

VLSI Testing 積體電路測試

Logic Built-In Self Test (BIST) Part 1: Test Pattern Generator

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

Course Roadmap (Design Topics)

Motivating Problem

- Your manger complains tester is too expensive.
- Please design a circuit to test the chip itself!

Why Am I Learning This?

- Built-in Self Test (BIST) can
 - Remove large expensive testers
 - Test chips at high speed
 - Test chips online

"Testing oneself is best when done alone."

君子慎其獨也

(Jimmy Carter)

BIST Outline

- Part 1
 - Introduction
 - Test Pattern Generation
- Part 2 (Next chapter)
 - Output Response Analysis
 - BIST Architecture
 - Problems and solutions
 - Conclusions

Built-in Self Test

- Definition
 - Capability of hardware/software to carry out explicit test of itself
- Levels of BIST
 - System-level self test
 - * system self test of mainframe computer
 - Board-level self test
 - * so we can replace a bad board in a system
 - Chip-level self test
 - * focus of this lecture

123rf.com

IBM Blue Gene

Categories of Chip-level BIST

- Based time of test
 - On-line BIST
 - On-line testing while chip in normal operation
 - e.g. error detection and correction for RAM
 - Off-line BIST
 - Off-line testing while chip not in normal operation
 - Focus of this talk
- Based on CUT
 - Logic BIST
 - Memory BIST

Architecture of BIST

- Three components: BIST Controller, TPG, ORA
- Three I/O Pins: Start BIST, BIST Done, Pass/Fail

Why BIST?

- 1. Save ATE cost
 - Smaller test pattern storage
 - Fewer DFT pins
 - Slower tester speed
- 2. Better IC quality
 - Test speed higher than ATE
- 3. Easier integration of tests
 - Intellectual Property (IP) cores
- 4. Easier test access
 - Test embedded memory in SOC
- 5. Enable on-line testing
 - Ensure reliability

BIST Has Many Unique Advantages

ATE Cost w/wo BIST

- Consider a 1 GHz μP with 1000 pins.
- Test w/o BIST
 - 1 GHz ATE: \$3,000/pin×1,000pins = \$3,000,000 USD
 - Huge initial capital cost
- Test w/ BIST
 - 20 MHz ATE: \$400/pin×1,000pins = \$400,000 USD
 - * Test I/O pad contact
 - Provide test commands, and read out test results

BIST Reduced ATE Cost

Disadvantages of BIST

- 1. Area Overhead
 - Yield loss due to BIST circuitry
- 2. Performance degradation
 - Extra hardware
- 3. Extra design effort
 - Test point insertion, BIST insertion, verification ...
- 4. Lack information for debug and diagnosis
 - Need to bypass BIST when diagnosis
- 5. Long test length but fault coverage may not good enough
 - Random test patterns not as good as ATPG patterns
 - Mixed solution (BIST + ATE) is often needed

BIST can NOT Solve All Problems

Quiz

Q: Which of the following is NOT true for BIST?

- A. BIST reduces test cost because of good fault coverage
- **B. BIST reduces DFT pins required**
- C. BIST improve test quality because test speed is higher

ANS:

BIST Part1 - TPG

- Introduction
- Test Pattern Generation (TPG)
 - Deterministic: ROM, Algorithm, Counter
 - Pseudo Random:
 - Linear Feedback Shift Register (LFSR)
 - Cellular Automata (CA)

ROM/Algorithm as TPG

- ROM as TPG
 - Store test patterns in ROM
 - Very expensive for chip-level BIST
 - Maybe doable for system-level BIST
 - e.g. self test program in BIOS (Basic Input/Output System)

Algorithm as TPG

- Test pattern generation based on certain mathematical rule
- Suitable for regular structure like memory, FPGA
 - Not very useful for random logic

No Good for Logic BIST

Shift Counters as TPG

- Generates regular test sequences
 - Such as walking sequence for interconnect testing
- Advantage: Linear test time
- Disadvantage: Too regular, not useful for random logic

Binary Counters as TPG

- N-stage binary counters
 - Generate test patterns in sequence
 - * from 0 to $2^{N}-1$, or from $2^{N}-1$ to 0
- Advantage
 - Simple design
 - Exhaustive test is high quality

- Exhaustive test length is very long
 - → No randomness, deterministic pattern sequence
 - \Rightarrow e.g. Need 2^{N-1} test length to reach a 1 at MSB
- Large area overhead (compared to LFSR)

Need Random Counter for Logic BIST

Summary

- Introduction
 - BSIT components: TPG, ORA, and controller
 - Pros: reduced pins, tester cost, on-line testing
 - Cons: area overhead, performance degradation, lower FC
- Test Pattern Generation
 - Deterministic: ROM, Algorithm, Counter

