第一章

• 全局状态

Petri承认系统全局状态的存在,也认识到全局状态的不可实时可知性。因而依 自然界各自为政的方式描述系统中的变化。Petri网的变迁规则用局部确定的方 式明确指出变化发生的局部条件,也明确指出变化引起的局部变化。

• 全局时间

Petri网里面没有全局时间,只有变化及变化间的依赖关系。依赖关系产生先后次序。

第二章

• 有向网定义

三元组N(S,T;F)称为有向网,满足以下条件

- \circ $S \cap T = \emptyset$
- \circ $S \cup T \neq \emptyset$
- \circ $F \subseteq S \times T \cup T \times S$
- $\circ \ dom(F) \cup cod(F) = S \cup T, dom(F) = \{x|\exists\ y\colon (x,y)\in F\}$ $cod(F) = \{y|\exists\ x: (x,y)\in F\}$

其中S,T分别是库所集和变迁集,又称为 S_- 元素和 T_- 元素,F称为流关系,最后一个条件规定网中不能有孤立元素(孤立的 $S_{-元素}$ 和 T_- 元素)

• 网系统定义

六元组 $\Sigma = (S, T; F, K, W, M_0)$ 构成网系统的条件是:

- \circ N=(S,T;F)构成有向网,称为 \sum 的基网。
- 。 K, W, M_0 依次为容量函数,权函数和标识。 M_0 称为∑初始标识

$$\eta_0 = \{0, 1, 2, \dots\}, \, \eta = \{1, 2, 3, \dots\}, \, w$$
代表无穷

- o $K: S \to \eta \cup w$, 称为N的容量函数
- $\circ \ M: M \to \eta_0$,称为N的一个标识, $\forall s \in S: M(s) \leqslant K(s)$
- $\circ W: F \to \eta_{r}(x,y) \in F, W(x,y) = W((x,y))$ 称为(x,y)上的权

发送权

- *t* =* t ∪ t*, 称为t的外延
- o t在M上有发生权的条件是:

$$orall s \in^* t: M(s) \geqslant W(s,t) \wedge orall s \in t^*: M(s) + W(t,s) \leqslant K(s)$$

称为M[t>, M授权发生t

• 变迁规则

变迁规则

$$M'(s) = \begin{cases} M(s) - W(s,t) & \text{若}s \in t - t \\ M(s) + W(t,s) & \text{若}s \in t - t \\ M(s) - W(s,t) + W(t,s) & \text{若}s \in t \cap t \end{cases} \cdot t \cup t \cdot t$$

$$M(s) \qquad \text{若}s \notin t \cup t \cdot t \cap t$$

记M[t>M'] 或 $M_t \rightarrow M'$, M'称为M的后继标识

理解M'

• 网分类系统

 \circ 基本网系统(E/N系统)

$$K \equiv 1, W \equiv 1, M(s) = 0 \ or \ 1$$

 \circ 库所/变迁网(P/T网)

$$K \equiv \infty, W \equiv 1, \sum (S, T; F, M_0)$$

 \circ 库所/变迁系统(P/T系统)

$$\sum = (S, T; F, K, W, M_0)$$

EN系统, P/T网是P/T系统的特例

第三章

• 基本网系统的定义

- \circ (B, E, F)是一个基本网系统, B称为条件, E称为事件
- o c称为网上的一个条件丛
- 事件 $e \in E$ 在网上有发生权的条件是 $*e \subseteq c \land e^* \cap c = \emptyset$,称为 $c[e > e^*]$
- $c[e>c^{'},e$ 在c发生的结果是将c变为其后继丛 $c^{'},c^{'}=(c-^{*}e)\cup e^{*}$

e在c有发生权
$$\Leftrightarrow$$
 'e \subseteq c \wedge e' \cap c= Φ

所有s \in 'e

M(s) \geq W(s, e) \wedge M(s)+W(e, s) \leq K(s)

