Trabajo Práctico #2: EvoPy

Entrega: Miércoles 9 de Noviembre

Se desea construir un generador de casos de tests para el lenguaje Python usando algoritmos genéticos. Su implementación debe ser capaz de generar invocaciones a las funciones definidas en un módulo python. Este módulo es indicado usando una ruta a un archivo con extensión .py.

Para simplificar vamos a suponer que los programas bajo análisis no contendrán declaraciones de clases. También vamos a ignorar todas las funciones cuyo nombre comience con un "_". Para implementar EvoPy puede seguir el pseudo-código del algoritmo genético implementado en EvoSuite:

INPUT: filePy, maxGenerations, maxTime, outputDir, random seed

```
Algorithm 1 The genetic algorithm applied in EVOSUITE
 current population \leftarrow generate random population
 2 repeat
      Z \leftarrow \text{elite of } current\_population
      while |Z| \neq |current\_population| do
         P_1, P_2 \leftarrow select two parents with rank selection
         if crossover probability then
            O_1, O_2 \leftarrow \text{crossover } P_1, P_2
         else
            O_1, O_2 \leftarrow P_1, P_2
         mutate O_1 and O_2
         f_P = min(fitness(P_1), fitness(P_2))
         f_O = min(fitness(O_1), fitness(O_2))
12
         l_P = length(P_1) + length(P_2)
         l_O = length(O_1) + length(O_2)
14
         T_B = \text{best individual of } current\_population
15
         if f_O < f_P \lor (f_O = f_P \land l_O \le l_P) then
            for O in \{O_1,O_2\} do
17
               if length(O) \leq 2 \times length(T_B) then
18
                  Z \leftarrow Z \cup \{O\}
               else
20
                  Z \leftarrow Z \cup \{P_1 \text{ or } P_2\}
21
         else
            Z \leftarrow Z \cup \{P_1, P_2\}
23
      current\_population \leftarrow Z
25 until solution found or maximum resources spent
```

• filePy es la ruta al archivo python con el módulo bajo test. Es una ruta absoluta (ejemplo: /home/johndoe/autotest/tp1/examples/arrays.py)

Generación Automática de Casos de Test - 2016 Ejercicios

- maxGenerations: es la cantidad máxima de generaciones permitidas para el algoritmo genético
- maxTime: es el tiempo máximo (en segundos) permitidos para ejecutar EvoPy
- outputDir: es la ruta (absoluta) a la carpeta donde se almacenarán los tests generados
- random seed: es la semilla para configurar el generador aleatorio de Python

Para facilitar su trabajo, se cuenta con clases desarrolladas para el TP1 que permiten las siguientes funcionalidades:

- **TestCall**: representa un Test. Ya que sólo trabajaremos con módulos con funciones python, los test call son únicamente una invocación a una función python con sus argumentos. Un TestCall está compuesto por el nombre de la función a invocar y la lista de argumentos (TestArgument) a usar.
- **TestArgument**: son los argumentos (ie valores de parámetros) con que se necesitan para definir un TestCall.
- TestExecutor: ejecuta un TestCall.
- **TestWriter**: permite volcar el contenido de un TestCall en un archivo .py para su ejecución posterior como un unit test.

Además puede utilizar el Generador Aleatorio RandPy desarrollado en el TP1.

Parámetros

El algoritmo genético debe respetar los siguientes parámetros para su configuración

- **populationSize**: cantidad de individuos en la población (default 50)
- eliteSize: tamaño de la elite (default 1)
- **testSuiteLength**: tamaño máximo de un test suite (default 40)
- crossoverProbability: [0,1] probabilidad de aplicar crossover al seleccionar individuos (default 0.75)
- mutationProbability: [0,1] probabilidad de aplicar mutation en el nuevo individuo (default 0.75)
- addNewTestProbability: [0,1] probabilidad de insertar un nuevo test generado aleatoriamente (default 0.33)
- **modifyExistingTestProbability**: [0,1] probabilidad de modificar un test existente aleatoriamente (default 0.33)
- **removeExistingTestProbability**: [0,1] probabilidad de eliminar un test existente (default 0.33)

Evaluación

Una vez terminado el desarrollo de EvoPy debe evaluar su desempeño completando la siguiente tabla:

Example	Avg. Line Cov.	Avg. Branch Cov.
arrays.py		
cgi_decode.py		
convexhull.py		
coord.py		
encryption.py		
levenshtein.py		
persons.py		
sets.py		
sorting.py		
triangle.py		
tuples.py		
years.py		

Para ello, deberá ejecutar cada uno de los módulos de la Tabla usando EvoPy con la siguiente configuración:

- maxTime=120 (2 minutos)
- maxGenerations=-1(sin cota de generaciones)

Dado que la efectividad de EvoPy puede variar aleatoriamente, debe repetir la ejecución 10 veces usando distintas semillas de aleatoriedad (random_seed)