

Vorlesung

Statistische Methoden der Datenanalyse

Prof. Dr. Dr. Wolfgang Rhode

Intervallschätzungen und Hypothesentests

Experimentelle Physik Vb

Inhalt

- Intervallschätzung
 - Konfidenzintervalle
 - Neyman Konstruktion
 - Feldman-Cousins Konfidenzbänder
 - Bayesische Konfidenzbänder
- Testen von Hypothesen
 - Typ-I und Typ-II Fehler
 - P-Values
- Statistische Tests
 - Likelihood-Quotienten Test
 - Gauß-, t-, F-Test
 - Kolmogorow-Smirnow Test
 - Chi-Quadrat Test ("goodness of fit")

Experimentelle Physik Vb

INTERVALLSCHÄTZUNG

Statistische Methoden der Datenanalyse

Konfidenzintervalle

- Varianzen, Momente
 - Unabhängig von der zugrunde liegenden Verteilung
 - Wohldefinierte Fehlerfortpflanzung
 - Fehlerkombination unabhängiger Messungen
- Konfidenzintervalle
 - Alternative Methode um Unsicherheiten anzugeben
 - Abhängig von der zugrundeliegenden Verteilung
 - Fehlerpropagation und Kombination schwierig
 - Frequentistisch ⇔ Bayesisch

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Konfidenzintervalle – Interpretation

- Die Obervable x ist das, was im Experiment gemessen wird
- Dazu gibt es eine vorher bestimmte p.d.f., die von den Daten x und Parametern θ abhängt

Likelihood:
$$\mathcal{L}(\theta|x) = P(x|\theta)$$

 \rightarrow Wahrscheinlichkeit der Daten x, unter der Bedingung, dass θ wahr ist

Intervallschätzung & Tests

Konfidenzintervalle – Frequentistische Definition

Definition:

Für eine Observable x mit einer vom Parameter θ abhängigen p.d.f. ist ein Konfidenzintervall [θ_1 , θ_2] bezüglich eines Konfidenzlevels α Teil einer Menge mit der Eigenschaft

$$P(\theta \in [\theta_1, \theta_2]) = \alpha$$

wobei θ_1 und θ_2 Funktionen von x sind

Was bedeutet das genau?

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Konfidenzintervalle – Interpretation (Fortsetzung)

Interpretation der Definition ist subtil:

In einem Anteil α von durchgeführten Experimenten enthält das jeweils konstruierte Konfidenzintervall den wahren Parameter θ_{Wahr}

- Für einen (beliebigen, aber festen) Wert θ_{Wahr} ergeben verschiedene Messungen verschiedene Konfidenzintervalle
 - Die untere/obere Grenze θ_1 , θ_2 ist abhängig von den jeweils gemessenen x

Intervallschätzung & Tests

- Der Anteil α an erhaltenen Intervallen enthält dann den Wert θ_{Wahr}
- Vorsicht: Das heißt NICHT. dass ...
 - ... der wahre Parameter θ_{Wahr} mit Wahrscheinlichkeit α in $[\theta_1, \theta_2]$ liegt
 - ... eine direkte Aussage über den Wert von θ_{Wahr} gemacht wird

Konfidenzintervalle – Deskriptive Statistik (Vorbereitung)

- Sei die p.d.f. bekannt \rightarrow alle Parameter θ liegen fest \rightarrow P(x)
- Das Konfidenzintervall [x₋, x₊] zum Konfidenzlevel α ist dann

$$P(x_{-} \le x \le x_{+}) = \int_{x_{-}}^{x^{+}} P(x) \, dx = \alpha$$

- Freiheit bei der Wahl des Intervalls
 - Symmetrisch um den Erwartungswert μ : $x_+ \mu = \mu x_-$
 - Kürzestes Intervall: Der Abstand $x_+ x_-$ ist minimal
 - Zentrales Intervall: $\int_{-\infty}^{x_-} P(x) \mathrm{d}x = \int_{x_+}^{\infty} P(x) \mathrm{d}x = \frac{1-\alpha}{2}$
- Bei symmetrischen p.d.f. sind alle Intervalle equivalent

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Beispiel – 95% Konfidenzintervall, Upper/Lower Limit

Konfidenzintervalle - Deskriptive Statistik (Vorbereitung)

- Zusätzlich gibt es obere/untere Grenzen (Upper/Lower Limits)
- Upper Limit

$$P(x < x_{+}) = \int_{-\infty}^{x_{+}} P(x) dx = \alpha$$

Lower Limit

$$P(x > x_{-}) = \int_{x_{-}}^{\infty} P(x) dx = \alpha$$

- Achtung: Das Upper/Lower Limit ist NICHT gleich dem oberen/unteren Ende des Konfidenzintervalls zum selben α, z.B.:
 - 95% zentrales Intervall: 2,5% liegen oberhalb von x₊
 - 95% Upper Limit: 5% liegen oberhalb von x₊

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Konfidenzintervalle – Parameterschätzung

Nun: Parameterabhängige p.d.f.

