

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:		
Mallory	thar like	

UB Person Number:

5 0 2 3 1 7 0	3
1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0	© 1 2 3 4 5 6 7 3 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & 0 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & -3 & -6 & 0 \end{bmatrix} \xrightarrow{3} \begin{bmatrix} x_1 & x_2 & x_3 & x_3 & x_3 & x_4 & x_5 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 6 & 6 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} x_1 & x_2 & x_3 & x_3 & x_4 & x_5 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 6 & 6 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_5 \\ 0 & 0 & 0 & 6 & 6 \\ 0 & 0 & 0 & 6 & 6 \end{bmatrix}$$

$$1) \times_{1} \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \times_{2} \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} + \times_{3} \begin{bmatrix} 1 \\ 7 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & | & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & | & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 & | & 0 & 0 & | & 0 &$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 6 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \qquad A^{T} C = B \qquad \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

C= | 1.3 3 | |

$$C_{11} + C_{21} = 1 \qquad C_{11} = 1 - C_{21}$$

$$-C_{11} + 2C_{31} = 4$$

$$-C_{11} + C_{21} - C_{31} = 3 \qquad 2(1 - C_{21}) + C_{21}$$

(32 = 2 - Cin

$$1-24i=3$$

 $-26i=7$ $6i=\frac{7}{6}$
 $6i=\frac{7}{6}$
 $6i=\frac{7}{6}$

1-24=3
-26=2 (21=-1=) (21=-1) but it (mostly) worked.

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

6)
$$T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$$
 $U = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 0 & 4 \\ 1 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 0 & 4 \\ 1 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 0 & 4 \\ 1 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 0 & 4 \\ 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ 0 & 4$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A : \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 9 \\ 3 & 9 & 9 \end{bmatrix} \times - \begin{bmatrix} 1 & 1 & 0 & 1 & 3 \\ 0 & 1 & 2 & 2 \\ 3 & 9 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 & 9 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 7 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 32 & 78 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 7 \\ 6 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 7 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$
 $\Rightarrow \begin{bmatrix} x_1 & x_2 & 0 \\ 0 & 2x_2 & 9x_5 \\ 3x_1 & 9x_2 & 2x_3 \end{bmatrix}$

$$A : \begin{bmatrix} 0 & 10 \\ 0 & 0 \\ 3 & 42 \end{bmatrix} 1 - 2 \begin{bmatrix} 1 & 16 \\ 6 & 12 \\ 3 & 42 \end{bmatrix} 1 - 2 \begin{bmatrix} 1 & 10 \\ 0 & 12 \\ 0 & 12 \end{bmatrix} 1$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 + 1 + 0 & 3 \\ 0 + 2 + 0 & 2 \\ 6 + 1 + 0 & 10 \end{bmatrix}$$

$$x_1 + x_2 = 2$$
 $x_1 = 2 - x_2$

$$2x_{2} + 4x_{3} = 6$$

$$3x_{1} + 4x_{2} + 2x_{3} = 9$$

$$3(2-x_{1})+4x_{1}+2x_{3}=9$$

$$6-3x_{1}+4x_{1}+2x_{3}=9$$

$$x_{2}+2x_{3}=3$$

$$\begin{bmatrix} 1 & 1 & 0 & | & 2 \\ & 0 & 1 & 2 & | & 3 \\ & 0 & 1 & 2 & | & 9 \end{bmatrix}$$

V17 V2 ?

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

True, linear combination?

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True, if set of regles is linerly independent,

then {v, v} one also linerly independent is long

15 v or v one not a scalar multiple of the other?

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in $\mathrm{Span}(v, w)$ then T(u) must be in $\mathrm{Span}(T(v), T(w))$.

True by linear combination?