Solt The touth table is given by:

					1
ار ا	X2	×3	x_1	12	73
0	0	0	0	0	0
0	0	1	0	0	- (·
ن	1	0	Ö	1	4.
0	1	1	0	11	0
, L	0	0	j	,	
1	O	1	1	1	
1:	1	0	1	0	
1	1	ĵ		0	
L		1			1

from the truth table we see that the transformation is invertible i.e., we have a 1-1 map. The involse notation is given by $x_1 = x_1'$, $x_2 = x_1' \oplus e_2'$, $x_3 = x_1' \oplus x_2' \oplus x_3'$.

i.e., we are Saying that by doing $x_1' \oplus x_2'$ we get x_1 and $x_2' \oplus x_3'$.

We can Say that the transformation is given by $x_1 \oplus x_2 \oplus x_3 \oplus x_2 \oplus x_3 \oplus x$

2. Consider a vorient of fredkin gote. f(a,b,c) = (a, a.b+ a.c, a.c+a.b). (1) Express the NoT(a) gate in terms of fredkin gate (i) Express the AND (arb) gate in terms of this fredkin gate. So Given the variont of fredkin gete is given py-Flashic)= (a, a.bt a.c, a.c+ a.b) fredkin is sneversible logic gate that has property of having some no of inputs as outpots and each input Pattern Imaps to to the unque of pattern, and the 9 term is the target olp and first 1,2 0/p's one the Control terms-inputs) [a,0,1) (1) f(a,0,1) = (a, a.0 +a.1, a.1+ a.0) = (a, a+0, 0+a) = (a, ā, ā) =) [(a, ā, a)] : By the above Substitution of values we get 2 terms as a. => NoT(a)=f(a,0,1) (i) By Substituting (a,b,o) values in the above we get the AND (a,b)

The Substitution is done as follows:

$$f(a,b,o) = (a, a.b + \overline{a.o}, a.o + \overline{a.b})$$

$$= (a, a.b+o, b+\overline{a.b})$$

$$= (a. a.b, \overline{a.b})$$

by the above fiedkin gate a.b=b which is the desired value of ours to prove AND(a,b).

invortible?

Solt Given above that r=a, y=a.b Dc, 2= a.c Db the touth table is given

And the second s							
2]	b	C		x	G	2	
0	0	0		0	Ö	0	
0	6	ા 🕴	1	0	1.	1	
0	1,	0		0	- 0	1 - {	
0	·	1		0	1.	0	
1	0	0.		1	0	1	
1.	0	7-			1	\) .	
1.	1	0		1	1	0	
. (1))		T	0	0	
	0	0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

is By the above given table we an

Say that the output is one to one thus the given gate is invertible 4. Show that the magic gate below is an unitary gate $M = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & i & 1 \end{pmatrix}$ Solt Criven to show that M is the Unitary gate if the MM = Iy then it is Unitary. $MM^{\dagger} = \frac{1}{52} \begin{bmatrix} 1 & i & 0 & 0 & 1 \\ 0 & 0 & i & 1 \\ 0 & 0 & i & -1 \\ 1 & -i & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & i & 1 \\ 0 & 1 & -i & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} 1+1 & 0 & 0 & 0 \\ 0 & 1+1 & 1-1 & 0 \\ 0 & 1-1 & 1+1 & 0 \\ 0 & 0 & 1+1 \end{bmatrix}$ $=\frac{2}{2}\begin{bmatrix}1000\\0100\\0010\end{bmatrix}=\begin{bmatrix}1\\4\end{aligned}$

)

+

5. show that if we apply quantum fourier transform

Var = 1 27 27 1 = 12TT Ki/27/474j/ to the following State in Hilbert Space (Chy) 127=主意のの(27/18)(ブ) the Dresulting State will given by QFT /47= 1 (117+177). Soft We use the Slippij=01, -- 79 as an Oxthonormal basis in the Hilbert Space C3, Where 177= 1117=1170 1120112. we also use the Eulors identity cio= (oso+isin(0) and N-1 E 12TK (n-m)/N = N8nm Thus we have = 4(Sx,+8x,)" UGFTZ = COS(2TT j/3) | >= = = = x(x)K>

= 1 (112+172)-)

6 Consider the Hadomard gate UH and the CNOT gote Ucnor, S.T (IZ QU +) U CNOT (IZ QU +) /jK>= (-) " K /jK>-That is, the above gate implements a place Solt To ST given is equal to (-1) 1/1/5 we do the following =) (I OUA) U (IOUH) 1/K> =) (I2004) UCNOT (I201 (10>+(-1)'11>) 1jk> [: UH= -[(10>+(-1)k1>)] =)(I,180+)U,(I)1>0 +[0>+(-1)*11>) [: (a@b) (c@d) = ac@bd] => (I_⊗OUM) (1)>⊗(1)>⊗ (1)>0>+(-D21:>) [: UCNOT (J>01K>=1J>01j@k> =) I2/1>8UH (1)># 1 10>+(-D+11>) (60 @ 0 = (600) (-0 @ 60) .) シ 12-8年102+(-り112日产102+(-1)+112

=) (-) " (jok) =) (-) Klik>)

7- Given an orthonormal basis in and,

SoT the matriz

U= 32 10 > < 0 k+1 + 1 po-1> < 0 is a Unitary matrix

we should demonstrate Uti= I Given that,

U = 5-2 | px> < pkm) + 1 pn-12 < po)

U= (= 1 px > = px+1 + 1 px = < pol)

Given that
$$U(x) = e^{ix} (I_2 \otimes I_2 \otimes I_2 + |\sigma_i \otimes \sigma_i \otimes \sigma_i)$$

$$\xi = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\sigma_1^+ = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\sigma_1^+ = \sigma$$
Now (onjugate of $U(x)$ is $U^+(x)$

$$U^+(x) = e^{-ix} (I_2 \otimes I_2 \otimes I_2 - i \sigma_i \otimes \sigma_i \otimes \sigma_i)$$
We need to find $U(x) \cdot U(x)$

$$\frac{2e^{-ix}}{2} (I_2 \otimes I_2 \otimes I_2 + i \sigma_i \otimes \sigma_i \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_2 \otimes I_2 \otimes I_2 - i \sigma_i \otimes \sigma_i \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 - i \sigma_i \otimes \sigma_i \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 - i \sigma_i \otimes \sigma_i \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes I_2 \otimes \sigma_i)$$

$$\frac{2e^{-ix}}{2} (I_3 \otimes I_2 \otimes I$$

9. Let of be the Pauli matrix 3= (10), Show that the matrix II = \frac{1}{2}(I_2+\frac{1}{3})\SI_2 is a Projection matriz. Sol Given to Prove that it is Projection matrix. It should Setisfy the following Conditions) T=T , 2) T=T Gruen TI=1 (Iz+03) Q Iz = 1 ([:0]+[:0]) ([:0] $=\frac{1}{2}\left(\begin{bmatrix}2&0\\0&0\end{bmatrix}\right)\left(\begin{bmatrix}1&0\\0&1\end{bmatrix}\right)$ TT = [0000] Condition (1) is Satisfied

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \boxed{11}$$

=) T= T Condition O is Satisfied

.: Given two conditions is Satisfied then we can say that Tis a projection metric.

10) The most general state of a Single pubit
is described by 3 parameters 0,0,0 CR

17 = e' (cos(0/2) |0> +e' sin(0/2)(1>).

Determine the probability that the State 14>
is in State
(1) 102, (ii) 11>.

Sol. Given in the above data Single qubit is described by seed parametery.

and given

179 = e¹ (cos(0/2) 10> +eⁱd sin(0/2) 11>).

=
$$|2|e^{i\varphi}\cos(\theta|z)|0\rangle + e^{i\varphi}\sin(\theta|z)|1\rangle|^{2}$$

= $|e^{i\varphi}\sin(\theta|z)|2|1\rangle|^{2}$
= $|e^{i\varphi}\sin(\theta|z)|2|$
 $= |e^{i\varphi}\sin(\theta|z)|2|$
 $= |Sin(\theta|z)|^{2}$

11. Consider the entangled State

17> = \frac{1}{\su} (lo1>-l10>) & State \(\text{20} \) \(\text{ST}_2. \)

Prove that the Positial measurement Diesult

below \(\text{20} \) \(\text{20} \) \(\text{2} \) \(\text{20} \) \(\