Linear Models 3: Non-linearity Lab

Dr. Luisa Barbanti and Dr. Matteo Tanadini

Applied Machine Learning and Predictive Modelling 1, FS25 (HSLU) $\,$

Contents

1	1 Load packages		2
2	2 Getting data		2
3	3 Polynomials		3
	3.1 Graphical analysis		3
	3.2 Quadratic effect		4
	3.3 More complex non-linear relatio	nships	8
	3.4 Are polynomials the ultimate so	lution for modelling non-linear relationships?	12
4	4 Regression splines	1	1 2
	4.1 Degree of complexity, how much	is enough?	15
5	5 Generalised Additive Models	1	L 8

1 Load packages

```
# Linear Models 3: Non-linearity Lab
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from statsmodels.formula.api import ols
from statsmodels.gam.api import GLMGam, BSplines
from statsmodels.stats.anova import anova_lm
from statsmodels.tools.tools import add_constant
from statsmodels.graphics.gofplots import qqplot
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.formula.api as smf
from patsy import dmatrix, bs
import statsmodels.api as sm
from pygam import GAM, s
```

2 Getting data

print(d_trees.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 557 entries, 0 to 556
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	growth_rate	557 non-null	float64
1	species	557 non-null	object
2	site	557 non-null	int64
3	Density.tree.Class	557 non-null	object
4	age	557 non-null	float64
5	size	557 non-null	float64
6	density_site	557 non-null	float64
7	density.tree	557 non-null	float64
8	diversity.tree	557 non-null	float64

```
9 diversity_site 557 non-null float64
10 sp.richness 557 non-null int64
11 SiteID 557 non-null int64
dtypes: float64(7), int64(3), object(2)
memory usage: 52.3+ KB
None

print(d_trees.head())
```

```
growth_rate species site ... diversity_site sp.richness SiteID
0
     0.701705 Beech
                        1 ...
                                      1.279284
                                                                 1
                                                          1
1
     1.138995
               Beech
                         1
                                      1.279284
                                                          1
                                                                 1
2
     1.394101
                                                          2
                                                                12
               Beech
                        12 ...
                                      2.272922
3
     0.999519 Spruce
                        12 ...
                                      2.272922
                                                          2
                                                                12
     1.354924 Spruce
                                      2.272922
                                                          2
                                                                12
                        12 ...
```

[5 rows x 12 columns]

3 Polynomials

3.1 Graphical analysis

3.2 Quadratic effect

OLS Regression Results

Dep. Variable:	growth_rate	R-squared:	0.183
Model:	OLS	Adj. R-squared:	0.174
Method:	Least Squares	F-statistic:	20.50
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	1.03e-21
Time:	10:10:58	Log-Likelihood:	-25.404
No. Observations:	557	AIC:	64.81
Df Residuals:	550	BIC:	95.07
Df Model:	6		
a	• .		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	1.0483	0.078	13.480	0.000	0.896	1.201	
species[T.Larch]	-0.3052	0.031	-9.812	0.000	-0.366	-0.244	
species[T.Oak]	-0.1913	0.031	-6.237	0.000	-0.252	-0.131	

<pre>species[T.Spruce]</pre>	-0.1008	0.031	-3.228	0.001	-0.162	-0.039
age	-0.0004	0.001	-0.667	0.505	-0.001	0.001
diversity_site	0.0481	0.015	3.171	0.002	0.018	0.078
density_site	0.0026	0.001	1.973	0.049	1.2e-05	0.005
=======================================	:=======				========	==
Omnibus:		34.295	Durbin-Watson	1:	1.70	02
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera (JB):		39.334	
Skew:		-0.602	Prob(JB):		2.88e-0	09
Skew: Kurtosis:		-0.602 3.495	Prob(JB): Cond. No.		2.88e-0	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
## Linear model with quadratic effect for density_site
lm_trees_2 = ols(
   'growth_rate ~ species + age + diversity_site + density_site + I(density_site**2)',
   data = d_trees).fit()
print(lm_trees_2.summary())
```

OLS Regression Results

=======================================							
Dep. Variable:	growth_	rate	R-sq	uared:		0.205	
Model:		OLS	Adj.	R-squared:		0.195	
Method: Least Squares			F-st	atistic:		20.25	
Date:	Tue, 25 Feb 2025		Prob	(F-statistic	:):	3.10e-24	
Time:	10:10:58		Log-	Likelihood:		-17.645	
No. Observations:			AIC:			51.29	
Df Residuals:		549	BIC:			85.87	
Df Model:		7					
Covariance Type:	nonro	bust					
=======================================	coef	std	err	t	P> t	[0.025	0.975]
Intercept	1.7359	0 .	. 191	9.102	0.000	1.361	2.110
species[T.Larch]	-0.2972	0	.031	-9.659	0.000	-0.358	-0.237
-		0	.030	-5.953	0.000	-0.241	-0.121
species[T.Spruce]	-0.0974	0	.031	-3.157	0.002	-0.158	-0.037
age	-0.0004	0	.001	-0.786	0.432	-0.002	0.001
diversity_site	0.0569	0	.015	3.763	0.000	0.027	0.087
density_site	-0.0328	0	.009	-3.605	0.000	-0.051	-0.015
<pre>I(density_site ** 2)</pre>	0.0004	0	.000	3.938	0.000	0.000	0.001
Omnibus:	========= 30	===== .839	===== Durb	in-Watson:	======	1.745	
<pre>Prob(Omnibus):</pre>	0	.000	Jarq	ue-Bera (JB):		34.738	
Skew:	-0	.568	Prob	(JB):		2.86e-08	
Kurtosis:	3	. 457	Cond	. No.		3.54e+04	
=======================================		=====			=======		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.54e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
## ANOVA to compare models
anova_results = anova_lm(lm_trees_1, lm_trees_2)
print(anova_results)
```

```
    df_resid
    ssr
    df_diff
    ss_diff
    F
    Pr(>F)

    0
    550.0
    35.727017
    0.0
    NaN
    NaN
    NaN

    1
    549.0
    34.745348
    1.0
    0.981668
    15.511022
    0.000093
```



```
## Linear model with polynomial features
lm_trees_3 = ols(
  'growth_rate ~ species + age + diversity_site + np.power(density_site, 2)',
  data = d_trees).fit()
print(lm_trees_3.summary())
```

OLS Regression Results

					======	
Dep. Variable:	growth_rate	R-squared	i:		0.186	
Model:	OLS	Adj. R-so	quared:		0.178	
Method:	Least Squares	F-statist	cic:		21.01	
Date:	Tue, 25 Feb 2025	Prob (F-s	statistic):	3	3.13e-22	
Time:	10:10:59	Log-Like	Lihood:		-24.163	
No. Observations:	557	AIC:			62.33	
Df Residuals:	550	BIC:			92.58	
Df Model:	6					
Covariance Type:	nonrobust					
=======================================	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0882	0.065	16.810	0.000	0.961	1.215
species[T.Larch]	-0.3065	0.031	-9.888	0.000	-0.367	-0.246
species[T.Oak]	-0.1880	0.031	-6.133	0.000	-0.248	-0.128
species[T.Spruce]	-0.1037	0.031	-3.332	0.001	-0.165	-0.043
age	-0.0005	0.001	-0.834	0.405	-0.002	0.001
diversity_site	0.0500	0.015	3.294	0.001	0.020	0.080
np.power(density_site	e, 2) 3.958e-05	1.57e-05	2.524	0.012	8.77e-06	7.04e-05
Omnibus:	34.837	 Durbin-Wa	atson:	=======	1.710	
Prob(Omnibus):	0.000	Jarque-Be	era (JB):		40.100	
Skew:	-0.606	-		1	.96e-09	
Kurtosis:	3.508	Cond. No.		1	.22e+04	
=======================================				=======	======	

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.22e+04. This might indicate that there are strong multicollinearity or other numerical problems.

3.3 More complex non-linear relationships

OLS Regression Results

============			========
Dep. Variable:	уу	R-squared:	0.987
Model: OLS		Adj. R-squared:	0.987
Method:	Least Squares	F-statistic:	2462.
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	1.22e-90
Time:	10:10:59	Log-Likelihood:	-84.287
No. Observations:	100	AIC:	176.6
Df Residuals:	96	BIC:	187.0
Df Model:	3		
Corresiones Trme.	nannahua+		

Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-0.0505	0.155	-0.326	0.745	-0.359	0.258	
x1	0.0131	0.073	0.179	0.858	-0.132	0.158	
np.power(x1, 2)	0.1429	0.009	15.484	0.000	0.125	0.161	
np.power(x1, 3)	-0.0058	0.000	-18.119	0.000	-0.006	-0.005	
Omnibus:		2.410	Durbin-Wats	son:	1	989	
Prob(Omnibus):		0.300	Jarque-Bera (JB):		1	1.612	
Skew:		0.031	Prob(JB):		C	.447	
Kurtosis:		2.381	Cond. No.		8.62	?e+03	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.62e+03. This might indicate that there are strong multicollinearity or other numerical problems.

3.4 Are polynomials the ultimate solution for modelling non-linear relationships?

4 Regression splines

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	yy OLS Least Squares Tue, 25 Feb 2025 10:11:00 100 96 3 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic) Log-Likelihood: AIC: BIC:	:	0.987 0.987 2462. 1.22e-90 -84.287 176.6 187.0
coe	f std err	t P> t	[0.025	0.975]
const 0.085 x0 -2.030 x1 19.493 x2 11.165 	7 0.642 - 7 0.413 4 9 0.347 3	7.158 0.000 2.173 0.000 	-3.304	-0.757 20.314 11.855
Skew: Kurtosis:	0.031 2.381 =======	Prob(JB): Cond. No. =========	=======	0.447

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.1 Degree of complexity, how much is enough?

5 Generalised Additive Models

python doesn't seem to have a simple option