CMPSC 360 Fall 2024

Discrete Mathematics for Computer Science Mahfuza Farooque Worksheet 6 Solutions

- 1. Determine if the following relations are reflexive, symmetric, antisymmetric, transitive, equivalence relation, or poset (i.e., partially ordered set) on the respective sets:
 - (a) $R_0 = \{(a,a), (b,b), (a,c), (c,a)\}\$ on $A_0 = \{a,b,c,d\}$
 - (b) $R_1 = \{(a,a),(c,c),(b,b),(a,d),(d,b),(a,b),(a,c)\}$ on $A_1 = \{a,b,c,d,e\}$.
 - (c) Also, determine the relational properties that R_1 satisfies on A_0 from above.
 - (d) $R_2 = \{(x,y) \in P \times P \mid x \subseteq y\}$ defined on P such that P is the power set of an arbitrary set X

Answer:

- (a) **Reflexive:** Not reflexive since $(d,d),(c,c) \notin R_0$.
 - Symmetric: Yes
 - **Antisymmetric:** No, since $(a,c),(c,a) \in R_0$
 - **Transitive:** No, since (c,a),(a,c), but no (c,c)
 - R_0 is neither an equivalence relation nor a poset on A_0 .
- (b) **Reflexive:** Not reflexive since $(d,d), (e,e) \notin R_1$.
 - **Symmetric:** No, since $(d, a) \notin R_1$
 - **Antisymmetric:** Yes **Transitive:** Yes
 - R_1 is neither an equivalence relation nor a poset on A_1 .
- (c) **Reflexive:** Not reflexive since $(d,d) \notin R_1$.
 - **Symmetric:** No, since $(d,a) \notin R_1$
 - **Antisymmetric:** Yes
 - **Transitive:** Yes
 - R_1 is neither an equivalence relation nor a poset on A_0 .
- (d) **Reflexive:** Yes, any set is a subset of itself.
 - **Symmetric:** No
 - Antisymmetric: Yes, since equal sets can be interchangeably written as subsets of each
 - other
 - **Transitive:** Yes
 - R_2 is a partial order relation on P.

2. Prove that the following relation R is an equivalence relation on \mathbb{Z} :

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid \frac{x^2 - y^2}{4} \in \mathbb{Z}\}$$

Answer:

Proof

The relation R is an equivalence relation on set \mathbb{Z} if it is reflexive, symmetric and transitive.

The relation R is reflexive on set \mathbb{Z} as $\forall x \in \mathbb{Z}((x,x) \in R)$. This is because for any integer x, $\frac{x^2-x^2}{4}=0$ and $0 \in \mathbb{Z}$.

To check if it is symmetric, let's assume a pair $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ that satisfies our relation R. If $(a,b) \in R$, $\frac{a^2-b^2}{4} \in \mathbb{Z}$. This means that a^2-b^2 is divisible by 4. If a^2-b^2 is divisible by 4, b^2-a^2 is also divisible by 4. Therefore, $\frac{b^2-a^2}{4} \in \mathbb{Z}$ and therefore, $(b,a) \in R$. Since we have proved $\forall a \forall b ((a,b) \in R \to (b,a) \in R)$, the following relation is symmetric.

To check if it is transitive, let's assume two pairs (a,b) and $(b,c) \in \mathbb{Z} \times \mathbb{Z}$ that satisfies our relation R. Therefore, $(a,b) \in R \wedge (b,c) \in R$, which means that $\frac{a^2-b^2}{4} \in \mathbb{Z}$ and $\frac{b^2-c^2}{4} \in \mathbb{Z}$. Since adding two integers results in an integer, we can say that $\frac{a^2-b^2}{4} + \frac{b^2-c^2}{4} \in \mathbb{Z}$. Therefore, $\frac{a^2-c^2}{4} \in \mathbb{Z}$, which means that $(a,c) \in R$. Since we have proved $\forall a \forall b \forall c ((a,b) \in R \wedge (b,c) \in R \rightarrow (a,c) \in R$, the following relation is transitive.

Therefore the relation above is an equivalence relation on \mathbb{Z} . \square

3. Let A = a, b, c, d, e. Suppose R is an equivalence relation on A. Suppose R has three equivalence classes. Also aRd and bRc. Write out R as a set.

Answer:

Given that R is an equivalence relation on A, we know R is reflexive, symmetric and transitive.

From reflexivity, we know that $(a,a),(b,b),(c,c),(d,d),(e,e) \in R$.

From symmetry, we know that $(a,d), (d,a), (b,c), (c,b) \in R$.

Then, because R has three equivalence classes, and from the existing relations, we have $[a] = [d] = \{a,d\}$, $[b] = [c] = \{b,c\}$, and $[e] = \{e\}$.

Trying to add any other relations would result in a contradiction of the above findings. Try it out yourself. Thus the set *R* is:

$$R = \{(a,a), (b,b), (c,c), (d,d), (e,e), (a,d), (d,a), (b,c), (c,b)\}$$

4. Define a relation R on \mathbb{Z} as xRy if and only if 3x - 5y is even. Prove R is an equivalence relation. Describe its equivalence classes.

