Boolsche Algebra

Parameter	Kursinformationen
Veranstaltung:	Digitale Systeme / Eingebettete Systeme
Semester	Wintersemester 2022/23
Hochschule:	Technische Universität Freiberg
Inhalte:	Boolsche Algebra
Link auf GitHub:	https://github.com/TUBAF-IfI- LiaScript/VL Softwareentwicklung/blob/master/02 BoolscheAlgebra.m d
Autoren	Sebastian Zug & André Dietrich & Fabian Bär

Fragen an die Veranstaltung

- Nennen Sie die Axiome der Boolschen Algebra.
- Erläutern Sie das Dualitätsprinzip der Boolschen Algebra.
- Wie viele Schaltfunktionen existieren für 2 Eingangsvariablen?
- Nennen Sie 3 Beispiele, wie eine Schaltfunktion technisch umgesetzt werden kann.
- Welcher Unterschied besteht zwischen der DNF und der KDNF?
- Welcher Unterschied besteht zwischen der DNF und der KNF?
- Geben Sie das de Morgansche Gesetz wieder.

Abstraktionsebenen

Digital vs. Analog

Frage: Was bedeutet der Übergang von der Ebene der physikalischen Phänomene (0) auf die Ebene der digitalen Logik (2)?

Ein Digitalsignal ist ein Signal, welches durch diskrete Werte repräsentiert wird und seine zeitliche Entwicklung beschreibt. Es kann aus einem Analogsignal heraus abgeleitet werden, dass einen zeitlich-kontinuierlichen Verlauf einer physikalischen Größe repräsentiert:

- Temperatur im Tagesverlauf
- ullet Spannungswert am IC innerhalb der letzten n Nanosekunden
- ..

Die Umwandlung eines Analogsignals in ein Digitalsignal geschieht durch Quantisierung und Abtastung, welche zu definierten Zeitpunkten erfolgt. Digitale Werte sind üblicherweise als Binärzahlen kodiert. Ihre Quantisierung wird somit in Bits angegeben.

Die Abtastung und Bildung des Digitalsignals erfolgt üblicherweise in konstanten Zeitintervallen, allerdings ist dies nicht zwingend notwendig.

Exkurs: Kontrastprogramm - Analoge Rechner

Analogrechner MEDA 42TA Aritma Prag [AnalogRechner]

Die Eingabe erfolgte durch verbinden der Komponenten des mittels Programmierschnüren, Steckern und Rechenimpedanzen (Widerstände für die Summatoren und Integratoren) auf der Programmiertafel.

Wem jetzt gleich die Parallelität zu der Stecker-basierten Programmierung des ENIAC einfällt ... Vorsicht dieser war ein Digitalrechner!

Zur Auswertung stand zur Verfügung:

- 6-Strahl-Oszilloskop OPD 280 U
- X-Y-Schreiber BAK 5 T
- Digitalvoltmeter

	Analoge Hardware	Digitale Hardware
Vorteile	Multiplikation und Addition einfach realisierbar	unempfindlich gegen Störungen (Rauschen)
	vergleichsweise schnell	einfacher Entwurf
		beliebig hohe Präzision möglich
Nachteile	Temperaturabhängigkeit	vergleichsweise hoher Energieverbrauch
	nichtlineare Bauteile	
	Präzision nur bei ca. 6 - 8 Bit	
	Langzeitspeicherung von Daten schwierig	

Digitaltechnik ermöglicht eine einfache Realisierung robuster Hardware

[AnalogRechner] Wuselig, Deutsch: Analogrechner MEDA 42TA Aritma Prag, Tschechoslowakei, um 1970, https://commons.wikimedia.org/wiki/File:Analogrechner MEDA 42TA-DSC4445.jpg Link

Pegel

Digitalisierung: Aufteilung des kontinuierlichen Spektrums in erlaubte und verbotene Bereiche

Verschiedene Standards definieren unterschiedliche Spannungspotentiale für einen High- und einen Low-Pegel. Dazwischen

Frage: Warum ist der undefinierte Bereich des Einganges schmaler als der des Ausganges?

