UNCLASSIFIED								
AD NUMBER								
AD309180								
LIMITATION CHANGES								
TO: Approved for public release; distribution is unlimited.								
FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 21 MAY 1959. Other requests shall be referred to Chemical Corps Army Chemical Center, MD.								

AUTHORITY

ARDEC, ECBC (RDCB-DPS-RS) ltr dtd 17 Jan 2012

UNCLASSIFIED

AD NUMBER
AD309180
CLASSIFICATION CHANGES
TO: UNCLASSIFIED
FROM: CONFIDENTIAL
AUTHORITY
USAEA Notice dtd 4 Mar 1971 and ASTIA Tab No. 71-11 dtd 1 Jun 1971

UNCLASSIFIED

AD 309180

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

CLASSIFICATION CHANGED TO UNCLASSIFIED FROM CONFIDENTIAL PER AUTHORITY LISTED IN

TAB. 71-11 1 JUNE 1971

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

THE COUNTY TO THE PARTY OF THE

FOR
MICRO-CASSI
CONTROL ON JY

1

OF Reproduced by 1

Arned Services Technical Information Agency

AR INGTON HALL STATION

WION 12 VIRGINIA

"NOTICE: When Government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto."

Reyt 440652

NATIONAL BUREAU OF STANDARDS REPORT

6A234

PAC

AN INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF ROTATING CIRCULAR AND TRIANGULAR CYLINDERS

By R. H. Heald and L. M. Sargent

FILE COPY

Return to

ASTIA

ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

Attn: TISSS

USUS IN

6.3 Bal 79

To
Army Chemical Center
Maryland
Project Number CP8-405-6468

U. S. DEPARTMENT OF COMMERCE ASTIA
NATIONAL BUREAU OF STANDARDS

CONFIDENTIAL

NATIONAL BUREAU OF STANDARDS REPORT

NES PROJECT

NES REPORT

0603-20-3571

May 21, 1959

6A234

AN INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF ROTATING CIRCLEAR AND TRIANGULAR CYLINDERS

By R. H. Heald and L. M. Sargent

Fluid Mechanics Section Mechanics Division

6.3 Bal 79

To
Army Chemical Center
Haryland
Project Number CP8-405-6468

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, repreduction, or open-literature listing at this Report, althorize whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington 25, D. C. Such permission is not needed, however, by the Government agency for which the Report has been specifically prepared if that agency wishes to reproduce additional copies for its own use.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

CONFIDENTIAL

THE PERSONAL PRODUCTION OF THE PERSON WERE STORED TO SELECTION OF THE PERSON WITH THE PERSON WITH THE

CONTAINTS

		PAGE
1.	INTRODUCTION	1
2.	EXPERIMENTAL PROCEDURES	1
3.	RESULTS	2
	3.1 Rotational Characteristics	2
	3.2 Lift and Drag Characteristics	3
11.	CONCLUSION	· lı

AN INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF ROTATING CIRCULAR AND TRIANGULAR CYLINDERS

By R. H. Heald and L. M. Sargent

1. IMTRODUCTION

This investigation, conducted on request of representatives of the Chemical Warfare Laboratories, Army Chemical Center, Maryland, concerned the question of lift, drag, and spin magnitudes developed by rotating missiles having circular and triangular cross sections. The models used in the experiments were free to rotate on ball-bearing spindles, and were driven by air impingement on narrow blades extending lengthwise along their surfaces. The models are shown in figure 1, and their principal dimensions are given in the headings of tables 1— in In the cases of the large cylindrical rotor and the two triangular rotors, the lift and drag forces were sufficiently large to permit measurements on the flexure-plate balance as well as the NPL balance. The original bearing and spindle arrangement which supported each model was used in each set of measurements. All force measurements were made during steady rotation of the models.

The experiments were conducted in the National Bureau of Standards 6-foot wind tunnel at air speeds ranging between 53 and 275 feet per second. The corresponding range of Reynolds Numbers was from 0.4 x 10^5 to 3.3 x 10^5 , where RN = $\frac{Vd}{V}$ and V = air speed, fps, d = basic diameter in the case of the circular shapes or face width in the case of the triangular shapes, feet, and V = coefficient of kinematic viscosity for air at 15°C and 760 mm Hg = 0.0000157 ft²/sec.

