4. ЛЕКЦИЯ. Безусловная оптимизация многих переменных. Методы первого порядка.

Методы первого порядка используют информацию о значениях целевой функции $f(\overline{x})$ и её первых производных. Предполагается, что функция $f(\overline{x})$ и её первые производные существуют и непрерывны. Направление смещения от точки $\overline{x^{(k)}}$ к точке $\overline{x^{(k+1)}}$ описывается представленной на первой лекции интеграционной процедурой (2.1)

$$\overline{x^{(k+1)}} = \overline{x^{(k)}} + h_k \overline{p^{(k)}},$$
 (2.1)

где k – номер итерации k = 0, 1, ...;

 $\overline{x^{(k)}}$ – текущее приближение;

 h_k – величина шага;

 $\overline{p^k}$ – вектор, определяющий направление убывания функции $f(\overline{x})$. и совпадает с направлением вектора антиградиента целевой функции $\overline{p^{(k)}} = -\nabla f(\overline{x^{(k)}})$. Все итерационные процессы, в которых направление движения на каждом шаге совпадает с антиградиентом функции, называются градиентными методами. Существует несколько модификаций градиентных методов, различающихся правилом выбора длины шага в направлении антиградиента функции.

Мы рассмотрим наиболее распространённые на практике следующие методы: метод градиентного спуска с постоянным шагом, метод наискорейшего градиентного спуска, метод покоординатного спуска, метод сопряжённых направлений.

Метод градиентного спуска с постоянным шагом

Сущность метода градиентного спуска с постоянным шагом заключается в следующем. Выбирается начальная точка $\overline{x^{(0)}}$ из области определения функции $f(\overline{x})$. Координаты новой точки вычисляются по формуле

$$\overline{x^{(k+1)}} = \overline{x^{(k)}} - h_k \, \nabla f(\overline{x^{(k)}}), \tag{2.2}$$

где k — номер итерации k = 0, 1, ...,

 h_k – величина шага,

 $\nabla f(\overline{x^{(k)}})$ – градиент функции $f(\overline{x})$ в точке $\overline{x^{(k)}}$,

$$\nabla f(\overline{x^{(k)}}) = \left(\frac{\partial f(\overline{x^{(k)}})}{\partial x_1}, \frac{\partial f(\overline{x^{(k)}})}{\partial x_2}, \dots, \frac{\partial f(\overline{x^{(k)}})}{\partial x_n}\right).$$

Начальная величина шага h_0 задаётся пользователем. В каждом новой точке поиска $\overline{x^{(k+1)}}$ проверяется условие убывания функции $f(\overline{x^{(k+1)}}) < f(\overline{x^{(k)}})$. Если условие нарушается, то постепенно уменьшается величина шага h_k , т.е. точка $\overline{x^{(k+1)}}$ приближается к точке $\overline{x^{(k)}}$ до тех пор, пока условие не выполнится. В полученной точке $\overline{x^{(k+1)}}$ определяется новое направление градиента и осуществляется новый спуск. Процесс продолжается пока не будет выполнено условие окончания поиска. В качестве условия окончания поиска используется близость к нулю нормы градиента $\|\nabla f(\overline{x^{(k+1)}})\| \le \varepsilon$.

Геометрическая иллюстрация поиска минимума целевой функции методом градиентного спуска с постоянным шагом для случая n=2 представлена на рис. 1.

Рис. 1. Графическая иллюстрация поиска точки минимума методом градиентного спуска с постоянным шагом

Алгоритм метода минимизации целевой функции $f(\overline{x})$ методом градиентного спуска с постоянным шагом заключается в следующем:

- 1. Задать размерность задачи оптимизации n, координаты начальной точки $\overline{x^{(0)}}=(x_1{}^{(0)},x_2{}^{(0)},...,x_n{}^{(0)})$, начальную величину шага h_0 , точность поиска ε .
 - 2. Положить счётчик числа итерация k = 0
 - 3. Вычислить значение функции $f(\overline{x^{(k)}})$ в точке $\overline{x^{(k)}}$.
 - 4. Определить координаты вектора градиента функции $f(\bar{x})$ в точке

$$\overline{x^{(k)}} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}).$$

5. Проверить условие окончания поиска

$$\|\nabla f(\overline{x^{(k)}})\| = \sqrt{\sum_{i=1}^n \left(\frac{\partial f(\overline{x^{(k)}})}{\partial x_i}\right)^2} \leq \varepsilon.$$

Если условие выполнено, то перейти к пункту 8, иначе – к пункту 6.

- 6. Определить координаты точки $\overline{x^{(k+1)}} = \overline{x^{(k)}} h_k \nabla f(\overline{x^{(k)}})$ и значение целевой функции $f(\overline{x^{(k+1)}})$.
 - 7. Проверить условие убывания функции $f(\overline{x^{(k+1)}}) < f(\overline{x^{(k)}})$.

