주체106(2017)년 제63권 제9호

(NATURAL SCIENCE)

Vol. 63 No. 9 JUCHE106(2017).

초어sr-b1유전자의 배렬특성

장성훈, 김심의

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《우리는 현실발전의 요구에 맞게 나라의 과학기술을 빨리 발전시켜야 하겠습니다.》 (《김정일선집》 중보판 제11권 134폐지)

포유동물에서 SR-B1접수체가 고밀도기름질단백질접수체로서 콜레스테롤의 선택적섭취를 유도하고 콜레스테롤의 운반과정에 참가한다[3]는것은 밝혀졌지만 비루스침입에 관여한다는 연구자료는 적다.

우리는 초어를 연구대상으로 하여 비루스침입에서 중요한 역할을 하는 sr-b1유전자의 배 렬특성을 보았다.

재료와 방법

초어sr-bl cDNA의 증폭에 리용한 프라이머는 Primer premier 5.0프로그람으로 설계하였는데 그것을 표에 보여주었다.

프라이머이름	배렬(5′→3′)	크기/bp	증폭배렬	$T_{\rm m}/{\rm ^{\circ}C}$
15F1(상류방향)	TGTGTGAGTAAGGATGGCGGTG	22	보존배렬	63.0
15R1(하류방향)	CAGTCCATTCAACCACAACGCT	22	보존배렬	63.5
15scIF1(상류방향)	CGTGATATTATACCTCAGCGACAAG	25	3'-말단	60.5
15scIF2(상류방향)	AGCGTTGTGGTTGAATGGACTG	22	3'-말단	56.7
15scIR1(하류방향)	GGGACTGTCGTGGTGTTTGT	20	5'-말단	57.9
15scIR2(하류방향)	GGAGAGTTCGTTCTTCGGGT	20	5'-말단	57.7
SMARTII(TM)(상류방향)	AAGCAGTGGTATCAACGCAGAGTACGCGGG	30	5'-말단	68.0
CDSⅢ(하류방향)	AAGCAGTGGTATCAACGCAGAGTAC(T)30VN	57	3'-말단	68.0

표. 초어sr-b1 cDNA의 증폭에 리용한 프라이머

V-A, G, T중 임의의 누클레오티드, N-임의의 누클레오티드

SMART cDNA합성법[1]을 리용하여 초어의 중간밸로부터 분리한 mRNA를 역전사시켜 주형cDNA를 얻었다. 다음 Vector NTI프로그람으로 다중배렬상동성검색을 진행하고 진화적으로 보존된 배렬을 증폭하기 위한 프라이머를 합성하였다. 이 프라이머를 리용하여 PCR법으로 초어tlr1유전자의 보존된 배렬을 증폭하였다. 다음 증폭된 단편을 pMD18-T운반체(《Promega》)에 재조합시키고 배렬분석을 진행하였다. 배렬분석자료에 기초하여 5′ — 말단과 3′— 말단을 증폭하기 위한 프라이머를 설계하였다. SMART II 와 15scIR1, 15scIR2, 15scIF1, 15scIF2, CDS III 프라이머로 목적유전자의 량쪽 말단을 증폭하였다. 증폭된 5′— 및 3′—말단의 PCR산물들을 pMD18-T운반체에 재조합시키고 배렬분석을 진행하였다.

60

핵산배렬의 분석은 Vector NTI프로그람으로 진행하였다. 단백질의 기능령역은 SMART 와 TMHMM프로그람으로 분석하였다.

결과 및 론의

SMART cDNA합성법을 리용하여 얻어낸 초어sr-b1유전자의 증폭산물들을 pMD18-T운 반체에 클론화한 다음 배렬분석을 진행한 결과에 의하면 5'-말단과 3'-말단 증폭산물로 서 130 및 818bp단편이, 중간배렬로서 1 656bp의 배렬이 분석되였는데 이 배렬들은 호상 겹 치므로 Vector NTI프로그람으로 분석하여 2 188bp의 완성된 cDNA배렬(폴리A배렬을 포함) 을 얻었다.(그림 1) 초어sr-b1유전자에서 5'- 및 3'-비번역배렬의 길이는 각각 21, 682bp 이고 열린읽기틀의 길이는 1 482bp이다. 이 배렬에 의하여 암호화되는 단백질의 크기는 494aa 이다.

그림 1에서 보면 이 유전자에는 번역시작코돈(ATG)과 중지코돈(TAG)이 있으며 3'-비 번역배렬에는 전사중지를 알리는 2개의 가상적인 폴리아데닐산신호배렬(AATAAA)과 전사 를 종결짓는 폴리A배렬이 있다. 또한 2개의 막투과령역배렬이 있다.