Likelihood:
$$\mathcal{L}(\theta|x) = P(x|\theta)$$

- ightarrow Konstruiere Konfidenzintervall für den unbekannten Parameter θ_{Wahr}
- Für jeden (fixen) Wert θ_0 des Parameters θ gibt es eine von den Daten x abhängige p.d.f. P(x | $\theta = \theta_0$)
- Z.B. Gaußverteilung mit bekannten σ und zu schätzendem μ:

$$P(x|\mu) \propto e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 Für jedes μ = μ₀ ergibt sich eine andere p.d.f. und es können Konfidenzintervalle oder Upper/Lower Limits wie in Abb. 1 konstruiert werden

Konfidenzintervalle – Neyman Konstruktion

Ziel: Konfidenzintervall für zu schätzende Parameter θ

Intervallkonstruktion nach Neyman

- 1. **Vor** der Messung wird für jeden möglichen Wert für $\theta = \theta_0$ das zugehörige Interval für die p.d.f. P(x | $\theta = \theta_0$) bestimmt
 - Für in θ kontinuierliche Variablen geschieht dies auf einem feinen Gitter
- Dadurch ergeben sich Konfidenzbänder, die für jeden Messwert x₀ im Vorfeld das jeweilige Konfidenzintervall für θ festlegen
- 3. Lies **nach** erfolgter Messung $x=x_0$ das Konfidenzintervall $\theta \in [\theta_1, \theta_2]$ vertikal ab
 - Der obere/untere Schnittpunkt der Vertikalen durch x₀ mit dem konstruierten Konfidenzbändern ist die obere/untere Grenze des Konfidenintervalls für θ

Beispiel mit poissonverteilter p.d.f.

$$P_n = P(n|\mu) = \frac{\mu^n e^{-\mu}}{n!}$$

- n: Zählrate (diskret)
- µ : Erwartungswert (kontinuierlich, hier Gitter mit Schrittweite 0,5)
 - Wird im Realfall feiner gewählt, hier zur besseren Übersicht sehr grob
- Konfidenzlevel gewählt als α = 90%

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Experimentelle Physik Vb

Konfidenzintervalle - Zusammenfassung Neyman

- Konfidenzbänder werden vor der Messung konstruiert
 - Wähle vorher das Konfidenzlevel α
- Das Konfidenzintervall für θ wird nach erfolgter Messung abgelesen
- Der Anteil α an für verschiedene Mesungen konstruierten Konfidenzbändern enthält dann den wahren Wert θ_{Wahr}
 - Anders ausgedrückt (hier beispielhaft mit zentralem Intervall):
 - θ_{Wahr} > θ₂ → Wahrscheinlichkeit (1-α)/2, den gemessen Wert oder einen Kleineren zu erhalten
 - θ_{Wahr} < θ₁ → Wahrscheinlichkeit (1-α)/2, den gemessen Wert oder einen Größeren zu erhalten
- Bei diskreten Variablen und durch die Notwendigkeit der Diskretisierung überschätzen die Intervalle die Wahrscheinlichkeit: P > α
 - · Hier nicht zu vermeiden, aber besser als zu unterschätzen

beschrieben

Folgende (FALSCHE) Idee:

ein 90% Upper Limit veröffentlicht

Siehe Plot auf der nächsten Folie:

Konfidenzintervalle – Probleme bei beschränkten Parametern

- Problem: Der zu schätzende Parameter ist beschränkt
 - Z.B. Masse >= 0 unter Annahme einer Gaußschen Verteilung
- Das kann zu Problemen führen:
- 1. Flip-Flopping:

Entscheide anhand der Daten, ob ein Intervall oder Upper Limit verwendet werden soll

• Führt zu Intervall-Unterschätzung in bestimmten Bereichen

2. Leere Intervalle:

Das konstruierte Konfidenzintervall kann außerhalb des physikalisch erlaubten Bereichs von θ liegen

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

1. Wenn die Messung mit einer Wahrscheinlichbkeit < 3σ von 0 entfernt liegt, wird

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Beispiel – Flip-Flopping und leere Intervalle

Experimentelle Physik Vb

Beispiel - Flip-Flopping und leere Intervalle

Beispiel - Flip-Flopping und leere Intervalle

Massen-Messung \rightarrow Gesuchter Parameter $\mu \ge 0$

Annahme: Detektorauflösung ist durch Gaußverteilung mit σ=1

2. Ansonsten wird das 90% zentrale Konfidenzintervall benutzt

• Unterschätzung der Intervalle für θ im blauen Band

• Leere Intervalle, falls m < -1,2 gemessen wurde

technische universität dortmund

Beispiel – Flip-Flopping und leere Intervalle

Experimentelle Physik Vb

Konfidenzintervalle - Feldman-Cousins (Fortsetzung)

- Konstruktion des Feldman-Cousins Konfidenzbands
- 1. Für ein festes $\theta = \theta_0$ berechne wie vorher $P(x|\theta = \theta_0)$ für jeden Wert x
- 2. Berechne dann das θ_{Best} , welches die Likelihood für den aktuellen Messwert x maximiert: max[P(x|\theta)] = P(x|\theta_{Best})
- 3. Bilde das Verhältnis R (=Rang) der beiden Likelihoodwerte

$$R = \frac{P(x|\theta)}{P(x|\theta_{\text{Best}})}$$

- 4. Füge die x Werte absteigend ihrem Rang entsprechend dem horizontalen Konfidenzintervall hinzu, bis das gewünschte Konfidenzlevel α erreicht ist
- Wiederhole für alle Werte von θ
 - Kontinuierliche θ werden diskretisiert

Konfidenzintervalle – Feldman-Cousins Konstruktion

- Umgeht die Probleme im vorherigen Beispiel
 - Vermeidet Flip-Flopping und leere Intervalle
- Prinzip immer noch wie bei Neyman, aber ...
- ... verwende Ordnungsprinzip zum Erzeugen der Konfidenzbänder
 - Immer noch frequentistisch
 - Möglichkeit beschränkte Parameter zu berücksichtigen
 - Benutze Likelihood-Verhältnisse zum Ordnen

Prof. Dr. Dr. W. Rhode

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Konfidenzintervalle – Feldman-Cousins (Fortsetzung)

- Vorgehen für kontinuierliche x:
 - Entweder kann x ebenfalls diskretisiert werden, dann können diskrete Werte x dem Rang nach hinzugefügt werden bis α erreicht ist
 - Oder die Gleichung

$$\int_{x}^{x_{+}} P(x|\theta = \theta_{0}) \mathrm{d}x = \alpha$$

wird für jedes θ_0 numerisch gelöst. Dabei gilt die Nebenbedingung

$$R(x_{-}) = R(x_{+})$$

Siehe Beispiel A mit beschränkter Gaußverteilung

technische universität dortmund

Beispiel A – Gauß mit beschränktem Parameter µ≥0

Kontinuierlicher Fall: Gaußverteilung mit festem σ und beschränktem μ

$$P(x|\mu) \propto e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Die Likelihood wird maximal bei µ_{Best} = max[0; x]

$$R = \exp\left(-\frac{(x-\mu)^2}{2}\right) \quad \text{für } x \ge 0$$

$$R = \exp\left(x\mu - \frac{\mu^2}{2}\right) \quad \text{für } x < 0$$

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Beispiel B - Poisson mit Untergrund

Diskreter Fall: Poissonverteilung mit b erwarteten Untergrundereignissen

$$P_n = P(n|\mu) = \frac{(\mu+b)^n e^{-(\mu+b)}}{n!}$$

Die Likelihood wird maximal bei μ_{Best} = max[0; n-b]

$$R = \left(\frac{\mu + b}{b}\right)^n e^{-\mu} \quad \text{für } n \le b$$

$$R = \left(\frac{\mu + b}{n}\right)^n e^{-(\mu + b - n)} \quad \text{für } n > b$$

Experimentelle Physik Vb

Beispiel B – Poisson mit Untergrund (Fortsetzung)

- Hier Beispielrechnung für μ_0 =0,5 und b=3
 - Die Haken markieren die Werte, die für ein 90% Konfidenzlevel benutzt werden
 → konservatives Intervall wegen der diskreten Verteilung

n	P(n μ₀)	μ _{Best}	P(n µ _{Best})	R	Rang	90% CL	
0	0,030	0	0,050	0.607	6	✓ □	n=0
1	0,106	0	0,149	0,708	5	✓ □	٥٤
2	0,185	0	0,224	0,826	3	✓ □	
3	0,216	0	0,224	0,963	2	✓ □	
4	0,189	1	0,195	0,966	1	✓ □	
5	0,132	2	0,175	0,753	4	✓ □	
6	0,077	3	0,161	0,480	7	✓ □	
7	0,039	4	0,149	0,259	8		thoden

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

der Datenanalyse

Statistische Methoden der Datenanalyse

technische universität

Beispiel B – Poisson mit Untergrund (Fortsetzung)

Prof. Dr. Dr. W. Rhode

Experimentelle Physik Vb

Konfidenzintervalle - Bayesische Definition

- Bayesische Konfidenzintervalle werden als Kredibilitätsintervalle bezeichnet
- Aus der Posterior p.d.f. lassen sich Intervalle bestimmen, die den Parameter θ mit der Wahrscheinlichkeit α enthalten

Ein Intervall für das
$$\int_R \mathrm{d}\theta p(\theta|x) = \alpha$$

gilt, wird α -Kredibilitätsintervall genannt

Es gibt viele Möglichkeiten solche Intervalle zu konstruieren, oft wird das kürzeste Intervall gewählt

Konfidenzintervalle

- Varianzen, Momente
 - Unabhängig von der zugrunde liegenden Verteilung
 - Wohldefinierte Fehlerfortpflanzung
 - Fehlerkombination unabhängiger Messungen
- Konfidenzintervalle
 - Alternative Methode um Unsicherheiten anzugeben
 - Abhängig von der zugrundeliegenden Verteilung
 - Fehlerpropagation und Kombination schwierig
 - Frequentistisch ⇔ Bayesisch

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

highest posteriori density region

Das kürzeste Intervall wird auch als highest posteriori density region (HPD) bezeichnet und lässt sich mit der Bedingung

$$p(\theta|x) \ge p(\theta^*|x), \forall \theta \in R \land \forall \theta^* \notin R$$

Intervallschätzung & Tests

konstruieren

- Die HPD-Region muss nicht zwangsweise ein zusammenhängendes Intervall sein
- Interpretation von Bayesischen Konfidenzintervallen:

Das Intervall enthält mit einer Wahrscheinlichkeit α den wahren Wert des Parameters θ_t

Wahl des Priors

- Bei der Auseinandersetzung mit einem Problem nimmt die bekannte Information über das Problem zu
- Ist bereits eine Posterior p.d.f. vorhandenen, kann diese in den meisten Fällen als neue Prior p.d.f. verwendet werden
- Liegt wenig bis keine Information vor, ist die Wahl des Priors schwieriger
 - Gleichverteilter Prior
 - Jeffrevs Prior

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb

Jeffreys Prior

- Der Jeffreys Prior $p(\theta) \propto 1/\theta$ ist invariant gegenüber der Transformation $\theta \rightarrow \alpha \theta$
- Sind obere und untere Grenze von θ bekannt, kann der Prior durch

$$p(\theta) = \frac{1}{\theta \ln(\theta_{\text{max}}/\theta_{\text{min}})}$$

normiert werden. Ohne Grenzen ist dieser Prior ebenfalls nicht normierbar.

- Der Jeffreys Prior liefert die gleiche Wahrscheinlichkeit pro logarithmischem Intervall
 - Beispiel: Eine gesuchte Größe θ , mit bekannten Grenzen $\theta_{\min}=10^{-1}$ und $\theta_{\rm max}=10^3$ liegt durch einen gleichverteilten Prior mit der höchsten Wahrscheinlichkeit zwischen 10^2 und 10^3 . Mit einem Jeffreys Prior sind alle Dekaden gleich wahrscheinlich.

