

Determinación de los parámetros del Autómata Celular para la fase I del "Track seeding" del Experimento CMS

Pantaleo Felice¹, Yalovetzky Romina²

Contexto

CERN Summer Student Programme 2017

Escuela de verano 2017

Esquema de la charla

- Marco del trabajo.
- Motivación.
- Método propuesto para hallar los hits.
- Resultados del método.
- Conclusión: Criterio a emplear para satisfacer la motivación del trabajo.

Compact Muon Solenoid

Silicon Tracker

Reconstrucción de la trayectoria de las partículas

CMS

- Muon

Electron

— Charged hadron (e.g. pion)

-- Neutral hadron (e.g. neutron)

---- Photon

4

Autómata Celular

Criterio para la conexión de celdas

Alineamiento en el plano R y Z

Compatible con una trayectoria circular del beam spot en el plano x e y

- 1. BPix1+BPix2+BPix3+BPix4
- 2. BPix1+BPix2+BPix3+FPix1+
- 3. $BPix1+BPix2+FPix1^++FPix2^+$
- 4. $BPix1+FPix1^++FPix2^++FPix3^+$
- 5. BPix1+BPix2+BPix3+FPix1-
- 6. BPix1+BPix2+FPix1⁻+FPix2⁻
- 7. BPix1+FPix1-+FPix2-+FPix3-

CMS

Fuente: Pantaleo Felice, "New Track Seeding Techniques for the CMS Experiment"

Alineamiento en el plano R y Z cilíndricas

$$A = Z_A(R_B - R_C) + Z_B(R_C - R_A) + Z_C(R_A - B)$$

$$tan(\theta) = 2A \operatorname{dist}^2(A,C) \approx \theta$$

Objetivo: Hallar un criterio sobre θ para poder realizar el alineamiento.

Objetivo: Calcular θ

1^{er} paso: Hallar los hits entre la trayectoria de la partícula y los layers

TODA geometría

Analítico

Numěrico

Triplet propagation

Analítico

ρ(z) para partícula cargada en campo magnético B

$$\rho(z) = \sqrt{x(z)^2 + y(z)^2} + \rho_0$$

 $\rho(z)$ depende de pt, ρ_0 , z_0 y η

Numérico

Para hallar los hits: Intersección entre ρ(z) y los layers.

Determinación de parámetros del Autómata Celular

Método: Hallar los hits

Forward: Corta Z

Posición z dada

 \rightarrow $\rho(Z_{layer})$

Geometría

Toma de a 1 layer por combinación Barrel: Corta R

Posición ρ dada Método de Newton para hallar la raíz de $\rho(z) - \rho_{layer}$ con una precisión de $1,5\ 10^{-3}cm$

- 1. BPix1+BPix2+BPix3+BPix4
- 2. BPix1 BPix2+BPix3+FPix1+
- 3. $BPix1+BPix2+FPix1^++FPix2^+$
- 4. $BPix1+FPix1^++FPix2^++FPix3^+$
- 5. BPix1+BPix2+BPix3+FPix1-
- 6. BPix1+BPix2+FPix1⁻+FPix2⁻
- 7. $BPix1+FPix1^-+FPix2^-+FPix3^-$

Método implementado

Con los hits se calcula el θ

$$tan(\theta) = 2A dist^2(A,C) \approx \theta$$

Resultados al aplicar el método

Emplear un criterio que se pueda aplicar a todas las combinaciones posibles actuales del tracker del CMS para poder llevar a cabo la alineación.

Veamos las dependencias con: La geometría y las condiciones ρ_0 , z_0 y η .

- 1. BPix1+BPix2+BPix3+BPix4
- 2. BPix1+BPix2+BPix3+FPix1+
- 3. $BPix1+BPix2+FPix1^++FPix2^+$
- 4. $BPix1+FPix1^++FPix2^++FPix3^+$
- 5. BPix1+BPix2+BPix3+FPix1⁻
- 6. BPix1+BPix2+FPix1⁻+FPix2⁻
- 7. BPix1+FPix1-+FPix2-+FPix3-

Θ en función de ρ_0

Θ en función de ρ_0

No se observa una 5 1.5 tendencia clara 5 1.0 para todas las combinaciones

Θ en función de z_0

Θ en función de z_0

No se observa una tendencia clara para todas las combinaciones.

CMS

Θ en función de η

Э en función de pt

Criterio propuesto

Para un dado pt fijamos un $\theta_{m\acute{a}x}$ a partir del cual no puede realizar la conexión entre cells para el "seeding".

- Considera todos los valores posibles de $\rho_0, z_0 y \eta$.
- Es un parámetro externo.
- Depende de la geometría.
- Precisión espacial de 1,5 10^{-3} cm.

Conclusiones *Max* θ *para cada combinación y pt*

Conclusión

Desarrollamos un método para poder determinar el parámetro $\theta_{m\acute{a}x}$ en el Autómata Celular para el alineamiento en el plano R y Z para TODA geometría.

Se calcula en el $\theta_{m\acute{a}x}$ para un dado pt considerando todos los posibles valores de $\rho_0, z_0 \ y \ \eta$.

 $ρ_0$ en [0, 6]mm z_0 en [0, 20]cm η en [0.1, 3]

Desafíos futuros

Los valores que se obtuvieron para θ para pt bajas (entorno del 0) divergen

MUCHAS GRACIAS

Yalovetzky Romina rominayal@gmail.com

O en función de combinación para distintos valores de ρ₀

Partícula cargada en campo B

$$\rho(z) = \sqrt{x(z)^2 + y(z)^2} + \rho_0$$

$$x(z) = R \cos(\frac{wm(z - z_0)}{p_z}) - R$$
$$y(z) = R \sin(\frac{wm(z - z_0)}{p_z})$$

Con
$$R = \frac{p_t}{Bq}$$
, $w = \frac{qB}{m}$, $p_z = p_t \sinh(\eta)$

Conclusiones Max θ para cada combinación y pt

Técnica

Por ej combinación:

$$BPix 1 + BPix2 + BPix3 + BPix4$$

Aplico el criterio de alineamiento en las 3 primeras y en las 3 últimas

