РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра теории вероятностей и кибербезопасности

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №7

<u>дисциплина: Компьютерный практикум по статистическому</u>
<u>анализу данных</u>

Студент: Быстров Глеб

Группа: НПИбд-01-20

МОСКВА

Цель работы

В данной лабораторной работе мне будет необходимо освоить специализированные пакеты Julia для обработки данных.

Описание процесса выполнения работы

Считывание данных

1. Перед тем, как начать проводить какие-либо операции над данными, необходимо их откуда-то считать и возможно сохранить в определённой структуре.

Довольно часто данные для обработки содержаться в csv-файле, имеющим текстовый формат, в котором данные в строке разделены, например, запятыми, и соответствуют ячейкам таблицы, а строки данных соответствуют строкам таблицы. Также данные могут быть представлены в виде фреймов или множеств.

В Julia для работы с такого рода структурами данных используют пакеты CSV, DataFrames, RDatasets, FileIO (рис. 7.1)

Рис. 7.1. Считывание данных

Запись данных в файл

- 2. Предположим, что требуется записать имеющиеся данные в файл. Для записи данных в формате CSV можно воспользоваться следующим вызовом:
 - # Запись данных в CSV-файл:

```
CSV.write("programming_languages_data2.csv", P)
Можно задать тип файла и разделитель данных:
#Пример записи данных в текстовый файл с разделителем ',':
writedlm("programming_languages_data.txt", Tx, ',')
# Пример записи данных в текстовый файл с разделителем '-':
writedlm("programming_languages_data2.txt", Tx, '-')
Можно проверить, используя readdlm, корректность считывания
созданного текстового файла:
# Построчное считывание данных с указанием разделителя:
P_new_delim = readdlm("programming_languages_data2.txt", '-') (рис.
7.2):
 # Запись данных в CSV-файл:
 CSV.write("programming_languages_data2.csv", P)
 "programming languages data2.csv"
 # Пример записи данных в текстовый файл с разделителем ',':
 writedlm("programming languages data.txt", Tx, ',')
 # Пример записи данных в текстовый файл с разделителем '-':
 writedlm("programming languages data2.txt", Tx, '-')
 # Построчное считывание данных с указанием разделителя:
 P new delim = readdlm("programming languages data2.txt",
 74×2 Matrix{Any}:
      "year" "language"
  1951
              "Regional Assembly Language"
  1952
              "Autocode"
              "IPL"
  1954
              "FLOW-MATIC"
  1955
              "FORTRAN"
  1957
              "COMTRAN"
  1957
              "LISP"
  1958
              "ALGOL 58"
  1958
  1959
              "FACT"
```

Рис. 7.2. Запись данных в файл

3. При работе с данными бывает удобно записать их в формате словаря. Предположим, что словарь должен содержать перечень всех языков программирования и года их создания, при этом при указании года

выводить все языки программирования, созданные в этом году.

При инициализации словаря можно задать конкретные типы данных для ключей и значений (рис. 7.3):

```
▶ Запуск ■ C >>
                                                                 (23)
| dict = Dict{Integer | mector{String}}()
: Dict{Integer, Vector{String}}()
: # Инициализация словаря:
  dict2 = Dict()
: Dict(Any, Any)()
: # Заполнение словаря данными:
  for i = 1:size(P,1)
      year, lang = P[i,:]
      if year in keys(dict)
          dict[year] = push!(dict[year], lang)
          dict[year] = [lang]
      end
  end
# Пример определения в словаре языков программирования, созданных в 2003 году:
  dict[2003]
  2-element Vector{String}:
   "Groovy"
   "Scala"
```

Рис. 7.3. Словари

DataFrames

4. Работа с данными, записанными в структуре DataFrame, позволяет использовать индексацию и получить доступ к столбцам по заданному имени заголовка или по индексу столбца. На примере с данными о языках программирования и годах их создания зададим структуру DataFrame (рис. 7.4):

```
# Подгружаем пакет DataFrames:
using DataFrames

# Задаём переменную со структурай DataFrame:
df = DataFrame(year = P[:,1], language = P[:,2])
```

Рис. 7.4. DataFrames

RDatasets

5. С данными можно работать также как с наборами данных через пакет RDatasets языка R (рис. 7.5):

be(iris) taFrame						
taFrame	No. 2021					
	mean Union	min	median Union	max Anv	nmissing	eltype DataType
SepalLength	5.84333	4.3	5.8	7.9	0	Float64
SepalWidth	3.05733	2.0	3.0	4.4	0	Float64
PetalLength	3.758	1.0	4.35	6.9	0	Float64
PotalWidth	1.19933	0.1	1.3	2.5	0	Float64
Species		setosa		virginica	0	CategoricalValue(String, UInt8)
S S	epalWidth etalLength etalWidth	iepalLength	bepalLength 5.84333 4.3 bepalWidth 3.05733 2.0 betalLength 3.758 1.0 botalWidth 1.19933 0.1	bepalLength 5.84333 4.3 5.8 bepalWidth 3.05733 2.0 3.0 detalLength 3.758 1.0 4.35 detalWidth 1.19933 0.1 1.3	SepalLength 5.84333 4.3 5.8 7.9 SepalWidth 3.05733 2.0 3.0 4.4 SetalLength 3.758 1.0 4.35 6.9 SotalWidth 1.19933 0.1 1.3 2.5	SepalLength 5.84333 4.3 5.8 7.9 0 SepalWidth 3.05733 2.0 3.0 4.4 0 VetalLength 3.758 1.0 4.35 6.9 0 VotalWidth 1.19033 0.1 1.3 2.5 0

Рис. 7.5. RDatasets

Задания для самостоятельного выполнения

6. Кластеризация

Загрузите

using RDatasets iris = dataset("datasets", "iris")

Используйте Clustering.jl для кластеризации на основе k-средних.

Сделайте точечную диаграмму полученных кластеров.

Подсказка: вам нужно будет проиндексировать фрейм данных, преобразовать его в массив и транспонировать (рис. 7.6):

```
iris3 = iris[iris[!,:Species].==uspecies,:]
  x = iris3[!,:SepalLength]
  y = iris3[!,:PetalLength]
  scatter!(species_figure,x,y)
end
xlabel!("SepalLength")
ylabel!("PetalLength")
title!("Iris")
display(species_figure)
```


Рис. 7.6. Кластеризация

7. Регрессия (метод наименьших квадратов в случае линейной регрессии) (рис. 7.7-7.8)

Часть 1 X = randn(1000, 3)

a0 = rand(3)

y = X * a0 + 0.1 * randn(1000);

Часть 2

X = rand(100);

y = 2X + 0.1 * randn(100);

Часть 1 Пусть регрессионная зависимость является линейной. Матрица наблюдений факторов X имеет размерность $N \times 3$ randn (N, 3), массив результатов $N \times 1$, регрессионная зависимость является линейной. Найдите МНК-оценку для линейной модели.

- Сравните свои результаты с результатами использования llsq из MultivariateStats.jl (просмотрите документацию).
- Сравните свои результаты с результатами использования регулярной регрессии наименьших квадратов из GLM.jl.

Подсказка. Создайте матрицу данных X2, которая добавляет столбец единиц в начало матрицы данных, и решите систему линейных уравнений. Объясните с помощью теоретических выкладок.

Часть 2 Найдите линию регрессии, используя данные (X, y). Постройте график (X, y), используя точечный график. Добавьте линию регрессии, используя abline!. Добавьте заголовок «График регрессии» и подпишите оси x и y.

```
\begin{array}{l} \text{X1 = X[:,1]} \\ \text{X2 = X[:,2]} \\ \text{X3 = X[:,3]} \\ \text{data = DataFrame}(y = y, \text{ x1 = X1, x2 = X2, x3 = X3);} \\ \text{lm}( \text{@formula}(y \sim \text{x1 + x2 + x3}), \text{ data}) \end{array}
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivo
 ted{Float64, Matrix{Float64}, Vector{Int64}}}, Matrix{Float64}}
y \sim 1 + x1 + x2 + x3
Coefficients:
                                                         t Pr(>|t|)
                         Coef. Std. Error
                                                                           Lower 95% Upper 95%
 (Intercept) -0.00176639 0.0031578
                                                               0.5760 -0.0079631 0.00443032
                                  0.00328422 241.99
                   0.794747
                                                               <1e-99
                                                                           0.788302
                                                                                          0.801192
                  0.612432
                                  0.00307744 199.01
                                                               <1e-99
                                                                           0.606393
                                                                                         0.618471
                  0.804289
                                  0.00298659 269.30
                                                               <1e-99
```

Рис. 7.7. Часть 1

```
# Часть 2
X = rand(100);
y = 2X + 0.1 * randn(100);

a,b = find_best_fit(X,y)
ynew = a * X .+ b
scatter(X, y, title="График регрессии", xlabel="x", ylabel="y", leg=false, line::scatter)
Plots.abline!(a,b)
```


Рис. 7.8. Часть 2

Вывод

В данной лабораторной работе мне успешно удалось освоить специализированные пакеты Julia для обработки данных.