Abbreviations and Notation

Frequently used abbreviations and notation are listed here.

A Treatment or exposure

A-IPCW Augmented inverse probability of censoring-weighted/weighting

A-IPW Augmented inverse probability weighted/weighting

C Censoring

CRT Community randomized trial

i.i.d. Independent and identically distributed

IPCW Inverse probability of censoring-weighted/weighting

IPW Inverse probability of weighted/weighting

LTMLE Longitudinal targeted maximum likelihood estimation/estimator MLE Maximum likelihood substitution estimator of the *g*-formula

Not to be confused with nonsubstitution estimators using maximum

likelihood estimation. MLE is also known as g-computation

MSE Mean squared error

O Observed ordered data structureP Possible data-generating distribution

p Possible density of data-generating distribution P_0

 P_0 True data-generating distribution; $O \sim P_0$ p_0 True density of data-generating distribution P_0

 P_n Empirical probability distribution; places probability 1/n on each

observed $O_i, i..., n$

RCT Randomized controlled trial SCM Structural causal model

SE Standard error SL Super learner

TMLE Targeted maximum likelihood estimation/estimator

W Vector of covariates

Y Outcome

 Y_1, Y_0 Counterfactual outcomes with binary A

Uppercase letters represent random variables and lowercase letters are a specific value for that variable. If O is discrete, $p_0(o) = P_0(O = o)$ is the probability that O equals the value o, and if O is continuous, $p_0(o)$ denotes the Lebesgue density of P_0 at o. For simplicity and the sake of presentation, we will often treat O as discrete so that we can refer to $P_0(O = o)$ as a probability. For a simple example, suppose our data structure is $O = (W, A, Y) \sim P_0$ and O is discrete. For each possible value (w, a, y), $p_0(w, a, y)$ denotes the probability that (W, A, Y) equals (w, a, y).

 \mathcal{M} Statistical model; the set of possible probability distributions for P_0 $P_0 \in \mathcal{M}$ P_0 is known to be an element of the statistical model \mathcal{M}

```
Set of endogenous variables, j = 1, ..., J
X = (X_i : j)
U = (U_{X_i} : j)
                  Set of exogenous variables
                  Probability distribution for (U, X)
P_{UX}
                  Density for (U, X)
p_{U,X}
Pa(X_i)
                  Parents of X_i among X
                  A function of Pa(X_i) and an endogenous U_{X_i} for X_i
f_{X_i}
                  Collection of f_{X_i} functions that define the SCM
f = (f_{X_i} : j)
\mathcal{M}^F
                  Collection of possible P_{UX} as described by the SCM; includes non-
                  testable assumptions based on real knowledge; \mathcal{M} augmented with
                  additional nonstatistical assumptions known to hold
\mathcal{M}^{F*}
                  Model under possible additional causal assumptions required for
                  identifiability of target parameter
P \to \Psi(P)
                  Target parameter as mapping from a P to its value
\Psi(P_0)
                  True target parameter
\hat{\Psi}(P_n)
                  Estimator as a mapping from empirical distribution P_n to its value
\psi_0 = \Psi(P_0)
                  True target parameter value
                  Estimate of \psi_0
\psi_n
Consider O = (L_0, A_0, \dots, L_K, A_K, L_{K+1}) \sim P_0.
L_k
                  Possibly time-varying covariate at t = k; alternate notation L(k)
                  Time-varying intervention node at t = k that can include both treat-
A_k
```

ment and censoring = $(\bar{A}_{k-1}, \bar{L}_{k-1})$

 $=(\bar{A}_{k-1},\bar{L}_k)$

 $Pa(L_k)$

 $Pa(A_k)$

P_{0,L_k}	True conditional probability distribution of L_k , given $Pa(L_k)$, under
	P_0
P_{L_k}	Conditional probability distribution of L_k , given $Pa(L_k)$, under P
P_{n,L_k}	Estimate of conditional probability distribution P_{0,L_k} of L_k
P_{0,A_k}	True conditional probability distribution of A_k , given $Pa(A_k)$, un-
	$\operatorname{der} P_0$
P_{A_k}	Conditional probability distribution of A_k , given $Pa(A_k)$, under P
P_{n,A_k}	Conditional probability distribution of A_k , given $Pa(A_k)$, under es-
	timator P_n of P_0
ϵ	Fluctuation parameter
ϵ_n	Estimate of ϵ
$\{P_{\epsilon}:\epsilon\}\subset\mathcal{M}$	Submodel through <i>P</i>
H^*	Clever covariate
H_n^*	Estimate of H^*
$D(\psi)(O)$	Estimating function of the data structure O and parameters; short-
	hand $D(\psi)$
$D_0^*(O)$	Efficient influence curve; canonical gradient; alternate notation
	$D^*(P_0)(O), D^*(P_0) \text{ or } D^*(O)$
$IC_0(O)$	Influence curve of an estimator at P_0 , representing a function of O
$IC_n(O)$	Estimate of influence curve

We focus on the general data structure $O = (L_0, A_0, \dots, L_K, A_K, L_{K+1}) \sim P_0$ in many chapters, introduced on the previous page. In this setting, the following specific notation definitions apply:

11 7
Baseline covariates
$=(L_0,\ldots,L_{K+1})$
$=(A_0,\ldots,A_K)$
Counterfactual outcome for regime d
Optimal regime depending on P_0
True conditional probability distribution of L_k
Possible conditional probability distribution of L_k
Estimate of Q_{0,L_k}
$=(Q_{L_0},\ldots,Q_{L_{K+1}})$
Example of a loss function where it is a function of O and Q; alter-
nate notation $L(Q)(O)$ or $L(Q)$
Submodel through Q
Conditional mean of the probability distribution of L_k
True conditional probability distribution of A_k
Possible conditional probability distribution of A_k
Estimate of G_{0,A_k}
Initial estimate of \bar{Q}_0
First updated estimate of $ar{Q}_0$
k th updated estimate of \bar{Q}_0
Targeted estimate of \bar{Q}_0 in TMLE procedure

 $\Psi(Q_0)$ Alternate notation for true target parameter when it only depends on P_0 through Q_0 Targeted estimator of parameter

 $\Psi(Q_n^*)$

Expectation of f(O) under P, e.g., $P_0L(Q) = \int L(Q)(o)dP_0(o)$ Pf