WEST

7

Generate Collection

Print

L2: Entry 28 of 91

File: JPAB

Jun 11, 1987

PUB-NO: JP362128911A

DOCUMENT-IDENTIFIER: JP 62128911 A

TITLE: PARTICLES CONTAINING COBALT CARBIDE

PUBN-DATE: June 11, 1987

INVENTOR-INFORMATION:

NAME

TOKUNAGA, KATSUSHI

AOMI, HIDEKI OKAMURA, KAZUO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

COUNTRY

DAIKIN IND LTD

APPL-NO: JP60268801

APPL-DATE: November 28, 1985

INT-CL (IPC): C01B 31/30

ABSTRACT:

PURPOSE: To easily produce stable particles contg. cobalt carbide and having high coercive force by bringing powder composed of particles contg. CO(OH) or CO3O4 into contact with CO or a CO-H2 mixture.

CONSTITUTION: Powder composed of hexagonal platy particles contg. Co(OH)2, COOOH or Co3O4 is brought into contact with CO or CO-H2 mixture. The preferred average particle size of the particles is about 0.1∼1μm. The preferred contact temp. is about 300∼500°C, the preferred contact time is about 1∼10hr and the preferred flow rate of the gas is about 1∼1,000ml.STP/min per 1g cobalt compound as starting material. Thus, hexagonal platy particles contg. cobalt carbide and having 0.1∼1μm average particle size are obtd. The resulting particles can stably be taken out and put in the air. The particles have high coercive force and are used as a superior magnetic material.

COPYRIGHT: (C) 1987, JPO&Japio

Generate Collection

L14: Entry 56 of 91

File: DWPI

Jul 21, 1998

DERWENT-ACC-NO: 1998-451428

DERWENT-WEEK: 199839

COPYRIGHT 2001 DERWENT INFORMATION LTD

TITLE: Non-sintering nickel anode manufacturing method for alkaline battery such as nickel hydrogen storage battery, nickel- cadmium storage battery - involves producing non-sintering nickel anode using second complex particle powder containing beta cobalt oxy:hydroxide as active material

PATENT-ASSIGNEE:

ASSIGNEE

CODE

SANYO ELECTRIC CO LTD

SAOL

PRIORITY-DATA: 1996JP-0355331 (December 20, 1996)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 10188970 A

July 21, 1998

N/A

007

H01M004/32

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

JP10188970A

December 20, 1996

1996JP-0355331

N/A

INT-CL (IPC): H01M 4/32; H01M 4/52

ABSTRACTED-PUB-NO: JP10188970A

BASIC-ABSTRACT:

The method involves forming a beta-COOOH layer on a nickel hydroxide particle surface. The beta COOOH layer is formed by adding aqueous solution NaOH to a first complex particle powder (A). Heating is then carried out at a temperature range of 50-200 degC. Sodium containing cobalt compound layer is varied in beta-COOOH layer thereby producing a second complex particle powder (B). A non-sintering nickel anode is then produced using the second complex particle powder as an active material.

ADVANTAGE - Improves utilisation efficiency of active material.

CHOSEN-DRAWING: Dwg.1/4

TITLE-TERMS: NON SINTER NICKEL ANODE MANUFACTURE METHOD ALKALINE BATTERY NICKEL HYDROGEN STORAGE BATTERY NICKEL CADMIUM STORAGE BATTERY PRODUCE NON SINTER NICKEL ANODE SECOND COMPLEX PARTICLE POWDER CONTAIN BETA COBALT OXY HYDROXIDE ACTIVE MATERIAL

DERWENT-CLASS: L03 X16

CPI-CODES: L03-E01B4;

EPI-CODES: X16-E01C1; X16-E05;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1998-136689 Non-CPI Secondary Accession Numbers: N1998-352336

WEST

Generate Collection

L18: Entry 5 of 24

File: JPAB

Jul 2, 1999

PUB-NO: JP411176433A

DOCUMENT-IDENTIFIER: JP 11176433 A TITLE: ALKALINE STORAGE BATTERY

PUBN-DATE: July 2, 1999

INVENTOR-INFORMATION:

NAME

COUNTRY

KATO, HITOSHI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

FURUKAWA BATTERY CO LTD: THE

N/A

APPL-NO: JP09362528

APPL-DATE: December 15, 1997

INT-CL (IPC): H01M 4/32; H01M 4/62; H01M 10/30

ABSTRACT:

PROBLEM TO BE SOLVED: To improve the charging and discharging cycle lifetime characteristics and inner pressure of a battery by setting density of the cobalt compound, so that the density becomes higher as it comes close to a surface of a plate in the thickness direction of a positive electrode plate.

SOLUTION: The density of the <u>oxycobalt hydroxide</u> is set so as to become higher the a closer the location is to a surface of a plate from the center of an electrode, and as far as a conductive network of the cobalt is separated from the center of the electrode, density of the <u>oxycobalt hydroxide</u> is increased so as to smooth the electron delivery in the electrode reaction, and the generation of the excess and lack of the conductive network of the <u>oxycobalt hydroxide</u> is prevented. In a condition with a large number of ions such as OH, H

COPYRIGHT: (C) 1999, JPO

Generate Collection

L9: Entry 2 of 4

File: DWPI

Mar 2, 1999

DERWENT-ACC-NO: 1999-225876

DERWENT-WEEK: 199922

COPYRIGHT 2001 DERWENT INFORMATION LTD

TITLE: Amorphous cobalt compounds - can be used as cobalt sources for various cobalt-containing compounds, for example in catalysts and as cobalt sources for lithium compound oxides

PATENT-ASSIGNEE: ISE KAGAKU KOGYO KK (ISEE)

PRIORITY-DATA: 1997JP-0225526 (August 8, 1997)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 11060242 A

March 2, 1999

N/A

004

C01G051/00

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

JP11060242A

August 8, 1997

1997JP-0225526

N/A

INT-CL (IPC): C01G 51/00; C22C 45/04

ABSTRACTED-PUB-NO: JP11060242A

BASIC-ABSTRACT:

Amorphous cobalt cpds. of formula $\underline{HCoO2}$, contg. 64 plus or minus 1.5 wt.% Co (on a dry basis) are characterised in that the half widths of the diffraction peaks, with the maximum intensities observed in the range where 2 theta equals from 15 to 90 deg., are at least 0.95 deg. in the X-ray diffraction using CuK alpha as a radiation source.

USE - The amorphous cobalt cpds. obtained can be used as cobalt sources for various cobalt-contg. cpds., for example in catalysts and as cobalt sources for lithium cpd. oxides.

ADVANTAGE - Since the amorphous cobalt cpds. do not have firmly fixed structures, they have effects of readily adding desired structures to cobalt-contg. cpd. products.

ABSTRACTED-PUB-NO: JP11060242A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/2

DERWENT-CLASS: E31 J04

CPI-CODES: E35-V; J04-E04; N02-B;