Analýza, návrh a implementácia softwarovej platformy pre firmu Asseco Central Europe, a.s.

Diplomová práca

Bc. Zuzana Lysová

Vedúci práce: RNDr. Zuzana Špendel, Ph.D.

Brno 2024

NA MIESTE TOHTO LISTU SA NACHÁDZA ORIGINÁL ZADANIA PRÁCE.

Čestné prehlásenie

Prehlasujem, že som prácu *Analýza, návrh a implementácia softwarovej plat- formy pre firmu Asseco Central Europe, a.s.* vypracovala samostatne a všetky použité zdroje a informácie uvádzam v zozname použitej literatúry. Súhlasím, aby moja práca bola zverejnená v súlade § 47b zákona č. 111/1998 Sb., o vysokých školách, v znení neskorších predpisov a v súlade s platnou Směrnicí o zveřejňování vysokoškolských závěrečných prací. Prehlasujem, že tlačená podoba záverečnej práce a elektronická podoba záverečnej práce zverejnená v aplikácii Závěrečné práce v Univerzitním informačním systému je identická.

Som si vedomá, že sa na moju prácu vzťahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brně má právo na uzatvorenie licenčnej zmluvy a použitie tejto práce ako školského diela podľa § 60 odst. 1 autorského zákona.

Ďalej sa zaväzujem, že pred spísaním licenčnej zmluvy o použití diela inou osobou (subjektom) si vyžiadam písomné stanovisko univerzity, že predmetná licenčná zmluva nie je v rozpore s oprávnenými záujmami univerzity a zaväzujem sa uhradiť prípadný príspevok na úhradu nákladov spojených so vznikom diela, a to až do ich skutočnej výšky.

V Brne dňa 17. apríla 2024			
	podpis		

Abstract

Lysová, Zuzana. Analysis, design and implementation of software platform for Asseco Central Europe, a.s.. Master's Thesis. Brno: Mendel University in Brno, 2024.

Key words

aa,xxx,vvv,aa,bbb

Abstrakt

Lysová, Zuzana. *Analýza, návrh a implementácia softwarovej platformy pre firmu Asseco Central Europe, a.s.*. Diplomová práca. Brno : Mendelova univerzita v Brně, 2024.

Kľúčové slová

bla,blabla,bla,blabla

Obsah

1	Úv	vod .	9
2	Ci	eľ	10
3	Sú	časný stav	11
0	1	Analista laterara a Conserva a retar ČD	11
	.1	Architektura eGovernmentu ČR	
3	.2	Informační koncepce ČR ČP	
2	3.2 .3	3 3 1 3	
	.3 .4	Katalóg služieb verejnej správy	
	. 4 .5	Digitální Česko	
3	. <i>5</i> 3.5		
	3.5		
	3.5	,	
	3.5		
3	.6	Integračné platformy (toto ešte dokončím)	21
	.7	Projekt EMMA	
	.8	Platforma SAMO	
	.9	Trendy vývoja softwaru	
	.10	Súčasný stav projektu	
4	M	etodika	28
1	1	Dania EMMA	20
	.1 .2	Popis EMMA	
4		Popis SAMO	
	4.2		
	4.2	,	
	4.2		
1	.3	Nástroj EA2LIDS	36
	.3 .4	Nástroj AMK	38
5	Vý	rsledky	40
5	.1	Popis procesov vedúcich k výsledkom	40

5.2	Model požiadaviek	40
5.3	Use case model	42
5.4	Diagram aktivít	44
5.5	Konceptuálny dátový model	45
5.6	Logický dátový model pre SAMO	46
5.7	Stavové diagramy	48
5.8	Dizajn aplikácie	49
5.9	Implementácia	53
5.10	Návrh testovacích scenárov	54
5.11	Dokumentácia prevedených testov	55
6 Di	skusia	56
7 Zá	věr	57
Literat	úra	58
Zoznai	n tabuliek	61
Zoznai	n obrázkov	62
Zoznai	n použitých skratiek	64
PŘÍLO	НҮ	

1 Úvod

V súčasnosti je množstvo zamestnancov zahltených rutinnými administratívnymi úkonmi. Firma Asseco Central Europe, a.s. prišla s nápadom vytvoriť integračnú platformu s pracovným názvom EMMA, ktorá by mala tieto úkony minimalizovať. Projekt je v štádiu riešenia a aktuálne existuje zjednodušená implementácia služby "nástup zamestnanca do zamestnania", ktorá je v katalógu služieb VS. Tento katalóg služieb verejnej správy ČR obsahuje v dnešnej dobe takmer 8 tisíc služieb a vyše 34 tisíc úkonov. Tieto služby a úkony sa týkajú bezmála 400 agend a ohlasuje ich približne 30 rôznych ohlasovateľov (ministerstvá, úrady a pod.). Väčšinu týchto úkonov je možné previesť online, prostredníctvom dátovej schránky.

Projekt EMMA je riešením, ktoré umožni integráciu služieb VS do informačných systémov firiem a spojenie viacerých služieb verejnej správy. Už spomínaný príklad nástupu zamestnanca do zamestnania umožňuje pomocou jedného formuláru (poprípade tlačítka) nahlásiť túto udalosť príslušným úradom - Českej správe sociálneho zabezpečenia a zdravotnej poisťovni. Prvotným zámerom je integrácia služieb VS, no do budúcna sa plánuje rozšíriť to aj o služby komerčnej sféry, napr. poistenie auta.

TODO niekde ku koncu - VÝHODY A NEVÝHODY EMMA - napr. zamestnanci...

2 Cieľ

Cieľom tejto diplomovej práce je analýza súčasných procesov verejnej správy a úrovne digitalizácie v Českej republike. Práca sa zameriava na rozbor existujúceho stavu projektu EMMA, ktorý zahŕňa služby verejnej správy, a identifikovať potenciálne oblasti na jeho rozšírenie. Kľúčovým prvkom je analyzovať a následne rozšíriť stávajúce rozhranie projektu, vyvinuté na platforme SAMO, o nový modul zamestnancov.

V dnešnej dobe sa digitalizácia verejnej správy stala častou témou rôznych diskusií. Je to najmä preto, že predstavuje cestu k efektívnejšiemu, účinnejšiemu a transparentnejšiemu poskytovaniu služieb naprieč rozličnými odvetviami. V tomto dynamickom kontexte sľubuje digitalizácia transformáciu tradičných modelov služieb na modely, ktoré sú viac prispôsobené súčasným potrebám občanov a inštitúcií. (Andersson, 2022)

Pre správne chápanie fungovania eGovernmentu v Českej republike (i vo svete) je nutné pochopenie základných pojmov a koncepcií, ktoré sú popísané v nasledujúcich kapitolách.

3.1 Architektura eGovernmentu ČR

Termín eGovernment, ktorý sa v tejto práci opakovane objavuje, označuje pojem popisujúci modernú digitálnu verejnú správu. Opiera sa o využitie digitálnej infraštruktúry pre efektívne vykonávanie právomocí daných inštitúcií. Táto infraštruktúra realizuje sadu služieb informačných technológií (ICT služieb), ktoré sú zdieľané, dôveryhodné, prepojené, bezpečné, automatizované, efektívne a ľahko používateľné pre užívateľov. Služby eGovernmentu sú určené občanom, firmám, podnikateľom i úradníkom. Synonymami pojmu eGovernment sú "digitálny government" alebo "digitálna verejná správa" (DIGITÁLNÍ A INFORMAČNÍ AGENTURA, 2023).

Digitálna verejná správa používa rôzne poskytnuté a dostupné informácie, ktoré automatizovane spracuváva s cieľom obmedziť, respektíve znížt množstvo podania a objemu informácií zo straný užívateľov služieb VS.

Hlavným poslaním eGovernmentu je: "Poskytovať klientom verejnej správy jednoduché a efektívne služby, ktoré im uľahčia dosiahnutie ich práv a nárokov, ako aj plnenie ich povinností a záväzkov vo vzťahu k verejnej správe." (DIGITÁLNÍ A INFORMAČNÍ AGENTURA, 2023)

Vízia eGovernmentu v ČR do konca horizontu Informačnej koncepcie ČR (viac popísaná v kapitole 3.2 Informační koncepce ČR) je: "Česká republika je jednou z popredných krajín v užívateľskej prívetivosti verejnej správy vďaka svojmu klientsky orientovanému prístupu, modernému dizajnu úradných procesov a efektívnemu využívaniu digitálnych a nedigitálnych technológií." (DIGITÁLNÍ A INFORMAČNÍ AGENTURA, 2023)

3.2 Informační koncepce ČR

Informační koncepce ČR (ďalej ako IKČR) rozpracováva vyššie spomenutú víziu do rôznych cieľov, ktoré realizujú jednotlivé orgány VS. Predstavuje komplexný plán na rozvoj informačných systémov verejnej správy, ktorý je prispôsobený potrebám a cieľom štátu.

To, či ciele boli naplnené alebo nie ukazuje stav plnenia zadefinovaných cieľov a pozícia v rebríčkoch ako je napríklad DESI (rozobraté v kapitole 3.5.1 Index digitálnej ekonomiky a spoločnosti).

Všetky povinné subjekty podľa zákona č. 365/2000 Sb., o informačných systémoch, majú povinnosť viesť vlastné informačné koncepcie a vždy ich musia uviesť do súladu s Informačnou koncepciou ČR. Je to prakticky koncepcia rozvoja informačných systémov verejnej správy, ktorú spracováva Ministerstvo vnútra a schvaľuje vláda. Je vypracovaná na základe ustanovenia § 5a, Zákona č. 365/2000 Sb., o informačných systémoch verejnej správy. Týmto prístupom sa zabezpečuje jednotný rámec pre rozvoj a prevádzku informačných systémov a služieb eGovernmentu v celej krajine.

Medzi hlavné časti IKČR patria:

- architektonické principy eGovernmentu a elektronizácie verejnej správy,
- efektívny rozvoj digitálnej verejnej správy a informačných systémov verejnej správy (ISVS),
- **zásady** riadenia ICT vo verejnej správe,
- základné koncepčné **povinnosti** pre budovanie, rozvoj a prevádzku ISVS a ich vzájomné prepojenie a pre budovanie spoločných služieb eGovernmentu.

