Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.146 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.293 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.153 W/kg

SAR(1 g) = 0.110 W/kg; SAR(10 g) = 0.084 W/kg

Maximum value of SAR (measured) = 0.137 W/kg

0 dB = 0.137 W/kg = -8.63 dBW/kg

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0619 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.540 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.0660 W/kg

SAR(1 g) = 0.053 W/kg; SAR(10 g) = 0.042 W/kg

Maximum value of SAR (measured) = 0.0620 W/kg

0 dB = 0.0620 W/kg = -12.08 dBW/kg

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.114 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.742 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.094 W/kg; SAR(10 g) = 0.073 W/kg

Maximum value of SAR (measured) = 0.112 W/kg

0 dB = 0.112 W/kg = -9.51 dBW/kg

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0601 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.870 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.0630 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.040 W/kg

Maximum value of SAR (measured) = 0.0587 W/kg

0 dB = 0.0587 W/kg = -12.31 dBW/kg

Test Plot 5#: GSM 850_Body Worn Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.962 S/m; ϵ_r = 56.849; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.451 W/kg

Zoom Scan (12x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.56 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.505 W/kg

SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.198 W/kg

Maximum value of SAR (measured) = 0.410 W/kg

0 dB = 0.410 W/kg = -3.87 dBW/kg

Test Plot 6#: GSM 850_Body Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz; $\sigma = 0.962$ S/m; $\epsilon_r = 56.849$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.561 W/kg

Zoom Scan (12x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.63 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.619 W/kg

SAR(1 g) = 0.329 W/kg; SAR(10 g) = 0.253 W/kg

Maximum value of SAR (measured) = 0.505 W/kg

0 dB = 0.505 W/kg = -2.97 dBW/kg

Test Plot 7#: GSM 850_Body Left_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz; $\sigma = 0.962$ S/m; $\epsilon_r = 56.849$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.216 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.26 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.167 W/kg; SAR(10 g) = 0.117 W/kg

Maximum value of SAR (measured) = 0.217 W/kg

0 dB = 0.217 W/kg = -6.64 dBW/kg

Test Plot 8#: GSM 850_Body Right_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz; $\sigma = 0.962$ S/m; $\epsilon_r = 56.849$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.146 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.99 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.168 W/kg

SAR(1 g) = 0.114 W/kg; SAR(10 g) = 0.080 W/kg

Maximum value of SAR (measured) = 0.149 W/kg

0 dB = 0.149 W/kg = -8.27 dBW/kg

Test Plot 9#: GSM 850_Body Bottom_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz; $\sigma = 0.962$ S/m; $\epsilon_r = 56.849$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.166 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.217 W/kg

SAR(1 g) = 0.095 W/kg; SAR(10 g) = 0.052 W/kgMaximum value of SAR (measured) = 0.159 W/kg

0 dB = 0.159 W/kg = -7.99 dBW/kg

Test Plot 10#: PCS 1900_Head Left Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.107 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.915 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.122 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.109 W/kg

0 dB = 0.109 W/kg = -9.63 dBW/kg

Test Plot 11#: PCS 1900_Head Left Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; $\sigma = 1.372$ S/m; $\varepsilon_r = 40.415$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0572 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.098 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.0690 W/kg

SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.0583 W/kg

0 dB = 0.0583 W/kg = -12.34 dBW/kg

Test Plot 12#: PCS 1900_Head Right Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.125 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.260 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.155 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.059 W/kg

Maximum value of SAR (measured) = 0.129 W/kg

0 dB = 0.129 W/kg = -8.89 dBW/kg

Test Plot 13#: PCS 1900_Head Right Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0392 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.671 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0450 W/kg

SAR(1 g) = 0.028 W/kg; SAR(10 g) = 0.018 W/kg

Maximum value of SAR (measured) = 0.0391 W/kg

0 dB = 0.0391 W/kg = -14.08 dBW/kg

Test Plot 14#: PCS 1900_Body Worn Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.575 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.590 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.686 W/kg

SAR(1 g) = 0.361 W/kg; SAR(10 g) = 0.197 W/kg

Maximum value of SAR (measured) = 0.549 W/kg

0 dB = 0.549 W/kg = -2.60 dBW/kg

Test Plot 15#: PCS 1900_Body Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.487$ S/m; $\epsilon_r = 54.205$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.624 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.627 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.746 W/kg

