In <u>Optimisation</u> we described how we are interested in finding elements of the semantic cone $\mathcal{C}_{\mathrm{sem}}$, and that there is a duality correspondence between these positive elements and constraints on the space of limit functionals.

Assume $\mathcal G$ is some class of (c_e,c_v) -graphs where each graph is regular. Then we can derive some constraints on the space of limit functionals.

Extensions

Let σ be some type of size k. Let ext_i^σ be the sum of all σ -flags of size k+1 which have an edge between the unlabelled vertex and the vertex labelled i.

≡ Example

Let $\mathcal G$ be red-black vertex coloured regular graphs. Let σ be the following type

Then $\operatorname{ext}_1^{\sigma}$ is the following sum of σ -flags.

Lemma: For any σ and $G \in \mathcal{G}^{\sigma}$ we have $\rho(\operatorname{ext}_i^{\sigma}; G) = 1$ for all $i \in [|\sigma|]$.

⊘ Todo

Proof.

Corollary: For any limit functional $\phi \in \Phi^{\sigma}$ we have $\phi(\operatorname{ext}_{i}^{\sigma}) = 1$.

This actually only requires that $\lim \rho(\operatorname{ext}^\sigma;G_k)=1$ so we get this so long as $\mathcal G$ has graphs which are "asymptotically regular", meaning we can have some small constant divergence from regularity without effect.

Corollary: For $\phi \in \Phi^{\sigma}$ we have:

- $ullet \phi(\operatorname{ext}_i^\sigma \operatorname{ext}_i^\sigma) = 0 \ \ extit{for all} \ \ i,j \in [|\sigma|].$
- $ullet \phi(f \cdot \operatorname{ext}_i^\sigma) = \phi(f)$ for all $f \in \mathcal{L}^\sigma$.

Corollary: If σ is a local type then for any $\phi \in \Phi^{\emptyset}$ we have:

- $ullet \phi(\llbracket \operatorname{ext}_i^\sigma \operatorname{ext}_i^\sigma
 rbracket) = 0 \ extit{for all} \ i,j \in [|\sigma|].$
- $ullet \phi(\llbracket f \cdot \operatorname{ext}_i^\sigma
 rbracket) = \phi(\llbracket f
 rbracket) \ ext{ for all } f \in \mathcal{L}^\sigma.$

⊘ Todo

Proof.

$\ \, \textbf{§ Important} \\$

This property allows us to express some $f\in\mathcal{L}^\sigma$ as a sum of flags of larger size; Multiplying by $\operatorname{ext}^i_\sigma$ always increases the number of vertices in any given flag by 1.