- Consigna
- WAN
 - Configuración y topología lógica
 - Topología física
- LANs
 - Topología lógica
 - VLANs

Consigna

- Interconectar 3 Redes LAN de una compañía con sede en 3 ciudades diferentes:
 - Villa María
 - Bariloche
 - o Mendoza
- La conexión entre las Redes LAN debe ser mediante WAN Frame Relay
- Cada red LAN debe tener:
 - - VLAN2: 2 PCS
 - VLAN3: 1 PC y una impresora
 - VLAN4: 1 Notebook y 1 Tablet (Conexión Wireless mediante un Router WiFi WRT-300N)
 - Asignación de IPS mediante DHCP

WAN

Configuración y topología lógica

Para establecer la conexión entre las 3 ciudades, debíamos utilizar WAN Frame-Relay. Para esto establecimos 3 circuitos virtuales formando una topología full-mesh entre los 3 routers.

Cada uno de los routers fue conectado mediante un cable serial a la nube frame relay del ISP. En la interfaz serial de cada uno de estos routers se configuraron dos interfaces virtuales con encapsulamiento frame-relay. De este modo la conexión lógica entre los 3 routers es directa (PaP).

Router	Interfaz Física	Interfaz Virtual	Dirección de capa 2 (DLCI)	Dirección de capa 3 (IPv4)	Dirección de red
RVM	serial 0/1/0	s 0/1/0.102	102	10.0.1.1/24	10.0.1.0/24
RVM	serial 0/1/0	s 0/1/0.103	103	10.0.3.1/24	10.0.3.0/24
RBR	serial 0/1/0	s 0/1/0.201	201	10.0.1.2/24	10.0.1.0/24
RBR	serial 0/1/0	s 0/1/0.203	203	10.0.2.2/24	10.0.2.0/24
RMZ	serial 0/1/0	s 0/1/0.301	301	10.0.3.2/24	10.0.3.0/24
RMZ	serial 0/1/0	s 0/1/0.302	302	10.0.2.1/24	10.0.2.0/24

Para que esto funcione tuvimos que también configurar los circuitos virtuales (PVCs) en la nube Frame Relay:

Circuitos virtuales					
SW1-N	MZ#sh vl br				
VLAN	Name	Status	Ports		
1	default	active	Fa0/6, Fa0/7, Fa0/8, Fa0/9 Fa0/10, Fa0/11, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gig0/2		
	VLAN2		Fa0/1, Fa0/2, Fa0/12		
	VLAN3 VLAN4		Fa0/3, Fa0/4, Fa0/13 Fa0/5, Fa0/14		
1002	fddi-default	active			
1003	token-ring-default	active			
1004	fddinet-default	active			
1005	trnet-default	active			

La configuración de las interfaces seriales involucradas en cada uno de los routers fueron las siguientes:

```
interface Serial0/1/0
no ip address
encapsulation frame-relay
!
interface Serial0/1/0.102 point-to-point
ip address 10.0.1.1 255.255.255.0
frame-relay interface-dlci 102
clock rate 2000000
```

```
!
interface Serial0/1/0.103 point-to-point
ip address 10.0.3.1 255.255.255.0
frame-relay interface-dlci 103
clock rate 2000000
!
```

RBR:

```
interface Serial0/1/0
  no ip address
encapsulation frame-relay
!
interface Serial0/1/0.201 point-to-point
  ip address 10.0.1.2 255.255.255.0
  frame-relay interface-dlci 201
  clock rate 2000000
!
interface Serial0/1/0.203 point-to-point
  ip address 10.0.2.2 255.255.255.0
  frame-relay interface-dlci 203
  clock rate 20000000
!
```

RMZ:

```
interface Serial0/1/0
  no ip address
  encapsulation frame-relay
!
interface Serial0/1/0.301 point-to-point
  ip address 10.0.3.2 255.255.255.0
  frame-relay interface-dlci 301
  clock rate 2000000
!
interface Serial0/1/0.302 point-to-point
  ip address 10.0.2.1 255.255.255.0
  frame-relay interface-dlci 302
  clock rate 20000000
!
```

Topología física

En el mapa de Argentina la topología física se ve de la siguiente manera, considerando que la nube Frame Relay es una representación lógica:

Luego, dentro de cada oficina, en cada edificio de cada ciudad, se encuentra un habitación de cableado con un RACK, donde, entre otras cosas, está el Router, con la conexión serial:

LANs

Topología lógica

La topología lógica de la LAN de Villa María se ve de la siguiente manera:

VLANs

Lo primero fue crear las VLANs en cada switch:

```
SW1-VM(config)#vlan 2
SW1-VM(config-vlan)#name VLAN2
SW1-VM(config)#vlan 3
SW1-VM(config)#vlan 4
SW1-VM(config-vlan)#name VLAN4

BR

SW1-BR(config)#vlan 2
SW1-BR(config-vlan)#name VLAN2
SW1-BR(config-vlan)#name VLAN3
SW1-BR(config)#vlan 3
SW1-BR(config-vlan)#name VLAN3
SW1-BR(config)#vlan 4
SW1-BR(config-vlan)#name VLAN4
```

```
SW1-MZ(config)#vlan 2
SW1-MZ(config-vlan)#name VLAN2
SW1-MZ(config)#vlan 3
SW1-MZ(config-vlan)#name VLAN3
SW1-MZ(config)#vlan 4
SW1-MZ(config-vlan)#name VLAN4
```

Una vez creadas las VLANs lo siguiente fue asignar cada puerto (configurándolo en modo acceso) a la VLAN correspondiente:

VM

```
interface FastEthernet0/1
 switchport access vlan 2
 switchport mode access
interface FastEthernet0/2
 switchport access vlan 2
 switchport mode access
interface FastEthernet0/3
 switchport access vlan 3
 switchport mode access
interface FastEthernet0/4
 switchport access vlan 3
 switchport mode access
ļ
interface FastEthernet0/5
 switchport access vlan 4
 switchport mode access
```

Además, por seguridad, desactivé todas las interfaces del Switch que no se utilizan.

Resultando en: *ignorar DHCP incorporado más adelante

SW1-VM#show int st					
Port	Name	Status	Vlan	Duplex	Speed Type
Fa0/1	#PC1#	connected	2	auto	auto 10/100BaseTX
Fa0/2	#PC2#	connected	2	auto	auto 10/100BaseTX
Fa0/3	#PC3#	connected	3	auto	auto 10/100BaseTX
Fa0/4	#PRN1#	connected	3	auto	auto 10/100BaseTX
Fa0/5	#WRT-300N#	connected	4	auto	auto 10/100BaseTX
Fa0/6	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/7	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/8	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/9	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/10	#EN DESUSO#	disabled 1		auto auto	10/100BaseTX
Fa0/11	#EN DESUSO#	disabled 1		auto auto	10/100BaseTX
Fa0/12	#EN DESUSO#	disabled 1		auto auto	10/100BaseTX
Fa0/13	#EN DESUSO#	disabled 1		auto auto	10/100BaseTX
Fa0/14	#EN DESUSO#	disabled 1		auto auto	10/100BaseTX
Fa0/15	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/16	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/17	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/18	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/19	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/20	#DHCP-SV#	connected	2	auto	auto 10/100BaseTX
Fa0/21	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Fa0/22	#EN DESUSO#	disabled 1		auto auto	10/100BaseTX
Fa0/23	#DHCP-SV#	connected	3	auto	auto 10/100BaseTX
Fa0/24	#EN DESUSO#	disabled l		auto auto	10/100BaseTX
Gig0/1	#AL ROUTER#	connected	trunk	auto	auto 10/100BaseTX
Gig0/2	#EN DESUSO#	disabled l		auto auto	10/100BaseTX

En Bariloche y Mendoza las configuraciones fueron exactamente las mismas, por lo que se muestra la VLAN DB en cada uno de estos:

Bariloche

SW1-BR#show vl br				
VLAN	Name	Status	Ports	
1	default	active	Fa0/6, Fa0/7, Fa0/8, Fa0/9	
			Fa0/10, Fa0/11, Fa0/12, Fa0/13 Fa0/14, Fa0/15, Fa0/16, Fa0/17	
			Fa0/18, Fa0/19, Fa0/20, Fa0/21	
			Fa0/22, Fa0/23, Fa0/24, Gig0/2	
2	VLAN2	active	Fa0/1, Fa0/2	
3	VLAN3	active	Fa0/3, Fa0/4	
4	VLAN4	active	Fa0/5	
1002	fddi-default	active		
1003	token-ring-default	active		
1004	fddinet-default	active		
1005	trnet-default	active		

Mendoza

SW1-MZ#sh vl br				
VLAN	Name	Status	Ports	
1	default	active	Fa0/6, Fa0/7, Fa0/8, Fa0/9 Fa0/10, Fa0/11, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gig0/2	
2	VLAN2		Fa0/1, Fa0/2, Fa0/12	
3	VLAN3	active	Fa0/3, Fa0/4, Fa0/13	
4	VLAN4	active	Fa0/5, Fa0/14	
1002	fddi-default	active		
1003	token-ring-default	active		
1004	fddinet-default	active		
1005	trnet-default	active		

Con estas configuraciones, en cada LAN hay conexión en capa 2, entre dispositivos que se encuentran en la misma VLAN, conectados al mismo Switch.

Ahora, lo que se quiere lograr es conectividad total, para esto empezamos por definir una subred para cada VLAN, el esquema de direcciones que establecimos en clase fue:

10.LOC.VLAN.HOST

Siendo:

LOC 1 = Villa María

LOC 2 = Bariloche

LOC 3 = Mendoza

VLAN = 2,3,4

HOST = GW.1

Es decir, direcciones clase A con un largo de prefijo de 24 bits.

Lo primero que se necesita para que esto funcione correctamente es definir un enlace troncal entre el Switch y el Router, para esto utilizamos la técnica denominada "Router-on-a-Stick" que consiste en configurar una interfaz virtual en el Router para cada una de las vlans que se encuentran en la red, y configurar cada una de estas interfaces virtuales para que envíen tramas con el TAG correspondiente por el enlace troncal.

Configuración del enlace troncal en el Switch:

```
interface GigabitEthernet0/1
description #AL ROUTER#
switchport trunk native vlan 1001
switchport trunk allowed vlan 2-4
switchport mode trunk
```

Resultando en:

SW1-VM#show Port Gig0/1	int tr Mode on	Encapsulation 802.lq	Status trunking	Native vlan
Port Gig0/1	Vlans allowed 2-4	d on trunk		
Port Gig0/1	Vlans allower 2,3,4	d and active in	management do	main
Port Gig0/1	Vlans in spar 2,3,4	nning tree forw	arding state a	nd not pruned

Como se puede observar, definí como VLAN nativa una VLAN que no se utiliza, para prevenir el tráfico sin tags por el enlace troncal, además, solo permití el trafico de las VLANs existentes, lo que significa que si se crea una nueva VLAN no se permitirá automáticamente en el enlace troncal, por lo que el administrador de red tiene un control más estricto sobre la misma. Esta misma configuración fue replicada tanto en el switch de Bariloche como en el switch Mendoza.