Számításelmélet

10. előadás

előadó: Kolonits Gábor kolomax@inf.elte.hu

Definíció

Legyen $k \ge 1$ egész szám. Egy (irányítatlan) gráf k-színezhető, ha kiszínezhetők a csúcsai k színnel úgy, hogy bármely két szomszédos csúcsnak a színe különböző.

Formálisan: G=(V,E) k-színezhető, ha $\exists \ f:V \to \{1,\ldots,k\}$ leképezés, melyre $\forall x,y \in V: f(x)=f(y) \Rightarrow \{x,y\} \notin E$.

Definíció

Legyen $k \ge 1$ egész szám. Egy (irányítatlan) gráf k-színezhető, ha kiszínezhetők a csúcsai k színnel úgy, hogy bármely két szomszédos csúcsnak a színe különböző.

Formálisan: G = (V, E) k-színezhető, ha $\exists f : V \to \{1, \dots, k\}$ leképezés, melyre $\forall x, y \in V : f(x) = f(y) \Rightarrow \{x, y\} \notin E$.

1. Példa: Jelölje K_n a teljes n csúcsú gráfot. Ekkor K_n k-színezhető minden $k \ge n$ -re, de nem (n-1)-színezhető (semelyik 2 csúcs sem lehet azonos színű).

Definíció

Legyen $k \geqslant 1$ egész szám. Egy (irányítatlan) gráf k-színezhető, ha kiszínezhetők a csúcsai k színnel úgy, hogy bármely két szomszédos csúcsnak a színe különböző.

Formálisan: G = (V, E) k-színezhető, ha $\exists f : V \to \{1, ..., k\}$ leképezés, melyre $\forall x, y \in V : f(x) = f(y) \Rightarrow \{x, y\} \notin E$.

- 1. Példa: Jelölje K_n a teljes n csúcsú gráfot. Ekkor K_n k-színezhető minden $k \ge n$ -re, de nem (n-1)-színezhető (semelyik 2 csúcs sem lehet azonos színű).
- 2. Példa: Egy 5 csúcsú kör 3-színezhető, de nem 2-színezhető.

Definíció

Legyen $k \geqslant 1$ egész szám. Egy (irányítatlan) gráf k-színezhető, ha kiszínezhetők a csúcsai k színnel úgy, hogy bármely két szomszédos csúcsnak a színe különböző.

Formálisan: G = (V, E) k-színezhető, ha $\exists f : V \to \{1, ..., k\}$ leképezés, melyre $\forall x, y \in V : f(x) = f(y) \Rightarrow \{x, y\} \notin E$.

- 1. Példa: Jelölje K_n a teljes n csúcsú gráfot. Ekkor K_n k-színezhető minden $k \ge n$ -re, de nem (n-1)-színezhető (semelyik 2 csúcs sem lehet azonos színű).
- 2. Példa: Egy 5 csúcsú kör 3-színezhető, de nem 2-színezhető.

Definíció

Legyen $k \geqslant 1$ egész szám. Egy (irányítatlan) gráf k-színezhető, ha kiszínezhetők a csúcsai k színnel úgy, hogy bármely két szomszédos csúcsnak a színe különböző.

Formálisan: G = (V, E) k-színezhető, ha $\exists f : V \to \{1, ..., k\}$ leképezés, melyre $\forall x, y \in V : f(x) = f(y) \Rightarrow \{x, y\} \notin E$.

- 1. Példa: Jelölje K_n a teljes n csúcsú gráfot. Ekkor K_n k-színezhető minden $k \ge n$ -re, de nem (n-1)-színezhető (semelyik 2 csúcs sem lehet azonos színű).
- 2. Példa: Egy 5 csúcsú kör 3-színezhető, de nem 2-színezhető.

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

ltt $\langle G \rangle$ a G gráf kódját jelöli $\{0,1\}$ felett, mondjuk a szomszédsági mátrixa sorfolytonosan.

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

ltt $\langle G \rangle$ a G gráf kódját jelöli $\{0,1\}$ felett, mondjuk a szomszédsági mátrixa sorfolytonosan.

Tétel

3Színezés NP-teljes.

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

ltt $\langle G \rangle$ a G gráf kódját jelöli $\{0,1\}$ felett, mondjuk a szomszédsági mátrixa sorfolytonosan.

Tétel

3Színezés NP-teljes.

▶ *k*Színezés NP-beli:

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

Itt $\langle G \rangle$ a G gráf kódját jelöli $\{0,1\}$ felett, mondjuk a szomszédsági mátrixa sorfolytonosan.

Tétel

3Színezés NP-teljes.

▶ kSzíNEZÉS NP-beli: egy $\langle G \rangle$ inputra az M NTG egy számítási ága állítson elő egy $f:V(G) \to \{1,\ldots,k\}$ k-színezést. Mind egy konkrét k-színezés előállítása, mind pedig a konkrét színezés helyességének ellenőrzése polinom időben megtehető. M egy számítása végződjön q_i -ben, ha az egy jó k-színezés. G k-színezhető $\Leftrightarrow \exists$ jó k-színezése $\Leftrightarrow M$ elfogadja $\langle G \rangle$ -t.

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

Itt $\langle G \rangle$ a G gráf kódját jelöli $\{0,1\}$ felett, mondjuk a szomszédsági mátrixa sorfolytonosan.

Tétel

3Színezés NP-teljes.

- ▶ kSzínezés NP-beli: egy $\langle G \rangle$ inputra az M NTG egy számítási ága állítson elő egy $f:V(G) \to \{1,\ldots,k\}$ k-színezést. Mind egy konkrét k-színezés előállítása, mind pedig a konkrét színezés helyességének ellenőrzése polinom időben megtehető. M egy számítása végződjön q_i -ben, ha az egy jó k-színezés. G k-színezhető $\Leftrightarrow \exists$ jó k-színezése $\Leftrightarrow M$ elfogadja $\langle G \rangle$ -t.
- ▶ 3SAT ≤_p 3Színezés:

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

Itt $\langle G \rangle$ a G gráf kódját jelöli $\{0,1\}$ felett, mondjuk a szomszédsági mátrixa sorfolytonosan.

Tétel

3Színezés NP-teljes.

- ▶ kSzínezés NP-beli: egy $\langle G \rangle$ inputra az M NTG egy számítási ága állítson elő egy $f:V(G) \to \{1,\ldots,k\}$ k-színezést. Mind egy konkrét k-színezés előállítása, mind pedig a konkrét színezés helyességének ellenőrzése polinom időben megtehető. M egy számítása végződjön q_i -ben, ha az egy jó k-színezés. G k-színezhető $\Leftrightarrow \exists$ jó k-színezése $\Leftrightarrow M$ elfogadja $\langle G \rangle$ -t.
- ▶ 3SAT \leq_p 3SZÍNEZÉS: elegendő minden φ 3KNF formulához polinom időben elkészíteni egy G_{φ} gráfot úgy, hogy φ kielégíthető $\Leftrightarrow G_{\varphi}$ 3-színezhető.

Legyenek x_1, \ldots, x_n a φ -ben előforduló ítéletváltozók.

Legyenek x_1,\ldots,x_n a φ -ben előforduló ítéletváltozók. Továbbá $\varphi=C_1\wedge\ldots\wedge C_m$, azaz $C_1,\ldots C_m$ φ pontosan 3 literálból álló klózai.

