MCA SEM-II (2 Years Programme) MATHS 2 Continuous Assessment QUIZ-

* Required

0	Γ	\sim \sim	П.		N. I	- 4
5	-	(,	н	()	IN	-1

Q. The purpose of a dummy row or column in an assignment problem is to *				
Prevent a solution from becoming degenerate				
Provide a means of representing a dummy problem				
Obtain balance between total sources &total destinations				
None of the above				
Q. If the number of rows and columns in an assignment problem are not equal then it is called problem. *				
Unbounded				
Unbalanced				
Infeasible				
None of the above				

Q. The extra row or column which is added to balance an assignment problem is called *				
1. Extra				
2. Dummy				
3. Fictitious				
4. Both 2 and 3				
Q. Hungarian Method also known as *				
Matrix minima method				
Penalty method				
Reduced matrix method				
Penalty cost method				
Q. An assignment problem can be viewed as a special case of transportation problem in which the capacity from each source is and the demand at each destination is *				
1; 1				
O 100:100				
O -1; -1				
Infinity; infinity				

Q. When particular assignment in the given problem is not possible or restricted as a condition it is called problem. *						
Degenerated						
Infeasible						
Unbalanced						
Prohibited						
Q. The assignment problem *						
Requires that only one activity be assigned to each resource						
Can be used to maximize resources						
Is a special case of transportation problem						
All of the above						
Q. The method used for solving an assignment problem is called *						
C Least cost Method						
Hungarian method						
Vogel's Approximation method						
MODI method						

Q. Maximization assignment problem is transformed into a minimization problem by *
Subtracting each entry in a column from the maximum value in that column Adding each entry in a column from the maximization value in that column
Subtracting each entry in the table from the maximum value in that tableNone of the above
 Q. The procedure used to solve assignment problems where in one reduces the original assignment costs to a table of opportunity costs is called* Northwest reduction Simplex reduction Stepping-stone method Matrix reduction

Page 2 of 2

Back

Submit

Never submit passwords through Google Forms.

This form was created inside of VIVA School of M.C.A. Report Abuse

Google Forms