Aula 21 – A Regra da Cadeia

Metas da aula: Justificar rigorosamente a Regra da Cadeia para derivação de funções compostas. Estabelecer a fórmula para derivação da função inversa.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber o significado e algumas aplicações da Regra da Cadeia para derivação de funções compostas.
- Saber a fórmula para derivação da função inversa e algumas de suas aplicações.

Introdução

Nesta aula vamos justificar rigorosamente a importantíssima Regra da Cadeia, a qual você já conhece de cursos anteriores de Cálculo. Também estabeleceremos a fórmula para derivação de funções inversas.

O Lema de Carathéodory

Iniciaremos nossa discussão apresentando um singelo resultado devido ao importante matemático grego C. Carathéodory (1873–1950), que será útil na demonstração da Regra da Cadeia, que veremos a seguir, bem como na demonstração da fórmula para derivação de funções inversas. Trata-se, na verdade, de uma reformulação do Teorema 20.1.

Lema 21.1 (Lema de Carathéodory)

Seja $I \subset \mathbb{R}$ um intervalo, $\bar{x} \in I$, e $f: I \to \mathbb{R}$. Então f é diferenciável em \bar{x} se, e somente se, existe uma função φ em I que é contínua em \bar{x} e satisfaz

$$f(x) - f(\bar{x}) = \varphi(x)(x - \bar{x}) \qquad x \in I. \tag{21.1}$$

Neste caso, temos $\varphi(\bar{x}) = f'(\bar{x})$.

Prova: (\Rightarrow) Se $f'(\bar{x})$ existe, podemos definir φ por

$$\varphi := \begin{cases} \frac{f(x) - f(\bar{x})}{x - \bar{x}} & \text{para } x \neq \bar{x}, \ x \in I, \\ f'(\bar{x}) & \text{para } x = \bar{x}. \end{cases}$$

ANÁLISE REAL

A continuidade de φ segue do fato que $\lim_{x\to \bar{x}} \varphi(x) = f'(\bar{x})$. Se $x=\bar{x}$, então os dois membros de (21.1) são iguais a 0, ao passo que se $x \neq \bar{x}$, então multiplicando $\varphi(x)$ por $x - \bar{x}$ nos dá (21.1) para todo $x \in I \setminus \bar{x}$.

 (\Leftarrow) Suponhamos agora que exista uma função φ contínua em \bar{x} e satisfazendo (21.1). Se dividirmos (21.1) por $x - \bar{x} \neq 0$, então a continuidade de φ em \bar{x} implica que

$$\varphi(\bar{x}) = \lim_{x \to \bar{x}} \varphi(x) = \lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{x - \bar{x}}$$

existe. Portanto, f é diferenciável em \bar{x} e $f'(\bar{x}) = \varphi(\bar{x})$.

Exemplos 21.1

1. Para ilustrar o Lema de Carathéodory, consideremos a função f definida por $f(x) = \sqrt{x}$, para $x \ge 0$. Para $\bar{x} > 0$, vale

$$\sqrt{x} - \sqrt{\bar{x}} = \frac{1}{\sqrt{x} + \sqrt{\bar{x}}} (x - \bar{x}).$$

Logo, para todo $\bar{x} > 0$, podemos aplicar o Lema de Carathéodory com $\varphi(x) = 1/(\sqrt{x} + \sqrt{\bar{x}})$ para concluir que f é diferenciável em \bar{x} e $f'(\bar{x}) = 1/(2\sqrt{\bar{x}}).$

2. Por outro lado, f definida no ítem anterior não é diferenciável em $\bar{x}=0$. De fato, se f fosse diferenciável em 0, então existiria φ contínua em 0 tal que $\sqrt{x} = \varphi(x)x$. Mas então, para $x \neq 0$, teríamos $1/\sqrt{x} = \varphi(x)$, o que daria uma contradição com o fato de φ ser contínua em 0.

A Regra da Cadeia

Em seguida aplicamos o Lema de Carathéodory para provar a famosa Regra da Cadeia para derivação de funções compostas.

