

ERod_1.1.0Documentation

ERod

ERod is an open-source Grasshopper plugin for Rhino that enables designers and engineers to create and simulate X-shells [1], C-shells [2], and curved woven [3] structures. By employing the Discrete Elastic Rods model [4], ERod provides a physics-based modeling environment that accurately represents elastic beam behavior during deformation and deployment.

Key Features:

- Physics-Based Simulation: Simulate the behavior of elastic beams, facilitating the design of structures that rely on elastic deformation for form and stability.
- Forward Design Tools: Offers intuitive components for designing and modeling X-shells, C-shells, and curved woven structures within the Grasshopper environment, allowing for real-time exploration and iteration.
- Integration with Inverse Design Optimization: Prepares and exports necessary data for inverse design optimizations via Jupyter notebooks, enabling users to refine and optimize their designs based on specific performance criteria.
- Seamless Workflow: Ensures a smooth transition from conceptual design to simulation and optimization, streamlining the development process of complex elastic structures.

Erod runs on Apple Silicon Chips and Rhino 8 for Mac.

LICENSE

ERod is distributed under the terms of the GNU General Public License.

REFERENCES

- [1] J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: a new class of deployable beam structures. ACM Trans. Graph. 38, 4, Article 83 (August 2019), 15 pages. https://doi.org/10.1145/3306346.3323040
- [2] Quentin Becker, Seiichi Suzuki, Yingying Ren, Davide Pellis, Julian Panetta, and Mark Pauly. 2023. C-Shells: Deployable Gridshells with Curved Beams. ACM Trans. Graph. 42, 6, Article 173 (December 2023), 17 pages. https://doi.org/10.1145/3618366
- [3] Yingying Ren, Julian Panetta, Tian Chen, Florin Isvoranu, Samuel Poincloux, Christopher Brandt, Alison Martin, and Mark Pauly. 2021. 3D weaving with curved ribbons. ACM Trans. Graph. 40, 4, Article 127 (August 2021), 15 pages. https://doi.org/10.1145/3450626.3459788d
- [4] Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3 (August 2008), 1–12. https://doi.org/10.1145/1360612.1360662

EROD COMPONENTS

Analysis (Mac)				
Å	1	Angles	Compute the minimum, maximum, and average joint angles of the linkage.	
4	2	Energies	Computes the energies of an elastic rod or linkage.	
*	3	RestLengths	Compute the minimum, maximum, average and total rest-lengths of the linkage.	
<i>7</i>	4	Stiffnesses	Computes the stiffness of an elastic rod or linkage.	
$\mathcal{P}^{\mathcal{S}}$	5	Stresses	Computes the stresses of an elastic rod or linkage.	
***************************************	6	MetricsJoints	Calculates and visualizes the joint metrics of a linkage using their angles.	
H	7	MetricsQuads	Calculates and visualizes the quad metrics of a linkage using their areas.	
	8	MetricsSegments	Calculates and visualizes the segment metrics of a linkage using their rest quantities.	
童	9	MetricsModels	Calculates and visualizes the metrics of an elastic model using their stresses.	
			Interoperability (Windows/Mac)	
₩1	10	Load	Load a JSON file with input data to build an elastic model.	
1	11	Save	Write a JSON file with input data to run a Jupyter notebook.	
1	12	SaveRender	Write a JSON file with data for rendering.	

(c)	13	OptimizationSettings	Transfinite constraints to explicitly defined a structured distribution of an n-number of vertices on a given curve.
	14	RemoteServer	Set the credentials for connecting to a remote server for running optimization tasks. Ensure that the server has an instance of the optimization code already deployed.
#	15	WeavingOptimizer	Weaving optimizer running on a remote server.

IO (Windows/Mac)					
密	16	Normal	Set a vector to be the normal of a joint.		
230	17	Ribbon	Build a ribbon from a curve with parameters to define the joints.		
	18	Segment	Build a segment of a ribbon from a curve.		
	19	Support	Set support condition using a reference point.		
1	20	TargetSupport	Set a target surface mesh to attract the linkage.		
田	21	TargetSurface	Set a target surface from a mesh to attract the linkage.		
3/2	22	Cable	Compute forces excerted by an elastic cable.		
	23	Force	Set a vector to act as an external force on the model.		
囮	24	LinkageIO	Assemble all input data to construct an elastic linkage.		
	25	RodIO	Assemble all input data to construct an elastic rod.		
E.	26	eJointlO	Deconstruct JointIO data.		

田	41	eRod	Deconstruct an elastic rod or a rod segment from a linkage.
田	42	InferSurface	Construct a surface that best fits the deployed geometry of an elastic linkage.
W.	43	EditLinkage	Modify an elastic linkage.
2	44	EditRod	Modify an elastic rod.
ф	45	Reinforce	Adjust the bending and twisting stiffness within specified regions.

Solvers (Mac)				
_	46	EquilibriumSolver	Equilibrium solver.	
6	47	ExtendedSolverOptions	Extended Newton solver options.	
63	48	SolverOptions	Newton solver options.	
9 🔺	40	Calaba Astrontian	Davida vyra svet vija sadelja satvatija v (MUD)	
5	49	CableActuation	Deployment via cable actuation (WIP).	
>	50	SlidingActuation	Linkage deployment via sliding actuation at selected joints.	
	51	SupportActuation	Deployment via support actuation.	
4	52	TorqueActuation	Linkage deployment via torque actuation.	
8 8	53	EquilibriumSolverMulti	Equilibrium solver for multiple models.	
₩	54	TorqueActuationMulti	Deployment via torque actuation for multiple models.	

55 TorqueStepActuation

Linkage deployment via torque actuation at joints. This solver generates a copy of the linkage at each deployment step.

Plots (Windows/Mac)

п	ш		п		
Ш	ш		п		Е
п	ш		п		ŀ
ш	ш	ш.	я.	л	L

56 HistogramPlot Creates a histogram chart .

57 Line3DPlot Creates a line 3D plot.

58 PlotSettings Graph plotter Settings.

59 Point3DPlot Creates a three-dimensional point chart.

60

57

PointDensityPlot Creates a point density plot which combines a scatter plot and a histogram with 2d contours.

Range Plot Creates a chart to indicate some property of data that lies in a certain range around a central value.

Tools (Windows/Mac)

EdgeTopology Build the topology of a collection of curves.

Split Split curves by computing the intersection of multiple curves.