IT IS ONLY ROCKET SCIENCE!

Maths Club - March 2021

Morge Romero CL

University of Liverpool, Jyväskylän Yliopisto

INTRODUCTION

Rocket or arugula (Eruca vesicaria) is an edible annual plant in the family Brassicaceae used as a leaf vegetable for its fresh, tart, bitter, and peppery flavour. Eruca sativa, which is widely popular as a salad vegetable, is a species of Eruca native to the Mediterranean region, from Morocco and Portugal in the west to Syria, Lebanon, Egypt and Turkey in the east.

PROPER INTRODUCTION

Perseverance is a rover within the NASA Mars 2020 Mission. It was launched on 30 July 2020, and landed successfully in Mars on 18 February 2021.

TRIP TO MARS

TRIP TO MARS

TRIP TO MARS

KEPLER'S LAWS

• The orbit of a planet is an ellipse with the Sun at one of the two foci.

• The orbit of a planet is an ellipse with the Sun at one of the two foci.

KEPLER'S LAWS

- The orbit of a planet is an ellipse with the Sun at one of the two foci.
- A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

- The orbit of a planet is an ellipse with the Sun at one of the two foci.
- A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

KEPLER'S LAWS

- The orbit of a planet is an ellipse with the Sun at one of the two foci.
- A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.

- The orbit of a planet is an ellipse with the Sun at one of the two foci.
- A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$$

$$a = r; b = r \Rightarrow F_1 = F_2$$

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1 \Rightarrow \boxed{x^2 + y^2 = r^2}$$

$$LIPPOOL$$

$$F_2 \stackrel{!}{=} F_1$$

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1 \Rightarrow \boxed{x^2 + y^2 = r^2}$$

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

Planet	Excentricity	MATHS	CITI
Earth	0.0167		CLO.
Mars	0.0934		

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

Planet Excentricity
Earth 0.0167

Mars

0.0167 0.0934

5/ LIVERP

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

PROVING KEPLER'S 2ND LAW

 A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

$$\frac{T_{\rm Earth}^2}{r_{\rm Earth}^3} = \frac{T_{\rm Mars}^2}{r_{\rm Mars}^3}$$

Planet	Excentricity	Radius [AU]			
Earth	0.0167	1.00			
Mars	0.0934	1.52			

GETTING TO MARS

$$\frac{T_{\rm Earth}^2}{r_{\rm Earth}^3} = \frac{T_{\rm Mars}^2}{r_{\rm Mars}^3}$$

Z.	LIVE	$T_{Mars}^2 = rac{T_{Earth}^2}{r_{Earth}^3} r_{Mars}^3$
centricity	Radius [AU]	TC CT T Earth 3
0.0167	1.00	T T T T T Earth $_{r3}$
0.0934	1.52	$T_{ m Mars} = \sqrt{rac{T_{ m Earth}^2}{r_{ m Earth}^3}} r_{ m Mars}^3$
		$T_{Mars} = \sqrt{\frac{365^2}{1^3} (1.52)^3}$
		$T_{Mars} = 684days$

WHEN TO LAUNCH

$$\omega_{\mathsf{Earth}} = \frac{360}{365} = 0.986^{\circ}/\mathsf{day}$$

$$\omega_{\sf Mars} = \frac{360}{684} = 0.526^{\circ}/{\sf day}$$

After *N* = 258 days, Mars has to be at 180° with respect to the Earth's initial position.

Assuming that Mars starts off at an angle α from the Earth:

$$N \times \omega_{\mathsf{Mars}} = 180 - \alpha$$

 $\alpha = 180 - (N \times \omega_{\mathsf{Mars}})$

$$\alpha = 180 - (258 \times 0.526)$$

$$\alpha =$$
 44.3°