

Welcome to Day 2!

As a reminder:

01

Make certain that you have Microsoft Excel installed.

02

Make certain that you have Slack installed and are actively looking at it.

(03)

Recall where the GitLab repository for our class is.

Note where class videos will be posted.

More on Slack

Because we will use Slack so regularly for communication, let us review:

- Set up Mobile notifications
- Looking for direct messages
- Viewing replies
- Replying to posts
- Reacting to posts
- Formatting messages
- Anything else?

Quick review of the Student Guide!

Class objectives, helpful articles, supplemental resources, and more!

Also, let us look at the Student FAQ.

Example Activity

Example Future Class Activity:

Banking Deserts

In this activity, you will use a variety of public demographic data and APIs to explain many real-world social phenomena. Utilize data from sources like the U.S. Census, Google Maps, and more to find insights on poverty, discrimination, and the impact of changing economies.

Group Activity:

Form groups of 7 people. (The people closest to you)

Group Activity:

The Great Debate

Find your group you formed before the break. Together ponder the following question.

Suggested Time: 7 minutes

Group Activity: The Great Debate

Which do Americans prefer: Italian or Mexican food?

Group Activity: The Great Debate

With your group, develop a strategy for answering this question with as much confidence possible. Specifically, answer questions like:

What data will you attempt to gather?

What relationships will you be looking for?

How will you ensure your answer is most likely "true"?

Assumptions:

You are given 5 hours and a budget of \$10 to accomplish this.

Your answer will be tested by randomly selecting 9 Americans who will each be asked the question—with 0 qualifiers.

You only have your team.

The Great Debate (Analyzed)

Step 1: Decompose the "Ask"

Which do **Americans** prefer: Italian or Mexican food?

Step 1: Decompose the "Ask"

Which do **Americans** prefer: Italian or Mexican food?

Who exactly is an American?

Are **Americans** just homeowners?

Do **Americans** just live in big cities?

Are **Americans** just millennials?

How can we get a representative sample of Americans?

Which do Americans **prefer**: Italian or Mexican food?

Step 1: Decompose the "Ask"

Which do Americans **prefer**: Italian or Mexican food?

How do we define "preference"?

Do people prefer the foods they eat most frequently?

Do people prefer the foods they wish they could eat if cost was not an issue?

How uniform is the preference? Is it regionalized? Is it different by demographic?

Inherently, preference is **subjective**. We are going to need to make it **objective**.

Step 1: Decompose the "Ask"

Which do Americans prefer: **Italian or Mexican food**?

Step 1: Decompose the "Ask"

Which do Americans prefer: Italian or Mexican food?

01

02

03

How do we categorize foods? Is pizza Italian? Is Taco Bell Mexican?

How do we categorize food?
Does making pasta at home constitute Italian? Or are we just talking about restaurants?

Are we just talking about "best experiences"? Or are we including poorer renditions of these foods?

Italian and Mexican are broad categories we are pursuing. We will have to narrow the scope.

As everyday consumers, we are **regularly** getting a pulse of everyday American food preferences to inform our own decisions. Perhaps we can make use of the same approach.

Web services like Yelp provide an almost encyclopedic amount of information about the eating preferences of Americans.

Why poll an audience when there already exist enormous databases of information about Americans' food preferences—readily available online?

Step 3: Define Strategy and Metrics

Here we created a blueprint for what we're targeting:

Americans:

 Ideally, we need thousands of records from Americans in hundreds of different cities. (Large samples)

Preference:

- Number of Yelp Reviews (More = Preference)
- Average Aggregated Ratings (Higher = Preference)

Italian and Mexican Food:

Top 20 Italian and Mexican restaurants in every city

Step 3: Define Strategy and Metrics

Repeat this analysis for as many cities as possible.

