Introduction to Analysis I HW3

B13902024 張沂魁

September 27, 2025

Problem 0.0.1. Let $(x^{(n)})_{n=m}^{\infty}$ be a sequence of points in a metric space (X,d), and let $L \in X$. Show that if L is a limit point of the sequence $(x^{(n)})_{n=m}^{\infty}$, then L is an adherent point of the set

$$S = \{x^{(n)} : n \ge m\}.$$

Is the converse true?

Proof. Suppose L is a limit point of the sequence. By definition,

$$\forall N \geq m, \forall \varepsilon > 0, \ \exists n \geq N \text{ such that } d(x^{(n)}, L) \leq \varepsilon.$$

This implies that for every $\varepsilon > 0$, there exists $n \geq m$ with

$$x^{(n)} \in B(L, \varepsilon) \cap S \neq \emptyset.$$

Hence,

$$\forall \varepsilon > 0, \ B(L, \varepsilon) \cap S \neq \emptyset \implies L \text{ is an adherent point of } S.$$

Now, we check the converse. The converse statement is **NOT** true. Consider $X = \mathbb{R}$ with the standard metric, and let m = 1. Define

$$x^{(n)} = \frac{1}{n}$$
, so $S = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$.

It is clear that 1 is an adherent point of S, since for every $\varepsilon > 0$,

$$1 \in (1 - \varepsilon, 1 + \varepsilon), \Rightarrow B(1, \varepsilon) \cap S \neq \emptyset.$$

However, 1 is not a limit point of the sequence. Indeed, if $N \geq 2$, then for all $n \geq N$,

$$d(x^{(n)}, 1) = \left| \frac{1}{n} - 1 \right| \ge \frac{1}{2}.$$

So if we take $\varepsilon = 0.48763$ and N = 2, there is no $n \ge N$ such that $d(x^{(n)}, 1) \le \varepsilon$. Therefore, 1 is not a limit point of $(x^{(n)})_{n=1}^{\infty}$, even though it is an adherent point of S.

Problem 0.0.2. The following construction generalizes the construction of the reals from the rationals in Chapter 5, allowing one to view any metric space as a subspace of a complete metric space. In what follows we let (X, d) be a metric space.

(a) Given any Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, we introduce the formal limit

$$\lim_{n\to\infty} x_n$$
.

We say that two formal limits $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} y_n$ are equal if

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

Show that this equality relation obeys the reflexive, symmetry, and transitive axioms, i.e. that it is an equivalence relation.

(b) Let \overline{X} be the space of all formal limits of Cauchy sequences in X, modulo the above equivalence relation. Define a metric $d_{\overline{X}}: \overline{X} \times \overline{X} \to [0, \infty)$ by

$$d_{\overline{X}}(LIM_{n\to\infty} x_n, LIM_{n\to\infty} y_n) := \lim_{n\to\infty} d(x_n, y_n).$$

Show that this function is well-defined (the limit exists and does not depend on the choice of representatives) and that it satisfies the axioms of a metric. Thus $(\overline{X}, d_{\overline{X}})$ is a metric space.

(c) Show that the metric space $(\overline{X}, d_{\overline{X}})$ is complete.

(d) We identify an element $x \in X$ with the corresponding constant Cauchy sequence (x, x, x, ...), i.e. with the formal limit $\text{LIM}_{n \to \infty} x$. Show that this is legitimate: for $x, y \in X$,

$$x = y \iff \operatorname{LIM}_{n \to \infty} x = \operatorname{LIM}_{n \to \infty} y.$$

With this identification, show that

$$d(x,y) = d_{\overline{X}}(x,y),$$

and thus (X,d) can be thought of as a subspace of $(\overline{X},d_{\overline{X}})$.

- (e) Show that the closure of X in \overline{X} is \overline{X} itself. (This explains the choice of notation.)
- (f) Finally, show that the formal limit agrees with the actual limit: if $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in X that converges in X, then

$$\lim_{n \to \infty} x_n = \text{LIM}_{n \to \infty} x_n \quad \text{in } \overline{X}.$$

- **a.** We verify the following properties:
 - Reflexive: $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} x_n$ are equal since d is metric, so $\forall n, d(x_n, x_n) = 0$.
 - Symmetry: If $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} y_n$ are equal, this mean $\lim_{n\to\infty} d(x_n, y_n) = 0$. And since d is metric, so $\lim_{n\to\infty} d(y_n, x_n) = 0$, hence $LIM_{n\to\infty} y_n$ and $LIM_{n\to\infty} x_n$ are equal.
 - Transitive: If $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} y_n$ are equal and $\lim_{n\to\infty} y_n$ and $\lim_{n\to\infty} z_n$ are equal, then we have $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(y_n,z_n) = 0$. By definition, there exists $N_1,N_2>0$ s.t. for all $n\geq N_1$, we have $d(x_n,y_n)<\frac{\varepsilon}{2}$ and for all $n\geq N_2$ we have $d(y_n,z_n)<\frac{\varepsilon}{2}$. Thus, for all $n\geq \max\{N_1,N_2\}$, we have

$$d(x_n, z_n) \le d(x_n, y_n) + d(y_n, z_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which means $\lim_{n\to\infty} d(x_n, z_n) = 0$, and thus $\lim_{n\to\infty} z_n = \lim_{n\to\infty} z_n$.

b. We first show that the limit exists. Note that $\lim_{n\to\infty}d(x_n,y_n)\in\mathbb{R}_{\geq 0}$ for all Cauchy sequence $\{x_n\}_{n=1}^\infty$, $\{y_n\}_{n=1}^\infty$ in X. We already know $(\mathbb{R},|\cdot|)$ is complete, so we know $(\mathbb{R}_{\geq 0},|\cdot|)$ is also complete as it is a closed subspace of $(\mathbb{R},|\cdot|)$. Now we define $u_n:=d(x_n,y_n)$ for all $n\geq 1$, then we want to show that $\{u_n\}_{n=1}^\infty$ is Cauchy in $\mathbb{R}_{\geq 0}$, and then we can conclude that $\{u_n\}_{n=1}^\infty$ converges in $\mathbb{R}_{\geq 0}$, and thus $\lim_{n\to\infty}d(x_n,y_n)$ exists.

Claim 0.0.1. Suppose (X, d) is a metric space, then for all $a, b, c, d \in X$ we have

$$|d(a,b) - d(c,d)| \le d(a,c) + d(b,d)$$

Proof. Since

$$\begin{cases} d(a,b) \le d(a,c) + d(c,b) \le d(a,c) + d(c,d) + d(d,b) \\ d(c,d) \le d(c,a) + d(a,d) \le d(c,a) + d(a,b) + d(b,d), \end{cases}$$

so we have

$$\begin{cases} d(a,b) - d(c,d) \le d(a,c) + d(d,b) \\ -d(c,a) - d(b,d) \le d(a,b) - d(c,d), \end{cases}$$

so we can conbine these two equations and get the result.

By Claim 0.0.1, we know for all $p, q \ge 1$, we have

$$|u_p - u_q| = |d(x_p, y_p) - d(x_q, y_q)| \le d(x_p, x_q) + d(y_p, y_q).$$

*

Now since $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy, so for every $\varepsilon > 0$, there exists $N_1, N_2 > 0$ s.t.

$$\begin{cases} d(x_p, x_q) < \frac{\varepsilon}{2} & \forall p, q \ge N_1 \\ d(y_p, y_q) < \frac{\varepsilon}{2} & \forall p, q \ge N_2. \end{cases}$$

Thus, for all $p, q \ge \max\{N_1, N_2\}$, we know

$$|u_p - u_q| \le d(x_p, x_q) + d(y_p, y_q) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, we know $\{u_n\}_{n=1}^{\infty}$ is Cauchy in $\mathbb{R}_{\geq 0}$, $|\cdot|$.

Now we show that $d_{\overline{X}}$ is well-defined. In other words, if $LIM_{n\to\infty}x_n=LIM_{n\to\infty}z_n$, then we want to show

$$d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n,\mathrm{LIM}_{n\to\infty}y_n) = d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}z_n,\mathrm{LIM}_{n\to\infty}y_n) \quad \forall \text{ Cauchy } \{y_n\}_{n=1}^{\infty} \text{ in } (X,d).$$

Equivalently, we want to show $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(z_n,y_n)$. Note that we have

$$\lim_{n \to \infty} d(x_n, z_n) = 0$$
 and $d(x_n, y_n) \le d(x_n, z_n) + d(z_n, y_n)$,

so we know

$$\lim_{n \to \infty} d(x_n, y_n) \le \lim_{n \to \infty} d(x_n, z_n) + \lim_{n \to \infty} d(z_n, y_n) = \lim_{n \to \infty} d(z_n, y_n).$$

Also, we have $d(z_n, y_n) \leq d(z_n, x_n) + d(x_n, y_n)$, so we know

$$\lim_{n \to \infty} d(z_n, y_n) \le \lim_{n \to \infty} d(z_n, x_n) + \lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(x_n, y_n),$$

and thus we can conclude that $\lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(z_n, y_n)$.

Finally, we want to show that $(\overline{X}, d_{\overline{X}})$ is a metric space.

• \forall Cauchy $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}$, we have

$$d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}, x_n, \mathrm{LIM}_{n\to\infty}, y_n) = \lim_{n\to\infty} d(x_n, y_n) \ge 0$$

since d is a metric.

- \forall Cauchy $\{x_n\}_{n=1}^{\infty} \in X$, $d_{\overline{X}}(\text{LIM}_{n\to\infty}x_n, \text{LIM}_{n\to\infty}x_n) = \lim_{n\to\infty} d(x_n, x_n) = 0$.
- \forall Cauchy $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \in X$,

$$\begin{split} d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}y_n) &= \lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(y_n, x_n) \\ &= d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}y_n, \mathrm{LIM}_{n\to\infty}x_n) \end{split}$$

• \forall Cauchy $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty} \in X$,

$$\begin{split} d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n,\mathrm{LIM}_{n\to\infty}z_n) &= \lim_{n\to\infty} d(x_n,z_n) \\ &\leq \lim_{n\to\infty} (d(x_n,y_n) + d(y_n,z_n)) = \lim_{n\to\infty} d(x_n,y_n) + \lim_{n\to\infty} d(y_n,z_n) \\ &= d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n,\mathrm{LIM}_{n\to\infty}y_n) + d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}y_n,\mathrm{LIM}_{n\to\infty}z_n) \end{split}$$

Hence, we know $(\overline{X}, d_{\overline{X}})$ is a metric space.

c. We want to show that for all $\{u_n\}_{n=1}^{\infty} \subseteq \overline{X}$, there exists $\{z_n\}_{n=1}^{\infty} \subseteq X$ s.t. $\lim_{n\to\infty} u_n = \text{LIM}_{n\to\infty} z_n$. Since $\{u_n\}_{n=1}^{\infty}$ is a sequence of formal limit of Cauchy sequences in X, so we can define $u_k = \text{LIM}_{n\to\infty} x_n^{(k)}$ for all $k \geq 1$. Now we construct $\{z_n\}_{n=1}^{\infty}$. Since we know for all $k \geq 1$, $\{x_n^{(k)}\}_{n=1}^{\infty}$ is a Cauchy sequence in X, so for all $k \geq 1$, there exists $N_k > 0$ s.t. $n \geq N_k$ implies

 $d\left(x_n^{(k)}, x_{N_k}^{(k)}\right) < \frac{1}{k}$. Now we let $z_k = x_{N_k}^{(k)}$ for all $k \ge 1$.

Claim 0.0.2. $\{z_k\}_{k=1}^{\infty}$ is a Cauchy sequence in X.

Proof. For all $\varepsilon > 0$, we know there exists $K \geq 0$ s.t. $\frac{1}{K} < \frac{\varepsilon}{3}$. Also, since $\{u_n\}_{n=1}^{\infty}$ is Cauchy, so there exists N > 0 s.t. $i, j \geq N$ implies $d_{\overline{X}}(u_i, u_j) < \frac{\varepsilon}{3}$, which can be writen as $\lim_{n \to \infty} d\left(x_n^{(i)}, x_n^{(j)}\right) < \frac{\varepsilon}{3}$. To be more precise, there exists N > 0 and N' > 0 s.t. if $i, j \geq N$ and $n \geq N'$, then $d\left(x_n^{(i)}, x_n^{(j)}\right) < \frac{\varepsilon}{3}$. Now for all $p, q \geq \max\{N, K\}$ and $n \geq \max\{N_p, N_q, N'\}$, we have

$$d(z_{p}, z_{q}) = d\left(x_{N_{p}}^{(p)}, x_{N_{q}}^{(q)}\right) \leq d\left(x_{N_{p}}^{(p)}, x_{n}^{(p)}\right) + d\left(x_{n}^{(p)}, x_{N_{q}}^{(q)}\right)$$

$$\leq d\left(x_{N_{p}}^{(p)}, x_{n}^{(p)}\right) + d\left(x_{n}^{(p)}, x_{n}^{(q)}\right) + d\left(x_{n}^{(q)}, x_{N_{q}}^{(q)}\right)$$

$$< \frac{1}{p} + \frac{\varepsilon}{3} + \frac{1}{q} < \frac{1}{K} + \frac{\varepsilon}{3} + \frac{1}{K} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Hence, we know $\{z_k\}_{k=1}^{\infty}$ is Cauchy.

Claim 0.0.3. $\lim_{n\to\infty} u_n = LIM_{n\to\infty} z_n$

Proof. Suppose $L=\mathrm{LIM}_{n\to\infty}z_n$. For all $\varepsilon>0$, we want to show there exists N>0 s.t. $m\geq N$ implies $d_{\overline{X}}\left(u_m,L\right)<\varepsilon$, which is equivalent to $\lim_{n\to\infty}d\left(x_n^{(m)},z_n\right)<\varepsilon$. To be more precise, we want to show there exists $N\geq0$ and N'>0 s.t. if $m\geq N$ and $n\geq N'$, then $d\left(x_n^{(m)},z_n\right)<\varepsilon$. Note that $d\left(x_n^{(m)},z_n\right)\leq d\left(x_n^{(m)},z_m\right)+d(z_m,z_n)$. Suppose K>0 has $\frac{1}{K}<\frac{\varepsilon}{2}$, we know such K exists. Also, since $\{z_n\}_{n=1}^\infty$ is Cauchy, so we know there exists $N_1'>0$ s.t. for all $p,q\geq N_1'$, we have $d\left(z_p,z_q\right)<\frac{\varepsilon}{2}$. Hence, if we pick $m\geq \max\{K,N_1'\}$ and $n\geq \max\{N_m,N_1'\}$, then

$$\begin{split} d\left(x_n^{(m)}, z_n\right) &\leq d\left(x_n^{(m)}, z_m\right) + d(z_m, z_n) < \frac{1}{m} + \frac{\varepsilon}{2} \\ &\leq \frac{1}{K} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

and we're done.

By Claim 0.0.2 and Claim 0.0.3, we know every Cauchy sequence in \overline{X} converges to a formal limit of a Cauchy sequence of X, which means it converges in \overline{X} , and thus $(\overline{X}, d_{\overline{X}})$ is complete.

d. We first show that $x = y \Leftrightarrow \text{LIM}_{n \to \infty} x = \text{LIM}_{n \to \infty} y$. If x = y, then we know

$$\lim_{n \to \infty} d(x, y) = \lim_{n \to \infty} d(x, x) = 0,$$

which means $\text{LIM}_{n\to\infty}x = \text{LIM}_{n\to\infty}y$. Now we prove the converse, if $\text{LIM}_{n\to\infty}x = \text{LIM}_{n\to\infty}y$, then we know $\lim_{n\to\infty}d(x,y)=d(x,y)=0$, so x=y.

Now we show that $d(x,y) = d_{\overline{X}}(x,y)$. Note that

$$d_{\overline{X}}(x,y) = \lim_{n \to \infty} d(x,y) = d(x,y),$$

so this is true.

e. Since we know $\operatorname{cl}_{\overline{X}}(X) \subseteq \overline{X}$, we only need to show $\overline{X} \subseteq \operatorname{cl}_{\overline{X}}(X)$. Suppose $x \in \overline{X}$, then $x = \operatorname{LIM}_{n \to \infty} x_n$ where $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X. Now we want to show that $x \in \operatorname{cl}_{\overline{X}}(X)$, which sequivalent to show for all $\varepsilon > 0$, there exists $y \in X$ s.t. $y \in B_{\overline{X}}(x,\varepsilon)$. If such y exists, then $d_{\overline{X}}(x,y) < \varepsilon$, which means $\lim_{n \to \infty} d(x_n,y) < \varepsilon$. However, $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, so there exists N > 0 s.t. $i,j \geq N$ implies $d(x_i,x_j) < \frac{\varepsilon}{2}$. Thus, we can pick $y = x_N$, and then we have for all $n \geq N$, $d(x_n,y) < \frac{\varepsilon}{2} < \varepsilon$ Hence, we have $\lim_{n \to \infty} d(x_n,y) < \varepsilon$, and we're done.

