EUROPEAN PATENT

Patent Abstracts of Japan

PUBLICATION NUMBER

60072304

PUBLICATION DATE

24-04-85

APPLICATION DATE

28-09-83

APPLICATION NUMBER

58179664

APPLICANT: MITSUBISHI ELECTRIC CORP;

INVENTOR:

IKUTANI NORIO;

INT.CL.

H01Q 3/18 H01Q 19/13

TITLE

ANTENNA SYSTEM

ABSTRACT :

PURPOSE: To simplify the driving device of an antenna sustem so as to reduce the wieght of the antenna by fixing the parabolic mirror of the antenna by setting the azimuth and elevation angle of the mirror with the simple driving device and making fine adjustment through the displacement of a primary radiator.

CONSTITUTION: The direction of elevation angle of a parabolic mirror is fixed by selecting fitting screws 14b~14d of the change-over fitting 12 of the direction for every area and the direction of azimuth is fixed by means of an azimuth rotating mechanism 14 manufactured with low accuracy. Moreover, fine tracking in the direction of elevation angle is made possible by making the starting point of a stay 16 in the symmetric plane to have a hinged structure and the length of another stay 17 in the asymmetric plane variable. In addition to the above, a mechanism which displaces primary radiating systems 1, 18, and 19 in the direction perpendicular to the surface of this paper is provided so as to make the fine tracking in the direction of azimuth. As a result, an antenna driving device necessary for tracking an artificial satellite is simplified and the weight of the antenna can be reduced.

COPYRIGHT: (C)1985,JPO&Japio

THIS PAGE BLANK (USPTO)

⑲ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭60-72304

(5) Int Cl. 4

識別記号

厅内整理番号

❸公開 昭和60年(1985)4月24日

H 01 Q 3/18 19/13

7827—5. 7827—5

審査請求 未請求 発明の数 1 (全4頁)

❷発明の名称 アンテナ装置

②特 顧 昭58-179664

②出 願 昭58(1983)9月28日

⁷⁰ 発明者 片木 孝至

鎌倉市上町屋325番地 三菱電機株式会社情報電子研究所

内

¹⁰ 発明者 浦崎 修治

鎌倉市上町屋325番地 三菱電機株式会社情報電子研究所

内

勿発明者 生谷 則雄

長岡京市馬場図所1番地 三菱電機株式会社電子商品開発

研究所内

旬出 願 人 三菱電機株式会社

東京都千代田区丸の内2丁目2番3号

砂代 理 人 弁理士 大岩 増雄 外2名

明細

1. 発明の名称

アンテナ装置

2. 特許請求の範囲

(1) パラボラ鏡面、一次放射器および一次放射器を支持する支柱で構成され、パラボラの軸と鏡面の中心が一致しないオフセット形式で、一次放射器を無点近傍で移動してビーム方向を変えることをできるアンテナ装置において、上配支柱のできるアンテナ装置において、上配支柱の電流を介護面の中心とパラボラの軸を含む面に垂直で、かつ鏡面の中心を通りパラボラの軸に平行な方でな合む面と鏡面の緑の交点に設け、ビーム方では破を含む場合に、上配一次放射器を上配支点を中心に回転できるようにしたことを特徴とするアンテナ装置。

(2) 第三の支柱を銀面の中心とパラボラの軸を含む面内に設け、ビーム方向を変える場合に、上記支柱の長さを変えるようにしたことを特徴とする特許球の範囲第(1)項記載のアンテナ装置。

3. 発明の詳細な説明

この発明は直接衛星放送用反射鏡アンテナの改良に関するものである。このアンテナは各家庭で用いられる簡易形受信アンテナであるたと、安価であること、および屋根に設置することを想定すると軽量であることが必要である。このアンテナには衛星の道尾に必要なアンテナ駆動装置が必須であり、この発明はこの駆動装置の簡略化を図ったものである。この簡素化は上記の安価、かつ軽量のアンテナにつながる。

従来のこの種アンテナ装置は第1図に示すように、ホーン(1)、反射板(2)、レドーム(3)、これら(1)、(2)、(3)で構成される一次放射器の支持部(4)、バラボラ(5)、この鏡面を補強する背面構造部(6)、仰角方向(以下、Be方向と呼称する)の衡星遠尾時にかける回転部(7)、回転軸(8)、方位角方向(以下、Aェ方向と呼称する。)の衡星遠尾時にかける回転部(9)、かよび架台間で構成されていた。このアンテナの動作を受信の状態で説明する。バラボラ(5)に入射した電波はレドーム(3)を通過して反射板(2)に向い、反射してホーン(1)に導かれる。ここで、レドーム

特開昭60-72304(2)

