Neuron Layers

CE/CZ4042 - Tutorial 4

1. Design a softmax layer of neurons to perform the following classification, given the inputs $x = (x_1, x_2)$ and target class labels d:

(x_1, x_2)	(0 4)	(-1 3)	(2 3)	(-2 2)	(0 2)	(1 2)	(-1 2)	(-3 1)	(-1 1)
d	A	A	A	В	В	A	В	В	В

(x_1, x_2)	(2 1)	(4 1)	(-2 0)	(1 0)	(3 0)	(-3 -1)	(-2 -1)	(2 -1)	(4 -1)
d	C	C	В	C	C	В	В	C	C

- (a) Show one iteration of gradient descent learning at a learning factor 0.05.
- (b) Find the weights and biases at convergence of learning
- (c) Indicate the probabilities that the network predicts the classes of trained patterns.

GD for Softmax layer

Given training set (X, d)Set learning rate α Initialize W and bIterate until convergence: U = XW + B $f(U) = \frac{e^{U}}{\sum_{k=1}^{K} e^{U_k}}$ $\nabla_{U}J = -(K - f(U))$ $W \leftarrow W + \alpha X^{T}\nabla_{U}J$ $b \leftarrow b + \alpha(\nabla_{U}J)^{T}\mathbf{1}_{P}$ Labels for classes:

$$Class\ A \rightarrow 0, Class\ B \rightarrow 1, Class\ C \rightarrow 2$$

The data matrix and target vector:

$$X = \begin{pmatrix} 0 & 4 \\ -1 & 3 \\ 2 & 3 \\ -2 & 2 \\ \vdots & \vdots \\ 4 & -1 \end{pmatrix}, \quad d = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 2 \end{pmatrix}, \quad K = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 1 \end{pmatrix}$$

$$f(\mathbf{U}) = \frac{e^{\mathbf{U}}}{\sum_{k=1}^{K} e^{\mathbf{U}_k}}$$
$$\mathbf{Y} = \underset{k}{\operatorname{argmax}} f(\mathbf{U})$$

Learning rate $\alpha = 0.05$.

Initialize

Weights using truncated normal distribution with mean = 0 and s.d. = $1/\sqrt{2}$ Biases to zero.

$$W = \begin{pmatrix} 0.88 & 0.08 & -0.34 \\ 0.68 & -0.39 & -0.19 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$

Iteration 1:

$$\mathbf{\textit{U}} = \mathbf{\textit{XW}} + \mathbf{\textit{B}} = \begin{pmatrix} 0 & 4 \\ -1 & 3 \\ 2 & 3 \\ -2 & 2 \\ \vdots & \vdots \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 0.88 & 0.08 & -0.34 \\ 0.68 & -0.39 & -0.19 \end{pmatrix} + \begin{pmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ \vdots & \vdots & \vdots \\ 0.0 & 0.0 & 0.0 \end{pmatrix} = \begin{pmatrix} 2.72 & -1.54 & -0.75 \\ 1.17 & -1.23 & -0.23 \\ 3.8 & -1.0 & -1.23 \\ -0.39 & -0.93 & 0.30 \\ \vdots & \vdots & \vdots \\ 2.82 & 0.71 & -1.16 \end{pmatrix}$$

$$U = \begin{pmatrix} 2.72 & -1.54 & -0.75 \\ 1.17 & -1.23 & -0.23 \\ 3.8 & -1.0 & -1.23 \\ -0.39 & -0.93 & 0.30 \\ \vdots & \vdots & \vdots \\ 2.82 & 0.71 & -1.16 \end{pmatrix}$$

$$f(\mathbf{U}) = \frac{e^{\mathbf{U}}}{\sum_{k=1}^{K} e^{\mathbf{U}_{k}}}$$

$$f(\mathbf{U}) = = \begin{pmatrix} \frac{e^{2.72}}{e^{2.72} + e^{-1.54} + e^{-0.75}} & \frac{e^{-1.54}}{e^{2.72} + e^{-1.54} + e^{-0.75}} & \frac{e^{-0.75}}{e^{2.72} + e^{-1.54} + e^{-0.75}} \\ \frac{e^{1.17}}{e^{1.17} + e^{-1.23} + e^{-0.23}} & \frac{e^{-0.23}}{e^{1.17} + e^{-1.23} + e^{-0.23}} & \frac{e^{-0.23}}{e^{1.17} + e^{-1.23} + e^{-0.23}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{e^{2.82}}{e^{2.82} + e^{0.71} + e^{-1.16}} & \frac{e^{0.71}}{e^{2.82} + e^{0.71} + e^{-1.16}} & \frac{e^{-1.16}}{e^{2.82} + e^{0.71} + e^{-1.16}} \end{pmatrix} = \begin{pmatrix} 0.96 & 0.01 & 0.03 \\ 0.75 & 0.07 & 0.18 \\ \vdots & \vdots & \vdots \\ 0.88 & 0.11 & 0.02 \end{pmatrix}$$

$$f(\mathbf{U}) = \begin{pmatrix} 0.96 & 0.01 & 0.03 \\ 0.75 & 0.07 & 0.18 \\ \vdots & \vdots & \vdots \\ 0.88 & 0.11 & 0.02 \end{pmatrix}$$

$$\mathbf{y} = \operatorname*{argmax}_{k} f(\mathbf{U}) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$Cost = -\sum_{p=1}^{P} log\left(f\left(u_{pd_p}\right)\right) = -\log(0.96) - \log(0.75) \cdots - \log(0.02) = 34.36$$

Classification error =
$$\sum_{p=1}^{P} 1(y \neq d) = 14$$

$$\nabla_{U}J = -\left(K - f(U)\right) = -\left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.96 & 0.01 & 0.03 \\ 0.75 & 0.07 & 0.18 \\ \vdots & \vdots & \vdots \\ 0.88 & 0.11 & 0.02 \end{pmatrix}\right) = \begin{pmatrix} -0.04 & 0.01 & 0.03 \\ -0.25 & 0.07 & 0.18 \\ \vdots & \vdots & \vdots \\ 0.88 & 0.11 & -0.98 \end{pmatrix}$$

$$W \leftarrow W - \alpha X^{T} \nabla_{U} J$$

$$= \begin{pmatrix} 0.88 & 0.08 & -0.34 \\ 0.68 & -0.39 & -0.19 \end{pmatrix} + 0.05 \begin{pmatrix} 0 & -1 & \cdots & 4 \\ 4 & 3 & \cdots & -1 \end{pmatrix} \begin{pmatrix} 0.96 & 0.01 & 0.03 \\ 0.75 & 0.07 & 0.18 \\ \vdots & \vdots & \vdots \\ 0.88 & 0.11 & 0.02 \end{pmatrix}$$

$$= \begin{pmatrix} 0.28 & -0.54 & 0.89 \\ 0.54 & -0.12 & -0.31 \end{pmatrix}$$

$$\boldsymbol{b} \leftarrow \boldsymbol{b} - \alpha (\nabla_U J)^T \mathbf{1}_P = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} + 0.05 \begin{pmatrix} -0.04 & 0.01 & 0.03 \\ -0.25 & 0.07 & 0.18 \\ \vdots & \vdots & \vdots \\ 0.88 & 0.11 & -0.98 \end{pmatrix}^T \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} -0.32 \\ 0.27 \\ 0.06 \end{pmatrix}$$

At convergence:

$$W = \begin{pmatrix} -0.15 & -3.41 & 4.18 \\ 5.27 & -1.02 & -4.15 \end{pmatrix}$$
 and $b = \begin{pmatrix} -7.82 \\ 5.81 \\ 2.02 \end{pmatrix}$

Entropy =
$$0.58$$

$$Error = 0$$

$$\mathbf{X} = \begin{pmatrix} -1 & 2 \\ 0 & 4 \\ -1 & 3 \\ 0 & 2 \\ 3 & 0 \\ -2 & -1 \\ 4 & 1 \\ 1 & 2 \\ 2 & -1 \\ 2 & 3 \\ 2 & 1 \\ -2 & 0 \\ -3 & -1 \\ 1 & 0 \\ -1 & 1 \\ 4 & -1 \\ -2 & 2 \end{pmatrix} f(\mathbf{U}) = \begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.88 & 0.12 & 0.0 \\ 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.089 & 0.1 & 0.0 \\ 0.01 & 0.99 & 0.0 \\ 0.01 & 0.99 & 0.0 \\ 0.01 & 0.099 & 0.0 \\ 0.01 & 0.099 & 0.0 \\ 0.00 & 1.0 & 0.0 \\ 0.00 & 0.0 & 1.0 \\ 0.00 & 0.00 & 1.0 \\ 0.00 & 0.02 & 0.98 \\ 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 0.0 \\ 0$$

Probabilities of input patterns, belonging to target classes are given in RED.

