PROJECT BITI2223

Project: Develop Machine learning Model FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MACHINE LEARNING

BITI 2223 SEMESTER 2 SESI 2023/2024

This assignment is to be completed in groups of two members each.

The aim of this project is to allow students to apply machine learning techniques to a real-world problem using RapidMiner. This will help students enhance their understanding and skills in model building, evaluation, and interpretation.

Instructions:

- 1) The goal of this project is to build a machine learning model based on your use case. You are required to pre-process data, build, evaluate, and interpret your model.
- 2) You will use the previous case study dataset for this project.
 - 1. Travel Review Ratings Data Set
 - 2. EMG data for gestures Data Set
 - 3. Student Academics Performance Data Set
 - 4. EEG Steady-State Visual Evoked Potential Signals Data Set
 - 5. Cargo 2000 Freight Tracking and Tracing Data Set
 - 6. Breast Cancer Wisconsin (Diagnostic)
 - 7. Drug Consumption (Quantified)
 - 8. Myocardial infarction complications
 - 9. Cervical Cancer (Risk Factors)
 - 10. Bar Crawl: Detecting Heavy Drinking
 - 11. In-Vehicle Coupon Recommendation
- 3) You are required to show in details all the steps in machine learning process. Below are the guidelines for you:
 - a. Data Understanding & exploration
 - b. Data Pre-processing
 - c. Model Development

PROJECT BITI2223

- d. Model Evaluation
- e. Model Interpretation

4) You are required to write a comprehensive project report explaining all your steps from data exploration to model interpretation.

Evaluation criteria:

Criteria		Marks
Data Exploration and Pre-processing		20
J	Quality and thoroughness of data exploration.	
J	Visualize the data to identify patterns and correlations.	
J	Handling of missing values and data encoding.	
J	Proper splitting of data into training and testing sets.	
Model Development		30
J	Selection and justification of machine learning algorithms.	
J	Use of parameter optimization techniques.	
J	Comparison of multiple models.	
Model Evaluation		20
J	Appropriate use of evaluation metrics.	
J	Analysis of error distributions.	
J	Clear and accurate presentation of results.	
Model Interpretation		15
J	Use of feature importance techniques.	
J	Interpretation of key features.	
Reporting		15
J	Clarity and organization of the report.	
J	Depth of analysis and insights.	

DUE DATE OF SUBMISSION & PRESENTATION: 13/6/2024 (Thursday) SUBMIT THROUGH: ULEARN