Procesamiento y Visualización de Datos Espaciales en R

Profesor: José Luis Texcalac Sangrador

Laboratorio — 13

La visualización geográfica a través de cartografía temática es una de las actividades básicas de la visualización espacial, R ofrece una serie de paquetes que permiten el uso de información estadística y espacial para la generación de mapas que revelan las distintas realizaciones espaciales asociadas a un evento de interés.

¿Qué se espera de ti en este laboratorio?

Esta actividad pretende que fomente su habilidad en el procesamiento y visualización de información geográfica utilizando la librería sf. Se espera que consolide el procesamiento de datos, uso de información geográfica y unión de mallas de datos para la generación de cartografía temática a través del paquete ggplot2. Se espera que la edición que programe en su archivo R Notebook contenga el formato, diseño y calidad que usted considere adecuada para la presentación de un reporte html.

Indicaciones por considerar:

- Suba su laboratorio a la plataforma Google Classroom a más tardar antes del inicio de la próxima sesión (jueves 02 de diciembre).
- No es necesario el envío de su laboratorio por correo electrónico.
- Lo que debe usted entregar para evaluar su laboratorio es:
 - Archivo con extensión .Rmd
 - Archivo con extensión .html
 - Archivo con extensión .css (opcional)
- Nombre todos sus archivos con el patrón: L13_Nombre (o puede usar su apellido en sustitución del nombre).
- Publique sus dudas en Google Classroom, su profesor o compañeros le pueden auxiliar.

Instrucciones:

 Realice su laboratorio trabajando en el proyecto que generó para la clase (clase_r), dentro del proyecto genere un nuevo documento R Notebook, guárdelo en la carpeta markdown y en el programe las tareas que se indican a continuación.

Direcciones de alumnos

Genere una tabla con el formato que se le comparte en la siguiente imagen, guárdela con extensión .csv y súbala a Classroom a más tardar el próximo martes 30 de noviembre a las 20:00 h.

sitio	tipo	cve_ent	x	У	nombre
El Güero (gorditas)	Alimentos	09	-99.065922	19.466696	texcalac
El Huarache de Jamaica (huaraches)	Alimentos	09	-99.124052	19.4099	texcalac
Los Parados de Pepe (tacos)	Alimentos	09	-99.186096	19.479741	texcalac
Don Pepe (birria)	Alimentos	09	-99.111515	19.353338	texcalac
Tacos de canasta (tacos)	Alimentos	09	-99.152994	19.290461	texcalac

- Guarde su tabla con el patrón Direcc_Nombre.csv
- Descargue los archivos de sus compañeros de Google Classroom (después de la fecha límite) e intégrelos en una sola tabla (puede usar el comando bind_rows(tabla1, tabla2). Nombre a su objeto como direcc_alumnos.
- Convierta a capa geográfica la tabla y genere un mapa temático para su visualización con ggplot y otro mapa usando leaflet.

Coordenadas de AGEB

- Descargue los datos de población por AGEB de la Ciudad de México (en formato .CSV) del SCITEL de INEGI https://www.inegi.org.mx/app/scitel/Default?ev=10
- Descargue de Google Classroom la tabla "cent_ageb_cdmx.csv".
- Genere una capa de puntos que integre la información de ambos archivos.
- Genere un mapa con ggplot que muestre el total de población de cada punto.

Densidad de población

- Utilice la capa de polígonos de AGEB que descargó del marco geoestadístico nacional.
- Genere una columna que muestre el total de metros cuadrados de cada AGEB.
 El código siguiente le muestra dos comandos
 - st_area(): calcula el área de un polígono, el resultado se genera en las unidades de la capa, dado que la capa de INEGI está proyectada en metros

- entonces el resultado será en esa unidad. El resultado se guarda en la columna "nueva_columna".
- set_units(): transforma las unidades de una columna, en el caso del ejemplo, transforma la unidad de la columna "nueva_columna" a hectáreas.

- Calcule la densidad de población por hectárea para cada AGEB de la CDMX (población total de la AGEB dividida entre el área en hectáreas de la AGEB).
- Genere un mapa en ggplot2 que muestre la densidad de población por AGEB.
- El mapa debe replicar las categorías y colores que se muestran en la siguiente página. http://consultacertificado.cdmx.gob.mx:9080/Siedu/AGEBS.html
- Para definir el color de forma manual a cada categoría usted deberá de utilizar el comando scale_fill_manual()

Material de apoyo

- Tutorial de mapas en Leaflet
- leaflet.providers: Capas adicionales de leaflet (googlemaps, openstreetmaps, etc.)
- Como poner colores de forma manual
- Ejemplo de paleta manual de colores (ejecútelo y vea cómo funciona).