Written Assignment 2 Math 290, Dr. Walnut

Lucas Bouck

9/30/15

1 Problem 1

1.1 a)

Problem: Two positive real numbers a and b are said to be in the golden ratio if a/b = (a+b)/a. Prove that if a and b are in the golden ratio, then a/b = b/(a-b).

Proof:

Let a and b both be real numbers. Also, let a and b be in the golden ratio. That means a/b = (a+b)/a. We want to show that if a and b are in the golden ratio, then a/b = b/(a-b). By cross multiplying, we get $a^2 = ba + b^2$. By subtracting ba from both sides, we get $a^2 - ba = b^2$. We can factor out an a on the left side and get $a(a-b) = b^2$. By dividing both sides by b, we get a(a-b)/b = b. By dividing (a-b) from both sides, we get a/b = b/(a-b). Thus, if a and b are in the golden ratio, then a/b = b/(a-b).

1.2 b)

Problem: Prove directly from the definition that if a and b are in the golden ratio then a/b is irrational.

Proof: (By Contradiction)

Let the positive real numbers a and b satisfy the golden ratio. This means $\frac{a}{b} = \frac{a+b}{a}$. Also, let a/b be rational. This means $a, b \in \mathbb{Z}$, a and b have no common divisors, and $b \neq 0$. By cross multiplying $\frac{a}{b} = \frac{a+b}{a}$, we get $a^2 = b(a+b)$. Since b is an integer, $(a+b)|a^2$. Since $a, b \in \mathbb{Z}$, $(a+b) \in \mathbb{Z}$. Since $(a+b) \in \mathbb{Z}$, $b|a^2$. There will be three cases.

Case 1: Let a=0. Then, $a^2 = 0$, and b(a + b) = 0. Since a = 0, $b^2 = 0$. Then, b = 0. Therefore, b = 0, and $b \neq 0$. We have a contradiction.

Case 2: Let a be even. Then a^2 is even. Since a^2 is even, either b or a+b must be even. Since a is even, in order for a+b to be even, b must be even. Thus, b is even. Since both a and b are even, 2 divides both a and b. Therefore, a and b have a common divisor, but a and b do not have a common divisor. We have a contradiction.

Case 3: Let a be odd. Then a = 2k+1 where $k \in \mathbb{Z}$. Then $a^2 = (2k+1)^2 = 4k^2+4k+1 =$

 $2(2k^2+2k)+1$. $2k^2+2k$ is an integer, so a^2 is odd. Since $b(a+b)=a^2$, b and a+b must be odd. Then, b=2m+1, where $m\in\mathbb{Z}$, and a+b=2n+1, where $n\in\mathbb{Z}$. Then, a+b=a+2m+1=2n+1. Thus, a=2n-2m=2(n-m). Since $n-m\in\mathbb{Z}$, a is even, but a is odd. We have a contradiction.

Since in all cases of a, if we have a/b being rational then we have a contradiction. By contradiction, this means a/b is irrational if a/b satisfies the golden ratio.

1.3 Problem 2

Problem: Prove that a natural number p is prime if and only if p > 1 and there exists no natural number n with $1 < n \le \sqrt{p}$ such that n|p.

Proof:

 (\Rightarrow) (By contrapositive) There will be two cases for this direction.

Case 1: Let $p \in \mathbb{N}$, and $p \not\geq 1$. Then p = 1. Since 1 cannot be a prime number, p is not prime.

Case 2: Let p > 1. Let there be a natural n such that $n \in (1, \sqrt{p}]$ and n|p. Since $n \in (1, \sqrt{p}]$, $n \neq 1$. Since n|p, nk = p for some integer k. Since $n \leq \sqrt{p}$, $n^2 \leq (\sqrt{p})^2 = p$. We do not need absolute value on the p because p is always positive. Since n > 1, $n < n^2 \leq p$. Thus, n < p. Thus, $n \neq p$. Since $n \neq 1$, $n \neq p$, and n|p, there exists a natural n that divides p that is not equal to 1 or p. Therefore, p is not prime.

For both cases, by contrapositive, if p is prime, then p>1 and there is no natural n with $1 < n \le \sqrt{p}$ such that n|p.

 (\Leftarrow) (By contrapositive) There will be 3 cases for this direction.

Say p is not prime and p > 1. Then there exists a natural m such that $m|p, m \neq 1$, and $m \neq p$. Since m is natural and not equal to 1, m > 1. Since m|p, mk = p for some integer k. Because m and p are both positive, k must be positive. Since m and p are not zero, k must not be 0. Since both p and m are not equal to one, k is not equal to one. Thus, $k \in \mathbb{Z}$ and k is positive and nonzero. Thus, k is a natural number. Since $k \in \mathbb{N}$, and $k \neq 1$, k > 1. From mk = p, we get m = p/k. Here are the 3 cases.

Case 1: Let $k = \sqrt{p}$. Then, $m = p/k = p/\sqrt{p} = \sqrt{p}$. Thus, $1 < m \le \sqrt{p}$.

Case 2: Let $k > \sqrt{p}$. Then, $m = p/k < p/\sqrt{p} = \sqrt{p}$. Thus, $m < \sqrt{p}$. Thus, $1 < m \le \sqrt{p}$.

Case 3: Let $k < \sqrt{p}$. Since nk = p, where m is a natural number, k|p. Since $k \in \mathbb{N}$, k > 1, and k|p, there exists a natural number k such that k|p and $1 < k \le \sqrt{p}$.

In the first two cases, let m=n. In the third case, let k=n. In all three cases, there exists a natural n such that n|p and 1 < n < p. We have shown that if p is not prime and p > 1, then there exists a natural n such that n|p and $1 < n \le \sqrt{p}$. By contrapositve, if there does not exist a natural n such that n|p and $1 < n \le \sqrt{p}$, then p is prime or $p \le 1$. This statement is equivalent to if there does not exist a natural n such that n|p, and $1 < n \le \sqrt{p}$ and p > 1, then the natural number p is prime. We are done.

We have proven that if p is prime, then p>1 and there is no natural n with $1 < n \le \sqrt{p}$

such that n|p and that if there does not exist a natural n such that n|p, and $1 < n \le \sqrt{p}$ and p > 1, then the natural number p is prime. Therefore, a natural number p is prime if and only if p > 1 and there exists no natural number n with $1 < n \le \sqrt{p}$ such that n|p.