Exercícios - Cálculo IV - Aula 7 - Semana 5/10 - 9/10

Revisão: de Sequências Numéricas a Séries de Potências

A soma s de uma série convergente $\sum a_n$ é o limite da soma parcial $s_n = a_1 + \cdots + a_n$ quando $n \to \infty$. No cálculo da soma de uma série alternada que satisfaz as condições do critério de Leibniz é possível estimar o erro quando aproximamos a soma s pela soma parcial s_n .

Teorema 1
$$Seja$$
 $\sum_{n=0}^{\infty} (-1)^n a_n$, $a_n > 0$ para $n > 0$, uma série alternada satisfazendo as condições do critério de Leibniz. Então a) Existe $s \in \mathbb{R}$ tal que $\sum_{n=0}^{\infty} (-1)^n a_n = s$.

b) $|s_n - s| \le a_{n+1}$, onde $s_n = a_0 - a_1 + a_2 - a_3 + \cdots + (-1)^n a_n$.

Exemplo 1 Seja $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. A série alternada satisfaz as condições do critério de Leibniz: $\lim_{n\to\infty} \frac{1}{n} = 0$ e $a_n = 1/n$ é uma sequência decrescente. Procuremos um valor aproximado para sua soma s, com erro menor que 0,2. Para isso basta buscar um índice n_0 tal que $a_{n_0+1} < 0,2$ e o valor procurado será s_{n_0} . Mas $a_6 = \frac{1}{6} < 0,2$ logo $|s_5 - s| \le a_6 < 0,2$ Portanto

$$s \approx -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} = -\frac{47}{60}.$$

Exercício 1 Determine um valor aproximado para a soma das séries alternadas abaixo com erro inferior à 0,01.

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$

$$b) \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\sqrt{n}}{2n+1}$$

c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\sqrt{n}}{2n+1}$$

d) $\sum_{n=1}^{\infty} (-1)^n (e - (1 + \frac{1}{n})^n)$

e)
$$\sum_{n=1}^{n-1} (-1)^n \frac{1}{\sqrt{n+1}-1}$$