Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{2}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 11 / метод хорд / формула прямоугольников

Выполнил: студент 106 группы Синюков М. В.

> Преподаватель: Корухова Л. С. Манушин Д. В Соловьев М. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	9
Отладка программы, тестирование функций	11
Программа на Си и на Ассемблере	13
Анализ допущенных ошибок	14
Список питируемой литературы	15

Постановка задачи

С точностью $\varepsilon=0.001$ вычислить площадь плоской фигуры, ограниченой 3 кривыми, уравнения которых y=F1(x), y=F2(x), y=F3(x) задаются в текстовом виде на этапе сборки программы. Необходимо разработать 2 программы: основную — для вычисления и вспомогательную — для построения исполняемого кода, вычисляющего значения функций. С точностью $\varepsilon_1=0.0001$ вычислить абсциссы точек пересечения кривых, используя 2 метода приближенного решения уравнения F(x)=0: метод хорд (секущих) и метод касательных (Ньютона). Отрезки для поиска пересечения задаются вместе с уравнениями. Требуется представить площадь заданной фигуры как алгебраическую сумму определенных интегралов и вычислить эти интегралы с некоторой точностью $\varepsilon_2=0.0001$ по квадратурной формуле прямоугольников.

Математическое обоснование

Метод касательных [2] На каждой итерации $x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$. [1.1]

Метод хорд. [3] Итерационная формула для метода хорд получается при подстановке в [1.1] метода касательных выражения для приближенного вычис-

ления производной функции в точке: $x^{k+1} = \frac{a*f(b)-b*f(a)}{F(b)-F(a)}$, где в зависимости от знака произведения первой и второй производных на отрезке, выбирается $a=x^k$ (случай положительной производной) или $b=x^k$ (случай отрицательной производной)

Оценка точности Пусть функции ограничены значением: 10.

 A_i -вычислителенный интеграл для функции F_i .

 S_i -Истинное значение интеграла для функции F_i . Пределы истинных интервалов обозначи a_i

 V_i –Истинное значение для интеграла функции F_i на вычесленных интервалах. Пределы вычесленных интервалов обозначим b_i

Погрешность вычесления площади интеграла:
$$\varepsilon = |A_1 + A_2 + A_3 - S_1 - S_2 - S_3| \le |A_1| + A_2 + A_3 - S_1 - S_2 - S_3| \le \sum_{i=1}^3 |A_i - S_i| \le \sum_{i=1}^3 |A_i - V_i| + \sum_{i=1}^3 |V_i - S_i| \le \sum_{i=1}^2 \int_{a_i}^{b_i} F_1$$

$$+ \sum_{i=1,3}^{\overline{b}_i} \int_{a_i}^{b_i} F_2 + \sum_{i=2}^{3} \int_{a_i}^{b_i} F_3 + 3 * \varepsilon_2 \le 6 * \varepsilon_1 * \max_{i \in 1,2,3} (\max_{x \in [a_1,a_3]} (|F_i(x))|) + 3 * \varepsilon_2 \le 60 * \varepsilon_2 + 3 * \varepsilon_1$$

Следовательно $\varepsilon_1{=}0.00001$ и $\varepsilon_2{=}0.00001$ будет достаточно , чтобы гарантировать точность вычислений 0.001

Для вычисления площади фигруры на пересечении кривых варианта 8 функция $F1(x) = e^x + 2$ была разложена в ряд Тейлора, взяты эллемент суммы до 7-го порядка:

$$F(x) = 3 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + \frac{x^7}{5040}$$

Остальные функции были взяты в первозданном виде, без приближения многочленами.

$$F2(x) = 2x-8$$

$$F3(x) = -5/x$$

Второй набор данных для тестирования содержал функции:

$$F1(x) = cos(x) + 2$$

$$F2(x) = x^2/2$$

$$F3(x) = 2.5$$

Рис. 1: Плоская фигура, ограниченная графиками уравнений 1-го набора

Результаты экспериментов

В данном разделе необходимо провести результаты проведенных вычислений: координаты точек пересечения (таблица 4) и площадь полученной фигуры.

