Mathy.

Math 4310 - 001 Final Exam

Problem 1: Is it possible to have two divergent sequences (a_n) and (b_n) for which $(a_n + b_n)$ converges? If yes, give an example. If not, prove it.

Mis, it is possible to have two divergent sequences (an) and (bn) for which (an + bn) converges.

Let (an) = n². This sequence diverges to infinity.

Let (bn) = -(an) = -n². This sequence diverges to - infinity.

Thus both (an) and (bn) are divergent.

However, (an + bn) = n² - n² = 0.

Thus (an + bn) converges to 0.

Problem 2:

(1) Let (s_n) be a sequence of real numbers such that $s_n \to 3$. Use the definition of convergence (without using limit theorems) to prove that $\lim s_n^2 = 9$.

(2) Find a divergent sequence (t_n) with $\lim_{n \to \infty} t_n^2 = 9$.

(1) definition of convergence:

$$\exists L \ \forall E > 0 \ \exists N \ \forall n > N : |a_n - a| < E$$

We are told $S_n \Rightarrow 3 \ \exists hus for any E > 0$,

there exists N such that for all $n > N$,

 $|S_n - 3| < E$.

Let's call this N as N:

Choose $a = 9$.

Let E > 0

scratch:
$$|S_n^2 - 9| < \varepsilon$$

 $|S_n^2 - 9| = |(S_n - 3)(S_n + 3)| \le |S_n - 3||S_n + 3| < \varepsilon$
we know $|S_n - 3| < \varepsilon$ for $n \ge N$,
then let's bind $|S_n + 3| < \varepsilon - \varepsilon$
 $|S_n - 3||S_n + 3| < \varepsilon(\varepsilon - \varepsilon)$

Choose
$$N = \mathcal{E}(6-\mathcal{E})$$

Let $n > N$
Then $|S_n^2 - 9| = |S_n - 3||S_n + 3| < \mathcal{E}(6-\mathcal{E}) < \mathcal{E}$

(2) We know sequence
$$S_n = -1^n$$
 is divergent:

However $5^{2}n = (-1^{n})^{2}$ is convergent:

this is convergent as $\lim S_n^2 = 1$. Thus Let $(t_n) = 3 \cdot (-1)^n$

Problem 3: Let $a_1 = 1$, $a_2 = 2$, and $a_n = \frac{1}{2}(a_{n-2} + a_{n-1})$. Does (a_n) converge? Prove your answer. [Hint: is (a_n) Cauchy?]

if cauchy - convergent Cauchy: if VE>0, IN s.t. |a_m-a_n| < E Ym,n > N

$$a_{3} = \frac{1}{2}(a_{3-2} + a_{3-1}) = \frac{1}{2}(1+2) = \frac{3}{2}$$

$$a_{4} = \frac{1}{2}(a_{2} + a_{3}) = \frac{1}{2}(2+\frac{3}{2}) = \frac{7}{4}$$

$$a_{5} = \frac{1}{2}(a_{3} + a_{4}) = \frac{1}{2}(\frac{3}{2} + \frac{7}{4}) = \frac{13}{8}$$

$$a_{6} = \frac{1}{2}(a_{4} + a_{5}) = \frac{1}{2}(\frac{7}{4} + \frac{13}{8}) = \frac{21}{16}$$

from this we can see that the difference between the n and n+1 term is: $\left(-\frac{1}{2}\right)^{n-1}$

e.g.
$$n=1$$
, $n+1=2 \rightarrow (-\frac{1}{2})^0=1$
 $n=2$, $n+1=3 \rightarrow (-\frac{1}{2})^1=-\frac{1}{2}$
 $n=3$, $n+1=4 \rightarrow (-\frac{1}{2})^2=4$

the magnitude of difference between terms is decreasing. $|a_2-a_1| > |a_3-a_2| > |a_4-a_3| > ... > |a_{n+1}-a_n|$

Thus let $\varepsilon > 0$. Choose N > 0 such that $\frac{1}{2^{N}} < \varepsilon_{2}$. Then for any m, n > N, $|a_{n} - a_{m}| = \varepsilon$.

