

LP5814 4-Channel I²C Interface RGBW LED Driver with Auto Animation Control

1 Features

- Operating voltage range
 - V_{CC} range: 2.5V to 5.5V
 - Logic pins compatible with 1.8V, 3.3V, and 5V
 - Output voltage up to 5.5V
- 4 constant current sinks with high precision
 - 0.1mA to 51mA per channel
 - Device-to-device error: ±8% (max.)
 - Channel-to-channel error: ±3% (max.)
 - Ultra-low headroom voltage: 135mV (max.) at 25.5mA; 275mV (max.) at 51mA
- Ultra-low power consumption
 - Shutdown: $I_{SD} = 0.1 \mu A$ (typ.)
 - Standby: $I_{STB} = 22\mu A$ (typ.)
 - Active:
 - $I_{NOR} = 0.15 \text{mA(typ.)}$, when disable output channel
 - $I_{NOR} = 0.23 \text{mA}(\text{typ.}), LED \text{ current} = 25.5 \text{mA}$
- Analog dimming (current gain control)
 - Global 1-bit Maximum Current (MC) 25.5mA/ 51mA
 - Individual 8-bits Dot Current (DC) setting
- PWM dimming up to audible-noise-free 23kHz
 - Individual 8-bits PWM dimming resolution
 - Linear or exponential dimming curves
- Autonomous animation engine control
- 1MHz (max.) I²C interface
- ESD: 4kV HBM, 1.5kV CDM
- Package
 - 1.6 x 2.1mm SOT583-8, 0.5mm pitch
 - 1.36 x 0.8mm DSBGA-8, 0.35mm pitch
- –40°C to 125°C operating temperature range

2 Applications

LED animation and indication for:

- **Personal Electronics**
 - Virtual Reality (VR) Headset
 - Gaming Controller and Peripherals
 - Electronic and Robotic Toys
 - Smart Speaker
 - Wireless Speaker
 - Solid State Drive (SSD)
 - Electronic Smart Lock
 - Headsets/Headphones and Earbuds
 - GPS Personal Navigation Device
- WLAN/Wi-Fi Access Point
- Video Doorbell
- Video Conference System

3 Description

The LP5814 is a 4-channel RGBW LED driver with autonomous animation engine control. The device has ultra-low operation current with 0.1µA (typical) in shutdown mode, 0.1mA (typical) when enable device and 0.2mA (typical) when illuminate LEDs.

Both analog dimming and PWM dimming methods are adopted to achieve powerful dimming performance. The output current of each LED can be adjusted with 256 steps from 0.1mA to 25.5mA or 0.2mA to 51mA. The 8-bits PWM generator enables smooth and audible-noise-free dimming control for LED brightness.

The autonomous animation engine can significantly reduce the real-time loading of controller. Each LED can be configured through the related registers to realize vivid and fancy lighting effects.

Package Information

PART NUMBER	PACKAGE	PACKAGE SIZE (NOM				
LP5814DRL	SOT583 (8)	1.6mm × 2.1mm				
LP5814YCH	DSBGA (8) ⁽¹⁾	1.36mm × 0.8mm				

Product preview.

LP5814 Simplified Schematic

Table of Contents

1 Features	1	7.4 Device Functional Modes	20
2 Applications		7.5 Programming	22
3 Description		7.6 Register Maps	
4 Device Comparison		8 Application and Implementation	
5 Pin Configuration and Functions		8.1 Application Information	
6 Specifications	5	8.2 Typical Application	
6.1 Absolute Maximum Ratings		8.3 Power Supply Recommendations	
6.2 ESD Ratings	5	8.4 Layout	
6.3 Recommended Operating Conditions		9 Device and Documentation Support	68
6.4 Thermal Information	5	9.1 Documentation Support	68
6.5 Electrical Characteristics	6	9.2 Receiving Notification of Documentation Updates.	68
6.6 Timing Requirements	7	9.3 Support Resources	68
6.7 Timing Diagrams		9.4 Trademarks	68
6.8 Typical Characteristics		9.5 Electrostatic Discharge Caution	68
7 Detailed Description		9.6 Glossary	68
7.1 Overview		10 Revision History	68
7.2 Functional Block Diagram		11 Mechanical, Packaging, and Orderable	
7.3 Feature Description		Information	69

4 Device Comparison

PART NUMBER	PACKAGE (1)	MATERIAL	LED NUMBER	AUTO ANIMATIO	INSTANT BLINKING	I ² C ADDRESS	SOFTWARE COMPATIBLE		
LP5814	SOT583-8	LP5814DRLR	4		No	0x2C			
	DSBGA-8	LP5814YCHR	4	Vaa	NO	0,20			
	SOT583-8	LP5815DRLR	3	2	2	2	Yes	Yes	0x2D
LF3013	DSBGA-8	LP5815YCHR			163	UXZD	Yes		
LP5816	SOT583-8	LP5816DRLR	3		4			0x2C	res
LF3010	DSBGA-8	LP5816YCHR			No	No	UXZC		
I DE017	SOT583-8	LP5817DRLR			INU	INO	0x2D		
LP5817	DSBGA-8	LP5817YCHR				UXZD			

⁽¹⁾ For the most up-to-date packaging information refer to the Mechanical, Packaging, and Orderable Information.

5 Pin Configuration and Functions

Figure 5-1. LP5814 DRL Package 8-Pin SOT583 Top View

Figure 5-2. LP5814 YCH Package 8-Pin DSBGA Top View

Table 5-1. Pin Functions

	PIN		TYPE(1)	DESCRIPTION			
NAME	DRL	YCH	I I I F E \ /				
SCL	1	A1	I	I ² C serial interface clock input.			
SDA	2	B1	I/O	I ² C serial interface data input/output.			
GND	3	C1	Р	Ground.			
VCC	4	D1	Р	Power supply of the device. A 1 μ F capacitor is recommended to be connected between this pin with GND and be placed as close to the device as possible.			
OUT3	5	D2	0	Constant current sink output 3.			
OUT2	6	C2	0	Constant current sink output 2.			
OUT1	7	B2	0	Constant current sink output 1.			
OUT0	8	A2	0	Constant current sink output 0.			

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage range at terminals	VCC, SCL, SDA, OUT0, OUT1, OUT2, OUT3	-0.3	6	V
T _J	Junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±4000	V
v (ESD)		Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1500	V

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Input voltage range	2.5		5.5	V
C _{IN}	Effective input capacitance range	1	4.7		μF
OUT0, OUT1, OUT2, OUT3	Voltage on OUT0, OUT1, OUT2, OUT3 pins	0		5.5	V
SCL, SDA	Voltage on SCL, SDA pins	0		5.5	V
T _A	Ambient temperature	-40		85	°C
T _J	Operating junction temperature	-40		125	°C

6.4 Thermal Information

		LP5814	
	THERMAL METRIC(1)	DRL (SOT583)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	118.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	47.1	°C/W
R _{θJB}	Junction-to-board thermal resistance	27.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	1.4	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	27.2	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Copyright © 2025 Texas Instruments Incorporated

6.5 Electrical Characteristics

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < T_{A} < +85^{\circ}\text{C}$), $V_{CC} = 3.6V$, $C_{IN} = 1 \mu F$.

- 0.01	/, C _{IN} = 1μF. PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Sup		1 12 112 112				
V _{CC}	Input voltage range		2.5		5.5	V
		V _{CC} rising	2.2	2.3	2.4	V
V _{CC_UVLO}	Under-voltage lockout threshold	V _{CC} falling	2	2.1	5.5 3 2.4 2.2 0.3 2 26 5 0.17 3 0.29 25.5 51 1 8 8 3 2 0.135 0.275	V
I _{SD}	Shutdown current into VCC pin	V _{CC} = 3.6V		0.1	0.3	μA
I _{STB}	Standby current into VCC pin	V _{CC} = 3.6V, CHIP_EN = 0 (bit)		22	26	μA
I _{NOR}	Normal operation current into VCC pin	V _{CC} = 3.6V, CHIP_EN = 1 (bit), OUT0_EN = OUT1_EN = OUT2_EN = OUT3_EN = 0 (bit)		0.15	0.17	mA
I _{NOR}	Normal operation current into VCC pin	$V_{\rm CC}$ = 3.6V, CHIP_EN = 1 (bit), OUT0_EN = OUT1_EN = OUT2_EN = OUT3_EN = 1 (bit), I _{OUT0} = I _{OUT1} = I _{OUT2} = I _{OUT3} = 25.5mA (MAX_CURRENT = 0 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh)		0.23	0.29	mA
LED Drive	r Output					
		V _{CC} = 3.6V, VLED = 5V, MAX_CURRENT = 0 (bit), OUTx_MANUAL_PWM = FFh (100% ON)	0.1		25.5	mA
Ics	Constant current sink output range	V _{CC} = 3.6V, VLED = 5V, MAX_CURRENT = 1 (bit), OUTx_MANUAL_PWM = FFh (100% ON)	0.2		51	mA
I _{CS_LKG}	Constant current sink leakage current	V _{CC} = 3.6V, OUTx = 1V, OUTx_MANUAL_PWM = 0 (0%)		0.1	1	μΑ
	Device to device current error, $I_{ERR_D2D} = (I_{AVE} - I_{SET}) / I_{SET} \times 100\%$	All LEDs turn ON. Current set to 25.5mA (MAX_CURRENT = 0 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh)	-8		8	%
IERR_D2D		All LEDs turn ON. Current set to 51mA (MAX_CURRENT = 1 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh)	-8		8	%
1	Channel to Channel current error	All LEDs turn ON. Current set to 25.5mA (MAX_CURRENT = 0 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh)	-3		3	%
IERR_C2C	$I_{ERR_C2C} = (I_{OUTX} - I_{AVE})/I_{AVE} \times 100\%$	All LEDs turn ON. Current set to 51mA (MAX_CURRENT = 1 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh)	-2		2	%
		All LEDs turn ON. Current set to 25.5mA (MAX_CURRENT = 0 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh), V _{CC} = 3.6V			0.135	٧
V		All LEDs turn ON. Current set to 51mA (MAX_CURRENT = 1 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh), V _{CC} = 3.6V			0.275	V
V_{HR}	LED driver output headroom voltage	All LEDs turn ON. Current set to 25.5mA (MAX_CURRENT = 0 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh), V _{CC} = 2.5V			0.15	٧
		All LEDs turn ON. Current set to 51mA (MAX_CURRENT = 1 (bit), OUTx_DC = FFh, OUTx_MANUAL_PWM = FFh), , V _{CC} = 2.5V			0.3	٧
f _{LED_PWM}	PWM dimming frequency			23		kHz
f _{OSC}	Internal oscillator frequency			6		MHz

Product Folder Links: LP5814

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < T_{A} < +85^{\circ}\text{C}$), $V_{CC} = 3.6\text{V}$, $C_{IN} = 1\mu\text{F}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Logic Interface								
V _{IH_LOGIC}	High level input voltage of SDA, SCL		1.4			V		
V _{IL_LOGIC}	Low level input voltage of SDA, SCL				0.4	V		
V _{OL_LOGIC}	Low level output voltage of SDA				0.4	V		
Protection								
T _{SD}	Thermal shutdown threshold for LED driver part	T_J rising		150		°C		
T _{SD_HYS}	Thermal shutdown hysteresis	T _J falling below T _{SD}		15		°C		

6.6 Timing Requirements

Unless specified otherwise, typical characteristics apply over the full ambient temperature range (-40° C < TA < $+85^{\circ}$ C), $V_{CC} = 3.6V$, $C_{IN} = 1\mu$ F.

