Groups

Adam Kelly

Michaelmas 2020, Updated October 17, 2020

This set of notes is a work-in-progress account of the course 'Groups', originally lectured by Dr. Ana Khukhro in Michaelmas 2020 at Cambridge. These notes are not a transcription of the lectures, but they do roughly follow what was lectured (in content and in structure).

These notes are my own view of what was taught, and should be somewhat of a superset of what was actually taught. I frequently provide different explanations, proofs, examples, and so on in areas where I feel they are helpful. Because of this, this work is likely to contain errors, which you may assume are my own. If you spot any or have any other feedback, I can be contacted at ak2316@cam.ac.uk.

During the creation of this document, I consulted a number of other books and resources. All of these are listed in the bibliography.

Contents

1	Groups	2
	1.1 Definition of a Group	2
	1.2 Elementary Properties of Groups	
	1.3 Examples of Groups	3
	1.4 Subgroups	5
	1.5 Generators	7
	1.6 Homomorphisms	7
	1.7 Kernels	10
	1.8 Direct Products	11
2	Examples of Groups	12
	2.1 Cyclic Group	12

§1 Groups

'Groups' is a course which introduces you to the subject of *Abstract Algebra*. Indeed, while groups are one of the simplest and most basic of all the algebraic structures¹, they are immensely useful and appear in almost every area of mathematics.

§1.1 Definition of a Group

We will begin our study of the subject by defining formally what a group is.

Definition 1.1 (Group)

A group is a set G with a binary operation^a * which satisfies the axioms:

- *Identity*. There is an element $e \in G$ such that g * e = e * g = g for every $g \in G$.
- Inverses. For every element $g \in G$, there is an element $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.
- Associativity. The operation * is associative.

We typically refer to a group as defined above by (G,*), which explicitly states that * is the group operation. When the operation being used is clear, we can refer to the group by just G. We will also be omitting the group's operation symbol quite often, for example writing gh = g * h.

In a later section, we will look at some non-trivial examples of groups.

§1.2 Elementary Properties of Groups

With the notion of a group now defined, we can now consider some basic facts that follow directly from the definition of a group. We will first address whether it is possible for a group to have multiple identity elements, or for an element to have multiple inverses (no).

Proposition 1.2 (Uniqueness of the Identity and Inverse)

Let (G, *) be a group. Then there is a unique identity element, and for every $g \in G$, g^{-1} is unique.

Proof. To prove that the identity element is unique, let e and e' be identity elements of G. Then e * e' = e and e * e' = e' by definition, giving e = e'.

To prove that the inverses are unique, suppose that for some $g, h, k \in G$ we have g * h = g * k = e. Then $g^{-1} * g * h = g^{-1} * g * k$, implying h = k. The case of h * g = k * g = e follows analogously.

The next useful fact is the *cancellation law*, whose proof bears a large resemblance to the proof that inverses are unique.

^aSome texts include an additional *closure* axiom, but this is implied by * being a binary operation on G.

¹Apart from 'magmas' I suppose, but they don't tend to be a particularly useful notion.

Proposition 1.3 (Cancellation Law)

If (G, *) is a group, and $a, b, c \in G$, then a * b = a * c and b * a = c * a both imply b = c.

Proof. Taking
$$a*b = a*c$$
 and left-multiplying by a^{-1} we have $a^{-1}*a*b = a^{-1}*a*c$, that is, $b = c$. The other case follows analogously.

The last proposition we will prove in this section gives us a useful result about computing inverses.

Proposition 1.4 (Computing Inverses)

Let (G, *) be a group, and let $g, h \in G$. Then the following hold:

- (i) $(g*h)^{-1} = h^{-1}*g^{-1}$.
- (ii) $(g^{-1})^{-1} = g$.

Proof.

(i) We have
$$(g*h)*(h^{-1}*g^{-1}) = g*(h*h^{-1})*g^{-1} = g*g^{-1} = e$$
, so $(g*h)^{-1} = h^{-1}*g^{-1}$.

(ii) Similarly,
$$g^{-1} * g = e$$
, so $(g^{-1})^{-1} = g$.

§1.3 Examples of Groups

It's probably of some use to have concrete examples of groups in your head, so you can get a feel for what they are. In this section we will present some non-trivial examples of groups (and some examples of non-groups).

It should be recognized that commutativity is *not* a group axiom, and the majority of groups are not commutative. We do have a name for groups where the binary operation is commutative though.

