Further States

OMITTED FROM SUMMARY TABLE

This section contains states observed by a single group or states poorly established that thus need confirmation.

QUANTUM NUMBERS, MASSES, WIDTHS, AND BRANCHING RATIOS

 $I^{G}(J^{PC}) = ?^{?}(?^{?+})$ X(360)

MASS (MeV) WIDTH (MeV) EVTS $360 \pm 7 \pm 9$ 2.3k

DOCUMENT ID

TECN COMMENT

¹ ABRAAMYAN 09 CNTR 2.75 $dC \rightarrow \gamma \gamma X$

¹ Not seen in $pC \rightarrow \gamma \gamma X$ at 5.5 GeV/c.

 $I^{G}(J^{PC}) = ?^{?}(0++)$ X(1070)

MASS (MeV) 1072 ± 1 $3.5\,\pm\,0.5$

 $\frac{{}^{DOCUMENT\;ID}}{{}^{2}\text{VLADIMIRSK...08}} \;\; \frac{{}^{COMMENT}}{{}^{40}\;\pi^-\,p \;\rightarrow\;\; \kappa^0_{\mathcal{S}}\;\kappa^0_{\mathcal{S}}\;n \;+\; \mathrm{m}\pi^0}$

² Supersedes GRIGOR'EV 05.

 $I^{G}(J^{PC}) = 0^{+}(\text{even} + +)$

WIDTH (MeV) 1107 ± 4 $111\,\pm\,8\,\pm\,15$ DOCUMENT ID **DAFTARI**

DBC

 $0. \ \overline{p} n \rightarrow \rho^- \pi^+ \overline{\pi^-}$

 $_{1}G(_{1}PC) = _{0}+_{(0}+_{1})$ fo(1200-1600)

.0(==50	1000)) = 0 (0)		
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
1323± 8	237 ± 20	VLADIMIRSK06	SPEC	$40 \pi^- p \rightarrow K_S^0 K_S^0 n$
$1480 { + 100 \atop -150 }$	$1030^{+\ 80}_{-170}$	³ ANISOVICH 03	SPEC	

 1530^{+}_{-250} 560 ± 40 ⁴ ANISOVICH 03 SPEC

 3 K-matrix pole from combined analysis of $\pi^-\,\rho\to\pi^0\pi^0\,n,\;\pi^-\,\rho\to K\overline{K}\,n,\;\pi^+\,\pi^-\to\pi^+\pi^-,\overline{\rho}\,\rho\to\pi^0\pi^0\,\pi^0\,\pi^0\,\pi^0\,\pi^0\,\pi^0\,\pi^0\,\pi^+\pi^-\pi^0,\;K^+\,K^-\pi^0,\;K^0_S\,K^0_S\,\pi^0,$ $K^+K^0_S\pi^-$ at rest, $\overline{p}n \to \pi^-\pi^-\pi^+$, $K^0_SK^-\pi^0$, $K^0_SK^0_S\pi^-$ at rest.

4 K-matrix pole from combined analysis of $\pi^-p \to \pi^0\pi^0$ n, $\pi^-p \to K\overline{K}n$, $\overline{p}p \to K\overline{K}n$

 $\pi^0\pi^0\pi^0$, $\pi^0\eta\eta$, $\pi^0\pi^0\eta$ at rest.

 $I^{G}(J^{PC}) = 2^{+}(0^{+})$ X(1420)

MASS (MeV) WIDTH (MeV) **DOCUMENT ID** TECN COMMENT OBLX $0 \overline{n} p \rightarrow \pi^+ \pi^+ \pi^ 1420 \pm 20$ 160 ± 10 **FILIPPI**

 $I^{G}(J^{PC}) = ?^{?}(?++)$ X(1545)

MASS (MeV) WIDTH (MeV) 1545 ± 3 6.0 ± 2.5

 $\frac{\textit{DOCUMENT ID}}{\textit{5}} \frac{\textit{COMMENT}}{\textit{VLADIMIRSK...08}} \frac{\textit{COMMENT}}{\textit{40} \ \pi^- \textit{p} \rightarrow \ \textit{K}^0_{\textit{S}} \ \textit{K}^0_{\textit{S}} \ \textit{n} + \textit{m} \pi^0}$

⁵ Supersedes VLADIMIRSKII 00.

```
    X(1575)
    I^G(J^{PC}) = ??(1^{--})

    MASS (MeV)
    WIDTH (MeV)
    DOCUMENT ID
    TECN
    COMMENT

    1576^{+49}_{-55} - 91
    818^{+22}_{-23} - 133
    6 ABLIKIM
    06s
    BES
    J/\psi \rightarrow K^+K^-\pi^0
```

⁶ A broad peak observed at K^+K^- invariant mass. Mass and width above are its pole position. The observed branching ratio is B($J/\psi \to X\pi^0$) B($X \to K^+K^-$) = (8.5 \pm 0.6 $^{+2.7}_{-3.6}$) \times 10 $^{-4}$.

X(1600) $I^G(J^{PC}) = 2^+(2^{++})$ MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT 1600±100 400 ± 200 7 ALBRECHT 91F ARG 10.2 e⁺ e⁻ → e⁺ e⁻ 2(π⁺π⁻) 7 Our estimate.

