Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова»

Казахстанский филиал Направление 01.03.02 «Прикладная математика и информатика»

Селевенко Роман Михайлович

Об алгоритме поиска древесной ширины графов

Выпускная квалификационная работа

Научный руководитель:
профессор, д.ф.-м.н. С.Н. Селезнева
Допустить к защите:
и.о. заведующего кафедрой
Л.В. Крицков

(подпись и.о. зав. кафедрой)
« » 2022г

Нур-Султан, 2022

Содержание

1	Введение	2
2	Основные определения	3
3	Постановка задачи	4
4	Основная часть	5
5	Заключение	15
6	Приложение	18

1 Введение

В этой работе рассматриваются алгоритмы получения древесной ширины графа и основные свойства древесной ширины графов.

Эти алгоритмы могут быть полезны в сферах искусственного интеллекта, исследования операций и многих других.

Древесная ширина — это минимальная ширина среди всех древесных разложений графа. Под древесным разложением графа понимают его представление в виде дерева с узлами, которые являются множествами вершин исходного графа с определенными свойствами. В начале 70-х было обнаружено, что для огромного количества оптимизационных задач на графах сложность алгоритмов может быть уменьшена с помощью динамического программирования, если граф имеет ограниченную величину, которая в [1] соответствует древесной ширине.

Позже, в конце 80-х, несколько авторов [2, 3, 4] обнаружили, что некоторое количество NP-полных задач для случайных графов могут быть решены более эффективно для графов с ограниченной древесной шириной, используя древесные декомпозиции этих графов. К примеру, задача раскраски графа древесной ширины k в k цветов может быть решена алгоритмом динамического программирования на древесной декомпозиции графа. Для каждого множества в древесной декомпозиции графа и каждого разбиения в этом множестве на цвета, алгоритм определяет, является ли эта раскраска допустимой и можно ли ее расширить. Алгоритм находит оптимальную раскраску со сложностью O(k(k+n)), где n — это количество вершин в графе. В 1987 году показано, что задача о том, больше ли древесная ширина числа k, — NP-полна [5]. Однако, существует полиномиальный алгоритм отвечающий на вопрос, имеет ли данный граф древесную ширину меньшую чем k, где k — постоянная величина [6].

Графы с небольшой древесной шириной, вследствие малого количества элементов в вершинах древесной декомпозиции могут быть пройдены быстрее чем графы с большой древесной шириной. Известно что, граф с древесной шириной 1 это дерево, граф с древесной шириной 2 это параллельно-последовательный граф, граф с древесной шириной 3 — граф Халина [7].

В связи обширным применением древесной ширины, существует большое количество алгоритмов находящих её. Рассмотрим сначала точные алгоритмы нахождения древесной ширины.

Пусть k — древесная ширина, n — количество вершин в графе G, m — количество ребер в графе G. В 1987 году получен алгоритм [8] определяющий, является ли текущий граф k-деревом со сложностью $O(n^{(k+2)})$. В работе 1995 года [9] получен алгоритм решающий проблему нахождения декомпозиции графа на ветви (а следовательно, и древесной декомпозиции) со сложностью $O((n+1)^2+m+n+1)$.

Также существуют алгоритмы оценивающие древесную ширину сверху. Алгоритм из работы 1996 года [10] оценивает древесную ширину за линейное время O(n). Этот линейный алгоритм для постоянного k, которому дан граф G, определяет больше ли древесная ширина этого графа числа k, и если это так, находит древесную декомпозицию G с древесной шириной не больше k. Алгоритм из работы [11] который имеет оценку сложности $O(k\sqrt{\log k})$ основан на связи между древесной шириной и максимальным сепаратором. Данный алгоритм работает за полиномиальное время $O(n^2)$. Следующий алгоритм нахождения древесной ширины графов — алгоритм изложенный в [12]. В этой статье для $k \leq 3$ было доказано существование линейного вероятностного алгоритма определяющего имеет ли граф G древесную ширину $\leq k$. Алгоритм имеет сложность $O(n\log^2 n + n\log n|\log p|)$. Также можно зафиксировать величину k и определить является ли это значение рёбер древесной шириной графа. Например, в работе [13] авторы используют утверждение, что граф G с n вершинами может быть приведен к нуль-графу с n вершинами тогда и только тогда, когда он явлется подграфом 3-дерева. Здесь был получен полиномильный алгоритм со сложностью $(O(n\log n))$ для определения того, является ли граф частичным 3-деревом и для нахождения вложения в 3-дереве, если такое вложение существует.

