Teoria degli automi e calcolabilità a.a. 2023/24 Prova scritta 9 febbraio 2024

Esercizio 1

1. Minimizzare il seguente DFA, descrivendo in modo molto preciso i passaggi effettuati:

2. Quale è il linguaggio riconosciuto?

Soluzione

- 1. Inizialmente abbiamo le classi dei non finali $\{a,b,f\}$ e dei finali $\{c,d,e\}$. Leggendo 1 possiamo distinguire $\{a,b\}$ che vanno in uno stato finale da f che va in uno stato non finale. Abbiamo quindi $\{a,b\},\{f\},\{c,d,e\}$. Non è possibile distinguere ulteriormente.
- 2. Il linguaggio riconosciuto è l'insieme delle stringhe che contegono esattamente un 1.

Esercizio 2 Si consideri il seguente linguaggio context-free:

$$\{a^k b^n a^n b^k \mid k, n > 0\}$$

- 1. Si dia una grammatica che lo genera.
- 2. Si dia un PDA che lo riconosce, se possibile deterministico.

Soluzione

1.
$$S ::= aXb \mid aSb$$

 $X ::= b \mid a \mid bXa$

2

Esercizio 3 Si consideri la seguente macchina di Turing usata come riconoscitore (q_3 è l'unico stato finale).

	a	b	B
q_0	q_1, a, R	q_2, b, R	
q_1	q_1, a, R	q_3, b, R	
q_2	q_3, a, R	q_2, b, R	
q_3			

- 1. Si descriva la computazione che ha come configurazione iniziale $\langle \epsilon, q_0, baba \rangle$.
- 2. Si descriva il linguaggio accettato dalla macchina.

Soluzione

- 1. $\langle \epsilon, q_0, baba \rangle \rightarrow \langle b, q_2, aba \rangle \rightarrow \langle ba, q_3, ba \rangle$.
- 2. Il linguaggio accettato dalla macchina è l'insieme delle stringhe che contengono almeno una a e almeno una b.

Esercizio 4 Si consideri un insieme finito non vuoto di numeri naturali A. Si risponda alle seguenti domande, motivando la risposta.

- 1. L'insieme dei programmi che non restituiscono mai in output un numero in A è ricorsivamente enumerabile?
- 2. L'insieme dei programmi che restituiscono in output solo numeri in A è ricorsivamente enumerabile?
- 3. Cosa cambia se A è infinito?

Soluzione

- 1. No, per il teorema di Post. Infatti questo insieme non è ricorsivo per il teorema di Rice, e il suo complementare, ossia l'insieme dei programmi che su qualche input restituiscono in output un numero in A, è ricorsivamente enumerabile. Infatti possiamo eseguire il programma su tutti gli input con la tecnica a zig-zag, e se esiste un input sul quale restituisce un risultato che appartiene ad A, questo sarà trovato (si noti che essendo A finito il test di appartenenza è decidibile).
- 2. No. Le motivazioni sono le stesse del caso precedente.
- 3. Se A è infinito non è necessariamente ricorsivo e quindi il test di appartenenza potrebbe non essere decidibile.

Esercizio 5 Si dia una riduzione da $\overline{\mathcal{K}} = \{x \mid \phi_x(x) \uparrow\}$ (l'insieme dei programmi che non terminano su se stessi) in $\mathcal{A} = \{x \mid \phi_x \neq id\}$ (l'insieme dei programmi che non calcolano la funzione identità, ossia ossia su qualche numero non restituiscono il numero stesso). Cosa possiamo concludere dall'esistenza di tale riduzione?

Soluzione L'input del problema $\overline{\mathcal{K}}$ è (la descrizione di) un algoritmo x, e dobbiamo trasformarlo in un nuovo algoritmo g(x) in modo tale che $\phi_x(x) \uparrow$ se e solo se $\phi_{g(x)}$ non calcola la funzione identità. Questo si può ottenere costruendo l'algoritmo g(x) nel modo seguente:

```
input y
\mathcal{M}_x(x)
return y
```

Allora g è una funzione di riduzione da $\overline{\mathcal{K}}$ in \mathcal{A} , in quanto è calcolabile, totale, e si ha:

```
se x \in \overline{\mathcal{K}}, \mathcal{M}_x(x) non termina, quindi per qualunque input anche \mathcal{M}_{g(x)} non termina, quindi g(x) \in \mathcal{A} se x \notin \overline{\mathcal{K}}, \mathcal{M}_x(x) termina, quindi g(x) = id, quindi g(x) \notin \mathcal{A}.
```

Dal fatto che $\overline{\mathcal{K}}$ sia riducibile ad \mathcal{A} possiamo concludere che \mathcal{A} non è ricorsivamente enumerabile.