Correcta

Puntúa como 1,00

Marcar pregunta Sea $(\mathbb{V},\langle\cdot,\cdot\rangle)$ un \mathbb{R} -espacio euclideo de dimensión 3 y sea $B=\{u_1,\,u_2,\,u_3\}$ una base ortonormal de \mathbb{V} . La matriz de la proyección ortogonal sobre el subespacio $\mathbb{S}=\{u_3\}^{\perp}$ con respecto a las bases B y $B'=\left\{\frac{1}{10}u_1+\frac{2}{10}u_2,\,\frac{2}{10}u_1-\frac{1}{10}u_2,\,u_3\right\}$ es

Seleccione una:

a.
$$[P_S]_B^{B'} = \begin{bmatrix} 4 & 3 & 0 \\ 3 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

$$\qquad \text{b. } [P_{\mathbb{S}}]_B^{B'} = \begin{bmatrix} 3 & 4 & 0 \\ 4 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\qquad \text{c. } [P_{\mathbb{S}}]_B^{B'} = \begin{bmatrix} 4 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

• d.
$$[P_8]_B^{B'} = \begin{bmatrix} 2 & 4 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

e. Ninguna de las otras es correcta.

La respuesta correcta es:
$$[P_{\mathbb{S}}]_B^{B'}=egin{bmatrix}2&4&0\\4&-2&0\\0&0&0\end{bmatrix}$$
 .

Pregunta 3

Incorrecta

Puntúa como 1,00

Marcar pregunta Sea $L:C^\infty(\mathbb{R})\to C^\infty(\mathbb{R})$ el operador diferencial $L[y]=y''+a_1y'+a_0y$ tal que la ecuación L[y]=0 tiene como solución a la función $y=5e^{3x}+3e^{2x}$. La solución general de la ecuación diferencial $L[y]=3e^{3x}-5e^{2x}$ es

Seleccione una:

- a. Ninguna de las otras es correcta.
- b. $y = -3xe^{3x} 5xe^{2x} + ae^{3x} + be^{2x}$, $a, b \in \mathbb{R}$.
- © c. $y = -3xe^{3x} + 5xe^{2x} + ae^{3x} + be^{2x}$, $a, b \in \mathbb{R}$.
- d. $y = 3xe^{3x} 5xe^{2x} + ae^{3x} + be^{2x}$, $a, b \in \mathbb{R}$.
- e. $y = 3xe^{3x} + 5xe^{2x} + ae^{3x} + be^{2x}$, $a, b \in \mathbb{R}$

La respuesta correcta es: $y=3xe^{3x}+5xe^{2x}+ae^{3x}+be^{2x}, \qquad a,b\in\mathbb{R}$

Pregunta 4

Correcta

Puntúa como 1,00

Marcar pregunta Sea $T \in \mathcal{L}(\mathbb{R}^3)$ la transformación lineal definida por $T\left(\begin{bmatrix}x_1 & x_2 & x_3\end{bmatrix}^T\right) = \begin{bmatrix}bx_3 - x_2 & x_1 - ax_3 & ax_2 - bx_1\end{bmatrix}^T$, donde $a,b \in \mathbb{R}$ son tales que $\mathrm{Im}(T) = \mathrm{gen}\left\{\begin{bmatrix}0 & 1 & -1\end{bmatrix}^T, \begin{bmatrix}-1 & 0 & 1\end{bmatrix}^T\right\}$. Todas las soluciones de la ecuación $T(x) = \begin{bmatrix}-2 & 3 & -1\end{bmatrix}^T$ son de la forma

Seleccione una:

- a. Ninguna de las otras es correcta.
- b. $x = \begin{bmatrix} 2 & -2 & 0 \end{bmatrix}^T + t \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T, t \in \mathbb{R}.$
- $\qquad \text{c. } x = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^T + t \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T, \quad t \in \mathbb{R}.$
- d. $x = \begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T + t \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T, t \in \mathbb{R}. \checkmark$
- $\qquad \text{e. } x = \begin{bmatrix} -2 & 2 & 0 \end{bmatrix}^T + t \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T, \quad t \in \mathbb{R}.$

La respuesta correcta es: $x = \begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T + t \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T, \quad t \in \mathbb{R}.$

Correcta

Puntúa como 1,00

Marcar pregunta Sean \mathbb{S}_1 y \mathbb{S}_2 los subespacios de $\mathbb{R}_2[x]$ definidos por $\mathbb{S}_1=\{p\in\mathbb{R}_2[x]:p''=0\}$ y $\mathbb{S}_2=\mathrm{gen}\,\{1+x+x^2\}\,$ y sea $T:\mathbb{R}_2[x]\to\mathbb{R}_2[x]$ la transformación lineal definida por:

$$T(1+x) = 1+x,$$

$$T(1-x^2) = 3 + 2x + x^2,$$

$$T(1+x^2) = -1 - 2x - x^2.$$

Seleccione una:

- a. T es la proyección de R₂[x] sobre S₂ en la dirección de S₁.
- b. T es la simetría de R₂[x] con respecto S₂ en la dirección de S₁.
- c. Ninguna de las otras es correcta.
- d. T es la proyección de $\mathbb{R}_2|x|$ sobre \mathbb{S}_1 en la dirección de \mathbb{S}_2 .
- ullet e, T es la simetría de $\mathbb{R}_2[x]$ con respecto \mathbb{S}_1 en la dirección de \mathbb{S}_2 . \checkmark

La respuesta correcta es: T es la simetría de $\mathbb{R}_2[x]$ con respecto \mathbb{S}_1 en la dirección de \mathbb{S}_2 .

Pregunta 6

Correcta

Puntúa como 1,00

Marcar pregunta

Sea
$$\mathbb{S}=\left\{p\in\mathbb{R}_3[x]:\int_{-3}^3p(x)dx=0,\;\int_{-2}^2xp(x)dx=0\right\}$$
 . Una base de \mathbb{S} es

Seleccione una:

- a. $\{3x^2-4, 5x^3-27x\}$.
- b. $\{3x^2 9, 5x^3 48x\}$.
- c. $\{3x^2 9, 5x^3 12x\}$.
- d. Ninguna de las otras es correcta.
- e. $\{3x^2 16, 5x^3 12x\}$.

La respuesta correcta es: $\{3x^2-9,\ 5x^3-12x\}$.

Pregunta 7

Incorrecta

Puntúa como 1.00

Marcar pregunta Sea S el conjunto de todas las soluciones del sistema lineal Ax=b , donde

$$A = \begin{bmatrix} 3 & -6 & 3 \\ -6 & 0 & -2 \\ 1 & -2 & 1 \end{bmatrix} \text{ y } b = \begin{bmatrix} -15 \\ 10 \\ -5 \end{bmatrix}.$$

Seleccione una:

- a. Ninguna de las otras es correcta.
- b. $S = \begin{bmatrix} -1 & 1 & -2 \end{bmatrix}^T + \operatorname{gen} \{ \begin{bmatrix} 2 & 2 & -6 \end{bmatrix}^T \}.$
- c. $S = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T + \text{gen} \left\{ \begin{bmatrix} -2 & 2 & 6 \end{bmatrix}^T \right\}$.
- $\qquad \text{d. } S = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T + \operatorname{gen} \left\{ \begin{bmatrix} 2 & 2 & -6 \end{bmatrix}^T \right\}.$
- e, $S = \begin{bmatrix} -1 & 1 & -2 \end{bmatrix}^T + \operatorname{gen} \{ \begin{bmatrix} -2 & 2 & 6 \end{bmatrix}^T \}$.

La respuesta correcta es:
$$S = \begin{bmatrix} -1 & 1 & -2 \end{bmatrix}^T + \operatorname{gen} \left\{ \begin{bmatrix} -2 & 2 & 6 \end{bmatrix}^T \right\}$$
.

Incorrecta

Puntúa como 1,00

Marcar pregunta Sea (V, ⟨·,·⟩) un ℝ -espacio euclídeo de dimensión 3 y sea

$$G_B = \begin{bmatrix} 60 & 30 & 20 \\ 30 & 20 & 15 \\ 20 & 15 & 12 \end{bmatrix}$$

la matriz del producto interno $\langle\cdot,\cdot\rangle$ respecto de la base $B=\{v_1,\,v_2,\,v_3\}$. El área del triángulo de vértices $0,v_1-v_2,2v_2-v_3$ es

Seleccione una:

- a. $\frac{1}{2}\sqrt{2415}$.
- b. $\frac{1}{2}\sqrt{2160}$.
- c. $\frac{1}{2}\sqrt{160}$.
- d. Ninguna de las otras es correcta.
- e. $\frac{1}{2}\sqrt{415}$.

La respuesta correcta es: $\frac{1}{2}\sqrt{2415}$.

