

ECE 462 – Data and Computer Communications

Lecture 13/14: Multiplexing

Bijan Jabbari, PhD

Dept. of Electrical and Computer Eng. George Mason University bjabbari@gmu.edu

Outline

- Frequency Division Multiplexing FDM
- Wavelength Division Multiplexing WDM
- Synchronous Time Division Multiplexing TDM
- Statistical Multiplexing
- Asymmetric Digital Subscriber Line ADSL
- XDSL

Note: Some material adapted from various textbook. In particular, the sequences of slides have been sorted to match closely that of the textbook <u>Data and Computer Communications</u> by W. Stallings, 7th Edition, Prentice Hall, 2007

Multiplexing

 Multiplexing allows several sources to share resources (e.g., BW)

Frequency Division Multiplexing

- FDM
- Useful bandwidth of medium exceeds required bandwidth of channel
- Each signal is modulated to a different carrier frequency
 - TV signal: Luminance, color and audio components
- Carrier frequencies separated so signals do not overlap (guard bands)
 - e.g. broadcast radio
- Channel allocated even if no data

Frequency Division Multiplexing Diagram

FDM System

2007

FDM of Three Voiceband Signals

ECE 462

Analog Carrier Systems

- AT&T (USA)
- Hierarchy of FDM schemes
- Group
 - 12 voice channels (4kHz each) = 48kHz
 - Range 60kHz to 108kHz
- Supergroup
 - 60 channel
 - FDM of 5 group signals on carriers between 420kHz and 612 kHz

8

- Mastergroup
 - 10 supergroups

Wavelength Division Multiplexing

- Multiple beams of light at different frequency
- Carried by optical fiber
- A form of FDM
- Each color of light (wavelength) carries separate data channel
- 1997 Bell Labs
 - 100 beams
 - Each at 10 Gbps
 - Giving 1 terabit per second (Tbps)
- Commercial systems of 160 channels of 10 Gbps now available
- Lab systems (Alcatel) 256 channels at 39.8 Gbps each
 - 10.1 Tbps
 - Over 100km

WDM Operation

- Same general architecture as other FDM
- Number of sources generating laser beams at different frequencies
- Multiplexer consolidates sources for transmission over single fiber
- Optical amplifiers amplify all wavelengths
 - Typically tens of km apart
- Demux separates channels at the destination
- Mostly 1550nm wavelength range
- Was 200MHz per channel
- Now 50GHz

Dense Wavelength Division Multiplexing

- DWDM
- No official or standard definition
- Implies more channels more closely spaced that WDM
- Channel spacing of 200GHz or less is dense!

Synchronous Time Division Multiplexing

- Data rate of medium exceeds data rate of digital signal to be transmitted
- Multiple digital signals interleaved in time
- May be at bit level of blocks
- Time slots preassigned to sources and fixed
- Time slots allocated even if no data
- Time slots do not have to be evenly distributed amongst sources

2007 ECE 462

Time Division Multiplexing

2007 ECE 462

TDM System

TDM Link Control

- No headers and trailers
- Data link control protocols not needed
- Flow control
 - Data rate of multiplexed line is fixed
 - If one channel receiver can not receive data, the others must carry on
 - The corresponding source must be quenched
 - This leaves empty slots
- Error control
 - Errors are detected and handled by individual channel systems

Data Link Control on TDM

(b) Input data streams

 $\cdots \ f_2 \ F_1 \ d_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ d_1 \ A_2 \ C_1 \ F_2 \ A_1 \ f_2 \ F_1 \ f_2 \ f_1 \ d_2 \ f_1 \ d_2 \ d_1 \ d_2 \ d_1 \ d_2 \ d_1 \ C_2 \ C_1 \ A_2 \ A_1 \ F_2 \ F_1$

(c) Multiplexed data stream

Legend: F = flag field d = one octet of data field

A = address field f = one octet of FCS field

C = control field

Framing

- No flag or SYNC characters bracketing TDM frames
- Must provide synchronizing mechanism
- Added digit framing
 - One control bit added to each TDM frame
 - Looks like another channel "control channel"
 - Identifiable bit pattern used on control channel
 - e.g. alternating 01010101...unlikely on a data channel
 - Can compare incoming bit patterns on each channel with sync pattern

