UNIVERSITY OF WISCONSIN—MADISON

Assignment 4

Author: Raymond TIAN

March 9, 2023

Question 1: Examples of big O notation [5 points]

Prove the following statements.

1.
$$n^3 = O(e^n)$$

Proof. Suppose that $n_0 = 1$ and c = 24. We will show that for any $n \ge 1$, $n^3 \le 24 \cdot e^n$. For every integer value of n such that $n \ge 1$, $n^3 \le n^4$. The Taylor expansion of the exponential function is given by

$$e^n = \sum_{k=0}^{\infty} \frac{n^k}{k!} = 1 + n + \frac{n^2}{2} + \frac{n^3}{6} + \frac{n^4}{24} + \dots$$

Since $n \ge 1$, then $n^4 < 24 \cdot e^n$. Combining these two inequalities gives us

$$n^3 < n^4 < 24 \cdot e^n$$

Therefore for $n \ge 1$, $n^3 \le 24 \cdot e^n$, so $n^3 = O(e^n)$.

2.
$$n^3 + 3n^2 - 4 = \Theta(n^3)$$

Proof. Suppose that $n_0 = 2$ and c = 1. We will show that for any $n \ge 2$, $n^3 + 3n^2 - 4 \ge n^3$. Since $n \ge 2$, then $n^3 + 3n^2 - 4 \ge n^3 + 8 > n^3$. Therefore for $n \ge 2$, $n^3 + 3n^2 - 4 \ge n^3$, so $n^3 + 3n^2 - 4 = Ω(n^3)$. Suppose that $n_0 = 1$ and c = 100. We will show that for any $n \ge 1$, $n^3 + 3n^2 - 4 \le 100n^3$. Since $n \ge 1$, then $n^3 + 3n^2 - 4 \le 100n^3$. Therefore for $n \ge 1$, $n^3 + 3n^2 - 4 \le c \cdot n^3$, so $n^3 + 3n^2 - 4 = O(n^3)$. Since $n^3 + 3n^2 - 4 = O(n^3)$ and $n^3 + 3n^2 - 4 = Ω(n^3)$, then by definition, $n^3 + 3n^2 - 4 = O(n^3)$. □

3.
$$n^{3/2} \neq \Omega(n^2)$$

Proof. Suppose that $n_0 = 1$ and c = 1. For the sake of contradiction, we assume that $n^{3/2} = \Omega(n^2)$. Then for every $n \ge 1$, $n^{3/2} \ge n^2$. However if we set n = 2, then the previous inequality becomes $2\sqrt{2} \ge 4$, which is false. Therefore by contradiction, $n^{3/2} \ne \Omega(n^2)$.

Question 2: Some rules of big O notation [5 points]

1. f = O(g) if and only if $g = \Omega(f)$.

Proof. We will prove this statement by proving both sides of the biconditional. If f = O(g), then there exists real numbers $n_0 > 0$ and c > 0, such that for every integer $n \ge n_0$, $f(n) \le c \cdot g(n)$, which is equivalent to $c \cdot g(n) \ge f(n)$. Since c is positive, dividing both sides of the previous inequality by c gives us $g(n) \ge \frac{1}{c} \cdot f(n)$. Since $\frac{1}{c}$ is a real number, then $g = \Omega(f)$. Therefore $f = O(g) \implies g = \Omega(f)$. Now, if $g = \Omega(f)$, then there exists real numbers $n_0 > 0$ and c > 0, such that for every integer $n \ge n_0$, then $g(n) \ge c \cdot f(n)$, which is equivalent to $c \cdot f(n) \le g(n)$. Since c is positive, dividing both sides of the previous inequality by c gives us $f(n) \le \frac{1}{c} \cdot g(n)$. Since $\frac{1}{c}$ is a real number, then f = O(g). Therefore $g = \Omega(f) \implies f = O(g)$. Since $f = O(g) \implies g = \Omega(f)$ and $g = \Omega(f) \implies f = O(g)$, then $f = O(g) \iff g = \Omega(f)$.

