Secondary Storage

20

20

Secondary Storage

- · Secondary storage include:
 - Magnetic disks:
 - Example: Hard disks
 - Used in personal computers
 - Redundant Array of Independent Disks (RAID):
 - Uses disk arrays to achieve greater performance and higher availability
 - Multiple disks are used as a parallel array of data storage devises built with redundancy to compensate for dis failures
 - Used in servers and large systems
 - Optical disks:
 - Uses optical storage technology
 - Examples: CDROM and DVD

Magnetic Disks

- A disk is a circular platter constructed of nanomagnetic material, called substrate
- Usually both the sides are coated with a magnetisable material

- Data are recorded on and retrieved from the disk via a conducting coil called head
- Read/write head
- Each head consists of a magnetic yoke and magnetisable coil
- Floppy disk
- Winchester disk (Hard disk)

22

22

Read and Write Mechanism

- Write mechanism
 - Electricity flowing through the coil (head) produces magnetic field
 - This induced magnetic field magnetises the small area of the recording medium
 - Different patterns of positive and negative current indicates 1 and 0
- Read mechanism
 - It exploits the fact that magnetic field moving relative to a coil produces an electric current in the coil (head)
 - When the surface of the disk passes under the head, it generates a current of the same polarity as the one already recorded

Data Organization on the Disk

Track:

- Concentric set of rings on the platter
- Each track is of the same width as head

Sector:

- The tacks are divided into hundreds of sectors per track
- Each sector stores 512 bytes of information

Cylinder:

 The set of all the tracks in the same relative position on the patters

24

24

Winchester Disk Format

- Some means needed to locate sector positions with in a track – identifying start and end of each sector
- This is handled using control data recorded on the disk
- Formatted disk
 - Some extra data (control data) used only by the disk controller
 - Operating system does the formatting of disk
- Each sector holds 512 bytes of data and control information

Disk Performance Parameters

- When the disk drive is operating, the disk is rotating at a constant speed
- During read or write operation, the head must be positioned at the desired track and at the beginning of the desired sector on that track

• Seek time (T_s) :

- Time required to move or position the head to the required track
- It depends on where is the initial position
- We consider average seek time
- Track-to-track seek time:
 - Time to move the head from one track to an adjacent track

26

26

Disk Performance Parameters

- Rotational delay or Rotational latency (T_r):
 - Time taken for the beginning of the sector to read by the head
 - Average time needed for the required sector to pass under the head once the head has positioned at the correct track
 - Let r is the rotation speed measured in revolutions per sec

$$T_r = \frac{1}{2r}$$

Disk Performance Parameters

- Transfer time (T):
 - Time taken to transfer b bytes of data to or from a track of the disk
 - − b : Number of bytes to be transferred
 - r: Rotational speed
 - -N: Number of bytes on the track

$$T = \frac{b}{rN}$$

- Average access time (T_a):
 - Total time to access the data
 - Sum of the average seek time, rotational delay and transfer time

$$T_a = T_s + T_r + T$$

28

28

Hard Disk Parameter

• Example: Segate Barracuda ES.2

Capacity : 1TB
Track-to-track seek time : 0.8 ms
Average seek time : 8.5 ms
Spindle speed : 7200 rpm
Average rotational delay : 4.16 ms
Maximum transfer rate : 3GB/sec
Bytes per sector : 512

- Tracks per cylinder : 8 (4 platters)