Булевы функции

ИУ6-25Б

2024

Основные понятия

 $E = \{0,1\}$ - булевы переменные, область значений и определения любой булевой функции Алгебра, образованная множеством E и всеми операциями на нём, называется **алгеброй логики**. Количество булевых функций = 2^{2^n}

Способы задания булевой функции:

- ullet аналитический: $f = \overline{x}_1 x_2 \lor x_1 x_2 = (x_1 \lor x_2) \land (\overline{x}_1 \lor x_2)$
- таблица истинности:

x_1	x_2	f
0	0	0
0	1	1
1	0	0
1	1	1

Переменные могут быть существенными или несущественными.

Переменная x_i булевой функции $f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)$ называется **существенной**, если:

$$f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n) \neq f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n)$$

Это означает, что существует набор $(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$ размера n-1 такой, что:

$$f(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n) \neq f(a_1,\ldots,a_{i-1},1,a_{i+1},\ldots,a_n)$$

Тогда говорят, что x_i существенная переменная и $f(\dots)$ существенно зависит от x_i . Иначе x_i - несущественная переменная.

Например: $f(x_1, x_2, x_3) = f(x_1, x_3) \implies x_2$ - несущественная переменная.

Иногда удобно добавить несущественные переменные.

Элементарные булевы функции

І. Булевы функции одной переменной:

\boldsymbol{x}	f_1	f_2	f_3	f_4
0	0	1	0	1
1	0	1	1	0

- $f_1(x) = 0 \text{const } 0$
- $f_2(x) = 1 \text{const } 1$
- $-f_3(x) = x$ тождественная функция
- $-f_4(x)=\overline{x}$ отрицание или инверсия
- II. 16 функций 2 переменных:
 - $-f_{9}(x_{1},x_{2})=x_{1}\oplus x_{2}$ сложение по модулю 2
 - $-f_{10}(x_1,x_2)=x_1\to x_2$ следование
 - $-f_{13}(x_1,x_2)=x_1\equiv x_2$ эквивалентность

Пусть $F = \{f_1, f_2, \dots, f_k\}$. Функция f, полученная подстановкой функций F друг в друга и переименованием переменных, называется **суперпозицией** функций f_1, f_2, \dots, f_k .

Выражение, описывающее суперпозицию, называется формулой над F.

Множество F называется **базисом**.

Функция f получена путём суперпозиции функций базиса F.

 $\varphi(\varphi_1, \varphi_2, \dots, \varphi_n)$, где φ_i - формула над F или переменная, называется **главной или внешней формулой**, а все φ_i называются **подформулами**.

Вложенность подформул называется глубиной.

Для каждой булевой функции можно задать бесконечное число формул.

Базис для $f = \overline{x}_1 x_2 \vee x_1 x_2 : F = \{\land, \lor, \neg\}$

Опр. Формулы, базис которых составляют функции $\{\land,\lor,\lnot\}$, называются **булевыми формулами**. Сами операции называются **булевыми операциями**.

Алгебра $< E, \land, \lor, \neg >$ называется булевой **алгеброй**.

Примеры выражения некоторых булевых функций формулами булевой алгебры:

- $f = x_1 \downarrow x_2 = \overline{x_1 \lor x_2}$
- $\bullet \ f = x_1 | x_2 = \overline{x_1 x_2}$
- $f = x_1 \oplus x_2 = \overline{x}_1 x_2 \vee x_1 \overline{x}_2$
- $f = x_1 \equiv x_2 = \overline{x}_1 \overline{x}_2 \vee x_1 x_2$