	C _{IN} = 1μF. I ² C Timing Requirements	MIN	NOM	MAX	UNIT
Standar	d-mode				
f _{SCL}	SCL clock frequency	0		100	kHz
1	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4			μs
2	LOW period of the SCL clock	4.7			μs
3	HIGH period of the SCL clock	4			μs
4	Set-up time for a repeated START condition	4.7			μs
5	Data hold time	0			μs
6	Data set-up time	250			ns
7	Rise time of both SDA and SCL signals			1000	ns
8	Fall time of both SDA and SCL signals			300	ns
9	Set-up time for STOP condition	4			μs
10	Bus free time between a STOP and START condition	4.7			μs
C _b	Capacitive load for each bus line			400	pF
Fast-mo	ode	1		I	
f _{SCL}	SCL clock frequency	0		400	kHz
1	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	0.6			μs
2	LOW period of the SCL clock	1.3			μs
3	HIGH period of the SCL clock	0.6			μs
4	Set-up time for a repeated START condition	0.6			μs
5	Data hold time	0			μs
6	Data set-up time	100			ns
7	Rise time of both SDA and SCL signals			300	ns
8	Fall time of both SDA and SCL signals			300	ns
9	Set-up time for STOP condition	0.6			μs
10	Bus free time between a STOP and START condition	1.3			μs
C _b	Capacitive load for each bus line			400	pF
Fast-mo	ode Plus	1			
f _{SCL}	SCL clock frequency	0		1000	kHz
1	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	0.26			μs
2	LOW period of the SCL clock	0.5			μs

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < \text{TA} < +85^{\circ}\text{C}$), V_{CC} = 3.6V, C_{IN} = 1 μ F.

	I ² C Timing Requirements	MIN	NOM M	AX	UNIT
3	HIGH period of the SCL clock	0.26			μs
4	Set-up time for a repeated START condition	0.26			μs
5	Data hold time	0			μs
6	Data set-up time	50			ns
7	Rise time of both SDA and SCL signals			120	ns
8	Fall time of both SDA and SCL signals			120	ns
9	Set-up time for STOP condition	0.26			μs
10	Bus free time between a STOP and START condition	0.5			μs
C _b	Capacitive load for each bus line			550	pF

6.7 Timing Diagrams

Figure 6-1. I²C Timing Parameters

6.8 Typical Characteristics

Unless specified otherwise, typical characteristics apply over the full ambient temperature range (–40°C < T_A < +85°C), V_{CC} = 3.6V, C_{IN} = 1 μF

Figure 6-3. Current Sinks Voltage vs Current (MC = 1, VCC = 2.5V)

6.8 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < T_A < +85^{\circ}\text{C}$), $V_{CC} = 3.6\text{V}$, $C_{IN} = 1\mu\text{F}$

6.8 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < T_{A} < +85^{\circ}\text{C}$), $V_{CC} = 3.6\text{V}$, $C_{IN} = 1\mu\text{F}$

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

6.8 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range (-40° C < T_A < +85°C), V_{CC} $= 3.6V, C_{IN} = 1 \mu F$

Figure 6-16. Device-to-Device Current Accuracy vs Temperature | Figure 6-17. Device-to-Device Current Accuracy vs Temperature (MC = 0, VCC = 3.6V)

(MC = 1, VCC = 3.6V)

7 Detailed Description

7.1 Overview

The LP5814 is a 4 channel RGBW LED driver and autonomous animation control. The maximum output current of each channel is up to 51mA and can be adjusted by 256 steps from 0 to the full current. Besides the annalog dimming, every channel supports 8-bit PWM dimming in both manaul mode and autonomous animation mode.

The LP5814 features ultra-low shutdown current that is about 0.1uA. Two approaches are provided to control the LP5814 enter shutdown mode, sending shutdown command or constantly pulling down SCL, which improves the flexibility in system design for different application requirements.

The LP5814 integrates advanced autonomous animation control architecture. Four basic configurable independent pattern units can be selected and organized for each channel arbitrarily to realize both simple and complicated pattern effects.

7.2 Functional Block Diagram

Figure 7-1. LP5814 Function Block

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Analog Dimming

There are two methods to control the current gain of each output channel.

- · Global 1-bit Maximum Current (MC) control for all channels without external resistor
- Individual 8-bit Dot Current (DC) control for each channel

The maximum output current I_{OUT_max} of each channel can be programmed by the 1 bit MAX_CURRENT. When the device is powered on, the default value of MC is 0h, which is 25.5mA.

Table 7-1. Maximum Current (MC) Bit Setting

1-bit Maximun	1-bit Maximum Current (MC)							
Binary	Decimal	I _{OUT_MAX} (mA)						
0 (default)	0 (default)	25.5 (default)						
1	1	51						

The LP5814 can individually adjust the analog output current of each channel by using Dot Current (DC) function. The brightness deviation among the LED bins can be miminized to achieve uniform display performance through the DC setting. The DC is programmed in an 8-bit depth, so the analog current can be adjusted with 256 steps from 0 to 100% of I_{OUT_MAX} . The default value of all DC is 0h, which is not current output.

Table 7-2. Dot Current (DC) Bits Setting

8-bits Dot Current	(DC) Register	Datio of I
Binary	Decimal	Ratio of I _{OUT_MAX}
0000 0000 (default)	0 (default)	0% (default)
0000 0001	1	0.39%
0000 0010	2	0.78%
1000 0000	128	50.2%
1111 1101	253	99.2%
1111 1110	254	99.6%
1111 1111	255	100%

By configuring the MC and DC, the analog output current of each channel can be calculated as Equation 1:

$$I_{OUT}\left(mA\right) = I_{OUT_MAX} \times \frac{DC}{255} \tag{1}$$

The average output current of each channel can be caculated as Equation 2:

$$I_{AVE}\left(mA\right) = I_{OUT_MAX} \times \frac{DC}{255} \times D_{PWM} \tag{2}$$

D_{PWM} is the PWM duty.

7.3.2 PWM Dimming

The LP5814 supports 8-bit PWM dimming with 23kHz frequency in both manual mode and autonomous animation mode. The device integrates an internal 6MHz oscillator to generate the PWM clock.

The LP5814 allows users to configure the dimming scale as exponential curve or linear curve for each channel separately through the OUT0_EXP_EN, OUT1_EXP_EN, OUT2_EXP_EN and OUT3_EXP_EN in DEV_CONFIG3 register. A human-eye-friendly visual performance can be achieved by using the internal exponential scale. The linear scale has great linearity between PWM duty cycle and PWM setting value, which provides flexible approach for external controlled gamma correction algorithm. The 8-bit linear and exponential curves are shown as Figure 7-2.

Figure 7-2. Linear and Exponential PWM Dimming Curves

7.3.3 Sloper

In manual control mode, output fade in or out is supported when LED0_FADE_EN, LED1_FADE_EN, LED2_FADE_EN and LED3_FADE_EN bit in DEV_CONFIG2 register is set as 1. Sloper is the basic element to achieve autonomous fade in and fade out animations. The output can achieve 256 steps fade in or fade out effects from 'PWM_Start' to 'PWM_End' within a specified time period T as shown in Figure 7-3. Exponential dimming curve can also be supported in the sloper.

Figure 7-3. Sloper Curve Demonstration

The programable time T is selectable from 0 to around 8s with 16 levels shown in Table 7-3.

Table 7-3. Programable Time Options

Register Value	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
Time (Typ.)	0s	0.05s	0.1s	0.15s	0.2s	0.25s	0.3s	0.35s	0.4s	0.45s	0.5s	1s	2s	4s	6s	8s

Product Folder Links: LP5814

7.3.4 Autonomous Animation Control

The LP5814 supports autonomous animation control for each channel. With the animation engine the device can realize vivid lighting effects while releasing the loading of external controller.

As showed in Figure 7-4, the LP5814 has 4 independent configurable animation engine units, ENGINE0, ENGINE1, ENGINE2 and ENGINE3. Any one of the 4 engines can be selected by each output channel. There are 4 engine orders to construct one engine unit. For each engine order, one pattern unit can be selected to execute when the engine order is enabled. At the bottom layer, there are 4 independent configurable pattern units.

Figure 7-4. Animation Pattern Overview

7.3.4.1 Animation Engine Unit

The LP5814 has 4 independent animation engine units ENGINE0, ENGINE1, ENGIN2 and ENGINE3. For each output, any one of the 4 engines can be selected by setting the register OUTx_ENGINE_CH bits in DEV CONFIG4 register (x = 0, 1, 2, 3).

- OUTx_ENGINE_CH = 0, ENGINE0 is selected
- OUTx_ENGINE_CH = 1, ENGINE1 is selected
- OUTx ENGINE CH = 2, ENGINE2 is selected
- OUTx ENGINE CH = 3, ENGINE3 is selected

There are 4 engine orders, ENGINEx_ORDER0, ENGINEx_ORDER1, ENGINEx_ORDER2 and ENGINEx_ORDER3, to construct one engine unit ENGINEx (x = 0, 1, 2, 3). The 4 engine orders in one engine unit is executed sequentially. But any one of the 4 engine orders can be skipped by disabling the engine order through setting the corresponding ExOy_EN bit as 0 (x, y = 0, 1, 2, 3) in ENGINE_CONFIG4 and ENGINE CONFIG5 registers.

If 4 engine orders in one engine unit are all disabled, the engine unit is not started after sending the Start command. The corresponding internal engine busy flag is not set as shown in Figure 7-7.

The engine unit ENGINEx can be defined to execute repeately as the times specified in ENGINEx_REPT in ENGINE CONFIG6 register.

- ENGINEx_REPT = 0, ENGINEx doesn't repeat
- ENGINEx REPT = 1, ENGINEx repeats 1 time
- ENGINEx_REPT = 2, ENGINEx repeats 2 times

ENGINEx_REPT = 3, ENGINEx repeats infinitely

Engine order is enabled by setting the corresponding $ExOy_EN$ bit as 1. Any one of 4 basic patterns can be selected through the ENGINEx_ORDERy from ENGINE_CONFIG0 to ENGINE_CONFIG3 registers (x, y = 0, 1, 2, 3).

- ENGINEx_ORDERy = 0, PATTERN0 is selected
- ENGINEX ORDERy = 1, PATTERN1 is selected
- ENGINEX ORDERy = 2, PATTERN2 is selected
- ENGINEX ORDERy = 3, PATTERN3 is selected

7.3.4.2 Animation Pattern Unit

The LP5814 has 4 independent configurable pattern units, PATTERN0, PATTERN1, PATTERN2 and PATTERN3. Every pattern unit has 5 PWM values, 6 time values and 1 play times value.

For PATTERNx (x = 0, 1, 2, 3),

- The 5 PWM values are stored in PATTERNx_PWM0, PATTERNx_PWM1, PATTERNx_PWM2, PATTERNx_PWM3 and PATTERNx_PWM4. The 8 bits PWM value can be programmed from 0 to 255. Exponential dimming curve can also be supported in the sloper time.
- The 6 time values are devided into 2 types, pause time and sloper time. There are 2 pause time, PATTERNx_PAUSE_T0 and PATTERNx_PAUSE_T1. 4 sloper time, PATTERNx_SLOPER_T0, PATTERNx_SLOPER_T1, PATTERNx_SLOPER_T2 and PATTERNx_SLOPER_T3. Evey time value can be configured from 0 to 8s with 16 options.
- The pattern play times value is stored in PATTERNx_PT and can be configued from 0 to infinite times with 16 options. When the PATTERNx_PT = 0, the 2 pause time, output PWM0 for PAUSE_T0 and output PWM4 for PAUSE_T1, are still executed to construct the pattern unit.

Typical breathing effect example is illustrated as shown in Figure 7-5.

Figure 7-5. Animation Pattern Unit - Example 1

Advanced breathing effect example is shown in Figure 7-6. There are 2 different fading speeds are set in the PWM rising and falling phases, to achieve a complex animation.

Figure 7-6. Animation Pattern Unit - Example 2

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.3.4.3 Animation Control

The LP5814 has individual engine busy flag for each output channel, OUT0_ENGINE_BUSY, OUT1_ENGINE_BUSY, OUT2_ENGINE_BUSY and OUT3_ENGINE_BUSY, to indicate whether the engine selected by the output channel is under running or not. Besides the individule output busy flag there is a global engine busy flag, ENGINE_BUSY, to indicate if there is engine under running or not.

