CH4 应用题参考答案

1 在一个请求分页虚拟存储管理系统中,一个程序运行的页面走向是:

1、2、3、4、2、1、5、6、2、1、2、3、7、6、3、2、1、2、3、6。 分别用 FIFO、OPT 和 LRU 算法,对分配给程序 3个页框、4个页框、5个页框和6个 页框的情况下,分别求出缺页中断次数和缺页中断率。

答:

页框数	FIFO	LRU	OPT
3	16	15	11
4	14	10	8
5	12	8	7
6	9	7	7

只要把表中缺页中断次数除以 20,便得到缺页中断率。

- 2 在一个请求分页虚拟存储管理系统中,一个作业共有5 页,执行时其访问页面次序为:(1)1、4、3、1、2、5、1、4、2、1、4、5。
 - (2) 3, 2, 1, 4, 4, 5, 5, 3, 4, 3, 2, 1, 5,

若分配给该作业三个页框 , 分别采用 FIFO 和 LRU 面替换算法 , 求出各自的缺页中断次数和缺页中断率。

- 答: (1) 采用 FIFO 为 9 次 , 9/12=75%。采用 LRU 为 8 次 , 8/12=67%。
 - (2) 采用 FIFO 和 LRU 均为 9 次 , 9/13=69%。
- 3 一个页式存储管理系统使用 FIFO、OPT 和 LRU 页面替换算法 , 如果一个作业的页面走向为:
 - (1) 2 \, 3 \, 2 \, 1 \, 5 \, 2 \, 4 \, 5 \, 3 \, 2 \, 5 \, 2 \,
 - (2) 4 、 3 、 2 、 1 、 4 、 3 、 5 、 4 、 3 、 2 、 1 、 5。
 - (3)1、2、3、4、1、2、5、1、2、3、4、5。

当分配给该作业的物理块数分别为 3 和 4 时,试计算访问过程中发生的缺页中断次数和缺页中断率。

答: (1) 作业的物理块数为 3块,使用 FIFO 为 9次,9/12=75%。使用 LRU 为 7次,7/12=58%。使用 OPT 为 6次,6/12=50%。

作业的物理块数为 4块,使用 FIFO 为6次,6/12=50%。使用 LRU 为6次,6/12=50%。使用 OPT 为5次,5/12=42%。

(2) 作业的物理块数为 3块,使用 FIFO 为 9次,9/12=75%。使用 LRU 为 10次,10/12=83%。使用 OPT 为 7次,7/12=58%。

作业的物理块数为 4块,使用 FIFO 为 10次,10/12=83%。使用 LRU 为 8次,8/12=66%。使用 OPT 为 6次,6/12=50%。

其中,出现了 Belady 现象,增加分给作业的内存块数,反使缺页中断率上升。

4 在可变分区存储管理下,按地址排列的内存空闲区为: 10K、4K、20K、18K、7K、9K、12K 和 15K。对于下列的连续存储区的请求: (1)12K、10K、9K,(2)12K、10K、15K、18K 试问:使用首次适应算法、最佳适应算法、最差适应算法和下次适应算法,哪个空闲区被使用?

答: (1) 空闲分区如图所示。

分区号	分区长
1	10KB
2	4KB
3	20KB
4	18KB
5	7KB
6	9KB
7	12KB
8	15KB

1)首次适应算法

12KB 选中分区 3,这时分区 3还剩 8KB。10KB 选中分区 1,恰好分配故应删去分区 1。9KB 选中分区 4,这时分区 4还剩 9KB。

2) 最佳适应算法

12KB 选中分区 7,恰好分配故应删去分区 7。10KB 选中分区 1,恰好分配故应删去分区 1。9KB 选中分区 6,恰好分配故应删去分区 6。

3)最差适应算法

12KB 选中分区 3,这时分区 3还剩 8KB。10KB 选中分区 4,这时分区 4还剩 8KB。 9KB 选中分区 8,这时分区 3还剩 6KB。

4)下次适应算法

12KB 选中分区 3,这时分区 3还剩 8KB。10KB 选中分区 4,这时分区 4还剩 8KB。9KB 选中分区 6,恰好分配故应删去分区 6。

(2) 原始分区情况同上图。

1)首次适应算法

12KB 选中分区 3,这时分区 3 还剩 8KB。10KB 选中分区 1,恰好分配故应删去分区 1。15KB 选中分区 4,这时分区 4 还剩 3KB。最后无法满否 18KB 的申请,应该等待。

