Machine learning under physical constraints Introduction to DAN

Sixin Zhang (sixin.zhang@toulouse-inp.fr)

Outline

From Bayesian DA to Machine learning

Introduction to Data Assimilation Networks (DAN)

Outline

From Bayesian DA to Machine learning

Bayesian Data Assimilation (DA)

- Assume $x_t \in \mathbb{X} = \mathbb{R}^n$, $y_t \in \mathbb{Y} = \mathbb{R}^d$
- Observed Dynamical Systems (ODS)

$$x_t = Mx_{t-1} + \eta_t$$
$$y_t = Hx_t + \epsilon_t$$

▶ M: dynamics, H: observation process, η_t and ϵ_t : noise

Bayesian Data Assimilation (DA)

▶ ODS induces a joint probability density on $\mathbb{X}^{T+1} \times \mathbb{Y}^T$

$$p(x_0, x_1, \cdots, x_T, y_1, \cdots, y_T)$$

- ▶ Dynamical process is represented by $p(x_t|x_{t-1})$
- ▶ Observation process is represented by $p(y_t|x_t)$
- ▶ Problem: For each $t \leq T$, obtain conditional density

$$p(x_t|y_1,\cdots,y_t)$$

Bayesian Data Assimilation

- ► Compute $p(x_t|y_1, \dots, y_t)$ recursively.
- ► Analysis by Bayes rule : $p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x)p(x)dx}$
- Let $Y_t = (y_1, \dots, y_t)$, analyze conditional densities:

$$\rho_t^{\mathbf{a}}(x_t|y_t) := \rho(x_t|y_t, Y_{t-1}),
\rho_t^{\mathbf{b}}(x_t) := \rho(x_t|Y_{t-1})$$

Analyse step: transform p_t^b to p_t^a by Markov property and Bayes rule (time invariance: p does not change with t).

$$p_t^{\mathbf{a}}(x_t|y_t) = \frac{p(y_t|x_t)p_t^{\mathbf{b}}(x_t)}{\int p(y_t|x)p_t^{\mathbf{b}}(x)dx}$$

Bayesian Data Assimilation

Propagate conditional densities:

$$p_{t+1}^{\mathbf{a}}(x_t|y_t) := p(x_t|Y_{t-1}, y_t),$$

$$p_{t+1}^{\mathbf{b}}(x_{t+1}) := p(x_{t+1}|Y_t)$$

Propagation step: transform $p_t^{\mathbf{a}}$ to $p_{t+1}^{\mathbf{b}}$ by Markov property.

$$p_{t+1}^{\mathbf{b}}(x_{t+1}) = \int p(x_{t+1}|x_t)p_t^{\mathbf{a}}(x_t|y_t)dx_t$$

(Again time invariance: p does not change with t)

Example: Kalman Filter

Why Machine learning?

Observed Dynamical Systems (ODS)

$$x_t = Mx_{t-1} + \eta_t$$
$$y_t = Hx_t + \epsilon_t$$

- ▶ When *M* or *H* are not linear, KF is not optimal. Can we improve DA using Machine learning?
- ▶ Problem reformulation: given sequences of ODS, can we approximate $p_t^{\mathbf{a}}$ and $p_t^{\mathbf{b}}$ for $t \leq T$?

Outline

Introduction to Data Assimilation Networks (DAN)

DAN framework

- ▶ Supervised learning of $p_t^{\mathbf{a}}$ and $p_t^{\mathbf{b}}$ from sequences of $\{(x_t, y_t)\}_{t \leq T}$.
- ▶ Unsupervised learning: from sequences of $\{y_t\}_{t \le T}$.

DAN framework

- ▶ Supervised learning from sequences of $\{(x_t, y_t)\}_{t \le T}$
- Approximate $p_t^{\mathbf{a}}$ by $q_t^{\mathbf{a}}: \mathbb{Y}^t \to \mathsf{Prob}(\mathbb{X})$, and $p_t^{\mathbf{b}}$ by $q_t^{\mathbf{b}}: \mathbb{Y}^{t-1} \to \mathsf{Prob}(\mathbb{X})$.
- Impose **Markov structures** on $q_t^{\mathbf{a}}$ and $q_t^{\mathbf{b}}$ using memory $(h_t^{\mathbf{a}}, h_t^{\mathbf{b}})$.

