Baseball

Hanying Ji; Jiaqian Yu 2018/4/19

Setting Environment

```
library(Lahman)
library(dplyr)
library(tidyr)
library(MASS)
library(gamlss)
```

Data Preparation

Our dataset is from package "Lahman" in R, providing the tables from the "Sean Lahman Baseball Database"

```
# Define pitchers: Those players whose total amounts of pitch > 3
pitchers <-Pitching %>%
   group_by(playerID) %>%
   summarize(gamesPitched=sum(G)) %>%
   filter(gamesPitched>3)
```

Warning: package 'bindrcpp' was built under R version 3.4.4

```
#collect data of batters from 2000 to 2016
info<-Batting %>%
  filter(AB>0, yearID%in%c(2000:2016)) %>%
  anti_join(pitchers, by="playerID")
info<-info%>%
  dplyr::select(playerID, AB, H) %>%
  group_by(playerID) %>%
  summarize(Hits=sum(H), AtBats=sum(AB))%>%
  mutate(BattingAvg=Hits/AtBats)
# add batters' names and hand preferance for batting
allinfo<-Master %>%
  tbl_df() %>%
  dplyr::select(playerID, nameFirst, nameLast, bats) %>%
  unite(name, nameFirst, nameLast, sep = " ") %>%
  inner_join(info, by="playerID")
head(allinfo)
```

```
## # A tibble: 6 x 6
    playerID name
                              bats
                                     Hits AtBats BattingAvg
                               <fct> <int> <int>
##
    <chr>>
             <chr>
                                                      <dbl>
## 1 abadan01 Andy Abad
                              L
                                         2
                                               21
                                                     0.0952
## 2 abbotje01 Jeff Abbott
                              R
                                        70
                                              257
                                                     0.272
## 3 abbotku01 Kurt Abbott
                              R
                                        36
                                              166
                                                     0.217
                                              386
## 4 abercre01 Reggie Abercrombie R
                                        86
                                                     0.223
## 5 abernbr01 Brent Abernathy R
                                       212
                                              868
                                                     0.244
```

Model 1

```
# lowest BattingAvg
head(allinfo[order(allinfo$BattingAvg,decreasing = TRUE),])
## # A tibble: 6 x 6
##
    playerID name
                             bats
                                    Hits AtBats BattingAvg
##
     <chr>
               <chr>
                             <fct> <int>
                                         <int>
                                                      <dbl>
## 1 davidda01 Dave Davidson L
                                       1
                                                      1.00
                                              1
## 2 ohmeke01 Kevin Ohme
                                       1
                                              1
                                                     1.00
## 3 roachja01 Jason Roach
                             R
                                       2
                                              2
                                                     1.00
## 4 tupmama01 Matt Tupman
                           L
                                       1
                                              1
                                                     1.00
## 5 mantoje01 Jeff Manto
                             R.
                                       4
                                              5
                                                     0.800
## 6 brettry01 Ryan Brett
                             В
                                                     0.667
# highest BattingAvg
head(allinfo[order(allinfo$BattingAvg,decreasing = FALSE),])
## # A tibble: 6 x 6
##
     playerID name
                                       Hits AtBats BattingAvg
                                bats
##
     <chr>>
               <chr>>
                                <fct> <int>
                                             <int>
                                                         <dbl>
## 1 adamsla01 Lane Adams
                                R
                                          0
                                                 3
                                                             0
                                                 2
## 2 bantzbr01 Brandon Bantz
                                R
                                          0
                                                             0
## 3 barkese01 Sean Barker
                                R
                                          Λ
                                                 2
                                                             0
## 4 baronst01 Steve Baron
                                R
                                          0
                                                11
                                                             0
## 5 barteki01 Kimera Bartee
                                В
                                          0
                                                19
                                                             0
## 6 barthji01 Jimmy Barthmaier R
                                          0
                                                 3
                                                             0
```

Model 2

```
set.seed(1)
alpha < -seq(1,200,1)
beta<-367*alpha/133
pbeta(0.3,alpha,beta)
##
     [1] 0.6262650 0.6290661 0.6377271 0.6471558 0.6564142 0.6652789 0.6737082
##
     [8] 0.6817149 0.6893279 0.6965793 0.7035000 0.7101178 0.7164580 0.7225426
   [15] 0.7283913 0.7340215 0.7394487 0.7446866 0.7497474 0.7546424 0.7593813
   [22] 0.7639733 0.7684266 0.7727485 0.7769459 0.7810252 0.7849919 0.7888516
##
   [29] 0.7926090 0.7962687 0.7998349 0.8033117 0.8067026 0.8100112 0.8132405
##
  [36] 0.8163938 0.8194737 0.8224830 0.8254242 0.8282997 0.8311117 0.8338624
  [43] 0.8365538 0.8391879 0.8417663 0.8442910 0.8467635 0.8491854 0.8515582
   [50] 0.8538834 0.8561623 0.8583963 0.8605866 0.8627344 0.8648409 0.8669071
##
   [57] 0.8689342 0.8709232 0.8728751 0.8747908 0.8766712 0.8785172 0.8803297
  [64] 0.8821094 0.8838572 0.8855739 0.8872601 0.8889167 0.8905441 0.8921433
## [71] 0.8937147 0.8952590 0.8967768 0.8982688 0.8997354 0.9011772 0.9025948
   [78] 0.9039887 0.9053593 0.9067072 0.9080329 0.9093367 0.9106193 0.9118809
## [85] 0.9131220 0.9143431 0.9155444 0.9167266 0.9178898 0.9190345 0.9201610
## [92] 0.9212697 0.9223610 0.9234351 0.9244924 0.9255332 0.9265579 0.9275666
```

```
[99] 0.9285598 0.9295377 0.9305006 0.9314487 0.9323824 0.9333019 0.9342075
## [106] 0.9350993 0.9359777 0.9368429 0.9376951 0.9385345 0.9393614 0.9401760
## [113] 0.9409786 0.9417692 0.9425482 0.9433156 0.9440718 0.9448170 0.9455512
## [120] 0.9462746 0.9469876 0.9476902 0.9483826 0.9490650 0.9497375 0.9504004
## [127] 0.9510537 0.9516976 0.9523324 0.9529580 0.9535747 0.9541827 0.9547820
## [134] 0.9553728 0.9559553 0.9565295 0.9570957 0.9576538 0.9582042 0.9587468
## [141] 0.9592818 0.9598093 0.9603295 0.9608424 0.9613482 0.9618470 0.9623388
## [148] 0.9628239 0.9633023 0.9637740 0.9642393 0.9646981 0.9651507 0.9655971
## [155] 0.9660373 0.9664715 0.9668998 0.9673223 0.9677390 0.9681501 0.9685555
## [162] 0.9689555 0.9693501 0.9697393 0.9701232 0.9705020 0.9708757 0.9712444
## [169] 0.9716081 0.9719669 0.9723210 0.9726703 0.9730149 0.9733549 0.9736904
## [176] 0.9740214 0.9743480 0.9746703 0.9749883 0.9753021 0.9756117 0.9759173
## [183] 0.9762188 0.9765163 0.9768099 0.9770996 0.9773856 0.9776677 0.9779462
## [190] 0.9782210 0.9784922 0.9787599 0.9790240 0.9792847 0.9795420 0.9797960
## [197] 0.9800466 0.9802940 0.9805382 0.9807792
alpha0<-126
beta0<-347.6842
set.seed(1)
df<-data.frame(x=rbeta(1000,alpha0,beta0))</pre>
library(ggplot2)
ggplot(df,aes(df$x))+
  stat_function(fun=dbeta,args=list(alpha0,beta0),color="red")+
 xlim(0,0.5)+
  xlab("x")+
```



```
allinfo\salpha1<-alpha0+allinfo\sHits
allinfo$beta1<-beta0+allinfo$AtBats-allinfo$Hits
allinfo\BattingAvg_post<-allinfo\allinfo\allinfo\allinfo\allinfo\beta1)
# lowest BattingAvg post
head(allinfo[order(allinfo$BattingAvg_post,decreasing = TRUE),])
## # A tibble: 6 x 9
##
    playerID name
                                bats
                                        Hits AtBats BattingAvg alpha1 beta1
##
     <chr>
               <chr>
                                 <fct> <int> <int>
                                                         <dbl> <dbl> <dbl>
                                                                 2645 5682
## 1 cabremi01 Miguel Cabrera
                                        2519
                                               7853
                                                         0.321
## 2 guerrvl01 Vladimir Guerrero R
                                        2092
                                               6570
                                                         0.318
                                                                 2218 4826
## 3 bondsba01 Barry Bonds
                           L
                                        925
                                               2871
                                                         0.322
                                                                1051 2294
## 4 heltoto01 Todd Helton
                                L
                                               6761
                                                         0.317
                                                                 2267 4968
                                        2141
## 5 ramirma02 Manny Ramirez
                                R
                                        1642
                                               5213
                                                         0.315
                                                                 1768
                                                                       3919
## 6 suzukic01 Ichiro Suzuki
                                L
                                        3030
                                                                 3156 7007
                                               9689
                                                         0.313
## # ... with 1 more variable: BattingAvg_post <dbl>
# highest BattingAvg_post
head(allinfo[order(allinfo$BattingAvg_post,decreasing = FALSE),])
## # A tibble: 6 x 9
##
    playerID name
                             bats
                                    Hits AtBats BattingAvg alpha1 beta1
     <chr>
               <chr>
                             <fct> <int> <int>
                                                     <dbl> <dbl> <dbl>
## 1 mathije01 Jeff Mathis
                                     401
                                           2038
                                                     0.197
                                                              527 1985
                             R
## 2 zuninmi01 Mike Zunino
                            R
                                     219
                                           1125
                                                     0.195
                                                              345 1254
## 3 cashke01 Kevin Cash
                                                              243
                                                                    872
                             R
                                     117
                                           641
                                                     0.183
## 4 woodbr01 Brandon Wood R
                                     130
                                                     0.186
                                            700
                                                              256
                                                                    918
## 5 sadledo01 Donnie Sadler R
                                      97
                                            537
                                                              223
                                                                    788
                                                     0.181
## 6 hicksbr01 Brandon Hicks R
                                      45
                                            294
                                                     0.153
                                                              171
                                                                    597
## # ... with 1 more variable: BattingAvg_post <dbl>
Top5<- allinfo[order(allinfo$BattingAvg_post,decreasing = TRUE),][1:5,]$playerID
Top5_old<-allinfo[order(allinfo$BattingAvg,decreasing = TRUE),][1:5,]$playerID
\#\ Tail5 < -allin fo [order(allin fo \$ Batting Avg\_post, decreasing = FALSE),] [1:5,] \$ player ID
Top5info <- allinfo %>%
   filter(playerID %in% c(Top5,Top5_old))
library(broom)
## Warning: package 'broom' was built under R version 3.4.4
five <- Top5info %>%
   tidyr::crossing(x = seq(.18, .4, .0002)) \%>%
   ungroup() %>%
   mutate(density = dbeta(x, alpha1, beta1))
ggplot(five) +
  geom_line(aes(x, density,color=name)) +
  stat function(fun = function(x) dbeta(x, alpha0, beta0),
               lty = 2, color = "black")
```



```
ggplot(data=allinfo)+
  geom_point(mapping=aes(BattingAvg,BattingAvg_post,colour=AtBats))+
  scale_colour_gradientn(colours = blues9)+
  geom_hline(yintercept = alpha0/(alpha0+beta0))+
  geom_abline(slope=1,color="blue")
```


