Теория 2. Матричные вычисления

Курс: Байесовские методы в машинном обучении, осень 2020

1. Доказать тождество Вудбери:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}.$$

Здесь $A \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{m \times m}, U \in \mathbb{R}^{n \times m}, V \in \mathbb{R}^{m \times n}.$

- 2. Пусть $p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \Sigma), \, p(\boldsymbol{y}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}|A\boldsymbol{x}, \Gamma), \, A \in \mathbb{R}^{m \times n}$. Найти распределение $p(\boldsymbol{x}|\boldsymbol{y})$.
- 3. Пусть $p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}), \, p(\boldsymbol{y}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}|A\boldsymbol{x}, \boldsymbol{\Gamma}).$ Доказать, что $p(\boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}|A\boldsymbol{\mu}, \boldsymbol{\Gamma} + A\boldsymbol{\Sigma}A^T).$
- 4. Вычислить $\frac{\partial}{\partial X}\det(X^{-1}+A)$ (все матрицы не являются симметричными);
- 5. Вычислить $\frac{\partial}{\partial X}\operatorname{tr}(AX^{-T}BXC)$ (все матрицы не являются симметричными, матрицы A,C не являются квадратными).