

A man with a watch knows what time it is. A man with two watches is never sure.

Segal's Law

A Decentralized Frame Synchronization of a TDMA-based Wireless Sensor Network

Fasika Assegei

Advisors: Frits van der Wateren

dr.ir. Peter Smulders

What is synchronization?

- Having the same time of reference
- Either global (UTC) or local (relative)
- Operate a system in unison

Why synchronization?

Time is God's way of keeping everything from happening at once.

TDMA Slots

What now?

- Isn't this a solved problem by now ???
 - NTP, MACs with sync built in (802.11), time broadcasts (GPS, WWVB), high-stability oscillators (Rubidium, Cesium)

- If this isn't the Internet:
 - Important assumptions no longer hold
 - (fewer resources -- such as energy, good connectivity, infrastructure, size, and cost -- are available)
 - Sensor apps have stronger requirements
 - (...but we have to do better than the Internet anyway)

Wireless Sensor Networks

- Wireless network of low cost sensors.
- Nodes communicate by broadcasting.
- Multihop communication needed in order to reach far-away destinations.

Wireless Sensor Networks: Why different?

- Energy limitation
 - Each node has a limited battery life

- Dynamic nature of the network, as well as inaccessibility
 - Mobility and interference
- Diverse applications
 - Relative and absolute reference
- Cost of node
 - Cheap node

Synchronization Methods- Previously

- Centralized synchronization
 - Central reference time
 - Global or Relative

Synchronization Methods- Previously

- Receiver-Receiver
 - RBS (Receiver Broadcast Synchronization)

Synchronization Methods- Previously

- Decentralized synchronization
 - Estimation of the other's clock time

What is NEW here?

- Decentralized synchronization
 - Relative time references

- No time stamping
 - Low message overhead and no sync message
- Primarily using estimation (biased and unbiased)
- Energy efficient
 - Able to use as low energy as possible

Sources of Error

- Oscillator characteristics:
 - Accuracy: Difference between ideal frequency and actual frequency of the oscillator.
 - Stability: Tendency of the oscillator to stay at the same frequency over time.
- Network and System Parameters
 - Receive and Transmit Delay: Time duration between message generation and network injection.
 - Propagation Delay: Time to travel from sender to receiver.
 - Access Delay: Time to access the channel.

Definitions

- Phase error
 - Time difference between the clocks

- Frequency error
 - The difference in the rates of the clocks

- Clock cycle (clk)
 - The time between adjacent pulses of the oscillator

Clock Drift

From the relation of frequency and phase

$$\phi = \int f(t)dt$$

The clock time will be:

$$C(t) = \frac{1}{f_o} \int f(\tau) d\tau$$

where fo is the nominal frequency of the clock

Clock drift contd.

The nodes clock time is thus bounded as:

$$1-\rho \le \frac{dC(t)}{dt} \le 1+\rho$$
 where ρ is the maximum clock drift.

Fasika Assegei

Frequency and its variation

The frequency of the clock is given as:

$$f(t) = f_0 + a(t - t_o) + d(t - t_o) + f_r(t)$$

- where: a is the aging factor
 - d is the environmental factor (temprature..)
 - f_r is the noise instability
 - f_o is the nominal frequency

Clock drift and the effect

- The clock skew is ρ i.e. 1- ρ < <1+ ρ
 - for every time t after the algorithm completes
- Transmissions delays on link e
- Symmetric links: same delay, same uncertainty

Synchronization frequency

The period in which the network can stay synchronized without the application of the synchronization algorithm.

Synchronization algorithms

Fasika Assegei

Median as a method for synchronization

- Nodes broadcast packets.
- Each receiver records the time that the packet is received.
- Each receiver i computes its phase offset to any other node j in the neighborhood
- Receivers compute the median of the offsets
- Receivers adjust their wakeup time by the computed offset value.

A WSN scenario for Median

A WSN scenario for Median contd.

Fasika Assegei

S1 Student; 18-7-2008

Weighted Measurements

$$w_{ij} = ae^{-b\Delta t_{ij}}$$

Weighted measurements Contd.

