Periodo: 2020-1 Profesores: E. Andrade y D. Bojacá

EJERCICIO 1: Considere la representación en lógica proposicional del siguiente problema. Tengo una tabla 2×2 y quiero ir llenándola una casilla por turno, de tal manera que en el cuarto turno la tabla esté llena con los números del 1 al 4.

- a. ¿Qué deben representar las letras proposicionales y cuántas debe haber?
- b. Use la lógica proposicional para representar las siguientes restricciones:
 - I. En el último turno, las cuatro casillas deben estar llenas con números diferentes.
 - II. Si una casilla se llena en un turno, permanecerá llena con ese número por el resto de los turnos.
 - III. En el primer turno sólo una casilla puede estar llena.
 - IV. En el turno n sólo puede haber n casillas llenas (para $n = 1, \ldots, 4$).

Sean B y C fórmulas y sea $U = \{A_1, \ldots, A_n\}$ un conjunto de fórmulas.

Ejercicio 2: Encuentre un contraejemplo para cada una de las siguientes proposiciones:

- a. Si $U \cup \{B\}$ es insatisfacible, entonces U es insatisfacible.
- b. Si B es válida y U es insatisfacible, entonces $U \cup \{B\}$ es satisfacible.
- c. Si $U \cup \{B\}$ es satisfacible, entonces $U \models B$.

EJERCICIO 3: Suponga que $U \cup \{B\}$ es satisfacible. Demuestre que $U \cup \{B \vee C\}$ es satisfacible para cualquier C.

EJERCICIO 4: Suponga que U es insatisfacible. Demuestre que $U \models B$ para cualquier B.

EJERCICIO 5: Suponga que $U \models B$. Demuestre que $U \cup C \models B$ para cualquier C.

EJERCICIO 6: Demuestre que $p \to (\neg p \to q)$ es equivalente a $\neg q \lor q$. (Observe que $p \lor q$ no son la misma letra proposicional.)

EJERCICIO 7: Encuentre una fórmula en forma normal conjuntiva que sea equivalente a $p \leftrightarrow (q \rightarrow r)$.

