ĐỒ ÁN THIẾT KẾ

- I. Yêu cầu thiết kế đặt ra:
- II Thiết kế:
- a. Sơ đồ mạch:

Α	В	CIN	S	C
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	1

- Từ bảng trạng thái trên ta có được biểu thức S và CO bằng K map:
 - S:

AB CIN	0	1
00	1	0
01	0	1
11	1	0
10	0	1

$$\overline{S} = \overline{A}\overline{B}\overline{CIN} + \overline{A}B\overline{CIN} + A\overline{B}\overline{CIN} + A\overline{B}C\overline{IN}$$

$$= (\bar{A}\bar{B} + AB)\,\overline{CIN} + (\bar{A}B + A\bar{B})CIN$$

CO:

AB CIN	0	1
00	0	0
01	1	0
11	1	1
10	1	0

$$\overline{C0 = \overline{A}B\overline{CIN} + AB\overline{CIN} + ABCIN + AB\overline{CIN}}$$

$$= AB(\overline{CIN} + CIN) + \overline{CIN}(\overline{A}B + A\overline{B})$$

$$= AB + \overline{CIN}(A \oplus B)$$

$$= AB + A\overline{CIN} + B\overline{CIN}$$

Mạch cmos từ bảng trạng thái trên:

b. Tính toán kích thước các transistor:

Giả sử Wp = 3 Wn. Vì sử dụng công nghệ 130nm nên Lmin = 130nm.

Với trường hợp transistor mắc nối tiếp:

$$\begin{split} R_{eq} &= R_1 + R_2 + Rn \\ R &\propto \frac{1}{\frac{W}{L}} \\ \left(\frac{W}{L}\right)_{eq} &= \frac{1}{\left(\frac{1}{\frac{W}{L}}\right)_1 + \left(\frac{1}{\frac{W}{L}}\right)_2 + \dots + \frac{1}{\left(\frac{W}{L}\right)_n}} \\ \left(\frac{W}{L}\right)_{eq} &= \frac{1}{\left(\frac{L}{W}\right)_1 + \left(\frac{L}{W}\right)_2 + \dots + \left(\frac{L}{W}\right)_n} \end{split}$$

Với trường hợp transistor mắc song song:

$$\begin{split} R_{eq} &= \frac{1}{R1} + \frac{1}{R2} + \frac{1}{Rn} \\ R &\propto \frac{1}{\frac{W}{L}} \\ &\frac{1}{\left(\frac{W}{L}\right)_{eq}} = \frac{1}{\left(\frac{W}{L}\right)_{1}} + \frac{1}{\left(\frac{W}{L}\right)_{2}} + \dots + \frac{1}{\left(\frac{W}{L}\right)_{n}} \\ &(\frac{W}{L})_{eq} = \left(\frac{W}{L}\right)_{1} + \left(\frac{W}{L}\right)_{2} + \dots + \left(\frac{W}{L}\right)_{n} \end{split}$$

• Phân tích CO:

Với PDN:

$$\begin{split} &\left(\frac{W}{L}\right)_{eq,n} = 1 \times W_{n,inv} = 1 \\ &\left(\frac{W}{L}\right)_{eq,n} = \left(\frac{W}{L}\right)_{AB} = \frac{1}{2} \left(\frac{W}{L}\right)_{A} = \frac{1}{2} \left(\frac{W}{L}\right)_{B} \\ &\left(\frac{W}{L}\right)_{eq,n} = \left(\frac{W}{L}\right)_{AB\overline{CIN}} = \frac{1}{2} \left(\frac{W}{L}\right)_{A} = \frac{1}{2} \left(\frac{W}{L}\right)_{B} = \frac{1}{2} \left(\frac{W}{L}\right)_{\overline{CIN}} \\ &=> \left(\frac{W}{L}\right)_{all,n} = \frac{2}{1} \\ &\text{C/m: } \left(\frac{W}{L}\right)_{eq,n} = \left(\frac{W}{L}\right)_{AB} = \left(\frac{W}{L}\right)_{AB\overline{CIN}} = \frac{1}{\left(\frac{L}{W}\right)_{A} + \left(\frac{L}{W}\right)_{B}} = \frac{1}{\frac{2L}{W}} \text{ v\'oi } \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{B} \\ &\text{Mà:} \left(\frac{W}{L}\right)_{eq,n} = W_{n,inv} = 1 = > \frac{1}{\frac{2L}{W}} = 1 = > \left(\frac{W}{L}\right)_{all,n} = 2 \end{split}$$

