Programming Assignment II

CS5691: PATTERN RECOGNITION AND MACHINE LEARNING

TEAM 17 CCS SECTION SPRING 2021

September 23, 2022

Aanand Krishnan BE17B001

> Manoranjan J Na17B112

Reneeth Krishna MG BS17B025

Contents

I	Pattern classification on linearly separable data	2
	I.1 Python Code	2
ΙΙ	Pattern classification on non-linearly separable data	9
	II.1 K nearest Neighbours Method and Bayes classifier with KNN for density estimation	9
	II.1.1 Python Code	
	II.2 Bayes Classifier with GMM	15
	II.2.1 Python Code	15
II.	IStatic Pattern Classification on Real World Dataset 2A III.1 Python Code	24 24
ΙV	Static Pattern Classification on Real World Dataset 2B	31
	IV.1 Python Code	31

I Pattern classification on linearly separable data

I.1 Python Code

```
import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  from sklearn.metrics import confusion_matrix
  from mlxtend.plotting import plot_confusion_matrix
  from sklearn.metrics import accuracy_score
   # train data
   f = open('datasets/Dataset 1a/train.csv', 'r')
11
   length = 0
12
  for line in f:
13
14
      d = [float(i) for i in line.split(',')]
15
16
       if length == 0:
17
          data = np.array(d)
18
          data = data[np.newaxis,:]
19
      else:
20
          d = np.array(d)
21
          d = d[np.newaxis,:]
22
          data = np.append(data,d,axis=0)
23
      length = length+1
24
   f.close()
26
27
   train data = pd.DataFrame(data)
   # shuffle dataset
   # train_data = train_data.sample(frac=1)
   # get train data
   train_data = np.array(train_data)
35
   # test data
36
   f = open('datasets/Dataset_1a/dev.csv', 'r')
   length = 0
39
   for line in f:
40
41
      d = [float(i) for i in line.split(',')]
42
43
       if length == 0:
44
          data = np.array(d)
          data = data[np.newaxis,:]
46
```

```
else:
47
          d = np.array(d)
48
          d = d[np.newaxis,:]
49
          data = np.append(data,d,axis=0)
50
      length = length+1
51
52
  f.close()
53
54
  test data = pd.DataFrame(data)
55
56
  # shuffle dataset
57
  # test_data = test_data.sample(frac=1)
58
59
  # get test data
  test data = np.array(test data)
61
  62
  # Split training data
  # length of data for fit
  train_len = int(np.shape(train_data)[0])
  val len = int(np.shape(test data)[0]*0.5)
  test len = int(np.shape(test data)[0]*0.5)
  X train = train data[:,0:2]
  X val = test data[0:val len,0:2]
  X_test = test_data[val_len:val_len+test_len,0:2]
  y_train = train_data[:,2]
74
  y_val = test_data[0:val_len,2]
  y_test = test_data[val_len:val_len+test_len,2]
76
  78
  # Build KNN classifier
79
  y_pred = []
80
  def KNN classifier(K, x):
81
      11 11 11
82
      Parameters
83
84
      K: value of nearest neighbours
85
      x: feature vector
86
87
      Returns
88
89
      None.
90
91
      # find distance between feature vector and training data
92
      dist = np.linalg.norm(x-X train,axis=1)
93
94
      # get the top index for the minimum distance
      min dist index = np.argsort(dist)
```

```
topk = min_dist_index[0:K]
97
98
        # get class of corresponding class
99
        K_class = y_train[topk]
100
101
        # get count of each class
102
        unique class, counts = np.unique(K class, return counts=1)
103
104
        # get the index of max counts
105
        max count = np.argmax(counts)
106
107
        # choose that as the class
108
        y_pred.append(unique_class[max_count])
109
   K = 15
111
    # test on training data
112
   for i in range(0, train len):
        KNN_classifier(K, X_train[i])
   y_pred = np.array(y_pred)
   train_accuracy = accuracy_score(y_train,y_pred)*100
   print("training accuracy: " , train_accuracy)
120
   # plot confusion matrix for training data
121
   c_matrix = confusion_matrix(y_train, y_pred)
   fig, ax = plot_confusion_matrix(conf_mat=c_matrix,figsize=(7,7),cmap=plt.cm.RdYlBu_r)
123
   ax.set(title = "Confusion Matrix")
124
   plt.show()
125
126
   y_pred = []
127
   # test on validation data
128
   for i in range(0, val len):
129
        KNN_classifier(K, X_val[i])
130
131
   y_pred = np.array(y_pred)
132
133
   val_accuracy = accuracy_score(y_val,y_pred)*100
134
   print("validation accuracy: " , val_accuracy)
135
136
   y pred = []
137
   # test on test data
138
   for i in range(0, test len):
139
        KNN classifier(K, X test[i])
140
141
   y pred = np.array(y pred)
142
143
   test accuracy = accuracy score(y test,y pred)*100
144
   print("validation accuracy: " , test_accuracy)
145
```

146

```
# plot confusion matrix for test data
147
   c matrix = confusion matrix(y test, y pred)
148
   fig, ax = plot_confusion_matrix(conf_mat=c_matrix,figsize=(7,7),cmap=plt.cm.RdYlBu r)
149
   ax.set(title = "Confusion Matrix")
150
   plt.show()
151
152
   153
   # define bounds of the domain
154
   min1, max1 = X train[:, 0].min()-1, X train[:, 0].max()+1
155
   min2, max2 = X train[:, 1].min()-1, X train[:, 1].max()+1
156
157
   # define the x and y scale
158
   x1_grid = np.arange(min1, max1, 0.1)
159
   x2 grid = np.arange(min2, max2, 0.1)
160
161
   x1_grid, x2_grid = np.meshgrid(x1_grid, x2_grid)
162
163
   c1, c2 = x1_grid.flatten(), x1_grid.flatten()
   c1, c2 = x1 grid.reshape((len(c1), 1)), x2 grid.reshape((len(c2), 1))
   x = np.hstack((c1,c2))
167
   y_pred = []
169
   for i in range(0, np.shape(x)[0]):
170
       KNN classifier(K, x[i,:])
172
   y_pred = np.array(y_pred)
173
174
   x3_grid = y_pred.reshape(x1_grid.shape)
175
176
   fig = plt.figure()
177
   ax = fig.add subplot(111)
178
   ax.contourf(x1_grid, x2_grid, x3_grid, cmap='Paired')
179
   ax.scatter(X_train[:,0],X_train[:,1],marker='x')
180
   ax.set xlabel('x1',fontsize=20)
181
   ax.set_ylabel('x2',fontsize=20)
182
   ax.set title('KNN model with K = 15', fontsize=20)
183
184
185
   186
187
   # Naive Bayes classifier
188
   \# P(x/y=yi) = N(x/mui,ci)
189
   unique_class, class_index, counts = np.unique(y_train, return_inverse=1,return_counts
190
191
   # Compute mean and variance for each class
192
   mu = np.zeros((np.shape(unique class)[0],2))
193
   variance = np.zeros((np.shape(unique class)[0],2))
194
   for i in range(0,np.size(unique_class)):
195
       index = np.where(class index==i)
```

```
mu[i,:] = np.mean(X train[index,:],axis=1)
197
      variance[i,:] = np.var(X train[index,:],axis=1)
198
199
   # Gaussian function
200
   N = lambda mu, C, x : ((1/(((2*np.pi)**(np.shape(unique class)[0]/2)))
201
   *np.linalg.det(C)**(1/2)))*np.exp(-0.5*(((x-mu).T)@np.linalg.inv(C)@(x-mu))))
202
   203
   # Comment all other case when testing 1 case
204
205
   206
   var avg = (np.mean(np.sum(variance,axis=1)/2.0))
207
208
   covar = np.eye(np.shape(X_train)[1])*var_avg
209
   # case 2: when covariance matrix is same but has different diaganol elements
   covar = np.zeros((np.shape(unique_class)[0],
   np.shape(X train)[1],np.shape(X train)[1]))
   for i in range(0,np.shape(unique class)[0]):
      covar[i,:,:] = np.diag(variance[i,:])
   covar = np.mean(covar,axis=0)
   # case 3: when covariance matrix is different but has diaganol elements
   covar = np.zeros((np.shape(unique_class)[0],
   np.shape(X train)[1],np.shape(X train)[1]))
220
   for i in range(0,np.shape(unique class)[0]):
      covar[i,:,:] = np.diag(variance[i,:])
222
223
224
   prior = counts/train_len
225
226
   # test on train data
227
   y pred = np.zeros((train len,))
228
   for i in range(train len):
229
      decision = []
230
      for j in range(0,np.shape(unique class)[0]):
231
          decision.append(N(mu[j],covar[j,:,:],X train[i,:])*prior[j])
232
      y pred[i] = np.argmax(decision)
233
234
   train accuracy = accuracy score(y train, y pred)*100
235
   print("training accuracy: " , train accuracy)
236
237
   # plot confusion matrix for training data
238
   c matrix = confusion matrix(y train, y pred)
239
   fig, ax = plot confusion matrix(conf mat=c matrix,figsize=(7,7),cmap=plt.cm.RdYlBu r)
240
   ax.set(title = "Confusion Matrix")
241
   plt.show()
242
   # test on validation data
244
   y_pred = np.zeros((val_len,))
   for i in range(val len):
```

```
decision = []
247
       for j in range(0,np.shape(unique_class)[0]):
248
            decision.append(N(mu[j],covar[j,:,:],X_val[i,:])*prior[j])
249
       y pred[i] = np.argmax(decision)
250
251
   val accuracy = accuracy score(y val,y pred)*100
252
   print("validation accuracy: " , val accuracy)
253
254
   # test on test data
255
   y pred = np.zeros((test len,))
256
   for i in range(test len):
257
       decision = []
258
       for j in range(0,np.shape(unique_class)[0]):
259
            decision.append(N(mu[j],covar[j,:,:],X test[i,:])*prior[j])
260
       y pred[i] = np.argmax(decision)
261
262
   y test = np.array(y test)
263
   test_accuracy = accuracy_score(y_test,y_pred)*100
   print("test accuracy: " , test_accuracy)
   # plot confusion matrix for test data
   c matrix = confusion matrix(y test, y pred)
   fig, ax = plot_confusion_matrix(conf_mat=c_matrix,figsize=(7,7),cmap=plt.cm.RdYlBu_r)
   ax.set(title = "Confusion Matrix")
270
   plt.show()
272
   273
   # define bounds of the domain
274
   min1, max1 = X_train[:, 0].min()-1, X_train[:, 0].max()+1
   min2, max2 = X_train[:, 1].min()-1, X_train[:, 1].max()+1
276
277
   # define the x and y scale
278
   x1_grid = np.arange(min1, max1, 0.1)
279
   x2_grid = np.arange(min2, max2, 0.1)
280
281
   x1_grid, x2_grid = np.meshgrid(x1_grid, x2_grid)
282
283
   c1, c2 = x1_grid.flatten(), x1_grid.flatten()
284
   c1, c2 = x1 \text{ grid.reshape}((len(c1), 1)), x2 \text{ grid.reshape}((len(c2), 1))
285
286
   x = np.hstack((c1,c2))
287
288
   y pred = np.zeros((np.shape(x)[0],))
289
   for i in range(np.shape(x)[0]):
290
       decision = []
291
       for j in range(0,np.shape(unique class)[0]):
292
            decision.append(N(mu[j],covar[j,:,:],x[i,:])*prior[j])
293
       y_pred[i] = np.argmax(decision)
294
295
   x3 grid = y pred.reshape(x1 grid.shape)
```

```
297
   fig = plt.figure()
298
   ax = fig.add subplot(111)
299
   ax.contourf(x1 grid, x2 grid, x3 grid, cmap='Paired')
300
   ax.scatter(X_train[:,0],X_train[:,1],marker='x')
301
   ax.set xlabel('x1',fontsize=20)
302
   ax.set_ylabel('x2',fontsize=20)
303
   ax.set_title('Naiyve Bayes Classifier', fontsize=20)
304
305
    # plot levl of curves of the gaussian functions
306
   for i in range(0,np.shape(unique_class)[0]):
307
        x3 grid = []
308
        for j in range(np.shape(x)[0]):
309
            x3 grid.append(N(mu[i],covar[i,:,:],x[j,:]))
310
        x3 grid = np.array(x3 grid)
311
        x3_grid = x3_grid.reshape(x1_grid.shape)
312
        contours = ax.contour(x1 grid, x2 grid, x3 grid, cmap='tab20b')
        ax.clabel(contours, inline=1, fontsize=5)
314
```

