| REPORT                                                                                                                                                                                                 | DOCUMENTATION PAGE                          | A TOP I CO                          | ID AB TD A2                                  | :<br>:<br>:: |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|----------------------------------------------|--------------|
| Public reporting burden for this collection of in                                                                                                                                                      | formation is estimated to thour per         |                                     | R-AR-TR-03-                                  | es,          |
| Public reporting burden for this collection of in<br>gathering and maintaining the data needed, an<br>collection of information, including suggestions<br>Davis Highway, Suite 1204, Arlington, VA 22: |                                             |                                     | 0350                                         | his<br>ion   |
| 1. AGENCY USE ONLY (Leave blace)                                                                                                                                                                       | ·                                           | 3. REPOR                            | CED 2002 TO 14 IAN                           | 2002)        |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                  | 02-JUL-2003                                 | FINAL (13                           | 5-SEP-2002 TO 14-JAN-<br>T5. FUNDING NUMBERS | 2003)        |
| AFOSR WORKSHOP ON MUI                                                                                                                                                                                  | LTIFUNCTINAL AND HYBRI                      | IDIZED AEROSPACE                    | 1                                            |              |
| MATERIALS AND STRUCTU                                                                                                                                                                                  |                                             |                                     | F49620-02-1-0432                             |              |
| 6. AUTHOR(S)                                                                                                                                                                                           | ·                                           |                                     | 1 49020 02 1 0132                            | :            |
| PROFESSOR C. T. SUN                                                                                                                                                                                    |                                             |                                     |                                              |              |
| 7. PERFORMING ORGANIZATION PURDUE UNIVERSITY                                                                                                                                                           | NAME(S) AND ADDRESS(ES)                     |                                     | 8. PERFORMING ORGAN<br>REPORT NUMBER         | IZATION      |
| SPONSORED PROGRAM SER                                                                                                                                                                                  | RVICES                                      |                                     |                                              |              |
| 610 PURDUE MALL                                                                                                                                                                                        |                                             |                                     |                                              |              |
| WEST LAFAYETTE, IN                                                                                                                                                                                     |                                             |                                     |                                              |              |
|                                                                                                                                                                                                        | APRIAV NATIONAL AND ADDRESS                 | 20)                                 | 10. CDONCODING/MONIS                         | ODING        |
| 9. SPONSORING/MONITORING ACAFOSR/NA                                                                                                                                                                    | GENCY NAME(S) AND ADDRESS(E                 | :01                                 | 10. SPONSORING/MONIT<br>AGENCY REPORT NU     |              |
| 4015 WILSON BOULEVARD                                                                                                                                                                                  |                                             |                                     |                                              |              |
| ARLINGTON, VA 22203                                                                                                                                                                                    |                                             |                                     |                                              |              |
| ,                                                                                                                                                                                                      |                                             |                                     |                                              |              |
| 44 OLIDBI FMENTARY NOTES                                                                                                                                                                               |                                             |                                     |                                              |              |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                |                                             |                                     |                                              |              |
|                                                                                                                                                                                                        |                                             |                                     |                                              | '            |
|                                                                                                                                                                                                        |                                             |                                     |                                              |              |
| 12a. DISTRIBUTION AVAILABILITY                                                                                                                                                                         | STATEMENT                                   |                                     | 12b. DISTRIBUTION COD                        | E            |
| A PRODUCTO COD DUDI IO DEI                                                                                                                                                                             | TAGE DIGERRALITICALICIII                    | NI IMITEE                           |                                              |              |
| APPROVED FOR PUPLIC REI                                                                                                                                                                                | LEASE, DISTRIBUTION IS U                    | NLIMITED                            |                                              | *            |
|                                                                                                                                                                                                        |                                             |                                     |                                              |              |
|                                                                                                                                                                                                        |                                             |                                     |                                              |              |
| 13. ABSTRACT (Maximum 200 wo                                                                                                                                                                           |                                             | C - 111- C - 41 1                   | :1 ++i af ama11 amaa                         | imora soft   |
| The "Microstructure Testing and material, and small structures. T                                                                                                                                      |                                             |                                     |                                              |              |
| for axial/torsion and combined lo                                                                                                                                                                      |                                             |                                     |                                              |              |
| stereovision system for investiga                                                                                                                                                                      |                                             | on system for the meast             | mement of displacement                       | noids, and a |
| stereovision system for mivestigu                                                                                                                                                                      | cions of fractare surrace                   |                                     |                                              |              |
| The facilities have been used suc                                                                                                                                                                      | cessfully in research projects or           | n carbon-carbon compos              | sites, and in investigation                  | s of porous  |
| polymeric materials, as well as f                                                                                                                                                                      | for projects in a graduate course           | on "Micromechanics o                |                                              |              |
| performed so far the experiments                                                                                                                                                                       | al facilities have performed satis          | sfactory.                           |                                              |              |
|                                                                                                                                                                                                        |                                             |                                     |                                              |              |
|                                                                                                                                                                                                        |                                             |                                     |                                              | 13           |
|                                                                                                                                                                                                        |                                             |                                     |                                              | ,            |
|                                                                                                                                                                                                        |                                             | 200                                 | 74040 0                                      | <b>A A</b>   |
|                                                                                                                                                                                                        |                                             | <b>/</b> UU                         | 31010 0                                      | UY           |
|                                                                                                                                                                                                        |                                             |                                     | VIVIV V                                      | <b>4</b> /   |
| 14. SUBJECT TERMS                                                                                                                                                                                      |                                             |                                     | 15. NUMBER OF                                |              |
|                                                                                                                                                                                                        |                                             |                                     | 16 PRICE CODE                                |              |
|                                                                                                                                                                                                        |                                             |                                     | 16. PRICE CODE                               |              |
| 17. SECURITY CLASSIFICATION OF REPORT                                                                                                                                                                  | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE | 19. SECURITY CLASSIF<br>OF ABSTRACT | ICATION 20. LIMITATION                       | OF ABSTRACT  |
| UNCLASSIFIED                                                                                                                                                                                           | UNCLASSIFED                                 | UNCLASSIFIE                         | ED                                           |              |

UNCLASSIFED UNCLASSIFIED

Best Available Copy

Standard Form 298 (Rev. 2-89) (EG) Prescribed by ANSI Std. 239.18 Designed using Perform Pro, WHS/DIOR, Oct 94

#### 38 ATTENDEES:

26 Speakers, Panelists & Discussion Leaders; 1 Moderator; 1 Organizer; 10 Invited Guests

MODERATOR:

\*C. T. Sun (Purdue U)

**OPENING REMARK:** 

<sup>01</sup>Les Lee (**AFOSR**) "AFOSR Perspective"

Background Overview (2:30 - 4:00 PM, 23 October 2002; Stewart Center Room 214C)

### KEYNOTE SPEAKERS:

15 min. presentation & 5 min. question per each

<sup>02</sup> Brian Sanders (**AFRL/VA**) "Overview of Research at AFRL Air Vehicles Directorate"

03 David Banks (Boeing Phantom Works) "Overview of Multifunctional Structures Research"

<sup>04</sup> Steve Donaldson (**AFRL/ML**) "Overview of Research at AFRL Materials Directorate" <sup>05</sup> Jeff Welsh (AFRLNS) "Overview of Research at AFRL Space Vehicles Directorate"

# "MULTIFUNCTIONAL AEROSPACE MATERIALS" 1st AIR FORCE WORKSHOP ON

October 23-24, 2002, Purdue University, W. Lafayette, IN (Immediately following the 17th Technical Conference of American Society for Composites)

## **ORGANIZING COMMITTEE:**

Les Lee (AFOSR), *Chair*Steve Donaldson (AFRL/ML)
Tom Hahn (UCLA)
Brian Sanders (AFRL/VA)
C. T. Sun (Purdue U)

**DISTRIBUTION STATEMENT A**Approved for Public Release
Distribution Unlimited

# Multifunctional Design (4:00 - 6:00 PM, 23 October 2002; Stewart Center Room 214C)

DISCUSSION LEADER: Bill Baron (AFRL/VA)

#### KEYNOTE SPEAKERS:

15 min. presentation

<sup>06</sup> Bill Baron (AFRL/VA) "Conformal Load Bearing Antenna Structures"

<sup>07</sup> Barton Bennett (**Odyssian**) "Multifunctional Structures with Embedded Subsystem Functionality"

08 Jim Thomas (NRL) "Design Issues for Multifunctional Materials and Structures"

### PANELISTS (Expertise):

10 min. comments or alternative opinion per each

09 Jim Mason (Notre Dame U) "Circuit Integration and Thermal Management"

<sup>10</sup> Greg Schoeppner (AFRL/ML) "Design Issues for Multifunctional Composites"

11 David Banks (Boeing Phantom Works) "Health Monitoring of Multifunctional Structures"

OPEN DISCUSSION: 45 min

(DINNER SERVED)

# Self-Diagnosis (8:00 - 10:00 AM, 24 October 2002; Stewart Center Room 313)

# DISCUSSION LEADER: Munir Sindir (Boeing Rocketdyne)

#### KEYNOTE SPEAKERS:

15 min. presentation per each

<sup>12</sup> Munir Sindir (Boeing Rocketdyne) "Health Management System Needs - Space Transportation Perspective"

<sup>13</sup> Mark Derriso (**AFRL/VA**) "Structural Health Monitoring"

14 David Green (Physical Sciences) "Materials That Sense Their Environment"

### PANELISTS (Expertise):

10 min. comments or alternative opinion per each

<sup>15</sup> Bill Curtin (**Brown U**) "Self-diagnosis of Damage in CFRP by Electrical Resistance"

<sup>16</sup> Fu-Kuo Chang (**Stanford U**) "Demand and Challenges in Structural Health Monitoring"

<sup>17</sup> Alex Bogdanovich (3Tex) "3-D Woven Composite Structures with Integrated Fiber Optic Sensors"

<sup>18</sup> Steve Kreger (**Blue Road Research**) "Multi-axis Fiber Grating Strain Sensors"

OPEN DISCUSSION: 45 min

# Self-Cooling (10:15 AM - 12:25 PM, 24 October 2002; Stewart Center Room 313)

# DISCUSSION LEADER: Roger Morgan (Texas A&M U)

#### KEYNOTE SPEAKERS:

15 min. presentation

19 David Brown (AFRL/VA) "Thermal Protection Systems"

<sup>20</sup> Keith Bowman (**AFRL/ML**) "Thermal Management Issues and Program Directions"

<sup>21</sup> Roger Morgan (Texas A&M U) "Self Fast Cooling Mechanisms"

### PANELISTS (Expertise):

10 min. comments or alternative opinion per each

 $^{22}$  Patrick Kwon (**Michigan State U**) "Micro Heat Exchanger"

<sup>23</sup> Jim Sutter (NASA Lewis) "Thermal Management and High Temperature Polymers" <sup>24</sup> Khalid Lafdi (**AFRL/ML**) "Graphite Foams as Heat Carrier for Thermal Control"

OPEN DISCUSSION: 45 min

(LUNCHEON SERVED)

# Self-Healing (1:15 PM - 3:15 PM, 24 October 2002; Stewart Center Room 313)

# DISCUSSION LEADER: Scott White (U Illinois)

### KEYNOTE SPEAKERS:

15 min. presentation

<sup>25</sup> Nancy Sottos (**U Illinois**) "Autonomic Healing of Polymers and Polymer Composites" <sup>26</sup> Scott White (U Illinois) "Next Generation of Autonomic Healing Process"

<sup>27</sup> Xiangxu Chen & Fred Wudl (UCLA) "Remendable Polymeric Materials"

### PANELISTS (Expertise):

10 min. comments or alternative opinion per each

<sup>28</sup> Michael Wisnom (U Bristol, UK) "Novel and Multi-functional Composites"

<sup>29</sup> Andrew Skipor (**Motorola**) "Self-healing and Electronic Assemblies"

30 Roger Morgan (Texas A&M U) "On Self-healing Mechanisms"

### OPEN DISCUSSION: 45 min

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

SPECIAL GUESTS INVITED:
Jaycee Chung (Global Contour)
Krishna Jonnalagadda (Motorola)
Doug Adams (Purdue U)
Tom Farris (Purdue U)
Hyonny Kim (Purdue U)
Thomas Siegmund (Purdue U)
John Starkovich (TRW)
Stephen Hallett (U Bristol, UK)
Brian Rice (U Dayton)
Philippe Geubelle (U Illinois)

### MECHANICS OF MATERIALS AFOSR PERSPECTIVE AND DEVICES:

B. L. ("Les") Lee

**Program Manager** 

Mechanics of Materials & Devices

Air Force Office of Scientific Research

#### MISSION



### devices into future Air Force systems. *integration* of *advanced materials* and Establish the science base for

Materials/Devices



of Materials Mechanics & Devices Manufacture Processing/

Design



**Performance** 

**Properties** 



## Design, Manufacturing & Sustainability: **MECHANICS ISSUES IN**



Stealthy Materials High-Performance Metals \*Advanced Fiber Composites

Propellants: particulate composites \*Structural Ceramic Composites \*Carbon Foam Shape-Memory Alloy

Functionally Graded Materials

\*Nano-materials Self-Diagnosing Structures Self-Healing Materials \*Multifunction Composites

Adhesives & Joints

Micro-devices incl. MEMS Nano-devices Sensors







# THRUST AREAS vs. STRATEGIC RESEARCH AREAS



THRUST AREAS -

Affordable Processing

Vibration Mitigation 1 (Materials Aspects)

Durability

Damage Tolerance

Micromechanics

Life Prediction

Nano-materials 2

Multifunctional Behavor:

Multifunction Materials 1 Micro- & Nano-devices 1

Self-Diagnosis 1

Self-Healing 1,3

Multi-scale Model

Life Extension

1 Smart Materials/Structures - SRA 2 Nano Science - SRA 3 Biomimetics - SRA

#### **NOISIN**



#### **Biomimetics**

Design for Coupled Multi-functionality

Nano-materials

Concurrent Multi-scale Model

Micro- & Nano-Devices Manufacturing Sci

Neural Network & Information Sci

AUTONOMIC AEROSPACE STRUCTURES

- Self-Diagnosis
   Self-Healing
- Self-Healing
   Threat Neutralization

Self-Cooling







# **PROGRAM INTERACTION**



#### Sonic Fatigue **AFRL/VASM AFRL/PRSM AFRL/VSSV** Multifunction **MECHANICS of** JNIVERSITIES EXTRAMURAL INDUSTRY Structural Mechanics Polymer Composites Ceramic Materials Metallic Materials AFOSR/NA OTHERS

**AFRL/MLBC** Composites Propellants **MATERIALS & DEVICES** AFOSR Theme **2001: MEANS** 

Nanocomposites **AFOSR MURI** 

**Fund Flow** 

& Glenn

Langley

NASA

Soldiers Center Army

Micro Devices **AFRL/MNAV** 

& Carbon

# Air Force Research Laboratory AFRL Science and Technology for Tomorrow's Aerospace Force





# AIR VEHICLES DIRECTORATE S&T Focus Areas



#### Sustainment:

Technology insertion to enable today's fleet to meet tomorrow's warfighter needs



Increased mission capable rates

Reduced operation and support costs

### **Unmanned Air Vehicles:**

Technologies to enable routine operation of high payoff UAV alternatives across the full spectrum of warfare



Seamless manned / unmanned vehicle operation

Superior mission capability at reduced cost Intelligent control of UAV swarms

#### Space Access &

**Future Strike Technology:** 

Affordable space access and quick reaction trans-atmospheric capability



Aircraft like operation -- quick turnaround and flexible mission capability

Global engagement in less than 3 hours

Reduced cost for access to space

# **EXPERIMENTAL FACILITIES**



Simulates severe aeroacoustic and engine environments Only facility capable of achieving 173dB and 2500°F on a 9'x4' specimen







# **CENTERS OF EXCELLENCE**









# STRUCTURAL DESIGN AND DEVELOPMENT BRANCH STRUCTURES DIVISION

# MULTIFUNCTIONAL & ADAPTIVE STRUCTURES TEAM (MAST)

AFRL

**External Collaborators** 

Baron, Bowman, Forster, Garner, Joo, Keihl, Washington, Ohio State University Weisshaar/ Crossley, Purdue

Reich, Sanders, Cannon (VACC)

Murray, Univ of Dayton Inman, VPI

Alton, Univ of Dayton



# SCOPE OF PROGRAM



#### Vehicle Configuration Mission Identification ∞





## Integrated Structures

- Shape Control
- Antenna Integration
- Energy Storage & Harvesting



## **Energy Based Design**

Exergy ?  $(u ? u_o)$ ?  $T_o(s ? s_o)$ ?  $\frac{P_o}{J}(? ? ?_o)$ ?  $\frac{V^2}{2gJ}$ ?  $\frac{g}{g_cJ}(z ? z_o)$ ?  $\frac{?}{c}(? ? ?_o)N_c$ ?



### DARPA/AF



# **MORPHING AIRCRAFT PROGRAM**



From rigid airframes to commanded, time variant, variable geometry, load-bearing structures

Variable Geometry Wings
- cross section
- camber specif

Aircraft are currently designed around specific missions

Can we develop aircraft capable of multiple missions?

e.g., reconnaissance air vehicles transform into effective ground attack vehicles

First challenge: Morph the wing

Technology Challenges: Active Skins Mechanism Design & Integration

Active Si Mechani

Propulsion System

Fuselage &

- wing planform

- wing?

- dihedral

sweepaspect ratio



### Multifunctional Structures Laboratory



#### Objective

Have the capability to conduct experimental research and rapidly evaluate sensor and actuator technology for application to MFS



Located in Bldg 65

Shape Control





#### "Multifunctional Aerospace 1st Air Force Workshop on Material"

Overview of Multifunctional
Structures R&D at Boeing
Dave Banks
Boeing Phantom Works

David.L.Banks@Boeing.Com

## Some Definitions

Phantom Works

BOEING

# Any structure with functions beyond load carrying capabilities

# Possible integration features:

- Integrated attachments for other systems
- Conduits (for air, fuel venting, or other fluids)
- Energy Absorption (for vibration and acoustic noise suppression)
- Thermal Control (cooling and heating)
- Electrical Systems & Conductive Structures (for grounding and lightning)
- Actuation (for aerodynamic control, fluid movement
- Sensing (pressure, acceleration, acoustic, strain, temperature, Corrosion...)
- Optics (for data or for light transmission)
- Energy Generation (remote sensors & vibration suppression)
- Self-healing structures / self-repairing structures

#### **Benefits**

DEING OF THE Autonomic Response Systems System Level Integration & Life cycle spson susoo Increased Flight Time Damage Detection Real-time **Costs are Lower** Fleet High Rate Production osts Low Rate nstallation Iraditiona System Reduced Part Count Phantom Works Multifunctional Structures Cost More ...than singlefunction structures Prognostics & **Engineering** Management Systems Analysis Few, but more complex parts Multifunctional Health Multifunctional Structures Teams

## Technology Development Matrix Multifunctional Structures Systems /

Phantom Works

|                                   |                                                   |                               |                                             |     | Те                                        | chno         | logy D                           | <b>Technology Development Items</b>                      | nent It                                    | ems                                            |                                       |                                             |                               |
|-----------------------------------|---------------------------------------------------|-------------------------------|---------------------------------------------|-----|-------------------------------------------|--------------|----------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------------|-------------------------------|
| Multifunctional<br>Systems        | Fiber Fiber<br>Optic Optic<br>Sensors Data<br>Bus | Fiber<br>Optic<br>Data<br>Bus | Fiber Improved Optic Ultrasonic Data Sensor | ב ב | Signal<br>Flex Bus<br>rcuits Hi/Low<br>BW | Power<br>Bus | Integrated<br>Piezo<br>Actuators | Power Integrated MEMS Bus Piezo Strain Actuators Sensors | Sensor<br>Data<br>Processing<br>Algorithms | Structurally Integrated Connectors (wire & FO) | Structur<br>al Inter-<br>connect<br>s | Flat Wire<br>through<br>Spar/Ski<br>n Joint | Analysis<br>Models<br>/ Tools |
| Integrated Cabling                | X                                                 | X                             |                                             | ×   | ×                                         | ×            | ×                                |                                                          |                                            | ×                                              | ×                                     | ×                                           | ×                             |
| Fuel Monitoring                   |                                                   |                               | ×                                           | X   | X                                         | ×            |                                  |                                                          | X                                          | X                                              |                                       | X                                           |                               |
| Structural Health<br>Monitoring   | ×                                                 |                               |                                             | X   | ×                                         | ×            | ×                                | X                                                        | X                                          | X                                              | X                                     | X                                           | X                             |
| Demonstration                     |                                                   |                               | ×                                           | ×   | ×                                         | ×            | ×                                |                                                          | X                                          | X                                              | X                                     | X                                           | X                             |
| Planarity<br>Compensation         | ×                                                 |                               |                                             |     |                                           |              |                                  |                                                          | X                                          | . <b>X</b>                                     |                                       | ×                                           | X                             |
| Structural Test                   | ×                                                 |                               |                                             | X   | X                                         | X            | X                                | X                                                        | X                                          | X                                              | ×                                     | ×                                           | ×                             |
| Integrated Manufacturing Sensors  | ×                                                 |                               |                                             | ×   | ×                                         |              | ×                                | X                                                        | X                                          | X                                              | X                                     | ×                                           | X                             |
| Lightning                         |                                                   |                               |                                             | X   |                                           | X            |                                  |                                                          |                                            | X                                              | X                                     |                                             |                               |
| Structurally Integrated Apertures | ×                                                 | X                             | X                                           | X   | X                                         | X            | X                                |                                                          | X                                          | X                                              | X                                     | X                                           | X                             |
| Active Rotor Blade                | X                                                 | X                             |                                             | X   | X                                         | X            | X                                |                                                          | X                                          | X                                              | X                                     | X                                           | X                             |
| TRL 1-3                           |                                                   | TRL 3-4                       | 3-4                                         |     |                                           |              |                                  |                                                          | TRL 5-7                                    | 7-5.                                           | L                                     | TRL 8-10                                    |                               |

# Organic Matrix Composites Research Activities at AFRL/MLBC



Steven L. Donaldson Materials & Manufacturing Directorate Air Force Research Laboratory



# **ML Mission / Vision**



operating commands to solve system and deployment Plan and execute the USAF program for materials and exploratory development, advanced development and industrial preparedness. Provide responsive support to Air Force product centers, logistics centers, and manufacturing in the areas of basic research, related problems and to transfer expertise.

Aerospace materials and manufacturing leadership for the Air Force and the nation.



#### **Facilities**



Materials & Manufacturing Directorate







### Key 21st Century Challenges for Aerospace M&P



- Maintaining "The Revolution"
- Increased Performance at an "Acceptable" Cost
- **Controlling Cost With Small Production Runs**
- Orchestrating Strategic Partnerships
- Reducing R&D Cycle Times Without Sacrificing Quality
- Accelerated Insertion of Materials
- Transitioning "High Risk", but "High Performance" Materials in a Risk Averse Environment



# Revolutionary Opportunity Areas



- Bioengineered/Bioinspired Materials
- Nano-Tailoring
- Multi-functional Materials
- Computational Materials Science
- Atomic Engineering
- Virtual Prototyping of M&P
- Virtual Databases
- Self-inspection Capabilities/Vehicle Health Monitoring



## Organic Matrix Composites (OMCs) CTA-3





#### **CTA DIRECTIONS**

- 3.1 Advanced OMC Concepts
- 3.2 OMC M&P for Air Platforms
- 3.3 OMC M&P for Space Platforms

### CTA DIRECTION GOALS

Develop improved, lightweight, tailored, multifunctional composite materials highly resistant to degradation in realistic severe service environments

for long range, pervasive technologies

- .2 Develop, demonstrate, and transition new and improved OMC materials, processes, and mechanics approaches for Air Force aircraft and weapons
- 3.3 Exploit the properties of OMCs through the development of innovative, affordable processes, material forms, and supporting repair/mechanics technologies

### **ACCOMPLISHMENTS**

- Evaluated a new family of affordable, low recession, insulative C-C for a simulated Global Reach Trajectory (CAV application)
- Demonstrated first nanocomposite matrix advanced composite with 5% to 10% increase in laminate properties
- Demonstrated a large panel component of a low cost sandwich structure for use in JASSM and UCAV applications

Demonstrated 40% reduction in processing time of C-C for

- thermal management applications
  Validated a 20% improvement in energy absorption of full scale testing of phase change enhanced aircraft brakes
- Transitioned a flow model to industry for resin transfer molding of a fighter aircraft tail section with reduced fabrication time and costs



## CTA 3 OVERVIEW Mission/Vision



#### Mission:

To develop, demonstrate, and transition new and improved composite materials, processes, and applicable science bases for Air Force Weapons Systems:

Performance with affordability

Improved durability and survivability

Reduced acquisition cost and times

Technology transition



#### Vision:

To develop, invest in, and implement the necessary technology for OMCs reach their full potential in affordable, flexible and mobile AF systems.



## CTA-3 Organic Matrix Composites Organization



CTA-3 Organic Matrix Composites Ms. Tia Benson Tolle Dr. Keith Bowman (acting)

OMC Mechanics

Dr. Greg Schoeppner\*

Research Group

Pervasive OMC M&P
Dr. Ajit Roy

Direction 3-2

OMC M&P for Air Platforms

Dr. Rick Hall

Direction 3-3

OMC M&P for Space Platforms

Dr. Keith Bowman



Adv. Comp: RG 3.2

Processing & Behavior

Research Group Dr. David Curliss Adv. Comp: RG 3.3 Carbon Composites Research Group Dr. Benji Maruyama



### CTA 3 Niche



# The S&T for USAF composites

- Integrated group materials, processing, chemistry, mechanics, ...
- Basic research+ customer/industry interactions
- 6.3, 7.8/CAI ties
- Technical Directorates



AFRL/VA, VS, PR-

Industry NASA DOD

/Users/ SPOS

# **Technical challenges validate need**

- F119 engine: composites replaced by Ti (\$)
- SOV: composite cryotanks, TPS: durability? compatibility?
- ABL: chemical compatibility
- Realize the 'why composites' full potential



# Model: What we do





To Guide Today's Customers, Meet Future Needs, and Enable Tomorrow's Weapons Systems



## **Technical Program Thrusts**



New Carbon Forms - Carbon Foams, Nano Carbon

Nanocomposites - Layered Silicate, CNT, Nanofibers

3D Preforms (Textiles & Weaves) - Analysis, Design Tools

Modeling & Design Tool Development (PACT)

C-C & Heat Exchangers

High Temperature Polymeric Composites

M&P for Affordability/Large Integrated Structures (P4A, Webcore, PDC)

Bonding & Joining

Thermal management for orbital applications Sbace

M&P for Integrated Structures - Non-Autoclave Processing

Thermal Protection Systems





# **OMC Development Emphasis**



- **Pervasive Materials Development**
- Novel Materials Forms (Foam, Composite Preforms, NanoComposites, Bio-inspired Materials)
- **Extreme Materials Environments**
- High Temperature, Cryo, LOX & GOX Compatibility
- Improved Capabilities
- Thermal Management, Multifunctional
- Improved Understanding for Material Exploitation
- PACT, 6.1, 6.2, Collaborations



### **Materials Development: Carbon** Foam









- Extremely tailorable material process dependant
- General qualities
- Isotropic properties
- Moisture insensitive
- Ultralightweight structure
- 3-D preform (fill with various matrices)
- Sandwich structure
- Wide variety of densities (5 to 50 pounds/ft³)
- Low temperature processing:
- Insulator
- High temperature processing
- Conductor, Stronger



# Carbon Foam Research Objective





Foam ligament of about 120-150? m in length with changing cross-section and varying microstructure

- Overall Objective
- Integrated "Processing-Characterization-Modeling" approach to **OPTIMIZE** foam properties
- To Model Foam Microstructure
- To Characterize and Quantify Carbon Foam Ligament Microstructure



# Optical Microscopy of Stabilized Foam



General View

#### Ligaments



















## Test Method Development (Mechanical, Thermal)







# **Modeling to Predict Properties**









 $??!? \frac{V_{cell}}{V_{tetra}}$ : porosity

## / Materials Development: Preformed Composites







Processing Complex Shape

3D Weave (Z-reinforcement)



CMC (Z-reinforcement)



Angle Interlock - LO Dimensional Control

#### Fra

### Fracture Mechanics of Preformed Composites





## Unit Cell of Plain-Woven Composites







# Interfacial Stress Distribution











### Material Forms...Challenges of Nanoscale



- **Model Material Necessary**
- Well controlled morphology
- Repeatability
- Resins (Suitable E, Tg, …)
- **Nanoconstituent**
- **Processability**
- **Availability**
- Geometry/aspect ratio/1-2-3D
- Potential for property enhancement
- Interface
- Fabrication: May need to look into 'new' techniques (IC fab'n, ..) or out-of-the-box constituents





#### Nano Composites Potential/Challenges



- Nanoconstituents offer an exciting new dimension of tailorability to composites
- Additional constituent for providing new behaviors to existing composites
- Not just mechanical properties of interest expect high interest in multifunctionality: CTE, electrical, thermal...
- Fundamental understanding of the predictive processing-structure-property relationship must be addressed
- Necessary to enable manipulation and exploitation of nanomaterials
- Key opportunity for mechanics community leadership
- Focus required for advancement
- Bring micromechanics/continuum, nanocomposites community and molecular modelers together to dialogue
- Advocate unified focus; harness mechanics community



### Extreme Environment: High Temperature Composites



#### Rationale

- Today: Military aerospace platforms require performance that is currently not met by nonmetallic systems
- Ti primary material of choice
- BMI qualified for use at 325°F
- PMR-15, AFR-700B flying with issues
- Need: Reduced weight, reduced cost, special performance, fatigue...high payoff for many military applications
- Airframes high temperature primary and secondary structure
- Engines
- Exhaust washed structures
- Launch vehicles
- Needs identified by multiple existing and future military platforms





## High-Temp PMC Research





**Process Development** 

Service Life Performance 26



### **Extreme Environments: Cryo Background**



- generation civilian and military reusable launch Extensive use of PMCs is enabling for next vehicle concepts
- Use of PMCs proposed for structural cryotanks; limited number have been built
- Key is life and performance prediction including:
- Microcracking and permeation
- 1000s of thermal/mechanical cycles
- Large temperature extremes: cryo
   (-253 °C for LH<sub>2</sub>) to re-entry temp.
- Extremely limited test protocol / knowledge base available





# Extreme Environments: Cryo MLBC Cryogenic Capabilities









LN<sub>2</sub> Cryostat + mech load, fatigue





LN<sub>2</sub> Cryo/Thermal Cycler + constant mech load



LN<sub>2</sub> Permeability + mech load

# **Extreme Environments: Cryo Fatigue Data**







S, max cyclic / S, static





### Improved Capabilities: Thermal Management (TM) Materials



#### Rationale

- Structures are required to do more than perform load bearing or Challenge: Systems are becoming increasingly sophisticated. volume encasing functions-<u>multifunctionality</u>
- Thermal loads that must be managed are increasing as capability grows
- Pervasive in aerospace
- Military applications:
- Aircraft:
- Environmental Control System for C-130, F-22, JSF, F-18 E/F
- Electronics cooling: F-22, JSF
- Thermal Management: UCAV, Sonic Engine Cooling, Airborne Laser, Brakes
- Spacecraft:
- Minisats, Space Based Laser, Launch Vehicles



### Improved Capabilities: TM Materials Strategy







### **Materials Technology Development** TM - Air Applications



## Thermal Management for Heat Exchangers





Low Cost Carbon-Carbon

Multiple approaches to a "one-step" process

Up to 26 fins/inch

Reduces processing time to less than a week Enables thin walled high density fin configurations

Oxidation Resistant Carbon-Carbon

 1200°F temperature goal requires novel oxidation schemes not previously demonstrated

The use of inhibitors is necessary



Extends time between failure by 2X

Extend range due to 40% weight reduction and increase heat exchanger

efficiency by 10%



### TM - Current Programs: Non-metallic Heat Pipes



#### **OMC Heat Pipes**

#### Why OMCs?

- The trend towards OMC structures for weight, stiffness and dimensional stability has driven the need to have composite radiators
- Aluminum heat pipes cannot be readily embedded in composite panels due to CTE mismatch issues



- Non permeable 2x10-10 scc/sec He
- CTE match of hybrid OMC material and interface joint material - ? CTE - 0 to 1 ppm/K
- Integration of thermal efficient heat pipes with OMC Fewer heat pipes per radiator possible skins and honeycomb core components
- Less weight
- Less complex design and fabrication processes







### **PACT: Parnership for Advanced** Composites Transition



advancements in aircraft design and operational limits New and innovative composite systems can enable



Knockdown factors for environmental effects, effects of defects, etc. based on worst-case assumptions lead to unrealistic, excessively conservative designs.



 Knockdown factors (resulting in weight penalties) often remove composites from systems during EMD phase.



## **Motivation for PACT**



- Complex 12+ year cycle
- Most data generated after commitment
- Producibility and performance issues are identified at a time when:
- design options are limited
- abatement is costly
- Uncertainty creates risk for designers throughout the cycle



|       | 9 10 11 12 | Dependence | <ul> <li>Fullscale Data</li> <li>Limited Material &amp; Design Options</li> <li>Limited &amp; Costly Abatement Options</li> <li>Full Investment</li> </ul> |
|-------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 8          |            | Data<br>Design<br>ent                                                                                                                                      |
|       | 7          |            | Commitment  Limited Uncertain Data Fewer Material & Design Options                                                                                         |
| Years | 9          |            | Comr<br>Limited Ur<br>Fewer Mat<br>Options<br>Moderate                                                                                                     |
|       | 5          |            |                                                                                                                                                            |
|       | 4          |            | ptions                                                                                                                                                     |
|       | 3          |            | Promise Design O                                                                                                                                           |
|       | 2          |            | Promise     Multiple Design Options     Multiple Material Options     Low Investment                                                                       |
|       | -          |            | · Mul                                                                                                                                                      |
| Ц     | لــا       | L          | KISK                                                                                                                                                       |

Designers Need to Get Earlier Data with Less Uncertainty to Lower Insertion Risk



## **PACT: Grand Challenges**



Processing/property relationships

Interphase Aging time (hours) Creep Compliance Chemistry/mechanics linkage

Lack of robust/validated failure criteria

Development of accurate deterministic engines

Statistical variability in [45]
materials, process, handling and loading



[-45/90/45/-45/45/0<sub>3</sub>/? 45\*]





## **PACT: Hierarchy of Models**





- Interdisciplinary task linkages are prime motivation
- Interdisciplinary programs are required
- Polymer Science and Mechanics expertise in MLBC



# B-Spline Analysis Method (BSAM)



- 3-D Geometries
- p-, h-, and b-spline approximations
  - 21- constant thermo-elasticity
- fracture mechanics







*u* ? continuous at all points  $\frac{?u}{?x}$  ? continuous at all points  $\frac{?u}{?y}$  ? continuous at all points

 $\frac{?u}{?z}$ ? discontinuous at ply interfaces

Similar to the old SVELT, but much more flexible!

### Capabilities

## Validated Open-Hole Solutions







### Filled-Hole Analyses



### **Quick Solution Times**







### Capabilities







40



#### Summary

- Critical mass group: 26 government / 9 on-site professionals / 8 technicians
- History of innovation and transition of composites technology
- Enthusiasm, expertise, and ideas to keep the composites revolution alive

### Overview of Research Activities at AFRL **Space Vehicles Directorate**

23 Oct 02



Jeffry S. Welsh, Ph.D.
Aerospace Engineer
Space Vehicles Directorate
Air Force Research Laboratory

Distribution authorized to DoD components only; Administrative or Operational Use, 17-Oct 02. Other requests for this document shall be referred to Air Force Research Laboratory/VSSV, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776.



# Spacecraft Component Technology (VSSV) Our Position Within AFRL/VS







### for Future Space Architectures Goal: Enabling Technologies







## Spacecraft Component Technology Research Thrusts



## Center for Spacecraft Component Technologies

| <br>Advanced<br>Mirror<br>Systems           | Active<br>Membrane<br>Control                         |                         | Membrane<br>Deployment             |                               | Advanced<br>Mirrors                               |                      |                         |  |
|---------------------------------------------|-------------------------------------------------------|-------------------------|------------------------------------|-------------------------------|---------------------------------------------------|----------------------|-------------------------|--|
| <br>PowerSail                               | Long Stroke<br>Isolation                              |                         | Mechanical<br>Deployment<br>System |                               | Flexible<br>Structure<br>Control &<br>Pointing    |                      |                         |  |
| Large<br>Deployable<br>Optics               | Deployable<br>Optical Test<br>Bed                     | Precision               | Deployable<br>Optical<br>System    | Integrated                    | Modeling On-Orbit Vibration Isolation             |                      | Vibration<br>Isolation  |  |
| Advanced<br>Spacecraft<br><u>Mechanisms</u> | Vibration<br>Isolation                                | Acoustic<br>Attenuation | Smart                              | University                    | NanoSat                                           |                      | On-Orbit<br>Servicing   |  |
| <br>Integrated<br><u>Control</u><br>Systems | Adaptive<br>Control                                   |                         | Flywheels                          |                               | Agile Multi-<br>Purpose<br>Satellite<br>Simulator |                      |                         |  |
| Integrated<br>Structural<br>Systems         | Payload<br>Accommodation                              | Deployables             | Multifunction-<br>al Structures    | Structures for<br>Optical Sys | Cryogenic                                         | Tanks                | High Temp<br>Structures |  |
| <br>Advanced<br>Power<br>Generation         | Advanced Power Generation High Efficiency Solar Cells |                         |                                    | Thin Film<br>Photovoltaics    |                                                   | Advanced<br>Concepts |                         |  |

Technology Disciplines

Multi-Discipline Grand "Challenges"



## Integrated Structural Systems Payload Accommodations







- Decrease cost of space access with innovative design and manufacturing
- Payload containers for Reusable Launch Vehicles
- Enable launch of large space systems with large payload fairing development program

Minotaur Grid Stiffened Fairing



#### Low-Cost Fabrication of Advanced Grid-Stiffened Structures Results



Table 1. Comparative Results

| Design                                   | Base-<br>line | Option<br>1 | Option<br>2 | Option<br>3 | Option<br>4 | Option<br>5 |
|------------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|
| Average failure load (lbs/inch of joint) | 76.8          | 173.7       | 200.7       | 121.1*      | 167.0       | 233.4       |
| Percent of<br>Baseline                   | 100           | 226         | 261         | 158         | 217         | 304         |
| Testable<br>Coupons                      | 2             | -           | -           | -           | 3           | 3           |

<sup>\*</sup> specimen failed in rib above the staples, not at the joint



Typical coupon test approaching failure load



#### Low-Cost Fabrication of Advanced Grid-Stiffened Structures Results



- All options improved joint performance
- Options reducing peeling stress worked better compared to direct reinforcement techniques
- Direct reinforcement ultimate strength was high but initial failure strength must be used for design

Low peel stress option (initial and ultimate failure coincident)



Direct reinforcement option (initial failure much lower than ultimate)



#### Integrated Structural Systems Cryogenic Tanks











- Enable Single Stage to Orbit (SSTO) with composite cryogenic storage tanks
- Provide lighter, less costly tanks for long term on-orbit storage of cryogens
- Reduce cost of space access thru low cost cryo tanks for expendable rockets



### Composite Laminate Microcrack Mitigation Introduction/Background



Composite Laminate Microcracking under Processes, & Novel Material Concepts to Objective: Develop Manufacturing Delay, Reverse, Prevent, or Stop Extreme Thermo Cycling.

unsuccessful thus far developing cryogenic composite tankage, forced to use Metallic Tankage (Payload margin not optimized). Background: Space Community

Current Focus: Self Healing Laminate, & Laminate Surface Texture Research

Operational Benefits

- 50% Less Mass than Metallic Tanks
- Enabling for SSTO, Reusable Vehicles
- Reduced Tank Fabrication Costs



Gaseous Helium





## Composite Laminate Microcrack Mitigation Results





# Data Summary - Results as Expected

- Leakage Increases as Temperature Decreases
- Slight Leak Rate Decrease during "Heatup" to Ambient
- Fiber/Resin CTE Difference Primary Cause of Microcrack
- Need additional data on Omni-Directional Fabric



# Integrated Structural Systems High Temperature Structures





Integrated TPS and Load Bearing Structure



Annealed Pyrolitic Graphite

- Enable Single Stage to Orbit (SSTO) Reusable Launch Vehicles
- Integrate TPS and Structure into hybrid system
- Low maintenance between sorties
- Low cost





### Large Deployable Structures Integrated Structural Systems









- Enable new ultra-large space system architectures
- Membrane structures
- Elastic Memory Composites (EMCs)
- Pultruded booms
- Stiffness critical structures



# Integrated Structural Systems Structures for Optical Systems









Active Membrane Structures



Elastic Memory Composite

- Enabling technologies for space-based optical systems
- Lightweight mirror structures
- Active membrane optics
- Stiffness critical joining
- Rapid mirror fabrication



## **Experimental Measurement of Surface Change Electroactive Polymer for Membrane Optics**



LabView Based Interferometry Software Development 6" Diameter Vacuum Chamber

\* Apply epoxy to membrane and monitor surface shape change over 30 minutes to 4 hours.

Observed movement <0.2mm
Analytically prediction supports observations
Vacuum loss interferes with test sensitivity

\* Actuate PVDF (Electroactive) polymer Micron (?10?) level movement monitored Larger (mm level) movement not possible





## Finite Element (ABAQUS) Analyses of Actuation **Electroactive Polymer for Membrane Optics**





#### Conclusion:

Possible shape correction is much less than the surface error! Based on Analytical (FEM) results and available test data,



#### Multifunctional Structures Integrated Structural Systems







Integral Power Storage





Magnetostictive Materials





Launch Vehicle Systems



High-speed Rotors

- performance through multifunctional Revolutionary improvements in structures
- Lightweight flex cabling
- Miniaturized electronics
- Flywheel rotors for energy storage and attitude control
- Materials with high passive damping
- materials/structures **Energy storage**



# Self Consuming Satellite Objectives/Background



Investigate the material properties of Tefzel (fuel for PPT) with Kevlar whiskers reinforcement

Variables to be investigated:

Fabrication techniques

«Number of layers in lamination construction

«Fiber contents

Fiber forms



Tensile specimen mold



# Integrated Structural Systems Innovative Concepts







Cryo Test Facility

Basic research provides the seeds to enable generation + 2 systems

- Electrically disbonding adhesives
- Elastic memory composites
- Multiaxial testing of composites

Deployment of Elastic Memory Composite Self healing composite materials





Adhesive



### **Electrically Dis-Bonding Epoxy** Results





1200

7 8 1

1000

8

ğ

Shear Stress (psi)

Š



Dis-bond time affects failure mode of adhesive

8

S

300

400

200

9

19

Time (s)

## Biaxial Testing of Composite Laminates Results





Close agreement between numerical predictions and experimental data!



### Stiffness Critical Composite Joining Results



- Step 1 Predict static stiffness of lap-shear joint
- Compare numerical model to experiment



- Results
- Neglecting the adhesive bond results in errors > 25%
- behavior (3D brick element with nonlinear material properties) 21 One element through the thickness captures the dynamic



### Stiffness Critical Composite Joining Results



- Step 2 Predict behavior of dynamic test article
- Compare numerical model to experiment



- Results
- FE model can predict performance for first 6 modes
- Higher modes not measured due to experimental setup

#### Conclusions











## 1st Multifunctional Aerospace **Materials Workshop**

Purdue University 23-24 October 2002

## Conformal Load-Bearing Antenna Structures (CLAS)



William G. Baron
AFRL/VAS
Joe Tenbarge
AFRL/SNR



### Critical ISR Needs Not Met with **Todays Systems**



Long Range Positive Detection, Identification, Tracking and Targeting

Critical Manpower Shortages, Aging Systems, and Significant Infrastructure Costs Associated with ISR







# Sensorcraft Functionality

& Space Interdependence









X-Band aperture (20 ft  $\times$  1.5 ft):

Current technology

 $$300K/ft^2 \times 30 ft^2 = $9M/array$ \$9M × 4 arrays = \$36M

 $351bs/ft^2 \times 30 ft^2 =$ 

1050lbs/array

1050lbs × 4 arrays = 4200lbs

Low-Band (>40 ft - freq. dependent)

Current technology (UHF)

- array elements (>18 inches deep) Size - significant volume required

8001bs/array (antenna only)

8001bs/array × 4 arrays = 32001bs

volume and weight savings required Significant cost

RF-on-Flex

Conformal Load Bearing Arrays



### Conformal Load Bearing Antenna Structure (CLAS)



Non load bearing cavity installations require support structure adding weight &



#### SOLUTION



- Antenna structure is load bearing
- LO enabling
- Reduced maintenance vulnerability

#### **PAYOFFS**

- Enhanced Antenna Performance by Exploiting Skin Acreage
- Improved Aerodynamics and Structural Efficiency









#### Wide Band Spiral Antenna Comm/Nav



### Fuselage Panel

Conformal, Load-Bearing, Multifunction Designed, Developed & Tested a (0.15 - 2.0 GHz) Antenna

- Conformal, Load-Bearing, Spiral Antenna The First and Largest Multifunction, **Built for Airborne Application**
- Eliminates up to 10 Comm/Nav Elements
- Spiral Element Developed by SN
- Combined-Load Fatigue Testing
- Spinning Linear Mode Testing





# Communication Element Development



Goal: Replace Conventional Blade Antennas with End Cap with no Degradation in Performance





- Blade Antennas not suitable for LO and subject to damage
- The CLAS end cap was flight tested with dramatic gain improvement results, as shown in the gain vs azimuth plot
- The CLAS end cap increased VHF voice communication range 17 fold

# Structurally Integrated Phased Arrays Development Focus





- Low & High Frequency Array Development
- **Deformation Sensing for Beam-Forming**
- Low Cost Flexible Electronics
- Design for Repair/Graceful Degradation
- Bonded Structure



#### Multifunctional Material Research Needs



### • Deformation sensing

Sensor integ & development, ingress/egress, algorithm development

### Conductor development

- Nano based conductive polymers
- Conductive fiber
- Electroless reel to reel plating

## Integrated thermal management

- High thermal conductivity tailored material
- Heat exchanger/heat pipe solutions for integrated electronics

# Electrical distribution – data/power

- Direct write, thin films, co-cured conduits & conductors
- Self healing electrical conductors
- Bonding of conductors

## Dielectric material development

- Voltage breakdown strength
- Nano particle dispersion for high dielectric constant polymers
- High strength/stiffness dielectric polymers
- Tunable dielectrics for broadband performance



# 1st Air Force Workshop on Multifunctional Aerospace Materials



# Design Issues for Multifunctional Materials and Structures

J. P. Thomas, M. A. Qidwai, and P. Matic Multifunctional Materials Branch, Code 6350 Naval Research Laboratory Washington, DC Acknowledgements: Support for this work from Defense Advanced Research Projects Agency and Naval Research Laboratory Core Research Program is gratefully acknowledged.

Purdue University, West Lafayette, IN October 23, 2002



# Multifunctional Structure-Power Materials



DARPA PROGRAM GOALS: Develop design strategies, analysis methods, performance indices, and UAV component prototypes for three multifunctional structure-power concepts.

Concept #1: Multifunctional structure-battery -- Telcordia's Plastic-Lithium-

Ion battery as UAV structure.

Concept #2: Autophagous structure-fuel - UAV structural elements that

transform into propulsion fuel.

Concept #3: Variform structure-power -- pressurized fuel structural

elements for morphing UAV's.