IKČR je základný dokument, ktorý určuje dlhodobé ciele a strategické smerovanie ČR v oblasti informačných systémov a digitálnych služieb verejnej správy a všeobecné princípy obstarávania, tvorby, správy a prevádzky ISVS v ČR. Obsahuje predovšetkým:

- ciele a podporu oblasti eGovernmentu (zo strany informačných systémov verejnej správy),
- zásady riadenia útvarov informatiky a riadenie životného cyklu ISVS,

 architektonické principy pre návrh a rozvoj ISVS a ich služieb. (DIGI-TÁLNÍ A INFORMAČNÍ AGENTURA, 2023)

3.2.1 Metódy riadenia ICT verejnej správy ČR

Súčasťou a kľúčovým predpokladom naplnenia cieľov stanovených v IKČR je zavedenie efektívnej centrálnej koordinácie riadenia ICT. Zároveň je to aj podpora transformačných iniciatív, ktoré smerujú k digitalizácii VS a plnému digitálnemu governmentu.

"Metódy riadenia ICT verejnej správy ČR" (ďalej ako MRICT) je dokument, ktorý stanovuje pravidlá prevádzkovania ICT kapacít, kompetencií štátnych podnikov, riadenia útvarov informatiky, centrálneho koordinovaného riadenia ICT podpory eGovernmentu a podobne. MRICT nadväzuje na zásady riadenia ICT, ktoré sú súčasťou IKČR, a predstavuje kľúčový nástroj na zabezpečenie súladu a efektívnosti pri procesoch digitalizácie VS (DIGITÁLNÍ A INFORMAČNÍ AGENTURA, 2023).

3.3 Katalóg služieb verejnej správy

Katalóg služieb VS je súčasťou Registra práv a povinností (RPP) a obsahuje údaje o službách VS, úkonoch a dostupných kanáloch. RPP je jedným zo štyroch základných registrov, medzi ktoré ďalek patria Registr obyvatel (ROB), Registr osob (ROS) a Registr územní identifikace adres a nemovitostí (RÚIAN). Tieto základné registre sú základný zdroj dát o právnych subjektoch a objektoch a o procesoch vykonávaných v rámci verejnej správy. (DIGITÁLNÍ A INFORMAČNÍ AGENTURA, 2023)

Katalóg služieb VS sa dá vnímať z dvoch pohľadov:

- a) ako klientskú aplikáciu, ktorá poskytuje údaje klientom
- b) ako úradnícku aplikáciu, ktorá je určená na zber a úpravu údajov

Funkcie katalógu služieb VS možno ozdeliť do štyroch kategórií:

- automatizačné zber dát potrebných na automatizáciu
- informačné poskytovanie prehľadu o existujícich službách VS a spôsobu ich spracovania
- publikačné poskytovanie informácií, ktoré sú potrebné na korektné zobrazovanie služieb VS na portáloch VS (kategórie, radenie...)

riadiace – riadenie poskytovania a dodávky služieb VS (tvorba plánu digitalizácie, zodpovednosť za služby...)

Časti katalógu služieb VS sú služby vykonávané z úradnej moci, ale taktiež aj služby, ktoré iniciuje klient (subjekt práva).

Vzhľadom na to, že údaje v katalogu služeb VS sú referenčné, je nutné ich udržiavať aktuálne (DIGITÁLNÍ A INFORMAČNÍ AGENTURA, 2023).

Obsahom katalógu služieb VS sú služby a úkony. V Českej republike je to v súčasnosti takmer 8 tisíc služieb a vyše 34 tisíc úkonov (Digitální a informační agentura, 2023).

Služba VS reprezentuje funkciu (činnosť) úradu, ktorá je poskytovaná konkrétnym OVM (úradníkom) konkrétnemu príjemcovi služby podľa príslušného právneho predpisu. Prináša príjemcovi hodnotu - buď vo forme benefitu alebo splnenia zákonnej povinnosti. Ak ide o interakciu medzi OVM a OVM, nepokladá sa to za službu VS. Pri službe VS ide vždy o interakciu medzi OVM a klientom (a opačne). Každá služba sa skladá z minimálne jedného úkonu. (DI-GITÁLNÍ A INFORMAČNÍ AGENTURA, 2023).

Úkon je taktiež interakcia medzi klientom a OVM, no v tomto prípade ide len o jednu interakciu, ktorá vedie k ďalšiemu úkonu (resp. k naplneniu výstupu služby, ak sa jedná o koncový úkon). Úkon sa teda dá definovať ako jeden krok, jedna časť služby VS (Digitální a informační agentura, 2023).

3.4 Digitální Česko

Táto kapitola je venovaná iniciatíve Digitálne Česko. Ide o ucelenú víziu, ktorá je realizovaná na základe niekoľých koncepcií, plánov a stratégií, ktoré sú v súlade s potrebami ČR a politikou EÚ.

Projekt Digitálne Česko pokrýva 3 základné piliere:

- Česko v digitální Evropě vládna koncepcia zameriavajúca sa na jednotný digitálny trh v Európe
- Digitální ekonomika a společnost strategický dokument, ktorého cieľom je koordinácia agend z oblastí digitálnej ekonomiky a spoločnosti naprieč verejnou správou, hospodárstvom, sociálnou či akademickou sférou (súvisí aj s kap. 3.5.1)
- Informační koncepce České republiky (kap. 3.2)

Vláda ČR považuje program Digitálne Česko za súbor stratégií, ktoré vytvárajú predpoklady pre dlhodobú prosperitu krajiny v ére digitálnej transformácie a revolúcie. (Úřad vlády ČR, 2024)

3.5 Postavenie Českej republiky v oblasti digitalizácie

Existuje viacero spôsobov hodnotenia a merania úrovne rozvinutosti krajín v oblasti digitalizácie a rozvoja eGovernmentu. Patrí medzi ne napríklad *Index digitálnej ekonomiky a spoločnosti, Index rozvoja eGovernmentu, eGovernment Benchmark* a iné (Winkler, 2024). Tieto nástroje umožňujú detailnejšie pochopenie postupov, ktoré krajiny implementujú na podporu eGovernmentu a identifikáciu oblastí, v ktorých je potrebné zlepšenie.

V nasledujúcich kapitolách sú v skratke popísané spomínané 3 prieskumy a ich posledné výsledky. Analýza výsledkov umožní lepšie porozumieť súčasný stav na národnej aj medzinárodnej úrovni.

3.5.1 Index digitálnej ekonomiky a spoločnosti

Európska komisia sleduje a monitoruje pokrok členských štátov v digitálnej oblasti od roku 2014 a každý rok zverejňuje informácie o indexe digitálnej ekonomiky a spoločnosti (Digital Economy and Society Index, DESI). Tento index zoraďuje štáty podľa úrovne digitalizácie a zároveň posudzuje ich relatívny pokrok za uplynulých päť rokov vzhľadom na ich počiatočnú situáciu.

Oblasti, ktoré skúma DESI sú:

- ľudský kapitál- internetové znalosti používateľov, pokročilé znalosti ľudí v IT oblasti
- konektivita využitie a pokrytie pevného a mobilného pripojenia a ich ceny
- integrácia digitálnych technológií digitálne technológie pre firmy (cloud, umelá inteligencia...), e-commerce¹
- digitálne verejné služby e-government, otvorené dáta²

Európska komisia spolu s Radou prejednávajú rozhodnutie o politickom programe "Cesta k digitálnej dekáde", ktorý stanovuje ciele na úrovni Európskej únie, dosiahnuteľné do roku 2030. Cieľom je zaistiť to, aby bola digitálna transformá-

 $^{^{\}rm 1}$ e-commerce – obchodné činnosti prevádzané na internete a pomocou ďalších elektronických prostriedkov

² otvorené data (open data, vládne dáta) – informácie verejného sektoru, ktoré sú bezplatne dostupné na akékoľvek účely

cia komplexná a udržateľná a aby prebehla vo všetkých odvetviach hospodárstva. Dosiahnutie cieľa programu závisí na všetkých členských krajinách a na ich spoločnom úsilí (Еико́рsка комізіа - Меторіка, 2022).

Česká republika je podľa výsledkov DESI za rok 2022 na 19. mieste (z 27 členských štátov) (viď obrázok 3.1). V porovnaní s rokom 2021 sa Česká republika zlepšila v oblasti digitálnych verejných služieb a konektivite. Zhoršila sa v integrácii digitálnych technológií.

Obrázok 3.1 Index digitálnej ekonomiky a spoločnosti 2022 (Európska komisia - Česko, 2022)

Obrázok 3.2 Index DESI 2022 - relatívne výsledky v jednotlivých oblastiach (Európska komisia - Česko, 2022)

Možným pozitívom a príležitosťou je, že za digitalizáciu verejnej správy v Českej republike je od roku 2007 prvýkrát zodpovedná konkrétna osoba - miestopredseda Ivan Bartoš. ČR pokračuje v implementácii stratégie "Digitálne Česko" z roku 2018 (aktualizovanej v roku 2020) (Ευκόρsκα κομισια - Česko, 2022).

Na grafe z obrázku 3.2 možno vidieť okrem pozície ČR aj výsledky všetkých ostatných krajín vrátane lídrov v hodnotení – Fínsko a tesne za ním Dánsko. Graf na obrázku 3.2 ukazuje porovnanie jednotlivých oblastí indexu DESI s priemernými výsledkami krajín EU-27. (Ευκόρsκα κομισια - Česko, 2022)

3.5.2 Index rozvoja eGovernmentu

Ďalším významným prieskumom je hodnotenie eGovernmentu vykonávané Organizáciou Spojených Národov, ktoré poskytuje hodnotenie eGovernmentu naprieč všetkými 193 členskými štátmi. Tento prieskum hodnotí krajiny na základe Indexu rozvoja e-governmentu (E-Government Development Index, EGDI), ktorý je kombináciou primárnych dát (zbieraných a vlastnených OSN) a sekundárnych dát (získaných od iných agentúr) (UNITED NATIONS, 2024).

EGDI sa získava váženým priemerom troch indexov, ktoré sa týkajú týchto oblastí:

- online služby³ hodnotenie verejných portálov na základe 5 kritérií (inštitucionálny rámec, poskytovanie služieb, poskytovanie obsahu, technológie a digitálna účasť občanov)
- telekomunikačná infraštruktúra⁴ hodnotí úroveň rozvoja infraštruktúry nevyhnutnej pre e-vládu, vrátane pripojenia na internet, infraštruktúry širokopásmového prístupu a mobilných sietí
- ľudský kapitál⁵ hodnotí vzdelanie a úroveň zručností obyvateľstva krajiny, s dôrazom na faktory ako miera gramotnosti, zapojenie do vzdelávania a dostupnosť kvalifikovaných odborníkov v oblasti informačných a komunikačných technológií

Na základe hodnôt indexov EGDI je možné členské štáty OSN rozčleniť do štyroch kategórií: krajiny s veľmi vysokým indexom (0,75-1,00), krajiny s vysokým indexom (0,50-0,75), krajiny so stredným indexom (0,25-0,50) a krajiny s nízkym indexom (0,00-0,25).

