What can abstract mathematics tell us about programming climate models?

Dominic Orchard

Category theory

A branch of abstract mathematics

Provides <u>organising principles</u> exposing mathematical structure and structure within mathematics

Today's objectives

View some common ideas in numerical programming through the category theory lens

- Understand what is a <u>category</u>, <u>functor</u>, and <u>natural transformation</u>
- Understand their relationship to particular programming patterns
- Use these basic categorical concepts to inform testing and optimisation strategies
- Understand these basics as a launch pad

Categories

- Collection of objects $obj(\mathscr{C})$
 - often denoted $A, B, C, \ldots \in obj(\mathscr{C})$
- Collection of "morphisms" (relationships) between pairs of objects $\mathsf{morph}(\mathscr{C})$
 - often denoted $f: A \to B, g: B \to C, \ldots \in \mathsf{morph}(\mathscr{C})$
- Composition operation

$$f: A \to B \qquad g: B \to C$$

$$f; g: A \to C$$

Identity morphisms

$$\forall A \in \mathsf{obj}(\mathscr{C}) . id_A : A \to A$$

$$f$$
; $id = id$; $f = f$

$$f;(g;h) = (f;g);h$$

Categories in programming

Types as objects, functions as morphisms

Functors

A morphism <u>between</u> categories

$$F:\mathscr{C}\to\mathscr{D}$$

Has two components:

- (1) mapping on objects: $\forall A \in \text{obj}(\mathscr{C}) \implies \mathsf{F}(A) \in \text{obj}(\mathscr{D})$
- (2) mapping on morphisms:

$$\forall (f: A \to B) \in \mathsf{morph}(\mathscr{C}) \implies \mathsf{F}(f): \mathsf{F}(A) \to \mathsf{F}(B) \in \mathsf{morph}(\mathscr{D})$$

Has two axioms:

$$F(id_A) = id_{FA}$$

$$F(f; g) = F(f); F(g)$$

Functors in programming

Object mapping is a type constructor

Morphism mapping lifts a function to apply over the type constructor

$$A \to B$$

$$\mathsf{list}(A) \to \mathsf{list}(B)$$

Natural transformations

A morphism <u>between</u> functors

$$F:\mathscr{C}\to\mathscr{D}\qquad G:\mathscr{C}\to\mathscr{D}$$

A natural transformation $\alpha: F \to G$ is a family of morphisms

meaning $\forall A \in \text{obj}(\mathscr{C})$. $\alpha_A : FA \to GA \in \text{morph}(\mathscr{D})$ along with the **naturality property**

$$\begin{array}{c|c} \mathsf{F}A & \xrightarrow{\alpha_A} & \mathsf{G}A \\ \mathsf{F}f & & & & & & & & & & & & & & \\ \mathsf{F}f & & & & & & & & & & & & \\ \mathsf{F}B & \xrightarrow{\alpha_B} & \mathsf{G}B & & & & & & & & & \end{array}$$

Natural transformations in programming

Connecting back to climate modelling...

- Functors represent pointwise traversals (common transformation)
- Structural transformations are natural transformations
- Stencil computations are a generalisation to functors....

Comonads (briefly and incompletely)

An endofunctor D : $\mathscr{C} \to \mathscr{C}$ with:

- Natural transformation $\varepsilon_{\!\scriptscriptstyle A}:D\!A\to A$
- For every morphism, a lifting ()[†]

$$\frac{f:DA \to B}{f^{\dagger}:DA \to DB}$$

Functorial mapping

cf.
$$\frac{f: A \to B}{\mathsf{F}f: DA \to DB}$$

Comonads in programming

Array comonad

$$DA = Array I A \times I$$

array-data × cursor

$$\varepsilon_A:DA\to A$$

а	а	а	а	f
а	а	а	а	J
а	а	а	а	D
а	а	а	а	

Local computation (neighbourhood)

а	а	а	а	f 1	b	b	b	b
а	a	а	а		b	b	b	b
а	а	а	а		b	b	b	b
а	а	а	а		b	b	b	b

Global computation

Today's objectives

View some common ideas in numerical programming through the category theory lens

- Understand what is a <u>category</u>, <u>functor</u>, and <u>natural transformation</u>
- Understand their relationship to particular programming patterns
- Use these basic categorical concepts to inform testing and optimisation strategies
- Understand these basics as a launch pad

Thanks!

