NAME:

Mohamed Hamed HASSAN Gazar

01 - INTRODUCTION

Pulse width modulation is an effective technique that is used to control semiconductor devices. Pulse width modulation or PWM is a commonly used control technique that generates analog signals from digital devices such as microcontrollers. The signal thus produced will have a train of pulses, and these pulses will be in the form of square waves. Thus, at any given time, the wave will either be high or low.

\

PWM funadamental elements

PWM signal consists of two <u>funadamental</u> elements: >

- Frequency (Hz)
- Duty cycle >

Frequency

<u>Frequency</u> is represented through the total number of cycles per one second

Duty cycle

Duty cycle is defined with respect to percentage or as a number between 0 and 1

Duty cycle = On time / 1 Cycle (On time + off time)

Duty cycle Example

Flowchart

Flowchart Continued (1)

Flowchart Continued (2)

Draw_Signal

GLCD_DisplayString(); GLCD_DisplayFloatingPoint(); GLCD_DisplayInteger(); GLCD_DisplaySpecialPattern();

Flowchart Continued (3)

Draw_Signal

GLCD_DisplayString(); GLCD_DisplayFloatingPoint(); GLCD_DisplayInteger(); GLCD_DisplaySpecialPattern();

GLCD Line 6: Display the PWM signal shape.

THANKS

Do you have any questions?