GTGTGAGTAAGGATGGCGGTGTCTAAATCTACATTAGCGATCGTTTTCTTAGTTCTGGGA

010	101	OIA	noc	M	4									V					
				[™] 'TTG															
								_		-								_	_
																			D
		-	_	SAAT	_					_	_	-	-			-			
				N															
				'CCC									-		_			_	_
D	$_{-}^{\mathrm{I}}_{-}$	_P_	_V_	P_	_F_	_F_	_M_	_S_	_V_	_Y_	_F_	_F_	_H_	_I_	_V_	_N_	_P_	_D_	_E_
ATC	СТА	AAA	.GGA	GAA	AAG	CCC	ATG	GTG	ATA	CAG	AGG	GGG	CCA	TAT	GTG	TAC	CGT	GAA	AAC
I	_L_	_K_	_G_	E_	_K_	_P_	_M_	_V_	_I_	_Q_	_R_	_G_	_P_	Y_	_V_	_Y_	_R_	_E_	_N_
CGC	TGG	AAG	GAC	CAAC	ATC	ACA	TTC	CAT	'GAC	AAC	AAC	ACA	GTT	TCG	TAT	AAG	GAA	TTT	CGG
R	_W_	_K_	_D_	N	_I_	_T_	_F_	_H_	_D_	_N_	_N_	_T_	_V_	_S_	_Y_	_K_	_E_	_F_	_R_
CAG	TAT	TTC	TTT	'GAG	GAG	AGT	ATG	TCT	GTG	GGA	GAT.	GAA	TCC	GAT	GTG	GTC	ACC	ATC	CCT
Q	_Y_	_F_	_F_	_E_	_E_	_S_	_M_	_S_	_V_	_G_	_D_	_E_	_S_	_D_	_V_	_V_	_T_	_I_	_P_
AAC	ATG	СТА	.GTG	GCTG	GGC	GCA	TCA	.GTA	ATG	ATG	GAG	AAT	ATG	CCG	TTT	CCT	ATA	CGC	GTT
N	_M_	_L_	_V_	_L_	_G_	_A_	_S_	_V_	_M_	_M_	_E_	_N_	_M_	_P_	_F_	_P_	_I_	_R_	_V_
TTG	CTC	AGC	GCC	CACG	TTC	AAG	ACC	TTC	AAC	GAG	GGA	CCI	TTC	TTG	ACA	AAA	CCA	GTA	GGA
L	L	S	А	Т	F	K	Τ	F	N	Ε	G	Р	F	L	Т	K	Ρ	V	G
GAA	CTC	— — ATG	TGG	GGC	TAC	_ GAC	AGC	AAG	TTG	GTG	GAC	TTC	CTG	AAC	– – AAA	TAT	 CTC	— — ССТ	GGC
Ε	L	М	W	G	Y	D	S	K	L	V	D	F	L	N	K	Y	L	Ρ	G
ATG	CTT	 CCA	TCC	AGC	GGC	– – AAG	TTT	GGC	CTA	TTT	GCT	GAG	TTT	'AAC	 AAC	— — TCA	— — AAC	— — ACT	GGA
М	L	Р	S	S	G	K	F	G	L	F	А	Ε	F	N	N	S	N	Т	G
CAG	TTC	 ACC	GTC	TTC	ACT	— — GGC	CAA	– – .GAT	GAC	ATC	CGA	— – .ААА	 GTT	CAT	– – AAG	— — GTG	— — GAC	— — ТСТ	TGG
0	F	Т	V	F	Т	G	0	D	D	Ι	R	K	V	Н	K	V	D	S	W
																			ACA
				_										_					T
				 TGG															
			_								-			-					
_ ^A _		_V_	— _{IvI} —	W_	_ _F _		_ ^Ľ _	— _{IvI} —	— _T	— ^T –	_뇬_	_5_	— _T -	— _т –	_ ⁻ _		_ ¹ _	_5_	_P_

