NOTE DI MECCANICA QUANTISTICA

Manuel Deodato

INDICE

1	Struttura matematica della meccanica quantistica			3
	1.1	Introd	luzione	3
		1.1.1	Notazione bra-ket	3
		1.1.2	Operatori	4
		1.1.3	Operatori autoaggiunti	4
		1.1.4	Commutatori	5
	1.2	Prodo	otto esterno	5
		1.2.1	Proiettori	5
		1.2.2	Completezza di una base e valore di aspettazione di un osservabile	6
		1.2.3	Cambiamento di base	6
	1.3	Appli	cazioni per la meccanica quantistica	6
		1.3.1	Rappresentazione delle coordinate	6
			Rappresentazione degli impulsi	7
		1.3.3	Misura di un osservabile	7
		1.3.4	Principi della meccanica quantistica	7
		1.3.5	Spazio di Hilbert proiettivo, sistemi puri e misti	8
		1.3.6	Proiettore per sistemi puri	8
		1.3.7	Flusso di probabilità ed equazione di continuità	9
2	Introduzione alla meccanica quantistica			10
	2.1	Evolu	zione temporale	10
		2.1.1	Equazione di Shrödinger per gli stati	10
		2.1.2	Soluzione dell'equazione	10
		2.1.3	Equazione di Shrödinger per la funzione d'onda	10
		2.1.4	Equazione di Shrödinger per il proiettore	11
	2.2	Evolu	zione temporale per gli operatori	11
		2.2.1	Il quadro di Shrödinger	11
		2.2.2	Il quadro di Heisenberg	12
		2.2.3	Evoluzione delle misure	12
	2.3	Simm	etrie e operatore impulso	12
		2.3.1	Traslazioni	12
		2.3.2	L'operatore impulso	13
		2.3.3	Funzione d'onda degli impulsi	13
		2.3.4	Simmetrie per stati che evolvono temporalmente	14
		2.3.5	Commutatore di \hat{p} e \hat{X}	14
	2.4	Il prin	ncipio di indeterminazione	15
		2.4.1	Introduzione	15
		2.4.2	Algebra degli operatori sottratti	15
		2.4.3	Il principio di indeterminazione	16
	2.5	Alcun	i esempi di \hat{H} per sistemi quantistici	16
	-	2.5.1	Sistema di due corpi	16
		2.5.2	Particella in campo esterno	17
	2.6	•	llatore armonico	17
		2.6.1	Operatori di creazione e distruzione	17
		2.6.2	Funzione d'onda per l'oscillatore armonico	18

1 Struttura matematica della meccanica quantistica

1.1 Introduzione

DEFINIZIONE 1.1 — PRODOTTO SCALARE.

Per V spazio vettoriale su \mathbb{C} e $\psi, \phi \in V$, si definisce $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ come:

- $\langle \psi, \phi \rangle \in \mathbb{C}$;
- $\langle \psi, \phi \rangle = \langle \phi, \psi \rangle^*$;
- $\langle \psi, c_1 \phi_1 + c_2 \phi_2 \rangle = c_1 \langle \psi, \phi_1 \rangle + c_2 \langle \psi, \phi_2 \rangle$, con $c_1, c_2 \in \mathbb{C}$;
- $\langle \phi, \phi \rangle > 0$ e $\langle \phi, \phi \rangle = 0 \iff \phi = 0$.

Dato $\phi \in V$, questo induce la **norma**:

$$\|\phi\| \stackrel{\text{def}}{=} \sqrt{\langle \phi, \phi \rangle} \tag{1.1.1}$$

Si ricordano le seguenti disuguaglianze:

Schwarz:
$$|\langle \phi, \psi \rangle|^2 \le \langle \phi, \phi \rangle \langle \psi, \psi \rangle$$

Triangolare: $\|\phi + \psi\| \le \|\psi\| + \|\phi\|$ (1.1.2)

TEOREMA 1.1 — TEOREMA DI RIESZ.

Dato T operatore lineare limitato agente su spazio di Hilbert \mathcal{H} , allora $\exists f \in \mathcal{H} : \forall \phi \in \mathcal{H} \Rightarrow T(\phi) \equiv \langle f, \phi \rangle$. Inoltre, $\|T\| = \|f\|$.

OSSERVAZIONE 1.1 — FUNZIONALI E OPERATORI.

Un funzionale lineare è un operatore lineare F che agisce su uno spazio vettoriale V su \mathbb{K} e restituisce un valore nel campo; formalmente: $F:V\to\mathbb{K}$. In generale, gli operatori non restituiscono valori in \mathbb{K} , mentre i funzionali sì.

Gli operatori rappresentano gli osservabili, mentre i funzionali sono usati per calcolare aspettazione e probabilità.

1.1.1 Notazione bra-ket

Sia V uno spazio vettoriale e V' il suo duale; si definiscono:

- per $\phi \in V \longrightarrow |\phi\rangle \in V$;
- per $F \in V' \longrightarrow \langle F | \in V'$.

Per Riesz, per qualche $f \in V$:

$$\langle F|\phi \rangle \stackrel{\mathrm{def}}{=} F(\phi) = \langle f,\phi \rangle \Rightarrow F(\phi) \leftrightarrow \langle f|\phi \rangle$$
 (1.1.3)

Visto che $\langle \phi | \psi \rangle = \langle \phi, \psi \rangle$, allora:

$$\langle c\phi | = c^* \langle \phi | \longleftrightarrow | c\phi \rangle = c | \phi \rangle$$
 (1.1.4)

1.1.2 Operatori

Si considerano vettori, o **stati**, in uno spazio di Hilbert \mathcal{H} . Un operatore che agisce su tale spazio è definito come $\hat{A}:\mathcal{H}\to\mathcal{H}$, quindi $\hat{A}|\phi\rangle\in\mathcal{H}$. Gli operatori di interesse saranno **lineari**.

Se \hat{A} è limitato (quindi continuo), dato $|\psi\rangle \in \mathcal{H}$, con $\{\phi_i\}$ base ortonormale:

$$\begin{cases} \hat{A} |\psi\rangle = |\phi\rangle = \sum_{i=1}^{+\infty} c_i |\phi_i\rangle \\ \hat{A} |\psi\rangle = \sum_{i=1}^{+\infty} b_i \hat{A} |\phi_i\rangle \end{cases}$$

si nota che

$$\langle \phi_j | \hat{A} \psi \rangle = \langle \phi_j | \left(\sum_{i=1}^{+\infty} b_i \hat{A} | \phi_i \rangle \right) = \sum_{i=1}^{+\infty} b_i \underbrace{\langle \phi_j | \hat{A} | \phi_i \rangle}_{=A_{i:i}}$$
(1.1.5)

dove A_{ji} è un elemento di matrice; infatti

$$\langle \phi_j | \phi \rangle = \langle \phi_j | \hat{A} | \psi \rangle = \sum_{i=1}^{+\infty} c_i \langle \phi_j | \phi_i \rangle = c_j$$

da cui, unendo le uguaglianze:

$$\sum_{i=1}^{+\infty} A_{ji} b_i = c_j$$

Sia \hat{A} lineare; l'aggiunto è \hat{A}^{\dagger} e tale che $\langle \phi, \hat{A}\psi \rangle = \langle \hat{A}^{\dagger}\phi, \psi \rangle$. Allora, in notazione bra-ket:

$$\langle w| = \langle \phi | \hat{A}^{\dagger} \longleftrightarrow | w \rangle = \hat{A} | \phi \rangle$$
 (1.1.6)

Inoltre

$$\langle \psi, \phi \rangle^* = \langle \phi, \psi \rangle \implies \langle \psi | \phi \rangle^* = \langle \phi | \psi \rangle$$

$$\Rightarrow \langle \psi | \hat{A}^{\dagger} | \phi \rangle^* = \langle \phi | \hat{A} | \psi \rangle$$
(1.1.7)

Infine, se $\{\phi_i\}$ base ortonormale:

$$A_{ij}^{\dagger} = \langle \phi_i | \hat{A}^{\dagger} | \phi_j \rangle = \langle \phi_j | \hat{A} | \phi_i \rangle^* = A_{ji}^* \Rightarrow A^{\dagger} = (A^{\top})^*$$
 (1.1.8)

Da questo, segue:

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}; (cA)^{\dagger} = c^*A^{\dagger}$$
(1.1.9)

1.1.3 Operatori autoaggiunti

DEFINIZIONE 1.2 — OPERATORE AUTOAGGIUNTO.

Sia \mathcal{H} uno spazio di Hilbert complesso e sia A un operatore lineare definito su un dominio $\mathrm{Dom}(A)\subseteq\mathcal{H}$. L'operatore A si dice **autoaggiunto** se soddisfa le seguenti condizioni:

(1). **Densità del dominio:** il dominio Dom(A) è denso nello spazio di Hilbert \mathcal{H} , ovvero:

$$\overline{\mathrm{Dom}(A)} = \mathcal{H}.$$

(2). Simmetria: per ogni $\psi, \phi \in \text{Dom}(A)$,

$$\langle \psi, A\phi \rangle = \langle A\psi, \phi \rangle.$$

(3). **Uguaglianza con l'aggiunto:** il dominio di A coincide con quello del suo aggiunto A^{\dagger} , e i due operatori coincidono, ovvero:

$$Dom(A) = Dom(A^{\dagger})$$
 e $A = A^{\dagger}$.

Essendo $\hat{A}=\hat{A}^{\dagger}$, si ha $A_{ij}=(A_{ij}^*)^{\top}$. Questi sono sempre diagonalizzabili, quindi hanno base ortonormale di autovettori. Visto che $\langle \phi_1|\hat{A}|\phi_2\rangle=\langle \phi_2|\hat{A}|\phi_1\rangle^*$, allora $\langle \psi|\hat{A}|\psi\rangle\in\mathbb{R}$ ed è il **valore di aspettazione**.

Sia $|\psi\rangle$ autostato di \hat{A} autoaggiunto; allora $\hat{A}\,|\psi\rangle=a\,|\psi\rangle\Rightarrow\langle\psi|\,\hat{A}=\langle\psi|\,a^*.$ Si nota, però, che:

$$a \langle \psi | \psi \rangle = \langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \psi \rangle = a^* \langle \psi | \psi \rangle \iff a = a^* \Rightarrow a \in \mathbb{R}$$
 (1.1.10)

Siano $|\psi_1\rangle$, $|\psi_2\rangle$ tali che $\hat{A}|\psi_1\rangle=a_1|\psi_1\rangle$ e $\hat{A}|\psi_2\rangle=a_2|\psi_2\rangle$, con $a_1\neq a_2$; allora:

$$a_{2} \langle \psi_{1} | \psi_{2} \rangle = \langle \psi_{1} | \hat{A} | \psi_{2} \rangle = \langle \psi_{1} | \hat{A}^{\dagger} | \psi_{2} \rangle = a_{1}^{*} \langle \psi_{1} | \psi_{2} \rangle = a_{1} \langle \psi_{1} | \psi_{2} \rangle$$

$$\Rightarrow \langle a_{2} - a_{1} \rangle \langle \psi_{1} | \psi_{2} \rangle = 0 \iff |\psi_{1} \rangle \perp |\psi_{2} \rangle$$

$$(1.1.11)$$

1.1.4 Commutatori

Definizione 1.3 — Commutatore.

Siano \hat{A}, \hat{B} due operatori; il commutatore è: $[\hat{A}, \hat{B}] \stackrel{\text{def}}{=} \hat{A}\hat{B} - \hat{B}\hat{A}$. Quindi se \hat{A}, \hat{B} commutano, si ha $[\hat{A}, \hat{B}] = 0$.

TEOREMA 1.2 — SPETTRO COMUNE.

Se \hat{A} , \hat{B} sono autoaggiunti e commutano, allora condividono una base di autovettori.

1.2 Prodotto esterno

Applicazione $\rho: V \times V \to \mathcal{O}$, con \mathcal{O} spazio degli operatori lineari. Un esempio di prodotto esterno è l'operatore lineare

$$\hat{O} = |\psi\rangle\langle\phi|: V \to V \tag{1.2.1}$$

Si nota che:

$$\langle v|\hat{O}w\rangle = \langle v|(|\psi\rangle\langle\phi|)w\rangle = \langle v|\psi\rangle\langle\phi|w\rangle = \langle \hat{O}^{\dagger}v|w\rangle \iff O^{\dagger} = |\phi\rangle\langle\psi|$$

1.2.1 Proiettori

Operatore \hat{P} tale che $\hat{P}^2 = \hat{P}$. Un esempio è $\hat{P} = |\psi\rangle\langle\psi|$, con $||\psi|| = 1$ perché:

$$\hat{P}^2 = |\psi\rangle \langle \psi | \psi\rangle \langle \psi | = |\psi\rangle \langle \psi | \equiv \hat{P}$$

1.2.2 Completezza di una base e valore di aspettazione di un osservabile

Un insieme ortonormale $\{|\phi_i\rangle\}$ si dice completo se:

$$\sum_{i=1}^{+\infty} |\phi_i\rangle \left\langle \phi_i \right| = \text{Id}$$
 (1.2.2)

Un insieme ortonormale completo è una base ortonormale di \mathcal{H} , quindi permette di scomporre ogni stato in una combinazione lineare.

1.2.3 Cambiamento di base

Siano $\{|\phi_i\rangle\}_i$, $\{|\psi_i\rangle\}_i$ basi ortonormali. Si esprime una in funzione dell'altra:

$$|\psi_{i}\rangle = \left(\sum_{j=1}^{+\infty} |\phi_{j}\rangle \langle \phi_{j}|\right) |\psi_{i}\rangle = \sum_{j=1}^{+\infty} \langle \phi_{j}|\psi_{i}\rangle |\phi_{j}\rangle \equiv \sum_{j=1}^{+\infty} S_{ij}^{*} |\phi_{j}\rangle$$
(1.2.3)

Per φ generico stato: $|\varphi\rangle=\sum_{i=1}^{+\infty}a_i\,|\phi_i\rangle=\sum_{i=1}^{+\infty}b_i\,|\psi_i\rangle$; allora:

$$\begin{cases} b_{i} = \langle \psi_{i} | \varphi \rangle = \sum_{j=1}^{+\infty} a_{j} \langle \psi_{i} | \phi_{j} \rangle \equiv \sum_{j=1}^{+\infty} S_{ij} a_{j} \\ a_{i} = \langle \phi_{i} | \varphi \rangle = \sum_{j=1}^{+\infty} b_{j} \langle \phi_{i} | \psi_{j} \rangle \equiv \sum_{j=1}^{+\infty} S_{ji}^{*} b_{j} \end{cases}$$

$$(1.2.4)$$

Ora, essendo le due basi ortonormali:

$$\delta_{ij} = \left\langle \phi_i \left| \left(\sum_{k=1}^{+\infty} |\psi_k\rangle \left\langle \psi_k | \right) \phi_j \right\rangle = \sum_{k=1}^{+\infty} \left\langle \phi_i |\psi_k\rangle \left\langle \psi_k | \phi_j \right\rangle = \sum_{k=1}^{+\infty} S_{ki}^* S_{kj}$$
 (1.2.5)

da cui $S^{\dagger}S = \mathrm{Id}$.

1.3 Applicazioni per la meccanica quantistica

1.3.1 Rappresentazione delle coordinate

Uno stato si decompone in maniera diversa a seconda della base; ogni decomposizione è una sua diversa **rappresentazione**.

Sia $\hat{Q}: \mathcal{H} \to \mathcal{H}$ operatore autoaggiunto **posizione**¹, con $\hat{Q}|x\rangle = x|x\rangle^2$. Il suo spettro è continuo, quindi la decomposizione spettrale avviene tramite integrale: dato uno stato $|\psi\rangle \in \mathcal{H}$

$$|\psi\rangle = \int_{-\infty}^{+\infty} \langle x|\psi\rangle |x\rangle \ dx \equiv \int_{-\infty}^{+\infty} \psi(x) |x\rangle \ dx$$
 (1.3.1)

con $\psi(x)$ funzione d'onda dello stato $|\psi\rangle$ e ne indica i coefficienti nella rappresentazione delle coordinate.

¹Indicato anche con \hat{X} .

 $^{^2 \}text{Gli}$ autostati sono le x, mentre $|x\rangle$ rappresenta gli autovettori.

1.3.2 Rappresentazione degli impulsi

Sia $\hat{p}|p\rangle = p|p\rangle$ operatore impulso (autoaggiunto); per $|\psi\rangle \in \mathcal{H}$:

$$|\psi\rangle = \int_{-\infty}^{+\infty} dp \ c(p) |p\rangle \equiv \int_{-\infty}^{+\infty} dp \ \widetilde{\psi}(p) |p\rangle$$
 (1.3.2)

dove $\widetilde{\psi}(p)$ è la funzione d'onda nel dominio degli impulsi e si ottiene trasformando con Fourier $\psi(x)$.

