Mid Semester Examination, Spring-2019-20

Full marks: **30** Exam duration: **2 Hours**

Answer all questions. Figures next to each question in square bracket indicate marks.

All Parts of a question should be answered at one place.

This question paper contains ONE page.

- 1. Is A symmetric, if row space of A = column space of A, and $\mathbf{N}(A) = \mathbf{N}(A^{\mathrm{T}})$? [2]
- 2. The linear combinations of $\mathbf{u} = (1, 1, 0)$ and $\mathbf{v} = (0, 1, 1)$ fill a plane in \mathbf{R}^3 . Find a vector \mathbf{z} that is perpendicular to \mathbf{u} and \mathbf{v} . Show that \mathbf{z} is perpendicular to every vector $c\mathbf{u} + d\mathbf{v}$ on the plane. Find a vector \mathbf{w} that is not on the plane.
- 3. Find the matrices C_1 and C_2 containing independent columns of A_1 and A_2 .

$$A_1 = \begin{pmatrix} 1 & 3 & -2 \\ 3 & 9 & -6 \\ 2 & 6 & -4 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Factor each of the above matrices into A = CR.

Produce a basis for the column spaces of A_1 and A_2 . What are the dimensions of those column spaces — the number of independent vectors? What are the ranks of A_1 and A_2 ? How many independent rows in A_1 and A_2 ? [4]

- 4. How is the null space of C related to the null spaces of A and B, if $C = \begin{pmatrix} A \\ B \end{pmatrix}$? [4]
- 5. Four possibilities for the rank r and size m, n match four possibilities for Ax = b. Find four matrices A_1 to A_4 that demonstrate those possibilities. [4]
 - (a) r = m = n $A_1 x = b$ has 1 solution for every b
 - (b) r = m < n $A_2 x = b$ has 1 or ∞ solutions
 - (c) r = n < m $A_3 x = b$ has 0 or 1 solution
 - (d) r < m, r < n $A_4 x = b$ has 0 or ∞ solutions
- 6. Show that AA^{T} has the same null space as that of A. [4]
- 7. If \mathbf{u} and \mathbf{v} are orthogonal unit vectors, show that $\mathbf{u} + \mathbf{v}$ is orthogonal to $\mathbf{u} \mathbf{v}$. What are the lengths of those vectors?
- 8. If \mathbf{u} and \mathbf{v} are not orthogonal, state the status of orthogonality between $\mathbf{w} = \mathbf{v} \mathbf{u}(\mathbf{u}^{\mathrm{T}}\mathbf{v})$ and \mathbf{u} and \mathbf{v} .
- 9. Find LU factorization of following matrices and solve the linear system $A\mathbf{x} = \mathbf{b}$, where \mathbf{b} is the column vector with all elements equal to 1 [4]

(a)
$$\begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 3 & 2 \end{pmatrix}$