AI生成語音辨識及應用

B103040044 林廷宇 B103040045 楊貽婷 B103040047 周安 01 02 03 前言 作品介紹 作品成果 04 05

DEMO

線上應用

2

01

前言

產品願景

產品外觀示意圖

使用者

情境一: 防止生成語音電話詐騙

情境二: 防止生成語音破解聲紋門鎖

實作流程圖

蒐集語音資料集

訓練CNN模型

利用Vitis-AI中的AI quantizer將模型參數量 化成8位元的定點數 利用AI compiler將AI模型映射至硬體指令集,得到xmodel

設計C語言程式碼,內容有使用 Vitis-Al Library中的API_2,呼 叫DPU執行xmodel,做AI推 論,並且自行設計前處理跟後 處理方式,設計要將推論後結 果的如何應用

編譯此C語言程式 碼,得到執行檔 將xmodel與執行檔 放上KV260板子 麥克風收音,經由前 處理得到頻譜圖,開 始運行

中英文語音資料集

英文資料集

ASVspoof 2019

中文資料集

- CFAD
- AISHELL-3
- LJSpeech
- Text-To-Speech自行設計文本生成語音
- Speech-To-Speech:拿真實語音生成AI合成語音
- 利用open source code來使用他的模型生成語音

Suno Bark [Source code]. https://github.com/suno-ai/bark

作品規格

KV260特點:

- 1. DPU(Deep learning process unit): Xilinx開發的硬體加速器
- 2. 可以結合多媒體:麥克風、螢幕、錄影鏡頭
- 3. 可以自行設計前處理、後處理方式

前處理-對音檔的處理

1. SoX 降躁語音 因為經過錄製, 音檔跟原始音檔有所變化, 包含音量 變小、噪音變多。

原始音檔: 經過SoX降躁處理過後:

前處理-對音檔的處理

2. C++ 模擬Python librosa繪製Mel_spectrogram, 使在板上繪製圖片只需不到一秒(原先需要大於20秒), 成功達到即時性。

Python librosa 產生的時頻譜圖

利用C++模擬, 產生的時頻譜圖

後處理-LineBot 介紹

LineBot 結果

模型在軟體上的準確率 -英文部分 (資料集來源:

• ASMs pack 19 原先參考的模型,增加了中間卷積層的 Channel 數

	訓練集	驗證集	測試集
真實語音數量	2500	1000	1000
生成語音數量	2500	1000	1000
總和	5000	2000	2000

	驗證集 準確率	測試集(Eval) 準確率	測試集 (Eval) Recall	測試集 (Eval) Precision	測試集 (Eval)F1-score
EfficientCNN[1]	-	-	-		94.14
CNN_ENG	96.65%	90.20%	86.10%	93.79%	89.78

[1] Subramani, N., & Rao, D. (2020). Learning Efficient Representations for Fake Speech Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 5859-5866. https://doi.org/10.1609/aaai.v34i04.6044

模型在軟體上的準確率 -中文部分(資料集來源:各方蒐集)

● CNN_big相較於原先參考的模型,增加了中間卷積層的 Channel數 資料集包含:

1. 自行生成、蒐集的中文語音當作合成語音 2. CFAD、AISHELL-3中的真實中文語音

	訓練集	驗證集	測試集
真實語音數量	2200	500	300
生成語音數量	1900	473	274
總和	4100	973	574

	驗證集 準確率	測試集	測試集 Recall	測試集 Precision	測試集 F1-score
CNN_CH	99.49%	99.13%	98.54%	99.63%	99.08

在KV260上直接輸入時頻譜圖片 準確率給 DPU 推論-英文部分

隨機在測試集中抓取 100張圖片, 抓取多組

	test_ENG_100_1	test_ENG_100_2	test_ENG_100_3	平均
準確率	85%	88%	90%	87.67%

在KV260上直接輸入時頻譜圖片 準確率給 DPU 推論-中文部分

隨機在測試集中抓取 100張圖片, 抓取多組

	test_CH_100_1	test_CH_100_2	test_CH_100_3	平均
準確率	99%	98%	99%	98.67%

透過麥克風收音做判斷的準確率 -英文部分

隨機在測試集中抓取 100段語音

	Predicted			
		Bonafide	Spoof	
Actual	Bonafide	48	2	
	Spoof	11	39	

	Accuracy	Precision	Recall	F1-score	Number
Bonafide	87%	81.36%	96%	88.08	50
Spoof		95.12%	78%	85.71	50

透過麥克風收音做判斷的準確率 -中文部分

在測試集中測試共 574段語音

小結:

● 透過麥克風收音,增加了一些錄音上 的雜音與其他因素, 使錄製到的音檔 與原始音檔有所偏差。才導致準確率

Precision

略為下降。

Accuracy

	Predicted		
		Bonafide	Spoof
Actual	Bonafide	270	30

Spoof

52

222

Bonafide Spoof

85.71%

300

Number

83.86% 90% 86.82 88.1% 274 81.02% 84.42

Recall

F1-score

19

線上應用

簡介

除了嵌入式系統以外, 我們也將**同樣功能的模型套用到其他應用上**, 如 LINE Bot和網頁, 提供給使用者上傳欲辨識的內容, 然後我們的後端會將 辨識結果傳回去給使用者, 與嵌入式系統的不同之處為模型運作的運算 能力取決於**後端電腦上的運行能力**, 使用者只須要依照指示進行操作即 可, 當之後要開發出更廣的受眾時, 未來就必須嘗試架設可以持續運行的 伺服器使用者隨時使用。

線上應用

線上應用新增功 能

LLM - Gemini API 詐騙風險評估

詐騙分析報告

**一、簡要概述: **

輸入文字是關於草的描述,描述了草的柔軟、彎曲等特性,並帶有擬聲詞。

二、詐騙可能性:

極低。

**三、詐騙類型: **

無。

**四、分析原因: **

- 1. 輸入文字描述的是草的特性, 並無任何與詐騙相關的訊息。
- 2. 文本中沒有任何誘導性或欺騙性字眼。
- 3. 文本整體缺乏詐騙常用的手法、例如提供虛假訊息、引誘受害者提供個人資料等。

**五、防範建議: **

對於任何可疑的訊息,請保持謹慎,不要輕易相信陌生人或提供個人資訊。

**六、結論: **

輸入文字並無任何詐騙跡象,屬於正常的文字描述。

下午 10:13

DEMO VIDEO https://youtu.be/tRtrg5NVRNE

進入使用者頁面-首頁

選擇語言

Thank you for your listening

英文模型架構

中文模型架構

運作流程

- 1. 按下執行收音程式, 開始收音
- 2. 輸入終止符號, 代表停止收音, 錄音結束
- 3. 音源每五秒切段, 轉換成一張一張的Spectrogram
- 4. 對個別圖片進行運算、預測
- 5. 採用多數決, 決定這是否為合成語音

作品運作流程圖

slidesgo