实验 1 电路元件伏安特性的测绘

实验 1-1 测量线性、非线性元器件的伏安特性

一、画出本次实验电路图

二、实验数据

1. 根据实验记录数据完成下表:

表 1-1 线性电阻元件实验数据

Us (V)	0	2	4	6	8	10
I (mA)						
U(V)						
$R=U/I$ (Ω)						

表 1-2 非线性电阻元件实验数据

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -									
Us (V)	0	0.5	1	2	3	4	5	6	
I (mA)									
<i>U</i> (V)									
$R=U/I \ (\Omega)$									

表 1-3 理想电压源实验数据

$R_{\rm L}$ (Ω)	100	51	22	10	5.1	1
I (mA)						
U(V)						

表 1-4 实际电压源实验数据

$R_{ m L} \left(\Omega ight)$	100	51	22	10	5.1	1
I (mA)						
U(V)						

表 1-5 理想电流源实验数据

$R_{ m L}$ (Ω)	300	200	100	50	22
I (mA)					
U(V)					

表 1-6 实际电流源实验数据

$R_{ m L} (\Omega)$	300	200	100	50	22
I (mA)					
U(V)					

2. 根据实验测得的数据,选择适当的比例尺 (每 mm 若干伏和每 mm 若干安),将 $R_L = 51\Omega$ 电阻、非线性电阻元件、理想电压源、实际电压源、理想电流源和实际电流源的伏安特性曲线画在坐标纸上。电压为横坐标、电流为纵坐标。先取点,再用光滑曲线连接各点。

三、分析与思考

- 1. 线性电阻与非线性电阻的概念是什么?
- 2. 比较白炽灯在通电后在不同电压下的电阻变化。并说明原因。
- 3. (1) 图 (A) 中, 灯泡发光不亮, 因为

(2) 图(B)中,灯泡发光不亮,因为

4. 实际电压源与实际电流源的外特性为什么呈下降变化趋势, 恒压源和恒流源的输出在任何负载下是否保持恒值?

5.	实验中,	使用恒压源和恒流源时,	要注意些什么?

实验 1-2 测量稳压管和二极管的伏安特性

1. 实验数据表格

表 1-3 稳压管实验数据

			PC - 0 10	T				
正	U(V)	0.10	0.30	0.50	0.60	0.70	0.75	
向	I (mA)							
反	Us(V)	0	1	3	5	10	15	20
	U(V)							
向	I (mA)							

表 1-4 二极管实验数据

正	U(V)	0.10	0.30	0.50	0.60	0.70	0.75	
向	I (mA)							
反	Us(V)	0	5	10	15	20	25	30
	U(V)							
向	I (mA)							

2. 测量二极管伏安特性曲线时,串联在电路中的 200 Ω 电阻的作用是什么?

实验 2 基尔霍夫定律和叠加定理的验证

实验 2-1 验证基尔霍夫定律(KCL 和 KVL)

一、画出实验电路图

二、实验数据记录

表 2-1 验证 KCL 实验数据

W=1								
$I_1(mA)$	$I_2(mA)$	<i>I</i> ₃ (mA)	ΣI					

表 2-2 验证 KVL 实验数据

回路 1	$U_{\mathrm{be}}(\mathrm{V})$	$U_{\mathrm{ea}}(\mathrm{V})$	$U_{ab}(V)$		ΣU
(beab)					
回路 2	U _{bc} (V)	$U_{\mathrm{cd}}(\mathrm{V})$	$U_{ m de}({ m V})$	$U_{ m eb}({ m V})$	ΣU
(bcdeb)					

三、分析与思考

1. 测量电压、电流时,负号的意义是什么?

2. 计算表 2-2 中的 ΣU 是否为零? 为什么?

实验 2-2 线性电压源电路叠加定理验证

一、画出实验电路图

二、实验数据

- 1. 电压源电路 将数据记录在表 2-3 中。
- 2. 电压源、电流源共存电路 将数据记录在表 2-4 中。

表 2-3 电压源电路实验数据表

		12 2 3	电压源电	中大型效加仪				
电源		电流(A)			电压(V)			
$U_{\rm S1}$, $U_{\rm S2}$	I_1	I_2	I_3	U_1	U_2	U_3		
共同作用								
U_{S1}	$I_1^{'}$	$I_{2}^{'}$	$I_3^{'}$	$U_{1}^{'}$	$U_{2}^{'}$	$U_3^{'}$		
单独作用								
U_{S2}	$I_1^{"}$	$I_2^{"}$	$I_3^{"}$	$U_1^{"}$	$U_{2}^{"}$	$U_3^{"}$		
单独作用								
验证	$I_1^{'}+I_1^{''}$	$I_2^{'}+I_2^{"}$	$I_3'+I_3''$	$U_1^{'}+U_1^{"}$	$U_{2}^{'}+U_{2}^{"}$	$U_3'+U_3''$		
叠加定理								
	表	2-4 电压	5、电流源共	存电路实验数	対据表			
电源		电流(A)		电压(V)				
U_{S1} , I_{S2}	I_1	I_2	I_3	U_1	U_2	U_3		
共同作用								
$U_{ m S1}$	$I_1^{'}$	$I_{2}^{'}$	$I_3^{'}$	$U_1^{'}$	$U_2^{'}$	$U_3^{'}$		
单独作用								
$I_{ m S2}$	$I_1^{"}$	I_2 "	$I_3^{"}$	$U_1^{"}$	$U_2^{"}$	$U_3^{"}$		
单独作用	1	2		1	-			
 验证	$I_1^{'}+I_1^{''}$	$I_{2}^{'}+I_{2}^{"}$	$I_2 + I_2$	$U_1' + U_1''$	$U_{2}^{'}+U_{2}^{"}$	$U_2 + U_2$		
叠加定理	1 1	2 2	3 3	1 - 1	- 2 2	3 3		

三、分析与思考

- 1. 在进行叠加原理实验时,不作用的电压源、电流源怎样处理?
- 3. 通过对实验数据的计算,判别三个电阻上的功率是否也符合叠加原理?为什么?

实验 2-3 非线性电路叠加定理验证

一、 画出实验电路图

二、自拟表格记录数据

四、试问在该实验中叠加原理的迭加性还成立吗?为什么?

实验 3 电源等效变换及戴维宁定理

实验 3-1 验证电压源与电流源等效变换的条件

—,	画出本次实验的电路图
	实验数据记录
	安书中图 3-5 (a) 线路接线,线路中两表的读数为: 电压表
	。然后按图图 $3-5(b)$ 接线。调节恒流源的输出电流 I_s ,使两表的读数与 $3-5(b)$ 数值相等,记录 I_s 之值, I_s =,验证等效变换条件的正确性:
3(a	的的数值相等, 尼米 Is 之值, Is ─
三、	分析与思考
1.	一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电
	流源。若视为电压源,则可表示;若视
	为电流源,则可表示。
2.	理想电压源与理想电流源能否做等效变换? 为什么?
3.	电压源与电流源等效变换的条件为:

实验 3-2 有源二端口网络和戴维宁等效电源外特性测试

一、画出本次实验的电路图

二、实验数据记录

1. 测量有源二端口网络的开路电压 U_{ab} 和等效电阻 R_0 并与计算值比较

按书中图 3-6 的有源二端口网络接法,用______测量开路电压,用______测量等效电阻的方法,测量结果如下:

$$U_{\rm ab} = \underline{\hspace{1cm}}; \quad I_{\rm SC} = \underline{\hspace{1cm}}; \quad R_{\rm o} = \underline{\hspace{1cm}};$$

根据图中已给定的有源二端口网络参数,计算出开路电压 U_{ab} 等效电阻 R_{o} ,并与实结果相比较:

2. 测定有源二端口网络的外特性和戴维南等效电源的外特性,填写完成表 3-1:

表 3-1 有源二端口网络及戴维宁等效电路外特性实验数据

负载印	0	51	100	150	200	330	开路	
有 源	U(V)							
二端网络	I (mA)							
戴维南 <i>U</i> (V)								
等 效 电 源 $I(mA)$								

三、分析与思考

1. 根据表 3-1 各电压和电流的值,分别绘出有源二端口网络和戴维南等效电源的外特性曲线,可得出什么结论?

2. 若含源二端口网络不允许短路,如何用其他方法测出其等效电阻 R_0 ?

实验 3-3 诺顿等效电源外特性测试

一、画出本次实验的电路图。

二、在表格 3-2 中记录数据

表 3-2 诺顿等效电源的外特性

R_L (Ω)	0	51	100	150	200	330	开路
U(V)							
I (mA)							

三、根据实验数据,画出诺顿等效电源的外特性曲线,并与实验 3-2 比较。

实验 4 简单正弦电路的研究

实验 4-2 RC 串联电路的研究

一、画出本次实验电路图

二、实验波形图 画出u与i波形。

三、分析与思考

1. RC 电路中,总电压超前总电流还是滞后总电流?并计算相位角。

2. 纯电容电路中, 电压与电流的相位关系如何?

