Характер группоида

А. А. Владимиров

24.04.2022

3адача. Дан функтор $\varkappa = (\varkappa_1, \varkappa_2) : \mathbf{Cat}(\Gamma) \to \mathbf{Vec}$. Найти $\varkappa_2 : (f : \Gamma_1 \to \Gamma_2) \mapsto (A_f : \varkappa_1(\Gamma_1) \to \varkappa_1(\Gamma_2))$, если известно, что $\varkappa_1 : \Gamma \mapsto V$, где V – пространство характеров, т.е. $V = \{\chi : \operatorname{Hom} \Gamma \to \mathbb{C} : \chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)\}$.

Таким образом задача сводится к нахождению линейного оператора A_f на коммутативной диаграмме

$$\begin{array}{ccc}
\Gamma_1 & \xrightarrow{\varkappa} & V_1 \\
\downarrow^f & & \downarrow^{A_f} \\
\Gamma_2 & \xrightarrow{\varkappa} & V_2
\end{array}$$

Решение. Для начала отметим три утверждения: если в группоиде Г известны

- (1) $f:a\to b$, $\hom(a,a)$, то посредством изоморфизма $\psi: \hom(a,a)\to \hom(b,b)$, а именно $\psi:h\mapsto fhf^{-1}$ однозначно определено $\hom(b,b)$;
- (2) $f:a\to b$, $\hom(a,a)$, то однозначно определено $\hom(a,b)$, так как для любого $g\in \hom(a,b)$ существует $h\in \hom(a,a)$, такое что fh=g, а именно $g=f\underbrace{f^{-1}g}=fh;$
- (3) $f:a\to b,\ g:a\to c,$ то автоматически можно задать $h:b\to c,$ а именно $h=gf^{-1}.$

Таким образом, если в связном группоиде Γ известны группа автоморфизмов $\hom(a,a)$ некоторой вершины a и по одной стрелке $f:a\to b,\ g:a\to c,...$ из a в каждую из остальных вершин b,c,... то посредством утверджений (1)–(3) однозначно восстанавливается весь группоид Γ .

Рассмотрим теперь некоторый характер $\chi: \operatorname{Hom} \Gamma \to \mathbb{C}$. Благодаря свойству $\chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)$ все вышесказанное в определенном смысле переносится и на характер χ . Так если χ задано на

(1') $f: a \to b$, hom(a, a), то изоморфизм ψ "один в один" переносит харакатер на hom(b, b): если $\chi(h) = \alpha$, то $\chi(\psi(h)) = \chi(fhf^{-1}) = \chi(f) + \chi(h) - \chi(f) = \chi(h)$, и характер однозначно определен на hom(b, b).

- (2') $f: a \to b$, hom(a, a), то харктер однозначно продолжается на hom(a, b), так как для любого $g \in hom(a, b)$ существует $h \in hom(a, a)$, такое что fh = g, и следовательно $\chi(g) = \chi(f) + \chi(h)$.
- (3') $f: a \to b, g: a \to c$, то автоматически можно задать характер на некотором $h: b \to c$, а именно $h = gf^{-1}$, и $\chi(h) = \chi(g) \chi(f)$.

Вновь имеем: если в связном группоиде Γ определить характер на группе автоморфизмов $\hom(a,a)$ некоторой вершины a и на стрелках $f:a\to b,\ g:a\to c,...$ из a (по одной в каждую из остальных вершин b,c,...), то характер однозначно продолжается на все $\hom\Gamma$. Так, характер определяется своим действием на группе автоморфизмов произвольной вершины a^1 и вектором значений $s\in\mathbb{C}^{n-1}$ на стрелках из a (здесь $n=|Obj(\Gamma)|$).

Остановимся на задании характера на некоторой группе G, в дальнейшем в качестве G будет рассматриваться фундаментальная группа группоида.

Как известно 2 разрешимая группа Gраскладывается в прямую сумму абелевых групп

$$G \simeq G/G' \oplus \ldots \oplus G^{(n-1)}/G^{(n)},$$
 (1)

где $G^{(k+1)} = (G^{(k)})'$ — коммутант группы $G^{(k)}$.

Для конечно порожденной абелевой группы A справедливо разложение³

$$A \simeq \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n} \oplus \operatorname{Tor} A = \mathbb{Z}^{n} \oplus \operatorname{Tor} A,$$

где ${\rm Tor}\, A\doteqdot \{a\in A: ma=0$ для некоторого $m\in \mathbb{Z}, m\neq 0\}-nod \mathit{группа}$ кручения. Более того

Tor
$$A = \mathbb{Z}_{u_1} \oplus \ldots \oplus \mathbb{Z}_{u_m}$$

— сумма примарных подгруп.

Таким образом, А представляет собой совокупность всех линейных комбинаций

$$k_1e_1 + \ldots + k_ne_n + k_{n+1}t_1 + \ldots + k_{n+m}t_m \quad (k_i \in \mathbb{Z}),$$

где (e_1,\ldots,e_n) — базис свободной подргуппы, (t_1,\ldots,t_m) — порождающие примарных подгрупп.

Так, чтобы задать характер χ на группе A достаточно определить его значение на $(e_1, \ldots, e_n), (t_1, \ldots, t_m)$. Впрочем, $\chi(t_i)$ заведомо равно нулю, так как

$$(c_i + 1)t_i = t_i,$$

$$\chi((c_i + 1)t_i) = \chi(t_i),$$

$$(c_i + 1)\chi(t_i) = \chi(t_i),$$

$$c_i\chi(t_i) = 0,$$

$$\chi(t_i) = 0,$$

¹или на фундаментальной группе, что суть одно и то же,

 $^{^{2}}$ см. [2] гл.10 $\S 2$

³см.[2] гл.9 §1

где $c_i>0$ — порядок примарной подгруппы, порожденной t_i . Отсюда, достаточно задать характер лишь на (e_1,\ldots,e_n) и он будет однозначно определен на всем A.

Список литературы

- [1] Маклейн С. «Категории для работающего математика». Изд-во ФизМатЛит, Москва, 2004.
- [2] Винберг Э. Б. «Курс алгебры». Изд-во МЦНМО, Москва, 2014.