

E210 Engineering Cyber-Physical Systems (Spring 2021)

SPI Peripheral (Basys3)

Weekly Focus	Reading	Monday	Wed	Lab
Exam/CPS Introduction	Ref 1 Chapter 1	3/8: Exam 1	3/10: CPS Introduction	Project 5 Raspberry PI Setup
Raspberry Pi	Ref 2 Chapter 1-3	3/15: Pi Intro/UART Bus	3/17: Git/Github	
I2C Bus	Ref 3	3/22: I2C Bus	3/24: Wellness Day	Project 6 I2C Pressure Sensor
Python/Sensor	Ref 4, Ref 5	3/29: Classes/Modules	3/31: Pressure Sensor	
SPI	Ref 6	4/5: SPI Bus Overview	4/7: SPI HDL Design	Project 7 SPI Connected I/O
SPI	Ref 7 Chapter 1	4/12: SPI HDL Design	4/14: Sensor Memory	
Network Interface	Ref 7 Chapter 2	4/19: Ethernet Interface	4/21: MQTT	Project 8 Network Interface
MQTT/Flask	Ref 7 Chapter 14	4/26: Flask	4/29: Open Topic	

Raspberry SPI Link

SPI Bus Review

Single Peripheral

Reading

Set to 1, for reading Auto-Increment Address

The SPI Read command is performed with 16 clock pulses. The multiple byte read command is performed adding blocks of 8 clock pulses at the previous one.

Writing

Raspberry Pi Python SPI

Table 14. Registers address map

Name	Туре	Register	Address	Default	Function and
Name	Туре	Hex	Binary	Delault	comment
Reserved (Do not modify)		00-07 0D - 0E			Reserved
REF_P_XL	R/W	08	0001000	00000000	
REF_P_L	R/W	09	0001001	00000000	
REF_P_H	R/W	0A	0001010	00000000	
WHO_AM_I	R	0F	0001111	10111011	Dummy register
RES_CONF	R/W	10	0010000	011111010	
Reserved (Do not modify)		11-1F			Reserved
CTRL_REG1	R/W	20	010 0000	00000000	
CTRL_REG2	R/W	21	010 0001	00000000	
CTRL_REG3	R/W	22	010 0010	00000000	
INT_CFG_REG	R/W	23	0100011	00000000	

```
#!/usr/bin/env python3
# A brief demonstration of the Raspberry Pi SPI interface, using the Sparkfun
# Pi Wedge breakout board and a SparkFun Serial 7 Segment display:
# https://www.sparkfun.com/products/11629
import time
import spidev
# We only have SPI bus 0 available to us on the Pi
bus = 0
# Device is the chip select pin. Set to 0 or 1, depending on the connections
device = 0
# Enable SPI
spi = spidev.SpiDev()
spi.open(bus, device)
# Set SPI speed and mode
spi.max speed hz = 500000
spi.mode = 0
readval = spi.xfer2([0x8F,0x00])
print(readval)
```


Xilinx Artix 7 XC7A35T

Front View Back View

Front View

CPG236 BGA Package

CP236 and CPG236 Packages—XC7A15T, XC7A35T, and XC7A50T CPG236 Package (only)—XA7A15T, XA7A35T, and XA7A50T

1 2 3 4 0 0 7 6 3 10 11 12 13 14 13 10 17 18 13								
User I/O Pins	Transceiver Pins	Dedicated Pins	Other Pins					
NO_LXXY_B	E MGTAVCC_G# W MGTAVTT.G# MGTVCCAUX.G# MGTVCCAUX.G# MGTVCAUX.G# MGTAVTTROAL G MGTREFCLK1/IOP MGTREFCLK1/IOP MGTPPIXP MGTPPIXP MGTPPIXP MGTPPIXP MGTPTYP MGTPTYN	C CCLK.0 S VP.0 CFGBVS.0 S VN.0 D COME.0 S VREFP.0 J DXP.0 S VREFP.0 L DXPL.0 GROADC.0 O MO_0 I M1.0 2 M2.0 P PROGRAM.B.0 K TCK.0 I TCK.0 I TMS.0 VCCBATT_0	GND VCCAUX_JO_G# VCCAUX VCCOLY VCCO_# VCCBRAM NC					

Basys3 PMOD Connectors

Pmod JA	Pmod JB	Pmod JC	Pmod JXADC
JA1: J1	JB1: A14	JC1: K17	JXADC1: J3
JA2: L2	JB2: A16	JC2: M18	JXADC2: L3
JA3: J2	JB3: B15	JC3: N17	JXADC3: M2
JA4: G2	JB4: B16	JC4: P18	JXADC4: N2
JA7: H1	JB7: A15	JC7: L17	JXADC7: K3
JA8: K2	JB8: A17	JC8: M19	JXADC8: M3
JA9: H2	JB9: C15	JC9: P17	JXADC9: M1
JA10: G3	JB10: C16	JC10: R18	JXADC10: N1