³ Online Services Index (OSI)

⁴ Telecommunications Infrastructure Index (TII)

⁵ Human Capital Index (HCI)

Podľa najnovšieho prieskumu z roku 2022 spadá do veľmi vysokého indexu 60 krajín (31 %), do vysokého 73 (38 %), do stredného 53 (27,5 %) a 7 krajín (3,5 %) má nízky index rozvoja eGovernmentu.

Medzi najvyspelejšie krajiny v oblasti elektronického vládnutia podľa Indexu rozvoja e-governmentu (EGDI) sa, podobne ako v prípade DESI, radia Dánsko a Fínsko. Česká republika sa umiestňuje na 45. pozícii, avšak stále patrí do kategórie krajín s veľmi vysokým indexom EGDI.

Porovnanie jednotlivých hodnôt je v tabuľke 3.1. Na obrázku 3.3 je zobrazené geografické rozloženie jednotlivých krajín a ich úrovní EGDI.

Tabuľka 3.1 Porovnanie EGDI vybraných krajín s ČR (United Nations, 2022)

Krajina	EGDI poradie	OSI	НСІ	TII	EGDI
Dánsko	1	0.9797	0.9559	0.9725	0.9753
Fínsko	2	0.9833	0.9640	0.9172	0.9533
		•••	•••	•••	•••
Česká republika	45	0.6693	0.9114	0.8456	0.8221
Ukrajina	46	0.8148	0.8669	0.7270	0.8029
Slovenská republika	47	0.7260	0.8436	0.8328	0.8008

Obrázok 3.3 Geografické rozloženie štyroch EGDI kategórií (United Nations, 2022)

3.5.3 eGovernment Benchmark

Posledným zo spomínaných prieskumov je eGovernment Benchmark. eGovernment Benchmark monitoruje pokrok v digitalizácii verejných služieb 35 európskych krajín, známych ako EU27+ (27 členských štátov Európskej únie spolu s Islandom, Nórskom, Švajčiarskom, Albánskom, Čiernou horou, Severným Macedónskom, Srbskom a Tureckom) (van der Linden, 2022).

Prieskum eGovernment Benchmark sa zameriava na tieto štyri kľúčové oblasti:

- orientácia na užívateľa miera poskytovania online služieb, mobilefriendly služby, online podpora a spätná väzba
- transparentnosť informácie o tom, ako sú poskytované služby VS, spracovaní osobných údajov a pod.
- kľúčové faktory dostupnosť technologických faktorov v súvislosti so službami VS
- cezhraničné služby jednoduchosť používania služieb VS pre občanov zo zahraničia a mechanizmy podpory a spätnej väzby pre takýchto občanov

Na základe týchto štyroch oblastí získavajú krajiny tzv. "skóre eGovernment vyspelosti", ktorého škála sa pohybuje na stupnici od 0 do 100. Vedúcimi krajinami boli podľa posledného prieskumu z roku 2022 Malta a Estónsko. Česká republika dosiahla 22. miesto (van der Linden, 2022).

Tabuľka 3.2 Porovnanie skóre eGovernment Benchmark vybraných krajín s ČR (van der Linden, 2022)

Krajina	poradie	eGovernment maturity score
Malta	1	96
Estónsko	2	90
	•••	
Česká republika	22	63
Bulharsko	23	61
Taliansko	24	61
Chorvátsko	25	61
Slovenská republika	26	60

Obrázok 3.4 Geografické rozloženie eGovernment vyspelosti podĺa prieskumu eGovernment Benchmark (van der Linden, 2022)

Porovnanie jednotlivých indexov vybraných krajín je v tabuľke 3.2. Obrázok 3.4 ilustruje geografické rozloženie krajín a ich príslušné skóre eGovernment vyspelosti.

3.5.4 Zhrnutie výsledkov prieskumov

Analýza Indexu digitálnej ekonomiky a spoločnosti (DESI), Indexu rozvoja eGovernmentu (EGDI) a eGovernment Benchmarku ukazuje, že Česká republika dosahuje pokrok v digitalizácii verejnej správy. Napriek tomu pri porovnaní s globálnym merítkom, predovšetkým so severskými krajinami a vedúcimi členmi Európskej únie, čelí výzvam spojeným s konektivitou, integráciou digitálnych technológií a poskytovaním digitálnych verejných služieb.

V kontexte susedných krajín si ale ČR vedie pomerne dobre. Severské krajiny a vyspelé členské štáty EÚ vynikajú v inováciách a ponúkaní efektívnych a užívateľsky prívetivých digitálnych služieb. Tento fakt môže ČR použiť ako model

pre zlepšovanie svojich digitálnych služieb. Významná je tiež potreba zamerania sa na cezhraničné digitálne služby, kde ČR môže opäť čerpať z príkladov zo zahraničia.

Aktuálne sa ČR nachádza v strednej časti hodnotiacich rebríčkov digitalizácie, avšak iniciatíva "Digitálne Česko" (bližšie popísaná v kapitole 3.4 Digitální Česko) má potenciál posunúť ČR na prednejšie pozície v týchto prieskumoch. Predstavuje sľubný krok smerom k zlepšeniu výkonnosti Českej republiky v digitálnom prostredí, zvýšeniu jej konkurencieschopnosti a zlepšeniu poskytovania digitálnych služieb občanom.

Projekt EMMA, ako aj jeho integrácia do systémov ERP firiem, či sprostred-kovanie prostredníctvom platformy SAMO, predstavuje významný krok vpred v rámci digitalizácie českého eGovernmentu. Zameranie na digitálne verejné služby a integráciu digitálnych technológií by mohlo, v prípade preniknutia platformy EMMA na trh, viesť k posunu Česka na vyššie pozície v spomínaných rebríčkoch.

3.6 Integračné platformy (toto ešte dokončím)

Úlohou integračných platforiem (alebo integration platform-as-a-service, iPaaS) je prepojiť informácie z rôznych zdrojov (z aplikácií, procesov, služieb...) a pripraviť tak priestor pre rýchlejšie inovácie a automatizáciu. Množstvo podnikov sa prikláňa k riešeniam iPaaS, aby zjednotili a digitalizovali podnikové operácie a mohli používať pri procesoch moderné technológie a umelú inteligenciu. Táto služba môže pomocou konektorov a API rozhraní pomôcť spoločnostiam centralizovane a automatizovane vytvárať, spravovať a monitorovať integračné toky naprieč systémami. (SAP, 2024)

Medzi existujúce "integračné platformy ako služby" patria napríklad SAP Integration Suite, IBM® App Connect, Workato, platforma EMMA a iné.

EMMA je prvým a jedinečným riešením v Českej republike. Jej najväčšou výhodou oproti ostatným je, že je stavaná na integráciu služieb z katalógu služieb verejnej správy.

3.7 Projekt EMMA

EMMA predstavuje jedinečnú integračnú G2B2B platformu a nadväzujúce služby, ktoré sú efektívne, rýchle a "zabudovateľné" do každodenných procesov klientov verejnej správy, hlavne podnikov. Tieto služby sú navrhnuté a posky-

tované tak, aby sa dali čo najjednoduchšie integrovať do ERP systémov podnikov⁶. Zároveň by mali tieto služby podporovať podnikové procesy a zaisťovať prostredníctvom zakomponovaných služieb možnosť plniť svoje povinnosti a vymáhať si svoje práva vočí verejnej správe. (Asseco, 2023)

Hlavným cieľom projektu EMMA je vybudovanie EMMA ako súhrn služieb a riešení v oblasti podpory komunikácie komerčného sektoru s verejnou správou a začlenenie do informačných systémov firiem (ERP/FM/CRM systémy).

Cieľovými skupinami sú najmä skupiny, ktoré potrebujú informačne podporiť komunikáciu subjektov s verejnou správou hlavne v opakujúcich sa, rutinných činnostiach. Ide hlavne o činnosti spojené s vykazovaním, ohlasovaním (za zamestnancov alebo klietov). Ako sa píše v článku od Anderssona z roku 2022, každá práca môže byť automatizovaná (respektíve digitalizovaná) len vtedy, ak môže byť vizuálne reprezentovaná a preložiteľná do algoritmických inštrukcií pre počítač. Spomínané činnosti reprezentovateľné sú, a tak môžu byť digitalizované resp. automatizované.

Medzi konkrétnych cieľových užívateľov patria napríklad personalisti, účtovní a daňoví pracovníci, banky, poisťovne a pod. Potenciálnych zákazníkov možno rozdeliť do dvoch skupín:

- a) zákazníci, ktorí nemajú žiaden plnohodnotný ERP systém,
- b) zákazníci, ktorí zvažujú zmenu/upgrade používaného ERP systému.

Projekt nadväzuje na Architektonický princíp č. 11: eGovernment jako platforma (Embedded eGovernment) uvedený v IKČR. Architektonické princípy IKČR sú spomenuté v kapitole 3.2. V skratke princíp č. 11 hovorí o tom, že procesy a služby verejnej správy aj s potrebnými technickými nástrojmi musia byť navrhnuté tak, aby organizácie mohli tieto služby jednoducho integrovať do svojich ICT systémov, čo im uľahčí plnenie povinností a využívanie práv voči verejnej správe (DIGITÁLNÍ A INFORMAČNÍ AGENTURA, 2023).

Okrem tohto princípu sa EMMA riadi aj ďalšími procesnými zásadami ustanovenými v IKČR, napr.:

- Z6 Riadenie výkonnosti a kvality meranie výkonnosti a kvality, princípy merateľnosti a spätnej väzby, pravidelné audity
- Z7 Riadenie zodpovednosti za služby a systémy každý proces a služba musí mať svojho vlastníka a garanta
- Z8 Riadenie ICT služieb IT podpora riadená katalógom ICT služieb pre interné a externé procesy

⁶ ERP (Enterprise Resource Planning) systém – interný informačný systém podniku slúžiaci na správu rôznych činností podniku (účtovníctvo, zásobovanie, personalistika...)

Z11 Riadenie prínosov a hodnoty – rozhodovanie založené na ekonomickej výhodnosti, zahŕňa analýzu nákladov, rizík a prínosov, nutnosť spracovania investičného zámeru

 Z16 Využívanie otvoreného software a štandardov – preferencia otvoreného softvéru a štandardov, podpora udržateľnosti, rozvoja a bezpečnosti (Digitální a informační agentura, 2023)

Projekt EMMA môže okrem ekonomických prínosov priniesť aj neekonomické a to ako pre klientov, tak i pre ČR a EÚ. Dajú sa identifikovať napr. ako reputačný prínos ČR, prínos k riešeniu spoločenských výziev EÚ, rozvoj ľudského potenciálu a pod. Zámer projektu zároveň prispieva k naplneniu cieľov Národnej inovačnej stratégie.

