```
In [1]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [3]: #To Load the dataset
         adv = pd.read_csv(r"C:\Users\user\Downloads\advertising.csv")
         adv
Out[3]:
                     Radio Newspaper Sales
                TV
           0 230.1
                       37.8
                                   69.2
                                         22.1
               44.5
                       39.3
                                   45.1
                                         10.4
               17.2
                      45.9
                                   69.3
                                         12.0
           3 151.5
                       41.3
                                   58.5
                                         16.5
           4 180.8
                       10.8
                                   58.4
                                         17.9
         195
               38.2
                        3.7
                                   13.8
                                          7.6
         196
               94.2
                        4.9
                                    8.1
                                          14.0
         197 177.0
                       9.3
                                    6.4
                                         14.8
         198 283.6
                       42.0
                                   66.2
                                         25.5
         199 232.1
                                    8.7
                                         18.4
                        8.6
        200 rows × 4 columns
In [9]: #To view the first few rows of the dataset
         adv.head()
```

```
Out[9]:
               TV Radio Newspaper Sales
         0 230.1
                     37.8
                                         22.1
                                  69.2
              44.5
                                  45.1
                                         10.4
                     39.3
              17.2
                                         12.0
                     45.9
                                  69.3
         3 151.5
                     41.3
                                  58.5
                                         16.5
         4 180.8
                     10.8
                                  58.4
                                         17.9
```

```
In [15]: #To get columns names
adv.columns
```

Out[15]: Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')

```
In [17]: #To get shape of dataset
         adv.shape
Out[17]: (200, 4)
In [19]: #To get information of the dataset
         adv.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 200 entries, 0 to 199
       Data columns (total 4 columns):
        # Column Non-Null Count Dtype
        --- -----
                     -----
                    200 non-null float64
200 non-null float64
        0 TV
        1 Radio
        2 Newspaper 200 non-null float64
        3 Sales
                     200 non-null float64
       dtypes: float64(4)
       memory usage: 6.4 KB
In [23]: #To check missing values
         adv.isnull().sum()
Out[23]: TV
                     0
         Radio
                     0
         Newspaper
                     0
         Sales
         dtype: int64
In [27]: #To check datatypes
         adv.dtypes
Out[27]: TV
                     float64
                     float64
         Radio
                     float64
         Newspaper
         Sales
                     float64
         dtype: object
In [29]: #To check unique values in each columns
         for i in adv.columns:
            print(i,':','\n',adv[i].unique(),'\n')
```

TV:

[230.1 44.5 17.2 151.5 180.8 8.7 57.5 120.2 8.6 199.8 66.1 214.7 23.8 97.5 204.1 195.4 67.8 281.4 69.2 147.3 218.4 237.4 13.2 228.3 62.3 262.9 142.9 240.1 248.8 70.6 292.9 112.9 97.2 265.6 95.7 290.7 266.9 74.7 43.1 228. 202.5 177. 293.6 206.9 25.1 175.1 89.7 239.9 227.2 66.9 100.4 216.4 182.6 262.7 198.9 7.3 136.2 210.8 210.7 53.5 261.3 239.3 102.7 131.1 69. 31.5 139.3 216.8 199.1 109.8 26.8 129.4 213.4 16.9 27.5 120.5 5.4 116. 76.4 239.8 75.3 68.4 213.5 193.2 76.3 110.7 88.3 134.3 28.6 217.7 250.9 107.4 163.3 197.6 184.9 289.7 135.2 222.4 296.4 280.2 187.9 238.2 137.9 25. 90.4 13.1 255.4 225.8 241.7 175.7 209.6 78.2 75.1 139.2 125.7 19.4 141.3 18.8 224. 123.1 7.8 80.2 220.3 59.6 0.7 265.2 8.4 219.8 36.9 48.3 229.5 87.2 25.6 273.7 43. 73.4 193.7 220.5 104.6 96.2 140.3 243.2 38. 280.7 121. 171.3 187.8 4.1 93.9 149.8 11.7 131.7 172.5 85.7 188.4 163.5 117.2 234.5 17.9 206.8 215.4 284.3 50. 164.5 19.6 168.4 276.9 248.4 170.2 276.7 165.6 156.6 218.5 56.2 287.6 253.8 205. 139.5 191.1 286. 18.7 39.5 75.5 166.8 149.7 38.2 94.2 283.6 232.1]

