A.Belcaid

Euromed Fès

October 28, 2020

Définition

Soient $x \in E$ et $y \in F$.

Soient $x \in E$ et $y \in F$.

• Une relation \Re est une application entre $E \times F \to \{Vrai, Faux\}$ qui associe Vrai si x et y sont en relation.

Définition

Soient $x \in E$ et $y \in F$.

- Une relation \Re est une application entre $E \times F \to \{Vrai, Faux\}$ qui associe Vrai si x et y sont en relation.
- Si le couple (x, y) vérifie (Vrai) la relation on écrit

хЯу

Soient $x \in E$ et $y \in F$.

- Une relation
 ^R est une application entre E × F → {Vrai, Faux} qui associe Vrai si x et y sont en relation.
- Si le couple (x, y) vérifie (Vrai) la relation on écrit

• Dans le cas où E = F, on parle d'une relation binaire.

Soient $x \in E$ et $y \in F$.

- Une relation
 ^R est une application entre E × F → {Vrai, Faux} qui associe Vrai si x et y sont en relation.
- Si le couple (x, y) vérifie (Vrai) la relation on écrit

• Dans le cas où E = F, on parle d'une relation binaire.

Soient $x \in E$ et $y \in F$.

- Une relation \Re est une application entre $E \times F \to \{Vrai, Faux\}$ qui associe Vrai si x et y sont en relation.
- Si le couple (x, y) vérifie (Vrai) la relation on écrit

• Dans le cas où E = F, on parle d'une relation **binaire**.

Pour une relation binaire dans E, on s'intéresse au propriétés suivantes:

Réflexivité

$$\forall x \in E \quad x \ \mathcal{R} \ x \tag{1}$$

Pour une relation binaire dans E, on s'intéresse au propriétés suivantes:

Réflexivité

$$\forall x \in E \quad x \ \mathcal{R} \ x \tag{1}$$

Pour une relation binaire dans E, on s'intéresse au propriétés suivantes:

Réflexivité

$$\forall x \in E \quad x \mathcal{R} x \tag{1}$$

Symétrie

$$\forall x, y \in E \quad x \mathcal{R} y \implies y \mathcal{R} x \tag{2}$$

Pour une relation binaire dans E, on s'intéresse au propriétés suivantes:

Réflexivité

$$\forall x \in E \quad x \mathcal{R} x \tag{1}$$

Symétrie

$$\forall x, y \in E \quad x \mathcal{R} y \implies y \mathcal{R} x \tag{2}$$

Pour une relation binaire dans E, on s'intéresse au propriétés suivantes:

Réflexivité

$$\forall x \in E \quad x \mathcal{R} x \tag{1}$$

Symétrie

$$\forall x, y \in E \quad x \mathcal{R} y \implies y \mathcal{R} x$$
 (2)

Transitivité

$$\forall x, y, z \in E \quad x \mathcal{R} y \text{ et } y \mathcal{R} z \implies x \mathcal{R} z$$
 (3)

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

• réflexive.

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

- réflexive.
- symétrique.

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

- réflexive.
- symétrique.
- transitive.

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

- réflexive.
- symétrique.
- transitive.

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

- réflexive.
- symétrique.
- transitive.

Exemples

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

- réflexive.
- symétrique.
- transitive.

Exemples

 $\bullet \ \ \mathsf{Si} \ \ \mathsf{E} = \mathbb{Z} \ \mathsf{et} \ \ \mathfrak{a} \mathcal{R} b \ \Longleftrightarrow \ \ \mathfrak{a} b \neq 0$

Définition

Soit $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une **relation** d'équivalence si $\mathcal R$ est :

- réflexive.
- symétrique.
- transitive.

Exemples

- Si $E = \mathbb{Z}$ et $a \Re b \iff ab \neq 0$
- Si $E = \mathbb{Z}^*$ et $a \Re b \iff ab \neq 0$

Exemples

① On considère E l'ensemble des droites affines dans le plan et la relation \mathcal{R} être parallèle. Cette relation est elle un relation d'équivalence?

Exemples

- ① On considère E l'ensemble des droites affines dans le plan et la relation \mathcal{R} être parallèle. Cette relation est elle un relation d'équivalence?
 - réflexivité: Une droite est parallèle à elle même.

