Ideas about grounding

Johan Wittocx

Department of Computer Science, Katholieke Universiteit Leuven, Belgium

August 2011

Notations

- ▶ L: a logic
- \triangleright \mathcal{G} : some propositional (i.e., quantifier-free) logic
- \triangleright Σ , Σ_g : vocabularies
- ▶ tr: a mapping from (three-valued) Σ_g -structures to (three-valued) Σ -structures

Note 1: if J is two-valued, then tr(J) is not necessarily two-valued.

Note 2: tr is not necessarily one-to-one.

Grounding

Definition (Grounding)

A grounding of a \mathcal{L} theory T over Σ with respect to a (three-valued) Σ -structure I is a \mathcal{G} theory T_g over Σ_g and translation function tr such that for every model J of T_g , $\operatorname{tr}(J)$ is more precise than I and every two-valued structure that is approximated by J, is a model of T.

Full grounding

Straightforward grounding of T and I over Σ :

- **▶** tr:
 - 1. Σ_g contains a 0-ary predicate P_a for each ground atom a of the form $P(d_1,\ldots,d_n)$ or $F(d_1,\ldots,d_n)=d_{n+1}$, where $P,F\in\Sigma$ and $d_1,\ldots,d_n\in\mathrm{dom}(I)$.
 - 2. tr(J) is the structure with the same domain as I, defined by $tr(J)(a) = J(P_a)$.
- ► *T_g*:
 - 1. Remove all nested terms (e.g.: $P(C) \longrightarrow \forall x \ (C = x \Rightarrow P(x))$)
 - 2. Substitute variables by domain elements:
 - $\forall x \ \varphi[x] \longrightarrow \bigwedge_{d \in \text{dom}(I)} \varphi[d]$
 - 3. Replace all atoms a by P_a .
 - 4. For every a that is true (false) in I, add the unit clause P_a $(\neg P_a)$
 - 5. Add function constraints

From ground atoms to integers

SAT-solver expects integers to denote atoms. Question: how to efficiently translate ground atoms to unique numbers?

- Construct an explicit mapping (during grounding). Possible datastructures: hash map, red-black tree, AVL tree, Currently in GIDL: mapping per atom, implemented using STL's map (red-black tree).
- ▶ Offset system. E.g. if I has 10 domain elements, P has offset 50, and d_i is the ith domain element, $P(d_3, d_5)$ translates to 85 (50 + 10 × 3 + 5). Offsets are chosen such that two atoms over different predicates map to different numbers.

Positive: efficient. Negative: large numbers needed, not all numbers appear in the ground theory but SAT datastructures are nevertheless initialized for all numbers between 1 and the largest number that occurs in its input.

Note: on some benchmarks, translation may take half of the total grounding time when an explicit mapping is created!

Complexity

▶ $\operatorname{qr}(\varphi) = \operatorname{quantifier\ rank\ of\ } \varphi = \operatorname{maximal\ nesting\ depth\ of\ } q$ uantifiers in φ $\operatorname{qr}(\forall x \forall y\ P(x,y)) = 2$ $\operatorname{qr}((\exists x\ P(x)) \land (\forall y\ Q(y))) = 1$

- ▶ Size of the full grounding = $O(|dom(I)|^{qr(T')})$ (T' is the theory in step 2)
 - ⇒ infinite domain ⇒ infinite full grounding
 - \Rightarrow strategy for smaller grounding: reduce quantifier rank

Reduced grounding

- ▶ Replace in the grounding P_a by \top (\bot) if a is true in I.
- Recursively replace
 - $ightharpoonup \ldots \wedge \bot \wedge \ldots$ by \bot
 - $\blacktriangleright \ \dots \lor \top \lor \dots \ \mathsf{by} \ \top$
 - $\varphi_1 \wedge \top \wedge \varphi_2$ by $\varphi_1 \wedge \varphi_2$
 - $\varphi_1 \lor \bot \land \varphi_2$ by $\varphi_1 \lor \varphi_2$

Note: heads of rules cannot be replaced in this manner!

