

特許協力条約

PCT

国際予備審査報告

(法第12条、法施行規則第56条)
〔PCT36条及びPCT規則70〕

RECEIVED

05 MAR 2004

WIPO PCT

出願人又は代理人 の書類記号 F P 3 7 0 P C T	今後の手続きについては、国際予備審査報告の送付通知（様式PCT/IPEA/416）を参照すること。	
国際出願番号 P C T / J P 0 3 / 1 1 8 9 4	国際出願日 (日.月.年) 18. 09. 2003	優先日 (日.月.年)
国際特許分類 (IPC) Int. C17H02J9/06, 9/00		
出願人 (氏名又は名称) 株式会社日立製作所		

1. 国際予備審査機関が作成したこの国際予備審査報告を法施行規則第57条 (PCT36条) の規定に従い送付する。

2. この国際予備審査報告は、この表紙を含めて全部で 3 ページからなる。

この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び／又はこの国際予備審査機関に対して訂正を含む明細書、請求の範囲及び／又は図面も添付されている。
(PCT規則70.16及びPCT実施細則第607号参照)
この附属書類は、全部で ページである。

3. この国際予備審査報告は、次の内容を含む。

- I 国際予備審査報告の基礎
- II 優先権
- III 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成
- IV 発明の單一性の欠如
- V PCT35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明
- VI ある種の引用文献
- VII 国際出願の不備
- VIII 国際出願に対する意見

国際予備審査の請求書を受理した日 18. 09. 2003	国際予備審査報告を作成した日 17. 02. 2004
名称及びあて先 日本国特許庁 (IPEA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 吉村 伊佐雄 電話番号 03-3581-1101 内線 6705

I. 国際予備審査報告の基礎

1. この国際予備審査報告は下記の出願書類に基づいて作成された。(法第6条(PCT14条)の規定に基づく命令に応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。PCT規則70.16, 70.17)

出願時の国際出願書類

明細書 第 _____ ページ
 明細書 第 _____ ページ
 明細書 第 _____ ページ

出願時に提出されたもの
国際予備審査の請求書と共に提出されたもの
付の書簡と共に提出されたもの

請求の範囲 第 _____ 項、
 請求の範囲 第 _____ 項、
 請求の範囲 第 _____ 項、
 請求の範囲 第 _____ 項、

出願時に提出されたもの
PCT19条の規定に基づき補正されたもの
国際予備審査の請求書と共に提出されたもの
付の書簡と共に提出されたもの

図面 第 _____ ページ/図、
 図面 第 _____ ページ/図、
 図面 第 _____ ページ/図、

出願時に提出されたもの
国際予備審査の請求書と共に提出されたもの
付の書簡と共に提出されたもの

明細書の配列表の部分 第 _____ ページ、
 明細書の配列表の部分 第 _____ ページ、
 明細書の配列表の部分 第 _____ ページ、

出願時に提出されたもの
国際予備審査の請求書と共に提出されたもの
付の書簡と共に提出されたもの

2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。

上記の書類は、下記の言語である _____ 語である。

国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語
 PCT規則48.3(b)にいう国際公開の言語
 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語

3. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際予備審査報告を行った。

この国際出願に含まれる書面による配列表
 この国際出願と共に提出された磁気ディスクによる配列表
 出願後に、この国際予備審査(または調査)機関に提出された書面による配列表
 出願後に、この国際予備審査(または調査)機関に提出された磁気ディスクによる配列表
 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった
 書面による配列表に記載した配列と磁気ディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

4. 补正により、下記の書類が削除された。

明細書 第 _____ ページ
 請求の範囲 第 _____ 項
 図面 図面の第 _____ ページ/図

5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかったものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。)

V. 新規性、進歩性又は産業上の利用可能性についての法第12条（PCT35条(2)）に定める見解、それを裏付ける文献及び説明

1. 見解

新規性 (N)

請求の範囲 1 - 8 有
 請求の範囲 _____ 無

進歩性 (I S)

請求の範囲 1 - 8 有
 請求の範囲 _____ 無

産業上の利用可能性 (I A)

請求の範囲 1 - 8 有
 請求の範囲 _____ 無

2. 文献及び説明 (PCT規則70.7)

文献1 : JP 10-285832 A (ダイキン工業株式会社) 1998. 10.
 23

文献2 : JP 2001-28845 A (旭化成マイクロシステム株式会社) 20
 01. 01. 30

文献3 : JP 2003-258113 A (山洋電機株式会社) 2003. 09.
 12

文献4 : JP 9-322429 A (株式会社東芝) 1997. 12. 12

文献5 : JP 2638257 B2 (株式会社ユアサコーポレーション)
 1997. 04. 25

請求の範囲1-5、7は、国際調査報告で引用された文献1の【0003】～【0007】欄、第3図、及び文献2の【0012】欄、第3図、文献3の【0015】欄、第19図により進歩性を有しない。

すなわち、逆流阻止ダイオードを介して充電されるコンデンサを予備電源とし、電源電圧が所定の電圧に到達したことによってマイコンを低消費電力である低速モードに移行するとともに、更に電圧が低下した場合はマイコンをリセットする文献1のデータバックアップ装置において、ダイオードの代わりに、文献2、3に記載されるように周知の、ダイオード接続されたMOSトランジスタを用いることは、当業者にとって容易である。

請求の範囲6は、国際調査報告で引用された文献1-3及び文献4の【0010】欄により進歩性を有しない。

デジタル回路において、低消費電力への移行のためにクロックを停止することは、文献4に記載されるよう常套手段である。

請求の範囲8は、国際調査報告で引用された文献1-3、5により進歩性を有しない。

文献1において、文献5に記載されるように、電源電圧が所定値以下になってから所定時間経過した後に負荷をリセットすることは、当業者にとって容易である。