Legyenek x_1,\ldots,x_n a φ -ben előforduló ítéletváltozók. Továbbá $\varphi=C_1\wedge\ldots\wedge C_m$, azaz $C_1,\ldots C_m$ φ pontosan 3 literálból álló klózai. G_{φ} konstrukciója:

Minden klózhoz tartozik egy ötszög a fenti módon.

Lemma: Legyen G_0 az alábbi gráf és tegyük fel, hogy az X, Y, Z, B csúcsokat 2 színnel kiszíneztük. Akkor és csak akkor létezik ehhez a parciális színezéshez az egész G_0 -ra kiterjeszthető 3-színezés, ha X, Y, Z, B nem mind egyszínű.

Lemma: Legyen G_0 az alábbi gráf és tegyük fel, hogy az X, Y, Z, B csúcsokat 2 színnel kiszíneztük. Akkor és csak akkor létezik ehhez a parciális színezéshez az egész G_0 -ra kiterjeszthető 3-színezés, ha X, Y, Z, B nem mind egyszínű.

A lemma bizonyítása:

 Ha X, Y, Z, B egyszínű, akkor a maradék 2 színnel kéne az ötszöget kiszínezni, amit nem lehet.

ightharpoonup Ha X,Y,Z,B nem egyszínű, akkor megadható egy színezés.

- ullet Ha X,Y,Z,B nem egyszínű, akkor megadható egy színezés.
 - 1. lépés: első körben 2 színt használunk, 1,2,3,4,5-öt színezzük az $\{X,Y,Z,B\}$ -beli szomszédjával ellentétes színűre.

- ullet Ha X,Y,Z,B nem egyszínű, akkor megadható egy színezés.
 - 1. lépés: első körben 2 színt használunk, 1,2,3,4,5-öt színezzük az $\{X,Y,Z,B\}$ -beli szomszédjával ellentétes színűre.

Ez persze még nem jó, lehetnek azonos színű szomszédok.

- ightharpoonup Ha X,Y,Z,B nem egyszínű, akkor megadható egy színezés.
 - 1. lépés: első körben 2 színt használunk, 1,2,3,4,5-öt színezzük az $\{X,Y,Z,B\}$ -beli szomszédjával ellentétes színűre.

Ez persze még nem jó, lehetnek azonos színű szomszédok.

2. lépés: bevetjük a 3. színt: ha 1,2,3,4,5 között van valahány egymás utáni azonos színű csúcs (az óramutató járása szerint és ciklikusan), akkor ezen egymás utáni azonos színű csúcsok közül minden párosadikat színezzük át a 3. színre.

- ▶ Ha X, Y, Z, B nem egyszínű, akkor megadható egy színezés.
 - 1. lépés: első körben 2 színt használunk, 1,2,3,4,5-öt színezzük az $\{X,Y,Z,B\}$ -beli szomszédjával ellentétes színűre.

Ez persze még nem jó, lehetnek azonos színű szomszédok.

2. lépés: bevetjük a 3. színt: ha 1,2,3,4,5 között van valahány egymás utáni azonos színű csúcs (az óramutató járása szerint és ciklikusan), akkor ezen egymás utáni azonos színű csúcsok közül minden párosadikat színezzük át a 3. színre.

Példa:

1. lépés utáni színezés

- ► Ha X, Y, Z, B nem egyszínű, akkor megadható egy színezés.
 - 1. lépés: első körben 2 színt használunk, 1,2,3,4,5-öt színezzük az $\{X,Y,Z,B\}$ -beli szomszédjával ellentétes színűre.

Ez persze még nem jó, lehetnek azonos színű szomszédok.

2. lépés: bevetjük a 3. színt: ha 1,2,3,4,5 között van valahány egymás utáni azonos színű csúcs (az óramutató járása szerint és ciklikusan), akkor ezen egymás utáni azonos színű csúcsok közül minden párosadikat színezzük át a 3. színre.

Példa:

1. lépés utáni színezés

2. lépés utáni színezés

A visszavezetés bizonyítása:

▶ Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését.

A visszavezetés bizonyítása:

• Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék.

A visszavezetés bizonyítása:

▶ Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva.

A visszavezetés bizonyítása:

▶ Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros.

A visszavezetés bizonyítása:

▶ Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is,

A visszavezetés bizonyítása:

Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.

- Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.
- ▶ Tegyük fel most, hogy G_{φ} jól ki van színezve 3 színnel.

- Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.
- Tegyük fel most, hogy G_{φ} jól ki van színezve 3 színnel. Feltehető, hogy A kék.

- Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.
- Tegyük fel most, hogy G_{φ} jól ki van színezve 3 színnel. Feltehető, hogy A kék. Mivel $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$ mind A szomszédai, így egyikük se lehet kék.

- Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.
- ▶ Tegyük fel most, hogy G_{φ} jól ki van színezve 3 színnel. Feltehető, hogy A kék. Mivel $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$ mind A szomszédai, így egyikük se lehet kék. Továbbá az (x_i, \overline{x}_i) párok össze vannak kötve, így minden párban pontosan egy piros és pont egy zöld csúcs van.

- Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.
- ▶ Tegyük fel most, hogy G_{φ} jól ki van színezve 3 színnel. Feltehető, hogy A kék. Mivel $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$ mind A szomszédai, így egyikük se lehet kék. Továbbá az (x_i, \overline{x}_i) párok össze vannak kötve, így minden párban pontosan egy piros és pont egy zöld csúcs van. Ámnfth. B piros (a zöld eset analóg).

- Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.
- ▶ Tegyük fel most, hogy G_{φ} jól ki van színezve 3 színnel. Feltehető, hogy A kék. Mivel $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$ mind A szomszédai, így egyikük se lehet kék. Továbbá az (x_i, \overline{x}_i) párok össze vannak kötve, így minden párban pontosan egy piros és pont egy zöld csúcs van. Ámnfth. B piros (a zöld eset analóg). Mivel az ötszögek ki vannak színezve, ezért a lemma miatt minden ötszögnek van zöld szomszédja.

- Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha x_i igaz, akkor legyen az x_i csúcs zöld, az \overline{x}_i csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.
- ► Tegyük fel most, hogy G_{φ} jól ki van színezve 3 színnel. Feltehető, hogy A kék. Mivel $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$ mind A szomszédai, így egyikük se lehet kék. Továbbá az (x_i, \overline{x}_i) párok össze vannak kötve, így minden párban pontosan egy piros és pont egy zöld csúcs van. Ámnfth. B piros (a zöld eset analóg). Mivel az ötszögek ki vannak színezve, ezért a lemma miatt minden ötszögnek van zöld szomszédja. Az " x_i :=igaz $\Leftrightarrow x_i$ csúcs zöld" interpretáció tehát kielégíti φ -t.

Beláttuk tehát, hogy $\varphi \mapsto G_{\varphi}$ visszavezetés.

Beláttuk tehát, hogy $\varphi\mapsto G_{\varphi}$ visszavezetés. Mivel φ ismeretében G_{φ} mérete és elkészítésének ideje az input (φ) méretének polinomja, ezért a visszavezetés polinom idejű.

Beláttuk tehát, hogy $\varphi\mapsto G_{\varphi}$ visszavezetés. Mivel φ ismeretében G_{φ} mérete és elkészítésének ideje az input (φ) méretének polinomja, ezért a visszavezetés polinom idejű.

Mivel 3SAT NP-teljes, korábbi tételünk miatt 3SzÍNEZÉS is az. \square

Beláttuk tehát, hogy $\varphi\mapsto G_{\varphi}$ visszavezetés. Mivel φ ismeretében G_{φ} mérete és elkészítésének ideje az input (φ) méretének polinomja, ezért a visszavezetés polinom idejű.

