PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-316195

(43)Date of publication of application: 05.12.1995

(51)Int.CI.

CO7K 14/47 A61K 38/00

A61K 38/00 A61K 38/00

(21)Application number: 06-133984

(71)Applicant: NIPPON KAYAKU CO LTD

(22)Date of filing:

25.05.1994

(72)Inventor: YANAIHARA NOBORU

YAMAGUCHI KEN

TANAKA RIE OKADA MINEAKI YOKUMOTO HISAO SAINO TETSUYUKI

(54) NEW PTHRP-RELATED PEPTIDE AND USE THEREOF

(57)Abstract:

PURPOSE: To obtain a new PTHrP-related peptide useful as an antagonist for PTH, etc., and a metabolic regulator for calcium.

CONSTITUTION: A new polypeptide [desamino-Leu8, Asn10, Leu11, D-Phe(F)12]hPTHrP(8-34)NH2 having activity for antagonizing physiological action of a polypeptide having PTH or PTHrP or PTH activity or PTHrP activity but not PTHrP activity or its pharmaceutically permissible salt. An antagonist for PTH, a metabolic regulator for calcium and a therapeutic agent for hypercalcemia, osteoporosis, hyperparathyroidism, chronic renal failure following hyperPTHemia or osseous lesion following hyperPTHrPemia comprise it as an active ingredient.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-316195

(43) 公開日 平成7年(1995) 12月5日

(51) Int.Cl.

識別配号

FΙ

技術表示箇所

C07K 14/47 A61K 38/00

v

8318-4H

庁内整理番号

ACV ADF

A 6 1 K 37/02

ACV

ADF

審査請求 未請求 請求項の数9 FD (全 9 頁) 最終頁に続く

(21)出願番号

特願平6-133984

(71) 出願人 000004086

日本化薬株式会社

(22)出願日 平成6年(1994)5月25日

東京都千代田区富士見1丁目11番2号

(72)発明者 矢内原 昇

静岡県静岡市北403-22

(72) 発明者 山口 建

東京都渋谷区桜丘町11-11-301

(72)発明者 田中 理恵

千葉県佐倉市千成3-27-5

(72) 発明者 岡田 峯明

東京都北区志茂3-33-5

(72)発明者 浴本 久雄

東京都北区志茂2-11-1-803

最終頁に続く

(54) 【発明の名称】 新規なPTHrP関連ペプチド及びその用途

(57)【要約】

【目的】PTH等の拮抗薬及びカルシウム代謝調節剤として有用であり、高カルシウム血症、骨粗鬆症、副甲状腺機能亢進症、高PTH血症に伴う慢性腎不全及び高PTHrP血症に伴う骨病変等のカルシウム代謝異常を伴う病態の治療に効果のある新規なPTHrP関連ペプチドを提供すること。

【構成】PTHrP活性を有さず、PTH又はPTHrP又はPTHrPスはPTHmのとはPTHrP活性を有するポリペプチドの生理学的作用に拮抗する活性を有する新規ポリペプチドアミド[desamino-Leu 8,Asn 10,Leu 11,D-Phe(F) 12] hPTHrP(8-34)NH2又はその薬理学的に許容される塩、及び、これを有効成分とするPTH等の拮抗薬、カルシウム代謝調節剤及び高カルシウム血症、骨粗鬆症、副甲状腺機能亢進症、高PTH血症に伴う慢性腎不全又は高PTHrP血症に伴う骨病変の治療剤。

【特許請求の範囲】

【請求項1】新規ポリペプチドアミド (desamino-Leu⁸, Asn¹⁰,Leu¹¹,D-Phe(F)¹²]hPTHrP(8-34)NH₂又はその薬理 学的に許容される塩。

【請求項2】請求項1記載のポリペプチドアミド又はその薬理学的に許容される塩を有効成分とするPTH又は PTH様活性を有するポリペプチドの拮抗薬。

【請求項3】請求項1記載のポリペプチドアミド又はその薬理学的に許容される塩を有効成分とするカルシウム 代謝調節剤。

【請求項4】請求項1記載のポリペプチドアミド又はその薬理学的に許容される塩を有効成分とする高カルシウム血症治療剤。

【請求項5】請求項1記載のポリペプチドアミド又はその薬理学的に許容される塩を有効成分とする骨粗鬆症治療剤。

【請求項6】請求項1記載のポリペプチドアミド又はその薬理学的に許容される塩を有効成分とする副甲状腺機能亢進症治療剤。

【請求項7】請求項1記載のポリペプチドアミド又はその薬理学的に許容される塩を有効成分とする高PTH血症に伴う慢性腎不全治療剤。

【請求項8】請求項1配載のポリペプチドアミド又はその薬理学的に許容される塩を有効成分とする高PTHr P血症に伴う骨病変治療剤。

【請求項9】有効量の請求項1記載のポリペプチドアミド又はその薬理学的に許容される塩及び薬理学上許容される担体からなる医薬組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高カルシウム血症、骨粗鬆症及び副甲状腺機能亢進症等に対して効果を示し、医薬品として有用な新規なPTHrP関連ペプチド及びそのPTH等の拮抗薬、カルシウム代謝調節剤としての用途に関する。

[0002]

【従来の技術】血液中のカルシウム代謝調節因子には主に副甲状腺ホルモン(Parathyroid Hormone,PTH)、カルシトニン、ビタミンD、等があるが、最近 PTHと類似した作用を持つペプチド、副甲状腺ホルモン関連ペプチド(Parathyroid Hormone-related Protein, PTHrP)が発見され、その構造も明らかとなった [スパ(Suva)ら、サイエンス(Science) 第237 巻、893(1987)]。ヒトPTHrP(hPTHrP)は141 個のアミノ酸より成るポリペプチドで、そのPTHと類似した生物活性、即ち血中カルシウム濃度の上昇、骨吸収促進、血中リン濃度低下、尿中カルシウム濃度の低下、尿中cAMPの増加、腎臓でのビタミンDの1位水酸化酵素の活性化などを有することが最近報告された[ホリウチら、サイエンス(Science)第238 巻、1988;ケンプ(Kemp)ら、サイエンス(Science)第238 巻、1

988]。

【0003】PTHのアミノ末端及びカルボキシル末端を欠くフラグメント[PTH(3-34),PTH(7-34)やその誘導体]はPTHの作用を抑制することが知られているが、PTHrPはアミノ末端側の一部の構造がPTHと類似しており、PTH同様アミノ末端側の数残基を欠損するフラグメント(PTHrP(3-34))はPTHの作用を抑制することが報告されている[ラバニ(Rabbani)ら、アメリカ骨代謝学会発表、1988]。

【0004】現在、血液中のカルシウム代謝調節剤としては、カルシトニン関連ペプチドをはじめ様々な薬剤があるが、その効果は一過性のものであり有効率も低いと言われている。これは、PTHあるいはPTHrPのレセプターを介さない部分でこれらの薬剤が作用している為であり、従って、その効果にも限界があると考えられる。【0005】

【発明が解決しようとする課題】本発明は高カルシウム血症、骨粗鬆症、副甲状腺機能亢進症、高PTH血症に伴う慢性腎不全及び高PTHrP血症に伴う骨病変等のカルシウム代謝異常を伴う病態を治療できる新規なPTHrP関連ペプチドを提供することである。

[0006]

【課題を解決するための手段】本発明者らは、鋭意研究 の結果、ヒトPTHrP 活性を有さないが、ヒトPTH あるい はヒトPTHrP が結合する骨芽細胞上のレセプターに結合 し、それによってヒトPTH あるいはヒトPTHrP 活性を拮 抗する活性を有する新規なポリペプチドアミドを合成す ることに成功し、この発明を完成させた。即ち、本発明 は、(1)新規ポリペプチドアミド [desamino-Leu ⁸,As n¹⁰ ,Leu ¹¹ ,D-Phe(F) ¹²]hPTHrP(8-34)NH: 又はその薬理学 的に許容される塩、(2)上記(1)記載のポリペプチ ドアミド又はその薬理学的に許容される塩を有効成分と するPTH又はPTH様活性を有するポリペプチドの拮 抗薬、(3)上記(1)記載のポリペプチドアミド又は その薬理学的に許容される塩を有効成分とするカルシウ ム代謝調節剤、(4)上記(1)記載のポリペプチドア ミド又はその薬理学的に許容される塩を有効成分とする 髙カルシウム血症治療剤、(5)上記(1)記載のポリ ペプチドアミド又はその薬理学的に許容される塩を有効 成分とする骨粗鬆症治療剤、(6)上記(1)記載のポ リペプチドアミド又はその薬理学的に許容される塩を有 効成分とする副甲状腺機能亢進症治療剤、(7)上記 (1) 記載のポリペプチドアミド又はその薬理学的に許 容される塩を有効成分とする高PTH血症に伴う慢性腎 不全治療剤、(8)上記(1)記載のポリペプチドアミ ド又はその薬理学的に許容される塩を有効成分とする高 PTHrP血症に伴う骨病変治療剤、(9)有効量の上 記(1)記載のポリペプチドアミド又はその薬理学的に 許容される塩及び薬理学上許容される担体からなる医薬 組成物、に関する。

