EE-211 CIRCUITS I LABORATORY WINTER 2023 COURSE SYLLABUS

Meeting Time: W 3:35pm - 5:40pm

Location: Academic Building 2627 (Phil Motz Circuit Design Lab)

Instructor

Name: Anca L. Sala, Ph.D. Office: 2703S AB, ECE Dept. Phone: 248-703-6636 (cell)

Email: asala1@kettering.edu (preferred contact method)

Office Hours

On campus: Tuesday 1:30 - 3:00pm, Wednesday, 2:00 - 3:30pm in room 2703S AB, walk-ins welcome. Virtual office hours through Google Meet meet.google.com/nqr-gyay-qbb, Monday, 7:00-8:00pm, starting Jan. 16.

Textbook and Required Materials

Lab Handouts/ Resources via Course in Blackboard

Other Materials

Textbook for EE-210 Circuits I

Course Description

An introductory laboratory course designed to reinforce the fundamental analysis techniques discussed in EE-210, Circuits I. Topics include safe use of laboratory equipment and experimental verification of analysis techniques.

Course Pre-requisites/Co-requisites, Credits and Contact Hours

Pre-requisites: None

Co-requisites: EE-210 Circuits I

Credits: 1

Contact Hours: 2

Course Learning Outcomes

Students who receive credit for EE-211 will have demonstrated the ability to do all of the tasks listed below:

- 1. Safety rules of handling electrical equipment.
- 2. Apply Ohm's law and Kirchhoff's laws; use color code and resistor size to determine resistance, tolerance, and power rating.
- 3. Use modern measuring equipment safely, such as the oscilloscope, digital and analog meters, and function generators.

- 4. Analyze series and parallel resistor networks and use voltage and current division concepts, and experimentally verify the results.
- 5. Apply circuit analysis techniques, including nodal and mesh analysis, source transformations, Thevenin and Norton equivalent circuits, and the principle of superposition, to solve for circuit variables, and perform experimental verification.
- 6. Measure the sinewave parameters, such as peak value, rms value, frequency, period, phase angle (leading and lagging), and dc offset.
- 7. Analyze impedance and model circuits with resistors, inductors, and capacitors excited by sinewaves using phasors and standard circuit analysis techniques in the frequency domain, and experimentally verify the results.
- 8. Convert frequency domain phasor quantities to appropriate time domain quantities and vice versa
- 9. Calculate power factor, real power and reactive power for circuits driven with sinusoidal sources, and experimentally verify the results.

Grading

Each week will count for 10% of the total grade. Points are based on lab reports/ exercises/ problems/ demos as assigned by the instructor. **Lab reports are due prior to the start of the class the week after they were assigned.** Assignments will NOT BE ACCEPTED for credit after the due date/time. A zero grade will be recorded if not submitted on time.

All grades will be regularly posted in Blackboard.

Student Participation

In-person Labs will be conducted each week. In-person attendance and active participation is expected. In-person attendance will be taken and recorded. Excessive absences (>3) may result in a substantial reduction in the overall course grade. You will be assigned a lab partner to work collaboratively on your lab assignments. You will typically submit assignments to be graded as a team.

Letter Grade Conversion

Total Points	Letter Grade
1000 - 930	Α
929 - 900	A-
899 - 870	B+
869 - 830	В
829 - 800	B-
799 - 770	C+
769 - 730	С
729 - 700	C-
699 - 650	D+
649 - 600	D
599 - 0	F

Additional Policy Information

In addition to the Course Syllabus please review the <u>University Policy Syllabus</u> and the <u>Understanding</u> <u>the Ethics and Academic Integrity Policies at Kettering University</u>, posted in Blackboard under the left-hand navigation Syllabus item.

Additionally, as future Electrical and Computer Engineers please review the <u>IEEE Code of Ethics</u>. You can find this document at https://www.ieee.org/about/corporate/governance/p7-8.html, and it is also posted under the Syllabus & Course Information page in Blackboard.

Academic Assistance

In addition to your professors, academic assistance with class work and writing is available from the Academic Success Center (ASC), https://my.kettering.edu/page/academic-success-center-asc

The ASC Lab, https://my.kettering.edu/page/academic-success-center-lab is an academic resource for you that offers: Subject Tutoring, Math Help, Study Buddy, Supplemental Instruction, Writing Support, and more.