# A Tale of Two Statistics

A hypothesis, **H**, is a model for how the world might work.

In practice, evidence is rarely conclusive.

- We would like to know, P(H|D). That is, the probability that our hypothesis is true, given the data that we observe from the world.
- But there is a fundamental dilemma: We will never know whether our hypothesis is true.
- The world isn't a perfect laboratory, and although we can collect evidence and information, this evidence cannot identify a single, unique model from the set of all possible models.
- We cannot make a probability statement about the models either!

1

## **EXAMPLE 1: COIN FLIPS**

Suppose that you flip a coin once and it lands heads. What is the probability that it is a double-headed coin?

- Is there enough information to answer this question?
- How did the coin get there? The context is missing?
- Even with more information, we still cannot ever possess the *entire* context.

## **EXAMPLE 2: GRAVITY**

- Both motions are constant with a gravitation attraction that is proportional to the square of the distance between two objects.
- What is the probability that Newton's theory of gravity is "correct"?

**Problem:** Newton's theory seemed to work well up to the precision of 17th-century instruments.

- But, it is the present now, and we have developed instruments that pretty clearly say that Newton's laws are incorrect.
- How could Newton decide how likely was his model compared to general relativity (which hadn't even been imagined yet!)?

#### **EXAMPLE 2: TAKE-AWAY**

We can never write down the infinite number of models that are possible consistent with our observations. And, even if we could, we could not assign a probability distribution to these models.

## **EXAMPLE 3: GIANT SQUID**

Suppose that you discover three new specimens of a new squid species that measure 3.2, 3.3, and 4.0 feet long.

- What is the probability that the average length among the entire species is 3.5 feet?
- Probability is zero for a single point (continuous probability measures).
- Probability that the average length is between 3 and 4 feet?

#### What we know and don't know:

- · We know about our sample.
- We do not know about our population.

## **TWO BRANCHES OF STATISTICS**



**The Frequentist Approach** 

#### THE BIRTH OF MODERN STATISTICS

#### Before the 1930s

- Many "statistical" procedures; but, no coherent account of how to choose one.
- Neyman and Pearson published articles that added a formal mathematical treatment, laying the foundations for frequentist statistics.

#### THE CENTRAL DILEMMA

Despite the "modern" development of statistics, there is a problem.

- We observe data, D.
- Given the data that we observe, we would like to know the probability that our hypothesis is true.
- That is, *P*(*H*|*D*).

## But, frequentist statistics:

- · Not only cannot compute this probability.
- Doesn't think it even makes sense to assign a probability to a hypothesis.

## **OBJECTIVE PROBABILITY**

A frequentist defines probability as a matter of long-run frequencies.

- Frequentists specify a collective of elements (e.g. experiments, or throws of dice).
- As the number of observations approaches infinity, the proportion of the throws that show a 3 is <sup>1</sup>/<sub>6</sub>.
- For frequentists, objective probability is this long-run frequency of the event.

## **OBJECTIVE PROBABILITY AND HYPOTHESES**

- If one views probability as objective, then they cannot talk about the probability of a hypothesis.
- A hypothesis is just a statement that is either TRUE, or FALSE.
- This mixes language a little, but when one talks about the probability of a hypothesis, they are talking about subjective probability, which is not the purview of data science.

## WHAT PROBABILITIES CAN WE STUDY?

We can study events that have (or could have) a long-run collective.

## P(D|H)

where H is a hypothesis and D is data.

- Assume that *H* is true, and call it the null hypothesis.
- · Has to be very specific.
- Is the basis for predictions we need to make about the data that "should" come out of the experiment (if this H were actually true).

#### AN IMPRECISE STATEMENT

Vitamin W kicks the bad toxins right smack outta your system. (Read this like a TV salesperson.)

#### **A Precise Statement**

Vitamin W reduces blood pressure by 12 mmHg on average.

- With a precise statement, we also have a statement about the data that should be observed; and so,
- We have a collective to produce a long-run frequency, i.e. a probability.

## **Decision Rules**

#### **HYPOTHESIS TEST EXAMPLE**

#### Mad data science

Suppose that your lab has synthesized a new compound, *Vitamin W*.

Let random variable *B* represent the change in blood pressure that results from taking *Vitamin W*.

Let 
$$\mu = E[B]$$
.

You need to make a decision, to invest resources in Vitamin W or not.

