Software Básico

Representação e manipulação da informação Ponto Flutuante

Leard de Oliveira Fernandes CET 088 hc1s1u0 (classroom.google.com)

Roteiro

- Números Binários Fracionais
- Padrão Ponto Flutuante IEEE: Definição
- Exemplos e propriedades
- Arredondamento, Adição, Multiplicação
- Ponto Flutuante no C

Números Binários Fracionais

• O que é 1011.101₂?

• O que é 19.84₁₀?

$$\sum_{i=m}^{i=m} d_i \times 10^i$$

Números Binários Fracionais

Representação

· Os bits à direita do "ponto binário" representam potências de dois fracionais

Representam um número racional:

Números Binários Fracionais: Exemplos

Valor

• 5 3/4

• 27/8

• 17/16

• 63/64

Representação

101.11,

10.111,

1.0111₂

0.111111₂

Observações

- Divide por 2 aplicando deslocamento à direita (unsigned)
- Multiplica por 2 aplicando deslocamento à esquerda
- Números 0.111111...₂ estão apenas abaixo de 1
 - $1/2+1/4+1/8+...1/2^{i}+...\rightarrow 1.0$
 - Utilize a notação 1 ε

Números Representáveis

Limitação #1

- Podemos representar apenas números da forma x/2^k
 - Outros números racionais possuem representações com bits de repetição

•	Valor	Representação

- 1/3 **0.01010101[01]**...,
- 1/5 **0.00110011[0011]...**₂
- 1/10 **0.000110011[0011]...**₂

Limitação #2

- Apenas uma configuração de ponto binário com t bits
 - Limita o tamanho dos números

Roteiro

- Números Binários Fracionais
- Padrão Ponto Flutuante IEEE: Definição
- Exemplos e propriedades
- Arredondamento, Adição, Multiplicação
- Ponto Flutuante no C

Ponto Flutuante IEEE

Padrão IEEE 754

- Estabelecido em 1985 para uniformizar a aritmética ponto flutuante;
 - Antes, era ...
- Suportado pela maioria dos processadores

Descrito por conceitos numéricos

- Bons padrões para arredondamento, overflow, underflow
- Difícil de fazer rápido em hardware
 - Analistas numéricos predominaram sobre projetistas de hardware na definição do padrão

Representação Ponto Flutuante

Forma Numérica:

 $(-1)^{s} M 2^{E}$

- Bit de Sinal s determina se o número é + ou -
- Significando M normaliza um valor fracional entre [1.0, 2.0)
- Expoente E multiplica o valor por uma potência de 2

Codificação

- MSB s é o bit de sinal s
- Campo exp codifica E (não é igual a E)
- Campo frac codifica M (não é igual a M)

exp frac

Precisões

Precisão única (Single Precision): 32 bits

```
s exp frac

1 8-bits 23-bits
```

Precisão dupla (Double Precision): 64 bits

```
s exp frac 52-bits
```

• Precisão extendida (Extended Precision): 80 bits

Valores Normalizados

 $v = (-1)^s M 2^E$

- Quando: exp ≠ 000...0 e exp ≠ 111...1
- Expoente é codificado como um valor enviesado (Biased): E = exp –
 Bias
 - exp: valor unsigned do campo exp
 - Bias: **2**^{k-1} **1**, onde **k** é o número de bits do expoente;
 - Precisão Simples: 127 (exp: 1...254, E: -126...127)
 - Precisão Dupla: 1023 (exp:1...2046, E: -1022...1023)
- Significando codificado com condução implícita de 1: M = 1.xxx...x₂
 - xxx...x: bits do campo frac
 - Mínimo quando frac = 000...0 (M=1.0)
 - Máximo quando frac = 111...1 (M=2.0-ε)
 - Temos um bit extra conduzido de "grátis"

Valores Normalizados: Exemplo

```
v = (-1)^s M 2^E
E = Exp - Bias
```

Valor: float F = 15213.0

```
• 15213_{10} = 11101101101101_2
              = 1.1101101101101_2 \times 2^{13}
```

Significando

```
= 1.11011011011<sub>2</sub>
M
      frac
```

Expoente

- E = 13 • Bias = 127
- Exp = $140 = 10001100_2$

Resultado

Representar 31/3, em ponto flutuante de precisão simples

10001100 11011011011010000000000

exp

frac

Valores Não Normalizados (Denormalizados)

 $v = (-1)^{s} M 2^{E}$ E = 1 - Bias

• **Condição:** exp = 000...0

- Valor do expoente: E = 1 Bias (Ao invés de E = 0 Bias)
- Significando codificado com condução implícita de 0: M = 0.xxx...x₂
 - xxx...x: bits de frac
- Casos:
 - $\exp = 000...0$, frac = 000...0
 - Representa o valor 0
 - Note distintos valores: +0 e -0 (Por quê?)
 - $\exp = 000...0$, frac $\neq 000...0$
 - Números próximos de 0
 - Equiespaçados

