PCA Revealed

Part 5: Geometric Approach

Gaston Sanchez

August 2014

Content licensed under CC BY-NC-SA 4.0

Readme

License:

You are free to:

Share — copy and redistribute the material

Adapt — rebuild and transform the material

Under the following conditions:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

NonCommercial — You may not use this work for commercial purposes.

Share Alike — If you remix, transform, or build upon this work, you must distribute your contributions under the same license to this one.

Reminder

PCA

Principal Components Analysis (PCA) allows us to study and explore a set of quantitative variables measured on a set of objects.

Core Idea

With PCA we seek to reduce the dimensionality (reduce the number of variables) of a data set while retaining as much as possible of the variation present in the data.

Presentation

About

In these slides we cover PCA from a geometric perspective.

Working Principle

The underlying notion of this approach is that of Projected Inertia, and the intensive use of geometric principles.

Visually Intended

Visualization plays a notable role in the Geometric Approach of PCA. One of the main reasons to reduce dimensions is to obtain graphical representations of data.

Data considerations

Data Structure

Data

The analyzed data takes the form of a table (i.e. matrix) X:

$$\mathbf{X}_{n,p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- ightharpoonup n objects in the rows
- p quantitative variables in the columns

Data Considerations

Variables

The p variables in **X** are denoted by X_1, X_2, \ldots, X_n

Mean centered

For convenience, we will assume that the data is centered, i.e. Variables with mean = 0:

$$\bar{X}_j = \sum_{i=1}^n x_{ij} = 0$$

Data from a geometric perspective

Preliminaries

Geometric Frame of Mind

Looking at PCA from a geometric standpoint requires you to think about data in terms of points living in a multidimensional space —both objects and variables—

Data Perspectives

looking at a data matrix from two perspectives

Objects and Variables Perspectives

Data Perspectives

We are interested in analyzing a data set from both perspectives: objects and variables

Main Interests

At its simplest we are interested in 2 fundamental purposes:

- Study (dis)similarities among objects
- Study relationships among variables

Objects in Multidimensional Space

Cloud of objects

Objects as points in a p-dimensional space

Variables in Multidimensional Space

Cloud of variables

Variables as points in a *n*-dimensional space

Overall Goal

PCA Visualization

We look for the "best" graphical representation that allows us to visualize the data in a low dimensional space (usually 2-dimensions).

Best representation in low dimensional space

Low Dimensional Projections

Preliminaries

Geometric mindset

To help you understand the main idea of PCA from a geometric standpoint, I'd like to begin showing you my *mug-data* toy example.

Key Message

The "name of the game" is **projection**: PCA involves projecting the data onto a low-dimensional space that best captures the original dispersion in the data.

Illustrational View

Example

Imagine we have some data in a "high-dimensional space"

We are looking for Candidate Subspaces

with the best low-dimensional representation

Best low-dimensional projection

Projections!!!

Projection

We want to find a subspace that provides us the best projection of the data

Objects in a high-dimensional space

We look for a subspace such that

the projection of points on it

is the best low-dimensional representation

Projected Distances

Best Projection?

Looking for the best low-dimensional projection means that we want to find a subspace in which the projected distances among points are as much similar as possible to the original distances.

Focus on distances between objects

We want projected dists to preserve original dists

Distances and Dispersion

Dispersion of Data

Focusing on distances among all pairs of objects implicitly entails taking into account the **dispersion** (i.e. variation) of the data.

Data Configuration

The reason to pay attention to distances and dispersion is to summarize in a quantitative way the original configuration of the data points.

Sum of Square Distances

Pair-wise Square distances

One way to consider the dispersion of data (in a mathematical form) is by adding the square distances among all pairs of points.

Square distances from centroid

Another way to measure the dispersion of data is by considering the square distances of all points around the center of gravity (i.e. centroid)

Imagine 3 points and its centroid

Sum of square distances

Sum of all square
$$distances = d^2(a,b) + d^2(a,c) + d^2(b,c)$$

Sum of $2 \times \text{square distances w.r.t.}$ centroid

Sum of all square
$$= 2d^2(a,G) + 2d^2(b,G) + 2d^2(c,G)$$

Inertia

Inertia

Inertia

To better take into account the dispersion of the data we must use the concept of **Inertia**.

