TABLE I. Small-scale system unit economic operating parameters.

category	c_1^{CHP}	\mathcal{C}_2^{CHP}	c_3^{CHP}
CHP#1	0.1029	28.7429	14.618
category	C_4^{CHP}	c_5^{CHP}	C_6^{CHP}
CHP#1	0.161	36.5571	0.0154
category	c_1^{CON}	C_2^{CON}	c_3^{CON}
CON#1	0.244	39.6429	11.537
CON#2	0.290	37.0358	12.049
CON#3	0.336	38.4286	12.049

TABLE II. Output range of Small-scale system controllable unit.

category	$\left[P_{i,min}^{CHP},P_{i,max}^{CHP}\right]$	category	$\left[P_{i,min}^{CON},P_{i,max}^{CON}\right]$	category	$\left[P_{i,min}^{EB},P_{i,max}^{EB}\right]$
CHP#1	[30,120]	CON#1	[15,60]	EB#1	[0,40]
category	$\left[H_{i,min}^{CHP},H_{i,max}^{CHP}\right]$	CON#2	[25,80]	category	$\left[V_{i,min}^{GB},V_{i,max}^{GB}\right]$
CHP#1	[0,100]	CON#3	[20,70]	GB#1	[0,6]
category	$c_{i,m}$	$c_{i,k}$	$c_{i,v}$	GB#2	[0,5]
CHP#1	0.5	5	0.1		

TABLE III. Large-scale system unit economic operating parameters.

category	$c_1^{\it CHP}$	C_2^{CHP}	$c_3^{\it CHP}$
CHP#1	0.10286	32.7429	14.618
CHP#2	0.10857	38.80	18.822
category	\mathcal{C}_4^{CHP}	c_5^{CHP}	C_6^{CHP}
CHP#1	0.05786	22.5571	0.0154
CHP#2	0.06107	24.10	0.01629
category	$c_{i,k}$	$c_{i,m}$	$c_{i,v}$
CHP#1	4	0.75	0.1
CHP#2	3	0.7	0.1
category	c_1^{CON}	c_2^{CON}	c_3^{CON}
CON#1	0.24429	39.6429	11.537
CON#2	0.29	37.0358	12.049
CON#3	0.33571	38.4286	12.56
CON#4	0.31571	27.0358	13.27
CON#5	0.2854	35.854	14.58

TABLE IV. Carbon emission cost parameters.

category	c^{DR}	c^{CE}	r^{CE}
	12	75	35