Henrework # 2

According to words, draw a

DFA.

Hints: all strings include all

possibilities considered.
4 c) all strings with no more than two as \(\Sigma = \{a, b\}\)
1 (a) a (a) (a) (a) (a) (a) (b)
7 b) L= {w: w mod 5 = 0} (Longth of string is multiple of 5) 5 - {a,b}
(q ₀) a,b (q ₁) a,b (q ₂) a,b (q ₄)
14 L= {a^1 a ≥ 3} = {aaa, aaaa, 3 = 1(M)
1 2 (a) 9 (aa) 9 (aa) 9 (aa) 9 (aa)
9 L= {ab, abc} = {ab, abc, abab, ababc, abcab, abcabc,}
- (q ₂) b (q ₂)

Another solution: 1) NFA has λ , but DFA has no λ . Another

2)DFA must include all alphabets, but

NFA has more than or none alphabets

DFA

$$S*(q_0, o) = \{q_1, q_2\}$$

$$S*(q_0, i) = \{q_1, q_2\}$$

$$S*(q_1, o) = \{q_0, q_2\}$$

$$S*(q_1, i) = \{q_1, q_2\}$$

$$S*(q_2, o) = \emptyset$$

$$S*(q_2, i) = \{q_1, q_2\}$$

NFA —>DFA

- 1)Start from the initial state of NFA
 2) numbers of alphabets represent the same number of arrows. The example has two alphabets. {a,b}, so each states have two arrows.
- 3) If q3 is a finial state in NFA, all states contain q3 is finial states in DFA!!
- 4) We may have empty set in DFA

