FCC ID: Y28MUS3

FCC TEST REPORT for Art. Lebedev Studio

Wireless Mouse Model No.: MUS3

Prepared for : Art. Lebedev Studio

Address : 5 Gazetny per. Moscow, Russia, 125009

Prepared By : Anbotek Compliance Laboratory Limited

Address : 1/F, 1 /Building, SEC Industrial Park, No. 4 Qianhai Road,

Nanshan District, Shenzhen, 518054, China

Tel: (86) 755-26014771 Fax: (86) 755-26014772

Report Number : 201011742F

Date of Test : Nov. 27~Dec. 03, 2010

Date of Report : Dec. 04, 2010

TABLE OF CONTENT

Description

Page

Test Report

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	4
1.2. Description of Test Facility	
1.3. Measurement Uncertainty	
2. MEASURING DEVICE AND TEST EQUIPMENT	6
3. TEST PROCEDURE	7
4. RADIATION INTERFERENCE	8
4.1. Requirements (15.249, 15.209):	8
4.2 Test Procedure	
4.3 Test Results	
5. OCCUPIED BANDWIDTH	12
5.1. Requirements (15.249):	12
5.2 Test Results	
6. PHOTOGRAPH	
6.1. Photo of Radiation Emission Test	14

APPENDIX I (Photos of EUT) (4 Pages)

TEST REPORT

Applicant : Art. Lebedev Studio

Manufacturer : Dongguan Togran Electronics Co. Ltd.

EUT : Wireless Mouse

Model No. : MUS3
Serial No. : N/A
Rating : DC 3V

Trade Mark : Art. Lebedev

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.249 & 15.209

The device described above is tested by Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Anbotek Compliance Laboratory Limited

Date of Test:	Nov. 27~Dec. 03, 2010
Prepared by :	Zock reng
	(Engineer / Rock Zeng)
	Cow. Kiang
Reviewer:	
reviewer .	(Project Manager / Coco Xiang)
Approved & Authorized Signer:	70 m. Chen
ripproved & riumorized Signer.	(Manager / Tom Chen)
	(Ivialiagel / Tolli Cilell)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Wireless Mouse

Model Number : MUS3

Test Power Supply: DC 3V via 2 Pcs new (full) AA Alkaline Battery

Frequency: 2403~2478MHz

Channel : 2403 MHz, 2408 MHz, 2413 MHz, 2428 MHz, 2433 MHz,

2443 MHz, 2453 MHz, 2458 MHz, 2463 MHz, 2468 MHz,

2473 MHz, 2478 MHz

Antenna Gain : 1dBi

(The device uses an integral PCB antenna which is not intended and

easy to modify.)

Applicant : Art. Lebedev Studio

Address : 5 Gazetny per. Moscow, Russia, 125009

Manufacturer : Dongguan Togran Electronics Co. Ltd.

Address : 262 Shidan Rd., the 3rd Industrial Area, Juzhou, Shijie Town,

Dongguan, Guangdong 523290, P.R.C.

Date of receiver : Nov. 26, 2010

Date of Test : Nov. 27~Dec. 03, 2010

1.2. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, August 20, 2010.

IC-Registration No.: 8058A-1

Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A-1, August 30, 2010.

Test Location

All Emissions tests were performed at

Anbotek Compliance Laboratory Limited. at 1/F, 1 /Building, SEC Industrial Park, No. 4 Qianhai Road, Nanshan District, Shenzhen, 518054, China

1.3. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.3 dB

Conduction Uncertainty : Uc = 3.4dB

2. MEASURING DEVICE AND TEST EQUIPMENT

2. MEASURING DEVICE AND TEST EQUILIBRIA										
Equipment	Manufacturer	Model #	Serial #	Data of Cal.	Due Data					
EMI Test Receiver	Rohde & Schwarz	ESCI	100119	Mar.03, 2010	Mar.02, 2011					
EMI Test Receiver	Rohde & Schwarz	ESPI	1101604	Jun.21, 2010	Jun.20, 2011					
EMI Test Receiver	Rohde & Schwarz	ESIB26	100249	Sep.22, 2010	Sep.21, 2011					
EMI Test Software	SHURPLE	ESK1	N/A	N/A	N/A					
Spectrum Analyzer	Agilent	E7405A	MY45114970	Jun.21, 2010	Jun.20, 2011					
Signal Generator	Rohde & Schwarz	SMR27	100124	Jul.06, 2010	Jul.05, 2012					
Signal Generator	Rohde & Schwarz	SML03	102319	Aug.01, 2010	Aug.01, 2012					
AC Power Source	Sepcial power system	YF650	N/A	N/A	N/A					
Absorbing Clamp	Rohde & Schwarz	MDS21	100218	Apr.30, 2010	Apr.29, 2012					
Power Meter	Rohde & Schwarz	NRVD	101287	Jul.19, 2009	Jul.18, 2011					
Coaxial Cable	N/A	N/A	N/A	May.31, 2010	May.30, 2011					
Coaxial Cable	N/A	N/A	N/A	May.31, 2010	May.30, 2011					
Coaxial Cable	N/A	N/A	N/A	May.31, 2010	May.30, 2011					
Universal radio Communication tester	Rohde & Schwarz	CMU200	101724	Sep.08, 2009	Sep.07, 2011					
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	N/A	N/A	N/A					
BiConilog Antenna	ETS-LINDGREN	3142C	00042670	Mar.03, 2010	Mar.02, 2011					
BiConilog Antenna	ETS-LINDGREN	3142C	00042673	Mar.03, 2010	Mar.02, 2011					
Double-ridged Waveguide horn	ETS-LINDGREN	3117	00035926	Dec.30, 2009	Dec.29, 2011					
Double-ridged Waveguide horn	ETS-LINDGREN	3117	00041545	Dec.30, 2009	Dec.29, 2011					
Pre-amplifier	CD	PAM0203	804203	Jun.21, 2010	Jun.20, 2011					
RF Switch	CD	RSU-M3	706543	Jun.21, 2010	Jun.20, 2011					
Thermo-/Hygrometer	N/A	TH01	N/A	May.03, 2010	May.02, 2011					
Shielding Room	Zhong Yu Electronic	N/A	N/A	N/A	N/A					
3m Semi-Anechoic Chamber	Zhong Yu Electronic	N/A	N/A	Apr.28, 2010	Apr.27, 2012					

3. Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of Anbotek Compliance Laboratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.3oF with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

4. Radiation Interference

4.1. Requirements (15.249, 15.209):

FIELD STRENGTH	FIELD STRENGTH	S15.209	
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m @3M
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBμV/m @3m	54 dBμV/m @3m	ABOVE 960 MHz	54dBuV/m

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.

4.2 Test Procedure

The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber.

The test results are listed in Section 4.3.

4.3 Test Results

PASS.

Please refer the following pages.

Data:

Horizontal CH Low(2403MHz)

Frequency MHz	Cable Loss dB	Ant Factor dB/m	Preamp Factor dB	Read Level dBµV	Level dBμV/m	Limit dBµV/m	Over Limit dB	Remark
202.81	1.3	10.57	41.24	51.17	21.80	43.50	-21.70	QP
375.94	1.75	14.82	41.80	46.13	20.90	46.00	-25.10	QP
2403.00	3.11	31.24	35.30	82.31	81.36	94.0	-12.64	Peak
4806.00	3.11	31.62	34.71	32.48	32.50	54.0	-21.50	Peak
7209.00	3.12	32.15	35.15	31.07	31.19	54.0	-22.81	Peak
9612.00								
12015.00								
14418.00								
16820.00								
19223.00								
21626.00								
24029.00								

•

CH Middle(2453MHz)

51111100	Cable	Ant	Preamp	Read	7 1	* * * *	Over	D 1
Frequency	Loss	Factor	Factor	Level	Level	Limit	Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m \\$	dB	
133.15	0.96	8.70	41.26	53.46	21.86	43.50	-21.64	QP
202.81	1.3	10.57	41.24	52.01	22.64	43.50	-20.86	QP
2453.00	3.11	31.25	35.90	83.62	82.08	94.0	-11.92	Peak
4906.00	3.11	31.61	34.73	33.40	33.39	54.0	-20.61	Peak
7359.00	3.12	32.16	35.17	32.10	32.21	54.0	-21.79	Peak
9812.00								
12265.00								
14718.00								
17171.00								
19624.00								
22077.00								
24530.00								

CH High	(2478MH	· ·	D	D 1			0	
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
202.81	1.3	10.57	41.24	54.10	24.73	43.50	-18.77	QP
938.83	3.0	21.21	38.44	44.84	30.61	46.00	-15.39	QP
2478.00	3.11	31.32	36.00	83.50	81.93	94.0	-12.07	Peak
4956.00	3.11	31.63	34.80	33.36	33.30	54.0	-20.70	Peak
7434.00	3.12	32.16	35.20	32.73	32.81	54.0	-21.19	Peak
9912.00								
12390.00								
14868.00								
17346.00								
19824.00								
22302.00								
24780.00								

	z)						
Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
0.96	8.70	41.26	55.15	23.55	43.50	-19.95	QP
1.75	14.82	41.80	52.11	26.88	46.00	-19.12	QP
3.11	31.24	36.00	84.12	82.47	94.0	-11.53	Peak
3.11	31.60	34.70	33.90	33.91	54.0	-20.09	Peak
3.12	32.16	35.17	32.71	32.82	54.0	-21.18	Peak
	Cable Loss dB 0.96 1.75 3.11 3.12	Loss dB/m 0.96 8.70 1.75 14.82 3.11 31.24 3.11 31.60 3.12 32.16	Cable Loss Ant Factor dB Preamp Factor dB 0.96 8.70 41.26 1.75 14.82 41.80 3.11 31.24 36.00 3.12 32.16 35.17	Cable Loss Factor dB Ant Factor Factor dB Preamp dB dBμV Read dBμV 0.96 8.70 41.26 55.15 1.75 14.82 41.80 52.11 3.11 31.24 36.00 84.12 3.11 31.60 34.70 33.90 3.12 32.16 35.17 32.71	Cable Loss Ant Factor dB Preamp AdB Level dBμV Level dBμV/m 0.96 8.70 41.26 55.15 23.55 1.75 14.82 41.80 52.11 26.88 3.11 31.24 36.00 84.12 82.47 3.11 31.60 34.70 33.90 33.91 3.12 32.16 35.17 32.71 32.82	Cable Loss Loss Ant Factor GB Preamp Factor GB Read Level Level GB MB MB Level Level GB MB MB Level MB MB MB MB Level MB MB MB MB Level MB MB MB MB MB MB Level MB Level MB	Cable Loss Factor Loss Ant Factor Factor dB Read Level Level dB μV/m Level Limit Limit dB Cover Limit Limit dB μV/m Over Limit Limit dB μV/m Over Limit dB μ

CH Midd	le(2453Ml	Hz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
312.18	1.6	13.30	41.40	54.20	27.70	46.00	-18.30	QP
420.58	1.84	15.47	41.70	53.40	29.01	46.00	-16.99	QP
2453.00	3.11	31.25	35.90	81.76	80.22	94.0	-13.78	Peak
4906.00	3.11	31.61	34.72	34.92	34.92	54.0	-19.08	Peak
7359.00	3.12	32.16	35.17	31.84	31.95	54.0	-22.05	Peak
9812.00								
12265.00								
14718.00								
17171.00								
19624.00								
22077.00								
24530.00								

CH High((2480MHz	z)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
375.94	1.75	14.82	41.80	52.00	26.77	46.00	-19.23	QP
938.83	3.0	21.21	38.44	44.84	30.61	46.00	-15.39	QP
2478.00	3.11	31.32	36.00	83.81	82.24	94.0	-11.76	Peak
4956.00	3.11	31.63	34.80	34.01	33.95	54.0	-20.05	Peak
7434.00	3.12	32.16	35.20	32.90	32.98	54.0	-21.02	Peak
9912.00								
12390.00								
14868.00								
17346.00								
19824.00								
22302.00								
24780.00								

NOTE: " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

FCC ID: Y28MUS3

5. Occupied Bandwidth

5.1. Requirements (15.249):

The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.

5.2 Test Results

Pass.

Please refer the following plot.

FCC ID: Y28MUS3

ANBOTEK

Date: 3.DEC.2010 17:20:57

ANBOTEK

Date: 3.DEC.2010 17:37:05