II Pattern classification on non-linearly separable data

II.1 K nearest Neighbours Method and Bayes classifier with KNN for density estimation

II.1.1 Python Code

```
import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  from sklearn.metrics import confusion matrix
  from mlxtend.plotting import plot confusion matrix
  from sklearn.metrics import accuracy_score
  from sklearn.cluster import KMeans
  from scipy.stats import multivariate normal
   # train data
  f = open('datasets/Dataset 1b/train.csv', 'r')
  length = 0
  for line in f:
      d = [float(i) for i in line.split(',')]
      if length == 0:
          data = np.array(d)
          data = data[np.newaxis,:]
      else:
21
          d = np.array(d)
          d = d[np.newaxis,:]
23
          data = np.append(data,d,axis=0)
24
      length = length+1
25
  f.close()
27
28
  train data = pd.DataFrame(data)
29
30
   # shuffle dataset
31
   # train data = train data.sample(frac=1)
32
33
   # get train data
34
  train_data = np.array(train_data)
35
36
   # test data
37
  f = open('datasets/Dataset 1b/dev.csv', 'r')
38
39
  length = 0
40
  for line in f:
41
42
      d = [float(i) for i in line.split(',')]
43
```

```
if length == 0:
45
           data = np.array(d)
46
           data = data[np.newaxis,:]
47
       else:
48
           d = np.array(d)
49
           d = d[np.newaxis,:]
50
           data = np.append(data,d,axis=0)
51
       length = length+1
52
53
   f.close()
54
   test data = pd.DataFrame(data)
56
57
   # shuffle dataset
58
   test data = test data.sample(frac=1)
59
60
   # get test data
   test_data = np.array(test_data)
   # Split training data
   # length of data for fit
   train_len = int(np.shape(train_data)[0])
   val len = int(np.shape(test data)[0]*0.5)
   test len = int(np.shape(test data)[0]*0.5)
  X_train = train_data[:,0:2]
71
  X_val = test_data[0:val_len,0:2]
   X_test = test_data[val_len:val_len+test_len,0:2]
74
  y_train = train_data[:,2]
75
   y val = test data[0:val len,2]
76
   y_test = test_data[val_len:val_len+test_len,2]
78
   KNN classifier
79
80
   # Build KNN classifier
81
   y_pred = []
82
   def KNN classifier(K, x):
83
       HHHH
84
       Parameters
85
       _____
86
       K: value of nearest neighbours
87
       x: feature vector
88
89
       Returns
90
       None.
92
       11 11 11
93
       # find distance between feature vector and training data
```

```
dist = np.linalg.norm(x-X_train,axis=1)
95
96
        # get the top index for the minimum distance
97
        min dist index = np.argsort(dist)
98
        topk = min dist index[0:K]
99
100
        # get class of corresponding class
101
        K_class = y_train[topk]
102
103
        # get count of each class
104
        unique_class, counts = np.unique(K_class, return_counts=1)
105
106
        # get the index of max counts
107
        max count = np.argmax(counts)
108
109
        # choose that as the class
110
        y pred append(unique class[max count])
   K = 15
   # test on training data
   for i in range(0, train len):
        KNN classifier(K, X train[i])
   y pred = np.array(y pred)
118
   train_accuracy = accuracy_score(y_train,y_pred)*100
   print("training accuracy: " , train_accuracy)
121
122
   # plot confusion matrix for training data
123
   c_matrix = confusion_matrix(y_train, y_pred)
124
   fig, ax = plot_confusion_matrix(conf_mat=c_matrix,figsize=(7,7),cmap=plt.cm.RdYlBu_r)
125
   ax.set(title = "Confusion Matrix")
126
   plt.show()
127
128
   v pred = []
129
   # test on validation data
130
   for i in range(0, val len):
131
        KNN_classifier(K, X_val[i])
132
133
   y_pred = np.array(y_pred)
134
135
   val_accuracy = accuracy_score(y_val,y_pred)*100
136
   print("validation accuracy: " , val_accuracy)
137
138
   y pred = []
139
   # test on test data
140
   for i in range(0, test len):
        KNN classifier(K, X test[i])
142
143
   y pred = np.array(y pred)
```

```
145
   test_accuracy = accuracy_score(y_test,y_pred)*100
146
   print("test accuracy: " , test_accuracy)
147
148
   # plot confusion matrix for test data
149
   c matrix = confusion matrix(y test, y pred)
150
   fig, ax = plot confusion matrix(conf mat=c matrix,figsize=(7,7),cmap=plt.cm.RdYlBu r)
151
   ax.set(title = "Confusion Matrix")
152
   plt.show()
153
154
   155
   # define bounds of the domain
156
   min1, max1 = X_train[:, 0].min()-1, X_train[:, 0].max()+1
157
   min2, max2 = X train[:, 1].min()-1, X train[:, 1].max()+1
   # define the x and y scale
160
   x1 grid = np.arange(min1, max1, 0.1)
   x2_grid = np.arange(min2, max2, 0.1)
   x1_grid, x2_grid = np.meshgrid(x1_grid, x2_grid)
   c1, c2 = x1 grid.flatten(), x1 grid.flatten()
   c1, c2 = x1_grid.reshape((len(c1), 1)), x2_grid.reshape((len(c2), 1))
167
168
   x = np.hstack((c1,c2))
169
170
   y_pred = []
171
   for i in range(0, np.shape(x)[0]):
172
       KNN_classifier(K, x[i,:])
173
174
   y_pred = np.array(y_pred)
175
176
   x3_grid = y_pred.reshape(x1_grid.shape)
177
178
   fig = plt.figure()
179
   ax = fig.add subplot(111)
180
   ax.contourf(x1 grid, x2 grid, x3 grid, cmap='Paired')
181
   ax.scatter(X_train[:,0],X_train[:,1],marker='x')
182
   ax.scatter(X test[:,0],X test[:,1],marker='x')
183
   ax.set_xlabel('x1',fontsize=20)
184
   ax.set ylabel('x2',fontsize=20)
185
   ax.set_title('KNN model with K = 15', fontsize=20)
186
187
   188
   # Bayes classifier with KNN for density estimation
189
190
   # Build KNN for density estimation
191
   y pred = []
192
   def KNN(K, x, X):
193
       11 11 11
```

```
Parameters
195
196
        K : value of nearest neighbours
197
        x: feature vector
198
        X : training\ data\ related\ to\ particular\ class
199
200
        _____
201
        None.
202
        11 11 11
203
        # find distance between feature vector and training data
204
        dist = np.linalg.norm(x-X,axis=1)
205
206
        # get the top k index for the minimum distance
207
        min dist index = np.argsort(dist)
208
        topk = min dist index[0:K]
209
210
        # radius is distance of kth neearest neighbour
        R = dist[topk[-1]]
        return R
   # split into different classes
   unique_class,counts = np.unique(y_train,return_counts=1)
   total class = len(unique class)
218
   class_data = []
220
221
   for i in range(0,total_class):
222
        class_data.append(X_train[y_train==i])
223
224
   K = 20
225
   # bayes classifier -> this is just the min value of R for all the classes
226
   # upon simplification of the actual bayes theorem
227
   # test on train data
228
   y pred = np.zeros((train len,))
229
   for i in range(train len):
230
        decision = []
231
        for j in range(0,total_class):
232
            decision.append(KNN(K,X train[i],class data[j]))
233
        y_pred[i] = np.argmin(decision)
234
235
   train_accuracy = accuracy_score(y_train,y_pred)*100
236
   print("training accuracy: " , train_accuracy)
237
238
    # plot confusion matrix for training data
239
   c matrix = confusion matrix(y train, y pred)
240
   fig, ax = plot confusion matrix(conf mat=c matrix,figsize=(7,7),cmap=plt.cm.RdYlBu r)
   ax.set(title = "Confusion Matrix")
   plt.show()
243
```

```
# test on validation data
245
   y pred = np.zeros((val len,))
246
   for i in range(val len):
247
       decision = []
248
       for j in range(0,total class):
249
            decision.append(KNN(K,X val[i],class data[j]))
250
       y pred[i] = np.argmin(decision)
251
252
   val accuracy = accuracy score(y val,y pred)*100
253
   print("validation accuracy: " , val accuracy)
254
255
   # test on test data
256
   y_pred = np.zeros((test_len,))
257
   for i in range(test len):
       decision = []
259
       for j in range(0,total_class):
260
            decision.append(KNN(K,X test[i],class data[j]))
       y_pred[i] = np.argmin(decision)
262
   y_test = np.array(y_test)
   test_accuracy = accuracy_score(y_test,y_pred)*100
   print("test accuracy: " , test_accuracy)
   # plot confusion matrix for test data
268
   c matrix = confusion matrix(y test, y pred)
   fig, ax = plot_confusion_matrix(conf_mat=c_matrix,figsize=(7,7),cmap=plt.cm.RdYlBu_r)
   ax.set(title = "Confusion Matrix")
271
   plt.show()
272
273
274
   275
   # define bounds of the domain
276
   min1, max1 = X_train[:, 0].min()-1, X_train[:, 0].max()+1
277
   min2, max2 = X_train[:, 1].min()-1, X_train[:, 1].max()+1
278
279
   # define the x and y scale
280
   x1 grid = np.arange(min1, max1, 0.1)
281
   x2_grid = np.arange(min2, max2, 0.1)
282
283
   x1 grid, x2 grid = np.meshgrid(x1 grid, x2 grid)
284
285
   c1, c2 = x1 grid.flatten(), x1 grid.flatten()
286
   c1, c2 = x1 \text{ grid.reshape}((len(c1), 1)), x2 \text{ grid.reshape}((len(c2), 1))
287
288
   x = np.hstack((c1,c2))
289
290
   y pred = np.zeros((np.shape(x)[0],))
291
   for i in range(np.shape(x)[0]):
292
       decision = []
293
       for j in range(0,total class):
```

```
decision.append(KNN(K,x[i],class_data[j]))
295
        y_pred[i] = np.argmin(decision)
296
297
   x3_grid = y_pred.reshape(x1_grid.shape)
298
299
   fig = plt.figure()
300
   ax = fig.add subplot(111)
301
   ax.contourf(x1_grid, x2_grid, x3_grid, cmap='Paired')
302
   ax.scatter(X_train[:,0],X_train[:,1],marker='x')
303
   ax.set xlabel('x1',fontsize=20)
304
   ax.set_ylabel('x2',fontsize=20)
305
   ax.set_title('Bayes Classifier with KNN density estimation', fontsize=20)
```

