

Image Processing

Final Project

Requirements

- Team: 2~3 students (find a leader)
- Use MATLAB, add GUI to your program, google drive to share image and code.
- Real-world problems can be listed on your resume, extra bonus for the problems from Co-op.
- Image source: your own pictures (preferred, webcam on your laptop/phones, pick the quality and angle of images) or existing online image database (not preferred)
- Algorithms: permit use existing algorithms from publications
- Talk to me with ideas ASAP

Deliverables

- Proposal presentation (15%)
- Group presentation (45%)
- MATLAB project (20%)
- Poster (20%)
- Peer evaluations (up to 50% of the final project) grade could be altered)

Proposal presentation

- Problem to be solved (motivation)
- Literature review (existing solutions/challenges)
- Image processing algorithms will be used (flowchart)
- Image data plan to be used (acquisition method, pilot image samples)
- Test cases (various situations), Expected outcomes/results
- Milestone, timeline, works for each member

Proposal evaluation form

Group	Interestingness (motivation, significance)	Literature review	Clarity	Professionalism	Timeline	Total
1	/30	/10	/30	/20	/10	/100
2	/30	/10	/30	/20	/10	/100
3	/30	/10	/30	/20	/10	/100
4	/30	/10	/30	/20	/10	/100
5	/30	/10	/30	/20	/10	/100
6	/30	/10	/30	/20	/10	/100
7	/30	/10	/30	/20	/10	/100
8	/30	/10	/30	/20	/10	/100

Final Presentation (1)

- Whole team!
- Everyone need do presentation.
- Sections
 - Motivation (problem solved)
 - 2. Relevant background
 - 3. Design: flow charts, screenshots, etc.
 - 4. Image dataset description and algorithms(list the algorithms you learned through this course)
 - 5. Challenge (story, what you learned through the project, any changes with proposal).
 - 6. Demo! Questions!

Final Presentation (2)

- Evaluation (i.e. grading) factors...
 - » Motivations (interesting, challenge, real-world problem)
 - » Length, clarity, professionalism (practice!)
 - » Member participate
 - » Demo quality (subjective)
 - » Results (same or better than existing methods)
- Audience participation: ask great/insightful/awesome questions!

1-6-6 Rule

- One idea per slice
- Six bullet points per slice
- Six words per bullet point
- Highlight the bullet you are talking
- Use more pictures rather than text
- 'Questions' for the last slice

Final presentation evaluation form

Group	Interest	Group work	Clarity	Professionalism	Demo	Total
1	/20	/10	/20	/10	/40	/100
2	/20	/10	/20	/10	/40	/100
3	/20	/10	/20	/10	/40	/100
4	/20	/10	/20	/10	/40	/100
5	/20	/10	/20	/10	/40	/100
6	/20	/10	/20	/10	/40	/100
7	/20	/10	/20	/10	/40	/100
8	/20	/10	/20	/10	/40	/100

Note: Presentation time: no more than 12 minutes (including demo)

Project code

- Upload through Blackboard (or shared drive if you have a huge number of images)
- Including detailed user manual. You should ask someone else to run your code following the user manual
- Including several test images. Make sure your code works for those test images
- Including the result images. Please also upload result images for the test images with your code

Poster

- Clear and better demonstration
- Key components:
- Title (clear and easy to know what you are doing)
- course name (COMP3800 Image Processing), Group and authors' name
- Background (or Introduction/Motivation) 3.
- Methods (including data source, algorithm, flowchart, etc.)
- 5. Results (accuracy, compare with other existing methods, picture of results
- Conclusions (what you learned through this project, possible future improvement, possible application through your project)

Poster

- People usually only spend several minutes for each poster, use more pictures to attract people
- Use PowerPoint to create poster draft, font should not be too small
- Recommended Size: 48" x 36" (Width x Height), color print (photo-quality \$0.91/square foot at WIT)
- We will have a poster tour. Your group will introduce the poster during the tour.
- Sample posters:

https://web.stanford.edu/class/ee368/Project Spring 13 14/index.html

Emotion recognition

Input: webcam on your laptop

13 COMP1050

Face recognition

- WIT faculty recognition
- COMP3800 students face recognition

Smart classroom

- Check attendance (use in our class)
- Identify focus of students

Surveillance

Count number of people or vehicles

16 COMP1050

Face Swapping

Self driving

- Phone install on dashboard
- Detect cars and pedestrian
- Detect red lights
- Follow lines

Eyesight

- Phone install on dashboard/mirror
- Detect driver eye blinks and focus
- Detect head shake

Potential problems

- Use shared drive (google drive, one drive, drop box, box) to your images, code, and document
- Find out problems early (no response members, delayed works, unsatisfied relations)
- Discuss with me your ideas ASAP, I will tell you my expectations and functions should included in your final demonstration

Enjoy your project!

Each group email me the group member list (section #, Names, and emails)