2. EXPERIMENTAL PROCEDURES

The measurements for the small cylinder were all made using the NPL-type of spindle aerodynamic balance which has maximum lift and drag force capacities of about 3 pounds each and is graduated to 0.001 pound. As previously indicated the forces acting on the other three models were measured on both the NPL balance and the high-capacity flexure-plate balance. On the latter, measurements can be obtained with an accuracy of about 0.2 pound.

Each of the models was supported by a 5/16-inch ball-bearing pixels attached endwise as shown in figure 1. Lift and drag measurements were made CONFRENTIAL

This designed complies information offering the national defence of the United States within the magning of the application of the reveletion of its contents in any macrost to an employment pursue in providing by two

-2-

on each model at a number of air speeds during steady state rotation. The rotational speeds were determined by strobotac at the time the force measurements were made.

The acceleration time of the triangular models was determined at an air speed slightly above 70 miles per hour. For these measurements the model was held stationary from outside the wind tunnel while the air speed in the tunnel was adjusted to the desired steady value. When this was obtained the model was released and rotation began. The time required for the model to reach steady state rotation from rest was determined using a timer reading to 0.01 second.

3. RESULTS

The results of this investigation are given in tables l-h and the sureary table 5 which is based on mean values. They are shown plotted in figures 2-5. The curves shown in the figures were faired through the plotted values of rotational speed, lift coefficient C_L , drag coefficient C_D , and the ratio $\frac{C_L}{C_D}$ given in the tables. For clarity individual points are not shown on the figures.

3.1 Rotational Characteristics

As shown in figure 2, the rotational speed of the small rotor varied limearly with air speed within experimental limits, the values ranging from 1690 rpm at a wind speed of 36.3 mph to 10750 rpm at 156.8 mph. For the test range the mean value of the ratio of rotational speed in rpm to wind speed in ph was 60.1 (table 5). The mean value of the ratio of tip speed in fps to air speed in fps for this rotor was 0.208.

The rotational speeds of the large cylindrical rotor and the two triangular rotors departed appreciably from a linear relationship with air speed
in the higher speed regions, possibly as a result of model and shaft distortion with consequent imcreased bearing friction. The speed ratios for these
rotors are also given in table 5. Acceleration times were 7.67 seconds at a
wind speed of 71.1 mph for the triangular rotor equipped with 90° fine, and
4.57 seconds at 72.7 mph for the rotor with 120° fine.

-3-

3.2 Lift and Drag Characteristics

The results of the force measurements are given in tables 1 - 4 and are summarized in table 5. In general the data for the large cylinder and those for the two triangular shapes which were obtained using the two different balance systems are in fair agreement. As previously indicated, the flexure-plate balance is not well adapted to the measurement of small forces, i. e., those amounting to less than about 5 pounds. Although there is considerable range in the values of drag coefficient with Reynolds Number, the mean values of CD for the two circular cylinders do not differ greatly in the range of Reynolds Numbers of the experiments, 0.4×10^5 to 1.6×10^5 for the small cylinder, and 0.7 x 105 to 3.3 x 105 for the large cylinder. For these ranges of Reynolds Numbers and including the data taken on both balances, the mean value of drag coefficient for the large cylinder is 1.031 as against a mean value of 1.010 for the small cylinder. Correspondingly, the mean values of the lift coefficient were 0.461 for the large cylinder and 0.610 for the small one. However, the values of lift coefficient for the small cylinder obtained on the spindle balance indicate the presence of substantial Reynolds Number effects, C, ranging downward from 0.861 at R. N. = 0.405 x 10 to 0.45 at R. N. = 1.678 x 10. The measurements of lift of the large cylinder which were made on both balances indicate rather small scale effects in the lower range of Reynolds Numbers, i.e., between 0.7 x 105 and about 1.6 x 10. The data for the large cylinder, obtained using the flexure-plate balance, indicate an increase in C, of about 25 percent between R. M. - 1.7 x 105 and 2.8 x 105. In the vicinity of the latter value of R. M. the indications are that C. has reached a maximum and is tending to decrease at R.N. = 3.33 x 105. The variation of L with Reynolds Number for both circular cylinders shows about the same pattern as C, versus R. N.,

for both circular cylinders shows about the same pattern as C_L wersus R.N., since C_D varies relatively slightly with R.N.

On the basis of mean values the triangular rotors show Layer values of both lift and drag coefficient in the test range than do the cylindrical rotors. As shown in table 5, the mean value of C_L for the triangular rotor with 90° fins is 0.784, the individual values ranging from 0.624 to 0.859. The mean value of C_L for the triangular rotor equipped with 120° fins is 0.828, individual values ranging from 0.745 to 0.925. The mean values of

CONFIDENTIAL

-4-

 $C_{\rm D}$ for the 90° fin rotor is 1.392 compared with 1.577 for the rotor equipped with 120° fins. In the former case, individual values of $C_{\rm L}$ range from 1.348 to 1.471; in the latter case, the range is from 1.418 to 1.706. The mean value of $\frac{C_{\rm L}}{C_{\rm D}}$ for the triangular rotor equipped with 90° fins is 17 per cent greater than that for the rotor with 120° fins.

4. CONCLUSION

The lift and drag characteristics of the four rotors included in these experiments show considerable variation with Reynolds Number in the test range. The values of lift and drag coefficient and L decrease continuously as the Reynolds Number is increased. On the other hand values of CI, \mathbf{C}_{D} , and \mathbf{C}_{C} for the large cylindrical rotor show less consistency with increased Reynolds Number. Referring to figure 3, C, for this cylinder shows a decrease of the order of 10 per cent from about 0.48 between R.N. = 0.7×10^5 and 1.7×10^5 , followed by an increase above the minimum value (of about 0.43) amounting to about 40 per cent at the maximum. Two points above R.N. = 2.8×10^5 indicate the rate of increase in this region to be lessening. The values of Cn for this rotor show considerably less variation with R.N. than the values of CT. The range of CD is of the order of 15 per cent, generally upward, and then downward as R.N. is increased from 0.7×10^5 to 3.3×10^5 . The value of $C_{\rm p} = 1.00$ at 3.3×10^5 is close to that at R. N. = 0.7×10^5 . Variations in the values of $\frac{C_L}{L}$ with R. N. for this model follow somewhat the same pattern as of C.

The values of lift coefficient for the two triangular rotors, excluding three divergent points, and their means differ by only a few per cent. In both cases a downward trend in $C_{\rm L}$ is shown for values of R.M. above 1.8 x 10^5 . The shapes of the $C_{\rm D}$ vs. R.M. curves differ quite appreciably, the values of $C_{\rm D}$ for the triangular rotor equipped with 120° fins averaging about 14 per cent greater than for the rotor with 90° fins.

