CCP and Nested Pseudo Likelihood Sequential Estimation in Discrete Decision Problems

Bertel Schjerning, University of Copenhagen

Dynamic Programming and Structural Econometrics #8

Do we need to solve the DP problem to estimate model?

Structural estimation of DP problems is hard

- NFXP can be computationally expensive since we need to repeatedly compute \overline{EV} or $\overline{V_{\sigma}}$ as fixed points to the Bellman operator.
- ► What if we could estimate them from the data without solving the nested fixed point problem?

Pathbreaking paper:

Hotz and Miller (ReStud, 1993): "Conditional Choice Probabilities and the Estimation of Dynamic Models"

Hotz-Miller Inversion

▶ Hotz and Miller's idea is to use observable data on x and d to estimate of P(d|x) and then by their inversion theorem map P(d|x) on to (differences in) the value function.

CCP estimators

We can then use the two step estimator

- 1. Estimate reduced form conditional choice probabilities (CCPs) using data on x and d. Label them $\hat{P}(d|x)$
- 2. Use the Hotz-miller inversion to map $\hat{P}(d|x)$ to estimated value function differences and thereby "measure" continuation values that enter in the sample criterion (e.g. likelihood).

We refer to this as the Hotz-Miller approach or the CCP estimator

The power of the Hotz-Miller inversion

We use the Inversion Theorem to:

- 1. Develop two-step estimators to estimate structural parameters, θ without solving the model.
- 2. Provide empirically tractable representations of the conditional value functions.
- 3. Analyze identification in dynamic discrete choice models.
- 4. Introduce new methods for incorporating unobserved heterogeneity using the EM algorithm
 -see Arcidiacono and Miller (ECMA, 2011)
- 5. Exploit finite dependence when estimating non-stationary models.

Although consistent, two-step CCP estimators are inefficient and biased in small samples.

- ▶ May be hard to obtain Non-Parametric estimates of P(d|x)
- In small samples Bellman equation does not necessarily hold.

Small sample problems

Sometimes it can be hard to get a precise nonparametric estimate of CCP

Sequential Estimation

Aguirregabiria and Mira (2002): "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models"

Nested Pseudo Likelihood (NPL) algorithm

Use Hotz-Miller inversion to express solution of the DP problem in choice probability space (rather than value functions space)

▶ Recursively update $\hat{P}(d|x)$ to obtain a sequence of estimators: $\hat{\alpha}_k$ with $k = 1 \dots, K$

Statistical and computational properties of the estimator

- ▶ When NPL is initialized with consistent nonparametric estimates of CCPs the sequence includes as extreme cases
 - 1. The Hotz-Miller CCP estimator (for K = 1)
 - 2. Rust's nested fixed point MLE estimator (in the limit when $K \to \infty$).
- ► Trade-off between finite sample precision and computational cost in the sequence of policy iteration estimators.
- ► Monte Carlo: based on Rust's bus replacement model

The General Problem

Bellman equation

$$V(s;\theta) = \max_{a \in \mathcal{A}(s)} \{u(s,a;\theta_u) + \beta \int V(s';\theta) p(s'|s,a;\theta_g,\theta_f) ds'\}$$

u and p: known up to a set of parameters, $\theta = (\theta_u, \theta_g, \theta_f)$

- The agent's problem: Maximize expected sum of current and future discounted utilities
 - ▶ a : Discrete control variable, $a \in A(s) = \{1, 2, ..., J\}$.
 - s: Current state, fully observed by agent
 - > s1 : Future state; possibly continuous and subject to uncertainty
- The agents beliefs about s':
 - Obeys a (controlled) Markov transition probability $p(s_{t+1}|s_t, a_t; \theta_g, \theta_f)$
- ▶ Model solution, $V(s; \theta)$
 - Find the fixed point for the Bellman equation

A&M maintain Rust's Assumptions

Assumption (Conditional Independence (CI))

State variables, $s_t = (x_t, \varepsilon_t)$ obeys a (conditional independent) controlled Markov process with probability density

$$p(x_{t+1}, \varepsilon_{t+1}|x_t, \varepsilon_t, a, \theta_g, \theta_f) = g(\varepsilon_{t+1}|x_{t+1}, \theta_g)f(x_{t+1}|x_t, a, \theta_f)$$

