

Introducción

Problemas diagnosticados:

- √ Barras del rotor rotas o rajadas
- ✓ Anillos del rotor rajados
- ✓ Juntas de alta resistencia en el bobinado de la jaula
- ✓ Poros o agujeros en los rotores de aluminio
- ✓ Rotores mal cobre-soldados
- ✓ Problemas de bobinado en los motores de inducción de anillo colector
- \checkmark Irregularidades estáticas o dinámicas en el espacio entre el rotor y el estator
- ✓ Desequilibrio magnético
- ✓ Desequilibrio dinámico
- ✓ Eje alabeado o dilatado
- ✓ Estator, rotor o rodamientos ovalados

Introducción Motores de corriente continua Motor de corriente continua con excitación serie

Introducción

- Existen algunos tipos de problemas muy comunes en motores eléctricos que no pueden diagnosticarse COMPLETAMENTE mediante el análisis tradicional de la vibración entre los que se encuentran:
 - ✓ Problemas en barras y anillos de cierre del rotor
 - ✓ Porosidades en la fundición de rotores fundidos
 - ✓ Irregularidades en el entrehierro estáticas y dinámicas
 - ✓ Desequilibrio en el campo magnético

Análisis Motores Eléctricos

Introducción

Programa de diagnóstico para motores de inducción de corriente alterna que detecta y evalúa los daños, para poder realizar las acciones adecuadas tendentes a corregir los defectos mencionados anteriormente.

Introducción

También se detectan defectos en el entrehierro que dan lugar a elevados niveles de **excentricidad dinámica o estática**. Esto se consigue analizando la presencia en la zona de alta frecuencia en el espectro de corriente.

Análisis Motores Eléctricos

Zonas de fallo del motor

- Rotor
- Estator
- Entrehierro
- Circuito de Potencia
- Calidad de la alimentación
- Aislamiento

Tipos de ensayo

- Estáticos Motor parado
- Dinámico Motor en marcha

Ensayos Generales

- ☐ Asegurar que las conexiones están bien colocadas
- ☐ Calcular la Resistencia a Tierra (RTG)
- ☐ Calcular la Capacidad a Tierra (CTG)
- ☐ Calcular la Resistencia entre fases y su desequilibrio
- ☐ Calcular la inductancia entre fases y su desequilibrio
- ☐ Vuelve a asegurar que las conexiones están bien colocadas para dar el análisis por bueno

Análisis Motores Eléctricos

Ensayos Generales

Cuando	у	Hay
CTG aumenta	RTG disminuye	Humedad y contaminacion en el sistema de aislamiento
CTG aumenta	RTG permanece	Contaminación de la superficie del aislamiento
Desequilibrio resistivo es bajo	Desequilibrio de inductancia alto	Problemas con rotor o eje torcido, barras rotas, porosidad; fallos de estator y/o excentricidad
Desequilibrio resistivo alto	Desequilibrio inductancia alto	Problemas en el estator
Desequilibrio resistivo alto	Desequilibrio inductancia bajo	Problemas en el circuito de potencia, como conexiones corroidas, contaminadas o desconexiones

Ensayo de frecuencia

□ Cuando hay presencia de barras rotas aparecen a la izquierda de la 5ª armónica (250 Hz) tres picos separados la misma distancia que las bandas laterales con respecto a la frecuencia de red

Análisis Motores Eléctricos

Ensayo de frecuencia

EJEMPLO DE BARRA ROTA en un motor de 6000 V donde se realizó un estudio en los secundarios de los transformadores

Análisis Motores Eléctricos Ensayo de Potencia Valores de voltajes y corrientes Desequilibrio de voltaje y corriente Distorsión Harmónica Total (THD) Factor de cresta del voltaje y la corriente Sistema de harmónicos