For the Director,

St & Shubaner

G. B. Schubauer, Chief Fluid Mechanics Section

COMPIDENTIAL

-5-

00	APPRE	TH	TIAL
UU	MIL	JEN.	TIAL
-			

	EL I				CO	NF	DE	NTI	AL					
	Rotational Speed, rom		46.6	52.3	54.7	57.5	56.8	61.1	61.2	62.9	64.3	66.2	68.5	60.1
ses	Tip Speed, fps		0.208	.233	.244	.257	.254	. 273	. 273	. 281	. 289	. 295	.306	.306
4.60 inches, Diameter 1.50 inches 30 degrees, Fin Width 0.187 inches t, Drag, and Actational Speed	Reynold's Number	oce	0.405x105	.553	659.	.757	. 883	666.	1.077	1.250	1.351	1.420	1.531	1.678
Diameter fin Widt Actation	5 0) Balance	0.822	.758	.711	. 645	.612	.584	.555	.517	174.	. 1,56	. 1411	.432
grees, E	ients Lift (c _L	Spindle (NFL)	0.861 0.822	708.	.755	729.	9799.	.613	.580	.541	.486	.457	877	0.610
40 😘	Coefficients Drag(CD) Lift(Spt	1.046	1.061	1.062	1.04	1.055	1.01	1.046	1.045	1.031	1.001	986.	1.041
Length Fin Angl	Rotation		1690	2600	3250	3950	1,550	5550	0009	7250	7950	8700	9750	10750 averages
	brag		0.169	. 322	097.	909.	. 832	1.063	1.233	1.659	1.938	2.126	2.481	3.14
	n a		0.139	.244	. 327	.391	.509	.621	.684	.858	.913	.970	1.095	1.359
	qdm peeds		36.3	10.1	59.4	68.7	30.1	8.8	98.0	113.7	123.7	131.5	175.4	156.8; 1.359 3.144
	fp fp		53.3	72.9	87.2	100.8	27.5	133.2	143.8	166.8	182.5	192.9	208.9	230.0

Cylindrical Rotor (Small) (Ci - DlLH3A3B1)

Table 1

The speed computed on basis of basic diameter (1.50 inches)
Reyrold's Number computed on basis of basic diameter (1.50 inches)

1/20AV2

1/2PAV

1/2pA = 0.0000571

	~	
	86	
	BI	
	J	2
01	JO	-
0	Roto	He
Le	2	10
Table	d	20
H	Ca	T.
	H	9

Length 7.62 inches; Diameter 2.50 inches Fin Angle 30 degrees, Fin Width 0.230 inches Mift, Drag, and Rotational Speed

	1			-0:	41 12	,	6 68	
Tip Speed, fps Rotational Speed, rps Air Speed, fps Air Speed, mph		12.6	0.747	9.4	15.7	47.3	25.5	1.0
Tip Speed, fps Air Speed, fps		0.317	.328	. 332	.339	. 352	. 389	0.303
Reynold's Number	ce	0.718x10 ⁵	1.012	7.318	1.619		2.275	
5 ¹ 10 ⁰ 1	Balar	.473	697.	. 1446	141	077	.520	. 463
cients $Lift(C_L)$	Spindle (W. Balance	0.474 0.473	.483	गगा .	. 142	. 439	1811.	0.463 0.463
$cosff$ cients $dot{cosff}$ $dot{cosff}$ $dot{cosff}$	Spt	1.002	1.030	966"	1.001	796.	.970	0.999
Botation I		1650	orna	3180	0101	5100		averages
Drag		0.507	1.039	1.730	2.605	3.904	5.169	
True la		18.7 0.210 0.507	1.87	.763	1.10	1.73	2.635	
Air Speed fps mph		18.7	20.2	71.3	87.8	107.7	124.2	
Attr S		8 43	8	10h. 6	128.8	158.0	182.2	

						Table 2 (continued)	o trans	(ps		
A Sec	Attr Speed	P. P	Drag	Rotation	Coeffic Drag(C _D)	coefficients $g(c_{D})$ Lift (c_{L})	2 PG	Reymold's Number	Tip Speed, fps	Tip Speed, fps Rotational Speed, rps
					FL	Flexure Flate	e Balance	. 800		
59.6	10.6	1	0.6	1820	1,020	•	1	0.750x10 ⁵	5 0.332	8 7/17
80.3	74.7	0.5	1.1	2560	1.090	967.	0.155	1.009	- 347	46.8
106.4	72.5	8	2.0	3520	1.129	. 151	007.	1.336	.361	48.5
134.2		1.2	3.2	7650	1.132	. 425	.375	1.681	.378	50.8
157.1		1.9	4.2	2600	1.085	.491	.452	1.962	.388	52.3
182.1	121,1	2.4	5.5	0009	1.058	797	.436	2.262	.359	43.3
208.2	242.9	3.8	6.9	6380	1.015	.559	.551	2.508	.334	6-771
234.1	159.6	5.1	8.7	71/20	1.012	.593	.586	2.863	.346	16.5
274.5	187.1	6.8	11.8	7360	0.999	.576	.576	3.327	. 292	39.6
				averages	1.060	0.159	0.479		0.350	16.9
			To	- L 1/20AV2	5	CD = D 1/2PAV2	lo _Z	1/2pA = 0.0001569	.0001569	

