15

1. A compound of formula I,

$$R^{1}$$
 R^{2}
 R^{4}
 R^{4}

10 R^1 and R^2 independently represent H, C_{1-4} alkyl, OR^{2b} or $N(R^{2c})R^{2d}$, or together form -O-(CH₂)₂-O-, -(CH₂)₃-, -(CH₂)₄- or -(CH₂)₅-; R^{2b} , R^{2c} and R^{2d} independently represent H or C_{1-6} alkyl;

 R^3 represents H, C_{1-6} alkyl or, together with R^4 , represents C_{3-6} alkylene (which alkylene group is optionally interrupted by an O atom and/or is optionally substituted by one or more C_{1-3} alkyl groups);

 R^4 represents H, C_{1-12} alkyl, C_{1-6} alkoxy (which latter two groups are both optionally substituted and/or terminated by one or more substituents selected from -OH, halo, cyano, nitro, C_{1-4} alkyl and/or C_{1-4} alkoxy),

-(CH₂)_q-aryl, -(CH₂)_q-oxyaryl, -(CH₂)_q-Het¹ (which latter three groups are optionally substituted (at the -(CH₂)_q- part and/or the aryl/Het¹ part) by one or more substituents selected from -OH, halo, cyano, nitro, -C(O)R¹⁰, -C(O)OR¹¹, -N(H)S(O)₂R^{11a}, C₁₋₆ alkyl and/or C₁₋₆ alkoxy),

 $-(C[\!\!H_2]_qN(H)C(O)R^8, \ -(CH_2)_qS(O)_2R^8, \ -(CH_2)_qC(O)R^8, \ -(CH_2)_qC(O)OR^8, \ -(CH_2)_0C(O)N(R^9)R^8$ or, together with R^3 , represents C_{3-6} alkylene (which alkylene group is optionally interrupted by an O atom and/or is optionally substituted by one or more C₁₋₃ alkyl groups);

q represents 0, 1, 2, 3, 4, 5 or 6;

represents H, C₁₋₆ alkyl, aryl (which latter group is optionally substituted and/or terminated by one or more substituents selected from -OH, halo, cyano, nitro, -C(O) R^{10} , -C(O) QR^{11} , -N(H) QQ^{11a} , Q^{11a} , Q^{11a} , Q^{11a} , alkyl and/or C_{1-6} alkoxy) or, together with R^9 , represents C_{3-7} alkylene;

 R^9 represents H, C_{1} alkyl or, together with R^8 , represents C_{3-7} alkylene; Het represents a five to twelve-membered heterocyclic ring containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more = O substituents;

 R^{41} , R^{42} , R^{43} , R^{44} , R^{45} or R^{40} independently represent H or C_{1-3} alkyl; 15

 R^5 represents H, halo, C_{1-3} alky, $-OR^{12}$, $-N(R^{13})R^{12}$ or, together with R^6 , represents =0;

 R^6 represents H, C_{1-4} alkyl or, together with R^5 , represents =0;

 R^{12} represents H, C_{1-6} alkyl, $-S(O)_2-C_{3-4}$ -alkyl, $-C(O)R^{14}$, $-C(O)OR^{14}$, 20 $-C(O)N(R^{15})R^{15a}$ or aryl (which latter group is optionally substituted and/or terminated by one or more substituents selected from -OH, halo, cyano, nitro, $-C(O)R^{10}$, $-C(O)OR^{11}$, $-N(H)S(O)_2R^{11a}$, C_{1-6} alkyl and/or C_{1-6} alkoxy);

 R^{13} represents H or C_{14} alkyl; 25

R¹⁴ represents H or C₁₋₆ alkyl;

R¹⁵ and R^{15a} independently represent H or C₁₋₄ alkyl, or together represent C₃₋₆ alkylene, optionally interrupted by an O atom;

A represents a single bond, C_{1-6} alkylene, $-N(R^{16})(CH_2)_r$ or $-O(CH_2)_r$ (in which two latter groups, the $-(CH_2)_r$ group is attached to the bispidine nitrogen atom);

