Latent Dirichlet allocation

Jérôme DOCKÈS (jerome@dockes.org)
Pascal LU (pascal.lu@student.ecp.fr)
École Normale Supérieure de Cachan

1 Latent Dirichlet allocation

1.1 Presentation of the model

We consider the problem of modeling text corpora. The goal is to find short descriptions of the members of a collection that enable efficient processing of large collections while preserving the essential statistical relationships that are useful for basic tasks such as classification, novelty detection, summarization, and similarity and relevance judgments.

Notations

- $\mathcal{D} = \{d_1, d_2, \dots, d_M\}$ is a corpus (collection of M = |D| documents). We denote |D| (num_docs) the number of documents.
- \mathcal{V} is the vocabulary. Its size is denoted V (voc_size).
- The number of topics is denoted k (num_topics).

For a document $d \in \mathcal{D}$,

- $d = (w_1^{(d)}, \dots, w_{N_d}^{(d)})$ represents the document d, where the $w_i^{(d)}$ are all distinct. N_d (doc_size) is the number of **distinct**¹ words in the document d.
- $w^{(d)}$ (word_incidences) is an matrix containing the number of times each word in the vocabulary appears in the document. The size of $w^{(d)}$ is the number of distinct words in document $d \times \text{vocabulary size } (N_d \times V)$.
- $\theta^{(d)}$ is an array of size k, representing a probability density.
- $z^{(d)}$ is the set of topics: $z_{ni}^{(d)} = 1$ if the word n is linked with the topic i. Hence, it is a matrix of size $N_d \times k$.

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The main idea is that documents are represented as random mixtures over latent topics, where each topic is characterized by a distribution over words.

The following parameters are introduced:

- α (dirich_param) is an estimate of the parameter of the dirichlet distribution which generates the parameter for the (multinomial) probability distribution over topics in the document. The size of α is the number of topics, k. We suppose that $\alpha = \alpha \mathbf{1}_k$.
- β (word_prob_given_topic) is a matrix of size (number of topics \times vocabulary size $= k \times V$) which gives the (estimated) probability that a given topic will generate a certain word:

$$\beta_{ij} = p(w^j = 1|z^i = 1)$$

¹For implementation issues

Algorithm 1: Generative process

```
\overline{\mathbf{Data}}: corpus \overline{\mathcal{D}}
begin
     for each document d \in \mathcal{D} do
           Choose N \sim \text{Poisson}(\xi);
           Choose \theta^{(d)} \sim \text{Dir}(\alpha):
           for each of the N words w_n^{(d)} do 
Choose a topic z_n^{(d)} \sim \text{Multinomial}(\theta^{(d)});
                 Choose a word w_n from p(w_n|z_n^{(d)},\beta), a multinomial probability conditioned on
```


Figure 1: Generative model

LDA is based on the computation of the parameters (α, β) , for instance by maximizing the log-likelihood. For a document d, the probability $p(d|\alpha,\beta)$ is given by:

$$\begin{split} p(d|\alpha,\beta) &= \int p(\theta^{(d)}|\alpha) \left(\prod_{n=1}^{N_d} p(w_n^{(d)}|\theta^{(d)},\beta) \right) \mathrm{d}\theta \\ &= \int p(\theta^{(d)}|\alpha) \left(\prod_{n=1}^{N_d} \sum_{z_n^{(d)}} p(z_n|\theta^{(d)}) p(w_n^{(d)}|z_n^{(d)},\beta) \right) \mathrm{d}\theta \\ &= \frac{\Gamma\left(\sum_i \alpha_i\right)}{\prod_i \Gamma(\alpha_i)} \int \left(\prod_{i=1}^k \theta_i^{\alpha_i-1} \right) \left(\prod_{n=1}^N \sum_{i=1}^k \prod_{j=1}^V (\theta_i \beta_{ij})^{w_n^j} \right) \mathrm{d}\theta \end{split}$$

1.2 Inference and parameter estimation

The basic idea of variational inference is to use Jensen's inequality to obtain an adjustable lower bound on the log likelihood.

For each document $d \in \mathcal{D}$, the following latent variables are introduced:

- $\gamma^{(d)}$ (var_dirich) the variational parameter for the dirichlet distribution. The size
- of $\gamma^{(d)}$ is the number of topics, k.

