Лекция 4: Model-Free Reinforcement Learning

Антон Романович Плаксин

Пример: Frozen Lake

Frozen Lake World (OpenAl GYM)

Пример: Atari Games

- Состояния: пиксели с экрана
- Действия: \rightarrow , \leftarrow , «0»
- Награда: очки в игре

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = \mathbf{1}$$

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = \mathbf{1}$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- S конечное (|S| = n) пространство состояний
- ullet $\mathcal{A}-$ конечное $(|\mathcal{A}|=m)$ пространство действий
- \mathcal{P} неизвестная функция (тензор) вероятностей переходов между состояниями

$$\mathcal{P}(s'|s, a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

ullet \mathcal{R} — неизвестная функция (матрица) вознаграждений

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t|S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ — коэффициент дисконтирования

Model-Free Algorithms

- Monte-Carlo Algorithm
- SARSA Algorithm
- Q-Learning Algorithm

Policy Iteration

Пусть инициализирована π^0 и заданы числа $L,K\in\mathbb{N}.$ Для каждого $k\in\overline{0,K}$ делаем

• (Policy evaluation) Iterative Policy Evaluation:

$$v^{l+1}(s) = \sum_{a} \pi(a|s) \Big(\mathcal{R}(s,a) + \gamma \sum_{s'} \mathcal{P}(s'|s,a) v^l(s') \Big), \ l \in \overline{0,L-1}.$$

Получаем $v^L \approx v_{\pi^k}$. По $v^L(s)$ построить $q^L(s,a) \approx q_{\pi^k}$.

• (Policy improvement) Greedy Policy Improvement:

$$\pi^{k+1}(a|s) = \left\{ \begin{array}{l} 1, \text{ если } a \in \operatorname{argmax}_{a' \in \mathcal{A}} q^L(s,a') \\ 0, \text{ иначе} \end{array} \right.$$

Policy Iteration

Пусть инициализирована π^0 и заданы числа $L,K\in\mathbb{N}.$ Для каждого $k\in\overline{0,K}$ делаем

• (Policy evaluation) Iterative Policy Evaluation:

$$v^{l+1}(s) = \sum_{a} \pi(a|s) \left(\mathcal{R}(s,a) + \gamma \sum_{s'} \mathcal{P}(s'|s,a) v^{l}(s') \right), \ l \in \overline{0,L-1}.$$

Получаем $v^L \approx v_{\pi^k}$. По $v^L(s)$ построить $q^L(s,a) \approx q_{\pi^k}$.

• (Policy improvement) Greedy Policy Improvement:

$$\pi^{k+1}(a|s) = \left\{ egin{array}{l} 1, \ \mathrm{если} \ a \in \mathrm{argmax}_{a' \in \mathcal{A}} \ q^L(s,a') \\ 0, \ \mathrm{иначe} \end{array} \right.$$

$$q^L(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) v^L(s')$$

• Мы задаем $\pi(s)$,

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0=\pi(S_0)$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0=\pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- lacktriangle совершает действие $A_1 = \pi(S_1)$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- ullet совершает действие $A_1 = \pi(S_1)$
- ...

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- совершает действие $A_{T-2} = \pi(S_{T-2}),$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- совершает действие $A_{T-2} = \pi(S_{T-2}),$
- получает награду R_{T-2} и переходит в следующее состояние S_{T-1}

