```
1 import FinanceDataReader as fdr
3 # 한국거래소 상장종목 전체
4 df krx = fdr.StockListing('KRX')
1 df krx.columns
    Index(['Symbol', 'Name', 'Sector', 'Industry'], dtype='object')
1 name=input('주식 코드 기업명 ?') #find 종목코드 및 정보
2 df krx[df krx['Name'].str.contains(name)]
4 import pandas as pd
5 import datetime
6 today=datetime.datetime.today()
7 # KS11 (KOSPI 지수), 2018년~현재
8 kospi = fdr.DataReader('KS11', '2018')
9 # 다우지수, 2018년~현재
10 dow = fdr.DataReader('DJI', '2018')
11 # 원달러 환율, 2018년~현재
12 usd won = fdr.DataReader('USD/KRW', '2018')
13 # 원중국위안 환율, 2018년~현재
14 cny won = fdr.DataReader('CNY/KRW', '2018')
15 # 비트코인 원화 가격 (빗썸), 2018년~현재
16 btc won = fdr.DataReader('BTC/KRW', '2016')
17 # 비트코인 원화 가격 (빗썸), 2018년~현재
18 btc usd = fdr.DataReader('BTC/USD', '2016')
19 #삼성전자 주가 & 애플 주가 (2018.01.01~현재)
20 ss=fdr.DataReader('005930', '2018-01-01', today)
21 apple=fdr.DataReader('AAPL', '2018-01-01', today)
22
23 kospi.head(3)
24
25 import matplotlib.pyplot as plt
26 plt.rcParams["font.family"] = 'AppleGothic'
27 plt.rcParams["figure.figsize"] = (14,8)
28
29 plt.subplots adjust(hspace = 0.5, wspace = 0.3)
30 plt.subplot(2,1,1)
31 ax=kospi['Close'].plot()
32 plt.title('종합주가지수KOSPI . 2018.1.1-today')
33 plt.subplot(2,1,2)
34 ax=dow['Close'].plot()
35 plt.title('미국 Dow 지수 . 2018.1.1-today')
36 plt.show()
37
38 plt.subplots adjust(hspace = 0.5, wspace = 0.3)
39
40 plt.subplot(2,1,1)
41 ax=usd won['Close'].plot()
42 plt.title('원당 달러 환율 . 2018.1.1-today')
43
44 plt.subplot(2,1,2)
```

```
45 ax=cny won['Close'].plot()
46 plt.title('원당 위안 환율 . 2018.1.1-today')
47
48 plt.show()
49
50 plt.subplots adjust(hspace = 0.5, wspace = 0.3)
52 plt.subplot(2,1,1)
53 ax=btc won['Close'].plot()
54 plt.title('원당 비트코인 가격 . 2018.1.1-today')
55
56 plt.subplot(2,1,2)
57 ax=btc usd['Close'].plot()
58 plt.title('달러당 비트코인 가격 . 2018.1.1-today')
59 plt.show()
60
61 plt.subplots adjust(hspace = 0.5, wspace = 0.3)
63 plt.subplot(2,1,1)
64 ax=ss['Close'].plot()
65 plt.title('삼성전자. 2018.1.1-today')
66
67 plt.subplot(2,1,2)
68 ax=apple['Close'].plot()
69 plt.title('애플. 2018.1.1-today')
70 plt.show()
71
72 fin=pd.concat([kospi['Close'],ss['Close'],apple['Close']], axis=1)
73 fin.head(3)
74
75 fin.set axis(['코스피','삼성','애플'],axis=1,inplace=True)
76 fin.head(3)
77
78 fin L=fin.shift(1); fin L.head(3)
79
80 fin0=pd.concat([fin,fin L],axis=1)
81 fin0.head(3)
```

