Linear Algebra

Tutorial - 1

Dr. Jagannath Bhanja

IIITDM Kancheepuram

(1) Are the following two systems of linear equations equivalent?

$-x_1 + x_2 + 4x_3 = 0$	$x_1-x_3=0$
$x_1 + 3x_2 + 8x_3 = 0$	$x_2 + 3x_3 = 0$
$0.5x_1 + x_2 + 2.5x_3 = 0$	

(2) Let F be a set which contains exactly three elements 0, 1, 2. Define an addition and multiplication by the tables:

	0			×	0	1	2
0	0	1	2	0	0	0	0
1	1	2	0	1	0	1	2
2	1 2	0	1	0 1 2	0	2	1

Prove or disprove that $(F, +, \times)$ is a field.

- (3) Define (i) a subfield and (ii) the characteristic of a field.
- (4) Prove that each subfield of the field of complex numbers contains every rational number.
- (5) Prove that if two homogeneous systems of linear equations in two unknowns have the same solutions, then they are equivalent.

- (6) Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible.
- (7) Let

$$A = \begin{bmatrix} \frac{1}{3} & 2 & -6 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -\frac{7}{3} & 2 & -\frac{8}{3} \end{bmatrix}.$$

Does there exist a 3×4 matrix B such that (i) AB = 0 and (ii) $B \neq 0$?

(8) Prove of disprove that A is invertible and find A^{-1} if it exists where

$$A = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{array} \right].$$