Nom :	Prénom :	Groupe :	
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS			
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2014/2015	Note / 20	
École d'ingénieurs POLYTECH' NICE-SOPHIA	Epreuve de circuit N°2	7 20	

Durée: 1h30

Vendredi 5 Décembre 2014

- □ Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable.

TOUTE FRAUDE ou TENTATIVE DE FRAUDE SERA SANCTIONNEE

L'étudiant ayant triché ET l'étudiant ayant aidé (le cas échéant) seront traduits devant la commission disciplinaire de l'université.

N'OUBLIEZ PAS LES UNITES

Rappel:

- $pico = 10^{-12}$
- nano = 10^{-9}
- $micro = 10^{-6}$

On donne :
$$e^{-1} = 0.37$$

 $e^{-2} = 0.135$

$$e^{-3} = 0.05$$

$$e^{-4} = 0,018$$

$$e^{-5} = 0$$

Questions de cours sur les impédances et dimension (2 pts)

0,25pt	Expression de l'impédance d'une résistance :
0,25pt	Expression de l'impédance d'une bobine :
0,25pt	Expression de l'impédance d'un condensateur :
0,25pt	Soit le signal $s(t) = 5\sin(\omega t)$. Ecrivez-le sous sa forme complexe associée.
1pt	Montrez comment on détermine la dimension de RC :
	$R\'eponse:$
ſ	BROUILLON
ļ	

EXERCICE I : Diverses connections (4 pts)

 R_2 Soit le circuit ci-contre. I.1. Les différents types de connections. R_8 E Faites les nœuds en couleur puis répondez aux questions. 0.5ptNombre de nœuds: 0.5ptLe cas échéant (c'est-à-dire, s'îl y en a), quelles sont les résistances connectées en série? 0.5ptLe cas échéant, quelles sont les résistances connectées en parallèle? R I.2. Expression de I. Toutes les résistances sont égales à R. Faites les nœuds en couleur. R \mathbf{E} Donnez l'expression de I en fonction de E et de R. Réponse : Faites absolument les nœuds en couleur avant de vous lancer dans les calculs. 2,5 pt

EXERCICE II : Signaux (1 pt)

Soit le signal représenté ci-dessous :

Déterminez graphiquement les valeurs numériques pour :

Valeur crête :	0,25pt
Valeur crête-crête :	0,25pt
Valeur moyenne :	
Période :	0.25nt

EXERCICE III: Associations (3 pts)

 $\boldsymbol{A.}$ Déterminez la capacité équivalente, $\boldsymbol{C_{AB}},$ du circuit ci-contre :

1,5pt

Réponse :

Faites les approximations nécessaires.

 $\boldsymbol{B.}$ Déterminez l'inductance équivalente, $L_{AB},$ du circuit ci-contre :

1,5pt

R'eponse:

Faites les approximations nécessaires.

EXERCICE IV: Thévenin (5 pts)

Le composant grisé sur le schéma ci-contre est un élément non linéaire, dont la caractéristique courant-tension est donnée sur le graphe page X.

On souhaite calculer Ich, Uch.

IV.1. Transformez le circuit source en son équivalent de Thévenin.

1,5 pt

Réponse :

 $R_T = 8 \Omega$ $U_T = 20V$

		de Uch.
Réponse :		
$U_T - R_T \times I_{CH}$	$-U_{CH}=0$	
20 – 8 I _{CH} – U	$J_{CH} = 0$	
$I_{CH} = 5/2 - U$	$I_{\rm CH} / 8 = 2.5 - U_{\rm CH} / 8$	
IV.3.a. Trace	nination de I _{CH} et U _{CH} z la droite de source sur le schéma	
Points choisis	s pour la tracer :	L
U = 0; 2,5A	i = 0; $U = 20V$	
IV.3.b.	Déterminez les valeurs de U_{CH} et I_{CH} .	
Réponse :		

Graphe pour exercice IV : caractéristique courant/tension de l'élément non linéaire.

EXERCICE V: Condensateur (4 pts)

L'interrupteur du circuit de la figure ci-contre a été fermé en position 1 pendant un temps très long, le condensateur est donc chargé.

Il est mis en position 2 à t=0.

V.1. Détermination de l'expression de la tension uc(t) aux bornes du condensateur.

V.1.a. Valeur de la tension initiale aux bornes du condensateur ? Expliquez brièvement.

ı	Réponse :
	10V

V.1.b. Donnez l'expression de $u_C(t)$.

```
Réponse :

RC=100 ms = 0,1s

u'+10u=20

u=K1 exp(-10t) + 20

u(0)=10 donc K1= -10
```

donc $u(t) = -10 \exp(-10t) + 20$		

V.1.c. Représentez à main levée uc(t) à l'aide de 3 ou 4 points judicieusement choisis.

Réponse : u(0) = 10 u(0,1) = -0.37*10 + 20 = 17.4s u(0,5s) = 20V

V.2. Le condensateur :

V.2.a. Au bout de combien de temps est-il complètement chargé ? Donnez l'expression et la valeur numérique.
V.2.b. Donnez l'expression et la valeur numérique de cette charge.
V.2.c. Donnez l'expression et la valeur numérique de l'énergie totale emmagasinée par le condensateur lorsque le régime permanent est atteint.
V.3. Donnez l'expression du courant ic(t)