Mivel 3SAT NP-teljes, korábbi tételünk miatt 3SzíNEZÉS is az. \square

A 2-színezhető gráfok éppen a páros gráfok (a páros gráf két csúcsosztálya a két színosztály). Lineáris időben eldönthető, hogy egy gráf páros-e:

Beláttuk tehát, hogy $\varphi\mapsto G_{\varphi}$ visszavezetés. Mivel φ ismeretében G_{φ} mérete és elkészítésének ideje az input (φ) méretének polinomja, ezért a visszavezetés polinom idejű.

Mivel 3SAT NP-teljes, korábbi tételünk miatt 3Színezés is az. \square

A 2-színezhető gráfok éppen a páros gráfok (a páros gráf két csúcsosztálya a két színosztály). Lineáris időben eldönthető, hogy egy gráf páros-e:

Tétel

2Színezés ∈ P

Beláttuk tehát, hogy $\varphi\mapsto G_{\varphi}$ visszavezetés. Mivel φ ismeretében G_{φ} mérete és elkészítésének ideje az input (φ) méretének polinomja, ezért a visszavezetés polinom idejű.

Mivel 3SAT NP-teljes, korábbi tételünk miatt 3SzíNEZÉS is az. \square

A 2-színezhető gráfok éppen a páros gráfok (a páros gráf két csúcsosztálya a két színosztály). Lineáris időben eldönthető, hogy egy gráf páros-e:

Tétel

2Színezés ∈ P

Bizonyítás:

Indítsunk egy szélességi bejárást G egy tetszőleges x csúcsából. Ez az x-szel egy komponensben lévő csúcsokat szintekre particionálja az x-től való távolságuk (legrövidebb út hossza) szerint.

Beláttuk tehát, hogy $\varphi\mapsto G_{\varphi}$ visszavezetés. Mivel φ ismeretében G_{φ} mérete és elkészítésének ideje az input (φ) méretének polinomja, ezért a visszavezetés polinom idejű.

Mivel 3SAT NP-teljes, korábbi tételünk miatt 3Színezés is az. \square

A 2-színezhető gráfok éppen a páros gráfok (a páros gráf két csúcsosztálya a két színosztály). Lineáris időben eldönthető, hogy egy gráf páros-e:

Tétel

2Színezés ∈ P

Bizonyítás:

Indítsunk egy szélességi bejárást G egy tetszőleges x csúcsából. Ez az x-szel egy komponensben lévő csúcsokat szintekre particionálja az x-től való távolságuk (legrövidebb út hossza) szerint. Ha a gráf nem összefüggő, akkor minden komponensre végezzük ezt el.

Beláttuk tehát, hogy $\varphi\mapsto G_{\varphi}$ visszavezetés. Mivel φ ismeretében G_{φ} mérete és elkészítésének ideje az input (φ) méretének polinomja, ezért a visszavezetés polinom idejű.

Mivel 3SAT NP-teljes, korábbi tételünk miatt 3Színezés is az. \square

A 2-színezhető gráfok éppen a páros gráfok (a páros gráf két csúcsosztálya a két színosztály). Lineáris időben eldönthető, hogy egy gráf páros-e:

Tétel

2Színezés ∈ P

Bizonyítás:

Indítsunk egy szélességi bejárást G egy tetszőleges x csúcsából. Ez az x-szel egy komponensben lévő csúcsokat szintekre particionálja az x-től való távolságuk (legrövidebb út hossza) szerint. Ha a gráf nem összefüggő, akkor minden komponensre végezzük ezt el. Az algoritmus O(|V| + |E|) idejű.

Állítás: G 2-színezhető \Leftrightarrow a szélességi bejárás G semelyik komponensében se talál élt két azonos szintű csúcs között.

Állítás: G 2-színezhető \Leftrightarrow a szélességi bejárás G semelyik komponensében se talál élt két azonos szintű csúcs között.

Az állítás bizonyítása:

(←) Legyenek a páros szinteken lévő csúcsok kékek, a páratlan szinteken lévők pirosak.

Állítás: G 2-színezhető \Leftrightarrow a szélességi bejárás G semelyik komponensében se talál élt két azonos szintű csúcs között.

Az állítás bizonyítása:

(←) Legyenek a páros szinteken lévő csúcsok kékek, a páratlan szinteken lévők pirosak. Ekkor nincs két azonos színű csúcs között él.

Állítás: G 2-színezhető \Leftrightarrow a szélességi bejárás G semelyik komponensében se talál élt két azonos szintű csúcs között.

Az állítás bizonyítása:

(⇐) Legyenek a páros szinteken lévő csúcsok kékek, a páratlan szinteken lévők pirosak. Ekkor nincs két azonos színű csúcs között él. A felétel és a színezés miatt ilyen csak úgy lehetne ha azonos komponensben legalább 2 szintkülönbségű csúcsokról lenne szó. Azonban irányítatlan gráfok szélességi bejárása során ilyen nincs.

Állítás: G 2-színezhető \Leftrightarrow a szélességi bejárás G semelyik komponensében se talál élt két azonos szintű csúcs között.

Az állítás bizonyítása:

(⇐) Legyenek a páros szinteken lévő csúcsok kékek, a páratlan szinteken lévők pirosak. Ekkor nincs két azonos színű csúcs között él. A felétel és a színezés miatt ilyen csak úgy lehetne ha azonos komponensben legalább 2 szintkülönbségű csúcsokról lenne szó. Azonban irányítatlan gráfok szélességi bejárása során ilyen nincs.

(⇒) Ha van két azonos szintű x és y csúcs között él, akkor legyen a k szinttel feljebb levő z az a csúcs, ami x és y legnagyobb szintszámú (azaz legelső) közös őse a szélességi feszítőfában.

Állítás: G 2-színezhető \Leftrightarrow a szélességi bejárás G semelyik komponensében se talál élt két azonos szintű csúcs között.

Az állítás bizonyítása:

- (⇐) Legyenek a páros szinteken lévő csúcsok kékek, a páratlan szinteken lévők pirosak. Ekkor nincs két azonos színű csúcs között él. A felétel és a színezés miatt ilyen csak úgy lehetne ha azonos komponensben legalább 2 szintkülönbségű csúcsokról lenne szó. Azonban irányítatlan gráfok szélességi bejárása során ilyen nincs.
- (⇒) Ha van két azonos szintű x és y csúcs között él, akkor legyen a k szinttel feljebb levő z az a csúcs, ami x és y legnagyobb szintszámú (azaz legelső) közös őse a szélességi feszítőfában. Ekkor kaptunk egy x, y, z-t tartalmazó 2k+1 hosszú kört, hiszen z elsősége miatt a szélességi feszítőfában a $z \sim x$ és $z \sim y$ utaknak z-n kívül nem lehet közös pontja.

Állítás: G 2-színezhető \Leftrightarrow a szélességi bejárás G semelyik komponensében se talál élt két azonos szintű csúcs között.

