MATRIX ANALYSIS USING PYTHON

V.GOKULKUMAR

velicharlagokulkumar@gmail.com IITH Future Wireless Communication (FWC)

Assignment

September 16, 2022

1

1

Contents

FWC22034

1 Problem

2 Solution

3 Construction

To Prove: Ar(ACB) = Ar(ACF)

$$\mathbf{F} = \mathbf{C} - \mathbf{A} + \mathbf{B} \tag{1}$$

1 letting

 $\mathbf{v1} = \mathbf{C} - \mathbf{A} \tag{2}$

 $\mathbf{v2} = \mathbf{C} - \mathbf{F} \tag{3}$

Area of the ΔACF is given by

1

$$\frac{1}{2}\|\mathbf{v1} \times \mathbf{v2}\|\tag{4}$$

1 Problem

(i) ar(ACB) = ar(ACF)

(ii) ar (AEDF) = ar (ABCDE)

2 Solution

The input parameters for this construction are

Symbol	Value	Description
D	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Point D
r1	4	DC
r2	8	DB
r3	6.5	DA
r4	4	DE
θ_1	$17\pi/36$	∠BDC
θ_2	$53\pi/180$	∠ADC
θ_3	$2\pi/3$	∠EDC

Below python code realizes the above construction :

https://github.com/velicharlagokulkumar/FWC_module1/blob/main/matrices/lines/codes/matrix.py

termux commands:

bash sh.sh.....using shell command

letting

$$\mathbf{v3} = \mathbf{A} - \mathbf{C} \tag{5}$$

$$\mathbf{v4} = \mathbf{A} - \mathbf{B} \tag{6}$$

Area of the $\triangle ACB$ is given by

$$\frac{1}{2}\|\mathbf{v3} \times \mathbf{v4}\|\tag{7}$$

To Prove: Ar(AEDF)=Ar(ABCDE)

Area of the ΔAED is given by

$$\frac{1}{2}\|\mathbf{A} \times \mathbf{E}\| \tag{8}$$

Area of the $\Delta \mathbf{ADC}$ is given by

$$\frac{1}{2}\|\mathbf{A} \times \mathbf{C}\| \tag{9}$$

From (8),(9)

$$Ar(AEDC) = Ar(\Delta AED) + Ar(\Delta ADC)$$
 (10)

From (10),(4)

$$\therefore Ar(AEDF) = Ar(AEDC) + Ar(\Delta ACF)$$

From (10),(7)

$$\therefore$$
 Ar(ABCDE)=Ar(AEDC)+Ar(\triangle ACB)

3 Construction

Figure of construction