Límite Central con variables diferentes

J. Abellán 30/10/2015

Objetivo

Comprobar mediante simulación el teorema del límite central sumando varias variables aleatorias que no son idénticas, es decir, cada variable aleatoria tiene su propia función de distribución.

Ejemplo

Supongamos la siguiente situación:

- Una normal con media $\mu = 3$ y desviación $\sigma = 1$
- Una normal $\mu = 4$ y desviación $\sigma = 1/2$
- Una uniforme con límites li = 0, ls = 6
- Una ji-cuadrado con gl=3 grados de libertad
- Una exponencial de parámetro b=4

```
library("latex2exp", lib.loc="~/R/i686-pc-linux-gnu-library/3.2")
# Parámetros de las variables, medias y varianzas teóricas
# Normal 1
mu1 <- 3; sigma1 <- 1
X1m <- mu1 ; vX1 <- sigma1^2</pre>
#Normal 2
mu2 <- 5; sigma2 <- 2
X2m \leftarrow mu2 ; vX2 \leftarrow sigma2^2
#Uniforme
li <- 0 ; ls <- 10
X3m \leftarrow (ls - li) / 2 ; vX3 \leftarrow (ls - li)^2 / 12
# Ji-cuadrado
gl <- 3
X4m \leftarrow gl ; vX4 \leftarrow 2 * gl
# Exponencial
b <- 1 / 3
X5m \leftarrow 1 / b ; vX5 \leftarrow 1 / b^2
# Datos aleatorios a generar
N <- 100000
X1 <- rnorm( N, mu1, sigma1 )
X2 <- rnorm( N, mu2, sigma2 )</pre>
X3 <- runif( N, li, ls )
```

```
X4 <- rchisq( N, gl )
X5 \leftarrow rexp(N, b)
# Creo la variable SUMA
X \leftarrow X1 + X2 + X3 + X4 + X5
# Por tanto, la media y varianza de la suma será
Xm < - X1m + X2m + X3m + X4m + X5m
vX \leftarrow vX1 + vX2 + vX3 + vX4 + vX5
sigmaX <- sqrt(vX)</pre>
titulo <- latex2exp("$\X = X_1 + X_2 + X_3 + X_4 + X_5$")
#Dibujo el histograma
hX <- hist( X, 100,
             prob = T,
             ylab = "p (X)",
             main = titulo )
#¿Qué curva teórica se le ajusta?
#;LA NORMAL!
x1 \leftarrow Xm - 4 * sigmaX
x2 \leftarrow Xm + 4 * sigmaX
x \leftarrow seq(x1, x2, len = 1000)
pX <- dnorm( x, Xm, sqrt(vX) )</pre>
lines( x, pX, col = 2)
```

$$X = X_1 + X_2 + X_3 + X_4 + X_5$$

Teniendo en cuenta que 5 variables no son infinito, la tendencia claramente se cumple.