X(1650) $I^G(J^{PC}) = 0^-(?^{?-})$ MASS (MeV)WIDTH (MeV)EVTSDOCUMENT IDTECNCOMMENT 1652 ± 7 <50</td>100PROKOSHKIN 96GAM2 $32,38 \pi p \rightarrow \omega \eta n$

 X(1750)
 $I^G(J^{PC}) = ??(1^{--})$

 MASS (MeV)
 WIDTH (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 1753.5 ± 1.5 ± 2.3
 122.2 ± 6.2 ± 8.0
 LINK
 02K
 FOCS
 20-160 $\gamma p \rightarrow K^+ K^- p$

B(X(1750) → K*(892)± K∓ → K $_{S}^{0}$ π± K∓)/B(X(1750) → K+K−) VALUE <0.183

CL%
DOCUMENT ID
TECN
90
LINK
02K FOCS

f2(1750) $I^G(J^{PC}) = 0^+(2^{++})$ MASS (MeV)WIDTH (MeV)EVTSDOCUMENT IDTECNCOMMENT1755±10 67 ± 12 8708 SCHEGELSKY 06ARVUE $\gamma\gamma \rightarrow K_S^0 K_S^0$ F(KK)VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT 17 ± 5 8709 SCHEGELSKY 06ARVUE $\gamma\gamma \rightarrow K_S^0 K_S^0$

HTTP://PDG.LBL.GOV Page 2 Created: 5/30/2017 17:22

	$\Gamma(\gamma\gamma)$				
VALUE (keV)		EVTS	DOCUMENT ID	TECN	COMMENT
0.13 ± 0.04		870	⁹ SCHEGELSKY 06A	RVUE	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$
	$\Gamma(\pi\pi)$				
VALUE (MeV)		EVTS	DOCUMENT ID	TECN	COMMENT
1.3 ± 1.0		870	⁹ SCHEGELSKY 06A	RVUE	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$
	$\Gamma(\eta\eta)$				
VALUE (MeV)	,	EVTS	DOCUMENT ID	TECN	COMMENT
2.0±0.5		870	9 SCHEGELSKY 06A	RVUE	$\gamma \gamma \rightarrow \kappa_S^0 \overline{\kappa_S^0}$
8	-:£ 1 2	d-44 C	11 and 102 200 Cal/		_

 $^{^{8}}$ From analysis of L3 data at 91 and 183–209 GeV.

⁹ From analysis of L3 data at 91 and 183–209 GeV and using SU(3) relations.

X(177	$I^{G}(J^{PC}) =$	1-(?-+)			
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
1763 ± 20	192 ± 60	CONDO	91	SHF	$\gamma p \rightarrow (p \pi^+)(\pi^+ \pi^- \pi^-)$
1787 ± 18	118 ± 60	CONDO	91	SHF	$\gamma p \rightarrow n\pi^+\pi^+\pi^-$

f ₀ (1800)	$I^G(J^{PC})=0^+$	(0 ^{+ +})			
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
$1795\pm 7^{+23}_{-20}$	$95\pm 10^{\displaystyle +78}_{\displaystyle -82}$	ABLIKIM	13 J	BES3	$J/\psi ightarrow \gamma \omega \phi$
$1812^{igoplus 19}_{-26} \pm 18$	$105\pm20\pm28$	¹⁰ ABLIKIM	06J	BES2	$J/\psi ightarrow \gamma \omega \phi$
$^{10}\mathrm{Not}$ seen by	LIU 09 in $B^\pm o$ μ	$\zeta^{\pm}\omega\phi$.			

$$X$$
(1850 - 3100) $I^G(J^{PC}) = ?^?(1^{--})$
 $(e^+e^-)\cdot B(X \to hadrons) (eV)$ $CL\%$ DOCUMENT ID TECN COMMENT (SECTION 11 ANASHIN 11 KEDR $e^+e^- \to hadrons$

 $^{^{11}}$ This limit is center-of-mass energy dependent. We quote the most stringent one.

X(1855)	$I^{G}(J^{PC}) = ?^{?}(?^{??})$				
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
1856.6 ± 5	20 ± 5	BRIDGES	86 D	SPEC	$0. \ \overline{p}d \rightarrow \pi\pi N$

X(1870)

$$I^G(J^{PC}) = ??(2??)$$

 MASS (MeV)
 WIDTH (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 1870 ± 40
 250 ± 30
 ALDE
 86D
 GAM4
 $100 \pi^- p \rightarrow 2\eta X$

ag(1875)

$$I^G(J^{PC}) = 1^-(3^{++})$$

 MASS (MeV)
 WIDTH (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 1874 ± 43 ± 96
 385 ± 121 ± 114
 CHUNG
 02
 B852
 $18.3 \pi^- p \rightarrow \pi^+ \pi^- \pi^- p$

HTTP://PDG.LBL.GOV Page 3 Created: 5/30/2017 17:22

 $B(a_3(1875) \rightarrow f_2(1270)\pi)/B(a_3(1875) \rightarrow \rho\pi)$

¹² Using the observable fractions of 50.0% $\rho\pi$, 56.5% $f_2\pi$, and 11.8% $\rho_3\pi$.

 $B(a_3(1875) \rightarrow \rho_3(1690)\pi)/B(a_3(1875) \rightarrow \rho\pi)$

¹³ Using the observable fractions of 50.0% $\rho\pi$, 56.5% $f_2\pi$, and 11.8% $\rho_3\pi$.

a₁(1930) $I^{G}(J^{PC}) = 1^{-}(1^{+})$

X(1935) $I^G(J^{PC}) = 1^+(1^{-?})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

1935 \pm 20 215 \pm 30 EVANGELIS... 79 OMEG 10,16 $\pi^-p \rightarrow \overline{p}pn$

 ρ_2 (1940) $I^G(J^{PC}) = 1^+(2^{--})$

 $\frac{\textit{MASS (MeV)}}{1940 \pm 40} \qquad \frac{\textit{WIDTH (MeV)}}{155 \pm 40} \qquad \frac{\textit{DOCUMENT ID}}{14} \qquad \frac{\textit{TECN}}{\text{ANISOVICH}} \qquad \frac{\textit{COMMENT}}{120} \qquad$

¹⁴ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

 ω_3 (1945) $I^G(J^{PC}) = 0^-(3^{--})$

 $\frac{\textit{MASS} \, (\text{MeV})}{1945 \pm 20} \quad \frac{\textit{WIDTH} \, (\text{MeV})}{115 \pm 22} \quad \frac{\textit{DOCUMENT ID}}{15} \quad \frac{\textit{TECN}}{\text{ANISOVICH}} \quad \text{02B} \quad \text{SPEC} \quad 0.6 - 1.9 \, \rho \overline{\rho} \rightarrow \, \omega \, \eta, \, \omega \, \pi^0 \, \pi^0$

