## Plan wykładu

#### Analiza przykładowego sygnału

Weryfikacja statystyczna – MAD

Weryfikacja statystyczna – RX

#### Dane – przykładowy sygnał



# Dane – przykładowy sygnał (zoom)



1. Szereg czasowy

- 1. Szereg czasowy
- 2. Kumulatywne zliczanie impulsów sygnał kumulatywny (ang. integrative) różnicowanie (ang. differentiation)
  - → Sygnał, sygnał po różnicowaniu, sygnał po scałkowaniu

#### Dane – przykładowy sygnał – różnicowanie



# Dane – przykładowy sygnał – różnicowanie









- 1. Szereg czasowy
- 2. Kumulatywne zliczanie impulsów sygnał kumulatywny (ang. integrative) różnicowanie (ang. differentiation)
  - → Sygnał, sygnał po różnicowaniu, sygnał po scałkowaniu
- 3. Cykl dobowy, tygodniowy
  - → Cykle, sezonowość





- 1. Szereg czasowy
- 2. Kumulatywne zliczanie impulsów sygnał kumulatywny (ang. integrative) różnicowanie (ang. differentiation)
  - → Sygnał, sygnał po różnicowaniu, sygnał po scałkowaniu
- 3. Cykl dobowy, tygodniowy
  - → Cykle, sezonowość
- 4. Trend zmienny





- 1. Szereg czasowy
- 2. Kumulatywne zliczanie impulsów sygnał kumulatywny (ang. integrative) różnicowanie (ang. differentiation)
  - → Sygnał, sygnał po różnicowaniu, sygnał po scałkowaniu
- 3. Cykl dobowy, tygodniowy
  - → Cykle, sezonowość
- 4. Trend zmienny
- 5. Pojedyncze zdarzenia anomalie





- 1. Szereg czasowy
- 2. Kumulatywne zliczanie impulsów sygnał kumulatywny (ang. integrative) różnicowanie (ang. differentiation)
  - → Sygnał, sygnał po różnicowaniu, sygnał po scałkowaniu
- 3. Cykl dobowy, tygodniowy
  - → Cykle, sezonowość
- 4. Trend zmienny
- 5. Pojedyncze zdarzenia anomalie
- 6. Wartości liczbowe (min/max, typowe, rozkład wartości)





1. Dane, informacja, wiedza

- 1. Dane, informacja, wiedza
- 2. Reprezentacja danych sposób zapisu w pamięci komputera

- 1. Dane, informacja, wiedza
- 2. Reprezentacja danych sposób zapisu w pamięci komputera
- 3. Baza danych zorganizowany zbiór danych

- 1. Dane, informacja, wiedza
- 2. Reprezentacja danych sposób zapisu w pamięci komputera
- 3. Baza danych zorganizowany zbiór danych
- 4. Weryfikacja
  - **4.1** Poprawność i spójność
  - **4.2** Weryfikacja merytoryczna "sens" danych, znaczenie, kontekst, . . .
    - **4.2.1** Anomalie odstępstwa od "normy"
    - 4.2.2 Wystąpienie znanych problemów detekcja/klasyfikacja

- 1. Dane, informacja, wiedza
- 2. Reprezentacja danych sposób zapisu w pamięci komputera
- 3. Baza danych zorganizowany zbiór danych
- 4. Weryfikacja
  - **4.1** Poprawność i spójność
  - **4.2** Weryfikacja merytoryczna "sens" danych, znaczenie, kontekst, . . .
    - 4.2.1 Anomalie odstępstwa od "normy"
      - 4.2.2 Wystąpienie znanych problemów detekcja/klasyfikacja



## Plan wykładu

Analiza przykładowego sygnału

Weryfikacja statystyczna – MAD

Weryfikacja statystyczna – RX

# Statystyki opisowe – opis sygnału

#### 1. Szereg czasowy → histogram





# Statystyki opisowe – opis sygnału – histogram





## Statystyki opisowe – opis sygnału

średnia 
$$\mu = 0.028$$
  $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$ 



