Résumé de cours :

Semaine 12, du 06 décembre au 10.

La structure de groupe 1

Morphisme de groupes 1.1

Définition. Soient (G, Δ) et (H, ∇) deux groupes.

Une application f de G dans H est un **morphisme** (on dit aussi un **homomorphisme**) de groupes si et seulement si

$$\forall (x,y) \in G^2 \ f(x\Delta y) = f(x)\nabla f(y).$$

Un *isomorphisme* est un morphisme bijectif.

Un endomorphisme est un morphisme de G dans lui-même.

Un *automorphisme* est un endomorphisme bijectif.

Propriété. Si a est un élément de (G,.), alors $(\mathbb{Z},+) \longrightarrow (G,.) \atop n \longmapsto a^n$ est un morphisme de groupes.

Propriété. Si f est un morphisme de (G,.) dans (H,.), alors $f(1_G) = 1_H$ et pour tout $x \in G$, $f(x)^{-1} = f(x^{-1})$.

Propriété. En notation additive, si f est un morphisme entre deux groupes abéliens (G, +) et (H, +), alors $f(0_G) = 0_H$ et, pour tout $x \in G$, -f(x) = f(-x).

Propriété. Soit φ un morphisme du groupe (G,.) vers le groupe (G',.).

Alors, pour tout
$$n \in \mathbb{N}$$
 et $x_1, \dots, x_n \in G$, $\varphi\left(\prod_{i=1}^n x_i\right) = \prod_{i=1}^n \varphi(x_i)$.
De plus, pour tout $n \in \mathbb{Z}$ et $a \in G$, $\varphi(a^n) = \varphi(a)^n$.

Il faut savoir le démontrer.

Propriété. Soit φ un morphisme du groupe abélien (G,+) vers le groupe abélien (G',+). Alors,

pour tout
$$n \in \mathbb{N}$$
 et $x_1, \dots, x_n \in G$, $\varphi\left(\sum_{i=1}^n x_i\right) = \sum_{i=1}^n \varphi(x_i)$.

De plus, pour tout $n \in \mathbb{Z}$ et $a \in G$, $\varphi(na) = n\varphi(a)$.

Propriété. La composée de deux morphismes de groupes est un morphisme de groupes.

Propriété. Si $f: G \longrightarrow H$ est un isomorphisme de groupes, f^{-1} est encore un isomorphisme de groupes, de H dans G.

Propriété. Soit (G, .) un groupe. On note Aut(G) l'ensemble des automorphismes de G. C'est un sous-groupe de $\mathcal{S}(G)$.

Définition. Soit $\varphi: G \longrightarrow G$ un endomorphisme et H un sous-groupe de G. On peut définir $\varphi|_H^H$ si et seulement si H est stable par φ , c'est-à-dire si et seulement si $[\forall x \in H, \ \varphi(x) \in H]$. Dans ce cas, $\varphi|_H^H$ est aussi un **endo**morphisme, appelé l'endomorphisme induit par φ sur H, ou plus simplement la restriction de φ à H (il y a bien sûr ambiguïté).

Propriété. Soit f un morphisme de G dans H, G' un sous-groupe de G et H' un sous-groupe de H. Alors f(G') est un sous-groupe de H et $f^{-1}(H')$ est un sous-groupe de G. Il faut savoir le démontrer.

Définition. Soient (G, .) et (H, .) deux groupes, et f un morphisme de G dans H. On appelle **noyau** de f le sous-groupe de G suivant :

$$Ker(f) = f^{-1}(\{1_H\}) = \{x \in G/f(x) = 1_H\}.$$

On appelle image de f le sous-groupe de H suivant :

$$Im(f) = f(G) = \{f(x)/x \in G\}.$$

Remarque. En notation additive, Si f est un morphisme dont le groupe d'arrivée (H, +) est abélien, alors $Ker(f) = f^{-1}(\{0_H\}) = \{x \in G/f(x) = 0_H\}$.

Propriété. Soient (G,.) et (H,.) deux groupes, et f un morphisme de G dans H.

$$f$$
 est injective si et seulement si $Ker(f) = \{1_G\},$
 f est surjective si et seulement si $Im(f) = H.$

Propriété. Un groupe est monogène non cyclique si et seulement si il est isomorphe à $(\mathbb{Z}, +)$. Il faut savoir le démontrer.

