Chapter 5 Steady-State Sinusoidal Analysis

- 1. Sinusoidal signal.
- 2. Phasors and complex impedances.
- 3. Power for ac circuits.
- 4. AC circuits analysis: Ohm'a law, KCL, KVL, Nodal voltage analysis, Mesh-current analysis, Thévenin and Norton equivalent circuits.
- 5. Load impedances for maximum power transfer.

Sinusoidal Currents and Voltages

 V_m is the **peak value** ω is the angular frequency θ is the **phase angle** T is the **period**

Relationships

Frequency

$$f = \frac{1}{T}$$

Angular frequency

$$\omega = \frac{2\pi}{T}$$

$$\omega = 2\pi f$$

$$\sin(z) = \cos(z - 90^\circ)$$

Root-Mean-Square Values

$$V_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) dt} \qquad I_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt}$$

$$I_{\rm rms} = \sqrt{\frac{1}{T} \int_{0}^{T} i^2(t) dt}$$

$$P_{\text{avg}} = \frac{\int_{0}^{T} p dt}{T} = \frac{\frac{1}{T} \int_{0}^{T} v^{2} dt}{R} = \frac{V_{\text{rms}}^{2}}{R}$$

$$P_{\rm avg} = I_{\rm rms}^2 R$$

RMS Value of a Sinusoid

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}}$$

This is **NOT** true for other periodic waveforms such as square waves or triangular waves.

Example 5.1: Find rms value and average power

Phasor Definition

Time function: $v_1(t) = V_1 \cos(\omega t + \theta_1)$

Phasor: $\mathbf{V}_1 = V_1 \angle \theta_1$

- ω always in radians/sec, θ always in degrees
- Phasor: a complex number that represents the magnitude and phase of a sinusoid
- We will use $j = \sqrt{-1}$

Complex numbers review

Three representations of complex numbers:

$$z = x + jy$$
 $z = r \angle \phi$ $z = re^{j\phi}$

where

$$r = \sqrt{x^2 + y^2}$$
 $\phi = \arctan(\frac{y}{x})$

Eular's identity:

$$e^{\pm j\phi} = \cos\phi \pm j\sin\phi$$

Adding Sinusoids Using Phasors

Step 1: Determine the phasor for each term.

Step 2: Add the phasors using complex arithmetic.

Step 3: Convert the sum to polar form.

Step 4: Write the result as a time function.

Example 5.3

$$v_1(t) = 20\cos(\omega t - 45^\circ)$$

$$v_2(t) = 10\sin(\omega t + 60^\circ)$$

$\mathbf{V}_{s} = \mathbf{V}_{1} + \mathbf{V}_{2}$ $=20\angle -45^{\circ} +10\angle -30^{\circ}$ =14.14 - j14.14 + 8.660 - j5=23.06 - j19.14 $=29.97\angle -39.7^{\circ}$

Phase Relationships

To determine phase relationships from a phasor diagram, consider the phasors to rotate counterclockwise. Then when standing at a fixed point, if V_1 arrives first followed by V_2 after a rotation of $\boldsymbol{\theta}$, we say that \mathbf{V}_1 leads \mathbf{V}_2 by $\boldsymbol{\theta}$. Alternatively, we could say that V_2 lags V_1 by θ .

Figure 5.6 Because the vectors rotate counterclockwise, \mathbf{V}_1 leads \mathbf{V}_2 by 60 $^\circ$ (or, equivalently, \mathbf{V}_2 lags \mathbf{V}_1 by 60 $^\circ$).

Complex impedance: Inductor

$$i_{L} = I_{m} \sin(\omega t + \theta) \qquad v_{L} = L \frac{di_{L}}{dt} = \omega L I_{m} \cos(\omega t + \theta)$$

$$\mathbf{I}_{L} = I_{m} \angle \theta - 90^{\circ} \qquad \mathbf{V}_{L} = \omega L I_{m} \angle \theta = V_{m} \angle \theta$$

$$\mathbf{V}_{L} = (\omega L \angle 90^{\circ}) \times \mathbf{I}_{L} \qquad \mathbf{V}_{L} = j\omega L \times \mathbf{I}_{L}$$

$$Z_{L} = j\omega L = \omega L \angle 90^{\circ}$$

$$\mathbf{V}_{L} = Z_{L} \mathbf{I}_{L}$$

Complex impedance: Capacitor

$$v_C = V_m \sin(\omega t + \theta)$$

$$i_C = C \frac{dv_C}{dt} = \omega C V_m \cos(\omega t + \theta)$$

$$\mathbf{V}_C = V_m \angle \theta - 90^\circ, \quad \mathbf{I}_C = \omega C V_m \angle \theta = I_m \angle \theta$$

$$\mathbf{I}_C = (\omega C \angle 90^\circ) \times \mathbf{V}_C \qquad \mathbf{V}_C = \frac{1}{\omega C} \angle - 90^\circ \times \mathbf{I}_C$$

$$Z_C = \frac{1}{\omega C} \angle - 90^\circ = -j \frac{1}{\omega C} = \frac{1}{j\omega C}$$

$$\mathbf{V}_C = Z_C \mathbf{I}_C$$

Chapter 5

Kirchhoff's Laws in Phasor Form

We can apply KVL directly to phasors. The sum of the phasor voltages equals zero for any closed path.

The sum of the phasor currents entering a node must equal the sum of the phasor currents leaving. (KCL)

Chapter 5 Steady-State Sinusoidal Analysis

Circuit Analysis Using Phasors and Impedances

- Replace the time descriptions of the voltage and current sources with the corresponding phasors. (All of the sources must have the same frequency.)
- 2. Replace inductances by their complex impedances $Z_L = j\omega L$. Replace capacitances by their complex impedances $Z_C = 1/(j\omega C)$. Resistances have impedances equal to their resistances.
- 3. Analyze the circuit using any of the techniques studied earlier in Chapter 2, performing the calculations with complex arithmetic.

Chapter 5 Steady-State Sinusoidal Analysis

$$\begin{split} Z_{RC} &= R//Z_C = \frac{1}{1/R + 1/Z_c} = \frac{1}{1/100 + 1/(-j100)} \\ &= \frac{1}{0.01 + j0.01} = \frac{1\angle 0^\circ}{0.01414\angle 45^\circ} = 70.7\angle - 45^\circ = 50 - j50 \\ Vc &= V_s \frac{Z_{RC}}{Z_L + Z_{RC}} \\ &= 10\angle - 90^\circ \frac{70.71\angle - 45^\circ}{j100 + 50 - j50} \\ &= 10\angle - 90^\circ \frac{70.71\angle - 45^\circ}{50 + j50} \\ &= 10\angle - 90^\circ \frac{70.71\angle - 45^\circ}{70.71\angle 45^\circ} \\ &= 10\angle - 180^\circ \\ \\ &= 10\angle - 180^\circ \\$$

$$(0.1 + j0.2)V_1 - j0.2V_2 = -j2$$

$$-j0.2V_1 + j0.1V_2 = 1.5$$

$$(0.1 - j0.2)V_1 = 3 - j2$$

$$V_1 = \frac{3 - j2}{0.1 - j0.2} = 16.1 \angle 29.7^\circ$$

$$V_1(t) = 16.1 \cos(100t + 29.7^\circ)$$
Chapter 5

Power in AC Circuits

Figure 5.22 A voltage source delivering power to a load impedance Z = R + jX.

$$I = \frac{V}{Z} = \frac{V_m \angle 0^{\circ}}{|Z| \angle \theta^{\circ}} = I_m \angle -\theta^{\circ} \qquad I_m = \frac{V_m}{|Z|}$$

Purely resistive circuits

Figure 5.23 Current, voltage, and power versus time for a purely resistive load

Pure energy-storage elements

Figure 5.24 Current, voltage, and power versus time for pure energy-storage elements

AC Power Calculations

Average power

$$P = V_{\rm rms} I_{\rm rms} \cos(\theta) \quad W$$

Power factor

$$PF = cos(\theta)$$

Power angle

$$\theta = \theta_{v} - \theta_{i}$$

Reactive power
$$Q = V_{\text{rms}} I_{\text{rms}} \sin(\theta)$$
 VAR

Apparent power

$$P_a = V_{rms}I_{rms}$$
 VA

Relationships

$$P^2 + Q^2 = P_a^2 = (V_{\rm rms}I_{\rm rms})^2$$

$$P = I_{\rm rms}^2 F$$

$$P = I_{\rm rms}^2 R \qquad \qquad P = \frac{V_{\rm Rrms}^2}{R}$$

$$Q = I_{\rm rms}^2 X$$

$$Q = I_{\rm rms}^2 X \qquad \qquad Q = \frac{V_{\rm \chi rms}^2}{X}$$

Power Triangle

(a) Inductive load (θ positive)

(b) Capacitive load (θ negative)

Figure 5.25 Power triangles for inductive and capacitive loads.

Impedance Triangle Imaginary Real Figure 5.26 The load impedance in the complex plane. Chapter 5 Steady-State Sinusoidal Analysis

$$P_a = \sqrt{P^2 + Q^2} = 10.61kVA$$

$$I_{rms} = \frac{P_a}{V_{rms}} = \frac{10.61kVA}{1kV} = 10.61A$$

Figure 5.31 Phasor diagram for Example 5.10.

Chapter 5
Steady-State Sinusoidal Analysis

Example 5.11 Power factor correction

$$P = 50kW$$
, $f = 60Hz$, $V_{rms} = 10kV$

$$PF = 0.6$$
 $\Rightarrow \theta_L = \arccos(0.6) = 53.13^{\circ}$

$$Q_L = P \tan(\theta_L) = 66.67 kVAR$$

C=? (in Parallel) to make PF=0.9

Chapter 5

Example 5.11 Power factor correction

After adding the capacitor

$$\theta_{new} = \arccos(0.9) = 25.84^{\circ}$$

$$Q_{new} = P \tan(\theta_{new}) = 24.22kVAR$$

$$Q_C = Q_{new} - Q_L = -42.45kVAR$$

$$X_C = \frac{V_{rms}^2}{Q_C} = \frac{(10^4)^2}{-42450} = -2356$$

$$C = \frac{1}{\omega |X_C|} = 1.126 \mu F$$

Chapter 5
Steady-State Sinusoidal Analysis

Thevenin equivalent circuits

Figure 5.32 The Thévenin equivalent for an ac circuit consists of a phasor voltage source \mathbf{V}_t in series with a complex impedance Z_t .

Chapter 5 eady-State Sinusoidal Analysis

The Thévenin voltage is equal to the open-circuit phasor voltage of the original circuit.

$$\mathbf{V}_{t} = \mathbf{V}_{oc}$$

We can find the Thévenin impedance by zeroing the independent sources and determining the impedance looking into the circuit terminals.

Chapter 5

The Thévenin impedance equals the open-circuit voltage divided by the short-circuit current.

$$Z_t = \frac{\mathbf{V}_{oc}}{\mathbf{I}_{sc}} = \frac{\mathbf{V}_t}{\mathbf{I}_{sc}}$$

$$\mathbf{I}_{n} = \mathbf{I}_{sc}$$

Steady-State Sinusoidal Analysi

Maximum Power Transfer Conditions

If the load can take on any complex value, maximum power transfer is attained for a load impedance equal to the complex conjugate of the Thévenin impedance.

Why?

If the load is required to be a pure resistance, maximum power transfer is attained for a load resistance equal to the magnitude of the Thévenin impedance.

Chapter 5

Example 5.13 (b)

$$\begin{split} R_{load} = & |Z_t| = 70.71 \Omega \\ I = & \frac{V_t}{Z_t + Z_{load}} = \frac{100 \angle -90^\circ}{50 - j50 + 70.71} = 0.76541 \angle -67.5^\circ \\ P = & I_{rms}^2 R_{load} = (\frac{0.7654}{\sqrt{2}})^2 (70.71) = 20.71 W \end{split}$$

Chapter 5
Steady-State Sinusoidal Analysis

Exercise 5.14: find equivalent circuit $\mathbf{v}_s = 100 / 0^{\circ} \qquad \qquad \begin{array}{c} +j100 \ \Omega \\ \hline \end{array}$