GEOMETRY/TOPOLOGY PRELIMINARY EXAM AUGUST 2011

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function. Define an equivalence relation on \mathbb{R}^2 by $x \sim y$ if and only if f(x) = f(y). Let X be the quotient space.
 - (a) Show that X is always Hausdorff.
 - (b) Must X be connected?
- 2. Let D^2 denote the unit disc in \mathbb{R}^2 with the unit circle S^1 its boundary. If $f \colon D^2 \to D^2$ is a homeomorphism, show that the restriction $f|_{S^1}$ is a homeomorphism onto S^1 . (Hint: one way to do this is to assume it is not and obtain a contradiction by considering fundamental groups.)
- 3. Consider the quotient space Q formed by identifying the sides of a triangle T as in the diagram.

- (a) Is Q a topological manifold? (An intuitive explanation is sufficient.)
- (b) Use the Seifert-van Kampen theorem to compute the fundamental group of Q.
- 4. A contact form on a three-dimensional manifold M is a C^{∞} 1-form on M such that $\alpha \wedge d\alpha$ is nowhere zero. A Reeb field for a contact form is a C^{∞} vector field X on M such that $\alpha(X) = 1$ everywhere and $d\alpha(X,Y) = 0$ everywhere for every C^{∞} vector field Y on M.
 - (a) Prove that $\alpha = (\cos z) dx + (\sin z) dy$ is a contact form on $\mathbb{T}^3 = (\mathbb{R}/2\pi\mathbb{Z})^3$.
 - (b) Show that there is a unique Reeb field for this contact form, and compute it.

- (c) Describe the flow of this Reeb field. Is it periodic?
- 5. Let a and b be real numbers with a > 0. Consider the set M_{ab} of 2×2 matrices $A = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$ satisfying $w^2 + x^2 + y^2 + z^2 = a$ and wz xy = b. Show that if $a \neq 2|b|$, then M_{ab} is a smooth submanifold of \mathbb{R}^4 .
- 6. Suppose M is an annulus $[a,b] \times S^1$, for numbers b > a > 0, with C^{∞} Riemannian metric given in polar coordinates $r \in [a,b]$ and $\theta \in S^1$ by $ds^2 = dr^2 + \varphi(r)^2 d\theta^2$ for some function φ . Let ∇ denote the usual Levi-Civita covariant derivative, and let R denote the radial vector field $R = r \frac{\partial}{\partial r}$.
 - (a) Find all vector fields of the form $V = f(r) \frac{\partial}{\partial r} + g(r) \frac{\partial}{\partial \theta}$ satisfying $\nabla_R V = 0$ everywhere on M.
 - (b) How does your answer change if M is a disc rather than an annulus, with the same metric? (Hint: what does $\varphi(r)$ look like near the origin r = 0?)

. that
some
some the
ed .
fixed
)D ²
and

but then fx: 1 -> I cannot be an isomorphism and
hence I is not a homeomorphism. I - Thus for) & 5' and

fly, is a homeomorphism.


```
Top/Diff Geo Prelim Exam August 2011
4) (a) d = \cos(z) dz + \sin(z) dy

dx = -\sin(z) dz / dx + \cos(z) dz / dy
               \frac{x \wedge dx^{2} \cos(2)^{2} dx \wedge dz \wedge dy - \sin(2)^{2} dy \wedge dz \wedge dx}{= \cos(2)^{2} + \sin(2)^{2} dx \wedge dz \wedge dy}
= \frac{2 dx \wedge dz \wedge dy \neq 0. \neq p \in T^{3}}{}
          So d is a confact form.
    (5) Suppose that there were two Rects fields for a A, B. Well if & (A) 2 d(B) then we have that for every
    point (x, y, z)

(os(z) dx (A) + sin(e) dy (b) = cos(z) dx (b) + sin(z) dy (B).

If we then pick the points (0,0,0) and (0,0,7/2) we
    Smilarly, we would have
d_{X}(A) = d_{X}(B) \text{ and } d_{Y}(A) = d_{Y}(B).
d_{X}(A) = d_{X}(B) \text{ have}
d_{X}(A,B) = -\sin(E) d_{X}(A,B) + \cos(E) d_{X}(A,B)
    and by using the relation d_{x}(B) = d_{y}(A) derived previously and evaluating at (0,0,H) we have
                    (dz(A) - dz(B)) dx(A) =0.
   We can also use dy (B) = dy (A) and (0,0,0)
   (dz(A)-dz(B)) dy (A) =0,
and puffing this all together, we get that
   dz(A)= dzB
so A=B.
```

	Top/Oiff Creo Pre lim Exam August 2011
	(b) For X to be the Reeb field of a we need $x(X)=1$ and $dx(X)=0$, so solvery the set of equations that this gives is we have that the Reeb field of $x=\cos(x) \frac{\partial}{\partial x} + \sin(x) \frac{\partial}{\partial y} + 0 \frac{\partial}{\partial x}$.
	(c) Taking X as above, we can compute that the flow of X is given by $\Theta_{t}(x,y,z) = (x + \cos(z)t, y + \sin(z)t, z)$
	and this is not periodic because if (x, y, z,) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \
	since any condinates 2. 2 know could result in equality of the first two coordinates will result in inequality of the
	· · · · · · · · · · · · · · · · · · ·