When the ENGINE_BUSY is set as 1, the engine configure registers and pattern configure registers shown in Table 7-4 are locked for modification protection. These engine busy lock registers can only be modified when **ENGINE_BUSY = 0**.

Table 7-4. Engine Busy Lock Registers

Description	Register Address	Register Acronym
Engine configure registers	0x06 to 0x0C	ENGINE_CONFIG0 to ENGINE_CONFIG6
Pattern configure registers	0x1C to 0x3F	 PATTERNx_PAUSE_TIME PATTERNx_REPEAT_TIME PATTERNx_PWM0 PATTERNx_PWM1 PATTERNx_PWM2 PATTERNx_PWM3 PATTERNx_PWM4 PATTERNx_SLOPER_TIME1 PATTERNx_SLOPER_TIME2 x = 0, 1, 2, 3

The LP5814 has 4 internal engine busy flags, ENGINE0_BUSY, ENGINE1_BUSY, ENGINE2_BUSY and ENGINE3_BUSY, as shown in Figure 7-7. The ENGINEy_BUSY is set as 1 after Start_command is received with all the below conditions.

- The engine has been selected by at least one channel, for example OUTx, and there is at least one engine order enabled in this engine
- The autonomous enable bit is set as 1 of the OUTx

The internal ENGINEy_BUSY flag keeps as 1 until the engine has completed or there is Stop_command received.

Figure 7-7. Internal Engine Busy Status

Any one of the internal engine busy flag, ENGINEx_BUSY, set to 1 leads to the global engine busy flag, ENGINE_BUSY, being 1, as shown in Figure 7-8.

The individual engine busy flag, OUTx_ENGINE_BUSY, is dependent on the internal engine busy flag selected by the corresponding engine channel register value.

Figure 7-8. Individual and Global Engine Busy Flag

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.3.5 Protections

7.3.5.1 UVLO

The LP5814 has an internal comparator that monitors the voltage at VCC. When V_{CC} is below V_{CC_UVLO} , the device resets and keeps in Power On Reset (POR) state. When V_{CC} ramps above V_{CC_UVLO} , the device enters INITIALIZATION mode and the POR flag is set. The POR flag needs manual clear by setting POR_CLR bit when CHIP_EN = 1.

7.3.5.2 Thermal Shutdown

The LP5814 implements a thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature of the device rises to 155° C (typical), the device turns off all output channels. The TSD flag is set to indicate thermal shutdown is triggered. The LP5814 releases thermal shutdown when the junction temperature reduces to 140° C (typical). The TSD flag needs manual clear by setting TSD_CLR bit when CHIP_EN = 1.

7.4 Device Functional Modes

The Figure 7-9 shows the function modes of the LED driver.

Figure 7-9. Functional Modes

7.4.1 Initialization Mode

The LP5814 enters INITIALIZATION mode when VCC voltage ramps above the V_{CC_UVLO} or exits from SHUTDOWN mode. The LP5814 reset all registers to default value in INITIALIZATION mode. The POR flag is set to 1 after exiting from INITIALIZATION mode to indicate the reset history.

7.4.2 Standby and Normal Mode

The LP5814 enters STANDBY mode when CHIP_EN = 0 or NORMAL mode when CHIP_EN = 1 after exiting from INITIALIZATION mode or THERMAL SHUTDOWN mode.

While staying in STANDBY or NORMAL mode,

- when Enter Shutdown Method is applied, the LP5814 enters SHUTDOWN mode. The Enter Shutdown Method is described in Shutdown Mode.
- when the junction temperature of the LP5814 rises above the thermal shutdown threshold T_{SD}, the LP5814 turns off all output channels and enters THERMAL SHUTDOWN mode.

7.4.3 Shutdown Mode

The LP5814 supports shutdown mode to minimize the power consumption from VCC. The quscient current from VCC decreases to 0.1 uA (typical) in SHUTDOWN mode. The LP5814 provides two pairs of methods to control the device enter and exit SHUTDOWN mode.

- Figure 7-10 shows the method 1
 - Enter shutdown, send Shutdown command by writing 0x33 to register 0xD though I²C communication.
 - Exit shutdown, toggle SDA 8 times to generate 8 falling edges while keeping SCL as high. The supported maximum toggle frequency for SDA is 100kHz.

Submit Document Feedback

- Figure 7-11 shows the method 2
 - Enter shutdown, pull down SCL for 100ms while keeping SDA as high.
 - Exit shutdown, pull up SCL to generate one rising edge regardless of SDA state.

Figure 7-10. Enter and Exit Shutdown Mode Method Pair 1

Figure 7-11. Enter and Exit Shutdown Mode Method Pair 2

7.4.4 Thermal Shutdown Mode

All output channels are turned off while the LP5814 staying in THERMAL SHUTDOWN mode. The I2C interface is still active and the LP5814 enters SHUTDOWN mode when Enter Shutdown Method is applied.

When the junction temperature of LP5814 falles blow the thermal shutdown threshold, the LP5814 enters STANDBY mode when CHIP_EN = 0 or NORMAL mode when CHIP_EN = 1 after exiting from THERMAL SHUTDOWN mode. The TSD flag needs manual clear through setting TSD_CLR bit when CHIP_EN = 1.

7.5 Programming

The LP5814 is compatible with I²C standard specification. The device supports standard mode (100kHz maximum), fast mode (400kHz maximum) and fast plus mode (1MHz maximum). The device chip address is 0x2C.

7.5.1 I²C Data Tansactions

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge after every byte rule. When the leader is the receiver, the receiver must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down.

7.5.2 I²C Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 7 bits of the chip address and 1 read/write bit. The 8 bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing / reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

Chip Address R/W Address Byte1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Independent 0 1 0 1 1 0 R: 1 W: 0 **Broadcast** 0 0 0 1 1 0 Register Address Address Byte2 Bit 7 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 6 7th bit 6th bit 5th bit 4th bit 3rd bit 2nd bit 1st bit 0 bit

Table 7-5. I²C Data Format

Figure 7-12. I²C Write Timming

Figure 7-13. I²C Read Timming

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *LP5814*

7.5.3 Command Description

The LP5814 has 5 dedicated software commands, Shutdown_command, Reset_command, Update_command, Start_command and Stop_command. Besides the 5 software commands, there is another PAUSE_CONTINUE bit used to control the execution of the autonomous animation.

- Send **Shutdown_command** is one of the 2 methods to make the device enter SHUTDOWN mode as described in **Shutdown Mode**.
- Send Reset_command to reset all registers to default value.
- Send **Update_command** to make the modified value in the device configuration registers as shown in Table 7-6 to take effect. The LP5814 responds to the Update command only when CHIP EN = 1.
- Send **Start_command** to start running the configured autonomous animation patterns on the outputs. The LP5814 responds to the Start_command only when CHIP_EN = 1.
- Send **Stop_command** to stop running the configured autonomous animation patterns on the outputs. The LP5814 responds to the Stop_command only when CHIP_EN = 1.
- Set **PAUSE_CONTINUE** bit as 1 to pause the running of the configured autonomous animation patterns on the outputs. Clear **PAUSE_CONTINUE** bit as 0 to continue the running of the previous paused autonomous animation patterns on the outputs. When the PAUSE_CONTINUE = 1, the configured autonomous animation pattern is not started after Start command is sent.

Table 7-6. Update_command Control Registers

Register Address	Register Acronym
0x01 to 0x05	DEV_CONGIFx, x = 0, 1, 2, 3, 4

7.6 Register Maps

Table 7-7. Register Maps

	Table 7-7. Register Maps											
Address	Acronym	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0h	CHIP_EN	RESERVE							CHIP_EN			
1h	DEV_CONFIG0	RESERVE	D						MAX_CU RRENT			
2h	DEV_CONFIG1	RESERVE	D			OUT3_EN	OUT2_EN	OUT1_EN	OUT0_EN			
3h	DEV_CONFIG2	LED_FADE						OUT0_FA DE_EN				
4h	DEV_CONFIG3	OUT3_EX P_EN	OUT2_EX P_EN	OUT1_EX P_EN	OUT0_EX P_EN	OUT3_AU TO_EN	OUT2_AU TO_EN	OUT1_AU TO_EN	OUT0_AU TO_EN			
5h	DEV_CONFIG4	OUT3_EN	GINE_CH	OUT2_EN	GINE_CH	OUT1_EN	GINE_CH	OUT0_EN	GINE_CH			
6h	ENGINE_CONFIG0	ENGINE0_	ORDER3	ENGINE0_	ORDER2	ENGINE0_	ORDER1	ENGINE0_	ORDER0			
7h	ENGINE_CONFIG1	ENGINE1_	ORDER3	ENGINE1_	ORDER2	ENGINE1_	ORDER1	ENGINE1_	ORDER0			
8h	ENGINE_CONFIG2	ENGINE2_	ORDER3	ENGINE2_	ORDER2	ENGINE2_	ORDER1	ENGINE2_	ORDER0			
9h	ENGINE_CONFIG3	ENGINE3_	ORDER3	ENGINE3_	ORDER2	ENGINE3_	ORDER1	ENGINE3_	ORDER0			
Ah	ENGINE_CONFIG4	E103_EN	E102_EN	E101_EN	E100_EN	E0O3_EN	E002_EN	E0O1_EN	E000_EN			
Bh	ENGINE_CONFIG5	E3O3_EN	E3O2_EN	E3O1_EN	E300_EN	E2O3_EN	E202_EN	E2O1_EN	E200_EN			
Ch	ENGINE_CONFIG6	ENGINE3_	REPT	ENGINE2_	REPT	ENGINE1_	REPT	ENGINE0_	REPT			
Dh	SHUTDOWN_CMD	SHUTDOV	VN									
Eh	RESET_CMD	RESET										
Fh	UPDATE_CMD	UPDATE										
10h	START_CMD	START										
11h	STOP_CMD	STOP										
12h	PAUSE_CONTINUE	RESERVE							PAUSE_C ONTINUE			
13h	FLAG_CLR	RESERVE	D					TSD_CLR	POR_CL R			
14h	OUT0_DC	OUT0_DC						1				
15h	OUT1_DC	OUT1_DC										
16h	OUT2_DC	OUT2_DC										
17h	OUT3_DC	OUT3_DC										
18h	OUT0_MANUAL_PWM	OUT0_MA	NUAL_PWN	Л								
19h	OUT1_MANUAL_PWM	OUT1_MA	NUAL_PWN	Л								
1Ah	OUT2_MANUAL_PWM	OUT2_MA	NUAL_PWN	Л								
1Bh	OUT3_MANUAL_PWM	OUT3_MA	NUAL_PWN	Л								
1Ch	PATTERNO_PAUSE_TIME	PATTERNO)_PAUSE_T	0		PATTERNO)_PAUSE_T	⁻ 1				
1Dh	PATTERNO_REPEAT_TIME	RESERVE	D			PATTERNO)_PT					
1Eh	PATTERNO_PWM0	PATTERNO	D_PWM0									
1Fh	PATTERN0_PWM1	PATTERNO	D_PWM1									
20h	PATTERN0_PWM2	PATTERNO	D_PWM2									
21h	PATTERN0_PWM3	PATTERNO	D_PWM3									
22h	PATTERN0_PWM4	PATTERNO	PWM4									
23h	PATTERN0_SLOPER_TIME1	PATTERNO	SLOPER_	_T1		PATTERNO	_SLOPER_	_T0				
24h	PATTERN0_SLOPER_TIME2	PATTERNO	SLOPER_	_T3		PATTERNO	SLOPER_	_T2				
25h	PATTERN1_PAUSE_TIME	PATTERN'	1_PAUSE_T	0		PATTERN'	1_PAUSE_T	1				
26h	PATTERN1_REPEAT_TIME	RESERVE	D			PATTERN'	1_PT					
27h	PATTERN1_PWM0	PATTERN ²	1_PWM0			•						
	•	•										

