Лабораторная работа №3.4.2 Закон Кюри-Вейсса

Мещеряков Всеволод, Хвосточенко Константин, Б02-001, 14.09.2021

Введение

Цель работы заключается в изучении температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Для этого используются катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Теоретическая справка

При стремлении температуры к нулю тепловое движение все меньше препятствует магнитным моментам атомов ориентироваться в соответствии со внешнем магнитным полем. В ферромагнетиках это происходит при понижении температуры не до нуля, а до температуры Кюри θ . Для ферромагнетиков закон Кюри (1) должен быть заменен на закон Кюри-Вейсса (2), где θ_p – некоторая близкая к θ температура, называемая парамагнитной точкой Кюри.

$$\chi = \frac{C}{T},\tag{1}$$

$$\chi \sim \frac{1}{T - \theta_p},\tag{2}$$

Экспериментальная установка

Исследуемый ферромагнитный образец – в нашем случае гадолиний – располагается внутри пустотелой катушки самоиндукции входящей в состав LC-автогенератора, который собран на полевом транзисторе КП-103 и выделен в отдельный блок.

Рис. 1 — Схема экспериментальной установки

Ввиду хорошей проводимости гадолиния и высокой рабочей частоты генератора (~ 50 к Γ ц) образец изготавливается из мелких кусочков размером около 0.5мм — для уменьшения вихревых потоков. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом, которое призвано улучшить тепловой контакт между образцом и термостатируемой жидкостью 3. В емкость вмонитрован термометр 4.

Обозначив за L самоиндукцию катушки с образцом и через L_0 – самоиндукцию в отсутствиие образца, получим:

$$(L - L_0) \sim \chi. \tag{3}$$

По формуле Томсона период колебаний автогенератора с емкостью контура автогенератора С:

$$\tau = 2\pi\sqrt{LC}, \quad \tau = 2\pi\sqrt{L_0C}. \tag{4}$$

Тогда из (4) получаем:

$$(L - L_0) \sim (\tau^2 - \tau_0^2) \longrightarrow \chi \sim (\tau^2 - \tau_0^2).$$
 (5)

Тогда получаем, что закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \sim (T - \theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)}.$$
 (6)

Величина стабилизирующей температуры задаётся на дисплее 5 термостата. Для нагрева служит внутренний электронагреватель, для охлаждения циркуллирующая водопроводная вода.

Ход работы

Подготовим приборы к работе. Оценим допустимую ЭДС термопары, если допустимая разность температур образца и рабочей жидкости $\Delta T = 0.5^{\circ}C$, а постоянная термопары k = 24 град/мВ:

$$U_m = \frac{\Delta T}{k} \approx 0.021 \text{MB}. \tag{7}$$

Исследуем зависимость периода колебаний LC - генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T — по показаниям дисплея и цифровому вольтметру. Проведем измерения в диапазоне от $14^{\circ}C$ до $40^{\circ}C$ через $2^{\circ}C$. Результаты отразим в таблице 1.

Обработка результатов

В столбце "T,° C"указаны температуры, снятые с дисплея термостата – их погрешность оценивается в 0.05°C. В столбце " ε , мВ"указаны показания вольтметра, снимающего разность ЭДС на термопаре. В столбце " τ , мкс"указаны периоды колебаний LC-контура при данной температуре. Столбец " T_{real} ,° C"истинные значения температур – она складывается из температуры термостата и разности ЭДС на термопаре. Как видно, разница между T и T_{real} действительно не превышает указаний из формулы (7).

Для изучения зависимости (6) рассчитаем точки по данным из таблицы 1 и результаты вместе с погрешностями укажем в таблице 2.

Из графика видно, что, только первые две точки можно считать лежащими на одной горизонтальной прямой. Далее идёт нелинейный рост,

которым, видимо, как промежуточным процессом, теория пренебрегает. После $20^{\circ}C$ становится очевидным линейность зависимости. Из графика определяем уравнение аппроксимирующей прямой, вычисляем искомую температуру:

$$\theta_p = (17.83 \pm 0.83)^{\circ} C.$$
 (8)

Обсуждение результатов

Итоговое значение температуры точки Кюри для гадолиния вышло ниже табличного значения на $\approx 1^{\circ}C$. Как видно из графика, занижению результата способствуют последние две точки, выпадающие из линейной аппроксимации.

$T, ^{\circ}C$	ε , м B	au, mkc	T_{real} , $^{\circ}C$
12,190	-0,005	7,970	12,068
14,140	-0,008	7,935	13,943
16,110	-0,019	7,885	15,644
17,060	-0,021	7,846	16,561
18,110	-0,010	7,766	17,880
19,050	-0,021	7,718	18,548
20,070	-0,021	7,627	19,561
22,080	-0,020	7,439	21,607
24,080	-0,021	7,239	23,581
26,080	-0,019	7,152	25,624
28,070	-0,019	7,109	27,621
30,050	-0,021	7,083	$29,\!556$
32,060	-0,021	7,063	31,568
34,070	-0,019	7,048	33,619
36,060	-0,021	7,038	35,561

Таблица 1 — Результаты измерений

T_{real} ,° C	$\sigma_{ au},$ MKC	$\frac{1}{(\tau^2 - \tau_0^2)} = f(\tau), \text{MKC}^{-2}$	$\sigma_{rac{1}{ au^2- au_0^2}}, ext{mkc}^{-2}$
12,07	0,01	0,063	0,001
13,94	0,01	0,066	0,001
15,64	0,01	0,069	0,001
16,56	0,01	0,072	0,001
17,88	0,01	0,080	0,001
18,55	0,01	0,085	0,001
19,56	0,01	0,096	0,001
21,61	0,01	0,132	0,003
23,58	0,01	0,214	0,007
25,62	0,01	0,293	0,012
27,62	0,01	0,357	0,018
29,56	0,01	0,412	0,024
31,57	0,01	0,466	0,031
33,62	0,01	0,515	0,037
35,56	0,01	0,556	0,043

Таблица 2 — Данные для графика

Рис. 2 — Данные таблицы 1. По вертикальной оси $\frac{1}{\tau^2-\tau_0^2}$, мкс $^{-2}$, по горизонтальной T_{real} , $^{\circ}C$. Уравнение аппроксимированной прямой – $f(T)=(0.035\pm0.002)\cdot T_{real}+(-0.631\pm0.036)$, мкс $^{-2}$