(3)は雨,雪に対する一次放射器の防護はかりでな く反射板(2)の支持も行っている。次に,アンテナ ビームを衛星方向に向ける場合のメカニズムを説 明する。まず, Le回転時には一次放射系(1), (2), (3), (4), 鏡面系(5), (6), および回転部(7)が回転軸 (8)まわりに回転し、Az回転時には架台QDの上のす べての構成部が回転する。このような回転機構の ため,バラボラ(5)の径が大きくなれば,上記の駆 勁装置を頑丈にする必要があり、これは軽量化に 反することになる。 また,このアンテナのピーム は狭いため、微細な角度追尾が必要であり、これ を上述したアンテナ全体の駆動で行う場合。重量 の点から髙価な駆動装置となる。このようにアン テナ全体を駆動してアンテナビームの方向を可変 にする方式は駆動装置の簡素化が図れず、したが って,安価でかつ軽量のアンテナが得られない欠 点があった。このため、パラポラ(5)を固定して一 次放射器のみの変位で追尾する方式が, 従来から 検討されてきた。この方式を第2凶に示しており, ここで、説明を簡単にするため、一次放射系はホ

ーン(1)のみを示している。また,鏡面は一次放射 系によるブロッキングの無いオフセットパラポラ 似にしている。このパラポラ似の魚点をFとし, いま,アンテナビームをBs だけビーム傷向させ た場合,ホーン(1)の位相中心が F から F'に変位す るものとすれば、ホーン(1)を FF だけ変位させると 衛星からの電波を受信できる。しかし,この場合, F'は F とは異なり完全な無点でないため、利得低 下等の性能が劣化する。この性能劣化はビーム偏 向角®s が大きい,すなわち |FF'| が大きくなれ ば著しくなる。ここで,第3図に示すように,日 本の各地域から衛星を見た場合の Ee角度は±10° 程度となる。 開口径1m, 周波数 12 Gmとすれば・ ±10°における利得低下は数 dBとなり, 無視でき ない値となる。したがって,この方式においては 駆動装置は簡単になるが、性能劣化という問題点 がある。ここで,第3図に示すように,日本を3 プロックに分割し,各プロックで Ee 角度を異なる ようにすれば,追尾範囲は±10°から±3.5°にな る。利得低下量はBe角度の2乗にほぼ比例するの

で、±3.5°では利得低下を1dB以内に抑えることができる。各プロックのBe 角度はこのプロックの中心点にかける衛星方向に合わせてかけばよい。したがって、各プロックでとに Be 角度を設定できれば、一次放射器の変位のみで衛星追尾が可能となる。この各プロックでとの Be 角度を粗追尾、一次放射器の変位によるものを微追尾と称して、従来から考えられてきたが、この万式にかける欠点は粗追尾の装置がそれほど安価にならないことである。

本発明においては祖追尾でなく切換形にするため, 経済性は大幅に向上することが期待でき, 以下図面を用いて詳細に説明する。

第4図は本発明の一実施例を示すものであり。
(1)はホーン、印はオフセットパラボラ、Q2はBe方向の切換用取付具。Q3はAz回転機構。Q4はAz回転機構。Q4は果台、吸は非対体面内スティ、Q8は月個放発生器。Q9はダウンコンパータである。ここで、衛星放送は円偏波受信であるから円偏波

発生器(II)を,また IF 信号に変換するダウンコン バータ四を示している。対称面内スティ切は2本 のうち1本のみを凶に示している。なお,対称面 内,非対称面内ステイとは,オフセットバラボラ ODの対称面、非対称面内における鏡面エッヂ近傍 を始点とするステイを意味する。名々のスティの 終点はホーン(1)等を支持するために、一次放射系 (1)、(18)、四上にある。対称面内スティ(19の始点を 半固定,すなわち蝶つがい構造にし,非対核面内 スティ(17)の長さを可変にすれば、非対係面内のビ ーム偏向,すなわち Ee方向の追尾が可能となる。 可変にする具体的な構成としては、始点側に複数 個の穴を、または長円形の穴を設けることが考え られる。この長さを変えることによって小さなビ ーム偏向量,すなわち微追尾が可能となる。一方, 粗追尾に対応するものとして,凶中, 5 個の収付 オジのうち,3個のみを各地域ごとに選択して固 定すればよい。一方、Az 方向の祖追尾は製作精度 の落したAz回転機械によって行い。微追尾は対称 面内スティ四の長さを可変にすればよい。なお,

特開昭60-72304(3)

Az方向の徴追尾においては、一次放射系(1)、 四、 U)を紙面に垂直な方向に変位させる機構を散けて もよい。

以上のように、本発明によれば、日本の北部、中央部、南部ごとに簡単な駆動装置でAz.Be方向を定めた後、バラボラ鉱画を固定し、次に、一次放射器のみの変位によってAz.Re方向の微調を行うことができるので、安価でかつ軽量のアンテナが得られる利点がある。

4. 図面の簡単な説明

第1図は従来アンテナの装置の概略構成図、第2図、第3図は従来のアンテナ装置の動作を説明する図、第4図は本発明の一実施例の概略構成図であり、図中・(1)はホーン・(1)はオフセットバラボラ・(12はBe 切換用取付具・(13はA± 回転機構・(14は取付オン・(15)は架合・(10は出対称面スティ・(17)は対称面内スティ・(18)は円個放発生器、(19)はダウンコンバータである。

なお、凶中同一あるいは相当部分には同一符号 を付して示してある。

特開昭60- 72304 (4)