1.3.3 Misura di un osservabile

Sia \hat{A} operatore lineare autoaggiunto¹ con autovalori a_i e autovettori $|\lambda_i\rangle$. Assumendo che $\langle \lambda_i | \lambda_j \rangle = \delta_{ij}$ formino una base ortonormale² e dato un generico $|\psi\rangle = \sum_{i=1}^{+\infty} b_i \, |\lambda_i\rangle$, si nota che :

$$\langle \psi | \hat{A} | \psi \rangle = \left[\sum_{i=1}^{+\infty} b_j^* \langle \lambda_i | \right] \left[\sum_{j=1}^{+\infty} b_j \hat{A} | \lambda_j \rangle \right] = \sum_{i=1}^{+\infty} |b_i|^2 a_i$$
 (1.3.3)

dove si può vedere $|b_i|^2$ come probabilità di ottenere misura a_i da osservabile \hat{A} . In questo senso, deve valere:

$$\sum_{i=1}^{+\infty} |b_i|^2 \stackrel{!}{=} 1$$

Questa condizione è verificata dalla normalizzazione di ciascuno stato:

$$\langle \psi | \psi \rangle = \left[\sum_{i=1}^{+\infty} b_i^* \langle \lambda_i | \right] \left[\sum_{j=1}^{+\infty} b_j | \lambda_j \rangle \right] = \sum_{i,j=1}^{+\infty} b_i^* b_j \langle \lambda_i | \lambda_j \rangle = \sum_{i=1}^{+\infty} |b_i|^2 \stackrel{!}{=} 1 \tag{1.3.4}$$

Per un operatore a spettro continuo \hat{F} , con autovettori $|z\rangle$ relativi ad autovalori z e $|\psi\rangle\in\mathcal{H},\ |\psi\rangle=\int_{-\infty}^{+\infty}f(z)\,|z\rangle\ dz,\ f(z)=\langle z|\psi\rangle$:

$$\langle \psi | \hat{F} | \psi \rangle = \int_{-\infty}^{+\infty} f^*(y) \, \langle y | \, dy \int_{-\infty}^{+\infty} f(z) \hat{F} | z \rangle \, dz$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dy dz \, f^*(y) f(z) z \, \langle y | z \rangle = \int_{-\infty}^{+\infty} z \, |f(z)|^2 \, dz \qquad (1.3.5)$$

$$\langle \psi | \psi \rangle = \int_{-\infty}^{+\infty} |f(z)|^2 \, dz \stackrel{!}{=} 1 \text{ (normalizzazione)}$$

1.3.4 Principi della meccanica quantistica

- (a). Uno stato fisico $|\psi\rangle$ è un vettore in uno spazio di Hilbert \mathcal{H} , ℓ^2 o L^2 . Lo stesso stato può essere equivalentemente moltiplicato per una fase: $e^{i\alpha} |\psi\rangle$.
- (b). Per ogni sistema, ogni stato deve essere tale che $\langle \psi | \psi \rangle = 1$.
- (c). Gli osservabili sono operatori lineari autoaggiunti che agiscono su \mathcal{H} .

¹In generale, ogni operatore in meccanica quantistica, almeno quelli associati ad osservabili, sono operatori lineari autoaggiunti.

²Possono essere sempre costruiti in modo che siano ortonormali.

(d). Il valore di aspettazione di un osservabile \hat{A} relativo ad uno stato $|\psi\rangle$ è $\langle\psi|\hat{A}|\psi\rangle$. Se a_i sono autovalori, con $|a_i\rangle$ relativi autovettori, di \hat{A} , la probabilità di ottenere la misura a_i (data dal fatto che il sistema è nello stato $|a_i\rangle$) è $|a_i|^2$.

Nel caso di operatori con spettri continui, si costruisce la densità di probabilità $P(x)dx = |\psi(x)|^2 dx$ (come esempio per operatore posizione \hat{Q}) ed è probabilità di trovare la particella nell'intervallo spaziale dx.

1.3.5 Spazio di Hilbert proiettivo, sistemi puri e misti

Ogni stato $|\psi\rangle$ è definito a meno di una fase; per eliminare fase globale, si usa lo spazio proiettivo $\mathcal{P}(\mathcal{H}) = \mathcal{H}/\sim$, con $|\psi\rangle \sim e^{i\alpha} |\psi\rangle$.

Con gli elementi di $\mathcal{P}(\mathcal{H})$ si può introdurre un **isomorfismo naturale**¹ con lo spazio generato dagli operatori $\rho = |\psi\rangle \langle \psi|$, nel caso di sistemi **puri**.

Un sistema quantistico puro, è univocamente descritto da un singolo stato $|\psi\rangle$ (quello in cui si trova in un certo istante temporale), quindi il proiettore $\rho=|\psi\rangle$ $\langle\psi|$ contiene tutte le informazioni necessarie per una sua descrizione. Un sistema **misto**, invece, non può essere descritto tramite un singolo stato perché appartiene a più stati puri contemporaneamente in una certa proporzione; in questo caso, il proiettore diventa una **matrice di densità** con

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \tag{1.3.6}$$

1.3.6 Proiettore per sistemi puri

La condizione di normalizzazione è:

$$\operatorname{Tr} \rho = 1 \tag{1.3.7}$$

Dimostrazione. Se $|\psi\rangle = \sum_{n=1}^{+\infty} c_n |\phi_n\rangle$:

$$\operatorname{Tr} \rho \stackrel{\text{def}}{=} \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} \langle \phi_m | \rho | \phi_n \rangle \, \delta_{mn} = \sum_{n=1}^{+\infty} \langle \phi_n | \rho | \phi_n \rangle = \sum_{n=1}^{+\infty} \langle \phi_n | \psi \rangle \, \langle \psi | \phi_n \rangle$$

$$= \sum_{n=1}^{+\infty} |\langle \phi_n | \psi \rangle|^2 = \langle \psi | \psi \rangle$$
(1.3.8)

dove l'ultima uguaglianza deriva dalla completezza di $\{|\phi_n\rangle\}_n$.

Un generico elemento di matrice di $\rho = |\psi\rangle\langle\psi|$ è $\rho_{ij} = c_i c_i^*$, dove $|\psi\rangle = \sum_i c_i |\phi_i\rangle$.

Dimostrazione. Per conto diretto:

$$\rho_{ij} = \langle \phi_i | \rho | \phi_j \rangle = \langle \phi_i | \psi \rangle \langle \psi | \phi_j \rangle = \sum_{m=1}^{+\infty} c_m \langle \phi_i | \phi_m \rangle \sum_{n=1}^{+\infty} c_n^* \langle \phi_n | \phi_j \rangle$$

$$= \sum_{m,n=1}^{+\infty} c_m c_n^* \delta_{im} \delta_{jn} = c_i c_j^*$$
(1.3.9)

¹Isomorfismo che non dipende dalla scelta del rappresentante della classe di equivalenza.

Dato \hat{A} osservabile con base di autostati $\{|a_i\rangle\}_i$:

$$\langle \psi | \hat{A} | \psi \rangle = \text{Tr } \rho \hat{A}$$
 (1.3.10)

Dimostrazione. Si prende $\psi = \sum_i c_i |a_i\rangle$ e $\rho = |\psi\rangle\langle\psi|$; allora:

$$\operatorname{Tr}(\rho \hat{A}) \stackrel{\text{def}}{=} \sum_{i} \langle a_{i} | \rho \hat{A} | a_{i} \rangle = \sum_{i} a_{i} \langle a_{i} | \rho | a_{i} \rangle = \sum_{i} |c_{i}|^{2} a_{i} \equiv \langle \psi | \hat{A} | \psi \rangle \qquad \text{(1.3.11)}$$

1.3.7 Flusso di probabilità ed equazione di continuità

Sistema composto da particella in 3D sotto potenziale V(x). Sia $\psi(\mathbf{x},t)$ funzione d'onda per stato $|\psi(t)\rangle$. La probabilità di trovare particella in una regione Γ dello spazio è¹:

$$P_{\Gamma}(t) \equiv \int_{\Gamma} d^3x \ |\psi(\mathbf{x}, t)|^2 \tag{1.3.12}$$

Per quanto detto in §2.5.2: $i\hbar\partial_t\psi(\mathbf{x},t)=\left(-\frac{\hbar^2}{2m}\nabla^2+V(\mathbf{x})\right)\psi(\mathbf{x},t)$; evoluzione temporale di $P_{\Gamma}(t)$ è:

$$\begin{split} \partial_t P_{\Gamma}(t) &= \partial_t \int_{\Gamma} d^3 x \, \psi(\mathbf{x}, t) \psi^*(\mathbf{x}, t) = \int_{\Gamma} \left[\psi^*(\mathbf{x}, t) \partial_t \psi(\mathbf{x}, t) + \psi(\mathbf{x}, t) \partial_t \psi^*(\mathbf{x}, t) \right] d^3 x \\ &= \int_{\Gamma} \left[\psi^*(\mathbf{x}, t) \frac{1}{i\hbar} \left(-\frac{\hbar^2}{2m} \nabla^2 + V(x) \right) \psi(\mathbf{x}, t) - \frac{1}{i\hbar} \left(-\frac{\hbar^2}{2m} \nabla^2 + V(x) \right) \psi^*(\mathbf{x}, t) \right] d^3 x \\ &= \frac{i\hbar}{2m} \int_{\Gamma} \left[\psi^*(\mathbf{x}, t) \nabla^2 \psi(\mathbf{x}, t) - \psi(\mathbf{x}, t) \nabla^2 \psi^*(\mathbf{x}, t) \right] d^3 x = \frac{i\hbar}{2m} \int_{\Gamma} \nabla \cdot \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) d^3 x \end{split}$$

Definendo flusso di probabilità:

$$\mathbf{J} = -\frac{i\hbar}{2m} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \tag{1.3.13}$$

si ha:

$$\partial_t P_{\Gamma}(t) = -\int_{\Gamma} \nabla \cdot \mathbf{J} \ d^3x \tag{1.3.14}$$

da cui si ottiene equazione di continuità:

$$\partial_t |\psi|^2 + \nabla \cdot \mathbf{J} = 0 \tag{1.3.15}$$

 $^{^1}$ I termini con il potenziale si cancellano perché simmetrici, mentre quelli con ∇^2 no perché in uno sarà derivato ψ , nell'altro ψ^* .