New York, NY				
Italian	Mexican			
Restaurant	Restaurant			
Restaurant	Restaurant			
Restaurant V	S. Restaurant			
Restaurant	Restaurant			
Restaurant	Restaurant			

Tucson, AZ			
Italian	Mexican		
Restaurant	Restaurant		
Restaurant	Restaurant		
Restaurant V	S. Restaurant		
Restaurant	Restaurant		
Restaurant	Restaurant		

Washington, D.C.			
Italian	Mexican		
Restaurant	Restaurant		
Restaurant	Restaurant		
Restaurant V	S. Restaurant		
Restaurant	Restaurant		
Restaurant	Restaurant		

Omaha, NE			
Italian	Mexican		
Restaurant	Restaurant		
Restaurant	Restaurant		
Restaurant V	S. Restaurant		
Restaurant	Restaurant		
Restaurant	Restaurant		

San Diego, CA			
Italian	Mexican		
Restaurant	Restaurant		
Restaurant	Restaurant		
Restaurant	S. Restaurant		
Restaurant	Restaurant		
Restaurant	Restaurant		

Atlanta, GA				
Italian	Mexican			
Restaurant	Restaurant			
Restaurant	Restaurant			
Restaurant V	S. Restaurant			
Restaurant	Restaurant			
Restaurant	Restaurant			

We could retrieve this data by brute force, but it would be:

- Extremely time consuming
- Skewed by our city familiarity
- Labor intensive

Basically, it would be nearly impossible.

Thank You, Yelp!

Thankfully, we can take advantage of the Yelp Fusion API to programmatically run our queries. (#ThankGoodnessForProgramming)

Thank You, Yelp!

Response Body

```
"total": 8228,
"businesses": [
    "rating": 4,
    "price": "$",
   "phone": "+14152520800",
   "id": "four-barrel-coffee-san-francisco",
    "is_closed": false,
    "categories": [
       "alias": "coffee",
        "title": "Coffee & Tea"
    "review_count": 1738,
    "name": "Four Barrel Coffee",
    "url": "https://www.yelp.com/biz/four-barrel-coffee-san-francisco",
    "coordinates": {
     "latitude": 37.7670169511878,
      "longitude": -122.42184275
    "image_url": "http://s3-media2.fl.yelpcdn.com/bphoto/MmgtASP31_t4tPCL1iAsCg/o.jpg",
    "location": {
     "city": "San Francisco",
      "country": "US",
     "address2": "",
     "address3": "",
      "state": "CA",
      "address1": "375 Valencia St",
      "zip_code": "94103"
    "distance": 1604.23,
    "transactions": ["pickup", "delivery"]
 },
"region": {
 "center": {
   "latitude": 37.767413217936834,
    "longitude": -122,42820739746094
```


We will build a Python script to randomly select over 700 zip codes from the U.S. Census, and then acquire review data from the top 20 Mexican and Italian restaurants for each zip code using the Yelp API.

11	11101		07360		20001	
Italian	Mexican	Italian	Mexican	Italian	Mexican	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
68	68007		22434		30301	
Italian	Mexican	Italian	Mexican	Italian	Mexican	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Postourent	Postourent	Postourant	Postourent	Postqurent	Postourent	


```
# Use Try-Except to handle errors
try:
   # Loop through all records to calculate the review count and weighted review value
   for business in velp reviews italian["businesses"]:
        italian review count = italian review count + business["review count"]
        italian weighted review = italian weighted review + business["review count"] * business["rating"]
    for business in yelp reviews mexican["businesses"]:
        mexican review count = mexican review count + business["review count"]
        mexican weighted review = mexican weighted review + business["review count"] * business["rating"]
    # Append the data to the appropriate column of the data frames
    italian data.set value(index, "Zip Code", row["Zipcode"])
    italian data.set value(index, "Italian Review Count", italian_review_count)
   italian data.set value(index, "Italian Average Rating", italian weighted review / italian review count)
    italian data.set value(index, "Italian Weighted Rating", italian weighted review)
   mexican_data.set_value(index, "Zip Code", row["Zipcode"])
    mexican data.set value(index, "Mexican Review Count", mexican review count)
    mexican data.set value(index, "Mexican Average Rating", mexican weighted review / mexican review count)
    mexican data.set value(index, "Mexican Weighted Rating", mexican weighted review)
except:
    print("Uh oh")
```