Radio :

[37.8 39.3 45.9 41.3 10.8 48.9 32.8 19.6 2.1 2.6 5.8 24. 35.1 7.6 32.9 47.7 36.6 39.6 20.5 23.9 27.7 5.1 15.9 16.9 12.6 3.5 29.3 16.7 27.1 16. 28.3 17.4 1.5 20. 1.4 4.1 43.8 49.4 26.7 37.7 22.3 33.4 8.4 25.7 22.5 9.9 41.5 15.8 11.7 3.1 9.6 41.7 46.2 28.8 28.1 19.2 49.6 29.5 2. 42.7 15.5 29.6 42.8 9.3 24.6 14.5 27.5 43.9 30.6 14.3 33. 5.7 43.7 1.6 28.5 29.9 7.7 20.3 44.5 43. 18.4 40.6 25.5 47.8 4.9 33.5 36.5 14. 31.6 21. 42.3 4.3 36.3 10.1 17.2 34.3 46.4 11. 0.3 0.4 26.9 8.2 38. 15.4 20.6 46.8 35. 0.8 36.9 26.8 21.7 2.4 34.6 32.3 11.8 38.9 0. 49. 12. 2.9 27.2 38.6 47. 39. 28.9 25.9 17. 35.4 33.2 14.8 1.9 7.3 40.3 25.8 13.9 23.3 39.7 21.1 11.6 43.5 1.3 18.1 35.8 36.8 14.7 3.4 37.6 5.2 23.6 10.6 20.9 20.1 7.1 30.2 7.8 2.3 10. 5.4 21.3 45.1 28.7 12.1 41.1 42. 35.6 3.7 8.6]

Newspaper :

[69.2 45.1 69.3 58.5 58.4 75. 23.5 11.6 1. 21.2 24.2 65.9 7.2 46. 52.9 114. 55.8 18.3 19.1 53.4 49.6 26.2 19.5 8.5 12.6 22.9 40.8 43.2 38.6 30. 0.3 7.4 5. 45.7 35.1 1.8 26.4 43.3 31.5 35.7 18.5 49.9 36.8 34.6 32. 31.6 38.7 3.6 39.6 58.7 15.9 60. 41.4 16.6 37.7 9.3 21.4 54.7 27.3 8.4 28.9 2.2 10.2 11. 27.2 31.7 19.3 31.3 13.1 89.4 0.9 20.7 14.2 9.4 23.1 22.3 36.9 32.5 35.6 33.8 65.7 16. 73.4 51.4 33. 59. 72.3 10.9 5.9 22. 51.2 45.9 49.8 100.9 17.9 5.3 29.7 23.2 25.6 5.5 56.5 2.4 10.7 34.5 52.7 14.8 79.2 46.2 50.4 15.6 12.4 74.2 25.9 50.6 9.2 3.2 43.1 2.1 65.6 59.7 20.5 1.7 12.9 75.6 37.9 34.4 38.9 43. 9. 44.3 11.9 20.6 37. 48.7 9.5 5.7 50.5 24.3 45.2 30.7 49.3 5.4 84.8 21.6 19.4 57.6 6.4 18.4 47.4 17. 12.8 41.8 20.3 35.2 23.7 17.6 8.3 27.4 71.8 19.6 26.6 18.2 3.7 23.4 5.8 6. 13.8 8.1 66.2]

Sales :

[22.1 10.4 12. 16.5 17.9 7.2 11.8 13.2 4.8 15.6 12.6 17.4 9.2 13.7 19. 22.4 12.5 24.4 11.3 14.6 18. 17.5 5.6 20.5 9.7 17. 15. 20.9 18.9 10.5 21.4 11.9 17.8 25.4 14.7 10.1 21.5 16.6 17.1 20.7 8.5 16.1 10.6 23.2 19.8 16.4 10.7 22.6 21.2 20.2 23.7 5.5 23.8 18.4 8.1 24.2 14. 16. 11. 13.4 22.3 18.3 12.4 8.8 8.7 6.9 14.2 5.3 17.3 13.6 21.7 12.9 16.7 7.3 19.4 22.2 11.5 16.9 17.2 19.7 21.8 12.2 9.4 15.9

