Vibrations of a Drum

Professor Bernoff

12/2/2010

The oscillations of a drum are governed by the wave equation;

DE:
$$u_{tt} = c^2 \nabla^2$$
 in Ω
BC: $u = 0$ on $\partial \Omega, t > 0$
IC: $u_t(x, y, 0) = g(x, y)$.

Here u(x, y, t) is the displacement of the membrane.

First, let's separate the t variable

$$u(x, y, t) = T(t)\Psi(x, y).$$

The DE tells

$$T_t t \Psi = c^2 \nabla^2 \Psi T.$$

So We claim that λ is real and positive. We now solve the T equation;

$$T_{tt} + c^2 \lambda T = 0.$$

So

$$T(t) = A\cos(\omega t) + B\sin(\omega t)$$
$$\omega = c\sqrt{\lambda}$$

And now the Ψ -equation. Since

$$u(x, y, t) = T(t)\Psi(x, y) = 0$$
 on $\partial\Omega$,

for a non-trivial solution

$$T(t) \neq 0 \implies \Psi(x,y) = 0$$
 on $\partial \omega$

This yields the Helmholtz Problem

$$\nabla^2 \Psi + \lambda \Psi = 0 \qquad \text{in } \Omega$$

$$\Psi = 0 \qquad \text{on } \partial \Omega$$

This problem has a countable set of real positive eigenvalues for Ω being a simply connected compact

domain. Note $\lambda_n = \frac{\omega_n^2}{c^2}$ for $n = 1, 2, 3, \dots$ yields the oscillation frequencies of the drum. Question: Does knowing $\{\lambda_n\}$ tell you the shape of the drum? This lead to a very famous paper from Mark Kac; "Can you hear the shape of a drum?"

Time to play the Bongos. Consider Ω to be a disc of radius a centered at the origin, and parameterize it in polar form by r and θ . Let's find the eigenvalues of the Helmholtz Equation.

¹The extent to which these restrictions can be relaxed is an open question in analysis.

Let $\Psi = \Psi(r, \theta)$.

DE:
$$\nabla^2 \Psi + \lambda \Psi = \Psi_{rr} + \frac{1}{r} \Psi_r + \frac{1}{r^2} \Psi_{\theta\theta} + \lambda \Psi = 0$$

DC: $\Psi(a, \theta) = 0$.

We proceed by separation of variables.

$$\Psi(r,\theta) = \mathbb{R}(n)\Theta(\theta)$$

so

$$R_{rr}\Theta + \frac{1}{r}R_r\Theta + \frac{1}{r^2}R\Theta_{\theta\theta} + \lambda R\Theta = 0.$$

Divide by $\frac{\mathbb{R}\Theta}{r^2}$.

$$\frac{R_{rr} + \frac{1}{r}R_r + \lambda R}{\frac{R}{r^2}} = -\frac{\Theta_{\theta\theta}}{\Theta} = \mu.$$

First we solve the Θ -equation.

$$\Theta_{\theta\theta} + \mu\Theta = 0$$
 $0 \le \Theta \le 2\pi$

I want Θ to be 2π -periodic. Claim

$$\Theta_0 = 1$$
, $\mu_0 = 0$
 $\Theta_n = D_n \cos(n\theta) + E_n \sin(n\theta)$, $\mu = n^2$

are solutions. Now we solve the R-equation. For $\mu_n = n^2$, n = 0, 1, 2, ..., I see

$$R_{rr} + \frac{1}{r}R_r + (\lambda - \frac{n^2}{r^2})R = 0.$$

Recall that this is Bessel's Equation of order n. Also, I want R(0) bounded and

$$\Psi(a,\theta) = R(a)\Theta(\theta) = 0 \implies R(a) = 0.$$

We can scale out λ . Let $z = \sqrt{\lambda}r$, then $R = \tilde{R}$

$$\frac{d}{dz} = \frac{dr}{dz}\frac{d}{dr} = \frac{1}{\lambda}\frac{d}{dr} \iff \sqrt{\lambda}\frac{d}{dz} = \frac{d}{dr}.$$

So

$$\lambda \tilde{R}_{zz} + \frac{\lambda}{z} \tilde{R}_z + \left(\lambda - \frac{\lambda n^2}{z^2}\right) \tilde{R} = 0.$$

Divide by λ to obtain

$$\tilde{R}_{zz} + \frac{1}{z}\tilde{R}_z + \left(1 - \frac{n^2}{z^2}\right)\tilde{R} = 0.$$

This is a Bessel's Equation of order n.

$$\tilde{R}(z) = \beta J_n(z) + \gamma \mathbb{Y}_n(z).$$

Note that $\lim_{z\to 0} \mathbb{Y}_n(z) = -\infty \implies \text{set } \gamma = 0 \text{ (and } \beta = 1)$. So

$$\tilde{R}(z) = J_n(z)$$

²Note that this is why we normally have integer orders. If we had a wedge, we would have fractional orders.

and

$$R(r) = J_n(\sqrt{\lambda}r).$$

Applying the BC at r = a

$$R(a) = J_n(\sqrt{\lambda}a) = 0 \implies \sqrt{\lambda}a = \alpha_{np}.$$

Where α_{np} is the pth positive zero of J_n . Example diagram on board. Let

$$\lambda_{np} = \left(\frac{\alpha_{np}}{a}\right)^2.$$

So the eigenfunctions and eigenvalues of Ψ are;

$$n = 0: \ \Psi_{0p} = \Theta_0 R = J_0(\alpha_{op} \frac{r}{a})$$
$$\lambda_{0p} = \left(\frac{\alpha_{0p}}{a}\right)^2$$
$$n = 1, 2, 3, \dots: \ \Psi_{np}^c = \cos(n\theta) J_n(\alpha_{np} \frac{r}{a})$$
$$\Psi_{np}^s = \sin(n\theta) J_n(\alpha_{np} \frac{r}{a})$$
$$\lambda_{np} = \left(\frac{\alpha_{np}}{a}\right)^2.$$

So the oscillation modes are

$$u(r, \theta, t) = \cos(\omega_{np}t)\Psi_{np}^{c}$$

$$\sin(\omega_{np}t)\Psi_{np}^{c}$$

$$\cos(\omega_{np}t)\Psi_{np}^{s}$$

$$\sin(\omega_{np}t)\Psi_{np}^{c}$$

$$\sin(\omega_{0p}t)\Psi_{0p}$$

$$\cos(\omega_{0p}t)\Psi_{0p}$$

where $\omega_{np} = c\sqrt{\lambda_{np}}$ and $n = 1, 2, 3, \dots$ Suppose I wish to love

DE:
$$u_{tt} = c^2 \nabla^2 u$$
 $r < a$
BC: $u(a, \theta, t) = 0$
IC: $u(r, \theta, 0) = f(r, \theta)$
 $u_t(r, \theta, 0) = 0$.

The solution must be expressed in terms of these modes

$$u(r,\theta,t) = \sum_{p=1}^{\infty} A_{0p} \underbrace{J_0(\alpha_{0p} \frac{r}{a})}_{\Psi_{0p}} \cos(\omega_{0p} t) + \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} \left[A_{np} \underbrace{J_n(\alpha_{np} \frac{r}{a}) \cos(n\theta)}_{\Psi_{np}^c} + B_{np} \underbrace{J_n(\alpha_{np} \frac{r}{a}) \sin(n\theta)}_{\Psi_{np}^s} \right] \cos(\omega_{np} t).$$

Remember

$$\{1, \cos(n\theta), \sin(n\theta)\}\$$

are orthogonal for

$$\langle h, g \rangle = \int_0^{2\pi} hg \ d\theta.$$

Also, the set

$$\{J_n(\alpha_{np}\frac{r}{a})\}$$

are orthogonal for the inner-product

$$[h,g] = \int_0^a hgr \ dr.$$

So for $\{\Psi_{0p},\Psi_{np}^c,\Psi_{np}^s\}$ the functions are orthogonal

$$\begin{split} \left\langle \left\langle \Psi_1, \Psi_2 \right\rangle \right\rangle &= \int_0^{2\pi} \int_0^a \Psi_1 \Psi_2 r \ dr \ d\theta \\ &= \int_{\Omega} \Psi_1 \Psi_2 \ dA. \end{split}$$

So

$$A_{0p} = \frac{\langle \langle \Psi_{0p}, f(r, \theta) \rangle \rangle}{\langle \langle \Psi_{0p}, \Psi_{0p} \rangle \rangle}$$
$$A_{np} = \frac{\langle \langle \Psi_{np}^c, f(r, \theta) \rangle \rangle}{\langle \langle \Psi_{np}, \Psi_{np} \rangle \rangle}$$
$$B_{np} = \dots$$