Heart_Disease_Prediction

DATASET COLUMNS

- 1. Age (age in years)
- 2. Sex (1 = male; 0 = female)
- 3. CP (chest pain type)
- 4. TRESTBPS (resting blood pressure (in mm Hg on admission to the hospital))
- 5. CHOL (serum cholestoral in mg/dl)
- 6. FPS (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
- 7. RESTECH (resting electrocardiographic results)
- 8. THALACH (maximum heart rate achieved)
- 9. EXANG (exercise induced angina (1 = yes; 0 = no))
- 10. OLDPEAK (ST depression induced by exercise relative to rest)
- 11. SLOPE (the slope of the peak exercise ST segment)
- 12. CA (number of major vessels (0-3) colored by flourosopy)
- 13. THAL (3 = normal; 6 = fixed defect; 7 = reversable defect)
- 14. TARGET (1 or 0)

Import necessary Python modules and Read the data

In [1]:

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
1 Heart_Disease =pd.read_csv('C:/Users/Lenovo/Desktop/heart_disease.csv')
```

In [3]:

1 Heart_Disease.head()

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
4														•

Exploratory Data Analysis (EDA)

In [4]:

1 Heart_Disease.describe()

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	30
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	14
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	2
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	7
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	13
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	15
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	16
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	20
4								•

In [5]:

```
Heart Disease.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
     Column
               Non-Null Count Dtype
#
               -----
0
               303 non-null
                               int64
     age
 1
               303 non-null
                               int64
     sex
 2
               303 non-null
                               int64
     ср
 3
               303 non-null
     trestbps
                               int64
 4
     chol
               303 non-null
                               int64
 5
     fbs
               303 non-null
                               int64
 6
               303 non-null
                               int64
     restecg
 7
     thalach
               303 non-null
                               int64
 8
               303 non-null
                               int64
     exang
     oldpeak
               303 non-null
                               float64
 10
    slope
               303 non-null
                               int64
               303 non-null
 11
    ca
                               int64
 12
    thal
               303 non-null
                               int64
13 target
               303 non-null
                               int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
In [6]:
 1 Heart_Disease.columns
Out[6]:
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
       'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
      dtype='object')
In [7]:
    Heart Disease.shape
Out[7]:
(303, 14)
```

In [8]:

```
1 Heart_Disease.isnull().sum()
```

Out[8]:

age	0
sex	0
ср	0
trestbps	0
chol	0
fbs	0
restecg	0
thalach	0
exang	0
oldpeak	0
slope	0
ca	0
thal	0
target	0
dtype: int64	1

In [9]:

```
1 Heart_Disease.isnull().values.any()
```

Out[9]:

False

In [10]:

```
#checking for Outlier's
sns.boxplot(x=Heart_Disease)
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d3c4042d08>

In [11]:

```
#Discover outliers with mathematical function
#Z-Score
#if the Z-score value is greater than or less than 3 or -3 respectively, that data poir
from scipy import stats
import numpy as np
z = np.abs(stats.zscore(Heart_Disease))
print(z)
```

In [12]:

```
plt.figure(figsize=(10,10))
sns.heatmap(Heart_Disease.corr(),annot=True,fmt='.1f')
plt.show()
```


In [13]:

- 1 sns.pairplot(Heart_Disease)
- 2 plt.show()

In [14]:

```
sns.barplot(x=Heart_Disease.age.value_counts()[:10].index,y=Heart_Disease.age.value_couplt.xlabel('Age')
plt.ylabel('Age Counter')
plt.title('Age Analysis')
plt.show()
```


In [15]:

```
minAge=min(Heart_Disease.age)
maxAge=max(Heart_Disease.age)
meanAge=Heart_Disease.age.mean()
print('Min Age :',minAge)
print('Max Age :',maxAge)
```

Min Age : 29 Max Age : 77

In [16]:

```
young_ages=Heart_Disease[(Heart_Disease.age>=29)&(Heart_Disease.age<40)]

middle_ages=Heart_Disease[(Heart_Disease.age>=40)&(Heart_Disease.age<55)]

elderly_ages=Heart_Disease[(Heart_Disease.age>55)]

print('Young Ages :',len(young_ages))

print('Middle Ages :',len(middle_ages))

print('Elderly Ages :',len(elderly_ages))
```