Table 7-7. Register Maps (continued)

Address	Acronym	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
28h	PATTERN1_PWM1	PATTERN′	I_PWM1							
29h	PATTERN1_PWM2	PATTERN'	I_PWM2							
2Ah	PATTERN1_PWM3	PATTERN'	I_PWM3							
2Bh	PATTERN1_PWM4	PATTERN'	I_PWM4							
2Ch	PATTERN1_SLOPER_TIME1	PATTERN ²	_SLOPER_	_T1		PATTERN'	_SLOPER_	_T0		
2Dh	PATTERN1_SLOPER_TIME2	PATTERN ²	_SLOPER_	_T3		PATTERN'	_SLOPER_	_T2		
2Eh	PATTERN2_PAUSE_TIME	PATTERN2	PAUSE_T	0		PATTERN2	2_PAUSE_T	Γ1		
2Fh	PATTERN2_REPEAT_TIME	RESERVE	D			PATTERN2	2_PT			
30h	PATTERN2_PWM0	PATTERN2	2_PWM0							
31h	PATTERN2_PWM1	PATTERN2	PATTERN2_PWM1							
32h	PATTERN2_PWM2	PATTERN2	PATTERN2_PWM2							
33h	PATTERN2_PWM3	PATTERN2	PATTERN2_PWM3							
34h	PATTERN2_PWM4	PATTERN2	2_PWM4							
35h	PATTERN2_SLOPER_TIME1	PATTERN2	SLOPER_	_T1		PATTERN2_SLOPER_T0				
36h	PATTERN2_SLOPER_TIME2	PATTERN2	SLOPER_	_T3		PATTERN2_SLOPER_T2				
37h	PATTERN3_PAUSE_TIME	PATTERNS	B_PAUSE_T	0		PATTERNS	3_PAUSE_T	JSE_T1		
38h	PATTERN3_REPEAT_TIME	RESERVE	D			PATTERNS	3_PT			
39h	PATTERN3_PWM0	PATTERNS	B_PWM0							
3Ah	PATTERN3_PWM1	PATTERNS	B_PWM1							
3Bh	PATTERN3_PWM2	PATTERNS	B_PWM2							
3Ch	PATTERN3_PWM3	PATTERNS	B_PWM3							
3Dh	PATTERN3_PWM4	PATTERNS	B_PWM4							
3Eh	PATTERN3_SLOPER_TIME1	PATTERNS	SLOPER_	_T1		PATTERNS	SLOPER	_T0		
3Fh	PATTERN3_SLOPER_TIME2	PATTERNS	S_SLOPER_	_T3		PATTERNS	SLOPER	_T2		
40h	FLAG	RESERV ED	OUT3_EN GINE_BU SY	OUT2_EN GINE_BU SY	OUT1_EN GINE_BU SY	OUTO_EN GINE_BU SY		TSD	POR	

Complex bit access types are encoded to fit into small table cells. Table 7-8 shows the codes that are used for access types in this section.

Table 7-8. Register Maps Access Type Codes

		<u> </u>				
Access Type	Code	Description				
Read Type						
R	R	Read				
Write Type						
W	W	Write				
W1C	W 1C	Write 1 to clear				
Reset or Default	Value					
-n		Value after reset or the default value				

7.6.1 CHIP_EN (Address = 0h) [Reset = 00h]

CHIP_EN is shown in Figure 7-14 and described in Table 7-9.

Return to the Summary Table.

Figure 7-14. CHIP EN

7 6 5 4 3 2 1							0	
RESERVED								
R-0h								

Table 7-9. CHIP_EN Field Descriptions

Bit	Field	Туре	Reset	Description		
7-1 RESERVED R 0h		0h	Reserved			
0	CHIP_EN	R/W		Device enable. 0x0 = Disable 0x1 = Enable		

7.6.2 DEV_CONFIG0 (Address = 1h) [Reset = 00h]

DEV_CONFIG0 is shown in Figure 7-15 and described in Table 7-10.

Return to the Summary Table.

Figure 7-15. DEV_CONFIG0

Table 7-10. DEV_CONFIG0 Field Descriptions

Bit	Field	Туре	Reset	Description			
7-1	RESERVED	R	0h	Reserved			
0	MAX_CURRENT	R/W	Oh	Max output current. 0x0 = 25.5mA 0x1 = 51mA			

7.6.3 DEV_CONFIG1 (Address = 2h) [Reset = 00h]

DEV_CONFIG1 is shown in Figure 7-16 and described in Table 7-11.

Return to the Summary Table.

Figure 7-16. DEV_CONFIG1

7	6	5	4	3	2	1	0
	RESE	RVED		OUT3_EN	OUT2_EN	OUT1_EN	OUT0_EN
R-0h				R/W-0h	R/W-0h	R/W-0h	R/W-0h

Table 7-11. DEV_CONFIG1 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0h	Reserved
3	OUT3_EN	R/W	Oh	OUT3 enable. 0x0 = Disable 0x1 = Enable
2	OUT2_EN	R/W	0h	OUT2 enable. 0x0 = Disable 0x1 = Enable
1	OUT1_EN	R/W	0h	OUT1 enable. 0x0 = Disable 0x1 = Enable

Product Folder Links: LP5814

Table 7-11. DEV_CONFIG1 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
0	OUT0_EN	R/W		OUT0 enable. 0x0 = Disable 0x1 = Enable

7.6.4 DEV_CONFIG2 (Address = 3h) [Reset = 00h]

DEV_CONFIG2 is shown in Figure 7-17 and described in Table 7-12.

Return to the Summary Table.

Figure 7-17. DEV_CONFIG2

7	6	5	4	3	2	1	0
	LED_FAC	DE_TIME		OUT3_FADE_E N	OUT2_FADE_E N	OUT1_FADE_E N	OUT0_FADE_E N
	R/M	/-0h		R/W-0h	R/W-0h	R/W-0h	R/W-0h

Table 7-12. DEV_CONFIG2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	LED_FADE_TIME	R/W	Oh	OUT fade sloper time. 0x0 = 0s 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3	OUT3_FADE_EN	R/W	0h	OUT3 fade in and out enable. 0x0 = Disable 0x1 = Enable
2	OUT2_FADE_EN	R/W	Oh	OUT2 fade in and out enable. 0x0 = Disable 0x1 = Enable
1	OUT1_FADE_EN	R/W	Oh	OUT1 fade in and out enable. 0x0 = Disable 0x1 = Enable
0	OUT0_FADE_EN	R/W	0h	OUT0 fade in and out enable. 0x0 = Disable 0x1 = Enable

7.6.5 DEV_CONFIG3 (Address = 4h) [Reset = 00h]

DEV_CONFIG3 is shown in Figure 7-18 and described in Table 7-13.

Return to the Summary Table.

Figure 7-18. DEV_CONFIG3

Figure 7-18. DEV_CONFIG3 (continued)

OUT3_EXP_EN	OUT2_EXP_EN	OUT1_EXP_EN	OUT0_EXP_EN	OUT3_AUTO_E N	OUT2_AUTO_E N	OUT1_AUTO_E N	OUT0_AUTO_E N
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h

Table 7-13. DEV_CONFIG3 Field Descriptions

Bit	Field	Туре	Reset	Description
7	OUT3_EXP_EN	R/W	0h	OUT3 exponential PWM dimming enable. 0x0 = Disable 0x1 = Enable
6	OUT2_EXP_EN	R/W	0h	OUT2 exponential PWM dimming enable. 0x0 = Disable 0x1 = Enable
5	OUT1_EXP_EN	R/W	0h	OUT1 exponential PWM dimming enable. 0x0 = Disable 0x1 = Enable
4	OUT0_EXP_EN	R/W	0h	OUT0 exponential PWM dimming enable. 0x0 = Disable 0x1 = Enable
3	OUT3_AUTO_EN	R/W	0h	OUT3 autonomous animation enable. 0x0 = Disable 0x1 = Enable
2	OUT2_AUTO_EN	R/W	0h	OUT2 autonomous animation enable. 0x0 = Disable 0x1 = Enable
1	OUT1_AUTO_EN	R/W	0h	OUT1 autonomous animation enable. 0x0 = Disable 0x1 = Enable
0	OUT0_AUTO_EN	R/W	0h	OUT0 autonomous animation enable. 0x0 = Disable 0x1 = Enable

7.6.6 DEV_CONFIG4 (Address = 5h) [Reset = 00h]

DEV_CONFIG4 is shown in Figure 7-19 and described in Table 7-14.

Return to the Summary Table.

Figure 7-19. DEV_CONFIG4

Table 7-14. DEV_CONFIG4 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	OUT3_ENGINE_CH	R/W	0h	OUT3 engine channel selection. 0x0 = ENGINE0 is selected 0x1 = ENGINE1 is selected 0x2 = ENGINE2 is selected 0x3 = ENGINE3 is selected
5-4	OUT2_ENGINE_CH	R/W	0h	OUT2 engine channel selection. 0x0 = ENGINE0 is selected 0x1 = ENGINE1 is selected 0x2 = ENGINE2 is selected 0x3 = ENGINE3 is selected

Product Folder Links: LP5814

Table 7-14. DEV_CONFIG4 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-2	OUT1_ENGINE_CH	R/W	0h	OUT1 engine channel selection. 0x0 = ENGINE0 is selected 0x1 = ENGINE1 is selected 0x2 = ENGINE2 is selected 0x3 = ENGINE3 is selected
1-0	OUT0_ENGINE_CH	R/W	0h	OUT0 engine channel selection. 0x0 = ENGINE0 is selected 0x1 = ENGINE1 is selected 0x2 = ENGINE2 is selected 0x3 = ENGINE3 is selected

7.6.7 ENGINE_CONFIG0 (Address = 6h) [Reset = 00h]

ENGINE_CONFIG0 is shown in Figure 7-20 and described in Table 7-15.

Return to the Summary Table.

Figure 7-20. ENGINE_CONFIG0

0	
ENGINE0_ORDER0	
R/W-0h	
_	

Table 7-15. ENGINE CONFIG0 Field Descriptions

_				
Bit	Field	Туре	Reset	Description
7-6	ENGINE0_ORDER3	R/W	Oh	ENGINEO_ORDER3 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
5-4	ENGINE0_ORDER2	R/W	0h	ENGINEO_ORDER2 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
3-2	ENGINE0_ORDER1	R/W	0h	ENGINE0_ORDER1 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
1-0	ENGINE0_ORDER0	R/W	0h	ENGINEO_ORDER0 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected

7.6.8 ENGINE_CONFIG1 (Address = 7h) [Reset = 00h]

ENGINE_CONFIG1 is shown in Figure 7-21 and described in Table 7-16.

Return to the Summary Table.

Figure 7-21. ENGINE_CONFIG1

				- -		
7 6	5	4	3	2	1	0
ENGINE1_ORDER3	ENGINE1_C	RDER2	ENGINE1_	ORDER1	ENGINE1	_ORDER0
R/W-0h	R/W-0	h	R/W	/-0h	R/W	/-0h

Copyright © 2025 Texas Instruments Incorporated

Table 7-16. ENGINE_CONFIG1 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	ENGINE1_ORDER3	R/W	0h	ENGINE1_ORDER3 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
5-4	ENGINE1_ORDER2	R/W	0h	ENGINE1_ORDER2 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
3-2	ENGINE1_ORDER1	R/W	0h	ENGINE1_ORDER1 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
1-0	ENGINE1_ORDER0	R/W	0h	ENGINE1_ORDER0 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected

7.6.9 ENGINE_CONFIG2 (Address = 8h) [Reset = 00h]

ENGINE_CONFIG2 is shown in Figure 7-22 and described in Table 7-17.

Return to the Summary Table.

