Instruction	Operation
vld vd, offset(rs1), vm	vd[i] := mem[(rs1) + offset + i]
vst vs3, offset(rs1), vm	mem[(rs1) + offset + i] := vs3[i]
vlds vd, offset(rs1), rs2, vm	vd[i] := mem[(rs1) + offset + i * rs2]
vsts vs3, offset(rs1), rs2, vm	mem[rs1 + offset + i * (rs2)] := vs3[i]
vldx vd, offset(rs1), vs2, vm	vd[i] := mem[(rs1) + offset + vs2[i]]
vstx vs3, offset(rs1), vs2, vm	mem[(rs1) + offset + vs2[i]] := vs3[i]
vadd vd, vs1, vs2, vm	vd[i] := vs1[i] + vs2[i]
vsub vd, vs1, vs2, vm	vd[i] := vs1[i] - vs2[i]
vmul vd, vs1, vs2, vm	vd[i] := vs1[i] * vs2[i]
vdiv vd, vs1, vs2, vm	vd[i] := vs1[i] / vs2[i]
vrem vd, vs1, vs2, vm	vd[i] := vs1[i] % vs2[i]
vmax vd, vs1, vs2, vm	vd[i] := max(vs1[i], vs2[i])
vmin vd, vs1, vs2, vm	vd[i] := min(vs1[i], vs2[i])
vsl vd, vs1, vs2, vm	vd[i] := vs1[i] << vs2[i]
vsr vd, vs1, vs2, vm	vd[i] := vs1[i] >> vs2[i]
vseq vd, vs1, vs2, vm	vd[i] := vs1[i] == vs2[i] ? 1 : 0
vsne vd, vs1, vs2, vm	vd[i] := vs1[i] != vs2[i] ? 1 : 0
vslt vd, vs1, vs2, vm	vd[i] := vs1[i] < vs2[i] ? 1 : 0
vsge vd, vs1, vs2, vm	vd[i] := vs1[i] >= vs2[i] ? 1 : 0
vaddi vd, vs1, imm, vm	vd[i] := vs1[i] + imm
vsli vd, vs1, imm, vm	vd[i] := vs1[i] << imm
vsri vd, vs1, imm, vm	vd[i] := vs1[i] >> imm
vmadd vd, vs1, vs2, vs3, vm	vd[i] := vs1[i] * vs2[i] + vs3[i]
vmsub vd, vs1, vs2, vs3, vm	vd[i] := vs1[i] * vs2[i] - vs3[i]
vnmadd vd, vs1, vs2, vs3, vm	vd[i] := -(vs1[i] * vs2[i] + vs3[i])
vnmsub vd, vs1, vs2, vs3, vm	vd[i] := -(vs1[i] * vs2[i] - vs3[i])
vslide vd, vs1, rs2, vm	$vd[i] := 0 \le (rs2) + i < VL ? vs1[(rs2) + i] : 0$
vinsert vd, vs1, rs2, vm	vd[(rs2)] := (rs1)
vextract rd, vs1, rs2, vm	(rd) := vs1[(rs2)]
vmfirst rd, vs1	(rd) := ([i for i in range(0, VL)
	if LSB(vs1[i]) == 1] + [-1])[0]
vmpop rd, vs1	(rd) := len([i for i in range(0, VL)
	if LSB(vs1[i]) == 1])
vselect vd, vs1, vs2, vm	vd[i] := vs2[i] < VL ? vs1[vs2[i]] : 0
vmerge vd, vs1, vs2, vm	vd[i] := LSB(vm[i]) ? vs2[i] : vs1[i]

Table 2: RISC-V Vector Instructions