In-class Activity

ME 570 - Prof. Tron 2023-11-14

Problem 1: Review of probability

Consider a probability space (Ω, \mathcal{F}, P) where $P(A) = \frac{\mu(A)}{\mu(\Omega)}$, μ is a measure such that one square has unit area, that is, $\mu(\begin{bmatrix} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \end{bmatrix}) = 1$, and consider also the events (sets of outcomes) $A, B, C \in \mathcal{F}$ as represented in the figure (note that B is a subset of A).

In the following, when asked to "verify" a relation, first state the formula, then check with the numerical values.

1) Compute the probabilities of the events A, A^c, B, B^c, C , as well as the conditional probabilities P(B|A), P(A|B), P(A|C), P(C|A) using the areas of the sets (keep the results as fractions). These values will be used for the other steps below.

Event $P(\text{Event})$	Event $P(\text{Event})$	Event $P(\text{Event})$	Event $P(\text{Event})$
A	В	$P(B \mid A)$	$P(A \mid C)$
	B^c		
A^c	C	$P(A \mid B)$	$P(C \mid A)$

2) Verify the relation between P(A) and $P(A^c)$.

3) Given that $B \subset A$, verify the relative orderings of $P(A)$ versus $P(B)$ and $P(A^c)$ versus $P(B^c)$.	
4) Verify that A and C are statistically independent $(A \perp C)$.	
5) Verify that $P(A C) = P(A)$ and $P(C A) = P(C)$ (which are implied by the fact that $A \perp C$).	
6) Verify the union bound $P(A \cup C) \leq P(A) + P(C)$.	
Problem 2: Proof of probabilistic completeness of PRM	
Question 2.1. In the figure on the right, indicate the ath clearance ρ , and draw a covering of the reference path	

Q

 γ with a minimum number m of balls $\mathcal{B}(\cdot, \frac{\rho}{2})$ such that centers x_i, x_{i+1} of consecutive balls are contained in each other's balls. Given that the length of the path γ is L, give

a formula for m:

Question 2.2. In the zoomed-in figure on the right, draw two centers x_i , x_{i+1} , the the corresponding balls $\mathcal{B}(x_i, \frac{\rho}{2})$, $\mathcal{B}(x_i, \frac{\rho}{2})$, and two samples y_i, y_{i+1} . Then use the triangular inequality to show that $d(y_i, x_{i+1}) < \rho$. Question 2.3. Let $\mu(S)$ be the *volume* of a region S. Complete the following $\mu(\mathcal{B}(\cdot, \frac{\rho}{2})) = \mu(\mathcal{B}(\cdot, 1))$ (1)Question 2.4. Let the event I_i^c be the event where n samples $\{y_j\}_{j=1}^n$ all fall outside of $\mathcal{B}(x_i, \frac{\rho}{2})$. Using the previous answer and the bound $(1-\beta)^n \leq \exp(-\beta n)$, write a bound on the probability $P(I_i^c)$. Question 2.5. Using the events I_i^c , give a bound on the probability that PRM fails when using n uniform samples $\{y_i\}_{i=1}^n$. Question 2.6. Explain why PRM is probabilistically complete.