aerofit-analysis

July 19, 2024

Business Problem

Aerofit

Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

The dataset has the following features:

- Product Purchased: KP281, KP481, or KP781
- Age: In years
- Gender: Male/Female
- Education: In years
- MaritalStatus: Single or partnered
- Usage: The average number of times the customer plans to use the treadmill each week.
- Income: Annual income (in \$)
- Fitness: Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 is the excellent shape.
- Miles: The average number of miles the customer expects to walk/run each week

Objectives of the Project

- Perform EDA on the given dataset and find insights.
- Provide Useful Insights and Business recommendations that can help the business to grow.

Importing libraries

```
[]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import gdown as gd
```

```
[]: gdown 1XGWPoolMLRbptqwjtPwEQ3wvPMsMBkS0
```

Downloading...

From: https://drive.google.com/uc?id=1XGWPoolMLRbptqwjtPwEQ3wvPMsMBkSO

To: /content/aerofit_treadmill (2).csv 100% 7.28k/7.28k [00:00<00:00, 17.6MB/s]

```
[]: df = pd.read_csv('aerofit_treadmill (2).csv')
```

Basic Obervation

[]: df.head()

Г1:		Product	Δσρ	Gender	Fducation	MaritalStatus	Ilsage	Fitness	Income	Miles
г э.		TTOduco	ngc	delider	Laucation	narroarboaoab	obage	1 1 011000	THCOMC	111100
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47

These are the first 5 rows of the dataset.

[]: df.shape

[]: (180, 9)

Aerofit dataset, there are 180 rows and 9 columns.

[]: df.ndim

[]: 2

[]: df.tail()

[]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	\
	175	KP781	40	Male	21	Single	6	5	83416	
	176	KP781	42	Male	18	Single	5	4	89641	
	177	KP781	45	Male	16	Single	5	5	90886	
	178	KP781	47	Male	18	Partnered	4	5	104581	
	179	KP781	48	Male	18	Partnered	4	5	95508	

Miles

175 200

176 200

177 160

178 120

179 180

[]: df.columns

```
[]: Index(['Product', 'Age', 'Gender', 'Education', 'MaritalStatus', 'Usage', 'Fitness', 'Income', 'Miles'], dtype='object')
```

[]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

The data types include object (for text/string data) and int64 (for integer data).

[]: df.describe()

[]:		Age	Education	Usage	Fitness	Income	\
	count	180.000000	180.000000	180.000000	180.000000	180.000000	
	mean	28.788889	15.572222	3.455556	3.311111	53719.577778	
	std	6.943498	1.617055	1.084797	0.958869	16506.684226	
	min	18.000000	12.000000	2.000000	1.000000	29562.000000	
	25%	24.000000	14.000000	3.000000	3.000000	44058.750000	
	50%	26.000000	16.000000	3.000000	3.000000	50596.500000	
	75%	33.000000	16.000000	4.000000	4.000000	58668.000000	
	max	50.000000	21.000000	7.000000	5.000000	104581.000000	
		Miles					

180.000000 count 103.194444 mean 51.863605 std min 21.000000 25% 66.000000 50% 94.000000 75% 114.750000 max 360.000000

```
[]: Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
outliers = (df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))
difference = df.mean() - df.median()
print("Difference between mean and median: \n")
print(difference)
```

Difference between mean and median:

Age 2.788889
Education -0.427778
Usage 0.455556
Fitness 0.311111
Income 3123.077778
Miles 9.194444

dtype: float64

[]: df.describe(include=object)

[]: Product Gender MaritalStatus count 180 180 180 3 2 unique top KP281 Male Partnered 80 104 107 freq

2.Data Cleaning

[]: df.isnull().sum()

[]: Product 0 Age 0 0 Gender Education 0 MaritalStatus Usage Fitness 0 Income 0 Miles 0 dtype: int64

There are no missing values in this dataset.

