Introduction to Phylogenetics Week 3

Alignment

II. Alignment

- Protein allows for homology in alignment
 - More information for accurate alignment
 - * = identical positions
 - : = biochemically conserved
 - . = less conserved
 - = no homology

```
Human beta
                     ----VHLTpeeksavtalwgkvn--vdevggealgrllvvypwtorffesfgdlst
Horse beta
                      ----VQLSgeekaavlalwdkvn--eeevggealgrllvvypwtqrffdsfgdlsn
Human alpha
                      ----VLSpadktnvkaawgkvgahageygaealermflsfpttktyfphf-dls-
Horse alpha
                      ----VLSaadktnvkaawskvGghageygaealermflgfpttktyfphf-dls-
Whale myoglobin
                     -----VLSegewqlvlhvwakveadvaghgqdilirlfkshpetlekfdrfkhlkt
Lamprey globin
                 PIVDTGSVAPLSaaektkirsawapvystyetsgvdilvkfftstpaaqeffpkfkgltt
Lupin globin
                 -----GALTesqaalvkssweefnanipkhthrffilvleiapaakdlfsflkgtse
Human beta
                 PDAVMGNpkvkahgkkvlgafsdglahldn-----lkgtfatlselhcdklhvdpenfrl
Horse beta
                 PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN-----LKGTFAALSELHCDKLHVDPENFRL
                 ----HGSaqvkghgkkvadaltnavahvdd-----Mpnalsalsdlhahklrvdpvnfkl
Human alpha
                 ----HGSaqvkahgkkvgdaltlavghldd-----lpgalsnlsdlhahklrvdpvnfkl
Morse alpha
                 EAEMKASEDLKKHGVTVLTALGAILKKKGH----HEAELKPLAQSHATKHKIPIKYLEF
Whale myoglobin
Lamprev globin
                 ADOLKKSadvrwhaeriinavndavasmddt--ekmsmklrdlsgkhaksfqvdpqyfkv
                 VP--ONNPELQAHAGKVFKLVYEAAIQLOVTGVVVTDATLKNLGSVHVSKGVAD-AHFPV
Lupin globin
Human beta
                 LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-----
Horse beta
                 LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH-----
Human alpha
                 LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-----
Horne alpha
                 LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR-
Whale myoglobin
                 ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYOG
hamprey globin
                 LAAVIADTVAAG---D-----AGFEKLMSMICILLRSAY
Lupin globin
                 VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---
```

II. Alignment

- DNA only has 4 bases
 - Can minimize issues with structural sequences
 - - = gaps
 - . = missing data
- Repeats can cause big problems

(b)
accgtacc--gtaccgt
accgtacccgtaccgt
accgtac---gtaccgt
accgtacac--gtaccgt
accgtacac--gtaccgt

II. Alignment

Substitutions

- The fewer, the easier to register the alignment
- Polarity can weight substitutions
- When identity drops <25%, difficult to solve
- Functionally constrained regions help
- Can drive regions of ambiguity
- Likelihood substitutions weight alignment

BLOSUM62

(Henikoff and Henikoff, 1992)

```
Ala
Arg

    Weights amino acid alignments

Asn
Asp
                                      Change regularly during evolution <n
Cys
Gln
                                                       Uncommon change >n
Glu
Gly
                    - 3
His
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
                    -1 -2 -2 -3 -3 3
Val
    Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
```

Aligned sequences need to MAXIMIZE this score

Human beta -----VHLT**PEEKSAVTALWGKV**N--**VDEVGGEALGRLLVV**YP**WTQR**FFESFGDLST Horse beta -----VQLS**geekaavlalwdkv**n--**eeevggealgrllvv**yp**wtqr**ffdsfgdlsn Human alpha -----VLS**padktnvkaawgkv**gah**ageygaealermfls**fp**ttkt**yfphf-dls-Horse alpha ----VLS**aadktnvkaawskv**ggh**ageygaealermflg**fp**ttkt**yfphf-dls-Whale myoglobin -----VLS**egewqlvlhvwakv**ead**vaghgqdilirlfks**hp**etle**kfdrfkhlkt Lamprey globin PIVDTGSVAPLS**aaektkirsawapv**yst**yetsgvdilvkffts**tp**aaqe**ffpkfkGLtt Lupin globin ----GALT**esqaalvkssweef**nan**ipkhthrffilvlei**ap**aakd**lfsflkgtse *: : : * . Human beta PDAVMGN**PKVKAHGKKVLGAFSDGL**AHLDN-----L**KGTFATLSELHCD**KLHVD**PENFRL** Horse beta PGAVMGN*PKVKAHGKKVLHSFGEGV*HHLDN-----L*KGTFAALSELHCD*KLHVD*PENFRL* Human alpha ----HGS**aqvkghgkkvadaltnav**ahvdd-----M**pnalsalsdlhah**klrvd**pvnfkl** Horse alpha ----HGS**aqvkahgkkvgdaltlav**ghldd-----L**pgalsnlsdlhah**klrvd**pvnfkl** Whale myoglobin EAEMKAS**EDLKKHGVTVLTALGAIL**KKKGH----H**EAELKPLAQSHAT**KHKIP**IKYLEF** Lamprey globin ADQLKKS**advrwhaeriinavndav**asmddt--ekm**smklrdlsgkhak**sfqvd**pqyfkv** Lupin globin VP--QNN**pelqahagkvfklvyeaa**iqlqvtgvvvt**datlknlgsvhvs**kgvad**-ahfpv** . .:: *. : . Human beta LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-----Horne beta **LGNVLVVVLARH**FGKDFTPELQA**SYQKVVAGVANALA**HKYH---Human alpha LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR--Horne alpha LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR-----Whale myoglobin ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYOG hamprey globin LAAVIADTVAAG---D-----AGFEKLMSMICILLRSAY-----Lupin globin VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---