Area computed on basis of basic diameter (2.50 inches)
Tip speed computed on basis of basic diameter (2.50 inches)
Reynold's Number computed on basis of basic diameter (2.50 inches)

		25 inches	Fin Angle 90 degrees, Fin Height 0.43 inches	ped
	(sur	sce 3.	at 0.1	al Spe
	(90. 1	of Fe	Heigh	ation
rable 3	Triangular Rotor (90° Fins)	Width	, Fin	Lift, Drag, and Rotational Speed
Ta	lar R	hes,	grees	ig, an
	rlange	out ox	8	t, Dra
	a	20.01	Angle	41
		Lengt	Fin	

mod					CO	NF	DE	NT	AL			
Tip Speed, fps Rotational Speed, rpm Air Speed, fps Air Speed, mph		56.3	57.4	56.9		55.3	56.8	57.1	26.0	19.2	55.0	
Tip Speed, fps RAIT Speed, fps		0.629	.641	0.635		0.618	.635	.637	.626	.558	0.625	
Reynold's Number	ce	0.90la10 ⁵	अर :		ce	0.892	1.313	1.680	2.022,	2.522		
418	Balar	619	.612	919.0	Balar		0.600	019.	.610	.558	0.595	
tents $_{\rm Lift}(c_{\rm L})$	Spindle (MFL) Balance	0.835 0.619	, 62h	0.730 0.616	Fleme Plate Balance	•	0.843	. 859	848		0.839	P 77 7 2
Coefficients Drag($c_{ m D}$) Lift($c_{ m L}$)		1.348	1,380	1.364	Flex	1.471	1.404	1.408	1.3%	1.431	1.421	to bearing a
Drag Rotation 1b rpm		2190	2850	averages		2080	3350	0501	7,800	5350	averages	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Drag		1.181	1.959			1.2	2.5	4.1	5.9	9.5		67 6
भूत		38.9 0.731 1.181	19.6 1.199 1.959				1.5	2.5	3.6	5.3		-
pood		38.9	19.6			37.6	55.5	71.0	85.7	107.2		4 14
Air Speed		57.1	72.8			55.2	80.4	104.2	125.7	157.3		

7.07 Sec

1/2pA = 0.0002687
$c_{\rm D} = \frac{\rm D}{1/2\rho A V^2}$
L - L

Area computed on basis of one face (3.25 inches)

Tip speed computed on basis of circumference of circumscribed circle (radius equal 1.88 inches)

Reynold's Number computed on basis of one face (3.25 inches)

	.25 inches	. 43 inches	pea
Triangular Botor (120° Fine	Length 10.00 inches, Width of Face 3.25	Fin Angle 120 degrees, Fin Height 0.43	Lift, Drag, and Rotational Sp

El I					(CO	NFI	DE	NTI	AL
Tip Speed, fps Rotational Speed, rpm Air Speed, fps Air Speed, mph		47.8	52.5	9.6	50.0		48.9	19.6	49.4	19.2
Tip Speed, fps		0.535	.453	. 555	0.514		0.547	. 555	.552	.550
Reynold's Number	90	0.8562105	1.152	1.541		Se	0.984	1.340	1,730	2.139
0 ¹ 0	Spindle (MFL) Balance	0.513	510	. 5la6	0.545	e Balan	0.471	. 467	.531	.741*
Lift (CL)	othe (NP	0.813 0.513	.925	. 830	0.856 0.545	Plexure Plate Balance	0.803 0.471	345.	. 842	.845
Drag(CD) Lift(Spt	1.418	1.702	1.522	1.547	Fles	1,706	1.590	1.583	1.14
Drag Rotation 1b rpm I		1760	2610	3310	AVETAGES		2030	2830	3610	OSTITUTO
Page 1		1,161	2.131	3.911			1.7	3.0	6.4	5.4
मुन			1,321				9.0	1.4	2.6	4.0
pood		36.8 0.637	10.0				12.5			
Air Speed fps apt		54.0	72.9	97.9			8.9	83.6	107.2	135.8