【0007】本発明のポリペプチドアミド又はその薬理学的に許容される塩は、PTHrP活性を有さず、PTH又はPTHrP区はPTHrP活性を有するポリペプチドの生理学的作用に拮抗する活性を有する。従って血清中のPTH又はPTHrP等の異常(高値)によるカルシウム代謝異常に起因する各種疾病、例えば高カルシウム血症、骨粗鬆症、副甲状腺機能亢進症、慢性腎不全、骨病変の治療に、本発明化合物(上記ポリペプチドアミド又はその薬理学的に許容される塩)は有用である。

【0008】薬理学的に許容される塩としては、塩酸塩、コハク酸塩、グルタル酸塩、酒石酸塩等が挙げられるが、これらに限定されるものではない。

【0009】上記(2)において、PTH様活性を有するポリペプチドととしては、PTHrPやPTHあるいはPTHrP活性を有する各種ポリペプチドが挙げられる。

【0010】上記(6)において、副甲状腺機能亢進症の結果として生じる疾患としては高カルシウム血症、骨粗鬆症等が挙げられる。

【0011】本発明の化合物(ポリペプチドアミドまた は、その薬理学的に許容される塩)は、液相法または、 固相法によるペプチド合成法を適用することにより得る ことができる。例えば、本発明の化合物は、Applied Bi osystems社製ペプチド自動合成機 model 430 Aを用 いる固相合成により行った。固相担体としてHF処理に よりペプチドアミドを遊離するp-メチルベンズヒドリ ルアミン樹脂を用い、使用アミノ酸として、αーアミノ 基を Boc基(t-ブトキシカルボニル基)、側鎖官能基 を有するアミノ酸については、全てHF (フッ化水素) 処理により除去可能な保護基を用いて保護したBoc-アミ ノ酸誘導体を用いた。合成は、Boc-アミノ酸を活性エス テル法によりC端側より順次導入して行い、ペプチド鎖 の延長を行った。なお、N末端のdesamino-Leuは、ロイ シンのαーアミノ基を水素に置換した4-メチル吉草酸の 1-ヒドロキシベンゾトリアゾールエステルを反応させて 導入した。

【0012】こうして、[desamino-Leu® Asn® Leu® D-Phe(F) 12]hPTHrP(8-34)NHb に相当する保護ポリペプチド樹脂1.0gが得られた。得られた保護ポリペプチド樹脂は、10%アニソール存在下、液体HF処理により、全保護基の除去とポリペプチド鎖の樹脂からの切断を行った。ついで、残渣を酢酸エチルで洗浄後、50%酢酸により抽出し、粗生成物444mgを得た。得られた粗ポリペプチドアミドは、50%酢酸に溶解し、YMC-Pack D-ODS-5カラム(2.0×25cm)を用い、0.01N HCl/アセトニトリル系を溶離溶媒とする直線濃度勾配法による逆相HPLCで精製した。精製ポリペプチドアミドの収量は53.3mgであった。精製ポリペプチドアミドは、分析用逆相HPLC、アミノ酸組成分析及びFAB質量分析により、その純度を検討

した。溶出カラムとして、YMC-Pack R-ODS-5カラム(0.4 6×25cm)を用い、0.01N HCI とCH 3 CN の混合比を30分間で80:20から60:40へ変化させる溶離条件において2 2.2分に鋭い単一ピークとして検出した。また、自動アミノ酸分析機(Beckman社製,Model7300)によるアミノ酸組成分析では、1%フェノール含有6N HCIによる酸分解物のアミノ酸組成値は理論値によく一致した。FAB質量分析機(JMX-SX 102 mass spectrometer, JEOL,東京)による分子量測定も計算値に一致した。