2 Introduzione alla meccanica quantistica

2.1 Evoluzione temporale

2.1.1 Equazione di Shrödinger per gli stati

Variazione temporale dello stato di un sistema: $|\psi(t)\rangle$ o $|\psi,t\rangle$. Per la funzione d'onda: $\psi(x,t)=\langle x|\psi(t)\rangle$. Per trovare evoluzione temporale di uno stato, si richiede che:

- (a). l'evoluzione sia univocamente determinata da uno stato iniziale \Rightarrow si richiede che nell'equazione compaia al massimo il primo ordine di derivazione $\partial_t |\psi(t)\rangle$;
- (b). sperimentalmente, si verifica il principio di sovrapposizione, quindi l'equazione differenziale deve essere lineare.

L'equazione risultante è:

$$i\hbar\partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (2.1.1)

 \hat{H} è un generico operatore che definisce l'evoluzione temporale del sistema. Deve risultare autoaggiunto.

Dimostrazione. Da $\langle \psi(t)|\psi(t)\rangle \stackrel{!}{=} 1$, $\forall t$:

$$0 \stackrel{!}{=} \partial_{t} \langle \psi(t) | \psi(t) \rangle = \left(\partial_{t} \langle \psi(t) | \right) | \psi(t) \rangle + \langle \psi(t) | \left(\partial_{t} | \psi(t) \rangle \right)$$

$$\Rightarrow \frac{i}{\hbar} \langle \psi(t) | \hat{H}^{\dagger} | \psi(t) \rangle = \frac{i}{\hbar} \langle \psi(t) | \hat{H} | \psi(t) \rangle \Rightarrow \hat{H}^{\dagger} = \hat{H}$$
(2.1.2)

Questo candida \hat{H} come osservabile

2.1.2 Soluzione dell'equazione

La soluzione è:

$$|\psi(t)\rangle = e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}|\psi(t_0)\rangle \tag{2.1.3}$$

dove

$$e^{\hat{A}} \stackrel{\text{def}}{=} 1 + \hat{A} + \frac{1}{2}\hat{A}^2 + \dots$$

Visto che \hat{H} è autoaggiunto, l'esponenziale è unitario:

$$e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}e^{\frac{i}{\hbar}\hat{H}(t-t_0)} = \text{Id}$$
 (2.1.4)

Definendo l'**evolutore** come l'operatore $\hat{U}(t,t_0)$ tale che $|\psi(t)\rangle = \hat{U}(t,t_0) |\psi(t_0)\rangle$, risulta $\hat{U}(t,t_0)\hat{U}^{\dagger}(t,t_0) = \mathrm{Id}$. Se \hat{H} indipendente dal tempo, allora $\hat{U}(t,t_0) = e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}$.

2.1.3 Equazione di Shrödinger per la funzione d'onda

Per $\{|x\rangle\}$ base ortonormale $\Rightarrow \int_{-\infty}^{+\infty} dx \ \langle \psi(t)|x\rangle \ \langle x|\psi(t)\rangle = \int_{-\infty}^{+\infty} dx \ |\psi(x,t)|^2 \stackrel{!}{=} 1$ per normalizzazione. Nell'eq. di Shrödinger:

$$i\hbar\partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \Rightarrow i\hbar\partial_t \langle x|\psi(t)\rangle = \langle x|\hat{H}|\psi(t)\rangle \Rightarrow i\hbar\partial_t\psi(x,t) = \hat{H}\psi(x,t)$$
 (2.1.5)

Il passaggio $\langle x|\hat{H}|\psi(t)\rangle \stackrel{*}{=} \hat{H}\psi(x,t)$ è giustificato con l'accorgimento che gli \hat{H} non sono gli stessi: uno agisce su ket, l'altro su scalare; la definizione di \hat{H} agente su $\psi(x,t)$ è:

$$\langle x|\hat{H}|\psi(t)\rangle \equiv \int_{-\infty}^{+\infty} dy \ \langle x|\hat{H}|y\rangle \, \langle y|\psi(t)\rangle \stackrel{\text{def}}{=} \hat{H}\psi(x,t)$$

con $\langle x|\hat{H}|y\rangle$ è l'elemento di matrice dell'Hamiltoniano originale nella rappresentazione delle coordinate.

Per la soluzione dell'equazione:

$$\begin{split} |\psi(t)\rangle &= \hat{U}(t,t_0) \, |\psi(t_0)\rangle \Rightarrow \langle x|\psi(t)\rangle = \psi(x,t) = \langle x|\hat{U}(t,t_0)|\psi(t_0)\rangle \\ \Rightarrow \psi(x,t) &= \int_{-\infty}^{+\infty} dy \, \langle x|\hat{U}(t,t_0)|y\rangle \, \langle y|\psi(t_0)\rangle = \int_{-\infty}^{+\infty} dy \, \hat{U}(x,y,t,t_0)\psi(y,t_0) \\ \Rightarrow \psi(x,t) &= \hat{U}(t,t_0)\psi(x,t_0) \end{split}$$

dove, come prima, i due \hat{U} non sono gli stessi.

2.1.4 Equazione di Shrödinger per il proiettore

Partendo da $\hat{\rho}(t) = |\psi(t)\rangle \langle \psi(t)|$, si trova:

$$\begin{split} \partial_{t}\hat{\rho}(t) &= \left[\partial_{t}\left|\psi(t)\right\rangle\right]\left\langle\psi(t)\right| + \left|\psi(t)\right\rangle\left[\partial_{t}\left\langle\psi(t)\right|\right] \\ &= -\frac{i}{\hbar}\hat{H}\left|\psi(t)\right\rangle\left\langle\psi(t)\right| + \frac{i}{\hbar}\left|\psi(t)\right\rangle\left\langle\psi(t)\right|\hat{H}^{\dagger} = -\frac{i}{\hbar}\hat{H}\hat{\rho}(t) + \frac{i}{\hbar}\hat{\rho}(t)\hat{H} \\ &= -\frac{i}{\hbar}\left[\hat{H},\hat{\rho}(t)\right] \end{split} \tag{2.1.6}$$

2.2 Evoluzione temporale per gli operatori

Ci sono tre quadri per vedere il problema:

- (a). quadro di Shrödinger: solo gli stati dipendono dal tempo, mentre gli operatori no;
- (b). quadro di Heisenberg: solo gli operatori dipendono dal tempo;
- (c). **quadro misto (o di interazione):** l'hamiltoniano si divide in $\hat{H} = \hat{H}_0 + \hat{H}_I$, dove il primo evolve gli operatori e il secondo evolve gli stati.

2.2.1 Il quadro di Shrödinger

Evoluzione temporale di \hat{O} , con $\partial_t \hat{O} = 0$, è:

$$\partial_{t} \langle \psi(t) | \hat{O} | \psi(t) \rangle = \frac{i}{\hbar} \langle \psi(t) | \hat{H} \hat{O} | \psi(t) \rangle - \frac{i}{\hbar} \langle \psi(t) | \hat{O} \hat{H} | \psi(t) \rangle$$

$$= \left\langle \psi(t) \left| \frac{i}{\hbar} \left[\hat{H}, \hat{O} \right] \right| \psi(t) \right\rangle$$
(2.2.1)

Operatore **velocità** definito come $\hat{v} = \frac{i}{\hbar} \left[\hat{H}, \hat{Q} \right]$.

2.2.2 Il quadro di Heisenberg

Gli stati evolvono tramite operatore, quindi si definisce $\hat{O}_H(t)$ come:

$$\left\langle \psi(t_0) \left| e^{\frac{i}{\hbar}\hat{H}t} \hat{O} e^{-\frac{i}{\hbar}\hat{H}t} \right| \psi(t_0) \right\rangle \equiv \left\langle \psi(t_0) | \hat{O}_H(t) | \psi(t_0) \right\rangle \tag{2.2.2}$$

dove si nota che ancora \hat{O} non dipende dal tempo.

2.2.3 Evoluzione delle misure

Modello della mq prevede che operatore \hat{O} autoaggiunto applicato ad uno stato $|\psi\rangle$ restituisca valore rappresentato da \hat{O} in tale stato. In questo senso, potendo espandere $|\psi\rangle$ in autostati di \hat{O} , le misure sono gli autovalori dell'operatore e, a seconda del tipo di spettro, sono continui, discreti o entrambi.

Per l'energia (quindi se $\hat{O} \equiv \hat{H}$), se $|\psi_n\rangle$ autovettore dell'autostato E_n : $\hat{H} |\psi_n\rangle = E_n |\psi_n\rangle$, dove E_n è energia dello stato $|\psi_n\rangle$.

