

Exemple - Teoria ordinii parțiale

- $\mathcal{L}_{\dot{<}}$ -structurile sunt $\mathcal{A}=(A,\leq)$, unde \leq este relație binară.

Considerăm următoarele enunțuri:

$$(REFL) := \forall x(x \leq x)$$

$$(ANTISIM) := \forall x \forall y (x \leq y \land y \leq x \rightarrow x = y)$$

$$(TRANZ) := \forall x \forall y \forall z (x \leq y \land y \leq z \rightarrow x \leq z)$$

Definiție

Teoria ordinii parțiale este

$$T := Th((REFL), (ANTISIM), (TRANZ)).$$

- ► T este finit axiomatizabilă;
- ▶ modelele lui *T* sunt mulțimile parțial ordonate.
- ► T axiomatizează clasa relațiilor de ordine parțială.

Exemple - Teoria ordinii stricte

- $\mathcal{L}_{\dot{>}} = (\dot{<}, \emptyset, \emptyset) = (\dot{<})$
- $\mathcal{L}_{\stackrel{.}{\sim}}$ -structurile sunt $\mathcal{A}=(A,<)$, unde < este relație binară.

Considerăm următoarele enunțuri:

$$(IREFL) := \forall x \neg (x \dot{<} x)$$

$$(TRANZ) := \forall x \forall y \forall z (x \dot{<} y \land y \dot{<} z \rightarrow x \dot{<} z)$$

Definitie

Teoria ordinii stricte este

$$T := Th((IREFL), (TRANZ)).$$

- ► T este finit axiomatizabilă;
- ▶ modelele lui *T* sunt mulțimile strict ordonate.
- ► T axiomatizează clasa relațiilor de ordine strictă.

Exemple - Teoria ordinii totale

Considerăm următorul enunț:

$$(TOTAL) := \forall x \forall y (x = y \lor x \dot{<} y \lor y \dot{<} x)$$

Definitie

Teoria ordinii totale este

$$T := Th((IREFL), (TRANZ), (TOTAL)).$$

- ► T este finit axiomatizabilă:
- ▶ modelele lui *T* sunt mulțimile total (liniar) ordonate.
- ► T axiomatizează clasa relațiilor de ordine totală.

Exemple - Teoria ordinii dense

Considerăm următorul enunț:

(DENS) :=
$$\forall x \forall y (x \dot{<} y \rightarrow \exists z (x \dot{<} z \land z \dot{<} y)).$$

Definiție

Teoria ordinii dense este

$$T := Th((IREFL), (TRANZ), (TOTAL), (DENS)).$$

- ► T este finit axiomatizabilă;
- ▶ modelele lui *T* sunt mulţimile dens ordonate.
- T axiomatizează clasa relațiilor de ordine densă.

3

Exemple - Teoria grafurilor

- $ightharpoonup \mathcal{L}_{Graf} = (\dot{E}, \emptyset, \emptyset) = (\dot{E})$
- $ightharpoonup \mathcal{L}_{Graf}$ -structurile sunt $\mathcal{A}=(A,E)$, unde E este relație binară.

Considerăm următoarele enunțuri:

$$\begin{array}{ccc} (\textit{IREFL}) & := & \forall x \neg \dot{E}(x, x) \\ (\textit{SIM}) & := & \forall x \forall y (\dot{E}(x, y) \rightarrow \dot{E}(y, x)). \end{array}$$

Definiție

Teoria grafurilor este

$$T := Th((IREFL), (SIM)).$$

- ► T este finit axiomatizabilă;
- ▶ modelele lui *T* sunt grafurile.

Exemple

Pentru orice $n \ge 2$, notăm următorul enunț cu $\exists^{\ge n}$:

$$\exists x_1 \dots \exists x_n (\neg (x_1 = x_2) \land \neg (x_1 = x_3) \land \dots \land \neg (x_{n-1} = x_n)),$$

pe care îl scriem mai compact astfel:

$$\exists^{\geq n} = \exists x_1 \dots \exists x_n \left(\bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j) \right).$$

Propoziția 2.56

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 1$,

 $A \vDash \exists^{\geq n} \iff A \text{ are cel puţin } n \text{ elemente.}$

Dem.: Exercițiu ușor.