【0013】以上のことより、本発明化合物の構造は前 記の通りであることが決定された。

【0014】医薬品として使用される場合の製剤化及び 投与方法は従来既知の様々な方法が適応できる。即ち、 投与方法は注射、筋肉内埋め込みなどが可能である。製 剤形態としては製剤化の際には本発明化合物に悪影響を 与えない限り、医薬品に用いられる様々な補助剤、即ち 担体や、必要によりその他の助剤、例えば安定剤、防腐 剤、無痛化剤、乳化剤等と混合して注射剤等として使用 される。

【0015】製剤において、本発明化合物の含量は製剤 形態により変えることが可能であり、一般には本発明化 合物を0.001~10%(重量)、好ましくは0.01~1%(重量)含有し、残りは通常医薬用に使用される担体その他 の補助剤から成る。本発明化合物の投与量は症状や投与 方法により異なるが、成人一人一日当たり1~100mg 程 度である。

[0016]

【作用】以下、本発明の作用について具体的に説明する。

1. インビトロ PTH P拮抗作用

(実験方法)活性の測定は長崎らの方法[B.B.R.C. 第15 8巻、1036-1042(1989)]に準じて行った。即ち、ラット 由来の骨芽肉腫細胞培養株UMR-106 を用いて、cAMP産生 量を指標として本発明のペプチド誘導体のPTHrP 拮抗作 用を測定した。培養細胞を24穴のカルチャープレートに 1.0×10 5 細胞/穴ずつ播き、3 日間37℃、5% CQ イン キュベーター内で培養した。培養した細胞を無血清培地 で2 回洗浄し、0.5ml の(D-MEM+0.1% BSA+0.5mM IBMX + 1mM HEPES)培地(pH7.4) を加えて更に20分間培養し た。本発明化合物は最終濃度が10%~10% Mになるよう に調製し、10μg/穴ずつ加えた。37℃の水浴上で、プレ ートを10分間温めた後、PTHrP(1-34)の2.5×10 9 Mを 10μ // 穴ずつ加え、更に10分間インキュベートした。1 規定HCIを100 μ1/穴ずつ加え反応を停めた後、各細胞 及び培養液チューブに移し変えて1500gで20分間遠心し た。各上清の300 μ1を採取し、遼心乾燥により濃縮し た後、250 µl のAssay bufferに再溶解してcAMP濃度を EIA kit.(Amersham Japan)を用いて測定した。2.5 ×10 ⁹ M のPTHrP(1-34) により産生されるcAMP量から無処置 群より産生されるcAMP量を差し引いたcAMP量を100%とし

て、本発明化合物によるcAMP産生量の50% 阻害率(I Co)を求めた。なお、比較対照物としては、従来から PTHrP(1-34) の拮抗物質として知られているPTHrP(7-3

4)NH を用いた。 【0017】(結果) 【表 1】

表 1

antagonist

IC

 $50 (\times 10^{-8} \text{ M})$

PTHrP(7-34)NH

1.7

[desamino-Leu 8, Asn 10, Leu 11, D-Phe(F) 12]hPTHrP(8-34)NH2 0.21

【0018】表1に示すように、[desamino-Leu 8,As n^{10} ,Leu 11 ,D-Phe(F) 12]hPTHrP(8-34)NH2 \(\text{IPTHrP}(7-34)N \) Hの約1/8 の濃度で50% 阻害を示した。

【0019】2.高カルシウム血症誘発腫瘍移植ヌード マウスの血中カルシウム濃度に及ぼす効果 (実験方法)高カルシウム血症を誘発する可移植性腫瘍L C-1(ヒト肺扁平上皮癌)を約3×3×3mm に細切し、そ の腫瘍片をBALB/cヌードマウス(7週齡,3匹/群) の背側 部皮下に移植した。それぞれの腫瘍が約1000mm になっ た時点で眼窩採血を行い、補正カルシウム値 [実測カル シウム値(mg/dl) +4 -アルブミン濃度(g/dl)] が約14 mg/dl になったマウスを実験に用いた。本発明化合物及

び比較対照物の500 μ g/day をそれぞれマウスに連日 5 日間、筋肉内投与した。投与開始後、非担癌対照群、無 処置担癌対照群及び治療群のそれぞれのマウスより週2 回(2~3回毎)の割合で採血し、血中カルシウム濃度を 測定した。対照群と治療群の血中カルシウム濃度を比較 することにより、本発明化合物の効果を検討した。また た、無処置担癌対照群の生存率を100%とした時の、治 療群の生存率をT/C(%)として求めた。

【0020】(結果)

図1 血中カルシウム濃度の変化

【表 2】

表 2 延命効果

生存日数中間値(T/C(%))

無処置担癌対照群

100

PTHrP(7-34)NH₂

[desamino-Leu ⁸, Asn ¹⁰, Leu ¹¹, D-Phe(F) ¹²]hPTHrP(8-34)NH₂

177

【0021】図1に示すように、本発明化合物は投与期 間中、血中カルシウム濃度の上昇を抑制した。その効果 は比較対照物のPTHrP(7-34)NHよりも強かった。また、 表2に示すように、本発明化合物はLC-1誘発高カルシウ ム血症によるマウスの死亡を救命し、延命効果を示し た。その効果は比較対照物のPTHrP(7-34)NHよりも強か った。

実施例

1. 本発明化合物の製造法

1-1 自動ペプチド合成機

[desamino-Leu 8, Asn 10, Leu 11, D-Phe(F) 12] hPTHrP(8-34) NH の合成は、AppliedBiosystems社製ペプチド自動合 成機 model 430A を用い、固相法によって行った。その 合成プログラムを以下に示す。

【表3】

[0022] 【実施例】

表 3

[desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe(F) ¹²]hPTHrP(8-34)NH2の合成のためのB o cアミノ酸導入プログラム

活性化槽

濃縮槽

反応槽

(I)Boc アミノ酸活

(3) 50% TFA/CH

性エステル調製

N

2 ガス気流下で10- Nα-Boc基の脱保護(20)

20分間濃縮

(2) 濾過

-25 分間)

2mmol Boc アミノ酸

(4)CH

2Cl2 による洗浄(3回)

2mmol DCC(0.5MDCC/CH Cl2)

(5)10% DIEA/DMF による中和

(2回)

2mmol HOBt(0.5MHOBt/DMF)

(6)DMFによる洗浄(6回)

(7) 縮合反応

DMF-CH2Cl2中で30

60分間攪拌

-35 分間攪拌

(8)DMF(6回),CH

2 Cl2 (3回)

による洗浄

DCC; N, Nージシクロヘキシルカルポジイミド

HOBt; 1-ヒドロキシベンゾトリアゾール

DMF; ジメチルホルムアミド

TFA; トリフルオロ酢酸

DIEA;ジイソプロピルエチルアミン

【0023】1-2固相担体樹脂

担体樹脂は、目的とするポリペプチドアミドがC末端が アミド型であることから、HF処理によりポリペプチド アミドを得ることができるpーメチルベンズヒドリルア ミン樹脂を用いた。

【0024】1-3保護アミノ酸

使用したアミノ酸は α -アミノ基をBoc 基で保護し、側鎖保護基はいずれも最終的にHFで処理することにより除去が可能なものを用いた。[desamino-Leu 8 ,Asn 10 ,Leu 11 ,D-Phe(F) 12]hPTHrP(8-34)NH2 の合成に用いた保護アミノ酸を以下に示す。(アミノ酸の絶対立体配置は特に記載のない場合、全て天然型のL体を示す)

【表4】表4保護アミノ酸

Boc-Ala-OH Boc-Arg(Tos)-OH Boc-Asn-OH
Boc-Asp(OcHex)-OH Boc-Gln-OH Boc-Glu(OBzl)-OH
Boc-His(Bom)-OH Boc-Ile-OH Boc-Leu-OH · H 2 O
Boc-lys(Cl-Z)-OH Boc-Phe-OH Boc-D-Phe(4-F)-OH
Boc-Ser(Bzl)-OH Boc-Thr(Bzl)-OH

Tos; トシル基

cHex: シクロヘキシル基

Bzl; ベンジル基

Bom; ベンジルオキシメチル基

Cl-Z; p-クロロベンジルオキシカルボニル基

【0025】1-4 反応試薬

本合成では、脱Boc 化剤として0.02% 1,2-エタンジオール合有50% TFA/CHCl2溶液を使用した。TFA による脱Boc化後、これを中和するために10%DIEA/DMF溶液を用いた。また縮合反応は、1-ヒドロキシベンソトリアソールエステルによる活性エステル法、または、DIEA/DMFを塩基として用い、HOBI存在下、BOP 試薬(1ーベンゾトリアゾリルーNーヒドロキシトリスジメチルアミノホスホニウムへキサフルオロリン化物塩)にて行った。

