Spectral Lagrangian methods (in particular for SW)

L. Micalizzi^{1,2}, S. Tokareva², M. Ricchiuto³, R. Abgrall¹

¹Institut für Mathematik, Universität Zürich

²Theoretical Division, Los Alamos National Laboratory

> ³Team CARDAMOM, Inria Bordeaux sud-ouest

Outline

- Governing equations
- Scheme and motivation
- Numerics
 - Sod
 - Smooth periodic
 - Well-balancing
 - Supercritical smooth

Section 1

Governing equations

Shallow water equations, Eulerian

$$\frac{\partial}{\partial t} \boldsymbol{u} + div_{\boldsymbol{x}} \boldsymbol{F}(\boldsymbol{u}) = \boldsymbol{S}(\boldsymbol{x}, \boldsymbol{u}), \quad (\boldsymbol{x}, t) \in \Omega \times [0, T]$$

$$egin{aligned} oldsymbol{u} &:= egin{pmatrix} H oldsymbol{v} \ H oldsymbol{v} &:= egin{pmatrix} H oldsymbol{v} \ H oldsymbol{v} \otimes oldsymbol{v} + g rac{H^2}{2} \mathbb{I} \end{pmatrix} \ oldsymbol{S}(oldsymbol{x}, oldsymbol{u}) &:= -egin{pmatrix} 0 \ g H
abla_{oldsymbol{x}} oldsymbol{B}(x) \end{pmatrix} \end{aligned}$$

$$\eta := H + B$$

Shallow water equations, simplification of Euler (with gravity)

Neglecting the energy equation

5 / 29

Section 2

Scheme and motivation

Shallow water equations, Lagrangian (sorry for low quality)

$$\Omega_0 \ni X \longrightarrow x = \widetilde{x}(X, t) \in \Omega_t$$

$$\widehat{\Omega} \ni \xi \longrightarrow x = x(\xi, t) \in \Omega_t$$

$$X = x(\xi, 0)$$

Shallow water equations, Lagrangian

Motion

$$\frac{d}{dt}\boldsymbol{x}(\boldsymbol{\xi},t) = \boldsymbol{v}(\boldsymbol{x}(\boldsymbol{\xi},t),t)$$

• Water height/density (SMC)

$$H(\boldsymbol{x}(\boldsymbol{\xi},t),t) = \frac{\widehat{H}(\boldsymbol{\xi})}{det \boldsymbol{J}(\boldsymbol{\xi},t)}, \quad \boldsymbol{J}(\boldsymbol{\xi},t) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{\xi}}(\boldsymbol{\xi},t)$$

Velocity

$$\begin{split} H(\boldsymbol{x},t)\frac{d}{dt}\boldsymbol{v}(\boldsymbol{x},t) &= -\nabla_{\boldsymbol{x}}p - gH\nabla_{\boldsymbol{x}}B \\ &= -\nabla_{\boldsymbol{x}}\left(\frac{gH^2}{2}\right) - gH\nabla_{\boldsymbol{x}}B \end{split}$$

$$\frac{d}{dt}\mathbf{v}(\mathbf{x},t) = -g\nabla_{\mathbf{x}}(H+B)$$

Shallow water equations, FEM discretization¹

$$\begin{split} \widehat{\varphi}_i \in \mathbb{P}_{M+1} \text{ continuous} \\ \widehat{\psi}_i \in \mathbb{P}_{M} \quad \text{ discontinuous} \end{split}$$

$$\varphi_i(\mathbf{x}(\boldsymbol{\xi},t),t) = \widehat{\varphi}_i(\boldsymbol{\xi})$$
$$\psi_i(\mathbf{x}(\boldsymbol{\xi},t),t) = \widehat{\psi}_i(\boldsymbol{\xi})$$

$$\boldsymbol{x}_h(\boldsymbol{\xi},t) = \sum_i \boldsymbol{x}_i(t) \widehat{\varphi}_i(\boldsymbol{\xi})$$

$${m v}_h({m \xi},t) = \sum_i {m v}_i(t) \widehat{arphi}_i({m \xi})$$

$$H_h(\boldsymbol{\xi},t) = \sum_i H_i(t) \widehat{\psi}_i(\boldsymbol{\xi})$$

$$\boldsymbol{v}_h(\boldsymbol{x},t) = \sum_i \boldsymbol{v}_i(t) \widehat{\varphi}_i(\boldsymbol{\xi}(\boldsymbol{x},t))$$

$$H_h(\boldsymbol{x},t) = \sum_i H_i(t) \widehat{\psi}_i(\boldsymbol{\xi}(\boldsymbol{x},t))$$