Pulse Stuffing

- Problem Synchronizing data sources
- Clocks in different sources drifting
- Data rates from different sources not related by simple rational number
- Solution Pulse Stuffing
 - Outgoing data rate (excluding framing bits) higher than sum of incoming rates
 - Stuff extra dummy bits or pulses into each incoming signal until it matches local clock
 - Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

TDM of Analog and Digital Sources

2007 ECE 462

Digital Carrier Systems

- Hierarchy of TDM
- USA/Canada/Japan use one system
- ITU-T use a similar (but different) system
- US system based on DS-1 format
- Multiplexes 24 channels
- Each frame has 8 bits per channel plus one framing bit
- 193 bits per frame

Digital Signal Levels

■ DS0 1 Channel 64 Kbps

■ DS1 24 Channels 1.544 Mbps

■ DS2 96 Channels (4T1) 6.312 Mbps

■ DS3 672 Channels (7T2=28T1) 44.7 Mbps

■ DS4 4032 Channels (6T3) 274.17 Mbps

T1 and E1 Carriers

T1 multiplexed line

E1 multiplexed line

Digital Carrier Systems

- For voice each channel contains one word of digitized data (PCM, 8000 samples per sec)
 - Data rate 8000x193 = 1.544Mbps
 - Five out of six frames have 8 bit PCM samples
 - Sixth frame is 7 bit PCM word plus signaling bit
 - Signaling bits form stream for each channel containing control and routing info
- Same format for digital data
 - 23 channels of data
 - 7 bits per frame plus indicator bit for data or systems control
 - 24th channel is sync

SONET/SDH

- Synchronous Optical Network (ANSI)
- Synchronous Digital Hierarchy (ITU-T)
- Compatible
- Signal Hierarchy
 - Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1)
 - 51.84Mbps
 - Carry DS-3 or group of lower rate signals (DS1 DS1C DS2) plus ITU-T rates (e.g. 2.048Mbps)
 - Multiple STS-1 combined into STS-N signal
 - ITU-T lowest rate is 155.52Mbps (STM-1)

Optical Carrier Levels

OC Level	Mbps	Number of 64-Kbps (DS-0) Channels	
OC-1	52	627	
OC-3	155	2016	
OC-9	466	6048	
OC-12	622	8064	
OC-18	933	12,096	
OC-24	1244	16,128	
OC-36	1866	24,192	
OC-48	2488	32,256	
OC-96	4976	64,512	
OC-192	10,000	129,024	
OC-256	13,271	172,032	
OC-768	39,812	516,096	

The number of channels in each optical carrier level is a multiple of the 627 channels in the OC-1 speed. An OC-3 line has 3X627=2016.

2007

SONET/SDH Capacity

Speed	North American Synchronous Transport Signals (STS) Levels	SONET Channels	European Synchrono us Transfer Mode (STM) Levels	Synchronous Digital Hierarchy (SDH) Channels
52 Megabits/s	OC-1	28 DS-1s or 1 DS3	STM-0	21 E1s
155 Megabits/s	OC-3	84 DS-1s or 3 DS3s	STM-1	63 E1s or 1E4
622 Megabits/s	OC-12	336 DS-1s or 12 DS3s	STM-4	252 E1s or 4 E4s
2488 Megabits/s	OC-48	1344 DS-1s or 48 DS3s	STM-16	1008 E1s or 16 E4s
9953 Megabits/s	OC-192	5376 DS-1s or 192 DS3s	STM-64	4032 E1s or 64 E4s
39.812 Gigabits/s	OC-768	21,504 DS-1s or 768 DS3s	STM-256	16,128 E1s or 256 E4s

2007 ECE 462

SONET Frame Format

SONET Functions

- Four functions or layers
 - The 'photonic' layer converts electrical signals to optical signals and vice versa
 - The 'section' layer monitors the condition of the transmission between the SONET equipment and optical amplifiers
 - The 'line' layer synchronizes and multiplexes multiple streams into one stream or 'pipe' of traffic. Also provides monitoring and administration of SONET multiplexers
 - The 'path' layer assembles and disassembles voice and data carried on SONET into frames

STE: Section Terminating Equipment, e.g. a repeater

LTE: Line Terminating Equipment, e.g. a STS-1 to STS-3 multiplexer

PTE: Path Terminating Equipment, e.g. an STS-1 multiplexer

SONET Rings – For Greater Reliability

- The higher speeds attainable on fiber make reliability extremely important
- OC-192 can carry 129,000 64 Kbps transmissions
- Nearly 5% of the total SONET bandwidth is devoted to network management and maintenance
- To ensure reliability, SONET deployments often use bidirectional ring topology

(a) Dual ring

(b) Loop-around in response to fault

SONET Rings

2007

34

Statistical TDM

- In Synchronous TDM many slots are wasted
- Statistical TDM allocates time slots dynamically based on demand
- Multiplexer scans input lines and collects data until frame full
- Data rate on line lower than aggregate rates of input lines

Statistical TDM Frame Formats

Stat Mux utilization

Parameters:

I = number of input sources

R = data rate of each source in bit per second

M = Effective capacity of Multiplexed line

a (i.e, alpha) = Fraction of time each source is transmitting

K = M/IR

Note: $a \le K < 1$

Poisson Process With Rate λ

Poisson Arrivals

A(t) = number of arrivals from 0 to t

■ Number of arrivals in any interval of length τ has Poisson distribution with parameter $\lambda \tau$

M/D/1 Queue

- Single Server
- Poisson arrivals with rate λ
- Service time with parameter for each arrival Ts
- Independent interarrival and service times

Single Server Queues with Constant Service Times and Poisson (Random) Arrivals

Statistical time division multiplexer

Parameters:

- I = number of input sources
- R = data rate of each source, bps
- M = effective capacity of multiplexed line, bps
- α = mean fraction of time each source is transmitting, $0 < \alpha < 1$
- $K = \frac{M}{IR}$ = ratio of multiplexed line capacity to total maximum input
- The value of K is a measure of the compression achieved by the multiplexer, and can be bounded as: $\alpha < K < 1$

A single-server queue model (1)

Parameters

- λ = mean number of arrivals per second
- T_s = service time for each arrival
- ρ = utilization; fraction of time server is busy
- N = mean number of items in system (waiting and being served)
- T_r = residence time; mean time an item spends in system (waiting and being served) = delay
- σ_r = standard deviation of T_r

A single-server queue model (2)

Formulas

$$\rho = \lambda T_{s}$$

$$N = \frac{\rho^{2}}{2(1-\rho)} + \rho$$

$$T_{r} = \frac{T_{s}(2-p)}{2(1-p)}$$

$$\sigma_{r} = \frac{1}{1-\rho} \sqrt{\rho - \frac{3\rho^{2}}{2} + \frac{5\rho^{3}}{6} - \frac{\rho^{4}}{12}}$$

Example

Performance

- Output data rate less than aggregate input rates
- May cause problems during peak periods
 - Buffer inputs
 - Keep buffer size to minimum to reduce delay

Buffer Size and Delay

Cable Modem Outline

- Two channels from cable TV provider dedicated to data transfer
 - One in each direction
- Each channel shared by number of subscribers
 - Scheme needed to allocate capacity
 - Statistical TDM

Cable Modem Operation

Downstream

- Cable scheduler delivers data in small packets
- If more than one subscriber active, each gets fraction of downstream capacity
 - May get 500kbps to 1.5Mbps
- Also used to allocate upstream time slots to subscribers

Upstream

- User requests timeslots on shared upstream channel
 - Dedicated slots for this
- Headend scheduler sends back assignment of future tme slots to subscriber

Cable Modem Scheme

Asymmetrical Digital Subscriber Line (ADSL)

- ADSL: Deploying broadband
- Challenge is the Link between subscriber and network
 - AKA Local loop (Digital Subscriber Line)
- Uses currently installed twisted pair cable
 - Can carry broader spectrum
 - 1 MHz or more

53 2007 ECE 462

ADSL Design

- Asymmetric
 - Greater capacity downstream than upstream
- Frequency division multiplexing
 - Lowest 25kHz for voice
 - Plain old telephone service (POTS)
 - Use echo cancellation or FDM to give two bands
 - Smaller Upstream and larger Downstream
 - Use FDM within bands
- Range 5.5km

ADSL Channel Configuration

(a) Frequency-division multiplexing

Discrete Multitone

- DMT
- Multiple carrier signals at different frequencies
- Some bits on each channel
- 4kHz subchannels
- Send test signal and use subchannels with better signal to noise ratio
- 256 downstream subchannels at 4kHz (60kbps)
 - 15.36MHz
 - Impairments bring this down to 1.5Mbps to 9Mbps

DTM Bits Per Channel Allocation

DMT Transmitter

2007 ECE 462

xDSL

- High data rate DSL
- Single line DSL
- Very high data rate DSL