 $\phi^{(d)}$ (var_multinom) the variational parameter for the multinomial distribution The size of $\phi^{(d)}$ is (number of distinct words in document $d \times$ number of topics), $N_d \times k$. $\phi_{ni}^{(d)}$ depends on the relation between the word in position n of the document and the topic i of the list of topics.

and to try to estimate them instead of $\theta^{(d)}$ and $z_n^{(d)}$. The conditional probability is:

$$q(\theta^{(d)}, z^{(d)}|\gamma^{(d)}, \delta^{(d)}) = q(\theta^{(d)}|\gamma^{(d)}) \prod_{n=1}^{N_d} q(z_n^{(d)}|\phi_n^{(d)})$$

(a) Generative model

(b) Variational model

Figure 2: Graphical model

EM algorithm

The expected log-likelihood, for a document d, is:

$$\begin{split} L(\gamma^{(d)}, \phi^{(d)}, \alpha, \beta) &= \log \Gamma \left(k \alpha \right) - k \log \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^k \left(\Psi(\gamma_i^{(d)}) - \Psi \left(\sum_{j=1}^k \gamma_j^{(d)} \right) \right) \\ &+ \sum_{n=1}^{N_d} \sum_{i=1}^k \phi_{ni}^{(d)} \left(\Psi(\gamma_i^{(d)}) - \Psi \left(\sum_{j=1}^k \gamma_j^{(d)} \right) \right) \\ &+ \sum_{n=1}^{N_d} \sum_{i=1}^k \sum_{j=1}^V \phi_{ni}^{(d)} w_{nj}^{(d)} \log \beta_{ij} \\ &- \log \Gamma \left(\sum_{j=1}^k \gamma_j^{(d)} \right) + \sum_{i=1}^k \log \Gamma(\gamma_i^{(d)}) - \sum_{i=1}^k (\gamma_i^{(d)} - 1) \left(\Psi(\gamma_i^{(d)}) - \Psi \left(\sum_{j=1}^k \gamma_j^{(d)} \right) \right) \\ &- \sum_{n=1}^{N_d} \sum_{i=1}^k \phi_{ni}^{(d)} \log \phi_{ni}^{(d)} \end{split}$$

Algorithm 3: E-step for a document d (Variational Inference Procedure)

```
Initialize \phi_{ni}^{(d)} = \frac{1}{k} for all i and n;

Initialize \gamma_i^{(d)} = \alpha + \frac{N}{k} for all i;

while not converged do

for n = 1 \dots N do

for i = 1 \dots k do

\phi_{ni}^{(d)} = \beta_i w_n \exp(\Psi(\gamma_i^{(d)}))
normalize \phi_n^{(d)} to sum to 1.

\gamma^{(d)} = \alpha + \sum_{n=1}^{N} \phi_n^{(d)}
```

Algorithm 4: M-step

$$\beta \propto \sum_{d \in \mathcal{D}} (\phi^{(d)})^{\top} w^{(d)} \text{ (which corresponds to } \beta_{ij} \propto \sum_{d \in \mathcal{D}} \sum_{n=1}^{N_d} \phi_{ni}^{(d)} w_{nj}^{(d)} \text{)}$$
while not converged do
$$\alpha \leftarrow \alpha - \frac{L'(\alpha)}{L''(\alpha)} \text{ where}$$

$$\begin{cases} L'(\alpha) = |D| k \left[\Psi(k\alpha) - \Psi(\alpha) \right] + \sum_{d \in \mathcal{D}} \left[\sum_{i=1}^k \Psi(\gamma_i^{(d)}) - \Psi\left(\sum_{j=1}^k \gamma_j^{(d)}\right) \right] \\ L''(\alpha) = |D| k \left[k \Psi'(\alpha) - \Psi'(\alpha) \right] \end{cases}$$

- 2 Implementation and results
- 2.1 Implementation issues
- 2.2 Results
- 3 Conclusion

References

[BNJ03] David M. Blei, Andrew Y. Ng and Michael I. Jordan. Latent Dirichlet Allocation. *The Journal of Machine Learning Research*, 3:993–1022, 2003.