Distributed Systems 29/01/2021 Exam A

Family Na	me	Name	Student ID
1 4111111 1 1 14		1 (dille	Student 1B

Ex 1: Provide the specification of the (1, N) Regular Register and describe the majority voting algorithm discussed during the lectures.

Ex 2: Consider the message pattern shown in the Figure

Answer to the following questions:

- 1. Complete the partial execution in order to obtain a run satisfying Uniform Reliable Broadcast
- 2. Complete the partial execution in order to obtain a run satisfying Regular Reliable Broadcast but not Uniform Reliable Broadcast
- 3. Complete the partial execution in order to obtain a run satisfying Best Effort Broadcast but not Regular Reliable Broadcast
- 4. List <u>ALL</u> the possible sequences satisfying both causal order and total order

NOTE: To solve the exercise you can just add deliveries of messages and new broadcast (if needed)

Ex 3: Consider the execution depicted in the Figure

Answer to the following questions:

- 1. Which is the strongest Total Order specification satisfied by the proposed run? Provide your answer by specifying both the agreement and the ordering property.
- 2. Modify the run in order to obtain an execution satisfying TO(UA, WNUTO) but not TO(UA, WUTO)

3. Modify the run in order to obtain an execution satisfying TO(NUA, SUTO) but not TO(UA, SUTO).

NOTE: To solve the exercise you can just add deliveries of messages.

Ex 4: Let us consider a distributed system composed of N processes executing the algorithm reported in figure

```
Algorithm 3.12: Broadcast with Sequence Number
Implements:
     FIFOReliableBroadcast, instance frb.
Uses:
     ReliableBroadcast, instance rb.
upon event \langle frb, Init \rangle do
     lsn := 0;
     pending := \emptyset;
     next := [1]^N;
upon event \langle frb, Broadcast \mid m \rangle do
     lsn := lsn + 1
     trigger \langle rb, Broadcast \mid [DATA, self, m, lsn] \rangle;
upon event \langle rb, Deliver \mid p, [DATA, s, m, sn] \rangle do
     pending := pending \cup \{(s, m, sn)\};
      while exists (s, m', sn') \in pending such that sn' = next[s] do
           next[s] := next[s] + 1;
           pending := pending \ \{(s, m', sn')\};
           trigger \langle frb, Deliver \mid s, m' \rangle;
```

Let us assume that

- 1. up to f processes may be Byzantine faulty and
- 2. A Byzantine process is not able to compromise the underline Reliable Broadcast primitive (i.e., when a Byzantine process sends a message through the rbBroadcast interface, the message will be reliably delivered to every correct process).

For each of the following properties, discuss if it can be guaranteed when f=1 and motivate your answer (also by using examples)

- Validity: If a correct process p broadcasts a message m, then p eventually delivers m.
- No duplication: No message is delivered more than once.
- *No creation*: If a process delivers a message *m* with sender *s*, then m was previously broadcast by process *s*.
- Agreement: If a message m is delivered by some correct process, then m is eventually delivered by every correct process.
- FIFO delivery: If some process broadcasts message m_1 before it broadcasts message m_2 , then no correct process delivers m_2 unless it has already delivered m_1 .

Ex 5: Consider a distributed system composed by n processes each one having a unique identifier. Processes communicate by exchanging messages through perfect point-to-point links and are connected through a grid (i.e., each process p_i can exchange messages only with processes located at nord, sud, east and west when they exist).

An example of such network is provided in the following figure:

Processes are not going to fail, and they initially know only the number of processes in the system N and the identifiers of their neighbors.

Processes in the system must agree on a color assignment satisfying the following specification:

Module

Name: Color assignment

Events:

Request: (ca, Propose | c): Proposes a color to be adopted.

Indication: (ca, Decide | c): Outputs a decided color to be adopted by the process

Properties:

Termination: Every process eventually decides a color.

Validity: If a process decides a color c, then c was proposed by some process.

Integrity: No process decides twice.

Fairness: If a color c is proposed by a process p_i , c will be eventually decided by some process p_j

Color Balance: Let C be the set of proposed colors, every $c_i \in C$ is decided by at most k = N/|C| processes.

Write the pseudo-code of an algorithm implementing the Color assignment primitive.

According to the Italian law 675 of the 31/12/96, I authorize the instructor of the course to publish on the
web site of the course results of the exams.
Signature: