ENSIMAG 1A TD Analyse

Transformée de Fourier

La transformée de Fourier d'une fonction $f \in L^1(\mathbb{R})$ est définie pour tout $\nu \in \mathbb{R}$ par

$$\hat{f}(\nu) = \int_{-\infty}^{+\infty} f(x)e^{-2i\pi\nu x} dx.$$

On note F l'application qui à f associe sa transformée de Fourier $\hat{f}: F(f) = \hat{f}$.

Exercice 1 (Propriétés de F) Démontrer les propriétés suivantes :

- 1. $F(f + \lambda g) = \hat{f} + \lambda \hat{g}, \quad \forall f, g \in L^1(\mathbb{R}), \forall \lambda \in \mathbb{R};$
- 2. $F(x \mapsto f(ax))(\nu) = \frac{1}{|a|} \hat{f}\left(\frac{\nu}{a}\right), \quad \forall f \in L^1(\mathbb{R}), \, \forall a \in \mathbb{R}^*;$
- 3. $F(x \mapsto f(x-\tau))(\nu) = e^{-2i\pi\nu\tau} \hat{f}(\nu), \quad \forall f \in L^1(\mathbb{R}), \forall \tau \in \mathbb{R};$
- 4. $F[f'](\nu) = 2i\pi\nu\hat{f}(\nu)$, $\forall f \in L^1(\mathbb{R})$ et de classe \mathfrak{C}^1 , telle que $f' \in L^1(\mathbb{R})$.
- 5. Calculer $F(x \mapsto xf(x))(\nu)$ en fonction de $\hat{f}(\nu)$ (quelles hypothèses doit-on faire sur f?).

Illustrer graphiquement les propriétés 2 et 3.

Exercice 2 Que peut-on dire de la parité de la transformée de Fourier d'une fonction réelle? Que peut-on en déduire sur le tracé du module et de la phase du spectre? Montrer que la transformée de Fourier d'une fonction réelle paire est une fonction réelle paire.

Exercice 3 (Calculs de transformées de Fourier)

1. Calculer la transformée de Fourier de $f(x) = e^{-|x|}$. Soit U l'échelon unité, valant 1 sur \mathbb{R}_+ et 0 sinon. Calculer la transformée de Fourier de g(x) = U(x)f(x). En déduire que

$$F(x \mapsto x^n e^{-x} U(x))(\nu) = \frac{n!}{(1 + 2i\pi\nu)^{n+1}}.$$

2. Soit Π la fonction porte définie sur \mathbb{R} par

$$\Pi(x) = \begin{cases} 1 & \text{si } |x| \le 1/2, \\ 0 & \text{si } |x| > 1/2. \end{cases}$$

Calculer la transformée de Fourier de la fonction $\rho_n(x) = n\Pi(nx)$. Tracer les graphes de ρ_n et $\hat{\rho}_n$. Que se passe-t-il quand $n \to +\infty$?

3. Modulation. Évaluer $F(x \mapsto \cos(2\pi\nu_0 x)f(x))$. Expliciter et illustrer graphiquement pour $f(x) = \chi_{[-a,a]}(x)$.

Exercice 4 Le but de cet exercice est le calcul de la transformée de Fourier de $f(x) = e^{-\pi x^2}$.

- 1. Vérifier que $f \in L^1(\mathbb{R})$ et tracer son graphe.
- 2. Montrer que f est solution de l'équation différentielle

$$y' + 2\pi xy = 0.$$

- 3. Appliquer la transformée de Fourier à cette équation et en déduire l'équation différentielle vérifiée par f.
- 4. En déduire le calcul de \hat{f} .

Exercice 5 (Fonction porte) Soit Π la fonction définie à l'exercice 3.

