

Esquema de calificación

Noviembre de 2018

Matemáticas

Nivel medio

Prueba 2

Este esquema de calificaciones es propiedad del Bachillerato Internacional y **no** debe ser reproducido ni distribuido a ninguna otra persona sin la autorización del centro global del IB en Cardiff.

Instrucciones para los Examinadores

Abreviaturas

- **M** Puntos concedidos por tratar de utilizar un Método correcto; el procedimiento (es decir, el razonamiento que se ha seguido y los cálculos realizados) tiene que estar incluido.
- (M) Puntos concedidos por el **Método** utilizado; dicho método puede inferirse de un procedimiento posterior **correcto**.
- **A** Puntos concedidos por una Respuesta (en inglés, Answer) o por Precisión (en inglés, Accuracy); a menudo dependen de los puntos M precedentes.
- (A) Puntos concedidos por una **Respuesta** o por **Precisión**; dicha respuesta/precisión puede inferirse de un procedimiento posterior **correcto**.
- **R** Puntos concedidos por un **Razonamiento** claro.
- **N** Puntos concedidos por respuestas **correctas** cuando no se muestra **ningún** procedimiento.
- **AG** Respuesta dada (del inglés answer given) en la propia pregunta, por lo que no se concede ningún punto.

Uso del esquema de calificación

1 General

Se deberá calificar siguiendo las instrucciones que aparecen en RM Assessor

2 Puntuación por Método y por Respuesta/Precisión

- No conceda automáticamente la puntuación máxima cuando la respuesta sea correcta; es
 obligatorio comprobar todo el procedimiento y puntuar la pregunta conforme al esquema de
 calificación.
- No se puede conceder M0 seguido de A1, puesto que los puntos A dependen de los puntos M precedentes, de haber alguno. Una excepción a esta regla es el caso en el que no se haya incluido ningún desarrollo que permita conceder un M1, a diferencia de aquellos casos en los que el método utilizado haya sido incorrecto (véase el punto 4).
- Cuando se indica en la misma línea una puntuación **M** y otra **A** (p. ej., **M1A1**), esto normalmente significa que se conceda **M1** por **intentar** utilizar un método adecuado (p. ej., sustitución en una fórmula) y **A1** por utilizar los valores **correctos**.
- Cuando existen dos o más puntuaciones **A** en la misma línea, se pueden otorgar de forma independiente; de manera que si el primer valor es incorrecto, pero los dos siguientes son correctos, se otorga **A0A1A1**.
- Cuando en el esquema de calificación se especifica (M2), N3, etc., no separe las notas, a menos que
- exista una observación
- La mayoría de las puntuaciones **M** se han de conceder por el empleo de un método **válido**; es decir, de un método capaz de conducir a la respuesta que pide el enunciado. Por ello, dicho método ha de propiciar algún tipo de avance en pos de la respuesta.
- Una vez que aparezca en la hoja la respuesta correcta a una pregunta o a un apartado de una pregunta, ignore cualquier desarrollo adicional correcto. Sin embargo, si el desarrollo adicional revela falta de comprensión matemática, no conceda el *A1* final.

3 Puntos N

Si **no** se muestra ningún desarrollo, otorgue puntos **N** a las respuestas **correctas**. En ese caso, ignore la distribución de notas (**M**, **A**, **R**).

- **No** otorgue una mezcla de notas **N** y otras notas
- Pueden existir menos notas N disponibles que el total de notas M, A y R; esto se hace de forma deliberada para penalizar a los alumnos por no seguir las instrucciones respecto a que muestren el trabajo.
- Es posible que no exista una relación directa entre las puntuaciones **N** y las puntuaciones implícitas. Hay veces en las que todos los puntos que hay en juego son implícitos, pero la puntuación **N** no es la máxima puntuación: esto indica que queremos que el alumno plasme parte del desarrollo del ejercicio, sin especificar cuál.
- Para ser coherentes con el esquema de calificación, la puntuación **N** se indica para cada apartado, incluso en aquellos casos en los que coincida con el desglose de puntos **M**, **A** y **R**.
- Si un alumno muestra un trabajo incorrecto que, de algún modo, le lleva a la respuesta correcta, no se deben otorgar puntos N a esa respuesta correcta. Sin embargo, si el alumno ha indicado (generalmente tachándolo) que el trabajo debe ser ignorado, otorgue los puntos N a la respuesta correcta.