Pregunta 9

Correcta

Puntúa como 1,00

Marcar pregunta Sean $\mathbb V$ un $\mathbb R$ -espacio vectorial, $\{v_1,v_2,v_3\}\subset \mathbb V$ un conjunto linealmente independiente, y $a\in \mathbb R$. El conjunto $\{3v_1+av_2+3v_3,\,av_1+2v_3,\,v_1+2v_2+v_3\}$ es linealmente dependiente si y sólo si

Seleccione una:

- a. $a \in \{-3, 6\}$.
- b. Ninguna de las otras es correcta.
- c. a ∈ {2,6}.
- 0 d. $a \in \{2, -6\}$.
- e. $a \in \{-3, -6\}$.

La respuesta correcta es: $a \in \{2,6\}$.

Pregunta 10

Correcta

Puntúa como 1,00

Marcar pregunta Sea $B_1=\{v_1,v_2\}$ una base de $\mathbb V$. Si la matriz de cambio de coordenadas de la base B_1 en la base B_2 es $M_{B_1}^{B_2}=\begin{bmatrix}5&2\\8&3\end{bmatrix}$, entonces

Seleccione una:

- a. $B_2 = \{-5v_1 + 2v_2, 8v_1 3v_2\}$.
- b. Ninguna de las otras es correcta.
- c. $B_2 = \{-3v_1 + 8v_2, 2v_1 5v_2\}$.
- od. $B_2 = \{8v_1 5v_2, -3v_1 + 2v_2\}$.
- e. $B_2 = \{2v_1 3v_2, -5v_1 + 8v_2\}$.

La respuesta correcta es: $B_2 = \{-3v_1 + 8v_2,\, 2v_1 - 5v_2\}$.

Correcta

Puntúa como 1.00

Marcar pregunta En $\mathbb{R}_1[x]$ con el producto interno definido por $\langle p,q\rangle=\int_{-1}^1 p(x)q(x)dx$ se considera $\phi:\mathbb{R}_1[x]\to\mathbb{R}$ la funcional lineal definida por $\phi(p)=p(8)$. Entonces, el único polinomio $q\in\mathbb{R}_1[x]$ tal que $\phi(p)=\langle p,q\rangle$ para todo $p\in\mathbb{R}_1[x]$ es

Seleccione una:

- a. $q(x) = \frac{1}{2} + 6x$.
- b. $q(x) = \frac{1}{2} + 12x$.
- $q(x) = \frac{1}{2} + 3x.$
- d. $q(x) = \frac{1}{2} + 9x$.
- e. Ninguna de las otras es correcta.

La respuesta correcta es: $q(x) = \frac{1}{2} + 12x$.

Pregunta 12

Correcta

Puntúa como 1,00

Marcar pregunta En $\mathbb{R}^{2 \times 2}$ con el producto interno canónico se considera el subespacio

$$\mathbb{S}=\left\{X\in\mathbb{R}^{2 imes2}:X^T=X
ight\}$$
 . La distancia de $A=egin{bmatrix}2&3\\3&8\end{bmatrix}$ a \mathbb{S}^\perp es

Seleccione una:

- a. √76.
- b. √118.
- e c. √86. ✓
- d. 10.
- e. Ninguna de las otras es correcta.

La respuesta correcta es: $\sqrt{86}$,

Pregunta 13

Correcta

Puntúa como 1,00

Marcar pregunta Sea $T:\mathbb{R}^3
ightarrow \mathbb{R}^2$ la transformación lineal definida por T(x)=Ax , donde

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

La imagen por T de la recta que pasa por los puntos $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ y $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$ es

Seleccione una:

- a. $\left\{ \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \in \mathbb{R}^2 : x_2 2 = \frac{1}{4}(x_1 2) \right\}$.
- b. $\left\{ \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \in \mathbb{R}^2 : x_2 2 = 3(x_1 2) \right\}$.
- c. $\{ [x_1 \ x_2]^T \in \mathbb{R}^2 : x_2 2 = \frac{1}{3}(x_1 2) \}$.
- d. Ninguna de las otras es correcta.
- e. $\left\{ \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \in \mathbb{R}^2 : x_2 2 = \frac{1}{2} (x_1 2) \right\}$.

La respuesta correcta es: $\left\{ \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \in \mathbb{R}^2 : x_2 - 2 = \frac{1}{3} \left(x_1 - 2 \right) \right\}$.