*

f. Since $\{x_n\}_{n=1}^{\infty}$ can be seen as a sequence of elements in \overline{X} , and notice that $\{x_n\}_{n=1}^{\infty}$ is still Cauchy in \overline{X} since for all $\varepsilon > 0$, we know there exists N > 0 s.t. $p, q \ge N$ implies $d(x_p, x_q) < \varepsilon$, so under same circumstances, we know

$$d_{\overline{X}}(x_p, x_q) = \lim_{n \to \infty} d(x_p, x_q) < \varepsilon,$$

and we're done. Now since we have proved \overline{X} is complete in (c), so we know there exists $L \in \overline{X}$ s.t. $\lim_{n \to \infty} x_n = L$. Also, since $L \in \overline{X}$, so $L = \text{LIM}_{n \to \infty} a_n$ for some Cauchy sequence $\{a_n\}_{n=1}^{\infty}$ in X. Now we want to show $\text{LIM}_{n \to \infty} a_n = \text{LIM}_{n \to \infty} x_n$. Hence, we want to show $\lim_{n \to \infty} d(a_n, x_n) = 0$, which is equivalent to prove $\forall \varepsilon > 0$, $\exists N > 0$ s.t. $n \ge N$ implies $d(a_n, x_n) < \varepsilon$.

- Notice that since $\lim_{n\to\infty} x_n = L \in \overline{X}$, so $\forall \varepsilon > 0$, $\exists N_1 > 0$ s.t. $p \ge N_1$ implies $d_{\overline{X}}(x_p, L) < \frac{\varepsilon}{2}$, and thus $\lim_{n\to\infty} d(x_p, a_n) < \frac{\varepsilon}{2}$. Hence, there exists M > 0 s.t. if $p \ge N_1$ and $n \ge M$, then $d(x_p, a_n) < \frac{\varepsilon}{2}$.
- Also, since $\{x_n\}_{n=1}^{\infty}$ is Cauchy in X, so there exists $N_2 > 0$ s.t. $p, q \ge N_2$ implies $d(x_p, x_q) < \frac{\varepsilon}{2}$.

Use the above two properties, we know for all $n \ge \max\{M, N_2\}$ we can choose $s \ge \max\{N_1, N_2\}$ so that

$$d(a_n, x_n) \le d(a_n, x_s) + d(x_s, x_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

and we're done.

Problem 0.0.3. In the following, all the sets are subsets of a metric space (X, d).

(a) If $\overline{A} \cap \overline{B} = \emptyset$, then

$$\partial(A \cup B) = \partial A \cup \partial B.$$

(b) For a finite family $\{A_i\}_{i=1}^n \subseteq X$, show that

$$\operatorname{int}\left(\bigcap_{i=1}^{n} A_i\right) = \bigcap_{i=1}^{n} \operatorname{int}(A_i).$$

(c) For an arbitrary (possibly infinite) family $\{A_{\alpha}\}_{{\alpha}\in F}\subseteq X$, prove that

$$\operatorname{int}\left(\bigcap_{\alpha\in F}A_{\alpha}\right)\subseteq\bigcap_{\alpha\in F}\operatorname{int}(A_{\alpha}).$$

- (d) Give an example where the inclusion in part (c) is strict (i.e., equality fails).
- (e) For any family $\{A_{\alpha}\}_{{\alpha}\in F}\subseteq M$, prove that

$$\bigcup_{\alpha \in F} \operatorname{int}(A_{\alpha}) \subseteq \operatorname{int}\left(\bigcup_{\alpha \in F} A_{\alpha}\right).$$

- (f) Give an example of a finite collection F in which equality does not hold in part (e).
- **a.** If $x \in \partial(A \cup B)$, then for all r > 0, we have

$$\begin{cases} B_X(x,r) \cap (A \cup B) = (B_X(x,r) \cap A) \cup (B_X(x,r) \cap B) \neq \varnothing. \\ B_X(x,r) \cap (X \setminus (A \cup B)) = B_X(x,r) \cap (X \setminus A) \cap (X \setminus B) \neq \varnothing. \end{cases}$$

Hence, either $B_X(x,r) \cap A$ or $B_X(x,r) \cap B$ is not empty. Also, we have $B_X(x,r) \cap (X \setminus A) \neq \emptyset$ and $B_X(x,r) \cap (X \setminus B) \neq \emptyset$. Thus, $x \in \partial A \cup \partial B$, which means $\partial (A \cup B) \subseteq \partial A \cup \partial B$.

Now we show that $\partial A \cup \partial B \subseteq \partial (A \cup B)$. If $x \in \partial A \cup \partial B$, then we first give a claim:

Claim 0.0.4. If $x \in \partial A$, then $x \notin \partial B$, and vice versa.

Proof. If $x \in \partial A \cap \partial B$, then since $x \in \partial A \subseteq \overline{A}$ and $x \in \partial B \subseteq \overline{B}$, so $x \in \overline{A} \cap \overline{B} = \emptyset$, which is a contradiction.

Without lose of generality, we can suppose $x \in \partial A$ and $x \notin \partial B$, then we know

$$\forall r>0 \text{ we have } \begin{cases} B_X(x,r)\cap A\neq\varnothing\\ B_X(x,r)\cap (X\setminus A)\neq\varnothing \end{cases},$$

$$\exists r'>0 \text{ s.t. exactly one of } \begin{cases} B_X\left(x,r'\right)\subseteq B\\ B_X\left(x,r'\right)\subseteq (X\setminus B) \end{cases} \text{ occurs.}$$

However, if $B_X(x,r') \subseteq B$, then $x \in B_X(x,r') \subseteq B \subseteq \overline{B}$. However, $x \in \partial A \subseteq \overline{A}$, so $x \in \overline{A} \cap \overline{B} = \emptyset$, which is a contradiction. Thus, we know $B_X(x,r') \subseteq X \setminus B$. Now since $x \in \partial A$, so $\forall r > 0$, we have $\emptyset \neq B_X(x,r) \cap A \subseteq B_X(x,r) \cap (A \cup B)$. Now we want to show $B_X(x,r) \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$.

• Case 1: $r \leq r'$, then we have $B_X(x,r) \subseteq B_X(x,r') \subseteq X \setminus B$ and thus

$$B_X(x,r) \cap (X \setminus A) \subseteq X \setminus B \Rightarrow B_X(x,r) \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$$

since $B_X(x,r) \cap (X \setminus A) \neq \emptyset$.

• Case 2: r' < r, then we know $B_X(x,r') \subseteq (X \setminus B)$ and $B_X(x,r') \subseteq B_X(x,r)$. Now if we can show $B_X(x,r') \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$, then since $B_X(x,r') \subseteq B_X(x,r)$, so we know

$$\emptyset \neq B_X(x,r') \cap (X \setminus A) \cap (X \setminus B) \subseteq B_X(x,r) \cap (X \setminus A) \cap (X \setminus B).$$

Now we show that $B_X(x,r') \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$. Note that since $B_X(x,r') \subseteq (X \setminus B)$, so in fact

$$B_X(x,r')\cap (X\setminus A)\cap (X\setminus B)=B_X(x,r')\cap (X\setminus A)\neq \varnothing$$

since $x \in \partial A$, and thus we're done.

- **b.** If $x \in \text{Int}(\bigcap_{i=1}^n A_i)$, then $\exists r_1 > 0$ s.t. $B_X(x, r_1) \subseteq \bigcap_{i=1}^n A_i$. Hence, $B_X(x, r_1) \subseteq A_i$ for all $1 \le i \le n$, which means $x \in \text{Int}(A_i)$ for all $1 \le i \le n$, and thus $x \in \bigcap_{i=1}^n \text{Int}(A_i)$. This shows $\text{Int}(\bigcap_{i=1}^n A_i) \subseteq \bigcap_{i=1}^n \text{Int}(A_i)$. This shows $\text{Int}(\bigcap_{i=1}^n A_i) \subseteq \bigcap_{i=1}^n \text{Int}(A_i)$. Now we show that $\bigcap_{i=1}^n \text{Int}(A_i) \subseteq \text{Int}(\bigcap_{i=1}^n A_i)$. Suppose $x \in \bigcap_{i=1}^n \text{Int}(A_i)$, for each i s.t. $1 \le i \le n$, we know there exists $r_i > 0$ s.t. $B_X(x, r_i) \subseteq A_i$, so if we pick $r' = \min\{r_1, r_2, \dots, r_n\}$, then $B_X(x, r') \subseteq \bigcap_{i=1}^n A_i$, and thus $x \in \text{Int}(\bigcap_{i=1}^n A_i)$.
- **c.** If $x \in \text{Int}\left(\bigcap_{\alpha \in F} A_{\alpha}\right)$, then $\exists r_1 > 0$ s.t. $B_X(x, r_1) \subseteq \bigcap_{\alpha \in F} A_{\alpha}$. Hence, $B_X(x, r_1) \subseteq A_{\alpha}$ for all $\alpha \in F$, which means $x \in \text{Int}(A_{\alpha})$ for all $\alpha \in F$, and thus $x \in \bigcap_{\alpha \in F} \text{Int}(A_{\alpha})$. This shows $\text{Int}\left(\bigcap_{\alpha \in F} A_{\alpha}\right) \subseteq \bigcap_{\alpha \in F} \text{Int}(A_{\alpha})$.
- **d.** Suppose $\{A_{\alpha}\}_{\alpha \in F} = \{(1 \frac{1}{n}, 2 + \frac{1}{n})\}_{n \in \mathbb{N}}$, then $\bigcap_{\alpha \in F} A_{\alpha} = [1, 2]$, and Int ([1, 2]) = (1, 2). Besides, Int $(1 \frac{1}{n}, 2 + \frac{1}{n}) = (1 \frac{1}{n}, 2 + \frac{1}{n})$, and $\bigcap_{n \in \mathbb{N}} (1 \frac{1}{n}, 2 + \frac{1}{n}) = [1, 2]$. Hence, in this case, the equality fails.
- **e.** If $x \in \bigcup_{\alpha \in F} \operatorname{Int}(A_{\alpha})$, then $x \in \operatorname{Int}(A_i)$ for some $i \in F$, and thus there exists $r_i > 0$ s.t. $B(x, r_i) \subseteq A_i$. Hence, $B(x, r_i) \subseteq \bigcup_{\alpha \in F} A_i$, and thus $x \in \operatorname{Int}(\bigcup_{\alpha \in F} A_i)$.
- **f.** Suppose the family is $\{[1,2],[2,3]\}$, then

$$Int[1,2] \cup Int[2,3] = (1,2) \cup (2,3).$$

Also, $[1,2] \cup [2,3] = [1,3]$, so Int $([1,2] \cup [2,3]) = Int[1,3] = (1,3)$. This is the case the equality fails.

Problem 0.0.4. Let (X,d) be a metric space and $Y \subset X$ be an open subset. For any subset $A \subset Y$, show that A is open in Y if and only if it is open in X.

Proof.

 (\Rightarrow) Since A is open in Y, so there exists open $O \subseteq X$ s.t. $A = O \cap Y$. Since O and Y are both open sets in X, so for all $x \in A$, there exists $r_1, r_2 > 0$ s.t.

$$B_X(x, r_1) \subseteq O$$
 and $B_X(x, r_2) \subseteq Y$.

Now let $r_3 = \min\{r_1, r_2\}$, then $B_X(x, r_3) \subseteq O \cap Y = A$, which shows A is open in X.

