Student: Arfaz Hossain Instructor: UVIC Math

Date: 12/05/21 Course: MATH 100 (A01, A02, A03) Fall Assignment: Assignment 10

2021

The fuel tanks for airplanes are in the wings, cross section below. The tank must hold 5400 lb of fuel with density 42 lb/ft³. Estimate the length of the tank using Simpson's Rule.

Use Simpson's Rule to estimate the cross-sectional area of the tank. The Simpson's Rule says that the area is approximately $\frac{\Delta x}{3} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + y_6 \right)$ with Δx the length of the subinterval. Thus, the cross-sectional area is found as shown below.

$$\frac{1.2 \text{ ft}}{3} (1.3 \text{ ft} + 4(1.5 \text{ ft}) + 2(1.7 \text{ ft}) + 4(1.9 \text{ ft}) + 2(2.1 \text{ ft}) + 4(2.3 \text{ ft}) + 2.1 \text{ ft}) = 13.52 \text{ ft}^2$$

Density is the weight divided by volume, so volume equals the weight divided by density. Since the tank must hold 5400 lb of fuel with a density of 42 lb/ft³, the volume of the tank must be approximately 128.57 ft³.

The volume is the cross-sectional area times the length, so the length is the volume divided by the cross-sectional area. Since the volume must be $128.57 \, \text{ft}^3$ with a constant cross-sectional area of $13.52 \, \text{ft}^2$, the length of the tank is approximately $9.5 \, \text{ft}$.