Obfuscated Access and Searchable Encryption

Zhiwei Shang, Simon Oya, Andreas Peter, Florian Kerschbaum

University of Twente

NDSS'21

Overview

Hiding Access Pattern

G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, "Differentially private access patterns for searchable symmetric encryption," in *IEEE INFO-COM 2018-IEEE Conference on Computer Communications*. IEEE, 2018, pp. 810–818.

Hiding Search Pattern?

IPPE: Inner Product Predicate Encryption

$$P(x) = (x-r_1)(x-r_2)\cdots(x-r_d) = (x^0, x^1, x^2, \cdots)$$

$$Q_0 + a_1 x + a_2 x^2 + \cdots + a_d x^d = \vec{a} \cdot \vec{x}$$

OSSE: ObPuscated SSE

Polynomial Generation

$$D_{30} = \{DOG, COW, RAT\}$$

$$Q = h(30)$$

$$S_{max} = \frac{Max}{30} \text{ keywords} = 5$$

loken Generation

► False positives:

▶ Non-matches:

Adversary's View

Adversary's View

Holversary's View 1006

Security

by IPPE security

$$E = \ln \left(\frac{TPR}{FPR}, \frac{1-FPR}{1-TPR} \right)$$

Complexity Analysis

· Communication overhead (Zipf)

1 round

· Computational Complexity

COMP< n.(Cmax+1)

· Client Storage:

TWORAH (ORAM)

O(logn·loglogn)

4 rounds at least

O(logn) storage

Evaluation:

- CLRZ VS. OSSE

- Four different query recovery attacks
- -> Enron dataset
- we adapt the attacks against the defenses

Results

CLRZ

Liu et al.

Buliot & Wright

Islam et al.

Cash et al.

Conclusions

► Hiding search pattern is challenging but very effective against attacks!

►OSSE: SSE using IPPE

High computation

# cores	BuildIndex (min)	Trapdoor (s)	Search (min)
4	272.5	580.7	1099.1
8	136.3	290.5	549.6
16	68.2	145.3	274.8
32	34.1	72.8	137.4
64	17.1	36.4	68.7
128	8.5	18.2	34.4
160	6.9	14.7	27.5

TABLE V: Running Times

Conclusions

► Hiding search pattern is challenging but very effective against attacks!

►OSSE: SSE using IPPE

TABLE V: Running Times

CLRZ=200 ms

