TAC 2010 - Update Summarization applying Interview Algorithm

Ka.Shrinivaasan Chennai Mathematical Institute shrinivas@cmi.ac.in

Motivation

- Is prestige based ranking perfect?
- Are there alternatives?
- Two judging traditions majority voting and interactive – which is right? Subjective or objective?
- Can a document be analyzed independently to get its quality?

Three Algorithms ...

- Citation Graph Maxflow and Path Lengths (uses Recursive gloss overlap for sentiment analysis - finding polarity)
- Definition Graph Convergence (or)
 Generalized Recursive Gloss Overlap
- Interview algorithm applies either of above
- Application to Update summarization

Part I - Directed Graph of Citations

- •Merit = influence on future documents = citations
- Construct a directed graph of citations
- •Weight of an edge (u,v) = No. Of citations of u by v (is this only way to weight?)
- Polarity of (u,v) = Sentiment Analysis of Citation
 Context Positive or Negative
- Number of nodes in all paths of fixed length from source s is a measure of merit (might mislead)

Citation digraph - How it looks

Mincut/Maxflow of Citation DiGraph

- Get Maxflow from Ford-Fulkerson algorithm with each distinct vertex pair as (source, sink) –
 Capacity of the edge = weight of the edge
- Mincut of citation graph carries Maximum Flow of the concept from source document s - "most influenced by the source document s"
- Average Maxflow out of a source s, is thus a measure of merit of s (= $(\sum mxf(s,t)) / (|V|-1))$

Part II – Definition Graphs

- "Fruit"
- Evocative What do we get reminded of after reading the above? (plant, tree, sweet, taste, food, juice, result ...?)
- Evocation WordNet

Human thought process and Definition Graphs

- Humans scan through the natural language text
- Relate the keywords motivation behind WordNet
- What distinguishes the merit of 2 documents X and Y? Grammatical correctness? *No.* Both X and Y written equally grammatically. Content and Complexity? *Yes.* How to measure?

Recursive Understanding - An Example

- Document: "Car race ends with flag waving"
- •What is "Car"? Car is an automobile
 - What is "automobile"? Fuel driven Machine
 - What is "Fuel"? Petroleum ...
- •What is "race"? Race is ethnic group; contest
 - What is "contest"? Game
 - What is "Game" ? Play ...
- •What is "end"? ...
- •What is "flag"? ...
- •What is "waving"? ...

Definition Graph Convergence (or) Generalized Recursive Gloss Overlap

- <u>Meaningfulness:</u> "Meaningful" text has its keywords' Synsets within threshold WordNet distance (e.g Jiang-Conrath)
- WordNet relates words by relations "is-a", "has-a" etc., SYNonymous SETs
- Map a document to a subgraph of WordNet
 (Definition Trees/Graphs): F(Document) = G(V,E)

Definition tree and Definition graph

- •DefinitionTree(keyword) =
 DefinitionTree(gkeyword1)
 DefinitionTree(gkeyword2)DefinitionTree(gkeyword3) ... DefinitionTree(gkeywordn) where
 gkeyword1 through gkeywordn are in the
 gloss(keyword)
- N subtrees obtained above overlap to form a graph

Definition Tree and Graph - example

Properties of definition graph

- Definition graph is multipartite
- Difference in number of vertices in definition tree and definition graph = convergence factor
- Convergence factor is due to gloss overlap indicator of relatedness
- Relatedness differentiates 2 documents
- We do not consider grammatical structure

Properties of Definition Graph(contd...)

- Multipartiteness vertices are partitioned into sets; edges only amongst the sets – useful for preserving recursion level and multipartite-cliques
- Degrees of vertices can be thought of as "votes" for a "theme" keyword – unsupervised text classifier
- Context-sensitiveness still present Word Sense
 Disambiguation is done during graph construction

Definition Multipartite Graph Visualised

Recursive Gloss Overlap algorithm

- 1) Get the document as input
- 2) keywordsatthislevel = {keywords from the document through tf-idf filter (implementation uses 0.02)}
- 3) While (current_level < depth_required) {
 - For each keyword from keywordsatthislevel lookup the best matching definition(WSD) for the keyword and add to a set of tokens in next level

Recursive Gloss Overlap algorithm(contd...)

- Remove common tokens (isomorphic nodes) with previous levels - an optimization
- Update the number of vertices(unique tokens), edges((x,y)='y is in definition of x') and relatedness (linear overlap or quadratic overlap)
- Update keywordsatthislevel

Recursive Gloss Overlap algorithm(contd...)

} //end while

5) Output the Intrinsic merit score = |vertices|*| edges|*|relatedness| / first_convergence_level

Where

a) Relatedness = **number of overlaps** (linear, also called as convergence factor) (or)

Relatedness = number of overlapping parents * number of overlaps**2 (quadratic)

b) First_convergence_level = level of first gloss overlap

Snapshot of Definition graph

Optimization to handle already grasped tokens

Intuition behind the intrinsic merit score

- vertices ~ knowledge represented by document
- edges ~ relationship among keywords (relation:
 'x is in definition of y')
- relatedness ~ complexity quantified by overlap
- first_convergence_level ~ Mingling of definition subtrees
- Above suffice to quantify "meaningfulness" defined earlier (proportional to V*E*R/f)

Comparing two documents for merit

Document1 has less overlap

first convergence level = 5

Example: Car plies on sky

Document2 has more overlap

first convergence level = 2

Example: Cars and buses ply on road

BFS/DFS of definition graph

- Visiting all nodes of definition graph O(V+E)
- But this does not take into account the relatedness
- •Worst case size of definition graph is $O(x \Box d)$ (where x is the average size of a keyword definition and d is the depth)
- For a meaningful document, overlaps bring down this to great extent – no exponential blowup- O(V)

Pros and Cons

- No False negatives, False positives exist
- Other ranking schemes can be derived from definition graph – based on graph connectedness, completeness etc.,
- Definition graph relies on relatedness of words instead of hyperlink graph – one more layer of abstraction – all documents now become projected subgraphs of larger universal semantic graph (e.g WordNet)

Running time of Recursive Gloss Overlap Algorithm

Worst case running time of Recursive gloss overlap is $O(E*(V^2))$ where V is the number of vertices and E the edges of graph

This is sum total of the running times for gloss lookups, merging duplicate vertices and isomorphic nodes removal.

Application of Recursive gloss overlap to sentiment analysis

- Needed SentiWordNet gloss with quantified positivity/negativity score for a keyword
- •Example: "That movie was fantastic. Graphics was awesome"
- •Def Graph level 1: {movie: motion picture; +0.1, fantastic: great; +0.7, graphics: software technique; +0.05, awesome: great; +0.7}
- Polarity of Overlap {great} with positivity score+0.7

Parallelizability of Recursive Gloss Overlap

- Def Graph construction parallelizable set of tokens of each level broken into subsets
- Assign each subset to a processor (Map)
- Get the results of gloss lookup for subsets and merge them (Reduce)
- •To do Apply MapReduce framework to Recursive Gloss Overlap – E.g Needs a Hadoop cluster

Part III – Interview Algorithm

- Reference "interviews" the candidate both are documents
- Candidate is inducted into reference if the interview score is above threshold
- Interview is less invasive compared to definition graph construction
- Tree/Graph of interviews can be built (transitive)
 e.g x interviews (y,z), y interviews w, z interviews

Interview Algorithm (contd...)

- Intrinsic merit of candidate measured by either a)
 Citation Digraph or b) Recursive gloss overlap algorithms
- Interview a) supervised (reference Q&A available) or b) unsupervised (reference Q&A are computed from reference 'Q's are keywords / 'A's are contexts)
- •Interview is the set of tuples = {t(1), t(2), ...,t(n)} t(i) = (question,answer,expected_answer,score)

Interview Algorithm (contd...)

- •Total interview score = \sum (t(i).score) (where t(i).score = |shingles(answer) \cap shingles(expected_answer)| / |shingles(answer) U shingles(expected_answer)|
- Value addition = edit distance of DefGraph(Reference) and DefGraph(Candidate) (where EditDistance(G,H) = |edges added| + |edges removed| to transform G into H)
- Final score = w1 * intrinsic_merit + w2 * interview_Q&A_score + w3 * value_addition, where w1,w2 and w3 are weights

Application of Interview Algorithm to TAC 2010 Update summarization

- Split each dataset into candidate and reference
- •Go through the Interview algorithm and get scores for candidates (for intrinsic merit, recursive gloss overlap was used)
- •Choose the best candidate and update the summary after sentence scoring (sentence score = sum of tf-idf values of constituent terms)

 [NOTE: Only 25 (out of 92) datasets were tried due to hardware issue]