Свойства операций булевой алгебры

- 1. Ассоциативность:
 - $\bullet \ (x_1 \wedge x_2) \wedge x_3 = x_1 \wedge (x_2 \wedge x_3)$
 - $(x_1 \lor x_2) \lor x_3 = x_1 \lor (x_2 \lor x_3)$
- 2. Коммутативность:
 - $\bullet \ x_1 \wedge x_2 = x_2 \wedge x_1$
 - $x_1 \lor x_2 = x_2 \lor x_1$
- 3. Дистрибутивность:
 - $x_1 \wedge (x_2 \vee x_3) = (x_1 \vee x_2) \wedge (x_1 \vee x_3)$
 - $x_1 \lor (x_2 \land x_3) = (x_1 \land x_2) \lor (x_1 \land x_3)$
- 4. Идемпотентность:
 - $x_1 \wedge x_1 \wedge \cdots \wedge x_1 = x_1$
 - $\bullet \ x_1 \lor x_1 \lor \dots \lor x_1 = x_1$
- 5. Закон де Моргана:
 - $\bullet \ \overline{x_1 \vee x_2} = \overline{x}_1 \wedge \overline{x}_2$
 - $\bullet \ \overline{x_1 \wedge x_2} = \overline{x}_1 \vee \overline{x}_2$
- 6. Двойное отрицание (кратное отрицание):
 - $\bullet \ \ \overline{\overline{x}} = x$
 - $\bullet \ \ \overline{\overline{\overline{x}}} = \overline{x}$
- 7. Свойства констант:
 - $x \lor 0 = 0$
 - $x \lor 1 = 1$
 - $x \wedge 0 = 0$
 - $x \wedge 1 = x$
- 8. Противоречие:
 - $x \wedge \overline{x} = 0$

- 9. Тавтология:
 - $x \vee \overline{x} = 1$
- 10. Поглощение конъюнкции:

$$\bullet \ x_1 \lor (x_1 \land x_2) = x_1$$

Правило замены: если в некоторой формуле φ подформулу φ_i заменить на логически эквивалентную φ_k , то полученная формула φ' будет эквивалентна исходной.

$$\varphi(\dots \varphi_i \dots), \varphi_k = \varphi_i$$
 $\varphi(\dots \varphi_k \dots) = \varphi(\dots \varphi_i \dots)$
 $\varphi(\varphi_k | \varphi_i) - \varphi_k$ вместо **некоторых** вхождений φ_i
 $\varphi(\varphi_k | \varphi_i) - \varphi_k$ вместо **всех** вхождений φ_i

Таким образом, используя логическую эквивалентность подформул(бесконечное кол-во) при помощи подстановки одних подформул вместо других, можно преобразовывать исходную формулу, не теряя логической эквивалентности полученной формулы исходной.

 Π ример:

- $x_1x_2 \lor x_1\overline{x}_2 = x_1$ склеивание
- обобщённое склеивание: $x_1x_3 \lor x_2\overline{x}_3 \lor x_1x_2 = x_1x_3 \lor x_2\overline{x}_3 \lor x_1x_2(x_3 \lor \overline{x}_3) = x_1x_3 \lor x_2\overline{x}_3 \lor x_1x_2x_3 \lor x_1x_2\overline{x}_3 = x_1x_3 \lor x_2\overline{x}_3$
- $x_1 \vee \overline{x}_1 x_2 = (x_1 \vee \overline{x}_1) \wedge (x_1 \vee x_2) = x_1 \vee x_2$

$$x_1 \vee f(x_1, x_2, \dots, x_n) = x_1 \vee f(x_2, \dots, x_n) - ???????$$

Опр. Ранг элементарной конъюнкции - количество литер в её записи.

Опр. Длина ДНФ - сумма рангов элементарных конъюнкций.

Опр. ДН Φ булевой функции f называется минимальной, если её длина наименьшая среди всех ДН Φ этой функции.

Опр. Булева функция f_1 называется импликантой булевой функции f, если f_1 принимает значения 0 на тех же(но необязательно только тех) наборах, что и f.

Опр. Элементарная конъюнкция вида $K_i = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_i^{\alpha_i}$ называется простой импликантой функции f, если K_i - импликанта функции f и никакая часть K_i не является импликантой функции f.

Теорема. Всякая булева функция может быть представлена в ДНФ, каждая элементарная конъюнкция которой является простой импликантой.

Опр. Дизъюнкция всех простых импликант функции f называется сокращённой ДНФ функции f.

Опр. Дизъюнкция простых импликант булевой функции такая, что удаление любой импликанты приводит к потери покрытия всех единиц функции, называется тупиковой ДНФ (ТДНФ)

Теорема. Любая минимальная ДНФ булевой функции является тупиковой.

