Aritmética da Computação

Trabalho para Casa: TPC1

Alberto José Proença

Metodologia

Leia as folhas do enunciado, e responda às questões obrigatórias nas folhas fornecidas para o efeito, de acordo com as suas expectativas de classificação: apenas às questões **A** (Aprovado com 10), e/ou **R** (Razoável classificação), e/ou **B** (Boa classificação) e/ou **E** (Excelente classificação).

Relembra-se que o objectivo dos TPC's é fomentar o estudo individual e contínuo, complementado pelo trabalho de grupo, pelo que se valoriza mais o esforço de se tentar chegar ao resultado do que a correcção do mesmo. A correcção dos trabalhos far-se-á na aula da semana em que o trabalho é entregue.

A ocorrência de fraude tem como primeira consequência uma avaliação negativa.

Prazos

Entrega **impreterível** até à hora de início da sessão TP seguinte, com a presença do estudante durante a sessão TP.

Não serão aceites trabalhos entregues depois deste prazo.

Introdução

A lista de exercícios que se apresenta aplica os conceitos introduzidos na aula teórico-prática sobre sistemas de numeração e representação binária de inteiros (ver sumário e sugestões de leituras).

Enunciado dos exercícios

Sistemas de numeração e representação de inteiros

- 1. (A) Efectue as seguintes conversões:
 - a) Converta para decimal 1101.012 e 10.012
 - **b)** Converta para octal 1101110111012 e 11111.112
 - c) Converta para hexadecimal 1011001011.0012
 - d) Converta para binário 0xFF1F
 - e) Converta para ternário 174
- 2. ^(A)Converta o número –233 para uma representação binária usando 10-bits, com as seguintes representações:
 - a) Sinal e amplitude
 - b) Complemento para 1
 - c) Complemento para 2
 - d) Excesso 2ⁿ⁻¹

- **3.** (A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂, considerando as seguintes representações:
 - a) Inteiro sem sinal
 - b) Sinal e amplitude
 - c) Complemento para 1
 - d) Complemento para 2
 - e) Excesso 2ⁿ⁻¹
- **4.** ^(A)A maioria das pessoas apenas consegue contar até 10 com os seus dedos; contudo, os engenheiros informáticos podem fazer melhor! Como? Cada dedo conta como um bit, valendo 1 se esticado, e 0 se dobrado.
 - a) Com este método, até quanto é possível contar usando ambas as mãos?
 - **b)** Considere que um dos dedos na extremidade da mão é o bit do sinal numa representação em complemento para 2.

Qual a gama de valores que é possível representar com ambas as mãos?

5. (R)Considere que está a executar código num computador de **6-bits**, o qual usa complemento para 2 para representar valores do tipo inteiro. Um inteiro "*short*" é codificado usando 3-bits. Complete a tabela, considerando as seguintes definições:

```
short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;
```

Nota: T_{min} e T_{Max} representam, respectivamente, o menor e o maior valor representável

Expressão	Decimal	Binário
Zero	0	
	-6	
		01 0010
ux		
У		
x>>1		
T _{Max}		
-T _{min}		
T _{min} +T _{min}		

- **6.** ^(R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:
 - **a)** 6
 - **b)** 12

Aritmética de inteiros

- 7. (A) Efectue os seguintes cálculos **usando aritmética binária** de 8-bits em complemento para 2:
 - **a)** 4 + 120
 - **b)** 70 + 80
 - **c)** 100 + (-60)
 - **d)** (-100) (27)

• • • •

Nº	Nome:	Turma:

Resolução dos exercícios

Nota: Apresente sempre os cálculos que efectuar no verso da folha; <u>o não cumprimento desta regra</u> equivale à não entrega do trabalho.

1. (A)Converta cada um dos valores para os seguintes sistemas:

	Valor a converter	Resultado	Valor a converter	Resultado
a) decimal	1101.012		10.012	
b) octal	110 111 011 1012		11 111.112	
c) hexadecimal	10 1100 1011.0012			
d) binário	0xFF1F			
e) ternário	174			

2. ^(A)Converta –233 para uma representação binária usando 10-bits, com as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0
Valor	512	256	128	64	32	16	8	4	2	1
a) sinal e amplitude										
b) complemento p/ 1										
c) complemento p/ 2										
d) excesso 2 ⁿ⁻¹										

3. ^(A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂, considerando as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codificação em binário	1	0	0	1	1	1	0	1	0	1	
a) inteiro sem sinal	512+	0+	0+	64+	32+	16+	0+	4+	0+	1=	629
b) sinal e amplitude											
c) complemento p/ 1											
d) complemento p/ 2											
e) excesso 2 ⁿ⁻¹											

6. ^(R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:

	(i)	(ii)	(iii)
a) 6 bits			
b) 12 bits			