Az állítás bizonyítása:

- (⇐) Legyenek a páros szinteken lévő csúcsok kékek, a páratlan szinteken lévők pirosak. Ekkor nincs két azonos színű csúcs között él. A felétel és a színezés miatt ilyen csak úgy lehetne ha azonos komponensben legalább 2 szintkülönbségű csúcsokról lenne szó. Azonban irányítatlan gráfok szélességi bejárása során ilyen nincs.
- (⇒) Ha van két azonos szintű x és y csúcs között él, akkor legyen a k szinttel feljebb levő z az a csúcs, ami x és y legnagyobb szintszámú (azaz legelső) közös őse a szélességi feszítőfában. Ekkor kaptunk egy x, y, z-t tartalmazó 2k+1 hosszú kört, hiszen z elsősége miatt a szélességi feszítőfában a $z \sim \sim x$ és $z \sim \sim y$ utaknak z-n kívül nem lehet közös pontja. Így G nem 2-színezhető, mivel páratlan hosszú körök nyilván nem 2-színezhetők.

Az állítás feltételét a szélességi bejárás menet közben ellenőrzheti.□

Definíció

Egy G egyszerű, irányítatlan gráf egy teljes részgráfját klikknek nevezzük.

Definíció

Egy *G* egyszerű, irányítatlan gráf egy teljes részgráfját **klikknek** nevezzük.

 $\text{KLIKK:=} \left\{ \left\langle \textit{G}, \textit{k} \right\rangle \middle| \textit{G-nek van } \textit{k méretű klikkje} \right\}$

Definíció

Egy *G* egyszerű, irányítatlan gráf egy teljes részgráfját **klikknek** nevezzük.

 $\text{KLIKK:=} \left\{ \left\langle \textit{G}, \textit{k} \right\rangle \middle| \textit{G-nek van } \textit{k méretű klikkje} \right\}$

Példa:

 $\{2,3,7,8\}$ és $\{4,5,9\}$ klikk. $\{1,2,6,7\}$ nem klikk.

Definíció

Egy *G* egyszerű, irányítatlan gráf egy teljes részgráfját **klikknek** nevezzük.

 $\text{KLIKK:=} \left\{ \left\langle \textit{G}, \textit{k} \right\rangle \middle| \textit{G-nek van } \textit{k méretű klikkje} \right\}$

Példa:

 $\{2,3,7,8\}$ és $\{4,5,9\}$ klikk. $\{1,2,6,7\}$ nem klikk.

Észrevétel: Ha G-nek van k méretű klikkje, akkor bármely kisebb k-ra is van.

Definíció

Egy G egyszerű, irányítatlan gráf egy üres részgráfját **független** ponthalmaznak mondjuk.

Definíció

Egy *G* egyszerű, irányítatlan gráf egy üres részgráfját **független ponthalmaznak** mondjuk.

Független ponthalmaz:=

 $\{\langle G, k \rangle | G$ -nek van k méretű független ponthalmaza $\}$

Definíció

Egy *G* egyszerű, irányítatlan gráf egy üres részgráfját **független ponthalmaznak** mondjuk.

FÜGGETLEN PONTHALMAZ:=

 $\{\langle \mathit{G}, \mathit{k} \rangle \,|\: \mathit{G}\text{-nek van } \mathit{k} \text{ m\'eret\'u f\"uggetlen ponthalmaza}\}$

Példa:

 $\{2,6,4\}$ független. $\{1,7,3,9\}$ nem független a $\{3,7\}$ él miatt.

Definíció

Egy *G* egyszerű, irányítatlan gráf egy üres részgráfját **független ponthalmaznak** mondjuk.

FÜGGETLEN PONTHALMAZ:=

 $\{\langle G, k \rangle | G$ -nek van k méretű független ponthalmaza $\}$

Példa:

 $\{2,6,4\}$ független. $\{1,7,3,9\}$ nem független a $\{3,7\}$ él miatt.

Észrevétel: Ha G-nek van k méretű független ponthalmaza, akkor bármely kisebb k-ra is van.

Definíció

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz **lefogja** E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy **lefogó ponthalmaz**.

Definíció

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz **lefogja** E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy **lefogó ponthalmaz**.

Megjegyzés: A fenti fogalom csúcsfedés néven is ismeretes.

Lefogó ponthalmaz:=

 $\{\langle G,k\rangle \mid G$ -nek van k méretű lefogó ponthalmaza $\}$

Definíció

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz **lefogja** E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy **lefogó ponthalmaz**.

Megjegyzés: A fenti fogalom csúcsfedés néven is ismeretes.

Lefogó ponthalmaz:=

 $\{\langle \mathit{G}, \mathit{k} \rangle \,|\: \mathit{G}\text{-nek van } \mathit{k} \text{ m\'eret\'\'u lefog\'o ponthalmaza}\}$

Példa:

{2, 3, 4, 5, 6, 7} lefogó ponthalmaz.

Definíció

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz **lefogja** E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy **lefogó ponthalmaz**.

Megjegyzés: A fenti fogalom csúcsfedés néven is ismeretes.

Lefogó ponthalmaz:=

 $\{\langle \mathit{G}, \mathit{k} \rangle \,|\: \mathit{G}\text{-nek van } \mathit{k} \text{ m\'eret\'u lefog\'o ponthalmaza}\}$

Példa:

 $\{2,3,4,5,6,7\}$ lefogó ponthalmaz.

Észrevétel: Ha G-nek van k méretű lefogó ponthalmaza, akkor bármely $k \leq k' \leq |V(G)|$ -re is van.

Tétel

Tétel

KLIKK, FÜGGETLEN PONTHALMAZ, LEFOGÓ PONTHALMAZ NP-teljes.

Egy NTG egy számítási ágán vizsgálja meg a csúcsoknak egy konkrét, k elemű részhalmazát. Egy k elemű ponthalmaz előállítása illetve annak ellenőrzése, hogy ez egy klikk/független ponthalmaz/lefogó ponthalmaz az input méretének polinomiális függvénye. Tehát mindhárom nyelv NP-ben van.

Tétel

- Egy NTG egy számítási ágán vizsgálja meg a csúcsoknak egy konkrét, k elemű részhalmazát. Egy k elemű ponthalmaz előállítása illetve annak ellenőrzése, hogy ez egy klikk/független ponthalmaz/lefogó ponthalmaz az input méretének polinomiális függvénye. Tehát mindhárom nyelv NP-ben van.
- ▶ 3SAT \leq_p Független csúcshalmaz

Tétel

- Egy NTG egy számítási ágán vizsgálja meg a csúcsoknak egy konkrét, k elemű részhalmazát. Egy k elemű ponthalmaz előállítása illetve annak ellenőrzése, hogy ez egy klikk/független ponthalmaz/lefogó ponthalmaz az input méretének polinomiális függvénye. Tehát mindhárom nyelv NP-ben van.
- ▶ 3SAT \leq_p FÜGGETLEN CSÚCSHALMAZ Kell: $f: \varphi \mapsto (G_\varphi, k)$, φ 3KNF, G_φ -ben van k független csúcs akkor és csak akkor ha φ kielégíthető.

Tétel

- Egy NTG egy számítási ágán vizsgálja meg a csúcsoknak egy konkrét, k elemű részhalmazát. Egy k elemű ponthalmaz előállítása illetve annak ellenőrzése, hogy ez egy klikk/független ponthalmaz/lefogó ponthalmaz az input méretének polinomiális függvénye. Tehát mindhárom nyelv NP-ben van.
- ▶ 3SAT \leq_p FÜGGETLEN CSÚCSHALMAZ Kell: $f: \varphi \mapsto (G_\varphi, k)$, φ 3KNF, G_φ -ben van k független csúcs akkor és csak akkor ha φ kielégíthető.
 - (G_{φ},k) konstrukciója: minden egyes $\ell_1 \vee \ell_2 \vee \ell_3$ klózhoz vegyünk fel egy a többitől diszjunkt háromszöget, a csúcsokhoz rendeljük hozzá a literálokat.

