Submitted to *Operations Research* manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.

Variance Parameter Estimation for the Quantile Indicator Process

Kemal Dinçer Dingeç

Department of Industrial Engineering, Gebze Technical University, 41400 Gebze, Kocaeli, TURKEY, kdingec@yahoo.com

Christos Alexopoulos, David Goldsman, Athanasios Lolos

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, {christos@gatech.edu, sman@gatech.edu, thnlolos@gatech.edu}

James R. Wilson

Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695-7906, jwilson@ncsu.edu

We develop and evaluate estimators for asymptotic variance parameters related to the quantile indicator function process $\{1_{\{Y_k < y\}} : k \ge 1\}$ arising from a steady-state stochastic process $\{Y_k : k \ge 1\}$ The estimators under study are based on the methods of nonoverlapping batch quantiles (NBQ) and standardized time series (STS). We show that the bias terms of these estimators are of the order $O(m^{-1/4})$, where m is the batch size the methods use. We show that a combined estimator incorporating the sum of NBQ and STS area estimators outperforms the individual component estimators in terms of asymptotic mean squared error. We illustrate our work via a Monte Carlo study involving several stochastic processes.

Key words: stationary process; quantile estimation; Geometric-Moment Contraction condition; variance parameter estimation; nonoverlapping batch quantiles; standardized time series.

History: Current version: Quantile-Variance-Parameter-GMC2A-v7-February 26, 2024-20:16.

1. INTRODUCTION

Simulation is often used to analyze the characteristics of complicated stochastic processes. In the case of stationary systems, e.g., "warmed-up" simulations, one might be interested in estimating performance characteristics such as the mean or various quantiles. This article studies an emerging area of simulation output analysis—quantile estimation in steady-state simulations. For instance, what is the 95th percentile of a complicated queueing system's cycle-time distribution? Or what is the 0.90-quantile of the supply chain delivery delay of a much-needed part?

The general game plan in steady-state estimation can be described holistically as follows:

(a) (Basic point estimation.) Calculate the (obvious) point estimator for the unknown parameter of interest.

(b) (Variance estimation.) As a measure of risk, estimate the variance of the basic estimator from (a); one might then use the variance estimate to produce a confidence interval (CI) for the parameter.

For example, we would use the sample mean [resp., the appropriate sample quantile] to estimate the true mean [a particular quantile], and then provide an estimator for the variance of the sample mean [the sample quantile].

Of course, owing to the higher-order moments involved, the variance estimation task (b) is more complicated (and the subject of more research) than the basic point estimation task (a). In addition, with task (b) in mind, we note that the work on variance estimation for the sample mean is mature (for example, see Law 2015, Chapter 9, for a high-level survey on this area), while that for the quantile problem is not quite so developed. Only recently has quantile variance estimation come into vogue in the simulation literature, as researchers seek to study this important measure of risk. A reason for this contemporary interest is that sample quantile variance estimation is regarded as "harder to do" than sample mean variance estimation. In particular, sample quantile variance estimation typically requires more "work" (observations) to do an acceptable job than the analogous sample mean variance estimation problem (see, e.g., Dingeç et al. 2023b).

In order to review relavant archival material on quantile variance estimation, suppose that $\{Y_k : k \ge 1\}$ is a stationary sequence of observations, where stationary could mean are anything from independent and identically distributed (i.i.d.) observations (e.g., independent replications of Asian option pricing simulations) to the more-challenging case of autocorrelated random variables (r.v.'s) (e.g., consecutive cycle times in a queueing system). A number of papers in the simulation literature (for instance, Chu and Nakayama 2012, Calvin and Nakayama 2013, Dong and Nakayama 2017) consider the very special case in which the Y_k 's are i.i.d. r.v.'s and employ various tricks of the trade such as certain variance reduction techniques and standardized time series (STS) variance estimators (Schruben 1983) for better estimator and CI performance. [More references? More details?] There is also a substantial statistics literature involving empirical and quantile processes, even for the dependent case (see, for instance, the various classic references such as Csörgö and Révész 1981, Csörgö 1983, Shorack and Wellner 1986, Csörgö and Horváth 1993, Dehling et al. 2002, Wu 2005, del Barrio et al. 2007), though most of this work deals with estimator convergence properties and is not directly relevant to simulation applications such as those described in the current paper. [VERY important to make sure that I haven't made any false applicability claims and that I haven't missed any obvious refs, especially w/rt the stats literature.]

With real-world implementation in mind, a number of heuristic sequential procedures for quantile estimation have been developed over the years in the simulation literature, pertinent in the case where the Y_i 's are stationary: Alexopoulos et al. (2019) review several of these, including procedures given by Raatikainen (1990) and Chen and Kelton (2006, 2008). Notably, the Sequest method of Alexopoulos et al. (2019) and the Sequem method of Alexopoulos et al. (2015) have emerged as comparatively efficient in terms of quantile

point estimation and quantile variance estimation. Lolos et al. (2022a,b) propose an improved sequential procedure—based on the work herein and to be described in the sequel.

The current paper builds on results from the following predecessors. Dingeç et al. (2023a) establish theory that provides sufficient conditions for quantile estimators from a stationary stochastic process to have finite variance parameters (defined below), while Dingeç et al. (2023b) go through a number of analytical and numerical examples validating the theory presented in the first paper and illustrating certain robustness results. Alexopoulos et al. (2023) propose new quantile variance estimators for sample quantiles based on the methods of nonoverlapping batch quantiles (NBQ) and STS—both of which incorporate batching—along with accompanying CIs for the quantiles; and, for all variance estimators under consideration, that paper establishes theoretically and empirically that the CIs are asymptotically valid as the batch size increases with the number of batches held fixed. Lolos et al. (2022a,b) use the former paper's results to propose a sequential quantile estimation procedure that is tested and validated on a large selection of interesting stochastic processes; and Lolos et al. (2022a,b) find that a version of the procedure incorporating a combined NBQ+STS variance estimator often outperforms its competitors in that it obtains valid CIs having comparatively modest widths.

We now outline what is coming up in the current paper in terms of both its organization and its contributions. §2 covers the notation and preliminaries that will be necessary to obtain our subsequent results. §3 [§4] presents our main results on the expected values of NBQ [STS] estimators of the asymptotic variance parameters related to (i) the steady-state quantile indicator function process, $\{1_{\{Y_k < y\}} : k \ge 1\}$, and (ii) the sample quantile estimator, denoted by $\widetilde{y}_p(n)$. We show that the bias terms of these variance parameter estimators are all at most of the order $O(m^{-1/4})$, where m is the batch size the methods use. §?? gives a series of Monte Carlo examples involving stationary processes to compare the different estmators, in particular, in terms of the speed at which estimator bias disappears. To the best of our knowledge, this is the first paper in which such results appear. [It may turn out to be the case that the bias goes away faster than $O(m^{-1/4})$, so that the order we provide is conservative.] §6 concludes the article.

2. NOTATION AND PRELIMINARIES

Suppose that $\{Y_k : k \ge 1\}$ is a stationary stochastic process. For now, we assume that the marginal Y is a continuous r.v., so the cumulative distribution function (c.d.f.) $F(y) \equiv \Pr(Y \le y)$ is continuous, and there is a well-defined probability density function (p.d.f.) f(y). For any $p \in (0,1)$, we define the p-quantile of Y by $y_p \equiv F^{-1}(p) \equiv \inf\{y : F(y) \ge p\}$.

The usual point estimator for y_p is the full-sample p-quantile $\widetilde{y}_p(n) \equiv Y_{(\lceil np \rceil)}$, where $Y_{(1)} \leq \cdots \leq Y_{(n)}$ are the order statistics from the sample Y_1, Y_2, \ldots, Y_n and $\lceil \cdot \rceil$ denotes the ceiling (round up) function. We define the indicator r.v.'s $I_k(y) \equiv 1_{\{Y_k \leq y\}}$ for $k \geq 1$ and $y \in \mathbb{R}$, as well as the corresponding sample mean $\overline{I}_n(y) \equiv n^{-1} \sum_{k=1}^n I_k(y)$, the later of which is an unbiased point estimator F(y) for $y \in \mathbb{R}$.

We will invoke the following **Standing Assumptions** on $\{Y_k : k \ge 1\}$ and $\{I_k(y) : k \ge 1\}$ as we proceed.

Density-Regularity and Moment (DRM) Conditions The p.d.f. f(y) is bounded and continuous for $y \in \mathbb{R}$; and at the quantile y_p to be estimated, we have $f(y_p) > 0$ and $f'(y_p)$ exists. Moreover, the marginal absolute moment $\mathbb{E}[|Y_0|^u] < \infty$ for some u > 2.

Geometric-Moment Contraction (GMC) Condition The process $\{Y_k : k \ge 1\}$ is defined by a function $\xi(\cdot)$ of a sequence of i.i.d. r.v.'s $\{\varepsilon_j : j \in \mathbb{Z}\}$ such that $Y_k = \xi(\ldots, \varepsilon_{k-1}, \varepsilon_k)$ for $k \ge 1$. Moreover, there exist constants $\psi > 0$, $C_{\psi} > 0$, and $r \in (0,1)$ such that for two independent sequences $\{\varepsilon_j : j \in \mathbb{Z}\}$ and $\{\varepsilon'_j : j \le 0\}$ each consisting of i.i.d. r.v.'s distributed like ε_0 , we have

$$\mathbb{E}\left[\left|\xi(\ldots,\varepsilon_{-1},\varepsilon_{0},\varepsilon_{1},\ldots,\varepsilon_{k})-\xi(\ldots,\varepsilon_{-1}',\varepsilon_{0}',\varepsilon_{1},\ldots,\varepsilon_{k})\right|^{\psi}\right] \leq C_{\psi}r^{k} \text{ for } k \geq 0. \tag{1}$$

The DRM conditions ensure that the p.d.f. is well-behaved, especially in the neighborhood of a quantile of interest. The GMC condition is related to the temporal dependence structure of $\{Y_k : k \ge 1\}$ and is informally regarded as a proxy for the exponential decay of serial correlation. The GMC condition is satisfied by many interesting processes that come up in simulation applications, and in any case, the GMC condition can be used as an easy-to-check substitute for ϕ -mixing conditions that are typically required in simulation output analysis; see, for instance, Wu and Shao (2004), Shao and Wu (2007), Alexopoulos et al. (2023), and Dingeç et al. (2022, 2023a,c).

Here are some useful results consolidated from Dingeç et al. (2023a, §4) that we will use in the sequel (cf. related work in Doukhan 2018 and Xu 2021). [For now, we'll cite specific results from Dingeç et al. (2023a) but may have to change once we stabilize all of the papers. Also, the moment condition is trivially satisfied for the indicator process, so might not always need that.]

THEOREM 1. Suppose that $\{Y_k : k \ge 1\}$ satisfies the GMC and DRM conditions. Then we have the following.

- 1. [Dingeç et al. (2023a, Theorem 4)] For any $y \in \mathbb{R}$, $\{I_k(y) : k \ge 1\}$ satisfies the GMC condition.
- 2. Denote the autocovariance function of the indicator process by $R_{I(y)}(\ell) \equiv \text{Cov}[I_k(y), I_{k+\ell}(y)]$ for lag $\ell \in \mathbb{Z}$ and $y \in \mathbb{R}$. Then
 - (i) [Dingeç et al. (2023a, Corollary 2(a,b))] $R_{I(y)}(\ell) = O(s^{\ell})$ for some $s \in (0,1)$ and all $y \in \mathbb{R}$. Moreover, $\sum_{\ell \in \mathbb{Z}} |R_{I(y)}(\ell)| < \infty$, i.e., $\{I_k(y) : k \ge 1\}$ is short-range dependent (SRD).
 - (ii) [Dingeç et al. (2023a, Corollary 2(c))] For each real y, the indicator process $\{I_k(y): k \ge 1\}$ has a finite variance parameter $\sigma_{I(y)}^2 \equiv \lim_{n \to \infty} n \operatorname{Var} \left[\overline{I}_n(y)\right] = \sum_{\ell \in \mathbb{Z}} R_{I(y)}(\ell) \in [0, \infty)$.
 - (iii) [Dingeç et al. (2023a, Corollary 2(d))] The quantities $\gamma_{I(y),a} \equiv 2 \sum_{\ell=1}^{\infty} \ell^a R_{I(y)}(\ell)$, for $a=1,2,\ldots$, are all finite.
 - (iv) [Dingeç et al. (2023a, Corollary 2(e) and Lemma 1)] Define the variance parameter corresponding to the p-quantile point estimator $\widetilde{y}_p(n)$ by $\sigma_{\widetilde{y}_p}^2 \equiv \lim_{n \to \infty} n \text{Var} \big[\widetilde{y}_p(n) \big]$. Then we have

$$\sigma_{\widetilde{y}_p}^2 = \frac{\sigma_{I(y_p)}^2}{f^2(y_p)} \in [0, \infty).$$
 (2)

.

As we proceed, it will prove efficacious to incorporate the use of batching and what is known as the Bahadur representation of quantile estimators.

Batching and Bahadur Suppose we divide the n observations Y_1, Y_2, \ldots, Y_n into $b \ge 1$ contiguous, nonoverlapping batches of size m = n/b (assume m is an integer), so that the jth batch is $\{Y_{(j-1)m+1}, Y_{(j-1)m+2}, \ldots, Y_{jm}\}$, for $j = 1, 2, \ldots, b$. For any $y \in \mathbb{R}$ and $j = 1, 2, \ldots, b$, we compute the jth batch mean of the corresponding indicator r.v.'s, $\overline{I}_{j,m}(y) \equiv m^{-1} \sum_{\ell=1}^m I_{(j-1)m+\ell}(y)$; the order statistics $Y_{j,(1)} \le Y_{j,(2)} \le \cdots \le Y_{j,(m)}$; and $\widehat{y}_p(j,m) \equiv Y_{j,(\lceil mp \rceil)}$, the jth batch quantile estimator (BQE) of y_p . The Bahadur representation (3) (Serfling 1980) is often used to bypass working with the BQEs directly, [Can someone remind me of the precise consitions that Bahadur requires?]

$$\widehat{y}_p(j,m) = y_p - \frac{\overline{I}_{j,m}(y_p) - p}{f(y_p)} + O_{\text{a.s.}}\left(\frac{\log^{3/2} m}{m^{3/4}}\right) \text{ as } m \to \infty \text{ for } j = 1, \dots, b,$$
 (3)

where if $\{\mathcal{U}_n : n \ge 1\}$ is a sequence of r.v.'s and $\{a_n : n \ge 1\}$ is a sequence of nonnegative constants, then $\mathcal{U}_n = O_{\text{a.s.}}(a_n)$ means there is an r.v. \mathfrak{U} that is bounded a.s. (almost surely) such that $|\mathcal{U}_n| \le \mathfrak{U}a_n$ for $n \ge 1$ a.s. (Wu 2005). Alexopoulos et al. (2019) prove the following BQE limit result.

THEOREM 2. If $\{Y_k : k \ge 1\}$ satisfies the GMC and DRM conditions, then [note that we no longer have to assume FCLT, since the FCLT follow from the assumptions by Theorem 1.3!]

$$m^{1/2} [\widehat{y}_p(1,m) - y_p, \dots, \widehat{y}_p(b,m) - y_p]^{\mathsf{T}} \underset{m \to \infty}{\Longrightarrow} [\sigma_{I(y_p)} / f(y_p)] \mathbf{Z}_b, \tag{4}$$

where $\mathbf{Z}_b \equiv [Z_1, Z_2, ..., Z_b]^{\mathsf{T}}$ for which $\{Z_i : i = 1, 2, ..., b\}$ are i.i.d. Nor(0, 1).

3. Expected Value of the Nonoverlapping Batch Quantile Estimators for $\sigma_{\widetilde{y}_p}^2$

We are interested in finding the bias of two classes of estimators for the variance parameter $\sigma_{\tilde{y}_p}^2$ of the quantile process—NBQ and STS. In this section, we will give bias results for two different NBQ estimators; and in §4, we will derive the bias of an STS area estimator that also incorporates batching. We will give away the store right now by stating all of these estimators have bias terms that disappear approximately at rate $O(m^{-1/4})$ as the batch size m becomes large.

On the way to finding the bias of the two NBQ estimators for $\sigma_{\tilde{y}_p}^2$, we will go through a recipe of intermediate calculations that will prove to be useful when we put everything together in §§3.7–3.8. In §3.1, we define the two NBQ estimators and present the statement (but not yet the proof) of the main Theorem 3. §3.2 uses the Bahadur representation (3) to neatly write the BQEs and their cousins in terms of the quantile-indicator process. §3.3 takes a side trip where we find simple order expressions for the expected value and variance of the Bahadur representation remainder terms, and §3.4 calculates several bounds on covariances

involving those remainder terms. §3.5 finds expressions for the variances of three quantile point estimators of interest— $\widetilde{y}_p(n)$, $\widehat{y}_p(j,m)$, and $\overline{y}_p(b;m) \equiv b^{-1} \sum_{j=1}^b \widehat{y}_p(j,m)$. As a final intermediate step in our toils, §3.6 is devoted to the calculation of the expected value and variance of the difference $\widehat{y}_p(j,m) - \widetilde{y}_p(n)$. We will then be in position to prove Theorem 3 when we finally arrive at our §§3.7–3.8 destination.

3.1. Definitions of NBQ Estimators and Statement of Theorem 3

As alluded to above, there are actually *two* NBQ estimators for $\sigma_{\widetilde{y}_p}^2$ both of which resemble the sample variance of the BQEs for the *p*-quantile y_p . The first is centered at the sample mean of the BQEs, $\overline{y}_p(b,m) = b^{-1} \sum_{j=1}^b \widehat{y}_p(j,m)$, while the second is centered at the full-sample point estimator $\widetilde{y}_p(n)$ for y_p . To be explicit, define the (first) NBQ estimator for $\sigma_{\widetilde{y}_p}^2$ by

$$\mathcal{N}_{\widetilde{y}_p}(b,m) \equiv \frac{m}{b-1} \sum_{i=1}^b \left(\widehat{y}_p(j,m) - \overline{y}_p(b,m)\right)^2 = \frac{m}{b-1} \left[\sum_{i=1}^b \widehat{y}_p^2(j,m) - b \overline{y}_p^2(b,m)\right];$$

and define the (second) NBQ estimator for $\sigma^2_{\widetilde{y}_p}$ by

$$\widetilde{\mathcal{N}}_{\widetilde{\mathbf{y}}_p}(b,m) \equiv \frac{m}{b-1} \sum_{j=1}^b \left(\widehat{\mathbf{y}}_p(j,m) - \widetilde{\mathbf{y}}_p(n) \right)^2.$$

Here is the main theorem that we will prove on the NBQ estimators. Note that in what follows, the number of batches b is always fixed, so that for any reasonable function $\zeta(\cdot)$, we have $O(\zeta(m)) = O(\zeta(n))$, and we will often use these terms interchangeably. Moreover, we do not necessarily strive for the tightest inequalities in the subsections below, especially if those improved inequalities would anyhow be overwhelmed by others as we proceed.

