10-704: Information Processing and Learning

Spring 2012

Lecture 1: September 20

Lecturer: Alessandro Rinaldo Scribes: Xiaoyi Gu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Discretization

Definition 1.1 (sub-gaussian vector) $X \in \mathbb{R}^d$ is $SG(\sigma^2)$ when $X^Tv \in SG(\sigma^2)$ for all $v \in S^{d-1}$.

Example: 1. If coordinates of X are independent $SG(\sigma^2)$. 2. $X \sim N_d(0, \Sigma) \Rightarrow X \in SG(\|\Sigma\|_{op})$. (exercise)

Theorem 1.2 Let $X \in \mathbb{R}^d$ be $SG(\sigma^2)$, then $\mathbb{E}[\|X\|] \leq 4\sigma\sqrt{d}$ and $\|X\| \leq 4\sigma\sqrt{d} + 2\sigma\sqrt{2\log(1/\delta)}$ for all $\delta \in (0,1)$ with probability $\geq 1 - \delta$.

Proof: First notice that $||X|| = (\sum_{i=1}^d X_i^2)^{1/2} = \max_{\theta \in B_d} \theta^T X$ where B_d is the unit ball in \mathbb{R}^d . Let $N_{1/2}$ be a $\frac{1}{2}$ covering of B_d in Euclidean norm. Then $|N_{1/2}| \le (1 + \frac{2}{1/2})^d \le 5^d$. Next, $\forall \theta \in B_d$, $\exists z = z(\theta) \in N_{1/2}$ such that $||\theta - z|| \le 1/2$, or equivalently, $\exists w$ such that $\theta = z + w$ and $||w|| \le 1/2$. So

$$\max_{\theta \in B_d} \theta^T X \le \max_{z \in N_{1/2}} z^T X + \max_{w \in \frac{1}{2}B_d} w^T X.$$

Notice that $\max_{w \in \frac{1}{2}B_d} w^T X = \frac{1}{2} \max_{\theta \in B_d} \theta^T X$, we get

$$\max_{\theta \in B_d} \theta^T X \le 2 \max_{z \in N_{1/2}} z^T X.$$

(In fact, it holds that $\|X\| \leq \frac{1}{1-\varepsilon} \max_{z \in N_{1/2}} z^T X$ for $\varepsilon < 1$). Then by maximal inequality for sub-gaussians,

$$\mathbb{E}[\|X\|] = \mathbb{E}[\max_{\theta \in B_d} \theta^T X] \leq 2\sigma \sqrt{2\log|N_{1/2}|} \leq 4\sigma \sqrt{d}$$

since $\log |N_{1/2}| \le d \log 5$. Next, for all $t \ge 0$,

$$\mathbb{P}(\|X\| \ge t) = \mathbb{P}(\max_{\theta \in B_d} \theta^T X \ge t)$$

$$\le \mathbb{P}(\max_{z \in N_{1/2}} z^T X \ge t/2)$$

$$\le \sum_{z \in N_{1/2}} \mathbb{P}(z^T X \ge t/2)$$

$$\le |N_{1/2}| e^{-t^2/8\sigma^2}$$

$$< 5^d e^{-t^2/8\sigma^2}.$$

Set RHS $\leq \delta \in (0,1)$ and solve for δ , we get $t = \sqrt{8 \log 5} \sqrt{d\sigma} + 2\sigma \sqrt{2 \log (1/\delta)}$.

Remark: The same argument will lead to bounds on $||A||_{op}$ using the fact

$$||A||_{op} = \max_{x \in S^{d-1}} ||Ax|| \le \frac{1}{1 - \varepsilon} \max_{x \in N_{\varepsilon}} ||Ax||$$

for $\varepsilon \in (0,1)$.

1.2 Covariance Matrix Estimation in $\|\cdot\|_{op}$ Norm

Let Σ be a $d \times d$ PSD matrix, $X_1, ..., X_n \sim N(0, \Sigma)$ i.i.d. satisfying the sub-gaussian property. The covariance matrix estimator $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^T$. Then

$$\max_{i,j} |\hat{\Sigma}_{ij} - \Sigma_{ij}| \le C\sqrt{\frac{t + \log d}{n}}$$

with probability $\geq 1 - e^{-t}$. This result is consistent even if $d = e^n$.

Before moving on, let's review our matrix algebra.

1.2.1 Review of Matrix Algebra

Singular Value Decomposition(SVD)

Let A be an $m \times n$ matrix, SVD asserts that A can be decomposed into $A = UDV^T$, where D is an $r \times r$ diagonal matrix, or $D = \operatorname{diag}(\sigma_1, ..., \sigma_r, 0, ..., 0)$ for $\sigma_1 \ge ... \ge \sigma_r > 0$ singular values and $r = \operatorname{rank}(A)$. U is an $m \times r$ matrix of orthonormal columns, which are the left singular vectors of A, and V is an $r \times n$ matrix of orthonormal columns that are the right singular vectors of A.

Operator Norm

• Note that σ_1 is the largest singular value of A. The operator norm of A is defined as its largest singular value and the following equalities hold:

$$||A||_{op} = \sigma_1 = \max_{x \in \mathbb{R}^n, ||x|| \neq 0} \frac{||Ax||}{||x||} = \max_{x \in S^{n-1}} ||Ax|| = \max_{y \in S^{n-1}} \max_{x \in S^{n-1}} y^T A x.$$

This defines a norm over $m \times n$ matrices.

