Continuité

Analyse - Cours

T Fonctions continues

I. 1 Fonction continue en un réel

Définitions:

Soient a un réel, I un intervalle contenant a et f une fonction définie sur I. On dit que f est continue en a si les limites à droite et à gauche, quand x tend vers a, de f(x) existent et sont toutes égales à f(a), autrement dit, si $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = f(a)$. Dans le cas contraire, on dit que f admet une discontinuité en a.

Remarque: Pour indiquer que les limites à droite et à gauche, quand x tend vers a, de f(x) existent et sont égales à f(a), on écrira simplement $\lim f(x) = f(a)$.

Exemple:

(1) La fonction valeur absolue est définie pour tout réel x par $||x|| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$

Quand x tend vers 0:

La fonction valeur absolue est donc continue en 0.

(2) La partie entière d'un réel x est par définition l'unique entier relatif n tel que $n \le x < \infty$ n+1. On la note E(x). Pour tout entier relatif a, la fonction partie entière admet une discontinuité en a.

Démontrons par exemple que la fonction partie entière n'est pas continue en a=2.

- Si $1 \le x < 2$ alors E(x) = 1 dont la limite à gauche, quand x tend vers 2, de la fonction partie entière est $\lim = 1$.
- Si $2 \le x < 3$ alors E(x) = 2 dont la limite à droite, quand x tend vers 2, de la fonction partie entière est $\lim = 2$.

La limite à gauche et la limité à droite sont différentes : cette fonction n'est donc pas continue en 2. La démonstration serait identique pour n'importe quel entier relatif.

I. 2 Fonction continue sur un intervalle

Soient I un intervalle et f une fonction définie sur I. On dit que f est continue sur I si pour tout réel a appartenant à I, f est continue en a.

1. Théorème (continuité des fonctions usuelles) :

- 1. Les fonctions affines, polynômes, racine carrée, valeur absolue, cosinus, sinus, exponentielles et logarithmes, sont continues sur chaque intervalle où elles sont définies.
- 2. Toute fonction construite à partir des précédentes par somme, produit, quotient ou composition, est continue sur chaque intervalle où elle est définie.

Exemple:

- La fonction f définie pour tout réel x par $f(x) = e^{3x-5}$, est continue sur \mathbb{R} car elle est obtenue par la composition d'une fonction affine et de la fonction exponentielle.
- La fonction f définie pour tout réel x par $g(x) = \frac{\sqrt{x}}{x^2 1}$ est continue sur]0;1[et sur $]1;+\infty[$ car elle est obtenue par quotient de la fonction racine carrée et d'une fonction polynôme.

2. Théorème (continuité des fonctions dérivables) :

Soient I un intervalle et f une fonction définie sur I. Si f est dérivable sur I alors f est continue sur I.

II Théorème des valeurs intermédiaires

3. Théorème des valeurs intermédiaires (TVI) :

Soit f une fonction définie sur un intervalle I. Soient a et b deux réels dans I. Pour tout k réel, si f est continue sur I et si f(a) < k < f(b) alors il existe au moins un réel c dans l'intervalle [a;b] tel que f(x) = k.

Définitions:

Soient I et J deux intervalles. Soit $f:I\mapsto J$. On dit que f est une bijection de I dans J si tout réel de J admet un unique antécédent dans I.

Exemple:

- Une fonction affine non constante est une bijection de \mathbb{R} dans \mathbb{R} .
- La fonction exponentielle est une bijection de \mathbb{R} dans $]0;+\infty[$.

4. Théorème de la bijection (corrolaire) :

Soit f une fonction définie sur un intervalle I. Soient a et b deux réels dans I. Il existe un réel k tel que si f est continue et strictement croissante et f(a) < k < f(b) alors il existe un unique réel c dans l'intervalle [a;b] tel que f(c) = k.

Remarque : Le théorème de la bijection est également valable pour une fonction strictement décroissante.

Exemple : démontrons l'existence d'une solution pour l'équation $\cos(x) = x$

Comme $-1 \le \cos(x) \le 1$, les solutions éventuelles sont à chercher dans l'intervalle [-1;1].

Si $\frac{-\pi}{2} < x < 0$, alors $\cos(x) > 0$ et donc $\cos(x) \neq x$ ce qui veut dire qu'on peut réduire l'intervalle de recherche à [0;1].

Étudions la fonction $f(x) = \cos(x) - x$ sur $[0;1]: f'(x) = -\sin(x) - 1 < 0$ car $\forall x \in [0;1]: \sin(x) > 0$ donc f est strictement décroissante sur [0;1]. De plus, f est continue car c'est une somme de fonctions de référence.

Aussi, f(0) = 1 > 0 et $f(1) = \cos(1) - 1 < 0$ car $\cos(1) < 0$

Conclusion : d'après le théorème de la bijection, l'équation f(x) = 0 admet donc une unique solution dans l'intervalle]0;1[. Donc $\cos(x) = x$ admet une unique solution réelle.

III Limite d'une suite par récurrence

5. Théorème:

Soit f une fonction définie sur un intervalle I. Soit $a \in I$. Si f est continue en a, alors pour toute suite u_n convergeant vers a, la suite $(f(u_n))$ converge vers a.

6. Théorème du point fixe :

Soif f une fonction définie sur I. Soit u_n la suite définie par récurrence telle que pour tout $n \in \mathbb{N}$: $u_n \in I$ et $u_{n+1} = f(u_n)$. Si u_n converge vers un réel l, et f est continue en l alors f(l) = l.

Exemple: Soit
$$(u_n)$$
:
$$\begin{cases} u_n = 0 \\ \forall n \in \mathbb{N} : u_{n+1} = \sqrt{\frac{u_n}{2} + 1} \end{cases}$$

On peut prouver que u_n est croissante et majorée par 2 donc u_n converge vers un réel l. La fonction $f(x)=\sqrt(\frac{x}{2}+1)$ étant continue sur l'intervalle où elle est définie, d'après le théorème du point fixe :

$$f(l) = l \Leftrightarrow l = \sqrt{\frac{l}{2} + 1}$$

$$\Leftrightarrow l^2 = \frac{l}{2} + 1 \quad \text{avec } l > 0$$

$$\Leftrightarrow 2l^2 - l - 2 = 0 \quad \text{avec } l > 0$$
On calcule $\Delta = 17 > 0$ donc $x_1 = \frac{1 - \sqrt{17}}{4} < 0$; $x_2 = \frac{1 + \sqrt{17}}{4} > 0$

$$\Leftrightarrow l = x_2 = \frac{1 + \sqrt{17}}{4}$$

Conclusion $\lim_{n \to +\infty} u_n = \frac{1 + \sqrt{17}}{4}$.