3.8 Platforma SAMO

Platforma SAMO je v súčasnej dobe základom pre evidenciu služieb EMMA. Názov SAMO vznikol skrátením slov Strategic Asset Management & Operations system, čo v preklade znamená systém pre strategickú správu majetku. Vývoj jednotlivých modulov začal v roku 1991. Počas posledných vyše 30-tich rokov vývoja sa firme Asseco podarilo do rôznych riešení zapojiť množstvo skúseností a best practices.

Pôvodne bolo SAMO vyvinuté ako platforma zameraná hlavne na geografické informačné systémy, čo bol ideálny základ najmä pre spoločnosti spravujúce mestskú infraštruktúru a distribučné siete.

Platforma SAMO sa dá konceptuálne rozdeliť na dve hlavné časti – evidenčnú a priestorovú. Evidenčná časť sa zaoberá evidenciou majetku a jeho charakteristík, ako sú napr. posledné kontroly či opravy. Priestorová zložka obsahuje geometrické údaje, mapové informácie a podobne.

Postupne bol systém rozšírený o procesnú zložku, ktorá zahŕňa riadenie procesov ako sú napríklad hlásenie udalostí či plánovanie údržby. Vznikajú tak agendy na správu majetku, ktoré sa skladajú zo zoznamu entít, editačných formulárov, detailov, stavových diagramov a iných prvkov.

Vzhľadom na to, že každý zákazník má špecifické potreby, SAMO sa neponúka ako finálny produkt, ale len ako flexibilná platforma zložená z rôznych komponent, ktoré sa skladajú podľa individuálnych požiadaviek zákazníka. Toto prispôsobenie a možnosť agilného vývoja projektov je konkurenčnou výhodou SAMO v oblasti verejnej správy. Vďaka modularite a možnosti znovupoužitia existujúcich metadát a komponentov je SAMO vhodné najmä pre unikátne agendy evidenčného charakteru, ktoré majú nejakú GIS zložku, pričom GIS zložka ale nie je podmienkou vhodnosti použitia SAMO.

Pri implementácii SAMO aplikácie je nutné meniť hlavne business zložku jednotlivých systémov (logiku akcií a procesov).

Platforma SAMO má 3 základné moduly:

- SAMO EAM (Enterprise Asset Management) správa podnikového majetku
- SAMO AIS (Agendový IS) procesy verejnej správy
- SAMO LIDS/GIS geografický informačný systém

Platforma SAMO je základom pre široké spektrum aplikácií používaných v rozličných sektoroch – od priemyslu a energetiky až po verejnú správu a koncepty inteligentných miest. V Českej republike sa na nej zakladajú projekty pre významné inštitúcie, ako sú Český banský úrad, Český rybársky zväz, Agentúra ochrany prírody a krajiny ČR, čo potvrdzuje jej flexibilitu a široké využitie.

V kontexte tejto práce je cieľom rozšírenie agendového systému (SAMO AIS) na správu zamestnancov a služieb verejnej správy.

SAMO AIS predstavuje špecifický modul na podporu procesov verejnej správy. Zahŕňa zadávanie požiadavkov, vyhodnocovanie workflow, notifikácie, analýzu dát, pridávanie priestorových informácií atď. Tento modul je navrhnutý tak, aby bol kompatibilný s inými systémami verejnej správy, využíval otvorené dáta z rôznych zdrojov (napr. registry, katastre) a zároveň poskytoval informácie podľa potrieb koncových užívateľov. Je vhodný pre miestne, ústredné, ale i federálne orgány akéhokoľvek druhu (od malých obcí až po ministerstvá). Cieľom je vybudovať a udržať efektívny e-government a prinášať hodnotu užívateľom a občanom. (Asseco, 2024b)

3.9 Trendy vývoja softwaru

V oblasti vývoja softwaru sa rozlišujú agilné a tzv. tradičné metodiky. V rámci tejto práce je použitý agilný prístup. Jeho počiatky siahajú do 90. rokov 20. storočia. Dovtedy dominoval predovšetkým vodopádový model.

Pri vodopáde ide o podrobné zadefinovanie celého projektu, ktoré pozostáva z analýzy požiadaviek, návrhu, implementácie, testovania, nasadenia a prevádzky. Fázy nasledujú za sebou a po ukončení každej fázy je spracovaná dokumentácia a report. Víziou totho prístupu je dostať procesy pod úplnú kontrolu a zamedziť vzniku chýb. Avšak, ukázalo sa, že tento prístup často vedie k zbytočnej byrokracii a nie je taký hladký, ako sa predpokladalo. Prelom nastal koncom 90. rokov, kedy sa začali formovať flexibilnejšie metodológie. Tento počin sa nazýva aj "The Agile Manifesto". (Shore,2022)

Agilný prístup je veľmi adaptívny, s hlavnými princípmi zahŕňajúcimi:

- zameranie na uspokojenie zákazníka,
- otvorenosť voči zmenám požiadaviek,
- postupná dodávka software,
- úzka spolupráca medzi obchodným tímom a vývojármi. (Sноre,2022)

V prvom desaťročí po zavedení agilných metodológií panovali pochybnosti o ich efektivite. Napriek tomu sa agilný vývoj ukázal ako úspešný a jeho popularita stále rastie, čo potvrdzuje aj stúpajúci záujem o agilné prístupy pri rôznych typoch projektov, vrátane tých v oblasti eGovernmentu. Dôvodom sú najmä časté zmeny požiadaviek, respektíve nejasné požiadavky. Práve kvôli častým zmenám požiadaviek v takýchto projektoch je agilný prístup čoraz viac uprednostňovaný.

Projekty spojené s digitalizáciou a eGovernmentom (ale aj iné) zlyhávajú najmä z dôvodu nedostatočnej komunikácie a nejasných požiadaviek. (Looks, 2021) Aj to je dôvodom výberu agilnej metodiky vývoja pre túto prácu.

3.10 Súčasný stav projektu

V čase začiatku práce na tejto diplomovej práci už bola časť projektu EMMA hotová, ale jeho ďalší aktívny vývoj a optimalizácia boli v spoločnosti dočasne odložené. Stále ale je množstvo príležitostí na vylepšovanie, ktoré by umožnili jeho komerčnú ponuku zákazníkom a rozšírenie medzi rozličné subjekty. Dôvodom pozastavenia je najmä prioritizácia iných projektov.

Cieľom platformy EMMA je sprostredkovávať služby verejnej správy podnikateľským subjektom. V aktuálnom stave nemá zákazníka a je pokladaná za "výskumný projekt".

Na diagrame nižšie (obrázok 3.5) je zobrazená enterprise architektúra platformy. V ľavej časti sú ilustrované orgány verejnej správy (úrady, obce a pod.), ktoré vystavujú služby slúžiaceumožňujúce prístup k údajom a informáciám, a tiež slúžia na splnenie povinností klientov verejnej správy. Hoci existuje Register práv a povinností, ktorý obsahuje katalóg služieb verejnej správy s cieľom zmapovať všetky služby verejnej správy a verejne poskytovať informácie o týchto službách, často to nestačí. Dôvodom je, že samotné služby jednotlivých úradov nie sú konsolidované (nemajú jednotné API) a nie sú poskytované prostredníctvom jednej platformy.

Pre realizáciu služieb musí platforma EMMA obsahovať podporné komponenty ako je Katalóg služieb EMMA, Portál pre prístup klientom, SW komponenty na sprostredkovanie služieb (zbernice, API management, správa oprávnění a iné).

Klienti EMMA (pravá časť diagramu), teda podnikateľské subjekty, môžu využívať služby EMMA pre jednoduché zapojenie do svojich ERP systémov a tým znížt množstvo ručne vykonávaných činností vďaka automatizácii.

Aktuálne je EMMA nasadená na cloudovom prostredí Azure. Konkrétne sú využívané služby ako Application Insights pre sledovanie behu aplikácie, Key vault na ukladanie hesiel, Smart detector alert rule na detekciu anomálií a iné.

Na demonštráciu fungovania platformy potenciálnym zákazníkom sa používa aplikácia založená na platforme SAMO. Aj EMMA aj SAMO sú platformy spoločnosti Asseco. SAMO je základom pre evidenciu služieb EMMA.

Pôvodným zámerom bola len správa katalógu služieb verejnej správy, ohlasovateľov, poskytovateľov a podobne. Časom sa to ale začalo rozširovať a vznikol modul "Žádosti" a konkrétne "Ohlášení nástupu zaměstnance". V súčasnom stave to spočíva vo vyplnení jednoduchého formulára s textovými, prípadne číselnými údajmi, ktorý sa vyplní potrebnými údajmi pre ČSSZ, MPSV a ZP. Údaje sa týkajú zamestnanca, zamestnania aj zamestnávateľa. Následne sa pomocou API služieb odošle na príslušné úrady a overí sa.

Tento proces je ale pomerne zdĺhavý, pretože vyžaduje opakované vypĺňanie formulára pri každom nástupe zamestnanca. V prípade služieb týkajúcich sa existujúcich zamestnancov by sa tento proces ešte viac predĺžil a duplikoval.

Obrázok 3.5 Enterprise architektúra platformy EMMA (Asseco, 2023)

Cieľom tejto práce je preto vytvoriť modul pre zamestnancov a zamestnávateľov, ktorý by tieto procesy výrazne zefektívnil. Dôsledkom bude, že komunikácia s úradmi bude prebiehať takzvane "na jeden klik".

Pokiaľ ide o grafickú stránku aplikácie, obrázky a ikony boli prevzaté z iného projektu. Ukázali sa však ako nedostatočne reprezentatívne a adekvátne. Je teda nutné ich upraviť alebo vytvoriť úplne nové, aby lepšie vyhovovali potrebám a kontextu tejto aplikácie.

Informácie používané pri vypracovaní diplomovej práce sú získavané najmä z interných dokumentácií a konzultácií so zamestnancami zapojenými do projektu. Pre hlbšie pochopenie témy je potrebná aj analýza eGovernmentu a súvisiacich procesov v Českej republike a v zahraničí. Existuje aj množstvo kľúčových pojmov, ktoré taktiež musia byť pochopené, napr. služba verejnej správy, katalóg služieb verejnej správy, agendový systém a pod. Tieto časti sú popísané v kapitole 3 Súčasný stav.

