Závěrečná olympiáda z fyziky, LMFS 2017 - starší

1. Nabitý prostor (12 bodů)

V trojrozměrném prostoru vzhledem ke sférickým souřadnicím r, θ, ϕ mějme statické rozložení elektrického náboje takové, že příslušný elektrostatický potenciál má tvar

$$\Phi(r,\theta,\phi) = U_0 \cdot \frac{e^{-r/l}}{r}.$$
 (1)

Určete rozložení náboje v prostoru.

Nápověda Jsou i jiné způsoby rozložení náboje než objemové!

2. Doletět, či nedoletět (10 bodů)

Nejmenovaný diktátor nejmenované Koreje se špatně vyspal. Rozhoduje se, které město na Zemi zničit. Jeho rakety doletí do vzdálenosti d=6000 km. Kolik kilometrů jim bude chybět do zničení Prahy? Geografické souřadnice:

Praha: 50° 5' s. š., 14° 25' v. d. Pchjongjang: 39° 2' s. š., 125°44' v. d.

Uvažujte, ze střela letí po nejkratší trajektorii přímo nad povrchem ideální kulové Země o poloměru 6378 km. Kartézské souřadnice z geografických získáte jako

$$x = r\cos\theta\cos\phi\tag{2a}$$

$$y = r\cos\vartheta\sin\phi\tag{2b}$$

$$z = r\sin\vartheta. \tag{2c}$$

3. kosmická rychlost (8 bodů)

Určete 3. kosmickou rychlost v_{III} , tedy rychlost potřebnou k úniku tělesa na povrchu Země z gravitačních vlivů Země i Slunce. Hmotnost Země je $m_Z = 5.97 \cdot 10^{24}$ kg, Slunce $m_S = 1.99 \cdot 10^{30}$ kg, vzdálenost Země od Slunce je 1 AU = $149 \cdot 10^6$ km.

4. Kopa nábojů (9 bodů)

Rozmístíme 162 stejně velkých nábojů $Q \neq 0$ do vrcholů pravidelného 162-úhelníku o délce strany a. Přidáme jeden náboj $q \neq 0$ do středu 162-úhelníku. Jaká na něj působí síla? Jaká na něj bude působit síla, když jeden z nábojů ve vrcholech odstraníme?

5. Koule v neviskózní kapalině (12 bodů)

Dvě stejné kuličky ve vzduchu jsou nabité stejným elektrickým nábojem a jsou zavěšeny ve stejném bodě na dvou stejně dlouhých nitích, které spolu svírají úhel 2α (náboj je dostatečně velký, aby se kuličky nedotýkaly). Nyní je ponoříme do benzenu o hustotě $\rho_b = 879 \text{ kg} \cdot \text{m}^{-3}$ a relativní permitivitě $\epsilon_r = 2.3$ a po ponoření se úhel mezi nimi nezmění. Jaká je hustota kuliček?

6. Koule ve viskózní kapalině (14 bodů)

Víťa má koule ve viskózní kapalině. V nádobě s ricinovým olejem o dynamické viskozitě η , která je ve stavu beztíže, urychlujeme kuličku o náboji Q a poloměru r homogenním a konstantním elektrickým polem \vec{E} , které míří ve směru osy x. Naopak ji brzdí Stokesův odpor $\vec{F}=-6\pi\eta r\vec{v}$, jedná se tedy o jednorozměrnou úlohu. Určete rychlost v ustáleném stavu (když se pohybuje rovnoměrně). Určete závislost polohy kuličky na čase, pokud se na počátku pohybuje ustálenou rychlostí a pole vypneme. Jak daleko se dostane? Vyhodnoťte pro $\eta=987\cdot 10^{-3}$ Pa·s, r=5 mm, E=20 V·m⁻¹ a Q=0.1 C.

7. Kulový kondenzátor (10 bodů)

Určete kapacitu kondenzátoru tvořeného dvěma elektrodami ve tvaru soustředných kulových ploch o poloměrech R_1 a R_2 .

8. CERN (8 bodů)

Spočítejte velikost magnetické indukce, která zakřivuje trajektorii protonu o rychlosti 2c/3 (nerelativisticky) v kruhovém urychlovači obvodu 27 km. Proton má náboj $q_p = 1.602 \cdot 10^{-19}$ C a hmotnost $m_p = 1.67 \cdot 10^{-27}$ kg.

9. Otáčení (9 bodů)

Mějme vektorové pole v prostoru dané rovnicí

$$\vec{E}(x,y,z) = \left(\frac{4xy}{z}, \frac{2x^2}{z}, -\frac{2x^2y}{z^2} - z^3\right).$$
 (3)

Rozhodněte, zda má potenciál, a pokud má, určete jej. (pokud nemá, nemusíte ho určovat)

10. Odporné odpory (8 bodů)

Určete odpor zapojení na obrázku. Všechny zakreslené rezistory mají stejný odpor R_0 . Namísto tří teček zapojení fraktálovitě (soběpodobně) pokračuje...

