Machine Learning

Learning Model

Fabio Vandin

October 13th, 2023

Empirical Risk Minimization

Learner outputs $h_S: \mathcal{X} \to \mathcal{Y}$.

Goal: find h_S which minimizes the generalization error $L_{\mathcal{D},f}(h)$

 $L_{\mathcal{D},f}(h)$ is unknown!

What about considering the error on the training data, that is, reporting in output h_S that minimizes the error on training data?

Training error: $L_S(h) \stackrel{def}{=} \frac{|\{i:h(x_i)\neq y_i, 1\leq i\leq m\}|}{m}$

Note: the *training error* is also called *empirical error* or *empirical risk*

Empirical Risk Minimization (ERM): produce in output h minimizing $L_S(h)$

What can go wrong with ERM?

Consider our simplified movie ratings prediction problem. Assume data is given by:

Assume \mathcal{D} and f are such that:

- instance x is taken uniformly at random in the square (\mathcal{D})
- label is 1 if x inside the inner square, 0 otherwise (f)
- area inner square = 1, area larger square = 2

Consider classifier given by

$$h_S(x) = \begin{cases} y_i & \text{if } \exists i \in \{1, \dots, m\} : x_i = x \\ 0 & \text{otherwise} \end{cases}$$

Is it a good predictor?

$$L_S(h_S) = 0$$
 but $L_{D,f}(h_S) = 1/2$

Good results on training data but poor generalization error \Rightarrow **overfitting**

When does ERM lead to good performances in terms of generalization error?

Hypothesis Class and ERM

Apply ERM over a **restricted set** of hypotheses $\mathcal{H} = hypothesis$ class

• each $h \in \mathcal{H}$ is a function $h: \mathcal{X} \to \mathcal{Y}$

ERM_H learner:

ERM_H $\in \arg\min_{h \in \mathcal{H}} L_s(h)$ by ERM procedure

considering only wodels

Hypothesis Class and ERM

Apply ERM over a **restricted set** of hypotheses $\mathcal{H} = hypothesis$ class

• each $h \in \mathcal{H}$ is a function $h: \mathcal{X} \to \mathcal{Y}$

ERM_H learner:

$$\mathsf{ERM}_{\mathcal{H}} \in \arg\min_{h \in \mathcal{H}} L_{\mathcal{S}}(h)$$

Which hypothesis classes \mathcal{H} do not lead to overfitting?

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

movies example:
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$$
, $\vec{y} = \begin{bmatrix} -1, s \end{bmatrix}$

$$\mathcal{H} = \begin{cases} h_s(\vec{x}) : h_{s,b}(\vec{x}) = \text{sign}(3x_1 + b \times 2), \ s, b \in \mathbb{R} \end{cases}$$

$$|\mathcal{H}| = +\infty$$

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Let h_S be the output of $ERM_{\mathcal{H}}(S)$, i.e. $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$

Assumptions

• Realizability: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Let h_S be the output of $ERM_{\mathcal{H}}(S)$, i.e. $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$

Assumptions

- **Realizability:** there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$
- i.i.d.: examples in the training set are independently and identically distributed (i.i.d) according to D, that is 5 ~ D^m

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Let h_S be the output of ERM_{\mathcal{H}}(S), i.e. $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$

Assumptions

- Realizability: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$
- i.i.d.: examples in the training set are independently and identically distributed (i.i.d) according to D, that is S ~ D^m

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Let h_S be the output of $ERM_{\mathcal{H}}(S)$, i.e. $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$

Assumptions

- Realizability: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$
- i.i.d.: examples in the training set are independently and identically distributed (i.i.d) according to \mathcal{D} , that is $S \sim \mathcal{D}^m$

Observation: realizability assumption implies that $L_S(h^*) = 0$

Can we learn (i.e., find using ERM) h*?

