#	release	delay	final	reaction	invariant	Semantics	Compare	Condition
1							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_2 \lor inv_1 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$
							inconsistent	$trig_2 \bullet inv_1$
							inconsistent	$rel_2 \bullet inv_1$ $fin_2 \bullet inv_1$
						inconsistent	inconsistent	$rel_2 \bullet inv_1$ $rea_2 \bullet inv_1$
	rel₁	del ₁	fin₁	rea₁	inv₁	$G((inv_1 \land (\neg fin_1 \mathbf{W}rel_1) \lor \mathbf{F}(fin_1 \land (del_1 \mathbf{U}(rel_1 \lor rea_1))))$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$ $\neg ((rel_1 \lor fin_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$
						,,,,,	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$ $\neg((rel_1 \lor rea_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$
							consistent	$inv_1 \rightarrow inv_2$ $fin_1 \rightarrow fin_2$ $del_1 \rightarrow del_2$ $rea_1 \rightarrow rea_2$ $rel_1 \rightarrow rel_2$
							unknown	other cases
2	true	del₁	fin ₁	rea₁	inv ₁	TRUE	unknown	all cases
3							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_2 \lor inv_1 \lor inv_2) \rightarrow (fin_1 \land rea_1))$
							consistent unknown unknown	trig ₁ • inv ₂ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
	false	del₁	fin ₁	rea₁	inv_1	$G(trig_1 \rightarrow (inv_1 U (fin_1 \land (inv_1 \land del_1 U)))$	inconsistent	trig ₂ • inv ₁ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (fin ₁ \land rea ₁))
						rea ₁))))	Inconsistent	$ \begin{array}{c} fin_1 \rightarrow fin_2 \\ fin_1 \bullet inv_2 \end{array} $
							Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
							consistent	$inv_1 \rightarrow inv_2$ $fin_1 \rightarrow fin_2$ $del_1 \rightarrow del_2$ $rea_1 \rightarrow rea_2$
							unknown	other cases

4	false	true	fin₁	rea₁	inv₁	$G(trig_1 \rightarrow (inv_1 U (fin_1 \land (inv_1 U rea_1))))$	inconsistent inconsistent inconsistent Inconsistent Inconsistent	$\begin{array}{c} \operatorname{inv}_1 \bullet \operatorname{inv}_2 \\ \neg ((\operatorname{trig}_2 \vee \operatorname{inv}_1 \vee \\ \operatorname{inv}_2) \\ (\operatorname{fin}_1 \wedge \operatorname{rea}_1)) \\ \operatorname{trig}_1 \bullet \operatorname{inv}_2 \\ \neg ((\operatorname{trig}_2 \vee \operatorname{inv}_1 \vee \\ \operatorname{inv}_2) \\ (\operatorname{rel}_2 \vee \operatorname{fin}_2 \wedge \operatorname{rea}_2)) \\ \operatorname{trig}_2 \bullet \operatorname{inv}_1 \\ \neg ((\operatorname{trig}_2 \vee \operatorname{inv}_1 \vee \\ \operatorname{inv}_2) \\ (\operatorname{fin}_1 \wedge \operatorname{rea}_1)) \\ \operatorname{fin}_1 \operatorname{fin}_2 \\ \operatorname{fin}_1 \bullet \operatorname{inv}_2 \\ \operatorname{rea}_1 \operatorname{fin}_2 \\ \operatorname{rea}_1 \operatorname{fin}_2 \\ \operatorname{rea}_1 \operatorname{fin}_2 \\ \operatorname{rea}_1 \operatorname{fin}_2 \\ \operatorname{rea}_1 \operatorname{rea}_2 \\ \end{array}$
							unknown	other cases
5							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_2 \lor inv_1 \lor inv_2) \rightarrow (fin_1 \land rea_1))$
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V (fin ₂ \land rea ₂)))
	false	<i>false</i> fi	fin₁	rea₁	inv ₁	$G(trig_1 \rightarrow (inv_1 \mathbf{U} \\ (fin_1 \land rea_1)))$	inconsistent	trig ₂ • inv ₁ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (fin ₁ \land rea ₁))
							Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
							Inconsistent	$ rea_1 \rightarrow fin_2 rea_1 \bullet inv_2 $
							consistent	$inv_1 \rightarrow inv_2$ $fin_1 \rightarrow fin_2$ $rea_1 \rightarrow rea_2$
							unknown	other cases
6							inconsistent	$inv_1 \bullet inv_2$ $\neg((trig_2 \lor inv_1 \lor inv_2) \rightarrow rea_1)$
	false	del ₁	true	rea₁	inv ₁	$\mathbf{G}(\operatorname{trig}_1 \to (\operatorname{inv}_1 \wedge \operatorname{del}_1 \mathbf{U})$	inconsistent	trig ₁ • inv ₂ $\neg ((\text{trig}_2 \lor \text{inv}_1 \lor \text{inv}_2) \rightarrow \text{(rel}_2 \lor \text{fin}_2 \land \text{rea}_2))$
					rea ₁))	inconsistent	$trig_2 \bullet inv_1$ $\neg ((trig_2 \lor inv_1 \lor inv_2) \rightarrow rea_1)$	
							Inconsistent	$\begin{array}{c} \operatorname{fin}_{1} \to \operatorname{fin}_{2} \\ \operatorname{fin}_{1} \bullet \operatorname{inv}_{2} \end{array}$

							Inconsistent	$rea_1 \rightarrow fin_2$
							Inconsistent	rea₁ • inv₂
								inv₁ → inv₂
							consistent	$fin_1 \rightarrow fin_2$
								$del_1 \rightarrow del_2$
							unknaven	rea₁ → rea₂
							unknown	other cases
7							inconsistent	inv₁ • inv₂ ¬((trig₂ V inv₁ V
'							Inconsistent	inv_2) $\rightarrow rea_1$)
								$trig_1 \bullet inv_2$
								¬((trig ₂ V inv ₁ V
							inconsistent	$inv_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
								trig₂ • inv₁
						C/tria	inconsistent	¬((trig ₂ V inv ₁ V
	false	true	true	rea₁	inv_1	$G(trig_1 \rightarrow (inv_1 U rea_1))$		$inv_2) \rightarrow rea_1)$
						(mv1 o real))	Inconsistent	$fin_1 \rightarrow fin_2$
							meonsistent	fin₁ • inv₂
							Inconsistent	$rea_1 \rightarrow fin_2$
								rea ₁ • inv ₂
								inv₁ → inv₂
							consistent	$ \frac{fin_1 \rightarrow fin_2}{del_1 \rightarrow del_2} $
								rea ₁ -> rea ₂
							unknown	other cases
							dikilowii	$inv_1 \bullet inv_2$
8							inconsistent	¬((trig ₂ V inv ₁ V
								$inv_2) \rightarrow rea_1$
								trig₁ • inv₂
							inconsistant	¬((trig ₂ V inv ₁ V
							inconsistent	$inv_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								trig₂ • inv₁
	false	false	true	rea₁	inv ₁	$G(trig_1 \rightarrow rea_1)$	inconsistent	¬((trig ₂ V inv ₁ V
	Julioc	June		. 501	1	C(g1 /)		$inv_2) \rightarrow rea_1)$
							Inconsistent	$fin_1 \rightarrow fin_2$
							Inconsistant	fin₁ • inv₂
							Inconsistent	rea ₁ • inv ₂
								$\frac{InV_1 \to InV_2}{fin_1 \to fin_2}$
							consistent	$\frac{\text{del}_1 \rightarrow \text{del}_2}{\text{del}_1 \rightarrow \text{del}_2}$
								$rea_1 \rightarrow rea_2$
							unknown	other cases
								inv₁ • inv₂
0							inconsistent	¬((trig ₂ V inv ₁ V
9							inconsistent	$inv_2) \rightarrow$
						$G(trig_1 \rightarrow$		fin ₁)
	false	del₁	fin ₁	true	inv ₁	inv ₁ U fin ₁)		trig₁ • inv₂
	Juise					,		¬((trig ₂ V inv ₁ V
							inconsistent	$inv_2) \rightarrow$
								(rel ₂ V
								(fin₂∧rea₂)))

						-			
								trig₂ • inv₁	
							inconsistent	¬((trig ₂ V inv ₁ V	
								$inv_2) \rightarrow fin_1)$	
							Inconsistent	$fin_1 \rightarrow fin_2$	
								fin₁ • inv₂	
								$\frac{inv_1 o inv_2}{o}$	
							consistent	$fin_4 \rightarrow fin_2$	
							consistent	$del_1 \rightarrow del_2$	
								rea₁ → rea ₂	
							unknown	other cases	
10	false	del₁	true	true	inv_1	TRUE	unknown	all cases	
11							inconsistent	trig ₁ • inv ₂	
							inconsistent	¬(rel₂ V fin₂∧rea₂)	
							Inconsistent	$fin_1 \rightarrow fin_2$	
							inconsistent	fin₁ • inv₂	
						$G(trig_1 \rightarrow$	Inconsistant	$rea_1 \rightarrow fin_2$	
	false	del₁	fin_1	rea₁	true	F (fin ₁ ∧	Inconsistent	rea₁ • inv₂	
							del₁ U rea₁))		inv₁ → inv₂
							consistent	$fin_{1} \rightarrow fin_{2}$	
							consistent	$del_{1} \rightarrow del_{2}$	
								rea₁ → rea ₂	
							unknown	other cases	
12								trig₁ • inv₂	
							inconsistent	¬(rel₂ V fin₂∧rea₂)	
					true	$G(trig_1 \rightarrow F (fin_1 \land F rea_1))$		$fin_1 \rightarrow fin_2$	
	false	true	fin ₁	rea ₁			Inconsistent	fin₁ • inv₂	
								$rea_1 \rightarrow fin_2$	
							Inconsistent	rea₁ • inv₂	
							unknown	other cases	
13								trig₁ • inv₂	
							inconsistent	¬(rel₂ V fin₂∧rea₂)	
								$fin_1 \rightarrow fin_2$	
	false	false	fin₁	rea₁	true	$G(trig_1 \rightarrow $	Inconsistent	fin₁ • inv₂	
	•		_			\mathbf{F} (fin ₁ \wedge rea ₁))		$rea_1 \rightarrow fin_2$	
							Inconsistent	rea₁ • inv₂	
							unknown	other cases	
14								trig₁ • inv₂	
							inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$	
	false	del₁	true	rea₁	true	$G(trig_1 \rightarrow$		$rea_1 \rightarrow fin_2$	
	,	1		1		del ₁ U rea ₁)	Inconsistent	rea ₁ • inv ₂	
							unknown	other cases	
15								trig ₁ • inv ₂	
							inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$	
	false	true	true	rea₁	true	$G(trig_1 \rightarrow Frea_1)$		$rea_1 \rightarrow fin_2$	
	,					2(01)	Inconsistent	rea ₁ • inv ₂	
\vdash							unknown	other cases	
16								trig ₁ • inv ₂	
10							inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$	
