other values of redshifts. We used this (nearly 10-fold) expanded dataset to train the network. We achieved good predictions for test data and

ACHIEVEMENTS AND AWARDS

Olympiads and Competitive Exams

- Represented India at the 6th International Olympiad on Astronomy and Astrophysics, Brazil, 2012. Won a Gold Medal with International Rank 4 and a special prize for Best Data Analysis
- Represented India at the 5th International Earth Sciences Olympiad, Italy, 2011. Won a Bronze Medal and prizes for best performance in the Hydrosphere section and the team presentation
- Secured All India Rank (AIR) 105 in IIT-JEE amongst 1.1 million candidates

Scholarships

- Awarded KVPY Scholarship 2011 by Dept. of Science and Technology, Govt. of India
- Awarded NTSE Scholarship 2008 by NCERT, Govt. of India

Competitions

- Secured IIT Bombay the second position by putting on board 72 Messier objects including the entire Virgo cluster of galaxies in the Inter-IIT Messier Marathon, 2014
- Won the Astronomy Quiz conducted by the Astronomy Club, IIT Bombay, 2012

Talks and Seminars

Template-Based Stereo Odometry

The AIR Lab, Carnegie Mellon University

Invited Talk July 2015

Here, I presented results from my 2015 summer internship to my group at Carnegie Mellon University. The talk included a detailed description of the method used, comparisons of the results with ground-truth and stress-tests on the method. Presentation here.

The Cosmic Distance Ladder

Invited Talk

Krittika - The Astronomy Club, IIT Bombay

September 2014, February 2016

This open-to-all talk is a journey climbing the Cosmic Distance Ladder, which is a sequence of steps, each building on the previous step's results, for calculating distances in the universe. We begin with solar system distances, and end at huge distances where the only real option is to use photometric redshifts. Presentation here.

MENTORING EXPERIENCE

Teaching Assistant

CS663: Digital Image Processing CS736: Medical Image Processing Prof. S. Awate and Prof. A. Rajwade Autumn 2015-16
Prof. S. Awate Spring 2015-16

Resource Person, Indian Astronomy Olympiad Programme

May 2013, May 2014

Selected twice as a resource person for the Indian Astronomy Olympiad Camp, for their selection to the international Astronomy Olympiads. Involved in mentoring students ranging from the 9^{th} to the 12^{th} grades in Astronomy, and in setting up challenging questions and evaluating students.

Technical Mentor

April 2013 - March 2014

Mentored 1^{st} year students for Robotics Competitions and Institute Technical Summer Projects.

Key Coursework

Computer Sciences and Engineering

Machine Learning, Convex Optimization, Computer Vision, Medical Image Processing, Digital Image Processing, Computer Graphics, Computer Networks, Data Structures and Algorithms, Discrete Mathematics

Electrical Engineering

Estimation and Identification, Adaptive Signal Processing, Digital Signal Processing, Speech Processing, Matrix Computations, Information Theory, Advanced Probability and Random Processes, Communication Networks and Systems, Microprocessors, Signals and Systems, Digital and Analog Systems, Electronic Devices and Circuits, Network Theory

Physics and Mathematics

Astrophysics, The General Theory of Relativity, Electromagnetic Waves, Electricity & Magnetism, Classical Mechanics, Differential Equations, Linear Algebra, Complex Analysis, Calculus

TECHNICAL SKILLS Programming C/C++, Python, Bash, Matlab, Verilog, SQL, HTML, PHP, LATEX

Software Packages ROS/Gazebo, OpenCV, The Point Cloud Library, SPICE Circuit

Simulation, EAGLE PCB Design, SolidWorks, AutoCAD, LabView

Science Software Python packages: NumPy, SciPy and Matplotlib, GNUPlot, Scikit-

learn, Astropy, SExtractor, SDSS tools

Hardware Microprocessors: 8051, 8085, AVR and PIC, CPLDs and FPGAs,

Embedded Platforms: Arduino, RaspberryPi, standard digital logic

OTHER Interests Other than my academic interests, I like biking, long walks, swimming, socializing, cooking good food and eating it. I especially enjoy classic rock music and people who enjoy my interests.

REFERENCES

Prof. Suyash Awate, CSE Indian Institute of Technology, Bombay E-Mail | Webpage

Dr. Aniket Sule, ReaderHomi Bhabha Center for Science EducationE-Mail | Webpage