6.6 15.5 7. 15.2 24.7 1.6 17.7 5.7 19.6 10.8 11.6 9.5 20.8 9.6 10.9 19.2 20.1 12.3 10.3 18.2 20.6 3.2 15.3 13.3 19.9 8. 20. 8.4 7.6 27. 16.8 17.6 26.2 6.7 5.9 14.8 25.5]

21.778621

25.750000

5.283892

16.000000

In [31]: #To get statistical summary of the numerical columns
adv.describe()

Out[31]:		TV	Radio	Newspaper	Sales
	count	200.000000	200.000000	200.000000	200.000000
	mean	147.042500	23.264000	30.554000	15.130500

std

85.854236

50% 149.750000

min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000

14.846809

22.900000

75% 218.825000 36.525000 45.100000 19.050000 **max** 296.400000 49.600000 114.000000 27.000000

In [33]: adv.describe().T

Out[33]: std min 25% 50% **75%** max count mean 200.0 147.0425 85.854236 0.7 74.375 149.75 218.825 296.4 TV 200.0 23.2640 14.846809 0.0 9.975 22.90 36.525 **Radio** 49.6

 Newspaper
 200.0
 30.5540
 21.778621
 0.3
 12.750
 25.75
 45.100
 114.0

 Sales
 200.0
 15.1305
 5.283892
 1.6
 11.000
 16.00
 19.050
 27.0

Data Visualization

In [36]: # Scatter plots to check the linearity assumption between each independent variable
 sns.scatterplot(x=adv.TV,y=adv.Sales)
 plt.show()

In [38]: sns.scatterplot(x=adv.Radio,y=adv.Sales)
plt.show()


```
In [40]: sns.scatterplot(x=adv.Newspaper,y=adv.Sales)
   plt.show()
```


In [44]: sns.pairplot(adv, x_vars=["TV", "Radio", "Newspaper"], y_vars="Sales", kind="reg")

Out[44]: <seaborn.axisgrid.PairGrid at 0x15fa75b90d0>

In [46]: # Histograms to check the normality assumption of the dependent variable (Sales)
adv.hist(bins=20)

In [48]: sns.kdeplot(data=adv)
plt.show()

In [52]: sns.pairplot(adv)
 plt.show()

In [54]: sns.pairplot(adv,hue='Sales')
 plt.show()

In [60]: # Linear regression plots to visualize the relationship between each independent va
sns.lmplot(x='TV', y='Sales', data=adv)
sns.lmplot(x='Radio', y='Sales', data=adv)
sns.lmplot(x='Newspaper',y= 'Sales', data=adv)

Out[60]: <seaborn.axisgrid.FacetGrid at 0x15fab402350>

In [56]: c = adv.corr()
c

Out	5	6]	:	

	TV	Radio	Newspaper	Sales
TV	1.000000	0.054809	0.056648	0.901208
Radio	0.054809	1.000000	0.354104	0.349631
Newspaper	0.056648	0.354104	1.000000	0.157960
Sales	0.901208	0.349631	0.157960	1.000000

```
In [58]: sns.heatmap(c,annot=True)
   plt.show()
```


In [62]: #ip op creation

ip = adv.drop('Sales',axis=1)

op = adv.Sales

In [64]: ip.head()

Out[64]:

	TV	Radio	Newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4

In [66]: op.head()

Out[66]: 0 22.1

1 10.4

2 12.0

3 16.5

4 17.9

Name: Sales, dtype: float64

```
from sklearn.model_selection import train_test_split
          x_train, x_test, y_train, y_test = train_test_split(ip,op,test_size=0.2,random_stat
In [70]: x_train
Out[70]:
                 TV Radio Newspaper
          156
                93.9
                       43.5
                                   50.5
          115
                75.1
                       35.0
                                   52.7
          155
                                    5.7
                 4.1
                       11.6
           15 195.4
                       47.7
                                   52.9
           61 261.3
                       42.7
                                   54.7
            0 230.1
                       37.8
                                   69.2
          184 253.8
                       21.3
                                   30.0
          131 265.2
                       2.9
                                   43.0
          152 197.6
                                   14.2
                       23.3
          106
               25.0
                       11.0
                                   29.7
         160 rows × 3 columns
In [72]: print(x_train.shape)
          print(y_train.shape)
          print(x_test.shape)
          print(y_test.shape)
        (160, 3)
        (160,)
        (40, 3)
        (40,)
In [74]: #Standard Scaler Transform
         from sklearn.preprocessing import StandardScaler
          sc = StandardScaler()
          x_train = sc.fit_transform(x_train)
          x_test = sc.fit_transform(x_test)
In [76]: x_train
```

In [68]: #Train Test Split

```
Out[76]: array([[-0.62579748, 1.39757261, 0.91683005],
                [-0.83959224, 0.81633695, 1.01775389],
                [-1.64700866, -0.78377065, -1.13834642],
                [ 0.52846684, 1.68477142, 1.02692879],
                [ 1.27788574, 1.34286808, 1.10950284],
                [ 1.45528991, 1.76682822, 0.51772212],
                [-0.08676173, 0.25561548, 0.71956981],
                [-1.68567367, 1.13088801, -1.00072299],
                [0.90260768, -0.42135312, -0.19791969],
                [0.25440014, 1.13772608, 0.32963677],
                [-0.40972829, -0.38716279, 0.3709238],
                [0.44317637, -0.40083892, -0.57867783],
                [-0.44498169, 1.69160948, 0.95811707],
                [-1.59810879, 0.28296775, -1.30349452],
                [ 1.21079057, 0.26245355, -1.14752131],
                [-1.60493203, 1.08302155, 0.92141749],
                [ 1.50646419, 1.13088801, 1.15996476],
                [ 1.6372429 , 0.35818648, 0.58194638],
                [1.45301549, -1.41971086, -0.31260587],
                [0.4488624, -0.33929632, -0.22544437],
                [-0.32330062, 0.37186261, -0.74841338],
                [-0.22208927, -1.18721659, 0.03604013],
                [-0.44498169, -0.59914285, 0.05438992],
                [-1.63222498, 0.46759555, -0.96861086],
                [ 1.64520335, 0.31715808, -1.31725687],
                [ 0.80594516, 0.71376595, 0.66910788],
                [-1.49803465, -1.29662566, 0.04980248],
                [-0.58485805, -1.05729332, -1.0695347],
                [1.03679802, -1.07780752, -1.00072299],
                [0.73316396, 0.10517801, -0.7988753],
                [-1.59469717, 1.76682822, 2.04075468],
                [-0.80433885, 1.62322882, 0.18283845],
                [ 1.49281771, -0.88634166, -0.41811716],
                [0.79116147, -1.20773079, -0.14287032],
                [-1.47983935, -0.09312592, 0.9122426],
                [0.75590808, 0.03679735, 1.24253882],
                [0.17707012, -0.14783045, 0.77461918],
                [-0.98515464, -0.71538999, -0.56032804],
                [-0.59964173, -0.56495252, 0.38468614],
                [ 0.78206382, 0.71376595, 1.30676308],
                [-1.59583438, -1.43338699, -1.35395645],
                [ 0.38290444, 1.58220042, 1.29300074],
                [1.03679802, -0.43502925, -0.34930545],
                [-0.12542674, 1.59587655, 1.30676308],
                [-0.2641659, 0.94626021, 2.23342747],
                [0.16569805, 0.93942215, -1.06035981],
                [0.65924555, -1.00258879, -0.18874479],
                [-0.14475924, -0.26407759, -0.63831464],
                [0.97311447, -1.34449212, 2.49032453],
                [-1.54352289, -0.48973379, 0.87554302],
                [0.08723082, -1.39919666, -1.01907278],
                [0.47956697, 0.38553875, -0.56491548],
                [0.26804661, -0.33929632, 0.00851545],
                [-0.43474683, 1.19926868, 1.49943587],
                [-1.27400502, 1.06250735, 1.60953461],
                [-0.52572333, 0.44708135, -1.01448533],
```

```
[-0.85892475, -0.41451505, -0.8080502],
[0.20322586, 1.29500161, -1.23468281],
[-1.14436351, 1.63690495, -1.00989789],
[0.29761398, -0.03842139, 0.04521503],
[ 1.61222436, -1.29662566, -1.00989789],
[-0.90896182, -0.94104619, -1.35854389],
[0.57850391, -1.36500632, 0.1874259],
[-0.70199029, -0.77009452, -0.21168203],
[1.6008523, 1.31551581, 0.94894218],
[-0.9226083, 0.92574601, 3.82985919],
[-0.01852935, 0.05731155, -0.52362846],
[-1.5446601, -1.54963412, -0.22544437],
[-1.40819535, 0.18039675, 0.58653383],
[ 1.00609345, 0.30348195, -0.8952117 ],
[-1.3809024, -1.46757732, -0.4502293],
