Devoir à la maison n°07 : corrigé

Problème 1 — Moyenne arithmético-géométrique

Partie I - Etude du cas général

1. Soit $n \in \mathbb{N}^*$.

$$\nu_n-u_n=\frac{\left(\sqrt{\nu_{n-1}}-\sqrt{u_{n-1}}\right)^2}{2}\geqslant 0$$

donc $u_n \leq v_n$.

2. Soit $n \in \mathbb{N}^*$. Alors

$$u_{n+1}-u_n=\sqrt{u_n}(\sqrt{v_n}-\sqrt{u_n})\geqslant 0 \qquad \qquad v_{n+1}-v_n=\frac{u_n-v_n}{2}\leqslant 0$$

Ceci prouve que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont respectivement croissante et décroissante.

3. Soit $n \in \mathbb{N}^*$.

$$\nu_{n+1}-u_{n+1}-\frac{\nu_n-u_n}{2}=u_n-\sqrt{u_n\nu_n}=\sqrt{u_n}(\sqrt{u_n}-\sqrt{\nu_n})\leqslant 0$$

donc

$$\nu_{n+1}-u_{n+1}\leqslant \frac{\nu_n-u_n}{2}$$

4. Tout d'abord, $u_n \leqslant v_n$ pour tout $n \in \mathbb{N}$ donc $v_n - u_n \geqslant 0$ pour tout $n \in \mathbb{N}$. Ensuite $v_1 - u_1 \leqslant \frac{v_1 - u_1}{2^{1-1}}$. Supposons qu'il existe $n \in \mathbb{N}^*$ tel que $v_n - u_n \leqslant \frac{v_1 - u_1}{2^{n-1}}$. Alors

$$\nu_{n+1} - u_{n+1} \leqslant \frac{\nu_n - u_n}{2} \leqslant \frac{|a-b|}{2^{n+1}}$$

Par récurrence, $\nu_n - u_n \leqslant \frac{\nu_1 - u_1}{2^{n-1}}$ pour tout $n \in \mathbb{N}^*$.

5. Le théorème des gendarmes garantit que $\lim_{n\to+\infty} \nu_n - u_n = 0$. Puisque (u_n) et (ν_n) sont respectivement croissante et décroissante à partir du rang 1, elles sont adjacentes à partir du rang 1 et convergent vers une limite commune M(a,b).

Partie II - Propriétés de la moyenne arithmético-géométrique

On reprend les deux suites (u_n) et (v_n) de la partie I.

- 1. Notons (\mathfrak{u}'_n) et (\mathfrak{v}'_n) les suites de premiers termes respectifs $\mathfrak{u}'_0=\mathfrak{b}$ et $\mathfrak{v}'_0=\mathfrak{a}$ et vérifiant les mêmes relations de récurrence que les suites (\mathfrak{u}_n) et (\mathfrak{v}_n) . La partie I montre que (\mathfrak{u}'_n) et (\mathfrak{v}'_n) convergent toutes deux vers $M(\mathfrak{b},\mathfrak{a})$. Par ailleurs, on vérifie sans peine que $\mathfrak{u}_1=\mathfrak{u}'_1$ et $\mathfrak{v}_1=\mathfrak{v}'_1$. Les suites (\mathfrak{u}_n) et (\mathfrak{u}'_n) d'une part et les suites (\mathfrak{v}_n) et (\mathfrak{v}'_n) d'autre part sont égales à partir du rang 1. Ceci montre que les suites (\mathfrak{u}'_n) et (\mathfrak{v}'_n) convergent également vers $M(\mathfrak{a},\mathfrak{b})$. Par unicité de la limite, $M(\mathfrak{a},\mathfrak{b})=M(\mathfrak{b},\mathfrak{a})$.
- 2. On vérifie sans peine que les suites (λu_n) et (λv_n) vérifient les mêmes relation de récurrence que les suites (u_n) et (v_n) . En effet, pour tout $n \in \mathbb{N}$,

$$\begin{split} \lambda u_{n+1} &= \lambda \sqrt{u_n \nu_n} \\ &= \sqrt{\lambda^2 u_n \nu_n} \quad \text{car λ est positif} \\ &= \sqrt{(\lambda u_n)(\lambda \nu_n)} \\ \lambda \nu_{n+1} &= \lambda \frac{u_n + \nu_n}{2} \\ &= \frac{\lambda u_n + \lambda \nu_n}{2} \end{split}$$

La partie I montre alors que les suites (λu_n) et (λv_n) convergent vers la même limite $M(\lambda a, \lambda b)$. Mais comme les suites (u_n) et (v_n) convergent toutes deux vers M(a,b), les suites (λu_n) et (λv_n) convergent également vers $\lambda M(a,b)$. Par unicité de la limite, on obtient $M(\lambda a, \lambda b) = \lambda M(a,b)$.

