KOMUTATIVNA ALGEBRA, 2019/20

6. DN/6nd HW: 15.4.2020

Rok za oddajo/ Deadline: 23:59, 21. 4. 2020

- (1) Naj bo M R-modul in $\{m_{\lambda} \mid \lambda \in \Lambda\} \subset M$ neka podmnožica. Pokaži, $\{m_{\lambda} \mid \lambda \in \Lambda\}$ generira M natanko tedaj, ko za vsak maksimalni ideal $\mathfrak{m} \triangleleft R$ množica $\{\frac{m_{\lambda}}{1} \in M_{\mathfrak{m}} \mid \lambda \in \Lambda\}$ generira $R_{\mathfrak{m}}$ -modul $M_{\mathfrak{m}}$.
- (2) Naj boM Noetherski $R\text{-}\mathrm{modul}.$ Pokaži, da so naslednje trditve ekvivalentne.
 - a.) M ima končno dolžino
 - b.) Obstaja končni produkt maksimalnih idealov, ki je pod annihilatorjem modul M
 - c.) Vsak pra ideal P, ki vsebuje ann(M) je maksimalen.
 - d.) $R/\operatorname{ann}(M)$ je Artiniski kolobar.
- (1) Let M be a R-module and $\{m_{\lambda} \mid \lambda \in \Lambda\} \subset M$ a subset. Show that, $\{m_{\lambda} \mid \lambda \in \Lambda\}$ generates M if and only if the set $\{\frac{m_{\lambda}}{1} \in M_{\mathfrak{m}} \mid \lambda \in \Lambda\}$ generaes $R_{\mathfrak{m}}$ -modul $M_{\mathfrak{m}}$ for every maximal ideal $\mathfrak{m} \triangleleft R$.
- (2) Let M be a Noetherian R-module. Show that the following conditions are eqivalent
 - a.) M has finite length
 - b.) M is annihilated by some finite product of maximal ideals.
 - c.) Every prime ideal P s.t ann $(M) \subset P$ is maximal.
 - d.) $R/\operatorname{ann}(M)$ is Artinian.