Experimentelle Physik Vb

Gleichverteilter Prior

 Wird aufgrund mangelnder Informationen eine Gleichverteilung als Prior gewählt entspricht die Posterior p.d.f. bis auf die Normierung der Likelihood

 $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int d\theta \, p(x|\theta)p(\theta)} \propto p(x|\theta)$

Der Prior wird dann bei bekannten Grenzen zu

$$p(\theta) = \text{const.} = \frac{1}{x_{\text{max}} - x_{\text{min}}}$$

- Probleme:
 - Die Gleichverteilung ist auf unbeschränkten Intervallen nicht normierbar → Problematisch beim Vergleich verschiedener Modelle
 - Die Gleichverteilung ist nicht invariant gegenüber Reparametrisierungen

Prof. Dr. Dr. W. Rhode

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

der Datenanalyse

technische universität

Experimentelle Physik Vb

Einfluss verschiedener Priors

- Ein Zählexperiment beobachtet n Ereignisse
- $\rightarrow n$ ist eine poisson-verteilte Zufallsvariable
- Die Wahrscheinlichkeit P_n , dass n Ereignisse beobachtet werden ist dann:

$$P_n = P(n; \mu) = \exp(-\mu) \frac{\mu^n}{n!}$$

- Was kann je nach Wahl des Priors über den Erwartungswert und eine Konfidenzregion ausgesagt werden?
- Nach der Wahl der Priors lässt sich die Posterior p.d.f. wieder wie folgt bestimmen:

 $P(\mu|n) = \frac{P(n|\mu)P(\mu)}{\int d\mu P(n|\mu)P(\mu)}$

- Mit dem Chandra X-Ray Observatory (Satellit mit einem Röntgenteleskop) wurden in einer Untersuchung sehr schwache Quellen mit 2-4 Photonen über einen Messzeitraum von 5000s beobachtet (Kenter et al. 2005, ApJS 161, 9)
- Es ist den Astronomen bekannt gewesen, dass die Anzahl von Quellen N mit einem gewissen Fluss oberhalb von S einem Potenzgesetz folgt: $N(S) \sim S^{-\beta}$ mit $\beta = 2.5$
- Die gemessenen Photonen aus einer Quelle entsprechen nicht dem besten Schätzer für den wahren Mittelwert der Quellphotonen

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

technische universität dortmund

Experimentelle Physik Vb Astroteilchenphysik

Statistische Methoden der Datenanalyse

Hypothesentests - Einleitung

- Es liegen zwei Hypothesen über die Daten vor
- Welche erklärt die Daten besser?
- Die Hypothesen werden oft mit H₀ und H₁ bezeichnet
 - H₀: Nullhypothese
 - H₁: Alternative Hypothese
- Effektiv geht es um "Ja" / "Nein" Entscheidungen
 - Ist das ein neues Teilchen oder nur Untergrund?
 - Ist die neue Medizin wirksam oder nicht?
 - Hat der Mensch Schuld an der globalen Erwärmung oder nicht?

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Hypothesentests - Typ I und Typ II Fehler

- Wir haben zwei Hypothesen aufgestellt, Beispiel:
 - Nullhypothese: Wir sehen keinen Peak in den Daten
 - Alternative Hypothese: Wir sehen einen Peak in den Daten
- Typ I Fehler
 - Der Test sagt, da ist ein Peak, obwohl es nicht stimmt
 - Schreibweise: Typ I Fehler treten mit der Rate α auf
 - Typ I Fehler werden auch Signifikanz (Significance) genannt
- Typ II Fehler
 - Der Test sagt, es gibt keinen Peak, obwohl einer da ist
 - Schreibweise: Typ II Fehler treten mit der Rate β auf
 - (1-β) wird auch Trennkraft (Power) genannt
- Ziel: Minimiere sowohl α, als auch β

Hypothesentests - Generelles Vorgehen

- 1. Definiere beide Testhypothesen
 - Hier: "Simple" Hypothesen (siehe auch: Neyman-Pearson Test)
 Eine Hypothese muss komplett durch eine einzige (parameterabhängige)
 p.d.f. beschrieben werden können
- Definiere eine Test-Statistik, auf der ein numerischer Test durchgeführt werden kann und eine Signifikanz des Tests
- 3. Wähle Verwerfungskriterien basierend auf der Test-Statistik
 - Ab einem bestimmten Wert der Teststatistik, wird die eine, oder die andere Hypothese verworfen
 - Der Wert, bei dem verworfen wird, heißt oft "kritischer Parameter"
 - Versuche Typ I / Typ II Fehler gering zu halten
- Was genau ist zu tun? Wir schlüsseln das im Detail auf

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Hypothesentests – Typ I und Typ II Fehler (Fortsetzung)

	H₀ wahr	H₀ falsch
H₀ nicht abgelehnt	<i>True positive</i> P = 1-α	Typ II Fehler P = β
H₀ abgelehnt	Typ I Fehler P = α (Signifikanz)	True Negative P = 1-β (Trennkraft)

 Vorsicht: Signifikanz nicht verwechseln mit dem Konfidenzlevel α aus den Konfidenzintervallen.

