Spike ID with chi2 25 August 2010 Kostas Theofilatos

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

definitions

$$\chi 2 = \Sigma (R_i/\delta R_i)^2$$

where $R_i = (S_i - Af_i - P)$

here the default TB shape was used to estimate chi2

$$\delta R_i^2 \sim pedRMS^2 + (A\delta f_i)^2$$

 δf_i =systematic error on the shape, A=amplitude, P=pedestal

- model the residuals: $\langle \Sigma R_i^2 \rangle = N^2 + C^2 A^2$
- Noise term related to correlated noise and pedestal fluctuations
- Constant term related to the error on the shape

chi2's constant and noise in MC

estimate N,C from $\Sigma R_i^2/A^2$ distribution

$$y = N^2/x^2 + C^2$$

 $N = 2.3 (ADC)$
 $C = 2.2 \times 10^{-2}$

C is dominated by the time alignment of the generated pulses in MC

define chi2/ndf = $\Sigma R_i^2/(N^2 + C^2A^2)$

MC process independent parameters

chi2 mapping convention

- convenient to use the log(chi2/ndf) instead of the chi2 [1]
- calibRechit preserves space in bits for the 0-64 range
- 7[3+log(chi2/ndf)] better exploits available space

[1] thanks to A.Ledovskoy for the suggestion

DATA vs MC

MC seems to describe roughly the data, more studies are on the way

embedded spikes

only hits with E>3 GeV

signal = SwissCross<0.95 spikes = SwissCross>0.95

out-of-time chi2

out-of-time chi2 benefits from the amplitude **and time** reconstruction provided by Ratio method

time is used to align the pulse shape event by event

<u>Did not yet tune N,C</u> for outof-time chi2, used the defaults from the fixed time chi2

once commissioned could be used for suppressing spikes in exotica searches

chi2 vs amplitude

structures pop out, usually some calibration sequence or other hardware problems

dynamic flagging

test pulse sequences, produce a peak in the chi2 distributions

example digis from a crazy case

notice the last 3 digis are 0 ADC

channel has low E1/E3x3, will pass the topological spike cut

channels in the same tower gave such patterns during a run and then went back to normal

initially spotted as a peak in the chi2 distribution, now a protection is developed for rechits were the number of non-zero digis !=10

conclusions

- C,N parameters are useful to tune the chi2
- fixed time chi2 looks OK
- out-of-time chi2 needs calibration
- chi2 is not only useful for spike-ID
- chi2 adds information in the data
- do we want to update chi2 in CVS ?

backup: chi2 vs swiss cross