± → 4 ₹ → ₹ → 9 q (

Lorenzo Micalizzi (UZH)

¹Dobrev, Kolev, Rieben, High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics, 2012

Shallow water equations, discretized equations

Motion

$$\frac{d}{dt}\boldsymbol{x}_i(t) = \boldsymbol{v}_i(t)$$

Water height/density (SMC) ⇒ PP

$$H_i(t) = \frac{\widehat{H}_i}{det \mathbf{J}(\boldsymbol{\xi}_i, t)}, \quad \mathbf{J}(\boldsymbol{\xi}, t) = \frac{\partial \mathbf{x}}{\partial \boldsymbol{\xi}}(\boldsymbol{\xi}, t)$$

Velocity

$$\begin{split} \sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t) \\ &= -g \sum_{K \in K_i} \left[\int_K \varphi_i \nabla_{\boldsymbol{x}} (H_h + B_h) d\boldsymbol{x} \right] - \sum_{K \in K_i} \boldsymbol{C} \boldsymbol{T}_i^K - \boldsymbol{S} \boldsymbol{T}_i^K - \boldsymbol{T}_i$$

Shallow water equations, discretized equations

$$\begin{split} \sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t) \\ &= -g \sum_{K \in K_i} \left[\int_K \varphi_i \nabla_{\boldsymbol{x}} (H_h + B_h) d\boldsymbol{x} \right] - \sum_{K \in K_i} \boldsymbol{C} \boldsymbol{T}_i^K - \boldsymbol{S} \boldsymbol{T}_i \end{split}$$

$$CT_i^K = g \int_{\partial K} \varphi_i(\eta^* - \eta|_K) \nu d\sigma$$

$$\boldsymbol{ST}_{i}^{CIP} := \sum_{f} \alpha_{f} \left[\left[\frac{\partial}{\partial x} \varphi_{i} \right] \right] \left[\left[\frac{\partial}{\partial x} v \right] \right], \quad \boldsymbol{ST}_{i}^{LxF} := \sum_{K \in K_{i}} \alpha_{K} (\boldsymbol{v}_{i} - \overline{\boldsymbol{v}}_{K})$$

Last but not least an ODE integrator

Problem: mass matrix

$$\begin{split} \sum_{K \in K_{i} \boldsymbol{x}_{j} \in K} \left(\int_{K} \varphi_{i} \varphi_{j} d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_{j}(t) \\ &= -g \sum_{K \in K_{i}} \left[\int_{K} \varphi_{i} \nabla_{\boldsymbol{x}} (H_{h} + B_{h}) d\boldsymbol{x} \right] - \sum_{K \in K_{i}} \boldsymbol{C} \boldsymbol{T}_{i}^{K} - \boldsymbol{S} \boldsymbol{T}_{i} \end{split}$$

$$\mathcal{M}\frac{d}{dt}\boldsymbol{v} = \boldsymbol{r}$$

Solutions

- LO mass lumping
- DeC Remi² (problems for order 4 on)
- ullet Spectral methods $arphi_i \sim oldsymbol{x}_i$ (1D GLB, 2D tensor product or Cubature)

Lorenzo Micalizzi (UZH) 13 / 29 Los Alamos 13 / 29

²Abgrall, High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices, 2017

Price to pay: time-dependent mass matrix

$$\begin{split} \int_{K(t)} \varphi_i(\boldsymbol{x},t) \varphi_j(\boldsymbol{x},t) d\boldsymbol{x} &= \int_{\widehat{K}} \widehat{\varphi}_i(\boldsymbol{\xi}) \widehat{\varphi}_j(\boldsymbol{\xi}) det \boldsymbol{J}(\boldsymbol{\xi},t) d\boldsymbol{\xi} \\ &\approx \delta_{i,j} \widehat{\omega}_i det \boldsymbol{J}(\boldsymbol{\xi}_i,t) \end{split}$$

$$\int_{K(t)} H_h(\boldsymbol{x}, t) \varphi_i(\boldsymbol{x}, t) \varphi_j(\boldsymbol{x}, t) d\boldsymbol{x} = \int_{\widehat{K}} H_h(\boldsymbol{\xi}, t) \widehat{\varphi}_i(\boldsymbol{\xi}) \widehat{\varphi}_j(\boldsymbol{\xi}) det \boldsymbol{J}(\boldsymbol{\xi}, t) d\boldsymbol{\xi}$$

$$\approx \delta_{i,j} \widehat{\omega}_i H_h(\boldsymbol{\xi}_i, t) det \boldsymbol{J}(\boldsymbol{\xi}_i, t)$$

However, only a point evaluation

Advantages

$$\frac{d}{dt}x = v$$
, $\frac{d}{dt}v = r$, SMC

- ullet Truly arbitrary high order (no problems as for Bernstein and eta-limiting)
- Extendible to Euler
- Extendible to multi-D (quads, PGL, tensor products, Cubature)
- Whatever time integration method.

