CSE8803/CX4803 Machine Learning in Computational Biology

Lecture 5: Gene/Motif finding using HMMs II
Profile HMMs

Xiuwei Zhang

School of Computational Science and Engineering

Course logistics

- HW1:
 - Deadline extended to Tuesday, 2/1, no grace period.
 - This Wed's OHs are moved to next week Mon. and Tue.
- Paper presentations:
 - Submit your team preference by Friday 1/28 (no grace period)

Hidden Markov Models (HMM)

$$V = alphabet of symbols, |V| = M$$

$$\lambda = (\pi, A, B)$$

$$S = \text{set of states}, |S| = N$$

$$\pi = \{\pi_i\}$$

 $A = an |S| \times |S|$ matrix where entry (i,j) is the probability of moving from state i to state j.

$$A = \{a_{ij}\}$$

B = a |S| x |V| matrix, where entry (i,k) is the probabili $B = \{b_i(v_k)\}$ of emitting v_{ν} when in state s_{ν} .

Q: $q_1, q_2, ..., q_T$ O: $o_1, o_2, ..., o_T$

Hidden Markov Models

Main algorithms with an HMM

- Viterbi algorithm → decoding/detection/matching problem
- Forward algorithm → scoring problem
- Backward algorithm → scoring problem
- Forward-backward / Baum-Welch algorithm → training problem

Dynamic programming to find the optimal Q which maximizes $Pr(O,Q|\lambda)$

Subproblem: the probability of the **best** path for o₁...o_t that ends at state i.

$$w_t(i) = \max_{q_1,...,q_{t-1}} Pr(o_1,o_2,...,o_t,q_t=s_i)$$

Dynamic programming to find the optimal Q which maximizes $Pr(O,Q|\lambda)$

Subproblem: the probability of the **best** path for o₁...o_t that ends at state i.

$$w_t(i) = \max_{q_1,...,q_{t-1}} Pr(o_1, o_2, ..., o_t, q_t = s_i)$$

 $w_t(i)$: = the probability of the **best** path for $o_1...o_t$ that ends at state i.

Smaller subproblem: calculate $w_{t-1}(j)$

Why the DP works?

$$\begin{split} w_t(i) &= \max_{q_1, \ q_2, \ \dots, \ q_{t-1}} Pr(o_1, \ o_2, \ \dots, \ o_{t-1}, \ o_t, \ q_1, \ q_2, \ \dots, \ q_{t-1}, \ q_t = s_i) \\ &= \max_{q_1, \ q_2, \ \dots, \ q_{t-1}} \left\{ Pr(o_t, \ q_t = s_i | o_1, \ o_2, \ \dots, \ o_{t-1}, \ q_1, \ q_2, \ \dots, \ q_{t-1}) \ Pr(o_1, \ o_2, \ \dots, \ o_{t-1}, \ q_1, \ q_2, \ \dots, \ q_{t-1}) \right\} \\ &= \max_{q_1, \ q_2, \ \dots, \ q_{t-1}} \left\{ Pr(o_t, \ q_t = s_i | q_{t-1}) \ Pr(o_1, \ o_2, \ \dots, \ o_{t-1}, \ q_1, \ q_2, \ \dots, \ q_{t-1}) \right\} \\ &= \max_{j} \left\{ Pr(o_t, \ q_t = s_j | q_{t-1} = s_j) \max_{q_1, \ q_2, \ \dots, \ q_{t-2}} Pr(o_1, \ o_2, \ \dots, \ o_{t-1}, \ q_1, \ q_2, \ \dots, \ q_{t-2}, \ q_{t-1} = s_j) \right\} \\ &= \max_{j} \left\{ a_{ij} \ b_j(o_t) \ w_{t-1}(j) \right\} \end{split}$$

 $w_t(i)$: = the probability of the **best** path for $o_1...o_t$ that ends at state i.

Recurrence:

$$w_t(i) = \max_{1 \le j \le N} w_{t-1}(j) a_{ji} b_i(o_t)$$

Base case:

$$w_1(i)=\pi_i b_i(o_1)$$

 $w_t(i)$:= the probability of the **best** path for $o_1...o_t$ that ends at state i.

Recurrence:

$$w_t(i) = \max_{1 \le j \le N} w_{t-1}(j) a_{ji} b_i(o_t)$$

Base case:

$$w_1(i)=\pi_i b_i(o_1)$$

 $w_t(i)$:= the probability of the **best** path for $o_1...o_t$ that ends at state i.

Recurrence:

$$w_t(i) = \max_{1 \le j \le N} w_{t-1}(j) a_{ji} b_i(o_t)$$

Base case:

$$w_1(i) = \pi_i b_i(o_1)$$

Running Time

- # of subproblems = O(T|S|), where T is the length of the sequence.
- Time to solve a subproblem = O(|S|)
- Total running time: $O(T|S|^2)$

Using Logs

Typically, we take the log of the probabilities to avoid multiplying a lot of (small) terms:

$$\log(ab) = \log(a) + \log(b)$$

$$\log(w_t(i)) = \max_{1 \le j \le N} \{\log(w_{t-1}(j) \cdot a_{ji} \cdot b_i(o_t))\}$$

=
$$\max_{1 \le j \le N} \{\log(w_{t-1}(j)) + \log(a_{ji}) + \log(b_i(o_t))\}$$

Why do we want to avoid multiplying lots of terms?

Multiplying leads to very small numbers: $0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.1 = 0.00001$ This can lead to underflow.

Taking logs and adding keeps numbers bigger.

An example of application in gene finding

The scoring problem with an HMM

Given an HMM (with known parameters λ), what's the probability of an observed sequence O being generated from this HMM?

$$Pr(O|\lambda) = \sum_{Q} Pr(O, Q|\lambda)$$

The scoring problem with an HMM

Given an HMM (with known parameters λ), what's the probability of an observed sequence O being generated from this HMM?

$$Pr(O|\lambda) = \sum_{Q} Pr(O, Q|\lambda)$$

Recall that in the decoding problem, we want to find Q*:

$$Q* = \operatorname{argmax}_{Q} Pr(O, Q | \lambda)$$

The Forward algorithm

Recall

$$w_t(i) = \max_{q_1,...,q_{t-1}} Pr(o_1, o_2, ..., o_t, q_t = s_i)$$

Now

$$\alpha_t(i) = Pr(o_1, ..., o_t, q_t = s_i | \lambda)$$

$$= \sum_{q_1, ..., q_{t-1}} Pr(o_1, ..., o_t, q_1, ..., q_{t-1}, q_t = s_i | \lambda)$$

The Forward algorithm

	Base case	Recurrence
√iterbi	$w_1(i) = \pi_i b_i(o_1)$	$w_t(i) = \max_{1 \le j \le N} w_{t-1}(j) a_{ji} b_i(o_t)$
orward	$\alpha_1(i) = \pi_i b_i(o_1)$	$\alpha_t(i) = \sum_{1 \le j \le N} \alpha_{t-1}(j) a_{ji} b_i(o_t)$

The Forward algorithm

The Backward algorithm

$$\alpha_t(i) = p(o_1 \cdots o_t, q_t = s_i | \lambda)$$

$$a_l(l) \quad P(l) \quad a_l(q_l) \quad a_l(q_l)$$

$$\alpha_t(i) = \sum_{1 \le j \le N} \alpha_{t-1}(j) a_{ji} b_i(o_t)$$

$$\beta_t(i) = p(o_{t+1} \cdots o_T, q_t = s_i | \lambda)$$

$$\beta_{t-1}(i) = \sum_{j=1}^{N} \beta_t(j) a_{ij} b_j(o_t)$$

$$\beta_T(i) = 1, 1 \le i \le N$$

Forward-Backward algorithm

$$\alpha_t(i) = p(o_1 \cdots o_t, q_t = s_i | \lambda)$$

$$\beta_t(i) = p(o_{t+1} \cdots o_T, q_t = s_i | \lambda)$$

$$\gamma_t(i) = Pr(q_t = s_i | O) = \frac{Pr(q_t = s_i, O)}{Pr(O)} = \frac{\alpha_t(i) \cdot \beta_t(i)}{\sum_{j=1}^{N} Pr(q_t = s_j, O)} = \frac{\alpha_t(i) \cdot \beta_t(i)}{\sum_{j=1}^{N} \alpha_t(j) \cdot \beta_t(j)}$$

Bayes' Theorem

Hidden Markov Models

Main algorithms with an HMM

- Viterbi algorithm → decoding/detection/matching problem
- Forward algorithm → scoring problem
- Backward algorithm → scoring problem
- Forward-backward / Baum-Welch algorithm → training problem

The training problem

When λ is unknown, we need to learn λ from data.

- When both observation sequence O and state sequence Q are known
 Maximum likelihood estimation
- When O is known but Q is unknown
 Expectation-Maximization (EM) algorithm

The training problem

When both O and Q are known:

$$a_{ij} = \frac{f_{ij}}{\sum_{i} f_{ij}} \qquad b_i(v_k) = \frac{h_{ik}}{\sum_{k} h_{ik}}$$

When O is known and Q is unknown:

The Baum-Welch algorithm (EM)

Baum-Welch algorithm

Objective:

$$\lambda^* = \arg \max_{\lambda} p(O|\lambda) = \arg \max_{\lambda} \sum_{Q} p(O, Q|\lambda)$$

Define two counters:

$$\gamma_t(i) = p(q_t = s_i | O, \lambda)$$

$$= \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^{N} \alpha_t(j)\beta_t(j)}$$

$$\xi_{t}(i,j) = p(q_{t} = s_{i}, q_{t+1} = s_{j} | O, \lambda)$$

$$= \frac{\alpha_{t}(i) a_{ij} b_{j}(o_{t+1}) \beta_{t+1}(j)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}$$

$$= \gamma_{t}(i) \frac{a_{ij} b_{j}(o_{t+1}) \beta_{t+1}(j)}{\beta_{t}(i)}$$

Baum-Welch algorithm

Objective:

$$\lambda^* = \arg \max_{\lambda} p(O|\lambda) = \arg \max_{\lambda} \sum_{Q} p(O, Q|\lambda)$$

Expectation Maximization

- E-step:
 - Expected number of transitions from state s_i : $\sum_{t=1}^{\infty} \gamma_i(t)$
 - Expected number of transitions from state s_i to s_j : $\sum_{t=1}^{t} \xi_t(i,j)$
- M-step:
 - Update model parameters

Baum-Welch algorithm

M-step:

$$\pi_i = ext{ expected number of times in state } s_i ext{ at time } t = 1$$
 $= \gamma_1(i)$

$$b_i(k) = \frac{\text{expected number of times in state } s_i \text{ observing } v_k}{\text{expected number of times in state } s_i}$$

$$= \frac{\sum_{t=1}^T I_{o_t = v_k} \gamma_t(i)}{\sum_{t=1}^T \gamma_t(i)} \begin{cases} 1, \text{ if } o_t = v_k \\ 0, \text{ else} \end{cases}$$

$$a_{ij} = \frac{\text{expected number of transitions from state } s_i \text{ to state } s_j}{\text{expected number of transitions from state } s_i}$$

$$= \frac{\sum_{t=1}^T \xi_t(i,j)}{\sum_{t=1}^T \gamma_t(i)}$$

Profile HMM for multiple sequence alignment

Profiles

To summarize an MSA:

S1 ACG-TT-GA

S2 ATC-GTCGA

S3 ACGCGA-CC

S4 ACGCGT-TA

Column in the alignment

		2	3	4	5	6	7	8	9	
A	I	0	0	0	0	0.25	0	0	0.75	
9	0	0.75	0.25	0.5	0	0	0.25	0.25	0.25	
G	0	0	0.75	0	0.75	0	0	0.5	0	
T	0	0.25	0	0	0.25	0.75	0	0.25	0	
1	0	0	0	0.5	0	0	0.75	0	0	

Fraction of time given column had the given character

Character

A Simple HMM

Emission probabilities given by Sequence Profile

Handling Insertions

characters in the sequence that are not in the profile

The "I" state allows any number of non-profile characters to be output.

Handling Deletions

positions in the profile that are not matched in the string

We could add O(n²)
edges that allow us
to skip any number
of match states.

But this is too many edges.

Instead we add some delete states that don't emit any characters:

Combining Insertions & Deletions

Example: MSA

A T G C T G -M1 M2 I2 M3 M4 M5 D6

A - C T C T G A T M1 D2 I2 I2 M3 M4 M5 I5 M6

C T C A - T M1 M2 M3 M4 D5 M6

M1	M2		M3	M4	M5		M6	
A	Τ	G-	С	Τ	G			
A	· 	TC	\mathbf{C}	${ m T}$	\mathbf{G}	A	${ m T}$	
\mathbf{C}	${ m T}$		\mathbf{C}	A	_		${ m T}$	

Variant for non-global alignments

Profile HMM

- In the example above we assume that we already have a profile HMM with all parameters.
- In practice we need to first learn the parameters as well as decide the best number of matching states (that is, the length of the profile HMM) of the profile HMM.
- To infer the state sequences, there is an extended version of the Viterbi algorithm which we can use.

Summary

Main algorithms with an HMM

- Viterbi algorithm → decoding/detection/matching problem
- Forward algorithm → scoring problem
- Backward algorithm → scoring problem
- Forward-backward / Baum-Welch algorithm → training problem

Profile HMM

An HMM model designed to perform MSA

Further readings

- Ghahramani, Z. Probabilistic machine learning and artificial intelligence. *Nature* **521**, 452–459 (2015)
- R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids,
 - pp. 46–66 for algorithms on a standard HMM model including parameter estimation;
 - pp. 102–113 for constructing a profile HMM and Forward and Viterbi algorithms on a profile HMM;
 - pp. 149–154 for applying profile HMM to MSA, and the training (parameter estimation) of a profile HMM.
 - pp. 323–325 for the EM (expectation maximization) algorithm.