Нгуен Тхе Лонг

РАЗРАБОТКА МОДЕЛЕЙ И КОМПЛЕКСОВ ПРОГРАММ В ЗАДАЧАХ АНТРОПОМЕТРИИ НА ОСНОВЕ АЛГОРИТМОВ КОМПЬЮТЕРНОГО ЗРЕНИЯ

Специальность 05.13.18— «Математическое моделирование, численные методы и комплексы программ»

Автореферат

диссертации на соискание учёной степени кандидата технических наук

Работа выполнена в Иркутском Национальном Исследовательском Техническом Университете

Научный руководитель: доктор физико-математических наук, доцент

Сидоров Денис Николаевич

Официальные оппоненты: Фамилия Имя Отчество,

доктор физико-математических наук, профессор, Не очень длинное название для места работы,

старший научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук,

Основное место работы с длинным длинным длин-

ным длинным названием,

старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное образова-

тельное учреждение высшего профессионального

образования с длинным длинным длинным длин-

ным названием

Защита состоится DD mmmmmmm YYYY г. в XX часов на заседании диссертационного совета NN на базе Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Автореферат разослан DD mmmmmmm YYYY года.

Ученый секретарь диссертационного совета

NN, д-р физ.-мат. наук

Фамилия Имя Отчество

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Автоматизация антропометрических измерений – важная область приложения методов компьютерного зрения в математическом моделировании¹. Задача антропометрии состоит в обнаружении человеческого тела на изображении, распознавании его частей (головы, рук, ног и т.п.), описании антропометических признаков (размеров частей тела) с целью создания соответствующей 3D-модели². В здравоохранении (измерение размеров тела, фитнес-тестирование), проектировании и пошиве одежды, безопасности, при разработке систем мониторинга движения (Х. Yan 2014), локализация распознавание деятельности человека на изображении (М. Jainy 2015), Konstantinos (A. Konstantinos 2016) требуется решение задач с заданной точностью и скоростью. Этим проблемам посвящен ряд современных исследований. Например, в работе (YuChen 2011) предложена модель, позволяющая обнаруживать человека на статических изображениях. Barron и Kakadiaris (С. Barron 2000) и Taylors (С.J. Taylor 2000) создали алгоритмы восстановления 3D-модели человеческого тела. В работах (A.S. Micilotta 2005) рассмотрена задача распознавания основных частей тела. На практике используются различные способы регистрации изображений как правило допускающие искажения и шум. В настоящее время имеется большой арсенал методов восстановления искаженных изображений 3,4,5,6,7.

Дополнительным стимулом к приложению методов компьютерного зрения в антропометрии служит развитие мобильных вычислительных устройств (смартфонов). Большой объем цифрового контента стимулирует развитие интеллектуального анализа данных, анализа и обработки изображений и видео

 $^{^{1}}$ Шапиро, Л. Компьютерное зрение = Computer Vision : [учеб. пособие] / Дж. Стокман, ред.: С. М. Соколов, пер.: А. А. Богуславский, Л. Шапиро .— 2-е изд. (эл.) .— М. : БИНОМ. Лаборатория знаний., 2013 .— 762 с.

 $^{^2}$ Грудинин, С.Н. Предметная параметризация виртуальных манекенов [Текст] / С.Н. Грудинин, В.Д. Фроловский // Автоматика и программная инженерия.- 2014. – № 1 (7). – С. 53–56.

 $^{^3}$ Ярославский, Л.П. Введение в цифровую обработку изображений [Текст] / Л.П. Ярославский //– М.: Сов. радио, 1979. – 312 с.

⁴Белявцев, В.Г., Воскобойников, Ю.Е. Алгоритмы фильтрации изображений с адаптацией размеров апертуры [Текст] / В.Г. Белявцев, Ю.Е. Воскобойников // Автометрия. -1998. -№ 3. - C. 18 - 25.

 $^{^5}$ Сизиков, В.С. Обратные прикладные задачи и MatLab [Текст] / В.С. Сизиков. - Санкт-Петербург : СПб: Лань, 2011. - С.256 с.

⁶Kokaram, A.C. Motion Picture Restoration: Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video [Text] / A.C. Kokaram //Springer Science & Business Media, 2013. -334 p.

⁷Sidorov, D. Integral Dynamical Models: Singularities, Signals & Control [Text] / D. Sidorov. - Singapore: World Scientific, 2015.

при ограниченных, по сравнению с компьютерами общего назначения, вычислительными ресурсами.

Таким образом, разработка новых эффективных методов бесконтактной экспресс-антропометрии является актуальной проблемой и представляет интерес для решения широкого спектра задач, возникающих в медицине, биометрии, фитнесе и моделировании одежды. Наконец, в последнее время приобретает большую популярность интернет-торговля и в этой области экспресс-антропометрия имеет большие перспективы как в силу отсутствия унифицированной системы размеров, так и в силу необходимости классификации типов телосложения. Результаты данной работы дают алгоритмическое и программное решение некоторых задач антропометрии.

А именно, диссертация посвящена актуальным проблемам развития средств математического моделирования, численных методов, алгоритмов и программного обеспечения при обработке изображений и видеопоследовательностей в задачах антропометрии. Разработанные приложения обеспечивает уровень точности получения измерений параметров человеческого тела, позволяющих, в частности, строить 3D-модели тела. Разработанные в диссертации программные средства решают проблемы, связанные с наличием шумов в видеопоследовательностях, режимом функционирования, близком к реальному времени, а также в определенной степени снимают ограничения вычислительных ресурсов мобильных устройств.

Целью исследования является совершенствование математических моделей, численных методов, алгоритмов компьютерного зрения, направленное на реализацию комплекса программ антропометрии для мобильных вычислительных платформ. Для достижения указанной цели решены следующие **основные задачи**:

- 1) Разработка алгоритмов и методов компьютерного зрения для извлечения антропометрических признаков из изображений и видеопоследовательностей в режиме реального времени при наличии шума;
- 2) Объединение алгоритмов и методов компьютерного зрения для достижения высокой эффективности и повышения точности извлечения антропометрических признаков;
- 3) Применение методов машинного обучения для классификации данных антропометрических признаков;

- 4) Разработка способа построения 3D-моделей телосложения людей на основе полученной антропометрии. Способ требует правильное описание структуры и формы человека с учетом полученных измерений;
- 5) Разработка антропометических приложений для смартфонов с операционной системой Андроид для использования в моделировании одежды и в фитнес-тестировании. Оценка качества и эффективности функционирования антропометрической системы в среде Андроид.

Результаты проведенных экспериментов подтвердили эффективность алгоритмов компьютерного зрения в антропометрии. Сравнение с результатами близких исследований подтвердило эффективность предложенных математических моделей и комплекса программ.

Внедрение работы. Результаты исследования применены на практике при моделировании форменного обмундирования, получен акт о внедрении.

Предмет исследования - математическая модель, задачи, методики, алгоритмы и программы применительно к задаче антропометрии. Предмет исследования определен предметной областью №7 паспорта специальности 05.13.18 «Разработка новых математических методов и алгоритмов интерпретации натурного эксперимента на основе его математической модели», а так же перечнем задач решаемых в диссертации.

Методы исследования. Методы теоретических исследований: алгоритмы и методы компьютерного зрения в антропометрии; методы анализа данных и построения антропометрических моделей. Методы прикладных исследований: проектирование алгоритмов для задачи извлечения признаков и классификации антропометрических признаков; разработка 3D моделей для моделирования формы человеческого тела; разработка мобильных приложений; тестирование программ и хранение результатов, оценка и сравнение результатов.

Научная новизна результатов диссертационной работы заключается в следующем:

1) Предложены методы математического моделирования различных типов телосложения на основе интеллектуального анализа антропометрических признаков, полученных с использованием алгоритмов компьютерного зрения;

- 2) Адаптированы численные методы машинного обучения на основе случайного леса для классификации антропометрических измерений;
- 3) Разработаны методы визуализации моделей человеческого тела на основе антропометрических признаков, полученных при помощи авторских методов компьютерного зрения;
- 4) Разработана бесконтактная система антропометрии для смартфона на операционной системе Андроид.