Assumption (Additive Separability (AS))

$$U(s_t, a) = u(x_t, a; \theta_u) + \varepsilon_t(a)$$

Assumption (Finite Domain of Observable State Variables)

$$x \in X = \{x^1, x^1, ..., x^m\}$$

Assumption (XV)

The unobserved state variables, ε_t are assumed to be multivariate iid. extreme value distributed

Bellman equation and choice probabilities

Define the smoothed value function $V_{\sigma}(x) = \int V(x,\epsilon)g(\epsilon|x)d\epsilon$ where σ represents parameters that index the distribution of the $\epsilon's$. $(\sigma = \theta_2 \text{ in Rust notation})$

Under assumptions CI, AS and finite domain of x, we can summarize the solution by the smoothed Bellman operator, $\Gamma_{\sigma}(V_{\sigma})$

$$V_{\sigma}(x) = \int \max_{a \in \mathcal{A}(x)} \left\{ u(x, a) + \epsilon(a) + \beta \sum_{x'} V_{\sigma}(x') f(x'|x, a) \right\} g(\epsilon|x) d\epsilon$$

The conditional choice probability (CCP)

$$P(a|x) = \int I\{a = \arg\max_{j \in \mathcal{A}(x)} \{v(j, x) + \epsilon(j)\} g(\epsilon|x) d\epsilon$$

where $v(x, a) = u(x, a) + \beta \sum_{x'} V_{\sigma}(x') f(x'|x, a)$ is the choice-specific value function

- ▶ P(a|x) is uniquely determined by the vector of normalized value function differences $\tilde{v}(x,a) = v(x,a) v(x,1)$
- That is, there exists a vector mapping $Q_x(.)$ such that $\{P(a|x): a>1\} = Q_x(\tilde{v}(x,a): a>1)$, where, without loss of generality, we exclude the probability of alternative one.
- ▶ Hotz and Miller establish that this mapping is invertible under CI.
- ► In general

$$Q_x^j(\tilde{v}(x,a):a>1)=\partial S([0,\{\tilde{v}(x,a):a>1\}],x)/\partial \tilde{v}(x,j)$$

where

$$S(\lbrace v(x,a): a \in A\rbrace, x) = \int \max[v(x,a) + \epsilon(a)]g(d\epsilon|x)$$

is McFadden's social surplus function.

► Under assumption (XV), social surplus function is the well known "log-sum" formula

$$S(\lbrace v(x,a) : a \in A \rbrace, x) = \int \max_{a \in A} [v(x,a) + \epsilon(a)] g(d\epsilon | x)$$
$$= \sigma \log \sum_{j \in A} \exp(v(x,j) / \sigma)$$

the j'th component Q_x takes the well known logistic form

$$Q_x^j(\tilde{v}(x,a)) = \frac{\exp(\tilde{v}(x,a)/\sigma)}{1 + \sum_{j=2}^A \exp(\tilde{v}(x,j)/\sigma)}$$

NOTE, it's not hard to invert Q_x in this case

The Smooth Bellman equation can be re-written as

$$V_{\sigma}(x) = \sum_{a \in A} P(a|x) \left\{ u(x,a) + E[\epsilon(a)|x,a] + \beta \sum_{x'} V_{\sigma}(x') f(x'|x,a) \right\}$$

where $E[\epsilon(a)|x,a]$ is the expectation of the unobservable ϵ conditional on the optimal choice of alternative a:

$$E[\epsilon(a)|x, a] = [P(a|x)]^{-1} \int \epsilon(a) I\{\tilde{v}(x, a) + \epsilon(a)\}$$
$$> \tilde{v}(x, k) + \epsilon(i), i \in A(x)\} g(d\epsilon|x)$$

 $E[\epsilon(a)|x,a]$ clearly depends on $\tilde{v}(x,a)$, but due to the invertibility of Q_x we can express it probability space

$$E[\epsilon(a)|x,a] = e_x(a, \{P(j|x)\}_{j\in A}).$$

Under XV we have $E[\epsilon(a)|x, a] = \gamma - \ln P(a|x)$ where $\gamma = 0.5772156649...$ is Euler's constant

In compact matrix notation we can write

$$V_{\sigma} = \sum_{a \in A} P(a) * \{u(a) + e(a, P) + \beta F(a) V_{\sigma}\}$$

where * is the element by element product and P(a), u(a), e(a, P) and V_{σ} are all $M \times 1$ vectors and F(a) is the $M \times M$ matrix of conditional transition probabilities f(x'|x,a)

This system of fixed point equations can be solved for the value function to obtain V_{σ} as a function of P:

$$V_{\sigma} = \psi(P) = [I - \beta F^{U}(P)]^{-1} \sum_{a \in A} \{P(a) * [u(a) + e(a, P)]\}$$

where $F^U(P) = \sum_{a \in A} P(a)F(a)$ is the $M \times M$ matrix of unconditional transition probabilities induced by P.

The Fixed Point Problem in Probability Space

Recall that

$$V_{\sigma} = \psi(P) = [I - \beta F^{U}(P)]^{-1} \sum_{a \in A} \{P(a) * [u(a) + e(a, P)]\}$$
 (1)

and

$$P(a|x) = \int I\{a = \arg\max_{j \in \mathcal{A}(x)} \{v(j,x) + \epsilon(j)\} g(\epsilon|x) d\epsilon$$
 (2)

where $v(x, a) = u(x, a) + \beta \sum_{x'} V_{\sigma}(x') f(x'|x, a)$

The policy iteration operator, Ψ

Substituting the *policy valuation operator*, $\psi(P)$ defined by (1) into the formula for CCP's in (2) we obtain the cornerstone of NPL algorithm algorithm:

$$P = \Psi(P) = \Lambda(\psi(P))$$

- \blacktriangleright Hence, the optimal choice probabilities P is a fixed point of Ψ .
- ► Thus the original fixed point problem in "value space" can be reformulated as a fixed point problem in "probability space"

Finding fixed point, $P = \Psi(P)$

Fast convergence of successive approximations, $P_{k+1} = \Psi(P_k)$

Likelihood function

Data:
$$(a_{i,t}, x_{i,t})$$
, $t = 1, ..., T_i$ and $i = 1, ..., n$

Likelihood function

$$\ell_i^f(\theta) = \ell_i^1(\theta) + \ell_i^2(\theta_f) = \sum_{t=2}^{T_i} log(P_{\theta}(a_{i,t}|x_{i,t})) + \sum_{t=2}^{T_i} log(f_{\theta_f}(x_{i,t}|x_{i,t-1},a_{i,t-1}))$$

Two Step-Estimator

- Consistent estimates of the conditional transition probability parameters θ_f can be obtained from transition data without having to solve the Markov decision model.
- ▶ We focus on the estimation of $\alpha = (\theta_u, \theta_g)$ given initial consistent estimates of θ_f obtained from maximizing the partial log-likelihood $\ell^2(\theta_f) = \sum_i \ell_i^2(\theta_f)$
- ► Originally suggested in Rust(1987)

Nested Pseudo Likelihood Algorithm

Initialization

- ▶ Let $\hat{\theta}_f$ be an estimate of θ_f .
- Start with an initial guess for the conditional choice probabilities, $P^0 \in [0,1]^{MJ}.$ At iteration $K \geq 1$, the following steps:

▶ Step 1: Obtain a new pseudo-likelihood estimate of α , α^K , as

$$\alpha^{K} = \arg\max_{\alpha \in \Theta} \sum_{i=1}^{n} \ln \sqrt{\frac{1}{\alpha_{i}\sigma_{i}}} (F^{\text{res}})(a_{i}|x_{i})$$
 (3)

where $\Psi_{\theta}(P)(a|x)$ is the (a,x)'s element of $\Psi_{\theta}(P)$.

▶ Step 2: Update P using the arg max from step 1, i.e.

$$P^{K} = \Psi_{(\alpha^{K}, \hat{\theta}_{f})}(P^{K-1}) \tag{4}$$

lterate in K until convergence in P (and α) is reached.

