Rmarkdown for Data Analysis: Beyond the Basics

Haohan Chen* Haohan Chen† October 5, 2018

This is a refresher of some common Rmarkdown operations. I demonstrate it by writing a mini data analysis report on a toy dataset.

1 Rmarkdown Setup

```
# enable setting font size of code chunk
   def.chunk.hook <- knitr::knit_hooks$get("chunk")</pre>
   knitr::knit_hooks$set(chunk = function(x, options) {
      x <- def.chunk.hook(x, options)
      ifelse(options$size != "normalsize",
                  paste0("\\", options$size,"\n\n", x, "\n\n \\normalsize"), x)
   })
   # knitr options
   knitr::opts_chunk$set(echo = TRUE,
                                         message = FALSE,
                                         warning = FALSE,
                                         results = "hold",
                                         fig.path = "figures/",
                                         size = "tiny")
   # size option: small = usual size;
      # Also: "Huge", "huge", "LARGE", "Large", "large",
       # "normalsize", "small", "footnotesize", "scriptsize", "tiny"
   # Explanation in the following chunk -- when fontsize is reduced!
# About the Header
 # keep_tex: output the tex file (so that you can directly use the tex code generated)
 # fig_caption: show caption of figures. true by default.
# citation_package: use latex natbib citation package for bibliography. recommended!
# header_includes: include other command the document's preamble.
                  mostly used it to call more LaTeX packages.
# Global options
 # About the font size mess
   # A trick that enables you to custimize the fontsize of code in the chunk.
   # I have to do this because Rmarkdown does not directly support setting
 # About knitr::opt_chunk
   # echo: show code
   # message, warning: show system generated info (e.g. progress bar)
# results = "hold". hold output of results till the end of chunk (invalid for fig)
# fig.path: set a path to store figures generate. can reuse them elsewhere.
   # without this, no fig will be saved.
# size: font size of *code in the chunks* (not your main text, which is set
# in the header "fontsize: 11pt". options of size include "small", "tiny",
           "normalisize", "huge"...
 # Also, Create a directory to save your tables (used later)
 dir.create("tables")
 # Output type of this file is LaTex (a param for later)
out_type = "latex"
```

^{*}Political Science Department, Duke University. haohan.chen@duke.edu

[†]Political Science Department, Duke University. haohan.chen@duke.edu

2 Packages and Dataset Setup

3 Exploratory Data Analysis

Table 2 shows the descriptive statistics. Figure 1 is the Correlation Matrix. Figure 2 shows the relationship between GNP and the size of armed force using the default plot function. Figure 3 is the same plot using ggplot.

3.1 Table

```
{\it \# Table of summary statistics}
 # Summary statistics
    summary(longley)
   # Not pretty. We can do better!
      gnp.def
                                          unemp
                          gnp
:234.3
    Min. : 83.00
1st Qu.: 94.53
                                            :187.0
## Min.
## 1st 0
                                                      Min. :145.6
1st Qu.:229.8
                     Min.
                                     Min.
                     1st Qu.:317.9
                                     1st Qu.:234.8
##
   Median :100.60
                     Median :381.4
                                     Median :314.4
                                                      Median :271.8
   Mean :101.68
                     Mean :387.7
                                     Mean :319.3
                                                      Mean :260.7
                                     3rd Qu.:384.2
    3rd Qu.:111.25
                     3rd Qu.:454.1
                                                      3rd Qu.:306.1
##
##
          :116.90
                     Max.
                            :554.9
                                     Max.
                                            :480.6
   pop yr
Min. :107.6 Min. :1
                                   emp
Min. :60.17
                           :1947
##
                    1st Qu.:1951
    1st Qu.:111.8
                                   1st Qu.:62.71
   Median :116.8
                    Median:1954
                                   Median :65.50
    Mean
          :117.4
                    Mean
                           :1954
                                   Mean
    3rd Qu.:122.3
                    3rd Qu.:1958
                                   3rd Qu.:68.29
## Max. :130.1
                    Max.
                           :1962
                                   Max.
                                          :70.55
# Table of summary statistics (con'd)
  # Produce a LaTeX summary stats table (can also be HTML)
  mean.sd = TRUE, median = TRUE, iqr = TRUE, min.max = TRUE, header = FALSE, label = "tab:desc", type = out_type)
```