# Statystyki opisowe - opis sygnału

średnia 
$$\mu=0.028$$
 
$$\mu=\frac{1}{n}\sum_{i}^{n}x_{i}$$
 wariancja  $\sigma^{2}=0.004$  
$$\sigma^{2}=\frac{1}{n}\sum_{i}^{n}(\mu-x_{i})^{2}$$
  $\sigma=0.064$ 



#### Statystyki opisowe - opis sygnału

średnia 
$$\mu = 0.028$$
  $\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$  wariancja  $\sigma^{2} = 0.004$   $\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mu - x_{i})^{2}$   $\sigma = 0.064$  skośność  $s = 8.234$ 



#### Statystyki opisowe – opis sygnału

średnia 
$$\mu=0.028$$
  $\mu=\frac{1}{n}\sum_{i}^{n}x_{i}$  wariancja  $\sigma^{2}=0.004$   $\sigma^{2}=\frac{1}{n}\sum_{i}^{n}(s_{i})$  skośność  $s=8.234$  kurtoza  $k=193.664$ 





#### Statystyki opisowe – opis sygnału

średnia 
$$\mu = 0.028$$
  $\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$  wariancja  $\sigma^{2} = 0.004$   $\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mu - x_{i})^{2}$   $\sigma = 0.064$  skośność  $s = 8.234$ 

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (\mu - x_i)^2$$

**kurtoza** k = 193.664



#### Kwartet Anscombe'a

```
Danych jest 11 par punktów (x,y) które mają następujące parametry statystyczne: 
średnia x 9 
wariancja x 11 
średnia y 7.5 
wariancja y 4.125 
korelacja x i y 0.816 
prosta regresji y=3+0.5x
```

#### Kwartet Anscombe'a



https://en.wikipedia.org/wiki/File:Anscombe%27s\_quartet\_3.svg, User:Schutz + User:Avenue, CC SA 3

# Statystki porządkowe (ang. order statistics)

- 1. Mediana
- 2. Kwartyle
- **3.** Percentyle

$$\begin{bmatrix} -2. & 0.5 & 0.71 & 0.6 & 0.7 & -2.1 & 0.59 & 0.51 \end{bmatrix}$$

$$\begin{bmatrix} -2.1 & -2. & 0.5 & 0.51 & 0.59 & 0.6 & 0.7 & 0.71 \end{bmatrix}$$

**średnia** -0.06125 **mediana** 0.55

# Statystki porządkowe (ang. order statistics) – wykres pudełkowy (ang. boxplot)

- **1.**  $\begin{bmatrix} -2. & 0.5 & 0.71 & 0.6 & 0.7 & -2.1 & 0.59 & 0.51 \end{bmatrix}$
- 2. 100 punktów z rozkładu równomiernego (ang. uniform)  $\langle 0, 1 \rangle$
- 3. 100 punktów ze standardowego rozkładu normalnego (ang. standard normal distribution)



#### Weryfikacja z wykorzystaniem statystyk

→ Algorytm Median Absolute Deviation (MAD)



1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$ 

x = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764 1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427 ]

1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$ 

x = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764 1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427



- 1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$ 
  - x = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764 1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427 ]
- 2.  $m = median(\mathbf{x})$



- 1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$  $\mathbf{x}$  = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764 1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427 ]
- 2.  $m = \mathsf{median}(\mathbf{x})$
- **3.**  $d_i = |x_i m|$  **d** =  $[d_1, d_2, \dots, d_n]$



- 1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$  $\mathbf{x}$  = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764 1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427 ]
- 2.  $m = median(\mathbf{x})$
- 3.  $d_i = |x_i m|$   $\mathbf{d} = [d_1, d_2, \dots, d_n]$
- **4.**  $T_{\mathsf{MAD}} = \mathsf{median}(\mathbf{d})$



