O Cavalo no Xadrez 3D

Por Leandro Zatesko, UFFS 🔯 Brazil

Timelimit: 1

Caso você ainda não saiba, o estudante Alesom Zorzi, um dos nossos heróis do AKM (time da UFFS que fez 6 balões na Primeira Fase da Maratona de Programação), é enxadrista, tendo inclusive conquistado algumas medalhas em torneios importantes.

Das peças do xadrez, uma das peças mais interessantes é o cavalo, a qual pode pular de uma casa de coordenadas $(\mathbf{i}_1, \mathbf{j}_1)$ para uma de coordenadas $(\mathbf{i}_2, \mathbf{j}_2)$ se e somente se $\{|\mathbf{i}_1 - \mathbf{i}_2|, |\mathbf{j}_1 - \mathbf{j}_2|\} = \{1, 2\}$.

Inspirado na série *Star Trek*, Alesom desenvolveu sua própria variante do *Xadrez 3D*, na qual o jogo é composto não de 1, mas de L tabuleiros de dimensões $\mathbf{N} \times \mathbf{M}$, cada um num *nível* numerado de 1 a L. A propósito, as linhas de cada nível são numeradas de 1 a \mathbf{N} , e as colunas, de 1 a \mathbf{M} , de modo que cada posição do jogo pode ser identificado por uma tripla de coordenadas ($\mathbf{i}_1, \mathbf{j}_1, \mathbf{k}_1$), sendo \mathbf{i}_1 o índice da linha, \mathbf{j}_2 o índice da coluna e \mathbf{k}_1 o índice do nível. Um cavalo nesta variante do Xadrez 3D pode pular de uma casa de coordenadas ($\mathbf{i}_1, \mathbf{j}_1, \mathbf{k}_1$) para uma de coordenadas ($\mathbf{i}_2, \mathbf{j}_2, \mathbf{k}_2$) se e somente se { $|\mathbf{i}_1 - \mathbf{i}_2|, |\mathbf{j}_1 - \mathbf{j}_2|, |\mathbf{k}_1 - \mathbf{k}_2|$ } = {0, 1, 2}. A figura ilustra um cavalo na posição (5, 5, 1) de um jogo com 3 níveis de dimensões 8 × 8, destacando suas posições adjacentes.

Entrada

A primeira linha da entrada contém unicamente os inteiros \mathbf{N} , \mathbf{M} e \mathbf{L} (8 \leq \mathbf{N} , \mathbf{M} \leq 100, 3 \leq \mathbf{L} \leq 100). A segunda linha contém uma tripla de coordenadas (\mathbf{i}_1 , \mathbf{j}_1 , \mathbf{k}_1), e a terceira linha contém uma tripla de coordenadas (\mathbf{i}_2 , \mathbf{j}_2 , \mathbf{k}_2) (1 \leq \mathbf{i}_1 , \mathbf{i}_2 \leq \mathbf{N} , 1 \leq \mathbf{j}_1 , \mathbf{j}_2 \leq \mathbf{M} , 1 \leq \mathbf{k}_1 , \mathbf{k}_2 \leq \mathbf{L}).

Saída

Imprima uma linha contendo um único inteiro, o qual represente o número mínimo de movimentos necessários para um cavalo ir da posição $(\mathbf{i}_1, \mathbf{j}_1, \mathbf{k}_1)$ à posição $(\mathbf{i}_2, \mathbf{j}_2, \mathbf{k}_2)$.

Exemplo de Entrada	Exemplo de Saída
8 8 3	2
5 5 1	
3 4 2	