肠道菌群宏基因组群落分析联合 RNA-seq

2024-05-20

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要	ជ្ជ ប	1
	1.1	首次分析	1
	1.2	补充分析	1
2	前言		1
3	材料	料和方法	1
	3.1	材料	1
	3.2	方法	
4	V tr		2
4	分析	「 類米	2
5	结论	<u> </u>	2
6	附:	分析流程	2
	6.1	宏基因组群落分析	2
		6.1.1 数据质控	2
		6.1.2 群落鉴定和丰度定量	2
		6.1.3 群落分析	3
		6.1.3.1 Alpha 多样性	3
		6.1.3.2 Beta 多样性	4
		6.1.3.3 差异分析	7
	6.2	肠道菌群关联代谢物分析	9
	6.3	代谢物关联蛋白质 (基因) 分析	11
	6.4	蛋白质关联到 RNA-seq 的 DEG	12
		6.4.1 Liver	12
		6.4.2 Ileum	16
	6.5	进一步验证代谢物的存在	20
		6.5.1 Liver	21
		6.5.1.1 富集分析	22
		6.5.2 Ileum	23
		6.5.2.1 富集分析	24
7	附:	分析流程 2	26
	7.1	胆汁酸代谢	26
	7.2	Liver	27
	7.3	Ileum	27
\mathbf{R}	efere	ence	28

List of Figures

1	Alpha diversity	3
2	PCoA	4
3	Sample distance	5
4	Beta diversity group test	6
5	Species hierarchy	7
6	The abundance and LDA from Phylum to Class	9
7	MICRO alluvium plot of Matched data in gut M Disorder	10
8	Liver Intersection of Microbiota associated Genes with DEGs	13
9	Liver Top 1000 relationship network	15
10	Ileum Intersection of Microbiota associated Genes with DEGs	17
11	Ileum Top 1000 relationship network	19
12	LIVER ids KEGG enrichment	22
13	LIVER ids GO enrichment	23
14	ILEUM ids GO enrichment	25
15	ILEUM ids KEGG enrichment	25
List	of Tables	
List	of Tables	
List 1	of Tables Merged abundance table	3
	Merged abundance table	3
1	Merged abundance table	
1 2	Merged abundance table	8
1 2 3	Merged abundance table	8 10
1 2 3 4	Merged abundance table	8 10 11
1 2 3 4 5	Merged abundance table	8 10 11 12
1 2 3 4 5	Merged abundance table	8 10 11 12 14
1 2 3 4 5 6 7	Merged abundance table	8 10 11 12 14 15 16 18
1 2 3 4 5 6 7 8	Merged abundance table	8 10 11 12 14 15 16 18
1 2 3 4 5 6 7 8	Merged abundance table Statistic of all difference microbiota MICRO Matched data in gutMDisorder MICRO Discover relationship between Microbiota with Host genes by matching metabolites Liver DEGs Liver Microbiota associated Genes filtered by DEGs Liver Top 1000 relationship data Ileum DEGs Ileum Microbiota associated Genes filtered by DEGs Ileum Top 1000 relationship data Unnamed chunk 38	8 10 11 12 14 15 16 18 19 20
1 2 3 4 5 6 7 8 9 10 11 12	Merged abundance table Statistic of all difference microbiota MICRO Matched data in gutMDisorder MICRO Discover relationship between Microbiota with Host genes by matching metabolites Liver DEGs Liver Microbiota associated Genes filtered by DEGs Liver Top 1000 relationship data Ileum DEGs Ileum Microbiota associated Genes filtered by DEGs Ileum Top 1000 relationship data Unnamed chunk 38 Liver results filtered by validation	8 10 11 12 14 15 16 18 19 20 21
1 2 3 4 5 6 7 8 9 10 11 12 13	Merged abundance table	8 10 11 12 14 15 16 18 19 20 21 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Merged abundance table	8 10 11 12 14 15 16 18 19 20 21 23 26
1 2 3 4 5 6 7 8 9 10 11 12 13	Merged abundance table	8 10 11 12 14 15 16 18 19 20 21 23

1 摘要

1.1 首次分析

需求:以客户提供的数据 (RNA-seq + 肠道菌宏基因组数据),筛选 DEGs、代谢物、肠道菌群关系链。结果:

- 肠道菌群群落分析,以 MetaPhlAn 注释和定量肠道菌,MicrobiotaProcess 下游分析:
 - Alpha 和 Beta 分析均表明,对照组和模型组有显著差异 (6.1.3.1, 6.1.3.2)
 - 所有差异肠道菌见 6.1.3.3
- 建立肠道菌和代谢物联系,以 gutMDisorder 数据库:
 - 将上述差异肠道菌在数据库筛选相关代谢物 (6.2)
- 建立代谢物和蛋白质 (基因) 的联系, 以发表的文献数据1
 - 关联性筛选结果见 Tab. 4
- 建立上述筛选的蛋白质 (基因) 与此前的 RNA-seq 筛选的 DEGs 之间的关联:
 - (Liver 和 Ileum 的 DEGs 是此前已分析的,这里不再重新分析。见表格 Tab. 5 和 Tab. 8)
 - 筛选的基因与 Liver 和 Ileum DEGs 的交集见 Fig. 8 和 Tab. ??
 - 按代谢物与蛋白质 (基因) 关联强弱 (关联系数 rho),将排名前 1000 的差异肠道菌、代谢物、DEGs 之间的关系呈现,Liver 和 Ileum 分别见 Fig. 9, Fig. 11
- 上述,肠道菌、差异基因 DEGs 均有数据支撑,而中间环节代谢物尚缺少验证;因此,这里选择已发表的胆结石研究² 中的数据以进一步验证:
 - 根据该文献报道的胆结石小鼠模型差异代谢物 (肝脏) 进行验证筛选, 经过滤后的结果见 Tab. 12, Tab. 13
- 最后, 试着对上一步的最终基因筛选结果做进一步富集分析:
 - 结果见 6.5.1.1, 6.5.2.1

1.2 补充分析

见 7.2 和 7.3

2 前言

3 材料和方法

3.1 材料

Other data obtained from published article (e.g., supplementary tables):

- Supplementary file from article refer to ChangesAndCorChen2021².
- Supplementary file from article refer to ProteinMetabolBenson2023¹.

