Cox proportional hazard model Extensions	
Cox PH model	
 Recall Cox PH model assumes h(t Z) = h₀(t) exp(Z^Tβ) The effect of a covariate on hazard is constant over time. We have shown how to check PH assumption using Schoenfeld residuals. What if proportional hazard assumption is not satisfied? Consider extensions of Cox PH model to allow non-proportionality. Stratified PH model: stratify over categorical covariate to allow different baseline hazard at different strata. Cox model with time-varying covariates: Including interactions between time and the covariates. 	
Stratified PH model	
Example: suppose we have two covariates: = 1 if treatment, Z =0, if control W =1 if male, W =0, if female Goal: to assess the effect of treatment while controlling for gender.	

Stratified PH model

Cox PH model with both covariates

$$h(t|Z,W) = h_0(t) \exp(Z\beta_1 + W\beta_2)$$

• It implies that the hazard functions of 4 subgroups are proportional with

$$\begin{aligned} h(t|Z=0,W=0) &= h_0(t) \\ h(t|Z=1,W=0) &= \exp(\beta_1) h_0(t) \\ h(t|Z=0,W=1) &= \exp(\beta_2) h_0(t) \\ h(t|Z=1,W=0) &= \exp(\beta_1+\beta_2) h_0(t) \end{aligned}$$

Stratified PH model

- Stratified PH model (by gender) assumes $h(t|Z=0, W=0) = h_0(t) \label{eq:local_phi}$

$$h(t|Z = 0, W = 1) = h_1(t)$$

- Strata specific baselines.
- For the effect of treatment, assume the same hazard ratio within each level W .

$$h(t|Z = 1, W = 0) = \exp(\beta) h_0(t)$$

 $h(t|Z = 1, W = 1) = \exp(\beta) h_1(t)$

Only PH assumption within stratum, not between stratums.

Stratified PH model

• If a categorical variable has K levels, the stratified PH model assumes

 $h_k(t|Z) = h_{0k}(t) \exp(Z^T \beta)$.

- Each strata has its specific baseline $h_{0k}(t)$.
- Assume the effects of covariates Z is the same cross different stratums.
- The interpretation of covariate effect is similar as before. For example, for all stratums,

$$\frac{h_k(t|Z=1)}{h_k(t|Z=0)} = \exp(\beta)$$

SAS Example

Treatment as a covariate
Gender as stratification variable

proc phreg;

baseline out = base survival = surv; model time*censor(0 = treatment; strata gender;

run;

Summary

- One way to deal with non-proportional covariates is stratified PH model.
- Stratification allows each stratum to have its own baseline hazard and solves the problem of nonproportionality of that variable.
- Drawbacks:
 - can not test the significance of the stratifying variable itself.
 - the number of parameters increase quickly with the number of stratums.
 - Only handles non-proportional for categorical variables

Time varying covariates

 Another way to deal with nonproportional covariates is to include interactions between time and the covariates.

$$h(t|Z) = h_0(t) \exp(Z\beta_1 + \frac{Zt}{2}\beta_2)$$

- It allows the effect of covariate ${\it Z}$ to change over time.
- Essentially, we are creating a covariate that is timevarying.
- In practice, some covariates do change over the time.
 - Hourly blood pressure HIV patient CD4 counts
 - levels of air pollution

Time varying covariates

- Consider a Cox model with time-varying covariates $h(t|Z(t)) = h_0(t) \exp(Z(t)^T \beta)$
- It is no longer proportional hazard since

$$\frac{h(t|Z(t))}{h_0(t)} = \exp(Z(t)^T \beta)$$

is no longer a constant over time.

SAS Example

Here is an example using covariate interactions with time as predictors to deal with non-proportionalilty of hazard.

proc phreg data=whas500;
class gender;
model lenfol*fstat(0) = gender age bmi|bmi hr
hrtime;
hrtime = hr*lenfol;

run;

Summary

Two extensions of Cox PH model

- Stratified Cox PH model
- Cox model with time-varying covariates

_				
_				
_				