

Practical Machine Learning

Day 8: SEP23 DBDA

Kiran Waghmare

Decision Tree Learning

- We use labeled data to obtain a suitable decision tree for future predictions
 - We want a decision tree that works well on unseen data, while asking as few questions as possible

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

Decision Tree Learning

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

Sunny	Temperature	Humidity	Wind	Play Tennis?
'n	Hot	High	Weak	No
S	Hot	High	Strong	No
쏭	Mild	High	Weak	No
Outlook	Cool	Normal	Weak	Yes
ō	Mild	Normal	Strong	Yes

Temperature	Humidity	Wind	Play Tennis?
Hot	High	Weak	Yes
Cool	Normal	Strong	Yes
Mild	High	Strong	Yes
Hot	Normal	Weak	Yes

Outlook = Overcast

Outlook = Rainy

,	Temperature	Humidity	Wind	Play Tennis?
Ī	Mild	High	Weak	Yes
	Cool	Normal	Weak	Yes
	Cool	Normal	Strong	No
	Mild	Normal	Weak	Yes
	Mild	High	Strong	No

Decision Tree Learning

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

What is a good attribute?

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

- Which attribute provides better splitting?
- Why?
 - Because the resulting subsets are more pure
 - Knowing the value of this attribute gives us more information about the label (the entropy of the subsets is lower)

Information Gain

Entropy

Entropy measures the degree of randomness in data

• For a set of samples X with k classes:

$$entropy(X) = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

where p_i is the proportion of elements of class i

Lower entropy implies greater predictability!

Information Gain

 The information gain of an attribute a is the expected reduction in entropy due to splitting on values of a:

$$gain(X, a) = entropy(X) - \sum_{v \in Values(a)} \frac{|X_v|}{|X|} entropy(X_v)$$

where X_v is the subset of X for which a = v

Best attribute = highest information gain

In practice, we compute entropy(X)

Class	Color	Des it fly?) [
Mammal	Brown	No	
Mammal	White	No	
Bird	Brown	Yes	
Bird	White	Yes	
Mammal	White	No	
Bird	Brown	No	
Bird	White	Yes	

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy\left(X_{color=brown}\right) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} \approx 0.918 \qquad entropy\left(X_{color=white}\right) = 1$$

$$entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$entropy(X_{fly=yes}) = 0$$

$$gain(X, fly) = 0.985 - \frac{3}{7} \cdot 0 - \frac{4}{7} \cdot 0.811 \approx 0.521$$

Gini Impurity

Gini Impurity

 Gini impurity measures how often a randomly chosen example would be incorrectly labeled if it was randomly labeled according to the label distribution

Error of classifying randomly picked fruit with randomly picked label

For a set of samples X with k classes:

$$gini(X) = 1 - \sum_{i=1}^{k} p_i^2$$

where p_i is the proportion of elements of class i

Can be used as an alternative to entropy for selecting attributes!

Best attribute = highest impurity decrease

In practice, we compute gini(X) only

once!

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$gini (X) = 1 - \left(\frac{3}{7}\right)^{2} - \left(\frac{4}{7}\right)^{2} \approx 0.489$$

$$gini (X_{color=brown}) = 1 - \left(\frac{1}{3}\right)^{2} - \left(\frac{2}{3}\right)^{2} \approx 0.444 \qquad gini (X_{color=white}) = 0.5$$

$$\triangle gini (X, color) = \mathbf{0.489} - \frac{3}{7} \cdot \mathbf{0.444} - \frac{4}{7} \cdot \mathbf{0.5} \approx \mathbf{0.013}$$

$$gini (X_{fly=yes}) = 0 \qquad gini (X_{fly=no}) = 1 - \left(\frac{3}{4}\right)^{2} - \left(\frac{1}{4}\right)^{2} \approx 0.375$$

$$\triangle gini (X, fly) = \mathbf{0.489} - \frac{3}{7} \cdot \mathbf{0} - \frac{4}{7} \cdot \mathbf{0.375} \approx \mathbf{0.274}$$

Entropy versus Gini Impurity

- Entropy and Gini Impurity give similar results in practice
 - They only disagree in about 2% of cases "Theoretical Comparison between the Gini Index and Information Gain Criteria" [Răileanu & Stoffel, AMAI 2004]
 - > Entropy might be slower to compute, because of the log

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - <u>Postpruning</u>: *Remove branches* from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

- How does the ID3 algorithm handle numerical attributes?
 - Any numerical attribute would almost always bring entropy down to zero
 - > This means it will completely overfit the training data

Consider a numerical value for humidity

Outlook	ı emperature	Humidity	Wind	Play Tennis?
Sunny	Hot	90	Weak	No
Sunny	Hot	87	Strong	No
Overcast	Hot	93	Weak	Yes
Rainy	Mild	89	Weak	Yes
Rainy	Cool	79	Weak	Yes
Rainy	Cool	59	Strong	No
Overcast	Cool	77	Strong	Yes
Sunny	Mild	91	Weak	No
Sunny	Cool	68	Weak	Yes
Rainy	Mild	80	Weak	Yes
Sunny	Mild	72	Strong	Yes
Overcast	Mild	96	Strong	Yes
Overcast	Hot	74	Weak	Yes
Rainy	Mild	97	Strong	No

- Numerical attributes have to be treated differently
 - Find the best splitting value

$$gain(X, a, t) = entropy(X) - \frac{|X_{a \le t}|}{|X|} entropy(X_{a \le t}) - \frac{|X_{a > t}|}{|X|} entropy(X_{a > t})$$

