GÜVENİLİRLİK SKORU ALGORİTMASI RAPORU

ÖZET

Bu rapor, Veerify sisteminde bir haberin güvenilirliğini hesaplamak için kullanılan **Credibility Score Algoritması**'nı matematiksel ve pratik perspektiften açıklamaktadır.

Ana Formül:

Score = (Σ Kaynak Skoru × Similarity) / Benzersiz Sayı × Çeşitlilik Faktörü

Bu algoritma, benzer haberlerin kaynağının güvenilirliğini ve haberlerin benzerlik derecesini dikkate alarak, 0.0 ile 1.0 arasında bir güvenilirlik puanı (Score) hesaplamaktadır.

1. GİRİŞ

1.1 Problem Tanımı

Dezenformasyon çağında, bir haberin doğruluğunu belirlemek çok katmanlı bir problem:

- Tekli kaynak problemi: Bir kaynağın kendisine güvenmenin riski
- Benzerlik problemi: Aynı sahte haber birden fazla sitede yayılabilir
- Kaynak güvenilirliği: Tüm kaynaklar eşit derecede güvenilir değildir
- Zamansal esneklik: Haberler zamanla değişebilir, pero esensiyel mesaj aynı kalır

1.2 Çözüm Yaklaşımı

Güvenilirlik Çeşitlendirmesi İlkesi: Bir haber ne kadar çeşitli ve güvenilir kaynaklar tarafından raporlanırsa, o kadar güvenilir olma ihtimali yüksektir.

Örnek:

- BBC, DW, NTV ve Sözcü aynı haberi raporlarsa → Yüksek güvenilirlik
- Sadece 1-2 kaynak raporlarsa → Düşük güvenilirlik
- Hiçbir güvenilir kaynak raporlamazsa → Şüpheli

2. ALGORİTMA TASARIMI

2.1 Temel Prensipler

Prensip 1: Çeşitlilik > Tekrarlama

Mantık: Aynı yayın grubundaki siteler birbirini kopyalarken, farklı yayın gruplarında aynı haber varsa daha güvenilir.

Örnek:

✓ BBC (Independent) + NTV (Doğan) + Sözcü (İndependent)
 = 3 farklı çıkmazda aynı haber = GÜVENILIR

X Sözcü + Sözcü Haber + Sözcü TV = Aynı grup, tekrarlama = DÜŞÜK GÜVEN

Prensip 2: Güvenilirlik Ağırlıklandırması

Mantık: Tüm kaynaklar eşit değildir.

Örnek:

✓ BBC (0.95 credibility) raporlarsa = ağır

Bilinmeyen blog (0.40 credibility) raporlarsa = hafif

Prensip 3: Benzerlik Eşiği

Mantık: %75+ benzerlik = aynı haber %50-75% benzerlik = benzer/ilişkili <%50% benzerlik = farklı haber

Cosine similarity metriği ile ölçülür.

2.2 Algoritmanın Yapı Taşları

Bileşen 1: Cosine Similarity

İki metin arasındaki benzerliği ölçer (0.0-1.0).

Bileşen 2: Kaynak Güvenilirlik Skoru

Her kaynağın inherent güvenilirliği (0.0-1.0).

Bileşen 3: Çeşitlilik Faktörü

Kaç benzersiz kaynaktan haber raporlanması.

3. MATEMATİKSEL FORMÜLLER

3.1 Ana Formül (Detaylı)

$$\begin{array}{c} & & & \\ & & \Sigma \text{ (credibility_i} \times \text{similarity_i)} \\ & & & \text{i=1} \\ & & & \\ & & \\ & &$$

Nerede:

- **S** = Credibility Score (Final puanı)
- **n** = Benzersiz kaynak sayısı
- **credibility_i** = i'inci kaynağın güvenilirlik skoru (0.0-1.0)
- **similarity_i** = i'inci kaynağın haberiyle orijinal haberin benzerliği (0.0-1.0)
- **D(n)** = Çeşitlilik faktörü (diversity factor)

3.2 Cosine Similarity (Benzerlik Hesaplaması)

Nerede:

- **A** = Orijinal haberin embedding vektörü (512-dim)
- **B** = Benzer haber kandidatının embedding vektörü (512-dim)
- A · B = Nokta çarpımı (dot product)
- ||A|| = Vektör A'nın normu (magnitude)

Örnek Hesaplama:

A =
$$[0.12, -0.45, 0.89, 0.34, ...]$$
 (512 boyut)
B = $[0.15, -0.40, 0.85, 0.36, ...]$
Dot Product (A · B) = $0.12 \times 0.15 + (-0.45) \times (-0.40) + 0.89 \times 0.85 + ...$
= $0.018 + 0.18 + 0.757 + ...$

= ~450 (512 sayısal işlem sonrası)

$$||A|| = \sqrt{(0.12^2 + (-0.45)^2 + 0.89^2 + ...)} = \sqrt{1.0} = 1.0$$

 $||B|| = \sqrt{(0.15^2 + (-0.40)^2 + 0.85^2 + ...)} = \sqrt{1.0} = 1.0$

similarity = $450 / (1.0 \times 1.0) = 0.88 (88\% benzer)$

Eksiksiz Açıklama:

- **similarity = 1.0** → Tamamen aynı metin
- **similarity = 0.75** → Aynı haberin, farklı yazınla anlatımı
- similarity = 0.50 → Kısmen ilişkili
- similarity = 0.0 → Tamamen farklı

3.3 Çeşitlilik Faktörü

D(n) = min(n / threshold, 1.0)

Nerede:

- **n** = Benzersiz kaynak sayısı
- **threshold** = Doyum noktası (genellikle 10)

Örnek Hesaplamalar:

n	Hesaplam a	D(n)	Açıklama
1	1/10	0.10	Çok az kaynak
3	3/10	0.30	Yetersiz çeşitlilik
5	5/10	0.50	Orta çeşitlilik
10	10/10	1.00	Yeterli çeşitlilik
15	15/10=1.0	1.00	Tam puan (cap at 1.0)

Mantık:

- Tek kaynakla: En fazla 0.10 × score (risk çok yüksek)
- 10 kaynakla: 1.0 × score (tam puan, çeşitlilik sağlandı)
- 15+ kaynakla: 1.0 × score (daha fazlası yardımcı değil)

4. ADIM-ADIM ÖRNEK HESAPLAMA

4.1 Senaryo: "Yapay Zeka İçin Yeni Düzenleme" Haberi

Giriş Verisi:

Orijinal URL: https://techsite.com/ai-regulation-news

Haber Başlığı: "Avrupa'da Yapay Zeka Düzenlemesi Kabul Edildi"

Haber İçeriği: ~500 kelime

4.2 Step 1: Embedding Oluşturma

Input: "Avrupa'da Yapay Zeka Düzenlemesi Kabul Edildi..."

spaCy + Sentence Transformers:

Model: paraphrase-multilingual-MiniLM-L12-v2

Output: Embedding Vector (512-dim) [0.123, -0.456, 0.789, 0.234, ..., -0.567]

4.3 Step 2: Benzer Haberler Bulma

MongoDB Atlas Search özelliği kullanılır

Sonuçlar:

Sıra	Kaynak	Başlık	Similarity	Credibility
1	BBC Türkçe	"EU Passes AI Act"	0.91	0.95
2	Deutsche Welle	"Künstliche Intelligenz Verordnung"	0.88	0.93
3	NTV	"Avrupa Al'yı Düzenledi"	0.85	0.80
4	Euronews	"Europe's AI Regulation"	0.83	0.88
5	Sözcü	"Yapay Zekanın Düzenlenmesi"	0.82	0.75
6	Cumhuriyet	"AB, Yapay Zeka Yasası"	0.79	0.78

Reuters "EU AI Rulebook Finalized"

0.77

0.96

Filtreleme: Similarity > 0.75 olan 7 haber seçildi.

4.4 Step 3: Benzerlik × Güvenilirlik Çarpımı

Haber 1: $0.91 \times 0.95 = 0.8645$ Haber 2: $0.88 \times 0.93 = 0.8184$ Haber 3: $0.85 \times 0.80 = 0.6800$

Haber 4: $0.83 \times 0.88 = 0.7304$

Haber 5: $0.82 \times 0.75 = 0.6150$ Haber 6: $0.79 \times 0.78 = 0.6162$

Haber 7: $0.77 \times 0.96 = 0.7392$

Toplam (Σ) = 5.6637

7

4.5 Step 4: Ortalama Hesaplama

Ağırlıklı Ortalama = Σ / n = 5.6637 / 7 = 0.8091

4.6 Step 5: Çeşitlilik Faktörü Uygulama

Benzersiz kaynak sayısı (n): 7

Threshold: 10

D(7) = min(7/10, 1.0) = 0.70

4.7 Step 6: Final Skoru Hesaplama

Final Score = Ağırlıklı Ortalama × D(n)

 $= 0.8091 \times 0.70$

= 0.5664

≈ 0.57 (57%)

5. DURUM SINIFLANDIRMASI

Final skor hesaplandıktan sonra, haberin durumu belirlenir:

5.1 Sınıflandırma Tablosu

Score Aralığı	Kaynak Sayısı	Durum	Açıklama	lcon
≥ 0.80	≥ 10	VERIFIED	Çok güvenilir	✓
0.70-0.79	≥ 7	LIKELY TRUE	Muhtemelen doğru	✓
0.50-0.69	≥ 5	UNCERTAIN	Kesin Değil	1
0.30-0.49	≥ 3	DISPUTED	Anlaşmazlık var	X
< 0.30	< 3	UNVERIFIED	Doğrulanamadı	×

5.2 Örneğimize Uygulanması

Score = 0.57 Kaynak Sayısı = 7

Tablo'da: 0.50-0.69 aralığı

→ Durum: OUNCERTAIN

→ Açıklama: "Emin değiliz, daha fazla doğrulama gerekir"

6. İLERİ KONULAR

6.1 Kaynak Güvenilirlik Skoru Nasıl Belirlenir?

Yöntem 1: Manuel Kurulum (MVP)

BBC Türkçe = 0.95 (yüksek standart)
Deutsche Welle = 0.93 (uluslararası)
NTV = 0.80 (ana akım)
Bilinmeyen Blog = 0.40 (düşük standart)

Yöntem 2: Dinamik Hesaplama (v2)

```
credibility_score = (
    accuracy_history × 0.40 +
    editorial_standards × 0.30 +
    transparency_level × 0.20 +
    correction_speed × 0.10
```

6.2 Similarity Threshold Neden 0.75?

Deneysel Bulgular:

< 0.50: Farklı haberler (False positive riski düşük)

0.50-0.75: Kısmen ilişkili haberler

> 0.75: Aynı haberin farklı varyasyonları

Threshold 0.75 = İyi dengeleme

6.3 Çeşitlilik Faktörü İçin Neden 10?

İstatistiksel Analiz:

n=1: 1 kaynakla %10 puan alabiliyor (riskli)

n=3: 3 kaynakla %30 puan (yetersiz)

n=5: 5 kaynakla %50 puan (orta)

n=10: 10 kaynakla %100 puan (yeterli)

Sosyal bilimler araştırmasında:

"3-5 bağımsız kaynakta aynı bulgu" = yeterli

"10+ kaynak" = statistically significant

6.4 Anomali Tespiti

Örnek 1: Çok Yüksek Skor Ama Düşük Kaynak

Score = 1.0, n=1

 \rightarrow İşaret: Tüm benzer haberler aynı kaynaktan?

→ İşlem: Manuel review

Örnek 2: Çok Düşük Skor Ama Yüksek Kaynak

Score = 0.2, n=15

→ İşaret: Benzer haber yok mu?→ İşlem: Haber çok yeni/özel mi?

7. EDGE CASES

7.1 Haber Henüz Tarandığında

Durum: Haber 30 dakika önce yayınlandı

Benzer Haberleri: 0 tane

n = 0

Çözüm 1 (Bugünkü): Score = 0.0 (UNVERIFIED) Çözüm 2 (v2): "Breaking News - Beklemede" durumu

7.2 Kontroversiyel Konu

Durum: Politikacı A vs B haberi Haber Sayısı: 50+ (çelişkili)

Benzer + Güvenilir: 15 kaynak Benzer + Güvenilmez: 35 kaynak

Sorun: Similarity aynı ama credibility farklı

Çözüm: Minimum credibility threshold (e.g., 0.50)

7.3 Viral Sahte Haber

Durum: False haber 100 sitede var (ama hepsi birbirini kopyaladı)

Benzer Haberler: 100

Benzersiz Kaynaklar: 1 (ilk yayınlayan)

Score = 0.8091 × 0.10 = 0.0809 (8%) = UNVERIFIED ✓

Çeşitlilik faktörü yardım etti!

8. OPTIMIZASYONLAR VE İYİLEŞTİRMELER

8.1 Sezonsal Ayarlama

Son 7 gün: full weight 8-30 gün: 0.8 × weight 1-3 ay: 0.5 × weight 3+ ay: 0.2 × weight

Mantık: Eski haberler değeri düşüyor

8.2 Zaman Damgası Boosting

Aynı saatte yayımlanan kaynaklar:

Normal: 1.0x

Aynı saatte yayınlanan: 1.2x (daha güvenilir)

Mantık: Koordineli raporlama = daha güvenilir

8.3 Coğrafi Çeşitlilik

D_coğrafi(n) = min(unique_countries / 5, 1.0)

Mantık: Farklı ülkelerden kaynaklı \rightarrow daha güvenilir Örnek: TR, DE, GB, US = 4 ülke \rightarrow 0.8x boost

8.4 İyileştirilmiş Formula (v2 Önerisi)

Score = $(\Sigma \text{ credibility}_i \times \text{ similarity}_i / n)$

- × D_çeşitlilik(n)
- × D_zaman(age)
- × D_coğrafi(countries)

Nerede:

D çeşitlilik = min(n/10, 1.0)

D_zaman = 1 - (age_days/365) if age < 365

D_coğrafi = min(unique_countries/5, 1.0)

9. PERFORMANS ANALIZI

9.1 Hesaplama Karmaşıklığı

Zaman Kompleksitesi:

 $O(m \times d)$

Nerede:

m = Benzer haber sayısı (50)

d = Embedding boyutu (512)

Típik Süre:

- Embedding: 2s

- Similarity search: 1s (PostgreSQL pgvector)

Score calculation: 100msTOPLAM: ~3.1 saniye

Optimizasyon: Batch processing ile parallelizable

9.2 Doğruluk Metrikleri

Precision (Yanlış Pozitif):

"Sistem verified dediği haberler gerçekten doğru mu?" Target: >85%

Recall (Yanlış Negatif):

"Sistem unverified dediği haberler gerçekten yanlış mı?" Target: >75%

F1-Score:

F1 = 2 × (Precision × Recall) / (Precision + Recall) Target: >0.80

10. TEST SENARYOLARI

10.1 Test Case 1: Güvenilir Haber

Input: BBC'nin "Hükümet Açıklaması" haberi

Beklenen Sonuç: ≥0.70 (VERIFIED veya LIKELY TRUE) Sebep: Yüksek güvenilirlik kaynak + birden fazla kaynakta

10.2 Test Case 2: Şüpheli Haber

Input: Anonim blog "Ünlü öldü (yalan)" haberi Beklenen Sonuç: <0.30 (UNVERIFIED)

Sebep: Düşük güvenilirlik + hiçbir resmi kaynakta yok

10.3 Test Case 3: Kontroversiyel Haber

Input: "Politikacı X Yaptı/Yapmadı" haberi Beklenen Sonuç: 0.40-0.60 (UNCERTAIN)

Sebep: Benzer haberler var ama çelişkili kaynaklar

10.4 Test Case 4: Breaking News

Input: Yeni olayı ilk raporlayan haber

Beklenen Sonuç: 0.0 (UNVERIFIED - henüz) Sebep: Benzer haber yok, ama zamanla artacak

11. KARŞILAŞTIRMA: DİĞER YÖNTEMLERLE

11.1 Basit Sayım (Naive Count)

Score_naive = n / 100 (0-1 arasına normalize)

Örnek:

10 kaynakta \rightarrow 0.10 (10%) 50 kaynakta \rightarrow 0.50 (50%)

X Sorun: Kaynak kalitesi görmezden geliyor X Sorun: Sahte haberler 100 sitede olabilir

11.2 Sadece Credibility Ortalaması

Score = Σ credibility i / n

Örnek:

(0.95 + 0.93 + 0.80) / 3 = 0.89

X Sorun: Benzerlik görmezden geliyor

X Sorun: Farklı haberler de yüksek score alabilir

11.3 Önerilen Yöntem (Hybrid)

Score = $(\Sigma \text{ credibility}_i \times \text{ similarity}_i / n) \times D(n)$

Avantaj: Kalite + Benzerlik + Çeşitlilik

🔽 Avantaj: Robust ve sağlam

Avantaj: False positives minimize

12. UYGULAMA KODU (Python)

```
def calculate_credibility_score(similar_articles):
  Güvenilirlik skorunu hesapla
  Args:
     similar articles: [
          'source_credibility': 0.95,
          'similarity': 0.91,
          'source_id': 1
       },
     ]
  Returns:
     float: 0.0-1.0 arası credibility score
  if not similar_articles:
     return 0.0
  # Step 1: Benzersiz kaynakları say
  unique_sources = len(set(
     article['source_id']
     for article in similar_articles
  ))
  # Step 2: Similarity × Credibility çarpımını hesapla
  weighted sum = sum(
     article['source_credibility'] * article['similarity']
     for article in similar articles
  )
  # Step 3: Ağırlıklı ortalamayı hesapla
  weighted_average = weighted_sum / len(similar_articles)
  # Step 4: Çeşitlilik faktörünü hesapla
  diversity_factor = min(unique_sources / 10.0, 1.0)
  # Step 5: Final skoru hesapla
```

```
final_score = weighted_average * diversity_factor
  return round(final score, 2)
def determine status(score, source count):
  Score'a göre doğrulama durumunu belirle
  if score >= 0.80 and source count >= 10:
     return "verified", " Doğrulanmış"
  elif score >= 0.70 and source_count >= 7:
     return "likely true", " Muhtemelen Doğru"
  elif score >= 0.50 and source_count >= 5:
     return "uncertain", " Belirsiz"
  elif score >= 0.30 and source_count >= 3:
     return "disputed", " Anlaşmazlık"
  else:
     return "unverified", " Doğrulanamadı"
# ÖRNEK KULLANIM
similar_articles = [
  {'source credibility': 0.95, 'similarity': 0.91, 'source id': 1},
  {'source_credibility': 0.93, 'similarity': 0.88, 'source_id': 2},
  {'source credibility': 0.80, 'similarity': 0.85, 'source id': 3},
  {'source_credibility': 0.88, 'similarity': 0.83, 'source_id': 4},
  {'source credibility': 0.75, 'similarity': 0.82, 'source id': 5},
  {'source_credibility': 0.78, 'similarity': 0.79, 'source_id': 6},
  {'source_credibility': 0.96, 'similarity': 0.77, 'source_id': 7},
1
score = calculate_credibility_score(similar_articles)
status, label = determine_status(score, len(set(a['source_id'] for a in similar_articles)))
print(f"Score: {score}")
print(f"Status: {status} ({label})")
# Output: Score: 0.57
       Status: uncertain ( Belirsiz)
```

13. SONUÇ VE ÖNERİLER

13.1 Algoritmanın Güçlü Yönleri

▼ Çeşitlilik Duyarlılığı

Tek kaynağa güven almıyor

▼ Kalite-Benzerlik Dengesi

• Hem kaynağın kalitesi hem benzerliği önemli

Skalabilite

1 kaynaktan 100 kaynağa ölçeklenir

M Basitlik

Anlaşılması ve uygulanması kolay

13.2 Sınırlılıklar

▲ Sabit Thresholdlar

Konuya göre değişebilir (politika vs spor)

Semantic Gaps

Farklı dilde yazılan haberler yanlış skorlanabilir

▲ Zamansal İssüler

Breaking news'te doğru çalışmayabilir

🔥 Kaynak Güvenilirliğinin Statikliği

Zamanla değişebilir (demoted/promoted sources)

13.3 Gelecek İyileştirmeler (v2)

- 1. Dinamik kaynak credibility (gerçek-zamanlı güncelleme)
- 2. Coğrafi çeşitlilik faktörü
- 3. Semantik hata oranı
- 4. Makine öğrenmesi ile threshold optimizasyonu
- 5. A/B testing ile validation

14. REFERANSLAR

- 1. **Cosine Similarity:** Manning, Raghavan, Schütze (2008). "Introduction to Information Retrieval"
- 2. News Credibility: Castillo et al. (2011). "Credibility Assessment of Textual Claims"
- 3. Fake News Detection: Zhou et al. (2020). "A Survey on Fake News Detection"
- 4. **Sentence Embeddings:** Reimers & Gupta (2019). "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks"