DEVOIR SURVEILLÉ N°09

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 -

On note f l'application qui à un polynôme $P \in \mathbb{R}[X]$ associe le polynôme $(X^2 - 1)P'' + 4XP'$.

On rappelle que $\mathbb{R}_n[X]$ désigne l'ensemble des polynômes de degré *inférieur ou égal* à n. Notamment $\mathbb{R}_{-1}[X] = \{0\}$.

On notera également I_n l'identité de $\mathbb{R}_n[X]$.

Partie I - Étude d'un endomorphisme

- **1.** Montrer que f est un endomorphisme de $\mathbb{R}[X]$.
- **2.** On suppose qu'il existe $\lambda \in \mathbb{R}$ et $P \in \mathbb{R}[X]$ non nul tel que $f(P) = \lambda P$. En considérant le coefficient dominant de P, montrer que l'on a nécessairement $\lambda = n(n+3)$ où n désigne le degré de P.
- **3.** Dans la suite de l'énoncé, on pose $\lambda_n = n(n+3)$ pour $n \in \mathbb{N}$. Montrer que si un polynôme $P \in \mathbb{R}[X]$ non nul vérifie $f(P) = \lambda_n P$, alors $\deg P = n$.
- **4.** Soit $n \in \mathbb{N}$. Montrer que f induit un endomorphisme de $\mathbb{R}_n[X]$, autrement dit que $\mathbb{R}_n[X]$ est stable par f. On notera f_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par f.
- 5. Dans cette question, on pose $F_n=\mathrm{Ker}(f_n-\lambda_n I_n)$ et $G_n=\mathrm{Im}(f_n-\lambda_n I_n)$ pour tout $n\in\mathbb{N}.$
 - **a.** Montrer $G_n \subset \mathbb{R}_{n-1}[X]$. Que peut-on en déduire sur la dimension de F_n ?
 - **b.** Montrer que $\mathbb{R}_n[X] = F_n \oplus \mathbb{R}_{n-1}[X]$.
 - **c.** En déduire la dimension de F_n puis l'existence d'un unique polynôme P_n unitaire tel que $f(P_n) = \lambda_n P_n$. On précisera le degré de P_n .
- **6.** On pose $Q_n = (-1)^n P_n(-X)$ pour $n \in \mathbb{N}$. Montrer que $f(Q_n) = \lambda_n Q_n$. Que peut-on en déduire sur la parité de P_n ?
- 7. Montrer que pour tout entier $n \ge 2$, le coefficient de X^{n-2} dans P_n est $-\frac{n(n-1)}{2(2n+1)}$.
- **8.** Calculer P_0 , P_1 et P_2 .
- 9. On pose pour $n\in\mathbb{N},$ $R_n=(X^2-1)P_n'-nXP_n.$
 - **a.** Montrer que $R'_n = (n+2)(nP_n XP'_n)$ puis calculer $f(R_n)$ en fonction de R_n seulement.
 - **b.** En déduire que pour tout $n \in \mathbb{N}^*$, puis que

$$R_n + \frac{n(n+2)}{2n+1}P_{n-1} = 0$$

c. En dérivant cette dernière relation, montrer que pour tout entier $n \ge 2$,

$$P_{n} - XP_{n-1} + \frac{n^{2} - 1}{4n^{2} - 1}P_{n-2} = 0$$

Partie II - Comportement asymptotique d'une suite

On considère la suite réelle (\mathfrak{u}_n) de premiers termes $\mathfrak{u}_0=1,\mathfrak{u}_1=\frac{10}{9}$ et telle que pour tout entier $\mathfrak{n}\geqslant 2$,

$$u_{n} = u_{n-1} + \frac{1}{9} \left[u_{n-1} - u_{n-2} + \frac{3}{4n^{2} - 1} u_{n-2} \right]$$

- 10. Décomposer en éléments simples la fraction rationnelle $\frac{1}{4X^2-1}$. En déduire un expression simple de $S_n = \sum_{k=0}^n \frac{1}{4k^2-1}$ pour tout entier $n \geqslant 2$ ainsi que la limite de la suite (S_n) .
- **11.** a. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $u_n \geqslant u_{n-1} \geqslant 1$.
 - **b.** Montrer que pour tout entier $n \ge 2$,

$$u_n = u_1 + \frac{1}{9} \left[u_{n-1} - u_0 + \sum_{k=2}^{n} \frac{3}{4k^2 - 1} u_{k-2} \right]$$

- $\textbf{c.} \ \ \text{En d\'eduire que } u_n\leqslant \frac{6}{5} \ \text{pour tout } n\in \mathbb{N} \ \text{et en d\'eduire la convergence de la suite } (u_n).$
- **12.** On pose pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$

$$f_n(t) = \frac{2^n}{e^{nt}} P_n(\operatorname{ch} t)$$

a. Déterminer les fonctions f_0 et f_1 et montrer que pour tout entier $n \ge 2$

$$\forall t \in \mathbb{R}, \ f_n(t) - f_{n-1}(t) = e^{-2t} \left[f_{n-1}(t) - f_{n-2}(t) + \frac{3}{4n^2-1} f_{n-2}(t) \right]$$

- **b.** Montrer par récurrence que pour tout entier $n \in \mathbb{N}^*$, les fonctions f_{n-1} et $f_n f_{n-1}$ sont positives et décroissantes sur \mathbb{R} .
- **13.** Montrer que la fonction ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. On note argch sa bijection réciproque. Préciser le sens de variation de argch.
- **14.** a. On pose $\alpha = \operatorname{argch}(5/3)$. Déterminer e^{α} et montrer que $u_n = f_n(\alpha)$ pour tout entier $n \in \mathbb{N}$.
 - **b.** On se donne un réel $x \geqslant \frac{5}{3}$. Montrer que la suite de terme général $f_n(\operatorname{argch} x)$ converge vers une limite strictement positive $\ell(x)$ que l'on ne demande pas de déterminer. En déduire un équivalent de $P_n(x)$ lorsque n tend vers $+\infty$ que l'on exprimera à l'aide de $\ell(x)$.

EXERCICE 1.

On considère dans cet exercice un entier $\mathfrak{p}\geqslant 2$ et un polynôme à coefficients réels de degré \mathfrak{p} et de coefficient dominant $\mathfrak{a}_{\mathfrak{p}}=1$:

$$P = \sum_{k=0}^{p} a_k X^k$$

On se propose de localiser dans le plan complexe les racines du polynôme P, afin de savoir dans quelle zone rechercher d'éventuelles racines de ce polynôme P.

On désigne à cet effet par M le nombre réel positif suivant :

$$M = \max_{0\leqslant k\leqslant p-1} |\alpha_k| = \max\{|\alpha_0|, |\alpha_1|, \dots, |\alpha_{p-1}|\}$$

1. On considère la fonction définie sur \mathbb{R}_+ par

$$\forall r \in \mathbb{R}_+, \ f(r) = r^{p+1} - (M+1)r^p + M$$

- a. Déterminer l'unique zéro strictement positif r_0 de la dérivée de f. Comparer les positions de r_0 et 1 en fonction des positions de M et $\frac{1}{p}$.
- **b.** On suppose $M\leqslant \frac{1}{p}$. Dresser le tableau de variations de f sur \mathbb{R}_+ . En déduire le signe de f(r) lorsque r>1.
- **c.** On suppose $M > \frac{1}{p}$. Dresser le tableau de variations de f sur \mathbb{R}_+ . En déduire le signe de f(r) lorsque $r \geqslant M+1$.
- 2. Localisation des racines du polynôme P.
 - a. Démontrer que toute racine complexe z du polynôme P de module différent de 1 vérifie l'inégalité

$$|z|^{p} \leqslant M \frac{|z|^{p} - 1}{|z| - 1}$$

En supposant |z| > 1, montrerr que l'on a l'inégalité $f(|z|) \le 0$.

- **b.** Etablir que si $M \leq \frac{1}{p}$, alors les racines de P sont de module inférieur ou égal à 1.
- **c.** Etablir que si $M > \frac{1}{p}$, alors les racines de P sont de module strictement inférieur à M+1.
- 3. On suppose dans cette question que

$$P = X^{p} - \frac{1}{p} \sum_{k=0}^{p-1} X^{k}$$

- a. Montrer que les racines complexes de P sont de module inférieur ou égal à 1.
- **b.** Montrer que 1 est un racine simple de P.
- 4. On suppose dans cette question que

$$P = X^p - \sum_{k=0}^{p-1} X^k$$

- a. Montrer que les racines complexes de P sont de module strictement inférieur à 2.
- **b.** Etablir que, si z est racine de P, alors z est racine du polynôme $X^{p+1} 2X^p + 1$.
- **c.** En étudiant la fonction g définie sur \mathbb{R}_+ par $g(r) = r^{p+1} 2r^p + 1$, établir que :
 - le polynôme P a une racine réelle x_p telle que $\frac{2p}{p+1} \leqslant x_p \leqslant 2$;

- la suite (x_p) converge vers 2.
- 5. On pose maintenant $\epsilon_p=2-x_p$ et on étudie ϵ_p lorsque p tend vers $+\infty$.
 - Etablir que $(2-x_p)x_p^p=1$ puis que $\varepsilon_p=(2-\varepsilon_p)^{-p}$. En déduire que la suite de terme général $p\varepsilon_p$ converge vers 0.
 - Etablir qu'on a le développement asymptotique suivant

$$x_p \underset{p \to +\infty}{=} 2 - \frac{1}{2^p} + o\left(\frac{1}{2^p}\right)$$

6. Etablir enfin que si z est une racine de P, alors $\frac{1}{z}$ est racine de

$$Q = X^p + X^{p-1} + \dots + X - 1 = \sum_{k=1}^p X^k - 1$$

En déduire que toutes les racines de P sont de module strictement compris entre $\frac{1}{2}$ et 2.