#### Industry Partners

M. Keennon and J. Asplund AeroVironment, Inc. Design Development Center Simi Valley, CA

A. DuPasquier Telcordia Technologies, Inc. Energy Storage Research Red Bank, NJ





# What's Possible with Structure-Power ??



## **Empirical Aircraft Weight Data**

| Micro         Total         Structure         Fuel         Propulsion         Payload         Total Wgt.         Total Wgt.           xl Vildow         xl Vildow         81 gms, gms, gms, gms, gms, gms, gms, gms,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |         |          | M         | Weights |            |         | Str. Wgt.  | Fuel Wgt.  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|----------|-----------|---------|------------|---------|------------|------------|
| 81         gms.         9         41.1         17.5         13.4         0.111         0           85         gms.         7         44.5         13.5         20         0.082         0           4         lbs.         0.5         1.5         1         1         0.125         0           9.2         lbs.         0.5         1.5         1         2         0.400         0           8.2         lbs.         4         2.2         1         2         0.400         0           8.5         lbs.         4         3         1         2         0.400         0           8.5         lbs.         179         63         137         450         0.456         0           2250         lbs.         1,013         650         137         450         0.456         0         0.456           8,600         lbs.         14,977         14,234         3,940         9,149         0.354         0         0.467           8,600         lbs.         14,977         14,234         3,940         9,149         0.354         0.467         0         0.467         0         0.467         0         0.467 <th>Micro</th> <th>Tota</th> <th>_</th> <th>Structure</th> <th></th> <th>Propulsion</th> <th>Paytoad</th> <th>Total Wgt.</th> <th>Total Wgt.</th>                                                  | Micro                       | Tota    | _        | Structure |         | Propulsion | Paytoad | Total Wgt. | Total Wgt. |
| 81         gms.         9         41.1         17.5         13.4         0.111         0           85         gms.         7         44.5         13.5         20         0.082         0           4         lbs.         0.5         1.5         1         1         0.125         0           9.2         lbs.         0.5         1.5         1         2         0.435         0           10         lbs.         4         3         1         2         0.400         0           85         lbs.         51         10         7         17         0.600         0           2250         lbs.         1,013         650         137         450         0.456         0           2250         lbs.         1,013         650         137         450         0.456         0         0.546           2250         lbs.         1,013         650         137         450         0.456         0         0.456         0         0.456         0         0.456         0         0.456         0         0.456         0         0.456         0         0.456         0         0.456         0         0.456 <td>Black Widow</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                | Black Widow                 |         |          |           |         |            |         |            |            |
| 85         gms.         7         44.5         13.5         20         0.082           4         lbs.         0.5         1.5         1         1         0.125           9.2         lbs.         4         3         1         2         0.435           10         lbs.         4         3         1         2         0.435           10         lbs.         4         3         1         2         0.400           10         lbs.         179         63         26         60         0.546           2250         lbs.         1,013         650         137         450         0.450           2250         lbs.         1,013         650         452         1081         0.456           2250         lbs.         1,013         650         456         17,168         0.346           2250         lbs.         14,07         2960         4564         17,168         0.344           56,000         lbs.         14,234         3,940         9,149         0.354           42,300         lbs.         14,577         14,234         3,940         9,149         0.354           44,349 <td>(AeroVironment)</td> <td>84</td> <td>gms.</td> <td>6</td> <td>41.1</td> <td>17.5</td> <td>13.4</td> <td>0.111</td> <td>0.507</td>                                                                             | (AeroVironment)             | 84      | gms.     | 6         | 41.1    | 17.5       | 13.4    | 0.111      | 0.507      |
| 4         lbs.         0.5         1.5         1         1         0.125           9.2         lbs.         4         2.2         1         2         0.435           10         lbs.         4         3         1         2         0.435           10         lbs.         51         10         7         17         0.600           85         lbs.         179         63         26         60         0.546           2250         lbs.         1,013         650         137         450         0.450           8,600         lbs.         1,013         650         452         1081         0.478           8,600         lbs.         14,107         2960         452         1081         0.478           8,600         lbs.         14,97         14,234         3,940         9,149         0.354           74,349         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         105,022         207,700         33,328         108,900 <t< td=""><td>Microstar (Lockheed-Martin)</td><td>85</td><td>gms.</td><td>7</td><td>44.5</td><td>13.5</td><td>20</td><td>0.082</td><td>0.524</td></t<>                                              | Microstar (Lockheed-Martin) | 85      | gms.     | 7         | 44.5    | 13.5       | 20      | 0.082      | 0.524      |
| 4         lbs.         0.5         1.5         1         1         0.125           92         lbs.         4         2.2         1         2         0.435           10         lbs.         4         3         1         2         0.400           85         lbs.         51         10         7         17         0.600           85         lbs.         179         63         256         60         0.546           2250         lbs.         1,013         650         137         450         0.450           8,600         lbs.         1,013         650         452         1081         0.456           8,600         lbs.         14,107         2960         452         1081         0.456           42,300         lbs.         14,107         2960         452         1081         0.344           8,600         lbs.         14,234         3,940         9,149         0.354           74,349         lbs.         14,377         14,234         3,940         13,012         0.467           74,349         lbs.         105,02         15,340         18,998         95,400         0.272 <tr< td=""><td>Unmanned</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                 | Unmanned                    |         |          |           |         |            |         |            |            |
| 9.2         lbs.         4         2.2         1         2         0.435           10         lbs.         4         3         1         2         0.400           85         lbs.         51         10         7         17         0.600           328         lbs.         179         63         26         60         0.546           2250         lbs.         1,013         650         137         450         0.450           8,600         lbs.         4,107         2960         452         1081         0.478           8,600         lbs.         4,107         2960         452         1081         0.450           42,300         lbs.         14,234         3,940         9,149         0.354           74,349         lbs.         14,234         3,940         9,149         0.354           74,349         lbs.         14,234         3,340         9,149         0.354           74,349         lbs.         16,372         207,700         33,328         108,990         0.354           745,000         lbs.         105,622         162,340         18,998         95,400         0.297           76                                                                                                                                                                                             | Dragon Eye (NRL)            | 4       | lbs.     | 0.5       | 1.5     | -          | Ψ.      | 0.125      | 0.375      |
| 10         lbs.         4         3         1         2         0.400           85         lbs.         51         10         7         17         0.600           328         lbs.         179         63         26         60         0.546           2250         lbs.         1,013         650         137         450         0.450           8,600         lbs.         1,013         650         452         1081         0.478           8,600         lbs.         19,268         15,000         4,564         17,168         0.354           42,300         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         14,377         14,234         3,940         9,149         0.354           74,349         lbs.         195,57         7,050         13,012         0.467           74,349         lbs.         103,522         162,340         18,998         95,400         0.272           785,000         lbs.         202,302         254,70         113,035                                                                                                                                                                               | Pointer (AeroVironment)*    | 8.2     | lbs.     | 4         | 2.2     | -          | 2       | 0.435      | 0.239      |
| 85         lbs.         51         10         7         17         0.600           328         lbs.         179         63         26         60         0.546           2250         lbs.         1,013         650         137         450         0.450           2250         lbs.         1,013         650         137         450         0.478           8,600         lbs.         14,107         2960         4,564         17,168         0.478           42,300         lbs.         14,377         14,234         3,940         9,149         0.354           74,349         lbs.         34,730         19,557         7,050         13,012         0.467           545,000         lbs.         105,022         207,700         33,328         108,900         0.358           380,000         lbs.         103,262         162,340         18,998         95,400         0.272           164,000         lbs.         228,02         364,400         35,540         151,800         0.385           164,000         lbs.         202,302         258,721         28,497         113,035         0.336           162,040         lbs.         52,495 </td <td>Sender (NRL)</td> <td>10</td> <td>BS.</td> <td>Þ</td> <td>3</td> <td>1</td> <td>2</td> <td>0.400</td> <td>0.300</td>                              | Sender (NRL)                | 10      | BS.      | Þ         | 3       | 1          | 2       | 0.400      | 0.300      |
| 328         lbs.         179         63         26         60         0.546           2250         lbs.         1,013         650         137         450         0.450         0.456           8,600         lbs.         4,107         2960         452         1081         0.478         0.478           42,300         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         34,730         19,557         7,050         13,012         0.467           545,000         lbs.         195,072         207,700         33,328         108,900         0.358           785,000         lbs.         103,262         162,340         18,998         95,400         0.272           785,000         lbs.         103,262         162,340         15,12         44,620         0.383           164,000         lbs.         62,805         46,063         10,512         44,620         0.336           162,040         lbs.         202,302         258,721         28,497         113,035         0.336           162,040         lbs.         27,054         46,062         0.352         0.336           162,0                                                                                                                                                 | LOCAAS (Lockheed-Martin)    | 82      | lbs.     | 51        | 10      | 7          | 17      | 0.600      | 0.118      |
| 2250         lbs.         1,013         650         137         450         0.450           8,600         lbs.         4,107         2960         452         1081         0.478           56,000         lbs.         19,268         15,000         4,564         17,168         0.344           42,300         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         34,730         19,557         7,050         13,012         0.467           545,000         lbs.         195,072         207,700         33,328         108,900         0.358           785,000         lbs.         103,262         162,340         18,998         95,400         0.297           785,000         lbs.         233,260         36,400         35,540         151,800         0.395           164,000         lbs.         62,805         46,063         10,512         44,620         0.336           162,555         lbs.         202,302         258,721         28,497         113,035         0.336           162,040         lbs.         57,054         52,495         10,826         0.352         0.352           162,040 </td <td>Shadow 200 (AAI)</td> <td>328</td> <td>lbs.</td> <td>179</td> <td>63</td> <td>26</td> <td>90</td> <td>0.546</td> <td>0.192</td> | Shadow 200 (AAI)            | 328     | lbs.     | 179       | 63      | 26         | 90      | 0.546      | 0.192      |
| 9,600         lbs.         4,107         2960         4564         17,168         0.344           56,000         lbs.         19,268         15,000         4,564         17,168         0.344           in)         42,300         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         34,730         19,557         7,050         13,012         0.467           74,349         lbs.         14,677         207,700         33,328         108,900         0.358           745,000         lbs.         195,072         207,700         33,528         108,900         0.378           785,000         lbs.         103,262         162,340         18,998         95,400         0.272           785,000         lbs.         233,260         364,400         35,540         151,800         0.297           164,000         lbs.         62,805         46,063         10,512         44,620         0.383           602,555         lbs.         202,302         258,721         28,497         113,035         0.352           162,040         lbs.         57,054         57,495         10,826         0.352         0.352                                                                                                                              | Predator (General Atomics)  | 2250    | lbs.     | 1,013     | 059     | 137        | 450     | 0.450      | 0.289      |
| 56,000 lbs.         19,268         15,000         4,564         17,168         0.344           42,300 lbs.         14,977         14,234         3,940         9,149         0.354           74,349 lbs.         34,730         19,557         7,050         13,012         0.467           545,000 lbs.         195,072         207,700         33,328         108,900         0.358           380,000 lbs.         103,262         162,340         16,998         95,400         0.272           785,000 lbs.         233,260         364,400         35,540         151,800         0.297           164,000 lbs.         602,655 lbs.         202,302         258,721         28,497         113,035         0.383           162,040 lbs.         57,054         57,054         10,512         44,620         0.383           162,040 lbs.         57,054         52,495         10,615         41,665         0.352           162,040 lbs.         57,054         57,495         10,826         0.352         0.352           162,040 lbs.         57,054         52,495         10,826         0.352         0.352                                                                                                                                                                                                        | ar (L-M/Boeing)             | 009'8   | lbs.     | 4,107     | 2960    | 452        | 1081    | 0.478      | 0.344      |
| 56,000         lbs.         19,268         15,000         4,564         17,168         0.344           42,300         lbs.         14,977         14,234         3,940         9,149         0.354           74,349         lbs.         34,730         19,557         7,050         13,012         0.467           545,000         lbs.         195,072         207,700         33,328         108,900         0.358           380,000         lbs.         103,262         162,340         18,988         95,400         0.272           785,000         lbs.         233,260         364,400         35,540         151,800         0.297           164,000         lbs.         62,805         46,063         10,512         44,620         0.383           602,555         lbs.         202,302         258,721         28,497         113,035         0.336           162,040         lbs.         57,054         57,054         52,495         10,826         0.352           162,040         lbs.         299,103         344,936         21,976         138,660         0.372                                                                                                                                                                                                                                         | nventional                  |         |          |           |         |            |         |            |            |
| 42,300 lbs.         14,977         14,234         3,940         9,149         0.354           74,349 lbs.         34,730         19,557         7,050         13,012         0.467           545,000 lbs.         195,072         207,700         33,328         108,900         0.358           785,000 lbs.         103,262         162,340         18,998         95,400         0.272           785,000 lbs.         233,260         364,400         35,540         151,800         0.297           164,000 lbs.         62,805         46,063         10,512         44,620         0.383           602,555 lbs.         202,302         258,721         28,497         113,035         0.336           162,040 lbs.         57,054         52,495         10,826         0.352         0.355           162,040 lbs.         57,054         52,495         10,826         0.352         0.352           162,040 lbs.         57,054         52,495         10,826         0.352         0.352                                                                                                                                                                                                                                                                                                                             | 18 (Boeing)                 | 56,000  | <u>හ</u> |           | 15,000  | 4,564      | 17,168  | 0.344      | 0.268      |
| 74,349 lbs.         34,730         19,557         7,050         13,012         0.467           545,000 lbs.         195,072         207,700         33,328         108,900         0.358           785,000 lbs.         103,262         162,340         18,998         95,400         0.272           785,000 lbs.         233,260         364,400         35,540         151,800         0.297           164,000 lbs.         62,805         46,063         10,512         44,620         0.383           602,555 lbs.         202,302         258,721         28,497         113,035         0.336           162,040 lbs.         57,054         52,495         10,826         41,665         0.352           804,675 lbs.         299,103         344,936         21,976         138,660         0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lockheed-Martin)            | 42,300  | lbs.     | 14,977    | 14,234  | 3,940      | 9,149   | 0.354      | 0.337      |
| 545,000         lbs.         195,072         207,700         33,328         108,900         0.358           380,000         lbs.         103,262         162,340         18,998         95,400         0.272           785,000         lbs.         233,260         364,400         35,540         151,800         0.297           164,000         lbs.         62,805         46,063         10,512         44,620         0.383           602,555         lbs.         202,302         258,721         28,497         113,035         0.336           162,040         lbs.         57,054         52,495         10,826         41,665         0.352           804,675         lbs.         299,103         344,936         21,976         138,660         0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F-14D (Grumman)             | 74,349  | .sql     | 34,730    | 19,557  | 7,050      | 13,012  | 0.467      | 0.263      |
| lbs.         103,262         162,340         18,998         95,400         0.272           lbs.         233,260         364,400         35,540         151,800         0.297           lbs.         62,805         46,063         10,512         44,620         0.383           lbs.         202,302         258,721         28,497         113,035         0.336           lbs.         57,054         52,495         10,826         41,665         0.352           lbs.         299,103         344,936         21,976         138,660         0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 777-200 (Boeing)            | 545,000 |          | 195,072   | 207,700 | 33,328     | 108,900 | 0.358      | 0.381      |
| 785,000 lbs.         233,260         364,400         35,540         151,800         0.297           164,000 lbs.         62,805         46,063         10,512         44,620         0.383           602,555 lbs.         202,302         258,721         28,497         113,035         0.336           162,040 lbs.         57,054         52,495         10,826         41,665         0.352           804,675 lbs.         299,103         344,936         21,976         138,650         0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300ER (Boeing)              | 380,000 |          | 103,262   | 162,340 | 18,998     | 95,400  | 0.272      | 0.427      |
| 164,000 lbs.         62,805         46,063         10,512         44,620         0.383           602,555 lbs.         202,302         258,721         28,497         113,035         0.336           162,040 lbs.         57,054         52,495         10,826         41,665         0.352           804,675 lbs.         299,103         344,936         21,976         138,660         0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .200B (Boeing)              | 785,000 |          | 233,260   | 364,400 | 35,540     | 151,800 | 0.297      | 0.464      |
| 602,555 lbs.         202,302         258,721         28,497         113,035         0.336           162,040 lbs.         57,054         52,495         10,826         41,665         0.352           804,675 lbs.         299,103         344,936         21,976         138,660         0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900A (Boeing)               | 164,000 |          | 62,805    | 46,063  | 10,512     | 44,620  | 0.383      | 0.281      |
| 162,040         lbs.         57,054         52,495         10,826         41,665         0.352           804,675         lbs.         299,103         344,936         21,976         138,660         0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 (Boeing)                 | 602,555 |          | 202,302   | 258,721 | 28,497     | 113,035 | 0.336      | 0.429      |
| 804,675 lbs. 299,103 344,936 21,976 138,660 0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-200 (Airbus)              | 162,040 | 1        |           | 52,495  | 10,826     | 41,665  | 0.352      | 0.324      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-600 (Airbus)              | 804,675 | lbs.     |           | 344,936 |            | 138,660 | 0.372      | 0.429      |

References: Janes "All the World's Aircraft", "Unmanned Aerial Vehicles ...", "Aero-Engines", and unpublished data 0.340 0.369 Average= Std.Dev.=

Battery-Powered

Liquid-Fuel Powered



#### Variform Structure-Fuel

Morphing
Aircraft with
Liquid Fuel as
Structure !!



#### **UAV Flight Endurance Time** System Optimization



# Structure-Power Multifunctionality

Available Battery Energy

$$E_E(time) = \frac{\text{Available Battery Energy}}{(W_S + W_B + W_{PR} + W_{PL} + W_{SB})^{3/2}} \times \begin{bmatrix} \frac{\rho S C_J^3}{2 C_D^2} \\ \frac{2 C_D^2}{2 C_D^2} \end{bmatrix} \times \eta_P$$
Total Weight Geometry

$$\frac{\Delta E_E}{E_E} = \frac{\Delta (E_B \eta_B)}{E_B \eta_B} - \frac{3}{2} \frac{(\Delta W_S + \Delta W_B + \Delta W_{SB})}{W_{total}}$$

$$\eta_{B} = \eta_{B}(E_{B}, W_{total})$$

#### Complication:

 $\eta_P = \eta_P(W_{total})$ 

→ System-Level Multidisciplinary Design Optimization Required !!!



# Unifunctional Materials Performance



# **Design Objective:** minimize the system weight

# I. Unifunctional Design: Structure and Power Functions

Structure: Axial Tie

Power: Battery cell

 $m_2 = \rho_2 A_2 L$ 

:component weights:

 $m_1=\rho_1A_1L$ 

M2 constraint: total stored energy  $\geq$  constant,  $E_0$ 

 $\sigma_1 = {}^{P_0} / _{A_1} \leq (\sigma_Y)_1 \Rightarrow m_1 \geq P_0 L \bigg\{ {}^{\mathsf{P}_1} / _{(\sigma_Y)_1} \bigg\}$  strength M1 constraint: stress ≤ strength

 $E_2 = m_2 \times (e_B)_2 \ge E_0 \Longrightarrow m_2 = E_0 \left\{ \frac{1}{2} \left( e_B \right)_2 \right\}$ specific

total unifunctional system weight,  $(m_7)_u = m_1 + m_2$ 

$$\left| (m_T)_u = P_0 L \left\{ \rho_1 / (\sigma_Y)_1 \right\} + E_0 \left\{ \frac{1}{2} (e_B)_2 \right\} \right|$$



# Multifunctional Materials Performance



# II. Multifunctional Design: Structure-Battery Function



System constraints:  $\delta_1 = \delta_2 = \delta_T = \frac{P_1L}{A_1E_1} = \frac{P_2L}{A_2E_2}$   $P_0 = P_1 + P_2$ 

Total multifunctional system weight,  $(m_T)_m$   $(m_T)_m = m_1 + m_2 = (\rho_1 A_1 + \rho_2 A_2)L$ 

 $\Rightarrow$  Eliminate M<sub>1</sub>, replace with M<sub>2</sub> structure-battery!! Case 1:  $\frac{\left(\sigma_{Y}\right)_{2}}{\left(\sigma_{Y}\right)_{1}} \geq \frac{\left(\sigma_{Y}\right)_{1}}{\left(\sigma_{Y}\right)_{1}}$ 

**1a:** 
$$(m_T)_m = E_0 \left\{ \frac{1}{(e_B)_2} \right\} << (m_T)_u$$

$$E_2 = m_2 \times (e_B)_2 = E_0$$
 and  $\sigma_2 = \frac{P_2}{A_2} \le (\sigma_Y)_2$ 

**1b:** 
$$\left[ (m_T)_m = P_0 I \left\{ \frac{\rho_2}{\sqrt{(\sigma_Y)_2}} \right\} << (m_T)_u \right]$$
  $\sigma_2 = \frac{P_2}{\sqrt{A_2}} = (\sigma_Y)_2$  and  $E_2 = m_2 \times (e_B)_2 \ge E_0$ 



# Multifunctional Materials Performance



Case 2:  $\frac{\left(\sigma_{Y}\right)_{1}}{\left(\sigma_{Y}\right)_{2}} > \frac{\left(\sigma_{Y}\right)_{2}}{\left(\sigma_{Y}\right)_{2}}$ 

 $\hat{\parallel}$ 

M<sub>1</sub> structure plus M<sub>2</sub> structure-battery!!

 $unifunctional \\ system weigh \\ (m) = (m)$ 

**2a:** 

and  $\sigma_2 = \frac{P_2}{4_2} \le (\sigma_Y)_2$  $(m_T)_m = (m_T)_u - E_0 \left\{ \frac{1}{(e_B)_2} \right\} \times \left\{ \frac{E_2/\rho_2}{E_1/\rho_1} \right\} < (m_T)_u$  $A_1 = (\sigma_Y)_1$ ,  $E_2 = m_2 \times (e_B)_2 = E_0$ ,

unifunctional

 $\left(m_T\right)_{\mathit{m}} = \left(m_T\right)_{\mathit{u}} - E_0 \left\{ \frac{1}{\left(e_B\right)_2} \right\} \times \left\{ \frac{E_2/\rho_2}{E_1/\rho_1} \right\} + \rho_1 \left\{ \frac{\left(\sigma_Y\right)_1 - \left(\sigma_Y\right)_2}{\left(\sigma_Y\right)_1 \left(\sigma_Y\right)_1} \right\} P_0 l < \left(m_T\right)_{\mathit{u}}$ 

 $\sigma_2 = \frac{P_2}{A_2} = (\sigma_Y)_2$ ,  $E_2 = m_2 \times (e_B)_2 = E_0$ , and  $\sigma_1 = \frac{P_1}{A_1} \le (\sigma_Y)_1$ 

### Important Conclusions:

- 1. System weight always less using multifunctional material design!
- 2. System optimization generally occurs with "non-optimal" subsystem designs.
- 3. Multifunctional performance ranking: 1a or 1b, 2a, then 2b.





# Mechanical Performance Indices



# Minimal Axial Displacement and Weight > Maximize Specific Axial Stiffness

**Axial Displacement:** 

$$=\frac{7}{E_{\mathrm{R}}A^{\star}}$$

$$A^* \coloneqq \sum_{i=1}^n \frac{E_i}{E_R} A_i$$



Axial Stiffness:

$$K_a := \frac{\Gamma_R \Lambda}{L}$$

Composite Property

Composite Property

 $\rho := \sum_{i=1} \rho_i A_i$ 

Mass Density:

Unifunctional E

$$\sum_{i=1}^{n} \rho_i A_i$$

Specific Axial Stiffness: p<sub>a</sub> = -

**Multifunctional** 

# constituent material properties, shapes, and location within the cross-section Multifunctional Composite Performance Indices generally depend on the



## Structure-Battery Design Tool (SBDT)





S-P Beam **Materials** 

COLUMN CONTRACTOR CONT



buckling loading

Other C-Sections









SBDT is adaptable to analyze any structure-power performance



## SBDT Study: Structure-PLI Struts





**Useful Design Ranking Information!** 





## Structure-Battery for UAV's



## Black-Widow Micro-Air-Vehicle



#### Capabilities

- 6" wing span
- 81 g weight
- 30 min. endurance



## New Multifunctional Unmanned-Air-Vehicle



#### **Design Goals**

- 12" wing span
  - 170 g weight
- 70+ min. endurance





## Structure-Battery Design for UAV's



#### **Desirable Features**

- High energy density and specific energy
- Arbitrary shaping capability
- Durability in flight, field, and storage
- Reliability
- Safe-failure modes

### Multiple-Mission UAV's

■ Rechargeability of the structure-battery → secondary cells or easily removed primary cells

### Single-Mission UAV's

Low Cost

Multifunctional Design Rule: add functionality to the material with the more complex existing function.