 (\Leftarrow) Now if A is open in X, then for all $x \in X$, there exists $B_X(x,r) \subseteq A$, but $B_Y(x,r) \subseteq B_X(x,r)$, so we have $B_Y(x,r) \subseteq A$, and thus A is open in Y.

Problem 0.0.5. On the space (0,1], we may consider the topology induced by the metric space (\mathbb{R},d) defined by d(x,y)=|x-y|. Alternatively, we may also define a distance d' on (0,1], given

$$d'(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|, \quad \forall x, y \in (0,1].$$

- (a) Show that d' is a metric on (0,1]
- (b) Let $x \in (0,1]$ and $\varepsilon > 0$. Let $B = B_d(x,\varepsilon) = \{y | |y-x| < \varepsilon\} \cap (0,1]$ be the open ball centered at x of radius ε for the metric d in (0,1]. Show that for any $y \in B$, we may find $\varepsilon' > 0$ such that

$$B_{d'}(y,\varepsilon')\subseteq B=B_d(x,\varepsilon).$$

- (c) Show that an open ball in ((0,1],d') is also an open ball in ((0,1],d).
- (d) Conclude that the metric spaces ((0,1],d) and ((0,1],d') are topologically equivalent, that is, a set A is open in one space if and only if it is also open in the other one.
- (e) Is ((0,1],d') a complete metric space? How about ((0,1],d)?
- (a). We verify the following properties:
 - $d'(x,y) \geq 0$ since $|\cdot| \geq 0$.
 - $d'(x,y) = 0 \Leftrightarrow \left|\frac{1}{x} \frac{1}{y}\right| \Leftrightarrow x = y.$
 - $d'(x,y) = \left|\frac{1}{x} \frac{1}{y}\right| = \left|\frac{1}{y} \frac{1}{x}\right| = d'(y,x).$
 - We know if $a,b \in \mathbb{R}$, the triangular inequality $|a|+|b| \geq |a+b|$ holds. Then we can plug $a=\frac{1}{x}-\frac{1}{y}$ and $b=\frac{1}{y}-\frac{1}{z}$ in. Then we can get $|\frac{1}{x}-\frac{1}{y}+\frac{1}{y}-\frac{1}{z}| \leq |\frac{1}{x}-\frac{1}{y}|+|\frac{1}{y}-\frac{1}{z}|$. Hence $d'(x,z) \leq d'(x,y)+d'(y,z)$.

Hence, d' is indeed a metric on (0.1].

(b). We assume that $d(x,y) = \varepsilon'' < \varepsilon$.

Claim 0.0.5. We claim that if we pick $\varepsilon' = \varepsilon - \varepsilon'' > 0$, then $B_{d'}(y, \varepsilon') \subseteq B_d(x, \varepsilon)$

Proof. $\forall z \in B_{d'}(y, \varepsilon'), \ |\frac{1}{y} - \frac{1}{z}| < \varepsilon'.$ Then $|\frac{z-y}{zy}| < \varepsilon', \ |z-y| < \varepsilon'zy$ (Since z > 0 and y > 0). Hence we know that $d(y, z) = |y-z| < \varepsilon'zy < \varepsilon'.$

Since d is metric, so $d(x, z) \le d(x, y) + d(y, z) < \varepsilon'' + (\varepsilon - \varepsilon'') = \varepsilon$.

Hence $z \in B_d(x, \varepsilon)$.

By the claim above, we're done.

(*)

(c). Suppose $E=B_{d'}(x,r)$, we first analyze the properties of the elements in E first, $y\in E$ if $|\frac{1}{y}-\frac{1}{x}|< r$, we can solve $\frac{1}{x}-r<\frac{1}{y}<\frac{1}{x}+r$:

- Condition 1: $\frac{1}{y} < \frac{1}{x} + r$, so $y > \frac{x}{1+rx} > 0$
- Condition 2 (Case 1): If $\frac{1}{y} > \frac{1}{x} r$ and $\frac{1}{x} r \le 0$, then any $y \in (0,1]$ satisfy the condition.
- Condition 2 (Case 2): If $\frac{1}{y} > \frac{1}{x} r$, $\frac{1}{x} r > 0$ and $x \ge 1 rx$, then $y \le 1 < \frac{x}{1 rx}$
- Condition 2 (Case 3): If $\frac{1}{y} > \frac{1}{x} r$, $\frac{1}{x} r > 0$ and x < 1 rx, then $y < \frac{x}{1 rx} < 1$

Then we can construct open ball which is also equal to E in another metric space by selecting center point and radius:

For case 1 and 2, we may choose $c = 1 \in (0,1]$ and $r' = 1 - \frac{x}{1+rx}$, since

$$B_{((0,1],d)}(c,r') = B_{(\mathbb{R},d)}(c,r') \cap (0,1] = \{z \in \mathbb{R} \mid 1-r' < z < 1+r'\} \cap (0,1] = \{z \in (0,1] \mid 1-r' < z \}$$

$$B_{((0,1],d)}(c,r) = \{z \in (0,1] \mid \frac{x}{1+rx} < z\}$$

This is indeed same as the condition requirement. For case 3, let $a=\frac{x}{1+rx}$, $b=\frac{x}{1-rx}$, we choose $c=\frac{a+b}{2}$ and $r'=\frac{b-a}{2}$, since

$$B_{((0,1],d)}(c,r') = B_{(\mathbb{R},d)}(c,r') \cap (0,1] = \{z \in \mathbb{R} \mid c-r' < z < c+r'\} \cap (0,1] = \{z \in (0,1] \mid a < z < b\}$$

$$B_{((0,1],d)}(c,r) = \{ z \in (0,1] \mid \frac{x}{1+rx} < z < \frac{x}{1-rx} \}$$

This is also same as the condition requirement. Hence we proved.

(d).