В этой работе мы рассмотрим жадный алгоритм, оценивающий сверху древесную ширину.

2 Основные определения

Введем основные определения и обозначения (см. например, [14, 15])

Пусть V — непустое множество, $V^{(2)}$ — множество всех его двухэлементных подмножеств. Пара (V, E), где E — произвольное подмножество множества $V^{(2)}$, называется $\mathit{графом}$ ($\mathit{неори-ентированным графом}$). Элементы множества V называются $\mathit{вершинами}$ графа, а элементы множества E $\mathit{ребрами}$. Множества вершин и ребер графа G обозначаются V(G) и E(G) соответственно. Вершины и ребра графа называются его $\mathit{элементами}$.

Число |V(G)| вершин графа называется его *порядком* и обозначается через |G|. Если |G|=n, |E(G)|=m, то G называют (n,m)-графом. Говорят, что две вершины u и v графа cмежны, если множество (u,v) является ребром, и n есмежны в противном случае. Если e=(u,v) — ребро, то вершины u и v называют его k0 концами. В этом случае говорят также, что ребро е k0 если k1 и ребро k2 называются k3 и ребра называют k4 сли k5 является концом ребра k6 и не инциндентыми в противном случае. Множество всех вершин графа k5, смежных с некоторой вершиной k6, называется k6 множество всех вершин графа k7, смежных с некоторой вершиной k8, называется k7, окружением вершины k8 обозначается через k8 или просто k9. Пусть k9 и k9 и k9 и k9 смежны в k9 тогда и только тогда, когда k9 и k9 смежны в k9 то эта биекция называется изоморфизмом графа k9 на граф k9. Если такой изоморфизм существует, то мы пишем k9 и и k9 и говорим, что графы k9 и k9 и изоморфизм. Граф k9 называется k9 и говорим, что графы k9 и k9 и называется k9 и говорим, что графы k9 и k9 и называется k9 и говорим, что графы k9 и k9 и называется k9 и говорим, что графы k9 и k9 и называется k9 и говорим, что графы k9 и k9 и называется k9 и говорим, что графы k9 и k9 и называется k9 и говорим, что графы k9 и называется k9 и говорим, если k9 и говорим, что графы k9 и называется k9 и говорим если k9 и говорим, что графы k9 и называется k9 и говорим, если k9 и говорим если k9 и говорим если k9 и говорим, если k9 и говорим если k9 и говорим

$$v_1, e_1, v_2, e_2, ..., e_l, v_{l+1}$$

вершин и ребер графа G, такая, что $e_i = (u_i, v_i) \in E(G)$, (i = 1, ..., l) называется маршрутом, соединяющим вершины v_1 и v_l . Если все ребра маршрута различны, то он называется цепью. Маршрут называется простой цепью если все его вершины, кроме, возможно, крайних, различны. Маршрут называется замкнутым, если $v_l = v_{l+1}$. Замкнутая цепь — цепь, в которой $v_l = v_{l+1}$. Граф называется связным, если существует маршрут из любой вершины в любую

другую вершину. Замкнутая цепь называется ииклом, а замкнутая простая цепь – npocmым uuknom. Число l ребер в маршруте называется dnuhoй. Простой цикл длины l называется l- циклом, 3-цикл называют mpeyronbhukom.