Алгебра и полином Жегалкина

Опр. Алгеброй над базисом, состоящим из булевых функций $\wedge, \oplus, 0, 1$, называется **алгеброй Жегал**кина.

Обоз.
$$< \wedge, \oplus, 0, 1 >$$
 - алгебра, $F_{\mathbb{K}} = \{ \wedge, \oplus, 0, 1 \}$ - базис

Свойства операций в базисе Жегалкина

- 1. $x_1 \oplus x_2 = x_2 \oplus x_1$ коммутативность
- 2. $x_1 \wedge (x_2 \oplus x_3) = (x_1 \wedge x_2) \oplus (x_1 \wedge x_3)$
- 3. $x \oplus 0 = x$; $x \oplus 1 = \overline{x}$
- 4. выполняются все свойства конъюнкции и констант булевой алгебры
- 5. $x \oplus x = 0$

Переход от формулы в базисе Жегалкина к эквивалентной формуле в булевом базисе и обратно возможен всегда. Достаточно выразить дизъюнкцию и отрицание в базисе Жегалкина:

• $\overline{x} = x \oplus 1$

•
$$x_1 \lor x_2 = \overline{x_1}\overline{x_2} = (x_1 \oplus 1)(x_2 \oplus 1) \oplus 1 = x_1x_2 \oplus x_1 \oplus x_2 \oplus 1 \oplus 1 = x_1 \oplus x_2 \oplus x_1x_2$$

$$F_{\rm B} \to F_{\rm 2K}$$

Опр. Формула, имеющая вид суммы по модулю 2 конъюнкций, называется **полиномом Жегалкина** для данной булевой функции.

Пусть f в СДН Φ в булевом базисе - дизъюнкция элементарных конъюнкций.

$$f(x_1, x_2, x_3) = \overline{x}_1 x_2 \overline{x}_3 \vee x_1 x_2 \overline{x}_3 \vee x_1 \overline{x}_2 x_3$$

Если f_1, f_2 - две любые элементарные конъюнкции, включающие все переменные, то $f_1 \wedge f_2 = 0$.

В базисе Жегалкина: $f_1 \lor f_2 = f_1 \oplus f_2 \oplus f_1 f_2$

При
$$f_1 \wedge f_2 = 0$$
: $f_1 \vee f_2 = f_1 \oplus f_2 \oplus 0 = f_1 \oplus f_2$

To ecte
$$f(x_1, x_2, x_3) = \overline{x}_1 x_2 \overline{x}_3 \oplus x_1 x_2 \overline{x}_3 \oplus x_1 \overline{x}_2 x_3$$

Получение полинома Жегалкина

 $f(x_1, x_2, x_3) = \bigvee_1 (1, 4)$ - значение 1 на 1 и 4 наборах СДНФ.

$$f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 \vee x_1 \overline{x}_2 \overline{x}_3$$

Получение полинома:

$$f = \overline{x}_1 \overline{x}_2 x_3 \oplus x_1 \overline{x}_2 \overline{x}_3 = (x_1 \oplus 1)(x_2 \oplus 1)x_3 \oplus x_1(x_2 \oplus 1)(x_3 \oplus 1) =$$

$$= x_1x_2x_3 \oplus x_1x_3 \oplus x_2x_3 \oplus x_3 \oplus x_1x_2x_3 \oplus x_1x_2 \oplus x_1x_3 \oplus x_1 = x_1 \oplus x_1x_2 \oplus x_2x_3 \oplus x_3$$

Степень полинома Жегалкина определяется количеством литер в элементарной конъюнкции максимального ранга.

Теорема. Для всякой булевой функции существует полином Жегалкина, причём единственный.

Классы булевых функций

Булевы функции подразделяются на 5 классов.

1 класс

Опр. Булева функция f от n переменных называется сохраняющей константу нуля, если $f(0,\ldots,0)=0.$

Обоз. K_0

Теорема. Число всех булевых функций класса K_0 равно 2^{2^n-1} .

Док-во:

Только на одном наборе функция исключительно принимает значение 0.

