Notation

The following notation is used throughout this work.

- a a scalar (real, integer, or word/token)
- \tilde{a} a vector, nominally a column vector
- A a matrix
- A a sequence, including a dataset or a sequence of words
- \mathbb{V} a set, e.g. the vocabulary
- $\tilde{x}_{[i]}$ the *i*th element of the vector \tilde{x}
- $X_{[i,j]}$ the row *i* and column *j* element *X*
- $X_{[:,i]}^{[:,i]}$ the *i*th column *vector* of the matrix X
- $X_{[i,:]}$ the *i*th row *vector* of the matrix X
 - $w^{[t]}$ a scalar tth element of some sequence W^{f} a matrix disambiguated by the name f
- $[A\ B]$ the horizontal concatenation of A and B
- [A; B] the vertical concatenation of A and B
- P(...) A probability (estimated or ground truth)
 - \hat{A} a random variable (when not a matrix)
 - \hat{y} A network output value, corresponding to target value y or \tilde{y} a vector or scalar quantity as appropriate

Words are treated as integers

We consistently notate words, as if they were scalar integer values. Writing for example $w^{[1]}$ as to be the first word in a sequence. Which is then used an an index: $C_{[:,w^{[i]}]}$ is it's corresponding word vector, from the embedding matrix C.

Superscripts and Subscripts

Readers may wonder why we are using $x_{[i]}$, and $x^{[i]}$. Would not $x_{[i]}$ suffice? Why differentiate between elements of a sequence, and elements of a vector?

The particularly problematic case, is that we often want to represent taking the ith element of a vector that is the tth element of a sequence of vectors. The vector, we would call $\tilde{x}^{[t]}$, its i element is $\tilde{x}^{[t]}_{[i]}$.

This is also not ambiguous with the matrix indexing notation $X_{[i,t]}$.

Rarely a superscript will be actually an exponent, e.g. $x^{\frac{2}{3}}$. This should be apparent when in this case. For more common is the natural exponent which we write $\exp{(x)}$.