Деревом называется связный граф, не содержащий циклы. Известно, что в любом дереве T любые две вершины из этого дерева соединены единственной простой цепью. Пусть $P_T(x,y)$ обозначает единственную простую цепь в дереве T между вершинами x,y.

Полным графом называется граф у которого любые две вершины соединены ребром.

Пусть $S \subseteq V(G)$ — подмножество вершин графа G. Тогда порожедённый подграф G[S] — это граф, вершинами которого являются элементы из S, а рёбрами которого являются все рёбра из множества E(G), конечные вершины которых принадлежат S.

3 Постановка задачи

Определим k-дерево с помощью индукции. Базис индукции: любой полный граф T=(V,E) с k+1 вершинами является k-деревом. Индуктивный переход: если T является k-деревом, то можно расширить T, выбрав полный подграф K в T не более чем из k вершин и добавив новую вершину b, смежную со всеми вершинами из K и пусть множество рёбер соединяющих вершину b с подграфом K обозначается буквой U. Тогда новым k-деревом является граф $T=(V\cup\{b\},E\cup U)$. Частичное k-дерево — это подграф k-дерева. Древесная ширина tw(G) графа G — это наименьший параметр k такой, что G является частичным k-деревом.

Дадим теперь, определение древесной ширины использующее понятие древесной декомпозиции.

Пусть G — граф, T — дерево и пусть $\nu = \{V_t \subseteq V(G) \mid t \in V(T)\}$. Пара (T, ν) называется древесной декомпозицией графа G, если она удовлетворяет следующим условиям:

- 1. $V(G) = \bigcup_{t \in V(T)} V_t$;
- 2. Для любого ребра $e \in E(G)$ существует узел $t \in V(T)$ такой, что оба конца e лежат в V_t ;
- 3. $V_{t_1} \cap V_{t_3} \subseteq V_{t_2}$, если $t_1, t_2, t_3 \in V(T)$ удовлетворяют условию $t_2 \in P_T(t_1, t_3)$;

Максимальное число вершин среди всех узлов древесной декомпозиции, т.е. $\max_{t \in V(T)} (|V_t| - 1)$ называется $\mathit{шириной}$ древесной декомпозиции. Древесная $\mathit{ширины}$ графа — это минимальная ширина среди всех древесных декомпозиций.

Первое и второе определения древесной ширины эквивалентны [16].

В основной части:

- 1. Рассмотреть жадный алгоритм поиска оценки сверху древесной ширины.
- 2. Написать программу, реализующую этот алгоритм.
- 3. Получить экспериментальные результаты работы программы для разных классов графов.
- 4. Оценить вычислительную сложность и приемлемость получаемых оценок древесной ширины.
 - 5. Сделать вывод, приемлема ли такая оценка древесной ширины.

4 Основная часть

Список смежности один из способов представления графа в виде коллекции списков вершин. Список смежности является множеством двоек вида (v, E_c) , где $v \in V$, E_c — множество вершин смежных с v. Граф в программе представляется списком смежности.

Программа была написана на языке программирования python. Опишем реализованный алгоритм.

Данный алгоритм основан на индуктивном определении древесной декомпозиции с той лишь разницей, что вместо k-деревьев будем выделять полные подграфы из исходного. Т.е. из графа G будем выделять полные подграфы и при нахождении таковых формировать структуру древесной декомпозиции из этих полных подграфов. Это делается путем нахождения вершин графа с наименьшими степенями, которые формируют полные подграфы со смежными вершинами.

