Tema 2 IA

Descriere Generală

- 1. Predicția popularității știrilor (clasificare multi-class cu 5 clase)
- 2. Predicția riscului de boală coronariană (clasificare binară)

Structura Proiectului

```
ml_pipeline/
data_explorer.py  # Analiza exploratorie a datelor (EDA)
data_processor.py  # Preprocesarea şi curăţarea datelor
logistic_regression.py  # Implementare custom regresie logistică
ml_orchestrator.py  # Antrenarea şi evaluarea modelelor
run_pipeline.py  # Pipeline-ul complet
README.md  # Acest fișier
```

1. Explorarea Datelor (EDA)

1.1 Analiza Tipului de Atribute și Plajei de Valori

Implementare în data_explorer.py:

```
def categorize_columns(df, target_col=None, threshold=20):
    """Separate columns into numeric and categorical types"""
    # Separarea coloanelor în numerice și categorice
    # Distincția între continue și discrete
```

Abordare: - Atribute numerice continue: Identificate prin select_dtypes(include=['number']) și filtrate după numărul de valori unice (>=20) - Atribute discrete/ordinale: Atribute numerice cu puține valori unice (<20) - Atribute categorice: Toate coloanele non-numerice

1.1.1 Statistici pentru Atribute Numerice Continue News Dataset - Exemple de atribute continue:

Non- Atribut Null Medie	Std Dev	Min	Q1 (25%)	Median (50%)	Q3 (75%)	Max
days_sin 3 4_7 p 5ablis 13 54.2	214.3	8.0	164.0	339.0	542.0	731.0
title_wor 3 17d5unt 10.4	2.0	2.0	9.0	10.0	12.0	23.0
content_ % b7d5_cou 5 46.4	471.8	0.0	246.0	409.0	716.0	8474.0
unique_w dr dl_5ratio 0.548	0.127	0.0	0.471	0.539	0.608	1.0
external_3117145 10.9	69.2	0.0	1.0	3.0	9.0	4589.0
avg_wor 317 45gth 4.55	0.44	0.0	4.36	4.54	4.74	8.04
engagement <u>71</u> fatio 2847.1	11584.2	0.0	58.0	174.9	1076.3	284216.7

Heart Dataset - Exemple de atribute continue:

Atribut	Non- Null	Medie	Std Dev	Min	Q1 (25%)	Median (50%)	Q3 (75%)	Max
age	3392	49.6	8.6	32.0	42.0	49.0	56.0	70.0
systolic_	ββ92 sure	132.4	22.0	83.5	117.0	128.5	144.0	295.0
diastolic		83.0	12.0	48.0	75.0	81.0	90.0	142.5
daily_ci	g 3302 tes	9.0	11.9	0.0	0.0	0.0	20.0	70.0
cholester	:d <u>1392</u> vel	236.7	44.2	113.0	206.0	234.0	263.0	696.0
heart_ra	n 3 392	75.9	12.0	44.0	68.0	75.0	83.0	143.0
mass_in	d 3 392	25.8	4.1	15.5	23.1	25.3	28.1	56.8
blood_s	u 339 2_level	l 87.1	23.4	65.0	71.0	81.0	95.0	394.0

1.1.2 Statistici pentru Atribute Discrete/Ordinale News Dataset - Atribute discrete:

Atribut	Non-Null	Valori Unice	Observații
internal_links	31715	9	0-8 legături interne
keyword_worst_min_shares	31715	3	Categorii de popularitate
min_positive_sentiment	31715	11	Scale sentiment 0.0-1.0
channel_lifestyle	28544	2	Da/Nu (9.99% valori lipsă)
$channel_entertainment$	31715	2	Da/Nu
publication_period	31715	2	Weekday/Weekend

Heart Dataset - Atribute discrete:

Atribut	Non-Null	Valori Unice	Observații
gender	3392	2	M/F
education_level	3392	4	1-4 scale
blood_pressure_medication	3392	2	$\mathrm{Da/Nu}$
smoking_status	3392	2	Da/Nu
hypertension_history	3392	2	Da/Nu
stroke_history	3392	2	Da/Nu
diabetes_history	3392	2	Da/Nu
high_blood_sugar	3392	2	Da/Nu

1.1.2 Statistici pentru Atribute Discrete/Ordinale News Dataset - Atribute discrete:

Atribut	Non-Null	Valori Unice	Observații
internal_links	31715	9	0-8 legături interne
keyword_worst_min_shares	31715	3	Categorii de popularitate
min_positive_sentiment	31715	11	Scale sentiment 0.0-1.0

Atribut	Non-Null	Valori Unice	Observații
channel_lifestyle	28544	2	Da/Nu (9.99% valori lipsă)
$channel_entertainment$	31715	2	Da/Nu
publication_period	31715	2	Weekday/Weekend

Heart Dataset - Atribute discrete:

Atribut	Non-Null	Valori Unice	Observații
gender	3392	2	M/F
education_level	3392	4	1-4 scale
blood_pressure_medication	3392	2	Da/Nu
smoking_status	3392	2	Da/Nu
hypertension_history	3392	2	Da/Nu
stroke_history	3392	2	Da/Nu
diabetes_history	3392	2	$\mathrm{Da/Nu}$
high_blood_sugar	3392	2	Da/Nu

Observații importante: - News Dataset: Atributul external_links prezintă outliers extremi (max: 4589 vs Q3: 9) - News Dataset: channel_lifestyle are 9.99% valori lipsă necesitând imputare - Heart Dataset: Toate atributele sunt complete (fără valori lipsă) - Heart Dataset: Predomină atributele binare medicale (Da/Nu pentru condiții)

1.1.3 Vizualizări Boxplot și Histograme Boxplots pentru Atribute Numerice Continue:

News Dataset Boxplots News Dataset: Distribuția atributelor numerice continue cu identificarea outliers

Heart Dataset Boxplots Heart Dataset: Distribuția atributelor numerice continue - observați outliers în cholesterol_level și total_cigarettes

Histograme pentru Atribute Categorice:

News Dataset Histograms News Dataset: Distribuția atributelor categorice - majoritatea sunt binare (Y/N) cu distribuții echilibrate

Heart Dataset Histograms Heart Dataset: Distribuția atributelor categorice - predomină valorile binare pentru condițiile medicale

Vizualizări implementate: - Boxplots pentru atribute numerice: create_boxplot_grid() - permite identificarea valorilor extreme - Histograme pentru atribute categorice: create_histogram_grid() - arată distribuția valorilor

1.2 Analiza Echilibrului de Clase

```
def plot_target_distribution(train_df, test_df, target_col, dataset_name):
    """Compare target distribution between train and test sets"""
```

News Dataset Class Distribution News Dataset: Distribuția claselor în train vs test - evident dezechilibrul cu "Slightly Popular" dominant (47.9%)

Rezultate observate: - News Dataset: Severe dezechilibrat - "Slightly Popular" (47.9%) vs "Unpopular" (2.7%) - Slightly Popular: 15,194 / 3,799 (train/test)

- Moderately Popular: 9,605 / 2,401 Popular: 4,297 / 1,074 Viral: 1,748 / 437 Unpopular: 871 / 218 (cel mai mic)
 - **Heart Dataset**: Moderat dezechilibrat Clasa 0 (84.8%) vs Clasa 1 (15.2%)
 - Fără risc (0): 2,877 / 719 (train/test)
 - Cu risc (1): 515 / 129

Impact asupra modelelor: Pentru seturile dezechilibrate am implementat ponderarea claselor în algoritmi pentru a compensa bias-ul către clasele majoritare.

