<u>Assignment - SQL [Major]-</u> <u>Arunesh Trivedi</u>

Q1) Create a table "**STATION** " to store information about weatherobservation stations:

ID	Number	Primary key
CITY	CHAR(20)	
STATE	CHAR(2)	
LAT_N	Number	
LONG_W	Number	

CODE:-

```
CREATE TABLE STATION (
ID INTEGER PRIMARY KEY,
CITY CHAR(20),
STATE CHAR(2),
LAT_N REAL,
LONG_W REAL
);
```


Q2) Insert the following records into the table:

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	СО	40	105
66	CARIBOU	ME	47	68

CODE:-

INSERT INTO STATION VALUES (13, 'Phoenix', 'AZ', 33, 112); INSERT INTO STATION VALUES (44, 'Denver', 'CO', 40, 105); INSERT INTO STATION VALUES (66, 'Caribou', 'ME', 47, 68);

Q3) Execute a query to look at table **STATION** in undefined order. **CODE:-**

SELECT * FROM STATION;

Q4) Execute a query to select Northern stations (Northern latitude > 39.7).

CODE:-

SELECT * FROM STATION WHERE LAT_N >39.7;

5. Create another table, **'STATS'**, to store normalized temperature and precipitation data:

Column	Data type	Remark
ID	Number	ID must match with some ID from the STATION table(so name & location will be known).
MONTH	Number	The range of months is between (1 and 12)
TEMP_F	Number	Temperature is in Fahrenheit degrees, Ranging between (80 and 150)
RAIN_I	Number	Rain is in inches, Ranging between (0 and 100)

There will be no Duplicate **ID** and **MONTH** combination.

CODE:-

CREATE TABLE STATS(

ID INTEGER REFERENCES STATION(ID), MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12), TEMP_F REAL CHECK (TEMP_F BETWEEN -80 AND 150), RAIN_I REAL CHECK (RAIN_I BETWEEN 0 AND 100), PRIMARY KEY (ID, MONTH)

Q6) Populate the table **STATS** with some statistics for **January** and **July**:

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.8	2.11
66	1	6.7	2.1
66	7	65.8	4.52

CODE:-

INSERT INTO STATS VALUE (13,1,57.4,.31);

INSERT INTO STATS VALUE (13,7,91.4,5.15);

INSERT INTO STATS VALUE (44,1,27.3,.18);

INSERT INTO STATS VALUE (44,7,74.8,2.11);

INSERT INTO STATS VALUE (66,1,6.7,2.1);

INSERT INTO STATS VALUE (66,7,65.8,4.52);

Q7) Execute a query to display temperature stats (from the STATS table) for each city (from the STATION table).

CODE:-

SELECT * FROM STATION, STATS WHERE STATION.ID = STATS.ID;

Q8) Execute a query to look at the table **STATS**, ordered by month and greatest rainfall, with columns rearranged. It should also show the corresponding cities.

CODE:-

SELECT CITY, MONTH, STATION.ID, RAIN_I, TEMP_F FROM STATS RIGHT JOIN STATION ON STATS.ID = STATION.ID ORDER BY MONTH, RAIN | DESC;

Q9) Execute a query to look at temperatures for **July** from table **STATS**, lowest temperatures first, picking up **city name** and **latitude**.

CODE:-

SELECT TEMP_F, CITY, LAT_N FROM STATS, Station WHERE MONTH = 7 AND STATS.ID = Station.ID ORDER BY TEMP_F;

Q10) Execute a query to show **MAX** and **MIN** temperatures as well as average rainfall for each city.

CODE:-

SELECT CITY, MAX(TEMP_F) AS "MAXIMUM (TEMP_F)", MIN(TEMP_F) AS "MINIMUM (TEMP_F)", AVG(RAIN_I) AS "AVERAGE (RAINFALL_F)"

FROM Station

JOIN STATS

ON Station.ID = STATS.ID

GROUP BY CITY:

Q11) Execute a query to display each city's monthly temperature in Celcius and rainfall in Centimeter.

CODE:-

SELECT ST.CITY, S.MONTH,

ROUND(((S.TEMP_F-32) * 5/9), 2) AS TEMPERATURE_CELCIUS, ROUND((S.RAIN_I * 2.54), 2) AS RAINFALL_CENTIMETER FROM STATS S

JOIN STATION ST

ON S.ID=ST.ID:

Q12) Update all rows of table STATS to compensate for faulty rain gauges known to read 0.01 inches low.

CODE:-

UPDATE STATS SET RAIN_I = RAIN_I + 0.01;

SELECT * FROM STATS;

Q13) Update Denver's July temperature reading as 74.9.

CODE:-

UPDATE STATS

SET TEMP F = 74.9

WHERE ID = 44

AND MONTH = 7;