SAR(1 g) = 0.393 W/kg; SAR(10 g) = 0.216 W/kg

Maximum value of SAR (measured) = 0.602 W/kg

0 dB = 0.602 W/kg = -2.20 dBW/kg

Test Plot 16#: PCS 1900_Body Left_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.487$ S/m; $\epsilon_r = 54.205$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.122 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.041 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.148 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.048 W/kg

Maximum value of SAR (measured) = 0.123 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

Test Plot 17#: PCS 1900_Body Right_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.487$ S/m; $\epsilon_r = 54.205$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.215 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.936 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.253 W/kg

SAR(1 g) = 0.141 W/kg; SAR(10 g) = 0.080 W/kg

Maximum value of SAR (measured) = 0.211 W/kg

0 dB = 0.211 W/kg = -6.76 dBW/kg

Test Plot 18#: PCS 1900_Body Bottom_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.487$ S/m; $\epsilon_r = 54.205$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.820 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.76 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.513 W/kg; SAR(10 g) = 0.262 W/kg

Maximum value of SAR (measured) = 0.813 W/kg

0 dB = 0.813 W/kg = -0.90 dBW/kg

Test Plot 19#: WCDMA Band 2_Head Left Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.189 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.441 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.215 W/kg

SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.191 W/kg

0 dB = 0.191 W/kg = -7.19 dBW/kg

Test Plot 20#: WCDMA Band 2_Head Left Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.108 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.655 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.124 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.042 W/kg

Maximum value of SAR (measured) = 0.104 W/kg

0 dB = 0.104 W/kg = -9.83 dBW/kg

Test Plot 21#: WCDMA Band 2_Head Right Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.212 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.865 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.102 W/kg

Maximum value of SAR (measured) = 0.216 W/kg

0 dB = 0.216 W/kg = -6.66 dBW/kg

Test Plot 22#: WCDMA Band 2_Head Right Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0997 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.169 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.069 W/kg; SAR(10 g) = 0.040 W/kg

Maximum value of SAR (measured) = 0.102 W/kg

0 dB = 0.102 W/kg = -9.91 dBW/kg

Test Plot 23#: WCDMA Band 2_Body Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.76 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.651 W/kg; SAR(10 g) = 0.356 W/kg

Maximum value of SAR (measured) = 0.973 W/kg

0 dB = 0.973 W/kg = -0.12 dBW/kg

Test Plot 24#: WCDMA Band 2_Body Left_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.240 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.420 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.161 W/kg; SAR(10 g) = 0.092 W/kg

Maximum value of SAR (measured) = 0.239 W/kg

0 dB = 0.239 W/kg = -6.22 dBW/kg

Test Plot 25#: WCDMA Band 2_Body Right_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.441 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.35 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.522 W/kg

SAR(1 g) = 0.288 W/kg; SAR(10 g) = 0.162 W/kg

Maximum value of SAR (measured) = 0.435 W/kg

0 dB = 0.435 W/kg = -3.62 dBW/kg

Test Plot 26#: WCDMA Band 2_Body Bottom_Low

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.467$ S/m; $\epsilon_r = 54.564$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.58 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.02 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.519 W/kg

Maximum value of SAR (measured) = 1.61 W/kg

0 dB = 1.61 W/kg = 2.07 dBW/kg

Test Plot 27#: WCDMA Band 2_Body Bottom_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.05 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 0.963 W/kg; SAR(10 g) = 0.483 W/kg

Maximum value of SAR (measured) = 1.54 W/kg

0 dB = 1.54 W/kg = 1.88 dBW/kg

Test Plot 28#: WCDMA Band 2_Body Bottom_High

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1907.6 MHz; σ = 1.516 S/m; ϵ_r = 54.07; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.34 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.92 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.870 W/kg; SAR(10 g) = 0.435 W/kg

Maximum value of SAR (measured) = 1.40 W/kg

0 dB = 1.40 W/kg = 1.46 dBW/kg

Test Plot 29#: WCDMA Band 4_Head Left Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; σ = 1.345 S/m; ϵ_r = 41.21; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.211 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.111 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.106 W/kg

Maximum value of SAR (measured) = 0.211 W/kg

0 dB = 0.211 W/kg = -6.76 dBW/kg

Test Plot 30#: WCDMA Band 4_Head Left Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; σ = 1.345 S/m; ϵ_r = 41.21; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0950 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.329 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.107 W/kg

SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.0927 W/kg

0 dB = 0.0927 W/kg = -10.33 dBW/kg

Test Plot 31#: WCDMA Band 4_Head Right Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; σ = 1.345 S/m; ϵ_r = 41.21; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.268 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.100 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.143 W/kg