Figure 7-22. ENGINE_CONFIG2

7	6	5	4	3	2	1	0	
ENGINE	ENGINE2_ORDER3 ENGINE2_ORDER2				_ORDER1	ENGINE2_ORDER0		
R	R/W-0h R/W-0h			R/V	V-0h	R/W	'-0h	

Table 7-17. ENGINE_CONFIG2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	ENGINE2_ORDER3	R/W	0h	ENGINE2_ORDER3 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
5-4	ENGINE2_ORDER2	R/W	0h	ENGINE2_ORDER2 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
3-2	ENGINE2_ORDER1	R/W	0h	ENGINE2_ORDER1 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
1-0	ENGINE2_ORDER0	R/W	0h	ENGINE2_ORDER0 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected

Product Folder Links: LP5814

7.6.10 ENGINE_CONFIG3 (Address = 9h) [Reset = 00h]

ENGINE_CONFIG3 is shown in Figure 7-23 and described in Table 7-18.

Return to the Summary Table.

Figure 7-23. ENGINE_CONFIG3

7	6	5	4	3	2	1	0
ENGINE3	_ORDER3	DER3 ENGINE3_ORDER2		ENGINE3	ORDER1	ENGINE3_ORDER0	
R/V	V-0h	R/W-0h		R/W	/-0h	R/W-0h	

Table 7-18. ENGINE_CONFIG3 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	ENGINE3_ORDER3	R/W	Oh	ENGINE3_ORDER3 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
5-4	ENGINE3_ORDER2	R/W	Oh	ENGINE3_ORDER2 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
3-2	ENGINE3_ORDER1	R/W	Oh	ENGINE3_ORDER1 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected
1-0	ENGINE3_ORDER0	R/W	Oh	ENGINE3_ORDER0 pattern selection. 0x0 = PATTERN0 is selected 0x1 = PATTERN1 is selected 0x2 = PATTERN2 is selected 0x3 = PATTERN3 is selected

7.6.11 ENGINE_CONFIG4 (Address = Ah) [Reset = 00h]

ENGINE_CONFIG4 is shown in Figure 7-24 and described in Table 7-19.

Return to the Summary Table.

Figure 7-24. ENGINE_CONFIG4

			•	_			
7	6	5	4	3	2	1	0
E103_EN	E102_EN	E101_EN	E100_EN	E0O3_EN	E0O2_EN	E0O1_EN	E000_EN
R/W-0h							

Table 7-19. ENGINE_CONFIG4 Field Descriptions

Bit	Field	Туре	Reset	Description
7	E103_EN	R/W	Oh	ENGINE1_ORDER3 enable. 0x0 = Disable 0x1 = Enable
6	E102_EN	R/W	0h	ENGINE1_ORDER2 enable. 0x0 = Disable 0x1 = Enable
5	E101_EN	R/W	Oh	ENGINE1_ORDER1 enable. 0x0 = Disable 0x1 = Enable
4	E100_EN	R/W	0h	ENGINE1_ORDER0 enable. 0x0 = Disable 0x1 = Enable

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

Table 7-19. ENGINE_CONFIG4 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3	E003_EN	R/W	0h	ENGINEO_ORDER3 enable. 0x0 = Disable 0x1 = Enable
2	E002_EN	R/W	0h	ENGINE0_ORDER2 enable. 0x0 = Disable 0x1 = Enable
1	E0O1_EN	R/W	0h	ENGINE0_ORDER1 enable. 0x0 = Disable 0x1 = Enable
0	E000_EN	R/W	0h	ENGINE0_ORDER0 enable. 0x0 = Disable 0x1 = Enable

7.6.12 ENGINE_CONFIG5 (Address = Bh) [Reset = 00h]

ENGINE_CONFIG5 is shown in Figure 7-25 and described in Table 7-20.

Return to the Summary Table.

Figure 7-25. ENGINE_CONFIG5

7	6	5	4	3	2	1	0
E3O3_EN	E3O2_EN	E3O1_EN	E300_EN	E2O3_EN	E2O2_EN	E2O1_EN	E200_EN
R/W-0h							

Table 7-20. ENGINE_CONFIG5 Field Descriptions

Bit	Field	Туре	Reset	Description
7	E3O3_EN	R/W	0h	ENGINE3_ORDER3 enable. 0x0 = Disable 0x1 = Enable
6	E3O2_EN	R/W	0h	ENGINE3_ORDER2 enable. 0x0 = Disable 0x1 = Enable
5	E301_EN	R/W	0h	ENGINE3_ORDER1 enable. 0x0 = Disable 0x1 = Enable
4	E300_EN	R/W	0h	ENGINE3_ORDER0 enable. 0x0 = Disable 0x1 = Enable
3	E2O3_EN	R/W	0h	ENGINE2_ORDER3 enable. 0x0 = Disable 0x1 = Enable
2	E2O2_EN	R/W	0h	ENGINE2_ORDER2 enable. 0x0 = Disable 0x1 = Enable
1	E2O1_EN	R/W	0h	ENGINE2_ORDER1 enable. 0x0 = Disable 0x1 = Enable
0	E200_EN	R/W	0h	ENGINE2_ORDER0 enable. 0x0 = Disable 0x1 = Enable

7.6.13 ENGINE_CONFIG6 (Address = Ch) [Reset = 00h]

ENGINE_CONFIG6 is shown in Figure 7-26 and described in Table 7-21.

Product Folder Links: LP5814

Return to the Summary Table.

Figure 7-26. ENGINE_CONFIG6

7	6	5	4	3	2	1	0
ENGINE	ENGINE3_REPT ENGINE2_REPT		ENGINE	1_REPT	ENGINE	_REPT	
R/V	V-0h	R/W	′-0h	R/V	V-0h	R/W	-0h

Table 7-21. ENGINE CONFIG6 Field Descriptions

				THE TOTAL BOOGNIPHIONO	
Bit	Field	Туре	Reset	Description	
7-6	ENGINE3_REPT	R/W	0h	ENGINE3 repeat times. 0x0 = 0 times 0x1 = 1 times 0x2 = 2 times 0x3 = infinite times	
5-4	ENGINE2_REPT	R/W	0h	ENGINE2 repeat times. 0x0 = 0 times 0x1 = 1 times 0x2 = 2 times 0x3 = infinite times	
3-2	ENGINE1_REPT	R/W	0h	ENGINE1 repeat times. 0x0 = 0 times 0x1 = 1 times 0x2 = 2 times 0x3 = infinite times	
1-0	ENGINE0_REPT	R/W	0h	ENGINE0 repeat times. 0x0 = 0 times 0x1 = 1 times 0x2 = 2 times 0x3 = infinite times	

7.6.14 SHUTDOWN_CMD (Address = Dh) [Reset = 00h]

SHUTDOWN_CMD is shown in Figure 7-27 and described in Table 7-22.

Return to the Summary Table.

Figure 7-27. SHUTDOWN_CMD

Table 7-22. SHUTDOWN_CMD Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	SHUTDOWN	W	0h	0x33 = Enter shutdown mode

7.6.15 RESET_CMD (Address = Eh) [Reset = 00h]

RESET_CMD is shown in Figure 7-28 and described in Table 7-23.

Return to the Summary Table.

Figure 7-28. RESET_CMD

Table 7-23. RESET CMD Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	RESET	W	0h	0xCC = Reset all the registers to default value

7.6.16 UPDATE_CMD (Address = Fh) [Reset = 00h]

UPDATE_CMD is shown in Figure 7-29 and described in Table 7-24.

Return to the Summary Table.

Figure 7-29. UPDATE_CMD

Table 7-24. UPDATE_CMD Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	UPDATE	W	0h	0x55 = Update all device configuration registers value

7.6.17 START_CMD (Address = 10h) [Reset = 00h]

START_CMD is shown in Figure 7-30 and described in Table 7-25.

Return to the Summary Table.

Figure 7-30. START_CMD

	7	6	5	4	3	2	1	0
START								
				W-	0h			

Table 7-25. START_CMD Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	START	W	0h	0xFF = Start autonomous animation

7.6.18 STOP_CMD (Address = 11h) [Reset = 00h]

STOP_CMD is shown in Figure 7-31 and described in Table 7-26.

Return to the Summary Table.

Figure 7-31. STOP_CMD

7	6	5	4	3	2	1	0
			ST	OP			
			W-	-0h			

Table 7-26. STOP CMD Field Descriptions

Bit	Field	Туре	Reset	Description		
7-0	STOP	W	0h	0xAA = Stop autonomous animation		

7.6.19 PAUSE_CONTINUE (Address = 12h) [Reset = 00h]

PAUSE_CONTINUE is shown in Figure 7-32 and described in Table 7-27.

Return to the Summary Table.

Figure 7-32. PAUSE_CONTINUE

Table 7-27. PAUSE_CONTINUE Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	RESERVED	R	0h	Reserved
0	PAUSE_CONTINUE	R/W	0h	Pause or continue autonomous animation. 0x0 = Continue 0x1 = Pause

7.6.20 FLAG_CLR (Address = 13h) [Reset = 00h]

FLAG_CLR is shown in Figure 7-33 and described in Table 7-28.

Return to the Summary Table.

Figure 7-33. FLAG_CLR

7	6	5	4	3	2	1	0
	RESERVED						
		R-	-0h			W1C-0h	W1C-0h

Table 7-28. FLAG_CLR Field Descriptions

	Bit	Field	Туре	Reset	Description
	7-2	RESERVED	R	0h	Reserved
	1	TSD_CLR	W1C	0h	Write 1 to clear TSD flag.
Ī	0	POR_CLR	W1C	0h	Write 1 to clear POR flag.

7.6.21 OUT0_DC (Address = 14h) [Reset = 00h]

OUT0_DC is shown in Figure 7-34 and described in Table 7-29.

Return to the Summary Table.

Figure 7-34. OUT0_DC

Table 7-29. OUT0 DC Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUT0_DC	R/W	0h	OUT0 DC setting.

7.6.22 OUT1_DC (Address = 15h) [Reset = 00h]

OUT1_DC is shown in Figure 7-35 and described in Table 7-30.

Return to the Summary Table.

			Figure 7-35	5. OUT1_DC			
7	6	5	4	3	2	1	0
			OUT	1_DC			

Table 7-30. OUT1_DC Field Descriptions

R/W-0h

Bit	Field	Туре	Reset	Description
7-0	OUT1_DC	R/W	0h	OUT1 DC setting.

7.6.23 OUT2_DC (Address = 16h) [Reset = 00h]

OUT2_DC is shown in Figure 7-36 and described in Table 7-31.

Return to the Summary Table.

Figure 7-36. OUT2_DC

Table 7-31. OUT2_DC Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUT2_DC	R/W	0h	OUT2 DC setting.

7.6.24 OUT3_DC (Address = 17h) [Reset = 00h]

OUT3_DC is shown in Figure 7-37 and described in Table 7-32.

Return to the Summary Table.

Figure 7-37. OUT3_DC

Table 7-32. OUT3_DC Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUT3 DC	R/W	0h	OUT3 DC setting.

7.6.25 OUT0_MANUAL_PWM (Address = 18h) [Reset = 00h]

OUT0_MANUAL_PWM is shown in Figure 7-38 and described in Table 7-33.

Return to the Summary Table.

Figure 7-38. OUT0_MANUAL_PWM

Table 7-33. OUT0_MANUAL_PWM Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUT0_MANUAL_PWM	R/W	0h	OUT0 manual PWM setting. 0x00 = 0%
				0x80 = 50%
				 0xFF = 100%

7.6.26 OUT1_MANUAL_PWM (Address = 19h) [Reset = 00h]

OUT1_MANUAL_PWM is shown in Figure 7-39 and described in Table 7-34.

Return to the Summary Table.

Figure 7-39. OUT1_MANUAL_PWM

Table 7-34. OUT1_MANUAL_PWM Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUT1_MANUAL_PWM	R/W		OUT1 manual PWM setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.27 OUT2_MANUAL_PWM (Address = 1Ah) [Reset = 00h]

OUT2_MANUAL_PWM is shown in Figure 7-40 and described in Table 7-35.

Return to the Summary Table.

