Lecture 4: Option Pricing

Ahmed Kebaier kebaier@math.univ-paris13.fr

HEC, Paris

Outline of The Talk

Confidence Interval

2 Simulation of Brownian Motion

Black-Scholes Model

Outline

Confidence Interval

Simulation of Brownian Motion

Black-Scholes Model

An other version of the CLT

Theorem 1

Let (X_n) be a sequence of independents copies of X such that $\mathbb{E}|X|^2 < \infty$ and $\operatorname{Var}(X) = \sigma^2 > 0$. Let

$$\varepsilon_n = \frac{1}{n} \sum_{i=1}^n X_i - \mathbb{E}(X)$$

$$\sigma_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i \right)^2 \right).$$

Then,

$$\sqrt{n} \frac{\varepsilon_n}{\sigma_n} \Rightarrow \mathcal{N}(0,1).$$

Confidence interval

Our aim is to evaluate $\mathbb{E}f(X)$.

• We simulate a sample (X_1, \ldots, X_n) of independent copies of X and let

$$S_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$$

$$\sigma_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n f(X_i)^2 - \left(\frac{1}{n} \sum_{i=1}^n f(X_i) \right)^2 \right).$$

Confidence interval

Our aim is to evaluate $\mathbb{E}f(X)$.

• We simulate a sample (X_1, \ldots, X_n) of independent copies of X and let

$$S_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$$

$$\sigma_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n f(X_i)^2 - \left(\frac{1}{n} \sum_{i=1}^n f(X_i) \right)^2 \right).$$

Applying the above CLT we get

$$\sqrt{n} \frac{S_n - \mathbb{E}f(X)}{\sigma_n} \Rightarrow \mathcal{N}(0,1).$$

Confidence interval

Our aim is to evaluate $\mathbb{E}f(X)$.

• We simulate a sample (X_1, \ldots, X_n) of independent copies of X and let

$$S_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$$

$$\sigma_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n f(X_i)^2 - \left(\frac{1}{n} \sum_{i=1}^n f(X_i) \right)^2 \right).$$

Applying the above CLT we get

$$\sqrt{n} \frac{S_n - \mathbb{E}f(X)}{\sigma_n} \Rightarrow \mathcal{N}(0,1).$$

This yields

$$\mathbb{P}\left(\left|\sqrt{n}\frac{S_n-\mathbb{E}f(X)}{\sigma_n}\right|\leq a\right)\underset{n\to\infty}{\longrightarrow}\mathbb{P}\left(|G|\leq a\right),\quad G\sim\mathcal{N}(0,1).$$

• If we set $\mathbb{P}(|G| \le a) = \alpha$, then we say that with a level of confidence equal to α our target

$$\mathbb{E}(f(X)) \in \left[S_n - \frac{a\sigma_n}{\sqrt{n}}, S_n + \frac{a\sigma_n}{\sqrt{n}}\right]$$

• If we set $\mathbb{P}(|G| \le a) = \alpha$, then we say that with a level of confidence equal to α our target

$$\mathbb{E}(f(X)) \in \left[S_n - \frac{a\sigma_n}{\sqrt{n}}, S_n + \frac{a\sigma_n}{\sqrt{n}}\right]$$

• Example:

For a level of confidence equal to 95% we have that

$$\mathbb{E}(f(X)) \in \left[S_n - \frac{1.96\sigma_n}{\sqrt{n}}, S_n + \frac{1.96\sigma_n}{\sqrt{n}}\right]$$

Outline

Confidence Interval

Simulation of Brownian Motion

Black-Scholes Model

Brownian Motion

• A Brownian motion is a continuous process with independent and stationary increments such that $W_t \sim \mathcal{N}(0,t)$

```
m=5;
n=300;
t=linspace(0,1,n+1)';
h=diff(t(1:2)); // step size
dw=sqrt(h)*rand(n,m,'normal');
w=cumsum([zeros(1,m);dw]);
plot(t,w)
```

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - ullet Digital $\mathbf{1}_{\{S_T>B\}}$

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - ullet Digital $\mathbf{1}_{\{S_T>B\}}$
- exotic options
 - Barrier $(S_T K)_+ \mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - ullet Digital $\mathbf{1}_{\{S_{\mathcal{T}}>B\}}$
- exotic options
 - Barrier $(S_T K)_+ \mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$
 - One touch $\mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - Digital $\mathbf{1}_{\{S_T>B\}}$
- exotic options
 - Barrier $(S_T K)_+ \mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$
 - $\bullet \ \ \mathsf{One} \ \mathsf{touch} \ \mathbf{1}_{\{\mathsf{max}_{t \leq T} \ S_t > B\}}$
 - Asian $(\frac{1}{T} \int_0^T S_u du K)_+$

