CS559 Machine Learning Fisher Linear Discriminant Principal Component Analysis

Tian Han

Department of Computer Science Stevens Institute of Technology

Week 6

Outline

- Fisher's Linear Discriminant
- Principal Component Analysis
 - High-dimensional data, Eigenfaces
 - PCA vs FLD

Binary Classification

In previous lecture, we study **linear discriminant function** and use it to solve the binary classification problem. Specifically, we have:

$$y = \begin{cases} +1, \text{ if } \mathbf{w}^T \mathbf{x} > \theta \\ -1, \text{ if } \mathbf{w}^T \mathbf{x} < \theta \end{cases}$$

We learn the model w using perceptron algorithm which is shown to be effective if the underlying two classes are *linearly separable*.

Binary Classification

In previous lecture, we study **linear discriminant function** and use it to solve the binary classification problem. Specifically, we have:

$$y = \begin{cases} +1, \text{ if } \mathbf{w}^T \mathbf{x} > \theta \\ -1, \text{ if } \mathbf{w}^T \mathbf{x} < \theta \end{cases}$$

We learn the model w using perceptron algorithm which is shown to be effective if the underlying two classes are *linearly separable*.

We could view classification in another way.....

Classification through projection

• A linear function: $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ assuming in 2D, projects each point $\mathbf{x} = [x_1, x_2]^T$ to a line parallel to \mathbf{w} :

$$\begin{array}{c|c} \text{point in } \mathcal{R}^D & \text{projected point in } \mathcal{R} \\ \mathbf{x}_1 & z_1 = \mathbf{w}^T \mathbf{x}_1 \\ \mathbf{x}_2 & z_2 = \mathbf{w}^T \mathbf{x}_2 \\ \dots & \dots \\ \mathbf{x}_n & z_n = \mathbf{w}^T \mathbf{x}_n \end{array}$$

• We can study how well the projected points $z_1, ..., z_n$, viewed as functions of \mathbf{w} , are separated across the classes.

Classification through projection

• A linear function: $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ assuming in 2D, projects each point $\mathbf{x} = [x_1, x_2]^T$ to a line parallel to \mathbf{w} :

Figure: [N.Yue, CS559 S19]

• We can study how well the projected points $z_1, ..., z_n$, viewed as functions of \mathbf{w} , are separated across the classes.

Classification through projection

 By varying w we get different levels of separation between the projected points

Figure: [N.Yue, CS559 S19]

Find the good projection

• We would like to find w that somehow maximizes the separation of the projected points across classes.

Figure: [N.Yue, CS559 S19]

Find the good projection

 We would like to find w that somehow maximizes the separation of the projected points across classes.

Figure: [N.Yue, CS559 S19]

 We can quantify the separation (overlap) in terms of means and variances of the resulting 1-dimensional class distributions

 Through projection, linear classification can be viewed in terms of dimensional reduction.

- Through projection, linear classification can be viewed in terms of dimensional reduction.
- <u>Two class case</u>: learning the linear model to project x into one-dimension:

$$y = \mathbf{w}^T \mathbf{x}$$

- Through projection, linear classification can be viewed in terms of dimensional reduction.
- <u>Two class case</u>: learning the linear model to project x into one-dimension:

$$y = \mathbf{w}^T \mathbf{x}$$

• Decision stage: select a proper threshold y_0 , then

if
$$y \ge y_0$$
 assign \mathbf{x} to C_1 otherwise assign \mathbf{x} to C_2

Figure: [C.Bishop PRML]

 Find an direction along which the projected samples are well separated;

Figure: [C.Bishop PRML]

- Find an direction along which the projected samples are well separated;
- We are looking for the linear projection that best separates the data, i.e. best discriminates data of different classes.

• Two classes: C_1 and C_2 .

- Two classes: C_1 and C_2 .
- N_1 data points in C_1 , N_2 points in C_2 .

- Two classes: C_1 and C_2 .
- N_1 data points in C_1 , N_2 points in C_2 .
- C_1 class: mean $\mu_1 = \frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{x}$ and covariance Σ_1 .

- Two classes: C_1 and C_2 .
- N_1 data points in C_1 , N_2 points in C_2 .
- C_1 class: mean $\mu_1 = \frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{x}$ and covariance Σ_1 .
- C_2 class: mean $\mu_2 = \frac{1}{N_2} \sum_{\mathbf{x} \in C_2} \mathbf{x}$ and covariance Σ_2 .

- Two classes: C_1 and C_2 .
- N_1 data points in C_1 , N_2 points in C_2 .
- C_1 class: mean $\mu_1 = \frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{x}$ and covariance Σ_1 .
- C_2 class: mean $\mu_2 = \frac{1}{N_2} \sum_{\mathbf{x} \in C_2} \mathbf{x}$ and covariance Σ_2 .
- Assume $||\mathbf{w}|| = 1$, then $\mathbf{w}^T \mathbf{x}$ is the projection of \mathbf{x} onto \mathbf{w} .

