Car Plate Recognition and Reconstruction with Deep Learning

Computer Vision Exam

Motivation

- License Plate Recognition is essential in:
 - Intelligent traffic systems
 - Law enforcement
 - Automated access control
- Real-world challenges:
 - Motion blur, poor lighting, angle distortion

Source: Automated License Plate Recognition Parking Solution. (s. d.).

Axiomtek

Project Scope & Objectives

- Goal: implement and evaluate a license plate recognition pipeline
- Baseline: build a simple recognition model to decode cropped license plates
- Paper reproduction: reproduce the two-stage method proposed by Tao et al., 2024 - "A Real-Time License Plate Detection and Recognition Model in Unconstrained Scenarios"
 - 1. YOLOv5 for license plate detection
 - 2. PDLPR model for character sequence recognition
- Objective: compare the baseline with the reproduced method

Dataset - CCPD

- Real-world plate dataset
- 250k+ images with bounding boxes and ground truth labels
- Covers diverse plate formats, conditions, angles
- Organized in different subsets
 - Trained on weather subset
 - Evaluated on base subset

Source: Xu, Z., Yang, W., Meng, A., Lu, N., Huang, H., Ying, C., & Huang, L. (2018). Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline.

Baseline Model

Bounding box model:

Simple CNN to predict the coordinates, uses MSE as loss

OCR model:

- Sequence-to-sequence architecture with attention
- Decodes the text from the cropped images, uses cross-entropy as loss

Limitations:

- OCR model sensitive to misaligned or bad crops
- Character predictions deteriorate with input noise

Paper Reproduction YOLOv5 Detection Results

- Trained with plate bounding boxes from CCPD
- Accurate and fast plate detection:
 - Reached accuracy (loU > 0.7):
 93.4%

Inference example

Paper Reproduction PDLPR

- Parallel Decoding License Plate Recognition (PLDPR)
- Transofrmer-based with CTC loss
- Training issues:
 - Not enough ressources
 - Model colapse
- Not a structural issue

Source: Tao, L., Hong, S., Lin, Y., Chen, Y., He, P., & Tie, Z. (2024). A Real-Time License Plate Detection and Recognition Model in Unconstrained Scenarios

Results and observations

- For the detection plate model
 - The classic CNN with MSE could not learn the bboxes (acc. 5.9%)
 - YOLOv5 solved the task (acc. 93.4%)
- For the text recognition model
 - Baseline not complex enough, but started learning
 - Normalized Levenshtein distance < 1
 - Could predict the first two characters
 - Issues with PLDPR, no structural problems (lack of resources)

Why the Paper Works Better

Theoretically

YOLOv5

Trained for object detection → accurate bounding boxes

PDLPR

- Uses self-attention and parallel decoding
- Robust to variable-length (not necessary) and noisy inputs

Baseline limits

No detection logic for the bounding box & OCR model not complex enough

Final Evaluation

- Positive outcomes
 - YOLOv5 detector performed well on CCPD
 - CNN baseline provided some useful bounding boxes
 - Seq2Seq provided some accurate characters (measured with Levenshtein)
- Remaining challenges
 - CNN accuracy far from YOLOv5
 - Could not get results from PDLPR