Shortest Path Algorithms

The slides source: Prof. Erik Demaine

Link: https://engineeringppt.com/category/electrical-engineering/

• Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

Shortest paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest-path weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Example:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all
$$u, v, x \in V$$
, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Proof.

Single-source shortest paths (nonnegative edge weights)

Problem. Assume that $w(u, v) \ge 0$ for all $(u, v) \in E$. (Hence, all shortest-path weights must exist.) From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step, add to S the vertex $v \in V S$ whose distance estimate from s is minimum.
- 3. Update the distance estimates of vertices adjacent to ν .

Dijkstra's algorithm

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    \operatorname{do} d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S,
                      keyed on d[v]
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
              do if d[v] > d[u] + w(u, v)
                        then d[v] \leftarrow d[u] + w(u, v)
```


Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S,
                    keyed on d[v]
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                           relaxation
             do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                                      Implicit Decrease-Key
```


Graph with nonnegative edge weights:

S: {}

S: { *A* }

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

ALGORITHMS

ALGORITHMS

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

$$d[v] < \delta(s, v)$$
 supposition
 $\leq \delta(s, u) + \delta(u, v)$ triangle inequality
 $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path
 $\leq d[u] + w(u, v)$ v is first violation

Contradiction.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

ALGORITHMS

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part III (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$. But, $d[u] \le d[y]$ by our choice of u. Contradiction.

Analysis of Dijkstra

```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra

|V|
times

```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra

```
times while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each \ v \in Adj[u]
do \text{ if } d[v] > d[u] + w(u, v)
then \ d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra

```
while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each v \in Adj[u]
do if d[v] > d[u] + w(u, v)
times
then d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Dijkstra

```
while Q \neq \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)
S \leftarrow S \cup \{u\}
for each v \in Adj[u]
do if d[v] > d[u] + w(u, v)
times

then d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

$$Time = \Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-KEY}})$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

 $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$

Total

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

$$Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total}$$

$$\text{array} \quad O(V) \qquad O(1) \qquad O(V^2)$$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ TotalarrayO(V)O(1) $O(V^2)$ binary
heap $O(\lg V)$ $O(\lg V)$ $O(\lg V)$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$
 $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}}$

Total

array
 $O(V) \quad O(1) \quad O(V^2)$

binary
heap
 $O(\lg V) \quad O(\lg V) \quad O(E \lg V)$
Fibonacci
 $O(\lg V) \quad O(1) \quad O(E + V \lg V)$
heap amortized amortized worst case

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
do \ d[v] \leftarrow \infty
initialization
for i \leftarrow 1 to |V| - 1
    do for each edge (u, v) \in E
        do if d[v] > d[u] + w(u, v) relaxation
then d[v] \leftarrow d[u] + w(u, v) step
for each edge (u, v) \in E
    do if d[v] > d[u] + w(u, v)
             then report that a negative-weight cycle exists
At the end, d[v] = \delta(s, v), if no negative-weight cycles.
Time = O(VE).
```


Initialization.

Order of edge relaxation.

End of pass 1.

End of pass 2 (and 3 and 4).

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since *p* is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$$

Correctness (continued)

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and $d[v_0]$ is unchanged by subsequent relaxations (because of the lemma from *Shortest Paths I* that $d[v] \ge \delta(s, v)$).

- After 1 pass through *E*, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After *k* passes through *E*, we have $d[v_k] = \delta(s, v_k)$.

Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from S.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(VE + V^2 \lg V)$
- General
 - Three algorithms today.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.
- Dense graph $(\Theta(n^2) \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!

Dynamic programming

Consider the $n \times n$ weighted adjacency matrix $A = (a_{ij})$, where $a_{ij} = w(i, j)$ or ∞ , and define $d_{ij}^{(m)} =$ weight of a shortest path from i to j that uses at most m edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for m = 1, 2, ..., n - 1,

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.$$

Proof of claim

$$d_{ij}^{(m)} = \min_{k} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$= \lim_{k \to \infty} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

 $\leq m - 1$ edges

Proof of claim

Relaxation!

for $k \leftarrow 1$ to n

do if $d_{ii} > d_{ik} + a_{ki}$ then $d_{ii} \leftarrow d_{ik} + a_{ki}$

k's

Note: No negative-weight cycles implies
$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \cdots$$

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "+" \rightarrow "min" and "." \rightarrow "+"?

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "+" \rightarrow "min" and "." \rightarrow "+"?

$$c_{ij} = \min_k \left\{ a_{ik} + b_{kj} \right\}.$$

Thus, $D^{(m)} = D^{(m-1)}$ "×" A.

Identity matrix = I =
$$\begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{bmatrix} = D^0 = (d_{ij}^{(0)}).$$

Matrix multiplication (continued)

The (min, +) multiplication is *associative*, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

$$D^{(1)} = D^{(0)} \cdot A = A^{1}$$

$$D^{(2)} = D^{(1)} \cdot A = A^{2}$$

$$\vdots$$

$$D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},$$

yielding $D^{(n-1)} = (\delta(i, j))$.

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. No better than $n \times B$ -F.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$. Compute $A^2, A^4, \dots, A^{2 \lceil \lg(n-1) \rceil}$. $O(\lg n)$ squarings **Note:** $A^{n-1} = A^n = A^{n+1} = \cdots$ Time = $\Theta(n^3 \lg n)$.

To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)}$ = weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1, 2, ..., k\}$.

Thus, $\delta(i, j) = c_{ij}^{(n)}$. Also, $c_{ij}^{(0)} = a_{ij}$.

Floyd-Warshall recurrence

$$c_{ij}^{(k)} = \min \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$$

intermediate vertices in $\{1, 2, ..., k-1\}$

Pseudocode for Floyd-Warshall

```
\begin{array}{c} \text{for } k \leftarrow 1 \text{ to } n \\ \text{do for } i \leftarrow 1 \text{ to } n \\ \text{do for } j \leftarrow 1 \text{ to } n \\ \text{do if } c_{ij} > c_{ik} + c_{kj} \\ \text{then } c_{ij} \leftarrow c_{ik} + c_{kj} \end{array} \right\} \  \, \boldsymbol{relaxation}
```

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.

Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\vee, \wedge) instead of (min, +):

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).$$

Time = $\Theta(n^3)$.