

# UNIVERSITY OF COLOMBO, SRI LANKA



#### UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

#### **DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)**

Academic Year 2022 - 3rd Year Examination - Semester 5

## IT5506 – Mathematics for Computing II Structured Question Paper

(TWO HOURS)

| To be completed by the | candida | ate |  |
|------------------------|---------|-----|--|
| BIT Examination        | Index   | No: |  |

#### **Important Instructions:**

- The duration of the paper is **Two (2) hours**.
- The medium of instruction and questions is English.
- This paper has 4 questions and 19 pages.
- Answer all questions. All questions carry equal marks.
- Write your answers in English using the space provided in this question paper.
- Note that **The Standard Normal Distribution Table** is attached with the paper
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
   If a page is not printed, please inform the supervisor immediately.
- All kinds of electronic devices including calculators are **not** allowed.
- All Rights Reserved.

| 0 | uestio | ne A | new | orod |
|---|--------|------|-----|------|
| u | uestio | ns a | HSW | erea |

Indicate by a cross (x), (e.g. X ) the numbers of the questions answered.

| To be completed by the candidate by marking a cross (x). | 1 | 2 | 3 | 4 |  |
|----------------------------------------------------------|---|---|---|---|--|
| To be completed by the examiners:                        |   |   |   |   |  |
|                                                          |   |   |   |   |  |
|                                                          |   |   |   |   |  |

1) (a) Let  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 2 \\ 3 & k \end{bmatrix}$ . Find a value for k such that AB = BA.

(4 marks)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & k \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & k \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2+2k \\ 15 & 6+4k \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 3+3k & 6+4k \end{bmatrix}$$

$$2(1+k) = 10$$

$$k = 4$$

K is consistent

| Index No | <br> | <br> | <br> |
|----------|------|------|------|

Let  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ . Find values for a, b, c and d such that  $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $A \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  and  $A \neq \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ .

(4 marks)

| ANSWER IN THIS BOX |
|--------------------|
|--------------------|

Let 
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

Then 
$$A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and  $A \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  and  $A \neq \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ .

| Then $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A \neq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ . |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ans. $a = 1, b = 0, c = 0$ , and $d = -1$ .                                                                                                                                      |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |
|                                                                                                                                                                                  |  |

| Index No | <br> | <br> |  |  |  |  |  |  |  |  |  |
|----------|------|------|--|--|--|--|--|--|--|--|--|

(c) Consider the following system of linear equations:

$$3x - y + 5z = 8$$
  
 $y - 10z = 1$   
 $6x - y = 17$ .

(i) Transform this system of linear equations into matrix form and identify the coefficient matrix.

(2 marks)

|                                                                                                                                                                 | (=) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ANSWER IN THIS BOX                                                                                                                                              |     |
| $\begin{bmatrix} 3 & -1 & 5 \\ 0 & 1 & -10 \\ 6 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 17 \end{bmatrix}.$ |     |
| r2 1 F 1                                                                                                                                                        |     |
| Hence, the coefficient matrix is $\begin{bmatrix} 3 & -1 & 5 \\ 0 & 1 & -10 \\ 6 & -1 & 0 \end{bmatrix}$                                                        |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |

(ii) Apply elementary row operations to solve the given system of linear equations.

(10 marks)

## **ANSWER IN THIS BOX**

$$\begin{bmatrix} 3 & -1 & 5 & \vdots & 8 \\ 0 & 1 & -10 & \vdots & 1 \\ 6 & -1 & 0 & \vdots & 17 \end{bmatrix}$$

$$\downarrow R_3 \leftarrow R_3 - 2R_1$$

$$\begin{bmatrix} 3 & -1 & 5 & \vdots & 8 \\ 0 & 1 & -10 & \vdots & 1 \\ 0 & 1 & -10 & \vdots & 1 \end{bmatrix}$$

$$\Downarrow R_3 \leftarrow R_3 - 2R_1$$

$$\begin{bmatrix} 3 & -1 & 5 & \vdots & 8 \\ 0 & 1 & -10 & \vdots & 1 \\ 0 & 0 & 0 & \vdots & 0 \end{bmatrix}$$
 This matrix is now in echelon form. Pivot variables are  $x, y$ 

and z is a free variable. The equations corresponding to this echelon form are

$$3x - y + 5z = 8$$
$$y - 10z = 1.$$

Let z = t, where t is a parameter. By back substitution, we get

$$y = 1 + 10z = 1 + 10t$$

$$x = \frac{1}{3}(8 + y - 5z) = \frac{1}{3}(8 + 1 + 10t - 5t) = 3 + \frac{5}{3}t.$$

Therefore, the general solution of this system is

$$x = 3 + \frac{5}{3}t$$

$$y = 1 + 10t$$

z = t, where  $t \in \mathbb{R}$  is arbitrary.

|         | _  |      |  |      |  |  |  |  |  |      |  |  |  |  |
|---------|----|------|--|------|--|--|--|--|--|------|--|--|--|--|
| Index N | 10 | <br> |  | <br> |  |  |  |  |  | <br> |  |  |  |  |

(d) Let  $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & 9 \\ 2 & 4 & 6 \end{bmatrix}$ . Find the rank of A by reducing A to its echelon form.

(5 marks)

|                                                                                                                                                                                                                                                                                         | (5 marks) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ANSWER IN THIS BOX                                                                                                                                                                                                                                                                      |           |
| r1                                                                                                                                                                                                                                                                                      |           |
| $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & 9 \\ 2 & 4 & 6 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 6 \\ 2 & 4 & 6 \end{bmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix}.$ |           |
| $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \qquad \begin{bmatrix} 0 & 3 & 0 \\ 2 & 4 & 6 \end{bmatrix}$                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                         |           |
| Hence the Rank of A is 2.                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                         |           |

2) (a) Find the redundant vectors in the following sequence of vectors in  $\mathbb{R}^3$  and write each redundant vector as a linear combination of previous non-redundant vectors:

$$u_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}, u_3 = \begin{bmatrix} 2 \\ 7 \\ -4 \end{bmatrix}, u_4 = \begin{bmatrix} 5 \\ 7 \\ -10 \end{bmatrix}, and u_5 = \begin{bmatrix} 12 \\ 17 \\ -24 \end{bmatrix}.$$

(12 marks)

## **ANSWER IN THIS BOX**

$$\begin{bmatrix} 1 & 1 & 2 & 5 & 12 \\ 1 & 2 & 7 & 7 & 17 \\ -2 & -4 & -4 & -10 & -24 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 + (-1)R_1} \begin{bmatrix} 1 & 1 & 2 & 5 & 12 \\ R_3 \leftarrow R_3 + (2)R_1 & & \\ & & & & \\ & & & & \\ \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & 1 & 2 & 5 & 12 \\ 0 & 0 & 5 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}} \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$\begin{bmatrix} \mathbf{1} & 1 & 2 & 21/_5 & 10 \\ 0 & 0 & \mathbf{1} & 2/_5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 \leftarrow R_1 + (-2)R_2} \begin{bmatrix} 1 & 1 & 2 & 5 & 12 \\ 0 & 0 & 1 & 2/_5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Redundant vectors are  $u_2$ ,  $u_4$ , and  $u_5$ .

$$u_2=2u_1,$$

$$u_4 = (21/5)u_1 + (2/5)u_3$$
, and

$$u_5 = 10u_1 + u_3.$$

(b) Let X and Y be two vector spaces over the same field  $\mathcal{F}$ . When do we say that a function  $T: X \to Y$  is a Linear Transformation?

