## Trabalho IV: Testes uniformemente mais poderosos.

Disciplina: Inferência Estatística Aluno: Rener de Souza Oliveira

14 de novembro de 2020

## Introdução

Vimos que os testes de hipótese fornecem uma abordagem matematicamente sólida para traduzir hipóteses científicas sobre o processo gerador dos dados em decisões sobre os dados – isto é, traduzir afirmações sobre partições do espaço de parâmetros,  $\Omega$ , em afirmações testáveis sobre o espaço amostral  $\mathcal{X}^n$ .

Um teste  $\delta(\boldsymbol{X})$  é uma decisão (binária) de rejeitar ou não uma hipótese nula  $(H_0)$  sobre  $\theta \in \Omega$  com base em uma amostra  $\boldsymbol{X}$ . A capacidade de um teste de rejeitar  $H_0$  quando ela é falsa é medida pela função poder,  $\pi(\theta|\delta)$ . Nem todos os testes, no entanto, são criados iguais. Em certas situações, é possível mostrar que um procedimento  $\delta_A$  é uniformemente mais poderoso que outro procedimento  $\delta_B$  para testar a mesma hipótese.

Neste trabalho, vamos definir e aplicar o conceito de **teste uniformemente** mais poderoso.

## 1 Motivação e Definição

Sejam:

$$H_0: \theta \in \Omega_0 \subset \Omega,$$

$$H_1: \theta \in \Omega_1 \subset \Omega,$$
onde  $\Omega_1 = \Omega \setminus \Omega_0$ 

$$(1)$$

Ao realizar um procedimento de teste  $\delta(\boldsymbol{X})$ , é desejável que a função poder  $\pi(\theta|\delta) :\stackrel{\text{def}}{=} \Pr(Rejeitar\ H_0|\theta)$  seja menor ou igual à um nível de significância  $\alpha_0 \in (0,1)$ , quando  $\theta \in \Omega_0$ , limitando superiormente a probabilidade de erro do tipo I (rejeitar  $H_0$  quando ela é verdadeira). Podemos expressar tal propriedade da seguinte forma:

$$\alpha(\delta) \leq \alpha_0$$

Onde  $\alpha(\delta) := \sup_{\theta \in \Omega_0} \pi(\theta|\delta)$  é o tamanho do teste.

Além disso, queremos também ter algum controle sobre a probabilidade de erro do tipo II (não rejeitar  $H_0$  quando ela é falsa). Como a probabilidade de tal erro quando  $\theta \in \Omega_1$  é igual a  $1 - \pi(\theta|\delta)$ , queremos que, na região onde  $H_0$  é falsa  $(\Omega_1)$  a função poder  $\pi(\theta|\delta)$  seja máxima, para todo  $\theta$  em tal região. Tal maximização, minimiza a probabilidade de erro do tipo II quando  $\theta \in \Omega_1$ , isso nem sempre é possível, mas quando for, temos um nome especial para esse teste, que segue abaixo sua definição:

**Definicão 1** (Teste Uniformemente mais poderoso) Seja C uma classe de teste para as hipóteses (1);  $\delta^* \in C$  é chamado de uniformemente mais poderoso da classe C, se:

$$\pi(\theta|\delta^*) \ge \pi(\theta|\delta) \ \forall \theta \in \Omega_1,$$

para qualquer teste  $\delta \in \mathcal{C}$ .

Seguindo a motivação dada acima, podemos definir C como o conjunto de todos dos testes de tamanho menor ou igual a  $\alpha_0$ , limitando o erro tipo I.

## 2 Razão de Verossimilhanças Monótona