

Dynamic Taint Analysis

Ioana BRĂNESCU Andreea-Larisa COZUC Andreea-Diana OLTEAN George-Andrei IOSIF

Introduction

- Manual security assessments are no longer viable
- As an alternative, automated vulnerability detection
 - Fuzzing
 - Symbolic execution
 - Taint analysis
 - Static
 - Dynamic, both online and offline

TaintCheck

- Functionalities
 - Detection of overwrite attacks
 - Exploit analysis for signature generation
 - Significant overhead
- The process consists of four steps:
 - Marking inputs as tainted based on the policy
 - Instrumentation for tracking the taint propagation
 - Detection of sensitive memory overwrite
 - Automatic semantic analysis on exploit, for signature generation

SwordDTA

- Functionalities
 - Detects four types of vulnerabilities
 - Buffer overflow
 - Integer overflow
 - Division by zero
 - Use-after-free
 - Implemented via Pin DBI
- The process consists of three steps:
 - Taint introduction
 - Taint propagation
 - Vulnerability detection

OFFTAN

- Functionalities
 - Uses an offline approach
 - Detects two types of vulnerabilities:
 - Stack buffer overflow
 - Controlled jumps
- The process consists of four steps:
 - Dynamic information acquisition
 - Vulnerability modelling
 - Offline analysis
 - Backtrace analysis

Strengths

- Binary translation into Assembly or UCode
- Null false positive rate
- Exemplification through case studies
- Distributed techniques

Weaknesses

- Lack of proactive exploit detection
- Evasion of the proposed solutions
- Small test cases
- None or only relative evaluations

Related Efforts

- Fuzzing and artificial intelligence integration
- Ongoing research on:
 - Different programming languages: JavaScript
 - o Different platforms: Android
- Whole-system approach

Conclusions

- Really useful, when attempting to discover vulnerabilities
 - o Online, during runtime
 - Offline, by using trace files
- Significant overhead
- Continuous progress