

Testing Round #12

A. Divisibility

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

Find the number of k-divisible numbers on the segment [a,b]. In other words you need to find the number of such integer values X that $a \le X \le b$ and X is divisible by k.

Input

The only line contains three space-separated integers k, a and b ($1 \le k \le 10^{18}$; $-10^{18} \le a \le b \le 10^{18}$).

Output

Print the required number.

Examples input

mput	
1 1 10	
output 10	
10	
input	
2 -4 4	
input 2 -4 4 output	
-	

B. Restaurant

time limit per test: 4 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

A restaurant received n orders for the rental. Each rental order reserve the restaurant for a continuous period of time, the i-th order is characterized by two time values — the start time l_i and the finish time r_i ($l_i \le r_i$).

Restaurant management can accept and reject orders. What is the maximal number of orders the restaurant can accept?

No two accepted orders can intersect, i.e. they can't share even a moment of time. If one order ends in the moment other starts, they can't be accepted both.

Input

The first line contains integer number n ($1 \le n \le 5 \cdot 10^5$) — number of orders. The following n lines contain integer values I_i and r_i each ($1 \le I_i \le r_i \le 10^9$).

Output

Print the maximal number of orders that can be accepted.

Examples

output

input
2
2 7 11 4 7
4 7
output
1
input
5
12
23
34 45
5 1 2 2 3 3 4 4 5 5 6
output
3
input
6 4 8 1 5 4 7
48
15
4 /
2 5

C. Subsequences

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

For the given sequence with n different elements find the number of increasing subsequences with k+1 elements. It is guaranteed that the answer is not greater than $8\cdot10^{18}$.

Input

First line contain two integer values n and k ($1 \le n \le 10^5$, $0 \le k \le 10$) — the length of sequence and the number of elements in increasing subsequences.

Next n lines contains one integer a_i ($1 \le a_i \le n$) each — elements of sequence. All values a_i are different.

Output

Print one integer — the answer to the problem.

Examples

input 5 2			
5 2			
1 2			
3			
4			
output			
7			

<u>Codeforces</u> (c) Copyright 2010-2016 Mike Mirzayanov The only programming contests Web 2.0 platform