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- совершает действие $A_{T-2} = \pi(S_{T-2})$,
- \bullet получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- совершает действие $A_{T-1} = \pi(S_{T-1}),$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- совершает действие $A_{T-2} = \pi(S_{T-2})$,
- получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- совершает действие $A_{T-1} = \pi(S_{T-1}),$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- совершает действие $A_{T-2} = \pi(S_{T-2}),$
- получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- совершает действие $A_{T-1} = \pi(S_{T-1}),$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ..
- совершает действие $A_{T-2} = \pi(S_{T-2}),$
- ullet получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- совершает действие $A_{T-1} = \pi(S_{T-1}),$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = ????$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- совершает действие $A_{T-2} = \pi(S_{T-2})$,
- ullet получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- совершает действие $A_{T-1} = \pi(S_{T-1}),$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G(\tau)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ..
- совершает действие $A_{T-2} = \pi(S_{T-2}),$
- ullet получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- совершает действие $A_{T-1} = \pi(S_{T-1}),$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G(\tau)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ..
- совершает действие $A_{T-2} = \pi(S_{T-2}),$
- ullet получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- ullet совершает действие $A_{T-1} = \pi(S_{T-1}), \quad q_{\pi}(S_{T-1}, A_{T-1}) = ????$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G(\tau)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ..
- совершает действие $A_{T-2} = \pi(S_{T-2}),$
- получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- ullet совершает действие $A_{T-1} = \pi(S_{T-1}), \quad q_{\pi}(S_{T-1}, A_{T-1}) = R_{T-1}$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G(\tau)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- \bullet совершает действие $A_{T-2} = \pi(S_{T-2}), \quad q_{\pi}(S_{T-2}, A_{T-2}) = ????$
- получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- ullet совершает действие $A_{T-1}=\pi(S_{T-1}), \quad q_{\pi}(S_{T-1},A_{T-1})=R_{T-1}$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G(au)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- ullet совершает действие $A_{T-2} = \pi(S_{T-2}), \ q_{\pi}(S_{T-2}, A_{T-2}) = R_{T-2} + \gamma R_{T-1}$
- ullet получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- ullet совершает действие $A_{T-1}=\pi(S_{T-1}), \quad q_{\pi}(S_{T-1},A_{T-1})=R_{T-1}$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T
- $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t,$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G(\tau)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 = \pi(S_1)$
- ...
- ullet совершает действие $A_{T-2} = \pi(S_{T-2}), \ q_{\pi}(S_{T-2}, A_{T-2}) = R_{T-2} + \gamma R_{T-1}$
- ullet получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- ullet совершает действие $A_{T-1} = \pi(S_{T-1}), \quad q_{\pi}(S_{T-1}, A_{T-1}) = R_{T-1}$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- Мы задаем $\pi(s)$,
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G_0$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- ullet совершает действие $A_1 = \pi(S_1)$ $q_{\pi}(S_1, A_1) = G_1$
- ...
- ullet совершает действие $A_{T-2}=\pi(S_{T-2}), \qquad q_{\pi}(S_{T-2},A_{T-2})=G_{T-2}$
- получает награду R_{T-2} и переходит в следующее состояние S_{T-1}
- ullet совершает действие $A_{T-1}=\pi(S_{T-1}), \qquad q_{\pi}(S_{T-1},A_{T-1})=G_{T-1}$
- \bullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- \bullet Мы задаем $\pi(a|s).$ Инициализируем W(s,a)=0 и N(s,a)=0
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 \sim \pi(\cdot|S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- ullet совершает действие $A_1 \sim \pi(\cdot|S_1)$
- ..
- совершает действие $A_{T-1} \sim \pi(\cdot|S_{T-1})$,
- ullet получает награду R_{T-1} и переходит в терминальное состояние S_T
- $\bullet \ \tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- ullet Мы задаем $\pi(a|s).$ Инициализируем W(s,a)=0 и N(s,a)=0
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 \sim \pi(\cdot|S_0)$ $W(S_0,A_0) \leftarrow W(S_0,A_0) + G_0, \ N(S_0,A_0) \leftarrow N(S_0,A_0) + 1$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- ullet совершает действие $A_1 \sim \pi(\cdot|S_1)$ $W(S_1,A_1) \leftarrow W(S_1,A_1) + G_1, \ N(S_1,A_1) \leftarrow N(S_1,A_1) + 1$
- ...
- ullet совершает действие $A_{T-1} \sim \pi(\cdot|S_{T-1}),$ $W(S_{T-1},A_{T-1}) \leftarrow W(S_{T-1},A_{T-1}) + G_{T-1},$ $N(S_{T-1},A_{T-1}) \leftarrow N(S_{T-1},A_{T-1}) + 1$
- ullet получает награду R_{T-1} и переходит в терминальное состояние S_T
- $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

