

Zasady zaliczenia kursu Egzamin

- Egzamin I termin (9 luty 2026) II termin (16 luty 2026), bud. D-1, s. 30 godz. 9:15 11:00
 - udział w II terminie oznacza anulowanie oceny z I terminu
 - sprawdzenie <u>zrozumienia pojęć i metod</u>
 - 1 pytanie otwarte:
 opis sytuacji problemowej
 - 1 zadanie półotwarte:
 opis problemu obliczeniowego
 - ocena z egzaminu = średnia z dwóch pozytywnych lub 2

	STYCZEŃ					LUTY			
	5	12	19	26	2 Pn/P	9	16	23	
	6	13	20	27	3	10	17	24	
	7 n/N	14	21	28	4	11	18	25	
	8	15	22	29	5	12	19	26	
	9	16	23	30	6	13	20	27	
•	10	17	24	31	7	14	21	28	
,	11	18	25	1	8	15	22	1	
	N	Р	N	Р	N	Р	N	Р	

Zasady zaliczenia kursu Egzamin

- Celem egzaminu jest sprawdzenie ZROZUMIENIA pojęć i zasad działania metod ujętych w karcie przedmiotu.
- Oceniane są ZWIĘZŁOŚĆ i MERYTORYCZNOŚĆ odpowiedzi oraz jakość UZASADNIEŃ.
- Wymagania:
 - należy pisać wyłącznie NA TEMAT,
 - nie należy tłumaczyć pojęć podstawowych (sprawdzane jest ich ZROZUMIENIE a NIE PAMIĘCIOWE OPANOWANIE REGUŁEK),
 - każde zdanie ma być krokiem na drodze do udzielenia odpowiedzi (brak zbędnych dygresji),
 - nie można korzystać z urządzeń elektronicznych takich jak smartfon, smartwatch, tablet, laptop, kalkulator itp.,
 - wszelkie potrzebne wzory będą podane na tablicy.

Zasady zaliczenia kursu

Niesamodzielna praca = 2.0

■ Niesamodzielna praca oznacza automatyczne niezaliczenie kursu oraz ewentualne zgłoszenie do odpowiedniego Prodziekana.

Wymagania wstępne – ogólnodydaktyczne

- Student ma świadomość, że:
 - obecność na wykładzie jest nieobowiązkowa ale wiedza z wykładu (aktualizowana na bieżąco) JEST OBOWIĄZKOWA!
 - słuchacz wykładu jest aktywnym uczestnikiem procesu przekazywania wiedzy,
 - prowadzenie *własnoręcznych notatek* wspomaga proces zapamiętywania materiału,
 - materiał kursu bazuje na materiałach z kursów wcześniejszych (algebra, analiza, statystyka).

Wymagania wstępne – techniczne

- 1. Elementarne umiejętności pisania i liczenia, w szczególności:
 - umiejętność czytelnego i zrozumiałego pisania w języku polskim,
 - znajomość podstaw arytmetyki (dodawanie, odejmowanie, mnożenie, dzielenie),
 - operacje na ułamkach.
- 2. Bardziej zaawansowane koncepcje matematyczne:
 - umiejętność abstrakcyjnego myślenia symbolicznego, tj. świadomość, że podmiana symboli nie wpływa na sens wyrażenia,
 - umiejętność "wstawiania do wzoru",
 - umiejętność naocznego znajdowania różnic między dwoma zestawami symboli,
 - reguły potęgowania i logarytmowania,
 - znajomość notacji Σ do sumowania elementów szeregu.

Wymagania wstępne – techniczne

3. Algebra liniowa:

- podstawowe operacje macierzowe (mnożenie, transpozycja, wyznacznik dla macierzy do rzędu 3-go, metoda eliminacji Gaussa),
- umiejętność zapisywania układów równań i wyrażeń z Σw postaci wyrażeń macierzowych i odwrotnie.

4. Analiza matematyczna:

- znajomość pojęcia funkcji,
- umiejętność obliczania pochodnych funkcji (korzystanie z tabelki pochodnych, reguła łańcuchowa).

5. Rachunek prawdopodobieństwa i statystyka:

- znajomość pojęcia rozkładu zmiennej losowej dyskretnej i ciągłej,
- prawdopodobieństwo warunkowe,
- wartość oczekiwana, wariancja,
- weryfikacja hipotez statystycznych.

Jak się uczyć?

- Rozumienie pojęć i metod!
- Nie na pamięć!
- Rozwiązywanie problemów, nie "zadań"
- Używam wyobraźni
- Inicjatywa
- Wymagam od innych i od siebie
- Propozycje problemów do rozwiązania i eksploracji padają w trakcie zajęć
- Gdy czegoś nie rozumiem pytam lub eksploruję

Książki

Aby zrozumieć

problemy, metody i algorytmy

Książki

Jak korzystać z bibliotek programistycznych

Jake VanderPlas

Aurélien Géron

Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow

O'REILLY

Jupyter

Helion

