ENTRO UNIVERSITÁRIO DE BRASÍLIA – CEUB CIÊNCIA DA COMPUTAÇÃO

DANILO VILELA FRANCO
FILIPE PORTELA SILVA
MILLENA DE SOUSA MENEZES
CAIO DE ALMEIDA PEREZ
GUILHERME BORGES FURTADO NEVES

MODELO DE DADOS CONCEITUAL

DANILO VILELA FRANCO FILIPE PORTELA SILVA MILLENA DE SOUSA MENEZES CAIO DE ALMEIDA PEREZ GUILHERME BORGES FURTADO NEVES

MODELO DE DADOS CONCEITUAL

Este trabalho, desenvolvido no curso de Ciência da Computação do Centro Universitário de Brasília (CEUB), tem como objetivo analisar o modelo de dados conceitual.

Orientador: Prof. Luis Filipe Campos Cardoso

RESUMO

O objetivo deste trabalho é aplicar os conceitos da modelagem conceitual no desenvolvimento de um projeto prático de banco de dados. Para isso, será necessário identificar os principais elementos do sistema, como entidades, atributos e relacionamentos, e representá-los por meio de um Diagrama Entidade-Relacionamento (DER).

Essa abordagem permitirá uma compreensão mais clara da estrutura dos dados antes da implementação no banco, garantindo organização, consistência e eficiência no armazenamento das informações. Além disso, o trabalho reforça a importância da modelagem conceitual na construção de sistemas de banco de dados bem estruturados e alinhados com as necessidades do negócio.

Palavras-chave: Modelagem Conceitual; Projeto Prático; Diagrama Entidade-Relacionamento (DER); Banco de Dados; Estrutura de Dados.

SUMÁRIO

1. INTRODUÇÃO	5
2. DESENVOLVIMENTO	
2.1 DEFINIÇÕES-CHAVE: CONCEITOS FUNDAMENTAIS	
2.1.1 Entidade	6
2.1.2 Relacionamento	6
2.1.3 Atributos	6
2.1.4 Cardinalidade	6
2.1.5 Generalização	
2.1.6 Entidade associativa	6
2.2 CASO PRÁTICO	
2.3 DESAFIOS E SOLUÇÕES	
2.3.1 Redundância de Dados	
2.3.2 Complexidade de Relacionamentos	8
2.3.3 Definição Desorganizada de Entidades	
3. CONSIDERAÇÕES FINAIS	

1 INTRODUÇÃO

Os modelos de dados desempenham um papel fundamental na organização e estruturação das informações dentro de um sistema de banco de dados. Eles definem a forma como os dados serão armazenados, manipulados e relacionados, garantindo coerência e eficiência no gerenciamento das informações.

A modelagem conceitual é a primeira etapa desse processo e tem como objetivo representar, de maneira abstrata e independente de tecnologias específicas, os principais elementos de um sistema, como entidades, atributos e relacionamentos. Essa abordagem facilita o entendimento do domínio do problema e auxilia na construção de uma base de dados bem estruturada.

A importância da modelagem conceitual para os sistemas de banco de dados está na sua capacidade de proporcionar clareza na estruturação dos dados, redução de redundâncias, melhoria no desempenho das consultas e facilidade de manutenção e escalabilidade do sistema. Dessa forma, a modelagem conceitual se torna essencial para o sucesso de qualquer projeto que envolva o armazenamento e a manipulação eficiente de informações.

2 DESENVOLVIMENTO

2.1 DEFINIÇÕES-CHAVE: CONCEITOS FUNDAMENTAIS

2.1.1 Entidade

As entidades são os elementos fundamentais da modelagem de dados e representam objetos do mundo real que fazem parte da realidade a ser modelada. Elas armazenam informações importantes e estabelecem relações entre si. Por exemplo, na universidade, algumas das entidades poderiam ser "Alunos": "Professores": "Disciplinas".

2.1.2 Relacionamento

Ele conecta uma ou mais entidades, e define a relação entre elas. Podem ser classificadas por sua cardinalidade, que determina quantas entidades podem ser relacionadas.

2.1.3 Atributos

Os atributos estão diretamente relacionados à entidade. Eles são responsáveis por caracterizar as entidades. Por exemplo, um aluno pode ter atributos de RA, turma, sala.

2.1.4 Cardinalidade

A cardinalidade é a representação do número de itens que se relacionam nas entidades. Ela pode ser máxima ou mínima, que são os números mínimos e máximos de instâncias de cada entidades associadas no relacionamento.

2.1.5 Generalização

A generalização acontece quando agrupamos elementos com características em comum em um grupo maior. Por exemplo, no caso de um professor de matemática e um de inglês fazem parte de um mesmo grupo mais amplo chamado 'professor', pois compartilham essa característica semelhante.

2.1.6 Entidade associativa

A entidade associativa é utilizada quando se tem uma relação muitos para muitos entre duas entidades ou quando precisa armazenar mais informações sobre a relação. Ela serve como uma ponte para conectar essas entidades. Por exemplo, um aluno pode estar matriculado em várias disciplinas, e uma disciplina pode ter vários alunos. Em vez de repetir essas informações nas tabelas de Alunos e Disciplinas, criamos uma terceira tabela chamada Matrícula, que faz a ligação entre elas e ainda pode armazenar informações como notas e data de inscrição.