V aktuálnom stave je síce projekt v rámci firmy pozastavený, ale stále existujú požiadavky, ktoré je nutné zapojiť. Po konzultáciách s vedením projektu vrámci spoločnosti Asseco je vybraté rozšírenie existujúcej aplikácie o modul zamestnancov. Zároveň sa predpokladá aj úprava existujúceho riešenia, keďže pôvodné riešenie, vytvorené pod časovým tlakom, vykazuje nedostatky v dátovom modeli a celkovej implementácii, ktoré je potrebné poupraviť a vylepšiť.

Pri tvorbe tohto projektu je uprednostňovaná agilná metodológia a pravidelné konzultácie so zákazníkom, ktorým je v tomto prípade spoločnosť Asseco. Práca je rozdelená do viacerých pomyselných šprintov, zahrňujúcich všetky aspekty projektu – od formálnej dokumentácie, cez analýzu, vývoj, až po testovanie.

Na analýzu a návrh je používaný predovšetkým jazyk UML, avšak pre detailnejšie zobrazenie aplikačnej logiky bolo nutné využiť aj jazyk ArchiMate. Modely sú vytvárané pomocou nástroja Enterprise Architect. Tento nástroj je okrem zabudovaných možností rozšírený o špeciálny typ diagramu - LIDS7, pomocou ktorého je vytváraný dátový model. Tento dátový model sa pomocou nástrojov EA2LIDS a AMK použije ako základ pre vyvíjanú aplikáciu a prvý krok implementačnej linky. Grafické prvky a návrhy aplikácie sú vytvárané v nástroji Figma.

Na implementáciu, je použitá platforma SAMO. Teoretické základy a praktické porozumenie implementácie platformy SAMO, špecifického "frameworku" firmy Asseco, sú podrobne rozpracované v kapitolách 3.8 a 4.2.

Čo sa týka databázového systému, aplikácia využíva PostgreSQL. Aplikácia je nasadená v cloudovom prostredí Azure. Testovanie aplikácie prebieha manuálne na základe predpripravených testovacích scenárov.

4.1 Popis EMMA

Platforma EMMA poskytuje služby VS pomocou štandardizovaného API , ktoré je jednoducho integrovateľné do ERP systémov. Podniky môžu využívaním platformy EMMA dosiahnuť zníženie administrátorskej záťaže podnikov.

Dá sa povedať, že ide o G2B platformu na sprostredkovanie a zaistenie vložiteľnosti služieb VS do informačných systémov a zároveň B2B platforma na poskytovanie týchto služieb.

Príkladom služby EMMA je "oznámenie o nástupu zamestnanca". Pri tejto životnej situácii je podnik povinný informovať viaceré subjekty VS, konkrétne ČSSZ, zdravotné poisťovne a MPSV (v prípade zahraničného zamestnanca). Bližšie je tento proces popísaný na obrázku 4.1.

Obrázok 4.1 Sekvenčný model funkčnosti "Oznámení nástupu zaměstnace" (Asseco, 2023)

Obsahom platformy EMMA sú:

- interné služby na správu a prevádzku platformy,
- nástroje na využívanie služby prostredníctvom Rozhrania na volanie služieb VS,
- nástroje pre interoperabilitu VS ČR v legislativnom rámci Digital Service Act⁷ a Data Governance Act⁸,
- modul rozhrania pre G2B2B,
- služby API pre integráciu.

Na obrázku 4.3 možno vidieť celkový koncept platformy EMMA. Na obrázku 4.3 je zobrazený model aplikačnej architektúry, ktorý popisuje štruktúru, správanie a interakcie v aplikácii. Bol vytvorený pomocou štandardu Archimate, keďže bol pre tieto účely najvhodnejší. Obsahuje rôzne elementy ako procesy, služby, interakcie, rozhrania a podobne.

Obrázok 4.2 EMMA - Koncept (Asseco,2023)

⁷ Digital Service Act (Akt o digitálnych službách) – súbor pravidiel platiacich v celej EÚ, ktorých cieľom je vytvoriť bezpečnejší digitálny priestor, v ktorom budú chránené základné práva všetkých užívateľov digitálnych služieb (Ευκόρsκα κομισια, 2022)

⁸ Data Governance Act (Akt o správe dát) – úsilie zvýšiť dôveru v zdieľanie dát a posilnenie mechanizmov pre zvýšenie dostupnosti dát (Еико́рsка комізіа, 2022)

Obrázok 4.3 EMMA - Aplikačná vrstva (vlastné spracovanie)

4.2 Popis SAMO

Táto kapitola popisuje platformu SAMO, ktorá je aktuálne kľúčová pre evidenciu služieb EMMA.

Platforma SAMO je založená na modulárnej architektúre integrovaných softvérových riešení. Vychádza z princípov SOA (Servisne orientovaná architektúra), čo znamená, že je navrhnutá pre efektívnu vzájomnú spoluprácu nezávislých komponent.

SAMO používa mikroservice prístup k vývoju softvéru. Každá mikroslužba je zameraná na konkrétnu funkčnosť a môže byť vyvíjaná, nasadená a spravovaná nezávisle od ostatných častí aplikácie. To umožňuje flexibilnejšie škálovanie, rýchlejšie nasadzovanie nových funkcionalít a jednoduchšiu údržbu.

Systém kladie dôraz na integritu dát a procesov. Architektúru tvoria základné vrstvy, ktoré sú na sebe technologicky nezávislé a ich komunikáciu zabezpečujú štandardy popísané API. Ide o tieto vrstvy:

- 1. **prezentačná vrstva** skupina webových serverov, ktoré poskytujú služby prezentačnej vrstvy pre interných i externých pracovníkov
- 2. **aplikačná vrstva** (Agendový IS) skupina aplikačných serverov založených na platforme J2EE, na ktorých je implementovaná biznis logika
- databázová vrstva skupina databázových serverov s požadovanou výkonnosťou zabezpečujúcich služby dátového úložiska pre aplikačnú vrstvu

Aplikačný interface, SAMO API Gateway, umožňuje definovať špecifické služby podľa účelu použitia. Na základe konfigurácie sú vytvárané kompozitné služby, ktoré minimalizujú klient-server volania. Technológie API Gateway obsahujú aj autentizačnú a autorizačnú vrstvu, ktorá zaisťuje riadenie prístupu k službám a dátam, ktoré služby poskytujú.

Dáta sú spravované systémom SAMO. Aplikačná vrstva sprostredkovává prístup do relačnej databázy a často vyhľadávané dáta sú uložené redundantne aj v dokumentovej databáze ElasticSearch.

Dátový model je definovaný metadatovým predpisom vrátane spôsobu uloženia, definície atribútov a väzieb medzi entitami. Popis modelu obsahuje taktiež informáciu o tom, či entita obsahuje priestorové dáta. Je zapojená aj historizácia zmien na záznamoch a ich vzťahoch.

Systém ponúka integračné rozhrania, ktoré je primárne určené na integráciu systému s externými informačnými systémami. Systém poskytuje funkcionalitu vstupného a výstupného SOAP interface, vstupného a výstupného REST inter-

face, validácie dát, zabezpečenie komunikácie a dát atď. Integračné väzby sú riešené pomocou webových služieb nad integračnou platformou ESB (Enterprise service bus).

Vývoj prebieha na nainštalovanom lokálnom prostredí, pričom databáza je ale serverová. Na lokále bežia 2 konzoly - GTW a LIDS (metadáta) a pripája sa to na databázu, elastic search a user service na server. Po úpravách sa zmeny commitujú a pushujú a na gite beží CI/CD (na server sa to dostane až keď je CI/CD ok, bez failu). Významný nástroj, ktorý je dôležitý na rozbehnutie lokálneho prostredia je utility localtron.

Súborová štruktúra je rozdelená na 2 väčšie celky - configuration a project. V časti project sú uložené rôzne parametre ako verzia, prístup do databáze, informácia o aktuálnom prostredí (vývojové, testovacie, produkčné a pod.). V configuration sú už samotné metadátové súbory a aplikačná logika.

Obrázok 4.4

Konceptuálna aplikačná architektúra SAMO (vlastné spracovanie na základe informácií z interných dokumentov firmy Asseco)

4.2.1 Aplikačná architektúra

SAMO sa z hľadiska aplikačnej architektúry skladá z aplikačných komponent, ktoré medzi sebou komunikujú cez predom dohodnuté komunikačné kanály založené na otvorených a všeobecne uznávaných štandardoch (hlavne SOAP, REST). Aplikačné komponenty sa skladajú z aplikačných vrstiev (užívateľské rozhranie, biznis logika, integračná vrstva, dátová vrstva a iné).

Riešenie je budované na princípoch a postupoch servisne orientovanej integrácie, kde jednotlivé zdieľané funkcionality sú vystavené v podobe služieb. Vďaka aplikačnej a technologickej architektúre systému sa aplikačná logika vykonávaná na serveri a klientská aplikačná logika vzájomne neovplyvňujú. Architektúra je zobrazená na obrázku 4.4.

Aplikačná logika systému je písaná v jazyku JavaScript a využíva bohatú podporu funkcií platformy, ako je práca s entitami, väzbami, dokumentmi, klientskými dátami. Ďalej obsahuje podporu pre prácu s transakciami, indexáciu do ElasticSearch, komunikáciu s notifikačným modulom a mnoho ďalších funkcií.

4.2.2 SAMO Dynamic Application

Klientská čast, SAMO Dynamic Application, je ľahký webový klient, ktorý komunikuje so serverovými komponentami ako SAMO Gateway, LIDS Application Server a Security Server a pod. V rámci celkového riešenia SAMO sú zapojené aj ďalšie technológie ako Docker, ElasticSearch, PostgreSQL a NGINX, čo zvyšuje efektivitu a flexibilitu systému.

Dynamic app sa skladá z niekoľkých hlavných modulov. Medzi ne patrí tzv. cockpit, ktorý predstavuje úvodnú obrazovku, úvodný rozcestník. Ďalšou komponentou sú tzv. pages, ktoré obsahujú zoznamy entít. Tieto zoznamy sú označované ako browse.

Po rozkliknutí entity z browse sa zobrazí detail, ktorý môže obsahovať okrem hlavičkových dát aj sekcie obsahujúce ďalšie naviazané entity. Na detailoch je možnosť editácie prostredníctvom editačného detailu, ktorý je poslednou hlavnou komponentou DA. Umožňuje modifikovanie hlavičkových informácií o entite, avšak nie dát v spomínaných sekciách. Vizuálne zobrazenie sekcií je v kapitole 6.

4.2.3 LIDS Application Server

LIDS časť systému SAMO je oveľa väčšia ako spomínaná SAMO Gateway. Riadi všetkú logiku systému – správa dát, prístupy k aplikačnej logike a dátam, security, REST API a pod. SAMO Gateway slúži primárne na to, aby poskytovala metadáta pre Dynamic App. Preto je LIDS popísaný detailnejšie v samostatnej podkapitole.

LIDS aplikačný server je kontrolovaný metadátami, s ktorými pracujú jednotlivé časti systému.

Hlavnou stavebnou jednotkou LIDS metadát sú tzv. feature types. Ide v podstate o nejaký typ objektu reálneho sveta (napr. ft_osoba, ft_adresa, ft_zamest-nanec...). Feature type definuje atribúty objektu, môže definovať aj geometriu, symboliku a iné vlastnosti.

Ďalšou časťou LIDS AS je tzv. feature. Ten je inštanciou feature typu, a teda je to reprezentácia objektu reálneho sveta. Feature nesie informácie o tom, aký je to feature type, sémantické atribúty (id, name, type), jeho miesto v databáze (tzv. databázový kontajner), poprípade symboliku a typ geometrie.

Tieto metadáta sú uložené, prenášané a spravované vo forme nasledujúcich XML dokumentov:

- model.xml hlavný metadátový súbor, v ktorom sú uložené informácie o tzv. feature types (entita SAMO systému), ich atribútoch, číselníkoch a pod.
- **presentation.xml** definuje predvolenú symboliku projektu a pod.
- tool.xml definuje panely nástrojov špecifických pre projekt
- resource.xml definuje napr. štýly čiar, symboly, fonty, ikony a pod.
- option.xml definuje voliteľné funkcie systému ako napr. kopírovanie prvkov, derivovanie atribútov, zobraziteľné atribúty...

Okrem týchto hlavných XML súborov existuje aj množstvo ďalších. Všetky spomínané súbory majú pevne danú štruktúru popísanú v súboroch typu XSD (XML Schema Definiton).

Základom pre budovanie aplikácie je vytvorenie dátového modelu, na ktorom sa celá aplikácia buduje a logika sa zapája až potom.

LIDS dokáže na základe validného model.xml modifikovať databázu (vytvárať nové tabuľky, atribúty, meniť dátové typy a pod.). Spúšta sa to v administrátorskej konzole, kde sa porovnáva existujúca databáza s xml modelom a vygeneruje sa SQL skript s potrebnými príkazmi a po potvrdení sa to do pustí do databázy.

V administrátorskej konzoli existuje aj GUI, ktoré prehľadne zobrazuje všetky feature types, názov kontajneru (db tabuľky) daného ft, atribúty, väzby, stavový diagram (workflow, ak existuje), akcie (operácie, metódie, funkcie) a podobne.

Okrem dátovej časti (model.xml) obsahuje LIDSová časť aj aplikačnú logiku. Ide o niekoľko javascript a json súborov definujúcich stavy, akcie nad entitov a celková potrebná logika správania danej entity.

4.2.4 Security Server

Na správu identifikačných údajov uživateľov SAMO je používaný systém Security Server. Prístup do správcovskej aplikácie je umožnený prostredníctvom webového rozhrania. Security Manager je aplikácia určená na definíciu užívateľov vrátane ich prístupových oprávnení.

Aplikácia je štruktúrovaná do niekoľkých funkčných oblastí, vrátane správy užívateľov, ich rolí a oprávnení. SAMO Security Server využíva tzv. Role Based Access Control (RBAC) mechanizmus. Tento mechanizmus umožňuje to, že každý užívateľ pristupuje k systému v definovanej role. Ku každej roli je možné nastaviť ľubovoľný počet oprávnení a užívateľ môže byť uvedený i vo viacerých rolách. Konečné oprávnenie je vyhodnocované ako zjednotenie všetkých oprávnení.

Security rola určuje napr. práva na dlaždice, tlačítka a pod. Tieto role sa priradia vybraným skupinám a do skupín sa priradia užívatelia. To zabezpečí, že prihlásený užívateľ má umožnené v aplikácii vidieť a robiť len to, na čo má oprávnenie.

Užívatelia zvyčajne prichádzajú pomocou LDAP od zákazníka. Security skupiny určujú práva na feature types. Zvyčajne ide o skupinu read, edit a admin, (napr. ZAMESTNANCI-read, ZAMESTNANCI-edit, ZAMESTNANCI-admin), no je možné vytvárať aj špeciálne skupiny. Sú určené na to, aby boli užívatelia zaradení do už spomínanej skupiny oprávnení.

4.3 Nástroj EA2LIDS

Nástroj EA2LIDS je vlastný nástroj firmy Asseco, ktorý slúži na generovanie dátového modelu (model.xml) z modelu v Enterprise Architect. Je to tzv. Model Driven Generation Technology (MDG).

MDG technológie umožňujú rozširovať funkcionalitu programu Enterprise Architect (ďalej ako EA) prostredníctvom špeciálnych rozšírení (Sparx, 2024). Existuje množstvo komerčných MDG technológií, ale je možné aj použitie vlastnej, ako je to aj v prípade EA2LIDS. Okrem existujúcich modelov v EA je možnosť rozšírenia základných štruktúr napríklad o tzv. tagged values, stereotypes, profiles, design patterns a podobne.

V prípade EA2LIDS sa pracuje so špeciálnym typom diagramu nazývaným LIDS7 a príslušiacim toolboxom v EA (viď obrázok 4.5). Pre správne využitie a funkčnosť nástroja je potreba dbať na správnosť modelov – správne vybrané stereotypy, nadefinované dátové typy, správna menná konvencia, tagy atď.

Metodika 37

Po dokončení modelu je možnosť generovať súbor formátu xml. Po kontrole a prípadných ručných úpravách je výsledkom validný model.xml (zjednodušená schéma fungovania je zobrazená na obrázku 4.6). Tento model potom používa nástroj popísaný v kapitole 4.4, AMK.

Obrázok 4.5 Špeciálny toolbox a diagram v nástroji Enterprise architect (vlastné spracovanie)

Obrázok 4.6EA2LIDS v praxi (vlastné spracovanie)

Metodika 38

4.4 Nástroj AMK

Platforma SAMO umožňuje vytvárať evidenčné agendové aplikácie, ktoré sa tvoria pomocou konfiguračných metadát. Do týchto metadát sa ukladajú informácie ako dátový model, štruktúra obrazoviek, formulárov atď.

Pre účely urýchlenia implementácie SAMO aplikácií bola vyvinutá sada nástrojov označená ako AMK (Application Modling Kit). AMK je koncept a definovaný spôsob práce, súbor metodík a nástrojov.

AMK je určený pre agendové aplikácie, teda aplikácie, kde hlavnú úlohu hrá evedincia artefaktov a workflow nad evidenciou. Zaoberá sa spôsobom predávania informácií medzi analýzou a výrobou v štrukturovanej podobe tak, aby štruktúra vyhovovala analytikovi i implementácii.

Logika využitia AMK je na obrázku 4.7. AMK možno popísať ako most spájajúci analýzu s implementáciou. Na obrázku 4.8 je zobrazený model aplikačnej architektúry AMK.

Na generovanie potrebných súborov SAMO aplikácie (tzv. metadát) sa využíva nástroj FMPP (FreeMarker-based file PreProcessor). Ide o nástroj na predspracovanie textu, ktorý umožňuje dynamické generovanie obsahu pomocou šablón FreeMarker. Je schopný rekurzívne spracovať adresáre a podporuje generovanie statických webových stránok, zdrojového kódu, konfiguračných súborov a podobne. Dokáže integrovať s dátovými zdrojmi ako súbory typu CSV, XML alebo JSON. (FMPP, 2018)

Obrázok 4.7AMK v praxi (vlastné spracovanie na základe informácií z interných dokumentov firmy Asseco)

Metodika 39

Obrázok 4.8 AMK - Časť aplikačnej logiky (vlastné spracovanie)

5.1 Popis procesov vedúcich k výsledkom

K výslednému produktu tejto práce viedlo viacero krokov. V nasledujúcom zozname sú v skratke zadefinované:

- 1. preskúmanie súčasného stavu eGovernmentu a nutných znalostí k vývoju aplikácie určenej pre komunikáciu s verejnou správou
- 2. analýza súčasného stavu projektu EMMA implementovaného prostredníctvom SAMO aplikácie
- 3. pochopenie fungovania platformy SAMO a jeho technologického zázemia
- 4. na základe dohody s firmou rozšírenie existujúcej aplikácie o modul zamestnancov a zapojenie vybraných služieb VS
 - a) potrebná analýza a modely (use case, model požiadaviek a pod.)
 - b) KDM a LDM, ktoré sú potrebné pre generovanie metadát aplikácie
 - c) návrh agendovej aplikácie a jeho zápis do štrukturovanej podoby kvôli AMK
 - d) použitie AMK generátoru, ktorý vykoná extrakciu dát z AMK DB a vygeneruje SAMO konfiguračné soubory (metadáta)
 - e) úprava vygenerovaných metadát do žiadanej podoby, zapojenie aplikačnej logiky
- 5. vytvorenie testovacích scenárov

5.2 Model požiadaviek

Na základe analýzy vznikol model požiadaviek (viď obrázok 5.1). Nachádza sa tam 15 požiadaviek, pričom táto práca je zameraná najmä na rozšírenie aplikácie o požiadavku modulu zamestnancov. To ale obnáša aj ostatné požiadavky ako napríklad správa oprávnení, prihlasovanie, registrácia, notifikácie a podobne.

Obrázok 5.1

Model požiadaviek (vlastné spracovanie na základe informácií z interných dokumentov firmy Asseco a analýzy)

5.3 Use case model

Use case diagram alebo diagram prípadov použitia sa používa na zobrazenie funkčnosti systému alebo jeho časti. Zároveň znázorňuje funkčné požiadavky a ich interakcie s externými agentmi, tzv. aktérmi (GeeksForGeeks, 2024).

V modeloch sú používaní štyria aktéri:

- systém
- správca systému administrátor na strane sprostredkovateľa
- zamestnávateľ administrátor na strane klienta
- poverený zamestnanec zamestnanec s prístupom do systému (účtovník, personalista...)

Prvý model (obrázok 5.2) zobrazuje prípady použitia zo strany administrátora systému. Správca systému je schopný zadávať nových zamestnávateľov (klientov) do systému a zakladať im užívateľské kontá. Ďalej má umožnenú správu služieb a oprávnení, reporting a personalizáciu.

Obrázok 5.2Use case model zo strany správcu (vlastné spracovanie)

Model na obrázku 5.3 je ukážkou jednoduchého procesu založenia zamestnávateľa do SAMO EMMA. Akonáhle je vytvorený administrátorský účet klienta, môže do systému registrovať ďalších poverených zamestnancov.

