Лабораторная работа 4. 2. Исследование энергетического спектра β-частиц и определение их максимальной энергии при помощи магнитного спектрометра

Лось Денис (группа 618)

23 ноября 2018

Цель работы: с помощью магнитного спектрометра исследовать энергетический спектр β -частиц при распаде ядер цезия и определить их максимальную энергию. Калибровка спектрометра осуществляется по энергиеям электронов внутренней конверсии цезия.

Введение в теоритическую часть

Энергетический спектр β -частиц в нерелятивистком случае

$$\frac{dN}{dE} \approx \sqrt{E} \cdot (E_e - E)^2$$

Связь между числом частиц, регистрируемой установкой, и функцией $W(p_e)=dW/dp_e$

$$N(p_e) \approx W(p_e) \Delta p_e$$

Ширина интервала, регистрируемая спектрометром

$$\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$$

Так как $\Delta f/2f$ определяется геометрией установки и потому постоянно, получим в итоге

$$N(p_e) = CW(p_e) \cdot p_e \quad (C = const)$$

График Ферми-Кюри

$$\frac{\sqrt{N(p)}}{p} \approx E_e - E.$$

Ход работы и результаты исследования

Измерения фона:

t, c	$N_{\Phi}, 1/c$	$\Delta N_{\Phi},1/{ m c}$	ε , %
100	2.3094	0.152	6.5
600	2.4349	0.064	2.8

График зависимости интенсивности от тока магнитной линзы

График Ферми-Кюри:

Максимальная энергия в β -спектре

$$E_{\rm max} = (560 \pm 20) \ {
m \kappa}{
m 9}{
m B}$$

Результаты измерений

#	J,A		N-N-	р,кэВ/с	Т,кэВ	mkFermi
1	0.20	2.569	0.134	63.3	3.9	727.6068
2	0.41	2.499	0.064	129.8	16.2	171.5926
3	0.60	2.429	-0.006	189.9	34.2	0.0000
4	0.80	2.929	0.494	253.2	59.3	174.4430
5	1.00	5.179	2.744	316.6	90.1	294.0894
6	1.20	7.778	5.343	379.9	125.7	312.1975
7	1.40	9.547	7.112	443.2	165.4	285.8439
8	1.60	9.547	7.112	506.5	208.5	233.9597
9	1.80	10.107	7.672	569.8	254.4	203.6410
10	2.00	8,548	6.113	633.1	302.6	155.1971
11	2.20	7.328	4.893	696.4	352.8	120.3559
12	2.40	6.058	3.623	759.7	484.6	90.8977
13	2.60	4.449	2.014	823.1	457.8	60.0986
14	2.80	3.659	1.224	886.4	512.1	41.9252
15	3.00	4.059	1.624	949.7	567.4	43.5427
16	3.10	6.258	3.823	981.3	595.4	63.6049
17	3.20	7.038	4.603	1013.0	623.6	66.5447
18	3.25	4.259	1.824	1028.8	637.7	40.9248
19	3.30	3.059	0.624	1044.6	651.9	23.3997
20	3.40	2.139	-0.296	1076.3	680.4	0.0000
21	3.50	1.450	-0.985	1108.0	709.1	0.0000
22	3.60	1.490	-0.945	1139.6	737.9	0.0000
23	3.80	3.039	0.604	1202.9	796.0	18.6310
24	4.00	2.899	0.464	1266.2	854.5	15.1219