II.2 Bayes Classifier with GMM

II.2.1 Python Code

```
#!/usr/bin/env python
   # coding: utf-8
   # In[1]:
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns #A statistical plotting library
10
   from sklearn.cluster import KMeans
11
   from kneed import KneeLocator
                                    #A function that helps in optimization of
12
                                    #number of clusters from an error curve
13
   from scipy.stats import multivariate_normal as mvn
14
   from mlxtend.plotting import plot confusion matrix
15
   from sklearn.metrics import confusion_matrix
16
17
18
   # In[2]:
19
20
21
   header names = ['x1', 'x2', 'Class']
22
   D = pd.read csv('datasets/Dataset 1b/train.csv', header = None, names = header names)
23
   D.head()
24
25
26
   # In[3]:
27
28
29
   L df = D.loc[:,['x1','x2']]
   Unlab_Data = L_df.to_numpy()
31
32
   lab df = D.loc[:,'Class']
```

```
labels = lab_df.to_numpy()
34
35
   #Training Dataset for Class 0
36
   L0 = (D['Class'] == 0.0)
37
   L0_df = D.loc[L0, ['x1', 'x2']]
38
   Class0 = L0 df.to numpy()
39
40
   #Training Dataset for Class 1
41
   L1 = (D['Class'] == 1.0)
42
   L1 df = D.loc[L1, ['x1', 'x2']]
43
   Class1 = L1_df.to_numpy()
44
45
   #Training Dataset for Class 2
46
   L2 = (D['Class'] == 2.0)
   L2 df = D.loc[L2, ['x1', 'x2']]
   Class2 = L2_df.to_numpy()
   labels.shape
51
   # In[4]:
53
   #KMeans implementation for initialization and optimization of the number of
   #clusters.
57
   #Number of clusters for each class equals the number of gaussian componenets
   #to be fitted for that class.
   def K_Clustering(Class,M):
60
       #Dictionary of the arguments for scikit.KMeans
61
       KMeans_args = {
           "init" : "random",
63
           "n_init" : 10,
64
           "max iter" : 300,
65
           "random_state" : 0,
           }
67
       #Estimation of the optimum number of clusters using elbow method
68
       std error = []
69
       for cluster in range(1,11):
70
           kmeans = KMeans(n_clusters = cluster , **KMeans_args)
71
           kmeans.fit(Class)
72
           std error.append(kmeans.inertia )
73
       if M==0:
74
            #detecting the elbow point of the curve of 's_err vs K' using kneed, which
75
            #qives the optimum number of clusters
76
           curve = KneeLocator(range(1,11), std_error, curve="convex",
           direction = "decreasing")
           K opt = curve.elbow
       else:
            #Using Manually entered value for K_opt
81
           K \text{ opt } = M
82
       #clustering the class in to K_opt clusters
```

```
kmeans = KMeans(n_clusters = K_opt , **KMeans_args)
84
        kmeans.fit(Class)
85
        labels = kmeans.labels
86
        centers = kmeans.cluster centers
87
        return K opt, labels, centers
88
89
90
    # In[5]:
91
92
   #initialization of the parameters using K-Clusters
93
94
   def Parameters old(Class,M):
95
        #Will return a mean(mu)-(K,d) array;
96
        N,d = np.shape(Class)
97
        K,lab,mu = K Clustering(Class,M)
98
        #gamma contains initial responsibilty values for an example w.r.t
        #each clusters as columns
100
        gamma = np.array([ [0]*K for i in range(N)])
101
        for example in range(N):
            for cluster in range(K):
103
                if lab[example] == cluster:
                     gamma[example][cluster] = 1
105
        return K, mu, gamma
106
107
108
   # In[6]:
109
110
111
112
   #Defining the Gaussian Mixture Model as a class
113
114
   class Gaussian_Mixture_Model:
115
        #Class - Examples of the class to which the Gaussian Componenets
116
        #need to be fitted
117
        \#Class - N \times d \ matrix, where N is the number of examples and
118
        #d is the number of features for each example
119
        #K - Number of Gaussian Components that needs to be fitted
120
121
        def init (self,Class,K,MU,GAMMA,f):
122
            self.Class = Class
123
            self.K = K
                          #Attribute for Number of clusters
124
            self.GAMMA = GAMMA
                                          #Attribute for NxK array of posterior
125
                                          #prob. / responsibity term.
126
            self.MU = MU
                                          #Attribute for the mean values. An Kxd array.
127
            self.SIGMA = None
                                          \#Attribute for (K,d,d) array of covariances
128
            self.W = None
                                          #Attribute for prior probabilty,
129
                                          #an array of length K
130
            #self.max_iter = max_iter
                                           #Attribute for the number of iterations
131
            self.N = len(self.Class)
                                          #Attribute for number of examples available
132
            self.d = len(self.Class[0]) #Attribute for the number of features
```

```
#in each example
134
            self.f = f
                                          #Attribute that acts as switch between
135
                                          #diagonal and full covariance matrices
136
            self.mean shift = np.reshape(self.Class, (self.N, 1, self.d) ) -
137
                                           np.reshape(self.MU, (1, self.K, self.d) )
138
139
        def Prior Probability(self):
140
            #A function to estimate the (K,) array of prior prob.
141
            self.W = np.einsum("ij -> j", self.GAMMA) / self.N
142
143
        def Mean(self):
144
          # A function to calculate mean
145
                     ((self.GAMMA).T) (self.Class) / np.reshape((self.W*self.N),
          self.MU =
146
                       (self.K, 1)
148
        def Covariance_Matrix_Array(self):
149
            # A function to calculate covariances of the features of the examples
151
            Nk = np.einsum("ij -> j",self.GAMMA)
            self.mean_shift = np.reshape(self.Class, (self.N, 1, self.d) ) -
                                         np.reshape(self.MU, (1, self.K, self.d) )
155
            sigma = np.einsum("nki,nkj->kij", np.einsum("nk,nki->nki", self.GAMMA,
                               self.mean shift), self.mean shift) / np.reshape(Nk,
157
                                                                     (self.K, 1, 1))
159
            if self.f==1: #Case where we use full diagonal covariance matrix
160
                self.SIGMA = sigma
161
            if self.f==0: #Case where we use a diagonal covariance matrix
163
                I = np.identity(self.d,dtype=int) #An identity matrix of the size
164
                #equal to number of feature
165
166
                self.SIGMA = np.einsum("kij,ij -> kij",sigma,I)
167
168
169
        def Gaussian Prob(self):
170
            #This function accounts for our assumption that the conditional
171
            #distribution of an example is a Gaussian.
172
173
            self.Covariance_Matrix_Array()
                                                       #SIGMA gets updated to the
174
                                                        #full covariance matrix
175
            SIGMA_inv = np.linalg.inv(self.SIGMA)
                                                        #Inverse of the covariance matrix
176
177
            #Normalisation term of the Gaussian dist.
178
            norm = np.sqrt(((2*np.pi)**self.d)*np.linalg.det(self.SIGMA))
179
180
181
            #Exponential term of the Gaussian
182
            expo = np.exp(-0.5*(np.einsum("nkj,nkj->nk", np.einsum("nki,kij->nkj",
```

```
self.mean_shift, SIGMA_inv),self.mean_shift)))
184
185
            #Prob mat is an (NxK)-array that contains Gaussian Prob. of the
186
            #various examples to belong to respective clusters
187
            Prob mat = expo / norm
188
            return Prob mat
189
190
        def Expectation Step(self):
191
            #In this step we update the values of the responsibilty term
192
193
            N = self.Gaussian Prob()
194
            #Prior probability array