Exemple

Notații

- ▶ Pentru uniformitate, notăm $\exists^{\geq 1} := \exists x(x = x)$.
- $\exists \leq n := \neg \exists \geq n+1$
- $ightharpoonup \exists^{=n} := \exists^{\leq n} \wedge \exists^{\geq n}$

Propoziția 2.57

Pentru orice \mathcal{L} -structură \mathcal{A} și orice n > 1,

$$\mathcal{A} \vDash \exists^{\leq n} \iff A \text{ are cel mult } n \text{ elemente}$$

 $\mathcal{A} \vDash \exists^{=n} \iff A \text{ are exact } n \text{ elemente.}$

Dem.: Exercițiu ușor.

Propoziția 2.58

Fie $T:=Th(\{\exists^{\geq n}\mid n\geq 1\})$. Atunci pentru orice $\mathcal L$ -structură $\mathcal A$, $\mathcal A\models T\iff \mathcal A$ este mulțime infinită.

Dem.: Exercițiu ușor.

Teorema de compacitate

Teorema de compacitate 2.59

O mulțime de enunțuri Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

- unul din cele mai importante rezultate ale logicii de ordinul întâi
- este punctul de pornire al teoriei modelelor, unul din domeniile principale ale logicii matematice

Fie ${\cal L}$ un limbaj de ordinul întâi.

Propoziția 2.60

Clasa \mathcal{L} -structurilor finite nu este axiomatizabilă, adică nu există o mulțime de enunțuri Γ astfel încât

(*) pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models \Gamma \iff \mathcal{A}$ este finită.

Dem.: Presupunem prin reducere la absurd că există $\Gamma \subseteq Sen_{\mathcal{L}}$ a.î. (*) are loc. Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie \mathcal{A} o \mathcal{L} -structură finită a.î. $|\mathcal{A}| \geq \max\{n_1, \ldots, n_k\}$. Atunci $\mathcal{A} \models \exists^{\geq n_i}$ pentru orice $i = 1, \ldots, k$ și $\mathcal{A} \models \Gamma$ deoarece \mathcal{A} este finită.

Teorema de compacitate - aplicații

Aplicând Teorema de compacitate, rezultă că

$$\Delta = \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

are un model \mathcal{B} .

Deoarece $\mathcal{B} \models \Gamma$, \mathcal{B} este finită.

Deoarece $\mathcal{B} \models \{\exists^{\geq n} \mid n \geq 1\}$, rezultă că \mathcal{B} este infinită.

Am obținut o contradicție.

Corolarul 2.61

Clasa mulțimilor nevide finite nu este axiomatizabilă în $\mathcal{L}_{=}$.

Teorema de compacitate - aplicații

Propoziția 2.62

Clasa \mathcal{L} -structurilor infinite este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Notăm cu \mathcal{K}_{Inf} clasa \mathcal{L} -structurilor infinite. Conform Propozitiei 2.58, pentru orice \mathcal{L} -structură \mathcal{A} .

$$\mathcal{A} \in \mathcal{K}_{\textit{Inf}} \iff A \text{ este infinită} \iff \mathcal{A} \vDash \{\exists^{\geq n} \mid n \geq 1\}.$$

Prin urmare,

$$\mathcal{K}_{Inf} = Mod(\{\exists^{\geq n} \mid n \geq 1\})$$

deci e infinit axiomatizabilă.

