weeks Reall for a positive integer modulus r.
Le here the two groups -2n=20,1,2,...,n-1 $(M_n, +)$ $U(n) = \{ x \in \mathbb{Z}_n : \gcd(x,n) = 1 \}$ \bullet (U(N), X) reeded in order for x' modulo n to exist. We've seen how if we take an element get from a group we can form $\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}$ the cyclic subscroup of G generated The size of < g> is known as of <g>, or simply the order

He order, 191, of the element ic. 191 = least possitive integer kIf k finite such that $g^k = e$. $(4) = 2g^2 = 2g$ For the groups U(n), what can |n| be, for $x \in U(n)$? Fg 7=13, U(13)={xe7/13: g cd (a, 13)=1 $= \{1, 2, \ldots, 12\}$ So (U(13) = 12 $\{ |n| : n \in U(13) \} = \{ 1, 2, 3, 4, 6, 17 \}$ 3 ml; re u(17) {= {1, 2, 4, 8, 16}} 2 ln/2 ne u(31) ξ= ξ1,2,3,5,6,10,15,30}

We seem to be seeing all The
fectors of p-1 in each case.
or in other words. The sizes of cyclic
subgroups in U(p), seem to be factors
$\int P^{-1}, P^{-1} = \mathcal{U}(P) $
What about non-primes.
[1((100)) = 40, orders of elements
(U(100))=40, orders of elements inu(100)=51,2,4,5,
again, all are fautors of 14(100)
but not all the factors.
U(500) =200, orders={1,2,4,5,
(0, 0, 0, 0, 0)
Could we conjecture. For any $g \in G$, if $ G $ is finite
for any get, if lat is fruite
Hen 9 = <9> divides G .

LP

in fact something shonepristme. Lagrangers Thorem_ Tif (G) finite, and His a subgroup of G, then III divides There's a special name for (U(n)). The Euler totient function $\phi(n)$ is defined as $\phi(n) = |U(n)| = number of integers$ m, 1 ≤ m ≤ n, such their g cd (m, n) = 1. We've teen $\phi(P) = P - 1$ $\phi(100) = 40, \phi(500) = 200,$ $\phi(n) = ?$ - m general. Fort What B

First we'll prove a couple of Special cases of Lagrange's. Theorem. in muhar theory. Fernant's Little Theorem & prime. For any $a \in U(p) = \{1, ..., p-1\}$ (or g(d(a,p)=1) or p(a)) $a^{p-1} \equiv 1 \pmod{p}$ Proof

Proof

[Carl=1a] dirides p-) Consider the product II j 7-1 The first same product in a and then this same product in a different order.

For non-prime modulus +, L, 1.
generalises to
Euleris theorem
For any a & U(n),
$a^{\phi(n)} \equiv 1 \pmod{n}$.
Proof Ropeat the same argument
for F. L.T. but with
jeu(n) j in place of (p-1)!
and remember that $\phi(n) = u(n) $.
and remains of
One application of this is to
One application of this 75 to simplifying large powers in U(n).
XM = ? (mod n), for M very large.
very large.

If we find find M = m modo(n) 1e. $M = 9 \phi(n) + m$, $0 \leq m \leq \phi(n)$ (M) $(q\phi(n)+m)$ $= (\chi \phi(n))^{q} \chi^{m}$ = 1 2 m (mod n) = (mod n) Gruh eaner Computationally See Qr. on CWK. Short break _ discover a formula for $\phi(N)$.

Apology: in NT notes U(n) in wither as Zn

Thomem 5.1 Formula for $\phi(n)$. Pi district prime factors ai are le exponents. then $\phi(n) = \frac{r}{1-r} \left(\frac{a_{i-1}}{r} \left(\frac{p_{i-1}}{r} \right) \right)$ we saw $\phi(100) = 40$ verify $\phi(100) = \phi(2.5^2)$ $= 2^{1}(2-1)5^{1}(5-1)$ = 40 / $\phi(500) = \phi(2.5^3)$ $=2^{1}(2-1)\cdot5^{2}\cdot(5-1)=200$, as we saw in Sage eather Approach of Th. 5.1 was but by but. We've seen enough to say that for p mine. Hus is an ignstone of the ferminator the special case of n=P $\phi(p) = p-1$

Lemma 5.2 For a prime p and Oxponent a>1 $\phi(p^a)=p^{a-1}(p-1).$ Proof: Counter all the integers. 1,2,3,..., P-1, P (\mathcal{X}) $\phi(p^a) = number here that are coprime to pa.$ het's count the ones that are not Lopnine to pa. Let 1 ≤ n ≤ p° and counter $gcd(x, p^a) \neq 1$. How does this happen? The factors of pa are 1,7,7,7,7,000 $gcd(x,p^a) \neq 1 \implies p \mid x$. So in (X) how many x are there that are multiples of P? These are a-1 P, 2P, 3p, 4p,, P. P

This is a list of Pa-1 integers. So the number of x that are comme to par must be. $\phi(P^a) = P^a - P^a$ $= \mathbb{P}^{\alpha-1}(\mathbb{P}^{-1})$ Next few lemmas mill establish Heat of is a multiplicative function. (in NT). $\frac{1}{2} \cdot \gcd(a,b) = 1 \Rightarrow \varphi(ab) = \varphi(a)\varphi(b)$ without the god condition the property."
Is called "completely multiplicative" Assuming this for the moment.

We can prove this. I.

Pf: Let N= The Pi

then
$$\phi(n) = \phi(\prod_{i=1}^{n} P_{i}^{i})$$
 $= \prod_{i=1}^{n} \phi(P_{i}^{i})$
 $= \prod_{i=1}^{n} \phi(P_{i}^{i})$
 $= \prod_{i=1}^{n} \phi(P_{i}^{i}) = 1$
 $= \prod_{i=1}^{n} p_{i}^{i} (P_{i}^{i-1})$
 $= \prod_{i=1}^{n} p_{i}^{i} (P_{i}^{i-1})$
 $= \prod_{i=1}^{n} p_{i}^{i} (P_{i}^{i-1})$

by lemma 5.2.

Tomorow well prove ϕ is multipliable.

Let's try rome more examples.

Let's try some more examples. eg. N = 23 456. = 25.733

$$50 \phi (23456) = 2^{4}(2-1) \cdot 733^{\circ} \cdot (733-1)$$

$$= 2^{4} \cdot 732$$

