

=> FILE CAPLUS
COST IN U.S. DOLLARS
FULL ESTIMATED COST

	SINCE FILE ENTRY	TOTAL SESSION
	0.21	0.21

FILE 'CAPLUS' ENTERED AT 10:18:43 ON 10 MAR 2003
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 10 Mar 2003 VOL 138 ISS 11
FILE LAST UPDATED: 9 Mar 2003 (20030309/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> S COMPOSITE(L)CARBON(L)(FIBER OR FIBRE)
236702 COMPOSITE
143182 COMPOSITES
269912 COMPOSITE
(COMPOSITE OR COMPOSITES)
958961 CARBON
21761 CARBONS
967266 CARBON
(CARBON OR CARBONS)
436034 FIBER
459034 FIBERS
597535 FIBER
(FIBER OR FIBERS)
2353 FIBRE
1587 FIBRES
3804 FIBRE
(FIBRE OR FIBRES)
L1 23383 COMPOSITE(L)CARBON(L)(FIBER OR FIBRE)

=> S ELECTRICALLY(L)CONDUCTIVE(L)RESIN(L)MATRIX
33812 ELECTRICALLY
873865 ELEC
372 ELECS
873951 ELEC
(ELEC OR ELECS)
887294 ELECTRICALLY
(ELECTRICALLY OR ELEC)
105724 CONDUCTIVE
32 CONDUCTIVES
105745 CONDUCTIVE
(CONDUCTIVE OR CONDUCTIVES)
502820 RESIN
341061 RESINS
620292 RESIN
(RESIN OR RESINS)
384812 MATRIX

52810 MATRIXES
7069 MATRICES
412007 MATRIX

(MATRIX OR MATRIXES OR MATRICES)

L2 197 ELECTRICALLY (L) CONDUCTIVE (L) RESIN (L) MATRIX

=> S FIRST (L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) CARBON (L) (FIBER OR FIBRE) (L) MAT

803597 FIRST

46 FIRSTS

803633 FIRST

(FIRST OR FIRSTS)

25983 NONWOVEN

2529 NONWOVENS

26213 NONWOVEN

(NONWOVEN OR NONWOVENS)

964 UNWOVEN

581025 NON

30 NONS

581049 NON

(NON OR NONS)

18335 WOVEN

90 WOVENS

18402 WOVEN

(WOVEN OR WOVENS)

1999 NON-WOVEN

(NON (W) WOVEN)

47331 UN

1664 UNS

48989 UN

(UN OR UNS)

18335 WOVEN

90 WOVENS

18402 WOVEN

(WOVEN OR WOVENS)

10 UN-WOVEN

(UN (W) WOVEN)

958961 CARBON

21761 CARBONS

967266 CARBON

(CARBON OR CARBONS)

436034 FIBER

459034 FIBERS

597535 FIBER

(FIBER OR FIBERS)

2353 FIBRE

1587 FIBRES

3804 FIBRE

(FIBRE OR FIBRES)

16427 MAT

7923 MATS

20250 MAT

(MAT OR MATS)

L3 3 FIRST (L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) CARBON (L) (FIBER OR FIBRE) (L) MAT

=> S SECOND (L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) (FIBER OR FIBRE) (L) MAT

371325 SECOND

9477 SECONDS

380266 SECOND

(SECOND OR SECONDS)

25983 NONWOVEN

2529 NONWOVENS

26213 NONWOVEN
(NONWOVEN OR NONWOVENS)
964 UNWOVEN
581025 NON
30 NONS
581049 NON
(NON OR NONS)
18335 WOVEN
90 WOVENS
18402 WOVEN
(WOVEN OR WOVENS)
1999 NON-WOVEN
(NON (W) WOVEN)
47331 UN
1664 UNS
48989 UN
(UN OR UNS)
18335 WOVEN
90 WOVENS
18402 WOVEN
(WOVEN OR WOVENS)
10 UN-WOVEN
(UN (W) WOVEN)
436034 FIBER
459034 FIBERS
597535 FIBER
(FIBER OR FIBERS)
2353 FIBRE
1587 FIBRES
3804 FIBRE
(FIBRE OR FIBRES)
16427 MAT
7923 MATS
20250 MAT
(MAT OR MATS)
L4 22 SECOND(L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) (FIBER
OR FIBRE) (L) MAT

=> S FIRST LAYER(L) THERMOPLASTIC RESIN
803597 FIRST
46 FIRSTS
803633 FIRST
(FIRST OR FIRSTS)
1008072 LAYER
452263 LAYERS
1238128 LAYER
(LAYER OR LAYERS)
3799 FIRST LAYER
(FIRST(W) LAYER)
85344 THERMOPLASTIC
21819 THERMOPLASTICS
92049 THERMOPLASTIC
(THERMOPLASTIC OR THERMOPLASTICS)
502820 RESIN
341061 RESINS
620292 RESIN
(RESIN OR RESINS)
22868 THERMOPLASTIC RESIN
(THERMOPLASTIC(W) RESIN)
L5 18 FIRST LAYER(L) THERMOPLASTIC RESIN

=> S SECOND LAYER (L) THERMOPLASTIC RESIN
371325 SECOND
9477 SECONDS

380266 SECOND
(SECOND OR SECONDS)
1008072 LAYER
452263 LAYERS
1238128 LAYER
(LAYER OR LAYERS)
3590 SECOND LAYER
(SECOND (W) LAYER)
85344 THERMOPLASTIC
21819 THERMOPLASTICS
92049 THERMOPLASTIC
(THERMOPLASTIC OR THERMOPLASTICS)
502820 RESIN
341061 RESINS
620292 RESIN
(RESIN OR RESINS)
22868 THERMOPLASTIC RESIN
(THERMOPLASTIC (W) RESIN)
L6 19 SECOND LAYER (L) THERMOPLASTIC RESIN

=> D HIS

(FILE 'HOME' ENTERED AT 10:18:17 ON 10 MAR 2003)