实验 4-3 RL 串联电路的研究

一、画出本次实验电路图

二、实验波形图 画出u与i波形。

三、分析与思考

1. RL 电路中,总电压超前总电流还是滞后总电流?并计算相位角。

2. 纯电感电路中,电压与电流的相位关系如何?

实验 4-4 RLC 串联电路电压与阻抗特性的研究

一、画出本次实验电路图

二、根据实验记录数据完成下表:

表 4-1 RLC 电路实验数据

	* *		
U (V)	$U_{\rm R}$ (V)	$U_{\rm L}$ (V)	$U_{\rm c}$ (V)
1			

表 4-2 元件参数变化时 RLC 电路实验数据

			计算值				
$C(\mu F)$	L(mH)	$U_{R}(V)$	$U_{\rm L}(V)$	$U_{\rm c}(V)$	I(A)	$X_{\mathrm{L}}(\Omega)$	$X_{_{ m C}}(\Omega)$
0.1	20						
10	100						

表 4-3 不同频率时 RLC 电路实验数据

	测量	 量值	计算值			
f(Hz)	$U_{R}(V)$	$U_{\mathrm{L}}(V)$	$U_{\rm C}(V)$	I(A)	$X_{\mathrm{L}}(\Omega)$	$X_{\mathrm{C}}(\Omega)$
200						
500						

三、分析与思考

1. 在 RLC 串联电路中,为何 $U \neq U_R + U_L + U_C$?

2. 容抗和感抗与哪些物理量有关?

实验 4-5 RLC 串联谐振的研究

一、画出本次实验电路图

二、根据实验记录数据完成下表:

表 4-4 RLC 串联谐振电路实验数据

$R(K \Omega)$	f ₀ (KHz)	$U_{ m R}({ m V})$	$U_{\rm L}({ m V})$	$U_{\rm C}({ m V})$	$I_0(mA)$	Q
0.30						
1						

		表 4-5	RLC 串联谐振	辰曲线 测	金数据	① $R=0.30$ K Ω ② $R=1$ K Ω				Ω		
						f_0						
1	f(KHz)											
	$U_R(V)$											
	I(mA)											
	f(KHz)											
2	$U_R(V)$											
	I(mA)											

三、分析与思考

1. 如何判别 RLC 串联电路是否发生谐振?

2. 电路发生串联谐振时,为什么输入电压不能太大?

3. 通过本次实验,总结、归纳串联谐振电路的特性。

实验 6 并联交流电路

实验 6-1 装接日光灯电路并测量各部分电量

一. 画出本次实验电路图和等效电路图

二. 实验数据记录

表 6-1 日光灯电路中的各部分电量

	100 - H/0/4 CM H/1 H/4 CE											
U(V)	$U_{R}(V)$	U_{RL} (V)	I (mA)	P(W)	$cos \varphi$	φ (0)						

三、分析与思考

1. 画图说明测流插孔板使用方法和注意事项。

- 2. 日光灯电路中启辉器、镇流器的作用是什么?
- 3. 当日光灯电路接通电源后, 若发现灯管的两端亮而中间不亮, 故障发生在
- 4. 从表 6-1 的数据可以看出,在日光灯电路中,灯管电压 U_1 加镇流器电压 U_2 大于电源U,这是因为_____。

实验 6-2 研究并联电容器对提高功率因数的作用

一、实验数据记录

表 6-2 并联电容对电路中各电流的影响

	ALL - NING BENE BAR I H BOINNAND IA									
<i>C</i> (µ F)	1	2	3	3.47	3.7	3.92	4.7	5.7	6.7	
$I_{RL}(mA)$										
$I_{\rm C}({\rm mA})$										
_I(mA)										
φ (0)										
$cos \varphi$										

注:为了使实验数据不受电源电压变动的影响,每次取数据时,要使U始终保持220伏。

三、分析与思考

1. 使用坐标纸,在同一坐标中,画出电流 I_{RL} , I_C , I 与电容量之间的关系曲线。

2.	从上面的电流曲线可以看出,	当电容量从零逐渐增大时,日光灯的电流_	,电容器的电
流		,总电流量最小时电路接近于	状态。

3. 把电容器与 *R-L* 电路并联可改善负载的功率因数,如果把电容器与 *R-L* 电路串联起来能否改善负载功率因数?为什么?实际中能否采用?为什么?

实验 7 三相交流电路

实验 7-1 负载的星形连接

一. 画出本次实验电路图

二. 实验数据记录

注: U_{12} 、 U_{23} 、 U_{31} 是线电压; U_{1} 、 U_{2} 、 U_{3} 是负载两端的电压。

表 7-1 Y 形接法平衡负载下电压与电流

	7 - 170 X A T B X T B X B 80 B											
	U_{12}	U_{23}	U_{31}	U_1	U_2	U_3	I_1	I_2	I_3	$I_{ m N}$		
	(V)	(V)	(V)	(V)	(V)	(V)	(mA)	(mA)	(mA)	(mA)		
有中线												
无中线												

表 7-2 Y 形接法不平衡负载电压与电流

	U_{12}	U_{23}	U_{31}	U_1	U_2	U_3	I_1	I_2	I_3	$I_{ m N}$
	(V)	(V)	(V)	(V)	(V)	(V)	(mA)	(mA)	(mA)	(mA)
有中线										
 无中线										

三、分析与思考

1. 根据实验数据,用 10mA/mm 的比例尺,画出 Y 形接法不平衡负载时的电流相量 \dot{I}_1, \dot{I}_2 和 \dot{I}_3 ,并用作图法求出中线电流 \dot{I}_N ,然后与实验时测得的 \dot{I}_N 相验证。

2. 负载作 Y 形连接时,至少满足下列条件之一时,负载的相电压等于 1/√3 线电压的天系式才能成立。						
3. 对于照明负载。	3. 对于照明负载,中线不可缺少,三相电流总线的中线上也不能装熔断器,为什么?					
		实验 7-2 分	负载的三角形	连接		
一、画出本次实验	起电路图					
二、实验数据记录						
表 7-3						
电源	I_1	I_2	I_3	I_{12}	I_{23}	I_{31}
负载	(mA)	(mA)	(mA)	(mA)	(mA)	(mA)
平衡负载						
	I	I	I	l	I	I

三、分析与思考

通过对实验数据的计算,验证 Δ 形接法平衡负载时相电流和线电流的数值关系。

实验 7-3 三相电路的功率测量

一、画出用三相功率表测量功率的接线图

二、实验数据记录

表 7-4 三相负载功率的测量

大 / · · · · · · · · · · · · · · · · · ·						
		单瓦计法		计算值	两瓦计法	计算值
负载情况	P_{12}	P_{23}	P_{31}	ΣP	P_1	ΣP
	(W)	(W)	(W)	(W)	(W)	(W)
Y形平衡负载						
Y形不平衡负载						

 ハエビ	\vdash \Box	11
 77 MT	与思	#
 /J /I/ I	-J /LL	\neg

1	测量三相电路的功率,	右		₹ П	方法
Ι.	侧里二相电路时机绝,	1 = 1	`	ÆΗ	ノバス。

2. 使用三项功率表测量三相电路功率时应注意什么?

3. 通过计算验证实验数据的正确性。

实验 8 异步电动机的继电-接触器控制

实验 8-2 三相异步电动机的交流-接触器控制

一. 画出本次实验的电路图

<u> </u>	分析与思考	
1.	异步电动机的负载加大时,转速	定子电流。
2.	异步电动要功率铭牌上的功率因数 $\cos \varphi$ 是指	电路的功率因数。(指明是
	定子电路还是转子电路)。	
3.	异步电动机空载时电流最,效率最_	,功率因数最
	o	
4.	异步电动机动时如果转子卡住不动,则电流	,立即采取措施为
	0	
5	在使用电动机 电聚之前 生更态阁其纹魄粉墀 汶县头	514-1, 9

实验 8-3 异步电动机的联锁控制

一、画出本次实验电路图

二. 线路设计: (1) 设计一台异步电动机可以在两处启动或停车的接触-继电器控制电路。 注: 交流接触器 只用一个 ,用两个起动和两个停车按钮。
(2)设计两台电动机不能 同时 开动的连锁控制电路,而开动其中任意一台是可以的。

实验 9 单管放大电路的研究(一)

