Go--

Por Maratona de Programação da SBC – 2016 SB Brazil

Timelimit: 1

Go-- é até parecido com o tradicional jogo de Go, mas é bem mais fácil! Ele é jogado em um tabuleiro quadrado de dimensão N, inicialmente vazio, no qual dois jogadores, um jogando com as pedras pretas e o outro com as brancas, se alternam colocando uma pedra por vez dentro de qualquer célula que ainda não esteja ocupada. A partida termina depois que cada jogador colocou P pedras no tabuleiro. Considere todas as possíveis sub-áreas quadradas de dimensão de 1 a N. Uma sub-área pertence ao jogador que joga com as pedras pretas se ela contém pelo menos uma pedra preta e nenhuma pedra branca. Da mesma forma, uma sub-área quadrada pertence ao jogador que joga com as pedras brancas se contém ao menos uma pedra branca e nenhuma pedra preta. Note que as áreas que não contenham nenhuma pedra, ou que contenham tanto pedras pretas quanto brancas, não pertencem a nenhum jogador.

Neste problema, dada a posição final do tabuleiro, seu programa deve computar quantas sub-áreas quadradas pertencem a cada jogador, para descobrir quem ganhou a partida. Na figura, as pretas possuem 12 sub-áreas (cinco de dimensão 1, seis de dimensão 2 e uma de dimensão 3). As brancas, que perderam a partida, possuem apenas 10.

Entrada

A primeira linha da entrada contém dois inteiros \mathbf{N} e \mathbf{P} , $2 \le \mathbf{N} \le 500$, $1 \le \mathbf{P} \le 500$ e $\mathbf{P} \le \mathbf{N}^2/2$, representando, respectivamente, a dimensão do tabuleiro e o número de pedras que cada jogador coloca. Cada uma das \mathbf{P} linhas seguintes contém dois inteiros \mathbf{L} e \mathbf{C} ($1 \le \mathbf{L}$, $\mathbf{C} \le \mathbf{N}$) definindo as coordenadas (linha, coluna) das pedras pretas. Depois, cada uma das próximas \mathbf{P} linhas contém dois inteiros \mathbf{L} e \mathbf{C} ($1 \le \mathbf{L}$, $\mathbf{C} \le \mathbf{N}$) definindo as coordenadas (linha, coluna) das pedras brancas. Todas as pedras são colocadas em células distintas.

Saída

Imprima uma linha contendo dois inteiros separados por um espaço: quantas áreas distintas pertencentes às pretas e às brancas.

Exemplos de Entrada	Exemplos de Saída
2 1	1 1
1 1	
2 2	
5 5	12 10
1 3	
2 3	
2 4	
4 1	

5 3	
1 5	
2 1	
3 5	
4 4	
5 1	
E00 2	4 10460704
500 3	4 12463784
500 498	4 12463784
	4 12463784
500 498	4 12463784
500 498 500 499	4 12463784
500 498 500 499 500 500	4 12463784
500 498 500 499 500 500 120 124	4 12463784

Maratona de Programação da SBC – 2016