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - Digital $\mathbf{1}_{\{S_T>B\}}$
- exotic options
 - Barrier $(S_T K)_+ \mathbf{1}_{\{\max_{t < T} S_t > B\}}$
 - ullet One touch $oldsymbol{1}_{\{\max_{t\leq \mathcal{T}} \mathcal{S}_t > B\}}$
 - Asian $(\frac{1}{T} \int_0^T S_u du K)_+$
- ullet options on several assets (S^1_T,\ldots,S^d_T)

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - ullet Digital $\mathbf{1}_{\{S_{\mathcal{T}}>B\}}$
- exotic options
 - Barrier $(S_T K)_+ \mathbf{1}_{\{\max_{t < T} S_t > B\}}$
 - One touch $\mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$
 - Asian $(\frac{1}{T} \int_0^T S_u du K)_+$
- ullet options on several assets (S_T^1,\dots,S_T^d)
 - Basket Call $(\sum_{i=1}^d S_T^i K)_+$

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - ullet Digital $\mathbf{1}_{\{S_{\mathcal{T}}>B\}}$
- exotic options
 - Barrier $(S_T K)_+ \mathbf{1}_{\{\max_{t < T} S_t > B\}}$
 - One touch $\mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$
 - Asian $\left(\frac{1}{T}\int_0^T S_u du K\right)_+$
- options on several assets (S_T^1, \dots, S_T^d)
 - Basket Call $(\sum_{i=1}^d S_T^i K)_+$
 - ullet options on several assets $(S^1_T \wedge \dots S^d_T K)_+$

- Vanilla options
 - Call $(S_T K)_+$, put $(K S_T)_+$
 - Digital $\mathbf{1}_{\{S_T>B\}}$
- exotic options
 - Barrier $(S_T K)_+ \mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$
 - One touch $\mathbf{1}_{\{\max_{t \leq T} S_t > B\}}$
 - Asian $(\frac{1}{T} \int_0^T S_u du K)_+$
- options on several assets (S_T^1, \dots, S_T^d)
 - Basket Call $(\sum_{i=1}^d S_T^i K)_+$
 - options on several assets $(S_T^1 \wedge \dots S_T^d K)_+$
- American Option
 - Call $(S_{\tau} K)_+$ where τ is a stopping time.

Outline

Confidence Interval

Simulation of Brownian Motion

Black-Scholes Model

Black-Scholes model

In the Black-Scholes model, the risky asset satisfies the SDE

$$dS_t = rS_t dt + \sigma S_t dWt,$$

under the martingale measure \mathbb{Q} . The solution S follows a geometric Brownian motion

$$S_t = S_0 \exp\left(\sigma W_t + (r - \frac{\sigma^2}{2})t\right).$$

The price of a call option with payoff $(S_T - K)_+$ is

$$\pi = e^{-rT}\mathbb{E}(S_T - K)_+ = e^{-rT}\mathbb{E}(S_T \mathbf{1}_{\{S_T > K\}}) - Ke^{-rT}\mathbb{E}(\mathbf{1}_{\{S_T > K\}})$$

$$\{S_T > K\} = \left\{ \log(S_0) + \sigma W_T + \left(r - \frac{\sigma^2}{2}\right)T > \log(K) \right\}$$
$$= \left\{ W_T > \frac{1}{\sigma} \left(\log\left(\frac{K}{S_0}\right) - \left(r - \frac{\sigma^2}{2}\right)T \right) \right\}$$

$$\{S_{T} > K\} = \left\{ \log(S_{0}) + \sigma W_{T} + \left(r - \frac{\sigma^{2}}{2}\right)T > \log(K) \right\}$$
$$= \left\{ W_{T} > \frac{1}{\sigma} \left(\log\left(\frac{K}{S_{0}}\right) - \left(r - \frac{\sigma^{2}}{2}\right)T \right) \right\}$$

and that $W_T = \sqrt{T}G$ where $G \sim \mathcal{N}(O, 1)$. Let us introduce $\phi(x) = \mathbb{P}(G \leq x)$.

$$\{S_T > K\} = \left\{ \log(S_0) + \sigma W_T + \left(r - \frac{\sigma^2}{2}\right)T > \log(K) \right\}$$
$$= \left\{ W_T > \frac{1}{\sigma} \left(\log\left(\frac{K}{S_0}\right) - \left(r - \frac{\sigma^2}{2}\right)T \right) \right\}$$

and that $W_T = \sqrt{TG}$ where $G \sim \mathcal{N}(O, 1)$. Let us introduce $\phi(x) = \mathbb{P}(G \leq x)$. Now, use that $1 - \phi(x) = \phi(-x)$ to deduce that

$$\mathbb{E}(\mathbf{1}_{\{S_{T}>K\}}) = \mathbb{P}(S_{T}>K) = \phi\left(\frac{1}{\sigma\sqrt{T}}\left(\log\left(\frac{S_{0}}{K}\right) + (r - \frac{\sigma^{2}}{2})T\right)\right)$$

$$\{S_T > K\} = \left\{ \log(S_0) + \sigma W_T + \left(r - \frac{\sigma^2}{2}\right)T > \log(K) \right\}$$
$$= \left\{ W_T > \frac{1}{\sigma} \left(\log\left(\frac{K}{S_0}\right) - \left(r - \frac{\sigma^2}{2}\right)T \right) \right\}$$

and that $W_T = \sqrt{T} G$ where $G \sim \mathcal{N}(O, 1)$. Let us introduce $\phi(x) = \mathbb{P}(G \leq x)$. Now, use that $1 - \phi(x) = \phi(-x)$ to deduce that

$$\mathbb{E}(\mathbf{1}_{\{S_T > K\}}) = \mathbb{P}(S_T > K) = \phi\left(\frac{1}{\sigma\sqrt{T}}\left(\log\left(\frac{S_0}{K}\right) + (r - \frac{\sigma^2}{2})T\right)\right)$$

Applying Girsanov's theorem, we get

$$\pi = S_0 \phi \left(\frac{1}{\sigma \sqrt{T}} \left(\log \left(\frac{S_0}{K} \right) + \left(r + \frac{\sigma^2}{2} \right) T \right) \right)$$
$$- K e^{-rT} \phi \left(\frac{1}{\sigma \sqrt{T}} \left(\log \left(\frac{S_0}{K} \right) + \left(r - \frac{\sigma^2}{2} \right) T \right) \right)$$

Black-Scholes Formula

```
function y=BScall(S0,K,T,r,sigma)
tic();
d1=(log(S0/K)+(r+sigma^ 2/2)*T)/(sigma*sqrt(T));
d2=(log(S0/K)+(r-sigma^ 2/2)*T)/(sigma*sqrt(T));
price=S0*cdfnor("PQ",d1,0,1)-K*exp(-r*T)*cdfnor("PQ",d2,0,1);
time=toc();
y=[price time]
endfunction
```

Exercise

• Create a function to evaluate the price of an European Call option with maturity T and strike K, on the Black-Sholes model $(S_t)_{0 \le t \le T}$ with a Monte Carlo method.

Exercise

- Create a function to evaluate the price of an European Call option with maturity T and strike K, on the Black-Sholes model $(S_t)_{0 \le t \le T}$ with a Monte Carlo method.
- In other words approximate $e^{-rT}\mathbb{E}(S_T K)_+$ with

$$\frac{e^{-rT}}{N}\sum_{i=1}^{N}(S_{T,i}-K)_{+}$$

where $(S_{T,i})_{1 \leq i \leq N}$ are i.i.d copies of S_T .

```
function y=BSMCcall(S0,K,T,r,sigma,M) stacksize('max')
tic();
X=rand(1,M,'normal');
S=S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T);
C=\exp(-r*T)*\max(S-K,0);
price=sum(C)/M;
VarEst=sum((C-price)^ 2)/(M-1);
RMSE=sqrt(VarEst)/sqrt(M);
CI95=[price-1.96*RMSE,price+1.96*RMSE];
CI99=[price-2.58*RMSE,price+2.58*RMSE];
time=toc():
y=[price time RMSE; CI95 0; CI99 0]
endfunction
```

Black-Scholes model: Asian option

• The price of an Asian option at t = 0 is given by

$$\pi := \mathrm{e}^{-rT} \mathbb{E} \left(rac{1}{T} \int_0^T S_u du - K
ight)_+$$

ullet This quantity have no explicit formula, so we need to approximate π . How to proceed ?

Black-Scholes model: Asian option

• The price of an Asian option at t = 0 is given by

$$\pi := \mathrm{e}^{-rT} \mathbb{E} \left(rac{1}{T} \int_0^T S_u du - K
ight)_+$$

- This quantity have no explicit formula, so we need to approximate π . How to proceed ?
 - **1** At first approximate $\frac{1}{T} \int_0^T S_u du$ by $\overline{S}_n := \frac{1}{n} \sum_{i=0}^{n-1} S_{\frac{iT}{n}}$

Black-Scholes model: Asian option

• The price of an Asian option at t = 0 is given by

$$\pi:=e^{-rT}\mathbb{E}\left(rac{1}{T}\int_0^T S_u du - K
ight)_+$$

- \bullet This quantity have no explicit formula, so we need to approximate $\pi.$ How to proceed ?
 - **1** At first approximate $\frac{1}{T} \int_0^T S_u du$ by $\overline{S}_n := \frac{1}{n} \sum_{i=0}^{n-1} S_{\frac{iT}{n}}$
 - ② Then, approximate π by a Monte Carlo method

$$\pi \sim \frac{e^{-rT}}{N} \sum_{j=1}^{N} (\bar{S}_{n,j} - K)_+,$$

where $(\bar{S}_{n,j})_{1 \leq j \leq N}$ are i.i.d copies of \bar{S}_n .

```
// S0: the spot price of the underlying
// K: the strike price of the option
// T: the maturity of the option
// n: the number of time intervals
// r: the risk free interest rates
// sigma: the volatility of the underlying
// N: the number of Monte Carlo iterations
function [price ] = AsianCall(SO, K, T, n, r, sigma, N)
z = rand(N,n,'norm');
dt = T/n;
```

```
// S0: the spot price of the underlying
// K: the strike price of the option
// T: the maturity of the option
// n: the number of time intervals
// r: the risk free interest rates
// sigma: the volatility of the underlying
// N: the number of Monte Carlo iterations
function [price] = AsianCall(SO, K, T, n, r, sigma, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^2)*dt +
sigma*sqrt(dt)*z],'c');
```

```
// S0: the spot price of the underlying
// K: the strike price of the option
// T: the maturity of the option
// n: the number of time intervals
// r: the risk free interest rates
// sigma: the volatility of the underlying
// N: the number of Monte Carlo iterations
function [price] = AsianCall(SO, K, T, n, r, sigma, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^2)*dt +
sigma*sqrt(dt)*z],'c');
S = \exp(LogPaths);
```

```
// S0: the spot price of the underlying
// K: the strike price of the option
// T: the maturity of the option
// n: the number of time intervals
// r: the risk free interest rates
// sigma: the volatility of the underlying
// N: the number of Monte Carlo iterations
function [price] = AsianCall(SO, K, T, n, r, sigma, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^2)*dt +
sigma*sqrt(dt)*z],'c');
S = \exp(LogPaths);
payoff = max(mean(S, 'c')-K, 0);
```

```
// S0: the spot price of the underlying
// K: the strike price of the option
// T: the maturity of the option
// n: the number of time intervals
// r: the risk free interest rates
// sigma: the volatility of the underlying
// N: the number of Monte Carlo iterations
function [price ] = AsianCall(SO, K, T, n, r, sigma, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^2)*dt +
sigma*sqrt(dt)*z],'c');
S = \exp(LogPaths);
payoff = max(mean(S, 'c')-K, 0);
price=exp(-r*T)*mean(payoff);
```

Exercise

Create a function to compute the price a Barrier option with maturity T, strike K and barrier B given by

$$\pi := \mathrm{e}^{-rT} \mathbb{E} \left((S_T - K)_+ \mathbf{1}_{\left\{ egin{array}{l} \max \limits_{0 \leq t \leq T} S_t > B
ight\}
ight)}$$

```
function [price] = BarrierUpInCall(S0, K, T, n, r,
sigma,B, N)
```

```
function [price] = BarrierUpInCall(S0, K, T, n, r,
sigma,B, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +
sigma*sqrt(dt)*z],'c');
S = exp(LogPaths);
```

```
function [price] = BarrierUpInCall(S0, K, T, n, r,
sigma,B, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +
sigma*sqrt(dt)*z],'c');
S = exp(LogPaths);
indic=1*(max(S,'c')>B)
```

```
function [price] = BarrierUpInCall(S0, K, T, n, r,
sigma,B, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +
sigma*sqrt(dt)*z],'c');
S = exp(LogPaths);
indic=1*(max(S,'c')>B)
payoff = max(S(:,n+1) - K, 0).*indic;
```

```
function [price] = BarrierUpInCall(S0, K, T, n, r,
sigma,B, N)
z = rand(N,n,'norm');
dt = T/n;
LogPaths= cumsum([log(S0)*ones(N,1),(r-0.5*sigma^ 2)*dt +
sigma*sqrt(dt)*z],'c');
S = exp(LogPaths);
indic=1*(max(S,'c')>B)
payoff = max( S(:,n+1) - K, 0).*indic;
price=exp(-r*T)*mean(payoff);
```