

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/783,495	02/20/2004	Yung-Cheng Chen	N1085-00251 [TSMC2003-083]	2148
54657	7590	09/15/2009	EXAMINER	
DUANE MORRIS LLP (TSMC)			NORTON, JENNIFER L	
IP DEPARTMENT			ART UNIT	PAPER NUMBER
30 SOUTH 17TH STREET			2121	
PHILADELPHIA, PA 19103-4196			MAIL DATE	DELIVERY MODE
			09/15/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/783,495	CHEN ET AL.	
	Examiner	Art Unit	
	Jennifer L. Norton	2121	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 25 August 2009.
 2a) This action is **FINAL**. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1 and 3-22 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1 and 3-22 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 06 August 2004 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____. | 6) <input type="checkbox"/> Other: _____ . |

DETAILED ACTION

1. The following is a **Non-Final Office Action** in response to the Request for Continued Examination filed on 25 August 2009. Claims 1 and 12 has been amended. Claims 1 and 3-22 are pending in this application.

Response to Arguments

2. Applicant's arguments, see Remarks pgs. 6-11, filed 25 August 2009 with respect to claims 1 and 3-22 under 35 U.S.C. 103(a) have been considered but they are not persuasive.

3. The Examiner recognizes ambiguity with the Applicant's statement, "The Examiner acknowledged that amended claims 1 and 12 are distinguished from Park (U.S. Patent No. 6,825,912 B2) and Lensing (U.S. Patent No. 6,630,362 B1) has been relied upon for controlling the exposure opposed to the exposure time as taught in Park, but Lensing does not make up for the above-stated and acknowledged deficiencies of Park." The Examiner acknowledges in the Interview statements were made with respect to: 1) the incorporation of the limitation of "the top layer being a non-photoresist layer" in amended claims presented during the interview were distinguishable from Park and Lensing and 2) the combination of Park and Lensing has been relied upon for controlling the exposure energy; but respectfully did not make any acknowledgement that Lensing does not make up for the deficiencies of Park with respect to teaching exposure energy.

4. The Examiner emphasizes that all anticipated components and limitations of pending claims are present in the prior art as supported below. In addition, the Examiner notes the limitation of "the top layer being a non-photoresist layer" was newly presented in the Request for Continued Examination received on 25 August 2009 by the Office, and has been addressed as set forth in the Office Action below.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. Claims 1, 3, 4 and 9-11 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent No. 6,825,912 B2 (hereinafter Park) in view of U.S. Patent No. 6,630,362 B1 (hereinafter Lensing) in further view of 6,532,428 (hereinafter Toprac).

7. As per claim 1, Park teaches a method for controlling exposure on a patterned wafer substrate, comprising the steps of:

controlling the exposure (col. 2, lines 50-55, col. 3, lines 26-28 and col. 8, lines 43-46) with a feedback process control signal (col. 3, lines 40-51, col. 4, lines 66-67,

col. 5, lines 1-3, col. 8, lines 56-59 and Fig. 1, element 30) of critical dimension (col. 5, lines 35-50; i.e. line width),

and further controlling the exposure (col. 2, lines 50-55, col. 3, lines 26-28 and col. 8, lines 43-46) with a feed forward process control signal (col. 3, lines 21-25 and 29-39, col. 5, lines 13-18 and col. 8, lines 47-55 and Fig. 1, element 10) of a compensation amount that compensates for thickness variations (col. 7, lines 35-45, 53-56 and 62-67, col. 8, lines 1-11 and Fig. 1, element 40) in a subjacent layer beneath a top layer (col. 3, lines 21-24, col. 4, lines 59-62 and col. 5, lines 13-18; i.e. a silicon-nitride film formed in the pre-exposure process), by combining the feed forward process control signal with the feedback process control signal (col. 3, lines 18-20 and 51-59 and col. 8, lines 60-63) to control the exposure (col. 3, lines 60-65 and col. 8, lines 43-46) used in patterning the top layer (col. 3, lines 21-24, col. 4, lines 63-66 and col. 5, lines 13-27; i.e. a photoresist formed in the photo-exposure process), the critical dimension being one of a width, a spacing and an opening of the patterned wafer substrate (col. 5, lines 40-43).

Park does not expressly teach to exposure energy (per definition of exposure energy on pg. 1, par. [0002] of Applicant's Specification), and the top layer being a non-photoresist layer.

Lensing teaches to controlling the exposure energy in semiconductor manufacturing (col. 6, lines 56-67; i.e. controlling the exposure energy of the stepper).

Lensing does not expressly teach a top layer being a non-photoresist layer.