## Electrical Performance Indices





Wide range of Ragone performance due to intrinsic energy storage physics: stretching versus breaking of molecular bonds.



## Electrical Performance Indices



**Li-Me (S)** and **Li/SPE (S)** cells show best rechargeable performance!!



## Multifunctional Structure-PL



Structure-PLI = Plastic Li-Ion Bicell(s) + Barrier-Layer Packaging + Structural Additives

## Telcordia's Plastic Lithium-Ion (PLI) Bicell



#### Nominal Properties

- 3.8 V & 7.2 mAh/cm<sup>2</sup>
  - $\rho = 0.14 \text{ g/cm}^2$ E = 1020 MPa
- $\sigma_0 = 3.9 \text{ MPa}$

### Dai-Nippon EL-40 Packaging



#### Nominal Properties

- E = 4400 MPa
- $\sigma_0 = 16.8 \text{ MPa}$



## Structure-PLI Performance



- Significant nonlinear, anisotropic behavior.
- Components with wide range of mechanical performance





# Multidisciplinary Design Optimization of UAV's

#### Optimum Design Mission Objective Batteries UAV Design Parameter Space Genetic Algorithm O Propellers Configurations Dihedral Airfoils





## MDO Performance Analysis

|                    | Black Widow Design | w Design            |                                      | Notional Design                  |
|--------------------|--------------------|---------------------|--------------------------------------|----------------------------------|
| -                  | 2                  | က                   | 4                                    | S                                |
| Current Design     |                    |                     |                                      |                                  |
| Dicher rells       | NiMH batteries     | • 2-ply PLiON cells | 3-ply PLI cells                      | • 4-ply PLI cells                |
| • Primary          | Rechargeable       | Rechargeable        | <ul> <li>Rechargeable</li> </ul>     | <ul> <li>Rechargeable</li> </ul> |
| • 15 cm span       | • 15 cm span       | • 15 cm span        | • 15 cm span                         | • 28 cm span                     |
| • 81 gram mass     | • 71 gram mass     | 82 gram mass        | • 101 gram mass                      | • 121 gram mass                  |
| • 30 min endurance | • 5 min endurance  | • 29 min endurance  | • 34 min endurance                   | • 70 min endurance!              |
| Flight tested      | Flight tested      | Wind tunnel test    | <ul> <li>Wind tunnel test</li> </ul> |                                  |
| )                  |                    | Structural mockup   | Structural mockup                    |                                  |
|                    |                    |                     |                                      |                                  |



## WASP Multifunctional UAV



# One hour and 47 minutes flight endurance time!

- 13 inch wingspan; 170 g total weight; 120 g structure-battery weight.
  - Structure-PLI (silver) integrated into top and bottom of the wing.



- Aircraft detail design, fabrication, and test flying by AeroVironment, Inc.
- Structure-battery conceptual design and fabrication of the plastic-lithium-ion cells by Telcordia Technologies
- Structure-battery conceptual design and prototype development coordination by Naval Research Laboratory

endurance of WASP UAV with fully integrated structure-battery!!! Benefits of multifunctionality clearly demonstrated by flight



# Fabrication Procedures and Challenges



#### **Fabrication Steps**

- Cutting laminated PLI bicell to shape
- Pre-assembly and lead attachments
- Electrolyte imbibement
- (<0.3% humidity)
- Lamina bonding and molding
- Packaging and sealing
- Electrical charging and testing





Automated Ultrasonic
Blade Cutting
Include ~0.5 mm
edge borders to avoid
electrical shorting





## Shape Factor: Size Does Not Matter!











Shape Factor is c-section size. invariant WRT

Unifunctional

$$\theta_t = \frac{TL}{GK}$$

Angle of twist:

**Multifunctional** 

$$\theta_t^* = \frac{TL}{G_{\rm R}K^*}$$

Shape Factor for torsional 
$$\phi^e_t := \frac{\theta_{circle}}{\theta} = \frac{2\pi K}{A^2}$$
 deformation

$$\phi_t^{e^*} := \frac{2\pi K^*}{A^{*2}} = 2\pi \left(\frac{E_R^2}{G_R}\right) \frac{\sum_{i=1}^n G_i K_i}{\left(\sum_{i=1}^n E_i A_i\right)^2}$$

Multifunctional Composite Shape Factors generally depend on the constituent material properties, shapes, and location within the cross-section.

## Health Management System Needs – Space Transportation Perspective

1st Air Force Workshop on

"Multifunctional Aerospace Materials"

October 23-24, 2002

**Purdue University** 

Munir M. Sindir, Ph.D.

Director

**Advanced Analysis Processes** 

The Boeing Company

Rocketdyne Propulsion & Power Division

818 586-1627

munir.m.sindir@boeing.com



## Architecture of an Advanced Health Management System

detecting and identifying the source of anomalies/wear during <u>all</u> phases of Real-time "transient model" based health management system capable of

a propulsion system's operation (pre/during/post)

Assessments of Structural Life Hardware

Integrated IHMS Sys solation Detection & Real Time Transient Model Based Fault Algorithm Dev.

High Speed Data Acquisition & Processing

On-board

Vehicle

Control

Continol

HMS

Advanced Sensors

Architecture &

recovery features)

(error checking Software

**Aerothermal Life** 

Assessment

**Electronic Platform** 

Measurement System

**Predictions** 

Damage

**Typical Performance** Parameter Profile Launch Start Ignition

Main Stage

Throttle State Down

Steady

Up-Throttle

Main

Cutoff

O BOEING

## Current Capabilities

#### Sensor Validation

- Reasonableness
- Inter-channel / voting
- Simple model

## Detection / Isolation / Prognostics

- Dedicated sensors
- Redlines
- Flowpath
- Vibration

#### Mitigation

- Channel switchover
- Lock valves
- Shutdown

#### Maintenance

- Schedule based on run time
- Intrusive inspections





## Future Capabilities

#### **Sensor Validation**

- System consistency / full non-linear model comparison
- Frequency analysis
- Sensor correlation
- Sensor replacement / virtual sensing
- Smart sensors

## **Detection / Isolation / Prognostics**

- Non-linear model comparison
- Artificial intelligence
- Cameras
- Plume spectroscopy
- **Trending**

#### Maintenance

- Channel switchover Mitigation
- Adaptive control
- De-rating
- Adjust mixture ratio

Shutdown

- Direct damage measurement

Non-intrusive inspection

Maintenance for cause

Centralized maintenance center – fleet operations



## Current / Future Capabilities

|         | Sensor<br>Qualification                                                                                                                                                                              | Detection/<br>Isolation/<br>Prognostics                                                                                                         | Mitigation                                                                                                                          | Maintenance                                                                                                                                                               |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current | <ul><li>Reasonableness</li><li>Inter-channel / voting</li><li>Simple model</li></ul>                                                                                                                 | <ul><li>Dedicated sensors</li><li>Redlines</li><li>Flowpath</li><li>Vibration</li></ul>                                                         | <ul><li>Channel switchover</li><li>Lock valves</li><li>Shutdown</li></ul>                                                           | <ul><li>Schedule based on run time</li><li>Intrusive inspections</li></ul>                                                                                                |
| Future  | <ul> <li>System consistency/full non-linear model comparison</li> <li>Frequency analysis</li> <li>Sensor correlation</li> <li>Sensor replacement / virtual sensing</li> <li>Smart sensors</li> </ul> | <ul> <li>Non-linear model comparison</li> <li>Artificial intelligence</li> <li>Cameras</li> <li>Plume spectroscopy</li> <li>Trending</li> </ul> | <ul> <li>Channel switchover</li> <li>Adaptive control</li> <li>De-rating</li> <li>Adjust mixture ratio</li> <li>Shutdown</li> </ul> | <ul> <li>Direct damage measurement</li> <li>Maintenance for cause</li> <li>Non-intrusive inspection</li> <li>Centralized maintenance center – fleet operations</li> </ul> |



## Advanced Sensors

#### Functions

- · High-frequency data measurements (e.g. pressure, vibration, stress)
- Low-frequency data measurements (e.g. static pressure, temperature, mass flow, speed, displacement)
- Plume spectroscopy measurements

- Micro-sensors with built-in telemetry
- Embedded sensors
- Smart sensors



# High Speed Data Acquisition And Processing

#### Functions

- Data collection
- Sensor validation
- Analysis algorithm
- Event/anomaly detection

- Multiple parallel processors
- Fiber optics transmission
- Real-time spectral analysis
- Real-time expert system
- Automated "smart" analysis



## Real Time Transient Model Based Fault And Isolation Detection Algorithm

#### Functions

- Sensor output predictions based on actual engine operation
- Fault predictions for anomalies

- Real-time fault hypothesis testing and extrapolation
- 1-D lumped parameter calculations
- More sophisticated models
- Multiple parallel processors



### Measurement System Software (Error checking, Recovery features)

#### Functions

- Sensors monitoring and qualification
- Monitoring of output of real time transient model
- Engine operation recommendations
- Virtual sensing

- Neural network/artificial intelligence/expert systems
- Multiple parallel processors
- Kalman filters
- Adaptive control with HMS
- Performance management
- Diagnostics/prognostics



## Aerothermo Life Assessments

#### Function

- Inputs:
- Static pressure measurements
- Temperature measurements
- Mass flow measurements
- Algorithms to predict effects of temperature and flow on hardware

- Concurrent stochastic thermal modeling and validation
- Smart thermal structure



## Structural Life Assessment

#### Function

- Inputs
- Vibration measurements
- Stress measurements
- Static pressure measurements
- Temperature measurements
- Algorithms to predict effects of vibration and stress on hardware

- Probabilistic models to assess damage and structural integrity in real
- Numerical models to evaluate fault and fault propagation in real time



### **HIMS** Interfaces

## Vehicle on-board control

- Recommendation for engine shut-down
- Recommendation for engine throttle
- Recommendation for fuel and oxidizer adjustments
- Controller re-configuration

#### Ground control

- Recommendation for engine shut-down
- Recommendation for engine throttle
- Recommendation for fuel and oxidizer adjustment

#### **Maintenance**

- Hardware status
- Recommendations for:
- Hardware adjustments
  - Hardware overall
- Hardware replacement
- Engine history







## Structural Health Monitoring of Aerospace Vehicles



#### Mark M. Derriso AFRL/VASM

Structural Health Monitoring, Lead

Presented to

1st AIR FORCE WORKSHOP ON

"MULTIFUNCTIONAL AEROSPACE MATERIALS" October 23-24, 2002, Purdue University,

W. Lafayette, IN



#### Overview



- Purpose
- Introduction
- Applications
- Technical Challenges
- Technical Approach
- Key Technologies
- **Summary**



#### Purpose



scheduled inspections performed on structural To reduce the time and cost associated with components.

#### **Benefits**

- Reduce operation and support cost.
- Reduce vehicle inspection times.
- Maintain vehicle safety and availability.

#### Goals

- Reduce Air force O&M Cost.
- Increase Operational Readiness.





- It's a well-known fact that aircraft within the Department of Defense are aging rapidly.
- In many cases aircraft are operating well beyond their original design lives.





B-52

KC-135





- In result, the Air Force emphasis has shifted from operational burden imposed by these older increasing performance to reducing the platforms.
- Decreasing the time required for maintenance and using parts longer.







cycle cost associated with maintaining and supporting reduction in maintenance requirements is realized due "This study indicates that significant reduction in life return on investment. Specifically, if a 30% - 40% structures could result in an operationally realistic to implementation and use of a health monitoring Health Monitoring System Technology Assessment-Cost Benefits Analysis.

NASA/CR-2000-209848

Renee M. Kent and Dennis A. Murphy

ARINC, Inc., Annapolis, Maryland





## Four Levels of Structural Health Monitoring(SHM)

### 1. Detect Damage

- Cracks, delaminations, corrosion

## 2. Locate Damage

- Structural location of damage

## 3. Quantify Damage

- Crack length, amount corroded, percent delaminated

## 4. Predict Remaining Life

- How long before component fails





# Active SHM Technique (supervised)

Approach for Crack Monitoring







**Development** Damage Algorithm





An envelope gives: • Amphuds • Sime-of flight reverance of a signs

Signal Processing

Damage Algorithm

Forced Structural Excitation





# Passive SHM Technique (unsupervised)





Damage Algorithm Development

> ha envelope gives a Amplitude • Time-of flight reference of a signal

> > Operational Structural Excitation

| Signal Processing

Damage Algorithm



### Applications



# Structural Health Monitoring of Bonded Repairs



- Bonded repair is one technique used to enhance the life of a damaged structure.
- Laboratory test have proven that a bonded repair could extend the life of a damaged structure by as much as a factor of eight.
- Bonded repair technology is currently being used on commercial and aircraft military aircraft.



### Applications



# Structural Health Monitoring of Bonded Repairs

- However, the non-repaired inspection intervals of the damage under the patch is still performed because of the unknown condition of the bondline.
- By performing these non-repaired inspections, the Air Force is not receiving the full benefits of using the bonded repair technology.
- A possible solution to this problem is using a structural whether or not the integrity of the repair is decreasing. health monitoring system that would determine





# Structural Health Monitoring of Bonded Repairs

## Smart perch assembly Corporate Larres Corporate Corporate Smart Parch Appeare Film Appeare Film Sprant Parch Cored Green Film Therrese Therrese Therrese Cored Green montaining Percent montaining Percent montaining Percent montaining Percent montaining Cored Green montaining Percent mont

Structural Health Monitoring System

#### Objective:

• Develop structural health monitoring techniques that will detect structural crack growth, disbonds and patch integrity of a composite bonded repair patch.

#### Payoffs:

- Enhance the life of a damaged aircraft structure.
- Maintain structural safety and availability.
- Reduce operational and service cost.





# Structural "HOT Spots" Health Monitoring



- Several aircraft in the Air Force fleet has known areas with structural problems.
- Maintainers have to inspect theses problem areas at predefined intervals.
- In some cases the problem resides in an inaccessible location such as the upper or lower wing spar which requires de-skinning the wing.
- Some of these inspections are quite costly.





# Structural "HOT Spots" Health Monitoring

#### Objective:

detect and quantify structural cracks and corrosion in known Develop structural health monitoring techniques that would problem areas on existing aircraft.

#### Payoffs:

- Reduce operation and support cost.
- Reduce vehicle inspection intervals.
- Maintain structural safety.







### Space Operational Vehicle (SOV) Structural Health Monitoring



- The Space Operations Vehicle (SOV) is a key vehicle to meet future Air Force requirements in the areas of Control of Space and Global Engagement.
- The launch costs of the SOV must be one order of magnitude less than current state of the art in order to be successful.





## SOV Structural Health Monitoring

- The key to reducing launch costs is reducing turn-around time.
- maintenance costs. In this presentation, we will concentrate on The System Requirements Document (SRD) for the SOV lists several requirements that have the purpose of reducing one of these objectives.
- During normal conditions, the SOV shall have a turn-around time of 24 hours, with an objective of 12.
- To meet this goals, the assessment of the structure/TPS condition has to be reduce significantly.











## SOV Structural Health Monitoring

### System Requirements

- structure/TPS within hours of completed mission and certify it for An automated system that assess the health of the entire vehicles' re-flight.
- Acreage TPS
- Leading edge TPS
- Wing structure
- Fuel tanks
- SHM system needs to be able to do the following:
- Detect damage in the structure/TPS
- Locate damage
- Diagnose damage (delamination, impact damage, mechanical attachments state etc.)
- Prognosis of the health of the structure/TPS.



# Technical Challenges



- Sensors development
- high temperature (space)
- wireless
- reliable
- Sensor optimization
- location
- quantity
- Data assimilation
- Data interpretation
- · Structural life prediction methods







- **Empirical Methods**
- Neural Networks
- Pattern Recognition
- Analytical Methods
- Physics-based Modeling
- Statistical Analysis





### Hybrid Approach

Combine
Analytical and Empirical
Means for Optimum
Solution





## Pattern Recognition Approach



Basic Research:

- ·Identify Material Property Features
- •Discriminate Discontinuities





### Data Fusion Approach

Autoassociative - Heteroassociative Neural Network (A-HNN)



Basic
Research:
Identify
Common
Thyariant
Features of
"Relationship"
Between Data

### Technical Approach:

Patent Pending

Sets

- Derive Transformation Matrix
- •Establish Reliability Metric
- Experimental Validation





### **Modeling Approach**

Optimal Design of NDE Devices Using Ideal Concepts

Design NDE Tool Optimization Physics-Based Numerical Model **Design Objectives** Specifying

Basic Research:

Identify Basic Design Principles

Identify Basic Design Axioms





- •Finite element modeling is done to determine the response of the panel.
- •Advanced features are included such as the fasteners, contact, etc.
- •Comparison is made with the experimentally observed response(s) to validate the model
- •Sensitivities of the response(s) with respect to the damage states can be evaluated via analysis.





FEM of a TPS panel



## Key Technologies



# · Advanced Digital Signal Processing (DSP)

- Discrete Fourier Transforms (DFT)
- Wavelet transforms

Narrow-Band Spectrogram

Digital filters

## Advanced data analysis

- Feature extraction
- Pattern recognition
- Data fusion

## Structural characterization

- Impact damage analysis
- Structural fatigue analysis
- Acoustics fatigue analysis







Amplitude
 Time-of flight reference of a signal





## Key Technologies



### Physics Based Models

- Structural Impact damage models
- Structural Fatigue models
- Life prediction models



# Data acquisition and instrumentation

- Sensor installation
- Sensor integration
- Sensor interrogation





#### Summary



- Warfighters have a need for this technology
- Reduction in O&M cost
- Maintain structural safety and availability





| Enabling                 |                                       |              |            |
|--------------------------|---------------------------------------|--------------|------------|
| # Concepts technology is | 14                                    | 13           |            |
| Concepts                 | Affordable Prop Systems<br>Technology | Secure COMMs |            |
| <b>Т</b> есһпоюу Митbеr  | PROP5                                 | COM3         | Sayle, Co. |
| Technology Area          | Propulsion                            | Com          |            |

|                  | F-15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F-15C/D UNIT STRUCTURAL | SLI          | TRU   | CTU    | IRAL  |       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|-------|--------|-------|-------|
|                  | MAINTENANCE COST PROJECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANCE                    | 00           | ST P  | RO     | JECTI | NO    |
| 1.0E+06          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |       |        |       |       |
| 8.0E+05          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              | 24.76 |        |       |       |
| 6.0E+05          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |       | ing si |       | 1765  |
| <b>€</b> 4.0E+05 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |       |        |       |       |
| 2.0E+05          | の 一般の 一般の 多の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |              |       |        |       |       |
| 0.0E+00          | standard of the standard of th |                         |              |       |        |       |       |
|                  | nonc o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | nnnn         |       | noner  |       | 20000 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       | Flight Hours | onrs  |        |       |       |



# Materials That Sense Their Environment

B. D. Green and P. B. JoshiPhysical Sciences Inc.Andover, MAgreen@psicorp.com

Presentation at:

Multifunctional Aerospace Materials Workshop

Purdue University 24 October 2002 This document shall not be duplicated nor disclosed in whole or in part without prior written permission of Physical Sciences Inc. and it shall only be used for the sole purpose for which it has been supplied

# Near-Earth Spacecraft Thermal Environment



Temperature cycling as spacecraft moves in/out of eclipse

(conduction within spacecraft structure)

Internal temperature distribution?

Radiation to space, solar input, internal power must be controlled to maintain spacecraft systems (especially electronics) within operating temperature (-30 C to 65 C, typical)



# Electrochromic Thermal Control Device Structure



- Battery-like cell; charge changes optical properties
- The entire EC device is no more than 7 mils thick (0.177 mm) dominated by Mylar substrate (can be reduced to 0.9 mil)
- Goal: thin-film flexible device thermostatically controlled

### Concept for Integration of Electrochromic Devices into Spacecraft Structure

VG02-275-3





## Benefits of Thermal Control with Electrochromics Technology





Reference: Topart and Hourguebie, Thin Solid Films, 352, p. 243, 1999.



#### Variable Emissivity/Reflectivity Materials First Flight Test

- Electrochromic materials for spacecraft thermal control, propulsion
- Vary R, a, ? in the visible IR by choice of substrate, active materials
- chemical switching of polymeric materials Alter optical properties via electro-



subsystem thermal management Application to solar sails, s/c and

PANi/CSA 44\_5C (Leucoemaraldine) Reduced

90 85 80 75

70

9 55 noissimenenT %

45 ଝ

carrier - first attached payload Passive samples on MISSE outside ISS (Aug 01)



Wavelength (nm)

# Molecular Sensing Using Conductive Polymers

### Inhibition of transduction

- disrupt planarity of polymer backbone
- swelling
- chemical reaction with an additive
- dedoping
- chemical reaction to remove dopant from polymer

### **Enhancement of transduction**

- target compound acts as a dopant to increase conductivity of the polymer
- interaction of target compound with sensing material increases planarity of polymer backbone





# Individual Chemical Alarm System (ICAS)



### ? Conductive polymer sensor system for

- chemical warfare agents
- toxic industrial compounds

### Real time detection

- alerts wearer upon exposure
- stores exposure history



## ICAS Prototype Badge Design

### Simple user interface

- on/off switch
- self-test feature
- sampling interval selection
- audible alert
- tox class indication

### ? Insertable sensor array chip

### AAA battery - 5-day lifetime

#### Size

- $-2.5 \times 4.75$  inches
  - 3.5 ounces

### Downloads exposure data to Access database <u>.</u>

#### Exposure records

- exposure dose = concentration x time
- logged every 30 minutes or + 20% dose increase



#### Shielding Materials SBIR Advanced Radiation

VG02-275-10

Develop composites that provide more shielding per gram than Al

Tailor composition to enhance e or p shielding for specific mission

reduce s/c weight or increase payload Benefit: significant mass savings



Commercial partner: Space Systems Loral

Phase 3: Develop evaluation experiment

Manifest: Geosynchronous telecom

Following activities: STRV1D, LMA panel



D-2933a 7 Ä 6 (g/cm<sup>2</sup>)/(g/cm<sup>2</sup>)<sub>A?</sub> 0.8 OHN5 0.7 <del>.</del> Ξ.

**GHTP** CHNB CHTH3/

1.2

<del>د</del>.

Thickness/(Thickness)A?

satellite: Brazilsat (2002 launch) 2000 x 500 km 70 Deg Incl Protons CHW5 CHOLING <u>유</u>꿏 CHZH3 GE+W GE=ZrHz GE + Ni GE + TiHz

1.5

4.

9.

#### Summary

- Conductive polymer compounds have been synthesized to maximize
- optical properties changes
- response to toxic compounds
- ? Sensors for control network
- Undergoing demonstrations under real world conditions
- ? Polymer compounds are a useful accessory to composite structures



### Self-Diagnosis of Damage in CFRP by Electrical Resistance

W. A. Curtin, Brown University, N. Takeda, T. Okabe, J. B. Park, U. Tokyo

- Carbon fibers: electrically conducting
- Fiber contacts & conducting network

breakage of carbon fiber



Fiber breaks (mechanical damage)

Contacts Between Fibers

Due to Misalignment

estrical "damage"

Electrical resistance monitors damage evolution

On-Board Damage Detection, Failure Prediction from Resistance

Large changes in resistance at small strains

Highly non-linear response with strain; Can tune to coincide with failure strain



Resistance response can be tuned using fiber volume fraction

Resistance is independent of sample gauge length (spatial sensitivity)

Resistance carries a permanent record of prior damage Critical for damage due to overloads



#### Some Issues:

- What controls relationship between resistance and failure?
- How locally can damage be detected?
- How can signals be interpreted?
- How can this be used practically (outside the lab)?

#### Current effort:

Address some issues through computational modeling

Clearly need a coupled experimental effort

# Coupled Mechanical, Electrical Models



Mechanical Model: Damage, local stresses



Stress vs. strain, failure

Electrical Model: Local resistances



Resistance vs. stress/strain/damage



Length scales associated with fiber damage:

Old concept: Mechanical "ineffective length"  $?_c$ 

fiber, matrix, interface mechanical properties loss of load carrying capability depends on

New concept: Electrical "ineffective length"  $?_{ce}$ :

inter-fiber contacts, geometry, volume fraction loss of current carrying capability depends on







(a) 
$$V_f = 22 \%$$

(c) 
$$V_f = 32^{\circ}$$

# Modeling of Damage Detection by Electrical Resistance

Stochastic fiber damage + Mechanics Models + Electrical Models 



How locally can damage be detected?



Damage sensing depends on Detection geometry

Design for LOCALIZED damage sensing

# Sensing Depends on Detection Geometry

Detection Geometries to Measure Localized Damage



Use model to test simple geometries; determine spatial resolution



Realistic ply-level detection geometry

How can signals be interpreted? Need stochastic analyses



# Feasible Fabrication of "sensor array"?



# Innovation in Design:

Design = Fundamental Materials Design

• Optimization of constituent materials for damage and sensing; control mechanical  $?_c$  vs. electrical  $?_{ce}$  characteristics

Design = Engineering Design

Design of sensor arrays

Design of sensor signal analysis –

Critical Damage Threshold

• Prediction of strength, life, reliability of in-service components o



# Demand and Challenges in Structural Health Monitoring

"MULTIFUNCTIONAL AEROSPACE MATERIALS"
October 23-24, 2002, Purdue University, W. Lafayette,

Fu-Kuo Chang

Dept. of Aeronautics and Astronautics Stanford University Stanford, CA 94305

# Problem Statement

## GIVEN SENSOR MEASUREMENTS, DETERMINE EXTERNAL AND/OR INTERNAL PARAMETERS.

# (NONLINEAR INVERSE AND NON-UNIQUENESS)



SENSOR SIGNALS

#### Sensors

- ≥ PASSIVE (receive signals only)
- OPTICAL FIBER
- STRAIN GAUGE
- MICROELECTRONIC SENSORS
- Etc.
- ACTIVE (receive and generate signals) Ø
- PIEZOELECTRIC MATERIALS Etc.

### PASSIVE SENSING



### **ACTIVE SENSING**



# Technical Challenges

- **SENSORS**
- ≈ SENSOR/MATERIAL INTEGRATION
- \* HARDWARE DESIGN/IMPLEMENTATION

# SMART (Stanford Multi-Actuator Receiver Transduction) Layer Piezoelectric Sensor Network

FLEXIBLE PRINTED-CIRCUIT BOARD TECHNIQUE





### Given: {S}

- Sensor data from impact on stiffened panel

### ■ Determine: F

- Impact location (x,y)
- Impact force history f(t)

# Active Damage Detection



## Bat Echolocation

- Bat uses time-of-flight for ranging.
- FM bats use frequency spectrum change for sizing.



Spectrogram



QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

Signal Processing



# Interpretation - Damage index

• Damage Index 
$$\begin{cases} \frac{2}{2} f_s \\ \frac{2}{2} f_s$$

11

where

a=0.5: gain factor, 0???1 S<sub>sc</sub>:STFT of a scatter signal

 $\widetilde{S_b}$ :STFT of a baseline signal

t<sub>f</sub>:upper bound of s0 wave packet in time domain  $t_{\rm f}$ :lower bound of s0 wave packet in time domain

?? mselected driving frequency

# Damage Index of SHM vs. NDT



# SHM System for Vehicles



- Condition Monitoring
  - Crash Detection
- Active Suspension Control

# SHM-based Structural Design Diagram



## 1st Air Force Workshop on "Multifunctiona Aerospace Materials" Oct 23-24 2002



Thermal Structures for High Speed Aircraft

David A Brown
Air Vehicles Directorate
Structures Division



## for Future High Speed Vehicles Thermal Structures





Current Air Force Studies Evaluating Long Range High Mach Vehicles Many Thermal and Structural Needs because of Aerodynamic and Propulsion Heat Loads

- Material Compatibility
- Lightweight High Temperature Structures
- Insulation/Thermal Management
- Multifunctional Technologies may be Key to Lightweight Affordable Solutions



## for Future High Speed Vehicles Thermal Structures



Mach 2-4 Conceptual Vehicle



Thin wings



High Temperature Fuel Tanks



# Structural Concepts for Consideration



- Unitized Structure
- Integral Composites, Formed Metallic, Preformed Joints
- Smart Structures
- Health Monitoring, Imbedded Sensors
- Adaptive Structures
- Adaptive Leading Edges, Fuel Integration, "Morphing Technologies"
- High Temperature Metals & Composites
- CMCs, Alum/Titanium,
- Structures/Propulsion/Subsystem Integration
- Inlet, Engine, Nozzle, Integrated Subsystems
- Active/Passive Structural CoolingAdvanced Analytical Techniques
- MDO, Probabilistic Analysis

# Multifunctional Structural Concepts for Future High Speed Vehicles





Technology Potential Options



Antenna Integration



**Optimized Design Methods** 

Adaptive Structure

Sine-Wave Spars and Ribe





|                  | Weldri & Cost Hades            | 4     | 3        | 1           | 7    | 90      | NT<br>T-      |            |
|------------------|--------------------------------|-------|----------|-------------|------|---------|---------------|------------|
| Load<br>[15*/in] |                                | 1250  |          |             | 2500 | _       | Nx=2500lbs/in | lbs/in     |
|                  | Nx/Nxy 1.0 0.5 0.0 1.0 0.5 0.0 | 0.5   | 0.0      | 1.0         | 0.5  | 0.0     | Concept       | 64         |
|                  | 200 °F                         |       |          |             |      | Janores |               | 7 4<br>0 4 |
|                  | E G                            | 1     | A T      | a design    |      |         | 3 21          | 1 30       |
|                  | E C                            | 1 1   |          | )           |      |         |               |            |
|                  | Œ,                             | , and | A Ambier | 7           | )    | · ·     | •             |            |
| 2                | î.                             |       | مسلعت    | 2 8 8 8 8 8 | i i  |         |               |            |



### Thermal Management for High Mach Vehicles



Aeroheating and Propulsion Heat Loads Drive Fuel Tank Temperatures

**Fuel Tank Model** 













## **Boundary Layer Heat Transfer** Rate to Wall



Depends on Wall Temperature for a Given Flow

Hot Wall Adiabatic Wall Cold Wall

dT/dy = 0

dT/dy > 0

Wall Heat Transfer Rate (BTU/ft²-sec) =  $Qdot_{con} = k*dT/dy$ , where k is air's thermal conductivity at the wall conditions, and dT/dy is the temperature gradient at the wall.







temperature, T<sub>RET</sub>, otherwise Qdot<sub>str</sub> and heat capacity determine the When Qdot<sub>str</sub> is 0 (insulated), T<sub>w</sub> will equal the radiation equilibrium rate of temperature change of the surface material.



### Structures and Materials Key Technical Challenges



- A Reduce Structural Weight Fraction (high temperature composites, insulation, stitched composites, structurally integrated inlet and Ti-Al, Al-Li Sandwich, composite landing gear, lightweight
- Develop Structural Arrangements Capable of Surviving Extreme Aerodynamic and Propulsion Heat Loads (high temperature structures, ceramics, active/passive cooling)
- and Propulsion Heat Loads (lightweight insulation, active cooling, Insulate Subsystem and Critical Components from Aerodynamic coatings)
- (advanced design tools, load optimization, probabilistic methods, Develop Optimized Design Methods Structural/Thermal/Aero thin fuselage design)



# **Key Technical Challenges (Cont)** Structures and Materials



- A Provide Adequate Heat Sink for the Aerodynamic and Propulsion Heat Loads (high heat sink fuels, high temperature seals, expendables)
- (stiffness vs. thermal compliance, unitized structures)
- Provide Cooling to High Temperature Components such as inlets, nozzles, propulsion components, generators (high temperature lightweight heat exchangers, fuel-air heat exchangers)
- A Minimize Aeroheating and Propulsion Heating to Vehicle Components (high emissivity coatings, high performance insulation)



# **Technology Risk Elements**



- Performance
- How difficult is the technology to mature?
- What is the probability of failure?
- What is the impact of failure to the related system?
- Schedule
- Can the technology be matured?When?
- Cost
- What is the ROM cost to mature the technology





#### Summary



≤ Long Range High Mach Vehicles have Unique Structural and Thermal Requirements

? Multidisciplinary Interactions Require New Solutions

? Multidisciplinary Tools Needed

? Multifunctional Concepts Needed to Meet Weight and Affordability Objectives

### Leading Edge Thermal Protection **OMC Thermal Management AFRL/MLB**

24 Oct 2002



Keith B. Bowman, Ph.D., P.E. (937) 255-9076 keith.bowman@wpafb.af.mil

Air Force Research Laboratory



#### Agenda



- Overview
- Thermal Management for Air Applications
- Historical
- Present
- Planned
- Thermal Management/Protection for Space **Applications**
- Historical
- Space Operations Vehicle
- Present
- Planned
- Summary



#### Thermal Management Requirements



### The "Why" Chart





### Thermal Management **Needs and Solutions**



#### Electronic Push

capabilities (Directed Energy/Microwave ect.) Increased communications, and electronic More chips require more cooling



using advanced materials. 2 to 4 Waste heat can be dissipated times better than copper

# Component Strength/Capability

aircraft/spacecraft increasing, consolidation of capabilities and space become imperative. With the number of systems on

Advanced Materials offering high Lightweight, stiff components can be designed/build out of performance.

#### Compact/Size

more critical. Upgrades in capability result in Efficient use of space/resources is becoming more equipment stuffed into space it was not designed for.



move more heat per unit area/unit and Pyrolytic graphite etc..) can Carbon based Materials (foam density hands down.

#### Retrofitting

Aging aircraft are upgraded and augmented with new components requiring creative design and compromises.



Considering lifecycle cost and

### **Less Maintenance**

Less costly Logistics will always be an issue. Operational cost far outweigh any other phase of the Acquisition Lifecycle



lower operational temperatures, deliver lower logistical costs. advanced materials can/will



### Thermal Management Applications









#### Past Effort: C-C Heat Exchanger



- Program initiated July 1996 in AFRL/VA with tech support from AFRL/MLBC.
- Objective:

Development/fabrication/demonstration of affordable lightweight, C-C F/A-18E/F primary heat exchanger with 6000 hour service life

- Design of C-C HX Core completed with better predicted results than metallic designs
- Methods to form thin-wall, high density fins per inch successfully developed
- Two designs resulted assembled using a BNi-5; Ni-19Cr-10Si (liquidus 2075°F) braze
- Integral layers fabricated using CVD C-C processing
- Conventional layers fabricated by brazing component
- Oxidation protection needs further work
- Impetus for contracts looking at one-step C-C processing and oxidation protection





### Current Program: Carbon Foam Heat Exchanger



# Next Generation Heat Exchanger - Carbon Foam





Coordination with Navy Advanced Concept

- Develop extremely light-weight, high conductivity composite V-22 heat exchangers
- Design and fabricate full size heat exchanger to decrease volume/increase cooling capacity
- Provide extended life, lightweight, corrosionresistant, very efficient Environmental Control System
- Extends time between failure by at least 2X
- Extend range due to 70% weight reduction and
- Increase heat exchanger efficiency by 25%
- · Increase heat transfer coefficient, h by 5X



## Carbon Foam Primary Heat Exchanger Future Program:



# Next Generation Advanced Heat Exchanger - Carbon Foam

- Build from previous efforts in
- Carbon foam (Hi-K, graphitic)
- Carbon foam heat exchanger
- Oxidation protection (temps greater than NAVY SBIR)
- Design and fabricate full size heat exchanger (JSF??)



- Provide extended life, lightweight, corrosionresistant, very efficient Environmental Control System
- Extends time between failure by at least 2X
- Extend range due to 70% weight reduction and
- Increase heat exchanger efficiency by 25%
- Increase heat transfer coefficient, h by 5X



### Phase Change Thermal Management **Current Program:**



Next Generation Aircraft Brake - Phase Change Brakes (PCB)

Current operating aircraft brake systems utilize the mass of the brake disks, change (i.e. melting and/or vaporization) of high heat capacity materials to either steel or carbon/carbon composites, to absorb the heat associated with braking the aircraft. The new concept takes advantage of phaseprovide at least a

- 30% increased heat absorption capability without increasing weight or volume.
- 30% weight and volume reduction without changing the total heat absorption.







### Thermal Management for Space Structures





**Light Weight Dimensionally** Stable Structures

- Demonstrated C-C technology for spacecraft applications
  - Optical bench
- Thermal doublers
- Heat sinks
- Engine shield
- Demonstrated equivalent or better properties than (M55J/K1100)/CE
- in-Plane thermal conductivity equivalent 3X improvement in through-the
  - thickness panel conductance
- Mechanical characteristics equivalent
  - · Transitioned to
- Titan's Wideband Instrumentation SubSystem
- Multifunctional Structure experiment on Deep Space 1 spacecraft



C-C Spacecraft Radiators **Partnership** 

- Low density
- -Decreased launch cost -Increased payload
  - High thermal conductivity -Reduced module

temperature

- Increased module density · High stiffness
  - -Decreased deflections
- Same Thermal Performance as Aluminum radiator with heat pipes
  - · Flying on Earth Orbiter
    - AF/Navy/NASA/Industry Collaborative effort:



### Thermal Management for Space Structures





Thermal Structural Materials Solutions for Space

- Reduced Weight
- Weight savings (~50%)
  - Aluminum: 6 lbs
- K1100/CE (PMC): 3.3 lbs
  - Maintain/improve thermal performance
- Maintain structural
- performance
- Minimize hardware costs
- Radiator fins flown on STEX spacecraft.
- Battery panel flown on Mars '98 Orbiter.
- Thermal structural panel flown on STRV-1/d.
  - Transitioned technology to Stardust



Carbon-Carbon Thermal Planes for Electronics

- 30% lighter weight than Al Low thermal expansion
- Reduced solder fatigue
  - High thermal conductivity Increased lifetime
- Increased module density Reduced board temperature
  - Reduced board High stiffness
- Increased board density deflections



**Economical Carbon-Carbon** for Spacecraft Thermal **Doublers** 

 High thermal conductivity -Reduced module temperature

-Increased module

- density Low density
- -Decreased launch cost
- -Increased payload Low modulus
- surrounding materials -Compliant with



### Organic Matrix Composite Heat Pipes



#### Why OMCs?

- dimensional stability has driven the need to have composite The trend towards OMC structures for weight, stiffness and
- Aluminum heatpipes cannot be readily embedded in composite panels due to CTE mismatch issues
- The use of OMC reduces component weight (i.e. up to 10-20%)
  - incorporation of high thermal conductive materials, resulting A CTE compatible heatpipe radiator would allow the in thermal efficient designs.

## Technical challenges of OMC heat pipes:

- Non permeable 2x10<sup>-10</sup> scc/sec He
- CTE match of hybrid OMC material and interface joint material –? CTE 0 to 1 ppm/K
- Integration of thermal efficient heat pipes with OMC skins and honeycomb core components
- Fewer heat pipes per radiator possibleLess weight
- Less complex design and fabrication processes





**Graphite Polymeric Facesheet** 



### Organic Matrix Composite Heat Pipes



#### **OMC Heat Pipes**





## Current Programs: OMC Heat Pipes/Radiators



#### Problem

- Aluminum heat pipes cannot be readily embedded in composite panels due to CTE mismatch issues
- Aluminum radiator panels are incompatible with composite bus structures
- Aluminum doublers add unnecessary weight



#### **Objective**

- Develop affordable processing techniques for producing a non-permeable carbon-carbon heat pipes
- Develop techniques to integrate OMC heat pipes into the radiator
- Eliminate Al doublers



#### **Benefits**

- · All composite bus
- Lower weight
- Lower fabrication costs
- Greater thermal efficiency



## Future Programs: OMC Heat Pipes/Radiators



#### Problem

- Aluminum heat pipes cannot be readily embedded in composite panels due to CTE mismatch issues
  - Aluminum radiator panels are incompatible with composite bus structures
- Aluminum doublers add unnecessary weight



Objective/Approach Next Generation Technologies (??)



#### **Benefits**

- All composite bus
- Lower weight
- Lower fabrication costs
- Greater thermal efficiency

Beyond current tech



## Military Space Plane



### AF SOV Gen 2



- Launch-On-Demand: 8 Hrs Military Ops Tempo
- · Reduce Laumon (6000)
- Flexible Lattingh and Keeswary



#### AF EELV

- Reduce Launch Cost: 2x
- · Launch-On-Schedule
- Reconfigure Vehicle For Payloge
  - No Recall After Lagrach

#### Attributes:

aunch Cost: 10x

- Mission Assets To, Through and From Low Responsive and Affordable Delivery of Earth Orbit
- Multi-Mission Capable With Inter-changeable **Payloads** 
  - Rapid Turn Time and Alert Hold Capability
- Launch and Recovery from U.S. Bases **Nearly All Weather Operations** 
  - **Autonomous Operation Design**
- · Primary Structure: 500 sorties (overhaul @
- Engine Life: 250 sorties (overhaul @ 100)
- Remove & replace main engine: 4 hrs
- Maintenance man hours per sortie: 50



Shuttle / ELVs

**Near Term** 

2008

Mid Term

2016

(1) (2) (1) (1)

2025



### X-Vehicles LE TPS



• TPS (<1500) - Titanium Matrix Composite

X-30

•TPS (1500-3000F) - C-C and C-C/SiC

•TPS (>3000) – Active Cooling (C/SiC and C-C w/MoRe heatpipes, heat exchangers)

X-33 • Nose Cap – C-C Leading Edges – C-C

Other – metals, tiles, blankets,



• Nose Cap – TUFI/AETB tiles

 Leading Edges – TUFI/AETB tiles



## Current Programs: Thermal Protection Materials









#### OBJECTIVE

 Develop low cost, advanced TPM for the CAV (Common Aero Vehicle)

#### **APPROACH**

- Modified CC aeroshell: thermally efficient, structural, low cost
- · Insulation layer: lightweight, thin section
- Integral stackup: aeroshell + insulation + structure
  - Triaxial braiding: thin wall CC aeroshell
    - · Leading edge to heatshield transitions
- Cold wall ablator (CWA) overlay: low CC aeroshell recession
- Integrated CC leading edge: high bending resistance
  - Modified CC processing: cost reduction

#### BENEFITS

- Thermal efficiency = minimal areal weight & thickness
- Mechanical properties degradation? 15% of allowables
- Cost reduction over current material systems of 45%

#### **CUSTOMERS**

CAV; SOV/SMV/Launch Vehicle technology transfers



### Next Generation Leading Edge TPS Concept



### Rainbow Solution

- · "Think out of the Box" design philosophy
- Thermal management solution for thermal protection
- A hybrid concept
- Structurally integrated approach not parasitic
- Novel combination of materials
- ပ္
- Ceramics
- Metals
- Foams
- Aerogels
- Phase Change Materials
- Focus is on
- Reliability/Durability/Supportability
- Cost/Manufacturability
- · One ongoing effort with Boeing, and one SBIR to be awarded on Jan 2003





#### Thermal Management Summary



## AFRL/ML actively engaged in thermal management research and transition

- Identified the area as a key technology solution to address Air
- Successful technology transitions demonstrated
- Integrated well with other organizations
- Broad spectrum of R&D programs and applications
- Excellent potential for transition (military & commercial)
- Working closely with DoD, customers and industry
- Focus is on near and mid-term applications
- Future Work:
- Nanomaterials for enhanced multifunctionality
- Dimensional control, performance enhancement
- Carbon Foam applications: heat exchangers and radiator panels
- Novel thermal protection applications

### FOR MAKING MECONSON FABRICATION

P. Kwon

Department of Mechanical Engineering Michigan State University East Lansing, Michigan

Air Force Workshop on Multifunctional Materials

# Methods to remove heat

- Heat spreaders
- One of the most common methods
- Dissipates heat to the environment by forcing air through pin arrays or fins or cooling naturally.
- Materials with high thermal conductivities and heat capacities. (diamond, silicon nitride, molybdenum
- Cooling fluids circulating in closed channels
- "Microchannels" (100 to 300 microns in diameter)
- Stringent requirements
- Miniaturization
- Fluids One-phase and Two-phase System

## Possible Designs



11/14/2002

Air Force Workshop on Multifunctional Materials

## **OBJECTIVES**

- Multifunctional Structure + Thermal Mangement
- Processing Issues
- Functionally Gradient Medium (FGM) with minimum residual stress
- Introduction of channels and
- Joining techniques
- Process in general
- More Flexible: Powder Processing
- More Complex: Process techniques & model
- Applications: Electronic Cooling, Cutting Tool, **Furbine** Engine etc.



# Micromechanical Design



Air Force Workshop on Multifunctional Materials

## **Effective Properties**

- "Homogeneous" Materials
- Fiber Composites:
- Rule and Inverse Rule of Mixture
- Particulate Composites:
- Single Ellipsoidal Inclusion [Eshelby; 1957, 1961,1962]
- Many Ellipsoidal InclusionsMT [Mori & Tanaka; 1973],

GSC [Christensen & Lo; 1979], DS [Norris; 1985] & Many Others



Mori-Tanaka Model

Eshelby's Problem

Air Force Workshop on Multifunctional

# Fabrication Techniques

### Micro-texturing

Multi-layers – Each layer of macroscopically homogeneous mixed powders

## Micro-configuring

- ∠ Internal Geometry Fugitive phase
- Surface Geometry Fugitive phase & Machining partially sintered ceramics

## Joining Techniques

- Fully Sintered Ceramics (FSC)
- Partially Sintered Ceramics (PSC)
- Compacted Ceramic Powder (CCP)

# Multilayer Powder Compaction



Air Force Workshop on Multifunctional Materials

11/14/2002

# Residual Stress Effect on FGM

Alumina

Zirconia

Air Force Workshop on Multifunctional Materials

### Approach

- Develop a powder processing protocol
- Minimize process-induced residual stress in FGMs
- corresponding shrinkage and densification behaviors. The intertwined functionality existing among powder characteristics, processing conditions and
- Plans to develop Process Model
- Development of Compaction Model
- Yield Surface
- Flow rule
- Development of Sintering Model

# Powder Characteristics

Many 31/20 Chylineseleteletel New John State



High Shrinkage

low CTE material

high CTE material

3i-material



Low Shrinkage

Air Force Workshop on Multifunctional



Air Force Workshop on Multifunctional

11/14/2002

# Internal & External Channels

CNC-Machined on PSC, Sinter & Join



CNC-Machined on PSC, Sinter & Join



Fugitive Phases: Various Polymers & Graphite



Air Force Workshop on munnunctional

## Powders Used

| Materials | Manufacturer | Powder<br>Name | Average Particle<br>Size (micron) |
|-----------|--------------|----------------|-----------------------------------|
| Alumina   | Tamai        | TMDAR          | 0.2                               |
| FSZ       | Tosoh        | SA8-ZL         | 0.58                              |
| ZSd       | Tosoh        | TZ-3YS         | 9.0                               |
|           | CERAC        |                | 1.23                              |
|           | Sumitomo     | OZC-<br>3YC    | 6.0                               |

Air Force Workshop on Multifunctional Materials

# Dimensional Changes





# Joining with Silica film

 $Zr(0)_2$ 

A1203

-Interface

5 Um

Air Force Workshop on Multifunctional Materials

# Joining without Silica Film



11/14/2002

# Summary of Processing

Internal Channels

- Powder Mixing
- Compaction
- Fugitive Phase
- Pre-sintering (1000°C for 3hrs)
- Sintering
- Polishing and Spincoating
- Joining

Surface Channels

- Powder Mixing
- Compaction
- Pre-sintering (1000°C for 3hrs)
- CNC-Machining
- Sintering
- Polishing and Spincoating
- Joining

## 3-D WOVEN COMPOSITE STRUCTURES WITH INTEGRATED FIBER OPTIC SENSORS

Dr. Alexander Bogdanovich

Vice President, Research & Development 3TEX, Inc.

109 MacKenan Drive, Cary, NC 27511

Phone: 919-481-2500 ext. 113

E-mail: bogdanovicha@3tex.com

October 23-23, 2002, Purdue University, W. Lafayette, IN Presented at the 1st Air Force Workshop on "Multifunctional Aerospace Materials"



#### IN SITU EVALUATION OF 3-D WOVEN COMPOSITE STRUCTURAL AFOSR STTR PHASE I and PHASE II (to start in November 2002) PERFORMANCE USING FIBER OPTIC SENSORS Awarded to 3TEX, Inc.

### The concept of this novel technology:

To use three orthogonal reinforcement elements (yarns placed in warp, weft and Z directions) of a 3-D woven fabric preform as natural carriers of integrated optical fibers and sensor systems associated with them.

#### Objective:

In-situ strain monitoring of composite structures at any location within the structure and in any of the three orthogonal directions by means of fiber optic sensor systems integrated in the 3-D reinforcement elements.

#### Concept validation:

Use of automated 3-D weaving machines for manufacturing fabric preforms and VARTM composite processing technology for producing composite panels and bonded joints with integrated EFPI sensors in all three directions.



Schematic of 3-D orthogonal woven preform



Industrial 3-D weaving machine (3TEX)

## SENSOR SYSTEMS FOR SPECIFIC IMPLEMENTATIONS **AVAILABLE FROM LUNA INNOVATIONS**

**Extrinsic Fabry-Perrot Sensor System** 

**Bragg Grating Distributed Sensing System** 



# EFPI SENSOR INSTRUMENTED CARBON/EPOXY

# SPECIMENS USED FOR THE CONCEPT VALIDATION

Instrumented 3-D weave flexure specimens



4-point bending test of beam specimen



4-point bending test of beam with drilled hole

Sensor location in lap joint simulation specimens



# SOME RESULTS OF THE CONCEPT VALIDATION

4-point flexure test longitudinal strain data from EFPI sensor and foil gages

Strain concentration near hole captured by EFPI sensors in 4-point flexure test



A smaller foil gage shows strain (----) more characteristic for a resin pocket.

A larger strain gage (----) covers resin pocket and some of the yarn area next to the specimen surface. The EFPI sensor shows strain (----) within yarn adjacent to the specimen surface.

A through-thickness hole was drilled near integrated EFPI longitudinal strain sensor. Strain recorded by the sensor in the presence of hole (----) is significantly higher than the strain at the same location in the absence of

### ANTICIPATED BENEFITS FOR DESIGN AND **APPLICATIONS**

- stress/strain gradients and simulating in-service Embedding fiber optic sensors into 3-D weave composites in the zones of anticipated high loading conditions will provide invaluable information for
- preform for each specific type of loading optimizing 3-D fiber architecture in the conditions
- combinations for composite structures selecting most suitable fiber and resin
- optimizing thickness and other geometric parameters of the structure
- significantly increasing reliability of design, thus reducing cost of inspection, repair and maintenance.

for structural analysis and design







#### In-Situ Evaluation of Composite Structural Multi-axis Fiber Grating Strain Sensors Performance in Presence of High Stress/Strain Gradients Using

Eric Udd Stephen Kreger 376 NE 219<sup>th</sup> Avenue Gresham, Oregon 97030

503-667-7772 (P) 503-667-7880 (F)

www.bluerr.com

### Strain Measurement Interior to Composite Parts-Background/Partnerships

- dimensional strain interior to composite parts • First quantitative measurements of multi-
- •Blue Road Research partnered with U of DL, interest from Boeing (aircraft, spacecraft) and Thiokol (rocket motors)
- monitoring for composite cryo tanks and rocket Synergistic with funded research from NASA motors (AFRL/WPAFB and AFRL/Edwards (multi-axis strain measurement), health AFB)





### Strain Measurement Interior to Composite Parts-Relevancy

- fiber gratings interior to complex composite parts •Multi-dimensional strain measurement using
- Electrical alternatives are bulky and not compatible with conductive materials
- quantitative measurements of transverse strain Embed multi-axis fiber grating and obtain and strain gradients
- Applies to aircraft and launch vehicle composite parts



# Distributed Sensors in Space Vehicles





### Schematic of the Microstructure and Unit Cell of Plain Weave Fabrics





### Strain Measurement Interior to Composite Parts Innovation in Science





### Initial Experiment

- fabrication of a small composite coupon for testing A biaxial weave structure was used to support the
- Multi-axis fiber gratings were placed in the four-layer coupon between the first and second layers and between the second and third layer





### Placement of Sensor





# Finished Composite Test Specimen





## Increasing Temperature to Peak Temperature Monitoring Sensor #2 During the Cure Cycle:





## Monitoring Sensor #2 During the Cure Cycle: After Cross Linking/Cure and Cool Down





## Polarization Extinction





# Sensor #1: Shorter Wavelength





# Sensor #1: Longer Wavelength





# Fabrication of Smart Fabrics







# Single and Dual Axis Grating Sensors in E-glass/ Vinylester and E-glass/ Epoxy Composites

- Several panels were manufactured with single Vacuum-Assisted Resin Transfer Molding and multi-axis Bragg gratings using the (VARTM) process
- The response of the sensors in different stages of the VARTM process was recorded



# Mechanical Test Setup – Three Point Bend Test

- The specimens containing dual axis sensors were loaded by three point bending.
- The grating portion of the dual axis grating sensor was put beneath the load head.



### Composites Strained in Tension, Right Peak Dual Axis FBG Sensor in E-glass/vinylester





# Composites Strained in Compression, Right Peak Dual axis Grating Sensor in E-glass/epoxy



## Composites Strained in Compression, Left Peak Dual Axis FBG Sensor in Glass/epoxy



# Repeatability and Drop Test

- embedded in textile composites was evaluated Repeatability of the dual axis FBG sensor using a loading-unloading cycle test.
- The results demonstrated that the signal from the dual axis FBG sensor is repeatable.
- only a small permanent deformation (strain) A drop weight impact test was performed, was formed by the impact



# cyclic compressive loading-unloading (0lb-400lb), left peak Dual axis FBG sensor in glass/epoxy composites under



# Bonded Joint Health Monitoring System

Bonded joints Fiber sensors Distributed



# Joint Instrumented for Shear





# Pi-Channel Multi-Axis Strain Monitoring





### High Density Fiber Grating Strain Sensor System





# Composite Structures Summary

- Simultaneous measurement of axial and transverse strains
- distributions for "simple" conditions in Measurement of sub-grating strain weave structures
- Useful for structural monitoring during part formation and subsequent loading



# Composite Structures Systems Development

- Compare baseline loaded and unloaded strain signatures with current readings Demonstrate static ground testing. to detect structural damage.
- dynamic, low-power, rugged, compact Evolve monitoring equipment to system for in-flight monitoring.