FILE 'CAPLUS' ENTERED AT 10:18:43 ON 10 MAR 2003
L1 23383 S COMPOSITE(L) CARBON(L) (FIBER OR FIBRE)
L2 197 S ELECTRICALLY(L) CONDUCTIVE(L) RESIN(L) MATRIX
L3 3 S FIRST(L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) CARB
L4 22 S SECOND(L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) (FI
L5 18 S FIRST LAYER(L) THERMOPLASTIC RESIN
L6 19 S SECOND LAYER (L) THERMOPLASTIC RESIN

=> S L2 AND L3 AND L4 AND L5 AND L6
L7 0 L2 AND L3 AND L4 AND L5 AND L6

=> S L1 AND L4 AND L5 AND L6
L8 0 L1 AND L4 AND L5 AND L6

=> S L3 AND L4 AND L5 AND L6
L9 0 L3 AND L4 AND L5 AND L6

=> S L1 AND L2 AND L3
L10 0 L1 AND L2 AND L3

=> S FIRST CARBON FIBER MAT
803597 FIRST
46 FIRSTS
803633 FIRST
(FIRST OR FIRSTS)
958961 CARBON
21761 CARBONS
967266 CARBON
(CARBON OR CARBONS)
436034 FIBER
459034 FIBERS
597535 FIBER
(FIBER OR FIBERS)
16427 MAT
7923 MATS
20250 MAT
(MAT OR MATS)
L11 0 FIRST CARBON FIBER MAT
(FIRST (W) CARBON (W) FIBER (W) MAT)

=> S SECNOND CARBON FIBER MATE
 0 SECNOND
 958961 CARBON
 21761 CARBONS
 967266 CARBON
 (CARBON OR CARBONS)
 436034 FIBER
 459034 FIBERS
 597535 FIBER
 (FIBER OR FIBERS)
 2138 MATE
 1169 MATES
 3200 MATE
 (MATE OR MATES)
L12 0 SECNOND CARBON FIBER MATE
 (SECNOND (W) CARBON (W) FIBER (W) MATE)

=> S NONWOVEN OR NON-WOVEN OR UNWOVEN OR UN-WOVEN
 25983 NONWOVEN
 2529 NONWOVENS
 26213 NONWOVEN
 (NONWOVEN OR NONWOVENS)
 581025 NON
 30 NONS
 581049 NON
 (NON OR NONS)
 18335 WOVEN
 90 WOVENS
 18402 WOVEN
 (WOVEN OR WOVENS)
 1999 NON-WOVEN
 (NON (W) WOVEN)
 964 UNWOVEN
 47331 UN
 1664 UNS
 48989 UN
 (UN OR UNS)
 18335 WOVEN
 90 WOVENS
 18402 WOVEN
 (WOVEN OR WOVENS)
 10 UN-WOVEN
 (UN (W) WOVEN)
L13 28291 NONWOVEN OR NON-WOVEN OR UNWOVEN OR UN-WOVEN

=> S CARBON (L) (FIBER OR FIBRE)
 958961 CARBON
 21761 CARBONS
 967266 CARBON
 (CARBON OR CARBONS)
 436034 FIBER
 459034 FIBERS
 597535 FIBER
 (FIBER OR FIBERS)
 2353 FIBRE
 1587 FIBRES
 3804 FIBRE
 (FIBRE OR FIBRES)
L14 63643 CARBON (L) (FIBER OR FIBRE)

=> S MAT
 16427 MAT
 7923 MATS
L15 20250 MAT

(MAT OR MATS)

=> S COMPOSITE
236702 COMPOSITE
143182 COMPOSITES
L16 269912 COMPOSITE
(COMPOSITE OR COMPOSITES)

=> S THERMOPLASTIC (L) RESIN
85344 THERMOPLASTIC
21819 THERMOPLASTICS
92049 THERMOPLASTIC
(THERMOPLASTIC OR THERMOPLASTICS)
502820 RESIN
341061 RESINS
620292 RESIN
(RESIN OR RESINS)
L17 34056 THERMOPLASTIC (L) RESIN

=> D HIS

(FILE 'HOME' ENTERED AT 10:18:17 ON 10 MAR 2003)

FILE 'CPLUS' ENTERED AT 10:18:43 ON 10 MAR 2003
L1 23383 S COMPOSITE (L) CARBON (L) (FIBER OR FIBRE)
L2 197 S ELECTRICALLY (L) CONDUCTIVE (L) RESIN (L) MATRIX
L3 3 S FIRST (L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) CARB
L4 22 S SECOND (L) (NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN) (L) (FI
L5 18 S FIRST LAYER (L) THERMOPLASTIC RESIN
L6 19 S SECOND LAYER (L) THERMOPLASTIC RESIN
L7 0 S L2 AND L3 AND L4 AND L5 AND L6
L8 0 S L1 AND L4 AND L5 AND L6
L9 0 S L3 AND L4 AND L5 AND L6
L10 0 S L1 AND L2 AND L3
L11 0 S FIRST CARBON FIBER MAT
L12 0 S SECND CARBON FIBER MATE
L13 28291 S NONWOVEN OR NON-WOVEN OR UNWOVEN OR UN-WOVEN
L14 63643 S CARBON (L) (FIBER OR FIBRE)
L15 20250 S MAT
L16 269912 S COMPOSITE
L17 34056 S THERMOPLASTIC (L) RESIN

=> S L13 AND L14 AND L16 AND L17
L18 23 L13 AND L14 AND L16 AND L17

=> S L15 AND L18
L19 2 L15 AND L18

=> D L19 BIB,ABS

L19 ANSWER 1 OF 2 CPLUS COPYRIGHT 2003 ACS
AN 2003:23392 CPLUS
DN 138:74232
TI Fabrication of multilayered composite materials containing
carbon fiber
IN Delanoy, Curt; Gillespie, John
PA USA
SO U.S. Pat. Appl. Publ., 9 pp.
CODEN: USXXCO
DT Patent
LA English
FAN.CNT 1
PATENT NO. KIND DATE APPLICATION NO. DATE
----- ----- ----- ----- -----

PI US 2003008125 A1 20030109 US 2001-899782 20010705
PRAI US 2001-899782 20010705

AB The composite materials comprise: (A) a central layer of carbon fiber aligned in a common direction and adhered to one another by an elec. conducting polymer matrix, (B) a first and a second nonwoven carbon fiber mat on both surface of A resp., and (C) a first and a second thermoplastic resin layer applied to both exterior surfaces of B. No example was included.

