→ NAME - SANTRAM

ROLL NO. -231030050

Image Extraction and Traffic Data Analysis

```
import pandas as pd
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import os
```

Read the annotation CSV file and find the number of unique object classes in the images

```
\label{eq:continuous} \begin{tabular}{ll} \tt \#reading of annotation file \\ \tt annotation\_file=pd.read\_csv('ques1\_annotation.csv') \\ \tt annotation\_file \\ \end{tabular}
```

₹		filename	class	x	у	width	height	
	0	car_tent.jpg	tent	0	392	198	148	
	1	car_tent.jpg	car	294	372	375	151	
	2	dog.jpg	truck	473	71	216	101	
	3	dog.jpg	dog	134	219	179	324	
	4	dog.jpg	bicycle	125	129	446	293	

```
# finding of no. of unique objects class in two images
unique_object=annotation_file['class'].unique()
print('unique objects are:-\n',unique_object)
no_of_objects=len(unique_object)
print('no of unique objects are:-\n',no_of_objects)

    unique objects are:-
    ['tent' 'car' 'truck' 'dog' 'bicycle']
    no of unique objects are:-
```

Extract and save all objects from the images based on their positions

```
images='/content'
#iterating through annotation row-wise
for index,row in annotation_file.iterrows():
 #storing filenames in image_id
 image_id=row['filename']
 #storing class data in objects
 object=row['class']
 x,y,width,height=row['x'],row['y'],row['width'],row['height']
 x_min,x_max=x,x+width
 y_min,y_max=y,y+height
 #joining image path
 image_path=os.path.join(images,image_id)
 image=Image.open(image_path)
 #function to crop image
 object_image=image.crop((x_min,y_min,x_max,y_max))
 #function image.save to combine each cropped image present in object_image with a unique index number and then save it as png extensi
 # f here denotes formatted string
 object_image.save(f'{object_image}_{index}.png')
print('objects extracted and saved')
→ objects extracted and saved
```

Display the "tent" object from "car_tent.jpg" and the "bicycle" object from "dog.jpg".

```
# reading of car_tent.jpg image
image1=cv2.imread('car_tent.jpg')

# croping of tent from car_tent.jpg image
tent=image1[392:540,0:198]
print('tent object is \n',plt.imshow(tent))
```

tent object is
AxesImage(size=(148, 198))


```
# reading of dog.jpg image
image2=cv2.imread('dog.jpg')
```

croping bycycle from dog.jpg image
bycycle=image2[129:422,125:571]
print('bycycle object is \n',plt.imshow(bycycle))

bycycle object is
AxesImage(size=(293, 446))

▼ Read and merge the data files "threshold_data.csv" and "segment_data.csv".n

```
import pandas as pd

# Read the two CSV files into dataframes
data1 = pd.read_csv('threshold_data.csv')
data2 = pd.read_csv('segment_data.csv')

# Merge the dataframes based on the "Code" column
dframe= pd.merge(data1, data2, on='Code')
dframe
```

		Code	Time	Speed	Road	Direction	Mileage				
	0	5032426	0	55.00	I-235	EB	12.937880				
	1	5032426	1	43.00	I-235	EB	12.937880				
	2	5032426	2	42.75	I-235	EB	12.937880				
	3	5032426	3	53.00	I-235	EB	12.937880				
	4	5032426	100	46.00	I-235	EB	12.937880				
	6809	5033376	2203	59.00	I-235	EB	1.277982				
	6810	5033376	2300	55.75	I-235	EB	1.277982				
	6811	5033376	2301	57.00	I-235	EB	1.277982				
	6812	5033376	2302	44.00	I-235	EB	1.277982				
	6813	5033376	2303	49.00	I-235	EB	1.277982				
	6814 rd	ws × 6 colu	umns								

Modify threshold speed values in the merged dataframe.

```
# Clip the "Threshold Speed" column to a minimum value of 0 and a maximum value of 45 dframe['Speed'] = dframe['Speed'].clip(lower=0, upper=45)
```

Display the modified merged dataframe dframe

_		Code	Time	Time Speed Road Direct			Mileage					
	0	5032426	0	45.00	I-235	EB	12.937880					
	1	5032426	1	43.00	I-235	EB	12.937880					
	2	5032426	2	42.75	I-235	EB	12.937880					
	3	5032426	3	45.00	I-235	EB	12.937880					
	4	5032426	100	45.00	I-235	EB	12.937880					
	6809	5033376	2203	45.00	I-235	EB	1.277982					
	6810	5033376	2300	45.00	I-235	EB	1.277982					
	6811	5033376	2301	45.00	I-235	EB	1.277982					
	6812	5033376	2302	44.00	I-235	EB	1.277982					
	6813	5033376	2303	45.00	I-235	EB	1.277982					
	6814 rows × 6 columns											

▼ Filter the merged dataframe for Road = 'I-235' and Direction = 'WB'.

```
# Filter the dataframe for Road = 'I-235' and Direction = 'WB'
dataframe= dframe[(dframe['Road'] == 'I-235') & (dframe['Direction'] == 'WB')]
dataframe
```

₹	Code		Time	Speed	Road	Direction	Mileage				
	96	5032428	0	45.0	I-235	WB	0.676521				
	97	5032428	1	45.0	I-235	WB	0.676521				
	98	5032428	2	45.0	I-235	WB	0.676521				
	99	5032428	3	45.0	I-235	WB	0.676521				
	100	5032428	100	45.0	I-235	WB	0.676521				
	6617	5033373	2203	45.0	I-235	WB	12.491597				
	6618	5033373	2300	35.5	I-235	WB	12.491597				
	6619	5033373	2301	45.0	I-235	WB	12.491597				
	6620	5033373	2302	45.0	I-235	WB	12.491597				
	6621	5033373	2303	45.0	I-235	WB	12.491597				
	3359 rc	ws × 6 colu	umns								

→ Pivot the filtered dataframe

```
# inserting of Distance column on dataframe by the help of multiplying   Time and Threshold_speed
pivoted = dframe.pivot_table(index='Mileage', columns='Time', values='Speed')
```

- # Sort the pivot table based on the distance (index)
 pivoted = pivoted.sort_index()
- # Display the sorted pivot table
 pivoted

₹

7	Time	0	1	2	3	100	101	102	103	200	201	 2102	2103	2200	2201	2202	2203	2300	2301	2302	2303
	Mileage																				
	0.000000	44.375	44.0	45.0	45.00	45.0	45.0	45.0	45.0	45.0	45.0	 42.5	44.0	45.00	45.0	45.0	45.0	45.0	38.5	45.0	45.0
	0.509586	45.000	40.0	45.0	44.25	45.0	45.0	45.0	45.0	45.0	45.0	 45.0	45.0	45.00	45.0	42.0	45.0	45.0	45.0	45.0	45.0
	0.676521	45.000	45.0	45.0	45.00	45.0	45.0	45.0	45.0	45.0	45.0	 43.0	45.0	45.00	45.0	45.0	45.0	45.0	45.0	45.0	45.0
	0.891268	35.000	29.0	45.0	45.00	0.0	45.0	0.0	45.0	45.0	45.0	 45.0	45.0	45.00	45.0	45.0	45.0	45.0	45.0	42.0	45.0
	1.277982	33.000	40.0	45.0	45.00	0.0	0.0	45.0	45.0	45.0	45.0	 45.0	45.0	45.00	45.0	45.0	45.0	45.0	45.0	44.0	45.0
	13.112941	45.000	45.0	45.0	45.00	42.5	28.0	42.0	45.0	0.0	45.0	 45.0	45.0	42.75	45.0	45.0	45.0	42.5	45.0	40.0	42.0
	13.456991	45.000	45.0	45.0	45.00	45.0	36.0	42.0	45.0	43.5	43.0	 38.5	45.0	45.00	45.0	45.0	45.0	37.0	45.0	33.0	45.0
	13.656730	40.000	40.0	38.0	45.00	0.0	45.0	45.0	45.0	42.0	42.0	 45.0	45.0	45.00	45.0	42.0	45.0	45.0	45.0	39.0	45.0
	13.960500	45.000	39.0	45.0	42.50	45.0	45.0	45.0	45.0	NaN	41.0	 41.0	45.0	45.00	45.0	42.0	40.0	45.0	45.0	41.0	28.0
	14.152948	45.000	45.0	2.0	45.00	45.0	40.0	44.0	45.0	43.0	45.0	 45.0	45.0	45.00	45.0	45.0	44.0	45.0	45.0	45.0	45.0
7	'0 rows × 96	columns																			

Convert the pivoted dataframe into a matrix and plot it as an image.

```
# Convert pivot DataFrame to a matrix
matrix = pivoted.values

# Plot the matrix as an image
plt.imshow(matrix, cmap='viridis', interpolation='nearest')
plt.colorbar()
plt.title('matrix as an Image')
plt.xlabel('Time')
plt.ylabel('Mileage')
plt.show()
```


Apply medianBlur filter and plot the denoised image

Convert pivot DataFrame to a matrix of float32 type

plt.title('Denoised Image')

plt.show()

Apply medianBlur filter and plot the denoised image

```
matrix = pivoted.values.astype(np.float32)

# Apply medianBlur filter with kernel window size 3
denoised_matrix = cv2.medianBlur(matrix, 3)

# Plot the denoised matrix as an image
plt.subplot(121)
plt.imshow(matrix, cmap='viridis', interpolation='nearest')
plt.colorbar()
plt.title('Original Image')

plt.subplot(122)
plt.imshow(denoised_matrix, cmap='viridis', interpolation='nearest')
plt.colorbar()
```