- 1. Calculer $\hat{\Pi}$ et tracer le spectre de Π . Vérifier le théorème du cours : $\lim_{\nu \to \infty} \hat{\Pi}(\nu) = 0$.
- 2. Calcular $\int_{-\infty}^{+\infty} \Pi^2(x) \ dx$.
- 3. En déduire que

$$\int_{-\infty}^{+\infty} \left(\frac{\sin t}{t}\right)^2 dt = \pi.$$

ENSIMAG 1A TD Analyse

Exercice 6 (Fonction triangle) Soit Λ la fonction, affine par morceaux, valant 0 sur $]-\infty,-1]$ et $[1,+\infty[$, et 1 au point x=0.

- 1. Tracer le graphe de la fonction Λ et donner l'expression de $\Lambda(x)$.
- 2. Montrer que Λ est dérivable par morceaux, et que l'on peut écrire $\Lambda'(x) = \Pi(x+1/2) \Pi(x-1/2)$.
- 3. Calculer la transformée de Fourier de Λ' . En déduire celle de Λ .
- 4. Montrer que Λ s'exprime en fonction de Π par le produit de convolution $\Lambda = \Pi * \Pi$.

Exercice 7 (Fourier et convolution) Soit a > 0. Résoudre dans $L^1(\mathbb{R})$ l'équation intégrale

$$\int_{-\infty}^{+\infty} e^{-a|x-t|} f(t) \ dt = e^{-x^2}.$$

Exercice 8 (Fourier et convolution) Soient a et b deux réels tels que a, b > 0 et $a \neq b$.

- 1. Calculer la transformée de Fourier de $e^{-a|x|}$.
- 2. En déduire les valeurs des produits de convolution $\frac{1}{a^2+x^2}*\frac{1}{b^2+x^2}$ et $e^{-a|x|}*e^{-b|x|}$.

Exercice 9 (Exercice indépendant, mais en lien avec l'exercice précédent) Soit a et b deux réels tels que a, b > 0 et $a \neq b$.

- 1. Calculer la transformée de Fourier de $e^{-a|x|}$.
- 2. Soit $f \in L^2(\mathbb{R})$. On admet l'existence d'une fonction $y \in L^2(\mathbb{R})$ solution de l'équation différentielle

$$-y'' + a^2y = f.$$

Donner l'expression de y sous forme intégrale.

- 3. Montrer l'unicité de la solution y appartenant à $L^2(\mathbb{R})$.
- 4. Montrer que la fonction $e^{-a|x|} * e^{-b|x|}$ satisfait l'équation différentielle

$$-y'' + a^2y = 2a e^{-b|x|}.$$

(On fera deux calculs distincts dans \mathbb{R}_+ et \mathbb{R}_- et on ajustera les constantes d'intégration en écrivant la continuité à l'origine de y et y'.)

5. En déduire le calcul de $e^{-a|x|} * e^{-b|x|}$.

Exercice 10 (Fourier et convolution) Montrer, en utilisant la régularité d'une transformée de Fourier, qu'il n'existe pas de fonction χ , intégrable sur \mathbb{R} , non identiquement nulle, telle que $\chi * \chi = \chi$. En déduire que la convolution dans $L^1(\mathbb{R})$ n'admet pas d'élément neutre.

Exercice 11 (Suite de l'exercice 18 de la feuille intégration)

$$f(x) = \int_0^\infty \frac{1}{\sqrt{t}} e^{-\frac{x^2}{2t} - \frac{t}{2}} dt.$$

- 1. Montrer que $f \in L^1(\mathbb{R}^+)$.
- 2. Calculer \hat{f} . En déduire que $f(x) = \sqrt{2\pi}e^{-|x|}$.

Exercice 12 (Équation de la chaleur) Soit l'équation aux dérivées partielles

$$\begin{cases} \partial_t f = \partial_{xx} f, \\ f(x,0) = \varphi(x), \end{cases}$$

où φ est une fonction de $\mathcal{C}^{\infty}(\mathbb{R})$ à support compact. On pose $F(\nu,t) = \int_{-\infty}^{+\infty} f(x,t) e^{-2i\pi\nu x} dx$.

1. Sous certaines hypothèses de régularité sur f à préciser, montrer que F vérifie

$$\frac{\partial F}{\partial t} + 4\pi^2 \nu^2 F = 0.$$

2. En déduire F, puis f.