Quasi-Newton Methods (10.9)

Objective

To borrow from my **Conjugate Gradient (CG)** presentation:

Minimize a function *f* with the following properties:

- f can be evaluated at an N-dimensional point P (i.e. f(P))
- The gradient of f can be evaluated at an N-dimensional point P (i.e. $\nabla f(P)$)

Similarities to CG

- Quasi-Newton methods and CG both:
 - Require computation of f and its gradient at arbitrary points.
 - Reach the exact minimum of a quadratic form in N line minimizations.
 - Converge quadratically for general functions.

CG vs. Quasi-Newton Methods

- CG's main advantage is that it requires intermediate storage on the order of N, while quasi-Newton methods require storage on the order of N x N. The book notes "for any moderate N, this hardly matters."
- However, quasi-Newton methods:
 - Typically converge faster than CG (we'll get into this later).
 - Are more robust to ill-conditioned problems, special conditions, and numerical errors/approximations (good general-purpose).
 - Don't need to restart every N iterations.

But how does it do it?

In other words, what makes quasi-Newton methods tick?

Newton's Method in Optimization

- To understand quasi-Newton methods, you need to understand actual Newton methods.
- The big idea: minimize f by constructing a sequence {x_k}
 from an initial guess x₀ that converges toward the minimum of f using a sequence of second-order Taylor approximations of f around the iterates.

Newton's Method in Optimization

• The second-order Taylor expansion of f around x_k is

$$f(x_k + t) \approx f(x_k) + f'(x_k)t + \frac{1}{2}f''(x_k)t^2$$

If the second derivative is positive, this approximation is a convex function
of t, meaning we can find its minimum by setting its derivative to 0, like so

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(f(x_k) + f'(x_k)t + \frac{1}{2}f''(x_k)t^2 \right) = f'(x_k) + f''(x_k)t = 0, t = -\frac{f'(x_k)}{f''(x_k)}$$

Finally, we construct the next iteration in the sequence like so:

$$x_{k+1} = x_k + t = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Source: Newton's method in optimization @ Wikipedia

Newton's Method in Optimization (with the Hessian)

- Now, with the Hessian A (matrix of second-order partial derivatives)
- The second-order Taylor expansion of f around x_k is

$$f(x_k + t) \approx f(x_k) + (f'(x_k) \cdot t) + \left(\frac{1}{2} \cdot t \cdot \mathbf{A} \cdot t\right)$$

If the Hessian is positive-definite, this approximation is a convex function
of t, meaning we can find its minimum by setting its derivative to 0, like so

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(f(x_k + t) \right) = f'(x_k) + (\mathbf{A} \cdot t) = 0, t = -\frac{f'(x_k)}{\mathbf{A}} = -\mathbf{A}^{-1} \cdot f'(x_k)$$

Finally, we construct the next iteration in the sequence like so:

$$x_{k+1} = x_k + t = x_k - (\mathbf{A}^{-1} \cdot f'(x_k))$$

The Problem

- Note the following excerpts from Newton's method: "If the second derivative is positive" / "if the Hessian is positivedefinite"
- This is not a given!
- From 10.9:

"In general, far from a minimum, we have no guarantee that the Hessian is positive-definite. Taking the actual Newton step with the real Hessian can move us to points where the function is increasing in value."

The Solution

 Instead of using the Hessian itself, iteratively build an approximation of it (10.9.1):

$$\lim_{i\to\infty}\mathbf{H}_i=\mathbf{A}^{-1}$$

- We can build this approximation in such a way that it is always
 positive-definite, meaning we always move in a downhill direction.
 - However, even with a positive-definite approximation, we may move too far in the minimizing direction, so we must line search to choose the correct step along the minimizing direction.
- Then, as we approach the minimum, we approach the **true Hessian** and enjoy the **quadratic convergence of Newton's method**.

The Heart of the Solution

- Of course, this begs the question, how do we build the approximation?
- We will show SciPy's implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula.
- Let:
 - I be the identity matrix.
 - \circ $\overrightarrow{s_k}$ be the change in position from rounds $k \to k+1$
 - \circ $\overrightarrow{y_k}$ be the change in gradient from rounds $k \to k+1$
 - - $([5 \ 3], [9 \ 7]) = (5 \cdot 9) + (3 \cdot 7) = 66$
 - \circ **H**_k be the Hessian approximation from round k
- $\mathbf{H}_{k+1} = (\mathbf{I} (\overrightarrow{s_k} * \overrightarrow{y_k} * \rho_k)) \cdot \mathbf{H}_k \cdot (\mathbf{I} (\overrightarrow{y_k} * \overrightarrow{s_k} * \rho_k)) + (\rho_k * \overrightarrow{s_k} * \overrightarrow{s_k})$
 - o Dimensionality is mismatched, this'll be explained later.

