Example 2 Bank Account X(1) dallass in bank account can deposit, withdray, earn interest inlegest rate 1 -text., bonk pays interest and at month on start of month batance - X(++ Ot) = X(+) + TX(+) Ot + [depoils - uilholianels bekness tend ++ Ot] Dt = 12 cultudrated = negative deposit natalas, interest is computed daily a continuously Let Q(1) be take apposits (including cirthal facts) reachine deposits) In letily, Q(1) might book like But comidating start and end states of a between two homes, we can made the deposits as happening continuously at a contact Fale. Q would then book like 10 Q'(1) : q(1) is the rate of charge of departs at 1. x(+bt) = x(+) + (x(+)b+ + q(+)b+ what comes into the bank represents antige influence on the statem! Intra siever! X-1x=q (slandard loim) What happens at the bank. lebresours the stylew (lesbage) and by viewer 2-12-6W signal in agreed, a known of t tegni tugtuo KCH) 9(4) (Dx notional action, lands lagin and of classical making and initial andition x(a) Solve dill ea <=> tind response at streem to input signed qu'l

most important property o	supering notized surpers surpers sum payor full for
•	Actually, is "the defining chreckerists of linear experient of any codes"
1 + bar 1 - dan	
System input	
nolation: q -> 1 in	norta legal de astast a
10,510	
9,(11,92(1) Signals	
-9	C,q,(4) +Czqz(1) is a superposition of a, adaz
C, , Ce constants	and hinger combinedian
supapuilkan Minciple	
9, ~ 1	C,9,+C292> C,1,+C212
92 72	
Example	
DE	a sullita
X+2x-1	XCI) - Z
	x(4) - tezt
X+5X=0	XCH - e-st
X+2X=1+e2+	x(1) = \frac{1}{2} + te_{ct}
X+5X=1+6	XCII = E + TE
X+2X-1	x(t) = Ce-zt + \frac{1}{2}
KTCKT	KG1 CC 12
X+2X=1+ezt	$x(t) = \frac{1}{2} + te^{-2t} + Ce^{-2t}$