195
            self.W = np.einsum("ij -> j",self.GAMMA) / self.N
196
            Num = N * self.W
197
            Den = np.reshape(np.sum(Num, axis=1), (self.N, 1) )
198
            self.GAMMA = Num/Den
199
        def Maximization_Step(self):
201
            #In this step we updtae the various parameters
            #Updation of GAMMA
            self.Expectation_Step()
205
            #Updation of W
207
            self.Prior_Probability()
209
            #Updation of Mean MU
210
            self.Mean()
211
212
            #Updation of Covariance Matrix SIGMA
213
            self.Covariance_Matrix_Array()
214
215
216
        def Log_Likelihood(self):
217
218
          11hd = np.sum(np.log(self.Gaussian_Prob() @ self.W))
219
220
          return 11hd
221
222
223
        def fit(self,max_iter,threshold):
224
225
            log likelihoods = []
                                    #Attribute for 1D array that contains Log Likelihood
226
                                    # values.
227
                                    #Size depends on the number iterations required
228
                                     # to converge
229
230
231
            for i in range(max_iter):
232
                 self.Expectation Step()
                                           #Updates Gamma
```

```
self.Maximization_Step() #Updates all the other parameters
234
                log_likelihoods.append(self.Log_Likelihood())
235
                #An if conditional for the requirement of convergence
236
                if (i!=0) & ((log likelihoods[i] - log likelihoods[i-1]) < threshold):</pre>
237
                         break
238
239
            print("Number of iterations to convegre:" ,i)
240
241
        def plot(self,ax,x1 grid,x2 grid):
242
            # #Plotting log likelihood vs iterations, comment out if not needed
243
            # sns.set style("darkqrid")
                                                   #setting the plot style
244
            # fig = plt.figure(figsize=(10,10))
245
            \# ax0 = fig.add\_subplot(111)
246
            # ax0.set title('Log-Likelihood')
            # ax0.plot(range(i+1), log_likelihoods)
248
249
            #Plot of the fitted Gaussians for each class
            XY = np.array([x1_grid.flatten(),x2_grid.flatten()]).T
            for mu,sigma in zip(self.MU,self.SIGMA):
                multi normal = mvn(mean=mu,cov=sigma)
                contours = ax.contour(x1 grid, x2 grid, multi normal.pdf(XY).reshape(
255
                len(x1_grid),len(x1_grid)),cmap='hsv',levels=4,extend='min')
                ax.clabel(contours, inline=1, fontsize=5)
257
        def Class_Prob(self,Y):
259
                #A function that returns Prob.
260
                # for a unlabelled vector Y to belong to a class
261
                #Pred Prob = []
                Multi Gauss = []
263
                for mu,sigma in zip(self.MU,self.SIGMA):
264
                    Multi Gauss.append(mvn(mean=mu,cov=sigma).pdf(Y))
265
                    #An array of Multi-Variate Gaussian Prob of various clusters
266
                Wt_Gauss = np.einsum("i,i->i",self.W,Multi_Gauss)
267
                #An array of weighted probabilities
268
                Pred Prob =np.sum(Wt Gauss)
269
                return Pred Prob
270
271
    # In[7]:
272
273
274
   #Fitting gaussian mixtures for ClassO
275
   K,MU,GAMMA = Parameters old(Class0,10)
276
    \#0 as the second argument chooses by default K opt estimated using elbow method.
277
    #If not pass the number of clusters needed
278
   gmm0 = Gaussian Mixture Model(Class0,K,MU,GAMMA,1)
280
   # 0 as the last argument -> diagonal covariance matrix.
281
   # 1-> full covariance matix.
   gmm0.fit(max iter=100,threshold = 1e-10)
```

```
284
285
    # In[8]:
286
287
288
   #Fitting gaussian mixtures for Class1
289
   K,MU,GAMMA = Parameters old(Class1,10)
290
   gmm1 = Gaussian Mixture Model(Class1,K,MU,GAMMA,1)
291
   gmm1.fit(max iter=100,threshold = 1e-10)
292
293
294
   # In[9]:
295
296
297
   #Fitting gaussian mixtures for Class2
298
   K,MU,GAMMA = Parameters_old(Class2,10)
299
   gmm2 = Gaussian Mixture Model(Class2,K,MU,GAMMA,1)
   gmm2.fit(max iter=100,threshold = 1e-10)
   # In[10]:
   11 = len(Class0)
   12 = len(Class1)
   13 = len(Class2)
307
   total = 11+12+13
309
   prior = []
310
   prior.append(l1/total)
311
   prior.append(12/total)
   prior.append(13/total)
313
314
   # We have fitted gaussians to each class and now we would like to make prediction
315
   # for unlabelled points
316
   def Class_Prediction(Y):
317
        # gmm0,gmm1,gmm2 are the instances of class 0, class 1 and class 2 respectively
318
        n = len(Y) #number of unlabelled examples
319
        prediction = []
320
        for example in range(n):
321
            Prob=[]
322
            Prob = [gmm0.Class Prob(Y[example,:])*prior[0], gmm1.Class Prob(Y[example,:])
323
            prediction.append(np.argmax(Prob))
324
        # print("Labels for the given dataset:", prediction)
325
        return prediction
326
327
   # In[11]:
328
329
   header names = ['x1', 'x2', 'Class']
330
   D = pd.read_csv('datasets/Dataset_1b/dev.csv', header = None, names = header_names)
331
   D.head()
332
```

```
# In[12]:
334
335
   L df = D.loc[:,['x1','x2']]
336
   X dev = L df.to numpy()
337
338
   lab df = D.loc[:,'Class']
339
   y dev = lab df.to numpy()
340
341
   # In[12]:
342
343
   # Divide into test and validation set
344
   from sklearn.model_selection import train test split
345
   X_val,X_test,y_val,y_test = train_test_split(X_dev,y_dev, test_size=0.5)
346
   # In[14]:
348
   from sklearn.metrics import accuracy_score
   y train = labels
   X_train = np.concatenate((Class0,Class1,Class2))
   predictions = Class_Prediction(X_train)
   train_accuracy = accuracy_score(y_train,predictions)*100
   print("train accuracy: " , train_accuracy)
357
   # plot confusion matrix for training data
   c_matrix = confusion_matrix(y_train, predictions)
   fig, ax = plot confusion matrix(conf mat=c matrix,figsize=(7,7),cmap=plt.cm.RdYlBu r)
360
   ax.set(title = "Confusion Matrix")
361
   plt.show()
362
363
   # In[15]:
364
   predictions = Class_Prediction(X_val)
365
366
   val_accuracy = accuracy_score(y_val,predictions)*100
367
   print("val accuracy: " , val_accuracy)
368
369
   # In[16]:
370
   predictions = Class_Prediction(X_test)
371
372
   test_accuracy = accuracy_score(y_test,predictions)*100
373
   print("test accuracy: " , test_accuracy)
374
375
    # plot confusion matrix for test data
376
   c matrix = confusion matrix(y test, predictions)
377
   fig, ax = plot confusion matrix(conf mat=c matrix,figsize=(7,7),cmap=plt.cm.RdYlBu r)
378
   ax.set(title = "Confusion Matrix")
   plt.show()
380
381
   # In[16]:
382
```

```
# Plot decision surface with training data and GMM superimposed
384
   # define bounds of the domain
385
   min1, max1 = X_train[:, 0].min()-1, X_train[:, 0].max()+1
386
   min2, max2 = X train[:, 1].min()-1, X train[:, 1].max()+1
387
388
   # define the x and y scale
389
   x1 \text{ grid} = np.arange(min1, max1, 0.1)
390
   x2_grid = np.arange(min2, max2, 0.1)
391
392
   x1 grid, x2 grid = np.meshgrid(x1 grid, x2 grid)
393
394
   c1, c2 = x1 grid.flatten(), x1 grid.flatten()
395
   c1, c2 = x1_grid.reshape((len(c1), 1)), x2_grid.reshape((len(c2), 1))
396
   x = np.hstack((c1,c2))
398
399
   # predict
   predictions = np.array(Class_Prediction(x))
   x3_grid = predictions.reshape(x1 grid.shape)
   # plot decision surfaxe
405
   fig = plt.figure(figsize=[13,13])
406
   ax = fig.add_subplot(111)
407
   ax.contourf(x1 grid, x2 grid, x3 grid, cmap='Pastel1')
408
   ax.scatter(X_train[:,0],X_train[:,1],marker='x')
   gmm0.plot(ax,x1_grid,x2_grid) # call to plot gaussian functions of class 0
410
   gmm1.plot(ax,x1_grid,x2_grid) # call to plot gaussian functions of class 1
411
   gmm2.plot(ax,x1_grid,x2_grid) # call to plot gaussian functions of class 2
412
   ax.set_xlabel('x1',fontsize=20)
413
   ax.set_ylabel('x2',fontsize=20)
414
   ax.set title('Bayes Classifier with GMM', fontsize=20)
415
```