[ 0.50913433, 0.84368921, 2.06827936],
[0.30443721, -0.52392412, -1.28973218],
[-0.9419408, -1.18037852, -0.28966864],
[0.73430116, 1.36338228, 0.15072632],
[0.74794764, 0.06414961, -1.21633302],
[ 0.56826906, 1.80101855, 1.35263756],
[-0.68948102, 0.16672061, 1.96735552],
[ 1.13118613, 0.48810975, -0.46857909],
[1.05499332, 1.02147895, -0.33554311],
[-1.40250932, 1.08985961, -0.97319831],
[0.57850391, -1.39919666, -0.42729206],
[ 1.41889931, 0.39921488, 1.33887521],
[-0.58826967, -1.47441539, -0.02359668],
[-0.89076652, -0.48289572, 0.47184764],
[ 0.89919607, 1.00096475, 0.06815227],
[0.63763863, 1.50698168, -0.50069122],
[-1.61061806, 0.34451035, 0.49937233],
[-0.10723144, -1.43338699, -0.1795699],
[0.0087636, 0.85736535, -1.12458407],
[-1.36839314, -1.47441539, 0.11402674],
[0.70245939, 0.44024328, -0.97319831],
[ 0.83551252, -1.34449212, -0.7988753 ],
[1.34156928, 1.41808681, -1.17045855],
[0.24189087, -1.04361719, 0.21495059],
[0.76728014, 1.27448741, 0.41679827],
[-0.83504342, -0.83847519, -1.12458407],
[0.89009842, -0.49657185, 0.88930536],
[0.55348537, -1.33765406, -1.12917152],
[-1.50144626, 1.41124875, 2.70134711],
[-0.31761459, -1.00258879, 0.83425599],
[-0.82480856, 0.24877741, -0.37683014],
[-0.15613131, 1.27448741, 0.70580746],
[ 0.91625416, 0.63170915, 2.0040551 ],
[0.44203917, -0.13415432, -0.96402341],
[-0.82480856, -1.52228186, -0.7208887],
[0.5034483, -0.31878212, 1.61412206],
[-1.18757735, 1.11037381, 0.66910788],
[0.68995012, -0.16834465, -0.90897404],
[-0.36082843, -0.57179059, -1.15210876],
[-0.11064306, -0.59914285, -0.22544437],
[-0.90668741, -0.17518272, -0.56032804],
```

```
[-1.25922134, -1.32397792, -0.76676317],
[1.29380662, 0.39237681, -0.67042678],
[ 1.55877567, -0.62649512, -1.23009537],
[1.13573496, 0.27612968, -0.34930545],
[-0.78159473, -1.57698639, -0.97778575],
[-1.48097655, -0.74958032, -0.32636822],
[-0.93284315, -0.77693259, 0.28834974],
[-0.47227464, -0.61965705, -0.89979915],
[0.79002427, 0.31715808, 1.04986602],
[-0.84414107, 1.80101855, 0.69663257],
[-0.3744749, -1.05045526, -0.34013056],
[-0.29373326, 0.78898468, -0.83098744],
[1.3267856, -0.20937305, -1.38606858],
[-0.32671224, -0.23672532, -0.86768702],
[1.02770037, -0.51708605, -0.14745776],
[ 1.53148272, 1.29500161, 1.6370593 ],
[0.94582152, -0.98891266, -1.00072299],
[0.0099008, -1.48809152, -0.28508119],
[0.40906018, -0.14099239, -0.39059248],
[ 0.87417753, -1.01626492, 1.19207689],
[ 1.0151911 , 0.76847048, -1.15669621],
[ 0.77182897, 1.42492488, -0.15204521],
[-0.16636616, -1.24192112, -0.97319831],
[-1.01585921, -0.75641839, 0.57735893],
[-1.08522879, -1.44022506, -0.41811716],
[-1.49803465, 1.56168622, 1.77927017],
[-1.33541416, 0.10517801, -1.29890708],
[ 1.49850374, -0.62649512, 0.29752464],
[1.0333864, -1.29662566, 0.29293719],
[-0.06856643, 0.42656715, -0.82181254],
[0.8139056, 0.69325175, 0.33881167],
[ 0.65810835, -1.22140692, -0.50986611],
[ 1.15961629, 0.91890795, 1.91689359],
[-1.4707417, -0.20253499, -0.61996485],
[-1.26149575, 1.17875448, -0.85392467],
[-1.4900742, 0.99412668, -0.40894227],
[-1.47301611, -0.48289572, -0.37683014],
[-1.18530293, 0.18723481, -0.45481674],
[-1.20463544, 0.19407288, -0.45940419],
[1.53944317, -0.85215132, -1.10623428],
[-0.66559969, -1.55647219, -0.33554311],
[ 1.07205141, 1.77366628, 0.6324083 ],
[1.00609345, -1.22824499, -0.32178077],
[\ 0.9230774\ ,\ 1.00780281,\ 1.77468272],
[ 1.19259527, -0.12047819, -0.02359668],
[ 1.32223678, -1.37868246, 0.57277149],
[0.55348537, 0.01628315, -0.74841338],
[-1.40933256, -0.82479905, -0.03735903]])
```

```
In [78]: #ML Model
#Linear Regression(It finds the linear relationship between dependent and independe
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
```