Tétel

- Egy NTG egy számítási ágán vizsgálja meg a csúcsoknak egy konkrét, k elemű részhalmazát. Egy k elemű ponthalmaz előállítása illetve annak ellenőrzése, hogy ez egy klikk/független ponthalmaz/lefogó ponthalmaz az input méretének polinomiális függvénye. Tehát mindhárom nyelv NP-ben van.
- ▶ 3SAT \leq_p FÜGGETLEN CSÚCSHALMAZ Kell: $f: \varphi \mapsto (G_{\varphi}, k)$, φ 3KNF, G_{φ} -ben van k független csúcs akkor és csak akkor ha φ kielégíthető.
 - (G_{φ},k) konstrukciója: minden egyes $\ell_1 \vee \ell_2 \vee \ell_3$ klózhoz vegyünk fel egy a többitől diszjunkt háromszöget, a csúcsokhoz rendeljük hozzá a literálokat. Így m darab klóz esetén 3m csúcsot kapunk. Kössük össze éllel ezen felül a komplemens párokat is.

Tétel

- Egy NTG egy számítási ágán vizsgálja meg a csúcsoknak egy konkrét, k elemű részhalmazát. Egy k elemű ponthalmaz előállítása illetve annak ellenőrzése, hogy ez egy klikk/független ponthalmaz/lefogó ponthalmaz az input méretének polinomiális függvénye. Tehát mindhárom nyelv NP-ben van.
- ▶ 3SAT \leq_p FÜGGETLEN CSÚCSHALMAZ Kell: $f: \varphi \mapsto (G_\varphi, k)$, φ 3KNF, G_φ -ben van k független csúcs akkor és csak akkor ha φ kielégíthető.
 - (G_{φ},k) konstrukciója: minden egyes $\ell_1 \vee \ell_2 \vee \ell_3$ klózhoz vegyünk fel egy a többitől diszjunkt háromszöget, a csúcsokhoz rendeljük hozzá a literálokat. Így m darab klóz esetén 3m csúcsot kapunk. Kössük össze éllel ezen felül a komplemens párokat is. k:=m.

Egy példa:

* Ha φ kielégíthető, akkor minden klózban van kielégített literál, válasszunk klózonként egyet, ezeknek megfelelő csúcsok m elemű független csúcshalmazt alkotnak.

FÜGGETLEN PONTHALMAZ

Egy példa:

- * Ha φ kielégíthető, akkor minden klózban van kielégített literál, válasszunk klózonként egyet, ezeknek megfelelő csúcsok m elemű független csúcshalmazt alkotnak.
- * Ha G_{φ} -ben van m független csúcs, akkor ez csak úgy lehet, ha háromszögenként 1 van. Vegyünk egy ilyet, ezen csúcsoknak megfelelő literálok között nem lehet komplemens pár, hiszen azok össze vannak kötve. Így a független halmaznak megfelelő, (esetleg csak parciális) interpretáció kielégít minden klózt. Ha nincs minden változó kiértékelve, egészítsük ki tetszőlegesen egy teljes interpretációvá.

► FÜGGETLEN PONTHALMAZ ≤_p KLIKK

► FÜGGETLEN PONTHALMAZ ≤_p KLIKK

$$f:(G,k)\mapsto(\bar{G},k)$$

▶ Független ponthalmaz \leq_p Klikk

$$f:(G,k)\mapsto(\bar{G},k)$$

Ez egy jó visszavezetés, hiszen ami G-ben klikk az \bar{G} -ben független ponthalmaz és fordítva, ami G-ben független ponthalmaz az \bar{G} -ben klikk.

▶ Független ponthalmaz \leq_p Klikk

$$f:(G,k)\mapsto(\bar{G},k)$$

Ez egy jó visszavezetés, hiszen ami G-ben klikk az \bar{G} -ben független ponthalmaz és fordítva, ami G-ben független ponthalmaz az \bar{G} -ben klikk.

- Független ponthalmaz \leq_p Lefogó ponthalmaz

▶ Független ponthalmaz \leq_p Klikk

$$f:(G,k)\mapsto(\bar{G},k)$$

Ez egy jó visszavezetés, hiszen ami G-ben klikk az \overline{G} -ben független ponthalmaz és fordítva, ami G-ben független ponthalmaz az \overline{G} -ben klikk.

FÜGGETLEN PONTHALMAZ \leq_p LEFOGÓ PONTHALMAZ $f:(G,k)\mapsto (G,|V(G)|-k)$

► FÜGGETLEN PONTHALMAZ ≤_p KLIKK

$$f:(G,k)\mapsto(\bar{G},k)$$

Ez egy jó visszavezetés, hiszen ami G-ben klikk az \bar{G} -ben független ponthalmaz és fordítva, ami G-ben független ponthalmaz az \bar{G} -ben klikk.

FÜGGETLEN PONTHALMAZ \leq_p LEFOGÓ PONTHALMAZ $f:(G,k)\mapsto (G,|V(G)|-k)$ Ha G-ben van k méretű F független ponthalmaz, akkor van |V(G)|-k méretű lefogó ponthalmaz (F komplementere).

► FÜGGETLEN PONTHALMAZ ≤_p KLIKK

$$f:(G,k)\mapsto(\bar{G},k)$$

Ez egy jó visszavezetés, hiszen ami G-ben klikk az \bar{G} -ben független ponthalmaz és fordítva, ami G-ben független ponthalmaz az \bar{G} -ben klikk.

FÜGGETLEN PONTHALMAZ \leq_p LEFOGÓ PONTHALMAZ $f:(G,k)\mapsto (G,|V(G)|-k)$ Ha G-ben van k méretű F független ponthalmaz, akkor van |V(G)|-k méretű lefogó ponthalmaz (F komplementere). Ha G-ben van |V(G)|-k méretű L lefogó ponthalmaz, akkor van k méretű független ponthalmaz (L komplementere).

Mindkét visszavezetés polinom időben kiszámítható.

Definíció

 \mathcal{S} egy hipergráf (vagy halmazrendszer), ha $\mathcal{S} = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy hipergráf lefogó ponthalmaz, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

Definíció

 \mathcal{S} egy hipergráf (vagy halmazrendszer), ha $\mathcal{S} = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy hipergráf lefogó ponthalmaz, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

HIPERGRÁF LEFOGÓ PONTHALMAZ:= $\{\langle \mathcal{S}, k \rangle | \mathcal{S} \text{ egy hipergráf és van } k \text{ elemű } \mathcal{S}\text{-et lefogó ponthalmaz}\}.$

Definíció

 \mathcal{S} egy hipergráf (vagy halmazrendszer), ha $\mathcal{S} = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy hipergráf lefogó ponthalmaz, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

HIPERGRÁF LEFOGÓ PONTHALMAZ:= $\{\langle \mathcal{S}, k \rangle | \mathcal{S} \text{ egy hipergráf és van } k \text{ elemű } \mathcal{S}\text{-et lefogó ponthalmaz}\}.$

Tétel

HIPERGRÁF LEFOGÓ PONTHALMAZ NP-teljes.

Definíció

 \mathcal{S} egy hipergráf (vagy halmazrendszer), ha $\mathcal{S} = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy hipergráf lefogó ponthalmaz, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

HIPERGRÁF LEFOGÓ PONTHALMAZ:= $\{\langle \mathcal{S}, k \rangle | \mathcal{S} \text{ egy hipergráf és van } k \text{ elemű } \mathcal{S}\text{-et lefogó ponthalmaz}\}.$

Tétel

HIPERGRÁF LEFOGÓ PONTHALMAZ NP-teljes.

Bizonyítás: A nyelv NP-beli, hiszen polinom időben előállítható U egy tetszőleges H részhalmaza és szintén polinom időben ellenőrizhető, hogy H minden S-beli halmazt metsz-e.

Definíció

S egy hipergráf (vagy halmazrendszer), ha $S = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy hipergráf lefogó ponthalmaz, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

HIPERGRÁF LEFOGÓ PONTHALMAZ:= $\{\langle S, k \rangle | S \text{ egy hipergráf és van } k \text{ elemű } S\text{-et lefogó ponthalmaz}\}.$

Tétel

HIPERGRÁF LEFOGÓ PONTHALMAZ NP-teljes.

Bizonyítás: A nyelv NP-beli, hiszen polinom időben előállítható U egy tetszőleges H részhalmaza és szintén polinom időben ellenőrizhető, hogy H minden S-beli halmazt metsz-e.

LEFOGÓ PONTHALMAZ a HIPERGRÁF LEFOGÓ PONTHALMAZ speciális esete. Minden gráf hipergráf is egyben, a megfeleltetés $U=V(G),\ \mathcal{S}=E(G).\ k$ ugyanaz, mivel a lefogó ponthalmaz szintén speciális esete a hipergráf lefogó ponthalmaznak.

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Definíció

Adott egy *G* gráf. Egy a *G* összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a *G* összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

H-kör G-ben

H-út G'-ben

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

H-út G'-ben

nincs H-kör

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Rövidítés: H-út/ H-kör: Hamilton út/ Hamilton kör.

 $H\dot{U} = \{\langle G, s, t \rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Rövidítés: H-út/ H-kör: Hamilton út/ Hamilton kör.

 $H\dot{U} = \{\langle G, s, t \rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

 $IH\acute{U}=\{\langle G,s,t\rangle \mid \text{van a } G \text{ irányítatlan gráfban } s \text{ és } t \text{ végpontokkal H-út}\}.$

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat **Hamilton útnak**, egy a G összes csúcsát pontosan egyszer tartalmazó kört **Hamilton körnek** nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Rövidítés: H-út/ H-kör: Hamilton út/ Hamilton kör.

 $H\dot{U} = \{\langle G, s, t \rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

 $\mathsf{IH} \acute{\mathsf{U}} = \{\langle \mathit{G}, \mathit{s}, \mathit{t} \rangle \, | \, \mathsf{van} \,\, \mathsf{a} \,\, \mathit{G} \,\, \mathsf{ir\'{a}ny\'{i}tatlan} \,\, \mathsf{gr\'{a}fban} \,\, \mathit{s} \,\, \mathsf{\acute{e}s} \,\, \mathit{t} \,\, \mathsf{v\'{e}gpontokkal} \,\, \mathsf{H-\'{u}t} \}.$

 $IHK = \{\langle G \rangle \mid \text{van a } G \text{ irányítatlan gráfban H-kör} \}.$

Tétel

HÚ NP-teljes

Tétel

HÚ NP-teljes

Bizonyítás: NP-beli, hiszen polinom időben előállítható n darab csúcs egy P felsorolása. P-ről polinom időben ellenőrizhető, hogy a csúcsok egy permutációja-e és hogy tényleg H-út-e.

Tétel

HÚ NP-teljes

Bizonyítás: NP-beli, hiszen polinom időben előállítható n darab csúcs egy P felsorolása. P-ről polinom időben ellenőrizhető, hogy a csúcsok egy permutációja-e és hogy tényleg H-út-e.

 $SAT \leq_p HÚ$.

Tétel

HÚ NP-teljes

Bizonyítás: NP-beli, hiszen polinom időben előállítható n darab csúcs egy P felsorolása. P-ről polinom időben ellenőrizhető, hogy a csúcsok egy permutációja-e és hogy tényleg H-út-e.

SAT \leqslant_p HÚ. Elég bármely φ KNF-hez konstruálni (G_{φ}, s, t) -t azzal a tulajdonsággal, hogy φ kielégíthető \Leftrightarrow a G_{φ} -ben van s-ből t-be H-út.

Tétel

HÚ NP-teljes

Bizonyítás: NP-beli, hiszen polinom időben előállítható n darab csúcs egy P felsorolása. P-ről polinom időben ellenőrizhető, hogy a csúcsok egy permutációja-e és hogy tényleg H-út-e.

SAT \leqslant_p HÚ. Elég bármely φ KNF-hez konstruálni (G_{φ}, s, t) -t azzal a tulajdonsággal, hogy φ kielégíthető \Leftrightarrow a G_{φ} -ben van s-ből t-be H-út.

Legyenek $x_1, \ldots x_n$ a φ -ben előforduló ítéletváltozók és $C_1, \ldots C_m$ φ klózai.

 G_{φ} konstrukciója

▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$

- ▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$
- $s := s_0, t := s_n$

- ▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$
- $s := s_0, t := s_n$
- ▶ $\forall 1 \leq i \leq n$ -re u_i és v_i között 3m-1 belső pontú kétirányú út $w_{i,1}, \ldots, w_{i,3m-1}$.

- ▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$
- $s := s_0, t := s_n$
- ▶ $\forall 1 \leq i \leq n$ -re u_i és v_i között 3m-1 belső pontú kétirányú út $w_{i,1}, \ldots, w_{i,3m-1}$.
- ▶ Minden $w_{i,k}$ legfeljebb egy C_j -vel lehet összekötve, ha 3|k, akkor eggyel se.

- ▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$
- $s := s_0, t := s_n$
- ▶ $\forall 1 \leq i \leq n$ -re u_i és v_i között 3m-1 belső pontú kétirányú út $w_{i,1}, \ldots, w_{i,3m-1}$.
- ▶ Minden $w_{i,k}$ legfeljebb egy C_j -vel lehet összekötve, ha 3|k, akkor eggyel se.
- ▶ Ha $x_i \in C_j$, akkor $(w_{i,3j-2}, C_j)$ és $(C_j, w_{i,3j-1}) :\in E(G_{\varphi})$. (pozitív bekötés)

- ▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$
- $s := s_0, t := s_n$
- ▶ $\forall 1 \leq i \leq n$ -re u_i és v_i között 3m-1 belső pontú kétirányú út $w_{i,1}, \ldots, w_{i,3m-1}$.
- Minden $w_{i,k}$ legfeljebb egy C_j -vel lehet összekötve, ha 3|k, akkor eggyel se.
- ▶ Ha $x_i \in C_j$, akkor $(w_{i,3j-2}, C_j)$ és $(C_j, w_{i,3j-1}) :\in E(G_{\varphi})$. (pozitív bekötés)
- ▶ Ha $\neg x_i \in C_j$, akkor $(w_{i,3j-1}, C_j)$ és $(C_j, w_{i,3j-2}) :\in E(G_{\varphi})$. (negatív bekötés)

Irányított swt Hamilton út NP teljessége

G_{φ} konstrukciója

- ▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$
- $s := s_0, t := s_n$
- ▶ $\forall 1 \leq i \leq n$ -re u_i és v_i között 3m-1 belső pontú kétirányú út $w_{i,1}, \ldots, w_{i,3m-1}$.
- ▶ Minden $w_{i,k}$ legfeljebb egy C_j -vel lehet összekötve, ha 3|k, akkor eggyel se.
- ▶ Ha $x_i \in C_j$, akkor $(w_{i,3j-2}, C_j)$ és $(C_j, w_{i,3j-1}) :\in E(G_{\varphi})$. (pozitív bekötés)
- ▶ Ha $\neg x_i \in C_j$, akkor $(w_{i,3j-1}, C_j)$ és $(C_j, w_{i,3j-2}) :\in E(G_{\varphi})$. (negatív bekötés)

Az $u_i v_i$ út pozitív bejárása: $u_i \leadsto v_i$.

Irányított swt Hamilton út NP teljessége

 G_{φ} konstrukciója

- ▶ $\forall 1 \leq i \leq n : (s_{i-1}, u_i), (s_{i-1}, v_i), (u_i, s_i), (v_i, s_i) :\in E(G_{\varphi})$
- $s := s_0, t := s_n$
- ▶ $\forall 1 \leq i \leq n$ -re u_i és v_i között 3m-1 belső pontú kétirányú út $w_{i,1}, \ldots, w_{i,3m-1}$.
- Minden $w_{i,k}$ legfeljebb egy C_j -vel lehet összekötve, ha 3|k, akkor eggyel se.
- ▶ Ha $x_i \in C_j$, akkor $(w_{i,3j-2}, C_j)$ és $(C_j, w_{i,3j-1}) :\in E(G_{\varphi})$. (pozitív bekötés)
- ▶ Ha $\neg x_i \in C_j$, akkor $(w_{i,3j-1}, C_j)$ és $(C_j, w_{i,3j-2}) :\in E(G_{\varphi})$. (negatív bekötés)

Az $u_i v_i$ út pozitív bejárása: $u_i \rightsquigarrow v_i$. Az $u_i v_i$ út negatív bejárása: $u_i \nleftrightarrow v_i$.

Irányított sw→t Hamilton út NP teljessége

▶ Egy $s \leadsto t$ H-út $\forall 1 \leq i \leq n$ -re az (s_{i-1}, u_i) és (s_{i-1}, v_i) közül pontosan egyiket tartalmazza, előbbi esetben az $u_i v_i$ utat pozitív, utóbbi esetben negatív irányban járja be.

Irányított sw→t Hamilton út NP teljessége

- ▶ Egy $s \leadsto t$ H-út $\forall 1 \le i \le n$ -re az (s_{i-1}, u_i) és (s_{i-1}, v_i) közül pontosan egyiket tartalmazza, előbbi esetben az $u_i v_i$ utat pozitív, utóbbi esetben negatív irányban járja be.
- ▶ Egy $s \leadsto t$ H-út minden C_j -t pontosan egyszer köt be. Az $u_i v_i$ út pozitív bejárása esetén csak pozitív, negatív bejárása esetén csak negatív bekötés lehetséges.

Irányított sw→t Hamilton út NP teljessége

- ▶ Egy $s \leadsto t$ H-út $\forall 1 \leq i \leq n$ -re az (s_{i-1}, u_i) és (s_{i-1}, v_i) közül pontosan egyiket tartalmazza, előbbi esetben az $u_i v_i$ utat pozitív, utóbbi esetben negatív irányban járja be.
- ▶ Egy $s \leadsto t$ H-út minden C_{j} -t pontosan egyszer köt be. Az $u_{i}v_{i}$ út pozitív bejárása esetén csak pozitív, negatív bejárása esetén csak negatív bekötés lehetséges.
- ▶ Ha van H-út, akkor az $u_i v_i$ utak pozitív/negatív bejárása meghatároz egy I változókiértékelést. A C_j klóz bekötése mutat C_j -ben egy igaz literált ($\forall 1 \leq j \leq m$). Tehát I kielégíti φ -t.

Irányított swt Hamilton út NP teljessége

- ▶ Egy $s \leadsto t$ H-út $\forall 1 \leqslant i \leqslant n$ -re az (s_{i-1}, u_i) és (s_{i-1}, v_i) közül pontosan egyiket tartalmazza, előbbi esetben az $u_i v_i$ utat pozitív, utóbbi esetben negatív irányban járja be.
- ▶ Egy $s \leadsto t$ H-út minden C_{j} -t pontosan egyszer köt be. Az $u_{i}v_{i}$ út pozitív bejárása esetén csak pozitív, negatív bejárása esetén csak negatív bekötés lehetséges.
- ▶ Ha van H-út, akkor az $u_i v_i$ utak pozitív/negatív bejárása meghatároz egy I változókiértékelést. A C_j klóz bekötése mutat C_j -ben egy igaz literált ($\forall 1 \leq j \leq m$). Tehát I kielégíti φ -t.
- Fordítva, ha φ kielégíthető, válasszunk egy φ -t igazra kiértékelő I interpretációt és φ minden klózához egy I-ben igaz literált. Az u_iv_i utat $I(x_i)=i$ esetén pozitívan, $I(x_i)=h$ esetén negatívan járjuk be. Ha a kiválasztott literálokhoz rendre bekötjük a C_i csúcsokat H-utat kapunk.

Irányított *s*∞*t* Hamilton út NP teljessége

- ▶ Egy $s \leadsto t$ H-út $\forall 1 \leq i \leq n$ -re az (s_{i-1}, u_i) és (s_{i-1}, v_i) közül pontosan egyiket tartalmazza, előbbi esetben az $u_i v_i$ utat pozitív, utóbbi esetben negatív irányban járja be.
- Egy $s \leadsto t$ H-út minden C_i -t pontosan egyszer köt be. Az $u_i v_i$ út pozitív bejárása esetén csak pozitív, negatív bejárása esetén csak negatív bekötés lehetséges.
- ► Ha van H-út, akkor az u¡v¡ utak pozitív/negatív bejárása meghatároz egy I változókiértékelést. A Ci klóz bekötése mutat C_i -ben egy igaz literált ($\forall 1 \leq j \leq m$). Tehát I kielégíti φ -t.
- Fordítva, ha φ kielégíthető, válasszunk egy φ -t igazra kiértékelő I interpretációt és φ minden klózához egy I-ben igaz literált. Az $u_i v_i$ utat $I(x_i) = i$ esetén pozitívan, $I(x_i) = h$ esetén negatívan járjuk be. Ha a kiválasztott literálokhoz rendre bekötjük a *C_i* csúcsokat H-utat kapunk.

 G_{φ} polinom időben megkonstruálható így SAT $\leq_{p} H\dot{U}$, azaz H \dot{U} NP-nehéz, de láttuk, hogy NP-beli, így NP-teljes is.

Megjegyzés: IHÚ és IHK NP-belisége az előzőekhez hasonlóan adódik.

Megjegyzés: IHÚ és IHK NP-belisége az előzőekhez hasonlóan adódik.

Tétel

IHÚ NP-teljes

Bizonyítás: $HÚ \leq_p IHÚ$.

Megjegyzés: IHÚ és IHK NP-belisége az előzőekhez hasonlóan adódik.

Tétel

IHÚ NP-teljes

Bizonyítás: HÚ \leq_p IHÚ. Adott G, s, t, ahol G irányított. Kell G', s', t', ahol G' irányítatlan és akkor és csak akkor van G-ben s-ből t-be H-út, ha G'-ben van s'-ből t'be.

Megjegyzés: IHÚ és IHK NP-belisége az előzőekhez hasonlóan adódik.