Idea

Simply put, we use the term Inertia to convey the idea of dispersion or *information* (variation) contained in the data.

Inertia Concept (con't)

Moment of Inertia

Inertia is a term borrowed from the moment of inertia in mechanics.

Inertia in Multivariate Methods

In multivariate methods, the term **Inertia generalizes the notion of variance**. Think of Inertia as a "multidimensional variance"

Formula of Total Inertia

Formula

The Total Inertia, I, is a weighted sum of square distances among all pairs of objects:

$$I = \frac{1}{2n^2} \sum_{i=1}^{n} \sum_{h=1}^{n} d^2(i,h)$$

Formula of Total Inertia

Equivalent Formula

Equivalently, the Total Inertia can be calculated in terms of the center of gravity G:

$$I = \frac{1}{n} \sum_{i=1}^{n} d^{2}(i, G)$$

The Inertia is an average sum of square distances around the centroid ${\it G}$

Data Points with their Centroid

Inertia around the Centroid

Computing Inertia

Notation

```
x_i i-th object (i=1,\ldots,n) m_i mass of i-th object (usually m_i=\frac{1}{n}) G center of gravity (if data is mean-centered then G=0) d^2(i,G) distance between i-th object and centroid G
```

Computing Inertia

Inertia Formula

$$Inertia = \sum_{i=1}^{n} m_i d^2(i, G) \tag{1}$$

$$= \sum_{i=1}^{n} \frac{1}{n} (x_{i.} - G)'(x_{i.} - G)$$
 (2)

$$= \frac{1}{n}tr(X'X)$$

$$= \frac{1}{n}tr(XX')$$
(3)

$$= -\frac{1}{n}tr(XX') \tag{4}$$

Inertia? What for?

What's Important?

Two data sets can have the same inertia. The amount of dispersion is important, but it is also important the shape-form of that dispersion.

Two data sets with similar inertia but different shape

Projected Inertia and Dimension Reduction

Inertia Concept

Inertia and PCA

In PCA we look for a low-dimensional subspace having Projected Inertia as close as possible to the Original Inertia.

Criterion

The criterion used for dimensionality reduction implies that the inertia of a cloud of points in the optimal subspace is maximum, but that would still be less than that in the true space.

Subspace Preserving Information

Global Criterion

We want the subspace that maximices the total dispersion, that is, the total inertia (maximize projected inertia)

Interpretation

This means that we want to find the subspace that keeps the maximum amount of information of the original configuration

Criterion

Maximize Projected Inertia

We want to maximize the Projected Inertia on subspace H:

$$max \text{ projected } \sum_i d_H^2(i,G)$$

Axis of Inertia

To find the subspace H we can look for each of its dimensions (i.e. axes) u_1, u_2, \ldots, u_k

PCs as Data Projections

It turns out that:

Looking for all the projections $Z_1 = \mathbf{X}\mathbf{u_1}, Z_2 = \mathbf{X}\mathbf{u_2}, \dots, Z_k = \mathbf{X}\mathbf{u_k}$ implies looking for the Principal Components.

Finding PCs

Finding 1st PC

How to find the 1st PC

In order to find the first principal component $Z_1 = \mathbf{X}\mathbf{u_1}$, we need to find $\mathbf{u_1}$ such that

$$\max_{\mathbf{u_1}} \ \mathbf{u_1'} \mathbf{X'} \mathbf{X} \mathbf{u_1}$$

subject to $\mathbf{u_1'}\mathbf{u_1} = 1$

What to do?

Being a maximization problem, the typical procedure to find the solution is by using the Lagrangian multiplier method.

