Напоминание

Для доказательств будем использовать

Теорема

Пусть $S:\mathfrak{X}(M)^k \to \mathfrak{F}(M)$ – полилинейно над $\mathfrak{F}(M)$. Тогда S порождается некот. (единств.) гладким тензорным полем типа (k,0).

производную функции f вдоль векторного поля X

$$Xf(p) = d_p f(X(p))$$
 другие обозначения $D_X f, f_X'$.

ее свойства

$$X(af + bg) = aXf + bXg$$
 $X(f \cdot g) = f \cdot Xg + Xf \cdot g$
 $(X + Y)f = Xf + Yf$ $(fX)g = f(Xg)$

скобку Ли

$$[X, Y]f = X(Yf) - Y(Xf).$$

ее свойства

$$[fX, Y] = f \cdot [X, Y] - (Yf) \cdot X \quad [X, fY] = f \cdot [X, Y] + (Xf) \cdot Y$$

Лекция 10 4 мая 2022 г.

Аффинные связности

Цель: Построить дифференцирование одного векторного поля вдоль другого.

Определение

Аффинной связностью на гладком многообразии M называется отображение $\nabla:\mathfrak{X}(M) imes\mathfrak{X}(M) o\mathfrak{X}(M)$, удовлетворяющее следующим условиям:

где $X,Y,Z\in\mathfrak{X}(M)$ и $f,g\in\mathfrak{F}(M)$.

Определение

Пусть $\nabla:\mathfrak{X}(M) imes\mathfrak{X}(M) o\mathfrak{X}(M)$ — аффинная связность на гладком многообразии $M,\,X,\,Y\in\mathfrak{X}(M)$. Тогда ∇_XY называется ковариантной производной векторного поля Y вдоль (или, в направлении) векторного поля X.

Лекция 10

4 мая 2022 г.

Примеры аффинных связностей

1) $M = \mathbb{R}^n$.

Любое $Y \in \mathfrak{X}(\mathbb{R}^n)$ можно считать гладкой функцией $\mathbb{R}^n o \mathbb{R}^n$, т.к.

 $Y\colon M o TM$, где $TM=\mathbb{R}^n imes\mathbb{R}^n$ и на первое \mathbb{R}^n отображение тождественно.

Тогда $\forall~X\in\mathfrak{X}(\mathbb{R}^n)$ определим оператор $\mathfrak{X}(\mathbb{R}^n) o\mathfrak{X}(\mathbb{R}^n)$ дифференцирования вдоль X равенством:

$$orall \ Y \in \mathfrak{X}(\mathbb{R}^n)$$
 полагаем $abla_X Y = (Y_X')_p = d_p Y(X_p).$

Нужно проверить выполнение трех условий на ∇ .

2) Координатное дифференцирование.

Пусть (U,φ) – карта на M, E_1,\ldots,E_n – координатные векторные поля,

$$Y = \sum f_i E_i$$
.

Тогда полагаем

$$\nabla_X^{\varphi}Y:=\sum (f_i)_X'E_i.$$

Пространство связностей

Лемма

- Разность двух аффинных связностей тензор типа (2,1).
- Аффинная связность + тензор типа (2,1) аффинная связность.

Док-во

1) Пусть ∇ и $\widetilde{\nabla}$ – две аффинные связности на гладком многообразии M. Покажем, что отображение $\nabla - \widetilde{\nabla} \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ линейно по каждому из аргументов, что в силу теоремы с предыдущей лекции означает его порождаемость гладким тензорным полем типа (2,1). Линейность по первому аргументу очевидна в силу определения аффинной связности, Линейность по второму:

$$\nabla_X(fY) - \widetilde{\nabla}_X(fY) = f \cdot \nabla_X Y + (Xf)Y - f \cdot \widetilde{\nabla}_X Y - (Xf)Y = f \cdot (\nabla_X Y - \widetilde{\nabla}_X Y).$$

2) Пусть ∇ – аффинная связность и Γ – тензор типа (2,1). Покажем, что $\widetilde{\nabla} = \nabla + \Gamma$ – аффинная связность.

