Алгебра ДЗ 1

Гольдберг Дмитрий Максимович

Группа БПМИ248

Докажите, что формула $m \circ n = 3mn - 3m - 3n + 4$ задаёт бинарную операцию на множестве $\mathbb{R} \setminus \{1\}$ и что $(\mathbb{R} \setminus \{1\}, \circ)$ является группой.

Решение:

Покажем, что данная формула задаёт отображение $\mathbb{R} \setminus \{1\} \times \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{1\}$. Для этого возьмём два произвольных элемента из $\mathbb{R} \setminus \{1\}$ и посмотрим, может ли их произведение равняться 1.

$$\begin{aligned} 3ab - 3a - 3b + 4 &= 1 \\ ab - a - b + 1 &= 0 \\ a \cdot (b - 1) - (b - 1) &= 0 \\ (b - 1) \cdot (a - 1) &= 0 \Longleftrightarrow \begin{bmatrix} a &= 1 \\ b &= 1 \end{bmatrix} \end{aligned}$$

Но $a,b \in \mathbb{R} \setminus \{1\}$ значит произведение никогда не равняется 1. Значит данная формула задаёт бинарную операцию. Теперь докажем, что это группа:

 $(a \circ b) \circ c = (3ab - 3a - 3b + 4) \circ c = 9abc - 9ac - 9bc + 9c - 9ab + 9a + 9b - 8$

$$a\circ (b\circ c)=a\circ (3bc-3b-3c+4)=9abc-9ac-9bc+9c-9ab+9a+9b-8$$
 значит есть ассоциативность
$$e=\frac{4}{3}$$

$$a\circ e=4a-3a-3\cdot\frac{4}{3}+4=a$$

$$e\circ a=3\cdot\frac{4}{3}a-3\cdot\frac{4}{3}-3a+4=a$$

есть нейтральный элемент

$$a \circ a^{-1} = 3a \cdot a^{-1} - 3a - 3a^{-1} + 4 = \frac{4}{3} \Rightarrow a^{-1} = \frac{9a - 8}{9a - 9}$$

$$a^{-1} \cdot a = 3a \cdot \frac{9a - 8}{9a - 9} - 3 \cdot \frac{9a - 8}{9a - 9} - 3a + 4 = \frac{4}{3}$$

$$\Rightarrow a^{-1} = \frac{9a - 8}{9a - 9} - \text{обратный элемент}$$

Все три аксиомы выполняются, значит это группа.

Ответ:

ч.т.д

Пусть G — группа из предыдущего задания. Определите все значения параметра $a\geqslant 1, a\in \mathbb{R},$ при которых подмножество $H_a=\{x\in \mathbb{R}\mid x>a\}$ является подгруппой в G.

Решение:

Пусть $x_1, x_2 > a; x_1, x_2 \in H_a$

При найденом $a,\,e=\frac{4}{3}\in H_a$

$$x^{-1} = \frac{9x - 8}{9x - 9} \geqslant \frac{9 \cdot \frac{4}{3} - 8}{9 \cdot \frac{4}{3} - 9} = \frac{4}{3} \Rightarrow x^{-1} \in H_a$$

Три аксиомы подгруппы выполняются при $a \in (1, \frac{4}{3})$.

Ответ:

 $a \in \left(1, \frac{4}{3}\right)$

Для каждого элемента группы ($\mathbb{Z}_{17}\setminus\{0\},\times$) найдите его порядок и его обратный элемент.

Решение:

Заметим, что порядок каждого элемента делит $\varphi(17) = 16$, поэтому порядки будем искать среди делителей 16. Пойдём по порядочку:

- 1. $\operatorname{ord}(1) = 1, 1^{-1} = 1$
- 2. $\operatorname{ord}(2) = 8, 2^{-1} = 9$
- 3. $\operatorname{ord}(3) = 16, 3^{-1} = 6$
- 4. $\operatorname{ord}(4) = 4, 4^{-1} = 13$
- 5. $\operatorname{ord}(5) = 16, 5^{-1} = 7$
- 6. $\operatorname{ord}(6) = 16, 6^{-1} = 3$
- 7. $\operatorname{ord}(7) = 16, 7^{-1} = 5$
- 8. $\operatorname{ord}(8) = 8, 8^{-1} = 15$
- 9. $\operatorname{ord}(9) = 8, 9^{-1} = 2$
- 10. $\operatorname{ord}(10) = 16, 10^{-1} = 12$
- 11. $\operatorname{ord}(11) = 16, 11^{-1} = 14$
- 12. $\operatorname{ord}(12) = 16, 12^{-1} = 10$
- 13. $\operatorname{ord}(13) = 4, 13^{-1} = 4$
- 14. $\operatorname{ord}(14) = 16, 14^{-1} = 11$
- 15. $\operatorname{ord}(15) = 8, 15^{-1} = 8$
- 16. $\operatorname{ord}(16) = 2, 16^{-1} = 16$

Ответ:

см. решение

Докажите, что всякая подгруппа циклической группы является циклической.

Решение:

Пусть G — циклическая группа. $H \subseteq G$. Покажем, что H является циклической. Пусть $G = \langle g \rangle$ для некоторого $g \in G$. Если $g \in H$, то H является циклической и g её образующий элемент. Далее пусть $g \notin H$. Заметим, что каждый элемент из H можно представить как g^m . Рассмотрим множество $H_k = \{k \in \mathbb{N} \mid g^k \in H\}$. Если H_k пустое, то $H = \{e\}$ —циклическая. Иначе в H_k можно выбрать минимальный элемент d. С одной стороны, $\langle g^d \rangle \subseteq H$. С другой стороны, рассмотрим произвольный элемент $h = g^k \in H$ и поделим k на d с остатком. Тогда $k = ud + r, 0 \leqslant r < d$. Тогда $g^r = g^{k-ud} = g^k (g^d)^{-u} \in H$. Так как d — минимальное такое число, что $g^d \in H$ и $0 \leqslant r < d$, то r может равняться только нулю. Значит $k = ud \Rightarrow h = g^{ud} = (g^d)^u$. То есть произвольный элемент из H есть степень g^d . Значит $H \subseteq \langle g^d \rangle \Rightarrow H = \langle g^d \rangle \Rightarrow H$ циклическая.

Ответ:

ч.т.д