1.3 Analiza Corelației între Atribute

Pentru atribute numerice:

```
def compute_correlation_matrix(df, columns):
    """Calculate correlation matrix for numeric columns"""
    return df[columns].corr(method='pearson')
```

Pentru atribute categorice:

```
def compute_chi_square_matrix(df, columns):
    """Calculate chi-square test p-values for categorical columns"""
```

1.3.1 Corelații Numerice - Heart Dataset Heart Dataset Numeric Correlations Heart Dataset: Matrice de corelație Pearson - observați corelațiile puternice între daily_cigarettes și total_cigarettes (0.98)

Corelații semnificative identificate: - daily_cigarettes to-tal_cigarettes: r=0.98 (corelație aproape perfectă) - systolic_pressure diastolic_pressure: r=0.79 (corelație puternică așteptată) - blood_sugar_level glucose: r=1.0 (identice - redundanță completă) - mass_index diastolic_pressure: r=0.37 (corelație moderată)

1.3.2 Independența Categorică - Chi-Square Analysis News Dataset Categorical Independence News Dataset: Analiza independenței categorice - valorile p mai mici (roșu închis) indică dependență statistică

Heart Dataset Categorical Independence Heart Dataset: Analiza independenței categorice - majoritatea variabilelor medicale sunt independente

Observații din testul Chi-pătrat: - News Dataset: Dependențe puternice între zilele săptămânii (p < 0.05) - Heart Dataset: Variabilele medicale sunt în general independente - Variabilele url din News Dataset eliminate automat din cauza cardinalității mari

Abordare: - Corelația Pearson pentru atribute numerice (identifică redundanța liniară) - Testul Chi-square pentru atribute categorice (testează independența statistică) - **Eliminare automată** a features cu corelație > 0.85 sau dependență p < 0.05

2. Preprocesarea Datelor

2.1 Date Lipsă

Implementare în data_processor.py:

```
def fill_missing_values(df, numeric_strategy='median', text_strategy='most_frequent'):
    """Fill missing values using specified strategies"""
```

Strategii alese: - Atribute numerice: Mediană (robustă la valori extreme) - Atribute categorice: Valoarea cea mai frecventă

2.2 Valori Extreme (Outliers)

```
def find_outliers_iqr(df, columns, multiplier=1.5):
    """Detect outliers using IQR method"""
# Q1 - 1.5*IQR si Q3 + 1.5*IQR
```

Metodă: Intervalul interquartil (IQR) cu factorul 1.5 Tratament: Înlocuirea cu mediana pentru stabilitate

2.3 Eliminarea Atributelor Redundante

```
def find_correlated_features(correlation_matrix, threshold=0.85):
    """Find highly correlated features to remove"""

def find_dependent_categorical_features(p_value_matrix, significance_level=0.05):
    """Find categorical features that are dependent"""
```

Criterii de eliminare: - Corelație Pearson >0.85 pentru atribute numerice - p-value <0.05 în testul Chi-pătrat pentru atribute categorice

2.4 Standardizarea Datelor

```
def standardize_features(df, columns):
    """Standardize numeric features"""
    scaler = StandardScaler()
```

Necesitate: Atributele numerice au scale diferite (ex: zile vs. număr de cuvinte) **Metodă**: StandardScaler (medie=0, deviație=1)

3. Utilizarea Algoritmilor de Învățare Automată

3.1 Arbori de Decizie

Hiperparametri configurați:

```
news_tree_config = {
                       # Previne overfitting
    'max_depth': 8,
    'min_samples_leaf': 10,  # Stabilitate predicții
    'min_samples_split': 20, # Control granularitate
    'max_features': 'sqrt',  # Reducere dimensionalitate
    'criterion': 'gini',  # Măsură impuritate
'random_state': 42  # Reproductibilitate
}
# Heart Dataset
heart_tree_config = {
    'max_depth': 6,
                               # Adâncime redusă (dataset mic)
    'min samples leaf': 5,
    'min_samples_split': 10,
    'max features': 'sqrt',
    'criterion': 'gini',
    'random_state': 42
}
```

Justificare alegeri: - max_depth mai mică pentru Heart dataset (dataset mai mic, risc overfitting) - min_samples_leaf mai mare pentru stabilitate - gini pentru performanță computațională

3.2 Păduri Aleatoare - 1.5 puncte

Hiperparametri configurați:

```
news_forest_config = {
    'n_estimators': 20,  # Balans performanță/timp
    'max_depth': 10,  # Puţin mai adânc decât Decision Tree
    'min_samples_leaf': 5,
    'min_samples_split': 10,
    'max_features': 'sqrt',  # Diversitate arbori
    'bootstrap': True,  # Sampling cu revenire
    'n_jobs': -1  # Paralelizare
}
```

Avantaje observate: - Performanță superioară față de Decision Tree individual - Robustețe la overfitting prin ensemble

3.3 Regresie Logistică

Implementare manuală în logistic_regression.py:

Implementare Binară:

```
class CustomLogisticRegression(BaseEstimator, ClassifierMixin):
    def __init__(self, learning_rate=0.01, max_epochs=1000, class_weights=None):
        # Funcția sigmoid cu stabilitate numerică
        # Gradient descent cu ponderare clase
```

Implementare Multi-class:

```
class MultiClassLogisticRegression(BaseEstimator, ClassifierMixin):  \# \ Strategia \ \textit{One-vs-Rest pentru clasificare multi-class}
```

Configurație:

```
# News Dataset (Multi-class)
news_logistic_config = {
    'learning_rate': 0.01,
    'max_epochs': 1000,
    'class_weights': 'balanced' # Compensează dezechilibrul
}

# Heart Dataset (Binary)
heart_logistic_config = {
    'learning_rate': 0.01,
    'max_epochs': 1000,
    'class_weights': {0: 1.0, 1: 3.0} # Accent pe clasa pozitivă
}
```

Aspecte tehnice: - Implementare sigmoid cu clipping pentru stabilitate numerică - Gradient descent cu learning rate adaptat - Ponderarea claselor pentru dataset dezechilibrat - Strategia One-vs-Rest pentru multi-class

3.4 Multi-Layered Perceptron (MLP)

Configurație:

```
# News Dataset
news_mlp_config = {
    'hidden_layer_sizes': (100, 50), # 2 straturi ascunse
    'activation': 'relu', # Funcție activare
    'solver': 'adam', # Optimizator adapativ
    'alpha': 0.001, # Regularizare L2
    'learning_rate_init': 0.001, # Learning rate inițial
    'max_iter': 500, # Număr epoci
    'early_stopping': True, # Prevenire overfitting
```

```
'random_state': 42
}

# Heart Dataset
heart_mlp_config = {
    'hidden_layer_sizes': (50, 25),  # Arhitectură mai mică
    'activation': 'relu',
    'solver': 'adam',
    'alpha': 0.001,
    'learning_rate_init': 0.001,
    'max_iter': 500,
    'early_stopping': True,
    'random_state': 42
}
```

Justificare arhitectură: - Heart dataset: Arhitectură mai mică (50, 25) pentru dataset redus - News dataset: Arhitectură mai complexă (100, 50) pentru complexitatea problemei - Early stopping pentru prevenirea overfitting-ului

3.4.1 Analiza Curbelor de Antrenare MLP News Dataset - Curbe de Learning: - Training Accuracy: Creștere graduală de la ~45% la ~78% în primele 200 epoci - Validation Accuracy: Pattern similar cu training, indicator de generalizare bună - Training Loss: Scădere exponențială de la ~1.6 la ~0.6 - Validation Loss: Scădere paralelă cu training loss, early stopping la epoca 312 - Concluzie: Model bine calibrat, fără overfitting evident

Heart Dataset - Curbe de Learning: - Training Accuracy: Creștere rapidă la ~85% în primele 50 epoci - Validation Accuracy: Stabilizare la ~84%, convergență bună - Training Loss: Scădere de la ~0.7 la ~0.4 - Validation Loss: Pattern stabil, early stopping la epoca 156 - Concluzie: Convergență rapidă, dataset mai simplu

Observații importante: - Nu există semne de overfitting în niciun caz - Early stopping funcționează eficient - Validation curves urmăresc training curves îndeaproape

4. Pipeline de Preprocessing

Implementare în ml_orchestrator.py:

```
def create_preprocessing_pipeline(X_data):
    # OneHotEncoder pentru variabile categorice
    # StandardScaler pentru variabile numerice
    # Gestionarea cardinalității mari
```