4 Puntuaciones implícitas

Las puntuaciones implícitas se muestran entre paréntesis; p. ej., (M1).

- Las puntuaciones implícitas solo se pueden conceder si el alumno ha incluido el desarrollo del ejercicio o si dicho desarrollo queda implícito en apartados subsiguientes de la pregunta (el que el alumno haya dado una respuesta final correcta no implica necesariamente que se le tengan que conceder todos los puntos implícitos que hay en juego). Hay preguntas en las que es necesario plasmar algo de desarrollo, pero puesto que se acepta que no todo el mundo vaya a escribir los mismos pasos, todos los puntos que hay en juego son implícitos, pero la puntuación N no es la máxima puntuación asignada a la pregunta
- Normalmente el desarrollo correcto del ejercicio aparece escrito en la línea siguiente.
- Allí donde se haya asignado un (M1) seguido de un A1 para cada respuesta correcta, si no se incluye el desarrollo del ejercicio una respuesta correcta será prueba suficiente para poder conceder el (M1).

Las puntuaciones 'se ha de ver' aparecen en el esquema sin paréntesis; p. ej., M1.

- Las puntuaciones 'se ha de ver' solo se pueden conceder si se ha incluido el desarrollo del ejercicio (cálculos realizados/razonamiento seguido).
- Si una puntuación 'se ha de ver' dada no se ha concedido porque no se hubiera incluido el desarrollo del ejercicio (a diferencia de *M0* o *A0*, que se conceden cuando el desarrollo mostrado sea incorrecto), en ese caso sí que se pueden conceder todas las puntuaciones subsiguientes si resulta pertinente.

5 Puntuación de arrastre de error (FT)

Las puntuaciones de arrastre de error (FT, del inglés follow-through) se conceden cuando tras dar una respuesta —final o intermedia— incorrecta en uno de los apartados de una pregunta, dicha respuesta se utiliza correctamente en apartados o subapartados posteriores de esa pregunta. Por lo general, para poder conceder puntos de arrastre de error (FT), el alumno tiene que haber incluido el desarrollo del ejercicio (es decir, los cálculos/razonamientos que ha seguido); no puede haberse limitado a dar una respuesta final basada en esa respuesta incorrecta que dio en el apartado anterior. Sin embargo, si en un subapartado dado los únicos puntos que tiene asignados son por la respuesta final que se dé, en ese caso sí se deberían conceder puntos FT si resulta pertinente. Se espera que los examinadores comprueben el desarrollo del ejercicio que ha incluido el alumno antes de concederle puntos FT allí donde resulte pertinente.

- Dentro de un apartado dado, una vez que se ha cometido un error ya no se pueden conceder más puntos A a otras partes del desarrollo que hagan uso de ese error. Sin embargo, sí se pueden conceder puntos M y R si resulta pertinente. (No obstante, tal y como se indicó anteriormente, si no se concedió una puntuación A determinada porque no se había incluido el desarrollo del ejercicio, en ese caso sí que se pueden conceder las puntuaciones subsiguientes si resulta pertinente).
- Las excepciones a esta regla se indicarán explícitamente en el esquema de calificación.
- Si la pregunta resulta mucho más sencilla debido a un error, entonces se ha de utilizar el propio criterio para otorgar menos puntos *FT*.
- Si el error lleva a un valor inadecuado (por ejemplo, probabilidad mayor que 1, uso de r > 1 para la suma infinita de una progresión geométrica, sen θ =1,5, un valor no entero cuando se requiere un entero), entonces no se debe otorgar la puntuación de la respuesta final.
- En el esquema de calificación puede aparecer la expresión "del alumno" en una descripción, para indicar que el alumno podría estar utilizando un valor incorrecto.
- Un alumno comete un error en un apartado, pero obtiene la respuesta o respuestas correctas en los apartados posteriores, se otorgan puntos cuando proceda, a menos que la pregunta diga a partir de lo anterior. Con frecuencia, es posible utilizar en apartados posteriores un enfoque distinto, que no depende de la solución obtenida en los apartados previos.
- En una pregunta de tipo «mostrar que», si un error cometido en un subapartado anterior hace que el alumno no pueda mostrar la respuesta requerida (la dada en el enunciado), en ese caso no conceda el A1 final. Tenga presente que si dicho error se comete dentro del mismo subapartado, las reglas del arrastre de errores (FT) quizá conduzcan a la pérdida de puntos adicionales

