Exercice 1

Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par u=(1,1,-1,-1) et v=(1,1,0,0), et soit π la projection orthogonale sur F

- 1) Déterminer une base orthonormée (f_1, f_2) de F et une base orthonormée (f_3, f_4) de F^{\perp} .
- 2) Quelle est la matrice de π dans la base (f_1, f_2, f_3, f_4) ?
- 3) Soit P la matrice de passage de la base canonique à la base (f_1, f_2, f_3, f_4) . Montrer que $P^{-1} = {}^tP$ et en déduire la matrice de π dans la base canonique.

On cherche à minimiser la quantité $f(x,y)=(x-1)^2+(y+1)^2+(x+y-1)^2$ pour $(x,y)\in\mathbb{R}^2$. Pour cela, on pose u=(x-1,y+1,1-x-y) et v=(1,1,1).

Montrer que $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) \geq \frac{1}{3}$, puis montrer que l'équation $f(x,y) = \frac{1}{3}$ admet une unique solution.

Soit $E = \mathbb{R}^n$ et $(e_1, ..., e_p)$ une famille de vecteurs de E de norme 1 telle que pour tout $x \in E$,

$$||x||^2 = \sum_{k=1}^p \langle x, e_k \rangle^2$$

Montrer que n = p et que $(e_1, ..., e_p)$ est une base orthonormée de E.

(D'après oraux ESCP 2023) Dans \mathbb{R}^n , une famille de vecteurs $(x_1,...,x_p)$ est dite obtusangle si pour tout

$$\forall (i,j) \in [1,p]^2, i \neq j \Rightarrow \langle x_i, x_j \rangle < 0$$

L'objectif de cet exercice est de montrer par récurrence sur n que si $(e_1, ..., e_p)$ est une famille de vecteurs obtusangles de \mathbb{R}^n , alors $p \leq n+1$.

- 1) Étudier le cas n=1
- 2) On suppose le résultat vrai pour un entier n, et on considère une famille $(x_1, ..., x_p)$ de p vecteurs de \mathbb{R}^{n+1} telle que $\forall (i,j) \in [1,n+3]^2, i \neq j \Rightarrow \langle x_i, x_j \rangle < 0$.
 - a) Montrer que $\forall i \in [1, p], x_i \neq 0$
 - b) On pose

$$\forall i \in [1, p], \ y_i = \frac{x_i}{\|x_i\|}$$
 et $\forall j \in [1, n+2], \ z_j = y_j - \langle y_j, y_p \rangle y_p$

pour tout $(i,j) \in [1, p-1]^2$ tel que $i \neq j$, calculer $\langle z_i, z_j \rangle$ et donner son signe.

- c) Pour tout $i \in [1, p-1]$, calculer $\langle z_i, y_p \rangle$.
- d) On pose $F = (\text{Vect}(y_p))^{\perp}$. Déterminer la dimension de F.
- e) Conclure.

Exercice 5

(D'après oraux HEC 2022). Soit $n \geq 2$ un entier. Si $M \in \mathcal{M}_n(\mathbb{R})$ est ne matrice, on note M^T sa transposée.

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est orthogonale si $MM^T = I_n$

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est symétrique si $M^T = M$

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est antisymétrique si $M^T = -M$

On confond dans la suite $\mathcal{M}_{n,1}(\mathbb{R})$ avec \mathbb{R}^n que l'on munit de son produit scalaire canonique noté $\langle \cdot, \cdot \rangle$ et de la norme associée notée $\| \cdot \|$.

- 1) Question de cours : rappeler la définition d'une matrice inversible.
- 2) a) Montrer que tout matrice orthogonale est inversible.

- b) Soit $V = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$. Préciser pour quelle(s) valeur(s) de l'entier $k \in \mathbb{N}$ la matrice V^k est orthogonale.
- 3) Soit A une matrice antisymétrique de $\mathcal{M}_n(\mathbb{R})$. Soit $M = I_n + A$ et $N = I_n A$.
 - a) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Calculer $(X^TAX)^T$ et en déduire la valeur de X^TAX .
 - b) Montrer que la seule valeur propre possible pour A est 0. Dans quel cas la matrice A est-elle diagonalisable?
 - c) Montrer que les matrices M et N sont inversibles.
 - d) Montrer que les matrices M et N^{-1} commutent.
 - e) Montrer que la matrice $\Omega = MN^{-1}$ est orthogonale.
 - f) -1 est-il valeur propre de Ω ?
- 4) Soit U une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$ n'admettant pas -1 comme valeur propre. Montrer qu'il existe une unique matrice antisymétrique $B \in \mathcal{M}_n(\mathbb{R})$ telle que

$$U = (I_n + B)(I_n - B)^{-1}$$

Exercice 6

(**D'après oraux ESCP 2022**) Soit $n \in \mathbb{N}^*$. Dans cet exercice, on confondra \mathbb{R}^n et l'espace des matrices colonnes réelles $\mathcal{M}_{n,1}(\mathbb{R})$. On rappelle qu'alors, le produit scalaire est défini par :

$$\forall (X,Y) \in \mathcal{M}_{n,1}(\mathbb{R})^2, \ \langle X,Y \rangle = {}^t XY$$