Aspecte importante: - OneHotEncoder cu limitări: max_categories=20, min_frequency=0.01 - Excluderea atributelor cu cardinalitate mare (ex: URL-uri) - ColumnTransformer pentru aplicarea diferită pe tipuri de date

5. Evaluarea Algoritmilor

Rezultate News Dataset:

Model	Accuracy	Training Time
Neural Network	0.7732	3.62s
Random Forest	0.6311	0.75s
Custom Logistic Regression	0.5281	13.48s
Decision Tree	0.5226	0.36s

News Dataset Performance Comparison News Dataset: Comparația performanțelor - Neural Network dominăy

Rezultate Heart Dataset:

Model	Accuracy	Training Time
Random Forest	0.8491	0.10s
Neural Network	0.8443	0.27s
Decision Tree	0.8420	0.01s
Custom Logistic Regression	0.7889	0.21s

Heart Dataset Performanțe apropiate pentru primele 3 modele, dar Custom Logistic are cea mai bună utilitate clinică

5. Analiza Detaliată a Metricilor per Clasă

5.1 News Dataset - Metrici Detaliate

Moderately		Slightly			Overall
Model Metric Popular	Popula	ar Popular	Unpopu	ılaViral	Accuracy
NeuraPrecision81	0.59	0.80	0.70	0.45	0.7732
Net-					
work					
$\operatorname{Recall} 0.82$	0.54	0.91	0.23	0.15	
$\mathbf{F1-} 0.82$	0.57	0.86	0.35	0.23	
\mathbf{Score}					
Randor Precision 6	0.65	0.62	0.00	1.00	0.6311
For-					
est					
Recall 0.57	0.03	0.95	0.00	0.01	
F1- 0.61	0.06	0.75	0.00	0.02	
\mathbf{Score}					

Model Metric Po	oderately pular I		Slightly Popular	Unpopula	Marial (1988)	Overall Accuracy
Decisio Precisio			-	0.14	0.00	0.5226
Tree	• ().23	0.04	0.14	0.00	0.0220
Recall 0.3	36 (0.03	0.85	0.00	0.00	
F1- 0.4				0.01	0.00	
\mathbf{Score}						
Custom Precision	i 8 (0.28	0.68	0.17	0.13	0.5281
Lo-						
gis-						
tic						
Re-						
gres-						
sion						
$\mathbf{Recall}0.4$	19 (0.18	0.69	0.32	0.30	
F1- 0.5	53 (0.22	0.69	0.22	0.18	
\mathbf{Score}						

5.2 Heart Dataset - Metrici Detaliate

Model	Metric	No Risk (0)	High Risk (1)	Overall Accuracy
Random Forest	Precision	0.85	1.00	0.8491
	Recall	1.00	0.01	
	F1- Score	0.92	0.02	
Neural Net- work	Precision	0.85	0.40	0.8443
	\mathbf{Recall}	0.99	0.05	
	F1- Score	0.91	0.08	
Decision Tree	Precision	0.85	0.14	0.8420
	\mathbf{Recall}	0.99	0.01	
	F1- Score	0.91	0.01	
Custom Logis- tic Regres- sion	Precision	0.88	0.31	0.7889
	Recall	0.87	0.32	

Model	Metric	No Risk (0)	High Risk (1)	Overall Accuracy
	F1- Score	0.88	0.31	

6. Analiza Detaliată a Confusion Matrices

6.1 News Dataset (Multi-class Classification)

Neural Network - Cea Mai Bună Performanță (77.32%) Neural Network Confusion Matrix - News Neural Network: Cel mai echilibrat model cu detecția decentă a tuturor claselor

Puncte forte: - Moderately Popular: 1961/2401 = 81.7% recall - excelent - Popular: 579/1074 = 53.9% recall - decent pentru clasa dificilă - Slightly Popular: 3474/3799 = 91.4% recall - foarte bun - Unpopular: 51/218 = 23.4% recall - cel mai bun dintre toate modelele - Viral: 66/437 = 15.1% recall - dificil, dar mai bun decât restul

Random Forest - Performanță Solidă (63.11%) Random Forest Confusion Matrix - News Random Forest: Bias extrem către "Slightly Popular", eșec la clasele minoritare

Puncte forte: - Slightly Popular: 3607/3799 = 94.9% recall - excelent - Moderately Popular: 1362/2401 = 56.7% recall - decent

Puncte slabe: - Popular: 31/1074=2.9% recall - aproape zero detectare - Unpopular: 0/218=0% recall - eșec - Viral: 4/437=0.9% recall - aproape zero detectare

Custom Logistic Regression - Distribuție Mai Echilibrată (52.81%) Custom Logistic Regression Confusion Matrix - News Custom Logistic Regression: Singura care încearcă să detecteze toate clasele echilibrat

Puncte forte: - Unpopular: 71/218=32.6% recall - surprinzător de bun - Viral: 126/437=28.8% recall - cel mai bun recall pentru această clasă - Singura care încearcă să detecteze toate clasele

Puncte slabe: - Acuratețe generală mai mică din cauza confuziei între clase - Prea multe false positive pentru clasele minoritare

6.2 Heart Dataset (Binary Classification)

Random Forest - Cel Mai Mare Accuracy (84.91%) Random Forest Confusion Matrix - Heart Random Forest: Accuracy înalt dar bias extrem către clasa majoritară

Problemă majoră: Clasifică aproape totul ca "fără risc" - **Impact clinic**: Pacienții cu risc sunt nedetectați!

Custom Logistic Regression - Cel Mai Echilibrat (78.89%) Custom Logistic Regression Confusion Matrix - Heart Custom Logistic Regression: Trade-off acceptabil între accuracy și detectarea riscului

Puncte forte: - Cel mai bun recall pentru clasa pozitivă: 31.8% - Balans mai bun între sensitivitate și specificitate

Neural Network - Performanță Intermediară (84.43%) Neural Network Confusion Matrix - Heart Neural Network: Accuracy ridicat dar bias similar cu Random Forest

Observații similare cu Random Forest - preferință pentru clasa majoritară

6.3 Impactul Dezechilibrului de Clase

News Dataset:

- Slightly Popular: 47.9% din date \rightarrow toate modelele bias către aceasta
- Unpopular: 2.7% din date \rightarrow ignorată de majoritatea modelelor
- Soluția: Neural Network reușește prin capacitatea de învățare non-liniară

Heart Dataset:

- **Fără risc (0)**: 84.8% din date
- Cu risc (1): 15.2% din date
- **Problemă critică**: Majoritatea modelelor sacrifică recall-ul pentru acuratete

6.4 Concluzii

Pentru News Dataset:

- 1. **Neural Network** este clar superiorul pentru probleme multi-class complexe
- 2. Random Forest bun pentru performanță generală dar ignoră clasele minoritare
- 3. Custom Logistic Regression demonstrează înțelegerea algoritmilor dar e limitată

Pentru Heart Dataset:

- 1. Custom Logistic Regression este cel mai potrivit
- 2. Acuratețea înaltă poate fi înșelătoare în cazuri medicale
- 3. Recall-ul pentru clasa pozitivă este metrica critică

Lecții Generale:

- 1. Confusion matrices dezvăluie mult mai mult decât accuracy-ul simplu
- 2. Context aplicație determină ce metrici sunt importante

- 3. Ponderarea claselor este crucială pentru date dezechilibrate
- 4. Neural Networks excel la probleme complexe cu date suficiente

6.5 Analiza Comparativă - Graficul de Performanță

Graficul de comparație evidențiază următoarele aspecte critice:

Ordinea Performanței (News Dataset):

- 1. Neural Network (76.0%)
- 2. Random Forest (62.6%)
- 3. Decision Tree (56.5%)
- 4. Custom Logistic Regression (52.8%)

De Ce Neural Network Domină:

- Capacitate non-liniară: Poate învăța patterns complexe între features
- Regularizare automată: Early stopping previne overfitting-ul
- Optimizare adaptivă: Adam optimizer se adaptează la gradienții din date
- Arhitectură potrivită: 100-50 neuroni suficient pentru complexitate fără overfitting

De Ce Random Forest E Solid dar Nu Excelent:

- Bun la generalizare dar nu cap turează relații fine între features
- Bias către clasa majoritară reduce versatilitatea
- Ensemble ajută dar algoritmul de bază rămâne simplu

De Ce Decision Tree E Mediocru:

- Overfitting în ciuda hiperparametrizării
- Instabilitate la mici schimbări în date
- Incapacitate de a captura relații complexe

De Ce Custom Logistic Regression E Ultimul în Accuracy:

- Limitare liniară fundamentală pe date non-liniare
- Implementare simplă fără regularizare avansată
- Dar: Cea mai bună la echilibrarea claselor!

Heart Dataset:

Deși Random Forest are accuracy-ul cel mai mare (84.91%), Custom Logistic Regression (78.89%) este practic cel mai util:

Metric	Random Forest	Custom Logistic
Accuracy	84.91%	78.89%
Recall clasa pozitivă	1.6%	32.6%
Pacienți cu risc detectați	2/129	42/129

6. Utilizare

Executarea completă:

```
python3 run_pipeline.py
```

Executarea individuală:

```
# Doar EDA
python3 data_explorer.py

# Doar preprocessing
python3 data_processor.py

# Doar training
python3 ml_orchestrator.py
```

7. Dependințe

```
pandas>=1.3.0
numpy>=1.21.0
matplotlib>=3.4.0
seaborn>=0.11.0
scikit-learn>=1.0.0
scipy>=1.7.0
```

8. Comentarii asupra Rezultatelor și Explicații de Performanță

8.1 De Ce Neural Network Obține Cea Mai Bună Performanță pe News Dataset

Factori Tehnici:

- 1. Capacitate Non-Liniară Superioară
 - Poate modela interacțiuni complexe între 52 de features
 - ReLU activation permite învățarea de pattern-uri sofisticate
 - Arhitectura 100-50 suficientă pentru complexitate fără overfitting
- 2. Optimizare Adaptivă Eficientă
 - Adam optimizer se adaptează la gradienții variabili din date
 - Learning rate adaptat pe dimensiuni diferite ale problemei

• Momentum ajută la navigarea prin space-uri complexe de parametri

3. Regularizare Inteligentă

- Early stopping previne overfitting-ul automat
- L2 regularization (alpha=0.001) balansează complexitatea
- Dropout implicit în sklearn MLPClassifier

4. Gestionarea Superioară a Clasei Dezechilibrate

- Reusește să învețe reprezentări distincte pentru fiecare clasă
- Nu se limitează la clasificarea majoritară ca tree-based models

Dovezi din Metrici:

- Singura cu recall > 15% pentru clasa Viral (15% vs 1% pentru Random Forest)
- Cel mai bun F1-score pentru 4/5 clase
- Precision echilibrată între clase (0.45-0.81 vs 0.0-1.0 pentru Random Forest)

8.2 Alegerea Algoritmilor

Pentru Probleme Multi-Class Complexe (News): Neural Networks când: - Dataset mare (>30k exemple) - Features multe și diverse (>50) - Relații non-liniare suspectate - Classe dezechilibrate moderate

Pentru Probleme Medicale/Critice (Heart): Logistic Regression când: - Costul false negative »> false positive - Interpretabilitate necesară - Probabilități calibrate importante - Dataset moderat (<5k exemple)

Pentru Baseline Rapid: Random Forest când: - Timp de development limitat - Performance "decent" suficientă - Features mixed (numeric + categorical) - Robustețe la outliers necesară

8.3 Impactul Factorilor de Complexitate

Dimensiunea Dataset-ului:

- News (31,715): Beneficiază de Neural Networks complexe
- Heart (3,392): Susceptibil la overfitting cu modele complexe

Numărul de Features:

- News (52 features): Necesită capacitate de modelare sofisticată
- Heart (14 features): Modele simple pot fi suficiente

Dezechilibrul Claselor:

- News: 5 clase (2.7% 47.9%) \rightarrow Neural Network gestionează cel mai bine
- Heart: 2 clase (15.2% 84.8%) \rightarrow Ponderarea explicită în Logistic Regression decisivă