(a) Uz bucho, AD
$$\int \frac{\pi^{1/2}}{\pi^{1} + \chi^{1}} d\mu = F(x) + C \ u \ g(x) = F(x^{1}) + Haigute \ g'(\sqrt{\pi})$$

$$F(x^{1}) + C' = \int \frac{\pi^{1/2}}{\pi^{1} + \chi^{1}} d\mu^{1} = \int \frac{\pi^{3/2}}{\pi^{1} + \chi^{1}} e^{3x} dx dx$$

$$g(x) = F(x^{1}) \Rightarrow g'(x) = F'(x^{1}) = \left[F(x^{1}) + C' \right]' = e^{3x} \frac{\pi^{3/2}}{\pi^{1} + \chi^{1}} e^{3x} dx$$

$$\Rightarrow g'(\sqrt{\pi}) = 2\sqrt{\pi} \cdot \frac{\pi^{3/2}}{\pi^{1} + \chi^{1}} = \frac{2\pi^{1}}{2\pi^{1}} e^{3x} = -4$$
(a) Uz bucho, NO $\int \frac{g(x)}{\pi^{1} + \chi^{1}} dx = a \cdot G(x, b) + c \cdot G(x, d) + C$, $1ge \ G(x; x_{*}) - nephoofpapez$

Popukuhu $\frac{g(x)}{x - x_{*}} dx = \int g(x) \left(\frac{A}{x + 1} + \frac{B}{x + 2} \right) dx = \int \left(\frac{Ag(x)}{x + 4} + \frac{Bg(x)}{x + 2} \right) dx$

$$T = \int \frac{g(x)}{x^{1} + 3x + 2} dx = \int g(x) \left(\frac{A}{x + 1} + \frac{B}{x + 2} \right) dx = \int \left(\frac{Ag(x)}{x + 4} + \frac{Bg(x)}{x + 2} \right) dx$$

$$Ag(x)(x + 2) + bg(x)(x + 1) = g(x)$$

$$E^{2} A(x + 2) + bg(x + 1) = 4$$

$$x = -4 \Rightarrow A = 4$$
(b) Haigute neonpegeterus in unitary as $\int \frac{x + f(x)}{x + x - 4} dx$, exim $\int \frac{f(x)}{x - a} dx = F(x; a) + C$, age $F(x; a) - gagarrax$ agy priximal representation $x = a$, $x = a = 6$

$$x^{2} + x - 6$$

$$x^{2} + x$$

Scanned with CamScanner

⁽⁴⁾ Thy the pyricular f(x;y) guppeperusuppera. Dokamute, to $f(1+2t;2+3t) - f(1;2) = kt + \overline{0}(0)$ npu $t \to 0$, u training to k $f(1+2t+3+3+3+2+1) - f(1,1) - f'(1,2) + f'(1,2) + f'(1,2) + \overline{0}(1,2) + \overline{0}($

4) Tyens pyricum f(x;y) gupapeperusupyera. Dokamute, no $f(1+2t;2+3t)-f(1;2)=kt+\delta(npu-t\to 0)$, u traŭgute k

$$f(1+2t; 2+3t) - f(1;2) = f'_{x}(1;2)2t + f'_{y}(1;2)3t + \bar{O}(t)$$

$$= t \left[2f'_{x}(1;2) + 3f'_{y}(1;2)\right] + \bar{O}(t)$$

$$= kt + \bar{O}(t)$$

$$= kt + \bar{O}(t)$$

 \bigcirc Использух определение дифференциала, найдите хастные производные $f_{\chi}'(0;z)$

 $u f_{y}'(0,2)$, echu $f(2t;2-3t)-f(0;2)=-8t+\overline{0}(t)u f(3t;2+2t)-f(0;2)=t+\overline{0}(t)u$

$$f(2t; 2-3t) - f(0; 2) = -8t + \overline{0}(t)$$

$$(\Rightarrow f'_{x}(0; \lambda) \& t - f'_{y}(0; \lambda) \& t + \overline{0}(t) = -\& t + \overline{0}(t)$$

$$(\Rightarrow \& f'_{x}(0; \lambda) - \& f'_{y}(0; \lambda) = -\& (1)$$

$$f(3t; 2+2t) - f(0;2) = t + \overline{0}(t)$$

(1), (2) =
$$\begin{cases} 2f'_{1}(0;2) - 3f'_{2}(0;2) = -8 \\ 3f'_{1}(0;2) + 2f'_{2}(0;2) = 4 \end{cases}$$
 $\begin{cases} f'_{2}(0;2) = -4 \\ f'_{3}(0;2) = 2 \end{cases}$

(6) Uz вестно, яго $f(5-3t;6+4t)-f(5;6)=15t+\overline{0}(t)$ при $t\to 0$. Найдите производную функции f(x;y) в тоже A(5;6) по направлению вектора $\overline{\mathcal{X}}=(3;-4)$

$$\frac{3f(5;6)}{3\vec{x}} = \frac{1}{5} \left[3f_{x}'(5;6) - 4f_{y}'(5;6) \right] = \frac{-15}{5} = -3$$

