

VERIFICATION PLAN

AHB-LITE INTERFACE

MINAHIL NAVEED 2021-MSEE-33

AHB-Lite Protocol:

AHB-Lite implements the features required for high-performance, high clock frequency systems including:

- burst transfers
- Single-clock edge operation
- Non-tristate implementation
- Wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

The most common AHB-Lite slaves are internal memory devices, external memory interfaces, and high bandwidth peripherals. Although low-bandwidth peripherals can be included as AHB-Lite slaves, they typically reside on the AMBA Advanced Peripheral Bus (APB) for system performance reasons. Bridging between this higher level of bus and APB is done using an AHB-Lite slave, known as an APB bridge. Figure 1-1 shows a single master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves. The bus interconnect logic consists of one address decoder and a slave-to-master multiplexor. The decoder monitors the address from the master so that the appropriate slave is selected and the multiplexor routes the corresponding slave output data back to the master.

Working of Protocol:

Global Signals:

Name	Destination	Description		
HCLK	Clock source	Clock source for all operations on the		
		protocol. Input signals are sampled at		
		rising edge and changes in output		
		signals happen after the rising edge		
HRESTn	Reset Controller	Asynchronous primary reset for all bus		
		elements		

Master Signals:

Name	Destination	Description
HADDR [31:0]	Slave and	Address bus of 32 bits
	Decoder	
HBURST [2:0]	Slave	Indicates the type of burst signal
		including wrapping and incrementing
		bursts
HSIZE [2:0]	Slave	Indicates the size of transfer from 8 bits
		to 1024 bits

Slave Signals:

Name	Destination	Description		
HRDATA [31:0]	Multiplexor	Read data bus to transfer the data from		
		a Slave's location to the Master via		
		multiplexor		
HREADYOUT	Multiplexor	Indicates transfer has finished on the		
		bus and is used to extend the data phase		
HRESP	Multiplexor	Provides additional information that the		
		transfer was successful or failed		

Decoder Signals:

Name	Destination	Description
HSELx	Slave	Indicates current transfer is for
Note: x is a unique identifier		intended for selected slave
for AHB lite slave		

Multiplexor Signals:

Name	Destination	Description		
HRDATA [31:0]	Master	Read data bus to rout to Master		
HREADY	Master and Slave	Indicates completion of previous		
		transfer		
HRESP	Master	Transfer response		

Fig 1.1

Working Protocol

The master starts a transfer by driving the address and control signals. These signals provide information about the address, direction, width of the transfer, and indicate if the transfer forms part of a burst. Transfers can be of different type's for instance single, incrementing bursts that do not wrap at address boundaries, wrapping bursts that wrap at particular address boundaries, etc. The write data bus moves data from the master to a slave, and the read data bus moves data from a slave to the master.

Every transfer consists of two phases:

- 1) Address phase: one address and control cycle
- 2) Data phase: one or more cycles for the data.

A slave cannot request that the address phase is extended and therefore all slaves must be capable of sampling the address during this time. However, a slave can request that the master extends the data phase by using HREADY. This signal when LOW, causes wait states to be inserted into the transfer and enables the slave to have extra time to provide or sample data. The slave uses a response signal to indicate the success or failure of a transfer.

VERIFICATION PLAN

No	Features	Test Description	Ref.	Type	Result	Comments
1	Write Transfer	When HWRITE is high	3.1	TR		Successful
	from Master to	then the Master will				write. HRESP
	Slave	broadcast the data on the				should be low
		HWDATA [31:0] bus for				and HREADY
		individual burst types i.e.,				should be high
		HBURST [2:0] including				
		incrementing and				
		wrapping types.				
2	Read Transfer	When HWRITE is low	3.1	TR		Successful read.
	from Slave to	then the slave must				HRESP should
	Master	generate the data on the				be low and
		HRDATA [31:0] bus for				HREADY
		individual burst types i.e.,				should be high
		HBURST [2:0] including				
		incrementing and				
		wrapping type.				
3	Continuous	When HWRITE is high,	3.1	TR		Successful
	writing to the	the Master will broadcast				write. HRESP
	same slave at					should be low

