EXAMEN FINAL D'INFORMATIQUE 1

NB: L'usage des calculatrices et téléphones portables est strictement interdit.

Tout résultat doit être justifié

Exercice 1: (6 points):

- 1) Convertir le nombre hexadécimal 1ED en octal et en décimal.
- 2) Traduire l'expression $(x+y)^2 + y^{z+1} + \frac{1}{1+\sqrt{1+z^2}}$ en langage pascal (on rappelle que $a^b = e^{b \ln(a)}$)
- 3) Evaluer l'expression suivante en montrant l'ordre des opérations pour x=1, y=2, z=3.
- (a) x+2*y/(z+1)/y*z*(x+1/y)
- (b) (x+y>z) or not(x-y=z) and not(x=y)

Exercice 2: (7 points)

Soit l'algorithme suivant :

Algorithme exo2

Variables m,i:entier

s:réel

debut

lire(m)

s**←**0

pour i ← 1 $\underline{\grave{a}}$ m **faire**

$$S \leftarrow S + \frac{(2*i-1)^2}{2*i}$$

Finpour

Ecrire(s)

fin

- a) Traduire cet algorithme en programme Pascal.
- b) Dérouler l'algorithme selon les variables m, i, s pour m=4.
- c) Déduire l'expression générale de s calculée par l'algorithme en fonction de m.
- d) Réécrire l'algorithme avec la boucle tant que.

Exercice 3: (3 points)

Ecrire un programme en Pascal qui lit un nombre réel x, détermine et affiche la valeur de y multi-définie ci-dessous. Affiche le message 'valeur de x incorrecte' le cas échéant.

$$y = \begin{cases} \frac{x \ln(x)}{x - 1} & \text{si } 0 < x < 1\\ 1 & \text{si } x = 1\\ 0 & \text{si } x = 0\\ \text{'valeur de x incorrecte'} & \text{ailleurs} \end{cases}$$

Exercice 4: (4 points)

Soit le programme suivant :

Program test; Uses wincrt;

Var U : integer;

Begin

$$\overline{U:=13}; \underline{While} (U > 1) \underline{do}$$

Write(U);

End;

End.

Question : Dérouler ce programme et montrer ce qu'il affiche.

Remarque: A mod B donne le reste de la division de A par B

A div B donne le quotient de la division de A par B.

EXAMEN FINAL D'INFORMATIQUE 1

NB: L'usage des calculatrices et téléphones portables est strictement interdit. Tout résultat doit être justifié

Exercice 1: (6 points): Exercice 2: (7 points) 1) $(1ED)_{16} = (0001111101101)_2 = (755)_8 (0.5p)$ Program exo2; 5 5 (0.5p) Uses wincrt; $(1ED)_{16} = 1*16^2 + 14*16^1 + 13*16^0$ Var m,i :integer; = $(493)_{10}$ (0.5p) Ou bien: $1*2^8 + 1*2^7 + 1*2^6 + 1*2^5 + 0 + 1*2^3 + 1*2^2 + 0 + 1*2^0$ S:real: Begin read(m); (0.5p) $=(493)_{10}$ s := 0;2) sqr(x+y)+exp((z+1)*ln(y))+1/(1+sqr(1+sqr(z)))for i := 1 to m do(0.5p)(1p., chaque erreur -0.25) begin 3) x+2*y/(z+1)/y*z*(x+1/y)s := s + sqr(2*i-1)/(2*i); (0.5p) 1(4) x+2(0.5)end; 3(1.5)write(s); 4(4)/4end. 5(1)/y6(0.5)*zd) 7(1.5)*1.5 8(2.25) Algorithme exo2 X + 2.25Variables m, i:entier (1p. pour détails, chaque erreur -0.25) 9(3.25) S:réel Résultat: 3.25 (0.5p)Début Lire(m) $(\underline{x+y}>z)$ or $not(\underline{x-y}=z)$ and $not(\underline{x=y})$ s←0 3(-1)=z1(3) > z5(false) i←1 (0.5p)2(false) 4(false) Tant que $i \le m$ faire (0.75p)not (false) $s \leftarrow s + sqr(2*i-1)/(2*i)$ 6(true) 7(true) $i \leftarrow i + 1 \ (0.5p)$ and Fintanque (0.75p) 8(true) écrire(s) or (false or true) fin 9(true) (1p. pour détails, chaque erreur -0.25)

Résultat : true (0.5p)

b)				
Instructions \ variables	m	i .	S	
Lire(m)	4			
s←0			0	
pour i ← 1 $\underline{\hat{\mathbf{a}}}$ m faire				
i ← 1		1	0 + sqr(2*1-1)/(2*1) = 0.5 (0.5p.il suffit l'expression)	
i ← 2		2	0.5 + sqr(2*2-1)/(2*2) = 2.75 (0.5p.idem)	
i ← 3		3	$2.75 + \text{sqr}(2*3-1)/(2*3) \approx 6.91$ (0.5p.idem)	
i ← 4		4	$6.91 + \operatorname{sqr}(2*4-1)/(2*4) \approx 13.035(0.5p.idem)$	
i a atteint m donc on sort de la boucle				
Ecrire(s)			Affiche la valeur finale de s (13.035)	
fin				

c) expression gle: $1^2/2 + 3^2/4 + 5^2/6 + 7^2/8 + ... + (2m-1)^2/(2m)$ (1p. toute erreur -0.25)

Exercice 3: (3 points) (si programme incomplet noter sur 2 points)

end.

Exercice 4: (4 points)

Instructions \ variables	U	barème
U:=13;	13	
While (U > 1) do		
U>1;U MOD 2 < > 0 U:=3*U+1; Write(u)	40 Affiche 40	(0.25p)
<pre>U>1 ; U MOD 2 = 0 U:=u div 2; Write(u);</pre>	20 Affiche 20	(0.25p)
U>1; U MOD 2 = 0 U:=u div 2; Write(u);	10 Affiche 10	(0.25p)
U>1; U MOD 2 = 0 U:=u div 2; Write(u);	5 Affiche 5	(0.25p)
U>1; U MOD 2 < > 0 U:=3*U+1; Write(u);	16 Affiche 16	(0.25p)
U>1; U MOD 2 = 0 U:=u div 2; Write(u);	8 Affiche 8	(0.25p)
U>1; U MOD 2 = 0 U:=u div 2; Write(u);	4 Affiche 4	(0.25p)
U>1; U MOD 2 = 0 U:=u div 2; Write(u);	2 Affiche 2	(0.25p)
U>1 ; U MOD 2 = 0 U:=u div 2; Write(u);	1 Affiche 1	(0.25p)
U>1 condition non vérifiée alors on sort de la boucle while. End.		

Les valeurs affichées après exécution du programme sont :

40,20,10,5,16,8,4,2,1. (2.25p: compter 0.25p par valeur) l'exercice devient sur 04.50