Note on step 4

"For every a that is true (false) in I, add the unit clause P_a ($\neg P_a$)" This step is not necessary when the reduced grounding is created. Then, atoms that are not unknown in I do not occur in the grounding anymore (unless they are defined by a rule in the grounding). Hence, they should not occur in Σ_g (tr should take this into account).

More precise input structure $I \Rightarrow$ smaller grounding.

Basic terminology and results

Top-down, depth-first grounding

Grounding with bounds

Approximation

BDD₉

```
Input: Sentence \varphi, structure I
Output: Grounding of \varphi with respect to I
switch \varphi do
     case \varphi is a ground atom a return a;
     case \varphi = \psi_1 \vee \ldots \vee \psi_n
          \mathcal{D} := \emptyset:
          for i = 1 \dots n do \mathcal{D} := \mathcal{D} \cup \operatorname{ground}(\psi_i, I);
          return \bigvee \mathcal{D};
     end
     case \varphi = \psi_1 \wedge \ldots \wedge \psi_n /* similar to disjunction
                                                                                                  */:
     case \varphi = \forall x \ \psi[x]
          \mathcal{C} := \emptyset:
          for d \in \text{dom}(I) do \mathcal{C} := \mathcal{C} \cup \text{ground}(\psi[d], I);
          return \wedge \mathcal{C}:
     end
     case \varphi = \exists x \ \psi[x] / *  similar to univ. quantifier
end
```

Main loop

```
Input: Theory T, structure I
Output: Grounding of T with respect to I
T_g := \emptyset;
for \varphi \in T do
T_g := T_g \cup \operatorname{ground}(\varphi, I);
end
```


Grounding of $\forall x \ (P(x) \lor \exists y \ Q(x,y))$ over domain $\{a,b\}$:

Other algorithm: bottom-up (Vancouver style grounding)

Reduced grounding algorithm

```
case \varphi is a ground atom a
     if I(a) = true then return \top;
     else if I(a) = false then return \bot;
     else return a:
end
case \varphi = \psi_1 \vee \ldots \vee \psi_n
     \mathcal{D} := \emptyset:
     for i = 1 \dots n do
          G := \operatorname{ground}(\psi_i):
          if G = \top then return \top:
          else if G \neq \bot then \mathcal{D} := \mathcal{D} \cup \operatorname{ground}(\psi_i);
     end
     return \bigvee \mathcal{D};
end
```

Grounding definitions

```
To ground \forall x \forall y \ (P(x, y) \leftarrow \varphi[y]):
\Delta := \emptyset:
for d \in dom(I) do
     \varphi_{g} := \operatorname{ground}(\varphi[d], I);
     if \varphi_{g} \neq \bot then
           for d' \in dom(I) do
                 Add P(d',d) \leftarrow \varphi_{g} to \Delta;
           end
     end
end
return \Delta:
Optimization (not yet implemented): Ground P(x, y) \leftarrow \varphi[y] to
                                             ts \leftarrow \varphi[d_v]
                                             P(d_{\times 1} \leftarrow ts)
                                             P(d_{\times n} \leftarrow ts)
```

Grounding aggregates

```
To ground F\{x \mid \varphi[x] \mid t[x]\}:
S := \emptyset:
S_{t} := \emptyset:
for d \in dom(I) do
     \varphi_g := \operatorname{ground}(\varphi[d], I);
     if \varphi_{\sigma} \neq \bot then
          t_{\sigma} = I(t[d]);
          if \varphi_g = \top then Add t_g to S_t;
          else Add t_g to S;
     end
end
return S and F(S_t);
```

Tseitin tranformation

- SAT solvers expect grounding in CNF
- Applying distributivity on a propositional formula to get CNF leads to an exponential blow-up.
- Better technique: introduce auxiliary atoms.

$$P_{1} \lor (P_{2} \land P_{3})$$

$$\downarrow$$

$$P_{1} \lor Aux$$

$$Aux \Leftrightarrow P_{2} \land P_{3}$$

$$\downarrow$$

$$P_{1} \lor Aux$$

$$\neg Aux \lor P_{2}$$

$$\neg Aux \lor P_{3}$$

$$Aux \lor \neg P_{2} \lor \neg P_{3}$$

Transformation becomes linear.

Improved Tseitin transformation

Instead of adding (clausal form of) $Aux \Leftrightarrow \varphi$, add

- ▶ $Aux \Rightarrow \varphi$ in a positive context (scope of an even number of negations)
- $Aux \leftarrow \varphi$ in a negative context

Grounding is two times smaller.

One-to-many correspondence between models of original theory and grounding (instead of one-to-one).

Incorporating the Tseitin transformation

- Keep a set of introduced "Tseitin clauses" (formulas like $\mathit{Aux} \Leftrightarrow \varphi$)
- ▶ Replace lines like Return \(\mathcal{D} \) by
 if \(\mathcal{D} \) is a singleton \(\{P_a\} \) then
 return \(P_a; \)
 end
 else
 Create a new auxiliary predicate \(Aux; \)
 Store the Tseitin clauses corresponding to \(Aux \leftrightarrow \quad \mathcal{D}; \)
 return \(Aux; \)
 end

When a clause C is added to the ground theory, also (recursively) add all clauses in the store associated to tseitin atoms that occur in C.

Note: It is possible that some Tseitin atoms are created, but are never added to ground theory (because, e.g., $Aux \lor \top$ is simplified to \top when creating a reduced grounding)

Unfolding and sharing of Tseitin atoms

Tseitin atoms can sometimes be removed by unfolding them Example:

$$P_1 \lor Aux$$

$$Aux \Leftrightarrow P_2 \lor P_3$$

$$\downarrow$$

$$P_1 \lor P_2 \lor P_3$$

Not yet implemented? Not in GIDL 1 (GIDL 1 has no store, but immediately prints Tseitin clauses)

Implement by applying unfolding before the clause $P_1 \vee Aux$ is added to the grounding.

Sharing of Tseitin atoms

If two Tseitin atoms Aux_1 and Aux_2 have similar associated clauses (e.g., $Aux_1 \Rightarrow \varphi$ and $Aux_2 \Rightarrow \varphi$), Aux_2 can be replaced by Aux_1 in the whole grounding.

How to detect Tseitin atoms with similar clauses?

- ▶ Order clauses in the store and use binary search. Expensive?
- Similar clauses come from similar first-order formulas ⇒ search similar formulas in the input theory. (Use simple syntactic check? Convert all subformulas of the input theory to BDDs and check if some created BDDs are equal?)
- ► Easy case to detect: the same formula is grounded more than once.

Example: $\forall x \ (\varphi[x] \lor \forall y \ \psi[y])$

For each substitution of x by a $d \in \text{dom}(I)$, $\forall y \ \psi[y]$ is grounded |dom(I)| times.

- First time: ground and create Tseitin atom Aux.
- Second time: immediately return Aux.

Not yet implemented. Implemented in GidL 1

Papers: [tacas/TorlakJ07] [Exploiting subformula sharing in

Clause splitting

- ▶ $\forall x \forall y \forall z \ (P(x,y) \lor Q(y,z)) \longrightarrow \text{quantifier rank 3}.$
- Equivalent theory:

$$\forall x \forall y \ (P(x,y) \lor S(y))$$
$$\forall y \forall z \ (\neg S(y) \lor Q(y,z))$$

- → quantifier rank 2, hence smaller grounding!
- Same effect is obtained by our grounding algorithm if quantifiers are moved (and Tseitin atoms are shared using the easy case of the previous slide):

$$\forall x \forall y \ (P(x,y) \lor \forall z \ Q(y,z))$$

▶ Which quantifiers to move inside? See paper on Paradox [model/ClaessenS03]

Not yet implemented

Partition based reasoning

Partition based reasoning:

- Leads to smaller groundings
- Some models are lost, but the grounding is satisfiable iff the original theory/structure was.
- ▶ If the grounding has a model, then this model can easily be translated to a model of the original theory.
- Interesting is only one model needs to be computed or only deciding satisfiability is important.

Paper: aaai/RamachandranA05

Propagation

If input structure becomes more precise, then grounding becomes smaller.

- \Rightarrow Use any propositional propagation algorithm on partially constructed grounding to find atoms that are certainly true/false. This information can be added to the input structure.
 - Possible propagation methods: unit propagation, one-atom lookahead.
 - Used in PSGRND to simplify the grounding afterwards (and timely detect unsatisfiability), but not to make the input structure more precise.
 - Difficulties:
 - Order of grounding matters a lot. How to find a good order is not known.
 - Tables used to reduce the grounding need to be updated dynamically.

Calculating known definitions

If all open symbols in a definition are two-valued in the input structure, then the interpretation of the defined symbols is fixed in all models of the grounding.

 \Rightarrow Compute this interpretation in advance, and make the input structure more precise.

Algorithms:

- Ground and solve. Probably the fastest method when the interpretation of the defined atoms is of the same order of magnitude as the grounding of the definition (e.g.: {Even(0) ← ⊤.Even(x + 1) ← ¬Even(x).}. Currently used in GipL.
- Semi-naive evaluation (see [aw/AbiteboulHV95]).
 Implemented in GIDL 1
- ► Translate to Prolog and use tabled logic programming engine. IMPORTANT: This creates the possibility to compute the interpretation on demand: only calculate the interpretation of defined atoms that occur in the grounding of the rest of the input theory.

Symmetry breaking

- Read master thesis of Jo Devriendt. Breaks symmetries that arise from interchangeable domain elements. May improve the overall solving time, but (the static variant) slows down grounding.
- ▶ Other kind of symmetry breaking: $\forall x \forall y \ (P(x) \land P(y) \Rightarrow x = y)$. Reduced grounding over a structure with domain $\{1, 2\}$:

$$\neg P(1) \lor \neg P(2)$$
. $\neg P(1) \lor \neg P(3)$. $\neg P(2) \lor \neg P(1)$. $\neg P(2) \lor \neg P(3)$. $\neg P(3) \lor \neg P(1)$. $\neg P(3) \lor \neg P(2)$.

Can be factor two smaller by grounding $\forall x \forall y \ (P(x) \land P(y) \land x \leq y \Rightarrow x = y)$ instead. Detection:

- ▶ Search for formulas of the form $\forall x \forall y \ \varphi[x,y]$ or $\exists x \exists y \ \varphi[x,y]$.
- ▶ Check if $\varphi[x, y]$ and $\varphi[y, x]$ are equivalent (e.g., using BDDs).
- ▶ If they are, replace the formula by $\forall x \forall y \ x \leq y \Rightarrow \varphi[x,y]$, respectively $\exists x \exists y \ x < y \land \varphi[x,y]$.

Grounding terms

- ▶ Default strategy to ground P(t):
 - 1. transform to $\forall x \ (t = x \Rightarrow P(x))$.
 - 2. replace equations of the form F(y) = z by $P_F(y, z)$, where P_F is a new predicate.
 - 3. add constraint $\forall y \exists ! z \ P_F(y, z)$.
 - repeat until no functions are left, then apply standard grounding algorithm
- If all functions in t are two-valued in the input structure, P(t) can be grounded by grounding $P(t^I)$. That is, no transformation is needed.
- ▶ If P is a supported CP constraint, P(F(d)) not transformed, but grounded as follows:
 - 1. Create a new CP variable v
 - 2. Adapt tr such that tr(v) = F(d)
 - 3. Add dom(I) as domain for v
 - 4. Return P(v)

