

线性方程组及其解空间

- 4.1 齐次线性方程组
- 4.2 齐次线性方程组的基础解系
- 4.3 齐次线性方程组的解法
- 4.4 线性方程组的解空间
- 4.5 特征向量的解法

一、齐次线性方程组的矩阵形式

含有n个未知量m个方程的齐次线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ & \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 \end{cases}$$

可以写成矩阵方程的形式,也就是AX=0,其中A是方程组的系数矩阵,X是未知数所构成的列向量。

如果将方程组AX=0的系数矩阵A做一系列的行初等变换,化成行阶梯矩阵D,则方程组DX=0与方程组AX=0是同解方程组

思考

为什么方程组DX=0与方程组AX=0是同解方程组呢?

例如方程组
$$\begin{pmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

将其矩阵A作行初等变换,化为行阶梯矩阵:

$$A = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} \xrightarrow{r_2 + 2r_1 \atop r_3 - r_1} \begin{pmatrix} 1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix} \xrightarrow{r_3 + r_2 \atop \frac{-1}{3}r_2} \rightarrow$$

$$\begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 + 2r_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = D$$

矩阵D唯一地对应着一个齐次线性方程组:

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

而这个方程组与原方程组是同解方程组。

思考 要得到齐次线性方程组的同解方程组,可以对其系数矩阵做列初等变换吗?

二、齐次线性方程组解的情形

定理4.1.1 对于齐次线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ & \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 \end{cases}$$

注意:

n是未知量 的个数

(4.1.1)

- (1) 当系数矩阵的秩r(A)=n 时,方程组只有唯一的零解;
- (2) 当系数矩阵的秩r(A) < n 时,方程组有无穷多解。

(证明略)

(1) 当m≥n, r=n时,不妨设A中的前n行构成的n阶子式D≠0, 此时,方程组(1)与下列方程组同解

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \end{cases}$$
$$\begin{cases} a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$

系数行列式**D≠0**,由克拉默法则知,该方程组只有唯一零解。

(2) 当 $\mathbf{m} \ge n$, $\mathbf{r} \le n$,不妨设A中的前r行r列构成的r阶子式 $\mathbf{D} \ne 0$,此时,方程组(1)与下列方程组同解

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r = -a_{1,r+1}x_{r+1} - \dots - a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2r}x_r = -a_{2,r+1}x_{r+1} - \dots - a_{2n}x_n \\ \vdots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rr}x_r = -a_{r,r+1}x_{r=1} - \dots - a_{rn}x_n \end{cases}$$
(2)

系数行列式**D** \neq **0**,由克拉默法则知,该方程组只有唯一解。但 X_{r+1} , X_{r+2} , …, X_n 可取任意常数,因此,方程组(**1**)有无穷多解。

(3) 当m<n时,由于R(A)=r≤m<n,情况和(2)一样, 方程组有无穷多解。

注意 该定理的逆命题也成立,即: P109 作业1,2

- (1) 齐次线性方程组AX=0只有零解的充分必要条件是r(A)=n。
- (2) 齐次线性方程组AX=0有非零解的充分必要条件是r(A) < n。

例1 设有齐次线性方程组问当》取何值时,方程组

$$\begin{cases} x_1 + (\lambda - 1)x_2 + x_3 = 0 \\ (\lambda - 1)x_1 + x_2 + x_3 = 0 \end{cases}$$
 P108 ØJ4.1.1
$$\begin{cases} x_1 + x_2 + (\lambda - 1)x_3 = 0 \end{cases}$$

有唯一的零解;有无穷多解?

解 (1) 令系数矩阵的行列式 $|A| \neq 0$, 解得: $\lambda \neq -1$, 2.

所以, 当 $\lambda \neq -1$, 2时, r(A)=3=n, 方程组有唯一的零解,

例1 设有齐次线性方程组问当λ取何值时,方程组

$$\begin{cases} x_1 + (\lambda - 1)x_2 + x_3 = 0 \\ (\lambda - 1)x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + (\lambda - 1)x_3 = 0 \end{cases}$$

有唯一的零解;有无穷多解?

- 解 (2) 当 $\lambda = -1$ 时, r(A) = 2 < n, 方程组有无穷多解,
 - (3) 当 $\lambda = 2$ 时, r(A) = 1 < n, 方程组有无穷多解.

总结 在考察含有未知参数的齐次线性方程组的解的情形时,如果方程个数与未知量个数相等,那么首先考虑用克拉默法则确定出方程组什么时候有唯一零解,然后再分别讨论。

三、齐次线性方程组的基础解系

齐次线性方程组一定有解,因为零解是它的一个解。求解齐次线性方程组的重点在于讨论:它是否有非零解?在有非零解的情况下,如何求出它的所有非零解?