1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427

- 1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$  x = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764
- 2.  $m = median(\mathbf{x})$
- **3.**  $d_i = |x_i m|$  **d** =  $[d_1, d_2, \dots, d_n]$
- **4.**  $T_{\mathsf{MAD}} = \mathsf{median}(\mathbf{d})$
- **5.**  $T = 3 \times T_{\mathsf{MAD}}$ ,  $d_i > T \rightarrow \mathsf{bfedny}$  pomiar



1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427

- 1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$  x = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764
- 2.  $m = median(\mathbf{x})$
- **3.**  $d_i = |x_i m|$  **d** =  $[d_1, d_2, \dots, d_n]$
- **4.**  $T_{\mathsf{MAD}} = \mathsf{median}(\mathbf{d})$
- **5.**  $T = 3 \times T_{\mathsf{MAD}}$ ,  $d_i > T \rightarrow \mathsf{bfedny}$  pomiar



# Algorytm Median Absolute Deviation (MAD)

- 1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$   $\mathbf{x}$  = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764
- 1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427 ]
- 2.  $m = \mathsf{median}(\mathbf{x})$
- **3.**  $d_i = |x_i m|$  **d** =  $[d_1, d_2, \dots, d_n]$
- **4.**  $T_{\mathsf{MAD}} = \mathsf{median}(\mathbf{d})$
- **5.**  $T = 3 \times T_{\mathsf{MAD}}$ ,  $d_i > T \rightarrow \mathsf{bf}$ edny pomiar



# Algorytm Median Absolute Deviation (MAD)

1. Dane (przykładowe odczyty)  $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$ 

x = [1383.464 1384.9871 1386.6281 1388.142 1389.766 1391.188 1392.796 1394.144 1395.4139 1396.488 1398.209 1500.011 1230.793 1549.475 1399.6281 1238.033 1400.318 1249.4 1400.764 1363.806 1356.909 1287.488 1402.229 1403.588 1405.167 1406.427 ]

- 2.  $m = median(\mathbf{x})$
- **3.**  $d_i = |x_i m|$  **d** =  $[d_1, d_2, \dots, d_n]$
- **4.**  $T_{\mathsf{MAD}} = \mathsf{median}(\mathbf{d})$
- **5.**  $T = 3 \times T_{\mathsf{MAD}}$ ,  $d_i > T \rightarrow \mathsf{bfedny}$  pomiar



#### Algorytm MAD – przykłady



#### Algorytm MAD – przykłady



#### Weryfikacja statystyczna – outliery

- 1. Wykrywanie danych odstających (ang. outliers)
  - 1.1 "odstających" pprox spoza zakresu danych
  - 1.2 MAD (i wiele innych algorytmów)<sup>1</sup>
- 2. Weryfikacja
  - 2.1 Wyizolowanie pomiarów błędnych błędy urządzeń
  - 2.2 Wykrycie anomalii i zmian trendu



<sup>1</sup> scikit-learn.org/stable/auto\_examples/miscellaneous/plot\_anomaly\_comparison.html, scikit-learn devs, BSD

#### Plan wykładu

Analiza przykładowego sygnału

Weryfikacja statystyczna – MAD

Weryfikacja statystyczna – RX

# Weryfikacja z wykorzystaniem statystyk "strikes back"

→ Algorytm Reed-Xiaoli (RX)



1. Łatwa do policzenia

- 1. Łatwa do policzenia
- 2. Znane właściwości

- 1. Łatwa do policzenia
- 2. Znane właściwości
- **3.** Element wnioskowania statystycznego, część bardziej złożonych metod

- 1. Łatwa do policzenia
- 2. Znane właściwości
- Element wnioskowania statystycznego, część bardziej złożonych metod

outlier wartość spoza rozkładu danych, prawdopodobnie błędna - np. błąd urządzenia rejestrującego anomalia wartość z rozkładu danych, ale rzadka – np. wyciek z instalacji

