PARTIEL DE REGULATION // 2^{eme} SEMESTRE CLASSE: BTS2 ET

Exercice 1:

Un système asservi est représenté par le schéma bloc suivant :

On donne :
$$H_1(P) = 1 + \frac{3}{100}P$$
 ; $K_1 = 2$; $H_2(P) = \frac{200}{P}$; $K_2 = 1$; $K_3 = 100$; $H_3(P) = \frac{1+2,99P}{P}$

- 1. Après avoir déterminé $F_1(P) = \frac{S_1(P)}{\varepsilon_1(P)}$; déterminer $F_2(P) = \frac{S_2(P)}{E(P)}$ et en déduire la réponse $S_2(t)$ si e(t) = E = 10
- 2. Déterminer $F(P) = \frac{S(P)}{E(P)}$ et le mettre sous la forme $F(P) = \frac{\alpha(P + \omega_0')}{P^2 + 2m\omega_0 P + \omega_0^2}$
 - 2.1.Donner les valeurs de α , $\omega_0{}'$, ω_0 et m
 - 2.2. Déterminer la réponse S(t) si E=10
 - 2.3.Mettre F(P) sous la forme $F(P) = \frac{\beta(P + \omega_0')}{\frac{P^2}{\omega_0^2} + \frac{2m}{\omega_0}P + 1}$ quelle valeur prend β .
 - 2.4.On veut mettre F(P) sous la forme $F(P) = \frac{\beta(P + \omega_0')}{(\frac{P}{\omega_0} + 1)^2}$

Donner la valeur de m pour que cela puisse être possible. Déterminer dans cette condition S(t).

Exercice 2:

Un moteur à excitation indépendante et constante entraine une charge de couple contant.

- 1. Représenter le schéma bloc du système
- 2. Déterminer au régime stationnaire
 - 2.1. La vitesse à vide Ω_0
 - 2.2. La variation de la vitesse en charge Δ_Ω
 - 2.3. La vitesse en charge Ω

<u>N.B.</u>: pour trouver les grandeurs au régime stationnaire, il faut calculer la limite de ces grandeurs lorsque $t \to +\infty$ ou appliquer le théorème de la valeur finale.