Toprac teaches to a top layer being a non-photoresist layer (col. 3, lines 63-66, col. 4, lines 26-31 and col. 5, lines 64-66; i.e. polysilicione gate (poly-gate)).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of applicant's invention to modify the teaching of Park to include controlling the exposure energy in semiconductor manufacturing to detect variations and adjust parameters of equipment in the manufacture of semiconductors to correct nonconformity (Lensing: col. 7, lines 23-32); and a top layer being a non-photoresist layer to provide a method and apparatus for performing automatic calibration of critical dimension metrology tool (Toprac: col. 1, lines 9-11) for minimization of errors to ensure that the multiple layers of semiconductor devices (Toprac: col. 1, lines 41-43).

8. As per claim 3, Park teaches as set forth above supplying the feed forward process control signal by a feed forward controller (col. 5, lines 13-18 and Fig. 1, element 40).

9. As per claim 4, Park teaches as set forth above the subjacent layer comprises an interlayer (col. 3, lines 21-24 and col. 5, lines 13-18; i.e. a silicon-nitride film of a reflection barrier layer).

10. As per claim 9, Park teaches as set forth above calculating the compensation amount according to a polynomial function with higher order coefficients set at zero (col. 7, lines 35-45, 53-56 and 62-67 and col. 8, lines 1-11).

11. As per claim 10, Park teaches as set forth above calculating the compensation amount according to a linear function (col. 7, lines 35-45, 53-56 and 62-67 and col. 8, lines 1-11).

12. As per claim 11, Park teaches as set forth above further comprising the steps calculating the compensation amount according to a segmented linear function (col. 7, lines 35-45, 53-56 and 62-67 and col. 8, lines 1-11).

13. Claims 5-8 and 12-22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Park in view of Lensing in further view of Toprac and U.S. Patent No. 6,798,529 (hereinafter Saka).

14. As per claim 5, Park teaches controlling the exposure energy (col. 2, lines 50-55, col. 3, lines 26-28 and col. 8, lines 43-46) by a feed forward process control signal utilizes a signal measurement of thickness (col. 3, lines 21-24 and col. 5, lines 13-27; i.e. a silicon-nitride film of a reflection barrier layer).

Park does not expressly teach a measurement of thickness remaining of the interlayer after chemical mechanical planarization thereof.

Lensing nor Toprac expressly teach a measurement of thickness remaining of the interlayer after chemical mechanical planarization thereof.

Saka teaches to a measurement of thickness remaining of the interlayer after chemical mechanical planarization thereof (col. 8, lines 61-63 and col. 13, lines 27-33).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of Applicant's invention to modify the teaching of Park in view of Lensing in further view of Toprac to include a measurement of thickness remaining of the interlayer after chemical mechanical planarization thereof to continuously and in-situ, monitor localized regions of a wafer surface during the chemical mechanical planarization process (col. 5, lines 38-40).

15. As per claim 6, Park teaches calculating the compensation amount according to a polynomial function with a coefficient of the function (col. 7, lines 35-45, 53-56 and 62-67, col. 8, lines 1-11) being based on a measurement of a thickness (col. 5, lines 13-18, col. 7, lines 20-27 and col. 10, lines 5-9).

Park does not expressly teach a measurement of a remaining thickness of a planarized interlayer.

Lensing nor Toprac expressly teach a measurement of a remaining thickness of a planarized interlayer.

Saka teaches to a measurement of a remaining thickness of a planarized interlayer (col. 8, lines 61-63 and col. 13, lines 27-33).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of Applicant's invention to modify the teaching of Park in view of Lensing in further view of Toprac to include a measurement of a remaining thickness of a planarized interlayer to continuously and in-situ, monitor localized regions of a wafer surface during the chemical mechanical planarization process (col. 5, lines 38-40).

16. As per claim 7, Park teaches to calculating the feedback process control signal of critical dimension measurement of a layer (col. 5, lines 35-50; i.e. line width).

Park does not expressly teach calculating the feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot.

Lensing nor Toprac expressly teach calculating the feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot.

Saka teaches to calculating the feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot (col. 12, lines 32-35).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of Applicant's invention to modify the teaching of Park in view of Lensing in further view of Toprac to include calculating the feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot to continuously and in-situ, monitor localized regions of a wafer surface during the chemical mechanical planarization process (col. 5, lines 38-40).

17. As per claim 8, Park teaches calculating the compensation amount according to a polynomial function with a coefficient of the function (col. 7, lines 35-45, 53-56 and 62-67, col. 8, lines 1-11) being based on a measurement of a thickness of the subjacent layer (col. 3, lines 21-24 and col. 5, lines 13-18; i.e. a silicon-nitride film of a reflection barrier layer); and calculating the feedback process control signal of critical dimension measurement (col. 5, lines 35-50; i.e. line width).

Park does not expressly teach a measurement of a remaining thickness of the subjacent layer, the subjacent layer being a planarized layer and to calculating the feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot.

Lensing nor Toprac expressly teach a measurement of a remaining thickness of the subjacent layer, the subjacent layer being a planarized layer and to calculating the

feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot.

Saka teaches to a measurement of a remaining thickness of the subjacent layer (col. 8, lines 61-63 and col. 13, lines 27-33), the subjacent layer being a planarized layer (col. 8, lines 61-63 and col. 13, lines 27-33) and to calculating the feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot (col. 12, lines 32-35).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of Applicant's invention to modify the teaching of Park in view of Lensing in further view of Toprac to include a measurement of a remaining thickness of the subjacent layer, the subjacent layer being a planarized layer and to calculating the feedback process control signal of critical dimension measurement of a top layer in a previous manufacturing lot to continuously and in-situ, monitor localized regions of a wafer surface during the chemical mechanical planarization process (col. 5, lines 38-40).

18. As per claim 12, Park teaches a system for controlling exposure on a first patterned wafer substrate, comprising:

a feed forward controller (Fig. 1, element 40) providing a feed forward control signal (col. 5, lines 13-18) to an exposure apparatus (col. 8, lines 27-30 and Fig. 1,

element 50) based on a thickness measurement of an interlayer of the first patterned wafer substrate for controlling the exposure focused on a top layer of the first patterned wafer substrate (col. 2, lines 50-55, col. 3, lines 26-28 and col. 8, lines 43-46), and

a feedback controller (col. 5, lines 38-39 and Fig. 1, element 60) providing a feedback exposure control signal (col. 5, lines 35-38 and Fig. 1, element 30) to the exposure apparatus (col. 8, lines 27-30 and Fig. 1, element 50) based on critical dimension measurement of a top layer of a patterned wafer substrate (col. 5, lines 35-50), the critical dimension being one of a width, a spacing and an opening of the patterned wafer substrate (col. 5, lines 40-43) wherein a combiner (col. 3, lines 18-21, col. 8, lines 27-30 and 60-63 and Fig. 1, element 70) combines the feed forward control signal and the feedback exposure control signal to produce a combined signal that is provided to the exposure apparatus (col. 3, lines 25-27 and 60-65 and col. 8, lines 27-30 and 43-46).

Park does not expressly teach exposure energy (per definition of exposure energy on pg. 1, par. [0002] of Applicant's Specification), a critical dimension measurement of a top layer of a second patterned wafer substrate of a previous manufacturing lot, and the top layer being a non-photoresist layer.

Lensing teaches to controlling the exposure energy in semiconductor manufacturing (col. 6, lines 56-67; i.e. controlling the exposure energy of the stepper).

Lensing does not expressly teach a critical dimension measurement of a top layer of a second patterned wafer substrate of a previous manufacturing lot and a top layer being a non-photoresist layer.

Toprac teaches to a top layer being a non-photoresist layer (col. 3, lines 63-66, col. 4, lines 26-31 and col. 5, lines 64-66; i.e. polysilicione gate (poly-gate)).

Toprac does not expressly teach a critical dimension measurement of a top layer of a second patterned wafer substrate of a previous manufacturing lot.

Saka teaches to a critical dimension measurement of a top layer of a second wafer substrate (col. 12, lines 25-28 and col. 33, lines 4-5) of a previous manufacturing lot (col. 6, lines 58-60, col. 9, lines 28-33 and col. 12, lines 32-35).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of Applicant's invention to modify the teaching of Park to include controlling the exposure energy in semiconductor manufacturing to detect variations and adjust parameters of equipment in the manufacture of semiconductors to correct nonconformity (Lensing: col. 7, lines 23-32); a top layer being a non-photoresist layer to provide a method and apparatus for performing automatic calibration of critical dimension metrology tool (Toprac: col. 1, lines 9-11) for minimization of errors to ensure that the multiple layers of semiconductor devices (Toprac: col. 1, lines 41-43); and a critical dimension measurement of a top layer of a second patterned wafer

Art Unit: 2121

substrate of a previous manufacturing lot to continuously and in-situ, monitor localized regions of a wafer surface during the chemical mechanical planarization process (Saka: col. 5, lines 38-40).

19. As per claim 13, Park teaches as set forth above a thickness measurement device (col. 5, lines 13-16 and Fig. 1, element 10) providing thickness measurement data to the feed forward controller (col. 5, lines 16-18 and Fig. 1, element 40).