There are a lot of method to fit a probability distribution from data in R. We???!ll use the fitdistr function from MASS

Prior distribution

Then, for each player, they all have their Empericical Bayesian estimators for their BattingAvg based on the prior distribution given by the representative players

```
allinfo<-allinfo%>%
  mutate(EB_BattingAvg_post=(Hits+alpha0_eb)/(AtBats+alpha0_eb+beta0_eb))
# lowest EB estimator BattingAvg
head(allinfo[order(allinfo$EB_BattingAvg_post,decreasing = TRUE),])
## # A tibble: 6 x 10
##
     playerID
               name
                                  bats
                                          Hits AtBats BattingAvg alpha1 beta1
##
     <chr>
               <chr>
                                                <int>
                                                            <dbl>
                                                                   <dbl> <dbl>
                                  <fct> <int>
## 1 cabremi01 Miguel Cabrera
                                  R
                                          2519
                                                 7853
                                                           0.321
                                                                    2645
                                                                          5682
                                                 6570
                                                           0.318
## 2 guerrvl01 Vladimir Guerrero R
                                          2092
                                                                    2218
                                                                          4826
## 3 bondsba01 Barry Bonds
                                  L
                                          925
                                                 2871
                                                           0.322
                                                                    1051
                                                                          2294
## 4 heltoto01 Todd Helton
                                                 6761
                                                           0.317
                                  L
                                          2141
                                                                    2267
                                                                          4968
## 5 ramirma02 Manny Ramirez
                                  R
                                          1642
                                                 5213
                                                           0.315
                                                                    1768
                                                                          3919
## 6 suzukic01 Ichiro Suzuki
                                  L
                                          3030
                                                 9689
                                                           0.313
                                                                    3156
                                                                          7007
## # ... with 2 more variables: BattingAvg_post <dbl>,
       EB_BattingAvg_post <dbl>
# highest EB estimator BattingAvq
head(allinfo[order(allinfo$EB_BattingAvg_post,decreasing = FALSE),])
## # A tibble: 6 x 10
##
                                     Hits AtBats BattingAvg alpha1 beta1
     playerID
               name
                              bats
     <chr>>
               <chr>>
                              <fct> <int>
                                            <int>
                                                       <dbl>
                                                               <dbl> <dbl>
                                      401
                                             2038
                                                       0.197
                                                                     1985
## 1 mathije01 Jeff Mathis
                              R
                                                                 527
```

```
345 1254
## 2 zuninmi01 Mike Zunino
                                    219
                                           1125
                                                    0.195
## 3 cashke01 Kevin Cash
                                    117
                                           641
                                                    0.183
                                                              243
                                                                   872
                            R.
## 4 woodbr01 Brandon Wood R
                                    130
                                           700
                                                    0.186
                                                             256
                                                                   918
## 5 hicksbr01 Brandon Hicks R
                                                                   597
                                     45
                                            294
                                                    0.153
                                                              171
                                           537
## 6 sadledo01 Donnie Sadler R
                                     97
                                                     0.181
                                                              223
                                                                   788
## # ... with 2 more variables: BattingAvg post <dbl>,
     EB BattingAvg post <dbl>
```

As we can see, the Empricial Bayes didn't simply choose those players who only have one or two bats, instead, players with large amount of AtBats were chosen.

```
career_eb <- allinfo %>%
 mutate(eb_estimate = (Hits + alpha0_eb) / (AtBats + alpha0_eb + beta0_eb))%>%
  mutate(alpha1_eb = Hits + alpha0_eb,
           beta1_eb = AtBats - Hits + beta0_eb)%>%
  dplyr::select(playerID, name, Hits, AtBats, BattingAvg, eb_estimate, alpha1_eb, beta1_eb)
career_eb <- career_eb %>%
    mutate(low = qbeta(.025, alpha1_eb, beta1_eb),
           high = qbeta(.975, alpha1_eb, beta1_eb))
set.seed(2018)
some <- career_eb %>%
    sample_n(20) %>%
   mutate(name = paste0(name, " (", Hits, "/", AtBats, ")"))
frequentist <- some %>%
    group_by(playerID, name, AtBats) %>%
    do(tidy(binom.test(.$Hits, .$AtBats))) %>%
    dplyr::select(playerID, name, estimate, low = conf.low, high = conf.high) %%
   mutate(method = "Confidence")
## Adding missing grouping variables: `AtBats`
bayesian <- some %>%
   dplyr::select(playerID, name, AtBats, estimate = eb_estimate,
           low = low, high = high) %>%
   mutate(method = "Credible")
combined <- bind_rows(frequentist, bayesian)</pre>
combined %>%
    #mutate(name = reorder(name, -AtBats)) %>%
    ggplot(aes(estimate, name, color = method, group = method)) +
    geom point() +
   geom_errorbarh(aes(xmin = low, xmax = high)) +
    geom_vline(xintercept = alpha0_eb / (alpha0_eb + beta0_eb), color = "red", lty = 2) +
   xlab("Estimated batting average") +
   ylab("Player") +
   labs(color = "")
```


Model 3

```
library(ggplot2)
allinfo %>%
  filter(AtBats >= 20) %>%
  ggplot(aes(AtBats, BattingAvg)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  scale_x_log10()
```



```
#fit the initial model
fit <- gamlss(cbind(Hits, AtBats - Hits) ~ log(AtBats),</pre>
              data = allinfo,
              family = BB(mu.link = "identity"))
## GAMLSS-RS iteration 1: Global Deviance = 23213.77
## GAMLSS-RS iteration 2: Global Deviance = 18053.84
## GAMLSS-RS iteration 3: Global Deviance = 16828.39
## GAMLSS-RS iteration 4: Global Deviance = 16827.04
## GAMLSS-RS iteration 5: Global Deviance = 16827.04
library(broom)
td <- tidy(fit)
td
     parameter
                                           std.error statistic
                                                                       p.value
##
                      term
                              estimate
## 1
           mu (Intercept) 0.15170322 0.0031952427 47.47784 0.000000e+00
## 2
            mu log(AtBats) 0.01432317 0.0004368415 32.78803 8.850021e-193
         sigma (Intercept) -6.72320574 0.0592102640 -113.54798 0.000000e+00
#calculate some prior dist
u0 <- 0.1517
lamda <- 0.0143
sigma0 < -0.0012
u1 <- u0+lamda*log(1)
u2 \leftarrow u0+lamda*log(10)
u3 \leftarrow u0+lamda*log(100)
```

u4 <- u0 + lamda * log(1000)

```
u5 <- u0+lamda*log(10000)
a1 <- u1/sigma0
a2 <- u2/sigma0
a3 <- u3/sigma0
a4 <- u4/sigma0
a5 <- u5/sigma0
b1 <- (1-u1)/sigma0
b2 <- (1-u2)/sigma0
b3 <- (1-u3)/sigma0
b4 <- (1-u4)/sigma0
b5 <- (1-u5)/sigma0
df<-data.frame(x=seq(0.1,0.4,1000))</pre>
ggplot(df,aes(df$x),col())+
  stat_function(fun = dbeta,args=list(a1,b1), color = "red",size = 1)+
  stat_function(fun = dbeta,args=list(a2,b2), color = "yellow",size = 1)+
  stat_function(fun = dbeta,args=list(a3,b3), color = "green",size = 1)+
  stat_function(fun = dbeta,args=list(a4,b4), color = "blue",size = 1)+
  stat_function(fun = dbeta,args=list(a5,b5), color = "purple",size = 1)+
    xlim(0.1,0.4)+
  labs(title="Updated Prior distribution",x="Batting Average",y="Prior Density")
```

Updated Prior distribution

Model 4

```
#left hand and right hand
career2 <- allinfo %>%
  filter(!is.na(bats)) %>%
  mutate(bats = relevel(bats, "R"))
fit2 <- gamlss(cbind(Hits, AtBats-Hits) ~log(AtBats) +bats,</pre>
               data=career2,
               family=BB(mu.link="identity"))
## GAMLSS-RS iteration 1: Global Deviance = 23214.08
## GAMLSS-RS iteration 2: Global Deviance = 18055.05
## GAMLSS-RS iteration 3: Global Deviance = 16825.66
## GAMLSS-RS iteration 4: Global Deviance = 16824.12
## GAMLSS-RS iteration 5: Global Deviance = 16824.12
tidy(fit2)
##
     parameter
                       term
                                 estimate
                                              std.error
                                                          statistic
            mu (Intercept) 0.1514003660 0.0032169312
## 1
                                                          47.063601
## 2
            mu log(AtBats) 0.0143041068 0.0004367956
                                                          32.747826
## 3
            mu
                     batsB -0.0006405712 0.0015137873
                                                         -0.423158
## 4
                     batsL 0.0016889352 0.0011460300
                                                          1.473727
## 5
         sigma (Intercept) -6.7260545279 0.0593051216 -113.414396
           p.value
## 1 0.000000e+00
## 2 2.306952e-192
## 3 6.722208e-01
## 4 1.406964e-01
## 5 0.00000e+00
#calculate some prior dist
u0 <- 0.1514
lamda <- 0.0143
phi <- 0.0017
sigma0 < -0.0012
BattingHand \leftarrow c(1,0,1,0,1,0,1,0,1,0)
AB \leftarrow c(1,10,100,1000,10000)
u1l <- u0+lamda*log(1)+phi*1
u1r \leftarrow u0+lamda*log(1)+phi*0
u21 \leftarrow u0+lamda*log(10)+phi*1
u2r \leftarrow u0+lamda*log(10)+phi*0
u31 <- u0+lamda*log(100)+phi*1
u3r <- u0+lamda*log(100)+phi*0
u41 <- u0+lamda*log(1000)+phi*1
u4r <- u0+lamda*log(1000)+phi*0
u51 <- u0+lamda*log(10000)+phi*1
u5r <- u0+lamda*log(10000)+phi*0
a11 <- u11/sigma0
a1r <- u1r/sigma0
a21 <- u21/sigma0
a2r <- u2r/sigma0
a31 <- u31/sigma0
```

```
a3r <- u3r/sigma0
a41 <- u41/sigma0
a4r <- u4r/sigma0
a51 <- u51/sigma0
a5r <- u5r/sigma0
b1l <- (1-u11)/sigma0
b1r \leftarrow (1-u1r)/sigma0
b21 <- (1-u21)/sigma0
b2r \leftarrow (1-u2r)/sigma0
b31 < (1-u31)/sigma0
b3r <- (1-u3r)/sigma0
b41 <- (1-u41)/sigma0
b4r \leftarrow (1-u4r)/sigma0
b51 <- (1-u51)/sigma0
b5r <- (1-u5r)/sigma0
df < -data.frame(x = seq(0.1, 0.35, 1000))
ggplot(df,aes(df$x))+
  stat_function(fun = dbeta,args=list(a11,b11), color = "red",size = 1)+
  stat_function(fun = dbeta,args=list(a21,b21), color = "yellow",size = 1)+
  stat_function(fun = dbeta,args=list(a31,b31), color = "green",size = 1)+
  stat function(fun = dbeta,args=list(a41,b41), color = "blue",size = 1)+
  stat_function(fun = dbeta,args=list(a51,b51), color = "purple",size = 1)+
  stat_function(fun = dbeta,args=list(a1r,b1r), color = "red",size = 1,linetype="dashed")+
  stat_function(fun = dbeta,args=list(a2r,b2r), color = "yellow",size = 1,linetype="dashed")+
  stat_function(fun = dbeta,args=list(a3r,b3r), color = "green",size = 1,linetype="dashed")+
  stat_function(fun = dbeta,args=list(a4r,b4r), color = "blue",size = 1,linetype="dashed")+
  stat_function(fun = dbeta,args=list(a5r,b5r), color = "purple",size = 1,linetype="dashed")+
    xlim(0.1,0.35) +
  labs(title="Updated Prior distribution",x="Batting Average",y="Prior Density")
```

Updated Prior distribution