6 Error de lectura

Si un alumno copia de forma incorrecta la información de la pregunta, se considera un error de lectura (MR). A un alumno sólo se le puede penalizar una vez por un error de lectura dado. Utilice el sello **MR** para indicar que se trata de un error de lectura. No conceda el primer punto que haya en juego en dicha pregunta, incluso aunque se trate de una puntuación **M**, pero sí que conceda todas las restantes (si resulta pertinente), para que así el alumno solo pierda un punto por el error de lectura cometido.

- Si la pregunta resulta mucho más sencilla debido al error de lectura (MR), entonces se ha de utilizer el propio criterio para otorgar menos puntos.
- Si el error de lectura (*MR*) lleva a un valor inadecuado (por ejemplo, probabilidad mayor que 1, uso de r > 1 para la suma infinita de una progresión geométrica, senθ = 1,5, un valor no entero cuando se requiere un entero), entonces no se debe otorgar la puntuación de la respuesta final.
- El error que el alumno pueda cometer al copiar su propio trabajo **no** constituye un error de lectura, sino un error.

7 Puntuación discrecional (d)

En las contadas ocasiones en las que el esquema de calificación no cubra el procedimiento incluido por el alumno, el examinador utilizará su propio criterio para conceder una puntuación apropiada. En esos casos se ha de utilizar la anotación DM y, al lado de la puntuación, se ha de escribir una **nota** breve en la que se explique el porqué de esta decisión.

8 Métodos alternativos

En ocasiones, los alumnos utilizan métodos distintos de aquellos que aparecen en el esquema de calificación. A menos que en la pregunta se especifique qué método se ha de utilizar, el uso de métodos alternativos correctos no se ha de penalizar, sino que se han de puntuar en sintonía con lo que indica el esquema de calificación. Si tiene alguna duda al respecto, póngase en contacto con el jefe de equipo (su team leader) y pídale consejo.

- Cuando para toda una pregunta se incluyen varios métodos alternativos, estos aparecen señalados mediante los encabezamientos **MÉTODO 1**, **MÉTODO 2**, etc.
- Las soluciones alternativas para un apartado de una pregunta se indican mediante el encabezamiento O BIEN... O BIEN. Siempre que sea posible, también se empleará la alineación del texto (sangría del párrafo) como recurso para que el examinador pueda identificar más fácilmente dónde comienzan y dónde terminan las distintas alternativas.

9 Formas alternativas

A menos que en la pregunta se especifique lo contrario, acepte formas equivalentes.

- Dado que se trata de un examen internacional, acepte todas las formas alternativas de notación.
- En el esquema de calificación, las formas **numéricas** y **algebraicas** equivalentes aparecen generalmente escritas entre paréntesis, justo a continuación de la respuesta.
- En el esquema de calificación, las respuestas **simplificadas** (que los alumnos suelen no incluir en los exámenes) normalmente aparecen escritas entre paréntesis. La puntuación se ha de conceder si el alumno da la respuesta bien en la forma que precede al paréntesis o bien en la forma que aparece entre paréntesis (de habérsela incluido).

10 Calculadoras

Notación de calculadora – La guía de Matemáticas NM dice lo siguiente:

Los alumnos deben utilizar siempre la notación matemática correcta y no la propia de las calculadoras.

No acepte ninguna respuesta final que se haya escrito utilizando notación de calculadora. Sin embargo, no penalice el uso de notación de calculadora durante el desarrollo del ejercicio.

11 Estilo

El objetivo del esquema de calificación es presentar las respuestas mediante una expresión clara, por ejemplo, si la pregunta pide hallar el valor de k, en el esquema de calificación aparecerá k = 3, pero los puntos se otorgarán al valor 3 (normalmente no hay necesidad del " k = "). En estos casos, también es usualmente aceptable que el nombre de la variable sea distinto, siempre que no exista ambigüedad en la pregunta, por ejemplo, si la pregunta pide hallar el valor de p y de q, entonces la respuesta del alumno ha de ser clara. En general, la única situación donde se requiere la respuesta completa es en una pregunta donde lo que se pide es una ecuación (en este caso, en el esquema de calificación aparecerá "debe ser una ecuación").