Motivation

Nehmen wir folgende einfache Schaltung an:

Wir betrachten den Schalter mit seinen 2 Zuständen als Input und die Glühlampe als Output. Das Übergangsverhalten wird ignoiert.

Input	Output
Schalter geschlossen	Lampe leuchtet
Schalter offen	Lampe leuchtet nicht

Für zwei Schalter (Inputs) lassen sich darauf aufbauen zwei grundlegende Schaltungsmuster entwerfen:

Reihenschaltung	Parallelschaltung
Die Lampe leuchtet, wenn der erste und der zweite Schalter geschlossen werden	Lampe leuchtet, wenn der erste oder der zweite Schalter geschlossen wird

Es gibt verschiedene Lösungen, um die Lampe mit drei geschlossenen Schaltern zum Leuchten zu bringen. Wie viele? Wieviele Kombinationen von Schalterbelegungen sind möglich?

Wir brauchen eine Abstraktion, um die Abbidlung von digitalen Eingängen E auf einen digitalen Ausgang A repräsentieren und analysieren zu können.

Dazu beschreiben wir die Wirkung des elektrischen Stromes

- Stromfluss / kein (oder ein sehr geringer) Stromfluss
- Spannung / keine (oder eine sehr geringe) Spannung

... aus Sicht der Logik anhand von Zuständen

- an/aus
- wahr / falsch
- 1/0
- 0/1

Wie aber können logische Grundverknüpfungen identifiziert werden? Auf welchem Wege lassen diese sich praktisch realsieren?

Boolsche Algebra

Historische Entwicklung:

- Aristoteles 384-322 v.Chr. begründet "Syllogistik" Lehre von den logischen Schlussformen
- Später bilden die Stoiker die Syllogistik als Aussagenlogik weiter aus. Im Mittelalter → Scholastik
- George Boole (1815-1864) 1854 mathematische Formalisierung in "An Investigation of the Laws of Thought on which are founded the Mathematical Theories of Logic and Probabilities".
- Claude Shannon (1916-2001) hat im Rahmen seiner Masterarbeit: "On the Symbolic Analysis of Relay and Switching Circuits (1940)", gezeigt, dass man die Boolsche Algebra zur Beschreibung von Schaltkreisen anwenden kann.

Claude Shannon [Shannon]

Problem: Gibt es ein Verfahren:

- um die Äquivalenz zweier Schaltungen formal nachzuweisen?
- um Schaltungen auf einfache Weise zu transformieren?
- um minimale Schaltungen zu entwerfen?

Lösung: Boolesche Algebra basierend auf den Vorarbeiten von G. Boole aus dem Jahre 1854

- zwei Werte: 0 und 1
- drei Boolesche Operationen: +, · sowie "not"
- vier Axiome

Die Boolsche Algebra basiert nach Huntington auf einer Trägermenge $B\{0,1\}$ (Zuständen) mit zwei Verknüpfungen auf B für deren Element $a\in B,b\in B$ und $c\in B$ gilt:

Axiom	Definition
Kommutativität	$a+b=b+a$ $a\cdot b=b\cdot a$
Distributivität	$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ $a + (b \cdot c) = (a+b) \cdot (a+c)$
Existenz eines neutralen Elements	$0 + a = a$ $1 \cdot a = a$
Exisitenz von Komplementen	$a + \overline{a} = 1$ $a \cdot \overline{a} = 0$

Aus dieser Definition lassen sich die zugehörigen Gesetze der boolschen Algebra ableiten:

Gesetz	Definition
Assoziativität	a + (b+c) = (a+b) + c = a+b+c $a \cdot (b \cdot c) = (a \cdot b) \cdot c = a \cdot b \cdot c$
Idempotenzgesetze	$a + a = a$ $a \cdot a = a$
Absorptionsgesetz	$a + (a \cdot b) = a$ $a \cdot (a + b) = a$
Doppelnegation	$a = \overline{\overline{a}}$
De Morgan'sche Regel	$\overline{a+b} = \overline{a} \cdot \overline{b} \ \overline{a \cdot b} = \overline{a} + \overline{b}$

Dualitätsprinzip der Boolschen Algebra ... Ersetzt man gleichzeitig in einem Axiom UND durch ODER und ODER durch UND sowie 1 durch 0 und 0 durch 1, so erhält man das zu diesem Axiom gehörige duale Axiom. Führt man diese Ersetzung in einem Theorem aus, so erhält man das zu diesem Theorem gehörige duale Theorem.

Form 1	Form 2
0+a=a	$1 \cdot a = a$
1+a=1	$0 \cdot a = 0$
a + a = a	$a \cdot a = a$
$a + \overline{a} = 1$	$a\cdot \overline{a}=0$

Am Beispiel des Distributivgesetzes

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$a + (b \cdot c) = (a+b) \cdot (a+c)$$

Anwendung

Regeln zur Umformung Boolscher Gleichungen

- Unabhängige Auswertung: Jeder Ausdruck auf der linken oder rechten Seite einer Gleichung kann durch einen anderen ersetzt werden, der mit ihm identisch ist, d.h. man kann die Ausdrücke links und rechtes unabhängig voneinander vereinfachen.
- Komplementbildung: Die rechte und die linke Seite einer Gleichung können gleichzeitig durch ihre Komplemente ersetzt werden.
- Erweiterung: Jede Seite einer Gleichung kann mit demselben Ausdruck oder mit einem äquivalenten Ausdruck durch den UND-Operator verknüpft werden. Dual dazu gilt, dass zu jeder Seite äquivalente Ausdrücke durch den ODER-Operator verknüpft werden können.

Anwendungsbeispiel 1

$$f(x_{1}, x_{2}, x_{3}) = x_{1} \cdot x_{2} \cdot \overline{x_{3}} + x_{1} \cdot x_{2} \cdot x_{3} + x_{1} \cdot \overline{x_{2}} \cdot x_{3}$$

$$= x_{1} \cdot x_{2} \cdot \overline{x_{3}} + x_{1} \cdot x_{2} \cdot x_{3} + x_{1} \cdot x_{2} \cdot x_{3} + x_{1} \cdot \overline{x_{2}} \cdot x_{3}$$

$$= x_{1} \cdot x_{2} \cdot (\overline{x_{3}} + x_{3}) + x_{1} \cdot x_{2} \cdot x_{3} + x_{1} \cdot \overline{x_{2}} \cdot x_{3}$$

$$= x_{1} \cdot x_{2} \cdot (\overline{x_{3}} + x_{3}) + x_{1} \cdot x_{3} \cdot x_{2} + x_{1} \cdot x_{3} \cdot \overline{x_{2}}$$

$$= x_{1} \cdot x_{2} \cdot (\overline{x_{3}} + x_{3}) + x_{1} \cdot x_{3} \cdot (x_{2} + \overline{x_{2}})$$

$$= x_{1} \cdot x_{2} \cdot (1) + x_{1} \cdot x_{3} \cdot (1)$$

$$= x_{1} \cdot x_{2} + x_{1} \cdot x_{3}$$

$$(Komplement \ddot{a}res Element)$$

$$= x_{1} \cdot x_{2} + x_{1} \cdot x_{3}$$

$$(Neutrales Element)$$

Anwendungsbeispiel 2

$$f(w,x,y,z) = \overline{w}x\overline{y}\,\overline{z} + \overline{w}x\overline{y}z + wx\overline{y}\,\overline{z} + wx\overline{y}z$$

$$f(w,x,y,z) = \overline{w}x\overline{y}\,\overline{z} + \overline{w}x\overline{y}z + wx\overline{y}\,\overline{z} + wx\overline{y}z$$

$$= \overline{w}x\overline{y}\,(\overline{z}+z) + wx\overline{y}\,(\overline{z}+z) + w\overline{x}y\overline{z}$$

$$= \overline{w}x\overline{y}1 + wx\overline{y}1 + w\overline{x}y\overline{z}$$

$$= \overline{w}x\overline{y} + wx\overline{y} + wx\overline{y}z$$

$$= x\overline{y}\,\overline{w} + x\overline{y}w + w\overline{x}y\overline{z}$$

$$= x\overline{y}\,(\overline{w}+w) + w\overline{x}y\overline{z}$$

$$= x\overline{y}1 + w\overline{x}y\overline{z}$$

$$= x\overline{y}1 + w\overline{x}y\overline{z}$$

$$= x\overline{y}1 + w\overline{x}y\overline{z}$$

$$= x\overline{y} + w\overline{x}y\overline{z}$$

$$= x\overline{y} + w\overline{x}y\overline{z}$$

$$= x\overline{y} + wx\overline{y}z$$

Anwendungsbeispiel 3

$$f(x_1, x_2) = \overline{\overline{x_1} x_2 (x_1 + \overline{x_1})} + x_1 \overline{x_2} x_1$$

$$f(x_1, x_2) = \overline{\overline{x_1} x_2 (x_1 + \overline{x_1})} + x_1 \overline{x_2} \overline{x_1}$$

$$= \overline{\overline{x_1} x_2} + x_1 \overline{x_2} \overline{x_1}$$

$$= \overline{x_1} x_2 + x_1 \overline{x_2} \overline{x_1}$$

$$= \overline{x_1} x_2 + x_1 (\overline{x_2} + \overline{x_1})$$

$$= \overline{x_1} x_2 + x_1 \overline{x_2} + x_1 \overline{x_1}$$

$$= \overline{x_1} x_2 + x_1 \overline{x_2}$$

Schaltfunktionen

- ullet Funktionen $f:\{0,1\}^n o \{0,1\}^m$ mit $n,m \geq 1$ werden auch als Schaltfunktionen bezeichnet
- ullet Eine Schaltfunktion $f:\{0,1\}^n o \{0,1\}^m$ heißt eine n-stellige Boolesche Funktion
- ullet Jede Schaltfunktion $f:\{0,1\}^n o\{0,1\}^m$ kann durch m Boolesche Funktionen ausgedrückt werden
- Jede Boolesche Funktion lässt sich eindeutig beschreiben
 - o durch eine Wahrheitstabelle (auch Wahrheitstafel genannt)
 - durch einen booleschen Ausdruck (gebildet durch Boolesche Variablen und Operationen aus der Booleschen Algebra)
 - o ein Schaltwerk aus logischen Gattern
- Es gibt 2^{2^n} verschieden n-stellige Boolesche Funktionen (also 16 zweistellige, 256 dreistellige, 65536 vierstellige, ...)

Stellen Sie eine Wahrheitstafel für folgende Schaltfunktion auf:

$$f(x_1,x_2,x_3)=\overline{x}_1\cdot\overline{x}_2\cdot\overline{x}_3+\ \overline{x}_1\cdot\overline{x}_2\cdot x_3+\ x_1\cdot\overline{x}_2\cdot\overline{x}_3+\ x_1\cdot x_2\cdot\overline{x}_3+\ x_1\cdot\overline{x}_2\cdot\overline{x}_3$$

- Wie groß muss die Wahrheitstafel sein?
- Wie stellen Sie sicher, dass alle Einträge enthalten sind?

x_1	x_2	x_3	f	Term
0	0	0	1	$\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3$
0	0	1	1	$\overline{x}_1 \cdot \overline{x}_2 \cdot x_3$
0	1	0	0	
0	1	1	0	
1	0	0	1	$x_1 \cdot \overline{x}_2 \cdot \overline{x}_3$
1	0	1	1	$x_1 \cdot \overline{x}_2 \cdot x_3$
1	1	0	1	$x_1 \cdot x_2 \cdot \overline{x}_3$
1	1	1	0	

Und die Schaltfunktionen?