B represents a single bond, C_{1-4} alkylene, $-(CH_2)_nN(R^{17})$ -, $-(CH_2)_nS(O)_p$ -,

- 5 - $(CH_2)_nO$ -\(\text{in which three latter groups, the - $(CH_2)_n$ group is attached to the carbon atom bearing R⁵ and R⁶), -C(O)N(R¹⁷)- (in which latter group, the -C(O)- group is attached to the carbon atom bearing R⁵ and R⁶),
 - $-N(R^{17})C(O)O(CH_2)_n$ -, $-N(R^{17})(CH_2)_n$ (in which two latter groups, the $N(R^{17})$ group is attached to the carbon atom bearing R^5 and R^6) or
- -(CH₂)_mC(H)(OH)(CH₂)_n- (in which latter group, the -(CH₂)_m- group is attached to the carbon atom bearing R⁵ and R⁶); m represents 1, 2 or 3;

n and r independently represent 0, 1, 2, 3 or 4;

p represents 0, 1 or 2;

15 R^{16} and R^{17} independently represent H or C_{1-4} alkyl;

 R^7 represents C_{1-6} alkyl, arylor Het^2 , all of which groups are optionally substituted and/or terminated (as appropriate) by one or more substituents selected from -OH, cyano, halo, amino, nitro, Het^3 , -C(O) R^{10} ,

-C(O)OR¹¹, C_{1-6} alkyl, C_{1-6} alkoxy, $-N(H)S(O)_2R^{18}$, $-S(O)_2R^{19}$, $-OS(O)_2R^{20}$, $-N(H)C(O)N(H)R^{21}$, $-C(O)N(H)R^{22}$ and/or aryl (which latter group is optionally substituted by one or more cyano groups);

Het² and Het³ independently represent a five to twelve-membered heterocyclic group containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, and which also optionally includes one or more =O substituents;

 R^{18} , R^{19} and R^{20} independently represent C_{1-6} alk χ l;

 R^{21} and R^{22} independently represent H or C_{1-6} alkyl (optionally terminated by cyano); and

10

15

25

 R^{10} and R^{11} independently represent, at each individual occurrence, H or C_{1-6} alkyl;

R^{11a} represents, at each individual occurrence, C₁₋₆ alkyl;

or a pharmaceutically acceptable derivative thereof;

provided that:

- (a) when A and B are both single bonds and R⁷ is optionally substituted aryl, then R⁵ and R⁶ do not both represent H;
- (b) when A represents a single bond, then R^5 and R^6 do not together represent =0; and
- (c) when R^5 represents $-OR^{12}$ or $-N(R^{13})R^{12}$, then:-
 - (i) A does not represent $-N(R^{16})(CH_2)_r$ or $-O(CH_2)_r$ -; and/or
 - (ii) n does not represent 0 when B represents $-(CH_2)_nN(R^{17})$ -, $-(CH_2)_nS(O)_p$ or $-(CH_2)_nO$ -.
- 2. A compound as claimed in Claim 1, wherein R¹ represents H.
- 3. A compound as claimed in Claim 1 or Claim 2, wherein R² represents H.
 - 4. A compound as claimed in any one of the preceding claims, wherein R^3 represents H; C_{1-2} alkyl; or, together with R^4 represents C_{4-5} alkylene, optionally interrupted by an O atom and/or optionally substituted by one or more methyl groups.
 - 5. A compound as claimed in Claim 4, wherein R³ represents H.

