Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5

«Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами»

Виконала:

студентка II курсу ФІОТ

групи ІВ-91

Сайко Сабріна

Перевірив:

Регіда П.Г.

Мета роботи: Провести трьохфакторний експеримент і отримати адекватну модель — рівняння регресії, використовуючи рототабельний композиційний план.

Завдання на лабораторну роботу:

- 1. Ознайомитися з теоретичними відомостями.
- 2. Вибрати з таблиці варіантів і записати в протокол інтервали значень x1, x2, x3. Обчислити і записати значення, відповідні кодованим значенням факторів +1; -1; +1; -1; 0 для x1, x2, x3.
- 3. Значення функції відгуку знайти за допомогою підстановки в формулу:

$$y_i = f(x_1, x_2, x_3) + random(10)-5,$$

де $f(x_1, x_2, x_3)$ вибирається по номеру в списку в журналі викладача.

- 4. Провести експерименти і аналізуючи значення статистичних перевірок, отримати адекватну модель рівняння регресії. При розрахунках використовувати натуральні значення факторів.
- 5. Зробити висновки по виконаній роботі.

Варіант завдання:

Варіант		X1	X	2	X3									
124	-20	15	-15	35	-15	-10								
$f(x_1, x_2,$	8,8+8,3*x1+4,9*x2+1,2*x3+0,5*x1*x1+0,4*x2*x2+9,7*x3*x3+2,1*x1*x2+0,8*x1*x3+5,4*													
x ₃)	*x2*x3+1,1*x1*x2*x3													

Довірча ймовірність дорівнює 0.95, а рівень значимості q = 0.05.

Роздруківка тексту програми:

```
from math import fabs
from random import randrange
import numpy as np
from numpy.linalg import solve
from scipy.stats import f, t
from prettytable import PrettyTable

def round_matrix(matrix, n_to_round=3):
    for i in range(len(matrix)):
        matrix[i] = list(matrix[i])):
        matrix[i][j] = round(matrix[i]], n to round)
```

```
m = 3
n = 15
x1min = -20
x1max = 15
x01 = (x1max + x1min) / 2
x02 = (x2max + x2min) / 2
x03 = (x3max + x3min) / 2
deltax3 = x3max - x03
xn = [[-1, -1, -1, 1, 1, 1, -1, 1, 1, 1],
x1 = [x1min, x1min, x1min, x1min, x1max, x1max, x1max, x1max, -1.73] * deltax1
x1x2 = [0] * 15
x1x3 = [0] * 15
x2x3 = [0] * 15
x1x2x3 = [0] * 15
x1kv = [0] * 15
x2kv = [0] * 15
x3kv = [0] * 15
```

```
x1kv, x2kv, x3kv))
planning matrix with naturalized coeffs x = PrettyTable()
planning matrix with naturalized coeffs x.title = 'Матриця планування з
planning matrix with naturalized coeffs x.field names = ['X1', 'X2', 'X3']
planning matrix with naturalized coeffs x.add rows(list for a)
        0.8 * X1 * X3 + 5.4 * X2 * X3 + 1.1 * X1 * X2 * X3 + randrange(0, 10)
Y = \text{round matrix}([[\text{function}(\text{list for a}[i])], \text{list for a}[i]])
list for a[j][2]) for i in range(m)] for j in range(15)])
planning matrix y = PrettyTable()
planning_matrix_y.title = 'Матриця планування Y'
planning_matrix_y.field names = ['Y1', 'Y2', 'Y3']
planning matrix y.add rows(Y)
print(planning matrix y)
Y average = []
    Y average.append(np.mean(Y[i], axis=0))
    print("{:.3f}".format(Y average[i]), end=" ")
    dispersions.append(a / len(Y[i]))
        a += Y \text{ average[j]} * \text{ list for a[j][num } - 1] / 15
```

```
def a(first, second):
my = sum(Y average) / 15
         number lst.append(list for a[j][i])
a(5, 8), a(5, 9), a(5, 10)],
[mx[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6), a(6, 7),
det2 = [my, find known(1), find known(2), find known(3), find known(4),
beta = solve(det1, det2)
```

```
beta[6] * \overline{1ist for a[k][5] + beta[7] * }
Gp = max(dispersions) / sum(dispersions)
        coefs2.append(beta[j])
        coefs1.append(beta[j])
x1kv[i] + res[9] *
print("\nnПеревірка адекватності за критерієм Фішера")
S = m * sum([(y st[i] - Y average[i]) ** 2 for i in range(15)]) / (n - d)
Fp = S / sb
F4 = n - d
print("Fp =", Fp)
```

```
if Fp < f.ppf(q=0.95, dfn=F4, dfd=F3):
    print("Рівняння регресії адекватне при рівні значимості 0.05")

else:
    print("Рівняння регресії неадекватне при рівні значимості 0.05")
```