Hypothesentests – Typ I und Typ II Fehler (Fortsetzung)

- Das Verwerfungskriteriun teilt den Hypothesenraum in zwei Bereiche
 - Region, in der H₀ verworfen wird ("Verwurfsregion")
 - Region, in der H₁ verworfen wird ("Akzeptanzregion")
- Der Typ I Fehler α ist der Teil der p.d.f. der Nullhypothese, welcher in der Verwurfsregion liegt

$$\alpha = \int_{\text{Verwurfsregion}} P_{\text{H}_0} dV$$

Der Typ II Fehler β ist der Teil der p.d.f. der Alternativhypothese, welcher in der Akzeptanzregion liegt

$$\beta = \int_{\text{Akzeptanzregion}} P_{\text{H}_1} \text{d}V$$

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb

Hypothesentests - Neyman-Pearson Test

- Wähle eine Signifikanz α, bevor der Test durchgeführt wird
- Nevman-Pearson: Die Test-Statistik Γ ist definiert durch

$$\Gamma(x) = \frac{P(x|H_0)}{P(x|H_1)}$$

Wähle nun einen kritischen Parameter η zur Signifikanz α , sodass

$$P(\Gamma(x) \le \eta | H_0) = \alpha$$

Lehne H₀ ab. wenn gilt

$$\Gamma(x) < \eta$$

Dieser Test hat zu einem gegebenen α die höchste Trennkraft (1-β)

Experimentelle Physik Vb

Hypothesentests – Typ I und Typ II Fehler (Fortsetzung)

Experimentelle Physik Vb

Hypothesentests - Neyman-Pearson Test (Fortsetzung)

- Die Wahrscheinlichkeiten P(x|H) sind die **Likelihood Funktionen** für die jeweiligen simplen Hypothesen
 - P.d.f. sind komplett beschrieben durch Parameter H₀: $\theta \in \theta_0$ und H₁: $\theta \in \theta_1$

$$\Gamma(x) = \frac{\mathcal{L}(\theta_0|X)}{\mathcal{L}(\theta_1|x)}$$

- $\Gamma(x)$ folgt je nach Hypothesen einer bestimmten Verteilung
 - Entweder analytisch bestimmen

Prof. Dr. Dr. W. Rhode

Oder numerisch durch MC Pseudo-Experimente

Hypothesentests - Neyman-Pearson Test (Fortsetzung)

 Die Region im Hypotheseraum, die den Fehler zweiter Art zu gegebenem α minimiert ist eine Kontur des Likelihood Quotienten

$$\Gamma(x) = \frac{\mathcal{L}(\theta_0|X)}{\mathcal{L}(\theta_1|x)}$$

- Der Quotient folgt einer eindimensionalen Verteilung Γ(x)
 - Beachte: Der Hypothesenraum selbst kann mehrdimensional sein
- Der kritische Parameter η , kann dann über die Verteilung vom $\Gamma(x)$ bestimmt werden
 - Z.B. durch tabellierte Quantile bekannter Verteilungen im analytischen Fall
- Nachdem das η zu gegebenem α gefunden ist, kann der Test abgelehnt oder akzeptiert werden

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Hypothesentests - p-Values

- Ein p-Value ist die Wahrscheinlichkeit die gemessenen Daten zu erhalten, unter der Annahme, dass die Nullhypothese richtig ist
- Keine neuen Informationen. Entscheidend ist der kritische Wert n
 - Liegt die Teststatistik einer Messung x_m über η, dann wird H₀ abgelehnt und es ist p < α

Statistische Methoden der Datenanalyse

Hypothesentests - Bemerkung zu Hypothesen

- Wichtig: Hypothesen werden durch Tests **NICHT** bewiesen.
 - → Es kann nur gezeigt werden, dass die Daten mit der Alternative nicht konsistent sind
- Wie zeige ich, dass ein Effekt zu sehen ist?
 - Stelle das Gegenteil als Nullhypothese auf → H₀: Ich sehe keinen Peak
 - Die Alternative ist H₁: Ich sehe einen Peak
 - Wenn der Test fehlschlägt, ist die Nullhypothese abgelehnt
 → Das heißt NICHT. dass die Alternative wahr ist
- R. Barlow:

"In statistics one cannot meaningfully accept a hypothesis: one can only reject them"

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Likelihood-Quotienten Test

- Neyman-Pearson Test f
 ür simple Hypothesen (siehe vorheriger Abschnitt)
- Funktioniert auch mit komplementären Hypothesen
- Beschreibe H₀ und H₁ durch Likelihood Funktionen mit Parametern θ
 - $H_0: \theta \in \theta_0$ und $H_1: \theta \in \theta_1 = \theta_0^C$ wobei $\theta_1 = \theta_0^C$ das Komplement zu θ_0 in θ ist
 - Beachte: Die Parameter müssen nicht festliegen, sondern können z.B. über die Daten bestimmt werden
- Der Test ist dann wie folgt definiert

$$\Gamma(x) = \frac{\sup_{\theta \in \Theta_0} \mathcal{L}(\theta|x)}{\sup_{\theta \in \Theta} \mathcal{L}(\theta|x)}$$

- Zähler: Maximale Likelihood für θ aus den möglichen Werten θ_0 aus H_0
- Nenner: Maximale Likelihood für θ aus dem gesamten Parameterraum θ

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Likelihood-Quotienten Test – Wilks' Theorem

- Wenn gilt, dass
 - sich die Nullhypothese durch eine lineare Parameter-Transformation als ein Spezialfall der Alternativ-Hypothese darstellen lässt
 - 2. die Anzahl der Beobachtungen gegen unendlich geht
- Dann ist die Teststatistik

$$-2\ln(\Gamma(x))$$

y² verteilt

- Die Anzahl der Freiheitsgrade ist die Differenz der Dimensionalität von Θ und Θ_0
 - ightarrow Sehr hilfreich um eine analytische Abschätzung des kritischen Wertes η aus einer bekannten Verteilung zu erhalten

