Classifying Textual Data with pretrained Vision Models through Transfer Learning and Data Transformations

Introduction

Introduction

- Natural Language Processing
- Computer Vision
- Transfer Learning
- Make Closer Langauge and Vision?

In this work...

- Using knowledge from vision models to train text classifiers
- Creating image dataset from text dataset
- The main parts are:
 - Using BERT Embeddings from IMDB-text dataset to create IMDB-image dataset
 - Analyzing domain shifts between source and target datasets and avoid them
 - Using early layers of benchmark vision models as feature extractor
 - Training different models on these features

Preliminaries

IMDB Dataset

- For sentiment analysis or text classification
- 50000 examples in two classes: "Positive" or "Negative"
- Small and balanced

BERT

- BERT (Bidirectional Encoder Representations from Transformers)
- Pre-trained on large unlabeled dataset
- Contextualized word embeddings (word representations vary based on context)
- Transferring across different NLP tasks

BERT

t-SNE and DeepInsight Method

- t-SNE (t-distributed Stochastic Neighbor Embedding)
 - A dimensionality reduction method like PCA
 - Non-linear, unlike PCA
 - o focuses on maintaining the pairwise similarities between data points in both the original and the reduced space

t-SNE and DeepInsight Method

- DeepInsight
 - o A methodology to transform non-image data to an image for CNN architecture
 - Useful where the data is often non-image, like DNA sequences
 - Leverage the power of CNNs
 - Using t-SNE or K-PCA to project the transpose of dataset
 - Creating a set of related features on a 2D plane according to their similarity
 - Re-transposing to get the new samples with size [NxNx3]

t-SNE and DeepInsight Method

Method

Generating the IMDB-Image Dataset

BERT Embedding Generation

- A very special feature of BERT
 - o [CLS] token
 - Added at the beginning of a sentence embedding, at each layer output
 - A sentence beginning and a unique representation for classification purpose
- A high dimensional space to apply t-SNE
 - The semantic nature of higher layers of BERT
 - From the last six layers
 - [6x768] vector for each input sample

Transforming BERT Embeddings to Images

- After that we obtained Embeddings, our dataset has this shape: [50000, 4608]:
 - Transpose the matrix to apply t-SNE
 - o t-SNE projection will give us a 2D plane
 - Convex-Hull algorithm, to improve image quality
 - Isolating the rectangle containing all points
 - Rotating rectangle to get horizontal matrix of pixels

Transforming BERT Embeddings to Images

- Feature values are continuous:
 - Multiple features may be associated with a single location
 - Features are averaged to generate a discrete space of pixels
- Chosen pixel space: [50x50]

Data Domains and Transfer Learning

Domain Adoption

- Generated IMDB-Image dataset and ImageNet Dataset are extremely different
- Distribution mismatch and domain shift problems
- Solve this problem: **Domain Adoption**

Transfer Learning

- A successful Transfer Learning: an architecture able to adapt the Target Domain to Source Domain
- Here we focus on the shared features in both datasets:
 - Instead of forcing to learn domains
 - Our dataset is small-in-size and it will cause overfitting
 - Focus on geometric features like edges, curves, and blobs
 - Z-normalization: adjust image contrast and improve pixel space clarity

Transfer Learning

• X is a set of input vectors, μ and Σ are the mean and standard deviation of the entire image pixel space, ϵ is a small value to prevent dividing by zero. In the following, you can see an image before and after applying Z-normalization:

$$\mu = \mathbb{E}_x \in \mathcal{X}[x],$$

$$\sigma^2 = \mathbb{E}_x \in \mathcal{X}[(x - \mu)^2],$$

$$\hat{x}_i = \frac{x_i - \mu}{\sigma + \epsilon}$$

- The IMDB-Image dataset is too small compared to ImageNet
- Danger of overfitting in the process of training!
- Sliced Convolutional Feature Extractors from their original pretrained models
- Stacked to a Convolutional Auto-Encoder
 - With randomly initialized parameters
 - Followed by a Dense Classifier
- To avoid overfitting problem: freezing the feature extractors

- AlexNet: The first two pretrained Convolutional Layers, outputs 192 feature maps
- ResNet: The first downsampling Convolutional layer and the first residual layer
- ResNext: The first Convolutional layer and the first Residual layer
- ShuffleNet V2: The first Convolutional layer followed by Batch normalization and stage2
- VGG16: only the first 12 layers, containing 4 Convolutional layers

Results

Experiments

- 50000 samples: 40000 for training, 10000 for validation
- ReLU, Batch Normalization and Adam optimizer
- Batch size: 32
- Different Learning rates based on the model

Original Results vs. Reproduced Results

Feature Ext	Nbr of FM's	CAE LR	LC LR	Val Acc
AlexNet [14]	192	0.00001	0.0005	0.87 (±0.01)
ResNet [9]	256	0.00005	0.0001	0.85 (±0.01)
ResNext [26]	256	0.00005	0.001	$0.85\ (\pm0.01)$
ShuffleNet [15]	116	0.0005	0.001	0.86 (±0.01)
VGG16 [20]	256	0.00005	0.001	0.86 (±0.01)

Feature Ext	Val Acc		
AlexNet	0.801		
ResNet	0.824		
ResNext	0.819		
ShuffleNet	0.812		
VGG16	0.813		

Original Results vs. Reproduced Results

We have different results, but why?

- Validation set a part of main dataset: We don't know the exact samples which are in it
- Text preprocessing techniques
- Normalization or scaling before t-SNE
- Random weights for Conv-AE