#### Wyjście poza pojedyncze punkty danych



Wykorzystujemy właściwości sygnału – okresowość dobową

```
 \begin{bmatrix} [4.43 \ 4.77 \ 6.1 \ \dots \ 7.97 \ 4.85 \ 4.29] \\ [4.22 \ 4.18 \ 5.18 \ \dots \ 9.1 \ 6.37 \ 5.06] \\ [4.86 \ 5.9 \ 6.54 \ \dots \ 8.92 \ 6.54 \ 5.19] \\ \dots \\ [2.72 \ 2.52 \ 2.66 \ \dots \ 9.17 \ 6.59 \ 4.8 \ ] \\ [3.51 \ 2.9 \ 2.52 \ \dots \ 8.79 \ 5.34 \ 3.59] \\ [2.62 \ 2.72 \ 2.57 \ \dots \ 9.71 \ 6.01 \ 3.41] \\ X = \begin{bmatrix} x_{ij} \end{bmatrix} \quad i \ \mathsf{dni} \ j \ \mathsf{godziny}, \quad \mathbf{x}_i \ \mathsf{i-ta} \ \mathsf{doba}
```

1. Wykorzystujemy właściwości sygnału – okresowość dobową

2. Anomalia → "nietypowe zachowanie"

1. Wykorzystujemy właściwości sygnału – okresowość dobową

```
 \begin{bmatrix} [4.43 \ 4.77 \ 6.1 \ \dots \ 7.97 \ 4.85 \ 4.29] \\ [4.22 \ 4.18 \ 5.18 \ \dots \ 9.1 \ 6.37 \ 5.06] \\ [4.86 \ 5.9 \ 6.54 \ \dots \ 8.92 \ 6.54 \ 5.19] \\ \dots \\ [2.72 \ 2.52 \ 2.66 \ \dots \ 9.17 \ 6.59 \ 4.8 \ ] \\ [3.51 \ 2.9 \ 2.52 \ \dots \ 8.79 \ 5.34 \ 3.59] \\ [2.62 \ 2.72 \ 2.57 \ \dots \ 9.71 \ 6.01 \ 3.41] \\ X = \begin{bmatrix} x_{ij} \end{bmatrix} \quad i \ \mathsf{dni} \ j \ \mathsf{godziny}, \quad \mathbf{x}_i \ \mathsf{i-ta} \ \mathsf{doba}
```

- 2. Anomalia → "nietypowe zachowanie"
- **3.** "Zachowanie" o średnia dobowa  $ar{\mathbf{x}} = \left[ \bar{x}_j \right] \quad \bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$

30/53

Wykorzystujemy właściwości sygnału – okresowość dobową

```
 \begin{bmatrix} [4.43 \ 4.77 \ 6.1 \ \dots \ 7.97 \ 4.85 \ 4.29] \\ [4.22 \ 4.18 \ 5.18 \ \dots \ 9.1 \ 6.37 \ 5.06] \\ [4.86 \ 5.9 \ 6.54 \ \dots \ 8.92 \ 6.54 \ 5.19] \\ \dots \\ [2.72 \ 2.52 \ 2.66 \ \dots \ 9.17 \ 6.59 \ 4.8 \ ] \\ [3.51 \ 2.9 \ 2.52 \ \dots \ 8.79 \ 5.34 \ 3.59] \\ [2.62 \ 2.72 \ 2.57 \ \dots \ 9.71 \ 6.01 \ 3.41]] \\ X = \begin{bmatrix} x_{ij} \end{bmatrix} \quad i \ \mathsf{dni} \ j \ \mathsf{godziny}, \quad \mathbf{x}_i \ \mathsf{i-ta} \ \mathsf{doba}
```

- 2. Anomalia → "nietypowe zachowanie"
- **3.** "Zachowanie" o średnia dobowa  $ar{\mathbf{x}} = \left[ \bar{x}_j \right] \quad \bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$
- 4. "Nietypowe"  $\to$  duża odległość od średniej  $\|\bar{\mathbf{x}}-\mathbf{x}_i\|=\sqrt{\sum_{j=1}^{24}(\bar{x}_j-x_{ij})^2}$

#### **Problem?**



#### **Problem?**













$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



$$\mu = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



$$\mu = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$



$$\mu = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 0.03 & 0 \\ 0 & 3 \end{bmatrix}$$



$$\mu = \begin{bmatrix} 5\\2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1 & -0.69\\ -0.69 & 1 \end{bmatrix}$$

$$d_E(\bar{\mathbf{x}}, \mathbf{x}_i) = \|\bar{\mathbf{x}} - \mathbf{x}_i\| = \sqrt{\sum_{j=1}^{24} (\bar{x}_j - x_{ij})^2} =$$





$$d_E(\bar{\mathbf{x}}, \mathbf{x}_i) = \|\bar{\mathbf{x}} - \mathbf{x}_i\| = \sqrt{\sum_{j=1}^{24} (\bar{x}_j - x_{ij})^2} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)(\bar{\mathbf{x}} - \mathbf{x}_i)^\top} =$$





$$d_E(\bar{\mathbf{x}}, \mathbf{x}_i) = \|\bar{\mathbf{x}} - \mathbf{x}_i\| = \sqrt{\sum_{j=1}^{24} (\bar{x}_j - x_{ij})^2} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)(\bar{\mathbf{x}} - \mathbf{x}_i)^\top} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)I(\bar{\mathbf{x}} - \mathbf{x}_i)^\top}$$

I – macierz identyczności





$$d_E(\bar{\mathbf{x}}, \mathbf{x}_i) = \|\bar{\mathbf{x}} - \mathbf{x}_i\| = \sqrt{\sum_{j=1}^{24} (\bar{x}_j - x_{ij})^2} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)(\bar{\mathbf{x}} - \mathbf{x}_i)^\top} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)I(\bar{\mathbf{x}} - \mathbf{x}_i)^\top}$$

I – macierz identyczności

 $C = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})^{\top} (\mathbf{x}_i - \bar{\mathbf{x}})$  – macierz kowariancji danych (ang. sample covariance)





$$d_E(\bar{\mathbf{x}}, \mathbf{x}_i) = \|\bar{\mathbf{x}} - \mathbf{x}_i\| = \sqrt{\sum_{j=1}^{24} (\bar{x}_j - x_{ij})^2} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)(\bar{\mathbf{x}} - \mathbf{x}_i)^\top} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)I(\bar{\mathbf{x}} - \mathbf{x}_i)^\top}$$

I – macierz identyczności

 $C=rac{1}{n-1}\sum_{i=1}^n(\mathbf{x}_i-\bar{\mathbf{x}})^{\top}(\mathbf{x}_i-\bar{\mathbf{x}})$  – macierz kowariancji danych (ang. sample covariance)

 $C^{-1}$  – odwrotność macierzy kowariancji





$$d_E(\bar{\mathbf{x}}, \mathbf{x}_i) = ||\bar{\mathbf{x}} - \mathbf{x}_i|| = \sqrt{\sum_{j=1}^{24} (\bar{x}_j - x_{ij})^2} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)(\bar{\mathbf{x}} - \mathbf{x}_i)^\top} = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)I(\bar{\mathbf{x}} - \mathbf{x}_i)^\top}$$

I – macierz identyczności

$$C = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})^{\top} (\mathbf{x}_i - \bar{\mathbf{x}})$$
 – macierz kowariancji danych (ang. sample covariance)

 $C^{-1}$  – odwrotność macierzy kowariancji

$$d_M(\bar{\mathbf{x}}, \mathbf{x}_i) = \sqrt{(\bar{\mathbf{x}} - \mathbf{x}_i)C^{-1}(\bar{\mathbf{x}} - \mathbf{x}_i)^{\top}}$$





