LISTA 4

Pedro Zilves Maio Ventura

Instituto de Física - Universidade Federal do Rio de Janeiro e-mail: pedrozventura@gmail.com

1. QUESTÃO: Triângulo de Siepinski

Considerando um vetor inicial com N = 141 e um número de passos t = 70:

2. QUESTÃO: DIMENSÃO FRACTAL COM MÉTODO DAS CAIXAS

Nessa questão foram utilizadas caixas com L = 70, 30, 25, 20, 15, 10, 5, 2. Aqui grafico somente as 3 últimas que são mais visuais:

E por fim o gráfico da dimensão fractal:

Comparando com a dimensão fractal de referência 1.59, temos uma discrepância relativa de 0.24σ , o que

indica um resultado compatível.

3. QUESTÃO: CLUSTER COM ALGORÍTMO LEATH

3.a. Cluster

Tomando uma caixa quadrada com 201 pixeis de lado, colocando uma *seed* no pixel central e crescendo de acordo com o algorítmo dado, obtemos o seguinte cluster:

3.b. Dimensão fractal

Seguindo para calcular a dimensão fractal do cluster gerado, foram utilizadas caixas de lado L = 200, 100, 50, 25, 20, 15, 10, 5, 2. Novamente as 3 últimas estão graficadas:

E seguindo com o gráfico da dimensão fractal:

3.c. Lei de Potência

Nessa questão foram realizados 1000 clusters para L = 10, 20, 50, 100, 200. Tomando como P_{∞} de acordo com (1):

$$P_{\infty} = \frac{\text{Numero de sítios ocupados no cluster}}{\text{Numero de disponíveis}} \tag{1}$$

Podemos construir gráficos da distribuição da frequência de P_{∞} para as 1000 realizações e tomar a média de um ajuste gaussiano sobre o histograma:

As médias estão indicadas na legenda do gráfico. Em seguida graficamos estas médias pelo valor de L correspondente e temos o seguinte:

Onde uma estimativa do valor da constante β/ν foi dada.

3.d. Distribuição de Clusters

Para 1000 realizações com L=200 o histograma do tamanho do cluster nos dá um valor para o a média na distribuição quando uma gaussiana é ajustada:

A. Bonus

Também criei um triangulo de Siepinski grande, com t = 400 passos:

