МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №2 по курсу «Методы машинного обучения»

Тема: «Изучение библиотек обработки данных»

ИСПОЛНИТЕЛЬ: группа ИУ5-21M	Макаров Д.А _{ФИО}	٠.
	подпись	
	""202_ г	`.
ПРЕПОДАВАТЕЛЬ:	ФИО	_
	подпись	_
	""202_ r	٦.

Москва - 2020

3.1 Часть 1

Разведочный анализ данных с Pandas

```
In [41]:
```

```
import pandas as pd
import numpy as np
pd.set_option('display.max.columns', 100)
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
# we don't like warnings
# you can comment the following 2 lines if you'd like to
import warnings
warnings.filterwarnings('ignore')
```

In [43]:

```
data = pd.read_csv('adult.data.csv')
data.head()
```

Out[43]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174	0	40	United- States
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40	Cuba
4														Þ

In [11]:

```
#1. How many men and women (sex feature) are represented in this dataset?
data['sex'].value_counts()
```

Out[11]:

Male 21790 Female 10771 Name: sex, dtype: int64

In [12]:

```
#2. What is the average age (age feature) of women?

female_data = data[data['sex'] == 'Female']
```

In [17]:

```
female_data['age'].mean()
```

Out[17]:

36.85823043357163

```
In [18]:
data.loc[data['sex'] == 'Female', 'age'].mean()
Out[18]:
36.85823043357163
In [21]:
#3. What is the proportion of German citizens (native-country feature)?
float((data['native-country'] == 'Germany').sum()) / data.shape[0]
Out[21]:
0.004207487485028101
In [26]:
#4-5. What are mean value and standard deviation of the age
#of those who recieve more than 50K per year (salary feature) and those who receive less than 50K
per vear?
ages1 = data.loc[data['salary'] == '>50K', 'age']
ages2 = data.loc[data['salary'] == '<=50K', 'age']</pre>
print("The average age of the rich: \{0\} +- \{1\} years, poor - \{2\} +- \{3\} years.".format(
    round(ages1.mean()), round(ages1.std(), 1),
    round(ages2.mean()), round(ages2.std(), 1)))
The average age of the rich: 44.0 +- 10.5 years, poor - 37.0 +- 14.0 years.
In [27]:
#6. Is it true that people who receive more than 50k have at least high school education?
#(education - Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)
data.loc[data['salary'] == '>50K', 'education'].unique()
Out[27]:
array(['HS-grad', 'Masters', 'Bachelors', 'Some-college', 'Assoc-voc',
       'Doctorate', 'Prof-school', 'Assoc-acdm', '7th-8th', '12th',
       '10th', '11th', '9th', '5th-6th', '1st-4th'], dtype=object)
In [31]:
#7. Display statistics of age for each race (race feature) and each gender.
#Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo race.
#data.groupby(['race', 'sex']).describe()
for (race, sex), sub df in data.groupby(['race', 'sex']):
    print('Race: {0}, sex {1}'.format(race, sex))
    print(sub df['age'].describe())
Race: Amer-Indian-Eskimo, sex Female
count 119.000000
          37.117647
mean
std
         13.114991
         17.000000
min
         27.000000
2.5%
50%
         36.000000
75%
         46.000000
         80.000000
Name: age, dtype: float64
Race: Amer-Indian-Eskimo, sex Male
       192.000000
         37.208333
mean
std
          12.049563
min
         17.000000
         28.000000
2.5%
50%
         35.000000
```

```
75%
        45.000000
        82.000000
max
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex Female
       346.000000
count
         35.089595
mean
std
         12.300845
         17.000000
min
25%
         25.000000
50%
         33.000000
75%
         43.750000
        75.000000
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex Male
count
       693.000000
         39.073593
mean
        12.883944
std
min
         18.000000
25%
         29.000000
50%
         37.000000
75%
         46.000000
max
        90.000000
Name: age, dtype: float64
Race: Black, sex Female
count 1555.000000
mean
          37.854019
          12.637197
std
         17.000000
min
         28.000000
25%
50%
          37.000000
75%
          46.000000
          90.000000
max
Name: age, dtype: float64
Race: Black, sex Male
count 1569.000000
mean
          37.682600
std
          12.882612
          17.000000
min
25%
         27.000000
50%
          36.000000
75%
          46.000000
max
          90.000000
Name: age, dtype: float64
Race: Other, sex Female
       109.000000
         31.678899
mean
std
         11.631599
min
         17.000000
25%
         23.000000
50%
         29.000000
75%
         39.000000
         74.000000
max
Name: age, dtype: float64
Race: Other, sex Male
count 162.000000
mean
         34.654321
std
         11.355531
         17.000000
min
25%
         26.000000
50%
         32.000000
75%
         42.000000
max
         77.000000
Name: age, dtype: float64
Race: White, sex Female
      8642.000000
count.
mean
         36.811618
std
          14.329093
          17.000000
min
25%
          25.000000
50%
          35.000000
75%
          46.000000
          90.000000
Name: age, dtype: float64
Race: White, sex Male
        19174.000000
mean
          39.652498
std
           13.436029
```

```
min 17.000000
25% 29.000000
50% 38.000000
75% 49.000000
max 90.000000
Name: age, dtype: float64
```