- (\Rightarrow) Suppose A is open in ((0,1],d), then $\forall x \in A, \exists r_x > 0$ such that $B_d(x,r_x) \subseteq A$. So A = $\bigcup_{x\in A} B_d(x,r_x)$, and from (b), we know any open ball in ((0,1],d) is also open in ((0,1],d'), so A is also the union of infinitely many open set in ((0,1],d'). By the proposition we have shown in class, we conclude A is also a open set in ((0,1],d').
- (\Leftarrow) Suppose A is open in ((0,1],d'), then $\forall x \in A, \exists r_x > 0$ such that $B_{d'}(x,r_x) \subseteq A$. So A = $\bigcup_{x\in A} B_{d'}(x, r_x)$. and from (c), we know for any open ball in ((0, 1], d') is also open in ((0, 1], d), so A is also the union of infinitely many open set in ((0,1],d). By the proposition we have shown in class, we conclude A is also a open set in ((0,1],d).

Hence, we proved that A is open set in ((0,1],d') if and only if it is open in ((0,1],d).

(e). We first show that ((0,1], d') is complete metric space.

Given Cauchy sequence $(x_n)_{n=m}^{\infty}$ in $((0,1],d'), \forall \varepsilon > 0, \exists N \text{ such that } \forall n,m \geq N, d'(x_n,x_m) =$

Then we can construct another sequence $(y_n)_{n=m}^{\infty}$ such that $y_n = \frac{1}{x_n}$ and since $x_n \in (0,1], y_n \in$

 (y_n) is Cauchy sequence since $\forall \varepsilon > 0, \exists N' = N$ such that $\forall n, m \geq N', d(y_n, y_m) = |y_n - y_m| = 0$

 $|\frac{1}{x_n} - \frac{1}{x_m}| < \varepsilon$ by previous proof. Notice that $[1, \infty)$ is a closed subset in $\mathbb R$ and we know $(\mathbb R, d)$ is complete, so $([1, \infty), d)$ is also complete. Hence (y_n) converge to some $L \in [1,\infty)$, and this will imply that (x_n) converge to $\frac{1}{L} \in (0,1]$, so given any Cauchy sequence in ((0,1],d'), it converges to some $L' \in (0,1]$, so ((0,1],d')is complete.

We show that ((0,1],d) is **NOT** complete by showing an example. Consider $(z_n)_{n=m}^{\infty}$, $z_n = \frac{1}{n}$. It is Cauchy sequence since $\forall \varepsilon = \frac{1}{k} > 0, \exists N = \lceil k \rceil$ such that $\forall n, m \geq N$, WLOG suppose $n \geq m$,

$$d(x_n, x_m) = x_n - x_m < x_n \le \frac{1}{\lceil k \rceil} \le \frac{1}{k} = \varepsilon.$$

However, it converges to 0, which is not in (0,1], so the series (z_n) doesn't converge in ((0,1],d), hence ((0,1],d) is not complete.

Problem 0.0.6. (a) We say that a family of closed balls

$$(\overline{B}(x_n,r_n))_{n\geq 1}$$

is a decreasing sequence of closed balls if the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n)$$
 for all $n \in \mathbb{N}$

is satisfied. Give an example of a decreasing sequence of closed balls in a complete metric space with empty intersection.

(b) We say that a family of closed balls

$$\left(\overline{B}(x_n,r_n)\right)_{n\geq 1}$$

is a decreasing sequence of closed balls with radii tending to zero if

$$r_n \to 0$$
 as $n \to \infty$,

and the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n)$$
 for all $n \in \mathbb{N}$

is satisfied. Show that a metric space (M,d) is complete if and only if every decreasing sequence of closed balls with radii going to zero has a nonempty intersection.

(a). Consider the following example: $X = \mathbb{N}$, and

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1 + \frac{1}{\min\{x, y\}}, & \text{if } x \neq y. \end{cases}$$

and $C_n = \overline{B}_d(n, 1 + \frac{1}{n}) = \{ x \in X \mid d(x, n) \le 1 + \frac{1}{n} \}.$

Claim 0.0.6. $\forall n \in \mathbb{N}, C_n = \{n, n+1, n+2...\}$

Proof. $\forall m < n, \ d(n,m) = 1 + \frac{1}{m} > 1 + \frac{1}{n}, \text{ so } m \notin C_n. \ \forall m \ge n, \ d(n,m) = 1 + \frac{1}{n} \le 1 + \frac{1}{n}, \text{ so } m \in C_n \text{ So } C_n \text{ is indeed } \{n,n+1,\ldots\}.$

 $\forall n, C_{n+1} \subseteq C_n$, So $(C_n)_{n \ge 1}$ is a decreasing sequence of closed balls. However, $\forall n, n \notin C_{n+1}$, so $\bigcap_{n=1}^{\infty} C_n = \emptyset$.

Then we show that (X,d) is complete metric space. For every Cauchy sequence $(x_n)_{n=1}^{\infty}$ in $(X,d), \forall \varepsilon > 0, \exists N \text{ such that } \forall n,m \geq N, d(x_n,x_m) < \varepsilon$.

Then we can take $\varepsilon=0.48763$, by definition, exists N such that $\forall n,m\geq N,\ d(x_n,x_m)<0.48763$. However if $x_n\neq x_m$, then $d(x_n,x_m)=1+\frac{1}{\min\{x_n,x_m\}}>1$, so we know $\forall n\geq N, x_n=x_N$, and this will make the sequence coverage to $x_N\in\mathbb{N}$ since this is a constant sequence.

Hence, every Cauchy sequence in X coverage to some point in $X = \mathbb{N}$, so (X, d) is complete metric space.

(b). First, we show that if the nested condition is satisfied and the radii goes to 0, then $(x_n)_{n=1}^{\infty}$ is Cauchy sequence.