	false	false	true	rea₁	true	$G(trig_1 \rightarrow rea_1)$	Inconsistent	rea ₁ • inv ₂	
	, 4.50		ise true				unknown	other cases	
17		اما.					unknown		
1/	false	del₁ truo	fin	truc	+	Citria > Ffin)	inconsistant	trig ₁ • inv ₂	
	false	true	fin₁	true	true	$\mathbf{G}(trig_1 \to \mathbf{F} fin_1)$	inconsistent	¬(rel ₂ V	
		false]		fin₂∧rea₂))	

								$fin_1 \rightarrow fin_2$
							Inconsistent	fin₁ • inv₂
							unknown	other cases
18								
	false	any	true	true	true	TRUE	unknown	all cases
19	false	any	false	true	true	FALSE	inconsistent	all cases
20	false	any	any	any	false	FALSE	inconsistent	all cases
21								inv₁ • inv₂
								¬((trig ₂ V inv ₁ V
							inconsistent	$inv_2) \rightarrow rel_1$
								¬((trig ₂ V inv ₁ V
								$ \text{inv}_2\rangle \rightarrow $
								(rel₂ V fin₂∧rea₂))
								trig ₁ • inv ₂
	rol	201	folio	201	inv	$G(trig_1 \rightarrow$	inconsistent	\neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow
	rel₁	any	false	any	inv ₁	inv₁ W rel₁)		$(rel_2 \lor fin_2 \land rea_2))$
								$trig_2 \bullet inv_1$
								\neg ((trig ₂ V inv ₁ V
							inconsistent	$inv_2) \rightarrow$
								rel ₁)
								$rel_1 \rightarrow fin_2$
							inconsistent	rel₁ • inv₂
							unknown	other cases
22	true	any	false	any	any	TRUE	unknown	all cases
23								inv₁ • inv₂
							inconsistent	¬((trig ₂ V inv ₁ V
								$inv_2) \rightarrow$
								$(rel_2 \lor fin_2 \land rea_2))$
	false	any	false	any	inv ₁	$G(trig_1 \rightarrow inv_1)$		trig ₁ • inv ₂
							inconsistent	¬((trig ₂ V inv ₁ V
								$ \text{inv}_2\rangle \rightarrow $ $ \text{rel}_2 \lor \text{fin}_2 \land \text{rea}_2\rangle)$
							inconsistent	$trig_2 \bullet inv_1$
							unknown	other cases
24	false	any	false	any	true	TRUE	unknown	all cases
25	false	any	false	any	false	FALSE	inconsistent	all cases
26	-	,	-	•		$G(trig_1 \rightarrow$		
	rel_1	any	false	any	true	<i>true</i> W rel ₁) =	unknown	all cases
						TRUE		
27						$G(trig_1 \rightarrow$		
	rel_1	any	false	any	false	false W rel ₁) =	inconsistent	all cases
						FALSE		
28								inv₁ • ∘ inv₂
								¬((trig ₂ V inv ₁ V
						$G(trig_1 \rightarrow$	ingensiet	$ \text{inv}_2\rangle \rightarrow $
	rel ₁ del ₁ t	del_1	true rea ₁		inv ₁	$((inv_1 \land del_1) \mathbf{U})$	inconsistent	(rel ₁ V rea ₁))
		Gen Gue Tean Hivi	$(rel_1 \lor rea_1)))$		$\neg ((\operatorname{trig}_2 \vee \operatorname{inv}_1 \vee) \rightarrow)$ $\operatorname{inv}_2) \rightarrow $			
					(101) (104)		$(rel_2 \lor fin_2 \land rea_2))$	
						inconsistent	$trig_1 \bullet inv_2$	
		1		l			C1181 - 11147	

		rea ₁))) inconsistent	$ \text{inv}_2\rangle \rightarrow $ $ \text{(rel}_1 \lor \text{rea}_1)\rangle$
		rea ₁))) inconsistent	$inv_2) \rightarrow$
	Ten true true Tean Inivi		· ·
Teda()) True Tru	rel ₁ true true rea ₁ inv ₁	$ \begin{array}{c} G(trig_1 \rightarrow \\ (inv_1 \mathbf{U} (rel_1 \lor \\)) \end{array} $	trig₂ • inv₁
$rel_{1} true true rea_{1} inv_{1} (inv_{1} \ U \ (rel_{1} \ V \ rea_{1}))) inconsistent (ril_{1} \ V \ rea_{1})) rel_{1} \rightarrow fin_{2} rel_{1} \rightarrow fin_{2} rel_{1} \rightarrow fin_{2} rel_{2} \rightarrow (rel_{2} \ V \ rea_{2})) rea_{1} \rightarrow fin_{2} rea_{1} \rightarrow fin_{2} $			(rel₂ V fin₂∧rea₂))
rel ₁ true true rea ₁ inv ₁ $\frac{G(\text{trig}_1 \rightarrow (\text{inv}_1 \mathbf{U} (\text{rel}_1 \vee \text{rea}_1)))}{(\text{inv}_1 \mathbf{U} (\text{rel}_1 \vee \text{rea}_1)))}$ $\frac{\text{trig}_2 \bullet \text{inv}_1}{(\text{rel}_1 \vee \text{rea}_1))} + \frac{\text{trig}_2 \bullet (\text{rel}_1 \vee \text{rea}_1)}{(\text{rel}_1 \vee \text{rea}_1))}$ $\frac{\text{rel}_1 \rightarrow \text{fin}_2}{(\text{rel}_1 \vee \text{rea}_2)} + \frac{\text{rel}_1 \bullet \text{inv}_2}{(\text{rel}_2 \vee \text{rea}_2))}}{(\text{rel}_1 \vee \text{rea}_1 \bullet (\text{rel}_2 \vee \text{rea}_2))}$ $\frac{\text{rea}_1 \rightarrow \text{fin}_2}{(\text{rel}_2 \vee \text{rea}_2)} + \frac{\text{rea}_1 \bullet (\text{rel}_2 \vee \text{rea}_2)}{(\text{rel}_2 \vee \text{rea}_2)} + \frac{\text{rea}_1 \bullet (\text{rel}_2 \vee \text{rea}_2)}{(\text{rel}_2 \vee \text{rea}_2)}}$ $\frac{\text{rel}_1 \rightarrow (\text{rel}_1 \vee \text{rea}_1)}{(\text{rel}_1 \vee \text{rea}_1)} + \frac{\text{rel}_1 \bullet (\text{rel}_2 \vee \text{rea}_2)}{(\text{rel}_2 \vee \text{rea}_2)} + \frac{\text{rel}_2 \bullet (\text{rel}$		inconsistent	$\neg((\operatorname{trig}_2 \vee \operatorname{inv}_1 \vee \\ \operatorname{inv}_2) \rightarrow$
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_2)))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor fin_2 \land rea_2)))$ $trig_2 \bullet (rel_2 \lor fin_2 \land rea_2))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor rea_1)))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $unknown$ other cases $trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \rightarrow (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$ $trig_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$			trig₁ • inv₂
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \cup (rel_{1} \lor rea_{1}))) \end{cases} \qquad \begin{cases} rel_{1} \lor true \\ rea_{1} \lor rel_{1} \lor rea_{1} \lor rea_{2} \lor rea_{2} \lor rel_{1} \lor rea_{1} \lor rea_{1} \lor rea_{1} \lor rel_{1} \lor rea_{1} \lor rel_{1} \lor rel_{1}$			(rel₂ V fin₂∧rea₂))
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (trig_2 \lor inv_1 \lor inconsistent) $ rel ₁ true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_1))) $ rel ₂ inconsistent inconsistent rea ₁ inv ₂ $ (rel_1 \lor rea_1)) $ rel ₃ inconsistent rea ₁ inconsistent rea ₁ • inv ₂ $ (rel_1 \lor rea_1)) $ rea ₁ • inv ₂ $ (rel_2 \lor rea_2)) $ rea ₁ • inv ₂ $ (rel_2 \lor rea_2)) $ unknown other cases trig ₁ • inv ₂ $ (rel_2 \lor rea_2)) $ unknown other cases trig ₂ • inv ₂ $ (rel_2 \lor rea_2)) $ unknown other cases trig ₃ • inv ₂ $ (rel_2 \lor rea_2)) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2)) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2)) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2)) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_1) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_1) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_1) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_1) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_2 \lor rea_2) $ inconsistent rea ₁ • inv ₂ $ (rel_1 \lor rea_1) \lor (rel_1 \lor rea_$			$inv_2) \rightarrow$
$rel_1 true true rea_1 inv_1 G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor fin_2 \land rea_2)) trig_1 \bullet inv_2 \rightarrow (rel_2 \lor fin_2 \land rea_2)) trig_2 \bullet inv_3 \rightarrow (rel_2 \lor fin_2 \land rea_2)) trig_2 \bullet inv_4 \rightarrow (rel_2 \lor fin_2 \land rea_2)) trig_2 \bullet inv_4 \rightarrow (rel_2 \lor fin_2 \land rea_3)) trig_2 \bullet inv_4 \rightarrow (rel_2 \lor rel_3 \lor fin_2 \rightarrow (rel_3 \lor rea_3)) rel_1 \rightarrow fin_2 rel_2 \rightarrow inconsistent rea_1 \rightarrow inv_2 \rightarrow (rel_2 \lor rea_2)) unknown other cases trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)) unknown other cases trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)) unknown other cases trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2) \rightarrow (rel_2 \lor rea_2)) unknown other cases trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)) inconsistent rea_1 \bullet inv_2 \rightarrow (rel_2 \lor fin_2 \land rea_2)) inconsistent rea_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2) unknown other cases rea_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2) unknown other cases rea_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2 \lor rea_2 \rightarrow $			
$rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rig_{2} \circ inv_{2} \rightarrow ((rel_{2} \lor rin_{2} \land rea_{2}))) \\ \qquad \qquad rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{1}))) \\ \qquad \qquad G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2})) \\ \qquad \qquad (rel_{2} \lor rin_{2} \land rel_{1} \rightarrow (inconsistent) \\ \qquad \qquad (rel_{2} \lor rin_{2} \lor rel_{1} \rightarrow (inv_{2} \rightarrow (rel_{2} \lor rea_{2}))) \\ \qquad \qquad rel_{1} \rightarrow fin_{2} \\ \qquad \qquad rel_{1} \rightarrow fin_{2} \\ \qquad \qquad rea_{1} \rightarrow fin_{2} \\ \qquad \qquad rea_{1} \rightarrow fin_{2} \\ \qquad \qquad \qquad (rel_{2} \lor rea_{2})) \\ \qquad \qquad \qquad unknown other cases \\ \qquad \qquad \qquad (rel_{2} \lor rea_{2})) \\ \qquad \qquad \qquad unknown other cases \\ \qquad \qquad \qquad \qquad (rel_{2} \lor rea_{2})) \\ \qquad \qquad \qquad \qquad \qquad (rel_{2} \lor rea_{2})) \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad (rel_{2} \lor rea_{2})) \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (rel_{1} \lor rea_{1})) \\ \qquad \qquad$			¬((trig ₂ V inv ₁ V
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \ U \ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \ U \ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \ U \ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \ U \ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \ U \ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \ U \ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor rel_{1})) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor rel_{1}) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor true)) \end{cases} \\ = \begin{cases} G(trig_{1} \rightarrow \\ (rel_{1} \lor $			
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent inconsistent inconsistent $(rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rea ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₅ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_$		inconsistent	(
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent inconsistent inconsistent $(rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rea ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₅ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_$			
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent inconsistent inconsistent $(rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rea ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₅ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_$			¬((trig ₂ V inv ₁ V
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent inconsistent inconsistent $(rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rea ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₅ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_$			¬((trig ₂ V inv ₁ V
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent inconsistent inconsistent $(rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rea ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₅ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_$			¬((trig ₂ V inv ₁ V
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent inconsistent inconsistent $(rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rea ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₅ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_$			¬((trig ₂ V inv ₁ V
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent inconsistent inconsistent $(rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_1 \lor rea_1)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rea ₁ $\rightarrow (rel_2 \lor rea_2)$ unknown other cases $(rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ inconsistent rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₅ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_2)$ rel ₃ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₄ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₇ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₈ $\rightarrow (rel_2 \lor rea_2)$ rel ₉ $\rightarrow (rel_2 \lor rea_2)$ rel ₁ $\rightarrow (rel_2 \lor rea_2)$ rel ₂ $\rightarrow (rel_2 \lor rea_$			¬((trig ₂ V inv ₁ V
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rig_{2} \bullet inv_{2} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rig_{2} \bullet inv_{2} \rightarrow \\ (rel_{2} \lor rin_{2} \land rea_{2})) \end{cases}$ $rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{1})) \end{cases} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2})) \end{cases}$ $rel_{1} \rightarrow fin_{2} rel_{1} \rightarrow $			
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rig_{2} \bullet inv_{2} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rig_{2} \bullet inv_{2} \rightarrow \\ (rel_{2} \lor rin_{2} \land rea_{2})) \end{cases}$ $rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{1})) \end{cases} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2})) \end{cases}$ $rel_{1} \rightarrow fin_{2} rel_{1} \rightarrow $			
$rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{2} \lor fin_{2} \land rea_{2})))$ $rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2})))$ $rel_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2}))$ $rel_{1} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow$			
$rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{2} \lor fin_{2} \land rea_{2})))$ $rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2})))$ $rel_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2}))$ $rel_{1} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow$			
$rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{2} \lor fin_{2} \land rea_{2})))$ $rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2})))$ $rel_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2}))$ $rel_{1} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow$			
$rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{2} \lor fin_{2} \land rea_{2})))$ $rel_{1} true true rea_{1} inv_{1} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2})))$ $rel_{1} \rightarrow (inv_{1} \mathbf{U} \ (rel_{1} \lor rea_{2}))$ $rel_{1} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow (inv_{1} \rightarrow (inv_{2} \rightarrow$			$ inv_2\rangle \rightarrow$
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (trig_2 \lor inv_1 \lor inconsistent) = \frac{1}{(inv_1 \cup (rel_1 \lor rea_1))} $ rel ₁ true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_1))) = \frac{1}{(inconsistent)} = \frac{1}$			$ \text{inv}_2 \rightarrow$
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (trig_2 \lor inv_1 \lor inconsistent) = \frac{1}{(inv_1 \cup (rel_1 \lor rea_1))} $ rel ₁ true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_1))) = \frac{1}{(inconsistent)} = \frac{1}$			<u>-</u>
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (trig_2 \lor inv_1 \lor inconsistent) = \frac{1}{(inv_1 \cup (rel_1 \lor rea_1))} $ rel ₁ true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_1))) = \frac{1}{(inconsistent)} = \frac{1}$			<u>-</u>
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (trig_2 \lor inv_1 \lor inconsistent) = \frac{1}{(inv_1 \cup (rel_1 \lor rea_1))} $ rel ₁ true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_1))) = \frac{1}{(inconsistent)} = \frac{1}$			<u>-</u>
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (trig_2 \lor inv_1 \lor inconsistent) = \frac{1}{(inv_1 \cup (rel_1 \lor rea_1))} $ rel ₁ true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_1))) = \frac{1}{(inconsistent)} = \frac{1}$			<u>-</u>
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (trig_2 \lor inv_1 \lor inconsistent) = \frac{1}{(inv_1 \cup (rel_1 \lor rea_1))} $ rel ₁ true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_1))) = \frac{1}{(inconsistent)} = \frac{1}$			(rel₂ V fin₂∧rea₂))
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \cup (rel_{1} \lor rea_{1}))) \end{cases} \qquad \begin{cases} rel_{1} \lor true \\ rea_{1} \lor rel_{1} \lor rea_{1} \lor rea_{2} \lor rea_{2} \lor rel_{1} \lor rea_{1} \lor rea_{1} \lor rea_{1} \lor rel_{1} \lor rea_{1} \lor rel_{1} \lor rel_{1}$			$(rel_2 \ V \ fin_2 \land rea_2))$
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \cup (rel_{1} \lor rea_{1}))) \end{cases} \qquad \begin{cases} rel_{1} \lor true \\ rea_{1} \lor rel_{1} \lor rea_{1} \lor rea_{2} \lor rea_{2} \lor rel_{1} \lor rea_{1} \lor rea_{1} \lor rea_{1} \lor rel_{1} \lor rea_{1} \lor rel_{1} \lor rel_{1}$			