- ullet Мы задаем $\pi(a|s)$. Инициализируем W(s,a)=0 и N(s,a)=0
- АГЕНТ находится в начальном состоянии S_0 ,
- ullet совершает действие $A_0 \sim \pi(\cdot|S_0)$ $W(S_0,A_0) \leftarrow W(S_0,A_0) + G_0, \ N(S_0,A_0) \leftarrow N(S_0,A_0) + 1$ $Q(S_0,A_0) \leftarrow W(S_0,A_0)/N(S_0,A_0)$
- получает награду R_0 и переходит в следующее состояние S_1
- ..
- совершает действие $A_{T-1} \sim \pi(\cdot|S_{T-1})$, $W(S_{T-1},A_{T-1}) \leftarrow W(S_{T-1},A_{T-1}) + G_{T-1}$, $N(S_{T-1},A_{T-1}) \leftarrow N(S_{T-1},A_{T-1}) + 1$ $Q(S_{T-1},A_{T-1}) \leftarrow W(S_{T-1},A_{T-1})/N(S_{T-1},A_{T-1})$
- ullet получает награду R_{T-1} и переходит в терминальное состояние S_T

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a] \approx Q(s,a)$$

$$Q_N = \frac{1}{N} \sum_{i=1}^{N} w_i$$

$$Q_N = \frac{1}{N} \sum_{i=1}^{N} w_i$$

Тогда

$$Q_{N+1} = \frac{1}{N+1} \sum_{i=1}^{N+1} w_i = \frac{1}{N+1} \left(\sum_{i=1}^{N} w_i + w_{N+1} \right)$$

$$Q_N = \frac{1}{N} \sum_{i=1}^{N} w_i$$

Тогда

$$Q_{N+1} = \frac{1}{N+1} \sum_{i=1}^{N+1} w_i = \frac{1}{N+1} \left(\sum_{i=1}^{N} w_i + w_{N+1} \right)$$
$$= \frac{1}{N+1} (NQ_N + w_{N+1}) = Q_N + \frac{1}{N+1} (w_{N+1} - Q_N)$$

$$Q_N = \frac{1}{N} \sum_{i=1}^{N} w_i$$

Тогда

$$Q_{N+1} = \frac{1}{N+1} \sum_{i=1}^{N+1} w_i = \frac{1}{N+1} \left(\sum_{i=1}^{N} w_i + w_{N+1} \right)$$
$$= \frac{1}{N+1} (NQ_N + w_{N+1}) = Q_N + \frac{1}{N+1} (w_{N+1} - Q_N)$$

$$Q_{N+1} = Q_N + \frac{1}{N+1}(w_{N+1} - Q_N)$$

- $\bullet\,$ Мы задаем $\pi(a|s).$ Инициализируем Q(s,a)=0 и N(s,a)=0
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 \sim \pi(\cdot|S_0)$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- совершает действие $A_1 \sim \pi(\cdot|S_1)$
- ...
- совершает действие $A_{T-1} \sim \pi(\cdot|S_{T-1})$,
- ullet получает награду R_{T-1} и переходит в терминальное состояние S_T

$$\bullet \ \tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$$

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a] \approx Q(s,a)$$

Сессия. Общий случай

- \bullet Мы задаем $\pi(a|s).$ Инициализируем Q(s,a)=0 и N(s,a)=0
- АГЕНТ находится в начальном состоянии S_0 ,
- совершает действие $A_0 \sim \pi(\cdot|S_0)$ $Q(S_0,A_0) \leftarrow Q(S_0,A_0) + \frac{1}{N(S_0,A_0)+1} (G_0 - Q(S_0,A_0)),$ $N(S_0,A_0) \leftarrow N(S_0,A_0) + 1$
- ullet получает награду R_0 и переходит в следующее состояние S_1
- ullet совершает действие $A_1 \sim \pi(\cdot|S_1)$ $Q(S_1,A_1) \leftarrow Q(S_1,A_1) + \frac{1}{N(S_1,A_1)+1} \big(G_1 Q(S_1,A_1)\big),$ $N(S_1,A_1) \leftarrow N(S_1,A_1) + 1$
- ..
- ullet совершает действие $A_{T-1} \sim \pi(\cdot|S_{T-1}),$ $Q(S_{T-1},A_{T-1}) \leftarrow Q(S_{T-1},A_{T-1}) + \frac{1}{N(S_{T-1},A_{T-1})+1} \left(G_{T-1} Q(S_{T-1},A_{T-1})\right),$ $N(S_{T-1},A_{T-1}) \leftarrow N(S_{T-1},A_{T-1}) + 1$
- ullet получает награду R_{T-1} и переходит в терминальное состояние S_T
- $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$

Задача

Найти
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a] \approx Q(s,a)$$

Monte-Carlo Policy Evaluation

Пусть выбрана π . Пусть Q(s,a)=0 и N(s,a)=0. Для каждого эпизода $k\in\overline{1,K}$ делаем

• В согласии с π получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .

Monte-Carlo Policy Evaluation

Пусть выбрана π . Пусть Q(s,a)=0 и N(s,a)=0. Для каждого эпизода $k\in\overline{1,K}$ делаем

- В согласии с π получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .
- Для каждого $t \in \overline{0, T-1}$ обновляем Q и N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$

 $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$

Monte-Carlo Policy Evaluation

Пусть выбрана π . Пусть Q(s,a)=0 и N(s,a)=0. Для каждого эпизода $k\in\overline{1,K}$ делаем

- В согласии с π получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .
- Для каждого $t \in \overline{0, T-1}$ обновляем Q и N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$

 $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$

$$Q(s,a) \approx q_{\pi}(s,a)$$

Будет ли это работать?

Пусть инициализированы π^0 и заданы числа K>0. Для каждой итерации $k\in\overline{1,K}$ делаем

- (Policy evaluation) Monte-Carlo Policy Evaluation. Получаем $Q^k(s,a) \approx q_{\pi^k}(s,a)$
- (Policy improvement) Greedy Policy Improvement:

$$\pi^{k+1}(a|s) = \left\{ egin{array}{ll} 1, \ \mathrm{если} \ a \in \mathrm{argmax}_{a' \in \mathcal{A}} \ Q^k(s,a') \\ 0, \ \mathrm{иначe} \end{array} \right.$$

- Состояния: начальное и терминальное
- Действия: \rightarrow , \leftarrow
- Награда: $R(S_0, \leftarrow) = 1,$ $R(S_0, \rightarrow) = 2$
- Начальная Policy: $\pi^0(S_0, \leftarrow) = 1,$ $\pi^0(S_0, \rightarrow) = 0$
- $Q^0 = ???$

- Состояния: начальное и терминальное
- Действия: \rightarrow , \leftarrow
- Награда: $R(S_0, \leftarrow) = 1,$ $R(S_0, \rightarrow) = 2$
- Начальная Policy: $\pi^0(S_0, \leftarrow) = 1,$ $\pi^0(S_0, \rightarrow) = 0$
- $Q^0(S_0, \leftarrow) = 1,$ $Q^0(S_0, \rightarrow) = 0$

- Состояния: начальное и терминальное
- \bullet Действия: \rightarrow , \leftarrow
- $egin{aligned} egin{aligned} \mathbf{R} & \mathbf{R}(S_0, \leftarrow) = 1, \ R(S_0,
 ightarrow) = 2 \end{aligned}$
- Начальная Policy: $\pi^0(S_0, \leftarrow) = 1,$ $\pi^0(S_0, \rightarrow) = 0$
- $Q^0(S_0, \leftarrow) = 1,$ $Q^0(S_0, \rightarrow) = 0$
- $\bullet \ \pi^1=\pi^0,$

- Состояния: начальное и терминальное
- \bullet Действия: \rightarrow , \leftarrow
- Награда: $R(S_0, \leftarrow) = 1,$ $R(S_0, \rightarrow) = 2$
- Начальная Policy: $\pi^0(S_0, \leftarrow) = 1,$

$$\pi^0(S_0, \leftarrow) = 1,$$

$$\pi^0(S_0, \rightarrow) = 0$$

- $Q^0(S_0, \leftarrow) = 1,$ $Q^0(S_0, \rightarrow) = 0$
- $\pi^1 = \pi^0$,
- $\bullet \ Q^1=Q^0,$

ε -Greedy Policy Improvement

$$\pi = \varepsilon\text{-greedy}(Q)$$

$$\pi'(a|s) = \left\{ \begin{array}{ll} 1 - \varepsilon + \varepsilon/m, & \text{если } a \in \operatorname{argmax}_{a' \in \mathcal{A}} Q(s, a'), \\ \varepsilon/m, & \text{иначе} \end{array} \right.$$

ε -Greedy Policy Improvement

$\pi = \varepsilon$ -greedy(Q)

$$\pi'(a|s) = \left\{ \begin{array}{ll} 1 - \varepsilon + \varepsilon/m, & \text{ если } a \in \operatorname{argmax}_{a' \in \mathcal{A}} Q(s, a'), \\ \varepsilon/m, & \text{ иначе} \end{array} \right.$$

Policy Improvement Theorem

Пусть Q(s,a) — некоторая функция.

Пусть $\pi = \varepsilon$ -greedy(Q) и $\pi' = \varepsilon$ -greedy (q_{π}) .

Тогда $\pi' \geq \pi$ (т.е. $v_{\pi'}(s) \geq v_{\pi}(s), \forall s$)

Learning with Monte-Carlo Policy Evaluation

Пусть инициализированы π^0 и заданы числа K>0 и $\varepsilon=1$. Для каждой итерации $k\in\overline{1,K}$ делаем

- (Policy evaluation) Monte-Carlo Policy Evaluation получаем $Q^k(s,a) \approx q_{\pi^k}(s,a)$
- (Policy improvement) ε -Greedy Policy Improvement получаем π^{k+1} по Q^k . Определяем $\varepsilon = 1/k$

Learning with Monte-Carlo Policy Evaluation

Пусть инициализированы π^0 и заданы числа K>0 и $\varepsilon=1$. Для каждой итерации $k\in\overline{1,K}$ делаем

- (Policy evaluation) Monte-Carlo Policy Evaluation получаем $Q^k(s,a) \approx q_{\pi^k}(s,a)$
- (Policy improvement) ε -Greedy Policy Improvement получаем π^{k+1} по Q^k . Определяем $\varepsilon = 1/k$

Learning with Monte-Carlo Policy Evaluation

Пусть инициализированы π^0 и заданы числа K>0 и $\varepsilon=1$. Для каждой итерации $k\in\overline{1,K}$ делаем

- (Policy evaluation) Monte-Carlo Policy Evaluation получаем $Q^k(s,a) \approx q_{\pi^k}(s,a)$
- (Policy improvement) ε -Greedy Policy Improvement получаем π^{k+1} по Q^k . Определяем $\varepsilon = 1/k$

Теорема

Алгоритм сходится, то есть $Q^k \to q_*$ и $\pi^k \to \pi_*$ при $k \to \infty$.

Monte-Carlo Algorithm

Пусть $Q(s,a)=0,\,N(s,a)=0$ и $\varepsilon=1.$ Для каждого эпизода $k\in\overline{1,K}$ делаем:

- Согласно $\pi = \varepsilon$ -greedy(Q) получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .
- Для каждого $t \in \overline{0, T-1}$ обновляем Q и N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$
$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

Определяем $\varepsilon = 1/k$

Monte-Carlo Algorithm

Пусть $Q(s,a)=0,\,N(s,a)=0$ и $\varepsilon=1.$ Для каждого эпизода $k\in\overline{1,K}$ делаем:

- Согласно $\pi = \varepsilon$ -greedy(Q) получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .
- Для каждого $t \in \overline{0, T-1}$ обновляем Q и N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$
$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

Определяем $\varepsilon = 1/k$

Monte-Carlo Algorithm

Пусть $Q(s,a)=0,\,N(s,a)=0$ и $\varepsilon=1.$ Для каждого эпизода $k\in\overline{1,K}$ делаем:

- Согласно $\pi = \varepsilon$ -greedy(Q) получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .
- Для каждого $t \in \overline{0, T-1}$ обновляем Q и N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$
$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

Определяем $\varepsilon = 1/k$

Теорема

Алгоритм сходится, то есть $Q^k \to q_*$ и $\pi^k \to \pi_*$ при $k \to \infty$.

Использование Bellman Equation

Bellman Expectation Equation для q_{π}

$$q_{\pi}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) \sum_{a'} \pi(a'|s') q_{\pi}(s', a')$$

 \Downarrow

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

 \Downarrow

Temporal-Difference

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Temporal-Difference Policy Evaluation

Пусть выбрана $\pi.$ Пусть Q(s,a)=0. Для каждого эпизода $k\in\overline{1,K}$ делаем

• В согласии с π получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) .

Temporal-Difference Policy Evaluation

Пусть выбрана π . Пусть Q(s,a)=0. Для каждого эпизода $k\in\overline{1,K}$ делаем

- В согласии с π получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) .
- Для каждого $t \in \overline{0, T-2}$ обновляем значения

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Temporal-Difference Policy Evaluation

Пусть выбрана π . Пусть Q(s,a)=0. Для каждого эпизода $k\in\overline{1,K}$ делаем

- В согласии с π получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) .
- Для каждого $t \in \overline{0, T-2}$ обновляем значения

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

$$Q(s,a) \approx q_{\pi}(s,a)$$

Сравнение MC и TD Policy Evaluation

Two states A, B; no discounting; 8 episodes of experience

Learning with Temporal-Difference Policy Evaluation

Пусть Q(s,a)=0 и $\varepsilon=1$. Для каждого эпизода $k\in\overline{1,K}$ делаем:

- Согласно $\pi = \varepsilon$ -greedy(Q) получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) .
- Для каждого $t \in \overline{0, T-2}$ обновляем Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Определяем $\varepsilon = 1/k$

SARSA Algorithm

Пусть Q(s,a)=0 и $\varepsilon=1.$

Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t , переходим в состояние S_{t+1} , совершаем действие $A_{t+1} \sim \pi(\cdot|S_{t+1})$
- По $(S_t, A_t, R_t, S_{t+1}, A_{t+1})$ обновляем Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Полагаем, например, $\varepsilon=1/k$

SARSA Algorithm

Пусть Q(s,a)=0 и $\varepsilon=1.$

Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t , переходим в состояние S_{t+1} , совершаем действие $A_{t+1} \sim \pi(\cdot|S_{t+1})$
- По $(S_t, A_t, R_t, S_{t+1}, A_{t+1})$ обновляем Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Полагаем, например, $\varepsilon = 1/k$

Теорема

Алгоритм сходится, то есть $Q^k \to q_*$ и $\pi^k \to \pi_*$ при $k \to \infty$.

Использование Bellman Optimality Equation

Bellman Optimality Equation для q_*

$$q_*(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) \max_{a'} q_*(s', a')$$

 \Downarrow

$$q_*(s, a) = \mathbb{E}[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

 \Downarrow

Q-Learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$$

Q-Learning Algorithm

Пусть Q(s,a)=0 и $\varepsilon=1.$

Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t переходим в состояние S_{t+1} .
- По (S_t, A_t, R_t, S_{t+1}) обновляем Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$$

Полагаем, например, $\varepsilon = 1/k$

Q-Learning Algorithm

Пусть Q(s,a)=0 и $\varepsilon=1.$

Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t переходим в состояние S_{t+1} .
- По (S_t, A_t, R_t, S_{t+1}) обновляем Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$$

Полагаем, например, $\varepsilon = 1/k$

Теорема

Алгоритм сходится, то есть $Q^k \to q_*$ и $\pi^k \to \pi_*$ при $k \to \infty$.

Сравнение SARSA и Q-Learning

Model-based и Model-free

Q-Policy Iteration	Sarsa
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$
Q-Value Iteration	Q-Learning
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$

Организационные вопросы

- Пятница, 17:50, аудитория 622
- Отчетность: домашние работы
- Странчика курса: https://github.com/imm-rl-lab/UrFU_course
- E-mail для связи:

вопросы?