Practice Exercises

- A. Find the common ratio and the next three terms of each geometric sequence.
 - 1. $2, 6, 18, 54, \ldots$
 - 2. $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \dots$
 - 3. 4, 12, 36, ...
 - **4.** 0.02, 0.2, 2, . . .
 - 5. $3x^3, 6x^5, 12x^7, \dots$
- B. Find the specified term of each geometric sequence.
 - 1. $3, 6, 12, \ldots a_7$
 - 2. $4,20,100,\ldots a_8$
 - 3. $7, -7, 7, \ldots a_{17}$
 - 4. $3, 1.2, 0.48, \dots a_{10}$

5. $1, \frac{3}{2}, \frac{9}{4}, \dots a_{11}$

Solve each problem completely.

- 1. The first term of a geometric sequence is 8, and the second term is 4. Find the fifth term.
- 2. The first term of a geometric sequence is 3, and the third term is $\frac{4}{3}$. Find the fifth term.
- 3. The common ratio in a geometric sequence is $\frac{2}{5}$ and the fourth term is $\frac{5}{2}$. Find the third term.
- 4. Which term of the geometric sequence 2, 6, 18,... is 118098?
- 5. The second and fifth terms of a geometric sequence are 10 and 1250, respectively. Is 31,250 a term of this sequence? If so, which term is it?

Problem Set

- A. Find the common ratio and the next three terms of each geometric sequence.
 - 1. 4, 8, 16, 32, ...
 - 2. $\frac{4}{9}, \frac{4}{3}, 4, \dots$
 - 3. $1, -5, 25, \dots$
 - 4. $-5, -0.5, -0.05, \dots$
 - 5. $x, 5x^2y, 25x^3y^2, \dots$
- B. Find the specified term of each geometric sequence.
 - 1. $64, -32, 16, \ldots a_7$
 - 2. $2, -10, 50, \ldots a_8$
 - 3. $2, -6, 18, \dots a_{13}$
 - 4. $3, 1.2, 0.48, \dots a_{10}$

- 5. $\frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \dots a_9$
- C. Solve each problem completely.
 - 1. The first term of a geometric sequence is -2, and the third term is $-\frac{1}{2}$. Find the fifth term.
 - 2. The common ratio in a geometric sequence is $\frac{2}{3}$ and the fourth term is 1. Find the third term.
 - 3. The common ratio in a geometric sequence is $\frac{3}{4}$ and the fifth term is $\frac{81}{16}$. Find the first three terms.
 - 4. Which term of the geometric sequence 3, 6, 12,... is 768?
 - 5. The common ratio in a geometric sequence is $\frac{3}{2}$ and the fifth term is 1. Find the first three terms.

Problem Set

A.

1.
$$r = 8 \div 4 = 2$$

 $a_5 = (32)(2) = 64$
 $a_6 = (64)(2) = 128$
 $a_7 = (128)(2) = 256$

2.
$$r = \frac{4}{3} \div \frac{4}{9} = 3$$

 $a_5 = (4)(3) = 12$
 $a_6 = (12)(3) = 36$
 $a_7 = (36)(3) = 108$

3.
$$r = -5 \div 1 = -5$$

 $a_5 = (25)(-5) = -125$
 $a_6 = (-125)(-5) = 625$
 $a_7 = (625)(-5) = -3125$

4. $r = -0.5 \div -5 = 0.1$ $a_5 = (-0.05)(0.1) =$ -0.005 $a_6 = (-0.005)(0.1) =$ -0.0005 $a_7 = (-0.0005)(0.1) =$ -0.00005

 $5. r = 5x^{2}y \div x = 5xy$ $a_{5} = (25x^{3}y^{2})(5xy) = 125x^{4}y^{3}$ $a_{6} = (125x^{4}y^{3})(5xy) = 625x^{5}y^{4}$ $a_{7} = (625x^{5}y^{4})(5xy) = 3125x^{6}y^{5}$

B.

1.
$$a_1 = 64$$
, $n = 7$, $a_7 = ?$

$$r = -32 \div 64 = -\frac{1}{2}$$

$$a_n = a_1 r^{n-1}$$

$$a_7 = (64) \left(-\frac{1}{2}\right)^{7-1}$$

$$a_7 = (64) \left(-\frac{1}{2}\right)^6$$

$$a_7 = (64) \left(\frac{1}{64}\right)$$

$$a_7 = 1$$

2. $a_1 = 2$, n = 8, $a_8 = ?$ $r = -10 \div 2 = -5$ $a_n = a_1 r^{n-1}$

 $a_8 = (2)(-5)^{8-1}$ $a_8 = (2)(-5)^7$ $a_8 = (2)(-78, 125)$ $a_8 = -156, 250$

3. $a_1 = 2$, n = 13, $a_{13} = ?$ $r = -6 \div 2 = -3$ $a_n = a_1 r^{n-1}$ $a_{13} = (2)(-3)^{13-1}$ $a_{13} = (2)(-3)^{12}$ $a_{13} = (2)(531,441)$ $a_{13} = 1,062,882$

4. $a_1 = 3$, n = 10, $a_{10} = ?$ $r = 1.2 \div 3 = 0.4$ $a_n = a_1 r^{n-1}$ $a_{10} = (3)(0.4)^{10-1}$ $a_{10} = (3)(0.4)^9$

$$a_{10} = (3)(0.000262144)$$

$$a_{10} = 0.000786432$$
5. $a_1 = \frac{1}{16}, n = 9, a_9 = ?$

$$r = \frac{1}{8} \div \frac{1}{16} = 2$$

$$a_n = a_1 r^{n-1}$$

$$a_9 = \left(\frac{1}{16}\right)(2)^{9-1}$$

$$a_9 = \left(\frac{1}{16}\right)(2)^8$$

$$a_9 = 16$$

1.
$$a_1 = -2$$
, $a_3 = -\frac{1}{2}$, $a_5 = ?$, $r = ?$, $n = 5$

$$r = \sqrt[n-k]{\frac{a_n}{a_k}}$$

$$r = \sqrt[3-1]{\frac{a_3}{a_1}}$$

$$r = \sqrt[2]{\frac{-\frac{1}{2}}{-2}}$$

$$r = \sqrt{\frac{1}{4}}$$

$$r = \frac{1}{2}$$

$$a_n = a_1 r^{n-1}$$

C.

$$a_5 = (-2)\left(\frac{1}{2}\right)^{5-1}$$

$$a_5 = (-2)\left(\frac{1}{2}\right)^4$$

$$a_5 = (-2)\left(\frac{1}{16}\right)$$

$$a_5 = -\frac{1}{8}$$

$$2. a_4 = 1, a_3 = ?, n = 3$$

$$a_1 = ?, r = \frac{2}{3}$$

$$a_n = a_1 r^{n-1}$$

$$a_4 = a_1 \left(\frac{2}{3}\right)^{4-1}$$

$$1 = a_1 \left(\frac{2}{3}\right)^3$$

$$1 = a_1 \left(\frac{8}{27}\right)$$

$$a_1 = \frac{27}{8}$$

$$a_n = a_1 r^{n-1}$$

$$a_n = a_1 r^{n-1}$$

$$a_3 = \left(\frac{27}{8}\right) \left(\frac{2}{3}\right)^{3-1}$$

$$a_3 = \left(\frac{27}{8}\right) \left(\frac{2}{3}\right)^2$$

$$a_3 = \left(\frac{27}{8}\right) \left(\frac{4}{9}\right)$$

$$a_3 = \left(\frac{108}{72}\right)$$

3.
$$a_1 = ?, a_2 = ?, a_3 = ?,$$

 $a_5 = \frac{81}{16}, r = \frac{3}{4}$
 $a_n = a_1 r^{n-1}$

$$a_5 = a_1 \left(\frac{3}{4}\right)^{5-1}$$

$$\frac{81}{16} = a_1 \left(\frac{3}{4}\right)^4$$

$$\frac{81}{16} = a_1 \left(\frac{81}{256}\right)$$

$$a_1 = 16$$
 $a_2 = (16)\left(\frac{3}{4}\right) = 12$

$$a_3 = (12)\left(\frac{3}{4}\right) = 9$$

4.
$$a_1 = 3$$
, $a_n = 768$,
 $r = 6 \div 3 = 2$, $n = ?$
 $a_n = a_1 r^{n-1}$
 $\frac{768}{3} = \frac{(3)(2)^{n-1}}{3}$
 $\frac{256}{3} = 2^{n-1}$
 $2^8 = 2^{n-1}$
 $8 = n - 1$
 $n = 9$

5.
$$a_1 = ?$$
, $a_2 = ?$, $a_3 = ?$,
 $a_5 = 1$, $r = \frac{3}{2}$
 $a_n = a_1 r^{n-1}$

$$a_5 = a_1 \left(\frac{3}{2}\right)^{5-1}$$

$$1 = a_1 \left(\frac{3}{2}\right)^4$$

$$1 = a_1 \left(\frac{81}{16}\right)$$

$$a_{1} = \frac{16}{81}$$

$$a_{2} = \left(\frac{16}{81}\right) \left(\frac{3}{2}\right) = \frac{8}{27}$$

$$a_{3} = \left(\frac{8}{27}\right) \left(\frac{3}{2}\right) = \frac{4}{9}$$