Percentage of rich among them 29%

Among whom the proportion of those who earn a lot(>50K) is more: among married or single men (marital-status feature)?
 Consider married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

```
In [118]:
data.loc[
    (data['sex'] == 'Male') &
    (data['marital-status'].isin(['Never-married', 'Separated', 'Divorced', 'Widowed'])), 'salary'
].value counts()
Out[118]:
<=50K 7552
>50K
        697
Name: salary, dtype: int64
In [36]:
data.loc[(data['sex'] == 'Male') &
     (data['marital-status'].str.startswith('Married')), 'salary'].value counts()
Out[36]:
<=50K 7576
>50K
         5965
Name: salary, dtype: int64
In [37]:
data['marital-status'].value counts()
Out[37]:
                       14976
Married-civ-spouse
Never-married
Divorced
                         4443
                         1025
Separated
Widowed
                          993
Married-spouse-absent
                          418
Married-AF-spouse
                          23
Name: marital-status, dtype: int64
```

1. What is the maximum number of hours a person works per week (hours-per-week feature)? How many people work such a number of hours and what is the percentage of those who earn a lot among them?

1. Count the average time of work (hours-per-week) those who earning a little and a lot (salary) for each country (native-country).

```
In [39]:
```

Puerto-Rico >50K 39.42

```
for (country, salary), sub df in data.groupby(['native-country', 'salary']):
    print(country, salary, round(sub df['hours-per-week'].mean(), 2))
? <=50K 40.16
? >50K 45.55
Cambodia <=50K 41.42
Cambodia >50K 40.0
Canada <=50K 37.91
Canada >50K 45.64
China <=50K 37.38
China >50K 38.9
Columbia <=50K 38.68
Columbia >50K 50.0
Cuba <=50K 37.99
Cuba >50K 42.44
Dominican-Republic <=50K 42.34
Dominican-Republic >50K 47.0
Ecuador <=50K 38.04
Ecuador >50K 48.75
El-Salvador <=50K 36.03
El-Salvador >50K 45.0
England <=50K 40.48
England >50K 44.53
France <=50K 41.06
France >50K 50.75
Germany <=50K 39.14
Germany >50K 44.98
Greece <=50K 41.81
Greece >50K 50.62
Guatemala <=50K 39.36
Guatemala >50K 36.67
Haiti <=50K 36.33
Haiti >50K 42.75
Holand-Netherlands <=50K 40.0
Honduras <=50K 34.33
Honduras >50K 60.0
Hong <=50K 39.14
Hong >50K 45.0
Hungary <=50K 31.3
Hungary >50K 50.0
India <=50K 38.23
India >50K 46.48
Iran <=50K 41.44
Iran >50K 47.5
Ireland <=50K 40.95
Ireland >50K 48.0
Italy <=50K 39.62
Italy >50K 45.4
Jamaica <=50K 38.24
Jamaica >50K 41.1
Japan <=50K 41.0
Japan >50K 47.96
Laos <=50K 40.38
Laos >50K 40.0
Mexico <=50K 40.0
Mexico >50K 46.58
Nicaragua <=50K 36.09
Nicaragua >50K 37.5
Outlying-US(Guam-USVI-etc) <=50K 41.86
Peru <=50K 35.07
Peru >50K 40.0
Philippines <=50K 38.07
Philippines >50K 43.03
Poland <=50K 38.17
Poland >50K 39.0
Portugal <=50K 41.94
Portugal >50K 41.5
Puerto-Rico <=50K 38.47
```

```
Scotland <=5UK 39.44
Scotland >50K 46.67
South <=50K 40.16
South >50K 51.44
Taiwan <=50K 33.77
Taiwan >50K 46.8
Thailand <=50K 42.87
Thailand >50K 58.33
Trinadad&Tobago <=50K 37.06
Trinadad&Tobago >50K 40.0
United-States <=50K 38.8
United-States >50K 45.51
Vietnam <=50K 37.19
Vietnam >50K 39.2
Yugoslavia <=50K 41.6
Yugoslavia >50K 49.5
In [42]:
pd.crosstab(data['native-country'], data['salary'],
           values=data['hours-per-week'], aggfunc=np.mean).T
Out[42]:
 native-
                                                                                       EI-
                                                               Dominican-
              ? Cambodia
                            Canada
                                      China Columbia
                                                         Cuba
                                                                                            England
                                                                                                       France
                                                                          Ecuador
                                                                                   Salvador
country
                                                                 Republic
  salary
  <=50K 40.164760 41.416667 37.914634 37.381818 38.684211 37.985714 42.338235 38.041667 36.030928 40.483333 41.058824 $\( \)</p>
  >50K 45.547945 40.00000 45.641026 38.90000 50.00000 42.440000 47.00000 48.750000 45.00000 44.533333 50.750000 4
```

3.2 Часть 2

Использование Pandas для запросов на соединение и группировку данных

```
In [44]:
```

```
user_usage = pd.read_csv("user_usage.csv")
user_device = pd.read_csv("user_device.csv")
devices = pd.read_csv("android_devices.csv")
```

In [45]:

```
user_usage.head()
```

Out[45]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

In [48]:

```
user_device.head(3)
```

Out[48]:

	use_id use_id	user_id user_id	platform platform	platform_version platform_version	device device	use_type_id use_type_id
0	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM-G903F	1

In [47]:

```
devices.head(10)
```

Out[47]:

	Retail Branding	Marketing Name	Device	Model
0	NaN	NaN	AD681H	Smartfren Andromax AD681H
1	NaN	NaN	FJL21	FJL21
2	NaN	NaN	T31	Panasonic T31
3	NaN	NaN	hws7721g	MediaPad 7 Youth 2
4	3Q	OC1020A	OC1020A	OC1020A
5	7Eleven	IN265	IN265	IN265
6	A.O.I. ELECTRONICS FACTORY	A.O.I.	TR10CS1_11	TR10CS1
7	AG Mobile	AG BOOST 2	BOOST2	E4010
8	AG Mobile	AG Flair	AG_Flair	Flair
9	AG Mobile	AG Go Tab Access 2	AG_Go_Tab_Access_2	AG_Go_Tab_Access_2

In [49]:

Out[49]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device
0	21.97	4.82	1557.33	22787	android	GT-I9505
1	1710.08	136.88	7267.55	22788	android	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F

In [50]:

```
print("user_usage dimensions: {}".format(user_usage.shape))
print("user_device dimensions: {}".format(user_device[['use_id', 'platform', 'device']].shape))
user_usage dimensions: (240, 4)
```

user_device dimensions: (270, 4)

In [51]:

```
user_usage['use_id'].isin(user_device['use_id']).value_counts()
```

Out[51]:

True 159 False 81

Name: use_id, dtype: int64

```
In [52]:
```

```
result = pd.merge(user usage,
                 user device[['use id', 'platform', 'device']],
                 on='use_id', how='left')
print("user usage dimensions: {}".format(user usage.shape))
print("result dimensions: {}".format(result.shape))
print("There are {} missing values in the result.".format(
       result['device'].isnull().sum()))
user usage dimensions: (240, 4)
```

result dimensions: (240, 6)

There are 81 missing values in the result.

In [53]:

```
result.head()
```

Out[53]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device
0	21.97	4.82	1557.33	22787	android	GT-I9505
1	1710.08	136.88	7267.55	22788	android	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F

In [54]:

```
result.tail()
```

Out[54]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device
235	260.66	68.44	896.96	25008	NaN	NaN
236	97.12	36.50	2815.00	25040	NaN	NaN
237	355.93	12.37	6828.09	25046	NaN	NaN
238	632.06	120.46	1453.16	25058	NaN	NaN
239	488.70	906.92	3089.85	25220	NaN	NaN

In [55]:

```
result = pd.merge(user_usage,
                user device[['use id', 'platform', 'device']],
                 on='use_id', how='right')
print("user_device dimensions: {}".format(user_device.shape))
print("result dimensions: {}".format(result.shape))
print("There are {} missing values in the 'monthly mb' column in the result.".format(
       result['monthly mb'].isnull().sum()))
print("There are {} missing values in the 'platform' column in the result.".format(
       result['platform'].isnull().sum()))
```

user device dimensions: (272, 6) result dimensions: (272, 6) There are 113 missing values in the 'monthly_mb' column in the result. There are 0 missing values in the 'platform' column in the result.