齐次线性方程组解的性质

P112 作业1

性质4.2.1 若 α 是齐次线性方程组AX=0的解,则 $k\alpha$ 也是该方程组的解。

性质4.2.2 若 α_1 , α_2 是齐次线性方程组AX=0的解,则 $k_1\alpha_1+k_2\alpha_2$ 也是该方程组的解。

定义4.2.1 设 α_1 , α_2 , ..., α_r 是齐次线性方程组AX=0的 r 个解向量, 如果 P112 作业2

- (1) α_1 , α_2 , ..., α_r 线性无关;
- (2) 齐次线性方程组AX=0的任意一个解向量都可以由 α_1 , α_2 , ..., α_r 线性表示,

则称 α_1 , α_2 , ..., α_r 是齐次线性方程组的基础解系.

由定义知,基础解系是齐次线性方程组解向量集合的一个极大无关组,因此基础解系不是唯一的.

- **定理4.2.1** 若含有n个未知量的齐次线性方程组AX=0的系数矩阵A的秩 r(A)=r < n,则该方程组的基础解系必存在,其基础解系中所含向量个数为 n-r。 P112 作业3
- 注意 (1) 齐次线性方程组AX=0 只有零解的充分必要条件是 r(A)=n 。
 - (2) 齐次线性方程组AX=0有非零解的充分必要条件是r(A) < n。
- (4) 基础解系不唯一,但AX=0的任何两个基础解系是等价的,故它们所含向量的个数唯一确定。

(2) 当m≥n,r⟨n时,不妨设A中的前r行r列构成的r阶子式 D≠0,此时,方程组(1)与下列方程组同解

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r = -a_{1,r+1}x_{r+1} - \dots - a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2r}x_r = -a_{2,r+1}x_{r+1} - \dots - a_{2n}x_n \\ \dots & \dots & \dots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rr}x_r = -a_{r,r+1}x_{r+1} - \dots - a_{rn}x_n \end{cases}$$
(2)

系数行列式**D** \neq **0**,由克拉默法则知,该方程组只有唯一解。但 $x_{r+1}, x_{r+2}, \dots, x_n$ 可取任意常数,因此,方程组(**1**)有无穷多解。

设齐次线性方程组(1)的系数矩阵的秩R(A)=r<n。不妨设A中左上角r阶子式D \neq 0。将 $x_{r+1}, x_{r+2}, \dots, x_n$ 看成常数,可得(1)的解。

$$\begin{cases} x_1 = c_{11}x_{r+1} + c_{12}x_{r+2} + \dots + c_{1,n-r}x_n \\ x_2 = c_{21}x_{r+1} + c_{22}x_{r+2} + \dots + c_{2,n-r}x_n \\ \dots \\ x_r = c_{r1}x_{r+1} + c_{r2}x_{r+2} + \dots + c_{r,n-r}x_n \end{cases}$$

$$x_{r+1} = x_{r+1}$$

$$x_{r+2} = x_{r+2}$$

$$\dots \\ x_n = x_n$$

 $x_{r+1}, x_{r+2}, \cdots, x_n$ 可取任意数

(3)

一般解

General Solution

如果
$$\begin{pmatrix} x_{r+1} \\ x_{r+2} \\ \vdots \\ x_n \end{pmatrix}$$
 分别取 $\begin{pmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, \dots , $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\$

则可以得到方程组(1)的n-r个线性无关的解向量

$$\begin{cases} \alpha_{1} = (c_{11}, c_{21}, \dots, c_{r1}, 1, 0, \dots, 0)^{T} \\ \alpha_{2} = (c_{21}, c_{22}, \dots, c_{r2}, 0, 1, \dots, 0)^{T} \\ \dots \\ \alpha_{n-r} = (c_{1,n-r}, c_{2,n-r}, \dots, c_{r,n-r}, 0, 0, \dots, 1)^{T} \end{cases}$$

$$\alpha = x_{r+1}\alpha_1 + x_{r+2}\alpha_2 + \dots + x_n\alpha_{n-r}$$

四、齐次线性方程组的解法

定义4.3.1 若 α_1 , α_2 , ..., α_{n-r} 是齐次线性方程组AX=0 的一个基础解系,则 $\alpha=k_1\alpha_1+k_2\alpha_2+$, ..., $+k_{n-r}\alpha_{n-r}$ 称为齐次线性方程组的<mark>通解,</mark>其中 k_1 , k_2 , ..., k_r 是任意常数。

求解齐次线性方程组AX=0通解的步骤 P113:

