

Que: Whether IX, and X2 are used in First Decision Tree Again in Decision Tree2 X1 is used?
A: Decision Tree1, Decision Tree1
X, X ₂ replaced again Bagging
* with replacement: Bagging * without replacement:
Ex:- ctudent - 28 -> Prob! - 128
Day: 1 asked Question for "Jack: Student 1 = 1
Day: 2 asked Question to student 2 again in Day 2" If we include Student 1 again in Day 2" Tyme probability remain's
common.
* Day 3: \frac{1}{28} (maduding S: 1) * Day 4: \frac{1}{28}
Devicion Tree 2.
Jecision Tree 1 * Decision Tree 2 has the Decision Tree 2 has the Same probability.

Ex: Combining votes from a pool of Experts, each will bring their Own Experience and background to Solve the problem resulting better outcome. Advantages of Random forest" (or) Bagging * it applicable for both v classification & Regression. Handles The Missing Values and Maintains Accurage for Missing data. (drop) it won't overfit the MODEL Handle large data Set with Ex: 100 columny > Radomly selected. Que: How many Decision Trees ? Taken ? By Default, it Takes ["100" Decision Free again, in this which is best decision tree, we do "Hyper Parameter Tuning" > Grid Search CV Ex: In any project 1. Accuracy (parameter) CODE : import Numpy of N 2. less computational time import pandas as Pd import matplotlib. Pyplot as plt import Scaborn as sns

> Same Data Set (Decision Tree) to check difference b/w (D.T)(R.F.)

df = pd. read_csv ("penguins - size . csv")

df. head ()

out			Culmon	Alipper-length	500 y man -	Sex
Species Adelie	Island Torgersen Torgersen Jorgersen	200	18.7 17.4 18.0 NAN	181.0 186.0 195.0 NAN	NAN	MALE FEMALE FEMALE NAN FEMALE
3 Adelie 4 Adelie	Torgersen Torgersen	36.7	19.3	193.0	34,5	

df. info ()

df. ismull (). sum ()

EDA

df = df. dropmal)

df. Shape

Feature Engneering

pd. get-dummies (df. drop ("Species", axis=1), drop-first=True)

```
X&Y
  # X = pd. get-dummies (df. drop ("Species", axis=1), drop-fora
   # y = df ["species"]
from Sklearn. model-selection import train-test-split
   Tram Test Split
# n_train, Xtest, y_train, y_test = train_test_split (x,y, test_siz
=0.3, Tandom_skh
   MODELLING: Random Forest Classifier
  from Skleam, ensemble import Roundom Forest Classifier.
# model = Random Forest Classifier ()
      model. fit (n. tram, y-tram)
   Out: Random Forest Classifier.
      ypred-tram = model. predict (n.train)
   Prediction
                     = model. predict (n_test)
    # ypred_test
```

Evaluation

```
from sklearn. metrics import accuracy-score
```

```
# print (train_Accuracy":, accuracy_score (gpred_train_y-train)
# print ("Test - Accuracy":, accuracy_score (ypred_test, y_test)
Out: Tram- Accuracy: 1.0
         Test - Accuracy: 0.99
```

cross Validation.

from Skleam. model-Selection import cross_val_score Scores = cross-val-score (model, x,y,cv=5) # print (Scores) # Scores. mean () 0.98, 0.98, 0.98, 1.]

from Sklearn. metrics import plot _ confusion_matrix # plot_ confusion_matrix (model, X_test, y_test) # plt. Show ()

Qu	It:	licted_label	
1	s rea	MOTERIA	<i>בכבי</i>
7	Melie - 416	0	
1 2	al em	14	
. 2	chin my		
) }			
, 4	Gentoo		9
•	Alalia	chim Go	entoo
,	Adelie	Chin Ge Strap	12
•		0	(CONTROL OF CONTROL OF
,			
A .		a. im	port de

from Sklearm	metrics impo	rt Classifica	tion-report	ltest)
from Sklearm # Print (lassification -	report 19-	f ₁ swre	Support
out	Precision		0.99	40
Adelie	0.98	0.96	0.98	· 21 33
Chin strap	1.00	1.00	1.00	lan
Gent 00			0.99 0.99	100
macro Arg weighted Arg	0.99	0.99	0.99	100

Feature importance

model. feature_importances_
Out: army ([0.336 0.61 0.283, 0.112, 0.076, 0.022
0.006)]

```
Applying ....
  Hyper Parameter Tuning.
  from Skleam. model-selection import Grid Search CV
# estimator = Random Forest Classifier ()
   # parameter (which you want to tune and identify the best)
# param_grid = { "n-estimators": List (range (1,101))}
# grid = Grid Search Cv [estimator, param-grid, Scoring="accuracy", cv=5)
# grid. fit (n_train, y_train)
Out | Grid Search CV (Cr=5, estimator = Random Firest Classifier ())
                 param-grid = { "n-estimators": [1,2,3,4,5,6,7,89,50
                               Scorring; "acceptacy")
```

grid. best-params -

ut: { "m_estimators": 213

Final Model with best parameter

- # final_model = Random Forest Classifier (m_estimators = 21.
- # final_model. fit (7 train, y-train)
- Out: RandomForest Classifier (n_estimator = 21, random state = 29)
- # Predictions = final-model-predict (x-test)
- # accuray-score (predictions, y-test)
- # plat_comfusion_matrix (final_madel, x_test, y_test)
- # plt. show()

8 Mon ()	
	Predicted
////	
Adelle //W	XIIIX

	1 4	1 /	
Out Adelu			10/0
chime stree		NW)	
Emps.			
_	Adelic	chin stap	gantos