• If A is symmetric, then

$$||A||_{op} = \max_{x \in S^{n-1}} |x^T A x|.$$

• If A is PSD $(x^T A x \ge 0 \ \forall x \in \mathbb{R}^n)$, then

$$||A||_{op} = \max_{x \in S^{n-1}} x^T A x = \lambda_{max}(A)$$

where $\lambda_{max}(A)$ is the largest eigenvalue of A.

- The Frobenius norm of A is defined as $||A||_F = (\sum_i \sum_j A_{ij}^2)^{1/2}$.
- Fact about $\|\cdot\|_{op}$: $\|Ax\| \le \|A\|_{op} \|x\|$ for all x.
- Weyl Inequality: If A and B are $m \times n$ matrices with singular values $\sigma_1(A) \ge ... \ge \sigma_{\min\{m,n\}}(A)$ and $\sigma_1(B) \ge \dots \ge \sigma_{\min\{m,n\}}(B)$, then $\max_k |\sigma_k(A) - \sigma_k(B)| \le ||A - B||_{op}$.

Now we continue with covariance matrix estimation.

Theorem 1.3 Let $X_1, ..., X_n \in \mathbb{R}^d$ be i.i.d vectors of mean 0 and covariance Σ such that $X_i \in SG(\sigma^2)$ for all i. Then, for $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n X_i X_i^T$, we have

$$\mathbb{P}(\frac{\|\Sigma - \hat{\Sigma}\|_{op}}{n} \leq C \max\{\sqrt{\frac{d + \log(2/\delta)}{n}}, \frac{d + \log(2/\delta)}{n}\}) \geq 1 - \delta$$

for $\delta \in (0,1)$.

Note: 1. If $X_i \sim N(0, \Sigma)$, $\sigma^2 = \lambda_{max}(\Sigma) = ||\Sigma||_{op}$. 2. If $d \gg n$, the result is not consistent.

Proof: Use the discretization argument and the following fact from HW1,

$$X \in SG(\sigma^2) \Rightarrow X^2 - \mathbb{E}[X^2] \in SE(\alpha^2, \nu)$$

where $\alpha = \nu = 16\sigma^2$ and the fact from class that $\mathbb{E}[|X|^k] \leq (2\sigma^2)^{k/2} k\Gamma(k/2)$. To set up discretization argument, need

Lemma 1.4 Let A be symmetric and N_{ε} an ε -covering of S^{d-1} , $\varepsilon \in (0,1)$. Then

$$||A||_{op} = \max_{x \in S^{d-1}} |x^T A x| \le \frac{1}{1 - 2\varepsilon} \max_{Z \in N_{\varepsilon}} |Z^T A Z|$$

Proof: We have to consider 2 cases:

case 1: $||A||_{op} = \max_{x \in S^{d-1}} x^T A x$ case 2: $||A||_{op} = \max_{x \in S^{d-1}} - x^T A x$.

Regardless, let x^* be the point in S^{d-1} achieves the optimum and let $z=z(x^*)\in N_\varepsilon$ s.t. $||z-x^*||\leq \varepsilon$. Then

$$\begin{split} |(x^*)^T A x^* - z^T A z| &= |z^T A z - (x^*)^T A x^*| \\ &= |(x^*)^T A (x^* - z) + z^T A (x^* - z)| \\ &\leq |(x^*)^T A (x^* - z)| + |z^T A (x^* - z)| \\ &\leq \|x^*\| \|A(x^* - z)\| + \|z\| \|A(x^* - z)\| \text{ by Holder} \\ &\leq \|x^*\| \|A\|_{op} \|x^* - z\| + \|z\| \|A\|_{op} \|x^* - z\| \\ &\leq 2\varepsilon \|A\|_{op} \end{split}$$

So, for case 1,

$$||A||_{op} = (x^*)^T A x^* \le 2\varepsilon ||A||_{op} + z^T A z.$$

For case 2,

$$||A||_{op} = -(x^*)^T A x^* \le 2\varepsilon ||A||_{op} - z^T A z.$$

Take maximum over $z \in N_{\varepsilon}$ on RHS to get the result.

Set $Q = \hat{\Sigma} - \Sigma$, symmetric, let $\{v_1, \dots, v_N\}$ be a 1/4-covering of $B_d \implies N \leq q^d$. So $\|Q\|_{op} \leq 2 \max_{i=1,\dots,N} |v_i^T Q v_i|$ by lemma. Hence, $\forall t > 0,$

$$\begin{split} \mathbb{P}(\|Q\|_{op} \geq t) \leq \mathbb{P}\left(\max_{i=1,\dots,N} |v_i^T Q v_i| \geq \frac{t}{2}\right) \\ \leq \sum_{i=1}^N \mathbb{P}\left(|v_i^T Q v_i| \geq \frac{t}{2}\right). \end{split}$$

To be continued ...

References

P. MASSART, "Concentration inequalities and model selection," Berlin: Springer, 2007, Vol. 6.

[ML05]M. Ledoux, "The concentration of measure phenomenon," American Mathematical Soc., 2005, No. 89.