- (1) 用初等f变换将系数矩阵A化成行阶梯矩阵B;
- (2) 根据矩阵B的非零行的行数写出A的秩r,方程组 含有n-r 个自由未知量 x_{r+1} , x_{r+2} , ..., x_n ;
 - (3) 求得方程组AX=0的一个基础解系 $\xi_1,\xi_2,\dots,\xi_{n-r}$;
 - (4) **写出方程组的通解**(即基础解系的线性组合): $X = k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-r} \xi_{n-r} (k_1, k_2, \dots, k_{n-r} \in R)$

齐次线性方程组

的求解方法

(初等行变换)

$$\begin{pmatrix} 1 & -3 & 2 & 0 & -1 \\ 4 & -10 & 6 & 4 & 0 \\ 3 & -5 & 2 & 8 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

解对系数矩阵A作初等行变换,变为行最简形矩阵

$$\mathbf{A} \xrightarrow{r_2 - 4r_1} \begin{pmatrix} 1 & -3 & 2 & 0 & -1 \\ 0 & 2 & -2 & 4 & 4 \\ 0 & 4 & -4 & 8 & 8 \end{pmatrix} \xrightarrow{r_3 - 2r_2} \begin{pmatrix} 1 & -3 & 2 & 0 & -1 \\ 0 & 1 & -1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -1 & 6 & 5 \\ 0 & 1 & -1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{cases} x_1 = x_3 - 6x_4 - 5x_5 \\ x_2 = x_3 - 2x_4 - 2x_5 \end{cases}$$
 (*)

顺次取
$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
代入方程(*)
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -6 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -6 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -5 \\ -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 $\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} -6 \\ -2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \xi_3 = \begin{pmatrix} -5 \\ -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$
为方程组的基础解系
$$x = k_1 \xi_1 + k_2 \xi_2 + k_3 \xi_3$$
 为方程组的通解,其中 k_1, k_2, k_3 为任意常数

解对系数矩阵实施初等行变换

$$\begin{cases} x_1 = -7x_3 + 3x_4 \\ x_2 = 5x_3 - \frac{5}{2}x_4 \end{cases} \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ -5 \end{pmatrix}$$

 $\xi_1 = (-7,5,1,0)'$ $\xi_2 = (6,-5,0,2)'$ ξ_1,ξ_2 为方程组的基础解系

$$x = k_1 \xi_1 + k_2 \xi_2$$
 为方程组的通解,其中 k_1, k_2 为任意常数

例2 求齐次线性方程组
$$\begin{cases} 3x_1 + 5x_3 = 0 \\ 2x_1 - x_2 + 3x_3 + x_4 = 0 \end{cases}$$
 的基础解系与通解.
$$x_1 + x_2 + 2x_3 - x_4 = 0$$
 P113 例4.3.1

对系数矩阵A作初等行变换,化为行最简矩阵:

$$A = \begin{pmatrix} 3 & 0 & 5 & 0 \\ 2 & -1 & 3 & 1 \\ 1 & 1 & 2 & -1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & -1 & 3 & 1 \\ 3 & 0 & 5 & 0 \end{pmatrix} \xrightarrow{r_2 - 2r_1 \\ r_3 - 3r_1 \longrightarrow}$$

$$\begin{pmatrix}
1 & 1 & 2 & -1 \\
0 & -3 & -1 & 3 \\
0 & -3 & -1 & 3
\end{pmatrix}
\xrightarrow{r_3-r_2}
\begin{pmatrix}
1 & 1 & 2 & -1 \\
-\frac{1}{3}r_2 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1-r_2}
\begin{pmatrix}
1 & 0 & 5/3 & 0 \\
0 & 1 & 1/3 & -1 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{cases} x_1 = -\frac{5}{3}x_3 \\ x_2 = -\frac{1}{3}x_3 + x_4 \end{cases}$$
 令 $\begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$ 分别取 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 问题: x_3 和 x_4 还可以 怎样取值较简单

则对应有
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\frac{5}{3} \\ -\frac{1}{3} \end{pmatrix}$$
及 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,即得基础解系:

$$\xi_1 = (-\frac{5}{3}, -\frac{1}{3}, 1, 0)^T, \xi_2 = (0, 1, 0, 1)^T$$

$$(k_1, k_2 \in R)$$

故得通解: $X = k\xi_1 + k_2\xi_2$, $(k_1, k_2 \in R)$

五、线性方程组的解空间

将方程组 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 \end{cases}$ 写成矩阵方程: AX = 0.

