

Aligning reads: tools and theory

Assembly

Transcriptome Mapping

Transcriptome Mapping

Reads RSEM, Kallisto, Sailfish, Salmon

Transcript mapping and quantification

DGE with R: DESeq2, EdgeR, limma:voom

DGE or isoform-level DE with R: Sleuth

Goal: Finding where in the genome these reads originated from

A simple case of string matching

A simple case of string matching?

Non-comprehensive list of challenges

- Large, incomplete and repetitive genomes OR transcriptomes with overlapping transcripts (isoforms)
- Short reads: 50-150 bp
 - Non-unique alignment
 - Sensitive to non-exact matching (variants, sequencing errors)
- Massive number of short reads
- Small insert size: 200-500 bp libraries
- Compute capacity for efficient mapping

Building an index

- Having an index of the reference sequence provides an efficient way to search
- Once index is built, it can be queried any number of times
- Every genome or transcriptome build requires a new index for the specific tool in question.

Commonly used indexing methods

- Hash-based (Salmon, Kallisto)
- Suffix arrays (Salmon, STAR)
- Burrows-Wheeler Transform (BWA, Bowtie2)

Hash-based alignment (circa 1990)

- Pick k-mer size, build lookup of every k-mer in the reference mapped to its positions (the index)
- Break the query into k-mers
- Seed-and-extend strategy
- For BLAST, 100% match the query k-mer to reference then extend until score drops below 50%
- ▶ 0.1 1 sec per query; not feasible for NGS data

Hash-based alignment (present day)

- Need to make some concessions on sensitivity by making adaptations for use on NGS data:
 - allow for mismatches and/or gaps (ELAND, MAQ, SOAP)
 - using multiple seeds (BLAT, ELAND2)
- Memory intensive and slower (~16GB RAM required for hg19)
- Simpler in design but more sensitive

Suffix arrays

- A sorted table of all suffixes (substrings) of a given string
- A suffix array will contain integers that represent the starting indexes of the all the suffixes of a given string, after the aforementioned suffixes are sorted
- Requires large amount of memory to load the suffix array and genome sequence prior to alignment

Let the given string be "mississippi"

- G #	a æ		
Suffixes	ID	Sorted	Suffix
		Suffixes	Array
mississippi\$	1	\$	12
ississippi\$	2	i\$	11
ssissippi\$	3	ippi\$	8
sissippi\$	4	issippi\$	5
issippi\$	5	ississippi\$	2
ssippi\$	6	mississippi\$	1
sippi\$	7	pi\$	10
ippi\$	8	ppi\$	9
ppi\$	9	sippi\$	7
pi\$	10	sissippi\$	4
i\$	11	ssippi\$	6
\$ 12		ssissippi\$	3

The suffix array will be: {12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3}

Burrows-Wheeler transform

- A compressed form of suffix arrays
- Tends to put runs of the same character together rather than alphabetically, which makes the compression work well

Suffixes	ID	Sorted	Suffix	Sorted Rotations	BWT
		Suffixes	Array	$(A_s \text{ matrix})$	Output (L)
mississippi\$	1	\$	12	\$mississippi	i
ississippi\$	2	i\$	11	i\$mississipp	р
ssissippi\$	3	ippi\$	8	ippi\$mississ	s
sissippi\$	4	issippi\$	5	issippi\$miss	s
issippi\$	5	ississippi\$	2	ississippi\$m	m
ssippi\$	6	mississippi\$	1	mississippi\$	\$
sippi\$	7	pi\$	10	pi\$mississip	р
ippi\$	8	ppi\$	9	ppi\$mississi	i
ppi\$	9	sippi\$	7	sippi\$missis	s
pi\$	10	sissippi\$	4	sissippi\$mis	s
i\$	11	ssippi\$	6	ssippi\$missi	i
\$	12	ssissippi\$	3	ssissippi\$mi	i

Burrows-Wheeler transform

- Much less memory because of compression;
 - ~1.5 GB of RAM required for hg19 index
- But compression results in diminished efficiency of the string search operations
- Popular Tools:

Bowtie2 (2012)

SOAP2

BWA-MEM (2013)

Reference data versions matter

- Ensembl, UCSC and NCBI all often use the same genome assemblies or builds (e.g. GrCh38 == hg38)
- Make sure that the annotation file (GTF) is exactly matched with the genome file (fasta), or transcriptome file (fasta)
 - Same build version
 - Same source (e.g. both from FlyBase)

Genome alignment for QC

Alignment to genome

- Using an alignment tool that is aware of known splice junctions
- Don't use default parameters; read the manual and ask questions
- Parameter sweeps may be needed if you are working on a non-model organism

Splice-aware alignment

Splice-aware alignment tools:

HISAT2, STAR, MapSplice, SOAPSplice, Passion, SpliceMap, RUM, ABMapper, CRAC, GSNAP, HMMSplicer, Olego, BLAT

There are excellent aligners available that are not splice-aware. These are useful for aligning directly to genes. However, you will lose isoform information.

Bowtie2, BWA, Novoalign (not free), SOAPaligner

Genome alignment output: SAM/BAM

- Sequence Alignment Map (SAM) format contains information on a per-read basis:
 - -- Coordinates of alignment, including strand
 - -- Mismatches
 - -- Mapping information (unique?, properly paired?, etc.)
 - -- Quality of mapping (tool-specific scoring systems)
- BAM: Binary version of SAM alignment format files

More information about SAM/BAM

QC on BAM files

Evaluating the quality of the aligned data can give important information about the quality of the library:

- -- Total % of reads aligning to the genome? % of uniquely mapping reads? % of properly paired PE reads?
- -- Genomic origin of reads (exonic, intronic, intergenic)
- -- Quantity of rRNA
- -- Transcript coverage and 5'-3' bias

Samples should have fairly consistent percentages.

QC on BAM files

Gather QC metrics using:

- Log files from alignment run
- Qualimap
- RNASeQC (paper)

More information about alignment QC

Transcriptome mapping for quantification

More efficient quantification approaches

- Approaches that avoid base-to-base alignment
- <u>Kallisto</u> (quasi-aligner), <u>Sailfish</u> (kmer-based), <u>Salmon</u> (quasi-aligner), RSEM
- Faster, more efficient (~ >20x faster than alignment-based)
- Improved accuracy for transcript-level quantification
- Improvements in accuracy for gene-level quantification**

**doi: <u>10.12688/f1000research.7563.2</u>

More efficient quantification approaches

- Results in a matrix of abundance estimates (not raw) at the isoform-level
- Abundance estimates can be used for differential isoform expression using <u>sleuth</u> (designed for Kallisto output)
- Gene-level counts can be calculated using tximport
 - -- ready for DGE analysis using tools like <u>DESeq2</u> or <u>EdgeR</u>

These materials have been developed by members of the teaching team at the <u>Harvard Chan Bioinformatics Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons Attribution license (CC BY 4.0)</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