 15 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

 $a_2(1950)$ $I^G(J^{PC}) = 1^-(2^{++})$

 16 From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.

 ω (1960) $I^G(J^{PC}) = 0^-(1^{-})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

1960 \pm 25 195 \pm 60 ¹⁷ ANISOVICH 02B SPEC 0.6–1.9 $p\overline{p} \rightarrow \ \omega \, \eta, \ \omega \, \pi^0 \, \pi^0$

¹⁷ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

b₁(1960)
$$I^G(J^{PC}) = 1^+(1^{+-})$$

 18 From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

$h_1(1965)$ $I^G(J^{PC}) = 0^-(1^{+-})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

1965 \pm 45 345 \pm 75 ¹⁹ ANISOVICH 02B SPEC 0.6–1.9 $p\overline{p} \rightarrow \omega \eta$, $\omega \pi^0 \pi^0$

 19 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

$f_1(1970)$ $I^G(J^{PC}) = 0^+(1^{++})$

MASS (MeV)WIDTH (MeV)DOCUMENT IDTECN 1971 ± 15 240 ± 45 ANISOVICH00JSPEC

X(1970) $I^{G}(J^{PC}) = ?^{?}(?^{??})$

X(1975) $I^G(J^{PC}) = ??(???)$

MASS (MeV)WIDTH (MeV)EVTSDOCUMENT IDTECNCOMMENT1973 \pm 158030CASO70HBC $11.2 \pi^- p \rightarrow \rho 2\pi$

ω_2 (1975) $I^G(J^{PC}) = 0^-(2^{--})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

1975 \pm 20 175 \pm 25 20 ANISOVICH 02B SPEC 0.6–1.9 $p\overline{p} \rightarrow \omega \eta, \ \omega \pi^0 \pi^0$

²⁰ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

$a_2(1990)$ $I^G(J^{PC}) = 1^{-}(2^{+})$

 MASS (MeV)
 WIDTH (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 2050 $\pm 10 \pm 40$ 190 $\pm 22 \pm 100$ 18k
 21 SCHEGELSKY 06
 RVUE
 $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

 2003 $\pm 10 \pm 19$ 249 $\pm 23 \pm 32$ LU
 05
 B852
 18 $\pi^- p \rightarrow$

 $^{21}\,\mathrm{From}$ analysis of L3 data at 183–209 GeV.

$\Gamma(\gamma\gamma) \Gamma(\pi^+\pi^-\pi^0) / \Gamma(\text{total})$

²² From analysis of L3 data at 183–209 GeV.

ρ (2000) $I^{G}(J^{PC}) = 1^{+}(1^{-})$
--

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT	
2000 ± 30	260 ± 45	23 BUGG	04 C	RVUE	Compilation	
~ 1988	~ 244	HASAN	94	RVUF	$\overline{p}p \rightarrow \pi\pi$	

 $^{^{23} \, \}text{From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,}$ and ANISOVICH 02.

$I^{G}(J^{PC}) = 0^{+}(2^{+})$ $f_{2}(2000)$

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
2001 ± 10	312 ± 32	ANISOVICH 00J	SPEC	
~ 1996	~ 134	HASAN 94	RVUE	$\overline{p}p \rightarrow \pi\pi$

X(2000) $I^G(J^{PC}) = 1^-(?^{?+})$

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1964 ± 35		²⁴ ARMSTRONG				$\overline{p}p \rightarrow 3\pi^0 \rightarrow 6\gamma$
~ 2100	~ 500	²⁴ ANTIPOV	77	CIBS	_	$25 \pi^- p \rightarrow p \pi^- \rho_3$
2214 ± 15	355 ± 21	²⁵ BALTAY	77	HBC	0	$15 \pi^- p \rightarrow \Delta^{++} 3\pi$
2080 ± 40	340 ± 80	KALELKAR	75	HBC	+	15 $\pi^+ p \rightarrow p \pi^+ \rho_3$

$I^{G}(J^{PC}) = ?^{?}(4++)$ X(2000)

	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
1998±3±5	<15	VLADIMIRSK03	SPEC	$\pi^- p \rightarrow K_S^0 K_S^0 M M$

π_2 (2005) $I^G(J^{PC}) = 1^-(2^{-+})$

MASS (MeV)	WIDTH (MeV)	EVTS	DOCUMENT ID)	TECN	COMMENT
$1974 \pm 14 \pm 83$	$341\pm61\pm139$	145k	LU	05	B852	$18 \pi^- \rho \rightarrow \omega \pi^- \pi^0 \rho$
$2005\!\pm\!15$	200 ± 40		ANISOVICH	01F	SPEC	$2.0 \ \overline{p}p \rightarrow 3\pi^0, \pi^0\eta,$
						$\pi^{0}\eta'$

$$\eta$$
(2010) $I^G(J^{PC}) = 0^+(0^{-+})$

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN
2010^{+35}_{-60}	270 ± 60	ANISOVICH 00J	SPEC

$$\pi_1$$
 (2015) $I^G(J^{PC}) = 1^-(1^{-+})$

1 ()	()	- (-	,				
MASS (MeV)	WIDTH (MeV)	<u>EVT</u> S	DOCUMENT ID		TECN	COMMENT	
$2014 \pm 20 \pm 16$	$230\pm32\pm73$	145k	LU ()5	B852	18 $\pi^- p \rightarrow$	$\omega\pi^-\pi^0p$
$2001\!\pm\!30\!\pm\!92$	$333\pm52\pm49$	69k	KUHN ()4	B852	18 $\pi^- p \rightarrow$	$\eta \pi^+ \pi^- \pi^- p$

²⁴ Cannot determine spin to be 3. ²⁵ BALTAY 77 favors $J^P = ,3^+$.

a ₀ (2020)	$I^{G}(J^{PC}) = 1^{-}(0^{+})$	+)		
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN
$2025 \!\pm\! 30$	330 ± 75	ANISOVICH	99C	SPEC