1.2 Groupe symétrique

Notation. Pour tout $n \in \mathbb{N}$, on pose $\mathbb{N}_n = \{k \in \mathbb{N}/1 \le k \le n\}$. En particulier $\mathbb{N}_0 = \emptyset$.

Définition. Soit $n \in \mathbb{N}$. $\mathcal{S}(\mathbb{N}_n)$ s'appelle le groupe symétrique de degré n. Il est plus simplement noté \mathcal{S}_n . Ses éléments sont les bijections sur \mathbb{N}_n , que l'on appelle aussi des permutations.

Notation. Si
$$f \in \mathcal{S}_n$$
, on note $f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$.

Définition. Soient $k \in \mathbb{N}_n$ et $a_1, a_2 \dots a_k$ k éléments distincts de \mathbb{N}_n .

On note $(a_1 \ a_2 \ \dots \ a_k)$ la permutation f telle que : $\forall i \in \{1, \dots, k-1\}$ $f(a_i) = a_{i+1}$,

 $f(a_k) = a_1$, les autres éléments de \mathbb{N}_n étant invariants par f.

On dit que $(a_1 \ldots a_k)$ est un **cycle** de longueur k dont le **support** est $\{a_1, \ldots, a_k\}$.

Définition. On appelle *transposition* tout cycle de longueur 2.

Si $a, b \in \mathbb{N}_n$ avec $a \neq b$, la transposition $(a \ b)$ échange a et b sans modifier les autres éléments de \mathbb{N}_n .

Propriété. Deux cycles dont les supports sont disjoints commutent toujours entre eux. Il faut savoir le démontrer.

Théorème. Toute permutation de S_n se décompose de manière unique en un produit (commutatif) de cycles dont les supports sont deux à deux disjoints.

Propriété. Pour tout $n \in \mathbb{N}^*$, pour toute permutation σ de \mathcal{S}_n , il existe $k \in \mathbb{N}$ et k transpositions τ_1, \ldots, τ_k telles que $\sigma = \tau_1 \circ \cdots \circ \tau_k$. Cependant une telle décomposition n'est pas unique. La démonstration par récurrence est à connaître.

Formule: $(a_1 \ a_2 \ \dots \ a_k) = (a_1 \ a_2) \circ (a_2 \ a_3) \circ \dots \circ (a_{k-1} \ a_k)$.

Définition. Soit $n \in \mathbb{N}^*$ et soit $\sigma \in \mathcal{S}_n$. La décomposition de σ en un produit de transpositions $\tau_1 \circ \cdots \circ \tau_k$ n'est pas unique, mais le nombre k de transpositions utilisées a toujours la même parité. Ainsi $(-1)^k$ ne dépend que de σ . On l'appelle la signature de σ et on le note $\varepsilon(\sigma)$. Les permutations de signature 1 s'appellent les permutations paires,

Les permutations de signature -1 s'appellent les permutations impaires.

Propriété. L'application signature est l'unique morphisme de S_n dans $(\{-1,1\},\times)$ qui envoie toute transposition sur -1.

Propriété. Soit $n \in \mathbb{N}^*$. On note \mathcal{A}_n l'ensemble des permutations paires de \mathcal{S}_n . C'est un sous-groupe de \mathcal{S}_n , appelé le groupe alterné de degré n.

Propriété. Si $n \geq 2$, alors $|\mathcal{A}_n| = \frac{n!}{2}$. Il faut savoir le démontrer.

1.3 Groupes quotients

Notation. On fixe un groupe (G,.) et un sous-groupe H de G. On note R_H la relation binaire définie sur G par : $\forall (x,y) \in G^2$, $[xR_H y \iff x^{-1}y \in H]$.

Propriété. R_H est une relation d'équivalence et, pour tout $x \in G$, la classe d'équivalence de x pour R_H est $\overline{x} = \{xh/h \in H\} \stackrel{\Delta}{=} xH$. On note G/H l'ensemble des classes d'équivalence.

Il faut savoir le démontrer.

Théorème de Lagrange (Hors programme) : Si G est de cardinal fini, alors |H| divise |G|. Il faut savoir le démontrer.

