

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code :EC(EI)-301

DIGITAL ELECTRONIC CIRCUITS

Time Allotted:3 Hours

1.

Full Marks: 70

The figures in themargin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

Group - A

(Multiple Choice Type Questions)

Answer any ten questions: http://www.makaut.com		1×10=10
(i) The minimum number of NAND gate required to	design a single XOR gate is	
(a) 5	(b) 3	
_(c) 4	(d) 6	
(ji) The logic family which gives the fastest switching	speed is	
(a) ECL	(b) Schottky TTL	
(c) CMOS	(d) Low Power Schottky TTL	
$Y = AB + \overline{A}B + A\overline{B}$		
(a) All are minterms	(b) The function is in canonical form	
(c) Both are true	(d) None of them	
(is The fullowing operation is equivalent to http://w	ww.makaut.com	
-540		
(a) A buffer or delayed gate	(b) An inverter	
(c) Adder	(d) None of them	

Turn Over

B Technele/Odd/ SEM-3/EC(EI)-301/2018-19

(v) 10MHz clock signal is applied to a MOD- 4 cou- clock frequency will be	nter followed by a MOD-5 counter then the output
(a) 50 kHz	(b) 5 MHz
(c) 5 kHz	(d) 500 LHz 1001 0011
(vi) SCD equivalent of (793), is http://www.ma	kaut.com
60 011110010011	(b) 101110010011
(c) 011110(H010)	, 140 011110100011
(vii) $11(511)_x = (777)_x$ then the value of 1 is	
(a) b	(b) 7
(c) 5	(d) 3
(vi)(VA single bit memory device is	
fat ROM	(b) RAM
-(e) FLIP-FLOP	(d) PROM
(134) The operation of a flip-flop is analogous to	
_(a) Astable multivibrator	(b) Monostable multivibrator
(c) Bistable multisibrator	(d) None of these
(x) For a N-bit weighted register D/A converter number of resistors required is	
(a) 2N	(b) N
(c) 2N-1	(d) N-I
(xi) The minterms for $F(A,B,C) = A + \overline{BC} + BC$ are	http://www.makaut.com
(a) $\sum m (0, 1, 2, 3, 4, 6)$	$_{(b)}$ $\sum m(0,3.4.5,6.7)$
(c) \(\Sigma\mathreal{m}\)(1,3,4.5,6.7)	(d) $\sum m(0,2,3,4,5,7)$
(will A rang counter consists of 6 flip-flops well have	•
(a) 12 states	(b) fistates
(c) 11 states	(d) 5 states

Group - B

(Shurt Answer Type Questions)

Answer may there of the following.

5x3=15

* Using the theorem of Boolean logic prove that

$$(A + B).(\overline{AB} + C).(\overline{AC} + \overline{B}) = \overline{AB} + B\overline{C}$$

Simplify F(A.B.C.D) = $\sum n (1.3,7,12,15) + \sum n (0,2.5)$ using k-map and realize the simplified expression using NAND gates only 2+2+1=5

Design a 4-bit adder/subtractor module using full adder and necessary gates with an add/subtract control
line.

finplement the function F(A.B.C.D) = \(\sum_{mil}(2,3,7,8,9,0,15)\) using a single 8.1 MUXconsidering A.B.Das in select lines

6. Design a 4-bit universal shift register using 4.1 MUX and other gates. http://www.makaut.com

Group - C

(Long Answer Type Questions)

Answer any three of the following.

15×3=45

- Find the minimal expression for the function F(A.B.C.D) = Σm(L3,4,5,9,10 H) + Σd(6,8) using
 Quine McClusky method and also realize the expression using only two input basiclopic gates = 12+3=15
- 8. (a) What did you mean by Race around condition? How it can be eliminated using Master Slave. "Hip-flop?
 - (b) Realize a T flip-flop using SR flip-flop

tel/How do you caseade two 2.4 decoders to make one 3.8 decoder? Draw the necessarycircuit.

12+41+0+3=15

 (a) Designed a clocked synchronous sequential network using J-K flip-flop and other gateswhose state diagram is given below. http://www.makaut.com

(b) Design a mod-5 ripple counter using J-K flip-flop.

10+5=15

CS/B.Tech/EIE/Odd/ SEM-3/EC(EI)-301/2018-19

- (a) Explain the operation of a 4 bit R-2R ladder digital to analog converter.
 - (b) For the same circuit assume that the feedback resistance of the op amp is variable, the resistance R=10K-ohm and reference voltage $V_R=10V$. Determine the value of R_f that should be connected to achieve the following output conditions:
 - (i) The value of 1 LSB at the output is 0.5 V
 - (ii) An analog output of 6 V for a binary input of 1010.
 - (iii) The full scale output voltage of 12 V.
 - (iv) The actual maximum output voltage of 10 V.

7+8=15

11. Write short notes on any three of the following: http://www.makaut.com

5x3=15

- Basic principle of successive approximation type A/D converter
- -(E) Carriy Generator
- ←(iii) Johnson counter
- (iv) Parallel in Serial Out Register
 - (v) EEROM