Artificial Intelligence Homework #3

Only partially completed.

Question 1: Designing a Bayes Net.

$$P(R) = .90$$

 $P(E) = .60$

$$P(E) = 60$$

$$P(S) = 0.17$$

$$P(N) = 0.70$$

$$P(C) = .40$$

$$P(C \mid R, E, S N)$$

$$P(P) =$$

$$P(P \mid C) =$$

P(Ch) =
$P(Ch \mid C)$
P(F) =
$P(F \mid Ch)$
P(A) =
$P(A \mid C)$
P(D) =
P(D A)

References:

 $\underline{http://www.cancer.ca/en/cancer-information/cancer-101/cancer-statistics-at-a-glance/?region=on}$

Question 2: Inference in a Bayes Net.

(a) P(rush_hour, sirens)

Question 3: Variable Elimination.

Pick an ordering: rush hour, bad weather, accident, traffic jam, sirens

```
Initialize:
```

$$P(R)$$
, $P(B)$, $P(A \mid B)$, $P(T \mid R, B, A)$, $P(S \mid A)$, $\delta(R, 1)$

Eliminate R:
$$m_R(T, B, A) = \sum_r P(r) P(T \mid r, B, A) \delta(r, 1)$$

 $P(R), P(B), P(A \mid B), P(T \mid R, B, A), P(S \mid A), \frac{\delta(R, 1)}{\delta(R, 1)}$
 $\Rightarrow P(B), P(A \mid B), P(S \mid A), m_R(T, B, A)$

Eliminate B:
$$m_B(A, T) = \sum_b P(b) P(A \mid b) m_R(T, b, A)$$

 $P(B), P(A \mid B), P(S \mid A), m_R(T, B, A)$
 $P(S \mid A) m_B(A, T)$

Eliminate A:
$$m_A(S, T) = \sum_a P(S \mid a) m_B(a, T)$$

 $\frac{P(S \mid A) m_B(A, T)}{\Rightarrow m_A(S, T)}$

Eliminate T:
$$m_T(S) = \sum t m_A(S, t)$$

 $m_A(S, T)$
 $\Rightarrow m_T(S)$