

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	ET <u>«»</u>		
КАФЕДРА	«»		

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Моделирование построения поверхностных и объемных геометрий с помощью операции движения»

СОДЕРЖАНИЕ

\mathbf{B}	ВЕД	ЕНИЕ		3				
1	1 Кривые и поверхности							
	1.1	Спосо	обы описания кривых и поверхностей	4				
		1.1.1	Явный вид	4				
		1.1.2	Неявные вид	4				
		1.1.3	Параметрический вид	4				
	1.2	ые и поверхности Безье	5					
		1.2.1	Кривые Безье	5				
		1.2.2	Поверхности Безье	6				
	1.3	Рациональные кривые и поверхности Безье						
		1.3.1	Рациональные кривые Безье	8				
		1.3.2	Рациональные поверхности Безье	10				

введение

Для моделирование построения поверхностных и объемных геометрий необходимо использовать методы геометрического моделирования.

Поэтому, прежде, чем мы приступим к описанию построения геометрий с помощью операции движения, рассмотрим основные методы построения поверхностей и кривых, а именно кривые и поверхности Безье, рациональные кривые и поверхности Безье и NURBS.

1 Кривые и поверхности

1.1 Способы описания кривых и поверхностей

Существует три основных подхода к описанию кривых и поверхностей.

1.1.1 Явный вид

Для кривой:

$$y = f(x), z = g(x)$$

Для поверхности:

$$z = f(x, y)$$

Этот метод имеет несколько недостатков:

- Нельзя однозначно описать замкнутые кривые, например, окружности.
- Полученное описание не обладает инвариантностью относительно поворотов.
- При попытке задать кривые с очень большими углами наклона возникают большие вычислительные сложности.

1.1.2 Неявные вид

$$f(x, y, z) = 0$$

Недостатки:

- Кривая в трёхмерном пространстве задаётся как пересечение двух поверхностей, т.е. требуется решать систему алгебраических уравнений.
- Сложности в процессе объединения неявно заданных фрагментов кривых

1.1.3 Параметрический вид

Параметрическое задание кривой и поверхности преодолевает недостатки явного и неявного способов описания. С его помощью можно задавать многозначные кривые, т.е. такие зависимости, которые могут принимать несколько значений при одном значении аргумента. Для кривой:

$$\begin{cases} x = x(u) \\ y = y(u) \\ a \le u \le b \end{cases}$$
 (1.1)

и также будем пользоваться обозначением

$$\mathbf{C}(u) = (x(u), y(u)), \ a \le u \le b \tag{1.2}$$

Для поверхности:

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \\ a \le u \le b \\ c \le v \le d \end{cases}$$
 (1.3)

и также будем пользоваться обозначением

$$\mathbf{S}(u,v) = (x(u,v), y(u,v), z(u,v)), \ a \le u \le b, \ c \le v \le d$$
 (1.4)

1.2 Кривые и поверхности Безье

1.2.1 Кривые Безье

Пусть заданы n+1 точек $\mathbf{P}_i=(x_i,\ y_i,\ z_i),$ называемых контрольными точками. Они определяют форму и пространственное положение кривой.

Тогда кривую Безье n-ой степени можно задать с помощью уравнения:

$$\mathbf{C}(u) = \sum_{i=0}^{n} B_{i,n}(u)\mathbf{P}_{i}, \quad 0 \le u \le 1$$

$$(1.5)$$

где $B_{i,n}$ - полиномы Бернштейна.

$$B_{i,n}(u) = C_n^i u^i (1 - u)^{n-i} = \frac{n!}{i!(n-i)!} u^i (1 - u)^{n-i}$$
(1.6)

Для вычисления точек кривой Безье удобно использовать алгоритм де Кастельжо:

Листинг 1.1 – Псевдокод алгоритма де Кастельжо

```
deCasteljau(P, n, u, C)
   {
2
       /*Вычисление точки на кривой Безье*/
3
       /*[in]: P, n, u*/
4
       /*[out]: С (точка)*/
5
       for(i=0; i<=n; i++) /* Используем локальный массив, */
6
                             /* чтобы не изменить исходный массив
            Q[i] = P[i]
               контрольных точек */
       for (k=1; k<=n; k++)</pre>
8
            for (i=0; i<=n-k; i++)</pre>
9
                Q[i] = (1.0-u)*Q[i] + u*Q[i+1]
10
       C = Q[0]
11
12
  }
```

Например, на рисунке 1.1 показана кривая Безье для контрольных точек $P_1 = (0, 0), P_2 = (0, 1), P_3 = (1, 2), P_4 = (3, 0).$

Рисунок 1.1 – Пример кривой Безье

1.2.2 Поверхности Безье

Пусть заданы контрольные точки $\mathbf{P}_{i,j}$, где $0 \le i \le n$ и $0 \le j \le m$. Тогда поверхность Безье можно задать с помощью следующего уравнения:

$$\mathbf{S}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u) B_{j,m}(v) P_{i,j}, \quad 0 \le u, v \le 1$$
(1.7)

Аналогично кривым Безье, точки поверхности Безье можно находить с помощью алгоритма де Кастельжо из листинга 1.1.

Листинг 1.2 – Псевдокод алгоритма де Кастельжо для поверхности

```
deCasteljauForSurface(P, n, m, u0, v0, S)
  {
2
       /*Вычисление точки на повехности Безье*/
3
       /*[in]: P, n, m, u0, v0*/
4
       /*[out]: S (точка)*/
5
       if (n <= m)
6
       {
           for(j=0; j<=m; j++) /* P[j][] - j-as строка */
8
                deCasteljau(P[j][], n, u0, Q[j]);
9
           deCasteljau(Q, m, v0, S);
10
       }
11
       else
12
       {
13
           for(i=0; i<=n; i++)</pre>
14
                deCasteljau(P[][i], m, v0, Q[i]);
15
           deCasteljau(Q, n, u0, S);
16
       }
17
  }
18
```

На рисунке 1.2 показан пример поверхности Безье для 15 контрольных точек.

Рисунок 1.2 – Пример поверхности Безье

1.3 Рациональные кривые и поверхности Безье

1.3.1 Рациональные кривые Безье

Так как кривые Безье - полиномиальные кривые, они имеют существенный недостаток, а именно с их помощью невозможно задать некоторые виды кривых, такие как окружности, эллипсы, гиперболы и прочие. Данные виды кривых можно задать с помощью рациональных функций, то есть как частное двух полиномов.

$$x(u) = \frac{X(u)}{W(u)}$$
 $y(u) = \frac{Y(u)}{W(u)}$, (1.8)

где $X(u),\,Y(u)$ и W(u) - полиномы.

Заметим также, что каждая координатная функция имеет одинаковый знаменатель W(u).

Рациональные кривые с координатными функциями в виде (1.8) имеют элегантную геометрическую интерпретацию, которая дает эффективные методы построения этих кривых и небольшие требования к памяти компьютера.

Оказывается, что можно использовать однородные координаты, чтобы задать рациональные кривые в n-мерном пространстве с помощью полиномиальной кривой в (n+1)-мерном пространстве.

Рассмотрим точку в евклидовом пространстве ${\bf P}=(x,y,z)$. Затем запишем точку ${\bf P}$ как ${\bf P}^\omega=(\omega x,\omega y,\omega z,\omega)=(X,Y,Z,W)$ в четырех-мерном пространстве, причем $\omega\neq 0$. Тогда ${\bf P}$ можно получить из ${\bf P}^\omega$ делением всех координат на четвертую координату W, то есть с помощью отображения P^ω на гиперплоскость W=1

Рисунок 1.3 – Представление точки евклидова пространства в однородной форме для двумерного случая

