A Generalized Method for Generating N-fold Random Joint Distributions from Observations

Frank Robasky, Cindy Engholm

January 2025

This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

© 2025 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

- Motivation / problem
- Existing approaches
- Method & implementations
- Practical aspects and areas for improvement
- Summary

Motivation

- Planes encountering wake vortices can experience loss of control / potentially fatal outcomes
- FAA investigating using physics-based models to establish safe separations
 - Modeling performed on a site-by-site basis for top NAS airports
 - Monte Carlo techniques used to assess risk (~10 million runs)
 - Requires joint probability distributions of: landing weight, landing speed, winds (headwind, crosswind), temperature (density), stability (dΘ/dz), turbulence (Eddy Dissipation Rate (EDR))

Base Datasets for EDR Calculations

US Department of Energy Atmospheric Radiation Measurement (ARM) sites

Cape Cod

- July 2012 June 2013
- Lidar observations
 - · Vertical stares
 - Wind profiles
- Surface observations
- 8.6 K EDR values (1 / hour)

Southern Great Plains (SGP) network

- Lidar observations: 2010-present
 - Vertical stares: 1 Hz, from 105 m
 - Wind profiles: 15 min resolution, every 25 m from 90 m
- Meteorological tower observations: 2015-present
 - Sonic anemometer winds: 10 Hz at 4, 25, and 60 m
- Surface observations: 1993-present
 - 1 min resolution
- 16.3 K EDR values (2 years @ 1 / hour)
- 182.2 K EDR values (2 years @ 1 / 5 min)

NASA Memphis Dataset

- May 2013 March 2015
- Lidar observations
- Met tower
- Surface observations
- 175.4 K observation times (limited to aircraft landings)
- 60.9 K EDR values

Motivation / problem

- Existing approaches
- Method & implementations
- Practical aspects and areas for improvement
- Summary

Existing Approaches

Oversample The Observations

- Easy to implement
- Method lacks robustness, especially if number of desired samples >> number of observations
 - 10M samples from 150K observations nominally results in each observation being repeated 67 times
 - Does not allow for realistic though unobserved scenarios

Treat Variables Independently

- Would potentially result in over-representation of unrealistic combinations of parameters
 - Approach ignores meteorological dependencies and interrelationships
 - E.g., high dissipation rate (turbulence) values are much less likely during very stable conditions

Sample from Idealized / Fitted Distributions

- Can efficiently address the robustness issue
- May be difficult to find the appropriate ideal distributions
- May lose desired smallscale distribution characteristics

A robust method which preserves the observed joint relationships between variables is needed

- Motivation / problem
- Existing approaches

- Method & implementations
- Practical aspects and areas for improvement
- Summary

Basis of Method: Inverse Transform Sampling

- Works backwards from a flat sampling of cumulative distribution function (CDF) values to the variable source values
- 1-Dimensional illustration:
 - Compute the CDF of the observations, which has a range [0, 1]
 - Generate a set of random numbers of the desired sample size from a uniform distribution over the range [0, 1]
 - These values can be then mapped to their corresponding data values, yielding a realistic random sample of the original distribution

Extension of Method to Two Dimensions

- Apply the 1D method to one of the marginal distributions to yield random values for that variable (X)
- For each selected random value of X:
 - Take a slice of the 2D CDF at that value to yield a CDF of Y
 - Apply the 1D method to yield random values of Y for each value of X
- This results in random values of X and Y that preserve the original joint relationship

Illustration for Two Random Samples

Two-Dimensional Application

- Modeling task required random distributions of landing weight and landing speed for selected aircraft
 - Joint relationship is required
- Data is sampled on a discrete basis, by binning across the available ranges
 - ~100 bins provide adequate resolution
- Generated joint distribution of 1M pairs closely matches the characteristics of the source distribution

(Data is scaled for display purposes)

Extension to Three Dimensions and Beyond

- Generate matrix of random index values from a uniform distribution of size (N desired samples) x (M variables)
- Compute marginal CDF along 1 of the dimensions, determine random sample for variable 1
- Expand the CDF to 2 dimensions, employ slices at each value of variable 1 to determine random sample for variable 2
- Expand the CDF to 3 dimensions, employ slices at each combination of variable 1 and variable 2 values to determine random sample for variable 3
- Extend as needed to desired number of dimensions

Fidelity of Individual Aspect of Distributions

Marginal distributions show generally very good agreement, some discrepancies are noted, especially sample over-emphasis near the distribution peaks

Fidelity of Joint Aspect of Distributions

- Motivation / problem
- Existing approaches
- Method & implementations

- Practical aspects and areas for improvement
- Summary

Operational Aspects and Improvements

Specs

- 10M joint 5-fold environmental and 2-fold operational distributions
- Largest CDF matrix (100 x 100 x 100 x 100 x 50): 37.3 GB
- ~20 min clock (wall) time
 - Intel Core i9-11950H @ 2.60GHz (8 cores), 64 GB RAM

Potential Improvements

- Parallelization and other efficiency upgrades
 - Exploit MATLAB "big data / tall array" functionality
- Implement quantitative assessments of closeness
- Reduce binning artifacts; enable continuous samples

Public Availability

- Tool is being made available for public use
- Is currently in the approval process
- Will be found on the Matlab File Exchange / github
 - Check for "N-Dimensional Joint Distribution Simulator"
 - Or email cde@ll.mit.edu or frankr@ll.mit.edu to get the link when ready

- Motivation / problem
- Existing approaches
- Method & implementations
- Practical aspects and areas for improvement

Summary

Summary

- In response to Monte Carlo aircraft wake modeling needs, a generalized tool was developed to provide large joint N-variable random distributions from observations
- The basis of the tool is inverse transform sampling, whereby samples from a uniform distribution are used to index into an empirical CDF to yield realistic distributions of the base variable(s)
- The tool was successfully used to generate 10M operational (2 variables) and environmental (5 variables) joint random samples whose distributions matched closely those of the originating observations
- The tool has been packaged for general use and is publicly available

Extra Slides

Extension to Three Dimensions and Beyond (detail)

- Generate matrix of random values R from a uniform distribution of range [0,1] and size (N desired samples) x (M variables)
- Compute marginal CDF for 1 of the dimensions.
 Use random indices for the 1st variable of R (R1) to find corresponding random values X.
- Determine CDF slices across the remaining (2nd & 3rd) dimensions of the original PDF for each of the values in X. Use the corresponding random indices in R2 to determine Y.
- Repeat with the PDF/CDF across the last (3rd)
 dimension of the original PDF for each of the value
 pairs (X,Y). Use the corresponding random indices
 in R3 to generate Z
- The set {X,Y,Z} comprise the final joint distribution of random values
- Method is extensible to M>3 variables

5-Dimensional Implementation: Problem (detail)

- Wake behavior modeling task required joint random distributions of turbulence dissipation rate, stability, headwind and crosswind (on arrival), and temperature
- Binning/resolution adjustable to the requirements of each variable
 - 100 bins for all except temperature (50)
 - Resolution was deemed adequate for this task
- Turbulence has an exponential distribution, sampling is done on a log basis for improved resolution
- Generated joint distribution of 10M instances closely matches the characteristics of the source distribution when viewed across all 2-way combinations

Variable	N Bins	Resolution	Units
landing weight	100	1010	lbs
landing speed	100	0.23	kts
eddy dissipation rate	100	1.29E-03	m^2/s^3
stability	100	2.88	K / km
headwind, crosswind	100	0.27	kts
temperature	50	0.99	°C

Fidelity of Joint Aspect of Distributions (2/2)