Definition 1.5 (Abelian Groups)

We say a group (G, *) is **abelian** if * is commutative, that is, if for any $g, h \in G$, g * h = h * g.

In this section, we will consider examples of both abelian and non-abelian groups². In the first few cases, the reasons why they are a group are stated. For the others, you should consider how they satisfy the group axioms yourself.

Example 1.6 (The Trivial Group)

The **trivial group** is a group whose only element is the identity, $\{e\}$.

²If you are not familiar with some of the concepts used, such as matrices or modular arithmetic, feel free to ignore those examples.

Example 1.7 (Additive Group of Integers)

 $(\mathbb{Z},+)$ is an group. We have

- The identity element $0 \in \mathbb{Z}$, as a + 0 = 0 + a = a for any $a \in \mathbb{Z}$
- The inverse of $a \in \mathbb{Z}$ being -a, as a + (-a) = (-a) + a = 0.
- The operation + is associative and commutative.

We also have the additive group of rationals $(\mathbb{Q},+)$, of reals $(\mathbb{R},+)$, and of complex numbers $(\mathbb{C},+)$ for the same reasons.

Example 1.8 (Addition Modulo n)

Let $n \in \mathbb{N}$, and let $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ denote the set of residues modulo n. Then $(\mathbb{Z}/n\mathbb{Z}, +)$ is a group (where addition is done modulo n). We have

- The identity element is $0 \pmod{n}$, as $a + 0 \equiv 0 + a \equiv a \pmod{n}$.
- The inverse of $a \in \mathbb{Z}/n\mathbb{Z}$ is -a, as $a + (-a) \equiv 0 \pmod{n}$.
- \bullet Addition modulo n is associative.

Example 1.9 (Non-zero Rationals)

Let \mathbb{Q}^{\times} denote the set of non-zero rationals. Then $(\mathbb{Q}^{\times}, \times)$ is a group.

Similarly, we also have the groups $(\mathbb{R}^{\times}, \times)$ and $(\mathbb{C}^{\times}, \times)$.

Example 1.10 (Multiplication Modulo p)

Let p be a prime, and let $(\mathbb{Z}/p\mathbb{Z})^{\times}$ denote the set of non-zero residues modulo p. Then $((\mathbb{Z}/p\mathbb{Z})^{\times}, \times)$ is a group (where multiplication is done modulo p).

Example 1.11 (General Linear Group)

Let $GL_n(\mathbb{R})$ be the set of $n \times n$ matrices with non-zero determinant. Then $(GL_n(\mathbb{R}), \times)$ is the **general linear group**^a.

Example 1.12 (Special Linear Group)

Let $\mathrm{SL}_n(\mathbb{R})$ be the set of $n \times n$ matrices with determinant 1. Then $(\mathrm{SL}_n(\mathbb{R}), \times)$ is the special linear group.

Non-Examples of Groups

We will now give some examples of sets with operations that are not groups. It should be useful to think about why each example does not satisfy the group axioms.

^aUsing matrix multiplication

Example 1.13 (Non-Examples of Groups)

The following are are all *not* groups.

- \bullet (\mathbb{Z}, \times)
- (\mathbb{Q}, \times)
- The set of 2×2 matrices with matrix multiplication.
- $(\mathbb{R},*)$ where $r*s = r \times r \times s$
- $(\mathbb{N},*)$ where n*m=|n-m|.

§1.4 Subgroups

Given any mathematical structure, it can be useful to know about its *substructure*. In the case of a group (G, *), one might ask the question is there some subset $H \subseteq G$ that still acts like a group? This motivates the introduction of *subgroups*.

Definition 1.14 (Subgroups)

Let (G, *) be a group. A subset $H \subseteq G$ is a **subgroup** of G if (H, *) is also a group. If H is a subgroup of G, we will write $H \leq G$.

Example 1.15 (Examples of Subgroups)

The following are subgroups.

- For any group G, we have the **trivial subgroups** $\{e\} \leq G$ and $G \leq G$.
- $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ with addition.
- $\{0, 2, 4, \dots\} \leq \mathbb{Z}$ with addition.
- $\mathrm{SL}_n(\mathbb{R}) \leq GL_n(\mathbb{R})$ with matrix multiplication.

