Návrh

Rekonštrukcia top kvarkov

Tvorba informačných systémov ZS 2019 / 2020

Richard Mészáros Martin Slimák Magdaléna Kozubaľová Veronika Benková

November 2019

Obsah

1. Úvod	3
1.1 Účel dokumentu	3
1.2 Prehľad nasledujúcich kapitol	3
2. Podrobná špecifikácia vonkajších interfejsov	3
3. Používané technológie	3
3.1 HTML/CSS	
3.2 JSON	3
3.3 PHP / MySQL	3
3.4 KERAS	
3.5 KlFitter	3
3.6 LWTNN	3
3.7 Doplnkové záležitosti aplikácie	4
3.7.1 Stiahnutie súborov	4
4. Návrh implementácie	5
4.1 UML – state diagram	5
4.2 UML – class diagram	6
4.3 UML – component diagram	

1. Úvod

1.1 Účel dokumentu

Tento dokument slúži ako návrh pre systém na rekonštrukciu top kvarkov. Dokument dôkladne popisuje funkcie a metódy systému a podáva návrh na implementáciu.

1.2 Prehľad nasledujúcich kapitol

Nasledujúce kapitoly budú venované kompletnému návrhu systému, opísaného slovne aj pomocou diagramov.

2. Podrobná špecifikácia vonkajších interfejsov

Systém bude bežať na serveri atlas23 a komunikovať s databázou, kde budú uložené potrebné súbory na trénovanie neurónových sietí a KlFitter.

3. Používané technológie

3.1 HTML / CSS

Používateľské rozhranie aplikácie je tvorené pomocou HTML a CSS.

3.2 JSON

Dáta pre trénovanie neurónovej siete a KFitter sú uložené vo formáte json (human readable).

3.3 PHP / MySQL

V MySQL databáze bude uložený obsah aplikácie, čo sú výsledky po spracovaní dát jednotlivými metódami (KlFitter a neurónové siete). Okrem uložených dát z metód, bude obsahovať aj informáciu o dĺžke procesorového času, ktorý bol potrebný na vykonanie metód.

Pomocou PHP bude realizovaný prihlasovací systém aplikácie a vkladanie vstupov pre trénovanie neurónových sietí a KLFitter.

3.4 KERAS

KERAS umožňuje rýchle experimentovanie prostredníctvom vysokoúrovňového, ľahko použiteľného, modulárneho a rozšíriteľného API.

Aplikácia bude využívať KERAS pri trénovaní neurónovej siete. Všetky údaje vloží do KERASU (na webovom rozhraní si používateľ vyberie aké chce premenné a pod.) Po spustení trénovania ponúkne napr. obrázok či trénovanie prebehlo správne alebo nie. Všetky tieto údaje sa uložia do databázy.

3.5 KlFitter

Systém využije implementovanú metódu KLFitter na rekonštrukciu top kvarkov. Ako vstup bude brať jeden event, ktorý pomocou permutácií zoradí a vyberie najsprávnejšiu permutáciu. Výstupom budú jety, ktoré prislúchajú tejto permutácii a tú uloží do databázy.

3.6 LWTNN

Knižnica na prácu s neurónovými sieťami. Obsahuje sadu scriptov na prevod uložených neurónových sietí na štandardný formát JSON a skupinu tried, ktoré rekonštruujú neurónovú sieť na použitie v prostredí C ++.

3.7 Doplnkové záležitosti aplikácie

3.7.1 Stiahnutie súborov

Stiahnutie súborov z webového rozhrania, po natrénovaní neurónovej siete.