Với PUN:

$$\left(\frac{W}{L}\right)_{eq,AB} = \left(\frac{W}{L}\right)_{eq,AB\overline{CIN}} = 2 \times W_{p,inv} = 2 \times 3 = 6$$

$$\left(\frac{W}{L}\right)_{eq,AB} = \left(\frac{W}{L}\right)_A = \left(\frac{W}{L}\right)_B = \frac{6}{1}$$

$$\left(\frac{W}{L}\right)_{eq.AB\overline{CIN}} = \left(\frac{W}{L}\right)_{\overline{CIN}} = \left(\frac{W}{L}\right)_{AB} = \frac{6}{1}$$

$$\left(\frac{W}{L}\right)_{AB} = \frac{1}{2} \left(\frac{W}{L}\right)_{A} = \frac{1}{2} \left(\frac{W}{L}\right)_{B} = > \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{B} = \frac{12}{1}$$

• Phân tích S:

Với PDN:

$$\left(\frac{W}{L}\right)_{eq,n} = 1 \times W_{n,inv} = 1$$

$$\left(\frac{W}{L}\right)_{eq,n} = \frac{1}{\frac{L}{W} + \frac{L}{W}} = \frac{1}{\frac{2L}{W}} = > 1 = \frac{1}{\frac{2L}{W}} = > \left(\frac{W}{L}\right)_{\overline{CIN}} = \frac{2}{1}$$

$$\frac{2}{1} = > \left(\frac{W}{L}\right)_{eq,n} = \frac{1}{\frac{L}{W} + \frac{L}{W}} = \frac{1}{\frac{2L}{W}} = > \left(\frac{W}{L}\right)_{\overline{A},\overline{B},A,B} = \frac{4}{1}$$

Tương tự đối với phía đối diện => $(\frac{W}{L})_{\overline{A},B,A,\overline{B}} = \frac{4}{1}$

Với PUN:

$$\begin{split} \left(\frac{W}{L}\right)_{eq,\bar{A}\bar{B},AB,A\bar{C}\bar{I}\bar{N}} &= \left(\frac{W}{L}\right)_{eq,\bar{C}\bar{I}\bar{N}} = \left(\frac{W}{L}\right)_{CIN} = 2 \times W_{p,inv} = 2 \times 3 = 6 \\ \left(\frac{W}{L}\right)_{eq,\bar{C}\bar{I}\bar{N}} &= \left(\frac{W}{L}\right)_{eq,\bar{A}\bar{B},AB} = 2 \left(\frac{W}{L}\right)_{\bar{A}\bar{B}} = 2 \left(\frac{W}{L}\right)_{AB} = \left(\frac{W}{L}\right)_{\bar{A}} = \left(\frac{W}{L}\right)_{\bar{B}} = \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{A} = \left(\frac{W}{L}\right)_{B} = \frac{6}{1} \\ \left(\frac{W}{L}\right)_{eq,\bar{A}\bar{B}\bar{A}BC\bar{I}\bar{N}} &= 2 \left(\frac{W}{L}\right)_{eq,\bar{A}\bar{B}} = 2 \left(\frac{W}{L}\right)_{eq,\bar{A}\bar{B}} = \left(\frac{W}{L}\right)_{CIN} = \left(\frac{W}{L}\right)_{\bar{A}} = \left(\frac{W}{L}\right)_{B} = \left(\frac{W}{L}\right)_{\bar{A}} = \left(\frac{W}{L}\right)_{\bar{B}} \\ &= \frac{12}{1} \end{split}$$

- d. Liệt kê và minh chứng các kết quả khác (về thời gian, công suất):
 - Hình Cload 20 trans đơn vị:

Tính công suất của mạch trong trường hợp $A \to S\uparrow$, $A \to S\downarrow$, $B \to S\uparrow$, $A \to CO\uparrow$, $A \to CO\downarrow$:

P avg: AVG(-V(VDD)*I(VDD))=4.7158103129e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp $B \to S\uparrow$, $B \to S\downarrow$, $B \to CO\uparrow$, $B \to CO\downarrow$:

P_avg: AVG(-V(VDD)*I(VDD))=3.13865227443e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp CIN \to S \uparrow , CIN \to S \downarrow , CIN \to CO \uparrow , CIN \to CO \downarrow

P_avg: AVG(-V(VDD)*I(VDD))=8.92321429101e-05 FROM 1e-08 TO 2e-08

$A \rightarrow S \downarrow$:

$\textbf{B} \rightarrow \textbf{S} \! \downarrow$

$\text{CIN} \to \text{S}{\downarrow}$

$\mathbf{A} o \mathbf{CO} \!\!\uparrow$

 $\textbf{A} \rightarrow \textbf{CO} \! \downarrow$

$\textbf{B} \rightarrow \textbf{CO} \uparrow$

 ${f CIN}
ightarrow {f CO} \uparrow$ (Vì A và B đều là 0 hoặc 1 đều cho CO 0 hoặc 1 cho nên đặt A là 1 và B là 0 cố định)

 $\textbf{CIN} \to \textbf{CO} \!\!\downarrow \text{(Vì A và B đều là 0 hoặc 1 đều cho CO 0 hoặc 1 cho nên đặt A là 1 và B là 0 cố định)}$

• Hình Cload bằng 50 transistor đơn vị:

Tính công suất của mạch trong trường hợp $A \to S\uparrow$, $A \to S\downarrow$, $B \to S\uparrow$, $A \to CO\uparrow$, $A \to CO\downarrow$:

P_avg: AVG(-V(VDD)*I(VDD))=9.73913240368e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp $B \to S\uparrow$, $B \to S\downarrow$, $B \to CO\uparrow$, $B \to CO\downarrow$:

P_avg: AVG(-V(VDD)*I(VDD))=6.54266140988e-05 FROM 1e-08 TO 2e-08

Tính công suất của mạch trong trường hợp $CIN \to S\uparrow$, $CIN \to S\downarrow$, $CIN \to CO\uparrow$, $CIN \to CO\downarrow$

P_avg: AVG(-V(VDD)*I(VDD))=0.000180283434227 FROM 1e-08 TO 2e-08

Dạng sóng ngõ ra của S và CO:

$A \rightarrow S \uparrow$:

$\textbf{B} \rightarrow \textbf{S} \uparrow$

$\text{CIN} \to \text{S}{\uparrow}$

$\textbf{A} \rightarrow \textbf{CO} \uparrow$

$\textbf{B} \to \textbf{CO} \uparrow$

 ${f CIN} \to {f CO} \uparrow$ (Vì A và B đều là 0 hoặc 1 đều cho CO 0 hoặc 1 cho nên đặt A là 1 và B là 0 cố định)

 ${f CIN}
ightarrow {f CO} \downarrow$ (Vì A và B đều là 0 hoặc 1 đều cho CO 0 hoặc 1 cho nên đặt A là 1 và B là 0 cố định)

	Delay (ns)			
Description	Cload = 50 transistor đơn	Cload = 20 transistor đơn		
	vị	vį		
$A \rightarrow S \uparrow$	200.668 ps	116.926 ps		
$A \rightarrow S \downarrow$	263.533 ps	159.102 ps		
$B \rightarrow S \uparrow$	203.025 ps	119.541 ps		
$B \to S \!\!\downarrow$	267.504 ps	120.032 ps		
$CIN \rightarrow S\uparrow$	187.049 ps	101.973 ps		
$CIN \rightarrow S \downarrow$	229.005 ps	122.797 ps		
$A \rightarrow CO \uparrow$	203.298 ps	101.873 ps		
$A \rightarrow CO \downarrow$	214.746 ps	108.538 ps		
B → CO↑	189.664 ps	105.821 ps		
$B \to CO \!\!\downarrow$	212.261 ps	105.008 ps		
CIN → CO↑	206.726 ps	121.850 ps		
$CIN \rightarrow CO \downarrow$	240.068 ps	134.901 ps		

e. Điểm do nhóm tự đánh giá theo thang điểm tối đa bên dưới:

Nội dung đánh giá	Hình thức báo cáo file Word	Hình thức báo cáo file PPT	Tính toán kích thước các transistor	Sơ đồ mạch các khối và top level	Kết quả mô phỏng Schematics	Các thông số timing , power
Tối đa	10%	10%	10%	20%	20%	30%
Nhóm tự đánh giá	8	8	10	10	10	8