Bike Sharing

Ву-

Ganesh Naik

Vidhya Pawar

Rutika Patil

Harib Parol

Vikal Dhawane

Rohit Shivramwar

Pooja Kharatmol

About the Existing System:

A bike-sharing system is a service in which bikes are made available for shared use to individuals on a short term basis for a price or free. Many bike share systems allow people to borrow a bike from a "dock" which is usually computer-controlled wherein the user enters the payment information, and the system unlocks it. This bike can then be returned to another dock belonging to the same system.

Need of Proposed System:

A bike-sharing system is a service in which bikes are made available for shared use to individuals on a short term basis for a price or free. Many bike share systems allow people to borrow a bike from a "dock" which is usually computer-controlled wherein the user enters the payment information, and the system unlocks it. This bike can then be returned to another dock belonging to the same system.

The company wants to know -

- 1. Which variables are significant in predicting the demand for shared bikes.
- 2. How well those variables describe the bike demands

Problem Statement -

A US bike-sharing provider BoomBikes has recently suffered considerable dips in their revenues due to the ongoing Corona pandemic. The company is finding it very difficult to sustain in the current market scenario. So, it has decided to come up with a mindful business plan to be able to accelerate its revenue as soon as the ongoing lockdown comes to an end, and the economy restores to a healthy state.

Scope of the proposed System:

1. Index:- Company can predict the count of bikes which will be Rented depending on the important features.

Technologies Used -

- •Frontend HTML, CSS
- •Backend Python, Streamlit
- •Tools Spyder, Jupyter Notebook

Expected GUI System:

1. Index page

Boom Bikes

Bike Sharing Company Predictor

5/19/2023

Imported Libraries:

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        sns.set style("darkgrid")
        import statsmodels.formula.api as smf
        from sklearn.feature selection import RFE
        import statsmodels.api as sm
        from sklearn.model selection import train test split
        from sklearn.linear model import LinearRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.cluster import KMeans
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.ensemble import BaggingRegressor, RandomForestRegressor
        from sklearn.pipeline import make pipeline
        from sklearn.preprocessing import StandardScaler
        from sklearn.linear model import SGDRegressor, Lasso, ElasticNet, Ridge
        from sklearn.svm import SVR, NuSVR
        from sklearn.metrics import r2 score, mean squared error, mean absolute error
        import warnings
        from sklearn import svm
        from sklearn.metrics import accuracy score
        warnings.filterwarnings("ignore")
        from sklearn.model selection import train test split, GridSearchCV, KFold, cross val score
        from statsmodels.stats.outliers influence import variance inflation factor
        pd.set option('display.max column', None)
```

Dataset:

In [25]: df

Out[25]:

	season	year	month	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	count
0	Spring	2018	January	not-holiday	monday	working day	misty	14.110847	18.18125	80.5833	10.749882	331	654	985
1	Spring	2018	January	not-holiday	tuesday	working day	misty	14.902598	17.68695	69.6087	16.652113	131	670	801
2	Spring	2018	January	not-holiday	wednesday	working day	clear	8.050924	9.47025	43.7273	16.636703	120	1229	1349
3	Spring	2018	January	not-holiday	thursday	working day	clear	8.200000	10.60610	59.0435	10.739832	108	1454	1562
4	Spring	2018	January	not-holiday	friday	working day	clear	9.305237	11.46350	43.6957	12.522300	82	1518	1600
		***		***		***	***		***	***		***		
725	Spring	2019	December	not-holiday	friday	working day	misty	10.420847	11.33210	65.2917	23.458911	247	1867	2114
726	Spring	2019	December	not-holiday	saturday	non-working day	misty	10.386653	12.75230	59.0000	10.416557	644	2451	3095
727	Spring	2019	December	not-holiday	sunday	non-working day	misty	10.386653	12.12000	75.2917	8.333661	159	1182	1341
728	Spring	2019	December	not-holiday	monday	working day	clear	10.489153	11.58500	48.3333	23.500518	364	1432	1796
729	Spring	2019	December	not-holiday	tuesday	working day	misty	8.849153	11.17435	57.7500	10.374682	439	2290	2729

730 rows × 14 columns

Correlation:

Correlation heatmap with respect to cnt:

Boxplot on count across months:

Top 6 important Features:

Model Prediction:

```
In [130]: def predict(model):
              model= model.fit(xtrain,ytrain)
              ypred= model.predict(xtest)
              print(model.score(xtrain,ytrain))
              print(model.score(xtest,ytest))
In [131]: predict(AdaBoostRegressor(random state=1))
          0.8424292035616374
          0.8255669027919567
In [132]: predict(GradientBoostingRegressor())
          0.948108952757542
          0.8938354038129837
In [133]: predict(RandomForestRegressor(random_state=1))
          0.9795583555797495
          0.9025567704350393
In [134]: from sklearn.svm import SVC
          predict(SVC())
          0.02910958904109589
          0.0
In [135]: from sklearn.linear_model import LinearRegression
          predict(LinearRegression())
          0.7778788113419504
          0.8537490231887983
In [136]: from sklearn.tree import DecisionTreeRegressor
          predict(DecisionTreeRegressor())
          0.8166707085634423
```

Thank You