CSE460L: Assignment 2 (Fall 2021)

Sections: 1, 2, 3, 4, 5, 6, 7, 8 & 9

Assignment 2 submission link:

https://docs.google.com/forms/d/e/1FAIpQLSeuUXWMrso25hZcOuOVmBHtUEMrHpzQQMZEOT7QbKpj0JTNMA/viewform?usp=sf_link

Assignment 2 deadline: 29 Nov, 2021, 4.59 PM (BDT)

General guidelines

- Assignments are individual
- Each assignment will contain 3 to 4 problems
- For each problem you will need to prepare 3 parts:
 - 1. Code: attach a screenshot of your code from Quartus.
 - 2. Output: attach *FULL SCREEN* screenshots of
 - Compilation Report Flow Summary (Compilation report of the .v file)
 - Simulation Report Simulation Waveforms (Simulation report of the .vwf file)

[Tampered/edited/cropped screenshots will be considered as a violation of general guidelines and therefore will not be accepted]

- 3. **Discussion/Explanation:** explain the output waveforms of your simulation report as described in the **Expected Output** section within each problem statement.
- Each problem will be of equal points. You will not be graded on the length/number of code/explanation/outputs; rather on the clarity, readability and precise explanations of your code/logic/outputs
- Points distribution for each problem is

Code: **40%** Output: **20%**

Discussion/Explanation of output: 40%

- You will need to create separate directories/project for each problem
- The name of your working directory for each problem of the assignment should be ...\problem# StudentID [# = 1/2/3/4..]

For example, for problem 1 the name of the directory should be problem1_1406066

- Consequently, the name of your main module in the Verilog file should be problem#_StudentID [# = 1/2/3/4..]
 Continuing from the previous example, the name of the module should be problem1_1406066
- Finally, compile all the problems for a given assignment into a single pdf file
- The name of the pdf should be Section_StudentID_assignment2.pdf (Example: 1_1406066_assignment2.pdf)

Detailed marks distribution for all problems of Assignment 2:

Code		6
Output	Compilation report	1
Output	Simulation report (Timing diagram)	3
Discussion	State diagram	3
Discussion	State assigned table	3
	Brief explanations of output	4
Total		20

Problem for Assignment 2

1. An FSM has an input w and an output z. The machine has to generate z = 1 when the following patterns in w are detected: 11 or 111; otherwise, z = 0. Reset functionality is not mandatory. Draw the state diagram, the state-assigned table, write the Verilog code, run simulations and verify your answer. An example timing diagram can be found here:

clock	t_{I}	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_{10}	t_{11}	t_{12}
W	0	1	1	1	0	1	0	1	1	1	1	0
Z	0	0	0	1	1	0	0	0	0	1	1	1

Expected Output:

The timing diagram should contain waveforms as described in the table. The clock period should be 10 ns. The discussion must contain a state diagram, state assigned table, and brief explanations of all high output situations e.g. z is high during t_5 , t_{II_1} and t_{I2} clock cycles. Briefly explain these situations in light of the problem statement and your derived state diagram/state assigned table.

2. You have to design a vending machine for a 4 Tk product. The vending machine can only accept inputs: no money (can be represented as input w=00), Tk 1 (can be represented as input w=01), and Tk 3 (can be represented as input w=10). Once an acceptable input is more than or equal to 4 Tk, the machine immediately generates an output Q=1, goes back to the initial state, and gives back the change (if required). Change in Tk is represented as 2 digit binary output c={c1c2}. Output c has to be calculated and initialized. Suppose, changes are 1Tk, 2Tk (assumed). Initialize 1Tk as c=00 and 2Tk as c=01. Reset functionality is not mandatory. Draw the state diagram, the state-assigned table, write the Verilog code, run simulations and verify your answer.

clock	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_{10}	t_{11}	t_{12}
Tk input	0	1	3	0	3	1	0	3	3	0	3	0
w	00	01	10	00	10	01	00	10	10	00	10	00
Q	0	0	1	0	0	1	0	0	1	0	0	0
С	?	?	?	?	?	?	?	?	?	?	?	?

Expected Output:

The timing diagram should contain waveforms as described in the table. The clock period should be 10 ns. The discussion must contain a state diagram, state assigned table, and brief explanations of all high output situations e.g. Q is high during t_3 , t_6 , and t_9 clock cycles. Briefly explain these situations in light of the problem statement and your derived state diagram/state assigned table. Also, initialize and complete output c.

3. An FSM has an input w and an output z. For every three bits that are observed on the input w during three consecutive clock cycles, the FSM generates a z = 1 if and only if the number of 1s in the three-bit sequence is even. Overlapping input patterns are not allowed. Draw the state diagram, the state assigned table, write the verilog code, run simulations and verify your answer.

Clock	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀	t ₁₁	t ₁₂	t ₁₃	t ₁₄	t ₁₅	t ₁₆
w	0	0	1	0	1	1	0	1	0	1	0	1	0	1	1	0
Z	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1

Expected Output:

The timing diagram should contain waveforms as described in the table. The clock period should be 10 ns. The discussion must contain a state diagram, state assigned table and the brief explanations of all high output situations e.g. z is high during t_7 , t_{13} , t_{16} clock cycles. Briefly explain these situations in light of the problem statement and your derived state diagram / state assigned table.