Weight selection

$$w_{ij} = \delta_{ij}$$

$$w_{ij} = 1 - \delta_{ij}$$

Offset calculation:

$$\begin{split} t_i^{\;(n+1)} &= t_i^{\;(n)} + T_i^{\;n} - \xi_i^{\;(n)} \\ t_i^{\;(n+1)} &= t_i^{\;(n)} + T_i^{\;(n)} - \sum_{j=0}^N w_{ij} \Delta t_{ij}^{\;(n)} \\ t_i^{\;(n+1)} &= T_i^{\;(n)} + \sum_{j=0}^N w_{ij} t_j^{\;(n)} \end{split}$$

Non Linear Least Squares approach

Non Linear Least Squares Contd.

Non Linear Least Squares - Curve: $f(x_i, \beta) = \beta_1 + \beta_2 \log(x_i)$

Set of data points : $(x_1, y_1), (x_2, y_2), (x_3, y_3)...(x_n, y_n)$

Squares of error: $S = \sum_{i=1}^{n} r_i^2$

where: $r_i = y_i - f(x_i, \beta)$

Iteration of parameters: $\beta_j^{k+1} = \beta_j^k + \Delta \beta_j$

$$(J^T J)\Delta \beta_j = J^T \Delta y$$
 where: $J_{ij} = -\frac{\partial r_i}{\partial \beta_j}$

Discrete time Kalman Filter

Estimator

Predict equations

Update equations

Kalman Filter Contd.

Time Update ("Predict")

(1) Project the state ahead

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$

(2) Project the error covariance ahead

$$P_k = AP_{k-1}A^T + Q$$

Measurement Update ("Correct")

(1) Compute the Kalman gain

$$K_k = P_k H^T (H P_k H^T + R)^{-1}$$

(2) Update estimate with measurement z_k

$$\hat{x}_k = \hat{x}_k + K_k(z_k - H\hat{x}_k)$$

(3) Update the error covariance

$$P_k = (I - K_k H) P_k$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

$$\lim_{P_k\to 0}K_k=0$$

$$\lim_{R_k\to 0} K_k = H^{-1}$$

Fasika Assegei

Reducing the duty cycle

$$D = \frac{NT_{slot}}{T}$$

$$D = \frac{N(2x + T_x)}{T}$$

For a performance improvement:

$$D_n = \frac{N(2(x-\varepsilon) + T_x)}{T}$$

A decrease in the duty cycle:

$$\Delta D = \frac{(2\varepsilon)N}{T}$$

Simulation setup

Abstraction

Simulation results

Synchronization error for 20 nodes moving at 0 km/hr

Fasika Assegei

Simulation results Contd.

Synchronization error for 20 nodes moving at 6 km/hr

Simulation results Contd.

Synchronization error for 20 nodes moving at 21 km/hr

Simulation results Contd.

Performance improvement compared to Median algorithm(%)

Fasika Assegei

Energy consumption and Optimization

- It turns out energy is your most valuable resource
 - Traditional notions of resources memory, CPU, I/O become expenses, not resources
- All components must support low power modes
- What can software do to conserve energy?

Power Breakdown....

	Active	Idle	Sleep
CPU	3.5 mA	0.01 mA	5 μΑ
Radio	11.3 mA (TX)	12.3 mA (RX)	5 μΑ
EE-Prom	3 mA	0	0
LED's	4 mA	0	0
Photo Diode	200 μΑ	0	0
Temperature	200 μΑ	0	0

Panasonic CR2354 560 mAh

- But what does this mean?
 - Lithium Battery runs for 35 hours at peak load and years at minimum load!
 - A one byte transmission uses the same energy as approx 11000 cycles of computation.

Energy Consumption

Communication is more expensive than computing.

Conclusion

- using
- A decentralized clock synchronization is achieved using KF, WM and NLLS.
- WM and NLLS have a better tolerance to the dynamics of the network.
- KF performs the best in all cases, both in static as well as dynamic environments.
- Median is still the choice in static environment, when considered in all aspects (energy and performance).
- Reducing the communication cost and increasing cost of computing is worthy to try.

Recommendation

- Software power minimization techniques to reduce the power consumption of the algorithms.
- SDR for further investigation.
- Additional tools for frequency error minimization, using the available resources.
- More advanced estimation techniques.

