1. Задание

- 1. Найти оценки параметров модели по данным, смоделированным в л/р3 (алгорим Баум-Велша, [4] стр 145-156)
 - 2. Отобразить результаты оценивания в таблице:

Начальное	Оценки	Достигнутая		Кол-во	Достигнутая точность по
приближение	параметров	точность і	ПО	итераций	значению невязки функции
параметров	модели	параметрам		(iter)	правдоподобия:
модели		(ρ_A, ρ_B)			$lnL(O \lor \lambda)^{iter} - lnL(O$
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			$\forall \lambda)^{iter-1}$

Начальное приближение параметров модели выбирать как минимум три раза:

- 1) Близкими к истинным параметрам
- 2) Равными истинным параметрам
- 3) Далекими от истинных параметров

2. Вариант задания

Вариант	Алфавит: V	Матрица переходных вероятностей А	Матрица эмиссей В	
2	{0,1}	$\begin{pmatrix} 0,3 & 0,3 & 0,4 \\ 0 & 0,5 & 0,5 \\ 0,5 & 0 & 0,5 \end{pmatrix}$	$\begin{pmatrix} 0.2 & 0.8 \\ 0.8 & 0.2 \\ 0.5 & 0.5 \end{pmatrix}$	

3. Текст программы

```
import numpy as np
import scipy as sp
from functools import reduce
import matplotlib.pyplot as plt
def get_data(fname, type):
    O = np.array([[i for i in line.split()] for line in open(fname, encoding="utf-8")],
dtype=type)
    return 0
def get data1(fname, type):
    O = np.array([i for i in open(fname, encoding="utf-8").readline().split()],
dtype=type)
    return 0
def WritingInFile(names, sequences, fileName):
    with open(fileName, "w") as file:
        for line in sequences:
            print(line, file=file)
#прямой ход
def forward_path(0, pi, A, B, T, N, K):
    alpha k = []
    for k in range(K):
        alpha = np.zeros((T, N))
        alpha[0, :] = pi * B[:, 0[k, 0]]
        for t in range(1, T):
            for j in range(N):
                tmp = np.zeros(N)
                for i in range(N):
                    tmp[i] = alpha[t - 1, i] * A[i, j]
                alpha[t, j] = tmp.sum() * B[j, O[k, t]]
        alpha k.append(alpha)
    return np.array(alpha_k)
```

```
#обратный ход def backward_path(O, pi, A, B, T, N, K):
```

```
beta_k = []
   for k in range(K):
           beta = np.zeros((T, N))
                 beta[T - 1, :] = 1
                 for t in range(T - 2, -1, -1):
                          for i in range(N):
                                  tmp = np.zeros(N)
                                  for j in range(N):
                                          tmp[j] = beta[t + 1, j] * A[i, j] * B[j, O[k, t + 1]]
                                  beta[t, i] = tmp.sum()
                 beta k.append(beta)
        return np.array(beta_k)
#вычисление гамма
def calculate gamma(alpha, beta, T, N, K):
         gamma k = []
         for k in range(K):
                 gamma = np.zeros((T, N))
                 for t in range(T):
                          for i in range(N):
                                  gamma[t, i] = alpha[k, t, i] * beta[k, t, i]
                          sum_all = gamma[t, :].sum()
                          gamma[t, :] = gamma[t, :] / sum_all
                 gamma_k.append(gamma)
         return np.array(gamma_k)
#вычисление кси
def calculate ksi(0, alpha, beta, A, B, T, N, K):
         ksi k = []
         for k in range(K):
                 ksi = np.zeros((T, N, N))
                 for t in range(T - 1):
                          for i in range(N):
                                  for j in range(N):
                                          ksi[t, i, j] = alpha[k, t, i] * A[i, j] * beta[k, t + 1, j] * B[j, ksi[t, i, j] * B[i, j] * B[
0[k, t + 1]
                          sum_all = ksi[t, :, :].sum()
                          ksi[t, :, :] = ksi[t, :, :] / sum_all
                 ksi k.append(ksi)
        return np.array(ksi_k)
#ЕМ-алгоритм (вычисление оценок параметров модели)
def estimate_parameter(0, pi_0, A_0, B_0, T, N, M, K):
         alp = forward_path(0, pi_0, A_0, B_0, T, N, K)
        bet = backward_path(0, pi_0, A_0, B_0, T, N, K)
         gam = calculate gamma(alp, bet, T, N, K)
         ksi = calculate ksi(0, alp, bet, A 0, B 0, T, N, K)
#оценка начальных состояний
         est pi = np.sum(gam[:, 0, :], axis=0) / K