THEOREM 3. Suppose that $\{Y_k : k \ge 1\}$ satisfies the DRM and GMC Standing Assumptions [and maybe whatever is needed for Bahadur, but I think that's about all we need]. Further assume that the number of nonoverlapping batches b is fixed. Then the expected values of the two NBQ estimators are of the form

$$\mathbb{E}\left[\mathcal{N}_{\widetilde{y}_p}(b,m)\right] = \sigma_{\widetilde{y}_p}^2 + O\left(m^{-1/4}\log^3 m\right) \quad and \quad \mathbb{E}\left[\widetilde{\mathcal{N}}_{\widetilde{y}_p}(b,m)\right] = \sigma_{\widetilde{y}_p}^2 + O\left(m^{-1/4}\log^3 m\right) \quad as \ m \to \infty.$$
(5)

Thus, both $E[\mathcal{N}_{\widetilde{y}_p}(b,m)]$ and $E[\widetilde{\mathcal{N}}_{\widetilde{y}_p}(b,m)]$ are asymptotically unbiased estimators for $\sigma_{\widetilde{y}_p}^2$ as the batch size $m \to \infty$. We establish background results in §§3.2–3.6, before completing Theorem 3's proof in §§3.7–3.8.

3.2. Bahadur Representation of Quantile Estimators

By the Bahadur representation (3) (with the batch size m replaced by the full sample size n), we have

$$\widetilde{y}_p(n) = y_p - \frac{I_n(y_p) - p}{f(y_p)} + Q_n, \tag{6}$$

where $Q_n = O_{\text{a.s.}}(n^{-3/4}\log^{3/2}n)$ and we recall that $\overline{I}_n(y) = n^{-1}\sum_{k=1}^n I_k(y) = n^{-1}\sum_{i=1}^n 1_{\{Y_i \le y\}}$ for all $y \in \mathbb{R}$. Similarly, for batches $j = 1, 2, \dots, b$, we have

$$\widehat{y}_{p}(j,m) = y_{p} - \frac{\overline{I}_{j,m}(y_{p}) - p}{f(y_{p})} + Q_{j,m}, \tag{7}$$

where $Q_{j,m} = O_{a.s.}(m^{-3/4}\log^{3/2}m)$ and $\overline{I}_{j,m}(y) \equiv m^{-1}\sum_{k=1}^m I_{(j-1)m+k}(y)$ for all $y \in \mathbb{R}$. Then we can write the sample mean of the BQEs as

$$\overline{y}_p(b;m) = \frac{1}{b} \sum_{j=1}^b \widehat{y}_p(j,m) = y_p - \frac{\frac{1}{b} \sum_{j=1}^b \overline{I}_{j,m}(y_p) - p}{f(y_p)} + \frac{1}{b} \sum_{j=1}^b Q_{j,m} = y_p - \frac{\overline{I}_n(y_p) - p}{f(y_p)} + \overline{Q}_m, \quad (8)$$

where $\overline{Q}_m \equiv b^{-1} \sum_{j=1}^b Q_{j,m}$ and $\overline{I}_n(y_p) = b^{-1} \sum_{j=1}^b \overline{I}_{j,m}(y_p)$. We will also eventually need the fact that

$$\widehat{y}_{p}(j,m) - \widetilde{y}_{p}(n) = \frac{\overline{I}_{n}(y_{p})}{f(y_{p})} - \frac{\overline{I}_{j,m}(y_{p})}{f(y_{p})} + Q_{j,m} - Q_{n} \quad \text{for } j = 1, 2 \dots, b.$$
(9)

3.3. Expected Value and Variance of the Bahadur Remainder Term

The following results will be useful when we finally get around to simplifying our final expressions for $E[\mathcal{N}_{\widetilde{y}_p}(b,m)]$ and $E[\widetilde{\mathcal{N}}_{\widetilde{y}_p}(b,m)]$ in §§3.7–3.8.

LEMMA 1. Let $\{X_n : n \ge 1\}$ be a sequence of r.v.'s and $\{a_n : n \ge 1\}$ be a sequence of nonnegative constants.

If
$$X_n = O_{a.s.}(a_n)$$
, then $E[X_n] = O(a_n)$ and $Var(X_n) = O(a_n^2)$. (10)

Proof: If $X_n = O_{\text{a.s.}}(a_n)$, then there exist r.v.'s $\mathcal{U} \in \mathbb{R}^+$ and $\mathcal{V} \in \mathbb{Z}^+$ and real constants $M_{\mathcal{U}}$ and $M_{\mathcal{V}}$ such that

$$0 < \mathcal{U} \le M_{\mathcal{U}} \quad \text{and} \quad 0 < \mathcal{V} \le M_{\mathcal{V}} \text{ a.s.}$$
 (11)

and

$$|X_n| \le \mathcal{U} a_n \quad \text{for} \quad n \ge \mathcal{V} \quad \text{a.s.}$$
 (12)

Let $X_n^+ \equiv \max\{X_n, 0\}$ and $X_n^- \equiv -\min\{X_n, 0\}$ respectively denote the positive and negative parts of X_n for $n \ge 1$. Equations (11) and (12) imply that

$$X_n \in [-M_{\mathscr{U}}a_n, M_{\mathscr{U}}a_n] \text{ and } X_n^+, X_n^- \in [0, M_{\mathscr{U}}a_n] \text{ for } n \ge M_{\mathscr{V}} \text{ a.s.}$$
 (13)

So by the definition of the expectations $E[X_n^+]$, $E[X_n^-]$, and $E[X_n]$, we have

$$E[X_n^+], E[X_n^-] \in \left[0, M_{\mathscr{U}} a_n\right] \text{ and } E[X_n] \equiv E[X_n^+] - E[X_n^-] \in \left[-M_{\mathscr{U}} a_n, M_{\mathscr{U}} a_n\right] \text{ for } n \ge M_{\mathscr{V}}$$
 (14)

(Shiryaev 2016, pp. 218–219). Thus, Equation (14) implies that

$$|E[X_n]| \le M_{\mathscr{V}} a_n \text{ for } n \ge M_{\mathscr{V}}. \tag{15}$$

In addition, Popoviciu's inequality (Bhatia and Davis 2000, p. 353) implies that

$$\operatorname{Var}[X_n] \le \frac{(2M_{\mathscr{U}}a_n)^2}{4} = M_{\mathscr{U}}^2 a_n^2 \text{ for } n \ge M_{\mathscr{V}}. \tag{16}$$

Expression (10) follows immediately from Equations (15) and (16).

Example 1. For the Bahadur remainder term Q_n , we have

$$E[Q_n] = O(n^{-3/4} \log^{3/2} n)$$
 and $Var[Q_n] = O(n^{-3/2} \log^3 n)$. \square (17)

3.4. Bounds on Several Covariances Involving Remainder Terms

It is a straightforward algebraic fact that

$$\sigma_{I(y),n}^2 \equiv n \operatorname{Var} \left[\overline{I}_n(y) \right] = R_{I(y)}(0) + 2 \sum_{\ell=1}^{n-1} \left(1 - \frac{\ell}{n} \right) R_{I(y)}(\ell).$$

Theorem 1.2(i)'s finding that $R_{I(y)}(\ell) = O(s^{\ell})$ is sufficient to invoke Aktaran-Kalaycı et al. (2007, Corollary 2), which in turn yields

$$\sigma_{I(y),n}^2 = \sigma_{I(y)}^2 - \frac{\gamma_{I(y),1}}{n} + O(s^n) = \sigma_{I(y)}^2 + O(1/n), \tag{18}$$

where Theorem 1.2(ii) and (iii) respectively yield $\sigma_{I(y)}^2 \in [0, \infty)$ and $|\gamma_{I(y),1}| < \infty$ (so all of the terms above are well-defined).

This easy little result immediately allows us to establish bounds for several covariances involving the Bahadur error terms, which we will now catalog for future use. To begin, we have

$$\left| \operatorname{Cov} \left[\overline{I}_{n}(y), Q_{n} \right] \right| \leq \sqrt{\operatorname{Var} \left[\overline{I}_{n}(y) \right] \operatorname{Var} \left[Q_{n} \right]} \quad \text{(Cauchy-Schwarz)}$$

$$= \sqrt{\left[\frac{\sigma_{I(y)}^{2}}{n} + O(n^{-2}) \right] O(n^{-3/2} \log^{3} n)} \quad \text{(by Equations (18) and (17) in that order)}$$

$$= O(n^{-5/4} \log^{3/2} n). \tag{19}$$

Similarly, and taking into account that *b* is fixed so that O(m) = O(n),

$$\left| \text{Cov} \left[\overline{I}_{j,m}(y), Q_n \right] \right| \le \sqrt{\left[\frac{\sigma_{I(y)}^2}{m} + O(m^{-2}) \right] O(n^{-3/2} \log^3 n)} = O(m^{-5/4} \log^{3/2} m). \tag{20}$$

And again similarly,

$$\left|\operatorname{Cov}\left[\overline{I}_{n}(y), Q_{j,m}\right]\right| = O(m^{-5/4}\log^{3/2}m). \tag{21}$$

Thus, by the triangle inequality and Equation (21), we have

$$\left|\operatorname{Cov}\left[\overline{I}_{n}(y), \overline{Q}_{m}\right]\right| \leq \frac{1}{b} \sum_{j=1}^{b} \left|\operatorname{Cov}\left[\overline{I}_{n}(y), Q_{j,m}\right]\right| = O\left(m^{-5/4} \log^{3/2} m\right). \tag{22}$$

Finally, we have

$$\left| \operatorname{Cov}[Q_{j,m}, Q_n] \right| \leq \sqrt{\operatorname{Var}[Q_{j,m}] \operatorname{Var}[Q_n]} \quad \text{(Cauchy-Schwarz)}$$

$$= O(m^{-3/4} \log^{3/2} m \, n^{-3/4} \log^{3/2} n) \quad \text{(by Equation (17))}$$

$$= O(m^{-3/2} \log^3 m). \tag{23}$$

3.5. Some Variance Calculations on Quantile Point Estimators

We now derive simple expressions for the variances of the three quantile point estimators $\widetilde{y}_p(n)$, $\widehat{y}_p(j,m)$, and $\overline{y}_p(b;m)$. First of all, by Equation (6), we have

$$\operatorname{Var}[\widetilde{y}_{p}(n)] = \operatorname{Var}\left[y_{p} - \frac{\overline{I}_{n}(y_{p}) - p}{f(y_{p})} + Q_{n}\right]
= \frac{\operatorname{Var}[\overline{I}_{n}(y_{p})]}{f^{2}(y_{p})} + \operatorname{Var}[Q_{n}] - \frac{2\operatorname{Cov}[\overline{I}_{n}(y_{p}), Q_{n}]}{f(y_{p})}
= \left[\frac{\sigma_{I(y_{p})}^{2}}{nf^{2}(y_{p})} + O(1/n^{2})\right] + O(n^{-3/2}\log^{3}n) + O(n^{-5/4}\log^{3/2}n)
\text{ (by Equations (18), (17), and (19) in that order)}
= \frac{\sigma_{\widetilde{y}_{p}}^{2}}{n} + O(n^{-5/4}\log^{3}n).$$
(24)

By Equation (7) and calculations analogous to those above, we have for j = 1, 2, ..., b,

$$\operatorname{Var}[\widehat{y}_{p}(j,m)] = \operatorname{Var}\left[y_{p} - \frac{\overline{I}_{j,m}(y_{p}) - p}{f(y_{p})} + Q_{j,m}\right] = \frac{\sigma_{\widetilde{y}_{p}}^{2}}{m} + O(m^{-5/4}\log^{3}m). \tag{25}$$

Similarly, by Equation (8),

$$\operatorname{Var}\left[\overline{y}_{p}(b;m)\right] = \operatorname{Var}\left[y_{p} - \frac{\overline{I}_{n}(y_{p}) - p}{f(y_{p})} + \overline{Q}_{m}\right]$$

$$= \frac{\operatorname{Var}\left[\overline{I}_{n}(y_{p})\right]}{f^{2}(y_{p})} + \operatorname{Var}\left[\overline{Q}_{m}\right] - \frac{2\operatorname{Cov}\left[\overline{I}_{n}(y_{p}), \overline{Q}_{m}\right]}{f(y_{p})}$$

$$= \left[\frac{\sigma_{I(y_{p})}^{2}}{nf^{2}(y_{p})} + O(1/n^{2})\right] + O(n^{-3/2}\log^{3}n) + O(m^{-5/4}\log^{3/2}m)$$
(by Equations (18), (17), and (22) in that order)
$$= \frac{\sigma_{\overline{y}_{p}}^{2}}{n} + O(m^{-5/4}\log^{3}m). \tag{26}$$

3.6. Some Final Intermediate Expected Value and Variance Calculations

We go through one last set of steps before undertaking the proof of Theorem 3 in §§3.7–3.8. In particular, in this subsection, we will derive expressions for the expected value and variance of $\hat{y}_p(j,m) - \tilde{y}_p(n)$.

First, by Equation (9), we have

$$E\left[\widehat{y}_{p}(j,m) - \widetilde{y}_{p}(n)\right] = E\left[\frac{\overline{I}_{n}(y_{p})}{f(y_{p})} - \frac{\overline{I}_{j,m}(y_{p})}{f(y_{p})} + Q_{j,m} - Q_{n}\right]$$

$$= \frac{p}{f(y_{p})} - \frac{p}{f(y_{p})} + E\left[Q_{j,m}\right] - E\left[Q_{n}\right]$$

$$= O\left(m^{-3/4}\log^{3/2}m\right) \quad \text{(by Equation (17) applied twice)}.$$
(27)

We now work on several intermediate results. First,

$$\left| \sum_{i=1, i \neq j}^{b} \text{Cov}[\overline{I}_{j,m}(y), \overline{I}_{i,m}(y)] \right| \leq 2 \sum_{i=2}^{b} \left| \text{Cov}[\overline{I}_{1,m}(y), \overline{I}_{i,m}(y)] \right|$$

$$\leq \frac{2}{m^{2}} \sum_{i=2}^{b} \sum_{k=1}^{m} \sum_{\ell=1}^{m} \left| \text{Cov}[I_{k}(y), I_{(i-1)m+\ell}(y)] \right|$$

$$\leq \frac{2}{m^{2}} \sum_{i=2}^{b} \sum_{k=1}^{m} \sum_{\ell=1}^{m} \left| R_{I(y)} \left((i-1)m + \ell - k \right) \right|$$

$$\leq \frac{C}{m^{2}} \sum_{i=2}^{b} \sum_{k=1}^{m} \sum_{\ell=1}^{m} s^{(i-1)m+\ell-k} \quad \text{(by the GMC, for large-enough } C \text{)}$$

$$= \frac{C}{m^{2}} \sum_{i=1}^{b-1} s^{im} \sum_{k=1}^{m} s^{-k} \sum_{\ell=1}^{m} s^{\ell}$$

$$= \frac{C}{m^{2}} \frac{s^{m} (1 - s^{m} (b-1))}{1 - s^{m}} \frac{s^{-1} (1 - s^{-m})}{1 - s^{-1}} \frac{s (1 - s^{m})}{1 - s}$$

$$= O(1/m^{2}). \tag{28}$$

Thus,

$$\operatorname{Cov}\left[\overline{I}_{j,m}(y), \overline{I}_{n}(y)\right] = \frac{1}{b} \sum_{i=1}^{b} \operatorname{Cov}\left[\overline{I}_{j,m}(y), \overline{I}_{i,m}(y)\right]$$

$$= \frac{1}{b} \left[\operatorname{Var}\left[\overline{I}_{1,m}(y)\right] + \sum_{i=1, i \neq j}^{b} \operatorname{Cov}\left[\overline{I}_{j,m}(y), \overline{I}_{i,m}(y)\right]\right]$$

$$= \frac{1}{b} \left[\left(\frac{\sigma_{I(y)}^{2}}{m} + O(1/m^{2})\right) + O(1/m^{2})\right] \quad \text{(by (18) with } m \text{ instead of } n, \text{ and (28))}$$

$$= \frac{\sigma_{I(y)}^{2}}{n} + O(1/m^{2}). \tag{29}$$

By Equations (6) and (7), we have

$$\begin{split} \text{Cov} \Big[\widehat{y}_{p}(j,m), \, \widetilde{y}_{p}(n) \Big] &= \text{Cov} \left[y_{p} - \frac{\overline{I}_{j,m}(y_{p}) - p}{f(y_{p})} + Q_{j,m}, \, y_{p} - \frac{\overline{I}_{n}(y_{p}) - p}{f(y_{p})} + Q_{n} \right] \\ &= \text{Cov} \left[\frac{\overline{I}_{j,m}(y_{p})}{f(y_{p})} - Q_{j,m}, \, \frac{\overline{I}_{n}(y_{p})}{f(y_{p})} - Q_{n} \right] \\ &= \frac{\text{Cov} \big[\overline{I}_{j,m}(y_{p}), \, \overline{I}_{n}(y_{p}) \big]}{f^{2}(y_{p})} - \frac{\text{Cov} \big[\overline{I}_{j,m}(y_{p}), \, Q_{n} \big]}{f(y_{p})} \\ &- \frac{\text{Cov} \big[Q_{j,m}, \, \overline{I}_{n}(y_{p}) \big]}{f(y_{p})} + \text{Cov} \big(Q_{j,m}, \, Q_{n} \big) \\ &= \left[\frac{\sigma_{I(y_{p})}^{2}}{nf^{2}(y_{p})} + O(1/m^{2}) \right] + O(m^{-5/4} \log^{3/2} m) + O(m^{-5/4} \log^{3/2} m) + O(m^{-3/2} \log^{3} m) \end{split}$$

(by Equations (29), (20), (21), and (23) in that order)
$$= \frac{\sigma_{\widetilde{y}_p}^2}{n} + O(m^{-5/4} \log^3 m). \tag{30}$$

