Домашнее задание по теории вероятностей №3.

Михайлов Никита Маратович, БПМИ-161.

1 Задача №1.

Множество из k шаров случайно раскладывают по m ящикам. Случайная величина ξ равна количеству пустых ящиков при таком случайном размещении. Найдите $E\xi$ и $D\xi$, если (a) шары неразличимы, (b) шары различимы.

1.1 Решение (а).

Найдем $P(\xi=i)$. Найдем число всех способов разложить k шаров по m ящиков. Введем переменные x_i — число шаров в i-ом ящике. Тогда искомое число способов равно числу способов решить в целых неотрицательных числах уравнение $x_1+\ldots+x_m=k$. Как мы знаем, это задача Муавра, и число решений равно $\binom{k+m-1}{k}$. Теперь найдем кол-во способов решить это уравнение так, что i переменных равны нулю (i ящиков пусты). Сначала выберем эти ящики: $\binom{m}{i}$. Теперь составим уравнение: $x_1+\ldots+x_{m-i}=k$, но каждая переменная хотя бы 1, иначе у нас будет больше, чем i нулевых переменных. Итого нужно найти число способов решить уравнение $y_1+\ldots+y_{m-i}=k-(m-i)$. Снова задача Муавра, и ответ на нее есть $\binom{k-m+i+m-i-1}{k-m+i} = \binom{k-1}{k-m+i} = \binom{k-1}{m-i-1}$. Таким образом, $P(\xi=i)=\binom{m}{i}\cdot\frac{\binom{k-1}{m-i-1}}{\binom{k+m-1}{k}}$. По свойству математического ожидания получим:

$$E[\xi] = \sum_{i \in \mathcal{E}(\Omega)} i \cdot P(\xi = i) = \sum_{i=0}^{m} i \cdot \binom{m}{i} \cdot \frac{\binom{k-1}{m-i-1}}{\binom{k+m-1}{k}}$$

Найдем дисперсию:

$$D\xi = E[\xi^{2}] - E^{2}[\xi] = \sum_{i \in \xi(\Omega)} i^{2} \cdot P(\xi = i) - \left(\sum_{i \in \xi(\Omega)} i \cdot P(\xi = i)\right)^{2} = \sum_{i=0}^{m} i^{2} \cdot {m \choose i} \cdot \frac{{k-1 \choose m-i-1}}{{k+m-1 \choose k}} - \left(\sum_{i=0}^{m} i \cdot {m \choose i} \cdot \frac{{k-1 \choose m-i-1}}{{k+m-1 \choose k}}\right)^{2}$$

1.2 Решение (b).

Пусть мы как-то разложили шары, тогда перемешав шары, сохранив кол-во шаров в каждом из ящиков, мы можем получить k! вариантов, но внутри каждого ящика порядок не важен. Пусть $(x_1,...,x_m)$ – некоторый способ разложения шаров(неразличимых). Из него получим $\frac{k!}{x_1! \cdot ... \cdot x_m!}$ решений (для различимых). Пусть $X = \{x = (x_1,...,x_m) \mid x_1+...+x_m = k\}$ – множество решений для неразличимых шаров. Итак, посчитаем $P(\xi = i)$. Для этого вычислим количество всех

исходов: $\sum_{x \in X} \frac{k!}{x_1! \cdot \ldots \cdot x_m!}$. Теперь выберем i пустых ящиков $\binom{m}{i}$ способами. Как и в аналогичной задаче, в остальных ящиках как минимум 1 шар есть. Составим задачу Муавра и пусть $Y = \{y = (y_1, ..., y_{m-i}) | y_1 + ... + y_{m-1} = k - m + i\}$ – все ее решения для неразличимых шаров.

Таким образом,
$$\binom{m}{i} \sum_{y \in Y} \frac{k!}{y_1! \cdot \ldots \cdot y_{m-i}!}$$
. Итого $P(\xi = i) = \frac{\binom{m}{i} \sum_{y \in Y} \frac{k!}{y_1! \cdot \ldots \cdot y_{m-i}!}}{\sum_{x \in X} \frac{k!}{x_1! \cdot \ldots \cdot x_m!}}$, а математическое

ожидание величины ξ соответственно:

$$E[\xi] = \sum_{i=0}^{m} i \cdot \frac{\binom{m}{i} \sum_{y \in Y} \frac{k!}{y_1! \cdot \dots \cdot y_{m-i}!}}{\sum_{x \in X} \frac{k!}{x_1! \cdot \dots \cdot x_m!}} = \frac{\sum_{i=0}^{m} i \cdot \binom{m}{i} \sum_{y \in Y} \frac{k!}{y_1! \cdot \dots \cdot y_{m-i}!}}{\sum_{x \in X} \frac{k!}{x_1! \cdot \dots \cdot x_m!}}$$

Посчитаем дисперсию:

$$D\xi = E[\xi^{2}] - E^{2}[\xi] = \sum_{i \in \xi(\Omega)} i^{2} \cdot P(\xi = i) - \left(\sum_{i \in \xi(\Omega)} i \cdot P(\xi = i)\right)^{2} = \frac{\sum_{i=0}^{m} i^{2} \cdot \binom{m}{i} \sum_{y \in Y} \frac{k!}{y_{1}! \cdot \dots \cdot y_{m-i}!}}{\sum_{x \in X} \frac{k!}{x_{1}! \cdot \dots \cdot x_{m}!}} - \left(\frac{\sum_{i=0}^{m} i \cdot \binom{m}{i} \sum_{y \in Y} \frac{k!}{y_{1}! \cdot \dots \cdot y_{m-i}!}}{\sum_{x \in X} \frac{k!}{x_{1}! \cdot \dots \cdot x_{m}!}}\right)^{2}$$

2 Задача №2.

В ящик положили n различимых шаров, среди которых есть k белых, а остальные — черные. Шары вынимаются случайно и последовательно без возвращения. Пусть последний белый шар вынимается на шаге ξ . Вычислите а) $E\xi$, б) $D\xi$.

2.1 Решение а)

Так как в условии написано, что шары различимы, то будем считать, что они все пронумерованы и имеют цвет. Найдем вероятность $P(\xi=i)$. Понятно, что всех вариантов у нас n!. Раз последний белый шар вынут на i-ом шаге, то нужно выбрать из первых i мест k мест для белых шаров, а остальные n-k мест распределить среди черных: $A_i^k(n-k)!$. Таким образом $P(\xi=i)=\frac{A_i^k(n-k)!}{n!}=\frac{A_i^k}{A_n^k}=\frac{\binom{i}{k}}{\binom{n}{k}}$ (как видим, нет разницы пронумерованы ли шары), а математическое ожидание соответственно

$$E[\xi] = \sum_{i=k}^{n} i \cdot \frac{\binom{i}{k}}{\binom{n}{k}} = \frac{\sum_{i=k}^{n} i \cdot \binom{i}{k}}{\binom{n}{k}}$$

2.2 Решение б)

По формуле связи дисперсии с математическим ожиданием получим:

$$D\xi = E[\xi^{2}] - E^{2}[\xi] = \frac{\sum_{i=k}^{n} i^{2} \cdot {i \choose k}}{{n \choose k}} - \frac{(\sum_{i=k}^{n} i \cdot {i \choose k})^{2}}{{n \choose k}^{2}}$$