WORK /

Work is said to be done when force produces displacement.

- → W = F s cosθ,
- **→** S.I unit is J (joule)

ENERGY

- → Capacity to do work is defined as Energy.
- **→** It is a scalar quantity.
- → S.I. unit is J or Joule.

TYPES OF ENERGY

Work can be Positive, Negative or Zero

POSITIVE WORK

If force and displacement both are '+' and θ is acute.

KINETIC ENERGY

By virtue of velocity $K = \frac{1}{2}mv^2$

MECHANICAL ENERGY

Kinetic Energy + Potential Energy

POTENTIAL ENERGY

By virtue of Position, height, stresses within its & Electrostatic Factors; Gravitational Potential Energy = $\frac{kq_1q_2}{r}$

ZERO WORK

- 1) W = 0, if Force is perpendicular to the displacement.
- 2) Either Force or displacement is 0.

Various Forms of Energy

- 1) Heat energy
- 2) Chemical energy
- 3) Electrical energy
- 4) Nuclear energy
- 5) Mechanical Energy
- 6) Solar Energy etc.

ENERGY IN SPRING MASS SYSTEM

- 1) Total mechanical energy at each point is constant.
- 2) ΔK + ΔU =0

 $\left(\mathsf{K}_{\mathsf{initial}} \! + \! \mathsf{U}_{\mathsf{initial}}\right) = \left(\mathsf{K}_{\mathsf{final}} \! + \; \mathsf{U}_{\mathsf{final}}\right)$

3) maximum Velocity $V_{max} = X_m \sqrt{\frac{k}{m}}$

NEGATIVE WORK

If both force & displacement are '+' or '-' and θ is between 90° to 180°.

5. WORK, ENERGY AND POWER

Mechanical Energy is Conserved

MOTION IN A VERTICAL CIRCLE

- In absence of dissipative forces, mechanical energy is conserved v = √5gl i.e critical velocity at bottom to reach top
- + v = √3gl i.e critical velocity at the horizontal position.
- → $v = \sqrt{gl}$ i.e critical velocity at the top.
- + Tension at any point on circle, $T = \frac{mu^2}{r} - mg (2 - 3cosθ)$
- Velocity at any point on circle,
 v² = u² − 2gl(1− cosθ)

Constant Force

- ★ Area under F-S graph gives work done
- → work done = Area
 under ABCD

Work Done by a

Variable Force

Work-Energy Theorem

- 1) Net Work done on an object by all forces will change in Kinetic energy of an object.
- 2) $W_{net} = \Delta K$
- 3) $W_{conservative} + W_{non-conservative} + W_{ext} = \Delta K$ $\int F(x).dx = \Delta K + \Delta U$ if variable force does work.

Work Done by Conservative & Non conservative Forces

CONSERVATIVE FORCES

- 1) Kx, mg and electrostatic forces are conservative forces.
- 2) Work done by these forces is stored in the form of Potential energy.
- 3) They are path independent.

NON CONSERVATIVE FORCES

- 1) Non conservative forces are path dependent.
- 2) Friction is an example of non conservative forces.

Formulae /

- 1) $dW = \overrightarrow{F} \cdot \overrightarrow{dr}$
- 2) $P = \frac{dw}{dt}$

For small amount of work

Special Units

- 1 hp = 746 W
- 1 KWH = 3.6×10^6 J

INSTANTANEOUS POWER

Scalar product of force and instantaneous velocity (v) is instantaneous Power.

$$P_{inst} = F. \frac{ds}{dt} = F. V$$

AVERAGE POWER

Total Work done in time t is average power

$$P_{\text{avg}} = \frac{W_{\text{total}}}{t}$$

POWER

- 1) Time rate at which work is done.
- 2) It is a scalar quantity
- 3) S.I. Unit is watt (w).

COLLISIONS

- **★** An instance of one moving body striking with another.
- → Collision of car with truck, collision of balls in snooker are examples.

Conservation of Momentum

- 1) If net external force on system is zero then Linear momentum of system is conserved
- 2) $\Delta \vec{p} = 0$
- 3) $\overrightarrow{p}_i = \overrightarrow{p}_f$
- 4) $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
- ★ In elastic collision, momentum and K.E of system are conserved
- **→** e = 1
- → Bodies do not stick together after collision

- ★ In inelastic collision, momentum is conserved
- **♦** 0 < e < l
- → Bodies do not stick together after collision
- ★ In perfectly inelastic collison momentum is conserved.
- + e = 0
- → Bodies sticks together after collision

Nature of Collisions

Value of coefficient of restitution defines nature of collision,

- $e = \frac{relative \ velocity \ of \ separation}{relative \ velocity \ of \ approach}$
- $e = \frac{V_2 V_1}{U_1 U_2}$
- e = 0, e = 1, 0 < e < 1 Defines nature of collisions

1 - D COLLISION

$$1) (\Delta p)_{sys} = 0$$

2)
$$e = \frac{V_2 - V_1}{U_1 - U_2}$$

3)
$$v_1 = \left(\frac{m_1 - em_2}{m_1 + m_2}\right) u_1 + \left(\frac{(1+e)m_2}{m_1 + m_2}\right) u_2$$

velocity of first particle after collision.

4)
$$v_2 = \left(\frac{m_1 - (1 + e)m_2}{m_1 + m_2}\right) u_1 + \left(\frac{m_2 - em_1}{m_1 + m_2}\right) u_2$$

velocity of second particle after collision

5) Change in Kinetic energy,

$$\Delta K = \frac{1}{2} \frac{m_2 m_1}{m_1 + m_2} (u_1 - u_2)^2 (1 - e^2)$$

TYPES OF COLLISIONS

2 - D COLLISION

- 1) Bodies moving in a plane results in arbitrary collision in different directions is 2–D.
- 2) $\Delta \vec{p} = 0$ $\Delta p_x = 0$ $m_1 u_{1x} + m_2 u_{2x} = m_1 v_{1x} + m_2 v_{2x}$ $\Delta p_y = 0$ $m_1 u_{1y} + m_2 u_{2y} = m_1 v_{1y} + m_2 v_{2y}$

SPECIAL CASES

- 1) $h = e^{2n}h_0$
- e = coefficient of restitution
- n = nth collision,
- h₀ = initial height,
- h_n = height after nth collision
- 2) $V_{n} = e^{n}V_{n}$,
- n = nth collision,
- V₀ = initial velocity,
- v_n = velocity after n^{th} collision
- 3) H = $h_0 \frac{(1 + e^2)}{(1 e^2)}$

H = total distance travelled before it stops

4) T =
$$\frac{(1 + e)}{(1 - e)} \sqrt{\frac{2h_0}{g}}$$

T = time taken by ball to stop bouncing.