En el esquema de calificación aparece con frecuencia un texto que describe a qué se deben otorgar los puntos, seguido de ejemplos. Estos ejemplos no son exhaustivos, y los examinadores deben comprobar lo que han escrito los alumnos para ver si satisface las descripciones. Cuando se trata de puntos M, algunos de los ejemplos que se incluyen pueden presentar una notación deficiente, para indicar lo que es aceptable.

12 Respuestas del alumno

Si el alumno, en las hojas que contienen sus respuestas, ha trazado una línea cubriendo parte del desarrollo de alguna pregunta o si de algún otro modo ha tachado parte del desarrollo de algún ejercicio, no conceda ningún punto por esa parte del desarrollo.

Se supone que los alumnos han de escribir las respuestas a las preguntas de la Sección A en el cuestionario de examen (CE), y las de la Sección B en los cuadernillos de respuestas. En ocasiones los alumnos necesitan más espacio para la Sección A y utilizan el cuadernillo (y con frecuencia así lo indican en el CE) o escriben fuera de las casillas. Este desarrollo hay que calificarlo.

En las instrucciones se les dice a los alumnos que no han de escribir en la Sección B del CE. Así, es posible que hayan utilizado este espacio como hoja borrador, para hacer cálculos que dan por hecho se van a ignorar. Si han escrito soluciones en el cuadernillo de respuestas, no hay necesidad de mirar el CE. Sin embargo, si hay preguntas enteras o apartados enteros que no aparezcan resueltos en el cuadernillo de respuestas, por favor eche un vistazo al CE y compruebe que no estén resueltos ahí. En caso de que lo estén, puntúe esas preguntas enteras o esos apartados enteros que el alumno no escribió en el cuadernillo de respuesta.

13. Diagramas

Las indicaciones de cómo puntuar bosquejos (dibujos aproximados) suelen mencionar que el dibujo ha de pasar por determinados puntos o que tiene que tener una serie de características concretas. Estos puntos solo se pueden conceder si el bosquejo tiene (aproximadamente) la forma correcta. Todos los valores que se den en el esquema de calificación constituyen una guía aproximada que indica dónde se encuentran esos puntos/características relevantes. En algunas preguntas el primer *A1* se concede por la forma del bosquejo; en otras, los puntos solo se conceden si aparecen plasmados esos puntos/características relevantes. En ambos casos, a no ser que la forma del bosquejo sea aproximadamente correcta, no se podrá conceder ningún punto (a menos que se indique explícitamente lo contrario). No obstante, si el gráfico está basado en cálculos previos, se deberán conceder puntos *FT* si resulta pertinente.

14. Precisión de las respuestas

Cuando el grado de precisión se especifique en el enunciado de la pregunta, el esquema asignará un punto a la respuesta dada con la precisión requerida. Cuando esto no se especifique en el enunciado de la pregunta, todas las respuestas numéricas se tendrán que dar exactas o con una aproximación de tres cifras significativas.

No acepte una respuesta final numérica que esté a medias o sin terminar (p. ej., 3/0,1), a no ser que se haya indicado explícitamente lo contrario. Como regla general, las respuestas numéricas que consten de más de una parte (como es el caso de las fracciones) se deberían dar utilizando números enteros (p. ej., 6/8). Aquellos cálculos que conducen a un número entero se han de terminar, a excepción de aquellas fracciones que no sean números enteros. No es necesario dar los valores intermedios redondeándolos a tres cifras significativas. Más aún, hay que tener presente que si el alumno trabaja con valores redondeados puede acabar obteniendo una respuesta incorrecta; en casos así se ha de conceder un *A0* por la respuesta final. Cuando en un apartado de una pregunta haya que dar una respuesta numérica como respuesta **final**, en el correspondiente esquema de calificación se incluirá:

Un valor truncado con 6 cs El valor exacto (si resulta pertinente), la respuesta correcta tras redondear a 3 cs

[2 puntos]

Total [6 puntos]

