Data Science for Data Wranglers Part 3: Tidy Data

Data Manipulation

Changing the variables, values, and units of analysis contained in the data set.

Data Tidying

Changing the layout of tabular data to make it suitable for a particular piece of software (R).

Data Visualization

Transforming the data to a visual format that reveals visual patterns.

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pollution

city	particle size	amount (μg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

storms

storm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlene 50 1010 1999-06-13 Arlan 43 1070 1996-36-21

cases

pollution

city	particle size	amount (µg/m³)
New York	large	> 23
New York	small	14
Lordon	large	>22
Lordon	small	16
Being	large	121
Bering	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

- City
- Amount of large particles
- Amount of small particles

storms

storm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlene 50 1010 1999-06-13 Arlan 43 1070 1996-36-21

cases

pollution

city	particle size	amount (µg/m³)
New York	large	> 23 A
New York	small	14
Lordon	large	>22
Lordon	small	16
Being	large	121
Beling	small	56

storms\$storm
storms\$wind
storms\$pressure
storms\$date

cases\$country
names(cases)[-1]
unlist(cases[1:3, 2:4])

pollution\$city[1,3,5]
pollution\$amount[1,3,5]
pollution\$amount[2,4,6]

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

plot(storms\$date, storms\$wind)

particle size	amount (µg/m³)
large	23
small	14
large	22
small	16
large	121
small	56
	large small large

plot(pollution\$amount[c(1,3,5)], pollution\$amount[c(2,4,6)])

pollution

city	size	amount
New York	large	23
New York	small	14
London	large	> 22
London	small	16
Beijing	large	121
Beijing	small	56

city, large, small

plot(pollution\$amount[c(1,3,5)], pollution\$amount[c(2,4,6)])

pollution

city	size	amount
New York	large	23
London	large	22
Beijing	large	121
NewYork	small	14
London	small	16
Beijing	small	56

city, large, small

pollution

city	size	amount
New York	large	23
Beijing	small	56
Beijing	large	121
NewYork	small	14
London	small	16
London	large	22

city, large, small

storms

storm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlene 50 1010 1999-06-13 Arlan 43 1070 1996-36-21

cases

pollution

city	particle size	amount (µg/m³)
New York	large	> 23 A
New York	small	14
Lordon	large	>22
Lordon	small	16
Being	large	121
Beling	small	56

storms\$storm
storms\$wind
storms\$pressure
storms\$date

cases\$country
names(cases)[-1]
unlist(cases[1:3, 2:4])

pollution\$city[1,3,5]
pollution\$amount[1,3,5]
pollution\$amount[2,4,6]

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms\$pressure / storms\$wind

950	110	8.6
1003	45	22.3
987	65	15.2
1004	40	25.1
1006	50	20.1
1000	45	22.2

Data sets come in many formats ...but R prefers just one.

storms

Tidy data

- Each variable is saved in its own column.
- Each observation is saved in its own row.
- Each "type" of observation stored in a **single table** (here, storms).

Recap: Tidy data

123 Variables in columns, observations in rows, each type in a table

Easy to access variables

Automatically preserves observations

tidyr

A package that reshapes the layout of tables.

Two main functions: gather() and spread()

```
# install.packages("tidyr")
```

library(tidyr)

?gather

?spread

tb2

Tuberculosis counts by country collected by the WHO for the *Global Tuberculosis Report*

tb2

Tuberculosis counts by country collected by the WHO for the *Global Tuberculosis Report*

 $(1,691 \times 3)$

country	year	cases
Afghanistan	1997	128
Afghanistan	1998	1778
Afghanistan	1999	745
Afghanistan	2000	2666
Afghanistan	2001	4639
Afghanistan	2002	6509

tb2

Tuberculosis rates by country collected by the WHO for the *Global Tuberculosis Report*

$$rate = \frac{cases}{population} \times 10000$$

 $(1,691 \times 3)$

country	year	cases
Afghanistan	1997	128
Afghanistan	1998	1778
Afghanistan	1999	745

population

library(EDAWR)
View(population)

COV	ntry		1330	1337	1000	1000	2000	2001	2002	2000	200-	2000	2000	2007	2000	2000	2010	2011	2012	->
Afgha	nistan	17586073	18415307	19021226	19496836	19987071	20595360	21347782	22202806	22116142	04010600	04960955	25631282	26349243	27032197	27708187	28397812	29105480	29824536	30551674
Alg	eria	29315463	29845202	J 94 5466	30820435	31276295	31719449	32150198	32572977	33003442	33461345	33960903	34507214	35097043	35725377	36383302	37062820	37/6256	22481705	39208194
An	gola	1210 952	12451945	12791388	13137542	13510616	13924930	14385283	14886574	15421075	15976715	16544376	17122409	17712824	18314441	18926650	19549124	20180490	20820525	214 618
Arge	ntina	34833168	24070	35690778	36109342	36514558	36903067	37273361	37627545	37970411	38308779	38647854	38988923	39331357	39676083	40023641	40374224	40728738	410866	41446246
Azer	paijan		7852273	7921745	7984460	8047000		9105/197	8279768	8370169	845 7	8563398	8665006	8770122		00Z00	9094718	9202432	9308959	