- 3. Puisque (u_n) et (v_n) sont respectivement croissante et décroissante à partir du rang 1 et convergent vers M(a,b), $u_n \leq M(a,b) \leq v_n$ pour tout $n \in \mathbb{N}^*$. En particulier, $u_1 \leq M(a,b) \leq v_1$, ce qui donne le résultat escompté.
- 4. Les suites (u_{n+1}) et (v_{n+1}) sont de premier terme \sqrt{ab} et $\frac{a+b}{2}$ et suivent les mêmes relations de récurrence que (u_n) et (v_n) donc convergent vers $M\left(\sqrt{ab},\frac{a+b}{2}\right)$. Par ailleurs, ce sont des suites extraites de (u_n) et (v_n) donc elles convergent vers M(a,b). On en déduit que $M(a,b)=M\left(\sqrt{ab},\frac{a+b}{2}\right)$.

Partie III - Étude d'une fonction

- 1. En reprenant les deux suites (u_n) et (v_n) de la partie I avec a=1 et b=0, on prouve sans peine que la suite (u_n) est constamment nulle à partir du rang 1. On en déduit que F(0)=0. La question II.3 montre que $1 \le M(1,1) \le 1$ i.e. F(1)=1.
- 2. Soit $(a,b) \in (\mathbb{R}_+)^2$. Les suites (\mathfrak{u}_n) et (\mathfrak{v}_n) définies dans la partie I sont positives donc leur limite commune l'est également i.e. $M(a,b) \geqslant 0$.

 On en déduit que pour tout $x \in \mathbb{R}_+$, $F(x) = M(1,x) \geqslant 0$.
- 3. Soit $(x,x')\in (\mathbb{R}_+)^2$ tel que $x\leqslant x'$. On définit les suites $(u_n),(v_n),(u_n')$ et (v_n') telles que $u_0=1,v_0=x,u_0'=1$ et $v_0'=x'$ et vérifiant pour tout $n\in \mathbb{N}$

$$u_{n+1} = \sqrt{u_n v_n} \qquad \qquad v_{n+1} = \frac{u_n + v_n}{2} \qquad \qquad u'_{n+1} = \sqrt{u'_n v'_n} \qquad \qquad v'_{n+1} = \frac{u'_n + v'_n}{2}$$

On prouve par récurrence que pour tout $n \in \mathbb{N}$, $u_n \leqslant u_n'$ et $v_n \leqslant v_n'$. Par ailleurs, les suites (u_n) et (v_n) convergent vers F(x) tandis que les suites (u_n') et (v_n') convergent vers F(x'). Par passage à la limite, $F(x) \leqslant F(x')$. Ceci prouve la croissance de F sur \mathbb{R}_+ .

- **4. a.** Il suffit d'appliquer la question **II.3** avec a = 1 et b = x.
 - **b.** On rappelle que F(1) = 1. A l'aide de l'inégalité de la question précédente, on a donc pour tout $x \in]1, +\infty[$,

$$\frac{\sqrt{x}-1}{x-1} \leqslant \frac{\mathsf{F}(x)-\mathsf{F}(1)}{x-1} \leqslant \frac{1}{2}$$

et pour tout $x \in [0, 1[$,

$$\frac{1}{2} \leqslant \frac{F(x) - F(1)}{x - 1} \leqslant \frac{\sqrt{x} - 1}{x - 1}$$

ou encore pour tout $x \in]1, +\infty[$,

$$\frac{1}{\sqrt{x}-1}\leqslant \frac{F(x)-F(1)}{x-1}\leqslant \frac{1}{2}$$

et pour tout $x \in]0, 1[$

$$\frac{1}{2} \leqslant \frac{\mathsf{F}(\mathsf{x}) - \mathsf{F}(\mathsf{1})}{\mathsf{x} - \mathsf{1}} \leqslant \frac{\mathsf{1}}{\sqrt{\mathsf{x}} + \mathsf{1}}$$

Le théorème des gendarmes permet alors d'affirmer que $\lim_{x\to 1^-}\frac{F(x)-F(1)}{x-1}=\lim_{x\to 1^+}\frac{F(x)-F(1)}{x-1}=\frac{1}{2}$ et donc $\lim_{x\to 1^-}\frac{F(x)-F(1)}{x-1}=\frac{1}{2}$. Finalement, F est dérivable en 1 et $F'(1)=\frac{1}{2}$.