Corollaire. (Hors programme) Si p est un nombre premier, tout groupe de cardinal p est cyclique.

Théorème. (au programme) : Si (G, .) est un groupe fini, $\forall a \in G, \ a^{|G|} = 1_G$.

2 La structure d'anneau

2.1 Définition

Définition. On appelle *anneau* tout triplet (A, +, .), où A est un ensemble et où "+" et "." sont deux lois internes sur A telles que

- (A, +) est un groupe abélien (l'élément neutre étant noté 0 ou 0_A),
- "." est une loi associative, admettant un élément neutre noté 1 ou 1_A ,
- la loi "." est *distributive* par rapport à la loi "+", c'est-à-dire que $\forall (x,y,z) \in A^3$ x.(y+z) = (x.y) + (x.z) et (x+y).z = (x.z) + (y.z).

Définition. Un anneau (A, +, .) est commutatif ou abélien si et seulement si la loi "." est commutative.

2.2 Calculs dans un anneau

Propriété. Si A est un anneau, pour tout $x, y \in A$ et $n \in \mathbb{Z}$, 0.x = x.0 = 0, (nx).y = x.(ny) = n(x.y). En particulier, $-x = (-1_A).x = x.(-1_A)$. Il faut savoir le démontrer.

Exemple. $\{0\}$ est un anneau en posant 0+0=0 et 0.0=0. On l'appelle l'anneau nul.

Propriété. Si A n'est pas l'anneau nul, alors $1_A \neq 0_A$.

Exemples. Si A est un anneau, pour tout ensemble E, $\mathcal{F}(E,A)$ et $A^{\mathbb{N}}$ sont des anneaux.

Propriété. Généralisation de la distributivité. Soient A un anneau, et $n, p \in \mathbb{N}$.

Pour tout
$$(a_1, \ldots, a_n) \in A^n$$
 et $(b_1, \ldots, b_p) \in A^p \left(\sum_{i=1}^n a_i\right) \cdot \left(\sum_{i=1}^p b_i\right) = \sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} a_i \cdot b_j$.

2.3 Puissances d'un élément

Notation. Dans ce paragraphe on fixe un anneau A.

Définition. $a \in A$ est inversible si et seulement s'il admet un symétrique (un inverse) pour la loi ".".

Définition. Si $a \in A$. On définit la famille (a^n) par les relations suivantes :

- Initialisation : $a^0 = 1_A$; Itération : pour tout $n \in \mathbb{N}$, $a^{n+1} = a.a^n$ (donc pour $n \in \mathbb{N}^*$, $a^n = \underbrace{a \times \cdots \times a}_{nfois}$);
- Lorsque a est inversible, pour tout $n \in \mathbb{Z}$ avec n < 0, on note $a^n = (a^{-n})^{-1}$

Définition. $a \in A \setminus \{0\}$ est nilpotent si et seulement si il existe $n \in \mathbb{N}$ avec $n \ge 2$ tel que $a^n = 0$.

Propriété. Pour tout $n, m \in \mathbb{N}$ $a^n a^m = a^{n+m}$ et $(a^n)^m = a^{nm}$.

Lorsque a est inversible, c'est valable pour tout $n, m \in \mathbb{Z}$.

Propriété. Soit $a, b \in A$ tels que ab = ba (on dit que a et b commutent).

Pour tout $n, m \in \mathbb{N}$, $(ab)^n = a^n b^n$. Lorsque a et b sont inversibles, c'est valable pour tout $n, m \in \mathbb{Z}$.

2.4 Les sous-anneaux

Définition. Soit (A, +, .) un anneau et $B \subset A$. B est un sous-anneau de A si et seulement si, en le munissant des restrictions sur B^2 des lois "+" et ".", B est un anneau possédant les mêmes éléments neutres que ceux de A.

Propriété. B est un sous-anneau de A ssi $1_A \in B$, et $\forall (x,y) \in B^2$, $x-y \in B$ et $xy \in B$.

Propriété. Si A est un anneau, son plus petit sous-anneau est $\mathbb{Z}.1_A = \{n.1_A/n \in \mathbb{Z}\}.$

2.5 Les corps

Propriété. L'ensemble U(A) des éléments inversibles d'un anneau A est un groupe multiplicatif.

