Correction of DE (July 2023) Exercise 1: see The chapter 1 and 2 of The lesson. Exencise 2: $f(x,y) = x^2 + y^2 + xy - 2x - 2y$ $\nabla f = \begin{pmatrix} 2x + y - 2 \\ 2y + x - 2 \end{pmatrix}$ and $\nabla f = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ Sym matrix. 1) fis of class C2 on R2 7. $\nabla^2 f$ definite positive on \mathbb{R}^2 ? (suparte The associated eingewelling $|A-\gamma Id| = |2-\gamma| = (2-\gamma)^2 - 1 = (2-\gamma)(2-\gamma+1) = 0$ $|A-\gamma Id| = |1 + 2-\gamma| = (2-\gamma)^2 - 1 = (2-\gamma-1)(2-\gamma+1) = 0$ $= |1 + 2\gamma| = |1 + 2\gamma| = 0$ $= |1 + 2\gamma| = 1$ $= |1 + 2\gamma| = 1$ = |1 + 2=> T2f is definite positive on R2 (as it/s a constant matrix with strictly positive engewalers). of is strictly convex on R2. Ren: one can also use Sylvester's interia :as: $m_1 = 270$ and $m_2 = |2| 2| = 4-1=370$ 2) To defermine a stationary front, solve If =0 = A is def positive - $(3) \begin{cases} 2x + y - 2 = 0 \\ 2y + x - 2 = 0 \end{cases} \Rightarrow (2(2 - 2x) + x - 2 = 0 \Rightarrow (x = \frac{2}{3})$ = (\(\overline{\pi}, \overline{\psi}) = (\frac{2}{3}, \frac{2}{3})\) is The unique stationary of of fin R2. · As f is strictly convex on R2, This stationary of $(2, 1) = (\frac{2}{3}, \frac{2}{3})$ is The unique global minimum of for \mathbb{R}^2 . $\begin{cases} \min f(x, y, z) = (x-4)^2 + y^2 + z^2 \end{cases}$ fis Non linear, one constraint g(x, y, 2) = x+ y+2+2 <0

$$\begin{aligned}
& \text{The cinjenvalues of } A \text{ are } \lambda = \lambda_2 - \lambda_3 = 270 \\
& = \lambda_1 \text{ is odef position construct mat } is = \int is strictly convex.} \\
& \text{However The construct } g(x, y, z) \text{ is linear (so convex)}.} \\
& \text{Slater landihim: There exists a pt } x \text{ such that } g(x) < 0.

& \text{With } x = (2,9,2): many possibilities: explication is the possibilities: explication is the possibilities: explication is the possibilities in the p$$

Case 1:
$$D=0$$
 (so C is satisfied)

(1) = $Z=4$

(2) = $Z=0$

(3) = $Z=0$

(4) is satisfied.

But (3) is not satisfied as: $0+0+0+2 < 0$ IMPOSSYNE.

Case 2: $D=0$

(3) = $Z=-\frac{1}{2}$

(3) = $Z=-\frac{1}{2}$

(4) = $Z=-\frac{1}{2}$

(5) = $Z=-\frac{1}{2}$

(6) = $Z=-\frac{1}{2}$

(7) = $Z=-\frac{1}{2}$

(8) = $Z=-\frac{1}{2}$

(9) = $Z=-\frac{1}{2}$

(1) = $Z=-\frac{1}{2}$

(1) = $Z=-\frac{1}{2}$

(2) = $Z=-\frac{1}{2}$

(3) = $Z=-\frac{1}{2}$

(4) = $Z=-\frac{1}{2}$

(5) = $Z=-\frac{1}{2}$

(6) is satisfied).

(7) = $Z=-\frac{1}{2}$

(8) is thue so

Replace in (5): $Z=-\frac{1}{2}$

(9) is the optimal pol of his plants of the splants of a global and language binimal as his plants of the splants of a global and language binimal as his plants of the splants of a global and language binimal as his plants of the splants of a global and language binimal as his plants of the splants of a global and language binimal as his plants of the splants of the splan