Tétel

IHÚ NP-teljes

Bizonyítás: HÚ \leq_p IHÚ. Adott G, s, t, ahol G irányított. Kell G', s', t', ahol G' irányítatlan és akkor és csak akkor van G-ben s-ből t-be H-út, ha G'-ben van s'-ből t'be. G minden v csúcsának feleljen meg G'-ben G csúcs G' élei közé vegyük be a G'-ben G'-ben

Könnyen meggondolható, hogy ez egy polinomiális visszavezetés:

► *G'* mérete *G* méretének polinomja és *G' G*-ből nyilván polinom időben előállítható.

- ► G' mérete G méretének polinomja és G' G-ből nyilván polinom időben előállítható.
- ha G-ben van egy P: s w t irányított H-út, akkor G' konstrukciója miatt a következő G'-beli csúcssorozat H-út G'-ben: P szerint haladva minden v csúcsot sorra a v_{be}, v_{közép}, v_{ki} csúcsokkal helyettesítsük.

- G' mérete G méretének polinomja és G' G-ből nyilván polinom időben előállítható.
- ha G-ben van egy P: s >>>> t irányított H-út, akkor G' konstrukciója miatt a következő G'-beli csúcssorozat H-út G'-ben: P szerint haladva minden v csúcsot sorra a v_{be}, v_{közép}, v_{ki} csúcsokkal helyettesítsük.
- ha G'-ben van egy $P': s' \sim v'$ H-út, akkor P'-ben minden v-re $v_{\rm be}$, $v_{\rm k\"oz\'ep}$, $v_{\rm k\'i}$ egymást követő csúcsok, hiszen $v_{\rm k\"oz\'ep}$ 2-fokú csúcs és máskülönben nem lehetne rajta P'-n.

- G' mérete G méretének polinomja és G' G-ből nyilván polinom időben előállítható.
- ha G-ben van egy P: s t irányított H-út, akkor G' konstrukciója miatt a következő G'-beli csúcssorozat H-út G'-ben: P szerint haladva minden v csúcsot sorra a v_{be}, v_{közép}, v_{ki} csúcsokkal helyettesítsük.
- ha G'-ben van egy P': s' ~~~ t' H-út, akkor P'-ben minden v-re v_{be}, v_{közép}, v_{ki} egymást követő csúcsok, hiszen v_{közép} 2-fokú csúcs és máskülönben nem lehetne rajta P'-n. Ezen csúcshármasokat {u_{ki}, v_{be}} típusú élek kötik össze, melyekhez definíció szerint van u → v él G-ben.
 - Tehát ha minden v-re a P'-ben egymást követő v_{be} , $v_{k\"{o}z\'{e}p}$, $v_{k\"{i}}$ csúcshármast v-vel helyettesítjük egy G-beli irányított H-útat kapunk.

Tétel

IHK NP-teljes

Bizonyítás: $IHÚ \leq_p IHK$.

Tétel

IHK NP-teljes

Bizonyítás: IHÚ \leq_p IHK. Adott G, s, t. G' konstrukciója: adjunk hozzá G csúcshalmazához egy új x csúcsot és élhalmazához két új élt $\{s, x\}$ -et és $\{t, x\}$ -t.

Tétel

IHK NP-teljes

Bizonyítás: IHÚ \leq_p IHK. Adott G, s, t. G' konstrukciója: adjunk hozzá G csúcshalmazához egy új x csúcsot és élhalmazához két új élt $\{s, x\}$ -et és $\{t, x\}$ -t.

Könnyen meggondolható, hogy ez egy polinomiális visszavezetés:

 G' G-ből nyilván polinom időben előállítható.

Tétel

IHK NP-teljes

Bizonyítás: IHÚ \leq_p IHK. Adott G, s, t. G' konstrukciója: adjunk hozzá G csúcshalmazához egy új x csúcsot és élhalmazához két új élt $\{s, x\}$ -et és $\{t, x\}$ -t.

- ► G' G-ből nyilván polinom időben előállítható.
- ha G-ben van $P: s \leadsto t$ H-út, akkor G'-ben van H-kör: egészítsük ki P-t az $\{s,x\}$ és $\{t,x\}$ élekkel.

Tétel

IHK NP-teljes

Bizonyítás: IHÚ \leq_p IHK. Adott G, s, t. G' konstrukciója: adjunk hozzá G csúcshalmazához egy új x csúcsot és élhalmazához két új élt $\{s, x\}$ -et és $\{t, x\}$ -t.

Könnyen meggondolható, hogy ez egy polinomiális visszavezetés:

 G' G-ből nyilván polinom időben előállítható.

ha G-ben van $P: s \leadsto t$ H-út, akkor G'-ben van H-kör: egészítsük ki P-t az $\{s,x\}$ és $\{t,x\}$ élekkel.

ha G'-ben van C H-kör, akkor G-ben van s v t H-út:
C-nek tartalmaznia kell az {s,x} és {t,x} éleket, mivel x
2-fokú. C-ből {s,x}-et, {t,x}-et és x-et elhagyva egy G-beli s v t H-út marad.

Számítási (optimalizálási) verzió: Adott egy G élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Számítási (optimalizálási) verzió: Adott egy G élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle G, K \rangle \mid G\text{-ben van} \leqslant K \text{ súlyú H-k\"or} \}.$

Számítási (optimalizálási) verzió: Adott egy G élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle \mathit{G}, \mathit{K} \rangle \mid \mathit{G}\text{-ben van} \leqslant \mathit{K} \ \mathsf{s\'uly\'u} \ \mathsf{H}\text{-k\"or} \}.$

Tétel

TSP NP-teljes

Számítási (optimalizálási) verzió: Adott egy G élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle G, K \rangle \mid G\text{-ben van} \leqslant K \text{ súlyú H-k\"or} \}.$

Tétel

TSP NP-teljes

Bizonyítás: TSP \in NP, hasonló érvek miatt, mint HÜ, az összköltség feltétel is polinom időben ellenőrizhető.

Számítási (optimalizálási) verzió: Adott egy G élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle G, K \rangle \mid G\text{-ben van} \leqslant K \text{ súlyú H-k\"or} \}.$

Tétel

TSP NP-teljes

Bizonyítás: TSP \in NP, hasonló érvek miatt, mint HÜ, az összköltség feltétel is polinom időben ellenőrizhető.

IHK \leqslant_p TSP. Adott egy G gráf. G függvényében konstruálunk egy G' élsúlyozott gráfot és megadunk egy K számot. G':=G, minden élsúly legyen 1 és K:=|V|. Könnyen látható, hogy G-ben van H-kör $\Leftrightarrow G'$ -ben van legfeljebb K összsúlyú H-kör.

Számítási (optimalizálási) verzió: Adott egy G élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle G, K \rangle \mid G\text{-ben van} \leq K \text{ súlyú H-k\"or} \}.$

Tétel

TSP NP-teljes

Bizonyítás: TSP \in NP, hasonló érvek miatt, mint HÜ, az összköltség feltétel is polinom időben ellenőrizhető.

IHK \leq_p TSP. Adott egy G gráf. G függvényében konstruálunk egy G' élsúlyozott gráfot és megadunk egy K számot. G':=G, minden élsúly legyen 1 és K:=|V|. Könnyen látható, hogy G-ben van H-kör $\Leftrightarrow G'$ -ben van legfeljebb K összsúlyú H-kör.

A visszavezetés nyilvánvalóan polinom idejű.