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \cup (rel_{1} \lor rea_{1}))) \end{cases} \qquad \begin{cases} G(trig_{1} \rightarrow \\ (inv_{1} \cup (rel_{1} \lor rea_{2})) \end{cases} \qquad \begin{cases} trig_{2} \circ inv_{1} \lor (rel_{2} \lor fin_{2} \land rea_{2})) \end{cases} \qquad \begin{cases} trig_{2} \circ inv_{1} \lor (rel_{1} \lor rea_{1})) \end{cases} \qquad \begin{cases} (trig_{1} \rightarrow \\ (inv_{1} \cup (rel_{1} \lor rea_{1})) \end{cases} \qquad \begin{cases} (trig_{1} \rightarrow \\ (rel_{1} \lor rea_{1})) \end{cases} \qquad \begin{cases} (trig_{1} \rightarrow \\ (rel_{1} \lor rea_{1})) \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1}) \lor (rel_{2} \lor rea_{2}) \rbrace \end{cases} \qquad \begin{cases} (rel_{2} \lor rea_{2}) \lor (rel_{2} \lor rea_{2}) \rbrace \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{2} \lor rea_{2}) \rbrace \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1}) \lor (rel_{2} \lor rea_{2}) \lor (rel_{2} \lor rea_{2}) \rbrace \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{2} \lor rea_{2}) \rbrace \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{2} \lor rea_{2}) \rbrace \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{2} \lor rea_{2}) \rbrace \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \rbrace \end{cases} \qquad \begin{cases} (rel_{1} \lor rea_{1} \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1} \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1} \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1} \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1} \lor (rel_{1} \lor rea_{1} \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1} \lor (rel_{1} \lor rea_{1}) \lor (rel_{1} \lor rea_{1} \lor (r$			trig₁ • inv₂
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_2)))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor fin_2 \land rea_2)))$ $trig_2 \bullet (rel_2 \lor fin_2 \land rea_2))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor rea_1)))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $unknown$ other cases $trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \rightarrow (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$ $trig_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$			_
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_2)))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor fin_2 \land rea_2)))$ $trig_2 \bullet (rel_2 \lor fin_2 \land rea_2))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor rea_1)))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $unknown$ other cases $trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \rightarrow (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$ $trig_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$			_
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \cup (rel_1 \lor rea_2)))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor fin_2 \land rea_2)))$ $trig_2 \bullet (rel_2 \lor fin_2 \land rea_2))$ $trig_2 \bullet (inv_1 \cup (rel_2 \lor rea_1)))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $unknown$ other cases $trig_1 \bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \rightarrow (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_1))$ $trig_2 \bullet (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$ $trig_2 \rightarrow (rel_2 \lor rea_2))$ $trig_2 \rightarrow (rel_2 \lor rea_2)$			¬((trig₂ V inv₁ V
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (rel_1 \lor rea_1)))$ trig ₂ • inv ₁ $-((trig_2 \lor rin_2 \land rea_2))$ trig ₂ • inv ₁ $-((trig_2 \lor rin_2 \land rea_2))$ trig ₂ • inv ₁ $-((trig_2 \lor rin_2 \lor rel_1 \rightarrow fin_2 \lor rel_1 \rightarrow fin_2)$ rel ₁ $\rightarrow fin_2$ rel ₁ $\rightarrow fin_2$ rea ₂ $\rightarrow fin_2$ rea ₁ $\rightarrow fin_2$ rea ₂ $\rightarrow fin_2$		inconsistant	¬((trig ₂ v iriv ₁ v
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} (rel_{1} \lor rea_{1}))) \\ inconsistent \end{cases} \begin{cases} rel_{2} \lor fin_{2} \land rea_{2})) \\ trig_{2} \bullet inv_{1} \rightarrow ((trig_{2} \lor inv_{1} \lor inconsistent)) \\ inconsistent \end{cases} \begin{cases} rel_{1} \lor fin_{2} \rightarrow (rel_{1} \lor rea_{1})) \\ rel_{1} \rightarrow fin_{2} \\ rel_{2} \rightarrow (rel_{2} \lor rea_{2})) \\ rel_{3} \rightarrow (rel_{2} \lor rea_{2})) \end{cases}$ $rel_{1} false true rea_{1} any any true true any \begin{cases} G(trig_{1} \rightarrow (inv_{1} \land del_{1}) \mathbf{U} \\ (inv_{1} \land del_{1}) \mathbf{U} \\ (rel_{1} \lor true))) = \\ TRUE \end{cases} \begin{cases} G(trig_{1} \rightarrow (inv_{2} \rightarrow (rel_{2} \lor rea_{2})) \\ inconsistent \\ inconsistent \\ inconsistent \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2} \rightarrow (rel_{2} \lor fin_{2} \rightarrow $		inconsistent	
$rel_{1} true true rea_{1} inv_{1} \begin{cases} G(trig_{1} \rightarrow (inv_{1} \mathbf{U} (rel_{1} \lor rea_{1}))) \\ inconsistent \end{cases} \begin{cases} rel_{2} \lor fin_{2} \land rea_{2})) \\ trig_{2} \bullet inv_{1} \rightarrow ((trig_{2} \lor inv_{1} \lor inconsistent)) \\ inconsistent \end{cases} \begin{cases} rel_{1} \lor fin_{2} \rightarrow (rel_{1} \lor rea_{1})) \\ rel_{1} \rightarrow fin_{2} \\ rel_{2} \rightarrow (rel_{2} \lor rea_{2})) \\ rel_{3} \rightarrow (rel_{2} \lor rea_{2})) \end{cases}$ $rel_{1} false true rea_{1} any any true true any \begin{cases} G(trig_{1} \rightarrow (inv_{1} \land del_{1}) \mathbf{U} \\ (inv_{1} \land del_{1}) \mathbf{U} \\ (rel_{1} \lor true))) = \\ TRUE \end{cases} \begin{cases} G(trig_{1} \rightarrow (inv_{2} \rightarrow (rel_{2} \lor rea_{2})) \\ inconsistent \\ inconsistent \\ inconsistent \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}) \\ inconsistent \\ rel_{1} \bullet inv_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2} \rightarrow (rel_{2} \lor fin_{2} \land rea_{2} \rightarrow (rel_{2} \lor fin_{2} \rightarrow $		inconsistent	$ \text{inv}_2\rangle \rightarrow$
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \mathbf{U} (rel_1 \lor rea_1)))$ inconsistent $trig_2 \bullet inv_1 \rightarrow ((trig_2 \lor inv_1 \lor inv_2) \rightarrow (rel_1 \lor rea_1))$ rel ₁ $\rightarrow fin_2$ rel ₁ $\bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ unknown other cases 30 rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_1 \lor rea_1))$ inconsistent $f(trig_2 \bullet inv_1 \lor inv_2) \rightarrow (rel_2 \lor rea_2))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsist			ınv₂) →
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \mathbf{U} (rel_1 \lor rea_1)))$ inconsistent $trig_2 \bullet inv_1 \rightarrow ((trig_2 \lor inv_1 \lor inv_2) \rightarrow (rel_1 \lor rea_1))$ rel ₁ $\rightarrow fin_2$ rel ₁ $\bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ unknown other cases 30 rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_1 \lor rea_1))$ inconsistent $f(trig_2 \bullet inv_1 \lor inv_2) \rightarrow (rel_2 \lor rea_2))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsist			<u>-</u>
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \mathbf{U} (rel_1 \lor rea_1)))$ inconsistent $trig_2 \bullet inv_1 \rightarrow ((trig_2 \lor inv_1 \lor inv_2) \rightarrow (rel_1 \lor rea_1))$ rel ₁ $\rightarrow fin_2$ rel ₁ $\bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ unknown other cases 30 rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_1 \lor rea_1))$ inconsistent $f(trig_2 \bullet inv_1 \lor inv_2) \rightarrow (rel_2 \lor rea_2))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsist			(relay fina Areaal)
rel ₁ true true rea ₁ inv ₁ $G(trig_1 \rightarrow (inv_1 \mathbf{U} (rel_1 \lor rea_1)))$ inconsistent $trig_2 \bullet inv_1 \rightarrow ((trig_2 \lor inv_1 \lor inv_2) \rightarrow (rel_1 \lor rea_1))$ rel ₁ $\rightarrow fin_2$ rel ₁ $\bullet inv_2 \rightarrow (rel_2 \lor rea_2))$ unknown other cases 30 rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_1 \lor rea_1))$ inconsistent $f(trig_2 \bullet inv_1 \lor inv_2) \rightarrow (rel_2 \lor rea_2))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_1 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \bullet inv_2 \rightarrow (rel_2 \lor rea_2)))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsistent $f(trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)$ inconsist		6/1.23	$\mid (rel_2 \ V \ tin_2 \land rea_2)) \mid$
$rel_{1} true true rea_{1} inv_{1} (inv_{1} \ U \ (rel_{1} \ V \ rea_{1}))) inconsistent (ril_{1} \ V \ rea_{1})) rel_{1} \rightarrow fin_{2} rel_{1} \rightarrow fin_{2} rel_{1} \rightarrow fin_{2} rel_{2} \rightarrow (rel_{2} \ V \ rea_{2})) rea_{1} \rightarrow fin_{2} rea_{1} \rightarrow fin_{2} $		G(trig₁ →	
rel ₁ true rea ₁ inv ₁ (inv ₁ U (rel ₁ V rea ₁))) Inv ₁ (inv ₁ U (rel ₁ V rea ₁)) Inconsistent Inv ₂ \rightarrow (rel ₁ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂) \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂		U(trig₁ →	triga • inv.
