Client: Retail store chain

Problem Statement: Business case focuses on the operations of retail store in Brazil about 100,000 orders placed between 2016 and 2018.

Why: To provide valuable insights into retail store's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Resources: Multiple datasets are provided like customers, sellers, order_items, geolocation, payments, reviews, orders, products.

The column description:

The **customers.csv** contain following features:

Features	Description
customer_id	ID of the consumer who made the purchase
customer_unique_id	Unique ID of the consumer
customer_zip_code_prefix	Zip Code of consumer's location
customer_city	Name of the City from where order is made
customer_state	State Code from where order is made (Eg. são paulo - SP)

The **sellers.csv** contains following features:

Features	Description
seller_id	Unique ID of the seller registered
seller_zip_code_prefix	Zip Code of the seller's location
seller_city	Name of the City of the seller
seller_state	State Code (Eg. são paulo - SP)

The **order_items.csv** contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers
order_item_id	A Unique ID given to each item ordered in the order
product_id	A Unique ID given to each product available on the site
seller_id	Unique ID of the seller registered in Target
shipping_limit_date	The date before which the ordered product must be shipped
price	Actual price of the products ordered
freight_value	Price rate at which a product is delivered from one point to another

The **geolocations.csv** contain following features:

Features	Description
geolocation_zip_code_prefix	First 5 digits of Zip Code
geolocation_lat	Latitude
geolocation_lng	Longitude
geolocation_city	City
geolocation_state	State

The **payments.csv** contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers
payment_sequential	Sequences of the payments made in case of EMI
payment_type	Mode of payment used (Eg. Credit Card)
payment_installments	Number of installments in case of EMI purchase
payment_value	Total amount paid for the purchase order

The **orders.csv** contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers
customer_id	ID of the consumer who made the purchase
order_status	Status of the order made i.e. delivered, shipped, etc.
order_purchase_timestamp	Timestamp of the purchase
order_delivered_carrier_date	Delivery date at which carrier made the delivery
order_delivered_customer_date	Date at which customer got the product
order_estimated_delivery_date	Estimated delivery date of the products

The **reviews.csv** contain following features:

Features	Description
review_id	ID of the review given on the product ordered by the order id
order_id	A Unique ID of order made by the consumers
review_score	Review score given by the customer for each order on a scale of 1-5
review_comment_title	Title of the review
review_comment_message	Review comments posted by the consumer for each order
review_creation_date	Timestamp of the review when it is created
review_answer_timestamp	Timestamp of the review answered

The **products.csv** contain following features:

Features	Description
product_id	A Unique identifier for the proposed project.
product_category_name	Name of the product category
product_name_lenght	Length of the string which specifies the name given to the products ordered
product_description_lenght	Length of the description written for each product ordered on the site
product_photos_qty	Number of photos of each product ordered available on the shopping portal
product_weight_g	Weight of the products ordered in grams
product_length_cm	Length of the products ordered in centimeters
product_height_cm	Height of the products ordered in centimeters
product_width_cm	Width of the product ordered in centimeters

1.1 Data type of columns in a table:

Explanation: I uploaded all CSVs on big query sandbox which we can see on left.

After clicking on each file, we can check their data type on right.

Example on below screenshots:

1.2 Time period for which the data is given:

Explanation:

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil i.e. from **2016-09-04 to 2018-10-17**

Query:

> To see first date:

```
SELECT extract(year from order_purchase_timestamp) as year,extract(month from order_purchase_timestamp) month, date(order_purchase_timestamp) as date
FROM `project-380318.customers.orders`
order by year ,month, date
limit 1
```

> To see last date:

```
SELECT extract(year from order_purchase_timestamp) as year,extract(month from order_purchase_timestamp) month, date(order_purchase_timestamp) as date
FROM `project-380318.customers.orders`
order by year desc,month desc,date desc
limit 1
```

1.3 Cities and States of customers ordered during the given period:

Explanation:

Query:

SELECT Distinct customer_city,customer_state
FROM `project-380318.customers.customers`

Screenshot for few lines:

2. In-depth Exploration:

2.1.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario?

Explanation:

Yes, when we see trend from 2016 to 2018, there is a huge jump in order purchase between years. This shows on growing trend in e-commerce business of Target in Brazil.

Tools used:

SQL (to check the total orders made in each month for every year):

```
select year,month,count(month)
from
(SELECT extract(year from order_purchase_timestamp) as year,extract(month from order_purchase_
timestamp) month,
FROM `project-380318.customers.orders`
order by year,month) tbl
group by year , month
order by year, month
```

Tableau (to visual the trend yearly):

2.1.2 Can we see some seasonality with peaks at specific months?

We can see sudden drop in December 2016, September 2018 and October 2018 while maximum order was done in November 2017.

In 2017, we see upward trend only except a few drops in the months of April, June and December.

Explanation:

- Tableau (to visualize the trend month-wise and to analyze peaks and drops)
- Screenshot from Tableau:

2.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Explanation:

Most of the Brazilian prefer to buy after 10 A.M. till night around 9 or 10 P.M. A very few Brazilian buy between mid night till morning. **The maximum orders are placed during afternoons.**

Tools:

SQL query (to see top 10 order timing):

```
SELECT extract(hour from order_purchase_timestamp) as hour,count(order_purchase_timestamp) cou
nt
FROM `project-380318.customers.orders`
group by hour
order by count desc
limit 10
```

Tableau (to visualize trend):

3.1. Get month on month orders by states:

Explanation:

SQL query:

```
select Distinct extract(month from order_purchase_timestamp) as month,extract(year from order_
purchase_timestamp) as year, c.customer_state
from `customers.orders` as o
left join `customers.customers` as c
ON o.customer_id=c.customer_id
order by year, month
```

Screenshot of result:

3.2 Distribution of customers across the states in Brazil

Explanation:

SQL query (to find the total number of customers purchased items from each state):

```
select c.customer_state, count(c.customer_state) as number_of_customers_aross_state
from `customers.orders` as o
left join `customers.customers` as c
ON o.customer_id=c.customer_id
group by customer_state
order by number_of_customers_aross_state desc
limit 10
```

Screenshot of result (showing top 10 states from where customers order in Brazil):

4.1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

Sql query:

Screenshot

JOB IN	FORMATION	RESULTS
Row	year //	prt_increase
1	2017	null
2	2018	136.976871

Analysis: there is a 20% increase in total cost of orders from

4.2. Mean & Sum of price and freight value by customer state:

Explanation:

SQL query:

```
select customer_state,AVG(price) as mean_price, sum(price) as sum_price,AVG(freight_value) as
mean_freight,sum(freight_value) as sum_freight
from
(select i.order_id,i.price,i.freight_value,o.customer_id,c.customer_state
```

```
from `customers.order_items` as i
left join `customers.orders` as o
ON i.order_id=o.order_id
left join `customers.customers` as c
ON o.customer_id=c.customer_id) tbl
group by customer_state
```

Screenshot for result:

5.1 and 5.2. Calculate days between purchasing, delivering and estimated delivery:

Explanation:

SQL query:

select order_id,date_diff(order_delivered_customer_date,order_purchase_timestamp, day) as time
_to_delivery,
date_diff(order_estimated_delivery_date,order_delivered_customer_date, day) as diff_estimated_
delivery

from `customers.orders`

Screenshot of result:

Analysis:

On an average, orders have delivered within 12 days after purchasing and delivery is done 10 days before estimated days.

Supported query:

```
select order_id,time_to_delivery,
diff_estimated_delivery, AVG(time_to_delivery) over(), AVG(diff_estimated_delivery) over()
from
```

(select order_id,date_diff(order_delivered_customer_date,order_purchase_timestamp, day) as tim
e_to_delivery,

date_diff(order_estimated_delivery_date,order_delivered_customer_date, day) as diff_estimated_
delivery

from `customers.orders`) tbl

Screenshot for result:

5.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery:

SQL query:

```
select customer_state,AVG(freight_value) as mean_freight,AVG(time_to_delivery) as mean_time_to
_delivery, AVG(diff_estimated_delivery) as mean_diff_estimated_delivery
from
(select o.order_id,date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)
as time_to_delivery,
date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date, day) as diff_estima
ted_delivery, i.freight_value,c.customer_state
from `customers.order_items` as i
right join `customers.orders`as o
ON o.order_id=i.order_id
left join `customers.customers`as c
ON o.customer_id=c.customer_id) tbl
group by customer_state
```

Screenshot of result:

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXECUTION
Row	customer_state		mean_freight	mean_time_to_d	mean_diff_estim
1	RJ	11	20.9609239	14.6893821	11.1444931
2	RS		21.7358043	14.7082993	13.2030001
3	SP		15.1472753	8.25960855	10.2655943
4	DF		21.0413549	12.5014861	11.2747346
5	PR		20.5316515	11.4807930	12.5338998
6	MT		28.1662843	17.5081967	13.6393442
7	MA		38.2570024	21.2037500	9.10999999

5.5 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5:

Highest:

SQL query:

```
select customer_state,AVG(freight_value) as mean_freight,AVG(time_to_delivery) as mean_time_to
_delivery, AVG(diff_estimated_delivery) as mean_diff_estimated_delivery
from
(select o.order_id,date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)
as time_to_delivery,
date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date, day) as diff_estima
ted_delivery, i.freight_value,c.customer_state
from `customers.order_items` as i
right join `customers.orders` as o
ON o.order_id=i.order_id
left join `customers.customers` as c
ON o.customer_id=c.customer_id) tbl
group by customer_state
order by mean_freight desc
limit 5
```

Screenshot:

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXEC
Row	customer_state	h	mean_freight //	mean_time_to_d	mean_diff_estim
1	RR		42.9844230	27.8260869	17.4347826
2	PB		42.7238039	20.1194539	12.1501706
3	RO		41.0697122	19.2820512	19.0805860
4	AC		40.0733695	20.3296703	20.0109890
5	PI		39.1479704	18.9311663	10.6826003

Lowest:

SQL query:

```
select customer_state,AVG(freight_value) as mean_freight,AVG(time_to_delivery) as mean_time_to
_delivery, AVG(diff_estimated_delivery) as mean_diff_estimated_delivery
from
(select o.order_id,date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)
as time_to_delivery,
date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date, day) as diff_estima
ted_delivery, i.freight_value,c.customer_state
from `customers.order_items` as i
right join `customers.orders`as o
ON o.order_id=i.order_id
left join `customers.customers`as c
ON o.customer_id=c.customer_id) tbl
group by customer_state
order by mean_freight
limit 5
```

Screenshot:

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH
ow /	customer_state	10	mean_freight //	mean_time_to_d	mean_diff_estim	
1	SP		15.1472753	8.25960855	10.2655943	
2	PR		20.5316515	11.4807930	12.5338998	
3	MG		20.6301668	11.5155221	12.3971510	
4	RJ		20.9609239	14.6893821	11.1444931	
5	DF		21.0413549	12.5014861	11.2747346	

5.6 Top 5 states with highest/lowest average time to delivery:

Highest:

```
select customer_state,AVG(freight_value) as mean_freight,AVG(time_to_delivery) as mean_time_to
_delivery, AVG(diff_estimated_delivery) as mean_diff_estimated_delivery
from
(select o.order_id,date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)
as time_to_delivery,
date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date, day) as diff_estima
ted_delivery, i.freight_value,c.customer_state
from `customers.order_items` as i
right join `customers.orders`as o
ON o.order_id=i.order_id
left join `customers.customers`as c
ON o.customer_id=c.customer_id) tbl
group by customer_state
order by mean_time_to_delivery desc
limit 5
```

screenshot:

JOB INFORMATION		RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPI
Row /	customer_state	le	mean_freight //	mean_time_to_d	mean_diff_estim	
1	RR		42.9844230	27.8260869	17.4347826	
2	AP		34.0060975	27.7530864	17.4444444	
3	AM		33.2053939	25.9631901	18.9754601	
4	AL		35.8436711	23.9929742	7.97658079	
5	PA		35.8326851	23.3017077	13.3747628	

Lowest:

SQL query:

```
select customer_state,AVG(freight_value) as mean_freight,AVG(time_to_delivery) as mean_time_to
_delivery, AVG(diff_estimated_delivery) as mean_diff_estimated_delivery
from
(select o.order_id,date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)
as time_to_delivery,
date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date, day) as diff_estima
ted_delivery, i.freight_value,c.customer_state
from `customers.order_items` as i
right join `customers.orders`as o
ON o.order id=i.order id
```

```
left join `customers.customers`as c
ON o.customer_id=c.customer_id) tbl
group by customer_state
order by mean_time_to_delivery
limit 5
```

screenshot:

JOB INFORMATION		RESULTS	JSON	EXECUTION DET	TAILS EXECUTION GF
Row	customer_state	h	mean_freight //	mean_time_to_d	mean_diff_estim
1	SP		15.1472753	8.25960855	10.2655943
2	PR		20.5316515	11.4807930	12.5338998
3	MG		20.6301668	11.5155221	12.3971510
4	DF		21.0413549	12.5014861	11.2747346
5	SC		21.4703687	14.5209858	10.6688628

5.7 Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 with really fast delivery:

```
select customer_state, mean_diff_estimated_delivery,dense_rank() over(order by tbl1.mean_diff_
estimated_delivery desc) as dense_rank1
from
(select customer_state,AVG(diff_estimated_delivery) as mean_diff_estimated_delivery
from
(select o.order_id,date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)
as time_to_delivery,
date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date, day) as diff_estima
ted_delivery, i.freight_value,c.customer_state
from `customers.order_items` as i
right join `customers.orders`as o
ON o.order_id=i.order_id
left join `customers.customers`as c
ON o.customer_id=c.customer_id) tbl
group by customer_state) tbl1
order by dense_rank1
limit 5
```

Screenshot:

JOB INFORMATION		RESULTS	JSON	EXECUTION DET	TAILS E	XE(
low /	customer_state	11	mean_diff_estim	dense_rank1 //		
1	AC		20.0109890	1		
2	RO		19.0805860	2		
3	AM		18.9754601	3		
4	AP		17.4444444	4		
5	RR		17.4347826	5		

States with 'not so fast' delivery:

SQL query:

```
select customer_state, mean_diff_estimated_delivery,dense_rank() over(order by tbl1.mean_diff_
estimated_delivery desc) as dense_rank1
from
(select customer_state,AVG(diff_estimated_delivery) as mean_diff_estimated_delivery
(select o.order_id,date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)
as time to delivery,
date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date, day) as diff_estima
ted_delivery, i.freight_value,c.customer_state
from `customers.order_items` as i
right join `customers.orders`as o
ON o.order_id=i.order_id
left join `customers.customers`as c
ON o.customer_id=c.customer_id) tbl
group by customer_state) tbl1
order by dense rank1 desc
limit 5
```

screenshot:

JOB INFORMATION		RESULTS	JSON	EXECUTION DET	TAILS EXE
ow /	customer_state	h	mean_diff_estim	dense_rank1	
1	AL		7.97658079	27	
2	MA		9.10999999	26	
3	SE		9.16533333	25	
4	ES		9.76853932	24	
5	BA		10.1194678	23	

6.1 Month over Month count of orders for different payment types

Sql query:

```
select year,month, payment_type,count(payment_type) as count
from
(select o.order_id,extract(month from o.order_purchase_timestamp) as month,extract (year from
o.order_purchase_timestamp) as year,p.payment_type
from `customers.orders`as o
left join `customers.payments`as p
ON o.order_id=p.order_id)tbl
group by year,month,payment_type
order by year,month
```

screenshot:

JOB INFORMATION		RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH
ow /	year //	month	payment_type	1.	count	
1	2016	9	credit_card		3	
2	2016	9	null		0	
3	2016	10	credit_card		254	
4	2016	10	UPI		63	
5	2016	10	voucher		23	
6	2016	10	debit_card		2	
7	2016	12	credit_card		1	
8	2017	1	credit_card		583	
9	2017	1	UPI		197	
10	2017	1	voucher		61	

6.2Count of orders based on the no. of payment installments

SQL query:

```
select payment_installments,count(order_id) as count
from
(select o.order_id,p.payment_installments
from `customers.orders`as o
left join `customers.payments`as p
ON o.order_id=p.order_id)tbl
group by payment_installments
order by count desc
```

Screenshot:

Row	payment_installr	count	
1	1	52546	
2	2	12413	
3	3	10461	
4	4	7098	
5	10	5328	
6	5	5239	
7	8	4268	
8	6	3920	
9	7	1626	
10	9	644	
11	12	133	
4.0		٦.	