CS461 Quiz Three

CS461 Section #:	
Name:	
NetID:	

0. True / False Questions.

- The stochastic descent algorithm aims to find the global minimum of J(w) of a deep-CNN. (True / False)
- In momentum optimization, a larger momentum will reduce the oscillations in the iterative steps. (True / False)
- Both of Ridge and Lasso regularization are applicable to deep-CNN training. (True / False)
- Max pooling layer promotes invariance. (True / False)
- Dropout layer (0.5) discards 50% of the hidden unit values in training stage. The dropout operation is still effective during inference for generalization. (True / False)
- Tanh or Sigmoid function are prone to the gradient vanishing problem. (True / False)
- In deep-CNNs, we can input various sized images for inference. (True / False)
- The polynomial $y = x^5$ is a desirable activation function for its non-linearity. (True / False)
- Once a unit value becomes zero in a deep-CNN with ReLU, the unit never revive again. (True / False)
- Newton's gradient method is often used in training a deep neural net because it promotes fast convergence. (True / False)
- When an objective function is quadratic, Newton's gradient method $(w_{k+1} = w_k + \alpha \nabla^2 J(w_k)^{-1} \nabla J(w_k))$ can find an optimal solution in a single iteration. (True / False)

1. [The architecture of Alexnet and the input and output]

- 1. In the figure, the size of input image is 3×224 .
- 2. Suppose the size of the second convolution filter is $64 \times 5 \times 5$. And, the size of the third convolution filter is $192 \times 3 \times 3$. Based on the information, we can make an inference: (1) the number of the second convolution filters will be ______ and (2) the number of bias of the second convolution layer will be
- 3. The size of input and output in the last fully connected (FC) layer is 4096 and 1000. When there is a bias term, the number of parameters of the last FC layer is ______.
- 4. AlexNet learns the discriminant functions for 1,000 objects classification. How many discriminant functions does Alexnet learn? _____

2. [Feed-forward] evaluate unit values in feed-forward step in the network below. The current parameter values are $w_{i,0}=(1,1,1), w_{i,1}=(1,1,1), w_{i,2}=(-1,-1,-1)$, where $w_{i,j}$ is the edge connecting the units: x_i and h_j . Fill out the table below and the table will be graded.

units	unit value in feed-forward step
h_0	
h_1	
h_2	
y_0	
y_1	
y_2	
$Loss = y_0^2 + y_1^2 + y_2^2$	

3 [Backpropagation] evaluate the derivatives and fill out the table below; the table will be graded.

3.1 Fill out the table.

Units	Unit Derivative
$\partial L/\partial y_1$	
$\partial y_1/\partial a_1$	
$\partial a_1/\partial h_1$	
$\partial h_1/\partial x_0$	

Units	Unit Derivative
$\partial L/\partial a_1$	
$\partial L/\partial h_1$	
$\partial L/\partial w_{01}$	

3.2 Compute a new value of w_{01} by using $w_{01}^{'}=w_{01}-\eta\frac{\partial L}{\partial w_{01}}$ where $\eta=1$ and w_{01} denotes the parameter between h_1 and x_0 .

•
$$w_{01}^{'} = ?$$

4. [ReLU]

4.1 (10 points) Compute the derivative of loss respect to w ($\frac{\partial L}{\partial w}$) when the parameter w is shared to compute output x_{10} and x_{12} .

4.2 (10 points) Write the possible weights (w_1, w_2, w_3) that would result in inactivation for the current step but possibly revive later steps.

CS461 Quiz April 10

CS461 Section #:	
Name:	
NetID:	

0. True / False Questions.

- The stochastic descent algorithm aims to find the global minimum of J(w) of a deep-CNN. (True / False)
- In momentum optimization, a larger momentum will reduce the oscillations in the iterative steps. (**True** / False)
- Both of Ridge and Lasso regularization are applicable to deep-CNN training. (True / False)
- Max pooling layer promotes invariance. (**True** / False)
- Dropout layer (0.5) discards 50% of the hidden unit values in training stage. The dropout operation is still effective during inference for generalization. (True / False)
- Tanh or Sigmoid function are prone to the gradient vanishing problem. (True / False)
- In deep-CNNs, we can input various sized images for inference. (True / False)
- The polynomial $y = x^5$ is a desirable activation function for its non-linearity. (True / False)
- Once a unit value becomes zero in a deep-CNN with ReLU, the unit never revive again. (True / False)
- Newton's gradient method is often used in training a deep neural net because it promotes fast convergence.
 (True / False)
- When an objective function is quadratic, Newton's gradient method $(w_{k+1} = w_k + \alpha \nabla^2 J(w_k)^{-1} \nabla J(w_k))$ can find an optimal solution in a single iteration. (**True** / False)

1. [The architecture of Alexnet and the input and output]

- 1. In the figure, the size of input image is $3 \times (224) \times 224$.
- 2. Suppose the size of the second convolution filter is $64 \times 5 \times 5$. And, the size of the third convolution filter is $192 \times 3 \times 3$. Based on the information, we can make an inference: (1) the number of the second convolution filters will be (192) and (2) the number of bias of the second convolution layer will be (192).
- 3. The size of input and output in the last fully connected (FC) layer is 4096 and 1000. When there is a bias term, the number of parameters of the last FC layer is 4,097,000.
- 4. AlexNet learns the discriminant functions for 1,000 objects classification. How many discriminant functions does Alexnet learn? (1,000)

2. [Feed-forward] evaluate unit values in feed-forward step in the network below. The current parameter values are $w_{i,0} = (1,1,1), w_{i,1} = (1,1,1), w_{i,2} = (-1,-1,-1)$, where $w_{i,j}$ is the edge connecting the units: x_i and h_j . Fill out the table below and the table will be graded.

units	unit value in feed-forward step
h_0	3
h_1	3
h_2	-3
y_0	3
y_1	3
y_2	0
$Loss = y_0^2 + y_1^2 + y_2^2$	18

3 [Backpropagation] evaluate the derivatives and fill out the table below; the table will be graded.

3.1 Fill out the table.

Units	Unit Derivative
$\partial L/\partial y_1$	$2 \cdot y_1 = 6$
$\partial y_1/\partial a_1$	1
$\partial a_1/\partial h_1$	1
$\partial h_1/\partial x_0$	1

Units	Unit Derivative
$\partial L/\partial a_1$	6
$\partial L/\partial h_1$	6
$\partial L/\partial w_{01}$	$6 \cdot 1 = 6$

3.2 Compute a new value of w_{01} by using $w_{01}^{'}=w_{01}-\eta\frac{\partial L}{\partial w_{01}}$ where $\eta=1$ and w_{01} denotes the parameter between h_1 and x_0 .

•
$$w_{01}^{'} = 1 - 1 \cdot 6 = 1 - 6 = -5$$

4. [ReLU]

4.1 (10 points) Compute the derivative of loss respect to w ($\frac{\partial L}{\partial w}$) when the parameter w is shared to compute output x_{10} and x_{12} .

sol) 0.5 + 0.5 = 1

4.2 (10 points) Write the possible weights (w_1, w_2, w_3) that would result in inactivation for the current step but possibly revive later steps.

sol) any combination $w_1 + w_2 + w_3 < 0$ but at least one of the weights must be positive. for example, (-5, -5, 1).