Two goals

After projection, in order to obtain the best separation of the data, we need to satisfy two goals:

Figure: [C.Bishop PRML]

Two goals

After projection, in order to obtain the best separation of the data, we need to satisfy two goals:

Figure: [C.Bishop PRML]

Maximize the distance between projected means.

Two goals

After projection, in order to obtain the best separation of the data, we need to satisfy two goals:

Figure: [C.Bishop PRML]

- Maximize the distance between projected means.
- Minimize the variance of each class.

• C_1 : sample mean $\mu_1 = \frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{x}$.

- C_1 : sample mean $\mu_1 = \frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{x}$.
- Mean for projected C_1 points: $\frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mu_1$

- C_1 : sample mean $\mu_1 = \frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{x}$.
- Mean for projected C_1 points: $\frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mu_1$
- Similarly, mean for projected C_2 points:

$$\frac{1}{N_2} \sum_{\mathbf{x} \in C_2} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mu_2$$

- C_1 : sample mean $\mu_1 = \frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{x}$.
- Mean for projected C_1 points: $\frac{1}{N_1} \sum_{\mathbf{x} \in C_1} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mu_1$
- Similarly, mean for projected C_2 points: $\frac{1}{N_2} \sum_{\mathbf{x} \in C_2} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mu_2$
- Maximize the distance between these two projected means:

$$\max_{\mathbf{w}} (\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2$$

• C_1 : covariance Σ_1 .

- C_1 : covariance Σ_1 .
- Q: if we know the covariance of \mathbf{x} , what is the variance of $\mathbf{w}^T \mathbf{x}$?

- C_1 : covariance Σ_1 .
- Q: if we know the covariance of \mathbf{x} , what is the variance of $\mathbf{w}^T \mathbf{x}$?
- The variance of projected points in C_1 would be:

$$Cov(\mathbf{w}^T\mathbf{x}) = \mathbf{w}^T Cov(\mathbf{x})\mathbf{w} = \mathbf{w}^T \Sigma_1 \mathbf{w}$$

- C_1 : covariance Σ_1 .
- Q: if we know the covariance of \mathbf{x} , what is the variance of $\mathbf{w}^T \mathbf{x}$?
- The variance of projected points in C_1 would be:

$$Cov(\mathbf{w}^T\mathbf{x}) = \mathbf{w}^T Cov(\mathbf{x})\mathbf{w} = \mathbf{w}^T \Sigma_1 \mathbf{w}$$

• Similarly, the variance of projected points in C_2 would be: $\mathbf{w}^T \Sigma_2 \mathbf{w}$

- C_1 : covariance Σ_1 .
- Q: if we know the covariance of \mathbf{x} , what is the variance of $\mathbf{w}^T \mathbf{x}$?
- The variance of projected points in C_1 would be:

$$Cov(\mathbf{w}^T\mathbf{x}) = \mathbf{w}^T Cov(\mathbf{x})\mathbf{w} = \mathbf{w}^T \Sigma_1 \mathbf{w}$$

- Similarly, the variance of projected points in C_2 would be: $\mathbf{w}^T \Sigma_2 \mathbf{w}$
- Minimize the variance of each class:

$$\min_{\mathbf{w}}(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})$$

• Maximize the distance between projected means.

$$\max_{\mathbf{w}} (\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2$$

• Maximize the distance between projected means.

$$\max_{\mathbf{w}} (\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2$$

Minimize the variance of each class.

$$\min_{\mathbf{w}}(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})$$

• Maximize the distance between projected means.

$$\max_{\mathbf{w}} (\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2$$

Minimize the variance of each class.

$$\min_{\mathbf{w}}(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})$$

How to combine these two?

Maximize the distance between projected means.

$$\max_{\mathbf{w}} (\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2$$

Minimize the variance of each class.

$$\min_{\mathbf{w}}(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})$$

How to combine these two?

$$\max_{\mathbf{w}} \frac{(\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2}{(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})}$$

$$\max_{\mathbf{w}} \frac{(\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2}{(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})}$$

$$\max_{\mathbf{w}} \frac{(\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2}{(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})}$$

Manipulate the expression to get the optimal w.

$$\max_{\mathbf{w}} \frac{(\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2}{(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})}$$

- Manipulate the expression to get the optimal w.
- A more general way....
 - $(\mathbf{w}^T \mu_1 \mathbf{w}^T \mu_2)^2 = \mathbf{w}^T (\mu_1 \mu_2) (\mu_1 \mu_2)^T \mathbf{w} = \mathbf{w}^T S_B \mathbf{w}$ (S_B : between class covariance matrix)

$$\max_{\mathbf{w}} \frac{(\mathbf{w}^T \boldsymbol{\mu}_1 - \mathbf{w}^T \boldsymbol{\mu}_2)^2}{(\mathbf{w}^T \boldsymbol{\Sigma}_1 \mathbf{w} + \mathbf{w}^T \boldsymbol{\Sigma}_2 \mathbf{w})}$$

