TD 8 : Analyse réelle (Indications)

Indications pour l'exercice 1:

- 1. Faire une intégration par partie pour le cas $\alpha > 0$. Pour $\alpha \le 0$, poser $u_n = \int_0^{n\pi}$ et montrer que $|u_{n+1} u_n|$ est minoré par une suite qui ne tend pas vers 0.
- 2. Pour l'impropriété en 0, distinguer les cas $\alpha > 0$, $\alpha = 0$ et $\alpha < 0$ en cherchant un équivalent ou une relation de négligeabilité dans chaque cas. Dans le dernier cas il faut distinguer les cas $\beta < 0$, $0 \le \beta < 1$ et $\beta \ge 1$.

Pour l'impropriété en $+\infty$, il faut distinguer les cas $\alpha > 0$ (puis distinguer les sous cas $\beta > 1$ et $\beta \le 1$), $\alpha = 0$ et $\alpha < 0$.

- 3. Comparer avec des intégrales de Riemann.
- 4. Attention il y a deux impropriétés : en $\frac{2}{\pi}$ et en $+\infty$.

Pour la première, on peut écrire $\cos\left(\frac{1}{t}\right) = \sin\left(\frac{\pi}{2} - \frac{1}{t}\right)$ puis utiliser un équivalent de $\sin u$ (ou bien chercher un DL de cos au voisinage de $\frac{pi}{2}$).

Pour la deuxième, on utilise le DL de $\cos u$ au voisinage de 0 et on compose des équivalents.

Indications pour l'exercice 2:

- 1. Cette intégrale peut se calculer explicitement.
- 2. Faire une intégration par partie.
- 3. Raisonner par récurrence.

Indications pour l'exercice 3:

- 1. Comparer avec $\frac{1}{t^2}$.
- 2. Découper l'intégrale en 2 et appliquer le théorème fondamental de l'analyse.
- 3. Remarquer que pour tout $t \in [x, +\infty[$, $2x \le 2t$ et majorer l'intégrale par une intégrale qu'on peut calculer explicitement.
- 4. Facile avec le théorème des gendarmes.

Indications pour l'exercice 4:

- 1. Chercher des équivalents simples.
- 2. $I_n + J_n$ est l'intégrale d'une dérivée connue.
- 3. Montrer que $I_n = J_n$.
- 4. Trouver un encadrement de l'expression $(1+x^2)(1+x^n)$ pour en déduire un encadrement de l'intégrale donnant les résultats voulus.

Indications pour l'exercice 5:

1. D'abord, raisonner par l'absurde pour montrer que $\lim_{x \to +\infty} f(x) = 0$.

Ensuite, il faut quantifier en posant $\varepsilon > 0$ et en découpant l'intégrale de sorte que $\left| \int_0^{x_0} f(t) dt - \int_0^{+\infty} f(t) dt \right| < \varepsilon$, puis utiliser la décroissance de f pour montrer que $(x - x_0)f(x) < \varepsilon$.

Indications pour l'exercice 6 :

- 1. (a) Appliquer l'inégalité de Taylor-Lagrange à la fonction $x \mapsto e^x$ sur $[-\ln 2, \ln 2]$.
 - (b) Étudier la limite de |f(x+h) f(x)| lorsque h tend vers 0 pour un réel x fixé.
 - (c) Encadrer f(x) en partant de l'encadrement $-2x \le -x(1+t^2) \le -x$ facile à démontrer.
- 2. Pour que les calculs s'annulent, il faut faire le changement de variable $u = \frac{t}{x}$ dans une des intégrales pour un réel x

3. Utiliser le fait que φ est constante et que $\lim_{x \to +\infty} f(x^2) = 0$.

Indications pour l'exercice 7:

Comme dans l'exercice 2

Indications pour l'exercice 8 :

- 1. Question de routine.
- 2. Écrire xf(x) = (x-1+1)f(x) et reconnaître f'(x).
- 3. Poser y = x 1 puis reconnaître l'intégrale de Gauss (à un facteur près).
- 4. Utiliser le DL de $\exp(u)$ à l'ordre 3.

Indications pour l'exercice 9 :

- 1. Penser à factoriser par e^{-rx} et à tout mettre au même dénominateur pour éclaircir les calculs.
- 2. Une seule impropriété en x=1 qui se résout avec le changement de variable u=1-x.
- 3. $I_1(r)$ se calcule explicitement.
- 4. Appliquer l'inégalité des accroissements finis à la fonction $x \mapsto \frac{1}{\sqrt{1-x}}$ entre 0 et y.
- 5. Intégrer l'inégalité précédente (multipliée par e^{-ry}) par rapport à y, majorer « brutalement » l'intégrale majorante.
- 6. Majorer e^{-rx} et trouver un majorant de $\int_{r^{-2/3}}^{1} \frac{dx}{\sqrt{1-x}}$ qui ne dépend pas de r.
- 7. Les résultats précédents permettent de montrer que $I_2(r) = o\left(\frac{1}{r}\right)$ et $I_3(r) = o\left(\frac{1}{r}\right)$ ce qui suffit ensuite pour conclure.