Δομές Δεδομένων και Αλγόριθμοι - Εργαστήριο 6 Σωροί μεγίστων (Max-Heaps) και σωροί ελαχίστων (Min-Heaps), ταξινόμηση heapsort, ουρά προτεραιότητας (priority_queue) της STL

Τ.Ε.Ι. Ηπείρου, Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Χρήστος Γκόγκος - Αναπληρωτής Καθηγητής

1 Εισαγωγή

Οι σωροί επιτρέπουν την οργάνωση των δεδομένων με τέτοιο τρόπο έτσι ώστε το μεγαλύτερο στοιχείο να είναι συνεχώς προσπελάσιμο σε σταθερό χρόνο. Η δε λειτουργίες της εισαγωγής νέων τιμών στη δομή και της διαγραφή της μεγαλύτερης τιμής πραγματοποιούνται ταχύτατα. Σε αυτό το εργαστήριο θα παρουσιαστεί η υλοποίηση ενός σωρού μεγίστων και ο σχετικός με τη δομή αυτή αλγόριθμος ταξινόμησης, heapsort. Επιπλέον, θα παρουσιαστεί η δομή std::priority_queue που υλοποιεί στην STL της C++ τους σωρούς μεγίστων και ελαχίστων. Ο κώδικας όλων των παραδειγμάτων βρίσκεται στο https://github.com/chgogos/ceteiep dsa.

2 Σωροί

Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων. Υπάρχουν δύο βασικά είδη σωρών: ο σωρός μεγίστων (MAXHEAP) και ο σωρός ελαχίστων (MINHEAP). Οι ιδιότητες των σωρών που θα περιγραφούν στη συνέχεια αφορούν τους σωρούς μεγίστων αλλά αντίστοιχες ιδιότητες ισχύουν και για τους σωρούς ελαχίστων. Ειδικότερα, ένας σωρός μεγίστων υποστηρίζει ταχύτατα τις ακόλουθες λειτουργίες:

- Εύρεση του στοιχείου με τη μεγαλύτερη τιμή κλειδιού.
- Διαγραφή του στοιχείου με τη μεγαλύτερη τιμή κλειδιού.
- Εισαγωγή νέου κλειδιού στη δομή.

Ένας σωρός μπορεί να θεωρηθεί ως ένα δυαδικό δένδρο για το οποίο ισχύουν οι ακόλουθοι δύο περιορισμοί:

- Πληρότητα: το δυαδικό δένδρο είναι συμπληρωμένο, δηλαδή όλα τα επίπεδά του είναι πλήρως συμπληρωμένα εκτός πιθανά από το τελευταίο (χαμηλότερο) επίπεδο στο οποίο μπορούν να λείπουν μόνο κάποια από τα δεξιότερα φύλλα.
- Κυριαρχία γονέα: το κλειδί σε κάθε κορυφή είναι μεγαλύτερο ή ίσο από τα κλειδιά των παιδιών (σε MAXHEAP).

Ένας σωρός μπορεί να υλοποιηθεί με ένα πίνακα καταγράφοντας στον πίνακα στη σειρά τα στοιχεία του δυαδικού δένδρου από αριστερά προς τα δεξιά και από πάνω προς τα κάτω (σχήμα 1). Μερικές σημαντικές ιδιότητες οι οποίες προκύπτουν εφόσον τηρηθεί ο παραπάνω τρόπος αντιστοίχισης των στοιχείων του δένδρου στα στοιχεία του πίνακα είναι οι ακόλουθες:

- Στον πίνακα, τα κελιά γονείς βρίσκονται στις πρώτες $\lfloor \frac{n}{2} \rfloor$ θέσεις ενώ τα φύλλα καταλαμβάνουν τις υπόλοιπες θέσεις.
- Στον πίνακα, τα παιδιά για κάθε κλειδί στις θέσεις i από 1 μέχρι και $\lfloor \frac{n}{2} \rfloor$ βρίσκονται στις θέσεις 2*i και 2*i+1.
- Στον πίνακα, ο γονέας για κάθε κλειδί στις θέσεις i από 2 μέχρι και n βρίσκεται στη θέση $\lfloor \frac{i}{2} \rfloor$.

