Graph Algorithms

Part 2 MST

Ch 23 Spanning Trees

- Weighted Graphs
- Minimum Spanning Trees
 - Greedy Choice Theorem
 - Kruskal's Algorithm
 - Prim's Algorithm

• Problem: given a connected, undirected, weighted graph:

 Problem: given a connected, undirected, weighted graph, find a spanning tree using edges that minimize the total weight

• Which edges form the minimum spanning tree (MST) of the below graph?

• Answer:

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components

- Undirected, connected graph G = (V,E)
- Weight function W: E → R
 (assigning cost or length or other values to edges)

 $(u,v) \in T$

- Spanning tree: tree that connects all the vertices (above?)
- Minimum spanning tree: tree that connects all the vertices and minimizes $w(T) = \sum_{i} w(u, v_i)$

Optimal Substructure

• MST *T*

• Removing the edge (u,v) partitions T into T_1 and T_2

$$w(\bar{T}) = w(u, v) + w(T_1) + w(T_2)$$

- We claim that T_1 is the MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by vertices in T_1
- Also, T_2 is the MST of G_2

Greedy Choice

- Greedy choice property: locally optimal (greedy) choice yields a globally optimal solution
- Theorem
 - Let G=(V, E), and let $S \subseteq V$ and
 - let (u,v) be min-weight edge in G connecting S to V-S
 - Then $(u,v) \in T$ some MST of G

Greedy Choice (2)

Proof

- suppose $(u,v) \notin T$
- look at path from u to v in T
- swap (x, y) the first edge on path from u to v
 in T that crosses from S to V S
- this improves T contradiction (T supposed to be MST)

- Vertex based algorithm
- Grows one tree T, one vertex at a time
- A cloud covering the portion of T already computed
- Label the vertices v outside the cloud with key[v] the minimum weigth of an edge connecting v to a vertex in the cloud, $key[v] = \infty$, if no such edge exists

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
         key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  key[v] = w(u,v);
```

2\$7**325**16

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                               14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
                                     Run on example graph
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                               14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
                                     Run on example graph
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                               14
         key[u] = \infty;
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
                                       Pick a start vertex r
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                                14
         key[u] = \infty;
                                                       15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
Grey vertices have been removed from Q
          for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                               14
         key[u] = \infty;
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
                                       Grey arrows indicate parent pointers
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                              14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                              14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                               14
         key[u] = \infty;
                                                     15
    key[r] = 0;
                                           8
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                               14
                                     10
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                               14
                                     10
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                               14
                                     10
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                               14
                                     10
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                     9
    Q = V[G];
    for each u \in Q
                               14
                                     10
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

CS 325 26

```
MST-Prim(G, w, r)
                                                     9
    Q = V[G];
    for each u \in Q
                               14
                                     10
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                     9
    Q = V[G];
    for each u \in Q
                               14
                                     10
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

V

```
MST-Prim(G, w, r)
                                                     9
    Q = V[G];
    for each u \in Q
                               14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                              14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                               14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                              14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                              14
         key[u] = \infty;
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                   key[v] = w(u,v);
```

Analysis of Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
         key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  key[v] = w(u,v);
```

2\$7**3**2**9**16

Analysis of Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
         key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  DecreaseKey(v, w(u,v));
```

Analysis of Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                          How often is ExtractMin() called?
        key[u] = \infty;
                          How often is DecreaseKey() called?
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
             if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                 p[v] = u;
                 DecreaseKey(v, w(u,v));
```

Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
                             What will be the running time?
    for each u \in Q
                             A: Depends on queue
        key[u] = \infty;
                              binary heap: O(E lg V)
    key[r] = 0;
                              Fibonacci heap: O(V \lg V + E)
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v \in Adj[u]
             if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                 p[v] = u;
                 key[v] = w(u,v);
```

2\$7**320**16

Prim's Running Time

- Time = |V|T(ExtractMin) + O(E)T(ModifyKey)
- Time = $O(V \lg V + E \lg V) = O(E \lg V)$