Maximum value of SAR (measured) = 0.281 W/kg

0 dB = 0.281 W/kg = -5.51 dBW/kg

Test Plot 32#: WCDMA Band 4_Head Right Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; σ = 1.345 S/m; ϵ_r = 41.21; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0857 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.098 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.040 W/kg

Maximum value of SAR (measured) = 0.0896 W/kg

0 dB = 0.0896 W/kg = -10.48 dBW/kg

Test Plot 33#: WCDMA Band 4_Body Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; σ = 1.529 S/m; ϵ_r = 52.754; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.947 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.06 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.635 W/kg; SAR(10 g) = 0.367 W/kg

Maximum value of SAR (measured) = 0.919 W/kg

0 dB = 0.919 W/kg = -0.37 dBW/kg

Test Plot 34#: WCDMA Band 4_Body Left_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; σ = 1.529 S/m; ϵ_r = 52.754; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.204 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.149 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.143 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.203 W/kg

0 dB = 0.203 W/kg = -6.93 dBW/kg

Test Plot 35#: WCDMA Band 4_Body Right_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; σ = 1.529 S/m; ϵ_r = 52.754; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.392 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.64 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.465 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.150 W/kg

Maximum value of SAR (measured) = 0.391 W/kg

0 dB = 0.391 W/kg = -4.08 dBW/kg

Test Plot 36#: WCDMA Band 4_Body Bottom_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.529$ S/m; $\epsilon_r = 52.754$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.00 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.715 W/kg; SAR(10 g) = 0.373 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

Test Plot 37#: WCDMA Band 5_Head Left Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.169 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.354 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.186 W/kg

SAR(1 g) = 0.138 W/kg; SAR(10 g) = 0.106 W/kg

Maximum value of SAR (measured) = 0.170 W/kg

0 dB = 0.170 W/kg = -7.70 dBW/kg

Test Plot 38#: WCDMA Band 5_Head Left Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0508 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.408 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.0540 W/kg

SAR(1 g) = 0.044 W/kg; SAR(10 g) = 0.034 W/kg

Maximum value of SAR (measured) = 0.0511 W/kg

0 dB = 0.0511 W/kg = -12.92 dBW/kg

Test Plot 39#: WCDMA Band 5_Head Right Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.105 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.609 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.114 W/kg

SAR(1 g) = 0.086 W/kg; SAR(10 g) = 0.067 W/kg

Maximum value of SAR (measured) = 0.101 W/kg

0 dB = 0.101 W/kg = -9.96 dBW/kg

Test Plot 40#: WCDMA Band 5_Head Right Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.894 S/m; ϵ_r = 42.331; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0480 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.014 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.0520 W/kg

SAR(1 g) = 0.042 W/kg; SAR(10 g) = 0.033 W/kg

Maximum value of SAR (measured) = 0.0483 W/kg

0 dB = 0.0483 W/kg = -13.16 dBW/kg

Test Plot 41#: WCDMA Band 5_Body Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.962 S/m; ϵ_r = 56.849; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.470 W/kg

Zoom Scan (12x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.61 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.549 W/kg

SAR(1 g) = 0.289 W/kg; SAR(10 g) = 0.222 W/kg

Maximum value of SAR (measured) = 0.450 W/kg

0 dB = 0.450 W/kg = -3.47 dBW/kg

Test Plot 42#: WCDMA Band 5_Body Left_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.962 S/m; ϵ_r = 56.849; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.289 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.56 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.319 W/kg

SAR(1 g) = 0.219 W/kg; SAR(10 g) = 0.154 W/kg

Maximum value of SAR (measured) = 0.283 W/kg

0 dB = 0.283 W/kg = -5.48 dBW/kg

Test Plot 43#: WCDMA Band 5_Body Right_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.962 S/m; ϵ_r = 56.849; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.192 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.75 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.149 W/kg; SAR(10 g) = 0.103 W/kg

Maximum value of SAR (measured) = 0.194 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

Test Plot 44#: WCDMA Band 5_Body Bottom_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.962 S/m; ϵ_r = 56.849; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.205 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.19 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.118 W/kg; SAR(10 g) = 0.064 W/kg

Maximum value of SAR (measured) = 0.200 W/kg

0 dB = 0.200 W/kg = -6.99 dBW/kg

Test Plot 45#: LTE Band 2_Head Left Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.156 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.459 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.196 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.070 W/kg

Maximum value of SAR (measured) = 0.163 W/kg

0 dB = 0.163 W/kg = -7.88 dBW/kg

Test Plot 46#: LTE Band 2_Head Left Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.148 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.399 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.107 W/kg; SAR(10 g) = 0.066 W/kg

Maximum value of SAR (measured) = 0.153 W/kg

0 dB = 0.153 W/kg = -8.15 dBW/kg

Test Plot 47#: LTE Band 2_Head Left Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.119 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.636 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.133 W/kg

SAR(1 g) = 0.079 W/kg; SAR(10 g) = 0.046 W/kg

Maximum value of SAR (measured) = 0.111 W/kg

0 dB = 0.111 W/kg = -9.55 dBW/kg

Test Plot 48#: LTE Band 2_Head Left Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.113 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.521 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.074 W/kg; SAR(10 g) = 0.044 W/kg

Maximum value of SAR (measured) = 0.104 W/kg

0 dB = 0.104 W/kg = -9.83 dBW/kg

Test Plot 49#: LTE Band 2_Head Right Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.228 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.354 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.273 W/kg

SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.245 W/kg

0 dB = 0.245 W/kg = -6.11 dBW/kg

Test Plot 50#: LTE Band 2_Head Right Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.218 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.293 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.257 W/kg

SAR(1 g) = 0.171 W/kg; SAR(10 g) = 0.106 W/kg

Maximum value of SAR (measured) = 0.232 W/kg

0 dB = 0.232 W/kg = -6.35 dBW/kg

Test Plot 51#: LTE Band 2_Head Right Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0923 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.810 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.106 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.0919 W/kg

0 dB = 0.0919 W/kg = -10.37 dBW/kg

Test Plot 52#: LTE Band 2_Head Right Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.372 S/m; ϵ_r = 40.415; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0916 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.596 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.062 W/kg; SAR(10 g) = 0.036 W/kg

Maximum value of SAR (measured) = 0.0895 W/kg

0 dB = 0.0895 W/kg = -10.48 dBW/kg

Test Plot 53#: LTE Band 2_Body Back_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.12 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.95 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.674 W/kg; SAR(10 g) = 0.367 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

0 dB = 1.04 W/kg = 0.17 dBW/kg

Test Plot 54#: LTE Band 2_Body Back_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.48 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.618 W/kg; SAR(10 g) = 0.338 W/kg

Maximum value of SAR (measured) = 0.950 W/kg

0 dB = 0.950 W/kg = -0.22 dBW/kg

Test Plot 55#: LTE Band 2_Body Left_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.210 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.737 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.143 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.217 W/kg

0 dB = 0.217 W/kg = -6.64 dBW/kg

Test Plot 56#: LTE Band 2_Body Left_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.199 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.483 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.246 W/kg

SAR(1 g) = 0.136 W/kg; SAR(10 g) = 0.078 W/kg

Maximum value of SAR (measured) = 0.206 W/kg

0 dB = 0.206 W/kg = -6.86 dBW/kg

Test Plot 57#: LTE Band 2_Body Right_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.400 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.01 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.486 W/kg

SAR(1 g) = 0.265 W/kg; SAR(10 g) = 0.148 W/kg

Maximum value of SAR (measured) = 0.404 W/kg

0 dB = 0.404 W/kg = -3.94 dBW/kg

Test Plot 58#: LTE Band 2_Body Right_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.375 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.43 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.457 W/kg

SAR(1 g) = 0.247 W/kg; SAR(10 g) = 0.138 W/kg

Maximum value of SAR (measured) = 0.381 W/kg

0 dB = 0.381 W/kg = -4.19 dBW/kg

Test Plot 59#: LTE Band 2_Body Bottom_1RB_Low

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1860 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1860 MHz; σ = 1.471 S/m; ϵ_r = 54.381; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.49 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.83 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.945 W/kg; SAR(10 g) = 0.482 W/kg

Maximum value of SAR (measured) = 1.49 W/kg

0 dB = 1.49 W/kg = 1.73 dBW/kg

Test Plot 60#: LTE Band 2_Body Bottom_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.46 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.14 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.971 W/kg; SAR(10 g) = 0.489 W/kg

Maximum value of SAR (measured) = 1.57 W/kg

0 dB = 1.57 W/kg = 1.96 dBW/kg

Test Plot 61#: LTE Band 2_Body Bottom_1RB_High

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.515 S/m; ϵ_r = 54.115; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.65 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.843 W/kg; SAR(10 g) = 0.427 W/kg