#оценка переходной матрицы
         est_A_k = np.zeros((K, N, N))
         for k in range(K):
                 for i in range(N):
                          denom = gam[k, :-1, i].sum()
                          for j in range(N):
                                  est_A_k[k, i, j] = ksi[k, :-1, i, j].sum() / denom
        est_A = np.sum(est_A_k, axis=0) / K
#оценка матрицы эмиссей
        est_B_k = np.zeros((K, N, M))
         for k in range(K):
                 for i in range(N):
                          denom = gam[k, :, i].sum()
                          for j in range(M):
                                  numer = gam[k, :, i][0[k] == j].sum()
                                  est_B_k[k, i, j] = numer / denom
         est_B = np.sum(est_B_k, axis=0) / K
         return est_pi, est_A, est_B
```

```
def log_likelihood(0, pi, A, B, T, N, K):
    alp = forward_path(0, pi, A, B, T, N, K)
    L = []
    for k in range(K):
        1 = np.zeros((T, N))
        for t in range(T):
            for i in range(N):
                l[t, i] = alp[k, t, i]
            sum_all = l[t, :].sum()
        L.append(sum all)
    lnL = np.sum(np.log(L))
    return lnL
#условие выхода
def iter_exit(0, pi_old, A_old, B_old, pi_new, A_new, B_new, T, N, K):
    old = log_likelihood(0, pi_old, A_old, B_old, T, N, K)
    new = log_likelihood(0, pi_new, A_new, B_new, T, N, K)
    exit = abs(old - new)
    if exit > 1e-3:
        return False, exit
    else:
        return True, exit
#итерационный алгоритм Баума-Уэлша
def baum_welch(0, pi, A, B, T, N, M, K):
    iter = 0
    exit = False
    max_iter = 100
    ex = []
    temp.append(log_likelihood(0, pi, A, B, T, N, K))
    while exit == False:
        iter += 1
        new_pi, new_A, new_B = estimate_parameter(0, pi, A, B, T, N, M, K)
        exit, tmp = iter exit(0, pi, A, B, new pi, new A, new B, T, N, K)
        temp.append(log_likelihood(0, new_pi, new_A, new_B, T, N, K))
        if iter > max_iter:
            exit = True
        ex.append(tmp)
        pi, A, B = new_pi, new_A, new_B
    plt.xlabel('iter')
    plt.ylabel('lnl')
    it = np.linspace(0, iter, iter)
    f = plt.plot(it, np.array(ex1))
    plt.show()
    WritingInFile(['iter'], np.array([iter]), 'iter.txt')
    WritingInFile(['ex'], ex, 'ex.txt')
    return pi, A, B, ex
def ro_lambd():
    Q = get_data('Q.txt', np.int)
    0 = get_data('0.txt', np.int)
    A_0 = []
    B_0 = []
    pi_0 = []
    A_0.append(get_data('A1.txt', np.double))
    B_0.append(get_data('B1.txt', np.double))
    pi_0.append(get_data1('pi1.txt', np.int))
    A_0.append(get_data('A2.txt', np.double))
    B_0.append(get_data('B2.txt', np.double))
    pi 0.append(get data1('pi2.txt', np.double))
    A_0.append(get_data('A3.txt', np.double))
    B_0.append(get_data('B3.txt', np.double))
```

```
pi_0.append(get_data1('pi3.txt', np.double))
    A_0.append(get_data('A4.txt', np.double))
B_0.append(get_data('B4.txt', np.double))
    pi_0.append(get_data1('pi4.txt', np.double))
    A_0.append(get_data('A5.txt', np.double))
B_0.append(get_data('B5.txt', np.double))
    pi_0.append(get_data1('pi5.txt', np.double))
    est = []
    lnL = []
#прогон алгоритма из разных приближений и выбор оценок параметров по максимальному
#логарифму функции правдоподобия
    for i in range(5):
         est_pi, est_A, est_B, ex = baum_welch(0, np.array(pi_0[i]), np.array(A_0[i]),
np.array(B 0[i]), 100, 3, 2, 100)
         est.append([est_pi, est_A, est_B])
         lnL.append(log_likelihood(0, est_pi, est_A, est_B, 100, 3, 100))
    maxlnL = lnL.index(np.max(np.array(lnL)))
    est_param = est[maxlnL]
    WritingInFile(['maxlnL'], np.array([np.max(np.array(lnL))]), 'maxlnL.txt')
    WritingInFile(['est_pi'], est_param[0], 'est_pi.txt')
    WritingInFile(['est_A'], est_param[1], 'est_A.txt')
WritingInFile(['est_B'], est_param[2], 'est_B.txt')
    ro_A = np.linalg.norm(A_0[maxlnL] - est_param[1])
    ro_B = np.linalg.norm(B_0 [maxlnL] - est_param[2])
    WritingInFile(['roA'], np.array([ro_A]), 'roA.txt')
WritingInFile(['roB'], np.array([ro_B]), 'roB.txt')
    return est param
ro lambd()
```

