ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ΄ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΞΕΙΔΟΑΝΑΓΩΓΗ

ОЕМА А

Στις ερωτήσεις Α1 έως και Α4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Α1. Σε ποιο από τα παρακάτω το χλώριο έχει το μικρότερο αριθμό οξείδωσης;

α. Cl₂

β. HCIO

γ. Ca(ClO₄)₂

δ. HCI

5 μονάδες

Α2. Όταν το SO₂ δρα ως οξειδωτικό μπορεί να μετατραπεί σε:

 α . H₂SO₃

β. SO₃

y. S

δ. H₂SO₄

5 μονάδες

- **A3.** To H₂:
 - α. μπορεί να δράσει μόνο ως οξειδωτικό,
 - β. μπορεί να δράσει μόνο ως αναγωγικό,
 - γ. μπορεί να δράσει τόσο ως οξειδωτικό όσο και ως αναγωγικό,
 - δ. δεν μπορεί να δράσει ούτε ως οξειδωτικό ούτε ως αναγωγικό.

5 μονάδες

- **Α4.** Από τις παρακάτω αντιδράσεις *δεν* είναι οξειδοαναγωγική η:
 - α . Cu + 4HNO₃ \rightarrow Cu(NO₃)₂ + 2NO₂ + 2H₂O
 - **B.** $CaCO_3 \rightarrow CaO + CO_2$
 - **y.** $2H_2S + SO_2 \rightarrow 2S + 2H_2O$
 - **\delta.** Zn + 2HCl \rightarrow ZnCl₂ + H₂

5 μονάδες

- **Α5.** Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως σωστές ή λανθασμένες.
 - **α.** Είναι αδύνατον σε μία ένωση να υπάρχει στοιχείο το οποίο να έχει αριθμό οξείδωσης ίσο με το μηδέν.
 - **β.** Σε κάθε οξείδωση πραγματοποιείται αποβολή ηλεκτρονίων.
 - **γ.** Όταν το H_2O_2 δρα οξειδωτικά μπορεί να μετατραπεί σε H_2O .
 - **δ.** Η σειρά δραστικότητας των μετάλλων στις αντιδράσεις απλής αντικατάστασης είναι και σειρά αναγωγικής ισχύος.
 - ε. Στο νιτρικό αμμώνιο ΝΗ4ΝΟ3 κάθε άτομο αζώτου έχει αριθμό οξείδωσης +1.

5 μονάδες

ОЕМА В

- Β1. Να συμπληρώσετε τις παρακάτω αντιδράσεις (προϊόντα και συντελεστές):
 - α . NH₃ + CuO \rightarrow
 - **B.** CO + KMnO₄ + H₂SO₄ \rightarrow
 - v. FeCl₂ + K₂Cr₂O₇ + HCl \rightarrow

6 μονάδες

B2. Ένα έλασμα Zn βυθίζεται σε υδατικό διάλυμα CuSO₄. Δίνεται ότι ο Zn είναι πιο αναγωγικός από το Cu και ότι Ar_{Cu} = 63,5, Ar_{Zn} = 65. Μετά από αρκετή ώρα βγάζουμε το έλασμα από το διάλυμα και το ζυγίζουμε. Η μάζα του ελάσματος που θα βρούμε θα είναι ίση ή μεγαλύτερη ή μικρότερη από εκείνη του αρχικού ελάσματος; Να δικαιολογήσετε την επιλογή σας.

5 μονάδες

- Β3. Να ισοσταθμίσετε τις παρακάτω χημικές εξισώσεις.
 - α . P + HNO₃ + H₂O \rightarrow H₃PO₄ + NO
 - β. $H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow O_2 + MnSO_4 + K_2SO_4 + H_2O_4$
 - $\mathbf{y.} \quad \mathbf{C} + \mathbf{H_2SO_4} \rightarrow \mathbf{CO_2} + \mathbf{SO_2} + \mathbf{H_2O}$
 - δ. $Cl_2 + KOH \rightarrow KClO_3 + KCl + H_2O$
 - ϵ . CH₄ + NH₃ + O₂ \rightarrow HCN + H₂O

10 μονάδες

- **Β4.** Σε ένα χημικό εργαστήριο διαθέτουμε δύο δοχεία από Al και δύο δοχεία από Cu. Θέλουμε να αποθηκεύσουμε σε αυτά τα δοχεία, για μεγάλο χρονικό διάστημα, τα παρακάτω υδατικά διαλύματα:
 - 1. διάλυμα ΗCΙ
- 2. διάλυμα Mg(NO₃)₂
- 3. διάλυμα FeSO₄
- 4. διάλυμα ΚCΙ

Σε ποιο δοχείο πρέπει να αποθηκεύσουμε καθένα από τα παραπάνω διαλύματα; Να αιτιολογήσετε την απάντησή σας.

Δίνεται η σειρά δραστικότητας: K > Mg > Al > Fe > H > Cu.

4 μονάδες

ΘΕΜΑ Γ

Ποσότητα Fe προστίθεται σε περίσσεια υδατικού διαλύματος (Δ1) HCl όγκου 1 L. Από την αντίδραση ελευθερώνεται αέριο H_2 όγκου 6,72 L μετρημένο σε STP το οποίο απομακρύνεται και προκύπτει το διάλυμα Δ2. Το διάλυμα Δ2 έχει όγκο 1 L και περιέχει δύο διαλυμένες ουσίες με συγκεντρώσεις 0,3 M και 0,4 M.

Γ1. Να υπολογίσετε τη μάζα του Fe. Δίνεται: Ar_{Fe} = 56.

6 μονάδες

Γ2. Να υπολογίσετε τη συγκέντρωση του διαλύματος Δ1.

6 μονάδες

Γ3. Ποιος όγκος ενός διαλύματος K₂Cr₂O₇ 0,5 M οξινισμένου με HCl απαιτείται για την πλήρη αντίδραση του με το διάλυμα Δ2;

5 μονάδες

Γ4. Ποσότητα Fe ίση με εκείνη που προστέθηκε στο διάλυμα Δ1 προστίθεται σε 200 mL διαλύματος KMnO₄ 1 M οξινισμένου με H₂SO₄ οπότε πραγματοποιείται η αντίδραση: Fe + KMnO₄ + H₂SO₄ → Fe₂(SO₄)₃ + MnSO₄ + K₂SO₄ + H₂O

α. Να ισοσταθμίσετε την παραπάνω χημική εξίσωση.

3 μονάδες

β. Να εξετάσετε αν θα αποχρωματιστεί το διάλυμα του KMnO₄.

5 μονάδες

ΘΕΜΑ Δ

Διαθέτουμε ένα ομογενές κράμα Cu – Zn.

Το κράμα χωρίζεται σε δύο ίσα μέρη.

- Το 1° μέρος προστίθεται σε περίσσεια διαλύματος HCl οπότε ελευθερώνονται 3,36 L αερίου μετρημένα σε STP.
- Το 2º μέρος του κράματος προστίθεται σε περίσσεια πυκνού διαλύματος ΗΝΟ₃ οπότε πραγματοποιούνται οι αντιδράσεις:

$$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O$$
 (1)

$$Zn + HNO_3 \longrightarrow Zn(NO_3)_2 + NO_2 + H_2O$$
 (2)

και ελευθερώνονται 8,96 L αερίου μετρημένα σε STP.

Δ1. Να ισοσταθμίσετε τις παραπάνω χημικές αντιδράσεις.

4 μονάδες

Δ2. Να βρείτε τη μάζα του κράματος.

10 μονάδες

Δ3. 1 mol Cu προστίθεται σ' ένα άλλο διάλυμα HNO₃ οπότε πραγματοποιούνται οι αντιδράσεις:

$$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O$$
 (1)

$$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO + H_2O$$
 (3)

Από τις αντιδράσεις αυτές ελευθερώνονται 1,2 mol αερίου μίγματος.

α. Να ισοσταθμίσετε τη χημική εξίσωση (3)

2 μονάδες

β. Να υπολογίσετε το % ποσοστό της ποσότητας του Cu που αντιδρά σύμφωνα με την αντίδραση (1) καθώς και εκείνο που αντιδρά σύμφωνα με την αντίδραση (3).

9 μονάδες

Δίνεται: $Ar_{Cu}=63,5$, $Ar_{Zn}=65$ καθώς και η σειρά δραστικότητας Zn>H>Cu.