Домашняя работа №2

Сирый Р. А.

12 февраля 2023 г.

Упражнение 1

Заменив переменную, обезразмерим интеграл:

$$t = bx$$
, $dx = \frac{1}{b}dt$, $I(a,b) = \int_{0}^{\infty} e^{-ax} \frac{\sin^{2}bx}{x^{2}} dx = b \int_{0}^{\infty} e^{-\frac{a}{b}t} \frac{\sin^{2}t}{t^{2}} dt$. (1)

I. $a \gg b$

При $t \sim \sqrt{\frac{b}{a}} \ll 1$ степень при экспоненте $-\frac{a}{b}t \sim -\sqrt{\frac{a}{b}} \ll -1$, следовательно, интеграл набирается при малых t и $\sin^2 t$ можно разложить в ряд:

$$I(a,b) = b \int_{0}^{\infty} e^{-\frac{a}{b}t} \frac{\sin^{2} t}{t^{2}} dt \approx b \int_{0}^{\infty} e^{-\frac{a}{b}t} \frac{t^{2}}{t^{2}} dt = \frac{b^{2}}{a} \int_{0}^{\infty} e^{-\frac{a}{b}t} d\left(\frac{a}{b}t\right) = \frac{b^{2}}{a},$$
 (2)

ответ:

$$I(a,b) \approx \frac{b^2}{a}$$

II. $a \ll b$

При $t \sim 10$, знаменатель подынтегральной функции $\frac{1}{t^2} \sim 0.01 \ll 1$, а следовательно подынтегральная функция $f(t) \ll 1$ и интеграл набирается в некой окрестности $0 \le t \le t' \sim 10$. При этом степень при экспоненте остается мала: $-\frac{a}{b}t \ll 1$, следовательно

$$e^{-\frac{a}{b}t} \approx 1, \ I(a,b) = b \int_{0}^{\infty} e^{-\frac{a}{b}t} \frac{\sin^{2}t}{t^{2}} dt \approx b \int_{0}^{\infty} \frac{\sin^{2}t}{t^{2}} dt.$$
 (3)

Полученный интеграл вычисляется:

$$I = \int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} dt = \frac{\sin^{2} t}{t} \Big|_{0}^{\infty} - \int_{0}^{\infty} t d\left(\frac{\sin^{2} t}{t^{2}}\right) = -\int_{0}^{\infty} t d\left(\frac{\sin^{2} t}{t^{2}}\right)$$

$$= -\int_{0}^{\infty} t \left(\frac{2\sin t \cos t}{t^{2}} - \frac{2\sin^{2} t}{t^{3}}\right) dt = -\int_{0}^{\infty} \frac{\sin 2t}{2t} d(2t) + 2I, \quad I = \int_{0}^{\infty} \frac{\sin 2t}{2t} d(2t) = \frac{\pi}{2},$$
(4)

ответ:

$$I(a,b) \approx \frac{\pi b}{2}$$

Упражнение 2

I. $a \ll 1$, $b \sim 1$

I. $a = b \gg 1$

Задача 1

Определим f(x) как подынтегральную функцию, и h(x) как ее знаменатель:

$$I(a) = \int_{0}^{\infty} \frac{1}{xa^2 + (1 - x^2)^2} dx = \int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \frac{1}{h(x)} dx, \quad h(x) = xa^2 + (1 - x^2)^2.$$
 (5)

I. $a \gg 1$

При очень малых x, т.е. $xa^2 \ll 1$, следует

$$x \ll \frac{1}{a^2} \ll 1 \Rightarrow (1 - x^2)^2 \approx 1 \Rightarrow h(x) \sim 1 \Rightarrow f(x) \sim 1.$$
 (6)

При $xa \sim 1$:

$$xa^2 \sim a \gg 1, \ x \sim \frac{1}{a} \ll 1 \Rightarrow (1 - x^2)^2 \approx 1 \Rightarrow h(x) \sim a \gg 1 \Rightarrow f(x) \ll 1,$$
 (7)

следовательно, интеграл набирается в некой окрестности нуля $x \le x' \sim \frac{1}{a} \ll 1$, а значит в h(x) можно отбросить члены высших порядков малости и интегрировать от 0 до x':

$$I(a) = \int_{0}^{\infty} \frac{1}{xa^2 + (1 - x^2)^2} dx \approx \int_{0}^{x'} \frac{1}{xa^2 + 1} dx = \frac{1}{a^2} \int_{0}^{x'} \frac{1}{xa^2 + 1} d(xa^2 + 1) =$$
 (8)

$$= \frac{1}{a^2} \frac{-1}{(xa^2+1)^2} \Big|_0^{x'} = \frac{1}{a^2} \left(1 - \frac{1}{(x'a^2+1)^2} \right), \ x' \sim \frac{1}{a} \Rightarrow \frac{1}{(x'a^2+1)^2} \sim \frac{1}{a^2} \implies (9)$$

ответ:

$$I(a) \approx \frac{1}{a^2} \tag{10}$$

II. $a \ll 1$

При $x \ll 1$ выполняется

$$xa^2 \ll 1, (1-x^2)^2 \sim 1 \Rightarrow h(x) \sim 1 \Rightarrow f(x) \sim 1,$$
 (11)

при $x \gg 1$:

$$(1 - x2)2 \gg 1 \Rightarrow h(x) \gg 1 \Rightarrow f(x) \ll 1.$$
 (12)

При $x = 1 + \varepsilon$, $\varepsilon \ll 1$:

$$h(x) = (1+\varepsilon)a^2 + (2\varepsilon + \varepsilon^2)^2 \ll 1 \Rightarrow f(x) \gg 1,$$
(13)

следовательно, интеграл набирается в некой окрестности $1 - \varepsilon' \le x \le 1 + \varepsilon'$, $\varepsilon' \ll 1$, а значит в h(x) интегрировать по ε от $-\varepsilon'$ до ε' , отбросив члены высших порядков малости:

$$I(a) = \int_{0}^{\infty} \frac{1}{xa^{2} + (1 - x^{2})^{2}} dx \approx \int_{-\varepsilon'}^{\varepsilon'} \frac{1}{(1 + \varepsilon)a^{2} + (2\varepsilon + \varepsilon^{2})^{2}} d\varepsilon \approx$$

$$\approx \frac{1}{2} \int_{-\varepsilon'}^{\varepsilon'} \frac{1}{a^{2} + (2\varepsilon)^{2}} d(2\varepsilon) = \frac{1}{2a} \arctan \frac{2\varepsilon}{a} \Big|_{-\varepsilon'}^{\varepsilon'} = \frac{1}{a} \arctan \frac{2\varepsilon'}{a}.$$
(14)

При $\hat{\varepsilon}\sim\sqrt{a}\hookrightarrow\hat{\varepsilon}\ll1\wedge\frac{2\hat{\varepsilon}}{a}\sim\frac{1}{\sqrt{a}}\gg1$, следовательно, приближения выше будут справедливы при $\varepsilon'\geq\hat{\varepsilon}$ и

$$\frac{1}{a}\arctan\frac{2\varepsilon'}{a} \approx \frac{\pi}{2a},\tag{15}$$

ответ:

$$I(a) \approx \frac{\pi}{2a} \tag{16}$$

Задача 2

I. $b \gg a$

Так как $b \gg a$ и $0 \le x \le a, x \ll a \implies$

$$e^{\frac{x}{b}} \approx 1 + \frac{x}{b}, \quad \int_{0}^{a} \frac{x^{n}}{e^{\frac{x}{b}} - 1} dx \approx \int_{0}^{a} bx^{n-1} dx = \frac{bx^{n}}{n} \Big|_{0}^{a} = \frac{ba^{n}}{n},$$
 (17)

ответ:

$$I(n, a, b) \approx \frac{ba^n}{n}$$

II. $n \gg 1$, $nb \ll a$

Приблизительно найдем точку \tilde{x} , в которой подынтегральная функция

$$f(x) = \frac{x^n}{e^{\frac{x}{b}} - 1} \tag{18}$$

достигает максимума:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)\bigg|_{x=\tilde{x}} = \frac{n\tilde{x}^{n-1}}{e^{\frac{\tilde{x}}{b}} - 1} - \frac{\tilde{x}^n e^{\frac{\tilde{x}}{b}}}{\left(e^{\frac{\tilde{x}}{b}} - 1\right)^2} = 0, \quad \tilde{x} = \frac{nbe^{\frac{\tilde{x}}{b}}}{e^{\frac{\tilde{x}}{b}} - 1}.$$
(19)

Применяя метод итераций при $\tilde{x}_0 = nb$, так как $n \gg 1$:

$$\tilde{x}_1 = \frac{nbe^{\frac{\tilde{x}_0}{b}}}{e^{\frac{\tilde{x}_0}{b}} - 1} = \frac{nbe^n}{e^n - 1} \approx nb = \tilde{x}_0,$$
(20)

следовательно

$$\tilde{x} \approx nb.$$
 (21)

При $x' = \frac{1}{2}nb$:

$$\frac{f(x')}{f(\tilde{x})} = \left(\frac{1}{2}\right)^n \frac{e^n - 1}{e^{\frac{n}{2}} - 1} \approx \left(\frac{1}{2}\right)^n e^{\frac{n}{2}} = \left(\frac{e}{4}\right)^{\frac{n}{2}} \ll 1,\tag{22}$$

при x'' = 2nb:

$$\frac{f(x'')}{f(\tilde{x})} = 2^n \frac{e^n - 1}{e^{2n} - 1} \approx 2^n e^{-n} = \left(\frac{2}{e}\right)^n \ll 1,\tag{23}$$

следовательно интеграл набирается в некоторой окрестности

$$U(\tilde{x}): \ \forall x_u \in U(\tilde{x}) \hookrightarrow \frac{1}{2}nb < x_u < 2nb \ll a,$$
 (24)

откуда

$$\forall x_u \in U(\tilde{x}) \hookrightarrow e^{\frac{n}{2}} - 1 < e^{\frac{x_u}{b}} - 1 \approx e^{\frac{x_u}{b}} \implies$$

$$\int_{0}^{a} \frac{x^{n}}{e^{\frac{x}{b}} - 1} dx \approx \int_{0}^{a} \frac{x^{n}}{e^{\frac{x}{b}}} dx \approx b^{n+1} \int_{0}^{\infty} \left(\frac{x}{b}\right)^{n} e^{-\frac{x}{b}} d\left(\frac{x}{b}\right) = b^{n+1} \Gamma(n+1). \tag{25}$$

В условии задачи не указано, является ли n целым числом (а, следовательно, так как $n \gg 1$ — натуральным), поэтому ответ:

$$I(n,a,b) \approx b^{n+1}\Gamma(n+1),$$
 для $n \in \mathbb{N}$ $I(n,a,b) \approx b^{n+1}n!$