

## Trabalho 1

(16-10.2019)

# Modelos Determinísticos de Investigação Operacional

MiEl 3°ano – 1° semestre

Catarina Gil a85266 Margarida Campos a85166 Tânia Rocha a85176

### Índice

| Introdução            | 3 |
|-----------------------|---|
| Análise de Dados      |   |
| Elementos do Modelo   |   |
| Análise de Resultados | 7 |
| Conclusão             | 9 |

### Introdução

Este trabalho foi proposto pelos docentes da unidade curricular de Modelos Determinísticos de Investigação Operacional. Tem como principal objetivo, a partir de um grafo (fig.1), determinar o circuito/conjunto de circuitos em que todos os arcos são percorridos pelos menos uma vez, minimizando a distância total percorrida.

Para tal são aplicados conceitos de programação linear, lecionados nas aulas, bem como a utilização do software LPSolve.



Fig.1 – Circuito original dado no enunciado do trabalho

#### Análise de Dados

Como abordagem inicial decidimos intitular os vértices com letras alfabéticas (fig.2), repartindo assim o circuito por arcos, de modo a facilitar a resolução do problema.



Fig.2 – Circuito intitulado

#### Elementos do Modelo

Variáveis de decisão: Xij : número de vezes que o arco com entrada em i e saída em j é percorrido.

Parâmetros: Custo de cada aresta.

#### Restrições:

```
xAB, xBC, xCD ,xDK, xKL, xLM ,xMA ,
xBE ,xEG ,xGM ,xGF ,xFE, xFH ,xHI ,
xHC ,xHL , xDN ,xNI ,xIJ ,xJK ,xJN ,xAB >= 1
```

Com estas restrições garantimos que todos os arcos do circuito são percorridos pelo menos uma vez.

```
xBC + xBE · xAB = 0;

xCD · xBC · xHC = 0;

xDK + xDN · xCD = 0;

xEG · xBE · xFE = 0;

xFH + xFE · xGF = 0;

xGF + xGM · xEG = 0;

xHI + xHL + xHC · xFH = 0;

xIJ · xHI · xNI = 0;

xJK + xJN · xIJ = 0;

xKL · xDK · xJK = 0;

xLM · xKL · xHL = 0;

xMA · xLM · xGM = 0;
```

Através destas restrições asseguramos que para cada vértice existe um conjunto limitado de vértices aos quais este consegue aceder, tal como aqueles que o conseguem aceder diretamente.

Como auxílio, construímos uma matriz (fig. 3) com os vértices e as suas respetivas ligações. Estas ligações são valoradas com {-1,0,1}.

- 1 : Vértice acessível
- -1 : Vértice que o pode aceder
- 0 : Vértice sem conexão direta

Por exemplo, neste caso, o vértice B pode ser acedido pelo vértice A e aceder os vértices C e E.

Estas equações são igualadas a 0 para garantir que o número de arcos que entra num dado vértice é igual ao número de vértices que dele saem.

|     | Α  | В  | С  | D  | E  | F  | G  | н  | 1  | J  | K  | L  | М  | N  |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Α   | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  |
| В   | -1 | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| С   | 0  | 0  | -1 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| D   | 0  | 0  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  |
| E   | 0  | -1 | 0  | 0  | 0  | -1 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| F   | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| G   | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| Н   | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 1  | 0  | -1 | 0  | 1  | 0  |
| - 1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 1  | 0  | 0  | 0  | 0  |
| J   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 1  | 0  | 0  | 1  |
| K   | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 1  | 0  | -1 | 0  | 0  | 0  | 0  |
| L   | 1  | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 0  | 0  | -1 | 0  |
| М   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 1  | 0  | -1 |
| N   | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 1  | 0  |

Fig. 3- Matriz auxiliar

#### Função Objetivo:

min: 3 xAB + 3 xBC + 4 xCD + 12 xDK + 4 xKL + 4 xLM +10 xMA + 3xBE + 5 xEG + 2 xGM + 4 xGF + 2 xFE + 3 xHI + 4 xHC + 4 xHL + 2 xDN + 3 xNI + 2 XIJ + 3 xJK + 3 xJN

Como queríamos minimizar o custo do circuito percorrido, construirmos uma função linear que soma todas as variáveis de decisão associada ao seu custo.

Deste modo, determinamos a solução ótima para a função objetivo.

#### Análise de Resultados

Como referido anteriormente, usamos o LPSolve e inserimos estas equações, obtendo os seguintes resultados:

| Variables | result |  |  |  |
|-----------|--------|--|--|--|
|           | 207    |  |  |  |
| XAB       | 5      |  |  |  |
| XBC       | 1      |  |  |  |
| XCD       | 2      |  |  |  |
| XDK       | 1      |  |  |  |
| XKL       | 3      |  |  |  |
| XLM       | 4      |  |  |  |
| XMA       | 5      |  |  |  |
| XBE       | 4      |  |  |  |
| XEG       | 5      |  |  |  |
| XGM       | 1      |  |  |  |
|           |        |  |  |  |

| XGF | 4 |
|-----|---|
| ×FE | 1 |
| ×HI | 1 |
| XHC | 1 |
| XHL | 1 |
| XDN | 1 |
| ×NI | 2 |
| XIJ | 3 |
| XJK | 2 |
| XJN | 1 |
| XFH | 3 |
|     |   |

Fig. 4 · Tabela obtida pelo LPSolve

Assim, estes valores indicam o número de vezes que um dado arco é percorrido. De acordo com estes, existem arcos que vão ser atravessados mais do que uma vez, por exemplo o arco xAB toma o valor de 5, o que significa que que passa pelo vértice A (vértice inicial) cinco vezes.

Por esta tabela, ficamos também a saber o valor da função objetivo, 207, ou seja, o custo mínimo total do percurso não pode ter um valor inferior a este, desde que respeite os requisitos.

Para facilitar a visualização do percurso total, este foi divido em cinco subcaminhos (fig,5,6,7,8,9).



Fig.5 - Subcaminho 1



Fig.6 - Subcaminho 2





Fig.7 – Subcaminho 3

Fig.8 – Subcaminho 4



Fig.9 – Subcaminho 5

Estes subcaminhos são uma possível solução determinada pelo nosso grupo, visto que existem inúmeros padrões de arcos a percorrer que respeitam os valores obtidos.

A ordem dos subcaminhos também não é relevante, já que, independentemente desta, o percurso total iria ser o mesmo.

#### Conclusão

Com a realização deste trabalho, conseguimos aprofundar os conhecimentos obtidos e melhorar a sua aplicação.

Ganhamos experiência num software nunca antes utilizado (LPSolve), sendo este bastante prático e objetivo.