ON A SUBCLASS OF λ - PSEUDO STARLIKE FUNCTIONS

O.Y. SAKA-BALOGUN^{1,*}, K.O. BABALOLA²

¹Department of Mathematical and Physical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria

²Department of Mathematics, University of Ilorin, Ilorin. Nigeria

*Correspondence: balogunld@abuad.edu.ng

Abstract: In this paper, we introduced a new subclass of λ -Pseudo starlike univalent functions in the open unit disk $E = \{Z \in C | z| \le 1\}$, denoted by $F_{\lambda}(\beta)$. Coefficient inequalities and Fekete-Szego functional of this class is shown.

1. INTRODUCTION

Let A denote the class of functions

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots (1.1)$$

Which are holomorphic in £ and by S the subclass of A which consist of univalent functions only. Let $S^*(\beta)$ and $k(\beta)$ be subclasses of S consisting of functions which are respectively of, starlike and convex functions of order β , $0 \le \beta \le 1$ in £. That is functions satisfying respectively, $\operatorname{Re} \frac{zf'(z)}{f(z)} > \beta$ and $\operatorname{Re} \left(1 + \frac{zf''(z)}{f'(z)}\right) > \beta$ in £.

Babalola [1] defined a new class $L_{\lambda}(\beta)$ of λ -pseudo starlike functions of order β as

$$\operatorname{Re} \frac{z(f'(z))^{\lambda}}{f(z)} > \beta, \qquad z \in E.$$

Definition 1

An analytic function $f \in A$ belongs to $F_{\lambda}(\alpha)$ if and only if it satisfies the geometric condition

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)} + \frac{1}{\lambda} \frac{zf'}{f} [(f'(z))^{\lambda - 1} - 1] > \beta; \ z \in \pounds\right\}$$
 (1.2)

where $\lambda \ge 1$ is real and $0 \le \beta = \frac{\lambda - 1}{\lambda} < 1$

The class $F_{\lambda}(\beta)$ is a subclass of $L_{\lambda}(\beta)$ which consists of normalized analytic functions satisfying the geometric condition (1.1). This class of function reduces to class of convex function at $\lambda = 1$.

2. PRELIMINARY LEMMAS

In this paper we shall require the following preliminary results:

Key words and phrases: analytic and univalent functions; convex functions; coefficient inequalities.

©2021 Science Asia

Let P_{β} be the class of functions

$$p(z) = 1 + c_1 z + c_2 z^2 + \cdots$$

which are analytic in the unit disk E and satisfy $Re\ p(z) > \beta$ there, which means p(z) have positive real part of order β and in the class P(z). Any map p(z) in the class P can be written as $p(z) = (1-\beta)p_1 + \beta$ where $p_1 \in P$. The class of functions P_β is called Caratheodory functions of order β . If $\beta = 0$, then, we write P in place of P_β .

Lemma 2. 1 [4]

We shall need the well known Caratheodory inequality for P, which is $|c_k| \le 2$, k = 1,2,3,... and the following coefficient inequalities for P.

Lemma 2.2 [2]

Let $p \in P$, then

$$\left|c_2 - \sigma \frac{c_1^2}{2}\right| \le \begin{cases} 2(1-\sigma), & \text{if } \sigma \le 0, \\ 2, & \text{if } 0 \le \sigma \le 2, \\ 2(\sigma-1), & \text{if } \sigma \ge 2. \end{cases}$$

Lemma 2.3 [3]

Let $u=u_1+u_2i$, $v=v_1+v_2i$ and $\psi(u,v)$ be complex valued maps satisfying:

- (a) In a domain Ω of \mathbb{C}^2 , the function $\psi(u, v)$ is continuous.
- (b) $Re \ \psi(1,0) > 0 \text{ for } (1,0) \in \Omega$
- (c) $Re \ \psi(\zeta + (1 \zeta)u_2i, v_i) \le \zeta$, when $(\zeta + (1 \zeta)u_2i, v_i) \in \Omega$ and $2v_1 \le -(1 \zeta)(1 + u_2^2)$ for real $0 \le \zeta < 1$.

