# Chapter 1 Nature of Light

## 1.1 A brief History

#### From the 17<sup>th</sup> century:

- ➤ Willebrord Snell (1591 1626) discovered "Law of Refraction"
- ➤ Johannes Kepler (1571 1630) discovered "Total Internal Reflection"
- ➤ Pierre de Fermat (1601 1665) rederived "Law of Refraction" from his "Principle of Least time"
- ➤ Christiaan Huygens (1629 1695) proposed Wave Theory and discovered the phenomenon of polarization
- ➤ Isaac Newton (1642 1727): he described light as a stream of particles or corpuscles; concluded that white light was composed a mixture of a whole range of independent colors; he had difficulty to explain Newton' ring

What is light? Was it stream of particles, or a wave?

# 1.1 Brief History

### The 19th century:

- ➤ Thomas Young (1773 1829): Young' double-slit experiment → "Principle of Interference"
- ➤ Augustin Jean Fresnel (1788 1827): synthesized the concepts of Huygens' s wave description and interference principle; wave is a transverse wave; "Fresnel' equation" for partial reflection and transmission.
- James Clerk Maxwell (1831 1879): Final vindication of wave theory Maxwell's equations; he synthesized the basic physics of E & M into 4 Maxwell's equations. He concluded that Light was an electromagnetic disturbance in the form of waves propagated through the aether.

$$c = 1/\sqrt{\mu_o \varepsilon_o}$$

# 1-1 Brief History

### 20th-century Optics:

➤ Max Planck (1858 – 1947): showed that the form of the black-body spectrum could be explained by postulating that the walls of the body consisted of harmonic oscillators with a range of frequency, and that the energies of those with frequency v were restricted to integral multiple of the quantity hv (1900, NP1918)

h: Planck constant ( 6.626x10<sup>-34</sup> J-s )  $E = h\nu$ 

- ➤ Albert Einstein (1879 1955): Explained the *Photoelectric Effect*; Central to his explanation was the conception of light as a stream of light quanta (Photon) whose energy is related by above Equation (1905, NP1921)
- ➤ Niels Bohr (1885 1962): explained the emission and absorption processes of the Hydrogen atom; made fundamental contributions to understanding atomic structure and quantum mechanics (1913, NP1922)

#### Introduction to Blackbody radiation spectrum

- A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence.
- ➤ It is also a full radiator, with a *spectral* energy distribution dependent on its absolute temperature.
- > Great difference between the classical theory and experimental evidence led to significant quantum mechanical developments from Plank and Einstein



# 1-1 Brief History

## 20th-century Optics:

- ➤ Arthur Compton (1892 1962): explained the scattering of X-rays from electrons as particle-like collisions between light quanta and electrons in which both energy and momentum were conserved (1922, NP1927)
- ➤ Louis de Broglie (1892 1987): best known for his research on quantum theory and for his discovery of wave nature of electron (1924, NP1929)

# What is light? Was it stream of particles, or a wave?

➤ Light behaves like waves in its propagation and in the phenomena of interference and diffraction; however, it exhibits particle-like behavior when exchanging energy with matter, as in the Compton and photoelectric effects

### 1-2 Particles and Photons

Quantum mechanics describes both light and matter and, together with special relativity, predicts the momentum p, wavelength λ, and speed v for both material particles and photons are given by the same general equations:

$$p = \frac{\sqrt{E^2 - m^2 c^4}}{c}$$

$$\lambda = \frac{h}{p}$$

$$v = \frac{pc^2}{E} = c\sqrt{1 - \frac{m^2 c^4}{E^2}}$$

Total energy: 
$$E = mc^2 + E_{\nu}$$

- > Photon has zero rest mass, but each photon has energy hv
- Figure Energy unit eV:  $1eV = 1.6 \times 10^{-19} J$

$$p = \frac{E}{c}$$

$$\lambda = \frac{h}{p} = \frac{hc}{E}$$

$$v = c$$

### Example 1.1

An electron is accelerated to a kinetic energy  $E_k$  of 2.5 MeV.

- (a) Determine its relativistic momentum, de Broglie wavelength, and speed.
- (b) Determine the same properties for a photon having the same total energy as the electron.



"Light" is identified as an electromagnetic wave having a frequency in the range that human eyes can detect and interpret

Relations:

$$c = \lambda v$$
 or  $\lambda = c/v$ 

Common unit for  $\lambda$ :

Angstrom: 
$$1\mathring{A} = 10^{-10} m$$
  
Nanometer:  $1nm = 10^{-9} m$ 

### 1-3 The Electromagnetic Spectrum

#### Example 1.2

A certain sensitive radar receiver detects an electromagnetic signal of frequency 100 MHz and power (energy/time)  $6.63x10^{-16}$  J/s.

- (a) What is the wavelength of a photon with this frequency?
- (b) What is the energy of a photon in this signal? Express this energy in  $\boldsymbol{J}$  and in  $e\boldsymbol{V}$
- (c) How many photons/s would arrive at the receiver in this signal?
- (d) What is the energy (in J and in eV) of a visible photon of wavelength 555 nm?
- (e) How many visible ( $\lambda = 555$  nm) photons/s would correspond to a detected power of 6.63x10<sup>-16</sup> J/s?
- (f) What is the energy (in J and in eV) of an X-ray of wavelength 0.1 nm?
- (g) How many X-ray ( $\lambda = 0.1$  nm) photons/s would correspond to a detected power of  $6.63 \times 10^{-16}$  J/s?

### 1-4 Radiometry

Radiometry is the science of measurement of electromagnetic radiation

TABLE 1-1 RADIOMETRIC TERMS

| -                      | Term                                                       | Symbol (units)                                                                        | Defining equation                               |
|------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|
|                        | Radiant energy                                             | $Q_e(J = W \cdot s)$                                                                  | _                                               |
|                        | Radiant energy density                                     | $w_e(J/m^3)$                                                                          | $w_e = dQ_e/dV$                                 |
|                        | Radiant flux, Radiant power                                | $\Phi_{\varepsilon}(\mathbf{W})$                                                      | $\Phi_e = dQ_e/dt$                              |
| Scattered, reflected → | Radiant exitance                                           | $M_e(\mathrm{W/m^2})$                                                                 | $M_e = d\Phi_e/dA$                              |
|                        | Irradiance                                                 | $E_e(W/m^2)$                                                                          | $E_e = d\Phi_e/dA$                              |
|                        | Radiant intensity                                          | $I_{\varepsilon}(\mathrm{W/sr})$                                                      | $I_{\varepsilon} = d\Phi_{\varepsilon}/d\omega$ |
|                        | Radiance                                                   | $L_{\varepsilon}\!\!\left(\!\frac{\mathbf{W}}{\mathbf{sr}\cdot\mathbf{m}^2}\!\right)$ | $Le = dI_e/dA\cos\theta$                        |
|                        | Abbreviations: J, joule; W, watt; m, meter; sr, steradian. |                                                                                       |                                                 |

Abbreviations: J, joule; W, watt; m, meter sr, steradian

➤ The steradian (symbol: sr) is the SI unit of solid angle. It is used to describe 2-D angular spans in 3-D space, analogous to the way in which the radian describes angles in a plane.

$$d\omega = \frac{dA}{r^2}$$
S
Central ray

Contral ray

Contral ray

### 1-4 Radiometry

➤ Inverse square law: The flux leaving a point source within any solid angle is distributed over increasingly larger areas, producing an irradiance that decreases inversely with the square of the distance

$$E_e = \frac{d\Phi_e}{dA} = \frac{\Phi_e}{A} = \frac{4\pi I_e}{4\pi r^2} = \frac{I_e}{r^2}$$



➤ The radiance, *L*<sub>e</sub>, describes the radiant intensity per unit of projected area, perpendicular to the specified direction:

$$L_e = \frac{dI_e}{dA\cos\theta}$$



## 1-4 Radiometry

> Suggested problems: 2, 3, 10, 11, 12, 14, 16

TABLE 1-1 RADIOMETRIC TERMS

| Term                        | Symbol (units)                                                                        | Defining equation          |
|-----------------------------|---------------------------------------------------------------------------------------|----------------------------|
| Radiant energy              | $Q_{\varepsilon}(J = W \cdot s)$                                                      |                            |
| Radiant energy density      | $w_e(J/m^3)$                                                                          | $w_e = dQ_e/dV$            |
| Radiant flux, Radiant power | $\Phi_{\varepsilon}(\mathbf{W})$                                                      | $\Phi_e = dQ_e/dt$         |
| Radiant exitance            | $M_e(W/m^2)$                                                                          | $M_e = d\Phi_e/dA$         |
| Irradiance                  | $E_e(W/m^2)$                                                                          | $E_e = d\Phi_e/dA$         |
| Radiant intensity           | $I_e(W/sr)$                                                                           | $I_e = d\Phi_e/d\omega$    |
| Radiance                    | $L_{\varepsilon}\!\!\left(\!\frac{\mathbf{W}}{\mathbf{sr}\cdot\mathbf{m}^2}\!\right)$ | $Le = dI_e/dA \cos \theta$ |

Abbreviations: J, joule; W, watt; m, meter; sr, steradian.

© 2007 Pearson Prentice Hall, Inc.

### Problems: 1-17

A 1.5-mW helium-neon laser beam delivers a spot of light 5 mm in diameter across a room 15 m wide. The beam radiates from a small circular area of diameter 0.5 mm at the output mirror of the laser. Assume that the beam irradiance is constant across the diverging beam.

- (a) What is the beam divergence angle of this lasers?
- (b) Into what solid angle is the laser sending its beam?
- (c) What is the irradiance at the spot on the wall 15 m from the laser?
- (d) What is the radiance of the laser?