2) 最佳适应算法

12KB 选中分区 7,恰好分配故应删去分区 7。10KB 选中分区 1,恰好分配故应删去分区 1。15KB 选中分区 8,恰好分配故应删去分区 8。18KB 选中分区 4,恰好分配故应删去分区 4。

3)最差适应算法

12KB 选中分区 3,这时分区 3 还剩 8KB。10KB 选中分区 4,这时分区 4 还剩 8KB。15KB 选中分区 8,恰好分配故应删去分区 8。最后无法满否 18KB 的申请,应该等待。

4)下次适应算法

12KB 选中分区 3,这时分区 3还剩 8KB。10KB 选中分区 4,这时分区 4还剩 8KB。15KB 选中分区 8,恰好分配故应删去分区 8。最后无法满否 18KB 的申请,应该等待。

5 给定内存空闲分区,按地址从小到大为: 100K、500K、200K、300K 和 600K。现有用户进程依次分别为 212K、417K、112K 和 426K,(1)分别用 first-fit、best-fit 和 worst-fit 算法将它们装入到内存的哪个分区 ?(2) 哪个算法能最有效利用内存 ?

答:按题意地址从小到大进行分区如图所示。

分区号	分区长
1	100KB
2	500KB
3	200KB
4	300KB
5	600KB

(1) 1)first-fit 212KB 选中分区 2,这时分区 2还剩 288KB。417KB 选中分区 5,这时分区 5还剩 183KB。112KB 选中分区 2,这时分区 2还剩 176KB。426KB 无分区能满足,应该等待。

2)best-fit 212KB 选中分区 4,这时分区 4还剩 88KB。417KB 选中分区 2,这时分区 2 还剩 83KB。112KB 选中分区 3,这时分区 3 还剩 88KB。426KB 选中分区 5,这时分区 5 还剩 174KB。

3)worst-fit 212KB 选中分区 5,这时分区 5还剩 388KB。417KB 选中分区 2,这时分区 2还剩 83KB。112KB 选中分区 5,这时分区 5还剩 176KB。426KB 无分区能满足,应该等待。

- (2) 对于该作业序列 , best-fit 算法能最有效利用内存
- 6 一个 32 位地址的计算机系统使用二级页表 , 虚地址被分为 9 位顶级页表 , 11 位二级 页表和偏移。试问:页面长度是多少?虚地址空间共有多少个页面?

答:由于 32-9-11=12,所以,页面大小为 4KB,页面的个数为 2²⁰个。

7 一进程以下列次序访问 5 个页: A、B、C、D、A、B、E、A、B、C、D、E;假定 使用 FIFO 替换算法,在内存有 3 个和 4 个空闲页框的情况下,分别给出页面替换次数。

答:内存有 3 个和 4 个空闲页框的情况下, 页面替换次数为 9 次和 10 次。出现了 Belady 现象,增加分给作业的内存块数,反使缺页中断率上升。

8 某计算机有缓存、内存、辅存来实现虚拟存储器。如果数据在缓存中,访问它需要 Ans;如果在内存但不在缓存,需要 Bns将其装入缓存,然后才能访问;如果不在内 存而在辅存,需要 Cns将其读入内存,然后,用 Bns再读入缓存,然后才能访问。假设缓存命中率为(n-1)/n,内存命中率为(m-1)/m,则数据平均访问时间是多少?

