Projeto e Desenvolvimento de Algoritmos

Operadores e Expressões 2 Adriano Cruz e Jonas Knopman

Índice

- Objetivos
- O que são expressões?
- Constantes
- Tipos de Operadores
- Operadores Aritméticos
- Expressões Aritméticas
- Operadores Relacionais
- Expressões Relacionais
- Operadores Lógicos
- Expressões Lógicas
- Expressões Mistas
- Atribuição

Objetivos

- Apresentar os diversos tipos de operadores e expressões.
- Mostrar como as expressões devem ser escritas em pseudo-código.
- Mostrar as regras de avaliação de expressões.
- Apresentar o conceito de atribuição de resultados.

Operadores Relacionais

 Usados para fazer comparação entre dados compatíveis.

Operador	Comparação
=	Igual a
<>	Diferente de
<	Menor que
<=	Menor ou igual a
>	Maior que
>=	Maior ou igual a

Operadores Relacionais

 O resultado de uma expressão que envolve operadores relacionais é do tipo lógico (verdadeiro ou falso).

 Neste curso iremos considerar que os operadores deste grupo têm a mesma prioridade entre si.

Expressões Relacionais

- Considere a=3, b=7, total=200.0, média=8.1 e ano=2000
- a > b-- resultado falso
- total = 100.0 -- resultado falso
- média >= 7.0 -- resultado verdadeiro
- ano <> 2001 -- resultado verdadeiro

Exercícios

- Considerando a=3, b=7, t=20.0 e m=8.1 qual o resultado das expressões?
- t <> 100.0
- (m + b) <= 7.0
- (t/(b+a)) = 2.0

- Temos a=3, b=7, t=20.0 e m=8.1.
- t <> 100.0 -- resultado verdadeiro
- (m + b) <= 7.0 -- resultado falso
 - ♦ 1a. Operação m+b = 15.1
 - ❖ 2a. Operação 15.1 <= 7.0 resultado falso</p>

Soluções cont.

- Temos a=3, b=7, t=20.0 e m=8.1.
- (t/(b+a)) = 2.0
 - ❖ 1a. Operação: b+a = 10
 - ❖ 2a. Operação: t / 10 = 20.0 /10 = 2.0
 - 3a. Operação: 2.0 = 2.0 portanto resultado verdadeiro

 Usados em expressões cujo resultado dever ser ou o valor verdadeiro ou falso

Operando	Tipo	Operação	Prioridade
não	Unário	Negação	1
е	Binário	E lógico	2
ou	Binário	Ou lógico	3

- Existem outros operadores lógicos, como por exemplo, os operadores ou-exclusivo, ne (não e), nou (não ou).
- Estes outros operadores podem ser obtidos a partir dos três já definidos (e, ou e não).
- Como os operadores aritméticos estes operadores também têm uma "tabuada".

A	В	A ou B	AeB	não A
falso	falso	falso	falso	verdadeiro
falso	verdadeiro	verdadeiro	falso	verdadeiro
verdadeir	falso	verdadeiro	falso	falso
9erdadeir	verdadeiro	verdadeiro	verdadeiro	falso

- A ou B tem como resultado verdadeiro se A ou B for igual a verdadeiro.
- A e B tem como resultado verdadeiro somente se A e B forem iguais a verdadeiro.

A	В	A ou B	AeB	não A
0	0	0	0	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	0

 Algumas vezes estas tabelas são mostradas com o algarismo 0 representando falso e 1 verdadeiro.

Operadores e interruptores

 Para ilustrar os resultados dos operadores lógicos vamos usar como exemplo interruptores que devem ser usados para acender lâmpadas.

Interruptor ligado

Interruptor desligado

 Lâmpada acende (verdade) somente se interruptor a e interruptor b estiverem ligados (verdade).

cederj

Operador e

- Lâmpada apaga (falso) porque interruptor a está desligado (falso).
- Basta um interruptor desligado para que a lâmpada apague.
 cederi

 Para a lâmpada acender (verdade)
 basta pelo menos um interruptor ligado (verdade).

 Para a lâmpada apagar (falso) é necessário que os dois interruptores sejam desligados (falso).

Expressões lógicas exs.

- Considere a=falso, b=verdadeiro e c=falso.
- a e b ou c -- resultado falso
 - 1a. Operação: a e b = falso e verdadeiro = falso
 - 2a. Operação: falso ou c = falso ou falso = falso

Expressões lógicas exs.