(Simplified) PAC learning

Probably Approximately Correct (PAC) learning

Since the training data comes from \mathcal{D} :

- we can only be approximately correct
- we can only be **probably** correct

(Simplified) PAC learning

Probably Approximately Correct (PAC) learning

Since the training data comes from \mathcal{D} :

- we can only be approximately correct
- we can only be probably correct

Parameters:

- accuracy parameter ϵ : we are satisfied with a good h_s : $L_{D,f}(h_s) \leq \delta$ (\mathcal{E} Sind \mathcal{L})
- confidence parameter δ : want h_S to be a good hypothesis with probability $\geq 1 \delta$ ($\int Smd(\Omega)$)

Theorem

Let \mathcal{H} be a finite hypothesis class. Let $\emptyset \in (0,1)$, $\varepsilon \in (0,1)$, and $m \in \mathbb{N}$ such that

we don't know
$$f'|S| = m \ge \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon}$$
.

Then for any f and any D for which the realizability assumption holds, with probability $\geq 1 - \delta$ we have that for every ERM hypothesis h_S it holds that

$$L_{\mathcal{D},f}(h_{\mathcal{S}}) \leq \varepsilon$$
.

Note: log = natural logarithm

With finite hypotheses classes (H), I can almost always find a good hypothesis if I have (enough data with prob x 1-5

Proof (see book as well, Corollary 2.3) Let $S|_{x} = \{ \times_{1}, \times_{2}, ..., \times_{m} \}$ be the instances in the training set S. We want to bound (i.e., an upper bound) to:

Since we have the realizability assumption: Ls (hs) = 0 => Lo, f (hs) > & only if some hether has Lo(h)=0.

That is, our training data must be in the set M. $\{S_{|x}^{\vee}; L_{0,f}(h_s), \varepsilon\} \subseteq M$.

 $\mathbb{O}^{m}(\{S_{lx}: L_{0,f}(h_{s}), \mathcal{E}\})$. Let $\mathcal{H}_{B} = \{h_{e}\mathcal{H}: L_{0,f}(h), \mathcal{E}\}$ (BAD HYROTHESES) and $M = \{S_{|_X} : \exists heth_B, L_S(h) = 0\}$ (MISLEADING SAMPLES)

Note that: M= Us(h)=03. Therefore $\mathbb{O}^{m}(\{S_{1\times}: L_{0,f}(h_{s}) > \varepsilon \}) \leq \mathbb{O}^{m}(M) = \mathbb{O}^{m}(\bigcup_{h \in \mathcal{H}_{R}} \{S_{1\times}: L_{S}(h) = 0\})$

BOUND (\ S | X = 0) (\ S | X : Ls (h) = 0 }) (*)

Now let's fix hette: Ls(h)=0 + i=1,..., m: h(x;)=f(x) Therefore: On ({S|x: Ls(h) =0}) = On ([S|x: +i=1,..., m; h(xi)=(xi)) because x1,...,xn = = T O({xi · h(xi)=f(xi)})

dre i.i.d. from) = i=1 Consider some i, $4 \le i \le m$: $\mathbb{Q}(\{x_i : h(x_i) = f(x_i)\})$ $=1-\mathbf{O}(\{\times_i:h(\times_i)\neq\{(\times_i)\}\})$ $L_{0,f}(h) = P_{k \rightarrow 0}[h(x) \neq f(x)]$ Since hether $= 1 - L_0$, f(h) = 1 to for expansion: 31 - E e e $= 21 \left(\frac{k}{n!}\right) = 271 - x$ Combining this with (S): D"([S]x: Ls(h)=0]) = T e = e - m E = $|\mathcal{H}_{B}| \cdot e^{-m\mathcal{E}} \leq |\mathcal{H}| \cdot e^{-m\mathcal{E}}$ Now, given the choice of hexts (3.5) (141/8) we have $\leq |\mathcal{H}| \cdot e^{-\mathcal{E}} \left(g(\mathcal{H}_{B}) \right) \cdot \frac{1}{\mathcal{E}} = |\mathcal{H}| \cdot \left(\mathcal{H}_{B} \right) = 0$

PAC Learning

Definition (PAC learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f:\mathcal{X} \to \{0,1\}$, if the realizability assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generate by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of examples): $L_{\mathcal{D}, f}(h) \leq \varepsilon$.

 $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$: sample complexity of learning \mathcal{H} .

• $m_{\mathcal{H}}$ is the minimal integer that satisfies the requirements.

Corollary

Every finite hypothesis class is PAC learnable with sample complexity $m_{\mathcal{H}}(\varepsilon,\delta) \leq \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon} \right\rceil$. What is the above than to find the east lypothesis his? ERM!