Изложим этот алгоритм более подробно. Проверяем, явлется ли граф G полным графом. Если это так, то древесная ширина графа G равна количеству вершин в графе G минус 1 (tw(G) = |V(G)| - 1). Пусть в начале древесная декомпозиция $S = \{\}$ пуста. Если G — не полный граф, то ищем в G вершину v_i наименьшей степени d, такую ,что вершины $N_H(v_i)$, где $N_H(v_i)$ — множество вершин смежных с v_i и сама эта вершина образуют полный подграф K_d в этом графе. Формируем новый узел древесной декомпозиции. Если мы нашли такую вершину v_i , то новый узел равен $S_i = N_H(v_i)$. Далее рассматриваем граф $H = G - v_i$, то есть граф G без вершины v_i и ребер, одним из концов которых является вершина v_i . Продолжаем искать вершины v_i и удалять их, пока в графе H(т.е. графе G без вершин v_i) не останется ни одной вершины. Если мы такую вершину v_i не нашли, то новый узел древесной декомпозиции равен всему графу H.

Основная сложность нашего алгоритма состоит в том, что оптимальная древесное разложение не получается при выделении полных подграфов из графа G. Это происходит, т.к. по первому определению древесной ширины граф G, имеющий древесную ширину k, является частичным k-деревом, а следовательно, представляет собой полный граф G или друг G вершинами и дополнительными вершинами, соединенными G G или друг G другом (как

указано в индуктивном определении k-дерева). А значит, при удалении полного подграфа из графа G оставшиеся вершины как раз таки и будут этими вершинами, введенными по правилу k-дерева. По правилам нашего алгоритма, если в графе G не осталось полных подграфов, то оставшийся граф мы объединяем в один узел древесной декомпозиции. Соответственно, при увеличении количества таких дополнительных вершин, наша оценка будет увеличиваться. Поясним это на примере:

Рис. 1: Граф с древесной шириной 3

Пусть задан граф G=(V,E), изображенный на рисунке 1. Этот граф называется графом Голднера-Харари и является 3-деревом [18]. Факт того, что этот граф имеет древесную ширину 3 подтверждает рисунок 2 на котором изображена оптимальное древесное разложение. На рисунке 3 изображена древесная декомпозиция графа построенная нашим алгоритмом. Из-за того, что алгоритм принебрег разложением графа $\{A,B,C,D,E,F,G,H,I,J\}$ из-за того что в

Рис. 2: Оптимальная древесная декомпозиция для графа на рисунке 1

Рис. 3: Декомпозиция построенная программой для графа на рисунке 1

Вершины графа	Ребра графа	Оценка алгоритма	Оптимальная оценка
$\{A,B,C,D\}$	$\{\{A,B\},\{A,C\},\{B,D\},\{C,D\}\}$	3	2
$\{A,B,C,D,E,F,X,Y,Z\}$	$\{\{A,B\},\{A,D\},\{B,C\},\{B,E\},\{C,F\},\{D,E\},\{E,F\},\{D,X\},\{E,Y\},\{F,Z\},\{X,Y\},\{Y,Z\}\}$	8	2
$\{A,B,C,D,E,F,G,H\}$	$\{\{A,B\},\{B,C\},\{A,C\},\{C,D\},\{D,E\},\{C,E\},\{B,E\},\{B,F\},\{B,G\},\{F,G\},\{E,G\},\{G,H\},\{E,H\}\}\}$	2	2

нем нет полных подграфов древесная ширина получилась завышенная. Алгоритм дает ответ 9 вместо 3.

Приведем пример неоптимальной оценки работы жадного алгоритма. Пусть G = (V, E), где $V = \{A, B, C, D\}$, $E = \{\{A, B\}, \{A, C\}, \{C, D\}, \{B, D\}\}$. Тогда оптимальное древесное разложение: $\{\{A, B, C\}, \{B, C, D\}\}$. А древесное разложение которое было найдено нашим алгоритмом (такая оценка получается из-за отсутствия полных подграфов в графе G): $\{A, B, C, D\}$. Тогда оценка нашего алгоритма будет равна 3, т.к. не существует полных подграфов в графе G, в то время как оптимальная оценка равна 2 (рис. 4, 5).

