

Εθνικό Μετσόβιο Πολυτεχνείο ΔΠΜΣ Συστήματα Αυτοματισμού

Μάθημα: Ευφυή Συστήματα Ελέγχου και Ρομποτικής Εργασία Εξαμήνου

Θετικά Πραγματικές Συναρτήσεις και Ευστάθεια Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Ανάδρασης

Γεώργιος Κρομμύδας - 02121208

Δομή Παρουσίασης

- 1. Εισαγωγή
- 2. Θετικά Πραγματικές Συναρτήσεις μίας Μεταβλητής
- 3. Θετικά Πραγματικοί Πίνακες Συναρτήσεων Μεταφοράς
- 4. Ευστάθεια Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων
- 5. Εσωτερική Ευστάθεια Συστημάτων Ανάδρασης
- 6. Συναρτήσεις Ευαισθησίας και Συμπληρωματικής Ευαισθησίας
- 7. Αρχή Εσωτερικού Μοντέλου
- 8. Βιβλιογραφία

1. Εισαγωγή

- Θετικά Πραγματικές Συναρτήσεις και Αυστηρά Θετικά Πραγματικές
 Συναρτήσεις μιας μεταβλητής.
- Θετικά Πραγματικές Συναρτήσεις και Αυστηρά Θετικά Πραγματικές
 Συναρτήσεις πολλών μεταβλητών.
- > Ευστάθεια ΓΧΑΣ Ανάδρασης.

2. Θετικά Πραγματικές Συναρτήσεις μίας Μεταβλητής

Ορισμός

Μία γνήσια ρητή συνάρτηση G(s) με μιγαδική μεταβλητή $s = \sigma + j\omega$ ονομάζεται ΘΠ (Θετικά Πραγματική), αν

- i. Η *G*(*s*) είναι πραγματική για πραγματικά *s*.
- ii. Το $\Re[G(s)] \ge 0$ για όλα τα $\Re[s] > 0$.

Λήμμα

Μία γνήσια ρητή συνάρτηση μεταφοράς G(s) είναι ΘΠ αν και μόνο αν

- i. Η G(s) είναι πραγματική για πραγματικά s.
- ii. Η G(s) είναι αναλυτική στο $\Re[s] > 0$, και οι πόλοι που βρίσκονται πάνω στον φανταστικό άξονα είναι απλοί με τους φανταστικούς συντελεστές των πόλων να είναι θετικοί και πραγματικοί.
- iii. Για όλες τις πραγματικές τιμές ω , τις οποίες το $s=j\omega$ δεν αποτελεί πόλο της G(s), ένας έχει $\Re[G(j\omega)] \geq 0$.

Αυστηρά Θετικά Πραγματικές συναρτήσε<mark>ις μιας</mark> Μεταβλητής

Ορισμός

Ας υποθέσουμε πως η G(s) δεν είναι ταυτόσημη μηδέν για όλα τα s. Τότε η G(s) είναι ΑΘΠ (Αυστηρά Θετικά Πραγματική Συνάρτηση) αν το $G(s - \epsilon)$ είναι ΘΠ για κάποιο $\epsilon > 0$.

Θεώρημα

Υποθέτουμε πως μία ρητή συνάρτηση μεταφοράς G(s) με μιγαδική μεταβλητή $s = \sigma + j\omega$ είναι πραγματική για πραγματικό s και δεν είναι ταυτόσημα μηδέν για όλα τα s. Έστω n^* ο σχετικός βαθμός της G(s) = Z(s)/R(s) με το $|n^*| \le 1$. Τότε, η G(s) είναι ΑΘΠ αν και μόνο αν

- i. H G(s) είναι αναλυτική στο $\Re e[s] ≥ 0$.
- ii. H $\Re e[G(j\omega)] \ge 0, \forall \omega \in (-\infty, \infty)$.
- iii. a. Όταν το $n^*=1$, τότε $\lim_{|\omega|\to\infty}\omega^2\Re e[G(j\omega)]>0$.
 - b. Όταν το $n^* = -1$, τότε $\lim_{|\omega| \to \infty} \frac{\Re e[G(j\omega)]}{j\omega} > 0$.