GATGCGTGCAGGTCCATGGAGCTAGTGTACCAAAGGCCAGGAGTGTCTCAGGGGATTCCA 900 296 GTTTTCCGCTTTGTGGCCCCAAAGACTCTTTTTGCCAACGGTACAGATTATCCTCCCAAT 960 V F R F V A P K T L F A N G T D Y P P N 316 GAGGGCTTCTGTCCCTGTCGGCAGTCCGGCCTTCTCAACGTCAGCACCTGCAGACACAAT 1020 336 E G F C P C R Q S G L L N V S T C R H N TCCCCTGTGTTCATCTCCCATCCACACTTTTTTGCGGCTGATCCCGTCCTTTTGGACACT 1080 356 SHPHFFAA D P 7.7 GTTAACGGATTGAGCCCAAATGAAGATGAACATGGACTTTTTATCGACATCCACCCGGAG 1140 376 G L S P H G L F I N E D E D ACTGGAGTGCCGATGAACGTTTCCATACGGCTGCAGCTCAATCTGCTCATGAAGAGAGTT 1200 P M N V S I R L Q L N M K 396 L L TCAGGCATCACAGAAACAGGAAAGATAACAGAGGTGGTGATGCCCATGATCTGGTTTGAG 1260 S G I T E T G K I T E V V M P M I 416 GAGAGTGGCTACATTGACGGTCCCGTTCTCAACACGTTCCGCACTAATCTGGTGGTGCTG 1320 E S G Y I D G P V L N T F R T N L V V L 436 CCCATGGTCATGGAGTACATGCAGTACATCTTCATCGGTCTCGGACTCGCAACCATTCTG 1380 P M V M E Y M Q Y I F I G L G 456 GGAGCCGTGATATTATACCTCAGCGACAAGGTAAAAAGTAAGAAGTGTGGCCAGCCCTGC 1440 L <u>s</u> d k v k s K K C G 476 ACAGATGTGGATCCATCCAGCTCCGCCAGTGAAAAGACCCCATTACTACAGGCCTCAACG 1500 D V D P S S S A S E K T P L L Q A S T 496 AGCTAGAGCCAATATCCACACTGCAGCTTACTTTCATTAGAAACTCACAATCCCACAATC 1560 498 CACTGGCCAGCA**AATAAA**GTTCTTTTATTAAGCGTTGTGGTTGAATGGACTGGATCAAG 1620 1680 AACAGACCATCAGCAACAGGATTATGAACACTTTTGAGTGGGGATGTTTCTTCCTGTGGT 1740 TTTTTTGCACTGCAGTTGGGTTTAAAGTGCTCTGTGGGGGTTAATACTACATTTTCTCGTT CTTTTTATTTGTATGAAAAAGTGAGCAGCGTCTGCAATGTGGTACAGGTAGATATTTTTT 1800 TGACCCATTTAAAATTAAATAATTGATAAAATAGTAGACAATGAATTTTCAAATGGTGTG 1860 TTCACTAATGGTCAAAACACTCCAAACCTTACTTCCTCAGAGGGAAA**AATAAA**GAGATTT 1920 AACCTTTATCCTGTAAATAAGGAACTGTTATGAACACTTTGTAACAATCACGTGCTGACT 1980 GAAATATCCTCCGAAAGCAGAAAAAATGCTGAGCCAACACATTTCTCAGTATGCTGAATA 2040 2100 TTAATATGTCATTGTTTGCATTCTCTTGATGTTCAGTATAAAATGAAATGGGATTATTTC 2160 2188 AAAAAAAAAAAAAAAAAAAAAAAA

그림 1. 초어sr-b1유전자의 핵산과 아미노산배렬

네모칸으로 표시한것은 번역시작코돈인 ATG와 번역중지코돈인 TAG, 2중밑선을 친 부분은 막투과 령역배렬, 3'-비번역배렬에 있는 폴리아데닐산신호배렬인 ATTAAA는 강조사선체로 표시함

SMART 및 TMHMM프로그람으로 분석해보면 초어sr-b1유전자는 1개의 신호펩티드배렬(1~23aa)과 1개의 CD36도메인으로 이루어져있다.(그림 2)

포유동물에서 SR-B1접수체는 여러가지 리 간드를 인식하며 그 기능이 다양하다. 이 접수 체는 동맥경화와 병원체에 대한 숙주의 방어기 능, 세포접착, 세포증식과 관련된 기능을 수행한 다.[2] 이 접수체는 또한 C형간염비루스침입때 비 루스와 복합체를 형성하여 비루스가 유기체의 면

그림 2. 초어SR-B1접수체의 도메인령역

역방어선을 통과하여 몸안에 침입하게 하는데서 중요한 작용을 한다.[3]

초어SR-B1접수체가 포유동물의 SR-B1접수체에서와 같이 CD36도메인을 가지고있다는 것은 초어sr-b1유전자가 포유동물에서처럼 물고기에서 비루스침입을 돕는 작용을 할수 있다는것을 보여준다.

맺 는 말

초어sr-b1유전자의 cDNA 전 배렬의 크기는 2 188bp이다. 5'-비번역배렬의 크기는 21bp이고 열린읽기틀의 크기는 1 482bp이며 3'-비번역배렬의 크기는 폴리A를 포함하여 682bp이다. 열린읽기틀은 494개 아미노산을 암호화한다.

초어sr-b1유전자는 1개의 CD36도메인으로 이루어져있으며 2개의 막투과령역배렬을 가지고있다.

참 고 문 헌

- [1] G. Gao et al.; JBC, 272, 33, 67, 2000.
- [2] M. Krieger; Curr. Opini. Lipid, 8, 275, 2012.
- [3] Y. M. Tong et al.; Journal of Virology, 85, 2793, 2011.

주체106(2017)년 5월 5일 원고접수

Characterization of the Sequence of sr-b1 Gene from Grass Carp, Ctenopharyngodon idella

Jang Song Hun, Kim Sim Ui

The full length cDNA of grass carp sr-b1 gene is 2 188 nucleotides (nt). The 5'-untranslated region (5'-UTR) sequence is 21 nt. Open reading frame(ORF) is 1 482 nt. The 3'-untranslated region (3'-UTR) sequence is 682 nt, including a poly A tail. The ORF of sr-b1 gene encodes a protein composed of 494 amino acids(aa). It has one CD36 domain and two transmembrane zones.

Key words: grass carp, sr-b1 gene, pathogen challenge