

Nome: Lucas Antonio Calzavara - 29890________ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
C	peradores	1	2	3	4	5	6	7	8	9
	Medição 1	62.9	63.15	62.91	62.54	62.82	62.81	62.59	62.68	62.87
A	Medição 2	63.21	63.05	63.01	62.37	62.71	62.85	62.85	62.65	62.52
	Medição 3	62.95	62.7	63.09	63	62.82	62.31	62.76	63.14	62.52
	Medição 1	62.65	62.81	62.8	62.9	63.02	62.65	63.07	62.89	63.01
В	Medição 2	62.85	63.09	62.62	62.98	63.25	62.72	63.03	62.79	62.63
	Medição 3	62.74	62.77	63.32	62.64	62.65	62.88	63.21	63.1	62.81
	Medição 1	62.91	63.22	62.81	62.79	63.13	63.03	63.17	62.8	62.69
$\mid C \mid$	Medição 2	63.17	62.48	62.91	63.35	62.68	63.1	62.97	62.48	62.85
	Medição 3	62.87	62.7	63.01	62.6	62.73	62.88	62.72	62.42	62.93

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	5.38	6.25	6.38	7.27	7.76	7.9	10.08	10.93

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 21°C e 22°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	10.15	8.79	11.47	9.36	10.23	11.96	8.33	10.52
$I_a (mA)$	101.273	87.993	114.524	94.415	101.533	119.397	82.695	104.734

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.