Finally, we calculate

$$\operatorname{Var}\left[\widehat{y}_{p}(j,m) - \widetilde{y}_{p}(n)\right] = \operatorname{Var}\left[\widehat{y}_{p}(j,m)\right] + \operatorname{Var}\left[\widetilde{y}_{p}(n)\right] - 2\operatorname{Cov}\left[\widehat{y}_{p}(j,m), \widetilde{y}_{p}(n)\right]$$

$$= \left[\frac{\sigma_{\widetilde{y}_{p}}^{2}}{m} + O(m^{-5/4}\log^{3}m)\right] + \left[\frac{\sigma_{\widetilde{y}_{p}}^{2}}{n} + O(n^{-5/4}\log^{3}n)\right] - 2\left[\frac{\sigma_{\widetilde{y}_{p}}^{2}}{n} + O(m^{-5/4}\log^{3}m)\right]$$
(by Equations (25), (24), and (30) in that order)
$$= \frac{(b-1)\sigma_{\widetilde{y}_{p}}^{2}}{n} + O(m^{-5/4}\log^{3}m). \tag{31}$$

3.7. Calculation of $E[\mathcal{N}_{\widetilde{y}_p}(b,m)]$

Here we calculate the expected value of $\mathcal{N}_{\widetilde{y}_p}(b,m)$ —the "first" NBQ estimator of the variance parameter $\sigma_{\widetilde{y}_p}^2$. Noting that

$$E[\overline{y}_p(b;m)] = \frac{1}{b} \sum_{j=1}^b E[\widehat{y}_p(j,m)] = E[\widehat{y}_p(j,m)], \tag{32}$$

we have

$$E\left[\mathcal{N}_{\widetilde{y}_{p}}(b,m)\right] = \frac{mb}{b-1} \left[E\left[\widehat{y}_{p}^{2}(j,m)\right] - E\left[\overline{y}_{p}^{2}(b;m)\right] \right] \\
= \frac{mb}{b-1} \left[Var\left[\widehat{y}_{p}(j,m)\right] + \left(E\left[\widehat{y}_{p}(j,m)\right] \right)^{2} - Var\left[\overline{y}_{p}(b;m)\right] - \left(E\left[\overline{y}_{p}(b;m)\right] \right)^{2} \right] \\
= \frac{mb}{b-1} \left[Var\left[\widehat{y}_{p}(j,m)\right] - Var\left[\overline{y}_{p}(b;m)\right] \right] \quad \text{(by Equation (32))} \\
= \frac{mb}{b-1} \left\{ \left[\frac{\sigma_{\widetilde{y}_{p}}^{2}}{m} + O(m^{-5/4}\log^{3}m) \right] - \left[\frac{\sigma_{\widetilde{y}_{p}}^{2}}{n} + O(m^{-5/4}\log^{3}m) \right] \right\} \quad \text{(by (25) and (26))} \\
= \sigma_{\widetilde{y}_{p}}^{2} + O(m^{-1/4}\log^{3}m). \quad (34)$$

3.8. Calculation of $\mathbb{E}\big[\widetilde{\mathcal{N}}_{\widetilde{\mathbf{y}}_p}(b,m)\big]$

We complete the proof by calculating the expected value of the "second" NBQ estimator, $\widetilde{\mathcal{N}}_{\widetilde{y}_p}(b, m)$.

$$E\left[\widetilde{N}_{\widetilde{y}_{p}}(b,m)\right] = \frac{m}{b-1} \sum_{j=1}^{b} E\left[\left(\widehat{y}_{p}(j,m) - \widetilde{y}_{p}(n)\right)^{2}\right]$$

$$= \frac{m}{b-1} \sum_{j=1}^{b} \left\{ Var\left[\widehat{y}_{p}(j,m) - \widetilde{y}_{p}(n)\right] + \left(E\left[\widehat{y}_{p}(j,m) - \widetilde{y}_{p}(n)\right]\right)^{2} \right\}$$

$$= \frac{m}{b-1} \sum_{j=1}^{b} \left\{ \left[\frac{(b-1)\sigma_{\widetilde{y}_{p}}^{2}}{n} + O(m^{-5/4}\log^{3}m)\right] + \left(O(m^{-3/4}\log^{3/2}m)\right)^{2} \right\} \quad \text{(by (31) and (27))}$$

$$= \sigma_{\widetilde{y}_{p}}^{2} + O(m^{-1/4}\log^{3}m). \quad \blacksquare$$
(35)

REMARK 1. Equations (34) and (35) imply that both batch quantile estimators $\mathcal{N}_{\widetilde{y}_p}(b,m)$ and $\widetilde{\mathcal{N}}_{\widetilde{y}_p}(b,m)$ have slightly worse than $O(m^{-1/4})$ bias, which decreases quite slowly—at least compared to variance estimators in the context of mean estimation where the corresponding batch means variance estimator bias terms are at worst O(1/m) (Aktaran-Kalaycı et al. 2007).

4. Expected Value of the Standardized Time Series Area Estimator for $\sigma^2_{\widetilde{y}_p}$

The area estimator is discussed and motivated extensively in Alexopoulos et al. (2023), where we present the theory necessary to construct asymptotically valid CIs for the quantile y_p . In that former paper, we merely need the expected value of the area estimator to converge to $\sigma_{\widetilde{y}_p}^2$ as the sample size grows, but we do not study the rate. In this section of the current paper, we derive more-precise results on the expected value of the area estimator.

§4.1 presents notation that will be used in the sequel. Based on the entire sample $\{Y_1, Y_2, \dots, Y_n\}$ of size n, we define two STS processes—one associated with the indicator process and one associated with the quantile-estimator process. We also formally define the associated STS area estimator for $\sigma_{I(y)}^2$ as well as the STS area estimator for $\sigma_{\overline{y}_p}^2$. §4.2 derives our main results on the expected value of the area estimators, where we show that those for $\sigma_{I(y)}^2$ and $\sigma_{\overline{y}_p}^2$ have bias of at most $O(n^{-1/4})$. In §4.3, we study versions of the area estimator that incorporate batching. In particular, the (batched) STS area estimator for $\sigma_{\overline{y}_p}^2$ is based on the average of individual area estimators for $\sigma_{\overline{y}_p}^2$ calculated from each of b contiguous batches, each of which is itself comprised of m observations. Batching typically reduces estimator variance at the potential expense of extra bias, a phenomenon borne out by the Monte Carlo analysis upcoming in §5. We also show how to combine the STS estimator with the NBQ estimator from §3, which has the advantage of reducing estimator variance without incurring a further significant increase in bias.

4.1. Definitions and Notation

For now, we will regard $\{Y_1, Y_2, ..., Y_n\}$ as a single large batch of observations. The STS indicator and quantile-estimator processes are respectively defined as

$$T_{I(y),n}(t) \equiv \frac{\lfloor nt \rfloor}{\sigma_{I(y)} \sqrt{n}} \left[\overline{I}_{\lfloor nt \rfloor}(y) - \overline{I}_n(y) \right] \text{ for } n \ge 1 \text{ and } t \in [0,1]$$
(36)

and

$$T_{\widetilde{y}_p,n}(t) \equiv \frac{\lfloor nt \rfloor}{\sigma_{\widetilde{y}_p} \sqrt{n}} \left[\widetilde{y}_p(\lfloor nt \rfloor) - \widetilde{y}_p(n) \right] \text{ for } p \in (0,1), n \ge 1, \text{ and } t \in [0,1],$$
(37)

where the cumulative sample average $\overline{I}_{\lfloor nt \rfloor}(y) = \sum_{k=1}^{\lfloor nt \rfloor} I_k(y)/\lfloor nt \rfloor$, with $\overline{I}_0(y) \equiv 0$; and $\widetilde{y}_p(\lfloor nt \rfloor)$ is the point estimator of the p-quantile y_p based on the partial sample $\{Y_1,Y_2,\ldots,Y_{\lfloor nt \rfloor}\}$, i.e., if $Y_{(1)} \leq Y_{(2)} \leq \cdots \leq Y_{(\lfloor nt \rfloor)}$ denote the order statistics from the partial sample, then $\widetilde{y}_p(\lfloor nt \rfloor) \equiv Y_{(\lceil \lfloor nt \rfloor p \rceil)}$, where $Y_{(0)} \equiv 0$. This expression is less daunting than it looks since in practice, t is of the form $\frac{k}{n}$, in which case $\widetilde{y}_p(\lfloor nt \rfloor) = \widetilde{y}_p(k) = Y_{(\lceil kp \rceil)}$.

Informally speaking, the STS $\{T_{I(y),n}(t)\}$ is "traditional" in that it only involves sample averages, so that its analysis is greatly aided by results that are already in the literature. On the other hand, the STS $\{T_{\widetilde{y}_p,n}(t)\}$ is less straightforward since it involves a quantile process, forcing us to be a little more careful in the subsequent analysis.

Going forward, suppose that w(t) is a continuous function on $t \in [0,1]$ satisfying $\int_0^1 \int_0^1 w(s)w(t) \left(\min(s,t) - st\right) \mathrm{d}s \, \mathrm{d}t = 1$; this is a necessary condition to ensure the asymptotic unbiasedness of the variance estimators to be studied below. We define $\alpha_k \equiv kw(\frac{k}{n})$ for $k = 1, 2, \dots, n-1$ and $\alpha_n \equiv -\sum_{k=1}^{n-1} \alpha_k$. We note that $\sum_{k=1}^n \alpha_k = 0$; and moreover, since w(t) is continuous on a closed interval, it is clear that

$$|\alpha_k| = O(n)$$
 for $k = 1, 2, \dots, n-1$, and $\alpha_n = O(n^2)$. (38)

We define the following "area" functionals associated, respectively, with $\{T_{I(y),n}(t)\}\$ and $\{T_{\widetilde{y}_p,n}(t)\}\$,

$$A_{I(y)}(w;n) \equiv \frac{\sigma_{I(y)}}{n} \sum_{k=1}^{n} w(\frac{k}{n}) T_{I(y),n}(\frac{k}{n}) \text{ for } y \in \mathbb{R} \text{ and } n \ge 1$$
(39)

and

$$A_{\widetilde{y}_p}(w;n) \equiv \frac{\sigma_{\widetilde{y}_p}}{n} \sum_{k=1}^n w(\frac{k}{n}) T_{\widetilde{y}_p,n}(\frac{k}{n}) \text{ for } p \in (0,1) \text{ and } n \ge 1.$$
 (40)

We say that $A_{I(y)}^2(w;n)$ is the STS weighted area estimator for $\sigma_{I(y)}^2$, and $A_{\widetilde{y}_p}^2(w;n)$ is the STS weighted area estimator for $\sigma_{\widetilde{y}_p}^2$.

4.2. Expected Value of the STS Area Estimator

The analysis of these estimators begins with an old result applied to the indicator process to establish that the STS area estimator $E[A_{I(y)}^2(w;n)]$ is asymptotically unbiased for $\sigma_{I(y)}^2$ as $n \to \infty$.

Lemma 2. Under the Standing Assumptions, we have $\mathbb{E}\big[A_{I(y)}^2(w;n)\big] = \sigma_{I(y)}^2 + O(1/n)$.

Proof: Under the GMC condition, Theorem 1.2(iii) implies that $|\gamma_{I(y),1}| < \infty$; and this is sufficient to invoke Goldsman et al. (1990, Corollary 4.2), which immediately implies the result.

The following finding is this section's main theorem establishing that $\mathrm{E}\big[A_{\widetilde{y}_p}^2(w;n)\big]$ is asymptotically unbiased for $\sigma_{\widetilde{y}_p}^2$, though the bias converges to zero at a dawdling $O(n^{-1/4})$ rate.

Theorem 4. Under the Standing Assumptions [and maybe whatever else is needed for Bahadur], we have $\mathrm{E}\big[A_{\widetilde{\gamma}_{p}}^{2}(w;n)\big] = \sigma_{\widetilde{\gamma}_{p}}^{2} + O(n^{-\frac{1}{4}+\varepsilon}) \ for \ \varepsilon > 0.$

Before proving the theorem, we prepare with several lemmas that we will need. The first relates the two area functionals.

LEMMA 3. Using the notation of the Bahadur representation (6), we have

$$A_{\widetilde{y}_p}(w;n) = -\frac{A_{I(y_p)}(w;n)}{f(y_p)} + \frac{1}{n^{3/2}} \sum_{\ell=1}^n \alpha_\ell Q_\ell.$$
 (41)

Proof: Starting with Equations (37) and (40), we have

$$A_{\widetilde{y}_{p}}(w;n) = \frac{1}{n^{3/2}} \sum_{k=1}^{n} k \, w(\frac{k}{n}) \left[\widetilde{y}_{p}(k) - \widetilde{y}_{p}(n) \right]$$

$$= \frac{1}{n^{3/2}} \left\{ \sum_{k=1}^{n-1} k \, w(\frac{k}{n}) \, \widetilde{y}_{p}(k) - \left[\sum_{k=1}^{n-1} k \, w(\frac{k}{n}) \right] \widetilde{y}_{p}(n) \right\}$$

$$= \frac{1}{n^{3/2}} \sum_{k=1}^{n} \alpha_{k} \widetilde{y}_{p}(k)$$

$$= \frac{1}{n^{3/2}} \sum_{k=1}^{n} \alpha_{k} \left(y_{p} - \frac{\overline{I}_{k}(y_{p}) - p}{f(y_{p})} + Q_{k} \right) \quad \text{(by Bahadur Equation (6))}$$

$$= \frac{1}{n^{3/2}} \sum_{k=1}^{n} \alpha_{k} \left(\frac{\overline{I}_{n}(y_{p}) - \overline{I}_{k}(y_{p})}{f(y_{p})} + Q_{k} \right) \quad \text{(since } \sum_{k=1}^{n} \alpha_{k} = 0 \text{)},$$

and the result follows from Equations (36) and (39). ■

LEMMA 4. Under the Standing Assumptions [and maybe a Bahadur assumption?], we have

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \operatorname{Cov}\left[\overline{I}_i(y), Q_j\right] \right| = O\left(n^{\frac{11}{4} + \varepsilon}\right). \tag{42}$$

Proof: The Cauchy–Schwarz inequality and then Equations (18) and (17) in that order imply that

$$\left|\operatorname{Cov}\left[\overline{I}_{i}(y), Q_{j}\right]\right| \leq \sqrt{\operatorname{Var}\left[\overline{I}_{i}(y_{p})\right]} \sqrt{\operatorname{Var}\left[Q_{j}\right]} = O\left(i^{-\frac{1}{2}} j^{-\frac{3}{4}} \log^{\frac{3}{2}} j\right) = O\left(i^{-\frac{1}{2}} j^{-\frac{3}{4} + \varepsilon}\right) \quad \text{for any } \varepsilon > 0. \quad (43)$$

Equation (38) gives bounds on the α_k 's and guarantees a large-enough generic constant C for which

$$\begin{split} &\left|\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}\operatorname{Cov}\left[\overline{I}_{i}(y),Q_{j}\right]\right| \\ &= \left|\sum_{i=1}^{n-1}\sum_{j=1}^{n-1}\alpha_{i}\alpha_{j}\operatorname{Cov}\left[\overline{I}_{i}(y),Q_{j}\right] + \sum_{i=1}^{n-1}\alpha_{i}\alpha_{n}\operatorname{Cov}\left[\overline{I}_{i}(y),Q_{n}\right] + \sum_{j=1}^{n-1}\alpha_{n}\alpha_{j}\operatorname{Cov}\left[\overline{I}_{n}(y),Q_{j}\right] + \alpha_{n}^{2}\operatorname{Cov}\left[\overline{I}_{n}(y),Q_{n}\right]\right| \\ &\leq C\left[n^{2}\sum_{i=1}^{n-1}\sum_{j=1}^{n-1}\left|\operatorname{Cov}\left[\overline{I}_{i}(y),Q_{j}\right]\right| + n^{3}\sum_{i=1}^{n-1}\left|\operatorname{Cov}\left[\overline{I}_{i}(y),Q_{n}\right]\right| + n^{3}\sum_{j=1}^{n-1}\left|\operatorname{Cov}\left[\overline{I}_{n}(y),Q_{j}\right]\right| + n^{4}\left|\operatorname{Cov}\left[\overline{I}_{n}(y),Q_{n}\right]\right| \\ &\leq C\left[n^{2}\sum_{i=1}^{n-1}\sum_{j=1}^{n-1}i^{-\frac{1}{2}}j^{-\frac{3}{4}+\varepsilon} + n^{3}\sum_{i=1}^{n-1}i^{-\frac{1}{2}}n^{-\frac{3}{4}+\varepsilon} + n^{3}\sum_{j=1}^{n-1}n^{-\frac{1}{2}}j^{-\frac{3}{4}+\varepsilon} + n^{4}n^{-\frac{1}{2}}n^{-\frac{3}{4}+\varepsilon} \right] \quad \text{(by Equation (43))} \\ &\leq C\left[n^{2}n^{\frac{1}{2}}n^{\frac{1}{4}+\varepsilon} + n^{3}n^{\frac{1}{2}}n^{-\frac{3}{4}+\varepsilon} + n^{3}n^{-\frac{1}{2}}n^{\frac{1}{4}+\varepsilon} + n^{4}n^{-\frac{1}{2}}n^{-\frac{3}{4}+\varepsilon}\right] \quad \text{(integral approximations of sums)} \\ &= O(n^{\frac{11}{4}+\varepsilon}). \quad \blacksquare \end{split}$$

LEMMA 5. Under the Standing Assumptions [and maybe a Bahadur assumption?], we have

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \mathbb{E} \left[Q_i Q_j \right] \right| = O\left(n^{\frac{5}{2} + \varepsilon} \right). \tag{44}$$

Proof: First of all, Cauchy–Schwarz and Equation (17) imply that, for any $\epsilon > 0$, we have

$$\left| \mathbb{E}[Q_i Q_j] \right| \le \sqrt{\mathbb{E}[Q_i^2] \mathbb{E}[Q_j^2]} = \sqrt{O(i^{-\frac{3}{2}} \log^3 i) O(j^{-\frac{3}{2}} \log^3 j)} = O(i^{-\frac{3}{4} + \frac{\varepsilon}{2}} j^{-\frac{3}{4} + \frac{\varepsilon}{2}}). \tag{45}$$

By Equation (45) and symmetry,

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbb{E}[Q_{i} Q_{j}] \right| = \left| \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \alpha_{i} \alpha_{j} \mathbb{E}[Q_{i} Q_{j}] + 2 \sum_{i=1}^{n-1} \alpha_{i} \alpha_{n} \mathbb{E}[Q_{i} Q_{n}] + \alpha_{n}^{2} \mathbb{E}[Q_{n}^{2}] \right| \quad \text{(by Equation (38))}$$

$$\leq C \left[n^{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \left| \mathbb{E}[Q_{i} Q_{j}] \right| + 2n^{3} \sum_{i=1}^{n-1} \left| \mathbb{E}[Q_{i} Q_{n}] \right| + n^{4} \mathbb{E}[Q_{n}^{2}] \right]$$

$$\leq C \left[n^{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} i^{-\frac{3}{4} + \frac{\varepsilon}{2}} j^{-\frac{3}{4} + \frac{\varepsilon}{2}} + 2n^{3} \sum_{i=1}^{n-1} i^{-\frac{3}{4} + \frac{\varepsilon}{2}} n^{-\frac{3}{4} + \frac{\varepsilon}{2}} + n^{4} n^{-\frac{3}{2} + \varepsilon} \right] \quad \text{(by Equation (45))}$$

$$\leq C \left[n^{2} n^{\frac{1}{4} + \frac{\varepsilon}{2}} n^{\frac{1}{4} + \frac{\varepsilon}{2}} + 2n^{3} n^{\frac{1}{4} + \frac{\varepsilon}{2}} n^{-\frac{3}{4} + \frac{\varepsilon}{2}} + n^{4} n^{-\frac{3}{2} + \varepsilon} \right] \quad \text{(integral approximations of sums)}$$

$$= O(n^{\frac{5}{2} + \varepsilon}). \quad \blacksquare$$

At this point, we are finally ready to prove the main theorem.