Bonus: H converges to A^{-1} in N steps, if f is a quadratic form!

Next Up

- BFGS is the **default method** used in SciPy's minimize function when no constraints or bounds are provided.
- **SciPy** is a highly performant, production-ready library for scientific computing.
- To wrap up this presentation, we'll walk through SciPy's implementation of BFGS.

```
def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None,
                   gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None,
                   disp=False, return all=False, finite diff_rel_step=None,
                   xrtol=0, c1=1e-4, c2=0.9,
                   hess inv0=None, **unknown options):
    11 11 11
   Minimization of scalar function of one or more variables using the
    BFGS algorithm.
   Options
    disp : bool
        Set to True to print convergence messages.
   maxiter: int
        Maximum number of iterations to perform.
   gtol : float
        Terminate successfully if gradient norm is less than `gtol`.
    norm : float
        Order of norm (Inf is max, -Inf is min).
    eps: float or ndarray
        If 'jac is None' the absolute step size used for numerical
        approximation of the jacobian via forward differences.
```

roturn all , bool ontional

```
f = sf.fun
myfprime = sf.grad
old fval = f(x0)
qfk = myfprime(x0)
k = 0
N = len(x0)
I = np.eye(N, dtype=int)
Hk = I if hess inv0 is None else hess inv0
# Sets the initial step guess to dx \sim 1
old_old_fval = old_fval + np.linalg.norm(gfk) / 2
xk = x0
if retall:
    allvecs = [x0]
warnflag = 0
gnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):</pre>
    pk = -np.dot(Hk, gfk)
    try:
        alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                 _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                       old fyal old old fyal amin=1e-100
```

```
f = sf.fun
myfprime = sf.grad
                      Initialize the value of the
                      function and its gradient
old_fval = f(x0)
qfk = myfprime(x0)
k = 0
N = len(x0)
I = np.eye(N, dtype=int)
Hk = I if hess inv0 is None else hess inv0
# Sets the initial step guess to dx \sim 1
old_old_fval = old_fval + np.linalg.norm(gfk) / 2
xk = x0
if retall:
    allvecs = [x0]
warnflag = 0
gnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):</pre>
    pk = -np.dot(Hk, gfk)
    try:
        alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                 _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                       old fyal old old fyal amin=1e-100
```

```
f = sf.fun
myfprime = sf.grad
old fval = f(x0)
qfk = myfprime(x0)
                                               Set H_0 to the identity
N = len(x0)
I = np.eye(N, dtype=int)
                                               matrix I
Hk = I if hess inv0 is None else hess inv0
# Sets the initial step guess to dx \sim 1
old_old_fval = old_fval + np.linalg.norm(gfk) / 2
xk = x0
if retall:
    allvecs = [x0]
warnflag = 0
gnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):</pre>
    pk = -np.dot(Hk, gfk)
    try:
        alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                 _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                       old fyal old old fyal amin=1e-100
```

```
f = sf.fun
myfprime = sf.grad
old fval = f(x0)
qfk = myfprime(x0)
k = 0
N = len(x0)
I = np.eye(N, dtype=int)
Hk = I if hess inv0 is None else hess inv0
                                                      Initialize guess of step
# Sets the initial step guess to dx \sim 1
old old_fval = old_fval + np.linalg.norm(gfk) / 2
                                                      along minimizing direction
xk = x0
if retall:
    allvecs = [x0]
warnflag = 0
gnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):</pre>
    pk = -np.dot(Hk, gfk)
    try:
        alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                 _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                       old fyal old old fyal amin=1e-100
```

```
qnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):
   pk = -np.dot(Hk, gfk)
   try:
       alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
               _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                   old fval, old old fval, amin=1e-100,
                                   amax=1e100, c1=c1, c2=c2)
   except _LineSearchError:
       # Line search failed to find a better solution.
       warnflag = 2
       break
   sk = alpha_k * pk
   xkp1 = xk + sk
   if retall:
       allvecs.append(xkp1)
   xk = xkp1
   if qfkp1 is None:
       gfkp1 = myfprime(xkp1)
   yk = gfkp1 - gfk
   qfk = qfkp1
   k += 1
```

```
gnorm = vecnorm(gfk, ord=norm)
                                         2/5 termination conditions:
while (gnorm > gtol) and (k < maxiter):
                                            Norm of gradient less than tolerance
    pk = -np.dot(Hk, qfk)
                                            (virtually 0 by default)
                                           Iterations hit maximum
    try:
        alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                     old fval, old old fval, amin=1e-100,
                                     amax=1e100, c1=c1, c2=c2)
    except _LineSearchError:
       # Line search failed to find a better solution.
       warnflag = 2
        break
    sk = alpha_k * pk
    xkp1 = xk + sk
    if retall:
       allvecs.append(xkp1)
    xk = xkp1
    if qfkp1 is None:
       gfkp1 = myfprime(xkp1)
    yk = gfkp1 - gfk
    qfk = qfkp1
    k += 1
```

```
gnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):
   pk = -np.dot(Hk, gfk) Calculate search direction (p_k) using the approximated Hessian
   try:
       alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                    old fval, old old fval, amin=1e-100,
                                    amax=1e100, c1=c1, c2=c2)
   except _LineSearchError:
       # Line search failed to find a better solution.
       warnflag = 2
       break
   sk = alpha_k * pk
   xkp1 = xk + sk
   if retall:
       allvecs.append(xkp1)
   xk = xkp1
   if qfkp1 is None:
       gfkp1 = myfprime(xkp1)
   yk = qfkp1 - qfk
   qfk = qfkp1
   k += 1
```

```
qnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):
    pk = -np.dot(Hk, qfk)
    try:
        alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                 line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                       old fval, old old fval, amin=1e-100,
                                       amax=1e100, c1=c1, c2=c2)
    except _LineSearchError:
        # Line search failed to find a better solution.
        warnflag = 2
        break
                          Perform a line search to determine the optimal
    sk = alpha_k * pk
    xkp1 = xk + sk
                          step size (\alpha_k) along the search direction.
                          Terminate on failure.
    if retall:
        allvecs.append(xkp1)
    xk = xkp1
    if gfkp1 is None:
        gfkp1 = myfprime(xkp1)
    yk = gfkp1 - gfk
    gfk = gfkp1
```

k += 1

```
qnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):
   pk = -np.dot(Hk, gfk)
   try:
       alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                   old fval, old old fval, amin=1e-100,
                                   amax=1e100, c1=c1, c2=c2)
   except _LineSearchError:
       # Line search failed to find a better solution.
       warnflag = 2
       break
                     Calculate the change in position s_k and get the
   sk = alpha_k * pk
   xkp1 = xk + sk
                     current point by applying s_k to the previous point.
   if retall:
       allvecs.append(xkp1)
   xk = xkp1
   if gfkp1 is None:
       gfkp1 = myfprime(xkp1)
   yk = gfkp1 - gfk
   qfk = qfkp1
   k += 1
```

```
gnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):
   pk = -np.dot(Hk, gfk)
   try:
       alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
               _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                   old fval, old old fval, amin=1e-100,
                                   amax=1e100, c1=c1, c2=c2)
   except _LineSearchError:
       # Line search failed to find a better solution.
       warnflag = 2
       break
   sk = alpha_k * pk
   xkp1 = xk + sk
   if retall:
       allvecs.append(xkp1)
   xk = xkp1
   if qfkp1 is None:
                             Calculate the gradient at the current point
       gfkp1 = myfprime(xkp1)
   yk = gfkp1 - gfk
   qfk = qfkp1
   k += 1
```

```
gnorm = vecnorm(gfk, ord=norm)
while (gnorm > gtol) and (k < maxiter):
   pk = -np.dot(Hk, gfk)
   try:
       alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                    old fval, old old fval, amin=1e-100,
                                    amax=1e100, c1=c1, c2=c2)
   except _LineSearchError:
       # Line search failed to find a better solution.
       warnflag = 2
       break
   sk = alpha_k * pk
   xkp1 = xk + sk
   if retall:
       allvecs.append(xkp1)
   xk = xkp1
    if gfkp1 is None:
       gfkp1 = myfprime(xkp1)
   yk = gfkp1 - gfk
                    Calculate the change in gradient y_k, save the
                    current gradient, and increment the iteration.
```

```
break
gnorm = vecnorm(gfk, ord=norm)
if (gnorm <= gtol):</pre>
    break
  See Chapter 5 in P.E. Frandsen, K. Jonasson, H.B. Nielsen,
  O. Tingleff: "Unconstrained Optimization", IMM, DTU.
  These notes are available here:
  http://www2.imm.dtu.dk/documents/ftp/publlec.html
if (alpha k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))):</pre>
    break
if not np.isfinite(old_fval):
    # We correctly found +-Inf as optimal value, or something went
    # wrong.
    warnflag = 2
    break
rhok_inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
    if disp:
              UNIVIAL has been an accombanced about a commed langual.
```

```
break
gnorm = vecnorm(gfk, ord=norm)
                                Repeat of one of the termination
if (gnorm <= gtol):</pre>
                                conditions in the function's while loop.
    break
  See Chapter 5 in P.E. Frandsen, K. Jonasson, H.B. Nielsen,
  O. Tingleff: "Unconstrained Optimization", IMM, DTU.
   These notes are available here:
  http://www2.imm.dtu.dk/documents/ftp/publlec.html
if (alpha k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))):</pre>
    break
if not np.isfinite(old_fval):
   # We correctly found +-Inf as optimal value, or something went
    # wrong.
    warnflag = 2
    break
rhok inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
    if disp:
```

```
gnorm = vecnorm(gfk, ord=norm)
                                       Terminate if step size is
if (gnorm <= gtol):</pre>
                                          below the tolerance.
    break
   See Chapter 5 in P.E. Frandsen, K. Jonasson, H.B. Nielsen,
   O. Tingleff: "Unconstrained Optimization", IMM, DTU.
   These notes are available here:
   http://www2.imm.dtu.dk/documents/ftp/publlec.html
if (alpha k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))):</pre>
    break
if not np.isfinite(old_fval):
    # We correctly found +-Inf as optimal value, or something went
    # wrong.
    warnflag = 2
    break
rhok inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
    if disp:
```

break

```
gnorm = vecnorm(gfk, ord=norm)
if (gnorm <= gtol):</pre>
    break
  See Chapter 5 in P.E. Frandsen, K. Jonasson, H.B. Nielsen,
  O. Tingleff: "Unconstrained Optimization", IMM, DTU.
   These notes are available here:
  http://www2.imm.dtu.dk/documents/ftp/publlec.html
                                                            Terminate if the
if (alpha k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))):</pre>
                                                            function value is
    break
                                                                      infinite
if not np.isfinite(old_fval):
    # We correctly found +-Inf as optimal value, or something went
    # wrong.
    warnflag = 2
    break
rhok inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
    if disp:
```

break

```
if not np.isfinite(old_fval):
   # We correctly found +-Inf as optimal value, or something went
   # wrong.
   warnflag = 2
    break
rhok inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
    if disp:
        msg = "Divide-by-zero encountered: rhok assumed large"
        _print_success_message_or_warn(True, msg)
else:
    rhok = 1. / rhok_inv
```

fval = old fval

A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhokA2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok

Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] *

sk[np.newaxis, :])

```
# We correctly found +-Inf as optimal value, or something went
   # wrong.
   warnflag = 2
                                                 Calculate \rho_k
    break
rhok inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
    if disp:
        msg = "Divide-by-zero encountered: rhok assumed large"
       print success message or warn(True, msg)
else:
    rhok = 1. / rhok inv
```

```
A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok
A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok
Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] *
sk[np.newaxis, :])
```

fval = old_fval

if not np.isfinite(old_fval):

```
if not np.isfinite(old_fval):
   # We correctly found +-Inf as optimal value, or something went
   # wrong.
    warnflag = 2
    break
rhok_inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
```

if disp: msg = "Divide-by-zero encountered: rhok assumed large" _print_success_message_or_warn(True, msg)

else: Calculate H_{k+1}

A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * sk[np.newaxis, :])

fval = old fval

rhok = 1. / rhok_inv

```
if not np.isfinite(old_fval):
    # We correctly found +-Inf as optimal value, or something went
    # wrong.
    warnflag = 2
    break
rhok inv = np.dot(yk, sk)
# this was handled in numeric, let it remains for more safety
# Cryptic comment above is preserved for posterity. Future reader:
# consider change to condition below proposed in gh-1261/gh-17345.
if rhok inv == 0.:
    rhok = 1000.0
    if disp:
        msg = "Divide-by-zero encountered: rhok assumed large"
        _print_success_message_or_warn(True, msg)
else:
    rhok = 1. / rhok_inv
A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok
A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok
Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] *
                                         sk[np.newaxis, :])
```

fval = old_fval

End of iteration *k*

Choosing CG or Quasi-Newton Methods

- CG is a good choice when memory is constrained or N is large enough for quasi-Newton methods' O(N²) memory usage to be an issue.
- CG is a good choice when a good guess for the starting point is available.
- CG is a good choice when the numerical errors and other edge cases are not a concern.

- Quasi-Newton methods are a good choice in compute-abundant scenarios.
- Quasi-Newton methods are a good choice when the starting point may be far away from the minimum.
- Quasi-Newton methods are a good choice when many iterations are acceptable.
- Quasi-Newton methods are a good choice when the minimization technique must be robust.

Thanks!

Joshua Sheldon jsheldon2022@my.fit.edu

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and content by **Swetha Tandri**