Teorema de compacitate - aplicații

Presupunem că \mathcal{K}_{Inf} este finit axiomatizabilă, deci există

$$\Gamma := \{\varphi_1, \dots, \varphi_n\} \subseteq Sen_{\mathcal{L}} \text{ a.i. } \mathcal{K}_{Inf} = Mod(\Gamma).$$

Fie $\varphi := \varphi_1 \wedge \ldots \wedge \varphi_n$. Atunci $\mathcal{K}_{Inf} = Mod(\varphi)$. Rezultă că pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \text{ este finit} \iff \mathcal{A} \notin \mathcal{K}_{\mathit{Inf}} \iff \mathcal{A} \not \models \varphi \iff \mathcal{A} \vDash \neg \varphi.$$

Așadar, clasa \mathcal{L} -structurilor finite este axiomatizabilă, ceea ce contrazice Propoziția 2.60.

Corolarul 2.63

Clasa mulțimilor infinite nu este finit axiomatizabilă în $\mathcal{L}_{=}$.

 \square .

Schimbarea limbajelor

Definiția 2.64

Fie $\mathcal{L} = (\mathcal{R}_{\mathcal{L}}, \mathcal{F}_{\mathcal{L}}, \mathcal{C}_{\mathcal{L}}; \operatorname{ari}_{\mathcal{L}})$ și $\mathcal{L}^+ = (\mathcal{R}_{\mathcal{L}^+}, \mathcal{F}_{\mathcal{L}^+}, \mathcal{C}_{\mathcal{L}^+}; \operatorname{ari}_{\mathcal{L}^+})$ două limbaje. Spunem că \mathcal{L}^+ este extensie a lui \mathcal{L} sau că \mathcal{L} este sublimbaj al lui \mathcal{L}^+ dacă

$$\mathcal{R}_{\mathcal{L}} \subseteq \mathcal{R}_{\mathcal{L}^+}; \quad \mathcal{F}_{\mathcal{L}} \subseteq \mathcal{F}_{\mathcal{L}^+}; \quad \mathcal{C}_{\mathcal{L}} \subseteq \mathcal{C}_{\mathcal{L}^+}$$

și ari $_{\mathcal{L}}$ este restricția lui ari $_{\mathcal{L}^+}$ la simbolurile nelogice ale lui \mathcal{L} . Notație: $\mathcal{L} \subseteq \mathcal{L}^+$

Exemple

- $\mathcal{L}_{=} \subseteq \mathcal{L}$ pentru orice limbaj \mathcal{L}
- $\mathcal{L}_{<} = (\dot{<}) \subseteq (\dot{<}; \dot{+}, \dot{\times}, \dot{S}) \subseteq \mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$

10

Schimbarea limbajelor

Propoziția 2.66

Fie $\mathcal{L}\subseteq\mathcal{L}^+$, \mathcal{A} o \mathcal{L} -structură și \mathcal{A}^+ o \mathcal{L}^+ -extensie a sa. Pentru orice enunț φ al lui \mathcal{L} ,

$$\mathcal{A} \vDash \varphi \iff \mathcal{A}^+ \vDash \varphi.$$

Schimbarea limbajelor

Dacă $\mathcal{L}\subseteq\mathcal{L}^+$, atunci orice termen (formulă) din \mathcal{L} este termen (formulă) în \mathcal{L}^+ .

Definiția 2.65

Fie $\mathcal{L}\subseteq\mathcal{L}^+$, \mathcal{A} o \mathcal{L} -structură și \mathcal{A}^+ o \mathcal{L}^+ -structură.

Spunem că \mathcal{A} este \mathcal{L} -redusa lui \mathcal{A}^+ sau că \mathcal{A}^+ este o \mathcal{L}^+ -extensie lui \mathcal{A} dacă

- $|\mathcal{A}| = |\mathcal{A}^+|;$
- ▶ pentru orice $R \in \mathcal{R}_{\mathcal{L}}$, $R^{\mathcal{A}} = R^{\mathcal{A}^+}$;
- ▶ pentru orice $f \in \mathcal{F}_{\mathcal{L}}$, $f^{\mathcal{A}} = f^{\mathcal{A}^+}$;
- ▶ pentru orice $c \in \mathcal{C}_{\mathcal{L}}$, $c^{\mathcal{A}} = c^{\mathcal{A}^+}$.