Teorema 21.1 (Regra da Cadeia)

Sejam I, J intervalos em \mathbb{R} , sejam $g: I \to \mathbb{R}$ e $f: J \to \mathbb{R}$ funções tais que $f(J) \subset I$, e seja $\bar{x} \in J$. Se f é diferenciável em \bar{x} e se q é diferenciável em $f(\bar{x})$, então a função composta $g \circ f$ é diferenciável em \bar{x} e

$$(g \circ f)'(\bar{x}) = g'(f(\bar{x})) \cdot f'(\bar{x}). \tag{21.2}$$

Prova: Como $f'(\bar{x})$ existe, o Lema de Carathéodory 21.1 implica que existe uma função φ definida em J tal que φ é contínua em \bar{x} e $f(x) - f(\bar{x}) =$

 $\varphi(x)(x-\bar{x})$ para $x\in J$, e $\varphi(\bar{x})=f'(\bar{x})$. Por outro lado, como g é diferenciável em $f(\bar{x})$, existe uma função ψ definida sobre I tal que ψ é contínua em $\bar{y}:=f(\bar{x})$ e $g(y)-g(\bar{y})=\psi(y)(y-\bar{y})$ para $y\in I$, e $\psi(\bar{y})=g'(\bar{y})$. Substituindo y=f(x) e $\bar{y}=f(\bar{x})$, obtemos

$$q(f(x)) - q(f(\bar{x})) = \psi(f(x))(f(x) - f(\bar{x})) = ((\psi \circ f(x) \cdot \varphi(x))(x - \bar{x}))$$

para todo $x \in J$. Como a função $(\psi \circ f) \cdot \varphi$, definida em J, é contínua em \bar{x} e seu valor em \bar{x} é $g'(f(\bar{x})) \cdot f'(\bar{x})$, o Lema de Carathéodory nos dá (21.2).

Exemplos 21.2

(a) Se $f: I \to \mathbb{R}$ é diferenciável em I e $g(y) = y^n$ para $y \in \mathbb{R}$ e $n \in \mathbb{N}$, então, como $g'(y) = ny^{n-1}$, segue da Regra da Cadeia 21.1 que

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$
 para $x \in I$.

Portanto, temos $(f^n)'(x) = n(f(x))^{n-1}f'(x)$ para todo $x \in I$, como havíamos visto na aula passada.

(b) Suponhamos que $f: I \to \mathbb{R}$ seja diferenciável em I e que $f(x) \neq 0$ para $x \in I$. Se g(y) := 1/y para $y \neq 0$, então, pelo que foi visto na aula passada, $g'(y) = -1/y^2$ para $y \in \mathbb{R} \setminus \{0\}$. Portanto,

$$\left(\frac{1}{f}\right)'(x) = (g \circ f)'(x) = g'(f(x))f'(x) = -\frac{f'(x)}{(f(x))^2}$$
 para $x \in I$.

(c) Consideremos as funções $S(x) := \operatorname{sen} x$, $C(x) := \operatorname{cos} x$, $E(x) := e^x$ e $L(x) := \log x$, $x \in \mathbb{R}$. Nos cursos de Cálculo você aprendeu as fórmulas para as derivadas dessas funções, nomeadamente,

$$S'(x) = \cos x = C(x), \ C'(x) = -\sin x = -S(x),$$

 $E'(x) = e^x = E(x), \ L'(x) = \frac{1}{x},$

que serão justificadas em aulas futuras deste curso. Assumindo como válidas tais fórmulas, podemos aplicar a Regra da cadeia para calcular derivadas de funções bastante complexas.

Como exemplo, vimos na aula passada que a função $f(x) := x^2 \operatorname{sen}(1/x)$, $x \neq 0$, e f(0) := 0, é diferenciável em x = 0 com f'(0) = 0. Para $x \neq 0$, a Regra da Cadeia, combinada com a Regra do Produto, nos dá

$$f'(x) = 2x \operatorname{sen}(1/x) + x^2(\frac{-1}{x^2}\cos(1/x)) = 2x \operatorname{sen}(1/x) - \cos(1/x).$$

Em particular, vê-se claramente que f'(x) é descontínua em x=0.