X(2020)	$I^{G}(J^{PC}) = ?^{?}(?^{??})$				
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
2015±3	10 ± 4	FERRER	99	RVUE	$\pi p \rightarrow p p \overline{p} \pi(\pi)$

 $^{^{27}}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

a ₂ (2030)	$I^{G}(J^{PC}) =$	$1^{-}(2^{+})$		
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
2030±20	205 ± 30	28 ANISOVICH 01F	SPEC	1.96–2.41 p p
28 From the cor	mbined analysis o	of ANISOVICH 99C. ANISOV	'ICH 99F	and ANISOVICH 01F

a ₃ (2030)	$I^{G}(J^{PC}) =$	$1^{-}(3^{+})$		
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
2031±12	150 ± 18	²⁹ ANISOVICH 01F	SPEC	1.96–2.41 p p
29 From the cor	nhined analysis o	f ANISOVICH OOC ANISON	/ICH 00E	and ANISOVICH 01E

 $[\]eta_2$ (2030) $I^G(J^{PC}) = 0^+(2^{-+})$

MASS (MeV)WIDTH (MeV)DOCUMENT IDTECN $2030 \pm 5 \pm 15$ $205 \pm 10 \pm 15$ ANISOVICH00ESPEC

 $B(a_2\pi)_{L=0}/B(a_2\pi)_{L=2}$

 $B(a_0\pi)/B(a_2\pi)_{L=2}$

HTTP://PDG.LBL.GOV

Page 7

³⁰ Reanalysis of ADOMEIT 96 and ANISOVICH 00E.

³¹ Reanalysis of ADOMEIT 96 and ANISOVICH 00E.

$B(f_2\eta)$)/B($(a_2\pi)$	1_2
-(.,,,,,	,, –,	-/"/	I = I

VALUE	DOCUMENT ID		TECN	COMMENT
0.13±0.06	32 ANISOVICH	11	SPEC	0.9–1.94 pp

³² Reanalysis of ADOMEIT 96 and ANISOVICH 00E.

f ₃ (2050)	$I^{G}(J^{PC}) = 0^{+}(3^{+})$
-----------------------	--------------------------------

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
2048 ± 8	213 ± 34	ANISOVICH 00J	SPEC	$2.0 \ p\overline{p} \rightarrow \eta \pi^0 \pi^0$

$$f_0(2060)$$
 $I^G(J^{PC}) = 0^+(0^{++})$

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
\sim 2050	\sim 120		94	RVUE	$0.36-1.55 \ \overline{p} p \rightarrow \pi \pi$
~ 2060	~ 50	³³ OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$

³³ See SEMENOV 99 and KLOET 96.

$$\pi$$
(2070) $I^G(J^{PC}) = 1^-(0^{-+})$

X(2075)
$$I^{G}(J^{PC}) = ?^{?}(?^{??})$$

A similar near-threshold enhancement in the $p\overline{\Lambda}$ system is observed in $B^+ \to p\overline{\Lambda}\overline{D}{}^0$ by CHEN 11F.

X(2080)
$$I^{G}(J^{PC}) = ?^{?}(?^{??})$$

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
2080±10	110 ± 20	KREYMER	80	STRC	$13 \pi^- d \to p \overline{p} n(n_s)$

X(2080)
$$I^G(J^{PC}) = ??(3^{-?})$$

MASS (MeV)	WIDTH (MeV)	DOCUMENT ID	TECN	COMMENT
$2080 \!\pm\! 10$	190 ± 15	ROZANSKA 80	SPRK	18 $\pi^- p \rightarrow p \overline{p} n$

$$a_1(2095)$$
 $I^G(J^{PC}) = 1^-(1^{++})$

$\mathsf{B}(a_1(2095) \to f_1(1285)\pi) \ / \ \mathsf{B}(a_1(2095) \to a_1(1260))$

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	COMMENT	
3.18 ± 0.64	69k	KUHN	04	B852	18 $\pi^- p \rightarrow$	$\eta \pi^+ \pi^- \pi^- p$

³⁴ From a fit in the region $M_p \overline{\Lambda} - M_p - M_{\Lambda} < 150$ MeV. *S*-wave in the $p \overline{\Lambda}$ system preferred.

 $\eta(2100)$ $I^G(J^{PC}) = 0^+(0^{-+})$

 MASS (MeV)
 WIDTH (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 $2050^{+30}_{-24}^{+30}$ $250^{+36}_{-30}^{+36}^{+181}$ 35 ABLIKIM
 16N
 BES3
 $J/\psi \rightarrow \gamma K^+$
 $K^-K^+K^ 2103\pm50$ 187 ± 75 586 36 BISELLO
 89B
 DM2
 $J/\psi \rightarrow 4\pi\gamma$

³⁵ From a partial wave analysis of $J/\psi \to \gamma \phi \phi$, for which the primary signal is $\eta(2225) \to \phi \phi$, and that also finds significant signals for for 0 $^-$ + phase space, $f_0(2100)$, $f_2(2010)$, $f_2(2300)$, $f_2(2340)$, and a previously unseen 0 $^-$ + state X(2500) (M = 2470 $^+$ 15 + 101 $^-$ 19 $^-$ 23 MeV, $\Gamma=230^+$ 64 + 56 $^-$ 56 MeV).

³⁶ ASTON 81B sees no peak, has 850 events in Ajinenko+Barth bins. ARESTOV 80 sees no peak.

