8 Bit Arithmetic Operations

Expt No: 1 Name: Shivanirudh S G

Date: 21/08/2020 **Reg No:** 185001146

Aim:

To perform arithmetic operations on two 8 bit numbers.

Procedure:

- Mount masm folder to a drive on DOSBOX.
- Go to mounted drive.
- Save 8086 program with the extension ".asm" in the same folder using the command "edit".
- Assemble the .asm file using the command "masm filename.asm".
- Link the assmebled .obj file using the command "link filename.obj".
- Debug the executable file .exe with the "debug filename.exe" command.
 - The unassembled code can be viewed by the command "u".
 - Use the command "d segment:offset" to view the contents of memory locations from the specified segment:offset address.
 - Use command "e segment:offset" to change the values in memory.
 - Execute the program using command "g".
 - The command "q" exits from the debug session.

8 Bit Addition

Algorithm:

- Move the data segment to the AX register and then move it to the DS register.
- Move the first operand to AH register.
- Move the second operand to the BH register.
- Initially set the CH register to 00h.
- $\bullet\,$ Then add using ADD AH, BH.
- Using JNC instruction check for carry and if there is no carry, no need to increment CH.
- Else, increment CH by 1.
- The result and carry stored in AH and CH should be moved to RESULT and CARRY respectively.

Program	Comments
start: mov ax,data	Move data segment contents to AX register
mov ds,ax	Move data in AX register to DS register
mov ah,opr1	Move contents of opr1 to AH register
mov bh,opr2	Move contents of opr2 to BH register
mov ch,00h	Move hex value 00 to CH register
add ah,bh	AH = AH + BH
jnc here	Jump to the label here, if there is no carry
inc ch	Increment value of CH if there is a carry
here: mov result, ah	Move contents of AH register to result
mov carry,ch	Move contents of CH register to carry
int 21h	Request interrupt routine
end start	

Figure 1: Input: opr1: BCh, opr2: 99h; Output: Result: 55h, Carry: 01h

8 Bit Subtraction

Algorithm:

- Move the data segment to the AX register and then move it to the DS register.
- Move the first operand to AH register.
- Move the second operand to the BH register.
- Initially set the CH register to 00h.
- Then subtract using SUB AH,BH.
- Check for carry using JNC instruction. If no carry then it means AH
 BH and hence no need to increment CH and no need to complement AH.
- Else, AH<BH. Hence we have to take 2's complement of AH using NEG AH and also increment CH by 1 using INC CH.
- The result and carry stored in AH and CH should be moved to RESULT and CARRY respectively.

Program	Comments
start: mov ax,data	Move data segment contents to AX register
mov ds,ax	Move data in AX register to DS register
mov ah,opr1	Move contents of opr1 to AH register
mov bh,opr2	Move contents of opr2 to BH register
mov ch,00h	Move hex value 00 to CH register
sub ah,bh	AH = AH - BH
jnc here	Jump to the label here, if there is no carry
inc ch	Increment value of CH if there is a carry
neg ah	Negate the contents of the AH register
here: mov result, ah	Move contents of AH register to result
mov carry,ch	Move contents of CH register to carry
int 21h	Request interrupt routine
end start	

Figure 2: Input: opr1: 11h, opr2: 99h; Output: Result: 88h, Sign: 01h

8 Bit Multiplication

Algorithm:

- Move the data segment to the AX register and then move it to the DS register.
- Move the first operand to AL register.
- Move the second operand to the BL register.
- Then multiply using MUL BL.(Since AL is default operand register for MUL instruction we only need to specify the other operand register.)
- The result stored in AX register (16 bit- because multiplication of two 8 bit numbers yields a 16 bit number) should now be moved to RESULT.

Program	Comments
start: mov ax,data	Move data segment contents to AX register
mov ds,ax	Move data in AX register to DS register
mov al,opr1	Move contents of opr1 to AL register
mov ah, 00H	Move hex value 00 to AH register
mov bh,opr2	Move contents of opr2 to BH register
mul bh	AX = AL * BH
here: mov resulth, ah	Move contents of AH register to resulth
mov resultl,al	Move contents of AL register to resultl
int 21h	Request interrupt routine
end start	

Figure 3: Input: opr1: 23h, opr2: 99h; Output: Result: EF 14h

8 Bit Division

Algorithm:

- Move the data segment to the AX register and then move it to the DS register.
- Now, set AH register to 00h and move first operand to AL register. (Since we can't directly divide a 8 bit number by 8 bit number in 8086, we now make our dividend 16 bit by storing 00h in AH register and the 8-bit operand 1 in AL register).
- Move the second operand to the BL register.
- Now divide using DIV BL. (It will perform AX / BL. Because AH is 00h, what actually happens is the division of a 16 bit number by a 8 bit number).
- The quotient and remainder stored in AL and AH should be moved to QUOTIENT and REMAINDER respectively

Program	Comments
start: mov ax,data	Move data segment contents to AX register
mov ds,ax	Move data in AX register to DS register
mov al,opr1	Move contents of opr1 to AL register
mov ah, 00H	Move hex value 00 to AH register
mov bh,opr2	Move contents of opr2 to BH register
div bh	AX = AL / BH
here: mov resultq,ah	Move contents of AH register to resulth
mov resultr,al	Move contents of AL register to resultl
int 21h	Request interrupt routine
end start	

Figure 4: **Input:** opr1: 11h, opr2: 10h; **Output:** Quotient: 01h, Remainder: 11h

Result:

The 8086 programs were written to perform 8-bit arithmetic operations, and the results observed.