=> D L19 1-2 BIB,ABS

L19 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2003 ACS
AN 2003:23392 CAPLUS

DN 138:74232

TI Fabrication of multilayered composite materials containing carbon fiber

IN Delanoy, Curt; Gillespie, John

PA USA

SO U.S. Pat. Appl. Publ., 9 pp.
CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003008125	A1	20030109	US 2001-899782	20010705
PRAI	US 2001-899782		20010705		

AB The composite materials comprise: (A) a central layer of carbon fiber aligned in a common direction and adhered to one another by an elec. conducting polymer matrix, (B) a first and a second nonwoven carbon fiber mat on both surface of A resp., and (C) a first and a second thermoplastic resin layer applied to both exterior surfaces of B. No example was included.

L19 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2003 ACS
AN 1993:627585 CAPLUS

DN 119:227585

TI Fiber-reinforced thermoplastic resin sheets and their manufacture

IN Matsuda, Tsutomu; Goto, Akira; Shibata, Tatsuya

PA Teijin Ltd, Japan

SO Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 05117411	A2	19930514	JP 1992-104658	19920423
PRAI	JP 1991-117880		19910423		
	JP 1991-136990		19910514		

AB The sheets are laminates of .gtoreq.1 layers of continuous carbon fiber-reinforced thermoplastic and .gtoreq.1 layers of heat-resistant fiber (HRF)-reinforced thermoplastic in which the fibers are arranged in perpendicular directions (with interlacing strength .gtoreq.1.0 kg/mm²), uniformly distributed, and free of voids with diam. greater than the fiber diam. The HRF (nonwoven or mat, with bulk d. .gtoreq.8 and O index .gtoreq.28%) are aramid, arom. polyester, PAN, polybenzimidazole, PET, poly(ethylene 2,6-naphthalate), or cellulosic fibers, and the resins are polyethylene, polypropylene, PVC, polycarbonates (PC),

PET, PBT, nylon 6, nylon 66, polyphenylene sulfide, ABS, or copolymers of monomers involved in these. Fire-retardant sheets are obtained by filling the **composite** sheets (contg. 10-20 vol.% **fibers**) with fire retardants. The **resins** (powders or film) are inserted between the **carbon** fabrics and the HRF in a sym. manner and then compression-molded on heating above the m.p. of the **resins** with a press to give (bent) sheets. Thus, **carbon fiber** cloths and Conex aramid **fiber** spun laces were laminated with Panlite L 1250 in the sequence PC film/**carbon fiber** cloth/PC film/aramid lace/PC film/aramid lace/PC film/**carbon fiber** cloth/PC film and compression-molded at 300.degree. for 30 min to give a 0.75-mm **fiber**-reinforced PC sheet with **fiber** vol. 50%, sp. gr. 1.36, flexural strength 60 kg/mm², and flexural modulus 4000 kg/mm², whereas a sheet manufd. similarly but without the aramid **fiber** laces had **fiber** vol. 35%, sp. gr. 1.36, flexural strength 50 kg/mm², and flexural modulus 2000 kg/mm².

=> D HIS

(FILE 'HOME' ENTERED AT 10:18:17 ON 10 MAR 2003)

FILE 'CAPLUS' ENTERED AT 10:18:43 ON 10 MAR 2003
 L1 23383 S COMPOSITE(L)CARBON(L)(FIBER OR FIBRE)
 L2 197 S ELECTRICALLY(L)CONDUCTIVE(L)RESIN(L)MATRIX
 L3 3 S FIRST(L)(NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN)(L)CARB
 L4 22 S SECOND(L)(NONWOVEN OR UNWOVEN OR NON-WOVEN OR UN-WOVEN)(L)(FI
 L5 18 S FIRST LAYER(L)THERMOPLASTIC RESIN
 L6 19 S SECOND LAYER (L)THERMOPLASTIC RESIN
 L7 0 S L2 AND L3 AND L4 AND L5 AND L6
 L8 0 S L1 AND L4 AND L5 AND L6
 L9 0 S L3 AND L4 AND L5 AND L6
 L10 0 S L1 AND L2 AND L3
 L11 0 S FIRST CARBON FIBER MAT
 L12 0 S SECNOND CARBON FIBER MATE
 L13 28291 S NONWOVEN OR NON-WOVEN OR UNWOVEN OR UN-WOVEN
 L14 63643 S CARBON (L)(FIBER OR FIBRE)
 L15 20250 S MAT
 L16 269912 S COMPOSITE
 L17 34056 S THERMOPLASTIC (L)RESIN
 L18 23 S L13 AND L14 AND L16 AND L17
 L19 2 S L15 AND L18

=> D L18 1-23 BIB,ABS

L18 ANSWER 1 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2003:23392 CAPLUS
 DN 138:74232
 TI Fabrication of multilayered **composite** materials containing
carbon fiber
 IN Delanoy, Curt; Gillespie, John
 PA USA
 SO U.S. Pat. Appl. Publ., 9 pp.
 CODEN: USXXCO
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003008125	A1	20030109	US 2001-899782	20010705
PRAI	US 2001-899782		20010705		

AB The **composite** materials comprise: (A) a central layer of **carbon fiber** aligned in a common direction and adhered to one another by an elec. conducting polymer matrix, (B) a first and a

second **nonwoven carbon fiber** mat on both surface of A resp., and (C) a first and a second **thermoplastic resin** layer applied to both exterior surfaces of B. No example was included.

L18 ANSWER 2 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 2001:780790 CAPLUS

DN 135:319257

TI Method of forming a **composite** part with complex **carbon fiber** architecture by resistive heating

IN Sloan, Mark; Blackmore, Richard D.; Lepola, William M.

