

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

DEPARTAMENTO DE ENGENHARIA DE ELETRÓNICA E DE TELECOMUNICAÇÕES E COMPUTADORES

Licenciatura em Engenharia Informática e Multimédia

Processamento de Imagem e Visão

1º Semestre 2021/2022

Exame de Época de Recurso – 16 de fevereiro de 2022 – Duração: 2H30M

Justifique todas as respostas

As soluções apresentadas carecem das justificações necessárias para a resposta completa.

1. Descreva um método que permita alterar o contraste de uma imagem monocromática.

(1)

Solução: Desenvolver, por exemplo, a correção gama.

2. Se uma imagem monocromática ocupar 20.736.000 bits e cada pixel for representado por 10 bits, diga qual a sua resolução, considerando uma relação largura/altura de 16:9? (1)

Solução: Resolução (1920 colunas x 1080 linhas).

3. Considere que os ângulos do campo de visão de uma câmara são $\varphi_H = 20^{\circ}$ e $\varphi_L = 27^{\circ}$. Determine a altura e a largura da região que a câmara observa a uma distância de 20 metros. (1)

Solução: Altura = 7,05m; Largura = 9,60m

4. Considere as seguintes imagens:

Apresente a imagem resultante da operação aritmética do produto entre *I1* e *I2*. Justifique a resposta. (1) **Solução**:

5. Considere a seguinte imagem a cores definida pelas suas componentes RGB.

255	0		
255	0		
R			

0	255	
0	0	
G		

0	0	
0	255	
В		

a. Sabendo que I = max(R, G, B), converta esta imagem de RGB para HSI.

(1)

Solução:

0	120	
0	240	
H (0-360∘)		

1	1		
1	1		
S (0-1)			

b. Determine um histograma de cor para esta imagem, sabendo que se pretende utilizar 2 bits para codificar cada célula do histograma. (1)

Solução:

Histograma das componentes de crominância:

$$Hc = \{3; 1; 0; 0\}$$

6. Considere a seguinte curva ROC, construída para um sistema de autenticação/verificação de impressões digitais para diversos valores do limiar de decisão entre ser (aceitação) ou não ser (rejeição) a mesma pessoa.

Entre os dois limiares indicados, t1 e t2, diga, justificando, qual escolheria para a utilização do sistema para o acesso a uma área reservada de alta segurança. (1)

Solução: Limiar t1. Para uma aplicação de acesso a uma área reservada de alta segurança é importante a minimização das falsas aceitações para não dar acesso a pessoas que não têm essa autorização.

7. A seguinte matriz representa um troço de uma imagem de níveis de cinzento.

0	5	10	90
5	10	90	170
10	90	170	250
90	170	250	255

a. Determine as matrizes resultantes da aplicação dos filtros dados pelas seguintes máscaras:

$$f_1 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} e f_2 = f_1^T.$$

Considere que fora da imagem os valores são zero.

Solução:

dx (associado a f_1)

	`		, 1,
5	10	85	-10
10	85	160	-90
90	160	160	-170
170	160	85	-250

dy (associado a f_2)

(1)

(1)

иу	ay (associado a 121				
5	10	90	170		
10	85	160	160		
85	160	160	85		
-10	-90	-170	-250		

b. Atendendo aos filtros anteriores, diga, justificando, que tipo de operador é aplicado? (0,5)
Solução: Operador diferencial em virtude de os coeficientes dos filtros terem sinais opostos e a sua soma é zero.

c. Calcule o módulo do gradiente da imagem dada.

Solução:

$$|\nabla I| = \sqrt{dx^2 + dy^2}$$

· · · ·				
7.1	14.1	123.8	170.3	
14.1	120.2	226.3	183.6	
123.8	226.3	226.3	190.1	
170.3	183.6	190.1	353.6	

d. Com base no resultado anterior, determine uma imagem de contornos, considerando um limiar à sua escolha. (0,5)

Solução: Considerando um limiar de 200:

0	0	0	0
0	0	1	0
0	1	1	0
0	0	0	1

8. Considere a seguinte imagem binária:

1	1	1	1		
1	1	1	1	1	
	1	1	1		
	1	1	1		

a. Considerando vizinhança 4, determine a imagem binária correspondente à fronteira da região ativa.(1) **Solução:**

b. Calcule o perímetro P_8 considerando a distância de City-block (Manhattan ou taxi-cab).

(1)

Solução:

$$|P_8|_{City-block} = 8 \times 1 + \frac{3}{3} \times 2 = 14$$

9. Considere que as seguintes matrizes representam 3 imagens monocromáticas provenientes de uma câmara digital de videovigilância adquiridas em 3 instantes de tempo. Pretende-se realizar um algoritmo de deteção de objetos com base em subtração de imagens.

100	102	101		
120	120	130		
135	130	132		
a)				

200	105	95	
115	125	203	
140	210	195	
b)			

101	105	115	
120	130	135	
145	125	135	
c)			

a. Determine a imagem de fundo com base na filtragem de mediana temporal.

Solução:

101	105	101
120	125	135
140	130	135

- b. Proceda à deteção de objetos na imagem b):
 - i. Determine a imagem dos pixéis ativos considerando um limiar de 30 e o método de subtração de imagem de fundo. Descreva os passos seguidos.

Solução:

1	0	0
0	0	1
0	1	1

ii. Diga quantos objetos estão presentes, realizando a etiquetação da imagem anterior e considerando um limiar mínimo de 2 para a área. (1)

Solução: Imagem com etiquetação:

1	0	0
0	0	2
0	2	2

Na imagem b) está presente um objeto correspondendo à região com etiqueta 2.

10. O diagrama da figura 1 contém várias curvas que correspondem a transformações de intensidade de uma imagem monocromática pela operação y=T(x) onde x e y são níveis de cinzento. Na figura 2 são mostrados dois histogramas correspondentes às imagens de entrada e de saída da aplicação de uma das transformações indicadas na figura 1. Diga, justificando qual das curvas A a E corresponde a esta transformação. (1)

Figura 1

Solução: Curva D.

11. Considere a seguinte matriz M:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

a. Diga, justificando, se esta matriz pode representar a matriz dos parâmetros extrínsecos de uma câmara de vídeo.

Solução: A matriz *M* pode representar uma matriz de parâmetros extrínsecos com as seguintes componentes:

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad t = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

b. Com base na matriz M, pode tirar alguma conclusão de qual a relação entre os eixos de coordenadas da câmara e do mundo? Justifique a resposta.

Solução: Os eixos de coordenadas da câmara e do mundo estão coincidentes.

(1)

12. Considere que se pretende desenvolver um sistema de visão por computador que determine se um lugar de estacionamento está ou não ocupado e por quanto tempo. Deverá ter em atenção as alterações de luminosidade ao longo do dia, qual a frequência de imagens processadas que deve ser utilizado, se o veículo estacionado é o mesmo que estava na análise anterior, entre outros aspetos que considere relevantes. (2)

Solução:

Desenvolver uma possível sequência de operações:

- 1. Determinação da imagem de fundo, por exemplo, utilizando a filtragem de mediana temporal aquando da inicialização do sistema (primeiros instantes da aquisição de imagens);
- 2. Estabelecer a localização dos espaços de estacionamentos numa imagem de referência, por exemplo, definindo máscaras binárias para cada espaço;
- 3. Considerar a frequência de aquisição de imagens proporcional aos intervalos de verificação dos veículos estacionados, por exemplo, uma imagem por minuto.
- 4. Deteção dos espaços de estacionamento ocupados:
 - a. Deteção das regiões ativas a partir do método de subtração da imagem atual com a imagem de fundo;
 - b. Aplicação de operadores morfológicos para melhoramento da imagem binária;
 - c. Etiquetação da imagem binária;
 - d. Extração de características;
 - e. Classificação das regiões para a deteção de veículos;
 - i. Eliminar regiões que não cumpram as condições para serem consideradas veículos;
 - f. Eliminar veículos que não estejam estacionadas nos espaços definidos em 2.
- 5. Correspondência entre os veículos detetados entre imagens consecutivas e determinação dos instantes de início ou fim de estacionamento;
 - a. Para os veículos novos (veículos detetados na imagem atual sem correspondência com os veículos detetados nas imagens anteriores), anotar o instante inicial de estacionamento;
 - Para os veículos que deixaram de estar estacionados (veículos detetados nas imagens anteriores, sem correspondência para a imagem atual), anotar o instante final de estacionamento;
- 6. Atualização da imagem de fundo;