## TWO POSSIBLE STATES OF THE WORLD

**Goal:** Begin with a reasonable default supposition; leave this supposition behind if data provides compelling evidence

## **Null hypothesis**

- Default assumption, status quo, statement that data might overturn
- $H_{\varnothing}$  : Usually  $\mu = 0$
- No effect

With compelling evidence, we leave the specific null hypothesis  $(H_{\varnothing})$  for the alternative  $(H_a)$ 

## **Alternative hypothesis**

- Idea or alternative to status quo
- $H_a$ : Usually  $\mu \neq 0$
- Some effect exists

## **A HYPOTHESIS TEST**

A hypothesis test is a procedure.



Reject Null

Do Not Reject Null

## **FALSE POSITIVE AND FALSE NEGATIVE ERRORS**

|                   | True state of the world |                   |
|-------------------|-------------------------|-------------------|
|                   | The null is true        | The null is false |
| Reject the null   | False Positive          |                   |
|                   | (Type I Error)          |                   |
| Do not reject the |                         | False Negative    |
| null              |                         | (Type II Error)   |

## FALSE POSITIVE AND FALSE NEGATIVE ERRORS (CONT.)

#### **False Positive Errors**

- Typically the most destructive
- Error rate, denoted  $\alpha$ , is the probability of rejecting the null hypothesis when we should not;  $P(\text{Reject } H_{\varnothing}|H_{\varnothing})$
- Starting with Ronald Fisher: set  $\alpha = 0.05$

A hypothesis test is a procedure for rejecting or not rejecting a null, such that the false positive error rate is controlled ( $\alpha = 0.05$ ).

### **BREAKING DOWN A TEST PROCEDURE**

#### A test statistic

- · A function of our sample
- Measures deviations from the null hypothesis
- Distribution must be completely determined by the null

## A rejection region

- · A set of values for which we will reject the null
- Chosen to be contrary to the null
- Total probability must be  $\alpha = 0.05$

#### WHAT A HYPOTHESIS TEST DOESN'T DO

## A hypothesis test does not prove the null hypothesis.

- We control Type 1 error rates
- We cannot control Type 2 error rates
- How can you be sure the real B is not 0.01? Or 0.00001?

## Never accept the null hypothesis.

· The valid decisions are reject and fail to reject.

## The One-Sample z-Test

## **Vitamin W Example**

Suppose  $(B_1,..,B_{100})$  are i.i.d. random variables with mean  $\mu={\rm E}[B]$ , representing changes in blood pressure.

Assume  $B \sim N(\mu, \sigma)$ . Assume we know  $\sigma[B] = 20$ .



## One- and Two-Tailed Tests

## THE TWO-TAILED Z-TEST

#### **Normal Distribution**



- Null hypothesis:  $\mu = 0$
- Alternative hypothesis:  $\mu \neq 0$

## THE ONE-TAILED Z-TEST





- Null hypothesis:  $\mu = 0$
- Alternative hypothesis 1:  $\mu > {\sf O}$
- Alternative hypothesis 2:  $\mu < 0$

## **CHOOSING ONE OR TWO TAILS**



Switching your test after you see the statistic is cheating.

#### **ONE-TAILED TEST: THINGS TO CONSIDER**

Before using a one-tailed test, ask yourself these questions:

- 1. Will the audience believe that I started with one tail before I saw the data?
- 2. Will the audience share my opinion of which tail is interesting?
- 3. Am I really 100% committed to only this tail?
  - What if the effect turns out to be huge, but in the other direction?
  - Would I be willing to call that a negative result?
  - Can I convince my audience I have this much commitment?

## **T-Test Assumptions**

## T-TEST ASSUMPTIONS, PART I

## **Assumptions of t-test**

The textbook assumptions

- X is a metric variable.
- $\{X_1, X_2, ..., X_n\}$  is a random sample.
- X has a normal distribution.

Variables are almost never normal.

## T-TEST ASSUMPTIONS, PART II

But, in the large sample case, this is more plausible.

## Large sample t-test assumptions

#### If:

- X is a metric variable
- $\{X_1, X_2, ..., X_n\}$  is a random sample
- n is large enough that the CLT implies a normal distribution of mean

**Then:** The t-test is asymptotically valid

## T-TEST ASSUMPTIONS, PART III

## T-TEST ASSUMPTIONS, PART IV

The t-test is considered "reasonably robust," even when n < 30, as long as deviations from normality are moderate.

However, watch out for strong skewness, especially when n < 30.

