[2011]

11. Limits, Continuity and Differentiability

S.Sai Akshitha - EE24BTECH11054

Section-D JE	e Maiii/Aleee			
1) Let f be different	rentiable for all x . If $f(1)$	$= -2$ and $f'(x) \ge 2$ for	$x \in [1, 6], \text{ then }$	[2005]
a) $f(6) \ge 8$				
b) $f(6) < 8$				
c) $f(6) < 5$				
d) $f(6) = 5$				
2) If f is a real f then $f(1)$ equ		on satisfying $ f(x) - f(x) $	$ y \le (x - y)^2, x, y \in R \text{ and } f$	(0) = 0, [2005]
a) -1	b) 0	c) 2	d) 1	
3) Let $f: R \to R$	be a function defined by			
-	+1, x +1, Then which of	the following is true?		[2007]
	erentiable everywhere.	une reme wing is use.		[=007]
	differentiable at $x = 0$.			
c) $f(x) \ge 1$ fo				
	differentiable at $x = 1$.			
	$f: R - \{0\} \rightarrow R$ given by			
i) The function		1 2		
		$f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$		
can be made continuous at $x = 0$ by defining $f(0)$ as				
a) 0	b) 1	c) 2	d) -1	
5) Let				
·,	f(x) =	$\begin{cases} (x-1)\sin\frac{1}{x-1} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$	± 1 = 1	
Then which o	f the following is true?			[2008]
a) f is neither differentiable at $x = 0$ nor at $x = 1$.				
	ntiable at $x = 0$ and $x = 1$.			
	ntiable at $x = 0$ and $x = 1$.			
	ntiable at $x = 0$ but not at not at			
			$\frac{x}{x} = 1$. Then $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$	[2010]
$0) \ \text{Let } j : K \to K$	be a positive increasing i	function with $\lim_{x\to\infty} \frac{1}{f(x)}$	$\frac{1}{f(x)} - 1$. Then $\lim_{x \to \infty} \frac{1}{f(x)} - \frac{1}{f(x)}$	[2010]
a) $\frac{2}{3}$	b) $\frac{3}{2}$	c) 3	d) 1	
7)				
,	$\lim_{x \to z}$	$\frac{1}{2}\left(\frac{\sqrt{1-\cos(2(x-2))}}{x-2}\right)$		
	$x \rightarrow x$	$\lambda = \lambda$		

a)	equals	$\sqrt{2}$
b)	equals	$-\sqrt{2}$

c) equals
$$\frac{1}{\sqrt{2}}$$

- d) does not exist
- 8) The values of p and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} & \text{if } x < 0 \\ q & \text{if } x = 0 \\ \frac{\sqrt{x + x^2} - \sqrt{x}}{x^{3/2}} & \text{if } x > 0 \end{cases}$$

is continuous for all x in R, are

[2011]

a)
$$p = \frac{5}{2}, q = \frac{1}{2}$$

b) $p = -\frac{3}{2}, q = \frac{1}{2}$

c)
$$p = \frac{1}{2}, q = \frac{3}{2}$$

d) $p = \frac{1}{2}, q = -\frac{3}{2}$

9) Let $f: R \to [0, \infty)$ be such that $\lim_{x\to 5} f(x)$ exists and

$$\lim_{x \to 5} \frac{(f(x))^2 - 9}{\sqrt{|x - 5|}} = 0.$$

Then $\lim_{x\to 5} f(x)$ equals:

a) 0

b) 1

c) 2

d) 3

- 10) If $f: R \to R$ is a function defined by $f(x) = [x] \cos(\frac{2x-1}{2})\pi$, where [x] denotes greatest integer function, then f is [2012]
 - a) continuous for every real x.
 - b) discontinuous only at x = 0.
 - c) discontinuous only at non-zero integral values of x.
 - d) continuous only at x = 0.
- 11) Consider the function $f(x) = |x 2| + |x 5|, x \in \mathbb{R}$.

Statement-1: f'(4) = 0

Statement-2: f is continuous in [2,5], differentiable in (2,5) and f (2) = f (5). [2012]

- a) Statement-1 is false, Statement-2 is true.
- b) Statement-1 is true, Statement-2 is true; Statement-2 is correct explanation for Statement-1.
- c) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1.
- d) Statement-1 is true, Statement-2 is false.

12)

$$\lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x}$$

is equal to:

[JEE M 2013]

a) $-\frac{1}{4}$

b) $\frac{1}{2}$

c) 1

d) 2

13)

$$\lim_{x \to 0} \frac{\sin\left(\pi \cos^2 x\right)}{x^2}$$

is equal to: [JEE M 2014]

a) $-\pi$

b) π

c) $\frac{\pi}{2}$

d) 1

14)

$$\lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x}$$

is equal to:

[JEE M 2015]

a) 2

b) $\frac{1}{2}$

c) 4

d) 3

15) If the function

$$g(x) = \begin{cases} x & , 0 \le x \le 3\\ mx + 2 & , 3 < x \le 5 \end{cases}$$

is differentiable, then the value of k+m

is:

[JEE M 2015]

a) $\frac{10}{3}$

b) 4

c) 2

d) $\frac{16}{5}$