关于问题求解的几个回顾思考

思考1:

- 什么是计算机科学与技术意义下的计算?
 - 物理世界的数字化
 - 有时候,也有意识世界的数字化
 - 但凡是数字化
 - 计算机能否超越人?
 - 数学模型和物理世界的数字化的关系
 - 多数是离散数学模型
 - 集合、图、代数
 - 数字的组织和管理
 - 经典数据结构
 - 经典结构上的经典算法
 - 数学结构的计算机表示
 - 空间和时间的权衡

什么是计算机科学与技术意义下的计算?

- 算法的定义是什么?
 - 为什么我们定义算法时,给了算法五个性质?
 - 输入
 - 输出
 - 确定
 - 有穷
 - 能行
- 算法和计算是什么关系?
 - 程序=数据结构+算法
 - 指令
 - 高级语言程序

思考2: 什么是问题? 什么是问题的解?

- 计算机要解的问题有且仅有两类吗?
 - 判定问题
 - 优化问题
- 如何描述一个判定问题/优化问题?
- 我们关心问题的解,但是,我们更关心解问题的算法。
 - 实现算法的语言和计算模型也挺重要

思考3:问题的难度和解问题算法的复杂度

- 通常我们以时间开销来讨论难度和复杂度
- 问题的难度是固有的:
 - 我们只能关心问题难度的上、下界
 - 问题难度的上界是什么含义?
 - 为什么用存在量词来确定上界?
 - 问题难度的下界是什么含义?
 - 我们用全称还是存在量词来确定下界?
 - 为什么确定问题的非平凡下界很难,但意义重大?
- •解问题算法是可以被优化的
 - More info, more efficient
 - 算法的渐进增长/限定,是什么意思?
 - 我们会谈"算法的上界/下界是什么"吗?

思考4:设计算法有策略吗?相应的算法正确性如何证明?

- 我们常常想起的算法设计策略有哪些?
 - 暴力
 - 分治
 - 动态规划
 - 贪心
- 递归和循环是什么关系?
- 算法正确性证明的基本思路是什么?
 - 关键路径的断言/不变式!

作业:

• 如果回忆起问题求解,你给出的思考5、思考6.....是什么?