12ML:: CHEAT SHEET

The I2ML: Introduction to Machine Learning course offers an introductory and applied overview of "supervised" Machine Learning. It is organized as a digital lecture.

Basic Notations

Important **notations** used in the whole course

 \mathcal{X} : p-dim. input space

Usually we assume $\mathcal{X} = \mathbb{R}^p$, but categorical **features** can occur as well.

 ${\cal Y}$: target space

For example, $\mathcal{Y}=\mathbb{R}$, $\mathcal{Y}=\{0,1\}$, $\mathcal{Y}=\{-1,1\}$, $\mathcal{Y}=\{1,\ldots,g\}$ or $\mathcal{Y}=\{\operatorname{label}_1,\ldots,\operatorname{label}_g\}$.

x : feature vector

$$\mathbf{x} = (x_1, \ldots, x_p)^T \in \mathcal{X}.$$

y: target / label / output

 $y \in \mathcal{Y}$.

 \mathbb{P}_{xy} : probability distribution

Joint probability distribution on $\mathcal{X} \times \mathcal{Y}$.

p(x, y) or $p(x, y | \theta)$: joint pdf

Joint probability density function for \mathbf{x} and y.

Note: This lecture is mainly developed from a frequentist perspective. If parameters appear behind the |, this is for better reading, and does not imply that we condition on them in a Bayesian sense (but this notation would actually make a Bayesian treatment simple). So formally, $p(\mathbf{x}|\theta)$ should usually be understood to mean $p_{\theta}(\mathbf{x})$ or $p(\mathbf{x},\theta)$ or $p(\mathbf{x};\theta)$.

Definitions

 $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$: *i*-th **observation** or **instance**

 $\mathcal{D} = \left\{ \left(\mathbf{x}^{(1)}, \mathit{y}^{(1)}
ight), \ldots, \left(\mathbf{x}^{(n)}, \mathit{y}^{(n)}
ight)
ight\}$

data set with *n* observations.

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}}$: data for training and testing

Often, $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \dot{\cup} \; \mathcal{D}_{\mathsf{test}}$

 $f(\mathbf{x})$ or $f(\mathbf{x}\mid oldsymbol{ heta})\in \mathbb{R}$ or \mathbb{R}^g : prediction function (**model**)

We might suppress heta in notation.

 $\mathit{h}(\mathsf{x}) \; \mathsf{or} \; \mathit{h}(\mathsf{x}|oldsymbol{ heta}) \in \mathcal{Y}$

Discrete prediction for classification.

 $oldsymbol{ heta} \in \Theta$: model $oldsymbol{\mathsf{parameters}}$

Some models may traditionally use different symbols.

 \mathcal{H} : hypothesis space

f lives here, restricts the functional form of f.

$$\epsilon = y - f(\mathbf{x}) \text{ or } \epsilon^{(i)} = y^{(i)} - f(\mathbf{x}^{(i)})$$

Residual in regression.

 $yf(\mathbf{x})$ or $y^{(i)}f(\mathbf{x}^{(i)})$: **margin** for binary classification

With, $\mathcal{Y}=\{-1,1\}.$

 $\pi_k(\mathbf{x}) = \mathbb{P}(y = k \mid \mathbf{x})$: **posterior probability** for class k, given x

In case of binary labels we might abbreviate $\pi(\mathbf{x}) = \mathbb{P}(y=1 \mid \mathbf{x})$.

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k

In case of binary labels we might abbreviate $\pi = \mathbb{P}(y=1)$.

 $\mathcal{L}(m{ heta})$ and $\ell(m{ heta})$: Likelihood and log-Likelihood for a parameter $m{ heta}$

These are based on a statistical model.

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(\mathbf{x})$, $\hat{\pi}(\mathbf{x})$ and $\hat{\boldsymbol{\theta}}$

These are learned functions and parameters (These are estimators of corresponding functions and parameters).

Note: With a slight abuse of notation we write random variables, e.g., \mathbf{x} and \mathbf{y} , in lowercase, as normal variables or function arguments. The context will make clear what is meant.

Important terms

Model: $f: \mathcal{X} \to \mathbb{R}^g$ is a function that maps feature vectors to predictions.

Learner: takes a data set with features and outputs (training set,

 $f \in \mathcal{X} \times \mathcal{Y}$ and produces a **model** (which is a function $f : \mathcal{X} \to \mathbb{R}^g$)

Learning = Representation + Evaluation + Optimization.

Representation: (Hypothesis space) Defines which kind of model

structure of f can be learned from the data.

Example: Linear functions, Decision trees etc.

Evaluation: A metric that quantifies how well a specific model performs

on a given data set. Allows us to rank candidate models in order to

choose the best one.

Example: Squared error, Likelihood etc.

Optimization: Efficiently searches the hypothesis space for good models.

Example: Gradient descent, Quadratic programming etc.

Loss function: The "goodness" of a prediction f(x) is measured by

a loss function L(y, f(x))

Through **loss**, we calculate the prediction error and the choice of the loss has a major influence on the final model

Risk Minimization: The ability of a model f to reproduce the association

between x and y that is present in the data \mathcal{D} can be measured by the

average loss: the empirical risk.

$$\mathcal{R}_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$

Learning then amounts to **empirical risk minimization** – figuring out which model f has the smallest average loss:

$$\hat{f} = rg \min_{f \in \mathcal{H}} \mathcal{R}_{emp}(f).$$