BI-DIRECTIONAL BLOCK SELF-ATTENTION FOR FAST AND MEMORY-EFFICIENT SEQUENCE MODELING

Presenter: Baosong Yang

Motivation

- SAN can model dependencies via highly parallelizable computation, but memory requirement grows rapidly in line with sequence length.
- Solusion: Splits the entire sequence into blocks.
 - intra-block SAN to each block for modeling local context
 - inter-block SAN to the outputs for all blocks to capture long-range dependency.

BLOCK SELF-ATTENTION

- split the input into m blocks of equal length r.
- In each block, do masked self attention.
- Generate a vector representation v of each block using a s2t self-attention
- Applies a masked self-attention to capture global dependency.
- To combine the local and global context features, a gate is used:

$$G = \operatorname{sigmoid} \left(W^{(g1)} \boldsymbol{o} + W^{(g2)} \boldsymbol{v} + b^{(g)} \right)$$

 $\boldsymbol{e} = G \odot \boldsymbol{o} + (1 - G) \odot \boldsymbol{v}$

Combine x,h,e:

$$egin{align} F &= \sigma\left(W^{(f1)}[oldsymbol{x};oldsymbol{h};E] + b^{(f1)}
ight), \ G &= \operatorname{sigmoid}\left(W^{(f2)}[oldsymbol{x};oldsymbol{h};E] + b^{(f2)}
ight), \ oldsymbol{u} &= G\odot F + (1-G)\odot oldsymbol{x}, \end{split}$$

Appendix: Block Length

Fixed sentence length n:

$$\xi \propto r^2 \cdot m + m^2 \cdot 1$$

$$= r^2 \cdot \frac{n}{r} + (\frac{n}{r})^2.$$
 $r = \sqrt[3]{2n}$

- The sentence lengths that follow a normal distribution:
 - \triangleright The upper bound of the expectation of random variable Z + μ

$$Z = \max_i X_i, ext{ for } i = 1, 2, \dots, B.$$
 $\mathbb{E}[Z] \leq \sigma \sqrt{2 \ln B}$ $r = \sqrt[3]{2n} = \sqrt[3]{2(\sigma \sqrt{2 \ln B} + \mu)}$

Experiments: Natural language inference

training/dev/test split of 549,367/9,842/9,824 samples.

Table 2: Time cost and memory consumption of the different methods on SNLI. **Time(s)/epoch**: average training time (second) per epoch. **Memory(MB)**: Training GPU memory consumption (Megabyte). **Inference Time(s)**: average inference time (second) for all dev data on SNLI with test batch size of 100.

Model	Time(s)/epoch	Memory(MB)	Inference Time(s)	Test Accuracy	
Bi-LSTM (Graves et al., 2013)	2080	1245	9.2	85.0	
Bi-GRU (Chung et al., 2014)	1728	1259	9.3	84.9	
Bi-SRU (Lei & Zhang, 2017)	1630	731	8.2	84.8	
Multi-CNN (Kim, 2014)	284	529	2.4	83.2	
Hrchy-CNN (Gehring et al., 2017)	343	2341	2.9	83.9	
Multi-head (Vaswani et al., 2017)	345	1245	3.0	84.2	
DiSAN (Shen et al., 2017)	587	2267	7.0	85.6	
480D Bi-BloSAN	508	1243	3.4	85.7	

Table 3: An ablation study of Bi-BloSAN. "Local" denotes the local context representations h and "Global" denotes the global context representations E. "Bi-BloSAN w/o mBloSA" equals to word embeddings directly followed by a source2token attention and "Bi-BloSAN w/o mBloSA & source2token self-attn." equals to word embeddings plus a vanilla attention without q.

Model	$ \theta $	Test Accuracy	
Bi-BloSAN	2.8m	85.7	
Bi-BloSAN w/o Local	2.5m	85.2	
Bi-BloSAN w/o Global	1.8m	85.3	
Bi-BloSAN w/o mBloSA	0.54m	83.1	
Bi-BloSAN w/o mBloSA & source2token self-attn.	0.45m	79.8	

Experiments

Reading Comprehension

Table 4: Experimental results for different methods on modified SQuAD task.

Context Fusion Method	$ \theta $	Time(s)/Epoch	Dev Accuracy		
Bi-LSTM (Graves et al., 2013)	0.71m	857	68.01		
Bi-GRU (Chung et al., 2014)	0.57m	782	67.98		
Bi-SRU (Lei & Zhang, 2017)	0.32m	737	67.32		
Multi-CNN (Kim, 2014)	0.60m	114	63.58		
Multi-head (Vaswani et al., 2017)	0.45m	140	64.82		
Bi-BloSAN	0.82m	293	68.38		

Semantic Relatedness (4,500/500/4,927 instances for training/dev/test sets.)

Pearson's r	Spearman's ρ	MSE	
0.8268	0.7721	0.3224	
0.8414	1	/	
0.7923 (0.0070)	0.7319 (0.0071)	0.3822 (0.0137)	
0.7900 (0.0042)	0.7304 (0.0042)	0.3848 (0.0042)	
0.8582 (0.0038)	0.7966 (0.0053)	0.2734 (0.0108)	
0.8676 (0.0030)	0.8083 (0.0042)	0.2532 (0.0052)	
0.8473 (0.0013)	0.7913 (0.0019)	0.3276 (0.0087)	
0.8374 (0.0021)	0.7793 (0.0028)	0.3395 (0.0086)	
0.8436 (0.0014)	0.7874 (0.0022)	0.3162 (0.0058)	
0.8521 (0.0013)	0.7942 (0.0050)	0.3258 (0.0149)	
0.8695 (0.0012)	0.8139 (0.0012)	0.2879 (0.0036)	
0.8616 (0.0012)	0.8038 (0.0012)	0.3008 (0.0091)	
	0.8268 0.8414 0.7923 (0.0070) 0.7900 (0.0042) 0.8582 (0.0038) 0.8676 (0.0030) 0.8473 (0.0013) 0.8374 (0.0021) 0.8436 (0.0014) 0.8521 (0.0013) 0.8695 (0.0012)	0.8268 0.7721 0.8414 / 0.7923 (0.0070) 0.7319 (0.0071) 0.7900 (0.0042) 0.7304 (0.0042) 0.8582 (0.0038) 0.7966 (0.0053) 0.8676 (0.0030) 0.8083 (0.0042) 0.8473 (0.0013) 0.7913 (0.0019) 0.8374 (0.0021) 0.7793 (0.0028) 0.8436 (0.0014) 0.7874 (0.0022) 0.8521 (0.0013) 0.7942 (0.0050) 0.8695 (0.0012) 0.8139 (0.0012)	

Experiments

Sentence Classifications

Model	CR	MPQA	SUBJ	TREC	SST-1	SST-2
cBoW (Mikolov et al., 2013a)	79.9	86.4	91.3	87.3	1	1
Skip-thought (Kiros et al., 2015)	81.3	87.5	93.6	92.2	/	/
DCNN (Kalchbrenner et al., 2014)	/	/	1	93.0	86.8	48.5
AdaSent (Zhao et al., 2015)	83.6 (1.6)	90.4 (0.7)	92.2 (1.2)	91.1 (1.0)	1	1
SRU (Lei & Zhang, 2017)	84.8 (1.3)	89.7 (1.1)	93.4 (0.8)	93.9 (0.6)	89.1 (0.3)	1
Wide CNNs (Lei & Zhang, 2017)	82.2 (2.2)	88.8 (1.2)	92.9 (0.7)	93.2 (0.5)	85.3 (0.4)	/
Bi-LSTM (Graves et al., 2013)	84.6 (1.6)	90.2 (0.9)	94.7 (0.7)	94.4 (0.3)	87.7 (0.6)	49.9 (0.8)
Multi-head (Vaswani et al., 2017)	82.6 (1.9)	89.8 (1.2)	94.0 (0.8)	93.4 (0.4)	83.9 (0.4)	48.2 (0.6)
DiSAN (Shen et al., 2017)	84.8 (2.0)	90.1 (0.4)	94.2 (0.6)	94.2 (0.1)	87.8 (0.3)	51.0 (0.7)
Bi-BloSAN	84.8 (0.9)	90.4 (0.8)	94.5 (0.5)	94.8 (0.2)	87.4 (0.2)	50.6 (0.5)

Consuming

Conclusion

- Split long sentence into blocks to model the local context and global context.
- Strange: the block size is calculated based on the memory requirement with out any linguistic prior.
- Only 1 layer? Is it fair for conventional self-attention model?
- Without "bidirection" and "multi-dimension"?