PA Ihc Rehabilitation Products, USA

SO PCT Int. Appl., 25 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

PI WO 2001078957 A2 20011025 WO 2001-US12176 20010413

WO 2001078957 A3 20020516

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

PRAI US 2000-197136P P 20000414

AB The method includes (i) providing either a generally flat or curved forming surface, depending upon the shape of the **composite** to be formed, (ii) providing a pre-form part adapted to engage the forming surface, where pre-form part structure contains many elec. conductive C fibers, (iii) injecting or infusing **resin**, either thermoset or **thermoplastic**, into the pre-form part via an injection port, and (iv) applying an elec. current to the C fibers to resistively heat the C fibers and the pre-form part (no data). As the pre-form part heats, the **resin** permeates the part and current is further applied until the part sets. Also, the C fibers are combined with nonelec. conductive fibers to form either a flat or curved part structure. Addnl., the nonconductive fibers may be **thermoplastic** fibers that will form the **resin** matrix of the part and possibly eliminate any further injection of **resin**.

L18 ANSWER 3 OF 23 CAPLUS COPYRIGHT 2003 ACS

AN 2001:509865 CAPLUS

DN 136:135715

TI Recycling process for carbon/epoxy **composites**

AU Allred, Ronald E.; Gosau, Jan M.; Shoemaker, John M.

CS Adherent Technologies, Inc., Albuquerque, NM, 87123, USA

SO International SAMPE Symposium and Exhibition (2001), 46(2001: A Materials and Processes Odyssey, Book 1), 179-192

CODEN: ISSEEG; ISSN: 0891-0138

PB Society for the Advancement of Material and Process Engineering

DT Journal

LA English

AB The thermal depolymerization of thermoset **carbon fiber** -reinforced epoxy matrix **composites** was studied to determine the significant reaction parameters and **fiber** quality produced by a catalytic reclamation process. This process was designed to recover valuable **carbon fiber** and an org. fraction from the depolymerization of **carbon/epoxy composites**. Design of

expts. was used to det. significant process parameters including effects of temp., time, catalyst concn., heat transfer liq. to feedstock ratio, and agitation to est. the purity of the **carbon fiber** produced from the reaction. Significant feedstock parameters that will affect the rate of reaction were the surface area available for reaction and the thickness of the **composite**. The **carbon fibers** reclaimed from the reaction reached 99.8% **carbon** values, i.e., 0.2% residual **resin**, which is sufficient to meet the market specifications for reuse in conductive molding compds. The **fiber** tensile strength showed an 8.6% redn. after reclamation indicating that the process had little damaging effect on the **fiber**. Potential applications for the recycled **fibers** include **thermoplastic** and thermoset molding compds. and **nonwoven** sheet reinforcements. An economic anal. of a recycling business based on the catalytic depolymer. process showed that it should be profitable provided that adequate scrap **composite** feedstock can be obtained.

RE.CNT 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 4 OF 23 CAPLUS COPYRIGHT 2003 ACS

AN 2001:31786 CAPLUS

DN 134:92546

TI Bipolar electrode for electrochemical redox reactions

IN Zocchi, Andrea; Pellegrini, Alberto; Broman, Barry Michael

PA Chemieco S.r.l., Italy

SO PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

PI WO 2001003213	A1	20010111	WO 1999-IT196	19990701
W: AU, BR, CA, CN, ID, IL, IN, JP, KR, MX, NO, NZ, RO, RU, SG, TR, US, VN, ZA				
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
CA 2341508	AA	20010111	CA 1999-2341508	19990701
AU 9946474	A1	20010122	AU 1999-46474	19990701
EP 1114482	A1	20010711	EP 1999-929701	19990701
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
BR 9913289	A	20011009	BR 1999-13289	19990701
JP 2003504806	T2	20030204	JP 2001-508523	19990701
US 6296746	B1	20011002	US 2000-529735	20000419
NO 2001001036	A	20010228	NO 2001-1036	20010228

PRAI WO 1999-IT196 A 19990701

AB **Carbon**-base bipolar electrode for electrochem. redox reactions in an acid electrolyte in the form of a fluid impervious and elec. conductive septum, at least a face of which consists, at least partially, of a fluid pervious woven or **unwoven** elec. active fabric of **carbon fibers** or of yarns of **carbon** **fibers**, has an elec. conductive fluid impervious septum consisting of a **composite** of a matrix fabric in the form of a tightly knit or woven fabric of **carbon fibers** or of yarns of **carbon fibers** the pores of which are hydraulically sealed by an elec. conductive **carbon** contg. material at least partly filling the pores of said matrix fabric. The **carbon** contg. elec. conductive material may be a glassy **carbon** formed in situ by thermal conversion of a precursor material with which said matrix fabric is pre-impregnated or a polymd. thermosetting **resin** loaded with **carbon** and/or graphite particles and/or **fibers** or a thermally refloated aggregate of a **thermoplastic**

resin and carbon and/or graphite particles and/or fibers. The previous fabric on the face of the electrode may be a raised pile of carbon fibers.

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 5 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1998:450807 CAPLUS
DN 129:123780
TI Heat-fusible fibers with long-lasting deodorizing properties
IN Tanaka, Kazuhiko; Kuwahara, Kyuji; Ito, Hiroshi; Kawamoto, Masao;
Nakakawa, Junyo
PA Kuraray Co., Ltd., Japan
SO Jpn. Kokai Tokkyo Koho, 12 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 10183426	A2	19980714	JP 1996-339446	19961219
PRAI	JP 1996-339446		19961219		

AB The fibers, useful for diapers, medical clothes, etc., have strength retention .gtoreq.40% after carbon fade irradn. for 100 h and are consisting of (A) polyolefins contg. 4-valent metal phosphate salts, bivalent metal hydroxides, and photocatalysts and (B) fiber-forming thermoplastic resins, satisfying Amp .ltoreq.180.degree. and Bmp - Amp .gtoreq. 30.degree. (Amp = m.p. of the polyolefins; Bmp = m.p. of the thermoplastic resins), where .gtoreq.30% of the circumference of the fibers is occupied by the polyolefins. Thus, PET (m.p. 258.degree.) was cospun with HDPE (m.p. 135.degree.) contg. 5% deodorant [Cu(II)-Ti(IV)-SiO₂-TiO₂, contg. H₃PO₄] into a core-shell fiber, which was made into a tow, drawn, crimped, relaxed, and cut to give a sample showing the strength retention 90.9% and good deodorizing and antibacterial properties. A nonwoven fabric made from the fiber and PET fiber showed good handle.

