1

Probability and Random Variables

G V V Sharma*

		CONTENTS		8	Two Dimensions	10
1	Axioms	of Probability	1	9	Transform Domain	10
	1.1	Boolean Logic	1			
	1.2	Independence	2	10	Uniform to Other	10
	1.3	Conditional Probability	2	Δhs	tract—This book provides a simple intro	duction to
2 ables	Sum of	Independent Random Vari-	4	proba	bility and random variables. The contents on NCERT textbooks from Class 9-12.	
	2.1	The Uniform Distribution	4			
					1 Axioms of Probability	
3		tive Distribution Function	6	1 1 E	Boolean Logic	
	3.1	The Bernoulli Distribution .	6		o e e e e e e e e e e e e e e e e e e e	1
	3.2	The Binomial Distribution .	6		A and B are two events such that P = $\frac{1}{2}$ and P(A \cap B) = $\frac{1}{8}$. find P (not A)	
4	Central	Limit Theorem: Gaussian Dis-		B).	$=$ $\frac{1}{2}$ and $\frac{1}{2}(1+1)$ $=$ $\frac{1}{8}$. That $\frac{1}{2}$	i una not
tribut			7 1	1.1.1.		
	4.1	Bernoulli to Gaussian	7			
	4.2	Uniform to Gaussian	7		A'B' = (A+B)'	(1.1.1.1)
					$\implies \Pr(A'B') = \Pr((A+B)')$	(1.1.1.2)
5	Stochast	tic Geometry	9		$= 1 - \Pr\left(A + B\right)$	(1.1.1.3)
6	Transfo	rmation of Variables	9 1	1.1.2.		
	6.1	Using Definition	9		$\therefore A + B = A(B + B') + B$	(1.1.2.1)
	6.2	Using Jacobian	9		,	, ,
					= B(A+1) + AB'	(1.1.2.2)
7	Condition	onal Probability	9		=B+AB'	(1.1.2.3)
					$\implies \Pr(A+B) = \Pr(B+AB')$	(1.1.2.4)
*The author is with the Department of Electrical Engineering Indian Institute of Technology, Hyderabad 502285 India e-mail					$= \Pr(B) + \Pr(AB')$	(1.1.2.5)
gadepall@ith.ac.in. All content in this manual is released under GNU GPL. Free and open source.					B(AB') = 0	(1.1.2.6)

1.1.3.

$$A = A(B + B') = AB + AB'$$
 (1.1.3.1) 1.2.2. If A and B are two independent events, then

and

$$(AB)(AB') = 0, :: BB' = 0$$
 (1.1.3.2)

Hence, AB and AB' are mutually exclusive and

$$Pr(A) = Pr(AB) + Pr(AB')$$
 (1.1.3.3)

$$\implies \Pr(AB') = \Pr(A) - \Pr(AB) \quad (1.1.3.4)$$

1.1.4. Substituting (1.1.3.4) in (1.1.2.6),

$$Pr(A + B) = Pr(A) + Pr(B) - Pr(AB)$$
(1.1.4.1)

1.1.5. Substituting (1.1.4.1) in (1.1.1.3)

Solution:

$$Pr(A'B') = 1 - \{Pr(A) + Pr(B) - Pr(AB)\}$$

$$=1-\left(\frac{1}{4}+\frac{1}{2}-\frac{1}{8}\right) \tag{1.1.5.2}$$

$$=\frac{3}{8} \tag{1.1.5.3}$$

- 1.3.1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and $P(E \cap F) = 0.2$, find P(E/F) and P(F/E)?

using the definition of independence.

By definition, from (1.2.1.6), we conclude that

the probability of occurrence of at least one of

 \implies 1 = Pr (A + B) + Pr ((A + B)') (1.2.2.2)

 $\implies \Pr(A + B) = 1 - \Pr(A'B') \quad (1.2.2.3)$

(A + B)(A + B)' = 0 (1.2.2.1)

= 1 - Pr(A') Pr(B') (1.2.2.4)

E and F' are independent.

