Exam june 10, 2020. Complete volutions of selected problems

- 1. Find the linear homogeneous difference equation with constant coefficients of minimal order that has as solution the squence (xk) \$70 mith
 - (a) $x_k = 7 R(i^k) + 3 Im(i^k)$, k = 0
 - (b) the first terms of $(\chi_k)_{k > 0}$ are 1, 0, 0, 1, -2, 5.

Solution (a) It must be a second order difference quotion what characteristic eg. has the roots ±i. Then, the characteristic y. is $r^2+1=0$ =>

the LHD6 is $x_{k+2} + x_k = 0$.

(b) Note that this sequence is not a geometric progression, flows, it is not a robution of or first order difference of. We have $x_{0}=1$, $x_{1}=0$, $x_{2}=0$, $x_{3}=1$, $x_{4}=-2$, $x_{5}=5$. A record order LHDE has the form ZR+2 + QZR+1 + bZk=0 k=0: $\chi_1 + a \chi_1 + b \chi_0 = 0 \Rightarrow b=0$ $k=1: \chi_3 + a \chi_2 + b \chi_1 = 0 \Rightarrow 1=0$ $0 \Rightarrow 0$

of third order LHDE has the form xxxxx axxxx bxxxx con

k=0: $\chi_3 + \alpha \chi_2 + k \chi_1 + c \chi_2 = 0 \Rightarrow 1 + c = 0$ $\chi_3 + \alpha \chi_2 + k \chi_1 + c \chi_2 = 0 \Rightarrow 1 + c = 0$

 $k=2: \chi_5 + \lambda \chi_4 + \lambda \chi_5 + c \chi_2 = 0 \Rightarrow 5-2a+b=0$ Concluren:

Sonduron:

2.
$$\begin{cases} y' = x^2 + y^2 \\ y(0) = 1 \end{cases}$$
Find $a_0, a_1, a_2 \in \mathbb{R}$.

$$\frac{1}{2} \int_{0}^{1} (x) = 1 \end{cases}$$
Find $a_0, a_1, a_2 \in \mathbb{R}$.

$$\frac{1}{2} \int_{0}^{1} (x) = a_0 + a_1 x + a_2 x^2 + a_2 x^3 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0) = a_0 + a_1 x + a_2 x^2 + a_2 x^2 + \dots = x^2 + (a_0 + a_1 x + a_2 x^2 + \dots)^2, \ \, \forall x = x^2 + a_0 + 2a_0 x + a_1 x^2 + 2a_0 a_1 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_3 x^2 + \dots) = x^2 + a_0^2 + 2a_0 a_1 x + a_1 x^2 + 2a_0 a_1 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_3 x^2 + \dots) = x^2 + a_0^2 + 2a_0 a_1 x + a_1 x^2 + 2a_0 a_1 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_3 x^2 + \dots) = x^2 + a_0^2 + 2a_0 a_1 x + a_1 x^2 + 2a_0 a_1 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_3 x^2 + \dots) = x^2 + a_0^2 + 2a_0 a_1 x + a_1 x^2 + 2a_0 a_1 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_3 x^2 + \dots) = x^2 + a_0^2 + 2a_0 a_1 x + a_1 x^2 + 2a_0 a_1 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_3 x^2 + \dots) = x^2 + a_0^2 + 2a_0 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_1 x + 3a_2 x^2 + \dots) = x^2 + a_0^2 + 2a_0 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + 3a_2 x^2 + \dots) = x^2 + a_0^2 + 2a_0 x^2 + \dots$$

$$\frac{1}{2} \int_{0}^{1} (a_0 + a_1 x + a_1 x$$

Selection. Denote
$$= 2(\pm) = \frac{1+i}{\sqrt{2}} = \frac{3}{2} + i\pm \frac{1}{\sqrt{2}} = \frac{3}{2} + i\pm \frac{1}{2} + i\pm \frac{1}{2} + i\pm \frac{1}{2} = \frac{3}{2} + i\pm \frac{1}{2} + i\pm \frac$$

 $Z(t) = \frac{e^{-st}}{\sqrt{2}} \left(4 i \right) \left(\cos t - i \sin t \right) =$

 $= \frac{1}{\sqrt{2}} e^{-3t} \left(\cos t - i \sin t + i \cos t + \sin t \right) = \frac{1}{\sqrt{2}} e^{-3t} \left[\cosh t + \sin t + i \cos t + \sin t \right]$

5(b) Find the solidion of the ivp $\int \dot{x} = -3x + y$, $\dot{y} = -x - 3y$ $7 \times (0) = y(0) = -1$. Represent in the phase plane the corresponding or bit. Soletion. I will not volve the first part. you have enough westten examples (similar exercises). The sole following art. is obtained: $\begin{cases} \infty = e^{-3t} \cos t + e^{-3t} \sin t \\ y = e^{-3t} \cos t - e^{-3t} \sin t \end{cases}, t \in \mathbb{R}.$ (*)

By definition, the corresponding orbit is the curve of parametrie equations (*). Using the notation st (a), we have that this orbit is, in fact, the curve of $\sqrt{2}$ Z(t): $t \in \mathbb{R}^{d}$. Thus it looks like

5 (c) Specify the type and stability of the linear system $j\dot{x} = -3x + y$. If this system has a global first integral, $j\dot{y} = -x - 3y$ find it. Solution. $A = \begin{pmatrix} -3 & 1 \\ -1 & -3 \end{pmatrix}$ $\begin{vmatrix} -3-\lambda & 1 \\ -1 & -3-\lambda \end{vmatrix} = 0 \implies (3+\lambda)^2 + 1 = 0$

 $\lambda_{1,2} = -3 \pm i \implies \text{focus, global attractor}$.

We know from the lecture that a global attractor does not have a global first sutegral.

Thus, $e^{2\eta}$ is the rolution found at b) in our case. $e^{2\eta}$ f^{-1} f^{-1}