Figure 7-40. OUT2_MANUAL_PWM

Table 7-35. OUT2_MANUAL_PWM Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUT2_MANUAL_PWM	R/W	0h	OUT2 manual PWM setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.28 OUT3_MANUAL_PWM (Address = 1Bh) [Reset = 00h]

OUT3_MANUAL_PWM is shown in Figure 7-41 and described in Table 7-36.

Return to the Summary Table.

Figure 7-41. OUT3_MANUAL_PWM

Figure 7-41. OUT3_MANUAL_PWM (continued)

OUT3_MANUAL_PWM
R/W-0h

Table 7-36. OUT3_MANUAL_PWM Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	OUT3_MANUAL_PWM	R/W	0h	OUT3 manual PWM setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%
				UXFF = 100%

7.6.29 PATTERNO_PAUSE_TIME (Address = 1Ch) [Reset = 00h]

PATTERNO_PAUSE_TIME is shown in Figure 7-42 and described in Table 7-37.

Return to the Summary Table.

Figure 7-42. PATTERNO_PAUSE_TIME

				_	_			
7	6	5	4	3	2	1	0	
PATTERNO_PAUSE_T0				PATTERN0_PAUSE_T1				
R/W-0h					R/W	-0h		

Table 7-37. PATTERNO_PAUSE_TIME Field Descriptions

Bit	Field	Туре	Reset	Description Description
7-4	PATTERNO_PAUSE_TO	R/W	Oh	Start animation pause time of pattern0. 0x0 = no pause time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERNO_PAUSE_T1	R/W	Oh	End animation pause time of pattern0. 0x0 = no pause time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.30 PATTERNO_REPEAT_TIME (Address = 1Dh) [Reset = 00h]

PATTERNO_REPEAT_TIME is shown in Figure 7-43 and described in Table 7-38.

Return to the Summary Table.

Figure 7-43. PATTERNO_REPEAT_TIME

Table 7-38. PATTERNO_REPEAT_TIME Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0h	Reserved
3-0	PATTERNO_PT	R/W	Oh	Pattern0 repeat times. 0x0 = 0 time 0x1 = 1 time 0x2 = 2 times 0x3 = 3 times 0x4 = 4 times 0x5 = 5 times 0x6 = 6 times 0x7 = 7 times 0x8 = 8 times 0x9 = 9 times 0xA = 10 times 0xB = 11 times 0xC = 12 times 0xC = 14 times 0xF = infinite times

7.6.31 PATTERNO_PWM0 (Address = 1Eh) [Reset = 00h]

PATTERNO_PWM0 is shown in Figure 7-44 and described in Table 7-39.

Return to the Summary Table.

Figure 7-44. PATTERN0_PWM0

Table 7-39. PATTERNO_PWM0 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERNO_PWM0	R/W		Pattern0 PWM0 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.32 PATTERNO_PWM1 (Address = 1Fh) [Reset = 00h]

PATTERNO_PWM1 is shown in Figure 7-45 and described in Table 7-40.

Return to the Summary Table.

Figure 7-45. PATTERNO PWM1

			<u> </u>				
7	6	5	4	3	2	1	0
			PATTERN	10_PWM1			
			R/W	V-0h			

Table 7-40. PATTERN0_PWM1 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN0_PWM1	R/W	0h	Pattern0 PWM1 setting. 0x00 = 0%
				 0x80 = 50%
				0xFF = 100%

7.6.33 PATTERNO_PWM2 (Address = 20h) [Reset = 00h]

PATTERNO_PWM2 is shown in Figure 7-46 and described in Table 7-41.

Return to the Summary Table.

Figure 7-46. PATTERN0_PWM2

	7	6	5	4	3	2	1	0
Г				PATTERN	NO_PWM2			
				R/V	V-0h			

Table 7-41. PATTERN0_PWM2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN0_PWM2	R/W	0h	Pattern0 PWM2 setting. 0x00 = 0%
				 0x80 = 50%
				 0xFF = 100%

7.6.34 PATTERNO_PWM3 (Address = 21h) [Reset = 00h]

PATTERNO_PWM3 is shown in Figure 7-47 and described in Table 7-42.

Return to the Summary Table.

Figure 7-47. PATTERN0_PWM3

7	6	5	4	3	2	1	0	
PATTERN0_PWM3								
R/W-0h								

Table 7-42. PATTERN0_PWM3 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERNO_PWM3	R/W	Oh	Pattern0 PWM3 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.35 PATTERNO_PWM4 (Address = 22h) [Reset = 00h]

PATTERNO_PWM4 is shown in Figure 7-48 and described in Table 7-43.

Return to the Summary Table.

Figure 7-48. PATTERN0_PWM4

Table 7-43. PATTERN0_PWM4 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN0_PWM4	R/W		Pattern0 PWM4 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.36 PATTERNO_SLOPER_TIME1 (Address = 23h) [Reset = 00h]

PATTERNO_SLOPER_TIME1 is shown in Figure 7-49 and described in Table 7-44.

Return to the Summary Table.

Figure 7-49. PATTERN0_SLOPER_TIME1

Table 7-44. PATTERN0_SLOPER_TIME1 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	PATTERNO_SLOPER_T1	R/W	0h	Pattern0 sloper time 1 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s
				0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

Table 7-44. PATTERN0_SLOPER_TIME1 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	PATTERNO_SLOPER_T0	R/W	0h	Pattern0 sloper time 0 setting.
				0x0 = no sloper time
				0x1 = 0.05s
				0x2 = 0.10s
				0x3 = 0.15s
				0x4 = 0.20s
				0x5 = 0.25s
				0x6 = 0.30s
				0x7 = 0.35s
				0x8 = 0.40s
				0x9 = 0.45s
				0xA = 0.50s
				0xB = 1.00s
				0xC = 2.00s
				0xD = 4.00s
				0xE = 6.00s
				0xF = 8.00s

7.6.37 PATTERNO_SLOPER_TIME2 (Address = 24h) [Reset = 00h]

PATTERNO_SLOPER_TIME2 is shown in Figure 7-50 and described in Table 7-45.

Return to the Summary Table.

Figure 7-50. PATTERN0_SLOPER_TIME2

Table 7-45. PATTERN0_SLOPER_TIME2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	PATTERNO_SLOPER_T3	R/W	Oh	Pattern0 sloper time 3 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xC = 2.00s 0xE = 6.00s 0xF = 8.00s

Table 7-45. PATTERN0_SLOPER_TIME2 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	PATTERN0_SLOPER_T2	R/W	0h	Pattern0 sloper time 2 setting.
				0x0 = no sloper time
				0x1 = 0.05s
				0x2 = 0.10s
				0x3 = 0.15s
				0x4 = 0.20s
				0x5 = 0.25s
				0x6 = 0.30s
				0x7 = 0.35s
				0x8 = 0.40s
				0x9 = 0.45s
				0xA = 0.50s
				0xB = 1.00s
				0xC = 2.00s
				0xD = 4.00s
				0xE = 6.00s
				0xF = 8.00s

7.6.38 PATTERN1_PAUSE_TIME (Address = 25h) [Reset = 00h]

PATTERN1_PAUSE_TIME is shown in Figure 7-51 and described in Table 7-46.

Return to the Summary Table.

Figure 7-51. PATTERN1_PAUSE_TIME

Table 7-46. PATTERN1_PAUSE_TIME Field Descriptions

Bit	Field	Туре	Reset	Description
Bit 7-4	Field PATTERN1_PAUSE_T0	Type R/W	Reset 0h	Description Start animation pause time of pattern1. 0x0 = no pause time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s
				0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

Table 7-46. PATTERN1_PAUSE_TIME Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	PATTERN1_PAUSE_T1	R/W	0h	End animation pause time of pattern1.
				0x0 = no pause time
				0x1 = 0.05s
				0x2 = 0.10s
				0x3 = 0.15s
				0x4 = 0.20s
				0x5 = 0.25s
				0x6 = 0.30s
				0x7 = 0.35s
				0x8 = 0.40s
				0x9 = 0.45s
				0xA = 0.50s
				0xB = 1.00s
				0xC = 2.00s
				0xD = 4.00s
				0xE = 6.00s
				0xF = 8.00s

7.6.39 PATTERN1_REPEAT_TIME (Address = 26h) [Reset = 00h]

PATTERN1_REPEAT_TIME is shown in Figure 7-52 and described in Table 7-47.

Return to the Summary Table.

Figure 7-52. PATTERN1_REPEAT_TIME

Table 7-47. PATTERN1_REPEAT_TIME Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0h	Reserved
3-0	PATTERN1_PT	R/W	Oh	Pattern1 repeat times. 0x0 = 0 time 0x1 = 1 time 0x2 = 2 times 0x3 = 3 times 0x4 = 4 times 0x5 = 5 times 0x6 = 6 times 0x7 = 7 times 0x8 = 8 times 0x9 = 9 times 0xA = 10 times 0xB = 11 times 0xC = 12 times 0xC = 14 times 0xF = infinite times

7.6.40 PATTERN1_PWM0 (Address = 27h) [Reset = 00h]

PATTERN1_PWM0 is shown in Figure 7-53 and described in Table 7-48.

Return to the Summary Table.

Figure 7-53. PATTERN1_PWM0

			9	· · - · · · · · · · · · · · · · · · · ·	•		
7	6	5	4	3	2	1	0

Submit Document Feedback

Figure 7-53. PATTERN1_PWM0 (continued)

_	
PATTERN1_PWM0	
R/W-0h	

Table 7-48. PATTERN1_PWM0 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN1_PWM0	R/W		Pattern1 PWM0 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.41 PATTERN1_PWM1 (Address = 28h) [Reset = 00h]

PATTERN1_PWM1 is shown in Figure 7-54 and described in Table 7-49.

Return to the Summary Table.

Figure 7-54. PATTERN1 PWM1

			•	_			
7	6	5	4	3	2	1	0
			PATTERI	N1_PWM1			
			R/V	V-0h			

Table 7-49. PATTERN1_PWM1 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN1_PWM1	R/W	Oh	Pattern1 PWM1 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.42 PATTERN1_PWM2 (Address = 29h) [Reset = 00h]

PATTERN1_PWM2 is shown in Figure 7-55 and described in Table 7-50.

Return to the Summary Table.

Figure 7-55. PATTERN1_PWM2

7	6	5	4	3	2	1	0
			PATTERN	N1_PWM2			
			R/V	V-0h			

Table 7-50. PATTERN1_PWM2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN1_PWM2	R/W	0h	Pattern1 PWM2 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

Copyright © 2025 Texas Instruments Incorporated

7.6.43 PATTERN1_PWM3 (Address = 2Ah) [Reset = 00h]

PATTERN1_PWM3 is shown in Figure 7-56 and described in Table 7-51.

Return to the Summary Table.

Figure 7-56. PATTERN1_PWM3

Table 7-51. PATTERN1_PWM3 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN1_PWM3	R/W		Pattern1 PWM3 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.44 PATTERN1_PWM4 (Address = 2Bh) [Reset = 00h]

PATTERN1_PWM4 is shown in Figure 7-57 and described in Table 7-52.

Return to the Summary Table.

Figure 7-57. PATTERN1_PWM4

Table 7-52. PATTERN1_PWM4 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN1_PWM4	R/W	0h	Pattern1 PWM4 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.45 PATTERN1_SLOPER_TIME1 (Address = 2Ch) [Reset = 00h]

PATTERN1_SLOPER_TIME1 is shown in Figure 7-58 and described in Table 7-53.

Return to the Summary Table.

Figure 7-58. PATTERN1_SLOPER_TIME1

Table 7-53. PATTERN1_SLOPER_TIME1 Field Descriptions

Bit	Field	Туре	Reset	Description Descriptions
7-4	PATTERN1_SLOPER_T1	R/W	0h	Pattern1 sloper time 1 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN1_SLOPER_T0	R/W	Oh	Pattern1 sloper time 0 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.46 PATTERN1_SLOPER_TIME2 (Address = 2Dh) [Reset = 00h]

PATTERN1_SLOPER_TIME2 is shown in Figure 7-59 and described in Table 7-54.

Return to the Summary Table.

Figure 7-59. PATTERN1_SLOPER_TIME2

7	6	5	4	3	2	1	0
	PATTERN1_S	SLOPER_T3			PATTERN1_S	SLOPER_T2	
R/W-0h					R/W	-0h	

Table 7-54. PATTERN1_SLOPER_TIME2 Field Descriptions

Bit	Field	Туре	Reset	Description Descriptions
7-4	PATTERN1_SLOPER_T3	R/W	Oh	Pattern1 sloper time 3 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN1_SLOPER_T2	R/W	Oh	Pattern1 sloper time 2 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.47 PATTERN2_PAUSE_TIME (Address = 2Eh) [Reset = 00h]

PATTERN2_PAUSE_TIME is shown in Figure 7-60 and described in Table 7-55.

Return to the Summary Table.

Figure 7-60. PATTERN2_PAUSE_TIME

7	6	5	4	3	2	1	0	
	PATTERN2	_PAUSE_T0		PATTERN2_PAUSE_T1				
R/W-0h					R/W-	-0h		

Submit Document Feedback

Table 7-55. PATTERN2_PAUSE_TIME Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	PATTERN2_PAUSE_T0	R/W	Oh	Start animation pause time of pattern2. 0x0 = no pause time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN2_PAUSE_T1	R/W	Oh	End animation pause time of pattern2. 0x0 = no pause time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.48 PATTERN2_REPEAT_TIME (Address = 2Fh) [Reset = 00h]

PATTERN2_REPEAT_TIME is shown in Figure 7-61 and described in Table 7-56.

Return to the Summary Table.

Figure 7-61. PATTERN2_REPEAT_TIME

Table 7-56. PATTERN2_REPEAT_TIME Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0h	Reserved

Table 7-56. PATTERN2_REPEAT_TIME Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	PATTERN2_PT	R/W	0h	Pattern2 repeat times.
	_			0x0 = 0 time
				0x1 = 1 time
				0x2 = 2 times
				0x3 = 3 times
				0x4 = 4 times
				0x5 = 5 times
				0x6 = 6 times
				0x7 = 7 times
				0x8 = 8 times
				0x9 = 9 times
				0xA = 10 times
				0xB = 11 times
				0xC = 12 times
				0xD = 13 times
				0xE = 14 times
				0xF = infinite times

7.6.49 PATTERN2_PWM0 (Address = 30h) [Reset = 00h]

PATTERN2_PWM0 is shown in Figure 7-62 and described in Table 7-57.

Return to the Summary Table.

Figure 7-62. PATTERN2_PWM0

7	6	5	4	3	2	1	0
	PATTERN2_PWM0						
			R/V	V-0h			

Table 7-57. PATTERN2_PWM0 Field Descriptions

Bit	Field	Туре	Reset	Description				
7-0	PATTERN2_PWM0	R/W	0h	Pattern2 PWM0 setting. 0x00 = 0%				
				0x80 = 50% 0xFF = 100%				

7.6.50 PATTERN2_PWM1 (Address = 31h) [Reset = 00h]

PATTERN2_PWM1 is shown in Figure 7-63 and described in Table 7-58.

Return to the Summary Table.

Figure 7-63. PATTERN2_PWM1

Table 7-58. PATTERN2_PWM1 Field Descriptions

_					• ,		
	Bit	Field	Туре	Reset	Description		
	7-0	PATTERN2_PWM1	R/W		Pattern2 PWM1 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%		

7.6.51 PATTERN2_PWM2 (Address = 32h) [Reset = 00h]

PATTERN2_PWM2 is shown in Figure 7-64 and described in Table 7-59.

Return to the Summary Table.

Figure 7-64. PATTERN2_PWM2

7	6	5	4	3	2	1	0	
	PATTERN2_PWM2							
			R/V	V-0h				

Table 7-59. PATTERN2_PWM2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN2_PWM2	R/W	0h	Pattern2 PWM2 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.52 PATTERN2_PWM3 (Address = 33h) [Reset = 00h]

PATTERN2_PWM3 is shown in Figure 7-65 and described in Table 7-60.

Return to the Summary Table.

Figure 7-65. PATTERN2_PWM3

Table 7-60. PATTERN2_PWM3 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN2_PWM3	R/W		Pattern2 PWM3 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.53 PATTERN2_PWM4 (Address = 34h) [Reset = 00h]

PATTERN2_PWM4 is shown in Figure 7-66 and described in Table 7-61.

Return to the Summary Table.

Figure 7-66. PATTERN2_PWM4

Figure 7-66. PATTERN2_PWM4 (continued)

PATTERN2_PWM4
R/W-0h

Table 7-61. PATTERN2_PWM4 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN2_PWM4	R/W		Pattern2 PWM4 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.54 PATTERN2_SLOPER_TIME1 (Address = 35h) [Reset = 00h]

PATTERN2_SLOPER_TIME1 is shown in Figure 7-67 and described in Table 7-62.

Return to the Summary Table.

Figure 7-67. PATTERN2 SLOPER TIME1

				_	_			
7	6	5	4	3	2	1	0	
	PATTERN2_	SLOPER_T1		PATTERN2_SLOPER_T0				
R/W-0h					R/W	-0h		

Table 7-62. PATTERN2_SLOPER_TIME1 Field Descriptions

Bit	Field	Туре	Reset	Description Descriptions
7-4	PATTERN2_SLOPER_T1	R/W	Oh	Pattern2 sloper time 1 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN2_SLOPER_T0	R/W	Oh	Pattern2 sloper time 0 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.55 PATTERN2_SLOPER_TIME2 (Address = 36h) [Reset = 00h]

PATTERN2_SLOPER_TIME2 is shown in Figure 7-68 and described in Table 7-63.

Return to the Summary Table.

Figure 7-68. PATTERN2_SLOPER_TIME2

Table 7-63. PATTERN2 SLOPER TIME2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	PATTERN2_SLOPER_T3	R/W	Oh	Pattern2 sloper time 3 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN2_SLOPER_T2	R/W	Oh	Pattern2 sloper time 2 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.56 PATTERN3_PAUSE_TIME (Address = 37h) [Reset = 00h]

PATTERN3_PAUSE_TIME is shown in Figure 7-69 and described in Table 7-64.

Return to the Summary Table.

Figure 7-69. PATTERN3_PAUSE_TIME

Copyright © 2025 Texas Instruments Incorporated

Table 7-64. PATTERN3_PAUSE_TIME Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	PATTERN3_PAUSE_T0	R/W	Oh	Start animation pause time of pattern3. 0x0 = no pause time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN3_PAUSE_T1	R/W	Oh	End animation pause time of pattern3. 0x0 = no pause time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.57 PATTERN3_REPEAT_TIME (Address = 38h) [Reset = 00h]

PATTERN3_REPEAT_TIME is shown in Figure 7-70 and described in Table 7-65.

Return to the Summary Table.

Figure 7-70. PATTERN3_REPEAT_TIME

Table 7-65. PATTERN3_REPEAT_TIME Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0h	Reserved

Table 7-65. PATTERN3_REPEAT_TIME Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3-0	PATTERN3_PT	R/W	0h	Pattern3 repeat times.
				0x0 = 0 time
				0x1 = 1 time
				0x2 = 2 times
				0x3 = 3 times
				0x4 = 4 times
				0x5 = 5 times
				0x6 = 6 times
				0x7 = 7 times
				0x8 = 8 times
				0x9 = 9 times
				0xA = 10 times
				0xB = 11 times
				0xC = 12 times
				0xD = 13 times
				0xE = 14 times
				0xF = infinite times

7.6.58 PATTERN3_PWM0 (Address = 39h) [Reset = 00h]

PATTERN3_PWM0 is shown in Figure 7-71 and described in Table 7-66.

Return to the Summary Table.

Figure 7-71. PATTERN3_PWM0

	7	6	5	4	3	2	1	0
				PATTERN	N3_PWM0			
Ī				R/V	V-0h			

Table 7-66. PATTERN3_PWM0 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN3_PWM0	R/W		Pattern3 PWM0 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.59 PATTERN3_PWM1 (Address = 3Ah) [Reset = 00h]

PATTERN3_PWM1 is shown in Figure 7-72 and described in Table 7-67.

Return to the Summary Table.

Figure 7-72. PATTERN3_PWM1

Copyright © 2025 Texas Instruments Incorporated

Table 7-67. PATTERN3 PWM1 Field Descriptions

			_	
Bit	Field	Туре	Reset	Description
7-0	PATTERN3_PWM1	R/W		Pattern3 PWM1 setting. 0x00 = 0%
				 0x80 = 50%
				0xFF = 100%

7.6.60 PATTERN3_PWM2 (Address = 3Bh) [Reset = 00h]

PATTERN3_PWM2 is shown in Figure 7-73 and described in Table 7-68.

Return to the Summary Table.

Figure 7-73. PATTERN3_PWM2

7	6	5	4	3	2	1	0
			PATTERN	N3_PWM2			
			R/V	V-0h			

Table 7-68. PATTERN3_PWM2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN3_PWM2	R/W		Pattern3 PWM2 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.61 PATTERN3_PWM3 (Address = 3Ch) [Reset = 00h]

PATTERN3_PWM3 is shown in Figure 7-74 and described in Table 7-69.

Return to the Summary Table.

Figure 7-74. PATTERN3_PWM3

Table 7-69. PATTERN3_PWM3 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN3_PWM3	R/W	0h	Pattern3 PWM3 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.62 PATTERN3_PWM4 (Address = 3Dh) [Reset = 00h]

PATTERN3_PWM4 is shown in Figure 7-75 and described in Table 7-70.

Return to the Summary Table.

Figure 7-75. PATTERN3_PWM4

Figure 7-75. PATTERN3_PWM4 (continued)

Table 7-70. PATTERN3_PWM4 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	PATTERN3_PWM4	R/W		Pattern3 PWM4 setting. 0x00 = 0% 0x80 = 50% 0xFF = 100%

7.6.63 PATTERN3_SLOPER_TIME1 (Address = 3Eh) [Reset = 00h]

PATTERN3_SLOPER_TIME1 is shown in Figure 7-76 and described in Table 7-71.

Return to the Summary Table.

Figure 7-76. PATTERN3 SLOPER TIME1

				_	_			
7	6	5	4	3	2	1	0	
	PATTERN3_	SLOPER_T1		PATTERN3_SLOPER_T0				
R/W-0h					R/W	-0h		

Table 7-71. PATTERN3_SLOPER_TIME1 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	PATTERN3_SLOPER_T1	R/W	Oh	Pattern3 sloper time 1 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN3_SLOPER_T0	R/W	Oh	Pattern3 sloper time 0 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s

Copyright © 2025 Texas Instruments Incorporated

7.6.64 PATTERN3_SLOPER_TIME2 (Address = 3Fh) [Reset = 00h]

PATTERN3_SLOPER_TIME2 is shown in Figure 7-77 and described in Table 7-72.

Return to the Summary Table.

Figure 7-77. PATTERN3_SLOPER_TIME2

7	6	5	4	3	2	1	0	
	PATTERN3_	SLOPER_T3		PATTERN3_SLOPER_T2				
	R/W	/-0h			R/V	V-0h		

Table 7-72. PATTERN3_SLOPER_TIME2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	PATTERN3_SLOPER_T3	R/W	Oh	Pattern3 sloper time 3 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xD = 4.00s 0xE = 6.00s 0xF = 8.00s
3-0	PATTERN3_SLOPER_T2	R/W	Oh	Pattern3 sloper time 2 setting. 0x0 = no sloper time 0x1 = 0.05s 0x2 = 0.10s 0x3 = 0.15s 0x4 = 0.20s 0x5 = 0.25s 0x6 = 0.30s 0x7 = 0.35s 0x8 = 0.40s 0x9 = 0.45s 0xA = 0.50s 0xB = 1.00s 0xC = 2.00s 0xC = 2.00s 0xC = 4.00s 0xE = 6.00s 0xF = 8.00s

7.6.65 FLAG (Address = 40h) [Reset = 00h]

FLAG is shown in Figure 7-78 and described in Table 7-73.