A and B is given by 1- P(A')P(B')

- 1.3.2. Two events A and B will be independent, if
 - a) A and B are mutually exclusive
 - b) P(A'B') = [1 P(A)][1 P(B)]
 - c) P(A) = P(B)

P(B/A), then

c) $A \cap B = \phi$ d) P(A) = P(B)

Solution:

d) P(A) + P(B) = 1

a) $A \subset B$ but $A \neq B$

1.2 Independence

1.2.1. Prove that if E and F are independent events, 1.3.3. If A and B are events such that P(A/B) =then so are the events E and F'.

Solution: If *E* and *F* are independent,

$$Pr(EF) = Pr(E) Pr(F) \qquad (1.2.1.1)$$

Using Boolean algebra,

$$E = E(F + F') = EF + EF'$$
 (1.2.1.2)

and

$$E = E(I + I') - EI' + EI' \qquad (1.2.1.2)$$

$$(EF)(EF') = 0, :: FF' = 0$$
 (1.2.1.3)

Hence, EF and EF' are mutually exclusive and

$$Pr(E) = Pr(EF) + Pr(EF')$$
 (1.2.1.4)

$$\implies \Pr(EF') = \Pr(E) - \Pr(EF) \quad (1.2.1.5)$$

Substituting from (1.2.1.1) in (1.2.1.5),

FF' = 0, F + F' = 1

b) A = B

- (1.2.1.2) 1.3.4. Which of the following cannot be the probability of an event?
 - $(A)_{\frac{3}{2}}^{2}(B) -1.5 (C) 15 (D) 0.7$
- (1.2.1.3) 1.3.5. If P(E) = 0.05, what is the probability of 'not
 - 1.3.6. If A and B are two events such that $P(A) \neq 0$ and P(B/A) = 1, then (A) $A \subset B$
 - (B) $B \subset A$
 - (C) $B = \phi$
 - (D) $A = \phi$

$$Pr(EF') = Pr(E)(1 - Pr(F)) = Pr(E)Pr(F')$$
(1.2.1.6) 1.

- (1.2.1.6) 1.3.7. If P(A/B) > P(A), then which of the following is correct : (A) P(B/A) < P(B)
 - (B) $P(A \cap B) < P(A) \cdot P(B)$
 - (C) P(B/A) > P(B)
- $\implies \Pr(F) + \Pr(F') = 1$ (1.2.1.8)(D) P(B/A) = P(B)

(1.2.1.7)

			,
1.3.8.	If A and B are any two events such that $P(A) + P(B) - P(A \text{ and } B) = P(A)$, then)	(i) mutually exclusive(ii) independent.
1.2.0	(C) $P(B/A) = 0$ (D) $P(A/B) = 0$	1.3.14.	Let A and B be independent events with $P(A) = 0.3$ and $P(B) = 0.4$. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$
1.3.9.	Complete the following statements: (i) Probability of an event E + Probability of the event 'not E' =	(iii) P(A/B) (iv) P(B/A)	
	(ii) The probability of an event that cannot happen is———— . Such an event is called———— .		Events A and B are such that $P(A) = \frac{1}{2}$, $P(B) = \frac{7}{12}$ and $P(\text{not A or not B}) = \frac{1}{4}$. State whether A and B are independent?
	 (iii) The probability of an event that is certain to happen is ———. (iv) The sum of the probabilities of all the elementary events of an experiment is———. (v) The probability of an event is greater than or equal to and less than or equal to ———. 	1.3.16.	Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6. Find (i) P(A and B) (ii) P(A and not B) (iii) P(A or B) (iv) P(neither A nor B)
1.3.10.	An electronic assembly consists of two subsystems, say, A and B. From previous testing procedures, the following probabilities are assumed to be known: P(A fails) = 0.2	3	A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event, 'the number is even,' and B be the event, 'the number is red'. Are A and B independent?
		1.3.18.	A person plays a game of tossing a coin thrice. For each head, he is given Rs 2 by the organiser of the game and for each tail,
	Evaluate the following probabilities (i) P(A fails—B has failed) (ii) P(A fails alone)		he has to give Rs 1.50 to the organiser. Let X denote the amount gained or lost by the person. Show that X is a random variable and exhibit it as a function on the sample space of
1.3.11.	A and B are two events such that $P(A) \neq 0$. Find $P(B/A)$, if	•	the experiment.
	 (i) A is a subset of B (ii) A ∩ B = φ 	1.3.19.	If $P(A) = \frac{7}{13}$, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$, Evaluate $P(A/B)$?

1.3.12. If A and B are two events such that $A \subset BI.3.20$. A die is thrown. If E is the event "the number and $P(B) \neq 0$, then which of the following is correct?

- a) $P(A/B) = \frac{P(B)}{P(A)}$ b) P(A/B) < P(A)
- c) $P(A/B) \ge P(A)$
- d) None of these
- 1.3.13. Given that the events A and B are such that P(A) = $\frac{1}{2}$, P(A \cup B)= $\frac{3}{5}$ and P(B) = p. Find p
 1.3.22. Compute P(A/B), if P(B) = 0.5 and P (A \cap
- 1.3.21. An unbiased die is thrown twice. Let the event A be "odd number on the first throw" and B the event "odd number on the second throw".

find whether E and F are independent?

appearing is a multiple of 3" and F be the

event "the number appearing is even" then

Check the independence of the events A and B.

B) =
$$0.32$$
.

- 1.3.23. If P(A) = 0.8, P(B) = 0.5 and P(B/A) = 0.4,
 - (i) $P(A \cap B)$
 - (ii) P(A/B)
 - (iii) $P(A \cup B)$
- 1.3.24. Evaluate $P(A \cup B)$, if $2P(A) = P(B) = \frac{5}{13}$ and $P(A/B) = \frac{2}{5}$.
- 1.3.25. If $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{11}{7}$
 - (i) $P(A \cap B)$
 - (ii) P(A/B)
 - (iii) P(B/A)
- 1.3.26. A fair die is rolled. Consider the events E =(1, 3, 5), F = (2, 3) and G = (2, 3, 4, 5) Find
 - (i) P(E/F) and P(F/E)
 - (ii) P(E/G) and P(G/E)
 - (iii) $P((E \cup F)/G)$ and $P((E \cap F)/G)$
- 1.3.27. Choose the correct answer, if $P(A) = \frac{1}{2}$, P(B) 2.1.2. Convolution: From (2.1.1.2), = 0, then P(A/B) is
 - a) 0
 - b) $\frac{1}{2}$
 - c) not defined
- 1.3.28. Let E and F be events with $P(E) = \frac{3}{5}$, $P(F) = \frac{3}{10}$ and $P(E \cap F) = \frac{1}{5}$. Are E and F independent?
- 1.3.29. One card is drawn at random from a well shuffled deck of 52 cards. In which of the following cases are the events E and F independent?
 - (i) E: 'the card drawn is a spade' F: 'the card drawn is an ace'
 - (ii) E: 'the card drawn is black' F: 'the card drawn is a king'
 - (iii) E: 'the card drawn is a king or queen' F : 'the card drawn is a queen or jack'.

2 Sum of Independent Random Variables

2.1 The Uniform Distribution

Two dice, one blue and one grey, are thrown at the same time. The event defined by the sum of the two numbers appearing on the top of the dice can

have 11 possible outcomes 2, 3, 4, 5, 6, 6, 8, 9, 10, 11 and 12. A student argues that each of these outcomes has a probability $\frac{1}{11}$. Do you agree with this argument? Justify your answer.

2.1.1. *The* Uniform Distribution: $X_i \in \{1, 2, 3, 4, 5, 6\}, i = 1, 2$, be the random variables representing the outcome for each die. Assuming the dice to be fair, the probability mass function (pmf) is expressed

$$p_{X_i}(n) = \Pr(X_i = n) = \begin{cases} \frac{1}{6} & 1 \le n \le 6\\ 0 & otherwise \end{cases}$$
(2.1.1.1)

The desired outcome is

$$X = X_1 + X_2, (2.1.1.2)$$

$$\implies X \in \{1, 2, \dots, 12\}$$
 (2.1.1.3)

The objective is to show that

$$p_X(n) \neq \frac{1}{11} \tag{2.1.1.4}$$

$$p_X(n) = \Pr(X_1 + X_2 = n) = \Pr(X_1 = n - X_2)$$

(2.1.2.1)

$$= \sum_{k} \Pr(X_1 = n - k | X_2 = k) p_{X_2}(k)$$
(2.1.2.2)

after unconditioning. X_1 and X_2 are independent,

$$Pr(X_1 = n - k | X_2 = k)$$

$$= Pr(X_1 = n - k) = p_{X_1}(n - k) \quad (2.1.2.3)$$

From (2.1.2.2) and (2.1.2.3),

$$p_X(n) = \sum_{k} p_{X_1}(n-k)p_{X_2}(k) = p_{X_1}(n) * p_{X_2}(n)$$
(2.1.2.4)

where * denotes the convolution operation. Substituting from (2.1.1.1) in (2.1.2.4),

$$p_X(n) = \frac{1}{6} \sum_{k=1}^{6} p_{X_1}(n-k) = \frac{1}{6} \sum_{k=n-6}^{n-1} p_{X_1}(k)$$
(2.1.2.5)

$$p_{X_1}(k) = 0, \quad k \le 1, k \ge 6.$$
 (2.1.2.6)

From (2.1.2.5),

$$p_X(n) = \begin{cases} 0 & n < 1\\ \frac{1}{6} \sum_{k=1}^{n-1} p_{X_1}(k) & 1 \le n-1 \le 6\\ \frac{1}{6} \sum_{k=n-6}^{6} p_{X_1}(k) & 1 < n-6 \le 6\\ 0 & n > 12 \end{cases}$$
(2.1.2.7)

Substituting from (2.1.1.1) in (2.1.2.7),

$$p_X(n) = \begin{cases} 0 & n < 1\\ \frac{n-1}{36} & 2 \le n \le 7\\ \frac{13-n}{36} & 7 < n \le 12\\ 0 & n > 12 \end{cases}$$
 (2.1.2.8)

satisfying (2.1.1.4).

2.1.3. The Z-transform: The Z-transform of $p_X(n)$ is defined as

$$P_X(z) = \sum_{n=-\infty}^{\infty} p_X(n) z^{-n}, \quad z \in \mathbb{C}$$
 (2.1.3.1)

From (2.1.1.1) and (2.1.3.1),

$$P_{X_1}(z) = P_{X_2}(z) = \frac{1}{6} \sum_{n=1}^{6} z^{-n}$$

$$= \frac{z^{-1} (1 - z^{-6})}{6 (1 - z^{-1})}, \quad |z| > 1$$

$$(2.1.3.3)$$

upon summing up the geometric progression.

$$\therefore p_X(n) = p_{X_1}(n) * p_{X_2}(n), \qquad (2.1.3.4)$$

$$P_X(z) = P_{X_1}(z)P_{X_2}(z) \tag{2.1.3.5}$$

The above property follows from Fourier analysis and is fundamental to signal processing. From (2.1.3.3) and (2.1.3.5),

$$P_X(z) = \left\{ \frac{z^{-1} \left(1 - z^{-6} \right)}{6 \left(1 - z^{-1} \right)} \right\}^2$$
 (2.1.3.6)

$$= \frac{1}{36} \frac{z^{-2} \left(1 - 2z^{-6} + z^{-12}\right)}{\left(1 - z^{-1}\right)^2}$$
 (2.1.3.7)

(2.1.3.8)

Using the fact that

$$p_X(n-k) \stackrel{\mathcal{H}}{\longleftrightarrow} ZP_X(z)z^{-k},$$
 (2.1.3.8) Fig. 2.1.4.1: Plot of $p_X(n)$. Simulation the analysis. (2.1.3.9) 2.1.5. The python code is available in

after some algebra, it can be shown that

$$\frac{1}{36} [(n-1)u(n-1) - 2(n-7)u(n-7) + (n-13)u(n-13)]$$

$$\stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{1}{36} \frac{z^{-2} (1 - 2z^{-6} + z^{-12})}{(1 - z^{-1})^2} \quad (2.1.3.10)$$

where

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
 (2.1.3.11)

From (2.1.3.1), (2.1.3.7) and (2.1.3.10)

$$p_X(n) = \frac{1}{36} [(n-1)u(n-1)$$

$$-2(n-7)u(n-7) + (n-13)u(n-13)]$$
(2.1.3.12)

which is the same as (2.1.2.8). Note that (2.1.2.8) can be obtained from (2.1.3.10) using contour integration as well.

2.1.4. The experiment of rolling the dice was simulated using Python for 10000 samples. These were generated using Python libraries for uniform distribution. The frequencies for each outcome were then used to compute the resulting pmf, which is plotted in Figure 2.1.4.1. The theoretical pmf obtained in (2.1.2.8) is plotted for comparison.

Fig. 2.1.4.1: Plot of $p_X(n)$. Simulations are close to the analysis.

/codes/sum/dice.py

TABLE 3.1.3.1

Colour	X	Number
Blue	0	n(X=0)
Green	1	n(X=1)

3 Cumulative Distribution Function

3.1 The Bernoulli Distribution

3.1.1. Find the probability of getting a head when a coin is tossed once. Also find the probability of getting a tail.

> **Solution:** Let the random variable be $X \in$ $\{0, 1\}$. Then

$$Pr(X = 0) = Pr(X = 1) = \frac{1}{2}$$
 (3.1.1.1)

The following code simulates the event for 100 3.2.1. Let $X_i \in \{0, 1\}$ represent the *ith* hurdle where

codes/bernoulli/coin.py

3.1.2. *Bernoulli Distribution:* In general the binomial distribution is defined using the PMF

$$p_X(n) = \begin{cases} p & n = 1\\ 1 - p & n = 0 \end{cases}$$
 (3.1.2.1) otherwise

3.1.3. A jar contains 24 marbles, some are green and others are blue. If a marble is drawn at random from the jar, the probability that it is green is $\frac{2}{3}$. Find the number of blue balls (marbles) in the jar.

> **Solution:** Let random variable $X \in \{0, 1\}$ denote the outcomes of the experiment of drawing a marble from a jar as shown in Table 3.1.3.1 From the given information,

$$p_X(1) = \frac{2}{3} \tag{3.1.3.1}$$

$$p_X(1) = \frac{2}{3}$$
 (3.1.3.1)
 $\implies p = 1 - p_X(1) = \frac{1}{3}$ (3.1.3.2)

$$n(X = 0) + n(X = 1) = 24$$
 (3.1.3.3)

 $\ddot{}$

$$p = \frac{n(X=0)}{n(X=0) + n(X=1)},$$
 (3.1.3.4)

from (3.1.3.4) and (3.1.3.3),

$$n(X = 0) = p\{n(X = 0) + n(X = 1)\}$$
(3.1.3.5)

$$= \frac{1}{3} \times 24 = 8. \tag{3.1.3.6}$$

The following code generates the number of blue marbles

codes/bernoulli/bernoulli.py

3.2 The Binomial Distribution

In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is $\frac{5}{6}$. What is the probability that he will knock down fewer than 2 hurdles?

1 denotes a hurdle being knocked down. Then, X_i has a bernoulli distribution with parameter

$$p = 1 - \frac{5}{6} = \frac{1}{6} \tag{3.2.1.1}$$

3.2.2. The Binomial Distribution: Let

$$X = \sum_{i=1}^{n} X_i \tag{3.2.2.1}$$

where n is the total number of hurdles. Then X has a binomial distribution. Then, for

$$p_{X_i}(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} P_{X_i}(z),$$
 (3.2.2.2)

yielding

$$P_{X_i}(z) = 1 - p + pz^{-1}$$
 (3.2.2.3)

with Using the fact that X_i are i.i.d.,

$$P_X(z) = (1 - p + pz^{-1})^n$$

$$= \sum_{k=0}^n {^nC_k p^k (1 - p)^{n-k} z^{-k}}$$
(3.2.2.5)

$$\implies p_X(k) = \begin{cases} {}^{n}C_k p^{n-k} (1-p)^k & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$
(3.2.2.6)

The cumulative distribution function of X is

defined as

$$F_X(r) = \Pr(X \le r) = \sum_{k=0}^{r} {}^{n}C_k p^k (1 - p)^{n-k}$$
(3.2.2.7)

upon substituting from (3.2.2.6).

3.2.3. Evaluationg the Probability: Substituting from (3.2.1.1) in (3.2.2.7),

$$\Pr(X < 2) = F_X(1) \qquad (3.2.3.1)$$

$$= \sum_{k=0}^{1} {}^{n}C_k \left(\frac{5}{6}\right)^{10-k} \left(\frac{1}{6}\right)^{k} \qquad (3.2.3.2)$$

$$= \sum_{k=0}^{1} {}^{n}C_k \left(\frac{5}{6}\right)^{10-k} \left(\frac{1}{6}\right)^{k} \qquad (3.2.3.2)$$

$$= 3\left(\frac{5}{6}\right)^{10} = 0.4845167486695371 \qquad p_G(x) = \frac{d}{dx}F_X(x) \qquad (4.6.1)$$

$$(3.2.3.3) \qquad 1 \qquad t \left(k - n\mu\right) \qquad (4.6.2)$$

which is the desired probability.

3.2.4. The following code verifies the above result.

codes/binomial/binomial.py

- 4 Central Limit Theorem: Gaussian Distribution
- 4.1 Bernoulli to Gaussian
- 4.1.1 Mean: The mean of the bernoulli distribution is

$$\mu = E(X_i) = \sum_{k=0}^{1} k p_{X_i}(k) = p = \frac{1}{6}$$
 (4.1.1)

4.1.2 *Moment:* The moment of the distribution is defined as

$$E\left(X_{i}^{r}\right) = \sum_{k=0}^{1} k^{r} p_{X_{i}}(k) = p = \frac{1}{6}$$
 (4.2.1) 4.2 Uniform to Gaussian
4.2.1 Generate 10⁶ samples of the random variable

4.1.3 Variance: The variance of the bernoulli distribution is defined as

$$\sigma^{2} = E(X - E(X))^{2} = E(X^{2}) - E^{2}(X)$$
(4.3.1)

$$= p - p^2 = p(1 - p) = \frac{5}{36}$$
 (4.3.2)

The standard deviation

$$\sigma = \sqrt{p(1-p)} \tag{4.3.3}$$

4.1.4 The Gaussian Distribution: Define

$$G = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{X_i - \mu}{\sigma}$$
 (4.4.1)

4.1.5 Approximating Binomial Using Gaussian: From (4.4.1) and (3.2.2.1),

$$X \approx \sigma \sqrt{n}G + n\mu \tag{4.5.1}$$

$$\implies F_X(k) = \Pr\left(\sigma\sqrt{n}G + n\mu \le k\right) \quad (4.5.2)$$

$$= F_G \left(\frac{k - n\mu}{\sigma \sqrt{n}} \right) \approx \phi \left(\frac{k - n\mu}{\sigma \sqrt{n}} \right)$$
(4.5.3)

where

$$\phi_X(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty$$
 (4.5.4)

$$p_G(x) = \frac{d}{dx} F_X(x) \tag{4.6.1}$$

$$= \frac{1}{\sigma \sqrt{n}} \phi' \left(\frac{k - n\mu}{\sigma \sqrt{n}} \right) \tag{4.6.2}$$

For large n, G is a continuous distribution with probability density function (PDF)

$$p_G(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty,$$
(4.6.3)

4.1.7 Evaluationg the Probability: From 4.5.3 and 4.6.2.

$$\Pr(X \le 1) = F_G(1) = p_G(0) + p_G(1) \quad (4.7.1)$$

$$\approx 0.41299463887797094 \quad (4.7.2)$$

which is close to (3.2.3.3).

$$X = \sum_{i=1}^{12} U_i - 6 \tag{4.1.1}$$

using a C program, where U_i , i = 1, 2, ..., 12are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution: Download the following files and execute the C program.

codes/cdf/exrand.c codes/cdf/coeffs.h

(4.4.1) 4.2.2 Load gau.dat in python and plot the empirical CDF of X using the samples in gau.dat. What

Fig. 4.2: The CDF of X

Fig. 4.3: The PDF of X

properties does a CDF have?

Solution: The CDF of X is plotted in Fig. 4.2

4.2.3 Load gau.dat in python and plot the empirical PDF of *X* using the samples in gau.dat. The PDF of *X* is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{4.3.1}$$

What properties does the PDF have?

Solution: The PDF of *X* is plotted in Fig. 4.3 using the code below

codes/clt/pdf_plot.py

4.2.4 Find the mean and variance of *X* by writing a C program.

Fig. 4.6: The CDF of U

4.2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty,$$
(4.5.1)

repeat the above exercise theoretically. Let U be a uniform random variable between 0 and 1.

4.2.6 Load the uni.dat file into python and plot the empirical CDF of U using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr(U \le x)$$
 (4.6.1)

Solution: The following code plots Fig. 4.6

codes/cdf/cdf plot.py

- 4.2.7 Find a theoretical expression for $F_U(x)$.
- 4.2.8 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (4.8.1)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (4.8.2)

Write a C program to find the mean and variance of U.

4.2.9 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{4.9.1}$$

5 STOCHASTIC GEOMETRY

Suppose you drop a die at random on the rectangular region shown in Fig. 5.1.1. What is the probability that it will land inside the circle with diameter 1m?

Fig. 5.1.1

5.1. In Fig. 5.1.1, the sample size S is the area of the rectangle given by

$$S = 3 \times 2 = 6m^2 \tag{5.1.1}$$

The event size is the area of the circle given by

$$E = \pi \left(\frac{1}{2}\right)^2 = \frac{\pi}{4}m^2$$
 (5.1.2) 6.2.3. Find

The probabilty of the dice landing in the circle is

$$\Pr(E) = \frac{E}{S} = \frac{\pi}{24}$$

6.2.7. Find $p_A(x)$ using the Jacobian.

5.2. The python code is available in

/codes/stochastic/rect.py

The python code generates 10,000 points uniformly within the rectangle of dimensions 3×2 and checks for the number of points within the circle of radius 0.5. The ratio of these is close to $\frac{\pi}{24}$. Note that each time the code is run, the ratio will change, but will still be close to $\frac{\pi}{24}$.

6 Transformation of Variables

6.1 Using Definition

6.1.1. Let $X_1 \sim \mathcal{N}(0, 1)$ and $X_2 \sim \mathcal{N}(0, 1)$. Plot the CDF and PDF of

$$V = X_1^2 + X_2^2 (6.1.1.1)$$

6.1.2. If

$$F_V(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0, \end{cases}$$
 (6.1.2.1)

find α .

6.1.3. Plot the CDF and PDf of

$$A = \sqrt{V} \tag{6.1.3.1}$$

- 6.1.4. Find an expression for $F_A(x)$ using the definition. Plot this expression and compare with the result of problem 6.1.3.
- 6.1.5. Find an expression for $p_A(x)$.
 - 6.2 Using Jacobian
- 6.2.1. Evaluate the joint PDF of X_1, X_2 , given by

$$p_{X_1|X_2}(x_1, x_2) = p_{X_1}(x_1) p_{X_2}(x_2)$$
 (6.2.1.1)

6.2.2. Let

$$X_1 = \sqrt{V}\cos\theta \tag{6.2.2.1}$$

$$X_2 = \sqrt{V}\sin\theta. \tag{6.2.2.2}$$

Evaluate the Jacobian

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial v} & \frac{\partial x_2}{\partial v} \\ \frac{\partial x_1}{\partial \theta} & \frac{\partial x_2}{\partial \theta} \end{vmatrix}$$
 (6.2.2.3)

$$p_{V,\Theta}(v,\theta) = |J| p_{X_1,X_2}(x_1,x_2)$$
 (6.2.3.1)

- 6.2.4. Find $p_V(v)$.
- 6.2.5. Find $p_{\Theta}(\theta)$.
- (5.1.3) 6.2.6. Are Y and Θ independent?

7 CONDITIONAL PROBABILITY

7.1. Plot

$$P_e = \Pr(\hat{X} = -1|X = 1)$$
 (7.1.1)

for

$$Y = AX + N, (7.1.2)$$

where A is Raleigh with $E\left[A^2\right] = \gamma, N \sim \mathcal{N}\left(0,1\right), X \in (-1,1)$ for $0 \le \gamma \le 10$ dB.

- 7.2. Assuming that N is a constant, find an expression for P_e . Call this $P_e(N)$
- 7.3. For a function g,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x) dx \qquad (7.3.1)$$

Find $P_e = E[P_e(N)]$.

7.4. Plot P_e in problems 7.1 and 7.3 on the same graph w.r.t γ . Comment.

8 Two Dimensions

8.1. Let

$$\mathbf{y} = A\mathbf{x} + \mathbf{n},\tag{8.1.1}$$

where

$$x \in (\mathbf{s}_0, \mathbf{s}_1), \mathbf{s}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{s}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (8.1.2)

$$\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}, n_1, n_2 \sim \mathcal{N}(0, 1).$$
 (8.1.3)

8.2. Plot

$$\mathbf{y}|\mathbf{s}_0$$
 and $\mathbf{y}|\mathbf{s}_1$ (8.2.1)

on the same graph using a scatter plot.

- 8.3. For the above problem, find a decision rule for detecting the symbols s_0 and s_1 .
- 8.4. Plot

$$P_{e} = \Pr(\hat{\mathbf{x}} = \mathbf{s}_{1} | \mathbf{x} = \mathbf{s}_{0})$$
 (8.4.1)

with respect to the SNR from 0 to 10 dB.

8.5. Obtain an expression for P_e . Verify this by comparing the theory and simulation plots on the same graph.

9 Transform Domain

Let
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
.

9.1. Find
$$M_X(s) = E[e^{-sX}]$$
.

9.2. Let

$$N = n_1 - n_2, \quad n_1, n_2 \sim \mathcal{N}(0, 1).$$
 (9.2.1)

Find $M_N(s)$, assuming that n_1 and n_2 are independent.

9.3. Show that *N* is Gaussian. Find its mean and variance. Comment.

10 Uniform to Other

10.1. Generate samples of

$$V = -2\ln(1 - U) \tag{10.1.1}$$

and plot its CDF. Comment.

10.2. Generate the Rayleigh distribution from Uniform. Verify your result through graphical plots.