3 Graphical analysis

Exercises selected and adapted from Croft, Davison, Hargreaves, (2001), "Engineering Mathematics", Third edition, chapter 2 Engineering functions and chapter 3 The trigonometric functions.

- 1. Obtain graphs of the following functions. Locate the roots, local minimums, and local maximums graphically within two significant numbers and mark them into the graphs.
 - (a) $y = 3x^3 x^2 + 2x + 1$, when $-2 \le x \le 2$
 - (b) $y = x^4 + \frac{x^3}{3} \frac{5x^2}{2} + x 1$, when $-3 \le x \le 2$
 - (c) $y = x^5 x^2 + 2$, when $-2 \le x \le 2$.
- 2. (a) Draw $y = x^3$ and y = 4 2x using the same axes. Note the x coordinate of the point of intersection within three significant figures accuracy.
 - (b) Draw $y = x^3 + 2x 4$. Note the coordinate of the point where the curve cuts the x axis. Compare your answer with that from (a). Explain your findings.
- 3. (a) Draw $y=2x^2$ and $y=x^3+6$ using the same axes. Use your graphs to find approximate solutions to $x^3-2x^2+6=0$.
 - (b) Add the line y = -3x + 5 to your graph. State approximate solutions to
 - i. $x^3 + 3x + 1 = 0$
 - ii. $2x^2 + 3x 5 = 0$
- 4. Draw the following rational functions. State any asymptotes and draw or mark them in the graphs.
 - (a) $f(x) = \frac{(2x+1)}{(x-3)} 4 \le x \le 4$
 - (b) $g(s) = \frac{s}{(s+1)} 3 \le x \le 3$
 - (c) $h(z) = \frac{z}{(z^2 + 1)} 3 \le x \le 3$
 - (d) $y(x) = \frac{x+1}{x} 3 \le x \le 3$
 - (e) $r(x) = \frac{2x}{(x-1)(x-2)} 3 \le x \le 3$

- 5. Plot $y = e^{kx}$ for $k = \{-3, -2, -1, 0, 1, 2, 3\}$ and $-3 \le x \le 3$ in the same graph.
- 6. Plot $y = ke^x$ for $k = \{-3, -2, -1, 0, 1, 2, 3\}$ and $-3 \le x \le 3$ in the same graph.
- 7. Plot $y = 5 x^2$ and $y = e^x$ for $-3 \le x \le 3$ in the same graph. Based on the graphics, state for which values of x is $e^x < 5 x^2$?
- 8. Plot $y = x^4$ and $y = e^x$ for $-1 \le x \le 9$. For which values of x is
 - (a) $e^x < x^4$
 - (b) $e^x > x^4$
- 9. Draw $y = \log(kx)$ for $0.5 \le x \le 50$ for $k = \{1, 2, 3, 4\}$ in the same graph.
- 10. Draw $y = \ln(x)$ and $y = \ln(\frac{1}{x})$ for $0.5 \le x \le 20$. What do you observe? Can you explain your observation using the laws of logarithms?
- 11. Draw $y = \ln(x)$ and $y = 1 \frac{3}{3}$ for $0.5 \le x \le 4$. From your graphs state an approximate solution to $\ln(x) = 1 \frac{x}{3}$.
- 12. Draw the following hyperbolic functions and locate the minimums and maximums and infinities.
 - (a) $y = \sinh(x)$
 - (b) $y = \cosh(x)$
 - (c) $y = \tanh(x)$ for $-5 \le x \le 5$.
- 13. Draw graphs of $y = \sinh(x)$, $y = \cosh(x)$, and $y = \frac{e^x}{2}$ for $0 \le x \le 5$. What happens to the three graphs as x increases? Can you explain this algebraically?
- 14. Draw
 - (a) y = |x|
 - (b) y = |-x+6| + 3
 - (c) $y = |(x-5)^2 10|$
- 15. Draw the following functions step-functions

- (a) f(t) = u(t-1)
- (b) f(t) = u(t-2) u(t-6)
- (c) f(t) = 2u(t+1) u(t-1)
- 16. Draw the impulse train given by
 - (a) $f(t) = \delta(t-1) + 2\delta(t-2)$
 - (b) $f(t) = 3\delta(t) + 4\delta(t-2) + \delta(t-3)$
- 17. Draw $y = \sin(x)$ and $y = \cos(x)$ for $0 \le x \le 4\pi$ using the same axes. Use your graphs to find approximate solutions to equation $\sin(x) = \cos(x)$.
- 18. Draw the graphs of $y = \cos^{-1}(x)$ and $y = \tan^{-1}(x)$.
- 19. Plot
 - (a) $y = \sin(2t)$ for $0 \le t \le 2\pi$
 - (b) $y = \cos(3t)$ for $0 \le t \le 3\pi$
 - (c) $y = \sin(t) + 3\cos(t)$ for $0 \le t \le 3\pi$. By reading from your graph, state the maximum value of y.
- 20. Plot $y = 2\sin(3t) \cos(3t)$ for $0 \le t \le 2\pi$.
 - (a) Use your graph to state the amplitude of $2\sin(3t) \cos(3t)$.
 - (b) On the same axes plot $y = \cos(3t)$. Estimate the time displacement of $2\sin(3t) \cos(3t)$.