Humor & Sarcasm Detection Cody Gilbert William Jiang

Goals

- Given a selection of text, classify it as humorous or serious
- Create and evaluate a proposed "Non-Sequitur" (NS) feature using language model loss
- Improve upon accuracy baselines found in previous work

Previous Work & Baselines

- (Mihalcea and Strapparava 2005) 76% on one-liner jokes
- (Yang et al. 2015) 85% on one-liner jokes
- (Bali et al. 2018) 66-88% on various humor categories
- Accuracy highly dependent on domain of humor

Data Sources

- 1.5 Million Reddit Comments labeled as sarcastic
 - Due to memory limitations, only first 10,000 comments considered

Hardware

NYU CIMS compute server clusters

Software

- Python Packages:
 - Keras with Tensorflow for deep neural net modeling
 - Scikit-learn for simple modeling (Naive Bayes)
 - Fast-Bert and pytorch-transformers for BERT classification and language modeling

Methodology

• Feature Creation:

- Word embeddings (learned within Keras model)
- 1-3-grams used in Naive-Bayes
- NS feature created as the loss of predicting a sequence using BERT as a language model
- Obscene Indicator variable (OI) used to indicate the presence of obscene language in a comment

Models

- Naive Bayes
- RNNs and LSTMs
- BERT Classifier with tuning
- Hybrid models as combinations of the above

Results

Model	Accuracy
Vacuous Model (All Positive)	63.2%
Naive Bayes (1, 2, 3-grams)	63.0%
BERT Classifier	63.0%
Hybrid LSTM - Text Only	67.4%
Hybrid LSTM - OI	68.6%
Hybrid LSTM - NS	68.3%
Hybrid LSTM - NS + OI	67.9%

