

Pré-Modelagem em Ciência de Dados

Prof. Rilder S. Pires

MBA em Ciência de Dados

Pré-Modelagem em Ciência de Dados

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

Projeto Final:

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

Observações:

- ▶ Dados da Plataforma SIDRA-IBGE
- ▶ Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ► Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)
- Estimativas de População: (https://sidra.ibge.gov.br/tabela/6579)
- Entregar os notebooks com códigos e explicações.

No módulo passado...

Aula 1:

Revisão: Estatística Básica

▶ Parte Teórica: Probabilidade

▶ Parte Prática: Exemplos, Apresentação dos Dados

Aula 2:

Parte Teórica: Probabilidade e Variáveis Aleatórias

▶ Parte Prática: Exemplos, Exploração dos Dados

Aula 3:

▶ Parte Teórica: Variáveis Aleatórias e Introdução a Distribuições

Parte Prática: Exemplos, Exploração dos Dados

Pré-Modelagem em Ciência de Dados

Ementa:

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
 - ▶ Distribuição de Bernoulli,
 - Distribuição Binomial,
 - ▶ Distribuição de Poisson,
 - Distribuição Geométrica e Hipergeométrica
- Distribuições Contínuas:
 - Distribuição Uniforme,
 - Distribuição Exponencial,
 - Distribuição Normal ou Gaussiana,
 - Cálculo de Probabilidade em Distribuições Normais e Funções lineares de Distribuições Normais.
- Inferência Estatística: Noções de amostragem e estimação.

Pré-Modelagem em Ciência de Dados

Revisão

Funções de distribuição e Funções de probabilidade:

Funções de distribuição e Funções de probabilidade:

Função de Distribuição Cumulativa:

Funções de distribuição e Funções de probabilidade:

Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

Funções de distribuição e Funções de probabilidade:

Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

Definição:

Funções de distribuição e Funções de probabilidade:

Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

Definição:

A função de distribuição cumulativa, ou CDF (cumulative distribution function), é a função $F_X : \mathbb{R} \to [0,1]$ definida por.

$$F_X(x) = \mathbb{P}(X \le x)$$

Funções de distribuição e Funções de probabilidade:

Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

Definição:

A função de distribuição cumulativa, ou CDF (cumulative distribution function), é a função $F_X : \mathbb{R} \to [0,1]$ definida por.

$$F_X(x) = \mathbb{P}(X \le x)$$

► A função de distribuição cumulativa contém efetivamente toda a informação sobre a variável aleatória.

Função de Probabilidade:

Função de Probabilidade: Definição:

Função de Probabilidade:

Definição:

▶ X é **discreta** se receber valores contáveis $\{x_1, x_2, ...\}$. Definimos a **função de probabilidade** para X por

$$f_X(x) = \mathbb{P}(X = x)$$

Função de Probabilidade:

Definição:

▶ X é **discreta** se receber valores contáveis $\{x_1, x_2, ...\}$. Definimos a **função de probabilidade** para X por

$$f_X(x) = \mathbb{P}(X = x)$$

▶ Assim, $f_X(x) \ge 0$ para todos os $x \in \mathbb{R}$ e $\sum_i f_X(x_i) = 1$.

Função de Probabilidade:

Definição:

▶ X é **discreta** se receber valores contáveis $\{x_1, x_2, ...\}$. Definimos a **função de probabilidade** para X por

$$f_X(x) = \mathbb{P}(X = x)$$

- Assim, $f_X(x) \ge 0$ para todos os $x \in \mathbb{R}$ e $\sum_i f_X(x_i) = 1$.
- \blacktriangleright A função de distribuição cumulativa X é relacionada com f_X por

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{x_i < x} f_X(x_i)$$

Função Densidade de Probabilidade:

Função Densidade de Probabilidade: Definição:

Função Densidade de Probabilidade:

Definição:

▶ Uma variável aleatória X é **contínua** se houver uma função f_X de modo que $f_X(x) \ge 0$ para todo x, $\int_{-\infty}^{\infty} f_X(x) dx = 1$ e para todo $a \le b$,

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f_X(x) dx.$$

Função Densidade de Probabilidade:

Definição:

▶ Uma variável aleatória X é **contínua** se houver uma função f_X de modo que $f_X(x) \ge 0$ para todo x, $\int_{-\infty}^{\infty} f_X(x) dx = 1$ e para todo $a \le b$,

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f_X(x) dx.$$

A função f_X é chamada de função densidade de probabilidade. Além disso,

$$F_X(x) = \int_{-\infty}^x f_X(t)dt.$$

e $f_X(x) = F'_X(x)$ em todos os pontos x nos quais F_X é diferenciável.

