A GENERAL APPROACH FOR LEARNING CONSTITUTIVE RELATIONSHIPS (PHYSICAL LAWS) FROM NEURAL NETWORKS

ANDREW TEMPLE, MATTHEW MILLER, AARON STEBNER, PETER COLLINS, AND BRANDEN KAPPES

1. Methods

Fully dense neural network (NN) architectures, such as the one shown in Figure 1, perform a sequence of affine transformations, $\mathbf{z}_i \leftarrow \boldsymbol{\theta}_i \mathbf{x}^{(i)}$, followed by element-wise functional operations, $\sigma(\mathbf{z}_i)$ to introduce non-linearity at each layer; that is, each layer stretches and distorts the underlying space.

FIGURE 1. Schematic view of a fully dense neural network. Each sequence of affine and non-linear transformations are captured in the function, $f_i(\mathbf{x})$: $\mathbf{x}^{(i+1)} \leftarrow \sigma(\boldsymbol{\theta}_i \mathbf{x}^{(i)})$

The resulting network,

(1)
$$f(x) = \sigma(\theta_n \sigma(\theta_{n-1} \sigma(\dots \theta_2 \sigma(\theta_1 \mathbf{x}))))$$

is an arbitrary function generator, but at present, the network weights θ_i can not map back to analytic forms that capture and describe the underlying physics. There are, however, many such mappings through polynomial series expansions,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

We hypothesize that the physics of a process can be extracted by fitting the polynomial expansions of known physical relationships to the polynomial coefficients of a polynomial series expansion of Equation (1).

Although ReLU (rectified linear units) have become a more common activation function, its discontinuity at x = 0 requires an infinite series to fully capture the behavior at this transition. However, the sigmoid function,

(3)
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

is a special case of the generating function for the Euler polynomial coefficients,

(4)
$$\frac{2e^{xt}}{1+e^t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}$$

where, for x = 0,

(5)
$$\sigma(x) = \frac{1}{2} \sum_{n=0}^{\infty} E_n(0) \frac{(-1)^n}{n!}.$$

The Euler polynomials at x = 0,

(6)
$$E_n(0) = -2(n+1)^{-1} (2^{n+1} - 1) B_{n+1}$$

where B_n is the n^{th} Bernoulli number. Since Bernoulli numbers of odd index, with the exception of B_1 , are zero, $E_i(0) = 0$ for i = 2, 4, 6, ..., 2n. Therefore, the summand and limits of Equation (5) change to

(7)
$$\sigma(x) = \frac{1}{2} - \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{E_{2n-1(0)}}{(2n-1)!} \right) x^{2n-1}.$$

The series representation of $E_{2n-1}(x)$

(8)
$$E_{2n-1}(x) = \frac{(-1)^n 4(2n-1)!}{\pi^{2n+1}} \sum_{k=0}^{\infty} \frac{\cos[(2k+1)\pi x]}{(2k+1)^{2n}}$$

such that,

(9)
$$E_{2n-1}(0) = \frac{(-1)^n 4(2n-1)!}{\pi^{2n+1}} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2n}}$$

A GENERAL APPROACH FOR LEARNING CONSTITUTIVE RELATIONSHIPS (PHYSICAL LAWS) FROM NEURAL NETWORKS and therefore,

$$(10) \quad \sigma(x) = \frac{1}{2} - \sum_{n=1}^{\infty} 2 \frac{(-1)^n}{\pi^{2n}} \left(\sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2n}} \right) x^{2n-1}$$

$$= \frac{1}{2} - \sum_{n=1}^{\infty} 2 \frac{(-1)^n}{\pi^{2n}} \left(4^{-n} (4^n - 1) \zeta(2n) \right) x^{2n-1}$$

$$= \frac{1}{2} - \sum_{n=1}^{\infty} 2 \left(\frac{-1}{4\pi^2} \right)^n (4^n - 1) \zeta(2n) x^{2n-1}$$

$$= \sum_{n=0}^{\infty} a_n x^n, \ a_n = \begin{cases} 1/2 & n = 0 \\ -2 \left(\frac{-1}{4\pi^2} \right)^{(n+1)/2} \left(4^{(n+1)/2} - 1 \right) \zeta(n+1) & n \text{ odd } \\ 0 & n \text{ even} \end{cases}$$

2. Discussion

Many non-trivial problems in materials science, and in science more broadly, are explained not through a single constitutive relationship, but through a superposition of contributing physics.

