Задачи за контролно 2 по висша алгебра

Задача 1. Нека $M = \mathbb{R} \cup \{+\infty\}$. В M въвеждаме операции \oplus и \odot така: $x \oplus y = \min(x,y)$ и $x \odot y = x + y$.

Kou om аксиомите за пръстен са изпълнени в (M, \oplus, \odot) ?

Задача 2. Нека $F = \{f : \mathbb{R} \to \mathbb{R} \mid f$ — непрекъсната $\}$. Разглеждаме и подмножествата $A = \{f \in F \mid f(0) = 0\}, B = \{f \in F \mid f(0) = 1\} \ u \ C = \{f \in F \mid f(0) = f(1) = 0\}.$

Да се докаже, че F е пръстен относно поточковите операции събиране и умножение на функции. Кои от подмножествата A, B, C са подпръстени на M?

Задача 3. Нека $(R,+,\cdot)$ е пръстен с единица 1. Въвеждаме нови операции \oplus и \odot в R по правилата $x \oplus y = x + y - 1$ и $x \odot y = x + y - x \cdot y$.

Докажете, че (R, \oplus, \odot) е пръстен, изоморфен на $(R, +, \cdot)$.

Задача 4. Нека p е просто число и $R_p = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a,b \in \mathbb{Z}_p \}$. Докажете, че R_p е комутативен пръстен c единица относно обичайните операции c матрици. Покажете още, че R_3 е поле, а R_5 не е поле.

Задача 5. Нека $R_1 = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Q} \}$ и $R_2 = \{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathbb{Q} \}$. Кои от следните са изпълнени:

- $R_1 < M_2(\mathbb{Q}), R_1 \lhd M_2(\mathbb{Q});$
- $R_2 < M_2(\mathbb{Q}), R_2 \lhd M_2(\mathbb{Q});$
- $R_2 < R_1, R_2 \lhd R_1$.

Задача 6. Нека $I = (9 + \sqrt{95}) \lhd \mathbb{Z}[\sqrt{95}]$ е главният идеал, породен от $9 + \sqrt{95}$. Докажеете, че $I = \{a + b\sqrt{95} \mid a, b \in \mathbb{Z} : 14/(b+3a)\}$ и $\mathbb{Z}[\sqrt{95}]/I \cong \mathbb{Z}_{14}$.

Задача 7. Нека $R = \{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \mid a,c,d \in \mathbb{Z} \}$ и p е просто число. Разглеждаме подмножес-

твата I и J на R определени c $I = \{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in R \mid p/a \}$ и $I = \{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in R \mid p/a, \ p/d \}.$ Докажате, че I и J са идеали на R и $R/I \cong \mathbb{Z}_p$ е поле, а $R/J \cong \mathbb{Z}_p \times \mathbb{Z}_p$ не е поле.

Задача 8. Нека $K = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$, $M = \{f \in K \mid f(0) = 0\}$ и $N = \{f \in K \mid f(0) = f(1) = 0\}$. Докажете, че $M \triangleleft K$, $N \triangleleft K$, K/M е поле, а K/N не е поле.

Задача 9. Нека $R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b, c \in \mathbb{Q} \}$. Докажете, че R е пръстен и намерете всички идеали и факторпростени на R.

Задача 10. Нека $I = 360\mathbb{Z} \lhd \mathbb{Z}$. Да означим $J = \{k \in \mathbb{Z} \mid \exists n \in \mathbb{N} : k^n \in I\}$. Докажете, че $J \lhd \mathbb{Z}$ и намерете \mathbb{Z}/J .