Если условие выполнено, то положить k=k+1, $f(\overline{x^{(k)}})=f(\overline{x^{(k+1)}})$ и перейти к пункту 4, иначе — положить $h_k=\frac{h_k}{2}$ и перейти к пункту 6.

8. Расчёт окончен. Полагаем $\overline{x^*} = \overline{x^{(k)}}$.

Пример. Найти минимум целевой функции

$$f(\bar{x}) = x_1^2 - x_1x_2 + 3x_2^2 - x_1$$

методом градиентного спуска с постоянным шагом с точностью $\epsilon = 0,1$.

Решение. Зададим начальную точку $\overline{x^{(0)}} = (x_1^{(0)}, x_2^{(0)})^T = (0; 0)^T$ и начальную величину шага h = 0,4.

Найдем градиент функции в произвольной точке $\overline{x^{(k)}} = (x_1^{(k)}, x_2^{(k)})^T$

$$\nabla f(\overline{x^{(k)}}) = \left(\frac{\partial f(\overline{x^{(k)}})}{\partial x_1}; \frac{\partial f(\overline{x^{(k)}})}{\partial x_2}\right)^T = (2x_1^{(k)} - x_2^{(k)} - 1; -x_1^{(k)} + 6x_2^{(k)})^T.$$

Итерация k = 0. Вычислим значение целевой функции $f(\overline{x^{(0)}})$ и градиент $\nabla f(\overline{x^{(0)}})$ в начальной точке $x^{(0)}$: $f(\overline{x^{(0)}}) = 0$; $\nabla f(\overline{x^{(0)}}) = (-1; 0)^T$.

		Координаты вершины		Значение функции
		1	2	
Номер	0	$x_1^{(0)} = 0$	$x_2^{(0)} = 0$	$f(\overline{x^{(0)}}) = 0$

Определим координаты точки $\overline{x^{(1)}}$

$$\overline{x^{(1)}} = \overline{x^{(0)}} - h \nabla f(\overline{x^{(0)}}) = (0; 0)^T - 0.4 * (-1; 0)^T = (0.4; 0)^T$$

и значение целевой функции в этой точке

$$f(\overline{x^{(1)}}) = -0.240.$$

Тогда

		Координаты вершины		Значение функции
		1	2	
омер	0	$x_1^{(0)} = 0$	$x_2^{(0)} = 0$	$f(\overline{x^{(0)}}) = 0$
Номер	1	$x_1^{(1)} = 0.4$	$x_2^{(1)} = 0$	$f(\overline{x^{(1)}}) = -0,24$

Сравним $f(\overline{x^{(0)}})$ и $f(\overline{x^{(1)}})$. Поскольку $f(\overline{x^{(1)}}) < f(\overline{x^{(0)}})$, то условие убывания функции выполнено.

Проверим условие окончания поиска. Для этого вычислим вектор градиента $\nabla f(\overline{x^{(1)}})$ в точке $\overline{x^{(1)}}$:

$$\nabla f(\overline{x^{(1)}}) = (-0.2; -0.4)^T.$$

Найдем норму вектора градиента $\overline{x^{(1)}} = (0,4; 0)^T$

$$\nabla f(\overline{x^{(1)}}) := (2x_1^{(1)} - x_2^{(1)} - 1; -x_1^{(1)} + 6x_2^{(1)})^T = (-0,2; -0,4)$$
$$\|\nabla f(\overline{x^{(1)}})\| = \sqrt{(-0,2)^2 + (-0,4)^2} = 0,447 > \varepsilon.$$

Итерации продолжаются.

Итерация k = 1. Определим координаты точки $\overline{x^{(2)}}$

$$\overline{x^{(2)}} = \overline{x^{(1)}} - h \, \nabla f(\overline{x^{(1)}}) = (0.4; \, 0)^T - 0.4 * (-0.2; \, -0.4)^T = (0.48; \, 0.16)^T$$

и значение целевой функции в этой точке

$$f(\overline{x^{(2)}}) = -0.250.$$

Запишем значения в таблицу

		Координать	Значение функции	
		1	2	
) Ibi	0	$x_1^{(0)} = 0$	$x_2^{(0)} = 0$	$f(\overline{x^{(0)}}) = 0$
Номер ершины	1	$x_1^{(1)} = 0.4$	$x_2^{(1)} = 0$	$f(\overline{x^{(1)}}) = -0,24$
Н	2	$x_1^{(2)} = 0.48$	$x_2^{(2)} = 0.16$	$f(\overline{x^{(2)}}) = -0.25$

Построим график

Сравним $f(\overline{x^{(1)}})$ и $f(\overline{x^{(2)}})$. Поскольку $f(\overline{x^{(2)}}) < f(\overline{x^{(1)}})$, то условие убывания функции выполнено.

