Zagadnienia odwrotne w medycynie i biologii

Usunięcie zaburzeń wywołanych przez sieć z przebiegu EKG Prezentacja końcowa

Skład zespołu

Skład zespołu

- Michał Gramowski
- ► Tymoteusz Lao
- Jakub Kostiw
- Wiktor Pieńkowski

Repozytorium projektu

- Repozytorium w serwisie <u>Github</u>
- Kod źródłowy Matlab
- Przykładowe sygnały EKG
- Szczegółowy opis działania algorytmu
- Niniejsza prezentacja powstała na podstawie zamieszczonych tam informacji

MichalGram README		4b32043 2 days ago ⑤ 9 commits
images	readme update	2 days ago
README.md	README	2 days ago
raw_signal_person1.mat	Adaptive filter and raw signals	2 days ago
raw_signal_person3.mat	Adaptive filter and raw signals	2 days ago
raw_signal_person9.mat	Adaptive filter and raw signals	2 days ago
comb_filter.m	Adaptive filter and raw signals	2 days ago
comb_lms.m	Adaptive filter and raw signals	2 days ago
comb_median.m	Adaptive filter and raw signals	2 days ago
zomb_projekt.m	Adaptive filter and raw signals	2 days ago

Filtr adaptacyjny do odszumiania zakłóceń sieciowych pochodzących z sygnału EKG

- Implementacja w środowisku Matlab 2020b(licencja uczelniana).
- Sygnał EKG pobrano z bazy sygnałów biomedycznych Physionet.
- Sygnały EKG rejestrowane przez 4 minuty, przetwarzane z częstotliwością 250 Hz z 12-bitową rozdzielczością w nominalnym zakresie ± 10 mV;
- Algorytm składa się z dwóch części: filtr FIR oraz filtr medianowy

Filtr adaptacyjny

Zmiany od wprowadzone od ostatniej prezentacji

- Znaleziono nowe sygnały EKG (4minuty 250Hz),
- testowanie wpływu parametrów na działanie algorytmu,
- prezentacja wyników.

Sygnał surowy

Fragment surowego sygnału

Progres nauki algorytmu

Początek najlepszego filtrowania

Koniec najlepszego filtrowania

Źle odfiltrowany sygnał

Koniec źle odfiltrowanego sygnału

Filtr Kalmana z laboratorium (Dla porównania)

Filtr Kalmana (Dla porówania)

Porównanie metod

Filtr Kalmana z laboratorium

Wnioski

- Filtr Kalmana daje lepsze efekty niż opracowana metoda.
- Można zauważyć korelację między współczynikiem uczenia się filtru, a jakością otrzymanego sygnału,
- filtr się uczy, wraz ze wzrostem ilości próbek,
- otrzymany wynik jest co raz dokładniejszy.

Komplet dokumentacji

- Kod programu
- Komplet prezentacji
- Sprawozdanie

Wszystko znajduje się w repozytorium GitHub

Źródła

- Y. Weiting and Z. Runjing, "An Improved Self-Adaptive Filter Based on LMS Algorithm for Filtering 50Hz Interference in ECG Signals," 2007 8th International Conference on Electronic Measurement and Instruments, Xi'an, 2007, pp. 3-874-3-878, doi: 10.1109/ICEMI.2007.4351057.
- Repozytorium <u>GitHub</u>

Dziękujemy za uwagę