(2 marks)

| <b>ANSWER</b> | IN T | HIS | BOX |
|---------------|------|-----|-----|
|---------------|------|-----|-----|

 $T: X \longrightarrow Y$  is called a Linear Transformation if it satisfies the following conditions:

T(x + y) = Tx + Ty for all  $x, y \in X$ , and

 $T(\alpha x) = \alpha T x$  for all  $\alpha \in \mathcal{F}$ ,  $x \in X$ .

| (c) | Let X and Y be two vector spaces over the same field $\mathcal{F}$ , and let $0_X$ , and $0_Y$ be the zero |
|-----|------------------------------------------------------------------------------------------------------------|
|     | vectors of $X$ and $Y$ respectively. Let $T: X \longrightarrow Y$ be a Linear Transformation. Show that    |

- i.  $T(\mathbf{0}_X) = \mathbf{0}_Y$ ,
- ii. T(-v) = -Tv, for all  $v \in X$ .
- iii.  $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$  for all  $\alpha, \beta \in F$ , for all  $x, y \in V$ .

(6 marks)

### **ANSWER IN THIS BOX**

Since T is linear,  $T(\mathbf{0}_X) = T(\mathbf{0}_X + \mathbf{0}_X) = T(\mathbf{0}_X) + T(\mathbf{0}_X)$ .

Hence, by the additive identity law in Y,  $T(\mathbf{0}_X) = \mathbf{0}_Y$ .

Since T is linear,  $T(\alpha v) = \alpha T(v)$ . By taking  $\alpha = -1$ ,

we get T(-v) = -Tv.

|                                                                | T(c             | $(x + \beta y) = T$ | $(\alpha x) + T(\beta y)$ | (: T is linear) |  |  |
|----------------------------------------------------------------|-----------------|---------------------|---------------------------|-----------------|--|--|
|                                                                | $= \alpha T(x)$ | $+\beta T(y)$ (:    | T is linear).             |                 |  |  |
| Since T is linear, $T(0_X) = T(0_X + 0_X) = T(0_X) + T(0_X)$ . |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |
|                                                                |                 |                     |                           |                 |  |  |

Let 
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
 be a linear transformation such that  $T\begin{pmatrix} 1\\3\\1 \end{pmatrix} = \begin{bmatrix} 4\\4\\0\\-2 \end{bmatrix}$  and

$$T\begin{pmatrix} 4\\0\\5 \end{pmatrix} = \begin{bmatrix} 4\\5\\-1\\5 \end{bmatrix}. \text{ Find } T\begin{pmatrix} -7\\3\\-9 \end{bmatrix}.$$

|                                                                                                                                                            | (5 marks) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ANSWER IN THIS BOX                                                                                                                                         |           |
| Since $\begin{bmatrix} -7\\3\\-9 \end{bmatrix} = \begin{bmatrix} 1\\3\\1 \end{bmatrix} - 2 \begin{bmatrix} 4\\0\\5 \end{bmatrix}$ , from part (c), we have |           |
| $ T \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} = T \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} - 2T \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} $               |           |
| $= \begin{bmatrix} 4\\4\\0\\-2 \end{bmatrix} - 2 \begin{bmatrix} 4\\5\\-1\\5 \end{bmatrix} = \begin{bmatrix} -4\\-6\\2\\-12 \end{bmatrix}.$                |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |
|                                                                                                                                                            |           |

3) A company produces two types of boats X and Y. The following information is given.

|                        | Boat X requires | Boat Y requires | Resource availability per month |
|------------------------|-----------------|-----------------|---------------------------------|
| Inputs                 |                 |                 |                                 |
| Aluminium              | 24 kg           | 6 kg            | 2400 kg                         |
| Machine Time (minutes) | 6 min           | 4 min           | 12 hours                        |
| Labour (hours)         | 2 hours         | 8 hours         | 1000 hours                      |

- (a) The profit per unit of X and Y are \$600 and \$500 respectively. Assume that all assumptions of a linear programming problem hold.
  - (i) Formulate a linear programming problem to find the optimal production quantities.

(07 marks)

|                                                                                       | (Vi marks)            |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|--|--|
| ANSWER IN T                                                                           | HIS BOX               |  |  |  |  |  |  |  |  |
| <b>Decision Variables</b> : Let x and y the monthly production quantities of X and Y. |                       |  |  |  |  |  |  |  |  |
| <b>Objective Function</b> : Maximize profits $Z = 600x + 500y$                        |                       |  |  |  |  |  |  |  |  |
| Constraints:                                                                          | $24x + 6y \le 2400,$  |  |  |  |  |  |  |  |  |
|                                                                                       | $6x + 4y \le 720$     |  |  |  |  |  |  |  |  |
|                                                                                       | $2x + 8y \le 1000$    |  |  |  |  |  |  |  |  |
|                                                                                       | $x \ge 0, \ y \ge 0.$ |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |
|                                                                                       |                       |  |  |  |  |  |  |  |  |

(ii) Solve the problem graphically and find the optimal production quantities and the maximum profit achievable.

(08 marks)



Since the feasible region is a convex set the maximum will occur at the corners of the

## feasible region

| Corner Points | Profit $Z = 600x + 500y$ |
|---------------|--------------------------|
|               | \$                       |
| O (0,0)       | 0                        |
| A (100,0)     | 60,000                   |
| B (88,48)     | 76,800                   |
| C (44,114)    | 83,400                   |
| D (0,125)     | 62,500                   |

The optimal solution is (x, y) = (44, 114) with maximum profit achievable \$83,400.

| Ι | ndex No |
|---|---------|
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |

| r 1 NT.  |      |  |      |  |  |  |  |  |  |  |  |  |  |
|----------|------|--|------|--|--|--|--|--|--|--|--|--|--|
| Index No | <br> |  | <br> |  |  |  |  |  |  |  |  |  |  |

(b) If the unit profit of X and Y are \$600 and \$400 respectively find all possible optimal production quantities and the maximum profit achievable

(10 marks)

| ANSWER IN THIS BOX            |                      |
|-------------------------------|----------------------|
| The problem reads             |                      |
| Maximize profits $Z = 600x$ - | + 500 <i>y</i>       |
| Subject to the constraints:   | $24x + 6y \le 2400,$ |
|                               | $6x + 4y \le 720$    |
|                               | $2x + 8y \le 1000$   |
|                               | $x \ge 0, \ y \ge 0$ |
|                               |                      |

Here the feasible region will be the same as in part (a).

| Corner Points | Profit $Z = 600x + 400y$ |
|---------------|--------------------------|
|               | \$                       |
| O (0,0)       | 0                        |
| A (100,0)     | 60,000                   |
| B (88,48)     | 72,000                   |
| C (44,114)    | 72,000                   |
| D (0,125)     | 50,000                   |

This problem has multiple solutions. All possible solutions are the points on the line segment BC. That is the optimal possible production quantities are

$$(x,y) = (44 + 44k, 114 - 66k)$$
 where  $0 \le k \le 1$ .

with the maximum profit achievable \$ 72,000.

This problem has multiple solutions. All possible solutions are the points on the line segment BC. Those are the optimal possible production quantities.

|      | Index No |
|------|----------|
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
| <br> |          |
|      |          |
|      |          |
|      |          |
|      |          |
| <br> |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |

| Index | No | <br> | <br> |  | <br> | <br> | <br>_ |  | <br> |  |  |
|-------|----|------|------|--|------|------|-------|--|------|--|--|

