dect- 9 to 12

Special Katrices

. They have some no. of rows and columns ie we can say that they are nxn matrices or we can say most they are square natries.

· Hatrices with a relatively high proportion of Zero entires.

Some special forms of square matries are

-> Diagonal

-> To diagonal

- Lower Triongular

- Upper Triangular

-> Symmetric

Jay name of the matrices is A [i, j] with the subscript itj where i represent sows 4 j represent column.

Diagonal Matrices: -A[ij] = 0 for i+j

It meens all the position of the nation will hold zero encept diagonal because at diagonal [i=j]

Indiagonal: _

A[i,j] = 0 for |i-j| > 1

It means all the position of the matrices will hold zero whose absolute value of 1i-j/>1 & rest all will have non-zero entries. Therefore we can say that non-zero elements will be on diagenal, just bles 4 just above the diagenal.

Lower Triangular: -

Alijj] = 0 for i>j

9t means all the position of the matrices will hold. zero france i>j whereas we usu have non-zero entries at diagonal and below the diagonal.

Page-3

Upper Triangular: -

et meens all the position of the matrices will have hold zuo for i/j where as we will have non-zero entries at diagonal of the start above the diagonal.

Symmetric square natrix:

A[i,i] = A[j,i] for all i and j

9t means all me position of me matrices will have
same value for A[ij] = A[j,i]

As you can see $a_{12} = a_{21}$ $a_{23} = a_{32}$ $a_{23} = a_{32}$

Our Motive:
Natural method of representing matrices in memory as

Natural method of representing matrices in memory as

9-D arrays may not be suitable for special matrices.

That is, one may save space by strong only those

entries which may be non-zero.

Page-4

To locate the index no. of an element in Tridiagenal Matries

Elements in tridiagnal are on me diagonal & just above & selow me diagenal es shann below. Here one dot represent the data.

3 4 5 6 922 923 933 934 -944 -945 954 ,955

Torel nor of elements in a tridiagenal matrix

As natois is a square matrix Therefore me diagonal will have n elements Elements above me diagenel are n-1

Elements Gelow me diagnal are n-1

os Total no. of elements => n+n-1+n-1

=) 3n-2

So we have 3n-2 non-zuo elements in a totadiquel

As me above matrix has name A [igj] with matrices. subscipt i 4 j

```
for i=1

1,2 (volid voltes for J)

for i=1

1,2,3 [i= ymcan say that data in disending,

at agi, agz f agz when i=2

i=3

i=3

i=4

i=5

45,6

i=6

5,6.
```

If I want to locate Aliji] as i=4 i=5So when 9 am at it sow that means 9 had

crossed in in sow that means 9 had

crossed in in sow that all me

so the main fact over here is that all me

so the main fact over here is that all me

non-zero data vill be mapped at linear array

non-zero data vill be mapped at linear array

ie we have 3n-2 = 7 so if our n=6ie we have 16 data elements

in me have 16 data elements

All there 16 data is mapped to a linear array having location number surging from 1 to 16 having location number surging from 1]

[if g tobbe array index short from 1]

- '}		1 la lasa 1 966]
	10 1922 933 934 945	944 945 454 16
a11 912 921	922 923 932 933 934 943	13 —
2 3	4 ,	

So we can cheerly see mot A[4,5] ash sinde at location 11 Now we can calculate me location: Observe de how many elements are above his If I want to come at this 4th row , it means g have to gross 3 rows. Out of these 3 rows => 2 rows are having 3 data 1 row is having 2 data . We can say met out i-1 rows i-2 is having 3 data . has many elements (data) are lefser this it sow 4 1st row is harry 2 data. => 3b (i-2) + 2 data in i-2 data in 1st rows to reach at a posticular location, $L = \begin{bmatrix} 36(i-2)+2 \end{bmatrix} + \frac{\text{no. of demonts present}}{\text{in left to the meant of proticular location}} + \frac{\text{element at proticular location}}{\text{pasticular location}}$ mat pasticular **5**j+1−i L = 2i + j -2.] Aihal formula

So by putting any value of it;

We get he location.

Scanned by CamScanner

Page-7 to locate the index no. of an element in Lower dower Triangular triangular matrix love trianguler are on me diagenal & below me diagenel as shown below. 3 | 94 6 Fass So only none, - zero data is strong in 1-D as my 5 2 3 4 6 7 7 9 10 12 3 2 use lans anant of space to find me location for i=54j=3 To reach at his row. I have ie no. 2 elements in i-1 rows in A[i, j] is

Page-8

This gevies is natural no. sum in from of (i-1)

There are j'elements in me sow i'm i've including me element Aliji] also

$$\stackrel{\text{So}}{=} L = \frac{i(i-1)}{2} + \oint$$

$$i \geq L = \frac{i(i-1)}{2} + i$$

luting value of i=5 4 j=3 ne set

$$L \Rightarrow \frac{5(s-1)}{2} + 3 \Rightarrow \frac{13}{2}$$

Shilasly yen can compute me formula for Diagenel, upper triangular.