【0026】1-5縮合反応試験

各縮合反応後、反応の進行度は未反応のαーアミノ基の有無を検出するカイザー試験により行った。試験法は、縮合反応後の保護ペプチド樹脂に(1)76%フェノール/エタノール溶液、(2)0.2mM KCN/ピリジン溶液、(3)0.28M ニンヒドリン/エタノール溶液をそれぞれ0.1m1,0.2mlおよび0.1ml 加え、100℃で7分間加熱した。液相が黄色を呈した場合は、反応の完結を意味し、次のBoc-アミノ酸を導入した。また、青色を呈した場合は、未反応のアミノ基の存在を意味し、再度縮合反応を繰り返した。

【0027】1-6 [desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe (F) ¹²]hPTHrP(8-34)NH2 の合成

担体樹脂であるp-メチルベンズヒドリルアミン(MBHA) 樹脂HCl 塩(NH: 含量:0.62 mmol/g, 0.5mmol, 806mg) を 反応槽に加えCHCl2中で一晩膨潤し、次いでMBHA樹脂中 に含まれる塩酸塩を10% DIEAで中和した後、C末端アミ ノ酸に相当するBoc-Ala-OHを樹脂上のアミノ基に対して 4 倍量(2mmol)用いて縮合反応を行い、出発物質である Boc-Ala-MBHA樹脂を得た。続いて、表3に示したプログ ラムに従って、活性化槽において、Boc-アミノ酸 2mmo I、DCC 2mmol 、HOBt 2mmolにより、活性エステルを調 整し、濃縮槽で溶媒の濃縮を行う一方、反応槽におい て、50%TFA による脱Boc 化反応および10% DIEAによる 中和反応を行い、先に調整したBoc-アミノ酸の活性エス テルを添加することによって、縮合反応を行った。反応 の進行度はカイザー試験によって確認し、反応陽性時に はDIEA存在下、BOP 試薬、HOBt(Boc-アミノ酸 2mmol、 BOP 試薬 2mmol、HOBt 2mmol、DIEA 4mmol) を用いて再 度縮合反応を行い、反応を完結させた。

【0028】この操作を繰り返し行うことによりペプチ ド鎖を延長し、[desamino-Leu⁸,Asn¹⁰,Leu¹¹,D-Phe(F)¹²]hPTHrP(8-34)NHaに相当する保護ポリペプチド樹脂 1.0gを得た。なお、N末端のdesamino-Leuは、ロイシン のαーアミノ基を水素に置換した4-メチル吉草酸の1-ヒ ドロキシベンゾトリアゾールエステルを反応させて導入 した。表5に本合成に用いた保護アミノ酸の分子量、使 用量および反応回数を示す。

【表 5】

表 5 [desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe(F) ¹²]hPTHrP(8-34)NHo合成に用いられた保護アミノ酸のアミノ酸配列にそった一覧表