Figure ?? shows an artificial dataset constructed to replicate the impact of yield stress in a two-phase, solid-solution strengthened alloy system. Using a combination of composite theory for the contribution of flow stress, NAME solid solution [?], and Hall-Petch [?] strengthening, the expected yield stress is

(12)
$$\sigma_y = F_v^A \sigma_f^A + F_v^B \sigma_f^B + \sum_i C_i [x_i]^{2/3} + \sum_i k_j d_j^{-1/2} + \dots$$

with free parameters

 F_v^i Volume fraction of phase i

 $[x_i]$ Concentration of solute i

 d_i Average grain diameter of phase j

and fixed parameters

 σ_f^i Flow stress of phase i

 \dot{C}_i Solid solution strengthening coefficient for solute species i

 k_i Hall-Petch strengthening coefficient for phase j

The goal is to iteratively improve on this constitutive model one term at a time, and monitor the effect on the residuals between the predicted yield, $\hat{\sigma}_y$ and the actual yield σ_y .

The analytical form, combining Equations (1) and (11), the estimated output of a twolayer NN can be written as

$$\mathbf{y}_{1} = \sum_{k=0}^{\infty} a_{k} (\boldsymbol{\theta}_{1}^{T}\mathbf{x})^{k}$$

$$\mathbf{y}_{2} = \sum_{k=0}^{\infty} b_{k} (\boldsymbol{\theta}_{2}^{T}\mathbf{y}_{1})^{k}$$

$$= b_{0}\mathbf{1} + b_{1}(\tilde{a}_{0} + (\tilde{a}_{1} + (\tilde{a}_{2} + (\tilde{a}_{3} + (\dots)\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})$$

$$+ b_{2}(\tilde{a}_{0} + (\tilde{a}_{1} + (\tilde{a}_{2} + (\tilde{a}_{3} + (\dots)\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})^{2}$$

$$\vdots$$

$$+ b_{k}(\tilde{a}_{0} + (\tilde{a}_{1} + (\tilde{a}_{2} + (\tilde{a}_{3} + (\dots)\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})\tilde{\mathbf{x}})^{k}$$

$$\vdots$$

$$\text{where } \tilde{a}_{i} = \boldsymbol{\theta}_{2}^{T}a_{i}, \ \tilde{\mathbf{x}} = \boldsymbol{\theta}_{1}^{T}\mathbf{x}$$

$$= \sum_{N=0}^{\infty} b_{N} \sum_{j=0}^{N} {N \choose j} \tilde{a}_{0}^{N-j} \sum_{k=0}^{j} {j \choose k} \tilde{a}_{1}^{j-k} \cdots \tilde{\mathbf{x}}^{j+k+\cdots}$$

$$= \sum_{N=0}^{\infty} \sum_{j=0}^{N} \sum_{k=0}^{j} \cdots b_{N} {N \choose j} (\boldsymbol{\theta}_{2}^{T}a_{0})^{N-j} {j \choose k} (\boldsymbol{\theta}_{2}^{T}a_{1})^{j-k} \cdots (\boldsymbol{\theta}_{1}^{T}\mathbf{x})^{j+k+\cdots}$$

$$= \sum_{N=0}^{\infty} \sum_{j=0}^{N} \sum_{k=0}^{j} \cdots b_{N} {N \choose j} {j \choose k} \cdots (\boldsymbol{\theta}_{2}^{T}a_{0})^{N-j} (\boldsymbol{\theta}_{2}^{T}a_{1})^{j-k} \cdots (\boldsymbol{\theta}_{1}^{T}\mathbf{x})^{j+k+\cdots}$$

$$= \sum_{N=0}^{\infty} \sum_{j=0}^{N} \sum_{k=0}^{j} \cdots b_{N} {N \choose j} {j \choose k} \cdots (\boldsymbol{\theta}_{2}^{T}a_{0})^{N-j} (\boldsymbol{\theta}_{2}^{T}a_{1})^{j-k} \cdots (\boldsymbol{\theta}_{1}^{T}\mathbf{x})^{j+k+\cdots}$$

$$(14) \qquad = \sum_{k=0}^{\infty} c_{k} (\boldsymbol{\theta}_{1}x)^{k}$$

If $a_i = 0 \,\forall i$ even, then are Equations (13-14) everywhere 0? How does dropout affect this?