Answer:

Equivalence Relation:

Informally, if 3x - 5y is even, then x and y must have same parity. Try to prove it formally by yourself.

The relation R is an equivalence relation on set \mathbb{Z} if it is reflexive, symmetric and transitive.

The relation R is reflexive on set \mathbb{Z} as $\forall x \in \mathbb{Z}((x,x) \in R)$. This is because for any integer x, 3x - 5x = -2x = 2(-x), which is even by definition.

To check if it is symmetric, let's assume a pair $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ that satisfies our relation R. If $(a,b) \in R$, 3a-5b=2k where $k \in \mathbb{Z}$. From the same parity property of x and y above, it's not hard to see that, if a=2m,b=2n for some $m,n \in \mathbb{Z}$, then 3b-5a=6n-10m=2(3n-5m). On the other hand, if a=2m+1,b=2n+1 for some $m,n \in \mathbb{Z}$, then 3b-5a=6n+3-10m-5=2(3n-5m-1). Therefore, in both cases, $(b,a) \in R$. Since we have proved $\forall a \forall b ((a,b) \in R \to (b,a) \in R)$, the relation is symmetric.

To check if it is transitive, let's assume two pairs (a,b) and $(b,c) \in \mathbb{Z} \times \mathbb{Z}$ that satisfies our relation R. Therefore, $(a,b) \in R \land (b,c) \in R$, which means that $3a - 5b = 2k_1$ and $3b - 5c = 2k_2$ where $k_1, k_2 \in \mathbb{Z}$. Adding the two equations, we get $3a - 5c = 2(k_1 + k_2 + b)$. Therefore, $(a,c) \in R$. Since we have proved $\forall a \forall b \forall c ((a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R$, the relation is transitive.

Therefore the relation above is an equivalence relation on \mathbb{Z} . \square

Equivalence Classes:

From the above, we already proved that x and y must have the same parity for xRy. As this is the only constraint on x and y, the equivalence class containing 0 seems like a reasonable place to start.

$$[0] = \{x \in \mathbb{Z} : x = 2k, k \in \mathbb{Z}\} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$

Note that $[0] = [2] = [4] = [-2] = [-4] = \dots$, which forms the first equivalence class. Following the same logic, we can find the other equivalence class:

$$[1] = \{x \in \mathbb{Z} : x = 2k + 1, k \in \mathbb{Z}\} = \{\dots, -3, -1, 1, 3, \dots\}$$

Note that $[1] = [3] = [-1] = [-3] = \dots$, which forms the second equivalence class.

- 5. Determine if the following relations are functions:
 - (a) $f_0: \{1,2,3\} \rightarrow \{1,2,3\}$ and $f_0=\{(1,1),(2,1),(3,2)\}$
 - (b) $f_1: \{1,2,3,4\} \rightarrow \{1,2,3\}$ and $f_1=\{(1,1),(2,1),(3,2)\}$
 - (c) $f_2: \{a,b,c\} \to \{a,b\}$ and $f_2: \{(a,a),(b,a),(b,c)\}$

Answer:

- (a) Yes, it is a function. All elements in the domain are mapped to an element in the codomain and there is no one-to-many mapping.
- (b) No, it is not a function (or an ill-defined function) since f_1 is not everywhere defined. Any valid function needs to have all elements in the domain mapped to an element in the co-domain. Here, 4 is not mapped.
- (c) f_2 is not a function because b is mapped to c and a. A one-to-many relation is not a function.
- 6. Determine which functional properties the following functions satisfy and whether they are bijective:
 - (a) $f: \mathbb{Z} \to \mathbb{Q}$ and $f(x) = \frac{2x-3}{5}$
 - (b) $f: \mathbb{R} \to \mathbb{R}$ and $f(x) = 3x^2 + 11x$

Answer:

(a) Injectivity:

Assume
$$x_1, x_2 \in \mathbb{Z}$$
 and $f(x_1) = f(x_2)$.

$$\implies \frac{2x_1 - 3}{5} = \frac{2x_2 - 3}{5}$$

$$\implies x_1 = x_2$$

Thus, by the definition of injectivity, f is injective.

Surjectivity:

Suppose that for some
$$x \in \mathbb{Z}$$
, $y = f(x)$. Then, $y = \frac{2x-3}{5}$

$$\implies x = \frac{5y+3}{2}$$

For $y = 2 \in \mathbb{Q}$, $x = \frac{13}{2} \notin \mathbb{Z}$. Therefore, f is not surjective.

(b) Injectivity:

Not injective because $f(1) = f(\frac{-14}{3}) = 14$ and $1 \neq \frac{-14}{3}$.

Surjectivity:

For some
$$x \in \mathbb{R}$$
, let $y = f(x)$

$$\implies y = 3x^2 + 11x$$

$$\Rightarrow 3x^2 + 11x - y = 0$$

$$\Rightarrow x = \frac{-11 + \sqrt{121 + 12y}}{6}$$

$$\implies x = \frac{-11 + \sqrt{121 + 12}}{6}$$

For
$$y = -11$$
, $x \notin \mathbb{R}$

Therefore, f is not surjective on \mathbb{R}