Einführung in die Algebra

BLATT 10

Jendrik Stelzner

7. Januar 2014

Aufgabe 10.2.

Bemerkung 1. Sei $p \in \mathbb{N}$ eine Primzahl und $k \in \mathbb{N}, k \geq 1$. Dann gibt es in $\mathbb{Z}/p^k\mathbb{Z}$ genau p Elemente $g \in \mathbb{Z}/p^k\mathbb{Z}$ mit pg = 0.

Beweis. Es bezeichne $\pi:\mathbb{Z}\to\mathbb{Z}/p^k\mathbb{Z}$ die kanonische Projektion und $\bar{n}=\pi(n)$ für alle $n\in\mathbb{Z}$. Für alle $n\in\mathbb{Z}$ ist

$$\begin{split} p \cdot \bar{n} &= 0 \Leftrightarrow \overline{np} = 0 \Leftrightarrow np \in \operatorname{Ker} \pi = p^k \mathbb{Z} \Leftrightarrow n \in p^{k-1} \mathbb{Z} \\ &\Leftrightarrow \bar{n} \in \{0, \overline{p^{k-1}}, \dots, (p-1) \overline{p^{k-1}}\}. \end{split}$$

Bemerkung 2. Seien G_1, \ldots, G_n Gruppen. Für $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$ ist

$$\operatorname{ord}(g_1,\ldots,g_n) = \operatorname{kgV}(\operatorname{ord} g_1,\ldots,\operatorname{ord} g_n).$$

Beweis. Wir schreiben $k=\operatorname{kgV}(\operatorname{ord} g_1,\ldots,g_n)$ und $l=\operatorname{ord}(g_1,\ldots,g_n)$. Es ist offenbar

$$(g_1,\ldots,g_n)^k = (g_1^k,\ldots,g_n^k) = (0,\ldots,0),$$

also $l \mid k$. Da

$$(0,\ldots,0)=(g_1,\ldots,g_n)^l=(g_1^l,\ldots,g_n^l)$$

ist ord $g_i \mid l$ für alle $i = 1, \ldots, n$, also auch $k \mid l$.

Es bezeichne $P\subsetneq\mathbb{N}$ die Menge der Primzahlen. Sei G eine abelsche Gruppe mit ord $G=15625=5^6$. Aus dem Hauptsatz über endlich erzeugte abelsche Gruppen folgt, dass

$$G \cong \mathbb{Z}^d \oplus \bigoplus_{p \in P} \bigoplus_{n \ge 1} (\mathbb{Z}/p^n\mathbb{Z})^{\nu(p,n)},$$

wobei die $\nu(p,n)$ eindeutig bestimmt sind und $\nu(p,n)=0$ für fast alle $(p,n)\in P\times (\mathbb{N}\setminus\{0\})$. Da G endlich ist, ist in diesem Fall d=0, und da ord $G=5^6$ ist $\nu(p,n)=0$ für alle $p\in P, p\neq 0$, und $\sum_{n\geq 1}n\cdot \nu(5,n)=6$. Übersichtlich ausgedrückt ist also

$$G \cong (\mathbb{Z}/5\mathbb{Z})^{\nu_1} \times \cdots \times (\mathbb{Z}/5^6\mathbb{Z})^{\nu_6}$$

mit eindeutig bestimmten $\nu_1, \ldots, \nu_6 \in \mathbb{N}$ und $\nu_1 + 2\nu_2 + \ldots + 6\nu_6 = 6$. Da wir nur die Zahl der Isomorphieklassen ermitteln wollen, können wir im Folgenden o.B.d.A. davon ausgehen, dass G von der obigen Form ist. Für

$$(g_1,\ldots,g_n)\in (\mathbb{Z}/5\mathbb{Z})^{\nu_1}\times\cdots\times(\mathbb{Z}/5^6\mathbb{Z})^{\nu_6}$$

ist wegen Bemerkung 2 genau dann

$$5 = \operatorname{ord}(g_1, \dots, g_n) = \operatorname{kgV}(\operatorname{ord} g_1, \dots, \operatorname{ord} g_n),$$

wenn ord $g_1, \ldots,$ ord $g_n \in \{1, 5\}$ und ord $g_i = 5$ für (mindestens) ein $i \in \{1, \ldots, n\}$. (Denn man bemerke, dass ord $g_i = 5^k$ für ein $k \in \mathbb{N}$ für alle $i = 1, \ldots, n$.) Da es genau 124 Elemente der Ordnung 5 in G gibt, gibt es genau 125 = 5^3 Elemente der Ordnung 1 oder 5 in G; dies sind genau die Element $(g_1, \ldots, g_n) \in G$ mit ord $g_i \in \{1, 5\}$ für alle $i = 1, \ldots, n$. Aus Bemerkung 2 folgt damit, dass