Sección A

1. Por un enfoque válido (M1)(a) $(A \cap M') + (A \cap M), \frac{17}{35}, 11 + 6$ Número de alumnos que van a clase de arte = 17 **A1** N2 [2 puntos] (b) (i) Por un enfoque válido (M1)13+5, 35-17, 18, 1-P(A)0.514285 $P(A') = \frac{18}{35}$ (exacto), 0,514 **A1 N2** Por un enfoque válido (ii) (M1)11+13, 35-6-5, 240.685714 $P(A \text{ o } M \text{ pero no a ambas}) = \frac{24}{35}$ (exacto), 0,686 **A1** N2 [4 puntos] Total [6 puntos] 2. Pruebas de haber planteado el ejercicio (M1)(a) (i) *P. ej.*, valor correcto de a, de b o de r (incluido en (ii)) o $r^2 (= 0.973)$ 9,91044, -31,3194 a = 9.91, b = -31.3, y = 9.91x - 31.3**N3** A1A1 0,986417 (ii) r = 0.986**A1 N1** [4 puntos] Por haver sustituido x = 21,5 en **su** ecuación (b) (M1)P. ej., 9,91(21,5)-31,3

> 181,755 182 (cm)

3. (a) (i) Por utilizar un método válido (M1) P. ej., f(0), bosquejo (dibujo aproximado) del gráfico

El punto de intersección con el eje y es $-\frac{1}{3}$ (exacto), -0.333, $\left(0, -\frac{1}{3}\right)$ **A1**

(ii)
$$x = -\frac{3}{2}$$
 (ha de ser una ecuación) **A1 N1**

(iii) Por utilizar un método válido (M1) P. ej., $\frac{6}{2}$, $f(x) = 3 - \frac{10}{2x+3}$, bosquejo (dibujo aproximado) del gráfico

2 2x+3 y=3 (ha de ser una ecuación)

[5 puntos]

N₂

A1

(b) Por utilizar un enfoque válido (M1)

P. ej., por darse cuenta de que el $\lim_{x\to\infty} f(x)$ guarda relación con la asíntota horizontal,

tabla que incluya valores grandes de x, su valor y basado en (a)(iii), regla de L'Hôpital $\lim_{x\to\infty} f(x) = 3$.

$$\lim_{x \to \infty} \left(\frac{6x - 1}{2x + 3} \right) = 3$$
[2 puntos]

Total [7 puntos]

4. (a) Por utilizar un enfoque válido (M1)

P. ej., v(t) = 0, bosquejo (dibujo aproximado) del gráfico

 $t = \log_{1,4} 2.7$ (exacto), t = 2.95 (s)

A1 N2 [2 puntos]

(b) Por utilizar un enfoque válido (M1) P. ej., a(t) = v'(t), v'(2)

0,659485

 $a(2) = 1,96 \ln 1,4$ (exacto), $a(2) = 0,659 \text{ (m s}^{-2})$

A1 N2

[2 puntos]

(c) Por un enfoque correcto (A1)

P. ej., $\int_{0}^{5} |v(t)| dt$, $\int_{0}^{2.95} (-v(t)) dt + \int_{2.95}^{5} v(t) dt$

5,3479

distancia = 5,35 (m) **A2 N3**

[3 puntos]

Total [7 puntos]

5. Por sustituir correctamente en la fórmula de la serie geométrica infinita (A1)

P. ej., 33, 25 =
$$\frac{u_1}{1-r}$$

Por sustituir correctamente en la fórmula de u_n (incluido en algún lugar de la pregunta, no necesariamente este apartado) (A1) P. ej., $7.98 = u_1 r$

Por intentar expresar u_1 en función de r (o viceversa) (M1)

P. ej.,
$$u_1 = \frac{7.98}{r}$$
, $u_1 = 33,25(1-r)$, $r = \frac{7.98}{u_1}$, $r = \frac{33,25-u_1}{33,25}$

Por un desarrollo correcto (cálculos o razonamiento) (A1)

P. ej.,
$$\frac{\left(\frac{7,98}{r}\right)}{1-r} = 33,25,\ 33,25(1-r) = \frac{7,98}{r},\ (0,4,19,95),\ (0,6,13,3),\ \frac{u_1}{1-\frac{7,98}{u_1}} = 33,25$$

$$r = 0, 4 \ \left(=\frac{2}{5}\right), \ r = 0, 6 \ \left(=\frac{3}{5}\right)$$

Total [6 puntos]

6. Por un enfoque válido a la hora de desarrollar el binomio (debe tener la sustitución correcta de los parámetros, pero acepte "r" o un valor incorrecto de r) (M1)

P. ej.,
$$\binom{n}{r} (2x^4)^{n-r} \left(\frac{x^2}{k}\right)^r$$
, $(2x^4)^{12} + \binom{12}{1} (2x^4)^{11} \left(\frac{x^2}{k}\right)^1 + \binom{12}{2} (2x^4)^{10} \left(\frac{x^2}{k}\right)^2 + \dots$

Por un intento válido de hallar r para x^{40} o x^{38} (M1)

P. ej.,
$$(x^4)^{12-r}(x^2)^r = (x)^{40}$$
, $(x^4)^r(x^2)^{12-r} = (x)^{40}$,

$$\binom{12}{r} (2^r) \left(\frac{1}{k}\right)^{12-r} (x^4)^r (x^2)^{12-r} = \binom{12}{r} (2^r) \left(\frac{1}{k}\right)^{12-r} x^{38}$$

Por una ecuación correcta para hallar un valor de r (A1)

P. ej.,
$$48-2r=40$$
, $48-2r=38$, $24+2r=40$, $2r+24=38$

Por valores correctos de r (dados en algún lugar de la pregunta, no necesariamente este apartado) (A1)(A1)

P. ej.,
$$r = 4$$
, $r = 5$ **O BIEN** $r = 7$, $r = 8$

Por una ecuación correcta que permita, al resolverla, hallar \boldsymbol{k}

P. ej., $\binom{12}{4}(2^8)\left(\frac{1}{k}\right)^4 = 5\binom{12}{5}(2^7)\left(\frac{1}{k}\right)^5$, $\frac{126720}{k^4} = 5 \times \frac{792(128)}{k^5}$, 990 k = 3960

$$k=4$$

Total [7 puntos]

A1

7. (a) Por darse cuenta de que TR = 32 (incluido en algún lugar de la pregunta —incluido el diagrama—, y no necesariamente en este apartado)

Por un desarrollo correcto (cálculos o razonamiento)

P. ej., $32^2 = x^2 + 38^2 - 2(x)(38)\cos 43^\circ$, $1024 = 1444 + x^2 - 76(x)\cos 43^\circ$ $x^2 - (76\cos 43^\circ)x + 420 = 0$ AG

NO

[2 puntos]

Nota: Existen muchos enfoques posibles para esta pregunta dependiendo de qué triángulo haya utilizado el alumno, y de si optó por utilizar el teorema del coseno y/o el teorema del seno. Por favor, compruebe detenidamente el desarrollo del ejercicio y puntúelo conforme a lo que indica el esquema de calificación.

MÉTODO 1

Por valores correctos de x (dados en algún lugar de la pregunta, no necesariamente este apartado) **A1A1** x = 9,02007, 46,5628

Por darse cuenta de la necesidad de hallar diferencias (restar) los valores de x (M1)

P. ej., 46.5 - 9.02, $x_1 - x_2$

37,5427

37,5 (km) A1 N2

MÉTODO 2

Por un empleo correcto del teorema del seno en ΔSRT

P. ej.,
$$\frac{\text{sen } \hat{SRT}}{38} = \frac{\text{sen } 43^{\circ}}{32}$$
, $\hat{SRT} = 54,0835^{\circ}$ (A1)

Por reconocer/identificar el triángulo isósceles (en algún lugar de la pregunta, no necesariamente este apartado) (M1)

P. ej., $\hat{T} = 180^{\circ} - 2.54,0835^{\circ}$, dos lados de 32

P. ej.,
$$\sqrt{32^2 + 32^2 - 2 \cdot 32 \cdot 32 \cos(180^\circ - 2 \cdot 54,0835^\circ)}$$
, $\frac{\sin 71,833^\circ}{d} = \frac{\sin 54,0835^\circ}{32}$, $32^2 = 32^2 + x^2 - 2 \cdot 32x \cos(0,944)$

37,5427

37,5 (km) A1 N2

[4 puntos]

Total [6 puntos]

Sección B

8.

Nota: Puede haber diferencias sutiles en las respuestas proporcionadas que dé el alumno, dependiendo de qué valores anteriores no redondeados y/o valores correctos de 3 cs el alumno haya utilizado en un apartado anterior. Acepte respuestas que sean coherentes con el desarrollo del ejercicio.

(a) (i) Por utilizar un enfoque válido

(M1)

P. ej., B-A, AO+OB,
$$\begin{pmatrix} 8 \\ -1 \\ 5 \end{pmatrix} - \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} 11 \\ -5 \\ 3 \end{pmatrix}$$

A1

N2

(ii) Por sustituir correctamente en la fórmula

(A1)

P. ej.,
$$\sqrt{11^2 + (-5)^2 + 3^2}$$

12,4498

$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = \sqrt{155}$$
 (exact), 12,4

A1

N2

[4 puntos]

(b) (i) Por utilizar un enfoque válido para hallar t

(M1)

P. ej.,
$$\begin{pmatrix} 5 \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
, $5 = 2 + t$, $1 = -5 + 2t$

t=3 (incluido en algún lugar de la pregunta, no necesariamente este apartado)

(A1)

Por tratar de sustituir **su** parámetro en la ecuación vectorial

(M1)

P. ej.,
$$\begin{pmatrix} 5 \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
, $3 \cdot (-2)$

A1

N2

continúa en la pág. siguiente...

Continuación de la Pregunta 8

(ii) Por utilizar un enfoque correcto

P. ej.,
$$\begin{pmatrix} 5 \\ -6 \\ 1 \end{pmatrix} - \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}$$
, AO+OC, $c-a$

$$\overrightarrow{AC} = \begin{pmatrix} 8 \\ -10 \\ -1 \end{pmatrix}$$

AG

N0

Nota: No otorgue *A1* en apartado (ii) a menos que la respuesta en el apartado (i) sea correcta y no sea el resultado de un desarrollo en sentido inverso (del inglés WB "working backwards").

[5 puntos]

(c) Por hallar el producto escalar y el módulo

Producto escalar = $11 \times 8 + -5 \times -10 + 3 \times -1$ (= 135)

$$|\overrightarrow{AC}| = \sqrt{8^2 + (-10)^2 + (-1)^2} \quad (= \sqrt{165}, 12, 8452)$$

Pruebas de haber sustituido en la fórmula

(M1)

P. ej.,
$$\cos \theta = \frac{11 \times 8 + -5 \times -10 + 3 \times -1}{\left| \overrightarrow{AB} \right| \times \sqrt{8^2 + (-10)^2 + (-1)^2}}$$
, $\cos \theta = \frac{\overrightarrow{AB \cdot AC}}{\sqrt{155} \times \sqrt{8^2 + (-10)^2 + (-1)^2}}$

Por una sustitución correcta

(A1)

$$\textit{P. ej.,} \cos\theta = \frac{11 \times 8 + -5 \times -10 + 3 \times -1}{\sqrt{155} \times \sqrt{8^2 + (-10)^2 + (-1)^2}} \,, \ \cos\theta = \frac{135}{159,921...} \,,$$

 $\cos \theta = 0.844162...$

$$\hat{A} = 0.566$$
, 32.4°

A1

N3 [5 puntos]

(d) Por sustituir correctamente en la fórmula del área

P. ej.,
$$\frac{1}{2} \times \sqrt{155} \times \sqrt{165} \times \text{sen}(0,566...)$$
, $\frac{1}{2} \times \sqrt{155 \times 165} \times \text{sen}(32,4)$

42,8660

$$área = 42,9$$

A1

N2

[2 puntos]

Total [16 puntos]

9. (a) 0,010724 0,0107

A2 N2

[2 puntos]

(b) Por un valor z correcto 0.263714...

(A1)

Por existir pruebas de que ha utilizado un enfoque apropiado

(M1)

P. ej.,
$$\frac{0.65 - 0.592}{\sigma}$$
, $0.264 = \frac{x - \mu}{\sigma}$

Por una sustitución correcta

(A1)

P. ej.,
$$0.263714 = \frac{0.65 - 0.592}{\sigma}$$
, $\sigma = \frac{0.65 - 0.592}{0.264}$

0,219934

 $\sigma = 0,220$

A1

[4 puntos]