III Static Pattern Classification on Real World Dataset 2A

III.1 Python Code

```
import numpy as np
   import pandas as pd
  from sklearn import preprocessing
  from sklearn.cluster import KMeans
   from matplotlib import pyplot as plt
   import math
   #scaling factor
   scalingfac = 1
10
   #extracting and parsing data
11
   #preprocessing : quantile transformation
12
  f = pd.read csv('Dataset 2A/coast/train.csv')
13
  f1 = f.to numpy()
14
  data1 = f1[:,1:]
15
  data1 = data1.astype('float')
16
  data1 = np.apply along axis(lambda x:np.append(x,np.array([1,0,0,0,0])),1,data1)
17
  X1 = data1[:,:-5]
18
  X1 = scalingfac*X1
19
  X1 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X1)
20
  f = pd.read csv('Dataset 2A/forest/train.csv')
  f1 = f.to numpy()
22
  data2 = f1[:,1:]
23
  data2 = data2.astype('float')
24
  data2 = np.apply along axis(lambda x:np.append(x,np.array([0,1,0,0,0])),1,data2)
  X2 = data2[:,:-5]
  X2 = scalingfac*X2
  X2 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X2)
  f = pd.read_csv('Dataset_2A/mountain/train.csv')
  f1 = f.to numpy()
  data3 = f1[:,1:]
  data3 = data3.astype('float')
  data3 = np.apply along axis(lambda x:np.append(x,np.array([0,0,1,0,0])),1,data3)
  X3 = data3[:,:-5]
  X3 = scalingfac*X3
  X3 = (preprocessing.QuantileTransformer(random_state=0)).fit_transform(X3)
  f = pd.read_csv('Dataset_2A/opencountry/train.csv')
  f1 = f.to numpy()
  data4 = f1[:,1:]
  data4 = data4.astype('float')
40
  data4 = np.apply_along_axis(lambda x:np.append(x,np.array([0,0,0,1,0])),1,data4)
41
 X4 = data4[:,:-5]
42
  X4 = scalingfac*X4
43
  X4 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X4)
44
  f = pd.read csv('Dataset 2A/street/train.csv')
  f1 = f.to numpy()
```

```
data5 = f1[:,1:]
47
   data5 = data5.astype('float')
48
   data5 = np.apply_along_axis(lambda x:np.append(x,np.array([0,0,0,0,1])),1,data5)
49
   X5 = data5[:,:-5]
50
   X5 = scalingfac*X5
51
   X5 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X5)
52
53
   data = np.concatenate((data1,data2,data3,data4,data5),axis=0)
54
55
   #prior probabilities
56
   py1 = len(data1)/len(data)
57
   py2 = len(data2)/len(data)
58
   py3 = len(data3)/len(data)
59
   py4 = len(data4)/len(data)
   py5 = len(data5)/len(data)
61
   ppy = np.array([py1,py2,py3,py4,py5])
62
   #hyperparameters
   threshold = 1e-12
   nclasses = 5
   #option for diagonal(opt=0) or full(opt=1) covariance matrix
   opt = int(input('covariance'))
   #number of clusters in each class
   q = list(map(int,input('clusters').split(' ')))
70
   # initialisation of parameters
72
   fweights = {}
73
   fmeans = \{\}
74
   fvariances = {}
76
   #GMM for each class
77
   def GMMperclass(X,q,threshold,opt):
                                           #X = data \ q = cluster \# hyperparameter
78
       dim = X.shape[1]
79
       N = len(X)
80
81
       #kmeans clustering
82
       kmeans = KMeans(init='random',n clusters=q,n init=20,max iter=800)
83
       kmeans.fit(X)
84
       response = np.zeros((N,q))
85
       labl = kmeans.labels
86
87
       #gamma matrix
88
       for i in range(len(labl)):
89
           response[i,labl[i]] = 1
90
91
       #qaussian for individual datapoint
92
       def gauss(x,u,v):
93
           dim = len(x)
94
           num = ((np.reshape((x-u),(1,dim)))@((np.linalg.inv(v))@
95
                                        (np.reshape((x-u),(dim,1))))
```

```
num = -num/2
97
            den = np.sqrt(((2*np.pi)**dim)*(np.linalg.det(v)))
98
            return ((np.exp(num))/den)
99
100
        #gaussian for whole datapoints
101
        def gaussmat(X,q,means,variances):
102
            N, dim = X.shape
103
            #Inverse of the covariance matrix
104
            sigma_inv = np.linalg.inv(variances)
105
            mean_shift = np.reshape(X, (N, 1, dim) ) - np.reshape(means, (1,q, dim) )
106
            #Normalisation term of the Gaussian dist
107
            norm = np.sqrt(((2*np.pi)**dim)*np.linalg.det(variances))
108
            #Exponential term of the Gaussian
109
            expo = np.exp(-0.5*(np.einsum("nkj,nkj->nk", np.einsum("nki,kij->nkj",
110
                          mean shift, sigma inv), mean shift)))
            return expo/norm
112
        #updating gamma=response update
        def responseupdate(weights, X, q, means, variances):
            N, dim = X.shape
            No = gaussmat(X,q,means,variances)
            Num = No * weights
            Den = np.reshape(np.sum(Num, axis=1), (N, 1) )
            return Num/Den
120
        #estimation of log likelihoods
122
        def llhd(weights, X, q, means, variances):
123
            return np.sum(np.log(gaussmat(X,q,means,variances) @ weights))
124
        ##initialisation
126
       weights = np.einsum("ij -> j",response) / N
127
       128
       Nki = N*weights
129
       mean_shifti = np.reshape(X, (N, 1, dim) ) - np.reshape(means, (1, q, dim) )
130
        sigmai = np.einsum("nki,nkj->kij", np.einsum("nk,nki->nki", response,
131
                     mean_shifti), mean_shifti) / np.reshape(Nki, (q, 1, 1))
132
133
        #full covariance matrix
134
        if opt == 1:
135
            variances = sigmai
136
        #diagonal covariance matrix
137
        if opt == 0:
138
            I = np.identity(dim)
139
            variances = np.einsum("kij,ij -> kij",sigmai,I)
140
141
        #initial log likelihood
142
       NLL = 11hd(weights, X, q, means, variances)
143
       nweights = weights
144
       nmeans = means
145
       nvariances = variances
```

```
OLL = NLL+10
147
        ite = 0
148
149
        #EM maximisation
150
        while abs(NLL-OLL)>=threshold:
151
            OLL = NLL
152
            #gamma calculation
153
            nresponse = responseupdate(nweights, X, q, nmeans, nvariances)
154
            #updation
155
            nweights = np.einsum("ij -> j",nresponse)/N
156
            nmeans = (((nresponse).T) @X) / np.reshape((nweights*N), (q, 1))
157
            Nk = N*nweights
158
            mean_shift = np.reshape(X, (N, 1, dim) ) - np.reshape(nmeans, (1, q, dim) )
159
            sigma = np.einsum("nki,nkj->kij", np.einsum("nk,nki->nki",
160
                          nresponse, mean shift), mean shift) / np.reshape(Nk, (q, 1, 1))
161
162
            #full covariance matrix
            if opt == 1:
164
                nvariances = sigma
            #full diagonal matrix
            if opt == 0:
                 I = np.identity(dim)
                nvariances = np.einsum("kij,ij -> kij",sigma,I)
170
172