110 claim

6. A compound as claimed in any one of the preceding claims, wherein R⁴ represents H; linear or branched and/or saturated or unsaturated and/or cyclic, acyclic and/or part cyclic/acyclic C₁₋₈ alkyl (which alkyl group is optionally substituted by one or more cyano or halo groups and/or interrupted by an O atom); C_{1-6} alkoxy; $-(CH_2)_{\alpha}S(O)_2R^8$, $-(CH_2)_{\alpha}C(O)OR^8$, $-(CH_2)_qN(H)C(O)R^8, \quad -(CH_2)_qC(O)R^8, \quad (in \quad which \quad latter \quad four \quad groups, \quad q$ represents 0, 1 or 2 and R⁸ represents linear or branched and/or acyclic, cyclic and/or part cyclic/acyclic C₁₄ alkyl, or phenyl (which phenyl group is optionally substituted by one or more cyano and/or C₁₋₃ alkyl groups)); -(CH₂)_qC(O)N(R⁹)R⁸ (in which latter group, q represents 0, 1 or 2 and R⁸ and R9 independently represent H, linear or branched and/or acyclic, cyclic and/or part cyclic/acyclic $C_{1.4}$ alkyl, or together represent $C_{4.6}$ alkylene); $-(CH_2)_q$ -phenyl, $-(CH_2)_q$ -oxyphenyl or $-(CH_2)_q$ -Het¹ (in which latter three groups, q represents 0, 1, 2 or 3, the $-(CH_2)_{q}$ - part is optionally substituted by a cyano group, and the phenyl, or Het¹, part is optionally substituted with one or more substituents selected from cyano, nitro, linear or branched $C_{1.4}$ alkyl, linear or branched $C_{1.4}$ alkoxy and $N(H)S(O)_2R^{11a}$; or, together with R3, represents C4-5 alkylene, optionally interrupted by an O atom

20

25

10

15

7. A compound as claimed in any one of the preceding claims, wherein R^5 represents H; fluoro; OR^{12} (in which R^{12} represents H, phenyl (optionally substituted by one or more methoxy groups) or $C(O)N(H)R^{15a}$ (in which R^{15a} represents linear or branched C_{1-4} alkyl)); $-N(R^{13})(R^{12})$ (in which R^{12} represents H, C_{1-2} alkyl, $-S(O)_2$ - C_{1-2} alkyl, $-C(O)R^{14}$ (in which R^{14} represents C_{1-2} alkyl), $-C(O)OR^{14}$ (in which R^{14} represents linear or branched C_{1-5} alkyl) or $-C(O)N(R^{15})(R^{15a})$ (in which R^{15} and R^{15a} independently represent H or linear or branched C_{1-3} alkyl or together represent C_{4-5} alkylene, which

and/or optionally substituted by one or more methyl groups.

- 8. A compound as claimed in Claim 7, wherein R^5 represents H, OH or $-N(H)C(O)N(R^{15})(R^{15a})$.
- 9. A compound as claimed in any-one of the preceding-claims, wherein R^6 represents H or C_{1-2} alkyl or together with R^5 represents =0.
- 10. A compound as claimed in Claim 9, wherein R⁶ represents H.
 - 11. A compound as claimed in any one of the preceding claims, wherein A represents a single bond, linear or branched C_{1-4} alkylene (which group is also optionally interrupted by O), $-N(H)(CH_2)_r$ or $-O(CH_2)_r$ (in which latter two cases r is 1 or 2).
 - 12. A compound as claimed in Claim 11, wherein A represents -CH₂- or -(CH₂)₂-.
- 13. A compound as claimed in any one of the preceding claims, wherein B represents a single bond, C₁₋₄ alkylene, -(CH₂)_nO-, -(CH₂)_nS(O)₂-, -(CH₂)_nN(H)- or -N(H)(CH₂)_n- (in which latter four cases n is 0, 1, 2 or 3).
- 14. A compound as claimed in Claim 13, wherein B represents a single bond, -CH₂N(H)- or -CH₂O-.
 - 15. A compound as claimed in any one of the preceding claims, wherein R^7 represents linear or branched and/or acyclic, cyclic and/or part cyclic/acyclic $C_{1.6}$ alkyl (optionally substituted and/or terminated by OH);