Experimentelle Physik Vb

Astroteilchenphysik

Likelihood-Quotienten Test (Fortsetzung)

Anschaulich:

Je größer der Quotient, desto wahrscheinlicher ist die Nullhypothese. Das Maximum im gesamten Parameterraum θ wird dann bei einem Wert ähnlich dem Maximum im Raum der Nullhypothese θ_0 erreicht

Der kritische Wert wird wie vorher gewählt, sodass

$$\sup_{\theta \in \Theta_0} P_{\theta}(\Gamma(x) < \eta) = \alpha$$

Die Nullhypothese wird zur Signifikanz α abgelehnt, wenn gilt

$$\Gamma(x) < \eta$$

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Beipiel - Likelihood-Quotienten Test

- In der Mensa soll pro Schale im Mittel μ₀=10 [a.u.] Pudding gefüllt werden
- Die Abfüllmaschine teilt eine normalverteilte Menge mit bekannter Varianz
 σ² aus
- Es soll anhand von n Stichproben getestet werden, ob die Maschine ordentlich abfüllt
 - Nullhypothese: Die Maschine ist in Ordnung \rightarrow H₀: $\mu = \mu_0 = 10$
 - Alternativhypothese: Die Maschine ist nicht in Ordnung \rightarrow H₁: $\mu \neq \mu_0$, $\mu \in \Theta$
- P.d.f.

$$\mathcal{L}(\mu|x) = P(x|\mu) \propto e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

■ Test-Statistik: μ_{Best} ist das $\mu \in \Theta$, welches die Likelihood maximiert

$$\Gamma(x) = \frac{\mathcal{L}(\mu = \mu_0 | x)}{\sup \mathcal{L}(\mu \in \Theta | x)} = \frac{\mathcal{L}(\mu = \mu_0 | x)}{\mathcal{L}(\mu_{\text{Best}} | x)}$$

Beipiel – Likelihood-Quotienten Test (Fortsetzung)

Umformen liefert die Test-Statistik

$$\Gamma(x) = \exp\left(-\frac{n}{2\sigma^2}(\mu_{\text{Best}} - \mu_0)^2\right)$$

Der Test wird für ein k_α zur Signifikanz α verworfen, wenn gilt

$$\Gamma(x) = \exp\left(-\frac{n}{2\sigma^2}(\mu_{\text{Best}} - \mu_0)^2\right) \le k_{\alpha}$$

Umformen liefert

$$\frac{|\mu_{\text{Best}} - \mu_0|}{\sqrt{\sigma^2/n}} \ge k_\alpha^*$$

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Gauß-, t- und F-Test

- Im Beispiel gesehen: Test-Statistik ist standardnormalverteilt → Likelihood-Quotienten Test liefert weitere, bekannte Tests für verschiedene Spezialfälle, z.B.
 - Gauß-Test
 - t-Test
 - F-Test

Prof. Dr. Dr. W. Rhode

Siehe auch Übungsaufgabe

Beipiel – Likelihood-Quotienten Test (Fortsetzung)

- Die Größe z = $|\mu_{Best} \mu_0| / \sqrt{(\sigma^2/n)}$ ist standardnormalverteilt
- Damit kann der kritische Wert η zur Signifikanz α aus einer Tabelle abgelesen werden
- Z.B. wird der zweiseitige Test zur Signifikanz $\alpha = 0.05$ verworfen, wenn gilt

$$\frac{|\mu_{\text{Best}} - \mu_0|}{\sqrt{\sigma^2/n}} \ge z_{0,025} \ge 1,96$$

- Bemerkung:
 - Hier ist µ_{Best} das arithmetische Mittel der Messdaten → erhält man durch Ableitung der Likelihood Funktion

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Gauß-Test - Einstichproben Test

- Problem:
 - Prüfe anhand des arithmetischen Mittels x, ob gegeben Daten einer Normalverteilung mit Erwartungswert μ und bekannter Varianz σ^2 folgen
- Gegeben:

Prof. Dr. Dr. W. Rhode

- n unabhängige, normalverteilte Zufallszahlen X₁, ..., X_n aus derselben Grundgesamtheit mit
 - Unbekanntem Erwartungswert µ
 - Bekannter Varianz σ²

Gauß-Test – Einstichproben Test (Fortsetzung)

- Nullhypothese H₀: Die Daten sind normalverteilt mit Erwartungswert μ=μ₀
 - Der Wert μ₀ wird vom Tester vorgegeben
- Es können drei Fälle getestet werden
 - Zweiseitiger Test: H₀: μ=μ₀ gegen H₁: μ≠μ₀
 - Rechtsseitiger Test: H₀: μ≤μ₀ gegen H₁: μ>μ₀
 - Linksseitiger Test: H₀: μ≥μ₀ gegen H₁: μ<μ₀
- Die Test-Statistik ist immer gleich, nur die Ablehnungsbereiche unterscheiden sich
- Die Test-Statistik z ist unter H₀ standardnormalverteilt

$$z = \sqrt{n} \ \frac{x - \mu_0}{\sqrt{\sigma^2}}$$

Prof. Dr. Dr. W. Rhode

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

t-Test - Einstichproben Test

Test-Statistik t, mit arithmetischem Mittel x ...

$$t = \sqrt{n} \ \frac{x - \mu_0}{\sqrt{S^2}}$$

... und Stichprobenvarianz

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - x)^{2}$$

- Die Test-Statistik ist unter der Nullhypothese t-verteilt mit n-1 Freiheitsgraden
 - Für zwei-/einseitige Test wird die selbe Test-Statistik t benutzt (siehe auch Gauß-Test)

t-Test

- Sehr ähnlich zum Gauß-Test
- Einstichproben Test
 - Teste, ob die gegebenen Daten zu einer Normalverteilung mit vorgegeben Erwartungswert μ=μ₀ passen
- Zweistichproben Test
 - Test, ob die Erwartungswerte der Grundgesamtheit zweier unabhängiger Stichproben gleich sind
- Hier allerdings unbekannte Varianz der Verteilung
 - Benutze Stichprobenvarianz als Schätzwert

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

t-Test – Zweistichproben Test

- Gegeben: Zwei Stichproben X und Y vom Umfang n bzw. m aus zwei Grundgesamtheiten mit
 - Erwartungswerten μ_x und μ_v
 - Der gleichen, unbekannten Varianz σ²
- Test-Hypothesen
 - H_0 : $\mu_x \mu_v = w$
 - H_1 : $\mu_x \mu_v \neq w$
 - w = 0, wenn auf eine gemeinsame Grundgesamtheit getestet wird

t-Test – Zweistichproben Test (Fortsetzung)

Test-Statistik (x, y sind die arithmetischen Mittel der Stichproben X, Y)

$$t = \sqrt{\frac{nm}{n+m}} \frac{x - y - w}{\sqrt{S^2}}$$

Mit der gewichteten, geschätzten Varianz

$$S^{2} = \frac{(n-1)S_{X}^{2} + (m-1)S_{Y}^{2}}{n+m-2}$$

- Mit den Varianzen S², und S², der Einzelstichproben
- Die Test-Statistik ist unter H₀ t-verteilt mit n+m-2 Freiheitsgraden

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb

Kolmogorow-Smirnow Test

- Einstichproben Test
 - Teste, ob eine Zufallsvariable einer im Voraus angenommenen Verteilung folgt
 - Nicht zulässig, eine an die Daten gefittete Verteilung zu testen
 - → Kein Äquivalent zu einem "goodness of fit" Test
- Zweistichproben Test

Prof. Dr. Dr. W. Rhode

- Test, ob zwei Zufallsvariablen aus derselben Verteilung stammen
- In beiden Fällen sind die Hypothesen
 - $H_0: F_X(x) = F_0(x) \rightarrow Die Zufallsvariable X ist verteilt wie F_0$
 - $H_1: F_X(x) \neq F_0(x) \rightarrow Die Zufallsvariable X ist NICHT verteilt wie <math>F_0$
- Test-Statistik basiert auf maximalem Abstand d zwischen den kumulierten Verteilungsfunktionen F_X und F₀

$$d = \sup_{x} |F_X(x) - F_0(x)|$$

der Datenanalyse

F-Test

- Test, ob die Varianzen zweier Stichproben X, Y mit Umfang n_x, n_y aus unterschiedlichen, normalverteilten Grundgesamtheiten gleich sind
 - H_0 : $\sigma_v^2 = \sigma_v^2$
 - H_1 : $\sigma_x^2 < \sigma_v^2$
- Test-Statistik ist der Quotient der geschätzten Varianzen

$$F = \frac{S_Y^2}{S_X^2} = \frac{\frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (y_i - y)^2}{\frac{1}{n_X - 1} \sum_{i=1}^{n_X} (x_i - x)^2}$$

Unter H₀ ist die Test-Statistik F-verteilt mit n_v-1 Freiheitsgraden im Zähler und nx-1 Freiheitsgraden im Nenner

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Kolmogorow-Smirnow Test – Einstichproben Test

- Teste, ob die Zufallsvariable X aus der vorher festgelegten Verteilung $F_0(x)$ stammt
- Aus der Stichprobe mit Umfang n von X wird die empirische Verteilungsfunktion S(x_i) bestimmt
- Bestimme den maximalen Abstand aus

$$d_u = \sup_{x_i \in x} |S(x_i) - F_0(x_i)|$$
 und $d_l = \sup_{x_i \in x} |S(x_{i-1}) - F_0(x_i)|$

- d₁₁ bzw. d₁ bezieht sich je auf den Abstand zwischen oberer und unterer Grenze → das Maximum aus beiden Werten ist die Test-Statistik
- Für n > 35 kann der kritische Wert aus $d_{\alpha} = \sqrt{\frac{-\ln(\alpha/2)}{2n}}$ werden \rightarrow Test wird für \mathbf{d}_{\max} > \mathbf{d}_{α} abgelehnt
 - Bis n = 35 werden tabellierte Werte genutzt

Beispiel - Kolmogorow-Smirnow Test - Einstichproben Test

Experimentelle Physik Vb

Chi-Quadrat Test ("goodness of fit")

- Teste, ob n gemessene Daten y_i einem angenommenen Modell f(x_i) folgen
 - Nullhypothese H₀: Die gemessenen Verteilungen stammen aus dem angenommenen Modell
- Test-Statistik

$$\chi^2 = \sum_{i=1}^n \frac{(y_i - f(x_i))^2}{(\sigma_i^{\text{Modell}})^2}$$

- Test wird bei hohen Werten von x² abgelehnt
 - Verglichen wird mit tabellierten x² Werten mit n Freiheitsgraden am gewünschten Quantil 1-α bei einer Signifikanz α
 - Strikt einseitiger Test → Je kleiner x² desto besser "passt" das Modell
 - → Vorsicht vor Überanpassung

