Streaming Data Management and Time Series Analysis

Corso di laurea magistrale - Data Science Prof. Matteo Maria Pelagatti

Simone Farallo - 889719

Introduzione

Obiettivo dello studio: previsione del consumo di energia elettrica per il periodo compreso tra l'1 dicembre 2017 e il 31 dicembre 2017.

Modelli: ARIMA, UCM e Machine Learning

Metrica di riferimento: **Mean Absolute Error**

$$MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Esplorazione dei dati

Dataset consumi energetici-Tètouan, Marocco

48.096 osservazioni dal 1° gennaio 2017 alle 00:00:00 fino al 30 novembre 2017 alle 23:50:00, Frequenza serie: **10 minuti**

1. Serie storica originiale

2. Prima settimana di Gennaio

3. Mese di Gennaio

Esplorazione dei dati

32000 -31500 -31000 -30500 -30000 -29500 --2000 --3000 --6000 -

5 Decomposizione serie

Train set: dal 1 Gennaio 2017 al 31 Ottobre 2017. Validation set: dal 1 Novembre 2017 al 30 Novembre 2017.

4. Outliers

ARIMA

Dickey-Fuller test KPSS test

Scatterplot prima della trasformazione di Box-Cox

1. Serie prima della trasformazione.

Scatterplot dopo la trasformazione di Box-Cox

2. Serie dopo la trasformazione .

ARIMA

Grafici ACF e PACF

- [1] differenza stagionale su serie originale: ARIMA(0,0,0)(1,1,0)[144]
 - [2] differenza stagionale su serie oraria ARIMA(0,1,1)(0,1,1)[144]
- [3] differenza stagionale e dummy serie originale ARIMA(0,0,0)(1,0,0)[144]

UCM

Modelli testati su serie originale e oraria

- [1] trend lineare + comp. stag. giornaliera (2 armoniche) + comp. stag. settimanale(1 armonica)
- [2] trend lineare + comp. stag. giornaliera (10 armoniche) + comp. stag. settimanale(1 armonica)
- [3] trend lineare +comp stag. giornaliera(10 armoniche) + comp. stag. settimanale (Ciclo stoc.)
 - [4] trend lineare + compstag. giornaliera (**10** armoniche) + comp. stag. settimanale(**Dummy**)

Machine Learning

Modelli testati su serie originale e oraria

[1] - SVM con lag settimanale.

[2] - **Random Forest** con 350 alberi e lag settimanale.

[3] - **Xgboost** con 1000 round e lag pari a 168.

Conclusioni

1 Previsioni sul mese di dicembre del miglior modello ARIMA,UCM e ML.

Modello	RMSE	MAPE	MAE
ARIMA	1342.476	3.742	1050.814
UCM	1703.600	4.721	1341.666
ML	2205.156	6.310	1748.029

2 Risultati dei modelli più performanti ottenuti sul validation set

Grazie per l'attenzione