实验 9-1 单管放大电路的静态和动态研究

一、画出本次实验的电路

- 二、实验数据记录
- 1. 静态工作点的测量

表 9-1 静态工作点的测量

	$V_{\rm B}({ m V})$	$V_{\rm C}({ m V})$	$V_{\rm E}({ m V})$	$U_{\mathrm{CE}}(\mathrm{V})$	$I_{\rm C}({\rm mA})$	
测量值						
计算值						

(注: $V_{\rm B},V_{\rm C},V_{\rm E}$,分别指基极电位、集电极电位和射极电位。 $U_{\rm CE}$ 指集射极电压。)

2. 测量不同负载的电压放大倍数

表 9-2 不同负载时的电压放大倍数

	输入电压 $U_{\mathrm{i}}(mV)$	输出电压 $U_{\mathrm{o}}(\mathit{mV})$	电压放大倍数 $U_{ m o}/U_{ m i}$		
$R_{\rm L}=\infty$					
$R'_{\rm L} = 510 \Omega$					
$R_{\rm L}^{"}$ =2.4K Ω					

3. 静态工作点不适当时的失真情况

根据本次实验中表 9-2 的记录,用方格纸描绘出偏流太大,太小是输出电压的波形,并说明是何种失真。

- 三、分析与思考
- 1. 实验电路中,与 Rw 串联的 10K 电阻的作用是什么?

- 2. 实验电路中, C_1 、 C_1 的作用是什么?在所绘实验电路图上标出电容器的极性。
- 3. 实验中,交流毫伏表的读数是最大值,还是平均值,还是有效值?电流表的读数又是什么值?
- 4. 从电路放大倍数公式说明, U_o 为什么随着负载阻值的减小而减小?

实验 9-2 集电极电阻和旁路电容在放大电路中的作用

- 1. 从电路放大倍数公式说明为什么 R_{C} 短接 $U_{o}=0$?
- 2. 分析 $C_{\rm E}$ 开路对直流和交流电路的影响。

实验 9-3 三极管元件的判别

叙述如何利用万用表对三极管进行管脚、管型的判别和电流放大系数eta 进行估测?

实验 10 单管放大电路的研究(二)

一、画出本次实验的电路

一、实验数据记录

1. 静态工作点的调整

表 10-1 实验数据记录

	测量数据(V)	计算数	据(mA)	
$V_{_B}$	V_{C}	$V_{\scriptscriptstyle E}$	$I_{\scriptscriptstyle B}$	I_E

注: VB,VC, VE,分别指基极电位、集电极电位和射极电位。

2. 测量电压放大倍数 A_{v}

表 10-2 电压放大倍数数据记录表

$U_{i}(mV)$	$U_{o}(mV)$	$A_{ m V}$

3. 测量输出电阻 r_o

表 10-3 输出电阻实验数据表

$U_{\mathrm{o}}\left(mV\right)$	$U_{o}^{'}\left(mV ight)$	$r_{_{O}}ig(\Omegaig)$

4. 测量输入电阻 r_i

表 10-4 输入电阻实验数据记录表

$U_{\rm S}(mV)$	$U_{i}(mV)$	$r_{i}(\Omega)$

二、分析与思考

1. 比较实验测得的输入、输出电阻值和电压放大倍数与理论值的误差。

2. 说明射极输出器的三大特点。

3. 说明射极输出器的主要用途。

实验 14 整流、滤波与稳压电路

实验 14-1 研究负载变化对直流稳压电路外特性的影响

一、画出本次实验的电路

二、实验数据记录

1. 测量全波整流电路的外特性

表 14-1 全波整流电路的外特性 (不接 C_1 、 C_2 、 D_2)

I_o (mA)	0(负载开路)	10	15	20	25	30
U_o (V)						

2. 测量全波整流、CRC 滤波电源的外特性

表 14-2 整流、CRC 滤波电源的外特性 (接 C_1 、 C_2 , 不接 D_Z)

I_O (mA)	0(负载开路)	15	20	25	30	40
U_o (V)						

3. 测量全波整流、 CRC 滤波、稳压电源的外特性

表 14-3 整流、CRC 滤波、稳压电源的外特性 (接 C_1 、 C_2 、 D_2)

$I_O(\text{mA})$	0(负载开路)	10	15	20	25	30	40
U_o (V)							

4. 根据实验测得的数据画图

- (1) 根据表 14-1, 14-2 和 14-3 的数据,在方格纸上画出以上两种电路的外特性曲线。
- (2) 在方格纸上画出本次实验中用示波器测得的的全部波形,并附简要说明。

三、分析与思考

1. 根据表 14-3 说明稳压管的稳压范围

(注: 稳压范围是指电压基本不变时的电流变化范围。)

2. 看实验电路中的 $D_{\rm Z}$ 极性接反, $U_{ m O}$ 等于多少(设稳压官止问导通电压为 $0.7V$)?
3. 稳压二极管起稳压作用的条件是什么?
(1)
(2)
(3)
4. 为什么本次实验中所用的整流、滤波与稳压电路又叫并联型稳压电路?