X(2100)	$I^{G}(J^{PC}) = ?^{?}(0^{??})$				
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
2100±40	250 ± 40	ALDE	86D	GAM4	$\frac{100 \ \pi^- p \rightarrow 2\eta X}{}$

X(2110)
$$I^G(J^{PC}) = 1^+(3^{-?})$$
MASS (MeV)WIDTH (MeV)DOCUMENT IDTECNCOMMENT 2110 ± 10 330 ± 20 EVANGELIS... 79OMEG $10,16 \pi^- p \rightarrow \overline{p}pn$

f2(2140)

$$I^G(J^{PC}) = 0^+(2^{++})$$

 MASS (MeV)
 WIDTH (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 2141±12
 49 ± 28
 389
 GREEN
 86
 MPSF
 400 $pA \rightarrow 4KX$

X(2150)	$I^{G}(J^{PC}) = ?^{?}(2^{+?})$	1			
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
$2150\!\pm\! 10$	260 ± 10	ROZANSKA	80	SPRK	18 $\pi^- p \rightarrow p \overline{p} n$

$$\eta$$
(2190)
 $I^G(J^{PC}) = 0^+(0^{-+})$

 MASS (MeV)
 WIDTH (MeV)
 DOCUMENT ID
 TECN

 2190 ± 50
 850 ± 100
 BUGG
 99
 BES

 ω **(2205)** $I^{G}(J^{PC}) = 0^{-}(1^{-})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2205 ± 30 350 ± 90 38 ANISOVICH 02B SPEC 0.6–1.9 $p \overline{p} \to \omega \eta, \ \omega \pi^0 \pi^0$

 38 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

X(2210) $I^{G}(J^{PC}) = ?^{?}(?^{??})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

 2210^{+79}_{-21} 203^{+437}_{-87} EVANGELIS... 79B OMEG $10 \pi^- p \rightarrow K^+ K^- n$

X(2210) $I^{G}(J^{PC}) = ?^{?}(?^{??})$

MASS (MeV)WIDTH (MeV)DOCUMENT IDTECNCOMMENT 2207 ± 22 130CASO70HBC $11.2 \pi^- p$

 $h_1(2215)$ $I^G(J^{PC}) = 0^{-}(1^{+})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2215 \pm 40 325 \pm 55 39 ANISOVICH 02B SPEC 0.6–1.9 $p\overline{p} \rightarrow \omega \eta, \ \omega \pi^0 \pi^0$

 39 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

 ρ_2 (2225) $I^G(J^{PC}) = 1^+(2^{--})$

 40 From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

 ρ_4 (2230) $I^G(J^{PC}) = 1^+(4^{--})$

 41 From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

b₁(2240) $I^G(J^{PC}) = 1^+(1^{+-})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT 2240 ± 35 320 ± 85 42 ANISOVICH 02 SPEC $0.6-1.9~p\overline{p}\rightarrow~\omega~\pi^0$.

 $\omega \eta \pi^0$, $\pi^+\pi^-$

 $^{^{\}rm 42}\,\text{From}$ the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

 $f_2(2240)$ $I^G(J^{PC}) = 0^+(2^{++})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2240 \pm 15 241 \pm 30 ⁴³ ANISOVICH 00J SPEC 1.92–2.41 $p\overline{p}$ • • We do not use the following data for averages, fits, limits, etc. • •

 \sim 2226 \sim 226 HASAN 94 RVUE $p\overline{p} \rightarrow \pi\pi$

⁴³ From the combined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99J, ANISOVICH 99K, and ANISOVICH 00B. See also ANISOVICH 12.

b₃(2245) $I^G(J^{PC}) = 1^+(3^{+-})$

 $\frac{\textit{MASS} \, (\text{MeV})}{2245 \pm 50} \quad \frac{\textit{WIDTH} \, (\text{MeV})}{320 \pm 70} \quad \frac{\textit{DOCUMENT ID}}{44} \quad \frac{\textit{TECN}}{\text{BUGG}}$

 44 From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

 $\eta_2(2250)$ $I^G(J^{PC}) = 0^+(2^{-+})$

 $\begin{array}{c|ccccc} \underline{\textit{MASS} (\text{MeV})} & \underline{\textit{WIDTH} (\text{MeV})} & \underline{\textit{DOCUMENT ID}} & \underline{\textit{TECN}} \\ 2248 \pm 20 & 280 \pm 20 & \text{ANISOVICH} & 001 & \text{SPEC} \\ 2267 \pm 14 & 290 \pm 50 & \text{ANISOVICH} & 00J & \text{SPEC} \\ \end{array}$

 π_{4} (2250) $I^{G}(J^{PC}) = 1^{-}(4^{-}+)$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT 2250 \pm 15 \pm 25 ANISOVICH 01F SPEC 2.0 $\overline{p}p \rightarrow 3\pi^0$, $\pi^0\eta$, $\pi^0\eta'$

 ω_4 **(2250)** $I^G(J^{PC}) = 0^-(4^{-})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2250 \pm 30 150 \pm 50 ⁴⁵ ANISOVICH 02B SPEC 0.6–1.9 $p\overline{p} \rightarrow \ \omega \, \eta, \ \omega \, \pi^0 \, \pi^0$

⁴⁵ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

 $\omega_{5}(2250)$ $I^{G}(J^{PC}) = 0^{-}(5^{-})$

 $MASS \, (MeV)$ $WIDTH \, (MeV)$ $DOCUMENT \, ID$ TECN 2250 ± 70 320 ± 95 $46 \, BUGG$ $04 \, RVUE$

 46 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

 ω_3 **(2255)** $I^G(J^{PC}) = 0^-(3^{--})$

⁴⁷ From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

 $a_{A}(2255)$ $I^{G}(J^{PC}) = 1^{-}(4^{+})$

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV Page 11

 $^{
m 48}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.

 $a_2(2255)$ $I^G(J^{PC}) = 1^-(2^{++})$

 \underline{MASS} (MeV) \underline{WIDTH} (MeV) $\underline{DOCUMENT}$ \underline{ID} \underline{TECN} $\underline{COMMENT}$ $\underline{2255+20}$ $\underline{230+15}$ $\underline{49}$ ANISOVICH $\underline{016}$ SPEC $\underline{1.96-2.41}$ \overline{D} \underline{D}

 $^{\rm 49}\,\text{From}$ the combined analysis of ANISOVICH 99C, ANISOVICH 99E, ANISOVICH 01F, and ANISOVICH 01G.