3.2 方法

Mainly used method:

- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)³.
- R package ClusterProfiler used for gene enrichment analysis⁴.
- Fastp used for Fastq data preprocessing⁵.
- Database gutMDisorder used for finding associations between gut microbiota and metabolites⁶.
- The Human Gene Database GeneCards used for disease related genes prediction⁷.
- R package Limma and edgeR used for differential expression analysis^{8,9}.
- R package MicrobiotaProcess used for microbiome data visualization 10.
- MetaPhlAn used for profiling the composition of microbial communities from metagenomic data¹¹.
- R version 4.4.0 (2024-04-24); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

- 5 结论
- 6 附:分析流程
- 6.1 宏基因组群落分析
- 6.1.1 数据质控

'Fastp QC' 数据已全部提供。

(对应文件为 ./fastp_local/)

注:文件夹./fastp_local/共包含 18 个文件。

- 1. L1EGG121102-Chow1.html
- 2. L1EGG121103-Chow2.html
- $3. \ L1EGG121104_L1EGG121104-Chow3.html$
- 4. L1EGG121105 L1EGG121105-Chow4.html
- $5.\ L1EGG121106\ L1EGG121106-Chow 5.html$
- 6. ...

6.1.2 群落鉴定和丰度定量

从这里开始,仅选择对照组和模型组进行分析。

Table 1 (下方表格) 为表格 Merged abundance table 概览。

(对应文件为 Figure+Table/Merged-abundance-table.csv)

注: 表格共有 1590 行 13 列,以下预览的表格可能省略部分数据;含有 1590 个唯一'clade name'。

Table 1: Merged abundance table

clade	L1EGG12	L1EGG13	L1EGG14	L1EGG15	L1EGG16	L1EGG17	
kBac	99.99835	100	100	100	100	100	
kArc	0.00165	0	0	0	0	0	
kBac	43.04207	26.21962	35.11351	38.43636	41.23258	37.83933	
kBac	27.14994	0.70409	41.94514	22.4391	10.30688	24.7957	
kBac	22.28786	1.84668	11.54645	3.45731	0.37113	2.64639	
kBac	3.94504	66.67222	7.0249	26.20566	19.89094	18.6702	
kBac	1.61135	4.04429	1.66165	7.25594	12.58176	14.00675	
kBac	1.21374	0	0.25707	2.02386	2.48308	1.89131	
kBac	0.4301	0.51236	2.40227	0.15918	13.13363	0.15032	
kBac	0.31824	0.00074	0.04902	0.0226	0	0	
kArc	0.00165	0	0	0	0	0	
kBac	20.71366	0.86067	7.24419	2.1026	0.13696	1.07217	
kBac	15.78352	0.3191	27.43063	16.53408	7.19353	19.10865	
kBac	11.64828	0.2736	10.04731	0.41265	0.67944	0.81364	
kBac	10.10471	15.68872	14.30816	17.52233	19.43315	18.17767	

6.1.3 群落分析

6.1.3.1 Alpha 多样性

对照组和模型组有显著差异。

Figure 1 (下方图) 为图 Alpha diversity 概览。

(对应文件为 Figure+Table/Alpha-diversity.pdf)

6.1.3.2 Beta 多样性

Figure 2 (下方图) 为图 PCoA 概览。

(对应文件为 Figure+Table/PCoA.pdf)

Figure 2: PCoA

Figure 3 (下方图) 为图 Sample distance 概览。

(对应文件为 Figure+Table/Sample-distance.pdf)

Figure 3: Sample distance

Figure 4 (下方图) 为图 Beta diversity group test 概览。

(对应文件为 Figure+Table/Beta-diversity-group-test.pdf)

Figure 4: Beta diversity group test

'All hierarchy data' 数据已全部提供。

(对应文件为 Figure+Table/All-hierarchy-data)

注:文件夹 Figure+Table/All-hierarchy-data 共包含 6 个文件。

- 1. 1_Phylum.pdf
- 2. 2_Class.pdf
- 3. 3_Order.pdf
- 4. 4_Family.pdf
- $5.\ 5_Genus.pdf$
- 6. ...

Figure 5 (下方图) 为图 Species hierarchy 概览。

(对应文件为 Figure+Table/Species-hierarchy.pdf)

Figure 5: Species hierarchy

6.1.3.3 差异分析

Table 2 (下方表格) 为表格 Statistic of all difference microbiota 概览。

(对应文件为 Figure+Table/Statistic-of-all-difference-microbiota.csv)

注:表格共有 1693 行 8 列,以下预览的表格可能省略部分数据;含有 1693 个唯一'label'。

1. pvalue: 显著性 P。

Table 2: Statistic of all difference microbiota

label	${\bf nodeClass}$	pvalue	fdr	LDAupper	LDAmean	LDAlower	Sign_g
tSGB	OTU	0.0020	0.0160	3.7811	3.7217	3.6527	Control
$t__SGB$	OTU	0.0020	0.0160	3.3656	3.3470	3.3275	Control
$t__SGB$	OTU	0.0020	0.0160	2.0906	2.0529	2.0118	Control
$t__SGB$	OTU	0.0020	0.0160	2.3222	2.2279	2.1074	Control
$t__SGB$	OTU	0.0020	0.0160	2.6348	2.6044	2.5717	Control
$t__SGB$	OTU	0.0020	0.0160	2.7349	2.7128	2.6896	Control
$t__SGB$	OTU	0.0020	0.0160	3.2904	3.2657	3.2395	Control
$t__SGB$	OTU	0.0020	0.0160	2.4401	2.4141	2.3864	Control
$t__SGB$	OTU	0.0020	0.0160	2.5684	2.5329	2.4943	Control
$t__SGB$	OTU	0.0020	0.0160	2.1686	2.1377	2.1045	Control
$t__SGB$	OTU	0.0020	0.0160	3.7672	3.7140	3.6534	Control
tSGB	OTU	0.0020	0.0160	2.6050	2.5764	2.5458	Control
$t__SGB$	OTU	0.0020	0.0160	2.4451	2.4190	2.3911	Control
tSGB	OTU	0.0020	0.0160	3.4353	3.3707	3.2948	Control
$t__SGB$	OTU	0.0020	0.0160	NA	NA	NA	NA
		•••	•••		•••		

Figure 6 (下方图) 为图 The abundance and LDA from Phylum to Class 概览。

(对应文件为 Figure+Table/The-abundance-and-LDA-from-Phylum-to-Class.pdf)

Figure 6: The abundance and LDA from Phylum to Class

6.2 肠道菌群关联代谢物分析

Figure 7 (下方图) 为图 MICRO alluvium plot of Matched data in gutMDisorder 概览。

(对应文件为 Figure+Table/MICRO-alluvium-plot-of-Matched-data-in-gutMDisorder.pdf)

Figure 7: MICRO alluvium plot of Matched data in gutMDisorder

Table 3 (下方表格) 为表格 MICRO Matched data in gutMDisorder 概览。

(对应文件为 Figure+Table/MICRO-Matched-data-in-gutMDisorder.xlsx)

注: 表格共有 198 行 13 列,以下预览的表格可能省略部分数据;含有 13 个唯一'Query'。

Table 3: MICRO Matched data in gutMDisorder

Query	Gut.Mi2	Gut.Mi3	Gut.Mi4	Classi	Substrate	Substr7	Substr8	
Christ	Christ	NA	gm0883	strain	D-Glucose	5793	HMDB00	
Christ	Christ	NA	gm0883	strain	Salicin	439503	HMDB00	
Christ	Christ	NA	gm0883	strain	D-Xylose	135191	HMDB00	
Christ	Christ	NA	gm0883	strain	L-Arab	439195	HMDB00	
Christ	Christ	NA	gm0883	strain	L-Rham	25310	HMDB00	
Christ	Christ	NA	gm0883	strain	D-Mannose	18950	HMDB00	
Christ	Christ	NA	gm0883	strain	D-Glucose	5793	HMDB00	
Christ	Christ	NA	gm0883	strain	Salicin	439503	HMDB00	
Christ	Christ	NA	gm0883	strain	D-Xylose	135191	HMDB00	
Christ	Christ	NA	gm0883	strain	L-Arab	439195	HMDB00	

Query	Gut.Mi2	Gut.Mi3	Gut.Mi4	Classi	Substrate	Substr7	Substr8	
Christ	Christ	NA	gm0883	strain	L-Rham	25310	HMDB00	
${\bf Christ}$	Christ	NA	gm0883	strain	D-Mannose	18950	HMDB00	
Clostr	Clostr	29347	gm0885	strain	Bile acid	439520		
Clostr	Clostr	29347	gm0885	strain	Cholic	221493	HMDB00	
Clostr	Clostr	29347	gm0885	strain	Chenod	10133	HMDB00	

6.3 代谢物关联蛋白质 (基因) 分析

 $https://github.com/aeisman/protein-metabolite\ https://mbenson.shinyapps.io/protein-metabolite/^1$

Table 4 (下方表格) 为表格 MICRO Discover relationship between Microbiota with Host genes by matching metabolites 概览。

(对应文件为 Figure+Table/MICRO-Discover-relationship-between-Microbiota-with-Host-genes-by-matching-metable

注:表格共有52210行10列,以下预览的表格可能省略部分数据;含有22个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 4: MICRO Discover relationship between Microbiota with Host genes by matching metabolites

.id	$. id_from$	Substrate Metabo4	Gut.Mi	Target	Metabo	7 META_	RM6ETA_0	QMETA_I	P
586	Metabo	Creatine	Akkerm	NEGR1	creatine	-0.217	9.9886	2.5777	
586	Metabo	Creatine	${\bf Akkerm}$	RGMA	creatine	-0.204	3.3272	6.2440	
586	Metabo	Creatine	${\bf Akkerm}$	RGMB	creatine	-0.200	1.6028	9.8838	
586	Metabo	Creatine	${\bf Akkerm}$	CD55	creatine	-0.197	4.2927	2.1866	
586	Metabo	Creatine	${\bf Akkerm}$	MB	creatine	-0.196	1.1517	3.3965	
586	Metabo	Creatine	${\bf Akkerm}$	RELT	creatine	-0.194	1.3574	1.7104	
586	Metabo	Creatine	${\bf Akkerm}$	IGFBP2	creatine	-0.193	5.9415	6.8494	
586	Metabo	Creatine	${\bf Akkerm}$	IGFBP6	creatine	-0.187	5.2454	6.1876	
586	Metabo	Creatine	${\bf Akkerm}$	CD59	creatine	-0.187	7.7980	8.7806	
586	Metabo	Creatine	${\bf Akkerm}$	NPPB	creatine	-0.189	1.7690	9.4854	
586	Metabo	Creatine	${\bf Akkerm}$	CDNF	creatine	-0.181	1.3228	7.0930	
586	Metabo	Creatine	${\bf Akkerm}$	EFNB2	creatine	-0.180	1.8860	1.4601	
586	Metabo	Creatine	${\bf Akkerm}$	UNC5D	creatine	-0.172	3.7962	3.8674	
586	Metabo	Creatine	${\bf Akkerm}$	CST3	creatine	-0.169	1.5765	3.3814	
586	Metabo	Creatine	${\bf Akkerm}$	FSTL3	creatine	-0.169	1.6812	2.9297	

.id	.id_from	Substrate	Metabo4	Gut.Mi	Target	Metabo7	META_	RM6ETA_C	QMETA_P	·

6.4 蛋白质关联到 RNA-seq 的 DEG

6.4.1 Liver

Table 5 (下方表格) 为表格 Liver DEGs 概览。

(对应文件为 Figure+Table/Liver-DEGs.xlsx)

