Transformada Unilateral de Laplace

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Verano 2019-2020

Transformada Unilateral de Laplace

Transformada unilateral de Laplace

La causalidad de sistemas reales ha conducido a una modificación de la transformada de Laplace donde se ignora lo ocurrido antes de t=0, y que se conoce como la transformada unilateral de Laplace:

$$\mathcal{L}_{u}\{x(t)\} = \int_{0}^{\infty} x(t)e^{-st}dt = \mathcal{L}\{x(t)u(t)\}$$

que es idéntica a la transformada bilateral de la función x(t)u(t), o en otras palabras, si x(t) es causal sus transformadas unilateral y bilateral son idénticas.

ROC en la transformada unilateral de Laplace

Puesto que x(t)u(t) es una señal derecha, su **ROC** es <u>siempre</u> un semiplano derecho.

El instante t = 0 puede o no ser incluido, lo que se indica en la integral con 0^- ó 0^+ respectivamente. Si solo se indica en la integral 0, se asume que se trata de 0^- .

Señal	Transformada	ROC
$\delta(t)$	1	todo s
1	$\frac{1}{s}$	$\sigma > 0$
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$\sigma > 0$
e^{-at}	$\frac{1}{s+a}$	$\sigma > -a$
$\frac{t^{n-1}}{(n-1)!}e^{-at}$	$\frac{1}{(s+a)^n}$	$\sigma > -a$
$\delta(t-\tau), \tau > 0$	$e^{-s\tau}$	$todo\ s$
$\cos(\omega_0 t)$	$\frac{s}{s^2 + \omega_0^2}$	$\sigma > 0$
$\operatorname{sen}(\omega_0 t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\sigma > 0$
$e^{-at}\cos(\omega_0 t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\sigma > -a$
$e^{-at}\operatorname{sen}(\omega_0 t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\sigma > -a$
$\frac{d^n}{dt^n}\delta(t)$	s^n	$todo\ s$

Transformadas Unilaterales de Laplace

Propiedades de la Transformada Unilateral de Laplace

Propiedades

- Algunas propiedades son idénticas a las de la transformada bilateral.
- Aquellas que conducen a un semiplano izquierdo como ROC no tienen equivalente en la transformada unilateral.

Propiedades de la Transformada Unilateral de Laplace

Propiedad	Señal en el tiempo	Transformada	ROC
	x(t) = x(t)u(t)	X(s)	R
	$x_1(t) = x_1(t)u(t)$	$X_1(s)$	R_1
	$x_2(t) = x_2(t)u(t)$	$X_2(s)$	R_2
Linealidad	$\alpha_1 x_1(t) + \alpha_2 x_2(t)$	$\alpha_1 X_1(s) + \alpha_2 X_2(s)$	$\geq R_1 \cap R_2$
Función real	$x(t) \in \mathbb{R}$	$X(s) = X^*(s^*)$	R
Desplazamiento temporal	$x(t-\tau), \tau > 0$	$e^{-s\tau}X(s)$	R
Desplazamiento en s	$e^{s_0t}x(t)$	$X(s-s_0)$	$R + s_0$
Conjugación	$x^*(t)$	$X^{*}(s^{*})$	R
Escalamiento en el tiempo	x(at), a > 0	$\frac{1}{a}x\left(\frac{s}{a}\right)$	R/a
Convolución	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	$\geq R_1 \cap R_2$
Diferenciación	$\frac{dx(t)}{dt}$	$sX(s)-x(0^-)$	$\geq R$
Diferenciación múltiple	$\frac{d^n}{dt^n}x(t)$	$s^n X(s) -$	
		$\sum_{i=1}^{n} s^{n-i} x^{(i-1)}(0^{-})$	
Diferenciación en \boldsymbol{s}	-tx(t)	$\sum_{i=1}^{n-1} s^{n-i} x^{(i-1)}(0^{-})$ $\frac{d}{ds} X(s)$	R
Integración	$\int_{0-}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	$\geq R \cap \{\sigma > 0\}$
Teorema de valor inicial	$x(0^{+})$	$\lim_{s \to \infty} sX(s)$	
Teorema de valor final	$\lim_{t \to \infty} x(t)$	$\lim_{s \to 0} sX(s)$	

Linealidad

Si

$$x_1(t) \circ \longrightarrow X_1(s),$$
 $ROC: R_1$
 $x_2(t) \circ \longrightarrow X_2(s),$ $ROC: R_2$

entonces

$$\alpha_1 x_1(t) + \alpha_2 x_2(t) \circ \alpha_1 X_1(s) + \alpha_2 X_2(s), \qquad ROC: R_1 \cap R_2$$

Desplazamiento temporal

(1)

Si x(t) es causal, es decir x(t) = x(t)u(t), entonces un **atraso** en el tiempo de x(t) puede expresarse utilizando la propiedad

$$x(t-\tau) \circ e^{-s\tau}X(s)$$

donde τ debe ser mayor a cero.

Desplazamiento temporal

(2)

Si x(t) NO es causal, el retraso en el tiempo hace que aparezca un nuevo segmento de x(t) en el intervalo $[0, \tau]$, no considerado en la transformación unilateral de x(t).

$$x(t-\tau) \circ e^{-s\tau}X(s) + \mathcal{L}_u\{x(t-\tau)u(\tau-t)u(t)\}$$

Un adelanto en el tiempo puede causar que parte de x(t) sea desplazado antes del instante t=0, lo que no sería considerado por la transformada unilateral.

$$\mathcal{L}_{u}\{x(t+\tau)\} = e^{s\tau}[X(s) - \mathcal{L}_{u}\{x(t)u(t)u(\tau-t)\}]$$

Desplazamiento en el dominio s

Un desplazamiento en el dominio s tiene un efecto idéntico al caso de la transformada bilateral, puesto que no causa ninguna alteración en la causalidad de la señal x(t):

$$e^{s_0t}x(t) \longrightarrow X(s-s_0)$$

Ejemplo: Transformada unilateral de Laplace de una función periódica (1)

Calcule la transformada unilateral de Laplace de una función periódica x(t)

Ejemplo: Transformada unilateral de Laplace de una función periódica (2)

Solución: Asúmase que

$$\hat{x}(t) = \begin{cases} x(t) & para \ 0 \le t \le T \\ 0 & en \ el \ resto \end{cases}$$

es una función finita causal igual al primer periodo T de la función x(t). Se cumple entonces que

$$x(t)u(t) = \sum_{n=0}^{\infty} \hat{x}(t - nT)$$

Ejemplo: Transformada unilateral de Laplace de una función periódica (3)

y la transformada unilateral de Laplace es, utilizando la propiedad de desplazamiento y de linealidad

$$\mathcal{L}_{u}\{x(t)\} = \sum_{n=0}^{\infty} \mathcal{L}_{u}\{\hat{x}(t-nT)\}$$

$$= \sum_{n=0}^{\infty} e^{-snT} \mathcal{L}_{u}\{\hat{x}(t)\}$$

$$= \sum_{n=0}^{\infty} e^{-snT} \hat{X}(s) = \hat{X}(s) \sum_{n=0}^{\infty} e^{-snT}$$

Ejemplo: Transformada unilateral de Laplace de una función periódica (4)

Utilizando el resultado de series de potencias con $z = e^{-sT}$ se tiene que

$$\lim_{N \to \infty} \sum_{n=0}^{N-1} e^{-snT} = \lim_{N \to \infty} \frac{1 - e^{-sNT}}{1 - e^{-sT}}$$
$$= \frac{1}{1 - e^{-sT}}$$

para $Re\{s\} = \sigma > 0$, con lo que finalmente se obtiene

$$\mathcal{L}_{u}\{x(t)\} = \frac{\hat{X}(s)}{1 - e^{-sT}}$$

Conjugación

Al igual que con la transformada bilateral se cumple

$$x^*(t) \longrightarrow X^*(s^*)$$

y por tanto para funciones x(t) reales se cumple que si p es un polo complejo con parte imaginaria diferente de cero, entonces p^* también lo es.

Escalamiento en el tiempo

Únicamente válido con valores positivos, para evitar inversiones temporales (que cambian las **ROC**). Con a > 0:

$$x(at) \circ - \frac{1}{a} X\left(\frac{s}{a}\right)$$

Convolución

Propiedad válida únicamente si las dos funciones involucradas son causales:

$$x_1(t) * x_2(t) \longrightarrow X_1(s)X_2(s)$$

Diferenciación

(1)

Si x(t) tiene como transformada unilateral X(s), y x(t) es continua en x(0) y su derivada es de orden exponencial entonces

$$\mathcal{L}_{u}\left\{\frac{d}{dt}x(t)\right\} = \int_{0^{-}}^{\infty} \frac{d}{dt}x(t)e^{-st}dt$$

e integrando por partes

$$= x(t) e^{-st} \Big|_{0^{-}}^{\infty} + s \int_{0^{-}}^{\infty} x(t) e^{-st} dt$$
$$= sX(s) - x(0^{-})$$

Diferenciación

(2)

Para la segunda derivada se cumple

$$\mathcal{L}_u\left\{\frac{d^2}{dt^2}x(t)\right\} = \int_{0^-}^{\infty} \frac{d^2}{dt^2}x(t)e^{-st}dt$$

e integrando por partes

$$= e^{-st} \frac{d}{dt} x(t) \Big|_{0^{-}}^{\infty} + s \int_{0^{-}}^{\infty} e^{-st} \frac{d}{dt} x(t) dt$$

$$= -\frac{d}{dt} x(t) \Big|_{t=0^{-}} + s \mathcal{L}_{u} \left\{ \frac{d}{dt} x(t) \right\}$$

$$= s^{2} X(s) - s x(0^{-}) - \frac{d}{dt} x(t) \Big|_{t=0^{-}}$$

Diferenciación

(3)

Para ordenes superiores esto se generaliza en

$$\mathcal{L}_{u}\left\{\frac{d^{n}}{dt^{n}}x(t)\right\} = s^{n}X(s) - s^{n-1}x(0^{-}) - s^{n-2}x^{(1)}(0^{-}) - \dots - x^{(n-1)}(0^{-})$$

$$= s^{n}X(s) - \sum_{i=1}^{n} s^{n-i}x^{(i-1)}(0^{-})$$

Donde

$$x^{(n)}(0^{-}) = \frac{d^{n}}{dt^{n}}x(t)\Big|_{t=0^{-}}$$

Integración

Para x(t) causal se cumple

$$\int_{0^{-}}^{\infty} x(\tau)d\tau = x(t) * u(t) \circ X(s)U(s) = \frac{1}{s}X(s)$$

Teorema de valor inicial

Sea x(t) una función causal, es decir, x(t) = x(t)u(t), y sin valores singulares en el origen, como el impulso o su derivada. **El teorema del valor inicial** establece que¹

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

Mientras que el teorema del valor final indica

$$\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s)$$

¹Ver demostración en [1] pág. 234.

Ecuaciones Diferenciales

Condiciones Iniciales

Con la transformada unilateral es posible incorporar condiciones iniciales en problemas de ecuaciones diferenciales con coeficientes constantes.

Ejemplo: Ecuación diferencial con condiciones iniciales (1)

Encuentre la respuesta de un **sistema LTI** caracterizado por la ecuación diferencial de segundo orden con coeficientes constantes

$$\frac{d^2}{dt^2}y(t) + 2\alpha \frac{d}{dt}y(t) + \beta y(t) = x(t)$$

bajo las condiciones iniciales

$$y(0^{-}) = \eta \qquad \frac{d}{dt}y(t)\Big|_{t=0^{-}} = \gamma$$

a la entrada $x(t) = \zeta u(t)$

Ejemplo: Ecuación diferencial con condiciones iniciales (2)

Solución: Aplicando la transformada unilateral de Laplace a ambos lados se obtiene:

$$s^{2}Y(s) - sy(0^{-}) - \frac{d}{dt}y(t)\Big|_{t=0^{-}} + 2\alpha[sY(s) - y(0^{-})] + \beta Y(s) = X(s)$$

y reagrupando

$$Y(s)[s^{2} + 2\alpha s + \beta] = X(s) + sy(0^{-}) + \frac{d}{dt}y(t)\Big|_{t=0^{-}} + 2\alpha y(0^{-})$$

de donde se obtiene

$$Y(s) = \frac{X(s)}{s^2 + 2\alpha s + \beta} + \frac{(s + 2\alpha)y(0^-) + \frac{d}{dt}y(t)|_{t=0^-}}{s^2 + 2\alpha s + \beta}$$

Ejemplo: Ecuación diferencial con condiciones iniciales (3)

La salida tiene dos componentes:

- La primera depende de la entrada X(s) y se conoce como respuesta forzada.
- La segunda está determinada por las condiciones iniciales y se conoce como respuesta natural del sistema.
- Si el sistema está en reposo, es decir, todas sus condiciones iniciales son cero, entonces solo presentará respuesta forzada ante la entrada.
- Por otro lado, si no se aplica ninguna entrada, entonces el sistema reaccionará dependiendo de las condiciones iniciales.

Ejemplo: Ecuación diferencial con condiciones iniciales (4)

Para los valores iniciales dados y la entrada indicada

$$x(t) = \zeta u(t) \stackrel{\frown}{\longrightarrow} X(s) = \frac{\zeta}{s}$$

se obtiene

$$Y(s) = \frac{\zeta}{s(s^2 + 2\alpha s + \beta)} + \frac{(s + 2\alpha)\eta + \gamma}{s^2 + 2\alpha s + \beta}$$

El término cuadrático fue analizado en ejemplos anteriores. Aquí deben considerarse los tres casos aplicados a un sistema causal.

Ejemplo: Ecuación diferencial con condiciones iniciales (5)

Si $\Delta = 0$ entonces

$$Y(s) = \eta \frac{s^2 + 2\alpha s + \frac{\gamma}{\eta} s + \frac{\zeta}{\eta}}{s(s+\alpha)^2} = \frac{A_1}{s} + \frac{A_2}{s+\alpha} + \frac{A_3}{(s+\alpha)^2}$$

con

$$A_1 = \frac{\zeta}{\alpha^2}$$
 $A_2 = \eta - \frac{\zeta}{\alpha^2}$ $A_3 = \gamma + \alpha \eta - \frac{\zeta}{\alpha}$

con lo que

$$y(t) = A_1 u(t) + A_2 e^{-\alpha t} u(t) + A_3 t e^{-\alpha t} u(t)$$

Ejemplo: Ecuación diferencial con condiciones iniciales (6)

Si $\Delta > 0$ entonces

$$Y(s) = \frac{A_1}{s} + \frac{A_2}{s - a_1} + \frac{A_3}{s - a_2}$$

por lo que

$$y(t) = A_1 u(t) + A_2 e^{a_1 t} u(t) + A_3 e^{a_2 t} u(t)$$

con

$$A_{1} = \frac{\zeta}{\beta}$$

$$A_{2} = \frac{a_{1}^{2}\eta - 2a_{1}\alpha\eta - a_{1}\gamma + \zeta}{a_{1}(a_{1} - a_{2})}$$

$$A_{3} = \frac{-a_{2}^{2}\eta + 2a_{2}\alpha\eta + a_{2}\gamma - \zeta}{a_{2}(a_{1} - a_{2})}$$

Ejemplo: Ecuación diferencial con condiciones iniciales (7)

Si
$$\Delta < 0$$
 entonces $a_2 = a_1^*$ y $A_3 = A_2^*$ con lo que

$$y(t) = A_1 u(t) + 2|A_2|e^{-\alpha t} \cos\left(\sqrt{|\Delta|}t + \angle A_2\right) u(t)$$

Bibliografía

• [1] P. Alvarado, Señales y Sistemas. Fundamentos Matemáticos. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2008.