Maximum value of SAR (measured) = 1.33 W/kg

0 dB = 1.33 W/kg = 1.24 dBW/kg

Test Plot 62#: LTE Band 2_Body Bottom_50%RB_Low

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1860 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1860 MHz; σ = 1.471 S/m; ϵ_r = 54.381; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.20 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.862 W/kg; SAR(10 g) = 0.442 W/kg

Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

Test Plot 63#: LTE Band 2_Body Bottom_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.64 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.877 W/kg; SAR(10 g) = 0.443 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

Test Plot 64#: LTE Band 2_Body Bottom_50%RB_High

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.515 S/m; ϵ_r = 54.115; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.25 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.66 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.784 W/kg; SAR(10 g) = 0.398 W/kg

Maximum value of SAR (measured) = 1.24 W/kg

0 dB = 1.24 W/kg = 0.93 dBW/kg

Test Plot 65#: LTE Band 2_Body Bottom_100%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.487 S/m; ϵ_r = 54.205; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.11 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.915 W/kg; SAR(10 g) = 0.464 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

Test Plot 66#: LTE Band 4_Head Left Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.159 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.328 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.177 W/kg

SAR(1 g) = 0.122 W/kg; SAR(10 g) = 0.081 W/kg

Maximum value of SAR (measured) = 0.159 W/kg

0 dB = 0.159 W/kg = -7.99 dBW/kg

Test Plot 67#: LTE Band 4_Head Left Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.143 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.066 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.162 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.074 W/kg

Maximum value of SAR (measured) = 0.146 W/kg

0 dB = 0.146 W/kg = -8.36 dBW/kg

Test Plot 68#: LTE Band 4_Head Left Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0912 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.007 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.063 W/kg; SAR(10 g) = 0.038 W/kg

Maximum value of SAR (measured) = 0.0894 W/kg

0 dB = 0.0894 W/kg = -10.49 dBW/kg

Test Plot 69#: LTE Band 4_Head Left Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0812 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.564 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.0930 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.034 W/kg

Maximum value of SAR (measured) = 0.0799 W/kg

0 dB = 0.0799 W/kg = -10.97 dBW/kg

Test Plot 70#: LTE Band 4_Head Right Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.128 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.346 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.165 W/kg

SAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.069 W/kg

Maximum value of SAR (measured) = 0.144 W/kg

0 dB = 0.144 W/kg = -8.42 dBW/kg

Test Plot 71#: LTE Band 4_Head Right Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.116 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.216 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.099 W/kg; SAR(10 g) = 0.065 W/kg

Maximum value of SAR (measured) = 0.132 W/kg

0 dB = 0.132 W/kg = -8.79 dBW/kg

Test Plot 72#: LTE Band 4_Head Right Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (121x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0477 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.642 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0570 W/kg

SAR(1 g) = 0.034 W/kg; SAR(10 g) = 0.021 W/kg

Maximum value of SAR (measured) = 0.0488 W/kg

0 dB = 0.0488 W/kg = -13.12 dBW/kg

Test Plot 73#: LTE Band 4_Head Right Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.344 S/m; ϵ_r = 41.247; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.35, 8.35, 8.35); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0453 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.495 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0520 W/kg

SAR(1 g) = 0.032 W/kg; SAR(10 g) = 0.020 W/kg

Maximum value of SAR (measured) = 0.0437 W/kg

0 dB = 0.0437 W/kg = -13.60 dBW/kg

Test Plot 74#: LTE Band 4_Body Back_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.862 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.77 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.575 W/kg; SAR(10 g) = 0.332 W/kg

Maximum value of SAR (measured) = 0.841 W/kg

0 dB = 0.841 W/kg = -0.75 dBW/kg

Test Plot 75#: LTE Band 4_Body Back_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.768 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.93 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.902 W/kg

SAR(1 g) = 0.512 W/kg; SAR(10 g) = 0.298 W/kg

Maximum value of SAR (measured) = 0.742 W/kg

0 dB = 0.742 W/kg = -1.30 dBW/kg

Test Plot 76#: LTE Band 4_Body Left_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.189 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.403 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.217 W/kg

SAR(1 g) = 0.130 W/kg; SAR(10 g) = 0.078 W/kg

Maximum value of SAR (measured) = 0.186 W/kg

0 dB = 0.186 W/kg = -7.30 dBW/kg

Test Plot 77#: LTE Band 4_Body Left_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.165 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.149 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.068 W/kg