5. 试分析该稳压电路在负载发生变化时,输出电压在一定范围内保持稳定的原理。

实验 14-2 研究电源电压变化对直流稳压电源的影响

一、画出本次实验的电路

二、实验数据记录

表 14-5 整流、电容滤波电路输出变压与输入电压的关系(接 C_1 ,不接 C_2 、、 D_2)

<i>II.</i> (V)	170	100	100	200	210	220	220	240	250
$U_{\rm i}$ (V)	170	180	190	200	210	220	230	240	250
$U_{o}\left(\mathbf{V}\right)$									

表 14-6 整流、电容滤波与稳压电路输出变压与输入电压的关系(接 C_1 、 C_2 和 D_2)

$U_{\rm i}$ (V)	170	180	190	200	210	220	230	240	250
$U_o(V)$									

三、试分析该稳压电路在电源电压发生变化时,输出电压在一定范围内保持稳定的原理。

实验 14-3 晶体二极管的极性和质量判别

1.	使用二极管时应注意哪两个主要参数

(1)			

2. 简要说明用万用电表判别二极管正、负性的方法。(画出简图)。

实验 16 可控半波整流及交流调压电路

实验 16-1 晶闸管可控整流电路

一、画出本次实验的电路	
二、实验数据记录	
根据实验波形,在图 16-1 中描绘如下各波形。	
似相关通识///,压固 10-1 jm 公州 省 10///。	
三、分析与思考	
1. 晶闸管导通的条件是: (1)	
(2)	; 关断的条件
是。	
2. 在实验电路图中,390Ω欧电阻的作用是	,
稳压管 2CW111 的作用是	。100 欧电阻的作用
是。	
3. 在实验电路图中,100K 电位器(作可变电阻)的阻值越大时,0.22uF	电容器的充电时间
越, 可 控 硅 的 导 通 角 越	,灯光
越。	
实验 16-2 晶闸管交流调压电路	

- 一、根据实验观察到的波形,在图 16-1 中描绘波形。
- 二、分析双向晶闸管交流调压的工作原理。

注意: (1) 各波形的对应关系 (2) 在 $0 \sim \pi$ 内,画 $2 \sim 3$ 次充放电为宜。

实验 17 运算放大器的线性应用

实验 17-4 运算放大器的线性应用电路

一、画出本次实验的电路图

- 二、实验数据记录
- 1. 反相比例运算电路

表 17-1 反相比例运算电路数据记录表

$U_{\rm i}({ m V})$	0	0.1	0.2	0.3	0.5	1.0
$U_{\rm o}({ m V})$						

2. 电压跟随器

表 17-2 电压跟随器数据记录表

$U_{\rm i}({ m V})$	0	0.3	0.5	1.0	1.5	3
$U_{\rm o}({ m V})$						

3. 反相加法运算电路

表 17-3 加法运算电路数据记录表

$U_{\rm i}({ m V})$	$U_{\rm il} = 1 \rm V$	$U_{i2} = 1 \text{ V}$	$U_{i3} = 1 \text{ V}$	$U_{i1} = U_{i2} = U_{i3} = 1 \text{ V}$
	U_{i2} , U_{i3} 不接	$U_{\rm il}$, $U_{\rm i3}$ 不接	$U_{ m i2}$, $U_{ m i1}$ 不接	
$U_{\rm o}({ m V})$				

4. 减法运算

表 17-4 减法电路数据记录表

$U_{\rm i}({ m V})$	$U_{\rm il} = 0.5 \rm V$	$U_{i2} = 1 \text{ V}$	$U_{i2} = 1 \text{ V}, \ \ U_{i1} = 0.5 \text{ V}$
$U_{0}(V)$			

三、分析与思考

1. 运算放大器为什么要"凋零"?

