Wegunabhängigkeit

• ang. V hängt nur von Anfangs- und Endpunkt von C ab

- a,b sind Anfangs und Endpunkt
- $-\Phi$ ist Potential zu \overrightarrow{V}
- \bullet wegunabhängig, wenn $grad\Phi=\overrightarrow{V}$
 - Integrabilitätsbedingung
 - * Ableitung P nach x = Ableitung Q nach y
 - $* \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$
- Integral webunabhängig <==> $\oint_C P dx + Q dy = 0$ für jede geschlossene Kurve
- Integrabilitätsbedingung
 - Ableitung P nach x = Ableitung Q nach y
- Beispiel:

* Integration bzgl. x-Achse, anschließend y-Achse

* Integration entlang Gerade zwischen Ursprung und (x,y)

- * inklusive Integrabilitätsbedingung
- no clue

Dreidimensional

- $\int Pdx + Qdy + Rdz$ ist wegunabhängig $<==> \forall C$ geschlossen $\oint Pdx + Qdy + Rdz = 0$
- $\bullet <==>\exists \Phi: grad\Phi=(P,Q,R)$
- $\bullet <==>$ Stammfunktion Φ erfüllt folgende Integrabilitätsbedingungen

- Ableitungen paarweise gleich
- Integrabilitätsbedingungen als Vektor
 - Rotation von $\vec{V} = \vec{0}$
 - * dann heißt \overrightarrow{V} wirbelfrei

- Divergenz von \overrightarrow{V}
 - $\ div(\overrightarrow{V}) = \nabla x \overrightarrow{V}$
 - * Quell
dichte von \overrightarrow{V}
 - $div(rot\overrightarrow{V}) = \nabla(\nabla x \overrightarrow{V})$
 - Laplace Operator
 - $*\ div(gradf) = \nabla \nabla f = \triangle f$
- Beispiel: selbe Rechnung auf verschiedene Arten

* Schritt für Schritt, Variable für Variable

- * möglichst einfacher Integrationsweg
- * x-Achse, y-Achse, z-Achse

[[Oberflächenintegral]]