Sia $|\phi(t)\rangle = \exp\left(-\frac{i}{\hbar}\hat{H}(t-t_0)\right)|\phi(t_0)\rangle$ un generico stato, con $|\phi(t_0)\rangle = \sum_n c_n |\psi_n(t_0)\rangle$. Allora:

$$|\phi(t)\rangle = \sum_{n=1}^{+\infty} c_n e^{-\frac{i}{\hbar}\hat{H}(t-t_0)} |\psi_n(t_0)\rangle = \sum_{n=1}^{+\infty} c_n e^{-\frac{i}{\hbar}E_n(t-t_0)} |\psi_n(t_0)\rangle$$
 (2.2.3)

L'esponenziale è una fase, quindi $|\phi(t)\rangle$ è **stazionario**. Per questo, se \hat{O} operatore: $\langle \psi_n(t)|\hat{O}|\psi_n(t)\rangle = \langle \psi_n(t_0)|\hat{O}|\psi_n(t_0)\rangle$, da cui $E_n(t) = E_n(0)$ per $\hat{O} \equiv \hat{H}$.

2.3 Simmetrie e operatore impulso

2.3.1 Traslazioni

Sia trasla $|\psi\rangle \to |\psi'\rangle$, $\hat{A} \to \hat{A}'$, e, assumendo simmetria per traslazioni spaziali, si richiede che per $\hat{A}\,|\phi_n\rangle = a_n\,|\phi_n\rangle \to \hat{A}'\,|\phi_n\rangle = a_n'\,|\phi_n'\rangle$ si abbia $a_n' = a_n$. Se $|\psi\rangle = \sum_n c_n\,|\phi_n\rangle$ e $|\psi'\rangle = \sum_n c_n'\,|\phi_n'\rangle$, deve valere $|c_n|^2 = |c_n'|^2$ perché sonno le probabilità di ottenere una certa misura. L'invarianza per traslazione è assicurata quando:

$$\begin{cases} a'_{n} = a_{n} \\ |c'_{n}|^{2} = |c_{n}|^{2} \end{cases}$$
 (2.3.1)

Si cerca \hat{U} operatore delle traslazioni. Si assume che questo soddisfi:

$$\begin{cases} |\psi'\rangle = \hat{U} |\psi\rangle, \ \forall |\psi\rangle \in \mathcal{H} \\ \langle \phi' | \psi'\rangle = \langle \phi | \psi\rangle, \ \forall |\phi\rangle, |\psi\rangle \in \mathcal{H} \end{cases}$$
(2.3.2)

Unendo le due, si trova \hat{U} unitario:

$$\langle \phi' | \psi' \rangle = \langle \phi | \hat{U}^{\dagger} \hat{U} | \psi \rangle \Rightarrow \hat{U}^{\dagger} \hat{U} = \text{Id}$$
 (2.3.3)

Su generico operatore \hat{A} come sopra:

$$\hat{A}'\hat{U}|\phi_{n}\rangle = a_{n}\hat{U}|\phi_{n}\rangle = \hat{U}a_{n}|\phi_{n}\rangle = \hat{U}\hat{A}|\phi_{n}\rangle \Rightarrow \hat{A}'\hat{U}|\phi_{n}\rangle = \hat{U}\hat{A}|\phi_{n}\rangle$$

$$\Rightarrow \hat{A}' = \hat{U}\hat{A}\hat{U}^{\dagger}$$
(2.3.4)

Si definisce azione di \hat{U} su una funzione d'onda:

$$\psi'(x) = \langle x|\psi'\rangle = \langle x|\hat{U}|\psi\rangle \stackrel{\text{def}}{=} \hat{U}\psi(x) \Rightarrow \psi'(x) = \hat{U}\psi(x) \tag{2.3.5}$$

2.3.2 L'operatore impulso

Visto \hat{U} unitario, si prende $\hat{U}(s)=e^{is\hat{K}}$ per parametrizzare la traslazione con parametro continuo s. Si mostra che \hat{K} è autoaggiunto¹. Sviluppando attorno a s=0:

$$\hat{U}(s) \simeq \hat{U}(0) + s \frac{d}{ds} \hat{U}(s) \Big|_{s=0} + \mathcal{O}(s^2) = \operatorname{Id} + is\hat{K} + \mathcal{O}(s^2)$$
 (2.3.6)

Dovendo essere $\hat{U}(s)\hat{U}^{\dagger}(s)=\mathrm{Id}$, trascurando $\mathrm{O}(s^2)$:

$$\left(\operatorname{Id} + s\frac{d}{ds}\hat{U}^{\dagger}(s)\right)\left(\operatorname{Id} + s\frac{d}{ds}\hat{U}(s)\right) = \left(\operatorname{Id} - is\hat{K}^{\dagger}\right)\left(\operatorname{Id} + is\hat{K}\right) \simeq \operatorname{Id} + is(\hat{K} - \hat{K}^{\dagger})$$
(2.3.7)

da cui $\hat{K} = \hat{K}^{\dagger}$.

Si introduce operatore **impulso**² come $\hat{K} = -\frac{1}{\hbar}\hat{p}$, da cui $\hat{U}(s) = \exp\left(-\frac{i}{\hbar}s\hat{p}\right)$. Si ricava la sua rappresentazione nello spazio delle posizioni. Sviluppando³:

$$\hat{U}\psi(x) \simeq \left(1 - \frac{i}{\hbar}s\hat{p}\right)\psi(x)$$

$$\psi'(x) \equiv \psi(x - s) \simeq \psi(x) + s \left.\frac{d}{ds}\psi(x - s)\right|_{s = 0} = \psi(x) - s\partial_x\psi(x)$$

$$\Rightarrow \left(1 - \frac{i}{\hbar}s\hat{p}\right)\psi(x) = \psi(x) - s\partial_x\psi(x)$$
(2.3.8)

Da cui $\hat{p} = -i\hbar\partial_x$.

2.3.3 Funzione d'onda degli impulsi

Visto che $\hat{p} |\psi\rangle = -i\hbar \partial_x |\psi\rangle$, vale $\langle x|\hat{p}|p\rangle = \hat{p} \langle x|p\rangle \equiv \hat{p}\psi_p(x) \Rightarrow -i\hbar \partial_x \psi_p(x) = p\psi_p(x)$, quindi $\psi_p(x) = \langle x|p\rangle = C \exp\left(\frac{i}{\hbar}px\right)$. Per C, si usa normalizzazione:

$$\delta(p'-p) = \langle p'|p\rangle = \int_{-\infty}^{+\infty} dx \ \langle p'|x\rangle \ \langle x|p\rangle = \int_{-\infty}^{+\infty} dx \ |C|^2 \exp\left(-\frac{i}{\hbar}x(p'-p)\right) = 2\pi \ |C|^2 \ \hbar \delta(p-p')$$

quindi $C = 1/\sqrt{2\pi\hbar}$ e

$$\psi_p(x) = \langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp\left(\frac{i}{\hbar}px\right)$$
 (2.3.9)

Dato generico $|\psi\rangle \in \mathcal{H}$ rappresentato dalle posizioni, usando $\langle p|x\rangle^* = \psi_p(x)$:

$$\widetilde{\psi}(p) \equiv \langle p|\psi\rangle = \int_{-\infty}^{+\infty} dx \ \langle p|x\rangle \ \langle x|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \exp\left(-\frac{i}{\hbar}px\right) \psi(x) \ dx \qquad (2.3.10)$$

¹Quindi sarà un possibile osservabile.

²Questa introduzione è giustificata dal fatto che, per il teorema di Nöther, l'impulso è il generatore delle traslazioni spaziali.

 $^{^3}$ Si ottiene l'espressione di \hat{p} nella rappresentazione delle coordinate sotto l'assunzione che una traslazione abbia il seguente effetto su una funzione d'onda: $\psi'(x) \equiv \hat{U}\psi(x) = \psi(x-s)$.