Bandades 119869585 122400896 124945315 127478524 129966823 132383265 134729503 137006279 139185986 141235035 143135180 144868702 146457067 147969967 149503100 151125475 152862431 154695368 156594962

Strategy

1. Tidy the population data set

country	year	population
Afghanistan	1997	19021226
Afghanistan	1998	19496836
Afghanistan	1999	19987071
Afghanistan	2000	20595360
Afghanistan	2001	21347782
Afghanistan	2002	22202806
Afghanistan	2003	23116142

country	1995	1996	1997	1998	1999	2000	2001	2002	2003	20
Afghanistan	17586073	18415307	19021226	19496836	19987071	20595360	21347782	22202806	23116142	2401
Algeria	29315463	29845208	30245	3082042	31276295	J1719449	∠150198	2572977	337 33442	3346
Angola	12104952	12451045	1279T388	131375	13510616	1300 00	14385283	Jo6574	15421075	1597
Argentina	1000168	35264070	35690770	50109342	36514558	203067	37273361	37627545	37970411	3830
Azerbaijan	7770806	7852273	700 N	7984460	8047936	8117742	8195427	8279768	8370169	846
Bangladesn	119869585	122400896	124945315	127478524	129966823	132383265	134729503	137006279	139185986	1412

Strategy

- 1. Tidy the population data set
- 2. Join the population values to the tb2 data set

country	year	cases	population
Afghanistan	1997	128	19021226
Afghanistan	1998	1778	19496836
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Afghanistan	2001	4639	21347782
Afghanistan	2002	6509	22202806

country	year	population
Afghanistan	1997	19021226
Afghanistan	1998	19496836
Afghanistan	1999	19987071
Afghanistan	2000	20595360
Afghanistan	2001	21347782
Afghanistan	2002	22202806

Strategy

- 1. Tidy the population data set
- 2. Join the population values to the tb2 data set
- 3. Use mutate() to calculate the rate from cases and population.

country	year	cases	population	rate
Afghanistan	1997	128	19021226	0.07
Afghanistan	1998	1778	19496836	▶ 0.91
Afghanistan	1999	745	19987071	0.37
Afghanistan	2000	2666	20595360	1.29
Afghanistan	2001	4639	21347782	2.17
Afghanistan	2002	6509	22202806	2.93
Afghanistan	2003	6528	23116142	2.82

Your Turn

If you do not have tb2, recreate it now to use in the next sections.

```
tb2 <- tb %>%
  mutate(cases = child + adult + elderly) %>%
  select(country:sex, cases) %>%
  filter(!is.na(cases)) %>%
  group_by(country, year) %>%
  summarise(cases = sum(cases)) %>%
  ungroup()
```

Reshape the layout of your data

country	year	population
Afghanistan	1997	19021226
Afghanistan	1998	19496836
Afghanistan	1999	19987071
Afghanistan	2000	20595360
Afghanistan	2001	21347782
Afghanistan	2002	22202806
Afghanistan	2003	23116142
Afghanistan	2004	24018682
Afghanistan	2005	24860855
Afghanistan	2006	25631282
Afghanistan	2007	26349243

country	1995	1996	1997	1998	1999	2000	2001	2002	2003	20
Afghanistan	17586073	18415307	19021226	19496836	19987071	20595360	21347782	22202806	23116142	2401
Algeria	29315463	29845208	30245	3082040	31276295	51719449	∠150198	2 572977	337 33442	3346
Angola	12104952	124510	12791388	131375	13510616	1300 000	14385283	ა ა 6574	15421075	1597
Argentina	1005168	35264070	3569077	00109342	36514558	203 067	37273361	37627545	37970411	3830
Azerbaijan	7770806	7852273	700 TJ	7984460	8047936	8117742	8195427	8279768	8370169	846
Bangladesn	119869585	122400896	124945315	127478524	129966823	132383265	134729503	137006279	139185986	1412

This will require more than mutate() and summarise()

tidyr

A package that reshapes the layout of tables.

Two main functions: gather() and spread()

```
# install.packages("tidyr")
```

library(tidyr)

?gather ?separate

?spread ?unite

Your Turn

On a sheet of paper, draw how the cases data set would look if it had the same values grouped into three columns: *country, year, n*

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
---------	------	---

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Ygar	
FR	2011	7000
DE	2011	5800
US	2011	15(00
FR	2012	6900
DE	2012	6000
US	2012	14(00
FR	2013	7000
	2013	6200
	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Countr	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

4		

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country FR DE US

key (former column names)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country FR DE US

key value (former cells)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

gather()

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

```
gather(cases, "year", "n", 2:4, convert = TRUE)
```

data frame to reshape name of the new key column (a character string)

name of the new value column (a character string)

names or numeric indexes of columns to collapse

```
##
                                            country year
##
     country
                   2012
                         2013
             2011
                                       ## 1
                                                  FR 2011
                                                            7000
                   6900
                          7000
## 1
              7000
          FR
                                       ## 2
                                                  DE 2011
                                                            5800
## 2
         DE
              5800
                    6000
                          6200
## 3
         US 15000 14000 13000
                                                  US 2011 15000
                                       ## 3
                                       ## 4
                                                            6900
                                                  FR 2012
                                       ## 5
                                                  DE 2012
                                                           6000
                                       ## 6
                                                  US 2012 14000
                                       ## 7
                                                  FR 2013
                                                            7000
                                       ## 8
                                                           6200
                                                  DE 2013
                                       ## 9
                                                  US 2013 13000
```

cases %>% gather("year", "n", 2:4)

```
##
                                              country year
##
     country
              2011
                    2012
                           2013
                                        ## 1
                                                    FR 2011
                                                              7000
                     6900
              7000
                           7000
##
                                        ## 2
                                                    DE 2011
                                                              5800
              5800
                     6000
                           6200
##
          DE
## 3
          US 15000 14000 13000
                                        ## 3
                                                    US 2011 15000
                                        ## 4
                                                    FR 2012
                                                              6900
                                        ## 5
                                                    DE 2012
                                                              6000
        Converts numbers
                                                    US 2012 14000
                                        ## 6
      in the keys column from
                                        ## 7
                                                              7000
                                                    FR 2013
        factors to numerics
                                        ## 8
                                                              6200
                                                    DE 2013
                                                    US 2013 13000
```

cases %>% gather("year", "n", 2:4, convert = TRUE)

Your Turn

Use gather() and arrange() to build the data set on the right from the original tb data set (EDAWR::tb)

EDAWR::tb

country	year	sex	child	adult	elderly
Afghanistar	1995	female	NA	NA	NA
Afghanistar	1995	male	NA	NA	NA
Afghanistar	1996	female	NA	NA	NA
Afghanistar	1996	male	NA	NA	NA
Afghanistar	1997	female	5	96	1
Afghanistar	1997	male	0	26	0
Afghanistar	1998	female	45	1142	20
Afghanistar	1999	male	30	500	41
Afabaniatan	2000	fomolo	25	101	0

country	year	sex	age	cases
Afghanistan	1995	female	child	NA
Afghanistan	1995	female	adult	NA
Afghanistan	1995	female	elderly	NA
Afghanistan	1995	male	child	NA
Afghanistan	1995	male	adult	NA
Afghanistan	1995	male	elderly	NA
Afghanistan	1996	female	child	NA
Afghanistan	1996	female	adult	NA
Afabaniatan	1006	fomolo	aldarkı	NΙΛ

```
EDAWR::tb %>%
   gather("age", "cases", 4:6) %>%
   arrange(country, year, sex, age)

EDAWR::tb %>%
   gather("age", "cases", child:elderly) %>%
   arrange(country, year, sex, age)
```

Your Turn

On a sheet of paper, draw how the pollution data set would look if it had three columns: city, large, small

pollution

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
------	-------	-------

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

1 2

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New Yor	23	14
London	22	16
Beijing	121	56

key (new column names)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key value (new cells)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

spread()

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns


```
##
                                   ##
        city size amount
## 1 New York large
                      23
                                   ## 1
                      14
## 2 New York small
                                   ## 2
                     22
## 3 London large
                      16
    London small
                     121
## 5 Beijing large
## 6 Beijing small
                      56
```

```
## city large small
## 1 Beijing 121 56
## 2 London 22 16
## 3 New York 23 14
```

pollution %>% spread(size, amount)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

Your Turn

Use spread() to turn pollution into the data set on the right. Then use gather() to turn it back into the data set on the left.

pollution

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pollution2

city	large	small
New York	23	14
London	22	16
Beijing	121	56

```
pollution2 <- pollution %>% spread(size, amount)
      city large small
##
## 1 Beijing 121
                   56
## 2 London 22 16
## 3 New York 23 14
pollution2 %>% gather("size", "amount", 2:3)
##
    city size amount
## 1 Beijing large 121
## 2 London large 22
## 3 New York large 23
## 4 Beijing small
                56
                    16
## 5 London small
## 6 New York small
                    14
```


Data manipulation tool kit

build variables from variables

opyr::mutate()

build observations from observations

opyrusummarise()

build observations from variables

tidyr::gather()

build variables from observations

tidyr::spread()

Separate and unite variables

unite() and separate()

There are three more variables hidden in storms:

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

- Year
- Month
- Day

separate()

Separate splits a column by a character string separator.

separate(storms, date, c("year", "month", "day"), sep = "-")

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

separate()

Separate splits a column by a character string separator.

```
separate(storms, date, c("year", "month", "day"), sep = "-")
```

data frame to reshape a column of strings to split up

names of new columns to make

string to split on (By default, separate() will split on any non_alphanumeric characters)

unite()

Unite unites columns into a single column.

unite(storms2, "date", year, month, day, sep = "-")

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

unite()

Unite unites columns into a single column.

unite(storms2, "date", year, month, day, sep = "-")

data frame to reshape name of new column to make

columns to combine

separator to use in new column
(By default, an underscore)

Your Turn

Use separate() and then unite() to change how storms codes date, as below.

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	08/12/2000
Alex	45	1009	07/30/1998
Allison	65	1005	06/04/1995
Ana	40	1013	07/01/1997
Arlene	50	1010	06/13/1999
Arthur	45	1010	06/21/1996

```
storms %>%
  separate(date, c("year", "month", "day")) %>%
  unite("date", month, day, year, sep = "/")
```

Recap: tidyr

A package that reshapes the layout of data sets.

Make observations from variables with gather()

Make variables from observations with spread()

Split and merge columns with unite() and separate()

Data Science for Data Wranglers Part 4: Choosing a format

tb_alt <- tb %>% gather("age", "n", 4:6)

country	year	sex	child	adult	elderly
Afghanistan	1995	female	NA	NA	NA
Afghanistan	1995	male	NA	NA	NA
Afghanistan	1996	female	NA	NA	NA
Afghanistan	1996	male	NA	NA	NA
Afghanistan	1997	female	5	96	1
Afghanistan	1997	male	0	26	0

country	year	sex	age	n
Afghanistan	1996	female	adult	NA
Afghanistan	1996	female	child	NA
Afghanistan	1996	female	elderly	NA
Afghanistan	1996	male	adult	NA
Afghanistan	1996	male	child	NA
Afghanistan	1996	male	elderly	NA
Afghanistan	1997	female	adult	96
Afghanistan	1997	female	child	5
Afghanistan	1997	female	elderly	1
Afghanistan	1997	male	adult	25

country	year	sex	child	adult	elderly
Afghanistan	1995	female	NA	NA	NA
Afghanistan	1995	male	NA	NA	NA
Afghanistan	1996	female	NA	NA	NA
Afghanistan	1996	male	NA	NA	NA
Afghanistan	1997	female	5	96	1
Afghanistan	1997	male	0	26	0

country	year	sex	age	n
Afghanistan	1996	female	adult	NA
Afghanistan	1996	female	child	NA
Afghanistan	1996	female	elderly	NA
Afghanistan	1996	male	adult	NA
Afghanistan	1996	male	child	NA
Afghanistan	1996	male	elderly	NA
Afghanistan	1997	female	adult	96
Afghanistan	1997	female	child	5
Afghanistan	1997	female	elderly	1
Afghanistan	1997	male	adult	25

country	year	sex		adall	
Afghanistan	1995	female	NA	NA	NA
Afghanistan	1995	male	NA	NA	NA
Afghanistan	1996	female	NA	NA	NA
Afghanistan	1996	male	NA	NA	NA
Afghanistan	1997	female	5	96	1
Afghanistan	1997	male	0	26	0

country	year	sex	a/le	n
Afghanistan	1996	female	acult	NA
Afghanistan	1996	female	child	NA
Afghanistan	1996	female	elderly	NA
Afghanistan	1996	male	acult	NA
Afghanistan	1996	male	child	NA
Afghanistan	1996	male	elderly	NA
Afghanistan	1997	female	acult	96
Afghanistan	1997	female	child	5
Afghanistan	1997	female	elderly	1
Afghanistan	1997	male	acult	25

country	year	sex	ckld	agult	elderly
Afghanistan	1995	female	ΛΑ	NA	1 A
Afghanistan	1995	male	ΝΑ	ΝΑ	ΙΑ
Afghanistan	1996	female	ΝΑ	ΝΑ	1 A
Afghanistan	1996	male	ΝΑ	ΝΑ	Λ
Afghanistan	1997	female		96	
Afghanistan	1997	male		26	

country	year	sex	age	n
Afghanistan	1996	female	adult	NA
Afghanistan	1996	female	child	NA
Afghanistan	1996	female	elderly	NA
Afghanistan	1996	male	adult	NA
Afghanistan	1996	male	child	NA
Afghanistan	1996	male	elderly	NA
Afghanistan	1997	female	adult	96
Afghanistan	1997	female	child	5
Afghanistan	1997	female	elderly	1
Afghanistan	1997	male	adult	25

- You can measure the age of an individual or the age of a group of people who all have the same age
- You can measure the number of cases of children with TB reported in a group of people
- You can measure the number of cases of adults with TB reported in a group of people
- elderly You can measure the number of cases of elderly people with TB reported in a group of people

You can measure the age of an individual or the age of a group of people who all have the same age

child - You can measure the number of cases of children with TB reported in a group of people

adult - You can measure the number of cases of adults with TB reported in a group of people

elderly - You can measure the number of cases of elderly people with TB reported in a group of people

- You can measure the age of an individual or the age of a group of people who all have the same age
- **child** You can measure the number of cases of children with TB reported in a group of people
- adult You can measure the number of cases of adults with TB reported in a group of people
- elderly You can measure the number of cases of elderly people with TB reported in a group of people

What is a variable (and what is tidy) depends on your umit of amalysis

Unit of Analysis groups of people of the same gender in the same country in the same year

country	year	sex	child	adult	elderly
Afghanistan	1995	female	NA	NA	NA
Afghanistan	1995	male	NA	NA	NA
Afghanistan	1996	female	NA	NA	NA
Afghanistan	1996	male	NA	NA	NA
Afghanistan	1997	female	5	96	1
Afghanistan	1997	male	0	26	0

cases = child + adult + elderly

Unit of Analysis groups of people of the same gender and age in the same country in the same year

country	year	sex	age	n
Afghanistan	1996	female	adult	NA
Afghanistan	1996	female	child	NA
Afghanistan	1996	female	elderly	NA
Afghanistan	1996	male	adult	NA
Afghanistan	1996	male	child	NA
Afghanistan	1996	male	elderly	NA
Afghanistan	1997	female	adult	96
Afghanistan	1997	female	child	5
Afghanistan	1997	female	elderly	1
Afghanistan	1997	male	adult	25

Unit of Analysis: All measured on a group of people (who live in the same country and have the same sex) in the same year

Unit of Analysis: All measured on a group of people (who live in the same country and have the same sex) in the same year

Goal: calculate cases, where cases = child + adult + elderly

country	year	sex	child	adult	elderly
Afghanistan	1995	female	NA	NA	NA
Afghanistan	1995	male	NA	NA	NA
Afghanistan	1996	female	NA	NA	NA
Afghanistan	1996	male	NA	NA	NA
Afghanistan	1997	female	5	96	1
Afghanistan	1997	male	0	26	0

tb %>%
 mutate(
 cases = child + adult + elderly)

Goal: calculate cases, where cases = child + adult + elderly

tb_alt %>%
 group_by(country, year, sex) %>%
 summarise(cases = sum(n))

country	year	sex	age	
Afghanistan	1996	female	adult	NA
Afghanistan	1996	female	child	NA
Afghanistan			elderly	NA
Afghanistan			adult	NA
Afghanistan			child	NA
Afghanistan			elderly	NA
Afghanistan	1.	.r€	adult	96
Afghanistan	1997	female	child	5
Afghanistan	1997	female	elderly	1
Afghanistan	1997	male	adult	25

country	year	sex	n
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	n
Afghanistan	1999	2
Afghanistan	2000	2
Brazil	1999	4
Brazil	2000	4
China	1999	6
China	2000	6

n
4
8
12

country	year	sex	n
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	n
Afghanistan	1999	2
Afghanistan	2000	2
Brazil	1999	4
Brazil	2000	4
China	1999	6
China	2000	6

country	n
Afghanistan	4
Brazil	8
China	12

n 24

Goal: test a hypothesis about the total n per country per year

country	year	sex	n
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanista		nale	1
Brazi		ale	2
Braz	~ ~	e	2
Brazi	AD.	ale	2
Brazil		nale	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	n
Afghanistan	1999	2
Afghanistan	2000	2
Brazil	1999	4
Brazil	2000	4
China	1999	6
China	2000	6

Goal: test a hypothesis about the total n per country per year

Best format for analysis

Unit of analysis matches the unit of analysis you wish to study/manipulate/explore

Variables in columns

Observations in rows

What is the unit of analysis of population?

country	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Afghanistan	17586073	18415307	19021226	19496836	19987071	20595360	21347782	22202806	23116142	24018682	24860855	25631282	26349243	27032197	27708187	28397812	29105480	29824536	30551674
Algeria	29315463	29845208	30345466	30820435	31276295	31719449	32150198	32572977	33003442	33461345	33960903	34507214	35097043	35725377	36383302	37062820	37762962	38481705	39208194
Angola	12104952	12451945	12791388	13137542	13510616	13924930	14385283	14886574	15421075	15976715	16544376	17122409	17712824	18314441	18926650	19549124	20180490	20820525	21471618
Argentina	34833168	35264070	35690778	36109342	36514558	36903067	37273361	37627545	37970411	38308779	38647854	38988923	39331357	39676083	40023641	40374224	40728738	41086927	41446246
Azerbaijan	7770806	7852273	7921745	7984460	8047936	8117742	8195427	8279768	8370169	8465127	8563398	8665006	8770122	8877669	8986266	9094718	9202432	9308959	9413420
Bangladesh	119869585	122400896	124945315	127478524	129966823	132383265	134729503	137006279	139185986	141235035	143135180	144868702	146457067	147969967	149503100	151125475	152862431	154695368	156594962

What is the unit of analysis of population?

Individual countries

COI	ntry	19	95	19	96	19	97	19	98	19	79	20	20	20	01	20	02	20	03	20	04	20	75	20	06	29	07	20	08	20	09	20	10	20	11	20	12	20	13
Afgha	nistan	175	6073	184	307	1902	226	1949	836	1998	071	2059	360	213	782	222	2806	231	5142	240	3682	2486	855	256	282	263	9243	270	2197	277	3187	283	7812	291	5480	2982	536	305	674
Alg	eria	293	6463	2984	208	3034	466	3082	435	3127	295	317	449	321:	198	325	2977	330	3442	334	1345	3396	903	345	7214	350	7043	357	377	363	3302	370	2820	377	2962	3848	705	3920	194
An	gola	121	-952	1245	945	1279	388	1313	542	1351	616	1392	930	143	283	148	6574	154	075	159	3715	1654	376	171	2409	177	2824	183	441	189	650	195	9124	201	0490	2082	525	214	618
Arge	ntry nistan eria gola ntina paijan	348	3168	3526	070	3569	778	3610	342	365 ⁻¹	558	3690	067	372	361	376	7545	379)411	383	3779	3864	854	389	3923	393	1357	396	6083	400	3641	403	1224	407	3738	4108	927	414	246
Azer	paijan	777	B06	785	273	792	45	798	160	804	936	811	742	819	427	827	768	837	169	846	127	856	398	866	006	87)122	887	669	898	266	909	718	920	432	930	959	941	420

What is the unit of analysis of tb2?

Countries by year

 $(1,691 \times 3)$

country	year	cases
Afghanistan	1997	128
Afghanistan	1998	1778
Afghanistan	1999	745
Afghanistan	2000	2666
Afghanistan	2001	4639
Afghanistan	2002	6509

What is the unit of analysis of population?

Countries by year

year

COV	ntry	1	1330	1337	1330	1000	2000	200 i	2002	2000	2004	2005	2000	2007	2000	2000	2010	2011	2012	->
Afgha	nistan	17586073	18415307	19021226	19496836	19987071	20595360	21347782	22202806	02116140	04040600	0/060055	25631282	26349243	27032197	27708187	28397812	29105480	29824536	30551674
Alg	eria	29315463	29845202	- 54 5466	30820435	31276295	31719449	32150198	32572977	33003442	33461345	33960903	34507214	35097043	35725377	36383302	37062820	37/6250	39481705	39208194
An	gola	1210 952	12451945	12791388	13137542	13510616	13924930	14385283	14886574	15421075	15976715	16544376	17122409	17712824	18314441	18926650	19549124	20180490	20820525	214 618
Arge	ntina	34833168	794070	35690778	36109342	36514558	36903067	37273361	37627545	37970411	38308779	38647854	38988923	39331357	39676083	40023641	40374224	40728738	410865	41446246
Azer	paijan			7921745	7984460	8047555		9105/127	8279768	8370169	8AC - 17	8563398	8665006	8770122	00	00Z00	9094718	9202432		

Banovacesh 119869585 122400896 124945315 127478524 129966823 132383265 134729503 137006279 139185986 141235035 143135180 144868702 146457067 147969967 149503100 151125475 152862431 154695368 156594966823

What is the unit of analysis of population?

Countries by year

country	y e ar	population
Afghanistan	1995	17586073
Algeria	1995	29315463
Angola	1995	12104952
Argentina	1995	34833168
Azerlaijan	1995	777 806
Bangladesh	1995	1198 19585

country	year	cases
Afghanistan	1997	128
Afghanistan	1998	1778
Afghanistan	1999	745
Afghanistan	2000	2666
Afghanistan	2001	4639
Afghanistan	2002	6509

country	year	population
Afghanistan	1995	17586073
Algeria	1995	29315463
Angola	1995	12104952
Argentina	1995	34833168
Azerbaijan	1995	7770806
Bangladesh	1995	119869585

multiple tables

employee id	country	income
0001	Afghanistan	\$100000
0002	Afghanistan	\$100000
0003	Brazil	\$100000
0004	Brazil	\$100000
0005	China	\$100000
0006	China	\$100000

country	tax rate
Afghanistan	0.04
Brazil	0.12
China	0.50

country	employee id	income	tax rate
Afghanistan	0001	\$100000	0.04
Afghanistan	0002	\$100000	0.04
Brazil	0003	\$100000	0.12
Brazil	0004	\$100000	0.12
China	0005	\$100000	0.50
China	0006	\$100000	0.50

storms

Tidy data

- Each variable is saved in its own column.
- Each observation is saved in its own row.
- Each "type" of observation stored in a single table.

Goal: Net income = income - income * tax rate

employee id	country	income
0001	Afghanistan	\$100000
0002	Afghanistan	\$100000
0003	Brazil	\$100000
0004	Brazil	\$100000
0005	China	\$100000
0006	China	\$100000

country	tax rate
Afghanistan	0.04
Brazil	0.12
China	0.50

country	employee id	income	tax rate
Afghanistan	0001	\$100000	0.04
Afghanistan	0002	\$100000	0.04
Brazil	0003	\$100000	0.12
Brazil	0004	\$100000	0.12
China	0005	\$100000	0.50
China	0006	\$100000	0.50

```
data %>%
  mutate(
  net = income - income * tax rate)
```

Goal: Net income = income - income * tax rate

country	employee id	income	tax rate
Afghanistan	0001	\$100000	0.04
Afghanistan	0002	\$100000	0.04
Brazil	0003	\$100000	0.12
Brazil	0004	\$100000	0.12
China	0005	\$100000	0.50
China	0006	\$100000	0.50

```
data %>%
  mutate(
  net = income - income * tax rate)
```


Normalized data

employee id	country	income		
0001	Afghanistan	\$100000		countr
0002	Afghanistan	\$100000		country
0003	Brazil	\$100000	+	Afghanistar
0004	Brazil	\$100000	•	Brazil
0005	China	\$100000		China
0006	China	\$100000		

Data reduced to separate tables to prevent redundancy

Easy to store and update

Hard to analyze

Single table

country	employee id	income	tax rate
Afghanistan	0001	\$100000	0.04
Afghanistan	0002	\$100000	0.04
Brazil	0003	\$100000	0.12
Brazil	0004	\$100000	0.12
China	0005	\$100000	0.50
China	0006	\$100000	0.50

Data combined in a single table for efficiency

Hard to store and update

Easy to analyze

Recap: Best format for analysis

Unit of analysis matches the unit of analysis you wish to study/manipulate/explore

Variables in columns

Observations in rows

Single table

Combine data sets

dplyr

A package that helps transform tabular data.

```
# install.packages("dplyr")
```

library(dplyr) ?select

?left_join ?filter

?inner_join ?mutate

?semi_join ?summarise

?anti_join ?group_by

SIMPLE BINDLE

dplyr::bind_rows()

y

x 1	x2
A	1
В	2
C	3

Z

x 1	x2
В	2
C	3
D	4

A	7
В	2
C	3
В	2
C	3
D	4

x2

bind_rows(y, z)

dplyr::bind_cols()

y

x 1	x2
A	1
В	2
C	3

Z

x 1	x2
В	2
C	3
D	4

X 1	x2	x 1	x2
A	1	В	2
В	2	C	3
C	3	D	4

set operations

dplyr::union()

y

x 1	x2
A	1
В	2
C	3

Z

x 1	x2
В	2
C	3
D	4

x 1	x2
A	1
В	2
C	3
D	4

union(y, z)

dplyr::intersect()

	У			Z		
x 1	x2		x 1	x2	x 1	x2
A	1		В	2	В	2
В	2	_	C	3	C	3
C	3		D	4		

intersect(y, z)

dplyr::setdiff()

x1 x2 A 1 B 2 C 3

+ C 3
D 4

x1 x2 A 1

setdiff(y, z)

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
Peggy Sue	Buddy	<na></na>

songs %>% left_join(artists, by = "name")

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
Peggy Sue	Buddy	<na></na>

songs %>% left_join(artists, by = "name")

songs2

song	first	last
Across the Universe	John	Lennon
Come Together	John	Lennon
Hello, Goodbye	Paul	McCartney
Peggy Sue	Buddy	Holly

artists2

first	last	plays
George	Harrison	sitar
John	Lennon	guitar
Paul	McCartney	bass
Ringo	Starr	drums
Paul	Simon	guitar
John	Coltrane	sax

song	first	last	plays
Across the Universe	John	Lennon	guitar
Come Together	John	Lennon	guitar
Hello, Goodbye	Paul	McCartney	bass
Peggy Sue	Buddy	Holly	<na></na>

songs %>% left_join(artists2, by = c("first", "last"))

songs2

song	first	last
Across the Universe	John	Lennon
Come Together	John	Lennon
Hello, Goodbye	Paul	McCartney
Peggy Sue	Buddy	Holly

artists2

first	last	plays
George	Harrison	sitar
John	Lennon	guitar
Paul	McCartney	bass
Ringo	Starr	drums
Paul	Simon	guitar
John	Coltrane	sax

song	first	last	plays
Across the Universe	John	Lennon	guitar
Come Together	John	Lennon	guitar
Hello, Goodbye	Paul	McCartney	bass
Peggy Sue	Buddy	Holly	<na></na>

songs %>% left_join(artists2, by = c("first", "last"))

left_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
Peggy Sue	Buddy	<na></na>

songs %>% left_join(artists, by = "name")

right_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
<na></na>	George	sitar
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
<na></na>	Ringo	drums

songs %>% right_join(artists, by = "name")

inner_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass

songs %>% inner_join(artists, by = "name")

full_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
Peggy Sue	Buddy	<na></na>
<na></na>	George	sitar
<na></na>	Ringo	drums

songs %>% full_join(artists, by = "name")

semi_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul

songs %>% semi_join(artists, by = "name")

anti_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name
Peggy Sue	Buddy

songs %>% anti_join(artists, by = "name")

Simple binds

dplyr::bind_rows

dplyr::bind_cols

Set operations

dplyr::union

dplyr::intersect

dplyr::setdiff

Matching joins

dplyr::left_join

dplyr::right_join

dplyr::inner_join

dplyr::full_join

Filtering joins

dplyr::semi_join

dplyr::anti_join

```
delays <- flights %>%
  filter(!is.na(arr_delay)) %>%
  group_by(carrier) %>%
  summarise(avg_delay = mean(arr_delay))
```

 (16×2)

carrier	avg_delay
9E	7.38
AA	0.36
AS	-9.93
B6	9.95
DL	1.64

View(airlines)

 (16×2)

carrier	name
9E	Endeavor Air Inc.
AA	American Airlines Inc.
AS	Alaska Airlines Inc.
B6	JetBlue Airways
DL	Delta Air Lines Inc.

Your Turn

Use a dplyr function to combine delays and names to make the data set below.

Then arrange() by avg_delay to see which airline had the shortest average delays.

 (16×3)

carrier	avg_delay	name
9E	7.38	Endeavor Air Inc.
AA	0.36	American Airlines Inc.
AS	-9.93	Alaska Airlines Inc.
B6	9.95	JetBlue Airways
DL	1.64	Delta Air Lines Inc.
EV	15.80	ExpressJet Airlines Inc.

delays %>%
 left_join(airlines, by = "carrier") %>%
 arrange(avg_delay)

 (16×3)

carrier	avg_delay	name
AS	-9.93	Alaska Airlines Inc.
HA	-6.92	Hawaiian Airlines Inc.
AA	0.36	American Airlines Inc.
DL	1.64	Delta Air Lines Inc.
VX	1.76	Virgin America
US	2.13	US Airways Inc.