In [82]: y_test

```
Out[82]: 40
                16.6
         51
                10.7
         139
                20.7
         197
                14.8
         170
                8.4
                11.3
         82
         183
                26.2
         46
                10.6
         70
                18.3
                16.7
         100
         179
                17.6
         83
                13.6
         25
                17.0
         190
                10.8
         159
                12.9
         173
                16.7
         95
                16.9
         3
                16.5
         41
                17.1
         58
                23.8
         14
                19.0
         143
              10.4
         12
                9.2
                11.8
         6
         182
                8.7
         161
                13.3
         128
                24.7
         122
                16.6
         101
                23.8
         86
                12.0
         64
                16.0
         47
                23.2
                7.3
         158
         34
                11.9
         38
                10.1
         196
                14.0
                17.9
         4
         72
                 8.8
                13.4
         67
         145
                10.3
         Name: Sales, dtype: float64
In [84]: #Accuracy
         from sklearn.metrics import mean_squared_error,r2_score
         mse = mean_squared_error(pred,y_test)
         r2 = r2_score(pred,y_test)
         print('MSE :',mse)
         print('R2 Score :',r2)
        MSE: 2.3082104039612523
        R2 Score: 0.9115405118554368
In [86]: #Linear model plot
         df = pd.DataFrame({'Y_Test':list(y_test), 'Prediction':pred})
```

Out[86]:		Y_Test	Prediction
	0	16.6	18.988305
	1	10.7	11.161901
	2	20.7	19.843949
	3	14.8	15.997466
	4	8.4	8.228671
	5	11.3	10.739755
	6	26.2	26.569717
	7	10.6	10.654065
	8	18.3	19.611670
	9	16.7	18.577329
	10	17.6	15.392533
	11	13.6	12.670957
	12	17.0	20.932186
	13	10.8	10.378656
	14	12.9	14.136932
	15	16.7	15.266679
	16	16.9	17.503390
	17	16.5	17.724273
	18	17.1	18.484119
	19	23.8	22.197195
	20	19.0	20.184225
	21	10.4	11.183583
	22	9.2	9.063892
	23	11.8	10.788955
	24	8.7	8.096914
	25	13.3	12.980446
	26	24.7	22.589296
	27	16.6	18.343802
	28	23.8	26.602898
	29	12.0	11.431304

	Y_Test	Prediction
30	16.0	16.448089
31	23.2	23.168266
32	7.3	8.381726
33	11.9	10.082956
34	10.1	9.334079
35	14.0	10.331561
36	17.9	16.612227
37	8.8	8.845203
38	13.4	14.131876
39	10.3	12.963956

In []: