Table of Contents

Table of Contents	1
EnergyPlus Testing with Global Energy Balance Test	2
1 Test Objectives and Overview	3
1.1 Test Type: Comparative	3
1.2 Test Suite: EnergyPlus Global Energy Balance Test Description	3
1.2.1 Base Case Building Description	3
1.2.2 Adiabatic Surfaces	3
1.3 Window Air Conditioner Global Energy Balance Test	4
1.3.1 Internal Loads	4
1.3.1.1 Daily Comparison Test	4
1.3.1.2 Annual Comparison Test	
1.3.2 Air Distribution System 1.3.3 HVAC Cooling System	
1.3.4 Zone Heating System	
1.3.5 Weather Data	
1.3.5.1 Daily Comparison Test	5
1.3.5.2 Annual Comparison Test	
1.3.6 Summary of Test Cases	5
1.3.7 Simulation and Reporting Period	6
1.3.8 Output Data Requirements	6
1.4 Hydronic Heating/Cooling System Global Energy Balance Test	6
1.4.1 Internal Loads 1.4.1.1 Daily Comparison Test	<u>-</u> 6
1.4.1.2 Annual Comparison Test	
1.4.2 Air Distribution System	7
1.4.3 Central Plant Heating Equipment	7
1.4.4 Central Plant Cooling Equipment	7
1.4.5 Weather Data	8
1.4.5.1 Design Day Conditions 1.4.5.2 Daily Comparison Test	
1.4.5.3 Annual Comparison Test	9
1.4.6 Summary of Test Cases	S
1.4.7 Simulation and Reporting Period	9
1.4.8 Output Data Requirements	9
2 Modeler Report	10
2.1 Modeling Methodology	10
2.1.1 Window Air Conditioner	10
2.1.2 Hydronic Heating/Cooling System	11
2.2 Modeling Difficulties	14
2.2.1 Building Envelope Construction	14
2.3 Software Errors Discovered	15
2.4 Results	15
2.4.1 Window Air Conditioner	15
2.4.1.1 Daily Comparison Test	15
2.4.1.2 Annual Comparison Test	20 2 6
2.4.2 Hydronic Heating/Cooling System 2.4.2.1 Daily Comparison Test	26
2.4.2.2 Annual Comparison Test	32
3 Conclusions	39
4 References	40
,	41
5 Appendix A	수 I

EnergyPlus Testing with Global Energy Balance Test

EnergyPlus Version 8.3.0-b45b06b780 Automatically Generated May 2015

Prepared for:

U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Building Technologies Washington, D.C.

Originally Prepared by: Robert H. Henninger and Michael J. Witte GARD Analytics, Inc. 115 S. Wilke Road, Suite 115 Arlington Heights, IL 60005 USA www.gard.com

This report was developed based upon funding from the Alliance for Sustainable Energy, LLC, Managing and Operating Contractor for the National Renewable Energy Laboratory for the U.S. Department of Energy. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the sponsor. Earlier work was supported by the Ernest Orlando Lawrence Berkeley National Laboratory, and by the National Energy Technology Laboratory and the National Renewable Energy Laboratory by subcontract through the University of Central Florida/Florida Solar Energy Center.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or services by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1 Test Objectives and Overview

1.1 Test Type: Comparative

The EnergyPlus Global Energy Balance Test checks the accuracy of EnergyPlus in regards to energy balances at various boundary volumes when simulating the operation of HVAC systems and equipment. The test procedure makes use of ANSI/ASHRAE Standard 140-2011 procedures for generating hourly equipment loads and ASHRAE Standard 140-2011 weather files. The test suites described within this report are for testing of:

- EnergyPlus DX cooling system referred to within EnergyPlus by the object named ZoneHVAC:WindowAirConditioner with electric baseboard heat (ZoneHVAC:Baseboard:Convective:Electric)
- EnergyPlus hydronic heating/cooling system which utilizes chilled water, hot water and condenser water loops along with an electric chiller (Chiller:Electric:EIR), cooling tower (CoolingTower:SingleSpeed), and gas-fired boiler (Boiler:HotWater to provide cooling and heating to a 4-pipe fan coil system (ZoneHVAC:FourPipeFanCoil).

1.2 Test Suite: EnergyPlus Global Energy Balance Test Description

The EnergyPlus Global Energy Balance Test makes use of the basic test building geometry and envelope described as Case E100 in Section 5.3.1 of ANSI/ASHRAE Standard 140-2011, *Standard Method of Test for the Evaluation of Building Energy Analysis Computer* Programs.

1.2.1 Base Case Building Description

The basic test building (Figure 1) is a rectangular $48 \ m^2$ single zone (8 m wide x 6 m long x 2.7 m high) with no interior partitions and no windows. The building as specified in Standard 140 is intended as a near-adiabatic cell with cooling and heating loads driven by user specified internal gains. For Global Energy Balance Test purposes, the building envelope is made totally adiabatic so that the cooling or heating load in the space during any hour of the simulation is solely due to internal loads. How this was done in EnergyPlus is discussed further in Section 1.2.2. Material properties for the building envelope as specified in Standard 140 are described below. For further details on building geometry and building envelope thermal properties refer to Section 5.3.1 of ANSI/ASHRAE Standard 140.

Figure 1 Base Building Geometry - Isometric View of Southeast Corner

Wall, Roof and Floor Construction:

Element	k ($\frac{W}{mK}$)	Thickness (m)	U ($rac{W}{m^2K}$)	R ($rac{m^2K}{W}$)
Int. Surface Coeff.			8.290	0.121
Insulation	0.010	1.000	0.010	100.000
Ext. Surface Coeff.			29.300	0.034
Overall, air-to-air			0.010	100.155

Opaque Surface Radiative Properties:

	Interior Surface	Exterior Surface
Solar Absorptance	0.6	0.1
Infrared Emittance	0.9	0.9

Infiltration: None

1.2.2 Adiabatic Surfaces

An opaque exterior surface can be made adiabatic in EnergyPlus by specifying the outside face environment of the exterior surface to be another surface

and then setting the object of the outside face environment to be the exterior surface itself. In other words, the surface is forced to see itself. As an example, the input stream for specifying the east facing exterior wall as an adiabatic surface is as follows:

```
BuildingSurface:Detailed,

ZONE SURFACE EAST, !- Name

WALL, !- Surface Type

LTWALL, !- Construction Name

ZONE ONE, !- Zone Name

Surface, !- Outside Boundary Condition

ZONE SURFACE EAST, !- Outside Boundary Condition Object

NoSun, !- Sun Exposure

NoWind, !- Wind Exposure

0.0, !- View Factor to Ground

4, !- Number of Vertices

8.00, 0.00, 2.70, !- X,Y,Z ==> Vertex 1 {m}

8.00, 0.00, 0.00, !- X,Y,Z ==> Vertex 3 {m}

8.00, 6.00, 0.00, !- X,Y,Z ==> Vertex 4 {m}
```

This approach was used on all 6 exterior surfaces of the of the Base Case building to make the building exterior adiabatic and ensure that the resulting cooling load or heating load in the space each hour was always exactly equal to the total of the internal space gains.

1.3 Window Air Conditioner Global Energy Balance Test

1.3.1 Internal Loads

Two different types of tests were conducted with varying internal loads: a limited daily comparison test with cooling only and an annual comparison test with cooling and heating.

1.3.1.1 Daily Comparison Test

In order to create a cooling load for the cooling system, various internal gain scenarios are imposed on the building interior space according to a fixed schedule which holds the internal load constant throughout a certain test duration. Five types of internal loads (lights, electric equipment, other equipment, gas equipment and steam equipment) which can be modeled by EnergyPlus are tested for sensible, latent, radiant, convective, etc. fractions to test the program's ability to properly transfer these space loads to the HVAC system. Table 1 describes eight test cases (A through H), each of two day duration, and the internal load schedule by day of the simulation. The first day of each case is simulated to allow steady state to be achieved. Energy balances are then done for the second day of each test case. Zone internal gains are assumed to be distributed evenly throughout the zone air. These are internally generated sources of heat that are not related to the operation of the mechanical cooling system or its air distribution fan.

1.3.1.2 Annual Comparison Test

A second test was also performed with internal loads that created either a heating load or cooling load in the space for each month over a 12 month period. A constant space cooling load of 1,000 W/hr was scheduled for the cooling season which ran from May 1st through September 30th. A constant space heating load of –1,000 W/hr was scheduled for the heating season which ran from January 1st through April 30th and October 1st through December 31st. Zone internal gains are assumed to be distributed evenly throughout the zone air. These are internally generated sources of heat that are not related to the operation of the mechanical cooling system or its air distribution fan. Table 2 describes the internal load schedules used for each month of the test (Test Cases I through T).

Table 1 Schedule of Internal Loads for Daily Test Cases – Window	AC System
--	-----------

								Internal Load	Internal Load
			Electric	Electric	Other	Gas	Steam	Fraction	Fraction
			Light Level	Equip. Level	Equip. Level	Equip. Level	Equip. Level	Latent	Radiant
Case	Day	Hours	(W)	(W)	(W)	(W)	(W)		
	1-Jan	1 - 24	0	0	0	0	0	0.0	0.0
Α	2-Jan	1 - 24	0	0	0	0	0	0.0	0.0
	3-Jan	1 - 24	1,000	0	0	0	0	0.0	0.0
В	4-Jan	1 - 24	1,000	0	0	0	0	0.0	0.0
	5-Jan	1 - 24	1,000	1,000	0	0	0	0.0	0.0
С	6-Jan	1 - 24	1,000	1,000	0	0	0	0.0	0.0
	7-Jan	1 - 24	1,000	1,000	1,000	0	0	0.0	0.0
D	8-Jan	1 - 24	1,000	1,000	1,000	0	0	0.0	0.0
	9-Jan	1 - 24	1,000	1,000	1,000	1,000	0	0.0	0.0
E	10-Jan	1 - 24	1,000	1,000	1,000	1,000	0	0.0	0.0
	11-Jan	1 - 24	1,000	1,000	1,000	1,000	1,000	0.0	0.0
F	12-Jan	1 - 24	1,000	1,000	1,000	1,000	1,000	0.0	0.0
	13-Jan	1 - 24	0	0	1,000	0	0	0.0	0.2
G	14-Jan	1 - 24	0	0	1,000	0	0	0.0	0.2
	15-Jan	1 - 24	0	0	1,000	0	0	0.3	0.0
Н	16-Jan	1 - 24	0	0	1,000	0	0	0.3	0.0

Table 2 Schedule of Internal Loads for Annual Test Case - Window AC System with Baseboard Heat

			Internal Load
		Other	Amount
		Equip. Level	Convective
Case	Month	(W)	(%)
ļ	Jan	-1,000	100.0
J	Feb	-1,000	100.0
K	Mar	-1,000	100.0
L	Apr	-1,000	100.0
М	May	1,000	100.0
N	Jun	1,000	100.0
0	Jul	1,000	100.0
Р	Aug	1,000	100.0
Q	Sep	1,000	100.0
R	Oct	-1,000	100.0
S	Nov	-1,000	100.0
Т	Dec	-1,000	100.0

1.3.2 Air Distribution System

A simple and ideal air distribution system is used with the following characteristics to provide whatever cooling the space needs in order to maintain the setpoint temperature:

- 100% convective air system
- 100% efficient with no duct losses and no capacity limitation
- · Zone air is perfectly mixed
- Supply air fan has the following characteristics
 - · Cycles on when compressor operates
 - Flow rate = 0.425 $\frac{m^3}{s}$
 - · Located in the air stream and adds heat to the air stream
 - Fan efficiency = 0.5
 - o Delta pressure = 10 Pa
 - Motor efficiency = 0.9
- No outside air; no exhaust air
- Non-proportional-type thermostat, heat always off, cooling on if zone air temperature 22.2°C (72°F)

1.3.3 HVAC Cooling System

The mechanical cooling system specified in Standard 140 is a simple unitary vapor compression cooling system with air cooled condenser and indoor evaporator coil, 100% convective air system, no outside air or exhaust air, single speed, draw-through air distribution fan, indoor and outdoor fans cycle on/off with compressor, no cylinder unloading, no hot gas bypass, crankcase heater and other auxiliary energy = 0. Performance characteristics at ARI rating conditions of 35.0°C outdoor dry-bulb, 26.7°C cooling coil entering dry-bulb and 19.4°C cooling coil entering wet-bulb as presented in Table 26c of Standard 140 is:

- · Gross Total Capacity 8,818 W
- Airflow 0.425 $\frac{m^3}{s}$
- Compressor Power 1858 W
- Outdoor Fan Power 108 W
- Indoor Fan Power 230 W
- COP (includes outdoor fan) 4.16

1.3.4 Zone Heating System

For the annual comparison test, an electric baseboard convective heating system was added to the zone to provide any hourly heating that the zone required. The heating capacity of the baseboard was set to 1100 W and was assumed to be 100% efficient.

1.3.5 Weather Data

1.3.5.1 Daily Comparison Test

A three-month long (January – March) TMY format weather file provided as part of ANSI/ASHRAE Standard 140-2011 with the file name of CE100A.TM2 was used for the daily test case simulations. The outdoor dry-bulb temperature of 46.1°C is constant for every hour of the three-month long period.

1.3.5.2 Annual Comparison Test

For the 12 month annual simulation test case, a TMY2 format weather file for Chicago O'hare converted to EnergyPlus epw format (IL Chicago TMY2.epw) was used for the simulation.

1.3.6 Summary of Test Cases

Eight test cases (A through H) as summarized in Table 1 are designed to test the accuracy of the EnergyPlus Window AC system to handle internal space gains and the ability of the cooling system to satisfy these loads. Twelve additional test cases (I through T) as summarized in Table 2 perform a similar series of tests but for a one year period.

1.3.7 Simulation and Reporting Period

A 16 day simulation period from January 1 through January 16 was used to cover the full range of scheduled internal loads as described in Table 1. The 12 month annual simulation period which used the internal load schedule described in Table 2 was January 1 through December 31.

1.3.8 Output Data Requirements

The following hourly output data as a minimum are required to test the accuracy of EnergyPlus using the Global Energy Balance Test:

- · Hourly internal load (sensible, latent and total) for each type of internal space gain which is present in Wh
- Hourly space cooling load (sensible, latent and total) in Wh
- · Hourly amount of cooling performed by the DX cooling coil (sensible, latent and total) in Wh
- Hourly HVAC system cooling (sensible, latent and total) delivered to the space in Wh
- · Hourly resulting space temperature in C
- · Hourly electric cooling energy used by the HVAC system
- Hourly electric energy used by the HVAC system supply fan

1.4 Hydronic Heating/Cooling System Global Energy Balance Test

Similar to the Global Energy Balance Test described in Section 1.3 for the Window Air Conditioner, a limited daily comparison test and annual comparison test with varying internal space loads are also prescribed for a typical hydronic heating/cooling system as further described below which contains:

- · Hot water loop containing:
 - · Simple hot water boiler
 - Hot water pump
- · Chilled water loop containing:
 - Water chiller
 - Chilled water pump
- Condenser water loop containing:
 - Single speed cooling tower
 - Condenser water pump
- · Air loop containing:
 - Four-pipe fan coil unit serving one zone
 - · Constant speed fan
 - Water heating coil
 - Water cooling coil

1.4.1 Internal Loads

Two different types of tests were conducted with varying internal loads: a limited daily comparison test and an annual comparison test.

1.4.1.1 Daily Comparison Test

The same eight internal load schedules that were used for the Window Air Conditioner global energy test (see Section 1.3.1.1) are also used here for the limited daily comparison test for the hydronic heating/cooling system except that the magnitude of the internal load is increased to a constant 10,000 W each hour. Table 3 describes Test Cases A through H.

1.4.1.2 Annual Comparison Test

A constant space cooling load of 10,000 W/hr was scheduled for the cooling season which ran from May 1st through September 30th. A constant space heating load of –10,000 W/hr was scheduled for the heating season which ran from January 1st through April 30th and October 1st through December 31st. Zone internal gains are assumed to be distributed evenly throughout the zone air. These are internally generated sources of cooling and heating that are not related to the operation of the mechanical heating or cooling equipment or the 4-pipe fan coil HVAC system. Table 4 describes the internal load schedules used for each month of the test (Test Cases I through T).

Table 3 Schedule of Internal Loads for Daily Test Cases - Hydronic Heating/Cooling System

								Internal Load	Internal Load
			Electric	Electric	Other	Gas	Steam	Fraction	Fraction
			Light Level	Equip. Level	Equip. Level	Equip. Level	Equip. Level	Latent	Radiant
Case	Day	Hours	(W)	(W)	(W)	(W)	(W)		
	1-Jan	1 - 24	0	0	-10,000	0	0	0.0	0.0
Α	2-Jan	1 - 24	0	0	-10,000	0	0	0.0	0.0
	3-Jan	1 - 24	10,000	0	0	0	0	0.0	0.0
В	4-Jan	1 - 24	10,000	0	0	0	0	0.0	0.0
	5-Jan	1 - 24	10,000	10,000	0	0	0	0.0	0.0
С	6-Jan	1 - 24	10,000	10,000	0	0	0	0.0	0.0
	7-Jan	1 - 24	10,000	10,000	10,000	0	0	0.0	0.0
D	8-Jan	1 - 24	10,000	10,000	10,000	0	0	0.0	0.0
	9-Jan	1 - 24	10,000	10,000	10,000	10,000	0	0.0	0.0
E	10-Jan	1 - 24	10,000	10,000	10,000	10,000	0	0.0	0.0
	11-Jan	1 - 24	10,000	10,000	10,000	10,000	10,000	0.0	0.0
F	12-Jan	1 - 24	10,000	10,000	10,000	10,000	10,000	0.0	0.0
	13-Jan	1 - 24	0	0	10,000	0	0	0.0	0.2
G	14-Jan	1 - 24	0	0	10,000	0	0	0.0	0.2
	15-Jan	1 - 24	0	0	10,000	0	0	0.3	0.0
Н	16-Jan	1 - 24	0	0	10,000	0	0	0.3	0.0

Table 4 Schedule of Internal Loads for Annual Test Case - Hydronic Heating/Cooling System

			Internal Load
		Other	Amount
		Equip. Level	Convective
Case	Month	(W)	(%)
I	Jan	-10,000	100.0
J	Feb	-10,000	100.0
K	Mar	-10,000	100.0
L	Apr	-10,000	100.0
М	May	10,000	100.0
N	Jun	10,000	100.0
0	Jul	10,000	100.0
Р	Aug	10,000	100.0
Q	Sep	10,000	100.0
R	Oct	-10,000	100.0
S	Nov	-10,000	100.0
Т	Dec	-10,000	100.0

1.4.2 Air Distribution System

A simple air distribution system was modeled as a 4-pipe fan coil HVAC system (EnergyPlus object ZoneHVAC:FourPipeFanCoil) with the following characteristics to provide whatever heating or cooling the space needs in order to maintain the setpoint temperature:

- 100% convective air system
- 100% efficient with no duct losses and no capacity limitation
- · Zone air is perfectly mixed
- No outside air; no exhaust air
- Indoor circulating fan autosized based on heating and cooling design day conditions (total efficiency = 50%) which operates against a 100 Pa delta pressure and has its motor (motor efficiency = 90%) located in the air stream
- Non-proportional-type single heating/cooling setpoint thermostat set at a temperature of 22.2°C (72°F)
- Heating provided by hot water heating coil and cooling provided by chilled water cooling coil, both of which are autosized based on heating and cooling design conditions.

1.4.3 Central Plant Heating Equipment

The central plant heating equipment was a constant flow natural gas-fired hot water boiler (EnergyPlus object Boiler:HotWater) whose full load heating efficiency is assumed to be 80%. The boiler was autosized by EnergyPlus based on winter design day conditions. Hot water is supplied to a hot water loop which includes the HVAC system heating coil.

Other simulation assumptions for the heating plant included:

- Hot water pump with a motor efficiency of 90% was autosized to operate against a 500,000 Pa head. Motor located outside of fluid and adds no heat
 to fluid..
- Hot water loop piping is assumed to be perfectly insulated such that the entire amount of heating provided by the boiler plus the pump heat during each time increment goes completely to heat the space.
- · Hot water flow is assumed to be constant.
- Boiler was oversized by 10%.

1.4.4 Central Plant Cooling Equipment

Cooling was provided by a water cooled electric water chiller whose full load performance is described by a York Model YCWZ33AB0 water cooled reciprocating chiller as indicated below in Table 5 where data are in English units. Although the performance data shown in Table 5 is for a chiller of specific rated cooling capacity (56.5 tons), it is assumed that a set of capacity and electric consumption performance curves normalized to the standard rated conditions of 44°F (6.67°C) leaving chilled water temperature and 95°F (29.44°C) entering condenser water temperature can be developed and used to simulate the full load and part load conditions of a similar chiller of this type and any cooling capacity rating. The water chiller provides chilled water to a chilled water loop which includes the HVAC system cooling coil. Condenser water is supplied to the chiller condenser from a condenser water loop which includes a cooling tower.

Table 5 Performance Data for Model Water Cooled Electric Reciprocating Chiller (York)

LEAVING CONDENSER WATER TEMPERATURE (°F)

°F		85	5.0			90	.0			95	.0			100	0.0			108	5.0	
-	TONS	KW	MBH	EER	TONS	KW	MBH	EER	TONS	KW	MBH	EER	TONS	KW	MBH	EER	TONS	KW	MBH	EER
	MODEL YCWZ33AB0 IPLV = 17.3																			
40.0	55.3	45.7	820	14.5	53.8	47.8	809	13.5	52.3	49.8	797	12.6	50.7	51.8	785	11.7	49.1	53.8	773	11.0
42.0	57.5	46.0	846	15.0	55.9	48.2	835	13.9	54.4	50.3	824	13.0	52.8	52.4	812	12.1	51.2	54.4	799	11.3
44.0	59.7	46.3	874	15.5	58.1	48.5	863	14.4	56.5	50.7	851	13.4	54.9	52.9	839	12.5	53.2	55.0	826	11.6
45.0	60.8	46.4	888	15.7	59.2	48.7	876	14.6	57.6	50.9	865	13.6	56.0	53.1	852	12.6	54.3	55.3	840	11.8
46.0	61.9	46.5	902	16.0	60.3	48.8	890	14.8	58.7	51.1	878	13.8	57.0	53.4	866	12.8	55.3	55.6	853	12.0
48.0	64.2	46.8	930	16.5	62.6	49.1	918	15.3	60.9	51.5	907	14.2	59.2	53.8	894	13.2	57.5	56.1	881	12.3
50.0	66.6	47.0	959	17.0	64.9	49.4	947	15.8	63.2	51.8	935	14.6	61.5	54.3	923	13.6	59.7	56.6	910	12.7

TONS = total cooling capacity, 12,000 Btu/Hr

KW = electric input, kilowatts

MBH = condenser heat rejection rate, 1000 Btu/Hr

EER = energy efficiency ratio, Btu/W

Water chiller performance data shown in Table 5 is for a 10°F range on both the chilled water and condenser water temperatures. Other simulation assumptions included:

- Chilled water and condenser water pumps are autosized by EnergyPlus using summer design day conditions with chilled water pump operating against a 500,000 Pa head and the condenser water pump operating against a 500,000 Pa head. Motors located outside of fluid and add no heat to the fluid.
- Chilled water and condenser water loop piping are assumed to be perfectly insulated such that the entire amount of cooling provided by the chiller, less any heat added by the chilled water pump during each time increment, goes completely to cool the space.
- Chilled water and condenser water flows are assumed to be constant.
- Water chiller was oversized by 10%.

1.4.5 Weather Data

1.4.5.1 Design Day Conditions

Chicago design day weather conditions were used to size the heating and cooling equipment for both of the daily and annual comparison tests. Those conditions are as follows:

• Location: CHICAGO-OHARE

Latitude: 41.98 degLongitude: -87.9 degTime Zone: -6.0Elevation: 201.0 m

Annual Heating 99% Design Conditions DB

- -17.3 Maximum Dry-Bulb Temperature {C}
- 0.0 Daily Temperature Range { ΔC }
- 99063.0 Barometric Pressure {Pa}
- 4.9 Wind Speed {m/s}
- 270 Wind Direction {deg}
- 0.0 Sky Clearness
- 21 Day Of Month
- 1 Month

Annual Cooling 1% Design Conditions DB/MCWB

- 31.5 Maximum Dry-Bulb Temperature {C}
- 10.7 Daily Temperature Range { ΔC }
- 23.0 Humidity Indicating Conditions (wet-bulb) at Max Dry-Bulb

- 99063.0 Barometric Pressure {Pa}
- 5.3 Wind Speed {m/s}
- 230 Wind Direction (deg)
- 1.0 Sky Clearness
- 21 Day Of Month
- 7 Month

1.4.5.2 Daily Comparison Test

A three-month long (January – March) TMY2 format weather file provided as part of ANSI/ASHRAE Standard 140-2011 with the file name of CE100A.TM2 was used for the daily test case simulations. The numeric code that is part of the file name represents the outdoor dry-bulb temperature (without the decimal) used in the weather file. The outdoor dry-bulb temperature of 46.1°C is constant for every hour of the three-month long period.

1.4.5.3 Annual Comparison Test

A TMY2 format weather file for Chicago O'Hare converted to EnergyPlus epw format (IL_Chicago_TMY2.epw) was used for the simulations required as part of this 12-month test series.

1.4.6 Summary of Test Cases

The eight test cases (A through H), as summarized in Table 3, are designed to test the accuracy of an EnergyPlus hydronic heating/cooling system with four pipe fan coil HVAC system to handle internal space gains and the ability of the heating and cooling equipment to satisfy these loads. Twelve additional test cases (I through T), as summarized in Table 4, perform a similar series of tests but for a one year period.

1.4.7 Simulation and Reporting Period

A 16 day simulation period from January 1 through January 16 was used to cover the full range of scheduled internal loads as described in Table 3. The 12 month annual simulation period which used the internal load schedule described in Table 4 was January 1 through December 31.

1.4.8 Output Data Requirements

The following hourly output data as a minimum are required to test the accuracy of EnergyPlus using this Global Energy Balance Test:

- · Hourly internal load (sensible, latent and total) for each type of internal space gain which is present in Wh
- · Hourly space cooling or heating load (sensible, latent and total) in Wh
- Hourly amount of cooling performed by the cooling coil (sensible, latent and total) in Wh
- · Hourly amount of heating performed by the heating coil in Wh
- . Hourly HVAC system cooling (sensible, latent and total) delivered to the space in Wh
- Hourly HVAC system heating delivered to the space in Wh
- Hourly electric consumption of the HVAC fan and amount of fan heat added to the air stream in Wh
- · Hourly resulting space temperature in C
- · Hourly resulting space humidity ratio
- Hourly cooling output by the central plant water chiller
- Hourly heating output by the central plant hot water boiler
- · Hourly cooling load on the cooling tower in Wh
- Hourly electric consumption of the water chiller in Wh
- . Hourly electric consumption of the chilled water pump, hot water pump and condenser water pump and amount of heat added to water loop in Wh

2 Modeler Report

2.1 Modeling Methodology

2.1.1 Window Air Conditioner

The EnergyPlus Window Air Conditioner model is a simple unitary vapor compression cooling system. This system is specified in EnergyPlus as ZoneHVAC:WindowAirConditioner and consists of three modules for which specifications can be entered: DX cooling coil, indoor fan and outside air mixer. The outside air quantity was set to $0.0 \, \frac{m^3}{s}$. The indoor fan delta pressure was set to $0.0 \, \text{Pa}$ in order to zero out the possibility of any fan motor heat being added to the air stream. EnergyPlus has several DX cooling coil models to select from. The Coil:Cooling:DX:SingleSpeed model was used for this test. The performance characteristics of this DX coil model were set as described below in accordance with performance characteristics presented in Standard 140. The zone thermostat was modeled as a ThermostatSetpoint:SingleHeatingOrCooling type with a constant setting of 22.2°C throughout the simulation period.

The building internal loads are simulated each hour to determine the zone load that the mechanical HVAC system must satisfy. The DX coil model then uses performance information at rated conditions along with curve fits for variations in total capacity, energy input ratio and part load fraction to determine performance at part load conditions. Sensible/latent capacity splits are determined by the rated sensible heat ratio (SHR) and the apparatus dewpoint/bypass factor approach.

Five performance curves are required by the EnergyPlus window air conditioner model as described below. Performance data for a range of operating conditions as presented in Table 26c of Standard 140 was used along with the Excel LINEST function to perform a least squares curve fit of the performance data and determine the coefficients of the curves.

1. The **total cooling capacity modifier curve (function of temperature)** is a bi-quadratic curve with two independent variables: wet bulb temperature of the air entering the cooling coil, and dry bulb temperature of the air entering the air-cooled condenser. The output of this curve is multiplied by the rated total cooling capacity to give the total cooling capacity at specific temperature operating conditions (i.e., at temperatures different from the rating point temperatures).

$$CoolCapFT = a + b*wb + c*wb^2 + d*edb + e*edb*2 + f*wb*edb$$

where

- o wb = wet-bulb temperature of air entering the cooling coil
- o edb = dry-bulb temperature of the air entering the air-cooled condenser
- \circ a = 0.43863482
- o b = 0.04259180
- \circ c = 0.00015024
- o d = 0.00100248
- \circ e = -0.00003314
- o f = -0.00046664

Data points were taken from first three columns of Table 26c of Standard 140. CoolCap data was normalized to ARI rated net capacity of 8,181 W, i.e. CoolCapFT = 1.0 at 19.4 C wb and 35.0 C edb.

2. The energy input ratio (EIR) modifier curve (function of temperature) is a bi-quadratic curve with two independent variables: wet bulb temperature of the air entering the air-cooled condenser. The output of this curve is multiplied by the rated EIR (inverse of the rated COP) to give the EIR at specific temperature operating conditions (i.e., at temperatures different from the rating point temperatures).

$$EIRFT = a + b*wb + c*wb^2 + d*edb + e*edb*2 + f*wb*edb$$

where

- wb = wet-bulb temperature of air entering the cooling coil
- edb = dry-bulb temperature of the air entering the air-cooled condenser
- \circ a = 0.77127580
- o b = -0.02218018
- \circ c = 0.00074086
- \circ d = 0.01306849
- \circ e = 0.00039124

edb and wb data points were taken from the first two columns of Table 26c of Standard 140. Energy input data points for corresponding pairs of edb and wb were taken from column labeled "Compressor Power" in Table 26c of Standard 140 with an additional 108 W added to them for outdoor fan power. EIR is energy input ratio [(compressor + outdoor fan power)/cooling capacity] normalized to ARI rated conditions, i.e. EIRFT = 1.0 at 19.4 C wb and 35.0 C edb.

3. The **total cooling capacity modifier curve (function of flow fraction)** is a quadratic curve with one independent variable: ratio of the actual air flow rate across the cooling coil to the rated air flow rate (i.e., fraction of full load flow). The output of this curve is multiplied by the rated total cooling capacity and the total cooling capacity modifier curve (function of temperature) to give the total cooling capacity at the specific temperature and air flow conditions at which the coil is operating.

$$CAPFFF = a + b * ff + c * ff^2$$

where

ff = fraction of full load flow

Since the indoor fan always operates at constant volume flow, the modifier will be 1.0, therefore:

- \circ a = 1.0
- \circ b = 0.0
- \circ c = 0.0

4. The energy input ratio (EIR) modifier curve (function of flow fraction) is a quadratic curve with one independent variable: ratio of the actual air flow rate across the cooling coil to the rated air flow rate (i.e., fraction of full load flow). The output of this curve is multiplied by the rated EIR (inverse of the rated COP) and the EIR modifier curve (function of temperature) to give the EIR at the specific temperature and airflow conditions at which the coil is operating.

$$EIRFFF = a + b * ff + c * ff^2$$

where

ff = fraction of full load flow

Since the indoor fan always operates at constant volume flow, the modifier will be 1.0, therefore:

- \circ a = 1.0
- \circ b = 0.0
- \circ c = 0.0

5. The part load fraction correlation (function of part load ratio) is a quadratic curve with one independent variable: part load ratio (sensible cooling load / steady-state sensible cooling capacity). The output of this curve is used in combination with the rated EIR and EIR modifier curves to give the "effective" EIR for a given simulation time step. The part load fraction correlation accounts for efficiency losses due to compressor cycling.

$$PLFFPLR = a + b * PLR + c * PLR^2$$

where

PLR = part load ratio

Part load performance was specified in Figure 10 of Standard 140, therefore:

- \circ a = 0.771
- \circ b = 0.229
- \circ c = 0.0

2.1.2 Hydronic Heating/Cooling System

To simulate the Bolier:HotWater model in EnergyPlus requires that a fuel use/part load ratio curve be defined. EnergyPlus uses the following equation to calculate fuel use.

$$FuelUsed = rac{TheoreticalFuelUsed}{C1 + C2 \cdot OperatingPartLoadRatio + C3 \cdot OperatingPartLoadRatio}^2$$

where

$$TheoreticalFuelU \cdot se = \frac{BoilerLoad}{BoilerEfficiency}$$

User inputs include the Boiler Efficiency and the coefficients C1, C2 and C3. The EnergyPlus model of the Boiler:HotWater determines the Boiler Load and Operating Part Load Ratio for each simulated time increment. The Operating Part Load is calculated as the Boiler Load divided by the Boiler Rated Heating Capacity. For the hot water boiler described here the Boiler Heating Capacity was autosized based on winter design day conditions and the Boiler Efficiency was set to 80%. The resulting boiler and hot water pump capacities and flows were as follows:

- · For Daily Comparison Test
 - o Boiler capacity 10,996 W
 - Hot water pump flow rate 0.000239 $\frac{m^3}{s}$
 - Hot water pump size 170.3 W
- For Annual Comparison Test
 - Boiler capacity 10,996 W
 - Hot water pump flow rate 0.000239 $\frac{m^3}{e}$
 - Hot water pump size 170.3 W

The boiler capacity is the same for both tests since the maximum heating load for each test plus a 10% oversize factor results in the same design load (see Tables 3 and 4).

The Fuel Used equation which describes the part load performance of the hot water boiler has coefficient values of:

- C1 = 0.97
- C2 = 0.0633
- C3 = -0.0333

Some additional input parameters required by EnergyPlus included:

- Design boiler water outlet temperature, parameter left to default to 81°C
- Maximum design boiler water flow rate, parameter set to "autosize"
- Minimum part load ratio, parameter left to default to 0.0
- Maximum part load ratio, parameter set to 1.1
- Boiler flow mode, parameter set to "constant flow"
- Parasitic electric load, parameter set to 0.0 W

To simulate the Chiller:Electric:EIR model in EnergyPlus requires three performance curves:

- 1. Cooling Capacity Function of Temperature Curve The total cooling capacity modifier curve (function of temperature) is a bi-quadratic curve with two independent variables: leaving chilled water temperature and entering condenser fluid temperature. The output of this curve is multiplied by the design capacity to give the total cooling capacity at specific temperature operating conditions (i.e., at temperatures different from the design temperatures). The curve has a value of 1.0 at the design temperatures.
- 2. **Energy Input to Cooling Output Ratio Function of Temperature** The energy input ratio (EIR) modifier curve (function of temperature) is a biquadratic curve with two independent variables: leaving chilled water temperature and entering condenser fluid temperature. The output of this curve is multiplied by the design EIR (inverse of the COP) to give the EIR at specific temperature operating conditions (i.e., at temperatures different from the design temperatures). The curve has a value of 1.0 at the design temperatures.
- 3. **Electric Input to Cooling Output Ratio Function of Part Load Ratio** The energy input ratio (EIR) modifier curve (function of part load ratio) is a quadratic curve that parameterizes the variation of the energy input ratio (EIR) as a function of part load ratio. The EIR is the inverse of the COP, and the part load ratio is the actual cooling load divided by the chiller's available cooling capacity. The output of this curve is multiplied by the design EIR and the Energy Input to Cooling Output Ratio Function of Temperature Curve to give the EIR at the specific temperatures and part-load ratio at which the chiller is operating. The curve has a value of 1.0 when the part-load ratio equals 1.0.

Before the curve fitting of the performance data could be done the performance data as available from the manufacturer's catalog (see Table 2) which is in IP units was converted to SI units. A least squares curve fit was then performed using the Excel LINEST function to determine the coefficients of the curves. Appendix A presents the details of this exercise for the first two curves. The following results were obtained:

- 1. Cooling Capacity Function of Temperature Curve
 - Form: Bi-quadratic curve

$$curve = a + b * tchwl + c * tchwl^2 + d * tcnwe + e * tcnwe^2 + f * tchwl * tcnwe$$

- · Independent variables: tchwl, leaving chilled water temperature, and tcnwe, entering condenser water temperature.
 - **a** = 1.018907198
 - Adjusted a = 1.018707198
 - b = 0.035768388
 - c = 0.000335718
 - d = -0.006886487
 - e = -3.51093E-05
 - f = -0.00019825

The resulting R^2 for this curve fit of the catalog data was 0.999. The value of the a-coefficient was adjusted by -0.0002 so that the value given by the quadratic curve would exactly equal the catalog value at rated conditions.

2. Energy Input to Cooling Output Ratio Function of Temperature

· Form: Bi-quadratic curve

$$curve = a + b * tchwl + c * tchwl^2 + d * tcnwe + e * tcnwe^2 + f * tchwl * tcnwe$$

- Independent variables: tchwl, leaving chilled water temperature, and tcnwe, entering condenser water temperature. The value of the a-coefficient was adjusted by -0.0021 so that the value given by the quadratic curve would exactly equal the catalog value at rated conditions.
 - **a** = 0.54807728
 - Adjusted a = 0.54597728
 - b = -0.020497
 - c = 0.000456
 - d = 0.015890
 - e = 0.000218
 - f = -0.000440

The resulting R^2 for this curve fit of the catalog data was 0.999.

3. Electric Input to Cooling Output Ratio Function of Part Load Ratio

Form: Quadratic curve

$$curve = a + b * plr + c * plr^2$$

- · Independent variable: part load ratio (sensible cooling load/steady state sensible cooling capacity)
- Since part load performance as required by EnergyPlus was not available from the catalog for this piece of equipment, the part load curve from the DOE-2 program for a hermetic reciprocating chiller was used. The coefficients for the DOE-2 curve specified as EIRPLR4 in the DOE-2 documentation (DOE-2 1993a) are as follows:
 - a = 0.88065
 - b = 1.137742
 - c = -0.225806

Some additional inputs required by EnergyPlus included:

- Design capacity (W), set to "autosize"
- Design COP, set at 3.926 based on catalog data at rated conditions of 6.67°C leaving chilled water temperature and 29.44°C entering condenser
 water temperature
- Design leaving chilled water temperature (°C), set at 6.67°C (44°F)
- Design entering condenser water temperature (°C), set at 29.44°C (85°F)

- Design evaporator volumetric water flow rate (m3/s), parameter set to "autosize"
- Design condenser volumetric water flow rate (m^3/s), parameter set to "autosize"
- Minimum part-load ratio, left to default to 0.1
- · Maximum part-load ratio, set at 1.2

The cooling tower was modeled using the EnergyPlus object CoolingTower:SingleSpeed. All size related parameters were left to autosize.

The resulting chiller, cooling tower, chilled water pump and condenser water pump capacities and flows were as follows:

- For Daily Comparison Test
 - Chiller capacity 55,005 W
 - Chilled water pump flow rate 0.00197 $\frac{m^3}{e}$
 - Chilled water pump size 1,405.2 W
 - Cooling tower fan size 724.7 W
 - Cooling tower fan flow rate 1.907 $\frac{m^3}{2}$
 - Condenser water pump size 2,100 W
 - Condenser water pump flow rate 0.00295 $\frac{m^3}{s}$
- For Annual Comparison Test
 - o Chiller capacity 11,005 W
 - Chilled water pump flow rate 0.000395 $\frac{m^3}{s}$
 - o Chilled water pump size 281.1 W
 - Cooling tower fan size 144.9 W
 - Cooling tower fan flow rate 0.390 $\frac{m^3}{s}$
 - Condenser water pump size 420.1 W
 - \circ Condenser water pump flow rate 0.000590 $rac{m^3}{s}$

The chiller capacity for the daily comparison test is five times greater than that for the annual comparison test because of the difference in internal load schedules (see Tables 3 and 4). A 10% oversize factor was also included when calculating the cooling design load for each test.

2.2 Modeling Difficulties

2.2.1 Building Envelope Construction

The specification for the building envelope indicates that the exterior walls, roof and floor are made up of one opaque layer of insulation (R=100) with differing radiative properties for the interior surface and exterior surface (ref. Table 24 of Standard 140). To allow the surface radiative properties to be set at different values, the exterior wall, roof and floor had to be simulated as two insulation layers. In addition, the wall layers were defined using the Material feature of EnergyPlus. The wall, roof and floor constructions described in Section 5.3.1 from Standard 140 are massless and typically these constructions would be defined using the Material:NoMass feature of EnergyPlus where only the thermal resistance of the material layer along with surface absorptances are required. When this approach was used however, EnergyPlus generated a severe warning as indicated below:

```
** Severe ** This building has no thermal mass which can cause an unstable solution.

** ~~~ ** Use Material for all opaque material types except very light insulation layers.
```

To avoid this possible severe error, the wall, roof and floor materials were defined using the construction as follows:

```
Material,
 INSULATION-EXT, !- Name
 VeryRough, !- Roughness
 1.0, !- Thickness {m}
 3.999999E-02, !- Conductivity {w/m-K}
 32.03, !- Density {kg/m3}
 830.0, !- Specific Heat {J/kg-K}
 0.0000001, !- Thermal Emittance
 0.0000001, !- Solar Absorptance
 0.0000001; !- Visible Absorptance
Material,
 INSULATION-INT, !- Name
 VeryRough, !- Roughness
 1.0, !- Thickness {m}
 3.999999E-02, !- Conductivity {w/m-K}
 32.03, !- Density {kg/m3}
 830.0, !- Specific Heat {J/kg-K}
 0.0000001, !- Thermal Emittance
 0.0000001, !- Solar Absorptance
 0.0000001; !- Visible Absorptance
Construction,
 LTWALL, ! Construction Name
 INSULATION-EXT, !- Outside layer
 INSULATION-INT; !- Layer 2
```

2.3 Software Errors Discovered

During the initial testing of EnergyPlus with the new global energy balance test suite, one software error was discovered as part of the testing which was subsequently corrected:

- The sensible and latent cooling coil loads did not agree with the sensible and latent cooling loads reported by the Window AC HVAC system. There was agreement however with the total cooling load. This discrepancy was corrected in EnergyPlus version 1.4.0.020.
- Plant solver routines were reworked which caused minor changes in some results (changed in EnergyPlus version 7.0.0.036)

2.4 Results

2.4.1 Window Air Conditioner

For the Window AC Global Energy Balance Test energy balances were performed at the following boundary volumes:

- · Zone boundary
- · Coil boundary
- HVAC system boundary

At each level all energy flows into and out of the boundary volume are assessed using standard output variables and node values to determine energy balances. Before such energy balances are performed, the results of the simulation are first examined to ensure that the space temperature setpoint is maintained for all hours and space humidity ratios are constant for all hours indicating that all space loads have been met.

2.4.1.1 Daily Comparison Test

Daily comparison results from running the Global Energy Balance Test with EnergyPlus 8.3.0-b45b06b780 for the one-zone building described in Section 1 which is cooled by an EnergyPlus Window AC system are shown in spreadsheet format on the following three pages for:

- Zone Level Energy Balance
- Coil Level Energy Balance
- HVAC Cooling System Energy Balance
- Equipment Performance Summary

Window					
AC					
AC					
Zone					
Level					
Energy					
Balance					
For					
Daily					
Test					
Cases					
	Zone				
	Energy				
	Input				

			Daily	Daily	Daily	Daily	Internal	Internal	Daily	Zone Air Temp.	Air	Zone Air Humidity Ratio	
		Daily	Electric	Other	Gas	Steam	Loads	Loads	Total				
Test	Day	Lights	Equipment	Equipment	Equipment	Equipment	%	%	Internal	Min	Max	Min	Max
Case		Consump.	Consump.	Consump.	Consump.	Consump.	Latent	Radiant	Consump.				
		(Wh)	(Wh)	(Wh)	(Wh)	(Wh)			(Wh)	(C)	(C)	()	()
	1	0	0	0	0	0	0	0	0	22.0	22.0	0.00969	0.00969
Α	2	0	0	0	0	0	0	0	0	22.0	22.0	0.00969	0.00969
	3	24,000	0	0	0	0	0	0	24,000	22.2	22.2	0.00747	0.00897
В	4	24,000	0	0	0	0	0	0	24,000	22.2	22.2	0.00747	0.00747
	5	24,000	24,000	0	0	0	0	0	48,000	22.2	22.2	0.00747	0.00747
С	6	24,000	24,000	0	0	0	0	0	48,000	22.2	22.2	0.00747	0.00747
	7	24,000	24,000	24,000	0	0	0	0	72,000	22.2	22.2	0.00747	0.00747
D	8	24,000	24,000	24,000	0	0	0	0	72,000	22.2	22.2	0.00747	0.00747
	9	24,000	24,000	24,000	24,000	0	0	0	96,000	22.2	22.2	0.00747	0.00747
E	10	24,000	24,000	24,000	24,000	0	0	0	96,000	22.2	22.2	0.00747	0.00747
	11	24,000	24,000	24,000	24,000	24,000	0	0	120,000	22.2	22.2	0.00747	0.00747
F	12	24,000	24,000	24,000	24,000	24,000	0	0	120,000	22.2	22.2	0.00747	0.00747
	13	0	0	24,000	0	0	0	20	24,000	22.2	22.2	0.00746	0.00747
G	14	0	0	24,000	0	0	0	20	24,000	22.2	22.2	0.00746	0.00746
	15	0	0	24,000	0	0	30	0	24,000	22.2	22.2	0.00844	0.01065
Н	16	0	0	24,000	0	0	30	0	24,000	22.2	22.2	0.01065	0.01065

		Zone Energy Output	Comparison										
		Zone Internal Total Heat Gain	Zone Internal Latent Heat Gain	Zone Internal Sensible Heat Gain	Difference (Total Output - Total Input)	Difference (Total Output ve Total Inpu							
Test	Day												
Case													
		(Wh)	(Wh)	(Wh)	(Wh)	(%							
	1	0	0	0	0	0.00							
Α	2	0	0	0	0	0.00							
	3	24,000	0	24,000	0	0.00							
В	4	24,000	0	24,000	0	0.00							
	5	48,000	0	48,000	0	0.00							
С	6	48,000	0	48,000	0	0.00							
	7	72,000	0	72,000	0	0.00							
D	8	72,000	0	72,000	0	0.00							
	9	96,000	0	96,000	0	0.00							
Е	10	96,000	0	96,000	0	0.00							
	11	120,000	0	120,000	0	0.00							
F	12	120,000	0	120,000	0	0.00							
	13	24,000	0	24,000	0	0.00							
G	14	24,000	0	24,000	0	0.00							
	15	24,000	7,200	16,800	0	0.00							
Н	16	24,000	7,200	16,800	0	0.00							

Window AC

Coil Level Energy Balance for Daily Test Cases

		Zone Cooling Requirement				Cooling Coil Requirement			Cooling Coil Output		
Test Case	Day	Zone Internal Total Heat Gain	Zone Internal Latent Heat Gain	Zone Internal Sensible Heat Gain	Fan Heat Added to Air Stream	DX Coil Total Cooling Req'd	DX Coil Latent Cooling Req'd	DX Coil Sensible Cooling Req'd	DX Coil Total Cooling Energy	DX Coil Latent Cooling Energy	DX Coil Sensible Cooling Energy
		(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)
Α	2	0	0	0	0	0	0	0	0	0	0
В	4	24,000	0	24,000	1,148	25,148	0	25,148	25,148	0	25,148
С	6	48,000	0	48,000	2,193	50,193	0	50,193	50,193	0	50,193
D	8	72,000	0	72,000	3,139	75,139	0	75,139	75,139	0	75,139
E	10	96,000	0	96,000	4,003	100,003	0	100,003	100,003	0	100,003
F	12	120,000	0	120,000	4,798	124,798	0	124,798	124,798	0	124,798
G	14	24,000	0	24,000	1,148	25,148	0	25,148	25,148	0	25,148
Н	16	24,000	7,200	16,800	1,048	25,048	7,200	17,848	25,002	7,200	17,802

		Comparison					
Test Case	Day	Difference (Total Output - Total Req'd)	Difference (Latent Output - Latent Req'd)	Difference (Sensible Output - Sensible Req'd)	Difference (Total Output vs. Total Req'd)	Difference (Latent Output vs. Latent Req'd)	Difference (Sensible Output vs. Sensible Req'd)
		(Wh)	(Wh)	(Wh)	(%)	(%)	(%)
Α	2	0.0	0.0	0.0	0.00%	0.00%	0.00%
В	4	0.0	0.0	0.0	0.00%	0.00%	0.00%
С	6	0.0	0.0	0.0	0.00%	0.00%	0.00%
D	8	-0.0	0.0	-0.0	-0.00%	0.00%	-0.00%
Е	10	-0.0	0.0	-0.0	-0.00%	0.00%	-0.00%
F	12	0.5	0.5	-0.0	0.00%	0.00%	-0.00%
G	14	-0.0	0.0	-0.0	-0.00%	0.00%	-0.00%
Н	16	-45.8	0.3	-46.1	-0.18%	0.00%	-0.26%

Window AC

HVAC Cooling System Level Energy Balance for Daily Test Cases

		Zone Cooling Requirement			Cooling Delivered to Zone		
Test Case	Day	Zone Internal Total Heat Gain	Zone Internal Latent Heat Gain	Zone Internal Sensible Heat Gain	Window AC Total Zone Cooling Energy	Window AC Latent Zone Cooling Energy	Window AC Sensible Zone Cooling Energy
		(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)
А	2	0	0	0	0	0	0
В	4	24,000	0	24,000	24,000	0	24,000
С	6	48,000	0	48,000	48,000	0.00000000	48,000
D	8	72,000	0	72,000	71,999	0.00000000	71,999
E	10	96,000	0	96,000	95,999	0	95,999
F	12	120,000	0	120,000	120,000	0	119,999
G	14	24,000	0	24,000	23,999	0	23,999
Н	16	24,000	7,200	16,800	23,954	7,200	16,753

		Comparison					
Test Case	Day	Difference (Total Deliv'd - Total Req'd)	Difference (Latent Deliv'd - Latent Req'd)	Difference (Sensible Deliv'd - Sensible Req'd)	Difference (Total Deliv'd vs. Total Req'd)	Difference (Latent Deliv'd vs. Latent Req'd)	Difference (Sensible Deliv'd vs. Sensible Req'd)
		(Wh)	(Wh)	(Wh)	(%)	(%)	(%)
Α	2	0.0	0.0	0.0	0.00%	0.00%	0.00%
В	4	0.0	0.0	0.0	0.00%	0.00%	0.00%
С	6	0.0	0.0	0.0	0.00%	0.00%	0.00%
D	8	-0.0	0.0	-0.0	-0.00%	0.00%	-0.00%
E	10	-0.0	0.0	-0.0	-0.00%	0.00%	-0.00%
F	12	0.5	0.5	-0.0	0.00%	0.00%	-0.00%
G	14	-0.0	0.0	-0.0	-0.00%	0.00%	-0.00%
Н	16	-45.8	0.3	-46.1	-0.19%	0.00%	-0.27%

Window AC

Equipment Performance Summary for Daily Test Cases

Supply Fan Electric Consump.	HVAC System Average COP	HVAC System Total Cooling	HVAC Cooling Electric Consump.	Day	Test Case
(Wh)		(Wh)	(Wh)		
0	0	0	0	2	А
1,148	1.97	24,000	12,166	4	В
2,193	2.07	48,000	23,215	6	С
3,139	2.17	71,999	33,239	8	D
4,003	2.26	95,999	42,394	10	Е
4,798	2.36	120,000	50,812	12	F
1,148	1.97	23,999	12,167	14	G
1,048	2.12	23,954	11,317	16	Н

The following is observed from examining the results:

- Zone Level Energy Balance
 - For each hour of the second day of each test case the zone setpoint temperature of 22.2 C was maintained and the zone humidity level remained constant
 - 100% of the internal loads showed up as sensible and latent cooling loads in the space, therefore energy balance at the zone level was achieved.
- Coil Level Energy Balance
 - For all test cases the amount of sensible cooling performed by the cooling coil was equal to the zone sensible cooling requirement plus fan heat except for Case H where there was a very small difference of 0.26%. Sensible energy balance was therefore achieved for all cases except Case H.
 - For Case H when space latent gains did occur within the space, the amount of latent cooling performed by the cooling coil was less than that
 required by 0.01% while the total cooling by the cooling coil was differing by only 0.18%. For Case H the internal load is 30% latent and
 surface temperatures did not reach steady state condition until late in the second day.
- HVAC Cooling System Energy Balance
 - When comparing the HVAC system cooling delivered to the zone versus the cooling required by the zone, energy balance was achieved for all
 c cases as shown below.

HVAC	
System	Output
Cooling	of
Including	Cooling
Fan Heat	Coil
	System Cooling Including

Test Case	Day	Window AC Zone Total Cooling Energy	Window AC Zone Latent Cooling Energy	Window AC Zone Sensible Cooling Energy	Fan Heat Added to Air Stream		Req'd Window AC Total Zone Cooling Energy	Req'd Window AC Latent Zone Cooling Energy	Req'd Window AC Sensible Zone Cooling Energy	DX Coil Total Cooling Energy		DX Coil Sensible Cooling Energy
		(Wh)	(Wh)	(Wh)	(Wh)					(Wh)	(Wh)	(Wh)
Α	2	0	0	0	0		0	0	0	0	0	0
В	2	24,000	0	24,000	1,148		25,148	0	25,148	25,148	0	25,148
С	2	48,000	0	48,000	2,193		50,193	0	50,193	50,193	0	50,193
D	2	71,999	0	71,999	3,139		75,139	0	75,139	75,139	0	75,139
Е	2	95,999	0	95,999	4,003		100,003	0	100,003	100,003	0	100,003
F	2	120,000	0	119,999	4,798		124,798	0	124,798	124,798	0	124,798
G	2	23,999	0	23,999	1,148		25,148	0	25,148	25,148	0	25,148
Н	2	23,954	7,200	16,753	1,048		25,002	7,200	17,802	25,002	7,200	17,802
		Comparison										
		Difference (Total	Difference (Latent Deliv'd -	(Sensible	Difference (Total Deliv'd vs.	Difference (Latent Deliv'd vs.	Difference (Sensible Deliv'd vs.					

Test Case	Day	Difference (Total Deliv'd - Total Req'd)	Difference (Latent Deliv'd - Latent Req'd)	(Sensible	Total	(Latent Deliv'd vs. Latent	Difference (Sensible Deliv'd vs. Sensible Req'd)
		(Wh)	(Wh)	(Wh)	(%)	(%)	(%)
Α	2	0	0	0	0.0%	0.0%	0.0%
В	2	0	0	0	-0.0%	0.0%	0.0%
С	2	0	0	0	0.0%	0.0%	0.0%
D	2	0	0	0	0.0%	0.0%	0.0%
Е	2	0	0	0	-0.0%	0.0%	-0.0%
F	2	0	0	0	0.0%	0.0%	0.0%
G	2	0	0	0	0.0%	0.0%	0.0%
Н	2	0	0	0	-0.0%	-0.0%	-0.0%

In previous versions of EnergyPlus there were differences between the sensible and latent cooling coil loads versus the sensible and latent cooling loads indicated for the Window AC system for all cases. This error was corrected in EnergyPlus 1.4.0.025.

• Equipment Performance Summary

• The Window AC system average COP during each of the test cases ranged from 1.97 to 2.36 while the outdoor drybulb temperature remained constant at 46.1°C. Entering coil wet-bulb temperature for Tests B through F when there was no latent load was about 14°C (dry coil). Full load COP and gross cooling capacity at these conditions for this equipment are 6,250 kW and 2.81. During Test B when the hourly space sensible load was held constant at 1,000 kW and the hourly fan heat was 48 W (PLR = 0.16), the COP degradation factor according to Standard 140 is 0.81. It is expected that the resulting COP during these tests would then be 2.81 x 0.81 = 2.27 which falls within the range of COPs reported above.

2.4.1.2 Annual Comparison Test

Monthly comparison results from running the Global Energy Balance Test with EnergyPlus 8.3.0-b45b06b780 for the one-zone building described in Section 1 which is cooled by an EnergyPlus Window AC system and heated by electric baseboard are shown in spreadsheet format on the following four pages for:

Zone	Energy
Innut	

			Daily	Internal	Internal	Daily	Zone Air Temp.	Zone Air Temp.	Zone Air I	Humidity Zo	one Air Humidity Ratio
			Other Co	nvective	Latent	Total					
Test	Month	Equip	oment	Load	Load	Internal	Min	Max		Min	Max
Case		Cons	sump.			Load					
			(Wh)	(Wh)	(Wh)	(Wh)	(C)	(C)		()	()
I	Jan	-74	14,000	-744,000	0	-744,000	22.2	22.2		0.00194	0.00194
J	Feb	-67	72,000	-672,000	0	-672,000	22.2	22.2		0.00194	0.00194
K	Mar	-74	14,000	-744,000	0	-744,000	22.2	22.2		0.00194	0.00194
L	Apr	-72	20,000	-720,000	0	-720,000	22.2	22.2		0.00194	0.00194
M	May	74	14,000	520,799	223,200	744,000	22.2	22.2		0.00309	0.01017
N	Jun	72	20,000	503,999	216,000	720,000	22.2	22.2		0.00932	0.01023
0	Jul	74	4,000	520,799	223,200	744,000	22.2	22.2		0.00953	0.01029
Р	Aug	74	14,000	520,799	223,200	744,000	22.2	22.2		0.00951	0.01020
Q	Sep	72	20,000	503,999	216,000	720,000	22.2	22.2		0.00936	0.01008
R	Oct	-74	14,000	-744,000	0	-744,000	22.2	22.2		0.00935	0.00935
S	Nov	-72	20,000	-720,000	0	-720,000	22.2	22.2		0.00935	0.00935
Т	Dec	-74	14,000	-744,000	0	-744,000	22.2	22.2		0.00935	0.00935
		Zone									
		Energy Output			Com	nparison					
Test	Month		Zone Internal Latent Heat Gain		ne Di al le	fference (Total Output -	Difference (Latent Output - Latent Input)	Difference (Sensible Output - Sensible Input)	Difference (Total Output vs. Total Input)	Difference (Latent Output vs. Latent Input)	Difference (Sensible Output vs. Sensible Input)
Test	Month	Output Zone Internal Total Heat	Internal Latent Heat	Intern Sensib	ne Di al le	fference (Total Output -	(Latent Output -	(Sensible Output - Sensible	(Total Output vs.	(Latent Output vs.	(Sensible Output vs.
	Month	Output Zone Internal Total Heat	Internal Latent Heat	Intern Sensib	ne Di al le in Tot	fference (Total Output -	(Latent Output -	(Sensible Output - Sensible	(Total Output vs.	(Latent Output vs.	(Sensible Output vs.
	Month Jan	Output Zone Internal Total Heat Gain	Internal Latent Heat Gain	Intern Sensib Heat Ga	ne Di al le in Tot	fference (Total Output - al Input)	(Latent Output - Latent Input)	(Sensible Output - Sensible Input)	(Total Output vs. Total Input)	(Latent Output vs. Latent Input)	(Sensible Output vs. Sensible Input)
Case		Output Zone Internal Total Heat Gain (Wh)	Internal Latent Heat Gain	Intern Sensib Heat Ga (W	ne Di al le in Tot h)	fference (Total Output - al Input)	(Latent Output - Latent Input) (Wh)	(Sensible Output - Sensible Input)	(Total Output vs. Total Input)	(Latent Output vs. Latent Input)	(Sensible Output vs. Sensible Input)
Case	Jan	Output Zone Internal Total Heat Gain (Wh) -744,000	Internal Latent Heat Gain (Wh)	Intern Sensib Heat Ga (W -744,00	ne Di al le in Tot h)	fference (Total Output - al Input) (Wh)	(Latent Output - Latent Input) (Wh)	(Sensible Output - Sensible Input) (Wh)	(Total Output vs. Total Input) (%) -0.00%	(Latent Output vs. Latent Input) (%) 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00%
Case	Jan Feb	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000	Internal Latent Heat Gain (Wh) 0	Intern Sensib Heat Ga (W -744,00 -672,00	ne Di al lle in Tot	fference (Total Output - al Input) (Wh)	(Latent Output - Latent Input) (Wh) 0	(Sensible Output - Sensible Input) (Wh) 0	(Total Output vs. Total Input) (%) -0.00%	(Latent Output vs. Latent Input) (%) 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00%
Case I J K	Jan Feb Mar	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000	Internal Latent Heat Gain (Wh) 0 0	Intern Sensib Heat Ga (W -744,00 -672,00	ne Di al lle in Tot	fference (Total Output - al Input) (Wh) 0	(Latent Output - Latent Input) (Wh) 0 0	(Sensible Output - Sensible Input) (Wh) 0 0	(Total Output vs. Total Input) (%) -0.00% -0.00%	(Latent Output vs. Latent Input) (%) 0.00% 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00% -0.00%
Case I J K L	Jan Feb Mar Apr	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000 -744,000	Internal Latent Heat Gain (Wh) 0 0 0	Intern Sensib Heat Ga (W -744,00 -672,00 -744,00	ne Di al le in Tot	fference (Total Output - al Input) (Wh) 0	(Latent Output - Latent Input) (Wh) 0 0 0	(Sensible Output - Sensible Input) (Wh) 0 0 0	(Total Output vs. Total Input) (%) -0.00% -0.00% -0.00%	(Latent Output vs. Latent Input) (%) 0.00% 0.00% 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00% -0.00% -0.00%
Case I J K L	Jan Feb Mar Apr	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000 -744,000 744,000	Internal Latent Heat Gain (Wh) 0 0 0 223,200	Intern Sensib Heat Ga (W -744,00 -672,00 -744,00 520,80	ne Di al le in Tot	fference (Total Output - al Input) (Wh) 0 0	(Latent Output - Latent Input) (Wh) 0 0 0 0	(Sensible Output - Sensible Input) (Wh) 0 0 0 0	(Total Output vs. Total Input) (%) -0.00% -0.00% -0.00% 0.00%	(Latent Output vs. Latent Input) (%) 0.00% 0.00% 0.00% 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00% -0.00% -0.00% -0.00%
Case I J K L M N	Jan Feb Mar Apr May Jun	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000 -744,000 720,000	Internal Latent Heat Gain (Wh) 0 0 223,200 216,000	Intern Sensib Heat Ga (W -744,00 -672,00 -744,00 520,80 504,00	ne Di al lle iin Tot	fference (Total Output - al Input) (Wh) 0 0 0	(Latent Output - Latent Input) (Wh) 0 0 0 0 0	(Sensible Output - Sensible Input) (Wh) 0 0 0 0	(Total Output vs. Total Input) (%) -0.00% -0.00% -0.00% 0.00%	(Latent Output vs. Latent Input) (%) 0.00% 0.00% 0.00% 0.00% 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00% -0.00% -0.00% -0.00% 0.00%
Case I J K L M N O	Jan Feb Mar Apr May Jun Jul	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000 -744,000 720,000 744,000 744,000	Internal Latent Heat Gain (Wh) 0 0 223,200 216,000 223,200	Intern Sensib Heat Ga (W -744,00 -672,00 -744,00 520,80 504,00 520,80	ne Di al lle in Tot	fference (Total Output - al Input) (Wh) 0 0 0	(Latent Output - Latent Input) (Wh) 0 0 0 0 0 0	(Sensible Output - Sensible Input) (Wh) 0 0 0 0 0	(Total Output vs. Total Input) (%) -0.00% -0.00% -0.00% 0.00% 0.00%	(Latent Output vs. Latent Input) (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00% -0.00% -0.00% 0.00% 0.00%
Case I J K L M N O P	Jan Feb Mar Apr May Jun Jul Aug	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000 -744,000 720,000 744,000 744,000 744,000	Internal Latent Heat Gain (Wh) 0 0 223,200 216,000 223,200 223,200	Intern Sensib Heat Ga (W -744,00 -672,00 -744,00 -720,00 520,80 520,80	ne Di al le in Tot	fference (Total Output - al Input) (Wh) 0 0 0	(Latent Output - Latent Input) (Wh) 0 0 0 0 0 0 0 0	(Sensible Output - Sensible Input) (Wh) 0 0 0 0 0 0 0	(Total Output vs. Total Input) (%) -0.00% -0.00% -0.00% 0.00% 0.00% 0.00%	(Latent Output vs. Latent Input) (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00% -0.00% -0.00% 0.00% 0.00% 0.00%
Case I J K L M O P Q	Jan Feb Mar Apr May Jun Jul Aug Sep	Output Zone Internal Total Heat Gain (Wh) -744,000 -672,000 -744,000 720,000 744,000 744,000 720,000 744,000 720,000	Internal Latent Heat Gain (Wh) 0 0 223,200 216,000 223,200 216,000	Intern Sensib Heat Ga (W -744,00 -672,00 -744,00 520,80 504,00 520,80 520,80	ne Di al le iin Tot	fference (Total Output - al Input) (Wh) 0 0 0 0	(Latent Output - Latent Input) (Wh) 0 0 0 0 0 0 0 0 0 0 0	(Sensible Output - Sensible Input) (Wh) 0 0 0 0 0 0 0 0	(Total Output vs. Total Input) (%) -0.00% -0.00% -0.00% 0.00% 0.00% 0.00%	(Latent Output vs. Latent Input) (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	(Sensible Output vs. Sensible Input) (%) -0.00% -0.00% -0.00% 0.00% 0.00% 0.00%

	w AC with											
	oard Heat											
_	y Balance nual Test											
For Co	ooling											
		Zon Coo Req					Cooling Coil Requirement			Cooling Coil Output		
Te	st Case	T. Month	Zone Internal otal Heat Gain	Zone Internal Latent Heat Gain		Fan Heat Added to Air Stream	DX Coil Total Cooling Req'd	DX Coil Latent Cooling Req'd	DX Coil Sensible Cooling Req'd	DX Coil Total Cooling Energy	DX Coil Latent Cooling Energy	DX Coi Sensible Cooling Energy
			(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh
	M	May	744,000	223,200	520,800	25,334	769,334	223,200	546,134	766,381	222,134	544,246
	N	Jun	720,000	216,000	504,000	25,488	745,488	216,000	529,488	743,708	215,988	527,719
	0	Jul	744,000	223,200	520,800	26,777	770,777	223,200	547,577	768,979	223,196	545,78
	Р	Aug	744,000	223,200	520,800	26,430	770,430	223,200	547,230	768,593	223,182	545,41
	Q	Sep	720,000	216,000	504,000	24,965	744,965	216,000	528,965	743,204	216,045	527,158
	С	omparison										
Test Case	C Month	Difference (DX oil Total Outpu - DX Coil Tota Req'd	t C I Output	rence (DX oil Latent - DX Coil ent Req'd)	Sensible		Difference (I Coil Total Outp vs. DX Coil To Req	ut Coil L tal vs. D	ifference (l atent Outp X Coil Late Req	out Sensi ent DX	rence (DX ble Outpu Coil Sens Re	t vs.
		(Wh)	(Wh)		(Wh)	('	%)	(%)		(%)
М	May	-2,952.9)	-1,065.0		-1,887.9	-0.38	3%	-0.48	3%	-0.	35%
N	Jun	-1,779.8	3	-11.4		-1,768.4	-0.24	.%	-0.01	1%	-0.	33%
0	Jul	-1,798.7	7	-3.3		-1,795.4	-0.23	3%	-0.00	0%	-0.	33%
Р	Aug	-1,837.1		-17.9		-1,819.2	-0.24	.%	-0.01	1%	-0.	33%
Q	Sep	-1,760.7	7	45.8		-1,806.6	-0.24	.%	0.02	2%	-0.	34%
						Com	parison					
Test Case	Month	Zone Heating Req'd	Basel Heater	board Req'd	Baseboa Heater Outp		fference (Baseb Base	oard Out _l		ference (B	aseboard Basebo	Output vs ard Req'd
		(Wh)		(Wh)	(W	/h)		(Wh)			(%
1	Jan	-744,000	-74	4,000	-743,8	64		1	35.8			-0.02%

Test Case	Month	Heating Req'd	Baseboard Heater Req'd	Baseboard Heater Output	Difference (Baseboard Output - Baseboard Req'd)	Difference (Baseboard Output vs. Baseboard Req'd)
		(Wh)	(Wh)	(Wh)	(Wh)	(%)
ı	Jan	-744,000	-744,000	-743,864	135.8	-0.02%
J	Feb	-672,000	-672,000	-671,999	0.0	-0.00%
K	Mar	-744,000	-744,000	-743,999	0.0	-0.00%
L	Apr	-720,000	-720,000	-719,999	0.0	-0.00%
R	Oct	-744,000	-744,000	-744,005	-5.8	0.00%
S	Nov	-720,000	-720,000	-719,999	0.0	-0.00%
Т	Dec	-744,000	-744,000	-743,999	0.0	-0.00%

Window AC with Baseboard Heat

HVAC System Level Energy Balance for Annual Test Cases

For Cooling Months

Zone	Cooling
Cooling	Delivered to
Requirement	Zone

					_		
Window AC Sensible Zone Cooling Energy	Window AC Latent Zone Cooling Energy	Window AC Total Zone Cooling Energy	Zone Internal Sensible Heat Gain	Zone Internal Latent Heat Gain	Zone Internal Total Heat Gain	Month	Test Case
(Wh)	(Wh)	(Wh)	(Wh)	(Wh)	(Wh)		
518,912	222,134	741,047	520,800	223,200	744,000	May	М
502,231	215,988	718,220	504,000	216,000	720,000	Jun	N
519,004	223,196	742,201	520,800	223,200	744,000	Jul	0
518,980	223,182	742,162	520,800	223,200	744,000	Aug	Р
502,193	216,045	718,239	504,000	216,000	720,000	Sep	Q

Comparison

Test Case	Month	Difference (Total Deliv'd - Total Req'd)	Difference (Latent Deliv'd - Latent Req'd)	Difference (Sensible Deliv'd - Sensible Req'd)	Difference (Total Deliv'd vs. Total Req'd)	Difference (Latent Deliv'd vs. Latent Req'd)	Difference (Sensible Deliv'd vs. Sensible Req'd)
		(Wh)	(Wh)	(Wh)	(%)	(%)	(%)
M	May	-2,952	-1,065	-1,887	-0.40%	-0.48%	-0.36%
Ν	Jun	-1,779	-11	-1,768	-0.25%	-0.01%	-0.35%
0	Jul	-1,798	-3	-1,795	-0.24%	-0.00%	-0.34%
Р	Aug	-1,837	-17	-1,819	-0.25%	-0.01%	-0.35%
Q	Sep	-1,760	45	-1,806	-0.24%	0.02%	-0.36%

Window AC with Baseboard Heat

HVAC System Level Energy Balance for Annual Test Cases

For Heating Months

	Comparison										
Test Case	Month	Zone Internal Total Heat Gain	Baseboard Heater Output	Difference (Baseboard Heat Deliv'd - Zone Heat Req'd)	Difference (Baseboard Heat Deliv'd vs. Zone Heat Req'd)						
		(Wh)	(Wh)	(Wh)	(%)						
I	Jan	-744,000	-743,864	135	-0.02%						
J	Feb	-672,000	-671,999	0	-0.00%						
K	Mar	-744,000	-743,999	0	-0.00%						
L	Apr	-720,000	-719,999	0	-0.00%						
R	Oct	-744,000	-744,005	-5	0.00%						
S	Nov	-720,000	-719,999	0	-0.00%						
Т	Dec	-744,000	-743,999	0	-0.00%						

Window AC with Baseboard Heat

Equipment Performance Summary for Annual Test Cases

Test Case	l Month	HVAC Cooling Electric Consump.	HVAC System Total Cooling	HVAC System Average COP	Supply Fan Electric Consump.	Baseboard Heater Output	Baseboard Heater Consumption	Baseboard Heater Efficiency
		(Wh)	(Wh)		(Wh)	(Wh)	(Wh)	(%)
I	Jan					-743,864	-743,864	1.00
J	Feb					-671,999	-671,999	1.00
K	Mar					-743,999	-743,999	1.00
L	Apr					-719,999	-719,999	1.00
M	May	188,174	741,047	3.94	25,334			
N	Jun	200,059	718,220	3.59	25,488			
0	Jul	215,672	742,201	3.44	26,777			
Р	Aug	208,160	742,162	3.57	26,430			
Q	Sep	189,481	718,239	3.79	24,965			
R	Oct					-744,005	-744,005	1.00
S	Nov					-719,999	-719,999	1.00
Т	Dec					-743,999	-743,999	1.00

- Zone Level Energy Balance
- Coil Level Energy Balance
- HVAC Cooling and Heating System Energy Balance.
- Equipment Performance Summary

The following is observed from examining the results:

• Zone Level Energy Balance

- For each month of the simulation the zone setpoint temperature of 22.2 C was maintained.
- During the summer cooling months the HVAC system did not maintain constant humidity ratios in the space. The largest difference occurred during May when the latent cooling load occurred for the first time and several hours were required during the first day in May for semi steadystate humidity conditions to be achieved.
- 100% of the internal loads were showing up as sensible and latent cooling loads in the space, therefore energy balance at the zone level was achieved.
- Coil Level Energy Balance for Cooling Months
 - For all five of the cooling months there were very small differences between the amount of sensible cooling performed by the cooling coil and the zone sensible cooling requirement plus fan heat. The percentage difference was less than 0.35% for these months.
 - For each of the cooling months when latent cooling loads were present, the amount of latent cooling performed by the cooling coil was less than that required by as much as 0.48% while the total cooling by the cooling coil was differing by as much as 0.38%.
- · Coil Level Energy Balance for Heating Months
 - During the heating months the baseboard heater output equaled the space heating requirement except for January and October where small differences occurred (0.05% or less).
- HVAC Cooling System Energy Balance

Q

Sep

0

When comparing the HVAC system cooling delivered to the zone versus the cooling required by the zone, energy balance was achieved for all
cases as shown below.

	case	s as shown bel	ow.									
		Cooling Delivered to Zone By HVAC System					HVAC System Cooling Including Fan Heat			Output of Cooling Coil		
Test Case	Month	Window AC Total Zone Cooling Energy	Window AC Latent Zone Cooling Energy	Window AC Zone Sensible Zone Cooling Energy	Fan Heat Added to Air Stream		Req'd Window AC Total Zone Cooling Energy	Req'd Window AC Latent Zone Cooling Energy	Req'd Window AC Sensible Zone Cooling Energy	Total	DX Coil Latent Cooling Energy	DX Coil Sensible Cooling Energy
		(Wh)	(Wh)	(Wh)	(Wh)					(Wh)	(Wh)	(Wh)
М	May	741,047	222,134	518,912	25,334		766,381	222,134	544,246	766,381	222,134	544,246
N	Jun	718,220	215,988	502,231	25,488		743,708	215,988	527,719	743,708	215,988	527,719
0	Jul	742,201	223,196	519,004	26,777		768,979	223,196	545,782	768,979	223,196	545,782
Р	Aug	742,162	223,182	518,980	26,430		768,593	223,182	545,411	768,593	223,182	545,411
Q	Sep	718,239	216,045	502,193	24,965		743,204	216,045	527,158	743,204	216,045	527,158
		Comparison										
Test Case	Month	Difference (Total Deliv'd - Total Req'd)	Difference (Latent Deliv'd - Latent Req'd)	(Sensible	Difference (Total Deliv'd vs. Total Req'd)	(Latent	Difference (Sensible Deliv'd vs. Sensible Req'd)					
		(Wh)	(Wh)	(Wh)	(%)	(%)	(%)					
М	May	0	0	0	-0.0%	0.0%	0.0%					
N	Jun	0	0	0	-0.0%	0.0%	-0.0%					
0	Jul	0	0	0	0.0%	0.0%	0.0%					
Р	Aug	0	0	0	-0.0%	-0.0%	-0.0%					

In previous versions of EnergyPlus there were differences between the sensible and latent cooling coil loads versus the sensible and latent cooling loads indicated for the Window AC system for all cases. This error was corrected in EnergyPlus 1.4.0.025.

0

-0.0%

0.0%

0.0%

- Equipment Performance Summary
 - The Window AC system average COP during each of the test cases ranged from 3.57 to 3.94 with varying outdoor drybulb temperature. Nominal cooling capacity and full load COP for the system at ARI conditions is 8,181 W and 4.16. The average PLR for the cooling system which had an hourly cooling load of 1,000 kW plus hourly fan heat of 34 W is 0.13. The corresponding COP degradation factor is 0.80 resulting in an operating COP of 4.16 x 0.80 = 3.33. Outdoor temperatures in Chicago during the cooling season would typically be less than the 35 °C ARI condition and therefore COPs higher than the nominal would be expected as was the case.

2.4.2 Hydronic Heating/Cooling System

For the hydronic heating/cooling system Global Energy Balance Test energy balances were performed for the following:

- · Zone Level Energy Balance
- Coil Level Energy Balance
- Hot Water Loop Energy Balance
- Chilled Water Loop Energy Balance
- Condenser Water Loop Energy Balance
- Equipment Performance Summary

For each heating/cooling coil, HVAC system and water loop energy flows into and out of the boundary volume are assessed using standard output variables and node values to determine energy balances. Before such energy balances are performed, the results of the simulation are first examined to ensure that the space temperature setpoint is maintained for all hours and space humidity ratios are constant for all hours indicating that all space loads have been met.

2.4.2.1 Daily Comparison Test

Daily comparison results from running the Global Energy Balance Test with EnergyPlus 8.3.0-b45b06b780 for the one-zone building described in Section 1 which is cooled by an EnergyPlus four-pipe fan coil system with water supplied to the coils by a water chiller and hot water boiler are shown in spreadsheet format on the following five pages.

The following is observed from examining the results:

- · Zone Level Energy Balance
 - For each hour of the second day of each test case the zone setpoint temperature of 22.2 C was maintained and the zone humidity level remained constant
 - 100% of the internal loads showed up as sensible and latent cooling loads in the space, therefore energy balance at the zone level was achieved.

										Zone Air		Zone Air Humidity	
			Daily	Daily	Daily	Daily	Internal	Internal	Daily	Temp.	Temp.	Ratio	Ratio
		Daily	Electric	Other	Gas	Steam	Loads	Loads	Total				
Test	Day	Lights	Equipment	Equipment	Equipment	Equipment	%	%	Internal	Min	Max	Min	Max
Case		Consump.	Consump.	Consump.	Consump.	Consump.	Latent	Radiant	Consump.				
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)			(kWh)	(C)	(C)	()	()
	1	0	0	-240	0	0	0	0	-240	22.2	22.2	0.0101	0.0101
Α	2	0	0	-240	0	0	0	0	-240	22.2	22.2	0.0101	0.0101
	3	240	0	0	0	0	0	0	240	22.2	22.2	0.0101	0.0101
В	4	240	0	0	0	0	0	0	240	22.2	22.2	0.0101	0.0101
	5	240	240	0	0	0	0	0	480	22.2	22.2	0.0101	0.0101
С	6	240	240	0	0	0	0	0	480	22.2	22.2	0.0101	0.0101
	7	240	240	240	0	0	0	0	720	22.2	22.2	0.0101	0.0101
D	8	240	240	240	0	0	0	0	720	22.2	22.2	0.0101	0.0101
	9	240	240	240	240	0	0	0	960	22.2	22.2	0.0101	0.0102
Е	10	240	240	240	240	0	0	0	960	22.2	22.2	0.0102	0.0102
	11	240	240	240	240	240	0	0	1,200	22.2	22.2	0.0091	0.0096
F	12	240	240	240	240	240	0	0	1,200	22.2	22.2	0.0090	0.0091
	13	0	0	240	0	0	0	20	240	22.2	22.2	0.0090	0.0090
G	14	0	0	240	0	0	0	20	240	22.2	22.2	0.0090	0.0090
	15	0	0	240	0	0	30	0	240	22.2	22.2	0.0095	0.0158
Н	16	0	0	240	0	0	30	0	240	22.2	22.2	0.0158	0.0158

		Zone Energy Output			Comparison	
Test Case	Day	Zone Internal Total Heat Gain	Zone Internal Latent Heat Gain	Zone Internal Sensible Heat Gain	Difference (Total Output - Total Input)	Difference (Total Output vs. Total Input)
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)
	1	-240	0	-240	0	0.00%
Α	2	-240	0	-240	0	-0.00%
	3	240	0	240	0	-0.00%
В	4	240	0	240	0	0.00%
	5	480	0	480	0	0.00%
С	6	480	0	480	0	0.00%
	7	720	0	720	0	0.00%
D	8	720	0	720	0	0.00%
	9	960	0	960	0	0.00%
Е	10	960	0	960	0	0.00%
	11	1200	0	1,200	0	0.00%
F	12	1200	0	1,200	0	0.00%
	13	240	0	240	0	0.00%
G	14	240	0	240	0	0.00%
	15	240	72	168	0	0.00%
Н	16	240	72	168	0	0.00%

Hydronic Heating/Cooling System

Cooling Coil Level Energy Balance for Daily Test Cases

	(Zone Cooling Requirement				Cooling Coil Requirement			Cooling Coil Output					
Test Case	Day	Zone Internal Total Heat Gain	Zone Internal Latent Heat Gain	Zone Internal Sensible Heat Gain	Fan Heat Added to Air Stream	Cooling Coil Total Cooling Req'd)	Cooling Coil Latent Cooling Req'd	Cooling Coil Sensible Cooling Req'd	Cooling Coil Total Cooling Energy	Cooling Coil Latent Cooling Energy	Cooling Coil Sensible Cooling Energy			
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)			
В	4	240	0	240	26	266	0	266	266	0	266			
С	6	480	0	480	26	506	0	506	506	0	506			
D	8	720	0	720	26	746	0	746	746	0	746			
E	10	960	0	960	26	986	0	986	986	0	986			
F	12	1200	0	1,200	26	1,226	0	1,226	1227	0	1226			
G	14	240	0	240	26	266	0	266	265	0	265			
Н	16	240	72	168	26	266	72	194	267	70	196			

28

	С	omparison								
Test Case		Difference (Total Output - Total Req'd)	Difference (L Output - L		ifference (Se Output - Se		Difference (Tota Output vs. Tota Req'o	al Output vs.	•	rence (Sensible out vs. Sensible Req'd
		(kWh)	((kWh)		(kWh)	(%	5)	(%)	(%)
В	4	0.0		0.0		0.0	0.019	%	0.00%	0.01%
С	6	0.0		0.0		0.0	0.00	%	0.00%	0.00%
D	8	0.0		0.0		0.0	0.009	%	0.00%	0.00%
Е	10	0.0		0.0		0.0	0.009	%	0.00%	0.00%
F	12	0.4		0.4		0.0	0.039	%	0.00%	0.00%
G	14	-1.2		0.0		-1.2	-0.479	%	0.00%	-0.47%
Н	16	0.5		-1.2		1.7	0.209	%	-1.65%	0.88%
Energ	ng Coil I gy Balan Test Ca	ce for ses Zo He	ne eating						Comparison	
			•							
	Test Ca	se Day	Zone Internal Total Heat Gain H	Zone Internal Latent Ieat Gain	Zone Internal Sensible Heat Gain	Added to	o Coil Total ir Heating	Heating Coil Total Heating Energy Output	Difference (Total Output - Total Req'd)	(Total Outpu vs. Tota
	Test Ca	se Day	Internal Total Heat	Internal Latent	Internal Sensible	Added to Ai Stream	o Coil Total ir Heating n Req'd)	Total Heating	Difference (Total Output -	(Total Outpu vs. Tota Req'd
	Test Ca	se Day	Internal Total Heat Gain H	Internal Latent leat Gain	Internal Sensible Heat Gain	Added to Ai Stream (kWh	Coil Total ir Heating n Req'd) (kWh)	Total Heating Energy Output	Difference (Total Output - Total Req'd)	(Total Output vs. Tota Req'd
Hydro	A onic ng/Cool	2	Internal Total Heat Gain H	Internal Latent leat Gain (kWh)	Internal Sensible Heat Gain (kWh)	Added to Ai Stream (kWh	Coil Total ir Heating n Req'd) (kWh)	Total Heating Energy Output (kWh)	Difference (Total Output - Total Req'd) (kWh)	(Total Output vs. Tota Req'd
Hydro Heatin Syste Hot W Energ	A onic ng/Cooli m /ater Loo yy Balan aily Test	2 ing op ce	Internal Total Heat Gain H	Internal Latent leat Gain (kWh)	Internal Sensible Heat Gain (kWh)	Added to Ai Stream (kWh	Coil Total ir Heating n Req'd) (kWh)	Total Heating Energy Output (kWh)	Difference (Total Output - Total Req'd) (kWh)	(Total Outpu vs. Tota Req'd
Hydro Heatii Syste Hot W Energ for Da Cases	A onic ng/Cooli m /ater Loo yy Balan aily Test	2 ing op ce Zone	Internal Total Heat Gain H (kWh) -240 /Sys Zone/Sy: Daily Daily	Internal Latent leat Gain (kWh) 0 s Heating y Coil g Daily	Internal Sensible Heat Gain (kWh) -240 Daily Fan Heat to	Added to Ai Stream (kWh 20 Fan Coil Daily Heating Output Delivered	Coil Total Heating Req'd) (kWh) 6 -213 Hot Water Pump Daily	Total Heating Energy Output (kWh)	Difference (Total Output - Total Req'd) (kWh)	(Total Outpu vs. Tota Req'd

240

3.7 209.6

210.1

210.1

22.2

240

214

26

	С	ompariso	n									
Test Case	Day	Load	ce (Daily I vs. Heating :- Pump H	g Coil Di	fference (s. Zone He Heat - Pu	eating Re	q'd -Fan	Difference (Da Load vs. He Output - Pum	ating Coil	Diffe vs. Z	rence (Daily Bo Zone Heating Ro eat - Pump Heat	eq'd -Fan
				(kWh)			(kWh)		(%)			(%)
Α	2			0			0		0.21%			0.21%
Hydro Heatin Syster	g/Cool	ing										
	Γest											
Tor	st Case		Zone/Sys Daily Average Temp	Zone/Sys Daily Cooling Reg'd	Coil Daily	Daily Fan Heat to Air Stream	Output Delivered	Chilled Water Pump Daily Electric Consumption	Daily Chilled Water Pump Heat to Fluid	Daily Chiller Load	+ CHW	Daily Chiller Load Should = Zone Cooling Req'd + Fan Heat + CHW Pump Heat to Fluid
163	ot Case	Бау	(C)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	•	(kWh)
	В	4	22.2	240		26	240	33.6	30.2	296.3		296.4
	С	6	22.2	480		26	480	33.6	30.2	535.9		536.4
	D	8	22.2	720	746	26	720	33.6	30.2	775.4	776.4	776.4
	E	10	22.2	960	986	26	960	33.6	30.2	1014.8	1016.4	1016.4
	F	12	22.2	1200	1227	26	1200	33.6	30.2	1254.4	1256.8	1256.4
	G	14	22.2	240	265	26	239	33.6	30.2	295.0	295.2	296.4
	Н	16	22.2	240	267	26	241	33.6	30.2	296.8	296.9	296.4
	С	ompariso	n									
Test Case	Day C	Load	ce (Daily (vs. Coolin HW Pump	g Coil Z	one Coolii	ng Req'd	iller Load vs + Fan Heat - Heat to Fluid		s. Cooling	Coil	Zone Cooling F	ly Chiller Load vs. Req'd + Fan Heat + ump Heat to Fluid)
				(kWh)			(kWh)		(%)		(%)
Α	2			0			4	1	0	.00%		0.00%
В	4			0.1			0.	1	0.	.04%		0.04%
С	6			0.5			0.	5	0.	.09%		0.08%
D	8			1.0			1.0		0	.12%		0.12%
Е	10			1.6			1.0	6	0	.16%		0.16%
F	12			2.4			2.0			.19%		0.16%
_	14			0.1			1.4	4	0.	.05%		0.47%
G H	16			0.1								-0.13%

Hydronic Heating/Cooling System

Condenser Water Loop Energy Balance for Daily Test Cases

							Comparison	
Test Case	Day	Chiller Daily Electric Consumption	Water Pump Daily Electric	Pump Heat	Daily Cooling Tower Load	Daily Cooling Tower Load Should = Chiller Load + Chiller Electric Consumption + CNW Pump Heat	Difference(Daily Colling Tower Load vs. Chiller Load + Chiller Electric Consumption + CNW Pump Heat)	Difference(Daily Colling Tower Load vs. Chiller Load + Chiller Electric Consumption + CNW Pump Heat)
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(%)
Α	2	0.0	0.0	0.0	0	0	0	0.00%
В	4	111.6	50.4	45.4	453	453	0	-0.00%
С	6	172.4	50.4	45.4	754	754	0	-0.00%
D	8	228.1	50.4	45.4	1049	1049	0	-0.00%
Е	10	278.8	50.4	45.4	1339	1339	0	-0.00%
F	12	324.5	50.4	45.4	1624	1624	0	-0.00%
G	14	111.3	50.4	45.4	452	452	0	-0.00%
Н	16	111.8	50.4	45.4	454	454	0	-0.00%

Hydronic Heating/Cooling System

Equipment Performance Summary for Daily Test Cases

		Daily Chiller	Chiller Daily Electric	Chiller Average	Daily Boiler	Boiler Daily Gas	Boiler Average
Test Case	Day	Load	Consumption	COP	Load	Consumption	Efficiency
		(kWh)	(kWh)	()	(kWh)	(kWh)	(%)
А	2				210	262	79.9%
В	4	296.3	111.6	2.65			
С	6	535.9	172.4	3.11			
D	8	775.4	228.1	3.40			
E	10	1014.8	278.8	3.64			
F	12	1254.4	324.5	3.87			
G	14	295.0	111.3	2.65			
Н	16	296.8	111.8	2.66			

• Coil Level Energy Balance

- For the test cases where cooling was required (Cases B through H) there were small amounts of differences between the sensible, latent and total cooling performed by the cooling coil versus what was required for some cases with the maximum difference being 1.65%.
- For the heating test case (Case A), the output of the heating coil was 0.03% greater than that required.
- Hot Water Loop Energy Balance
 - For Case A where the zone had a heating requirement, energy balance was achieved when comparing the heating output of the boiler to the heating coil output less the monthly hot water pump heat added to the hot water loop.

- For Case A where the zone had a heating requirement, energy balance was also achieved when comparing the heating output of the boiler to
 the zone monthly heating requirement less the monthly fan heat added to the air stream less the hot water pump heat added to the hot water
 loop.
- Chilled Water Loop Energy Balance
 - For each Case B through H where zone cooling was required, energy balance was achieved when comparing the cooling output of the chiller
 to the monthly total cooling coil output plus the chilled water pump heat added to the chilled water loop.
 - Very small energy balance differences (0.42% or less) occurred for four out of seven cooling cases when comparing the cooling output of the
 chiller to the monthly zone total cooling requirement plus the fan heat added to the air stream plus the chilled water pump heat added to the
 chilled water loop.
- Condenser Water Loop Energy Balance
 - For each of the seven cooling cases, energy balance was achieved when comparing the monthly cooling tower load to the monthly chiller load plus the chiller electric consumption plus the condenser water pump heat added to the condenser water loop.
- Equipment Performance Summary
 - For the heating day (Case A) the boiler average efficiency was 79.9% comparing favorably to the rated steady state efficiency of 80%.
 - During the seven cooling cases (Cases B through H) the average chiller COP ranged from 2.65 to 3.87. The rated cooling capacity and COP of the chiller at ARI conditions is 55,005 W and 3.926. The chiller entering condenser water temperature and leaving chilled water temperature was held constant at the ARI standard conditions of 29.44 °C and 6.67 °C for all test cases. For Case B where the hourly chiller load was 10,000 W space load plus 1,090 W fan heat plus 1,265 W pump heat for a total cooling load of 12,355 W, the PLR is 0.22. The EIRfPLR at this PLR is 0.332. The COP at this PLR is therefore $\frac{12,355}{0.332 \cdot \frac{55,005}{3.906}} = 2.65$ which is the resulting average COP for Test B.

2.4.2.2 Annual Comparison Test

The following is observed from examining the results (see following five pages) of the hydronic heating/cooling energy balance test performed with the annual comparison tests:

- Zone Level Energy Balance
 - For each month of each test case the zone setpoint temperature of 22.2 C was maintained and the zone humidity level remained constant except for Case I
 - 100% of the internal loads showed up in the space, therefore energy balance at the zone level was achieved.
- Coil Level Energy Balance for Cooling Months
 - For all five of the cooling months the amount of sensible cooling performed by the cooling coil equaled the zone sensible cooling requirement
 plus fan heat. Energy balance was therefore achieved at the cooling coil level.
- Coil Level Energy Balance for Heating Months
 - During each of the heating months the heating coil output equaled the space heating requirement less the fan heat, therefore, energy balance
 at the heating coil level was achieved.
- Hot Water Loop Energy Balance
 - For each month of the seven month heating season, energy balance was achieved when comparing the heating output of the boiler to the heating coil output less the monthly hot water pump heat added to the hot water loop.
 - For each month of the seven month heating season, energy balance was also achieved when comparing the heating output of the boiler to the zone monthly heating requirement less the monthly fan heat added to the air stream less the hot water pump heat added to the hot water loop.
- Chilled Water Loop Energy Balance
 - For each month of the five month cooling season, energy balance was achieved when comparing the cooling output of the chiller to the monthly total cooling coil output plus the chilled water pump heat added to the chilled water loop.
 - For each month of the five month cooling season, energy balance was also achieved when comparing the cooling output of the chiller to the
 monthly zone total cooling requirement plus the fan heat added to the air stream plus the chilled water pump heat added to the chilled water
 loop.
- Condenser Water Loop Energy Balance
 - For each month of the five month cooling season, energy balance was achieved when comparing the monthly cooling tower load to the
 monthly chiller load plus the chiller electric consumption plus the condenser water pump heat added to the condenser water loop
- Equipment Performance Summary
 - For the heating months (Cases I through L and R through T) the boiler average efficiency was 80.0% each month matching the rated steady state efficiency of 80%.
 - o During the five cooling cases (Cases M through Q) the average chiller COP was 3.87. The rated cooling capacity and COP of the chiller at ARI

conditions is 11,005 W and 3.926. The chiller entering condenser water temperature and leaving chilled water temperature was held constant at the ARI standard conditions of 29.44 °C and 6.67 °C for all test cases. For each cooling month the hourly chiller load was 10,000 W space load plus 223 W fan heat plus 253 W pump heat for a total cooling load of 10,476 W, the PLR is 0.95. The EIRfPLR at this PLR is 0.966. The COP at this PLR is therefore $\frac{10,476}{0.966 \cdot \frac{11,005}{3.926}} = 3.87 \text{ which is the resulting average COP for each of the cooling months.}$

Hydronic Heating/Cooling System

Zone Level Energy Balance for Annual Test Cases

Zone Energy Input

		Daily	Internal	Internal	Daily		Zone Air Temp.	Zone Air Humidity Ratio	Zone Air Humidity Ratio
		Other	Convective	Latent	Total				
Test	Month	Equipment	Load	Load	Internal	Min	Max	Min	Max
Case		Consump.			Load				
		(kWh)	(kWh)	(kWh)	(kWh)	(C)	(C)	()	()
I	Jan	-7440	-7440	0	-7440	22.2	22.2	0.00084	0.00938
J	Feb	-6720	-6720	0	-6720	22.2	22.2	0.00194	0.00194
K	Mar	-7440	-7440	0	-7440	22.2	22.2	0.00194	0.00194
L	Apr	-7200	-7200	0	-7200	22.2	22.2	0.00194	0.00194
M	May	7440	7440	0	7440	22.2	22.2	0.00194	0.00194
N	Jun	7200	7200	0	7200	22.2	22.2	0.00194	0.00194
0	Jul	7440	7440	0	7440	22.2	22.2	0.00194	0.00194
Р	Aug	7440	7440	0	7440	22.2	22.2	0.00194	0.00194
Q	Sep	7200	7200	0	7200	22.2	22.2	0.00194	0.00194
R	Oct	-7440	-7440	0	-7440	22.2	22.2	0.00194	0.00194
S	Nov	-7200	-7200	0	-7200	22.2	22.2	0.00194	0.00194
Т	Dec	-7440	-7440	0	-7440	22.2	22.2	0.00194	0.00194

		Zone Ene	rgy Output					Compariso	n			
Test	Month	Zone Into	ernal Total Z Heat Gain		l Latent eat Gain	Zone Intern	al Sensible Heat Gain	Difference	(Total Outp Total In		Difference (To	otal Output Total Input)
Case												
			(kWh)		(kWh)		(kWh)		(k	Wh)		(%)
I	Jan		-7440		0		-7440			0		-0.00%
J	Feb		-6720		0		-6720			0		-0.00%
K	Mar		-7440		0		-7440			0		-0.00%
L	Apr		-7200		0		-7200			0		-0.00%
M	May		7440		0		7440			0		0.00%
N	Jun		7200		0		7200			0		0.00%
0	Jul		7440		0		7440			0		0.00%
Р	Aug		7440		0		7440			0		0.00%
Q	Sep		7200		0		7200			0		0.00%
R	Oct		-7440		0		-7440			0		-0.00%
S	Nov		-7200		0		-7200			0		-0.00%
Т	Dec		-7440		0		-7440			0		-0.00%
Hydro Heatii Syste	ng/Coolir	ng										
	y Baland nnual Tes											
For C	ooling ns											
			Zone Cooling Requiremen	ıt			Cooling Coil Requirement			Cooling Coil Output		
Te	st Case	Month	Zon Interna Total Hea Gai	al Latent it Heat	Zon Interna Sensible Hea Gai	Heat e Added	Cooling Coil Total Cooling Req'd)	Latent Cooling	Cooling Coil Sensible Cooling Req'd	Cooling Coil Total Cooling Energy	Coil Latent Cooling	Cooling Coil Sensible Cooling Energy
			(kWh	ı) (kWh)	(kWh) (kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)
	M	May	744	0 0	744	0 166	7,605	0	7,605	7606	0	7606
	N	Jun	720	0 0	720	0 161	7,360	0	7,360	7361	0	7361
	0	Jul	744	0 0	744	0 166	7,605	0	7,605	7606	0	7606
	Р	Aug	744	0 0	744	0 166	7,605	0	7,605	7606	0	7606

7,360

7,360

Q

Sep

		Comparison					
Test Case	Month	Difference (Coil Total Output - Coil Total Req'd)	Difference (Coil Latent Output - Coil Latent Req'd)	Difference (Coil Sensible Output - Coil Sensible Req'd)	Difference (Coil Total Output vs. Coil Total Req'd)	Difference (Coil Latent Output vs. Coil Latent Req'd)	Difference (Coil Sensible Output vs. Coil Sensible Req'd)
		(Wh)	(Wh)	(Wh)	(%)	(%)	(%)
М	May	0.0	0.0	0.0	-0.00%	0.00%	-0.00%
N	Jun	-0.0	0.0	-0.0	0.00%	0.00%	0.00%
0	Jul	-0.0	0.0	-0.0	0.00%	0.00%	0.00%
Р	Aug	-0.0	0.0	-0.0	0.00%	0.00%	0.00%
Q	Sep	-0.0	0.0	-0.0	-0.00%	0.00%	-0.00%

Hydronic Heating/Cooling System

Coil Level Energy Balance for Annual Test Cases

For Heating Months

> Zone Heating Requirement

Comparison

Test Case Month Zone Internal Potal Heat Gain Gain Gain Gain Gain Gain Gain Gain		Companison						Requirement		
I Jan 7440 0 7440 166 7274 7274 0 0.00% J Feb 6720 0 6720 150 6570 6570 0 -0.00% K Mar 7440 0 7440 166 7274 7274 0 -0.00% L Apr 7200 0 7200 161 7039 7039 0 0.00% R Oct 7440 0 7440 166 7274 7274 0 0.00% S Nov 7200 0 7200 161 7039 7039 0 -0.00%	(Total Output vs. Total	(Total Output -	Total Heating	Coil Total Heating	Added to Air	Internal Sensible	Internal Latent	Internal Total Heat	Month	Test Case
J Feb 6720 0 6720 150 6570 6570 0 -0.00% K Mar 7440 0 7440 166 7274 7274 0 -0.00% L Apr 7200 0 7200 161 7039 7039 0 0.00% R Oct 7440 0 7440 166 7274 7274 0 0.00% S Nov 7200 0 7200 161 7039 7039 0 -0.00%	(%)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)		
K Mar 7440 0 7440 166 7274 7274 0 -0.00% L Apr 7200 0 7200 161 7039 7039 0 0.00% R Oct 7440 0 7440 166 7274 7274 0 0.00% S Nov 7200 0 7200 161 7039 7039 0 -0.00%	0.00%	0	7274	7274	166	7440	0	7440	Jan	I
L Apr 7200 0 7200 161 7039 7039 0 0.00% R Oct 7440 0 7440 166 7274 7274 0 0.00% S Nov 7200 0 7200 161 7039 7039 0 -0.00%	-0.00%	0	6570	6570	150	6720	0	6720	Feb	J
R Oct 7440 0 7440 166 7274 7274 0 0.00% S Nov 7200 0 7200 161 7039 7039 0 -0.00%	-0.00%	0	7274	7274	166	7440	0	7440	Mar	K
S Nov 7200 0 7200 161 7039 7039 0 -0.00%	0.00%	0	7039	7039	161	7200	0	7200	Apr	L
	0.00%	0	7274	7274	166	7440	0	7440	Oct	R
T Dec 7440 0 7440 166 7274 7274 0 -0.00%	-0.00%	0	7039	7039	161	7200	0	7200	Nov	S
	-0.00%	0	7274	7274	166	7440	0	7440	Dec	Т

Hydronic
Heating/Cooling
System

Hot Water Loop Energy Balance for Annual Test Cases

J Fe	Jan	(C) 22.2	(kWh) 7440	(kWh)	(kWh)	(kWh)	(kWh)	(1.38//.)			
J Fe	Jan	22.2	7440			, ,	(174411)	(kWh)	(kWh)	(kWh)	(kWh)
			7440	7274	166	7440	129	116	7142	7158	7158
K M	Feb	22.2	6720	6570	150	6720	116	105	6451	6465	6465
	Mar	22.2	7440	7274	166	7440	129	116	7142	7158	7158
L A	Apr	22.2	7200	7039	161	7200	125	112	6912	6927	6927
R O	Oct	22.2	7440	7274	166	7440	129	116	7142	7158	7158
S No	Nov	22.2	7200	7039	161	7200	125	112	6912	6927	6927
T De	Dec	22.2	7440	7274	166	7440	129	116	7142	7158	7158
Comp	npariso	n									

Test Case	Month	Difference (Monthly Boiler Load vs. Heating Coil Output - Pump Heat to Fluid)	Difference (Monthly Boiler Load vs. Zone Heating Req'd -Fan Heat - Pump Heat to Fluid)	Difference (Monthly Boiler Load vs. Heating Coil Output - Pump Heat to Fluid)	Difference (Monthly Boiler Load vs. Zone Heating Req'd -Fan Heat - Pump Heat to Fluid)
		(kWh)	(kWh)	(%)	(%)
I	Jan	16	16	0.23%	0.23%
J	Feb	15	15	0.23%	0.23%
K	Mar	16	16	0.23%	0.23%
L	Apr	16	16	0.23%	0.23%
R	Oct	16	16	0.23%	0.23%
S	Nov	16	16	0.23%	0.23%
Т	Dec	16	16	0.23%	0.23%

Hydronic Heating/Cooling System

Chilled Water Loop Energy Balance for Annual Test Cases

Test Case	Month	Zone/Sys Monthly Average Temp	Zone/Sys Monthly Cooling Req'd	Cooling Coil Monthly Output	Air	Fan Coil Monthly Cooling Output Delivered to Zone	Chilled Water Pump Monthly Electric Consumption	Monthly Chilled Water Pump Heat to Fluid	Monthly Chiller Load	Monthly Chiller Load Should = Cooling Coil Output + CHW Pump Heat	Monthly Chiller Load Should = Zone Cooling Req'd + Fan Heat + CHW Pump Heat to Fluid
		(C)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)
M	May	22.20	7440	7606	166	7440	208	187	7777	7793	7793
N	Jun	22.20	7200	7361	161	7200	202	181	7527	7542	7542
0	Jul	22.20	7440	7606	166	7440	208	187	7778	7793	7793
Р	Aug	22.20	7440	7606	166	7440	208	187	7778	7793	7793
Q	Sep	22.20	7200	7361	161	7200	202	181	7527	7542	7542

Coi		

Test Case	Difference (Monthly Chiller Load vs. Cooling est Coil Output + CHW Pump ase Month Heat)		Difference (Monthly Chiller Load vs. Zone Cooling Req'd + Fan Heat + CHW Pump Heat to Fluid)	Difference (Monthly Chiller Load vs. Cooling Coil Output + CHW Pump Heat)	Difference (Monthly Chiller Load vs. Zone Cooling Req'd + Fan Heat + CHW Pump Heat to Fluid)
		(kWh)	(kWh)	(%)	(%)
М	May	17	17	0.21%	0.21%
N	Jun	15	15	0.19%	0.19%
0	Jul	15	15	0.19%	0.19%
Р	Aug	15	15	0.19%	0.19%
Q	Sep	15	15	0.19%	0.19%

Hydronic Heating/Cooling System

Condenser Water Loop Energy Balance for Annual Test Cases

Test Case	Month	Chiller Monthly Electric Consumption		Monthly Condenser Water Pump Heat to Fluid	-	Monthly Cooling Tower Load Should = Chiller Load + Chiller Electric Consumption + CNW Pump Heat	Difference (Monthly Cooling Tower Load vs. Chiller Load + Chiller Electric Consumption + CNW Pump Heat)	Difference (Monthly Cooling Tower Load vs. Chiller Load + Chiller Electric Consumption + CNW Pump Heat)
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(%)
M	May	2012	313	281	10068	10070	2	0.02%
N	Jun	1948	302	272	9747	9747	0	-0.00%
0	Jul	2012	313	281	10072	10072	0	-0.00%
Р	Aug	2013	313	281	10073	10072	0	-0.00%
Q	Sep	1948	302	272	9747	9747	0	-0.00%

Hydronic Heating/Cooling System

Equipment Performance Summary for Annual Test Cases

Test Case	Month	Monthly Chiller Load	Chiller Monthly Electric Consumption	Chiller Average COP	Cooling Tower Monthly Electric Consumption	Monthly Boiler Load	Boiler Monthly Gas Consumption	Boil Avera Efficien	
		(kWh)	(kWh)	()	(kWh)	(kWh)	(kWh)	(%	
I	Jan					7142	8929	80.0	
J	Feb					6451	8065	80.0	
K	Mar					7142	8929	80.0	
L	Apr					6912	8641	80.0	
М	May	7777	2012	3.86	47				
N	Jun	7527	1948	3.87	57				
0	Jul	7778	2012	3.87	66				
Р	Aug	7778	2013	3.86	65				
Q	Sep	7527	1948	3.87	53				
R	Oct					7142	8929	80.0	
S	Nov					6912	8641	80.0	
Т	Dec					7142	8929	80.0	

3 Conclusions

EnergyPlus version 8.3.0-b45b06b780 was used to model the operation of a DX cooling system and hydronic heating/cooling system and perform global energy balances across various energy boundaries to determine how accurately energy was being transferred between the building space being cooled and various components of the HVAC system and equipment for various types of internal loads. The Global Energy Balance Test suite as described in this report makes use of the basic test building geometry and envelope described as Case E100 in Section 5.3.1 of ANSI/ASHRAE Standard 140-2011, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs to generate a set of controlled heating and cooling loads on the HVAC system. The global energy balance test was performed for the DX cooling system in EnergyPlus referred to as ZoneHVAC:WindowAirConditioner. Energy balances and flows into and out of three boundary volumes were performed for the zone boundary, coil boundary and HVAC system boundary for both daily comparison cases and annual comparison cases with the following results.

