© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°13

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 -

Soient a et b des entiers naturels tels que $a \le b$. On rappelle que [a, b] désigne l'ensemble des entiers naturels k tels que $a \le k \le b$.

Si S est un ensemble fini, on note |S| son cardinal.

Si X est une variable à valeur dans une partie finie de \mathbb{N} , on note $\mathbb{E}(X)$ son espérance.

Soit n un entier naturel supérieur ou égal à 2 et soit ℓ un entier naturel non nul. Soient X_1, \dots, X_n des variables aléatoires indépendantes et de même loi uniforme sur l'ensemble $[1, \ell]$.

On note U_n le nombre de valeurs distinctes prises par les variables X_1, \ldots, X_n : si k_1, \ldots, k_n sont les valeurs prises respectivement par X_1, \ldots, X_n , alors U_n pre,d la valeur |S| où $S = \{k_1, \ldots, k_n\}$ pour tout $(k_1, \ldots, k_n) \in [\![1\ell]\!]^n$.

Si S est une partie de $[\![1\ell]\!]$, on note $\{X_1,\ldots,X_n\}=S$ la réunion des événements $(X_1,\ldots,X_n)=(k_1,\ldots,k_n)$ pour tout $(k_1,\ldots,k_n)\in [\![1,\ell]\!]^n$ tels que $S=\{k_1,\ldots,k_n\}$.

- 1 On suppose dans cette question seulement que n = 2 et $\ell \ge 2$.
 - 1.a Justifier que U₂ ne prend que les valeurs 1 et 2.
 - **1.b** Calculer $\mathbb{P}(U_2 = 1)$ et $\mathbb{P}(U_2 = 2)$.
 - **1.c** Calculer $\mathbb{E}(U_2)$.
- **2** On se propose de simuler en Python la variable aléatoire U_n pour n = 10 dans le cas où $\ell = 25$.
 - 2.a Ecrire une fonction simulU qui renvoie une réalisation de U₁₀.
 On pourra utiliser la fonction random.randint.
 L'instruction random.randint (1,25) fournit un nombre aléatoire dans [1,25] uniformément.
 - **2.b** Ecrire une fonction espU qui renvoie une approximation de l'espérance de U_{10} . Quel théorème utilisezvous pour justifier que le résultat de cette fonction est une approximation de l'espérance de U_{10} ? Enoncez précisément ce théorème.
- **3** Quel est l'ensemble des valeurs prises par U_n ?
- Soit *i* dans [1, n]. Soit S une partie de $[1, \ell]$. Quelle est la probabilité de l'événement $(X_i \in S)$ en fonction de |S|?
- Soit a dans $[1, \ell]$. Exprimer $\mathbb{P}(X_1 \neq a, ..., X_{n-1} \neq a)$, la probabilité qu'aucune des variables $X_1, ..., X_{n-1}$ ne prenne la valeur a, en fonction de n et ℓ .

© Laurent Garcin MP Dumont d'Urville

6 En déduire $\mathbb{P}(X_1 \neq X_n, \dots, X_{n-1} \neq X_n)$, la probabilité que la valeur prise par X_n soit différente de toutes les valeurs prises par les autres variables, en fonction de n et ℓ .

7 Justifier

$$\mathbb{P}(\mathbf{X}_1 \neq \mathbf{X}_n, \dots, \mathbf{X}_{n-1} \neq \mathbf{X}_n) = \sum_{\mathbf{S} \in \mathcal{P}_{\ell}} \mathbb{P}(\{\mathbf{X}_1, \dots, \mathbf{X}_{n-1}\} = \mathbf{S}) \left(\frac{\ell - |\mathbf{S}|}{\ell}\right)$$

où $\mathcal{P}_{\!\!\ell}$ désigne l'ensemble des parties non vides de $[\![1,\ell]\!]$.

8 En déduire dans le cas où $n \ge 3$:

$$\mathbb{E}(U_{n-1}) = \ell(1 - \mathbb{P}(X_1 \neq X_n, \dots, X_{n-1} \neq X_n))$$

- **9** Exprimer $\mathbb{E}(\mathbf{U}_n)$ en fonction de n et ℓ .
- **10** Déterminer la limite de $\mathbb{E}(U_n)$ lorsque ℓ est fixé et $n \to +\infty$. Interprétez votre résultat.
- 11 Déterminer la limite de $\mathbb{E}(U_n)$ lorsque n est fixé et $\ell \to +\infty$. Interprétez votre résultat.
- On s'intéresse aux possibles partages de dates d'anniversaire dans un groupe de *n* personnes. On suppose que les années sont toutes de 365 jours et que les dates d'anniversaire sont uniformément réparties sur chaque jour de l'année. On fait aussi l'hypothèse que les dates d'anniversaire de *n* personnes choisies au hasard sont indépendantes mutuellement.

Soit D_n le nombre de dates d'anniversaire d'un groupe de n personnes choisies au hasard.

- **12.a** Exprimer en fonction de n le nombre moyen de dates d'anniversaire d'un groupe de n personnes, c'est à dire $\mathbb{E}(D_n)$.
- **12.b** Quelle est la limite de ce nombre moyen lorsque n tend vers $+\infty$.