ΘΠ και ΑΘΠ Συναρτήσεις Μεταφοράς

Πόρισμα

- i. H G(s) είναι ΘΠ (ΑΘΠ) αν και μόνο αν η 1/G(s) είναι ΘΠ (ΑΘΠ).
- ii. Αν η G(s) είναι ΑΘΠ, τότε, $|n^*| \le 1$, και οι πόλοι και τα μηδενικά της G(s) βρίσκονται στο $\Re e[s] < 0$.
- iii. Αν το $|n^*| > 1$, τότε η G(s) δεν είναι ΘΠ.
- $ightharpoonup Στην περίπτωση που το <math>n^* = 0$, τότε ικανές και αναγκαίες συνθήκες αποτελούν τα (i), (ii) του θεωρήματος.
- \triangleright Το διάγραμμα Nyquist μιας ΘΠ (ΑΘΠ) $G(j\omega)$ είναι στο $\Re e[s] > 0$.
- \blacktriangleright Σε ημιτονοειδής απόκριση η $|\angle G(j\omega)| \le 90^\circ$, $\forall \omega$

Παράδειγμα

Έστω η $G(s) = \frac{s+3}{(s+1)(s+2)}$ είναι μια ρητή και γνήσια συνάρτηση

μεταφοράς με σχετικό βαθμό $n^* = 1$.

- ightharpoonup H G(s) είναι αναλυτική στο $\Re e[s] \ge 0$.
- ightharpoonup To $\Re e[G(j\omega)] = \frac{6}{(\omega^2+2)^2+\omega^2} > 0, \forall \omega \in (-\infty, \infty).$
- ightharpoonup To $\lim_{|\omega|\to\infty}\omega^2 \Re e[G(j\omega)]=0$.

Η συνάρτηση μεταφοράς είναι ΘΠ, ωστόσο δεν είναι ΑΘΠ.

Σχήμα 1: Διάγραμμα Nyquist Συνάρτησης Μεταφοράς G(s)

Σχέση ΘΠ, ΑΘΠ Συναρτήσεων Μεταφοράς και Συνάρτηση Lyapunov

- Υπαρξη κριτηρίων ευστάθειας για συστήματα ανάδρασης με μη γραμμικά και ΓΧΑ μέρη.
- Κριτήριο Popov και τροποποιήσεις του.
- Σύνδεση ΘΠ, ΑΘΠ συναρτήσεων μεταφοράς με ύπαρξη συνάρτησης
 Lyapunov.

Λήμμα Kalman – Yakubovich – Popov (KYP)

Λήμμα

Δοσμένου ενός τετραγωνικού πίνακα A, με όλες τις ιδιοτιμές του να βρίσκονται στο κλειστό αριστερό μιγαδικό επίπεδο, ένα διάνυσμα B, τέτοιο ώστε το (A,B) να είναι ελέγξιμο, ένα διάνυσμα C και ένα βαθμωτό μέγεθος $d \geq 0$, η συνάρτηση μεταφοράς η οποία ορίζεται από τον τύπο

$$G(s) = d + C^{T}(sI - A)^{-1}B$$

είναι ΘΠ αν και μόνο αν υπάρχει ένας συμμετρικός και θετικά ορισμένος πίνακας \boldsymbol{P} και ένα διάνυσμα \boldsymbol{q} για τα οποία ισχύουν τα εξής

$$A^T P + P A = -q q^T$$

$$PB - C = \pm (\sqrt{2d})q$$

Λήμμα Lefschetz – Kalman – Yakubovich (LKY)

Λήμμα

Δοσμένου ενός ευσταθή πίνακα A, ενός διανύσματος B, τέτοιο ώστε το (A, B) να είναι ελέγξιμο, ένα διάνυσμα C και ένα βαθμωτό μέγεθος $d \ge 0$ έχουμε το εξής:

Αν η συνάρτηση μεταφοράς η οποία ορίζεται από τον τύπο

$$G(s) = d + C^{T}(sI - A)^{-1}B$$

είναι ΑΘΠ, τότε για οποιονδήποτε πίνακα $\mathbf{L} = \mathbf{L}^T > \mathbf{0}$, υπάρχει ένας συμμετρικός και θετικά ορισμένος πίνακας \mathbf{P} , ένα βαθμωτό μέγεθος $\mathbf{v} > 0$ και ένα διάνυσμα \mathbf{q} τέτοια ώστε να ισχύουν τα εξής

$$A^{T}P + PA = -qq^{T} - vL$$

$$PB - C = \pm q\sqrt{2d}$$

Λήμμα Meyer – Kalman – Yakubovich (MKY)

Λήμμα

Δοσμένου ενός ευσταθή πίνακα A, ενός διανύσματος B, ενός διανύσματος C και ενός C και

$$G(s) = d + C^{T}(sI - A)^{-1}B$$

είναι ΑΘΠ αν και μόνο αν για οποιονδήποτε πίνακα \mathbf{L} , υπάρχει ένας συμμετρικός και θετικά ορισμένος πίνακας \mathbf{P} , ένα βαθμωτό μέγεθος $\mathbf{v}>0$ και ένα διάνυσμα \mathbf{q} τέτοια ώστε να ισχύουν τα εξής

$$A^{T}P + PA = -qq^{T} - vL$$

$$PB - C = \pm q\sqrt{2d}$$

Ευστάθεια Συνάρτησης Lyapunov με χρήση των κριτηρίων

Έστω ότι έχουμε ένα δυναμικό σύστημα της μορφής:

$$\dot{e} = A_c e + B_c \theta^T \omega$$

$$\dot{\theta} = -\Gamma e_1 \omega$$

$$e_1 = C_c^T e$$

το οποίο εμφανίζεται στην ανάλυση προσαρμοστικών σχημάτων. Έχουμε ότι το $\Gamma = \Gamma^T > 0$ είναι ένας πίνακας συντελεστών, το $\boldsymbol{e} \in \mathbb{R}^m$, $\boldsymbol{\theta} \in \mathbb{R}^n$ και το $\boldsymbol{\omega} = \mathcal{C}_0^T \boldsymbol{e} + \mathcal{C}_1^T \boldsymbol{e_m}$, όπου το $\boldsymbol{e_m}$ είναι συνεχές και $\boldsymbol{e_m} \in \mathcal{L}_{\infty}$. Οι ιδιότητες ευστάθειας δίνονται από το παρακάτω θεώρημα.

Θεώρημα

Aν ο πίνακας A_c είναι ευσταθής και $G(s) = C_c^T(sI - A_c)^{-1}B_c$ είναι ΑΘΠ, τότε τα $e, \theta, \omega \in \mathcal{L}_{\infty}$, $e, \dot{\theta} \in \mathcal{L}_{\infty} \cap \mathcal{L}_2$ και τα $e(t), e_1(t), \dot{\theta}(t) \to 0$ όταν το $t \to \infty$.

3. Θετικά Πραγματικοί Πίνακες Συναρτή<mark>σεων</mark> Μεταφοράς

Ορισμός

Ένας $n \times n$ πίνακας G(s) του οποία τα στοιχεία του είναι συναρτήσεις των σύνθετων μεταβλητών s ονομάζεται ΘΠ, εάν

- i. Η G(s) έχει στοιχεία τα οποία είναι αναλυτικά είναι για $\Re[s] > 0$.
- ii. H $G^*(s) = G(s^*)$ yia $\Re[s] > 0$.
- iii. Το $G^T(s^*) + G(s)$ είναι θετικά ημιορισμένο για $\Re[s] > 0$.

Ορισμός

Ένας $n \times n$ πίνακας G(s) είναι ΑΘΠ αν ο πίνακας $G(s - \epsilon)$ είναι ΘΠ για κάποιο $\epsilon > 0$.

