CIND-221: Fundamentos de probabilidad

Felipe Osorio

f.osoriosalgado@uandresbello.edu

Facultad de Ingeniería, UNAB

Nuestro objetivo es caracterizar el concepto de medir un conjunto, y usando elementos de teoría de conjuntos, describiremos el resultado de un experimento aleatorio.

Definición 1 (Espacio muestral):

El conjunto Ω , de todos los resultados posibles de un experimento aleatorio es llamado espacio muestral.

Ejemplos:

Considere los siguientes experimentos aleatorios.

- (a) Lanzar una moneda, en cuyo caso $\Omega = \{C, S\}$.
- (b) Lanzar un dado. De este modo, $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- (c) Jugar al "cachipún" (piedra/papel/tijeras), así $\Omega = \{\text{papel}, \text{piedra}, \text{tijeras}\}.$
- (d) Duración de un artículo eléctrico. En este caso $\Omega = [0, \infty)$.

Definición 2 (Evento):

Un evento (o suceso) es cualquier colección de resultados posibles de un experimento aleatorio, es decir, cualquier subconjunto de Ω^1

Sea $A\subseteq\Omega,$ diremos que A ocurre si $\omega\in A$ con $\omega\in\Omega$ un resultado asociado a un experimento aleatorio.

Definiremos una familia de conjuntos, tal que todo evento $A\subseteq\Omega$, pertenezca al espacio de eventos, denotado por $\mathcal F.$ Es decir, $\mathcal F$ es conjunto de todos los subconjuntos posibles de $\Omega.$

Objetivo:

Es decir, para todo evento $A\in\mathcal{F}$ deseamos asociar un número entre cero y uno llamado probabilidad de A.

¹Incluyendo al propio Ω.

Definición 3 (σ -álgebra):

Una colección de subconjuntos de Ω es llamado σ -álgebra y es denotada por ${\mathcal F}$ si satisface las propiedades:

- (a) $\emptyset \in \mathcal{F}$.
- (b) Si $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$.
- (c) Si $A_1, A_2, \dots \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Note que $\varnothing\subset\Omega$ y $\Omega=\varnothing^c$, así por la Propiedad (a) y (b) sigue que $\Omega\in\mathcal{F}$.

Además, si $A_1,A_2,\dots\in\mathcal{F}$ entonces $A_1^c,A_2^c,\dots\in\mathcal{F}$ y de este modo, $\bigcup_{i=1}^\infty A_i^c\in\mathcal{F}$. Por las leyes de De Morgan, tenemos

$$\Big(\bigcup_{i=1}^{\infty}A_i^c\Big)^c=\bigcap_{i=1}^{\infty}A_i.$$

Es decir, tenemos que $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Observación:

Asociado a un espacio muestral Ω puede haber muchas σ -álgebras. Por ejemplo, la colección $\{\varnothing,\Omega\}$ es σ -álgebra (minimal).

Ejemplo:

Considere $\Omega=\{1,2,3\}$. Los siguientes subconjuntos de Ω , ¿son σ -álgebras?

$$\begin{split} \mathcal{F}_1 &= \{\varnothing, \Omega, \{1\}, \{2,3\}\}, \\ \mathcal{F}_2 &= \{\varnothing, \Omega, \{1\}, \{2\}, \{1,3\}, \{2,3\}\}. \end{split}$$

Claramente se verifica que \mathcal{F}_1 es una σ -álgebra, mientras que \mathcal{F}_2 no.

Definición 4 (Probabilidad):

Dado un espacio muestral Ω y un σ -álgebra asociada $\mathcal F$, una función de probabilidad $\mathsf P:\mathcal F\to\mathbb R$, satisface:

- (a) $P(A) \ge 0$, para todo $A \in \mathcal{F}$.
- (b) $P(\Omega) = 1$.
- (c) Si A_1, A_2, \ldots son mutuamente excluyentes, entonces

$$\mathsf{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathsf{P}(A_i).$$

Observación:

Considere P una medida de probabilidad definida en \mathcal{F} . Entonces $(\Omega, \mathcal{F}, \mathsf{P})$ se denomina espacio de probabilidad.

Resultado 1:

Si P es una función de probabilidad y A es cualquier conjunto en \mathcal{F} , entonces

- (a) $P(\emptyset) = 0$.
- (b) $P(A) \le 1$.
- (c) $P(A^c) = 1 P(A)$.

Resultado 2:

Si P es una función de probabilidad y $A,B\in\mathcal{F}.$ Entonces,

- (a) $P(B \cap A^c) = P(B) P(A \cap B)$.
- (b) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- (c) Si $A \subseteq B \Rightarrow P(A) \le P(B)$.

