MATH 3140– Homework 11

Due: Monday, 26 November 2018 Exercises: Ch. 11. 7, 11, 17, 18, 19.

- **11.7** In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$.
 - (a) List the elements in HN (we usually write H+N for these additive groups) and $H\cap N$.
 - (b) List the cosets in HN/N, showing the elements in each coset.
 - (c) List the cosets in $H/(H \cap N)$, showing the elements in each coset.
 - (d) Give the correspondence between HN/N and $H/(H \cap N)$ described in the proof of the Second Isomorphism Theorem.
- 11.11 Show that a homomorphism defined on a cyclic group is completely determined by its action on the generator of the group.
- **11.17** If H and K are normal subgroups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a subgroup of $G/H \times G/K$.
- **11.18** Let $\varphi: G_1 \to G_2$ be a surjective group homomorphism. Let H_1 be a normal subgroup of G_1 and suppose that $\varphi(H_1) = H_2$. Prove or disprove that $G_1/H_1 \cong G_2/H_2$.
- **11.19** Let $\phi: G \to H$ be a group homomorphism. Show that ϕ is one-to-one if and only if $\phi^{-1}(e) = \{e\}.$