AUTOMATING PRODUCT REVIEWS FOR THE CONSUMER PRICE INDEX

Bureau of Labor Statistics
Office of Prices and Living Conditions

Nicole Shepler — Transportation Commodities Section Chief

AVENA CHENG

University of California, Berkeley

Data Science

OVERVIEW

Background

 The CPI requires products to be reviewed by Commodity Analysts every month to calculate price indices.

Problem

- Currently < 25% of new items and < 12% of current items require an analyst's attention.
- The current system filter has an accuracy ~ 29%.

Goal/Impact

 Use machine learning to automate the review process and improve the current system's filter to save time and money.

INFRASTRUCTURE

CONTRIBUTIONS

Data

- Upsampled minority class to improve the model's learning
- Used TF-IDF and other feature engineering techniques to create more predictive variables
- Created a customized train-test function to handle duplicate entries* in both sets

Models

- Built 8 different Random Forest classifiers (one for each category in the CPI)
- Experimented with 6 other algorithms to determine the best predictive model
- Developed a post-prediction method to handle duplicate entries* while also improving recall

PERFORMANCE RESULTS

Section	F1 Score	Recall	Precision
Apparel	0.78	0.97	0.65
Housing	0.87	0.97	0.79
Food	0.79	0.90	0.70
Education/Communication	0.88	0.99	0.79
Transportation	0.84	0.97	0.75
Medical	0.93	1.0	0.88
Recreation	0.85	0.98	0.78
Goods & Services	0.87	0.96	0.81

Average Scores:

F1: 0.85

Recall: 0.97

Precision: 0.77

OVERALL IMPACT

Total Avg Percentage of Reviews (Labor) Decreased: **85**%

Percentage decreased from each category:

	•	
-	Apparel:	90%
-	Housing:	87%
-	Food:	94%
-	Educ/Comm:	73%
-	Transportation:	86%
-	Medical:	78%
-	Recreation:	83%
_	Goods/Services:	88%

Understanding the Metrics

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

Avg PR: 0.8327 F1-Score: 0.9082 Recall: 0.9883 Prec: 0.8402

Predicted Result

Actual Result

$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$

CLASSIFICATION REPORT

precision

0 2519 128

673

	p. 2222			Juppo. c
0	1.00	0.95	0.97	2647
1	0.84	0.99	0.91	681
avg / total	0.96	0.96	0.96	3328

recall f1-score

support

	No Review	Review	
No Review	2519	128 (FP)	◀
Review	8 (FN)	673	

SOLUTION

- 1. Adjust Probability Threshold
- 2. Take the majority by rounding

id	P(No Review)	P(Review)	true	prediction	pred1, t = 0.5	pred2, t= 0.3
_13	0.696667	0.303333	0	1	0	1
_13	0.686667	0.313333	0	1	0	1
_13	0.696667	0.303333	0	1	0	1
_13	0.766667	0.233333	0	0	0	0
_13	0.766667	0.233333	0	0	0	0
_13	0.686667	0.313333	0	1	0	1
13	0.696667	0.303333	0	1	0	1
_13	0.683333	0.316667	0	1	0	1
_13	0.696667	0.303333	0	1	0	1
_13	0.773333	0.226667	0	0	0	0
_13	0.773333	0.226667	0	0	0	0
_13	0.686667	0.313333	0	1	0	1

predicted "1": 8
Total # predicitons: 12

8/12 = 0.6667

round(0.6667) \rightarrow 1

Final Prediction for id_13 = 1

Takeaway:

This will force the model to predict 1 more than 0, reducing the # of false negatives.

DUPLICATE ENTRIES?

Some items have multiple rows Each row has a different change This can lead to different predictions.

	id	predicted	actual
4239	8702729_001_201806_1	0	0
4240	8702729_001_201806_1	0	0
4241	8702729_001_201806_1	0	0
4242	8702729_001_201806_1	0	0
4243	8702729_001_201806_1	0	0
4244	8702729_001_201806_1	0	0
4245	8702729_001_201806_1	0	0
4246	8702729_001_201806_1	0	0
4247	8702729_001_201806_1	0	0
4248	8702729_001_201806_1	0	0
4249	8702729_001_201806_1	0	0
4250	8702729_001_201806_1	0	0
4251	8702729_001_201806_1	0	0
4252	8702729_001_201806_1	0	0

	id	predicted	actual	error
1177	8200697_003_201902_4	0	1	True
1178	8200697_003_201902_4	1	1	False
1179	8200697_003_201902_4	1	1	False

