Name: - Shresthi Singh

Reg. No.: - 21BCE2682

Assignment 5

```
import numpy as np
import pandas as pd
d=pd.read_csv("C:\\Users\\wwwad\\Downloads\\archive (1)\\Mall_Customers.csv")
df=pd.DataFrame(d)
print(d)
     CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
0
            1
                 Male
                        19
1
             2
                  Male
                         21
                                             15
                                                                    81
2
             3 Female
                         20
                                             16
                                                                     6
3
             4 Female
                         23
                                             16
                                                                    77
4
             5 Female
                                             17
                         31
                                                                    40
                                            . . .
195
           196 Female
                         35
                                            120
                                                                    79
196
           197 Female
                         45
                                            126
                                                                    28
197
           198
                  Male
                         32
                                            126
                                                                    74
                                                                    18
198
           199
                  Male
                         32
                                            137
           200
                  Male
                                            137
[200 rows x 5 columns]
```

df.isnull().sum()

CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

```
df.dropna(inplace=True)
df
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

```
X = df[['Age', 'Annual Income (k$)', 'Gender']]
y = df['Spending Score (1-100)']
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
X_train
```

Age	Annual Income (k\$)	Gender
20	73	Male
43	48	Female
45	28	Female
19	64	Male
36	87	Female
68	48	Female
33	113	Male
49	65	Female
27	40	Female
36	87	Male
	20 43 45 19 36 68 33 49 27	43 48 45 28 19 64 36 87 68 48 33 113 49 65 27 40

```
from sklearn.preprocessing import StandardScaler, LabelEncoder
  le = LabelEncoder()
 df['Gender'] = le.fit_transform(df['Gender'])
  le
   ▼ LabelEncoder
   LabelEncoder()
  print(df.head())
                                                                                                                      Spending Score (1-100)
         CustomerID Gender
                                                          Age
                                                                     Annual Income (k$)
  0
                                                   1
                                                            19
                                                                                                              15
                                                                                                                                                                          39
                               1
  1
                               2
                                                                                                              15
                                                   1
                                                             21
                                                                                                                                                                          81
  2
                               3
                                                   0
                                                             20
                                                                                                              16
                                                                                                                                                                            6
  3
                               4
                                                   0
                                                             23
                                                                                                                                                                          77
                                                                                                              16
                               5
  4
                                                   0
                                                            31
                                                                                                              17
                                                                                                                                                                          40
 scaler = StandardScaler()
 df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] = scaler.fit_transform(
          df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])
 print(df.head())
                                                                Age Annual Income (k$) Spending Score (1-100)
        CustomerID Gender
 0
                                       1 -1.424569
                                                                                               -1.738999
                                                                                                                                                     -0.434801
                     1
                            2
                                             1 -1.281035
                                                                                               -1.738999
                                                                                                                                                       1.195704
 1
 2
                           3
                                            0 -1.352802
                                                                                               -1.700830
                                                                                                                                                     -1.715913
                                                                                               -1.700830
 3
                                             0 -1.137502
                                                                                                                                                      1.040418
 4
                            5
                                              0 -0.563369
                                                                                               -1.662660
                                                                                                                                                     -0.395980
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X_train.drop(columns=['Gender']))
train_clusters = kmeans.predict(X_train.drop(columns=['Gender']))
test_clusters = kmeans.predict(X_test.drop(columns=['Gender']))
train clusters
 \verb|C:\Users\wwwad\anaconda3| Lib\site-packages\sklearn\cluster\klearns.py: 870: Future \verb|Warning: The default value of `n_init` will challed the control of the control o
ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
C:\Users\wwwad\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OM
P_NUM_THREADS=1.
   warnings.warn(
1, 2, 1, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 1, 1, 0, 1, 1,
           0, 0, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 0,
           1, 0, 1, 2, 2, 2, 2, 0, 2, 1, 2, 1, 1, 2, 2, 2, 0, 2, 1, 0, 2, 0,
           1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 0, 0, 2, 0, 2, 2, 1, 1, 0, 1,
           1, 1, 2, 2, 1, 0, 1, 0, 0, 2, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1,
           0, 0, 1, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 2, 2, 0, 0, 0, 2, 2, 2, 2,
  test clusters
  array([2, 1, 0, 0, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 0, 2, 2, 1, 2, 0, 1, 1,
                 2, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 2, 1, 1, 2, 0, 0])
  silhouette avg = silhouette score(X train.drop(columns=['Gender']), train clusters)
  print(f'Silhouette Score: {silhouette avg}')
  Silhouette Score: 0.41425604594750765
```

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.scatter(X_train['Age'], X_train['Annual Income (k$)'], c=train_clusters, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red', label='Cluster Centers')
plt.xlabel('Age')
plt.ylabel('Annual Income (k$)')
plt.title('K-Means Clustering')
plt.legend()
plt.show()
```

