Problem set 4

Problem 1. For the following linear transformations $T: V \to W$, β a basis of V and γ a basis of W, find $[T]^{\gamma}_{\beta}$.

- (i) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be given by $T(x_1, x_2, x_3, x_4)^t = (x_1, x_1 + x_2, x_1 + x_2 + x_3, x_1 + x_2 + x_3 + x_4)^t$ and $\beta = \gamma$ is the standard basis of \mathbb{R}^4 .
- (ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation of the plane around the origin counter-clockwise by angle θ and $\beta = \gamma$ be the standard basis on \mathbb{R}^2 .
- (iii) Let $\operatorname{tr}: M_{2\times 2}(F) \to F$ be the **trace map** defined by $\operatorname{tr} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$, $\beta = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$ and $\gamma = \{1\}$.

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ and } \gamma = \{1\}.$$

Problem 2. Let $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ be the linear transformation Tf = f' - f where f' is the usual derivative.

- (i) Find $[T]^{\beta}_{\beta}$ for $\beta = \{1, x, x^2, x^3\}$.
- (ii) Find $\ker T$.
- (iii) Show that $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ surjective. You can either use Corollary 4.15 or directly verify.

Remark 1. (ii) and (iii) means that for any polynomial p of degree ≤ 3 , the ODE f'-f=p always has a unique solution given by $f=T^{-1}(p)$ and f is also a polynomial of degree ≤ 3 .

Problem 3. We assume all vector spaces to be finite dimensional.

- (i) Let $T:V\to W$ be an isomorphism and $U\subset V$ be a subspace. We know from Homework 3 that T(U) is a subspace of W. Show that $\dim T(U) = \dim U$.
- (ii) Let $S,T:V\to V$ be linear transformations. Suppose ST is invertible. Show that S and T are both invertible.
- (iii) Let $R, S, T: V \to V$ be linear transformations. Suppose $RST = id_V$. Show that S is invertible and $S^{-1} = TR$. Hint: first show that R, T are invertible and then $S = R^{-1}T^{-1}$.

Problem 4. Let V be a finite-dimensional vector space and $U, W \subseteq V$ be subspaces. Define the map $\varphi: U \to (U+W)/W$, $\varphi(u) = u+W$.

- (i) Show that φ is a linear transformation.
- (ii) Find ker φ .
- (iii) Prove that φ is surjective. Hint: show that any element in (U+W)/W can be written as u + W for some $u \in U$.
- (iv) Show that $U/(U \cap W) \cong (U+W)/W$ by applying the First Isomorphism Theorem, Theorem 4.13 on φ .
- (v) Show that $\dim U \dim(U \cap W) = \dim(U + W) \dim W$ using Theorem 3.16 proved in class.

Remark 2. (iv) is called the Second Isomorphism Theorem for vector spaces. It gives an alternative proof of Theorem 3.1 as shown in (v).