2. If $f_1 = \Omega(g_1)$ and $f_2 = \Omega(g_2)$ then $f_1 f_2 = \Omega(g_1 g_2)$.

Proof. If $f_1 = \Omega(g_1)$, there exists real numbers $n_{1_0} > 0$ and $c_1 > 0$, such that for every integer $n_1 \ge n_{1_0}$, $f_1(n_1) \ge c_1 \cdot g_1(n_1)$. Similarly, if $f_2 = \Omega(g_2)$, there exists real numbers $n_{2_0} > 0$ and $c_2 > 0$, such that for every integer $n_2 \ge n_{2_0}$, $f_2(n_2) \ge c_2 \cdot g_2(n_2)$. Multiplying these two inequalities together gives us

$$f_1(n_1)f_2(n_2) \ge (c_1 \cdot g_1(n_1)) \cdot (c_2 \cdot g_2(n_2)) \tag{1}$$

$$f_1(n_1)f_2(n_2) > c_1c_2 \cdot q_1(n_1) \cdot q_2(n_2) \tag{2}$$

Since c1 and c2 are both real numbers, then c1c2 is a real number. Additionally, we can assume without loss of generality that if $n_{1_0} \leq n_{2_0}$, then

$$f_1(n)f_2(n) \ge c \cdot g_1(n)g_2(n)$$

where c = c1c2 and for any integer $n \ge n_{20}$. Therefore $f_1 f_2 = \Omega(g_1 g_2)$.

3. If f = O(g) and g = O(h) then f = O(h).

Proof. If f = O(g) there exists positive real numbers n_0, c such that for every integer $n \ge n_0, f(n) \le c \cdot g(n)$. If g = O(h) there exists positive real numbers m_0, d such that for every integer $m \ge m_0, g(m) \le d \cdot h(m)$. Dividing both sides of the first inequality by c gives us $\frac{f(n)}{c} \le g(n)$. Subbing this value of g(n) into the second inequality gives us $\frac{f(m)}{c} \le d \cdot h(m)$, which is equivalent to $f(m) \le c \cdot d \cdot h(m)$. Since c, d are integers, $c \cdot d$ is an integer, therefore f = O(h).

Question 3: Examples of finite state machines [5 points]

Note that I will only be writing the answers for Question 3.

- 1. (a) $000 \to 000$
 - (b) $010 \to 000$
 - (c) $101 \to 100$

The output string has leading 1s that are in the same position as the input string's leading 1s. The remainder of the output string are 0s.

- 2. (a) $100011 \rightarrow No$
 - (b) $1111 \rightarrow Yes$
 - (c) $0010 \rightarrow \text{No}$
 - (d) $1100 \rightarrow No$

The FSM only accepts input strings where every single character of the input string is 1.

- 3. (a) $100011 \to \text{No}$
 - (b) $0000 \rightarrow \text{No}$
 - (c) $0010 \rightarrow \text{No}$
 - (d) $1100 \rightarrow Yes$

The FSM only accepts input strings where the first character is 1 and the last character is 0.

Question 4: Designing finite state machines [5 points]

I will only be writing the answers. Since the problem did not specify to draw the FSMs, I will write the proper notation for the FSMs in the form of tuples.

1. This FSM will be defined by the tuple (Q, q_0, I, A, δ) where Q represents the finite set of states, $q_0 \in Q$ represents the starting state, I represents the finset set of inputs, $A \subseteq Q$ represents the accepting states, and $\delta \colon Q \times I \to Q$ represents the transition function. Let $Q = \{\alpha, \beta, \gamma\}$, $q_0 = \alpha$, $I = \{0, 1\}$ and $A = \alpha$. Let δ be defined by:

$$\forall q \in Q \ (\delta(q,0) = q) \tag{3}$$

$$\delta(\alpha, 1) = \beta \tag{4}$$

$$\delta(\beta, 1) = \gamma \tag{5}$$

$$\delta(\gamma, 1) = \alpha \tag{6}$$

This is a valid FSM.

2. This FSM will be defined by the tuple (Q, q_0, I, O, δ) where Q represents the finite set of states, $q_0 \in Q$ represents the starting state, I represents the finite set of inputs, O represents the finite set of outputs, and $\delta \colon Q \times I \to Q \times O$ represents the transition function. Let $Q = \{alpha\}, q_0 = \alpha, I = \{0, 1\}$, and $O = \{0, 1\}$. Let δ be defined by:

$$\forall i \in I \ (\delta(\alpha, i) = (\alpha, i))$$

This is a valid FSM.