

Theta, Omega Complexities

By

Arun Cyril Jose

Omega notation (Ω)

• $f(n) = \Omega(g(n))$ iff there exists a positive constant 'c' and ' n_0 ' such that, 0 <= c g(n) <= f(n) for all $n >= n_0$

Running Time

- These Bounds are for algorithms rather than programs.
 - Programs are just implementations of an algorithm, and almost all always the details of the program do not affect the bounds.

- These Bounds are for algorithms rather than problems.
 - A problem can be solved with several algorithms, some more efficient than others.

Running Time

O(Log(N))	10 ⁻⁷ seconds
O(N)	10 ⁻⁶ seconds
O(N*Log(N))	10 ⁻⁵ seconds
O(N ²)	10 ⁻⁴ seconds
$O(N^6)$	3 minutes
O(2 ^(N))	10 ¹⁴ years.
O(N!)	10 ¹⁴² years.

Algorithm Analysis

- Worst Case
 - Upper bound on running time.
 - No matter what the inputs are, algorithm would not run longer than this.
- Best Case
 - Lower bound on running time.
 - Input is the one for which the algorithm runs the fastest.

Lower Bound ≤ Running Time ≤ Upper Bound

- Average Case
 - A prediction about the running time.
 - Assuming the input to be random.

Algorithm Analysis

• Express running time as a function of input size *n* (i.e. f(n)).

Compare different functions corresponding to running time.

• Such an analysis is independent of machine's processing power, programming language etc.

Asymptotic Analysis

• **Asymptote** is a line that a curve approaches as it heads towards infinity.

Running Time

Asymptotic Analysis

• Running time of an algorithm as input size approaches infinity is called the *asymptotic running time*.

We look at tight bound, upper bounds and lower bounds.

 Growth rate for an algorithm is the rate at which the cost of the algorithm grows as the input size increases.

Asymptotic Analysis

Examples

- $2n^2 = O(n^3)$: $2n^2 <= cn^3 \Rightarrow 2 <= cn \Rightarrow c = 1 \text{ and } n_0 = 2$
- $n^2 = O(n^2)$: $n^2 \le cn^2 \Rightarrow 1 \le c \ge c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$
- $1000n^2 + 1000n = O(n^2)$: $1000n^2 + 1000n <= 1001n^2$
- \Rightarrow 1000n <= n² \Rightarrow 1000 <= n \Rightarrow c = 1001 and n₀ = 1000
- n = O(n²): n <= cn² \Rightarrow 1 <= cn \Rightarrow cn >= 1 \Rightarrow c = 1 and n₀ = 1

Examples

- Show that 30n + 8 is O(n)
 - Show, $\exists c, n_0$: $30n + 8 \le cn \forall n > n_0$
- 30n + 8 is not less than n anywhere (n >0)
- It isn't even less
- than 31n everywhere. It is less than 31n everywhere to the right of n = 8. • It is less than 31n

Examples

- There are no unique values for c and n_0 in proving the asymptotic bounds.
- Prove that $100n + 5 = O(n^2)$

$$100n + 5 \le 101n^2$$

c = 101 and $n_0 = 5$ is one solution.

- $100n + 5 \le 105n^2$
 - c = 105 and $n_0 = 1$ is one solution.
- Find **some** constant c and n_0 that satisfies the asymptotic notation relation.

Examples Omega notation (Ω)

- $5n^2 = \Omega(n)$ $\exists c, n_0 \text{ such that } 0 \le c = cn \le 5n^2 \ \forall \ n > n_0$ $c = 1 \text{ and } n_0 = 1$
- 10n + 5 $\neq \Omega(n^2)$
- $n^3 = \Omega(n^2)$
- n = $\Omega(\log n)$

Theta notation (Θ)

- $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
 - Most closest Tight Bound.
- iff there exists a positive constant c_1 , c_2 and n_0 such that, $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$: also, c_1 , $c_2 > 0$ and $n_0 > 0$
- $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$
- f(n) = 2n + 3
- $g_1(n) = 3n$
- $g_2(n) = n$