rel ₁ true rea ₁ inv ₁ (inv ₁ U (rel ₁ V rea ₁))) Inv ₁ (inv ₁ U (rel ₁ V rea ₁)) Inconsistent Inv ₂ \rightarrow (rel ₁ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V rea ₂)) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂) \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V fin ₂ \(\text{rea ₂ }\)) Inconsistent Inv ₂ \rightarrow (rel ₂ V inv ₂			trig₂ • inv₁
$rea_{1}))) \qquad inconsistent \qquad -((trig_{2} \lor triv_{1} \lor inv_{2}) \rightarrow (rel_{1} \lor rea_{1})) \qquad inconsistent \qquad -((trig_{2} \lor triv_{1} \lor inv_{2}) \rightarrow (rel_{1} \lor rea_{1})) \qquad rel_{1} \rightarrow fin_{2} \qquad rel_{1} \rightarrow fin_{2} \qquad rea_{1} \rightarrow fin_{2} \qquad rea_{1} \bullet inv_{2} \qquad -(fin_{2} \rightarrow (rel_{2} \lor rea_{2})) \qquad unknown \qquad other cases \qquad trig_{1} \bullet inv_{2} \qquad -((trig_{2} \lor rea_{2})) \qquad unknown \qquad other cases \qquad trig_{1} \bullet inv_{2} \qquad -((trig_{2} \lor triv_{2}) \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \qquad inconsistent \qquad rel_{1} \bullet inv_{2} \qquad inconsistent \qquad rel_{1} \bullet inv_{2} \qquad inconsistent \qquad rea_{1} \bullet inv_{2} \qquad unknown \qquad other cases \qquad 31 \qquad any \qquad any \qquad true \qquad true \qquad any \qquad ((inv_{1} \land del_{1}) \cup (rel_{1} \lor true))) = \qquad unknown \qquad all cases \qquad TRUE \qquad 32 \qquad rel_{1} del_{1} true \qquad false \qquad inv_{1} ((inv_{1} \land del_{1}) \cup ((inv_{1} \land de$	rela true true reading.	(inv ₄ II (rel ₄ V	_
$rea_{1}))) \qquad inconsistent \qquad -((trig_{2} \lor triv_{1} \lor inv_{2}) \rightarrow (rel_{1} \lor rea_{1})) \qquad inconsistent \qquad -((trig_{2} \lor triv_{1} \lor inv_{2}) \rightarrow (rel_{1} \lor rea_{1})) \qquad rel_{1} \rightarrow fin_{2} \qquad rel_{1} \rightarrow fin_{2} \qquad rea_{1} \rightarrow fin_{2} \qquad rea_{1} \bullet inv_{2} \qquad -(fin_{2} \rightarrow (rel_{2} \lor rea_{2})) \qquad unknown \qquad other cases \qquad trig_{1} \bullet inv_{2} \qquad -((trig_{2} \lor rea_{2})) \qquad unknown \qquad other cases \qquad trig_{1} \bullet inv_{2} \qquad -((trig_{2} \lor triv_{2}) \rightarrow (rel_{2} \lor fin_{2} \land rea_{2})) \qquad inconsistent \qquad rel_{1} \bullet inv_{2} \qquad inconsistent \qquad rel_{1} \bullet inv_{2} \qquad inconsistent \qquad rea_{1} \bullet inv_{2} \qquad unknown \qquad other cases \qquad 31 \qquad any \qquad any \qquad true \qquad true \qquad any \qquad ((inv_{1} \land del_{1}) \cup (rel_{1} \lor true))) = \qquad unknown \qquad all cases \qquad TRUE \qquad 32 \qquad rel_{1} del_{1} true \qquad false \qquad inv_{1} ((inv_{1} \land del_{1}) \cup ((inv_{1} \land de$	rel ₁ true true rea ₁ inv ₁	$ (inv_1 \mathbf{U} (rel_1 V) $	_
Teda()) True Tru	rei1 true true rea1 InV1	(1111/1 0 (1811 /	-((triga V inv. V
Feda()) Feda() Fe			$\neg ((trig_2 \ V \ inv_1 \ V))$
color co		rea ₁))) inconsistent	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		red ₁))) inconsistent	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ inv_2 \rangle \rightarrow$
			111 V 2J = Z
			(rol.)/ roa))
			(rel ₁ V rea ₁))
			$rel_1 \rightarrow fin_2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			rel₁ • inv₂
c c c c c c c c c c		inconsistent	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ \neg(fin_2 \rightarrow$
			· ·
			(rel ₂ V rea ₂))
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$rea_1 \rightarrow fin_2$
rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_2 \lor rea_2))$ unknown other cases $-((trig_2 \lor rel_2 \lor rea_2))$ inconsistent $-((trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $-((trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $-(trig_1 \bullet inv_2)$ inconsistent $-(trig_1 \bullet inv_2)$ inconsistent $-(trig_1 \bullet inv_2)$ inconsistent $-(trig_1 \bullet inv_2)$ unknown other cases $-((trig_1 \rightarrow (trig_1 \rightarrow true))) = -((trig_1 \lor true))) = -((trig_1 \lor true)) = -((trig_1 \lor true))$ all cases $-((trig_1 \rightarrow (trig_1 \rightarrow true))) = -((trig_1 \rightarrow (trig_1 \rightarrow (trig_1 \rightarrow true))))$ inconsistent $-((trig_2 \lor true_1))$ inconsistent $-((trig_2 \lor true_1))$ inconsistent $-((trig_2 \lor true_1))$			
rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_2 \lor rea_2))$ unknown other cases $-((trig_2 \lor rel_2 \lor rea_2))$ inconsistent $-((trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $-((trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $-(trig_1 \bullet inv_2)$ inconsistent $-(trig_1 \bullet inv_2)$ inconsistent $-(trig_1 \bullet inv_2)$ inconsistent $-(trig_1 \bullet inv_2)$ unknown other cases $-((trig_1 \rightarrow (trig_1 \rightarrow true))) = -((trig_1 \lor true))) = -((trig_1 \lor true)) = -((trig_1 \lor true))$ all cases $-((trig_1 \rightarrow (trig_1 \rightarrow true))) = -((trig_1 \rightarrow (trig_1 \rightarrow (trig_1 \rightarrow true))))$ inconsistent $-((trig_2 \lor true_1))$ inconsistent $-((trig_2 \lor true_1))$ inconsistent $-((trig_2 \lor true_1))$			rea₁ • inv₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		inconsistent	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		inconsistent	¬(fin₂ →
			(rel ₂ V rea ₂))
		unknown	other cases
rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $\neg((trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent rel ₁ • inv ₂ inconsistent rea ₁ • inv ₂ unknown other cases 31 any any true true any $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ 32 rel ₁ del ₁ true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((trig_2 \lor inv_1 \lor ((trig_2 \lor ((trig_1 \lor ((trig_1$		UIIKIIOWII	
rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $\neg((trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent rel ₁ • inv ₂ inconsistent rea ₁ • inv ₂ unknown other cases 31 any any true true any $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ 32 rel ₁ del ₁ true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((trig_2 \lor inv_1 \lor ((trig_2 \lor ((trig_1 \lor ((trig_1$	20		trig. • inv-
rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $\neg((trig_2 \lor inv_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent rel ₁ • inv ₂ inconsistent rea ₁ • inv ₂ unknown other cases 31 any any true true any $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ 32 rel ₁ del ₁ true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((trig_2 \lor inv_1 \lor del_2) \cup ((trig_2 \lor inv_2) \to ((trig_2 \lor inv_2) $		1	trig ₁ • inv ₂
rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $rel_1 \bullet inv_2$ inconsistent rea ₁ $\bullet inv_2$ inconsistent rea ₁ $\bullet inv_2$ unknown other cases 31 any any true true any $G(trig_1 \rightarrow (rel_1 \lor rea_1))$ unknown all cases $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ 32 rel ₁ del ₁ true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (inconsistent)))$ inconsistent $G(trig_2 \lor inv_1 \lor inv_2)$ rel ₁ del ₁ true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (inconsistent)))$	30	1	_
rel ₁ false true rea ₁ any $G(trig_1 \rightarrow (rel_2 \lor fin_2 \land rea_2))$ inconsistent $rel_1 \bullet inv_2$ inconsistent rea ₁ $\bullet inv_2$ inconsistent rea ₁ $\bullet inv_2$ unknown other cases 31 any any true true any $G(trig_1 \rightarrow (rel_1 \lor rea_1))$ unknown all cases $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ 32 rel ₁ del_1 true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (inconsistent)) = ((trig_2 \lor inv_1 \lor inv_2))$ inconsistent $G(trig_2 \lor inv_1 \lor inv_2)$	30		$\mid \neg((\operatorname{trig}_2 \vee \operatorname{inv}_2) \rightarrow \mid$
rel ₁ false true rea ₁ any (rel ₁ V rea ₁)) inconsistent rel ₁ • inv ₂ inconsistent rea ₁ • inv ₂ any any true true any ((inv ₁ \land del ₁) U (rel ₁ V true))) = TRUE 32 rel ₁ del ₁ true false inv ₁ inv ₂ inconsistent rel ₁ • inv ₂ ((inv ₁ \land del ₁) U (rel ₁ V true))) = TRUE 32 rel ₁ del ₁ true false inv ₁ ((inv ₁ \land del ₁) U inconsistent ¬((trig ₂ V inv ₁ V	30	inconsistent	
rel ₁ false true rea ₁ any (rel ₁ V rea ₁)) inconsistent rel ₁ • inv ₂ inconsistent rea ₁ • inv ₂ any any true true any ((inv ₁ \land del ₁) U (rel ₁ V true))) = TRUE 32 rel ₁ del ₁ true false inv ₁ inv ₂ inconsistent rel ₁ • inv ₂ ((inv ₁ \land del ₁) U (rel ₁ V true))) = TRUE 32 rel ₁ del ₁ true false inv ₁ ((inv ₁ \land del ₁) U inconsistent ¬((trig ₂ V inv ₁ V	30		(rel ₂ V fin ₂ Area ₂))
	30		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		$G(trig_1 \rightarrow$	
any any true true any $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ 32 rel ₁ del ₁ true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor inv_2 \lor inv_2 \lor (trig_2 \lor inv_1 \lor inv_2 \lor inv_2 \lor inv_2 \lor inv_2 \lor (trig_2 \lor inv_2 \lor $		$G(trig_1 \rightarrow$	rel₁ • inv₂
any any true true any $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ 32 rel ₁ del ₁ true false inv ₁ $G(trig_1 \rightarrow ((inv_1 \land del_1) \cup (rel_1 \lor true))) = ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((inv_1 \land del_1) \cup ((trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor ((trig_2 \lor inv_1 \lor (trig_2 \lor inv_1 \lor inv_2 \lor inv_2 \lor (trig_2 \lor inv_1 \lor inv_2 \lor inv_2 \lor inv_2 \lor inv_2 \lor (trig_2 \lor inv_2 \lor $			
any any $true$ $true$ any $((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ $rel_1 del_1 true false inv_1 ((inv_1 \land del_1) \cup (rel_1 \lor true))) = ((inv_1 \land del_1) \cup (rel_1 \lor true))$ $((inv_1 \land del_1) \cup (rel_1 \lor true) inconsistent ((trig_2 \lor inv_1 \lor true))$			
any any $true$ $true$ any $((inv_1 \land del_1) \cup (rel_1 \lor true))) = TRUE$ $rel_1 del_1 true false inv_1 ((inv_1 \land del_1) \cup (rel_1 \lor true))) = ((inv_1 \land del_1) \cup (rel_1 \lor true))$ $((inv_1 \land del_1) \cup (rel_1 \lor true) inconsistent ((trig_2 \lor inv_1 \lor true))$		$\begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & \text{inconsistent} \\ & \text{inconsistent} \end{array}$	rea₁ • inv₂
any any $true$ $true$ any $((inv_1 \land del_1) \mathbf{U} (rel_1 \lor true))) = TRUE$ $unknown$ all cases 32 rel_1 del_1 $true$ $false$ inv_1 $((inv_1 \land del_1) \mathbf{U} (rel_1 \lor true))) = Inv_1 \bullet inv_2 ((inv_1 \land del_1) \mathbf{U} (rel_1 \lor true))$		$\begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & \text{inconsistent} \\ & \text{inconsistent} \end{array}$	rea₁ • inv₂
any any $true$ $true$ any $((inv_1 \land del_1) \mathbf{U} (rel_1 \lor true))) = TRUE$ $unknown$ all cases 32 rel_1 del_1 $true$ $false$ inv_1 $((inv_1 \land del_1) \mathbf{U} (rel_1 \lor true))) = Inv_1 \bullet inv_2 ((inv_1 \land del_1) \mathbf{U} (rel_1 \lor true))$	rel ₁ false true rea ₁ any	$\begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & \text{inconsistent} \\ & \text{inconsistent} \\ & \text{unknown} \end{array}$	rea₁ • inv₂
any any true true any $(rel_1 \lor true)$)) = $true$ any $(rel_1 \lor true)$)) = $true$ and $(rel_1 \lor true)$) = $true$ any $(rel_1 \lor true)$ = $(rel_$	rel ₁ false true rea ₁ any	$\begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & \text{inconsistent} \\ & \text{inconsistent} \\ & \text{unknown} \end{array}$	rea₁ • inv₂
any any true true any $(rel_1 \lor true)$)) = $true$ any $(rel_1 \lor true)$)) = $true$ and $(rel_1 \lor true)$) = $true$ any $(rel_1 \lor true)$ = $(rel_$	rel ₁ false true rea ₁ any	$\begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ $	rea₁ • inv₂
	rel ₁ false true rea ₁ any	$\begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ $	rea₁ • inv₂
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	rel ₁ false true rea ₁ any	$ \begin{array}{c c} \mathbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & \text{inconsistent} \\ & \text{inconsistent} \\ & \text{unknown} \end{array} $ $ \mathbf{G}(trig_1 \to \\ ((inv_1 \land del_1) H_1) $	rea₁ • inv₂ other cases
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	rel ₁ false true rea ₁ any		rea₁ • inv₂ other cases
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	rel ₁ false true rea ₁ any		rea₁ • inv₂ other cases
rel ₁ del ₁ true false inv ₁ ((inv ₁ \land del ₁) \cup inconsistent \neg ((trig ₂ \lor inv ₁ \lor	rel ₁ false true rea ₁ any	$ \begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \\ Inconsistent \\ & \\ & \\ unknown \\ \\ \\ \textbf{G}(trig_1 \to \\ & \\ & \\ ((inv_1 \land del_1) \textbf{U} \\ & \\ (rel_1 V \textit{true}))) = \\ \end{array} $	rea₁ • inv₂ other cases
rel ₁ del ₁ true false inv ₁ ((inv ₁ \land del ₁) \cup inconsistent \neg ((trig ₂ \lor inv ₁ \lor	rel ₁ false true rea ₁ any	$ \begin{array}{c c} \textbf{G}(trig_1 \to & \\ (rel_1 V rea_1)) & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \\ Inconsistent \\ & \\ & \\ unknown \\ \\ \\ \textbf{G}(trig_1 \to \\ & \\ & \\ ((inv_1 \land del_1) \textbf{U} \\ & \\ (rel_1 V \textit{true}))) = \\ \end{array} $	rea₁ • inv₂ other cases
rel ₁ del ₁ true false inv ₁ ((inv ₁ \land del ₁) \cup inconsistent \neg ((trig ₂ \lor inv ₁ \lor	rel ₁ false true rea ₁ any 31 any any true true any	$ \begin{array}{c c} \textbf{G}(trig_1 \to & & \\ (rel_1 \lor rea_1)) & & inconsistent \\ & & inconsistent \\ & & unknown \\ \hline \\ \textbf{G}(trig_1 \to & \\ ((inv_1 \land del_1) \ \textbf{U} \\ (rel_1 \lor \textit{true}))) = \\ \hline \textbf{TRUE} & & unknown \\ \end{array} $	rea ₁ • inv ₂ other cases all cases
	rel ₁ false true rea ₁ any 31 any any true true any	$ \begin{array}{c c} \textbf{G}(trig_1 \to & & \\ (rel_1 \lor rea_1)) & & inconsistent \\ & & inconsistent \\ & & unknown \\ \hline \\ \textbf{G}(trig_1 \to & \\ ((inv_1 \land del_1) \ \textbf{U} \\ (rel_1 \lor \textit{true}))) = \\ \hline \textbf{TRUE} & & unknown \\ \end{array} $	rea ₁ • inv ₂ other cases all cases
	rel ₁ false true rea ₁ any 31 any any true true any 32	$ \begin{array}{c c} \textbf{G}(trig_1 \rightarrow & & \\ (rel_1 V rea_1)) & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & \\$	rea ₁ • inv ₂ other cases all cases inv ₁ • inv ₂
	rel ₁ false true rea ₁ any 31 any any true true any 32	$ \begin{array}{c c} \textbf{G}(trig_1 \rightarrow & & \\ (rel_1 V rea_1)) & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & \\$	rea ₁ • inv ₂ other cases all cases inv ₁ • inv ₂
, , , , , , , , , , , , , , , , , , ,	rel ₁ false true rea ₁ any 31 any any true true any 32	$ \begin{array}{c c} \textbf{G}(trig_1 \to & & \\ & (rel_1 V rea_1)) & & \\ \hline & & inconsistent \\ & inconsistent \\ & unknown \\ \hline \\ \textbf{G}(trig_1 \to & \\ & ((inv_1 \land del_1) \textbf{U} \\ & (rel_1 V \textit{true}))) = \\ \hline \textbf{TRUE} & \\ \hline \\ \textbf{G}(trig_1 \to & \\ & ((inv_1 \land del_1) \textbf{U} & inconsistent \\ \hline \end{array} $	rea ₁ • inv ₂ other cases all cases inv ₁ • inv ₂ ¬((trig ₂ V inv ₁ V
	rel ₁ false true rea ₁ any 31 any any true true any 32	$ \begin{array}{c c} \textbf{G}(trig_1 \to & & \\ & (rel_1 V rea_1)) & & \\ \hline & & inconsistent \\ & inconsistent \\ & unknown \\ \hline \\ \textbf{G}(trig_1 \to & \\ & ((inv_1 \land del_1) \textbf{U} \\ & (rel_1 V \textit{true}))) = \\ \hline \textbf{TRUE} & \\ \hline \\ \textbf{G}(trig_1 \to & \\ & ((inv_1 \land del_1) \textbf{U} & inconsistent \\ \hline \end{array} $	rea ₁ • inv ₂ other cases all cases inv ₁ • inv ₂ ¬((trig ₂ V inv ₁ V

								rel ₁) ¬((trig ₂ V inv ₁ V
								$ \text{inv}_2 \rightarrow \text{inv}_1 \vee \text{inv}_2 \rightarrow \text{rel}_2 \vee \text{rin}_2 \wedge \text{rea}_2)$