ANÁLISE REAL

(d) Calcular f'(x) se $f(x) = \log(1 + (\sin x)^2)$, $x \in \mathbb{R}$.

Usando as fórmulas para as derivadas de S(x) e L(x) no ítem anterior e aplicando duas vezes a Regra da Cadeia, obtemos

$$f'(x) = \frac{1}{1 + (\sin x)^2} 2 \sin x \cos x = \frac{\sin 2x}{1 + (\sin x)^2},$$

onde também utilizamos a conhecida fórmula sen $2x = 2 \operatorname{sen} x \cos x$.

Funções Inversas

A seguir vamos estabelecer a fórmula da derivada para a função inversa de uma dada função estritamente monótona. Se f é uma função contínua estritamente monótona definida num intervalo I, então sua função inversa $g = f^{-1}$ está definida no intervalo J := f(I) e satisfaz a relação

$$g(f(x)) = x$$
 para $x \in I$. (21.3)

Pelo Teorema da Inversa Contínua 19.5, a função g é contínuia em J. Se $\bar{x} \in I$ e $\bar{y} := f(\bar{x})$, e se $f'(\bar{x})$ existe e $f'(\bar{x}) \neq 0$, o teorema que veremos a seguir garante a existência de $g'(\bar{y})$. Neste caso, derivando (21.3) em $x = \bar{x}$ com o auxílio da Regra da Cadeia, segue que $g'(f(\bar{x}))f'(\bar{x}) = 1$, donde concluímos que $g'(\bar{y}) = 1/f'(\bar{x})$. Passemos ao enunciado e prova do resultado.

Teorema 21.2 (Fórmula da Derivada da Função Inversa)

Seja I um intervalo em \mathbb{R} e seja $f:I\to\mathbb{R}$ estritamente monótona e contínua em I. Seja J:=f(I) e $g:J\to\mathbb{R}$ a função estritamente monótona e contínua inversa de f. Se f é diferenciável em $\bar{x} \in I$ e $f'(\bar{x}) \neq 0$, então g é diferenciável em $\bar{y} := f(\bar{x})$ e

$$g'(\bar{y}) = \frac{1}{f'(\bar{x})} = \frac{1}{f'(g(\bar{y}))}$$
 (21.4)

Prova: Pelo Lema de Carathéodory 21.1 obtemos uma função φ em I contínua em \bar{x} satisfazendo $f(x) - f(\bar{x}) = \varphi(x)(x - \bar{x}), x \in I, \text{ com } \varphi(\bar{x}) = f'(\bar{x}).$ Como $\varphi(\bar{x}) \neq 0$ por hipótese, existe uma vizinhança $V := (c - \delta, c + \delta)$ tal que $\varphi(x) \neq 0$ para todo $x \in V \cap I$. Se $U := f(V \cap I)$, então a função inversa g satisfaz f(g(y)) = y para todo $y \in U$, de modo que

$$y - \bar{y} = f(g(y)) - f(\bar{x}) = \varphi(g(y))(g(y) - g(\bar{y})).$$

Como $\varphi(g(y)) \neq 0$ para $y \in U$, podemos dividir a equação anterior por $\varphi(g(y))$ e obter

$$g(y) - g(\bar{y}) = \frac{1}{\varphi(g(y))}(y - \bar{y}).$$

Sendo a função $1/(\varphi \circ g)$ contínua em \bar{y} , aplicamos o Lema de Carathéodory para concluir que $g'(\bar{y})$ existe e $g'(\bar{y}) = 1/\varphi(g(\bar{y})) = 1/\varphi(\bar{x}) = 1/f'(\bar{x})$.

Observação 21.1

No Teorema 21.2, a hipótese $f'(\bar{x}) \neq 0$ é essencial. De fato, se $f'(\bar{x}) = 0$, então a função inversa g nunca é diferenciável em $\bar{y} = f(\bar{x})$, já que a hipótese da existência de $g'(\bar{y})$ nos levaria a $1 = f'(\bar{x})g'(\bar{y}) = 0$, o que é absurdo. A função $f(x) := x^3$ em $\bar{x} = 0$ é um exemplo dessa situação.

O resultado seguinte é um corolário do Teorema 21.2 combinado com resultados anteriores.

Teorema 21.3

Seja I um intervalo e $f:I\to\mathbb{R}$ estritamente monótona em I. Seja J:=f(I) e seja $g:J\to\mathbb{R}$ a função inversa de f. Se f é diferenciável em I e $f'(x)\neq 0$ para $x\in I$, então g é diferenciável em J e

$$g' = \frac{1}{f' \circ g}.\tag{21.5}$$

Prova: Se f é diferenciável em I, então o Teorema 20.2 implica que f é contínua em I, e pelo Teorema da Inversa Contínua 19.5, a função inversa g é contínua em J. A equação (21.5) agora segue do Teorema 21.2.

Se f e g são as funções no enunciado do Teorema 21.3 então a relação (21.5) pode ser escrita na forma

$$g'(y) = \frac{1}{(f' \circ g)(y)}, \ y \in J,$$
 ou $(g' \circ f)(x) = \frac{1}{f'(x)}, \ x \in I.$

Exemplos 21.3

- (a) A função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) := x^3 + x + 1$ é contínua e estritamente monótona crescente, pois é a soma de duas funções crescentes, $f_1(x) = x^3$ e $f_2(x) = x + 1$. Além disso, $f'(x) = 3x^2 + 1$ nunca se anula. Portanto, pelo Teorema 21.2, a função inversa $g = f^{-1}: \mathbb{R} \to \mathbb{R}$ é diferenciável em todo ponto. Se tomarmos $\bar{x} = 2$, então como f(2) = 10, obtemos g'(10) = g'(f(2)) = 1/f'(2) = 1/13.
- (b) Seja $n \in \mathbb{N}$ par, $I := [0, \infty)$, e $f(x) := x^n$ para $x \in I$. Vimos na Aula 19 que f é crescente e contínua em I, de modo que sua inversa $g(y) := y^{1/n}$ para $y \in J := [0, \infty)$ também é crescente e contínua em

ANÁLISE REAL

J. Mais ainda, temos $f'(x) = nx^{n-1}$ para $x \in I$. Logo, segue que se y > 0, então g'(y) existe e

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(g(y))^{n-1}} = \frac{1}{ny^{(n-1)/n}}.$$

Assim deduzimos que

$$g'(y) = \frac{1}{n}y^{(1/n)-1}$$
 para $y > 0$.

No entanto, g não é diferenciável em 0. Veja os gráficos de f e g na Figura 19.4.

- (c) Seja $n \in \mathbb{N}$, $n \neq 1$, ímpar, seja $f(x) := x^n$ para $x \in \mathbb{R}$, e $g(y) := y^{1/n}$ sua inversa definida para todo $y \in \mathbb{R}$. Como em (b) concluímos que g é diferenciável para $y \neq 0$ e que $g'(y) = (1/n)y^{(1/n)-1}$ para $y \neq 0$. Aqui também g não é diferenciável em y = 0. Os gráficos de f e g aparecem na Figura 19.5.
- (d) Seja r:=m/n um número racional positivo, $I=[0,\infty)$, e seja $h(x)=x^r$ para $x\in I$ (lembre da Definição 19.3). A função h é a composição das funções $f(x):=x^m$ e $g(x)=x^{1/n}, x\in I$: $h(x)=f(g(x)), x\in I$. Se aplicarmos a Regra da Cadeia 21.1 e osresultados de (b) e (c), então obtemos

$$h'(x) = f'(g(x))g'(x) = m(x^{1/n})^{m-1} \cdot \frac{1}{n}x^{(1/n)-1}$$
$$= \frac{m}{n}x^{(m/n)-1} = rx^{r-1}$$

para todo x > 0. Se r > 1, é um exercício mostrar diretamente da definição que a derivada também existe em x = 0 e h'(0) = 0.

