COMP90038 Algorithms and Complexity

More Divide-and-Conquer Algorithms

Michael Kirley

Lecture 12

Semester 1, 2016

Divide and Conquer

In the last lecture we studied the archetypal divide-and-conquer sorting algorithms: mergesort and quicksort.

We also introduced the powerful master theorem, providing solutions to a large class of recurrence relations, for free.

Now we shall look at tree traversal, and then a final example of divide-and-conquer, giving a better solution to the closest-pair problem.

Binary Trees Again

An example of a binary tree, with empty subtrees marked with \square :

This tree has height 4, the empty tree having height -1.

Binary Tree Concepts

Special trees have their external nodes \square only at level h and h+1 for some h:

A full binary tree: Each node has 0 or 2 children.

A complete tree: Each level filled left to right.

Binary Tree Concepts

A non-empty tree T has a root T_{root} , a left subtree T_{left} , and a right subtree T_{right} .

Recursion is the natural way of calculating the height:

```
\begin{aligned} & \textbf{function} \ \ \text{Height}(\mathcal{T}) \\ & \textbf{if} \ \ \mathcal{T} \ \text{is empty then} \\ & \textbf{return} \ \ -1 \\ & \textbf{else} \\ & \textbf{return} \ \ \textit{max}(\text{Height}(\mathcal{T}_{left}), \text{Height}(\mathcal{T}_{right})) + 1 \end{aligned}
```

Binary Tree Concepts

It is not hard to prove that the number x of external nodes \square is always one greater than the number n of internal nodes.

The function ${\rm HEIGHT}$ makes a tree comparison (empty or non-empty?) per node (internal and external), so altogether 2n+1 comparisons.

Binary Tree Traversal

Preorder traversal visits the root, then the left subtree, and finally the right subtree.

Inorder traversal visits the left subtree, then the root, and finally the right subtree.

Postorder traversal visits the left subtree, the right subtree, and finally the root.

Level-order traversal visits the nodes, level by level, starting from the root.

Binary Tree Traversal: Preorder

```
function PreorderTraverse(T)

if T is non-empty then

visit T_{root}

PreorderTraverse(T_{left})

PreorderTraverse(T_{right})
```


Visit order for the example: 17, 33, 19, 16, 38, 31, 48, 11, 14.

Binary Tree Traversal: Inorder

```
function InorderTraverse(T)

if T is non-empty then

InorderTraverse(T_{left})

visit T_{root}

InorderTraverse(T_{right})
```


Visit order for the example: 19, 33, 38, 16, 31, 17, 11, 48, 14.

Binary Tree Traversal: Postorder

```
function PostorderTraverse(T)

if T is non-empty then

PostorderTraverse(T_{left})

PostorderTraverse(T_{right})

visit T_{root}
```


Visit order for the example: 19, 38, 31, 16, 33, 11, 14, 48, 17.

Preorder Traversal Using a Stack

We could also implement preorder traversal of T by maintaining a stack explicitly.

```
\begin{array}{l} \textit{push}(T) \\ \textbf{while} \text{ the stack is non-empty do} \\ T \leftarrow \textit{pop} \\ \text{visit } T_{root} \\ \textbf{if } T_{right} \text{ is non-empty then} \\ \textit{push}(T_{right}) \\ \textbf{if } T_{left} \text{ is non-empty then} \\ \textit{push}(T_{left}) \end{array}
```

In an implementation, the elements placed on the stack would not be whole trees, but pointers to the corresponding internal nodes.

Tree Traversal Using a Queue: Level-Order

Level-order traversal results if we replace the stack with a queue.

```
inject(T)

while the queue is non-empty do

T \leftarrow eject

visit T_{root}

if T_{left} is non-empty then

inject(T_{left})

if T_{right} is non-empty then

inject(T_{right})
```


Visit order for the example: 17, 33, 48, 19, 16, 11, 14, 38, 31.

In Lecture 5 we gave a brute-force algorithm for the closest pair problem: Given n points in the Cartesian plane, find a pair with minimal distance.

The brute-force method had complexity $\Theta(n^2)$. We can use divide-and-conquer to do better, namely $\Theta(n \log n)$.

First, sort the points by x value and store the result in array byX.

Also sort the points by y value and store the result in array byY.

Now we can identify the x median, and recursively process the set P_L of points with lower x values, as well as the set P_R with higher x values.

The recursive calls will identify d_L , the shortest distance for pairs in P_L , and d_R , the shortest distance for pairs in P_R .

Let m be the x median and let $d = min(d_L, d_R)$. This d is a candidate for the smallest distance.

But d may not be the global minimum—there could be some close pair whose points are on opposite sides of the median line x = m.

For candidates that may improve on d we only need to look at those in the band $m-d \le x \le m+d$.

So pick out, from array byY, each point p with x-coordinate between m-d and m+d, and keep these in array S.

For each point in S, consider just its "close" neighbours.

The following calculates the smallest distance and leaves the (square of the) result in *minsq*.

It can be shown that the while loop can execute at most 5 times for each *i* value—see diagram.


```
minsq \leftarrow d^2

copy all points of by Y with |x - m| < d to array S

k \leftarrow |S|

for i \leftarrow 0 to k - 2 do

j \leftarrow i + 1

while j \le k - 1 and (S[j].y - S[i].y)^2 < minsq do

minsq \leftarrow min(minsq, (S[j].x - S[i].x)^2 + (S[j].y - S[i].y)^2)

j \leftarrow j + 1
```