	the same	the data packets on the			and HREADY
	address	HWDATA [31:0] bus.			should be high
	location	11.0] 043.			for the
	location				successive data
					packets
4	Continuous	When HWRITE is low,	3.1	TR	Successful read.
7	reading from	the slave must generate	3.1	IK	HRESP should
	the same slave	_			be low and
	and same	the data packets on the			HREADY
	address	HRDATA [31:0] bus.			
	location				should be high for the
	location				
					successive data
	D 1 1111		2.1	TTD.	packets
5	Random Write	When HWRITE is high,	3.1	TR	Successful
	transfers	the Master will broadcast			write. HRESP
		the data packets on the			should be low
		HWDATA [31:0] bus.			and HREADY
					should be high
					for the
					successive data
					packets
6	Random Read	When HWRITE is low,	3.1	TR	Successful read.
	Transfers	the slave must generate			HRESP should
		the data packets on the			be low and
		HRDATA [31:0] bus.			HREADY
					should be high
					for the
					successive data
					packets
7	Write-Read	Write transfer followed	3.1	TR	HRESP is low,
	Transfer	by Read transfer at a			HREADY is
		particular address A.			high and the
					address location
					must have the
					updated value
8	Read-Write	Read transfer followed	3.1	TR	HRESP is low,
	Transfer	by Write transfer at a			HREADY is
		particular address A.			high and the
					slave must
					return the
					previous Data
					(A).

9	Global Signal:	A clock signal is	7.1.1	A	All input signals
	HCLK	generated in the top			must be sampled
		module			at the rising
					edge of the
					clock and
					changes in the
					output signals
					must occur after
					the rising edge.
10	Global Signal:	Since this is an active	7.1.2	TR	All previous
	HRESTn	low signal. When	,.1.2	110	binary
	Incestin	asserted then it must reset			information in
		all bus elements. Note:			the bust
		Slaves must ensure that			elements will be
		HREADYOUT is high.			lost.
		HTRANS [1:0] must			Tost.
		indicate IDLE.			
11	Master Signal:	When IDLE transfer is	3.2	TR	The HREADY
11	IDLE	inserted to an address.	3.2	110	must be low
	HTRANS [1:0]	miscred to an address.			during the IDLE
	=b00				transfer. The
	-500				transfer must be
					ignored by the
					slave. Slave
					must provide a
					OKAY
					response.
12	Transfer type	Transfer type changes	3.6.1	A	Successfully
12	changed during	from IDLE to NONSEQ	3.0.1	11	transfer type
	waited states:	during waited states. The			changed. Slave
	Scenario 1	HTRANS signal must be			must give
	Scenario 1	kept constant after the			OKAY
		transition until HREADY			response.
		is high			Tesponse.
13	Transfer type	Transfer type changes	3.6.1	A	Successfully
	changed during	from BUSY to SEQ	2.5.1		transfer type
	waited states:	during waited states for			changed. Slaves
	Scenario 2	fixed length bursts. The			must give an
		HTRANS signal must be			OKAY
		kept constant after the			response.
		transition until READY			
		is high			
14	Transfer type	Transfer type changes	3.6.1	A	Successfully
••	changed during	from BUSY to any other	2.0.1		transfer type
	mangea auming	115111 DOD'T to unity other		<u> </u>	transfer type

	waited states:	type during waited states			changed. Slaves
	Scenario 3	for undefined length			must give an
		burst. The burst continues			OKAY
		if an SEQ transfer is			response.
		performed but terminates			
		if an IDLE or NONSEQ			
		transfer is performed.			
15	Transfer type	Transfer type changed	3.6.1	A	Slaves will give
	changed during	from IDLE to SEQ.			an ERROR.
	waited states:				
	Scenario 4				
16	Slave response:	Transfer is successfully	5.1.1	A	Slave must give
	Transfer done	completed.			HREADY
					HIGH and
					HRESP OKAY
17	Slave response:	Transfer is pending.	5.1.1	Α	Slave must give
	Transfer				HREADY
	pending				LOW and
					HRESP OKAY
18	HREADY	If the transfer is extended	6.1.1	A	
		it must saves it until it			
		completes.			
19	HREADYOUT	When HIGH transfer	2.3	A	When
		must complete			HREADYOUT
					is high, it means
					transfer is
					finished.