DEVOIR SURVEILLÉ 3

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à **encadrer** dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 4 pages et est constitué de 4 exercices. Bon courage!

Exercice 1 – Pour tout couple (a, b) de \mathbb{R}^2 , soit M la matrice carrée d'ordre 2 définie par

$$M = \begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix}.$$

- 1. Dans cette question, on choisit a = b = -1.
 - a) La matrice *M* est-elle inversible?
 - b) Calculer pour tout entier $n \ge 2$, la matrice M^n .
- 2. Dans cette question, on choisit a = b.
 - a) La matrice *M* est-elle inversible?
 - b) Montrer que pour tout entier $n \ge 2$, on a $M^n = (1+a)^{n-1}M$.
- 3. On revient au cas général où a et b sont des réels quelconques. Montrer que la matrice M est inversible si et seulement si $a \neq b$.
- 4. Dans cette question, on considère deux variables aléatoires X et Y indépendantes et suivant toutes les deux la loi géométrique de paramètre p avec 0 . On pose <math>q = 1 p.

Soit N la matrice définie par $N = \begin{pmatrix} 1 & X \\ 1 & Y \end{pmatrix}$ et A l'événement : "la matrice N est inversible".

- a) Établir la relation $P(X = Y) = \sum_{k=1}^{+\infty} P(X = k) \times P(Y = k)$.
- b) Calculer $\sum_{k=1}^{+\infty} p^2 q^{2k-2}.$
- c) En déduire P(A) en fonction de q.
- 5. Soit n un entier supérieur ou égal à 1. Dans cette question, on considère deux variables aléatoires X et Y indépendantes et suivant toutes les deux la loi binomiale de paramètres n et $\frac{1}{2}$. Soit N la matrice définie par $N = \begin{pmatrix} 1 & X \\ 1 & Y \end{pmatrix}$ et A l'événement : "la matrice N est inversible".
 - a) Pour x réel, écrire les développements de $(x+1)^n$ et $(x+1)^{2n}$ à l'aide de la formule du binôme.
 - b) En utilisant l'identité $(x+1)^{2n} = (x+1)^n (x+1)^n$, montrer que l'on a

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

- c) En déduire la relation $P(X = Y) = \frac{1}{4^n} \binom{2n}{n}$.
- d) Calculer P(A) en fonction de n.

Exercice 2 -

Soit M une matrice carrée d'ordre 3 et I la matrice unité d'ordre 3. On pose par convention : $M^0 = I$. On se propose d'étudier la suite réelle $(u_n)_{n \ge 0}$ définie par :

$$u_0 = 0$$
, $u_1 = 0$, $u_2 = 1$ et pour tout entier naturel n , $u_{n+3} = 2u_{n+2} - \frac{5}{4}u_{n+1} + \frac{1}{4}u_n$.

Soit A la matrice carrée d'ordre 3 telle que $A = \frac{1}{4} \begin{pmatrix} 8 & -5 & 1 \\ 4 & 0 & 0 \\ 0 & 4 & 0 \end{pmatrix}$ et pour tout entier naturel n, soit X_n la matrice à trois lignes et une colonne définie par $X_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$.

- 1. Déterminer X_0 et X_1 .
- 2. a) Justifier pour tout entier naturel n, l'égalité $X_{n+1} = AX_n$.
 - b) À l'aide d'un raisonnement par récurrence, en déduire pour tout entier naturel n, la relation $X_n = A^n X_0$.
- 3. Soit *P*, *Q* et *T* les matrices suivantes :

$$P = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 4 \\ 1 & 4 & 0 \end{pmatrix}, \qquad Q = \begin{pmatrix} 16 & -16 & 4 \\ -4 & 4 & 0 \\ -2 & 3 & -1 \end{pmatrix} \quad \text{et} \quad T = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

- a) Calculer le produit PQ. En déduire que la matrice P est inversible et déterminer sa matrice inverse P^{-1} .
- b) Calculer les produits PT et AP. En déduire que $A = PTP^{-1}$, puis pour tout entier naturel n, l'égalité $A^n = PT^nP^{-1}$.
- 4. Soit *D* la matrice définie par $D = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. On pose N = T D.
 - a) Déterminer pour tout entier $k \ge 2$, la matrice N^k .
 - b) Vérifier que DN = ND et montrer que pour tout entier naturel n, on a

$$T^{n} = \left(\frac{1}{2}\right)^{n} \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}.$$

- c) En déduire pour tout entier naturel n, l'expression de la matrice A^n .
- 5. a) Déduire des questions précédentes l'expression de u_n en fonction de n.
 - b) Déterminer la limite de la suite $(u_n)_{n \ge 0}$.

Exercice 3 – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et pour tout entier $n\in\mathbb{N}$, $u_{n+1}=\ln(1+u_n^2)$.