Section 3

Numerics

Figure: Reference

Numerics, Convergence

$$\begin{cases} H = 2 + \cos(2\pi x) \\ v = 1 \end{cases}$$

Smooth_periodic

Numerics, Convergence³ (2p)

100

2.038e-10

9.721e-13

7.188

7.712

ORDER 2 P1P2 error x Order x Error v Order v 50 2.850e-04 0.000 1.305e-02 0.000 100 7.166e-05 1.992 3.021e-03 2.111 1.798e-05 1.995 7.579e-04 1.995 4.504e-06 1.997 1.901e-04 1.996 400 1.127e-06 1.998 1.999 800 4.756e-05 ORDER 3 P2P3 error x Order x Error v Order v 1.197e-06 9.768e-04 50 0.000 0.000 1.497e-07 2.999 4.086e-05 4.579 100 3.980 3.131 200 9.487e-09 4.666e-06 6.040e-10 3.973 3.973e-07 3.554 400 800 3.811e-11 3.986 2.878e-08 3.787 ORDER 4 P3P4 (final plateau probably due to the fact that H hit machine precision) error x Order x Error v Order v 50 2.696e-07 0.000 8.121e-05 0.000 7.205e-09 5.226 4.023 4.995e-06 200 7.689e-11 6.550 6.990e-08 6.159 6.007 400 1.060e-12 6.181 1.087e-09 800 1.739e-14 5.930 2.758 1.606e-10 ORDER 5 P4P5 error x Order x Error v Order v 50 2.973e-08 0.000 3.642e-05 0.000

³Mantri, Oeffner, Ricchiuto, Fully well balanced entropy controlled DGSEM, 2022

2.641e-07

1.196e-09

7.108

7.786

In particular (in Eulerian) $\frac{\partial}{\partial t} \boldsymbol{u} \equiv 0 \iff \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}) = \boldsymbol{S}(x, \boldsymbol{u})$

- ullet Refine a lot the mesh \Rightarrow Longer computational time
- Well-balancing

$$u_{eq} := \begin{pmatrix} \eta - B \\ 0 \end{pmatrix}$$

 $\eta = H + B \equiv const$

Figure: Lake of Zürich at rest

Lake at rest is exactly preserved

$$\frac{d}{dt}x = v$$
, $\frac{d}{dt}v = r$, SMC

$$H(\boldsymbol{x}(\boldsymbol{\xi},t),t) = \frac{\widehat{H}(\boldsymbol{\xi})}{det \boldsymbol{J}(\boldsymbol{\xi},t)}, \quad \boldsymbol{J}(\boldsymbol{\xi},t) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{\xi}}(\boldsymbol{\xi},t)$$

$$\begin{split} \sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t) \\ &= -g \sum_{K \in K_i} \left[\int_K \varphi_i \nabla_{\boldsymbol{x}} (\boldsymbol{H_h} + \boldsymbol{B_h}) d\boldsymbol{x} \right] - \sum_{K \in K_i} C \boldsymbol{T}_i^K - S \boldsymbol{T}_i \end{split}$$

$$\begin{split} \sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t) \\ &= -g \sum_{K \in K_i} \left[\int_K \varphi_i \nabla_{\boldsymbol{x}} (H_h + B_h) d\boldsymbol{x} \right] - \sum_{K \in K_i} \boldsymbol{C} \boldsymbol{T}_i^K - \boldsymbol{S} \boldsymbol{T}_i \end{split}$$

$$CT_i^K = g \int_{\partial K} \varphi_i(\eta^* - \eta|_K) \nu d\sigma$$

$$\boldsymbol{ST}_{i}^{CIP} := \sum_{f} \alpha_{f} \left[\left[\frac{\partial}{\partial x} \varphi_{i} \right] \right] \left[\left[\frac{\partial}{\partial x} \boldsymbol{v} \right] \right], \quad \boldsymbol{ST}_{i}^{LxF} := \sum_{K \in K_{i}} \alpha_{K} (\boldsymbol{v}_{i} - \overline{\boldsymbol{v}}_{K}) \right]$$

22 / 29

Non-smooth bathymetry, only C^0

$$\eta(x) = \begin{cases} \eta_{eq} + A \exp\left(1 - \frac{1}{1 - \left(\frac{x - 6}{0.5}\right)^2}\right) & 5.5 < x < 6.5\\ \eta_{eq} & otherwise \end{cases}$$

with $A = 5 \cdot 10^{-5}$.

