Quiz 15A: The class NP

CS 212 Nature of Computation

Habib University — Fall 2023

Iotal Marks: 10	Date: November 29, 2023
Duration: 15 minutes	Time: 830–845h
Student ID:	1
Student Name:	· () y
1. (10 points) Show that the class NP is closed under union.	
Solution: We prove the closure by constructing a non-determine the union of two languages in NP.	istic polynomial-time decider for
Proof. Consider the languages $L_1, L_2 \in NP$ and let N_1 and N_2 be a polynomial-time deciders. Construct N to decide $L_1 \cup L_2$ as follows.	their respective non-deterministic
On input w : 1. Simulate N_1 on w .	
 2. If N₁ accepts, accept. 3. If N₁ rejects, 	
(a) Simulate N_2 on w .	
(b) If N_2 accepts, accept; if N_2 rejects, reject.	
N utilizes N_1 and N_2 so is non-deterministic.	
Step 1 runs in polynomial time, Step 2 in constant time, and Step N halts in all cases.	3 altogether in polynomial time. $\hfill\Box$