Data Mining

project1 Association Analysis

孫啟慧 P78063033

一、 實驗設計

我用 JAVA 實作了 Apriori 演算法,其中分為使用 Set 和 List 實現的暴力法,以及使用 FP-growth 來進行優化的 Apriori。利用 IBM Quest Synthetic Data Generator 生成的使用者交易資料來模擬實際交易,並作為 input 來分別測試兩種不同的 Apriori 演算法的性能差異。我還選取了 Kaggle 中 NHL Game Data的 game.csv,通過運行自己寫的 Apriori 在其上,以生成相應的 association rule,來分析各個賽季的成績受哪些因素的影響。最後我們使用 WEKA 對以上的實驗資料集進行分析,在相同的 support 和 confidence 設定之下,得到相應的 association rule,從而對自己撰寫的 Apriori 程式的結果進行驗證。

I. Input 的預處理:

1. IBM Quest Synthetic Data Generator 生成的資料。 該資料生成器包含多個指令,具體的預設參數顯示如下:

```
C:\Users\user\Downloads\IBM-Quest-Data-Generator.exe>"IBM Quest Data Generator.exe" lit -help
Command Line Options:
    -ntrans number_of_transactions_in_000s (default: 1000)
    -tlen avg_items_per_transaction (default: 10)
    -nitems number_of_different_items_in_000s) (default: 100)

-npats number_of_patterns (default: 10000)
    -patlen avg_length_of_maximal_pattern (default: 4)
    -corr correlation_between_patterns (default: 0.25)
    -conf avg_confidence_in_a_rule (default: 0.75)

-fname <filename> (write to filename.data and filename.pat)
    -ascii (default: True)
    -randseed # (reset seed used generate to x-acts; must be negative)
    -version (to print out version info)
```

生成的資料格式如下,包含多列的空格。

■ IBM-Quest-data.data - 記事本				
檔案(F)	編輯(E)	格式(O)	檢視(♥)	說明(H)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300 3671 6817 8893 9145 10294 12763 12850 15907 30037 32192 35593 35780 37680 40076 42739 46867 6686 9062 13707 14862 18596

其中第一欄是 transaction id,第二欄是 customer id,第三欄則是商品 id。因為相同的 transaction id 和 customer id 代表同一個一個人的同一筆 transaction,從而我有寫一個處理資料的 InputProcess. java 文件 (\Apriori Brute\src\InputProcess. java)對資料進行處理,處理後的資料如 IBM. data 所示,即每一列代表一次 transaction,用逗號分割的各個數字分別代表不同種類的商品 id,不同列是不同的 transaction。

IBM.data - 記事本

檔案(F) 編輯(E) 格式(O) 檢視(V) 說明(H)

300,3671,6817,8893,9145,10294,12763,12850,15907,30037,32192,35593,35780,37680,40076,42739,46867 6686,9062,13707,14862,18596,23790,24082,24160,25493,30037,30830,39673,40507,45753,47668,47990,48281,49415,51207,51732,53710,55232 1405,2912,3667,4341,9355,20657,25522,27901,28331,29285,36859,39386,41117,41754,42549,43554,44565,47376,49327,49482,52773,56677 335,816,2743,2760,6563,6719,11914,19607,22023,24927,25231,26274,30598,35043,39145,41899,50670,57448,57519 5899,8243,12470,18228,18521,19294,24622,39548,43295

1321,1462,3175,4911,7059,13411,21411,21694,22090,25619,25821,25846,26067,31342,31595,35425,38759,40528,41427,41857,42625,49438,518: 1096,5365,7405,10254,16492,17817,18379,19660,20289,33024,35029,41130,42781,46337,52794,54537,56402

2. Kaggle的NHL Game Data的game.csv

Kaggle 作為一個資料建模和資料分析的競賽平臺, 上面經常會有研究人員和企業發起不同的比賽,通過他們 提供的資料,參賽者可以組隊參加比賽對其進行建模,提 交的各個模型會得到其準確率的評判,從而決定出相應的 名次。

我選取了 NHL Game Data 比賽中提供的 game.csv,來作為相應的 input data。該 csv 包含 game_id, season, season type, away_team_id, home_team_id, outcome, home_rink_side_start 等項目,由於資料類型較為複雜,故我只選取了 season, outcome, home_rink_side_start 三個欄位,對其進行預處理之後如 game1.csv 所示。其中 season 代表相應的賽季, outcome 則是表示隊伍贏得比賽的情況,其中 home 代表主場隊伍獲勝,而 away 則是客場隊伍獲勝。 Home_rink_side_start 則是代表主場隊伍相較於 Time/Score keepers 的相對位置。

通過對預處理過後的 gamel.csv 進行相應的關聯規則的分析,我期望可以得到每個賽季中相對位置對勝率的影響。

*因為第一種 input 的原始資料分隔是空格,另外一個則是逗號,故寫的 Apriori 中資料的讀取部分有所調整,對

於兩種分隔形式均可識別。即整個程式的 input 既可以是, csv 也可以是用空格分割的資料形式。

3. Weka

Weka 是由紐西蘭懷卡托大學用 JAVA 開發的資料採擷軟體,我有參考網上的視頻嘗試著玩了一下,且 UI 介面可以很容易上手。雖然其他功能可以吃 csv 檔案,但是 association rule 則只能吃 ARFF 格式的檔案,好在 weka 本身有提供兩種方法來進行格式的轉換,一種是在 weka 的主功能表中可以找到 "Simple CLI" 模組,根據相應的命令列即可完成檔案類型的轉換。其指令為:

java weka.core.converters.CSVLoader filename.csv > filename.arff

而另外一種方法則是 weka3.5 之後的版本有提供"Arff Viewer"的模組,可以對相應的 csv 檔案進行流覽,然後可以選擇另存為 ARFF 檔。通過設定相同的參數可以對我自己實現的 Apriori 演算法和 FP-growth 演算法生成的 association rule 進行驗證。

II. Brute 的 apriori:

演算法設計:

Step 1. 讀入 input,得到 1 item 的頻繁子集,並計算相應的 count 將其保存到 Arraylist 當中。

Step2. 迴圈遍歷Step 1 中的得到的Arraylist當中,

通過判斷該子集的任兩個 itemset 是否相等來決定是否要 merge 相應的兩個 itemset,經過迴圈連結 k-1 次得到最終的 k items 頻繁子集。

Step3. 對於 Step2 中最終生成的 k items set 是否滿足最小 minSup (support count) 進行判斷,小於 minSup 的頻繁子集將會被刪掉。接著通過計算各子集之間的 confidence,並和給定的 minConf (min confidence) 進行比較,大於 minConf 的子集將會組成 association rule 進行輸出。

III. 應用 Fp-growth 的 Apriori:

演算法設計:

Step 1. 讀入 input,對其進行掃描,生成 1 item 的頻繁子集,按照出現的次數降冪排列。如果次數一樣則按照 item 的字典序排列。

*為了減少演算法運行的 overhead,根據 Apriori 定理,非頻繁項的父集一定不是頻繁集,故這裡小於 minsSup (min support count) 的選項,我直接將之從 保存 1 item 頻繁子集的 linked list 中刪除。

Step 2. 再次掃描 input,對於出現在 step 1 中生成的 1 item 頻繁子集的項按其順序重新排列,並建立 FpTree。首先設置 root 節點為 null,檢查該項中的元素是否有在 FpTree 中,若沒有則將該項加入到樹中,

若已經有分支存在則判斷新的項是否跟分支中的各個點重合,若重合則只更新相應點的 support,否則將創建新的點。同時這些點將會加入到 Step 1 生成的 linked list 當中去。

Step 3. FpTree 建立之後,從尾部掃描 Step1 中建立的 linked list,通過找尋其 homonym 節點和父節點,則可以生成所有的頻繁項集。

Step4. 對於每個頻繁項集分別求其 proper subset (真子集,即比其小的子集合),通過計算相應的 confidence,根據預先定義的 minConf 可以生成最後的關聯規則。