Exemples

- On considère E l'ensemble des droites affines dans le plan et la relation R être parallèle. Cette relation est elle un relation d'équivalence?
 - réflexivité: Une droite est parallèle à elle même.
 - \bullet symétrie: Si D est parallèle à $D^{'}$, alors $D^{'}$ est parallèle à D.

- On considère E l'ensemble des droites affines dans le plan et la relation R être parallèle. Cette relation est elle un relation d'équivalence?
 - réflexivité: Une droite est parallèle à elle même.
 - \bullet symétrie: Si D est parallèle à D $^{\prime}$, alors D $^{\prime}$ est parallèle à D.
 - transitivité: Si D_1 est parallèle à D_2 et D_2 est parallèle à D_3 , alors D_1 est parallèle à D_3 .

- ① On considère E l'ensemble des droites affines dans le plan et la relation \mathcal{R} être parallèle. Cette relation est elle un relation d'équivalence?
 - réflexivité: Une droite est parallèle à elle même.
 - ullet symétrie: Si D est parallèle à D', alors D' est parallèle à D.
 - transitivité: Si D_1 est parallèle à D_2 et D_2 est parallèle à D_3 , alors D_1 est parallèle à D_3 .
- La relation <u>Être perpendiculaire</u> est elle une relation d'équivalence?

Exemples

- ① On considère E l'ensemble des droites affines dans le plan et la relation \mathcal{R} être parallèle. Cette relation est elle un relation d'équivalence?
 - réflexivité: Une droite est parallèle à elle même.
 - symétrie: Si D est parallèle à D', alors D' est parallèle à D.
 - transitivité: Si D_1 est parallèle à D_2 et D_2 est parallèle à D_3 , alors D_1 est parallèle à D_3 .
- La relation <u>Être perpendiculaire</u> est elle une relation d'équivalence?
- **3** Relation \mathcal{R} dans Z tel que:

 $x\Re y \implies x$ est un multiple de y

Relation d'ordre

Définition

Une \Re dans E est dite relation **d'ordre** si elle vérifie les propriétés suivante:

- Réflexive: $\forall x \in E \quad x \Re x$.
- Transitivité: $x\Re y$ et $y\Re z \implies x\Re z$.
- Antisymétrique: $(x\Re y)$ et $(y\Re x) \implies x = y$

• Vérifier que la relation $A\mathcal{R}B \iff A \subset B$ est une relation d'ordre.

• Vérifier que la relation $A\mathcal{R}B \iff A \subset B$ est une relation d'ordre.

① Réflexivité: $\forall A \in E \quad A \subset A$.

- Vérifier que la relation $A\mathcal{R}B \iff A \subset B$ est une relation d'ordre.
 - **① Réflexivité**: $\forall A \in E \quad A \subset A$.
 - **② Transitivité**: $\forall A, B, C \in E \quad A \subset B \text{ et } B \subset C \implies A \subset C$.

- Vérifier que la relation $A\mathcal{R}B \iff A \subset B$ est une relation d'ordre.
 - **Q** Réflexivité: $\forall A \in E \quad A \subset A$.
 - **② Transitivité**: $\forall A, B, C \in E \quad A \subset B \text{ et } B \subset C \implies A \subset C$.
 - **3** Antisymétrique: $\forall A, B \in E \quad A \subset B \text{ et } B \subset A \implies A = B.$

- Vérifier que la relation $A\mathcal{R}B \iff A \subset B$ est une relation d'ordre.
 - **Q** Réflexivité: $\forall A \in E \ A \subset A$.
 - **② Transitivité**: $\forall A, B, C \in E \quad A \subset B \text{ et } B \subset C \implies A \subset C$.
 - **3** Antisymétrique: $\forall A, B \in E \quad A \subset B \text{ et } B \subset A \implies A = B.$

• Même question pour la relation $x\Re y\iff x\leqslant y$ dans \mathbb{Z} .

Ordre Total/Partiel

Définition

Une relation d'ordre $\mathcal R$ sur un ensemble E est dite d' **ordre total**. Si deux éléments quelconque de E sont **comparables**.

$$\forall x, y \in E \quad (x\Re y)ou(y\Re x)$$
 (4)

En cas contraire, la relation est dite d'ordre partiel

Ordre Total/Partiel

Définition

Une relation d'ordre $\mathcal R$ sur un ensemble E est dite d' **ordre total**. Si deux éléments quelconque de E sont **comparables**.

$$\forall x, y \in E \quad (x\Re y) \text{ou}(y\Re x)$$
 (4)

En cas contraire, la relation est dite d'ordre partiel

Exemples

Ordre Total/Partiel

Définition

Une relation d'ordre $\mathcal R$ sur un ensemble E est dite d' **ordre total**. Si deux éléments quelconque de E sont **comparables**.

$$\forall x, y \in E \quad (x\Re y) \text{ou}(y\Re x)$$
 (4)

En cas contraire, la relation est dite d'ordre partiel

Exemples

La relation

$$x\Re y \iff x \leqslant y$$

est une relation d'ordre total dans \mathbb{R} .

A.Belcaid 9/14

Ordre Total/Partiel

Définition

Une relation d'ordre $\mathcal R$ sur un ensemble E est dite d' **ordre total**. Si deux éléments quelconque de E sont **comparables**.

$$\forall x, y \in E \quad (x\Re y) \text{ou}(y\Re x)$$
 (4)

En cas contraire, la relation est dite d'ordre partiel

Exemples

La relation

$$x\Re y \iff x \leqslant y$$

est une relation d'ordre total dans \mathbb{R} .

Par contre la relation

$$x\Re y \iff x \text{ divise } y$$

est une relation d'ordre partiel.

A.Belcaid 9/14

Classe d'équivalence

Définition

Pour une relation d'équivalence \mathcal{R} sur un ensemble E, il est très utile de définir classe d'équivalence d'un élément x qui contient tous les éléments qui sont en relation avec x.

$$cl(x) = \{ y \in E \mid x \mathcal{R} y \}$$
 (5)

<u>A.Belcaid</u> 10/14

Classe d'équivalence

Définition

Pour une relation d'équivalence \mathcal{R} sur un ensemble E, il est très utile de définir classe d'équivalence d'un élément x qui contient tous les éléments qui sont en relation avec x.

$$cl(x) = \{ y \in E \mid x \Re y \}$$
 (5)

• On trouve aussi la notation $\overline{x} = cl(x) \subset E$.

<u>A.Belcaid</u> 10/14

Propriétés

Propriétés

$$\bullet \ \mathsf{cl}(x) = \mathsf{cl}(y) \iff x \mathcal{R} y.$$

Propriétés

- $\bullet \ \mathsf{cl}(x) = \mathsf{cl}(y) \iff x \mathcal{R} y.$
- $\bullet \ \forall x,y \in E \quad \big(\mathsf{cl}(x) = \mathsf{cl}(y)\big) \ \mathsf{ou} \ \big(\mathsf{cl}(x) \cap \mathsf{cl}(y) = \emptyset\big).$

- $cl(x) = cl(y) \iff x \Re y$.
- $\forall x, y \in E \quad (cl(x) = cl(y)) \text{ ou } (cl(x) \cap cl(y) = \emptyset).$

Partition |

Soit un ensemble E et un ensemble $\{E_i\}$ des parties de E. On dit que $\{E_i\}$ forment une **partition** de E si:

$$\left\{ \begin{array}{l} \cup_i E_i = E \\ E_i \cap E_j = \emptyset \quad (i \neq j) \end{array} \right.$$

Exemple :

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le $m{\hat e}me$ age.

<u>A.Belcaid</u> 12/14

Exemple 1

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le *même age*.

• Deux étudiants appartient à la même classe s'ils ont le même age.

Exemple 1

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le *même age*.

- Deux étudiants appartient à la même classe s'ils ont le même age.
- Deux étudiants sont soit dans la même classe soit à deux classes différentes.

<u>A.Belcaid</u> 12/14

Exemple 1

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le $m\hat eme$ age.

- Deux étudiants appartient à la même classe s'ils ont le même age.
- Deux étudiants sont soit dans la même classe soit à deux classes différentes.
- La classe peut être décomposé en différentes parties selon leur age.

Exemple 1

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le $m\hat eme$ age.

- Deux étudiants appartient à la même classe s'ils ont le même age.
- Deux étudiants sont soit dans la même classe soit à deux classes différentes.
- La classe peut être décomposé en différentes parties selon leur age.