5. a. Soit $x \in \mathbb{R}_+$.

$$\begin{split} F(x) &= M(1,x) \\ &= M\left(\sqrt{x}, \frac{1+x}{2}\right) \qquad \text{d'après II.4} \\ &= M\left(\frac{1+x}{2}, \sqrt{x}\right) \qquad \text{d'après II.1} \\ &= \frac{1+x}{2}M\left(1, \frac{2\sqrt{x}}{1+x}\right) \qquad \text{d'après II.2} \\ &= \frac{1+x}{2}F\left(\frac{2\sqrt{x}}{1+x}\right) \end{split}$$

b. Puisque F est croissante et positive, elle admet une limite finie ℓ à droite en 0. Or $\lim_{x\to 0^+} \frac{2\sqrt{x}}{1+x} = 0^+$ donc la question précédente montre que $\ell = \frac{\ell}{2}$ et donc $\ell = 0$. Il s'ensuit que $\lim_{0^+} F = 0 = F(0)$ donc F est continue en 0.

D'après la question III.4.a, $F(x) \geqslant \sqrt{x}$ pour tout $x \in \mathbb{R}_+^*$. Il s'ensuit que pour tout $x \in \mathbb{R}_+^*$,

$$\frac{F(x) - F(0)}{x - 0} = \frac{F(x)}{x} \geqslant \frac{1}{\sqrt{x}}$$

Par théorème de minoration, $\lim_{x\to 0^+} \frac{F(x)-F(0)}{x-0} = +\infty$ donc F n'est pas dérivable en 0. On peut même dire que la courbe représentative de F admet une tangente verticale en l'origine.

- **6. a.** Pour tout $x \in \mathbb{R}_+$, $F(x) \geqslant \sqrt{x}$ donc, par théorème de minoration, $\lim_{\infty} F = +\infty$.
 - **b.** Soit $x \in \mathbb{R}_+^*$.

$$F(x) = M(1, x)$$

$$= xM\left(\frac{1}{x}, 1\right) \qquad \text{d'après II.2}$$

$$= xM\left(1, \frac{1}{x}\right) \qquad \text{d'après II.1}$$

$$= xF\left(\frac{1}{x}\right)$$

c. D'après la question précédente, pour tout $x \in \mathbb{R}_+^*$,

$$\frac{F(x)}{x} = F\left(\frac{1}{x}\right)$$

et

$$\lim_{x\to +\infty} F\left(\frac{1}{x}\right) = \lim_{u\to 0^+} F(u) = 0$$

donc $\lim_{x\to+\infty} \frac{F(x)}{x} = 0$ i.e. F(x) = o(x).

d. Soit $x \in \mathbb{R}_+^*$. D'après la question **III.5.a**

$$F(x) = \frac{1}{2}(1+x)F\left(\frac{2\sqrt{x}}{1+x}\right)$$

Mais d'après la question III.6.b

$$F\left(\frac{2\sqrt{x}}{1+x}\right) = \frac{2\sqrt{x}}{1+x}F\left(\frac{1+x}{2\sqrt{x}}\right)$$

On en déduit le résultat voulu.

e. D'après la question précédente, pour tout $x \in \mathbb{R}_+^*$,

$$\frac{F(x)}{\sqrt{x}} = F\left(\frac{1+x}{2\sqrt{x}}\right)$$

 $\text{Or } \lim_{x \to +\infty} \frac{1+x}{2\sqrt{x}} = +\infty \text{ et } \lim_{u \to +\infty} F(u) = +\infty \text{ donc } \lim_{x \to +\infty} \frac{F(x)}{\sqrt{x}} = \lim_{x \to +\infty} F\left(\frac{1+x}{2\sqrt{x}}\right) = +\infty. \text{ Ceci signifie que } \sqrt{x} \underset{x \to +\infty}{=} o\left(F(x)\right).$

7. **from** matplotlib.pyplot **import** plot

from math import sqrt
from numpy import logspace

```
def F(x,eps) :
    u=1
    v=x
    while abs(u-v)>eps :
        u,v=sqrt(u*v),(u+v)/2
    return (u+v)/2
```

```
x=logspace(-3,1,1000)
y=[F(t,1e-3) for t in x]
plot(x,y)
y=[sqrt(t) for t in x]
plot(x,y)
y=[(1+t)/2 \text{ for } t \text{ in } x]
plot(x,y)
```


SOLUTION 1.

1. Posons $f: x \mapsto x + \tan x$. f est dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ f(x) = 2 + \tan^2 x > 0$$

f est donc strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.

Par ailleurs, f est continue sur $]-\frac{\pi}{2},\frac{\pi}{2}[$. Enfin, f admet $-\infty$ pour limite en $-\frac{\pi}{2}$ et $+\infty$ pour limite en $+\infty[$.

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = n admet une unique solution sur $-\frac{\pi}{2}, \frac{\pi}{2}$.