This funky code...

```
https://api.yelp.com/v3/businesses/search?term=Italian&location=76556
https://api.yelp.com/v3/businesses/search?term=Mexican&location=76556
https://api.yelp.com/v3/businesses/search?term=Italian&location=72039
https://api.yelp.com/v3/businesses/search?term=Mexican&location=72039
https://api.yelp.com/v3/businesses/search?term=Italian&location=61606
https://api.yelp.com/v3/businesses/search?term=Mexican&location=61606
https://api.yelp.com/v3/businesses/search?term=Italian&location=47232
https://api.yelp.com/v3/businesses/search?term=Mexican&location=47232
https://api.yelp.com/v3/businesses/search?term=Italian&location=60565
https://api.yelp.com/v3/businesses/search?term=Mexican&location=60565
6
https://api.yelp.com/v3/businesses/search?term=Italian&location=20634
https://api.yelp.com/v3/businesses/search?term=Mexican&location=20634
https://api.yelp.com/v3/businesses/search?term=Italian&location=71046
https://api.yelp.com/v3/businesses/search?term=Mexican&location=71046
```


...will make all of these URLs.

Each of these URLs holds a piece of our answer.

Cleaning with Pandas

No data comes out intrinsically the way you want it to. In our case, we needed multiple steps to aggregate the data along our channels of interest.

```
# Combine DataFrames into a single DataFrame combined_data = pd.merge(mexican_data, italian_data, on="Zip Code") combined_data.head()
```

	Zip Code	Mexican Review Count	Mexican Average Rating	Mexican Weighted Rating	Italian Review Count	Italian Average Rating	Italian Weighted Rating
0	76556	97	4.1134	399	63	3.78571	238.5
1	72039	256	4.11133	1052.2	266	3.81955	1016
2	61606	378	3.64286	1377	66	3.2197	212.5
3	47232	222	4.16892	925.5	420	3.77857	1587
4	60565	2842	3.94053	11199	2829	3.92824	11113

Analyze for Trends (Table)

It's Close:

Display Summary of Results

	Rating Average	Rating Wins	Review Count Wins	Review Counts
Mexican	3.826588	273	220	476889
Italian	3.806869	245	298	573733

Analyze for Trends (Ratings)

Yelpers rate Italian and Mexican relatively **equally**.

Analyze for Trends (Ratings)

Yelpers seem to significantly **review more Italian** restaurants.

Analyze for Trends (Winner Take All)

Just for kicks, let's throw in an analysis that aggregates the data from all cities using a winner-take-all approach.

It's sort of a wash.

Analyze for Trends (Statistical Analysis)

Because of how close the numbers appear, we utilized a Student's t-test to quickly assess if the perceived differences are not statistically significant but could be considered substantial.

Metric	Italian	Mexican	p-Value (t-test)
Average Rating	3.806	3.826	0.284
Review Counts	573k	476k	0.057

The difference in review count is **not statistically significant**.

Step 8: Acknowledge Limitations

Limitations of Analysis

Yelp demographics may not match the American demographic.

Limitations of Analysis

Restaurant experiences do not equate to home-cooked meals.

Limitations of Analysis

Fine-dining effect?

Making the Call

The "Proper" Conclusion:

Based on our analysis, it's clear that Americans' preferences for Italian and Mexican food are similar in nature. As a whole, Americans rate Mexican and Italian restaurants at non-statistically similar scores (avg. score: 3.8, p-value: 0.285). Although there are more reviews for Italian restaurants, we have shown that the difference is statistically significant (+96k, p-value: 0.057).

This may indicate there is an increased interest in visiting Italian restaurants at an experiential level. Or it may merely suggest that Yelp users enjoy writing reviews of Italian restaurants more than Mexican restaurants.

Making the Call

The "Let's Be Real" Conclusion: Italian (but it's going to be close).

Analytics Paradigm

Regardless of type or industry, this paradigm provides a repeatable pathway for effective data problem solving.

Homework: Kickstart My Chart Will be posted Saturday

If Time Permits...

Optional Group Activity:

Predicting Gentrification

Using the Analytics Paradigm as a framework, outline a strategy by which you would identify which neighborhoods in our city are seeing signs of gentrification.

Group Activity: Predicting Gentrification

Specifically, how would you answer these questions:

What observable signs can we detect to suggest gentrification is happening?

What means can we use to determine how long the trend has been happening?

What proxies might we use to identify gentrification in non-obvious ways?

How might you create a visualization of this data to best "tell the story"?

Pay special attention to details like:

What data will you use to build your model?

How will you retrieve the data?

What does your final "story" look like?

Time's Up! Let's Review.