

Laguna State Polytechnic University Province of Laguna

Machine Problem No. 2						
Topic:	Topic 2: Supervised Learning Fundamentals	Week No.	3			
Course Code:	CSST102	Term:	1st Semester			
Course Title:	Basic Machine Learning	Academic Year:	2024-2025			
Student Name		Section				
Due date		Points				

Machine Problem No. 1: Predicting House Prices with Multiple Regression

Objective: To apply multiple regression techniques learned in the course to predict house prices based on various factors such as location, size, number of bedrooms, and age of the property. This problem simulates a real-world scenario where you need to create a predictive model that can assist real estate agents in estimating house prices more accurately.

Problem Statement: You are a data scientist working for a real estate company. Your task is to develop a predictive model that can estimate the prices of houses in a particular city. The dataset provided includes multiple features, such as the size of the house (in square feet), the number of bedrooms, the age of the house, the proximity to downtown (in miles), and the house price. Your goal is to build a multiple regression model that can accurately predict house prices based on these features.

Dataset Overview: The dataset consists of the following columns:

- Size (sq. ft.): Size of the house in square feet.
- **Bedrooms:** Number of bedrooms in the house.
- Age: Age of the house in years.
- **Proximity to Downtown (miles):** Distance of the house from the downtown area.
- Price: Actual price of the house (in thousands of dollars).

Task Instructions:

1. Data Exploration and Visualization:

- Perform an exploratory data analysis (EDA) to understand the relationships between the features and the house prices.
- Visualize the data using scatter plots, histograms, and correlation matrices to identify potential patterns and relationships.

Laguna State Polytechnic University Province of Laguna

2. Data Preprocessing:

- Handle any missing data appropriately.
- Normalize or standardize the data to ensure that all features are on a similar scale.
- Encode any categorical variables if necessary.

3. Model Development:

- Implement a multiple regression model using Python (you may use libraries such as Scikit-learn for this task).
- Train the model on a training set (use a 70-30 split between training and test data).
- Perform feature selection if necessary to identify the most significant predictors.

4. Model Evaluation:

- Evaluate the model's performance using metrics such as Mean Squared Error (MSE), R-squared, and Adjusted R-squared.
- Provide a detailed interpretation of the model coefficients and their significance.
- Plot the predicted prices against the actual prices to visualize the model's accuracy.

Report:

- Document your process, including the steps you took for data preprocessing, model development, evaluation, and any attempts at model improvement.
- Discuss the challenges faced and how you overcame them.
- Include visualizations and plots that support your findings.
- Conclude with a discussion on the model's applicability in real-world scenarios and any potential limitations.

Submission Requirements:

- Python script (.py file) or Google Colab/ Jupyter Notebook (.ipynb file) with your code implementation.
- Report document (PDF format) detailing your analysis, findings, and conclusions.
- Upload the files to the GitHub repository as instructed.
- Filename Format: 2A-BERNARDINO-EXER1

Inability to follow this instruction will be deducted 5 points each for filename format and late submission per day. Also, cheating and plagiarism will be penalized.

Laguna State Polytechnic University Province of Laguna

Rubric for Laboratory Machine Problem: Predicting House Prices with Multiple Regression

Criteria	Excellent	Good	Satisfactory	Needs Improvement
	(90-100%)	(75-89%)	(60-74%)	(0-59%)
Data	Comprehensive	Good exploration:	Basic exploration:	Minimal or no
Exploration	exploration with	visualizations are	visualizations are	exploration;
and	insightful analysis;	mostly clear and	present but may lack	visualizations are
Visualization	visualizations are clear,	relevant, with minor	clarity or depth in	missing, unclear, or
	well-labeled, and	issues in labeling or	analysis.	irrelevant.
	effectively convey	interpretation.		
	patterns and			
	relationships.			
Data	Data is thoroughly	Good preprocessing	Basic preprocessing:	Poor or no
Preprocessing	cleaned and	with minor issues;	some steps are	preprocessing;
	preprocessed; all	most necessary	missing or incorrectly	significant issues in
	necessary steps,	steps are	implemented.	handling data or
	including handling	implemented		missing steps.
	missing values and	correctly.		
	scaling, are correctly			
	implemented.			
Model	Model is accurately	Model is	Basic model	Poor or incorrect
Development	implemented with	implemented with	implementation;	model
	appropriate feature	minor issues; code	some errors in code	implementation;
	selection; code is	is generally	or feature selection;	code is disorganized
	efficient and well-	efficient; some	lacks advanced	or ineffective; no
	organized;	feature selection is	experimentation.	feature selection.
	experimentation with	attempted.		
	advanced techniques			
	(optional) is well-			
	executed.			
Model	Thorough evaluation	Good evaluation:	Basic evaluation;	Minimal or incorrect
	with insightful	metrics are	some errors in metrics	evaluation; metrics
	interpretation of	correctly calculated	calculation or	are missing or
	metrics (MSE, R-	but with minor	interpretation;	incorrectly
	squared, etc.);	issues in	visualizations are	calculated;
	visualizations	interpretation;	ľ	visualizations are
	effectively illustrate	visualizations are	clear.	unclear or missing.
	model performance.	mostly clear.		
Critical	Demonstrates strong	Good problem-	Basic problem-solving;	Weak problem-
Thinking and	problem-solving skills;	solving skills;	applies concepts but	solving; poor

Laguna State Polytechnic University Province of Laguna

	Excellent (90-100%)	Good (75-89%)	-	Needs Improvement (0-59%)
Problem-	effectively applies	applies learned	with errors or	application of
Solving	multiple concepts to	concepts effectively	omissions; limited	concepts; little to no
	address the problem;	with minor issues;	critical analysis.	critical analysis.
	creative solutions and	some evidence of		
	critical analysis are	critical analysis.		
	evident.			
Report Quality	Report is well-	Report is organized	Basic report;	Report is unclear,
	organized, clear, and	and clear with	somewhat clear but	disorganized, or
	professional;	minor issues;	may lack organization	incomplete;
	thoroughly documents	documentation is	or completeness;	visualizations are
	the process, findings,	mostly complete;	visualizations are	missing or do not
	and conclusions;	visualizations are	present but may not	support the
	visualizations are well-	included but not	support the narrative	narrative.
	integrated and support	fully integrated.	well.	
	the narrative.			