方程式 f(x)=0 の解とは,関数 $f(x^*)=0$ を満たす x^* のことを言う.図 1 では,曲線 y=f(x) と x 軸が交わっており,この交点の x 座標が x^* である.

いま,解 x^* の近似値 x_k が与えられているとする.点 $(x_k, f(x_k))$ に おける曲線 y=f(x) の接線(図中の斜めの線)の方程式は $y=f(x_k)+(x-x_k)\cdot f'(x_k)$ である.ここで,f'(x) は f(x) の導関数である.この接線と x 軸の交点 (x_{k+1}) は次の式で表される [2].

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{1}$$

図 1 の場合, x_{k+1} が x_k よりも解 x^* に近い.このため,適当な初期値 x_0 を与え,式 (1) によって数列 (x_k) を定義すると,この数列は $k \to \infty$ で x^* に収束することが期待される.

図 1: ニュートン法の原理

参考文献

- [1] 著者 1, 著者 2, 「書名 1」, 出版社 1, pp. ページ範囲, (2014).
- [2] 著者 3, 「書名 2」, 出版社 2, pp. ページ範囲, (2019).