- 4) (a) The lifetime of a certain brand of a power bank is normally distributed with a mean 48 months and standard deviation 8 months. Calculate the probability that the lifetime of that brand of power bank is,
  - less than 50 months. (i)
  - lies between 38 and 52 months. (ii)

| SWE  | R IN THIS BOX                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------|
| (i)  | $P(X < 50) = P\left(\frac{X-\mu}{\sigma} < \frac{50-48}{8}\right) = P(Z < 0.25) = 0.5987$                        |
| (ii) | $P(38 < X < 52) = P\left(\frac{38-48}{8} < \frac{X-\mu}{\sigma} < \frac{52-48}{8}\right) = P(-1.25 < Z < 0.5) =$ |
|      | P(Z < 0.5) - P(Z < -1.25) = 0.6915 - 0.1056 = 0.5859                                                             |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |
|      |                                                                                                                  |

| Index No. |  |  |  |  |  |  |  |  |  |
|-----------|--|--|--|--|--|--|--|--|--|

- (b) It was found that the probability of having a damage in a certain brand of mobile phone is 0.1. A researcher randomly selects 10 mobile phones from that brand.
  - (i) Calculate the probability that there will be at least one damaged mobile phone in that selected 10 mobile phones.
  - (ii) Calculate the mean and the standard deviation of the number of damaged mobile phones in the sample of 10 mobile phones.

(09 marks)

|        | (U) MULLID)                                                                                       |
|--------|---------------------------------------------------------------------------------------------------|
| ANSWEI | R IN THIS BOX                                                                                     |
| (i)    | $P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0) = 1 - {}^{10}C_00.1^00.9^{10}$<br>= 1 - 0.3487 = 0.5613 |
| (ii)   | $E(X) = np = 10 \times 0.1 = 1$                                                                   |
|        | $V(X) = npq = 10 \times 0.1 \times 0.9 = 0.9$                                                     |
|        | $SD(X) = \sqrt{V(X)} = \sqrt{0.9} = 0.9487$                                                       |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |
|        |                                                                                                   |

| Index No | <br> | <br> | <br> |  |
|----------|------|------|------|--|

- (c) The average of the number of miscalls for an undergraduate student is 2 per day. Using Poisson distribution,
  - i. Calculate the probability that there are exactly three miscalls per day.
  - ii. Calculate the standard deviation of the number of miscalls per day.

**(07 marks)** 

|        |                                                                      | <br>/ |
|--------|----------------------------------------------------------------------|-------|
| ANSWEI | R IN THIS BOX                                                        |       |
| (i)    | $P(X=3) = \frac{e^{-2}2^3}{3!} = \frac{0.1353 \times 8}{6} = 0.1804$ |       |
|        |                                                                      |       |
| (ii)   | $SD(X) = \sqrt{V(X)} = \sqrt{2} = 1.4142$                            |       |
|        |                                                                      |       |
|        |                                                                      |       |
|        |                                                                      |       |
|        |                                                                      |       |
|        |                                                                      |       |
|        |                                                                      |       |
|        |                                                                      |       |
|        |                                                                      |       |

#### The Standard Normal Distribution Table



The distribution tabulated is that of the normal distribution with mean **zero** and standard deviation **1**. For each value of **Z**, the standardized normal deviate, (the proportion **P**, of the distribution less than **Z**) is given. For a normal distribution with mean  $\mu$  and variance  $\sigma^2$  the proportion of the distribution less than some particular value **X** is obtained by calculating  $\mathbf{Z} = (\mathbf{X} - \mu)/\sigma$  and reading the proportion corresponding to this value of **Z**.

