ΤΗΛ 301 - ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 1

XEIMEPINO EEAMHNO 2019-2020

Εργαστηριακή Άσκηση 1

ΜΑΝΕΣΗΣ ΑΘΑΝΑΣΙΟΣ ΑΜ: 2014030061

A. Μοντελοποίηση αποκομμένων παλμών SRRC

Α1. Δημιουργήθηκαν παλμοί SRRC από την συνάρτηση που μας δόθηκε, χρησιμοποιώντας παραμέτρους T=0.01sec, over=10, A=4 και a=0,0.5,1.

```
%Part A
%A.1
T = 10.^{-2};
over = 10;
Ts = T/over;
A = 4;
%roll-off a for a = 0 0.5 1
[phiA,tA] = srrc pulse(T, Ts, A, 0);
[phiB,tB] = srrc pulse(T, Ts, A, 0.5);
[phiC,tC] = srrc pulse(T, Ts, A, 1);
figure (1);
%property DisplayName can be used to show described labels
plot(tA, phiA, 'DisplayName', 'a = 0');
hold on; %used for multiple plots and not delete the old ones
plot(tB, phiB, 'DisplayName', 'a = 0.5');
plot(tC, phiC, 'DisplayName', 'a = 1');
legend('show'); % visibility of legend
```


Παρατηρούμε πως με την αύξηση του α αυξάνει και το πλάτος των παλμών καθώς και η απόσβεση των καμπυλών της φθίνουσας ταλάντωσης που πραγματοποιούν τα σήματα.

Α2. Φασματική πυκνότητα ισχύος παλμών

Υπολογίστηκαν οι μετασχηματισμοί Fourier των παραπάνω παλμών. Για λόγους κανονικοποίησης ο κάθε Μ.F. πολλαπλασιάστηκε με Ts.

```
%A.2
Fs = 1/Ts; %Ts is the sampling period so Fs is the sampling
frequency
N = 2048; %length of signal(it is more effective when power of
PHIA_f = fftshift(fft(phiA,N)*Ts); %Fourier for each function
PHIB f = fftshift(fft(phiB,N)*Ts); %fftshift rearranges a
Fourier transform X by shifting the zero-frequency component to
the center of the array.
PHIC f = fftshift(fft(phiC,N)*Ts);
%Frequency vector
F= -Fs/2:Fs/N:Fs/2-Fs/N;
spectrum_A_f = abs(PHIA_f).^2;
spectrum_B_f = abs(PHIB_f).^2;
spectrum_C_f = abs(PHIC_f).^2;
%design using plot
figure(2);
plot(F, spectrum_A_f, 'DisplayName', 'a = 0');
hold on;
plot(F, spectrum B f, 'DisplayName', 'a = 0.5');
plot(F, spectrum_C_f,'DisplayName','a = 1');
legend('show');
```

```
title('Frequency domain energy spectrum SRRC pulses for
different roll-off');
xlabel('Frequency (Hz)');
ylabel('Energy spectrum of pulses');
hold off;
%desing using semilogy
%semilogy plots data with logarithmic scale
figure (3);
semilogy(F, spectrum A f, 'DisplayName', 'a = 0');
semilogy(F, spectrum B f, 'DisplayName', 'a = 0.5');
semilogy(F, spectrum_C_f,'DisplayName','a = 1');
legend('show');
title ('Semi logarithmic frequency domain energy spectrum SRRC
pulses for different roll-off');
xlabel('Frequency (Hz)');
ylabel('Energy spectrum of pulses');
hold off;
```


Α3. Εύρος φάσματος παλμών

```
%A.3
C = T/(10.^3);
C1 = T/(10.^5);

figure(4);
semilogy(F, spectrum_A_f,'DisplayName','a = 0');
hold on;
semilogy(F, spectrum_B_f,'DisplayName','a = 0.5');
semilogy(F, spectrum_C_f,'DisplayName','a = 1');

semilogy(F, c*ones(length(F)),'HandleVisibility','off');
semilogy(F, C1*ones(length(F)),'HandleVisibility','off');
title('Semi logarithmic frequency domain energy spectrum SRRC pulses for different roll-off');
xlabel('Frequency(Hz)');
ylabel('Energy spectrum of pulses');
hold off;
legend('show');
```

Το θεωρητικό εύρος φάσματος των άπειρης διάρκειας παλμών δίνεται από την σχέση BW = (1+a)/2T. Άρα:

- $\alpha=0 \rightarrow BW=50$
- $\alpha=0.5 \rightarrow BW=75$
- $\alpha=1 \rightarrow BW=100$

Επειδή γνωρίζουμε ότι οι πραγματικοί παλμοί δεν έχουν άπειρο εύρος φάσματος, στο παρακάτω γράφημα κάτω από την οριζόντια γραμμή c=T/10^3 και θεωρούμε ότι οι τιμές κάτω από αυτή είναι μηδέν.

Η απόδοση των παλμών εξαρτάται από το εύρος ζώνης. Επομένως ο παλμός για $\alpha=0$. Επίσης όμως υπάρχει εξάρτηση και από ποια γραμμή θα θεωρήσουμε το μηδέν. Οπότε δεν υπάρχει βέλτιστος παλμός για όλες τις περιπτώσεις.

Β. Ορθοκανονικότητα παλμών

Β1. Δημιουργία καθυστερημένων παλμών

Προσομοιώθηκαν όλοι οι παλμόι για a=0,0.5,1 και k=0,1,2,4 καθώς και πραγματοποιήθηκαν οι υπολογισμοί των γινομένων και των ολοκληρωμάτων.

```
for k=0:4
     % just design phi(t-kT) for k=0,1,2,4 and a=0,0.5,1
     figure
     plot(tA,phiA,'DisplayName','Aq(t)');
     hold on;
     plot(tA+k*T,phiA, 'DisplayName','ö(t-kT)');
% we compute tA+k*T because we want to shift the signal to the
right
     title(['Roll-off a=0 and k =' num2str(k)]);
     hold off;
     legend('show');
     figure
     plot(tB,phiB,'DisplayName','A¶(t)');
     hold on;
     plot(tB+k*T,phiB, 'DisplayName','Aq(t-kT)');
title(['Roll-off a=0.5 and k =' num2str(k)]);
     hold off:
     legend('show');
     figure
     plot(tC,phiC, 'DisplayName','ö(t)');
     plot(tC+k*T,phiC, 'DisplayName','A¶(t-kT)');
     title(['Roll-off a=1 and k =' num2str(k)]);
     hold off:
     legend('show');
end
```

```
for k=0:4
     figure
     phiA_kT=[zeros(1,length(0:Ts:k*T)) phiA(1:end-
length(0:Ts:k*T))];
     phiA_prod = phiA.*phiA_kT;
     plot(tA,phiA_prod, 'DisplayName', 'a=0');
     phiA_integ(k+1) = sum(phiA_prod)*Ts;
     phiB_kT=[zeros(1,length(0:Ts:k*T)) phiB(1:end-
length(0:Ts:k*T))];
     phiB_prod = phiB.*phiB_kT;
     hold on;
     plot(tB,phiB_prod, 'DisplayName', 'a=0.5');
     phiB_integ(k+1) = sum(phiB_prod)*Ts;
     %figure
     phiC_kT=[zeros(1,length(0:Ts:k*T)) phiC(1:end-
length(0:Ts:k*T))];
    phiC_prod = phiC.*phiC_kT;
     plot(tc,phic_prod, 'DisplayName','a=1');
title(['Product of Aq(t) and Aq(t-kT) when k='
num2str(k)]);
     legend('show')
     hold off;
     phiC_integ(k+1) = sum(phiC_prod)*Ts;
 disp('Integral A : '); disp(phiA_integ)
 disp('Integral A,: '); disp(phiB_integ)
 disp('Integral C: '); disp(phiC integ)
```


Τιμές Ολοκληρωμάτων για k=0,1,2,4:

Integral A: 0.9596 -0.0618 0.0135 0.0126 -0.0797 Integral B: 0.9812 -0.0667 0.0139 0.0006 -0.0015 Integral C: 0.9744 -0.0222 -0.0028 -0.0010 -0.0009

Από θεωρία γνωρίζουμε ότι για την ορθοκανονικότητα το εμβαδόν πρέπει να είναι 1. Για k=0 ικανοποιείται η ιδιότητα και όσο αυξάνει το a παρατηρούμε και μικρότερη απόκλιση.

Γ. Συστημα διαμορφωσης 2-ΡΑΜ

Γ1. Δημιουργήθηκε μια σειρά δυαδικών συμβόλων με την εντολή sign(rand(N,1)+1)/2 με σκοπό να χρησιμοποιηθεί για να παράγουμε μια 2-PAM ακολουθία.

Γ2. Η συνάρτηση παίρνει ως όρισμα μία δυαδική ακολουθία και παράγει μια function [5] = bits_to_2PAM(b) ακολουθία συμβόλων με 2-PAM ΦΕΕ ΕΓΕΝΙΡΙΑΝΙΑΝ ΑΠΕΙΚόνιση.

%Determine final length of S (Warning otherwise)
S = 1:length(b);
for n=1:length(b)|
 if b(n) ==0
 S(n) = +1;
 elseif b(n) ==1
 S(n) = -1;
 else
 disp('Error: Not a binary was given');
 return;
end

end

Input 0 → Output +1

Input 1 → Output -1

Στην συνέχεια προσομοιώθηκε το σήμα Xd(t) και έγινε η συνέλιξη του με το $\varphi(t)$ και με το $\varphi(-t)$.


```
%Orismos aksona xronou
tmin=0-A*T;
tmax=(N*T)-1+A*T;
dt=linspace(tmin,tmax,length(X delta));
%Dimiourgia plot
figure;
plot(dt, X_delta)
ylabel('X_d');
xlabel('Time');
%Dimiourgia suneliksis
Xt2=conv(ph2, X delta);
Xt3=conv(ph3,X_delta);
dt2=linspace(tmin, tmax, length(Xt2));
%Plot suneliksi
figure;
plot(dt2, Xt2, 'r')
hold on;
plot(dt2,Xt3,'b')
title('Convolution (2PAM)');
ylabel('X(t)');
xlabel('Time');
```

```
%Kataskeui Z(t)
Zt2=conv(Xt2,ph2)*Ts;
Zt3=conv(Xt3,ph3) *Ts;
tmin2=tmin-A*T;
tmax2=tmax+A*T;
dt3=linspace(tmin,tmax,length(Zt3));
%Dimiourgia plot
figure;
plot(dt3,Zt2,'b')
hold on;
plot(dt3, Zt3, 'r')
%Ektelesi stem
stem((0:N-1)*T,X);
title('Convolution (2PAM)');
ylabel('Z(t)');
xlabel('Time');
```