Young Ages : 16 Middle Ages : 128 Elderly Ages : 151

In [17]:

```
sns.barplot(x=['young ages','middle ages','elderly ages'],y=[len(young_ages),len(middle
plt.xlabel('Age Range')
plt.ylabel('Age Counts')
plt.title('Ages State in Dataset')
plt.show()
```


In [18]:

```
colors = ['blue', 'green', 'yellow']
explode = [0,0,0.1]
plt.figure(figsize = (5,5))

#plt.pie([target_0_agerang_0,target_1_agerang_0], explode=explode, labels=['Target 0 Age plt.pie([len(young_ages),len(middle_ages),len(elderly_ages)],labels=['young ages', 'middle_ages', 'middle_ages'
```

Age States

In [19]:

```
1 #Sex (1 = male; 0 = female)
2 sns.countplot(Heart_Disease.sex)
3 plt.show()
```


In [20]:

In [21]:

```
# Show the results of a linear regression within each dataset
sns.lmplot(x="trestbps", y="chol",data=Heart_Disease,hue="cp")
plt.show()
```


As a result of the above analyzes, it can be seen that 0 cases with chest pain are less common with heart disease. But on the other hand, there are problems in all cases of chest pain, such as 1,2,3.

In [22]:

```
sns.barplot(x=Heart_Disease.thalach.value_counts()[:20].index,y=Heart_Disease.thalach.v
plt.xlabel('Thalach')
plt.ylabel('Count')
plt.title('Thalach Counts')
plt.xticks(rotation=45)
plt.show()
```


In [23]:

```
sns.countplot(Heart_Disease.thal)
plt.show()
```


In [24]:

- 1 #Let's see the correlation values between them
- 2 Heart_Disease.corr()

Out[24]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.398522
sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.044020
ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.295762
trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.046698
chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.009940
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.008567
restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.044123
thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.000000
exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.378812
oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.344187
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.386784
са	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.213177
thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-0.096439
target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	0.421741
4								•

Defining Dependent and Independent variables

Splitting Data into train and test with 70% and 20% respectively

In [25]:

```
1 X=Heart_Disease.drop(['target','slope'],axis=1)
2 #removing 'slope' to reduce the strong negative multicollinearity between 'slope' and
3 Y=Heart_Disease['target']
```

All Classification Algorithms with Default Parameters

In [26]:

```
import statsmodels.api as sm
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state
```

4 logit = sm.Logit(y_train, X_train).fit()

5 print(logit.summary())

6 # attributes with p value less than 0.05 are statistically significant

Optimization terminated successfully. Current function value: 0.360832									
	Iterations 7								
	Logit Regression Results								
			:======:	========	=======	=====			
==== Dep. Vari 242	able:	targ	get No. O	oservations:					
Model: 230		Log	git Df Re	siduals:					
Method: 11		M	ILE Df Mod	del:					
Date: 4757	Wed	d, 07 Oct 20	920 Pseudo	o R-squ.:		0.			
Time: 7.321		12:40:	:15 Log-L:			-8			
converged	l :	Tr	rue LL-Nu	11:		-16			
Covariance-28	e Type:	nonrobu	ıst LLR p	-value:		2.772			
========			:======:	=======	=======				
	coef	std err	Z	P> z	[0.025	0.			
975] 									
age 0.053	0.0128	0.020	0.628	0.530	-0.027				
sex 0.554	-1.4981	0.481	-3.111	0.002	-2.442	-			
ср 1.248	0.8414	0.208	4.052	0.000	0.434				
trestbps 0.011	-0.0099	0.011	-0.911	0.362	-0.031				
chol 0.006	-0.0020	0.004	-0.487	0.627	-0.010				
fbs 1.131	-0.0504	0.603	-0.084	0.933	-1.232				
restecg 1.474	0.7180	0.386	1.861	0.063	-0.038				
thalach 0.051	0.0322	0.009	3.412	0.001	0.014				
exang 0.243	-1.1158	0.446	-2.504	0.012	-1.989	-			
oldpeak 0.415	-0.8555	0.225	-3.808	0.000	-1.296	-			
ca 0.335	-0.7468	0.210	-3.558	0.000	-1.158	-			
thal 0.283	-0.9405	0.335	-2.804	0.005	-1.598	-			

====

In [27]:

```
1 X=X.drop(['restecg','fbs','chol','trestbps','age'],axis=1)
```

In [28]:

```
1 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state
2 logit = sm.Logit(y_train, X_train).fit()
```

³ print(logit.summary())

3 pr 111c((//							
C	Optimization terminated successfully. Current function value: 0.371069 Iterations 7								
_	cer delons 7	Logit Re	egression Re	esults					
=======	========				=======	:=====			
Dep. Varia	ble:	tar	get No. Ob	oservations:					
242 Model:		Log	git Df Res	siduals:					
235 Method:		N	1LE Df Mod	del:					
Date:	Wed	d, 07 Oct 20	020 Pseudo	R-squ.:		0.			
4608 Time: 9.799		12:40	:15 Log-Li	ikelihood:		-8			
converged:		Tr	rue LL-Nu]	11:		-16			
Covariance e-30	Type:	nonrobi	ust LLR p-	-value:		1.406			
====	========	========	========		=======	:=====			
975]	coef	std err	Z	P> z	[0.025	0.			
sex 0.524	-1.3929	0.443	-3.144	0.002	-2.261	-			
ср 1.176	0.7918	0.196	4.040	0.000	0.408				
thalach 0.037	0.0264	0.005	5.097	0.000	0.016				
exang 0.290	-1.1179	0.422	-2.648	0.008	-1.945	-			
oldpeak 0.432	-0.8437	0.210	-4.012	0.000	-1.256	-			
ca 0.325	-0.7163	0.200	-3.585	0.000	-1.108	-			
thal 0.273	-0.8721	0.305	-2.855	0.004	-1.471	-			
=======================================	========				=======	:=====			
4						•	-		

```
In [29]:
```

```
1  y_pred = logit.predict(X_test)
2  prediction = list(map(round, y_pred))
```

In [30]:

Confusion Matrix :

```
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
cm1= confusion_matrix(y_test,prediction)
print('Confusion Matrix : ')
print(cm1)
from sklearn.metrics import accuracy_score
print ("Accuracy Score : ", accuracy_score(y_test, prediction))
print ('Report : ')
print (classification_report(y_test, prediction))
```

```
[[25 4]
[ 3 29]]
Accuracy Score: 0.8852459016393442
Report:
                           recall f1-score
              precision
                                               support
           0
                   0.89
                              0.86
                                        0.88
                                                     29
           1
                   0.88
                              0.91
                                        0.89
                                                     32
                                        0.89
                                                    61
   accuracy
                   0.89
                              0.88
                                        0.88
                                                     61
   macro avg
```

0.89

0.89

In [31]:

weighted avg

```
#Sensitivity and Specificity
#A test with a sensitivity and specificity of around 90% would be considered to have go
sensitivity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
print('Sensitivity : ', sensitivity )

specificity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
print('Specificity : ', specificity)
```

0.89

61

Sensitivity: 0.8620689655172413 Specificity: 0.90625

In [32]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=42)
```

1. Logistic Regression Algorithm

In [33]:

```
import warnings
warnings.filterwarnings("ignore")
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train,y_train)
```

Out[33]:

LogisticRegression()

In [34]:

```
y_pred = model.predict(X_test)
from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_curve, a
acclog = accuracy_score(y_test, y_pred)*100
reclog = recall_score(y_test, y_pred)*100
preclog = precision_score(y_test, y_pred)*100
fprlog, tprlog, _ = roc_curve(y_test, y_pred)
auclog=auc(fprlog, tprlog)*100
```

In [35]:

```
from sklearn.metrics import confusion_matrix
cm1= confusion_matrix(y_test,y_pred)
print('Confusion Matrix :' )
print(cm1)
from sklearn.metrics import accuracy_score
print ("Accuracy Score: ", accuracy_score(y_test, y_pred))
print ('Report : ')
print (classification_report(y_test, y_pred))
```

Confusion Matrix :

[[25 4] [4 28]]

Accuracy Score: 0.8688524590163934

Report :

·	precision	recall	f1-score	support
0	0.86	0.86	0.86	29
1	0.88	0.88	0.88	32
accuracy			0.87	61
macro avg	0.87	0.87	0.87	61
weighted avg	0.87	0.87	0.87	61

```
In [36]:
```

```
#Sensitivity and Specificity
#A test with a sensitivity and specificity of around 90% would be considered to have go

sensitivity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
print('Sensitivity: ', sensitivity)

specificity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
print('Specificity: ', specificity)
Sensitivity: 0.8620689655172413
```

```
Specificity: 0.875
```

In [37]:

```
1 yl = model.predict_proba(X_test)
```

2. K Nearest Neighbor Algorithm

In [38]:

```
1 # Feature Scaling
 2 | from sklearn.preprocessing import StandardScaler
 3 sc = StandardScaler()
 4 X train = sc.fit transform(X train)
 5
    X_test = sc.transform(X_test)
 7 # Fitting K-NN to the Training set
 8 from sklearn.neighbors import KNeighborsClassifier
    knn = KNeighborsClassifier(n_neighbors = 5, metric = 'euclidean')
10
    knn.fit(X train, y train)
11
12
    # Predicting the Test set results
13
    y_pred = knn.predict(X_test)
14
15 yk = knn.predict_proba(X_test)
16
17 | from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_curve, a
18
    accknn = accuracy_score(y_test, y_pred)*100
    recknn = recall_score(y_test, y_pred)*100
19
20
    precknn = precision_score(y_test, y_pred)*100
    fprknn, tprknn, _ = roc_curve(y_test, y_pred)
22
    aucknn=auc(fprknn, tprknn)*100
23
24 # Making the Confusion Matrix
25 from sklearn.metrics import confusion matrix
26 cm2 = confusion_matrix(y_test, y_pred)
27
28 from sklearn.metrics import confusion matrix
29 from sklearn.metrics import accuracy score
    from sklearn.metrics import classification_report
30
31
32 results = confusion_matrix(y_test, y_pred)
33 print ('Confusion Matrix :')
34 print(results)
35 print ('Accuracy Score :',accuracy_score(y_test, y_pred))
36 print ('Report : ')
37 print (classification_report(y_test, y_pred))
Confusion Matrix :
[[26 3]
 [ 4 28]]
Accuracy Score: 0.8852459016393442
Report :
              precision
                           recall f1-score
                                              support
                   0.87
                             0.90
                                       0.88
                                                   29
           0
                   0.90
                             0.88
                                       0.89
                                                   32
           1
```

0.89

0.89

0.89

0.89

0.89

61

61

61

localhost:8888/notehooks/Downloads/Heart	Disease	nython	code	team5 invnh	

0.88

0.89

accuracy

macro avg
weighted avg

In [39]:

```
sensitivity = cm2[0,0]/(cm2[0,0]+cm2[0,1])
print('Sensitivity : ', sensitivity )

specificity = cm2[1,1]/(cm2[1,0]+cm2[1,1])
print('Specificity : ', specificity)
```

Sensitivity: 0.896551724137931

Specificity: 0.875

3. Support Vector Machine Algorithm

In [40]:

```
1 # Fitting Kernel SVM to the Training set
 2 from sklearn.svm import SVC
   svm = SVC(kernel = 'rbf', random_state = 0, probability=True)
   svm.fit(X_train, y_train)
 5
 6 | # Predicting the Test set results
 7
   y_pred = svm.predict(X_test)
 9
   ys = svm.predict proba(X test)
10
11 | from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_curve, &
12
   accsvm = accuracy_score(y_test, y_pred)*100
13 | recsvm = recall_score(y_test, y_pred)*100
14 precsvm = precision_score(y_test, y_pred)*100
15 | fprsvm, tprsvm, _ = roc_curve(y_test, y_pred)
16 | aucsvm=auc(fprsvm, tprsvm)*100
17
18 # Making the Confusion Matrix
19 from sklearn.metrics import confusion_matrix
   cm3 = confusion_matrix(y_test, y_pred)
21
22 results = confusion_matrix(y_test, y_pred)
23 print ('Confusion Matrix :')
24 print(results)
25 | print ('Accuracy Score :',accuracy_score(y_test, y_pred))
26 print ('Report : ')
27 | print (classification report(y test, y pred))
```

```
Confusion Matrix :
```

```
[[26 3]
[ 3 29]]
```

Accuracy Score : 0.9016393442622951

Report :

	precision	recall	f1-score	support
0	0.90	0.90	0.90	29
1	0.91	0.91	0.91	32
accuracy			0.90	61
macro avg weighted avg	0.90 0.90	0.90 0.90	0.90 0.90	61 61

In [41]:

```
sensitivity = cm3[0,0]/(cm3[0,0]+cm3[0,1])
print('Sensitivity : ', sensitivity )

specificity = cm3[1,1]/(cm3[1,0]+cm3[1,1])
print('Specificity : ', specificity)
```

Sensitivity: 0.896551724137931

Specificity: 0.90625

4. Gaussian Naive Bayes Algorithm

In [42]:

```
1 from sklearn.naive_bayes import GaussianNB
   gnb = GaussianNB()
 3
   gnb.fit(X_train, y_train)
 5 # Predicting the Test set results
   y_pred = gnb.predict(X_test)
8
   yg = gnb.predict_proba(X_test)
9
10 from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_curve, a
   accgnb = accuracy_score(y_test, y_pred)*100
12 recgnb = recall_score(y_test, y_pred)*100
   precgnb = precision_score(y_test, y_pred)*100
14 fprgnb, tprgnb, _ = roc_curve(y_test, y_pred)
15
   aucgnb=auc(fprgnb, tprgnb)*100
16
17 # Making the Confusion Matrix
18 | from sklearn.metrics import confusion_matrix
   cm4 = confusion_matrix(y_test, y_pred)
19
20
21 results = confusion_matrix(y_test, y_pred)
22 print ('Confusion Matrix :')
23 print(results)
24 | print ('Accuracy Score :',accuracy_score(y_test, y_pred))
25 print ('Report : ')
26 print (classification report(y test, y pred))
```

```
Confusion Matrix :
```

```
[[26 3]
[ 6 26]]
```

Accuracy Score: 0.8524590163934426

Report:

•	precision	recall	f1-score	support
0	0.81	0.90	0.85	29
1	0.90	0.81	0.85	32
accuracy			0.85	61
macro avg	0.85	0.85	0.85	61
weighted avg	0.86	0.85	0.85	61

In [43]:

```
sensitivity = cm4[0,0]/(cm4[0,0]+cm4[0,1])
print('Sensitivity : ', sensitivity )

specificity = cm4[1,1]/(cm4[1,0]+cm4[1,1])
print('Specificity : ', specificity)
```

Sensitivity: 0.896551724137931

Specificity: 0.8125

Comparison of all the Machine Learning Algorithms by Comparing some Evaluation Metrics

In [44]:

```
algos=["Logistic Regression","K Nearest Neighbor","Support Vector Machine","Gaussian Na
acc=[acclog,accknn,accsvm,accgnb]
auc=[auclog,aucknn,aucsvm,aucgnb]
recall=[reclog,recknn,recsvm,recgnb]
prec=[preclog,precknn,precsvm,precgnb]
comp={"Algorithms":algos,"Accuracies":acc,"Area Under the Curve":auc,"Recall":recall,"F
compdf=pd.DataFrame(comp)
display(compdf)
#display(compdf.sort_values(by=["Accuracies","Area Under the Curve","Recall","Precision
```

	Algorithms	Accuracies	Area Under the Curve	Recall	Precision
0	Logistic Regression	86.885246	86.853448	87.500	87.500000
1	K Nearest Neighbor	88.524590	88.577586	87.500	90.322581
2	Support Vector Machine	90.163934	90.140086	90.625	90.625000
3	Gaussian Naive Bayes	85.245902	85.452586	81.250	89.655172

ROC of all the Machine Learning Algorithms on default parameters

In [45]:

```
import sklearn.metrics as metrics
 2
   roc_auc1=metrics.auc(fprlog,tprlog)
   roc_auc2=metrics.auc(fprknn,tprknn)
   roc auc3=metrics.auc(fprsvm,tprsvm)
 5
   roc auc4=metrics.auc(fprgnb,tprgnb)
 6
 7
   import matplotlib.pyplot as plt
   %matplotlib inline
 8
9
   plt.figure(figsize=(20,10))
   plt.title("Performance Comparison of Classification Models (ROC Curve)", fontsize=25)
10
   plt.plot(fprlog, tprlog, "b", label="AUC of Logistic Regression = %0.2f" % roc_auc1)
11
   plt.plot(fprknn,tprknn,"g",label="AUC of K Nearest Neighbor = %0.2f" % roc_auc2)
12
   plt.plot(fprsvm,tprsvm,"m",label="AUC of Support Vector Machine = %0.2f" % roc_auc3)
13
   plt.plot(fprgnb,tprgnb,"c",label="AUC of Gaussian Naive Bayes = %0.2f" % roc_auc4)
   plt.rcParams.update({'font.size': 16})
15
   plt.legend(loc="lower right")
16
   plt.plot([0, 1],[0, 1],"r--")
17
18 plt.xlim([0, 1])
   plt.ylim([0, 1])
19
   plt.ylabel("True Positive Rate", fontsize = 18)
20
   plt.xlabel("False Positive Rate", fontsize = 18)
21
22
   plt.rc('axes', labelsize=15)
23
   plt.rc('axes', titlesize=22)
```


Cross Validation Score

In [46]:

```
from sklearn.model_selection import cross_val_score
import warnings
warnings.filterwarnings("ignore")
```

In [47]:

```
accuracy_log1 = cross_val_score(model, X, Y, scoring='accuracy', cv = 10)
   #print('CVS for log1 : ', accuracy_svc)
   print("Accuracy of LOG with Cross Validation is:",accuracy_log1.mean() * 100)
   #accuracy_log = cross_val_score(log, X, Y, cv = 10)
   #print('CVS for LOG : ', accuracy_svc)
 6 | #print("Accuracy of LOG with Cross Validation is:",accuracy_log.mean() * 100)
 7
   accuracy_svc = cross_val_score(svm, X, Y, cv = 10)
   #print('CVS for SVC : ', accuracy_svc)
   print("Accuracy of SVC with Cross Validation is:",accuracy_svc.mean() * 100)
10 accuracy_gnb = cross_val_score(gnb, X, Y, scoring='accuracy', cv = 10)
11 #print('CVS for GNB : ', accuracy_gnb)
12 print("Accuracy of GNB with Cross Validation is:",accuracy_gnb.mean() * 100)
   accuracy_knn = cross_val_score(knn, X, Y, scoring='accuracy', cv = 10)
14 #print('CVS for knn : ', accuracy_gnb)
15 print("Accuracy of KNN with Cross Validation is:",accuracy_knn.mean() * 100)
```

```
Accuracy of LOG with Cross Validation is: 83.16129032258065
Accuracy of SVC with Cross Validation is: 69.98924731182797
Accuracy of GNB with Cross Validation is: 82.49462365591398
Accuracy of KNN with Cross Validation is: 76.89247311827957
```

In [48]:

```
algos=["Logistic Regression","K Nearest Neighbor","Support Vector Machine","Gaussian Na
acc1=[acclog,accknn,accsvm,accgnb]
acc2=[accuracy_log1.mean() * 100, accuracy_knn.mean() * 100, accuracy_svc.mean() * 100,
comp={"Algorithms":algos,"Accuracies without Cross Validation":acc1,"Accuracies with Cr
compdf=pd.DataFrame(comp)
display(compdf)
```

Algorithms Accuracies without Cross Validation Accuracies with Cross Validation

0	Logistic Regression	86.885246	83.161290
1	K Nearest Neighbor	88.524590	76.892473
2	Support Vector Machine	90.163934	69.989247
3	Gaussian Naive Bayes	85.245902	82.494624

In []:

1

In []:

1