If f:

If f:A

If $f: A \to B$

If $f: A \to B$ and #(A) > #(B),

If $f: A \to B$ and #(A) > #(B), then f is not 1-1

Example.

Example. In a group of at least 13 people,

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n + 1 integers,

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n :=$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution. Denote, $[a]_n := \{$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}\$ $[a]_n \cap [b]_n = \emptyset,$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by nA:

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

B:

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

```
Denote, [a]_n := \{kn + a \mid n \in \mathbb{Z}\}

[a]_n \cap [b]_n = \emptyset, if a \neq b

[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}

p, q \in [a]_n \iff p-q divisible by n

A: the given set of n+1 integers

B: \{
```

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

```
Denote, [a]_n := \{kn + a \mid n \in \mathbb{Z}\}

[a]_n \cap [b]_n = \emptyset, if a \neq b

[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}

p, q \in [a]_n \iff p-q divisible by n

A: the given set of n+1 integers

B: \{[i]_n \}
```

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

```
Denote, [a]_n := \{kn + a \mid n \in \mathbb{Z}\}

[a]_n \cap [b]_n = \emptyset, if a \neq b

[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}

p, q \in [a]_n \iff p-q divisible by n

A: the given set of n+1 integers

B: \{[i]_n \mid i \in \{0, \ldots, n-1\}\}

f:
```

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n A: the given set of n+1 integers $B: \{[i]_n \mid i \in \{0, \ldots, n-1\}\}$ $f: A \rightarrow$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n
 A : the given set of $n+1$ integers
 $B: \{[i]_n \mid i \in \{0, \ldots, n-1\}\}$
 $f: A \to B$,

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

$$B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$$

 $f: A \to B$, defined as,

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

 $f: A \to B$, defined as, f(a) =

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

 $f: A \to B$, defined as, $f(a) = [a]_n$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

```
Denote, [a]_n := \{kn + a \mid n \in \mathbb{Z}\}

[a]_n \cap [b]_n = \emptyset, if a \neq b

[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}

p, q \in [a]_n \iff p-q divisible by n

A: the given set of n+1 integers

B: \{[i]_n \mid i \in \{0, \ldots, n-1\}\}

f: A \to B, defined as, f(a) = [a]_n

|A|
```

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n
 $A:$ the given set of $n+1$ integers
 $B: \{[i]_n \mid i \in \{0, \ldots, n-1\}\}$
 $f: A \to B$, defined as, $f(a) = [a]_n$
 $|A| = n$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n
 $A:$ the given set of $n+1$ integers
 $B: \{[i]_n \mid i \in \{0, \ldots, n-1\}\}$
 $f: A \to B$, defined as, $f(a) = [a]_n$
 $|A| = n < n+1$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n
 $A:$ the given set of $n+1$ integers
 $B: \{[i]_n \mid i \in \{0, \ldots, n-1\}\}$
 $f: A \to B$, defined as, $f(a) = [a]_n$
 $|A| = n < n+1 = |B|$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n
 $A:$ the given set of $n+1$ integers
 $B: \{[i]_n \mid i \in \{0,\ldots,n-1\}\}$
 $f: A \to B$, defined as, $f(a) = [a]_n$
 $|A| = n < n+1 = |B|$, so f is not injective.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n A: the given set of n+1 integers $B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$ $f:A \to B$, defined as, $f(a) = [a]_n$ |A| = n < n+1 = |B|, so f is not injective. There is $p, q \in A$

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n A: the given set of n+1 integers $B: \{[i]_n \mid i \in \{0,\ldots,n-1\}\}$ $f: A \to B$, defined as, $f(a) = [a]_n$ |A| = n < n+1 = |B|, so f is not injective.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n A: the given set of n+1 integers $B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$ $f:A \to B$, defined as, $f(a)=[a]_n$ |A|=n < n+1=|B|, so f is not injective. There is $p, q \in A$, so that $p \neq q$ f(p)=f(q)

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

$$A$$
: the given set of $n+1$ integers

$$B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n
 A : the given set of $n+1$ integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$
 $|A| = n < n + 1 = |B|$, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$
 $f(p) = f(q) \iff [p]_n = [q]_m$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

$$f(p) = f(q) \iff [p]_n = [q]_m \iff$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

$$B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

$$B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

Example. Prove that there always exists a subset of a set of any n integers,

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n

$$B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Solution.
The given set

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

 $B:\{[i]_n \mid i \in \{0,\ldots,n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$ $f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Solution.
The given set is {

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n

$$B : \{[i]_n \mid i \in \{0, \dots, n-1\}\}\$$

 $f : A \to B$, defined as, $f(a) = [a]_n$
 $|A| = n < n + 1 = |B|$, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Solution.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

The given set is $\{m_1, \dots \}$

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$

 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$

 $p, q \in [a]_n \iff p - q \text{ divisible by } n$

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Solution.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

The given set is $\{m_1, m_2, \dots \}$

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$

 $p, q \in [a]_n \iff p - q \text{ divisible by } n$

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Solution. The given set is $\{m_1, m_2, \ldots, \}$

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

The given set is
$$\{m_1, m_2, \ldots, m_n\}$$

Consider, $\{$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is $\{m_1, m_2, \ldots, m_n\}$ Consider, $\{0, \dots, m_n\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

The given set is
$$\{m_1, m_2, \ldots, m_n\}$$

Consider, $\{0, m_1, \ldots, m_n\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is $\{m_1, m_2, \dots, m_n\}$ Consider, $\{0, m_1, m_1 + m_2, \dots, m_n\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

The given set is
$$\{m_1, m_2, \ldots, m_n\}$$

Consider, $\{0, m_1, m_1 + m_2, \ldots, m_n\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is $\{m_1, m_2, \ldots, m_n\}$

Consider, $\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is $\{m_1, m_2, \ldots, m_n\}$

Consider, $\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$ By the previous example,

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is $\{m_1, m_2, \ldots, m_n\}$

Consider, $\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$

By the previous example,

There are two elements,

whose difference is a multiple of n

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is $\{m_1, m_2, \dots, m_n\}$ Consider, $\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$ By

the previous example,

There are two elements, whose difference is a multiple of n

$$(m_1 + m_2 + \cdots + m_j)$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is $\{m_1, m_2, \ldots, m_n\}$

Consider, $\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$ By the previous example,

There are two elements,

whose difference is a multiple of n

$$(m_1 + m_2 + \cdots + m_j) - (m_1 + m_2 + \cdots + m_i) =$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is
$$\{m_1, m_2, \ldots, m_n\}$$

Consider,
$$\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$$

whose difference is a multiple of n

$$(m_1 + m_2 + \dots + m_j) - (m_1 + m_2 + \dots + m_i) = m_{i+1} + m_{i+2} + \dots + m_j$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is
$$\{m_1, m_2, \ldots, m_n\}$$

Consider,
$$\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$$
 By the previous example,

whose difference is a multiple of
$$n$$

$$(m_1 + m_2 + \dots + m_j) - (m_1 + m_2 + \dots + m_i) = m_{i+1} + m_{i+2} + \dots + m_j$$

The subset is
$$\{m_{i+1}, m_{i+2}, \ldots, m_j\}$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there always exists a subset of a set of any n integers, whose sum is a multiple of n.

Solution.

The given set is
$$\{m_1, m_2, \ldots, m_n\}$$

Consider,
$$\{0, m_1, m_1 + m_2, \dots, m_1 + m_2 + \dots + m_n\}$$
 By the previous example,

whose difference is a multiple of
$$n$$

$$(m_1 + m_2 + \dots + m_j) - (m_1 + m_2 + \dots + m_i) = m_{i+1} + m_{i+2} + \dots + m_j$$

The subset is
$$\{m_{i+1}, m_{i+2}, \dots, m_j\}$$

Example.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

 $f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers,

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums

Example. In a group of at least 13 people, at least two m people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

 $f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$ $f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote, $[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$ $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$ $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$ $p, q \in [a]_n \iff p-q$ divisible by n

A: the given set of n+1 integers

 $B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$

 $f: A \to B$, defined as, $f(a) = [a]_n$

|A| = n < n + 1 = |B|, so f is not injective.

There is $p, q \in A$, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Example. In a group of at least 13 people, at least two people share the same month of birth.

Example. Prove that from a set of n+1 integers, there must exist a pair whose difference is divisible by n.

Solution.

Denote,
$$[a]_n := \{kn + a \mid n \in \mathbb{Z}\}$$

 $[a]_n \cap [b]_n = \emptyset$, if $a \neq b$
 $[0]_n \cup \ldots \cup [n-1]_n = \mathbb{Z}$
 $p, q \in [a]_n \iff p - q$ divisible by n

A: the given set of n+1 integers

$$B: \{[i]_n \mid i \in \{0, \dots, n-1\}\}$$

$$f: A \to B$$
, defined as, $f(a) = [a]_n$

$$|A| = n < n + 1 = |B|$$
, so f is not injective.

There is
$$p, q \in A$$
, so that $p \neq q$

$$f(p) = f(q) \iff [p]_n = [q]_m \iff p, q \in [q]_n \iff p - q \text{ is divisible by } n$$

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Example.

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Example. Prove that any subset of cardinality n+1

Example. Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

the set $\{1, 2, \dots, 2n\}$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Denote the subset,

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Denote the subset, A :=

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$ $I := \{1, 2, \dots, n\}$

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{$$

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$

$$I := \{1, 2, \dots, n\}$$

$$B := \{$$

$$f:I\to$$

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{$$

$$f: I \to B$$
,

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}$$

$$f:I\to B,$$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n\}$
 $B := \{\{1, 2\}, \{3, 4\}, \}$
 $f : I \to B$,

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n\}$
 $B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}$
 $f : I \to B$,

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}$$

$$f: I \to B$$
, defined,

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n\}$
 $B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n\}$
 $B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j)$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}\$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective.

so
$$f(i) = f(j) \iff$$

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n\}$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective.

so
$$f(i) = f(j) \iff [a_i]$$

non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}\$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\}$$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}\$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j]$$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}\$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}\$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$$

i.e.
$$|a_i - a_j| = 1$$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

$$I := \{1, 2, \dots, n\}$$

$$B := \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$$

i.e.
$$|a_i - a_j| = 1$$

Example. Prove that any subset of cardinality n+1 of **Example.** Prove that there are at least two distinct non-empty subsets of a set of n integers, so that the difference of their respective sums is divisible by a given m as long as $m < 2^n - 1$.

Solution.

There are $2^n - 1$ non-empty subsets.

There are $2^n - 1$ sums.

If the sums are not distinct, then we are done