Exemple 1

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le $m\hat eme$ age.

- Deux étudiants appartient à la même classe s'ils ont le même age.
- Deux étudiants sont soit dans la même classe soit à deux classes différentes.
- La classe peut être décomposé en différentes parties selon leur age.

Exemple :

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le $m\hat eme$ age.

- Deux étudiants appartient à la même classe s'ils ont le même age.
- Deux étudiants sont soit dans la même classe soit à deux classes différentes.
- La classe peut être décomposé en différentes parties selon leur age.

Exemple 1

On considère la relation $\mathcal R$ des ensembles des étudiants qui relie deux étudiants s'ils ont le *même age*.

- Deux étudiants appartient à la même classe s'ils ont le même age.
- Deux étudiants sont soit dans la même classe soit à deux classes différentes.
- La classe peut être décomposé en différentes parties selon leur age.

Ensemble $\mathbb{Z}/n\mathbb{Z}$

Définition

Soit $E = \mathbb{Z}$, nous définissons la relation suivante:

$$a \equiv b (\mathsf{mod}\ n) \iff \big(a - b\big) \text{ est un multiple de } n \tag{6}$$

<u>A.Belcaid</u> 13/14

Ensemble $\mathbb{Z}/n\mathbb{Z}$

Définition

Soit $E = \mathbb{Z}$, nous définissons la relation suivante:

$$a \equiv b (\mathsf{mod}\ n) \iff \big(a - b\big) \text{ est un multiple de } n \tag{6}$$

• **Exemple**: $1 \equiv 5 \pmod{2}$ et $3 \equiv 10 \pmod{3}$.

<u>A.Belcaid</u> 13/14

Définition

Soit $E = \mathbb{Z}$, nous définissons la relation suivante:

$$a \equiv b (\mathsf{mod}\ n) \iff \big(a - b\big) \text{ est un multiple de } n \tag{6}$$

- **Exemple**: $1 \equiv 5 \pmod{2}$ et $3 \equiv 10 \pmod{3}$.
- Vérifier que ≡ est une relation d' équivalence.

<u>A.Belcaid</u> 13/14

Définition

Soit $E = \mathbb{Z}$, nous définissons la relation suivante:

$$a \equiv b (\mathsf{mod}\ n) \iff \big(a - b\big) \ \mathsf{est} \ \mathsf{un} \ \mathsf{multiple} \ \mathsf{de} \ n \tag{6}$$

- **Exemple**: $1 \equiv 5 \pmod{2}$ et $3 \equiv 10 \pmod{3}$.
- Vérifier que ≡ est une relation d' équivalence.
- La classe d'équivalence d'un nombre note \overline{a} est donné par:

$$\begin{array}{ll} \overline{a} &=& \left\{b \in \mathbb{Z} \mid b \equiv a (\mathsf{mode} \; n)\right\} \\ \overline{a} &=& \left\{a + kn \mid k \in \mathbb{Z}\right\} = a + k\mathbb{Z} \end{array}$$

Définition

Soit $E = \mathbb{Z}$, nous définissons la relation suivante:

$$a \equiv b (\mathsf{mod}\ n) \iff \big(a - b\big) \text{ est un multiple de } n \tag{6}$$

- **Exemple**: $1 \equiv 5 \pmod{2}$ et $3 \equiv 10 \pmod{3}$.
- Vérifier que ≡ est une relation d' équivalence.
- La classe d'équivalence d'un nombre note \overline{a} est donné par:

$$\begin{array}{ll} \overline{\alpha} & = & \left\{ b \in \mathbb{Z} \mid b \equiv \alpha (\mathsf{mode} \; n) \right\} \\ \overline{\alpha} & = & \left\{ \alpha + kn \mid k \in \mathbb{Z} \right\} = \alpha + k\mathbb{Z} \end{array}$$

 Une partition par cette relation de Z qu'on note Z/nZ est donnée par:

$$\mathbb{Z}/n\mathbb{Z} = \left\{\overline{0}, \overline{1}, \dots, \overline{n-1}\right\}$$

Exercices rapides

Exercices

 \bullet Lister les éléments de l'ensemble $\mathbb{Z}/7\mathbb{Z}$