Valores Especiais

- **Condição:** exp = 111...1
- Caso: exp = 111...1, frac = 000...0
 - Representa valor ∞ (Infinito)
 - Operação com overflow
 - Seja positive ou negativo
 - e.g: $1.0/0.0 = -1.0/-0.0 = +\infty$; $1.0/-0.0 = -\infty$
- Caso: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Representa casos em que valores não numéricos são determinados
 - E.g: sqrt(-1), ∞- ∞, ∞*0

Visualizando a codificação ponto flutuante

Roteiro

- Números Binários Fracionais
- Padrão Ponto Flutuante IEEE: definição
- Exemplos e propriedades
- Arredondamento, Adição, Multiplicação
- Ponto Flutuante no C

Exemplo de ponto flutuante pequeno

Representação ponto flutuante de 8-bits

- O sinal é o MSB
- exp possui 4 bits e bias de 7
- Os últimos três bits são frac

Mesmo formato geral do padrão IEEE

- Normalizado, denormalizado
- Representação de 0, NaN, Infinito

Intervalo Dinâmico (Positivo)

	s exp	frac 0 000	E -6	Valor 0	n: E = Exp - Bias d: E = 1 - Bias
Números Denormalizados	0 000	0 001 0 010	-6 -6	1/8*1/64 = 1/512 2/8*1/64 = 2/512	Perto de Zero
	0 000	0 110 0 111	-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512	Maior Denormalizado
	0 000	1 000 1 001	-6 -6	8/8*1/64 = 8/512 9/8*1/64 = 9/512	Menor Normalizado
	 0 011 0 011	0 110 0 111	-1 -1	14/8*1/2 = 14/16 15/8*1/2 = 15/16	Próximo abaixo de 1
Números Normalizados	0 011 0 011 0 011	1 001	0 0 0	8/8*1 = 1 9/8*1 = 9/8 10/8*1 = 10/8	Próximo acima de 1
	_	0 110 0 111	7 7	14/8*128 = 224 15/8*128 = 240	Maior Normalizado
	0 111		n/a	inf	

Distribuição de Valores

- Formato com 6-bits
 - exp= 3 bits
 - frac = 2 bits
 - Bias é 2^{3-1} -1= 3

 Observe como a distribuição fica densa em torno do zero

Distribuição dos valores (Close-Up)

- Formato com 6-bits
 - exp= 3 bits
 - frac = 2 bits
 - Bias é 3

Propriedades Especiais da codificação da IEEE

- Zero PF é o mesmo que um zero Int
 - Todos os bits = 0
- Pode (em alguns casos) utilizar a comparação de inteiro unsigned
 - Deve ser comparado primeiro os bits de sinal
 - Deve ser considerado -0 = 0
 - NaNs é problemático
 - Será maior do que qualquer outro valor
 - O que a comparação deveria submeter?
 - Caso contrário, ok
 - Denormalizado vs Normalizado
 - Normalizado vs Infinito

Roteiro

- Números Binários Fracionais
- Padrão Ponto Flutuante IEEE: definição
- Exemplos e propriedades
- Arredondamento, Adição, Multiplicação
- Ponto Flutuante no C

Operações em Ponto Flutuante: Ideia Básica

•
$$x + f y = Round(x + y)$$

•
$$x \times^f y = Round(x \times y)$$

Ideia Básica

- Primeiro Compute o resultado exato
- Faça ele caber na precisão desejada
 - Possível overflow de um expoente grande
 - Possível arredondamento para caber em frac

Arredondando

Modos de arredondar (Ilustrando com R\$)

		R\$1.40	R\$1.60	R\$1.50	R\$2.50	-R\$1.50
•	Para zero	\$1	\$1	\$1	\$2	- \$1
•	Para baixo ($-\infty$)	\$1	\$1	\$1	\$2	- \$2
•	Para cima (+ ∞)	\$2	\$2	\$2	\$3	-\$1
•	Par mais próximo (default	t) \$1	\$2	\$2	\$2	- \$2

Analisando o Arredondamento para o Par mais próximo

- Modo de arredondamento padrão (Round-to-Even)
 - Todos os outros são estatisticamente enviesados
 - Soma do conjunto de números positivos serão consistentemente sobre/subestimados
- Aplicando em outras casas decimais / Posições dos Bits
 - Quando temos caminhos intermediários entre dois possíveis valores
 - Arredonde tal que o bit menos significante seja PAR
 - E.g. arredondar para o centésimo mais próximo

7.8949999	7.89	(Menor que o valor intermediário)
7.8950001	7.90	(Maior que o intermediários)
7.8950000	7.90	(Intermediário—round up)
7.8850000	7.88	(Intermediário—round down)

Arredondando Números Binários

Números Binários Fracionais

- "Par", quando o número menos significante é zero
- "Intermediário", quando bits à direita da posição de arredondamento = 100...,