称A为方程组的系数矩阵,当系数矩阵的秩r(A) < n 时,齐次线性方程组有无穷多解。齐次线性方程组的一个解称作一个解向量;齐次线性方程组的所有解向量构成的集合称作解集合,记作S,解集合S 对于向量的加法和数乘运算封闭。

定义4.4.1 解集合对于向量的加法和数乘运算封闭,满足构成线性空间的八条性质,此空间称为齐次线性方程组的解空间。

定义4.4.2 设 α_1 , α_2 , ..., α_p 属于 R^n ,则 α_1 , α_2 , ..., α_p 的所有线性组合构成的 R^n 的子空间称为由 α_1 , α_2 , ..., α_p 张 成的子空间,记为 $L(\alpha_1, \alpha_2, \ldots, \alpha_p)$ 。

例3 求解下列齐次线性方程组,并说明其解空间的几何表示。

$$\begin{pmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

解 对系数矩阵A作行初等变换, 化成行阶梯矩阵:

$$A = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} \xrightarrow{r_2 + 2r_1} \begin{pmatrix} 1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix}$$

得到原方程组的同解方程组:
$$\begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

求解得到齐次线性方程组的通解: $X = k(1 \ 1 \ 1)^T$

容易知道,通解的图像是 R^3 中过原点的直线簇,原方程组的解空间是 R^3 的子空间,此空间的基础解系仅包含了一个向量 $(1\ 1\ 1)^T$ 。

例4 说明下列齐次线性方程组解空间的几何意义:

$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 2 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

解 求解可得该方程组的一个基础解系: $(1 \ 1 \ 0)^T$, $(1 \ 0 \ 1)^T$

它的解空间是过原点的平面: $x_1 = x_2 + x_3$, 此解空间是 \mathbb{R}^3 的 子空间, 并由向量 $(1 \ 1 \ 0)^T$, $(1 \ 0 \ 1)^T$ 张成。

把齐次线性方程组的解空间又称为矩阵A的零空间,记为Null(A),零空间的维数记为dimNull(A)。

定理4.4.1 $r(A) + \dim Null(A) = n$

六、特征向量的解法

求矩阵的特征值与特征向量的步骤 P117:

(1) 求矩阵A的特征方程 $|\lambda I - A| = 0$;

(2) 求特征方程的全部根 λ_1 , λ_2 , ..., λ_n , 即为 Λ 的全部特征值;

(3) 对每个特征值 $\lambda_i(i=1,...n)$, 求齐次线性方程组($\lambda_i I - A$)X = 0 的 非零解,即为对应于特征值 $\lambda_i(i=1,...n)$ 的特征向量。

例5 设矩阵阵
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
,求 A 的特征值与特征向量.

解 A的特征多项式为:

$$|\lambda I - A| = \begin{vmatrix} \lambda + 2 & -1 & -1 \\ 0 & \lambda - 2 & 0 \\ 4 & -1 & \lambda - 3 \end{vmatrix} = (\lambda + 1)(\lambda - 2)^{2}$$

A的所有特征值为: $\lambda_1 = -1$, $\lambda_2 = \lambda_3 = 2$

对于特征值 $\lambda_1=-1$, 解方程组(-I-A)X=0,

得线性无关的特征向量 $p_1 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$

所以对于特征值 λ_1 =-1的全部特征向量为 $k_1p_1(k_1 \neq 0)$.

例5 设矩阵阵
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
, 求 A 的特征值与特征向量.

解 对于特征值 $\lambda_2=\lambda_3=2$,解方程组(2*I-A*)X=0,

得线性无关的特征向量 $p_2 = \begin{pmatrix} 0 & 1 & -1 \end{pmatrix}^T$, $p_3 = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$

所以对于特征值 $\lambda_2 = \lambda_3 = 2$ 的全部特征向量为:

 $k_2 p_2 + k_3 p_3$ 其中 k_2, k_3 不全为零.

例6 求矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量. P118 例4.5.2

A的特征多项式为:

$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda - 1)^{2}$$

所以A的所有特征值为: $\lambda_1=2$, $\lambda_2=\lambda_3=1$

对于特征值 $\lambda_1=2$, 解方程组(2**I**-A)X=0,

得线性无关的特征向量 $p_1 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T$

所以对于特征值 $\lambda_1=2$ 的全部特征向量为 $k_1p_1(k_1\neq 0)$.

例6 求矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量.

解 对于特征值 $\lambda_2 = \lambda_3 = 1$,解方程组(*I-A*)X = 0, 得线性无关的特征向量 $p_2 = \begin{pmatrix} -1 & -2 & 1 \end{pmatrix}^T$, 所以对于特征值 $\lambda_2 = \lambda_3 = 1$ 的全部特征向量为 $k_2 p_2 (k_2 \neq 0)$ 。

定义4.5.1 对矩阵A,属于特征值 λ_i 的所有特征向量组成一个子空间称为属于特征值 λ_i 的特征子空间。

七、作业

P114作业4.3 2 (2)

P117作业4.4 2

P119作业4.5 2

预习4.6-4.9

观看视频4.6-4.9

