Chen Lie algebras and combinatorics of arrangements

Alex Suciu

Northeastern University www.math.neu.edu/~suciu

Joint work with **Stefan Papadima**

Institute of Mathematics, Romanian Academy

Special Session on Arrangements of Hyperplanes
AMS Fall Central Section Meeting
Madison, Wisconsin
October 13, 2002

Lower Central Series & Chen Groups

G: a finitely-generated group. LCS:

$$G_1 = G, G_2 = G', \dots, G_{k+1} = [G_k, G], \dots$$

Associated graded Lie algebra:

$$\operatorname{gr}_* G = \bigoplus_{k \ge 1} G_k / G_{k+1}$$

with $[\,,\,] \colon \operatorname{gr}_i \times \operatorname{gr}_j \to \operatorname{gr}_{i+j}$ from group commutator.

■ Derived series:

$$G^{(0)} = G, G^{(1)} = G', \dots, G^{(i+1)} = [G^{(i)}, G^{(i)}], \dots$$

■ Chen Lie algebra:

$$\operatorname{gr}_*(G/G'')$$

LCS ranks & Chen ranks:

$$\phi_k(G) = \operatorname{rank}(\operatorname{gr}_k G), \qquad \theta_k(G) = \operatorname{rank}(\operatorname{gr}_k(G/G''))$$

Clearly: $\phi_1 = \theta_1, \, \phi_2 = \theta_2, \, \phi_3 = \theta_3, \, \phi_k \geq \theta_k.$

Example: Free groups

 F_n : free group of rank n

 $\operatorname{gr} F_n = \mathbb{L}_n$ (free Lie algebra of rank n)

E. Witt [1937]:

$$\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{\frac{k}{d}}$$

K.-T. Chen [1951]:

$$\theta_k(F_n) = (k-1) \binom{n+k-2}{k}$$
 for $k \ge 2$

Example: Pure braid groups

$$P_n = F_{n-1} \rtimes \cdots \rtimes F_1$$

T. Kohno [1985]

$$\phi_k(P_n) = \sum_{i=1}^{n-1} \phi_k(F_i)$$

D. Cohen–A. S. [1995]

$$\theta_k(P_n) = (k-1) \binom{n+1}{4}$$
 for $k \ge 3$

Holonomy Lie Algebra & Derived Series

Assume $H_1(G)$ is torsion-free, and $b_2(G)$ finite.

Chen [1977] defined the **holonomy Lie algebra** of G:

$$\mathfrak{H}_G = \operatorname{Lie}(H^1(G))/\operatorname{ideal}(\operatorname{im}(\partial_G))$$

where: $\operatorname{Lie}(H^1(G)) = \text{free Lie algebra on } H^1(G)$ $\partial_G = \text{dual of } \cup : H^1(G) \wedge H^1(G) \to H^2(G)$

The iso $H^1(G) \cong G/G'$ extends to Lie algebra map $\text{Lie}(H^1(G)) \twoheadrightarrow \text{gr}(G)$, which descends to natural map

$$\Psi_G \colon \mathfrak{H}_G \twoheadrightarrow \operatorname{gr}(G)$$

Theorem. (D. Sullivan [1977]) If G is 1-formal, then:

$$\mathfrak{H}_G \otimes \mathbb{Q} \cong \operatorname{gr}(G) \otimes \mathbb{Q}$$

Theorem 1. If G is 1-formal, then, for all $i \ge 0$:

$$\Psi_G^{(i)} \otimes \mathbb{Q} \colon \mathfrak{H}_G/\mathfrak{H}_G^{(i)} \otimes \mathbb{Q} \xrightarrow{\cong} \operatorname{gr}(G/G^{(i)}) \otimes \mathbb{Q}$$

lacksquare Malcev Lie algebra L

Q-Lie algebra, with complete, descending vector space filtration, $\{F_r L\}_{r\geq 1}$, s.t. $F_1 L = L$ and

- $[F_rL, F_sL] \subset F_{r+s}L$
- $\operatorname{gr}(L) = \bigoplus_{r \geq 1} F_r L / F_{r+1} L$ generated in degree 1

\blacksquare Exponential group $\exp(L)$

Set L, with group multiplication

$$x \cdot y = x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, [x, y]] + \frac{1}{12}[y, [y, x]] + \cdots$$

and filtration by normal subgroups $\{\exp(F_rL)\}_{r\geq 1}$.