Obrázok 5.3
Use case model registrácie povereného zamestnanca (vlastné spracovanie)

Obrázok 5.4 Use case model zo strany povereného zamestnanca (vlastné spracovanie)

Na poslednom use case (obrázku 5.4) modeli sú zobrazené use casy z pohľadu povereného zamestnanca. Pôjde o zamestnanca, ktorý má prístup do systému pod prihlasovacími údajmi. Ďalej má umožnenú správu zamestnancov a vykonávanie procesných úkonov spojených so službami verejnej správy. Zároveň je mu umožnené aj spravovať číselníky špecifické pre vybraného klienta.

Všetky funkcie povereného zamestnanca sú umožnené aj zamestnávateľovi (administrátorovi).

5.4 Diagram aktivít

Diagram aktivít slúži na zobrazenie toku činností v systéme a popisuje use case. Hlavné činnosti, ktorými sa zaoberá tento projekt sú vyobrazené na diagrame na obrázku 5.5.

Obrázok 5.5Diagram aktivít (vlastné spracovanie)

Obsahuje päť rôznych rolí vstupujúcich do procesov. Začína sa to založením a registráciou zamestnávateľa administrátorom systému. Tento zamestnávateľ následne založí a zaregistruje poverených zamestnancov do systému. Tento proces bude dôležitý viacmenej len v počiatočnej fáze používania systému.

Rutinnejšia, respektíve častejšie opakovaná činnosť je až na strane povereného zamestnanca, ktorý má na starosti správu zamestnancov, ako i zadávanie nového zamestnanca do systému. Pri zakladaní zamestnanca sa automaticky založí aj entita žiadosť a vyvolá sa proces služby "Oznámení o nástupu zaměstnance".

V poslednej časti je zjednodušene zobrazená inštitúcia verejnej správy, ktorá bude s údajmi žiadosti pracovať.

5.5 Konceptuálny dátový model

Konceptuálny dátový model predstavuje pri modelovaní SAMO aplikácie prvý krok k vybudovaniu finálneho dátového modelu. Ide o zjednodušenú ukážku existujúcich entít a väzieb medzi nimi. KDM projektu je na obrázku 5.6

Obrázok 5.6 Konceptuálny dátový model - temp (vlastné spracovanie)

5.6 Logický dátový model pre SAMO

Logický dátový model je vytváraný pomocou extenzie LIDS7 (spomínaný v kapitole 4.3). Zobrazuje feature types (SAMO entity), atribúty a vzťahy medzi jednotlivými feature typami a odkazy na číselníky.

Na prvom modeli (obrázok 5.7) je namodelovaný súčasný stav aplikácie SAMO EMMA. Ide primárne o správu katalógu služieb. Tejto časti sa praktická časť projektu venuje len okrajovo.

Obrázok 5.7 Logický dátový model - služby a katalóg služieb

Časť aplikácie, ktorou sa zaoberá táto práca je rozdelená kvôli prehľadnosti do dvoch modelov. Prvý z nich (obrázok 5.8) sa zaoberá správou osôb, ich kontaktov a adries. Druhá časť (obrázok 5.9) je venovaná oblasti zamestnania, to znamená evidencii zamestnancov, zamestnávateľov a žiadostí.

(vlastné spracovanie podľa aktuálneho riešenia)

Obrázok 5.8 Logický dátový model - osoby, adresy a spojenia (vlastné spracovanie)

Obrázok 5.9 Logický dátový model - zamestnávatelia a zamestnanci (vlastné spracovanie)

5.7 Stavové diagramy

Stavový diagram popisuje životný cyklus entity. Ukazuje jednotlivé stavy a možné medzistavové prechody.

V rámci tejto práce sa menia stavy dvom entitám – zamestnanec a žiadosť. Tieto stavové diagramy sú na obrázkoch 5.10[obr:zadost-stav]

Obrázok 5.10Stavový diagram entity zamestnanec

Obrázok 5.11 Stavový diagram entity žiadosť

5.8 Dizajn aplikácie

Farebná paleta a obrázok na úvodnej obrazovke boli predom určené projektovým tímom firmy Asseco.

Čo sa farebnej palety týka, primárnou farbou je modrá a sekundárne farby sú odtiene šedej (viď obrázok 5.12). Jednotlivé dlaždice agend môžu mať na sebe ešte farebný prúžok, ktorý je možno farebne prispôsobovať podľa požiadaviek zákazníka a nemusí rešpektovať farebnú paletu (viď dlaždice v spodnej časti obrázku 5.13).

Obrázok 5.12 Farebná paleta

Pri vytváraní ikoniek a obrázkov bolo dbané na štandardy a best practices firmy Asseco. Ako možno vidieť na obrázku 5.13, existujú 2 rôzne typy dlaždíc.

Jednou z typov dlaždíc je úvodná, pod ktorou sa skrývajú ďalšie dlaždice. Na týchto dlaždiciach sa nachádzajú obrázky reprezentujúce danú agendu, oblasť.

Druhá úroveň dlaždíc už odkazuje priamo na zoznam, tzv. browse. Tieto dlaždice obsahujú názov, ikonku danej entity a počet záznamov skrývajúcich sa pod danou dlaždicou.

Dlaždicové obrázky mali svoje pravidlá použitých farieb a hrúbky čiary 3 px. Ich úlohou je čo najviac vystihovať danú agendu. Ukladané sú vo formáte png.

Ikony sú taktiež prispôsobované tomu, čo reprezentujú. Sú ukladané vo formáte svg bez použitia výplne alebo farby čiary, aby bola ich farba plne prispôsobiteľná v aplikácii.

Obrázok 5.13 Dlaždice

Všetky dizajnové prvky sú kreslené pomocou nástroja Figma. Boli vytvorené/upravované tak, aby mala celá aplikácia jednotný vizuálny štýl.

Čo sa týka štruktúry aplikácie, SAMO aplikácie majú danú nasledujúcu štruktúru. Úvodná obrazovka je vždy jednoduchá login-page. V prípade SAMO EMMA to vyzerá tak, ako je na obrázku 5.14. Obrázok v pozadí je vybraný firmou.

Po prihlásení sa užívateľ dostane na úvodný rozcestník, tzv. dashboard (obrázok 5.15). Dashboard môže byť rôzne logicky delený do dlaždíc. Pod každou dlaždicou sa nachádza ďalšia úroveň a to dlaždice s ikonou a počtom entít v danej agende (obrázok 5.16). Tieto dlaždice už vedú na samotný zoznam entít, tzv. browse (obrázok 5.17).

V browse je užívateľovi umožnené vytvárať nové záznamy, prezerať si detaily záznamov (viď pravá časť obrázku 5.17, poprípade ich editovať (viď obrázok 5.18). V aplikácii je na každej úrovni v ľavej časti sekundárna navigácia.

Obrázok 5.14 Obrazovka - login

Obrázok 5.15 Obrazovka – prvá úroveň dlaždíc

Obrázok 5.16 Obrazovka – druhá úroveň dlaždíc

Obrázok 5.17 Obrazovka – browse a detail

Obrázok 5.18 Obrazovka – editačný formulár

5.9 Implementácia

Po dôkladnej analýze a návrhu prichádza fáza implementácie. Prvým krokom je inštalácia lokálneho prostredia. To zahŕňa naklonovanie potrebných repozitárov – configuration a project. Následne je nutná registrácia balíčkov a samotná inštalácia projektu z env zložky projektu. Po úspešnej inštalácii je možné aplikáciu lokálne spustiť pomocou nástroja Localtron.

Po inštalácii lokálneho prostredia a kontrole správnosti logického dátového modelu v EA, sa môže pomocou nástroja EA2LIDS vygenerovať model.xml, ktorý je základom pre fungovanie SAMO aplikácie.

Akonáhle model.xml prejde úpravami a je správny a kompletný, spustí sa skript AMK a vytvoria sa potrebné metadátové súbory ako napr. dashboard, základné pages, detaily, editačné formuláre atď. Vzhľadom na to, že je používaná agilná metodika, navrhnuté modely sa môžu meniť.

Finálna podoba úvodnej obrazovky (cockpitu) je na obrázku 5.15. Je to rozdelené do sekcií "Zaměstnání", "Hlavní činnosti" a "Ostatní". Rozdelenie do sekcií a vzhľad obrázkov dlaždíc je odsúhlasený zákazníkom (firmou Asseco).

Sekcia zamestnania obsahuje všetky funkcie spojené so zamestnaním – evidenciu zamestnancov, žiadostí a informácie o zamestnávateľoch (resp. konkrétnemu zamestnávateľovi, ktorý je zákazníkom projektu).

V sekcii hlavných činností sú funkcie spojené s katalógom služieb a celkovo s evidenciou služieb verejnej správy v systéme.

Posledná sekcia je určená na ďalšie agendy systému, ako je napríklad správa číselníkov a správa osôb.

Každá dlaždica je zobrazená vybraným užívateľom podľa zadefinovanej security roly.

POPIS SECURITY ROLÍ

V ďalších častiach budú riešené len sekcie "Zaměstnání" a "Ostatní".

Dôležitou súčasťou systému je evidencia zamestnancov. Pod dlaždicou ZAMĚSTNANCI je to ešte ďalej rozdelené na zamestnancov a nových zamestnancov. Je to z dôvodu nutnosti splnenia niekoľkých úkonov na nových zamestnancoch, napr. už spomínaná služba "Oznámení o nástupu zaměstnance".

Pri naberaní nových zamestnancov budú v stave "nový" a budú práve pod touto dlaždicou. Prehľadnejšie tak bude vidieť, ktorí zamestnanci už majú toto oznámenie hotové alebo nie. V momente, keď sa podarí úspešne nahlásiť nástup zamestnanca, prepne sa do stavu "řádný" a presunie sa pod dlaždicu zamestnanci.

V prípade výpovede zamestnanca prepne zodpovedný pracovník tohto zamestnanca do stavu "výpověď" a bude možné na ňom previesť akciu o ukončení pracovného pomeru vzhľadom k úradom. Stavový diagram je na obrázku 5.10

Pod dlaždicou zamestnávateľa sú informácie o konkrétnej firme, ktorá je zákazníkom produktu SAMO EMMA. Obsahuje všetky potrebné atribúty nutné pre komunikáciu s verejnou správou.

Ďalšou dôležitou dlaždicou je správa číselníkov. Niektoré číselníky boli databázovo naplnené a zaindexované. Ide o číselníky, ktoré sú rovnaké naprieč spoločnosťami ako napríklad pohlavie, kraje, obce a pod. České adresné miesta boli importované z RUIANu.