If $p \in P$ such that $(p(z), zp'(z)) \in \Omega$ and $Re(p(z), zp'(z)) > \zeta$ for $z \in E$, then $Re(p(z)) > \zeta$ in E

3. MAIN RESULTS

In this section, sufficient inclusion, the bounds on the second and third coefficients of functions in the class F_{λ} are obtained. Also, estimates of the Fekete-Szego functional of this class of function is determined.

Theorem 1

$$F_{\lambda} \subset L_{\lambda}(\beta)$$

Let $f \in F_{\lambda}$, then for some $p \in P$, we have

$$p(z) = \frac{z(f'(z))^{\lambda}}{f(z)}$$

Then logarithmic differentiation yields

$$p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{z(f'(z))^{\lambda}}{f(z)} - \frac{zf'(z)}{f(z)} + \frac{\lambda zf''(z)}{f'(z)}$$

$$=\lambda \left[\frac{1-\lambda}{\lambda} + 1 + \frac{zf''(z)}{f'(z)} + \frac{1}{\lambda} \frac{zf'(z)}{f(z)} (f'^{(\lambda-1)}(z) - 1) \right]$$

Since $f \in F_{\lambda}$, then

Re
$$\left[1 + \frac{zf''(z)}{f'(z)} + \frac{1}{\lambda} \frac{zf'(z)}{f(z)} (f'^{(\lambda-1)}(z) - 1)\right] \ge \frac{\lambda-1}{\lambda} = \beta$$

which implies

Re
$$\left(p(z) + \frac{zp'(z)}{p(z)}\right) > \beta$$

Where $0 \le \beta = \frac{\lambda - 1}{\lambda} < 1$.

Define

$$\psi(u,v) = u + \frac{v}{u},$$

Clearly $\psi(u, v)$ satisfies conditions (a) and (b) of Lemma 2.3. Also

$$Re\ \psi(\beta + (1-\beta)u_2i, v_1) = \beta + \frac{\beta v_1}{\beta^2 + (1-\beta)^2 u_2^2} < \beta$$

Whenever

$$v_1 \le \frac{-(1-\beta)(1+u_2^2)}{2}$$

Therefore ψ satisfies all the conditions of the Lemma 2.3 and so $Re\ p(z) > \beta$ Hence, $f \in L_{\lambda}$. And so

$$F_{\lambda} \subset L_{\lambda}(\beta)$$

This implies that the class F_{λ} is contained in $L_{\lambda}(\beta)$, a class studied by Babalola [1], which has been shown to consist of univalent functions only in E.

Theorem 2

Let $f \in F_{\lambda}(\beta)$. Then

$$|a_2| \le \frac{2}{4\lambda - 2}$$
 $|a_3| \le \begin{cases} \frac{24\lambda^2}{(4\lambda - 2)^2(9\lambda - 3)} & \text{if } 1 \le \lambda \le 2 + \sqrt{3} \\ \frac{2}{9\lambda - 3} & \text{if } \lambda \ge 2 + \sqrt{3} \end{cases}$

Proof

For $f \in F_{\lambda}$, there exists $p \in P$ such that

$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)} + \frac{1}{\lambda} \frac{zf'(z)}{f(z)} \left[(f'(z))^{(\lambda - 1)} - 1 \right] \right] > \frac{\lambda - 1}{\lambda}$$

We have

$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)} + \frac{1}{\lambda} \frac{zf'(z)}{f(z)} \left[(f'(z))^{(\lambda - 1)} - 1 \right] > \frac{\lambda - 1}{\lambda} = \beta$$

For $p \in P(z)$

$$\left[1 + \frac{zf''(z)}{f'(z)} + \frac{1}{\lambda} \frac{zf'(z)}{f(z)} \left[(f'(z))^{(\lambda - 1)} - 1 \right] > \beta + (1 - \beta)p(z)$$

Where $\beta = \frac{\lambda - 1}{\lambda}$. If we multiply both sides of the above equation by $\lambda f(z) f'(z)$, we have

$$\lambda f(z)f'(z) + \lambda f(z)f''(z) + f'(z)z(f'(z))^{\lambda} - z(f'(z))^{2} = \lambda f(z)f'(z)[\beta + (1-\beta)p(z)]$$

Expanding in series forms, we have

$$\lambda z + z^2 [7a_2\lambda - 2a_2] + z^3 [13a_3\lambda + 6a_2^2\lambda + 2a_2^2\lambda^2 - 3a_3 - 4a_2^2] + \dots = \lambda z + z^2 [c_1\lambda(1-\beta) + 3a_2\lambda] + z^3 [c_2\lambda(1-\beta) + 3a_2c_1\lambda(1-\beta) + 4a_3\lambda + 2a_2^2\lambda] + \dots$$

Comparing coefficients, we have

$$2(2\lambda - 1)a_2 = c_1$$

By using the caratheodory inequality $|c_1| \le 2$, gives the bound on a_2 , that is

$$|a_2| \le \frac{2}{4\lambda - 2}$$

Next we have

$$a_3(9\lambda - 3) = c_2 + 3a_2c_1 + a_2^2(4 - 4\lambda - 2\lambda^2)$$

Which gives

$$(9\lambda - 3)|a_3| \le \left|c_2 - \left(\frac{4(\lambda^2 - 4\lambda + 1)}{(16\lambda^2 - 16\lambda + 4)}\right)\frac{c_1^2}{2}\right|$$

Applying Lemma 2.2, with $\sigma = \frac{4(\lambda^2 - 4\lambda + 1)}{(16\lambda^2 - 16\lambda + 4)}$, we have the inequalities for a_3 , that is

$$|a_3| \le \begin{cases} \frac{24\lambda^2}{(4\lambda - 2)^2(9\lambda - 3)} & \text{if } 1 \le \lambda \le 2 + \sqrt{3} \\ \frac{2}{9\lambda - 3} & \text{if } \lambda \ge 2 + \sqrt{3} \end{cases}$$

Corollary 1

For the case $\lambda = 1$, we have

$$|a_2| \le 1, |a_3| \le 1$$

Which are known bounds for the class of convex functrions.

Theorem 3

Let $f \in F_{\lambda}$. Then

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{4(6\lambda^2 - \mu(9\lambda - 3))}{(4\lambda - 2)^2(9\lambda - 3)} & \text{if } \mu \le \frac{8\lambda - 2\lambda^2 - 2}{9\lambda - 3} \\ \frac{2}{9\lambda - 3} & \text{if } \frac{8\lambda - 2\lambda^2 - 2}{9\lambda - 3} \le \mu \le \frac{2(7\lambda^2 - 4\lambda + 1)}{9\lambda - 3} \\ \frac{4(\mu(9\lambda - 3) - 6\lambda^2)}{(4\lambda - 2)^2(9\lambda - 3)} & \text{if } \mu \ge \frac{2(7\lambda^2 - 4\lambda + 1)}{9\lambda - 3} \end{cases}$$

From (5) and (6),

$$|a_3 - \mu a_2^2| \le \left| \frac{1}{9\lambda - 3} \left(c_2 - \left(\frac{4(\lambda^2 - 4\lambda + 1)}{(16\lambda^2 - 16\lambda + 4)} \right) \frac{c_1^2}{2} \right) - \mu \left(\frac{c_1}{2(2\lambda - 1)} \right)^2 \right|$$

Which gives

$$|a_3 - \mu a_2^2| \le \left| \frac{1}{9\lambda - 3} \left(c_2 - \left(\frac{2[2(\lambda^2 - 4\lambda + 1) + \mu(9\lambda - 3)]}{(4\lambda - 2)^2} \right) \frac{c_1^2}{2} \right) \right|$$

The conclusion follows by taking $\sigma = \frac{2[2(\lambda^2 - 4\lambda + 1) + \mu(9\lambda - 3)]}{(4\lambda - 2)^2}$ in Lemma 2.2.

References

- [1] K. O. Babalola, On λ -Pseudo-Starlike functions. Journal of Classical Analysis, 3(2) (2013),137-147.
- [2] K. O. Babalola, T. O. Opoola, On the Coefficients of a Certain Class of Analytic Functions. Advances in Inequalities for Series. Nova Science Publishers Inc., New York, (2008), 1-13.
- [3] K. O. Babalola, T. O. Opoola, Iterated integral transforms of Caratheodory functions and their applications to analytic and univalent functions. Tamkang Journal of Mathematics, 37(4) (2006), 355-366.
- [4] P. L. Duren, Univalent Functions. Springer Verlag. New York, (1983).