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	trig ₂ • inv ₁ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow rel ₁)
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
							unknown	other cases
33	rel_1	false	true	false	any	G(trig ₁ \rightarrow ((inv ₁ \land <i>false</i>) U rel ₁)) = FALSE	inconsistent	all cases
34							inconsistent	inv ₁ • inv ₂ ¬((trig ₂ V inv ₁ V inv ₂) → rel ₁) ¬((trig ₂ V inv ₁ V inv ₂) → (rel ₂ V fin ₂ \wedge rea ₂))
	rel_1	true	true	false	inv ₁	$\mathbf{G}(trig_1 \to \\ (inv_1 \mathbf{U} rel_1))$	inconsistent	trig ₁ • inv ₂ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
						(]	inconsistent	trig ₂ • inv ₁ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow rel ₁)
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
-						20.	unknown	other cases
35	rel_1	any	true	any	false	$G(trig_1 \rightarrow ((false \land del_1) U (rel_1 \lor rea_1))) = FALSE$	inconsistent	all cases
36							inconsistent	trig ₁ • inv ₂ ¬(rel ₂ ∨ fin ₂ ∧rea ₂)
	rel_1	del₁	true	rea₁	true	$G(trig_1 \rightarrow (del_1 U (rel_1 V rea_1)))$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
							inconsistent	rea ₁ \rightarrow fin ₂ rea ₁ • inv ₂ ¬(fin ₂ \rightarrow

								(rel ₂ V rea ₂))
							unknown	other cases
37							inconsistent	trig ₁ • inv ₂ ¬(rel ₂ ∨ fin ₂ ∧rea ₂)
	rel₁	true	true	rea₁	true	$G(trig_1 \rightarrow$	inconsistent	$ rel_1 \rightarrow fin_2 rel_1 \bullet inv_2 \neg(fin_2 \rightarrow (rel_2 \lor rea_2)) $
				_		F (rel ₁ V rea ₁))	inconsistent	$rea_{1} \rightarrow fin_{2}$ $rea_{1} \bullet inv_{2}$ $\neg (fin_{2} \rightarrow (rel_{2} \lor rea_{2}))$
							unknown	other cases
38						$G(trig_1 \rightarrow$	inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	rel_1	false	true	rea₁	true	rel ₁ V rea ₁)	inconsistent	rel₁ • inv₂
						Tell v really	inconsistent	rea₁ • inv₂
							unknown	other cases
39	rel_1	any	true	true	true	$G(trig_1 \rightarrow (del_1 U rel_1 V true))) = TRUE$	unknown	all cases
40							inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	rel₁	del ₁	true	false	true	$G(trig_1 \rightarrow (del_1 U rel_1)$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
							unknown	other cases
41							inconsistent	trig ₁ • inv ₂ ¬(rel ₂ ∨ fin ₂ ∧rea ₂)
	rel ₁	true	true	false	true	$G(trig_1 \rightarrow F rel_1)$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
							unknown	other cases
42	rel₁	false	true	false	true	$G(trig_1 \rightarrow rel_1)$	inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	1611	Juise	true	juise	true	G(trig1 / lei1)	inconsistent	rel₁ • inv₂
							unknown	other cases
48	rel.	true	fin	rea.	inv.	$\mathbf{G}(\operatorname{trig}_{1} \to ((\operatorname{inv}_{1} \land \neg \operatorname{fin}_{1} \mathbf{W} \operatorname{rel}_{1}) \lor (\operatorname{inv}_{1} \mathbf{W} \operatorname{fin}_{1} \land \neg \operatorname{fin}_{2} \mathbf{W} \operatorname{fin}_{3} \land \neg \operatorname{fin}_{4} \mathbf{W} \operatorname{fin}_{5} \land \neg \operatorname{fin}_{5} \operatorname{fin}_{$	inconsistent	inv ₁ • inv ₂ ¬((trig ₂ V inv ₁ V inv ₂) → (rel ₁ V fin ₁ \land rea ₁)) ¬((trig ₂ V inv ₁ V inv ₂) → (rel ₂ V fin ₂ \land rea ₂))
	rel₁	true <u>fir</u>	true <u>fin</u> r	rea₁	inv ₁	(inv₁ U (fin₁ Λ (inv₁ U (rel₁Vrea₁))))))	inconsistent	trig ₁ • inv ₂ $\neg ((\text{trig}_2 \ V \ \text{inv}_1 \ V \ \text{inv}_2) \rightarrow (\text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2))$
							inconsistent	$trig_2 \bullet inv_1$ $\neg ((trig_2 \lor inv_1 \lor inv_2) \rightarrow$

		1	1	T	1	T	T	 _
								(rel₁ V fin₁∧rea₁))
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$fin_1 \rightarrow fin_2$
							inconsistent	fin ₁ • inv ₂
								¬((rel₁ V fin₁V
								$fin_2) \rightarrow$
								$(rel_2 \lor fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel ₁ • inv ₂
								$rea_1 \rightarrow fin_2$
							inconsistant	
							inconsistent	rea ₁ • inv ₂
								¬((rel ₁ V rea ₁ V
								$fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								inv₁ → inv₂
								fin₁ → fin₂
							consistent	$del_1 \rightarrow del_2$
								rea₁ → rea ₂
								$rel_1 \rightarrow rel_2$
							unknown	other cases
49						$\mathbf{G}(trig_1 \to$		
	<u>rel₁</u>	true	<u>fin₁</u>	rea₁	true	((¬fin₁ W rel₁) ∨	inconsistent	trig₁ • inv₂
	<u>iCi</u> 1	trac	<u> </u>	rca ₁	liuc	F (fin₁ ∧	inconsistent	\neg (rel ₂ V fin ₂ \land rea ₂)
						F (rel₁∨rea₁))))		
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$fin_1 \rightarrow fin_2$
							inconsistent	
								¬((rel₁ V fin₁V
								$fin_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
							inconsistent	rea ₁ • inv ₂
								\neg ((rel ₁ V rea ₁ V
								$fin_2) \rightarrow$
								$(rel_2 \lor fin_2 \land rea_2))$
							unknown	other cases
50							GIRIOWII	trig ₁ • inv ₂
50	ral	truo	fin	roa	false	$G(trig_1 \rightarrow (rel_1))$	inconsistent	$\neg((\operatorname{trig}_2 \vee \operatorname{inv}_2) \rightarrow$
	<u>rel₁</u>	true	<u>fin₁</u>	rea₁	juise	V (fin ₁ \wedge rea ₁)))	inconsistent	
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
							1.	$fin_1 \rightarrow fin_2$
							inconsistent	fin ₁ • inv ₂
								\neg ((rel ₁ V fin ₁ V
								$fin_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
								$rel_1 \rightarrow fin_2$
							inconsistent	rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
		İ.	<u> </u>	<u> </u>	l	1	1	

								rea ₁ • inv ₂
								¬((rel ₁ V rea ₁ V
								$fin_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
							unknown	other cases
51								inv₁ • inv₂
								¬((trig ₂ V inv ₁ V
								$inv_2) \rightarrow$
							inconsistent	(rel ₁ V fin ₁))
								¬((trig ₂ V inv ₁ V
								$inv_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								trig₁ • inv₂
							inconsistent	\neg ((trig ₂ V inv ₁ V
							IIIconsistent	$inv_2) \rightarrow$
						$\mathbf{G}(\operatorname{trig}_1 \to ((\operatorname{inv}_1)))$	_	$(rel_2 \ V \ fin_2 \land rea_2))$
	$\underline{rel_1}$	true	<u>fin₁</u>	true	inv_1	$\land \neg fin_1 \mathbf{W}rel_1) \lor$		trig₂ • inv₁
						(inv ₁ U fin ₁)))	inconsistent	¬((trig ₂ V inv ₁ V
								$inv_2) \rightarrow$
								(rel ₁ V fin ₁))
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$fin_1 \rightarrow fin_2$
							inconsistent	fin₁ • inv₂
								¬((rel ₁ V fin ₁ V
								$fin_2) \rightarrow (rol \) fin Aroa))$
							unknown	$(rel_2 \ V \ fin_2 \land rea_2))$ other cases
52							UIIKIIOWII	trig ₁ • inv ₂
32							inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$
								$rel_1 \rightarrow fin_2$
								$rel_1 \bullet inv_2$
						$G(trig_1 \rightarrow (\neg fin_1))$		$fin_1 \rightarrow fin_2$
	$\underline{rel_1}$	true	<u>fin₁</u>	true	true	W rel₁) ∨ F fin₁))	inconsistent	$fin_1 \bullet inv_2$
								¬((rel₁ V fin₁V
								$fin_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
							unknown	other cases
53								trig₁ • inv₂
							inconsistent	$\neg((\operatorname{trig}_2 \vee \operatorname{inv}_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
	_		٠			$G(trig_1 \rightarrow$		rel₁ • inv₂
	<u>rel₁</u>	true	<u>fin₁</u>	true	false	$(rel_1 \lor fin_1))$		$fin_1 \rightarrow fin_2$
							inconsistent	fin₁ • inv₂
								¬((rel ₁ V fin ₁ V
								$fin_2) \rightarrow$
							unknasssa	$(rel_2 \ V \ fin_2 \land rea_2))$
54							unknown	other cases
54	rol.	truo	fin	false	inv ₁	$G(trig_1 \rightarrow (inv_1))$	inconsistent	inv ₁ • inv ₂ ¬((trig ₂ V inv ₁ V
	<u>rel₁</u>	true	<u>fin₁</u>	juise	IIIV ₁	$\land \neg fin_1 \mathbf{W}rel_1))$	inconsistent	$\neg ((trig_2 \lor triv_1 \lor inv_2) \rightarrow rel_1)$
								111V21 71E111

							inconsistent	$\neg((\text{trig}_2 \ V \ \text{inv}_1 \ V \ \text{inv}_2) \rightarrow \\ (\text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2))$ $\text{trig}_1 \bullet \text{inv}_2 \\ \neg((\text{trig}_2 \ V \ \text{inv}_1 \ V \ \text{inv}_2) \rightarrow \\ (\text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2))$ $\text{trig}_2 \bullet \text{inv}_1 \\ \neg((\text{trig}_2 \ V \ \text{inv}_1 \ V \ \text{inv}_2) \rightarrow \text{rel}_1)$ $\text{rel}_1 \rightarrow \text{fin}_2$ $\text{rel}_1 \bullet \text{inv}_2$
							inconsistent	$\begin{array}{l} \operatorname{fin}_{1} \to \operatorname{fin}_{2} \\ \operatorname{fin}_{1} \bullet \operatorname{inv}_{2} \\ \neg ((\operatorname{rel}_{1} \vee \operatorname{fin}_{1} \vee \operatorname{fin}_{2})) \\ \to \\ (\operatorname{rel}_{2} \vee \operatorname{fin}_{2} \wedge \operatorname{rea}_{2})) \\ \operatorname{other cases} \end{array}$
55							unknown	trig ₁ • inv ₂
							inconsistent	$\neg((\text{trig}_2 \ V \ \text{inv}_2) \rightarrow \\ (\text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2))$
	<u>rel₁</u>	true	<u>fin₁</u>	false	false	$G(trig_1 \rightarrow rel_1)$	inconsistent	rel ₁ • inv ₂ $\neg ((\text{trig}_2 \vee \text{rel}_1 \vee \text{inv}_2) \rightarrow \text{(rel}_2 \vee \text{fin}_2 \wedge \text{rea}_2))$
							unknown	other cases
56							inconsistent	trig ₁ • inv ₂ ¬(rel ₂ V fin ₂ ∧rea ₂)
	<u>rel₁</u>	true	<u>fin</u> 1	false	true	$\mathbf{G}(trig_1 \to (\neg fin_1 \mathbf{W} rel_1))$	inconsistent	$rel_{1} \rightarrow fin_{2}$ $rel_{1} \bullet inv_{2}$ $fin_{1} \rightarrow fin_{2}$ $fin_{1} \bullet inv_{2}$ $\neg ((rel_{1} \lor fin_{1} \lor fin_{2}))$ $rel_{2} \lor fin_{2} \land rea_{2}))$ $other cases$
57							unknown	inv ₁ • inv ₂
31						$G(trig_1 \rightarrow ((inv_1$	inconsistent	$\neg((\text{trig}_2 \ V \ \text{inv}_1 \ V \\ \text{inv}_2) \rightarrow \\ (\text{rel}_1 \ V \ \text{fin}_1 \land \text{rea}_1)) \\ \neg((\text{trig}_2 \ V \ \text{inv}_1 \ V \\ \text{inv}_2) \rightarrow \\ (\text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2))$
	<u>rel₁</u>	false	<u>fin₁</u>	rea₁	inv_1	$ \Lambda \neg fin_1 \mathbf{W}rel_1) \lor (inv_1 \mathbf{U}(fin_1 \land (rel_1 \lor rea_1))))) $	inconsistent	trig ₁ • inv ₂ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	trig ₂ • inv ₁ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₁ V fin ₁ \land rea ₁))
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$

								$fin_1 \rightarrow fin_2$
								fin ₁ • inv ₂
								¬((rel ₁ V fin ₁ V
								$fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
							inconsistent	rea₁ • inv₂
								\neg ((rel ₁ V rea ₁ V fin ₂) \rightarrow
								$(rel_2 \ V \ fin_2 \land rea_2))$
							unknown	other cases
58							anknown	trig ₁ • inv ₂
							inconsistent	\neg (rel ₂ V fin ₂ \land rea ₂)
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
							in a su siste unt	$fin_1 \rightarrow fin_2$
							inconsistent	$fin_1 \bullet inv_2$ $\neg ((rel_1 \lor fin_1 \lor$
						$G(trig_1 \rightarrow (\neg fin_1))$		$fin_2) \rightarrow$
	<u>rel₁</u>	false	<u>fin</u> ₁	rea₁	true	W rel ₁) V		$(rel_2 \ V \ fin_2 \land rea_2))$
	<u>101</u>	Juise	<u></u>	rear	ti di C	F(fin₁ ∧		$rel_1 \rightarrow fin_2$
						(rel₁∨rea₁)))		$rel_1 \bullet inv_2$
								$rea_1 \rightarrow fin_2$
							inconsistent	rea₁ • inv₂
								¬((rel₁ V rea₁V
								$fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
							unknown	other cases
59								trig ₁ • inv ₂
							inconsistent	$\neg((trig_2 \ V \ inv_2) \rightarrow \\ (val_2 \ V \ fin_2 \ A \ val_2))$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$
								$fin_1 \rightarrow fin_2$
							inconsistent	$fin_1 \bullet inv_2$
							meonsistem	¬((rel₁ V fin₁V
	_		_			$G(trig_1 \rightarrow (rel_1 \lor$		$fin_2) \rightarrow$
	$\underline{rel_1}$	false	<u>fin₁</u>	rea₁	false	$(fin_1 \land rea_1)))$		$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
							inconsistent	rea₁ • inv₂
								¬((rel ₁ V rea ₁ V
								$fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
	l	£. 1.	r.			TOUE	unknown	other cases
60	<u>rel₁</u>	false	<u>fin₁</u>	true	any	TRUE	unknown	all cases
61						$\mathbf{G}(\operatorname{trig}_1 \to ((\operatorname{inv}_1 \times \operatorname{fin}_1 \mathbf{W} \operatorname{rel}_1)) \vee$		inv₁ • inv₂ -(/trig₂ \/ inv₂ \/
	<u>rel₁</u>	false	<u>fin₁</u>	false	inv_1	$(\text{inv}_1 \mathbf{U}(\text{fin}_1 \land $	inconsistent	$\neg((\operatorname{trig}_2 \vee \operatorname{inv}_1 \vee \operatorname{inv}_2) \rightarrow \operatorname{rel}_1)$
						rel ₁))))		111V2j /1C11j
			<u> </u>	<u> </u>		1011////		

		,				1	T	
								$\neg((\operatorname{trig}_2 \vee \operatorname{inv}_1 \vee \\ \operatorname{inv}_2) \rightarrow$
								$(rel_2 \lor fin_2 \land rea_2))$
								trig₁ • inv₂
							inconsistent	¬((trig ₂ V inv ₁ V
								$inv_2) \rightarrow$
								(rel₂ V fin₂Λrea₂))
							inconsistent	trig ₂ • inv ₁ ¬((trig ₂ V inv ₁ V
							inconsistent	inv_2) $\rightarrow rel_1$)
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$fin_1 \rightarrow fin_2$
							inconsistent	fin ₁ • inv ₂
								¬((rel ₁ V fin ₁ V
								$fin_2) \rightarrow$
							unknown	$(rel_2 \ V \ fin_2 \land rea_2))$ other cases
62						$G(trig_1 \rightarrow$	ulikilowii	other cases
02	_					(¬fin ₁ W rel ₁) ∨		trig₁ • inv₂
	<u>rel₁</u>	<u>del₁</u>	<u>fin₁</u>	rea₁	true	$(\mathbf{F}(fin_1 \wedge (del_1)))$	inconsistent	¬(rel₂ V fin₂∧rea₂)
						U (rel ₁ Vrea ₁))))))		
								$rel_1 \rightarrow fin_2$
								rel ₁ • inv ₂
								$fin_1 \rightarrow fin_2$
							inconsistent	fin₁ • inv₂
								$\neg((rel_1 \lor fin_1 \lor fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
							inconsistent	rea₁ • inv₂
								¬((rel ₁ V rea ₁ V
								$fin_2) \rightarrow$
							lea acces	(rel₂ V fin₂Λrea₂))
63						$G(trig_1 \rightarrow$	unknown	other cases trig ₁ • inv ₂
03	<u>rel₁</u>	<u>del₁</u>	<u>fin₁</u>	rea₁	false	(rel ₁ V	inconsistent	$\neg((\operatorname{trig}_2 \vee \operatorname{inv}_2) \rightarrow$
	101	<u>aci</u> 1	<u>ī</u>		Jaise	$fin_1 \land rea_1)$	combisterit	$(rel_2 \lor fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$fin_1 \rightarrow fin_2$
							inconsistent	fin ₁ • inv ₂
								¬((rel₁ V fin₁V
								$fin_2) \rightarrow$
								$(rel_2 \lor fin_2 \land rea_2))$ $rel_1 \rightarrow fin_2$
								$rel_1 \rightarrow lin_2$ $rel_1 \bullet inv_2$
								$rea_1 \rightarrow fin_2$
							inconsistent	rea ₁ • inv ₂
								¬((rel₁ V rea₁V
								$fin_2) \rightarrow$

								(rel₂ V fin₂∧rea₂))
							unknown	other cases
64	<u>rel₁</u>	<u>del₁</u>	<u>fin₁</u>	true	any	TRUE	unknown	all cases
65	rel₁	del ₁	fin ₁	false	inv ₁	$G(trig_1 \rightarrow (inv_1 \land \neg fin_1 \mathbf{W}rel_1))$	inconsistent	$inv_1 $
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	trig ₂ • inv ₁ \neg ((trig ₂ V inv ₁ V inv ₂) \rightarrow rel ₁)
							inconsistent	$ rel_1 \rightarrow fin_2 $ $ rel_1 \bullet inv_2 $ $ fin_1 \rightarrow fin_2 $ $ fin_1 \bullet inv_2 $ $ \neg ((rel_1 \lor fin_1 \lor fin_2) $ $ \rightarrow $ $ (rel_2 \lor fin_2 \land rea_2)) $
							unknown	other cases
66	<u>rel₁</u>	del₁	<u>fin₁</u>	false	false	$G(trig_1 \rightarrow rel_1)$	inconsistent	trig ₁ • inv ₂ $\neg((\text{trig}_2 \lor \text{inv}_2) \rightarrow$ $(\text{rel}_2 \lor \text{fin}_2 \land \text{rea}_2))$
							inconsistent	rel ₁ • inv ₂ \neg ((trig ₂ V rel ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							unknown	other cases
67	<u>rel₁</u>	del₁	<u>fin₁</u>	false	true	$G(trig_1 \rightarrow (\neg fin_1 \mathbf{W} rel_1))$	inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
							inconsistent	$rel_{1} \rightarrow fin_{2}$ $rel_{1} \bullet inv_{2}$ $fin_{1} \rightarrow fin_{2}$ $fin_{1} \bullet inv_{2}$ $\neg ((rel_{1} \lor fin_{1} \lor fin_{2}))$ $\rightarrow (rel_{2} \lor fin_{2} \land rea_{2}))$
							unknown	other cases