L18 ANSWER 6 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1997:479114 CAPLUS
DN 127:98796
TI Reinforcing fiber sheets for concrete structures and reinforcing of concrete structures with fiber sheets
IN Harada, Shigehiko; Ando, Masato; Asano, Yukio; Kato, Takehiko; Hayashida, Norimitsu; Tsujimura, Tomoaki
PA Toho Rayon Co., Ltd., Japan; Arisawa Seisakusho K. K.; Kumagai Gumi Co., Ltd.
SO Jpn. Kokai Tokkyo Koho, 9 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 09132852	A2	19970520	JP 1996-94789	19960325
PRAI	JP 1995-246723		19950831		

AB A thermoplastic resin fiber sheet having pierced holes is placed at least one side of a reinforcing fiber sheet where fibers are oriented along one direction, heated to join the sheets, and used for reinforcing concrete structures. The reinforcing fiber sheets are preferably C fiber sheets. The thermoplastic fiber sheets are preferably thermoplastic resin nonwoven fabric. The reinforcing process comprises coating an adhesive or matrix resin on one surface of concrete structures, putting the

reinforcing fiber sheets on the coated surface, optionally coating the matrix **resin** on the reinforcing fiber sheets, pressing the reinforcing fiber sheets, and hardening.

L18 ANSWER 7 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1997:353279 CAPLUS
DN 127:35891
TI **Composites** of fabrics and **thermoplastic resins**
and manufacture thereof
IN Matsubara, Shuji; Yoshida, Takahiko
PA Toyota Motor Corp., Japan; Yoshida Chemical Industrial Co., Ltd.
SO Jpn. Kokai Tokkyo Koho, 6 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 09085841	A2	19970331	JP 1995-249412	19950927

PRAI JP 1995-249412 19950927

AB Fabrics or **nonwoven** fabrics are coated with
thermoplastic resins dissolved in volatile solvents,
dried to form preprints, cut, coated with the solns. again, and dried to
prep. **composite** materials. Thus, carbon cloths were coated with
a PMMA soln. and laminated with a PMMA sheet to prep. a decorative
material for automobile instrument panels.

L18 ANSWER 8 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1996:268056 CAPLUS
DN 124:291816
TI High-strength prepreg-laminated paper **composites**
IN Katsuta, Ryutaro; Myasaka, Yosha; Kishi, Satoshi; Sakai, Hideo
PA Mitsui Toatsu Chemicals, Japan
SO Jpn. Kokai Tokkyo Koho, 8 pp.
CODEN: JKXXAF

DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 08034095	A2	19960206	JP 1994-170888	19940722
	JP 3363599	B2	20030108		

PRAI JP 1994-170888 19940722

AB The title **composites**, useful for carton boxes, partitions of
inside of boxes, etc., are prep'd. by laminating .gtoreq.1 side of paper
(e.g., kraft paper, vinyl wallpaper) with 1-direction-arranged
fibers (e.g., glass **fibers**, carbon
fibers) impregnated with **thermoplastic resins**
(e.g., polypropylene, polystyrene, polyethylene), and optionally covering
with **nonwoven** (e.g., of PET **fibers**).

L18 ANSWER 9 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1995:753815 CAPLUS
DN 123:342666
TI Electrically conductive laminated structures and their manufacture
IN Sakamoto, Shuji; Watanabe, Katsuya; Harada, Noriaki; Fukuda, Koichi
PA Chisso Corp, Japan
SO Jpn. Kokai Tokkyo Koho, 10 pp.
CODEN: JKXXAF

DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-----	----	-----	-----	-----

PI JP 07148882 A2 19950613 JP 1993-321152 19931126
 PRAI JP 1993-321152 19931126
 AB The structures having fuzz-free surface and good wear resistance comprise in this order a substrate, a web contg. elec. conductive **fibers** and a **thermoplastic resin** layer. Thus, a polypropylene sheet was successively laminated with an elec. conductive **nonwoven** fabric comprising pitch-based **carbon fibers** and polypropylene-based **composite fibers** and an electron beam radiation-crosslinked polypropylene film to give a title structure with surface resistivity 106 .OMEGA./cm².

L18 ANSWER 10 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 1995:518799 CAPLUS
 DN 122:241928
 TI Electrically conductive structures showing no fluffs even under electron microscope and manufacture thereof
 IN Sakamoto, Shuji; Watanabe, Katsuya; Harada, Noriaki; Sekiguchi, Yasuko
 PA Chisso Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 06328630	A2	19941129	JP 1993-195152	19930712
PRAI JP 1992-219816		19920727		
JP 1993-88199		19930322		

AB The title products contain elec. conductive side-by-side elec. conductive **composite fibers** of dielec. **thermoplastic resin** and **thermoplastic resin** contg. elec. conductive filler, and the **fiber** is fused to a substrates. A polyester and a polyester contg. 30% **carbon** black were spun side-by-side in 5:1 ratio, made into a **nonwoven** fabric and hot-pressed with a polyester sheet to obtain a 1 mm-thick elec. conductive sheet.

L18 ANSWER 11 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 1994:485680 CAPLUS
 DN 121:85680
 TI **Nonwoven** moldable **composite** and method of manufacture
 IN Frank, George A.
 PA Gates Formed-Fibre Products, Inc., USA
 SO PCT Int. Appl., 22 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI WO 9323596	A1	19931125	WO 1993-US3135	19930331
W: AU, CA, JP, KR				
RW: DE, ES, FR, GB, IT				
AU 9340253	A1	19931213	AU 1993-40253	19930331
AU 662421	B2	19950831		
EP 593716	A1	19940427	EP 1993-909472	19930331
EP 593716	B1	19981014		
R: DE, ES, FR, GB, IT				
JP 2633990	B2	19970723	JP 1993-520209	19930331
ES 2122001	T3	19981216	ES 1993-909472	19930331
KR 9710445	B1	19970626	KR 1994-70037	19940107
PRAI US 1992-880624	A	19920508		
WO 1993-US3135	A	19930331		

AB Title **composite** is manufd. by blending .aprx.20-60% reinforcing

fibers and .apprx.40-80% **thermoplastic** fibers having a m.p. lower than that of the reinforcing fibers, the blend is processed into a fibrous batt, which is consolidated into a **nonwoven** structure which is heated to a temp. below the m.p. of the reinforcing fibers and above the m.p. of the **thermoplastic** fibers to substantially liquefy the **thermoplastic** fibers and form a **thermoplastic resin**. The heated **nonwoven** structure is compressed to flow the liquefied **resin** to displace air voids in the **nonwoven** structure and encapsulate the first fibers, the **nonwoven** structure is cooled to form a **composite** material having substantially reduced air voids with the reinforcing fibers thoroughly encapsulated by the **resin** and **composite** material being substantially free from shrinkage when thermoformed. The stiff, lightwt. **composites** are not brittle and are compliant under thermoforming. Decorative materials, e.g., carpet, can be bonded to the **composite**.

L18 ANSWER 12 OF 23 CAPLUS COPYRIGHT 2003 ACS

AN 1993:627585 CAPLUS

DN 119:227585

TI Fiber-reinforced **thermoplastic resin** sheets and their manufacture

IN Matsuda, Tsutomu; Goto, Akira; Shibata, Tatsuya

PA Teijin Ltd, Japan

SO Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 05117411	A2	19930514	JP 1992-104658	19920423
PRAI	JP 1991-117880		19910423		
	JP 1991-136990		19910514		
AB	The sheets are laminates of .gtoreq.1 layers of continuous carbon fiber -reinforced thermoplastic and .gtoreq.1 layers of heat-resistant fiber (HRF)-reinforced thermoplastic in which the fibers are arranged in perpendicular directions (with interlacing strength .gtoreq.1.0 kg/mm ²), uniformly distributed, and free of voids with diam. greater than the fiber diam. The HRF (nonwoven or mat, with bulk d. .gtoreq.8 and O index .gtoreq.28%) are aramid, arom. polyester, PAN, polybenzimidazole, PET, poly(ethylene 2,6-naphthalate), or cellulosic fibers , and the resins are polyethylene, polypropylene, PVC, polycarbonates (PC), PET, PBT, nylon 6, nylon 66, polyphenylene sulfide, ABS, or copolymers of monomers involved in these. Fire-retardant sheets are obtained by filling the composite sheets (contg. 10-20 vol.% fibers) with fire retardants. The resins (powders or film) are inserted between the carbon fabrics and the HRF in a sym. manner and then compression-molded on heating above the m.p. of the resins with a press to give (bent) sheets. Thus, carbon fiber cloths and Conex aramid fiber spun laces were laminated with Panlite L 1250 in the sequence PC film/ carbon fiber cloth/PC film/aramid lace/PC film/aramid lace/PC film/ carbon fiber cloth/PC film and compression-molded at 300.degree. for 30 min to give a 0.75-mm fiber -reinforced PC sheet with fiber vol. 50%, sp. gr. 1.36, flexural strength 60 kg/mm ² , and flexural modulus 4000 kg/mm ² , whereas a sheet manufd. similarly but without the aramid fiber laces had fiber vol. 35%, sp. gr. 1.36, flexural strength 50 kg/mm ² , and flexural modulus 2000 kg/mm ² .				

L18 ANSWER 13 OF 23 CAPLUS COPYRIGHT 2003 ACS

AN 1993:82414 CAPLUS

DN 118:82414

TI Improved thermal conductivity of **nonwoven** preform sheets for
 compression molding
 IN Weeks, Gregory P.
 PA du Pont de Nemours, E. I., and Co., USA
 SO U.S., 6 pp. Cont. of U.S. Ser. No. 400,405, abandoned.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5164255	A	19921117	US 1991-789488	19911112
	JP 03236910	A2	19911022	JP 1990-224535	19900830
	JP 3126135	B2	20010122		
PRAI	US 1989-400405	B1	19890831		

AB A **nonwoven**, planar preform sheet which lofts <2 times its compressed thickness, thereby improving the thermal cond. during preheating prior to molding, comprises a plurality of **resin** chips oriented randomly or in the same direction in the plane of the sheet. Each chip comprises parallel continuous filaments (diam. 1-50 .mu.m), e.g., glass, C, or aramid fiber coated by a **thermoplastic resin**, e.g. polypropylene, polyester, or polyamide. A chip has a thickness of 1-50 filament diams. with a length:thickness ratio >100. Compression-molded articles manufd. from these **nonwoven** sheets (procedure given) have a desirable smooth surface.

L18 ANSWER 14 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 1993:40478 CAPLUS
 DN 118:40478
 TI Wet laid fibrous thermoplastic materials and aqueous dispersion for producing same
 IN Parrinello, Luciano Michael
 PA PPG Industries, Inc., USA
 SO Eur. Pat. Appl., 19 pp.
 CODEN: EPXXDW
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 491204	A2	19920624	EP 1991-120540	19911129
	EP 491204	A3	19921209		
	EP 491204	B1	19970115		
	R: BE, DE, ES, FR, GB, IT, NL				
	ES 2099119	T3	19970516	ES 1991-120540	19911129
	CA 2056720	AA	19920606	CA 1991-2056720	19911203
	CA 2056720	C	19960514		
	JP 04300923	A2	19921023	JP 1991-322173	19911205
	JP 07091394	B4	19951004		
	JP 09310296	A2	19971202	JP 1997-17231	19911205
	US 5393379	A	19950228	US 1993-52296	19930422
PRAI	US 1990-622671		19901205		
	JP 1991-322173		19911205		

AB The title materials, useful for prepn. of **composites** with good phys. properties, comprise **nonwoven fibers**, thermoplastic matrix polymers, and modified thermoplastics. Thus, **composites**, prepnd. from a mixt. of Fina 3860 (polypropylene) 66, sizing agent-treated glass **fibers** 30, Irgafos 168 3, Naugard 445 1, carbon black 0.21, Protolube 5440 (I; maleic acid-modified polypropylene emulsion) 0.41, and an aq. soln. contg. I, A 1100, maleic acid, and additives 0.29%, had tensile strength 11,000 psi, flexural strength 17,100 psi, flexural modulus 689,000 psi, and Izod impact strength 7.10 ft-lb/in.

L18 ANSWER 15 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 1993:23406 CAPLUS
 DN 118:23406
 TI Fiber-reinforced **composite** sheets with good mechanical strength
 and moldability
 IN Haraguchi, Keiichi; Ishimura, Shigezo
 PA Asahi Chemical Industry Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 4 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04146930	A2	19920520	JP 1990-269386	19901009
PRAI	JP 1990-269386		19901009		

AB The title sheets are prep'd. by laminating reinforcing **fiber**-contg. webs or **thermoplastic fiber**- or powder-contg. sheets, and thermosetting **resin** films or prepregs. Thus, 64 g/m² **nonwoven** sheets of 5-mm-length Panlite multifilaments were placed on the both sides of a 300 g/m² Haikaboron 6Kf (**carbon fiber**) sheet, and jetted with high-pressure water to let Panlite **fibers** penetrated into the **carbon fiber** sheet to give a mixed sheet. Then, the mixed sheets were laminated alternatively with prepregs prep'd. by impregnating 131:500 m-phenylenediamine-N,N,N',N'-tetraglycidyl-m-xylenediamine mixt. into the **carbon fiber** sheets, wrapped with Teflon films on the both sides, vacuumed, and hot pressed 1 h at 180.degree. and 5 kg/cm² to give a **composite** sheet having no voids, good moldability at 250.degree., flexural strength 180 kg/mm², and no change after dipping 10 h in MEK.

L18 ANSWER 16 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 1992:597121 CAPLUS
 DN 117:197121
 TI Manufacture of **carbon fiber**-reinforced **carbon composites** by electrophoretic deposition
 IN Sakagami, Seigo; Takemura, Yosuke; Wakamatsu, Tomoyuki
 PA Sumitomo Electric Industries, Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04170366	A2	19920618	JP 1990-298627	19901102
PRAI	JP 1990-298627		19901102		

AB The **composites** are manufd. by prep'g. a liq. contg. dispersed carbonaceous powder, e.g., C powder, having ionization-caused carrier substance (electrophoretic **resin**) and emulsion-forming **resin** adsorbed thereon, immersing a C-fiber substrate and electrode into the liq., applying a d.c. voltage between the C-fiber substrate and the electrode for uniformly depositing the carbonaceous powder on the C-fiber substrate by electrophoresis, and carbonizing the material. The emulsion-forming **resin** is a **thermoplastic** and/or thermosetting **resin** with adsorbed surfactant. The **thermoplastic resin** is selected from polyamides or polyethylene. The thermosetting **resin** is selected from melamine, epoxy, furan, phenolic, polyimide, polyamide-polyimide and/or bismaleimide **resins**. The carrier substance is a modified **thermoplastic** or thermosetting electrophoretic **resin**. The C-fiber substrate includes short fibers, long fibers, textiles, paper and/or **nonwoven** textiles.

L18 ANSWER 17 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1991:63409 CAPLUS
DN 114:63409
TI Three-dimensional reinforcing materials for fiber-based **composites**
AU Hoersch, Friedrich
CS Ulm, Germany
SO Kunststoffe (1990), 80(9), 1003-7
CODEN: KUNSAV; ISSN: 0023-5563
DT Journal
LA German
AB The use of 3-dimensional fabrics based on **carbon** or glass **fibers**, including multilayer, multiaxial **nonwoven**, and warp-knitted fabrics, as reinforcement for thermosetting **resins** and **thermoplastics** is described and discussed. Use of the reinforced plastics as glider wings and tailboards, in sandwich components, automobile bumpers, etc. is discussed briefly. Use of the reinforced plastics is discussed with respect to the fabric structure and matrix.

L18 ANSWER 18 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1991:11313 CAPLUS
DN 114:11313
TI **Composites** for preventing staining and growth of mildew and bacteria
IN Hayashi, Kiyoshige
PA High Max Co., Ltd., Japan
SO Jpn. Kokai Tokkyo Koho, 11 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 01310038	A2	19891214	JP 1988-138289	19880607
PRAI	JP 1988-138289		19880607		

AB The title **composites** are manufd. by covering or sealing wire- or plate-shaped elec. conductors having elec. resistivity of 20 .times. 10-6-7 .times. 10-3 .OMEGA.-cm with org. or inorg. material films or layers contg. Cu powder and/or verdigris powder and fine graphite fiber and/or C fiber. The elec. conductive materials are selected from Cu alloy, Ti, and Ti alloy wires, expanded metals of Ti and Ti alloy, graphite fiber rope, and woven or **nonwoven** fabrics of graphite fibers and C fibers. The org. and/or inorg. films or layers are manufd. from **thermoplastic resin**, synthetic rubber, synthetic **resin** paint, or polymer cement compns. The **composites** are attached to the surface of underwater structures or the wetted surfaces of building structures to prevent staining and bacteria growth by applying elec. current.

L18 ANSWER 19 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 1990:41426 CAPLUS
DN 112:41426
TI Manufacture of high-density **carbon fiber-carbon composite**
IN Sakagami, Seigo; Iwata, Koichi
PA Sumitomo Electric Industries, Ltd., Japan
SO Jpn. Kokai Tokkyo Koho, 4 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-----	----	-----	-----	-----

PI JP 01160868 A2 19890623 JP 1987-322088 19871217
 PRAI JP 1987-322088 19871217
 AB The title process comprises: adsorbing an ionizable carrier to carbonaceous micropowder, dispersing the powder into a solvent, dipping a **carbon fiber** substrate in the dispersion, applying a d.c. between the substrate and a counter electrode under mech. vibrating of the substrate to deposit the powder and carrier on the substrate, drying, molding, heating, and carbonizing. Preferably the substrate is bundled **carbon fibers**, woven fabric, or **nonwoven** cloth, and the carrier is modified **thermoplastic resin** deriv. or thermosetting **resin** deriv.