$$G = \mathbb{Z}/5^{\mu_1}\mathbb{Z} \times \mathbb{Z}/5^{\mu_2}\mathbb{Z} \times \mathbb{Z}/5^{\mu_3}\mathbb{Z},$$

mit $\mu_1, \mu_2, \mu_3 \geq 1$ und $\mu_1 + \mu_2 + \mu_3 = 6$. Die Isomorphieklassen dieser Gruppen entsprechen offenbar gerade den Partitionen von 6 in drei natürliche, positive Zahlen. Diese sind (1,1,4), (1,2,3) und (2,2,2), d.h. G ist isomorph zu einer der drei Gruppen

$$(\mathbb{Z}/5\mathbb{Z})^2 \times \mathbb{Z}/5^4\mathbb{Z} \text{ oder } \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5^2\mathbb{Z}, \mathbb{Z}/5^3\mathbb{Z} \text{ oder } (\mathbb{Z}/2\mathbb{Z})^3,$$

die zueinander paarweise nicht isomorph sind. Offenbar erfüllt auch jede dieser drei Gruppen die geforderten Bedingungen. Also gibt es genau drei Isomorphieklassen.

Aufgabe 10.4.

Für einen beliebigen Körper K und beliebiges $g \in K[X]$ mit deg $g \geq 1$ gilt, da K[X] ein Hauptidealring ist, bekanntermaßen

$$K[X]/(g)$$
 ist ein Körper $\Leftrightarrow (g)$ ist maximal $\Leftrightarrow g$ ist irreduzibel.

Da das Polynom $f = X^3 - 2$ irreduzibel in $\mathbb{Q}[X]$ ist, nicht jedoch in $\mathbb{R}[X]$, ist $\mathbb{Q}[X]/(f)$ ein Körper, $\mathbb{R}[X]/(f)$ jedoch nicht.

Aufgabe 10.5.

(i)

Da α und β algebraisch über K sind, ist die Körpererweiterung $K(\alpha,\beta)/K$ algebraisch und $K(\alpha,\beta)=K[\alpha,\beta]$. Insbesondere ist daher $(\alpha^k\beta^l)_{k,l\in\mathbb{N}}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$.

Sei nun $x_1, \ldots, x_m \in K(\alpha)$ eine K-Basis von $K(\alpha)$ und $y_1, \ldots, y_n \in K(\beta)$ eine K-Basis von $K(\beta)$. Es ist $(x_iy_j)_{i=1,\ldots,m,j=1,\ldots,n}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$, und damit insbesondere

$$K[(\alpha, \beta) : K] = \dim_K(K(\alpha, \beta)) \le mn$$

Für alle $k,l\in\mathbb{N}$ gibt es nämlich (eindeutige) $\lambda_1^k,\ldots,\lambda_m^k\in K$ mit $\alpha^k=\sum_{i=1}^m\lambda_i^kx_i$ und $\mu_1^l,\ldots,\mu_n^l\in K$ mit $\beta^l=\sum_{j=1}^n\mu_j^ly_j$, weshalb

$$\alpha^k \beta^l = \left(\sum_{i=1}^m \lambda_i^k x_i\right) \left(\sum_{j=1}^n \mu_j^l y_j\right) = \sum_{i=1}^m \sum_{j=1}^n \lambda_i^k \mu_j^l x_i y_j.$$

da $(\alpha^k \beta^l)_{k,l \in \mathbb{N}}$ ein K-Erzeugendensystem von $K(\alpha,\beta)$ ist, ist es daher auch $(x_i y_j)_{i,j}$.

(ii)

Aus der Kette von Körpererweiterungen

$$K \subseteq K(\alpha) \subseteq K(\alpha, \beta)$$

ergibt sich durch den Gradsatz, dass

$$[K(\alpha, \beta) : K] = [K(\alpha, \beta) : K(\alpha)] \cdot [K(\alpha) : K],$$

also

$$m = [K(\alpha) : K] \mid [K(\alpha, \beta) : K]$$

Analog ergibt sich, dass auch $n \mid [K(\alpha, \beta) : K]$. Folglich ist auch

$$kgV(m, n) \mid [K(\alpha, \beta)].$$

Dabei ist kgV(m,n)=mn, da m und n teilerfremd sind. Mit $[K(\alpha,\beta):K]\geq 1$ ergibt sich damit, dass $mn\leq [K(\alpha,\beta):K]$. Da auch $[K(\alpha,\beta):K]\leq mn$ ist also

$$[K(\alpha,\beta):K]=mn.$$