DAN framework: analyzer a

- ▶ Y: space of observation, X: space of true state
- ► II: space of memory (hidden state)
- ▶ Analyzer $\mathbf{a} \in \mathbb{H} \times \mathbb{Y} \to \mathbb{H}$

$$h_t^{\mathbf{a}} = \mathbf{a}(h_t^{\mathbf{b}}, y_t)$$

lacktriangle Example of Kalman Filter: Update $h_t^{f b}:=(\mu_t^{f b},\Sigma_t^{f b})$ by y_t

DAN framework: propagator **b**

▶ Propagator $\mathbf{b} \in \mathbb{H} \to \mathbb{H}$

$$h_{t+1}^b = \mathbf{b}(h_t^a)$$

 \triangleright Recursion of memory from t to t+1,

$$h_{t+1}^{\mathbf{a}} = \mathbf{a}(h_{t+1}^{\mathbf{b}}, y_{t+1}) = \mathbf{a}(\mathbf{b}(h_t^a), y_{t+1})$$

Example of Kalman Filter: Update $h_t^a := (\mu_t^a, \Sigma_t^a)$.

DAN framework: procoder c

▶ Procoder $\mathbf{c} \in \mathbb{H} \to \mathsf{Prob}(\mathbb{X})$

$$q_t^{\mathbf{a}} = \mathbf{c}(h_t^{\mathbf{a}}), \quad q_t^{\mathbf{b}} = \mathbf{c}(h_t^{\mathbf{b}})$$

- $ightharpoonup q_t^{\mathbf{b}} = \mathbf{c}(h_t^{\mathbf{b}})$ approximates $p(x_t|Y_{t-1})$.
- $ightharpoonup q_t^{\mathbf{a}} = \mathbf{c}(h_t^{\mathbf{a}})$ approximates $p(x_t|Y_t)$.
- lacksquare Example of Kalman Filter: $h:=(\mu,\Sigma)\in\mathbb{H}$, $\mathbf{c}(h):=\mathcal{N}(\mu,\Sigma)$.
- ▶ Role of memory in Ensemble Kalman Filter (ETKF).

DAN as Elman RNN

Figure: Unroll Elman RNN over time

- Relation with Elman RNN and DAN
 - ▶ Hidden h_t as h_t^a : estimation of x_t given Y_t .
 - ▶ Context c_t as h_t^b : prediction of x_t given Y_{t-1} .
 - Input x_t as y_t : observed state at t in ODS

DAN framework: objective function

- Maximum-likelihood estimation of p_t^a by q_t^a : densities of x_t conditioned on Y_t .
- ▶ Introduce a series of objectives of $L_t(q_t^a)$

$$L_t(q_t^{\mathbf{a}}) = -\int \log q_t^{\mathbf{a}}(x_t|y_t)p(x_t, Y_t)dx_tdY_t$$
$$= -\int \log q_t^{\mathbf{a}}(x_t|y_t)p_t^{\mathbf{a}}(x_t|y_t)p(Y_t)dx_tdY_t$$

▶ The global minimizer of L_t is $q_t^{\mathbf{a}}(\cdot|y_t) = p_t^{\mathbf{a}}(\cdot|y_t)$, p-a.s,

$$\int \log \frac{p_t^{\mathbf{a}}(x_t|y_t)}{q_t^{\mathbf{a}}(x_t|y_t)} p_t^{\mathbf{a}}(x_t|y_t) dx_t \ge 0$$

DAN framework: objective function

- Maximum-likelihood estimation of p_t^b by q_t^b : densities of x_t conditioned on Y_{t-1} .
- ▶ Introduce a sequence of objectives for $t \leq T$,

$$L_t(q_t^{\mathbf{b}}) = -\int \log q_t^{\mathbf{b}}(x_t) p(x_t, Y_{t-1}) dx_t dY_{t-1}$$
$$= -\int \log q_t^{\mathbf{b}}(x_t) p_t^{\mathbf{b}}(x_t) p(Y_{t-1}) dx_t dY_{t-1}$$

▶ The global minimizer of L_t is $q_t^{\mathbf{b}}(\cdot) = p_t^{\mathbf{b}}(\cdot)$, p-a.s,

$$\int \log \frac{p_t^{\mathbf{b}}(x_t)}{q_t^{\mathbf{b}}(x_t)} p_t^{\mathbf{b}}(x_t) dx_t \geq 0$$

DAN framework: objective function

Objective function:

$$\min_{q_0^{\mathbf{a}}, (q_t^{\mathbf{a}}, q_t^{\mathbf{b}})_{t=1}^T} \frac{1}{T} \sum_{t \leq T} (L_t(q_t^{\mathbf{a}}) + L_t(q_t^{\mathbf{b}})) + L_0(q_0^{\mathbf{a}})$$

- ▶ The initial density $q_0^{\mathbf{a}}(x_0)$ aims to approximate $p(x_0)$.
- Equivalently to optimize (a, b, c) in a Recurrent Neural Network (RNN).

DAN framework: summary

- Bayesian Data Assimilation defines a sequence of conditional probability densities to learn.
- Supervised learning of ODS with DAN by respecting Markov structures.
- ▶ Define optimal objective functions from the maximum likelihood principle.