Proof (of Theorem 4): Starting from Equation (41), we obtain

$$\begin{split} & \mathbb{E} \big[A_{\widetilde{y}_p}^2(w;n) \big] = \frac{\mathbb{E} \big[A_{I(y_p)}^2(w;n) \big]}{f^2(y_p)} - \frac{2}{n^{3/2} f(y_p)} \mathbb{E} \bigg[A_{I(y_p)}(w;n) \sum_{\ell=1}^n \alpha_\ell Q_\ell \bigg] + \frac{1}{n^3} \sum_{k=1}^n \sum_{\ell=1}^n \alpha_k \alpha_\ell \mathbb{E} \big[Q_k Q_\ell \big] \\ & = \frac{\sigma_{I(y_p)}^2}{f^2(y_p)} + O(1/n) + \frac{2}{n^{3/2} f(y_p)} \mathbb{E} \bigg[\frac{\sigma_{I(y_p)}}{n} \sum_{k=1}^n w(\frac{k}{n}) T_{I(y_p),n}(\frac{k}{n}) \sum_{\ell=1}^n \alpha_\ell Q_\ell \bigg] + O(n^{-\frac{1}{2} + \varepsilon}) \\ & \text{ (by Lemma 2, Equation (39), and Equation (44))} \\ & = \sigma_{\widetilde{y}_p}^2 + \frac{2}{n^3 f(y_p)} \mathbb{E} \bigg[\sum_{k=1}^n \alpha_k (\overline{I}_n(y_p) - \overline{I}_k(y_p)) \sum_{\ell=1}^n \alpha_\ell Q_\ell \bigg] + O(n^{-\frac{1}{2} + \varepsilon}) \quad \text{(by Equation (36))} \\ & = \sigma_{\widetilde{y}_p}^2 - \frac{2}{n^3 f(y_p)} \mathbb{E} \bigg[\sum_{k=1}^n \alpha_k \alpha_\ell (\overline{I}_k(y_p) - p) \sum_{\ell=1}^n \alpha_\ell Q_\ell \bigg] + O(n^{-\frac{1}{2} + \varepsilon}) \quad \text{(since } \Sigma_{k=1}^n \alpha_k = 0) \\ & = \sigma_{\widetilde{y}_p}^2 - \frac{2}{n^3 f(y_p)} \sum_{k=1}^n \sum_{\ell=1}^n \alpha_k \alpha_\ell \mathbb{E} \big[(\overline{I}_k(y_p) - p) Q_\ell \big] + O(n^{-\frac{1}{2} + \varepsilon}) \\ & = \sigma_{\widetilde{y}_p}^2 - \frac{2}{n^3 f(y_p)} \sum_{k=1}^n \sum_{\ell=1}^n \alpha_k \alpha_\ell \mathbb{E} \big[(\overline{I}_k(y_p), Q_\ell) \big] + O(n^{-\frac{1}{2} + \varepsilon}) \\ & = \sigma_{\widetilde{y}_p}^2 + O(n^{-\frac{1}{4} + \varepsilon}) + O(n^{-\frac{1}{2} + \varepsilon}) \quad \text{(by Equation (42)).} \quad \blacksquare \end{split}$$

4.3. Batched and Combined Estimators

Without going into too much of a notational deep dive, we can easily adopt the area estimators for use in a batching environment—a estimator for each batch. To this end, recall that the we divide our n observations $\{Y_1, Y_2, \ldots, Y_n\}$ into b contiguous batches, each of size m (assuming n = bm). Using the notation developed in

§§2 and 4.1, we now define the various batched versions of the standardized time series and their associated estimators.

For batches j = 1, 2, ..., b, the STS indicator and quantile-estimator processes are given by

$$T_{I(y),j,m}(t) \equiv \frac{\lfloor mt \rfloor}{\sigma_{I(y)}\sqrt{m}} \left[\overline{I}_{j,\lfloor mt \rfloor}(y) - \overline{I}_{j,m}(y) \right] \text{ for } m \ge 1 \text{ and } t \in [0,1]$$

$$(46)$$

and

$$T_{\widetilde{y}_p,j,m}(t) \equiv \frac{\lfloor mt \rfloor}{\sigma_{\widetilde{y}_p} \sqrt{m}} \left[\widetilde{y}_p(j,\lfloor mt \rfloor) - \widetilde{y}_p(j,m) \right] \text{ for } p \in (0,1), m \ge 1, \text{ and } t \in [0,1].$$
 (47)

We define the following batched area functionals, analogous to their full-sample counterparts in §4.1,

$$A_{I(y)}(w; j, m) \equiv \frac{\sigma_{I(y)}}{m} \sum_{k=1}^{m} w(\frac{k}{m}) T_{I(y), j, m}(\frac{k}{m}) \text{ for } j = 1, 2, \dots, b, y \in \mathbb{R}, \text{ and } m \ge 1$$
 (48)

and

$$A_{\widetilde{y}_p}(w;j,m) \equiv \frac{\sigma_{\widetilde{y}_p}}{m} \sum_{k=1}^m w(\frac{k}{m}) T_{\widetilde{y}_p,i,m}(\frac{k}{m}) \text{ for } j = 1, 2, \dots, b, p \in (0,1), \text{ and } m \ge 1.$$
 (49)

The batched STS weighted area estimators for $\sigma^2_{I(y)}$ and $\sigma^2_{\widetilde{y}_p}$ are respectively given by

$$\mathcal{A}_{I(y)}(w;b,m) \equiv \frac{1}{b} \sum_{j=1}^{b} A_{I(y)}^2(w;j,m) \quad \text{and} \quad \mathcal{A}_{\widetilde{y}_p}(w;b,m) \equiv \frac{1}{b} \sum_{j=1}^{b} A_{\widetilde{y}_p}^2(w;j,m).$$

The next results on the expected values of the batched area estimators are immediate from Lemma 2 and Theorem 4.

COROLLARY 1. Under the Standing Assumptions [maybe add assumptions for Bahadur?], we have

$$\mathbb{E}\big[\mathcal{A}_{I(y)}(w;b,m)\big] = \sigma_{I(y)}^2 + O(1/m) \quad and \quad \mathbb{E}\big[\mathcal{A}_{\widetilde{y}_p}(w;b,m)\big] = \sigma_{\widetilde{y}_p}^2 + O(m^{-\frac{1}{4}+\varepsilon}) \ for \ \varepsilon > 0.$$

Based on Theorem 3 and Corollary 1, we can combine the NBQ and STS estimators. Define the following estimators for $\sigma_{\widetilde{y}_p}^2$. [I suppose that we could do the same for $\sigma_{I(y)}^2$, though in this case the NBQ component has $O(m^{-1/4})$ bias while the area estmator only has O(1/m) bias — likely due to the way in which the NBM's bias was proven (we can probably do better).]

$$C_{\widetilde{y}_p}(w;b,m) \equiv \frac{(b-1)\mathcal{N}_{\widetilde{y}_p}(b,m) + b\mathcal{A}_{\widetilde{y}_p}(w;b,m)}{2b-1}$$

and

$$\widetilde{C}_{\widetilde{y}_p}(w;b,m) \equiv \frac{(b-1)\widetilde{\mathcal{N}}_{\widetilde{y}_p}(b,m) + b\mathcal{A}_{\widetilde{y}_p}(w;b,m)}{2b-1}.$$

Then we immediately have

COROLLARY 2. Under the Standing Assumptions [maybe add assumptions for Bahadur?], we have

$$\mathrm{E}\big[C_{\widetilde{y}_p}(w;b,m)\big] = \sigma_{\widetilde{y}_p}^2 + O(m^{-\frac{1}{4}+\varepsilon}) \ \ for \ \varepsilon > 0 \quad \ \ and \quad \ \mathrm{E}\big[\widetilde{C}_{\widetilde{y}_p}(w;b,m)\big] = \sigma_{\widetilde{y}_p}^2 + O(m^{-\frac{1}{4}+\varepsilon}) \ \ for \ \varepsilon > 0.$$

Why are we so interested in the batched and combined estimator results of Corollaries 1 and 2? The answer stems from Dingeç et al. (2023a, Theorems 2 and 5) who show that the GMC condition is sufficient to apply certain functional central limit theorems that Alexopoulos et al. (2023) subsequently use to obtain

$$\begin{array}{cccc} \mathcal{N}_{\widetilde{y}_p}(b,m) & \underset{m \to \infty}{\Longrightarrow} & \frac{\sigma_{\widetilde{y}_p}^2 \, \chi^2(b-1)}{b-1} \\ & & & \\ \widetilde{\mathcal{N}}_{\widetilde{y}_p}(b,m) & \underset{m \to \infty}{\Longrightarrow} & \frac{\sigma_{\widetilde{y}_p}^2 \, \chi^2(b-1)}{b-1} \\ & & & \\ \mathcal{A}_{\widetilde{y}_p}(w;b,m) & \underset{m \to \infty}{\Longrightarrow} & \frac{\sigma_{\widetilde{y}_p}^2 \, \chi^2(b)}{b} \\ & & & \\ C_{\widetilde{y}_p}(w;b,m) & \underset{m \to \infty}{\Longrightarrow} & \frac{\sigma_{\widetilde{y}_p}^2 \, \chi^2(2b-1)}{2b-1} \\ & & & \\ \widetilde{C}_{\widetilde{y}_p}(w;b,m) & \underset{m \to \infty}{\Longrightarrow} & \frac{\sigma_{\widetilde{y}_p}^2 \, \chi^2(2b-1)}{2b-1}, \end{array}$$

where $\chi^2(\nu)$ denotes a χ^2 r.v. having ν degrees of freedom (d.f.). Alexopoulos et al. (2023) then derive confidence intervals for y_p of the familiar generic form

$$y_p \in \widehat{y}_p \pm t_{\alpha/2,\nu} \widehat{\sigma}_{\widetilde{y}_p} / \sqrt{n}$$

where $t_{\alpha/2,\nu}$ is the $(1-\frac{\alpha}{2})$ quantile of the Student *t*-distribution with ν d.f.; the point estimator \widehat{y}_p for y_p is either $\widetilde{y}_p(n)$ or $\overline{y}_p(b,m)$; and $\widehat{\sigma}_{\widetilde{y}_p}^2$ is one of the various estimators for $\sigma_{\widetilde{y}_p}^2$ studied in Alexopoulos et al. (2023) and the current paper.

Of course, it is well known that the more d.f. the better—resulting in lower variance of the estimators for $\sigma_{\widetilde{y}_p}^2$, tighter and less-variable CIs, etc. However, the familiar bias/variance trade-off is also in play: For a fixed sample size n, an increase in b (which results in lower variance) forces a smaller batch size m (typically resulting in higher bias). These issues will be addressed by a Monte Carlo study coming up in §5.

5. Experimental Results

In §5.1 we conduct Monte Carlo (MC) experiments to illustrate the performance of our various estimators for $\widehat{\sigma}_{\widetilde{y}_p}^2$. We carry out this work on various stationary processes of interest: (i) a first-order autoregressive (AR(1)) process; (ii) an autorgressive-to-Pareto (ARTOP) process; and (iii) the waiting-time process from an M/M/1 queueing system. §5.2 concerns the selection of weights for the area estimator. [Note that we have absolutely no theoretical support or even conclusive empirical evidence for weight selection. Also, note that AR(1) should go before ARTOP (obviously). I also put M/M/1 third, because that's what we've been doing in our other work.].

5.1. Monte Carlo Evaluation for M/M/1, AR(1), and ARTOP Processes

[Add more information for the examples.]

Example 2. Consider the Gaussian AR(1) time-series defined by the linear regression model $Y_k = \mu + \phi(Y_{k-1} - \mu) + \epsilon_k$ for $k \ge 1$, where $\phi \in (-1,1)$ is the autoregressive parameter, the residuals $\{\epsilon_k : k \ge 1\}$ are i.i.d. Nor $(0, \sigma_{\epsilon}^2)$, and Y_0 is the initial state of the process. The steady-state marginal distribution of this process is Nor $(\mu, \sigma_{\epsilon}^2/(1 - \phi^2))$. In this experiment we take $Y_0 \sim \text{Nor}(0,1)$, $\phi = 0.9$, and $\sigma_{\epsilon}^2 = 1 - \phi^2 = 0.19$; hence the process is stationary with a standard normal marginal distribution. The computation of the variance parameter $\sigma_{\widetilde{y}_p}^2$ in Equation (??) is detailed in Dingeç et al. (2023b). [This discussion can be written more succinctly, if we're only gonna use N(0,1) observations, no need to define a more-general AR(1)!]

Example 3. ARTOP process with $\gamma = 1, \theta = 2.1$, and $\beta = 0.995$

Example 4. Consider an M/M/1 queueing system with arrival rate $\lambda = 0.8$, service rate $\omega = 1$ (traffic intensity $\rho = 0.9$) and first-in, first-out (FIFO) service discipline. Let Y_k be the time spent by the kth entity in queue (prior to service). The steady-state c.d.f. of Y_k is

$$F(y) = \begin{cases} 0 & \text{if } y < 0, \\ 1 - \rho & \text{if } y = 0, \\ 1 - \rho e^{-\omega(1 - \rho)y} & \text{if } y > 0; \end{cases}$$
 (50)

hence the steady-state distribution of Y_k has mean $\mu = \rho/(\omega - \lambda) = 4$, and the quantiles of this distribution are readily computed by inverting Equation (51). The steady-state distribution of Y_k is distinctly nonnormal, having an atom at zero, an exponential tail, and a skewness of $2(3-3\rho+\rho^2)/[\rho^{1/2}(2-\rho)^{3/2}] \approx 2.109$. The variance parameter $\sigma_{I(y_p)}^2$ of the indicator process was computed from Blomqvist (1967, Equation (22)). After some algebra, we [REF?] obtained the following analytical expression for the asymptotic variance parameter:

$$\sigma_{\widetilde{y}_p}^2 = \frac{1}{\omega^2 (1-\rho)^4} \left\{ \frac{[-2+p(3-\rho)+2\rho](1+\rho)}{1-p} - 4\rho \ln\left(\frac{\rho}{1-p}\right) \right\}.$$

[The following content is the discussion of the tables, which needs quite a bit of work.]

In Tables 1–6 we present experimental results comparing the following estimators: (i) the STS-Area $\mathcal{A}_{b,m}^2$; (ii) the "first" BM $\mathcal{N}_1(b,m)$; (iii) the "second" BM $\mathcal{N}_2(b,m)$; (iv) the "Combo 1" based on $\mathcal{N}_1(b,m)$; and (v) the "Combo 2" based on $\mathcal{N}_2(b,m)$. For this experimental analysis we used 2,500 independent replications and we considered three examples:

In each table, column 1 contains the values of p, x_p , and σ^2 (the latter quantity is set in bold red type); column 2 contains the value of $\mathcal{L} = \log_2(m)$; columns 3, 7, 11, 15, and 19 respectively contain the average values of the selected variance-parameter estimators; columns 4, 8, 12, 16, and 20 respectively contain the average bias of the selected variance-parameter estimators; while columns 5, 9, 13, 17, and 21 respectively

contain the standard deviations of the selected variance-parameter estimators. Finally, columns 6, 10, 14, 18, and 22 contain respectively the root-mean-square error (RMSE).

The first goal of this analysis was to verify the convergence of the respective variance estimators to the true value in column 1. It is clear that this was the case for every variance estimator in Tables 1–6 as the average values of the selected variance-parameter estimators approached the true value and the respective biases went to zero. However, the columns that contain the average bias reveal that the batched STS Area Estimator had larger bias compared to the "first" BM $\mathcal{N}_1(b,m)$ and the "second" BM $\mathcal{N}_2(b,m)$, especially for small batch sizes.

The comparison between the "first" BM $\mathcal{N}_1(b,m)$ and the "second" BM $\mathcal{N}_2(b,m)$ variance estimators did not yield a clear winner as there were situations where $\mathcal{N}_1(b,m)$ performed better than $\mathcal{N}_1(b,m)$ and others where it performed worse. Overall, for the examples that we considered there was a tendency for the "first" BM $\mathcal{N}_1(b,m)$ to perform slightly better. It is important to note that any potential advantages of either of these estimators significantly diminished as the batch size increased to values greater than 2^{17} .

The "Combo 1" and the "Combo 2" variance estimators outperformed all the others with respect to the standard deviation of the selected variance parameters and the RMSE. This was expected due to the larger number of degrees of freedom associated with the combined variance estimators. Again, for similar reasons as the ones explained in the paragraph above there was not a clear winner between the two.

