

Aktueller Stand

State Estimation funktioniert, ist aber rudiment $\ddot{a}r \rightarrow bereit$ für Erweiterungen

- Pre-Processing wie in eSleek19
 - Todo: Fusion von 3 IMUs, Velocity aus Wheel Speeds
- Neuer EKF, Performance noch wie in eSleek19
 - Todo: Support f\u00fcr delayed measurements f\u00fcr GPS, komplexeres Modell ausprobieren
- Outlier Detection noch nicht angefangen

Outlier Detection

Vehicle Model

$$egin{bmatrix} \dot{x} \ \dot{y} \ \dot{v}_x \ \dot{v}_y \ \dot{\psi} \ \ddot{\psi} \end{bmatrix} = egin{bmatrix} v_x \cdot cos(\psi) - v_y \cdot sin(\psi) \ v_x \cdot sin(\psi) + v_y \cdot cos(\psi) \ a_x + \dot{\psi}v_y \ a_x - \dot{\psi}v_x \ \dot{\psi} \ \ddot{\psi} \end{bmatrix}$$

Time [s]

Measurement vs. EKF Estimate for Position

Schedule

Aktuelle KW:	10			Já	anu	Februar				März				April								
KW/	Status	Dead- line	hase									Fertigungsp				hase						
Bauteil, Verantwortlich	[%]		1	2	3	4	5	6	7	8	9	<u>10</u>	11	12	13	14	15	16	17	18	19	
State Estimation (Dominik)																						
Einarbeitung Fahrdynamik	10																					
Einarbeitung State Estimation	80																					
Analyse alte VDC	100																					
Design der Architektur inkl. Schnittstellen	100																					
Aufsetzen des Simulink-Modells	100																					
Pre-Processing-Block	90																					
Input Selector-Block	50																					
Output Selector-Block	50																					
Kalman Filter-Block inkl. Fahrzeugmodell	90																					
Outlier Detection Block	0																					
Wheelspeed-based Velocity verbessern (optional)	0																					
Applikation EV + DV	0																					
Studienarbeit	0																					

Fragen

- Wie Delay Compensation für GPS?
 - Falls konstantes Delay: Korrektur des aktuellen Estimates mit der alten Messung
 - Larsen et al. 1998, "Incorporation of time delayed measurements in a discrete-time Kalman filter"
 - https://doi.org/10.1109/CDC.1998.761918

Inhalt Studienarbeit

- Ausgangslage beschreiben
 - Grundlegende Architektur/Komponenten für State Estimation
 - Vorhanden in eSleek19, Restrukturierung für eSleek20
 - Probleme
 - Fehlende Flexibilität
 - Rudimentäre und nicht-robuste Outlier Detection
 - Keine Estimation von Position und Heading
 - Keine GPS Delay Compensation
 - Kein Support für 3 IMUs
 - Velocity aus Wheel Speeds nicht akkurat (optional)
- Komponenten, die diese Probleme lösen, beschreiben