Kindr Cheat Sheet

Kinematics and Dynamics for Robotics

Nomenclature

(Hyper-)complex number	Q	normal capital letter
Column vector	a	bold small letter
Matrix	M	bold capital letter
Identity matrix	$\mathbb{1}_{n \times m}$	$n \times m$ -matrix
Coordinate system (CS)	$\mathbf{e}_{x}^{A},\mathbf{e}_{y}^{A},\mathbf{e}_{z}^{A}$	Cartesian right-hand system A with basis (unit) vectors \mathbf{e}
Inertial frame	$\mathbf{e}_{x}^{I},\mathbf{e}_{y}^{I},\mathbf{e}_{z}^{I}$	Global / inertial / world coordinate system (never moves)
Body-fixed frame	$\mathbf{e}_{x}^{B}, \mathbf{e}_{y}^{B}, \mathbf{e}_{z}^{B}$	Local / body-fixed coordinate system (moves with body)
Machine precision	ϵ	

Operators

Cross product	$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \Leftrightarrow (\mathbf{a})^{\wedge} \mathbf{b} = \hat{\mathbf{a}} \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$		
Euclidean norm	$\ \mathbf{a}\ = \sqrt{\mathbf{a}^T \mathbf{a}} = \sqrt{a_1^2 + \ldots + a_n^2}$		
Quaternion multiplicator	$\mathbf{q} \otimes \mathbf{p} \Leftrightarrow Q \cdot P$		

Position & Orientation

Position

,	Vector	\mathbf{r}_{OP}	from point O to point P
	Position vector	$_{A}\mathbf{r}_{OP}\in\mathbb{R}^{3}$	from point O to point P expr. in frame A
	Homogeneous pos. vector	$_{A}\bar{\mathbf{r}}_{OP}=\begin{bmatrix}_{A}\mathbf{r}_{OP}^{T} & 1\end{bmatrix}^{T}$	from point O to point P expr. in frame A

Orientation/Rotation

1) Active Rotation: $\mathcal{R}^A: {}_{A}\mathbf{r}_{OP} \mapsto {}_{A}\mathbf{r}_{OQ}$ (rotates the vector \mathbf{r}_{OP})
2) Passive Rotation: $\mathcal{R}^P: {}_{A}\mathbf{r}_{OP} \mapsto {}_{B}\mathbf{r}_{OP}$ (rotates the frame $(\mathbf{e}_x^A, \mathbf{e}_y^A, \mathbf{e}_z^A)$)

3) Inversion:
$$\mathcal{R}^{A^{-1}}(\mathbf{r}) = \mathcal{R}^{P}(\mathbf{r})$$

$$\mathcal{R}_{2}^{A}\left(\mathcal{R}_{1}^{A}(\mathbf{r})\right) = \left(\mathcal{R}_{2}^{A} \otimes \mathcal{R}_{1}^{A}\right)(\mathbf{r})$$
$$= \left(\mathcal{R}_{1}^{A^{-1}} \otimes \mathcal{R}_{2}^{A^{-1}}\right)(\mathbf{r})$$
$$\mathcal{R}_{2}^{P}\left(\mathcal{R}_{1}^{P}(\mathbf{r})\right) = \left(\mathcal{R}_{2}^{P} \otimes \mathcal{R}_{2}^{P}\right)(\mathbf{r})$$

4) Concatenation:

$$\mathcal{R}_{2}^{P}\left(\mathcal{R}_{1}^{P}(\mathbf{r})\right) = \left(\mathcal{R}_{2}^{P} \otimes \mathcal{R}_{1}^{P}\right)(\mathbf{r})$$
$$= \left(\mathcal{R}_{1}^{P^{-1}} \otimes \mathcal{R}_{2}^{P^{-1}}\right)(\mathbf{r})$$