Exemplos

 Arredondar para o 1/4 mais próximo (2 bits à direita do ponto binário)

Valor	Binário	Arredondado	Ação Valo	r Arredondado
2 3/32	10.000112	10.002	(<inter—baixo)< td=""><td>2</td></inter—baixo)<>	2
2 3/16	10.00110 ₂	10.012	(>Inter—cima)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00_{2}	(Inter—cima)	3
2 5/8	10.10 <mark>100</mark> 2	10.10_{2}	(Inter—baixo)	2 1/2

Multiplicação PF

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Resultado Exato: (-1)^s M 2^E
 - Sinal s: s1^s2
 - Significando M: M1 x M2
 - Expoente E: E1+E2

Fixando

- Se M ≥ 2, desloque M para direita, incremente E
- Se E está fora do range, overflow
- Arredonde M para caber na precisão de frac

Implementação

A principal ocupação é apenas multiplicar os significandos

Adição Ponto Flutuante

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assuma E1 > E2
- Resultado Exato: (-1)^s M 2^E
 - Sinal s, significando M:
 - Resultado do alinhamento do sinal + e a soma
 - Expoente E: E1

Fixando

- Se M ≥ 2, Desloque M para direita, incremente E;
- Se M < 1, desloque M para esquerda k posições, decremente E de k;
- Overflow se E fora do intervalo;
- Arredonde M para caber na precisão de frac

Propriedades Matemáticas da soma e Multiplicação PF

- É cumulativa => A+B = B+A
- Não é associativa
 - (A+B)+C != (A+C)+B
 - (A*B)*C != (A*C)*B
 - Devido o overflow
 - E a natureza inexata do arredondamento

Demonstrar em código C, estas propriedades

- Nem todo elemento possui aditivo inverso
 - Infinito e NaNs
- Não é distributiva
 - A*(B+C) != A*B + A*C
 - Devido o overflow
 - E a natureza inexata do arredondamento

Roteiro

- Números Binários Fracionais
- Padrão Ponto Flutuante IEEE: definição
- Exemplos e propriedades
- Arredondamento, Adição, Multiplicação
- Ponto Flutuante no C

Ponto Flutuante no C

C garante dois níveis

- Float (Precisão Simples)
- Double (Precisão Dupla)

Conversões/Castings

- Casting entre int, float e double muda a representação dos bits
- Double/float -> int
 - Trunca a parte fracional
 - Arredonda para zero
 - Não definida quando fora do intervalo ou NaN
 - Geralmente vai para CMIN
- Int -> double
 - Conversão exata
- Int -> float
 - Irá arredondar conforme o modo de arredondamento

Quebra-Cabeças Ponto Flutuante

• Para cada uma das expressões em C, avalie:

- Verifique se é verdade para todos os valores de argumentos
- Explique porque não é verdade

```
int x = ...;
float f = ...;
double d = ...;
```

Nem d ou f é NaN


```
• x == (int)(float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (double) (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```


Criando um número PF

s exp frac

1 4-bits 3-bits

Passos

- Normalize para ter o dominante de 1
- Arredonde para caber dentro de frac
- Pós-normalize para lidar com os efeitos do arredondamento

Estudo de caso

 Converta números unsigned para o formato de ponto flutuantes pequenos

Números de Exemplos

128	1000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalizando

S	ехр	frac		
1	4-bits	3-bits		

Requisitos

- Organize o número binário tal que formem o padrão 1.xxxxx
- Ajuste para que todos tenham um dominante
 - Decremente o expoente com um deslocamento à esquerda

Valor	Binário	Fração	Expoente
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Arredondando 1.BBGRXXX

Bit de Guarda: LSB do resultado

Bit arredondamento:

1st bit removido

Sticky bit: OU dos bits restantes

Condições de Arredondamento

•
$$R = 1$$
, Sticky = $1 \rightarrow > 0.5$

•
$$G = 1$$
, $R = 1$, Sticky = $0 \rightarrow Round$ to even

Valor	Fração	GRS	Incr?	Arredondado
128	1.000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	S	1.010
138	1.0001010	011	S	1.001
63	1.1111100	111	S	10.000

Números Interessantes

Descrição	exp	frac	Valor Numérico
• Zero	0000	0000	0.0
 Menor Pos. Denorm. Single ≈ 1.4 x 10⁻⁴⁵ Double ≈ 4.9 x 10⁻³²⁴ 	0000	0001	2 ^{-{23,52}} x 2 ^{-{126,1022}}
 Maior Denormalizado Single ≈ 1.18 x 10⁻³⁸ Double ≈ 2.2 x 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
 Menor Pos. Normalizado Apenas maior que o maior des 	0001 snormalizado	0000	1.0 x $2^{-\{126,1022\}}$
• Um	0111	0000	1.0
 Maior Normalizado Single ≈ 3.4 x 10³⁸ 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

• Double $\approx 1.8 \times 10^{308}$