Table 1: Descriptive Statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Median	Pctl(75)	Max
gnp.def	16	101.681	10.792	83	94.5	100.6	111.2	117
gnp	16	387.698	99.395	234.289	317.881	381.427	454.085	554.894
unemp	16	319.331	93.446	187.000	234.825	314.350	384.250	480.600
force	16	260.669	69.592	146	229.8	271.8	306.1	359
pop	16	117.424	6.956	107.608	111.788	116.803	122.304	130.081
yr	16	1,954.500	4.761	1,947	1,950.8	1,954.5	1,958.2	1,962
emp	16	65.317	3.512	60.171	62.712	65.504	68.291	70.551

Will come back to Stargazer soon.

3.1.1 Tip: Save your Table

I recommend saving your table in a separate .tex file for convenient re-use.

```
# Instead of directly output your outcome.
# Saving the output is a better strategy. Think about why.
desc_tab <- capture.output(
    stargazer(longley, title = "Descriptive Statistics",
        mean.sd = TRUE, median = TRUE, iqr = TRUE, min.max = TRUE,
        header = FALSE, label = "tab:desc", type = out_type)
)
# Save it to a folder for tables (created earlier)
writeLines(desc_tab, "tables/descriptive.tex")</pre>
```

Table 2: Descriptive Statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Median	Pctl(75)	Max
gnp.def	16	101.681	10.792	83	94.5	100.6	111.2	117
gnp	16	387.698	99.395	234.289	317.881	381.427	454.085	554.894
unemp	16	319.331	93.446	187.000	234.825	314.350	384.250	480.600
force	16	260.669	69.592	146	229.8	271.8	306.1	359
pop	16	117.424	6.956	107.608	111.788	116.803	122.304	130.081
yr	16	1,954.500	4.761	1,947	1,950.8	1,954.5	1,958.2	1,962
emp	16	65.317	3.512	60.171	62.712	65.504	68.291	70.551

3.2 Correlcation Matrix

```
#-----
# Correlation Matrix
#------
PerformanceAnalytics::chart.Correlation(longley)
```


Figure 1: Correlation Matrix

```
# By far my favorite, better than other fancy stuff.
# Perfect for continuous variables
```

3.3 Correlation Plots (and their arrangement)

```
par(mfrow = c(1, 2)) # 2 figures in a row
plot(longley$gnp, longley$force, xlab = "GNP", ylab = "Size of Armed Force", main = "GNP")
plot(log(longley$gnp), longley$force, xlab = "log(GNP)", ylab = "Size of Armed Force",
    main = "log(GNP)")
```


Figure 2: Size of Armed Force and GNP (default)

```
# The complet package: https://cran.r-project.org/web/packages/complet/vignettes/plet_grid.html
fig_cor1 <- ggplet(longley, aes(x = gnp, y = force)) + geom_point() +
geom_smooth(method = "loess") + xlab("GNP") + ylab("Size of Armed Force") +</pre>
```

```
ggtitle("GNP")
fig_cor2 <- ggplot(longley, aes(x = log(gnp), y = force)) + geom_point() +
geom_smooth(method = "loess") + xlab("GNP") + ylab("Size of Armed Force") +
ggtitle("log(GNP)")
plot_grid(fig_cor1, fig_cor2, ncol = 2)</pre>
```


Figure 3: Size of Armed Force and GNP (ggplot)

4 Models

Clearly state your model and the assumption of the model.

(Alignment Style 1:)

```
\label{eq:model 1: Model 1: Armed Force} \begin{split} & \operatorname{Model 1: } & \operatorname{Armed Force}_i = \beta_0 + \beta_1 \operatorname{Unemployment}_i + \beta_2 \operatorname{GNP}_i + \epsilon_i \\ & \operatorname{Model 2: } & \operatorname{Armed Force}_i = \beta_0 + \beta_1 \operatorname{Unemployment}_i + \beta_2 \operatorname{GNP}_i + \beta_3 \operatorname{Population}_i + \epsilon_i \\ & \operatorname{Model 3: } & \operatorname{Armed Force}_i = \beta_0 + \beta_1 \operatorname{Unemployment}_i + \beta_2 \operatorname{GNP}_i + \beta_3 \operatorname{GNP}_i^2 + \beta_4 \operatorname{Population}_i + \epsilon_i \\ & \operatorname{Model 4: } & \operatorname{Armed Force}_i = \beta_0 + \beta_1 \operatorname{Unemployment}_i + \beta_2 \operatorname{GNP}_i + \beta_3 \operatorname{GNP}_i^2 + \beta_4 \operatorname{Population}_i + \beta_5 \operatorname{Year}_i + \epsilon_i \\ & \operatorname{For all models, I assume } \epsilon \sim N(0, \sigma^2) \end{split}
```

