Statistics and Sampling Distributions

In a typical statistical problem, we have a random variable whose underlying probability distribution is known, but its parameters are unknown; e.g.,

X ~ Exp(M)

X ~ N(µ,62)

X~ Poisson())

* We represent the parameters of these distributions by 0; eg.,

X = Exp(B)

XN N(OH BZ)

X ~ Poisson (0)

- we we call 0 a parameter of the distribution.
- * The goal is to estimate the unknown & based on the available data or observations.
- which summarizes (reduces) the data.
- Let us assume that sample size read as parametrized by θ^{11} $X_1, X_2, \dots, X_n \sim \hat{f}(x; 0)$

The sequence of random variables X1/X2/--, Xn is called a sample, where each of the random variables is called observations

walues taken by each observation using lower-case Roman letters:

1,1x2, -- , xn

these are realized observations once the sample is drawn

* Note that a statistic is always a function of the sample: $T = g(X_1/X_2, ..., X_n)$

e.g.,

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$X_{(n)} = \max(X_1, X_2, \dots, X_n)$$

* Estimator vs. Estimate:

While we call I an estimator of 0, we call

(+5 realization t an estimate of 0.

be Once the sample is drawn, then \pm is called the realization of the statistics T, where $\pm = 9(x_1, x_2, ..., x_n)$

Note: A sample is random if X1/X2, --, Xn ~ f(x;0)

Order Statistics

* Let XIIX21-1Xn be a random sample from the distribution $f(x; \theta)$.

Then, $X_{(1)}$, $X_{(2)}$, $X_{(2)}$, represents the order statistic associated to the random sample.

Q. Find the sampling distribution of maximum order atosistics.

Let Y= max (X1, X2, ..., Xn)

$$F_{\gamma}(y) = P(\gamma \langle y \rangle)$$

$$F_{\chi}(y) = \left(F_{\chi}(y)\right)^{n}$$

$$f_{y}(y) = n f_{x}(y) (F_{x}(y))^{n-1}$$

Exp. X, X21-, Xn ~ Uniform (0,1)

alternatively
$$f_{y}(y) = ny^{n-1}$$

$$f_{(x)} = nx^{n-1}$$

$$X_{(n)}$$

$$f(x) = nx^{n-1}$$

$$X_{(n)}$$