Σχήμα 1: Αναπαράσταση ενός σωρού μεγίστων ως πίνακα

Για το παράδειγμα του σχήματος ισχύουν τα ακόλουθα:

- Οι κόμβοι που είναι γονείς (έχουν τουλάχιστον ένα παιδί) βρίσκονται στις θέσεις από 1 μέχρι και 5.
- Οι κόμβοι που είναι φύλλα βρίσκονται στις θέσεις από 6 μέχρι και 10.
- Ο γονέας στη θέση 1 (η τιμή 58) έχει παιδιά στις θέσεις 2*1=2 (τιμή 53) και 2*1+1=3 (τιμή 57).
- Ο γονέας στη θέση 2 (η τιμή 53) έχει παιδιά στις θέσεις 2*2=4 (τιμή 37) και 2*2+1=5 (τιμή 42).
- Ο γονέας στη θέση 3 (η τιμή 47) έχει παιδιά στις θέσεις 2*3=6 (τιμή 19) και 2*3+1=7 (τιμή 31).
- Ο γονέας στη θέση 4 (η τιμή 37) έχει παιδιά στις θέσεις 2*4=8 (τιμή 16) και 2*4+1=9 (τιμή 33).
- Ο γονέας στη θέση 5 (η τιμή 42) έχει παιδιά στις θέσεις 2*5=10 (τιμή 25).
- Ο κόμβος παιδί στη θέση 2 (η τιμή 53) έχει γονέα στη θέση $\lfloor \frac{2}{2} \rfloor = 1$ (τιμή 58).
- Ο κόμβος παιδί στη θέση 3 (η τιμή 47) έχει γονέα στη θέση $\left\lfloor \frac{3}{2} \right\rfloor = 1$ (τιμή 58).
- Ο κόμβος παιδί στη θέση 4 (η τιμή 37) έχει γονέα στη θέση $\lfloor \frac{4}{2} \rfloor = 2$ (τιμή 53).
- Ο κόμβος παιδί στη θέση 5 (η τιμή 42) έχει γονέα στη θέση $\lfloor \frac{5}{2} \rfloor = 2$ (τιμή 53).
- Ο κόμβος παιδί στη θέση 6 (η τιμή 19) έχει γονέα στη θέση $\lfloor \frac{6}{2} \rfloor = 3$ (τιμή 47).
- Ο κόμβος παιδί στη θέση 7 (η τιμή 31) έχει γονέα στη θέση $\lfloor \frac{7}{2} \rfloor = 3$ (τιμή 47).
- Ο κόμβος παιδί στη θέση 8 (η τιμή 16) έχει γονέα στη θέση $\lfloor \frac{8}{2} \rfloor = 4$ (τιμή 37).
- Ο κόμβος παιδί στη θέση 9 (η τιμή 33) έχει γονέα στη θέση $\lfloor \frac{6}{2} \rfloor = 4$ (τιμή 37).
- Ο κόμβος παιδί στη θέση 10 (η τιμή 25) έχει γονέα στη θέση $\lfloor \frac{10}{2} \rfloor = 5$ (τιμή 42).

3 Υλοποίηση ενός σωρού

Στη συνέχεια παρουσιάζεται η υλοποίηση ενός σωρού μεγίστων που περιέχει ακέραιες τιμές-κλειδιά.

```
#include <iostream>
using namespace std;

// MAXHEAP
const int static HEAP_SIZE_LIMIT = 100000;
int heap[HEAP_SIZE_LIMIT + 1];
int heap_size = 0;
```

```
8
   void clear heap() {
     for (int i = 0; i < HEAP SIZE LIMIT + 1; i++)
       heap[i] = 0;
11
     heap\_size = 0;
12
13
14
   void print heap(bool newline = true) {
15
     cout << "HEAP(" << heap size << ") [";
16
     for (int i = 1; i <= heap_size; i++)
17
       if (i == heap size)
18
          cout << heap[i];
19
20
          cout << heap[i] << " ";
21
     cout << "]";
22
     if (newline)
23
       cout << endl;
24
25
26
   void heapify(int k) {
27
28
     int v = heap[k];
29
     bool flag = false;
     while (!flag && 2 * k <= heap_size) {
30
       int j = 2 * k;
31
       if (j < heap_size)</pre>
32
          if (heap[j] < heap[j + 1])
33
            j++;
34
       if(v \ge heap[j])
35
          flag = true;
36
37
        else {
          heap[k] = heap[j];
38
39
          k = j;
40
41
     heap[k] = v;
42
43
44
   void heap_bottom_up(int *a, int N, bool verbose = false) {
45
     heap size = N;
46
     for (int i = 0; i < N; i++)
47
       heap[i+1] = a[i];
48
     for (int i = heap_size / 2; i \ge 1; i - -) {
49
       if (verbose)
50
          cout << "heapify" << heap[i] << "";
51
52
       heapify(i);
       if (verbose)
53
          print_heap();
54
55
56
57
   int top() { return heap[1]; }
58
59
   void push(int key) {
60
     heap size++;
61
     heap[heap size] = key;
     int pos = heap_size;
     while (pos != 1 \&\& heap[pos / 2] < heap[pos]) {
       swap(heap[pos / 2], heap[pos]);
65
       pos = pos / 2;
66
67
     }
68
```

```
69
70 void pop() {
71 swap(heap[1], heap[heap_size]);
72 heap_size—;
73 heapify(1);
74 }
```