- Manipulate the expression to get the optimal w.
- A more general way....
 - $(\mathbf{w}^T \mu_1 \mathbf{w}^T \mu_2)^2 = \mathbf{w}^T (\mu_1 \mu_2) (\mu_1 \mu_2)^T \mathbf{w} = \mathbf{w}^T S_B \mathbf{w}$ (S_B : between class covariance matrix)
 - $\Sigma_1 + \Sigma_2 = S_W$. (S_W : within class covariance matrix)

$$\max_{\mathbf{w}} \frac{(\mathbf{w}^T \mu_1 - \mathbf{w}^T \mu_2)^2}{(\mathbf{w}^T \Sigma_1 \mathbf{w} + \mathbf{w}^T \Sigma_2 \mathbf{w})}$$

- Manipulate the expression to get the optimal w.
- A more general way....
 - $(\mathbf{w}^T \mu_1 \mathbf{w}^T \mu_2)^2 = \mathbf{w}^T (\mu_1 \mu_2) (\mu_1 \mu_2)^T \mathbf{w} = \mathbf{w}^T S_B \mathbf{w}$ (S_B : between class covariance matrix)
 - $\Sigma_1 + \Sigma_2 = S_W$. (S_W : within class covariance matrix)
 - More compactly, we have:

$$\max_{\mathbf{w}} \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

Transform to constrained optimization problem:

$$\max_{\mathbf{w}} \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

$$\rightarrow \max_{\mathbf{w}} \mathbf{w}^T S_B \mathbf{w}, \text{ s.t. } \mathbf{w}^T S_W \mathbf{w} = 1$$

Transform to constrained optimization problem:

$$\max_{\mathbf{w}} \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

$$\rightarrow \max_{\mathbf{w}} \mathbf{w}^T S_B \mathbf{w}, \text{ s.t. } \mathbf{w}^T S_W \mathbf{w} = 1$$

Using Lagrange Multiplier:

$$L(\mathbf{w}, \lambda) = \mathbf{w}^T S_B \mathbf{w} - \lambda (\mathbf{w}^T S_W \mathbf{w} - 1)$$

Transform to constrained optimization problem:

$$\max_{\mathbf{w}} \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

$$\rightarrow \max_{\mathbf{w}} \mathbf{w}^T S_B \mathbf{w}, \text{ s.t. } \mathbf{w}^T S_W \mathbf{w} = 1$$

Using Lagrange Multiplier:

$$L(\mathbf{w}, \lambda) = \mathbf{w}^T S_B \mathbf{w} - \lambda (\mathbf{w}^T S_W \mathbf{w} - 1)$$

Take $\frac{\partial L(\mathbf{w},\lambda)}{\partial \mathbf{w}} = 0$, we have the generalized eigenvalue problem:

$$S_B \mathbf{w} = \lambda S_W \mathbf{w}$$

$$S_W^{-1} S_B \mathbf{w} = \lambda \mathbf{w}$$

Optimal w

We have:

$$S_W^{-1} S_B \mathbf{w} = \lambda \mathbf{w}$$

$$S_W^{-1} (\mu_1 - \mu_2) \underbrace{(\mu_1 - \mu_2)^T \mathbf{w}}_{\text{scalar}} = \lambda \mathbf{w}$$

Which means:

$$\mathbf{w} \propto S_W^{-1}(\mu_1 - \mu_2)$$

Optimal w

We have:

$$S_W^{-1} S_B \mathbf{w} = \lambda \mathbf{w}$$

$$S_W^{-1} (\mu_1 - \mu_2) \underbrace{(\mu_1 - \mu_2)^T \mathbf{w}}_{\text{scalar}} = \lambda \mathbf{w}$$

Which means:

$$\mathbf{w} \propto S_W^{-1}(\mu_1 - \mu_2)$$

Figure: [C.Bishop PRML]

FLD procedure for two class classification:

Input: N_1 points from C_1 and N_2 points from C_2 .

- 1. Compute sample means for each class, i.e., μ_1 , μ_2 , and compute the S_W .
- 2. Compute $\mathbf{w} \leftarrow S_W^{-1}(\mu_1 \mu_2)$
- 3. Normalize: $\mathbf{w} \leftarrow \frac{\mathbf{w}}{||\mathbf{w}||}$
- 4. Select a suitable threshold θ , then classify \mathbf{x} to be C_1 if $\mathbf{w}^T \mathbf{x} > \theta$, otherwise, classify it to be C_2 .

Note:

• In the literature, people always use within class scatter matrix for S_W , which is:

$$S_W = \sum_{\mathbf{x} \in C_1} (\mathbf{x} - \mu_1)(\mathbf{x} - \mu_1)^T + \sum_{\mathbf{x} \in C_2} (\mathbf{x} - \mu_2)(\mathbf{x} - \mu_2)^T$$

 Fisher's linear discriminant can be generalized to multiple classes.

- Fisher's linear discriminant can be generalized to multiple classes.
- If number of samples N is greater than data dimensionality D, i.e., N>D, S_W is very likely to be invertible.

- Fisher's linear discriminant can be generalized to multiple classes.
- If number of samples N is greater than data dimensionality D, i.e., N>D, S_W is very likely to be invertible.
- However, when D>N, e.g., in vision problems like face recognition, S_W is singular. Could use pseudo-inverse or Fisher face algorithm.

- Fisher's linear discriminant can be generalized to multiple classes.
- If number of samples N is greater than data dimensionality D, i.e., N>D, S_W is very likely to be invertible.
- However, when D>N, e.g., in vision problems like face recognition, S_W is singular. Could use pseudo-inverse or Fisher face algorithm.
- Fisher's linear discriminant can be used to do dimension reduction. The found \mathbf{w} can be treated as new axis. Previous \mathcal{R}^D problem becomes one dimensional.

- Fisher's linear discriminant can be generalized to multiple classes.
- If number of samples N is greater than data dimensionality D, i.e., N>D, S_W is very likely to be invertible.
- However, when D>N, e.g., in vision problems like face recognition, S_W is singular. Could use pseudo-inverse or Fisher face algorithm.
- Fisher's linear discriminant can be used to do dimension reduction. The found \mathbf{w} can be treated as new axis. Previous \mathcal{R}^D problem becomes one dimensional.
- What about other dimensionality reduction techniques?
 What if we do not have class label information?

Dimensionality Reduction

 In many applications, the observed data has very high dimensionality, e.g., images, videos, DNA sequences...

Dimensionality Reduction

- In many applications, the observed data has very high dimensionality, e.g., images, videos, DNA sequences...
- **Assumption:** the data points lie close to a subspace of much *lower dimensionality* than that of the original data space.

Low-dimensional subspace

• E.g., the points in 3D space may form a line or plane.

Figure: From Source

Low-dimensional subspace

• E.g., the points in 3D space may form a line or plane.

Figure: From Source

• E.g., a small 100×100 gray-scaled image has 10,000 dimensions! While the intrinsic dimensionality might be low.

• Principal Component Analysis, or PCA, is a widely used technique for dimensionality reduction which transform the data from D-dimensional space into a new coordinate system of dimension K, where $K \leq D$.

- Principal Component Analysis, or PCA, is a widely used technique for dimensionality reduction which transform the data from D-dimensional space into a new coordinate system of dimension K, where $K \leq D$.
- PCA can be extremely useful since it can find features based on the hidden structure of the data.

- Principal Component Analysis, or PCA, is a widely used technique for dimensionality reduction which transform the data from D-dimensional space into a new coordinate system of dimension K, where $K \leq D$.
- PCA can be extremely useful since it can find features based on the hidden structure of the data.
- PCA aims to find a new representation (coordinate system) of the data by extracting combinations of features (components) from the data that are uncorrelated with each other and ordered by *importance*.

- Principal Component Analysis, or PCA, is a widely used technique for dimensionality reduction which transform the data from D-dimensional space into a new coordinate system of dimension K, where $K \leq D$.
- PCA can be extremely useful since it can find features based on the hidden structure of the data.
- PCA aims to find a new representation (coordinate system) of the data by extracting combinations of features (components) from the data that are uncorrelated with each other and ordered by *importance*.
- PCA allows us to approximate the data with a reduced number of features (i.e., only keep the very significant ones).

- Principal Component Analysis, or PCA, is a widely used technique for dimensionality reduction which transform the data from D-dimensional space into a new coordinate system of dimension K, where $K \leq D$.
- PCA can be extremely useful since it can find features based on the hidden structure of the data.
- PCA aims to find a new representation (coordinate system) of the data by extracting combinations of features (components) from the data that are uncorrelated with each other and ordered by *importance*.
- PCA allows us to approximate the data with a reduced number of features (i.e., only keep the very significant ones).
- Useful tools in many applications such as face recognition, data compression, feature extraction etc.

• **Goal:** preserve as much of the information (variance) in the original data as possible in the new coordinate system.

- Goal: preserve as much of the information (variance) in the original data as possible in the new coordinate system.
- The new variables that form a new coordinate system are called **principal components** (PCs). PCs are orthogonal (uncorrelated) to each other.

- **Goal:** preserve as much of the information (variance) in the original data as possible in the new coordinate system.
- The new variables that form a new coordinate system are called **principal components** (PCs). PCs are orthogonal (uncorrelated) to each other.
- For D-dimensional data, we have at most D PCs, denoted as $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$.

- **Goal:** preserve as much of the information (variance) in the original data as possible in the new coordinate system.
- The new variables that form a new coordinate system are called **principal components** (PCs). PCs are orthogonal (uncorrelated) to each other.
- For D-dimensional data, we have at most D PCs, denoted as $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$.
- Normally, not all D PCs are used but rather a subset of K "most important" PCs, $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K$.

- **Goal:** preserve as much of the information (variance) in the original data as possible in the new coordinate system.
- The new variables that form a new coordinate system are called **principal components** (PCs). PCs are orthogonal (uncorrelated) to each other.
- For D-dimensional data, we have at most D PCs, denoted as $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$.
- Normally, not all D PCs are used but rather a subset of K "most important" PCs, $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K$.
- Key assumption: the direction within the data that shows the most variance contains the most information and therefore, is likely the most important.

First principal component

• Consider the projection of original data ${\bf x}$ onto a one-dimensional space, define the direction of this space using a D-dimensional vector ${\bf u}_1$.

First principal component

- Consider the projection of original data x onto a one-dimensional space, define the direction of this space using a D-dimensional vector u₁.
- The scale of \mathbf{u}_1 doesn't matter, care more about direction, assume $\mathbf{u}_1^T\mathbf{u}_1=1$.

First principal component

- Consider the projection of original data x onto a one-dimensional space, define the direction of this space using a D-dimensional vector u₁.
- The scale of \mathbf{u}_1 doesn't matter, care more about direction, assume $\mathbf{u}_1^T\mathbf{u}_1=1$.
- ullet Each data point \mathbf{x}_n is projected onto a scalar value $\mathbf{u}_1^T\mathbf{x}_n$

Figure: [C.Bishop, PRML]

Maximize the variance

• Suppose we have N observations $\{\mathbf{x}_n, n=1,2,\ldots,N\}$, $\mathbf{x}_n \in \mathcal{R}^D$.

Maximize the variance

- Suppose we have N observations $\{\mathbf{x}_n, n=1,2,\ldots,N\}$, $\mathbf{x}_n \in \mathcal{R}^D$.
- The projected data: $\{\mathbf{u}_1^T\mathbf{x}_n, n=1,2,\ldots,N\}$

- Suppose we have N observations $\{\mathbf{x}_n, n=1,2,\ldots,N\}$, $\mathbf{x}_n \in \mathcal{R}^D$.
- The projected data: $\{\mathbf{u}_1^T\mathbf{x}_n, n=1,2,\ldots,N\}$
- The mean of the projected data:

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_1^T \mathbf{x}_n = \mathbf{u}_1^T \bar{\mathbf{x}}$$

- Suppose we have N observations $\{\mathbf{x}_n, n=1,2,\ldots,N\}$, $\mathbf{x}_n \in \mathcal{R}^D$.
- The projected data: $\{\mathbf{u}_1^T\mathbf{x}_n, n=1,2,\ldots,N\}$
- The mean of the projected data:

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_1^T \mathbf{x}_n = \mathbf{u}_1^T \bar{\mathbf{x}}$$

• The variance of the projected data:

$$\frac{1}{N} \sum_{n=1}^{N} [\mathbf{u}_{1}^{T} \mathbf{x}_{n} - \mathbf{u}_{1}^{T} \bar{\mathbf{x}}]^{2} = \mathbf{u}_{1}^{T} S \mathbf{u}_{1}$$

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \bar{\mathbf{x}}) (\mathbf{x}_{n} - \bar{\mathbf{x}})^{T}$$

Find \mathbf{u}_1 , such that the projected data has maximum variance.

Find \mathbf{u}_1 , such that the projected data has **maximum variance**.

• $\max_{\mathbf{u}_1} \mathbf{u}_1^T S \mathbf{u}_1$: would render trivial solution $||\mathbf{u}_1|| \to \infty$.

Find \mathbf{u}_1 , such that the projected data has **maximum variance**.

- $\max_{\mathbf{u}_1} \mathbf{u}_1^T S \mathbf{u}_1$: would render trivial solution $||\mathbf{u}_1|| \to \infty$.
- Consider normalization condition:

$$\begin{aligned} \max_{\mathbf{u}_1} \quad \mathbf{u}_1^T S \mathbf{u}_1 \\ \text{s.t.} \quad \mathbf{u}_1^T \mathbf{u}_1 = 1 \end{aligned}$$

Find \mathbf{u}_1 , such that the projected data has **maximum variance**.

- $\max_{\mathbf{u}_1} \mathbf{u}_1^T S \mathbf{u}_1$: would render trivial solution $||\mathbf{u}_1|| \to \infty$.
- Consider normalization condition:

$$\begin{aligned} \max_{\mathbf{u}_1} \quad \mathbf{u}_1^T S \mathbf{u}_1 \\ \text{s.t.} \quad \mathbf{u}_1^T \mathbf{u}_1 = 1 \end{aligned}$$

• Using Lagrange Multiplier:

$$L(\mathbf{u}_1, \lambda) = \mathbf{u}_1^T S \mathbf{u}_1 - \lambda_1 (\mathbf{u}_1^T \mathbf{u}_1 - 1)$$

Take
$$\frac{\partial L(\mathbf{u}_1,\lambda_1)}{\partial \mathbf{u}_1}=0$$
, we have:

$$S\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

Take
$$\frac{\partial L(\mathbf{u}_1,\lambda_1)}{\partial \mathbf{u}_1}=0$$
, we have:

$$S\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

• \mathbf{u}_1 must be eigenvector of S. λ_1 is the eigenvalue of S.

Take $\frac{\partial L(\mathbf{u}_1,\lambda_1)}{\partial \mathbf{u}_1}=0$, we have:

$$S\mathbf{u}_1 = \lambda_1\mathbf{u}_1$$

- \mathbf{u}_1 must be eigenvector of S. λ_1 is the eigenvalue of S.
- Left-multiply by \mathbf{u}_1^T , and use $\mathbf{u}_1^T\mathbf{u}_1=1$, we have:

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$$

Take $\frac{\partial L(\mathbf{u}_1,\lambda_1)}{\partial \mathbf{u}_1}=0$, we have:

$$S\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

- \mathbf{u}_1 must be eigenvector of S. λ_1 is the eigenvalue of S.
- Left-multiply by \mathbf{u}_1^T , and use $\mathbf{u}_1^T\mathbf{u}_1=1$, we have:

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$$

• The variance will be **maximum** when we take \mathbf{u}_1 equal to the eigenvector that having the **largest eigenvalue** λ_1 .

Take $\frac{\partial L(\mathbf{u}_1,\lambda_1)}{\partial \mathbf{u}_1}=0$, we have:

$$S\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

- \mathbf{u}_1 must be eigenvector of S. λ_1 is the eigenvalue of S.
- Left-multiply by \mathbf{u}_1^T , and use $\mathbf{u}_1^T\mathbf{u}_1=1$, we have:

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$$

- The variance will be **maximum** when we take \mathbf{u}_1 equal to the eigenvector that having the **largest eigenvalue** λ_1 .
- ullet This eigenvector ${f u}_1$ is known as the first principal component.

• Centering the data to have mean 0: $\mathbf{x}_n - \bar{\mathbf{x}}$ (simplify the notation, PCA is more like rotation operation)

- Centering the data to have mean 0: $\mathbf{x}_n \bar{\mathbf{x}}$ (simplify the notation, PCA is more like rotation operation)
- For unit vector \mathbf{u}_1 , the **residual of projection** for any data \mathbf{x}_n :

$$||\mathbf{x}_n - (\mathbf{u}_1^T \mathbf{x}_n) \mathbf{u}_1||^2$$

- Centering the data to have mean 0: $\mathbf{x}_n \bar{\mathbf{x}}$ (simplify the notation, PCA is more like rotation operation)
- For unit vector \mathbf{u}_1 , the **residual of projection** for any data \mathbf{x}_n :

$$||\mathbf{x}_n - (\mathbf{u}_1^T \mathbf{x}_n) \mathbf{u}_1||^2$$

• Consider N points, we have **Residual-Sum-of-Square** (**RSS**), it can be shown that for centred data :

$$\min_{\mathbf{u}_1} RSS(\mathbf{u}_1) \equiv \max_{\mathbf{u}_1} \mathrm{Var}(\mathbf{u}_1^T\mathbf{x})$$

- Centering the data to have mean 0: $\mathbf{x}_n \bar{\mathbf{x}}$ (simplify the notation, PCA is more like rotation operation)
- For unit vector \mathbf{u}_1 , the **residual of projection** for any data \mathbf{x}_n :

$$||\mathbf{x}_n - (\mathbf{u}_1^T \mathbf{x}_n) \mathbf{u}_1||^2$$

 Consider N points, we have Residual-Sum-of-Square (RSS), it can be shown that for centred data:

$$\min_{\mathbf{u}_1} RSS(\mathbf{u}_1) \equiv \max_{\mathbf{u}_1} Var(\mathbf{u}_1^T \mathbf{x})$$

• Find u₁, such that the projection error is minimized.

Figure: [Source]

Finding additional principal components

- To find second principal component u₂: find direction that maximize the projected variance amongst all possible directions orthogonal to u₁.
 - \mathbf{u}_2 is the eigenvector of S having the second largest eigenvalue λ_2 .

Finding additional principal components

- To find second principal component u₂: find direction that maximize the projected variance amongst all possible directions orthogonal to u₁.
 - \mathbf{u}_2 is the eigenvector of S having the second largest eigenvalue λ_2 .
- To find third principal component u₃: find direction that maximize the projected variance amongst all possible directions orthogonal to u₁ and u₂.
 - \mathbf{u}_3 is the eigenvector of S having the third largest eigenvalue λ_3 .

Finding additional principal components

- To find second principal component u₂: find direction that maximize the projected variance amongst all possible directions orthogonal to u₁.
 - \mathbf{u}_2 is the eigenvector of S having the second largest eigenvalue λ_2 .
- To find third principal component u₃: find direction that maximize the projected variance amongst all possible directions orthogonal to u₁ and u₂.
 - \mathbf{u}_3 is the eigenvector of S having the third largest eigenvalue λ_3 .
- In general, we get D eigenvalues of covariance matrix S, ordered from largest to smallest:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$$

Then the corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$ are **principal components**.

Dimension reduction

The principal components (PCs) $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$ form the new coordinate system, so the original data \mathbf{x}_n can be projected onto new system:

$$\mathbf{x}_n = \sum_{i=1}^D (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

Dimension reduction

The principal components (PCs) $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$ form the new coordinate system, so the original data \mathbf{x}_n can be projected onto new system:

$$\mathbf{x}_n = \sum_{i=1}^D (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

 If we keep all D PCs, then there is no dimensionality reduction but simply a rotation of the coordinate axes to align with the principal components.

Dimension reduction

The principal components (PCs) $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$ form the new coordinate system, so the original data \mathbf{x}_n can be projected onto new system:

$$\mathbf{x}_n = \sum_{i=1}^{D} (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

- If we keep all D PCs, then there is no dimensionality reduction but simply a rotation of the coordinate axes to align with the principal components.
- If keep K(< D) PCs, then we have *lower dimensional* representation, and we could approximate \mathbf{x}_n by:

$$\mathbf{x}_n pprox \sum_{i=1}^K (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

PCA for High-dimensional Data

• In modern AI and vision applications, the number of data points is smaller than the dimensionality of the data space, i.e., N < D.

- In modern AI and vision applications, the number of data points is smaller than the dimensionality of the data space, i.e., N < D.
- E.g., we might have only 100 gray-scaled images of size 256×256 where $N=100,\ D=256 \times 256=65,536.$

- In modern AI and vision applications, the number of data points is smaller than the dimensionality of the data space, i.e., N < D.
- E.g., we might have only 100 gray-scaled images of size 256×256 where $N=100,\ D=256 \times 256=65,536.$
- N points in a D-dimensional space defines a subspace whose dimensionality is at most N-1, therefore, apply PCA, we will find at least D-N+1 of the eigenvalues to be 0.

- In modern AI and vision applications, the number of data points is smaller than the dimensionality of the data space, i.e., N < D.
- E.g., we might have only 100 gray-scaled images of size 256×256 where $N=100, D=256 \times 256=65, 536$.
- N points in a D-dimensional space defines a subspace whose dimensionality is at most N-1, therefore, apply PCA, we will find at least D-N+1 of the eigenvalues to be 0.
- Further, covariance matrix S is $D \times D$, computational infeasible when D is large.

• Consider N face images of size [h,w]. In order to apply PCA, we view the data as long vector of size $D=h\times w.$

- Consider N face images of size [h,w]. In order to apply PCA, we view the data as long vector of size $D=h\times w$.
- Define $(N \times D)$ data matrix \mathbf{X} where n-th row is given by $(\mathbf{x}_n \bar{\mathbf{x}})^T$ which is the centred face image. $\bar{\mathbf{x}}$ is the mean image.

- Consider N face images of size [h,w]. In order to apply PCA, we view the data as long vector of size $D=h\times w$.
- Define $(N \times D)$ data matrix \mathbf{X} where n-th row is given by $(\mathbf{x}_n \bar{\mathbf{x}})^T$ which is the centred face image. $\bar{\mathbf{x}}$ is the mean image.
- The covariance matrix defined before can be written as $S = N^{-1}\mathbf{X}^T\mathbf{X}$.

- Consider N face images of size [h,w]. In order to apply PCA, we view the data as long vector of size $D=h\times w$.
- Define $(N \times D)$ data matrix \mathbf{X} where n-th row is given by $(\mathbf{x}_n \bar{\mathbf{x}})^T$ which is the centred face image. $\bar{\mathbf{x}}$ is the mean image.
- The covariance matrix defined before can be written as $S = N^{-1}\mathbf{X}^T\mathbf{X}$.
- The eigenvector equation for PCA:

$$\frac{1}{N} \underbrace{\mathbf{X}^T \mathbf{X}}_{D \times D} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

- Consider N face images of size [h,w]. In order to apply PCA, we view the data as long vector of size $D=h\times w$.
- Define $(N \times D)$ data matrix \mathbf{X} where n-th row is given by $(\mathbf{x}_n \bar{\mathbf{x}})^T$ which is the centred face image. $\bar{\mathbf{x}}$ is the mean image.
- The covariance matrix defined before can be written as $S = N^{-1}\mathbf{X}^T\mathbf{X}$.
- The eigenvector equation for PCA:

$$\frac{1}{N} \underbrace{\mathbf{X}^T \mathbf{X}}_{D \times D} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

• The eigenvectors of S, i.e., $\mathbf{u}_1, \mathbf{u}_2, \ldots$ forms the **eigenfaces**.

• The direct way for PCA:

$$\frac{1}{N} \underbrace{\mathbf{X}^T \mathbf{X}}_{D \times D} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

• Multiply by X:

$$\frac{1}{N} \mathbf{X} \mathbf{X}^T (\mathbf{X} \mathbf{u}_i) = \lambda_i (\mathbf{X} \mathbf{u}_i)$$

• The direct way for PCA:

$$\frac{1}{N} \underbrace{\mathbf{X}^T \mathbf{X}}_{D \times D} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

• Multiply by X:

$$\frac{1}{N} \mathbf{X} \mathbf{X}^T (\mathbf{X} \mathbf{u}_i) = \lambda_i (\mathbf{X} \mathbf{u}_i)$$

• Let $\mathbf{v}_i = \mathbf{X}\mathbf{u}_i$:

$$\frac{1}{N} \underbrace{\mathbf{X} \mathbf{X}^T}_{N \times N} \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

