Université d'Évry Val d'Essonne 2009-2010

M54 algèbre et arithmétique

Feuille 5 — Anneaux particuliers, quotients, corps finis

Exercice 1. Soit A un anneau non nul, commutatif et intègre.

- 1. Montrer que si A est fini, alors c'est un corps.
- 2. Montrer que si A n'a qu'un nombre fini d'idéaux, alors c'est un corps (considérer les idéaux $I_n = x^n A$ pour $x \in A$ non nul).

Exercice 2. Soit A un anneau commutatif non trivial et R l'intersection de ses idéaux maximaux.

- 1. Déterminer R dans le cas de $A = \mathbf{Z}$.
- 2. Montrer que $a \in A^{\times}$ si et seulement si a n'appartient à aucun idéal maximal de A.
- 3. Montrer que tout élément nilpotent de A appartient à R, et que l'ensemble des éléments nilpotents est un idéal de A.
- 4. Montrer que $a \in R$ si, et seulement si, pour tout $x \in A$ on a $1 + ax \in A^{\times}$.

Exercice 3. Soit A un anneau commutatif, et a, b deux éléments de A. Montrer que :

- 1. L'anneau A[X]/(X-a) est isomorphe à A;
- 2. L'anneau A[X,Y]/(Y-b) est isomorphe à A[X];
- 3. L'anneau A[X,Y]/(X-a,Y-b) est isomorphe à A.

Exercice 4. Montrer que l'idéal (X - a, Y - b) de $\mathbf{R}[X, Y]$ est maximal, pour $a, b \in \mathbf{R}$. On pourra étudier le morphisme d'anneaux $h \colon \mathbf{R}[X, Y] \to \mathbf{R}$ défini par h(P) = P(a, b), pour tout P = P(X, Y) de $\mathbf{R}[X, Y]$.

Exercice 5. Soit A un anneau commutatif unitaire, I un idéal de A. On note I[X] l'ensemble des polynômes $P \in A[X]$ dont tous les coefficients appartiennent à I.

- 1. Montrer que I[X] est un idéal de A[X].
- 2. Construire un isomorphisme de l'anneau A[X]/I[X] sur l'anneau (A/I)[X].
- 3. Montrer que si I est premier, alors I[X] est premier.
- 4. Soit p un nombre premier. Montrer que $\mathbf{Z}[X]/(p) \simeq \mathbf{F}_p[X]$.

Exercice 6. 1. Quels sont les éléments de \mathbf{Z} qui sont des éléments irréductibles de $\mathbf{Z}[\sqrt{-5}]$?

2. Montrer que $\mathbf{Z}[\sqrt{-5}]$ n'est pas un anneau factoriel (écrire deux décompositions de 6).

Exercise 7. Soit $\mathbf{Z}[i] = a + ib \mid a, b \in \mathbf{Z}$.

1. Montrer que $\mathbf{Z}[i]$ est un anneau euclidien lorsqu'on le muni de la norme $N\colon \mathbf{Z}[i]\to \mathbf{N}$ définie par :

$$N(a+ib) = a^2 + b^2 .$$

(On remarquera que pour tout couple $(\alpha, \beta) \in \mathbf{Z}[i]^2$, on a $N(\alpha\beta) = N(\alpha)N(\beta)$ et on écrira explicitement la division euclidienne de deux éléments de $\mathbf{Z}[i]$.)

- 2. Soit $\alpha \in \mathbf{Z}[i]$. Montrer que si $N(\alpha)$ est premier dans \mathbf{Z} , alors α est irréductible dans $\mathbf{Z}[i]$.
- 3. Déterminer les éléments irréductibles de $\mathbf{Z}[i]$ parmi :

$$2, 5, 7, 11, 13, 17, 19, 23, 29, 31$$
.

4. L'idéal engendré par 2 est-il premier?

Exercice 8. Soit A un anneau principal, et x un élément non nul de A. Montrer que les trois assertions suivantes sont équivalentes.

- 1. x est un élément irréductible;
- 2. (x) est un idéal premier;
- 3. (x) est un idéal maximal.

Exercice 9. Soit K un corps fini à p^n éléments. Montrer qu'il existe dans K[X] au moins un polynôme de degré p^n n'ayant aucun zéro dans K.

Exercice 10. 1. Si K est un corps, montrer qu'un polynôme P de degré 2 ou 3 dans K[x] est irréductible si et seulement si il n'a pas de zéro dans K.

- 2. Trouver tous les polynômes irréductibles de degré 2, 3 à coefficients dans $\mathbb{Z}/2\mathbb{Z}$.
- 3. En utilisant la partie précédente, montrer que les polynômes $P=5X^3+8X^2+3X+15$ et $Q=X^5+2X^3+3X^2-6X-5$ sont irréductibles dans $\mathbf{Z}[X]$.
- 4. Décrire tous les polynômes irréductibles de degré 4 et 5 sur Z/2Z.

Exercice 11. 1. Dans l'anneau $A = \mathbf{F}_3[X]$, montrer que $P = X^2 + 1$ est irréductible.

- 2. Montrer que A/(P) est un corps à 9 éléments.
- 3. On note $\mathbf{F}_9 = A/(P)$ et α la classe de X dans \mathbf{F}_9 . On pose $a=1+\alpha$ et $b=1-\alpha$. Calculer a^2 , a^3 , $a^2+2ab-b^2$.

Exercice 12. 1. On considère l'anneau $A = \mathbf{F}_2[X]$, et $P = X^2 + X + 1$. Montrer que P est irréductible, et en déduire que A/(P) est un corps; montrer qu'il a 4 éléments et dresser sa table de multiplication.

2. Montrer que $Q = X^3 + X + 1$ est irréductible dans A. En déduire que A/(Q) est un corps; donner son cardinal et dresser sa table de multiplication.