Проверим условие окончания поиска. Для этого вычислим вектор градиента $\nabla f(\overline{x^{(2)}})$ в точке $\overline{x^{(2)}}$:

$$\nabla f(\overline{x^{(2)}}) = (-0.200; 0.481)^T.$$

Найдем норму вектора градиента

$$\|\nabla f(\overline{x^{(2)}})\| = \sqrt{(-0.200)^2 + (0.481)^2} = 0.521 > \varepsilon.$$

Итерации продолжаются.

Итерация k = **2.** Определим координаты точки $\overline{x^{(3)}}$

$$\overline{x^{(3)}} = \overline{x^{(2)}} - h \, \nabla f(\overline{x^{(2)}}) = (0.48; \, 0.16)^T - 0.4 * (-0.200; \, 0.481)^T = (0.560; \, -0.032)^T$$

и значение целевой функции в этой точке

$$f(\overline{x^{(3)}}) = -0.225.$$

Сравним $f(\overline{x^{(2)}})$ и $f(\overline{x^{(3)}})$. Поскольку $f(\overline{x^{(3)}}) > f(\overline{x^{(2)}})$, то условие убывания функции не выполнено. Уменьшим величину шага $h=\frac{h}{2}=0,2$ и повторим вычисления координат точки $\overline{x^{(3)}}$

$$\overline{x^{(3)}} = \overline{x^{(2)}} - h \, \nabla f(\overline{x^{(2)}}) = (0,48; \, 0,16)^T - 0,2 * (-0,2; \, 0,481)^T = (0,520; \, 0,064)^T$$
 Значение целевой функции $f(\overline{x^{(3)}}) = -0,271$.

Сравним $f(\overline{x^{(2)}})$ и $f(\overline{x^{(3)}})$. Поскольку $f(\overline{x^{(3)}}) < f(\overline{x^{(2)}})$, то условие убывания функции выполнено.

		Координать	Значение функции	
		1	2	
ршины	0	$x_1^{(0)} = 0$	$x_2^{(0)} = 0$	$f(\overline{x^{(0)}}) = 0$
	1	$x_1^{(1)} = 0.4$	$x_2^{(1)} = 0$	$f(\overline{x^{(1)}}) = -0,24$
ер вер	2	$x_1^{(2)} = 0.48$	$x_2^{(2)} = 0.16$	$f(\overline{x^{(2)}}) = -0.25$
Номер	3	$x_1^{(3)} = 0.52$	$x_2^{(3)} = 0.064$	$f(\overline{x^{(3)}}) = -0.271.$

Проверим условие окончания поиска. Для этого вычислим вектор градиента $\nabla f(\overline{x^{(3)}})$ в точке $\overline{x^{(3)}}$:

$$\nabla f(\overline{x^{(3)}}) = (-0.024; -0.136)^T.$$

Найдем норм вектора градиента

$$\|\nabla f(\overline{x^{(3)}})\| = \sqrt{(-0.024)^2 + (-0.136)^2} = 0.138 > \varepsilon.$$

Итерации продолжаются.

Итерация k = **3.** Определим координаты точки $\overline{x^{(4)}}$

$$\overline{x^{(4)}} = \overline{x^{(3)}} - h \, \nabla f(\overline{x^{(3)}}) = (0.520; \, 0.064)^T - 0.2 * (-0.024; \, -0.136)^T = (0.525; \, 0.091)^T$$

и значение целевой функции в этой точке

$$f(\overline{x^{(4)}}) = -0.272.$$

Сравним $f(\overline{x^{(3)}})$ и $f(\overline{x^{(4)}})$. Поскольку $f(\overline{x^{(3)}}) < f(\overline{x^{(4)}})$, то условие убывания функции выполнено

		Координать	Значение функции	
		1	2	
вершины	0	$x_1^{(0)} = 0$	$x_2^{(0)} = 0$	$f(\overline{x^{(0)}}) = 0$
	1	$x_1^{(1)} = 0.4$	$x_2^{(1)} = 0$	$f(\overline{x^{(1)}}) = -0,24$
	2	$x_1^{(2)} = 0.48$	$x_2^{(2)} = 0.16$	$f(\overline{x^{(2)}}) = -0.25$
Номер	3	$x_1^{(3)} = 0.52$	$x_2^{(3)} = 0,064$	$f(\overline{x^{(3)}}) = -0.271.$
H	4	$x_1^{(4)} = 0,525$	$x_2^{(4)} = 0.091$	$f(\overline{x^{(4)}}) = -0.272$

Проверим условие окончания поиска. Для этого вычислим вектор градиента ∇f $(\overline{x^{(4)}})$ в точке $\overline{x^{(4)}}$:

$$\nabla f(\overline{x^{(4)}}) = (-0.042; 0.022)^T$$

Найдем норму вектора градиента

$$\|\nabla f(\overline{x^{(4)}})\| = \sqrt{(-0.042)^2 + (0.022)^2} = 0.047 < \varepsilon.$$

Расчет окончен. Найдена точка

$$x^{(*)} = x^{(4)} = (0.525; 0.091)^T, f(\overline{x^*}) = -0.272.$$