CURS II

§ 4. RELAŢII DE ECHIVALENŢĂ

Fie A şi B două mulțimi. O submulțime $\rho \subseteq A$ x B se numește *relație binară* între A şi B. Dacă (a, b) $\in \rho$, unde a \in A şi b \in B, spunem că *a este în relația* ρ *cu b* și notăm a ρ b. Când scriem a ρ b înseamnă că elementele a \in A şi b \in B nu sunt în relația ρ .

Exemple.

- 1) Dacă $f: A \to B$ este o funcție, atunci mulțimea $G_f = \{(a,b) \mid a \in A, b \in B \text{ si } b = f(a)\}$ este o relație binară între A și B. Mulțimea G_f se numește *graficul* funcției f. Invers, dacă $G \subseteq A$ x B este o relație între A și B cu proprietatea că oricare ar f $a \in A$ există un unic $b \in B$ astfel încât $(a,b) \in G$, atunci putem defini funcția $f: A \to B$ așa încât f(a) = b. Se observă imediat că $G_f = G$.
- 2) Fie A o mulțime nevidă și $\rho = \{(a, X) \in A \times \mathcal{P}(A) \mid a \in X\}$. Aceasta este relația de apartenență între elementele lui A și submulțimile lui A. Dacă $a \in A$ și $X \in \mathcal{P}(A)$, atunci a ρ X este echivalent cu $a \in X$.

Când B = A, o relație binară ρ între A și A se numește simplu *relație binară pe mulțimea A*. O relație binară pe o mulțime se notează de regulă cu unul din simbolurile: ρ , \sim , \Re , \equiv , etc.

Exemple.

- 1) Fie A o mulțime oarecare. Mulțimea $\Delta_A = \{(a, a) \mid a \in A\}$ se numește *diagonala* mulțimii A și este o relație binară pe A.
 - 2) Dacă A este o mulțime de numere naturale, atunci mulțimea

$$" = \{ (m, n) \in A \times A \mid m < n \}$$

este o relație binară pe A. În particular, dacă $A = \{1, 2, 3, 4\}$, atunci "<" = $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$.

- **Definiția 4.1.** O relație binară pe A, notată " ρ ", se numește *relație de echivalență* dacă următoarele condiții sunt verificate pentru orice a, b, $c \in A$:
 - i) a ρ a (reflexivitate);
 - ii) a ρ b \Rightarrow b ρ a (simetrie);
 - iii) a ρ b și b ρ c \Rightarrow a ρ c (tranzitivitate).

Exemple.

1) Dacă se consideră mulțimea numerelor întregi \mathbb{Z} și $n \ge 1$ un număr natural, atunci relația binară notată " $\equiv \pmod{n}$ " (congruența modulo n):

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b$$

este o relație de echivalență pe Z.

2) Dacă se consideră pe mulțimea **R** a numerelor reale relația "~":

$$a \sim b \Leftrightarrow a - b \in \mathbf{Z}$$
,

aceasta este o relație de echivalență pe **R**.

Dată o relație de echivalență " ρ " pe A, pentru orice $a \in A$ definim mulțimea:

$$[a] = \{b \in A \mid b \cap a\}.$$

Aceasta se numește *clasa de echivalență* a elementului *a*.

Clasa de echivalență a elementului a se mai notează și astfel: â, ã, ā, etc.

Teorema 4.2. Fie A o mulțime nevidă și " ρ " o relație de echivalență pe A. Atunci clasele de echivalență determinate de " ρ " pe A au proprietățile:

- 1) $a \in [a]$ oricare ar fi $a \in A$. În particular, $[a] \neq \emptyset$.
- 2) [a] = [b] \Leftrightarrow a ρ b.
- 3) Dacă [a] și [b] sunt două clase de echivalență, atunci

$$[a] = [b]$$
 sau $[a] \cap [b] = \emptyset$.

4) Reuniunea tuturor claselor de echivalență este egală cu A.

Demonstrație. 1) Deoarece a ρ a rezultă că $[a] \neq \emptyset$.

- 2) Dacă [a] = [b], cum $a \in A$, atunci $a \in [b]$ și deci $a \rho b$. Invers, presupunem că $a \rho b$. Fie $x \in [a]$; deci $x \rho a$ și " ρ " este tranzitivă; obținem că $x \rho b$, adică $x \in [b]$. Deci [a] \subseteq [b]. Similar rezultă [b] \subseteq [a] și deci avem egalitatea [a] = [b].
- 3) Presupunem că $[a] \cap [b] \neq \emptyset$. Deci există $x \in [a] \cap [b]$. Atunci $x \rho a$ și $x \rho b$. Cum " ρ " este simetrică avem a ρx și deci a ρb . Din afirmația 2) rezultă că [a] = [b].
 - 4) Rezultă din 1).

Definiția 4.3. Fie A o mulțime nevidă și " ρ " o relație de echivalență pe A. O familie de elemente din A, $(a_i)_{i\in I}$, se numește *sistem complet și independent de reprezentanți* (pe scurt, SCIR) relativ la relația de echivalență ρ dacă are următoarele proprietăți:

- i) oricare ar fi $i \neq j$, $a_i \mid \rho \mid a_j$.
- ii) oricare ar fi $a \in A$, există $i \in I$ astfel încât a ρ a_i .

Se observă că i) și ii) pot fi formulate concentrat astfel: oricare ar fi $a \in A$ există un unic $i \in I$ astfel încât a ρ a_i .

Fiind dată o relație de echivalență " ρ " pe mulțimea nevidă A, există întotdeauna un sistem de reprezentanți asociat relației " ρ ". Într-adevăr, fie $(C_i)_{i\in I}$ mulțimea tuturor claselor de echivalență asociate relației " ρ ". Cum $C_i \neq \emptyset$ oricare ar fi $i \in I$, conform axiomei alegerii există o familie de elemente $(a_i)_{i\in I}$ astfel încât $a_i \in C_i$, oricare ar fi $i \in I$. Evident că $(a_i)_{i\in I}$ este un sistem de reprezentanți pentru relația " ρ ". Trebuie să observăm că acest sistem de reprezentanți nu este unic.

Dacă $(a_i)_{i\in I}$ este un sistem de reprezentanți relativ la relația "p", din Teorema 4.2 rezultă că $A=\bigcup [a_i]$ iar mulțimile $[a_i], i\in I$, sunt disjuncte două câte două. $i\in I$

Exemplu. Pe mulțimea **Z** a numerelor întregi considerăm relația "~":

$$a \sim b \Leftrightarrow |a| = |b|$$
.

Se observă imediat că "~" este o relație de echivalență pe **Z**. Dacă $a \in \mathbf{Z}$ avem: $[a] = \{a, -a\}$, dacă $a \neq 0$ și $[a] = \{0\}$, dacă a = 0. Un sistem de reprezentanți poate fi considerat sistemul de numere: 0, 1, 2, 3, ..., adică mulțimea numerelor naturale **N**. Un alt sistem de reprezentanți poate fi considerat și sistemul de numere 0, -1, -2, -3, ..., adică mulțimea numerelor întregi negative.

Definiția 4.4. Dată relația de echivalență " ρ " pe A, mulțimea claselor de echivalență determinate de " ρ " pe A se notează cu A/ ρ și se numește *mulțimea factor* (sau *mulțimea cât*) a lui A prin relația " ρ ". Funcția p : A \rightarrow A/ ρ , p(a) = [a], este o funcție surjectivă și se numește *proiecția* (*surjecția*) *canonică* a lui A pe mulțimea factor A/ ρ .

Definiția 4.5. O *partiție* a unei mulțimi nevide A este o familie de submulțimi nevide disjuncte două câte două ale lui A și a cărei reuniune este A.

Exemplu. Mulțimile $A_n = \{2n, 2n + 1\}, n \in \mathbb{N}$, formează o partiție a lui \mathbb{N} .

Mulţimea factor A/ρ este o partiţie a lui A, deci o relaţie de echivalenţă pe A dă naştere unei partiţii. Reciproc, dacă $(A_i)_{i\in I}$ este o partiţie a lui A definim o relaţie de echivalenţă pe A astfel: a \sim b dacă şi numai dacă există i \in I astfel încât a, b \in A_i . Clasele de echivalenţă ale lui " \sim " sunt chiar submulţimile A_i . Aşadar putem enunţa următorul rezultat:

Propoziția 4.6. Dacă A este o mulțime nevidă, atunci asocierea $\rho \to A/\rho$ definește o bijecție de la mulțimea relațiilor de echivalență pe A la mulțimea partițiilor lui A. *Demonstrație*. Exercițiu.

Definiția 4.7. Fie $f: A \to B$ o funcție. Definim pe A o relație ρ_f astfel:

$$a \rho_f a' \Leftrightarrow f(a) = f(a').$$

ρ_f se numește *relația asociată funcției f*.

Se observă că ρ_f este o relație de echivalență pe A, iar mulțimea factor A/ρ_f se descrie astfel:

$$A/\rho_f = \{ f^{-1}(b) \mid b \in Im f \}.$$

Exemplu. Relația de echivalență pe ${\bf R}$ asociată funcției $f: {\bf R} \to {\bf C}, \ f(x) = \cos(2\pi x) + i\sin(2\pi x)$ este următoarea: $x \ \rho_f \ y$ dacă și numai dacă $x - y \in {\bf Z}$.

În general, orice relație de echivalență este asociată unei funcții. Mai precis, dacă ρ este o relație de echivalență pe o mulțime nevidă A, iar $p: A \to A/\rho$ este *proiecția* (surjecția) canonică, atunci $\rho = \rho_p$.

Teorema 4.8. (<u>Proprietatea de universalitate a mulțimilor factor</u>) Fie A o mulțime nevidă și " ρ " o relație de echivalență pe A. Fie $f: A \to B$ o funcție și " ρ_f " relația de echivalență pe A asociată funcției f. Dacă $\rho \subseteq \rho_f$, atunci există o unică funcției $\overline{f}: A/\rho \to B$ cu proprietatea că \overline{f} o p = f. Mai mult:

- 1) \overline{f} este injectivă $\Leftrightarrow \rho = \rho_f$.
- 2) \bar{f} este surjectivă \Leftrightarrow f este surjectivă.

Demonstrație. Definim $\overline{f}: A/\rho \to B$ astfel: $\overline{f}([a]) = f(a)$. Mai întâi vom arăta că funcția este bine definită, adică [a] = [b] implică f(a) = f(b). Deoarece [a] = [b] rezultă că a ρ b și cum $\rho \subseteq \rho_f$ obținem a ρ_f b, deci $\underline{f}(a) = f(b)$. Este clar acum că \overline{f} o p = f. Din această relație rezultă și unicitatea funcției \overline{f} .

- 1) \overline{f} este injectivă dacă și numai dacă $\overline{f}([a]) = \overline{f}([b]) \Rightarrow [a] = [b]$. Dar $\overline{f}([a]) = \overline{f}([b]) \Leftrightarrow f(a) = f(b) \Leftrightarrow a \rho_f b$ și ca să obținem [a] = [b] trebuie ca $\rho_f \subseteq \rho$, deci egalitate.
 - 2) Se observă că Im $\overline{f} = \text{Im } f$.

Corolarul 4.9. Fie A o mulțime nevidă și $f: A \to B$ o funcție *surjectivă*. Atunci există o funcție bijectivă $\overline{f}: A/\rho_f \to B$.