為了驗證所寫程式的正確性,我在調試的時候,以老師 moodle 中給的 fpgrowth 的投影片做 input (\Apriori fp-growth\src\supermarket.csv)

```
milk,bread,beer
bread,coffee
bread,egg
milk,bread,coffee
milk,egg
bread,egg
bread,egg
milk,egg
milk,egg
milk,egg
milk,egg
milk,egg
```

將 minsupport 設定為 3, minconfidence 設定為 0.25

可以得到如下頻繁子集和關聯規則。

二、 實驗結果

1. 暴力法的 Apriori

使用暴力法的 Apriori 實驗可以發現其耗時較長,主要的原因在於生成子集的時候各個子集之間的連接,需要反復掃描整個 input 會產生大量的 overhead,且連接之後會產生大量的資料,根據提前給定的 support 和 confidence 進行

pruning 也需要對生成的結果進行掃描和操作,故 time consuming 和 overhead 都比較大。

使用 IBM. data (input 部分的第一種)作為 input,在 support count 為 4 且 minConf 為 0.25 的時候會產生很多規則,如(\Apriori Brute\src\Apriori-output.txt)所示。 通過改變不同的 support count 和 minConf 可以發現,隨著 support count 的升高或 minConf 的升高,得到的 association rule 會變少,當兩者一同升高的時候到一定程 度可能出現沒有 association rule 的情況。

因為 IBM. data 中均為數位,故所有的 input 在以字元流的形式讀取之後,我有用 Integer. valueOf()將所有的內容 — Integer 的形式進行存儲和處理。故對於 kaggle 中的資料進行處理之前必須將所有的內容處理成 Integer 的形式。

2. 使用 FP-growth 的 Apriori

使用 FP-growth 來優化演算法可以減少相應的執行時間。因為掃描整個資料集的時候就會得到各個頻繁子集,按照其出現頻率降冪排列,小於給定 support 的子集直接不予以考慮同時。第二次掃描會建立 frequent pattern tree,通過 Fp-growth 進行 mining 考慮 confidence 得到相應的 rule。

使用 Calendar 中的 getTimeInMillis()可以得到整個實驗完成的時間,單位為 ms。輸出的時間表明使用 FP-growth可以優化整個演算法,在相同的設定之下,其耗費的時間較

沙。

使用 IBM. data (input 部分的第一種)作為 input,在 support count 為 4 且 minConf 為 0.25 的時候會產生很多規則,如(\ Apriori fp-growth \src\fptree-output.txt)所示。

以 kaggle 得到的資料作為 input, 在 support count 為 100 而 minconfidence 等於 0.54 的時候我有得到結果 (\Apriori fp-growth\src\fptree-game-output.txt)。通 過分析相應的 association rule 可知 1213、1415 和 1718 賽季 home 隊在 Time/Score keepers 的右側其獲勝的幾率較大。而 1314 和 1617 賽季 home 隊在左側其獲勝的幾率較大。 1516 年 home 隊和 away 隊基本贏率對半分。

三、 總結

FP-growth 的奧妙在於使用簡單的 tree 結構來表示原有資料的資訊,其 size 遠小於原來的結構,通過對資料結構進行遞迴可以完整 frequent pattern 的 mining,從而得到association rule。另外由於 tree 結構的 size 有變小,故可以放入記憶體中極大地加快了運算。如果 tree 過大,則可以通過切分原始資料分塊進行 FP-growth 在進行整合。

四、 寫作業中遇到的困難

因為兩種演算法資料結構和思路不一樣,所以其相應的計算頻繁子集的方法也不一樣。在撰寫 FP-growth 時關於分析關聯性的 getRelationRules 函數的時候因為考慮不周到,以至於獲得相應子集之後計算其 confidence 時,並沒有分情況考慮單子集和多子集的 confidence,故生成規則的時候有出現 null pointer,耗費了一段時間 debug。另外在最後結果輸出的時候因為其存儲為 map<map, string>的形式,故要特別改變格式進行輸出。

這次作業的完成不僅讓我更好的理解了 Apriori 演算法和 FP-growth 演算法,更是更進一步的熟悉了對於 linked list 和 map 的使用,對於 coding 的能力大有幫助。同時通過找尋相應的 kaggle input 讓我對於 association rule 的使用情况有了進一步的掌握。