# Ongoing Improvements in System Capability

- Develop theory and modeling tools to better link multi-axis strain measurements to structural behavior.
- Use WDM and interferometric techniques to multiplex hundreds of sensors on single line.
- multiple peak structures into highly spatially Develop algorithms to translate complicated resolved multi-axis strain measurement.



#### FAST SELF COOLING MECHANISMS

Roger J. Morgan and Sai Lau

Texas A&M University

AFOSR WORKSHOP ON MULTIFUNCTIONAL AEROSPACE MATERIALS

24th OCTOBER 2002

#### THEME

- "OUT OF THE BOX"
  - SURFACE COOLING CONCEPTS
  - THERMAL ABLATION RESISTANT STRUCTURES
- GOALS
  - RAPID TEMPERATURE TIME COOLING
    - LIMIT IR-TIME SIGNATURES
  - ENHANCED THERMAL
     RESISTANT STRUCTURES PROCESSIBLE COATINGS AND
     STRUCTURES

### SUBJECT MATTER

- HISTORY
  - LASER HARDENING MECHANISMS
    - HIGH MOISTURE BEARING FIBERS (FIBER -S)
    - TUNGSTEN CARBIDE, TANTALUM CARBIDE IN-SITU SERVICE ENVIRONMENT FORMATION
- SURFACE MOISTURE EVAPORATION
  - SKIN COOLING MECHANISM
  - MICROFLUIDICS
- THERMAL CONDUCTION INTERNAL COOLING "PIPES"
- RAPID SUPER THERMAL CONDUCTORS
- COATING SELF COOLING MECHANISMS (IN-SITU REPLENISHMENT)

Table 1
Aromatic Polyamides That Were Developed

for Commercial Fiber Production

| Chemical Name (abbreviation)                                                       | Chemical Structure                                  | Trade Namo<br>(company)                                                |
|------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|
| poly (m-phenyleneisophthalamide) (PmPI)                                            | CO-UN O NH                                          | Nomex <sup>TM</sup> (du Pont);<br>Conex <sup>TM</sup> (Teijin)         |
| polybenzamide (PBA)                                                                | ——————————————————————————————————————              | PRD 49-1 <sup>TM*</sup> (Du Pont)                                      |
| poly(p-phenylene terephthalamide) (PPTA)                                           | -(-oc-(o)co-HN-(o)NH)-                              | Kevlar <sup>TM</sup> (du Pont);<br>Twaron <sup>TM</sup><br>(Akzo N.V.) |
| polyterephthaloyl-<br>p-aminobenzhydrazide<br>(PABH-T)                             | —————————————————————————————————————               | X-500 <sup>TH A</sup> (Monsanto)                                       |
| copolyterephtralamide of p-phenylenediamine and 3,4' diamino-diphenyl ether (CPTA) | HN O NH (50) - CO - C | HM-50 <sup>TM</sup> , Technora <sup>TM</sup><br>(Teijin)               |
| polyamidobenišmidazole<br>(PABI)                                                   |                                                     | FVM <sup>TM</sup><br>(USSR)                                            |

<sup>\*</sup>No longer commercially produced.







Figure 11. The 100°C and 510°C two-dimensional temperature contours in a 40 pty carbon fiber-epoxy composite after 10 s exposure to a 600 W/cm³, 3.5 beam diameter laser

### THE MECHANISM OF ECCRINE SWEAT EXPULSION

Eccrine sweat glands are simple coiled tubular glands located in the deep dermis or underlying hypodermis and are present throughout the body. Their primary function is evaporative cooling.



- 1. They develop as invaginations of the epithelium of the dermal ridge. They grow into the dermis with its deep aspect becoming the glandular portion of the seat gland.
- 2. Eccrine sweat glands are simple coils of cuboidal epithelium containing two kinds of cells.
  - A. Dark cells produce sialo mucins.
  - B. Clear cells produce water and electrolytes.
- 3. The final production is hypotonic (99% water)
- 4. Adult produce between 0.5-10 leters/day.

### **CONDUCTIVITY MODEL**

### **ASSUMPTIONS:**

- The outer surface is heated instantaneously to 100 °C before cooling begins
- Inner surface temperature is maintained at 25 °C
- There is no cooling to atmosphere
- Water flow is semi-turbulent

### **GOVERNING EQUATION:**

(HEAT ADDED -HEAT CONDUCTED ACROSS THE MATERIAL)
PER cm<sup>2</sup> PER s =
(HEAT INCREASE IN THE MATERIAL PER cm<sup>2</sup> PER s)

### **EVAPORATION MODEL**

### **ASSUMPTIONS:**

- ? Pore openings cover 50% of surface area
- ? 0.2 kg. Of water evaporates per second per square cm. of surface area
- ? Material and water properties are considered at conditions prevailing at an altitude of approximately 60,000 ft.

### **GOVERNING EQUATION:**

(HEAT ADDED -HEAT TAKEN AWAY BY EVAPORATION) PER cm<sup>2</sup> PER s = (HEAT INCREASE IN THE MATERIAL PER cm<sup>2</sup> PER s)

### Temperature vs Time



### Temperature vs Time for different methods of cooling



### **Temperature vs Time**



Temperature vs Time



Thermal conductivity=30,000 times that of silver

### SUPER THERMAL CONDUCTOR

- COPPER SEALED TUBE 5
   MM D
- AIR 0.5 ATMOSPHERE
- 3 COATINGS 0.1 MM THICK
  - OXIDES
  - CHROMATES
- UP TO 3 x 10 THERMAL CONDUCTIVITY OF SILVER



Supertube with pressure transducer attached.



Pressure and temperature inside an operating Supertube.

### Graphitic Foam as Heat Carrier For Thermal Control in Phase Change Materials (PCM) Composite Systems

### Khalid Lafdi

University of Dayton Research Institute 300 College Park, Dayton OH. 45469-0168 USA

Materials & Manufacturing Directorate, AFRL/MLBC, WPAFB, OH 45433 USA

Khalid.lafdi@wpafb.af.mil



ITAR restricted

# Microscopy Characterization of Graphitic Foam

WEDGE DISCLINATIONS



Ligaments







ITAR restricted

# TEM Characterization of Graphitic Foam





# Testing Conditions Using Sub-Scale Dynamometer



## Schematic of the sub-scale dynamometer



Dimensions of C-C composite brakes

| Test              | Number of stops             |
|-------------------|-----------------------------|
| Cold Taxi         | 100                         |
| Service Landing   | 100                         |
| Normal Landing    | 100                         |
| Taxi-Landing      | 50 (3 L.stps & 1 Taxi. stp) |
| Rejected take off | 5 stops                     |

Testing energy of the sub-scale dynamometer ITAR restricted

# Temperature Profile at Landing condition

The thermocouple was located 5 mm from the sliding surface



Temperature profile during normal landing Stop of conventional carbon-carbon composites and PCM-graphitic foam based composites.

ITAR restricted

# Temperature Profile at Rejected Takeoff condition

The thermocouple was located 5 mm from the sliding surface



ITAR restricted



University of Illinois at Urbana-Champaign

I ILLINOIS

# Autonomic Healing Research Team



Faculty Scott White, Namey Sottos:
Philipper Ceubelle, Jeff
Moore, Paul Braun,
Jennifer Lewis

Students: Eric Brown, Joe Rule, Daniel Therriault, Jeff Thompson, Mike Kessler\*, Suresh Sriram\*, Sabarivasan Viswanathan\*

Support: UIUC-CRI AFOSR Motorola Beckman Institute

www.autonomic.uiuc.edu



Authoritonny

The ability to function in an independent and automatic fashion



site specific fashion without manual intervention. The ability to repair damage in an automatic and Autonomic or Self-healing Functionality:

### Our Goal?





### Siduquiral Composites

Matrix Cracking

- Interfacial debonding
  - › Ply delamination
- Microelectronics
- Interconnect fatigue
- Polymer encapsulate failure
- Adhesives
- Microcracking
- Cracks are often deep in a structure where detection is costly and difficult
- Repair of cracks by external intervention is often impossible





Cracking in cross-ply laminate Jennings (1990)

## Self-Healing Concept



# Self-Healing Materials

### Goals:

- 100% recovery of mechanical integrity
- Continuous healing over lifetime
- Seamless integration in material structure

microcapsule ~

-catalyst



### Research Needs:

healing agent

- Reactive materials development
- Environmental stability
- Mesoscale integration and fabrication
- Multiscale characterization
- Multiscale modeling

polymerized nealing agent



# **Epoxy Healing Efficiency**

$$\eta = K_{Ic}^{healed} \, / K_{Ic}^{virgin}$$





## Healed Fracture Surface





## polymerized DCPD film on fracture surface

### **Healing Kinetics**







## **Multiscale Modeling of Fatigue Response of** Self-Healing Composite

### Objective:

Model low and high-cycle fatigue response of autonomic healing in polymeric materials systems

Realistic (simplified)

models of healing
agent structure

Local estimates of elastic modulus, reaction rates and tensile strength

### Coerse grain Simulations

Cure-dependent stiffness and failure models

multiscale supporting and

validating experiments

- multilevel numerical tools

Combination of

Approach:

Cure kinetics model

Weightonesia Civipia Simulkidions

LEVEL 3

FATIGUE PREDICTION

Beckman Institute for Advanced Science and Technology

I ILLINOIS

# **Tech Transfer: Microelectronics**

Sample to the contract of the Colleionaithe mork with Dr. Antehaw Skipper Motoroki Laiboraliounes







## Woven Composites

interbinition itamine (deleminetion) is commone

- low energy impact
- manufacturing defect
- initiate at stress concentrations such as holes and microcracks
- interstitial areas serve as storage sites for the microcapsules.



# Graphite/Epoxy Healing Efficiency



Beckman Institute for Advanced Science and Technology





polymerized DCPD

# **Tech Transfer: Cryogenic Storage Tanks**

Signater Tainks and Suparconductivity Applications AFRILMS STITT "Composite Weiterials to Gryoganic

- Lead by GU Astospace, LLC (founded 1995)

= UIUG subcontract

– POC: Captain Brandon Arritt, Kirtland AFB



New Healing Agent:







exo - DCPD

endo - DCPD

ILLINOIS



## Next Generation Self-Healind

### University of Illinois at Urbana-Champaign Scott White Scott White I -- Sana-Cham

1st Air Force Workshop on "Multifunctional Aerospace Materials"







### **Current Limitations**

- temperatures & catalyst concentrations) Relatively slow healing (@ reasonable
- Catalyst cost, stability @ high temp, exposure to O<sub>2</sub>
- No ability to replenish healing agent



### New Healing Concepts

- ROMP and ROP based approaches
- Cyclic esters, carbonates, ...
- Mechanochemistry approaches
- Microvascular Networks



SOUR DENEZHION TO SEEDING

 Application of a stress field lowers energy barrier to reactive state

Radical generation is coupled directly (and tailored?) to mechanical field

Candidate molecules have been identified that undergo Bergman cyclization to test concept





### Mechanochemistry:

radicals generated on freshly fractured surfaces Develop "catalyst-free" systems utilizing the

#### ISSUES:

- Radical turnover (amplification) by catalytic chain transfer processes
- Radical trapping (radical acceptors have been identified)
- Can we deliver monomer before secondary events (radical recombination, quenching,...) take place?



## Microvascular Networks

Compartmentalization to Circulation







## Microvascular Networks

Herarchiteal offerileitory newworks in

 Key feature at the microscale is pervasive and interconnected system of microchannels



# **Microvascular Network Fabrication**



Robotically controlled deposition (RCD) machine





10 ? m















TILLINOIS



Jana

Side view



### **Isolated Flow Paths**



Top view



Side view





Series of mixing

towers (3-D)



Beckman Institute for Advanced Science and Technology

\*; all scale bars are 500 ? m.



## A Challenge for Mechanics...

- Multituretionality can be (and perhaps should be) led by the mechanics community.
- This is an opportunity as a community to step to the forefront and lead the next generation of materials developments.
- We MUST reach out to other disciplines and facilitate collaborative research from the ground up.
- We're talking about new materials, not bonding old ones together.



### Thermally Re-mendable Cross-linked Polymeric Materials

### Xiangxu Chen

Department of Chemistry & Biochemistry University of California, Los Angeles Exotic Materials Institute

### Polymeric Materials

| Molecules Chemical Bonds

chemical bonds should be re-mendable. A material formed by re-connectable







# Highly cross-linked re-mendable polymeric materials

Small, J. H.; Loy, D. A.; Wheeler, D. R. McElhanon, J. R.; Saunders, R. S. US Patent, 6,271,335 B1 (2001).

Loy, D. A.; Wheeler, D. R.; Russick, E. M.; McElhanon, J. R.; Saunders, R. S. US Patent, US 6,337,384 B1 (2002).

### Synthesis of monomers

### Mechanical properties

|                        | 3M4F    | 2MEP4F | Epoxy<br>Resins | Unsat<br>Polyesters | ASTM<br>Test methods |
|------------------------|---------|--------|-----------------|---------------------|----------------------|
| Tensile                |         |        |                 |                     | D638                 |
| Strength (MPa)         | 89      | `      | 27-88           | 4-88                |                      |
| Modulus (GPa)          | 1       |        | 2.4             | 2-4.4               |                      |
| Elongation (%)         | 1.6-4.7 |        | 3-6             | <2.6                |                      |
| Ultimate Tensile (MPa) | 241     | 234    |                 |                     |                      |
| Compression            |         |        |                 | _                   | D695                 |
| Strength (MPa)         | 121     |        | 102-170         | 88-204              |                      |
| Modulus (GPa)          | 3.6     | 3.7    | 3.4             |                     |                      |
| Strain to Failure (%)  | 25      | 24     |                 |                     |                      |
| Flexural               |         |        |                 |                     | D790                 |
| Strength (MPa)         | 143     |        | 88-143          | 58-156              |                      |
| Modulus (GPa)          | 3.5     |        |                 | 3.4-4.2             |                      |
| Young's Modulus        | 4.72    | 4.41   |                 |                     |                      |
| Poisson Ratio          | 0.32    | 0.36   |                 |                     |                      |
| Density                | 1.37    | 1.31   |                 |                     |                      |

(a)80?C, 1 h; (b)150?C, 15 min and then quenched in 77K Thermal reversibility of polymer 3M4F



Thermal treatment

Healing (mending) efficiency of polymer 3M4F











#### Healing effect





#### Summary

multiple times. The healing process does Thermally re-mendable polymers have been developed, which can be healed not require additional ingredients.

### Future designs of re-mendable polymeric materials

- Better mechanical properties
- Higher glass transition temperature
- Smart structures with self-response ability (shape memory)



























































## Acknowledgments



Professor Fred Wud

Prof. Ajit Mal

Prof. Kani Ono

Prof. Steven R. Nutt

SSS ASZ SSS

### Differences of healing process between our remendable polymers and linear polymers

Regeneration of chain entanglement is necessary for linear polymers

Much higher operating temperatures (PP: 250-300°C)

Manual pressure





Bucknall, C. B.; Drinkwater, I. C.; Smith G. R. Polym. Eng. Sci. <u>20</u>, 1980, 432.

#### Move and Multi-Hunctiona

Michael Wishom

and C Ian Bond



## Shaped fibres made at Bristo









### Impact detection with hollow Tibre CODDOSTES



- Hollow fibre layer on surface of structure
- Fibre crushing absorbs impact energy
- · Leaves visible dent
- Layer can be tuned to impact severity



#### Active fibres



- Fibres can be filled with active component to create multi-functional composites
- Magnetic material for electric generation
- Stealth



## Bleeding composites



- Fibres can be filled with dye
   that bleeds out and allows
   damage to be detected
- Uncured resin in fibres can act as healing agent



## Bleeding composites



- mixed with
- clearly visible inder UV ight



# Self-healing and Electronic Assemblies

Distinguished Member of the Technical Staff Andrew Skipor

Motorola Advanced Technology Center Mechanical Sciences Group 847-576-0754

"MULTIFUNCTIONAL AFROSPAGE MATERIALS" October 23-24, 2002, Purdue University, 1st AIR FORCE WORKSHOP ON W. Lafayette, IN



MOTOROLA and the Stylized M Logo are registered in the US Patent 8
Trademark Office, All other product or service names are the property
of their respective owners. © Motorola, Inc. 2002.





Solder strain drivers:

 $\sim$   $\Delta$ P (load or deflection), L\*

Bending Fatigue Reliability



MOTOROLA LABS MOTOROLA and the Stylized M Logo are registered in the US Patent & Intelligence (A) every strong manner are the property intelligence (A) every of their respective owners. © Motorola, Inc. 2002.

Thermal Fatigue Reliability

~ (α1-α2), ΔT



Electronic Package



bend fatigue.



high rate flexure. Drop Impact,



"Squeeze" test.













Model microelectronic package, Resin layer with self-healing "stress concentration." | Material.



Examples of test specimen fracture





MOTOROLA and the Stylized M Logo are registered in the US Patent
Trademark Office. All other product or service names are the propert





#### Future Considerations

- Challenge: Transition concepts to PCB Laminate
- Room temperature self-heal process Can it work at − 40 € to 125 € ? No premature activation Potential requirements: Non-Invasive

## Electronic Assembly Processing

- \* Tolerate product operating temperatures (-40 C to 125 C)
- $pprox {\sf T}$ olerate component/PCB solder assembly processing temperatures  $(\sim 240$  C for 15 seconds)

Can the PCB be recycled ?



A MONOROLON

US Patent  ${f k}$  intelligence igwedge igwed igwedge igwed igwedge igwedge igwedge igwedge igwedge