            NLL = llhd(nweights, X, q, nmeans, nvariances)
173
            ite+=1
174
        print("iterations=%f"%ite)
176
        #final parameters
177
        fweights = nweights
178
        fmeans = nmeans
179
        fvariances = nvariances
180
        return fweights, fmeans, fvariances
181
182
    ##training
183
184
   fweights[0],fmeans[0],fvariances[0] = GMMperclass(X1,q[0],threshold,opt)
185
   fweights[1],fmeans[1],fvariances[1] = GMMperclass(X2,q[1],threshold,opt)
186
    fweights[2],fmeans[2],fvariances[2] = GMMperclass(X3,q[2],threshold,opt)
187
    fweights[3],fmeans[3],fvariances[3] = GMMperclass(X4,q[3],threshold,opt)
188
    fweights[4],fmeans[4],fvariances[4] = GMMperclass(X5,q[4],threshold,opt)
189
190
    #modeloutput
191
192
   def bayesclf(x,ppy,nclasses,q,fweights,fmeans,fvariances):
193
        def gauss(x,u,v):
194
            dim = len(x)
195
            num = ((np.reshape((x-u),(1,dim)))@((np.linalg.inv(v))@
```

```
(np.reshape((x-u),(dim,1))))
197
            num = -num/2
198
            den = np.sqrt(((2*np.pi)**dim)*(np.linalg.det(v)))
199
            return ((np.exp(num))/den)
200
        def gaussmat(X,q,means,variances):
201
            N, dim = X.shape
202
            sigma inv = np.linalg.inv(variances)
203
            mean shift = np.reshape(X, (N, 1, dim)) - np.reshape(means, (1,q, dim))
204
            norm = np.sqrt(((2*np.pi)**dim)*np.linalg.det(variances))
205
            expo = np.exp(-0.5*(np.einsum("nkj,nkj->nk", np.einsum("nki,kij->nkj",
206
                                                mean shift, sigma inv), mean shift)))
207
            return expo/norm
208
        pxy = np.zeros((nclasses,1))
209
       pyx = np.zeros((nclasses,1))
        res = np.zeros((nclasses,1))
211
        for i in range(nclasses):
212
            pxy[i] = np.sum((gaussmat(np.reshape(x,(1,len(x))),q[i],fmeans[i],
                                                   fvariances[i]))*(fweights[i]))
        for i in range(nclasses):
            pyx[i] = pxy[i]*ppy[i]
        pyx = pyx/np.sum(pyx)
        res[np.argmax(pyx)] = 1
        return np.transpose(res)
220
   #train labels
   ytr = data[:,-5:]
222
   #predicted train labels
223
   ytrp = np.apply_along_axis(lambda x:bayesclf(x,ppy,nclasses,q,fweights,fmeans,
224
                             fvariances),1,np.concatenate((X1,X2,X3,X4,X5),axis=0))
225
   c = 0
226
   for i in range(len(ytr)):
227
        if np.linalg.norm((ytrp[i,:]-ytr[i,:])) < 1:</pre>
228
229
   print('training accuracy = %f'%(c/len(ytr)))
230
231
    ########test
232
233
   #extracting test data
234
    #preprocessing : quantile transformation
235
   f = pd.read_csv('Dataset_2A/coast/dev.csv')
236
   f1 = f.to numpy()
237
   datat1 = f1[:,1:]
238
   datat1 = datat1.astype('float')
239
   datat1 = np.apply_along_axis(lambda x:np.append(x,np.array([1,0,0,0,0])),1,datat1)
240
   Xt1 = datat1[:,:-5]
241
   Xt1 = scalingfac*Xt1
   Xt1 = ((preprocessing.QuantileTransformer(random state=0)).fit(Xt1)).transform(Xt1)
   f = pd.read csv('Dataset 2A/forest/dev.csv')
244
   f1 = f.to_numpy()
   datat2 = f1[:,1:]
```

```
datat2 = datat2.astype('float')
247
   datat2 = np.apply along axis(lambda x:np.append(x,np.array([0,1,0,0,0])),1,datat2)
248
   Xt2 = datat2[:,:-5]
249
   Xt2 = scalingfac*Xt2
250
   Xt2 = ((preprocessing.QuantileTransformer(random state=0)).fit(Xt2)).transform(Xt2)
251
   f = pd.read csv('Dataset 2A/mountain/dev.csv')
252
   f1 = f.to numpy()
253
   datat3 = f1[:,1:]
254
   datat3 = datat3.astype('float')
255
   datat3 = np.apply along axis(lambda x:np.append(x,np.array([0,0,1,0,0])),1,datat3)
256
   Xt3 = datat3[:,:-5]
257
   Xt3 = scalingfac*Xt3
   Xt3 = ((preprocessing.QuantileTransformer(random_state=0)).fit(Xt3)).transform(Xt3)
   f = pd.read csv('Dataset 2A/opencountry/dev.csv')
   f1 = f.to numpy()
261
   datat4 = f1[:,1:]
   datat4 = datat4.astype('float')
   datat4 = np.apply along axis(lambda x:np.append(x,np.array([0,0,0,1,0])),1,datat4)
   Xt4 = datat4[:,:-5]
   Xt4 = scalingfac*Xt4
   Xt4 = ((preprocessing.QuantileTransformer(random state=0)).fit(Xt4)).transform(Xt4)
   f = pd.read csv('Dataset 2A/street/dev.csv')
   f1 = f.to numpy()
269
   datat5 = f1[:,1:]
270
   datat5 = datat5.astype('float')
   datat5 = np.apply_along_axis(lambda x:np.append(x,np.array([0,0,0,0,1])),1,datat5)
   Xt5 = datat5[:,:-5]
273
   Xt5 = scalingfac*Xt5
274
   Xt5 = ((preprocessing.QuantileTransformer(random state=0)).fit(Xt5)).transform(Xt5)
275
276
   datat = np.concatenate((datat1,datat2,datat3,datat4,datat5),axis=0)
277
   Xt = np.concatenate((Xt1,Xt2,Xt3,Xt4,Xt5),axis=0)
278
   datat = np.concatenate((Xt,datat[:,-5:]),axis=1)
279
280
   #test labels
281
   yte = datat[:,-5:]
282
283
   #predicted test labels
284
   ytep = np.apply along axis(lambda x:bayesclf(x,ppy,nclasses,q,fweights,fmeans,
285
                                fvariances),1,datat[:,:-5])
286
287
   cte = 0
288
289
   for i in range(len(ytep)):
290
        if np.linalg.norm((ytep[i,:]-yte[i,:])) < 1:</pre>
291
            cte +=1
292
293
   print('test accuracy = %f'%(cte/len(ytep)))
294
295
```

```
297
    #plotting confusion matrix
298
   from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay
299
300
   def clf label(res):
301
        if np.argmax(res) == 0:
302
            return 'coast'
303
        if np.argmax(res) == 1:
304
            return 'forest'
305
        if np.argmax(res) == 2:
306
            return 'mountain'
307
        if np.argmax(res) == 3:
308
            return 'opencountry'
309
        if np.argmax(res) == 4:
310
            return 'street'
311
312
   train confusion = confusion matrix([clf label(ytr[i,:]) for i in range(len(ytr))],
                        [clf label(ytrp[i,:]) for i in range(len(ytrp))],labels =
314
                        ['coast','forest','mountain','opencountry','street'])
   test_confusion = confusion_matrix([clf_label(yte[i,:]) for i in range(len(yte))],
                             [clf_label(ytep[i,:]) for i in range(len(ytep))],labels =
                             ['coast', 'forest', 'mountain', 'opencountry', 'street'])
319
320
   train tab = ConfusionMatrixDisplay(train confusion, display labels =
321
    ['coast','forest','mountain','opencountry','street'] )
322
323
   plt.figure(1)
   train_tab.plot()
324
   plt.title('Training Data')
   test tab = ConfusionMatrixDisplay(test confusion, display labels =
326
    ['coast', 'forest', 'mountain', 'opencountry', 'street'] )
327
   plt.figure(2)
328
   test_tab.plot()
329
   plt.title('Test Data')
330
```

IV Static Pattern Classification on Real World Dataset 2B

IV.1 Python Code

```
import numpy as np
   import pandas as pd
   import os
  from sklearn import preprocessing
   from sklearn.cluster import KMeans
   from matplotlib import pyplot as plt
   #extracting and parsing files tr
   #preprocessing : quantile transformation
   directory = 'Dataset 2B/coast/train'
   dataX = []
11
   for filename in os.listdir(directory):
12
       f = open(directory+'/'+filename)
13
       data =[]
14
       for line in f:
15
           data.append([float(x) for x in line.strip().split(' ')])
16
       dataX+=(data)
17
   data1 = np.array(dataX)
18
   data1 = np.apply_along_axis(lambda x:np.append(x,np.array([1,0,0,0,0])),1,data1)
19
   X1 = data1[:,:-5]
20
   X1 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X1)
21
   directory = 'Dataset_2B/forest/train'
22
   dataX = []
23
   for filename in os.listdir(directory):
24
       f = open(directory+'/'+filename)
       data =[]
26
       for line in f:
27
           data.append([float(x) for x in line.strip().split(' ')])
       dataX+=(data)
   data2 = np.array(dataX)
   data2 = np.apply_along_axis(lambda x:np.append(x,np.array([0,1,0,0,0])),1,data2)
   X2 = data2[:,:-5]
   X2 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X2)
   directory = 'Dataset_2B/mountain/train'
   dataX = []
   for filename in os.listdir(directory):
36
       f = open(directory+'/'+filename)
37
       data = []
       for line in f:
39
           data.append([float(x) for x in line.strip().split(' ')])
40
       dataX+=(data)
41
   data3 = np.array(dataX)
42
   data3 = np.apply along axis(lambda x:np.append(x,np.array([0,0,1,0,0])),1,data3)
43
   X3 = data3[:,:-5]
44
   X3 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X3)
45
   directory = 'Dataset 2B/opencountry/train'
```

```
dataX = []
47
   for filename in os.listdir(directory):
48
       f = open(directory+'/'+filename)
49
       data =[]
50
       for line in f:
51
           data.append([float(x) for x in line.strip().split(' ')])
52
       dataX+=(data)
53
   data4 = np.array(dataX)
54
   data4 = np.apply_along_axis(lambda x:np.append(x,np.array([0,0,0,1,0])),1,data4)
55
   X4 = data4[:,:-5]
56
   X4 = (preprocessing.QuantileTransformer(random state=0)).fit transform(X4)
57
   directory = 'Dataset 2B/street/train'
   dataX = []
   for filename in os.listdir(directory):
       f = open(directory+'/'+filename)
61
       data =[]
62
       for line in f:
           data.append([float(x) for x in line.strip().split(' ')])
       dataX+=(data)
   data5 = np.array(dataX)
   data5 = np.apply_along_axis(lambda x:np.append(x,np.array([0,0,0,0,1])),1,data5)
   X5 = data5[:,:-5]
   X5 = (preprocessing.QuantileTransformer(random_state=0)).fit_transform(X5)
70
   data = np.concatenate((data1,data2,data3,data4,data5),axis=0)
72
   #prior probabilities
73
   py1 = len(data1)/len(data)
74
   py2 = len(data2)/len(data)
   py3 = len(data3)/len(data)
   py4 = len(data4)/len(data)
77
   py5 = len(data5)/len(data)
78
   ppy = np.array([py1,py2,py3,py4,py5])
80
   #hyperparameters
81
   threshold = 1e-10
82
   nclasses = 5
83
   #option for diagonal(opt=0) or full(opt=1) covariance matrix
84
   opt = int(input('covariance'))
85
   #number of clusters in each class
86
   q = list(map(int,input('clusters').split(' ')))
87
88
   # initialisation of parameters
89
   fweights = {}
90
   fmeans = \{\}
91
   fvariances = {}
92
   #GMM for each class
93
   def GMMperclass(X,q,threshold,opt): #X = data q = cluster #hyperparameter
94
       dim = X.shape[1]
95
       N = len(X)
```

```
97
                  #kmeans clustering
98
                 kmeans = KMeans(init='random',n_clusters=q,n_init=20,max_iter=800)
 99
                 kmeans.fit(X)
100
                 response = np.zeros((N,q))
101
                 labl = kmeans.labels
102
103
                  #gamma matrix
104
                 for i in range(len(labl)):
105
                          response[i,labl[i]] = 1
106
107
                  #gaussian for individual datapoint
108
                 def gauss(x,u,v):
109
                          dim = len(x)
110
                          num = ((np.reshape((x-u),(1,dim))) @ ((np.linalg.inv(v)) @
111
                                                                                          (np.reshape((x-u),(dim,1))))
112
                          num = -num/2
                          den = np.sqrt(((2*np.pi)**dim)*(np.linalg.det(v)))
                          return ((np.exp(num))/den)
                  #qaussian for whole datapoints
                 def gaussmat(X,q,means,variances):
                          N, dim = X.shape
                          #Inverse of the covariance matrix
120
                          sigma inv = np.linalg.inv(variances)
                          mean_shift = np.reshape(X, (N, 1, dim) ) - np.reshape(means, (1,q, dim) )
122
                           #Normalisation term of the Gaussian dist
123
                          norm = np.sqrt(((2*np.pi)**dim)*np.linalg.det(variances))
124
                           #Exponential term of the Gaussian
                          expo = np.exp(-0.5*(np.einsum("nkj,nkj->nk", np.einsum("nki,kij->nkj", np.einsum("nki,kij->nkj
126
                                                                                                       mean_shift, sigma_inv),mean_shift)))
127
                          return expo/norm
128
129
                 #updating gamma=response update
130
                 def responseupdate(weights, X, q, means, variances):
131
                          N, dim = X.shape
132
                          No = gaussmat(X,q,means,variances)
133
                                         No * weights
134
                          Den = np.reshape(np.sum(Num, axis=1), (N, 1))
135
                          return Num/Den
136
137
                  #estimation of log likelihoods
138
                 def llhd(weights, X, q, means, variances):
139
                          return np.sum(np.log(gaussmat(X,q,means,variances) @ weights))
140
141
                  ##initialisation
142
                 weights = np.einsum("ij -> j",response) / N
143
                 144
                 Nki = N*weights
145
                 mean shifti = np.reshape(X, (N, 1, dim)) - np.reshape(means, (1, q, dim))
```

```
sigmai = np.einsum("nki,nkj->kij", np.einsum("nk,nki->nki", response,
147
                        mean_shifti), mean_shifti) / np.reshape(Nki, (q, 1, 1))
148
149
        #full covariance matrix
150
        if opt == 1:
151
            variances = sigmai
152
        #diagonal covariance matrix
153
        if opt == 0:
154
            I = np.identity(dim)
155
            variances = np.einsum("kij,ij -> kij",sigmai,I)
156
157
        #initial log likelihood
158
        NLL = llhd(weights, X, q, means, variances)
159
        nweights = weights
160
        nmeans = means
161
        nvariances = variances
162
        OLL = NLL+10
        ite = 0
164
        #EM maximisation
        while abs(NLL-OLL)>=threshold:
            OLL = NLL
            #gamma calculation
            nresponse = responseupdate(nweights, X, q, nmeans, nvariances)
170
            #updation
            nweights = np.einsum("ij -> j",nresponse)/N
172
            nmeans = (((nresponse).T) @X) / np.reshape((nweights*N), (q, 1))
173
            Nk = N*nweights
174
            mean_shift = np.reshape(X, (N, 1, dim) ) - np.reshape(nmeans, (1, q, dim) )
            sigma = np.einsum("nki,nkj->kij", np.einsum("nk,nki->nki",
176
                     nresponse, mean_shift), mean_shift)/ np.reshape(Nk, (q, 1, 1))
177
178
            #full covariance matrix
179
            if opt == 1:
180
                nvariances = sigma
181
182
            #full diagonal matrix
183
            if opt == 0:
184
                 I = np.identity(dim)
185
                 nvariances = np.einsum("kij,ij -> kij",sigma,I)
186
187
188
            NLL = llhd(nweights, X, q, nmeans, nvariances)
189
            ite+=1
190
        print("iterations=%f"%ite)
191
192
        #final parameters
193
        fweights = nweights
194
        fmeans = nmeans
195
        fvariances = nvariances
```

```
return fweights, fmeans, fvariances
197
198
    ##training
199
200
   fweights[0],fmeans[0],fvariances[0] = GMMperclass(X1,q[0],threshold,opt)
201
   fweights[1],fmeans[1],fvariances[1] = GMMperclass(X2,q[1],threshold,opt)
202
   fweights[2],fmeans[2],fvariances[2] = GMMperclass(X3,q[2],threshold,opt)
203
   fweights[3],fmeans[3],fvariances[3] = GMMperclass(X4,q[3],threshold,opt)
204
   fweights[4],fmeans[4],fvariances[4] = GMMperclass(X5,q[4],threshold,opt)
205
206
    # classification for variable length features
207
208
   def bayesclfvarlength(X,ppy,nclasses,q,fweights,fmeans,fvariances):
209
        def gauss(x,u,v):
            dim = len(x)
211
            num = ((np.reshape((x-u),(1,dim))) @ ((np.linalg.inv(v)) @
212
                                         (np.reshape((x-u),(dim,1))))
            num = -num/2
            den = np.sqrt(((2*np.pi)**dim)*(np.linalg.det(v)))
            return ((np.exp(num))/den)
        def gaussmat(X,q,means,variances):
            N, dim = X.shape
            sigma_inv = np.linalg.inv(variances)
                                                        #Inverse of the covariance matrix
            mean shift = np.reshape(X, (N, 1, dim)) - np.reshape(means, (1,q, dim))
220
            norm = np.sqrt(((2*np.pi)**dim)*np.linalg.det(variances))
