

Applied Cryptography CPEG 472/672 Lecture 8B

Instructor: Nektarios Tsoutsos

AES-GCM

NIST SP800-38D

- Most widely used authenticated cipher

 - Associated data
 - Secret key K (128 bits), nonce N (96 bits)
 - Encryption CTR starts at 1 (not 0)
- ⊙ C-W MAC
 - ⊙ Tag = GHASH xor PRF
 - \odot The PRF is AES(K, N || 0x00)
 - ⊙ GHASH: UH using GF(2) polymul and XORs
 - CLMUL instruction in x86

AES-GCM construction

GCM security and efficiency

- Security
 - Fragile if nonce is reused
 - ⊙ Can recover GH(A1,C1) xor GH(A2,C2)
 - Can leak GH key which is AES(K,0)
- Efficiency
 - Encryption & decryption parallelizable
 - MAC not parallelizable
 - Associated data processed first
 - Streamable (two layers)

OCB mode

Offset codebook (2001)

- Faster than GCM
 - Patented, free for non military use

- Blends encryption & auth in 1 layer
 - Only one secret key K
- $\odot C = E(K, P xor O) xor O$
 - Offset O depends on key K and nonce N
- \circ T= E(K, (xor of all P blks) xor O*)
 - Can auth associated data as well
 - $\odot T = T xor E(K,Ai xor Oi)$

OCB security

- Less fragile to nonce reuse than GCM
 - Reusing nonce help identify if two ctxt blocks at the same index encrypt the same ptxt blk
 - Smaller impact vs GCM
- Reusing nonce breaks authentication
 - Combine blocks from another two msgs
 - Create fake message with same checksum
 - But: attacker can't recover MAC key

OCB efficiency

- Parallelizable
- Streamable
- 1 processing layer
- Essentially: Calls to cipher and XORs
 Less expensive compared to GHASH
- OCB needs both encryption & decryption
 - GCM needs only encryption

SIVSynthetic IV

- Authenticated cipher mode
 - Mostly used with AES, 2 keys, nonce for tag
 - More rebust to nonce reuse vs GCM, OCB
 - Attacker learns if same ptxt is encrypted twice
 - Can't tell if n'th block is the same
- Combines cipher + PRF

 - \odot Ctxt = E(K2, Tag, ptxt)
 - The nonce of E is the tag
- Not streamable

Permutation-based AEAD

- Uses a permutation P
 - E.g., AES with fixed key
- Initial state H0, K, N
 - P updates the internal state
- XOR ptx blk, get ctxt blk
 - ⊙ Finally get state bits as tag T
 - Needs correct padding
- More nonce resistant than GCM and OCB
 - Security depends on number of non-XORed bits of the state
 - Reveals if ptxt prefix is the same
- Single layer, streamable, non-parallelizable

AES-GCM security

- GHASH internals
 - $\odot X_i = (X_{i-1} \text{ xor } C_i) \text{ polymul } H$
 - $\odot H = AES(K,0x00)$
 - $\circ X_0 = 0x00$
 - $\odot X_n = C_1 \text{ xor } H^n \text{ xor } C_2 \text{ xor } H^{n-1} \text{ xor } ... \text{ xor } C_n \text{ xor } H^1$
- ⊙ Weak hash keys => forgery
 - $\circ H = 0 = X_n = 0$

 - ⊕ He=H => short cycles (can swap blocks)
- Small auth tags in AES-GCM
 - o n-bit tags, 2^m blks => Prob(forgery)=2^(m-n)

Hands-on exercises

- Polymul
- OCB mode
- SIV

Reading for next lecture

- Aumasson: Chapter 9 (until end of chapter)
 - We will have a short quiz on the material