Location as an Asset

Adrien Bilal, Esteban Rossi-Hansberg

Presented by Melanie Friedrichs

Department of Economics Stern School of Business, NYU mf2975@stern.nyu.edu

February 19, 2020

Motivation

Idea of location as an asset

- Sjaastand (1962)
- Lucas (2004)
- Morten (2017)
- This paper

Motivation

Idea of location as an asset

- Sjaastand (1962)
- Lucas (2004)
- Morten (2017)
- This paper

Benefits of thinking of location as an asset:

- Emphasizes that location is a choice made in context, not a static, standalone decision \rightarrow can help explain seemingly inoptimal location decision choices
- Methodological: asset analysis generally more developed in economics

Location as an asset

Basic setup

Introduction

• There is continuum of locations $z \in [\underline{z}, \overline{z}]$, where \overline{z} is the most productive location. If you choose to move to z in period t, you get f(z) in $t+1 \longleftrightarrow$ There is an asset z that pays return f(z)

Location as an asset

Basic setup

Introduction

• There is continuum of locations $z \in [\underline{z}, \overline{z}]$, where \overline{z} is the most productive location. If you choose to move to z in period t, you get f(z) in $t+1 \longleftrightarrow$ There is an asset z that pays return f(z)

- No borrowing constraint
- Return depends on:
 - Quantity demanded in aggregate (congestion)
 - Individual characteristics; particularly, the authors assume high productivity individuals benefit more from high productivity places (sorting)
 - Quantity demanded by the individual (nonlinear pricing)

Location as an asset

Basic setup

Introduction

• There is continuum of locations $z \in [\underline{z}, \overline{z}]$, where \overline{z} is the most productive location. If you choose to move to z in period t, you get f(z) in $t+1 \longleftrightarrow$ There is an asset z that pays return f(z)

- No borrowing constraint
- Return depends on:
 - Quantity demanded in aggregate (congestion)
 - Individual characteristics; particularly, the authors assume high productivity individuals benefit more from high productivity places (sorting)
 - Quantity demanded by the individual (nonlinear pricing)
 - Quantity demanded by certain individuals (sorting +)

Basic setup

Introduction

• There is continuum of locations $z \in [\underline{z}, \overline{z}]$, where \overline{z} is the most productive location. If you choose to move to z in period t, you get f(z) in $t+1 \longleftrightarrow$ There is an asset z that pays return f(z)

- No borrowing constraint
- Return depends on:
 - Quantity demanded in aggregate (congestion)
 - Individual characteristics; particularly, the authors assume high productivity individuals benefit more from high productivity places (sorting)
 - Quantity demanded by the individual (nonlinear pricing)
 - Quantity demanded by certain individuals (sorting +)
- Adjustment costs

Basic setup

Introduction

• There is continuum of locations $z \in [\underline{z}, \overline{z}]$, where \overline{z} is the most productive location. If you choose to move to z in period t, you get f(z) in $t+1 \longleftrightarrow$ There is an asset z that pays return f(z)

- No borrowing constraint
- Return depends on:
 - Quantity demanded in aggregate (congestion)
 - Individual characteristics; particularly, the authors assume high productivity individuals benefit more from high productivity places (sorting)
 - Quantity demanded by the individual (nonlinear pricing)
 - Quantity demanded by certain individuals (sorting +)
- Adjustment costs
- Risky returns (possibly idiosyncratic)

Paper contents

Introduction

- 1. Two period model
- 2. Infinite horizon model
- 3. Testing implications with French tax data
 - More constrained (lower wealth) individuals are more likely to relocate to a worse location after a negative income (unemployment) shock

Household problem

$$V(y_0, y_1, s) = \max_{c_0, c_1, a, z} \log c_0 + \beta \log c_1$$
s.t.
$$c_0 + a + q(z) = y_0$$

$$c_1 = zs + y_1 + Ra$$

$$a \ge \underline{a}$$

Market clearing

$$q(z) = Q(L(z)) \text{ for } z \in [\underline{z}, \overline{z}]$$

$$\int_{\underline{z}}^{z} L(z)H(dz) = \int_{\underline{y}_{0}}^{\overline{y}_{0}} \int_{\underline{y}_{1}}^{\overline{y}_{1}} \int_{\underline{s}}^{\overline{s}} \mathbf{1} [z^{*}(y_{0}, y_{1}, s) \leq z] F(dy_{0}, dy_{1}, ds)$$

Q strictly increasing

From household optimization:

$$R = \frac{s}{q'\left(z^*\left(y_0, y_1, s\right)\right)}$$

Define:

$$z^{*}\left(y_{0},y_{1},s\right)\equiv\mathcal{Z}^{U}(s)$$
 if household is unconstrained, i.e. $y_{0}\geq Y_{0}\left(y_{1},s\right)$

$$z^*\left(y_0,y_1,s\right) \equiv \mathcal{Z}^{C}\left(y_0,y_1,s\right) < \mathcal{Z}^{U}(s)$$
 if constrained, i.e. $y_0 < Y_0\left(y_1,s\right)$