2.	在反相比例运算电路中,	集成运放反相输入端	(管脚2)	为	_端,	其对地的电压
U	,					

- 3. 根据上述实验数据试总结出有关运算放大器运算规律的结论。(以公式表示)
- 1. 反相输入加法
- 2. 同相输入比例(跟随器)
- 3. 实验中的减法电路

实验 17-5 设计一个运算放大器电路

给出一块 F007,若干电阻,请设计能实现如下运算的电路: $U_{\rm o}=2(U_{i1}-U_{i2})$ 。给出电路图,并给出设计依据。

实验 19 组合逻辑电路

实验 19-1 与非门 74LS00 逻辑功能的测试

一、画出与非门测试的实验电路图

二、实验数据记录

表 19-1 与非门逻辑功能的测试数据

输	λ	输出
A	В	$V_{\rm o}({ m V})$
0	0	
0	1	
1	0	
1	1	

实验 19-2 多数表决器

一、画出多数表决器实验电路图

表 19-2 表决器测试数据

A	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

实验 19-3 3-8 译码器 74HC138 的逻辑功能测试

一、画出 3-8 译码器 74HC138 逻辑功能测试实验电路图

二、实验数据记录

表 19-3 74HC138 的逻辑功能测试结果

		1. A							1. A	.1.			
		输	<u> </u>						输	出			
E_3	$\overline{E_2}$	$\overline{E_1}$	A_2	A_{l}	A_0	$\overline{Y_0}$	$\overline{Y_1}$	$\overline{Y_2}$	$\overline{Y_3}$	$\overline{Y_4}$	$\overline{Y_5}$	$\overline{Y_6}$	$\overline{Y_7}$
×	1	×	×	×	×								
×	×	1	×	×	×								
0	×	×	×	×	×								
1	0	0	0	0	0								
1	0	0	0	0	1								
1	0	0	0	1	0								
1	0	0	0	1	1								
1	0	0	1	0	0								
1	0	0	1	0	1								
1	0	0	1	1	0								
1	0	0	1	1	1								
			1	1	1							L	

实验 19-4 译码显示电路

一、画出译码显示电路的实验电路图

二、实验数据记录

表 19-4 译码显示实验结果

					-,	~ 1/		~ 4m~	1/1						
十进制或			输入	-					Ll	E D fi	9七月	没显	示		LED 的 十进制 码显示
功能	\overline{LT}	RBI	D	C	В	A	$\overline{BI}/\overline{RBO}$	а	b	С	d	e	f	g	
0	1	1	0	0	0	0	1								
1	1	×	0	0	0	1	1								
2	1	×	0	0	1	0	1								
3	1	×	0	0	1	1	1								
4	1	×	0	1	0	0	1								
5	1	X	0	1	0	1	1								
6	1	X	0	1	1	0	1								
7	1	X	0	1	1	1	1								
8	1	X	1	0	0	0	1								
9	1	X	1	0	0	1	1								
_ 灭灯	×	X	×	×	×	×	0 (入)								
灭零	1	0	0	0	0	0	1								
试灯	0	×	×	×	×	×	1								

实验 19-5 组合逻辑电路设计

一、画出二进制数平方器的实验电路图

二、实验数据记录

表 19-5 二进制数平方器实验结果

A_2	A_1	A_0	P_5	P_4	P_3	P_2	P_1	P_0
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

实验 22 计数器

实验 22-1 集成计数器 74LS192 的应用

一、画出由 74LS192 计数器构成的"0~9"的加法计数器电路图

二、画出由 74LS192 计数器构成的 "0~99" 加法计数器电路图

三.	画出由	74LS192	计数器构成	的 22 进制	(0~21)	加法计数	器电路图。
四、	画出由	74LS192	计数器构成	的特殊 15	进制(1~	~15)加法·	计数器电路图。
四、	画出由	74LS192	计数器构成	的特殊 15	进制(1-	~15)加法·	计数器电路图。
四、	画出由	74LS192	计数器构成	的特殊 15	进制(1-	~15)加法·	计数器电路图。
四、	画出由	74LS192	计数器构成	的特殊 15	进制(1-	~15)加法·	计数器电路图。
四、	画出由	74LS192	计数器构成	的特殊 15	进制(1-	~15)加法	计数器电路图。
四、	画出由	74LS192	计数器构成	的特殊 15	进制(1-	~15)加法	计数器电路图。

实验 22-2 计数、译码、显示电路的设计

一、用 74LS192 计数器、74LS248 译码器、LC5011-11 共阴极数码管设计一秒时钟计数(1~60) 及译码显示电路图