Analítica de textos en la salud mental

Jesús David Barrios 201921887 Sergio Peñuela 201922873 Jhoan Diaz 201<u>819861</u>

Contexto

 A partir de textos obtenidos de personas sufriendo de problemas de salud mental se quiere aplicar la analítica de textos para obtener modelos de machine learning que ayuden a detectar, a partir del mensaje escrito por la persona, si se va a llevar a cabo un intento de suicidio o no.

Descarga y entendimiento de los datos

Número de	e filas: 19	5700	
Número de	e columnas:	3	
	Unnamed: 0	text	class
21738	135566	AAAA I'm literally the stupidest person in exi	non-suicide
26627	17383	Is it just me or is the sound of rain One of t	non-suicide
135198	36707	How close i amam tired of living, tired of bei	suicide
140848	186151	Guess who kissed a girl? Not me.\n\nȀ	non-suicide
79670	255320	Should I delete my Reddit account? I mean shou	non-suicide

• En los datos encontrados hay 3 columnas. De estas 3 las columnas "text" y "class" son las que nos proporcionan la información necesaria para llevar a cabo el modelo.

Dimensiones de calidad

- Completitud: no se encontraron valores nulos en los datos
- Unicidad: no hubo textos repetidos en los datos
- Consistencia y validez: la consistencia hace referencia a la integridad de datos entre fuentes y observaciones. Por su parte, la validez mide si los datos hacen sentido para el contexto específico. En este sentido, se considera que en términos generales se cumple con estas métricas.

Preparación de los datos

- Se eliminó la columna "unnamed" pues no aportaba valor alguno a lo que se buscaba en el modelo.
- Se procedió a convertir los valores de la columna "text" a string para sus posteriores modificaciones.
- En la columan "class" se convirtió los valores a numéricos siendo 0 'non-suicide' y 1 'suicide'.

```
non-suicide 110165
suicide 85535
Name: class, dtype: int64
0 110165
1 85535
Name: class, dtype: int64
```

Procesamiento del texto

	text	class	tokens
60891	going to buy my first console ps what are some	0	[going, buy, first, consol, gam, must, play, m
78088	make it stop pleasei cannot do this anymore i	1	[mak, stop, please, anym, much, pain, everyday
169268	i just wanted to share one of the embarrassing	0	[want, shar, on, embarrassingawkward, tim, lif
159499	can i roast your country if willing to take so	0	[roast, country, wil, tak, crit, pleas, nam, c
82956	when the imposter when the impogster sus jdksj	0	[impost, impogst, sus, jdksjdjdhekehdidkdjj, s

- Todo carácter que no perteneciera al alfabeto inglés fue eliminado (e.g. @, #, %, !, etc.).
- Se pasaron todas las palabras a letras minúsculas.
- Se removieron las palabras que no contuvieran ninguna vocal o la letra "y", pues estas se consideraron como errores de escritura.
- Se removieron los "stop-words" pues estas palabras son utilizadas para la sintaxis del texto, pero no aportan significado a la frase que nos pueda dar indicios sobre el tipo de texto.
- Se eliminaron todos los tokens con una longitud menor o igual a 2
- Se cortaron las raíces de las palabras
- Se lematizaron los verbos

Modelamiento, validación y visualización

Se hizo uso de los siguientes tres modelos:

- KNN
- Árbol de decisión
- Random Forest

Árbol de decisión

- Se decidió implementar un modelo con árbol de decisión pues requiere de menor preprocesamiento de datos para obtener buenos resultados y tiene buenos tiempos de ejecución.
- Para poder utilizar el modelo óptimo se hizo uso de gridsearch para poder obtener los mejores hiperparámetros y utilizarlos en el modelo. Los mejores hiperparámetros obtenidos fueron los siguientes:

```
{'criterion': 'entropy', 'max_depth': 10, 'min_samples_split': 2}
```

Resultados árbol de decisión

 Como se puede ver se obtuvo un f1-score de 0.85 lo cual indica un buen nivel de precisión y de recall. Este modelo podría ser tenido en cuenta para identificar los intentos de suicidio a partir de textos. Resultados:

Exactitud: 0.86

Recall: 0.7865829737151824 Precisión: 0.876541050974906

Puntuación F1: 0.8291291042924489

uncudcion 11. 0.0231231042324403						
		precision	recall	f1-score	support	
	0	0.85	0.91	0.88	16597	
	1	0.88	0.79	0.83	12745	
accur	acy			0.86	29342	
macro	avg	0.86	0.85	0.85	29342	
weighted	avg	0.86	0.86	0.86	29342	

Random Forest

Accuracy: 0.876869200685054						
F1: 0.8769471295397717						
Precision	Precision: 0.8770717948176725					
Recall:	Recall: 0.876869200685054					
	ŗ	recision	recall	f1-score	support	
	0	0.89	0.89	0.89	22035	
	1	0.85	0.86	0.86	17086	
accuracy				0.88	39121	
macro	avg	0.87	0.88	0.88	39121	
weighted	avg	0.88	0.88	0.88	39121	

KNN

Accuracy: 0.5816569106106695 F1: 0.47165582706008274						
Precision:	Precision: 0.6173809151323735					
Recall: 0.5	Recall: 0.5816569106106695					
	precision	recall	f1-score	support		
0	0.58	0.97	0.72	22035		
1	0.67	0.08	0.15	17086		
accuracy			0.58	39121		
macro avg	0.62	0.53	0.44	39121		
weighted avg	0.62	0.58	0.47	39121		

Conclusiones

• A partir de los resultados obtenidos en los 3 modelos que se implementaron se recomienda utilizar el modelo de Random Forest pues es el que tiene un f1-score más alto por lo que es bueno identificando casos de suicido como casos de no suicidio, el árbol de decisión también se podría utilizar, pero tuvo un rendimiento menor de 3 puntos porcentuales. Además de eso se puede utilizar Random Forest para poder saber cuáles son las palabras que más influyen en la clasificación de suicidio. Por lo que este sería el modelo ideal para empresas que buscan identificar personas que puedan cometer un suicidio y evitar que lo hagan.