Course Overview

Lecture 1, Convex Optimization (Part a)

National Taiwan University

February 24, 2023

Table of contents

- Mathematical Optimization
 - Mathematical Optimization
 - Applications
- 2 Linear Programming and Least-Squares Problems
 - Least-Squares Problems
 - Linear Programming
- 3 Convex Optimization and Nonlinear Optimization
- Outline of the Course
 - Outlines
 - Notations

Mathematical Optimization Problems

Mathematical Optimization Problems

A mathematical optimization problem, or just optimization problem, has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, i = 1,...,m,$

where

- $x = [x_1, ..., x_n]^T \in \mathbf{R}^n$: optimization variable of the problem,
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function,
- $f_i: \mathbf{R}^n \to \mathbf{R}$: constraint functions, and
- $b_i \in \mathbf{R}$

Mathematical Optimization Problems

Mathematical Optimization Problems

A mathematical optimization problem, or just optimization problem, has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, ..., m,$

- $x = [x_1, ..., x_n]^T \in \mathbf{R}^n$: optimization variable of the problem
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}$: constraint functions

Optimal Solutions

A vector x^* is called **optimal**, or a **solution** of the problem, if it has the smallest objective value among all vectors that satisfy the constraints: for any $z \in \mathbf{R}^n$ with $f_1(z) < b_1, ..., f_m(z) < b_m$, we have

$$f_0(z) > f_0(x^*).$$

Linear Programming

Linear Programming

An optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$,

is called a **linear program** if the objective and constraint functions $f_0, f_1, ..., f_m$ are linear:

$$f_i(\alpha x + \beta y) = \alpha f_i(x) + \beta f_i(y)$$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$.

Linear Programming & Nonlinear Programming

Linear Programming

An optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$,

is called a **linear program** if the objective and constraint functions $f_0, f_1, ..., f_m$ are linear:

$$f_i(\alpha x + \beta y) = \alpha f_i(x) + \beta f_i(y)$$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$.

Nonlinear Programming

An optimization problem that is not linear is called a **nonlinear program**.

Convex Optimization Problems

Convex Optimization Problems

An optimization problem is called a **convex optimization problem** if the objective and constraint functions $f_0, f_1, ..., f_m$ are **convex**:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$, with $\alpha, \beta \geq 0, \alpha + \beta = 1$.

- Convex optimization problems are more general than linear programs.
- There are very effective algorithms that can reliably and efficiently solve even large convex problems.

Applications

- A great variety of practical problems can be cast in the form of a mathematical optimization problem.
- It is widely used in engineering, electronic design automation, automatic control systems, and optimal design problems arising in civil, chemical, mechanical, and aerospace engineering.
- Optimization is used for problems arising in network design and operation, finance, supply chain management, scheduling, and many other areas.
- The list of applications is still steadily expanding.

- Mathematical Optimization
 - Mathematical Optimization
 - Applications
- 2 Linear Programming and Least-Squares Problems
 - Least-Squares Problems
 - Linear Programming
- 3 Convex Optimization and Nonlinear Optimization
- 4 Outline of the Course
 - Outlines
 - Notations

Linear Programming and Least-Squares Problems

- We briefly describe two commonly used problems, namely, least-squares problems and linear programming.
- Least-squares: quadratic objective function; no constraints (nonlinear).
- Linear programming: linear objective functions; linear constraint functions.
- Both are special cases of convex optimization problems.

Least-Squares Problems

Least-Squares Problems

A least-squares problem is an optimization problem with no constraints (i.e., m=0) and an objective which is a sum of squares of terms of the form $a_i^Tx-b_i$:

minimize
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$
,

where $A \in \mathbf{R}^{k \times n}$ (with $k \geq n$), a_i^T are the rows of A, $b_i \in \mathbf{R}$, and the vector $x \in \mathbf{R}^n$ is the optimization variable.

Solving Least-Squares Problems

• The solution of a least-squares problem

minimize
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

can be reduced to solving a set of linear equations,

$$(A^T A)x = A^T b.$$

So we have the analytical solution $x=(A^TA)^{-1}A^Tb$ (when A^TA is invertible).

• The least-squares problem can be solved in a time approximately proportional to n^2k , with a known constant.

Using Least-Squares

- Least-squares has many statistical interpretations, e.g., as maximum likelihood estimation of a vector x, given linear measurements corrupted by Gaussian measurement errors (e.g., b = Ax + n).
- To recognize a problem as a least-squares problem, we need to verify that
 - the objective is a quadratic function;
 - whether the associated quadratic form is positive semidefinite.
- Examples:
 - weighted least-squares: minimize $\sum_{i=1}^{k} w_i (a_i^T x b_i)^2$, where $w_1, ..., w_k$ are positive.
 - regularization: minimize $\sum_{i=1}^k (a_i^T x b_i)^2 + \rho \sum_{i=1}^n x_i^2$ where $\rho > 0$.

Linear Programming

Linear Programming

A linear programming has the following form:

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, i = 1, ..., m,$

where the vectors $c, a_1, \cdots, a_m \in \mathbf{R}^n$ and scalars $b_1, \cdots, b_m \in \mathbf{R}$.

Solving Linear Programs

- No simple analytical formula for the solution to a linear problem.
- Very effective methods exist for solving them
 - Simplex method (Dantzig 1947).
 - Interior-point method.
- Complexity
 - Simplex method: usually efficient (average case polynomial time, but worst-case exponential time)
 - Interior-point method: in the order of n^2m .
- Considered a mature technology.
 - But it's still challenging to solve extremely large problems, or with real-time computing requirements.

