Contents

- LINEAR SCALE
- LOGLOG SCALE
- SCALING FACTOR LOGLOG SCALE
- PLOTTING EXPERIMENTAL DATA
- Combining Multiple Trials
- Confidence Plot

LINEAR SCALE

```
close all;
clear;
clc;
%----
figure
n = [1,2,3];
for z = 1:length(n) % Grid of 1 spacing from 1 to 3
    x = 0.1 : 0.01 : 10; % Grid of 0.01 spacing from 0 to 10
    y = 1./((x).^n(z)); % Evaluate function on xvals
    plot(x, y); % Create line plot with yvals against xvals
    hold on;
end
title('Linear Scale of P=1/r^n')
xlabel('r,m')
ylabel('1/x^n')
grid on
hold off;
legend('n=1','n=2','n=3')
```


LOGLOG SCALE

```
figure
for n= 1:1:3 % Grid of 1 spacing from 1 to 3
    xvals = 0:0.01:10; % Grid of 0.01 spacing from 0 to 10
    yvals = 1./((xvals).^n); % Evaluate function on xvals
    loglog(xvals, yvals); % Create line plot with yvals against xvals
    hold on;
end
title('LogScale of P=1/r^n')
xlabel('r,m')
ylabel('P,W/m^2')
grid on
hold off;
legend('n=1','n=2','n=3')
```


SCALING FACTOR LOGLOG SCALE

```
figure
for c= [1,2,5] % Grid of 1 spacing from 1 to 3
     xvals = 0:0.01:10; % Grid of 0.01 spacing from 0 to 10
    yvals = c./((xvals).^2); % Evaluate function on xvals
    loglog(xvals, yvals); % Create line plot with yvals against xvals
    hold on;
end
title('Scaling Factor LogScale');
xlabel('r,m')
ylabel('C/x^2')
grid on
hold off;
legend('C=1','C=2','C=5')
```


PLOTTING EXPERIMENTAL DATA

```
type p-vs-r-001.txt
M = readmatrix('p-vs-r-001.txt');
figure
loglog( M(:,1),M(:,2), '.b' );
%plotting the curve overlay
%C=P*r^2 = 15.86
hold on;
xvals = 0:0.01:10; % Grid of 0.01 spacing from 0 to 10
yvals = 15.86087./((xvals).^2); % Evaluate function on xvals
loglog(xvals, yvals, 'r'); % Create line plot with yvals against xvals
xlabel('r,m')
ylabel('P,W/m^2')
title('Plotting Experimental Data')
grid on
hold off;
legend('P(r), trial001','C/r^n model')
```

```
r,m P, W/m^2
0.100000
                1511.856711
                384.279698
0.199000
                179.814457
0.298000
                92.774489
0.397000
                64.470905
0.496000
0.595000
                45.643256
0.694000
                29.970237
0.793000
                22.917235
0.892000
                22.148909
0.991000
                14.024184
```

1.090000	12.274986
1.189000	11.600084
1.288000	8.688495
1.387000	8.686138
1.486000	8.784994
1.585000	6.682864
1.684000	6.051874
1.783000	4.065002
1.882000	5.467859
1.981000	4.697397
2.080000	2.649941
2.179000	2.628771
2.278000	3.084849
2.377000	2.728517
2.476000	3.657156
2.575000	2.939120
2.674000	1.644274
2.773000	1.259111
2.872000	2.476950
2.971000	2.126614
3.070000	2.469840
3.169000	1.358545
3.268000	1.050773
3.367000	1.766830
3.466000	1.127909
3.565000	1.263900
3.664000	0.686027
3.763000	1.870860
3.862000	1.120045
3.961000	0.530306
4.060000	0.969743
4.159000	0.572033
4.258000	1.369573
4.357000	1.419265
4.456000	0.877961
4.555000	0.558141
4.654000	1.406746
4.753000	0.901398
4.852000	0.337624
4.951000	0.365820
5.050000	0.883102
5.149000	0.637107
5.248000	0.178746
5.347000	0.594841
5.446000	1.103794
5.545000	0.724752
5.644000	1.038881
5.743000	0.922686
5.842000	0.526221
5.941000	0.652020
6.040000	0.788423
6.139000	0.590919
6.238000	0.152515
6.337000	0.133436
6.436000	0.249424
6.535000	0.667869
6.634000	0.058981
6.733000	0.157717
6.832000	0.059836
6.931000	0.473333
7.030000	0.643710