X(2260) $I^G(J^{PC}) = 0^+(4^{+?})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2260 \pm 20 400 \pm 100 EVANGELIS... 79 OMEG 10,16 $\pi^- p \rightarrow \overline{p} p n$

 ρ (2270) $I^G(J^{PC}) = 1^+(1^{--})$

2280 \pm 50 440 \pm 110 ATKINSON 85 OMEG 20-70 $\gamma p \to p \omega \pi^{+} \pi^{-} \pi^{0}$

 50 From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

 $a_1(2270)$ $I^G(J^{PC}) = 1^-(1^{+})$

h₃(2275) $I^{G}(J^{PC}) = 0^{-}(3^{+})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2275 \pm 25 190 \pm 45 51 ANISOVICH 02B SPEC 0.6–1.9 $p\overline{p} \rightarrow \omega \eta, \ \omega \pi^0 \pi^0$

51 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

a₃(2275) $I^G(J^{PC}) = 1^-(3^{++})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2275 \pm 35 350 $^{+100}$ 52 ANISOVICH 01G SPEC 1.96–2.41 $\overline{p}p$

 52 From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, ANISOVICH 01F, and ANISOVICH 01G.

 π_2 (2285) $I^G(J^{PC}) = 1^-(2^{-+})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

 $2285\pm20\pm25$ $250\pm20\pm25$ 53 ANISOVICH 11 SPEC 0.9–1.94 $p\overline{p}$

⁵³ Reanalysis of ADOMEIT 96 and ANISOVICH 00E.

 ω_3 (2285) $I^G(J^{PC}) = 0^-(3^{-})$

⁵⁴ Partial wave analysis of the data on $p\overline{p} \rightarrow \overline{\Lambda}\Lambda$ from BARNES 00.

 55 From the combined analysis of ANISOVICH 00D, ANISOVICH 01C, and ANISOVICH 02B.

 ω **(2290)** $I^{G}(J^{PC}) = 0^{-}(1^{-})$

 $\frac{\textit{MASS} \ (\text{MeV})}{2290 \pm 20}$ $\frac{\textit{WIDTH} \ (\text{MeV})}{275 \pm 35}$ $\frac{\textit{DOCUMENT ID}}{56}$ $\frac{\textit{TECN}}{\text{BUGG}}$ 04A RVUE

⁵⁶ Partial wave analysis of the data on $p\overline{p} \rightarrow \overline{\Lambda}\Lambda$ from BARNES 00.

 $f_2(2295)$ $I^G(J^{PC}) = 0^+(2^{++})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2293 \pm 13 216 \pm 37 57 ANISOVICH 00J SPEC 1.92–2.41 $p\overline{p}$

 $^{57}\,\text{From}$ the combined analysis of ANISOVICH 99C, ANISOVICH 99F, ANISOVICH 99J, ANISOVICH 99K, and ANISOVICH 00B. See also ANISOVICH 12.

 $f_3(2300)$ $I^G(J^{PC}) = 0^+(3^{++})$

 $\frac{\textit{MASS} \, (\text{MeV})}{2334 \pm 25}$ $\frac{\textit{WIDTH} \, (\text{MeV})}{200 \pm 20}$ $\frac{\textit{DOCUMENT ID}}{58}$ $\frac{\textit{TECN}}{\text{BUGG}}$ 04A RVUE

⁵⁸ Partial wave analysis of the data on $p\overline{p} \rightarrow \overline{\Lambda}\Lambda$ from BARNES 00.

 $f_1(2310)$ $I^G(J^{PC}) = 0^+(1^{++})$

MASS (MeV)WIDTH (MeV)DOCUMENT IDTECN 2310 ± 60 255 ± 70 ANISOVICH00JSPEC

 η (2320) $I^G(J^{PC}) = 0^+(0^{-+})$

⁵⁹ From the combined analysis of $\overline{p}p \to \eta \eta \eta$ from ANISOVICH 00M and $\overline{p}p \to \eta \pi^0 \pi^0$ from ANISOVICH 00J.

 η_{A} (2330) $I^{G}(J^{PC}) = 0^{+}(4^{-}+)$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT

2328 \pm 38 240 \pm 90 ANISOVICH 00J SPEC 2.0 $p\overline{p} \rightarrow \eta \pi^0 \pi^0$

 ω (2330) $I^G(J^{PC}) = 0^-(1^{--})$

MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT 2330 \pm 30 435 \pm 75 ATKINSON 88 OMEG 25–50 $\gamma p \rightarrow \rho^{\pm} \rho^{0} \pi^{\mp}$

 $I^{G}(J^{PC}) = ?^{?}(?^{??})$ ⁶⁰ BALTAY 2340 ± 20 126 60 Dominant decay into $ho^0
ho^0 \pi^+$. BALTAY 78 finds confirmation in $2\pi^+ \pi^- 2\pi^0$ events which contain $\rho^+ \rho^0 \pi^0$ and $2\rho^+ \pi^-$.

 $I^{G}(J^{PC}) = 1^{-}(0^{-}+)$ $\pi(2360)$ TECN COMMENT MASS (MeV) 01F SPEC 2.0 $\overline{p}p \rightarrow 3\pi^0$, $\pi^0\eta$, $\pi^0\eta'$ $300 + 100 \\ -50$ 2360 ± 25

 $I^{G}(J^{PC}) = ?^{?}(4^{+?})$ X(2360) MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT 2360 ± 10 430 ± 30 **ROZANSKA** SPRK $18 \pi^- p \rightarrow p \overline{p} n$

 $I^{G}(J^{PC}) = ?^{?}(5^{-?})$ X(2440) MASS (MeV) WIDTH (MeV) DOCUMENT ID TECN COMMENT SPRK $18 \pi^- p \rightarrow p \overline{p} n$ 2440 ± 10 310 ± 20 **ROZANSKA**

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$ X(2540) MASS (MeV) TECN COMMENT DOCUMENT ID $2539 \pm 14 {+38 \atop -14}$ 13 BELL $\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$ UEHARA

 $\Gamma(\gamma\gamma) \times B(K\overline{K})$

TECN COMMENT VALUE (eV) DOCUMENT ID $40 + 9 + 17 \\ -7 - 40$ 13 BELL $\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$ **UEHARA**

 $I^{G}(J^{PC}) = ?^{?}(?^{??})$ X(2632)MASS (MeV) DOCUMENT ID WIDTH (MeV) ⁶¹ EVDOKIMOV 04 SELX $X(2632) \rightarrow D_{c}^{+} \eta$ 2635.2 ± 3.3 ⁶² EVDOKIMOV 04 SELX $X(2632) \rightarrow D^{0}K^{+}$ 2631.6 ± 2.1

 $B(X(2632) \rightarrow D^{0}K^{+})/B(X(2632) \rightarrow D_{s}^{+}\eta)$ DOCUMENT ID TECN**VALUE** 0.14 ± 0.06

 $^{^{61}\,\}mathrm{From}$ a mass difference to $D_{\,\mathrm{S}}^{+}$ of 666.9 \pm 3.3 MeV.

 $^{^{62}}$ From a mass difference to D^{0} of 767.0 \pm 2.0 MeV.

 $^{^{63}}$ Possible interpretation of this decay pattern is discussed by YASUI 07.

X(2680	$I^{G}(J^{PC}) =$??(???)			
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
2676±27	150	CASO	70	НВС	11.2 $\pi^- p \to \rho^- \pi^+ \pi^- p$

X(2710)	$I^{G}(J^{PC}) = ?^{?}(6^{+?})$				
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
2710±20	170 ± 40	ROZANSKA	80	SPRK	$18 \pi^- p \to p \overline{p} n$

X(2750)

$$I^G(J^{PC}) = ?^?(7^{-?})$$

 MASS (MeV)
 WIDTH (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 2747 ± 32
 195 ± 75
 DENNEY
 83
 LASS
 $10 \pi^+ p \rightarrow K^+ K^- \pi^+ p$

f ₆ (3100)	$I^{G}(J^{PC}) = 0^{+}(6^{+})$	+)			
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
3100±100	700 ± 130	BINON	05	GAMS	$33 \pi^- p \rightarrow \eta \eta n$

X(3250)	$I^{G}(J^{PC}) = ?$	$(?^{??})$ 3-Body Deca	ys		
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
$3250 \pm 8 \pm 20$	45 ± 18	ALEEV	93	BIS2	$X(3250) \rightarrow \Lambda \overline{p} K^+$
$3265 \pm 7 \pm 20$	40 ± 18	ALEEV	93	BIS2	$X(3250) \rightarrow \overline{\Lambda} p K^-$

X(3250)	$I^{G}(J^{PC}) = ?!$	(? ^{??}) 4-Body De	ecays		
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT
$3245 \pm 8 \pm 20$	25 ± 11	ALEEV	93	BIS2	$X(3250) \rightarrow \Lambda \overline{p} K^+ \pi^{\pm}$
$3250 \pm 9 \pm 20$	50 ± 20	ALEEV	93	BIS2	$X(3250) \rightarrow \overline{\Lambda} p K^- \pi^{\mp}$
$3270 \pm 8 \pm 20$	25 ± 11	ALEEV	93	BIS2	$X(3250) \rightarrow K_S^0 p \overline{p} K^{\pm}$

X(3350)	$I^{G}(J^{PC}) =$: ? [?] (? ^{??})				
MASS (MeV)	WIDTH (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$3350^{+10}_{-20}\pm20$	$70^{+40}_{-30} \pm 40$	50 ± 10 6	⁶⁴ GABYSHEV	06A	BELL	$B^- \rightarrow \Lambda_c^+ \overline{p} \pi^-$

⁶⁴ A similar enhancement in the $\Lambda_c^+ \overline{p}$ final state is also reported by BABAR collaboration in AUBERT 10H.

REFERENCES for Further States

ABLIKIM	16N	PR D93 112011	M. Ablikim	(BES III Collab.)
ABLIKIM	13J	PR D87 032008	M. Ablikim et al.	(BES III Collab.)
UEHARA	13	PTEP 2013 123C01	S. Uehara <i>et al.</i>	(BELLE Collab.)
ANISOVICH	12	PR D85 014001	A.V. Anisovich et al.	
ANASHIN	11	PL B703 543	V.V. Anashin et al.	(KEDR Collab.)
ANISOVICH	11	EPJ C71 1511	A.V. Anisovich et al.	(LOQM, RAL, PNPI)
CHEN	11F	PR D84 071501	P. Chen et al.	(BELLE Collab.)
AUBERT	10H	PR D82 031102	B. AUBERT et al.	(BABAR Collab.)
ABRAAMYAN	09	PR C80 034001	Kh.U. Abraamyan et al.	
LIU	09	PR D79 071102	C. Liu <i>et al.</i>	(BELLE Collab.)
VLADIMIRSK	. 08	PAN 71 2129	V.V. Vladimirsky et al.	(ITEP)
		Translated from YAF 71	2166.	

