手順メモ

2024/5/22

前段

・OpenSARLabでMintpyを使いSBAS実施、そこで完成・ダウンロードしたGeotiffファイルを使い作業を行う

|--|

作業で使うのはファイルパス(GeoTiffs\displacement_maps\unwrapped\Meters)

	名前	日付時刻	種類	サイズ タ
	20200103_20200103_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200115_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200127_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200208_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200220_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200303_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200315_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200327_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
-	20200103_20200408_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
-	20200103_20200420_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
-	20200103_20200502_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
-	20200103_20200514_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB
	20200103_20200526_timeseries_demErr_Meters_unwrapped.tif	2024/05/18 8:26	TIF ファイル	269 KB

機能説明

1. データ抽出&まとめ

SBAS解析でできた各期間の結果ファイル(Geotiff)から抽出したい緯度経度の場所の データを記載しているCSVファイル(ファイル名任意)を抜き出しCSVファイル (Geotiff_value.csv:ファイル名固定)にまとめる。

2. グラフ作成

Geotiff_value.csvと作成したいポイントリスト(columns.csv:ファイル名固定)の2つの CSVファイルを選択しグラフを作成する。

手順

1. データ抽出&まとめ

SBAS解析でできた各期間の結果ファイル(Geotiff)から抽出したい緯度経度の場所のデータを記載している CSVファイル(ファイル名任意)を抜き出しCSVファイル(Geotiff_value.csv:ファイル名固定)にまとめる。

入力ファイル(読込順、2回に分けて読込)

- ①緯度経度の場所のデータを記載している CSVファイル
- ②SBAS結果のGeotiffファイル

出力ファイル

①Geotiff_value.csv(各ポイントの観測日ごとの変位を保存したもの)

ファイル中身

入力①緯度経度の場所のデータを記載しているCSVファイル

1	fid	X	У
2	1	375760	2902840
3	2	375760	2902800
4	3	375760	2902760
5	4	375760	2902720
5	5	375760	2902680
7	6	375760	2902640
_	7	275760	0000000

データを抜き出したい設定記載したファイル

ID、緯度経度(X、Y)の3つから構成されている

Geotiffの座標系で緯度経度は設定しないといけないので注意必要

現在はWGS 84 / UTM座標系(日本だと52~55)、事前にダウンロードしたGeotiffはQGISなどでCRS確認した方が無難。

入力①ファイル作成の手順(QGISでの作業前提)

- 1. Geotiffを取込む&CRS確認
- 2. データ抽出範囲作成(ポリゴン)
- 3. プラグイン(ポリゴン内のピクセル中心点)でベクタのポイントファイル作成
- 4. フィールド計算機でXとYを求める(作成時にデータ種別注意:整数・小数点等)

ファイル中身

出力①Geotiff_value.csv(各ポイントの観測日ごとの変位を保存したもの)

Date	1_value	2_value	3_value	4_value	5_value	6_value	7_value
20200103_20200103	0	0	0	0	0	0	0
20200103_20200115	0.000337	0.000191	0.00081	0.000484	0.000465	5.94E-05	0.00031
20200103_20200127	-0.00718	-0.00776	-0.008	-0.00821	-0.00765	-0.00827	-0.00778
20200103_20200208	-0.00713	-0.00793	-0.00779	-0.00847	-0.00877	-0.00932	-0.00863
20200103_20200220	-0.00313	-0.00393	-0.00324	-0.00375	-0.00405	-0.0044	-0.00361
20200103_20200303	-0.00203	-0.00311	-0.00215	-0.00187	-0.00212	-0.00272	-0.00216
20200103_20200315	-0.01062	-0.0125	-0.01191	-0.01345	-0.01403	-0.01482	-0.01356
20200103_20200327	0.003409	0.002353	0.003577	0.002871	0.002919	0.002389	0.002515
20200103_20200408	-0.00018	-0.00128	-0.00012	-0.00062	-0.00168	-0.00194	-0.00123
20200103_20200420	0.00233	0.000799	0.001615	0.000661	0.000495	0.000354	0.000437
20200103_20200502	0.008101	0.007463	0.009524	0.009079	0.008182	0.00806	0.007318
20200103_20200514	0.002947	0.002729	0.004045	0.003784	0.003382	0.002735	0.002225
20200103_20200526	0.008606	0.007993	0.008973	0.00857	0.007686	0.006905	0.006269

各ポイントのそれぞれの年月日 が変位量が保存されている 単位はMintpy側で設定可能(m or cm)

後半の年月日が変位量算出日

手順

2. グラフ作成

Geotiff_value.csvと作成したいポイントリスト(columns.csv)の2つのCSVファイルを選択しグラフを作成する。

入力ファイル

- ①Geotiff_value.csv(最初のステップでできたファイル: ファイル名固定)
- ②columns.csv(グラフを作成したいポイントリスト: ファイル名固定)

出力ファイル

①Plot.zip(作成されたグラフファイル(PNG)が保存されている"Plot"フォルダを圧縮したもの: ファイル名固定)

ファイル中身

②columns.csv(グラフを作成したいポイントリスト:ファイル名固定)

グラフを作成したいポイント番号を記載したファイル

ここで指定した番号のみグラフ作成、通常は全番号記載、ただし場合によっては場合には番号を絞り込んでグラフ作成可能 (例:ポイント数が1000点以上、水面などグラフ作成必要ない 個所の除外時に活用)

主なトラブル原因=トラブルシューティング

- 1. GeotiffのCRS不一致一>異なったCRSで場所指定をすると完成したCSVファイルはエラーで終了もしくは空のファイルになる可能性大
- 2. ファイル名固定のもの(Geotiff_value.csv、columns.csv)はファイル名を変えないー>計算終了後にファイル名を変える、ただし再度実行する場合にはファイル名を戻さないといけない
- 3. ファイルアップロードする際は関係ないファイルは選択しない