■ Malcev completion $\widehat{G} = \exp(L)$

$$G \xrightarrow{\rho} \exp(L)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G/G_r \xrightarrow{\rho_r} \exp(L/F_r)$$

$$\downarrow \tilde{f}_r \qquad \qquad \downarrow \tilde{f}_r$$

$$\exp(\widetilde{L})$$

Construction:
$$\widehat{G} = \exp(\operatorname{Prim}(\widehat{\mathbb{Q}G})) = \varprojlim_{n} (G/G_n \otimes \mathbb{Q})$$

Lemma.

$$\rho(G^{(i)}) \subset \exp(L^{(i)}) = \exp(L)^{(i)}$$

Proposition.

$$\widehat{G/G^{(i)}} = \exp\left(L/L^{(i)}\right)$$

Proof. Chase diagram:

A group G is called 1-formal if

$$\widehat{G} = \exp(\widehat{\mathfrak{H}_G} \otimes \mathbb{Q})$$

Proof of Theorem 1.

Set $\mathfrak{H} = \mathfrak{H}_G$ and $L = \widehat{\mathfrak{H} \otimes \mathbb{Q}}$.

By 1-formality: $\widehat{G} = \exp(L)$.

Clearly:
$$L/L^{(i)} = \widehat{\mathfrak{H}} \otimes \mathbb{Q}/\widehat{\mathfrak{H}^{(i)}} \otimes \mathbb{Q} = \widehat{\mathfrak{H}}/\widehat{\mathfrak{H}^{(i)}} \otimes \mathbb{Q}$$
.

By the Proposition:

$$\widehat{G/G^{(i)}} = \exp\left(\widehat{\mathfrak{H}_G/\mathfrak{H}_G^{(i)}} \otimes \mathbb{Q}\right).$$

Passing to associated graded Lie algebras:

$$\operatorname{gr}(G/G^{(i)})\otimes \mathbb{Q}\cong (\mathfrak{H}_G/\mathfrak{H}_G^{(i)})\otimes \mathbb{Q}$$

Thus

$$\Psi_G^{(i)} \otimes \mathbb{Q} \colon \left(\mathfrak{H}_G/\mathfrak{H}_G^{(i)}\right) \otimes \mathbb{Q} \twoheadrightarrow \operatorname{gr}\left(G/G^{(i)}\right) \otimes \mathbb{Q}$$

is a surjection between \mathbb{Q} -vector spaces of the same (finite) dimension, hence an isomorphism.

Let X be a path-connected space with $b_1(X)$ and $b_2(X)$ finite, and $H_1(X)$ torsion-free. Set:

$$\mathfrak{H}_X = \operatorname{Lie}(H^1(X))/\operatorname{ideal}(\operatorname{im}(\partial_X))$$

where $\partial_X = (\cup_X)^{\sharp}$. If $G = \pi_1(X)$, then:

$$\Pi_X \colon \mathfrak{H}_X o \mathfrak{H}_G$$

Always: $\Pi_X \otimes \mathbb{Q} \colon \mathfrak{H}_X \otimes \mathbb{Q} \xrightarrow{\cong} \mathfrak{H}_G \otimes \mathbb{Q}$.

If \bigcup_X is onto: $\Pi_X \colon \mathfrak{H}_X \xrightarrow{\cong} \mathfrak{H}_G$.

Now suppose X is formal (its \mathbb{Q} -homotopy type is determined by $H^*(X,\mathbb{Q})$). Then $\pi_1(X)$ is 1-formal [Sullivan 1977], and so:

$$\operatorname{gr}(G/G^{(i)})\otimes \mathbb{Q}\cong \left(\mathfrak{H}_X/\mathfrak{H}_X^{(i)}\right)\otimes \mathbb{Q}$$

Examples of formal spaces:

- Compact Kähler manifolds [DGMS 1975].
- Certain (but not all) complements of normal-crossing divisors in smooth projective varieties [Morgan 1978]. All are 1-formal [Kohno 1983].

Hyperplane arrangements

 \mathcal{A} : central arrangement of n hyperplanes in \mathbb{C}^{ℓ}

 $\mathcal{L}(\mathcal{A})$: intersection lattice (the "combinatorics" of \mathcal{A})

$$X = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \Lambda} H, \quad G = \pi_1(X)$$

 $H^*(X; \mathbb{Z})$ computed by Brieskorn [1973]; combinatorial presentation A = E/I by Orlik-Solomon [1980].

Consequences:

- X is formal; thus, G is 1-formal.
- $\bigcup_X : \bigwedge^k H^1(X) \to H^k(X)$ surjective; hence, $\mathfrak{H}_X = \mathfrak{H}_G$.
- $\mathfrak{H} = \mathfrak{H}_X$ determined by $\mathcal{L}_2(\mathcal{A})$:

$$\mathcal{H} = \mathbb{L}(x_1, \dots, x_n) / \left([x_j, \sum_{i \in Y} x_i] = 0 \mid V \in \mathcal{L}_2, j \in V \right)$$

Theorem 2. Let A be a complex hyperplane arrangement, with complement X, fundamental group G, and holonomy Lie algebra \mathfrak{H} . Then:

$$\operatorname{gr}(G/G'')\otimes \mathbb{Q}=(\mathfrak{H}/\mathfrak{H}'')\otimes \mathbb{Q}$$

Consequently, the rational Chen Lie algebra of A is combinatorially determined (as a graded Lie algebra) by $\mathcal{L}_2(A)$.