'e \subseteq c

U

W(s)=1

M(s)=0

M'(s)=

M'(s

。 四元组 $N=(B,E;F,c_{in})$ 为基本网系统的条件是:(B,E;F)为条件和事件构成的有向网, c_{in} 为网上的条件丛, $c_{in}\subseteq B$.基本网系统也称为 EN_- 系统

• 局部确定性

- 。 变迁的能否发生只依赖它的外延,与全局状态无关。变迁发生的外延是恒定的。即 e在c有发生权是取决于 *e 以及 e^*
- 事件的基本关系(顺序,并发,冲突,冲撞)
 - 顺序

如果 $c[e_1>,$ 但是 $\neg c[e_2>,$ 而 $c'[e_2>,$ 其中 $c[e_1>c',$ 就说 e_1 和 e_2 有顺序关系

。 冲突

如果 $c[e_1 > \land c[e_2 >, 但是 \neg c[|e_1, e_2| >, 则e_1, e_2$ 在c上互相冲突

○ 冲撞

若有 $b \in B, c \in C, e \in E$,使得 $^*e \subseteq c$,而且 $b \in c \cap e^*$,则说在情态c条件b处有冲撞

o **并发**(无冲撞的条件下)

 e_1 和 e_2 在情态c并发的充分必要条件是* $e_1 \cap * e_2 = \emptyset \wedge * e_1 \cup * e_2 \subseteq c$

0

图 3-3 事件基本关系示例

• T图,S图

T图、S图和活性定理

定义 2.12 设N=(S,T;F)为有向网

- 1. 若任给t∈T: |·t|<=1目|t·|<=1,则N称为S网
- 2. 若任给t∈T: |·t|=|t·|=1,则N称为S图
- 3. 若任给s∈S: |·s|<=1且|s·|<=1,则N称为T网
- 4. 若任给s∈S: |·s|=|s·|=1,则N称为T图

S图又称为状态机 (state machine)

T图又称为同步图 (synchronic graph)或表识

图

• 活性定理

定义 2.14

有向网L=(S',T';F')称为N=(S,T;F)的简单有向圈,简称有向圈的条件是:

- 1. L为N的子网
- 2. L既是S图又是T图
- 3. L是连通的

定理 2.8

若N的基网为T图,则N为活的基本网系统的 充分必要条件为:

- 任给e ∈E,∃l ∈L: e∈l,即每个事件至少 属于一个简单有向圈
- 任给1 ∈L,∃b∈B: b∈l∩c_{in},即在初始情态c_{in}下,每个简单有向圈至少有一个托肯(一个条件为真)

• 哲学家就餐问题

图 3-9 哲学家 pi的行为

第四章

• 可达标识集

 P/T_{-} 系统 $\sum = (S,T;F,K,W,M_{0})$ 的可达标识集 $[M_{0}>$ 是满足下列条件的最小集合

- \circ $M_0 \in [M_0 >$
- 。 若有 $M^{'}\in [M_0>,t\in T$,使 $M^{'}[t>M$,则 $M\in [M_0>$

• 有界,活性

- 。 若对于所有 $M\in[M_0>$,存在正整数k,使得对所有 $s\in S,M(s)\leqslant k$,就说 \sum 是有界 P/T_- 系统 ,或以k为界的 P/T_- 系统。 k=1时称 \sum 为安全系统
- o 对 $t\in T$,若对任一可达标识 $M\in [M_0>$,均有从M可达的标识 $M^{'}\in [M>$,使得 $M^{'}[t>$ 就说变迁t是活的。
- 若所有 $t \in T$ 是活的,则说 \sum 是活的。

• 覆盖

设M和M'为 P/T_- 系统 \sum 基网(S,T;F)上的两个标识

 \circ 若 $orall s \in S: M(s) \leqslant M^{'}(s)$,就说M被 $M^{'}$ 覆盖,记作 $M \leqslant M^{'}$

- 若 $M \leqslant M'$,且 $M \neq M'$,则说M小于M' , 记作 M < M'
- \circ 若 $M < M^{'}$,且 $M(s) < M^{'}(s)$,就说 $M < M^{'}$ 在库所 $s \in S$ 成立