Checking whether something is a subgroup is easier than checking if something is a group, since we already know about the structure of the group. To check whether H is a subgroup of (G,*), we can just check the following hold:

- Closure. * is closed in H.
- Identity. $e \in H$.
- Inverses. For $h \in H$, we also have $h^{-1} \in H$.

These can all be combined into a single test, that is sometimes known as the 'subgroup checking lemma'.

Lemma 1.16 (Subgroup Criterion)

A subset H of a set G is a subgroup of (G,*) if and only if H is non-empty and $x*y^{-1} \in H$ for all $x,y \in H$.

Proof Sketch. First check that the conditions of H being non-empty and $x*y^{-1} \in H$ imply that it's a subgroup. Then, show that if H is not a subgroup, then either H is empty or $x*y^{-1} \notin H$ for some $x,y \in H$.

As an example of using subgroups, let's try to characterize all of the subgroups of $(\mathbb{Z}, +)$.

Theorem 1.17 (Subgroups of \mathbb{Z})

The subgroups of $(\mathbb{Z}, +)$ are precisely the subsets of the form $n\mathbb{Z}$ for $n \in N$, where $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}.$

Proof. First, we prove that $n\mathbb{Z}$ is a subgroup. Fix $n \in \mathbb{N}$.

- Closure. Given $nk_1, nk_2 \in n\mathbb{Z}$, then $nk_1 + nk_2 = n(k_1 + k_2) \in n\mathbb{Z}$.
- *Identity.* $0 = n \cdot 0 \in n\mathbb{Z}$.
- Inverses. The inverse of nk is $-nk = n(-k) \in n\mathbb{Z}$.

Thus each is subgroup. Now we prove that there is no other subgroups.

Let $H \leq Z$. If $H = \{0\}$, then $H \equiv 0\mathbb{Z}$. If not, then take the smallest positive element in H (namely n). since H is a subgroup, it's closed and contains inverses, so $n + n + \cdots + n \in H$ and $-n - n - n - \cdots - n \in H$, so $n\mathbb{Z} \subseteq H$.

Suppose, for a contradiction, there is some $k \in H$ such that $k \neq n\mathbb{Z}$. So, there is some integer n such that nm < k < n(m+1). But then $0 \leq k - nm < n$, and $k - nm \in H$ which is a contradiction, so $H = n\mathbb{Z}$.

We can use the definition of a subgroup to proof some elementary facts about subgroups.

Proposition 1.18 (Elementary Properties of Subgroups)

Let G be a group.

- (i) Let H and K be subgroups of G. Then $H \cap K \leq G$.
- (ii) If $K \leq H$ and $H \leq G$ then $K \leq G$ (being a subgroup is transitive).
- (iii) If $K \subset H$, $H \leq G$ and $K \leq G$, then $K \leq H$.

Proof. There is multiple ways to prove these, but we will use the subgroup criterion as an example of it being used.

- (i) Note that $H \cap K$ is not empty as $e \in H$ and $e \in K$. Then, for any $x, y \in H \cap K$, it suffices to show that $x * y^{-1} \in H$. By the subgroup criterion, we have $x * y^{-1} \in H$ and $x * y^{-1} \in K$, thus $x * y^{-1} \in H \cap K$, and we are done.
- (ii) If $K \leq H$, then for any $x, y \in K$, we have $x * y^{-1} \in K$. Then as $K \subset H \subset G$, we must have $x * y^{-1} \in G$, and thus $K \leq H$.
- (iii) As $K \leq G$, we know K is non-empty. Thus it suffices to show that $x * y^{-1} \in K$ for any $x, y \in H$. But this is implied by $K \leq G$ and the subgroup criterion, and thus as $K \subset H$, $K \leq H$.

§1.5 Generators

We will now consider a certain kind of subgroup, which is specified by some of the elements it contains.

Definition 1.19 (Subgroup Generated By A Subset)

For some set $X \subseteq G$, we define the **subgroup generated by** X, $\langle X \rangle$, to be the smallest subgroup of G which contains X.

From this definition, we can see that we must have $e \in \langle X \rangle$ and $X \subseteq \langle X \rangle$. Also, $\langle X \rangle$ must contain all products of elements in X and their inverses. We can put this in a more useful form with the following proposition.

Proposition 1.20

Let X be a non-empty subset of G. Then $\langle X \rangle$ is the set of elements of G of the form $x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k}$ where $x_i \in X$ (not necessarily distinct), $\alpha_i = \pm 1$ and $k \geq 0$ (For k = 0, we say the element is e).

