Chapter 3 Functions of a Real Variable

Arthur Chen

February 10, 2022

Problem 1

Assume that $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(t) - f(x)| \le |t - x|^2$ for all t, x. Prove that f is constant.

Proof: The assumption implies that for all t, x,

$$0 \le \left| \frac{f(t) - f(x)}{t - x} \right| = \frac{|f(t) - f(x)|}{|t - x|} \le |t - x|$$

implies that $f'(t) = \lim_{x \to t} \frac{f(t) - f(x)}{t - x} = 0$ at all t. The only functions with derivatives that are zero everywhere are constant functions.

Problem 2

A function $f:(a,b)\to\mathbb{R}$ satisfies a Holder condition of order α if $\alpha>0$, and for some constant H and all $u,x\in(a,b)$ se have

$$|f(u) - f(x)| \le H|u - x|^{\alpha}$$

The function is said to be α -Holder, with α -Holder constant H.

Part a

Prove that the α -Holder function defined on (a,b) is uniformly continuous and infer that it extends uniquely to a continuous function defined on [a,b]. Is the extended function α -Holder?

Proof: Let $\epsilon > 0$ and define $\delta = (\frac{\epsilon}{H})^{1/\alpha}$. Then for all $u, x \in (a, b)$ such that $|u - x| < \delta$, we have

$$|f(u) - f(x)| \le H|u - x|^{\alpha} < \epsilon$$

since $\alpha > 0$.

By Problem 54 in Chapter 2, a uniformly continuous function defined on a metric space S has a unique continuous extension on \bar{S} . Since $[a,b]=(\bar{a},b)$, $f:(a,b)\to\mathbb{R}$ being uniformly continuous implies that f extends uniquely to $g:[a,b]\to\mathbb{R}$, where g is continuous. In fact, g is uniformly continuous because it is continuous on a compact.

We claim that g is α -Holder on [a,b]. Let $x,y \in [a,b]$. If $x,y \in (a,b)$, this just follows because g extends f.

Without loss of generality, let x = a and let $y \in (a, b)$. Let $\epsilon > 0$ be fixed and arbitrary, and let $\delta > 0$ be the corresponding continuity condition. Then

$$|g(c) - g(a)| \le |g(c) - g(a + \delta)| + |g(a) - g(a + \delta)|$$

by the Triangle inequality. For the first term, because c and $a + \delta$ are in the interval (a, b), the Holder condition from f extends to g, so

$$|g(c) - gf(a + \delta)| \le H|c - a - \delta|^{\alpha} \le H|c - a|^{\alpha}$$

because $\alpha > 0$ and $\delta > 0$. For the second term, continuity of g means $|g(a) - g(a + \delta)| < \epsilon$. Thus

$$|g(c) - g(a)| \le H|c - a|^{\alpha} + \epsilon$$

and ϵ can be made arbitrarily small. The case where y=b, and the case where x=a and y=b simultaneously, are essentially the same.

Part b

What does α -Holder continuity mean when $\alpha = 1$?

When $\alpha = 1$, α -Holder continuity simplifies to Lipschitz continuity.

Part c

Prove that α -Holder continuity when $\alpha > 1$ implies that f is constant. Let x in the domain of f be arbitrary. Dividing both sides by |u - x|,

$$0 \le \frac{|f(u) - f(x)|}{|u - x|} \le H|u - x|^{\alpha - 1}$$

Let $u \to x$. Since $\alpha > 1$ the right side goes to 0, implying $\frac{|f(u) - f(x)|}{|u - x|} \to 0$ and that f'(x) = 0 for all x in f's domain. The only functions with this property are constant functions.

Problem 3

Assume that $f:(a,b)\to\mathbb{R}$ is differentiable.

Part a

If f'(x) > 0 for all x, prove that f is strictly monotone increasing.

Proof: Let $c, d \in (a, b), c < d$. Then because f is differentiable on its domain, the Mean Value Theorem indicates that there is a point $\theta \in (c, d)$ such that

$$f(c) - f(d) = f'(\theta)(d - c)$$

Since f' is always strictly positive and c < d, the right side is strictly positive. \square

Part b

If $f'(x) \ge 0$ for all x, what can you prove?

We can prove that f is weakly monotone increasing. The proof is the same, except that $f'(\theta)(d-c)$ can be zero.

Problem 4

Prove that $\sqrt{n+1} - \sqrt{n} \to 0$ as $n \to \infty$.

Consider the function $f(x) = \sqrt{x}$, and take a Taylor approximation of degree zero around x = n, where n is a positive natural number. Then $P_0(x) = \sqrt{n}$. Use the Taylor approximation to approximate x = n + 1. The Taylor remainder term is

$$R(1) = \sqrt{n+1} - \sqrt{n}$$

 \sqrt{x} is smooth when x > 0, and $n \ge 1$. Therefore, f is smooth on (n, n + 1), and the Taylor approximation theorem states that there exists $\theta \in (n, n + 1)$ such that

$$R(1;n) = \sqrt{n+1} - \sqrt{n} = \frac{f'(\theta)}{1!}(1)^1 = \frac{1}{2}\theta^{-\frac{1}{2}}$$

As $n \to \infty$, $\theta > n$ implies $\theta \to \infty$ implies $R(1; n) \to 0$ implies $\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = 0$.