Апробация работы. Работа выполнялась на кафедре вычислительной техники ИРНИТУ. Результаты диссертационной работы обсуждались и докладывались на следующих симпозиумах, семинарах и конференциях: Всероссийские молодежные научно-практические конференции «Винеровские чтения» (Иркутск, 2014, 2015, ИРНИТУ); XIX Байкальская всероссийская конференция «Информационные и математические технологии в науке и управлении» (Улан-Удэ, 2014); The 4th, 5th International Conference on Analysis of Images, Social Networks, and Texts (Екатеринбург, 2015, 2016); V Научнопрактическая Internet-конференция «Междисциплинарные исследования в области математического моделирования и информатики» (Тольятти, 2015). Работа выполнена при поддержке Министерства образования и подготовки кадров Социалистической Республики Вьетнам и программы развития ФГБУ ВО ИРНИТУ.

Личный вклад автора. Основные результаты выносимые на защиту получены автором лично. Конфликта интересов с соавторами нет.

Публикации. По теме диссертации опубликовано 11 научных работ, 4 из которых – в рецензируемых научных журналах и изданиях, рекомендованных ВАК РФ, 2 свидетельства регистрации программы на ЭВМ, одна статья опубликована в журнале, индексируемым Web of Science и одна статья опубликована в журнале, индексируемым Scopus.

Структура и объем работы. Диссертация содержит введение, четыре главы, заключение и список использованной литературы, содержащий 172 наименований. Общий объем диссертации составляет 130 страниц машинописного текста, иллюстрированного 58 рисунками и 5 таблицами.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность исследований, на основании чего сформулированы цель и задачи работы; определены объект, предмет, методы и средства исследования; раскрыта научная новизна и практическая значимость полученных результатов; изложены основные научные положения, выносимые на защиту; приведены структура и краткий обзор содержания работы.

В первой главе анализируются алгоритмический подход и методы компьютерного зрения в извлечении антропометрических признаков^{8,9} со статических изображений и видеопоследовательностей. Излагаются алгоритмы построения опорных точек из видеопоследовательностей, рассматриваются принципы формирования 3D моделей на основе сопоставления опорных точек человеческого тела в построенных моделях.

На основе проведенного анализа сделан вывод об адекватности и точности использования комбинированных методов итеративного алгоритма ближайших точек (ИАБТ), разрезов на графах для извлечения антропометрических признаков с использованием метода случайного леса (Random Forest) для классификации антропометрических данных в статических изображениях, видео в присутствии шума и в режиме близком к реальному времени. Такой подход позволил построить систему компьютерного зрения в антропометрии обладающую с высокой точностью и скоростью обработки.

Вторая глава посвящена построению математической модели и численных методов компьютерного зрения к задаче антропометрии. В этой главе решаются следующие задачи:

- разработка математических моделей и численных методов компьютерного зрения для извлечения антропометрических признаков;
- приложение математических моделей и численных методов машинного обучения для классификации антропометрических данных;
- разработка метода построения антропометрических моделей.

Ниже приведем описание алгоритмов и методов, используемых для обнаружения и классификации объектов, извлечения признаков на видеопоследовательностях в режиме реального времени.

⁸3635-99, ГОСТ Р ИСО. Одежда. Размеры. Определения, обозначения и требования к измерению [Электронный ресурс] // [http://www.internet-law.ru/gosts/gost/8932]. – [Б. м.: б. и.]. – Дата доступа: 2017.

⁹13402, EN. Европейский стандарт указания размеров одежды [Электронный ресурс] // [https://ru.wikipedia.org/wiki/EN-13402] – [Б. м. : б. и.]. – Дата доступа: 2017.

1. Извлечение антропометрических признаков. Для решения задачи извлечения антропометрических признаков из изображений и видеопоследовательностей (см. рис.1) предложен алгоритм, основанный на комбинации эффективных методов - технике предварительной обработки изображений, алгоритме вычитания фона, алгоритме сегментации изображений на основе разреза на графах и итеративного алгоритма ближайших точек.

Рис. 1 — Блок-схема процесса извлечения антропометрических признаков.

- 1.1 Предварительная обработка изображения (n.2.2.1). На этом этапе происходит преобразование входного изображения из формата RGB в полутоновое изображение. Предварительная обработка изображений: необходимо подавить шум, выполнить сглаживание изображения, провести эквализацию гистограммы, применить морфологические операторы для улучшения качества контура объекта.
- 1.2 Обнаружение объектов (п.2.2.2). На этом шаге первым делом выполняется вычитание фона (С. Stauffer 1999). Результатом является область изображения, которая содержит человеческое тело (область интереса ROI). К извлеченной области далее будет применена сегментация. Отбор пикселей, принадлежащих фону и объекту проводится с использованием бинарного изображения (маски). Считается, что пиксель принадлежит объекту и имеет белый цвет в маске, если разность интенсивности фона и текущего кадра для данного пикселя превышает некоторое пороговое значение.
- 1.3 Сегментация изображений на основе метода разрезов на графах (Y. Boykov 2004) (n.2.2.3).

Предположим, что множество $S = \{s_i | i=1,...,n\}$ представляет собой область интереса, которую получили после вычитания фона. Сегментация определяется набором случайной величины $A = \{A_i | i=1,...,n\}, A_i \in L$

Рис. 2 — Моделирование телосложения для сегментации изображения. h (рост) - параметр калибровки.

которого указывает маркировка s_i и $L = \{L_j | j=1,...,m\}$ является набором меток.

Каждый ROI имеет области, которые содержит части человеческого тела: голова, шея, руки, ноги и тело. Проводится калибровка с учетом параметров камеры и параметра h (см. рис. 2). Одним из эффективных методов сегментации является метод минимального разреза - максимального потока. В этом случае алгоритм трактует всё изображение как граф G(V, E). Элементы множества V называются вершинами-пикселями графа, а пары из E — его рёбрами. В полученном графе находится минимальный разрез, который делит граф на 2 части. Пиксели, попавшие в один подграф с истоком, считаются областями частей человеческого тела, остальные пиксели признаются областями где нет частей человеческого тела. Результаты сегментации используются далее на этапе обработки и анализа контура каждой части человеческого тела.

1.4 Построение опорных точек на основе итеративного алгоритма ближайших точек (ИАБТ) (Z. Zhang 1992) (n.2.2.4). Пусть $A = \{a_i | i=1,...,n\}$ представляет собой набор точек контура частей человеческого тела. $B = \{b_i | i=1,...,m\}$ является модельным набором координат для обнаружения искомых опорных точек. Цель алгоритма ИАБТ состоит в поиске набора точек доставляющих минимум расстояния между наборами A и B:

Поиск итогового расположения опорных точек на найденных опорных контурах для каждой ROI (рис. 2) осуществляется согласно Γ OCT 4 . Результаты обнаружения опорных точек представлены на рис. 3. Расчеты проводятся с

```
Исходные данные: 2 облака точек A = \{a_i\}, B = \{b_i\}; начальное
                        преобразование T_0
Результат: итоговое преобразование T для обнаружения опорных точек
              вA,
T \leftarrow T_0;
while не сходится do
    for i \leftarrow 1 to n do
        m_i \leftarrow Найти ближайшие точки в A к T * b_i;
        if ||m_i - T * b_i|| \le d_{max} then
            w_i \leftarrow 1;
        else
            w_i \leftarrow 0;
        end
    end
    T \leftarrow argmin_T \left\{ \sum_i w_i \|T * b_i - m_i\|^2 \right\};
    n = n + 1;
end
```

Алгоритм 1: Описание алгоритма ИАБТ.

Рис. 3 — Результаты обнаружения опорных точек.

использованием евклидова расстояния. С такими антропометрическими признаками, как длина руки, длина плеча и т.д. (несложная геометрия) использовалось непосредственно евклидово расстояние между соответствующими опорными точками. Для извлечения антропометрических признаков со сложной структурой (талия, грудь, бедро) необходимо было использовать больше опорных точек и вычислить периметр вписанных замкнутых кривых (рис. 4).

Рис. 4 — Примеры расчетов для обхвата шеи и груди.

1.5 Экспериментальное оценивание точности численного метода извлечения антропометрических признаков (n.2.3). Оценка точности извлеченных признаков проведена использует анализ относительной среднеквадратической ошибки:

$$\varepsilon_{rel} = \left\{ \frac{\sum_{j=1}^{12} (\widetilde{z}_j - z_j)^2}{\sum_{j=1}^{12} z_j^2} \right\}^{1/2} = \frac{\|\widetilde{z} - z\|_2}{\|z\|_2}, \tag{1}$$

где z_j — результат измерений, рассчитанных вручную; \widetilde{z}_j — результат измерений с помощью разработанного приложения. Использовалась база из 100 тестовых наборов изображений людей различного пола и телосложения. Кроме того, проведен подробный анализ ошибок измерений $\varepsilon = \left|\widetilde{z}_j - z_j\right|$ (см. рис. 5а), при этом в первом случае использованы 24 опорных точек, а во втором - 28 точек. Экспериментально установлено, что распределение случайной составляющей погрешности измерений (рис. 5б) подчинено нормальному закону. В этом разделе также экспериментально установлена линейная сходимость предложенного численного метода на основе анализа апостериорной оценки погрешности при увеличении разрешения исходных изображений.

2. Математическое моделирование типов телосложения. Для построения 3D моделей экспериментальным путем было выявлено пять характеристических типов телосложения, по которым проводилась классификация. Каждый тип телосложения в свою очередь позволил строить 5 моделей. Кратко изложим адаптированную математическую модель для классификации антропометрических данных с помощью алгоритма случайного леса (Random Forest) (L. Breiman 2001). Пусть задан набор объектов $D = \{d_i | i = 1, ..., N\}$,

Рис. 5 — а) Погрешность ε . б) закон распределения погрешности измерений (сл. 2) по формуле (1).

 $X = \{x_i | i = 1, ..., 12\}$ - набор антропометрических вектор-признаков и $Y = \{y_i | i = 1, ..., 5\}$ - набор меток классов. Векторы антропометрических признаков $\{X_i\}_{i=1}^N$, в том числе каждый вектор имеет структуру $x_k = (x_{k1}, ..., x_{kd})$. Модель обучения и тестирования использована для классификации объектов по меткам Y. Для оценки критерия качества построения решающих деревьев используется индекс Джини:

$$Gini = N_L \sum_{i=1}^{k} p_{kL} (1 - p_{kL}) + N_R \sum_{i=1}^{k} p_{kR} (1 - p_{kR}),$$
 (2)

где p_{kL} – доля класса K в левом узле (N_L) , p_{kR} – доля класса K в правом узле (N_R) . Предлагается алгоритм оценки и поиска набора признаков из исходного набора признаков. Алгоритм случайного леса состоит из двух основных этапа: обучение и тестирование. Процесс обучения осуществляется следующим образом:

- взять из D n случайных объектов с повторениями (bootstrap sample) D_i ;
- построить для D_i дерево, используя алгоритм «дерево классификации и регрессии» (CART) для построения решающего дерева. Причем для каждой вершины признак выбирается из m случайно выбранных (m

- дерево строится до конца, без отсечения ветвей;
- повторить предыдущие шаги В раз.

В итоге строится B деревьев. Для проверки новых наборов антропометрических данных используются модели обучения.

3. Задача построения антропометрических моделей. В этом разделе представлен подход к реконструкции 3D- модели человека на основе антро-

Рис. 6 — Примеры построенных моделей.

пометрических признаков, которые были предварительно извлечены и классифицированы. Использован набор данных антропометрических признаков для построения 3D-моделей телосложения.

Процесс построения антропометрических моделей включает следующие шаги:

Шаг 1: описание текстурных характеристик человеческого тела, а также текстуры одежды;

Шаг 2: разработка моделей частей человеческого тела (голова, туловище, руки, ноги) с использованием ранее полученных антропометрических признаков;

Шаг 3: построение текстурированной модели человеческого тела;

Шаг 4: экспорт модели человеческого тела в два файла: первый файл (*.mtl) описывает текстуры модели, второй файл (*.obj) содержает информа-

цию каждой модели. На рис. 6 представлены примеры построения антропометрических моделей.

В третьей главе описывается проектирование системы компьютерного зрения в антропометрии для практических применений: моделирование одежды и фитнес-приложение. Система проектируется с помощью аналитических методов объектно-ориентированного UML (рис. 7). Программа описывается диаграммами: диаграмма прецедентов, диаграмма классов, диаграмма последовательности. Классы подробно анализируются с указанием задач каждого компонента в программе. Доказывается целесообразность проектирования приложений компьютерного зрения в антропометрии.

Рис. 7 — Структура Π О.

Проведен анализ практических результатов экспериментов извлечения антропометрических признаков. Выполнено сравнение результатов предложенных алгоритмов с другими алгоритмами по точности. Установлено пре-

имущество синтеза алгоритма на основе метода разреза на графах и итеративного алгоритма ближайших точек. И наконец, выполнено сравнение результатов классификации между алгоритмом случайного леса и алгоритмом Boosting, работающими с видео.

В четвертой главе дано описание среды разработки приложения Android, библиотек поддержки алгоритмов компьютерного зрения OpenCV¹⁰, поддержки построения 3D-моделей человеческого тела MakeHuman¹¹ и библиотеки поддержки 3D для Android – Min3D¹². Изложены инструкции для пользователей разработанных приложений. Приведена архитектура мобильного приложения для моделирования одежды (E-Tailor). Главные функции приложения включают: автоматизацию извлечения антропометрических признаков и классификацию размеров одежды. Изложены этапы разработки приложения для фитнеса (E-Fitness). Главные функции разработанного приложения включают: автоматизацию извлечения антропометрических признаков, построение 3D-моделей человеческого тела, анализ и сравнение признаков телосложений, а также расчет индекса массы тела (ИМТ). Приложения разработаны на языке Java под ОС Android для смартфонов. Программные модули имеют простой, удобный и интуитивно понятный интерфейс.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

- 1) Разработаны алгоритмы компьютерного зрения для извлечения антропометрических признаков, основанные на комбинации алгоритма сегментации изображений на основе метода разрезов на графах и итеративного алгоритма ближайших точек;
- 2) Предложена модель и разработан и апробированы алгоритм классификации антропометрических данных методом случайного леса (Random Forest) для приложения, которое классифицирует объекты на основе антропометрических признаков;

 $^{^{10}}$ OpenCV - Open source computer vision [Electronic resource] // [http://opencv.org/] - [S. l. : s. n.]. - Дата доступа: 2017.

¹¹MakeHuman library [Electronic resource] // [http://www.makehuman.org]. – USA: [s. n.]. – Дата доступа: 2017. ¹²Softpedia. Min3D library [Electronic resource] // [https://code.google.com/p/min3d]. – USA: [s. n.]. – Дата до-

ступа: 2017.

- 3) Разработаны алгоритмы и методы компьютерного зрения к задаче антропометрии на изображениях и видео с наличием шума и в режиме реального времени;
- 4) Построены антропометрические модели человеческого тела на основе результата извлечения антропометрических признаков;
- 5) Разработанные алгоритмы и методы реализованы в виде двух приложений для смартфонов на ОС Android: приложение «E-Tailor» для моделирования одежды и приложение «E-Fitness» для фитнестестирования.

СПИСОК ОСНОВНЫХ РАБОТА ПО ТЕМЕ ДИССЕРТАЦИИ

Издания, входящие в Перечень ВАК РФ:

- 1. Нгуен Т.Л. Об автоматизации извлечения и классификации антропометрических признаков / Нгуен Т.Л., Нгуен Т.Х. // Вестник ИРНИ-ТУ: № 4. 2015. -C. 17-23.
- 2. Nguyen T.L. Studies of Anthropometrical Features using Machine Learning Approach / Nguyen T.L., Nguyen T.H., A. Zhukov // CEUR Workshop Proceedings. 2015, -V. 1452, -P. 96-105.
- 3. Нгуен Т.Л. О распознавании и классификации дефектов дорожного покрытия на основе изображений / Нгуен Т.Л., Нгуен Т.Х. // Вестник ИРНИТУ: № 10. 2016. -C. 111-118.
- 4. Nguyen T.L. Automatic Anthropometric System Development Using Machine Learning / Nguyen T. L., Nguyen T.H. // BRAIN. Broad Research in Artificial Intelligence and Neuroscience. 2016, -V. 7, -P. 5-15.

Издания, включенные в РИНЦ:

5. Nguyen T.H. A Robust Approach for Defects Road Pavement Detection and Classification/ Nguyen T. L., Nguyen T.H., D. N. Sidorov // Journal of Computational and Engineering Mathematics: 2016,-V. 3.-No. 3. -P. 40-52.

Свидетельства о государственной регистрации программы для ЭВМ:

6. Сидоров Д.Н. Программа бесконтактной антропометрии для смартфонов на операционной системе Андроид // Сидоров Д.Н., Нгуен Т.Л., Нгуен Т.Х. // Свидетельство о гос. регистрации программы для

- ЭВМ. № 2016611475, от 03 февраля 2016 г. М.: Федеральная служба по интеллектуальной собственности. 2016.
- 7. Сидоров Д.Н. Программа автоматического обнаружения и классификации дефектов дорожного покрытия // Сидоров Д.Н., Нгуен Т.Х., Нгуен Т.Л. // Свидетельство о гос. регистрации программы для ЭВМ. № 2016619386, от 18 августа 2016 г. М.: Федеральная служба по интеллектуальной собственности. 2016.

Прочие издания:

- 8. Нгуен Т.Л. Автоматизация антропометрических измерений и извлечение признаков из 2D-изображений / Нгуен Т.Л., Нгуен Т.Х. // Байкальская международная школа-семинар «методы оптимизации и их приложения». О. Ольхон, Иркутск 2014г. -С. 153.
- 9. Нгуен Т.Л. Построение программы для обнаружения контуров человека в изображении с помощью методов математической морфологии / Нгуен Т.Л., Нгуен Т.Х. // Материалы всероссийской молодежной научно-практической конференции «Винеровские чтения 2014». Иркутск: Изд-во Иркутск, 2014. -С 10.
- 10. Нгуен Т.Л. Классификация и кластерный анализ антропометрических признаков / Нгуен Т.Л.// Материалы всероссийской молодежной научно-практической конференции «Винеровские чтения 2015». Иркутск: Изд-во Иркутск, 2015. -С.8.
- 11. Нгуен Т.Л. Методы математической морфологии в цифровой обработке изображений / Нгуен Т.Л., Нгуен Т.Х. // Труды XIX Байкальской Всероссийской конференции «информационные и математические технологии в науке и управлении». Иркутск: ИСЭМ СО РАН, 2014. -С. 75-81.
- 12. Нгуен Т.Л. Анализ антропометрических признаков с использованием методов машинного обучения / Нгуен Т.Л., Нгуен Т.Х. // Междисцплинарные исследования в области математического моделирования и информатики . Ульяновск: Изд-во SIMJET, января 2015г.-С.204-210.
- 13. Nguyen T.L. On Road Defects Detection and Classification / Nguyen T.L., Nguyen T.H., A. Zhukov // Supplementary Proceedings of the 5th International Conference on Analysis of Images, Social Networks and

Texts (AIST 2016). CEUR Workshop Proceedings, 2016,-V. 1710, -P. 266- 278.