Humidity	Play Tennis?		Humidity	Play Tennis
90	No		59	No
87	No		68	Yes
93	Yes		72	Yes
89	Yes	Ct	74	Yes
79	Yes	Sort	77	Yes
59	No		79	Yes
77	Yes		80	Yes
91	No		87	No
68	Yes		89	Yes
80	Yes		90	No
72	Yes		91	No
96	Yes		93	Yes
74	Yes		96	Yes
97	No		97	No

Candidate

gain(X, humidity, 83.5) =

- Numerical attributes have to be treated differently
 - Find the best splitting value

$$gain(X, a, t) = \underbrace{entropy(X)}_{} - \frac{|X_{a \le t}|}{|X|} entropy(X_{a \le t}) - \frac{|X_{a > t}|}{|X|} entropy(X_{a > t})$$

Humidity	Play Tennis?
90	No
87	No
93	Yes
89	Yes
79	Yes
59	No
77	Yes
91	No
68	Yes
80	Yes
72	Yes
96	Yes
74	Yes
97	No

Humidity	Play Tennis?
59	No
68	Yes
72	Yes
74	Yes
77	Yes
79	Yes
80	Yes
87	No
89	Yes
90	No
91	No
93	Yes
96	Yes
97	No

Mean of each consecutive

70	
73	
75.5	
78	
79.5	
83.5	
88	
89.5	
90.5	
92	
94.5	
96.5	

Candidate split values

63

gain(X, humidity, 83.5) = 0.94

- Numerical attributes have to be treated differently
 - > Find the best splitting value

Humidity	Play Tennis?		
90	No		
87	No		
93	Yes		
89	Yes		
79	Yes		
59	No		
77	Yes		
91	No		
68	Yes		
80	Yes		
72	Yes		
96	Yes		
74	Yes		
97	No		

Humidity	Play Tennis?		
59	No		
68	Yes		
72	Yes		
74	Yes		
77	Yes		
79	Yes		
80	Yes		
87	No		
89	Yes		
90	No		
91	No		
93	Yes		
96	Yes		
97	No		

Information

83.5 is the
best
splitting
value with
an
information
gain of
0.450

Handling Missing Values

Handling missing values at training time

Does it fly?	Color	Class
No	White	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

No White Mammal
No Brown Bird
Yes White Bird

$$P(Yes|Bird) = \frac{2}{3} = 0.66$$

$$P(No|Bird) = \frac{1}{3}$$

$$P(Brown|Mammal)$$

= 0

= 0.33

- Simply ignoring them would mean throwing away a lot of information
- There are better ways of handling missing values:
- > Set them to the most common value
- Set them to the most probable value given the label

$$P(White|Mammal)$$

= 1

Handling missing values at training time

Does it fly?	Color	Class
No	White	Mammal
No	White	Mammal
No	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

- Data sets might have samples with missing values for some attributes
- Simply ignoring them would mean throwing away a lot of information
- There are better ways of handling missing values:
- > Set them to the most common value
- > Set them to the most probable value given the label
- Add a new instance for each possible value
- ➤ Leave them unknown, but discard the sample when evaluating the gain of that attribute

 (if the attribute is chosen for splitting, send the instances
 - with unknown values to all children)
- ➤ Build a decision tree on all other attributes (including label) to predict missing values
 - (use instances where the attribute is defined as training data)

Decision Boundaries

Decision trees produce non-linear decision boundaries

Support Vector Machines

Decision Tree

Decision Trees: Training and Inference

Random Forests

(Ensemble learning with decision trees)

Random Forests

- Random Forests:
 - Instead of building a single decision tree and use it to make predictions, build many slightly different trees and combine their predictions
- We have a single data set, so how do we obtain slightly different trees?
 - 1. Bagging (Bootstrap Aggregating):
 - ➤ Take random subsets of data points from the training set to create N smaller data sets
 - > Fit a decision tree on each subset
 - 2. Random Subspace Method (also known as Feature Bagging):
 - Fit N different decision trees by constraining each one to operate on a random subset of features

Bagging at training time

Bagging at inference time

Random Subspace Method at training time

Random Subspace Method at inference time

Random Forests

Mass (g)	Color	Texture	рН	Label
84	Green	Smooth	3.5	Apple
121	Orange	Rough	3.9	Orange
85	Red	Smooth	3.3	Apple
101	Orange	Smooth	3.7	Orange
111	Green	Rough	3.5	Apple
•••				
117	Red	Rough	3.4	Orange

Bagging +
Random Subspace Method +
Decision Tree Learning Algorithm

Ensemble Learning

- Ensemble Learning:
 - Method that combines multiple learning algorithms to obtain performance improvements over its components
- Random Forests are one of the most common examples of ensemble learning
- Other commonly-used ensemble methods:
 - Bagging: multiple models on random subsets of data samples
 - Random Subspace Method: multiple models on random subsets of features
 - Boosting: train models iteratively, while making the current model focus on the mistakes of the previous ones by increasing the weight of misclassified samples

Boosting

Boosting

DIFFERENT ALGORITHMS SAME DATA K-NN FINAL DECISION ALGORITHM ANSWER DECISION TREE

SVM

STACKING

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Summary

- Ensemble Learning methods combine multiple learning algorithms to obtain performance improvements over its components
- Commonly-used ensemble methods:
 - Bagging (multiple models on random subsets of data samples)
 - Random Subspace Method (multiple models on random subsets of features)
 - Boosting (train models iteratively, while making the current model focus on the mistakes of the previous ones by increasing the weight of misclassified samples)
- Random Forests are an ensemble learning method that employ decision tree learning to build multiple trees through bagging and random subspace method.
 - > They rectify the overfitting problem of decision trees!