III. Gaps

- Tend to occur in regions of less evolutionary conservation
 - Usually the result of insertions/deletions (indels)
 - Inclusion of gaps makes it difficult to align
 - Requires pairwise sequence alignment
 - Possible to generate more gaps than sequence

III. Pairwise Sequence Alignment

GGG-CAAATGGGACAGCAGGCCATA
||| |||||| || || |||
GGGACAAATGGTACATGAAGCCA--

A FFESFGDLSTPDAVMGN YFPHDLSHGS

FFDSFGDLSNPGAVMGN YFPHF-DLS----HGS

B FFESFGDLSTPDAVMGN LPNDFTPAVHA

FFESFGDLSTPDAVMGN---L--PND-FTP-AV---HA

III. Gaps

 To prevent excessive gaps – use gap penalties (GPs).

$$GP = g + e(l - 1)$$

- *l* = length of gap
- g = gap opening penalty
- e = gap-extension penalty
- end-gaps are generally free

(you get to decide values)

III. Dynamic programming

- Scores all possible pair alignments
- Penalizes gaps
- Bellman's principle of optimality any subsolution of optimal solution is a solution

$$F(i,j) = \max \int_{1}^{n} F(i-1,j-1) + s(X_{i}, Y_{i}),$$

$$F(i,j) = \max \int_{1}^{n} F(i-1,j) - g,$$

$$F(i,j-1) - g$$

Generate substitution matrix (F)

	i	1	2	3	4	5	6	7	8
j		*	G	R	Q	Т	Α	G	L
1	*								
2	G								
3	Т								
4	Α								
5	Υ								
6	D								
7	L								

gap penalty (g) = -8
BLOSUM62 substitution values

$$F(i,j) = \max \int_{1}^{n} F(i-1,j-1) + s(X_{i}, Y_{i}),$$

$$F(i,j) = \max \int_{1}^{n} F(i-1,j) - g,$$

$$F(i,j-1) - g$$

	i	1	2	3	4	5	6	7	8
j		*	G	R	Q	Т	Α	G	L
1	*								
2	G								
3	Т								
4	Α								
5	Υ								
6	D								
7	L								

$$g = -8$$

$$g = -4$$

Gap penalty (g) = -8Gap extention (e) = -2

$$GP = g + e(l - 1)$$

	i	1	2	3	4	5	6	7	8
j		*	G	R	Q	Т	Α	G	L
1	*	0	-8	-10	-12	-14	-16	-18	-20
2	G	-8	6	-2	-4	-6	-8	-10	-12
3	Т	-10	-2	5	-3	1	-6	-10	-11
4	Α	-12	-4	-3	4	-3	5	-3	-11
5	Υ	-14	-6	-5	-4	2	-3	2	-4
6	D	-16	-8	-7	-5	-3	0	-4	-2
7	L	-18	-10	-9	-9	-6	-4	-4	0

III. Progressive Alignments

- Generate phylogenetic tree
- Use tree in progressive alignment (heuristic)
- Dramatically speeds up math
- Tree generated from pair-wise alignment (Neighbor Joining)

III. Progressive Alignments

IV. Programs: CLUSTALX

- Difference between X/W interface
- Progressive alignment based on unrooted NJ tree
- Reduce weights on aligned sequences
- Uses BLOSUM or PAM
- Varies GP values, including positionspecific GP values

The local minimum problem

IV. Programs: T-COFFEE

- Tree-based consistency objective function for alignment evaluation
- Consistency based scoring
- Relies more on initial weighted sum of pairs (WSP) values (A-B, B-C vs. A-C)
- Uses different algorithms for alignment
- Provides alignment that's most consistent

IV. Programs: MUSCLE

- Uses fast distance estimations
- Relies on K_{mer} values
- Provides progressive alignment
- Uses tree for iterative alignments

IV. Comparing alignments

- Visual alignment
- Comparative programs such as ALTAVIST
- Edit alignments for tree building
 - Within CLUSTALX
 - BIOEDIT (DOS)
 - SE-AL (MacOS)