TEMA D'ESAME

Domanda A

Si progetti una rete combinatoria in grado di validare il codice a maggioranza 2-su-5. Secondo tale codice le cifre decimali da 0 a 9 sono rappresentate dalle sequenze di 5 bit mostrate nella tabella seguente, ogni altra combinazione degli ingressi non rappresenta una cifra valida. Si mappi la funzione di validazione, che vale 1 solo per le parole di ingresso valide, sull'architettura mostrata nella figura seguente, in cui F0 ed F1 sono lookup-table a 4 ingressi in grado di calcolare ogni funzione di 4 variabili. Si richiede di trovare la forma minima di F1 ed F2.

	Codic
Dato	X[4:0]
0	00011
1	00101
2	00110
3	01001
4	01010

X[4:0]			
01100			
10001			
10010			
10100			
11000			

Domanda B

Dimostrare, procedendo unicamente per via algebrica, la seguente proprietà:

$$ac = 0 \land a + c = 1 \Rightarrow \overline{ab} \oplus \overline{bc} = b$$

Domanda C

È dato il datapath mostrato di seguito e controllato dalla macchina a stati FSM. Si vuole calcolare X²+Y²-XY, supponendo che gli ingressi X ed Y siano stabili per un tempo succficiente. A tal fine si utilizzano i registri temporanei A e B dotati di segnali di clock enable ENA ed ENB rispettivamente e la ALU, controllata dal segnale OP, le cui funzioni sono descritte nella tabella seguente. Si progetti la macchina a stati FSM per il controllo di tale data path, tenedo presente che il segnale START forza l'inizio della computazione ed il segnale EOC assume valore 1 per un ciclo di clock alla fine della computazione.

Per la descrizione della macchina a stati si utilizzi una tabella come quella riportata di seguito come esempio di realizzazione dell'operazione **A=2X-Y**.

Stato	Operazione	ENA	ENB	so	S1	OP	EOC
S0	B = X	0	1	0	-	00	0
S1	A = B + X	1	0	0	1	01	0
S2	A = A + Y	1	0	1	0	10	1

Domanda D

Si sintetizzi con flip flop di tipo D la macchina a stati finiti minima per il controllo di una porta ad apertura automatica. La porta è dotata dei seguenti dispositivi:

- Sensore infrarosso in grado di rilevare la presenza di una persona nelle vicinanze.
 Quando una persona è vicina alla porta il segnale di uscita P di tale sensore vale 1, altrimenti vale 0.
- 2. Sensore di fine corsa. Il segnale di uscita **F** di tale sensore vale 1 solo quando la porta è completamente aperta o completamente chiusa.
- 3. Motore elettrico per l'apertura/chiusura, dotato di due segnali di controllo **A** e **C**. Quando **A** vale 1 il motore apre la porta, quando **C** vale 1 il motore chiude la porta. Si tenga presente che non è noto a priori il tempo necessario al motore per aprire o chiudere completamente la porta e che se entrambi i segnali valgono 0 o 1, il motore rimane immobile.

Si progetti la macchina completando, ove necessario, la specifica data e chiarendo tutte le assunzioni fatte per procedere alla realizzazione del diagramma degli stati.