METALLURGIE

CONNAISSANCE DES ACIERS

Présentation des aciers

- Les alliages de fer sont les plus employés dans l'industrie.
- L'acier et la fonte sont des alliages de fer.
- Les aciers et les fontes sont élaborés a partir de deux éléments chimiques principaux : le fer et le carbone.
- Pour obtenir certaines propriétés on introduit dans ces métaux des éléments d'alliages (Cr, Ni, Ti...etc).
- Par convention, lorsque le taux de carbone ne dépasse pas 2%, on parle d'acier. Au delà on parle de fonte.

LES ACIERS NON ALLIES

- Ce sont des alliages de teneur en C inférieure à 2% (limite pratique 1,4 à 1,5%), dans lesquels les teneurs des autres éléments présents (de fait de mode d'élaboration) sont inférieures à des limites fixés par la norme : NF A 02-005.
- Le diagramme d'équilibre fer carbone, est le moyen le plus adéquat et le plus simple pour expliquer la constitution des aciers et des fontes.

<u>Diagramme fer – carbone</u>

<u>Diagramme fer – carbone</u> (Partie aciers)

• D'après le diagramme, on remarque, que les phases constitutives et les caractéristiques mécaniques de l'acier évoluent en fonction de taux de carbone.

• Exemple : Pour un taux de carbone inférieur à 0,3 %, on est en présence d'un acier dit doux, Les phases constitutives sont la ferrite et quelques îlots de perlite.

Une analyse type de cet acier donne

Equist 2001

Désignation: DC04, !FeP04, 1.0338 Werkstoffnummer: 1.0338 Pays: EUR, GBR, CSE, DEU, HUN,

FRA, POL, FIN, ROM, SWE, SLK, ESP, ITA

Norme: EN10130-91-A1-98, !EN10130-91, BSEN10130-A1-98, CSNEN10130-A1-2000, CSN420908,
DINEN10130-99, MSZEN10130-91-A1-2000, NFEN10130-98, NFA36401-98, PNEN10130-A1-99,
SFSEN10130-98, SREN10130-95, SSEN10130-A1-98, STNEN10130(420908)-95, UNEEN10130-99,
UNIEN10130-99 EQUIVALENTS

Com	position	chimique:	
		The state of the s	

	min	max
C %	0	0.08
Si %	0	0.60
Mn %	0	0.4
P %	0	0.03
S %	0	0.03
Cr %	0.	0.3
Mo %	0.	0.15
Ni %	0.	0.4
V %	0.	0.1
Al %	0.	0.1
Cu %	0.	0.3
W %	0.	0.1
Ti %	0.	0.05
Co %	0.	0.1
Pb %	0.	0.15

laminé à fraid

Classe d'aciers: Produits plats laminés à froid en acier doux pour emboutissage ou pliage à

froid Acier doux

Formes et applications:

Tôle, laminée à froid

Caractéristiques mécaniques à température ambiante

ASSESSMENT OF E	I UIM								
Dimension	Lim. élast.	Rés. traction	Alle	ong.	Striction	Résil	. min.	Dureté	Notes
mm	min. MPa	MPa	L %	T %	min. %	L	T		
0.35 - 3	140	270 - 350	38						Re<=210
									A80%min.

PROPRIETES:

% C	% Mn	%Si	Rm (Mpa)	Re (Mpa)	Rp0.02 (Mpa)	% Amin	<u>Hv</u>
0.06-0.12	0.3-0.5	0.05-0.3	340-420	260	215	31	110-130

 Pour un taux de carbone de 0,4 % à 0,6 % de carbone, on est en présence d'un acier dit midur, Les phases constitutives sont la perlite et quelques îlots de ferrite.

Une analyse type de cet acier donne:

Equist 2001

Désignation: XC42 Werkstoffnummer: 1.1191 Pays: FRA
Norme: !NFA35551-75 EQUIVALENTS

Compositio	n chin	nique:	Classe d'aciers:
-	main	max	Aciers pour trempe et revenu
C %	0.4	0.45	
Si %	0.1	0.4	
Mn %	0.5	0.8	
P %	0	0.035	
S %	0	0.035	
Cr %	O.	0.3	
Mo %	0.	0.15	
Ni %	O.	0.4	
V %	0.	0.1	
A1 %	Ο.	0.1	
Cu %	Ο.	0.3	
W %	0.	0.1	
Ti %	O.	0.05	
Co %	Ο.	0.1	
Pb %	0.	0.15	

EQUIVALENTS:

```
AUS
     K1042
     45: 45G
BUIL
     45
 CIS
CSE
     C45E; 12050
DDR
     Ck45
     C45E; Ck45
DEU
ESP
     C45E; C45k; C48k
EUR
     C45E: 2C45
FIN
      SFS456
      C45E; XC48H1; XC42H1; XC45; XC48; XC42
FRA
GBR
      C45E; 080M46; 060A47
HUN
     C45E: C45
    C45e
ISO
     C45E; C45; C46
ITA
JPN S45C; S48C
     45
POL
ROM OLC45X
      C45E; 1672
SWE
USA
      1045
YUG
      C.1531
```


PROPRIETES:

% C	%Mn	%Si	Rm (Mpa)	Re (Mpa)	Rp0.02 (Mpa)	% Amin	<u>Hv</u>
0.35-0.46	0.5-0.8	0.1-0.4	580-670	350	335	21	170-195

 Pour un taux de carbone au-delà de 0,6 % de carbone, on est en présence d'un acier dit extra – dur. Les phases constitutives sont la perlite et un peu de cémentite (carbure de fer Fe₃C).

Une analyse type de cet acier donne:

Equist 2001

Désignation: XC80 Pays: FRA

Norme: Non-Normalisé

Composition chimique:

	-
mın	max
0.75	0.85
0.1	0.4
0.5	0.8
0	0.03
0	0.035
0	0.12
0.	0.15
0.	0.4
0.	0.1
0.	0.1
0.	0.3
0.	0.1
0.	0.05
0.	0.1
0.	0.15
	0.1 0.5 0 0 0. 0. 0. 0. 0. 0.

Classe d'aciers:

Acier non allié [au carbone]

PROPRIETES:

% C	Rm (Mpa)	Re (Mpa)	% Amin	<u>Hv</u>
0.77	900	500	10	225-285