Assignment-4

UNNATI GUPTA

Download all python codes from

https://github.com/unnatigupta2320/Assignment_4/tree/master/codes

and latex-tikz codes from

https://github.com/unnatigupta2320/Assignment_4

1 Question No. 2.17

Find the perpendicular distance of the following lines from the origin and angle between the perpendicular and positive x-axis.

a.
$$(1 - \sqrt{3})\mathbf{x} = -8$$

b. $(0 \ 1)\mathbf{x} = 2$
c. $(1 \ -1)\mathbf{x} = 4$

2 SOLUTION

1) All the given data can be tabularised in table 2.1.

	Line ₁	Line ₂	Line ₃
c_1, c_2, c_3	8	-2	-4
$\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3$	$\begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

TABLE 2.1: Given Data

- 2) For finding the perpendicular distance of lines from origin:-
 - The formula for calculating perpendicular distance between the point and a given line is:

$$d = \frac{\left| c - \mathbf{n}^T \mathbf{A} \right|}{\|\mathbf{n}\|} \tag{2.0.1}$$

 If we have to find distance from origin, then above formula get reduced to:

$$d = \frac{|c|}{\|\mathbf{n}\|} \tag{2.0.2}$$

3) For finding angle between the perpendicular and positive x-axis:-

• If the normal vector of line is **n**,then:

$$\mathbf{n} = \begin{pmatrix} 1 \\ a_{\rm n} \end{pmatrix} \text{ or,} \qquad (2.0.3)$$

1

$$\mathbf{n} = \begin{pmatrix} 1 \\ \tan \theta \end{pmatrix} \tag{2.0.4}$$

• where θ = the angle which perpendicular makes with positive x-axis,

$$\implies \tan \theta = a_n$$
 (2.0.5)

$$\implies \theta = \tan^{-1}(a_n)$$
 (2.0.6)

- 4) For $Line_1$, $(1 \sqrt{3})x = -8$
 - We have:

$$c_1 = 8$$
 (2.0.7)

$$\mathbf{n}_1 = \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} \tag{2.0.8}$$

• Using (2.0.2) we get:

$$d_1 = \frac{|c_1|}{\|\mathbf{n}_1\|} \tag{2.0.9}$$

$$d_1 = \frac{8}{\sqrt{1+3}} \tag{2.0.10}$$

$$d_1 = \frac{8}{2} = 4 \text{ units} (2.0.11)$$

• On comparing (2.0.3) and (2.0.8) we get:

$$a_1 = -\sqrt{3} \tag{2.0.12}$$

• Putting (2.0.12) in (2.0.6) the angle which perpendicular is making with positive x-axis is:

$$\theta_1 = \tan^{-1}(a_1) \tag{2.0.13}$$

$$\theta_1 = \tan^{-1}(-\sqrt{3}) \tag{2.0.14}$$

$$\theta_1 = -60^{\circ}$$
 (2.0.15)

5) For $Line_2$, $(0 \ 1)$ **x** = 2

• We have:

$$c_2 = -2 \tag{2.0.16}$$

$$\mathbf{n}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{2.0.17}$$

• Using (2.0.2) we get:

$$d_2 = \frac{|c_2|}{\|\mathbf{n}_2\|} \tag{2.0.18}$$

$$d_2 = \frac{2}{\sqrt{1}} \tag{2.0.19}$$

$$d_2 = 2$$
 units (2.0.20)

• Here,the line₂ is parallel to x-axis. So,the angle it's perpendicular is making with positive x-axis is:

$$\theta_2 = 90^{\circ}$$
 (2.0.21)

- 6) For $Line_3$, $(1 -1)\mathbf{x} = 4$
 - We have:

$$c_3 = -4 \tag{2.0.22}$$

$$\mathbf{n}_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{2.0.23}$$

• Using (2.0.2) we get:

$$d_3 = \frac{|c_3|}{\|\mathbf{n}_3\|} \tag{2.0.24}$$

$$d_3 = \frac{4}{\sqrt{1+1}} \tag{2.0.25}$$

$$d_3 = \frac{4}{\sqrt{2}} \tag{2.0.26}$$

$$d_3 = \frac{4}{141} \tag{2.0.27}$$

$$d_3 = 2.828 \text{ units}$$
 (2.0.28)

• On comparing (2.0.3) and(2.0.23) we get:

$$a_3 = -1$$
 (2.0.29)

 Putting (2.0.29) in (2.0.6) the angle which perpendicular is making with positive x-axis is:

$$\theta_3 = \tan^{-1}(a_3) \tag{2.0.30}$$

$$\theta_3 = \tan^{-1}(-1) \tag{2.0.31}$$

$$\theta_1 = -45^\circ \tag{2.0.32}$$

7) If, $\mathbf{d_n}$ =Perpendicular distance of line from the origin

 $\mathbf{m_{pn}}$ =Slope of the perpendicular to the line θ_n = Angle of perpendicular with positive x-axis.

8) Then, All the calculated data can be tabularised in table 2.2:

	Line ₁	Line ₂	Line ₂
d_1, d_2, d_3	4	2	2.828
m_{p1}, m_{p2}, m_{p3}	$-\sqrt{3}$	∞	-1
$\theta_1, \theta_2, \theta_3$	-60°	90°	-45°

TABLE 2.2: Calculated Data

- 9) The plots of all the three lines and there respective perpendiculars are as follows:-
 - Plot of Line₁:-

Fig. 2.1: Line₁ and it's perpendicular

• Plot of Line₂:-

Fig. 2.2: Line₂ and it's perpendicular

• Plot of Line₃:-

Fig. 2.3: Line₃ and it's perpendicular