Het² (optionally substituted by one or more substituents selected from cyano, $C_{1.3}$ alkyl, phenyl (which latter group is optionally substituted with one or more cyano groups), =O, $C(O)R^{10}$ (in which R^{10} is linear or branched $C_{1.3}$ alkyl) or $S(O)_2R^{19}$ (in which R^{19} is $C_{1.2}$ alkyl)); or phenyl (optionally substituted by one or more substituents selected from cyano, nitro, linear or branched $C_{1.3}$ alkyl, linear or branched $C_{1.3}$ alkoxy, fluoro, chloro, $C(O)N(H)R^{22}$ (in which R^{22} represents linear or branched and/or acyclic, cyclic and/or part cyclic/acyclic $C_{1.4}$ alkyl, which alkyl group is optionally terminated by cyano), $N(H)S(O)_2R^{18}$ (in which R^{18} represents $C_{1.2}$ alkyl) or Het³).

댴

Hall Bull Jan Breen was street

5

10

16. A compound as claimed in Claim 15, wherein R⁷ represents phenyl (substituted by a cyano group (preferably in the 4-position relative to B) and by one or more optional C(O)N(H)R²² substituent).

15

17. A compound as claimed in any one of the preceding claims, wherein R^{41} , R^{42} , R^{43} , R^{44} , R^{45} and R^{46} all represent H.

20

18. A pharmaceutical formulation including a compound as defined in any one of Claims 1 to 17 in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier.

19. A pharmaceutical formulation for use in the prophylaxis or the treatment of an arrhythmia, comprising a compound as defined in any one

25

20. A compound as defined in any one of Claims 1 to 17 for use as a pharmaceutical.

- 21. A compound as defined in any-one of Claims 1 to 17 for use in the prophylaxis or the treatment of an arrhythmia.
- 22. The use of a compound as defined in any of one Claims 1 to 17 as active ingredient in the manufacture of a medicament for use in the prophylaxis or the treatment of an arrhythmia.
- 23. The use as claimed in Claim 22, wherein the arrhythmia is an atrial or a ventricular arrhythmia.

24. A method of prophylaxis or treatment of an arrhythmia which method comprises administration of a therapeutically effective amount of a compound as defined in any one of Claims 1 to 17 to a person suffering from, or susceptible to, such a condition.

15

 Π

٥ì

The second second second

- 25. A process for the preparation of a compound of formula I as defined in Claim 1 which comprises:
- (a) for compounds of formula I in which R³ is H, reaction of a compound of formula II,

 $5\sqrt{20}$

П

20

wherein R¹, R², R⁵, R⁶, R⁷, R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, A and B are as defined in Claim 1 with a compound of formula III,

$$R^4-N=C=O$$

III

wherein R⁴ is as defined in Claim 1;

(b) reaction of a compound of formula II, as defined above, with a carbonic acid derivative of formula IV,

$$(R^3)(R^4)NC(O)-L^1$$

IV

wherein L¹ represents a leaving group and R³ and R⁴ are as defined in Claim 1;

10 (c) reaction of a compound of formula V,

wherein and L¹ is as defined above and R¹, R², R⁵, R⁶, R⁷, R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, A and B are as defined in Claim 1, with a compound of formula VA,

$$(R^3)(R^4)NH$$

VA

٧

wherein R³ and R⁴ are as defined in Claim \(\frac{1}{3}\);

(d) for compounds of formula I in which A represents CH₂ and R⁵ represents -OH or -N(H)R¹², reaction of a compound of formula VI,

10

R¹ R² R⁴¹ R⁴² N O R⁴ R⁴

wherein R^1 , R^2 , R^3 , R^4 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} and R^{46} are as defined in Claim 1, with a compound of formula VII,

VΙ

R₁ B VII

wherein X represents O or $N(R^{12})$ and R^6 , R^7 , R^{12} and B are as defined in Claim 1;

(e) reaction of a compound of formula VI, as defined above, with a compound of formula VIII,

- wherein L^2 represents a leaving group and R^5 , R^6 , R^7 , A and B are as defined in Claim 1;
 - (f) for compounds of formula I in which R⁵ represents H or OH and R⁶ represents H, reduction of a compound of formula IX,

5

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , A and B are as defined in Claim 1;