221
            #Normalisation term of the Gaussian dist.
222
            #Exponential term of the Gaussian
223
            expo = np.exp(-0.5*(np.einsum("nkj,nkj->nk", np.einsum("nki,kij->nkj",
224
                                               mean_shift, sigma_inv),mean_shift)))
225
            return expo/norm
226
        pxy = np.zeros((nclasses,1))
227
        pyx = np.zeros((nclasses,1))
228
        res = np.zeros((nclasses,1))
229
        for i in range(nclasses):
230
            pxy[i] = np.prod(np.sum(gaussmat(X,q[i],fmeans[i],fvariances[i])*
231
                             fweights[i],axis=1))
232
        for i in range(nclasses):
233
            pyx[i] = pxy[i]*ppy[i]
234
       pyx = pyx/np.sum(pyx)
235
        \#res[np.argmax(pyx)] = 1
236
        #return np.transpose(res)
237
        return np.argmax(pyx)
238
239
    #prediction of training labels
240
    #reorganising of data points to images
241
   Xn1 = []
242
   for i in range(int(X1.shape[0]/36)):
        Xn1.append(X1[(36*i):(36*(i+1)),:])
244
   Xn1 = np.array(Xn1)
   Xn2 = []
```

```
for i in range(int(X2.shape[0]/36)):
247
        Xn2.append(X2[(36*i):(36*(i+1)),:])
248
   Xn2 = np.array(Xn2)
249
   Xn3 = []
250
   for i in range(int(X3.shape[0]/36)):
251
        Xn3.append(X3[(36*i):(36*(i+1)),:])
252
   Xn3 = np.array(Xn3)
253
   Xn4 = []
254
   for i in range(int(X4.shape[0]/36)):
255
        Xn4.append(X4[(36*i):(36*(i+1)),:])
256
   Xn4 = np.array(Xn4)
257
   Xn5 = []
258
   for i in range(int(X5.shape[0]/36)):
259
        Xn5.append(X5[(36*i):(36*(i+1)),:])
260
   Xn5 = np.array(Xn5)
261
262
264
   c = 0
265
   for i in range(Xn1.shape[0]):
        if bayesclfvarlength(Xn1[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 0:
            c += 1
   for i in range(Xn2.shape[0]):
269
        if bayesclfvarlength(Xn2[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 1:
270
271
   for i in range(Xn3.shape[0]):
272
        if bayesclfvarlength(Xn3[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 2:
273
            c += 1
274
   for i in range(Xn4.shape[0]):
275
        if bayesclfvarlength(Xn4[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 3:
276
            c += 1
277
   for i in range(Xn5.shape[0]):
278
        if bayesclfvarlength(Xn5[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 4:
279
            c += 1
280
281
   print('training accuracy =
282
      f''(c/((X1.shape[0]+X2.shape[0]+X3.shape[0]+X4.shape[0]+X5.shape[0])/36)))
283
284
285
286
    #####testing
287
288
   directory = 'Dataset 2B/coast/dev'
289
   dataX = []
290
   for filename in os.listdir(directory):
291
        f = open(directory+'/'+filename)
292
        data =[]
293
        for line in f:
294
            data.append([float(x) for x in line.strip().split(' ')])
295
        dataX+=(data)
```

```
datat1 = np.array(dataX)
297
   datat1 = np.apply along axis(lambda x:np.append(x,np.array([1,0,0,0,0])),1,datat1)
298
   Xt1 = datat1[:,:-5]
299
   Xt1 = ((preprocessing.QuantileTransformer(random state=0)).fit(Xt1)).transform(Xt1)
300
   directory = 'Dataset_2B/forest/dev'
301
   dataX = []
302
   for filename in os.listdir(directory):
303
        f = open(directory+'/'+filename)
304
        data =[]
305
        for line in f:
306
            data.append([float(x) for x in line.strip().split(' ')])
307
        dataX+=(data)
308
   datat2 = np.array(dataX)
309
   datat2 = np.apply along axis(lambda x:np.append(x,np.array([0,1,0,0,0])),1,datat2)
   Xt2 = datat2[:,:-5]
311
   Xt2= ((preprocessing.QuantileTransformer(random_state=0)).fit(Xt2)).transform(Xt2)
   directory = 'Dataset 2B/mountain/dev'
   dataX = []
   for filename in os.listdir(directory):
        f = open(directory+'/'+filename)
        data =[]
        for line in f:
            data.append([float(x) for x in line.strip().split(' ')])
        dataX+=(data)
320
   datat3 = np.array(dataX)
   datat3 = np.apply_along_axis(lambda x:np.append(x,np.array([0,0,1,0,0])),1,datat3)
322
   Xt3 = datat3[:,:-5]
323
   Xt3= ((preprocessing.QuantileTransformer(random_state=0)).fit(Xt3)).transform(Xt3)
324
   directory = 'Dataset_2B/opencountry/dev'
325
   dataX = []
326
   for filename in os.listdir(directory):
327
        f = open(directory+'/'+filename)
328
        data =∏
329
        for line in f:
330
            data.append([float(x) for x in line.strip().split(' ')])
331
        dataX+=(data)
332
   datat4 = np.array(dataX)
333
   datat4 = np.apply_along_axis(lambda x:np.append(x,np.array([0,0,0,1,0])),1,datat4)
334
   Xt4 = datat4[:,:-5]
335
   Xt4= ((preprocessing.QuantileTransformer(random state=0)).fit(Xt4)).transform(Xt4)
336
   directory = 'Dataset_2B/street/dev'
337
   dataX = []
338
   for filename in os.listdir(directory):
339
        f = open(directory+'/'+filename)
340
       data =[]
341
        for line in f:
342
            data.append([float(x) for x in line.strip().split(' ')])
343
        dataX+=(data)
344
   datat5 = np.array(dataX)
   datat5 = np.apply along axis(lambda x:np.append(x,np.array([0,0,0,0,1])),1,datat5)
```

```
Xt5 = datat5[:,:-5]
347
   Xt5= ((preprocessing.QuantileTransformer(random state=0)).fit(Xt5)).transform(Xt5)
348
349
350
   #prediction of test labels
351
   #reorganising of data points to images
352
   Xtn1 = []
353
   for i in range(int(Xt1.shape[0]/36)):
354
        Xtn1.append(Xt1[(36*i):(36*(i+1)),:])
355
   Xtn1 = np.array(Xtn1)
356
   Xtn2 = []
357
   for i in range(int(Xt2.shape[0]/36)):
358
        Xtn2.append(Xt2[(36*i):(36*(i+1)),:])
359
   Xtn2 = np.array(Xtn2)
360
   Xtn3 = []
361
   for i in range(int(Xt3.shape[0]/36)):
362
        Xtn3.append(Xt3[(36*i):(36*(i+1)),:])
   Xtn3 = np.array(Xtn3)
   Xtn4 = []
   for i in range(int(Xt4.shape[0]/36)):
        Xtn4.append(Xt4[(36*i):(36*(i+1)),:])
   Xtn4 = np.array(Xtn4)
   Xtn5 = []
369
   for i in range(int(Xt5.shape[0]/36)):
370
        Xtn5.append(Xt5[(36*i):(36*(i+1)),:])
371
   Xtn5 = np.array(Xtn5)
372
373
374
375
   ct = 0
376
   for i in range(Xtn1.shape[0]):
377
        if bayesclfvarlength(Xtn1[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 0:
378
            ct += 1
379
   for i in range(Xtn2.shape[0]):
380
        if bayesclfvarlength(Xtn2[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 1:
381
            ct += 1
382
   for i in range(Xtn3.shape[0]):
383
        if bayesclfvarlength(Xtn3[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 2:
384
            ct += 1
385
   for i in range(Xtn4.shape[0]):
386
        if bayesclfvarlength(Xtn4[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 3:
387
            ct += 1
388
   for i in range(Xtn5.shape[0]):
389
        if bayesclfvarlength(Xtn5[i,:,:],ppy,nclasses,q,fweights,fmeans,fvariances) == 4:
390
            ct += 1
391
392
   print('test accuracy
393
   = f'\%(ct/((Xt1.shape[0]+Xt2.shape[0]+Xt3.shape[0]+Xt4.shape[0]+Xt5.shape[0])/36))
394
395
   ##confusion matrix
```

```
img_labels = ['coast','forest','mountain','opencountry','street']
397
   yt = []
398
   ytp = []
399
   for i in range(Xn1.shape[0]):
400
        yt.append(0)
401
        ytp.append(bayesclfvarlength(Xn1[i,:,:],ppy,nclasses,q,fweights,fmeans,
402
                     fvariances))
403
   for i in range(Xn2.shape[0]):
404
        yt.append(1)
405
        ytp.append(bayesclfvarlength(Xn2[i,:,:],ppy,nclasses,q,fweights,fmeans,
406
                    fvariances))
407
   for i in range(Xn3.shape[0]):
408
        yt.append(2)
409
        ytp.append(bayesclfvarlength(Xn3[i,:,:],ppy,nclasses,q,fweights,fmeans,
410
                   fvariances))
   for i in range(Xn4.shape[0]):
412
        yt.append(3)
        ytp.append(bayesclfvarlength(Xn4[i,:,:],ppy,nclasses,q,fweights,fmeans,
414
                   fvariances))
   for i in range(Xn5.shape[0]):
        yt.append(4)
        ytp.append(bayesclfvarlength(Xn5[i,:,:],ppy,nclasses,q,fweights,fmeans,
                    fvariances))
420
   yte = []
421
   ytep = []
422
   for i in range(Xtn1.shape[0]):
423
        yte.append(0)
424
        ytep.append(bayesclfvarlength(Xtn1[i,:,:],ppy,nclasses,q,fweights,fmeans,
425
                    fvariances))
426
   for i in range(Xtn2.shape[0]):
427
        yte.append(1)
428
        ytep.append(bayesclfvarlength(Xtn2[i,:,:],ppy,nclasses,q,fweights,fmeans,
429
                    fvariances))
430
   for i in range(Xtn3.shape[0]):
431
        yte.append(2)
432
        ytep.append(bayesclfvarlength(Xtn3[i,:,:],ppy,nclasses,q,fweights,fmeans,
433
                      fvariances))
434
   for i in range(Xtn4.shape[0]):
435
        yte.append(3)
436
        ytep.append(bayesclfvarlength(Xtn4[i,:,:],ppy,nclasses,q,fweights,fmeans,
437
                     fvariances))
438
   for i in range(Xtn5.shape[0]):
439
        yte.append(4)
440
        ytep.append(bayesclfvarlength(Xtn5[i,:,:],ppy,nclasses,q,fweights,fmeans,
441
                     fvariances))
442
443
   from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay
444
445
   train confusion = confusion matrix(yt,ytp)
```

```
447
   test_confusion = confusion_matrix(yte,ytep)
448
449
   train tab = ConfusionMatrixDisplay(train confusion, display labels =
450
    ['coast','forest','mountain','opencountry','street'] )
451
   plt.figure(1)
452
   train tab.plot()
453
   plt.title('Training Data')
454
   test_tab = ConfusionMatrixDisplay(test_confusion,display_labels =
455
   ['coast','forest','mountain','opencountry','street'] )
456
   plt.figure(2)
457
   test_tab.plot()
   plt.title('Test Data')
```