2. Soit $n \in \mathbb{N}$. Par définition de u_n ,

$$\tan u_n = n - u_n$$

 $\begin{array}{l} \text{Or } u_n \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\text{ donc } u_n = \arctan(\tan u_n). \text{ Il s'ensuit que } u_n = \arctan(n-u_n). \\ \text{Pour tout } n \in \mathbb{N}, u_n < \frac{\pi}{2} \text{ donc } n-u_n > n-\frac{\pi}{2}. \text{ Par th\'eor\`eme de minoration, } \lim_{n \to +\infty} n-u_n = +\infty. \text{ Puisque } n = -\infty. \end{array}$ arctan admet pour limite $\frac{\pi}{2}$ en $+\infty$, $\lim_{n\to+\infty} u_n = \frac{\pi}{2}$.

3. Posons $g: x \in \mathbb{R}_+^* \mapsto \arctan x + \arctan \frac{1}{x}$. g est dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$

$$g'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \frac{1}{1+\frac{1}{x^2}} = 0$$

Ainsi g est constante sur l'intervalle \mathbb{R}_+^* . Puisque $g(1)=\frac{\pi}{2}$, g est constante égale à $\frac{\pi}{2}$ sur cet intervalle. On en déduit le résultat demandé.

4. Puisque $u_n<\frac{\pi}{2}\leqslant 2,$ $n-u_n>0$ pour tout entier $n\geqslant 2.$ D'après la question précédente,

$$u_n = \arctan(n - u_n) = \frac{\pi}{2} - \arctan\left(\frac{1}{n - u_n}\right)$$

Par opérations sur les limites, $\lim_{n \to +\infty} \frac{1}{n-u_n} = 0$. Or $\arctan x \underset{x \to 0}{\sim} x$ donc $\arctan \left(\frac{1}{n-u_n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n-u_n}$. Puisque (u_n) est bornée, $n-u_n \underset{n \to +\infty}{\sim} n$ donc $\frac{1}{n-u_n} \underset{n \to +\infty}{\sim} \frac{1}{n}$. Ainsi

$$\arctan\left(\frac{1}{n-u_n}\right) \underset{n\to+\infty}{\sim} \frac{1}{n}$$

ou encore

$$\arctan\left(\frac{1}{n-u_n}\right) \underset{\scriptscriptstyle n \to +\infty}{=} \frac{1}{n} + o\left(\frac{1}{n}\right)$$

Il s'ensuit que

$$u_n = \frac{\pi}{2} - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

5. Tout d'abord

$$\frac{1}{n-u_n} = \frac{1}{n} \cdot \frac{1}{1-\frac{u_n}{n}}$$

Puisque $\lim_{n\to+\infty}\frac{u_n}{n}=0$,

$$\frac{1}{1-\frac{u_n}{n}}=1+\frac{u_n}{n}+\frac{u_n^2}{n^2}+o\left(\frac{u_n^2}{n^2}\right)$$

D'après la question précédente,

$$\frac{u_n}{n} \underset{n \to +\infty}{=} \frac{\pi}{2n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

puis

$$\frac{u_n^2}{n^2} \underset{n \to +\infty}{=} \frac{\pi^2}{n^2} + o\left(\frac{1}{n^2}\right)$$

On en déduit que

$$\frac{1}{1 - \frac{u_n}{n}} = 1 + \frac{\pi}{2n} + \frac{\pi^2 - 4}{4n^2} + o\left(\frac{1}{n^2}\right)$$

Finalement,

$$\frac{1}{n-u_n} = \frac{1}{n} \cdot \frac{1}{1-\frac{u_n}{n}} = \frac{1}{n} + \frac{\pi}{2n^2} + \frac{\pi^2-4}{4n^3} + o\left(\frac{1}{n^3}\right)$$

- **6.** On sait que $\frac{1}{1+x^2} = 1-x^2+o(x^2)$. Puisque arctan est la primitive de $x \mapsto \frac{1}{1+x^2}$ qui s'annule en 0, arctan $x = x \frac{x^3}{2} + o(x^3)$.
- 7. On sait que arctan $x = x \frac{x^3}{3} + o(x^3)$. On en déduit via la question précédente que

$$\arctan\left(\frac{1}{n-u_n}\right) \underset{n \to +\infty}{=} \frac{1}{n} + \frac{\pi}{2n^2} + \frac{\pi^2 - 4}{4n^3} - \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)$$
$$\underset{n \to +\infty}{=} \frac{1}{n} + \frac{\pi}{2n^2} + \frac{3\pi^2 - 16}{12n^3} + o\left(\frac{1}{n^3}\right)$$

Finalement

$$u_n \underset{_{n \to +\infty}}{=} \frac{\pi}{2} - \frac{1}{n} - \frac{\pi}{2n^2} - \frac{3\pi^2 - 16}{12n^3} + o\left(\frac{1}{n^3}\right)$$