Maximum value of SAR (measured) = 0.161 W/kg

0 dB = 0.161 W/kg = -7.93 dBW/kg

Test Plot 78#: LTE Band 4_Body Right_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.474 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.80 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.546 W/kg

SAR(1 g) = 0.315 W/kg; SAR(10 g) = 0.180 W/kg

Maximum value of SAR (measured) = 0.462 W/kg

0 dB = 0.462 W/kg = -3.35 dBW/kg

Test Plot 79#: LTE Band 4_Body Right_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.334 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.47 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.395 W/kg

SAR(1 g) = 0.222 W/kg; SAR(10 g) = 0.126 W/kg

Maximum value of SAR (measured) = 0.332 W/kg

0 dB = 0.332 W/kg = -4.79 dBW/kg

Test Plot 80#: LTE Band 4_Body Bottom_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.18 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.677 W/kg; SAR(10 g) = 0.358 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

0 dB = 1.04 W/kg = 0.17 dBW/kg

Test Plot 81#: LTE Band 4_Body Bottom_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; σ = 1.528 S/m; ϵ_r = 52.813; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.05, 8.05, 8.05); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.908 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.83 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.598 W/kg; SAR(10 g) = 0.317 W/kg

Maximum value of SAR (measured) = 0.915 W/kg

0 dB = 0.915 W/kg = -0.39 dBW/kg

Test Plot 82#: LTE Band 5_Head Left Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.173 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.167 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.186 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.103 W/kg

Maximum value of SAR (measured) = 0.167 W/kg

0 dB = 0.167 W/kg = -7.77 dBW/kg

Test Plot 83#: LTE Band 5_Head Left Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.150 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.124 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.141 W/kg

0 dB = 0.141 W/kg = -8.51 dBW/kg

Test Plot 84#: LTE Band 5_Head Left Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0649 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.530 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.0670 W/kg

SAR(1 g) = 0.054 W/kg; SAR(10 g) = 0.043 W/kg

Maximum value of SAR (measured) = 0.0627 W/kg

0 dB = 0.0627 W/kg = -12.03 dBW/kg

Test Plot 85#: LTE Band 5_Head Left Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0546 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.749 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.0560 W/kg

SAR(1 g) = 0.045 W/kg; SAR(10 g) = 0.036 W/kg

Maximum value of SAR (measured) = 0.0524 W/kg

0 dB = 0.0524 W/kg = -12.81 dBW/kg

Test Plot 86#: LTE Band 5_Head Right Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.111 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.876 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.118 W/kg

SAR(1 g) = 0.089 W/kg; SAR(10 g) = 0.070 W/kg

Maximum value of SAR (measured) = 0.107 W/kg

0 dB = 0.107 W/kg = -9.71 dBW/kg

Test Plot 87#: LTE Band 5_Head Right Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0930 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.951 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.0940 W/kg

SAR(1 g) = 0.071 W/kg; SAR(10 g) = 0.056 W/kg

Maximum value of SAR (measured) = 0.0839 W/kg

0 dB = 0.0839 W/kg = -10.76 dBW/kg

Test Plot 88#: LTE Band 5_Head Right Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0589 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.642 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.0563 W/kg

0 dB = 0.0563 W/kg = -12.49 dBW/kg

Test Plot 89#: LTE Band 5_Head Right Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.893 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0457 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.461 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.0490 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.031 W/kg

Maximum value of SAR (measured) = 0.0448 W/kg

0 dB = 0.0448 W/kg = -13.49 dBW/kg

Test Plot 90#: LTE Band 5_Body Back_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.536 W/kg

Zoom Scan (12x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.15 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.597 W/kg

SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.240 W/kg

Maximum value of SAR (measured) = 0.486 W/kg

0 dB = 0.486 W/kg = -3.13 dBW/kg

Test Plot 91#: LTE Band 5_Body Back_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.429 W/kg

Zoom Scan (12x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.33 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.481 W/kg

SAR(1 g) = 0.254 W/kg; SAR(10 g) = 0.195 W/kg

Maximum value of SAR (measured) = 0.392 W/kg

0 dB = 0.392 W/kg = -4.07 dBW/kg

Test Plot 92#: LTE Band 5_Body Left_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.279 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.53 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.216 W/kg; SAR(10 g) = 0.151 W/kg