Experimental results for a stationary waiting-time process in an M/M/1 queueing system with traffic intensity $\rho = 0.8$. All estimates are based on 2,500 independent Table 1

												AIU	CIE S	uom	illeu	10 0	verai	ions	nese	urcn	, iliai	iusci	треп	0. (F	icas	e, pro	JVIUC	uic	inani	iscii	pt IIu
ttor			RMSE	927.7	1400.1	1469.6	1031.4	568.7	261.6	168.3	134.8	123.1	117.1	114.4	112.5	114.5	112.2	1826.0	1919.1	2824.7	3157.5	2728.4	1511.0	1001.8	742.6	657.1	619.3	605.7	578.3	594.0	580.6
Combined V1 Estimator	i	Std.	Dev.	786.7	1095.1	1183.6	862.0	481.6	226.4	156.8	131.9	122.5	116.9	114.4	112.4	114.5	112.2	1043.6	1911.9	2620.3	2787.7	2431.2	1355.5	941.7	725.8	652.3	617.5	604.9	578.1	593.9	580.6
lbined V			Bias	491.7	872.3	871.2	566.3	302.4	131.0	61.3	27.9	12.0	7.7	4.5	1.8	1.2	0.0	-1498.4	-165.2	1055.1	1482.7	1238.2	667.5	341.8	157.0	79.7	47.6	30.7	15.6	9.5	5.4
Com			Avg.	1126.7	1507.3	1506.2	1201.3	937.4	766.0	696.3	6.299	647.0	642.7	639.5	8.989	636.2	635.0	1800.3	3133.5	4353.8	4781.4	4536.9	3966.2	3640.5	3455.7	3378.4	3346.3	3329.4	3314.3	3308.2	3304.1
.or			RMSE	8.6001	1468.7	1508.0	1043.9	573.7	263.8	169.2	135.2	123.2	117.2	114.5	112.5	114.5	112.2	1823.6	1963.8	2905.5	3216.9	2755.0	1521.3	1005.9	744.1	657.8	619.6	605.8	578.4	594.0	580.6
Estima	,	Std.	Dev.	848.0	1143.3	1210.1	869.1	484.1	227.5	157.2	132.1	122.6	116.9	114.4	112.4	114.5	112.2	1060.7	1960.0	2682.6	2831.1	2449.3	1361.7	944.1	726.8	652.7	617.7	605.0	578.2	593.9	580.6
, 20. Combined V2 Estimator			Bias	548.1	921.9	899.8	578.3	307.9	133.5	62.5	28.5	12.3	7.8	4.5	1.8	1.2	0.0	-1483.4	-122.4	1116.0 2	1527.4 2	1261.3 2	678.4	347.0	159.6	81.0	48.3	31.0	15.8	9.6	5.5
8,,2(Comb			Avg.	1183.1	1556.9	1534.8	1213.3	942.9	768.5	697.5	663.5	647.3	642.8	639.5	836.8	636.2	635.0	1815.3 -1	3176.3	4414.7	4826.1	4560.0	3977.1	3645.7	3458.3	3379.7	3347.0	3329.7	3314.5	3308.3	3304.2
replications with $b = 32$ batches and batch sizes $m = 2^L$, $\mathcal{L} = 7, 8,, 20$ NBQ V2 Estimator NBQ V1 Estimator Combi			RMSE	1506.6	1763.0	1500.7	660.0 1	356.9	226.2	188.2	169.9	166.7	163.0	163.5	159.2	164.1	163.6	1872.7	2702.1 3	3790.7 4	3415.6 4	2248.8 4.	1366.7 3	1041.8	904.3	878.0 3	861.5 3	839.3 3.	829.4 3.	856.2 3.	853.2 3.
$m = 2^{\mathcal{L}}$ timator	,	Std.	Dev. R	1266.3 1:	1470.1	1340.9 1:	602.7	334.8	218.4	186.3	1.69.7	1.991	163.0	163.5	159.2	164.1	163.6	1692.4	2624.7 2	3416.8 3'	3111.5 3	2113.7 2.	1312.2 1.	1029.9	902.2	6.978	2.098	838.9	829.3	856.1	853.0
I batch sizes $m = 2^{-4}$ NBQ V1 Estimator			Bias	816.3 13	973.1 1.	673.9	268.9	123.6	58.7	56.6	7.4	4.4	3.8	8.4	-0.4	-2.2	5.6	-801.6	642.1 20	1641.6 3	1408.8 3	767.5 2	382.3 1.	157.3 10	62.2	4.4	37.2	27.9	13.8	7.5	17.6
s and ba			Avg.	1451.3	1608.1	1308.9	903.9	758.6	693.7	661.6	642.4	639.4	838.8	8.689	634.6	632.8	637.6	2497.1 -8	3940.8	4940.3 10	4707.5 14	4066.2	3681.0	3456.0	3360.9	3343.1	3335.9	3326.6	3312.5	3306.2	3316.3
2 batche			RMSE	1677.2 14	1907.6	1585.0 13	691.4	368.8	230.7	6.681	170.5	167.1	163.2	163.6	159.3	164.1	163.6	1891.8 2	2817.2 39	3963.1 49	3544.6 4	2310.5 40	1389.7 30	$1050.2 3^{2}$	907.5 33	879.5 33.	862.2 33	839.7 33	829.6 33	856.3 3.	853.2 3:
ons with $b = 3$. V2 Estimator	,	Std.	Dev. R	1395.1 16	576.5 19	1405.9 15	626.1	343.3	221.6	187.6	170.3	167.0	163.1	163.5	159.3	164.1	163.6	1727.4 18	2721.3 28	3548.2 39	3211.7 35	2162.2 23	1329.6 13	1036.7 10	905.0	878.2 8	861.3 8	839.2	829.5	856.2 8	853.0 8
tions wi 2 V2 Est			Bias	931.0 13	3.9	731.9 14	293.3 6	134.7 3	63.9 2	29.2	8.7	5.1 1	4.1	5.0	-0.3	-2.2	2.6	-771.2 17	729.1 27	5.4	1499.7 32	814.4 21	404.4 13	167.9	67.4 9	47.1 8	38.5 8	28.6 8	14.1	7.7	17.7
replicati NBQ			Avg.		1708.9 107	1366.9 7	928.3 2	769.7	6.869	664.2	643.7	640.1	639.1	640.0	634.7	632.8	637.6			64.1 176		4113.1 8			3366.1	3345.8	3337.2	27.3	3312.8	3306.4	16.4
tor				558.4 1566.0	1368.7	1868.8 13	1674.6	938.4	406.1 6	254.6 6	9 9.861	177.3 6	167.0	162.0	159.7	163.1 6	157.6	682.2 2277.9 2527.5	69.7 40	75.4 50	3756.6 4798.4	31.2 41	53.3 37	95.9 34		943.4 33	875.2 33	860.4 3327.3	815.0 33	838.6 33	813.4 3316.4
ı Estima	,	Std.	Dev. RMSE	529.5 5	1128.4 13	1537.4 18	40.2 16	808.9	352.9 4	236.3 2	192.7	176.3 1	166.6	161.9	159.6 1	163.0 1	157.6 1	82.2 22	27.0 19	32.4 27		57.9 40	46.1 22	02.5 14	1045.6 1074.8	936.5 9	873.3 8	8 26.7 8	814.8 8	838.5 8	813.3 8
TS Area			Bias]	177.2 5	774.7 113	1062.4 15	854.4 1440.2	475.6 8	201.0	94.9	47.8	19.3	11.4	4.1	3.9	4.4	-2.5	-2173.3 6	-947.3 1727.0 1969.7 4027.8	486.9 2732.4 2775.4 5064.1	1554.3 3419.9	1694.2 3657.9 4031.2	943.8 2046.1 2253.3 3703.1	520.5 1402.5 1495.9 3466.6	248.8 10	113.8 9.	57.7 8	33.4 8	17.4 8	11.5	-6.3 8
Batched STS Area Estimator			Avg.	812.2 1					836.0 20	729.9	, 82.8	654.3	646.4	639.1	638.9	639.4	632.5													0.2	2.4
В			Y 7	7 81	8 1409.7	9 1697.4	10 1489.4	11 1110.6	12 83	13 72	14 68	15 65	16 64	17 63	18 63	19 63	20 63	7 1125.4	8 2351.4	9 3785.6	10 4853.0	11 4992.9	12 4242.5	13 3819.2	14 3547.5	15 3412.5	16 3356.4	17 3332.1	18 3316.1	19 3310.2	20 3292.4
	d	(x_p)	Var. Par.	0.5	(2.3500)	635.0											- 1	0.75	(5.8158)	3298.7											

Experimental results for a stationary waiting-time process in an M/M/1 queueing system with traffic intensity $\rho = 0.8$. All estimates are based on 2,500 independent Table 2

	1		רד)	10		~	<u>~</u>	2	~	6	<u>~</u>	<u> </u>	~	6	00	<u></u>	<u></u>	I (c)	~	90	_	_	6	_	<u>ر</u>	_	<u>ر</u>	_	<u>بر</u>	-	4
	ıtor		RMSE	29779	26660	21562	16138	16266	19583	15919	11908	8677	7253	6189	5918	5859	5705	1424 188229	3177 184178	6765 176248	14065 160787	28645 133497	52186 100769	84067	105925	92971	76385	49577	41885	38130	35664
-	Estima	Std.	Dev.	1347	2867	5751	10535	16133	19213	15238	11478	8498	7191	6177	5910	5858	5705	1424	3177	6765	14065	28645	52186	76546	105703	91319	74931	48876	41538	38001	35607
	Combined V1 Estimator		Bias	-29749	-26506	-20781	-12224	-2074	3787	4607	3171	1756	949	399	298	98	46	-188223	7111 -184150	-176118	-160170	-130387	-86204	-34755	6853 1	17445	14835	8308	5377	3131	2007
	Com		Avg.	2731	5974	11699	20256	30406	36267	37087	35651	34236	33429	32878	32778	32566	32526	3038 -	71111 -	15143 -	31091 -	- 42809	105057		198114	208706	506096	695661	869961	194392	193268
	ıc		RMSE	28781	25927	21202	16042	16322	19747	16029	11932	8687	7257	6190	5918	5859	5705	82060	75682	66351	152249	128086	98947 105057	83786 156506	106302	93547	76628 206096	49611 199569	41900 196638	38135	35666 193268
	Estimat	Std.		2749	3651	6009	0950	6199	9361	5334	11496	8505	7193	6177	5911	5859	5705	8861 182060	13839 175682	18023 166351	20481 1	31916 1	52972	76579	106052 1	91854	75154	48901	41550	38005	35609
	Combined V2 Estimator		Bias	-28650	.25669	20332	-12077 1	-1994 1	3887 1	4668 1	3196 1	1769	926	402	300	87	47	81845			-150866 2		-83573 5	-33997 7	7277 10	17720 9	14955 7	8363 4	5406 4	3147 3	2016 3
, 20.	Comb		Avg.	3830 -:	6811 -	12147 -	20403 -	30486	36367	37148	35676	34249	33436	32882	32779	32567	32526	9416 -181845	16125 -175136	25890 -165371	40395 -1:	67216 -124045			8538	_	5216	9624	196667	194408	3277
3 = 7,8,			RMSE	28945	25382	1 10761	14364 20	18700 30	23457 30	18785 3	11393 33	9717 3	8845 33	8363 33	8459 33	8315 33	8318 33						91345 107688	88278 157264	119126 198538	110276 20898	77396 206216	55670 199624	53791 190	52001 19	48752 193277
=2 ^L , L	ator	Std.		2032 28	3787 25	6732 19	11450 14	8554 18		18232 18	11218 11	6 6996	8821 8	8360 8	8459 8	8314 8	8317 8	2095 187426	4024 183049	7526 174290	14418 157248	28074 127159									
izes m :	l Estim	S							3 22503						72 84	89 83	112 83		-				9 54211	53 87261	52 116265	7 108149	6 76595	2 55513	2 53742	6 51983	75 48720
batch s	NBQ V1 Estimator		Bias	-28874	-25098	-18515	-8673	2327	6623	4526	1984	964	655	206				3846 -187415	8256 -183005	17133 -174128	-156586	-124021	-73519	-13363	25952	21557	11106	4172	2312	1356	1775
thes and			Avg.	3606	7382	13965	23806	34807	39103	37006	34464	33444	33135	32686	32552	32568	32592				34675	67239	88726 117742	88270 177898	217213	212818	77949 202367	55735 195433	53818 193573	52010 192617	48757 193036
32 batc			RMSE	27125	24081	19117	14268	18851	23822	19027	11445	9736	8852	8365	8461	8315	8318	17586 175336	26786 166850	32980 155817	30487 141011	37863 117406	88726	88270	120172	111697	77949	55735	53818	52010	48757
vith b =	V2 Estimator	Std.	Dev.	5100	8699	7458	11553	18686	22823	18450	11262	9896	8827	8363	8460	8315	8318	17586	26786	32980	30487	37863	56787	87475	17142	109486 111697	77118	55570	53765	51992	48724
replications with $b = 32$ batches and batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} = 7, 8$,	NBQ V2E		Bias	-26641	-23398	-17603	-8374	2491	6828	4649	2036	066	899	213	92	90	113	174452	164686	152287	137676	1111133	-68173	-11821	26814 1	22116 1	11350	4284	2372	1387	1794
, repli	Z		Avg.	5839	9082	14877	24106	34970	39307	37129	34516	33469	33148	32693	32556	32570	32593	16809 -174452	26575 -164686	38974 -152287	53585 -137	80128 -111133			18074	13377	02611	95545	93633	92648	93054
	ator		RMSE	30614	28007	23848	20139	20306	22233	19160	17613	12414	10314	8851	8359	8239	8262	89010	85288	78223	54597	41659	18945	08826	28879	11384	08298	71850 195545	57732 193633	52310 192648	49830 193054
	ea Estim	Std.	Dev. RMSE	1038	2770	9869	12658	19292	22209	18578	17075	12155	10240	8831	8343	8239	8262	1170 189010	3245 185288	7919 178223	17701 164597	37687 141659	66687 118945 123088	93623 108826 179440	28352 13	13461 110567 111384 <mark>213377</mark>	18448 106715 108298 20261	. 10787	57126	52085	49780
	Batched STS Area Estimator		Bias	-30596	-27869	-22977	-15664	-6338	1039	4686	4321	2524	1235	585	516	84	-18	900681	185260	178047	163643		-98492	-55480	-11649 128352 128879 218074	13461 1	18448 1	12315	8346	4852	2231
•	Batchec		Avg.	1884	4611	9503	16816	26142	33519	37166	36801	35003	33714	33065	32996	32564	32462	2255 -189006	6001 -185260	13214 -178047	27618 -163643	54707 -136554	. 69226	13 135781	14 179612	15 204722	16 209709	17 203576	18 199607	19 196113	20 193492
			7	7	∞	6	10	11	12	13	4	15	16	17	18	19	20	7	∞	6	10	11	12	13 1	141	15 2	16 2	17 2	18	19 1	20 1
		p (x_n)	Var. Par.	0.95	(13.8629)	32480												0.99	(21.9101)	191261											

Experimental results of an ARTOP process with $\gamma = 1, \theta = 2.1$, and $\beta = 0.995$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{L}$, L = 7.8. Table 3

L		RMSE	590.3	594.4	752.5	1160.1	163.6	82.7	48.9	33.6	8.92	24.3	22.3	22.1	21.8	21.9	2409.5	2638.4	4075.0	17003.5	1741.3	583.7	305.1	188.6	148.6	131.8	123.5	123.1	119.1	119.4
Combined V1 Estimator	7							69.2	43.4	31.6	26.2	24.1	22.3	22.1	21.8	21.9												122.9	119.0	119.3
1V1 Es	ď		586.9	5 581.0	728.3	1147.7	139.2							22			3 2404.2	2633.6	4033.9	981.8 16975.2	1678.6	528.6	1 277.2	5 178.0	3 145.6	5 130.4	2 123.2			, ,
mbinec		Bias		125.5	189.1	169.3	86.0	45.2	22.5	11.3	5.6	3.4	1.2	1.2	0.4	0.4	-159.8	158.9	577.4		463.0	247.5	127.4	62.5	29.8	18.6	7.2	9.9	3.5	4.
ပိ		Avg.	184.2	246.9	310.4	290.7	207.3	166.6	143.9	132.7	127.0	124.7	122.5	122.5	121.7	121.7	492.5	811.2	1229.7	1634.1	1115.3	8.668	779.7	714.8	682.1	6.029	9.659	628.9	655.8	656.7
utor		RMSE	628.0	619.9	770.3	1162.5	167.3	84.6	49.8	34.0	26.9	24.4	22.4	22.1	21.8	21.9	2483.2	2713.8	4157.3	17015.3	1750.1	589.3	308.0	189.9	149.1	132.0	123.5	123.2	119.1	119.4
2 Estima	3	Dev.	623.2	603.7	743.2	1148.9	140.8	70.0	43.8	31.9	26.3	24.2	22.3	22.1	21.8	21.9	2479.0	2707.8	4113.0	985.5 1	1684.1	531.7	278.9	178.7	145.9	130.6	123.3	123.0	119.0	119.3
Combined V2 Estimator		Bias	77.5	140.8	202.7	177.6	90.4	47.5	23.7	11.9	5.9	3.5	1.2	1.2	9.4	9.4	-145.2 2	180.1 2	605.5 4	1006.1 16985.5	476.0 1	254.1	130.8	64.2	30.7	19.1	7.5	6.7	3.6	4.4
Comb		Avg.	198.9	262.2	324.0 2	299.0	211.7	6.891	145.0	133.3	127.3	124.9	122.6	122.6	121.7	121.7	507.1 -1	832.4 1		58.4 10	1128.3 4	906.4 2	783.2 1	716.6	683.0	671.4	8.659	659.0	655.9	8.959
			918.7	685.1 20	828.7 33	204.1 29	96.1 2	56.9 10	43.8 1.	37.6 1.	34.3 1.	32.3 1.	31.9 1.	31.1	31.1	30.5		3563.3 8.	5159.3 1257.8	2830.3 2896.6 1658.4	658.2 11.	350.0 90	257.8 7	212.9 7	190.4 6	179.5 6	173.2 6.	174.7 6	170.2 6:	65.2 6.
, 20. mator	7.5	Dev. RMSE	906.7 91	662.3 68	809.7 82	184.7 20	86.7	53.7 5	42.7 4	37.1 3	34.2 3	32.2	31.9 3	1.1 3	31.1 3	30.5	7.69.9 117.6 3305.7 3307.7		1.8 515	0.3 289	606.0 65	330.9 35	250.7 25	210.5 21	189.6	178.8 17	173.1 17	174.5 17	170.1	165.1 16
\mathcal{L}^{2} , $\mathcal{L} = 1, 8, \dots, 20$ NBQ V1 Estimator		Bias D				87.1 18	41.6	5 6.81	9.8	5.5 3	3.0 3.	2.4 3.	1.0 3	.1 3	0.8 3	0.0	.6 330	3 3533.4	3.2 5101.8	5.3 283			60.1 25	32.2 21	17.8 18	5.6 17	6.9	7.0 17	6.3 17	5.1 16
2~, <i>L</i> . NBQ		Avg. Bi	269.4 148.0	296.8 175.4	298.0 176.6	208.4 87	162.9 41	140.2 18	131.1 9	126.9 5	124.3 3	123.8 2	122.4	122.4	122.2 (121.4 (9.9 117	1112.7 460.3	1420.5 768.2	2936.4 3010.9 1268.6 616.3	909.3 256.9	766.3 114.0	712.4 60	684.5 32	670.2 17	667.9 15	659.2	659.3 7	658.6	657.4 \$
sizes $m = 2^{2}$, $\mathcal{L} = 7, 8, \dots, 20$. r NBQ V1 Estimator										38.4 12	34.7 12	32.5 12	32.0 12	_		30.5 12				9 126										
SIZO	_	Dev. RMSE	7 999.7	2 743.4	9 875.1	7 224.3	8 105.7	4 61.1	1 45.7					1 31.1	1 31.1		799.7 147.4 3461.1 3464.2	9 3724.1	2 5352.3	4 3010	1 692.7	5 364.5	3 264.0	5 215.5	6 191.6	3 180.1	3 173.4	7 174.8	1 170.3	1 165.2
s NBQ V2 Estimator	2		983.7	714.2	850.9	198.7	92.8	56.4	44.1	37.8	34.5	32.4	31.9	31.1	31.1	30.5	. 3461.	155.8 503.5 3689.9	5288.	2936.	632.1	341.5	255.3	212.5	190.6	179.3	. 173.3	174.7	. 170.1	165.1
BQ V.		. Bias	_	327.8 206.5	325.6 204.3	3 103.9	50.6	23.5	5 12.1	1 6.7	3.6	1 2.7	5 1.2	5 1.2	2 0.8	0.0	7 147.4	3 503.5	7 825.4	318.0 665.7	935.6 283.3	3 127.5	67.0	1 35.7	9.61	3 16.5	7.4	5 7.2	7 6.4	1 5.1
Z		Avg.	299.3	327.8		225.3	171.9	144.9	133.5	128.1	124.9	124.1	122.5	122.5	122.2	121.4	7.667		1477.7			779.8	719.4	688.1	671.9	8.899	659.7	659.5	658.7	657.4
mator		RMSE	447.4	655.9	1096.8	2255.9	275.6	136.0	76.5	49.4	38.9	34.7	31.7	31.6	30.3	31.0	2124.0	2336.0	4850.2 1477.7 825.4 5288.2	33126.6	3188.0	988.6	476.4	272.0	209.1	183.2	171.4	169.2	165.0	169.7
rea Esti	3	Dev.	447.0	651.3	1078.2	2242.1	243.5	116.1	68.1	46.4	38.0	34.4	31.7	31.6	30.3	31.0	2080.3	2332.2	4834.3	3099.7	3118.3	913.9	435.7	256.0	205.0	181.9	171.2	169.0	165.0	169.6
Batched STS Area Estimator		Bias	-19.8	77.2	201.1	249.0	129.0	70.8	34.9	17.0	8.2	4.3	1.3	1.3	0.0	0.7		-133.2	392.5	10 1988.2 1335.9 33099.7 33126.6	662.7	376.8	192.6	91.8	41.3	21.5	7.6	6.3	0.8	3.8
Batche		Avg.	101.6	198.5	322.5	370.4	250.3	192.2	156.2	138.3	129.6	125.7	122.6	122.6	121.3	122.1	223.7 -428.6	519.1 -	1044.8	988.2 1	11 1315.0	12 1029.1	845.0	744.2	93.6	673.8	6.659	9:859	653.2	656.1
		7	7	∞	6	10	11	12	13	4	15	16	17	18	19	20	7	∞	6	10 1	11 1	12 1	13	14	15	16	17	18	19	20
	<i>p</i> (3)	$(^{\lambda}p)$ Var. Par.	0.5	(1.3911)	121.4												0.75	(1.9351)	652.3											

