Bluering Sprint 1 Backlog

Task Estimation Approach:

- Planning poker is used to estimate story points for each task.
- Available cards (story point) and corresponding hours:

Card Number (Story Point)	2	4	8	16
Hours	4	8	16	24

- For all the tasks, each member picks a card that he thinks how many point the task worths. Then, all members turn over the card a the same time, and do:
 - 1. if all the cards are the **same number**, assign the task with the story point on the cards
 - 2. if the cards have different numbers and are in a reasonable range, think about the point and play again.
 - 3. if the cards have different numbers and some of them are too high or too low, stop the game and put the card aside for a further discussion.
- Run the game for several rounds, until all tasks have corresponding story points.

Sprint 1 total story points: 56

ID	User Story	Sprint	Task ID	Task description	Story point	Assign to	Acceptance Criteria
1	I want to view the client's information (e.g Name, Address, Job number) and also relevant information about their dosimeter (e.g chambers ID, serial number, model)	1	1.1	The program is able to read the clients information from the uploaded file.	4	Hao Liu	The clients information is read when the file uploaded.
		1	1.2	If client information cant be found in the file, client is able to enter their information.	4	Hao Liu	There should be a place to fill in information and write into csv file.
		1	1.3	The information should be shown on the interface/ The information can be entered on the interface	2	Chris Zhang	The clients information is show on interface.
		1	1.4	The information should be written in csv file	2	Hao Liu	The filled information should be written into csv file.
2	I want to have visualizations(e.g graph, table of analysis results)	1	2.1	The program should have a "compare data" button.	2	Chris Zhang	Have a "compare data" button.
	*Visualization must be scalable *Visualization (can be) interactive (hoovering over data points show insightful information)	1	2.2	Read the data from the files and analysis the data after click the "compa re data" button.	8	Zeying Zhang	Analyse the data in the back-end.
1. N vs E_e 2. [R2 (273	*Types of Visualization 1. N vs E_eff/ KeV 2. [R2 (273.15+TS2)] / (273.15 + TM2) -> per beam quality 3. Maybe more next time	1	2.3	Design the interface showing graph and table of analysis results.	2	Chris Zhang	There is an area showing the graph and table of analysis results.
		1	2.4	Plot the graph and illustrate the table.	2	Chris Zhang	When selecting different runs, the corresponded graph and table should be updated.
3	I want to select 1 or more pairs of data files(Client.csv, Lab.csv)	1	3.1	The program is able to select CSV files from local disk	2	Yushu QIU	Only CSV file can be selected.
	*Note that three beam qualities will be calculated twice, and the second set of calculations has to be denoted with an asterisk.	1	3.2	Check the validation of data structure in csv file	4	Yushu QIU	Data structure should be correct, if not = invalid data file.
		1	3.3	Handle errors if the select file is not valid	2	Yushu QIU	Error message should pop up.
	I want to upload and select a set of data files from a local drive and store them in a database (or a structure of the team's choice)	1	4.1	Should have a database to store and access these data. The database structure should be well designed.	16	Junjie Xia	The database should meet current requirement and be good for future development.
			4.2	A processing bar should be illustrated	2	Chris Zhang	processing bar is shown when uploading files
6	I want to output 1 set of results (document)		-	-	-	-	-
9	I want to be able to calculate the calibration coefficient after submitting the two raw data excel files (client.csv and lab.csv)	1	9.1	calculate the calibration coefficient	2	Zeying Zhang	The calibration coefficient is calculated.

11	I want to have tables and graphs after selecting which run(s) for the report	1	11.1	The graphs and table must be scalable	2	Chris Zhang	When click the graph or the table, they are sc
	*Visualization must be scalable *Visualization (can be) interactive (hoovering over data points show insightful information)						alable.