3D tumor spheroids

This manuscript (permalink) was automatically generated from SharikHR/review@c2019b4 on May 8, 2020.

Authors

• Sharik Hernandez

 $\bigcirc \underline{\text{XXXX-XXXX-XXXX}} \cdot \bigcirc \underline{\text{SharikHR}}$

Department of \cdot Funded by Grant XXXXXXXX

• None

D XXXX-XXXX-XXXX

Department of; Department of

Abstract

Open collaborative writing with Manubot 1

Introduction

PDAC belongs to the top five of cancer-related deaths in the world and the poor prognosis is primarily due to its advanced stage at diagnosis, the progress in its treatment remains too slow as a consequence of the complex physiopathology of this tumor characterized by a heterogeneous cellular composition and the accumulation of a very dense fibrotic tissue [???]: Due to that pancreatic cancer is a heterogeneous disease, is often modelled using established cell lines in the laboratory.

In recent years, three-dimensional (3D) culture systems have gained increasing recognition as an effective tool for biological research. One widely used 3D culturing technique is the application of multicellular spheroids (MCS). Cells cultured in 3D more closely mimic the physiological environment compared to conventional monolayer culture systems. Spheroids are three-dimensional spherical cellular aggregates with high cell-density, that more closely simulate conditions existing in solid tumors where hypoxia and alterations related to intracellular metabolism occur due to poor availability of nutrients from blood vessels 2.

Pancreatic tumor microenvironment

In Pancreatic ductal adenocarcinoma (PDA), the major components of the tumor microenvironment are a complex population of fibroblasts forming the bulk of the stroma, vasculature, inflammatory and immune cells 3. PDA is associated with evolving alterations in the tumor microenvironment, including increasing fibrosis and extracellular matrix deposition (desmoplasia). Increasing desmoplasia accompanies progressive disease and creates intratumoral pressure that compresses the vasculature, resulting in limited blood flow to the tumor and consequent hypoxia and low nutrient delivery 4.

Interactions between the neoplastic and non-neoplastic cells and cellular matrix have been proposed to stimulate the extensive desmoplastic reaction. Stroma production is promoted by the activation of multiple cell signalling pathways [5; 10.1002/mc.20827] these signalling cascades lead to secretion of structural matrix components including proteoglycans, collagen and fibronectin and the activation of catalytic enzymes such as proteinases.

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, they are involved in degradation of the extracellular matrix . MMPs support tissue remodeling and stimulate neovascularization and inflammatory response, both in physiological and in pathological conditions, for example, in tumors $\underline{6}$.

MMP-2, MMP-7, and MMP-9 expressions correlate with various morphological features of the PDAC tumor such as inflammation, necrosis, and formation of the new blood vessels $\frac{7}{2}$ and their tissue inhibitors (TIMPs) TIMPs 1–3 compared with normal pancreas $\frac{8}{2}$.

Pancreatic stellate cells (PSC) are responsible for desmoplasic generation $\underline{9}$. The activation of PSC from a quiescent to an activated state is an intercellular stimuli from tumor-stromal interactions. PCS can be transform into myofibroblast-like cells, which express α -smooth muscle actin (α -SMA) as cancer-associated fibroblasts (CAF) [$\underline{10}$; 10.1053/j.gastro.2010.05.084].

CAF are important components of tumor stroma and affect cancer growth, survival, metastasis, angiogenesis and resistance to chemotherapy or radiotherapy through various cytokines 11, and contribute to a diminished immune function 12.

2D and 3D cell culture

Cell culture is a widely used *in vitro* tool to improve the understanding of cell biology, cellular mechanisms, tissue morphology, drug action, protein production and the development of tissue engineering <u>13</u>.

Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to better mimic the in vivo situation than two-dimensional (2D) cell culture 14.

A comparative molecular analyses from 2D and 3D *in vitro* conditions revealed that cancer cell phenotype is highly influenced by its microenvironment. Through the examination of cancer cell transcriptional behavior, cellular processes were closely linked to functions promoted by different culturing conditions. Cancer cells grown in monolayers favored rapid proliferation, and this behavior was corroborated by up-regulation of cell cycle progression genes in addition to metabolic processes that synthesize DNA, RNA, and proteins. Unlike cancer cells cultured in monolayers, cancer cells in 3D down-regulate proliferative processes, while up-regulating genes involved in ECM organization and cell adhesion 15.

