PHYSICS Chapter 5

3th SECONDARY

PRIMERA CONDICION DE EQUILIBRIO

¿QUÉ ESTUDIA LA ESTÁTICA?

• El equilibrio mecánico de los cuerpos y las fuerzas

¿Qué es el equilibrio mecánico?

Cuando los cuerpos no presentan ninguna forma de aceleración, se encuentra en equilibrio mecánico.

EQUILIBRIO DE TRANSLACIÓN

Primera condición de equilibrio mecánico

Un cuerpo esta en equilibrio si la suma de todas las fuerzas (fuerza resultante) es nula.

$$F_R = 0$$

En forma práctica:

$$\sum F(\to) = \sum F(\leftarrow) \quad \sum F(\uparrow) = \sum F(\downarrow)$$

$$\sum F(\uparrow) = \sum F(\downarrow)$$

Se muestra el DCL de un cuerpo de 15 kg que está en equilibrio. Determine el módulo de la fuerza F. ($g = 10 \text{ m/s}^2$)

RESOLUCIÓN

$$F_g = m.g = 15 kg.10 m/s^2 = 150 N$$

De la primera condición de equilibrio

$$\Sigma \mathbf{F}(\uparrow) = \Sigma \mathbf{F}(\downarrow)$$

$$75N + 100N = F + F_g$$

$$175N = F + 150 N$$

$$F = 25 N$$

La barra metálica de 60 kg está en reposo. Determine el módulo de la tensión (T) si el módulo de la fuerza normal del piso sobre la barra es 350 N. ($g = 10 \text{ m/s}^2$)

RESOLUCIÓN

$$m{F}_{m{g}} = m{m}$$
. $m{g} = 60 \ k m{g}$. $m{10} \ m/s^2 = 600 \ N$
De la 1ra condición de equilibrio

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T + F_N = F_g$$
$$T + 350N = 600 N$$

$$F = 250 N$$

3 sistema mostrado se encuentra en equilibrio. Determine el módulo de la tensión en la cuerda. ($g=10 \text{ m/s}^2$)

RESOLUCIÓN

$$F_g = m. g = 15 kg. 10 m/s^2 = 150 N$$

De la 1ra condición de equilibrio

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T + T = F_g$$

$$2T = 150 N$$

$$T = 75 N$$

Determine el módulo de la reacción del piso sobre el bloque de 16,2 kg si F=58 N. (g=10 m/s 2)

RESOLUCIÓN

$$F_g = m.g = 16,2 kg.10 m/s^2 = 162 N$$

De la 1ra condición de equilibrio

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T + F_N = F_g$$

$$F + F_N = F_g$$

$$58N + F_N = 162N$$

$$F_N = 104 N$$

RESOLUCIÓN

HELICOPRACTICE

Determine la fuerza como que aplica la persona sistema sabiendo que el bloque de 50 kg se encuentra en equilibrio. Considere poleas ideales. $(g = 10 \text{ m/s}^2)$

De la 1ra condición de equilibrio

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T+T=500N$$

$$2T = 500N$$

$$T = 250N$$

$$F = 250N$$

RESOLUCIÓN

HELICOPRACTICE

Juan es un estudiante universitario, que en sus vacaciones ayuda a su tío que es albañil. Si en plena faena nuestro amigo jala la cuerda con 150 N, ¿Cuál es la fuerza normal sobre el tablón departe del piso? (Considere poleas ideales y $g = 10 \text{ m/s}^2$)

150N

Por equilibrio mecánica

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

3x150N + FN = 550N

450N + FN = 550N

 $F_N = 100N$

7 res amigos, Sara, Raúl y Carlos, empujan el bloque con fuerzas horizontales paralelas según las siguientes premisas:

Sara aplica una fuerza de 4 N.

Carlos aplica una fuerza de 12 N.

¿Qué módulo debe tener la fuerza que aplica Raúl tal que el bloque no se mueva?

RESOLUCIÓN

F = 8N