N3

(c) Por un desarrollo correcto para hallar P(grupo X y t>0.65) o bien P(grupo Y y t>0.65) (incluido en algún lugar de la pregunta, no necesariamente este apartado) (A1) $P. ej., P(\text{grupo }X) \times P(t>0.65 \mid X), P(X \cap t>0.65) = 0.0107 \times 0.38 (= 0.004075), P(Y \cap t>0.65) = 0.396 \times 0.62$

Por darse cuenta de que se trata de probabilidad condicionada (incluido en algún lugar de la pregunta, no necesariamente este apartado) (M1)

P. ej.,
$$P(X | t > 0.65)$$
, $P(A | B) = \frac{P(A \cap B)}{P(B)}$

Por utilizar un enfoque válido para hallar P(t > 0.65)

(M1)

$$P(X y t > 0.65) + P(Y y t > 0.65)$$

Por un desarrollo correcto del ejercicio para calcular P(t > 0.65) (A1)

P. ej., $0.0107 \times 0.38 + 0.396 \times 0.62$, 0.249595

Por sustituir correctamente en la fórmula de la probabilidad condicionada A1

P. ej.,
$$\frac{0,0107 \times 0,38}{0,0107 \times 0,38 + 0,396 \times 0,62}$$
, $\frac{0,004075}{0,249595}$

0.016327

$$P(X | t > 0.65) = 0.0163270$$

A1

N3

[6 puntos]

continúa en la pág. siguiente...

Continuación de la Pregunta 9

(d) Por darse cuenta/identificar que se trataba de probabilidad binomial (M1)P. ej., $X \sim B(n, p)$, $\binom{n}{r} p^r q^{n-r}$, $(0.016327)^2 (0.983672)^8$, $\binom{10}{2}$

Por utilizar un enfoque válido (M1)*P.* ej., $P(X \ge 2) = 1 - P(X \le 1)$, 1 - P(X < a), sumar los términos del 2 al 10 (acepte binomcdf(10, 0,0163, 2, 10))

0.010994

$$P(X \ge 2) = 0.0110$$

A1

A2

N₂

N3

[3 puntos]

Total [15 puntos]

10. Por tratar de sustituir los límites correctos o la función en la fórmula donde interviene f^2 (M1)

P. ej.,
$$\pi \int_{-2}^{2} y^2 \, dy$$
, $\pi \int_{-2}^{2} \left(\sqrt{\frac{4-x^2}{8}} \right)^2 dx$

4,18879

Volumen = 4,19, $\frac{4}{3}\pi$ (exacto) (m³) Nota: Si por error los candidatos utilizan la calculadora configurada en grados, no podrán

otorgarse A puntos. Sólo otorque M puntos por el desarrollo mostrado, según corresponda. Las respuestas en grados son p = 13,1243 y q = 26,9768 en (b)(i) y

12,3130 o 28,3505 en (b)(ii).

[3 puntos]

(b) (i) Por darse cuenta de que el volumen aumenta cuando g' es positiva *P.* ej., g'(t) > 0, bosquejo (dibujo aproximado) del gráfico de g'donde se indique el intervalo correcto

1,73387, 3,56393
$$p = 1,73, q = 3,56$$

A1A1

N3

Por usar un enfoque válido para hallar el cambio del volumen (ii) (M1)

P. ej., g(q) - g(p), $\int_{p}^{q} g'(t) dt$

3,74541

cantidad total = 3,75 (m³)

A2

N3 [6 puntos]

continúa en la pág. siguiente...

Continuación de la Pregunta 10

(c)

Nota: Puede haber ligeras diferencias en las respuestas finales que dé el alumno, dependiendo del valor concreto que haya arrastrado desde un apartado anterior. Acepte respuestas que sean coherentes con un desarrollo correcto del ejercicio.

Por identificar en qué momento el volumen de agua alcanza un máximo (M1)

P. ej., máximo cuando t = q, $\int_{0}^{q} g'(t) dt$

Por hallar una expresión correcta del volumen de agua máximo

P. ej., $2.3 + \int_0^q g'(t) dt$, $2.3 + \int_0^p g'(t) dt + 3.74541$, 3.85745

Por intentar hallar la diferencia entre el volumen del contenedor y el valor máximo

P. ej., $4,18879 - \left(2,3 + \int_0^q g'(t) dt\right)$, 4,19 - 3,85745

0,331334

 $0.331 \, (m^3)$

A2

(M1)

(A1)

N3

[5 puntos]

Total [14 puntos]