Grounding CP tricks

Introducing CP variables is similar to introducing Tseitin atoms

- Do not immediately add the domains of CP variables to the grounding, but store them. Only add when the CP variable occurs in the grounding.
- ▶ Unfolding is possible. Assume constraint $v_1 + \cdots + v_n \leq m$ is supported

$$tr(aux_2) = v_1 + v_2$$

$$tr(aux_3) = aux_2 + v_3$$

$$\vdots$$

$$tr(aux_n) = aux_{n-1} + v_n$$

$$aux_n \le m$$

$$\downarrow$$

$$v_1 + \dots + v_n \le m$$

Binary encoding of functions

Ask Broes about this idea ...

Basic terminology and results

Top-down, depth-first grounding

Grounding with bounds

Approximation

BDD₉

Grounding with bounds

- ▶ Basic idea: instead of instantiating and simplifying afterwards, do not create unnecessary instances.
- ► Example: $\forall x \ P(x) \lor Q(x)$ and P two-valued in I \longrightarrow Only instantiate x by domain elements d such that $P^{I}(d) = \text{false}$.
- ▶ Kind of bottom-up run before starting top-down grounding!

Code

Old code: case $\varphi = \forall x \ \psi[x]$ $C := \emptyset$: for $d \in dom(I)$ do $\psi_{\sigma} := \operatorname{ground}(\psi[d], I);$ if $\psi_g \neq \top$ then if $\psi_g = \bot$ then return \bot ; else $\mathcal{C} := \mathcal{C} \cup \operatorname{ground}(\psi[d], I)$: end end **return** Tseitin atom associated to $\bigwedge C$; end New code case $\varphi = \forall x \ \psi[x]$ $\mathcal{C} := \emptyset$; for $d \in dom(I)$ such that $\psi[d]$ is possibly false do if $\psi[d]$ is certainly false then return \bot ; /* for-loop body of old code goes here end end

- Tests in red should be fast and can be incomplete
- Similarly for existential quantifier

return Tseitin atom associated to $\bigwedge C$;

end

Create the tests

- ▶ Create two predicates P_{ct} and P_{cf} for each $P \in \Sigma$.
- Create two-valued structure J from I such that
 - $P_{ct}^{J}(d) = true \text{ iff } P_{ct}^{J}(d) = true$
 - $ightharpoonup P_{cf}^{J}(d) = true \text{ iff } P^{I}(d) = false$
- Define $\varphi_{ct} =$
 - $P_{ct}(x) \qquad \text{if } \varphi = P(x)$

 - $\psi_{ct} \wedge \chi_{cf}$ if $\varphi = \psi \wedge \chi$

 - $\exists x \ \psi_{ct} \qquad \text{if } \exists = \forall x \ \psi$

Similarly for φ_{cf} . Define $\varphi_{pt} = \neg(\varphi_{cf})$, $\varphi_{pf} = \neg(\varphi_{ct})$.

- ▶ Implement test " $d \in \text{dom}(I)$ such that $\psi[d]$ is possibly false" by solving query $\{x \mid \psi_{pf}[x]\}$ over J.
- Similarly for other tests

Query algorithm

- Represent query as BDD, then use our BDD query algorithm (see below)
- ► Translate query to Prolog and use (tabled) Prolog engine
- Any other query algorithm . . .

Papers of DLV about indexing, magic set transformation, backjumping, join-ordering

Notes

- ► Tests do not need to be exact.
 - \Rightarrow simplify queries so that they can be solved more efficiently, but may have more answers.
 - See below for simplification algorithm for BDDs
- If the tests in all for-loops generate finite number of instances
 - \longrightarrow finite grounding (even if dom(I) is infinite!)

Basic terminology and results

Top-down, depth-first grounding

Grounding with bounds

Approximation

BDD₉

Main idea

- Propagation on first-order theory such that input structure becomes more precise
- ▶ Result 1: smaller grounding
- ▶ Result 2: grounding with bounds becomes more efficient

Variants

- Main algorithm: see my PhD thesis
- Result of algorithm can take many forms:
 - 1. Concrete refined input structure
 - 2. Definition Δ over vocabulary with ct and cf predicates such that interpretation of this definition in I corresponds to a refined input structure.
 - 3. Non-recursive FO queries for each predicate P_{ct} and P_{cf} such that evaluating the queries corresponds to a refined input structure.
- ▶ In case (2) grounding with bounds possible by evaluating queries with respect to $(\Delta \cup \text{facts representing } I)$
- ▶ In case (3) grounding with bounds by replacing $P_{ct}(x)$ in a query by the query associated to P_{ct} (similarly for $P_{cf}(x)$).

Basic terminology and results

Top-down, depth-first grounding

Grounding with bounds

Approximation

BDDs

Binary Decision Trees (BDTs)

```
\begin{array}{lll} \to & : \text{ if-then-else operator} \\ \text{That is:} & \varphi \to \psi_t; \psi_f & \text{ is equivalent to} & (\varphi \wedge \psi_t) \vee (\neg \varphi \wedge \psi_f) \end{array}
```

Binary Decision Trees (BDTs)

```
\rightarrow : if-then-else operator That is: \varphi \rightarrow \psi_t; \psi_f is equivalent to (\varphi \land \psi_t) \lor (\neg \varphi \land \psi_f) Definition (Kernel, BDT)
```

- An atom is a kernel
- ▶ If φ is a BDT and x a variable, then $(\exists x \ \varphi)$ is a kernel
- ightharpoonup T and \perp are BDTs
- ▶ If φ is a kernel and ψ_t and ψ_f are BDTs, then $\varphi \to \psi_t$; ψ_f are BDTs

Binary Decision Trees (BDTs)

```
\rightarrow : if-then-else operator That is: \varphi \rightarrow \psi_t; \psi_f is equivalent to (\varphi \land \psi_t) \lor (\neg \varphi \land \psi_f) Definition (Kernel, BDT)
```

- An atom is a kernel
- ▶ If φ is a BDT and x a variable, then $(\exists x \ \varphi)$ is a kernel
- ightharpoonup T and \perp are BDTs
- ▶ If φ is a kernel and ψ_t and ψ_f are BDTs, then $\varphi \to \psi_t$; ψ_f are BDTs

Every FO formula has an equivalent BDT

Binary Decision Diagrams (BDD)

- Ordered BDT: fixed order on nodes in BDT. Every branch is according to that order.
- ▶ Reduced: $\varphi \rightarrow \psi$; ψ is always replaced by ψ
- ▶ Shared: if B_1 and B_2 are syntactically the same BDDs, they are stored at the same address in memory.

BDD = Reduced, ordered, shared BDT.

Important result: if two propositional formulas are equivalent, their BDD form is the same.

This result does (of course) not hold for first-order logic.

Further reduction of first-order BDDs

- ▶ $\exists x(\dots P(x) \dots \exists y \ (\dots Q(x,y) \dots))$ is replaced by $\exists (\dots P(<0>) \dots \exists \ (\dots Q(<1>,<0>)\dots)) \ (<0>$ and <1> are called *De Bruijn indices*)
- ▶ $\exists (\varphi \rightarrow \psi_t; \psi_f) \rightarrow \chi_t; \chi_f$ is replaced by $\varphi \rightarrow (\exists \psi_t \rightarrow \chi_t; \chi_f); (\exists \psi_f \rightarrow \chi_t; \chi_f)$ if φ does not contain < 0 >
- ▶ In the fixed order on kernels, kernels containing < 0 > are always deeper in the BDDs than kernels that do not contain < 0 > (to be able to apply the above as much as possible).
- NOTE: ∃⊤ cannot be reduced to ⊤ if empty domain is allowed!
 Solution? Introduce a predicate EmptyDomain and replace ∃⊤ by EmptyDomain → ⊥; ⊤

Further reduction of first-order BDDs

- ▶ S(x) \longrightarrow \top , if S is a sort predicate and the sort of x is a subsort of S.
- $\triangleright x = x \rightarrow \psi_t; \psi_f \longrightarrow \psi_t$
- ▶ $(\exists (\varphi \to \top; \bot)) \to \psi_t; \psi_f \longrightarrow \psi_t$ if φ is an equation that can be solved to < 0 > (i.e., φ is equivalent to t = < 0 >, t is total does not contain < 0 >)
- ▶ $\varphi[x] \rightarrow \psi_t; \psi_f \longrightarrow \varphi[x] \rightarrow \psi_t[x/t]; \psi_f$ if φ can be rewritten to t = x, t does not contain x (Note: interesting if x is index $< 0 > !)^1$
- Use normal form for arithmetic equations: $(s_1 \cdot t_{11} \cdot \dots \cdot t_{1n_1}) + \dots + (s_m \cdot t_{m1} \cdot \dots \cdot t_m n_m)$ $s_i \in \mathbb{R}$, t_{ii} terms that are neither additions nor multiplications

In kernel $\exists \varphi$, check that there exists a kernel ψ , solvable to < 0 > that occurs in every branch of φ . Then < 0 > can be replaced by its 'solution' in all other kernels of φ . Not yet implemented ...

Interpretation dependent reduction

If an input interpretation I is given, a BDD / kernel without free variables can be replaced by \top , respectively \bot if it is true, respectively false in I.

 \Rightarrow According to experiments, this gave no advantage in GIDL 1. Maybe use this to remove *EmptyDomain*?

Querying

```
if \varphi = \top then
             return [\overline{x}/\overline{d}] for some tuple \overline{d} of domain elements;
end
else if \varphi = \psi[\overline{\nu}] \rightarrow \psi_1; \bot then
             for every tuple \overline{d} such that I[\overline{v}/\overline{d}] \models \psi do
                         \theta := \operatorname{query}(I, \{\overline{x} \setminus \overline{v} \mid \psi_1[\overline{v}/\overline{d}]\});
                         if \theta \neq FAIL then return \theta[\overline{v}/\overline{d}]
             end
end
else if \varphi = \psi[\overline{v}] \Rightarrow \bot; \psi_2 then
             for every tuple \overline{d} such that I[\overline{v}/\overline{d}] \not\models \psi do
                         \theta := \operatorname{query}(I, \{\overline{x} \setminus \overline{v} \mid \psi_2[\overline{v}/\overline{d}]\});
                         if \theta \neq FAIL then return \theta[\overline{v}/\overline{d}];
             end
end
else if \varphi is of the form \psi[\overline{v}] \rightarrow \psi_1; \psi_2 then
             for every tuple \overline{d} \in \text{dom}(I) do
                         if I[\overline{v}/\overline{d}] \models \psi then \theta := \operatorname{query}(I, \{\overline{x} \setminus \overline{v} \mid \psi_1[\overline{v}/\overline{d}]\});
                         else \theta := \operatorname{query}(I, \{\overline{x} \setminus \overline{v} \mid \psi_2[\overline{v}/\overline{d}]\});
                         if \theta \neq FAIL then return \theta[\overline{v}/\overline{d}];
             end
end
return FAIL;
                                                                   Function query (I, \{\overline{x} \mid \varphi\})
```

Backjumping

Backjumping algorithm for conjunctive queries described in [amai/PerriSCL07]

Note: error in paper (described algorithm does not terminate...)

Can backjumping be generalized to BDD querying?

Optimize query

- ► Algorithm:
 - 1. Reorder nodes in BDD representing the query
 - 2. For each reordering, estimate cost of query
 - 3. Choose the best reordering
- Reordering by swapping nodes (efficient operation on BDDs). Currently not all orderings are tried. Instead, the sifting algorithm is applied. See *Dynamic Variable Ordering fo* Ordered Binary Decision Diagrams (Richard Rudell)

Estimators

Given structure I and query $Q = \{\overline{x} \mid \varphi\}$ estimate the cost of evaluating Q in I.

• Chance that an arbitrary \overline{d} is answer to BDD φ :

 $\operatorname{chance}(\psi) \cdot \operatorname{chance}(\chi_t) + (1 - \operatorname{chance}(\psi)) \cdot \operatorname{chance}(\chi_f)$

▶ Chance that an arbitrary d is answer to kernel φ :

```
ightharpoonup \varphi = P(\overline{x}) \longrightarrow \frac{|P'|}{|\operatorname{dom}(I)|^{|\overline{x}|}}
\mathbf{r} = \mathbf{r} = \mathbf{r} \psi.
     C := 0:
     for 1..N do
              curr := 1:
              for 1..|\operatorname{dom}(I)| do
                      cumul_chance := \sum_{P \text{ is a path in } y \text{ to } \downarrow} chance(P);
                      if cumul_chance > 0 then
                              curr := curr · cumul_chance:
                              Randomly choose a path P to \perp in \psi with right probability;
                              Adapt probabilities of paths in \psi;
                      end
                      else curr := 0: break:
              end
              C := C + curr
      end
     return 1 - C/N
```

Estimators

Estimated number of answers = chance \cdot max_nr_answers Estimated cost for computing all answers to $\{\overline{x} \mid \varphi\}$:

- $ightharpoonup \varphi = \bot \longrightarrow 1$

- $\varphi = \psi \to \chi_t; \chi_f \longrightarrow |\mathrm{dom}(I)|^{|\mathrm{free} \ \mathrm{variables} \ \mathrm{of} \ \psi|} \cdot \mathrm{cost}(\{\emptyset \mid \psi\}) + \mathrm{nr_ans}(\psi) \cdot \mathrm{cost}(\chi_t) + \mathrm{nr_ans}(\neg \psi) \cdot \mathrm{cost}(\chi_f)$
- $\varphi = (\neg)P(\overline{y})$ \longrightarrow specific cost estimator based on the internal representation of the interpretation for $(\neq)P$ in I

Approximating queries

- ▶ To get more/less answers at a lower cost: try to replace nodes \bot/\top by \top/\bot and see if the estimated cost improves.
- ▶ Three possible points to apply this:
 - During approximation
 - On the result of approximation
 - On the queries used for grounding

Third one can be made context sensitive:

Example:

 $\forall x$ (some formula with a huge grounding for each instance of x)

 \longrightarrow high cost to avoid instances of x is acceptable!

Avoiding double tests

When grounding $\forall x \ (\dots \forall y \ (\dots P(x,y)\dots))$, queries used to ground

- ▶ instantiate x,
- ▶ instantiate y,
- check if P(x, y) is certainly true/false

are similar. Avoid double checks:

- if some query Q_2 is executed in a context where query Q_1 has a successfull answer . . .
- ...then simplify Q_2 with respect to Q_1 by the algorithm simplify described in An Introduction to Binary Decision Diagrams (Henrik Reif Andersen)
- ▶ Note: check if the simplified query is indeed cheaper!

Avoid infinite grounding

TODO: Adapt query algorithm handle BDD like $(x > 3) \rightarrow ((x < 5) \rightarrow ...; \bot); \bot$

Lifted clause learning

Idea:

- 1. SAT solver learns a clause by resolution
- Clauses that are used in resolution are instances of first-order formulas
- 3. Apply first-order resolution on this first-order formulas to obtain learned first-order clause
- 4. Ground the learned first-order clause

E-mail

johan.wittocx@cs.kuleuven.be johan.wittocx@gmail.com