1. Compléter la fonction Python suivante pour qu'elle calcule et retourne u_n pour un entier n:

```
    import numpy as np
    def calculu(n):
    u=.....
    for k in range(n):
    u=.....
    return u
```

- 2. Établir pour tout entier $n \in \mathbb{N}$, l'encadrement suivant : $0 \le u_n \le 1$.
- 3. Soit f la fonction définie sur l'intervalle [0,1], à valeurs réelles, telle que $f(x) = \ln(1+x^2) x$.
 - a) Dresser le tableau de variation de f puis déterminer le signe de f(x) sur l'intervalle [0,1].
 - b) En déduire que la suite $(u_n)_{n\geqslant 0}$ est décroissante.
 - c) Montrer que la suite $(u_n)_{n \ge 0}$ est convergente.
- 4. a) Justifier pour tout réel $x \ge 0$, l'inégalité $\ln(1+x) \le x$.
 - b) Pour tout entier $n \in \mathbb{N}$, établir l'inégalité $u_{n+1} \leq u_n^2$.
 - c) En déduire pour tout entier $n \ge 1$, l'inégalité $u_n \le (\ln 2)^n$.
 - d) Déterminer la limite de la suite $(u_n)_{n \ge 0}$.
 - e) On considère le programme Python suivant :

On exécute ce programme. Le résultat affiché est 6.

Quelle est la signification de ce résultat?

5. Établir pour tout entier $n \geqslant 2$, l'inégalité $\sum_{k=0}^{n-1} u_k \leqslant \frac{1 - (\ln 2)^n}{1 - \ln 2}.$

Exercice 4 – Une puce se déplace sur un axe gradué. À l'instant 0, la puce se trouve sur le point d'abscisse 0. À partir de l'instant 0, la puce effectue à chaque instant, un saut vers la droite selon le protocole suivant :

- elle effectue un saut d'une unité vers la droite avec la probabilité $\frac{1}{2}$,
- elle effectue un saut de deux unités vers la droite avec la probabilité $\frac{1}{4}$,
- elle effectue un saut de trois unités vers la droite avec la probabilité $\frac{1}{4}$. Les différents sauts sont supposés indépendants.

Pour tout entier $n \ge 1$, on définit les variables aléatoires suivantes :

- X_n est égale au nombre de sauts d'une unité effectués lors des n premiers sauts,
- Y_n est égale au nombre de sauts de deux unités effectués lors des n premiers sauts,
- Z_n est égale au nombre de sauts de trois unités effectués lors des n premiers sauts,
- A_n est égale à l'abscisse du point occupé par la puce à l'issue de son n-ième saut.

- 1. Donner la loi de la variable aléatoire A_1 . Calculer $E(A_1)$ et $V(A_1)$.
- 2. a) Justifier que $A_2(\Omega) = [2, 6]$. Montrer que la loi de A_2 est donnée par

$$P(A_2 = 2) = \frac{1}{4}$$
, $P(A_2 = 3) = \frac{1}{4}$, $P(A_2 = 4) = \frac{5}{16}$, $P(A_2 = 5) = \frac{1}{8}$, $P(A_2 = 6) = \frac{1}{16}$.

- b) Calculer $E(A_2)$.
- 3. a) Présenter dans un tableau la loi du couple (A_2, Z_2) . En déduire la loi de Z_2 ainsi que l'espérance de Z_2 .
 - b) Calculer la covariance $Cov(A_2, Z_2)$ de A_2 et Z_2 . Les variables aléatoires A_2 et Z_2 sont-elles indépendantes?
- 4. On suppose avoir importé la librairie numpy.random sous l'abréviation rd. On rappelle qu'en Python, l'instruction rd.randint(1,5) simule une variable aléatoire suivant la loi discrète uniforme sur [1,4].

Compléter le programme suivant pour qu'il simule les 100 premiers déplacements de la puce.

```
import numpy as np
2. import numpy.random as rd
3. A=np.zeros(100)
4. for k in range(100):
        t=rd.randint(1,5)
        if t<=...:
7.
            A[k]=1
        if t==...:
9.
            A[k]=2
10.
        if t==...:
11.
            A[k] = 3
    print(A)
```

- 5. Reconnaître les lois de X_n , Y_n et Z_n . Justifier que $X_n + Y_n$ suit la loi binomiale $\mathcal{B}\left(n, \frac{3}{4}\right)$.
- 6. a) Justifier la relation $X_n + Y_n + Z_n = n$. Calculer $Cov(Z_n, X_n + Y_n)$.
 - b) En utilisant les valeurs de $V(X_n)$, $V(Y_n)$ et $V(X_n + Y_n)$, montrer que $Cov(X_n, Y_n) = -\frac{n}{8}$.
 - c) Calculer le coefficient de corrélation linéaire $\rho(X_n, Y_n)$ de X_n et Y_n .
- 7. a) Exprimer A_n en fonction de X_n , Y_n et Z_n . Montrer que $E(A_n) = \frac{7n}{4}$.
 - b) Exprimer A_n en fonction de X_n et Y_n . Calculer $V(A_n)$ et $Cov(A_n, X_n)$.
- 8. On suppose avoir importé la bibliothèque matplotlib.pyplot sous l'abréviation plt. On rappelle que si $x = (x_1, x_2, ..., x_n)$ et $y = (y_1, y_2, ..., y_n)$ sont deux vecteurs de même taille, la commande plt.plot(x,y) permet de tracer la ligne brisée joignant les points $M_1(x_1, y_1)$, $M_2(x_2, y_2), ..., M_n(x_n, y_n)$.

On complète le programme Python de la question 4. en y ajoutant les lignes suivantes :

```
13. import matplotlib.pyplot as plt
14. x=np.arange(1,101,1)
15. y=np.zeros(100)
16. for k in range(1,100):
17. y[k]=y[k-1]+A[k]
18. plt.plot(x,y)
```

Quelle sortie graphique obtient-on?