2018 TSTST #4

Tristan Shin

28 June 2018

For an integer n > 0, denote by $\mathcal{F}(n)$ the set of integers m > 0 for which the polynomial $p(x) = x^2 + mx + n$ has an integer root.

(a) Let S denote the set of integers n > 0 for which $\mathcal{F}(n)$ contains two consecutive integers. Show that S is infinite but

$$\sum_{n \in S} \frac{1}{n} \le 1.$$

- (b) Prove that there are infinitely positive integers n such that $\mathcal{F}(n)$ contains three consecutive integers.
- (a) I claim that $n \in S$ if and only if n = a(a+1)b(b+1) for some $a, b \in \mathbb{N}$. If n = a(a+1)b(b+1), then observe that

$$x^2 + (2ab + a + b)x + n$$

has integer roots -a(b+1) and -b(a+1), and

$$x^{2} + (2ab + a + b + 1)x + n$$

has integer roots -ab and -(a+1)(b+1), so $n \in S$.

Now, assume $n \in S$ and that $x^2 + mx + n$ and $x^2 + (m+1)x + n$ have integer roots. Let the roots of $x^2 + mx + n$ be $-c, -\frac{n}{c}$ with $c \le \sqrt{n}$ and the roots of $x^2 + (m+1)x + n$ be $-(c-a), -\frac{n}{c-a}$ for $a \in \mathbb{N}$ (the negative of the smaller root of $x^2 + (m+1)x + n$ must be smaller than that of $x^2 + mx + n$ because $t + \frac{n}{t}$ is decreasing when $t < \sqrt{n}$). Then

$$c + \frac{n}{c} + 1 = m + 1 = c - a + \frac{n}{c - a},$$

so

$$n = \left(1 + \frac{1}{a}\right)c\left(c - a\right).$$

Then $a \mid c$, so let c = a(b+1) for $b \in \mathbb{N}$. Then

$$n = a\left(a+1\right)b\left(b+1\right)$$

with $a, b \in \mathbb{N}$. So then S is infinite (for example $a^2(a+1)^2 \in S$ for every $a \in \mathbb{N}$), but

$$\sum_{n \in S} \frac{1}{n} \le \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \frac{1}{a(a+1)b(b+1)}$$
$$= \sum_{a=1}^{\infty} \frac{1}{a(a+1)} \sum_{b=1}^{\infty} \frac{1}{b(b+1)}$$
$$= 1.$$

2018 TSTST #4 Tristan Shin

(b) I claim that

$$n = d(d+1)^{2}(d+2)(2d+1)(2d+3)$$

works for any $d \in \mathbb{N}$. Observe that

$$x^{2} + (4d^{3} + 12d^{2} + 10d + 1)x + n$$

has integer roots $-(d+1)^2(2d+1) = -(2d^3 + 5d^2 + 4d + 1)$ and $-d(d+2)(2d+3) = -(2d^3 + 7d^2 + 6d)$,

$$x^{2} + \left(4d^{3} + 12d^{2} + 10d + 2\right)x + n$$

has integer roots $-d(d+1)(2d+3) = -(2d^3 + 5d^2 + 3d)$ and $-(d+1)(d+2)(2d+1) = -(2d^3 + 7d^2 + 7d + 2)$, and

$$x^{2} + (4d^{3} + 12d^{2} + 10d + 3)x + n$$

has integer roots $-d(d+2)(2d+1) = -(2d^3 + 5d^2 + 2d)$ and $-(d+1)^2(2d+3) = -(2d^3 + 7d^2 + 8d + 3)$, so there are infinitely many positive integers n such that $\mathcal{F}(n)$ contains three consecutive integers.