{desafío} latam_

Algoritmo Maximización de Esperanzas _

Motivación

¿Qué es?

- Es un algoritmo que a grandes rasgos permite encontrar información incompleta en un modelo.
- Presenta una serie de implementaciones. Por efectos expositivos nos concentraremos en un modelo de Mezcla de Gaussianas (GMM).

Casos de uso:

- Variables Latentes: Patrones subyacentes en los datos.
- **Problemas de datos perdidos**: patrones de datos faltantes existentes en una matriz de datos.
- Procesamiento de Imágenes: reconstrucción de tomografías.
- Manejo de Riesgo de portafolios.

El problema con Máxima Verosimilitud

Estimación por Máxima Verosimilitud (EMV)

- Nuestro objetivo es obtener algún parámetro dado los datos, que refleje el fenómeno latente.
- EMV presentará la solución más eficiente cuando sólo exista un parámetro a identificar.

 El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.

- El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.
- Lo que necesitamos es encontrar un método que permita identificar la cantidad de parámetros cuando no tengamos conocimiento previo de éstos.

- El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.
- Lo que necesitamos es encontrar un método que permita identificar la cantidad de parámetros cuando no tengamos conocimiento previo de éstos.

- El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.
- Lo que necesitamos es encontrar un método que permita identificar la cantidad de parámetros cuando no tengamos conocimiento previo de éstos.

- El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.
- Lo que necesitamos es encontrar un método que permita identificar la cantidad de parámetros cuando no tengamos conocimiento previo de éstos.

- El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.
- Lo que necesitamos es encontrar un método que permita identificar la cantidad de parámetros cuando no tengamos conocimiento previo de éstos.

- El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.
- Lo que necesitamos es encontrar un método que permita identificar la cantidad de parámetros cuando no tengamos conocimiento previo de éstos.

- El problema de EMV surge cuando no tenemos suficiente información para observar todo lo que deseamos rescatar.
- Lo que necesitamos es encontrar un método que permita identificar la cantidad de parámetros cuando no tengamos conocimiento previo de éstos.

Mecanismo de Acción

 En un caso supervisado, podemos perfilar la pertenencia de cada observación dado que tenemos información sobre las clases (cantidad y afiliación).

$$\phi_{x|y=1} = \mathsf{Normal}(\mu_1, \sigma_1^2)$$

- En un caso supervisado, podemos perfilar la pertenencia de cada observación dado que tenemos información sobre las clases (cantidad y afiliación).
- De esta manera, la identificación de un modelo simplemente dependerá la evaluación (condicional) de los parámetros.

$$\phi_{x|y=1} = \mathsf{Normal}(\mu_1, \sigma_1^2) \quad \phi_{x|y=2} = \mathsf{Normal}(\mu_2, \sigma_2^2)$$

- En un caso supervisado, podemos perfilar la pertenencia de cada observación dado que tenemos información sobre las clases (cantidad y afiliación).
- De esta manera, la identificación de un modelo simplemente dependerá la evaluación (condicional) de los parámetros.

$$\phi_{x|y=1} = \mathsf{Normal}(\mu_1, \sigma_1^2) \quad \phi_{x|y=2} = \mathsf{Normal}(\mu_2, \sigma_2^2)$$

- En un caso supervisado, podemos perfilar la pertenencia de cada observación dado que tenemos información sobre las clases (cantidad y afiliación).
- De esta manera, la identificación de un modelo simplemente dependerá la evaluación (condicional) de los parámetros.

$$\phi_{x|y=1} = \mathsf{Normal}(\mu_1, \sigma_1^2) \quad \phi_{x|y=2} = \mathsf{Normal}(\mu_2, \sigma_2^2)$$

- En un caso supervisado, podemos perfilar la pertenencia de cada observación dado que tenemos información sobre las clases (cantidad y afiliación).
- De esta manera, la identificación de un modelo simplemente dependerá la evaluación (condicional) de los parámetros.

$$\phi_{x|y=?} = \mathsf{Normal}(?,?)$$

- Definir cuál es la cantidad óptima de clases.
- Inferir cuáles son los principales atributos de una clase.
- Asignar la clase más probable.

$$\phi_{x|y=?} = \mathsf{Normal}(?,?)$$

- Definir cuál es la cantidad óptima de clases
- Inferir cuáles son los principales atributos de una clase.
- Asignar la clase más probable.

$$\phi_{x|y=?} = \mathsf{Normal}(?,?)$$

- Definir cuál es la cantidad óptima de clases.
- Inferir cuáles son los principales atributos de una clase.
- Asignar la clase más probable.

$$\phi_{x|y=?} = \mathsf{Normal}(?,?)$$

- Definir cuál es la cantidad óptima de clases
- Inferir cuáles son los principales atributos de una clase.
- Asignar la clase más probable.

$$\phi_{x|y=?} = \mathsf{Normal}(?,?)$$

- Definir cuál es la cantidad óptima de clases
- Inferir cuáles son los principales atributos de una clase.
- Asignar la clase más probable.

$$\phi_{x|y=?} = \mathsf{Normal}(?,?)$$

- Definir cuál es la cantidad óptima de clases
- Inferir cuáles son los principales atributos de una clase.
- Asignar la clase más probable.

El proceso iterativo de EM

El algoritmo de Maximización de Esperanzas es un proceso iterativo.

Este se compone de dos pasos:

- Paso E: Obtención de la esperanza y un intervalo inferior en la verosimilitud.
- Paso M: Tomando el punto donde ambas funciones presentan la misma gradiente, actualizamos.

 Tenemos una función de verosimilitud observada incompleta.

Proceso Iterativo de EM - Paso E

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.

Proceso Iterativo de EM - Paso M

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.
- En base al intervalo inferior de éste, estimar el siguiente punto.

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.
- En base al intervalo inferior de éste, estimar el siguiente punto.

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.
- En base al intervalo inferior de éste, estimar el siguiente punto.
- Iterar hasta que EM alcance un punto de estabilidad.

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.
- En base al intervalo inferior de éste, estimar el siguiente punto.
- Iterar hasta que EM alcance un punto de estabilidad.

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.
- En base al intervalo inferior de éste, estimar el siguiente punto.
- Iterar hasta que EM alcance un punto de estabilidad.

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.
- En base al intervalo inferior de éste, estimar el siguiente punto.
- Iterar hasta que EM alcance un punto de estabilidad.

- Tenemos una función de verosimilitud observada incompleta.
- El objetivo es perfilar un mínimo en la función de verosimilitud local.
- En base al intervalo inferior de éste, estimar el siguiente punto.
- Iterar hasta que EM alcance un punto de estabilidad.
- Se dice que EM aumenta de forma monotónica la verosimilitud observada.
- De esta manera, garantiza la obtención de por lo menos un mínimo local.

Criterios de Información

Elementos a considerar

- La aplicación de Mezcla de Gaussianas es un modelo no supervisado.
- No tenemos información sobre la cantidad de clusters existentes.
- Fundamentado en el algoritmo EM, evaluamos la logverosimilitud de cada modelo propuesto mediante criterios de información.

AIC y (S)BIC

Criterio de Información de Akaike

Criterio de Información de Schwarz-Bayes

- Ambos estadísticos de prueba permiten evaluar el ajuste en la muestra para estimar la verosimilitud de un modelo en su capacidad predictiva.
- **Diagnóstico**: encontrar el modelo que presente un menor puntaje asociado.
- Las soluciones propuestas por (S)BIC tienden a ser más parsimoniosas.

(<mark>desafío</mark>) _{latam_}

{desafío} Academia de talentos digitales