

Этикетка

КСНЛ.431271.007 ЭТ

Микросхема 1564ЛН1ТЭП

Микросхема интегральная 1564ЛН1ТЭП Функциональное назначение: Шесть логических элемента «НЕ»

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно Масса не более 1 г.

Таблица назначения выводов

№	Обозначение	Назначение	N₂	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	A1	Вход первой ячейки	8	Y4	Выход четвер- той ячейки
2	Y1	Выход первой ячейки	9	A4	Вход четвертой ячейки
3	A2	Вход второй ячейки	10	Y5	Выход пятой ячейки
4	Y2	Выход второй ячейки	11	A5	Вход пятой ячейки
5	A3	Вход третьей ячейки	12	Y6	Выход шестой ячейки
6	Y3	Выход третьей ячейки	13	A6	Вход шестой ячейки
7	0V	Общий	14	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IH}=1.5 \text{ B}, I_0=20 \text{ MKA}$	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IH} =3,15 B, I_0 = 20 mkA		-	0,10
U_{CC} =6,0 B, U_{IH} =4,2 B, I_0 = 20 мкА		-	0,10
при:			
U_{CC} =4,5 B, U_{IH} =3,15 B, I_0 = 4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IH} =4,2 B, I_0 = 5,2 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, I_0=20 \text{ MKA}$	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, I_0 = 20 mkA		4,4	-
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, I_0=20 \text{ MKA}$		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, I_0 = 4,0 mA		4,0	-
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, I_0=5.2 \text{ mA}$		5,5	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/

4. Входной ток высокого уровня, мкА, при: $U_{CC} = 6,0$ B, $U_{IL} = 0$ B, $U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при: $U_{CC}\!\!=\!6,\!0$ B, $U_{IL}\!\!=\!0$ B, $U_{IH}\!\!=\!\!U_{CC}$	I_{CC}	-	1,0
6. Динамический ток потребления, мА, при: $U_{CC}\!=\!6,\!0\;B,f\!=\!10,\!0\;M\Gamma ц$	I _{occ}	-	12
7. Время задержки распространения при включении (выключении), нс, при: $U_{CC}=2,0 \text{ B, } C_L=50 \text{ п}\Phi$ $U_{CC}=4,5 \text{ B, } C_L=50 \text{ n}\Phi$ $U_{CC}=6,0 \text{ B, } C_L=50 \text{ n}\Phi$	t _{PHL} , t _{PLH}	- - -	75 17 15
8. Входная емкость, пФ	C_1	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г.

серебро

в том числе:

золото г/мм

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

на 14 выводах длиной

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

MM

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{\rm C_7}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯP.431200.424-05ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛН1ТЭП соответствуют техническим условиям АЕЯР.431200.424-05ТУ и признаны годными для эксплуатации.

Приняты по от	
(извещение, акт и др.)	(дата)
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произ	введена» (дата)
Приняты по ${}$ (извещение, акт и др.) от	(дата)
Место для штампа ОТК	Место для штампа ПЗ
Пена договорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.