```
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from xgboost import XGBRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
from tensorflow.keras.callbacks import EarlyStopping,ModelCheckpoint
```

store_sales = pd.read_csv("train.csv")
store_sales.head(10)

	date	store	item	sales
0	2013-01-01	1	1	13
1	2013-01-02	1	1	11
2	2013-01-03	1	1	14
3	2013-01-04	1	1	13
4	2013-01-05	1	1	10
5	2013-01-06	1	1	12
6	2013-01-07	1	1	10
7	2013-01-08	1	1	9
8	2013-01-09	1	1	12
9	2013-01-10	1	1	9

Double-click (or enter) to edit

```
store_sales.info()
```

```
sales 913000 non-null int64
    dtypes: int64(3), object(1)
    memory usage: 27.9+ MB
store_sales = store_sales.drop(['store','item'], axis=1)
store_sales.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 913000 entries, 0 to 912999
    Data columns (total 2 columns):
         Column Non-Null Count
                                 Dtype
     --- -----
     0
         date
                 913000 non-null object
     1
         sales 913000 non-null int64
    dtypes: int64(1), object(1)
    memory usage: 13.9+ MB
store_sales['date'] = pd.to_datetime(store_sales['date'])
store_sales.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 913000 entries, 0 to 912999
    Data columns (total 2 columns):
         Column Non-Null Count
         -----
         date 913000 non-null datetime64[ns]
         sales 913000 non-null int64
     1
    dtypes: datetime64[ns](1), int64(1)
    memory usage: 13.9 MB
store sales['date'] = store_sales['date'].dt.to_period("M")
monthly_sales = store_sales.groupby('date').sum().reset_index()
monthly_sales['date'] = monthly_sales['date'].dt.to_timestamp()
monthly_sales.head(10)
```

```
date
                    sales
     0 2013-01-01 454904
     1 2013-02-01 459417
     2 2013-03-01 617382
     3 2013-04-01 682274
     4 2013-05-01 763242
     5 2013-06-01 795597
     6 2013-07-01 855922
     7 2013-08-01 766761
     8 2013-09-01 689907
     9 2013-10-01 656587
plt.figure(figsize = (10,5))
plt.plot(monthly_sales['date'],monthly_sales['sales'])
plt.xlabel("Date")
plt.ylabel("Sales")
plt.title("Monthly Customer Sales")
plt.show()
```


monthly_sales['sales_diff'] = monthly_sales['sales'].diff()
monthly_sales = monthly_sales.dropna()
monthly_sales.head(10)

	date	sales	sales_diff
1	2013-02-01	459417	4513.0
2	2013-03-01	617382	157965.0
3	2013-04-01	682274	64892.0
4	2013-05-01	763242	80968.0
5	2013-06-01	795597	32355.0
6	2013-07-01	855922	60325.0
7	2013-08-01	766761	-89161.0
8	2013-09-01	689907	-76854.0
9	2013-10-01	656587	-33320.0
10	2013-11-01	692643	36056.0

```
plt.figure(figsize = (15,5))
plt.plot(monthly_sales['date'],monthly_sales['sales'])
plt.xlabel("Date")
plt.ylabel("Sales")
plt.title("Monthly Sales Difference")
plt.show()
```



```
supervised_data = monthly_sales.drop(['date','sales'],axis = 1)

for i in range(1,13):
    col_name = 'month_' + str(i)
    supervised_data[col_name] = supervised_data['sales_diff'].shift(i)
supervised_data = supervised_data.dropna().reset_index(drop=True)
supervised_data.head(10)
```

	sales_diff	month_1	month_2	month_3	month_4	month_5	month_6	month_7	- 1
0	3130.0	19380.0	-186036.0	36056.0	-33320.0	-76854.0	-89161.0	60325.0	
1	175184.0	3130.0	19380.0	-186036.0	36056.0	-33320.0	-76854.0	-89161.0	
2	84613.0	175184.0	3130.0	19380.0	-186036.0	36056.0	-33320.0	-76854.0	
3	93963.0	84613.0	175184.0	3130.0	19380.0	-186036.0	36056.0	-33320.0	
4	23965.0	93963.0	84613.0	175184.0	3130.0	19380.0	-186036.0	36056.0	
5	82168.0	23965.0	93963.0	84613.0	175184.0	3130.0	19380.0	-186036.0	
6	-103414.0	82168.0	23965.0	93963.0	84613.0	175184.0	3130.0	19380.0	-1
7	-100472.0	-103414.0	82168.0	23965.0	93963.0	84613.0	175184.0	3130.0	
8	-26241.0	-100472.0	-103414.0	82168.0	23965.0	93963.0	84613.0	175184.0	
9	41900.0	-26241.0	-100472.0	-103414.0	82168.0	23965.0	93963.0	84613.0	1

```
train_data = supervised_data[:-12]
test_data = supervised_data[-12:]
print("Train Data Shape: ", train_data.shape)
print("Test Data Shape: ", test_data.shape)
     Train Data Shape: (35, 13)
     Test Data Shape: (12, 13)
scaler = MinMaxScaler(feature_range = (-1,1))
scaler.fit(train data)
train_data = scaler.transform(train_data)
test_data = scaler.transform(test_data)
x_train,y_train = train_data[:,1:],train_data[:,0:1]
x_test,y_test = test_data[:,1:],test_data[:,0:1]
y_train = y_train.ravel()
y_test = y_test.ravel()
print("x_train shape: ",x_train.shape)
print("y_train shape: ",y_train.shape)
print("x_test shape: ",x_test.shape)
print("y_test shape: ",y_test.shape)
     x_train shape: (35, 12)
     y_train shape: (35,)
     x_test shape: (12, 12)
     y_test shape: (12,)
```

```
sales_dates = monthly_sales['date'][-12:].reset_index(drop=True)
act_sales = monthly_sales['sales'][-13:].to_list()
print(act sales)
     [663411, 617306, 621369, 822667, 938862, 1020686, 1064624, 1171393, 1026403, 935263, 89
lr model = LinearRegression()
lr model.fit(x_train, y_train)
lr_pre = lr_model.predict(x_test)
lr pre = lr pre.reshape(-1,1)
lr_pre_test_set = np.concatenate([lr_pre, x_test],axis=1)
lr_pre_test_set = scaler.inverse_transform(lr_pre_test_set)
result list = []
for index in range(0, len(lr_pre_test_set)):
 result_list.append(lr_pre_test_set[index][0] + act_sales[index])
lr_pre_series = pd.Series(result_list,name = "Linear Prediction")
predict_df = predict_df.merge(lr_pre_series,left_index = True,right_index = True)
lr_mse = np.sqrt(mean_squared_error(predict_df['Linear Prediction'], monthly_sales['sales'][-
lr_mae = mean_absolute_error(predict_df['Linear Prediction'], monthly_sales['sales'][-12:])
lr_r2 = r2_score(predict_df['Linear Prediction'], monthly_sales['sales'][-12:])
print("Linear Reegression MSE: ",lr_mse)
print("Linear Reegression MAE: ",lr_mae)
print("Linear Reegression R2: ",lr r2)
     Linear Reegression MSE: 16221.272385416869
     Linear Reegression MAE: 12433.184266490736
     Linear Reegression R2: 0.9906152516380969
plt.figure(figsize=(15,5))
plt.plot(monthly_sales['date'],monthly_sales['sales'])
plt.plot(predict_df['date'],predict_df['Linear Prediction'])
plt.title("Customer sales Forcast usning LR Model")
plt.xlabel("Date")
```