FUNDAÇÃO ESCOLA DE COMÉRCIO ALVARES PENTEADO CURSO DE CIÊNCIA DA COMPUTAÇÃO

GUSTAVO ARCHANGELO ANTONIO GABRIEL LUIZ ANTONIO PAULO GUILHERME NICOLAS ARAUJO

ANÁLISE MATEMÁTICA DO JOGO MANDATUM

Aplicação de derivadas no contexto do consumo de energia.

Sumário

1. Introdução	3
2. Derivada no Contexto do Jogo	3
3. Implementação no Código	3
4. Interpretação Matemática	3
5. Considerações Finais	4

1. Introdução

O jogo **Mandatum** é uma simulação que permite ao jogador assumir o papel de um gestor urbano, responsável por promover o uso consciente de energia em uma cidade inteligente. Dentro do jogo, elementos matemáticos como **funções e derivadas** são utilizados para modelar o comportamento do consumo energético, servindo como uma ponte entre a teoria matemática e a prática computacional.

2. Derivada no Contexto do Jogo

O consumo de energia pelas casas no jogo aumenta a cada dia. Esse crescimento é representado por uma **função E**(**t**), onde **t** indica o tempo em dias. A variação no consumo diário é avaliada por meio da **derivada discreta**, que indica quanto a energia mudou de um dia para o outro. Esse conceito aproxima a ideia de derivada contínua, frequentemente estudada em cálculo diferencial.

$$\frac{\Delta E}{\Delta t} = E(t) - E(t-1)$$

3. Implementação no Código

No código do jogo, a derivada discreta foi implementada da seguinte forma:

```
csharp
CopiarEditar
energiaAnterior = energiaConsumida;
energiaConsumida += consumoEnergia;
taxaDeVariacao = energiaConsumida - energiaAnterior;
```

Aqui, calcula-se a diferença entre o valor atual e o valor anterior do consumo, resultando na **taxa de variação** diária. Esse valor representa de forma prática a derivada do consumo de energia ao longo do tempo.

4. Interpretação Matemática

A fórmula usada no código reflete a ideia da derivada como **limite da razão de variação**. Embora simplificada, a lógica da derivada discreta é coerente com a abordagem de diferenças finitas:

$$E(t+1)-E(t)1\frac{E(t+1)-E(t)}{1}1E(t+1)-E(t)$$

Essa razão nos dá uma aproximação da inclinação da curva de consumo, ou seja, a velocidade com que o consumo energético aumenta. Assim, o jogo Mandatum proporciona uma forma intuitiva de aplicar conceitos matemáticos em um ambiente interativo.

5. Considerações Finais

A aplicação da derivada no jogo Mandatum mostra como conceitos matemáticos podem ser utilizados para modelar problemas reais de forma simples e acessível. Essa abordagem enriquece a experiência do jogador ao mesmo tempo em que promove a **alfabetização matemática** e o pensamento analítico.