Notație: $A = A^+ \upharpoonright \mathcal{L}$

Exemplu

 $(\mathbb{N},<,+,\cdot,S,0)$ are redusele $(\mathbb{N},+,\cdot)$, $(\mathbb{N},S,0)$, $(\mathbb{N},<)$.

14

Aplicație a Teoremei de compacitate - mulțimi bine ordonate

Definiția 2.66

Fie A o mulțime nevidă. O relație de bună ordonare pe A este o relație de ordine totală < pe A cu proprietatea că orice submulțime nevidă a lui A are minim.

Spunem că (A, <) este mulțime bine ordonată.

Exemple

 $(\mathbb{N},<)$ este bine ordonată, dar $(\mathbb{Z},<)$ nu este bine ordonată.

Aplicație a Teoremei de compacitate - mulțimi bine ordonate

Propoziția 2.67

Clasa mulțimilor bine ordonate nu este axiomatizabilă în $\mathcal{L}_{\stackrel{.}{\leftarrow}}$.

Dem.: Fie \mathcal{K} clasa $\mathcal{L}_{\stackrel{.}{\sim}}$ -structurilor $\mathcal{A}=(A,<)$ a.î. (A,<) este bine ordonată. Presupunem prin reducere la absurd că \mathcal{K} este axiomatizabilă, deci că există Γ o mulțime de enunțuri ale lui $\mathcal{L}_{\stackrel{.}{\sim}}$ a.î. $\mathcal{K}=Mod(\Gamma)$.

Fie $\mathcal L$ extensia lui $\mathcal L_{\dot{<}}$ obținută prin adăugarea simbolurilor de constantă $c_n,\ n\in\mathbb N.$ Fie

$$\Delta := \Gamma \cup \{c_{n+1} \dot{<} c_n \mid n \in \mathbb{N}\} \subseteq Sen_{\mathcal{L}}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{c_{n+1} \dot{<} c_n \mid n \in I\}, \text{ unde } I \subseteq \mathbb{N} \text{ este finită}$$

$$\subseteq \Gamma \cup \{c_{n+1} \dot{<} c_n \mid n = 0, \dots, M\} \text{ pentru un } M \in \mathbb{N}.$$

Aplicație a Teoremei de compacitate - mulțimi bine ordonate

Fie (A, <) o mulțime infinită bine ordonată. Definim

$$a_{M+1} := \min A, \ a_M := \min A \setminus \{a_{M+1}\}, \ldots,$$

$$a_0 := \min A \setminus \{a_{M+1}, a_M, \dots, a_1\}$$
. Atunci $a_{M+1} < a_M < \dots < a_0$.

Fie A^+ extensia lui A = (A, <) la \mathcal{L} obținută astfel:

$$c_0^{\mathcal{A}^+}=a_0,\ldots,c_{M+1}^{\mathcal{A}^+}=a_{M+1}, \quad c_n^{\mathcal{A}^+}$$
 arbitrar pentru $n>M+1.$

Atunci $A^+ \models \Delta_0$. Aplicând Teorema de compacitate, rezultă că

$$\Delta = \Gamma \cup \{c_{n+1} \dot{<} c_n \mid n \in \mathbb{N}\}$$

are un model $\mathcal{B}^+ = (B, <, b_0, b_1, \ldots, b_n, \ldots)$ (deci $c_n^{\mathcal{B}^+} = b_n$ pentru orice $n \in \mathbb{N}$).

Deoarece $\mathcal{B}^+ \models \Gamma$, rezultă că (B, <) este bine ordonată.

Deoarece $\mathcal{B}^+ \models \{c_{n+1} \dot{<} c_n \mid n \in \mathbb{N}\}$ rezultă că $b_{n+1} < b_n$ pentru orice $n \in \mathbb{N}$. Prin urmare, submulțimea nevidă

$$S := \{b_n \mid n \in \mathbb{N}\}$$
 nu are minim.

Am obținut o contradicție.

