PhD Thesis

Koustuv Sinha

Acknowledgements

Abstract

Abstract in French

Contributions to Original Knowledge

Contributions of Authors

List of Figures

List of Tables

Contents

Ι	I Introduction	1
II	II Background	3
1	1 Early methods for text representation	4
2	2 Neural Inductive bias of text representation	5
	2.1 Feed Forward Neural Networks	5
	2.2 Recurrent Neural Networks	5
	2.3 Transformer Models	5
3	3 Pre-training and the advent of Large Language Models	6
4	4 Systematicity and Generalization	7
	4.1 Definitions	
	4.2 Tasks	
II	III Understanding semantic generalization through p	roductivity 8
5	5 Technical Background	9
6	6 CLUTRR: A Diagnostic Benchmark for Inductive Reasoning in	Text 10

Co	Contents		ix
	6.1	Dataset construction	10
	6.2	Productivity and reasoning	10
7	Res	ults	11
8	Dis	cussion	12
9	Foll	ow-up findings in the community	13
10	Rela	ated Work	14
IV	, Č	Quantifying syntactic generalization using word order	15
11	Tecl	hnical Background	17
12	Woı	rd Order in Natural Language Inference	18
	12.1	Probe Construction	18
13	Exp	eriments & Results	19
14	Dis	cussion	20
15	Foll	low-up findings in the community	21
16	Rela	ated Work	22
V	Pr	robing syntax understanding through distributional hypothe-	-
sis	5		23
17	Tecl	hnical Background	25
18	Dat	aset construction and pre-training	26

х

19	Experiments	27
	19.1 Downstream reasoning tasks	27
	19.2 Evaluating the effectiveness of probing syntax	27
20	Discussion	28
21	Follow-up findings in the community	29
22	Related Work	30
V]	I Measuring systematic generalization by exploiting absolute	
pc	ositions	31
23	Technical Background	32
24	Systematic understanding of absolute position embeddings	33
25	Experiments	34
26	Discussion	35
27	Related Work	36
V]	II Conclusion	37
28	Summary	38
29	Limitations	39
30	Future Work	40

Contents	xi
VIII Bibliography	41
Bibliography	42
Glossary	42
Acronyms	42
IX Appendix	43
31 Org mode auto save	4 4
32 Add newpage before a heading	45
33 Glossary and Acronym build using Latexmk	46

Part I

Introduction

Central Theme of the thesis: Understanding systematicity in pre-trained language models through semantic and syntactic generalization.

Part II

Background

Early methods for text representation

Neural Inductive bias of text representation

- 2.1 Feed Forward Neural Networks
- 2.2 Recurrent Neural Networks
- 2.3 Transformer Models

Large Language Models (LLMs) are the state-of-the-art in language models, which are based on Transformers.

Pre-training and the advent of Large Language Models

Success of pre-training and scale

Systematicity and Generalization

4.1 Definitions

- 1. Productivity
- 2. Word Order Sensitivity

4.2 Tasks

Part III

Understanding semantic generalization through productivity

Technical Background

CLUTRR: A Diagnostic Benchmark for Inductive Reasoning in Text

Paper: [1]

- 6.1 Dataset construction
- 6.2 Productivity and reasoning

Results

Discussion

Follow-up findings in the community

Related Work

Part IV

Quantifying syntactic generalization using word order

Paper [2]

Technical Background

Word Order in Natural Language Inference

12.1 Probe Construction

Experiments & Results

Discussion

Follow-up findings in the community

Related Work

Part V

Probing syntax understanding through distributional hypothesis

Paper: [3]

Technical Background

Dataset construction and pre-training

Experiments

- 19.1 Downstream reasoning tasks
- 19.2 Evaluating the effectiveness of probing syntax

Discussion

Follow-up findings in the community

Related Work

Part VI

Measuring systematic generalization by exploiting absolute positions

Technical Background

Systematic understanding of absolute position embeddings

Experiments

Discussion

Related Work

Part VII

Conclusion

Summary

Limitations

Future Work

Part VIII

Bibliography

Bibliography

- [1] Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text. In *Empirical Methods in Natural Language Processing (EMNLP)* 2019, September 2019.
- [2] Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, and Adina Williams. Un-Natural Language Inference. In *Association for Computational Linguistics (ACL)* 2021, June 2021.
- [3] Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela. Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little. In *Empirical Methods in Natural Language Processing (EMNLP)*, April 2021.

Glossary

Transformers A class of models first derived by Vaswani et al. 2017. 15

Acronyms

LLMs Large Language Models. 15

Part IX

Appendix

Org mode auto save

Run the following snippet to auto save and compile in org mode.

Add newpage before a heading

Glossary and Acronym build using Latexmk

```
Add the following snippet in the file "~/.latexmkrc": (Source: https://tex.stackexchange.

com/a/44316)

add_cus_dep('glo', 'gls', 0, 'run_makeglossaries');

add_cus_dep('acn', 'acr', 0, 'run_makeglossaries');

sub run_makeglossaries {

my ($base_name, $path) = fileparse( $_[0] ); #handle -outdir param by pushd $path; # ... cd-ing into folder first, then running makeglossaries if ($silent) {

system "makeglossaries -q '$base_name'"; #unix

# system "makeglossaries", "-q", "$base_name"; #windows

}

else {

system "makeglossaries '$base_name'"; #unix
```

```
# system "makeglossaries", "$base_name"; #windows
};

popd; # ... and cd-ing back again
}

push @generated_exts, 'glo', 'gls', 'glg';

push @generated_exts, 'acn', 'acr', 'alg';

$clean_ext .= ' %R.ist %R.xdy';
```