In particular, the Chen ranks, $\theta_k(G) = \operatorname{rank} \operatorname{gr}_k(G/G'')$, are combinatorially determined.

■ Comments/Questions

- Can gr(G/G'') have torsion? (There are now indications that it may.)
- There are examples where gr(G) does have torsion.
- Is such torsion combinatorially determined?

Alexander invariants

G f.g. group

 $I = \ker(\epsilon \colon \mathbb{Z}G \to \mathbb{Z})$ augmentation ideal

Alexander module

$$A_G = \mathbb{Z}(G/G') \otimes_{\mathbb{Z}G} I$$

with G/G' acting on the left

Alexander invariant

$$B_G = G'/G''$$

with G/G' acting by conjugation: $gG' \cdot hG'' = ghg^{-1}G''$ Fit into exact sequence

$$0 \to B_G \to A_G \to I \to 0$$

Asociated graded module (w.r.t. *I*-adic filtration):

$$\operatorname{gr}(B_G) = \bigoplus_{k>0} I^k B_G / I^{k+1} B_G$$

W.S. Massey [1980]:

$$\operatorname{gr}_k(G/G'') = \operatorname{gr}_{k-2}(B_G)$$
 for $k \ge 2$

Now suppose G is a *commutator-relators* group:

$$G = \langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle, \quad r_j \in [F_n, F_n]$$

Then $G/G' = \mathbb{Z}^n$, generated by $t_i = ab(x_i)$.

Identify
$$\mathbb{Z}(G/G')$$
 with $\Lambda = \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}].$

 A_G and B_G are finitely-generated modules over the Noetherian ring Λ , thus admit finite presentations:

$$\Lambda^m \xrightarrow{D_G = \left(\frac{\partial r_j}{\partial x_i}\right)^{\text{ab}}} \Lambda^n \to A_G \to 0,$$

$$\Lambda^{\binom{n}{3} + m} \xrightarrow{\Delta_G = \delta_3 + \vartheta_G} \Lambda^{\binom{n}{2}} \to B_G \to 0,$$

where δ_k are Koszul differentials, and $\delta_2 \circ \vartheta_G = D_G$.

Magnus embedding:

$$\mu \colon \Lambda \hookrightarrow P = \mathbb{Z}[[s_1, \dots, s_n]]$$

$$t_i \mapsto 1 + s_i$$

Passing to associated graded rings w.r.t. the filtrations by powers of $\mathfrak{I}=(t_1-1,\ldots,t_n-1)$ and $\mathfrak{m}=(s_1,\ldots,s_n)$:

$$\operatorname{gr}(\mu) \colon \operatorname{gr}(\Lambda) \xrightarrow{\cong} S = \mathbb{Z}[s_1, \dots, s_n]$$

Let $\mu^{(q)}: \Lambda \to P/\mathfrak{m}^{q+1}$ be the q-th truncation.

Since G commutator-relators, $\mu^{(0)}(D_G) = 0$. Set:

$$D_G^{(1)} = \mu^{(1)}(D_G)$$

Entries belong to $\mathfrak{m}/\mathfrak{m}^2 = \operatorname{gr}_1(P) \subset S$:

$$\left(D_G^{(1)}\right)_{k,j} = \sum_{i=1}^n \epsilon \left(\frac{\partial^2 r_k}{\partial x_i \partial x_j}\right) s_i$$

 \blacksquare Linearized Alexander module of G: the S-module

$$\left| \mathfrak{A}_G = \operatorname{coker} D_G^{(1)} \right|$$

Let $(S \otimes \bigwedge^k H^1G, d_k)$ be the Koszul complex of S. Since $d_1 \circ D_G^{(1)} = 0$, d_1 factors through $\mathfrak{A}_G \to \mathfrak{m}$.

 \blacksquare Linearized Alexander invariant: the S-module

$$\left| \mathfrak{B}_G = \ker \left(\mathfrak{A}_G woheadrightarrow \mathfrak{m}
ight)
ight|$$

Proposition. \mathfrak{B}_G has presentation

$$S \otimes (\wedge^3 H^1 G \oplus H^2 G) \xrightarrow{d_3 + \mathrm{id} \otimes \partial_G} S \otimes \wedge^2 H^1 G \to \mathfrak{B}_G \to 0$$

where $\partial_G = (\cup_G)^{\sharp}$.