Ejemplo:

En una cierta zona urbana, el 60% de los propietarios están suscritos a Netflix y el 80% está suscrito a Prime Video, mientras que el 50% está suscrito a ambos servicios.

Si un propietario es seleccionado al azar. ¿Cuál es la probabilidad de que esté suscrito al menos a uno de estos servicios?

Defina el evento A : un propietario está suscrito a Netflix, y B : un propietario está suscrito a Prime Video. Se desea calcular la probabilidad

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.6 + 0.8 - 0.5 = 0.9.$$

Además, ¿cuál es la probabilidad de que esté suscrito sólo a uno de los dos servicios?

$$P[(A \cap B^c) \cup (A^c \cap B)] = P(A \cap B^c) + P(A^c \cap B) = P(A) + P(B) - 2P(A \cap B)$$
$$= 0.6 + 0.8 - 2 \cdot 0.5 = 0.4.$$

Considere

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n\},\$$

un espacio muestral finito.

Para caracterizar $\mathsf{P}(A)$ supondremos eventos elementales, $A=\{\omega_i\}$ y defina $p_i=\mathsf{P}(\{\omega_i\})$ la probabilidad de $\{\omega_i\}$ tal que,

- (a) $p_i \ge 0$, para i = 1, ..., n.
- (b) $p_1 + p_2 + \cdots + p_n = 1$.

Suponga además que cada $\{\omega_i\}$ es igualmente probable. Es decir, $p_i=\mathsf{P}(\{\omega_i\})=\frac{1}{n}.$ Luego, para un evento $A=\{\omega_{j_1},\ldots,\omega_{j_r}\}$ sigue que

$$\mathsf{P}(A) = \frac{r}{n},$$

o bien,

$$\mathsf{P}(A) = \frac{\mathsf{N}(A)}{\mathsf{N}(\Omega)},$$

con N(A) la cardinalidad del conjunto A.

Ejemplo:

Se lanza un dados dos veces. Considere los siguientes eventos:

A: la suma de los resultados es menor o igual a 3.

 $B: \mathsf{el}\ \mathsf{resultado}\ \mathsf{del}\ \mathsf{primer}\ \mathsf{lanzamiento}\ \mathsf{es}\ \mathsf{impar}.$

Primeramente, describiremos el espacio muestral asociado al experimento, es decir:

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}.$$

Luego,

$$\mathsf{P}(A) = \frac{\mathsf{N}(A)}{\mathsf{N}(\Omega)} = \frac{3}{36} = \frac{1}{12}, \qquad \mathsf{P}(B) = \frac{\mathsf{N}(B)}{\mathsf{N}(\Omega)} = \frac{1}{2}.$$

Además,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{12} + \frac{18}{36} - \frac{2}{36} = \frac{19}{36}.$$

$$P(A^c) = 1 - P(A) = 1 - \frac{1}{12} = \frac{11}{12}.$$

Ejemplo:

En un lote de 50 ampolletas hay 2 defectuosas. Se extraen 5 de ellas al azar sin reemplazo. Hallar la probabilidad de que al menos una sea defectuosa.

Considere el evento A: existe al menos una ampolleta defectuosa en las 5 extracciones.

De ahí que A^c corresponde al evento: ninguna ampolleta es defectuosa. Entonces,

$$P(A^c) = \frac{48}{50} \frac{47}{49} \frac{46}{48} \frac{45}{47} \frac{44}{46} = 0.9600 \cdot 0.9592 \cdot 0.9583 \cdot 0.9574 \cdot 0.9565$$
$$= 0.8082.$$

Así, ${\rm P}(A)\approx 0.2.$ Note que una manera alternativa de calcular esta probabilidad es usando combinatorios. En efecto,

$$P(A^c) = \frac{\binom{48}{5}\binom{2}{0}}{\binom{50}{5}} = \frac{1712304}{2118760} = 0.8082.$$

Ejemplo (Problema del cumpleaños):

Suponga que existe 50 personas en una sala y que deseamos determinar la probabilidad de que al menos un par de personas tengan la misma fecha de cumpleaños.²

Para abordar el problema, sea A el evento de que 2 personas tengan cumpleaños en días diferentes, entonces:

$$\mathsf{P}(A) = \frac{365}{365} \cdot \frac{364}{365}.$$

Considere ahora que escogemos una tercera persona, es decir, para el evento B : que 3 personas tengan cumpleaños en días diferentes, es dado por

$$\mathsf{P}(A) = \frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365}.$$

 $^{^{2}}$ No consideraremos el 29 de febrero para este problema.

Problema del cumpleaños (continuación):

Suponga un grupo de k personas y considere que se desea calcular la probabilidad de que al menos 2 personas cumplan años el mismo día.

Defina el evento A_k : k personas tienen sus cumpleaños en fechas diferentes. Como el año tiene 365 días, el número de cumpleaños posibles es 365^k . Así,

$$\mathsf{P}(A_k) = \frac{(365)_k}{365^k} = \frac{365 \cdot 364 \cdots (365 - k + 1)}{365^k} = \frac{365!}{(365 - k)!} \cdot \frac{1}{365^k},$$

y por la regla del complemento,

$$\mathsf{P}(A_k^c) = 1 - \frac{(365)_k}{365^k}.$$

Es decir, por ejemplo

	10								
$P(A_k^c)$	0.117	0.253	0.411	0.569	0.706	0.814	0.891	0.941	0.970

Ejemplo:

Considere un lote con 80 artículos sin defectos y 20 defectuosos y suponga que se selecciona 2 artículos (a) con substitución, y (b) sin substitución.

Defina los eventos:

$$A = \{ \mbox{el 1er artículo es defectuoso} \},$$

$$B = \{ \mbox{el 2do artículo es defectuoso} \}.$$

Cuando escogemos con substitución, tenemos:

$$P(A) = P(B) = \frac{20}{100} = \frac{1}{5}.$$

Cuando escogemos sin substitución, tenemos que:

$$\mathsf{P}(A) = \frac{20}{100} = \frac{1}{5},$$

pero, ¿cambia P(B)?

Definición 5 (Probabilidad condicional):

Si A y B son dos eventos en Ω y $\mathsf{P}(B)>0$, entonces la probabilidad condicional de A dado B, escrito $\mathsf{P}(A|B)$ es

$$\mathsf{P}(A|B) = \frac{\mathsf{P}(A \cap B)}{\mathsf{P}(B)}.$$

Note que $\mathrm{P}(B|B)=1$, es decir, B "actua" como $\Omega.$ En efecto, como $A=A\cap\Omega$, tenemos

$$P(A) = P(A|\Omega) = \frac{P(A \cap \Omega)}{P(\Omega)}.$$

La ocurrencia de A es calibrada con relación a B.

Ejemplo (continuación):

En el ejemplo anterior, se desea calcular ${\sf P}(B|A)=19/99$, pues si A ya ha ocurrido sólo quedan 19 defectuosos entre los 99 artículos.

Reexpresando la probabilidad condicional, tenemos

$$\mathsf{P}(A \cap B) = \mathsf{P}(A|B)\,\mathsf{P}(B),$$

o bien

$$P(A \cap B) = P(B|A) P(A).$$

Las expresiones anteriores permiten "contornar" cálculos complicados, usando³

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}.$$

³Esto es un caso particular del Teorema de Bayes.

Observación:

El espacio de probabilidad definido por $\mathcal{F}\cap B$ permite notar que $\mathrm{P}(A|B)$ es una función de probabilidad, es decir satisface:

- (a) $P(A|B) \ge 0$.
- (b) $P(\Omega|B) = 1$.
- (c) Para $\{A_n\}_{n>1}$ sucesión disjunta

$$\mathsf{P}\left(\bigcup_{n=1}^{\infty}A_{n}\big|B\right)=\sum_{n=1}^{\infty}\mathsf{P}(A_{n}|B).$$

Resultado 3:

Si P es una función de probabilidad. Entonces,

$$P(A) = \sum_{i=1}^{\infty} P(A \cap C_i),$$

para cualquier partición C_1, C_2, \ldots

Resultado 4 (Probabilidad total):

Sea $(\Omega, \mathcal{F}, \mathsf{P})$ un espacio de probabilidad y sea C_1, C_2, \ldots , una partición contable de Ω tal que $\mathsf{P}(C_i) \geq 0$, $\forall i$. Entonces, para todo $A \in \mathcal{F}$,

$$\mathsf{P}(A) = \sum_{i=1}^{\infty} \mathsf{P}(A_i|C_i)\,\mathsf{P}(C_i).$$

Resultado 5 (Teorema de Bayes):

Sea $(\Omega,\mathcal{F},\mathsf{P})$ espacio de probabilidad y sea $\{C_i\}_{i\geq 1}$ partición contable de Ω con $\mathsf{P}(C_i)\geq 0,\ \forall i.$ Entonces, para todo $A\in\mathcal{F}$, tenemos que

$$P(C_i|A) = \frac{P(A|C_i) P(C_i)}{\sum_{k=1}^{\infty} P(A|C_k) P(C_k)},$$

siempre que P(A) > 0.