When performing 3D cell culture experiments, the cell environment can be manipulated to mimic that of a cell in vivo and provide more accurate data about cell-to-cell interactions, tumor characteristics, drug discovery, metabolic profiling, stem cell research, and other types of diseases 16.

Alterations in cancer cell behavior under different growth conditions underlie the importance of defining culturing conditions that preserve endogenous tumor behavior. While monolayer cultures promote the most non-native behavior of cancer cells, this model still maintains value due to its ease and scalability towards applications targeting cancer-growth driving pathways. However, analysis and discovery of potential therapeutics targeting stromal interactions, ECM development, or cell signaling may yield erroneous results in this system. The 3D culturing and inclusion of stromal cell types do show increased similarity to in vivo cancer behavior. However, improvements upon ex vivo culture conditions that allow all stromal components to persist will greatly enhance our ability to conduct preclinical screens that may more closely recapitulate the biological responses of patients 15.

The structure of multicellular spheroids.

MCSs are cell aggregates with complex cell-to-cell adhesions and cell-to-matrix interactions, which results in gradient generation for nutrients, gases, growth factors and signal factors 17.

It has been reported that MCS formation involves three critical steps. In the first stage, dispersed single-cells are drawn closer to form aggregations where ECM fibers act as a long-chain linker through the binding of integrins. This is followed by a period in which cell aggregates pause in compaction, because of the accumulation of sufficient amounts of E-cadherins. Finally, in the third stage, cells are compacted into solid aggregates to form MCSs due to the homophilic cadherin–cadherin binding 18.

The formation of MCS process initiates with an spontaneous self-assembly and cell-cell interactions. These interactions are regulated by adhesions proteins such as E-cadherin, α -catenin and P-cadherin [19; doi.org/10.1038/s41598-018-19384-0; 10.3892/ijo.31.6.1403] Cell-to-matrix interactions is the base for cell building and is influenced by integrins mainly by β 1-integrin. The integration of integrin-

ECM facilitates the cell aggregation process that connect a cell with its environment in the context of spheroid formation [18; 10.1016/S0002-9440(10)63058-1; 10.1007/s00441-005-0148-2].

The cytoskeleton also plays an important role in spheroid formation. During spheroid formation the actin filaments undergo significant changes and the expanded microfilaments as stress fibres become along the cell periphery. In this step, the cytoskeleton is a force generation structure performing a continuos pre-stressed lattice that keeps structural stability [20; 10.1002/1097-0169(200103)48:3<175::AID-CM1007>3.0.CO;2-2].

The internal structure of spheroids comprises different cell layers. MCS include hypoxic, proliferative apoptotic/necrotic areas as a consequence of oxygen and nutrient gradients [???]. Small microspheroids of <200µm diameter mostly include proliferating and normoxic cells, mimic three-dimensional cell-cell and cell-matrix interactions but they are inappropriate to reflect pathophysiological conditions with hypoxic areas in the spheroid center or to mimic proliferation gradients 21. However, spheroids with diameters of approximately 200-300µm results in a typical zonation, with proliferative zones at the surface co-existing with normoxic quiescent zones in the middle and hypoxic zones in the core 22. Finally, MCS > 500 µm diameter the formation of necrotic areas is observed as described in microregion of tumor *in vivo* 23.

Due to these characteristics, MCS mimic the first avascular stages of tumor formation, and exhibit important tumor aggressiveness features such as enhanced multicellular resistance, migration, and invasion, as well as an enhanced clonogenic capacity $\frac{24}{2}$.

Methods for the generation of MCS

MCS and PDA

Due to that pancreatic cancer is a heterogeneous disease researchers have been developed models capable to reproduce *in vitro* the heterogeneous tumor microenvironment.

Several methods to create 3D tumors *in vitro* have been proposed, with hanging drop technique being the simplest and most frequently used. However, in many cell lines this method has failed to form the desired 3D tumor structures.

A modified hanging drop method for 3D spheroid formation facilitated with methylcellulose yield a straightforward production of spheroids in PDAC cells and form well-rounded spheroids after 5 days in hanging drops. These spheroidshave have high tolerance to mechanical force, thus enabling standard manipulations and display some hallmarks of solid tumors, such as hypoxic zone, proliferating cells, and apoptotic regions <u>25</u>.

3D pancreatic cancer spheroids, based on pancreatic cancer cells and fibroblast co-culture demonstrate innate desmoplastic properties and stay poorly permeable with relevant diffusion barrier function. Spheroid-based xenografts produced different extracellular matrix (ECM) components with uniformity in terms of ECM architecture recapitulating clinical PDAC tumors. Moreover, establishment of tumors by transplantation of spheroids demonstrate higher expression of pro-fibrotic and pro-survival PDAC hallmarks 26.

In the last years the characterization of a novel 3D tumor model has been in full swing. A triple coculture of pancreatic cancer cells (PANC-1), fibroblasts (MRC-5) and endothelial cells (HUVEC) to form a heterotype multicellular tumor spheroid (MCTS). The integration of the three cell types enable the presence of a core rich in fibroblasts and fibronectin in which endothelial cells are homogeneously distributed <u>27</u>. A microchannel model allow to develop a 3D pancreatic tumor in *vitro* by co-culturing pancreatic tumor spheroids with PSC in a collagen matrix. Under these conditions spheroids and PSCs are mutually activated when co-cultured. Under co-culture condition, tumor spheroids acquire a migratory phenotype with cancer cell-cell interactions, cell-ECM interactions, and cancer cell-PSC interactions <u>28</u>.

References

1. Open collaborative writing with Manubot

Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu, Venkat S. Malladi, Casey S. Greene, Anthony Gitter

PLOS Computational Biology (2019-06-24) https://doi.org/c7np

DOI: 10.1371/journal.pcbi.1007128 · PMID: 31233491 · PMCID: PMC6611653

2. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers

Patrícia M. R. Pereira, Naxhije Berisha, N. V. S. Dinesh K. Bhupathiraju, Rosa Fernandes, João P. C. Tomé, Charles Michael Drain

PLOS ONE (2017-05-17) https://doi.org/f986w7

DOI: 10.1371/journal.pone.0177737 · PMID: 28545086 · PMCID: PMC5435229

3. Stromal biology of pancreatic cancer

Gerald C. Chu, Alec C. Kimmelman, Aram F. Hezel, Ronald A. DePinho *Journal of Cellular Biochemistry* (2007-07-01) https://doi.org/b8w83q

DOI: 10.1002/jcb.21209 · PMID: 17266048

4. Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up

R. M. Perera, N. Bardeesy

Cancer Discovery (2015-11-03) https://doi.org/ggt22b

DOI: <u>10.1158/2159-8290.cd-15-0671</u> · PMID: <u>26534901</u> · PMCID: <u>PMC4687899</u>

5. Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway

Takao Ide, Yoshihiko Kitajima, Atsushi Miyoshi, Takao Ohtsuka, Mayumi Mitsuno, Kazuma Ohtaka, Yasuo Koga, Kohji Miyazaki

International Journal of Cancer (2006-12-15) https://doi.org/bcmh42

DOI: <u>10.1002/ijc.22178</u> · PMID: <u>16998831</u>

6. ALTERED MATRIX METALLOPROTEINASE EXPRESSION ASSOCIATED WITH ONCOGENE-MEDIATED CELLULAR TRANSFORMATION AND METASTASIS FORMATION

R Baruch

Cell Biology International (2001-05) https://doi.org/fnvccv

DOI: 10.1006/cbir.2000.0647 · PMID: 11401328

7. Expressions of Matrix Metalloproteinases 2, 7, and 9 in Carcinogenesis of Pancreatic Ductal Adenocarcinoma

Katarzyna Jakubowska, Anna Pryczynicz, Joanna Januszewska, Iwona Sidorkiewicz, Andrzej Kemona, Andrzej Niewiński, Łukasz Lewczuk, Bogusław Kędra, Katarzyna Guzińska-Ustymowicz *Disease Markers* (2016) https://doi.org/f9hdkw

DOI: <u>10.1155/2016/9895721</u> · PMID: <u>27429508</u> · PMCID: <u>PMC4939209</u>

8. Comprehensive Analysis of Matrix Metalloproteinase and Tissue Inhibitor Expression in Pancreatic Cancer: Increased Expression of Matrix Metalloproteinase-7 Predicts Poor Survival

L. E. Jones

Clinical Cancer Research (2004-04-15) https://doi.org/c7sfqg

DOI: <u>10.1158/1078-0432.ccr-1157-03</u> · PMID: <u>15102692</u>

9. Conophylline suppresses pancreatic cancer desmoplasia and cancer-promoting cytokines produced by cancer-associated fibroblasts

Norihiro Ishii, Kenichiro Araki, Takehiko Yokobori, Kei Hagiwara, Dorgormaa Gantumur, Takahiro Yamanaka, Tadashi Handa, Mariko Tsukagoshi, Takamichi Igarashi, Akira Watanabe, ... Ken Shirabe *Cancer Science* (2018-12-13) https://doi.org/ggt57m

DOI: <u>10.1111/cas.13847</u> · PMID: <u>30353606</u> · PMCID: <u>PMC6317962</u>

10. A Starring Role for Stellate Cells in the Pancreatic Cancer Microenvironment

Minoti V. Apte, Jeremy S. Wilson, Aurelia Lugea, Stephen J. Pandol *Gastroenterology* (2013-05) https://doi.org/f2j2rr

DOI: 10.1053/j.gastro.2012.11.037 · PMID: 23622130 · PMCID: PMC3729446

11. Cancer-associated fibroblasts in pancreatic adenocarcinoma

Boju Pan, Quan Liao, Zheyu Niu, Li Zhou, Yupei Zhao *Future Oncology* (2015-09) https://doi.org/f7sxbh

DOI: 10.2217/fon.15.176 · PMID: 26284509

12. Human Pancreatic Carcinoma-Associated Fibroblasts Promote Expression of Co-inhibitory Markers on CD4+ and CD8+ T-Cells

Laia Gorchs, Carlos Fernández Moro, Peter Bankhead, Katharina P. Kern, Imrul Sadeak, Qingda Meng, Elena Rangelova, Helen Kaipe

Frontiers in Immunology (2019-04-24) https://doi.org/ggt57p

DOI: <u>10.3389/fimmu.2019.00847</u> · PMID: <u>31068935</u> · PMCID: <u>PMC6491453</u>

13. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures

Marta Kapałczyńska, Tomasz Kolenda, Weronika Przybyła, Maria Zajączkowska, Anna Teresiak, Violetta Filas, Matthew Ibbs, Renata Bliźniak, Łukasz Łuczewski, Katarzyna Lamperska *Archives of Medical Science* (2016) https://doi.org/ggt3hn

DOI: 10.5114/aoms.2016.63743 · PMID: 30002710 · PMCID: PMC6040128

14. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis

Un Yung Choi, Jae Jin Lee, Angela Park, Wei Zhu, Hye-Ra Lee, Youn Jung Choi, Ji-Seung Yoo, Claire Yu, Pinghui Feng, Shou-Jiang Gao, ... Jae U. Jung

Proceedings of the National Academy of Sciences (2020-04-07) https://doi.org/ggt4fr

DOI: <u>10.1073/pnas.1918607117</u> · PMID: <u>32213586</u> · PMCID: <u>PMC7149499</u>

15. Comparative Molecular Analysis of Cancer Behavior Cultured In Vitro, In Vivo, and Ex Vivo

Nicholas R. Hum, Aimy Sebastian, Sean F. Gilmore, Wei He, Kelly A. Martin, Aubree Hinckley, Karen R. Dubbin, Monica L. Moya, Elizabeth K. Wheeler, Matthew A. Coleman, Gabriela G. Loots *Cancers* (2020-03-14) https://doi.org/ggt4ft

DOI: <u>10.3390/cancers12030690</u> · PMID: <u>32183351</u> · PMCID: <u>PMC7140030</u>

16. Is It Time to Start Transitioning From 2D to 3D Cell Culture?

Caleb Jensen, Yong Teng

Frontiers in Molecular Biosciences (2020-03-06) https://doi.org/ggt4fs

DOI: 10.3389/fmolb.2020.00033 · PMID: 32211418 · PMCID: PMC7067892

17. Advances in multicellular spheroids formation

X. Cui, Y. Hartanto, H. Zhang

Journal of The Royal Society Interface (2017-02) https://doi.org/ggt8pm

DOI: 10.1098/rsif.2016.0877 · PMID: 28202590 · PMCID: PMC5332573

18. Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and β1-integrin

Ruei-Zeng Lin, Li-Fang Chou, Chi-Chen Michael Chien, Hwan-You Chang

Cell and Tissue Research (2006-02-18) https://doi.org/dx2zbb

DOI: 10.1007/s00441-005-0148-2 · PMID: 16489443

19. E-cadherin, actin, microtubules and FAK dominate different spheroid formation phases and important elements of tissue integrity

I. Smyrek, B. Mathew, S. C. Fischer, S. M. Lissek, S. Becker, E. H. K. Stelzer

Biology Open (2019-01-15) https://doi.org/ggt8pn

DOI: 10.1242/bio.037051 · PMID: 30578251 · PMCID: PMC6361217

20. Rapid Enhancement of Cellular Spheroid Assembly by Acoustically Driven Microcentrifugation

Layla Alhasan, Aisha Qi, Aswan Al-Abboodi, Amgad Rezk, Peggy P. Y. Chan, Ciprian Iliescu, Leslie Y. Yeo

ACS Biomaterials Science & Engineering (2016-05-18) https://doi.org/ggt8pj

DOI: 10.1021/acsbiomaterials.6b00144

21. Formation of size-controllable tumour spheroids using a microfluidic pillar array (µFPA) device

Wanyoung Lim, Hong-Hoa Hoang, Daeun You, Jeonghun Han, Jeong Eon Lee, Sangmin Kim, Sungsu Park

The Analyst (2018) https://doi.org/gfnsnm
DOI: 10.1039/c8an01752b · PMID: 30379148

22. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained

Michele Zanoni, Filippo Piccinini, Chiara Arienti, Alice Zamagni, Spartaco Santi, Rolando Polico, Alessandro Bevilacqua, Anna Tesei

Scientific Reports (2016-01-11) https://doi.org/ggt8pk

DOI: <u>10.1038/srep19103</u> · PMID: <u>26752500</u> · PMCID: <u>PMC4707510</u>

23. Spherical Cancer Models in Tumor Biology

Louis-Bastien Weiswald, Dominique Bellet, Virginie Dangles-Marie

Neoplasia (2015-01) https://doi.org/f6xf5r

DOI: 10.1016/j.neo.2014.12.004 · PMID: 25622895 · PMCID: PMC4309685

24. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer

YOSHINORI IMAMURA, TORU MUKOHARA, YOHEI SHIMONO, YOHEI FUNAKOSHI, NAOKO CHAYAHARA, MASANORI TOYODA, NAOMI KIYOTA, SHINTARO TAKAO, SEISHI KONO, TETSUYA NAKATSURA, HIRONOBU MINAMI

Oncology Reports (2015-04) https://doi.org/ggt8pp

DOI: <u>10.3892/or.2015.3767</u> · PMID: <u>25634491</u>

25. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique

Matthew J. Ware, Kevin Colbert, Vazrik Keshishian, Jason Ho, Stuart J. Corr, Steven A. Curley, Biana Godin

Tissue Engineering Part C: Methods (2016-04) https://doi.org/f8f74k

DOI: <u>10.1089/ten.tec.2015.0280</u> · PMID: <u>26830354</u> · PMCID: <u>PMC4827286</u>

26. Subcutaneous Inoculation of 3D Pancreatic Cancer Spheroids Results in Development of Reproducible Stroma-Rich Tumors

Mikhail Durymanov, Christian Kroll, Anastasia Permyakova, Elizabeth O'Neill, Raed Sulaiman, Michael Person, Joshua Reineke

Translational Oncology (2019-01) https://doi.org/ggt6j8

DOI: <u>10.1016/j.tranon.2018.10.003</u> · PMID: <u>30554606</u> · PMCID: <u>PMC6295361</u>

27. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity

Gianpiero Lazzari, Valérie Nicolas, Michiya Matsusaki, Mitsuru Akashi, Patrick Couvreur, Simona Mura

Acta Biomaterialia (2018-09) https://doi.org/ggt6j7
DOI: 10.1016/j.actbio.2018.08.008 · PMID: 30099198

28. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance

Ji-Hyun Lee, Seul-Ki Kim, Iftikhar Ali Khawar, Su-Yeong Jeong, Seok Chung, Hyo-Jeong Kuh *Journal of Experimental & Clinical Cancer Research* (2018-01-12) https://doi.org/ggt6j9
DOI: 10.1186/s13046-017-0654-6 · PMID: 29329547 · PMCID: PMC5767067