• 可达树

。 可达树构造算法

每个节点都有一个标记 $M_x, M_x : S \to \{0, 1, 2, ...\} \cup \{w\}$

- $lacksymbol{ iny}$ $T(\sum)$ 的初值只有根节点r, $M_r=M_0$,即 M_r 以初始标识标记
- 若x是 $T(\sum)$ 的叶节点,但不是真叶节点,则在 M_x 上至少有一个变迁有发生权 对 M_x 授权发生的每个变迁 $t\in T$,在 $T(\sum)$ 上添加一个新节点y, y是x的子节点, 从x $\exists y$ 的有向弧用变迁t标记,节点y的标记 M_y 是如下定义的:首先计算出 M_x 的后继 M',然后计算 M_y ,对所有 $s\in S$,

 $M_y(s)=w$,若从r到y的路径上有节点z,使得 $M_z< M^{'}$ 且 $M_z(s)< M^{'}(s)$ $M_y(s)=M^{'}(s)$ 否则

■ 回到第二步骤

○ 可达树性质

- 只要 \sum 是有限无冲撞的, $T(\sum)$ 必为有限树
- ullet 令 $M\in[M_0>$ 为任一可达标识,则在覆盖树 $T(\sum)$ 上必有节点x,使得 $M\leqslant M_x$,其中 M_x 是x的标记,若w不出现在 M_x 中, $M=M_x$

$$M_i(s) = M_x(s)$$
若 $M_x(s)
eq w$ $M_i(s) \geqslant i$ 若 $M_x(s) = w$

可达图

- **可达图的构造算法**:如果存在从 $T(\Sigma)$ 到G的满映射 $h,T(\Sigma)\to G$ 使得
 - x为 $T(\sum)$ 的节点,则h(x)为G的节点,且h(x)以x在 $T(\sum)$ 中的标记 M_x 为标记
 - (x,y)为 $T(\sum)$ 上以变迁t为标记的有向弧 , 则(h(x),h(y))为G上以t为标记的有向弧
 - $x \neq y$ 为 $T(\sum)$ 的不同节点,则当且仅当 $M_x = M_y$ 且x和y同在从 $T(\sum)$ 根节点r出发的同一条路径时,才有h(x) = h(y)

。 可达图的性质

- 若 $G(\Sigma)$ 有末端节点,则 Σ 的任何变迁都不是活的
- 若 \sum 的变迁t是活的,则 $G(\sum)$ 的每个节点之下都含有以t为标记的有向弧的基本圈
- 若 Σ 是活的,则对任何 $t \in T$, $G(\Sigma)$ 的每个节点之下都含有以t标记的有向弧的基本圈

出现网

 $Net(B,E;F) \land \forall b \in B: (|^*b| \leqslant 1 \land |b^*| \leqslant 1) \land F^+ \cap ((F^{-1})^+ = \emptyset)$ 第二个条件是,最多有一个输入一个输出,最后一个条件是不包含环

• 进程

定义 进程

设N=(B, E; F')为出现网, Σ =(S, T; F, M₀)为P/T网。若3 映射 ρ (标记):N→ Σ 满足以下条件, 称(N, ρ)是 Σ 的一个进程

- ρ(B)⊆S ∧ ρ(E)⊆T ∧ ∀(x, y)∈F': ρ(x, y)= (ρ(x), ρ(y))∈F 库所只能用库所标记,变迁只能用变迁标记,有向 弧只能由其两头元素的标记所决定
- Ye∈E: ρ('e)='ρ(e) ∧ ρ(e')=ρ(e)'
 N的每个变迁的前后集标记为该变迁标记的前后集即e必须确实是ρ(e) 发生的记录
- 3. $\forall b_1, b_2 \in B$: $b_1 \neq b_2 \land \rho(b_1) = \rho(b_2) \Rightarrow b_1 \neq b_2 \land b_1 \neq b_2$ N的每个变迁的前(后)集中库所须用∑中不同的元素来标记。因为w=1,每个变迁只能消耗(和产生)同类资源中的一个

4. ∀s∈S: |{ b|'b=Φ ∧ ρ(b)=s }|≤M₀(s)
N中无前集的库所代表的资源必须是初始状态M₀所指明的

• 线和切

定义3.13 偏序关系

N=(B, E; F) 出现网, X=B∪E, F*=F⁰∪F*传递闭包, 其中F⁰={(x, x) | x ∈ X}

- 1. $x \le y : \Leftrightarrow (x, y) \in F^*$, $x < y \Leftrightarrow x \le y \land x \ne y$
- 2.1⊆X是N上的一个线集 iff

 $\forall x, y \in 1: x \le y \lor y \le x$

- 3.1 ⊆ X 是 N 上 的 一 条 线 iff 1 为 最 大 线 集 (1 是 线 集 , 再 加 一 个 X 1 中 的 元 素 就 非 线 集) 即 ∀ x 不 属 于 1 ∃ y ∈ 1: ¬ (x < y ∨ y < x)
- μ ⊆ X为一个切集 iff ∀x, y ∈ μ:
 ¬ (x < y ∨ y < x)
- 5. N的切集μ是最大切集, 称为N的一个切, 即∀x ∈ μ ∃y ∈ μ: (x < y ∨ y < x)
- 6. 若 μ 是N的切,且 μ ⊆ B,就说 μ 是N的一个 B-切或片

• 状态方程, S_-,T_- 不变量

记为M, M满足状态方程。然而,M并不是petri网的一个可达状态。

如果S_T为S-不变量。则

 I_{I}^{T} . $M = I_{I}^{T}$. $M_{\circ} \notin DI_{I}^{T} (M_{0} + C \cdot X) = I_{I}^{T}$. M_{\circ}

化简后得: IT_I · C·X= 0

由于U可以是任意变迁序列对应的列向量,

所以 $C^T \cdot I_T = \theta_T$, θ_T 为分量全为0的T-向量

S -不变量的特征向量I_I即为方程组

 $C^T \cdot X = \theta_T$ 的解

当然,方程组的解并一定都是上述物理意义上的S -不变量,但我们统称这些整数解为S -不变量

016/11/19

S-不变量的意义

- 不是所有S-不变量都能表示出Σ中有意义的性质 (因为现已成为一个代数问题)
- C^T· I= θ₁给出了求S-不变量的方法 (解齐次线性方程组,有整数解) 无解、零解、非整数解: 没有S-不变量 一个非零整数解: 唯一S-不变量 多个非整数解: 不唯一,可能有最小S-不变量
- S-不变量只涉及其支撑集的部分库所 ——局部性质 (上例正好是全局性质, \cdot P_I = $\{s_1, s_2...s_{10}\}$ =S)

定义3.16 S-不变量

 $I为\Sigma$ 的一个S-向量, C是关联矩阵, C^T 是C 的转置, θ 是零向量

- 1. $C^{T.}$ $I=\theta_t$ ⇒I为 Σ 的S-不变量 $P_T=\{s\in S \mid I(s)\neq 0\}$ 为I的支撑集
- 2. 若I>θ。⇒非负S-不变量
- 3. 若不3非负S-不变量I', 使θ_s<I'<I, 就说I 是最小非负S-不变量
- 4. θ_s 也是S-不变量,但若 θ_s 是唯一的S-不变量,则说 Σ 无S-不变量

定义3.17 T-不变量

令J为 Σ 的一个T-向量, θ是零向量

- 1. C· J=θ。⇒J是T-不变量
- 2. 若J>θ₊⇒J是非负T-不变量
- 3. P₁={t∈T | J(t)≠0}⇒J的支撑集
- 4. 若不∃非负T-不变量J', 使 θ_t <J'<J ⇒J是 最小非负T-不变量
- 5. θ_t可以是一个T-不变量