MOTOROLA SEMICONDUCTOR TECHNICAL DATA

6-Pin DIP Optoisolators Logic Output

The H11L1 and H11L2 have a gallium arsenide IRED optically coupled to a high-speed integrated detector with Schmitt trigger output. Designed for applications requiring electrical isolation, fast response time, noise immunity and digital logic compatibility.

- Guaranteed Switching Times t_{on}, t_{off} < 4 μs
- Built-In On/Off Threshold Hysteresis
- High Data Rate, 1 MHz Typical (NRZ)
- Wide Supply Voltage Capability
- Microprocessor Compatible Drive

Applications

- · Interfacing Computer Terminals to Peripheral Equipment
- Digital Control of Power Supplies
- Line Receiver Eliminates Noise
- · Digital Control of Motors and Other Servo Machine Applications
- · Logic to Logic Isolator
- · Logic Level Shifter Couples TTL to CMOS

MAYIMLIM DATINGS (T. - 25°C uplace otherwise noted)

Rating	Symbol	Value	Unit
NPUT LED			
Reverse Voltage	٧R	6	Volts
Forward Current — Continuous — Peak Pulse Width = 300 µs, 2% Duty Cycle	1F	60 1.2	mA Amp
LED Power Dissipation @ T _A = 25°C Derate above 25°C	PD	120 1.41	mW/°C
UTPUT DETECTOR	•	•	
Output Voltage Range	V _o	0-16	Volts
Supply Voltage Range	Vcc	3-16	Volts
Output Current	10	50	mA
Detector Power Dissipation @ T _A = 25°C Derate above 25°C	PD	150 1.76	mW/°C
OTAL DEVICE		•	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	250 2.94	mW/°C
Maximum Operating Temperature (2)	TA	-40 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +150	ç
Soldering Temperature (10 s)	ŤL	260	°C
Isolation Surge Voltage (Pk ac Voltage, 60 Hz, 1 Second Duration) (1)	V _{ISO}	7500	Volts

(1) Isolation surge voltage is an internal device dielectric breakdown rating.

For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

(2) Refer to Quality and Reliability Section for test information.

岁11L1*

(IF(on) = 10 mA Max)

*Motorola Preferred Device STYLE 5 PLASTIC

STANDARD THRU HOLE CASE 730A-04

"T" LEADFORM WIDE SPACED 0.4" **CASE 730D-05**

"S"/"F" LEADFORM SURFACE MOUNT **CASE 730C-04** (STANDARD PROFILE)

CASE 730F-04 (LOW PROFILE)

SCHEMATIC

PIN 1. ANODE

2. CATHODE

3. V_D 4. GROUND

5. VCC

H11L1, H11L2

ELECTRICAL CHARACTERISTICS (TA = 0 to 70°C)

Characteristic = 1 MILL)	Symbol	Min	£8.5	M ₁₀ ~	μA
Forward Voltage (IF = 10 mA) (IF = 0.3 mA)	VF	 0.75	1.2 0.95	1.5	Volts
Capacitance (VR = 0 V, f = 1 MHz)	С	_	18	_	pF

OUTPUT DETECTOR

Operating Voltage	VCC	3		15	Volts
Supply Current (IF = 0, VCC = 5 V)	ICC(off)	_	1	5	mA
Output Current, High (IF = 0, VCC = Vo = 15 V)	ЮН		_	100	μА

COUPLED

Supply Current (IF = IF(on), VCC = 5 V)			ICC(on)	_	1.6	5	mA
Output Voltage, Low (R _L = 270 Ω, V _{CC} = 5 V, I _F = I _{F(on)})		VOL		0.2	0.4	Volts	
Threshold Current, ON (R _L = 270 Ω, V _{CC} = 5	V)	H11L1 H11L2	lF(on)	=	1 —	1.6 10	mA
Threshold Current, OFF (R _L = 270 Ω, V _{CC} = 5	V)	H11L1 H11L2	F(off)	0.3 0.3	0.75	=	mA
Hysteresis Ratio (R _L = 270 Ω, V _{CC} = 5 V)		IF(off)	0.5	0.75	0.9		
Isolation Voltage (1) 60 Hz, AC Peak, 1 second, T _A = 25°C		VISO	7500		_	Vac(pk)	
Turn-On Time	$R_L = 270 \Omega$ $V_{CC} = 5 V,$ $IF = IF(on)$ $T\Delta = 25^{\circ}C$		ton	_	1.2	4	μs
Fall Time			tf		0.1		
Turn-Off Time			toff		1.2	4	
Rise Time	- 1Δ = 25°C	tr		0.1		1	

⁽¹⁾ For this test IRED Pins 1 and 2 are common and Output Gate Pins 4, 5, 6 are common.

Figure 1. Switching Test Circuit

TYPICAL CHARACTERISTICS

Figure 2. Transfer Characteristics for H11L1

Figure 3. Threshold Current versus Supply Voltage

Figure 4. Threshold Current versus Temperature

= 0°C

Figure 5. Output Voltage, Low versus Load Current

Figure 6. Supply Current versus Supply Voltage