Laboratorio di Elettronica e Tecniche di Acquisizione Dati 2022-2023

Fotodiodo

cfr. http://www-3.unipv.it/lde/didattica_elettronicall/photodiode.pdf

 Fotodiodo: trasduttore da segnale ottico a segnale elettrico ("fotorivelatore")

 Diodo a semiconduttore operato con polarizzazione inversa. Quando un fotone con energia E=hv > E_{gap} incide nella zona svuotata, può convertire in una coppia elettrone-lacune che contribuisce a una corrente di segnale.

Fotodiodi

- I fotodiodi sono dispositivi a semiconduttore con struttura PN (o PIN), impiegati come trasduttori di potenza luminosa
- L'energia trasportata dalla radiazione elettromagnetica, assorbita nella regione di svuotamento o nella regione intrinseca, determina la generazione di coppie elettrone/lacuna, che contribuiscono alla formazione di una corrente elettrica.
- La caratteristica tensione corrente di un fotodiodo è dunque uguale a quella di un diodo, con l'aggiunta di un termine di corrente fotogenerata I_{ph}:

dove I_0 è la corrente di leakage del diodo, V_D la tensione ai capi del dispositivo e V_T la tensione termica (kT/e). Si osservi che, in condizioni di polarizzazione inversa ($V_D \le 0$), la corrente sarà data da I_0 e I_{ph} , e, addirittura, per $V_D = 0$, $I_D = -I_{ph}$.

 La corrente fotogenerata I_{ph} risulta proporzionale alla potenza luminosa incidente, ovvero al flusso di fotoni che colpiscono il dispositivo:

$$I_{ph} = S \cdot P = \frac{\eta e}{h \nu} P$$
, $\frac{P}{h \nu} = \#$ fotoni al sec.

- dove S è la sensibilità spettrale, η è l'efficienza quantica, e è la carica dell'elettrone (1.602 10⁻¹⁹ C), P è la potenza dell'onda elettromagnetica incidente, h è la costante di Plank (6.625 10⁻³⁴ J·s) e v è la frequenza dell'onda elettromagnetica.
- altri parametri caratteristici di un fotodiodo sono la linearità, la corrente di buio, la sensibilità spettrale, la capacità di giunzione, la tensione di breakdown ed il tempo di risposta

- Efficienza quantica: probabilità di creazione di una coppia e-h per fotone incidente
- Responsività: corrente generata per potenza luminosa incidente (A/W).

Entrambe sono funzione della lunghezza d'onda della luce incidente, ovvero della energia dei quanti di luce.

Applicazioni

Settore	Impiego o dispositivo
Fotocamere	Misuratori di intensità luminosa, controllo automatico dell' otturatore, auto-focus, controllo del flash
Strumentazione medica	Scanner per TAC – rivelazione di raggi X, analisi biologiche (e.g. sul sangue), ossimetria
Dispositivi di sicurezza	Rivelatori di fumo e di fiamma, apparati a raggi X per ispezioni di aeromobili, rivelatori di intrusione
Automotive	Headlight dimmer, rivelatore di luce solare (per regolazione della climatizzazione)
Comunicazioni	Convertitori opto-elettronici, controllo ottico remoto
Industria	Lettori di codici a barre, encoder, sensori di posizione, misura della densità del toner nelle fotocopiatrici

Modalità operative

 Modalità fotovoltaica: il fotodiodo opera in assenza di tensioni di polarizzazione ed è in grado di erogare potenza elettrica. In particolare per I_D=0, il fotodiodo si comporta come un generatore di tensione:

$$V_{D} = V_{T} ln \left(\frac{I_{ph}}{I_{0}} + 1 \right)$$

 Modalità fotoconduttiva: il fotodiodo opera in condizioni di polarizzazione inversa o nulla, V_D≤0 e si comporta come un generatore di corrente. In particolare se V_D=0:

$$I_{\text{D}} = -I_{\text{ph}}$$

Modalità operative

 Modalità fotovoltaica: il fotodiodo opera in assenza di tensioni di polarizzazione ed è in grado di erogare potenza elettrica. In particolare per I_D=0, il fotodiodo si comporta come un generatore di tensione:

$$V_{D} = V_{T} ln \left(\frac{I_{ph}}{I_{0}} + 1 \right)$$

 Modalità fotoconduttiva: il fotodiodo opera in condizioni di polarizzazione inversa o nulla, V_D≤0 e si comporta come un generatore di corrente. In particolare se V_D=0:

$$I_{\text{D}} = -I_{\text{ph}}$$

Fotodiodo con amplificatore transimpedenza on-chip

(integra un op-amp con feedback negativo che trasforma il segnale in corrente in segnale in tensione)

Block Diagram

Spectral Responsivity

OPT101

SBBS002B - JANUARY 1994 - REVISED JUNE 2015

OPT101 Monolithic Photodiode and Single-Supply Transimpedance Amplifier

1 Features

- Single Supply: 2.7 to 36 V
- Photodiode Size: 0.090 inch × 0.090 inch (2.29 mm × 2.29 mm)
- Internal 1-MΩ Feedback Resistor
- High Responsivity: 0.45 A/W (650 nm)
- Bandwidth: 14 kHz at R_F = 1 MΩ
- Low Quiescent Current: 120 μA
- Packages: Clear Plastic 8-pin PDIP and J-Lead SOP

2 Applications

- Medical Instrumentation
- Laboratory Instrumentation
- Position and Proximity Sensors
- Photographic Analyzers
- Barcode Scanners
- · Smoke Detectors
- Currency Changers

3 Description

The OPT101 is a monolithic photodiode with on-chip transimpedance amplifier. The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered in discrete designs, such as leakage current errors, noise pick-up, and gain peaking as a result of stray capacitance. Output voltage increases linearly with light intensity. The amplifier is designed for single or dual power-supply operation.

The 0.09 inch × 0.09 inch (2.29 mm × 2.29 mm) photodiode operates in the photoconductive mode for excellent linearity and low dark current.

The OPT101 operates from 2.7 V to 36 V supplies and quiescent current is only 120 μ A. This device is available in clear plastic 8-pin PDIP, and J-lead SOP for surface mounting. The temperature range is 0°C to 70°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
OPT101	PDIP (8)	9.53 mm × 6.52 mm
OFTIUT	SOP (8)	9.52 mm × 6.52 mm

(1) For all available packages, see the package option addendum at the end of the data sheet.

www.ti.com

OPT101

SBBS002B - JANUARY 1994 - REVISED JUNE 2015

5 Pin Configuration and Functions

DTL and NTC Packages 8-pin SOP and 8-pin PDIP Top View

(1) Photodiode location.

Pin Functions

PIN			PERCEIPTION			
NO.	NAME	I/O	DESCRIPTION			
1	V_S	Power	Power supply of device. Apply 2.7 V to 36 V relative to –V pin.			
2	-In	Input	Negative input of op amp and the cathode of the photodiode. Either do not connect, or apply additional op amp feedback.			
3	-V	Power	Most negative power supply. Connect to ground or a negative voltage that meets the recommended operating conditions.			
4	1MΩ Feedback	Input	Connection to internal feedback network. Typically connect to Output, pin 5.			
5	Output	Output	Output of device.			
6	NC	_	Do not connect			
7	NC	_	Do not connect			
8	Common	Input	Anode of the photodiode. Typically, connect to ground.			

6.5 Electrical Characteristics

At $T_A = 25^{\circ}$ C, $V_S = 2.7$ V to 36 V, $\lambda = 650$ nm, internal 1-M Ω feedback resistor, and $R_L = 10$ k Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
RESPONS	IVITY		-		
	Photodiode current		0.45		A/W
	Voltage output		0.45		V/µW
	Voltage output vs temperature		100		ppm/°C
	Unit-to-unit variation		±5%		
	Nonlinearity ⁽¹⁾	Full-scale (FS) output = 24 V	±0.01		% of FS
	Photodiode area	0.090 in × 0.090 in	0.008		in ²
	Priotodiode area	2.29 mm × 2.29 mm	5.2		mm ²
ARK ERI	RORS, RTO ⁽²⁾				
	Offset voltage, output		5 7.5	10	mV
	Offset voltage vs temperature		±10		μV/°C
	Offset voltage vs power supply	V _S = 2.7 V to 36 V	10	100	μV/V
	Voltage noise, dark	$f_B = 0.1 \text{ Hz to } 20 \text{ kHz}, V_S = 15 \text{ V}, V_{PIN3} = -15 \text{ V}$	300		μVrms
RANSIMI	PEDANCE GAIN		1	'	
	Resistor		1		ΜΩ
	Tolerance		±0.5%	±2%	
	Tolerance vs temperature		±50		ppm/°C
REQUEN	CY RESPONSE			,	
	Bandwidth	V _{OUT} = 10 V _{PP}	14		kHz
	Rise and fall time	10% to 90%, V _{OUT} = 10-V step	28		μs
		to 0.05%, V _{OUT} = 10-V step	160		μs
	Settling time	to 0.1%, V _{OUT} = 10-V step	80		μs
		to 1%, V _{OUT} = 10-V step	70		μs
	Overload recovery	100%, return to linear operation	50		μs
UTPUT					
	Voltage output, high		$(V_S) - 1.3 (V_S) - 1.15$		V
	Capacitive load, stable operation		10		nF
	Short-circuit current	V _S = 36 V	15		mA
OWER S	UPPLY				
	Outcoant ourrent	Dark, V _{PIN3} = 0 V	120		μA
	Quiescent current	R _L = ∞, V _{OUT} = 10 V	220		μA

⁽¹⁾ Deviation in percent of full scale from best-fit straight line.

⁽²⁾ Referred to output. Includes all error sources.

6.6 Electrical Characteristics: Photodiode

At $T_A = 25^{\circ}$ C and $V_S = 2.7$ V to 36 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Photodiode area	0.090 in × 0.090 in	0.008	in ²
Priotodiode area	2.29 mm × 2.29 mm	5.2	mm ²
Current responsivity	λ = 650 nm	0.45	A/W
		865	(µA/W)/cm
Dark current	V _{DIODE} = 7.5 mV	2.5	pA
Dark current vs temperature	V _{DIODE} = 7.5 mV	Doubles every 7°C	_
Capacitance		1200	pF

6.7 Electrical Characteristics: Op Amp⁽¹⁾

At $T_A = 25^{\circ}$ C, $V_S = 2.7$ V to 36 V, $\lambda = 650$ nm, internal 1-M Ω feedback resistor, and $R_L = 10$ k Ω (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP M	AX UNIT
INPUT			-
Offset voltage		±0.5	mV
vs temperature		±2.5	μV/°C
vs power supply		10	μV/V
Input bias current	(–) input	165	pA
vs temperature	(–) input	Doubles every 10°C	_
land times and a sec	Differential	400 5	MΩ pF
Input impedance	Common-mode	250 35	GΩ pF
Common-mode input voltage range	Linear operation	0 to (V _S – 1)	V
Common-mode rejection		90	dB
OPEN-LOOP GAIN		•	
Open-loop voltage gain		90	dB
FREQUENCY RESPONSE		•	•
Gain bandwidth product ⁽²⁾		2	MHz
Slew rate		1	V/µs
	0.05%	8.0	μs
Settling time	0.1%	7.7	μs
	1%	5.8	μs
OUTPUT		•	
Voltage output, high		(V _S) – 1.3 (V _S) – 1.15	V
Short-circuit current	V _S = 36 V	15	mA
POWER SUPPLY		•	
Quiescent current	Dark, V _{PIN3} = 0 V	120	μA
Quiescent current	R _L = ∞, V _{OUT} = 10 V	220	μA

 ⁽¹⁾ Op amp specifications provided for information and comparison only.
(2) Stable gains ≥ 10 V/V.