答:

数据在缓存中的比率为: (n-1)/n

数据在内存中的比率为: $(1-(n-1)/n) \times (m-1)/m=(m-1)/nm$ 数据在辅存中的比率为: $(1-(n-1)/n) \times (1-(m-1)/m)=1/nm$

故数据平均访问时间是 =((n-1)/n) × A+((1-(n-1)/n) × (m-1)/m) × (A+B)+((1-(n-1)/n) ×

 $(1-(m-1)/m)) \times (A+B+C)=A+B/n+C/nm$

9 某计算机有 cache、内存、辅存来实现虚拟存储器。如果数据在 cache 中,访问它需要 20ns;如果在内存但不在 cache,需要 60ns将其装入缓存,然后才能访问;如果不在内存而在辅存,需要 12ms将其读入内存,然后,用 60ns再读入 cache,然后才能访问。假设 cache命中率为 0.9,内存命中率为 0.6,则数据平均访问时间是多少 (ns)?

答: 506ns。

10 有一个分页系统,其页表存放在主存里, (1)如果对内存的一次存取要 1.2 微秒,试 问实现一次页面访问的存取需花多少时间? (2)若系统配置了联想存储器,命中率为 80×%,假定页表表目在联想存储器的查找时间忽略不计,试问实现一次页面访问的 存取时间是多少?

答: (1)2.4 微秒 (2) 0.8 × 1.2+0.2 × 2.4=0.76+0.48=1.24 微秒

11 给定段表如下:

段 号	段 首 址	段长
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

给定地址为段号和位移: 1)[0,430]、2)[3,400]、3)[1,1]、4)[2,500]、5)[4,42],试求出对应的内存物理地址。

答: 1)449 2)1727 3)2301 4)越界 5)1994

12 某计算机系统提供 24 位虚存空间,主存为 2¹⁸B,采用分页式虚拟存储管理,页面尺寸为 1KB。假定用户程序产生了虚拟地址 11123456(八进制),而该页面分得块号为 100(八进制),说明该系统如何产生相应的物理地址及写出物理地址。

答: 虚拟地址 11123456(八进制)转化为二进制为:

001 001 001 010 011 100 101 110

其中前面为页号,而后 10 位为位移: 001 001 001 010 01-------1 100 101 110。由于主存大小为 2¹⁸B,页面尺寸为 1KB,所以,主存共有 256块。所以,块号为 100(八进制)是合法地址,于是,物理地址为 100 与位移 1 100 101 110 并接,得到:八进制物理地址 100 1 100 101 110。

13 主存中有两个空间区如图所示,

0K	
15K	100K
125K	50K

现有作业序列依次为: Job1 要求 30K; Job2 要求 70K; Job3 要求 50K; 使用首次适应、最坏适应和最佳适应算法处理这个作业序列,试问哪种算法可以满足分配?为什么?

答:首次适应、最坏适应算法处理这个作业序列可以满足分配,最佳适应算法不行。因为后者会分割出无法使用的碎片,浪费内存,从而,不能满足所有作业的内存需求。

14 设有一页式存储管理系统, 向用户提供的逻辑地址空间最大为 16页,每页 2048字节,内存总共有 8 个存储块。试问逻辑地址至少应为多少位?内存空间有多大?

答: 逻辑地址 $2^{11} \times 2^4$, 故为 15 位。内存大小为 $2^3 \times 2^{11} = 2^{14} B = 16 KB$ 。

15 在一分页存储管理系统中,逻辑地址长度为 16 位,页面大小为 4096 字节,现 有一逻辑地址为 2F6AH,且第 0、1、2 页依次存在物理块 10、12、14 号中,问 相应的物理地址为多少?

答: 因为逻辑地址长度为 16 位,而页面大小为 4096 字节,所以,前面的 4 位表示页号。把 2F6AH 转换成二进制为: 0010 1111 0110 1010 ,可知页号为 2。故放在 14 号物理块中,写成十六进制为: EF6AH 。

16 有矩阵: VAR A: ARRAY[1 100,1 100] OF integer;元素按行存储。在一虚存系统中,采用 LRU 淘汰算法,一个进程有 3页内存空间,每页可以存放 200个整数。其中第 1页存放程序,且假定程序已在内存。

程序 A:

FOR i : = 1 TO 100 DO

FOR j : = 1 TO 100 DO

A[i,j] := 0;

程序 B:

FOR j := 1 TO 100 DO

FOR i : = 1 TO 100 DO

A[i,j] := 0;

分别就程序 A 和 B 的执行进程计算缺页次数。

答: 题中 100 x 100=10000 个数据,每页可以存放 200 个整数,故一共存放在 50 个页面中。由于元素按行存储,第 1 行、第 2 行放在第 1 页,...,第 99 行、第 100 行放在第 50 页。故对于程序 A,缺页中断为 50 次。对于程序 B,缺页中断为 5000 次。

17 一台机器有 48 位虚地址和 32 位物理地址,若页长为 8KB,问页表共有多少个页表项 ?如果设计一个反置页表,则有多少个页表项 ?

