Weeko2 - Part 01

Review: Binary Linear Classification Learning Model

Training Set:
$$D = \{(\varkappa_1, y_1), \dots, (\varkappa_N, y_N)\}$$
 $\mathscr{L}_n \in X$, $\mathscr{L}_n = (\varkappa_n, \varkappa_{n_2}, \dots, \varkappa_{n_d})$, $y_n \in \{-1, +1\} = Y$

Task: Given any $\mathscr{L} \in X$, output $y \in \{-1, +1\} = Y$

Hypothesis (Decision Rule):
$$N(\underline{x}) = Sign\left(\frac{d}{z}w_i x_i \pm b\right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \left(f(\underline{x}_n) \neq h(\underline{x}_n) \right) = \sum_{i=1}^{N} \mathbb{1} \left(y_n \neq \text{Sign} \left(\sum_{i=1}^{d} w_i x_{ni} + b \right) \right)$$

Simple Learning Model Diagram
UNKnown Target

function y=f(m)

Training Example

d(x,y,y)

Hypothesis set 7-6 Learning Algorithm

final hypothesis

Last lecture:
We saw that finding a linear classifier that
minimizes Ein is NP-hard
_ However, if the destaset is linearly separable
we have an algorithm that can find the
we have an algorithm that can find the perfect linear classifier efficiently.
- That algorithm is Perceptron Learning Algorithm (PLA)
(PLA)
Today:
_perceptron learning Algorithm

Perceptron Learning Algorithm

- Efficiently finds a Perfect discriminator for linearly separable data set.
- To have cleaner muth, we change our notation a bit old formulation of the decision role:

New formulation of Binary linear Classification

Training Set:
$$D = \{(\chi_1, y_1), \dots, (\chi_N, y_N)\}$$

$$\chi_n \in \{1\} \times \chi, \quad \chi_n = (\chi_{n_0} = 1, \chi_{n_1}, \chi_{n_2}, \dots, \chi_{n_d}), \quad y_n \in \{-1, +1\} = \mathcal{Y}$$

Hypothesis
$$Set: h_{\underline{w}} \in \mathcal{H}$$
, where $h_{\underline{w}}(\underline{x}) = Sign(\underline{w}^{T}\underline{x})$ weight vector: $\underline{w} = (w_0, w_1, ..., w_d) \in \mathbb{R}^{d+1}$

Training: Minimize
$$E_{in}(\underline{W}) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(\underline{y}_n \neq h_{\underline{w}}(\underline{x}))$$

Perceptron Learning Algorithm (PLA) Input: training Set D that is linearly separable Output: $W \in \mathbb{R}^{d+1}$ that achieves $E_m(w) = 0$ Initialization: choose arbitrary w, e.g., w= = Step 1: Check if $E_{in}(w) = 0$. If yes, stop and return w. Step 2: Let (2n, yn) be a miss-classified point, i.e., In # In (including the points on the boundary) If y=+1, w=w+2xIf y=-1, w - w- 20, Go to Stop I.

L'demo: vinizinho's PLA Visualization>

Why Does PLA Work? (Intuitive explanation) Let's have a closer look at destapoint (21, y) Un WT22 classification?

Let's have a closer look at the updating rule.

Suppose (2011) is missclassified. Now let's see what is the impact of updating w on how we classify 26m yn Wrew 22n =

Observe that ynw new 20, 19 ynw 20,

Note: What we saw was an induitive explanation. Although PLA update rule give us a better classifier for the miss classified Point 20n, it may cause new muss classification for other points? We need more than intuitive explanation to show that PLA indeed works. (This was proved by Rosenblutt, 1957) Rosenblatt Theorem: Given a linearly separable dataset, PLA terminates in a finite # of steps yielding Ein(w)=0 (If you are interested, the proof is in Problem 1.3 of LFD)

Remark: The output of PLA is not Unique.

So far we have only considered linearly Separable dataset and Saw that PLA works for such dataset.

What if the dataset is NOT linearly separable?

What would happen if we use PLA for such datasets?

How can we modify PLA to work with non-separable datasel?

Pocket Algoritum

Pocket Algorithm extends PLA for destaset that are not linearly separable.

Pocket Algorithm:

0: Pick time horizon T

1: Set Pocketed weight vector w* to W6) in PLA.

2: for t=1,2,...,T:

3: Ron PLA for one update to obtain W(t)

4: Evaluate Ein (W(+))

5: if $E_{in}(w(t)) \angle E_{in}(w^t)$ then

Set $W^* = W(t)$

7: End if

8: Enl for

9: Return W*

■ So far, we saw binary classification.

Can we use Perceptron idea to do classification with more than two classes (i.e. multiary classification)?

Multiary classification