段階 Bocアミノ酸 分子量 mg(mmol) 反応回数

- Boc-Ala-OH 189 378 (2) 2
- 2 Boc-Thr(Bzl)-OH 309 618 (2) 2
- 3 Boc-His(Bom)-OH 375 750 (2) 2
- 4 Boc-Ile-OH 240 480 (2)
- 5 Boc-Glu(OBzl)-OH 337 674 (2) 2
- 6 Boc-Ala-OH 189 378 (2) 3

```
1
                               480 (2)
     Boc-Ile-OH
                       240
7
                                            2
                                498 (2)
8
     Boc-Leu-OH
                         249
                           375
                                   750 (2)
                                               3
     Boc-His(Bom)-OH
9
                                                3
                           375
                                   750 (2)
10
     Boc-His(Bom)-OH
                         249
                                . 498 (2)
                                             2
      Boc-Leu-OH
11
                                 530 (2)
                                             4
                         265
     Boc-Phe-OH
12
                                             3
                         265
                                 530 (2)
      Boc-Phe-OH
13
                                               4
                                   858 (2)
                           429
14
      Boc-Arg(Tos)-OH
                           429
                                   858 (2)
15
      Boc-Arg(Tos)-OH
                           429
                                   858 (2)
                                               3
      Boc-Arg(Tos)-OH
16
                         249
                                 498 (2)
17
      Boc-Leu-OH
                                                 2
      Boc-Asp(OcHex)-OH
                             315
                                     630 (2)
18
                                 492 (2)
                                             3
                         246
      Boc-Glu-OH
19
                                480 (2)
                        240
20
      Boc-Ile-OH
                          295
                                  590 (2)
      Boc-Ser(Bzl)-OH
21
                                   830 (2)
                                               3
                           415
      Boc-Lys(Cl-Z)-OH
22
                                                2
                            283
                                    566 (2)
23
      Boc-D-Phe(4-F)-OH
                                             2
                         249
                                 498 (2)
24
      Boc-Leu-OH
                         232
                                 464 (2)
25
      Boc-Asn-OH
                                    750 (2)
                            375
      Boc-His(Bom)-OH
26
                                                    2
                                116
                                       232 (2)
      des-NH
                 2-Leu-OH
27
```

【0029】1-7 樹脂からのペプチドの切断と保護基の 除去

得られた保護ポリペプチド樹脂は、HF処理により保護 基の除去およびペプチド鎖の樹脂からの切断を行った。 [desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe(F) ¹²]hPTHrP(8-34) NH に相当する保護ポリペプチド樹脂1.0gとテフロン被 膜攪拌子をHF反応容器に添加し、アニソール1.0mlを 加えて室温、減圧下、30分間放置した後、反応容器をド ライアイス-アセトン浴で冷却し、液体HF10mlを添 加、0℃で1時間提拌した。HFを減圧除去後、残渣を 酢酸エチルで洗浄した。これを濾過して減圧乾燥を行っ た後、50%酢酸により抽出し、粗ポリペプチドアミド44 4mg を得た。

【0030】1-8粗ポリペプチドアミドの検定と精製 得られた粗ポリペプチドアミドは、分析用カラムYMC-Pa ck R-ODS-5 (4.6 ×250mm)を用いた逆相HPLCによりその 純度を検定した(図2)。溶離液として0.01N HCl とCH 3CN の混合溶媒系を用い、30分間でその混合比を85:15 から55:45 に変化させる直線濃度勾配法により溶出し、 210nm の紫外部吸収により検定を行った。その結果、主 要ピークが認められ、そのピークのアミノ酸組成を検討 した結果、理論値と一致したため、逆相HPLC分取用 カラムYMC-Pack D-ODS-5 (20×250mm)を用い、0.01N HC 」とCH3 CN の混合比を30分間で72:28 から57:43 に変化 させる直線濃度勾配法により精製を行い、精製ポリペプ チドアミド53.3mgを得た。

【0031】1-9精製ポリペプチドアミドの純度検定 得られた精製ポリペプチドアミドの純度検定は逆相HPL C、アミノ酸組成分析、 FAB質量分析及びTLC による分 析により行った。

【0032】1-9-1 逆相HPLCによる検定 図3に精製ポリペプチドアミドの溶離条件および溶出パ ターンを示すが、[desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe (F) 12]hPTHrP(8-34)NH: は22.2分に単一の鋭いピークと して検出された。

【0033】1-9-2酸分解物のアミノ酸分析 精製ポリペプチドアミドを硬質ガラス性試験管中1%フェ ノール含有6N HCl(0.3ml) の存在下、脱気封管し、110 ℃で,24時間加水分解した。開管後、80℃湯裕中、減圧 下で溶媒を除去し、クエン酸リチウム緩衝溶液に溶解 し、不溶物をマイクロフィルターで除去後、その一部を 自動アミノ酸分析機(Beckman社製, Model 7300) によ り、アミノ酸組成を分析した。表6にその結果を示す が、理論値とよく一致した。

表 6 [desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe(F) ¹²] hPTHrP(8-34)NH2の酸加水分解物 のアミノ酸組成。

【表 6】

Asp(2)2.01 Thr(1)0.97 Ser(1)0.93 Glu(2)2.17 Ala(2)1.99 Ile(3)2.8 Leu(4)4.11 Phe(2)2.08 Lys(1)0.89 His(4)3.89

