Digital Control (Session 1)

* Review (Control Engineering)

- Control theory is the general framework for studying dynamical Systems
- Control Systems Objective is to improve the behaviour of the System to meet design specs (improve dynamics - reduce error)
- Any Control System Response Can be Characterized by 4- parameters:

tr: rise time

Bs: Steady State Error

- The Phases of Control System design

- Plant Modeling (differential Equations - Transfer function)
- System Analysis
- (Root Locus Frequency Response)
- Controller design Implementation (PID - Lead/Lag Compensator - Stede feedback) (Analog Components (op-amps + RLC circuits))

- the Block diagram of a Feedback Control System

* Digital Control System Structure

* Digital platforms are the most powerful Computing Platforms specially with todays high speed of processors (much more that speed of Systems to be controlled).

* Digital Control Benefits ?

- Control Algorithm is Converted to a Cocle on a Computer System

 More powerful to Implement Complex Control Algorithms (There are
 Some Control algorithm that Can be Implemented only using digital control
- Reduce the need of emolog components (affected by noise).
- More effectent to be modified and Scaled
- More Robust to environment disturbance

* Digital Control challenges:
- Sampling Rate
- Reconstruction of original Signals

26 Physical Systems are Continuous by nature me approximate them by discretization

* Digital Pant: * AID | X(t) | m(t) | m(t) | m(t) | x(t) | TOIA | m(t) |

* Sampling and Reconstruction

*(4) & Original Analog Signal
*(4) & Sampled Signal

X, Lt) 2 Reconstructed Signal

Yhat: the reconstructed Signal using Itolder Circuit is a ladder Signal It can be Smothed using Low Pass Filter

We note that

$$\dot{X}(t) = \sum_{k=0}^{\infty} S(t-kT) \chi(t) , T: Sampling Period$$

$$= S(t) \chi(t) + S(t-T) \chi(T) + \cdots$$

$$= \chi(t) + \chi(t) + \chi(t) + \cdots$$

Rember Transfer Functions descriping Systems using Laplace Transform

h[X(t)] = \(\frac{1}{K_{50}} \times X(KT) e^{-KTS} \) (Integration bocomes Summation)

Note 2 This is the definition of Z-transform

Z = e KTS (Z: advance operator)

Z': delay operator)

is we need to make newsion on Z-transform

* Z-tromsform represents discrete Systems Tromsfer function

* Difference equations are solved using Z-transform

* Sampling Process 2-

Is there a relation between Sampling frequency and Signal frequency?

For AID convertor:

P(t): models the opening/Closing of Sampler Switch

then, X(4) is the result of multiplying X(4) by P(1)

* The Sampler is Considered as an amplitude Modulation clearice with PU) as the Carrier Signal, flet) the imput an filts is the output signal.

Sampled Signal

Flat approximation

 $(9 << T_s)$

Plt): Periodic function

q; ton

Ts: Sampling Period

* The relation between fs and f.

fs: Sampling frequency

fo: Signal frequency

We use Fourier Analysis to derive the relation between formed for

1) Express PH) using fourter sentes (PH) periodic)

P(t) = E Ch exp(Inwst)

Cn= 1 p(t) exp(-Inwst)dt

 $f'(t) = f(t) \sum_{n=-\infty}^{\infty} C_n \exp(Jn\omega_s t)$

(2) Taking Fourter transform of \$\frac{1}{2}(4)\$ (Sampled Signal)

 $F(f(t)) = F(\omega) = \int \int f(t) \sum_{n=-\infty}^{\infty} C_n \exp(Jn\omega_s t)$

= \(\int_{n=-\infty} C_n \) \(\text{exp(Jnwst)} \) \(\frac{1}{2} \)

but exp(Jnw,t) f(t) [f (Jw-Jnw,t)

= F (Jw) = E Cn F (Jw-Jnas)

From Spectrum of discrete (Sampled Signal):

1 w2> 5 m6

we LPF - Restore f(t) v

- ed if we same Critical case for nestoring fits
- 3) if w_s < 2 w_e we cam't Reskonstruct the Signal

Shannon's Theory ? For right sampling Process of (sampling) frequency) must be equal or larger than twice wo Ws≥2w.

36 In Practical as is choosen to be (5-10) + wo

* Holding Process

f(KT) + f'(KT) (+-KT) + f"(KT) (+-KT)2

where

- fklt): The function expression in between (KT) and (KT+T)

- o If we choose only first term → f(KT): Zero Order Hold

Note: S(t) ZOH U(6)-U(4-T)

:
$$G_{z(s)} = \frac{O/P(s)}{I_{z(s)}} = \frac{\frac{1}{s} - e^{-TS}}{\frac{1}{s}} = \frac{1 - e^{-TS}}{S}$$