INDIAN INSTITUTE OF TECHNOLOGY, KANPUR DEPARTMENT OF MATHEMATICS & STATISTICS

MSO 202/A COMPLEX ANALYSIS ASSIGNMENT 4

- Q1. Show that the sequence, $z_n = a_n + ib_n$, where a_n and b_n are real numbers, is convergent if and only if a_n and b_n are convergent.
- **Q2.** Are the following sequences convergent or divergent?
- (i) $z_n = \sin(n\pi/4) + i^n$, (ii) $z_n = (0.9 + 0.1i)^{2n}$.
- Q3. Are the following series convergent?
- (i) $\sum_{n=1}^{\infty} 1/\sqrt{n}$ (ii) $\sum_{n=0}^{\infty} (n-i)/(3n+2i)$
- **Q4.** Let $|z_{n+1}/z_n| \leq q < 1$, so that the series $\sum_{n=1}^{\infty} z_n$ converges by the ratio test. Show that the remainder $R_n = \sum_{j=n+1}^{\infty} z_j$ satisfies the inequality $|R_n| \leq |z_{n+1}|/(1-q)$.
- Q5. Show that if $\sum a_n z^n$ has the radius of convergence R then $\sum a_n z^{2n}$ has the radius of convergence \sqrt{R} .
- **Q6.** Find the center and the radius of convergence of the following series. (i) $\sum_{n=1}^{\infty} (z+i)^n/n^2$ (ii) $\sum_{n=0}^{\infty} (a/b)^n z^n$ (iii) $\sum_{n=1}^{\infty} (-1)^{n+1} (z^n/n)$.

- Q7. Use the fact that the radii of the convergence of the series and its derived or integrated series are the same, find the radius of convergence of the series.

(i)
$$\sum_{n=2}^{\infty} \frac{n(n-1)}{3^n} (z-2i)^n$$
, (ii) $\sum_{n=1}^{\infty} \frac{-7)^n}{n(n+1)(n+2)} z^{2n}$.

1

- **Q8.** Find the Taylor or Maclaurin series of f(z), with the center z_0 , where

- (i) $f(z) = e^{-z^2/2}$, $z_0 = 0$, (ii) f(z) = Ln (1-z), $z_0 = i$, (iii) $f(z) = z^6 z^4 + z^2 1$, $z_0 = 1$.

Q9. Let

$$\sec z = E_0 - \frac{E_2}{2!}z^2 + \frac{E_4}{4!}z^4 - + \cdots$$

Show that $E_0 = 1$, $E_2 = -1$, $E_4 = 5$. These E_{2n} are called Euler numbers.

Q10. Developing $1/\sqrt{1-z^2}$ and integrating, show that

$$\sin^{-1} z = z + \left(\frac{1}{2}\right) \frac{z^3}{3} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right) \frac{z^5}{5} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right) \frac{z^7}{7} + \cdots, \quad (|z| < 1).$$