Ejemplo:

Considere un lote de 20 artículos defectuosos y 80 sin defectos, desde los que se escoge 2 artículos sin reemplazo. Sea

$$A = \{ \mbox{el 1er artículo es defectuoso} \},$$

$$B = \{ \mbox{el 2do artículo es defectuoso} \}.$$

Para calcular P(B) podemos hacer

$$P(B) = P(B|A) P(A) + P(B|A^c) P(A^c) = \frac{19}{99} \frac{1}{5} + \frac{20}{99} \frac{4}{5}$$
$$= \frac{1}{5} \frac{1}{99} (19 + 20 \cdot 4) = \frac{1}{5}.$$

Definición 6 (Independencia):

Sea $(\Omega,\mathcal{F},\mathsf{P})$ un espacio de probabilidad y sean $A,B\in\mathcal{F}.$ Se dice que A y B son independientes si y sólo si

$$P(A \cap B) = P(A) P(B).$$

Interpretación:

Podemos entender la independencia como: "la ocurrencia de un evento B no tiene efecto en la probabilidad de otro evento A". Es decir,

$$P(A|B) = P(A)$$
.

Además,

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)} = \frac{P(A) P(B)}{P(B)} = P(B),$$

es decir, la ocurrencia de A no tiene efecto en B.

Ejemplo:

Se tienen tres urnas, la primera con 2 bolas blancas y dos bolas negras, la segunda con dos bolas blancas y una negra y la tercera con tres bolas negras y una blanca.

Suponga que se extrae una bola de cada urna, ¿cuál es la probabilidad de que las tres bolas sean blancas?

Defina el evento B_i : extraer una bola blanca de la i-ésima urna, i=1,2,3. De este modo, asumiendo independencia 4 obtenemos

$$P(B_1 \cap B_2 \cap B_3) = P(B_1) P(B_2) P(B_3) = \frac{1}{2} \frac{2}{3} \frac{1}{4} = \frac{1}{12}.$$

⁴¿Es un supuesto razonable?

Ejemplo (continuación):

Suponga que se extrae una bola de una urna al azar, ¿cuál es la probabilidad de que sea blanca? Defina los eventos,

 U_i : la bola extraída proviene de la *i*-ésima urna, i=1,2,3.

B: extraer una bola blanca.

Luego,

$$P(B) = \sum_{i=1}^{3} P(B|U_i) P(U_i) = \frac{1}{2} \frac{1}{3} + \frac{2}{3} \frac{1}{3} + \frac{1}{4} \frac{1}{3} = \frac{17}{36}.$$

Si se sabe que la bola extraída es de color blanco, ¿cuál es la probabilidad de que haya sido extraída de la urna 1? En efecto,

$$P(U_1|B) = \frac{P(U_1 \cap B)}{P(B)} = \frac{P(B|U_1)P(U_1)}{P(B)} = \frac{\frac{1}{2}\frac{1}{3}}{\frac{17}{36}} = \frac{6}{17}.$$

Resultado 6:

Si $A \ {\rm y} \ B$ son independientes, entonces los siguientes pares también son independientes

- (a) $A y B^c$.
- (b) $A^c y B$.
- (c) A^c y B^c .

Definición 7:

Una colección de eventos A_1,A_2,\ldots,A_n es mutuamente independiente si para cualquier subcolección A_{i_1},\ldots,A_{i_k} , tenemos

$$\mathsf{P}\left(\prod_{j=1}^k A_{i_j}\right) = \prod_{j=1}^k \mathsf{P}(A_{i_j}).$$

Ejemplo:

Se lanzan 3 dados de distinto color: blanco, rojo y negro ¿Cuál es la probabilidad de que el dado blanco salga 3 y los otros dos no? Considere $A,\,B$ y C los eventos

A: resultado del dado blanco es 3,

B : resultado del dado rojo es 3,

 ${\cal C}$: resultado del dado negro es 3,

tenemos
$$\mathsf{P}(A) = \mathsf{P}(B) = \mathsf{P}(C) = 1/6$$
 y se pide calcular

$$\mathsf{P}(A \cap B^c \cap C^c) = \mathsf{P}(A)\,\mathsf{P}(B^c)\,\mathsf{P}(C^c) = \frac{1}{6}\frac{5}{6}\frac{5}{6} = \frac{25}{216}.$$