2.2 CASO PRÁTICO

Explicação do Diagrama

O diagrama apresentado representa um Sistema de Gestão Acadêmica para uma faculdade, organizando as entidades e seus relacionamentos para garantir um gerenciamento eficiente dos dados acadêmicos.

Principais Entidades e Relacionamentos:

Aluno:

- Possui atributos como ID_Aluno, Nome, Data de nascimento, Endereço e Curso.
- Está matriculado em um curso em um relacionamento N:M (um aluno pode estar matriculado em vários cursos ao longo do tempo, e um curso pode ter vários alunos).
- Está vinculado a uma turma com um relacionamento 1:1 (um aluno pertence a uma única turma por curso).

Curso:

- Contém atributos como Nome Curso e Carga horária.
- Pertence a uma única disciplina (N:1) e tem relação com os alunos matriculados.

Professor:

- Possui atributos como ID Professor, Nome e Especialidade.
- Leciona disciplinas em um relacionamento N:M (um professor pode lecionar várias disciplinas, e uma disciplina pode ser ministrada por vários professores).

Disciplina:

- Identificada por ID Disciplina e Nome.
- Está vinculada aos professores e cursos.

Turma:

- Identificada por ID Turma, Série e Ano Letivo.
- Um aluno está matriculado em uma turma (1:1).
- Uma turma ocorre em uma sala com um relacionamento 1:N (uma sala pode ser ocupada por várias turmas ao longo do dia).

Sala:

- Contém atributos como Número Sala, Capacidade e Andar.
- Aloca turmas para as aulas de acordo com a disponibilidade e capacidade.

Objetivo do Sistema

Esse modelo visa facilitar o gerenciamento acadêmico da faculdade, permitindo:

- 1. Cadastro de alunos, professores, cursos e turmas.
- 2. Gerenciamento de matrículas dos alunos em turmas específicas.
- 3. Atribuição de professores às disciplinas que lecionam.
- 4. Organização das turmas nas salas disponíveis, otimizando o uso dos espaços físicos.

Este diagrama proporciona uma visão clara e estruturada da relação entre os componentes acadêmicos da instituição, garantindo uma melhor gestão dos processos educacionais.

Aluno Turma 1:1 ID_Aluno ID_Turma Está matriculdo em Nome_Aluno Série N:M Data de nascimento Ano letivo Endereço Curso Ocorre em Curso Nome_Curso (1:N) Carga horária Professor ID_professor Sala Nome_Professor N:1 Número_Sala Especialidade Capacidade Pertence a Andar Leciona Disciplina ID_Disciplina Nome Ministra aula em N:M

Diagrama ER (Faculdade)

2.3 DESAFIOS E SOLUÇÕES

2.3.1 Redundância de Dados

Ocorre quando a mesma informação é armazenada em vários locais dentro do banco de dados, levando ao desperdício de armazenamento. Solução: Aplicação da normalização para eliminar dados duplicados e garantir que cada informação seja armazenada de forma única e referenciada por meio de chaves estrangeiras.

2.3.2 Complexidade de Relacionamentos

Em bancos de dados relacionais, relacionamentos excessivamente complexos entre tabelas podem dificultar consultas, impactar o desempenho e tornar a manutenção complicada.

Solução: Uso de modelos de entidade-relacionamento bem estruturados, categorização adequada das entidades

2.3.3 Definição Desorganizada de Entidades

Quando as entidades não são bem definidas, pode haver sobreposição de dados, inconsistências ou falta de clareza sobre a função de cada tabela. Isso pode levar a dificuldades na expansão do sistema. Solução: Aplicação de boas práticas de modelagem, como o princípio de responsabilidade única (cada entidade deve representar apenas um conceito claro) e o uso de diagramas para manter a organização e coerência do modelo de dados.

3. CONSIDERAÇÕES FINAIS

Nos bancos de dados, é fundamental representar corretamente os elementos do mundo real, garantindo que cada um tenha suas próprias características bem definidas. Isso permite que as informações sejam organizadas de forma clara e estruturada, facilitando o armazenamento e a recuperação dos dados quando necessário.

Também é essencial estabelecer como esses elementos se conectam, definindo regras sobre a quantidade de associações permitidas entre eles. Essas regras ajudam a manter a consistência dos dados e evitar redundâncias, tornando o sistema mais eficiente e confiável. Além disso, quando diferentes elementos compartilham características semelhantes, é possível organizá-los em níveis para otimizar a estrutura do banco.

Em casos onde há conexões complexas entre os elementos, é necessário criar estruturas intermediárias para armazenar informações adicionais sobre essas relações. Isso facilita a manipulação dos dados e melhora a integridade do sistema, permitindo que consultas e operações sejam realizadas de maneira mais eficiente. Dessa forma, o banco de dados se torna mais flexível e capaz de atender às necessidades do negócio.