Так как всего наборов 2^n , то произвольное значение функция принимает на $2^n - 1$ наборах.

Так как всего функций 2^{2^n} , а произвольное значение принимает 2^{2^n-1} функция, то число функций, принимающих значение 0, равно $2^{2^n}-2^{2^n-1}=2^{2^n-1}$

2 класс

Опр. Булева функция f_n называется сохраняющей константу единицы, если $f(1,\ldots,1)=1.$

Oбоз. K_1

Теорема. Число всех булевых функций класса K_1 равно 2^{2^n-1} .

Док-во аналогично 1 классу.

3 класс

 $f(x_1,\ldots,x_n)$ - функция n переменных

Функция $f^*(x_1,\ldots,x_n)=\overline{f}(\overline{x}_1,\ldots,\overline{x}_n)$ называется двойственной к функции f.

 f^* обладает свойством инволюции: $(f^*)^* = f$

Очевидно, что бинарное отношение "быть двойственным" симметрично.

1. Чтобы получить двойственную функцию, нужно полностью инвертировать таблицу истинности:

x_1	x_2	f		x_1	x_2	f^*
0	0	1		1	1	0
0	1	1	\Longrightarrow	1	0	0
1	0	1		0	1	0
1	1	0		0	0	1

$$f = \overline{x}_1 \vee \overline{x}_2$$

$$f^* = \overline{x}_1 \overline{x}_2$$

2. Или взять аргументы и функцию с инверсией: $f^*=\overline{\overline{\overline{x}}_1\vee\overline{\overline{x}}_2}=\overline{x}_1\overline{x}_2$

Опр. Булева функция называется **самодвойственной**, если она совпадает с двойственной ей функцией.

Функция самодвойственна тогда и только тогда, когда на взаимопротивоположных наборах принимает взаимопротивоположные значения.

- Чтобы опровергнуть самодвойственность функции f, достаточно найти 2 таких противоположных набора σ_1, σ_2 , что $f(\sigma_1) = f(\sigma_2)$.
- Чтобы доказать самодвойственность, нужно перебрать все взаимопротивоположные наборы и убедиться в том, что на любое паре значения функции противоположны.

Теорема. Мощность класса (количество) самодвойственных функций равна $2^{2^{n-1}}$. **Обоз.** K_S

Пример:

- 1. Тождественная функция самодвойственна
 - $\bullet \ f(x) = x$
 - $f^*(x) = \overline{\overline{x}} = x$
- 2. Отрицание самодвойственно:
 - $f(x) = \overline{x}$
 - $f(x) = \overline{\overline{x}} = \overline{x}$

2 теоремы о двойственности:

1. **Теорема.** Если функция $f(x_1,...,x_n)$ реализована формулой $\varphi(\varphi_1(x_1,...,x_n),...,\varphi_n(x_1,...,x_n))$, то формула $\varphi^*(\varphi_1^*(x_1,...,x_n),...,\varphi_n^*(x_1,...,x_n))$ реализует булеву функцию $f^*(x_1,...,x_n)$.

Пример:

- $\varphi = x_1 x_2 \vee \overline{x}_1 \overline{x}_2 = \varphi_1 \vee \varphi_2$
- $\bullet \ \varphi_1 = x_1 x_2 \qquad \varphi_1^* = \overline{\overline{x}_1 \overline{x}_2}$
- $\varphi_2 = \overline{x}_1 \overline{x}_2$ $\varphi_2^* = \overline{\overline{\overline{x}}_1 \overline{\overline{x}}_2} = \overline{x}_1 \overline{x}_2$
- $\varphi^* = \overline{\overline{\varphi_1^*} \vee \overline{\varphi_2^*}} = \overline{x_1} \overline{x_2} \vee x_1 x_2 = (x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2}) = x_1 \overline{x_2} \vee \overline{x_1} x_2 = x_1 \oplus x_2$
- $\bullet \ \varphi = x_1 \equiv x_2 \qquad \varphi^* = x_1 \oplus x_2$
- 2. **Теорема.** Пусть имеется базис $F = \{f_1, \dots, f_m\}$ и этому базису поставлен в соответствие базис двойственных функций $F^* = \{f_1^*, \dots, f_m^*\}$. Если формула φ над F реализует f, то φ^* над F^* реализует функцию f^* при том, что функции f_i , $i = \overline{1,m}$ заменяются на f_i^* .

Пример:

- $F = \{f_1, f_2\}$ $f_1 = x_1 \land x_2$ $f_2 = x_1 \oplus x_2$
- $F = \{ \land, \oplus \}$
- $F^* = \{ \lor, \equiv \}$
- $f = x_1 x_2$ $f^* = x_1 \lor x_2$
- $\varphi = (x_1 \overline{x}_2 \oplus \overline{x}_1 \overline{x}_2) x_1$
- $\varphi^* = ((x_1 \vee \overline{x}_2) \equiv (\overline{x}_1 \vee \overline{x}_2)) \vee x_1$

Из взаимной двойственности \vee и \wedge следует справедливость законов де Моргана: $\begin{array}{ccc} \overline{x_1 \wedge x_2} & \Longrightarrow & \overline{x}_1 \vee \overline{x}_2 \\ \hline \overline{x_1 \vee x_2} & \Longrightarrow & \overline{x}_1 \overline{x}_2 \end{array}$

4 класс

Опр. Булева функция $f(x_1, \ldots, x_n)$ называется линейной, если она представима в виде $C_0 \oplus C_1 x_1 \oplus C_2 x_2 \oplus \cdots \oplus C_n x_n$, где коэффициенты $C_i \in \{0,1\}$.

Функция линейна тогда и только тогда, когда она представима полиномом Жегалкина первой степени.

Обоз. K_L

Теорема. Число всех линейных функций равно 2^{n+1} .

Пояснение: Коэффициентов C_i всего n+1.

 Π ример:

1.
$$f(x_1, x_2, x_3) = 1 \oplus x_2 \oplus x_3$$

$$C_0 = 1$$
 $C_1 = 0$ $C_2 = 1$ $C_3 = 1$

2.
$$f(x_1, x_2, x_3) = x_1 \oplus x_2$$

$$C_0 = 0$$
 $C_1 = 1$ $C_2 = 1$ $C_3 = 0$

5 класс

Пусть имеется 2 набора из n переменных:

$$\partial_1 = (a_1, \dots, a_n) \quad \text{if} \quad \partial_2 = (a'_1, \dots, a'_n)$$

Говорят, что набор ∂_1 не меньше набора $\partial_2(\partial_1 \geq \partial_2)$, если для всех a_i выполняется $a_i \geq a_i'$

Пример:

 $\partial_1 = 1011$

 $\partial_2 = 1001$

Такие наборы называются сравнимыми, иначе несравнимыми.

Опр. Булева функция называется монотонной, если для любых её сравнимых наборов ∂_1 и ∂_2 верно $f(\partial_1) \geq f(\partial_2)$.

Обоз. K_M

Один из вариантов оценки мощности K_M : $2^{n^{n/2}} \le |K_M| \le 2^{an^{n/2}}$, где a - неизвестный коэффициент.

Функциональная полнота

Опр. Множество Σ булевых функций называется **замкнутой системой**, если любая суперпозиция функций из Σ даёт функцию, принадлежащую Σ .

Всякая замкнутая система булевых функций Σ порождает замкнутый класс, состоящий из всех формул, которые можно получить суперпозицией функций из Σ .

 $[\Sigma]$ - замыкание Σ

Если рассматривать Σ как базис, то $[\Sigma]$ - множество всех формул над Σ .

Пример:

$$F = x_1 \vee x_2 \vee \dots \vee x_n$$

$$\Sigma = \{\vee\}$$

 K_0, K_1, K_S, K_L, K_M - замкнутые классы, они также называются классами Поста (Е. Пост)

Множество всех булевых функций образует замкнутый класс.

Таблица принадлежности булевых функций замкнутым классам:

	K_0	K_1	K_S	K_L	K_{M}
0	+	_	1	+	+
1	_	+	-	+	+
	_	_	+	+	
\wedge	+	+	-	_	+
V	+	+	-	_	+
\oplus	+	_	-	+	_
\rightarrow	_	+	_	_	_
≡	_	+	_	+	_

Классы не пустые, попарно различны и каждый класс не совпадает с множеством приведённых и всех булевых функций.