Графы на которых тестировалась программа можно разделить на 2 класса: графы протестированные на точность оценки древесной ширины и графы протестированные на время работы программы. Сначала приведем графы на которых тестировалась точность оценки и для каждого графа опишем почему эта оценка для него не точна или наоборот, точна.

Рис. 4: Древесная декомпозиция построенная нашим алгоритмом для графа G

Оценим эффективность верхней оценки данного алгоритма на тестах.

Здесь, в первой колонке записаны вершины графа на котором проводится тестирование, во второй колонке ребра этого графа, в третьей колонке результат работы алгоритма на данном

Рис. 5: Древесная декомпозиция с наименьшей шириной.

Вершины графа	Ребра графа	Оценка алгоритма	Оптимальная оценка
$\{A,B,C,D,E\}$	$\{\{A,B\},\{A,C\},\{A,D\},\{A,E\},\{B,C\},\{B,D\},\{B,E\},\{C,D\},\{C,E\},\{D,E\}\}$	4	4
$\{A,B,C,D,E,F,G,H\}$	$\{\{A,B\},\{A,E\},\{A,H\},\{B,C\},\{C,D\},\{C,G\},\{D,H\},\{D,E\},\{E,F\},\{F,G\},\{G,H\}\}$	7	2
$\{A,B,C,D,E,F\}$	$\{\{A,B\},\{A,C\},\{A,E\},\{A,F\},\{B,F\},\{B,D\},\{B,C\},\{C,D\},\{C,E\},\{D,F\},\{D,E\},\{E,F\}\}$	5	2

графе и в четвертой оптимальная оценка этого графа.

Первый граф из таблицы 1 является простейшим примером неточной оценки древесной ширины нашего алгоритма. Этот пример был показан ранее.

Из таблиц видно, что оценка жадного алгоритма неточная и зависит от количества циклов в графе. К примеру, второй граф из таблицы 1 представляет собой сетку размера 9 (рис. 6). Точная оценка древесной ширины этого графа равна 3, но жадный алгоритм дает оценку 9. При увеличении размера сетки разность между оптимальной оценкой древесной ширины и оценкой жадного алгоритма будет увеличиватся.

Рис. 6: Граф-сетка размера 9.

Третий граф в таблице 1 является примером графа, оцениваемого алгоритмом точно. Это происходит потому, что этот граф состоит из треугольников, т.е. полных графов размера 3. Его разложение изображено на рисунке 7.

Рис. 7: Третий граф в таблице 1 и его древесное разложение разложение

Граф K_5 также является отличным примером точной оценки древесной ширины нашим алгоритмом т.к. явлется полным графом (рис. 8).

Рис. 8: полный граф с 5 вершинами

Второй граф в таблице 2 явлется графом с древесной шириной 2 из-за соединений всех вершин с тремя другими. Однако из-за того что этот граф не имеет полных подграфов оценка алгоритма является не точной (рис. 9).

Рис. 9: Граф с древесной шириной 3

Третий граф в таблице 2 называется графом октаэдра и является другим примером графа с древесной шириной 2. Алгоритм дает оценку 5 для этого графа (рис. 10).

Также стоит отметить, графы с древесной шириной большей 3 могут быть преобразованы в

Рис. 10: Октаэдр

один из графов из таблицы 2 путем удаления вершин, ребер и стягиванием ребер.

Проанализируем время работы программы на разном количестве вершин и ребер.

Минимальное значение рёбер в графе G на котором достигается максимальное значение древесной ширины назовём пороговым значением по древесной ширине на данном графе. Графы из таблиц были получены случайной генерацией на вершинах количеством в интервале от 100 до 800 с шагом 100 и количеством ребер в них, составляющим от 0.1 до 50 процентов от количества ребер в полном графе на этих вершинах, в зависимости от того, является ли данное значение пороговым по древесной ширине на соответствующем графе (к примеру для графа на 100 вершинах пороговым значением древесной ширины является 99).

В таблицах, в первых двух столбцах записано количество вершин и количество рёбер в генерируемых графах. В третьем столбце записано время работы алгоритма на этих графах. В четвертом столбце записана древесная ширина для этих графов.