$$\widetilde{\nabla}_X(fY) = \nabla_X(fY) + \Gamma(X, fY) = f\nabla_X Y + (Xf)Y + f\Gamma(X, Y) = f\widetilde{\nabla}_X Y + (Xf)Y$$

Лекция 10 4 мая 2022 г

Локальность аффинных связностей

Лемма

Пусть ∇ — аффинная связность на гладком многообразии M. Тогда $\forall X,Y\in \mathfrak{X}(M)$ и $\forall p\in M$ значение $(\nabla_X Y)_p$ зависит только от X_p и от сужения Y на любую окрестность точки p.

Док-во

Фиксируем поле Y. Тогда $\nabla_X Y$ линейное над $\mathfrak{F}(M)$ отображение $\mathfrak{X}(M) \to \mathfrak{X}(M)$. В силу теоремы с предыдущей лекции оно порождено некоторым единственным гладким тензорным полем $\{\widehat{S}_p\}_{p \in M}$ типа (1,1). Поэтому $(\nabla_X Y)_p$ зависит только от X_p .

Фиксируем поле X. Фиксируем карту U. Пусть $p\in U$ и $Y,Z\in\mathfrak{X}(M)$ совпадают на U. Пусть $h:M\to\mathbb{R}$ – гладкий спуск с единицы, т.ч. $h(p)=1,\;h|_{M\setminus U}=0$ и $d_ph=0$. Тогда

$$hY = hZ \Rightarrow \nabla_X(hY) = \nabla_X(hZ) \Rightarrow h\nabla_X(Y) + (Xh) \cdot Y = h\nabla_X(Z) + (Xh) \cdot Z.$$

Подставляем точку p.

$$h(p)\nabla_X(Y)_p + (Xh)(p)\cdot Y(p) = h(p)\nabla_X(Z)_p + (Xh)(p)\cdot Z(p).$$

Т.к.
$$d_p h = 0$$
, то $(Xh)(p) = d_p h(X_p) = 0$. С учетом $h(p) = 1$ имеем

$$\nabla_X(Y)_p = \nabla_X(Z)_p$$
.

Лекция 10 4 мая 2022 г

Локальность аффинных связностей

Следствие

В карте (U,φ) любая аффинная связность ∇ имеет вид

$$abla_X Y =
abla_X^{arphi} Y + \Gamma(X,Y), \,$$
 где $\Gamma-\,$ тензор типа $(2,1).$

$$X = \sum_{i} f_{i}E_{i}, \quad Y = \sum_{j} g_{j}E_{j}.$$

$$\nabla_{X}Y = \nabla_{X}\left(\sum_{j} g_{j}E_{j}\right) = \sum_{j} g_{j}\nabla_{X}E_{j} + \sum_{j} (Xg_{j})E_{j} = \Gamma(X,Y) + \nabla_{X}^{\varphi}Y.$$

Определим символы Кристоффеля 1-го рода связности ∇ в карте (U,φ)

 $\Gamma_{ij} := \nabla_{E_i} E_j = \Gamma(E_i, E_j).$

Гладкие функции Γ^k_{ij} называются символами Кристоффеля 2-го рода, где $\Gamma_{ij} = \sum \Gamma^k_{ij} E_k.$

Следствие

 $(\nabla_X Y)_p$ однозначно определяется значением X_p и сужением Y на любую кривую в направлении X_p .

Док-во Это верно для координатного дифференцирования, а Г вообще не зависит от производных.

Лекция 10 4 мая 2022 г

Симметричные связности

Определение

Аффинная связность ∇ на гладком многообразии M называется симметричной, если

$$abla_X Y -
abla_Y X = [X, Y]$$
 для всех $X, Y \in \mathfrak{X}(M)$.

Определение

Оператор $T=T_{
abla}\colon \mathfrak{X}(M) imes \mathfrak{X}(M) o \mathfrak{X}(M)$, заданный формулой

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

называется тензором кручения данной аффинной связности.

Лемма

Тензор кручения – тензор типа (2,1).

Док-во Т.к. [X, Y] = -[Y, X], то T(X, Y) = -T(Y, X). Поэтому достаточно доказать линейность по второму аргументу.

$$T(X, Y+Z) = \nabla_X(Y+Z) - \nabla_{Y+Z}X - [X, Y+Z] = T(X, Y) + T(X, Z),$$

$$T(X, fY) = f\nabla_X Y + (Xf)Y - f\nabla_Y X - f[X, Y] - (Xf)Y = fT(X, Y).$$

Лекция 10 4 мая 2022 г.

Симметричные связности

Следствие (симметричность в координатах)

Аффинная связность ∇ симметрична \iff $\Gamma_{ij} = \Gamma_{ji}$, $\forall i, j$.

Док-во Условие симметричности равносильно условию "тензор T равен 0". Так как значения тензора определяются на координатных векторных полях, то последнее равносильно условию

$$0 = T(E_i, E_j) = \nabla_{E_i} E_j - \nabla_{E_i} E_i = \Gamma_{ij} - \Gamma_{ji}.$$

Лекция 10 4 мая 2022 г.

Риманова связность

Определение

Пусть M – риманово многообразие. Аффинная связность ∇ на M называется согласованной с римановой метрикой \langle,\rangle , если $\forall~X,Y,Z\in\mathfrak{X}(M)$

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle.$$

Для простоты такую ∇ называют также римановой связностью.

Зададим оператор $S:\mathfrak{X}(M)^3 o\mathfrak{X}(M)$ формулой

$$S(X,Y,Z) = X\langle Y,Z \rangle - \langle \nabla_X Y,Z \rangle - \langle Y,\nabla_X Z \rangle.$$

Лемма

S – тензор типа (3, 1).

Док-во: Линейность по X очевидна, а по Y и Z формула симметрична, так что достаточно проверить линейность для одного из полей.

$$S(X, fY, Z) = X\langle fY, Z \rangle - \langle \nabla_X fY, Z \rangle - \langle fY, \nabla_X Z \rangle =$$

$$= (Xf)\langle Y, Z \rangle + f(X\langle Y, Z \rangle) - \langle f\nabla_X Y + (Xf) \cdot Y, Z \rangle - f\langle Y, \nabla_X Z \rangle$$

$$= f(X\langle Y, Z \rangle) - f\langle \nabla_X Y, Z \rangle - f\langle Y, \nabla_X Z \rangle = fS(X, fY, Z).$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへ○

Лекция 10 4 мая 2022 г

Связность Леви-Чивита

Определение

Связностью Леви-Чивита на римановом многообразии называется симметричная аффинная связность, согласованная с метрикой.

Теорема (основная теорема римановой геометрии)

На любом римановом многообразии существует единственная связность Леви-Чивита.

Док-во: Единственность. Пусть ∇ — связность Леви-Чивита. Тогда

$$X\langle Y,Z\rangle = \langle \nabla_X Y,Z\rangle + \langle Y,\nabla_X Z\rangle.$$

$$Y\langle Z, X\rangle = \langle \nabla_Y Z, X\rangle + \langle Z, \nabla_Y X\rangle.$$

$$Z\langle X,Y\rangle = \langle \nabla_Z X,Y\rangle + \langle X,\nabla_Z Y\rangle.$$

Складывая 1 с 2 и вычитая 3, а также используя симметричность ∇ , получаем

$$X\langle Y,Z\rangle + Y\langle Z,X\rangle - Z\langle X,Y\rangle = \langle [X,Z],Y\rangle + \langle [Y,Z],X\rangle + \langle [X,Y],Z\rangle + 2\langle Z,\nabla_XY\rangle.$$

Поэтому

$$\langle Z, \nabla_X Y \rangle = \frac{1}{2} \left(X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle [X, Z], Y \rangle - \langle [Y, Z], X \rangle - \langle [X, Y], Z \rangle \right).$$

Лекция 10 4 мая 2022 г.