In [56]:

```
print("There are {} unique values of use id in our dataframes.".format(
       pd.concat([user_usage['use_id'], user_device['use_id']]).unique().shape[0]))
result = pd.merge(user_usage,
                user_device[['use_id', 'platform', 'device']],
                 on='use id' how='outer' indicator=True)
```

There are 353 unique values of use_id in our dataframes. Outer merge result has (353, 7) rows.

There are 159 rows with no missing values.

In [57]:

```
result.iloc[[0, 1, 200,201, 350,351]]
```

Out[57]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device	_merge
0	21.97	4.82	1557.33	22787	android	GT-19505	both
1	1710.08	136.88	7267.55	22788	android	SM-G930F	both
200	28.79	29.42	3114.67	23988	NaN	NaN	left_only
201	616.56	99.85	5414.14	24006	NaN	NaN	left_only
350	NaN	NaN	NaN	23050	ios	iPhone7,2	right_only
351	NaN	NaN	NaN	23051	ios	iPhone7,2	right_only

In [58]:

Out[58]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device	manufacturer	Model
0	21.97	4.82	1557.33	22787	android	GT-19505	Samsung	GT-I9505
1	1710.08	136.88	7267.55	22788	android	SM-G930F	Samsung	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F	Samsung	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303	Sony	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F	Samsung	SM-G361F

In [59]:

```
devices[devices.Model == 'SM-G930F']
```

Out[59]:

	manufacturer	Marketing Name	Device	Model
10381	Samsung	Galaxy S7	herolte	SM-G930F

devices[devices.Device.str.startswith('GT')]

Out[60]:

	manufacturer	Marketing Name	Device	Model
1095	Bitmore	GTAB700	GTAB700	NID_7010
1096	Bitmore	GTAB900	GTAB900	S952
2402	Grundig	GTB1050	GTB1050	GTB 1050
2403	Grundig	GTB850	GTB850	GTB 850
2404	Grundig	TC69CA2	GTB801	GTB 801
9125	Samsung	NaN	GT-I5510M	GT-I5510M
9126	Samsung	NaN	GT-I5510T	GT-I5510T
9127	Samsung	NaN	GT-I5800L	GT-I5800L
9128	Samsung	NaN	GT-N7000B	GT-N7000B
9129	Samsung	NaN	GT-P7300B	GT-P7300B
9130	Samsung	NaN	GT-P7320T	GT-P7320T
9131	Samsung	NaN	GT-P7500M	GT-P7500M
9132	Samsung	NaN	GT-P7500R	GT-P7500R
9133	Samsung	NaN	GT-P7500V	GT-P7500V
9134	Samsung	NaN	GT-S5698	GT-S5698
9135	Samsung	NaN	GT-S5820	GT-S5820
9136	Samsung	NaN	GT-S5830V	GT-S5830V
9173	Samsung	Absolute	GT-B9120	GT-B9120
9184	Samsung	Europa	GT-I5500B	GT-I5500B
9185	Samsung	Europa	GT-I5500L	GT-I5500L
9186	Samsung	Europa	GT-I5500M	GT-I5500M
9187	Samsung	Europa	GT-I5503T	GT-I5503T
9188	Samsung	Europa	GT-I5510L	GT-I5510L
9191	Samsung	Galaxy (China)	GT-B9062	GT-B9062
9288	Samsung	Galaxy Ace	GT-S5830	GT-S5830
9289	Samsung	Galaxy Ace	GT-S5830B	GT-S5830B
9290	Samsung	Galaxy Ace	GT-S5830C	GT-S5830C
9291	Samsung	Galaxy Ace	GT-S5830D	GT-S5830D
9292	Samsung	Galaxy Ace	GT-S5830F	GT-S5830F
9293	Samsung	Galaxy Ace	GT-S5830G	GT-S5830G
10480	Samsung	Galaxy Tab 7.7	GT-P6800	GT-P6800
10481	Samsung	Galaxy Tab 7.7	GT-P6810	GT-P6810
10484	Samsung	Galaxy Tab 8.9	GT-P7300	GT-P7300
10485	Samsung	Galaxy Tab 8.9	GT-P7310	GT-P7310
10486	Samsung	Galaxy Tab 8.9	GT-P7320	GT-P7320
10778	Samsung	Galaxy W	GT-I8150	GT-I8150
10779	Samsung	Galaxy W	GT-I8150B	GT-I8150B
10780	Samsung	Galaxy W	GT-I8150T	GT-I8150T
10796	Samsung	Galaxy Xcover	GT-S5690	GT-S5690
10797	Samsung	Galaxy Xcover	GT-S5690L	GT-S5690L
10798	Samsung	Galaxy Xcover	GT-S5690M	GT-S5690M
10799	Samsung	Galaxy Xcover	GT-S5690R	GT-S5690R
10804	Samsung	Galaxy Y	GT-S5360	GT-S5360
10805	Samsung	Galaxy Y	GT-S5360B	GT-S5360B

10806	man ufaqture g	Marketing Name	GT- \$39669 2	GT-S Moodel
10807	Samsung	Galaxy Y	GT-S5360T	GT-S5360T
10808	Samsung	Galaxy Y	GT-S5363	GT-S5363
10809	Samsung	Galaxy Y	GT-S5368	GT-S5368
10810	Samsung	Galaxy Y	GT-S5369	GT-S5369
10813	Samsung	Galaxy Y Duos	GT-S6102	GT-S6102
10814	Samsung	Galaxy Y Duos	GT-S6102B	GT-S6102B
10815	Samsung	Galaxy Y Duos	GT-S6102E	GT-S6102E
10818	Samsung	Galaxy Y Pop	GT-S6108	GT-S6108
10819	Samsung	Galaxy Y Pro	GT-B5510	GT-B5510
10820	Samsung	Galaxy Y Pro	GT-B5510B	GT-B5510B
10821	Samsung	Galaxy Y Pro	GT-B5510L	GT-B5510L
10822	Samsung	Galaxy Y Pro Duos	GT-B5512	GT-B5512
10823	Samsung	Galaxy Y Pro Duos	GT-B5512B	GT-B5512B
10824	Samsung	Galaxy Y TV	GT-S5367	GT-S5367
10979	Sharp	AQUOS SERIE mini SHV38	GTQ	SHV38

164 rows × 4 columns

In [61]:

```
result.head()
```

Out[61]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device	manufacturer	Model
0	21.97	4.82	1557.33	22787	android	GT-19505	Samsung	GT-I9505
1	1710.08	136.88	7267.55	22788	android	SM-G930F	Samsung	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F	Samsung	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303	Sony	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F	Samsung	SM-G361F

In [62]:

```
result.groupby("manufacturer").agg({
        "outgoing_mins_per_month": "mean",
        "outgoing_sms_per_month": "mean",
        "monthly_mb": "mean",
        "use_id": "count"
})
```

Out[62]:

manufacturer

$outgoing_mins_per_month \quad outgoing_sms_per_month \quad monthly_mb \quad use_id$

HTC 93.059318 5144.077955 44 299.842955 Huawei 81.526667 9.500000 1561.226667 3 LGE 111.530000 12.760000 1557.330000 2 60.650000 261.900000 12458.670000 2 Lava Lenovo 215.920000 12.930000 1557.330000 2 95.127500 3946.500000 Motorola 65.666250 16 OnePlus 354.855000 48.330000 6575.410000 6 191.010093 92.390463 4017.318889 108 Samsung Sony 177.315625 40.176250 3212.000625 16 Vodafone 42.750000 46.830000 5191.120000 1

Использование Pandasql для запросов на соединение и группировку данных

In [63]:

```
import pandasql as ps
```

In [110]:

```
# pandasql code
def left_join_ps(user_usage, user_device):
    join_query = '''
    SELECT user_usage.outgoing_mins_per_month,
    user_usage.outgoing_sms_per_month,
    user_usage.monthly_mb,
    user_device.use_id,
    user_device.device,
    user_device.platform

FROM user_usage
    LEFT JOIN user_device
    ON user_usage.use_id = user_device.use_id;
    ''''
    return ps.sqldf(join_query, locals())
left_join_ps(user_usage, user_device).tail()
```