Kolmogorow-Smirnow Test – Zweistichproben Test

- Zufallsvariablen X und Y → Prüfe, ob X und Y aus derselben Verteilung stammen
 - Stichproben sind vom Umfang n_x bzw. n_y
- Bilde die kumulierten Verteilungsfunktionen $S_x(x_i)$ bzw. $S_y(y_i)$
- Die Test-Statistik ist der maximale Abstand

$$d_{\max} = \sup_{z} |S_X(z) - S_Y(z)|$$

Lehne den Test ab, wenn

$$\sqrt{\frac{nm}{n+m}}d_{\max} > K_{\alpha}$$
 $\sqrt{\ln\left(2/\alpha\right)}$

- $\sqrt{\frac{nm}{n+m}}d_{\max}>K_{\alpha}$ Für große n, m kann näherungsweise $K_{\alpha}=\sqrt{\frac{\ln{(2/\alpha)}}{2}}$ benutzt werden
 - Sonst auf tabellierte Werte zurückgreifen

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Chi-Quadrat Test ("goodness of fit") (Fortsetzung)

- Vorsicht vor Überanpassung
 - Erinnerung: x² Verteilung mit n Freiheitsgraden ist die Summe von n standardnormalverteilten Zufallszahlen
 - Erwartet wird also einen Wert von $\chi^2 = n$
 - Oft auch "Chi-Quadrat über d.o.f." angegeben \rightarrow χ^2 geteilt durch die Anzahl der Freiheitsgrade. Erwartung: $\chi^2/n = 1$
- χ^2 Wert zu groß:

Prof. Dr. Dr. W. Rhode

- Falsches Modell gewählt
- Fehler sind unterschätzt (zu klein)
- Durch Zufall → Hohe Werte sind unwahrscheinlich aber immer möglich
- x² Wert zu klein → "zu gutes" Modell:
 - Fehler überschätzt
 - Zu viele gefittete Freiheitsgrade im Modell

Chi-Quadrat Test - Minimierung

- Hängt das Modell von m freien Parametern ab können diese durch Minimierung des x² Werts an die Daten angepasst werden
- Dadurch reduziert sich die Anzahl der Freiheitsgrade der Test-Statistik

Anzahl Freiheitsgrade = Anzahl Datenpunkte – Anzahl an Fitparametern

- Beachte: Auch die Gesamt-Normierung ist bereits ein Freiheitsgrad
- Beispiel:
 - Fitte eine Gerade ax+b an n=10 Datenpunkte
 → Test-Statistik wird mit Quantil aus einer χ² Verteilung mit 10 2 = 8
 Freiheitsgraden verglichen

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Chi-Quadrat Test – Vergleich zweier Histogramme

- Gegeben sind zwei Histogramme mit identischem Binning mit r Bins
- Nullhypothese: Beide Histogramme repräsentieren Zufallszahlen der gleichen Verteilung
 - Es existiert für jedes Bin eine Wahrscheinlichkeit pi dafür, dass eine Zufallszahl in i-ten Bin landet:

$$\sum_{i=1}^{r} p_i = 1$$

 Einträge im i-ten Bin des ersten Histogramms werden als n_i und des zweiten Histogramms als m_i bezeichnet

Chi-Quadrat Test - Fit an ein Histogramm

- Fitte Modell an ein Histogramm mit n Bins
 - Poissonverteilung in jedem Bin i mit n_i gemessenen Einträgen
 - Erwartete Varianz des Modells ist bekannt: σ_i² = n_i^{Modell}
- Die Test-Statistik ist

$$\chi^2 = \sum_{i=1}^n \frac{(n_i - n_i^{\text{Modell}})^2}{n_i^{\text{Modell}}}$$

- Anzahl Freiheitsgrade = Anzahl Bins Gefittete Parameter
- Beachte:

Die Test-Statistik ist nur bei **ausreichend hoher Statistik in den Bins** χ^2 verteilt \rightarrow Poisson-Verteilung wird ausreichend gut durch eine Gauß-Verteilung beschrieben

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Chi-Quadrat Test - Vergleich zweier Histogramme

Die Z\u00e4hlraten der einzelnen Bins folgen jeweils einer Poissonverteilung

$$rac{e^{-Np_i}(Np_i)^{n_i}}{n_i!}$$
 bzw. $rac{e^{-Mp_i}(Mp_i)^{m_i}}{m_i!}$

Die Likelihoodfunktion eines einzelnen Bins wird somit zu

$$\mathcal{L}(p_i; n_i, m_i) = \frac{e^{-Np_i} (Np_i)^{n_i}}{n_i!} \frac{e^{-Mp_i} (Mp_i)^{m_i}}{m_i!}$$

Die Likelihoodfunktion hat ein Maximum bei

$$p_i = \frac{n_i + m_i}{N + M}$$

Chi-Quadrat Test - Vergleich zweier Histogramme (Forts.)

 Mit dem Likelihood Schätzer für p_i kann ein Chi-Quadrat Test aufgestellt werden:

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - N\hat{p}_i)^2}{N\hat{p}_i} + \sum_{i=1}^r \frac{(m_i - M\hat{p}_i)^2}{M\hat{p}_i}$$

- Die Testgröße x² folgt einer Chi-Quadrat-Verteilung mit (r-1) Freiheitsgraden
 - Es gibt 2r Summanden und geschätzt aus den Beobachtungen werden die Größen N, M, sowie (r-1) Werte für p;
 - Ein Wert für p_i folgt aus der Bedingung, dass die Summe 1 sein muss

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Chi-Quadrat Test – Vergleich zweier Histogramme

Beispiel:

Statistische Methoden der Datenanalyse

Chi-Quadrat Test – Vergleich zweier Histogramme

Beispiel:

Prof. Dr. Dr. W. Rhode

Intervallschätzung & Tests

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb
Astroteilchenphysik

Chi-Quadrat Tabellen

