Aufgabensammlung Teil 2

Thema: Rekursionen und Heaps

Aufgabe 1: Rekursion

Finden Sie für T(n) eine geschlossene Form ohne das Mastertheorem und beweisen Sie die Korrektheit mittels Induktion. Sie dürfen bei a) und b), c) und f) annehmen, dass n eine Zweierpotenz ist (also $n = 2^k$), bei d) und e) $n = 2^{2^k}$.

- a) $T(n) = n^2 T(\frac{n}{2}), T(1) = 0$
- b) $T(n) = 4T(\frac{n}{2}) + n^2$, T(1) = 1
- c) $T(n) = nT(\frac{n}{2}), T(1) = 1$
- d) $T(n) = nT(\sqrt{n}) + n^2$, T(2) = 1
- e) $T(n) = \sqrt{n}T(\sqrt{n}) + n$, T(2) = 1
- f) $T(n) = \frac{n}{2}T(\frac{n}{2}), T(1) = 1$

Aufgabe 2: Heap

Gegeben sei das Array A = (5, 3, 17, 10, 84, 19, 6, 22, 9).

- a) Bilden Sie den Heap für Array A. Benutzen Sie dabei die "Heap-Eigenschaft": jeder Baumknoten u ist mit einem Element S[u] beschriftet und es gilt: ist u Elternknoten von v, so ist $S[u] \leq S[v]$. Veranschaulichen und kommentieren Sie alle Schritte.
- b) Wie sieht der Heap aus, wenn Sie eine Extractmin Operation ausgeführt und dann die Heapeigenschaft wieder hergestellt haben?
- c) Fügen Sie das neue Element 2 zu dem Heap (aus b)) hinzu.
- d) Wie viele Schritte in O-Notation brauchen Sie um das maximale Element aus dem Heap zu löschen?

Lösungen:

1. a)
$$T(n) = 0$$

b)
$$T(n) = (\log(n) + 1) \cdot n^2$$

c) $T(n = 2^k) = 2^{k(k+1)/2}$

c)
$$T(n=2^k)=2^{k(k+1)/2}$$

d)
$$T(n) = log(log(n)) \cdot n^2 + \frac{n^2}{4}$$

e) $T(n = 2^{2^k}) = \left(k + \frac{1}{2}\right) \cdot 2^{2^k}$
f) $T(n = 2^k) = 2^{\frac{k(k-1)}{2}}$

e)
$$T(n = 2^{2^k}) = (k + \frac{1}{2}) \cdot 2^{2^k}$$

f)
$$T(n=2^k)=2^{\frac{k(k-1)}{2}}$$

2. a) Bildung des Heap.

b) Extractmin ausführen und Heapeigenschaft wiederherstellen.

c) Neues Element 2 hinzufügen.

d) $\mathcal{O}(n)$