Let $\mathbb{R}^2 = \{(x,y)|x,y \in \mathbb{R}\}$. Define the following operations on \mathbb{R}^2 :

- (1) $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$, for all $x_1, x_2, y_1, y_2 \in \mathbb{R}$, (called the pintwise addition)
- (2) $\alpha \cdot (x,y) = (\alpha x, \alpha y)$, for all $\alpha \in \mathbb{R}, (x,y) \in \mathbb{R}^2$, (called the scalar multiplication)

The triple $(\mathbb{R}^2, +, \cdot)$ forms a nice algebraic structure, which is called a vector space over \mathbb{R} .

Any non empty subset $W \subset \mathbb{R}^2$ which is closed under the addition and scalar multiplication on \mathbb{R}^2 , is called a subspace of \mathbb{R}^2

Example:
$$W = \{(x, y) \in \mathbb{R}^2 | x = y\}.$$

Informally, a "linear transformation" preserves algebraic operations. Thus sum of two vectors is mapped to the sum of their images and the scalar multiple of a vector is mapped to the same scalar multiple of its image.

A linear transformation (or linear map) T from \mathbb{R}^2 to \mathbb{R}^2 is a map which satisfies

- (1) T(0) = 0
- (2) $T(v_1 + v_2) = T(v_1) + T(v_2)$
- (3) $T(\alpha v) = \alpha v$

Geometrically, a linear map sends lines passing through the origin to line passing through the origin or onto the origin.

- $T: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x, y).$
- $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (2x,y)$, Stretching along e_1 (x direction).
- $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x,0)$, Stretching along e_1 (x direction).
- $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (2x,y)$, projection
- $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (0,x)$, projection + rotation

A non empty set V is said to be a vector space over \mathbb{R} (o real vector space) if there exist maps $+: V \times V \to V$, $(x, y) \mapsto x + y$, and $: \mathbb{R} \times V \to V$, $(\alpha, x) \mapsto \alpha \cdot x$, called scalar multiplication, satisfying the following properties:

- (1) x+y=y+x
- (2) (x+y) + z = x + (y+z)
- (3) There exists $0 \in V$ such that x + 0 = x = 0 + x.
- (4) For every $x \in V$, there exists $y \in V$ such that x + y = 0 = y + x.
- (5) $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$.
- (6) $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$
- (7) $(\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x)$
- (8) $1 \cdot x = x$.