(Alignment Style 2:)

```
Model 1: Armed Force_i = \beta_0 + \beta_1 \text{Unemployment}_i + \beta_2 \text{GNP}_i + \epsilon_i

Model 2: Armed Force_i = \beta_0 + \beta_1 \text{Unemployment}_i + \beta_2 \text{GNP}_i + \beta_3 \text{Population}_i + \epsilon_i

Model 3: Armed Force_i = \beta_0 + \beta_1 \text{Unemployment}_i + \beta_2 \text{GNP}_i + \beta_3 \text{GNP}_i^2 + \beta_4 \text{Population}_i + \epsilon_i

Model 4: Armed Force_i = \beta_0 + \beta_1 \text{Unemployment}_i + \beta_2 \text{GNP}_i + \beta_3 \text{GNP}_i^2 + \beta_4 \text{Population}_i + \beta_5 \text{Year}_i + \epsilon_i

For all models, I assume \epsilon \sim N(0, \sigma^2)
```

5 Results (Tables)

Table 3 reports all models with no labels. Table 4 reports part of the models. Table 5 label the variables, reset the number of digits to report etc.

Table 3: (All Models) Economic Determinants of the Size of Armed Force

Dependent variable:					
	force				
	(1)	(2)	(3)	(4)	
unemp	-0.525^{**} (0.181)	-0.227 (0.317)	-0.825^{***} (0.255)	-0.398 (0.428)	
gnp	0.611*** (0.170)	2.448 (1.628)	2.101* (1.075)	7.317 (4.377)	
$I(gnp^2)$			-0.007*** (0.002)	-0.010^{***} (0.003)	
pop		-28.928 (25.485)	59.152^* (27.333)	79.852** (31.599)	
yr				-93.220 (75.935)	
Constant	191.458*** (56.948)	$2,780.931 \\ (2,281.964)$	-6,123.924** (2,648.690)	171,987.500 (145,108.600)	
Observations P ²	16	16	16	16	
R ²	0.514	0.561	0.826	0.848	
Adjusted R ² Residual Std. Error	0.440 52.098 (df = 13)	0.452	$0.762 \\ 33.935 (df = 11)$	0.773	
F Statistic	$6.883^{***} (df = 13)$	51.529 (df = 12) $5.120^{**} (df = 3; 12)$	33.935 (df = 11) $13.021^{***} \text{ (df} = 4; 11)$	33.179 (df = 10) $11.198^{***} (df = 5; 10)$	

Note: *p<0.1; **p<0.05; ***p<0.01

Table 4: (Baseline and Population) Economic Determinants of the Size of Armed Force

	$____$			
	force			
	(1)	(2)		
unemp	-0.525^{**}	-0.227		
	(0.181)	(0.317)		
gnp	0.611***	2.448		
	(0.170)	(1.628)		
pop		-28.928		
		(25.485)		
Constant	191.458***	2,780.931		
	(56.948)	(2,281.964)		
Observations	16	16		
\mathbb{R}^2	0.514	0.561		
Adjusted R^2	0.440	0.452		
Residual Std. Error	52.098 (df = 13)	51.529 (df = 12)		
F Statistic	$6.883^{***} (df = 2; 13)$	` ,		
Note:	*p<0.1; **p<0.05; ***p<0.01			

star.cutoffs = NA, # don't show stars
notes = "Source of Data: Longley (1967)",
font.size = "footnotesize", # Font size
header = FALSE, type = out_type
)

Table 5: (Labeled) Economic Determinants of the Size of Armed Force

			7 ,			
	Dependent variable:					
	Size of Armed Force					
	(1)	(2)	(3)	(4)		
Unemployment	-0.52	-0.23	-0.82	-0.40		
	(-0.88, -0.17)	(-0.85, 0.39)	(-1.32, -0.32)	(-1.24, 0.44)		
GNP	0.61	2.45	2.10	7.32		
	(0.28, 0.94)	(-0.74, 5.64)	(-0.01, 4.21)	(-1.26, 15.89)		
GNP sq			-0.01	-0.01		
•			(-0.01, -0.004)	(-0.02, -0.004)		
Population		-28.93	59.15	79.85		
•		(-78.88, 21.02)	(5.58, 112.72)	(17.92, 141.79)		
Year				-93.22		
				(-242.05, 55.61)		
Constant	191.46	2,780.93	-6,123.92	171,987.50		
	(79.84, 303.07)	(-1,691.64, 7,253.50)	(-11,315.26, -932.59)	$(-112,420.10,\ 456,395.10)$		
Observations	16	16	16	16		
R^2	0.51	0.56	0.83	0.85		
Adjusted R ²	0.44	0.45	0.76	0.77		
Residual Std. Error	52.10 (df = 13)	51.53 (df = 12)	33.94 (df = 11)	33.18 (df = 10)		
F Statistic	6.88 (df = 2; 13)	5.12 (df = 3; 12)	$13.02 \ (df = 4; 11)$	11.20 (df = 5; 10)		

Note: NA

Source of Data: Longley (1967)

6 Discussion

All results are summarized in Table 5... bla bla bla

7 Citation

Two ways to cite:

- The LaTex way
 - Bla bla bla [Johnston et al., 2014].
 - Beramendi and Anderson [2008, p.234] argue that...
 - Existing studies find evidence that bla bla la [see Stegmueller, 2013, Bell and Jones, 2015, for detailed explanation]...
- The Rmarkdown way
 - Bla bla bla [Johnston et al., 2014].
 - Beramendi and Anderson [2008] argue that...
 - Existing studies find evidence that bla bla la [see Stegmueller, 2013, Bell and Jones, 2015, for details]

References

- Andrew Bell and Kelvyn Jones. Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data. *Political Science Research and Methods*, 3(1):133–153, 2015.
- Pablo Beramendi and Christopher J Anderson. Democracy, Inequality, and Representation in Comparative Perspective. Russell Sage Foundation, 2008.
- Christopher D Johnston, D Sunshine Hillygus, and Brandon L Bartels. Ideology, the affordable care act ruling, and supreme court legitimacy. *Public Opinion Quarterly*, 78(4):963–973, 2014.
- Daniel Stegmueller. How many countries for multilevel modeling? a comparison of frequentist and bayesian approaches. American Journal of Political Science, 57(3):748–761, 2013.

8 Others (Analytical Graphs, Game Trees...)

Rmarkdown allows you to use all LaTex packages (put header_includes: \usepackage{} in in the header at the start of the document). For example, you can plot analytical graphs (functions, game trees etc.) with the TikZ packages. See more examples here:

http://www.sfu.ca/~haiyunc/notes/Game_Trees_with_TikZ.pdf; https://sites.google.com/site/kochiuyu/Tikz.

9 Appendix (Code)

For readability, you may suppress your code within your text, and put them all into the appendix. You can re-use a chunk of code by calling ref.label=(chunck_name). When you reuse a chunk, you may want to avoid running again by setting eval=FALSE. Again, you can set these up as a global option with the knitr::opts_chunck command.

```
# Show the code in the appdx, but do not run them again.
knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
```

9.1 Loading the Data

```
#------
# load your data
#------
# Load your dataset of interest.
# Below is an example economic dataset coming with R
data("longley")
# J. W. Longley (1967) An appraisal of least-squares programs from
# the point of view of the user.
# Journal of the American Statistical Association 62, 819-841.
# Just to mess up the dataset by a bit
names(longley) <- c("gnp.def", "gnp", "unemp", "force", "pop", "yr", "emp")
```

9.2 Generating a Correlation Matrix

```
#------
# Correlation Matrix
#------
PerformanceAnalytics::chart.Correlation(longley)
# By far my favorite, better than other fancy stuff.
# Perfect for continuous variables
```

9.3 Fitting Models

9.4 Presenting Results in Tables