## **GAMMA WITH INCREASING SKEW**

## Twenty draws from gamma distributions

#### Gamma Distribution with Skew: 0.5



# Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



# Twenty draws from gamma distributions



# Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



## Twenty draws from gamma distributions



## Twenty draws from gamma distributions



# Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



# Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



## Twenty draws from gamma distributions



# Twenty draws from gamma distributions



## Twenty draws from gamma distributions



#### **T-TEST ASSUMPTIONS**

## More practical guidance:

- X is a metric variable.
- $\{X_1, X_2, ..., X_n\}$  is a random sample.
- The distribution is not too non-normal, considering n.

When the t-test is not valid, consider using a non-parametric test instead.

# Introduction to P-Values

## **INTRODUCING P-VALUES**

The p-value is the probability, calculated assuming that the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to  $H_{\rm o}$  as the value calculated from the available sample.

Jay L. Devore (2015)

# **Z-DISTRIBUTION**

### THE P-VALUE FOR A Z-TEST

### **Vitamin W**

You measure the effects of Vitamin W on blood pressure (measured in mmHg) for 100 patients and get  $\bar{X}=3$ .

Assume  $X \sim N(\mu, 20)$ .

- $H_0: \mu = 0$
- $\mathbf{Z} = \frac{\bar{\mathbf{X}} \mu_0}{\sigma / \sqrt{\mathbf{n}}}$

# THE P-Value and Decision Rules, Part I

Neyman-Pearson hypothesis testing: rules to make a decision and usually be right ( $\alpha = 0.05$ )

### A classic z-test

- z=1  $\rightarrow$  Do not reject null.
- z=2  $\rightarrow$  Reject null.
- z=10  $\rightarrow$  Reject null.
- Strict frequentist with a dichotomous decision rule: treat z = 2 and z = 10 identically.
- But is there value in knowing how contrary the data is to the null?

# THE P-VALUE AND DECISION RULES, PART II

|z| >critical value  $\Rightarrow$  reject  $H_0$ 

|z|< critical value  $\Rightarrow$  fail to reject  $H_0$ 

### **Normal Distribution**



# THE P-Value and Decision Rules, Part III

|z| > critical value  $\Rightarrow$  reject  $H_0$  |z| < critical value  $\Rightarrow$  fail to reject  $H_0$ 

### **Normal Distribution**



# An Equivalent Decision Procedure

Compute p-value.

- If  $p < .05 \Rightarrow \text{reject } H_0$
- If  $p \ge .05 \Rightarrow$  do not reject  $H_0$

But, can you justify making such a bright-line statement after reducing information so much?

- 1. Concept
- 2. Measurement
- 3. Statistic
- 4. Assumptions about distribution
- 5. p-value
- 6. Reject/fail to reject

# t-Test and p-Values

# **P-Value Convention**

| p-value range    | Convention              | Symbol |
|------------------|-------------------------|--------|
| <i>p</i> > 0.10  | Non-significant         |        |
| 0.10 > p > 0.05  | Marginally-significant  | •      |
| <i>p</i> < 0.05  | Significant             | *      |
| <i>p</i> < 0.01  | Highly significant      | **     |
| <i>p</i> < 0.001 | Very highly significant | ***    |

### **REPORTING TEST RESULTS**

- A t-test for the effect of Vitamin W on blood pressure was highly significant (t = 3.1, p = .008).
- We found evidence that Vitamin W decreases blood pressure (t = 2.3, p = .04).
- The effect of Vitamin X on blood pressure was not statistically significant (t = 1.2, p = .23).

| Vitamin W | Vitamin X |
|-----------|-----------|
| 2.2 **    | 1.2       |
| (0.6)     | (0.8)     |

This is half the story; next, you'll need to describe practical significance.

# **VARIABLE IMPORTANCE AND P-VALUES**

Does a small p-value mean that a variable is "important"?

- Statistical significance
- Practical significance

## **A WARNING**

A very common mistake is to assume a p-value is the chance the null hypothesis is true.

Frequentist statistics cannot tell you the probability of a hypothesis!

# A WARNING (CONT.)

## **Example**

I test whether Vitamin X decreases blood pressure: p = 0.03.

However, you know that Vitamin X is secretly cornstarch because you created it yourself.

My test will not convince you that there is a 97% chance Vitamin X decreases blood pressure.

# **Statistical Power**

# **FALSE POSITIVE AND FALSE NEGATIVE ERRORS**

|                        | The null is true   | The null is false   |
|------------------------|--------------------|---------------------|
| Reject the null        | False Positive (I) |                     |
| Do not reject the null |                    | False Negative (II) |

- False Positive (I) errors are jumping without cause
- False Negative (II) errors are failing to jump when you should
  - Failing to detect a real effect
  - Missed opportunity to create a product, publish a paper, or advance knowledge

# STATISTICAL POWER, PART I

### **Much Vitamin W**

Consider a specific alternate hypothesis:

- H<sub>a</sub>: Vitamin W decreases blood pressure by 20 mmHg
- False Negative Error Rate:  $\beta = P(\text{not rejecting } H_0|H_a)$
- Statistical power:  $1 \beta$
- Statistical power is the probability of supporting the alternate hypothesis, assuming it is true

# STATISTICAL POWER, PART II

# STATISTICAL POWER, PART II

# STATISTICAL POWER, PART III

# How to increase power

- Increase sample size.
- Choose a powerful test (if you can justify its assumptions).

**Practical Significance** 

### **PRACTICAL SIGNIFICANCE**

# Statistical significance

 How much does the data support the existence of an effect?

# **Practical significance**

- · Is the size of this effect important?
- What is the magnitude of the effect?
- Should we care about this effect?

# **EXAMPLE**

# **Productivity supplements**

### **Vitamin W**

$$n=30$$
 $\mu_{treat}=12.6$ 
 $\mu_{control}=6.1$ 
 $p=0.11$ 

"The difference between groups was not statistically significant, (t = 1.34, p = 0.11)."

# **Vitamin Q**

$$n=30,000$$
  $\mu_{treat}=6.25$   $\mu_{control}=6.21$   $p=0.0005$ 

"The difference between the two groups was highly significant, (t = 3.34, p < 0.001)."

## **PRACTICAL SIGNIFICANCE: CONTEXT**

**Primary goal**: Provide context for your audience to reason about results.

- · Who is your audience?
- What action might be taken based on these results?
- How does this result alter how you would run the business?
- What is the cost-benefit for implementing a change based on this result?
- · How does this result "stack up" to other effects?

## PRACTICAL SIGNIFICANCE: MODEL EXPLAINABILITY

- · Some tasks require explainable models.
- Finance, healthcare, insurance, and other regulated industries stipulate specific model forms .
- Humans reason in linear hypotheses—
  higher-dimensional and conditional hypotheses are
  too much to keep in mind.

# PRACTICAL SIGNIFICANCE: EFFECT SIZES

### **Effect sizes**

- Single-number metrics that characterize the magnitude of an effect
- Population parameters that we estimate—do not vary based on sample size

### **Invalid effect size metrics**

- t-stat
- p-value

# Valid effect size metrics

- Mean values
- Difference in means between groups

### STANDARD EFFECT SIZE MEASURES

Standardized effect sizes are designed to be flexible and apply in many scenarios:

- Cohen's d
- Correlation  $\rho$
- Cramer's V

General metrics ignore the specific context around your research or business question.

# COHEN'S D

Sometimes, a mean (or difference in means) is hard to assess because the units are unfamiliar.

• **Example**: The effect of angled bristles on tooth decay is 5 millicaviparsecs per brushstroke

### Cohen's d

Compare effect size relative to the underlying natural variation in the outcome.

Cohen's 
$$d = \frac{\text{mean difference}}{\text{standard deviation}}$$

# COHEN'S D (CONT.)



# Rules of thumb (according to Cohen)

```
Small effect d = 0.2
Medium effect d = 0.5
Large effect d = 0.8
```

- Applicable across a huge number of contexts
- Ignores any important differences between context
- Saving dollars or saving lives are the same to Cohen's d

### **TAKEAWAYS**

- After a statistical test, it's important to assess both statistical significance and practical significance.
- Standard effect size measures can help in a wide variety of situations.
- But don't get carried away and reach for them automatically.
- The main objective is to clearly explain how important the magnitude of the effect is.

# Guidelines for Statistical Reporting

# **GUIDELINES FOR STATISTICAL REPORTING**

- Communicating results is a key part of statistical analysis.
- In this class, in other classes, and in your organization, you will be expected to submit your analysis as a written report.

### **GUIDELINES**

- 1. A statistical analysis is a written argument.
- 2. If you don't have something to say about some output, don't display it.
- 3. Document every decision that you make.
- 4. Identify features of the population that should be reflected in statistical models.
- 5. Be clear about the difference between the sample and the population.
- 6. The code is a part of the argument.