Proof. Let T be the set of such elements. Clearly $T \subseteq \langle X \rangle$, and also clearly T is a subgroup of G. We also have that $X \subseteq T$ so $\langle X \rangle \subseteq T$. Thus $T = \langle X \rangle$.

Example 1.21

We have $(\mathbb{Z}, +) = \langle 1 \rangle = \langle 2, 3 \rangle^a$, and $\mathbb{Z}/5\mathbb{Z} = \langle 1 \rangle = \langle 3 \rangle$.

^aNote that we write $\langle 2, 3 \rangle$ instead of $\langle \{2, 3\} \rangle$.

In the above examples, we found that there was some subset of the elements in each of the group where if we considered the subgroup generated by those elements, we get the entire group. There is a special name for such subsets.

Definition 1.22 (Generators)

If X is a subset of G such that $\langle X \rangle = G$, then we call X a **generator** of G.

Notably, these generators are not distinct, as can be seen in the example above.

§1.6 Homomorphisms

Imagine you had two groups, G and H and you wanted to think of a function from H to G that preserved some of the structure of the group. Let's say the function was $\phi: H \to G$. We could take any two elements $h_1, h_2 \in H$, and we could find h_1h_2 , and then apply ϕ to get $\phi(h_1h_2)$. Alternatively, we could try and find $\phi(h_1)$ and $\phi(h_2)$, and then get $\phi(h_1)\phi(h_2)$. If these were the same, then the function ϕ would indeed preserve some of the structure of the group. This motivates the introduction of homomorphisms.

Definition 1.23 (Homomorphism)

Let $(G, *_G)$ and $(H, *_H)$ be groups. A function $\phi: H \to G$ is a group homomor-

phism if for all $a, b \in H$,

$$\phi(a *_H b) = \phi(a) *_G \phi(b).$$

Example 1.24 (Inclusion Function)

If $H \leq G$, then the function $\iota : H \to G$ that has $\iota(h) = h$ for $h \in H$ is a homomorphism. It is also injective.

Example 1.25

The function $\phi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ with $\phi(k) = k \pmod{n}$ is a homomorphism, since for $k, l \in \mathbb{Z}$,

$$\phi(k+l) = (k+l) \mod n = (k \mod n) + (l \mod n) = \phi(k) + \phi(l).$$

 ϕ is also surjective, since $\{0,1,\cdots,n-1\}$ are all the possible residues modulo n.

Example 1.26

The function $\phi:(\mathbb{R},+)\to(\mathbb{R}^*,\cdot)$ where $x\to e^x$ is a homomorphism. We have

$$\phi(x+y) = e^{x+y} = e^x \cdot e^y = \phi(x) \cdot \phi(y).$$

It is injective, as $e^x = e^y$ implies x = y using logarithms, and surjective, as given $a \in \mathbb{R}^*$, $\phi(\log a) = e^{\log a} = a$.

We can see some natural consequences of this definition of a homomorphism, which shows how well it preserves the group's structure.

Proposition 1.27 (Properties of Homomorphisms)

Let $\phi: H \to G$ be a homomorphism.

- (i) $\phi(e_h) = e_q$.
- (ii) $\phi(h^{-1}) = \phi(h)^{-1}$ for all $h \in H$.
- (iii) If $\psi:G\to K$ is another homomorphism, then $\psi\circ\phi:H\to K$ is also a homomorphism.

Proof.

- (i) We have $e_H *_H e_H = e_H$, so $\phi(e_H * e_H) = \phi(e_H) *_G \phi(e_H) = \phi(e_H)$, so by the cancellation law, $\phi(e_H) = e_G$.
- (ii) Consider $\phi(h) *_G \phi(h^{-1}) = \phi(h *_H h^{-1}) = \phi(e_H) = e_G$, by (i). So $\phi(h) *_G = \phi(h^{-1}) = e_G$ which is the defining property of an inverse, so $\phi(h^{-1}) = \phi(h)^{-1}$.

(iii) We have

$$(\psi \circ \phi)(a*_H) = \psi(\phi(a*_H b))$$

$$= \psi(\phi(a)*_G \phi(b))$$

$$= \psi(\phi(a))*_K \psi(\phi(b))$$

$$= (\psi \circ \phi)(a)*_K (\psi \circ \phi)(b),$$

so $\psi \circ \phi$ is a homomorphism from $H \to K$.

There is a special case of homomorphism, which we can use to define when two groups 'are the same'.

Definition 1.28 (Isomorphism)

If a function $\phi: H \to G$ is bijection, and ϕ is also a homomorphism from $H \to G$, then we say it is an **isomorphism**. We say two groups H, G are **isomorphic**, written $H \cong H$ if there is an isomorphism from $H \to G$.

Having an isomorphism between two groups can be thought of in a few ways. Because we have a bijection function between the two groups, the groups must have the same order. But also, because a homomorphism preserves the structure of the group, we must also have the same group-structure within each group. Thus, when we have two isomorphic groups, we can think of them as two different descriptions of the same group.

For example, we might claim that 'there is exactly one group of order 2', and what we mean is that for any group of order 2, we can find an isomorphism to any other group of order 2.

Example 1.29

Consider the group $G = \{1, i, -1, -i\}$ with complex multiplication. Then $G \cong \mathbb{Z}/4\mathbb{Z}$. This is isomorphic with the isomorphism $\phi: G \to \mathbb{Z}/4\mathbb{Z}$, where

$$\phi(1) = 0,$$

$$\phi(i) = 1,$$

$$\phi(-1) = 2,$$

$$\phi(-i) = 3$$

The general case is true too, where the group $H = \{e^{2\pi i k/n} : 0 \le k \le n-1\}$ with complex multiplication is isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

Example 1.30 (\mathbb{Z} 's subgroups are isomorphic)

 $\mathbb{Z} \cong n\mathbb{Z}$ for $n \in \mathbb{Z}$, as defined in Theorem 1.17.

It's worth noting that because isomorphisms are bijective, we have the following result.

Proposition 1.31 (Inverses of isomorphisms are isomorphisms)

Let $\phi: H \to G$ be an isomorphism. Then $\phi^{-1}: G \to H$ is also an isomorphism.

Proof Sketch. Check that ϕ^{-1} is a homomorphism.

§1.7 Kernels

When dealing with homomorphisms, say $\phi: H \to G$, it is useful to be able to think about what elements in H our homomorphism 'reaches'. Another useful idea is thinking about what elements in H get mapped to the identity of G. To think about these questions, we use concepts of a homomorphism's *image* and *kernel*.

Definition 1.32 (Image)

Let $\phi: H \to G$ be a homomorphism. We define the **image** of ϕ to be the set

$$img(\phi) = \{g \in G : g = \phi(h) \text{ for some } h \in H\}.$$

Definition 1.33 (Kernel)

Let $\phi: H \to G$ be a homomorphism. We define the **kernel** of ϕ to be the set

$$\ker(\phi) = \{ h \in H : \phi(h) = e_G \}.$$

Indeed, while both of these are subsets of G and G respectively, they are also subgroups.

Proposition 1.34 (The Image and Kernel are Subgroups)

Let H and G be groups and let $\phi: H \to G$ be a homomorphism. Then $\operatorname{img}(\phi)$ is a subgroup of G, and $\ker(\phi)$ is a subgroup of H.

Proof. We consider the two sets separately.

1. We will show $\operatorname{img}(\phi) \leq G$. For any $x, y \in \operatorname{img}(\phi)$, let $x = \phi(x')$ and $y = \phi(y')$ for $x', y' \in H$. Then

$$\phi(x'y'^{-1}) = \phi(x')\phi(y')^{-1} = xy^{-1} \in \text{img}(\phi),$$

thus by the subgroup criterion $img(\phi) \leq G$.

2. Now we show $\ker(\phi) \leq H$. For $x, y \in \ker(\phi)$, we have $xy^{-1} \in \ker(\phi)$, as

$$\phi(xy^{-1}) = \phi(x)\phi(y^{-1}) = \phi(x)\phi(y)^{-1} = e_G$$

so again using the subgroup criterion, $\ker(\phi) \leq H$.

Example 1.35

 $\phi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, where $\phi(k) = k \pmod{n}$ has $\operatorname{img}(\phi) = \mathbb{Z}/n\mathbb{Z}$ and $\ker(\phi) = n\mathbb{Z}$.

One of the beauties of introducing the kernel and image is that it allows us to easily see whether a homomorphism is surjective or injective.

Proposition 1.36 (Surjectivity and Injectivity Criterion)

Let $\phi: H \to G$ be a homomorphism.