Ικανές και Αναγκαίες Συνθήκες για ΑΘΠ Π<mark>ίνακες</mark> Μεταφοράς

Θεώρημα

Έστω ότι έχουμε έναν $n \times n$ ρητό πίνακα συναρτήσεων μεταφοράς G(s)

$$G(s) = CT(sI - A)^{-1}B + D$$
(1.1)

Όπου οι A, B, C και D είναι πραγματικοί πίνακες με καλώς ορισμένες διαστάσεις. Υποθέτουμε πως το $G(s) + G^T(-s)$ έχει βαθμό n σχεδόν παντού στο μιγαδικό επίπεδο. Τότε ο G(s) είναι $A\Theta\Pi$ αν και μόνο αν

- i. Όλα τα στοιχεία του G(s) είναι αναλυτικά στο $\Re e[s] ≥ 0$.
- ii. $G(j\omega) + G^T(-j\omega) > 0, \forall \omega \in \mathbb{R}$.
- iii. a. $\lim_{|\omega|\to\infty} \omega^2 [\boldsymbol{G}(j\omega) + \boldsymbol{G}^T(-j\omega)] > 0, \boldsymbol{D} + \boldsymbol{D}^T \ge \boldsymbol{0} \text{ av } \det[\boldsymbol{D} + \boldsymbol{D}^T] = 0.$
 - b. $\lim_{|\omega|\to\infty} [\boldsymbol{G}(j\omega) + \boldsymbol{G}^T(-j\omega)] > 0$, $\alpha v \det[\boldsymbol{D} + \boldsymbol{D}^T] \neq 0$.

Ικανές και Αναγκαίες Συνθήκες για τους πί<mark>νακες</mark> Α,Β,C,D

Θεώρημα

Υποθέτουμε ότι ο πίνακας μεταφοράς G(s) δίνεται από την σχέση (1.1) και είναι τέτοια ώστε το $G(s) + G^T(-s)$ έχει βαθμό n σχεδόν σε όλο το μιγαδικό επίπεδο, η $\det(sI - A)$ έχει όλα τα μηδενικά στο ανοικτό αριστερό μιγαδικό επίπεδο και το (A, B) είναι πλήρες ελέγξιμο. Τότε, ο G(s) είναι ΑΘΠ αν και μόνο αν για οποιονδήποτε πραγματικό συμμετρικό και θετικά ορισμένο πίνακα L, υπάρχει ένας πραγματικός συμμετρικός και θετικά ορισμένος πίνακας P, ένα βαθμωτό μέγεθος v > 0, οι πραγματικοί πίνακες Q και K, τέτοια ώστε να ισχύει

$$A^{T} P + PA = -QQ^{T} - vL$$

$$PB = C \pm QK$$

$$K^{T} K = D^{T} + D$$

Ικανές και Αναγκαίες Συνθήκες για τους πίνακες Α,Β,C,D

Λήμμα

Ας υποθέσουμε ότι ο πίνακας μεταφοράς G(s) έχει τους πόλους να προσπίπτουν στο αριστερό μιγαδικό επίπεδο σύμφωνα με την σχέση $\Re e[s] < -\gamma$, όπου το $\gamma > 0$ και το (A, B, C, D) είναι η ελάχιστη αποτύπωση (minimal realization) του πίνακα G(s). Τότε, ο πίνακας G(s) είναι ΑΘΠ αν και μόνο αν ο πίνακας $P(s) = P^T(s) = 0$, και υπάρχουν οι πίνακες Q(s) = 0 και ύστε

$$A^{T} P + PA = -QQ^{T} - 2\gamma P$$

$$PB = C \pm QK$$

$$K^{T} K = D + D^{T}$$

4. Ευστάθεια Γραμμικών και Χρονικά Αμετ<mark>άβλητων</mark> Συστημάτων

- > Γενική αναπαράσταση συστήματος σε μητρωϊκή μορφή.
- \triangleright Διάνυσμα Εισόδου $R = [y^*, d_u, d, d_n]^T$.
- \triangleright Διανύσματα Εξόδου $E = [e, u_0, y, y_n]^T$ και $Y = [y_0, y_e, u]^T$.

$$E = H(s)R$$
, $Y = I_1E + I_2R$

Σχήμα 2: Γενικό Μπλοκ Διάγραμμα Συστήματος Ανάδρασης.

$$H(s) = \frac{1}{1 + FCG_0} \begin{bmatrix} 1 & -FG_0 & -F & -F \\ C & 1 & -FC & -FC \\ CG_0 & G_0 & 1 & -FCG_0 \\ CG_0 & G_0 & 1 & 1 \end{bmatrix}$$

$$I_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \qquad I_2 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

Σήματα Κλειστού Βρόχου Ανάδρασης

Μεταβλητή	Έννοια
\mathcal{Y}^*	Επιθυμητή Είσοδος
d_u	Διαταραχή Σήματος Ελέγχου
d	Διαταραχή Εξόδου
d_n	Διαταραχή Σήματος Μέτρησης
e	Σήμα Σφάλματος Παρακολούθησης
u_0	Αλλοιωμένο Σήμα Ελέγχου
y	Πραγματικό Σήμα Εξόδου Διεργασίας
\mathcal{Y}_n	Αλλοιωμένο Σήμα Μέτρησης
${\cal Y}_0$	Σήμα Εξόδου Διεργασίας
\mathcal{Y}_e	Σήμα Ανάδρασης
u	Σήμα Ελέγχου

Πίνακας 1: Σήματα Συστήματος Ανάδρασης.

5. Εσωτερική Ευστάθεια Συστημάτων Ανάδρασης

Ορισμός

Το σύστημα ανάδρασης είναι εσωτερικά ευσταθές αν για οποιαδήποτε εξωτερική είσοδο R, τα σήματα Y, E είναι φραγμένα και κατ' επέκτασιν ισχύει

$$||Y||_{\infty} \le c_1 ||R||_{\infty}, \qquad ||E||_{\infty} \le c_2 ||R||_{\infty}$$

για κάποιες σταθερές $c_1, c_2 \ge 0$ που είναι ανεξάρτητες από το R.

- > Εγγύηση ευστάθειας συστήματος κλειστού βρόχου.
- ▶ Φραγμένο σήμα εισόδου → Φραγμένα σήματα κλειστού βρόχου.
- Οι πόλοι των στοιχείων του H(s) πρέπει να βρίσκονται στο ανοικτό αριστερό μιγαδικό επίπεδο.

Παράδειγμα

Έστω ότι έχουμε τα εξής $G_0(s) = \frac{1}{s-2}$, $C(s) = \frac{s-2}{s-5}$, F(s) = 1.

$$ightharpoonup X.E.: 1 + FCG_0 = 1 + \frac{s-2}{(s+5)(s-2)} = 1 + \frac{1}{s+5} = 0 \Rightarrow s = -6$$

- > Προκύπτει Ευστάθεια.
- Υπολογισμός πίνακα μεταφοράς H(s).

$$\begin{bmatrix} e \\ u_0 \\ y \\ y_n \end{bmatrix} = \frac{1}{s+6} \begin{bmatrix} s+5 & -(s+5)/(s-2) & -(s+5) & -(s+5) \\ s-2 & s+5 & -(s-2) & -(s-2) \\ 1 & (s+5)/(s-2) & s+5 & 1 \\ 1 & (s+5)/(s-2) & s+5 & s+5 \end{bmatrix} \begin{bmatrix} y^* \\ d_u \\ d \\ d_n \end{bmatrix}$$

- ightharpoonup Υποδυκνύεται φραγμένη διαταραχή d_u .
- ightharpoonup Δημιουργία μη φραγμένων σημάτων e, y, y_n .

6. Συναρτήσεις Ευαισθησίας και Συμπληρω<mark>ματικής</mark> Ευαισθησίας

- > Χρησιμοποιούνται για την εκτίμηση της απόδοσης.
- > Θωρακισμός της ευστάθειας από τις διαταραχές.
- \triangleright Έστω η F(s) = 1 και το $d_u = 0$.
- > Η έξοδος του συστήματος δίνεται από

$$y = T_0 y^* + S_0 d - T_0 d_n$$

> Συνάρτηση Ευαισθησίας και Συμπληρωματικής Ευαισθησίας.

$$S_0 \triangleq \frac{1}{1 + CG_0}, \qquad T_0 \triangleq \frac{CG_0}{1 + CG_0}$$

$$S_0 + T_0 = 1$$

Σχεδιασμός Συστήματος Κλειστού Βρόχου

> Σύστημα ανοιχτού βρόχου.

