Extensions of Association Analysis

Dr. Meng Qu Rutgers University

Association Analysis: Advanced Concepts

Extensions of Association Analysis to Continuous and Categorical Attributes and Multi-level Rules

Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary variables?

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	$65 \mathrm{K}$	8	2	No
Female	 26	85K	12	1	No

Example of Association Rule:

{Gender=Male, Age \in [21,30)} \rightarrow {No of hours online \ge 10}

Example: Internet Usage Data

Gender	Level of	State	Computer	Online	Chat	Online	Privacy
	Education		at Home	Auction	Online	Banking	Concerns
Female	Graduate	Illinois	Yes	Yes	Daily	Yes	Yes
Male	College	California	No	No	Never	No	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
Female	Graduate	California	Yes	No	Never	No	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	College	Alaska	Yes	Yes	Daily	Yes	No
Male	High School	Oregon	Yes	No	Never	No	No
Female	Graduate	Texas	No	No	Monthly	No	No

{Level of Education=Graduate, Online Banking=Yes}

→ {Privacy Concerns = Yes}

 Introduce a new "item" for each distinct attributevalue pair

Male	Female	Education	Education	Education	 Privacy	Privacy
		= Graduate	= College	= High School	= Yes	= No
0	1	1	0	0	 1	0
1	0	0	1	0	 0	1
1	0	1	0	0	 1	0
0	1	0	1	0	 1	0
0	1	1	0	0	 1	0
1	0	0	1	0	 1	0
1	0	0	0	0	 0	1
1	0	0	0	1	 0	1
0	1	1	0	0	 0	1

- Some attributes can have many possible values
 - Many of their attribute values have very low support
 - Potential solution: Aggregate the low-support attribute values

- Distribution of attribute values can be highly skewed
 - Example: 85% of survey participants own a computer at home
 - Most records have Computer at home = Yes
 - Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home = Yes)
 - Potential solution:
 - discard the highly frequent items
 - Use alternative measures such as h-confidence
- Computational Complexity
 - Binarizing the data increases the number of items
 - But the width of the "transactions" remain the same as the number of original (non-binarized) attributes
 - Produce more frequent itemsets but maximum size of frequent itemset is limited to the number of original attributes

Handling Continuous Attributes

- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori
- Different kinds of rules can be produced:
 - {Age∈[21,30), No of hours online∈[10,20)}→ {Chat Online = Yes}
 - {Age∈[21,30), Chat Online = Yes}
 → No of hours online: μ=14, σ=4

Discretization-based Methods

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	65K	8	2	No
Female	 26	85K	12	1	No

Male	Female	 Age	Age	Age	 Privacy	Privacy
		 < 13	$\in [13, 21)$	$\in [21, 30)$	 = Yes	= No
0	1	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	1	 1	0
0	1	 0	0	0	 1	0
0	1	 0	0	0	 1	0
1	0	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	0	 0	1
0	1	 0	0	1	 0	1

Discretization-based Methods

• Unsupervised:

- Equal-width binning
- Equal-depth binning
- Cluster-based

Supervised discretization

Continuous attribute, v

	V ₁	V 2	V 3	V 4	V 5	V 6	V 7	V 8	V 9
Chat Online = Yes	0	0	20	10	20	0	0	0	0
Chat Online = No	150	100	0	0	0	100	100	150	100

bin₁ bin₂ bin₃

Discretization Issues

- Interval too wide (e.g., Bin size= 30)
 - May merge several disparate patterns
 - Patterns A and B are merged together
 - May lose some of the interesting patterns
 - Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
 - We may lose some patterns because of their lack of support.
- Potential solution: use all possible intervals
 - Start with narrow intervals
 - Consider all possible mergings of adjacent intervals

Discretization Issues

Redundant rules

R1: {Age \in [18,20), Age \in [10,12)} \rightarrow {Chat Online=Yes}

R2: {Age \in [18,23), Age \in [10,20)} \rightarrow {Chat Online=Yes}

 If both rules have the same support and confidence, prune the more specific rule (R1)

Concept Hierarchies

Multi-level Association Rules

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - ◆ e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.

are indicative of association between milk and bread

Multi-level Association Rules

Approach 1:

 Extend current association rule formulation by augmenting each transaction with higher level items

```
Original Transaction: {skim milk, wheat bread}
Augmented Transaction:
{skim milk, wheat bread, milk, bread, food}
```

Issues:

- Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

Multi-level Association Rules

Approach 2:

- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on

Issues:

- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Association Analysis: Advanced Concepts

Subgraph Mining

Frequent Subgraph Mining

- Extends association analysis to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph

Representing Transactions as Graphs

Each transaction is a clique of items

Transaction Id	Items
1	$\{A,B,C,D\}$
2	{A,B,E}
3	{B,C}
4	$\{A,B,D,E\}$
5	{B,C,D}

Representing Graphs as Transactions

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	•	(d,e,r)
G1	1	0	0	0	0	1		0
G2	1	0	0	0	0	0		0
G3	0	0	1	1	0	0		0
G3								

Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - ◆What is k?

Challenges...

- Support:
 - number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
 - Vertex growing:
 - k is the number of vertices
 - Edge growing:
 - k is the number of edges

Graph Isomorphism

 A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

String: 011011

Canonical: 111100