Семинар 3

• Динамика материальной точки.

• Ньютонов формализм.

Тело массой m=1 кг движется вверх вдоль наклонной плоскости под действием силы F=10 H, направленной вдоль нее. Определить ускорение тела, если угол наклона плоскости к горизонту $\beta=30^{\circ}$, а коэффициент трения тела о плоскость $\mu=0,1$.

Ответ: $a = 4,13 \text{ м/c}^2$

Тело массой m=1 кг неподвижно лежит на наклонной плоскости, имеющей угол наклона к горизонту $\beta=30^{\circ}$. При этом на него действует сила F, направленная вверх вдоль наклонной плоскости.

Определить силу трения в двух случаях: а) F = 7 H; б) F = 3 H. При каком коэффициенте трения тела о плоскость сила F = 7 H не сможет сдвинуть тело?

Ответ: a) -2 H; б) 2H. При $\mu = 0.23$

Через блок перекинута нерастяжимая нить, к которой прикреплены два тела массами m_1 и m_2 (причем $m_1 > m_2$).

Определить ускорения, с которыми будут двигаться тела и силу натяжения нити. Массами блока и нити пренебречь.

Omeem:
$$T = \frac{2m_1m_2}{m_1 + m_2}g$$
.

Через невесомый блок, укрепленный на ребре призмы, грани которой образуют углы β =30° и α =60° с горизонтом, перекинута нить, к концам которой привязаны тела соответственно массой m_1 =2 кг и m_2 =1 кг. Определить ускорение тел и силу натяжения нити, если коэффициент трения тел о плоскости μ =0,05.

• *Omeem*: $a = 0.075 \text{ m/c}^2$, T = 8.99 H.

На шероховатой горизонтальной поверхности расположены n=10 одинаковых куба массой m=5кг каждый (рис. 1). Коэффициент трения о поверхность равен $\mu=0,15$.

C какой силой T_1 надо тянуть первый куб, чтобы система двигалась с ускорением $a=3\ \text{м/c}^2$? Каковы при этом натяжения тросов, соединяющих кубы? Тросы предполагаются нерастяжимыми и их массой можно пренебречь.

Ответ: T_I = 223,5 *H*.

Два тела, изготовленные из разных материалов, соприкасаясь, соскальзывают с наклонной плоскости, имеющей угол наклона к горизонту β =60°. Массы верхнего и нижнего тел равны соответственно m_1 =1 кг и m_2 = 2 кг.

Определить силу взаимодействия тел, если коэффициент трения нижнего тела о наклонную плоскость μ =0,1, а верхнее тело скользит без трения.

Ombem: F = 0.33 H.

Тело скользит с вершины прямоугольного клина, имеющего фиксированную длину основания и переменный угол ф между наклонной плоскостью и горизонтом.

При каком значении угла φ время скольжения будет наименьшим? Коэффициент трения между телом и поверхностью клина $\mu = 0.10$.

Ответ: φ =48°