

There we we to possible lights on a commuter's route to and from work. Let X_1 be the number of lights at which the commuter must stop on his way to work, and X_2 be the number of lights at which he must stop when returning from work. Suppose these two variables are independent, each with pmf given in the accompanying table (so X_1 , X_2 is a random sample of size n = 2).

x_1	0	1	2	$\mu = 1.1, \sigma^2 = .49$
$p(x_1)$.2	.5	.3	

- a. Determine the pmf of $T_o = X_1 + X_2$.
- **b.** Calculate μ_{T_0} . How does it relate to μ , the population mean?
- c. Calculate $\sigma_{T_0}^2$. How does it relate to σ^2 , the population variance?
- **d.** Let X_3 and X_4 be the number of lights at which a stop is required when driving to and from work on a second day assumed independent of the first day. With T_o = the sum of all four X_i 's, what now are the values of $E(T_o)$ and $V(T_o)$?
- e. Referring back to (d), what are the values of $P(T_o = 8)$ and $P(T_o \ge 7)$ [Hint: Don't even think of listing all possible outcomes!]

a. $T_0 = X_1 + X_2 + T_0$ can be $0 \sim 4$ X_1 and X_2 are independent so we can get

$$P(T_0=8) = (0.3)^4 = 0.008)$$

$$P(T_0=8) = (0.3)^4 + (4(0.5))^3$$

$$= 0.0621$$

41. Let *X* be the number of packages being mailed by a randomly selected customer at a certain shipping facility. Suppose the distribution of *X* is as follows:

- a. Consider a random sample of size $n = \overline{\lambda}$ (two customers), and let \overline{X} be the sample mean number of packages shipped. Obtain the probability distribution of \overline{X} .
- **b.** Refer to part (a) and calculate $P(X \le 2.5)$.
- c. Again consider a random sample of size n = 2, but now focus on the statistic R = the sample range (difference between the largest and smallest values in the sample). Obtain the distribution of R. [Hint: Calculate the value of R for each outcome and use the probabilities from part (a).]
- **d.** If a random sample of size n = 4 is selected, what is $P(\overline{X} \le 1.5)$? [*Hint*: You should not have to list all possible outcomes, only those for which $\overline{x} \le 1.5$.]

$$8_18_2$$
 (1.1) (1.2) (1.3) (1.4)

 P (1.6) (1.2) (1.3) (1.4)

 P (1.6) (1.2) (2.3) (2.4)

 P (1.7) (2.2) (2.3) (3.4)

 P (3.2) (3.3) (3.4)

 P (3.6) (3.2) (3.3) (3.4)

 P (3.6) (3.2) (3.3) (3.4)

 P (3.6) (3.2) (4.3) (4.4)

 P (4.3) (4.4)

 P (4.4) (4.3) (4.4)

 P (4.4) (4.3) (4.4)

 $\overline{\mathsf{X}}$

2:5

3.5

$$\frac{X}{P(X)} = \frac{1}{0.16} = \frac{1}{0.24} = \frac{1}{0.25} = \frac{1}{0.25} = \frac{1}{0.04} = \frac{1}{0.01}$$

- 6. The inside diameter of a randomly selected piston ring is a random variable with mean value 12 cm and standard deviation .04 cm.
 - **a.** If \overline{X} is the sample mean diameter for a random sample of n = 16 rings, where is the sampling distribution of \bar{X} centered, and what is the standard deviation of the \bar{X} distribution?
 - **b.** Answer the questions posed in part (a) for a sample size of n = 64 rings.
 - c. For which of the two random samples, the one of part (a) or the one of part (b), is \overline{X} more likely to be within .01 cm of 12 cm? Explain your reasoning.

$$M_{16} = 12$$
 $G_{16} = \sqrt{V_{15}^2} = \sqrt{F_{16}^2} = 0$

 The time taken by a randomly selected applicant for a mortgage to fill out a certain form has a normal distribution with mean value 10 min and standard deviation 2 min. If five individuals fill out a form on one day and six on another, what is the probability that the sample average amount of time taken on each day is at most 11 min?

day
$$| n=5$$

 $P(X \le 11) = P(t \le \frac{11-10}{2\sqrt{15}})$

day 2
$$n = 6$$

 $P_2(X \le 11) = P(t \le \frac{11 - 10}{2/16})$
 $P(X' \le 11) = P_1 \cdot P_2 \approx 0.772$

55. The number of parking tickets issued in a certain city on any given weekday has a Poisson distribution with parameter $\mu = 50$. What is the approximate probability that

- a. Between 35 and 70 tickets are given out on a particular day? [Hint: When μ is large, a Poisson rv has approximately a normal distribution.]
- b. The total number of tickets given out during a 5-day week is between 225 and 275?

this poisson distribution has approximately a normal distribution

M=50 6=√50 ≈ 7.071

PL35 ≤ X ≤ 70) =
$$P(\frac{345-50}{7.071} ≤ t ≤ \frac{705-5}{741})$$
≈ 0.9838

UPDF

A swipped by the Nany bundles containers in three different sizes: (1) 27 ft³ (3 × 3 × 3), (2) 125 ft³, and (3) 512 ft³. Let X_i (i = 1, 2, 3) denote the number of type i containers shipped during a given week. With $\mu_i = E(X_i)$ and $\sigma_i^2 = V(X_i)$, suppose that the mean values and standard deviations are as follows:

$$\mu_1 = 200$$
 $\mu_2 = 250$ $\mu_3 = 100$
 $\sigma_1 = 10$ $\sigma_2 = 12$ $\sigma_3 = 8$

- a. Assuming that X_1 , X_2 , X_3 are independent, calculate the expected value and variance of the total volume shipped. [Hint: Volume = $27X_1 + 125X_2 + 512X_3$.]
- **b.** Would your calculations necessarily be correct if the X_i 's were not independent? Explain.

$$= \sum_{i=1}^{n} a_i E(X_i)$$

X1, X2, X3 are independent

$$V = a_1^2 6_1^2 + \cdots + a_2^2 6_3^2$$

$$= (31)^2 \times |v^2| + (250)^2 \times 12^2 + (512)^2 \times 8^2$$

$$= 19100116$$

b the expected value is correct but the variance is not correct

70. Consider a random sample of size *n* from a continuous distribution having median 0 so that the probability of any one observation being positive is .5. Disregarding the signs of the observations, rank them from smallest to largest in absolute value, and let *W* = the sum of the ranks of the observations having positive signs. For example, if the observations are -.3, +.7, +2.1, and -2.5, then the ranks of positive observations are 2 and 3, so *W* = 5. In Chapter 15, *W* will be called *Wilcoxon's signed-rank statistic*. *W* can be represented as follows:

$$W = 1 \cdot Y_1 + 2 \cdot Y_2 + 3 \cdot Y_3 + \dots + n \cdot Y_n$$
$$= \sum_{i=1}^{n} i \cdot Y_i$$

where the Y_i are independent Bernoulli rv's, each with p = 5 ($Y_i = 1$ corresponds to the observation with rank *i* being positive).

- a. Determine $E(Y_i)$ and then E(W) using the equation for W. [Hint: The first n positive integers sum to n(n + 1)/2.]
- **b.** Determine $V(Y_i)$ and then V(W). [Hint: The sum of the squares of the first n positive integers can be expressed as n(n + 1)(2n + 1)/6.]

$$E(Y_i) = 05$$

$$E(W) = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} (n+1)$$

$$= \frac{n(n+1)}{n}$$

$$V(Yi) = n25$$

$$V(W) = \sum_{i=1}^{n} i^{2} V(Yi) = \frac{n(n+1)(2n+1)}{24}$$

UPDF

Suppose www.uppp.comd tensile strength of type-A steel is 105 kg and the standard deviation of tensile strength is 8 ksi. For type-B steel, suppose the expected tensile strength and standard deviation of tensile strength are 100 ksi and 6 ksi, respectively. Let \overline{X} = the sample average tensile strength of a random sample of 40 type-A specimens, and let \overline{Y} = the sample average tensile strength of a random sample of 35 type-B specimens.

- **a.** What is the approximate distribution of \overline{X} ? Of \overline{Y} ?
- **b.** What is the approximate distribution of $\overline{X} \overline{Y}$? Justify your answer.
- c. Calculate (approximately) $P(-1 \le \overline{X} \overline{Y} \le 1)$.
- **d.** Calculate $P(\overline{X} \overline{Y} \ge 10)$. If you actually observed $\overline{X} \overline{Y} \ge 10$, would you doubt that $\mu_1 \mu_2 = 5$?

- a. Both \overline{X} , \overline{Y} approximate normally by CLT
- b normal distribution

X-9. is a linear combination

of normal distributions.

$$\begin{array}{c}
\mu_{\bar{X}-\bar{Y}} = 5 \\
6^{\frac{1}{\bar{X}}-\bar{Y}} = 6
\end{array}$$

$$6^{\frac{1}{x}} - \bar{\gamma} = \frac{6x^{\frac{1}{x}}}{nx} + \frac{6x^{\frac{1}{x}}}{ny} = 2.627$$

d

Ib's too small, doubt Mi-Mi=

