162 第9章 参数估计

则 $\hat{\theta}_n$ 为 θ 的一致估计量.

证明 根据 $\lim_{n\to\infty} E[\hat{\theta}_n] = \theta$ 知道对任意 $\epsilon > 0$, 存在一个 N_0 , 当 $n \ge N_0$ 有 $|E[\hat{\theta}_n] - \theta| \le \theta/2$, 于是有

$$\lim_{n \to \infty} \Pr\left[|E[\hat{\theta}_n] - \theta| > \epsilon/2 \right] = 0.$$

根据 Chebyshev 不等式有

$$\lim_{n \to 0} \Pr\left[\left| \hat{\theta}_n - E[\hat{\theta}_n] \right| > \epsilon/2 \right] \leqslant \lim_{n \to 0} \frac{4}{\epsilon} \operatorname{Var}(\hat{\theta}_n) = 0$$

再根据

$$\Pr\left[|\hat{\theta}_n - \theta| > \epsilon\right] \leqslant \Pr\left[\left|\hat{\theta}_n - E[\hat{\theta}_n]\right| > \epsilon/2\right] + \Pr\left[\left|E[\hat{\theta}_n] - \theta\right| > \epsilon/2\right]$$

完成证明.

定理 9.3 设 $\hat{\theta}_{n_1}, \hat{\theta}_{n_2}, \dots, \hat{\theta}_{n_k}$ 分别为 $\theta_1, \theta_2, \dots, \theta_k$ 满足一致性的估计量, 对连续函数 $g: \mathbb{R}^n \to \mathbb{R}$, 有函数 $\hat{\eta}_n = g(\hat{\theta}_{n_1}, \hat{\theta}_{n_2}, \dots, \hat{\theta}_{n_k})$ 是 $\eta = g(\theta_1, \theta_2, \dots, \theta_k)$ 满足一致性的估计量.

根据大数定理可知样本的 k 阶矩是总体 k 阶矩的一致估计量. 矩估计法得到的估计量一般是一致估计量. 最大似然估计量在一定条件下是一致性估计量.

例 9.14 设 X_1, X_2, \dots, X_n 是来自总体X的样本, 以及总体 X 的密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}} & x > 0\\ 0 & x < 0 \end{cases},$$

则样本均值 $X_n = \sum_{i=1}^n X_i/n$ 为 θ 的无偏、有效、一致估计量.

由前面的例子可知估计的无偏性和有效性,一致性可根据 $E[X_n] = \theta$ 以及

$$\lim_{n \to \infty} Var(\bar{X}) = \lim_{n \to \infty} \frac{\theta^2}{n} = 0.$$

例 9.15 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim U(0, \theta)$ 的样本, 证明: θ 的最大似然估计量是一致估计量.

证明 根据前面的例题可知 θ 的最大似然估计为 $\hat{\theta}_n = \max(X_1, X_2, \dots, X_n)$. 设随机变量 $Z = \max(X_1, X_2, \dots, X_n)$, 则由 Z 的分布函数

$$F_Z(z) = \Pr[Z \leqslant z] = \Pr[\max(X_1, X_2, \cdots, X_n) \leqslant z] = \prod_{i=1}^n \Pr[X_i \leqslant z] = \begin{cases} 1 & z > \theta \\ (\frac{z}{\theta})^n & z \in [0, \theta] \\ 0 & z < 0. \end{cases}$$

9.3 区间估计 163

由此得到当 $z \in [0, \theta]$ 时随机变量 Z 的密度函数 $f_Z(z) = nz^{n-1}/\theta^n$, 进一步有

$$E\left[\hat{\theta}_n\right] = E[Z] = \int_0^\theta \frac{nz^n}{\theta^n} dz = \frac{n}{n+1}\theta,$$

因此 $\hat{\theta}$ 是 θ 的有偏估计. 另一方面有

$$E\left[Z^{2}\right] = \int_{0}^{\theta} \frac{nz^{n+1}}{\theta^{n}} dz = \frac{n}{n+2} \theta^{2},$$

从而得到

$$\operatorname{Var}\left(\hat{\theta}_{n}\right) = \operatorname{Var}(Z) = E[Z^{2}] - (E[Z])^{2} = \frac{n}{n+2}\theta^{2} - (\frac{n\theta}{n+1})^{2} = \frac{n}{(n+1)^{2}(n+2)}\theta^{2},$$

于是有

$$\lim_{n \to \infty} E[\hat{\theta}_n] = \theta \quad \text{All} \quad \lim_{n \to \infty} Var(\hat{\theta}_n) = 0,$$

由此可得 $\hat{\theta}$ 是 θ 的有偏、但一致估计量.

9.3 区间估计

区间估计问题: 设 X_1, X_2, \dots, X_n 是来自总体 X 的样本, θ 为总体 X 的分布函数 $F(x, \theta)$ 的未知参数, 根据样本估计 θ 的范围 $(\hat{\theta}_1, \hat{\theta}_2)$, 其中 $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, \dots, X_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, \dots, X_n)$, 使得以较大的概率保证有 $\theta \in (\hat{\theta}_1, \hat{\theta}_2)$ 成立. 具体而言, 对任意给定 $\alpha \in (0, 1)$, 有

$$\Pr\left[\hat{\theta}_1(X_1, X_2, \cdots, X_n) < \theta < \hat{\theta}_2(X_1, X_2, \cdots, X_n)\right] \geqslant 1 - \alpha.$$

定义 9.4 (置信区间与置信度) 设 $X_1, X_2 \cdots, X_n$ 是来自总体 X 的样本, 总体 X 的分布函数 含未知参数 θ , 找出统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, \cdots, X_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, \cdots, X_n)$ ($\hat{\theta}_1 < \hat{\theta}_2$), 使得

$$\Pr\left[\hat{\theta}_1 < \theta < \hat{\theta}_2\right] \geqslant 1 - \alpha$$

成立,则称 $1-\alpha$ 为置信度, $[\hat{\theta}_1,\hat{\theta}_2]$ 为 θ 的置信度为 $1-\alpha$ 的置信区间.

注意: 置信区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 是随机区间, $1-\alpha$ 为该区间包含 θ 的概率/可靠程度. 若 $\alpha=0.05$, 则置信度为 95%. 通常采用 95% 的置信度, 有时也可 99% 或 90%等. 说明:

- i) $\hat{\theta}_2 \hat{\theta}_1$ 反映了估计精度, 长度越小精度越大.
- ii) α 反映了估计的可靠度, α 越小可靠度越高.
- iii) 给定 α , 区间 [$\hat{\theta}_1$, $\hat{\theta}_2$] 的选取并不唯一确定, 通常选长度最小的一个区间.

置信区间的求解方法: 枢轴变量法.

164 第9章 参数估计

1) 先找一样本函数 $W(X_1, X_2, \dots, X_n; \theta)$ 包含待估参数 θ , 但不含其它参数, 函数 W 的分布已 知, 称 W 为枢轴变量.

- 2) 给定置信度 $1-\alpha$, 根据 W 的分布找出临界值 α 和 b, 使得 $\Pr[\alpha < W < b] = 1-\alpha$ 成立.
- 3) 根据 a < W < b 解出 $\hat{\theta}_1 < \theta < \hat{\theta}_2$, 则 $(\hat{\theta}_1, \hat{\theta}_2)$ 为 θ 的置信度为 1α 的置信区间.

9.3.1 正态总体, 方差已知, 求期望的区间估计

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, 若方差 σ^2 已知. 给定 $\alpha \in (0, 1)$, 确定置信度为 $1 - \alpha$ 下 μ 的置信区间 $[\hat{\theta}_1, \hat{\theta}_2]$. 令样本均值为 $\bar{X} = \sum_{i=1}^n X_i/n$, 根据正太分布的性质找出枢轴变量:

$$W = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1),$$

给定置信度 $1-\alpha$, 找出临界值 a 和 b 使得

$$\Pr[a < W < b] = 1 - \alpha.$$

根据正态分布的性质、对称性和上分位点可知

$$\Pr[W\geqslant \mu_{\alpha/2}]=1-\alpha/2 \quad \text{ fil } \quad \Pr[W\leqslant -\mu_{\alpha/2}]=1-\alpha/2.$$

求解可得 $a = -\mu_{\alpha/2}$ 和 $b = \mu_{\alpha/2}$. 于是有

$$\Pr[-\mu_{\alpha/2} < W < \mu_{\alpha/2}] = 1 - \alpha.$$

根据 $W = (\bar{X} - \mu)/(\sigma/\sqrt{n})$ 可得

$$\Pr\left[\bar{X} - \frac{\sigma}{\sqrt{n}}\mu_{\alpha/2} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}}\mu_{\alpha/2}\right] = 1 - \alpha.$$

例 9.16 某地区儿童身高服从正态分布,现随机抽查 9 人,高度分别为 115,120,131,115,109,115,115,105,110,已知 $\sigma^2=7$ 和置信度为95%,求期望 μ 的置信区间 ($\mu_{0.025}=1.96$).

9.3.2 正态总体, 方差未知, 求期望的区间估计

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, 若方差 σ^2 未知, 考虑期望 μ 的置信度为 $1 - \alpha$ 的置信区间. 设 $\bar{X} = \sum_{i=1}^n X_i/n$ 和 $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$, 根据正态总体抽样定理可知:

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

由此设枢轴变量

$$W = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

9.3 区间估计 165

给定置信度 $1-\alpha$, 设临界值 a 和 b 满足

$$\Pr[a \leqslant W \leqslant b] = 1 - \alpha \quad \Rightarrow \quad b = t_{\alpha/2}(n-1), \ a = -t_{\alpha/2}(n-1).$$

整理可得

$$\Pr\left[\bar{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1) < \mu < \bar{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right] = 1 - \alpha.$$

9.3.3 正态总体, 求方差 σ^2 的置信区间

设 X_1, X_2, \cdots, X_n 是来自总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本,考虑方差 σ^2 的置信度为 $1 - \alpha$ 的置信区间.设修正样本方差 $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$,根据正态总体抽样定理有

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

由此设枢轴变量 $W = (n-1)S^2/\sigma^2$, 设临界值 a 和 b 满足

$$\Pr[a \leqslant W \leqslant b] = 1 - \alpha.$$

根据 χ^2 分布的不对称性, 采用概率对称的区间

$$\Pr[W \le a] = \Pr[\geqslant b] = \alpha/2 \quad \Rightarrow \quad b = \chi_{\alpha/2}^2(n-1), \quad a = \chi_{1-\alpha/2}^2(n-1).$$

根据枢轴变量 $W = (n-1)S^2/\sigma^2$ 可得

$$\Pr\left[\frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}\right] = 1 - \alpha.$$

9.3.4 双正态总体情形

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ 的样本,设 Y_1, Y_2, \dots, Y_m 是总体 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ 的样本,令

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \bar{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i, \quad S_1^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2, \quad S_2^2 = \frac{1}{m-1} \sum_{i=1}^{m} (Y_i - \bar{Y})^2.$$

考虑 $\mu_1 - \mu_2$ 和 σ_1^2/σ_2^2 的置信度为 $1 - \alpha$ 的区间估计.

1) 已知方差 σ_1^2 和 σ_2^2 , 求 $\mu_1 - \mu_2$ 的置信区间. 根据正态分布的性质有

$$\bar{X} \sim \mathcal{N}(\mu_1, \frac{\sigma_1^2}{n}), \quad \bar{Y} \sim \mathcal{N}(\mu_2, \frac{\sigma_2^2}{m}) \quad \bar{X} - \bar{Y} \sim \mathcal{N}(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}),$$