L18 ANSWER 20 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 1989:77458 CAPLUS
 DN 110:77458
 TI Thermally bonded **nonwoven** fabric
 IN Uchikawa, Akihiko; Nishida, Koji; Hosono, Yasuji; Tachi, Kazuhisa; Okamoto, Takeshi; Takai, Yosuke; Nakashima, Hideo
 PA Mitsubishi Petrochemical Co., Ltd., Japan; Daiwabo Co., Ltd.
 SO U.S., 10 pp.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 4770925	A	19880913	US 1988-144508	19880115
	JP 63303160	A2	19881209	JP 1988-5196	19880113
	JP 08014064	B4	19960214		
	FI 8800184	A	19880718	FI 1988-184	19880115
	FI 87368	B	19920915		
	FI 87368	C	19921228		
	EP 279511	A3	19900103	EP 1988-300334	19880115
	EP 279511	B1	19940316		

R: DE, GB, NL

PRAI JP 1987-8736 19870117
 AB Title web has a unit wt. of 10 to 40 g/m², comprising 20-100% by wt. of a **composite fiber** with a fineness of 0.5-8 denier and 80-0% wt. of other **fibers** as the constituent **fibers**, the **composite fiber** comprising a first component which is an ethylene-.alpha.-olefin copolymer compn. comprising an ethylene-.alpha.-olefin copolymer contg. 0.5-4% wt. of an .alpha.-olefin having 4-12 **carbon** atoms blended with 0.01-0.3% of a phenol type antioxidant and 0.01-0.3% of a sulfur type antioxidant, having Q-value (polydispersity) \leq 4, d. of 0.930-0.950, melt flow rate of 5-50 g/10 min. and oxidn. induction time at 210.degree. of \geq 10 min., and a second component which is a **thermoplastic resin** having m.p. higher by at least 20.degree. than that of the first component, with a constitutional ratio (sectional area ratio) of the first component to the second component being 35:65 to 70:30, the first component of the **composite fiber** forming at least a proportion of the **fiber** surface continuously along the length of each **fiber** and adhering through melting mutually the constituent **fibers**. These webs have high fabric tenacity and soft hand. A **composite fiber** from 1-butene-ethylene copolymer (2.5:97.5) (Q value 3.3) sheath contg. 0.05% 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate and a polypropene core with a 50/50 sheath core ratio was manufd. and had a denier of 2. The **fibers** were cut to give 51 mm stable **fibers**, carded, and subjected to heat treatment at 125.degree.-145.degree. for 2-30 s to give **nonwoven** webs. These webs gave high **nonwoven** fabric tenacity after heat treatment at \geq 135.degree., and also exhibit high fabric tenacity at 130.degree.. These webs have a soft hand.

L18 ANSWER 21 OF 23 CAPLUS COPYRIGHT 2003 ACS

AN 1984:532094 CAPLUS

DN 101:132094

TI Carbon fiber reinforced composite sheet

PA Mitsubishi Rayon Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 59093346	A2	19840529	JP 1982-202171	19821119
PRAI	JP 1982-202171		19821119		

AB Composite sheets which can be heated, then stamped between cooled molds to form reinforced plastic articles in rapid cycles are manufd. by impregnating sheets (0.005-0.2 mm thick, 5-400 g/m²) of 10-80% continuous carbon fibers with thermoplastic resins. Thus, a nonwoven sheet (0.1 mm thick, 100 g/m²) composed of C fibers and poly(vinyl acetate) binder was covered with a polycarbonate resin film, heated, and pressed to form a composite sheet contg .apprx.30% fibers. When 2 of the sheets were stacked together, IR heated to 240.degree., and pressed between molds at 120.degree. for 50 s they formed trays which had flexural strength 34.4 kg/mm², vs. 20.6 kg/mm² for injection-molded trays of the same polymer filled with 30% chopped C fibers.

L18 ANSWER 22 OF 23 CAPLUS COPYRIGHT 2003 ACS

AN 1979:88669 CAPLUS

DN 90:88669

TI The development of non-woven fabrics for structural and non-structural composite applications

AU Wagle, D. G.; Beshore, C. S.; Quick, J. R.

CS Int. Paper Co., USA

SO Compos. Mater. Automob. Ind., [Prepr.] ASME Winter Annu. Meet. (1978), 193-206. Editor(s): Kulkarni, Satish V.; Zweben, Carl H.; Pipes, R. Byron. Publisher: ASME, New York, N. Y.

CODEN: 39UUAS

DT Conference

LA English

AB Nonwoven fabrics produced by modified papermaking techniques incorporate 1 fiber type or blends of different fibers and are suitable for the prodn. of fiber-reinforced composites. The fabrics can be molded with either thermosetting or thermoplastic resins to form structural materials that can be stacked and stamped into the desired shape.

L18 ANSWER 23 OF 23 CAPLUS COPYRIGHT 2003 ACS

AN 1974:28321 CAPLUS

DN 80:28321

TI Lamination of fabrics with a layer of thermoplastic resin, synthetic or natural rubber

IN Nakai, Shinzo; Hayashi, Tokuyuki; Akigusa, Yozo

PA Hiraoka Shokusen K. K.

SO Jpn. Tokkyo Koho, 2 pp.

CODEN: JAXXAD

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
PI	JP 47047552	B4	19721130	JP 1970-23323	19700319	
AB	A thermoplastic resin or natural or synthetic rubber was coated onto a release-treated base cloth, a knitted, woven, or					

nonwoven fabric was applied to the coated surface, the **composite** was heated, and the fabric-**resin** or -rubber laminate was released from the base cloth after cooling. Suitable materials for the base cloth were copper [7440-50-8], aluminum [7429-90-5], iron [7439-89-6], nickel [7440-02-0], and stainless steel [12597-68-1] wire, polyester, poly(vinyl alc.), glass **fiber**, **carbon** [7440-44-0] **fiber**, cotton, and flax. Thus, 300 g/m² soln. of 25% ethyl acrylate-butyl acrylate polymer [26353-42-4] in EtOAc 100, TiO₂ 2.5, and **carbon** black 1 part was coated onto a Si-coated nylon fabric with warp d. 21/2.54 cm and weft d. 22/2.54 cm and dried 1 min at 80.deg.. A Vynylon canvas was applied, the **composite** was dried 5 min at 110.deg., and the laminate was removed from the base cloth.

=> LOG Y
COST IN U.S. DOLLARS

FULL ESTIMATED COST

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)

CA SUBSCRIBER PRICE

SINCE FILE
ENTRY

169.76

TOTAL
SESSION

169.97

SINCE FILE
ENTRY

-16.93

TOTAL
SESSION

-16.93

STN INTERNATIONAL LOGOFF AT 10:28:44 ON 10 MAR 2003