Return to the Summary Table.

Figure 7-78. FLAG

7	6	5	4	3	2	1	0
RESERVED	OUT3_ENGINE _BUSY	OUT2_ENGINE _BUSY	OUT1_ENGINE _BUSY	OUT0_ENGINE _BUSY	ENGINE_BUSY	TSD	POR
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h

Table 7-73. FLAG Field Descriptions

Bit	Field	Туре	Reset	Description
7	RESERVED	R	0h	Reserved
6	OUT3_ENGINE_BUSY	R	0h	Engine selected by OUT3 busy flag. 0x0 = The selected Engine is not running 0x1 = The selected Engine is running
5	OUT2_ENGINE_BUSY	R	0h	Engine selected by OUT2 busy flag. 0x0 = The selected Engine is not running 0x1 = The selected Engine is running
4	OUT1_ENGINE_BUSY	R	0h	Engine selected by OUT1 busy flag 0x0 = The selected Engine is not running 0x1 = The selected Engine is running
3	OUT0_ENGINE_BUSY	R	0h	Engine selected by OUT0 busy flag. 0x0 = The selected Engine is not running 0x1 = The selected Engine is running
2	ENGINE_BUSY	R	0h	Engine busy flag. 0x0 = All 4 engines are not running 0x1 = At leaset 1 engine is running
1	TSD	R	0h	TSD flag. 0x0 = TSD is not triggered 0x1 = TSD is triggered
0	POR	R	0h	POR flag. 0x0 = POR is not triggered 0x1 = POR is triggered

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The LP5814 is a 4 channel RGBW LED driver with autonomous animation control. The device has ultra-low operation current at active mode and only consumes 0.25mA when LED current is set at 25mA. In battery powered applications like e-tag, ear bud, e-cigarettes, VR headset, RGB mouse, smart speaker, and other hand-held devices, LP5814 can provide premium LED lighting effects with low power consumption and small package.

8.2 Typical Application

8.2.1 Application

Figure 8-1 shows an example of typical application, which uses one LP5814 to drive RGBW LEDs through I²C communication.

Figure 8-1. Typical Application - LP5814 Driving RGBW LEDs

8.2.2 Design Parameters

Design Parameters shows the typical design parameters of Application.

Table 8-1. Design Parameters

PARAMETER	VALUE
Input voltage	3.6V to 4.2V by one Li-on battery cell
RGBW LED count	1
LED maximum average current (red, green, blue, white)	51mA, 40.8mA, 40.8mA, 40.8mA
LED PWM frequency	23kHz
Red LED Mode	Manual Mode, Contsant ON with 50% PWM Duty Cycle
Green LED Mode	Animation Mode, Blinking with 5Hz Frequency
Blue LED Mode	Animation Mode, Breathing with 1s Exponential Ramping Up and 1s Exponential Ramping Down
White LED Mode	Animation Mode, Blinking with 1Hz Frequency

8.2.3 Detailed Design Procedure

This section will showcase the detailed design procedures for LP5814 including components selection, program procedure and examples.

8.2.3.1 Program Procedure

After VCC powering up, the device is enabled by setting CHIP_EN = 1. Set the maximum current for each output. Then set the device configuration registers to enhale the output, select the dimming control mode for each output, and select the animation engine for the output in autonomous animation mode. Finally, Send UPDATE_CMD to make the prior configuration settings take effect.

For the output channel that is configured in manual mode, the output PWM changes immediately when the corresponding manual PWM register value is set.

For the output channel that is configured in autonomous animation mode, firstly, select animation engine for output. Secondly, construct the animation engine by setting the engine configure registers to select the animation pattern to map to the engine order and enable or disable the engine order. Then, build the animation patterns as required by setting pattern unit paramters. Finally, send START_CMD to initiate the autonomous animation.

The detailed program procedure is illustrated in Figure 8-2.

Figure 8-2. Program Procedure

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

8.2.3.2 Programming Example

To get the design parameters in Section 8.2.2, the following program steps can be referred.

After VCC powering up and wait around 1ms,

- 1. Set CHIP_EN = 1 to enable the device(Write 01h to register 00h)
- 2. Set MAX_CURRENT = 1h to set 51mA maximum output LED current (Write 01h to register 01h)
- 3. Set 51mA maximum current for red LEDs, 40.8mA maximum current for green, blue and white LEDs (**Write FFh to registers 14h, write CCh to registers 15h, 16h and 17h**)
- 4. Enable all 4 LEDs (Write 0Fh to register 02h)
- 5. Set red LED in manual mode, set green, blue and white LEDs in autonomous animation mode, and enable blue LED exponential PWM dimming (**Write 4Eh to register 04h**)
- 6. Select ENGINE0 for green LED, ENGINE1 for blue LED and ENGINE2 for white LED (**Write 90h to register 05h**)
- 7. Send **UPDATE_CMD** to make above step2, step4, step5 and step6 configurations take effect (**Write 55h to register 0Fh**)
- 8. Set red LED PWM duty cycle as 50% (Write 80h to register 18h)

After this step, the read LED is turned on.

- 9. Check **ENGINE BUSY** flag by reading the FLAG register (**Read register 40h**)
 - If **ENGINE_BUSY = 1**, send **STOP_CMD** to clear ENGINE_BUSY flag as showed in Internal Engine Busy Status (**Write AAh to register 11h**), then move to next step.
 - If ENGINE_BUSY = 0, move to next step directly.
- 10. Select PATTERN0 for ENGINE0_ORDER0, PATTERN1 for ENGINE1_ORDER0 and PATTERN2 for ENGINE2_ORDER0 (Write 00h to register 06h, write 01h to register 07h, write 02h to register 08h)
- 11. Enable ENGINE0_ORDER0, ENGINE1_ORDER0 and ENGINE2_ORDER0 (Write 11h to register 0Ah, write 01h to register 0Bh)
- 12. Set PATTERN0 parameters as showed in Table 8-2 to realize 5Hz blinking effect on green LED, set PATTERN1 parameters as showed in Table 8-3 to realize breathing effect on blue LED and set PATTERN2 parameters as showed in Table 8-4 to realize 1Hz blinking effect on white LED.
- 13. Send START CMD to intiate the animation (Write FFh to register 10h)

After this step, the red LED keeps constant ON, the green LED keeps blinking with 5Hz frequency and blue LED keeps breathing in 2.4s period and white LED keeps blinking with 1Hz frequency.

Table 8-2. PATTERN0 5Hz Blinking Register Setting

Address	Register	Set Value	Description
1Ch	PATTERNO_PAUSE_TIME	00h	No pause time
1Dh	PATTERN0_REPEAT_TIME	0Fh	Infinite repeat times
1Eh	PATTERN0_PWM0	FFh	PATTERN0_PWM0 = FFh
1Fh	PATTERN0_PWM1	FFh	PATTERN0_PWM1 = FFh
20h	PATTERN0_PWM2	00h	PATTERN0_PWM2 = 0
21h	PATTERN0_PWM3	00h	PATTERN0_PWM3 = 0
22h	PATTERN0_PWM4	00h	PATTERN0_PWM4 = 0
23h	PATTERN0_SLOPER_TIME1	02h	PATTERNO_SLOPER_T1 = 0, PATTERNO_SLOPER_T0 = 0.1s
24h	PATTERN0_SLOPER_TIME2	02h	PATTERNO_SLOPER_T3 = 0, PATTERNO_SLOPER_T2 = 0.1s

Figure 8-3. PATTERN0 5Hz Blinking Example

Table 8-3. PATTERN1 Breathing Register Setting

Table 0-0. I ATTERNAT Dieathing Register Octung								
Address	Register	Set Value	Description					
25h	PATTERN1_PAUSE_TIME	00h	No pause time					
26h	PATTERN1_REPEAT_TIME	0Fh	Infinite repeat times					
27h	PATTERN1_PWM0	00h	PATTERN1_PWM0 = 0					
28h	PATTERN1_PWM1	FFh	PATTERN1_PWM1 = FFh					
29h	PATTERN1_PWM2	FFh	PATTERN1_PWM2 = FFh					
2Ah	PATTERN1_PWM3	00h	PATTERN1_PWM3 = 0					
2Bh	PATTERN1_PWM4	00h	PATTERN1_PWM4 = 0					
2Ch	PATTERN1_SLOPER_TIME1	4Bh	PATTERN1_SLOPER_T1 = 0.2s, PATTERN1_SLOPER_T0 = 1s					
2Dh	PATTERN1_SLOPER_TIME2	4Bh	PATTERN1_SLOPER_T3 = 0.2s, PATTERN1_SLOPER_T2 = 1s					

Figure 8-4. PATTERN1 Breathing Example

Table 8-4. PATTERN2 1Hz Blinking Register Setting

<u> </u>						
Address	Register	Set Value	Description			
2Eh	PATTERN2_PAUSE_TIME	00h	No pause time			
2Fh	PATTERN2_REPEAT_TIME	0Fh	Infinite repeat times			
30h	PATTERN2_PWM0	80h	PATTERN2_PWM0 = FFh			
31h	PATTERN2_PWM1	80h	PATTERN2_PWM1 = FFh			

Table 8-4. PATTERN2 1Hz Blinking Register Setting (continued)

		5 5 5 1	,	
Address	Register	Set Value	Description	
32h	PATTERN2_PWM2	PATTERN2_PWM2 00h		
33h	PATTERN2_PWM3	00h	PATTERN2_PWM3 = 0	
34h	PATTERN2_PWM4	00h	PATTERN2_PWM4 = 0	
35h	PATTERN2_SLOPER_TIME1	0Ah	PATTERN2_SLOPER_T1 = 0, PATTERN2_SLOPER_T0 = 0.5s	
36h	PATTERN2_SLOPER_TIME2	0Ah	PATTERN2_SLOPER_T3 = 0, PATTERN2_SLOPER_T2 = 0.5s	

Figure 8-5. PATTERN2 1Hz Blinking Example

8.2.4 Application Performance Plots

The following figures show the application performance plots.

0010	Manual Mode, Contsant ON With 30% P Will Duty Cycle
OUT1	Animation Mode, Blinking with 5Hz Frequency
OUT2	Animation Mode, Breathing with 1s Exponential Ramping Up and 1s Ramping Down
OUT3	Animation Mode Blinking with 1Hz Frequency

Figure 8-6. Current Sinks Waveforms of OUT0, OUT1, OUT2, OUT3

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

8.3 Power Supply Recommendations

The LP5814 is designed to operate from an input voltage supply range from 2.5V to 5.5V. This input supply must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance is required close to the ceramic bypass capacitors. A typical choice is a tantalum or aluminum electrolytic capacitor with a value of $100\mu F$.

8.4 Layout

8.4.1 Layout Guidelines

The input capacitor needs not only to be close to the VCC pin, but also to the GND pin to reduce input supply ripple. For OUTx (x = 0, 1, 2, 3), low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of adjecent outputs must be short and wide and avoid parallel wiring and narrow trace. For better thermal performance, TI suggest to make copper polygon connected with each pin bigger.

8.4.2 Layout Example

Figure 8-7. LP5814 DRL Package Layout Example

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Documentation Support

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
March 2025	*	Initial Release

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 2-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
LP5814DRLR	Active	Production	SOT-5X3 (DRL) 8	4000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	5814

⁽¹⁾ Status: For more details on status, see our product life cycle.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Apr-2025

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP5814DRLR	SOT-5X3	DRL	8	4000	180.0	8.4	2.75	1.9	0.8	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Apr-2025

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	LP5814DRLR	SOT-5X3	DRL	8	4000	210.0	185.0	35.0	

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not accord 0.45 mercage side.
- exceed 0.15 mm per side.
- 4. Reference JEDEC Registration MO-293, Variation UDAD

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated