Manufacturing Challenges for BOP & Graphite Stack Components

Feb 28, 2014

Areas of Development

- C.T.E
- Semi Dissipative Materials
- Impregnation of Metal into Graphite Titanium
- Chemical Vapor Deposition/Physical Vapor Deposition
- Silicon Carbide
- Graphene

Balance of Plant Manifold Assembly

- Material selection process
 - High-density Polyethylene (HDPE)
 - Polyoxymethylene (POM)
 - Polyamide (PA)
 - Polyvinylidene Fluoride (PVDF)
 - Polyphenylene Sulfide (PPS)
 - Polyphenylsulfone (PPSU)

Generation II to Generation III Manifold Assembly

- Generation II
 - Four-layer, machined PVDF assembly
 - Chemically compatible
 - Good structural performance (Heavy)
 - Built for function (form and fit to follow)
- Generation III
 - Good structural performance
 - Steel tubular frame to support loads
 - Static & Dynamic FEA completed
 - Lighter weight
 - Extra material removed
 - Fewer parts

Graphite is a form of Carbon

Advantages of POCO Graphite

- Proven in many demanding plasma & CVD applications
- High purity material
- Electrically conductive
- High strength
- Uniform microstructure
- Unique cleaning solutions to prevent particulation
- Proven Cost of Ownership advantages over other materials

Very unique structure

Strong bonds within the crystal plane

Weak bonds between the planes

Everyone's Ideal Structure

Specialty Coating Technology

- Proprietary CVD and PVD processes at <u>low temperatures</u> with <u>concentrated precursors</u>
- Low temperature allows use on materials that cannot withstand high temperatures
 - Coatings can be applied to polymers, metals, ceramics
 - Produces high quality coatings (less cracking and pinholes)
- Concentrated precursors produce very high purity coatings

E-Chucks

POCO SUPERSIC®

Appendix

creating a material advantage

Graphite Property Trends

For increase in →	AD	Process Temp	Particle Size	Comments
Strength	↑	•	*	Flaw Size
Electrical	J.	L	<u>J</u>	Microstructure
Resistivity			V	iviiciostructure
Hardness	↑	•	•	Surface Finish
Thermal		_	_	Surface Finish
Conductivity	↑	↑	1	Surface Fiffish
CTE	↑	↑	*	Microstructure

Development of Crystalline Alignment during Graphitization

Primary Market Areas

Semiconductor

Glass

EDM

Optics

Industrial/Biomedical Products