- Considere a=falso, b=verdadeiro e c=falso.
- não a e b -- resultado verdadeiro
 - ❖ 1a. Operação: não a = não falso = verdadeiro
 - 2a. Operação: verdadeiro e b = verdadeiro e verdadeiro = verdadeiro

Exercícios

- Considerando a=falso, b=verdadeiro e c=falso, qual é o resultado das expressões?
- a e (b ou c)
- não (a e b)
- a ou b ou c

 Considerando a=falso, b=verdadeiro e c=falso temos:

- a e (b ou c) -- resultado falso
 - 1a. Operação: b ou c = verdadeiro ou falso = verdadeiro
 - 2a. Operação: a e verdadeiro = falso e verdadeiro = falso

 Considerando a=falso, b=verdadeiro e c=falso temos:

- não (a e b) -- resultado verdadeiro
 - 1a. Operação: a e b = falso e verdadeiro = falso
 - ❖ 2a. Operação: não falso = verdadeiro

 Considerando a=falso, b=verdadeiro e c=falso temos:

- a ou b ou c -- resultado verdadeiro
 - 1a. Operação: a ou b = falso ou verdadeiro = verdadeiro
 - 2a. Operação: verdadeiro ou c = verdadeiro ou verdadeiro = verdadeiro

Expressões mistas

 É muito comum em algoritmos juntar operadores relacionais e lógicos em expressões.

 Estas expressões são geralmente do tipo (nota1 > 7.0) ou (nota2 > 7.0) (salario > valor) e (ano > 2001)

 O resultado destas expressões é do tipo lógico (verdadeiro ou falso).

Expressões lógicas+relacionais ex

- Considerando I1=5.0, I2=3.0, I3=4.0 e
 I4=7.1:
- (I1 > I3) e (I2 > I4) -- resultado falso
 - ❖ 1a. Operação: 5.0 > 4.0 = verdadeiro
 - ❖ 2a. Operação: 3.0 > 7.1 = falso
 - ❖ 3a. Operação: verdadeiro e falso = falso

Expressões Mistas ex

- É possível juntar também operadores aritméticos.
- Considere I1=5.0, I2=3.0, I3=4.0 e I4=7.1, qual o resultado da expressão?
- ((I1+2) = I3) ou (I2 <= I4) -- resultado verdadeiro
 - ❖ 1a. Operação: 5.0 + 2 = 7.0
 - ❖ 2a. Operação: 7.0 = 4.0 = falso
 - ❖ 3a. Operação: 3.0 <= 7.1 = verdadeiro</p>
 - 4a. Operação: falso ou verdadeiro = verdadeiro

Exercício

- Considerando presente=verdadeiro, n1=7.5 e n2=6.5, qual é o resultado da expressão?
- (((n1+n2)/2.0) >= 7.0) e presente

- Considerando presente=verdadeiro ,
 n1=7.5 e n2=6.5 temos:
- Observe o uso de parênteses para indicar a prioridade das operações
- (((n1+n2)/2.0) >= 7.0) e presente
 - ❖ 1a. Operação: n1+n2 = 7.5+6.5 = 14.0
 - ❖ 2a. Operação: 14.0/2.0 = 7.0
 - ❖ 3a. Operação: 7.0 >= 7.0 = verdadeiro
 - 4a. Operação: verdadeiro e presente = verdadeiro e verdadeiro = verdadeiro.

Prioridades dos Operadores

- Em expressões podemos misturar vários tipos de operadores.
- A tabela mostra a prioridade relativa dos operadores estudados.

Operador	Tipo	Prioridade
não - +	Unário	1
*/mod e	Binário	2
+ - ou	Binário	3
= <> >= <= > <	Binário	4

Atribuição

- O resultado de expressões normalmente deve ser armazenado em uma variável para uso futuro.
- Costuma-se chamar de atribuição esta operação.
- Em nosso pseudo-código o comando de atribuição é representado pelo símbolo —
- Por exemplo:
- O comando acima faz com que o resultado da expressão (=212) seja armazenado na variável a.

Atribuição - semântica

- Todo comando de atribuição pode ser dividido em duas etapas:
 - Avaliação da expressão;
 - Armazenamento do resultado da avaliação na posição de memória representada pela variável.

Atribuição e memória

- Considere x=10, y=5 e z=8.
- As figuras abaixo mostram a memória antes e depois do comando de atribuição

