```
In [1]:
import pandas as pa
import numpy as np
import scipy
import statsmodels.tsa
import matplotlib.pyplot as plt
In [2]:
data = pa.read_csv(r'C:\Users\SACHIN K M\Desktop\python\data\datasets\LYNXdata.csv', header=0, names = ['year', 'trappings'], index_col = 0)
In [3]:
data.head()
Out[3]:
       trappings
year
1821
            269
1822
            321
1823
            585
            871
1824
           1475
1825
In [4]:
type(data)
Out[4]:
pandas.core.frame.DataFrame
In [5]:
data2 = data['trappings']
data2.head()
Out[5]:
year
1821
       269
1822
       321
       585
1823
1824
       871
1825 1475
Name: trappings, dtype: int64
In [6]:
#converting data frame into series object
#frequency aliases
#A - for year end
#B - business days
#D - day
#H - hour
#T - minutes
#S - seconds
dataseries = pa.Series(data['trappings'].values, index= pa.date_range('31/12/1821', periods = 114, freq = 'A-DEC'))
dataseries.head()
Out[6]:
1821-12-31
              269
1822-12-31
              321
1823-12-31
              585
```

1824-12-31 871 1825-12-31 1475 Freq: A-DEC, dtype: int64

In [7]:

In [8]:

stationarity_test(dataseries)

results of dicky-fuller test:

test statestics -2.996304 p value 0.035241 #lags used 7.000000

number of observations used 106.000000

dtype: float64

In [9]:

```
#np.random.normal(1, 3, 300), 1 is mean, 3 standard deviation, 300 - no of observations generated randomly stationarity_test(np.random.normal(1, 3, 300)) plt.figure(figsize=(20,7)) plt.plot(np.random.normal(1, 3, 300))
```

results of dicky-fuller test:

test statestics -1.868927e+01
p value 2.039774e-30
#lags used 0.000000e+00
number of observations used 2.990000e+02

dtype: float64

Out[9]:

[<matplotlib.lines.Line2D at 0x13ebbca4b70>]

In [10]:

import statsmodels.graphics
from statsmodels.graphics import tsaplots
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

In [11]:

```
%matplotlib inline
fig = plt.figure(figsize= (12,7))
ax1 = fig.add_subplot(211)
fig = plot_acf(dataseries, lags=20, ax = ax1)
ax2 = fig.add_subplot(212)
fig = plot_pacf(dataseries, lags=20, ax = ax2)
```


In [12]:

```
plt.figure(figsize=(12,7))
dataseries.plot()
plt.title("lynx trapping in canada 1821-1934")
plt.xlabel('year of trapping')
plt.ylabel('number of lynx trapped')
plt.legend(['Lynx'])

cumsum_lynx = np.cumsum(dataseries)
```


In [13]:

cumsum_lynx = np.cumsum(dataseries)
plt.figure(figsize=(12,7))
plt.plot(dataseries)

.

```
plt.plot(cumsum_lynx)
plt.title("lynx trapping in canada 1821-1934")
plt.xlabel('year of trapping')
plt.ylabel('number of lynx trapped')
plt.legend(['Lynx per year', 'cummulative total'])
```

Out[13]:

<matplotlib.legend.Legend at 0x13ebbdf78d0>

In [14]:

```
plt.figure(figsize=(12,7))

plt.subplot(2, 1, 1)
plt.plot(dataseries)
plt.title('lynx trapping')

plt.subplot(2, 1, 2)
plt.plot(cumsum_lynx)
plt.title('cummulative lynx trapped')

plt.tight_layout()
```


1020 1040 1000 1000 1500 1520 15

In [15]:

```
def plot_rolling(timeseries, window):
    rol_mean = timeseries.rolling(window).mean()
    rol_std = timeseries.rolling(window).std()

plt.figure(figsize=(12,7))
    og = plt.plot(timeseries, color="blue", label="original")
    mean = plt.plot(rol_mean, color="black", label="rolling mean")
    std = plt.plot(rol_std, color="red", label="tad deviation")
    plt.legend(loc='best')
    plt.title("rolling meanand standred deviation (window="+str(window)+")")
    plt.show()
```

In [16]:

```
plot_rolling(data, 10)
```


In [17]:

```
#getting smoothing values
dataseries.rolling(10).mean()
dataseries.rolling(10, min_periods=1).mean()
```

Out[17]:

1821-12-31	269.000000
1822-12-31	295.000000
1823-12-31	391.666667
1824-12-31	511.500000
1825-12-31	704.200000
1826-12-31	1057.000000
1827-12-31	1467.142857
1828-12-31	2026.625000
1829-12-31	2351.444444
1830-12-31	2374.000000
1831-12-31	2399.400000
1832-12-31	2377.100000
1833-12-31	2337.000000
1834-12-31	2277.800000
1835-12-31	2171.200000
1836-12-31	2117.600000
1837-12-31	1993.300000
1838-12-31	1739.900000
1839-12-31	1427.300000
1840-12-31	1210.500000
1841-12-31	1173.300000
1842-12-31	1168.000000
1843-12-31	1156.400000
1844-12-31	1149.800000

```
1845-12-31
            1163.500000
1846-12-31
            1038.300000
1847-12-31
            982.700000
1848-12-31
            895.400000
            808.700000
1849-12-31
1850-12-31
            803.900000
1905-12-31
           2356.100000
1906-12-31
           2386.000000
1907-12-31
           2510.900000
1908-12-31
           2534.900000
1909-12-31
            2557.800000
1910-12-31
           2599.900000
1911-12-31
           2662.900000
1912-12-31
           2803.500000
1913-12-31
           2837.000000
1914-12-31
           2447.000000
1915-12-31
           2114.200000
1916-12-31
           2113.800000
1917-12-31
           1997.600000
1918-12-31
           1971.200000
           1941.000000
1919-12-31
1920-12-31
            1871.000000
1921-12-31
           1755.100000
1922-12-31
           1523.700000
1923-12-31
           1256.900000
1924-12-31
           1191.000000
1925-12-31
            1249.900000
1926-12-31
           1164.400000
1927-12-31
           1250.700000
1928-12-31
           1295.500000
1929-12-31
           1336.000000
1930-12-31
           1391.400000
1931-12-31
            1468.500000
1932-12-31
           1587.600000
1933-12-31
           1740.100000
1934-12-31 1836.500000
Freq: A-DEC, Length: 114, dtype: float64
```

In [18]:

```
# to avoid nan values at the wbeganing window size
dataseries.head()

# difference between plot_rolling & plot_rolling1 is min_period it will start from there

def plot_rolling1(timeseries, window):
    rol_mean = timeseries.rolling(window, min_periods=1).mean()
    rol_std = timeseries.rolling(window, min_periods=1).std()

plt.figure(figsize=(12,7))
    og = plt.plot(timeseries, color="blue", label="original")
    mean = plt.plot(rol_mean, color="black", label="rolling mean")
    std = plt.plot(rol_std, color="red", label="tad deviation")
    plt.legend(loc='best')
    plt.title("rolling meanand standred deviation (window="+str(window)+")")
    plt.show()
```

In [19]:

```
plot_rolling1(dataseries, 10)
```



```
1000 1820 1840 1860 1880 1900 1920 1940
```

In [20]:

```
#ewma (exponential weighted moving average)
#this method only for pandas data series or pandas data frame

def plot_ewma(timeseries, alpha):
    expw_ma = timeseries.ewm(alpha=alpha).mean()

fig= plt.figure(figsize=(12,7))
    og_line = plt.plot(timeseries, color= 'blue', label='expoavg')
    exwm_avg = plt.plot(expw_ma, color='red', label='EWMA')
    plt.legend(loc='best')
    plt.title("ewma (alpha="+str(alpha)+")")
    plt.show()
```

In [21]:

```
for i in np.arange(0.1, 0.5, 0.1):
plot_ewma(dataseries, i)
```


In [24]:

#we will consider AIC value it should be as low as possible #only randomness present in resudial results_AR.summary()

Out[24]:

ARMA Model Results

Dep. Variable:	у	No. Observations:	114
Model:	ARMA(2, 0)	Log Likelihood	-935.016
Method:	css-mle	S.D. of innovations	876.447
Date:	Fri, 12 Jul 2019	AIC	1878.032
Time:	07:43:12	BIC	1888.977
Sample:	12-31-1821	HQIC	1882.474
	- 12-31-1934		

	coef	std err	z	P> z	[0.025	0.975]
const	1545.3385	181.671	8.506	0.000	1189.269	1901.408
ar.L1.y	1.1474	0.074	15.459	0.000	1.002	1.293
ar.L2.y	-0.5997	0.074	-8.110	0.000	-0.745	-0.455

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	0.9566	-0.8673j	1.2913	-0.1172
AR.2	0.9566	+0.8673j	1.2913	0.1172

In [25]:

#ACF on our residual model fig = plt.figure(figsize=(12,7)) ax1 = fig.add_subplot(211) fig = plot_acf(results_AR.resid, lags=20, ax= ax1)

In [26]:

from scipy.stats import norm

In [27]:

```
#order =(4, 0, 0) is producing the lowest value of AIC AR5 & AR3 both are higher value of AIC

model = ARIMA(dataseries, order=(4, 0, 0))
results_AR1 = model.fit()
plt.figure(figsize=(20,7))
plt.plot(dataseries)
plt.plot(results_AR.fittedvalues, color='red')
```

Out[27]:

[<matplotlib.lines.Line2D at 0x13ebbef25c0>]

In [28]:

results_AR1.summary()

Out[28]:

ARMA Model Results

Dep. Variable:	у	No. Observations:	114
Model:	ARMA(4, 0)	Log Likelihood	-931.111
Method:	css-mle	S.D. of innovations	845.949
Date:	Fri, 12 Jul 2019	AIC	1874.222
Time:	07:45:46	BIC	1890.639
Sample:	12-31-1821	HQIC	1880.885
	- 12-31-1934		

	coef	std err	z	P> z	[0.025	0.975]
const	1547.4367	136.851	11.307	0.000	1279.214	1815.659
ar.L1.y	1.1246	0.090	12.450	0.000	0.948	1.302
ar.L2.y	-0.7174	0.137	-5.250	0.000	-0.985	-0.450
ar.L3.y	0.2634	0.136	1.935	0.056	-0.003	0.530
ar.L4.y	-0.2543	0.090	-2.837	0.005	-0.430	-0.079

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	0.9198	-0.6880j	1.1486	-0.1022
AR.2	0.9198	+0.6880j	1.1486	0.1022
AR.3	-0.4020	-1.6789j	1.7264	-0.2874
AR.4	-0.4020	+1.6789j	1.7264	0.2874

In [29]:

results_AR1.resid.tail()

Out[29]:

1930-12-31 -65.572508 1931-12-31 -48.257955 1932-12-31 43.827806 1933-12-31 631.973963 1934-12-31 550.263041 Freq: A-DEC, dtype: float64

In [30]:

results_AR1.fittedvalues.tail()

Out[30]:

1930-12-31 727.572508 1931-12-31 1048.257955 1932-12-31 1546.172194 1933-12-31 2025.026037 1934-12-31 2845.736959 Freq: A-DEC, dtype: float64

In [31]:

dataseries.tail()

Out[31]:

1930-12-31 662 1931-12-31 1000 1932-12-31 1590 1933-12-31 2657 1934-12-31 3396 Freq: A-DEC, dtype: int64

In [32]:

np.mean(results_AR1.resid)

Out[32]:

-9.065780174278016

In [33]:

```
fig = plt.figure(figsize=(12,7))
ax1 = fig.add_subplot(211)
fig = plot_acf(results_AR1.resid, lags=20, ax= ax1)

✓
```


In [35]:

```
#mu is mean, pdf --> probabity densitty function
#line space is used for to equally space the bars in graph
from scipy.stats import norm
plt.figure(figsize=(12,7))
plt.hist(results_AR1.resid, bins = 'auto', density = True, rwidth = 0.85,
     label = 'residual')
mu, std = norm.fit(results_AR1.resid)
print(mu, std)
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'm', linewidth = 2)
plt.grid(axis = 'y', alpha = 0.2)
plt.xlabel('residuals')
plt.ylabel('density')
plt.title('residuals 4, 0, 0 vs normal distribution - mean = '+str(round(mu, 2))+', std = '+str(round(std, 2)))
plt.show()
```

-9.065780174278022 852.1504376527944

In [36]:

model202 = ARIMA(dataseries, order=(2, 0, 2)) results AR2 = model202.fit()

In [38]:

Fcast400 = results_AR1.predict(start = $\frac{31}{12}\frac{1935}{935}$, end = $\frac{31}{12}\frac{1945}{945}$) fcast202 = results_AR2.predict(start = $\frac{31}{12}\frac{1935}{935}$, end = $\frac{31}{12}\frac{1945}{945}$)

C:\Users\SACHIN K M\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:336: FutureWarning: Creating a DatetimeIndex by passing r ange endpoints is deprecated. Use `pandas.date_range` instead. freq=base_index.freq)

In [40]:

```
plt.figure(figsize=(12,7))
plt.plot(dataseries, linewidth=2, label ="original")
plt.plot(Fcast400, color='red', linewidth=2, label="ARIMA 4, 0, 0")
plt.plot(fcast202, color='blue', linewidth=2, label="ARIMA 2, 0, 2")
plt.legend()
```

Out[40]:

<matplotlib.legend.Legend at 0x13ebccce710>

In []: