

DATA SCIENCE

Predição de Renda

Leonardo Fiatkoski

Tópicos

- Definição e Objetivo
- Descrição das Variáveis
- Análise Exploratória
- Análise Multivariada
- Modelagem Preditiva
- Análise dos Resultados

Definição e Objetivo

DEFINIÇÃO DO PROBLEMA

O dataset foi extraído em 1994 de uma base do census dos Estados Unidos e contém diversas informações relativas a vida profissional de uma amostra, com a finalidade de verificar possíveis desigualdades salariais e de condições de trabalho entre as pessoas.

OBJETIVO

Realizar uma análise exploratória para validar a hipótese de que existe desigualdade salarial na população, além da criação de um modelo preditivo para inferir quais pessoas receberão mais de 50 mil dólares por ano.

Descrição das Variáveis

DESCRIÇÃO DAS VARIÁVEIS

Variável	Descrição	Tipo	Pré-Processamento
age	Idade	int	-
workclass	Categoria da empresa em que trabalha;	object	Removidos valores marcados como '?'.
education	Grau de educação	object	Ξ
maritalstatus	Estado civíl	object	-
occupation	Área de atuação	object	Removidos valores marcados como '?'.
relationship	Posição na família	object	Remoção dos '_' das informações de Husband e Wife.
race	Raça	object	-
sex	Sexo	object	-
capitalgain	Ganho de capital durante o ano	int	-
capitalloss	Perda de capital durante o ano	int	-
hoursperweek	Horas trabalhadas por semana	int	-
nativecountry	País de origem	object	Separação dos 3 países com maior volume e agrupamento dos demais.
over50k	Salário acima ou abaixo de 50k ano (target)	object	Binarização no momento da modelagem preditiva.

Poucas operações de préprocessamento necessárias. Não localizei nenhuma variável missing, apenas variáveis com valores deturbados (que foram removidos), ajustes no label e remoção de espaços em branco no início e fim da linha.

Análise Exploratória

74% da base trabalha em instituições privadas, seguido por empreendedores e trabalhadores de estatais. Os declarantes que não recebem salário ou que nunca trabalharam somam menos de 1% de representatividade.

33% concluíram apenas a '**high school**', seguido com 22% dos registros como 'some college' que significa estar cursando a faculdade ou qualquer outro curso acima da high school e **17% terminaram a faculdade**.

47% declararam que estão **casados**, 32% nunca casaram e 14% estão divorciados. Os 'divorciados' e 'separados' foram mantidos em variáveis diferentes por entender que se tratam de coisas diferentes. Os separados podem não ter assinado o divórcio no papel, com isso são legalmente considerados casados.

41% foram registrados como sendo o marido no status da relação (as esposas foram registradas com 6%, totalizando os 47% da variável 'maritalstatus'), seguido por 26% que declararam não pertencerem a uma família. Por se tratar de uma variável bem semelhante com a 'maritalstatus', iremos removê-la para evitar multicolinearidade.

Professores Especialistas, Mecânicos e Executivos representam **13%** da base **cada**, seguidos pelos profissionais do setor administrativo e vendas com 12% casa e 11% declararam 'outros serviços', os **demais cargos** possuem **menos de 10%** de representatividade cada um.

86% se consideraram de etnia branca (atualmente a representatividade no país está em 75%), contra **9% de negros**, 3% asiáticos, 1% indianos e 1% de outras etnias.

68% da base é constituída por **homens**, contra 32% de mulheres.

91% da base é constituída por cidadãos **americanos**, o agrupamento das diversas nacionalidades representa 6% da base, seguido de 2% de mexicanos e 1% por filipínos.

Nossa base é constituída por pessoas entre 17 e 90 anos, com **média de 38 anos** e **mediana de 37 anos**. Podemos notar um aumento no número de trabalhadores entre 20 e 30 anos, seguido por uma queda mais acentuada a partir dos 35~40 anos. Alguns outliers foram detectados acima dos 75 anos, mas serão mantidos por fazerem parte da análise em questão. Além disso, o ECDF nos mostra que cerca de **50% da distribuição** total da base possui cerca de **40 anos** de idade.

Agora vamos para nossa variável target, se o respondente **recebe mais de 50 mil dólares por ano** ou não. Os que responderam **sim** constituem **75%** da base, contra 25% que responderam não.

obs: as classes não serão balanceadas no algoritmo, não acredito que esta proporção seja suficientemente desbalanceada para aplicação de over ou undersample.

Análise Multivariada

Os **empreendedores lideram** os ganhos acima de 50k com **55%** de representatividade, seguido dos **profissionais federais** com **38%**. Os funcionários de **empresas privadas** possuem o **menor índice** de ganhos com apenas **21%** ganhando acima de 50k por ano (curioso percebem que mesmo com este baixo índice, as instituições privadas ainda abrigam 74% dos profissionais)

O grau de educação com maior índice de ganhos é o de 'professional school' com 74% ganhando acima de 50k, que é uma modalidade de graduação para formar profissionais especialistas em determinado tema (conversa com a variável de ocupação profissional), seguido por Doutores, Mestres e Bacharelados. As pessoas que concluíram até o 'ensino médio' possuem um índice de ganhos acima de 50k de menos de 10% cada.

As profissões com maior percentual de ganhos acima de 50k é a de Executivo com 48%, seguido por Professores Especialistas com 44%, porém, apesar da representatividade ser maior, ainda são classes impuras por não serem homogêneas. Empregada doméstica, Outros Serviços, Limpadoras e Forças Armadas são as profissões com o menor índice de ganhos acima de 50k, todas representam 1% ou menos e possuem uma grande homogeneidade, negativa.

Os **casados** lideram o ranking de ganhos acima de 50k com mais de **45% de representatividade** (casais inteligentes enriquecem juntos), todos os **outros estados civis** possuem **menos de 10%** ganhando acima de 50k.

over50k

>50K

14000

12000

10000

8000

6000

4000

Falando em etnia, os **asiáticos** possuem a **maior representatividade nos altos ganhos** com cerca de **27%**, seguido por brancos com 26%. Negros e Indianos possuem 12% e 11% respectivamente, seguidos por outros com 9%.

Em relação a idade, percebemos uma **forte relação** da idade **com os ganhos**, a **média de idade** de quem ganha **menos** de 50k por ano é de **33 anos**, já a **média** de idade de quem ganha **mais de 50k** é de **44 anos**.

O gráfico nos indica que aqueles com maior média de horas trabalhadas possuem uma maior relação com os ganhos acima de 50k.

Modelagem Preditiva

MODELO BASE

Para criação do modelo base, utilizei uma técnica de 'bootstrapping' para separar os dados de treino e teste. Esta tecnica consiste em criar N amostragens diferentes para treino e teste do modelo aliado com Cross-Validation para melhor aproximar o treinamento do modelo da amostra e reduzir a chance de overfitting. Além disso, removi as variáveis de 'capitalgain' e 'capitalloss' por possuirem mais de 90% dos dados vazios, e a variável 'relationship' por representar a mesma informação da variável 'maritalstatus'.

As métricas utilizadas para o modelo base foram F1 Score e ROC_AUC, e, em ambas, o melhor desempenho foi do Gradient Boosting com 62,7% e 88,9% respectivamente.

LogisticRegression: 0.618170 (0.014298)
KNeighborsClassifier: 0.581155 (0.017727)
DecisionTreeClassifier: 0.553303 (0.014512)
RandomForestClassifier: 0.603067 (0.013398)
GradientBoostingClassifier: 0.627141 (0.011314)

LogisticRegression: 0.879128 (0.007201)
KNeighborsClassifier: 0.817435 (0.009417)
DecisionTreeClassifier: 0.731140 (0.007733)
RandomForestClassifier: 0.857024 (0.006693)
GradientBoostingClassifier: 0.889096 (0.006281)

HYPERPARAMETER TUNNING

O tunning nos hyperparâmetros foi realizado utilizando RandomizedSearchCV, que consiste em capturar uma amostra do range de parâmetros registrados no teste para determinar o melhor conjunto para treinamento do modelo.

Após o treinamento com o tunning, os melhores hyperparâmetros encontrados foram:

max_depth=15 max_leaf_nodes=10 min_samples_leaf=30 n_estimators=500

RESULTADOS FINAIS

	precision	recall	f1-score	support
<= 50k	0.87	0.92	0.90	5642
> 50k	0.73	0.60	0.66	1899
accuracy			0.84	7541
macro avg	0.80	0.76	0.78	7541
weighted avg	0.84	0.84	0.84	7541

Lista CV - ROC_AUC: [0.89 0.87 0.9 0.88 0.9 0.87 0.9 0.87 0.89 0.89] Média - ROC_AUC: 0.88

Lista CV - F1: [0.66 0.6 0.65 0.64 0.68 0.63 0.68 0.63 0.67 0.64] Média - F1: 0.65 Percebe-se que o modelo previu de maneira mais precisa a classe abaixo de 50k, isso se deu por conta da separação das classes mais homogêneas serem justamente as que se tratavam de ganhos mais baixos

Com cross-validation 10 percebemos que os resultados são bem próximos, com isso podemos descartar o under e overfitting.

Resultados finais:

F1: 65%

ROC_AUC: 88%

Podemos notar que a ROC_AUC se manteve nos 88% sem tunning, porém, **ganhamos 3% de F1 Score**, o que pode-se considerar um bom ganho por **reduzir o índice de FP e FN**.

Com o SHAP podemos ver quanto cada variável contribuiu para o resultado final da predição:

- Quanto maior o valor da variável, maior a intensidade da cor vermelha;
- Quanto mais pra direita o dado se encontra, maior a força da predição para a classe acima de 50k.

obs: em caso de variável categórica, 1 é vermelho e 0 é azul.

E como se era esperado por conta da análise multivariada, as variáveis com maior contribuição no modelo foram o status de casado, idades altas, maior média de horas trabalhadas, educação a partir de bacharelado e cargos de executivos e professores especialistas.

DATA SCIENCE

Obrigado.

Leonardo Fiatkoski