IX

Х

(g) for compounds of formula I in which one of R¹ and R² represents H or OH and the other represents H, reduction of a corresponding compound of formula X,

10

15

wherein R^3 , R^4 , R^5 , R^6 , R^7 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , A and B are as .. defined in Claim 1;

(h) for compounds of formula I in which R¹ and R² together represent -O(CH₂)₂O-, reaction of a corresponding compound of formula X as defined above with ethane-1,2-diol;

The stand of the same and stand the first

The little of the first that the state of th

10

15

20

(i) for compounds of formula I in which B represents $-(CH_2)_nO$ -, reaction of a compound of formula XI,

$$R^{1}$$
 R^{2} R^{43} R^{41} R^{4} R^{42} R^{41} R^{4} R^{4}

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, A and n are as defined in Claim 1, with a compound of formula XIA,

R⁷OH

XIA

ΧI

in which R⁷ is as defined in Claim 1;

- (j) for compounds of formula I which are bispidine-nitrogen N-oxide derivatives, oxidation of the corresponding bispidine nitrogen of a corresponding compound of formula I;
- (k) for compounds of formula I which are C_{14} alkyl quaternary ammonium salt derivatives, in which the alkyl group is attached to a bispidine nitrogen, reaction, at the bispidine nitrogen, of a corresponding compound of formula I with a compound of formula XII,

 R^bL^3

XII

wherein R^b represents C_{1.4} alkyl and L³ is a leaving group;

(1) for compounds of formula I in which R^5 and R^6 represent H, A represents C_{1-6} alkylene and B represents $-N(R^{17})(CH_2)_n$, reaction of a compound of formula XIII,

wherein A^a represents C_{1-6} alkylene and R^1 , R^2 , R^3 , R^4 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} and R^{17} are as defined in Claim 1 with a compound of formula XIV,

 R^7 -(CH₂)_n-L² XIV wherein L² is as defined above and R^7 and n are as defined in Claim 1;

XIII

ΧV

(m) for compounds of formula I in which R⁵ represents -NH₂, reduction of a corresponding compound of formula XV,

wherein R^1 , R^2 , R^3 , R^4 , R^6 , R^7 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , A and B are as defined in Claim 1;

15

20

(n) for compounds of formula I in which R⁵ represents

 $-N(R^{13})C(O)NH(R^{15})$, reaction of a corresponding compound of formula I in which R^5 represents $-N(R^{13})H$ with a compound of formula XVI,

$$R^{15}N = C = O$$

XVI

wherein R¹⁵ is as defined in Claim 1;

(o) for compounds of formula I in which R^5 represents $-N(R^{13})C(O)R^{14}$, reaction of a corresponding compound of formula I in which R^5 represents $-N(R^{13})H$ with a compound of formula XVII,

$$R^{14}C(O)R^{x}$$

XVII

wherein R^x represents a suitable leaving group and R¹⁴ is as defined in Claim 1;

(p) for compounds of formula I in which R⁵ represents -N(H)R¹², wherein R¹² is as defined in Claim 1 provided that it does not represent H, reaction of a corresponding compound of formula I, in which R⁵ represents -NH₂ with a compound of formula XVIII,

$$R^{12a}L^1$$

XVIII

wherein R^{12a} represents R^{12} as defined in Claim 1 provided that it does not represent H and L^1 is as defined above;

(q) for compounds of formula I in which R^5 represents $-OR^{12}$ in which R^{12} represents C_{1-6} alkyl or optionally substituted aryl, reaction of a corresponding compound of formula I in which R^5 represents -OH with a compound of formula XIX,

XIX

wherein R^{12a} represents C₁₋₆ alkyl or optionally substituted aryl;

25 (r) for compounds of formula I in which R^5 represents $\Colon OR^{12}$, in which R^{12} represents C_{1-6} alkyl or optionally substituted aryl, reaction of a compound of formula XX,

wherein L² is as defined above and R¹, R², R³, R⁴, R⁶, R⁷, R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, A and B are as defined in Claim 1 with a compound of formula XIX as defined above;