Κώδικας 1: Σωρός μεγίστων με κλειδιά ακέραιες τιμές (max heap.cpp)

Η συνάρτηση λήψης της μεγαλύτερης τιμής (top)

Καθώς η μεγαλύτερη τιμή βρίσκεται πάντα στη θέση 1 του πίνακα που διατηρεί τα δεδομένα του σωρού η συνάρτηση τορ απλά επιστρέφει την τιμή αυτή.

Η συνάρτηση εξαγωγής της μεγαλύτερης τιμής (pop)

Η εξαγωγή της μεγαλύτερη τιμής γίνεται ως εξής. Το στοιχείο που βρίσκεται στην κορυφή του σωρού αντιμετατίθεται με το τελειταίο στοιχείο του σωρού. Στην συνέχεια το στοιχείο που έχει βρεθεί στην κορυφή του σωρού κατεβαίνει προς τα κάτω αν έχει παιδί που είναι μεγαλύτερό του πραγματοποιώντας αντιμετάθεση με το μεγαλύτερο στοιχείο από τα παιδιά του. Η διαδικασία επαναλαμβάνεται για τη νέα θέση του στοιχείου που αρχικά είχε μεταφερθεί στη κορυφή και μέχρι να ισχύσει ότι είναι μεγαλύτερο και από τα δύο παιδιά του.

Η συνάρτηση εισαγωγής νέας τιμής (push)

Η εισαγωγή ενός στοιχείου γίνεται ως φύλλο στη πρώτη διαθέσιμη θέση από πάνω προς τα κάτω και από δεξιά προς τα αριστερά. Το στοιχείο αυτό συγκρίνεται με το γονέα του και αν είναι μεγαλύτερο αντιμετατίθεται με αυτόν. Η διαδικασία συνεχίζεται μέχρι είτε να βρεθεί το νέο στοιχείο στην κορυφή είτε να ισχύει η κυριαρχία γονέα.

Ο ακόλουθος κώδικας χρησιμοποιεί τη συνάρτηση heap_bottom_up και μέσω αυτής τη συνάρτηση heapify προκειμένου να μετασχηματίσει έναν πίνακα ακεραίων σε σωρό μεγίστων.

```
#include "max_heap.cpp"

int main(void) {

cout << "#### Test heap construction with heapify ####" << endl;

int a[10] = {42, 37, 31, 16, 53, 19, 47, 58, 52, 44};

heap_bottom_up(a, 10, true);

print_heap();

}
```

Κώδικας 2: Δημιουργία σωρού από πίνακα με heapify (heap1.cpp)

```
#### Test heap construction with heapify ####

heapify 53 HEAP(10) [42 37 31 16 53 19 47 58 52 44]

heapify 16 HEAP(10) [42 37 31 58 53 19 47 16 52 44]

heapify 31 HEAP(10) [42 37 47 58 53 19 31 16 52 44]

heapify 37 HEAP(10) [42 58 47 52 53 19 31 16 37 44]

heapify 42 HEAP(10) [58 53 47 52 44 19 31 16 37 42]

HEAP(10) [58 53 47 52 44 19 31 16 37 42]
```

Ο ακόλουθος κώδικας δημιουργεί σταδιακά έναν σωρό εισάγοντας δέκα τιμές με τη συνάρτηση push. Στη συνέχεια πραγματοποιούνται εξαγωγές τιμών με τη συνάρτηση pop μέχρι ο σωρός να αδειάσει.

```
#include "max_heap.cpp"

int main(void) {
    int a[10] = {42, 37, 31, 16, 53, 19, 47, 58, 33, 25};
    for (int i = 0; i < 10; i++) {</pre>
```

```
print heap(false);
       cout << "==> push key " << a[i] << "==> ";
       push(a[i]);
       print heap();
9
10
     while (heap size > 0) {
11
       print heap(false);
12
       cout << "==> pop ==> key=" << heap[1] << ", ";
13
       pop();
14
15
       print heap();
16
```

Κώδικας 3: Δημιουργία σωρού με εισαγωγές τιμών και εν συνεχεία άδειασμα του σωρού με διαδοχικές διαγραφές της μέγιστης τιμής (heap2.cpp)

```
1 HEAP(0) [] ==> push key 42 ==> HEAP(1) [42]
2 HEAP(1) [42] ==> push key 37 ==> HEAP(2) [42 37]
3 HEAP(2) [42 37] ==> push key 31 ==> HEAP(3) [42 37 31]
4 HEAP(3) [42 37 31] ==> push key 16 ==> HEAP(4) [42 37 31 16]
5 HEAP(4) [42 37 31 16] ==> push key 53 ==> HEAP(5) [53 42 31 16 37]
6 HEAP(5) [53 42 31 16 37] ==> push key 19 ==> HEAP(6) [53 42 31 16 37 19]
7 HEAP(6) [53 42 31 16 37 19] ==> push key 47 ==> HEAP(7) [53 42 47 16 37 19 31]
8 HEAP(7) [53 42 47 16 37 19 31] ==> push key 58 ==> HEAP(8) [58 53 47 42 37 19 31 16]
9 HEAP(8) [58 53 47 42 37 19 31 16] ==> push key 33 ==> HEAP(9) [58 53 47 42 37 19 31 16 33]
10 HEAP(9) [58 53 47 42 37 19 31 16 33] ==> push key 25 ==> HEAP(10) [58 53 47 42 37 19 31 16 33 25]
11 HEAP(10) [58 53 47 42 37 19 31 16 33 25] ==> pop ==> key=58, HEAP(9) [53 42 47 33 37 19 31 16 25]
12 HEAP(9) [53 42 47 33 37 19 31 16 25] ==> pop ==> key=53, HEAP(8) [47 42 31 33 37 19 25 16]
13 HEAP(8) [47 42 31 33 37 19 25 16] ==> pop ==> key=47, HEAP(7) [42 37 31 33 16 19 25]
14 HEAP(7) [42 37 31 33 16 19 25] ==> pop ==> key=42, HEAP(6) [37 33 31 25 16 19]
15 HEAP(6) [37 33 31 25 16 19] ==> pop ==> key=37, HEAP(5) [33 25 31 19 16]
16 HEAP(5) [33 25 31 19 16] ==> pop ==> key=33, HEAP(4) [31 25 16 19]
17 HEAP(4) [31 25 16 19] ==> pop ==> key=31, HEAP(3) [25 19 16]
18 HEAP(3) [25 19 16] ==> pop ==> key=25, HEAP(2) [19 16]
19 HEAP(2) [19 16] ==> pop ==> key=19, HEAP(1) [16]
20 HEAP(1) [16] ==> pop ==> key=16, HEAP(0) []
```

4 Ταξινόμηση Heapsort

Ο αλγόριθμος Heapsort προτάθηκε από τον J.W.J.Williams το 1964 και αποτελείται από 2 στάδια:

- Δημιουργία σωρού με τα n στοιχεία ενός πίνακα τα στοιχεία του οποίου ζητείται να ταξινομηθούν.
- Εφαρμογή της διαγραφής της ρίζας n -1 φορές.