Maximum value of SAR (measured) = 0.281 W/kg

0 dB = 0.281 W/kg = -5.51 dBW/kg

Test Plot 93#: LTE Band 5_Body Left_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.236 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.72 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.125 W/kg

Maximum value of SAR (measured) = 0.234 W/kg

0 dB = 0.234 W/kg = -6.31 dBW/kg

Test Plot 94#: LTE Band 5_Body Right_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.201 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.89 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.156 W/kg; SAR(10 g) = 0.108 W/kg

Maximum value of SAR (measured) = 0.203 W/kg

0 dB = 0.203 W/kg = -6.93 dBW/kg

Test Plot 95#: LTE Band 5_Body Right_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.165 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.60 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.190 W/kg

SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.089 W/kg

Maximum value of SAR (measured) = 0.168 W/kg

0 dB = 0.168 W/kg = -7.75 dBW/kg

Test Plot 96#: LTE Band 5_Body Bottom_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.216 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.57 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.066 W/kg

Maximum value of SAR (measured) = 0.203 W/kg

0 dB = 0.203 W/kg = -6.93 dBW/kg

Test Plot 97#: LTE Band 5_Body Bottom_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; σ = 0.961 S/m; ϵ_r = 56.852; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.180 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.96 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.098 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.167 W/kg

0 dB = 0.167 W/kg = -7.77 dBW/kg

Test Plot 98#: LTE Band 12&17_Head Left Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.127 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.758 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.141 W/kg

SAR(1 g) = 0.103 W/kg; SAR(10 g) = 0.081 W/kg

Maximum value of SAR (measured) = 0.123 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

Test Plot 99#: LTE Band 12&17_Head Left Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.106 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.418 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.112 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.065 W/kg

Maximum value of SAR (measured) = 0.0972 W/kg

0 dB = 0.0972 W/kg = -10.12 dBW/kg

Test Plot 100#: LTE Band 12&17_Head Left Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0525 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.774 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.0550 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.0518 W/kg

0 dB = 0.0518 W/kg = -12.86 dBW/kg

Test Plot 101#: LTE Band 12&17_Head Left Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0408 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.899 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.0430 W/kg

SAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.030 W/kg

Maximum value of SAR (measured) = 0.0405 W/kg

0 dB = 0.0405 W/kg = -13.93 dBW/kg

Test Plot 102#: LTE Band 12&17_Head Right Cheek_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0952 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.082 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.0980 W/kg

SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.061 W/kg

Maximum value of SAR (measured) = 0.0889 W/kg

0 dB = 0.0889 W/kg = -10.51 dBW/kg

Test Plot 103#: LTE Band 12&17_Head Right Cheek_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0749 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.280 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.0750 W/kg

SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.0682 W/kg

0 dB = 0.0682 W/kg = -11.66 dBW/kg

Test Plot 104#: LTE Band 12&17_Head Right Tilt_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0649 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.103 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.0660 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.046 W/kg

Maximum value of SAR (measured) = 0.0623 W/kg

0 dB = 0.0623 W/kg = -12.06 dBW/kg

Test Plot 105#: LTE Band 12&17_Head Right Tilt_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.866 S/m; ϵ_r = 42.987; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.0502 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.339 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.0550 W/kg

SAR(1 g) = 0.044 W/kg; SAR(10 g) = 0.036 W/kg

Maximum value of SAR (measured) = 0.0506 W/kg

0 dB = 0.0506 W/kg = -12.96 dBW/kg

Test Plot 106#: LTE Band 12&17_Body Back_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.243 W/kg

Zoom Scan (12x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.87 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.163 W/kg

Maximum value of SAR (measured) = 0.244 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

Test Plot 107#: LTE Band 12&17_Body Back_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.195 W/kg

Zoom Scan (12x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.48 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.213 W/kg

SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.127 W/kg

Maximum value of SAR (measured) = 0.189 W/kg

0 dB = 0.189 W/kg = -7.24 dBW/kg

Test Plot 108#: LTE Band 12&17_Body Left_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0867 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.805 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.049 W/kg

Maximum value of SAR (measured) = 0.0864 W/kg

0 dB = 0.0864 W/kg = -10.63 dBW/kg

Test Plot 109#: LTE Band 12&17_Body Left_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0650 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.380 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.0720 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.0645 W/kg

0 dB = 0.0645 W/kg = -11.90 dBW/kg

Test Plot 110#: LTE Band 12&17_Body Right_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.112 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.07 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.088 W/kg; SAR(10 g) = 0.063 W/kg

