Data-Science 1

machine learning

24/04/2024

Inhoud

- evaluatiemetrieken voor classificatie
 - welk probleem?
 - confusion matrix
 - accuracy
 - precision en recall
 - F-measure
 - andere maten

Probleem

- gegeven: beslissingsboom
- vraag: hoe goed is deze beslissingsboom om waarden te voorspellen?

Oplossing

- splits data in
 - training dataset
 - test dataset
- maak de boom met de training dataset
- test de boom met de test dataset

Resultaat

 we bekomen nu een reeks voorspelde waarden door de boom en een reeks werkelijke waarden

Voorbeeld: bankleningen

Voorbeeld: bankleningen

	рер	Tree
1	YES	YES
2	NO	NO
3	YES	YES
4	NO	NO
5	YES	YES
6	NO	NO
7	YES	YES
8	YES	NO
9	YES	YES
10	NO	YES
11	YES	YES
12	YES	NO
13	NO	YES
14	YES	NO
15	NO	NO
16	NO	NO
17	YES	NO
18	NO	NO
19	YES	NO
20	VEC	NO

Resultaat

- de bekomen waarden zijn <u>categorisch</u>
- je kan dus geen "error" berekenen zoals bij regressie
- je kan wel tellen hoeveel keer de waarden overeenkomen en hoeveel keer niet

Confusion matrix

Confusion matrix

- Stel: er zijn 2 categorieën
- we noemen deze "positive" en "negative"
- er zijn 4 mogelijkheden
 - positive voorspeld, echte waarde is positive (True Positive)
 - positive voorspeld, echte waarde is negative (False Positive)
 - negative voorspeld, echte waarde is positive (False Negative)
 - negative voorspeld, echte waarde is negative (True Negative)

Confusion matrix

We zetten deze in een matrix

		werkelijke klasse	
		positief	negatief
voorspelde klasse	positief	true positives (TP)	false positive (FP)
voorspeide klasse	negatief	false negative (FN)	true negatives (TN)

• in foto's detecteren of er een gezicht in staat

		werkelijke klass	
		positief	negatief
voorspelde klasse	positief	876	54
	negatief	11	891

Meedere categorieën

- als er meerdere categorieën zijn, dan heb je meer kolommen en rijen
- bv: herken dieren (kat, hond, konijn):

		Werkelijke klasse			
		kat	hond	konijn	
Voo	kat	echt kat	vals kat	vals kat	
rsp eld e	hond	vals hond	echt hond	vals hond	
klas se	konijn	vals konijn	vals konijn	echt konijn	

Accuracy

Accuracy

- we zoeken 1 getal dat uitdrukt hoe goed de voorspelling is
- accuracy is het aantal juiste voorspellingen gedeeld door het totaal aantal voorspellingen

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

		werkelij.	ke klasse
		positief	negatief
voorspelde klasse	positief	876	54
	negatief	11	891

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{876 + 891}{876 + 54 + 11 + 891} = 0,9645 = 96,45\%$$

Meedere categoriën

- Als er meer dan 2 categorieën zijn:
- bereken de accuracy per categorie (de categorie is dan "positive" en de anderen zijn "negative")

		Werkelijke klasse		
		kat	niet-kat	
Voors pelde	kat	30	5+1	
klass e	niet-kat	10+0	20+2+7+25	

Precision en recall

Probleem met accuracy

De test dataset bevatte heel veel "negative" waarden Het algoritme heeft geleerd om alles negative te bestempelen...

		werkelij.	ke klasse
		positief	negatief
voorspelde klasse	positief	0	0
voorspeide klasse	negatief	110	990

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{0 + 990}{0 + 990 + 0 + 110} = 0,9 = 90\%$$

vergelijk: als je niet weet of het "word" of "wordt" is, gok dan op "wordt" want dat komt het meeste voor :-)

Precision en recall

men berekent 2 maten:

$$precision = \frac{TP}{TP + FP} \qquad recall = \frac{TP}{TP + FN}$$

- deze moeten beiden hoog zijn
- precision = hoeveel procent van de voorspelde positive waren ook daadwerkelijk positive?
- recall = hoeveel procent van de werkelijk positive werden ook als positive voorspeld?