• After we obtained the eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots$, we can use $(\mathbf{X}^T \mathbf{v}_i)$ to get eigenvector of S with eigenvalue λ_i :

$$(\underbrace{\frac{1}{N}\mathbf{X}^{T}\mathbf{X}}_{S})\underbrace{(\mathbf{X}^{T}\mathbf{v}_{i})}_{D\times 1} = \lambda_{i}(\mathbf{X}^{T}\mathbf{v}_{i})$$

• After we obtained the eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots$, we can use $(\mathbf{X}^T \mathbf{v}_i)$ to get eigenvector of S with eigenvalue λ_i :

$$(\underbrace{\frac{1}{N}\mathbf{X}^{T}\mathbf{X}}_{S})\underbrace{(\mathbf{X}^{T}\mathbf{v}_{i})}_{D\times 1} = \lambda_{i}(\mathbf{X}^{T}\mathbf{v}_{i})$$

• Rescale $\mathbf{u}_i \propto \mathbf{X}^T \mathbf{v}_i$ such that $||\mathbf{u}_i|| = 1$.

Eigenfaces

• After we obtained the eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots$, we can use $(\mathbf{X}^T \mathbf{v}_i)$ to get eigenvector of S with eigenvalue λ_i :

$$(\underbrace{\frac{1}{N}\mathbf{X}^{T}\mathbf{X}}_{S})\underbrace{(\mathbf{X}^{T}\mathbf{v}_{i})}_{D\times 1} = \lambda_{i}(\mathbf{X}^{T}\mathbf{v}_{i})$$

- Rescale $\mathbf{u}_i \propto \mathbf{X}^T \mathbf{v}_i$ such that $||\mathbf{u}_i|| = 1$.
- Keep top-K eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_K$ to form K eigenfaces. Reshape the D-dimensional \mathbf{u}_i to [h,w] to visualize the eigenfaces.

General procedures of obtaining eigenfaces

- 1. Construct the data matrix **X**, each row contains one centred face image represented by long-vector.
- 2. Consider $\mathbf{X}\mathbf{X}^T$ ($N \times N$), and find its K(< N) eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_K$.
- 3. Get K eigenfaces by normalizing the corresponding $\mathbf{X}^T \mathbf{v}_1, \dots, \mathbf{X}^T \mathbf{v}_K$.

• Let $W = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K)$ which contains K eigenfaces that forms the new coordinate system.

- Let $W = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K)$ which contains K eigenfaces that forms the new coordinate system.
- Given test/new face image ${\bf x}$, centering it using mean image, i.e., ${\bf x} \bar{\bf x}$.

- Let $W = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K)$ which contains K eigenfaces that forms the new coordinate system.
- Given test/new face image ${\bf x}$, centering it using mean image, i.e., ${\bf x} \bar{\bf x}$.
- Project it onto eigenfaces: $(\mathbf{x} \bar{\mathbf{x}})W$ (think of it as coordinates/projected value on the new system).

- Let $W = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K)$ which contains K eigenfaces that forms the new coordinate system.
- Given test/new face image ${\bf x}$, centering it using mean image, i.e., ${\bf x} \bar{\bf x}$.
- Project it onto eigenfaces: $(\mathbf{x} \bar{\mathbf{x}})W$ (think of it as coordinates/projected value on the new system).
- Approximate the centred test/new face image using eigenfaces: $(\mathbf{x} \bar{\mathbf{x}})WW^T$.

- Let $W = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K)$ which contains K eigenfaces that forms the new coordinate system.
- Given test/new face image ${\bf x}$, centering it using mean image, i.e., ${\bf x} \bar{\bf x}$.
- Project it onto eigenfaces: $(\mathbf{x} \bar{\mathbf{x}})W$ (think of it as coordinates/projected value on the new system).
- Approximate the centred test/new face image using eigenfaces: $(\mathbf{x} \bar{\mathbf{x}})WW^T$.
- Finally, add back the mean image to obtain the approximation/reconstruction for test/new image: $\bar{\mathbf{x}} + (\mathbf{x} \bar{\mathbf{x}})WW^T$

Eigenface representation

Figure: [Source]

 Both methods can be viewed as techniques for linear dimensionality reduction.

- Both methods can be viewed as techniques for linear dimensionality reduction.
- Fisher's Linear Discriminant uses class-label information which is supervised learning. Can be used for classification.

- Both methods can be viewed as techniques for linear dimensionality reduction.
- Fisher's Linear Discriminant uses class-label information which is supervised learning. Can be used for classification.
- Principal Component Analysis depends only on data x without label information which is unsupervised.

Figure: Red line: PCA. Green line: FLD [C.Bishop, PRML]

Acknowledgement and Further Reading

First few slides of Fisher Linear Discriminant are taken from Dr. Y. Ning's Spring 19 offering of CS-559.

Part of the discussion on different views of PCA is inspired by [bioramble]

Further Reading:

Chapter 4.1 and 12.1 of *Pattern Recognition and Machine Learning* by C. Bishop.