AdvStDaAn, Worksheet, Week 2

Micheal Lappert

05.04.2022

Contents

```
      Exercise 1
      1

      Exercise 1.a)
      3

      Exercise 1.b)
      4

      Exercise 1.c)
      5

      Exercise 2
      7

      Exercise 3
      21
```

Exercise 1

```
path <- file.path('Datasets', 'sniffer.dat')
df <- read.table(path, header=TRUE)
summary(df)</pre>
```

Dataset loading and sanity check:

```
##
      Temp.Tank
                                       Vapor.Tank
                                                     Vapor.Dispensed
                       Temp.Gas
##
           :31.00
                           :35.00
                                           :2.590
                                                     Min.
                                                            :2.590
   Min.
                    Min.
                                    Min.
                                                     1st Qu.:3.373
   1st Qu.:37.00
                                    1st Qu.:3.290
##
                    1st Qu.:41.00
   Median :60.00
                    Median :60.00
                                    Median :4.285
                                                     Median :4.090
##
   Mean
          :57.91
                    Mean
                           :55.91
                                    Mean
                                          :4.422
                                                     Mean
                                                            :4.324
                    3rd Qu.:62.00
##
   3rd Qu.:62.00
                                    3rd Qu.:4.630
                                                     3rd Qu.:4.540
           :92.00
##
   Max.
                           :92.00
                                           :7.450
                                                            :7.450
                    Max.
                                    Max.
                                                     Max.
##
          Y
           :16.00
##
   Min.
##
   1st Qu.:23.75
  Median :31.50
##
## Mean
           :31.12
##
   3rd Qu.:34.50
## Max.
           :55.00
```

dim(df)

[1] 32 5

head(df)

##		Temp.Tank	Temp.Gas	Vapor.Tank	Vapor.Dispensed	Y
##	1	33	53	3.32	3.42	29
##	2	31	36	3.10	3.26	24
##	3	33	51	3.18	3.18	26
##	4	37	51	3.39	3.08	22
##	5	36	54	3.20	3.41	27
##	6	35	35	3.03	3.03	21

tail(df)

##		Temp.Tank	Temp.Gas	Vapor.Tank	Vapor.Dispensed	Y
##	27	60	62	4.02	3.89	33
##	28	59	62	3.98	4.02	27
##	29	59	62	4.39	4.53	34
##	30	37	35	2.75	2.64	19
##	31	35	35	2.59	2.59	16
##	32	37	37	2.73	2.59	22

plot(df)

Data looks like it is highly correlated with each other. But we keep it this way for the first exercises.

Exercise 1.a)

Fitting a first model without any transformations to the data:

```
lm1.1 \leftarrow lm(Y \sim ., data = df)
```

The model looks initially not too bad. For a proper evaluation one would need to perform a residual and sensitivity analysis to investigate the adequacy of the model. But for this exercise we keep the track of the worksheet.

E1.a)(I) Estimated coefficients

```
coef(lm1.1)

## (Intercept) Temp.Tank Temp.Gas Vapor.Tank Vapor.Dispensed
## 1.01501756 -0.02860886 0.21581693 -4.32005167 8.97488928
```

E1.a)(II) F-statistic

```
summary(lm1.1)
```

```
##
## Call:
## lm(formula = Y ~ ., data = df)
##
## Residuals:
     Min
              10 Median
                            3Q
                                  Max
## -5.586 -1.221 -0.118 1.320
                                5.106
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    1.01502
                               1.86131
                                         0.545 0.59001
## Temp.Tank
                   -0.02861
                               0.09060
                                        -0.316 0.75461
## Temp.Gas
                    0.21582
                               0.06772
                                         3.187
                                                0.00362 **
## Vapor.Tank
                   -4.32005
                               2.85097
                                        -1.515
                                               0.14132
## Vapor.Dispensed 8.97489
                               2.77263
                                         3.237
                                               0.00319 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.73 on 27 degrees of freedom
## Multiple R-squared: 0.9261, Adjusted R-squared: 0.9151
## F-statistic: 84.54 on 4 and 27 DF, p-value: 7.249e-15
```

The p-value of the F-statistic is « 0.05 indicating that at least one of the variables can not be 0 and therfore are important to describe the response value. Even though, the p-values of the t-test indicate that not all of them are of the same importance. In this case are only 2 explanatory variables significantly important (Temp.Gas & Vapor.Dispensed).