Problem 8

Part b

Find a formula for a continuous function defined on [0,1] that is differentiable on the interval (0,1), but not at the endpoints.

Consider the function

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \in (0, 1] \\ 0 & \text{else} \end{cases}$$

f is the composition of continuous functions on (0,1], so it is continuous on that interval. At x=0, we noting that for all $x \in (0,1]$, we have

$$-x \le x \sin(\frac{1}{x}) \le x$$

implying that $\lim_{x\to 0^+} f(x) = 0 = f(0)$ by the Squeeze theorem. This implies that f(x) is continuous at x = 0, and thus [0,1]. $\frac{1}{x}$ is differentiable on $\mathbb{R} - 0$, so f(x) is differentiable on (0,1].

Taking the definition of derivative to attempt to evaluate f'(0),

$$f'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \sin(\frac{1}{x})$$

which does not exist. Thus f(x) is differentiable on (0,1]. Consider the function

$$g(x) = f(x) + f(1-x)$$

This consists of f and f reflected about the line $x = \frac{1}{2}$ added together. From the above, g is continuous on [0,1], and differentiable on (0,1), but not 0 or 1.

Part c

Does the Mean Value Theorem apply to such a function?

Yes, since the Mean Value Theorem only requires the function to be differentiable on the open interval. In this case, the Mean Value Theorem states there is a point $\theta \in (0,1)$ such that $g'(\theta) = 0$. We can probably prove that a point exists by using the Intermediate Value Theorem on g'(x) since it's continuous on (0,1), but I'm too lazy at the moment.

Problem 10

Concoct a function $f: \mathbb{R} \to \mathbb{R}$ with a discontinuity of the second kind at x = 0 such that f does not have the intermediate value property there. Infer that it is incorrect to assert that functions without jumps are Darboux continuous.

Consider the function

$$f(x) = \begin{cases} x & x \in \mathbb{R} - \mathbb{Q} \\ 1 & \text{else} \end{cases}$$

f is continuous at x = 1 and discontinuous everywhere else. These discontinuities are discontinuities of the second kind, since left and right limits don't exist when x is not 1. f(x) clearly does not have the intermediate value

property, as except for 1, f assumes no rational values. Since this is a function without jump discontinuities but does not possess the intermediate value property, functions without jumps are not necessarily Darboux continuous.

Problem 11

Let $f:(a,b)\to\mathbb{R}$ be given.

Part a

If f''(x) exists, prove that

$$\lim_{h \to 0} \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} = f''(x) \tag{1}$$

I will assume that 'f''(x) exists' means that f''(x) exists everywhere. Denote the left side of this equation as G(x). We begin by reparameterizing the derivative

Lemma 1 If f'(x) exists, then

$$f'(x) = \lim h \to 0 \frac{f(x+h) - f(x)}{h}$$

Proof: Taking the definition of derivative as

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

 $substitute\ t = x + h.$

Rearranging the terms in Equation 1, we have

$$G(x) = \lim_{h \to 0} \frac{\frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}}{h}$$
(2)

We now show a quick lemma.

Lemma 2 Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$. If $\lim_{x \to a} f(g(a))$ exists and g is continuous near a, then

$$\lim_{x\to a} f(g(a)) = \lim_{x\to a} f(\lim_{y\to x} g(y))$$

Proof: Since in the limit x is close to a, g(x) is continuous, so sequential preservation holds.

Corollary 3

$$G(x) = \lim_{h \rightarrow 0} \frac{\lim_{i \rightarrow h} \frac{f(x+i) - f(x)}{i} - \frac{f(x) - f(x-i)}{i}}{h}$$

Proof: f''(x) exists everywhere, so f'(x) is continuous everywhere. We then use the above lemma.

TO BE COMPLETED.

Problem 29

Prove that the interval [a, b] is not a zero set.

Part a

Explain why the following observation is not a solution to the problem: "Every open interval that contains [a, b] has length > b - a."

This 'solution' does not consider the possibility that there is a union of open sets that cover [a, b] such that their sum of their lengths can be made arbitrarily small.

Part b

Instead, suppose there is a "bad" covering of [a, b] by open intervals $\{I_i\}$ whose total length is < b - a, and justify the following steps in the proof by contradiction.

I will define a good covering as a covering of [a, b] by open intervals $\{J\}$ such that the total length of the intervals in $\{J\}$ is greater than or equal to b-a.

i

It is enough to deal with finite bad coverings.

Let $\{I\}$ be an infinite bad covering of [a,b]. Because $\{I\}$ is an open cover of compact [a,b], it reduces to a finite subcovering $\{I_i\}$. Thus, either $\{I\}$ reduces to a finite bad covering, or it reduces to a good covering. If $\{I\}$ reduces to a good covering $\{J_i\}$, then $\{J_i\} \subset \{I\}$ and the sum of the intervals in $\{J_i\}$ being $\geq b-a$ implies that the sum of the intervals in $\{I\}$ is $\geq b-a$. Thus $\{I\}$ is an infinite good covering, which contradicts the assumption that $\{I\}$ is a bad covering.

Thus, if $\{I\}$ is an infinite bad covering, it reduces to a finite bad covering. Contrapositively, if there are no finite bad coverings, then there are no infinite bad coverings, and the theorem is proven.

ii

Let $\mathbb{B} = \{I_1, \dots I_n\}$ be a bad covering such that n is minimal among all bad coverings.

There is at least one finite bad covering, by assumption. n=1 is a lower bound for the size of bad coverings. Then because \mathbb{R} is complete, there exists a greatest lower bound for the sizes of the bad coverings, denoted c.

The must be a finite bad covering $\{C\}$ such that the size of $|\{C\}| = c$. Suppose not. Then all bad coverings have size > c, and size the sizes of the bad coverings must be integers, all bad coverings have size $\geq c+1$. This contradicts the assumption that c is a greatest lower bound. This bad covering $\{C\}$ is the bad covering with minimal n among all bad coverings.

iii

Show that no bad covering has n=1 so we have $n\geq 2$. This follows from the observation in Part a.

iv

Show that it is no loss of generality to assume $a \in I_1$ and $I_1 \cap I_2 \neq \emptyset$.

There exists at least one interval such that $a \in I_j$, and we are free to denote that interval I_1 .

There must exist an interval that intersects I_1 . Suppose not. Let d_1 be the right endpoint of I_1 , and let $c_2, c_3 \dots c_n$ be the left endpoints of the other intervals in the bad covering, and let $c = \min\{c_1 \dots c_n\}$. Then $\frac{c-d}{2}$ is not covered by the bad covering, contradicting the assumption that $\{I\}$ is a covering. Thus, there exists an interval in $\{I\}$ that intersects I_1 . Denote it I_2 . By construction, $I_1 \cap I_2$ is nonempty.

\mathbf{v}

Show that $I = I_1 \cup I_2$ is an open interval and $|I| < |I_1| + |I_2|$.

If $I_1 \subset I_2$ or $I_2 \subset I_1$, $I_1 \cup I_2$ is trivially an open interval. Otherwise, $I_1 \cup I_2$ is the open because it is the union of open sets, connected because it is the union of two connected sets with a common point, and bounded because it is the finite union of bounded sets. Therefore $I_1 \cup I_2$ is a open, connected, and bounded subset of \mathbb{R} , and by the theorems shown in Chapter 2 Problem 31, open, connected, and bounded subsets of \mathbb{R} are open intervals.

Lemma 4 Let $C, D \subset \mathbb{R}$ be (bounded) intervals that intersect, and let E = C + D. Then |E| < |C| + |D|.

Proof: If C is a subset of D or vice versa, the proof is trivial. Without loss of generality, let the left endpoint of C be less than the left endpoint of D. Denote c as the right endpoint of C, and d the left endpoint of D. d < c, otherwise the two intervals do not intersect. Letting $\epsilon = c - d > 0$, the total length of E is $|C| + |D| - \epsilon$, which is strictly less than |C| + |D|.

By using the above Lemma, we see that $|I| < |I_1| + |I_2|$.

Show that $\mathbb{B}' = \{I, I_3, \dots I_n\}$ is a bad covering of [a, b] with fewer intervals, contradicting the minimality of n.

Let $x \in [a,b]$. Since $\mathbb B$ is a covering of [a,b], there exists $i \in 1,2\dots n$ such that $x \in I_i$. If $i \geq 3$, then because $I_i \in \mathbb B'$, x is also covered by $\mathbb B'$. If i = 1,2, then $x \in I = I_1 \cup I_2$, so x is still covered by $\mathbb B'$. $\mathbb B'$ is a covering by open intervals, because I is an open interval. $\mathbb B'$ is a bad covering. $|I| < |I_1| + |I_2|$ implies that $|I| + \sum_{j=3}^n I_j < \sum_{i=1}^n I_i < b-a$, implying that the total length of $\mathbb B'$ is less than the total length of $\mathbb B$. Thus $\mathbb B'$ is a bad covering with fewer intervals than $\mathbb B$, contradicting the assumption that $\mathbb B$ is the minimal bad covering. Thus, there are no bad coverings of [a,b], coverings of [a,b] can not have arbitrarily small length, and [a,b] is not a zero set.