(9) вылислить следующие определенные интегралы, как предел интегральных сумм A) Ix dx

Разобъем филуру, образованную минист f(x) = и и осью Ок на правных растей =7 ширина каждого фрагнента $w = \frac{2-1}{n} = \frac{1}{n}$

высота h = f(1+1i), i = 1;2; ...; п

площадь отдельного фрагнента $S_i = w \cdot h = \frac{1}{n} \cdot f(1 + \frac{1}{n}i) = \frac{1}{n} (1 + \frac{i}{n})^2$

nowage been querypor $S = \sum_{i=1}^{n} S_i = \sum_{i=1}^{n} \frac{1}{n} (1 + \frac{1}{n})^2 = \frac{1}{n} \sum_{i=1}^{n} (1 + \frac{2i}{n} + \frac{1}{n^2}) = \frac{1}{n} \int_{-1}^{1} 1 + \frac{2i}{n} + \frac{1}{n^2} + \frac{1}{n^2}$ $+1+\frac{4}{n}+\frac{4}{n^2}+$ $+1+\frac{2n}{n}+\frac{n^2}{n^2}$

супна первых слагаемых = п

сучна ворогх слагаемых = $\sum_{n=1}^{\infty} \frac{2i}{n} = \frac{1}{n} \cdot n(n+1) = n+1$

ayuna TROTOUX Charachoux = $\sum_{i=1}^{n} \frac{i^2}{n^2} = \frac{1}{n^2} \sum_{i=1}^{n} i^2 = \frac{1}{n^2} \cdot \frac{1}{n} \cdot n \cdot (n+1) \cdot (n+1)$

$$\Rightarrow S = \frac{1}{n} \left(n + n + 1 + \frac{(n+1)(2n+1)}{6n} \right) = 2 + \frac{1}{n} + \frac{1}{6} \cdot \frac{(n+1)(2n+1)}{n^2}$$

$$\lim_{n\to\infty} S = \lim_{n\to\infty} \left(2 + \frac{1}{n} + \frac{1}{6} \frac{(n+1)(2n+1)}{n^2} \right) = \lim_{n\to\infty} \left(2 + \frac{1}{n} + \frac{1}{6} \frac{(1+\frac{1}{n})(2+\frac{1}{n})}{1} \right) = 2 + \frac{1}{6} \cdot 2 = \frac{7}{3}$$

Разобъем дигуру, образованную мнией for) = 1+к и осью Ок на правных кастей

= ширина кандого фрагнента $w=\frac{5}{n}$; высота $h=f\left(\frac{5}{n}i\right), i=1,2,...; п$ площадь отдельного драгнента $s_i = w.h = \frac{5}{n} \cdot f(\frac{5i}{n}) = \frac{5}{n}(1 + \frac{5i}{n})$

площадь всей фигури $S = \sum_{i=1}^{n} S_i = \sum_{i=1}^{n} \frac{5}{n} \left(1 + \frac{5i}{n}\right) = \frac{5}{n} \sum_{i=1}^{n} \left(1 + \frac{5i}{n}\right) = \frac{5}{n} \left(1 + \frac{5i}{n}\right) = \frac{5}{n$

сунна первых снагаемых = п еумпа вторых слагаемых = $\sum_{n=1}^{\infty} \frac{5i}{n} = \frac{1}{n} \cdot \sum_{n=1}^{\infty} n(n+1) = \sum_{n=1}^{\infty} (n+1)$

=)
$$S = \frac{5}{n} \left(n + \frac{5}{2} n + \frac{5}{2} \right) = \frac{35}{2} + \frac{25}{2} \cdot \frac{1}{n}$$

$$\lim_{n\to\infty} S = \lim_{n\to\infty} \left(\frac{35}{1} + \frac{25}{1} \cdot \frac{1}{n} \right) = \frac{35}{1}$$

β)
$$\int_{-\infty}^{\infty} dx$$

Pajostem querypy, οδραзοβανισμό λυπιστά $f(x) = e^{ix}$ u ος the Ox ma n pathiax sacistic z υπεριπα καπόριος αρατικοπά $w = \frac{10}{n}$; b πεστά $h = f\left(\frac{10}{n}i\right)$; $i = 1, 2, 3, ..., y$ 2

πλουμασμο στορελικοπο αρατικοπά $S_i = w$. $h = \frac{10}{n}$ $e^{\frac{10}{n}i}$

πλουμασμο δεςτά φυτισμοι $S = \sum_{i=1}^{\infty} S_i = \sum_{i=1}^{\infty} \frac{10}{n} e^{\frac{10}{n}i} = \frac{10}{n} \sum_{i=1}^{\infty} e^{\frac{10}{n}i} = \frac{10}{n} \left(e^{\frac{10}{n}}\right)^{\frac{10}{n}} = \frac{10}{n} \left(e^{\frac{10}{n}}\right)^{\frac{10$