Listemi di resistenze

possono essere sia in serie che in para lelo

RESISTORI IN SERIE

sono attraversati dalla stessa quantità di corrente

data la prima legge di Olum

 $R = \frac{\Delta V}{\dot{a}}$

$$\begin{cases} R_{1} \cdot \lambda = V_{A} - V_{B} \\ R_{2} \cdot \lambda = V_{B} - V_{C} \end{cases}$$

$$(R_1+R_2)i = V_0 -$$

 $(R_1+R_2)\dot{i} = V_A - V_B + V_B - V_C \longrightarrow (R_1+R_2)\dot{i} = V_A - V_C \longrightarrow Req = R_1+R_2$ Reg = Zi Ri

RESISTORI IN PARALLELO

Due resistenze in parallello arranno la d.d.p. costante

$$\int \dot{L} = \dot{L}_A + \dot{L}_Z \qquad \left(\text{legge dei modi} \right)$$

$$\dot{L}_1 = \frac{V_A - V_B}{R_1} \qquad \left(\text{I legge di Ohnu} \right)$$

$$\dot{L}_2 = \frac{V_A - V_B}{R_2} \qquad \left(\text{I legge di Ohnu} \right)$$

(I legge di Ohm) (I legge di Ohm)

$$V_{A} - V_{B} \left[\frac{1}{R_{A}} + \frac{1}{R_{z}} \right] = 1$$

$$\frac{1}{R_{A}} + \frac{1}{R_{z}} = \frac{1}{V_{A} - V_{B}} = \frac{1}{R_{eq}}$$

 $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$ $R_{eq} = \sum_{i} R_{i}^{-1}$

prima legge di Kirchhoff (legge dei nodi)

La somma delle correnti che entrano in un noto e uguale alla somma delle Deriva direttamente dalla legge di conservazione delle carich correnti de escono da quel nodo

seconda legge di Kirchhoff (legge delle maglie)

La somma delle di Perenze di potenziale vilevate su un circuito chiuso in un giro completo é nulla. É una legge di conservazione dell'energia.

Percorrendo una maglia di un circuto partendo da un punto A, la somma delle d.d.p. rilenate é uguale a zero, tenendo conto della regola della resistenza e della regola della fem.

REGOLA DELLA RESISTENZA

REGOLA DELLA F.E.M.

se si passo ottroverso una resistenza nel verso della corrente la variazione di potenziale et -iR; nel verso opposto +iR

se si passa attraverso un generatore di fen i deale (omeno con resistenza interna nulla, mella direzione della P.e.m., la variazione di potenziale é + DV; nel verso opposto e −∆V