В таблицах видно, что с увеличением количества вершин увеличивается время затрачиваемое на исполнение программы. Из количества вложенных циклов в алгоритме видно что, алгоритм имеет ассимптотику $O(n \cdot m + n^2 \cdot m + n^2)$, где n — количество вершин в графе G, m — количество ребер в графе G. Здесь за $O(n \cdot m)$ выделяем подграф, образуемый вершиной

Количество вершин	Количество ребер	Время в с.	Оценка древесной ширины нашего алгоритма
100	32	0.67	1
100	57	0.76	1
100	63	0.7	9
100	155	0.18	82
100	166	0.21	81
100	281	0.11	99
100	2395	0.36	99
100	2422	0.37	99
100	2434	0.43	99
100	2485	0.37	99
100	2483	0.42	99
100	2488	0.4	99
100	2489	0.37	99
100	2511	0.38	99
200	96	7.98	1
200	219	5.85	112
200	226	4.62	125
200	9846	3.85	199
200	9901	3.81	199
200	9907	4.23	199
200	9922	4.86	199
200	9938	4.32	199
200	9940	3.87	199
200	9968	4.14	199
200	10016	4	199

Количество вершин	Количество ребер	Время в с.	Оценка древесной ширины нашего алгоритма
300	435	13.78	218
300	449	16.46	213
300	490	7.5	254
300	927	1.93	296
300	22249	16.95	299
300	22358	18.76	299
300	22363	18.59	299
300	22366	16.98	299
300	22414	19.09	299
300	22486	18.98	299
300	22454	19.25	299
300	22513	19.39	299
400	387	95.13	187
400	420	96.39	194
400	815	12.93	358
400	1527	5.22	397
400	4011	9.6	399
400	39746	57.36	399
400	39915	57.02	399
400	40027	65.25	399
400	40140	56.37	399
400	388	98.51	169
500	611	137.07	323
500	1246	13.73	476
500	1324	10.67	483
500	3724	12.46	499
500	62328	134.82	499
500	6292	19.56	499
500	62328	134.82	499

Количество вершин	Количество ребер	Время в с.	Оценка древесной ширины нашего алгоритма
600	173	461.04	1
600	1768	16.79	585
600	8997	36.412	599
600	89865	292.81	599
700	272	920.31	2
700	2492	26.19	695
700	12244	64.28	699
700	122473	541.60	699
800	317	1484.20	1
800	3196	37.71	797
800	15875	98.95	799
800	159547	820.11	799

Рис. 11: График времени работы программы

вместе с ее смежными вершинами, за $O(n^2 \cdot m)$ удаляем подграф из стартового графа, за $O(n^2)$ проверяем является ли выделенный подграф полным. В этой ассимптотике можно убедится, просмотрев код программы в приложении. В таблице также видно, что малое количество рёбер при большем количестве вершин также приводит к увеличению времени работы программы.

На графике, изображенном на рисунке 11, горизотальная ось означает количество рёбер, вертикальная ось - время, затраченное на работу программы на графе с данным количеством рёбер. Здесь видно, что при увеличении количества рёбер время затраченное на работу программы увеличивается. Также на графике видно, что большое количество вершин и малое количество рёбер приводит к большому времени работы программы.

5 Заключение

Был рассмотен жадный алгоритм верхней оценки древесной ширины, основанный на выделении полных подграфов из входного графа.

Можно заключить, что программа имеет время работы соответствующее ряду $O(n \cdot m + n^2 \cdot m + n^2)$, причем время зависит от количества ребер в графе.

Алгоритм дает верхнюю, а не точную оценку древесной ширины. Также было изложено предположение, что верхняя оценка древесной ширины, зависит от количества циклов, имеющихся в графе, что исходит из того, что алгоритм основан на выделении из графа полных подграфов, а не k-деревьев. А следовательно, с ростом числа циклов, оценка жадного алгоритма верхней оценки древесной ширины становится менее точной.