注: 表格共有 2998 行 11 列,以下预览的表格可能省略部分数据;含有 2998 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. AveExpr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'MarrayLM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 5: Liver DEGs

hgnc_s	mgi_sy	ensemb	entrez	descri	logFC	AveExpr	t	P.Value	adj.P.Val
ENHO	Enho	ENSMUS	69638	energy	-4.453	2.2957	-17.04	2.0685	0.0002
CES2	Ces2a	ENSMUS	102022	carbox	1.6614	8.8361	15.281	5.6258	0.0004
${ m HSD17B6}$	Hsd17b6	ENSMUS	27400	hydrox	2.8011	8.6106	14.201	1.0950	0.0006
FMO5	Fmo5	ENSMUS	14263	flavin	1.2618	8.1280	13.790	1.4285	0.0007
ABCB11	Abcb11	ENSMUS	27413	ATP-bi	1.2515	7.7893	11.121	9.7706	0.0033
GNAT1	Gnat1	ENSMUS	14685	G prot	-2.232	2.9799	-10.64	1.4365	0.0044
NNMT	Nnmt	ENSMUS	18113	nicoti	-3.804	5.1567	-9.928	2.6415	0.0065
CSAD	Csad	ENSMUS	246277	cystei	-1.560	7.2232	-9.535	3.7482	0.0083
ABCB1	Abcb1a	ENSMUS	18671	ATP-bi	3.2131	3.2740	9.4563	4.0267	0.0084
FGFR2	Fgfr2	ENSMUS	14183	fibrob	2.9129	4.2716	9.2494	4.8706	0.0087
DDAH1	Ddah1	ENSMUS	69219	${\rm dimeth}$	1.3322	6.8518	9.1694	5.2476	0.0087
ABCG5	Abcg5	ENSMUS	27409	ATP bi	1.5044	7.3228	9.0073	6.1127	0.0089
SLC1A2	Slc1a2	ENSMUS	20511	solute	-1.900	5.0951	-8.951	6.4435	0.0089
TTC39C	$\mathrm{Ttc}39\mathrm{c}$	ENSMUS	72747	tetrat	-1.946	6.2930	-8.431	1.0707	0.0106
WNK4	Wnk4	ENSMUS	69847	WNK ly	2.3302	2.6719	8.3971	1.1085	0.0106

hgnc_s	mgi_sy	ensemb	entrez	descri	$\log FC$	AveExpr	t	P.Value	adj.P.Val

Figure 8 (下方图) 为图 Liver Intersection of Microbiota associated Genes with DEGs 概览。

(对应文件为 Figure+Table/Liver-Intersection-of-Microbiota-associated-Genes-with-DEGs.pdf)

Figure 8: Liver Intersection of Microbiota associated Genes with DEGs

Intersection:

CD59, FGFR1, TGFBR3, ACY1, GHR, CXCL12, CD93, POSTN, BMP1, SMOC1, SER-PINF2, OMD, APOL1, DCTPP1, APOA1, MAP2K2, CCL23, INHBA, CFB, CAPG, SPP1, GFRA1, SERPINA3, IL15RA, CADM1, IL1R1, ALCAM, CYP3A4, GDI2, IL18BP, GPT, IGFBP1, F11, COL18A1, SERPINA1, HNRNPAB, AFM, IGFBP5, RBP4, TKT, DDR2, APOM, KYNU,...

(上述信息框内容已保存至 Figure+Table/Liver-Intersection-of-Microbiota-associated-Genes-with-DEGs-content)

Table 6 (下方表格) 为表格 Liver Microbiota associated Genes filtered by DEGs 概览。

(对应文件为 Figure+Table/Liver-Microbiota-associated-Genes-filtered-by-DEGs.xlsx)

注:表格共有 10454 行 10 列,以下预览的表格可能省略部分数据;含有 22 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 6: Liver Microbiota associated Genes filtered by DEGs

.id	.id_from	Substrate	Metabo4	Gut.Mi	Target	Metabo7	META_	RM6ETA_C	QMETA_I	·
588	Metabo		2-Imin	Clostr	CD59	creati	0.4459	6.9021	1.8504	
750	${\bf Substrate}$	Glycine	Acetyl	${\rm Clostr}$	GHR	glycine	-0.425	4.5068	2.4165	
750	${\bf Metabo}$		Glycine	Blautia	GHR	glycine	-0.425	4.5068	2.4165	
750	${\bf Metabo}$		Glycine	Lactob	GHR	glycine	-0.425	4.5068	2.4165	
5793	${\bf Substrate}$	D-	Acetate	Christ	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	Butyrate	Christ	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	$2,\!3\text{-Bu}$	Escher	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	Acetoin	Escher	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	$2,\!3\text{-Bu}$	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	$2,\!3\text{-Bu}$	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	Acetoin	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	$2,\!3\text{-Bu}$	${\bf Escher}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	Ethanol	${\bf Lactob}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	Acetate	${\rm Clostr}$	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								
5793	${\bf Substrate}$	D-	Butyrate	Clostr	PLXNB2	glucose	0.3849	1.3255	3.5538	
		Glucose								

Figure 9 (下方图) 为图 Liver Top 1000 relationship network 概览。

(对应文件为 Figure+Table/Liver-Top-1000-relationship-network.pdf)

Figure 9: Liver Top 1000 relationship network

Table 7 (下方表格) 为表格 Liver Top 1000 relationship data 概览。

(对应文件为 Figure+Table/Liver-Top-1000-relationship-data.xlsx)

注: 表格共有 1000 行 3 列,以下预览的表格可能省略部分数据;含有 26 个唯一'Gut.Microbiota'。

Table 7: Liver Top 1000 relationship data

Gut.Microbiota	Metabolite	Target_Gene
Clostridium	2-Imino-1-methylimidazolidi	CD59
Clostridium	Acetyl phosphate(2-)	GHR
Blautia	Glycine	GHR
Lactobacillus ruminis	Glycine	GHR
Christensenella minuta YIT	Acetate	PLXNB2
Christensenella minuta YIT	Butyrate	PLXNB2
Escherichia coli BW25113	2,3-Butanediol	PLXNB2
Escherichia coli BW25113	Acetoin	PLXNB2
Escherichia coli BW25113	2,3-Butanedione	PLXNB2

Gut.Microbiota	Metabolite	$Target_Gene$
Escherichia coli JCL166	2,3-Butanediol	PLXNB2
Escherichia coli JCL166	Acetoin	PLXNB2
Escherichia coli JCL166	2,3-Butanedione	PLXNB2
Lactobacillus fermentum	Ethanol	PLXNB2
Clostridium pasteurianum	Acetate	PLXNB2
Clostridium pasteurianum	Butyrate	PLXNB2

6.4.2 Ileum

Table 8 (下方表格) 为表格 Ileum DEGs 概览。

(对应文件为 Figure+Table/Ileum-DEGs.xlsx)