Page-9 Sparse Matrix . Katrix with many of elements are zero. . This is not a dense natrix. . On be speented by -> Array [Also known as Triplet] - inclist - This is a sparse matrix 4 it do not follows 0003 any putter for non-jero element. They can be any position. 0 1/0 0 0 0 0 8 0450] Array Representation: -Why it is named as Triplet as 3 columns . - one for no- of nows . -> one for no. of columns . -> one for no. of non-zero values. nomber of your will be I more man no. of non-zero elements. We can use row-major or column major But here, we are representing using sow-mayor only.

Page.	-10

Triplet	Representation
1814	

-		1	2	3	4	5	
-		O	0	3	0	5	
0		١	4	0	0	O	
١		\ O	D.	6	0	\bigcirc	
2	10		O		\sim	^	—/
3	0	0	0		O	0	
4	9	0	0	0	0	0	
5	0	O	2	0	O	0	

-		1	11	1	7
Row	co			ilve	1
6	6			8	
0	C		00	2 3 5	
0	6	5	-	<u>5</u>	-\
0]	5	\downarrow	5	- \
-			\downarrow	1	-
-	1	2_	\perp	4	-
2	+	3		6	\
4	1	0		9	
\	-	2	1	2	- /

In a Triplet

We have 3 wlumms f no. of rous = 1 + no. of non-zero value

as in the oth mo of triplet we are shang no. of sous, no. of column f no. of non-zero value. so we need l'entre mo . 1+ no of non-zero.

-Operations on sparse Matrices

- · Transpose
- · Addition
- · Hultiplication.

Consider me given matric fo first represent it to form of triplet as shown below: -

= final esultant tours pose mative

Addition operation.

Ne have to venify the same dimension of both the matrices before proceeding.

. We have to look at elements that are lying or placed at same index position. so mat we can add those elements.

WC 0		$\frac{1}{2}$
ef . n 1 2		10 1 2 0 11 0 1
000		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{2}{0} \frac{1}{0} \frac{2}{0} \frac{2}$	+	$\frac{1}{2} \begin{vmatrix} 0 & 0 & 5 \\ 2 & 0 & 0 & 5 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 6 & 0 & 5 \\ 6 & 0 & 5 \end{vmatrix}$
2 6 0 0 A		210 6.
(A)		1 lots me matrices A &

Triplet Representation of also both me matrices A & B

Triplet Of A Resultant Triple C

	Tai	plet.	જ	A	١
5	mor	ωĺ	V	سلة	
-	3	3	F	3	
	0	0	7	8	4
T	T	2	4	3	-
	2	0	1	6	. \

= 1. 1141.
sois (of value
3 3 4
0 0 3
0 2 1
1 2 4
2 2 5

	Kesw	gans 1	
٢	Rw	(D)	Value ??
	3	3	3-1.
	0	0	11
	0	2	
	1	2	7
	2	0	6
	2	_ 2	5
	V		

- Dimension of sesultant natric us' semais same ie 3x3 . But we are not sure about non-zero value so we Keep me value entry in the sendlun matrix as empty.
- · Ne mainte mentain a counter variable , intially counter=0 4 we increase one value of country when we encounter any non-zero value in the resultant triplet. Inal At me end me value entry will be filled by value of contra
- . Henkun me lexicographic coler for your while doing addition,

Hultiplication operation; -

- · To compute A+B, first we have to take tourspose BB in case of spasse Matrices.
- · Multiply the corresponding elements of add them for each position in the sesultant matrix.

		_ 0		_	\neg
	0	0	0	8	0 23 0
	١	0	0	0	23
×	2	\mathcal{O}	0	9	Ö
	7		25	0	0 _
	3		B		
			10	•	

I taking A as it is.

			W IT	1/3.	
	0	1	2	37	
0	(0	10	0	12	
1	0	0	0	0	
2.	0	O	5	0	
3	15	12	0	0_	

co => First own of A with first much B We will multiply to get one prot element.

=> then First and of A with god sew of B to set one and element.

so in his way we con calculate for sest of one position.

1 Page - 14

me will to represent mis multiplication Tiplet. B (After Transpox)

Triplet of Kabin A

las	601	Value
4	4	5
0	١	10
0	3	12
2	2	5
3	0	15
3	1	12

Triplet of B (Refore Transpose)

Rov	Reno Col		value
4		4	5
0	5	8	8
1		3	23
	2_	2	9
	3	0	20
	3	1,	125

,				
w	رما ا	Value		
4	4	5		
0	3	20		
1	3	25		
2	0	8		
2	. 2	. 9		
3	. []	23		
	1)	_		
	//	α α		

Transpox & B

$$\begin{array}{c}
\stackrel{ie}{=} \\
0,1 \\
0,3
\end{array}$$

We have to level for same column to do the multiplication

$$\Rightarrow (0,1)$$
 and match with $(3,1)$

$$A$$

>> so when we multiply the elements at these position The sordinaroin of the resultant matrix will be

for making column for me resultant.

Scanned by CamScanner