		werkelij!	ke klasse
		positief	negatief
voorspelde klasse	positief	876	54
voorspeide klasse	negatief	11	891

$$precision = \frac{TP}{TP + FP} = \frac{876}{876 + 54} = 94,19\%$$

$$recall = \frac{TP}{TP + FN} = \frac{876}{876 + 11} = 98,76\%$$

training set bevatte vooral negative		werkelijke klasse		
		positief	negatief	
	voorspelde klasse	positief	1	0
	voorspeide klasse	negatief	110	990

$$precision = \frac{TP}{TP + FP} = \frac{1}{1+0} = 100\%$$

$$recall = \frac{TP}{TP + FN} = \frac{1}{1 + 110} = 0.9\%$$

training set bevatte vooral positive			werkelijke klasse	
training out sovatto vooral poolitio		positief	negatief	
3.7	voorspelde klasse	positief	110	990
V	oorspeide krasse	negatief	0	0

$$precision = \frac{TP}{TP + FP} = \frac{110}{110 + 990} = 10\%$$

$$recall = \frac{TP}{TP + FN} = \frac{110}{110 + 0} = 100\%$$

Meedere categoriën

- Als er meer dan 2 categorieën zijn:
- bereken de precision en recall per categorie (de categorie is dan "positive" en de anderen zijn "negative")

		Werkelijke klasse		
		kat	niet-kat	
Voors pelde	kat	30	5+1	
klass e	niet-kat	10+0	20+2+7+25	

F-measure

Probleem

- precision en recall zijn 2 getallen
- ze moeten allebei zo hoog mogelijk zijn
- we willen maar 1 getal dat kan uitdrukken of ze beiden hoog zijn of niet

Oplossing

 neem het (gewogen harmonisch) gemiddelde van precision (P) en recall (R)

$$F_{\beta} = \frac{(\beta^2 + 1) \cdot P \cdot R}{\beta^2 \cdot P + R}$$

- als β=1 dan spelen beiden evenveel mee
- als β>1 dan wordt er meer belang gehecht aan recall
- als β <1 dan wordt er meer belang gehecht aan precision

Oplossing

• F₁ wordt veel gebruikt:

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

		werkelij.	ke klasse
		positief	negatief
voorspelde klasse	positief	876	54
	negatief	11	891

$$precision = \frac{TP}{TP + FP} = \frac{876}{876 + 54} = 94,19\%$$

$$recall = \frac{TP}{TP + FN} = \frac{876}{876 + 11} = 98,76\%$$

$$F_1 = \frac{2 \cdot P \cdot R}{P + R} = 96,42\%$$

tr	aining set bevatte vooral r	werkelijke klasse		
		positief	negatief	
	voorspelde klasse	positief	1	0
	voorspeide klasse	negatief	110	990

$$precision = \frac{TP}{TP + FP} = \frac{1}{1+0} = 100\%$$
$$recall = \frac{TP}{TP + FN} = \frac{1}{1+110} = 0.9\%$$

$$F_1 = \frac{2 \cdot P \cdot R}{P + R} = 1,79 \%$$

training set be	evatte vooral p	werkelijke klasse		
araming decision realism products		positief	negatief	
voorspol	voorspelde klasse	positief	110	990
voorsper		negatief	0	0

$$precision = \frac{TP}{TP + FP} = \frac{110}{110 + 990} = 10\%$$
$$recall = \frac{TP}{TP + FN} = \frac{110}{110 + 0} = 100\%$$

$$F_1 = \frac{2 \cdot P \cdot R}{P + R} = 18,18 \%$$

Meedere categoriën

- Als er meer dan 2 categorieën zijn:
- bereken de F-measure per categorie (de categorie is dan "positive" en de anderen zijn "negative")

		Werkelijke klasse		
		kat	niet-kat	
Voors pelde	kat	30	5+1	
klass e	niet-kat	10+0	20+2+7+25	

Andere maten

Andere maten

- er zijn nog andere maten die gebruikt worden:
 - False Positive Rate (FPR) = FP / (TP + FN)
 - True Positive Rate (TPR) = TP / (TP + FN)
 - dit is een andere benaming voor "recall"
 - sensitivity = TP / (TP + FN)
 - dit is een andere benaming voor "recall"
 - specificity = TN / (TN + FP)

Orange

Oefeningen

Oefeningen

- Zie Canvas
 - Foto's herkennen
 - Bank
 - Titanic
 - Music Genre Classification