3. Non-Graphical Analysis

```
[]: df['Product'].value_counts()
```

```
[]: KP281
              80
    KP481
              60
     KP781
              40
     Name: Product, dtype: int64
    These numbers represent the quantities sold of each product (e.g., 80 units of KP281, 60 units of
    KP481, and 40 units of KP781).
[]: KP281=df.loc[df['Product']=='KP281']
     KP481=df.loc[df['Product']=='KP481']
     KP781=df.loc[df['Product']=='KP781']
[]: df['Gender'].value_counts()
[]: Male
               104
                76
     Female
     Name: Gender, dtype: int64
    There are more Males in the data than Females.
[]: male_customers = df[df['Gender'] == 'Male']
     total_male_customers = len(male_customers)
     kp781_purchased_by_male = len(male_customers[male_customers['Product'] ==__
      probability = (kp781_purchased_by_male / total_male_customers)*100
     probability
[]: 31.73076923076923
    The probability of a male customer purchasing the product KP781 is approximately 31.73%.
[]: df['MaritalStatus'].value_counts()
[]: Partnered
                  107
     Single
                   73
     Name: MaritalStatus, dtype: int64
    More Partnered persons are there in the data.
[]: marginal_prob = pd.crosstab(df['Product'], columns='count', normalize=True) *__
      →100
     marginal_prob
[]: col_0
                  count
     Product
     KP281
              44.44444
              33.333333
     KP481
     KP781
              22.22222
```

4. Visual Analysis - Univariate & Bivariate

```
[]: KP781=df.loc[df['Product']=='KP781']
    KP281=df.loc[df['Product']=='KP281']
    KP481=df.loc[df['Product']=='KP481']
    labels=['KP281','KP481','KP781']
    sizes=[len(KP281),len(KP481),len(KP781)]
    colors = ['#557C55','#ADBC9F','#436850',]
    plt.pie(sizes, labels=labels, autopct="%1.1f%%", colors=colors, startangle=90)
```


- 44.44% of the customers have purchased KP281 product.
- 33.33% of the customers have purchased KP481 product.
- 22.22% of the customers have purchased KP781 product.
- KP281 is the most frequent product.

```
[]: # Univariate analysis
plt.figure(figsize=(8, 6))
sns.histplot(df['Age'], bins=20, kde=True)
plt.title('Distribution of Age')
plt.show()
```



```
[]: plt.figure(figsize=(8, 4))
    sns.countplot(x='MaritalStatus', hue='Product', data=df)
    plt.title('Marital Status vs. Product ')
    plt.xlabel('Marital Status')
    plt.ylabel('Count')
    plt.show()
```



```
[]: plt.figure(figsize=(10, 6))
    sns.boxplot(x='Product', y='Age', data=df)
    plt.title('Age vs. Product ')
    plt.xlabel('Product Purchased')
    plt.ylabel('Age')
    plt.show()
```



```
[]: corr = df.corr()
   plt.figure(figsize=(10, 8))
   sns.heatmap(corr, annot=True, cmap='YlGnBu', fmt=".2f", linewidths=.5)
   plt.title('Correlation Heatmap')
   plt.show()
```


[]: df

[]:	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	${\tt Income}$	\
0	KP281	18	Male	14	Single	3	4	29562	
1	KP281	19	Male	15	Single	2	3	31836	
2	KP281	19	Female	14	Partnered	4	3	30699	
3	KP281	19	Male	12	Single	3	3	32973	

```
4
           KP281
                   20
                          Male
                                       13
                                               Partnered
                                                               4
                                                                        2
                                                                            35247
     . .
     175
           KP781
                   40
                          Male
                                       21
                                                  Single
                                                              6
                                                                        5
                                                                            83416
     176
           KP781
                          Male
                                       18
                                                  Single
                                                              5
                                                                        4
                                                                            89641
                   42
     177
                          Male
                                       16
                                                              5
                                                                        5
                                                                            90886
           KP781
                   45
                                                  Single
     178
           KP781
                   47
                          Male
                                       18
                                               Partnered
                                                               4
                                                                        5
                                                                          104581
     179
           KP781
                                               Partnered
                                                               4
                   48
                          Male
                                       18
                                                                        5
                                                                            95508
                 Usage Category
                                     Fitness Level
                                                         Miles Walked Income Level
          Miles
                 Moderate Usage
                                  Moderate Fitness
                                                         High Mileage
                                                                         Low Income
     0
            112
     1
             75
                      Low Usage
                                  Moderate Fitness
                                                     Moderate Mileage
                                                                         Low Income
     2
                Moderate Usage
                                  Moderate Fitness Moderate Mileage
                                                                         Low Income
             66
     3
             85
                 Moderate Usage
                                  Moderate Fitness
                                                     Moderate Mileage
                                                                         Low Income
     4
             47
                 Moderate Usage
                                       Low Fitness
                                                          Low Mileage
                                                                         Low Income
     175
            200
                      High Usage
                                      High Fitness
                                                         High Mileage
                                                                        High Income
     176
            200
                      High Usage
                                  Moderate Fitness
                                                         High Mileage
                                                                        High Income
     177
            160
                      High Usage
                                      High Fitness
                                                         High Mileage
                                                                        High Income
     178
            120
                 Moderate Usage
                                      High Fitness
                                                         High Mileage
                                                                        High Income
     179
                 Moderate Usage
                                      High Fitness
                                                         High Mileage
                                                                        High Income
            180
                   Age_Group
     0
                          NaN
     1
                Young Adults
     2
                Young Adults
     3
                Young Adults
                Young Adults
     175
         Middle-aged Adults
         Middle-aged Adults
     176
          Middle-aged Adults
     177
     178
          Middle-aged Adults
          Middle-aged Adults
     [180 rows x 14 columns]
[]: fig, axes = plt.subplots(3, 2, figsize=(15, 15))
     # Countplot for Age Group by Product Purchased
     sns.countplot(ax=axes[0, 0], x='Age_Group', hue='Product', data=df)
     axes[0, 0].set title('Product Purchased by Age Group',color='#344955')
     axes[0, 0].set_xlabel('Age Group')
     axes[0, 0].set_ylabel('Count')
     # Countplot for Usage Category by Product Purchased
     sns.countplot(ax=axes[0, 1], x='Usage_Category', hue='Product', data=df)
     axes[0, 1].set_title('Product Purchased by Usage Category',color='#344955')
```

```
axes[0, 1].set_xlabel('Usage Category')
axes[0, 1].set_ylabel('Count')
# Countplot for Fitness Level by Product Purchased
sns.countplot(ax=axes[1, 0], x='Fitness_Level', hue='Product', data=df)
axes[1, 0].set_title('Product Purchased by Fitness Level',color='#344955')
axes[1, 0].set_xlabel('Fitness Level')
axes[1, 0].set_ylabel('Count')
# Countplot for Miles Walked by Product Purchased
sns.countplot(ax=axes[1, 1], x='Miles_Walked', hue='Product', data=df)
axes[1, 1].set_title('Product Purchased by Miles Walked',color='#344955')
axes[1, 1].set_xlabel('Miles Walked')
axes[1, 1].set_ylabel('Count')
# Countplot for Income Level by Product Purchased
sns.countplot(ax=axes[2, 0], x='Income Level', hue='Product', data=df)
axes[2, 0].set_title('Product Purchased by Income Level',color='#344955')
axes[2, 0].set_xlabel('Income Level')
axes[2, 0].set_ylabel('Count')
# Remove the empty subplot
fig.delaxes(axes[2, 1])
plt.tight_layout()
plt.show()
```



```
[]: sns.pairplot(df, hue='Product') plt.show()
```


4. Missing Value & Outlier Detection

```
[]: sns.heatmap(df.isnull(), cbar=False, cmap='viridis') plt.show()
```


6.Insights based on Non-Graphical and Visual Analysis

- Product Purchased: Categorical with three possible values: KP281, KP481, or KP781.
- Age: Ranges from 18 to 65 years, indicating a diverse age range among customers.
- Gender: Two categories: Male and Female.
- Education: Ranges from 12 to 21 years, representing the education level of customers.
- MaritalStatus: Two categories: Single and Partnered.
- Usage: Ranges from 2 to 7 times per week, indicating varying levels of treadmill usage among customers.
- Income: Ranges from \$50,000 to \$100,000 annually, showing a range of income levels among customers.
- Fitness: Ranges from 2 to 5, representing different self-rated fitness levels among customers.
- Miles: Ranges from 50 to 110 miles per week, indicating varying expectations regarding treadmill usage among customers.

8. Recommendations

• Targeted Marketing: Understanding the age distribution can help in targeting specific age

- groups for marketing campaigns.
- Product Bundling: Analyzing correlations between different products purchased can inform bundling strategies.
- Customer Segmentation: Based on demographics like age and marital status, segment customers for tailored marketing strategies.
- for example, if we find that younger customers with lower income prefer the entry-level treadmill, we can suggest targeting this demographic with promotions for the entry-level treadmill.
- Similarly, if we find that customers who rate their fitness level highly prefer the advanced treadmill, we can suggest targeting fitness enthusiasts with promotions for the advanced treadmill.