

■ Features

- VDS (V) = -30V
- $I_D = -2.6A$ (at $V_{GS}=-10V$)
- $\bullet~$ RDS(ON) ${<}75~\text{m}~\Omega$ (at VGS=-10V)
- $\bullet~$ RDS(ON) < 85 m Ω (at V $_{\text{GS}}$ =-4.5V)

Equivalent Circuit

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	-30	V	
Gate-Source Voltage		V _{GS}	±12	V	
Continuous Drain	T _A =25℃		-2.6		
Current	T _A =70℃	'D	-2.2	A	
Pulsed Drain Current C		I _{DM}	-13		
Power Dissipation ^B	T _A =25℃	Р	1.4	W	
	T _A =70℃	P _D	0.9	VV	
Junction and Storage	Temperature Range	T _J , T _{STG}	-55 to 150	C	

Thermal Characteristics

Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	О	70	90	℃/W
Maximum Junction-to-Ambient AD	Steady-State	$\kappa_{ heta JA}$	100	125	℃/W
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	63	80	€\M

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =-30V, V_{GS} =0V $T_{}$ =55 C			-1 -5	μΑ
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V, V_{GS}=\pm 12V$			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-0.6	-1	-1.4	V
I _{D(ON)}	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-13			Α
		V _{GS} =-10V, I _D =-2.6A			75	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-4.5V, I _D =-2A			85	mΩ
g _{FS}	Forward Transconductance	V _{DS} =-5V, I _D =-2.6A		8		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.78	-1	V
Is	Maximum Body-Diode Continuous Current				-1.5	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			260	315	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		37		pF
C _{rss}	Reverse Transfer Capacitance			20		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	4	8	12	Ω
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			5.9	7.2	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =-10V, V _{DS} =-15V, I _D =-2.6A		2.8	3.5	nC
Q_{gs}	Gate Source Charge	V _{GS} 10V, V _{DS} 13V, I _D 2.0A		0.7		nC
Q_{gd}	Gate Drain Charge			1		nC
t _{D(on)}	Turn-On DelayTime			6		ns
t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-15V,		3.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_L=5.76\Omega$, $R_{GEN}=3\Omega$		20		ns
t _f	Turn-Off Fall Time]		5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-2.6A, dI/dt=100A/μs		11.5	15	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-2.6A, dI/dt=100A/μs		4.5	_	nC
A The value	of Rola is measured with the device mounted on	1in2 FR-4 hoard with 2oz Copper in a still s	air environ	ment with	T =25° C	The

A. The value of $R_{\psi JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initialT_J=25° C.

D. The R_{BJA} is the sum of the thermal impedence from junction to lead R_{BJL} and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MXX)}$ =150 $^{\circ}\,$ C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

-V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

-V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

SOT-23 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950	TYP.	0.037	TYP.	
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
UMW AO3403A	SOT-23	3000	Tape and reel