Опр. Система булевых функций называется полной, если её замыкание совпадает с множеством всех булевых функций.

Это означает, что любая булева функция может быть представлена над этой системой как над базисом.

Теорема Поста. Для того, чтобы система булевых функций была полной, необходимо и достаточно того, чтобы она содержала хотя бы одну функцию:

- 1. не сохраняющую константу 0
- 2. не сохраняющую константу 1
- 3. не самодвойственную
- 4. не линейную
- 5. не монотонную

Доказательство.

Необходимость (⇒): если система функций не удовлетворяет ни одному из условий, то в лучшем случае система будет собственным подмножеством множества булевых функций либо пустым множеством

Достаточность (⇐): см. в учебнике Кузнецова

 $Другими \ cловами:$ Множество F булевых функций образует полную систему \Leftrightarrow когда это множество не содержится целиком ни в одном из классов Поста.

Примеры:

- $F = \{\neg, \wedge\}$ базис И-НЕ
- $F = \{\neg, \lor\}$ базис ИЛИ-НЕ
- $F = \{\neg, \land, \lor\}$
- $F_{\mathsf{XK}} = \{ \land, \oplus, 1, 0 \}$

Один из способов определения полноты системы булевых функций - сведение этой системы к другой системе, полнота которой доказана.

Пример:

•
$$F = \{\downarrow\}$$

 $x \downarrow x = \overline{x}$
 $x_1 \downarrow x_2 = \overline{x_1 \lor x_2}$
 $x_1 \lor x_2 = \overline{x_1 \downarrow x_2} = (x_1 \downarrow x_2) \downarrow (x_1 \downarrow x_2)$

Перешли к базису $\{\neg, \lor\}$

•
$$F = \{\downarrow\}$$

 $x|x = \overline{x}$
 $x_1|x_2 = \overline{x_1 \wedge x_2}$
 $x_1 \wedge x_2 = \overline{x_1|x_2} = (x_1|x_2)|(x_1|x_2)$

Перешли к базису $\{\neg, \land\}$

Как обосновать (не)принадлежность некоторой булевой функции к тому или иному классу Поста?

Покажем немонотонность отрицания. Пусть $f(x_1,\ldots,x_n)$ - не монотонная функция

$$\sigma_1 = (a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n)$$

 $\sigma_2 = (a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots, a_n)$

 $\sigma_1 \le \sigma_2$

Если $f(\sigma_1) \leq f(\sigma_2)$, то она монотонная

 $f(\sigma_1) = 1, f(\sigma_2) = 0 \Rightarrow$ функция не монотонна

 $\overline{x} = f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n)$

Пример: Пусть дана система булевых функций 3 переменных $\{f_1, f_2\}$, заданных таблицей истинности:

x_1	x_2	x_3	f_1	f_2
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	1	0

- 1. Принадлежность K_0 :
 - $f_1(0,0,0) = 1 \Rightarrow f_1 \notin K_0$
 - $f_2(0,0,0) = 1 \Rightarrow f_2 \notin K_0$
- 2. Принадлежность K_1 :
 - $f_1(1,1,1) = 1 \Rightarrow f_1 \in K_1$
 - $f_2(1,1,1) = 0 \Rightarrow f_2 \notin K_1$
- 3. Принадлежность K_S :
 - $f_1(1,1,1) = 1, f_1^*(1,1,1) = 0 \Rightarrow f_1 \notin K_S$
 - $f_2(0,0,1) = 1, f_2^*(0,0,1) = 0 \Rightarrow f_2 \notin K_S$
- 4. Принадлежность K_M :
 - $f_1(0,0,0) > f_1(1,1,1) \Rightarrow f_1 \notin K_M$
 - $f_2(0,0,0) > f_2(0,1,1) \Rightarrow f_2 \notin K_M$
- 5. Принадлежность K_L :
 - В общем случае любая функция f_n выражается полиномом Жегалкина $\leq n$ степени: $P_{\mathbb{K}}(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{13}x_1x_3 \oplus a_{23}x_2x_3 \oplus a_{11}x_1 \oplus a_{21}x_2 \oplus a_{121}x_1 \oplus$
 - Если удастся свести его к первой степени, то функция линейна: $a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0 \in K_L$
 - Для решения задачи воспользуемся методом неопределённых коэффициентов:
 - (a) Рассмотрим набор (0,0,0):