1

60.9 41.5 0.8 1.7 2030 1.706 0.803 0.471 0.984 0.547 48.9 63.6 57.0 1.4 3.0 2830 1.590 .745 .467 1.349 .555 49.6 13C.8 50.5 4.0 5.4 4450 1.141* .845 .741* 2.139 .550 49.2 161.5 110.1 5.6 11.0 5300 1.570 .799 .509 2.589 .538 48.1 161.6 123.8 6.8 14.1 5550 1.580 0.492 2.905 0.541 48.3										
123.8 6.8 14.7 2030 1.706 0.803 0.471 0.984 0.547 57.0 1.4 3.0 2830 1.590 .745 .467 1.349 .555 73.1 2.6 4.9 3610 1.583 .842 .531 1.730 .552 90.5 4.0 5.4 4450 1.141* .845 .741* 2.139 .550 123.8 6.8 14.1 5550 1.580 .767 .482 2.905 .503 223.8 6.8 14.1 5550 1.580 0.492 0.905 0.541					Ple	xure Pla	te Belen	ce		
57.0 1.4 3.0 2830 1.590 .745 .467 1.349 .555 73.1 2.6 4.9 3610 1.583 .842 .531 1.730 .552 90.5 4.0 5.4 4450 1.141* .845 .741* 2.139 .550 110.1 5.6 11.0 5300 1.570 .799 .509 2.589 .538 123.8 6.8 14.1 5550 1.580 .767 .482 2.905 .501 23.8 6.8 14.1 5550 1.580 0.800 0.492 0.505	6.09	42.5	1.7	2030	1,706	0.803	0.471	0.984	0.547	48.9
73.1 2.6 4.9 3610 1.583 .842 .531 1.730 .552 90.5 4.0 5.4 4450 1.141* .845 .741* 2.139 .550 110.1 5.6 11.0 5300 1.570 .799 .509 2.589 .538 123.8 6.8 14.1 5550 1.580 .767 .482 2.905 .501 averages 1.606 0.800 0.492 0.501	83.6	57.0	3.0	2830	1.5%	345.	.467	2.349	. 555	19.6
90.5 4.0 5.4 4450 1.141* .845 .741* 2.139 .550 110.1 5.6 11.0 5300 1.570 .789 .509 2.589 .538 .538 123.8 6.8 14.1 5550 1.580 .767 .482 2.905 .767 .482 2.905 .501 0.800 0.492 0.800 0.492 0.541	07.2	73.1	4.9	3610	1.583	. 842	.531	1,730	.552	1.61
123.8 6.8 14.1 5550 1.580 .767 .482 2.905 .501 .501 .501 .501 .500 0.492 0.502	35.8	80.5	5.4	05777	1.141*	. 845	.741*	2.139	.550	19.2
123.8 6.8 14.1 5550 1.580 .767 .482 2.905 .501 averages 1.606 0.800 0.492 0.541	61.5	110.1	11.0	5300	1.570	. 799	506	2.589	.538	48.1
1.606 0.800 0.492 0.541	81.6	123.8	141	5550	1.580	.767	. 482	2.905	.501	8.41
				averages	1.606	0.800	0.192		0.541	48.3

Acceleration time - 4.57 sec at an air speed of 72.7 mph. * Omitted from mean and range data in table 5.

1/20A - 0.0002687 So - D Cr - T

Tip Speed computed on basis of circumference of circumscribed circle, (radius equal 1.88 inches) Reymold's Number computed on basis of one face (3.25 inches) Area computed on basis of one face (3.25 inches)

Design of K	See See	and a	friangular Retor, Fin Ingle No	Triangular Rotor, Fin Augle 120*	Motor.
2 2	243	644	2-8	12.02	484
94	A SEE	Sec.	55.	454	The mercians and administ values of rables 1 - 4. Mean values of
Afr Spe	53.3	325	57.1 to 157.3	540	pond to
ed Rang	36.3	38.7	38.9	36.8	the ser
e R. H. Range	0.105z10 ⁵ 1.678z10 ⁵		0.90km5 to 2.5222105	0.856x10 ⁵ 2.905x10 ⁵	Note: The maximum and adminum values of C_L , C_D and C_D correspond to the maximum and mindaum values of Air Tables 1 - h . Mean values of C_L , C_D and C_L and C_D and C_D and C_D
				0.715	of Ch, C
				0.828	977
	0.9%	0.970 to 1.132	1.471	~ . ~	4 2 H B
Mean		1.031		1.57	Speed the sp
Range	0.432 to 0.822	0.375 to 0.586	0.558	0.167	in the and R. N
HLO FI	0.584	0.472	0.606	0.519	Range See
Speed, Air Sp Renge	if. 6 to 68.5	39.6	40.9 57.4	14. E	detaile
rpm to	6.1	48.0	55.9	19.5	and $\frac{L}{C_D}$ given in the "Range" columns do not alkays of Air Speed and R.N. See detailed data given in $\frac{c_L}{C_D}$ and the speed ratios are based on data obtained
Tips fps Spec	0.208	0.292 to	0.558 to 0.641	0.153	given j
Speed, to Air Mean	0.268	0.357	0.625	0.528	e d 2
	CL Rotational Tip Specific CL Speed, rpm to fps to CD CD Air Speed, mph Speed, Range Mean Range Mean Range	C _D Rotational Tip Signal Mean Range Mean R	C	R. M. Range C_L C_D C_D C_D Air Speed, rpm to fige to the local Range Mean Range Range Mean Range Mean Range Mean Range Ra	Air Speed Range R. N. Range Circular C

Table 5

on both the spindle balance and the flaxure-plate balance.

Figure 1

View of the four models. Reading from left to right: Triangular Rotor, 90 degree fins; Large Cylindrical Rotor (C₁-D₂L₂H₆A₃B₂); Small Cylindrical Rotor (C₁-D₁L₁H₃A₃B₁); Triangular Rotor, 120 degree fins.

SONA SUOHT NI MAR

DEPARTMENT OF THE ARMY

US ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND EDGEWOOD CHEMICAL BIOLOGICAL CENTER 5183 BLACKHAWK ROAD ABERDEEN PROVING GROUND, MD 21010-5424

1 7 JAN 2012

RDCB-DPS-RS

MEMORANDUM THRU Technical Director (RDCB-D/Mr. Joseph Wienand), Edgewood Chemical Biological Center (ECBC), 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424

FOR Office of the Chief Counsel (AMSRD-CCF/Mr. Brian May), US Army Research, Development and Engineering Command (RDECOM), 3071 Aberdeen Boulevard, Aberdeen Proving Ground, MD 21005-5201

SUBJECT: Freedom of Information Act (FOIA) Request

- 1. The purpose of this memorandum is to recommend the release of information in regard to a Freedom of Information Act (FOIA) Request FA-12-0047.
- 2. On 3 Jan 2012, ECBC received RDECOM FOIA Tasker #FA-12-0047 from Mr. Brian May, RDECOM FOIA Officer, which originated from DTIC in Fort Belvoir, VA. The original request was from Mr. Michael Ravnitzky.
- 3. The following document was reviewed by Subject Matter Experts from ECBC on Aberdeen Proving Ground, MD and deemed suitable for declassification and public release.
- AD-309180, An Investigation of the Aerodynamic Characteristics of Rotated Circular and Triangular Cylinders, dated May 21, 1959.
- 4. The point of contact is Mr. Ronald L. Stafford, the ECBC Information Security Officer, (410) 436-6810 or ronald.l.stafford.civ@mail.mil.

Encl

UNE K. SELLERS

Security Manager

CF: Defense Technical Information Center (DTIC), 8725 John J. Kingman Road, STE 0944, Fort Belvoir, VA 22060-6218 (w/encl)