Experimental results of an ARTOP process with $\gamma = 1$, $\theta = 2.1$, and $\beta = 0.995$. All estimates are based on 2,500 independent replications with b = 32 batches and batch Table 4

								sizes $m = 2^{2}$	•	$\mathcal{L} = 7, 8, \dots, 20$	\dots , 20.									
	Ä	Batched STS Area Estimator	Area Esti	mator		NBQ V2	Q V2 Estimator			NBQ V1	NBQ V1 Estimator		Com	bined V2	Combined V2 Estimator	or	Cor	Combined V1 Estimator	Estimat	ľ
d																				
(x_p)			Std.				Std.				Std.				Std.				Std.	
Var. Par.	L Avg.	g. Bias	bev.	RMSE	Avg.	Bias	Dev.	RMSE	Avg.	Bias	Dev.	RMSE	Avg.	Bias	Dev.	RMSE	Avg.	Bias	Dev.	RMSE
0.95	2 2	8 -12533	\$ 5867	13839	3157	-10044	14408	17563	2597	-10604	13634	17272	1893 -	-11308	9516	14780	1617	-11584	9185	14783
(4.1643)	8 2370	70 -10831	17984	20993	9869	-6215	32553	33141	6571	-6630	32197	32872	4641	-8560	21543	23181	4437	-8764	21376	23102
13201	9 5132	32 -8069	16862	18693	15200	1999	72014	72042	14861	1660	70781	70801	10086	-3115	39342	39465	9920	-3281	38758	38897
	10 46958		33757 1749162	1749488	31114	17913	372607	373037	30534	17333	360870	361286	39162	25961 10	1065953 1	1066269	38876	25675 10	1060252 1	1060563
	11 23951	10750	77224	69622	27023	13822	66947	68359	26578	13377	64979	66342	25463	12262	67137	68248	25244	12043	66246	67332
	12 27807	77 14606	5 77432	78798	23532	10331	34623	36131	23153	9952	33674	35114	25704	12503	48888	50461	25517	12316	48570	50107
	13 26155	55 12954	1 69351	70550	17562	4361	10935	11772	17382	4181	10672	11462	21927	8726	37065	38078	21838	8637	36988	37983
	14 19033	3 5832	2 14175	15327	15090	1889	6331	2099	15012	1811	6250	6507	17093	3892	8591	9431	17054	3853	8563	9390
	15 15890	00 2689	7031	7528	14168	296	4620	4720	14131	930	4594	4687	15043	1842	4664	5014	15024	1823	4653	4997
	16 14544	H 1343	3 4646	4837	13787	286	3987	4030	13767	999	3976	4017	14172	971	3277	3417	14162	961	3272	3410
	17 13785	584	1 3807	3851	13505	304	3655	3998	13496	295	3651	3663	13647	446	2730	2766	13643	442	2728	2764
	18 13560	359	3617	3635	13453	252	3597	3606	13448	247	3594	3603	13507	306	2615	2632	13505	304	2614	2631
	19 13403	3 202	3452	3458	13301	100	3427	3428	13299	86	3426	3427	13353	152	2489	2493	13352	151	2488	2493
	20 13297	96 4	3447	3448	13364	163	3414	3418	13362	161	3413	3417	13330	129	2437	2440	13329	128	2436	2440
0.99	7 106	1061 -213216	8256	213375		15922 -198355	79647	213748	4032 -	-210245	21183	211309	8374 -205903	05903	42129	210169	2523 -	2523 -211754	13995	212216
(8.9615)	8 514	5149 -209128	36627	212311	28450 -185827	-185827	119126	220732	13379 -	13379 -200898	71217	213147	16615 -197662	97662	99169	209414	9199	9199 -205078	47770	210568
214277	9 1345	13456 -200821	63685	210677	55124 -1591	-159153	238687	286882	38664 -	-175613	197717	264446	33960 -180317		130912	222828	25860 -188417		112048	219216
	10 6396	63961 -150316	5 774835		789280 341692	127415 1	10855637 1	10856384	325339	111062 1	10632413 1	10632993 200622		-13655 57	5721547 5721564		192576	-21701 50	5611750 5	5611792
	11 149196		$-65081\ 1008149\ 1010248 \ 359839$	1010248		145562	5863407	5865214	350163	135886	5717035	5718649 252846		38569 3	3121658 3121896 248085	121896	248085	33808 3050694)50694 3	3050881
	12 389911		175634 2852610 2858012 542259	2858012		327982	4877664	4888678 532850	532850	318573	4740608	4751300 464876		50599 30	250599 3644191 3652798 460246	652798		245969 3579002 3587444	579002 3	587444
	13 524018		309741 4731970 4742097 521692	4742097		307415	1533489	1563998 512116	512116	297839	1480442	1510104 522874		308597 28	2861910 2878500 518162	878500		303885 2845187		2861370
	14 540122		325845 1636833 1668951 389527	1668951	389527	175250	563378	200005	383525	169248	545855	571492 466020		251743	973150 1005185 463066	005185		248789	865296	020666
	15 433001	11 218724	829837	858178 282290	282290	68013	167006	180324	279890	65613	163576	176245 358842		144565	451512	474091 357661	357661	143384	450683	472942
	16 323008	108731	323937	341698	341698 249888	35611	105017	110891	248792	34515	103842	109428 287028		72751	182098	196092 286489	286489	72212	181769	885561
	17 266306	6 52029	146212	155193 230223	230223	15946	73093	74812	229724	15447	72753	74375 248551	48551	34274	88058	94493 248305	248305	34028	87933	94288
	18 236186	36 21909	77113		80165 224068	9791	64519	65258	223826	9549	64376	65081 230223	30223	15946	53780	26095	230104	15827	53724	26006
	19 225507	77 11230	63720		64702 217850	3573	60228	60334	217728	3451	60162	60261 221739	21739	7462	45877	46480	46480 221679	7402	45851	46445
	20 217120	20 2843	3 57690		57760 218651	4374	26898	57065 218588	218588	4311	56869	57032 217873	17873	3596	41702	41857 217842	217842	3565	41691	41843

Experimental results for the AR(1) process with $\phi = 0.9$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$, Table 5

3.898 3.669 3.717 3.698 3.681 3.764 3.730 5.232 4.514 4.348 4.160 4.041 4.070 4.140 4.025 4.107 4.045 4.151 4.098 4.107 Combined V1 Estimator 4.503 21.409 -1.449 4.275 20.662 -0.196 3.614 3.743 20.662 -0.196 3.738 20.851 -0.007 3.750 20.795 -0.064 3.716 20.910 0.052 3.698 20.793 -0.066 3.680 3.765 20.956 0.098 3.763 0.002 3.734 5.160 19.787 -3.071 4.236 4.352 22.209 -0.648 4.299 22.515 -0.343 4.146 22.750 -0.108 4.039 22.809 -0.049 4.070 22.725 -0.133 4.149 22.771 -0.087 4.140 0.082 4.106 4.030 4.520 18.026 -2.833 3.541 3.891 19.403 -1.455 3.613 20.511 -0.347 3.758 20.725 -0.133 3.667 0.061 3.730 0.005 4.098 0.003 4.107 22.779 -0.079 4.024 0.075 4.044 0.034 20.107 -0.751 22.863 3.730 20.919 22.860 22.933 3.734 20.861 22.940 22.892 3.897 3.775 3.619 3.669 3.751 3.717 3.698 3.681 4.164 4.152 4.099 4.141 4.025 4.107 4.043 Dev. RMSE 4.071 4.107 Combined V2 Estimator 5.160 18.054 -2.804 3.544 20.119 -0.740 3.826 20.518 -0.340 3.759 20.667 -0.191 3.614 20.796 -0.063 3.716 20.793 -0.065 3.680 20.957 0.098 3.763 5.704 19.950 -2.908 4.263 21.494 -1.364 4.292 22.258 -0.600 4.310 22.817 -0.041 4.071 22.730 -0.128 4.150 22.773 -0.085 4.140 22.780 -0.078 4.024 22.940 0.082 4.106 5.144 19.422 -1.437 3.616 20.728 -0.130 3.667 20.664 -0.194 3.738 20.852 -0.006 3.751 20.911 0.052 3.698 0.003 3.734 22.541 -0.317 4.152 22.765 -0.093 4.042 22.866 0.008 4.099 0.061 3.730 22.862 0.004 4.107 0.075 4.044 0.035 4.030 Std. Bias 20.919 22.933 20.861 22.893 Avg. 5.199 5.356 5.200 5.286 5.314 5.226 **RMSE** 5.184 5.326 5.374 5.432 5.662 5.761 5.759 5.867 5.810 5.845 5.277 5.824 5.771 5.861 5.831 5.877 NBO V1 Estimator Dev. 20.281 -0.577 5.246 5.150 19.125 -1.733 4.861 5.144 19.794 -1.065 5.033 20.657 -0.201 5.237 0.032 5.374 0.048 5.285 0.138 5.430 0.050 5.314 20.804 -2.054 5.321 21.825 -1.033 5.567 22.718 -0.140 5.760 22.768 -0.089 5.771 22.703 -0.155 5.757 0.022 5.845 0.148 5.875 -0.1705.18120.699 -0.160 5.196 20.805 -0.054 5.326 0.076 5.355 0.168 5.197 0.049 5.226 22.295 -0.563 5.797 22.799 -0.059 5.860 22.838 -0.019 5.831 -0.087 5.867 0.078 5.809 0.167 5.801 22.810 -0.048 5.725 $\mathcal{L} \in \{7, 8, \dots, 20\}$ Bias 23.006 20.934 21.027 23.025 Avg. 20.688 5.374 20.890 5.286 20.907 5.432 20.996 5.314 20.908 20.907 22.771 22.936 5.845 | 22.880 5.200 5.803 RMSE 5.279 5.242 5.226 5.694 5.763 5.868 5.810 5.185 5.327 5.356 5.200 5.698 5.847 5.777 5.780 5.863 5.832 5.877 NBO V2 Estimator 5.183 Dev. 6.343 19.183 -1.676 4.870 20.304 -0.554 5.250 20.893 0.034 5.374 7.447 21.135 -1.723 5.431 22.798 -0.060 5.779 5.435 19.831 -1.027 5.041 20.671 -0.187 5.239 5.310 20.705 -0.154 5.197 5.303 20.809 -0.050 5.327 0.078 5.356 0.170 5.197 0.049 5.286 0.138 5.430 0.050 5.314 0.049 5.226 21.999 -0.859 5.629 6.303 22.393 -0.465 5.829 5.998 22.771 -0.087 5.776 22.719 -0.139 5.761 22.808 -0.050 5.863 22.844 -0.014 5.832 22.775 -0.083 5.868 0.080 5.810 0.023 5.845 0.149 5.876 0.168 5.801 22.810 -0.048 5.725 Std. Bias -0.16120.907 20.909 20.936 20.997 5.710 22.881 23.007 23.025 Avg. 20.697 21.028 20.908 22.938 5.802 5.467 5.362 5.145 5.165 5.233 5.231 5.254 5.171 5.388 5.749 5.888 5.779 5.718 5.780 RMSE 5.141 6.371 5.811 5.654 Batched STS Area Estimator Dev. 19.025 -1.833 5.116 9 | 19.939 -0.920 5.389 10 20.370 -0.489 5.340 5.141 20.751 -0.107 5.309 7 | 18.803 -4.055 6.246 8 21.005 -1.853 6.095 22.127 -0.731 6.260 10 22.317 -0.541 5.974 22.733 -0.125 5.810 22.912 0.054 5.749 13 22.654 -0.204 5.884 5.779 16.961 -3.898 5.004 20.525 -0.334 5.292 14 20.813 -0.045 5.165 5.137 16 20.797 -0.061 5.233 20.682 -0.176 5.228 20.918 0.060 5.254 14 22.887 0.029 5.779 5.801 22.787 -0.071 5.718 -0.176 5.707 0.018 5.654 -0.014 5.593 19 20.815 -0.044 5.171 20 20.930 0.072 5.387 Bias 20.660 -0.199 0.115 20.638 -0.221 -0.08722.875 22.844 15 22.771 22.682 Avg. 22.972 7 17 12 6 12 (0.6745)(0.0000)20.858 22.858 0.5 0.75

Experimental results for the AR(1) process with $\phi = 0.9$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$,
 Table 6

8.805 7.138 7.013 7.034 7.090 6.805 6.894 6.754 6.794 19.845 19.855 1.169 17.357 17.396 0.264 15.436 15.439 -38.589 19.888 43.412 | 59.836 -21.776 19.167 29.010 | 40.193 -41.419 10.956 42.844 | 51.296 -30.316 14.885 33.773 | 41.630 -39.981 12.478 41.883 63.544 -18.067 29.612 34.688 [64.789 -16.823 18.939 25.332] 56.424 -25.188 15.541 29.597 [64.157 -17.455 19.384 26.085] 60.040 -21.571 18.620 28.496 21.333 24.930 0.341 16.549 16.553 14.662 14.662 14.480 14.480 0.293 14.886 14.888 14.442 Combined V1 Estimator 7.090 7.405 7.206 7.136 7.013 7.034 6.805 988.9 6.748 6.788 8.907 14.409 0.016 0.301 -5.025 609.0--9.791 21.641 23.753 68.712 -12.900 -0.025 0.032 -0.950-0.166-0.1930.034 -0.003-0.0290.328 0.272 0.973 -2.213 -0.5090.065 -0.02738.299 37.315 37.756 38.330 38.072 38.592 38.537 -3.680 21.385 21.699 76.587 82.780 38.262 38.280 81.003 81.952 81.587 36.051 38.099 38.236 6.795 38.566 81.876 81.585 0.047 14.482 14.482 81.644 81.905 14.750 82.334 31.091 6.754 908.9 6.895 RMSE 7.215 7.143 7.035 1.304 17.379 17.428 0.015 14.903 14.903 10.806 7.017 7.091 -0.121 19.890 19.891 0.422 16.566 16.571 15.450 15.453 0.005 14.667 14.668 0.304 14.887 14.890 14.442 Combined V2 Estimator 908.9 6.887 6.748 6.788 9.081 7.016 7.035 Dev. 9.600 7.091 14.409 7.425 7.214 7.141 14.732 8.791 0.321 0.330 0.273 900.0 0.019 -0.678 0.098 -0.171-0.0250.301 -0.307-0.0770.051 38.316 38.240 9.920 37.587 38.094 9.878 38.283 9.888 38.595 9.768 38.538 9.747 38.566 -13.426 19.802 23.925 71.821 81.491 -0.054 21.525 21.525 82.915 -0.370 21.616 21.619 82.034 -0.305 20.796 20.798 81.933 20.264 81.627 -0.582 20.427 20.436 81.616 -0.117 20.599 20.599 81.658 0.687 20.754 20.766 81.916 8.311 10.860 32.407 36.491 -4.780 22.154 22.664 77.931 38.363 38.271 0.982 20.862 20.885 82.341 20.860 82.589 9.834 9.773 9.913 9.726 **RMSE** 9.793 9.951 -1.403 21.445 21.491 NBO V1 Estimator 9.877 9.759 9.726 9.834 9.747 9.842 9.961 9.783 9.769 9.911 9.950 9.877 -0.211 20.263 0.573 20.852 $\in \{7, 8, \dots, 20\}$ 0.473 -1.237 -0.567 -0.461 -0.279-0.225 0.026 -0.167-0.0190.147 0.414 0.039 -6.990 -7.107 21.540 22.682 68.185 81.558 -0.205 21.678 21.679 81.241 38.098 -2.048 22.842 22.933 76.832 80.209 81.401 10.070 10.093 37.028 9.799 37.986 38.246 9.879 38.412 9.890 38.738 9.769 38.679 -0.188 20.838 20.839 81.307 9.300 10.252 31.275 9.825 35.610 10.106 37.698 37.804 9.930 38.040 9.748 38.304 20.606 20.606 81.494 20.759 20.771 82.299 9.738 38.291 81.030 82.594 **RMSE** 9.837 9.957 -0.411 21.763 21.767 0.220 21.628 21.629 -0.129 20.288 20.288 -0.518 20.445 20.452 20.864 20.888 20.854 20.862 NBQ V2 Estimator 9.760 10.105 9.849 9.928 9.836 9.878 9.878 9.797 9.737 9.956 9.747 0.478 0.417 -1.761 -0.685-0.180Bias -0.156-0.2810.061 -0.150-0.0100.153 0.041 -0.0870.709 0.995 -4.315-0.21138.109 38.054 38.115 38.306 69.221 -12.391 33.086 35.330 74.505 81.832 81.423 81.482 36.504 37.580 38.682 31.978 32.408 79.563 81.200 1.029 23.842 23.864 81.407 14.120 15.920 33.950 37.984 38.085 38.326 38.255 38.418 38.743 81.094 81.524 82.320 82.607 82.194 **RMSE** 10.009 668.6 9.895 9.943 9.532 9.584 9.497 9.731 13.516 13.533 11.414 11.423 10.799 10.384 10.392 0.161 29.693 29.694 2.353 26.111 26.217 0.815 22.724 22.739 0.155 21.163 21.163 -0.088 21.343 21.343 -1.786 15.062 15.167 0.511 21.256 21.262 0.177 20.670 20.671 20.830 20.875 Batched STS Area Estimator 10.799 10.008 9.582 Dev. 668.6 9.894 9.496 9.943 9.532 9.716 0.186 0.397 -0.112 0.134 0.554 -5.261 -7.353 -0.6710.121 -0.1610.041 0.157 -0.03837.594 37.812 38.386 38.662 38.226 38.153 38.451 38.399 20 38.819 43.023 81.773 83.965 82.122 81.788 38.422 10 76.350 81.523 30.912 36.479 13 38.104 14 38.306 13 82.641 14 82.426 15 81.767 82.083 82.971 7 91 ∞ 19 17 12 8 6 Var. Par. (2.3263)(1.6449)81.612 (x_p) 0.95 0.99