Définition. Un anneau A est un corps si et seulement si

- A n'est pas réduit à $\{0_A\}$,
- A est commutatif,
- \bullet et tout élément de A différent de 0_A est inversible.

Définition. Soit $(\mathbb{K},+,.)$ un corps et $\mathbb{L}\subset\mathbb{K}$. \mathbb{L} est un sous-corps de \mathbb{K} si et seulement si, en le munissant des restrictions sur \mathbb{L}^2 des lois "+" et ".", \mathbb{L} est un corps possédant les mêmes éléments neutres que ceux de \mathbb{K} .

Propriété. L' est un sous-corps de K ssi c'est un sous-anneau de K tel que : $\forall x \in \mathbb{L} \setminus \{0\}$ $x^{-1} \in \mathbb{L}$.

2.6 **Formules**

Notation. On fixe un anneau (A, +, .).

Formule du binôme de Newton. Si $a, b \in A$ avec ab = ba, alors $(a + b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$.

Formule du multinôme (hors programme) : Soit b_1, \ldots, b_p des éléments de A qui commutent deux à deux. Alors, pour tout $n \in \mathbb{N}$, $(b_1 + \dots + b_p)^n = \sum_{\alpha_1 + \dots + \alpha_p = n} \frac{n!}{\alpha_1! \cdots \alpha_p!} b_1^{\alpha_1} \cdots b_p^{\alpha_p}$.

Formule de Bernoulli : Si $a, b \in A$ avec ab = ba, alors $a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^k b^{n-k}$.

Sommes partielles d'une série géométrique.

Si
$$x \in A$$
 et $m, n \in \mathbb{N}$ avec $m \le n$, $(1_A - x)$. $\sum_{i=m}^n x^i = x^m - x^{n+1}$.

2.7 Anneaux intègres

Définition. Soit A un anneau.

 $a \in A \setminus \{0\}$ est un diviseur à gauche de 0 si et seulement s'il existe $b \in A \setminus \{0\}$ tel que ab = 0. C'est un diviseur à droite de 0 si et seulement s'il existe $b \in A \setminus \{0\}$ tel que ba = 0.

Propriété. Un élément non nul d'un anneau est régulier à gauche si et seulement si ce n'est pas un diviseur à gauche de 0. Idem à droite.

Définition. Un anneau A est intègre si et seulement si il est commutatif et non nul et s'il n'admet aucun diviseur de 0, ni à gauche ni à droite, c'est-à-dire si et seulement si, pour tout $a, b \in A$, $ab = 0 \Longrightarrow (a = 0) \lor (b = 0)$.

Propriété. Un corps est en particulier un anneau intègre.

2.8 Morphismes d'anneaux

Définition. Soient $(A, +_A, \cdot_A)$ et $(B, +_B, \cdot_B)$ deux anneaux.

Une application $f: A \longrightarrow B$ est un **morphisme d'anneaux** si et seulement si

- $f(1_A) = 1_B$,
- $\forall (x, y) \in A^2 \ f(x +_A y) = f(x) +_B f(y),$
- $\bullet \ \forall (x,y) \in A^2 \ f(x._{\scriptscriptstyle{A}}y) = f(x)._{\scriptscriptstyle{B}}f(y).$

Un *isomorphisme* est un morphisme bijectif.

Un endomorphisme est un morphisme de A dans lui-même.

Un automorphisme est un endomorphisme bijectif.

Remarque. Lorsque f est un morphisme d'anneaux, c'est un morphisme de groupes, d'où Im(f) et $Ker(f) = f^{-1}(\{0\})$.

Propriété. Soient A et B deux anneaux et f un morphisme d'anneaux de A dans B.

Pour tout $a \in A$, $p \in \mathbb{N}$ et $n \in \mathbb{Z}$, f(na) = nf(a), $f(a^p) = f(a)^p$.

Si a est inversible, alors f(a) est inversible et $f(a^n) = f(a)^n$. En particulier, $f(a^{-1}) = f(a)^{-1}$.

Propriété. La composée de deux morphismes d'anneaux est un morphisme d'anneaux.