Out[110]:

outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device	platform

235	260.66	68.44	896.96	NaN	None	None
236	97.12	36.50	2815.00	NaN	None	None
237	355.93	12.37	6828.09	NaN	None	None
238	632.06	120.46	1453.16	NaN	None	None
239	488.70	906.92	3089.85	NaN	None	None

Использование функций агрегирования

In [147]:

```
In [148]:
```

```
aggregating_ps(user_usage, user_device)
Out[148]:
```

outgoing mins per month platform

```
outgoing_mins_per_758535 pratform
2
              366.060000
In [144]:
merged = pd.merge(user_usage,
                 user device[['use id', 'platform']],
                 on='use_id',
                 how='left')
merged['platform'] = merged['platform'].astype(str)
merged.groupby('platform').mean()
Out[144]:
                                                               use id
        outgoing_mins_per_month outgoing_sms_per_month monthly_mb
platform
                   201.258535
                                        85.354586 4221.387834 22922.350318
 android
                   366.060000
                                       293.975000 961.155000 22920.500000
    ios
                   414.376420
                                       120.540370 2545.485062 23998.444444
    nan
Сравнение времени выполнения каждого запроса в Pandas и
PandaSQL.
In [83]:
import time
def count_mean_time(func, params, N =5):
    total time = 0
    for i in range(N):
        time1 = time.time()
        if len(params) == 1:
            tmp_df = func(params[0])
        elif len(params) == 2:
            tmp_df = func(params[0], params[1])
        time2 = time.time()
        total time += (time2 - time1)
    return total time/N
In [113]:
left_join_pandasql_time = count_mean_time(left_join_ps, [user_usage, user_device], N=20)
left_join_pandasql_time
Out[113]:
0.019597113132476807
In [114]:
def left join pandas(user usage, user device):
    result = pd.merge(user_usage,
                 user device[['use id', 'platform', 'device']],
                 on='use id', how='left')
    return result
left_join_pandas_time = count_mean_time(left_join_pandas, [user_usage, user_device], N=20)
left_join_pandas_time
Out[114]:
0.0056846380233764645
In [115]:
```

aggreg_pandasql_time = count_mean_time(aggregating_ps, [user_usage, user_device], N=20)

```
aggreg_pandasql time
Out[115]:
0.017153775691986083
In [116]:
def aggreg query pandas (user usage, user device):
    merged = pd.merge(user usage,
                 user device[['use id', 'platform']],
                 on='use id',
                 how='left')
    return merged.groupby('platform').mean()
aggr_pandas_time = count_mean_time(aggreg_query_pandas, [user_usage, user_device], N=20)
aggr pandas time
Out[116]:
0.00812966823577881
In [117]:
print('Разница во времени при выполнении запроса LEFT JOIN: {0}'.format(left_join_pandasql_time - 1
eft join pandas time))
print('Разница во времени при выполнении запроса с ф-ями агрегирования:
{0}'.format(aggreg pandasql time - aggr pandas time))
Разница во времени при выполнении запроса LEFT JOIN: 0.013912475109100342
Разница во времени при выполнении запроса с ф-ями агрегирования: 0.009024107456207273
```

Сравнив время выполнения запросов при помощи библиотек Pandas и Pandasql, можно сделать вывод, что для простых запросов лучше использовать Pandas, так как время выполнения запросов к источнику данных меньше, чем у Pandasql. Но при написании сложных запросов Pandasql даст возможность использовать привычные SQL запросы.

Список литературы

- 1. Гапанюк Ю. Е. Лабораторная работа «Изучение библиотек обработки данных» [Электронный ресурс] // GitHub. 2019. Режим доступа: https://github.com/ ugapanyuk/ml_course/wiki/LAB_PANDAS (дата обращения: 20.02.2019).
- pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).
- 3. You are my Sunshine [Electronic resource] // Space Apps Challenge. 2017. Access mode: https://2017.spaceappschallenge.org/challenges/earth-and-us/ you-are-my-sunshine/details (online; accessed: 22.02.2019).
- 4. yhat/pandasql: sqldf for pandas [Electronic resource] // GitHub. 2017. Access mode: https://github.com/yhat/pandasql (online; accessed: 22.02.2019).
- 5. Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/ stable/ (online; accessed: 20.02.2019).