EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 11: Bootstrapped Clock Circuits
Comparator

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

Date	Topics		
24-Jan	Course introduction and ADC architectures		
29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction		
31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT		
5-Feb	ADC & DAC static performance metrics, INL and DNL		
7-Feb	OPAMP and bias circuits review		
12-Feb	SC circuits review		
14-Feb	Sample and Hold Amplifier - Reading materials		
19-Feb	Flash ADC and Comparators: Regenerative Latch		
21-Feb	Comparators: Latch offset, preamp, auto-zero		
26-Feb	Finish Flash ADC		
28-Feb	DAC Architectures - Resistor, R-2R		
5-Mar	DAC Architectures - Current steering, Segmented		
7-Mar	DAC Architectures - Capacitor-based		
12-Mar	SAR ADC with bottom plate sampling		
14-Mar	SAR ADC with top plate sampling		
19-Mar	Midterm Review		
21-Mar		Midterm exam	
26-Mar	Spring break		
28-Mar	Spring break		
2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain		
4-Apr	Pipelined ADC bit sync and alignment using Full adders		
9-Apr	Pipelined ADC 1.5bit vs multi-bit structures		
11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB		
16-Apr	Single-slope ADC		
18-Apr	Oversampling & Delta-Sigma ADCs		
23-Apr	Second- and higher-order Delta-Sigma Modulator.		
25-Apr	Hybrid ADC - Pipelined SAR		
30-Apr	Hybrid ADC - Time-Interleaving		
2-May	ADC testing and FoM		
7-May	Project presentation 1		
8-May	Project presentation 2		
14-May	Final Review		
20-May	Project Report Due by 6 PM		

Bootstrap circuits Comparator

*Midterm Exam dates are approximate and subject to change with reasonable notice.

- Constant gate overdrive voltage V_{GS} = V_{DD} for the switch
- R_{on} is not dependent on V_{in} to the first order (body effect?)
- NMOS device only with less parasitic capacitance

Nakagome Charge Pump Y. Nakagome et al., "An experimental 1.5 V 64 Mb dram," IEEE J. Solid-State Circuits, vol. 26, pp. 465–472, Apr. 1991 V_{DD} M_5 M_6 M_2 M_4 M_3 C_1 : Φ ┢-Ф Φ Out M_1 $\overline{\Phi}$ ln V_{SS}

Ref: A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline ADC," *IEEE Journal of Solid-State Circuits*, vol. 34, issue 5, pp. 599-606, 1999.

Clock Bootstrapping (Φ =0)

Clock Bootstrapping ($\Phi=1$)

Another Clock Bootstrap Circuit

Mohamed Dessouky and Andreas Kaiser, "Very Low-Voltage Digital-Audio $\Delta\Sigma$ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping," *IEEE J. Solid-State Circuits*, vol. 36, pp. 349–355, Mar. 2001

Another Clock Bootstrap Circuit

M. Waltari, et.al., "A Self-Calibrated Pipeline ADC with 200 MHz IF-Sampling Frontend," *Analog Integrated Circuits and Signal Processing*, vol. 37, pp. 201–213, 2003

Cross-section of MOS Transistors

All pn junctions must be reverse-biased at all times. If vctop > VDD, the n-well tab should be connected to vctop.

Test_Sample_Hold

Ideal Switch Spectrum

CMOS TG Spectrum

bootstrap_tb

Spectrum of Bootstrap Switch

Non-overlapping clock

Non-overlapping clock

2phase_clk

Comparator

Comparator Definition

Detects the polarity of the analog input signal and produces a digital output (1 or 0) accordingly – threshold-crossing detector

Design Considerations

- Accuracy
 - Gain (resolution)
 - Offset
- Speed
 - Small-signal bandwidth
 - Settling time or delay time, slew rate
 - Overdrive recovery
- Power dissipation
- Input properties
 - Sampled data versus continuous time
 - Common-mode rejection
 - Input capacitance and linearity of input capacitance
 - Kickback noise

Gain Requirement

For 10-bit ADC, VDD=1.8V, FS=1V, LSB=1V/1024≈1mV For ½ LSB precision, we need

$$A_{V} = \frac{1.8V}{0.5 \cdot 1mV} \approx 3686 = 71 dB$$

Implementation Options

- Considerations
 - Amplification need not be linear
 - Amplification need not be continuous in time, if comparator is used in a sampled data system
 - Clock signal will tell comparator when to make a decision
- Implementation options to be looked at
 - Single stage amplification
 - E.g. OTA or OpAmp in open loop configuration
 - Multi-stage amplification
 - E.g. cascade of resistively loaded differential pairs
 - Regenerative latch using positive feedback
 - E.g. cross coupled inverters

Using an OPAMP or OTA

 $f_u = unity gain frequency, f_o = -3dB frequency$

$$f_0 = \frac{f_u}{A_v} = \frac{1GHz}{3686} = 271kHz$$

$$au_0 = \frac{1}{2\pi f_0} = 0.59 \mu S \longrightarrow \text{Too slow!}$$

Cascade of Open Loop Amplifiers

Cascade of Open Loop Amplifiers

In each stage:
$$\omega_u = \frac{g_m}{C_{gs}} \cong const.$$
 $A_0 = g_m R = \frac{\omega_u}{\omega_0}$ $\omega_0 = \frac{1}{RC} = \frac{\omega_u}{A_0}$

$$A_0 = g_m R = \frac{\omega_u}{\omega_0}$$

$$\omega_0 = \frac{1}{RC} = \frac{\omega_u}{A_0}$$

- Possible choices for a given, constant overall gain objective
 - Lots of stages with low gain
 - Only a few stages with moderate gain

Regenerative Latch

t < 0 setup initial condition $v_{10} - v_{20} = v_{d0}$

 $t \ge 0$ enable positive feedback

$$\begin{split} \frac{dv_1}{dt} &= \frac{i_1(t)}{C} = \frac{-g_m v_2(t)}{C} \\ \frac{dv_2}{dt} &= \frac{i_2(t)}{C} = \frac{-g_m v_1(t)}{C} \end{split}$$

$$\Rightarrow v_1(t) - v_2(t) = v_d(t) = v_{d0} \cdot e^{t/\tau_u}$$
$$\Rightarrow A(t) = \frac{v_d(t)}{v_{d0}} = e^{t/\tau_u}$$

Latch Gain

$A(\tau_d)$	τ_d/τ_u
10	2.3
100	4.6
1,000	6.9
10,000	9.2

For 10-bit, you need about 7τ