Niektoré sú natoľko špecifické, že si to bude každá firma zadávať podľa seba. Preto je v časti Správa číselníkov možnosť zadávať špecifické číselníkové hodnoty na číselníky ako napríklad divízia, typ úväzku, pozícia a podovne. Čiastočne sú databázovo naplnené číselníky štátneho občianstva a štátu krajinami susediacimi s ČR a ČR. V aplikácii ale bude možnosť ich rozšíriť v prípade, že firma zamestnáva aj ľudí zo vzdialenejších štátov.

5.10 Návrh testovacích scenárov

5.11 Dokumentácia prevedených testov

6 Diskusia

7 Závěr

Literatúra

- Anderrsson, C., Hallin, A., Ivory, C. Unpacking the digitalisation of public services: Configuring work during automation in local government. *Government Information Quarterly* [on-line!], 2022, roč. 39 [cit. 2023-11-19]. (ISSN 0740624X.) Dostupné na: https://www.sciencedirect.com/science/article/pii/S0740624X21000988. DOI: 10.1016/j.giq.2021.101662.
- Ardhaninggar, N. E-Government Success Stories: Learning from Denmark and Estonia. In *moderndiplomacy.eu* [on-line!]. 2023 [cit. 2024-01-31]. Dostupné na: https://moderndiplomacy.eu/author/nurulardhaninggar/.
- Asseco Central Europe, a.s.. *SAMO conceptual application architecture* [on-line!]. 2023. [cit. 2023-11-27]. Dostupné na: interný SharePoint.
- ASSECO CENTRAL EUROPE, A.S.. *SAMO Implementation Guide Version 9.4* [on-line!]. 2024a. [cit. 2024-02-09]. Dostupné na: interný dokument.
- Asseco Central Europe, A.S.. *SAMO Platform for asset management solutions* [on-line!]. 2024b. [cit. 2024-03-03]. Dostupné na: https://www.samo-asseco.com/.
- Asseco Central Europe, a.s.. *Závěrečná zpráva o realizaci výsledků výzkumu a vývoje: VaV softwarové platformy embedded government (EMMA)* [on-line!]. 2023. [cit. 2023-11-26]. Dostupné na: interný dokument.
- BARONE, L. A KOL. State-of-play report on digital public administration and interoperability. *Directorate-General for Informatics* [on-line!], 2023, NO-04-23-973-EN-N [cit. 2024-1-12]. Dostupné na: https://op.europa.eu/en/publication-detail/-/publication/e2cf65a7-6719-11ee-9220-01aa75ed71a1/language-en. DOI: 10.2799/686251.
- DIGITÁLNÍ A INFORMAČNÍ AGENTURA. Architektura eGovernmentu ČR : Informační koncepce ČR. In *Národní architektonický plán* [on-line!]. 2023 [cit. 2023-11-26]. Dostupné na: https://archi.gov.cz/start.
- DIGITÁLNÍ A INFORMAČNÍ AGENTURA. Architektura eGovernmentu ČR : Katalog služeb veřejné správy. In *Národní architektonický plán* [on-line!]. 2023 [cit. 2023-11-26]. Dostupné na: https://archi.gov.cz/start.
- DIGITÁLNÍ A INFORMAČNÍ AGENTURA. Architektura eGovernmentu ČR : Slovník pojmů eGovernmentu. In *Národní architektonický plán* [on-line!]. 2023 [cit. 2023-11-26]. Dostupné na: https://archi.gov.cz/start.
- DIGITÁLNÍ A INFORMAČNÍ AGENTURA. Architektura eGovernmentu ČR : Základní registry. In *Národní architektonický plán* [on-line!]. 2023 [cit. 2024-04-08]. Dostupné na: https://archi.gov.cz/nap:zakladni_registry.

Literatúra 59

EVROPSKÁ KOMISE.. Balíček aktu o digitálních službách. In *Shaping Europe's digital future* [on-line!]. 2022 [cit. 2023-11-19]. Dostupné na: https://digital-strategy.ec.europa.eu/cs/policies/digital-services-act-package.

- EVROPSKÁ KOMISE.. Index digitální ekonomiky a společnosti (DESI) 2022 : Česko. In *Shaping Europe's digital future* [on-line!]. 2022 [cit. 2023-11-19]. Dostupné na: https://digital-strategy.ec.europa.eu/en/policies/desi-czech-republic.
- EVROPSKÁ KOMISE.. Index digitální ekonomiky a společnosti (DESI) 2022 : Metodika. In *Shaping Europe's digital future* [on-line!]. 2022 [cit. 2023-11-19]. Dostupné na: https://digital-strategy.ec.europa.eu/cs/policies/desi.
- FREEMARKER. FMPP FreeMarker-based file PreProcessor. In *Source Forge* [on-line!]. 2018 [cit. 2024-03-31]. Dostupné na: https://fmpp.sourceforge.net/index.html.
- GEEKSFORGEEKS Unified Modeling Language (UML) Diagrams [on-line!]. 2024. [cit. 2024-04-17]. Dostupné na: https://www.geeksforgeeks.org/unified -modeling-language-uml-introduction/.
- JOSEY, A. A KOL. An Introduction to the ArchiMate® 3.0 Specification. In *The Open Group*. W168. vyd. The Open Group: USA, 2016, s. 5–15.
- KILINGER, A. Obligatory Slovakian Information System (IS EFA) for exchanging B2G and B2B E-Invoice. In *SEEBURGER* [on-line!]. 2023 [cit. 2024-01-29]. Dostupné na: https://blog.seeburger.com/new-obligatory-slovakian -information-system-is-efa-for-b2g-and-b2b-e-invoicing/.
- LOOKS, H. A KOL. Towards a Process Model for Agile Transformation in E-government Projects. *Journal of Information Systems Engineering & Management* [on-line!], 2021, 6(1) [cit. 2024-03-24]. (ISSN 2468-4376.) Dostupné na: https://www.jisem-journal.com/article/towards-a-process-model-for-agile-transformation-in-e-government-projects-9571. DOI: 10.29333/jisem/9571.
- OECD Government at a Glance. Paris: OECD Publishing, 2023. 234 s. ISBN 978-92-64-85180-1.
- SAP. What is integration platform as a service (iPaaS)? [on-line!]. © 2024. [cit. 2024-03-03]. Dostupné na: https://www.sap.com/products/technology-platform/integration-suite/what-is-ipaas.html.
- SHORE, J. A KOL.. The art of agile development. In *Theory in practice.* 2. vyd. O'Reill: Boston, 2022, s. 3–11. (ISBN 9781492080695.)
- SPARX SYSTEMS. Model Driven Generation (MDG) Technologies. In *Sparx Systems* [on-line!]. © 2000 2024 [cit. 2024-03-31]. Dostupné na: https://sparxsystems.com/resources/mdg_tech/.
- UNITED NATIONS. E-Government Survey 2022. In *The Future of Digital Government*. UN: New York, 2022, s. 32–51. (ISBN 978-92-1-123213-4.)
- Úřad vlády ČR. Tři pilíře Digitálního Česka. In *Digitální Česko* [on-line!]. © 2024 [cit. 2024-03-01]. Dostupné na: https://digitalnicesko.gov.cz/vize/.

Literatúra 60

VAN DER LINDEN, N. A KOL. eGovernment Benchmark 2022: Insight Report. *Connecting Digital Governments* [on-line!], 2022, KK-08-22-084-EN-N [cit. 2024-2-7]. Dostupné na: https://prod.ucwe.capgemini.com/wp-content/uploads/2022/07/eGovernment-Benchmark-2022-1.-Insight-Report.pdf. DOI: 10.2759/488218.

Winkler, Josobné zdelenie. 25.2.2024.

Zoznam tabuliek

3.1	Porovnanie EGDI vybraných krajín s ČR (United Nations, 2022)	18
3.2	Porovnanie skóre eGovernment Benchmark vybraných	
	krajín s ČR (van der Linden, 2022)	19

Zoznam obrázkov

3.1	Index digitálnej ekonomiky a spoločnosti 2022 (Európska	
	komisia - Česko, 2022)	16
3.2	Index DESI 2022 - relatívne výsledky v jednotlivých	
	oblastiach (Európska komisia - Česko, 2022)	16
3.3	Geografické rozloženie štyroch EGDI kategórií (United	
	Nations, 2022)	18
3.4	Geografické rozloženie eGovernment vyspelosti podĺa	
	prieskumu eGovernment Benchmark (van der Linden, 2022)	20
3.5	Enterprise architektúra platformy EMMA (Asseco, 2023)	26
4.1	Sekvenčný model funkčnosti "Oznámení nástupu	
	zaměstnace" (Asseco, 2023)	29
4.2	EMMA - Koncept (Asseco,2023)	30
4.3	EMMA - Aplikačná vrstva (vlastné spracovanie)	31
4.4	Konceptuálna aplikačná architektúra SAMO (vlastné	
	spracovanie na základe informácií z interných dokumentov	
	firmy Asseco)	33
4.5	Špeciálny toolbox a diagram v nástroji Enterprise architect	
	(vlastné spracovanie)	37
4.6	EA2LIDS v praxi (vlastné spracovanie)	37
4.7	AMK v praxi (vlastné spracovanie na základe informácií z	
	interných dokumentov firmy Asseco)	38
4.8	AMK - Časť aplikačnej logiky (vlastné spracovanie)	39
5.1	Model požiadaviek (vlastné spracovanie na základe	
	informácií z interných dokumentov firmy Asseco a analýzy)	41
5.2	Use case model zo strany správcu (vlastné spracovanie)	42
5.3	Use case model registrácie povereného zamestnanca	
	(vlastné spracovanie)	43
5.4	Use case model zo strany povereného zamestnanca	
	(vlastné spracovanie)	43
5.5	Diagram aktivít (vlastné spracovanie)	44
5.6	Konceptuálny dátový model - temp (vlastné spracovanie)	45
5.7	Logický dátový model - služby a katalóg služieb (vlastné	
	spracovanie podľa aktuálneho riešenia)	46
5.8	Logický dátový model - osoby, adresy a spojenia (vlastné	
	spracovanie)	47
5.9	Logický dátový model - zamestnávatelia a zamestnanci	
	(vlastné spracovanie)	47
5.10	Stavový diagram entity zamestnanec	48

Zoznam obrázkov	63
2021Idili obidzitov	03

Stavový diagram entity žiadosť	48
Farebná paleta	49
Dlaždice	50
Obrazovka - login	51
Obrazovka – prvá úroveň dlaždíc	51
Obrazovka – druhá úroveň dlaždíc	52
Obrazovka – browse a detail	52
Obrazovka – editačný formulár	53
	Dlaždice Obrazovka - login Obrazovka - prvá úroveň dlaždíc Obrazovka - druhá úroveň dlaždíc Obrazovka - browse a detail

Zoznam použitých skratiek

PŘÍLOHY