| 111111111111111111111111111111111111111 |         | $-$ of $\mathbf{Z}$ . |        | 0 1 1 | •       |
|-----------------------------------------|---------|-----------------------|--------|-------|---------|
| ${}^{	heta}_{oldsymbol{Z}}$             | z<br>P  | Z                     | P      | Z     | P       |
| -4.00                                   | 0.00003 | -1.00                 | 0.1587 | 1.05  |         |
| -3.50                                   | 0.00023 | -0.95                 | 0.1711 | 1.10  |         |
| -3.00                                   | 0.0014  | -0.90                 | 0.1841 | 1.15  |         |
| -2.95                                   | 0.0016  | -0.85                 | 0.1977 | 1.20  |         |
| -2.90                                   | 0.0019  | -0.80                 | 0.2119 | 1.25  | 0.8944  |
| -2.85                                   | 0.0022  | -0.75                 | 0.2266 | 1.30  | 0.9032  |
| -2.80                                   | 0.0026  | -0.70                 | 0.2420 | 1.35  | 0.9115  |
| -2.75                                   | 0.0030  | -0.65                 | 0.2578 | 1.40  | 0.9192  |
| -2.70                                   | 0.0035  | -0.60                 | 0.2743 | 1.45  | 0.9265  |
| -2.65                                   | 0.0040  | -0.55                 | 0.2912 | 1.50  | 0.9332  |
| -2.60                                   | 0.0047  | -0.50                 | 0.3085 | 1.55  | 0.9394  |
| -2.55                                   | 0.0054  | -0.45                 | 0.3264 | 1.60  | 0.9452  |
| -2.50                                   | 0.0062  | -0.40                 | 0.3446 | 1.65  |         |
| -2.45                                   | 0.0071  | -0.35                 | 0.3632 | 1.70  |         |
| -2.40                                   | 0.0082  | -0.30                 | 0.3821 | 1.75  |         |
| -2.35                                   | 0.0094  | -0.25                 | 0.4013 | 1.80  |         |
| -2.30                                   | 0.0107  | -0.20                 | 0.4207 | 1.85  |         |
| -2.25                                   | 0.0122  | -0.15                 | 0.4404 | 1.90  |         |
| -2.20                                   | 0.0139  | -0.10                 | 0.4602 | 1.95  |         |
| -2.15                                   | 0.0158  | -0.05                 | 0.4801 | 2.00  |         |
| -2.10                                   | 0.0179  | 0.00                  | 0.5000 | 2.05  |         |
| -2.05                                   | 0.0202  | 0.05                  | 0.5199 | 2.10  |         |
| -2.00                                   | 0.0228  | 0.10                  | 0.5398 | 2.15  |         |
| -1.95                                   | 0.0256  | 0.15                  | 0.5596 | 2.20  |         |
| -1.90                                   | 0.0287  | 0.20                  | 0.5793 | 2.25  |         |
| -1.85                                   | 0.0322  | 0.25                  | 0.5987 | 2.30  |         |
| -1.80                                   | 0.0359  | 0.30                  | 0.6179 | 2.35  |         |
| -1.75                                   | 0.0401  | 0.35                  | 0.6368 | 2.40  |         |
| -1.70                                   | 0.0446  | 0.40                  | 0.6554 | 2.45  |         |
| -1.65                                   | 0.0495  | 0.45                  | 0.6736 | 2.50  |         |
| -1.60                                   | 0.0548  | 0.50                  | 0.6915 | 2.55  |         |
| -1.55                                   | 0.0606  | 0.55                  | 0.7088 | 2.60  |         |
| -1.50                                   | 0.0668  | 0.60                  | 0.7257 | 2.65  |         |
| -1.45                                   | 0.0735  | 0.65                  | 0.7422 | 2.70  |         |
| -1.40                                   | 0.0808  | 0.70                  | 0.7580 | 2.75  |         |
| -1.35                                   | 0.0885  | 0.75                  | 0.7734 | 2.80  |         |
| -1.30                                   | 0.0968  | 0.80                  | 0.7881 | 2.85  |         |
| -1.25                                   | 0.1056  | 0.85                  | 0.8023 | 2.90  |         |
| -1.20                                   | 0.1151  | 0.90                  | 0.8159 | 2.95  |         |
| -1.15                                   | 0.1251  | 0.95                  | 0.8289 | 3.00  |         |
| -1.10                                   | 0.1357  | 1.00                  | 0.8413 | 3.50  |         |
| -1.05                                   | 0.1469  |                       |        | 4.00  | 0.99997 |

\*\*\*\*