 Use mini-batch gradient decent learning to train a softmax layer to classify Iris dataset (https://archive.ics.uci.edu/ml/datasets/Iris). The dataset contains 150 data points. Use 120 data points for training the classifier and test on the remaining 30 data points.
 Set learning rate = 0.01 and batch size = 16.

You can use the following python commands to load Iris data: from sklearn import datasets iris = datasets.load_iris()

Repeat the classification with batch sizes = 2, 4, 8, 16, 24, 32, 48, and 64, and compare the accuracies and times taken for a weight update.

Iris dataset:

https://archive.ics.uci.edu/ml/datasets/Iris

Four features:

- Sepal length
- sepal width
- petal length
- petal width

Three classes:

- Iris Setosa
- Iris Versicolour
- Iris Virginica

150 data points, 50 for each class

120 data points for training and 30 data points for testing

Mini-batch gradient descent

Batch size = 16, learning factor = 0.01

Implementing mini-batch training

```
idx = np.arange(no_data)

for i in range(no_epochs):
    np.random.shuffle(idx)
    train_X, train_Y = trainX[idx], trainY[idx]

for start, end in zip(range(0, no_data, batch_size), range(batch_size, no_data, batch_size)):
    train.run(feed_dict={x: train_X[start:end], y_: train_Y[start:end]})
```


Optimal batch size is a compromise between the accuracy and running time.

3. Design a perceptron layer to perform the following mapping:

Inputs	Outputs				
(0.50 0.23)	(0.16 0.74)				
(0.20 0.76)	(0.49 0.97)				
(0.17 0.09)	(0.01 0.26)				
(0.69 0.95)	(1.19 1.70)				
(0.00 0.51)	(0.13 0.52)				
(0.81 0.61)	(0.77 1.48)				
(0.72 0.29)	(0.40 1.04)				
(0.92 0.72)	(1.14 1.7)				

Train the perceptron layer with (a) GD and (b) SGD. Show one iteration of learning and plot learning curves and predicted and target outputs. Set the learning factor $\alpha = 0.05$.

Inputs	Outputs				
(0.50 0.23)	(0.16 0.74)				
(0.20 0.76)	(0.49 0.97)				
(0.17 0.09)	(0.01 0.26)				
(0.69 0.95)	(1.19 1.70)				
(0.00 0.51)	(0.13 0.52)				
(0.81 0.61)	(0.77 1.48)				
(0.72 0.29)	(0.40 1.04)				
(0.92 0.72)	(1.14 1.7)				

Let
$$y = (y_1, y_2)$$
.

$$y_1, y_2 \in [0.0, 2.0]$$

Activation function
$$y = f(u) = \frac{2}{1 + e^{-u}} = 2f_0(u)$$

where $f_0(u)$ is the sigmoid function.

GD for a perceptron layer:

Given a training dataset $(\boldsymbol{X}, \boldsymbol{D})$ Set learning parameter α Initialize \boldsymbol{W} and \boldsymbol{b} Repeat until convergence: $\boldsymbol{U} = \boldsymbol{X}\boldsymbol{W} + \boldsymbol{B}$ $\boldsymbol{Y} = f(\boldsymbol{U})$ $\nabla_{\boldsymbol{U}}\boldsymbol{J} = -(\boldsymbol{D} - \boldsymbol{Y}) \cdot f'(\boldsymbol{U})$ $\boldsymbol{W} \leftarrow \boldsymbol{W} - \alpha \boldsymbol{X}^T \nabla_{\boldsymbol{U}}\boldsymbol{J}$ $\boldsymbol{b} \leftarrow \boldsymbol{b} - \alpha (\nabla_{\boldsymbol{U}}\boldsymbol{J})^T \mathbf{1}_P$

Initialize:

Weights using truncated normal distribution: $\mathbf{W} = \begin{pmatrix} 1.24 & 0.11 \\ -0.48 & 0.97 \end{pmatrix}$

Biases to zero $\boldsymbol{b} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$

$$\alpha = 0.05$$

Activation function $y = f(u) = \frac{2}{1+e^{-u}} = 2f_0(u)$ where $f_0(u)$ is the sigmoid function.

$$f'(\mathbf{u}) = 2f_0'(\mathbf{u}) = 2f_0(\mathbf{u})(1 - f_0(\mathbf{u})) = \mathbf{y}(1 - \frac{\mathbf{y}}{2})$$

Iteration 1:

Input
$$\mathbf{X} = \begin{pmatrix} 0.5 & 0.23 \\ 0.2 & 0.76 \\ 0.17 & 0.09 \\ 0.69 & 0.95 \\ 0.0 & 0.51 \\ 0.81 & 0.61 \\ 0.72 & 0.29 \\ 0.92 & 0.72 \end{pmatrix}$$
, Targets $\mathbf{D} = \begin{pmatrix} 0.16 & 0.74 \\ 0.49 & 0.97 \\ 0.01 & 0.26 \\ 1.19 & 1.7 \\ 0.13 & 0.52 \\ 0.77 & 1.48 \\ 0.4 & 1.04 \\ 1.14 & 1.7 \end{pmatrix}$

$$\boldsymbol{U} = \boldsymbol{X}\boldsymbol{W} + \boldsymbol{B} = \begin{pmatrix} 0.5 & 0.23 \\ 0.2 & 0.76 \\ 0.17 & 0.09 \\ 0.69 & 0.95 \\ 0.0 & 0.51 \\ 0.81 & 0.61 \\ 0.72 & 0.29 \\ 0.92 & 0.72 \end{pmatrix} \begin{pmatrix} 1.24 & 0.11 \\ -0.48 & 0.97 \end{pmatrix} + \begin{pmatrix} 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{pmatrix} = \begin{pmatrix} 0.51 & 0.28 \\ -0.11 & 0.76 \\ 0.17 & 0.11 \\ 0.40 & 1.0 \\ -0.24 & 0.49 \\ 0.71 & 0.68 \\ 0.75 & 0.36 \\ 0.80 & 0.80 \end{pmatrix}$$

$$Y = f(U) = \frac{2}{1+e^{-U}} = \begin{pmatrix} 1.25 & 1.14 \\ 0.94 & 1.36 \\ 1.08 & 1.05 \\ 1.20 & 1.46 \\ 0.88 & 1.24 \\ 1.34 & 1.33 \\ 1.36 & 1.18 \\ 1.38 & 1.38 \end{pmatrix},$$

Cost =
$$J(\mathbf{W}, \mathbf{b}) = \frac{1}{8} \sum_{p=1}^{8} \sum_{k=1}^{2} (d_{pk} - y_{pk})^2 = 0.76$$

$$f'(\mathbf{U}) = \mathbf{Y} \cdot \left(1 - \frac{\mathbf{Y}}{2}\right) = \begin{pmatrix} 0.47 & 0.49 \\ 0.50 & 0.43 \\ 0.50 & 0.50 \\ 0.48 & 0.39 \\ 0.49 & 0.47 \\ 0.44 & 0.45 \\ 0.43 & 0.43 \end{pmatrix}$$

$$\nabla_{U}J = -(D - Y) \cdot f'(U)$$

$$= -\begin{pmatrix} 0.16 & 0.74 \\ 0.49 & 0.97 \\ 0.01 & 0.26 \\ 1.19 & 1.7 \\ 0.13 & 0.52 \\ 0.77 & 1.48 \\ 0.4 & 1.04 \\ 1.14 & 1.7 \end{pmatrix} - \begin{pmatrix} 1.25 & 1.14 \\ 0.94 & 1.36 \\ 1.08 & 1.05 \\ 1.20 & 1.46 \\ 0.88 & 1.24 \\ 1.34 & 1.33 \\ 1.36 & 1.18 \\ 1.38 & 1.38 \end{pmatrix} \cdot \begin{pmatrix} 0.47 & 0.49 \\ 0.50 & 0.43 \\ 0.50 & 0.50 \\ 0.48 & 0.39 \\ 0.49 & 0.47 \\ 0.44 & 0.45 \\ 0.44 & 0.48 \\ 0.43 & 0.43 \end{pmatrix}$$

$$= \begin{pmatrix} 0.51 & 0.20 \\ 0.23 & 0.17 \\ 0.53 & 0.40 \\ 0.00 & -0.09 \\ 0.37 & 0.34 \\ 0.25 & -0.07 \\ 0.42 & 0.07 \\ 0.10 & -0.14 \end{pmatrix}$$

$$\boldsymbol{W} \leftarrow \boldsymbol{W} - \alpha \boldsymbol{X}^T \nabla_U \boldsymbol{J}$$

$$\boldsymbol{W} = \begin{pmatrix} 1.24 & 0.11 \\ -0.48 & 0.97 \end{pmatrix} - 0.05 \begin{pmatrix} 0.5 & 0.2 & 0.17 & 0.69 & 0.0 & 0.81 & 0.72 & 0.92 \\ 0.23 & 0.76 & 0.09 & 0.95 & 0.51 & 0.61 & 0.29 & 0.72 \end{pmatrix} \begin{pmatrix} 0.51 & 0.20 \\ 0.23 & 0.17 \\ 0.53 & 0.40 \\ 0.00 & -0.09 \\ 0.37 & 0.34 \\ 0.25 & -0.07 \\ 0.42 & 0.07 \\ 0.10 & -0.14 \end{pmatrix} = \begin{pmatrix} 1.19 & 0.11 \\ -0.52 & 0.96 \end{pmatrix}$$

$$\boldsymbol{b} \leftarrow \boldsymbol{b} - \alpha (\nabla_{\boldsymbol{U}} \boldsymbol{J})^T \mathbf{1}_{\boldsymbol{P}}$$

$$\boldsymbol{b} \leftarrow \boldsymbol{b} - \alpha (\nabla_U J)^T \mathbf{1}_F$$

$$\boldsymbol{b} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix} - 0.05 \begin{pmatrix} 0.51 & 0.23 & 0.53 & 0.0 & 0.37 & 0.25 & 0.42 & 0.10 \\ 0.20 & 0.17 & 0.40 & -0.09 & 0.34 & -0.07 & 0.07 & -0.14 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -0.12 \\ -0.04 \end{pmatrix}$$

SGD for a perceptron layer:

```
Given a training dataset \{(x, d)\}

Set learning parameter \alpha

Initialize W and b

Repeat until convergence:

For every pattern (x, d):

u = W^T x + b

y = f(u)

\nabla_u J = -(d - y) \cdot f'(u)

W \leftarrow W - \alpha x (\nabla_u J)^T

b \leftarrow b - \alpha \nabla_u J
```


Initialize:

Weights using truncated normal distribution: $\mathbf{W} = \begin{pmatrix} 1.24 & 0.11 \\ -0.48 & 0.97 \end{pmatrix}$

Biases to zero $\boldsymbol{b} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$

$$\alpha = 0.05$$

Activation function $y = f(u) = \frac{2}{1 + e^{-u}} = 2f_0(u)$ where $f_0(u)$ is the sigmoid function.

$$f'(u) = 2f'_0(u) = 2f_0(u)(1 - f_0(u)) = y(1 - \frac{y}{2})$$

Iteration 1:

Apply patterns one by one in random order:

Let first pattern,
$$\mathbf{x} = \begin{pmatrix} 0.17 \\ 0.09 \end{pmatrix}$$
, $\mathbf{d} = \begin{pmatrix} 0.01 \\ 0.26 \end{pmatrix}$

$$\mathbf{u} = \mathbf{W}^{T} \mathbf{x} + \mathbf{b} = \begin{pmatrix} 1.24 & -0.48 \\ 0.11 & 0.96 \end{pmatrix} \begin{pmatrix} 0.17 \\ 0.09 \end{pmatrix} + \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix} = \begin{pmatrix} 0.17 \\ 0.11 \end{pmatrix}$$
$$\mathbf{y} = f(\mathbf{u}) = \frac{2}{1 + e^{-\mathbf{u}}} = \begin{pmatrix} 1.08 \\ 1.05 \end{pmatrix}$$

 $Square\ error = 1.78$

$$f'(\mathbf{u}) = \mathbf{y}(1 - \mathbf{y}/2) = {1.08 \choose 1.05} \cdot \left({1.0 \choose 1.0} - 0.5 \begin{pmatrix} 1.08 \\ 1.05 \end{pmatrix} \right) = {0.50 \choose 0.50}$$

$$\nabla_{\mathbf{u}}J = -(\mathbf{d} - \mathbf{y}) \cdot f'(\mathbf{u}) = \left(\begin{pmatrix} 0.01 \\ 0.26 \end{pmatrix} - \begin{pmatrix} 1.08 \\ 1.05 \end{pmatrix} \right) \cdot \begin{pmatrix} 0.50 \\ 0.50 \end{pmatrix} = \begin{pmatrix} 0.53 \\ 0.40 \end{pmatrix}$$

$$\mathbf{W} = \mathbf{W} - \alpha \mathbf{x} (\nabla_{\mathbf{u}} J)^{T} = \begin{pmatrix} 1.24 & 0.11 \\ -0.48 & 0.97 \end{pmatrix} - 0.05 \begin{pmatrix} 0.17 \\ 0.09 \end{pmatrix} (0.53 & 0.40) = \begin{pmatrix} 1.23 & 0.11 \\ -0.48 & 0.96 \end{pmatrix}$$

$$\mathbf{b} = \mathbf{b} - \alpha \nabla_{\mathbf{u}} J = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix} - 0.05 \begin{pmatrix} 0.53 \\ 0.40 \end{pmatrix} = \begin{pmatrix} -0.03 \\ -0.02 \end{pmatrix}$$

Apply second pattern,
$$\mathbf{x} = \begin{pmatrix} 0.69 \\ 0.95 \end{pmatrix}$$
, $\mathbf{d} = \begin{pmatrix} 1.19 \\ 1.7 \end{pmatrix}$

$$\mathbf{u} = \mathbf{W}^{T} \mathbf{x} + \mathbf{b} = \begin{pmatrix} 1.23 & -0.48 \\ 0.11 & 0.96 \end{pmatrix} \begin{pmatrix} 0.69 \\ 0.95 \end{pmatrix} + \begin{pmatrix} -0.03 \\ -0.02 \end{pmatrix} = \begin{pmatrix} 0.37 \\ 0.97 \end{pmatrix}$$
$$\mathbf{y} = f(\mathbf{u}) = \frac{2}{1 + e^{-\mathbf{u}}} = \begin{pmatrix} 1.18 \\ 1.45 \end{pmatrix}$$

Square error = $\sum_{k=1}^{2} (d_k - y_k)^2 = 0.06$

$$f'(\mathbf{u}) = \mathbf{y}(1 - \mathbf{y}/2) = {1.18 \choose 1.45} \cdot \left({1.0 \choose 1.0} - 0.5 \begin{pmatrix} 1.18 \\ 1.45 \end{pmatrix} \right) = {0.48 \choose 0.40}$$

$$\nabla_{\mathbf{u}}J = -(\mathbf{d} - \mathbf{y}) \cdot f'(\mathbf{u}) = \left(\binom{1.19}{1.7} - \binom{1.18}{1.45} \right) \cdot \binom{0.48}{0.40} = \binom{0.00}{-0.10}$$

$$\mathbf{W} = \mathbf{W} - \alpha \mathbf{x} (\nabla_{\mathbf{u}} J)^{T} = \begin{pmatrix} 1.23 & 0.11 \\ -0.48 & 0.96 \end{pmatrix} - 0.05 \begin{pmatrix} 0.69 \\ 0.95 \end{pmatrix} (0.00 & -0.10) = \begin{pmatrix} 1.23 & 0.11 \\ -0.48 & 0.97 \end{pmatrix}$$
$$\mathbf{b} = \mathbf{b} - \alpha \nabla_{\mathbf{u}} J = \begin{pmatrix} -0.03 \\ -0.02 \end{pmatrix} - 0.05 \begin{pmatrix} 0.00 \\ -0.10 \end{pmatrix} = \begin{pmatrix} -0.03 \\ -0.01 \end{pmatrix}$$

Iteration 1:

x	d	u	y	s.e.	$ abla_u J$	W	b
$\binom{0.17}{0.09}$	$\binom{0.01}{0.26}$	$\binom{0.17}{0.11}$	$\binom{1.08}{1.05}$	1.78	$\binom{0.53}{0.40}$	$\begin{pmatrix} 1.23 & 0.11 \\ -0.48 & 0.96 \end{pmatrix}$	$\binom{-0.03}{-0.02}$
$\binom{0.69}{0.95}$	$\binom{1.19}{1.7}$	$\binom{0.37}{0.97}$	$\binom{1.18}{1.45}$	0.06	$\binom{0.00}{-0.10}$	$\begin{pmatrix} 1.23 & 0.11 \\ -0.48 & 0.97 \end{pmatrix}$	$\binom{-0.03}{-0.01}$
$\binom{0.72}{0.29}$	$\binom{0.4}{1.04}$	$\binom{0.72}{0.35}$	$\binom{1.35}{1.17}$	0.91	$\binom{0.42}{0.06}$	$\begin{pmatrix} 1.22 & 0.11 \\ -0.48 & 0.97 \end{pmatrix}$	$\binom{-0.05}{-0.02}$
$\binom{0.92}{0.72}$	$\binom{1.14}{1.7}$	$\binom{0.73}{0.78}$	$\binom{1.35}{1.37}$	0.15	$\binom{0.09}{-0.14}$	$\begin{pmatrix} 1.21 & 0.12 \\ -0.49 & 0.97 \end{pmatrix}$	$\binom{-0.05}{-0.01}$
:	:	:		:	:	!	:

SGD

m.s.e = 0.002