

EMBEDDED PHOTOMETRIC VISUAL ODOMETRY

Samuel Bryner

Bachelor Thesis Supervised by Jörn Rehder and Pascal Gohl.

OUTLINE

- 1. OUTLINE
- 2. MOTIVATION
- 3. METHOD: intuitive explanation
- 4. METHOD: actual math
- 5. RESULTS
- 6. CONCLUSION

ETH zürich

MOTIVATION

- demonstration new integration of FPGA and ARM with embedded odometry
- stereo core enables photometric odometry instead of sparse odometry
- TODO: ref to Marcins Arbeit? http://students.asl.ethz.ch/upl_pdf/459-report.pdf

METHOD: the problem

METHOD: 1. project into space

METHOD: 2. move camera trough space

METHOD: 3. project back into camera

METHOD: 4. measure MSE

transformation ${\bf T}$

just minimize that!

METHOD: formularizing the problem

point in image: $\vec{x} := (u, v) \in \mathbb{R}^2$

intensity: $I(\vec{x}): \mathbb{R}^2 \to \mathbb{R}$

disparity: $\mathbf{D}(\vec{\chi}): \mathbb{R}^2 \to \mathbb{R}$

transformation: $T \in \mathbb{R}^6$

$$\pi^{-1}(\vec{x}, \mathbf{D}(\vec{x})) := \frac{b}{\mathbf{D}(\vec{x})} \begin{bmatrix} u - c_u \\ v - c_v \\ f \end{bmatrix}$$

$$\pi(x,y,z) := \frac{f}{z} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c_u \\ c_v \end{bmatrix}$$

METHOD: warping pipeline

transformation **T**

A. Comport, E. Malis, and P. Rives, "Accurate quadrifocal tracking for robust 3d visual odometry," in IEEE Conference on Robotics and Automation, April 2007, pp. 40–45.

therefore:

minimize

$$e(T,\vec{x}) := I_k(\vec{x}) - I_c(\tau(T,\vec{x}))$$

for every pixel:

$$\hat{T} = \underset{T}{\operatorname{argmin}} \sum_{\vec{x} \in I_k} e(T, \vec{x})^2$$

using Gauss Newton:

$$\boldsymbol{J}^{T}\boldsymbol{J}\Delta T = -\boldsymbol{J}^{T}\boldsymbol{e}(\boldsymbol{T})$$

METHOD: optimizitations

- use image pyramid
- only use pixels with strong gradient
- Huber weights

RESULTS: photometric odometry VS. ASLAM

offline with OpenCV block matcher for stereo

units: meter

RESULTS: 1/16 of pixels (2x downscaled)

offline with OpenCV block matcher for stereo

units: meter

TODO: MORE RESULTS

- Error vs. time from previous plots
- circular trajectory with FPGA's stereo data
- timing data on visensor
- embedded photometric odometry with ~5 Hz

TODO: CONCLUSION

- FPGA is powerful co-processor
- embedded odometry is feasible, needs more optimization
- Was soll hier genau hin? Seh grad den Wald vor lauter Bäumen nicht mehr;)
- Soll noch was zur 'photometric odometry' hin? "precise, easily parallelizable (->FPGA), not the most efficient way of doing odometry"