Графы оцениваемые алгоритмом точно являются либо полными, либо графами из которых можно выделить полные подграфы.

Список литературы

- [1] Bodlaender H.L. A partial k-arboretum of graphs with bounded treewidth // Theoretical Computer Science. 1998. V. 209, N 2–3. P. 1–45.
- [2] Arnborg S., Proskurowski A. Linear time algorithms for NP-hard problems restricted to partial k-trees // Discrete Applied Mathematics. 1989. V. 23, N 1. P. 11–24.
- [3] Bern M.W., Lawler E.L., Wong A.L. Linear-time computation of optimal subgraphs of decomposable graphs // Journal of Algorithms. 1987. V. 8, N 2. P. 216–235.
- [4] Bodlaender H.L. Dynamic programming on graphs with bounded treewidth // International Colloquium on Automata, Languages, and Programming. 1988. V. 317, N 15. P. 105-118.
- [5] Arnborg S., Derek G.C., Proskurowski A. Complexity of Finding Embeddings in a k-Tree // SIAM Journal on Algebraic Discrete Methods. 1987. V. 8 P. 277–284.
- [6] Bodlaender H.L. A linear time algorithm for Finding tree-decompositions of small treewidth // SIAM Journal on Computing. 1996. V. 25, N 6. P. 226–234.
- [7] Syslo M.M., Proskurowski A. On Halin graphs // Lecture Notes in Mathematics. 1983. V. 1018.
 P. 248–256.
- [8] Arnborg S., Corneil G.D., Proskurowski A. Complexity of Finding embeddings in a k-tree // SIAM Journal on Matrix Analysis and Applications. 1987. V. 8. P. 277–284.
- [9] Robertson N., Seymour P.D. Graph Minors XIII: The Disjoint Paths Problem // Journal of Combinatorial Theory. 1995. V. 63, N 1. P. 65–110.
- [10] Bodlaender H.L. A linear time algorithm for Finding tree-decompositions of small treewidth // SIAM Journal on Computing. 1996. V. 25, N 6. P. 226–234.
- [11] Feige U., Mohammad H.T., Lee J.R. Improved approximation algorithms for minimum-weight vertex separators // SIAM Journal on Computing. 2008. V. 38, N 2. P. 629–657.

- [12] Matoušek J., Thomas R. Algorithms finding tree-decompositions of graphs // Journal of Algorithms. 1991. V. 12. P. 1–22.
- [13] Arnborg S., Proskurowski A. Characterization Recognition of Partial 3-Trees // SIAM Journal on Algebraic Discrete Methods. 1986. V. 7. P. 305–314.
- [14] Bondy J.A., Murty U.S.R. Graph theory with applications. Ontario: Springer London, 2008.
- [15] Емеличев В.А., Мельников О.И., Тышкевич Р.И. Лекции по теории графов. Москва: Наука, 1990.
- [16] Hlinen P., Oum S., Seese D., Gottlob G. Width Parameters beyond tree-width and their applications // The Computer Journal. 2008. V. 51, N 3. P. 326–362.
- [17] Электронный ресурс: https://github.com/ghost171/AlgorithmOfFindingTreeWidth
- [18] Goldner A., Harary F. Note on a smallest nonhamiltonian maximal planar graph // Bull. Malaysian Math. Soc. 1975. V. 6, N 1. P. 41–42.