Результати роботи програми:

+																			
	X1		X2		Х3		X1X2		X1X3		X2X3		X1X2X3		X1X1		X2X2		X3X3
+	-20	·+-	-15	-+- 	-15	-+- 	300	+	 300	·+·	225	+	 -4500	·+·	400	+- 	 225	-+ 	225
	-20		-15		-10		300		200		150		-3000		400		225		100
	-20		35		-15		-700		300		-525		10500		400		1225		225
	-20		35		-10		-700		200		-350		7000		400		1225		100
	15		-15		-15		-225		-225		225		3375		225		225		225
	15		-15		-10		-225		-150		150		2250		225		225		100
	15		35		-15		525		-225		-525		-7875		225		1225		225
	15		35		-10		525		-150		-350		-5250		225		1225		100
-3	32.775		10.0		-12.5		-327.75		409.688		-125.0		4096.875		1074.201		100.0		156.25
2	27.775		10.0		-12.5		277.75		-347.188		-125.0		-3471.875		771.451		100.0		156.25
	-2.5		-33.25		-12.5		83.125		31.25		415.625		-1039.062		6.25		1105.562		156.25
	-2.5		53.25		-12.5		-133.125		31.25		-665.625		1664.062		6.25		2835.562		156.25
	-2.5		10.0		-16.825		-25.0		42.062		-168.25		420.625		6.25		100.0		283.081
	-2.5		10.0		-8.175		-25.0		20.438		-81.75		204.375		6.25		100.0		66.831
	-2.5		10.0		-12.5		-25.0		31.25		-125.0		312.5		6.25		100.0		156.25
				-+-										+-		-+		-+	

```
-3.996 + 8.761 * X1 + 4.898 * X2 + -1.034 * X3 + 2.089 * X1X2 + 0.837 * X1X3 + 5.400 * X2X3+ 1.099 * X1X2X3 + 0.498 * X11^2 + 0.400 * X22^2 + 9.608 * X33^2 = 9 

Експериментальні значення:
-639.353 -685.582 10352.415 6160.853 6699.018 3914.290 -7503.880 -4817.275 5333.069 -1974.530 3072.274 868.140 2340.068 464.786 1222.708

Перевірка за критерісм Кохрена
бр = 0.16043956043956045
Дисперсія однорідна

Перевірка значушості коефіцієнтів за критерієм Стьюдента
Значуші коефіцієнти регресії: [-3.996, 8.761, 4.898, -1.034, 2.089, 0.837, 5.4, 1.099, 0.498, 0.4, 9.608]
Значення з отриманими коефіцієнтами:
-639.353 -685.582 10352.415 6160.853 6699.018 3914.290 -7503.880 -4817.275 5333.068 -1974.530 3072.274 868.140 2340.064 464.782 1222.708

Перевірка адекватності за критерієм Фішера
Бр = 1.2906683843557125

Рівняния регресії адекватне при рівні значимості 0.05
```

Висновок: У ході лабораторної роботи я змоделювала трьохфакторний експеримент з урахуванням квадратичних членів ,використовуючи рототабельний композиційний план.