Quindi spazi di posizioni e momenti sono legati da una trasformata di Fourier¹:

$$\begin{cases} \psi(x) \equiv \langle x | \psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \widetilde{\psi}(p) e^{ipx/\hbar} \, dp \\ \widetilde{\psi}(p) \equiv \langle p | \psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x) e^{-ipx/\hbar} \, dx \end{cases}$$
 (2.3.11)

L'azione di \hat{X} su $\widetilde{\psi}(p)$ è:

$$\hat{X}\widetilde{\psi}(p) = i\hbar\partial_p\widetilde{\psi}(p)$$
 (2.3.12)

cioè la rappresentazione di \hat{X} nello spazio dei momenti è $\hat{X}=i\hbar\partial_p$. Infatti:

$$\begin{split} \langle p|\hat{X}|\psi\rangle &= \int_{-\infty}^{+\infty} dx \ \langle p|\hat{X}|x\rangle \ \langle x|\psi\rangle = \int_{-\infty}^{+\infty} dx \ \frac{x}{\sqrt{2\pi\hbar}} e^{-ipx/\hbar} \psi(x) \\ &= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} x e^{-ipx/\hbar} \psi(x) \ dx = \left(-\frac{\hbar}{i}\right) \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \partial_p e^{-ipx/\hbar} \psi(x) \ dx \\ &= (i\hbar\partial_p) \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x) e^{-ipx/\hbar} \ dx = i\hbar\partial_p \widetilde{\psi}(p) \end{split}$$

2.3.4 Simmetrie per stati che evolvono temporalmente

 $\hat{O}(t,t_0)$ operatore di evoluzione temporale: $|\psi'(t)\rangle = \hat{O}(t,t_0) \, |\psi'(t_0)\rangle \, \mathrm{e} \, |\psi(t)\rangle = \hat{O}(t,t_0) \, |\psi(t_0)\rangle$. Simmetria per traslazioni temporali implica: $|\psi'(t)\rangle = \hat{U}(s) \, |\psi(t)\rangle$, $\forall t$. Unendo le due:

$$\begin{aligned} |\psi'(t)\rangle &= \hat{U}(s)\hat{O}(t,t_0) \, |\psi(t_0)\rangle = \hat{U}(s)\hat{O}(t,t_0)\hat{U}^{-1}(s)\hat{U}(s) \, |\psi(t_0)\rangle \\ &= \hat{U}(s)\hat{O}(t,t_0)\hat{U}^{-1}(s) \, |\psi'(t_0)\rangle \end{aligned} \tag{2.3.13}$$

Dall'imposizione dell'invarianza per traslazioni, risulta $\hat{U}(s)\hat{O}(t,t_0)\hat{U}^{-1}(s)=\hat{O}(t,t_0)$. Vista la struttura dell'operatore di evoluzione temporale², si ricava $[\hat{H},\hat{U}(s)]=0$. Per s piccoli, $\hat{U}(s)$ è rappresentato da \hat{p} , quindi vale $[\hat{H},\hat{p}]=0$.

2.3.5 Commutatore di \hat{p} e \hat{X}

Sia $\hat{T}(s)$ operatore di traslazione spaziale; se $|x'\rangle = \hat{T}(s)|x\rangle \equiv |x+s\rangle = \exp\left(-\frac{i}{\hbar}s\hat{p}\right)|x\rangle$:

$$\hat{X} |x'\rangle = x' |x'\rangle = (x+s) |x+s\rangle$$

$$\hat{X}' |x'\rangle = \hat{T}(s)\hat{X}\hat{T}^{\dagger}(s) |x'\rangle = x |x+s\rangle$$
(2.3.14)

con \hat{X}' operatore traslato. Per s piccoli:

$$\hat{X}' = e^{-\frac{i}{\hbar}s\hat{p}}\hat{X}e^{\frac{i}{\hbar}s\hat{p}} \simeq \hat{X} + \frac{i}{\hbar}s[\hat{X},\hat{p}]$$

¹Essendo $\lambda = h/p$ e $k = 2\pi/\lambda = 2\pi p/h = p/\hbar$.

²Nel caso in questione, si può scrivere come esponenziale dell'operatore \hat{H} , che, sviluppato in serie, permette di ricavare l'espressione del commutatore.

Visto che $(\hat{X} - s \operatorname{Id}) |x + s\rangle = x |x + s\rangle$, da cui $\hat{X}' = \hat{X} - s \operatorname{Id}$:

$$\hat{X}' = \begin{cases} \hat{X} + \frac{i}{\hbar} s[\hat{X}, \hat{p}] \\ \hat{X} - s \operatorname{Id} \end{cases} \Rightarrow [\hat{X}, \hat{p}] = i\hbar \operatorname{Id}$$
 (2.3.15)

Alternativamente, si sarebbe potuto notare che

$$\begin{cases} \hat{X}\psi(x) = x\psi(x) \\ \hat{p}\psi(x) = -i\hbar\partial_x\psi(x) \end{cases}$$

implica:

$$\begin{aligned} [\hat{X}, \hat{p}]\psi(x) &= x(-i\hbar\partial_x)\psi(x) - (-i\hbar\partial_x)x\psi(x) \\ &= -x(i\hbar\partial_x\psi(x)) + x(i\hbar\partial_x\psi(x)) + \psi(x)(i\hbar\partial_xx) = i\hbar\psi(x), \ \forall \psi(x) \end{aligned} \tag{2.3.16}$$

2.4 Il principio di indeterminazione

2.4.1 Introduzione

Si usa funzione d'onda¹ tridimensionale² $\psi(\mathbf{r}) = \langle \mathbf{r} | \psi \rangle$, dove $|\mathbf{r}\rangle = |\mathbf{r}(x_1, x_2, x_3)\rangle =$ $|x_1\rangle\otimes|x_2\rangle\otimes|x_3\rangle$. Questa definizione è necessaria per far sì che l'azione di un operatore posizione legato alla singola coordinata restituisca $\hat{X}_1 | \mathbf{r} \rangle = x_1 | \mathbf{r} \rangle$ per esempio³. Allora $|\psi(\mathbf{r})|^2 = |\langle \mathbf{r} | \psi \rangle|^2$ è densità di probabilità di trovare la particella in un certo intervallo $d\mathbf{r}$. Il valore di aspettazione si esprime come:

$$\mathbf{E}\left[\mathbf{r}\right] = \langle \psi | \hat{\mathbf{R}} | \psi \rangle \equiv \overline{\mathbf{R}} = \iiint dx dy dz \ \mathbf{r} \left| \psi(\mathbf{r}) \right|^2 = \begin{pmatrix} \overline{R}_{x_1} \\ \overline{R}_{x_2} \\ \overline{R}_{x_3} \end{pmatrix}$$
(2.4.1)

La varianza è data da $\mathbf{E}\left[(\mathbf{r}-\overline{\mathbf{R}})^2\right] = \iiint dx dy dz \, (\mathbf{r}-\overline{\mathbf{R}})^2 \, |\psi(x,y,z)|$, quindi si definisce:

$$\Delta_{r}^{2} \stackrel{\text{def}}{=} \langle \psi | \hat{\mathbf{R}}_{S}^{2} | \psi \rangle = \iiint dx dy dz \left(\mathbf{r} - \overline{\mathbf{R}} \right)^{2} \left| \psi(\mathbf{r}) \right|^{2} \equiv \mathbf{E} \left[(\mathbf{r} - \overline{\mathbf{R}})^{2} \right]$$
(2.4.2)

con $\hat{\mathbf{R}}_S = \hat{\mathbf{R}} - \overline{\hat{\mathbf{R}}}$ è l'operatore posizione **sottratto** e $\overline{\hat{\mathbf{R}}} = \overline{R}$ Id. Analogamente:

$$\overline{p} = \langle \psi | \hat{\mathbf{P}} | \psi \rangle
\Delta_n^2 = \langle \psi | \hat{\mathbf{P}}_S^2 | \psi \rangle$$
(2.4.3)

2.4.2 Algebra degli operatori sottratti

Siano \hat{A}, \hat{B} autoaggiunti tali che $[\hat{A}, \hat{B}] = i\hat{C}$, con \hat{C} autoaggiunto⁴; se \hat{A}_s, \hat{B}_s sono i sottratti, allora è ancora $[\hat{A}_S, \hat{B}_S] = i\hat{C}$:

$$[\hat{A}_S, \hat{B}_S] = (\hat{A} - \hat{\overline{A}})(\hat{B} - \hat{\overline{B}}) - (\hat{B} - \hat{\overline{B}})(\hat{A} - \hat{\overline{A}}) = (\hat{A}\hat{B} - \hat{B}\hat{A}) - \hat{\overline{A}}\hat{B} + \hat{\overline{A}}\hat{B} + \hat{\overline{B}}\hat{A} - \hat{\overline{A}}\hat{\overline{B}}$$
$$= [\hat{A}, \hat{B}]$$

¹Con il pedice 0, indica che è relativa allo stato fondamentale ψ_0 .

 $^{^2}$ Essa è definita, sotto l'assunzione di poter separare le variabili nell'integrale, come $\psi(\mathbf{r})=$ $\psi(x_1)\psi(x_2)\psi(x_3)$. Essendo che $|\psi\rangle\in\mathcal{H}_1\otimes\mathcal{H}_2\otimes\mathcal{H}_3$ e che ogni bra agisce sul ket del suo spazio di Hilbert, si ottiene $\psi(\mathbf{r}) = \langle x_1 \otimes x_2 \otimes x_3 | \psi_{x_1} \otimes \psi_{x_2} \otimes \psi_{x_3} \rangle = \langle x_1 | \psi_{x_1} \rangle \langle x_2 | \psi_{x_2} \rangle \langle x_3 | \psi_{x_3} \rangle.$ ³In questo caso $|\mathbf{r}\rangle \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$, dove gli operatori $\hat{X}_1, \hat{X}_2, \hat{X}_3$ agiscono rispettivamente su

 $[\]mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$

 $^{^4}$ La i fuori serve per assicurare che \hat{C} sia autoaggiunto.

dove si è usato che l'identità commuta con ogni operatore. Sia $\hat{T}\stackrel{\text{def}}{=}\hat{A}_S+i\omega\hat{B}_S$ non autoaggiunto: $\hat{T}^\dagger=\hat{A}_S-i\omega\hat{B}_S$. Si nota che $\hat{T}^\dagger\hat{T}$ è autoaggiunto: $(\hat{T}^\dagger\hat{T})^\dagger=\hat{T}^\dagger\hat{T}$.

