CS124 Video Notes

Basic Text Processing

Regular Expressions

- Regular Expression: a formal language for specifying text strings
 - Brackets: [].
 - Any letter inside square bracket [ww]
 - Ranges: [A-Z]
 - Negations: ^ first character inside disjunction
 - Carat means negation only when **first** in []
 - [^A-Z] means not an upper case letter
 - Pipe: |
 - or
 - Special Characters:
 - ?: optional previous character
 - *: 0 or more previous character
 - +: 1 or more of previous character
 - : any character
 - \d any digit
 - \D any non-digit
 - w any alphanumeric/underscore
 - \w a non-alphanumeric
 - \s whitespace
 - \s Non whitespace
 - o Anchors:
 - ^ is start of line
 - \$ is end of line
 - \: real character for period
 - \b : word boundary

Word Tokenization

- Every NLP task needs to do text normalization
- **Lemma:** Same stem, part of speech, rough word sense (cat = cats)
- **Wordform**: the full inflected surface form (cat ≠ cats)
- Type: an element of the vocabulary
- Token: an instance of that type in running text
- Standard Unix tools:

- o tr: takes every instance of a character and replaces it with new character
 - E.g. tr -sc A-za-z '\n' < shakes.txt takes every nonalphabetic character and replaces it with a \n
- o sort: sorts
- o uniq: creates Counter
- Maximum Matching Word Segmentation Algo:
 - 1. Start a pointer at the beginning of the string
 - 2. While not end of string:
 - 1. Find the longest word in dictionary that matches the string starting at pointer
 - 2. Move the pointer over the word in string

Word Normalization and Stemming

- Need to normalize terms (U.S.A. → USA)
- Case folding:
 - o Applications like IR reduce all letters to lower case
 - o Lemmatization: Reduce inflections or variant forms to base form
 - o Morphology: small meaningful units make up words
 - **Stems:** Core meaning-bearing units
 - Affixes: Bits and pieces that adhere to stems, often used for grammatical functions
 - o Stemming: crude chopping of affixes
 - Porter's algorithm: a series of replacement rules

Sentence Segmentation

- Build a binary classifier that decides whether . is end of sentence or not end of system
- Utilize binary decision tree
 - o More sophisticated feature such as period's wordshape