, also try to find out whether it	is a partial/total/well order relation.				
ion R on \mathbb{R} by xRy if $xy >$ ses of R ?	0. Is R an equivalence relation?	If so, what are the			
erunch			, S, T		
X of	0.0 \$ 0	Hoen	YX	20	
X	/ Xy / 5	1,000	2	1/2	
/ i ⁷	xy>0 ++	and y	+ >0 + •-	then	×2>0
i	ion R on \mathbb{R} by xRy if $xy >$ es of R ?	esurella rell	on R on R by xRy if $xy > 0$. Is R an equivalence relation? If so, what are the set of R ?	on R on R by xRy if $xy > 0$. Is R an equivalence relation? If so, what are the est of R ? Partial order relation R , A	on R on R by xRy if $xy > 0$. Is R an equivalence relation? If so, what are the es of R? Perhaps or der relation? If so, what are the es of R? Perhaps or der relation? If so, what are the es of R? The relation of the relation? If so, what are the es of R? The relation of the relation? If so, what are the es of R? The relation of the relation? If so, what are the es of R? The relation of the relation? If so, what are the es of R? The relation of the relation? If so, what are the es of R? The relation of the relation? If so, what are the es of R? The relation of the relation? If so, what are the est of R? The relation of the relation? If so, what are the est of R? The relation of the relation? If so, what are the est of R? The relation of the relation? If so, what are the est of R? The relation of the relation of R. The relation of

15 Q	total	lation on R × P(N lation? Is Q a tot	reletion	- patra	1 orde	re (other	+		cet 1A
	/					uka fo	911	3/6 €	0000
R	Ve	roz	mun log	ifer is	1	Helf,			
	· e			≤ íta					
A	/	3.40		osa itt		=b			
	,1	4 S B	ava t	BEA FI	- A-	B			
T		if x	ky and	y < Z .	7	×< 7			
1	V			1 350		ASC			
	Domo			ohon ~					
						010 1	tote	el ose	~ 11
	(1.	, 4,123	1) 🗷	(2, 11	39)	and	,	Moho	χ'
	(;	1, 21, 32) &	(1, 61,	23)				

ωθ <u>Warm Up</u> a. 10P6	c. 1 (3x) ⁵ (2y)°	+ 5 (3X) (24) ' + 5 (3X) '(24) 1	+ 10 (3x) 3 (2y) 2 + 1 (3x) (2y) 5	<i>t</i>
b. 13C5 c. (3x+2y)^5 d. (3x-2y) 9. 10 1	d.+1 (3x) 5 (2y) °	- 5 (3X) (24) 1 + 5 (3X) (24) 1	+ 10 (3x) 3 (2y) 2 - 1 (3x) cey) 5	_
b. 13! 8! 5!				

How many 7-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7 if there is no repetition and the odd digits must appear in an unbroken sequence. (So, 1357246 and 2753146 satisfy this condition, but 7654231 does not.)

wo c. $1 (3x)^{5} (2y)^{\circ} + 5 (3x)^{4} (2y)^{4} + 10 (3x)^{3} (2y)^{2} + 10 (3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} + 1 (3x)^{6} (2y)^{5}$ a. 10P6b. 13C5c. $(3x+2y)^{4}5$ d. $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} + 10 (3x)^{3} (2y)^{2} - 10 (3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ d. $(3x-2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ d. $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$ lo $(3x)^{2} (2y)^{3} + 5 (3x)^{4} (2y)^{4} - 1 (3x)^{6} (2y)^{5}$

How many 7-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7 if there is no repetition and the odd digits must appear in an unbroken sequence. (So, 1357246 and 2753146 satisfy this condition, but 7654231 does not.)

2. Determine $\label{eq:X} \{X \in P(\{0,1,2,3,4,5,6,7,8,9\}, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\}$			
the number antain 4	of subjects of elements	10 (4	93) th 97
3. How many different ways are store that sells papayas, oranges,	there for Mary to choose any comb apples and persimmons?	ination of 6 fruits from a	

at sells papayas, oranges, apples and persim	choose any combination of 6 fruits from a nmons?
many different ways are there for Mary to cat sells papayas, oranges, apples and persim	nmons?
at sells papayas, oranges, apples and persim	nmons?
papyyy orapu spot	
	us posinnios
	unodered with

10	1		
12		+	
2/2	! 2!		

8 different books on a bookshelf if 3 particular books must

4. How many arrange	ments using letter in word "championship"
	12!
	2/2/2/

	low many arrangements			nampions	np"				-
ŀ		2/2							
l									
a	imber of ways to arrange 8 d . Together . Separated	ifferent books	on a booksl	nelf if 3 parti	cular books n	nust be			
a. b.	mber of ways dividing 10 pe Group of 2,3,5 people Group of 4,3,3 people	ople of							
C.	5 pairs								