Problem E

O algoritmo de Hopcroft-Karp

para determinar se dois autómatos finitos deterministas são equivalentes

(exemplo do sample input)

O objectivo deste problema é a implementação dum algoritmo clássico da literatura em linguagens formais e teoria da computação, o algoritmo Hopcroft-Karp. Espera-se que a solução seja concisa, eficaz e elegante.

Problem

O algoritmo de Hopcroft-Karp para a equivalência de autómatos permite determinar a equivalência sem passar pela construção dos autómatos minimais.

A publicação original deste algoritmo em 1971, de J. E. Hopcroft e de R. M. Karp, encontra-se neste link (aqui)

Considere dois autómatos finitos deterministas $M_1 \triangleq (Q_1, \Sigma, \delta_1, s_1, F_1)$ e $M_2 \triangleq (Q_2, \Sigma, \delta_2, s_2, F_2)$ sobre, para simplificar, o alfabeto $\Sigma = \{a, b, c \dots, z\}$. Consideramos igualmente que $Q_1 \cap Q_2 = \emptyset$. Considere o autómato $M \triangleq (Q_1 \cup Q_2, \Sigma, \delta, s_1, F_1 \cup F_2)$, onde

$$\delta(q, a) \triangleq \begin{cases} \delta_1(q, a) & se \quad q \in Q_1 \\ \delta_2(q, a) & se \quad q \in Q_2 \end{cases}$$

Então podemos afirmar que M_1 e M_2 são equivalentes (i.e. $L(M_1) = L(M_2)$ se e só se $s_1 \approx s_2$ em M.

Relembramos que \approx é uma relação de equivalência (reflexiva, simétrica e transitiva) sobre o conjunto de estados e que , para dois estados p e q,

- $p \approx q \triangleq \forall w \in \Sigma^*, \bar{\delta}(p, w) \in F \Leftrightarrow \bar{\delta}(q, w) \in F$
- $\forall a \in \Sigma, \ p \approx q \Rightarrow \delta(p, a) \approx \delta(q, a)$
- $\forall w \in \Sigma^*, \ p \approx q \Rightarrow \bar{\delta}(p, w) \approx \bar{\delta}(q, w)$

O algoritmo faz uso estratégico de uma pilha S e de uma estrutura de dados, **Union-Find**, especializada para lidar com conjuntos equipados de uma relação de equivalência (disjoint-sets). Esta estrutura de dados disponibiliza três operações:

• MakeSet q: cria um conjunto com um só elemento, $\{q\}$

- ullet Find q: devolve o elemento representativo do conjunto que contém q
- Union p q: junta num só conjunto os conjuntos que contêm $p \in q$

Assim sendo, o algoritmo é o seguinte:

- 1. para cada estado q de $Q_1 \cup Q_2$, MakeSet q
- 2. $Union s_1 s_2$
- 3. Push $S(s_1, s_2)$
- 4. Enquanto S não estiver vazia
 - (a) $(q_1, q_2) \leftarrow Pop S$
 - (b) Para cada caracter a de Σ

```
i. r_1 \leftarrow Find \delta(q_1, a)
```

ii. $r_2 \leftarrow Find \ \delta(q_2, a)$

iii. se $r_1 \neq r_2$ então

A. Union r_1 r_2

B. Push $S(r_1, r_2)$

5. no final, $L(M_1) = L(M_2)$ se e só se nenhum dos sub-conjuntos da estrutura Union-Find contém simultaneamente um estado final e não final.

Input

A entreada deste problema consiste na descrição dos dois autómatos $M_1 \triangleq (Q_1, \Sigma, \delta_1, s_1, F_1)$ e $M_2 \triangleq (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Para simplificar o formatos dos dados em entrada admitiremos aqui que o conjunto Q_1 é sempre da forma $\{1...n\}$ (n inteiro) e que Q_2 é sempre da forma $\{n+1...n+m\}$ (m inteiro). Assim, é garantido que $Q_1 \cap Q_2 = \emptyset$.

Admitiremos igualmente que Σ é o alfabeto português $\{a-z\}$.

Assim $M_1 \triangleq (\{1,\ldots,n\},\Sigma,\delta_1,s_1,F_1)$ pode ser introduzido por:

- uma linha com o inteiro n, especificando o conjunto $Q_1 = \{1, \ldots, n\}$;
- uma linha com o inteiro representa o estado inicial s_1 ($s_1 \in Q_1$);
- uma linha com o inteiro f_1 (cardinalidade do conjunto F_1 dos estados finais);
- uma linha com f_1 inteiros distintos que formam o conjunto dos estados finais;
- uma linha com o numero t_1 de transições (a cardinalidade de δ_1));
- t₁ linhas em que cada uma delas introduz uma transição sob a forma de i c j, sendo i o inteiro representando o estado de partida da transição, c o caracter no rótulo da transição e j o inteiro que representa o estado de chegada.

As restants linhas introduzem M_2 da mesma forma. Assim $M_2 \triangleq (\{n+1, \ldots, n+m\}, \Sigma, \delta_2, s_2, F_2)$ pode ser introduzido por:

- uma linha com o inteiro m, especificando o conjunto $Q_2 = \{n+1, \ldots, n+m\}$;
- uma linha com o inteiro representa o estado inicial s_2 ($s_2 \in Q_2$);
- uma linha com o inteiro f_2 (cardinalidade do conjunto F_2 dos estados finais);

- \bullet uma linha com f_2 inteiros distintos que formam o conjunto dos estados finais;
- uma linha com o numero t_2 de transições (a cardinalidade de δ_2));
- t_2 linhas em que cada uma delas introduz uma transição sob a forma de i c j, sendo i o inteiro representando o estado de partida da transição, c o caracter no rótulo da transição e j o inteiro que representa o estado de chegada.

Output

Uma linha com YES se $L(M_1) = L(M_2)$, NO senão.

Constraints

```
\begin{array}{l} 1 \leq n, m \leq 50 \\ 1 \leq t_1, t_2 \leq 1000 \end{array}
```

Sample Input

```
1
2
2 3
12
1 a 2
1 b 5
2 a 3
2 b 4
3 a 2
3 b 4
4 a 5
4 b 1
5 a 5
5 b 6
6 a 3
6 b 4
3
7
1
8
6
7 a 8
7 b 9
```

Sample Output

YES