E1.a)(III) Variance Inflation Factor (VIF)

Inspecting multicollinearity with the Variance Inflation Factor (VIF):

library(car)

Loading required package: carData

```
vif(lm1.1)
```

```
## Temp.Tank Temp.Gas Vapor.Tank Vapor.Dispensed
## 12.997379 4.720998 71.301491 61.932647
```

A vif above 5 to 10 indicates problems with multicollinearity. According to this guideline all variables but Temp.Gas have too high vif factors and therewith problems with multicollinearity. Vapor.Tank is affected the most.

Exercise 1.b)

Performing a variable selection using the AIC stepwise from the model fitted in Exercise 1.a):

step(lm1.1)

```
## Start: AIC=68.84
## Y ~ Temp.Tank + Temp.Gas + Vapor.Tank + Vapor.Dispensed
##
                     Df Sum of Sq
##
                                      RSS
                                             AIC
                            0.743 201.97 66.956
## - Temp.Tank
## <none>
                                   201.23 68.838
## - Vapor.Tank
                      1
                           17.113 218.34 69.450
## - Temp.Gas
                      1
                           75.698 276.93 77.056
## - Vapor.Dispensed 1
                           78.090 279.32 77.332
##
## Step: AIC=66.96
## Y ~ Temp.Gas + Vapor.Tank + Vapor.Dispensed
##
##
                     Df Sum of Sq
                                      RSS
                                             AIC
                                   201.97 66.956
## <none>
## - Vapor.Tank
                           36.416 238.39 70.261
                      1
## - Temp.Gas
                           78.831 280.80 75.501
                      1
## - Vapor.Dispensed 1
                           91.850 293.82 76.952
##
## Call:
## lm(formula = Y ~ Temp.Gas + Vapor.Tank + Vapor.Dispensed, data = df)
##
## Coefficients:
##
       (Intercept)
                           Temp.Gas
                                           Vapor.Tank Vapor.Dispensed
##
            1.0655
                             0.2091
                                              -4.8882
                                                                9.2480
```

The best model with the stepwise variable selection from the model in Exercise 1.a) is $Y \sim Temp.Gas + Vapor.Tank + Vapor.Dispensed$

Temp. Tank gets not included. This would be due to multicollinearity with other variables.

Exercise 1.c)

Did we already remedy the initially found multicollinearity with the stepwise variable selection? We can check by performing a vif on the newly found model.

```
lm1.2 <- lm(Y ~ Temp.Gas + Vapor.Tank + Vapor.Dispensed, data = df)
vif(lm1.2)

### Temp.Gas   Vapor.Tank Vapor.Dispensed
## 4.255787   42.899447   55.907555</pre>
```

No, Vapor.Tank and Vapor.Dispensed have still vif values from above 5 to 10. Which ones are correlated the most?

```
pairs(df[,-5])
```


Vapor. Tank and Vapor. Dispensed seem to be correlated the most. So we try transformations of the variables by replacing them by the mean and the difference.

```
diffVapor meanVapor Temp.Tank Temp.Gas Y
##
                                            53 29
## 1
         -0.10
                    3.370
                                  33
## 2
         -0.16
                    3.180
                                  31
                                            36 24
                                  33
## 3
          0.00
                    3.180
                                            51 26
## 4
          0.31
                    3.235
                                  37
                                            51 22
## 5
                    3.305
                                  36
                                            54 27
         -0.21
## 6
          0.00
                    3.030
                                  35
                                            35 21
```

