Computability and Complexity Theory – Exercise 1

Turing Machines

ID:302188347

Collaboration statement:

שיתפתי פעולה עם עצמי אך כתבתי את הפתרונות בעצמי ולא נעזרתי בפתרון כתוב כלשהו בזמן כתיבת התשובות.

Problem 1: (Elementary concepts, 25 points)

a. Write the following sets formally:

Example: The set of all strings over Σ of length less or equal to 5 may be written formally as $\{w \in \Sigma^* : |w| \le 5\}$.

1. The set of all strings over $\{0,1\}$ of even length:

$$\{w \in \Sigma^* \mid |w| \mod 2 = 0\}$$

- i. Does it contain infinite length strings? No.
- ii. What is the shortest string in the set? ϵ .
- 2. The set of all strings over $\{0,1\}$ that have an even number of "0":

$$\{w \in \Sigma^* \mid \#_0(w) \text{ mod } 2 = 0\}$$

3. The set containing the empty string:

{ε}

4. The set of all bipartite graphs (A bipartite graph G is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to a vertex in V):

 $\{G\text{:}\ G\text{=}(V\text{,}E)\ \text{is a graph and}\ V\text{=}V_1\cup V_2,\ \text{s.t.}\ \forall\ (w\text{,}t)\ \text{and}\ \forall\ (t\text{,}w),\ w\text{\in}V_1\ \text{and}$ $t\text{\in}V_2\}$

b. Let $K = \{L \subseteq \{0,1\}^* : \forall w \in L \mid w \mid \leq 4 \text{ and } \mid w \mid \text{ is odd} \}.$

1. Let $L_1, L_2 \in K$.

- i. Is $L_1 \cap L_2 \in K$? \rightarrow yes.
- ii. Is $L_1L_2 \in K$? (L_1L_2 is the concatenation of L_1 and L_2) \rightarrow No.
- iii. Is $\emptyset \in K$ (\emptyset denotes the empty set)? \rightarrow Yes.
- iv. Is $\{0,00,000\} \in K? \rightarrow No$.

2. Let L∈K.

- i. Give a tight upper bound on |L| (i.e., how large can |L| be?):
- 10. The set may contain strings of length 1 or 3. Assume L contains all the possible strings, hence we've got 2^1 strings of length 1 and 2^3 strings of length 3 thus $|L| = 2^1 + 2^3 = 10$
- ii. What is the concatenation of L and \emptyset ? \emptyset .
- iii. What is the concatenation of L and $\{\epsilon\}$? L.
- 3. What is |K|? 1024. Explain:

The size of the "biggest" language is 10, hence K is the set of languages constructed from those 10 options thus K is the power set of the biggest language which yields $2^{10} = 1024$.

c. Write down the complement of the following language:

 $L = \{ P \subseteq \{0,1\}^* : P \text{ is a legal encoding of a C program, and P terminates on all inputs that start with '0' bit}$

L-COMP = { $P \subseteq \{0,1\}^*$: (P is not a legal encoding of a C program) \cup (P does not terminate on all inputs that start with '0' bit)}

Problem 2: (25 points) Let M be a Turing machine with:

 $Q=\{q_0,q_1,q_{acc},q_{rej}\}$, $\Sigma=\{0,1\}$, $\Gamma=\{0,1,_\}$ and δ remains undefined.

For each of the following pairs of configurations, C_i and C_{i+1} , determine whether it is possible under some definition of δ that C_i will yield C_{i+1} . If possible, define the specific transition that will cause M to go from C_i to C_{i+1} . If not, explain why.

 $\begin{array}{lll} a. & C_i &=& 011q_0100 \\ & C_{i+1} &=& 01q_11100 \\ & \delta \; (q_0,1) {=} (q_1,1,L) \end{array}$

- b. $C_i = 011q_1001$ $C_{i+1} = 0110q_001$ $\delta (q_1,0) = (q_0,0,R)$
- $\begin{array}{lll} c. & C_i = & 011q_001 \\ & C_{i+1} = & 01q_{acc}101 \\ & \delta \; (q_0,0) {=} (q_{accept},0,L) \end{array}$

d. $C_i =$

 $C_{i+1} = 0101q_00$ No. There's a missing '0' from the tape. Assuming M did delete the '0' it should have written a "space" (at least) in that position

 $010q_0100$

e. (0 points, not to be submitted)

$C_i =$	$111q_0110$
$C_{i+1} =$	11q ₀ 0110

rather than nothing.

f. (0 points, not to be submitted)

$C_i =$	$011q_{acc}110$
$C_{i+1} =$	$0101q_010$

g. (0 points, not to be submitted)

$C_i =$	$101q_1101$
$C_{i+1} \; = \;$	1010q ₃ 01

h. (0 points, not to be submitted)

$C_i =$	$010q_{1}101$
$C_{i+1} \; = \;$	$0100q_001$

Problem 3: (25 points)

Let $L = \{w \in \{0,1\}^* : |w| \text{ is even and w does not contain '11' as a subsequence}\}$. Draw a state diagram of a Turing machine M that decides the language L (reminder: a Turing machine decides a language L if M accepts every $w \in L$ and rejects every $w \notin L$).

Explain in words each component of the construction.

 q_{acc} and q_{rej} are self-describing and doesn't have any logic following them.

 q_0 is the starting state and marks even length *legal* strings (or the empty string). q_1 will mark strings with odd length that start by '0', q_2 indicates strings of even length that end with '1', q_3 indicates odd strings starting with '1'. Each state that accessed directly by reading '1' will cause redirection towards q_{rej} upon reading another '1'.

For each of the input strings below give the configurations sequence of M on the corresponding inputs:

a.
$$1001$$

 $q_01001 \rightarrow 1q_3001 \rightarrow 10q_001 \rightarrow 100q_11 \rightarrow 1001q_2 \rightarrow 1001_q_{acc}$

b. 0110
$$q_00110 \rightarrow 0q_1110 \rightarrow 01q_210 \rightarrow 011q_{rej}0$$

c.
$$100$$

 $q_0 100 \rightarrow 1q_3 00 \rightarrow 10q_0 0 \rightarrow 100q_1 \rightarrow 100_q_{rej}$

Problem 4: (25 points)

Consider the following Turing machine:

$$Q=\{q_0,q_1,q_2,q_3,q_{acc}\}\ ,\ \Sigma=\{0,1\}\ ,\ \Gamma=\{0,1,\#,_\}\ \ and$$

$$\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R\}\ is\ defined\ as\ follows:$$

$$\delta(q_0,0) = (q_1,\#,R) \qquad \qquad \delta(q_1,0) = (q_1,0,R) \qquad \qquad \delta(q_2,0) = (q_1,1,R)$$

$$\delta(q_0,1) = (q_2,\#,R) \qquad \qquad \delta(q_1,1) = (q_2,0,R) \qquad \qquad \delta(q_2,1) = (q_2,1,R)$$

$$\begin{split} \delta(q_{1},_) &= (q_{3},0,L) \\ \delta(q_{2},_) &= (q_{3},1,L) \\ \delta(q_{3},1) &= (q_{3},1,L) \\ \delta(q_{3},1) &= (q_{3},1,L) \\ \delta(q_{3},\#) &= (q_{acc},0,R) \end{split}$$

- a. What does this TM output on input 11100101011?0 (tape snapshot: 011100101011)
- b. Describe (in words) the function computed by this Turing machine. Your description should be clear and unambiguous.

The machine adds a 0 to the given string (so visually it looks like a shit-right, but it's not the function shift-right)

Problem 5: (0 points, not to be submitted)

Provide a detailed description (including Q, Σ , Γ and δ) of a Turing machine that, given an input x over $\{0,1\}$, outputs 0y, where y is identical to x except the last character, which is negated (for example, on input 01110 the machine should output 001111). You may assume that the input contains at least one symbol.

Problem 6: (0 points, not to be submitted)

Let $L\subseteq\{0,1\}^*$ be some language. Define

$$Max(L) = \{w \in L : \text{there is no } x \in \{0,1\}^* \text{ of size} > 0 \text{ such that } wx \in L \}.$$

- 1. Define Max(L) for each of the following languages:
 - a. $L_1 = \{0^n 1^n 0^i | n \ge 0, i = 0\}$
 - b. $L_2 = \{0^n 1^n 0^i | n \ge 0, i \ge 0\}$
 - c. $L_3 = \{0^n 1^n 0^i | n \le 2, i \le 2\}$