Q	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T(DecreaseK	Total
	in)	ey)	
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	<i>O</i> (lg <i>V</i>)	<i>O</i> (lg <i>V</i>)	<i>O</i> (<i>E</i> lg <i>V</i>)
Fibonacci heap	<i>O</i> (lg <i>V</i>)	O(1) amortized	<i>O</i> (<i>V</i> lg <i>V</i> + <i>E</i>)

Prim's Example (2)

Prim's Example (2)

Prim's Example (2)

- Edge based algorithm
- Add the edges one at a time, in increasing weight order
- The algorithm maintains A a forest of trees. An edge is accepted it if connects vertices of distinct trees
- We need an Abstract Data Type (ADT) that maintains a partition, i.e., a collection of disjoint sets
 - MakeSet(S,x): S ← S ∪ {{x}}
 - Union (S_i, S_j) : $S \leftarrow S \{S_i, S_j\} \cup \{S_i \cup S_j\}$
 - FindSet(S, x): returns unique $S_i \in S$, where $x \in S_i$

```
Kruskal()
   A = \emptyset;
   for each v \in V
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                             14
                                      25
                       8
   A = \emptyset;
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
   for each v \in V
                             21
                                            13
                                                      1?
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                              2?
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                             14
                                      25
                       8
   A = \emptyset;
                                                  5?
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                       8?
                                      25
   A = \emptyset;
                                                   5
   for each v \in V
                                            13
                             21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                                      9?
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                                            13?
                             21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                                            17
                             14
                                      25
                       8
   A = \emptyset;
                                                   5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                           19
Kruskal()
                             14?
                                            17
                                      25
   A = \emptyset;
                                                  5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                                            17
                                      25
   A = \emptyset;
                                                  5
   for each v \in V
                                            13
                             21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                                           17?
                                      25
   A = \emptyset;
                                                  5
   for each v \in V
                             21
                                            13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19?
Kruskal()
                                      25
                       8
   A = \emptyset;
                                                  5
   for each v \in V
                                            13
                             21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                                      25
                       8
   A = \emptyset;
                                                  5
   for each v \in V
                                            13
                            21?
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                                      25?
                       8
   A = \emptyset;
                                                  5
   for each v \in V
                                            13
                             21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                                      25
                       8
   A = \emptyset;
                                                  5
   for each v \in V
                                            13
                             21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
                                          19
Kruskal()
                             14
                                            17
                                      25
   A = \emptyset;
                                                   5
   for each v \in V
                                            13
                             21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

Correctness Of Kruskal's Algorithm

- Sketch of a proof that this algorithm produces an MST for T:
 - Assume algorithm is wrong: result is not an MST
 - Then algorithm adds a wrong edge at some point
 - If it adds a wrong edge, there must be a lower weight edge (cut and paste argument)
 - But algorithm chooses lowest weight edge at each step.
 Contradiction
- Again, important to be comfortable with cut and paste arguments

```
What will affect the running time?
Kruskal()
   A = \emptyset;
   for each v \in V
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
What will affect the running time?
Kruskal()
                                                      1 Sort
                                         O(V) MakeSet() calls
   A = \emptyset;
                                          O(E) FindSet() calls
   for each v \in V
                                          O(E) Union() calls
       MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          A = A \cup \{\{u,v\}\};
           Union(FindSet(u), FindSet(v));
```

Kruskal's Algorithm: Running Time

• To summarize:

- Sort edges: O(E lg E)
- O(V) MakeSet()'s
- O(E) FindSet()'s
- O(E) Union()'s

Upshot:

- Best disjoint-set union algorithm makes above 3 operations take $O(E \cdot \alpha(E,V))$, α almost constant
- Overall thus O(E lg E) = O(E lgV) since E < V²

Kruskal Running Time

- Initialization O(V) time
- Sorting the edges $\Theta(E \lg E) = \Theta(E \lg V)$
- O(E) calls to FindSet
- Union costs
 - Let t(v) the number of times v is moved to a new cluster
 - Each time a vertex is moved to a new cluster the size of the cluster containing the vertex at least doubles: $t(v) \le \log V$
 - Total time spent doing Union $\sum t(v) \le |V| \log |V|$
- Total time: O(E lg V)