(e) A função seno é crescente no intervalo $I:=[-\pi/2,\pi/2]$ e sen(I)=[-1,1]. Portanto, sua função inversa, que será denotada por arc sen, está definida em J:=[-1,1]. Como foi dito no Exemplo 21.2(c), a função seno é diferenciável em \mathbb{R} (em particular em I) e $D \operatorname{sen} x = \cos x$ para $x \in I$. Como $\cos x \neq 0$ para $x \in (-\pi/2,\pi/2)$ segue do Teorema 21.2 que

$$D \arcsin y = \frac{1}{D \sin x} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - (\sin x)^2}} = \frac{1}{\sqrt{1 - y^2}}$$

para todo $y \in (-1,1)$. A derivada de arc sen não existe nos pontos -1 e 1.

Exercícios 21.1

- 1. Calcule a derivada de cada uma das seguintes funções:
 - (a) $f(x) := e^{x^2}, x \in \mathbb{R}$.
 - (b) $f(x) := \log \sin x, x \in (0, \pi).$
 - (c) $\cos \log(1+x^2)$, $x \in \mathbb{R}$.
- 2. Prove que se $f : \mathbb{R} \to \mathbb{R}$ é uma **função par**, isto é, f(-x) = f(x) para todo $x \in \mathbb{R}$, e é diferenciável em todo ponto, então a derivada f' é uma **função ímpar**, ou seja, f'(-x) = -f'(x) para todo $x \in \mathbb{R}$. De modo semelhante, se f é ímpar f' é par.
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) := x^2 \operatorname{sen}(1/x^2)$ para $x \neq 0$ e f(0) := 0. Mostre que f é diferenciável em todo $x \in \mathbb{R}$. Mostre também que a derivada f' não é limitada em nenhum intervalo contendo 0.
- 4. Se r > 0 é um número racional, seja $f : \mathbb{R} \to \mathbb{R}$ definida por $f(x) := |x|^r$. Mostre que se r > 1, então f'(x) existe para todo $x \in \mathbb{R}$, inclusive x = 0.
- 5. Dado que a função $f(x) := x^5 + x + 2$ para $x \in \mathbb{R}$ possui uma inversa $g := f^{-1}$ definida em \mathbb{R} , encontre g'(y) nos pontos correspondentes a x = 0, 1, -1.
- 6. Dado que a restrição da função cosseno a $I := [0, \pi]$ é estritamente decrescente e $\cos 0 = 1$, $\cos \pi = -1$, seja J := [-1, 1] e arccos : $J \to \mathbb{R}$ a função inversa da restrição de \cos a I. Mostre que arccos é diferenciável em (-1, 1) e

$$D \arccos y = \frac{-1}{(1 - y^2)^{1/2}}, \quad \text{para } y \in (-1, 1).$$

Mostre que arccos não é diferenciável em -1 e 1.

7. Dado que a restrição ao intervalo $I := (-\pi/2, \pi/2)$ da função tangente, $\tan x := \sin x/\cos x$, é crescente e que $\tan(I) = \mathbb{R}$, seja arctan : $\mathbb{R} \to \mathbb{R}$ a função inversa de tan em I. Mostre que arctan é diferenciável em \mathbb{R} e que

$$D\arctan(y) = \frac{1}{(1+y^2)}, \quad \text{para } y \in \mathbb{R}.$$

8. Seja r > 0 um número racional e $f : \mathbb{R} \to \mathbb{R}$ definida por $f(x) := |x|^r \operatorname{sen}(1/x)$ para $x \neq 0$ e f(0) := 0. Determine os valores de r para os quais f é diferenciável para todo $x \in \mathbb{R}$, inclusive x = 0.