Lagrangian Multiplier

Finding 1st PC

Using Lagrange multipliers we get:

$$\mathbf{u_1'X'Xu_1} - \lambda(\mathbf{u_1'u_1} - 1)$$

Differentiation with respect to u_1 gives:

$$\mathbf{X}'\mathbf{X}\mathbf{u_1} - \lambda_1\mathbf{u_1} = \mathbf{0}$$

Rearranging some terms we get:

$$\mathbf{X}'\mathbf{X}\mathbf{u_1} = \lambda_1\mathbf{u_1}$$

Lagrangian Multiplier Solution

What does this mean?

$$\mathbf{X}'\mathbf{X}\mathbf{u_1} = \lambda_1\mathbf{u_1}$$

It means that

- $\triangleright \lambda_1$ is an eigenvalue of $\mathbf{X}'\mathbf{X}$
- ightharpoonup and u_1 is the corresponding eigenvector

Finding 2nd PC

How to find the 2nd PC

In order to find the second principal component $Z_2 = \mathbf{X}\mathbf{u_2}$, we need to find $\mathbf{u_2}$ such that

$$\max_{\mathbf{u_2}} \ \mathbf{u_2'X'Xu_2}$$

subject to
$$\|\mathbf{u_2}\| = 1$$
 and $Z_1'Z_2 = 0$

Finding 2nd PC

Another eigenvalue-eigenvector pair

Applying the Lagrange multipliers, it can be shown that the desired $\mathbf{u_2}$ is such that

$$\mathbf{X}'\mathbf{X}\mathbf{u_2} = \lambda_2\mathbf{u_2}$$

In other words

- $\triangleright \lambda_2$ is an eigenvalue of $\mathbf{X}'\mathbf{X}$
- lacktriangle and u_2 is the corresponding eigenvector

Finding all PCs

Diagonalization

All Principal Components can be found simultaneously by $\mbox{\bf diagonalizing} \ X'X$

Eigenvalue Decomposition (EVD)

Diagonalizing a matrix is nothing more than obtaining its eigenvalue decomposition (a.k.a. spectral decomposition)

Variables Perspectives

Inertia for Variables

PCA model

A similar Inertia approach can be conceived for the variables. In this case, we look for vectors $\mathbf{v_j}$ such that the projections $\mathbf{X'v_j}$ have maximum inertia.

It turns out that:

The solution consists in diagonalizing $\mathbf{X}\mathbf{X}'$

Algebraic Perspective

Data Decomposition

Algebraically

PCA involves a Singular Value Decomposition (SVD) of the data matrix X, that is:

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}'$$

- ▶ U is orthonormal (i.e. U'U = I)
- ▶ D is a diagonal matrix
- ightharpoonup V is orthonormal (i.e. V'V = I)

SVD Decomposition

PCA by SVD

The data matrix ${\bf X}$ is decomposed as a product of three simpler matrices ${\bf U},\,{\bf D}$ and ${\bf V}$

$$X = UDV'$$

- ▶ $\mathbf{U}_{n,k}$ (information about the basic structure)
- ightharpoonup $\mathbf{D}_{k,k}$ (information about the scale)
- $ightharpoonup V_{p,k}$ (information about orientation or correlations)

SVD Approach

SVD and PCA

The relationship between **SVD** and **PCA** is:

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}' = \mathbf{Z}\mathbf{P}'$$

where:

$$\mathbf{Z} = \mathbf{UD}$$
 (PCs or scores)

$$\mathbf{P} = \mathbf{V}$$
 (Loadings)

Note that:

$$W = V$$
 since $XV = UDV'V$

i.e.
$$\mathbf{Z} = \mathbf{X}\mathbf{W} = \mathbf{X}\mathbf{V}' = \mathbf{U}\mathbf{D}$$

PCA and Data Decomposition

Computation of all PCs

We can obtain as many PCs as the rank of \mathbf{X} (i.e. $k = rank(\mathbf{X})$)

$$\mathbf{X}_{n,p} = \mathbf{Z}_{n,k} \mathbf{P'}_{k,p}$$

Keeping just a few PCs

But usually we will only retain just a few PCs (i.e. $m \ll p$)

$$\mathbf{X}_{n,p} \approx \mathbf{Z}_{n,m} \mathbf{P'}_{m,p} + Residual$$

(just a few PCs will optimally summarize the main structure of the data)