Basys3: Pmod Pin-Out Diagram

JB1: A14	0	0	JB7: A15
JB2: A16		0	JB8: A17
JB3: B15		▣	JB9: C15
JB4: B16	0		JB10: C16
JB5: GND		0	JB11: GND
JB6: PWR			JB12: PWR

JC1: K17	0	•	JC7: L17
JC2: M18		•	JC8: M19
JC3: N17		0	JC9: P17
JC4: P18	0	0	JC10: R18
JC5: GND			JC11: GND
JC6: PWR			JC12: PWR

JA12: PWR

JA11: GND

JA10: G3

JA9: H2

JA8: K2

JA7: H1

JXAC12: PWR

JXAC11: GND

JXAC10: N1

JXAC9: M1

JXAC8: M3

JXAC7: K3

JA6: PWR

JA5: GND

JA4: G2

JA3: J2

JA2: L2

JA1: J1

JXAC2: L3

JXAC1: J3

Analog Inputs

Dual Analog/Digital Pmod (JXADC)

Analog Inputs

- 1. Dual A2D Converters
- 2. 12-Bit
- 3. 1 MSPS
- 4. Built in Sensors
 - Temperature
 - Power Rails

Dual Analog/Digital Pmod (JXADC)

Figure 1-1: XADC Block Diagram

https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf

Pin Voltages

Raspberry Pin Input Pins

Symbol	Parameter	Conditions	Min	Typical	Max	Unit
V_{IL}	Input Low Voltage	VDD IO = 1.8V	-	-	0.6	V
		VDD IO = 2.7V	-	-	0.8	٧
		VDD IO = 3.3V	-	-	0.9	٧
V_{IH}	Input high voltage ^a	VDD IO = 1.8V	1.0	-	-	V
		VDD IO = 2.7V	1.3	-	-	V
		VDD IO = 3.3V	1.6	-	-	V
I _{IL}	Input leakage current	TA = +85°C	-	-	5	μΑ
C _{IN}	Input capacitance	-	-	5	-	pF

Raspberry Pi Output Pins

Symbol	Parameter	Conditions	Min	Typical	Max	Unit
V _{OL}	Output low voltage ^b	VDD IO = 1.8V, IOL = -2mA	-	-	0.2	٧
		VDD IO = 2.7V, IOL = -2mA	-	-	0.15	V
		VDD IO = 3.3V, IOL = -2mA	-	-	0.14	V
V _{OH}	Output high voltage ^b	VDD IO = 1.8V, IOH = 2mA	1.6	-	-	V
		VDD IO = 2.7V, IOH = 2mA	2.5	-	-	V
		VDD IO = 3.3V, IOH = 2mA	3.0	-	-	V

Xilinx Artix XC7A35T FPGA

```
182 set_property PACKAGE_PIN K17 [get_ports {MOSI}]
183 set_property IOSTANDARD LVCMOS33 [get_ports {MOSI}]
184 ##Sch_name = JC2
```

Table 8: SelectIO DC Input and Output Levels(1)(2)

I/O Standard		VII	н	V _{OL}	V _{OH}	I _{OL}	I _{OH}	
i/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
HSTL_I	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8.00	-8.00
HSTL_I_18	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8.00	-8.00
HSTL_II	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16.00	-16.00
HSTL_II_18	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16.00	-16.00
HSUL_12	-0.300	V _{REF} - 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.10	-0.10
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 3	Note 3
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.7	1.700	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVCMOS33	-0.300	0.8	2.000	3.450	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVTTL	-0.300	0.8	2.000	3.450	0.400	2.400	Note 5	Note 5
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.10	-0.10
PCl33_3	-0.400	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.500	10% V _{CCO}	90% V _{CCO}	1.50	-0.50
SSTL135	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	13.00	-13.00
SSTL135_R	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.90	-8.90
SSTL15	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	13.00	-13.00

Shift Registers

4 Bit Shift Register

Figure 16.9: A Shift Register Made from Four D Flip Flops

4 Bit Shift Register (Behavioral SystemVerilog)

Program 17.3.1 SystemVerilog Code for a 4-Stage Shift Register

Refinement ...

Program 17.3.2 SystemVerilog Code for a 4-Stage Shift Register - Simplified Version

What is the effect of this reordering?

Asynchronous Input

Consider the following general architecture ...

Figure 16.12: Register Transfer Level (RTL) Structure

Asynchronous Input

- 1. Simplifying Design Assumption: combinational logic stabilizes before the sequential circuitry uses the resulting values.
- 2. Consider signals from a different clock domain
 - Raspberry Pi…

Consider the following state machine.

Assume A arrives from a different clock domain. Arrival of A can be any time relative to clk.

Consider the following timing ...

Figure 24.2: Timing Problem of Figure 24.1

Solution: Add a flip flop ...

Figure 24.3: Synchronizing an Asynchronous Input

No free lunch ... A is now stable but delayed by 1 clock.

Asynchronous Output

Consider the following general architecture ...

Figure 16.12: Register Transfer Level (RTL) Structure

Consider the following ATM signal

If dispense signal were going to another module within the same clock domain, no issue. What if this were a different clock domain?

Synchronize combinational logic before output

Figure 24.5: Generating a Glitch-Free Output