On étudie les matrices A de $\mathcal{M}_n(\mathbb{R})$ vérifiant la propriété (P) suivante :

$$\forall (X,Y) \in \mathcal{M}_{n,1}(\mathbb{R})^2, \ ^tYAX = 0 \Rightarrow ^tXAY = 0$$

- 1) Vérifier que $\forall (X,Y) \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tYAX$ est un nombre réel.
- 2) Montrer que si A est symétrique ou antisymétrique, alors A vérifie la propriété P
- 3) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice telle que pour tout $Z \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^tZAZ = 0$.
 - a) Établir que pour tout $(X,Y) \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tYAX = -{}^tXAY$
 - b) En déduire que A est antisymétrique.

On suppose dans toute la suite de l'exercice que A vérifie la propriété (P) et n'est pas antisymétrique.

- 4) a) montrer qu'alors tA vérifie (P).
 - b) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Montrer que $(\operatorname{Vect}(AX))^{\perp} = (\operatorname{Vect}(^tAX))^{\perp}$ puis que $\operatorname{Vect}(AX) = \operatorname{Vect}(^tAX)$.
 - c) En déduire que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, il existe $\alpha_X \in \mathbb{R}$ tel que ${}^tAX = \alpha_X AX$
 - d) En conclure que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^tXAX = \alpha_X{}^tXAX$
- 5) Montrer qu'il existe $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ telle que ${}^tYAY \neq 0$ et qu'on a alors ${}^tAY = AY$
- 6) Soit Y telle que ${}^tYAY \neq 0$
 - a) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que AX est non nulle et colinéaire à AY. Montrer que ${}^tAX = AX$
 - b) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que AX est non colinéaire à AY. En considérant ${}^tA(X+Y)$, montrer que ${}^tAX = AX$.
 - c) En conclure que A est symétrique.

Le coin des Khûbes

Soit $n \in \mathbb{N}^*$ et soit $u \in \mathbb{R}^n$ un vecteur non nul fixé. On pose pour tout $x \in \mathbb{R}^n$, $s(x) = x - 2\frac{\langle x, u \rangle}{\|u\|^2}u$.

- 1) Vérifier que s est un endomorphisme symétrique de \mathbb{R}^n .
- 2) Montrer que s est une symétrie de \mathbb{R}^n .
- 3) Montrer que pour tout $x \in \mathbb{R}^n$, ||s(x)|| = ||x||
- 4) Calculer Ker(s Id) et Ker(s + Id), puis décrire géométriquement s.

Soit p un projecteur de \mathbb{R}^n .

1) Montrer que p est un projecteur orthogonal si et seulement si :

$$\forall x \in \mathbb{R}^n, \ \langle p(x), x \rangle \ge 0$$

2) Montrer que p est un projecteur orthogonal si et seulement si

$$\forall x \in \mathbb{R}^n, \ \|p(x)\| \le \|x\|$$

(Oral ENS 2024) Soit σ un réel strictement positif. Soient X_1, \ldots, X_n des variables aléatoires réelles indépendantes, toutes d'espérance nulle et toutes de variance σ^2 . On introduit $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$ la matrice colonne associée. Soit H un sous-espace vectoriel de \mathbb{R}^n de dimension k avec $1 \le k \le n$. On note P la matrice, dans la base canonique de \mathbb{R}^n , de la

sous-espace vectoriel de \mathbb{R}^n , de dimension k, avec $1 \leq k \leq n$. On note P la matrice, dans la base canonique de \mathbb{R}^n , de la projection orthogonale sur H.

- 1) Déterminer, pour tout $i \in \{1, ..., n\}$, la valeur de l'espérance $\mathbb{E}[(PX)_i]$.
- 2) Calculer l'espérance $\mathbb{E}[\|X\|^2]$, où $\|X\|$ désigne la norme de X. La norme d'une matrice colonne X est définie comme celle du vecteur associé (X_1, \ldots, X_n) .
- 3) a) Vérifier que ${}^tPP = P = P^2$, où P^t désigne la transposée de P. Donner la valeur de la trace de P.
 - b) Montrer que $||PX||^2 = {}^t X P X$ et en déduire la valeur de $\mathbb{E}[||PX||^2]$.
 - c) En utilisant le théorème de Pythagore, déterminer la valeur de $\mathbb{E}[\|(I-P)X\|^2]$, où I désigne la matrice identité.