7.129000	0.543248
7.228000	0.353388
7.327000	0.138236
7.426000	0.668816
7.525000	0.570409
7.624000	0.662728
7.723000	0.603355
7.822000	0.469310
7.921000	0.323940
8.020000	0.436790
8.119000	0.115821
8.218000	0.397742
8.317000	0.564217
8.416000	0.021153
8.515000	0.121753
8.614000	0.073329
8.713000	0.021975
8.812000	0.166148
8.911000	0.019108
9.010000	0.513786
9.109000	0.156024
9.208000	0.197244
9.307000	0.562634
9.406000	0.390332
9.505000	0.183600
9.604000	0.078854
9.703000	0.409229
9.802000	0.008398
9.901000	0.035569
10.000000	0.057569


```
files = dir('*.txt');
figure % Create scatter plot with P against r
for n= 1:length(files) % all the files
    name=files(n).name;
    M = readmatrix(name);
    p1 = loglog( M(:,1),M(:,2),'b');
    hold on
end
%C/r^n model
xvals = 0:0.01:10; % Grid of 0.01 spacing from 0 to 10
yvals = 15.86087./((xvals).^2); % Evaluate function on xvals
p2 = loglog(xvals, yvals, 'black'); % Create line plot with yvals against xvals
% N = zeros(101,length(files));
\% create N with all the corresponding r's by rows and P's by columns
for n= 1:length(files)
    name = files(n).name;
   M = readmatrix(name);
   M = M(:,2);
    N(:,n) = M;
end
% Create a matrix with all the mean P(r)
M = readmatrix(name);
A(:,1) = M(:,1);
mean = mean(N,2);
A(:,2) = mean;
p3 = loglog(A(:,1), A(:,2),'r'); % Create line plot with yvals against xvals
title('Combining Multiple Trials')
xlabel('r,m')
ylabel('P,W/m^2')
grid on
legend([p1,p2,p3],'P(r), all trials','C/r^n model', 'meanP(r)')
hold off
```


Confidence Plot

```
figure
%C/r^n model
xvals = 0.1:0.1:10; % Grid of 0.01 spacing from 0 to 10
yvals = 15.86087./((xvals).^2); % Evaluate function on xvals
loglog(xvals, yvals,'black'); % Create line plot with yvals against xvals
% create N with all the corresponding r's by rows and P's by columns
for n= 1:length(files)
    name = files(n).name;
    M = readmatrix(name);
    N(:,n) = M(:,2);
    conf0 (n) = prctile(N(n,:), 0);
    conf25 (n) = prctile(N(n,:), 25);
    conf75 (n) = prctile(N(n,:), 75);
    conf100(n) = prctile(N(n,:),100);
end
\% Create a matrix with all the mean P(r)
p3 = loglog(A(:,1), A(:,2), 'r'); % mean plot
hold on
patch([xvals,fliplr(xvals)],[conf25,fliplr(conf75 )],'p','facealpha',0.4)
patch([xvals,fliplr(xvals)],[conf0 ,fliplr(conf100)],'r','facealpha',0.4)
% set(gca,'xscale', 'log', 'yscale', 'log')
loglog(xvals,yvals,'c')
title('Confidence Plot')
xlabel('r,m')
ylabel('P,W/m^2')
grid on
```

hold off legend('MeanP(r)','50% Confidence','100% Confidence' ,'C/r^n model');

Published with MATLAB® R2020a