注: 表格共有 2554 行 11 列,以下预览的表格可能省略部分数据;含有 2554 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. AveExpr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'MarrayLM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 8: Ileum DEGs

hgnc_s	mgi_sy	ensemb	entrez	descri	logFC	AveExpr	t	P.Value	adj.P.Val
HMGCS1	Hmgcs1	ENSMUS	208715	3-hydr	-1.476	7.1006	-10.01	3.4647	0.0446
LYPD8	Lypd8	ENSMUS	70163	LY6/PL	-1.422	6.7523	-9.413	5.7988	0.0446
ACAA1	Acaa1b	ENSMUS	235674	acetyl	3.2729	4.4478	9.3290	6.2488	0.0446
FDFT1	Fdft1	ENSMUS	14137	farnes	-1.885	4.1659	-9.280	6.5253	0.0446
COL1A1	Col1a1	ENSMUS	12842	collag	0.9944	6.5221	9.2532	6.6835	0.0446
SQLE	Sqle	ENSMUS	20775	squale	-1.933	5.8928	-9.198	7.0178	0.0446
TCF23	Tcf23	ENSMUS	69852	${\rm transc}$	1.8100	3.0507	9.0283	8.1816	0.0446
CCL23	Ccl6	ENSMUS	20305	${\rm chemok}$	-1.331	7.5855	-8.558	1.2650	0.0511
CCL15	Ccl6	ENSMUS	20305	${\rm chemok}$	-1.331	7.5855	-8.558	1.2650	0.0511
CCL15	Ccl6	ENSMUS	20305	chemok	-1.331	7.5855	-8.558	1.2650	0.0511

hgnc_s	mgi_sy	ensemb	entrez	descri	$\log FC$	AveExpr	t	P.Value	adj.P.Val
PIGR	Pigr	ENSMUS	18703	polyme	-1.150	10.832	-8.463	1.3856	0.0511
GZMA	Gzma	ENSMUS	14938	granzy	-3.299	4.3784	-8.447	1.4064	0.0511
CEACAM21	Ceacam10	ENSMUS	26366	CEA ce	-3.021	2.5056	-7.995	2.1919	0.0638
MSMO1	Msmo1	ENSMUS	66234	methyl	-1.455	5.8017	-7.623	3.2019	0.0777
INSIG1	Insig1	ENSMUS	231070	insuli	-1.306	5.1683	-7.562	3.4134	0.0784

Figure 10 (下方图) 为图 Ileum Intersection of Microbiota associated Genes with DEGs 概览。

(对应文件为 Figure+Table/Ileum-Intersection-of-Microbiota-associated-Genes-with-DEGs.pdf)

Figure 10: Ileum Intersection of Microbiota associated Genes with DEGs

Intersection:

RGMB, GSN, POSTN, TNFRSF21, BMP1, WFIKKN2, B2M, SMOC1, SLITRK5, JAM2, DSC2, PDE11A, CST6, APOL1, CCDC80, TNFRSF19, CCL23, NOG, IL15RA, NRXN1, ALCAM, MDH1, GDI2, LCN2, IL18BP, GZMA, SLPI, PTN, GPT, LGALS3BP, COL18A1, SERPINA1, PDE2A, SOD3, CD109, EFNA3, CXCL10, SGTA, RET, POR, GAPDH, CHL1, RAC1, A...

(上述信息框内容已保存至 Figure+Table/Ileum-Intersection-of-Microbiota-associated-Genes-with-DEGs-content)

Table 9 (下方表格) 为表格 Ileum Microbiota associated Genes filtered by DEGs 概览。

(对应文件为 Figure+Table/Ileum-Microbiota-associated-Genes-filtered-by-DEGs.xlsx)

注:表格共有 9208 行 10 列,以下预览的表格可能省略部分数据;含有 22 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 9: Ileum Microbiota associated Genes filtered by DEGs

.id	.id_from Substrate	e Metabo4	Gut.Mi	Target	Metabo7	META_I	RM6ETA_0	QMETA_I	P
588	Metabo	2-Imin	Clostr	B2M	creati	0.5130	0	0	
588	Metabo	2-Imin	${\rm Clostr}$	DSC2	creati	0.5128	0	0	
588	Metabo	2-Imin	Clostr	RGMB	creati	0.4166	5.3138	1.4246	
750	Substrate Glycine	Acetyl	Clostr	RET	glycine	-0.407	9.5712	5.1320	
750	Metabo	Glycine	Blautia	RET	glycine	-0.407	9.5712	5.1320	
750	Metabo	Glycine	Lactob	RET	glycine	-0.407	9.5712	5.1320	
588	Metabo	2-Imin	Clostr	JAM2	creati	0.4070	2.8618	7.6726	
588	Metabo	2-Imin	Clostr	CST6	creati	0.3307	2.1455	5.7522	
588	Metabo	2-Imin	Clostr	SPOCK2	creati	-0.321	1.3977	1.1241	
588	Metabo	2-Imin	Clostr	LCN2	creati	0.3110	2.0900	1.1206	
588	Metabo	2-Imin	Clostr	TNFRSF	2dreati	0.3098	7.2094	7.7313	
588	Metabo	2-Imin	Clostr	SMOC1	creati	0.3071	2.8839	7.7317	
588	Metabo	2-Imin	Clostr	TNFRSF	1 9 reati	0.2890	4.7330	1.2689	
588	Metabo	2-Imin	Clostr	COL18A1	creati	0.2883	3.0855	3.3089	
750	Substrate Glycine	Acetyl	Clostr	SLITRK5	glycine	0.2801	1.7545	4.7038	

Figure 11 (下方图) 为图 Ileum Top 1000 relationship network 概览。

(对应文件为 Figure+Table/Ileum-Top-1000-relationship-network.pdf)

Figure 11: Ileum Top 1000 relationship network

Table 10 (下方表格) 为表格 Ileum Top 1000 relationship data 概览。

(对应文件为 Figure+Table/Ileum-Top-1000-relationship-data.xlsx)