Arg(3)2.99

()内は理論値

加水分解条件: 1 %フェノール含有6N HCl, 110℃,24h -

【0034】1-9-3 FAB質量分析による検定

精製ポリペプチドアミドを10mg秤量し、マトリックスと

してグリセロール: 1 - チオグリセロール(1:2,v/v) を

20ml加えて試料とした。この試料を、FAB 質量分析機(J MX-SX 102 mass spectrometer, JEOL, 東京) を用いてその分子量を測定した。表7に示した様に、測定値と計算値はよい一致を示した。

【表7】

表 7 FAB質量分析により測定した [desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe(F) ¹²]hPT HrP(8-34)NH2の分子量

[desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe(F) ¹²]hPTHrP(8-34)NH2 測定値 計算値

C

154 H40 Nr Q5 F

3329 3328

【0035】1-9-4 TLC及び比旋光度 薄層クロマトグラフィー(TLC) において、Rf値を検討し た。 TLCプレートはDC-Alufolien Kieselgel 60/kiesel gur F245 (メルク社, F.R.G.) を用い、発色剤にはクロ リン試薬を用いた。精製ポリペプチドアミドは単一のス ポットとして検出された。また、比旋光度はポリペプチドアミドを1M AcOH に溶かし、濃度を0.1 に調製して測定した。比旋光度の測定はDIP-140 Digital Polarimete r (JASCO, 東京)を用いた。

【表8】

表 8 [desamino-Leu ⁸,Asn ¹⁰,Leu ¹¹,D-Phe(F) ¹²]hPTHrP(8-34)NH₂のR f 値と比施 光度

TLCのRf値

Rf 0.43(n-BuOH: ピリジン: 蟻酸:H

比施光度

[α] ²⁰ p:-77.3° (c 0.1, 1M AcOH)

20 = 20:12:3:10

【0035】2. 本発明化合物を用いた製剤の製造例本発明化合物の1部及びD-マンニトール20部を注射用蒸留水2000部に溶解し、メンブランフィルターで濾過した後、パイアルに分注して、常法により凍結乾燥し、ゴム栓で密栓して注射用製剤を得た。

[0036]

【発明の効果】本発明のポリペプチドアミドは強いPT H及びPTHrP拮抗作用を有しており、PTH及びP THrPの関与するカルシウム代謝異常症、例えば高カ ルシウム血症、骨粗鬆症及び副甲状腺機能亢進症等の治 療薬として有用である。

[0037]

【図面の簡単な説明】

【図1】図1は本発明化合物のLC-1担癌ヌードマウスに 投与した時の血中カルシウム濃度の変化を示す。

【図2】図2は本発明化合物の逆相HPLCによる粗ポリペプチドアミドの純度検定を示す。

【図3】図3は本発明化合物の逆相HPLCによる精製ポリペプチドアミドの純度検定を示す。

非祖典対照群 無处區担癌対照群

PTHrP(7-34)NH 2 処世群 (desamino- Leus Asn¹⁰, Leu¹¹, D-Phe(F)¹²)hPTHrP(8-34)-NH₂

図1 LC-1担痛ヌードマウスの血中カルシウム濃度に対する {desamino-Leu⁸,Asn¹⁰,Leu¹¹,D-Phe(F)¹²} hPTHrP(8-34)NH2の効果

YMC-Pack R-0DS-5(4.6 × 250mm) 0.01N HCI/CH.CN (80/20 → 50/40, v/v, 30min)

精製した[desamino-Leu⁸,Asn¹⁰,Leu¹¹。 D-Phe(F)^{12:}]hPTHrP(8-34)NHgの分析HPLC図

フロントページの続き

FI (51)Int.Cl. 6 識別記号 庁内整理番号 A 6 1 K 38/00

AEG

A 6 1 K 37/02 AEG

YMC-Pack R-ODS-5(4.8 × 250mm)
0.01N HC1/CH.CN
(85/15 → 55/45, v/v, 30min)

租生成物[idesamino-Leu⁸,Asn¹⁰,Leu¹¹] D-Phe(F)¹² JhPTHrP(8-34)NH₂の分析HPLC回

技術表示箇所

(72)発明者 才野 哲之 埼玉県与野市八王子5-11 14-101

 $\sum_{i=1}^{n}\frac{1}{i}$