Figure: Perturbation amplified by 1000

Order 5, 30 elements

Numerics, smooth steady states

$$\boldsymbol{F}_x(\boldsymbol{u}) = \boldsymbol{S}(\boldsymbol{x}, \boldsymbol{u})$$

Numerics, supercritical (problem with order 3)

D1D2	> order 2									
N		rder v	L^1(H) O	rder H	L^1(q)	Order q	IIVII 2 O	rder v III-	III 2 Order I	н
25	4.281e-02	0.000	1.837e-02	0.000	1.875e-		3.024e-0		1.113e-03	0.000
50	1.021e-02	2.068	5.229e-03	1.813	4.787e-	02 1.970	8.202e-0	4 1.882	3.348e-04	1.733
100	2.431e-03	2.070	9.872e-04	2.405	1.045e	-02 2.196	1.884e-	04 2.122	6.528e-05	2.359
200	4.775e-04	2.348	1.446e-04	2.771	1.928e	-03 2.438	3.731e-0	05 2.336	1.091e-05	2.581
400	1.125e-04	2.086	2.981e-05	2.278	4.510e	-04 2.096	8.973e-0	2.056	2.450e-06	2.155
800	2.793e-05	2.010	7.313e-06	2.027	1.126e	-04 2.002	2.243e-	2.000	6.048e-07	2.018
P2P3 -> order 3 (instead I get 2)										
N	L^1(v) O	rder v	L^1(H) O	rder H	L^1(q)	Order q	v _2 O	rder v -	II_2 Order I	Н
25	9.342e-03	0.000	3.326e-03	0.000	3.702e-	0.000	9.183e-0	0.000	3.003e-04	0.000
50	1.945e-03	2.264	7.998e-04	2.056	1.033e-	02 1.841	1.574e-0	4 2.545	7.969e-05	1.914
100	4.239e-04	2.198	1.947e-04	2.038	2.180e	-03 2.244	3.369e-0	05 2.224	1.590e-05	2.325
200	8.308e-05	2.351	3.091e-05	2.655	3.042e	-04 2.841	6.592e-0	2.354	2.444e-06	2.702
400	1.833e-05	2.180	5.953e-06	2.376	4.774e	-05 2.672	1.523e-	06 2.114	4.756e-07	2.361
800	4.502e-06	2.026	1.455e-06	2.033	1.120e	-05 2.092	3.758e-	2.019	1.150e-07	2.048
P3P4 -	> order 4									
N	L^1(v) O	rder v	L^1(H) O	rder H	L^1(q)	Order q	v _2 O	rder v -	H _2 Order I	Н
25	3.877e-03	0.000	1.475e-03	0.000	1.573e-	0.000	5.056e-0	0.000	2.086e-04	0.000
50	7.459e-04	2.378	3.024e-04	2.286	3.726e-	03 2.078	6.793e-0	5 2.896	3.157e-05	2.724
100	9.525e-05	2.969	5.184e-05	2.544	6.887e	-04 2.436	7.144e-	3.249	4.526e-06	2.802
200	9.417e-06	3.338	4.700e-06	3.463	6.982e	-05 3.302	6.768e-0	3.400	3.857e-07	3.553
400	3.955e-07	4.574	1.974e-07	4.573	2.982e	-06 4.549	2.757e-	08 4.618	1.556e-08	4.632
P4P5 -	> order 5									
N	L^1(v) Order v		L^1(H) Order H		L^1(q) Order q		v _2 Order v H _2 Order H			
25	2.130e-03	0.000	8.068e-04	0.000	7.579e-	0.000	2.959e-0	0.000	1.281e-04	0.000
50	3.021e-04	2.818	1.253e-04	2.687	1.390e-	03 2.447	2.776e-0	5 3.414	2.241e-05	2.515

1.310e-04

6.777e-06

3.456

4.859

2.042e-06

7.038e-08

100

200

2.822e-05

1.202e-06

3.420

4.553

1.237e-05

5.293e-07

3.340

4.547

3.407

4.273

2.418e-06

9.730e-08

3.521

4.635

Numerics, debugging in progress

- Burman (no changes)
- SSPRK4 (no changes)
- one time-step (correct order)
- Exact v (OK)
- ullet Exact H (Not OK, so the problem must be in the update of v)
- Checking the code

Los Alamos

Numerics, shape of the error

(c) Error Lagrangian (d) Values Lagrangian

Numerics, shape of the error

(d) Values Transcritical

(c) Error Transcritical