Using Linear Programming

Example - Chebyshev approximation problem

Consider the Chebyshev approximation problem:

minimize
$$\max_{i=1,\dots,k} |a_i^T x - b_i|,$$

where $x \in \mathbf{R}^n$ is the variable, and $a_1,...,a_k \in \mathbf{R}^n,b_1,...,b_k \in \mathbf{R}$.

The objective can be rewritten as

$$\max_{i=1,...,k} |a_i^T x - b_i| = ||Ax - b||_{\infty},$$

where $A \in \mathbf{R}^{k \times n}$ whose ith row is a_i^T and $b = \begin{bmatrix} b_1, ..., b_k \end{bmatrix}^T$.

Using Linear Programming

Example - Chebyshev approximation problem

Consider the Chebyshev approximation problem:

minimize
$$\max_{i=1,\ldots,k} |a_i^T x - b_i|,$$

where $x \in \mathbf{R}^n$ is the variable, and $a_1,...,a_k \in \mathbf{R}^n,b_1,...,b_k \in \mathbf{R}$.

The Chebyshev approximation problem can be solved by solving the linear program

minimize
$$t$$
 subject to
$$a_i^Tx-t\leq b_i, i=1,...,k$$

$$-a_i^Tx-t\leq -b_i, i=1,...,k$$

with variables $x \in \mathbf{R}^n$ and $t \in \mathbf{R}$.

- Mathematical Optimization
 - Mathematical Optimization
 - Applications
- 2 Linear Programming and Least-Squares Problems
 - Least-Squares Problems
 - Linear Programming
- 3 Convex Optimization and Nonlinear Optimization
- Outline of the Course
 - Outlines
 - Notations

Convex Optimization Problems

Convex Optimization Problems

A convex optimization problem has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, ..., m,$

where the objective and constraint functions $f_0, f_1, ..., f_m$ are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$, with $\alpha, \beta \geq 0, \alpha + \beta = 1$.

 Least-squares and linear programming are both special cases of convex optimization problems.

Solving Convex Optimization Problems

- No analytical formula for the solution of convex optimization problems in general.
- There are very effective methods for solving convex optimization problems.
 - E.g., interior-point methods

Nonlinear Programming

- Nonlinear optimization (or nonlinear programming) is the term used to describe an optimization problem when the objective or constraint functions are not linear, but not known to be convex.
- No effective methods for solving the general nonlinear programming problem yet.
- Methods for the general nonlinear programming problem therefore take several different approaches, each of which involves some compromise.

- Mathematical Optimization
 - Mathematical Optimization
 - Applications
- 2 Linear Programming and Least-Squares Problems
 - Least-Squares Problems
 - Linear Programming
- Convex Optimization and Nonlinear Optimization
- Outline of the Course
 - Outlines
 - Notations

Outline of the Course

- Theory
 - Convex sets.
 - Convex functions.
 - Convex optimization problems.
 - Duality.
- Algorithms
 - Unconstrained minimization.
 - Equality constrained minimization.
 - Interior-point methods.
- Applications

Notations (1/3)

- R: the set of real numbers.
- $\mathbf{R}_+ = \{x \in \mathbf{R} \mid x \ge 0\}$: the set of nonnegative real numbers.
- $\mathbf{R}_{++} = \{x \in \mathbf{R} \mid x > 0\}$: the set of positive numbers.
- \mathbf{R}^n : the set of real *n*-vectors. All vectors in \mathbf{R}^n and all scalars in \mathbf{R} are denoted by italic lower-case letters.
- $\mathbf{R}^{m \times n}$: the set of real $m \times n$ matrices. All matrices are denoted by italic upper-case letters. ¹
- 1: a vector whose components are all one.
- If $a, b, c \in \mathbf{R}$, then the following notations denote the same vector in \mathbf{R}^3 .

$$(a,b,c) = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a & b & c \end{bmatrix}^T$$

 $^{^{1}}$ We consider ${f R}$, ${f R}^{1}$, and ${f R}^{1 imes 1}$ to be the same set. That is, a 1 imes 1 matrix

Notations (2/3)

- \mathbf{S}^k : the set of symmetric $k \times k$ matrices ($\mathbf{S}^k \subseteq \mathbf{R}^{k \times k}$).
- \mathbf{S}_{+}^{k} : the set of symmetric nonnegative definite (i.e., positive semidefinite) $k \times k$ matrices.
- \mathbf{S}_{++}^k : the set of symmetric positive definite $k \times k$ matrices.
- $f: \mathbf{R}^p \to \mathbf{R}^q$
 - ullet denotes an ${f R}^q$ -valued function on some subset of ${f R}^p$.
 - dom f: denotes the domain of f (i.e., dom $f \subseteq \mathbf{R}^p$).
 - Note: This is rather a non-standard notation, but is adopted in the textbook due to the convenience in describing many convex problems.
- ullet Example: $\log: \mathbf{R} o \mathbf{R}$ with $\mathbf{dom} \ \log = \mathbf{R}_{++}$.
 - Note: The base of the logarithm used in this series of slides, if not explicitly indicated, is e instead of 10.

Notations (3/3)

- Matrices are denoted by uppercase italics letters. $(e.g., A \in \mathbf{R}^{3 \times 4})$
- Row vectors and scalars are denoted by lowercase italics letters. (e.g., $x \in \mathbf{R}^n$, $c \in \mathbf{R}$)
- For a matrix $A \in \mathbf{R}^{m \times n}$, $\mathcal{R}(A)$ and $\mathcal{N}(A)$ denote the column space and null space, respectively, of A.
- Color codes: Boldfaced red words refer to a definition.
 Words with other colors usually refer to a term that was defined some time earlier.