$$f_1(0,0,0) = a_0 = 1 : a_0 = 1$$

(b) Рассмотрим наборы (0,0,1),(0,1,0),(1,0,0):

$$f_1(0,0,1) = a_3 \oplus a_0 = 1 : a_3 = 0$$

$$f_1(0,1,0) = a_2 \oplus a_0 = 1 : a_2 = 0$$

$$f_1(1,0,0) = a_1 \oplus a_0 = 1 : a_1 = 0$$

(c) Рассмотрим наборы: (1,1,0),(1,0,1),(0,1,1):

$$f_1(1,1,0) = a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 0 : a_{12} = 1$$

$$f_1(1,0,1) = a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 1 : a_{13} = 0$$

$$f_1(0,1,1) = a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 1 : a_{23} = 0$$

(d) Рассмотрим набор (1, 1, 1):

$$f_1(1,1,1) = a_{123} \oplus 1 \oplus 1 = 1 : a_{123} = 1$$

• $f(x_1, x_2, x_3) = x_1 x_2 x_3 \oplus x_1 x_2 \oplus 1 \Rightarrow f_1 \notin K_L$

Примеры реализации некоторых элементарных функций с помощью не элементарных

Функции, сохраняющие константу 0 и 1, отрицание:

1. Пусть $f_0(x_0,\ldots,x_n) \in K_0$ и $f_1(x_1,\ldots,x_1) \in K_1$:

$$f_0(0,\ldots,0) = 0$$

$$f_0(1,\ldots,1) = 0$$

$$0 = f_0(x, \dots, x)$$

$$f_1(0,\ldots,0)=1$$

$$f_1(1,\ldots,1)=1$$

$$1 = f_1(x, \dots, x)$$

2. Пусть f_0 аналогично пункту 1. Рассмотрим f_1 :

$$f_1(0,\ldots,0) = 1$$

$$f_1(1,\ldots,1) = 0$$

$$\overline{x} = f_1(x, \dots, x)$$

$$1 = \overline{f_0}(x, \dots, x) = f_1(f_0(x, \dots, x), \dots, f_0(x, \dots, x))$$

3. $\sigma_1 \leq \sigma_2$ - сравнимые наборы:

$$\sigma_{1} = (a_{1}, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_{n})
\sigma_{2} = (a_{1}, \dots, a_{i-1}, 1, a_{i+1}, \dots, a_{n})
f(\sigma_{1}) = 1
f(\sigma_{2}) = 0
f \notin K_{M}
\overline{x} = f(a_{1}, \dots, a_{i-1}, x, a_{i+1}, \dots, a_{n})$$

- 4. $f(x_1, x_2) \notin K_L$:
 - (a) $f(x_1, x_2) = x_1 x_2 \oplus 1 = \overline{x_1 x_2} : x_1 x_2 = \overline{f}(x_1, x_2)$
 - (b) $f(x_1, x_2) = x_1 x_2 \oplus x_2 \oplus 1 = (x_1 \oplus 1) x_2 \oplus 1 = \overline{x_1 x_2} : x_1 x_2 = \overline{f}(\overline{x_1}, x_2)$
 - (c) $f(x_1, x_2) = x_1 x_2 \oplus x_1 = x_1 (x_2 \oplus 1) = x_1 \overline{x}_2 : x_1 x_2 = f(x_1, \overline{x}_2) d) f(x_1, x_2) = x_1 x_2 \oplus x_1 \oplus x_2 \oplus 1 = x_1 (x_2 \oplus 1) \oplus (x_2 \oplus 1) = (x_1 \oplus 1) (x_2 \oplus 1) = \overline{x}_1 \overline{x}_2 : x_1 x_2 = f(\overline{x}_1, \overline{x}_2)$