Sequential Policy Iteration Estimators

The *K*-stage PI estimator is defined as:

$$\hat{\boldsymbol{\alpha}}^{K} = \arg\max_{\alpha \in \Theta} \sum_{i=1}^{n} \ln \Psi(P^{K-1})(a_{i}|x_{i})$$

where $P^K = \Psi_{(\hat{\mathbf{a}}^K, \hat{\theta}_f)}(P^{K-1})$ and P^0 is a consistent, non-parametric estimate of the true conditional choice probabilities

- Performing one, two, and in general K iterations of the NPL algorithm yields a sequence $\{\hat{\alpha}_1, \hat{\alpha}_1, ..., \hat{\alpha}_K\}$ of statistics that can be used as estimators of the true value of α , α^*
- ► A&M call them sequential policy iteration (PI) estimators.

Statistical properties of K-PI estimator

For any K

- $ightharpoonup \hat{lpha}^K$ is asymptotically equivalent to MLE
- F

- $ightharpoonup \hat{\alpha}^K$ is \sqrt{n} consistent
- $\hat{\alpha}^K$ is asymptotic normal with known variance-covariance matrix (A&M has an expression that accounts for first step estimation error)

For K=1

 $ightharpoonup \hat{\alpha}^K$ encompasses Hotz-Miller (1993) estimator

As $K \to \infty$

- $lackbox{}\hat{lpha}^{\it K}$ converges to the MLE estimator obtained by NFXP
- Standard inference.

Hotz-Miller's two step estimator

▶ The CCP estimators were defined as the values of α that solve systems of equations of the form

$$\arg\min_{\alpha\in\Theta}\sum_{i=1}^{N}\sum_{j=1}^{J}Z_{i}^{j}\left[I(a_{i}=j)-\tilde{P}_{(\alpha,\hat{\theta_{f}})}(P^{0})(j|x)\right]$$

where Z_i is are vectors of instrumental variables (e.g.) functions of x_i

► Easy to show that the 1-stage PI estimator is a CCP estimator with $Z_i = \partial \Psi(P^0)(a_i|x_i)/\partial \alpha$ is used as instrument.

Small sample problems

Sometimes it can be hard to get a precise nonparametric estimate of CCP

The Precision of PI Estimators: A Monte Carlo Evidence

TABLE I MONTE CARLO EXPERIMENT

		Experiment design				
Model:		Bus engine replacement model (Rust				
Parameters:		$\theta_0 = 10.47; \ \theta_1 = 0.58; \ \beta = 0.9999$				
State space:		201 cells				
Number observations:		1000				
Number replications:		1000				
Initial probabilities:		Kernel estimates				
	Monte Car (In parenthesis, percentage	lo distribution of MLF s over the true value of				
		θ_0		$ heta_1$		
Mean Absolute Error:		2.08 (19.9%)		0.17 (29.0%)		
Median Absolute Error:		1.56 (14.9%)		0.13 (22.7%)		
Std. dev. estimator:		2.24 (21.4%))	0.16 (26.9%)		
Policy iterations (avg.):		, ,	6.2			
	Monte Carlo distributio (All entries are 100* (K-P					
			Estimators			
Parameter	Statistics	1-PI	2-PI	3-PI		
$\overline{oldsymbol{ heta}_0}$	Mean AE	4.7%	1.6%	0.3%		
	Median AE	14.2%	0.2%	-0.3%		
	Std. dev.	6.8%	1.2%	0.3%		
$ heta_1$	Mean AE	18.7%	1.5%	0.2%		
	Median AE	25.1%	0.7%	0.6%		
	Std. dev.	11.0%	1.3%	0.2%		

The Precision of PI Estimators: A Monte Carlo Evidence

TABLE II

RATIO BETWEEN ESTIMATED STANDARD ERRORS AND STANDARD
DEVIATION OF MONTE CARLO DISTRIBUTION

Parameters	Statistics	Estimators				
		1-PI	2-PI	3-PI	MLE	
$oldsymbol{ heta}_0$	Ratio	0.801	1.008	1.027	1.022	
$\boldsymbol{\theta}_1$	Ratio	0.666	1.043	1.076	1.065	

Relative Speed of NPL and NFXP

- ► For most problems the fixed point iterations (i.e., policy iterations) are much more expensive than likelihood and pseudo-likelihood "hill" climbing iterations.
- ► The size of the state space does not affect the number of policy iterations in any of the two algorithms.
- ▶ Both algorithms were initialized with Hotz-Miller Estimates.
- A&M found that NPL around 5 and 10 times faster than NFXP