V Prinzipien der Quantenmechanik

1 Messwerte und Messprozess

• Diskretes Spektrum

Die Observable \hat{A} besitzt ein vollständiges Spektrum von Eigenfunktionen

$$\hat{A} |\varphi_n\rangle = a_n |\varphi_n\rangle. \tag{V.1}$$

Sei nun das Spektrum ein Zustand $|\Psi\rangle$

$$\Rightarrow |\Psi\rangle = \sum_{n} c_n |\varphi_n\rangle \text{ mit } c_n = \langle \varphi_n | \Psi \rangle$$
 (V.2)

und
$$\sum_{n} |c_n|^2 = \langle \Psi | \Psi \rangle = 1$$
 (V.3)

$$\Rightarrow$$
 Mittelwert $\langle A \rangle = \langle \Psi | A | \Psi \rangle = \sum_{n} a_{n} |c_{n}|^{2}$ (V.4)

Die einzig möglichen Ergebnisse der Messung der Observablen \hat{A} sind die Eigenwerte a_n . Die Wahrscheinlichkeit, einen nicht-entarteten Eigenwert a_n in $|\Psi\rangle$ zu messen ist

$$P(a_n) = |\langle \varphi_n | \Psi \rangle|^2. \tag{V.5}$$

Es gilt

$$\sum_{n} P(a_n) = 1 = \langle \Psi | \Psi \rangle \tag{V.6}$$

• Streuung (Varianz) der Messwerte

$$(\Delta A)^2 = \langle (A - \langle A \rangle)^2 \rangle \tag{V.7}$$

$$= \langle A^2 \rangle - \langle A \rangle^2 \tag{V.8}$$

$$\Rightarrow mit |\Psi\rangle = \sum c_n |\varphi_n\rangle \text{ dass}$$
 (V.9)

$$(\Delta A)^{2} = \sum_{n} a_{n}^{2} |c_{n}|^{2} - \left(\sum_{n} a_{n} |c_{n}|^{2}\right)^{2}$$
 (V.10)

$$= \begin{cases} 0, & \text{für } c_n = \delta_{n,m}, \text{d.h. } |\Psi\rangle = |\varphi_k\rangle \\ > 0, & \text{sonst} \end{cases}$$
 (V.11)

Interpretation: Wenn eine Messung von A tatsächlich stattfindet, dann erhalten wir einen der möglichen Eigenwerte a_n . Unmittelbar nach der Messung wissen wir, welcher Messwert tatsächlich erhalten wurde. Somit ist nach der Messung der Zustand des Systems $\neq |\Psi\rangle$ von der Messung. Nach der Messung von a_k befindet sich das System im Zustand $|\varphi_n\rangle$:

Messung:
$$|\Psi\rangle \xrightarrow{a_n} |\varphi_n\rangle$$

Das nennen man *Reduktion* (Kollaps) der Wellenfunktion. In der QM gibt es daher zwei Arten von Zustandsveränderungen:

(i) Nicht beobachtetes System: Aus der Schrödingergleichung folgt

$$t = 0 : |\Psi(0)\rangle \to |\Psi(t)\rangle = e^{-\frac{i}{\hbar}Ht} |\Psi(0)\rangle$$

Die Zustandsgleichung ist deterministisch und reversibel $[U(t)=e^{-\frac{i}{\hbar}Ht}]$ ist unitär].

Eine Messung zum Zeitpunkt t liefert Messwerte a_k mit Wahrscheinlichkeit $P_t(a_k) = |\langle \varphi_n | \Psi \rangle|^2$.

(ii) Messung und Reduktion

Wird die Messung zum Zeitpunkt t ausgeführt und a_k gemessen, dann ist

Messung:
$$|\Psi(t)\rangle \xrightarrow{a_k} |\varphi_n\rangle$$

stochastisch und irreversibel.

Eine Messung von A mit Ergebnis a_k präpariert $|\Psi\rangle$ in $|\varphi_n\rangle$: eine sofort durchgeführte zweite Messung ergibt mit Wahrscheinlichkeit 1 wieder a_k

• Beispiel: Harmonischer Oszillator

Zum Zeitpunkt t=0 präparieren wir das System im initialen Zustand

$$|\Psi(0)\rangle = \frac{1}{\sqrt{2}} (|\varphi_0\rangle + |\varphi_1\rangle)$$
 (V.12)

$$\operatorname{mit} \, \hat{H} \, |\varphi_n\rangle = \operatorname{E}_n \, |\varphi_n\rangle \,. \tag{V.13}$$

Die Zeitentwicklung à la Schrödinger für t > 0 schreibt sich dann

$$|\Psi(t)\rangle = \frac{1}{\sqrt{2}} \left(e^{-i\mathbf{E}_0 t/\hbar} |\varphi_0\rangle + e^{-i\mathbf{E}_1 t/\hbar} |\varphi_1\rangle \right). \tag{V.14}$$

Die Wahrscheinlichkeit, bei t_r den Eigenwert E_n zu messen ist

$$P(\mathbf{E}_n) = |\langle \varphi_n | \Psi(t) \rangle|^2 \text{ d.h.}$$
 (V.15)

$$P(E_0) = \frac{1}{2} = P(E_1) \quad P(E_{n>1}) = 0$$
 (V.16)

Der Energieerwartungswert ist

$$\langle H \rangle_{t_r} = \frac{1}{2} \mathcal{E}_0 + \frac{1}{2} E_1$$
 Mittelwert (V.17)

Unmittelbar nach der Messung mit dem Ergebnis E_1 befindet sich das System im Zustand $|\varphi_1\rangle$. Zeitentwicklung:

$$|\Psi(t)\rangle_{t>t_r} = e^{-i\mathcal{E}_2 t/\hbar} |\varphi_1\rangle$$
 (V.18)

• Dieses Prinzip lässt sich entsprechend erweitern auf ein diskret entartetes Spektrum, mit

$$A |\varphi_n^i\rangle = a_n |\varphi_n^i\rangle \quad i = 1, \dots, g_n$$
 (V.19)

$$P_n = \sum_{i=1}^{g_n} |i \atop n \rangle \langle \varphi_n^i|, \qquad (V.20)$$

wobei P_n der Projektor auf den Unterraum h_n ist.

 \rightarrow Die Wahrscheinlichkeit, einen g_n -fach entarteten Eigenwert a_n im Zustand $|\Psi\rangle$ zu messen, ist

$$P(a_n) = \sum_{i=1}^{g_n} \left| \left\langle \varphi_n^i \middle| \Psi \right\rangle \right|^2 = \| \left| P_n \Psi \right\rangle \|^2$$
 (V.21)

Der Zustand wird dementsprechend reduziert auf

$$|\Psi\rangle \xrightarrow{a_k} \frac{P_n |\Psi\rangle}{\|P_n |\Psi\rangle\|}$$
 (V.22)

• Erweiterung auf kontinuierliches Spektrum $\sum_n \to \int d\alpha$ Beispiel: Impulsmessung

$$\langle x|p\rangle = v_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$
 (V.23)

$$\hat{p}v_p(x) = \frac{\hbar}{i} \frac{\partial}{\partial x} v_p(x) \tag{V.24}$$

$$= pv_p(x) (V.25)$$

(Messwerte: $-\infty) Die Wahrscheinlichkeit <math>p$ um dp zu messen ist

$$dP = |\langle P|\Psi\rangle|^2 dp = \left|\tilde{\Psi}(p)\right|^2 dp \qquad (V.26)$$

wobei $\tilde{\Psi(p)}$ die Fourier Trafo von $\Psi(x)$ ist.

• Messung vertauschbarer Observablen:

Seien \hat{A}, \hat{B} definiert als

$$\hat{A} = \sum_{n} a_n |n\rangle \langle n|; \quad P_n = |n\rangle \langle n|$$
 (V.27)

$$\hat{B} = \sum_{\nu} b_{\nu} |\nu\rangle \langle \nu|; \quad P_{\nu} |\nu\rangle \langle \nu| \tag{V.28}$$

(nicht entartet). Durch die Messung von \hat{A} ist der Zustand nach der Messung

$$|\Psi_n\rangle = \frac{P_n |\Psi\rangle}{\sqrt{\langle\Psi|P_n|\Psi\rangle}}.$$
 (V.29)

Anschließend wird sofort \hat{B} gemessen:

– Wahrscheinlichkeit b_{ν} zu messen, wenn vorher a_n gemessen wurde (bedingte Wahrscheinlichkeit):

$$P(b_{\nu}|a_n) = \langle \Psi_n | P_{\nu} | \Psi_n \rangle \tag{V.30}$$

$$= \frac{\langle \Psi | P_n P_\nu P_n | \Psi \rangle}{\langle \Psi | \Psi_n | \Psi \rangle} \tag{V.31}$$

– Wahrscheinlichkeit erst a_n , dann b_{ν} zu messe (Verbundwahrscheinlichkeit):

$$P(b_{\nu}, a_n) = P(b_{\nu}|a_n) \cdot P(a_n)$$
 (V.32)

auch
$$P(a_n, b_\nu) = P(a_n | b_\nu) \cdot P(b_\nu)$$
 (V.33)

$$\neq P(b_{\nu}, a_n). \tag{V.34}$$

Aber für $[\hat{A}, \hat{B}] = 0$ gilt

$$[P_n, P_\nu] = 0 \tag{V.35}$$

$$P(b_{\nu}, a_n) = P(a_n, b_{\nu}).$$
 (V.36)

2 Heisenbergsche Unschärferelation

Seien \hat{A}, \hat{B} hermitesche Operatoren (d.h. Observablen), dann sind

$$\delta \hat{A} = \hat{A} - \langle \hat{A} \rangle; \quad \delta \hat{B} = \hat{B} - \langle \hat{B} \rangle$$
 (V.37)

ebenfalls hermitesch. Für die Varianzen ergibt sich

$$\Delta A^2 \cdot \Delta B^2 = \langle \Psi | \delta \hat{A}^2 | \Psi \rangle \langle \Psi | \delta \hat{B}^2 | \Psi \rangle \tag{V.38}$$

$$= \left\langle \delta \hat{A} \Psi \middle| \delta \hat{A} \Psi \right\rangle \left\langle \delta \hat{B} \Psi \middle| \delta \hat{B} \Psi \right\rangle \tag{V.39}$$

$$= \langle \Psi_{\delta A} | \Psi_{\delta A} \rangle \langle \Psi_{\delta B} | \Psi_{\delta B} \rangle \tag{V.40}$$

$$\geq |\langle \Psi_{\delta A} | \Psi_{\delta B} \rangle|^2$$
 (Schwarzsche Ungleichung) (V.41)

$$= \langle \Psi | \delta A \delta B | \Psi \rangle \langle \Psi | \delta B \delta A | \Psi \rangle \tag{V.42}$$

Nun ist

$$\delta \hat{A} \delta \hat{B} = \frac{\delta \hat{A} \delta \hat{B} + \delta \hat{B} \delta \hat{A}}{2} + i \frac{\delta \hat{A} \delta \hat{B} - \delta \hat{B} \delta \hat{A}}{2i}.$$
 (V.43)

Definiert man

$$X_{+} = \frac{\delta \hat{A}\delta \hat{B} + \delta \hat{B}\delta \hat{A}}{2} \tag{V.44}$$

bzw.
$$X_{-} = \frac{\delta \hat{A} \delta \hat{B} - \delta \hat{B} \delta \hat{A}}{2i}$$
 (V.45)

kann man zeigen, dass

$$\langle X_{+} + X_{-} \rangle \langle X_{+} - iX_{-} \rangle \tag{V.46}$$

$$= \langle X_{+} \rangle^{2} - i \langle X_{+} \rangle \langle X_{-} \rangle + i \langle X_{+} \rangle \langle X_{-} \rangle + \langle X_{-} \rangle^{2}$$
 (V.47)

$$= \langle X_{+} \rangle^{2} + \langle X_{-} \rangle^{2} \tag{V.48}$$

Es folgt

$$\langle \Psi | \delta \hat{A} \delta \hat{B} | \Psi \rangle \langle \Psi | \delta \hat{B} \delta \hat{A} | \Psi \rangle$$
 (V.49)

$$= \left(\frac{\langle \delta \hat{A} \delta \hat{B} + \delta \hat{B} \delta \hat{A} \rangle}{2}\right)^{2} + \left(\frac{\langle \delta \hat{A} \delta \hat{B} - \delta \hat{B} \delta \hat{A} \rangle}{2i}\right)^{2} \qquad (V.50)$$

$$= \left(\frac{\langle \hat{A}\hat{B} + \hat{B}\hat{A}\rangle}{2} - \langle A\rangle\langle B\rangle\right)^{2} + \left\langle\frac{\langle AB - BA\rangle}{2i}\right)^{2} \quad (V.51)$$

$$\geq \frac{1}{4} \left| \langle [\hat{A}, \hat{B}] \rangle \right|^2 \tag{V.52}$$

$$\Rightarrow \Delta A \cdot \Delta B \ge \frac{1}{2} |\langle [A, B] \rangle| \tag{V.53}$$

Ersetzen wir $\hat{A} = \hat{x}, \ \hat{B} = \hat{p},$ sp erhalten wir

$$[\hat{x}, \hat{p}] = i\hbar \Rightarrow \delta x \cdot \Delta p \ge \frac{\hbar}{2}$$
 (V.54)

Zwei nicht-kommutierende Operatoren sind nicht gleichzeitig scharf messbar!

3 Translationsoperatoren

Seien \hat{A},\hat{B} hermitesche Operatoren mit $[\hat{A},\hat{B}]=i\hbar$ und

$$\hat{A}|a\rangle = a|a\rangle; \quad \hat{B}|b\rangle = b|b\rangle$$
 (V.55)

mit kontinuierlichem Spektrum (z.B. \hat{x}, \hat{p}).

$$\Rightarrow e^{\frac{i}{\hbar}\hat{B}\alpha} \hat{A} e^{-\frac{i}{\hbar}\hat{B}\alpha} = \hat{A} + \alpha; \quad \alpha \in \mathbb{R}$$
 (V.56)

Nämlich

$$f(\alpha) = e^{\frac{i}{\hbar}\hat{B}\alpha} \hat{A} e^{-\frac{i}{\hbar}\hat{B}\alpha}$$
 (V.57)

$$\frac{\mathrm{d}f(\alpha)}{\mathrm{d}\alpha} = \frac{i}{\hbar} e^{\frac{i}{\hbar}\hat{B}\alpha} \left[\hat{B}, \hat{A}\right] e^{-\frac{i}{\hbar}\hat{B}\alpha} \tag{V.58}$$

$$= 1 \quad \text{mit } f(0) = \hat{A}$$
 (V.59)

$$\Rightarrow f(\alpha) = \hat{A} + \alpha \tag{V.60}$$

Somit gilt auch

$$[\hat{A}, e^{-\frac{i}{\hbar}\hat{B}\alpha}] = \hat{A} e^{-\frac{i}{\hbar}\hat{B}\alpha} - e^{-\frac{i}{\hbar}\hat{B}\alpha}\hat{A}$$
 (V.61)

$$= e^{-\frac{i}{\hbar}\hat{B}\alpha}(\hat{A} + \alpha) - e^{-\frac{i}{\hbar}\hat{B}\alpha}\hat{A}$$
 (V.62)

$$= \alpha \ e^{-\frac{i}{\hbar}\hat{B}\alpha} \tag{V.63}$$

4 Zeitentwicklung von Mittelwerten und Bilder der Dynamik

Im Folgenden wollen wir uns die zeitliche Entwicklung von

$$\langle A(t) \rangle = \langle \Psi(t) | A | \Psi(t) \rangle$$
 (V.64)

anschauen.

(i) Für die zeitliche Ableitung gilt

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle A(t)\rangle = \left\langle \dot{\Psi}(t) \middle| A \middle| \Psi(t) \right\rangle + \left\langle \Psi(t) \middle| \dot{A} \middle| \Psi(t) \right\rangle + \left\langle \Psi(t) \middle| A \middle| \dot{\Psi}(t) \right\rangle \tag{V.65}$$

$$= \langle \Psi(t)| -\frac{1}{i\hbar} HA + A \frac{1}{i\hbar} H + \dot{A} |\Psi(t)\rangle \tag{V.66}$$

$$= \frac{i}{\hbar} \langle [H, A] \rangle + \langle \frac{\partial}{\partial t} A \rangle, \tag{V.67}$$

da aus der Schrödingergleichung

$$-i\hbar \left\langle \dot{\Psi} \right| = \left\langle \Psi \right| H \tag{V.68}$$

folgt. Dies gilt auch für zeitabhängige H.

(ii) Sei

$$H = \frac{\vec{p}^2}{2m} + V(\vec{r}) \tag{V.69}$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle r_l \rangle = \frac{i}{\hbar} \langle [H, r_l] \rangle \tag{V.70}$$

$$= \frac{i}{\hbar} \langle \left[\frac{\vec{p}^2}{2m}, r_l \right] \rangle \tag{V.71}$$

$$= \sum_{k} \langle \frac{i}{\hbar} \frac{p_k}{2m} [p_k, r_l] + [p_k, r_l] \frac{i}{\hbar} \frac{p_k}{2m} \rangle$$
 (V.72)

$$= \langle \frac{p_l}{m} \rangle \tag{V.73}$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle \vec{r} \rangle = \langle \frac{\vec{p}}{m} \rangle \tag{V.74}$$

(V.75)

Außerdem haben wir

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle p_l \rangle = \frac{i}{\hbar} \langle [V(\vec{r}, p_l)] \rangle \tag{V.76}$$

$$= \frac{i}{\hbar} \langle i\hbar \vec{\nabla}_l V(\vec{r}) \rangle = -\langle \vec{\nabla}_l V(\vec{r}) \rangle \tag{V.77}$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle \vec{p} \rangle = -\langle \vec{\nabla} V(\vec{r}) \rangle. \tag{V.78}$$

(V.79)

Das bedeutet, dass die Mittelwerte sich entwickeln nach den klassischen Bewegungsgleichungen (Ehrenfestsches Theorem). Aber, ganz wichtig:

$$\langle \vec{\nabla} \ V(\vec{r}) \rangle \neq \vec{\nabla} \ V(\langle \vec{r} \rangle)$$
! (V.80)

(iii) Hat eine Observable keine explizite Zeitabhängigkeit **und** kommutiert mit H, d.h.

$$\frac{\partial}{\partial t}A = 0, \quad [A, H] = 0, \tag{V.81}$$

dann folgt

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle A\rangle = 0\tag{V.83}$$

Da [A, H] = 0, existiert ein gemeinsames Eigenfunktionssystem.

5 Darstellungen (Bilder) der Zeitentwicklung

Neben der bisherigen Darstellung

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Psi(t)\rangle = H |\Psi(t)\rangle,$$
 (V.84)

der sog. Schrödingerdarstellung, existieren noch andere Darstellungen der Zeitentwicklung in der Quantenmechanik.

(i) <u>Heisenbergbild</u>: Hier bleiben die Zustandsvektoren zeitunabhängig und bestimmt durch ihre Anfangswerte.

Nach Schrödinger hat man zunächst den formalen Ausdruck

$$|\Psi(t)\rangle = e^{-\frac{i}{\hbar}H(t-t_0)} |\Psi(t_0)\rangle \tag{V.85}$$

und damit

$$\langle A(t) \rangle = \langle \Psi(t) | A | \Psi(t) \rangle.$$
 (V.86)

Im Heisenbergbild (Heisenbergdarstellung) wird diese Zeitabhängigkeit auf die Operatoren abgewälzt:

$$\langle A(t) \rangle = \langle \Psi(0) | e^{\frac{i}{\hbar}Ht} A e^{-\frac{i}{\hbar}Ht} | \Psi(0) \rangle$$
 (V.87)

$$\Rightarrow A_H(t) = e^{\frac{i}{\hbar}Ht} A_S e^{-\frac{i}{\hbar}Ht}, \qquad (V.88)$$

wobei wir den Operator im Schrödingerbild zur Unterscheidung mit A_S bezeichnet haben.

Die Dynamik spielt sich damit auf der Ebene der Operatoren ab entsprechend der

sog. Heisenberggleichung

$$\frac{dA_H(t)}{dt} = \frac{i}{\hbar} [H, A_H(t)] + (\dot{A}_S)_H$$
 (V.89)
(V.90)

mit $(\dot{A}_S)_H = \mathrm{e}^{iHt/\hbar} \dot{A}_S \, \mathrm{e}^{-iHt/\hbar}$ falls eine explizite Zeitabnhängigkeit von $A_S(t)$ vorliegt. Sie bestimmt die Dynamik aller Erwartungswerte, so wie die Schrödingergleichung im Schrödingerbild.

(ii) Wechselwirkungsbild

Oftmals hat man ein Hamiltonoperator der Form $H = H_0 + W$ mit einem "einfachen" (lösbaren) Teil H_0 und einer Störung W. Um diese approximativ am besten erfassen zu können (Störungsentwicklung), geht man ins Wechselwirkungsbild

$$|\Psi_W(t)\rangle = e^{\frac{i}{\hbar}H_0t} |\Psi_S(t)\rangle = e^{\frac{i}{\hbar}H_0t} \cdot e^{-\frac{i}{\hbar}Ht} |\Psi_S(0)\rangle \tag{V.91}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} |\Psi_W(t)\rangle = \frac{i}{\hbar} H_0 |\Psi_W(t)\rangle - \frac{i}{\hbar} \underbrace{e^{\frac{i}{\hbar}H_0t} H e^{-\frac{i}{\hbar}H_0t}}_{H_W(t)} |\Psi_W(t)\rangle$$
 (V.92)

$$= \left(-\frac{i}{\hbar}\right) \underbrace{\left[H_W(t) - H_0(t)\right]}_{W_W(t)} |\Psi_W(t)\rangle \tag{V.93}$$

(V.94)

Die Zeitentwicklung im Wechselwirkungsbild folgt somit aus

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Psi_W(t)\rangle = W_W(t) |\Psi_W(t)\rangle$$
 (V.95)

mit Operatoren

$$A_W(t) = e^{\frac{i}{\hbar}H_0t} A e^{-\frac{i}{\hbar}H_0t}$$
 (V.96)

$$= U_W(t)^{\dagger} A_H(t) U_W(t), \tag{V.97}$$

(V.98)

wobei

$$U_W(t) = e^{\frac{i}{\hbar}H_0t} e^{-\frac{i}{\hbar}Ht}$$
 (V.99)

der Zeitentwicklungsoperator im Wechselwirkungsbild ist. Durch diese gemischte Zeitabhängigkeit für Operatoren und Zustände erhält man eine Schrödingergleichung, die nur noch den Wechselwirkungsanteil W entält, allerdings in zeitabhängiger Form entsprechend der ungestörten Situation.

Für die zeitliche Ableitung gilt dann

$$i\hbar \dot{U}(t) = H_W(t) U(t) - H_0(t) U(t)$$
 (V.100)

$$\Rightarrow i\hbar \dot{U}(t) = W_W(t) \ U(t) \tag{V.101}$$

mit $H_{0,W} = H_0$ sowie

$$U(t) = \underbrace{U(0)}_{-1} + \frac{1}{i\hbar} \int_0^t ds \ W_W(s) U(s).$$
 (V.102)

Gleichung V.102 ist eine iterative Gleichung zur Bestimmung von U(t).

$$\Rightarrow U(t) = \mathbb{1} + \frac{1}{i\hbar} \int_0^t dt' \ W_W(t') \tag{V.103}$$

$$+ \left(\frac{1}{i\hbar}\right)^2 \int_0^t dt' \ W_W(t') \int_0^{t'} dt'' \ W_W(t'') \tag{V.104}$$

$$+...$$
 (V.105)

(V.106)

Durch Definition eines sog. Zeitordnungsoperators lässt sich diese Reihe formal aufsummieren, d.h.,

$$\mathcal{T}[A(t) B(t')] = A(t)B(t')\theta(t-t') \tag{V.107}$$

$$+ B(t') A(t)\theta(t'-t),$$
 (V.108)

so dass

$$\int_0^t dt' \ W_W(t') \ \int_0^{t'} dt'' W_W(t'') \tag{V.109}$$

$$= \frac{1}{2} \mathcal{T} \int_0^t dt' \int_0^t dt'' W_W(t') W_W(t'')$$
 (V.110)

$$\Rightarrow U(t) = \mathcal{T} \exp\left\{-\frac{i}{\hbar} \int_0^t dt' \ W_W(t')\right\}$$
 (V.111)

6 Superposition, Interferenz, Dichteoperatoren

(i) Seien $|\Psi_1\rangle$, $|\Psi_2\rangle$ normierte Zustände mit $\langle\Psi_1|\Psi_2\rangle=0$ und die Observable A gegeben durch

$$A = \sum_{n} a_n |n\rangle \langle n|, \qquad (V.112)$$

dann gilt

$$P_1(a_n) = |\langle n|\Psi_1\rangle|^2 \tag{V.113}$$

$$P_2(a_n) = |\langle n|\Psi_2\rangle|^2. \tag{V.114}$$

Ebenso gilt für die lineare Superposition

$$|\Psi\rangle = \lambda_1 |\Psi_1\rangle + \lambda_2 |\Psi_2\rangle \tag{V.115}$$

mit
$$|\lambda_1|^2 + |\lambda_2|^2 = 1 \Rightarrow P(a_n) = |\langle n|\Psi\rangle|^2 = |\lambda_1 \langle n|\Psi_1\rangle + \lambda_2 \langle j|\Psi_2\rangle|^2$$
 (V.116)

$$= |\lambda_1|^2 P_1(a_n) + |\lambda_2|^2 P_2(a_n)$$
 (V.117)

$$+\underbrace{2Re\{\lambda_1\lambda_2^*\langle n|\Psi_1\rangle\langle\Psi_2|n\rangle\}}_{\text{Interference}} \tag{V.118}$$

Die Addition der Zustandsvektoren entspricht der Addition von Wellenamplituden \rightarrow Interferenz \neq Addition der individuellen Wahrscheinlichkeiten (Basisabhängig!).

(ii) Dichteoperator

Wir führen nun den Dichteoperator für gemischte Zustände ein und stellen diesen in der Basis der Observablen A dar:

$$\rho = \sum_{n} p_{n} |n\rangle \langle n| \text{ mit } p_{n} \in \mathbb{R}^{+}.$$
 (V.119)

Dieser Operator lässt sich nicht als sog. "reiner" Zustand $\rho \neq |\Psi\rangle \langle \Psi|$ darstellen. Für den Erwartungswert gilt dann

$$\langle A \rangle = \text{Spur}\{A\rho\}$$
 (V.120)

$$= \sum_{k} \langle k|A\rho|k\rangle \tag{V.121}$$

$$=\sum_{k} a_k p_k \tag{V.122}$$

Allgemein gilt für Dichteoperatoren

$$Spur(\rho) = \sum_{n} p_n = 1 \Rightarrow 0 \le p_n \le 1$$
 (V.123)

$$\operatorname{Spur}(\rho^2) = \sum_{k} p_k^2 \begin{cases} < 1, & \operatorname{Zustand gemischt} \\ = 1, & \operatorname{reiner Zustand} p_n = \delta_{n,k} \end{cases}$$
 (V.124)

Da außerdem $p_n \in \mathbb{R}$ gilt

$$\rho = \rho^{\dagger} \tag{V.125}$$

Dichte
operatoren sind somit hermitesch, positiv (alle Eigenwerte
 >0), normiert und beschreiben in der Regel ein Gemisch.