Per generico $|\psi\rangle$ vale $\langle\psi|\hat{T}^{\dagger}\hat{T}|\psi\rangle \geq 0$:

$$|w\rangle = \hat{T} |\psi\rangle$$
, $\langle w| = \langle \psi | \hat{T}^{\dagger} \Rightarrow \langle w | w \rangle = \langle \psi | \hat{T}^{\dagger} \hat{T} | \psi \rangle > 0$

quindi:

$$0 \leq \langle \psi | \hat{T}^{\dagger} \hat{T} | \psi \rangle = \langle \psi | (\hat{A}_S - i\omega \hat{B}_S) (\hat{A}_S + i\omega \hat{B}_S) | \psi \rangle = \langle \psi | \hat{A}_S^2 | \psi \rangle + \omega^2 \langle \psi | \hat{B}_S^2 | \psi \rangle + i\omega \langle \psi | [\hat{A}_S, \hat{B}_S] | \psi \rangle$$

$$\Rightarrow \langle \psi | \hat{A}_S^2 | \psi \rangle + \omega^2 \langle \psi | \hat{B}_S^2 | \psi \rangle + i\omega \langle \psi | i\hat{C} | \psi \rangle > 0, \ \forall \omega$$

Vale $\forall \omega \Rightarrow$ si cerca ω_0 che la rende più piccola possibile¹; si ottiene, per $\omega = \omega_0$:

$$\Delta_A^2 \Delta_B^2 \ge \frac{\langle \psi | \hat{C} | \psi \rangle^2}{4} \Rightarrow \Delta_A \Delta_B \ge \frac{|\langle \psi | \hat{C} | \psi \rangle|}{2}$$
 (2.4.4)

2.4.3 Il principio di indeterminazione

Usando \hat{A} , \hat{B} come \hat{X}_i , \hat{p}_i ; visto che $[\hat{R}_i, \hat{p}_j] = i\hbar \delta_{ij}$, allora:

$$\Delta_{x_i} \Delta_{p_i} \ge \frac{\hbar}{2} \tag{2.4.5}$$

2.5 Alcuni esempi di \hat{H} per sistemi quantistici

2.5.1 Sistema di due corpi

Il sistema è rappresentato dallo spazio di Hilbert totale dato da $\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2$ delle singole particelle in 3D. Per due corpi 1, 2 in 3D, si ha un hamiltoniano:

$$\hat{H} = \frac{\hat{\mathbf{p}}_1^2}{2m_1} + \frac{\hat{\mathbf{p}}_2^2}{2m_2} + U(|\hat{\mathbf{r}}_1 - \hat{\mathbf{r}}_2|)$$
 (2.5.1)

 $\operatorname{con}^{2}\left[\hat{r}_{ij},\hat{p}_{kl}\right]=i\hbar\delta_{ik}\delta_{jl}.$ Si definiscono:

$$\hat{\mathbf{X}} = \frac{m_1 \hat{\mathbf{r}}_1 + m_2 \hat{\mathbf{r}}_2}{m_1 + m_2}; \quad \hat{\mathbf{x}} = \hat{\mathbf{r}}_2 - \hat{\mathbf{r}}_1
\hat{\mathbf{P}} = \hat{\mathbf{p}}_1 + \hat{\mathbf{p}}_2; \quad \hat{\mathbf{p}} = \frac{m_1 \hat{\mathbf{p}}_2 - m_2 \hat{\mathbf{p}}_1}{m_1 + m_2}$$
(2.5.2)

con $[\hat{X}_i, \hat{P}_j] = i\hbar \delta_{ij}$ e $[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij}$. In questo modo³:

$$\hat{H} = \frac{\hat{\mathbf{P}}^2}{2M} + \frac{\hat{\mathbf{p}}^2}{2\mu} + U(|\hat{\mathbf{x}}|), \ M = m_1 + m_2 \quad \text{e} \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$
(2.5.3)

che agisce su una nuova separazione dello sapzio di Hilbert in termini di X (coordinata del centro di massa) e x (coordinata relativa): $\mathcal{H} = \mathcal{H}_{CM} \otimes \mathcal{H}_{rel}$.

 $^{^{\}mbox{\tiny 1}}\mbox{La}$ procedura si basa sul derivare rispetto a ω e imporre derivata a 0.

²Il primo indice rappresenta a quale delle due particelle fa riferimento la grandezza, mentre il secondo indice indica la componente del vettore.

³Si sostituisce $\hat{\mathbf{p}}_1 = -\hat{\mathbf{p}} + m_1 \hat{\mathbf{P}}/(m_1 + m_2)$ e $\hat{\mathbf{p}}_2 = \hat{\mathbf{p}} + m_2 \hat{\mathbf{P}}/(m_1 + m_2)$.

Da eq. 2.5.1, passando in rappresentazione delle coordinate:

$$\hat{H} = -\frac{\hbar^2}{2m_1} \vec{\nabla}_1^2 - \frac{\hbar^2}{2m_2} \vec{\nabla}_2^2 + U(|\mathbf{r}_2 - \mathbf{r}_1|)$$

$$= -\frac{\hbar^2}{2M} \vec{\nabla}_X - \frac{\hbar^2}{2\mu} \vec{\nabla}_x + U(|\mathbf{x}|)$$
(2.5.4)

Si è separato \hat{H} in parte dipendente da $\hat{\mathbf{X}}$ e parte dipendente solo da $\hat{\mathbf{x}}$. Per risolvere l'equazione di Shrödinger¹ si usa la separazione delle variabili: $\psi(\mathbf{x}, \mathbf{X}) = A(\mathbf{X})B(\mathbf{x})$:

$$\begin{cases}
-\frac{\hbar^2}{2M} \vec{\nabla}_X^2 A(\mathbf{X}) = EA(\mathbf{X}) \\
\left(-\frac{\hbar^2}{2\mu} \vec{\nabla}_X^2 + U(|\mathbf{x}|)\right) B(\mathbf{x}) = E'B(\mathbf{x}) \\
\Rightarrow \left(-\frac{\hbar^2}{2M} \vec{\nabla}_X^2 - \frac{\hbar^2}{2\mu} \vec{\nabla}_X^2 + U(|\mathbf{x}|)\right) \psi(\mathbf{x}, \mathbf{X}) = (E + E')\psi(\mathbf{x}, \mathbf{X})
\end{cases}$$
(2.5.5)

2.5.2 Particella in campo esterno

In 1D, particella soggetta a $F = -\partial_x V(x)$ con V(x) potenziale. In questo caso, varrà:

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \tag{2.5.6}$$

L'equazione di Shrödinger è:

$$i\hbar\partial_t |\psi(x,t)\rangle = \hat{H} |\psi(x,t)\rangle$$
 (2.5.7)

In rappresentazione delle coordinate, visto che \hat{H} si rappresenta come $-\frac{\hbar^2}{2m}\partial_x^2 + V(x)$:

$$i\hbar\partial_t\psi(x,t) = \left(-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\right)\psi(x,t)$$
 (2.5.8)

In rappresentazione degli impulsi, invece:

$$i\hbar\partial_t\widetilde{\psi}(p,t) = \left(\frac{p^2}{2m} + V(i\hbar\partial_p)\right)\widetilde{\psi}(p,t) \tag{2.5.9}$$

2.6 L'oscillatore armonico

2.6.1 Operatori di creazione e distruzione

Si prende un hamiltoniano analogo al caso classico:

$$\hat{H} = \frac{\hat{P}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \tag{2.6.1}$$

Tramite costanti del sistema come m, ω, \hbar , si costruiscono altre costanti caratteristiche del sistema in questione: $\ell_{\omega} = \sqrt{\hbar/(m\omega)}$ lunghezza caratteristica e $p_{\omega} = m\omega\ell_{\omega}$ impulso caratteristico. Da queste, si definisco gli operatori:

$$\begin{cases} \hat{p} = \hat{P}/p_{\omega} \\ \hat{q} = \hat{x}/\ell_{\omega} \end{cases} \Rightarrow \hat{H} = \frac{\hbar\omega}{2} \left[\hat{p}^2 + \hat{q}^2 \right]$$
 (2.6.2)

¹Data da $\hat{H}\psi = E\psi$, con E energia dello stato.

