

HONORS PHYSICS II (Fall 2016)

Problem Set 2

Due: 29 September 2016, 2 p.m.

Problem 1. A point charge q is placed at the point $\mathbf{r} = 0$.

- (a) By direct calculation show that the divergence of the electric field div $\mathbf{E}(\mathbf{r}) = 0$ for all $\mathbf{r} \neq 0$. What about the divergence at $\mathbf{r} = 0$?
- (b) What is the condition div $\mathbf{E}(\mathbf{r})$ should satisfy at $\mathbf{r} = 0$ for Gauss's law to be valid? Hint. Use Gauss's law in the integral form.

(3/2 + 3/2 marks)

Problem 2. Suppose the electric field in some region is found to be $\mathbf{E} = kr^3\hat{r}$, where k is a constant.

- (a) Find the charge density.
- (b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it in two different ways: (1) by integrating the charge density found in part (a) and (2) by using the integral form of Gauss's law.)

(1 + 3 marks)

Problem 3. In a certain region of space, the electric field **E** is uniform, *i.e.* is constant in both magnitude and direction.

- (a) Use Gauss's law to argue that this region of space must be electrically neutral, i.e., the volume charge density ρ must be zero.
- (b) Is the converse true? That is, in a region of space where there is no charge, must ${\bf E}$ be uniform? Explain.

(1 + 1 marks)

Problem 4. A point charge Q > 0 is placed at a vertex of a cube as shown in the figure. Find the electric flux through the surface ABCD.

(4 marks)

- **Problem 5.** A solid insulating ball with radius R is charged non-uniformly: the volume charge density $\rho = Ar/R$, where A is a positive constant, and r is the distance from the center of the ball
 - (a) Show that the total charge of the ball is $Q = \pi A R^3$.
 - (b) Find the electric field $\mathbf{E}(\mathbf{r})$ both inside and outside of the ball. Sketch $|\mathbf{E}|$ as a function of r.

(1 + 3 marks)

Problem 6. An infinite plane slab of thickness 2d (see the figure below) carries a uniform volume density ρ . Find the electric field as a function of y, where y=0 at the center of the slab. Plot E versus y, calling E positive if it points in the +y direction and negative if it points in the -y direction.

(5 marks)

Problem 7. Consider an infinite solid insulating cylinder with radius R uniform charged with constant density $\rho < 0$. Imagine that a cylindrical hole with radius a has been bored along the entire length of the cylinder. The axis of the cavity is a distance b from the axis of the cylinder, where a < b < R.

Find the magnitude and the direction of the electric field \mathbf{E} inside the cavity to show that \mathbf{E} is uniform over the entire cavity.

(4 marks)

- **Problem 8.** Two spherical cavities, of radii r_a and r_b , are hollowed out from the interior of a neutral conducting ball of radius R. At the center of each cavity a point charge is placed: q_a and q_b , respectively.
 - (a) Find the surface densities of charge σ_a , σ_b on the walls of the cavities as well as on the surface of the ball σ_R .
 - (b) What is the electric field outside of the conductor?
 - (c) What is the electric field within each cavity?
 - (d) What is the force on q_a and q_b ?
 - (e) Which of these answers would change if a third charge q_c were brought near the conductor?

(cross-sectional sketch)

Explain your answers.

 $(5 \times 2 \text{ marks})$