Equilibrium properties:

- q(z) is increasing and convex
- for $z \ge \hat{z}$, $q'(z) = \frac{S^U(z)}{R}$
- $\frac{\partial q'(z)}{\partial \bar{p}} < 0$ for $z \ge \hat{z}$ if $\bar{s} \underline{s}$ is sufficiently small

Equilibrium properties

Figure 1: Allocation of skills to cities

Response to negative income shock

Figure 1: Allocation of skills to cities

Equilibrium properties

Figure 2: Allocation of income groups to cities

Equilibrium properties

Figure 3: House rents across cities

Policy analysis

First best allocation

- An unconstrained planner will put every household of type s in location $\mathcal{Z}^U(s)$
- There is less output and less output net of housing costs in the decentralized equilibrium

Place based policy: $[\underline{z}, \overline{z}] \rightarrow z_0$

- All unconstrained agents with $s \in [\underline{s}, S^U(E[z])]$ are worse off
- All constrained agents (y_0, y_1, s) with $s \in [\underline{s}, S^C(y_0, y_1, E[z])]$ are worse off
- Since $S^{C}(y_0, y_1, E[z]) > S^{U}(E[z])$, the set of skills of constrained individuals that are worse off is larger

Household problem

$$V(a_{t}, z_{t}, y_{t}, s) = \max_{\{a_{t+1}, z_{t+1}\}_{t=0}} E_{0} \left[\sum_{t=0}^{\infty} \beta^{t} u(c_{t}) \right]$$
s.t. $c_{t} + a_{t+1} + q(z_{t+1}) = y_{t} + sz_{t} + Ra_{t}$

$$a_{t+1} \geq \underline{a}$$

Market clearing

$$\begin{split} q(z) &= Q(L(z)) \text{ for } z \in [\underline{z}, \overline{z}] \\ \int_{\underline{z}}^{z} L_{\tau}(z) H(dz) &= \sum_{i=1}^{N} \int_{\underline{a}}^{\infty} \int_{\underline{z}}^{\overline{z}} \int_{\underline{s}}^{\overline{s}} 1 \left[z^{*} \left(a, z, y_{i}, s \right) \leq z \right] F_{t}(da, dz, ds) \\ Q \text{ strictly increasing} \end{split}$$

Infinite horizon model 00000

Calibration

Table 7: Calibration Parameters

Parameter	Notation	Valu
Preferences		
Discount Factor	3	0.98
Intertemporal Elasticity of Substitution	σ	0.5
Idiosyncratic Income		
Skill	8	0.1
Low Income State	y_1	0.0
High Income State	¥2	0.5
Transition Probability From Low to High	Λ_{12}	0.0
Transition Probability From High to Low	Λ_{21}	0.
Financial Markets		
Risk-Free Rate	R	1.03
Credit Constraint	<u>a</u>	0.00
Cities		
Best City	\overline{z}	1.00
Worst City	$\frac{\overline{z}}{z}$	0.0
House Rents Slope	q'(z)	$0.18 + 0.44 \cdot z^{1.00}$
House Rents	q(z)	$\int_{z}^{z} q'(x)dx$

Impulse response to negative income shock

Infinite horizon model 00000

Impulse response to negative income shock

Figure 4: Dynamic reaction to a temporary income shock

00000 Consumption & welfare gains from location asset

Infinite horizon model

Figure 5: Consumption and welfare gains from the use of the Location Asset

Data

Data

- Two administrative tax datasets:
 - ullet DADS panel o annual, about 4% of all French workers, can track individuals across locations
 - lacktriangle Postes ightarrow details on employers, unemployment spells

Variables

- Negative income shock: individuals who were employed for at least 40 days, employed for at least 90 days on other side
- Constrained:
 - Wage percentile at start location
 - Local assets constructed with perpetual inventory method

Better locations do offer better wages

$$\log \frac{w_{it}}{w_{i,-1}} = \alpha_{it} + \gamma_t \log w_{i,-1} + \beta_t P(z_{i0}) + z_{it}$$

Figure 6: Plot of the $\beta_t - \beta_{-1}$ coefficients, for t = -4...7, and observed daily real wages. t = 0 is the first move of a worker and is the instantaneous effect of location. Standard errors clustered at the origin municipality level. Using the 4% long panel. The dots show the point estimate, and vertical bars are the 90% confidence intervals

Less wealthy downgrade location more after job loss

$$P(z_{1it}) - P(z_{0it}) = \alpha_{z_0} + \alpha_t + \alpha_I + \beta_w P(w_{it}; z_{0it}) + \beta_X \mathbf{X}_{it} + \varepsilon_{it}$$