Rotation Matrix	$\mathbf{R}_{BA} \in \mathrm{SO}(3)$	Maps the coord. of the basis vectors $({}_{A}\mathbf{e}_{x}^{A}, {}_{A}\mathbf{e}_{y}^{A}, {}_{A}\mathbf{e}_{z}^{A})$
	$_{A}\mathbf{r}_{OQ}=\mathbf{R}_{BAA}\mathbf{r}_{OP}$	
	$_{B}\mathbf{r}_{OP}=\mathbf{R}_{BA}^{T}{}_{A}\mathbf{r}_{OP}$	basis vectors $({}_{A}\mathbf{e}_{x}^{B}, {}_{A}\mathbf{e}_{y}^{B}, {}_{A}\mathbf{e}_{z}^{B})$ of B expressed in A.
		The rotation is active (alibi).
		$_{A}\mathbf{R}_{BA}=egin{bmatrix}_{A}\mathbf{e}_{x}^{B} & _{A}\mathbf{e}_{y}^{B} & _{A}\mathbf{e}_{z}^{B}\end{bmatrix}$
Direct Cosine	$\mathbf{C}_{BA} \in \mathrm{SO}(3)$	The coordinate tranformation matrix, which transforms
Matrix	$_{B}\mathbf{r}_{OP}=\mathbf{C}_{BAA}\mathbf{r}_{OP}$	vectors from frame A to frame B .
	$\mathbf{C}_{BA} = \mathbf{R}_{BA}^T$	The rotation is passive (alias).
Rotation	\mathbf{p}_{BA}	The rotation is active (alibi).
Quaternion	$\mathbf{p}_{BA} \Leftrightarrow \mathbf{R}_{BA}$	
Rotation	$(\theta, \mathbf{n})_{BA}$	Rotation with unit rotation axis n and angle $\theta \in [0, \pi]$.
Angle-axis	$(\theta, \mathbf{n})_{BA} \Leftrightarrow \mathbf{R}_{BA}$	The rotation is active (alibi).
Rotation Vector	ϕ_{BA}	Rotation with rotation axis $\mathbf{n} = \frac{\boldsymbol{\phi}}{\ \boldsymbol{\phi}\ }$ and angle $\theta = \ \boldsymbol{\phi}\ $.
	$oldsymbol{\phi}_{BA} \Leftrightarrow \mathbf{R}_{BA}$	The rotation is active (alibi).
Euler Angles ZYX	$(\psi, \theta, \phi)_{BA}$	Tait-Bryan angles (Flight conv.): $z - y' - x''$, i.e.
Euler Angles YPR	$(\psi, \theta, \phi)_{BA} \Leftrightarrow \mathbf{C}_{BA}$	yaw-pitch-roll. Singularities are at $\theta = \pm \frac{\pi}{2}$.
		$\psi \in [-\pi, \pi), \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}), \phi \in [-\pi, \pi)$
Euler Angles XYZ	$(\alpha, \beta, \gamma)_{BA}$	Cardan angles (Glocker conv.): $x - y' - z''$, i.e.
Euler Angles RPY	$(\alpha, \beta, \gamma)_{BA} \Leftrightarrow \mathbf{C}_{BA}$	roll-pitch-yaw. Singularities are at $\beta = \pm \frac{\pi}{2}$.
		$\alpha \in [-\pi, \pi), \beta \in [-\frac{\pi}{2}, \frac{\pi}{2}), \gamma \in [-\pi, \pi)$

Rotation Quaternion

A rotation quaternion is a Hamiltonian unit quaternion:

$$P = p_0 + p_1 i + p_2 j + p_3 k \in \mathbb{H}, \quad p_i \in \mathbb{R}$$
$$i^2 = j^2 = k^2 = ijk = -1, \quad ||P|| = \sqrt{p_0^2 + p_1^2 + p_2^2 + p_3^2} = 1$$

Note that P_{BA} and $-P_{BA}$ represent the same rotation, but not the same unit quaternion. Rot. quaternion as tuple: $P = (p_0, p_1, p_2, p_3) = (p_0, \overrightarrow{\mathbf{p}})$ with $\overrightarrow{\mathbf{p}} := (p_1, p_2, p_3)^\mathsf{T}$

Rot. quaternion as vector: $\mathbf{p} = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 \end{bmatrix}$