Propriété. Si f est un isomorphisme d'anneaux, f^{-1} est encore un isomorphisme d'anneaux.

Propriété. Soient $(A, +_A, \cdot_A)$ et $(B, +_B, \cdot_B)$ deux anneaux et $f: A \longrightarrow B$ un morphisme d'anneaux. L'image directe par f de tout sous-anneau de A est un sous-anneau de B.

L'image réciproque selon f de tout sous-anneau de B est un sous-anneau de A.

Définition. Soit \mathbb{K} et \mathbb{L} deux corps et f une application de \mathbb{K} dans \mathbb{L} . On dit que f est un morphisme de corps si et seulement si c'est un morphisme d'anneaux.

Propriété. (hors programme) Un morphisme de corps est toujours injectif.

Il faut savoir le démontrer.

Propriété. Soit $f : \mathbb{K} \longrightarrow \mathbb{L}$ un morphisme de corps.

Si \mathbb{K}' est un sous-corps de \mathbb{K} , alors $f(\mathbb{K}')$ est un sous-corps de \mathbb{L} .

Si L' est un sous-corps de L, alors $f^{-1}(\mathbb{L}')$ est un sous-corps de K.

2.9 Les anneaux produits

Définition. Soient $n \in \mathbb{N}^*$ et $((A_i, +, .))_{i \in \{1, ..., n\}}$ une famille de n anneaux. L'anneau produit de cette famille est (A, +, .), où $A = A_1 \times \cdots \times A_n$ et où les lois "+" et "." sont définies par : pour tout $x = (x_1, \ldots, x_n) \in A$ et $y = (y_1, \ldots, y_n) \in A$, $x + y = (x_1 + y_1, \ldots, x_n + y_n)$ et $x \cdot y = (x_1 \cdot y_1, \ldots, x_n \cdot y_n)$.

Définition. Pour tout $i \in \mathbb{N}_n$, la $i^{\text{ème}}$ projection, p_i : $A \longrightarrow A_i \\ (a_1, \dots, a_n) \longmapsto a_i \text{ est un morphisme}$ surjectif d'anneaux.

2.10 Les idéaux

Définition. Une partie I d'un anneau A est un $id\acute{e}al$ de A à gauche (resp : à droite) si et seulement si $I \neq \emptyset$, $\forall (x,y) \in I^2$, $x+y \in I$ et $\forall (x,y) \in A \times I$, $x,y \in I$ (resp : $y,x \in I$).

On dit qu'un idéal est absorbant pour le produit.

Lorsque I est un idéal à gauche et à droite, on dit que c'est un idéal bilatère.

Notation. Pour la suite, on fixe un anneau (A, +, .) que l'on suppose commutatif.

Propriété. Tout idéal est un groupe pour la loi "+".

Propriété. Soit A un anneau commutatif et I un idéal de A. Alors $1 \in I \iff I = A$.

Propriété. Une intersection d'idéaux de A est un idéal de A.

Il faut savoir le démontrer.

Définition. Soit B une partie de A. L'idéal engendré par B est l'intersection des idéaux de A contenant B. C'est le plus petit idéal (au sens de l'inclusion) contenant B. On le note Id(B).

Propriété. Soient B et C deux parties de A telles que $C \subset B$. Alors $Id(C) \subset Id(B)$.

Propriété. Si
$$B$$
 est une partie de A , $Id(B) = \{\sum_{i=1}^n a_i b_i / n \in \mathbb{N}, (a_1, \dots, a_n) \in A^n, (b_1, \dots, b_n) \in B^n \}.$

Il faut savoir le démontrer.

Définition. Un idéal I de A est principal si et seulement si il existe $b \in A$ tel que I = Id(b).

Définition. Un anneau est principal si et seulement si c'est un anneau commutatif, intègre et dont tous les idéaux sont principaux.

Théorème. \mathbb{Z} est un anneau principal.

Propriété. Soit I et J deux idéaux de A. Alors I + J est un idéal de A.

Propriété. Soient A et B deux anneaux commutatifs et $f: A \longrightarrow B$ un morphisme d'anneaux. Ker(f) est un idéal de A et si I est un idéal de B, $f^{-1}(I)$ est un idéal de A contenant Ker(f). Il faut savoir le démontrer.