Lecture 2. Neural Networks: What can a network represent

R11-785 Introduction to Deep Learning

TAVE Research DL001 Changdae Oh

2021. 01. 10

- 1. Definition of Neural Networks & Perceptron
- 2. MLPs as universal Boolean functions
- 3. MLPs as universal Classifiers
- 4. MLPs as universal approximators
- 5. Summary

- 1. Definition of Neural Networks & Perceptron
- 2. MLPs as universal Boolean functions
- 3. MLPs as universal Classifiers
- 4. MLPs as universal approximators
- 5. Summary

Definition of Neural Networks & Perceptron

Neural Networks

- Functions that take an input and produce an output
- Composed of networks of computational models of neurons called perceptron

Perceptron

- So called, "Threshold gate"
- Fires if the weighted sum of inputs exceeds a threshold

$$z = \sum_{i} w_{i} x_{i} - T$$

$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{else} \end{cases}$$

$$x_1$$
 x_2
 x_3
 w_3
 w_3
 w_3
 w_3

$$z = \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i} - T$$

$$y = \frac{1}{1 + exp(-z)}$$

- 1) Calculate Affine combination of inputs
- 2) Transmitted to activation function

Can use smoothed version of threshold

Sigmoid / tan h (Soft perceptron)

Or other continuous activation function

- ReLU

Definition of Neural Networks & Perceptron

Multi-Layer Perceptron, MLP

A network of perceptrons those "feed" others

- Inputs are real or Boolean stimuli
- Outputs are real or Boolean values
- It can model kinds of input/output relationships

Deep neural network

Defining "depth" in Neural Nets

"depth" is **the length of the longest path** from a source to a sink

- A "source" node is a node that has only outgoing edges
- A "sink" node is a node that has only incoming edges

Layer is the set of neurons that all have the same depth from the inputs

- 1. Definition of Neural Networks & Perceptron
- 2. MLPs as universal Boolean functions
- 3. MLPs as universal Classifiers
- 4. MLPs as universal approximators
- 5. Summary

- A perceptron can model any simple binary Boolean gate
- Furthermore, it can also model more complex functions such as universal AND/OR gate, generalized majority gate
- However, one perceptron alone cannot calculate the XOR, and it can be done by adding 1 hidden layers and increasing nodes.

MLPs can compute any Boolean function

- since they can emulate individual gates

How many layers & neurons are needed for a Boolean MLP?

MLPs are universal Boolean functions!

- any function over any number of inputs and any number of outputs

A Boolean function is just a truth table

- Any "true table" can be expressed in the following manner. (using only one hidden layer)

How many neurons are needed?

Deriving Reduced DNF using "karnaugh map"

- 7(full model) -> 3(reduced model)
- Reduction of the DNF reduces the size of the one-hidden-layer network

Largest irreducible DNF (the worst situation to compute complexity)

1-Hidden-layer network

MLP with XOR

8 neurons

9 neurons

32 neurons

15 neurons

N:# of inputs

 2^{N-1} neurons

Exponential in N

3(N-1) neurons

Linear in N

Summary

MLPs are universal Boolean functions!

- But can represent a given function only if
 - it is sufficiently wide
 - it is sufficiently deep
 - depth can be traded off for exponential growth of the width of the network
- Optimal width and depth depend on the number of variables and the complexity of the Boolean function
- To represent the same function,
 the deeper a network is, the fewer neurons are required

- Definition of Neural Networks & Perceptron
- 2. MLPs as universal Boolean functions
- 3. MLPs as universal Classifiers
- 4. MLPs as universal approximators
- 5. Summary

MLPs as universal Classifiers

The MLP as a classifier

- One single perceptron can be a linear classifier
- MLP is a classifier that finds a complex "decision boundary" over a space of reals
- A one-hidden-layer MLP can model any classification boundary

MLPs are universal classifiers!

MLPs as universal Classifiers

An infinite number of neurons are required to represent the above grid-shaped decision boundaries in a single hidden layer...

About more complex pattern

Shallow networks vs Deep networks

- Two hidden layers: 608 hidden neurons
 - 64 in layer 1
 - 544 in layer 2

- XOR network (12 hidden layers): 253 neurons
 - 190 neurons with 2-gate XOR

Efficient!!

- Definition of Neural Networks & Perceptron
- 2. MLPs as universal Boolean functions
- 3. MLPs as universal Classifiers
- 4. MLPs as universal approximators
- 5. Summary

MLPs as universal approximators

MLP as a continuous-valued regression

- A simple 3-unit MLP can generate a "square pulse" over an input
- A MLP with many units can model an arbitrary functions in any number of dimensions

MLPs are universal approximators!

MLPs as universal approximators

Sufficiency of architecture

A neural network can represent any function if it has sufficient capacity

Capacity in NN

- How many patterns can it remember
- VC dimension
- Largest number of disconnected convex regions if can represent

To be more expressive

Continuous activation functions result in graded output at the layer

Linear unit (ReLU family)

Summary

MLPs are universal Boolean function

MLPs are universal classifier

MLPs are universal function approximator

A single-layer MLP can approximate anything to arbitrary precision – but could be exponentially or even infinitely wide in tis inputs size

Deeper MLPs can achieve the same precision with far fewer neuron

- Deeper networks are more expressive
- More graded activation functions result in more expressive networks