Experimental results for the AR(1) process with $\phi = 0.9$. All estimates are based on 1,000,000 independent replications with b = 32 batches and batch sizes $m = 2\mathcal{L}$, Table 7

							$0 \in \{4, 5, 1\}$	$\mathcal{L} \in \{4, 5, \dots, 14\}.$		i			į		
	Batche	Batched STS Area Estimator	stimator	Ä 	NBQ V2 Estimator	or	NB	NBQ V1 Estimator	or	Comb	Combined V2 Estimator	nator	Combi	Combined V1 Estimator	ator
р															
(x_p)		Std.			Std.			Std.			Std.			Std.	
Var. Par. L	L Avg.	Bias Dev. RMSE	. RMSE	Avg.	Bias Dev.	Dev. RMSE	Avg.	Bias Dev.	Dev. RMSE	Avg.	Bias Dev.	Dev. RMSE	Avg.	Bias Dev. 1	Dev. RMSE
0.5	4 3.733	3.733 -17.125 1.403 17.183	3 17.183	10.347 -	-10.511 2.952	2.952 10.918	10.239	-10.619 2.923 11.014		- 786.9	-13.871 1.711 13.976		6.934	-13.924 1.696 14.027	4.027
(0.0000) 5		8.274 -12.584 2.994 12.935		14.648	-6.210 3.866	7.315 14.548		-6.310 3.842	7.388	11.411	-9.447 2.557	9.787	11.361	-9.497 2.545	9.832
20.858	6 13.501	20.858 6 13.501 -7.357 4.459 8.603	8.603	17.604	-3.254 4.531	5.578 17.523		-3.335 4.513	5.612 15.520		-5.338 3.275	6.263 15.480		-5.378 3.266	6.292
•	7 17.032	-3.826 5.055	6.340	19.174	-1.684 4.891	5.173 19.117	19.117	-1.741 4.880	5.181	18.086	-2.772 3.577	4.525 1	18.058	-2.800 3.571	4.538
	8 18.908	-1.950 5.232	5.583	19.998	-0.860 5.089	5.161	19.962	-0.896 5.082	5.161 19.445		-1.413 3.678	3.940 19.427	9.427	-1.431 3.675	3.944
	9 19.891	-0.967 5.276	5 5.363	20.430	-0.428 5.192	5.210 20.407	20.407	-0.451 5.188	5.208 20.156		-0.702 3.717	3.783 20.145		-0.713 3.716	3.783
1	10 20.382	-0.476 5.284	5.306	20.646	-0.212 5.240	5.245 20.632		-0.226 5.238	5.243 20.512		-0.346 3.730	3.746 20.505	0.505	-0.353 3.729	3.746
1	11 20.644	11 20.644 -0.214 5.276	5 5.280	20.749	-0.109 5.272	5.274 20.740	20.740	-0.118 5.271	5.272 20.696		-0.162 3.733	3.737 20.691	0.691	-0.167 3.733	3.737
1	12 20.770	-0.088 5.261	5.262	20.803	-0.055 5.283	5.283 20.797	20.797	-0.061 5.282	5.283 20.786		-0.072 3.729	3.729 20.783		-0.075 3.728	3.729
1	13 20.819	13 20.819 -0.039 5.251	5.251	20.831	-0.027 5.289	5.289 20.827		-0.031 5.289	5.289 20.825		-0.033 3.728	3.728 20.823		-0.035 3.728	3.728
1	14 20.849	14 20.849 -0.009 5.243	3 5.244	20.838	-0.020 5.290	5.290 20.836		-0.022 5.289	5.289 20.844		-0.014 3.723	3.723 20.843		-0.015 3.723	3.723
0.75	4 3.914	3.914 -18.944 1.493 19.003	3 19.003	11.775 -	-11.083 3.543	11.635 10.391	10.391 -	-12.467 2.984 12.819		7.782 -	7.782 -15.076 1.990 15.206		7.101 -	7.101 -15.757 1.754 15.854	5.854
(0.6745) 5	5 8.883	8.883 -13.975 3.432 14.390	2 14.390	16.161	-6.697 4.402	8.015 15.144		-7.714 4.030	8.703	2.464 -	10.394 2.918	10.796	1.964 -	8.703 12.464 -10.394 2.918 10.796 11.964 -10.894 2.798 11.248	1.248
22.858	6 14.747	6 14.747 -8.111 5.388	9.738	19.386	-3.472 5.077	6.150 18.786		-4.072 4.872	6.349 17.030		-5.828 3.850	6.985 16.735		-6.123 3.800	7.207
-	7 18.755	7 18.755 -4.103 6.149	7.393	21.105	-1.753 5.441	5.716 20.774		-2.084 5.330	5.723 19.911		-2.947 4.219	5.146 19.748		-3.110 4.192	5.220
	8 20.825	-2.033 6.175	5 6.501	21.974	-0.884 5.627	5.696 21.793	21.793	-1.065 5.567	5.668 21.390		-1.468 4.244	4.491 21.301		-1.557 4.228	4.505
	9 21.869	-0.989 6.057	7 6.137	22.422	-0.436 5.719	5.736 22.325	22.325	-0.533 5.688	5.713 22.141	2.141	-0.717 4.204	4.264 22.093	2.093	-0.765 4.194	4.263
1	10 22.382	-0.476 5.939	9.958	22.645	-0.213 5.762	5.766 22.592		-0.266 5.745	5.752 22.512		-0.346 4.156	4.170 22.486		-0.372 4.151	4.167
1	11 22.649	11 22.649 -0.209 5.863	3 5.867	22.750	-0.108 5.788	5.789 22.721	22.721	-0.137 5.779	5.781 22.699		-0.159 4.128	4.131 22.684		-0.174 4.125	4.129
1	12 22.776	12 22.776 -0.082 5.813	3 5.814	22.796	-0.062 5.791	5.792 22.780	22.780	-0.078 5.787	5.787 22.786		-0.072 4.107	4.107 22.778	2.778	-0.080 4.105	4.106
1	13 22.823	13 22.823 -0.035 5.778	8 5.778	22.827	-0.031 5.797	5.797 22.817	22.817	-0.041 5.794	5.794 22.825		-0.033 4.100	4.100 22.820		-0.038 4.099	4.099
1	14 22.850	-0.008 5.757	5.757	22.837	-0.021 5.798	5.798 22.831		-0.027 5.796	5.796 22.844		-0.014 4.086	4.086 22.841		-0.017 4.086	4.086

Experimental results for the AR(1) process with $\phi = 0.9$. All estimates are based on 1,000,000 independent replications with b = 32 batches and batch sizes $m = 2\mathcal{L}$, Table 8

							$\mathcal{L} \in \{4, :$	$\mathcal{L} \in \{4,5,\ldots,14\}$	·						
	Batcl	hed STS ⊬	Batched STS Area Estimator		NBQ V2 Estimator	stimator	Z	NBQ V1 Estimator	stimator	Con	bined V2	Combined V2 Estimator	Con	bined V1	Combined V1 Estimator
d															
(x_p)			Std.			Std.			Std.			Std.			Std.
Var. Par. L	\mathcal{L} Avg.	g. Bias	Dev. RMSE	E Avg.	Bias	Dev. RMSE	Avg.	Bias	Dev. RMSE	SE Avg.	Bias	Dev. RMSE	SE Avg.	Bias	Dev. RMSE
0.95	4 7.038	7.038 -31.227	2.615 31.336 17.	6 17.631	631 -20.634	6.718 21.700 11.105 -27.160	11.105	-27.160	3.262 27.3	3.262 27.355 12.250 -26.015	-26.015	3.678 26.273		9.039 -29.226	2.262 29.313
(1.6449)	5 13.907	7 -24.358	(1.6449) 5 13.907 -24.358 5.761 25.030 24.086 -14.179	0 24.086	-14.179	7.833 16.199 17.431 -20.834	17.431		4.758 21.3	4.758 21.370 18.916 -19.349	-19.349	5.066 20.0	5.066 20.001 15.641 -22.624	-22.624	4.067 22.986
38.265	6 21.593	3 -16.672	6 21.593 -16.672 9.515 19.196 30.209	5 30.209	-8.056	8.812 11.939 24.425 -13.840	24.425		6.529 15.3	6.529 15.303 25.833 -12.432	-12.432	6.875 14.2	6.875 14.207 22.987 -15.278	-15.278	6.279 16.518
	7 30.909	9 -7.356	7 30.909 -7.356 13.764 15.606 33.901	5 33.901	-4.364	9.393 10.358 31.227	31.227	-7.038	8.391 10.9	8.391 10.951 32.381	-5.884	8.940 10.7	8.940 10.702 31.066	-7.199	8.758 11.337
	8 36.670	6 -1.589	8 36.676 -1.589 15.281 15.364 36.458	4 36.458	-1.807	9.895 10.058 35.583	35.583	-2.682	9.541 9.9	9.911 36.569	-1.696	9.751 9.8	9.897 36.138	-2.127	9.701 9.932
	9 37.470		-0.795 13.427 13.451 37.	1 37.515	-0.750	9.898 9.927	9.927 36.978	-1.287	9.686	9.771 37.492	-0.773	8.761 8.7	8.795 37.228	-1.037	8.721 8.782
	10 37.740		-0.525 11.728 11.739 37.	9 37.949	-0.316	9.830 9.835	9.835 37.543	-0.722	9.685 9.7	9.712 37.842	-0.423	7.883 7.8	7.894 37.643	-0.622	7.847 7.871
	11 38.220		-0.045 10.903 10.903 38.110	3 38.110	-0.155	9.784 9.785	9.785 37.928	-0.337	9.714 9.7	9.720 38.166	-0.099	7.451 7.4	7.451 38.076	-0.189	7.431 7.433
	12 38.444		0.179 10.415 10.417 38.186	7 38.186	-0.079	9.756 9.756	9.756 38.116	-0.149	9.727 9.7	9.728 38.317	0.052	7.206 7.2	7.206 38.283	0.018	7.197 7.197
	13 38.372		0.107 10.039 10.040 38.234	0 38.234	-0.031	9.736 9.736	9.736 38.188	-0.077	9.718 9.7	9.719 38.304	0.039	7.029 7.0	7.029 38.281	0.016	7.023 7.023
	14 38.350		0.085 9.833 9.833 38.250	3 38.250	-0.015	9.731 9.731	9.731 38.216	-0.049	9.720 9.7	9.720 38.301	0.036	6.933 6.5	6.933 38.284	0.019	6.929 6.929
0.99	4 7.038	8 -74.574	2.615 74.62	0 36.661	-44.951	7.038 -74.574 2.615 74.620 36.661 -44.951 15.764 47.635 11.105 -70.507	11.105		3.262 70.5	3.262 70.582 21.615 -59.997 8.002 60.529 9.039 -72.573	-59.997	8.002 60.5	29 9.039	-72.573	2.262 72.608
(2.3263)	5 17.42	7 -64.185	6.634 64.52	7 45.853	-35.759 1	(2.3263) 5 17.427 -64.185 6.634 64.527 45.853 -35.759 18.161 40.107 18.135 -63.477	18.135		4.976 63.6	4.976 63.672 31.414 -50.198 9.869 51.159 17.775 -63.837	-50.198	9.869 51.1	59 17.775	-63.837	4.530 63.997
81.612	6 35.243	3 -46.369	13.766 48.37	0 48.614	-32.998	6 35.243 -46.369 13.766 48.370 48.614 -32.998 17.788 37.487 28.187 -53.425	28.187		7.580 53.9	$7.580\ 53.960\ 41.822\ -39.790\ 11.864\ 41.521\ 31.771\ -49.841$	-39.790 1	11.864 41.5	21 31.771	-49.841	8.585 50.575
	7 43.220	0 -38.392	19.835 43.21	3 59.552	-22.060 1	$7 \ 43.220 \ -38.392 \ 19.835 \ 43.213 \ 59.552 \ -22.060 \ 19.132 \ 29.200 \ 40.076 \ -41.536 \ 10.893 \ 42.940 \ 51.257 \ -30.355 \ 14.874 \ 33.803 \ 41.673 \ -39.939 \ 12.465 \ 41.839 \ 41.839$	40.076	-41.536 1	0.893 42.9	40 51.257	-30.355 1	14.874 33.8	03 41.673	-39.939 1	2.465 41.839
	8 63.915	5 -17.697	30.127 34.94	0 64.789	-16.823	$63.915 - 17.697 30.127 34.940 \big 64.789 - 16.823 19.307 25.608 \big 56.400 - 25.212 15.826 29.768 \big 64.345 - 17.267 19.637 26.149 \big 60.217 - 21.395 18.885 28.538 \big 28.53$	56.400	-25.212 1	5.826 29.7	68 64.345	-17.267	19.637 26.1	49 60.217	-21.395 1	8.885 28.538
	9 68.300	6 -13.306	9 68.306 -13.306 32.349 34.979 74.779	9 74.779		$-6.833\ 21.552\ 22.609\ 68.435\ -13.177\ 19.759\ 23.750\ 71.491\ -10.121\ 21.495\ 23.758\ 68.370\ -13.242\ 21.167\ 24.968$	68.435	-13.177 1	9.759 23.7	71.491	-10.121	21.495 23.7	58 68.370	-13.242 2	1.167 24.968
	10 76.83	8 -4.774	10 76.838 -4.774 32.670 33.017 79.376	7 79.376		-2.236 22.527 22.638 76.711	76.711	-4.901 2	-4.901 21.846 22.389 78.087	89 78.087	-3.525	21.755 22.0	39 76.776	-4.836 2	-3.525 21.755 22.039 76.776 -4.836 21.665 22.198
	11 81.323		-0.289 29.337 29.338 80.940	8 80.940		-0.672 22.000 22.010 79.971	79.971	-1.641 2	-1.641 21.697 21.759 81.135	59 81.135	-0.477	-0.477 19.626 19.632 80.658	32 80.658	-0.954 1	-0.954 19.576 19.600
	12 83.407		1.795 26.351 26.412 81.610	2 81.610		-0.002 21.443 21.443 81.340	81.340	-0.272 2	-0.272 21.337 21.339 82.523	39 82.523	0.911	0.911 17.746 17.769 82.390	69 82.390	0.778	0.778 17.721 17.739
	13 82.902		1.290 23.820 23.854 81.656	4 81.656		0.044 21.099 21.099 81.489	81.489	-0.123 2	-0.123 21.038 21.038 82.289	138 82.289	0.677	0.677 16.305 16.319 82.207	19 82.207	0.595 1	0.595 16.288 16.299
	14 82.521		0.909 22.366 22.384 81.644	4 81.644		0.032 20.931 20.931 81.532	81.532		0.894 20.8	-0.080 20.894 20.894 82.090	0.478	0.478 15.512 15.519 82.035	19 82.035	0.423 1	0.423 15.501 15.506

5.2. Selection of Area Estimator Weights

The limited experimentation in Alexopoulos et al. (2023) with the constant weight $w_0(\cdot)$ did not consider the alternatives $w_2(t) = \sqrt{840}(3t^2 - 3t + 1/2)$ (Goldsman et al. 1990) and $\{w_{\cos,\ell}(t) = \sqrt{8}\pi\ell\cos(2\pi\ell t): \ell = 1, 2, ...\}$ (Foley and Goldsman 1999), which are tailored to the estimation of the steady-state mean of the base process $\{Y_k : k \ge 1\}$ and yield first-order unbiased estimators for the respective variance parameter $\varphi^2 = \lim_{n \to \infty} n \operatorname{Var}(\overline{Y}_n)$. In particular, the STS area estimators for φ^2 obtained from the orthonormal sequence $\{w_{\cos,\ell}(\cdot) : \ell = 1, 2, ...\}$ are asymptotically unbiased as $m \to \infty$ for fixed b; hence they can be averaged to yield an estimator with smaller variance.

At this junction we wish to recall a few findings regarding the bias of the estimators of φ^2 in the last paragraph. The main competitor of the STS area estimators for φ^2 is the nonoverlapping-batch-means (NBQ) estimator $\mathcal{N}_{b,m} \equiv \frac{m}{b-1} \sum_{j=1}^b (\overline{Y}_{j,m} - \overline{Y}_n)^2$, where $\overline{Y}_{j,m}$ the sample average from batch j. (Notice that the NBQ estimator $m\overline{S}_{b,m}^2$ is an analogue of $\mathcal{N}_{b,m}$.) Aktaran-Kalaycı et al. (2007) obtained detailed expressions for the expected value of various estimators of φ^2 , including the ones mentioned in this section. Specifically, the NBQ estimator has first-order bias equal to $-\gamma_1(b+1)/n$, where $\gamma_1 \equiv 2\sum_{k=1}^{\infty} k \operatorname{Cov}(Y_1, Y_{1+k})$ (assuming that the infinite series is summable). Analytical results for the two stochastic processes in Examples 5 and 6 below reveal that, for fixed b, the STS area estimator of φ^2 based on the quadratic weight $w_2(\cdot)$ has more prominent bias than the NBQ estimator $\mathcal{N}_{b,m}$ for very small batch sizes m until it "catches up" as m increases, and eventually outperforms the NBQ estimator with regard to the rate of convergence to φ^2 . Further, Example 1 in Alexopoulos et al. (2016) (corresponding to the Example 6 below) illustrates that for processes with positive autocorrelation and fixed (b,m), the bias of the estimator for φ^2 can become more pronounced as j increases. (Of course, this effect diminishes as m increases.)

Unfortunately, the derivation of detailed fine-tuned expressions for the expectation of the estimators of the variance parameter $\sigma^2 = \lim_{n\to\infty} n \text{Var}\big[\widetilde{y}_p(n)\big]$ is very challenging. First, all estimators of σ^2 are inherently biased, partly due to the Bahadur representation. Second, such calculations involve joint moments of order statistics, which are often hard to obtain even for i.i.d. processes; and this task is compounded in the presence of autocorrelation. Based on our ongoing research we conjecture that the bias of all estimators for σ^2 under study is approximately $O(m^{-1/4})$.

A key question is: do the properties of the STS area estimators based on the weights $w_2(t) = \sqrt{840}(3t^2 - 3t + 1/2)$ (Goldsman et al. 1990) and $\{w_{\cos,\ell}(t) = \sqrt{8}\pi\ell\cos(2\pi\ell t): \ell = 1,2,\ldots\}$ carry over to the quantile-estimation setting? The following two examples attempt to provide a preliminary answer with regard to the small-sample bias of the variance estimators $m\widetilde{S}_{b,m}^2$ and $\mathscr{A}_{b,m}^2(w)$ corresponding to the weight functions $w_0(\cdot), w_2(\cdot)$, and $\{w_{\cos,\ell}(\cdot): \ell = 1,2\}$.

[Note that we've al;readfy described the AR(1), ARTOP, and M/M/1 processes, so make sure that the material below isn't repetitive.]

Example 5. Consider the Gaussian first-order autoregressive [AR(1)] time-series defined by the linear regression model $X_i = \mu_X + \phi(X_{i-1} - \mu_X) + \epsilon_i$ for $i \ge 1$, where $\phi \in (-1,1)$ is the autoregressive parameter, the residuals $\{\epsilon_i : i \ge 1\}$ are i.i.d. $N(0, \sigma_\epsilon^2)$, and X_0 is the initial state of the process. The steady-state marginal distribution of this process is $N[\mu_X, \sigma_\epsilon^2/(1 - \phi^2)]$. In this experiment we take $X_0 \sim N(0,1)$, $\phi = 0.9$, and $\sigma_\epsilon^2 = 1 - \phi^2 = 0.19$; hence the process is stationary with a standard normal marginal distribution. The computation of the variance parameter σ^2 in Equation (??) is detailed in Dingeç et al. (2023b).

Figure 1 displays plots of the five estimators $(m\widetilde{S}_{b,m}^2$ ("NBQ") and $\mathscr{A}_{b,m}^2(w)$ for the weight functions w_0 ("STS Const"), w_2 ("STS Quad"), $w_{\cos,1}$ ("STS Cos,1"), and $w_{\cos,2}$ ("STS Cos,2")) and of σ^2 computed from 2,500 independent replications for a fixed batch count b=32, values $p \in \{0.75, 0.9, 0.95, 0.99, 0.995\}$, and increasing batch sizes $m=2^{\mathcal{L}}$, $\mathcal{L} \in \{10,11,\ldots,20\}$. Figure 2 displays plots of the respective estimated relative bias (as a percentage) of the variance estimators.

An examination of Figures 1–3 reveals the following findings: (i) All variance estimators converge to the value σ^2 , as anticipated by theory. Indeed, for $m = 2^{20}$ all averages are within 2% of σ^2 . (ii) The NBQ variance estimator $m\widetilde{S}_{b,m}^2$ typically has the lowest small-sample estimated bias; this is illustrated best for p = 0.99 or 0.995. (iii) There is no evidence in this experiment that any of the alternative weights $w_2(\cdot)$ and $\{w_{\cos,\ell}:\ell=1,2\}$ induces a variance estimator with lower small-sample bias than $w_0(\cdot)$. Although for p = 0.995 the estimator $\mathscr{A}_{b,m}(w_0)$ has the most-pronounced estimated bias at $m = 2^{10}$, it catches up to the NBQ estimator near $m = 2^{12}$, while the STS area estimators corresponding to $w_2(\cdot)$ and $\{w_{\cos,\ell}:\ell=1,2\}$ bounce from negative to excessive positive estimated bias before settling near σ^2 for $m \approx 2^{17}$. (iv) Among the five competing estimators of σ^2 , the NBQ estimator appears to exhibit the quickest convergence to a small neighborhood of σ^2 (within 2%) followed by $\mathscr{A}_{b,m}(w_0)$.

EXAMPLE 6. Consider an M/M/1 queueing system with arrival rate $\lambda = 0.8$, service rate $\omega = 1$ (traffic intensity $\rho = 0.9$) and first-in, first-out (FIFO) service discipline. Let X_i be the time spent by the *i*th entity in queue (prior to service). The steady-state c.d.f. of X_i is

$$F(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 - \rho & \text{if } x = 0, \\ 1 - \rho e^{-\omega(1 - \rho)x} & \text{if } x > 0; \end{cases}$$
 (51)

hence the steady-state distribution of X_i has mean $\mu_X = \rho/(\omega - \lambda) = 4$, and the quantiles of this distribution are readily computed by inverting Equation (51). The steady-state distribution of X_i is distinctly nonnormal, having an atom at zero, an exponential tail, and a skewness of $2(3-3\rho+\rho^2)/[\rho^{1/2}(2-\rho)^{3/2}] \approx 2.109$. The variance parameter $\sigma_{I(x_p)}^2$ of the indicator process was computed from Blomqvist (1967, Equation (22)). After some algebra, we obtained the following analytical expression for the asymptotic variance parameter:

$$\sigma^{2} = \frac{1}{\omega^{2}(1-\rho)^{4}} \left\{ \frac{[-2+p(3-\rho)+2\rho](1+\rho)}{1-p} - 4\rho \ln\left(\frac{\rho}{1-p}\right) \right\}.$$

Figure 1 Estimated expected values of the variance estimators $m\widetilde{S}_{b,m}^2$ ("NBQ") and $\mathscr{L}_{b,m}^2(w)$ for the weight functions w_0 ("STS Const"), w_2 ("STS Quad"), $w_{\cos,1}$ ("STS Cos,1"), and $w_{\cos,2}$ ("STS Cos,2") for selected marginal quantiles of the AR(1) process in Example 5 with correlation coefficient $\phi = 0.9$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} \in \{10, 11, \dots, 20\}$.

In this example we generated stationary sample paths $\{X_k : k \ge 1\}$ by sampling X_1 from the c.d.f. in Equation (51). Figures 4–6 depict the experimental results based on 2,500 independent replications for a fixed batch count b = 32, values $p \in \{0.5, 0.75, 0.9, 0.95, 0.99, 0.995\}$, and increasing batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} \in \{10, 11, \dots, 20\}$.

For this test process, the dominance of the NBQ estimator (primarily) and the STS area estimator $\mathcal{A}_{b,m}^2(w_0)$ (secondarily) over their competitors with regard to the rate of convergence to a narrow neighborhood of σ^2 (say, within 2%) is more evident than in Example 5.

Figure 2 Estimated percent relative bias of the variance estimators $m\widetilde{S}_{b,m}^2$ ("NBQ") and $\mathscr{A}_{b,m}^2(w)$ for the weight functions w_0 ("STS Const"), w_2 ("STS Quad"), $w_{\cos,1}$ ("STS Cos,1"), and $w_{\cos,2}$ ("STS Cos,2") for selected marginal quantiles of the stationary AR(1) process in Example 5 with correlation coefficient $\phi = 0.9$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} \in \{10, 11, ..., 20\}$.

Based on the limited experimentation in Examples 5 and 6 and the early stage of our theoretical study of the bias of the aforementioned variance estimators, which may eventually lead to better weight functions adapted to quantile estimation, we will use the constant weight $w_0(\cdot)$ in our sequential procedure.

6. Conclusions

APPENDIX

Figure 3 Estimated Root Mean Square Error (RMSE) of the variance estimators $m\widetilde{S}_{b,m}^2$ ("NBQ") and $\mathcal{A}_{b,m}^2(w)$ for the weight functions w_0 ("STS Const"), w_2 ("STS Quad"), $w_{\cos,1}$ ("STS Cos,1"), and $w_{\cos,2}$ ("STS Cos,2") for selected marginal quantiles of the stationary AR(1) process in Example 5 with correlation coefficient $\phi = 0.9$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} \in \{10, 11, \dots, 20\}$.

References

Aktaran-Kalaycı T, Alexopoulos C, Argon NT, Goldsman D, Wilson JR (2007) Exact expected values of variance estimators in steady-state simulation. *Naval Research Logistics* 54(4):397–410.

Alexopoulos C, Dingeç KD, Goldsman D, Lolos A, Wilson JR (2023) Steady-state quantile estimation using standardized time series. Technical report, Georgia Institute of Technology, Gebze Technical University, and North Carolina State University, URL https://people.engr.ncsu.edu/jwilson/files/qestr1.pdf, accessed 11th July 2022.

Estimated expected values of the variance estimators $m\widetilde{S}_{b,m}^2$ ("NBQ") and $\mathcal{A}_{b,m}^2(w)$ for the weight functions w_0 ("STS Const"), w_2 ("STS Quad"), $w_{\cos,1}$ ("STS Cos,1"), and $w_{\cos,2}$ ("STS Cos,2") for selected marginal quantiles of the stationary waiting-time process in the M/M/1 queueing system in Example 6 with traffic intensity $\rho = 0.8$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} \in \{10, 11, \dots, 20\}$.

Alexopoulos C, Goldsman D, Mokashi AC, Tien KW, Wilson JR (2019) Sequest: A sequential procedure for estimating quantiles in steady-state simulations. *Operations Research* 67(4):1162–1183.

Alexopoulos C, Goldsman D, Mokashi AC, Wilson JR (2015) Automated simulation-based estimation of extreme steady-state quantiles via the maximum transformation. *ACM Transactions on Modeling and Computer Simulation* under review.

Alexopoulos C, Goldsman D, Tang P, Wilson JR (2016) SPSTS: A sequential procedure for estimating the steady-state mean using standardized time series. *IIE Transactions* 48(9):864–880.

Bhatia R, Davis C (2000) A better bound for variance. The American Mathematical Monthly 107(4):353-357.

Figure 5 Estimated percent relative bias of the variance estimators $m\widetilde{S}_{b,m}^2$ ("NBQ") and $\mathscr{A}_{b,m}^2(w)$ for the weight functions w_0 ("STS Const"), w_2 ("STS Quad"), $w_{\cos,1}$ ("STS Cos,1"), and $w_{\cos,2}$ ("STS Cos,2") for selected marginal quantiles of the stationary waiting-time process in the M/M/1 queueing system in Example 6 with traffic intensity $\rho = 0.8$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} \in \{10, 11, \dots, 20\}$.

Blomqvist N (1967) The covariance function of the M/G/1 queuing system. Skandinavisk Aktuarietidskrift 50:157-174.

Calvin JM, Nakayama MK (2013) Confidence intervals for quantiles with standardized time series. Pasupathy R, Kim SH, A Tolk RH, Kuhl ME, eds., *Proceedings of the 2013 Winter Similation Conference*, 601–612 (Piscataway, New Jersey: Institute of Electrical and Electronics Engineers).

Chen EJ, Kelton WD (2006) Quantile and Tolerance-Interval Estimation in Simulation. *European Journal of Operational Research* 168:520–540.

Chen EJ, Kelton WD (2008) Estimating Steady-State Distributions via Simulation-Generated Histograms. *Computers & Operations Research* 35(4):1003–1016.

Figure 6 Estimated RMSE of the variance estimators $m\widetilde{S}_{b,m}^2$ ("NBQ") and $\mathcal{A}_{b,m}^2(w)$ for the weight functions w_0 ("STS Const"), w_2 ("STS Quad"), $w_{\cos,1}$ ("STS Cos,1"), and $w_{\cos,2}$ ("STS Cos,2") for selected marginal quantiles of the stationary waiting-time process in the M/M/1 queueing system in Example 6 with traffic intensity $\rho = 0.8$. All estimates are based on 2,500 independent replications with b = 32 batches and batch sizes $m = 2^{\mathcal{L}}$, $\mathcal{L} \in \{10, 11, \dots, 20\}$.

Chu F, Nakayama MK (2012) Confidence intervals for quantiles when applying variance-reduction techniques. *ACM Transactions on Modeling and Computer Simulation* 22(2):10:1–10:25, URL http://dx.doi.org/http://doi.acm.org/10.1145/2133390.2133394.

Csörgö M (1983) *Quantile Processes with Statistical Applications* (Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics).

Csörgö M, Horváth L (1993) Weighted Approximations in Probability and Statistics (New York: John Wiley and Sons).

Csörgö M, Révész P (1981) Strong Approximations in Probability and Statistics (New York: Academic Press).

- Dehling H, Mikosch T, Sørensen M (2002) Empirical Process Techniques for Dependent Data (Boston: Birkhäuser).
- del Barrio E, Deheuvels P, van de Geer S (2007) *Lectures on Empirical Processes: Theory and Statistical Applications* (Zurich, Switzerland: European Mathematical Society).
- Dingeç KD, Alexopoulos C, Goldsman D, Lolos A, Wilson JR (2022) Geometric moment-contraction of G/G/1 waiting times. Botev Z, Keller A, Lemieux C, Tuffin B, eds., *Advances in Modeling and Simulation: Festschrift for Pierre L'Ecuyer*, 111–130 (Springer Nature Switzerland AG), URL https://people.engr.ncsu.edu/jwilson/files/gmc-gg1-tr0722.pdf.
- Dingeç KD, Alexopoulos C, Goldsman D, Lolos A, Wilson JR (2023a) Geometric-moment contraction, stationary processes, and their indicator processes, I: Theory. Technical report, Gebze Technical University, Georgia Institute of Technology, and North Carolina State University, URL https://people.engr.ncsu.edu/jwilson/files/gmc1a.pdf, accessed 24th November 2022.
- Dingeç KD, Alexopoulos C, Goldsman D, Lolos A, Wilson JR (2023b) Geometric-moment contraction, stationary processes, and their indicator processes, II: Examples. Technical report, Gebze Technical University, Georgia Institute of Technology, and North Carolina State University, URL https://people.engr.ncsu.edu/jwilson/files/gmc1b.pdf, accessed 24th November 2022.
- Dingeç KD, Alexopoulos C, Goldsman D, Lolos A, Wilson JR (2023c) Some steady-state simulation processes that satisfy the geometric-moment contraction condition. Technical report, Gebze Technical University, Georgia Institute of Technology, and North Carolina State University, accessed 24th September 2023.
- Dong H, Nakayama MK (2017) Quantile estimation with Latin hypercube sampling. *Operations Research* 65(6):1678–1695, URL http://dx.doi.org/https://doi.org/10.1287/opre.2017.1637.
- Doukhan P (2018) *Stochastic Models for Time Series*, volume 80 of *Mathématiques et Applications* (Cham, Switzerland: Springer).
- Foley RD, Goldsman D (1999) Confidence intervals using orthonormally weighted standardized time series. *ACM Transactions on Modeling and Simulation* 9:297–325.
- Goldsman D, Meketon MS, Schruben LW (1990) Properties of standardized time series weighted area variance estimators. *Management Science* 36:602–612.
- Law AM (2015) Simulation Modeling and Analysis (New York: McGraw-Hill), 5th edition.
- Lolos A, Boone JH, Alexopoulos C, Goldsman D, Dingeç KD, Mokashi A, Wilson JR (2022a) A sequential method for estimating steady-state quantiles using standardized time series. Feng B, Pedrielli G, Peng Y, Shashaani S, Song E, Corlu CG, Lee LH, Chew EP, Roeder T, Lendermann P, eds., *Proceedings of the 2022 Winter Simulation Conference*, 73–84 (Piscataway, New Jersey: Institute of Electrical and Electronics Engineers).
- Lolos A, Boone JH, Alexopoulos C, Goldsman D, Dingeç KD, Mokashi A, Wilson JR (2022b) SQSTS: A sequential procedure for estimating steady-state quantiles using standardized time series. Technical Report, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia.

Raatikainen KEE (1990) Sequential Procedure for Simultaneous Estimation of Several Percentiles. *Transactions of The Society for Computer Simulation* 7(1):21–44.

Schruben LW (1983) Confidence interval estimation using standardized time series. *Operations Research* 31:1090–1108.

Serfling RJ (1980) Approximation Theorems of Mathematical Statistics (New York: John Wiley & Sons).

Shao X, Wu WB (2007) Asymptotic spectral theory for nonlinear time series. Annals of Statistics 35(4):1773–1801.

Shiryaev AN (2016) *Probability – 1* (New York: Springer), 3rd edition.

Shorack GR, Wellner JA (1986) Empirical Processes with Applications to Statistics (New York: John Wiley & Sons).

Wu WB (2005) On the Bahadur representation of sample quantiles for dependent sequences. *Annals of Statistics* 33(4):1934–1963.

Wu WB, Shao X (2004) Limit theorems for iterated random functions. Journal of Applied Probability 41:425–436.

Xu H (2021) Contributions to Time Series Analysis. Ph.D. thesis, University of Geneva, Switzerland.