VLADIMIRSK	. 07	PAN 70 1706	V. Vladimirsky et al.	
VACIII	07	Translated from YAF 70		
YASUI ABLIKIM	07 06J	PR D76 034009 PRL 96 162002	S. Yasui, M. Oka M. Ablikim <i>et al.</i>	(DEC Collab.)
	06S			(BES Collab.)
ABLIKIM		PRL 97 142002	M. Ablikim <i>et al.</i>	(BES Collab.)
GABYSHEV	06A	PRL 97 242001	N. Gabyshev <i>et al.</i>	(BELLE Collab.)
SCHEGELSKY		EPJ A27 199	V.A. Schegelsky <i>et al.</i>	
SCHEGELSKY UMAN	06A 06	EPJ A27 207 PR D73 052009	V.A. Schegelsky <i>et al.</i> I. Uman <i>et al.</i>	(ENIVI EOSE)
VLADIMIRSK		PAN 69 493	V.V. Vladimirsky <i>et al.</i>	(FNAL E835) (ITEP, Moscow)
VLADIMINSN	. 00	Translated from YAF 69		(IILI, Woscow)
BINON	05	PAN 68 960	F. Binon et al.	
5	00	Translated from YAF 68		
GRIGOR'EV	05	PAN 68 1271	V.K. Grigor'ev et al.	(ITEP)
		Translated from YAF 68		
LU	05	PRL 94 032002	M. Lu <i>et al.</i>	(BNL E852 Collab.)
ABLIKIM	04J	PRL 93 112002	M. Ablikim <i>et al.</i>	(BES Collab.)
BUGG	04	PL B595 556 (errat.)	D.V. Bugg	
BUGG	04A	EPJ C36 161	D.V. Bugg	
BUGG	04C	PRPL 397 257	D.V. Bugg	(0=1=1/4 0 11 1 1
EVDOKIMOV	04	PRL 93 242001	A.V. Evdokimov <i>et al.</i>	(SELEX Collab.)
KUHN	04	PL B595 109	J. Kuhn <i>et al.</i>	(BNL E852 Collab.)
ANISOVICH	03	EPJ A16 229	V.V. Anisovich et al.	
VLADIMIRSK	. 03	PAN 66 700	V.V. Vladimirsky et al.	
A NUCOVICU	00	Translated from YAF 66		
ANISOVICH	02	PL B542 8	A.V. Anisovich et al.	
ANISOVICH	02B	PL B542 19	A.V. Anisovich <i>et al.</i>	(DNI FOFO C II I)
CHUNG	02	PR D65 072001	S.U. Chung <i>et al.</i>	(BNL E852 Collab.)
LINK	02K	PL B545 50	J.M. Link et al.	(FNAL FOCUS Collab.)
ANISOVICH	01C	PL B507 23	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH	01D	PL B508 6		
ANISOVICH	01E 01F	PL B513 281	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH	01G	PL B517 261	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH	01G	PL B517 273 NP A662 319	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH ANISOVICH	00D	PL B476 15	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH	00E	PL B470 15 PL B477 19	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH	00L	PL B477 19 PL B491 40	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH	00J	PL B491 47	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
ANISOVICH	003 M00	PL B496 145	A.V. Anisovich <i>et al.</i> A.V. Anisovich <i>et al.</i>	
BARNES	00	PR C62 055203	P.D. Barnes <i>et al.</i>	
FILIPPI	00	PL B495 284	A. Filippi <i>et al.</i>	(OBELIX Experiment)
VLADIMIRSKII		JETPL 72 486	V.V. Vladimirskii <i>et al.</i>	(OBELIX Experiment)
V E/ (DIIVIII (SIKII	00	Translated from ZETFP		
ANISOVICH	99C	PL B452 173	A.V. Anisovich <i>et al.</i>	
ANISOVICH	99E	PL B452 187	A.V. Anisovich et al.	
ANISOVICH	99F	NP A651 253	A.V. Anisovich et al.	
ANISOVICH	99 J	PL B471 271	A.V. Anisovich et al.	
ANISOVICH	99K	PL B468 309	A.V. Anisovich et al.	
BUGG	99	PL B458 511	D.V. Bugg et al.	
FERRER	99	EPJ C10 249	A. Ferrer et al.	
SEMENOV	99	SPU 42 847	S.V. Semenov	
		Translated from UFN 42		(5 . 5 . 5
ADOMEIT	96	ZPHY C71 227	J. Adomeit <i>et al.</i>	(Crystal Barrel Collab.)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
PROKOSHKIN	96	PD 41 247	Y.D. Prokoshkin, V.D. Samoile	enko (SERP)
LIACANI	04	Translated from DANS 3		(MOO I)
HASAN	94 94	PL B334 215 NP A574 731	A. Hasan, D.V. Bugg	(LOQM)
OAKDEN ALEEV	93		M.N. Oakden, M.R. Penningto A.N. Aleev <i>et al.</i>	
ALEEV	93	PAN 56 1358 Translated from YAF 56		(BIS-2 Collab.)
ARMSTRONG	93D	PL B307 399	T.A. Armstrong <i>et al.</i>	(FNAL, FERR, GENO+)
ALBRECHT	91F	ZPHY C50 1	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
CONDO	91	PR D43 2787	G.T. Condo <i>et al.</i>	(SLAC Hybrid Collab.)
BISELLO	89B	PR D39 701	G. Busetto <i>et al.</i>	(DM2 Collab.)
ATKINSON	88	ZPHY C38 535	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
DAFTARI	87	PRL 58 859	I.K. Daftari <i>et al.</i>	(SYRA)
ALDE	86D	NP B269 485	_	LG, LAPP, SERP, CERN+)
BRIDGES	86D	PL B180 313	D.L. Bridges <i>et al.</i>	(SYRA, BNL, CASE+)
			-	
GREEN	86	PRL 56 1639	D.R. Green et al.	(FNAL, ARIZ, FSU+)
ATKINSON	86 85	PRL 56 1639 ZPHY C29 333	D.R. Green <i>et al.</i> M. Atkinson <i>et al.</i>	(FNAL, ARIZ, FSU+) (BONN, CERN, GLAS+)

ASTON ARESTOV CHLIAPNIK KREYMER ROZANSKA EVANGELIS EVANGELIS BALTAY ANTIPOV BALTAY BALTAY KALELKAR	81B 80 80 80 80 79 79B 78 77 77 75 75	NP B189 205 IHEP 80-165 ZPHY C3 285 PR D22 36 NP B162 505 NP B153 253 NP B154 381 PR D17 52 NP B119 45 PRL 39 591 PRL 35 891 Thesis Nevis 207 LNC 3 707	D. Aston et al. Y.I. Arestov et al. P.V. Chliapnikov et al. A.E. Kreymer et al. M. Rozanska et al. C. Evangelista et al. C. Evangelista et al. C. Baltay et al. Y.M. Antipov et al. C. Baltay, C.V. Cautis, C. Baltay et al. M.S. Kalelkar C. Caso et al.	(COLU, BING) (COLU)
CASO		LNC 3 707		(GENO, HAMB, MILA, SACL)