#### Wykrywanie anomalii – odległość Mahalanobisa

1. Wykorzystujemy właściwości sygnału – okresowość dobową

```
 \begin{bmatrix} [4.43 \ 4.77 \ 6.1 \ \dots \ 7.97 \ 4.85 \ 4.29] \\ [4.22 \ 4.18 \ 5.18 \ \dots \ 9.1 \ 6.37 \ 5.06] \\ [4.86 \ 5.9 \ 6.54 \ \dots \ 8.92 \ 6.54 \ 5.19] \\ \dots \\ [2.72 \ 2.52 \ 2.66 \ \dots \ 9.17 \ 6.59 \ 4.8 \ ] \\ [3.51 \ 2.9 \ 2.52 \ \dots \ 8.79 \ 5.34 \ 3.59] \\ [2.62 \ 2.72 \ 2.57 \ \dots \ 9.71 \ 6.01 \ 3.41]] \\ X = \begin{bmatrix} x_{ij} \end{bmatrix} \quad i \ \text{dni} \ j \ \text{godziny}, \quad \mathbf{x}_i \ \text{i-ta doba}
```

- 2. Anomalia → "nietypowe zachowanie"
- 3. "Zachowanie"  $\to$  średnia dobowa  $\bar{\mathbf{x}}=\left[\bar{x}_j\right]$   $\bar{x}_j=\frac{1}{n}\sum_{i=1}^n x_{ij}$  i macierz kowariancji
- 4. "Nietypowe"  $\to$  duża odległość od średniej liczona odległością Mahalanobisa  $d_M(\bar{\mathbf{x}},\mathbf{x}_i)$

# Wykrywanie anomalii – odległość Mahalanobisa $\rightarrow$ algorytm RX

1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C

- 1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C
- **2.**  $\mathbf{x}_i$  jest anomalią jeżeli  $d_M(\bar{\mathbf{x}}, \mathbf{x}_i) > T$

- 1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C
- **2.**  $\mathbf{x}_i$  jest anomalią jeżeli  $d_M(\bar{\mathbf{x}}, \mathbf{x}_i) > T$  ... ale jak wyliczyć T?

- 1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C
- 2.  $\mathbf{x}_i$  jest anomalią jeżeli  $d_M(\bar{\mathbf{x}}, \mathbf{x}_i) > T$  ... ale jak wyliczyć T? ... dla różnych wartości średniej i m. kowariancji różne T:(

- 1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C
- **2.**  $\mathbf{x}_i$  jest anomalią jeżeli  $d_M(\bar{\mathbf{x}}, \mathbf{x}_i) > T$  ... ale jak wyliczyć T? ... dla różnych wartości średniej i m. kowariancji różne T:(
- 3. Chcielibyśmy wyrazić próg w postaci prawdopodobieństwa, np. anomalia jest jeżeli  $\mathbf{x}_i$  ma prawdopodobieństwo np.  $\alpha=1\%$ , albo 0.1%

- 1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C
- **2.**  $\mathbf{x}_i$  jest anomalią jeżeli  $d_M(\bar{\mathbf{x}}, \mathbf{x}_i) > T$  ... ale jak wyliczyć T? ... dla różnych wartości średniej i m. kowariancji różne T:(
- 3. Chcielibyśmy wyrazić próg w postaci prawdopodobieństwa, np. anomalia jest jeżeli  $\mathbf{x}_i$  ma prawdopodobieństwo np.  $\alpha=1\%$ , albo  $0.1\%\ldots$  a dla  $\alpha$  wyznaczyć T automatycznie

- 1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C
- **2.**  $\mathbf{x}_i$  jest anomalią jeżeli  $d_M(\bar{\mathbf{x}}, \mathbf{x}_i) > T$  ... ale jak wyliczyć T? ... dla różnych wartości średniej i m. kowariancji różne T:(
- 3. Chcielibyśmy wyrazić próg w postaci prawdopodobieństwa, np. anomalia jest jeżeli  $\mathbf{x}_i$  ma prawdopodobieństwo np.  $\alpha=1\%$ , albo 0.1% ... a dla  $\alpha$  wyznaczyć T automatycznie
- 4. Wiemy, że jeżeli punkty w X mają rozkład normalny, to  $d_M(\bar{\mathbf{x}},\mathbf{x}_i)$  ma rozkład  $\chi^2$  z d-stopniami swobody (w naszym wypadku d=24)