$$L_0 = CG_0$$

- \succ Σωστή Παρακολούθηση και Απόρριψη Διαταραχής εξόδου d. Επιλογή μεγάλου L_0 ($|L_0|\gg 1$) τέτοιο ώστε $S_0\approx 0$, $T_0\approx 1$.
- ightharpoonup Ελαχιστοποίηση επίδρασης θορύβου μέτρησης d_n . Επιλογή μικρού L_0 ($|L_0|\ll 1$) τέτοιο ώστε $S_0\approx 1$, $T_0\approx 0$.
- Κατάλληλος Σχεδιασμός C(s).
- ightharpoonup Χαμηλές συχνότητες ightharpoonup Μεγάλο L_0 .
- ightharpoonup Υψηλές συχνότητες ightharpoonup Μικρό L_0 .

7. Αρχή Εσωτερικού Μοντέλου

> Μοντελοποίηση επιθυμητής εισόδου.

$$Q_r(s)y^* = 0$$

- $ightharpoonup Q_r(s)$ είναι γνωστό πολυώνυμο που σχετίζεται με την είσοδο.
- > Μοντελοποίηση ντετερμινιστικής διαταραχής.

$$Q_d(s)d = 0$$

- $ightharpoonup Q_d(s)$ είναι διαθέσιμο σε περίπτωση γνώσης της πληροφορίας του d.
- ightharpoonupΗ αρχή του εσωτερικού μοντέλου βασίζεται στον παράγοντα $\frac{1}{Q_r(s)Q_d(s)}$ στον ελεγκτή $\mathcal{C}(s)$.
- > Εξάλληψη επίδρασης των y*, d στο σφάλμα παρακολούθησης.
- \succ Επιλογή F(s) = 1, $d_u = d_n = 0$.
- ightharpoonup Επιλογή ελεγκτή $\bar{C}(s) = \frac{C(s)}{Q(s)} = \frac{C(s)}{Q_r(s)Q_d(s)}$

Ευστάθεια Μοντέλου

> Υπολογισμός Σφάλματος Παρακολούθησης.

$$e = y^* - y = \frac{1}{1 + \frac{CG_0}{Q}} y^* - \frac{1}{1 + \frac{CG_0}{Q}} d = \frac{1}{Q + CG_0} Q(y^* - d)$$

$$e = \frac{1}{Q + CG_0} (Q_r Q_d y^* - Q_r Q_d d) = \frac{1}{Q + CG_0} [0]$$

- Ευστάθεια συστήματος κλειστού βρόχου.
- \triangleright Εξαρτάται από την επιλογή του C(s).
- ightharpoonup Γρήγορη εκθετική σύγκλιση του $e(t)=y^*(t)-y(t)\to 0$, όταν το $t\to\infty$.
- > Χρήση συναρτήσεων ευαισθησίας και συμπληρωματικής ευαισθησίας για την απόδειξη της ιδιότητας της ακριβής παρακολούθησης.

$$S_0 = \frac{Q}{Q + CG_0}, \qquad T_0 = \frac{CG_0}{Q + CG_0}$$

8. Βιβλιογραφία

- [1] Petros A. Ioannou and Jing Sun. *Robust Adaptive Control*. Dover Publications, 2012. isbn: 978-0486498171.
- [2] Hassan K. Khalil. Nonlinear Systems. 3rd Edition. Pearson, 2001. isbn: 978-0130673893.
- [3] Jay A. Farrell and Marios M. Polycarpou. *Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches*. John Wiley Sons, Inc., 2006. isbn: 978-0-471-72788-0. doi: 10.1007/978-0-471-72788-0.
- [4] P. Ioannou and B. Fidan. *Adaptive Control Tutorial*. SIAM, 2006. isbn: 978-0-89871-615-3. doi:10.1007/978-0-89871-615-3.
- [5] Jean-Jacques E. Slotine και Weiping Li. *Applied Nonlinear Control*. Prentice Hall, 1991. isbn:0-13-040890-5.
- [6] Norm S. Nise. Control Systems Engineering. 8th Edition. John Wiley Sons, 2019. isbn: 978-1119590132.

Σας Ευχαριστώ!!! Ερωτήσεις;