With the newly created data frame with the transformed variables one can now perform another stepwise variable selection.

```
lm1.3 \leftarrow lm(Y \sim ., data = df3)
step(lm1.3)
## Start: AIC=68.84
## Y ~ diffVapor + meanVapor + Temp.Tank + Temp.Gas
##
##
               Df Sum of Sq
                                RSS
                                       AIC
## - Temp.Tank 1
                      0.743 201.97 66.956
## <none>
                             201.23 68.838
## - diffVapor 1
                     43.585 244.81 73.112
## - Temp.Gas
                     75.698 276.93 77.056
                1
## - meanVapor 1
                    114.810 316.04 81.284
##
## Step: AIC=66.96
## Y ~ diffVapor + meanVapor + Temp.Gas
##
##
               Df Sum of Sq
                                RSS
## <none>
                             201.97 66.956
## - diffVapor 1
                     64.398 266.37 73.813
## - Temp.Gas
                     78.831 280.80 75.501
                1
## - meanVapor 1
                    265.710 467.68 91.826
##
## Call:
## lm(formula = Y ~ diffVapor + meanVapor + Temp.Gas, data = df3)
##
## Coefficients:
  (Intercept)
##
                  diffVapor
                                meanVapor
                                              Temp.Gas
        1.0655
                    -7.0681
                                   4.3597
                                                0.2091
```

This is the same model as found in Exercise 1.b) but with the transformed variables. Now one can check if the problems with multicollinearity still persists.

```
lm1.4 <- lm(Y ~ diffVapor + meanVapor + Temp.Gas, data = df3)
vif(lm1.4)

## diffVapor meanVapor Temp.Gas</pre>
```

All vif values are lower than 5 and therewith the problem with multicollinearity does not persist.

How looks the residual and sensitivity analysis?

1.538981 4.450470 4.255787

```
par(mfrow = c(2, 4))
plot(lm1.4)
plot.lmSim(lm1.4, SEED = 1)
```


leverage points > 0.25

There is no evidence that any of the assumptions is violated.

Exercise 2

```
path <- file.path('Datasets', 'jet.dat')
df <- read.table(path, header=TRUE)
summary(df)</pre>
```

Dataset loading and sanity check:

```
##
                                          x2
                                                           xЗ
                                                                            x4
                          x1
   Min.
           :3045
                                           :17780
                                                            :28675
                                                                             :133.0
##
                    Min.
                           :1388
                                    Min.
                                                                      Min.
##
    1st Qu.:3518
                    1st Qu.:1608
                                    1st Qu.:18880
                                                     1st Qu.:29302
                                                                      1st Qu.:155.2
                    Median:1850
                                    Median :19765
                                                     Median :29745
##
    Median:3977
                                                                      Median :179.0
##
    Mean
           :3904
                    Mean
                           :1810
                                    Mean
                                           :19495
                                                     Mean
                                                            :29606
                                                                             :174.5
                                                                      Mean
    3rd Qu.:4332
                    3rd Qu.:2024
                                    3rd Qu.:20286
##
                                                     3rd Qu.:29960
                                                                      3rd Qu.:193.5
```

```
## Max. :4833 Max. :2239 Max. :20740 Max. :30250 Max. :216.0
        x5
                     x6
##
## Min. :1522 Min. :85.00
## 1st Qu.:1592 1st Qu.: 97.00
## Median :1668 Median : 99.00
## Mean :1652 Mean : 97.42
## 3rd Qu.:1710 3rd Qu.:100.00
## Max. :1758 Max. :102.00
dim(df)
## [1] 40 7
head(df)
##
                     x3 x4 x5 x6
       Y
          x1
                x2
## 1 4540 2140 20640 30250 205 1732 99
## 2 4315 2016 20280 30010 195 1697 100
## 3 4095 1905 19860 29780 184 1662 97
## 4 3650 1675 18980 29330 164 1598 97
## 5 3200 1474 18100 28960 144 1541 97
## 6 4833 2239 20740 30083 216 1709 87
tail(df)
     Y x1
               x2
                    x3 x4 x5 x6
## 35 3064 1410 17780 28900 136 1552 101
## 36 4402 2066 20520 30170 197 1758 100
## 37 4180 1954 20150 29950 188 1729 99
## 38 3973 1835 19750 29740 178 1690 99
## 39 3530 1616 18850 29320 156 1616 99
## 40 3080 1407 17910 28910 137 1569 100
```

plot(df)

There seems to be an issue with multicollinearity as can be seen in the pairsplot. But lets first transform first the variables according to Tukey's first-aid transformations:

```
dft1 \leftarrow data.frame(1X1 = log(df$x1),
                    1X2 = \log(df$x2),
                    1X3 = \log(df$x3),
                    1X4 = \log(df$x4),
                    x5 = df$x5,
                    x6 = df$x6,
                    1Y = \log(df Y)
head(dft1)
##
           1X1
                    1X2
                              1X3
                                        1X4
                                                   x6
                                                             1Y
                                              x5
## 1 7.668561 9.934986 10.31725 5.323010 1732
                                                   99 8.420682
  2 7.608871 9.917390 10.30929 5.273000 1697 100 8.369853
```

-> x5 and x6 are not transformed because temperature can be negetive (do not transform variables which could be negative numbers according to Tukey's first-aid transformations).

97 8.317522

97 8.202482

97 8.070906

87 8.483223

3 7.552237 9.896463 10.30159 5.214936 1662

4 7.423568 9.851141 10.28637 5.099866 1598

5 7.295735 9.803667 10.27367 4.969813 1541

6 7.713785 9.939819 10.31172 5.375278 1709

With the transformed dataset one can now start modeling a linear model. Let's start with a full model which includes all the explanatory variables.

```
lm2.1 \leftarrow lm(lY \sim ., data = dft1)
summary(lm2.1)
##
## Call:
## lm(formula = lY ~ ., data = dft1)
## Residuals:
         Min
                     1Q
                            Median
## -0.0125101 -0.0049270 -0.0006753 0.0047059 0.0157080
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -9.704e+00 8.614e+00 -1.127
                                              0.2681
## 1X1
               4.090e-01 1.766e-01
                                      2.316
                                              0.0269 *
              -6.751e-02 2.043e-01 -0.330
## 1X2
                                              0.7431
## 1X3
               1.364e+00 9.452e-01
                                              0.1584
                                      1.443
## 1X4
               2.897e-01 1.389e-01
                                      2.086
                                              0.0448 *
## x5
               2.494e-04 9.415e-05
                                     2.648
                                              0.0123 *
## x6
              -3.925e-03 7.019e-04 -5.592 3.21e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.007329 on 33 degrees of freedom
## Multiple R-squared: 0.9974, Adjusted R-squared: 0.997
## F-statistic: 2143 on 6 and 33 DF, p-value: < 2.2e-16
```

The R^2 looks actually pretty good. But not all the variables seem to be relevant and we have to do a residual and sensitivity analysis first.

```
par(mfrow=c(2,4))
plot(lm2.1)
plot.lmSim(lm2.1, SEED = 1)
```


Observation i=20 is an outlier. We remove it and build a new model without it and analyze it.

```
ind <- 20
lm2.2 <- lm(lY ~ ., data = dft1, subset = -ind)
summary(lm2.2)</pre>
```

```
##
## Call:
## lm(formula = lY ~ ., data = dft1, subset = -ind)
##
## Residuals:
##
          Min
                      1Q
                             Median
                                                       Max
                                             3Q
   -0.0104560 -0.0038227 -0.0001954
                                     0.0043872
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.117e+00
                           7.138e+00
                                       -0.437
                                               0.66527
                                               0.00166 **
                4.957e-01
                           1.444e-01
                                        3.434
## 1X1
## 1X2
                1.018e+00
                           3.024e-01
                                        3.367
                                               0.00199 **
## 1X3
                           8.519e-01
               -2.428e-01
                                       -0.285
                                               0.77746
## 1X4
                5.443e-02
                           1.251e-01
                                        0.435
                                               0.66643
                           8.461e-05
                                               0.28658
## x5
                9.169e-05
                                        1.084
## x6
               -3.281e-03 5.876e-04
                                       -5.585 3.62e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.005931 on 32 degrees of freedom
## Multiple R-squared: 0.9983, Adjusted R-squared: 0.998
## F-statistic: 3104 on 6 and 32 DF, p-value: < 2.2e-16
par(mfrow=c(2,4))</pre>
```

```
par(mfrow=c(2,4))
plot(lm2.2)
plot.lmSim(lm2.2, SEED = 1)
```


There is no evidence that any of the assumptions is violated and no outlier is visible. Lets now perform a variable selection with the step() function.

```
step(lm2.2, scope = list(upper =~ 1X1 + 1X2 + 1X3 + 1X4 + x5 + x6, lower =~ 1))
```

```
## Start: AIC=-393.66
## 1Y \sim 1X1 + 1X2 + 1X3 + 1X4 + x5 + x6
##
##
              Sum of Sq
                               RSS
                                       AIC
## - 1X3
           1 0.00000286 0.0011285 -395.57
           1 0.00000666 0.0011323 -395.43
  - 1X4
##
## - x5
           1 0.00004132 0.0011670 -394.26
                         0.0011257 -393.66
## <none>
## - 1X2
           1 0.00039868 0.0015244 -383.84
## - 1X1
           1 0.00041485 0.0015405 -383.43
## - x6
           1 0.00109718 0.0022229 -369.13
##
```

```
## Step: AIC=-395.57
## 1Y \sim 1X1 + 1X2 + 1X4 + x5 + x6
##
         Df Sum of Sq
##
                          RSS
                                 AIC
## - 1X4
        1 0.00000992 0.0011385 -397.22
## - x5
          1 0.00003846 0.0011670 -396.26
## <none>
                      0.0011285 -395.57
## + 1X3
          1 0.00000286 0.0011257 -393.66
## - 1X1
          1 0.00046212 0.0015907 -384.18
## - 1X2
          1 0.00050646 0.0016350 -383.11
## - x6
          1 0.00283395 0.0039625 -348.58
##
## Step: AIC=-397.22
## 1Y \sim 1X1 + 1X2 + x5 + x6
##
##
         Df Sum of Sq
                     RSS
## - x5
          1 0.0000286 0.0011671 -398.25
## <none>
                     0.0011385 -397.22
## + 1X4
          1 0.0000099 0.0011285 -395.57
## + 1X3
          1 0.0000061 0.0011323 -395.43
## - x6
          1 0.0032661 0.0044046 -346.46
##
## Step: AIC=-398.25
## 1Y \sim 1X1 + 1X2 + x6
##
         Df Sum of Sq
                        RSS
                                 AIC
                     0.0011671 -398.25
## <none>
## + x5
          1 0.0000286 0.0011385 -397.22
## + 1X4
          1 0.0000001 0.0011670 -396.26
## + 1X3
          1 0.0000000 0.0011671 -396.26
## - 1X2
          1 0.0010830 0.0022501 -374.65
## - 1X1
          1 0.0019053 0.0030725 -362.50
## - x6
          1 0.0046090 0.0057761 -337.89
##
## lm(formula = 1Y \sim 1X1 + 1X2 + x6, data = dft1, subset = -ind)
## Coefficients:
## (Intercept)
                      lX1
                                  1X2
                                               x6
                             1.133755
   -6.524816
                0.521784
                                       -0.003275
step(lm(lY ~ 1, data = dft1[-ind,]),
    direction = 'both',
    scope = list(upper =~ 1X1 + 1X2 + 1X3 + 1X4 + x5 + x6,
               lower =~ 1))
## Start: AIC=-157.3
## 1Y ~ 1
##
##
        Df Sum of Sq
                        RSS
                                AIC
```

```
## + 1X4
         1 0.65059 0.00578 -339.85
## + 1X1 1 0.65016 0.00621 -337.08
## + 1X2 1 0.63390 0.02247 -286.91
## + 1X3 1 0.56517 0.09120 -232.27
## + x5
         1 0.49540 0.16097 -210.11
## <none>
             0.65637 -157.30
## + x6 1 0.01927 0.63710 -156.46
##
## Step: AIC=-339.85
## 1Y ~ 1X4
##
##
        Df Sum of Sq
                    RSS
                            AIC
       1 0.00166 0.00412 -351.09
## + 1X1
## + 1X2
       1 0.00146 0.00432 -349.19
## + x5
       1 0.00115 0.00464 -346.46
## + 1X3
       1 0.00062 0.00516 -342.27
## <none>
                   0.00578 -339.85
## + x6 1 0.00000 0.00578 -337.88
## - 1X4 1 0.65059 0.65637 -157.30
##
## Step: AIC=-351.09
## 1Y \sim 1X4 + 1X1
##
        Df Sum of Sq
                      RSS
## + x6
       1 0.00187618 0.0022413 -372.81
## + 1X3 1 0.00054043 0.0035770 -354.57
## <none>
                   0.0041174 -351.09
## + x5
         1 0.00000879 0.0041087 -349.17
## - 1X1 1 0.00166441 0.0057819 -339.85
## - 1X4 1 0.00208945 0.0062069 -337.08
##
## Step: AIC=-372.81
## 1Y \sim 1X4 + 1X1 + x6
##
                      RSS
       Df Sum of Sq
##
                             AIC
## + x5
         1 0.0006063 0.0016350 -383.11
## + 1X3
         1 0.0005090 0.0017323 -380.85
         1 0.0000088 0.0022501 -374.65
## - 1X4
## <none>
                  0.0022413 -372.81
## - x6
         1 0.0018762 0.0041174 -351.09
## - 1X1 1 0.0035363 0.0057776 -337.88
##
## Step: AIC=-396.26
## 1Y \sim 1X4 + 1X1 + x6 + 1X2
##
##
        Df Sum of Sq
                         RSS
                                AIC
## - 1X4 1 0.00000011 0.0011671 -398.25
## <none>
                    0.0011670 -396.26
## + x5
         1 0.00003846 0.0011285 -395.57
## - 1X1 1 0.00063695 0.0018040 -381.27
```

```
1 0.00290924 0.0040762 -349.48
##
## Step: AIC=-398.25
## 1Y \sim 1X1 + x6 + 1X2
##
##
          Df Sum of Sq
                              RSS
                                      AIC
## <none>
                        0.0011671 -398.25
## + x5
           1 0.0000286 0.0011385 -397.22
## + 1X4
           1 0.0000001 0.0011670 -396.26
## + 1X3
           1 0.0000000 0.0011671 -396.26
## - 1X2
           1 0.0010830 0.0022501 -374.65
           1 0.0019053 0.0030725 -362.50
## - 1X1
## - x6
           1 0.0046090 0.0057761 -337.89
##
## Call:
## lm(formula = 1Y \sim 1X1 + x6 + 1X2, data = dft1[-ind, ])
## Coefficients:
## (Intercept)
                                                    1X2
                         1X1
                                       x6
##
     -6.524816
                   0.521784
                                -0.003275
                                              1.133755
```

In both cases the final suggested model with the lowest AIC is IY = IX1 + IX2 + x6 without the observation i=20.

So lets investigate this model with a residual and sensitivity analysis.

```
lm2.3 <- lm(lY ~ lX1 + lX2 + x6, data = dft1[-20,])

par(mfrow = c(2,4))
plot(lm2.3)
plot.lmSim(lm2.3, SEED = 1)</pre>
```


There is no evidence of any violation of the model assumptions. So lets now investigate the multicollinearity with the Variance Inflation Factor (vif)

```
library(car)
vif(lm2.3)
```

```
## 1X1 1X2 x6
## 109.721932 108.742539 1.991382
```

There seems to be a problem with multicollinearity for the variables lX1 and lX2. Lets look at it:

```
plot(dft1[, c('lX1', 'lX2', 'x6')])
```


Indeed, IX1 and IX2 are highliy correlated. Lets transform them to the mean and their difference and check if the plot looks better:

```
dft1$dlRoSp <- dft1$1X2 - dft1$1X1</pre>
dft1$mlRoSp <- (dft1$1X1 + dft1$1X2)/2</pre>
head(dft1)
##
          1X1
                    1X2
                             1X3
                                      1X4
                                             x5
                                                 x6
                                                                dlRoSp
                                                                         mlRoSp
                                                          1Y
## 1 7.668561 9.934986 10.31725 5.323010 1732
                                                 99 8.420682 2.266425 8.801774
## 2 7.608871 9.917390 10.30929 5.273000 1697 100 8.369853 2.308520 8.763131
## 3 7.552237 9.896463 10.30159 5.214936 1662
                                                 97 8.317522 2.344226 8.724350
## 4 7.423568 9.851141 10.28637 5.099866 1598
                                                 97 8.202482 2.427573 8.637355
## 5 7.295735 9.803667 10.27367 4.969813 1541
                                                 97 8.070906 2.507932 8.549701
## 6 7.713785 9.939819 10.31172 5.375278 1709
                                                87 8.483223 2.226035 8.826802
lm2.4 \leftarrow lm(lY \sim dlRoSp + mlRoSp + x6, data = dft1[-20,])
summary(lm2.4)
##
## Call:
## lm(formula = 1Y ~ dlRoSp + mlRoSp + x6, data = dft1[-20, ])
##
## Residuals:
##
         Min
                    1Q
                           Median
                                                   Max
## -0.011274 -0.003329 0.001228
                                  0.004430
                                             0.008328
```

```
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -6.5248156 1.4320310 -4.556 6.08e-05 ***
## dlRoSp 0.3059856 0.1338667
                                     2.286
                                             0.0284 *
## mlRoSp
              1.6555392  0.1304000  12.696  1.17e-14 ***
## x6
              ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.005775 on 35 degrees of freedom
## Multiple R-squared: 0.9982, Adjusted R-squared: 0.9981
## F-statistic: 6550 on 3 and 35 DF, p-value: < 2.2e-16
vif(lm2.4)
##
                 mlRoSp
       dlRoSp
                                x6
## 179.409858 176.580766
                         1.991382
This does not get any better: Still looks like a very strong correlation. So one could try the transformation
with the untransformed variables.
dft2 <- data.frame(dRoSp = df$x2 - df$x1,</pre>
                  mRoSp = (df$x1 + df$x2)/2,
                  x6 = df$x6,
                  1Y = dft1$1Y)
head(dft2)
    dRoSp
            mRoSp x6
                            1Y
## 1 18500 11390.0 99 8.420682
## 2 18264 11148.0 100 8.369853
## 3 17955 10882.5 97 8.317522
## 4 17305 10327.5 97 8.202482
## 5 16626 9787.0 97 8.070906
```

plot(dft2)

6 18501 11489.5 87 8.483223


```
lm2.5 <- lm(1Y ~ ., data = dft2[-20,])
summary(lm2.5)</pre>
```

```
##
## Call:
## lm(formula = 1Y \sim ., data = dft2[-20, ])
##
## Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
                                                Max
## -0.014169 -0.004725 0.000420 0.005255 0.012592
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.499e+00 1.088e-01 59.737 < 2e-16 ***
## dRoSp
              -3.152e-05 2.365e-05 -1.333
                                               0.191
               2.539e-04 2.773e-05
                                      9.158 8.04e-11 ***
## mRoSp
               -3.931e-03 3.137e-04 -12.532 1.70e-14 ***
## x6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.00709 on 35 degrees of freedom
## Multiple R-squared: 0.9973, Adjusted R-squared: 0.9971
## F-statistic: 4340 on 3 and 35 DF, p-value: < 2.2e-16
```

```
vif(lm2.5)
```

```
## dRoSp mRoSp x6
## 206.481767 206.281338 1.674926
```

Still problems with the multicollinearity. Because in this model dRoSp is not significant, one can drop this variable.

```
lm2.6 <- lm(1Y ~ mRoSp + x6, data = dft2[-20,])
summary(lm2.6)</pre>
```

```
##
## Call:
## lm(formula = 1Y \sim mRoSp + x6, data = dft2[-20, ])
##
## Residuals:
##
                     1Q
                            Median
## -0.0167433 -0.0046339 0.0000973 0.0052560 0.0130837
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.360e+00 3.203e-02 198.58
                                              <2e-16 ***
               2.171e-04 1.952e-06 111.22
                                              <2e-16 ***
              -4.196e-03 2.450e-04 -17.13
                                              <2e-16 ***
## x6
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.007166 on 36 degrees of freedom
## Multiple R-squared: 0.9972, Adjusted R-squared: 0.997
## F-statistic: 6372 on 2 and 36 DF, p-value: < 2.2e-16
```

Like that all the variables are significant and the R^2 is still 0.9972 the model performance and suitability looks still very goog. How about the residual and sensitivity analysis?

```
par(mfrow=c(2,4))
plot(lm2.6)
plot.lmSim(lm2.6, SEED = 1)
```


No model assumptions are violated. What about the multicollinearity problem?

```
vif(1m2.6)
```

```
## mRoSp x6
## 1.000405 1.000405
```

Multicollinearity seems also not to be a problem anymore. The model fits the data well like that.

Exercise 3