We have shown an is Cauchy, and thus it follows that an converges.

assume for contradiction that there exists some a s.t.: $X_n + y_n \rightarrow a$. Tet & = 2. It follows that there exists some N for which, for all n>N, we have |(xn + yn) - a | < \frac{1}{2} $-\frac{1}{2} < (x_n + y_n) - a < \frac{1}{2}$ ラ-xn < yn-a < 与-xn =+ xn > - yn + a > - = + xn 1+ xn >-Yn+a+ > xn

Here lies our contradiction. We supposed $x_n \rightarrow \infty$, yet we have it bounded by $-4n + \alpha + \frac{1}{2}$, a finite number. Thus $x_n + y_n$ diverges.

Problem 5: Let f be a continuous function on \mathbb{R} . Show that g defined by $g(x) = \max\{f(x), 1\}$ is also continuous.

To show g(x) is continuous, Let's consider the 2 cases:

Case 1: $max \{f(x), 1\} = f(x)$ It follows that g(x) = f(x) and since f is continuous, g is also continuous.

Case 2: $max \{f(x), 1\} = 1$ Then g(x) = 1 Since g(x) = 1 is a constant function, it is also continuous.

Thus we have shown that in either case, g is continuous.

Problem 6: Use the definition of the derivative to find f'(x) for $f(x) = \frac{1}{x^2+4}$ on \mathbb{R} .

lim f(x) - f(c)

Problem 7: Let $f: [-1,1] \to \mathbb{R}$, and $f(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0. \end{cases}$

Prove, using the definition of the integral, that

$$\int_{-1}^1 f(x) \ dx = 0.$$

Definition 8.10: A bounded function $f: [a,b] \rightarrow IR$ is integrable if L(f) = U(f). When this happens, we denote $\int_a^b f(x) dx$ to be this common value. That is, $\int_a^b f(x) dx = L(f) = U(f)$

given any partition ρ on $\{-1,1\}$ that includes x=0, the subinterval $[x_{i-1},x_i]$ will be one of the following cases:

case 1: 0 & $[X_{i-1}, X_i]$. Then $m_i = M_i = 0$, where m_i and M_i are min/max values of f(x) on $[X_{i-1}, X_i]$ case 2: $D \in [X_{i-1}, X_i]$. Then $m_i = 0$ and $M_i = 1$

Lower sum:

$$L(f, P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}) = 0$$

 $L(f) = \sup_{P} L(f, P) = 0$

Upper sum:

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) \le I(x_i - x_{i-1})$$

We need to show that the upper

we need an enour snow snow the subinterval sum becomes 0 as the subinterval can be made arbitrarily small by choosing a finer partition.

Then for some partition P_{ε} where $U(f,P_{\varepsilon}) < \varepsilon$ for any $\varepsilon > 0$, $U(f) = \inf_{\rho} U(f,P) = 0$ Thus U(f) = L(f), f(x) is integrable, and $\int_{-1}^{1} f(x) dx = L(f) = U(f) = 0$

Problem 8: Suppose that (f_n) is a sequence of functions converging uniformly to a function f as $n \to \infty$. Let $g_n(x) = f_n(x) - f_{n-1}(x)$ be another sequence of functions. Prove that $g_n \to 0$ uniformly on \mathbb{R} as $n \to \infty$.

We are told that (f_n) converges uniformly to f as $n \to \infty$. Thus for any E > 0, there exists some N_1 s.t. for all $n \ge N_1$, $|f_n(x) - f(x)| < \frac{E}{2}$.

Then there is also some N_2 where when $n \ge N_2$, $|f_{n-1}(x) - f(x)| < \frac{E}{2}$.

Choose $N = \max E N_1$, N_2 ?

Let $n \ge N$

Zet n > N

Thus

$$|g_{n}(x)| = |f_{n}(x) - f_{n-1}(x)|$$

$$= |f_{n}(x) - f(x)| + f(x) - f_{n-1}(x)| \le |f_{n}(x) - f(x)| + |f(x) - f_{n-1}(x)| < \xi + \xi = \varepsilon$$