答: 因为页长 8KB 占用 13 住,所以,页表项有 2^{35} 个。反置页表项有 2^{19} 个。

18 在虚拟页式存储管理中,为解决抖动问题,可采用工作集模型以决定分给进程的物理块数,有如下页面访问序列:

窗口尺寸 = 9, 试求 t1、t2 时刻的工作集。

答: t1 时刻的工作集为: {1,2,3,6,7,8,9}。t 时刻的工作集为: {3,4}。

19 有一个分页虚存系统,测得 CPU 和磁盘的利用率如下,试指出每种情况下的存在问题和可采取的措施: (1)CPU 利用率为 13%,磁盘利用率为 97% (2)CPU 利用率为 87%,磁盘利用率为 3% (3)CPU 利用率为 13%,磁盘利用率为 3%。

答: (1)系统可能出现抖动,可把暂停部分进程运行。 (2)系统运行正常,可增加运行进程数以进一步提高资源利用率。 (3)处理器和设备和利用率均很低,可增加并发运行的进程数。

20 在一个分页虚存系统中,用户编程空间 32 个页,页长 1KB,主存为 16KB。如果用户程序有 10 页长,若己知虚页 0、1、2、3,已分到页框 8、7、4、10, 试把虚地址 0AC5H 和 1AC5H 转换成对应的物理地址。

答: 虚地址 0AC5H 对应的物理地址为: 12C5H。而执行虚地址 1AC5H 会发现页表中尚未有分配的页框而发生缺页中断,由系统另行分配页框。

21 某计算机有 4 个页框,每页的装入时间、最后访问时间、访问位 R、修改位 D 如下所示 (时间用时钟点数表示):

page	loaded	last ref	R	D
0	126	279	0	0
1	230	260	1	0
2	120	272	1	1
3	160	280	1	1

分别用 FIFO、LRU、二次机会算法分别淘汰哪一页 ?

答: (1)FIFO 淘汰 page2。

(2)LRU 淘汰 page1。

(3) 二次机会 淘汰 page0。

22 考虑下面的程序:

for (i=0;i<20 ; i++) for(j=0;j<10;j++) $a[i] :=a[i] \times i$

试举例说明该程序的空间局部性和时间局部性。

答: 当数组元素 a[0] , a[1] , ... , a[19] 存放在一个页面中时,其空间局部性和时间局部性较好,也就是说,在很 短时间内执行都挂行循环乘法程序,而且 数组元素分布在紧邻连续的存储单元中。当数组元素存放在不同页面中时,其时间局部性虽相同,但空间局部性较差,因为处理的数组元素分布在不连续的存储单元中。

23 一个有快表的请页式虚存系统,设内存访问周期为 1 微秒,内外存传送一个页面的平均时间为 5 毫秒。如果快表命中率为 75%,缺页中断率为 10%。忽略快表访问时间, 试求内存的有效存取时间。

答: 快表命中率为 75%, 缺页中断率为 10%, 所以, 内存命中率为 15%。故内存的有效存取时间 =1 × 75%+2 × 15%+(5000+2) × 10%=501.25 微秒。

24 假设某虚存的用户空间为 1024KB,页面大小为 4KB,内存空间为 512KB。已知用户的 虚页 10、11、12、13 页分得内存页框号为 62、78、25、36,求出虚地址 0BEBC(16 进制)的实地址 (16 进制)是多少?

答: 虚地址 0BEBC(16 进制)的二进制形式为: 0000 1011 1110 1011 1100。由于页面大小为 4KB,故其中后 12 位是位移,所以,虚地址的页号为: 11。查页表分得内存对应页框号为: 78。已知内存空间为 512KB,故内存共有 128 个页框, 78 是合法物理块。把 78 化为 16 进制是 4E,虚地址 0BEBC(16 进制)的实地址 (16 进制)是: 4EEBC。

25 某请求分页存储系统使用一级页表,假设页表全部放在主存内, : 1)若一次访问主存花 120ns,那么,访问一个数据的时间是多少 ?
 2)若增加一个快表,在命中或失误时需有 20ns 开销,如果快表命中率为 80%,则 访问一个数据的时间为多少 ?

答: 1) 120ns x 2=240ns。

- 2) $(120+20) \times 80\% + (120+120+20) \times 20\% = 174$ ns.
- 26 设某系统中作业 J_1 , J_2 , J_3 占用主存的情况如图。今有一个长度为 20k 的作业 J_4 要装入 主存,当采用可变分区分配方式时,请回答:
- (1) 丛 装入前的主存已分配表和未分配表的内容。
- (2) 写出装入 丛时的工作流程,并说明你采用什么分配算法。

答: (1)主存已分配表共有三项,由作业 J1、J2、J3 占用,长度依次为: 10k、30k 和 54k。 未分配表共有三项:空闲区 1、空闲区 2 和空闲区 3,长度依次为 18k、40k 和 70k。

(2)作业 J4 装入时,采用直接分配,搜索未分配表,空闲区 1 不能满足。所以,要继续搜索未分配表,空闲区 2 可以满足 J4 的装入要求。

27 考虑下列的段表:

段号 始址 段长

0	200	500
1	890	30
2	120	100
3	1250	600
4	1800	88

对下面的逻辑地址, 求物理地址,如越界请指明。1) <0,480>2)<1,25>3)<1,14>4)<2,200>5) <3,500>6)<4,100>。

答: 1)680 2)915 3)904 4)越界 5)1750 6) 越界。

28 请页式存储管理中, 进程访问地址序列为: 10,11,104,170,73,305,180,240,244,445,467, 366。试问 1)如果页面大小为 100,给出页面访问序列。 2)进程若分得 3个页框,采用 FIFO 和 LRU 替换算法,求缺页中断率 ?

答: 1) 页面访问序列为 1,1,2,2,1,4,2,3,3,5,5,4。
2)FIFO 为 5次,缺页中断率为 5/12=41.6%。LRU 为 6次,缺页中断率为 6/12=50%。
LRU 反比 FIFO 缺页中断率高。

29 假设计算机有 2M 内存,其中,操作系统占用 512K,每个用户程序也使用 512K内存。如果所有程序都有 70%的 I/O 等待时间,那么,再增加 1M 内存,吞吐率增加 3少?

答:由题意可知,内存中可以存放 3 个用户进程,而 CPU 的利用率为: $1-(70\%)^3 = 1-(0.7)^3$ =65.7%。再增加 1M 内存,可增加 2 个用户进程,这时 CPU 的利用率为: $1-(70\%)^5 = 1-(0.7)^5 = 83.2\%$ 。故再增加 1M 内存,吞吐率增加了: $83.2\% \div 65.7\%-100\%=27\%$ 。

30 一个计算机系统有足够的内存空间存放 4 道程序,这些程序有一半时间在空闲等待 I/O 操作。问多大比例的 CPU 时间被浪费掉了 ?

答: (50%)⁴=(1/2)⁴=1/16。

31 如果一条指令平均需 1 微秒,处理一个缺页中断另需 n 微秒,给出当缺页中断每 k 条指令发生一次时,指令的实际执行时间。

答:(1+n/k)微秒。

32 一台计算机的内存空间为 1024 个页面,页表放在内存中,从页表中读一个字的开销是 500ns。为了减少开销,使用了有 32 个字的快表,查找速度为 100ns。要把平均开销降到 200ns 需要的快表命中率是多少 ?

答: 设快表命中率是 x,则内存命中率为 1-x。于是: 500(1-x)+100x=200,解方程得 x=75%。