Si definisce anche $\hat{a}=(\hat{q}+i\hat{p})/\sqrt{2}$, che soddisfa $\left[\hat{a},\hat{a}^{\dagger}\right]=1$ e $\hat{H}=\frac{\hbar\omega}{2}\left(\hat{a}\hat{a}^{\dagger}+\hat{a}^{\dagger}\hat{a}\right)$. Per $\hat{N}=\hat{a}^{\dagger}\hat{a}\Rightarrow\hat{H}=\hbar\omega(\hat{N}+1/2)^{\scriptscriptstyle{1}}$; inoltre:

$$\begin{split} [\hat{N}, \hat{a}] &= [\hat{a}^{\dagger} \hat{a}, \hat{a}] = \hat{a}^{\dagger} \hat{a} \hat{a} - \hat{a} \hat{a}^{\dagger} \hat{a} = [\hat{a}^{\dagger}, \hat{a}] \hat{a} = -\hat{a} \\ [\hat{N}, \hat{a}^{\dagger}] &= \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} = \hat{a}^{\dagger} [\hat{a}, \hat{a}^{\dagger}] = \hat{a}^{\dagger} \end{split}$$

Prendendo base di autostati di \hat{N} tali che $\hat{N} | \nu \rangle = \nu | \nu \rangle$ e definendo $\hat{a} | \nu \rangle = | w \rangle$, si ha²:

$$\hat{N} |w\rangle = \hat{N}\hat{a} |\nu\rangle = (\hat{a}\hat{N} - \hat{a}) |\nu\rangle = \hat{a}(\nu - 1) |\nu\rangle = (\nu - 1)\hat{a} |\nu\rangle = (\nu - 1) |w\rangle \qquad (2.6.3)$$

Questo significa che $|w\rangle$ è autostato con autovalore diminuito di 1 rispetto a quello di partenza, che si traduce nel fatto che \hat{a} mappa gli autostati di \hat{N} in autostati con autovalore diminuito di 1.

Si osserva, poi, che gli autovalori di \hat{N} non sono mai negativi:

$$0 \le \langle w|w\rangle = \langle \nu|\hat{a}^{\dagger}\hat{a}|\nu\rangle = \langle \nu|\hat{N}|\nu\rangle = \nu\,\langle \nu|\nu\rangle = \nu$$

che assicura che $\hat{a} |0\rangle = |0\rangle$. In maniera del tutto analoga si vede che $\hat{N}\hat{a}^{\dagger} |\nu\rangle = (\nu + 1)\hat{a}^{\dagger} |\nu\rangle$, quindi \hat{a}^{\dagger} aumenta autovalore. Si nota che **non vi è limite superiore** agli autovalori, mentre limite inferiore è dato da $\langle \nu | \nu \rangle \geq 0$. Ciò significa che autovalori di \hat{N} vanno da 0 a $+\infty$.

Si nota, infine, che, vale $\hat{a}^{\dagger} | n \rangle = c_n | n+1 \rangle^3$; per trovare c_n , facendo uso della relazione di commutazione $\hat{a}\hat{a}^{\dagger} = \hat{N} + 1$:

$$\begin{cases} \langle n|\hat{a}\hat{a}^{\dagger}|n\rangle = \langle n|(\hat{N}+1)|n\rangle = (n+1)\,\langle n|n\rangle = n+1\\ \langle n|\hat{a}\hat{a}^{\dagger}|n\rangle = |c_n|^2\,\langle n+1|n+1\rangle = |c_n|^2 \end{cases} \Rightarrow |c_n|^2 = n+1$$

Dovendo avere autostati normalizzati:

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n |0\rangle \tag{2.6.4}$$

Dagli autovalori di \hat{N} , si ricavano quelli dell'energia $\hat{H}=\hbar\omega(\hat{N}+1/2)\Rightarrow E_n=\hbar\omega(n+1/2).$

2.6.2 Funzione d'onda per l'oscillatore armonico

In rappresentazione delle coordinate, l'equazione di Shrödinger è $\hat{H}\psi(x,t)=i\hbar\partial_t\psi(x,t)$, cioè:

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} + \frac{1}{2} m \omega^2 x^2 \right] \psi(x, t) = i\hbar \partial_t \psi(x, t) \tag{2.6.5}$$

Per gli autovalori, invece si ha $\hat{H}\psi_E(x) = E\psi_E(x)^4$:

$$\[-\frac{\hbar^2 \partial_x^2}{2m} + \frac{1}{2} m \omega^2 x^2 \] \psi_E(x) = E \psi_E(x)$$
 (2.6.6)

Si definisce $\lambda=E/E_{\omega}$, dove si è preso $E_{\omega}=\hbar\omega/2$. In rappresentazione delle coordinate, $q=x/\ell_{\omega}$, quindi $\psi(x)=\psi(\ell_{\omega}q)\equiv u(q)$. Quindi:

$$\frac{d^2u}{dq^2} + (\lambda - q^2)u = 0 (2.6.7)$$

 $^{^{1}}$ Questo si ottiene aggiungendo e sottra
endo $\hat{a}^{\dagger}\hat{a}$ all'interno della parentesi in $\hat{H}.$

²La seconda uguaglianza è assicurata dal commutatore $[\hat{N}, \hat{a}] = -\hat{a}$.

³Visto che \hat{a}^{\dagger} deve mappare autostato di \hat{N} in quello che ha autovalore aumentato di 1, allora $\hat{a}^{\dagger} | n \rangle \propto |n+1\rangle$ con costante di proporzionalità c_n . Lo stesso vale per \hat{a} .

⁴Visto che l'evoluzione temporale degli autostati dell'hamiltoniano è banale, cioè consiste nel prodotto per una fase, si trascura evoluzione temporale nell'equazione agli autovalori.

Dimostrazione. Essendo $q=x/\ell_\omega\Rightarrow \frac{d}{dx}=\frac{dq}{dx}\frac{d}{dq}=\frac{1}{\ell_\omega}\frac{d}{dq}$. Sostituendo nell'equazione agli autovalori:

$$\left[-\frac{\hbar^2}{2m}\frac{1}{\ell_\omega^2}\frac{d^2}{dq^2} + \frac{1}{2}m\omega\ell_\omega^2q^2\right]\psi_E(x) = \left[-\frac{\hbar\omega}{2}\frac{d^2}{dq^2} + \frac{\hbar\omega}{2}q^2\right]\psi_E(x) = E\psi_E(x)$$

Usando $E=\lambda E_{\omega}=\lambda \frac{\hbar \omega}{2}$ e dividendo tutto per $\frac{\hbar \omega}{2}$, si ottiene il risultato cercato dopo aver sostituito $u(q)=\psi(\ell_{\omega}q)$.

Questo si dice *riscrittura in unità naturali*, cioè si è espresso tutto tramite valori adimensionali.

Si impone condizione di moto limitato, quindi $\lim_{q\to\pm\infty}u(q)=0$; sotto questo limite, l'equazione diventa

$$\frac{d^2u}{dq^2} + q^2u = 0 \Rightarrow u(q) \propto e^{q^2/2}, e^{-q^2/2}$$

da cui chiaramente si deve scartare $e^{q^2/2}$ perché non rispetta il limite. Si assume soluzione generale della forma:

$$u(q) = \mathcal{H}(q)e^{-q^2/2} \tag{2.6.8}$$

Per trovare $\mathcal{H}(q)$ si sostituisce in equazione originale $\Rightarrow \mathcal{H}'' - 2q\mathcal{H}' + (\lambda - 1)\mathcal{H} = 0$; matematicamente si dimostra che vi è soluzione che non modifica l'andamento di $e^{-q^2/2}$ solo se $(\lambda_n - 1) = 2n$ e questa soluzione sono i **polinomi di Hermite**, della forma

$$\mathscr{H}_n = (-1)^n e^{q^2} \frac{d^n e^{-q^2}}{dq^n}$$
 (2.6.9)

Allora avere una soluzione fisicamente accettabile, cioè che rispetti $\lim_{q\to\pm\infty}u(q)=0$ implica quantizzazione dell'energia perché, dovendo richiedere $\lambda_n=2n+1$, si ha $E_n=\lambda_n E_\omega=\hbar\omega(n+1/2)$.

Ora si torna a $\psi_n(x)$ e si cerca la costante di normalizzazione C_n :

$$\psi_n(x) = C_n \mathcal{H}_n\left(\frac{x}{\ell_\omega}\right) e^{-x^2/(2\ell_\omega^2)}$$
(2.6.10)

Per la costante di normalizzazione, si fa uso di $\int_{-\infty}^{+\infty} \mathscr{H}_n^2(q) e^{-q^2} \ dq = 2^n (n!) \sqrt{\pi}$:

$$1 \stackrel{!}{=} \int_{-\infty}^{+\infty} |\psi_n(x)|^2 dx = |C_n|^2 \int_{-\infty}^{+\infty} \mathscr{H}_n^2 \left(\frac{x}{\ell_\omega}\right) e^{x^2/\ell_\omega^2} dx = |C_n|^2 \ell_\omega \int_{-\infty}^{+\infty} \mathscr{H}_n^2(q) e^{-q^2} dq$$

dove $q=x/\ell_{\omega}$. Allora si ha $C_n=1/\sqrt{2^n\ell_{\omega}\sqrt{\pi}(n!)}$, da cui:

$$\psi_n(x) = \frac{1}{\sqrt{2^n \ell_\omega \sqrt{\pi}(n!)}} \mathcal{H}_n\left(\frac{x}{\ell_\omega}\right) e^{-x^2/(2\ell_\omega^2)}$$
 (2.6.11)

Riprendere da lezione 16