Кривые	x
$y=e^x+2$ и $y=-5/x$	-0.549516
$y=e^x +2$ и $y = -2*x +8$	1.2517579314
y = -2 * x + 8/2 и $y = -5/x$	4.54950975

Таблица 1: Координаты точек пересечения кривых 1-го набора

Площадь фигуры 1: 9.806974

Площадь фигуры 2: 0.460531

Рис. 2: Плоская фигура, ограниченная графиками уравнений 2-го набора

Кривые	x
y = cos(x) + 2 и $y = 2.5$	
$y=x^2/2$ и $y=2.5$	2.236065
$y=x^2/2$ и $y=cos(x)$	1.854678

Таблица 2: Координаты точек пересечения кривых 2-го набора

Структура программы и спецификация функций

Рис. 3: Диаграмма связи функций и модулей

Generator.c

- struct stack *createstack(char sign,double key)
 Выделить память под стек, поместив на вершину эллемент с ключём key,
 знаком sign
- struct stack *pushs(char sign,double key,struct stack *old)
 Положить эллемент на врешину стека, заданного последним параметром.
 Поля эллемента заданы первыми 2-мя аргументами
- FILE *reversePOLSKA(FILE * input)
 Преобразование обратной польской записи в прямую. Возвращаемое значение поток с преобразованной формулой. Аргументом является поток с обратной польской записью
- struct tree *create(int sign, double key)
 Выделить память под дерево из одного эллемента с ключём key
- void delete_tree(struct tree *tree)
 Отчистить память от дерева, рекурсивно удаляя потомков.
- struct tree *add() Построить дерево операций из польской записи в потоке FILE *inFile;
- struct tree *deriv(struct tree *tree)
 Построить дерево операций производной функции, дерево которой передано в качестве аргумента
- void memory_intit(struct tree *tree)
 Вывести в FILE *pFile ассемблерный листинг резервирования памяти под дерево tree
- void Printer(struct tree *tree)
 Вывод в FILE *pFile ассемблерный листинг выражения , записанного в дереве tree
- void generator() Вывод в в FILE *pFile ассемблерного листинга функций 3 функций из файла *inFile и их производных
- int main(int argc, char **argv)
 Подготовка к вызову generator, вызов generator. Включающие в себя переопределение входного потока *inFile в соответствии с переданным параметром названием файла и запись названия файла в filename для дальнейшего использования в main.c

main.c

• double TESTF_const(double x) Функция для тестирования работы функций корня и интеграла: y=1

- double TESTF_linear(double x) Функция для тестирования работы функций корня и интеграла: y=x
- double TESTF_parabola(double x) Функция для тестирования работы функций корня и интеграла: y=x**2
- void help() Вывод help
- void test(_Bool OPTION_TANGENT)
 Произведение тестирования для функций корня и интеграла с возможностью выбора метода вычисления корнея
- double area_var8()
 Вычисления площади фигуры,ограниченной функциями из варианта 8.При условии нахождения в func.s листинга функций варианта.
- double area(double interval1,double interval2, _Bool OPTION_TANGENT) Вычисление площади фигуры, ограниченной функциями из func.s на интервале (a,b), метод вычисления корня задаётся последним параметром
- int main(int argc, char **argv) Вызов функций на основе переданных аргументов

root.c

- double rightderiv(double x, double (*F)(double) Правая производная фунции в точке
- \bullet double deriv(double x, double (*F)(double)) Приближенно вычесленная производная F в точке x
- ullet double derivsecond(double x, double (*F)(double)) Приближенно вычесленная вторая производная F в точке x
- ullet double root(double (*f)(double), double (*g)(double), double a, double b, double eps) Вычисление корня f(x)=g(x) на отрезке (a,b) с точностью eps методом хорд
- double rootD(double (*f)(double), double (*g)(double), double a, double b, double eps,double (*d1)(double),double (*d2)(double)) Вычисление корня f(x)=g(x) на отрезке (a,b) с точностью eps методом Ньютона , используя заданные в явном виде производные f'(x) , g'(x). Производные указаны последними 2-я аргументами

integral.c

• integral(double (*f)(double), double a, double b, double eps)
Вычисление интеграла функции f на отрезке (a,b) с точностью eps

Сборка программы (Make-файл)

Текст Make-файла: COMPILER=gcc OPT=-02 -std=gnu99 -m32 -lm SPEC_FILE=in.txt TANGENT= -D CHORD= method1 .PHONY: all clean help test all: main clean: rm -rf main.o integral.o root.o main rm -rf func.o generator.o generator: generator.c \$(COMPILER) generator.c -o generator \$(OPT) ./generator \$(SPEC_FILE) func.o: func.s nasm -DUNIX -Werror -f elf -o func.o func.s func.s: generator ./generator \$(SPEC_FILE) integral.o: integral.c \$(COMPILER) integral.c -c -o integral.o \$(OPT) root.o: root.c \$(COMPILER) root.c -c -o root.o \$(OPT) main.o: main.c \$(COMPILER) main.c -c -o main.o \$(OPT) main: main.o integral.o root.o func.o \$(COMPILER) -o main main.o integral.o root.o func.o \$(OPT) help: main ./main -help test: main ./generator tests.txt

./main -test -axis -iter

area: main
./main -area

generate: generator

./generator \$(SPEC_FILE)

{TANGENT}: main
./main -D -area

{CHORD}:

./main -area

Отладка программы, тестирование функций

Кривые	Метод хорд	Метод касательных	Истинное значение	f'
$y=x^2$ и $y=x$	0.999992	1	1	2х и 1
$y = x^3$ и $y = 0$	0.00008	0.00002	0	3х и 0
y = -5/x и $y = -2 * x + 8$	4.549509	4.545455	4.54950975	$\int 5/x^2$ и -2

Таблица 3: Тестирование функций для вычисления точек пересечения кривых

Аналитическое обоснованиие:

1)
$$x = x^{2}$$

$$x * (x - 1) = 0$$

$$x = 1$$
2)
$$x^{3} = 0$$

$$x = 0$$
3)
$$-5/x = -2x + 8$$

$$-2x^{2} + 8x + 5 = 0$$

$$-2x^{2} + 8x + 5 = 0$$

$$x \approx 4.54950975$$

Кривая	Отрезок	Интеграл	Истинное значение
$\sin x / x$	(-1 1)	1.892166	1.892166
$(sinx)^2$	$(-\pi,\pi)$	3.141592	π
$\sin(x)$	(-4,4)	0.000000	0
$f(\mathbf{x}) = x^2$	(-5,1)	42.000220	42
f(x) = 1	(0,25)	25.0000	25
(x) = x	(0,5)	12.499981	12.5

Таблица 4: Тестирование функции интеграла

Аналитическое обоснованиие[3]:

1)

$$\int_{-\pi}^{\pi} (sinx)^2 dx = \int_{-\pi}^{\pi} (1/2 - 1/2 * cos2x) dx = \left(\frac{x - sin(2x)/2}{2}\right) \Big|_{-\pi}^{\pi} = \pi.$$

2) $\int_{-4}^{4} (sinx) dx = [\text{осевая симметрия sin относительно 0}] = 0 3)$

$$\int_{-5}^{1} x^2 dx = \left(\frac{x^3}{3}\right)\Big|_{-5}^{1} = 5^3/3 + 1/3 = 42.$$

4)
$$\int_0^{25} 1 dx = (x) \Big|_0^{25} = 25.$$

5)
$$\int_0^5 x dx = \left(x^2/2\right)\Big|_0^5 = 12.5.$$

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, приложеном к отчету.

Анализ допущенных ошибок

1. Была допущена ошибка с переопределением функций F1-F3. Исправленно изменением

extern F1 на global F1 extern F2 на global F2 extern F3 на global F3 в модуле func.s

- 2. Ошибка в построении дерева производной. При вызвове функции нахождения производной сложной функции от поддерева, поддерево основной функции модифицировалось. Исправлено выделением памяти под эллемент дерева производной проведением изменений в нём, без модификации основного дерева.
- 3. Ошибка в построении дерева производной. При вызвове функции нахождения производной сложной функции от поддерева, поддерево основной функции модифицировалось. Исправлено выделением памяти под эллемент дерева производной проведением изменений в нём, без модификации основного дерева.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 Москва: Наука, 1985.
- [2] Самаский А. А., Гулин А. В. Численные Методы. Учеб. пособие для вузов. — М.:Наука, 1989.
- [3] Костомаров Д.П., Фаворский А.П. Вводные лекции по численным методам: Учеб. пособие. М.: Логос, 2004