Olimpiada de Física, Belarús, 1991

Grado 10.

- 1. Dos automóviles, se mueven por una línea recta con la misma velocidad V a la distancia l uno del otro, venciendo un pedazo de carretera en mal estado, donde las velocidades de los autos disminuyen a la mitad ¿Qué camino recorre un auto respecto al otro cuando se recorre la zona de carretera en mal estado?
- 2. Sobre una balsa de dimensiones $2.0 \times 2.0 \times 0.50 m$, hecha de madera con densidad $\rho=900 \ kg/m^3$, está parado un físico de masa $m=80 \ kg$ ¿A que distancia mínima del centro de la balsa el puede correrse lentamente para que un borde se introduzca en el agua?
- 3. Dentro de un tubo horizontal liso se encuentran dos pistones de fácil movilidad, unidos entre si por un resorte. Entre los pistones se encuentra un mol de gas ideal monoatómico a temperatura T_0 =300 K. El gas se

calienta hasta la temperatura T_I =400 K ¿Qué cantidad de calor se le comunico al gas en el calentamiento, si la longitud del resorte aumenta en $\eta = 1, 1$ vez?

4. En un plano inclinado que forma un ángulo con el horizonte α se coloca un pequeño disco cargado D, el coeficiente de rozamiento entre el plano y el disco es μ (μ < tan α). En la base del plano se fija una carga puntual de valor Q, de igual valor a la carga del disco. El disco está en equilibrio ¿Cuál puede ser el ángulo máximo β =AQD para que se mantenga el equilibrio? La recta AQ es paralela a la componente de la gravedad en la dirección del plano inclinado.

Grado 11

- 5. Para mantener dentro de una habitación una temperatura constante $T_f=21~^{0}C$ se utiliza un aire acondicionado. La temperatura del aire en el exterior $T_{C}=42~^{0}C$ ¿Cuánto tiene que aumentar la potencia que consume el aire acondicionado de la red, para que después de conectar una lámpara de P=150~W la temperatura permanezca constante? Considere que el aire acondicionado es una máquina térmica ideal, que trabaja por el ciclo inverso de Carnot.
- 6. En un alambre liso, doblado bajo un ángulo recto, se han colocado dos cuentas de masas m, que poseen cargas Q_1 y Q_2 . En el momento inicial las cuantas están en reposo y se encuentran a la distancia d y 2d uno del otro. Se liberan. ¿Donde se encuentra la segunda cuenta cuando la primera cuando la otra está en el vértice del ángulo?

7. Determine la resistencia entre los puntos *A* y *B* en el circuito que se muestra en la figura 1. La resistencia de cada alambre (lado de los cubos) es *R*. El circuito es infinito a cada lado.

8. A la distancia $a=20 \ cm$ de una fuente puntual se coloca una lente convergente de diámetro $d=1,0 \ cm$ con distancia focal $F_1=5,0 \ cm$, a la distancia $b=50 \ cm$ de la fuente se coloca la lente convergente de diámetro $D=10 \ cm$ y distancia focal $F_2=20 \ cm$. Los ejes principales de las lentes coinciden y la fuente puntual está en el. A que distancia de la lente más grande es necesario colocar una pantalla, para que la mancha luminosa en él tenga el diámetro exterior mínimo. Determine este diámetro.