6 Приложение

Код программы на языке python также можно просмотреть на github:

https://github.com/ghost 171/Algorithm Of Finding Tree Width

Напишем для начала функцию определяющую является ли поданный аргументом граф полным.

```
Algorithm 1 Функция для проверки графа, на полноту
```

```
1: procedure IsI\tauCLIQUE(gr)
       i \leftarrow 0
 2:
       answers \leftarrow []
 3:
       for x in gr.values() do
 4:
           if len(x) = len(gr.keys()) then
 5:
               answers[i] \leftarrow 1
 6:
           else
 7:
               answers[i] \leftarrow 0
 8:
           end if
 9:
           i \leftarrow i + 1
10:
       end for
11:
       for answer in answers do
12:
           if answer = 0 then return 0
13:
           end if
14:
       end for
15:
         return 1
16: end procedure
```

Напишем теперь алгоритм нахождения древесной ширины. Дан граф G представляемый списком смежности. Требуется вернуть древесную ширину этого графа.

Algorithm 2 Жадный алгоритм нахождения древесной ширины

```
\mathbf{if} \ \mathit{IsItClique}(graph) = 1 \ \mathbf{then}
        graph \leftarrow len(graph.keys()) - 1 return treewidth
    end if
          Будем перебирать все вершины начиная с вершин с наименьшей степенью и искать клики
 4: lengths \leftarrow []
    for i, x in enumerate(graph.items()) do lengths[i] = (x[0], len(x[1]))
          Sort(lengths, 1) Сортируем массив lengths по первому аргументу
    HGraph \leftarrow graph
 8: while true do
         sizeOfTreeDecomposition \leftarrow sizeOfTreeDecomposition + 1
10:
         \mathbf{if}\ \mathit{IsItClique}(HGraph)\ \mathbf{then}
             s.append(list(HGraph.keys())) \\
12:
             n \leftarrow sizeOfTreeDecomposition
             break
14:
         \mathbf{else}
             vI \leftarrow "a"
             adjacentEdgeOfVI \leftarrow []
16:
             for letter, \boldsymbol{x} in lengths \mathbf{do}
18:
                 adjustedVertices \leftarrow []
                 if letter in HGraph.keys() then
20:
                     for adj in HGraph[letter] do adjustedVertices.append(adj)
                     end for
22:
                 end if
                 adjusted Vertices. append (letter)
                 graphCopy \leftarrow HGraph
24:
                 keys \leftarrow graphCopy.copy().keys()
26:
                 for key in keys do
                     \mathbf{if} \ \mathtt{key} \ \mathtt{not} \ \mathtt{in} \ \mathtt{AdjustedVertices} \ \mathbf{then}
28:
                         del GraphCopy
                         {\bf for}\;{\tt x}\;{\tt in}\;{\tt graphCopy.keys()}\;{\bf do}
                              \mathbf{if} \ \mathrm{keyInGraphCopy}[\mathbf{x}] \ \mathbf{then}
30:
                                  graphCopy[x].remove(key)
                              end if
32:
                         end for
                     end if
34:
```

Algorithm 3 Жадный алгоритм нахождения древесной ширины

```
if len(graphCopy) != 0 And IsItClique(graphCopy) then
 2:
        vI \leftarrow letter
        adjacentEdgeOfVI \leftarrow graphCopy[vI]
 4:
        findClique \leftarrow 1
        break
 6: end if
 8: if findClique = 0 then
        s.append(HGraph.keys()) \\
10:
        break
    end if
12:\ adjacent Edge Of VI.append (vI)
    s.append(adjacentEdgeOfVI) \\
14: if len(adjacentEdgeOfVI) > treeWidth then
        treeWidth = len(adjacentEdgeOfVI)
16: end if
    del HGraph[vI]
18:\ \mathbf{for}\ \mathtt{x}\ \mathtt{in}\ \mathtt{HGraph.keys}() \mathbf{do}
        if vIInHGraph[x] then
20:
            HGraph[x].remove(vI)
        end if
22: end for
    \mathbf{if}\ len(HGraph.keys()) = 0\ \mathbf{then}
       break
24:
    end if
26:
28: for el in s\mathbf{do}
        if len(el) < minEl or minEl = 0 then</pre>
            minEl \leftarrow len(el)
30:
        end if
32: end for
    \mathbf{return} \ \mathrm{minEl} = 0
```