Monthly Electricity Production in GWh [2010-2022]

July 2, 2025

```
[108]: import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
[109]: | df = pd.read_csv('../data/data.csv')
       print(df.head())
       print(df.info())
           COUNTRY CODE_TIME
                                                     MONTH MONTH_NAME
                                        TIME
                                               YEAR
         Australia
                      JAN2010
                                January 2010
                                               2010
                                                          1
                                                               January
         Australia
                      JAN2010
                                January 2010
                                               2010
                                                          1
                                                               January
        Australia
                      JAN2010
                                January 2010
                                               2010
                                                          1
                                                               January
                                January 2010
      3
         Australia
                      JAN2010
                                               2010
                                                          1
                                                               January
         Australia
                      JAN2010
                                January 2010
                                                          1
                                               2010
                                                               January
                          PRODUCT
                                                DISPLAY_ORDER
                                                                yearToDate
                                        VALUE
      0
                             Hydro
                                      990.728
                                                                 16471.891
                                                             2
      1
                              Wind
                                      409.469
                                                                  4940.909
      2
                             Solar
                                       49.216
                                                             3
                                                                   908.238
      3
                       Geothermal
                                        0.083
                                                             4
                                                                     0.996
         Total combustible fuels 19289.730
                                                               214302.969
         previousYearToDate
                                  share
      0
                         {\tt NaN}
                              0.047771
      1
                         NaN
                              0.019744
      2
                         NaN
                              0.002373
      3
                              0.000004
                         NaN
      4
                              0.930108
                         {\tt NaN}
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 181915 entries, 0 to 181914
      Data columns (total 12 columns):
           Column
                                 Non-Null Count
                                                   Dtype
           COUNTRY
       0
                                 181915 non-null
                                                   object
       1
           CODE_TIME
                                 181915 non-null
                                                   object
       2
           TIME
                                 181915 non-null
                                                   object
       3
                                 181915 non-null
                                                   int64
           YEAR
           MONTH
                                 181915 non-null
                                                   int64
```

```
PRODUCT
                             181915 non-null object
      6
      7
          VALUE
                             181915 non-null float64
          DISPLAY_ORDER
                             181915 non-null int64
                             181915 non-null float64
          yearToDate
      10 previousYearToDate 164810 non-null float64
                             181915 non-null float64
     dtypes: float64(4), int64(3), object(5)
     memory usage: 16.7+ MB
     None
[110]: # Missing values are checked for each column
      print("Missing values:\n", df.isna().sum())
     Missing values:
      COUNTRY
                               0
     CODE_TIME
                              0
                              0
     TIME
     YEAR
                              0
     MONTH
                              0
     MONTH NAME
     PRODUCT
                              0
     VALUE
                              0
     DISPLAY_ORDER
     yearToDate
                              0
     previousYearToDate
                          17105
     share
                              0
     dtype: int64
[111]: # Create continent mapping
      continent_map = {
          # Europe
          'Finland': 'Europe', 'Denmark': 'Europe', 'Iceland': 'Europe', 'Sweden':
          'Netherlands': 'Europe', 'Norway': 'Europe', 'Luxembourg': 'Europe',
       'Austria': 'Europe', 'Belgium': 'Europe', 'Ireland': 'Europe', 'Czechia': [
       'Lithuania': 'Europe', 'United Kingdom': 'Europe', 'Slovenia': 'Europe',
       'Kosovo': 'Europe', 'Romania': 'Europe', 'Estonia': 'Europe', 'Poland':
       'Spain': 'Europe', 'Serbia': 'Europe', 'Malta': 'Europe', 'Italy': 'Europe',
          'Slovakia': 'Europe', 'Latvia': 'Europe', 'Cyprus': 'Europe', 'Portugal':
       'Hungary': 'Europe', 'Croatia': 'Europe', 'Greece': 'Europe', 'Bosnia and
       →Herzegovina': 'Europe',
```

181915 non-null object

5

MONTH_NAME

```
'Moldova': 'Europe', 'Montenegro': 'Europe', 'Bulgaria': 'Europe', 'North⊔
→Macedonia': 'Europe',
   'Albania': 'Europe', 'Ukraine': 'Europe',
   # Middle East
   'Kuwait': 'Middle East', 'Saudi Arabia': 'Middle East',
   'United Arab Emirates': 'Middle East', 'Bahrain': 'Middle East', 'Iraq': u
\hookrightarrow 'Middle East',
   'Iran': 'Middle East', 'State of Palestine': 'Middle East', 'Jordan':_{\sqcup}
→'Middle East'.
   'Yemen': 'Middle East', 'Lebanon': 'Middle East',
   # Asia
   'Singapore': 'Asia', 'Taiwan Province of China': 'Asia', 'Uzbekistan': 🗆
   'Kazakhstan': 'Asia', 'Japan': 'Asia', 'South Korea': 'Asia', 'Philippines': [
'Vietnam': 'Asia', 'Thailand': 'Asia', 'Malaysia': 'Asia', 'China': 'Asia',
   'Kyrgyzstan': 'Asia', 'Mongolia': 'Asia', 'Armenia': 'Asia', 'Georgia':
'Nepal': 'Asia', 'Laos': 'Asia', 'Azerbaijan': 'Asia', 'Pakistan': 'Asia',
   'Myanmar': 'Asia', 'Cambodia': 'Asia', 'India': 'Asia', 'Sri Lanka': 'Asia',
   'Bangladesh': 'Asia', 'Hong Kong S.A.R. of China': 'Asia', 'Tajikistan': "
'Indonesia': 'Asia',
   # Latin America
   'Costa Rica': 'Latin America', 'Mexico': 'Latin America', 'Uruguay': 'Latin⊔
→America',
   'El Salvador': 'Latin America', 'Chile': 'Latin America', 'Panama': 'Latin⊔
→America',
   'Guatemala': 'Latin America', 'Nicaragua': 'Latin America', 'Brazil': 'Latin⊔
→America',
   'Argentina': 'Latin America', 'Paraguay': 'Latin America', 'Honduras': u
'Jamaica': 'Latin America', 'Peru': 'Latin America', 'Dominican Republic': u
'Bolivia': 'Latin America', 'Ecuador': 'Latin America', 'Colombia': 'Latin⊔
→America',
   'Venezuela': 'Latin America',
   # Africa
   'Libya': 'Africa', 'Mauritius': 'Africa', 'South Africa': 'Africa',
   'Algeria': 'Africa', 'Congo (Brazzaville)': 'Africa', 'Mozambique': 'Africa',
   'Gabon': 'Africa', 'Ivory Coast': 'Africa', 'Guinea': 'Africa', 'Nigeria': 🗆
```

```
'Cameroon': 'Africa', 'Namibia': 'Africa', 'Morocco': 'Africa', 'Niger': "
 'Burkina Faso': 'Africa', 'Mauritania': 'Africa', 'Gambia': 'Africa', 'Chad':
→ 'Africa',
   'Kenya': 'Africa', 'Tunisia': 'Africa', 'Benin': 'Africa', 'Uganda': u
'Ghana': 'Africa', 'Liberia': 'Africa', 'Mali': 'Africa', 'Madagascar':
 →'Africa',
    'Togo': 'Africa', 'Ethiopia': 'Africa', 'Tanzania': 'Africa', 'Comoros': 🗆
 'Zambia': 'Africa', 'Eswatini': 'Africa', 'Malawi': 'Africa', 'Botswana': 🗆
'Zimbabwe': 'Africa', 'Congo (Kinshasa)': 'Africa', 'Sierra Leone': 'Africa',
   'Lesotho': 'Africa', 'Senegal': 'Africa', 'Egypt': 'Africa',
   # Oceania
   'Australia': 'Oceania', 'New Zealand': 'Oceania',
   # Mixed region
   'Russia': 'Europe/Asia', 'Turkiye': 'Europe/Asia'
}
# Apply mapping and handle missing continents
df["CONTINENT"] = df["COUNTRY"].map(continent_map).fillna("Unknown")
```

[112]: #Total production by country

country_total = df.groupby("COUNTRY")["VALUE"].sum().sort_values(ascending=False)
print(country_total)

COUNTRY

OECD Total 9.242596e+08 IEA Total 9.096110e+08 OECD Americas 4.527393e+08 United States 3.624349e+08 OECD Europe 3.056325e+08 OECD Asia Oceania 1.658877e+08 Japan 9.367340e+07 India 7.716980e+07 Germany 5.233599e+07 Canada 5.125470e+07 Korea 4.683166e+07 France 4.332543e+07 2.909683e+07 Brazil United Kingdom 2.907350e+07 2.797201e+07 Mexico Italy 2.604113e+07

Spain		2.335283e+07
Republic of Turkiye		2.305181e+07
Australia		2.182063e+07
Poland		1.411084e+07
Sweden		1.297384e+07
Norway		1.139089e+07
Netherlands		1.059264e+07
Belgium		7.404547e+06
Argentina		7.291167e+06
Czech Republic		7.112194e+06
Chile		6.494507e+06
Finland		6.373295e+06
Austria		6.162604e+06
Switzerland		6.091422e+06
Portugal		4.691351e+06
Greece		4.647115e+06
Colombia		4.429160e+06
New Zealand		3.562025e+06
Hungary		3.126454e+06
Denmark		3.103078e+06
Romania		2.870030e+06
Ireland		2.595994e+06
Slovak Republic		2.461672e+06
Bulgaria		2.176951e+06
Serbia		1.875004e+06
Iceland		1.499897e+06
Slovenia		1.461820e+06
Estonia		9.715635e+05
Croatia		8.133567e+05
Lithuania		6.531533e+05
Latvia		6.092211e+05
Luxembourg		4.182565e+05
North Macedonia		3.012701e+05
Cyprus		2.861298e+05
Costa Rica		1.540189e+05
Malta		1.043743e+05
N	c -	

Name: VALUE, dtype: float64

```
[113]: #Total electricity production by year

yearly_total = df.groupby("YEAR")["VALUE"].sum()
yearly_total.plot(kind="line", title="Total Electricity Production by Year")
```

[113]: <Axes: title={'center': 'Total Electricity Production by Year'}, xlabel='YEAR'>


```
[114]: # Top 20 most productive energy sources
source_total = df.groupby("PRODUCT")["VALUE"].sum().sort_values(ascending=False)
print(source_total.head(20))
source_total.head(20).plot(kind="bar", title="Top Energy Sources by Total
→Production")
```

PRODUCT

Electricity supplied 5.652626e+08 Net electricity production 5.648743e+08 Final consumption 5.226701e+08 Non-renewables 4.186862e+08 Total combustible fuels 3.329794e+08 Fossil fuels 3.199421e+08 Low carbon 2.468221e+08 Coal 1.553674e+08 Natural gas 1.469984e+08 Renewables 1.461857e+08 Nuclear 9.874406e+07 Hydro 8.108343e+07 Wind 3.415691e+07 Distribution losses 3.310850e+07 Total imports 2.515404e+07 Total exports 2.476580e+07 Others 1.757629e+07 Other renewables aggregated 1.731865e+07 Combustible renewables 1.492679e+07 Solar 1.362672e+07

Name: VALUE, dtype: float64

Renewables vs Non-Renewables


```
[118]: #Share of Renewables Over Time (%)
renew_yearly = df[df["PRODUCT"].str.contains("Hydro|Wind|Solar", case=False)].

→groupby("YEAR")["VALUE"].sum()
total_yearly = df.groupby("YEAR")["VALUE"].sum()
```

```
share_renew = (renew_yearly / total_yearly) * 100
share_renew.plot(kind="line", title="Share of Renewables Over Time (%)")
```

[118]: <Axes: title={'center': 'Share of Renewables Over Time (%)'}, xlabel='YEAR'>


```
[119]: #Top countries in solar energy production
       solar_production = df[df["PRODUCT"].str.contains("Solar", case=False)].

→groupby("COUNTRY")["VALUE"].sum().sort_values(ascending=False)

       print(solar_production.head(20))
       solar_production.head(20).plot(kind="bar", title="Top 20 Solar Energy Producing_

→Countries")
       plt.ylabel("Total Production")
       plt.xlabel("Country")
       plt.tight_layout()
       plt.show()
```

COUNTRY

OECD Total

3.308954e+06

IEA Total 3.252181e+06 OECD Europe 1.506510e+06 OECD Americas 9.657639e+05 OECD Asia Oceania 8.366802e+05 United States 8.259103e+05 Japan 5.543602e+05 Germany 4.846032e+05 India 3.467374e+05 Italy 2.639054e+05 Spain 1.995112e+05 Australia 1.632382e+05 Korea 1.180891e+05 France 1.164645e+05 United Kingdom 1.023523e+05 6.256879e+04 Brazil Republic of Turkiye 5.997132e+04 Netherlands 5.414579e+04 Chile 5.202431e+04 Mexico 4.771209e+04

Name: VALUE, dtype: float64


```
[122]: top_sources = df.groupby(["COUNTRY", "PRODUCT"])["VALUE"].sum()
top_sources = top_sources.groupby(level=0, group_keys=False).nlargest(10)
print(top_sources)
```

Argentina	Electricity supplied	1.117895e+06
	Net electricity production	1.115406e+06
	Final consumption	8.341122e+05
	Non-renewables	8.262345e+05
	Total combustible fuels	7.777827e+05
United States	Fossil fuels	3.482059e+07
	Low carbon	1.916159e+07
	Coal	1.716032e+07
	Natural gas	1.700318e+07
	Nuclear	1.031649e+07

PRODUCT

COUNTRY

Name: VALUE, Length: 520, dtype: float64

```
[123]: #Distribution of energy production values using a histogram
sns.histplot(df["VALUE"], bins=50, kde=True)
plt.title("Distribution of Electricity Production (GWh)")
plt.xlabel("GWh")
plt.ylabel("Frequency")
plt.show()
```



```
[124]: #Detecting outliers in energy production values
mean_val = df["VALUE"].mean()
std_val = df["VALUE"].std()
df["Z_SCORE"] = (df["VALUE"] - mean_val) / std_val
outliers = df[abs(df["Z_SCORE"]) > 3]
print(outliers[["COUNTRY", "PRODUCT", "VALUE", "TIME"]])
```

\	VALUE	PRODUCT	COUNTRY	
	587612.881000	Total combustible fuels	IEA Total	311
	329335.711000	Coal	IEA Total	312
	943609.626000	Net electricity production	IEA Total	318
	946083.601000	Electricity supplied	IEA Total	321

324	IEA Total	Final consumption	877213.615000
• • •	• • •	• • •	• • •
181637	OECD Total	Fossil fuels	489939.125106
181901	United States	Net electricity production	369604.059764
181904	United States	Electricity supplied	372975.265154
181907	United States	Final consumption	343222.453509
181910	United States	Non-renewables	292417.548132
	TIME		
311	January 2010		
312	January 2010		
318	January 2010		
321	January 2010		
324	January 2010		
	• • •		
181637	December 2022		
181901	December 2022		
181904			
181907			
	December 2022		
181910	December 2022		

[3810 rows x 4 columns]

```
[125]: sns.boxplot(x="PRODUCT", y="VALUE", data=df)
    plt.xticks(rotation=90)
    plt.title("Production Distribution by Energy Source")
    plt.show()
```



```
[126]: volatility = df.groupby("COUNTRY")["VALUE"].std() / df.

→groupby("COUNTRY")["VALUE"].mean()
```

```
volatility.sort_values(ascending=False).plot(kind="bar", title="Production_\u00cd

→Volatility by Country")
plt.ylabel("Standard Deviation / Mean")
plt.show()
```



```
[127]: #Years with lowest production
       min_years = df.groupby("YEAR")["VALUE"].sum().sort_values().head(5)
       print("Years with lowest production:")
       print(min_years)
      Years with lowest production:
      YEAR
      2011
              2.807929e+08
      2013
              2.808882e+08
      2010
              2.811565e+08
              2.815608e+08
      2014
      2012
              2.815982e+08
      Name: VALUE, dtype: float64
[128]: # Calculate renewable production by continent
       renew_cont = df[df["PRODUCT"].str.contains("Hydro|Wind|Solar", case=False)].

→groupby("CONTINENT")["VALUE"].sum()
       print("Renewable Production by Continent (GWh):")
       print(renew_cont)
      Renewable Production by Continent (GWh):
      CONTINENT
      Asia
                       3.827335e+06
                       1.076388e+07
      Europe
      Latin America 5.258212e+06
      Oceania
                       9.155263e+05
      Unknown
                       1.081021e+08
      Name: VALUE, dtype: float64
[129]: | total_cont = df.groupby("CONTINENT")["VALUE"].sum()
       renew_share_cont = (renew_cont / total_cont) * 100
       print("Renewable Share by Continent (%):")
       print(renew_share_cont)
       renew_share_cont.plot(kind="bar", title="Renewable Energy Share by Continent")
       plt.ylabel("Renewables Share (%)")
       plt.grid(True)
       plt.tight_layout()
       plt.show()
      Renewable Share by Continent (%):
      CONTINENT
                       2.240262
      Asia
      Europe
                       4.698373
      Latin America
                       6.970271
      Oceania
                       3.606898
```

Unknown 3.272239 Name: VALUE, dtype: float64