Το αποτέλεσμα είναι ότι τα στοιχεία αφαιρούνται από το σωρό σε φθίνουσα σειρά. Καθώς κατά την αφαίρεσή του κάθε στοιχείου, αυτό τοποθετείται στο τέλος του σωρού, τελικά ο σωρός περιέχει τα αρχικά δεδομένα σε αύξουσα σειρά. Στη συνέχεια παρουσιάζεται η υλοποίηση του αλγορίθμου HeapSort. Επιπλέον ο κώδικας ταξινομεί πίνακες μεγέθους 10.000, 20.000, 40.000 80.000 και 100.000 που περιέχουν τυχαίες ακέραιες τιμές και πραγματοποιείται σύγκριση με τους χρόνους εκτέλεσης που επιτυγχάνει η std::sort.

```
#include "max_heap.cpp"
#include <algorithm>
#include <chrono>
#include <random>

using namespace std::chrono;

void heapsort() {
while (heap_size > 0)
maximum_key_deletion();
}
```

```
12
   int main(void) {
13
     high resolution clock::time point t1, t2;
     mt19937 mt(1940);
15
     uniform int distribution < int > uni(0, 200000);
16
     int problem sizes[] = {10000, 20000, 40000, 80000, 100000};
17
     for (int i = 0; i < 5; i++) {
18
       clear heap():
19
       int N = problem_sizes[i];
20
       int *a = new int[N];
21
       for (int i = 0; i < N; i++)
22
         a[i] = uni(mt);
23
       heap bottom up(a, N);
24
       t1 = high resolution clock::now();
25
       heapsort();
26
       t2 = high resolution clock::now();
27
       duration<double, std::milli> duration1 = t2 - t1;
28
       for (int i = 0; i < N; i++)
29
         a[i] = uni(mt);
30
       t1 = high resolution clock::now();
31
       sort(a, a + N);
32
33
       t2 = high resolution clock::now();
34
       duration<double, std::milli> duration2 = t2 - t1;
       cout << "SIZE" << N << "heap sort" << duration1.count()
35
             << "ms std::sort " << duration2.count() << "ms" << endl;
36
37
       delete[] a;
38
39
```

Κώδικας 4: Ο αλγόριθμος heapsort (heapsort.cpp)

```
SIZE 10000 heap sort 4.0003ms std::sort 4.0003ms

SIZE 20000 heap sort 5.0003ms std::sort 4.0002ms

SIZE 40000 heap sort 10.0006ms std::sort 10.0006ms

SIZE 80000 heap sort 19.0011ms std::sort 18.001ms

SIZE 100000 heap sort 24.0014ms std::sort 22.0013ms
```

5 Η δομή priority_queue της STL

Η STL της C++ περιέχει υλοποίηση της δομής std::priority_queue (ουρά προτεραιότητας) η οποία είναι ένας σωρός μεγίστων. Κάθε στοιχείο που εισέρχεται στην ουρά προτεραιότητας έχει μια προτεραιότητα που συνδέεται με αυτό και το στοιχείο με τη μεγαλύτερη προτεραιότητα βρίσκεται πάντα στην αρχή της ουράς. Οι κυριότερες λειτουργίες που υποστηρίζονται από την std::priority_queue είναι οι ακόλουθες:

- push: εισαγωγή ενός στοιχείου στη δομή.
- top: επιστροφή χωρίς εξαγωγή του στοιχείου με τη μεγαλύτερη προτεραιότητα.
- pop: απώθηση του στοιχείου με τη μεγαλύτερη προτεραιότητα.
- size: πλήθος των στοιχείων που υπάρχουν στη δομή.
- empty: επιστρέφει true αν η δομή είναι άδεια αλλιώς επιστρέφει false.

Ένα παράδειγμα χρήσης της std::priority_queue ως σωρού μεγίστων αλλά και ως σωρού ελαχίστων παρουσιάζεται στη συνέχεια.

```
1 #include <algorithm>
2 #include <iostream>
3 #include <queue>
4
5 using namespace std;
```

```
6
   int main(void) {
7
     int a[10] = \{15, 16, 13, 23, 45, 67, 11, 22, 37, 10\};
     cout << "priority queue (MAXHEAP): ";</pre>
9
     priority queue<int> pq1(a, a + 10);
10
     while (!pq1.empty()) {
11
       int x = pq1.top();
12
       pq1.pop();
13
       cout << x << " ";
14
15
     cout << endl;
16
17
     cout << "priority queue (MINHEAP): ";</pre>
18
     priority queue<int, std::vector<int>, std::greater<int>> pq2(a, a + 10);
19
     while (!pq2.empty()) {
20
21
       int x = pq2.top();
22
       pq2.pop();
       cout << x << "":
23
24
     cout << endl;
25
26
```

Κώδικας 5: Παράδειγμα με priority queue της STL (stl priority queue.cpp)

```
priority queue (MAXHEAP): 67 45 37 23 22 16 15 13 11 10 priority queue (MINHEAP): 10 11 13 15 16 22 23 37 45 67
```

6 Παραδείγματα

6.1 Παράδειγμα 1

Χρησιμοποιώντας τον κώδικα 1, εισάγεται 50.000 τυχαίες ακέραιες τιμές σε έναν σωρό μεγίστων με τη συνάρτηση heap_bottom_up και με τη συνάρτηση push. Χρονομετρείστε τον κώδικα και στις δύο περιπτώσεις δημιουργίας του σωρού.

6.2 Παράδειγμα 2

Διάμεσος ενός δείγματος N παρατηρήσεων οι οποίες έχουν διαταχθεί σε αύξουσα σειρά ορίζεται ως η μεσαία παρατήρηση, όταν το N είναι περιττός αριθμός, ή ο μέσος όρος (ημιάθροισμα) των δύο μεσαίων παρατηρήσεων όταν το N είναι άρτιος αριθμός. Έστω ότι για διάφορες τιμές που παράγονται με κάποιον τρόπο ζητείται ο υπολογισμός της διάμεσης τιμής καθώς παράγεται κάθε νέα τιμή και για όλες τις τιμές που έχουν προηγηθεί μαζί με την τρέχουσα τιμή όπως φαίνεται στο επόμενο παράδειγμα:

```
5 \Rightarrow \deltaιάμεσος 5

5, 7 \Rightarrow \deltaιάμεσος 6

5, 7, 13 \Rightarrow \deltaιάμεσος 7

5, 7, 13, 12 \Rightarrow 5, 7, 12, 13 \Rightarrow \deltaιάμεσος 9.5

5, 7, 13, 12, 2 \Rightarrow 2, 5, 7, 12, 13 \Rightarrow \deltaιάμεσος 7
```

```
#include <chrono>
#include <iomanip>
#include <iostream>
#include <queue>
#include <random>

using namespace std;
using namespace std::chrono;
```

```
9
  double medians(int a[], int N) {
10
     priority queue<int, std::vector<int>, std::less<int>> pq1;
     priority_queue<int, std::vector<int>, std::greater<int>> pq2;
     int first = a[0];
13
     int second = a[1];
14
     if (first < second) {</pre>
15
       pq1.push(first);
16
       pq2.push(second);
17
18
     } else {
       pq2.push(first);
19
       pq1.push(second);
20
21
     double sum = first + (first + second) / 2.0;
22
     for (int i = 2; i < N; i++) {
23
       int x = a[i];
24
       if(x \le pq1.top())
25
          pq1.push(x);
26
27
          pq2.push(x);
28
29
       if(pq1.size() < pq2.size()) {
30
         pq1.push(pq2.top());
31
         pq2.pop();
32
       double median;
33
       if(pq1.size() == pq2.size())
34
          median = (pq1.top() + pq2.top()) / 2.0;
35
36
          median = pq1.top();
37
       sum += median;
38
39
     return sum;
40
41
42
  int main(int argc, char **argv) {
43
     high_resolution_clock::time_point t1, t2;
     t1 = high resolution clock::now();
45
     mt19937 mt(1940);
46
     uniform int distribution<int> uni(0, 200000);
47
     int N = 500000;
48
     int *a = new int[N];
49
     for (int i = 0; i < N; i++)
50
      a[i] = uni(mt);
51
     double sum = medians(a, N);
52
     delete[] a;
     t2 = high_resolution_clock::now();
54
     duration \leq double, std::milli\geq duration = t2 - t1;
55
     cout.precision(2);
56
     cout << "Moving medians sum = " << std::fixed << sum << " elapsed time "
57
           << duration.count() << "ms" << endl;
58
59
```

Κώδικας 6: Υπολογισμός διαμέσου σε μια ροή τιμών (lab06_ex1.cpp)

1 Moving medians sum = 54441518145.50 elapsed time 132.52ms

6.3 Παράδειγμα 3

7 Ασκήσεις

- 1. Να υλοποιηθεί ο σωρός μεγίστων που παρουσιάστηκε στον κώδικα 1 ως κλάση. Προσθέστε εξαιρέσεις έτσι ώστε να χειρίζονται περιπτώσεις όπως όταν ο σωρός είναι άδειος και ζητείται εξαγωγή της μεγαλύτερης τιμής ή όταν ο σωρός είναι γεμάτος και επιχειρείται εισαγωγή νέας τιμής.
- 2. Να γραφεί συνάρτηση που να δέχεται ως παράμετρο έναν πίνακα ακεραίων και έναν ακέραιο αριθμό κ και να επιστρέφει το κ-οστό μεγαλύτερο στοιχείο του πίνακα.

Αναφορές

[1] Geeks for Geeks, Priority Queue in C++ Standard Template Library (STL), http://www.geeksforgeeks.org/priority-queue-in-cpp-stl/