Conjugate: $P^* = (p_0, -\overrightarrow{\mathbf{p}})$

Inverse: $P^{-1} = P^* = (p_0, -\overrightarrow{p})$

Quaternion multiplication:

$$Q \cdot P = (q_0, \overrightarrow{\mathbf{q}}) \cdot (p_0, \overrightarrow{\mathbf{p}}) = (q_0 p_0 - \overrightarrow{\mathbf{q}}^\mathsf{T} \overrightarrow{\mathbf{p}}, q_0 \overrightarrow{\mathbf{p}} + p_0 \overrightarrow{\mathbf{q}} + \overrightarrow{\mathbf{q}} \times \overrightarrow{\mathbf{p}}) \quad \Leftrightarrow \quad$$

$$\mathbf{q} \otimes \mathbf{p} = \underbrace{\mathbf{Q}(\mathbf{q})}_{\text{quaternion matrix}} \mathbf{p} = \begin{pmatrix} q_0 & -\overrightarrow{\mathbf{q}}^\mathsf{T} \\ \overrightarrow{\mathbf{q}} & q_0 \mathbbm{1}_{3 \times 3} + \widehat{\mathbf{q}} \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} q_0 & -q_1 & -q_2 & -q_3 \\ q_1 & q_0 & -q_3 & q_2 \\ q_2 & q_3 & q_0 & -q_1 \\ q_3 & -q_2 & q_1 & q_0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

$$= \underline{\bar{\mathbf{Q}}}(\mathbf{p}) \mathbf{q} = \begin{pmatrix} p_0 & -\overrightarrow{\mathbf{p}}^\mathsf{T} \\ \overrightarrow{\mathbf{p}} & p_0 \mathbb{1}_{3 \times 3} - \widehat{\overrightarrow{\mathbf{p}}} \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{pmatrix} p_0 & -p_1 & -p_2 & -p_3 \\ p_1 & p_0 & p_3 & -p_2 \\ p_2 & -p_3 & p_0 & p_1 \\ p_3 & p_2 & -p_1 & p_0 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}$$

Rotation Quaternion \Leftrightarrow Rotation Angle-Axis

$$\mathbf{p}_{BI} = \begin{bmatrix} \cos \frac{\theta}{2} \\ \mathbf{n} \sin \frac{\theta}{2} \end{bmatrix} \quad \Leftrightarrow \quad (\theta, \mathbf{n})_{BI} = \begin{cases} (2 \arccos(p_0), \frac{\overrightarrow{\mathbf{p}}}{\|\overrightarrow{\mathbf{p}}\|}) & \text{if } \|\overrightarrow{\mathbf{p}}\|^2 \ge \epsilon^2 \\ (0, \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^\mathsf{T}) & \text{otherwise} \end{cases}$$

Rotation Quaternion ⇔ Direction Cosine Matrix

$$\mathbf{C}_{AB} = \mathbf{R}_{AB}^{\mathsf{T}}(\mathbf{p}_{AB}) = \mathbb{1}_{3\times3} + 2p_0 \, \hat{\mathbf{p}} + 2 \, \hat{\mathbf{p}}^2$$

$$= \begin{bmatrix} p_0^2 + p_1^2 - p_2^2 - p_3^2 & 2p_1p_2 - 2p_0p_3 & 2p_0p_2 + 2p_1p_3 \\ 2p_0p_3 + 2p_1p_2 & p_0^2 - p_1^2 + p_2^2 - p_3^2 & 2p_2p_3 - 2p_0p_1 \\ 2p_1p_3 - 2p_0p_2 & 2p_0p_1 + 2p_2p_3 & p_0^2 - p_1^2 - p_2^2 + p_3^2 \end{bmatrix}$$

$$\mathbf{C}_{BA} = \mathbf{R}_{BA}^{\mathsf{T}} = \mathbf{R}_{AB}(\mathbf{p}_{AB}) = \mathbb{1}_{3\times3} - 2p_0 \,\hat{\mathbf{p}} + 2 \,\hat{\mathbf{p}}^2$$

$$= \begin{bmatrix} p_0^2 + p_1^2 - p_2^2 - p_3^2 & 2p_0p_3 + 2p_1p_2 & 2p_1p_3 - 2p_0p_2 \\ 2p_1p_2 - 2p_0p_3 & p_0^2 - p_1^2 + p_2^2 - p_3^2 & 2p_0p_1 + 2p_2p_3 \\ 2p_0p_2 + 2p_1p_3 & 2p_2p_3 - 2p_0p_1 & p_0^2 - p_1^2 - p_2^2 + p_3^2 \end{bmatrix}$$

$$\mathbf{p}_{BA} = \mathbf{p}_{BA}(\mathbf{C}_{AB}) = \begin{bmatrix} \frac{1}{2}\sqrt{1 + \text{tr}(\mathbf{C})} \\ \frac{C_{32} - C_{23}}{4p_0} \\ \frac{C_{13} - C_{31}}{4p_0} \end{bmatrix} \quad \text{if } \text{tr}(\mathbf{C}) > 0 \, (\mathbf{C}_{AB} \to \mathbf{p}_{BA} \text{ is not unique})$$

Euler Angles ZYX ⇔ Direction Cosine Matrix

Figure 1: Rotation from I-frame to B-frame: (z-y'-x'') – (yaw-pitch-roll) – $(\psi-\theta-\phi)$ – $(50^{\circ}-25^{\circ}-30^{\circ})$

Euler Angles XYZ ⇔ Direction Cosine Matrix

Figure 2: Rotation from *I*-frame to *B*-frame: (x-y'-z'') – (roll-pitch-yaw) – $(\alpha-\beta-\gamma)$ – $(50^{\circ}-25^{\circ}-30^{\circ})$

Pose

Homogeneous Transformation Matrix	$\mathbf{T}_{A\!B}$	
-----------------------------------	---------------------	--

Homogeneous Transformation Matrix

$$\mathbf{T}_{AB} = \begin{bmatrix} \mathbf{C}_{AB} & {}_{A}\mathbf{r}_{AB} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix}$$

Time Derivatives of Position & Orientation

Linear Velocity

Velocity of point P expressed in frame B w.r.t. to the inertial frame I:

 $_{B}\mathbf{v}_{P} = _{B}\mathbf{v}_{A} + _{B}\dot{\mathbf{r}}_{AP} + _{B}\boldsymbol{\omega}_{IB} \times _{B}\mathbf{r}_{AP}$

Velocity of point Q on rigid body B that rotates with ${}_{B}\Omega$, where point P is on the same rigid body B: $_{B}\mathbf{v}_{O} = {}_{B}\mathbf{v}_{P} + {}_{B}\mathbf{\Omega} \times {}_{B}\mathbf{r}_{PO}, \quad {}_{B}\mathbf{\Omega} = {}_{B}\boldsymbol{\omega}_{IB}$

Angular Velocity

$$_{B}\Omega = _{B}\omega_{IB}$$
 $_{B}\omega_{IB} = -_{B}\omega_{BI}$
 $_{I}\omega_{IB} = \mathbf{C}_{IB}_{B}\omega_{IB}$
 $_{I}\hat{\omega}_{IB} = \mathbf{C}_{IB}_{B}\hat{\omega}_{IB}\mathbf{C}_{IB}^{\mathsf{T}}$
 $_{D}\omega_{AD} = _{D}\omega_{AB} + _{D}\omega_{BC} + _{D}\omega_{AC}$

absolute angular velocity of rigid body B expressed in frame B inverse of angular velocity

coord. transformation of angular velocity from frame B to frame Icoord. transformation of angular velocity from frame B to frame I $D\boldsymbol{\omega}_{AD} = D\boldsymbol{\omega}_{AB} + D\boldsymbol{\omega}_{BC} + D\boldsymbol{\omega}_{CD}$ composition of angular velocity

Time Derivative of Direction Cosine Matrix ⇔ Angular Velocity

$$\begin{split} {}_{I}\hat{\boldsymbol{\omega}}_{IB} &= \dot{\mathbf{C}}_{IB}\mathbf{C}_{IB}^{\mathsf{T}} = \dot{\mathbf{C}}_{BI}^{\mathsf{T}}\mathbf{C}_{BI} \\ {}_{B}\hat{\boldsymbol{\omega}}_{IB} &= \mathbf{C}_{IB}^{\mathsf{T}}\dot{\mathbf{C}}_{IB} = \mathbf{C}_{BI}\dot{\mathbf{C}}_{BI}^{\mathsf{T}} \quad \dot{\mathbf{C}}_{IB} = \mathbf{C}_{IB\,B}\hat{\boldsymbol{\omega}}_{IB} \end{split}$$

Time Derivative of Rotation Matrix ⇔ Angular Velocity

$$\begin{split} {}_{I}\hat{\boldsymbol{\omega}}_{IB} &= \dot{\mathbf{R}}_{BI}\mathbf{R}_{BI}^{\mathsf{T}} = \dot{\mathbf{R}}_{IB}^{\mathsf{T}}\mathbf{R}_{IB} & \quad \dot{\mathbf{R}}_{IB} = \mathbf{R}_{IBI}\hat{\boldsymbol{\omega}}_{IB}^{\mathsf{T}} & \quad \dot{\mathbf{R}}_{BI} = {}_{I}\hat{\boldsymbol{\omega}}_{IB}\mathbf{R}_{BI} \\ {}_{B}\hat{\boldsymbol{\omega}}_{IB} &= \mathbf{R}_{IB}\dot{\mathbf{R}}_{IB}^{\mathsf{T}} = \mathbf{R}_{BI}^{\mathsf{T}}\dot{\mathbf{R}}_{BI} & \quad \dot{\mathbf{R}}_{IB} = {}_{B}\hat{\boldsymbol{\omega}}_{IB}^{\mathsf{T}}\mathbf{R}_{IB} & \quad \dot{\mathbf{R}}_{BI} = \mathbf{R}_{BIB}\hat{\boldsymbol{\omega}}_{IB} \end{split}$$

$$I \boldsymbol{\omega}_{IB} = 2\mathbf{H}(\mathbf{p}_{BI})\dot{\mathbf{p}}_{BI} \qquad \qquad \dot{\mathbf{p}}_{BI} = \frac{1}{2}\mathbf{H}(\mathbf{p}_{BI})^{\mathsf{T}}_{I}\boldsymbol{\omega}_{IB}$$

$$B \boldsymbol{\omega}_{IB} = 2\bar{\mathbf{H}}(\mathbf{p}_{BI})\dot{\mathbf{p}}_{BI} \qquad \qquad \dot{\mathbf{p}}_{BI} = \frac{1}{2}\bar{\mathbf{H}}(\mathbf{p}_{BI})^{\mathsf{T}}_{B}\boldsymbol{\omega}_{IB}$$

$$\mathbf{H}(\mathbf{p}) = \begin{bmatrix} -\vec{\mathbf{p}} & \hat{\vec{\mathbf{p}}} + p_{0}\mathbb{1}_{3\times3} \end{bmatrix} \in \mathbb{R}^{3\times4} \qquad \ddot{\mathbf{H}}(\mathbf{p}) = \begin{bmatrix} -\vec{\mathbf{p}} & -\hat{\vec{\mathbf{p}}} + p_{0}\mathbb{1}_{3\times3} \end{bmatrix} \in \mathbb{R}^{3\times4}$$

$$= \begin{bmatrix} -p_{1} & p_{0} & -p_{3} & p_{2} \\ -p_{2} & p_{3} & p_{0} & -p_{1} \\ -p_{3} & -p_{2} & p_{1} & p_{0} \end{bmatrix} \qquad = \begin{bmatrix} -p_{1} & p_{0} & p_{3} & -p_{2} \\ -p_{2} & -p_{3} & p_{0} & p_{1} \\ -p_{3} & p_{2} & -p_{1} & p_{0} \end{bmatrix}$$

Time Derivative of Angle-Axis \Leftrightarrow Angular Velocity

$$I\boldsymbol{\omega}_{IB} = \mathbf{n}\dot{\boldsymbol{\theta}} + \dot{\mathbf{n}}\sin\boldsymbol{\theta} + \hat{\mathbf{n}}\dot{\mathbf{n}}(1 - \cos\boldsymbol{\theta})$$

$$B\boldsymbol{\omega}_{IB} = \mathbf{n}\dot{\boldsymbol{\theta}} + \dot{\mathbf{n}}\sin\boldsymbol{\theta} - \hat{\mathbf{n}}\dot{\mathbf{n}}(1 - \cos\boldsymbol{\theta})$$

$$\dot{\boldsymbol{\theta}} = \mathbf{n}^{\mathsf{T}}{}_{I}\boldsymbol{\omega}_{IB}, \quad \dot{\mathbf{n}} = \left(-\frac{1}{2}\frac{\sin\boldsymbol{\theta}}{1 - \cos\boldsymbol{\theta}}\hat{\mathbf{n}}^{2} - \frac{1}{2}\hat{\mathbf{n}}\right){}_{I}\boldsymbol{\omega}_{IB} \quad \forall\boldsymbol{\theta} \in \mathbb{R}\backslash\{0\}$$

$$\dot{\boldsymbol{\theta}} = \mathbf{n}^{\mathsf{T}}{}_{B}\boldsymbol{\omega}_{IB}, \quad \dot{\mathbf{n}} = \left(-\frac{1}{2}\frac{\sin\boldsymbol{\theta}}{1 - \cos\boldsymbol{\theta}}\hat{\mathbf{n}}^{2} + \frac{1}{2}\hat{\mathbf{n}}\right){}_{B}\boldsymbol{\omega}_{IB} \quad \forall\boldsymbol{\theta} \in \mathbb{R}\backslash\{0\}$$

Time Derivative of Rotation Vector ⇔ Angular Velocity

$$\begin{split} &_{I}\boldsymbol{\omega}_{IB} = \left(\mathbb{1}_{3\times3} + \hat{\boldsymbol{\phi}}\left(\frac{1-\cos\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^2}\right) + \hat{\boldsymbol{\phi}}^2\left(\frac{\|\boldsymbol{\phi}\|-\sin\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^3}\right)\right)\dot{\boldsymbol{\phi}} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\}\\ &_{B}\boldsymbol{\omega}_{IB} = \left(\mathbb{1}_{3\times3} - \hat{\boldsymbol{\phi}}\left(\frac{1-\cos\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^2}\right) + \hat{\boldsymbol{\phi}}^2\left(\frac{\|\boldsymbol{\phi}\|-\sin\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^3}\right)\right)\dot{\boldsymbol{\phi}} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\}\\ &\dot{\boldsymbol{\phi}} = \left(\mathbb{1}_{3\times3} - \frac{1}{2}\hat{\boldsymbol{\phi}} + \hat{\boldsymbol{\phi}}^2\frac{1}{\|\boldsymbol{\phi}\|^2}\left(1 - \frac{\|\boldsymbol{\phi}\|}{2}\frac{\sin\|\boldsymbol{\phi}\|}{1-\cos\|\boldsymbol{\phi}\|}\right)\right)_{I}\boldsymbol{\omega}_{IB} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\}\\ &\dot{\boldsymbol{\phi}} = \left(\mathbb{1}_{3\times3} + \frac{1}{2}\hat{\boldsymbol{\phi}} + \hat{\boldsymbol{\phi}}^2\frac{1}{\|\boldsymbol{\phi}\|^2}\left(1 - \frac{\|\boldsymbol{\phi}\|}{2}\frac{\sin\|\boldsymbol{\phi}\|}{1-\cos\|\boldsymbol{\phi}\|}\right)\right)_{B}\boldsymbol{\omega}_{IB} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\} \end{split}$$

Time Derivative of Euler Angles $ZYX \Leftrightarrow Angular Velocity$

$$\begin{bmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \frac{\cos\psi\sin\theta}{\cos\theta} & \frac{\sin\psi\sin\theta}{\cos\theta} & 1 \\ -\sin\psi & \cos\psi & 0 \\ \frac{\cos\psi}{\cos\theta} & \frac{\sin\psi}{\cos\theta} & 0 \end{bmatrix} I \omega_{IB} \quad \forall \theta \in \mathbb{R} \backslash \{\frac{\pi}{2} + k\pi\}, k \in \mathbb{Z}$$

$$\begin{bmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & \frac{\sin\phi}{\cos\theta} & \frac{\cos\phi}{\cos\theta} \\ 0 & \cos\phi & -\sin\phi \\ 1 & \frac{\sin\phi\sin\theta}{\cos\theta} & \frac{\cos\phi\sin\theta}{\cos\theta} \end{bmatrix} B \omega_{IB} \quad \forall \theta \in \mathbb{R} \backslash \{\frac{\pi}{2} + k\pi\}, k \in \mathbb{Z}$$

$$I \omega_{IB} = \begin{bmatrix} 0 & -\sin\psi & \cos\psi\cos\theta \\ 0 & \cos\psi & \cos\theta\sin\phi \\ 1 & 0 & -\sin\theta \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix}$$

$$B \omega_{IB} = \begin{bmatrix} -\sin\theta & 0 & 1 \\ \cos\theta\sin\phi & \cos\phi & 0 \\ \cos\phi\cos\theta & -\sin\phi & 0 \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix}$$

Time Derivative of Euler Angles XYZ Angular Velocity

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\beta} \\ \end{bmatrix} = \begin{bmatrix} 1 & \frac{\sin \alpha \sin \beta}{\cos \beta} & -\frac{\cos \alpha \sin \beta}{\cos \beta} \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\frac{\sin \alpha}{\cos \beta} & \frac{\cos \alpha}{\cos \beta} \end{bmatrix}_{I} \boldsymbol{\omega}_{IB} \quad \forall \beta \in \mathbb{R} \backslash \{\frac{\pi}{2} + k\pi\}, k \in \mathbb{Z}$$

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} = \begin{bmatrix} \frac{\cos \gamma}{\cos \beta} & -\frac{\sin \gamma}{\cos \beta} & 0 \\ \frac{\cos \gamma}{\cos \beta} & \frac{-\sin \gamma}{\cos \beta} & 0 \\ \frac{-\cos \gamma \sin \beta}{\cos \beta} & \frac{\sin \beta \sin \gamma}{\cos \beta} & 1 \end{bmatrix}_{B} \boldsymbol{\omega}_{IB} \quad \forall \beta \in \mathbb{R} \backslash \{\frac{\pi}{2} + k\pi\}, k \in \mathbb{Z}$$

$$\boldsymbol{\omega}_{IB} = \begin{bmatrix} 1 & 0 & \sin \beta \\ 0 & \cos \alpha & -\cos \beta \sin \alpha \\ 0 & \sin \alpha & \cos \alpha \cos \beta \end{bmatrix}_{\dot{\gamma}}^{\dot{\alpha}}$$

$$\boldsymbol{\omega}_{IB} = \begin{bmatrix} \cos \beta \cos \gamma & \sin \gamma & 0 \\ -\cos \beta \sin \gamma & \cos \gamma & 0 \\ \sin \beta & 0 & 1 \end{bmatrix}_{\dot{\gamma}}^{\dot{\alpha}}$$

$$\boldsymbol{\omega}_{IB} = \begin{bmatrix} \cos \beta \cos \gamma & \sin \gamma & 0 \\ -\cos \beta \sin \gamma & \cos \gamma & 0 \\ \sin \beta & 0 & 1 \end{bmatrix}_{\dot{\gamma}}^{\dot{\alpha}}$$

Dynamics of a Multi-Rigid-Body System

n	Number of bodies in system
n_i	Number of DoFs of the joints
n_q	Number of generalized coordinates
n_u	Number of generalized velocities
\mathbf{M}	Mass matrix

Gyroscopic and Coriolis forces

Generalized external forces and torques

Combined force vector

Jacobi matrix for translation of point P

Jacobi matrix for rotation External forces on point Q

 \mathbf{M}^{A} External torques

mMass

 Θ Intertia tensor

Variable before impact Variable after impact Variable before/after impact

 Δt Time step duration

 $\Delta \mathbf{u}$ Velocity change over one time step

 \mathbf{w} Generalized force directions for contact forces

λ Lebesgue-measurable contact forces Λ Purely atomic impact impulses

 \mathbf{P} Contact percussions

Generalized Coordinates of a Floating-Base System with Rotational Joints

$$\mathbf{q} = \begin{pmatrix} \mathbf{I^r}_{OB} \\ \mathbf{p}_{BI} \\ \varphi_1 \\ \vdots \\ \varphi_{n_j} \end{pmatrix} \in \mathbb{R}^{7+n_j} = \mathbb{R}^{n_q} \quad \mathbf{u} = \begin{pmatrix} \mathbf{I^v}_B \\ \mathbf{B}\boldsymbol{\omega}_{IB} \\ \dot{\varphi}_1 \\ \vdots \\ \dot{\varphi}_{n_j} \end{pmatrix} \in \mathbb{R}^{6+n_j} = \mathbb{R}^{n_u} \quad \dot{\mathbf{u}} = \begin{pmatrix} \mathbf{I^a}_B \\ \mathbf{B}\boldsymbol{\psi}_{IB} \\ \ddot{\varphi}_1 \\ \vdots \\ \dot{\varphi}_{n_j} \end{pmatrix} \in \mathbb{R}^{6+n_j}$$

$$\dot{\mathbf{q}} = \mathbf{F}\mathbf{u}, \quad \mathbf{F} = \begin{pmatrix} \mathbf{I}_{3\times3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{1}{2}\bar{\mathbf{H}}^\mathsf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{n_j\times n_j} \end{pmatrix} \quad \Leftrightarrow \quad \mathbf{u} = \bar{\mathbf{F}}\dot{\mathbf{q}}, \quad \bar{\mathbf{F}} = \begin{pmatrix} \mathbf{I}_{3x3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 2\bar{\mathbf{H}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{n_j\times n_j} \end{pmatrix}$$

Equations of Motion with Contacts and no Impulses

$$\mathbf{M} = \sum_{i=1}^{n} \left[(\mathbf{J}_{S}^{\mathsf{T}} m \mathbf{J}_{S} + \mathbf{J}_{R}^{\mathsf{T}} \mathbf{\Theta}_{S} \mathbf{J}_{R}) \right]_{i}$$

$$\boxed{\mathbf{M}\dot{\mathbf{u}} - \mathbf{h} = \mathbf{W} \boldsymbol{\lambda}} \text{ with } \mathbf{h} := \mathbf{f} - \mathbf{g}, \text{ and } \qquad \mathbf{g} = \sum_{i=1}^{n} \left[(\mathbf{J}_{S}^{\mathsf{T}} m \dot{\mathbf{J}}_{S} \mathbf{u} + \mathbf{J}_{R}^{\mathsf{T}} (\mathbf{\Theta}_{S} \dot{\mathbf{J}}_{R} \mathbf{u} + \mathbf{\Omega} \times \mathbf{\Theta}_{S} \mathbf{\Omega})) \right]_{i}$$

$$\mathbf{f} = \sum_{i=1}^{n} \left[(\mathbf{J}_{Q}^{\mathsf{T}} \mathbf{F}_{Q}^{A} + \mathbf{J}_{R}^{\mathsf{T}} \mathbf{M}^{A}) \right]_{i}$$

Equations of Motion with Contacts and Impulses

$$\begin{array}{ccc} \mathbf{M}(\mathbf{u}^{+}-\mathbf{u}^{-}) &= \mathbf{W}\mathbf{\Lambda} \\ \mathbf{M}\underline{(\dot{\mathbf{u}}\mathrm{d}t+(\mathbf{u}^{+}-\mathbf{u}^{-})\mathrm{d}\eta)} - \mathbf{h}\mathrm{d}t &= \mathbf{W}\underbrace{(\mathbf{\lambda}\mathrm{d}t+\mathbf{\Lambda}\mathrm{d}\eta)}_{\mathrm{d}\mathbf{P}} \end{array}$$

Copyright © 2014 Autonomous Systems Lab, ETH Zurich (asl.ethz.ch) Contact: Christian Gehring (gehrinch@ethz.ch)