Epreuve disponible sur <u>www.emergencetechnocm.com</u>

Ministère des Enseignements Secondaires Office du Baccalauréat du Cameroun Examen: BAC Session: 20.17

Série: F 1-2-3-4-5-7-8-Cl Epreuve: Mathématiques

Durée: 3 h Coefficient: 3

EXERCICE 1:

5 points

Le plan est muni d'un repère orthonormé $(0; \vec{\iota}, \vec{j})$. On considère l'application du plan qui au point M d'affixe z associe le point M' d'affixe Z' tel que :

$$Z' = -z^2 - \overline{z}^2 - z\overline{z} + (3 - 2i)z + (3 + 2i)\overline{z} - 11.$$

- 1- Montrer que pour tout nombre complexe z, le nombre complexe Z'est réel. 1 pt
- 2- On pose z=x+iy où $(x;y)\in\mathbb{R}^2$. Montrer que Z'=0 si et seulement si $-3x^2+y^2+6x+4y-11=0$. 0,5pt
- 3- On désigne par (Γ) , l'ensemble des points M d'affixe z=x+iy tels que z'=0.
 - a) Montrer que (Γ) est une conique dont on donnera l'équation réduite, la nature exacte et les coordonnées des sommets dans un repère que l'on précisera.
 - précisera. 2 pts b) Tracer (Γ) dans le repère ($0; \vec{i}, \vec{j}$). 1,5pt

EXERCICE 2:

5 points

Le tableau suivant donne la superficie et le prix de dix appartements vendus

récemment dans le centre d'une petite ville :

Superficie (en m²) x_i	42	46	48	52	55	75	80	90	100	120
Prix (en milliers de francs) y_i	330	370	400	430	450	660	680	780	850	1050

- 2- Calculer les coordonnées du point moyen G du nuage des points $M_i(x_i; y_i)$ et 1 pt placer le dans le repère.
- 3- Montrer qu'une équation de la droite d'ajustement de y en x, obtenue par la méthode des moindres carrés est : y = 9,1086x 44,89. 1,5pt
- **4-** Dans cette question, on utilisera l'équation obtenue dans la question 3 pour faire des estimations de prix et de surface.
 - a) Estimer le prix d'un appartement de 150 m². 0,5pt
 - b) Estimer (au mètre carré près) la surface d'un appartement coûtant 1 600 000 francs.

0,5pt

Page 1 sur 2

Epreuve disponible sur www.emergencetechnocm.com

PF	ROBLEME: 10 points			
	Le problème comporte deux parties			
On	n considère les fonctions f et g définis sur \mathbb{R} par : $f(x) = x - 1 + (x^2 + 2)e^{-x}$;			
	$g(x) = 1 - (x^2 - 2x + 2)e^{-x}$			
(\mathcal{C}_f) est la courbe représentative de f dans un repère orthonormé $(0; \vec{1}, \vec{j})$.			
On	prendra comme unité graphique : 1 cm .			
Pa	rtie A : Étude du signe de g 3 points			
1-2-	 Étudier les variations de g et dresser son tableau de variation. 			
3-	En déduire le tableau des signes de $g(x)$.	1 pt '		
Pa	rtie B: Étude de f (7 points)			
1-	 a) Calculer f'(x) où f' désigne la dérivée de f. Comparer f'(x) à g(x). b) Démontrer que f(α) = α(1 + 2e^{-α}). En déduire un encadrement de f(α) d'amplitude 2 × 10⁻². 	0,5 pt		
	c) Dresser le tableau des variations de f.	0,75pt 1 pt /		
2-	Démontrer que la droite (D) d'équation $y = x - 1$ est asymptote à (C_f) en $+\infty$.			
	Préciser la position de (C_f) et de (D) .	1 pt *		
	3- Déterminer une équation de la tangente (T) à (\mathcal{C}_f) au point d'abscisse 0.			
4- 5-	Tracer (D), (T) et (\mathcal{C}_f) . a) Déterminer les réels a, b et c tels que la fonction :	1,5 pt		
0-	a) Déterminer les réels a , b et c tels que la fonction : $x \mapsto (ax^2 + bx + c)e^{-x}$ soit une primitive de la fonction : $x \mapsto (x^2 + 2)e^{-x}$.	0,75pt		
	b) Calculer l'aire \mathcal{A} du domaine plan limité par (D), (T), (\mathcal{C}_f) et les droites d'équation $x = 0$ et $x = 2$.	1 pt *		