III.U1 Tenkrát v Irsku, 1843

Nalezněnte taková čísla (popř. jiné matematické objekty) a a b, pro která platí:

$$ab = -ba$$
 $a = i$
 $b = 1$

ab = -ba a = i $|a^2| = |b^2| = 1$ Pokud od sebe odlišíš
může to platit (i = - i') z jeko pohledu

Ačkoliv jich existuje mnoho, stačí uvést pouze jednu libovolnou dvojici.

ne ale faks 12 = (-1)2 to neco urcité Inamena

Jaký je součet všech přirozených čísel? Svou odpověď zdůvodněte.

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + \dots = 9$$

 $\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + \dots = S$ a) ∞ To dova $A = 1 - 1 + 1 - 1 + \dots$ $S - B = 1 + 2 + 3 + 4 + 5 + \dots$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$ $-(1 - 2 + 3 + 4 + 5 + \dots) = (1 - 2 + 3 + 4 + 5 + \dots)$

1-1+1-1+1- = A = 2B d) $\pi\sqrt{3}$

III.U2 Znásilněná matematika

Nádhera:)

III.U3 Fyzici jsou úplně cáklí!

Ke každému fyzikovi a matematikovi přiřaď te jednu poruchu či zvláštnost, která u něj pravděpodobně převažovala.

Jména

Nikola Tesla, Paul Dirac, Albert Einstein, Erwin Schrödinger, Bernhard Riemann, William Rowan Hamilton, Isaac Newton, Alan Turing, Emmy Noether

Zvláštnosti

pedofilie, zoofilie, homosexualita, Aspergerův syndrom, ženská identita, extrémní stydlivost, vegetariánství, celoživotní panictví, alkoholismus

III.A Houstone, máme problém!

Ausorem problému stil Se les je Isaac New Son

On sám ho označil za problém a popsal, ovšem jako autora jsme mysleli Liou Cch'-sina. autora románu Problém tří těles.

5/5

III.K Diracovo moře

Popisovaným jevem je amihilace (pozisromu s elektronem). Pokud od sebe odlišíš dvě různé číslené soustavy (třeba normální a čárkovaná),

III.B Weyl vs. Majorana: boj o neutrino

Během dvacátých a třicátých let 20. století vznikla spousta kvantově mechanických rovnic na popis různých typů fermionů. Mezi ně patří i tzv. Weylova a Majoranova rovnice, které dříve byly kandidáty na popis částice jménem neutrino. Pojď me se podívat, jak vypadají!

Pozn.: ve vzorcích níže je použita Einsteinova sumační konvence, Feynmanova "slash", notace $\emptyset = \gamma^{\mu}\partial_{\mu}$ a standardní volba jednotek $\hbar = c = 1$. Dice nevím, co to mo znamenat že \hbar i c jsou 1

1. Odvoď te Weylovu rovnici (rovnice), popisující nehmotné (Weylovy) fermiony, ve slavném tvaru

$$\sigma^{\mu}\partial_{\mu}\psi_{R} = 0$$
$$\bar{\sigma}^{\mu}\partial_{\mu}\psi_{L} = 0.$$

 ψ_L značí levoruký a ψ_R pravoruký Weylův spinor a vektory σ^{μ} a $\bar{\sigma}^{\mu}$ jsou definované jako

$$\sigma^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, -\sigma^{1}, -\sigma^{2}, -\sigma^{3}\right),$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}, \sigma^{2}, \sigma^{3}\right)$$

Kde první komponent $\sigma^0 = I_2$ je jednotková matice tvpu 2 × 2 a zbylé složky obsahují Pauliho spinové matice (σ^i , $i \in \{1, 2, 3\}$).

2. Matematicky dokažte, že rovnice

 $i\partial \psi^c - m\psi = 0$

je ekvivalentní s Majoranovu rovnicí, která bývá psána jako => $i\beta \psi - m\psi = o$ => id-m=id-m $i\partial \psi - m\psi^c = 0.$

kde m označuje hmotnost popisovaného fermionu a ψ jeho vlnovou funkci. Horní index cznačí nábojové sdružení. co to vůbec je ?

> Ok, docela jsi nás dostala. c=1 má být rychlost světla, kdežto ^c je jakási matematická operace. Je trochu divné značit to stejně, ale každý, kdo pracuje v oboru QFT, ví, o co se jedná...

> > 1/5

Myrimmon sous Iras 1 :D