注: 表格共有 1000 行 3 列,以下预览的表格可能省略部分数据;含有 26 个唯一'Gut.Microbiota'。

Table 10: Ileum Top 1000 relationship data

Gut.Microbiota	Metabolite	Target_Gene
Clostridium	2-Imino-1-methylimidazolidi	B2M
Clostridium	2-Imino-1-methylimidazolidi	DSC2
Clostridium	2-Imino-1-methylimidazolidi	RGMB
Clostridium	Acetyl phosphate(2-)	RET
Blautia	Glycine	RET
Lactobacillus ruminis	Glycine	RET
Clostridium	$\hbox{2-Imino-1-methylimidazolidi}$	JAM2
Clostridium	$\hbox{2-Imino-1-methylimidazolidi}$	CST6
Clostridium	$\hbox{2-Imino-1-methylimidazolidi}$	SPOCK2

Gut.Microbiota	Metabolite	Target_Gene
Clostridium	2-Imino-1-methylimidazolidi	LCN2
Clostridium	2-Imino-1-methylimidazolidi	TNFRSF21
Clostridium	2-Imino-1-methylimidazolidi	SMOC1
Clostridium	2-Imino-1-methylimidazolidi	TNFRSF19
Clostridium	2-Imino-1-methylimidazolidi	COL18A1
Clostridium	Acetyl phosphate(2-)	SLITRK5

6.5 进一步验证代谢物的存在

以来自于文献2胆结石小鼠模型研究的差异代谢物 (肝脏) 验证

以下是来源数据:

Table 11 (下方表格) 为表格 unnamed chunk 38 概览。

(对应文件为 Figure+Table/unnamed-chunk-38.xlsx)

注: 表格共有 3104 行 9 列,以下预览的表格可能省略部分数据;含有 100 个唯一'metabolite'。

- 1. cor: 皮尔逊关联系数, 正关联或负关联。
- 2. pvalue: 显著性 P。
- 3. -log2(P.value): P 的对数转化。
- 4. significant: 显著性。
- 5. sign: 人为赋予的符号,参考 significant。

Table 11: Unnamed chunk 38

metabo	microb	cor	pvalue	AdjPvalue	-log2(signif	sign	cid
PE(16:	Prevot	0.6120	0.0049	0.0159	7.6581	< 0.05	*	NA
PE(16:	Alloba	-0.559	0.0115	0.0218	6.4339	< 0.05	*	NA
PE(16:	[Eubac	-0.461	0.0419	0.0636	4.5738	< 0.05	*	NA
PE(16:	A2	-0.514	0.0218	0.0428	5.5171	< 0.05	*	NA
PE(16:	Trepon	0.5303	0.0161	0.0471	5.9517	< 0.05	*	NA
PE(16:	Anaero	0.5185	0.0191	0.0383	5.7051	< 0.05	*	NA
PE(16:	Bifido	-0.670	0.0016	0.0160	9.2801	< 0.05	*	NA
PE(16:	Entero	-0.475	0.0357	0.0567	4.8046	< 0.05	*	NA
PE(16:	Turici	-0.524	0.0176	0.0299	5.8208	< 0.05	*	NA
PE(16:	Tyzzer	-0.568	0.0100	0.0197	6.6310	< 0.05	*	NA
PE(16:	[Eubac	-0.478	0.0345	0.0931	4.8570	< 0.05	*	NA
PE(16:	GCA-90	-0.498	0.0252	0.0406	5.3097	< 0.05	*	NA

metabo	microb	cor	pvalue	AdjPvalue	-log2(signif	sign	cid
PE(16:	Rumino	-0.466	0.0382	0.0868	4.7099	< 0.05	*	NA
PE(16:	Tyzzer	0.6169	0.0037	0.0096	8.0559	< 0.05	*	NA
PE(16:	[Rumin	-0.472	0.0370	0.0699	4.7527	< 0.05	*	NA

6.5.1 Liver

Table 12 (下方表格) 为表格 Liver results filtered by validation 概览。

(对应文件为 Figure+Table/Liver-results-filtered-by-validation.csv)

注:表格共有 148 行 10 列,以下预览的表格可能省略部分数据;含有 1 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 12: Liver results filtered by validation

.id	$. id_from$	Substrate	Metabo4	Gut.Mi	Target	Metabo7	META_F	RM6ETA_C	QMETA_F	·
222528	Metabo	Bile	Deoxyc	Clostr	PCSK9	deoxyc	0.0946	6.9429	1.4891	
		acid								
222528	Metabo	Cholic	Deoxyc	Clostr	PCSK9	deoxyc	0.0946	6.9429	1.4891	
222528	Metabo	${\bf Chenod}$	Deoxyc	Clostr	PCSK9	deoxyc	0.0946	6.9429	1.4891	
222528	${\bf Metabo}$	Bile	Deoxyc	Clostr	PCSK9	deoxyc	0.0946	6.9429	1.4891	
		acid								
222528	${\bf Metabo}$	Bile	Deoxyc	Clostr	CD59	deoxyc	-0.070	4.5859	2.0409	
		acid								
222528	${\bf Metabo}$	Cholic	Deoxyc	Clostr	CD59	${\rm deoxyc}$	-0.070	4.5859	2.0409	
222528	${\bf Metabo}$	${\bf Chenod}$	Deoxyc	Clostr	CD59	${\rm deoxyc}$	-0.070	4.5859	2.0409	
222528	${\bf Metabo}$	Bile	Deoxyc	Clostr	CD59	deoxyc	-0.070	4.5859	2.0409	
		acid								
222528	${\bf Metabo}$	Bile	Deoxyc	Clostr	AHSG	${\rm deoxyc}$	0.0688	0.0001	3.0112	
		acid								
222528	${\bf Metabo}$	Cholic	Deoxyc	Clostr	AHSG	deoxyc	0.0688	0.0001	3.0112	
222528	Metabo	${\bf Chenod}$	Deoxyc	Clostr	AHSG	deoxyc	0.0688	0.0001	3.0112	
222528	Metabo	Bile	Deoxyc	Clostr	AHSG	deoxyc	0.0688	0.0001	3.0112	
		acid								

.id	.id_from	Substrate	Metabo4	Gut.Mi	Target	Metabo	7 META_	RM6ETA_C	QMETA_I	P
222528	Metabo	Bile	Deoxyc	Clostr	CCL23	deoxyc	-0.065	0.0001	6.9947	
		acid								
222528	Metabo	Cholic	Deoxyc	${\rm Clostr}$	CCL23	deoxyc	-0.065	0.0001	6.9947	
222528	Metabo	${\bf Chenod}$	Deoxyc	${\rm Clostr}$	CCL23	deoxyc	-0.065	0.0001	6.9947	

6.5.1.1 富集分析

Figure 12 (下方图) 为图 LIVER ids KEGG enrichment 概览。

(对应文件为 Figure+Table/LIVER-ids-KEGG-enrichment.pdf)

Figure 12: LIVER ids KEGG enrichment

Figure 13 (下方图) 为图 LIVER ids GO enrichment 概览。

(对应文件为 Figure+Table/LIVER-ids-GO-enrichment.pdf)

Figure 13: LIVER ids GO enrichment

6.5.2 Ileum

Table 13 (下方表格) 为表格 Ileum results filtered by validation 概览。

(对应文件为 Figure+Table/Ileum-results-filtered-by-validation.csv)

注:表格共有 104 行 10 列,以下预览的表格可能省略部分数据;含有 1 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 13: Ileum results filtered by validation

.id	.id_from	Substrate	Metabo4	Gut.Mi	Target	Metabo7	META_I	RM6ETA_0	QMETA_I	P
222528	Metabo	Bile	Deoxyc	Clostr	FGF19	deoxyc	0.0981	8.8819	4.5243	
		acid								
222528	Metabo	Cholic	Deoxyc	Clostr	FGF19	deoxyc	0.0981	8.8819	4.5243	

.id	$. id_from$	Substrate	Metabo4	Gut.Mi	Target	Metabo7	META_F	RM6ETA_C	QMETA_F	·
222528	Metabo	Chenod	Deoxyc	Clostr	FGF19	deoxyc	0.0981	8.8819	4.5243	
222528	Metabo	Bile	Deoxyc	Clostr	FGF19	deoxyc	0.0981	8.8819	4.5243	
		acid								
222528	${\bf Metabo}$	Bile	Deoxyc	${\rm Clostr}$	PCSK9	${\rm deoxyc}$	0.0946	6.9429	1.4891	
		acid								
222528	${\bf Metabo}$	Cholic	Deoxyc	${\rm Clostr}$	PCSK9	${\rm deoxyc}$	0.0946	6.9429	1.4891	
222528	${\bf Metabo}$	${\bf Chenod}$	Deoxyc	${\rm Clostr}$	PCSK9	${\rm deoxyc}$	0.0946	6.9429	1.4891	
222528	${\bf Metabo}$	Bile	Deoxyc	${\rm Clostr}$	PCSK9	${\rm deoxyc}$	0.0946	6.9429	1.4891	
		acid								
222528	${\bf Metabo}$	Bile	Deoxyc	${\rm Clostr}$	CCL23	${\rm deoxyc}$	-0.065	0.0001	6.9947	
		acid								
222528	${\bf Metabo}$	Cholic	Deoxyc	${\rm Clostr}$	CCL23	${\rm deoxyc}$	-0.065	0.0001	6.9947	
222528	${\bf Metabo}$	${\bf Chenod}$	Deoxyc	${\bf Clostr}$	CCL23	${\rm deoxyc}$	-0.065	0.0001	6.9947	
222528	${\bf Metabo}$	Bile	Deoxyc	Clostr	CCL23	${\rm deoxyc}$	-0.065	0.0001	6.9947	
		acid								
222528	${\bf Metabo}$	Bile	Deoxyc	Clostr	CCL23	${\rm deoxyc}$	-0.060	0.0005	0.0002	
		acid								
222528	Metabo	Cholic	Deoxyc	Clostr	CCL23	deoxyc	-0.060	0.0005	0.0002	
222528	${\bf Metabo}$	${\bf Chenod}$	Deoxyc	Clostr	CCL23	deoxyc	-0.060	0.0005	0.0002	

6.5.2.1 富集分析

Figure 14 (下方图) 为图 ILEUM ids GO enrichment 概览。

(对应文件为 Figure+Table/ILEUM-ids-GO-enrichment.pdf)

Figure 14: ILEUM ids GO enrichment

Figure 15 (下方图) 为图 ILEUM ids KEGG enrichment 概览。

(对应文件为 Figure+Table/ILEUM-ids-KEGG-enrichment.pdf)

Figure 15: ILEUM ids KEGG enrichment

7 附:分析流程 2

7.1 胆汁酸代谢

获取与胆汁酸代谢相关基因。

Table 14 (下方表格) 为表格 Disease related targets from GeneCards 概览。

(对应文件为 Figure+Table/Disease-related-targets-from-GeneCards.xlsx)

注:表格共有 160 行 7 列,以下预览的表格可能省略部分数据;含有 160 个唯一'Symbol'。

The GeneCards data was obtained by querying :

Bile acid metabolism

Restrict (with quotes):

TRUE

Filtering by Score: :

Score > 0

Table 14: Disease related targets from GeneCards

Symbol	Description	Category	$UniProt_ID$	GIFtS	GC_id	Score
CYP7A1	Cytochrome	Protein Co	P22680	51	GC08M058490	5.11
NR1H2	Nuclear Re	Protein Co	P55055	54	GC19P050329	4.34
NR1H4	Nuclear Re	Protein Co	Q96RI1	56	GC12P100473	4.31
NR1I2	Nuclear Re	Protein Co	O75469	52	GC03P119780	4
FDX1	Ferredoxin 1	Protein Co	P10109	49	GC11P110429	3.58
FABP6	Fatty Acid	Protein Co	P51161	50	GC05P160187	3.49
MALRD1	MAM And LD	Protein Co	Q5VYJ5	38	GC10P019048	3.47
BAAT	Bile Acid	Protein Co	Q14032	50	GC09M101354	3.35
SLC27A5	Solute Car	Protein Co	Q9Y2P5	45	GC19M058479	3.26
HSD11B1	Hydroxyste	Protein Co	P28845	59	GC01P209686	3.26
SULT2A1	Sulfotrans	Protein Co	Q06520	52	GC19M047870	3.14
ARV1	ARV1 Homol	Protein Co	Q9H2C2	43	GC01P230978	3
NR1D1	Nuclear Re	Protein Co	P20393	54	$\mathrm{GC}17\mathrm{M}040092$	2.86
FGF19	Fibroblast	Protein Co	O95750	52	GC11M125583	2.85
NR0B2	Nuclear Re	Protein Co	Q15466	49	GC01M031090	2.54

