Exercise: show that the above analysis is tight by giving an example of a graph where

Approx-metric-TSP returns a solution
of cost 2.w (H*)

w = 1

w = 2

OPT

Approx-netric-TSP

W(OPT) = N

W(H) = 2n - 2

 $\frac{W(H)}{W(OPT)} \xrightarrow{n \to +\infty} 2$

Programming exercise: implement Approx-metric-TSP and run it on TSPLIB > Google it

A 3/2-approx algorithm for metric TSP Christofides algorithm 1976 (No CLRS)

Reason for 2-approx factor was that the preader traversal of T* crossed every edge of T* exactly twice. We'll try to improve on this by constructing a tom that traverses MST edges only once.

-> Exilerian cycles

Def.: a path (or cycle) is <u>Emlerian</u> if it crosses every edge exactly once.

Def.: a connected graph is Eulerian if F Eulerian cycle

If the MST was Enlerian (counat be) then	
We would have a 1-approx. Approx-metric-TSI	
15 Linding a "cheap" Enlerian cycle in the MST	- 1
but effectively needs to double its edges.	

Question: is there a cheaper Eulerian cycle?

A famous theorem by Euler:

Theorem: a connected graph is Eulerian (=) every vertex has even degree.

intuition: exit

Só, let's handle the odd-degree vertices of the MST explicitly.

Property: in any (finite) graph the number of vertices of odd degree is even.

Idea: augment the initial MST T* with a minimum-weight perfect matching (perfect means that it includes all the vertices) between the vertices that have add degree in the MST:

=) the resulting graph has only even-degue vertices i.e., is Eulerian

Christofides (G)

1) T* - Prim (G, r) \\T'=(V, E*)

2) Let D be the set of vertices of T* with

2) Let D be the set of vertices of T* with odd degree. Compute a min-weight perfect matching M* on the graph induced by D
1\ Com be done in polynomial time (Edmonds '65)

3) The graph (V, E*UT*) is Eulerian \(\)\any edge in both E* and 11* appears twice in this (multi) graph Compute on Eulerian cycle on this graph

4) Return the cycle that visits all the vertices of 6 in the order of their first appearance in the Eulerian cycle

Example:

Analysis:

1)
$$w(H) \leq w(T^*) + w(T^*)$$
 (by thingle ineq.)
2) $w(T^*) \leq w(H^*)$ (lost class)

god:
$$w(H) \leq \frac{3}{2} w(H^*)$$

3)
$$w(\Pi^*) \stackrel{?}{\leq} \frac{1}{2} w(H^*)$$

$$\leq w(H^*)$$

(by triangle ineq.)

partition this in 2 perfect matchings:

even n° of vertices

one of there 2 has weight
$$< w(H^*)$$
both have weight $> w(\Pi^*)$, since Π^* is an optimal perfect metahing on odd-degree vertices

 $=> w(\Pi^*) < w(H^*)$

Put pieces together:

$$W(H) \leq W(H^*) + W(H^*) = \frac{3}{2} W(H^*)$$

- recent algorithm:
$$\left(\frac{3}{2} - \epsilon\right)$$
 - approx $\epsilon \sim 10^{-36}$
- approx ratio > $\frac{123}{122}$

_ Conjecture: 4/3