Case Study 2: TB rates

tb2

Tuberculosis counts by country collected by the WHO for the *Global Tuberculosis Report*

tb2

Tuberculosis counts by country collected by the WHO for the *Global Tuberculosis Report*

 $(1,691 \times 3)$

country	year	cases
Afghanistan	1997	128
Afghanistan	1998	1778
Afghanistan	1999	745
Afghanistan	2000	2666
Afghanistan	2001	4639
Afghanistan	2002	6509

tb2

Tuberculosis rates by country collected by the WHO for the *Global Tuberculosis Report*

$$rate = \frac{cases}{population} \times 10000$$

 $(1,691 \times 3)$

country	year	cases
Afghanistan	1997	128
Afghanistan	1998	1778
Afghanistan	1999	745

population

library(EDAWR)

View(population)

country	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Afghanistan	17586073	18415307	19021226	19496836	19987071	20595360	21347782	22202806	23116142	24018682	24860855	25631282	26349243	27032197	27708187	28397812	29105480	29824536	30551674
Algeria	29315463	29845208	30345466	30820435	31276295	31719449	32150198	32572977	33003442	33461345	33960903	34507214	35097043	35725377	36383302	37062820	37762962	38481705	39208194
Angola	12104952	12451945	12791388	13137542	13510616	13924930	14385283	14886574	15421075	15976715	16544376	17122409	17712824	18314441	18926650	19549124	20180490	20820525	21471618
Argentina	34833168	35264070	35690778	36109342	36514558	36903067	37273361	37627545	37970411	38308779	38647854	38988923	39331357	39676083	40023641	40374224	40728738	41086927	41446246
Azerbaijan	7770806	7852273	7921745	7984460	8047936	8117742	8195427	8279768	8370169	8465127	8563398	8665006	8770122	8877669	8986266	9094718	9202432	9308959	9413420
Bangladesh	119869585	122400896	124945315	127478524	129966823	132383265	134729503	137006279	139185986	141235035	143135180	144868702	146457067	147969967	149503100	151125475	152862431	154695368	156594962

Strategy

1. Tidy the population data set

country	year	population
Afghanistan	1997	19021226
Afghanistan	1998	19496836
Afghanistan	1999	19987071
Afghanistan	2000	20595360
Afghanistan	2001	21347782
Afghanistan	2002	22202806
Afghanistan	2003	23116142

country	1995	1996	1997	1998	1999	2000	2001	2002	2003	20
Afghanistan	17586073	18415307	19021226	19496836	19987071	20595360	21347782	22202806	23116142	2401
Algeria	29315463	29845208	30245	3082042	31276295	J1719449	∠ 150198	2572977	337 33442	3346
Angola	12104952	12451045	1279T388	131375	13510616	1300 00	14385283	Jo6574	15421075	1597
Argentina	1000168	35264070	35690770	50109342	36514558	203067	37273361	37627545	37970411	3830
Azerbaijan	7770806	7852273	700 TJ	7984460	8047936	8117742	8195427	8279768	8370169	846
Bangladesn	119869585	122400896	124945315	127478524	129966823	132383265	134729503	137006279	139185986	1412

Strategy

- 1. Tidy the population data set
- 2. Join the population values to the tb2 data set

country	year	cases	population
Afghanistan	1997	128	19021226
Afghanistan	1998	1778	19496836
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Afghanistan	2001	4639	21347782
Afghanistan	2002	6509	22202806

country	year	population
Afghanistan	1997	19021226
Afghanistan	1998	19496836
Afghanistan	1999	19987071
Afghanistan	2000	20595360
Afghanistan	2001	21347782
Afghanistan	2002	22202806

Strategy

- 1. Tidy the population data set
- 2. Join the population values to the tb2 data set
- 3. Use mutate() to calculate the rate from cases and population.

country	year	cases	population	rate
Afghanistan	1997	128	19021226	0.07
Afghanistan	1998	1778	19496836	▶ 0.91
Afghanistan	1999	745	19987071	0.37
Afghanistan	2000	2666	20595360	1.29
Afghanistan	2001	4639	21347782	2.17
Afghanistan	2002	6509	22202806	2.93
Afghanistan	2003	6528	23116142	2.82

Your Turn

- 1. Use tidyr functions to reshape population into a tidy data set with three columns: *country, year*, and *population*.
- 2. Combine tb2 with population.
- 3. Use dplyr functions to create a rate variable (cases / population * 10000).
- 4. Select just the country, year, and rate variables of tb2.

country	year	rate
Afghanistan	1997	0.07
Afghanistan	1998	0.91
Afghanistan	1999	0.87
Afghanistan	2000	1.29

Step 1 - Gather the year columns of population

```
population <- population %>%
  gather("year", "population", -1, convert = TRUE)
```

Step 2 - Join population to tb2

```
population <- population %>%
    gather("year", "population", -1, convert = TRUE)

tb2 %>%
    left_join(population, by = c("country", "year"))
```

Step 3 - Calculate rate variable

population <- population %>%

```
gather("year", "population", -1, convert = TRUE)

tb2 %>%
  left_join(population, by = c("country", "year")) %>%
  mutate(rate = cases / population * 10000)
```

Step 4 - Select country, year, rate

population <- population %>%

```
gather("year", "population", -1, convert = TRUE)

tb2 %>%
  left_join(population, by = c("country", "year")) %>%
  mutate(rate = cases / population * 10000) %>%
  select(country, year, rate)
```