20. As per claim 14, Park teaches as set forth above a critical dimension measurement device (col. 5, lines 35-38 and Fig. 1, element 30) providing critical dimension measurement data to the feedback controller (col. 5, lines 38-39 and Fig. 1, element 60).

21. As per claim 15, Park teaches as set forth above thickness measurement device (col. 5, lines 13-16 and Fig. 1, element 10) providing thickness measurement data to the feed forward controller (col. 5, lines 16-18 and Fig. 1, element 40) and a critical dimension measurement device (col. 5, lines 35-38 and Fig. 1, element 30) providing critical dimension measurement data to the feedback controller (col. 5, lines 38-39 and Fig. 1, element 60).

22. As per claim 16, Park teaches a thickness measurement device (col. 5, lines 13-16 and Fig. 1, element 10) providing thickness measurement data of layer (col. 3, lines 21-24 and col. 5, lines 13-18; i.e. a silicon-nitride film of a reflection barrier layer) of the first patterned wafer substrate to the feed forward controller (col. 5, lines 16-18 and Fig. 1, element 40).

Park does not expressly teach a thickness measurement device providing thickness measurement data of a shallow trench isolation layer of the first patterned wafer substrate to the feed forward controller.

Lensing teaches a thickness measurement device (col. 6, lines 22-37 and Fig. 6, element 540) providing thickness measurement of a patterned wafer substrate (col. 7, lines 23-27).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of applicant's invention to modify the teaching of Park to include a thickness measurement device providing thickness measurement of a patterned wafer substrate to detect variations and adjust parameters of equipment in the manufacture of semiconductors to correct nonconformity (col. 7, lines 23-32).

23. As per claim 17, Park teaches a critical dimension measurement device (Fig. 1, element 30) providing critical dimension measurement data (i.e. line width) of a poly-gate of wafer substrate (col. 5, lines 35-50).

Park does not expressly teach a critical dimension measurement device providing critical dimension measurement data of a poly-gate of wafer substrate of a previous manufacturing lot.

Lensing does not expressly teach a critical dimension measurement device providing critical dimension measurement data of a poly-gate of wafer substrate of a previous manufacturing lot.

Toprac teaches to providing critical dimension measurement data of a poly-gate (col. 3, lines 63-66, col. 4, lines 26-31 and col. 5, lines 64-66; i.e. polysilicicon gate (poly-gate)).

Toprac does not expressly teach a critical dimension measurement device providing critical dimension measurement data of a poly-gate of wafer substrate of a previous manufacturing lot.

Saka teaches a critical dimension measurement device providing critical dimension measurement data of a poly-gate of wafer substrate (col. 12, lines 25-28 and col. 33, lines 4-5) of a previous manufacturing lot (col. 6, lines 58-60, col. 9, lines 28-33 and col. 12, lines 32-35).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of applicant's invention to modify the teaching of Park in view of Lensing in further view of Toprac to include a critical dimension measurement device providing

critical dimension measurement data of a poly-gate of wafer substrate of a previous manufacturing lot to continuously and in-situ, monitor localized regions of a wafer surface during the chemical mechanical planarization process (col. 5, lines 38-40).

24. As per claim 18, Park teaches a thickness measurement device (col. 5, lines 13-16 and Fig. 1, element 10) providing thickness measurement data of layer (col. 3, lines 21-24 and col. 5, lines 13-18; i.e. a silicon-nitride film of a reflection barrier layer) of the first patterned wafer substrate to the feed forward controller (col. 5, lines 16-18 and Fig. 1, element 40), and

a critical dimension measurement device (Fig. 1, element 30) providing critical dimension measurement data (i.e. line width) of a poly-gate (col. 5, lines 35-50).

Park does not expressly teach a thickness measurement device providing thickness measurement data of a shallow trench isolation layer of the first patterned wafer substrate to the feed forward controller and a critical dimension measurement device providing critical dimension measurement data of a poly-gate of a previous manufacturing lot.

Lensing teaches a thickness measurement device (col. 6, lines 22-37 and Fig. 6, element 540) providing thickness measurement of a patterned wafer substrate (col. 7, lines 23-27).

Lensing does not expressly teach a critical dimension measurement device providing critical dimension measurement data of a poly-gate of a previous manufacturing lot.

Toprac teaches to providing critical dimension measurement data of a poly-gate (col. 3, lines 63-66, col. 4, lines 26-31 and col. 5, lines 64-66; i.e. polysilicium gate (poly-gate)).

Toprac does not expressly teach providing critical dimension measurement data of a poly-gate of a previous manufacturing lot.

Saka teaches a critical dimension measurement device providing critical dimension measurement data of a poly-gate of wafer substrate (col. 12, lines 25-28 and col. 33, lines 4-5) of a previous manufacturing lot (col. 6, lines 58-60, col. 9, lines 28-33 and col. 12, lines 32-35).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of applicant's invention to modify the teaching of Park to include a thickness measurement device providing thickness measurement of a patterned wafer substrate to detect variations and adjust parameters of equipment in the manufacture of semiconductors to correct nonconformity (Lensing: col. 7, lines 23-32); providing critical dimension measurement data of a poly-gate to provide a method and apparatus for performing automatic calibration of critical dimension metrology tool (Toprac: col. 1,

lines 9-11) for minimization of errors to ensure that the multiple layers of semiconductor devices (Toprac: col. 1, lines 41-43); and a critical dimension measurement device providing critical dimension measurement data of a poly-gate of wafer substrate of a previous manufacturing lot to continuously and in-situ, monitor localized regions of a wafer surface during the chemical mechanical planarization process (Saka: col. 5, lines 38-40).

25. As per claim 19, Park teaches as set forth above the feed forward controller is user configurable by having one or more polynomial coefficients set to zero in a polynomial function model (col. 7, lines 35-45, 53-56 and 62-67 and col. 8, lines 1-11).

26. As per claim 20, Park teaches as set forth above the feed forward controller is user configurable by having one or more polynomial coefficients set to zero in a polynomial function model (col. 7, lines 35-45, 53-56 and 62-67 and col. 8, lines 1-11).

27. As per claim 21, Park teaches a thickness measurement device (col. 5, lines 13-16 and Fig. 1, element 10) providing thickness measurement data of layer (col. 3, lines 21-24 and col. 5, lines 13-18; i.e. a silicon-nitride film of a reflection barrier layer) of the first patterned wafer substrate to the feed forward controller (col. 5, lines 16-18 and Fig. 1, element 40).

Park does not expressly teach a thickness measurement device providing thickness measurement data of a shallow trench isolation layer of the first patterned wafer substrate to the feed forward controller.

Lensing teaches a thickness measurement device (col. 6, lines 22-37 and Fig. 6, element 540) providing thickness measurement of a patterned wafer substrate (col. 7, lines 23-27).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of applicant's invention to modify the teaching of Park to include a thickness measurement device providing thickness measurement of a patterned wafer substrate to detect variations and adjust parameters of equipment in the manufacture of semiconductors to correct nonconformity (col. 7, lines 23-32).

28. As per claim 22, Park teaches a critical dimension measurement device (Fig. 1, element 30) providing critical dimension measurement data (i.e. line width) of a poly-gate of a wafer substrate (col. 5, lines 35-50).

Park does not expressly teach a critical dimension measurement device providing critical dimension measurement data of a poly-gate of the second patterned wafer substrates of a previous manufacturing lot.

Lensing does expressly teach a critical dimension measurement device providing critical dimension measurement data of a poly-gate of the second patterned wafer substrates of a previous manufacturing lot.

Toprac teaches to providing critical dimension measurement data of a poly-gate (col. 3, lines 63-66, col. 4, lines 26-31 and col. 5, lines 64-66; i.e. polysilicium gate (poly-gate)).

Toprac does not expressly teach a critical dimension measurement device providing critical dimension measurement data of a poly-gate of the second patterned wafer substrates of a previous manufacturing lot.

Saka teaches a critical dimension measurement device providing critical dimension measurement data of a poly-gate of the second patterned wafer substrates (col. 12, lines 25-28 and col. 33, lines 4-5) of a previous manufacturing lot (col. 6, lines 58-60, col. 9, lines 28-33 and col. 12, lines 32-35).

Therefore, it would have been obvious to a person of ordinary skill in the art at the time of applicant's invention to modify the teaching of Park in view of Lensing in further view of Toprac to include a critical dimension measurement device providing critical dimension measurement data of a poly-gate of the second patterned wafer substrates of a previous manufacturing lot to continuously and in-situ, monitor localized

regions of a wafer surface during the chemical mechanical planarization process (Saka: col. 5, lines 38-40).

Conclusion

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

The following references are cited to further show the state of the art with respect to manufacturing semiconductors.

U.S. Patent No. 5,913,102 discloses a method for forming a patterned photoresist layer within an integrated circuit.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jennifer L. Norton whose telephone number is (571)272-3694. The examiner can normally be reached on Monday-Friday between 9:00 a.m. - 5:30 p.m..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Albert Decay can be reached on 571-272-3819. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Albert DeCady/
Supervisory Patent Examiner
Art Unit 2121

/JLN/