Plan

- 1 Introduction
- 2 Vitesse de convergence
- 3 Coordinate Descent
- 4 Recherche unidimensionnelle
 - Rappels : directions de descente
 - Schéma général
 - Problématique du choix du pas
 - Première condition de Wolfe *W*1
 - Deuxième condition de Wolfe W2
 - Interprétation et existence
 - Algorithme pour trouver le pas
 - Convergences globale et locale

Arnaud Vandaele Optimisation Non-Linéaire 16

Notes		

(Rappels) Direction de descente : définition

Soit $f: \mathbb{R}^n \to \mathbb{R}$. Une direction d est une direction de descente en un point x si : $d^T \nabla f(x) < 0$,

autrement dit, lorsque la dérivée directionnelle de f au point x dans la direction d est négative. Cela signifie que la fonction est décroissante dans la direction d.

Théorème.

Soit $f: \mathbb{R}^n \to \mathbb{R}$. Si d est une direction de descente en un point x, alors $\exists \alpha_{\max} > 0$:

$$f(x + \alpha d) < f(x), \forall \alpha \in]0, \alpha_{\text{max}}].$$

Illustration.

Pour la fonction $f(x_1, x_2) = (x_1 + x_2)^4 - 2(x_1 + x_2)^2 + 1$ au point $x = (\frac{1}{4}, \frac{1}{4})$ dans la direction $d = (1, 1)^T$, on a $f(x + \alpha d) = ((0.5 + 2\alpha)^2 - 1)^2$.

Dans cet exemple, $\alpha_{\text{max}} = 0.411438$.

Arnaud Vandaele Optimisation Non-Linéaire 17

Ν	ot	٠
1 7	Οl	.CJ

Recherche en ligne (unidimensionnelle) (line search)

Un grand nombre de méthodes pour l'optimisation sans contraintes,

$$\min_{x \in \mathbb{R}^n} f(x)$$

où f est <u>suffisamment diffférentiable</u> mais pas nécessairement convexe, sont basées sur une stratégie de <u>recherche</u> en ligne :

- 1 Initialisation : un point de départ $x^{(0)} \in \mathbb{R}^n$ et un indice k := 0
- 2 Tant qu'on n'est pas suffisamment proche d'un minimum
 - 1 Trouver une direction de recherche $d^{(k)} \in \mathbb{R}^n$
 - **2** Trouver une longueur de pas $\alpha^{(k)}$ qui minimise

$$\min_{\alpha>0} g(\alpha) = f(x^{(k)} + \alpha d^{(k)})$$

Optimisation Non-Linéaire

Mettre à jour $\mathbf{x^{(k+1)}} := \mathbf{x^{(k)}} + \alpha^{(k)} \mathbf{d^{(k)}}$ puis k := k+1

Ces méthodes n'ont pour vocation que d'identifier un minimum local (à moins d'avoir affaire à une problème d'optimisation convexe)

Arnaud Vandaele

Notes		

Lorsqu'on se trouve au point $x^{(k)}$,

- **quelle direction** $d^{(k)}$ **choisir ?** une direction de descente! (prochains cours)
- **quel** pas $\alpha^{(k)}$ choisir le long de $d^{(k)}$?

Arnaud Vandaele	Optimisation Non-Linéaire	19
-----------------	---------------------------	----

Notes		

Choix du pas α

En l'itéré x et étant donné une direction de descente d, comment trouver le pas α ?

■ Calculer la longueur de pas qui minimise exactement $g(\alpha)$ est possible dans certains cas, par exemple quand $f = \frac{1}{2}x^TAx - b^Tx + c$:

$$\alpha^{\star} = \frac{-d^{(k)}^{T}(Ax^{(k)} - b)}{d^{(k)}^{T}Ad^{(k)}}$$

- Dans la plupart des cas, calculer la longueur exacte du pas est couteux (problème d'optimisation en tant que tel) et inutile si la direction n'est pas bonne.
- Des petits pas devraient être utilisés afin que l'approximation linéaire de la fonction reste valable. Cependant, on désire avancer rapidement et faire des pas plus longs.
- Afin de concilier ces deux objectifs contradictoires, on introduit des conditions à respecter : les conditions de Wolfe. La longueur du pas n'est donc pas optimale mais est plus facile à calculer.

Arnaud Vandaele	Optimisation Non-Linéaire	20
-----------------	---------------------------	----

N	otes	

Condition de décroissance suffisante

Etant donnés un point itéré x et une direction d, ou souhaite que le pas α vérifie une certaine décroissance (imposée à l'aide d'un paramètre $\gamma > 0$) :

$$f(x + \alpha d) \le f(x) - \alpha \gamma$$
.

Exemple : $f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$ en l'itéré (10, 1) et $\gamma = 6$

Observations:

- lacksquare γ ne peut pas être constant,
- il doit dépendre de la direction.

Arnaud Vandaele

Optimisation Non-Linéaire

21

Notes

Condition de décroissance suffisante

Il est possible de montrer que pour tout $\beta_1 < 1$, il existe $\alpha \in]0, \alpha_{\max}]$ tel que :

$$f(x + \alpha d) < f(x) + \alpha \beta_1 d^T \nabla f(x).$$

On choisit donc, avec $0 < \beta_1 < 1$ (typiquement $\beta_1 = 10^{-4}$) :

$$\gamma = -\beta_1 d^T \nabla f(x).$$

Première condition de Wolfe (W1). (également appelée condition d'Armijo-Wolfe)

La fonction f diminue suffisamment en $x^{(k)} + \alpha^{(k)}d^{(k)}$ par rapport à $x^{(k)}$ si, avec $0 < \beta_1 < 1$:

$$f(x^{(k)} + \alpha^{(k)}d^{(k)}) \le f(x^{(k)}) + \alpha^{(k)}\beta_1d^{(k)}^T\nabla f(x^{(k)}).$$

Inconve

cette condition est toujours satisfaite lorsque $\alpha \to 0$, et n'empêche pas les pas de devenir trop petits \to il est nécessaire d'introduire une condition supplémentaire.

Arnaud Vandaele Optimisation Non-Linéaire 22

N	Ωt	29

Condition de progrès suffisant (condition de courbure)

Au point $x^{(k)}$, puisque $d^{(k)}$ est une direction de descente, on a bien $d^{(k)} \nabla f(x^{(k)}) < 0$. Si on applique le pas optimal dans la direction d_k , on a $g'(\alpha) = 0$, ce qui équivalent à :

$$d^{(k)}^T \nabla f(x^{(k)} + \alpha^{(k)} d^{(k)}) = 0.$$

On assiste donc à une augmentation de la dérivée directionnelle.

L'idée est donc d'obtenir un pas α tel que cette dérivée augmente suffisamment.

Seconde condition de Wolfe (W2).

Avec $\beta_1 < \beta_2 < 1$ (typiquement $\beta_2 = 0.9$): $d^{(k)}^T \nabla f(x^{(k)} + \alpha^{(k)} d^{(k)}) \ge \beta_2 d^{(k)}^T \nabla f(x^{(k)})$.

(en choisissant par exemple $\beta_2 = 0.5$, le pas α doit être tel que $\alpha \geq 1.4687$.)

Condition W2 forte :
$$\left|d^{(k)}^T \nabla f(x^{(k)} + \alpha d^{(k)})\right| \leq \beta_2 \left|d^{(k)}^T \nabla f(x^{(k)})\right|$$
.

Arnaud Vandaele

Optimisation Non-Linéaire

23

Ν	ot	65
1 7	\sim ι	. 🔾 🔾

Interprétation à l'aide de $g(\alpha)$

On sait que pour $g(\alpha) = f(x^{(k)} + \alpha d^{(k)})$, on a

$$g'(\alpha) = d^{(k)}^T \nabla f(x^{(k)} + \alpha d^{(k)}).$$

La condition de décroissance suffisante W1 impose un taux de décroissance au moins égal à $\beta_1|g'(0)|$:

$$g(\alpha) \leq g(0) - \alpha \beta_1 |g'(0)|.$$

La condition de courbure W2 borne inférieurement $g'(\alpha)$ (c'est-à-dire l'empêche de rester trop négatif)

$$g'(\alpha) \geq \beta_2 g'(0)$$
.

La condition forte borne supérieurement $|g'(\alpha)|$, c'est-à-dire empêche $g'(\alpha)$ de trop s'éloigner de zéro :

$$|g'(\alpha)| \leq \beta_2 |g'(0)|.$$

Arnaud Vandaele

Optimisation Non-Linéaire

24

Conditions : illustration W1+W2 vs. W1+W2 forte

Pas α acceptables pour W1 (bleue) et W2 (rouge) :

Pas α acceptables pour W1 (bleue) et W2 forte (rouge) :

Arnaud Vandaele

Optimisation Non-Linéaire

Existence

- Si on suppose $f \in C^1$ et
 - $\mathbf{d}^{(k)}$ est une direction de descente,
 - $g(\alpha) = f(x^{(k)} + \alpha d^{(k)})$ est bornée inférieurement pour $\alpha > 0$, et
 - $0 < \beta_1 < \beta_2 < 1$,

alors il existe des intervalles de longueurs de pas vérifiant les conditions de Wolfe (et les conditions fortes de Wolfe)

- Si $0 < \beta_2 < \beta_1 < 1$, il est possible qu'aucune valeur α ne vérifie les conditions de Wolfe.
- Il existe des algorithmes de calcul garantissant l'obtention d'un de ces points (voir slide suivant)
- Le minimum le long de la direction de recherche ne satisfait pas toujours aux conditions de Wolfe (d'où le choix de β_1 très petit)
- Ces conditions sont indépendantes de l'échelle

Alliaud Validacie	Optimisation Non-Lineage	20
Notes		

Algorithme de calcul de α

Méthode permettant de déterminer un pas α vérifiant les conditions W1 et W2.

On se donne : α_0 , $0 < \beta_1 < \beta_2 < 1$ et $\lambda > 1$

- 1 Initialisation : i = 0, $\alpha_l = 0$ et $\alpha_r = +\infty$.
- 2 Si α_i vérifie W1 et W2, alors $\alpha^* = \alpha_i$, STOP.
- 3 Si α_i viole W1, alors le pas est trop long.

$$\alpha_r = \alpha_i$$

$$\alpha_{i+1} = \frac{\alpha_i + \alpha_r}{2}$$

4 Si α_i ne viole pas W1 mais viole W2, alors le pas est trop court.

$$\alpha_I = \alpha_i$$

$$\alpha_{i+1} = \begin{cases} \frac{\alpha_i + \alpha_r}{2} & \text{si } \alpha_r < +\infty \\ \lambda \alpha_i & \text{sinon.} \end{cases}$$

5 i = i + 1

Arnaud Vandaele

Optimisation Non-Linéaire

27

Notes