Sitthiphol Yuwanaboon

John O'Neal

CS 130

23 February 2021

LAB #3

A.1 [10] <COD §A.2> In addition to the basic laws we discussed in this section, there are two important theorems, called DeMorgan's theorems:

Prove DeMorgan's theorems with a truth table of the form

A	В	Ā	В	A + B	Ā • B	A - B	A + B
0	0	1	1	1	1	1	1
0	1	1	0	0	0	1	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	0

A.2 [15] <COD §A.2> Prove that the two equations for E are equivalent by using DeMorgan's theorems and the axioms shown COD Section A.2 (Gates, truth tables, and logical equations).

$$E=((A \cdot B)+(A \cdot C)+(B \cdot C)) \cdot (A \cdot B \cdot C^{-})$$

$$E=(A \cdot B \cdot C^{-})+(A \cdot C \cdot B^{-})+(B \cdot C \cdot A^{-})$$

A.3 [10] <COD §A.2> Show that there are 2n entries in a truth table for a function with n inputs.

A.4 [10] <COD §A.2> One logic function that is used for a variety of purposes (including within adders and to compute parity) is *exclusive OR*. The output of a two-input exclusive OR function is true only if exactly one of the inputs is true. Show the truth table for a two-input exclusive OR function and implement this function using AND gates, OR gates, and inverters.

A.5 [15] <COD §A.2> Prove that the NOR gate is universal by showing how to build the AND, OR, and NOT functions using a two-input NOR gate.

A.6 [15] <COD §A.2> Prove that the NAND gate is universal by showing how to build the AND, OR, and NOT functions using a two-input NAND gate.

A. I from definition A NAND gode is equivalent to on inverse followed by or
and a Nac gal & is equivalent to inversion fallowed by an AND
AB = A + B
$\overline{A+B} = \overline{AB}$
HTG = HB
6 N
troun Demangan & Massen
from the table we compre the value between these imple and the adjut it is same through the gate. It is the that
Input and the output it is some through the gotte. It is two that
re home the some of the befinition
(A_q)
(Ha) E=((A-B+A-C+(B,())(A.B,()
E=(A.B.C)+(A.C.B +(B.S.A)
E(AB+AC+BC)(A+B4C)
E-(AB(+ ABC + ABC)
As above since AA=0 BB=0
n) above Since HHZO
B.B. =0
(\cdot, \cdot)

the combination of input has vale
of the and false, nonetheless or flow mony empt
will produce 2 poner since n equal to number input
einput z 4 row of the fab (A,4) A X929 equivalent logic is equal to (A·B) 4/A·B)

(A.S) Notgate A+A = A or gate A+B = A+B = ANORB ANDgate A.B = A.B = A+B ANORB

Part A:
Methods to describe a combinational circuit
· True table
· Boolean algebraic expression
Logic diagram
Tan 1 4 1 1 1
len properties of boolean algebra
· Commutatice x 44 = x+x x. y = x, x. (4+2) 1 (x.41.2 = x. · Distributive x + (4.2) = (x+y). (x+z), x. (4+2) = x.
1755 ociontice (x 441 + 7 = x + (4+2)) (x 7) 7 = x,
Distributive & +(4.5) = (x 14).(x+2) + x.(412)=18-416(x+5)
identity >10=4, x,1=x
· Complement x + (x1 = 1, x-(x1 = 0
Precedience Operator
Highest Complement
AND
Langt 0e
Duality
Exchange 1 and 0
Exchange isna 0

De Magn 3 lan (a.bl = a'4b' (a4b) = a'.b'

complement theorems

(x')' = X

(= 9)

(D = 1

x = a, b ANDGate x = a+b or gale