주식 코드 기업명 2삼성

	Symbol	Name	Sector	
32	006400	삼성SDI	일차전지 및 축전지 제조업	칼라브라운관,PDP,평판표시
33	207940	삼성바이오로직스	기초 의약물질 및 생물학적 제제 제조업	
34	068290	삼성출판사	서적, 잡지 및 기타 인쇄물 출판업	
35	029780	삼성카드	기타 금융업	신용카드업,상품신
36	000810	삼성화재해상보험	보험업	
624	018260	삼성에스디에스	컴퓨터 프로그래밍, 시스템 통합 및 관리업	
625	010140	삼성중공업	선박 및 보트 건조업	선박(벌크·
626	016360	삼성증권	금융 지원 서비스업	
911	028260	삼성물산	기타 전문 도매업	
912	005930	삼성전자	통신 및 방송 장비 제조업	IMT2000 서비스용 동기4
913	001360	삼성제약	의약품 제조업	의약품
1166	006660	삼성공조	자동차 신품 부품 제조업	
1167	032830	삼성생명	보험업	
1168	009150	삼성전기	전자부품 제조업	영상,음향,통신장비,모듈,다층인
1445	028050	삼성엔지니어링	건축기술, 엔지니어링 및 관련 기술 서비스업	
1557	309930	삼성머스트스팩3호	금융 지원 서비스업	
10/0	201220	사섯패ᄀᆕ	그은 지의 서비人어	

```
1 fin0.reset index(inplace=True)
2 fin0.columns=['Date','코스피','삼성','애플','코스피시차','삼성시차','애플시차']
3 fin0['연도']=fin0['Date'].dt.year
4 fin0['월']=fin0['Date'].dt.month
5 fin_corr=fin0.groupby(['연도','월']).corr()
6 fin corr.reset_index(inplace=True)
8 fin_corr[fin_corr['연도']==2018].head(2)
9 fin corr[(fin corr['연도']==2018)&(fin corr['level 2']=='삼성')].head(2)
10 fin corr.set index(['연도','월','level 2'],inplace=True)
11
12 fin corr[abs(fin corr['코스피'])>0.7]['코스피']
13
14 import FinanceDataReader as fdr
15 import pandas as pd
16 import datetime
17 today=datetime.datetime.today()
18 # KS11 (KOSPI 지수), 2019년~현재
19 kospi = fdr.DataReader('KS11', '2019')
20 #삼성전자 주가 (2019.01.01~현재)
21 samsung=fdr.DataReader('005930', '2019-01-01', today)
22 hynix=fdr.DataReader('000660', '2019-01-01')
23 today
```

28

36

```
2019. 11. 14.
                                        stock_time_series.ipynb - Colaboratory
   4.4
   25 df stock=pd.concat([kospi['Close'],samsung['Close'],hynix['Close']],axis=1)
   26 df stock.set axis(['코스피','삼성전자','하이닉스'],axis=1,inplace=True)
        FrozenList(['Date'])
    1 df stock.head(3)
                     코스피 삼성전자 하이닉스
             Date
         2019-01-02 2010.00
                            38750
                                    60600
         2019-01-03
                   1993.70
                            37600
                                    57700
         2019-01-04
                   2010.25
                            37450
                                    58300
    1 import matplotlib.pylab as plt
    2 plt.subplots adjust(hspace = 0.5, wspace = 0.3)
    3 plt.subplot(2,1,1)
    4 plt.plot(df stock['코스피'], color='blue',label='코스피')
    5 plt.title('코스피 time plot')
    6 plt.subplot(2,1,2)
    7 plt.plot(df_stock['삼성전자'], color='blue',label='삼성전자')
    8 plt.plot(df stock['하이닉스'], color='green',label='하이닉스')
    9 plt.legend(loc='best')
   10 plt.show()
   11
   12 #Perform Dickey-Fuller test
   13 from statsmodels.tsa.stattools import adfuller, kpss
   14 adfuller(df stock['코스피'], autolag='AIC')
   15
   16 from statsmodels.tsa.stattools import kpss
   17 kpss(df stock['삼성전자'], regression='c')
   18
   19 adfuller(df_stock['삼성전자'], autolag='AIC')[0:2]
   20
   21 adfuller(df stock['하이닉스'], autolag='AIC')[0:2]
   22
   23 #삼성전자 주가 (2019.01.01~현재)
   24 samsung=fdr.DataReader('005930', '2018-01-01', today)
```

```
https://colab.research.google.com/drive/1rVc-IHKpI2j6rLVOyuMFjvivnNO0qdx0#printMode=true
```

32 plt.plot(ss m20, color='green', label='20일') 33 plt.plot(ss_m60, color='red',label='60일')

25 ss m5=samsung['Close'].rolling(window=5).mean() 26 ss m20=samsung['Close'].rolling(window=20).mean() 27 ss_m60=samsung['Close'].rolling(window=60).mean()

30 plt.plot(samsung['Close'], color='black',label='종가') 31 plt.plot(ss m5, color='blue',ls='--',label='5일')

29 plt.title('삼성전자 2018년~현재 이동평균법')

34 plt.legend(loc='best')

37 # Simple Exponential Smoothing 38 import FinanceDataReader as fdr

35 plt.show()

```
39 import pandas as pd
40 import datetime
41 today=datetime.datetime.today()
42 samsung=fdr.DataReader('005930', '2018-01-01', today)
43 from statsmodels.tsa.holtwinters import SimpleExpSmoothing
44 fit1 = SimpleExpSmoothing(samsung['Close'], h=5).fit(smoothing level=0.1,optimize
45 fit2 = SimpleExpSmoothing(samsung['Close'], h=5).fit() #recommend
47 print('alpha=0.1 *** \n', fit1.forecast(3),'\n optimal alpha= ***\n', fit2.forec
48
49 import matplotlib.pyplot as plt
50 plt.rcParams["font.family"] = 'AppleGothic'
51 plt.rcParams["figure.figsize"] = (14,8)
52 plt.title('삼성전자 2018년~현재 단순지수평활법')
53 plt.plot(samsung['Close'], color='black',label='종가')
54 plt.plot(fit1.fittedvalues, color='blue',ls='--',label='alpha=0.1')
55 plt.plot(fit2.fittedvalues, color='red',ls='--',label='optimal')
56 plt.legend(loc='best')
57 plt.show()
58
59 fit3=Holt(samsung['Close']).fit(smoothing level=0.8, smoothing slope=0.2,optimiz
60 fit4=Holt(samsung['Close'],exponential=True).fit(smoothing level=0.8, smoothing
61 fit5=Holt(samsung['Close'],damped=True).fit(smoothing_level=0.8, smoothing_slope
62
63 plt.title('삼성전자 2018년~현재 Holts 지수평활법')
64 plt.plot(samsung['Close'], color='black',label='종가')
65 plt.plot(fit3.fittedvalues, color='blue',ls='--',label='alpha=0.8, beta=0.2')
66 plt.plot(fit4.fittedvalues, color='red',ls='--',label='exponential')
67 plt.plot(fit5.fittedvalues, color='green',ls='--',label='damped')
68 plt.legend(loc='best')
69 plt.show()
70
71 plt.title('삼성전자 2018년~현재 Holts지수평활법 예측 향후 20기')
72 plt.plot(fit3.forecast(20), color='blue', ls='--', label='alpha=0.8, beta=0.2')
73 plt.plot(fit4.forecast(20), color='red',ls='--',label='exponential')
74 plt.plot(fit5.forecast(20), color='red', ls='--', label='damped')
75 plt.legend(loc='best')
76 plt.show()
77
78 fit4.forecast(3)
79
80 from statsmodels.tsa.api import ExponentialSmoothing
81 fit1 = ExponentialSmoothing(samsung['Close'], seasonal periods=5, trend='add', s
82 fit2 = ExponentialSmoothing(samsung['Close'], seasonal periods=5, trend='add', s
83 fit3 = ExponentialSmoothing(samsung['Close'], seasonal_periods=5, trend='add', s
84 fit4 = ExponentialSmoothing(samsung['Close'], seasonal periods=5, trend='add', s
85
86 samsung['Close'].plot(style='-', color='black',label='삼성전자_종가')
87 fit1.fittedvalues.plot(style='--', color='red',label='가법경향,가법계절')
88 fit2.fittedvalues.plot(style='--', color='green',label='가법경향,승법계절')
89 fit3.fittedvalues.plot(style='--', color='blue',label='Damped가법경향,가법계절')
90 fit4.fittedvalues.plot(style='--', color='yellow',label='Damped가법경향,승법계절')
91 plt.legend(loc='best')
92 plt.show()
```

```
94 fit1.forecast(20).plot(style='--', marker='o', color='red', label='가법경향,가법계절 95 fit2.forecast(20).plot(style='--', marker='o', color='green',label='가법경향,승법계절 96 fit3.forecast(20).plot(style='--', marker='o', color='blue', label='Damped가법경향 97 fit4.forecast(20).plot(style='--', marker='o', color='yellow', label='Damped가법경 98 plt.legend(loc='best') 99 plt.show()
```


- 1 from statsmodels.tsa.seasonal import seasonal_decompose
- 2 import FinanceDataReader as fdr
- 3 samsung=fdr.DataReader('005930', '2018-01-01')
- 1 series=pd.Series(samsung['Close'])
- 1 result=seasonal_decompose(samsung['Close'], model='additive',freq=5)
- 2 import matplotlib.pyplot as plt
- 3 result.plot()
- 4 plt.show()


```
1 result2=seasonal_decompose(samsung['Close'], model='multiplicative',freq=5)
```

⁴ plt.show()

² import matplotlib.pyplot as plt

³ result2.plot()