- (i) ϕ is surjective iff $img(\phi) = G$.
- (ii) ϕ is injective iff $\ker(\phi) = \{e\}$.

Proof. The first is true by definition, so we prove (ii). Suppose ϕ is injective, then as we have $\phi(e_H) = e_G$, so e_H must be the only element sent to e_G (by the definition of injectivity), which implies that $\ker(\phi) = \{e_H\}$. Now suppose that $\ker(\phi) = \{e_h\}$. Then if $\phi(a) = \phi(b)$ for some $a, b \in H$, we have $\phi(ab^{-1}) = \phi(a)\phi(b)^{-1} = \phi(b)\phi(b)^{-1} = e_G$. However, this implies $ab^{-1} = e_H$, so a = b, and ϕ is injective. \Box

§1.8 Direct Products

How can we easily find a group that will have two given groups G, H as subgroups? With the aim of getting the simplest construction possible, we can 'stick them together' in an 'abelian way': by defining a group operation on the product $G \times H = \{(g,h) : g \in G, h \in H\}$ (a set of ordered pairs).

Definition 1.37 (Direct Product)

The **direct product** of two groups G, H is the set $G \times H$ with the operation of component-wise composition,

$$(g_1, h_1) * (g_2, h_2) = (g_1 *_G g_2, h_1 *_H h_2).$$

Proposition 1.38

The direct product of two groups G and H is a group.

Proof Sketch. Check everything component-wise.

This group contains subgroups isomorphic to G and H, taking $G \times \{e_H\}$ and $\{e_G\} \times H$.

A useful idea might be to try and recognize when a group is a direct product of two groups. This can be done with the following theorem.

Theorem 1.39 (Direct Product Theorem)

Let $H, K \leq G$ such that

- 1. $H \cap K = \{e\}$
- 2. $\forall h \in H \text{ and } k \in K$, we have hk = kh
- 3. $\forall g \in G$, there exists $h \in H$, $k \in K$ such that g = hk

then $G \cong H \times K$.

TODO: Fill in details here

We now have two ways to think about the direct product.

- If we have two groups H, K, we can form their direct product $H \times K$, and view H and K as subgroups, namely $H \times \{e_k\}$ and $\{e_H\} \times K$.
- Given a group with subgroups H and K, which satisfy the conditions of the direct product theorem, then we know that we are really dealing with $H \times K$.

Indeed these are just two descriptions of the same thing. The convention is often to refer to $H \times \{e_k\}$ and $\{e_H\} \times K$ as H and K respectively.

TODO: Go over this a bit more, and give an actually useful example

§2 Examples of Groups

Now that we have seen some properties of groups, we will now consider some important examples of groups.

§2.1 Cyclic Group

Recall the notion of a generator from Definition 1.22.

Definition 2.1 (Cyclic)

If G is a group and there is some $a \in G$ such that $\langle a \rangle$ is a generator of G, then we say G is **cyclic**.

Notably, if this is the case, for all $b \in G$, there exists $k \in \mathbb{Z}$ such that $b = a^k$.

Example 2.2 (Examples of Cyclic Groups)

The following groups are all cyclic.

- $(\mathbb{Z}, +)$, which is generated by $\langle 1 \rangle$ or $\langle -1 \rangle$.
- $(\mathbb{Z}/n\mathbb{Z}, +)$, generated by $\langle 1 \rangle$. Indeed, any k coprime to n will satisfy $\langle k \rangle = \mathbb{Z}/n\mathbb{Z}$.
- Let $G = \{e^{2\pi i k/n} : 0 \le k \le n-1\}$. Then (G, \cdot) is generated by $\langle e^{2\pi i k/n} \rangle$ where k is coprime to n.

These groups all have the same 'feel' to them, and indeed they are all isomorphic to the following group.

Definition 2.3 (Cyclic Group C_n)

Let C_n be the group of elements $\{e = a^0, a, a^2, \dots, a^{n-1}\}$, where $a^k * a^j = a^{k+j \pmod{n}}$. Then $(C_n, *)$ is the **cyclic group of order** n.

Biblography

TODO: Make this proper.

- Napkin by Evan Chen Used for a good few of the examples
- Abstract Algebra by Dummit and Foote General Reference
- A Book of Abstract Algebra, Charles Pinter General Reference
- Dexter Chua and David Bai's notes For a general view on the course structure before the lectures were completed, along with some of the proofs that were omitted from our lectures.