- Zone Level Energy Balance exact agreement was obtained between the internal loads generated within the space and the resulting cooling load in the space
- Coil Level Energy Balance sensible cooling coil energy balance was achieved between the sensible cooling performed by the cooling coil and the
 zone sensible cooling requirement plus fan heat. Small differences (1.36% or less) occurred when comparing the amount of latent cooling performed
 by the cooling coil versus what was required. Small differences (0.02%) also occurred when comparing the sensible cooling performed by the cooling
 coil versus what was required.
- HVAC Cooling System Level Energy Balance energy balance was achieved when comparing the HVAC system cooling provided to the zone to the cooling coil output.
- Equipment Performance Summary the resulting cooling system COPs and heating system efficiencies were within range of expected results.

The global energy balance test was also performed for a hydronic heating/cooling system which utilized chilled water, hot water and condenser water loops, electric chiller, gas-fired hot water boiler, cooling tower and 4-pipe fan coil HVAC system. Energy balances performed for each of the three water loops for both daily comparison cases and annual comparison cases yielded the following results:

- Zone Level Energy Balance exact agreement was obtained between the internal loads generated within the space and the resulting cooling load in the space
- Coil Level Energy Balance small differences (1.65% or less) occurred when comparing the amount of sensible or latent cooling performed by the cooling coil versus what was required. Heating coil energy output compared favorably with the space required heating.
- Hot Water Loop Energy Balance for each day or month when heating was required exact agreement was obtained between the heating required and delivered to the space by the hot water loop and the boiler after accounting for pump heat added to the hot water loop
- Chilled Water Loop Energy Balance for each day or month during the both the daily and annual comparison tests when cooling was required exact agreement was obtained between the cooling required and delivered to the space by the chilled water loop and water chiller after accounting for pump heat added to the chilled water loop. Small differences (0.42% or less) when comparing the chiller output to the zone cooling load plus fan heat plus chilled water pump heat.
- Condenser Water Loop Energy Balance for each day or month when cooling was required, exact agreement was obtained between the cooling performed by the cooling tower and that required by the water chiller condenser and condenser water pump.
- Equipment Performance Summary the resulting chiller COPs and heating system efficiencies were within range of expected results.

As a result of the testing several discrepancies were uncovered that need to be investigated:

- differences between amount of sensible and latent cooling done by water cooling coils versus that required by the zone (-1.65% to 0.88%)
- differences between the amount of cooling provided by the chilled water loop versus the zone cooling plus fan heat plus chilled water pump heat added to the fluid (-0.18% to 0.42%)
- differences between the amount of heating done by water heating coils versus that required by the zone (-0.03 to 0.0%)

As discussed in this report, one discrepancy, the difference between the sensible and latent loads reported for the DX cooling coil versus the sensible and latent cooling loads reported for the Window AC system, was discovered and corrected.

4 References

ANSI/ASHRAE 2011. Standard 140-2011, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.

EnergyPlus 2014. U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Building Technologies. www.energyplus.gov

York, "Millennium Liquid Chillers, Water Cooled Chiller & Remote Condenser Models, 60 to 250 Tons, Models YCWZ, YCRZ, YCWJ and YCRJ, Engineering Guide," Form 150.24-EG2(899).

5 Appendix A

Curve Fitting of Manufacturer Catalog Data for York Model YCWZ33AB0 Millennium Water Cooled Chiller

Performance Curves Manufacturer: Class: Type: Source of Data:	York Reciprocating Water-Cooled, YORK Millenni	Electric	s, 60 to 250 tons,	Form 150.24	-EG2 (899)														
EnergyPlus Curve:	English Units																		
	Manufacturer York York York York York York York Yor		CHWS 40 40 44 45 46 48 50 40 40 42 44 45 46 48 50 40 42 44 45 46 48 48 50 40 40 42 44 45 46 48 48 50	CHWS***2 1600 1764 1936 2025 2166 2025 2160 2500 1764 1936 2025 2116 2026 2116 2026 2026 2026 2026 2026	CWS 75 75 75 75 75 75 75 75 75 75 75 75 75	CWS**2 56225	CHWS*CWS 3000 3150 3150 3150 3150 3150 3150 3150	Capacity (tons) 55.3 55.5 55.3 55.3 55.3 56.2 66.2 66.6 66.2 66.6 66.2 66.2 66.2	Normalized CaAP (APP CAPP CAPP CAPP CAPP CAPP CAPP CA	CAP-FT From Curve From Curve From Curve From Curve 1.0169 1.0569 1.0569 1.0569 1.0569 1.0569 1.0562 1.0569 1.1788 1.0567 1.1781 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.1485 1.0675 1.10892 1.0781 1.1184 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0897 1.0899 1.0994 1.0992 1.0175 1.0994	% Diff 0.00% 0.08% 0.08% 0.08% 0.02% 0.02% 0.01% 0.01% 0.01% 0.01% 0.00% 0.02% 0.00% 0.02% 0.00% 0.02% 0.00% 0.02% 0.00% 0.02% 0.00%		3.53229E-06	e -1.08362E-05 1.88809E-06 0.000487278		c 0.000103617 7.82061E-06 #NVA	b 0.015197888 0.00076825 #N/A	a 0.537801492 0.024830849 #NVA	Adjusted a 0.537601492
	Metric Units Manufacturer York York York York York York York Yor	Model YCWZ33AB0 YCWZ33AB0 YCWZ33AB0 YCWZ33AB0 YCWZ33AB0 YCWZ33AB0 YCWZ33AB0 YCWZ33AB0	CHWS 4.4 5.6 6.7 7.2 7.8 8.9 10.0 4.4	CHWS**2 19.8 30.9 44.4 52.2 60.5 79.0 100.0 19.8	CWS 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9	CWS**2 570.7 570.7 570.7 570.7 570.7 570.7 570.7 711.1	CHWS*CWS 106.2 132.7 159.3 172.5 185.8 212.3 238.9 118.5	Condenser Water Capacity (kW) 194.4 202.2 209.9 213.8 217.6 225.7 234.2 189.2	Normalized CAP 0.98 1.02 1.06 1.08 1.10 1.14 1.18 0.95	CAP-FT From Curve 0.9787 1.0169 1.0560 1.0758 1.0958 1.1365 1.1781 0.9522	% Diff 0.00% -0.08% -0.06% -0.03% 0.02% -0.06% 0.00%	_	AP-FT f -0.00019825 1.14446E-05 0.999966506	e -3.51093E-05 6.1174E-06 0.000467278	d -0.006886487 0.000370154 #N/A	c 0.000335718 2.53388E-05 #N/A	b 0.035768388 0.000499536 #N/A	a 1.018907198 0.005921788 #N/A	Adjusted a 1.018707198
Appendix A	York York York York York York York York	YOWZ33AB0 YOWZ3AB0 YOWZ33AB0	5.6 6.7 7.2 7.8 8.8 9.10.0 4.4 5.5 6.6.7 7.7 7.8 8.9 10.0 4.4 5.6 6.7 7.7 7.7 7.8 8.9 10.0 4.4 5.6 6.7 7.7 7.7 7.7 8.9 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	30.9 44.4 52.2 60.5 79.0 100.0 19.8 30.9 44.4 52.2 60.5 79.0 1100.0 19.8 30.9 44.4 52.2 60.5 79.0 1100.0 19.8 30.9 44.4 52.2 Wates@b&Rex 79.0 79.0 100.0	26.7 26.7 26.7 26.7 26.7 29.4 29.4 29.4 29.4 29.4 29.4 29.4 32.2 32.2 32.2 32.2 32.2 35.0 35.0 35.0 35.0	711.1 711.1 711.1 711.1 711.1 711.1 711.1 711.1 867.0 867.0 867.0 867.0 867.0 867.0 867.0 1038.3 1038.3 1038.3 1038.3 1038.3 1038.3 1038.3 10225.0 1225.0 1225.0 1225.0 1225.0	148.1 177.8 192.6 207.4 237.0 266.7 130.9 130.9 130.6 1963. 121.7 229.0 229.0 241.7 224.4 132.2 179.0 242.7 250.6 194.4 322.2 155.6 194.4 322.2 155.6 194.4 323.3 253.8 325.8 325.8 335.8	196.5 204.3 208.1 212.0 220.1 226.2 183.9 191.3 198.7 202.5 206.4 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0.99 1.03 1.05 1.07 1.11 1.15 0.93 0.96 1.00 1.02 1.04 1.12 0.90 0.93 0.99 0.99 0.99 0.99 0.99 0.99	0.9898 1.0282 1.0478 1.0675 1.1076 1.1485 0.9252 1.0092 1.	0.04% -0.01% -0.01% -0.02% -0.04% -0.02% -0.05% -0.05% -0.03% -0.03% -0.03% -0.03% -0.02% -0.05% -0.05% -0.07% -0.07% -0.07% -0.07% -0.07% -0.07% -0.05%		CHWS 3.2 4.4 5.6 6.7 7.2 7.8 8.9 10.0 11.2	CWS 21.5 0.887 1.091 1.094 1.0995 1.198 1.1610 1.2031 1.2494	23.9 0.9369 0.9787 1.0169 1.0560 1.0758 1.1365 1.1781 1.2238	26.7 0.9111 0.9522 0.9898 1.0282 1.0478 1.1676 1.1495 1.1936	29.4 0.8847 0.9252 0.9652 1.0000 1.0192 1.0386 1.1784 1.1628	32.2 0.8578 0.8976 0.9339 0.9711 1.0990 1.0480 1.0877 1.1315	35.0 0.8304 0.8864 0.9052 0.9416 0.9702 1.0175 1.0265 1.0997

Performance Curves

Manufacturer: Class: York

Type:

Reciprocating Water Chiller
Water-Cooled, Electric
YORK Millennium Liquid Chillers, 60 to 250 tons, Form 150.24-EG2 (899)

EnergyPlus Curve:

CHWS=Chilled Water Supply Tempera EER includes compressor power EIR = 3.413/EER CWS**2 CHWS*CWS Capacity (tons)
5625 3000 55.3
5625 3150 57.5
5625 3376 60.9
5626 3377 60.9
5626 3377 60.9
5626 3377 60.9
5626 3377 60.9
5626 3377 60.9
5626 3377 60.9
5626 3377 60.9
5626 3377 60.9
5626 3377 60.9
5626 3379 66.6
6400 3200 53.8
6400 3200 53.8
6400 3200 53.8
6400 3200 53.8
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 3600 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 60.3
6400 IN UNI EER
BTUWMIT | 14.5 | 15.0 | 15.5 | 15.0 | 15.5 | 15.0 | 15.5 | 15.7 | 15.7 | 15.7 | 15.7 | 15.7 | 15.7 | 15.5 | 17.0 | 15.5 | 17.0 | 15.5 | 17.0 | 15.5 | 17.0 | 15.5 | 17.0 | 15.5 | 15.8 | 15 EIR-FT
From Curve
From Curve
0.8211
0.8917
0.8917
0.8934
0.8409
0.8409
0.8103
0.7854
0.9904
0.9006
0.9006
0.915
0.9015
0.974
0.8479
1.0631
1.0309
1.0003
0.9840
0.9157
1.0011
0.9117
1.1391
1.1056
1.0757
1.0412
0.9137
1.1391
1.1056
1.11355
1.11356
1.11356
1.11356 % Diff Model
YCWZ33AB0
YCWZ33AB0
YCWZ33AB0
YCWZ33AB0
YCWZ33AB0
YCWZ33AB0
YCWZ33AB0
YCWZ3AB0
YCWZABO
YC CHWS CHWS**2
40 1600
40 1600
41 1764
44 1936
45 2025
46 2116
48 2304
50 2250
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
40 1600
4 -0.33% -0.18% -0.45% -0.15% -0.22% -0.23% -0.22% -0.24% -0.43% -0.06% -0.06% -0.10% -0.24% -0.10% -0.24% -0.10% -0.24% -0.10% -0.24% -0.10% -0.24% -0.10% -0.24% -0.10% -0
 f
 e
 d
 c
 b
 a
 Adjusted

 -0.001387
 6.72502E-05
 0.00871755
 0.000140632
 -0.101603998
 0.703119087
 0.701619

 1.5715E-05
 8.4004E-06
 0.011504294
 3.47937E-05
 0.003406248
 0.110477781

 0.999709348
 0.002079905
 mN/A
 mN/A
 mN/A
 mN/A
 mN/A
 Metric Units % Diff EIR-FT

Balized Eirk (1920) (19 EIR-FT
FOR Curve
0.9211
0.8917
0.8917
0.8936
0.8497
0.8363
0.7854
0.9904
0.9598
0.9006
0.9001
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011
0.9011 Model YCW233AB0 CHWS**2
1998
1998
44.4
52.2
60.5
79.0
1998
30.9
44.4
52.2
60.5
60.5
79.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0 CWS**2
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7
570.7 -0.33% -0.18% -0.45% -0.15% -0.15% -0.22% -0.22% -0.06% -0.06% -0.06% -0.10% -0.16% -0 TVCW233AB0
YCW233AB0

f e d c b a Adjusted c -0.00417891 0.015980292 0.00455648 -0.02047212 0.54907728 0.545977 5.09167E-05 2.72161E-05 0.001646805 0.000112732 0.002222422 0.02634877 12 0.999709348 0.002078905 #N/A #N/A #N/A #N/A mN/A mN/A

COP=EER/3.413=

Appendix A - RecipChillerPerf Curve Data-CatalogVsCalc.xls/WaterCool-Recip-EIR-FT

6/29/2006