Since $r_n \to 0$ as $n \to \infty$, $\forall \varepsilon > 0, \exists N'$ such that $\forall n \geq N', r_n < \frac{\varepsilon}{2}$.

And since $\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n)$ for all $n \in \mathbb{N}$, so $\{x_{N'+1}, x_{N'+2}, ...\} \subseteq \overline{B}(x_{N'}, r_{N'})$, and hence

$$\forall n, m \ge N', d(x_n, x_m) \le d(x_n, x_{N'}) + d(x_{N'}, x_m) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

So by definition. $(x_n)_{n=1}^{\infty}$ is Cauchy sequence.

Then we can start our proof:

 (\Rightarrow) Since (M,d) is complete and (x_n) is Cauchy sequence, (x_n) will converge to some $x' \in M$.

Claim 0.0.7. $x' \in \overline{B}(x_m, r_m)$ for all $m \in \mathbb{N}$

Proof. Since $(x_n)_{n=1}^{\infty}$ is Cauchy sequence, the subsequence $(x_n)_{n=m}^{\infty} \in \overline{B}(x_m, r_m)$ is also Cauchy sequence and also converge to x'.

And since $\overline{B}(x_m, r_m)$ is a closed ball in $(M, d), x' \in \overline{B}(x_m, r_m)$ by the properties we have showed in class.

Since $x' \in \overline{B}(x_m, r_m)$ for all $m \in \mathbb{N}$, the intersection of these ball are not empty, hence we proved.

- (\Leftarrow) First, for every Cauchy sequence $(x_n)_{n=1}^{\infty}$, we construct $(r_n)_{n=1}^{\infty}$ by the following step:
 - We let $T_n = \{x_n, x_{n+1}, ...\}$, and $d_n = \sup\{d(x_j, x_k) \mid x_j, x_k \in T_n\}$, since (x_n) is Cauchy sequence, For $\varepsilon = 1, \exists N' = N$ such that $\forall a, b \geq N, d(x_a, x_b) \leq 1$.
 - Then we show d_n has upper bound: It is clearly that if $n \geq N'$, then $d_n \leq 1$ by Cauchy sequence definition, so we only need to worry about how about $n \leq N'$, we let $u = \max\{d(x_i, x_j) \mid 1 \leq i, j \leq n\}$, since there are finite pairs of point, so u must exist. Then

$$\forall a, b \in \mathbb{N}, d(x_a, x_b) \le d(x_a, x_n) + d(x_n, x_n) \le \max\{u, 1\} + \max\{u, 1\} = \text{some constant}$$

- , and hence for all n, there exists an upper bound, and by the completeness of real numbers, the supremum exists, and this imply all d_n exists.
- Then we choose $r_n = 2d_n$ and collect them to construct $(r_n)_{n=1}^{\infty}$.
- Furthermore, since (x_n) is Cauchy sequence, $d_n \to 0$ as $n \to \infty$, and hence $r_n \to 0$ as $n \to \infty$.

After construct this (r_n) , we can do the big claim below:

Claim 0.0.8. For such sequence $(x_n, r_n)_{n=1}^{\infty}$, there is a subsequence $\overline{B}(x^{(n_k)}, r^{(n_k)})_{k=1}^{\infty}$ satisfy nested condition and $r^{(n_k)} \to 0$ as $k \to \infty$.

Proof. We construct $\overline{B}(x^{(n_k)}, r^{(n_k)})_{k=1}^{\infty}$ by Induction:

- Base case (k = 1): Take $x'_1 = x_1$ and $r'_1 = r_1$, And the nest condition is automatically satisfied since we only have one ball.
- Suppose when k=t, the Induction hypothesis hold. For k=t+1, we find some $n_{t+1}>n_t$ such that $0<2r_{n_{t+1}}< r_{n_t}$ (Since $r_n\to 0$ as $n\to \infty$, by definition we can pick smaller ε to ensure we can find such $r_{n_{t+1}}$).

Then we verify that $\overline{B}(x^{(n_{t+1})}, r^{(n_{t+1})}) \subseteq \overline{B}(x^{(n_t)}, r^{(n_t)})$:

$$\forall x \in \overline{B}(x^{(n_{t+1})}, r^{(n_{t+1})}), \quad d(x, x^{(n_t)}) \le d(x, x^{(n_{t+1})}) + d(x^{(n_{t+1})}, x^{(n_t)})$$

$$\le r^{(n_{t+1})} + d^{(n_t)}$$

$$\le \frac{r^{(n_{t+1})}}{2} + \frac{r^{(n_{t+1})}}{2} = r^{(n_{t+1})}.$$

So $x \in \overline{B}(x^{(n_t)}, r^{(n_t)})$, and hence the Induction hypothesis hold.

So we successfully construct $\overline{B}(x^{(n_k)},r^{(n_k)})_{k=1}^{\infty}$, and $r^{(n_k)}\to 0$ as $k\to\infty$ since $r_n\to 0$ and $(r^{(n_k)})$ is the subsequence of (r_n) .

Then we know the intersection of $\overline{B}(x^{(n_k)}, r^{(n_k)})_{k=1}^{\infty}$ is not empty by hypothesis, let it x', we know that $\lim_{k\to\infty} x^{(n_k)}$ lie in infinitely many nested close ball, so

$$\lim_{k \to \infty} 0 \leq \lim_{k \to \infty} d(x^{(n_k)}, x') \leq \lim_{k \to \infty} r^{(n_k)}$$

And since $\lim_{n\to\infty} r^{(n_k)} = 0$, by squeeze theorem, this implies $x^{(n_k)} \to x'$. Hence, we show that $(x^{(n_k)})$ converge to x', and we know if a Cauchy sequence's subsequence converge to some point x', the original Cauchy sequence also converge to x', so (x_n) converge to x.

Since for every Cauchy sequence converge, so (M, d) is complete.

11