(s) for compounds of formula I in which R^5 represents OR^{12} and R^{12} represents $C(O)R^{14}$, reaction of a corresponding compound of formula I in which R^5 represents OH with a compound of formula XXI,

 $R^{14}CO_2H$

IXX

XX

wherein R¹⁴ is as defined in Claim 1;

- (t) for compounds of formula I in which R⁵ represents halo, substitution of a corresponding compound of formula I in which R⁵ represents -OH, using an appropriate halogenating agent;
- 15 (u) for compounds of formula I in which R³ and/or R⁴ as appropriate represent alkyl groups, alkylation of a corresponding compound of formula I, in which R³ and/or R⁴ (as appropriate) represent H;
 - (v) conversion of one R⁴ group to another;
 - (w) for compounds of formula I in which one of R² and R³\represents
- 20 -NH₂ and the other represents H, reduction of a compound of formula XXIA,

XXIA

wherein R^3 , R^4 , R^5 , R^6 , R^7 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , A and B are as defined in Claim 1;

(x) for compounds of formula I in which one or both of R¹ and R² represent $-N(R^{2c})R^{2d}$ in which one or both of R^{2c} and R^{2d} represents C_{1-6} alkyl, alkylation of a corresponding compound of formula I in which R¹ and/or R^2 represent $-N(R^{2c})R^{2d}$ (as appropriate) in which R^{2c} and/or R^{2d} (as appropriate) represent H, using a compound of formula XXIB,

R^{2e}L¹

XXIB

wherein R^{2e} represents C₁₋₆ alkyl and L¹ is as defined above;

- (y) conversion of one substituent on R⁷ to another; or
- (z) deprotection of a protected derivative of a compound of formula I as defined in Claim 1.

26. A compound of formula II, as defined in Claim 25, or a protected derivative thereof, provided that R does not represent optionally substituted phenyl.

- 27. A compound of formula V, as defined in Claim 25, or a protected derivative thereof, provided that R⁷ does not represent optionally substituted phenyl.
- 50h

15

N

The first find

the trail from the feet of the test

- 28. A compound of formula X as defined in Claim 25, or a protected derivative thereof.
 - 29. A compound of formula XI as defined in Claim 25, or a protected derivative thereof.
 - 30. A compound of formula XIII, as defined in Claim 25, or a protected derivative thereof.
 - 31. A compound of formula XV, as defined in Claim 25, or a protected derivative thereof.
 - 32. A compound of formula XX, as defined in Claim 25, or a protected derivative thereof.
- 20 33. A compound of formula XXIII,

50h 196

XXIII

wherein R^5 , R^6 , R^7 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , A and B are as defined in Claim 1, or a protected derivative thereof.

A compound of formula XXV, 34.

XXV

wherein R^3 , R^4 , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} and R^{46} are as defined in Claim 1, or a protected derivative thereof.

35. A process for the preparation of a compound of formula X, of formula XXIII, or of formula XXV (in which, in all cases, R45 and R46 both represent H), which comprises (as appropriate) reaction of either:

(i) a compound of formula XXXV,

wherein R^z represents C_{1-10} alkyl or C_{1-3} alkylaryl and R^{41} , R^{42} , R^{43} and R^{44} 15 are as defined in Claim 1, or

5

(ii) 4-piperidone (or a protected derivative thereof), with (as appropriate) either:

(1) a compound of formula XXXVI,

 R^7 -B-C(R^5)(R^6)-A-NH₂

XXXVI

wherein R^5 , R^6 , R^7 , A and B are as defined in Claim 1, or

(2) NH₃ (or a protected derivative thereof),

in all cases in the presence of a formaldehyde and, in the case of compounds of formulae X and XXV, followed by conversion of the $C(O)OR^z$ group in the resultant intermediate to a $C(O)N(R^3)(R^4)$ group.

10

15

- 36. A process as claimed in Claim 35, in which the reaction is carried out in the presence of an organic acid.
- 37. A process as claimed in Claim 36, in which the organic acid is acetic acid.

add B7