Variável Discreta × Variável Contínua

Variável Discreta

Função de Probabilidade:

Variável Contínua

Função Densidade de Probabilidade:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt.$$

Pré-Modelagem em Ciência de Dados

Distribuições Discretas

Distribuição Uniforme:

ightharpoonup Seja k > 1 um dado inteiro.

Distribuição Uniforme:

- ightharpoonup Seja k > 1 um dado inteiro.
- \blacktriangleright Suponha que Xtenha a função de massa de probabilidade dada por

$$f(x) = \begin{cases} 1/k & \text{para } x = 1, \dots, k \\ 0 & \text{caso contrário} \end{cases}$$

Distribuição Uniforme:

- ightharpoonup Seja k > 1 um dado inteiro.
- \blacktriangleright Suponha que Xtenha a função de massa de probabilidade dada por

$$f(x) = \begin{cases} 1/k & \text{para } x = 1, \dots, k \\ 0 & \text{caso contrário} \end{cases}$$

▶ Dizemos que X segue um distribuição de uniforme em $\{1, \ldots, k\}$;

Distribuição de Bernoulli:

 \blacktriangleright Seja Xa representação de um lançamento de uma moeda.

Distribuição de Bernoulli:

- ightharpoonup Seja X a representação de um lançamento de uma moeda.
- ► Onde

$$\mathbb{P}(X=1) = p$$

е

$$\mathbb{P}(X=0) = 1 - p$$

para algum $p \in [0, 1]$.

Distribuição de Bernoulli:

- ightharpoonup Seja X a representação de um lançamento de uma moeda.
- ► Onde

$$\mathbb{P}(X=1) = p$$

е

$$\mathbb{P}(X=0) = 1 - p$$

para algum $p \in [0, 1]$.

ightharpoonup Dizemos que X segue um distribuição de Bernoulli

$$X \sim \text{Bernoulli}(p)$$

Distribuição de Bernoulli:

- ightharpoonup Seja X a representação de um lançamento de uma moeda.
- ▶ Onde

$$\mathbb{P}(X=1) = p$$

е

$$\mathbb{P}(X=0) = 1 - p$$

para algum $p \in [0, 1]$.

lacktriangle Dizemos que X segue um distribuição de Bernoulli

$$X \sim \text{Bernoulli}(p)$$

► A função de probabilidade nesse caso é dada por

$$f(x) = p^x (1 - p)^{1 - x}$$

para

$$x \in \{0, 1\}$$

Distribuição Binomial:

▶ Suponha que temos uma moeda que cai cara com probabilidade p para $0 \le p \le 1$. Jogue a moeda n vezes e deixe X ser o número de caras.

Distribuição Binomial:

- Suponha que temos uma moeda que cai cara com probabilidade p para $0 \le p \le 1$. Jogue a moeda n vezes e deixe X ser o número de caras.
- Supondo que os lançamentos sejam independentes e que

$$f(x) = \mathbb{P}(X = x)$$

seja a função de massa. Pode ser mostrado que

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{para } x = 0, \dots, n \\ 0 & \text{caso contrário} \end{cases}$$

Distribuição Binomial:

- Suponha que temos uma moeda que cai cara com probabilidade p para $0 \le p \le 1$. Jogue a moeda n vezes e deixe X ser o número de caras.
- ▶ Supondo que os lançamentos sejam independentes e que

$$f(x) = \mathbb{P}(X = x)$$

seja a função de massa. Pode ser mostrado que

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{para } x = 0, \dots, n \\ 0 & \text{caso contrário} \end{cases}$$

 Uma variável aleatória com esta função de massa é chamada de variável aleatória binomial e escrevemos

$$X \sim \text{Binomial}(n, p).$$

Distribuição Binomial:

- Suponha que temos uma moeda que cai cara com probabilidade p para $0 \le p \le 1$. Jogue a moeda n vezes e deixe X ser o número de caras.
- Supondo que os lançamentos sejam independentes e que

$$f(x) = \mathbb{P}(X = x)$$

seja a função de massa. Pode ser mostrado que

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{para } x = 0, \dots, n \\ 0 & \text{caso contrário} \end{cases}$$

 Uma variável aleatória com esta função de massa é chamada de variável aleatória binomial e escrevemos

$$X \sim \text{Binomial}(n, p).$$

▶ Se $X_1 \sim \text{Binomial}(n_1, p)$ e $X_2 \sim \text{Binomial}(n_2, p)$ então $X_1 + X_2 \sim \text{Binomial}(n_1 + n_2, p)$.

Distribuição de Binomial:

Distribuição de Poisson:

 $\blacktriangleright X$ tem uma distribuição de Poisson com parâmetro $\lambda,$ escrita como

$$X \sim \text{Poisson}(\lambda)$$

se

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!} \quad x \ge 0$$

Distribuição de Poisson:

ightharpoonup X tem uma distribuição de Poisson com parâmetro λ , escrita como

$$X \sim \text{Poisson}(\lambda)$$

se

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!} \quad x \ge 0$$

➤ A distribuição de Poisson é frequentemente usada como modelo para contagens de eventos raros, como decaimento radioativo e acidentes de trânsito.

Distribuição de Poisson:

ightharpoonup X tem uma distribuição de Poisson com parâmetro λ , escrita como

$$X \sim \text{Poisson}(\lambda)$$

se

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!} \quad x \ge 0$$

- ➤ A distribuição de Poisson é frequentemente usada como modelo para contagens de eventos raros, como decaimento radioativo e acidentes de trânsito.
- ► Se $X_1 \sim \text{Poisson}(\lambda_1)$ e $X_2 \sim \text{Poisson}(\lambda_2)$ então $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

Distribuição de Poisson:

Distribuição Geométrica:

▶ X segue uma distribuição Geométrica com parâmetro $p \in (0,1)$, escrita como $X \sim \text{Geom}(p)$ se

$$\mathbb{P}(X = k) = p(1-p)^{k-1}, \quad k \ge 1.$$

Distribuição Geométrica:

▶ X segue uma distribuição Geométrica com parâmetro $p \in (0,1)$, escrita como $X \sim \text{Geom}(p)$ se

$$\mathbb{P}(X = k) = p(1 - p)^{k-1}, \quad k \ge 1.$$

ightharpoonup Exemplo: X é o número de jogadas necessárias para obter a primeira cara quando jogamos uma moeda.

Distribuição Geométrica:

▶ X segue uma distribuição Geométrica com parâmetro $p \in (0,1)$, escrita como $X \sim \text{Geom}(p)$ se

$$\mathbb{P}(X = k) = p(1-p)^{k-1}, \quad k \ge 1.$$

Exemplo: X é o número de jogadas necessárias para obter a primeira cara quando jogamos uma moeda.

Distribuição Hipergeométrica:

lacktriangle X segue uma distribuição Hipergeométrica se

$$\mathbb{P}(X=k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \quad k \ge 1.$$

Distribuição Hipergeométrica:

ightharpoonup X segue uma distribuição Hipergeométrica se

$$\mathbb{P}(X=k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \quad k \ge 1.$$

▶ Representa a probabilidade de k sucessos em n jogadas, sem reposição, de uma população N que contem exatamente K objetos com a caracteristica desejada.

Distribuição Hipergeométrica:

► X segue uma distribuição Hipergeométrica se

$$\mathbb{P}(X=k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \quad k \ge 1.$$

▶ Representa a probabilidade de k sucessos em n jogadas, sem reposição, de uma população N que contem exatamente K objetos com a caracteristica desejada.

Projeto Final:

Projeto Final:

 ${\bf Perguntas}$

Projeto Final:

Perguntas

1. Qual a distribuição da "diversidade" dos municípios da sua região?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?
- 4. e para o Ceará?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?
- 4. e para o Ceará?
- 5. Quais outras variáveis podemos considerar?

Fim

Obrigado pela atenção!