

TC. BİLGİSAYARVE BİLİŞİM FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİK MÜHENDİSLİĞİ 2023-2024 GÜZ DÖNEMİ ARA SINAVI

SINAY TARINI	21.11.2023	Notu
Öğr. No		
Öğr. Adı Soyadı		A m
İmza	1.5	

SORULAR

1. a)
$$f(x) = \frac{\sqrt{x^2 + 1}}{|x| - x} \operatorname{sgn}\left(\frac{x - 2}{\sqrt{[x]^2 - 9}}\right)$$
 fonksiyonunun en geniş tanım kümesini bulunuz.

(20 puan)

- b) $f:[0,\infty) \to [1,\infty)$ üzerinde tanımlı $f(x) = \frac{e^{2x} + 1}{2e^x}$ fonksiyonunun tersi olan fonksiyonu bulunuz. (10 puan)
- 2. a) $x[x]^{[x]} = x$ denkleminin çözüm kümesini bulunuz. (10 puan)
 - b) $2\cos^2 x + (4 \sqrt{2})\cos x 2\sqrt{2} = 0$ denkleminin çözüm kümesini bulunuz. (10 puan)
- 3. a) $\lim_{x\to 0} \frac{\cos(\sin x) \cos x}{x^2}$ limitini hesaplayınız. (15 puan) (L'Hospital kuralını kullanmayınız)
 - b) $\lim_{x\to -2^-} \frac{\sin(x^2-4)}{(x+2)(\operatorname{sgn}(x+2)+[x])}$ limitini hesaplayınız. (10 puan)

4.
$$f(x) = \begin{cases} \frac{1-\sin^3 x}{3\cos^2 x}, & x < \frac{\pi}{2} \text{ ise} \\ a, & x = \frac{\pi}{2} \text{ ise olarak veriliyor. } f \text{ fonksiyonu } x = \frac{\pi}{2} \text{ noktasında} \\ \frac{b(1-\sin x)}{(\pi-2x)^2}, & x > \frac{\pi}{2} \text{ ise} \end{cases}$$

sürekli olduğuna göre a ve b değerlerini bulunuz. (25 puan)

NOT: Nereden geldiği belli olmayan cevaplar dikkate alınmayacaktır. Süre: 70 dakika BAŞARILAR

1. son:

a)
$$|X|-x=0 \Rightarrow |X|=X$$
 elmanal. $X \in \mathcal{A}$ dir. $[|X|]^2-9>0$ olmals.

2.50n?

(x)

$$X = 0$$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$

3. Sorum

a)
$$\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^2} = \lim_{x\to 0} \frac{\cos(\sin x) - 1 + 1 - \cos x}{x^2}$$

$$= \lim_{x\to 0} \left(-2 \frac{\sin^2(\frac{\sin x}{2})}{x^2} + 2 \frac{\sin^2(\frac{x}{2})}{x^2} \right)$$

$$= \lim_{x\to 0} \left(-2 \frac{\sin^2(\frac{\sin x}{2})}{x^2} + 2 \frac{\sin^2(\frac{x}{2})}{x^2} + 2 \frac{\sin^2(\frac{x}{2})}{x^2} \right)$$

$$= \lim_{x\to 0} \left(-2 \frac{\sin^2(\frac{\sin x}{2})}{(\frac{\sin x}{2})^2} + 2 \frac{\sin^2(\frac{x}{2})}{(\frac{x}{2})^2} \right)$$

$$= \lim_{x\to 0} \left(-2 \frac{\sin^2(\frac{x}{2})}{4 + x^2} + 2 \frac{x^2}{4 + x^2} \right) = -2 + 2 = 0$$

$$= \lim_{x\to 0} \left(-2 \frac{\sin^2(\frac{x}{2})}{4 + x^2} + 2 \frac{x^2}{4 + x^2} \right) = -2 + 2 = 0$$

4. SON 2 Dom for = lim for =
$$f(\frac{\pi}{2}) = a$$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 $x \to \frac{\pi}{2}$
 x

 $=\frac{b}{8}=f(I)=a=\frac{1}{2}=b=4$ olmah.

口.

b) Cosx = t denek
$$2t^2 + (4-\sqrt{2})t - 2\sqrt{2} = 0$$
 olar, $0 = b^2 + 0ac = (4-\sqrt{2})^2 + 8\sqrt{2} > 0$ old, $14^2n = 16^2 + 16^$

 $= (1) \cdot (-4) \cdot \frac{1}{-1+(-3)} = \frac{-4}{-4} = +1$