Schaltfunktionen mit einem Eingang

Die möglichen 4 Kombinationen einer Schaltfunktion mit einem Eingang lassen sich wie folgt gliedern:

Eingang	Nullfunktion	Identität	Negation	Einsfunktion
x = 0	0	0	1	1
x = 1	0	1	0	1
	f(x) = 0	f(x) = x	$f(x)=\overline{x}$	f(x) = 1

Schaltfunktionen mit zwei Eingänge

Die möglichen 4 Kombinationen einer Schaltfunktion mit einem Eingang lassen sich wie folgt gliedern:

Konjunktion == UND == AND

Eingang x	Eingang y	Nullfunktion	Konjuktion		
x = 0	x = 0	0	0	0	0
x = 0	x = 1	0	0	0	0
x = 1	x = 0	0	0	1	1
x = 1	x = 1	0	1	0	1
		f(x,y)=0	$f(x,y) = x \cdot y$	$f(x,y) = x \cdot \overline{y}$	f(x)

 ${\it Disjunktion} == {\it ODER} == {\it OR Antivalenz} == {\it exklusives OR} == {\it XOR} == \oplus$

Eingang x	Eingang y			Antivalenz	Dis
x = 0	y = 0	0	0	0	0
x = 0	y = 1	1	1	1	1
x = 1	y = 0	0	0	1	1
x = 1	y = 1	0	1	0	1
		$rac{f(x,y)}{\overline{x}\cdot y}=$	f(x,y) = y	$f(x,y) = \ x \cdot \overline{y} + \overline{x} \cdot \ y$	f(x - x)

 ${\sf negiertes\ ODER == NOR == Peirce-Funktion}$

Eingang x	Eingang y	negiertes ODER	Äquivalenz		
x = 0	y = 0	1	1	1	1
x = 0	y = 1	0	0	0	0
x = 1	y = 0	0	0	1	1
x = 1	y = 1	0	1	0	1
		$rac{f(x,y)}{x+y}=$	$egin{aligned} f(x,y) &= \ x \cdot y + \overline{x} \cdot \ \overline{y} \end{aligned}$	$rac{f(x,y)}{\overline{y}}=$	f(x -

negiertes UND == NAND == Sheffer-Funktion genannt

Eingang x	Eingang y		Implikation	negiertes UND	Ein
x = 0	x = 0	1	1	1	1
x = 0	x = 1	1	1	1	1
x = 1	x = 0	0	0	1	1
x = 1	x = 1	0	1	0	1
		$rac{f(x,y)}{\overline{x}}=$	$f(x,y) = \overline{x} + y$	$rac{f(x,y)}{x\cdot y}=$	f(1

Exkurs: Technische Realisierung

Ein Gatter ist eine (elektrotechnische) "Black Box" mit einem, zwei oder mehreren Eingängen $A,B,C,...\in 0,1$ und genau einem Ausgang $Y\in 0,1$ zur Realisierung einer Funktion Y=f(A,B,C,...)

Und das exclusive ODER, hätten Sie eine Idee?

S_1	S_0	у
0	0	0
0	1	1
1	0	1
1	1	0

Realisierung einer XOR Funktion mit Relais ^[XOR]

Wir gehen bei der Frage der Schaltnetze in Vorlesung 04 nochmals auf die technische Realisierung ein.

[XOR] Autor "Rk sTEk", XOR in Relais-Logik - berichtigte Version, https://de.m.wikipedia.org/wiki/Datei:Relay_xor.svg

Hausaufgaben

1. Geben Sie für die nachfolgende dargestellt Schaltung eine boolsche Funktion an. Bilden Sie diese in einer Wahrheitstafel ab.

- 2. Studieren Sie das Datenblatt eines AND Gates, welches Sie unter <u>Link</u> finden und beantworten Sie folgende Fragen:
 - Wie groß ist die maximale Verzögerung, mit der der Ausgang dem Eingang nachfolgt?
 - Was bedeuten die Kreuze in der Wahrheitstafel (Function table)?
 - Können Sie mit dem Gatter auch eine Negation des Eingangssignals realisieren?
- 3. Entwerfen Sie unter ausschließlicher Verwendung der Gatter UND, ODER und NICHT Schaltnetze, die die Ausgaben P und Q aus den Eingängen X,Y und Z generieren. Stellen Sie mithilfe von Wahrheitstabellen eine Beziehung zwischen P und Q her.

$$P = (X + \overline{Y}) (Y \oplus Z)$$

 $Q = \overline{Y}Z + XY\overline{Z}.$