Maximum value of SAR (measured) = 0.113 W/kg

0 dB = 0.113 W/kg = -9.47 dBW/kg

Test Plot 111#: LTE Band 12&17_Body Right_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (111x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0855 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.701 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0960 W/kg

SAR(1 g) = 0.067 W/kg; SAR(10 g) = 0.048 W/kg

Maximum value of SAR (measured) = 0.0857 W/kg

0 dB = 0.0857 W/kg = -10.67 dBW/kg

Test Plot 112#: LTE Band 12&17_Body Bottom_1RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0828 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.600 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.122 W/kg

SAR(1 g) = 0.047 W/kg; SAR(10 g) = 0.026 W/kg

Maximum value of SAR (measured) = 0.0861 W/kg

0 dB = 0.0861 W/kg = -10.65 dBW/kg

Test Plot 113#: LTE Band 12&17_Body Bottom_50%RB_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: Generic FDD-LTE; Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 707.5 MHz; σ = 0.944 S/m; ϵ_r = 57.485; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0635 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.401 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.038 W/kg; SAR(10 g) = 0.020 W/kg

Maximum value of SAR (measured) = 0.0682 W/kg

0 dB = 0.0682 W/kg = -11.66 dBW/kg

Test Plot 114#: WLAN 2.4G Mode B_Head Left Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: IEEE 802.11b WiFi 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.769$ S/m; $\varepsilon_r = 40.138$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.62, 7.62, 7.62); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (151x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.468 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.58 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.600 W/kg

SAR(1 g) = 0.294 W/kg; SAR(10 g) = 0.155 W/kg

Maximum value of SAR (measured) = 0.433 W/kg

0 dB = 0.433 W/kg = -3.64 dBW/kg

Test Plot 115#: WLAN 2.4G Mode B_Head Left Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: IEEE 802.11b WiFi 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.769$ S/m; $\varepsilon_r = 40.138$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.62, 7.62, 7.62); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (141x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.464 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.94 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.531 W/kg

SAR(1 g) = 0.292 W/kg; SAR(10 g) = 0.156 W/kg

Maximum value of SAR (measured) = 0.444 W/kg

0 dB = 0.444 W/kg = -3.53 dBW/kg

Test Plot 116#: WLAN 2.4G Mode B_Head Right Cheek_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: IEEE 802.11b WiFi 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.769$ S/m; $\varepsilon_r = 40.138$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.62, 7.62, 7.62); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (141x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.13 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.627 W/kg; SAR(10 g) = 0.303 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

0 dB = 1.03 W/kg = 0.13 dBW/kg

Test Plot 117#: WLAN 2.4G Mode B_Head Right Tilt_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: IEEE 802.11b WiFi 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.769$ S/m; $\varepsilon_r = 40.138$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.62, 7.62, 7.62); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (141x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.901 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.82 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.494 W/kg; SAR(10 g) = 0.227 W/kg

Maximum value of SAR (measured) = 0.829 W/kg

0 dB = 0.829 W/kg = -0.81 dBW/kg

Test Plot 118#: WLAN 2.4G Mode B_Body Back_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: IEEE 802.11b WiFi 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.943$ S/m; $\varepsilon_r = 54.211$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.47, 7.47, 7.47); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (141x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.346 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.886 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.403 W/kg

SAR(1 g) = 0.168 W/kg; SAR(10 g) = 0.073 W/kg

Maximum value of SAR (measured) = 0.294 W/kg

0 dB = 0.294 W/kg = -5.32 dBW/kg

Test Plot 119#: WLAN 2.4G Mode B_Body Left_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: IEEE 802.11b WiFi 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.943$ S/m; $\varepsilon_r = 54.211$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.47, 7.47, 7.47); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (141x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.201 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.241 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.398 W/kg

SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.056 W/kg

Maximum value of SAR (measured) = 0.190 W/kg

0 dB = 0.190 W/kg = -7.21 dBW/kg

Test Plot 120#: WLAN 2.4G Mode B_Body Top_Middle

DUT: Mobile Phone; Type: G6; Serial: 19050700321

Communication System: IEEE 802.11b WiFi 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.943$ S/m; $\varepsilon_r = 54.211$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.47, 7.47, 7.47); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.150 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.590 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.182 W/kg

SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.148 W/kg

0 dB = 0.148 W/kg = -8.30 dBW/kg