- **3.1** Let A, B, C be objects in C and hence objects in C^{op} . Let $f \in \operatorname{Hom}_{C^{op}}(A, B)$ and $g \in \operatorname{Hom}_{C^{op}}(B, C)$. Thus $f \in \operatorname{Hom}_{C}(B, A)$ and $g \in \operatorname{Hom}_{C}(C, B)$. Since C is a category, the morphism $f \circ_{C} g$ exists in C. Define $\circ_{C^{op}}$ as $g \circ_{C^{op}} f := f \circ_{C} g$. We are guaranteed that the composition of morphisms exists since C is a category. We gain associativity for the same reason. The composition of identity in C^{op} becomes composition of identity on the other side in C, which is still an identity.
- **3.2** $\operatorname{End}_{\operatorname{Set}}(A)$ is defined as $\operatorname{Hom}_{\operatorname{Set}}(A,A)$. This is the set of all set-functions $A \to A$; in other words, the set A^A . Thus $|\operatorname{End}_{\operatorname{Set}}(A)| = |A^A| = |A|^{|A|}$ (the last equality from a previous exercise.)
- **3.3** Let $f: a \to b$ be some morphism. Want to show that $f \circ 1_a =_{(1)} f =_{(2)} 1_b \circ f$.
- (1). $1_a = (a, a) \implies a \sim a$, $f = (a, b) \implies a \sim b$. The transitive property allows us to conclude that $a \sim b$, picking that as the composition, so $1_a \circ f = f$.
- (2). $f = (a, b) \implies a \sim b$, $1_b = (b, b) \implies b \sim b$. The transitive property gives us that $a \sim b$, which corresponds to f. So $f \circ 1_b = f$.
- **3.5** Example 3.3 describes a category of a set of objections with a reflexive, transitive relation between them. \hat{S} has a set of objects, the objects being subsets of S. The reflexive, transitive relation is \subseteq . In all aspects it takes the form of the abstract category described in Example 3.3.