Table 1: Unemployment spells and location decisions

	Movers only. Fixed city ranks.								
Origin Wage Perc. (OWP)	0.100*** (0.005)	0.100*** (0.005)	0.119*** (0.004)	0.148*** (0.006)	0.354*** (0.018)	0.345*** (0.018)	0.343*** (0.018)	0.341*** (0.018)	0.730*** (0.051)
Controls					, ,	1			
Pre-Move Log Wage					-0.084*** (0.004)	-0.087*** (0.004)	-0.087*** (0.004)	-0.088*** (0.004)	-0.083*** (0.004)
Post-Move Log Wage						0.023*** (0.002)	0.022*** (0.002)	0.020*** (0.002)	0.024*** (0.002)
Post-Move Log Comm. Dist.							0.010*** (0.001)	0.001 (0.001)	0.001
Post-Move Amenities Perc.								0.290***	0.289***
(First PC, other 4 unrep.)								(0.013)	(0.013)
OWP * W0									-0.094*** (0.010)
Constant	-0.044*** (0.009)								(5.5.5)
Fixed effects									
Origin Département & Year		1	1	1	1	1	1	1	/
Age, Birthplace & Gender			1	1	1	1	1	1	1
2-Digit Origin Occ. & Ind.				✓	✓	✓	✓	V	V
Obs.	292489	292489	292431	292428	292428	292428	270351	269914	269914
R^2	0.008	0.060	0.072	0.075	0.088	0.090	0.093	0.154	0.157
WR ²		0.008	0.009	0.010	0.024	0.026	0.029	0.095	0.098

22.180 Origin Municipalities: 2002-2007. Standard errors in parenthesis

" v < 0.05, "" v < 0.01, "" v < 0.001. SEs clustered at the department level.

Effect of OWP at median W0 in last column = 0.730 - 0.094 * 3.512 = 0.400, At P10 = 0.496, At P90 = 0.334

Less wealthy downgrade location more after job loss

within municipality

Table 2: Unemployment spells and location decisions within municipalities

- 1 1 m (-mm)								
Origin Wage Perc. (OWP)	0.100***	0.063***	0.066***	0.035***	0.044***	0.026***	0.022***	0.019***
	(0.005)	(0.003)	(0.003)	(0.003)	(0.004)	(0.005)	(0.005)	(0.004)
Controls								
Pre-Move Log Wage					-0.003*	-0.007***	-0.006***	-0.007***
					(0.001)	(0.001)	(0.001)	(0.001)
Post-Move Log Wage						0.034***	0.033***	0.032***
						(0.002)	(0.002)	(0.002)
Post-Move Log Comm. Dist.							0.008***	-0.001
							(0.001)	(0.001)
Post-Move Amenities Perc.								0.308***
(First PC, other 4 unrep.)								(0.012)
Constant	-0.044***							
	(0.009)							
Fixed effects								
Origin Municipality & Year		V	✓	✓	V	1	1	1
Age, Birthplace & Gender			1	V	1	1	1	1
2-Digit Origin Occ. & Ind.				V	✓	✓	✓	✓
Obs.	292489	287453	287394	287391	287391	287391	265056	264604
\mathbb{R}^2	0.008	0.455	0.463	0.466	0.466	0.470	0.474	0.530
WR ²		0.005	0.005	0.001	0.001	0.009	0.012	0.117

22,180 Origin Municipalities; 2002-2007. Standard errors in parenthesis.

[&]quot; p < 0.05, "" p < 0.01, """ p < 0.001. SEs clustered at the department level.

Less wealthy downgrade location more after job loss

with imputed local asset percentile measure instead of income percentile

Table 4: Unemployment spells and location decisions using Local Asset Percentile measure: OLS

0:: 1 (010)	0.077+++	0.007***	0.071***	0.070***	0.000***	0.001***	0.001***	0.000***
Origin Asset Perc. (OAP)	0.077*** (0.004)	0.067*** (0.003)	0.071*** (0.005)	0.073*** (0.006)	0.090*** (0.007)	(0.007)	0.084*** (0.007)	(0.008)
Controls								
Pre-Move Log Wage					-0.014*** (0.002)	-0.019*** (0.002)	-0.019*** (0.002)	-0.020*** (0.002)
Post-Move Log Wage						0.027*** (0.002)	0.026*** (0.002)	0.024*** (0.002)
Post-Move Log Comm. Dist.							0.011*** (0.001)	0.001 (0.001)
Post-Move Amenities Perc. (First PC, other 4 unrep.)								0.289*** (0.013)
Constant	-0.041*** (0.012)							
Fixed Effects								
Origin Département & Year		V	✓	1	✓	V	V	V
Age, Birthplace & Gender			1	1	1	✓	1	V
2-Digit Origin Occ. & Ind.				✓	✓	V	V	~
Obs.	292489	292489	292431	292428	292428	292428	270351	269914
R^2	0.004	0.055	0.066	0.068	0.069	0.072	0.075	0.136
WR ²		0.003	0.003	0.003	0.004	0.007	0.010	0.075

22.180 Origin Municipalities: 2002-2007, Standard errors in parenthesis,

^{*} p < 0.05, ** p < 0.01, *** p < 0.001. SEs clustered at the départment level.

Empirical work 0000000

Movement of unemployed vs job switchers

Table 3: Location decisions of unemployed (1 year +) relative to job switchers

Movers only. EUE transitions (1 year +) relative to EE transitions. Fixed City Rank. 1[Long EUE] * OWP 0.020*** 0.054*** 0.065 *** 0.064*** 0.035* (0.005)(0.013)(0.014)(0.015)(0.016)OWP 0.136*** 0.311*** 0.291*** 0.291*** 0.316*** (0.008)(0.021)(0.020)(0.020)(0.021)Controls Pre-Move Log Wage (W0) -0.080*** -0.074*** -0.075*** -0.085*** (0.005)(0.005)(0.005)(0.006)1[Long EUE] * W0 -0.006** -0.016*** -0.014** -0.006 (0.002)(0.005)(0.005)(0.005)Post-Move Log Wage (W1) 0.019*** 0.017*** 0.012** (0.004)(0.004)(0.004)1[Long EUE] * W1 0.013*** 0.007*0.008* (0.004)(0.004)(0.004)Post-Move Log Comm. Dist. (C1) 0.012*** 0.002 (0.003)(0.002)1[Long EUE] * C1 -0.003 -0.002(0.002)(0.002)0.322*** Post-Move Amenities Percentile (A1, First PC, other 4 unreported) (0.017)1[Long EUE] * A1 -0 041** (other 4 interactions unreported) (0.012)Fixed Effects Origin Département & Year Age. Birthplace & Gender 2-Digit Origin Occupation & Industry 187801 Obs. 204037 204037 204037 188111 B^2 0.075 0.088 0.091 0.093 0.153

0.011

0.025

0.028

0.031

0.095

W.-R2

^{22.180} Origin Municipalities: 2002-2007. Standard errors in parenthesis * p < 0.05, ** p < 0.01, *** p < 0.001. SEs clustered at the départment level.

Unemployed move more (less if unconstrained) (less if constrained & city on the decline)

$$\begin{aligned} \mathbf{1}[\textit{Move}_{it}] &= \alpha_{\mathsf{z}_0} + \alpha_t + \alpha_I + \beta_{\mathsf{w}} P\left(w_{it}; z_{0it}\right) + \beta_{\Delta} \Delta_{\mathsf{z}_0 t} + \beta_{\Delta, P} \Delta_{\mathsf{z}_0 t} \cdot P\left(w_{it}; z_{0it}\right) + \beta_X \mathbf{X}_{it} + \\ \mathbf{1}\left[\mathsf{Long}\; \mathsf{EUE}_{it}\right] \cdot \left[\beta_{\mathsf{EUE}, \mathsf{w}} P\left(w_{it}; z_{0it}\right) + \beta_{\mathsf{EUE}, \Delta} \Delta_{\mathsf{z}_0 t} + \beta_{\mathsf{EUE}, \mathsf{w}, \Delta} P\left(w_{it}; z_{0it}\right) \Delta_{\mathsf{z}_0 t}\right] \end{aligned}$$

Table 6: Mobility decisions of unemployed (1 year +) relative to job switchers.

Level Effects				
Origin Wage Perc. (OWP)	0.138*** (0.004)	0.114*** (0.006)	0.112*** (0.006)	0.113*** (0.006)
Local Employment Growth (Δ)	0.126** (0.040)	0.116** (0.040)	0.148** (0.052)	0.119* (0.058)
1[Long EUE]	0.056*** (0.008)	0.052*** (0.008)	0.067*** (0.007)	0.096*** (0.012)
Double Interactions		***************************************		
1[Long EUE] * OWP	-0.043*** (0.010)	-0.032** (0.010)	-0.031** (0.010)	-0.041*** (0.009)
Δ * OWP	0.092* (0.045)	0.110* (0.044)	0.118* (0.048)	0.106* (0.041)
$1[{\tt Long~EUE}]~*~\Delta$	0.002 (0.062)	0.019 (0.059)	0.052 (0.068)	0.029 (0.076)
Triple Interaction				
1[Long EUE] * Δ * OWP	-0.198+ (0.105)	-0.205+ (0.104)	-0.226* (0.110)	-0.194 ⁺ (0.108)

Conclusion

Idea of "Location as an Asset"

- Useful idea
- Some thoughts about what particularly makes the location asset special, but this could probably be expanded

Empirical work:

New fact: lower wealth individuals move more after unemployment