Let $\mathfrak{H} = \mathfrak{H}_G$. Consider exact sequence:

$$0 \to \mathfrak{H}'/\mathfrak{H}'' \to \mathfrak{H}/\mathfrak{H}'' \to \mathfrak{H}/\mathfrak{H}' \to 0$$

■ Infinitesimal Alexander invariant of \mathfrak{H} :

$$B(\mathfrak{H}) = \mathfrak{H}'/\mathfrak{H}''$$

Module over $S = U(\mathfrak{H}/\mathfrak{H}')$ via adjoint rep.

Proposition. If G is a comm-rels group, then:

$$B(\mathfrak{H}_G) \cong \mathfrak{B}_G$$

as modules over $S = \text{Sym}(H^1(G))$

Theorem 3. Let G be a commutator-relators group. Assume G is 1-formal. Then:

$$\operatorname{Hilb}(\operatorname{gr}(B_G)\otimes\mathbb{Q},t)=\operatorname{Hilb}(B(\mathfrak{H}_G)\otimes\mathbb{Q},t)$$

Hence:

$$\sum_{k\geq 0} \theta_{k+2} t^k = \mathrm{Hilb}(\mathfrak{B}_G \otimes \mathbb{Q}, t)$$

The 1-formality hypothesis is crucial:

Example. Let

$$G = \langle x_1, x_2 \mid ((x_1, x_2), x_2) = 1 \rangle$$

G comm-rels group, $H_1(G) = \mathbb{Z}^2$, $H_2(G) = \mathbb{Z}$, $\bigcup_G = 0$

G not 1-formal (Malcev algebra is not quadratic)

$$\mathfrak{H}_G = \mathbb{L}_2, B(\mathfrak{H}_G) = \mathbb{Z}[s_1, s_2],$$

$$Hilb(B(\mathfrak{H}_G), t) = 1/(1-t)^2$$

$$B_G = \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}]/(t_2 - 1), \operatorname{gr}(B_G) = \mathbb{Z}[s_1, s_2]/(s_2),$$

$$\operatorname{Hilb}(\operatorname{gr}(B_G), t) = 1/(1 - t)$$

Hence:

$$\operatorname{gr}(B_G) \otimes \mathbb{Q} \not\cong \mathfrak{B}_G \otimes \mathbb{Q}$$

 $\mathfrak{H}_G/\mathfrak{H}_G'' \otimes \mathbb{Q} \not\cong \operatorname{gr}(G/G'') \otimes \mathbb{Q}$

Towards a Resonance Formula for θ_k

(Work in progress with Hal Schenck)

$$A = \{H_1, \dots, H_n\}, A = H^*(X, \mathbb{C}) = E/I, G = \pi_1(X)$$

Theorem A. For all $k \geq 2$,

$$\theta_k(G) = \dim \operatorname{Tor}_{k-1}^E(A, \mathbb{C})_k$$

Proof 1: Use Theorem 1 and result of Fröberg-Löfwall.

Proof 2: Use Theorem 3 and results of Einsenbud et al.

Recall from D. Cohen-A.S. [1999]:

$$V(\operatorname{ann}\mathfrak{B}_G)=\mathcal{R}_1(\mathcal{A})$$

where $\mathcal{R}_1(\mathcal{A}) = \{\lambda \in \mathbb{C}^n \mid \dim H^1(A, \cdot \sum_{i=1}^n \lambda_i e_i) > 0\}$ Write $\mathcal{R}_1(\mathcal{A}) = \bigcup_{i=1}^q L_i$, $\dim L_i = l_i$.

Conjecture. For all $k \gg 4$:

$$\theta_k(G) = \sum_{i=1}^q (k-1) \binom{k+l_i-2}{k}$$

Graphic arrangements

$$G = (\mathcal{V}, \mathcal{E})$$
 graph. Let

$$\mathcal{A}_{\mathsf{G}} = \{ \ker(z_i - z_j) \mid \{i, j\} \in \mathcal{E} \}$$

be the graphic arrangement associated to G, and

$$f_s(\mathsf{G}) = \sharp \{\text{complete subgraphs on } s+1 \text{ vertices}\}$$

Theorem B. For groups of graphic arrangements:

$$\theta_k(G) = (k-1)(f_2 + f_3)$$
 for $k \ge 2$

Follows from H. Schenck–A.S. [2002] and Theorem A.

Example. $G = K_n$, complete graph on n vertices

 \mathcal{A}_{K_n} = braid arrangement in \mathbb{C}^n

 $G = P_n$, pure braid group on n strings

Since $f_s(K_n) = \binom{n}{s+1}$, get:

$$\theta_k(P_n) = (k-1)\binom{n+1}{4}$$
 for $k \ge 2$

This recovers computation by D. Cohen-A.S. [1995].