4. Исследования

Для различных начальных приближений

Nº	Начальное	Оценки параметров	Достигнутая	Кол-	Достигнута
	приближение	модели	точность по	во	я точность
	параметров модели		параметрам	итера	по
			$(ho_A$, $ ho_B)$	ций	значению
				(iter)	невязки
					функции
					правдоподо
					бия:
					lnL(O
					$\vee \lambda)^{iter}$
					-lnL(O
					$\vee \lambda)^{iter-1}$
1	π= (!G O)	π= (!G O	0.123271	101	0.0036643
	03 03 04	0323289 036237/42 0	0.252465		
	A 0 05 05	A = O O B O O			
	05005	048 8 5534 0 0			
	0208				
	<i>B</i> = 08 02	027366 07225301			
		B= 06391765 03638225			
	05 05	05007258 04927412			
2	π= ()925 () 005 ()	π= (09985)83)43 (00)148 (8	0.125817	101	0.005179
			0.261109		

3	0335 03 0 A = 0305 05 0 0425 0305 0 0425 0305 0 B = 0305 0125 0 0425 0305 0 π=05050 0 06 01 03 0 A = 02 02 06 07 01 02 06 07 01 02 06 07 01 02 06 00 00 00 00 00 00 00 00 00 00 00 00	O325498 O36279656 O2 A = O4042236 O4547/175 O2 O4784525 O40775277 O2 O27416732 O8 B = O56334254 O36165946 O5012249 O4580591 π=(O15419928800270845809) A = O263221 O1677524 O2 O5332607 O1647428 O2	0.194036283 978 0.333118662 8713	67	0.0009105
	08 02 Æ 02 08 03 08	05573007 01617428 02 06025826 035712174 13= 016217552 081753048 036561001 065238599)			

Для различных начальных приближений (в качестве оценки параметров модели выбираются такие оценки, при которых логарифмическая функция правдоподобия максимальна)

Nº	Начальное приближение параметров модели	Оценки параметров модели	Достигнута я точность по параметра м $(\rho_A \ , \rho_B)$	Кол-во итерац ий (iter)	Достигнутая точность по значению невязки функции правдоподо бия: $ lnL(O \lor \lambda)^{iter} - lnL(O \lor \lambda)^{iter-1} $
1	π=000 03 03 04		0.12581708 7958 0.26110954	101	0.029316584 4805
	A 0 05 05 05 0 05		0218		
	02.08 Æ 08.02 05.05	π= (09)8551831409(00)14816			
2	π=(0925(005()) (335 (33 ())	0325098 03629656 0			
	A 005 05 0	A COMPAN CASTATS CO			

	0.407	02746732 0725638		
	O152 O832	B= 0583054 03616996		
	B= 0805 0195	05012289 04280791		
	045 055			
3	π= (05,05 ,0			
	06 01 03			
	A= 02 02 06			
	07 01 02			
	0802			
	<i>B</i> = 02 08			
	3 3 3			
4	π=(03)04(03)			
	040402			
	A 01 04 05			
	06 01 03			
	OB O7			
	<i>B</i> ≠ 09 01			
	045 055			
5	π=(QQ,1)			
	025 025 Q			
	A=005050			
	O45 O35 O			
	05 05			
	B=0505			
	05 05			