7.2 Liver

以 Tab. 14 过滤 Tab. 6 得到:

Table 15 (下方表格) 为表格 Liver relationship bile acids 概览。

(对应文件为 Figure+Table/Liver-relationship-bile-acids.xlsx)

注: 表格共有 500 行 10 列,以下预览的表格可能省略部分数据;含有 21 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 15: Liver relationship bile acids

.id	.id_from Substrate	e Metabo4	4 Gut.Mi	Target	Metabo	7 META_	R M ETA_	QMETA_1	—— Р
750	Substrate Glycine	Acetyl	Clostr	APOM	glycine	0.3059	2.5379	4.7629	
750	Metabo	Glycine	Blautia	APOM	glycine	0.3059	2.5379	4.7629	
750	Metabo	Glycine	Lactob	APOM	glycine	0.3059	2.5379	4.7629	
6306	Metabo	l-Isol	Blautia	APOM	isoleu	-0.266	3.0969	1.4945	
750	Substrate Glycine	Acetyl	${\bf Clostr}$	SPP1	glycine	0.2265	1.5545	4.1676	
750	Metabo	Glycine	Blautia	SPP1	glycine	0.2265	1.5545	4.1676	
750	Metabo	Glycine	Lactob	SPP1	glycine	0.2265	1.5545	4.1676	
6306	Metabo	l-Isol	Blautia	EHMT2	isoleu	-0.219	6.8050	2.1892	
6106	Metabo	Leucine	Blautia	APOM	leucine	-0.205	1.8215	1.5626	
5951	Metabo	Serine	Blautia	APOM	serine	0.1931	7.2469	7.1886	
6140	Substrate Phenyl	3-Phen	${\rm Clostr}$	APOM	phenyl	-0.179	3.0935	3.4833	
750	Substrate Glycine	Acetyl	${\bf Clostr}$	EHMT2	glycine	0.1769	3.2423	1.9993	
750	Metabo	Glycine	Blautia	EHMT2	glycine	0.1769	3.2423	1.9993	
750	Metabo	Glycine	Lactob	EHMT2	glycine	0.1769	3.2423	1.9993	
6106	Metabo	Leucine	Blautia	EHMT2	leucine	-0.176	5.7475	3.8522	

7.3 Ileum

以 Tab. 14 过滤 Tab. 9 得到:

Table 16 (下方表格) 为表格 Ileum relationship bile acids 概览。

(对应文件为 Figure+Table/Ileum-relationship-bile-acids.xlsx)

注: 表格共有 247 行 10 列,以下预览的表格可能省略部分数据;含有 21 个唯一'id'。

- 1. META_Rho: 关联分析结果的关联系数,绝对值越大,说明关联性越强(源自文献的分析)
- 2. META_Q: 关联分析结果 P 的校正值 (源自文献的分析)
- 3. META_P: 关联分析结果 P 的值 (源自文献的分析)

Table 16: Ileum relationship bile acids

.id	.id_from Substrate	e Metabo4	Gut.Mi	Target	Metabo	7 META_l	RM6ETA_0	QMETA_1	P
10140	Metabo	Glycoc	Escher	FGF19	glycoc	0.2302	7.2715	5.8484	
10140	Metabo	Glycoc	Akkerm	FGF19	glycoc	0.2302	7.2715	5.8484	
6306	Metabo	l-Isol	Blautia	EHMT2	isoleu	-0.219	6.8050	2.1892	
588	Metabo	2-Imin	${\rm Clostr}$	FABP1	creati	0.2038	3.5774	8.6320	
750	Substrate Glycine	Acetyl	${\rm Clostr}$	EHMT2	glycine	0.1769	3.2423	1.9993	
750	Metabo	Glycine	Blautia	EHMT2	glycine	0.1769	3.2423	1.9993	
750	Metabo	Glycine	Lactob	EHMT2	glycine	0.1769	3.2423	1.9993	
6106	Metabo	Leucine	Blautia	EHMT2	leucine	-0.176	5.7475	3.8522	
6106	Metabo	Leucine	Blautia	SERPINA	Alleucine	-0.165	5.1176	8.2320	
5950	Metabo	Alanine	Blautia	EHMT2	alanine	-0.158	7.1761	6.5412	
6140	Substrate Phenyl	3-Phen	${\rm Clostr}$	EHMT2	phenyl	-0.143	5.8047	7.0031	
145742	Metabo	Proline	Blautia	EHMT2	proline	-0.142	7.3748	9.0950	
5950	Metabo	Alanine	Blautia	SERPINA	Aalanine	-0.138	2.3620	7.5990	
5793	Substrate D-	Acetate	${\bf Christ}$	EHMT2	glucose	-0.136	2.0860	2.9081	
	Glucose								
5793	Substrate D-	Butyrate	Christ	EHMT2	glucose	-0.136	2.0860	2.9081	
	Glucose								
		•••	•••	•••			•••	•••	

Reference

- 1. Benson, M. D. *et al.* Protein-metabolite association studies identify novel proteomic determinants of metabolite levels in human plasma. *Cell Metabolism* **35**, 1646–1660.e3 (2023).
- 2. Chen, Y. et al. Changes and correlations of the intestinal flora and liver metabolite profiles in mice with gallstones. Frontiers in physiology 12, (2021).
- 3. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 4. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- Chen, S. Ultrafast one-pass fastq data preprocessing, quality control, and deduplication using fastp. iMeta
 (2023).

- 6. Cheng, L., Qi, C., Zhuang, H., Fu, T. & Zhang, X. GutMDisorder: A comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. *Nucleic Acids Research* 48, (2019).
- 7. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics **54**, 1.30.1–1.30.33 (2016).
- 8. Ritchie, M. E. *et al.* Limma powers differential expression analyses for rna-sequencing and microarray studies. *Nucleic Acids Research* **43**, e47 (2015).
- 9. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data user's guide. 119.
- Xu, S. et al. MicrobiotaProcess: A comprehensive r package for deep mining microbiome. The Innovation 4, 100388 (2023).
- 11. Blanco-Miguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using metaphlan 4. Nature Biotechnology 41, 1633–1644 (2023).