Данное отображение H является перспективной проекцией с центром в начале координат:

$$\mathbf{P} = H\{\mathbf{P}^{\omega}\} = H\{(X, Y, Z, W)\} = \left(\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W}\right)$$
(1.9)

Тогда для множества контрольных точек $\{\mathbf{P_i}\}$ и множества весов $\{\omega_i\}$ зададим множество взвешенных контрольных точек $\mathbf{P}_i^{\omega} = (\omega_i x_i, \omega_i y_i, \omega_i z_i, \omega_i)$. Тогда нерациональная (полиномиальная) кривая Безье в 4-х мерном пространстве

$$\mathbf{C}^{\omega}(u) = \sum_{i=0}^{n} B_{i,n}(u) \mathbf{P}_{i}^{\omega}$$
(1.10)

Уравнение (1.10) в координатном виде:

$$X(u) = \sum_{i=0}^{n} B_{i,n}(u)\omega_i x_i \qquad Y(u) = \sum_{i=0}^{n} B_{i,n}(u)\omega_i y_i$$

$$Z(u) = \sum_{i=0}^{n} B_{i,n}(u)\omega_i z_i$$
 $W(u) = \sum_{i=0}^{n} B_{i,n}(u)$

Заметим, что $W \neq 0$ поскольку мы выбираем $\omega_i > 0$.

Применяя к (1.10) отображение (1.9), получим искомую рациональную кривую Безье в 3-х мерном пространстве, задающуюся формулами

$$x(u) = \frac{X(u)}{W(u)} = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}x_{i}}{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}}$$

$$y(u) = \frac{Y(u)}{W(u)} = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}y_{i}}{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}}$$

$$z(u) = \frac{Z(u)}{W(u)} = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}z_{i}}{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}}$$

или в векторной записи

$$\mathbf{C}(u) = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_i \mathbf{P}_i}{\sum_{i=0}^{n} B_{i,n}(u)\omega_i}$$
(1.11)

Например, если взять $\mathbf{P}_0 = (1,0), \, \mathbf{P}_1 = (1,1), \, \mathbf{P}_2 = (0,1)$ и $\omega_i = (1,1,2),$ получим дугу окружности(рисунок 1.4).

Рисунок 1.4 – Дуга окружности, построенная с помощью рациональной кривой Безье

Если веса всех вершин равны, то получим обычную кривую Безье, поскольку в таком случае знаменатель в уравнение (1.11) - это просто сумма полиномов Бернштейна, которая равна 1. Таким образом, рациональные кривые Безье являются обобщением полиномиальных кривых Безье.

1.3.2 Рациональные поверхности Безье

Аналогично рациональным кривым Безье, рациональные поверхности Безье можно представить как перспективную проекцию 4-х мерной полиномиальной поверхности Безье

$$\mathbf{S}^{\omega}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u) B_{j,m}(v) \mathbf{P}_{i,j}^{\omega}$$

$$\mathbf{S}(u,v) = H\{\mathbf{S}^{\omega}(u,v)\} = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u)B_{j,m}(v)\omega_{i,j}\mathbf{P}_{i,j}}{\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u)B_{j,m}(v)\omega_{i,j}} = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} R_{i,j}(u,v)\mathbf{P}_{i,j}}{\sum_{i=0}^{n} \sum_{j=0}^{m} R_{i,j}(u,v)\mathbf{P}_{i,j}}$$

где

$$R_{i,j}(u,v) = \frac{B_{i,n}(u)B_{j,m}(v)}{\sum_{r=0}^{n} \sum_{s=0}^{m} B_{r,n}(u)B_{s,m}(v)\omega_{r,s}}$$
(1.13)

На рисунке 1.5 изображена цилиндрическая поверхность, построенная с помощью рациональной поверхности Безье. Она представляет собой поверхность, полученную движением дуги окружности из рисунка 1.4.

Рисунок 1.5 – Цилиндрическая поверхность, построенная с помощью рациональной поверхности Безье