- 1. Mamy dane  $X \to$ średnia  $\bar{\mathbf{x}}$ , macierz kowariancji C
- **2.**  $\mathbf{x}_i$  jest anomalią jeżeli  $d_M(\bar{\mathbf{x}}, \mathbf{x}_i) > T$  ... ale jak wyliczyć T? ... dla różnych wartości średniej i m. kowariancji różne T:(
- 3. Chcielibyśmy wyrazić próg w postaci prawdopodobieństwa, np. anomalia jest jeżeli  $\mathbf{x}_i$  ma prawdopodobieństwo np.  $\alpha=1\%$ , albo  $0.1\%\ldots$ a dla  $\alpha$  wyznaczyć T automatycznie
- 4. Wiemy, że jeżeli punkty w X mają rozkład normalny, to  $d_M(\bar{\mathbf{x}},\mathbf{x}_i)$  ma rozkład  $\chi^2$  z d-stopniami swobody (w naszym wypadku d=24)
- 5. Znając rozkład w tym wypadku  $\chi^2$  możemy wyznaczyć T, dla którego prawdopodobieństwo przekroczenia wartości jest  $\alpha$ ,  $P(d_M(\bar{\mathbf{x}},\mathbf{x}_i)>T)=\alpha$

Dane sztucznie wygenerowane, rozkład normalny, d=1





Dane sztucznie wygenerowane, rozkład normalny, d=2





Dane sztucznie wygenerowane, rozkład normalny, d=50





Dane rzeczywiste (monitoring przemysłowy), rozkład – ?, d=1





Dane rzeczywiste (monitoring przemysłowy), rozkład – ?, d=1





Dane rzeczywiste (zdjęcie hiperspektralne), rozkład – ?, d=100



Dane rzeczywiste (zdjęcie hiperspektralne), rozkład – ?, d = 100





Dane rzeczywiste (zdjęcie hiperspektralne), rozkład – ?, d = 100





1. Anomalie a outliery

- 1. Anomalie a outliery
- 2. Elementy (RX):
  - **2.1** Model rozkład normalny, opisany średnią i macierzą kowariancji (parametry)
  - 2.2 Algorytm odległość Mahalanobisa, wykorzystanie znanego rozkładu  $\chi^2$  (parametry wejściowe, wyjście)
  - 2.3 Teoria prawdopodobieństwo i statystyka

- 1. Anomalie a outliery
- 2. Elementy (RX):
  - **2.1** Model rozkład normalny, opisany średnią i macierzą kowariancji (parametry)
  - 2.2 Algorytm odległość Mahalanobisa, wykorzystanie znanego rozkładu  $\chi^2$  (parametry wejściowe, wyjście)
  - 2.3 Teoria prawdopodobieństwo i statystyka
- 3. Rozwinięcia
  - **3.1** Mixture of Gaussians (MoG)
  - 3.2 Principal Component Analysis (PCA)
  - 3.3 Hidden Markov Models (HMM)

- 1. Anomalie a outliery
- 2. Elementy (RX):
  - **2.1** Model rozkład normalny, opisany średnią i macierzą kowariancji (parametry)
  - 2.2 Algorytm odległość Mahalanobisa, wykorzystanie znanego rozkładu  $\chi^2$  (parametry wejściowe, wyjście)
  - 2.3 Teoria prawdopodobieństwo i statystyka
- 3. Rozwinięcia
  - 3.1 Mixture of Gaussians (MoG)
  - 3.2 Principal Component Analysis (PCA)
  - 3.3 Hidden Markov Models (HMM)
- 4. Alternatywy np. sieci neuronowe