

IN THE CLAIMS

Please amend claims 1, 9, 10, 12, 13, 15, 16 and 25 as follows:

1 1. (Currently Amended) A field emission display, comprising:
2 a first substrate;
3 an electron emission assembly arranged on said first substrate;
4 a second substrate arranged a predetermined distance from said first substrate, said
5 first and second substrates forming a vacuum space;

6 an illumination assembly arranged on said second substrate, said illumination
7 assembly being illuminated by electrons emitted from said electron emission assembly;
8 and

9 a mesh grid arranged above said electron emission assembly, the mesh grid
10 including an effective screen portion having a plurality of beam passage holes arranged in
11 a predetermined pattern and having an inactive portion absent any beam passage holes.

1 2. (Original) The field emission display of claim 1, wherein said mesh grid
2 comprises a metal.

1 3. (Original) The field emission display of claim 1, wherein said mesh grid
2 comprises one of stainless steel, invar, and an iron-nickel alloy.

1 4. (Original) The field emission display of claim 3, wherein the iron-nickel alloy
2 comprises 2.0 to 10.0 wt% of Cr.

1 5. (Original) The field emission display of claim 3, wherein the iron-nickel alloy
2 comprises 40.0 to 44.0 wt% of Ni.

1 6. (Original) The field emission display of claim 3, wherein the iron-nickel alloy
2 comprises 0.2 to 0.4 wt% of Mn, 0.7 wt% or less of C, and 0.3 wt% or less of Si.

1 7. (Original) The field emission display device of claim 1, wherein the thermal
2 expansion coefficient of said mesh grid is in the range of $9.0 \times 10^{-6}/^{\circ}\text{C}$ to $10.0 \times 10^{-6}/^{\circ}\text{C}$.

1 8. (Original) The field emission display device of claim 1, wherein electron
2 emission assembly comprises a cathode and a gate and an electron emission source.

1 9. (Currently Amended) The field emission display device of claim [[9]] 8,
2 wherein said gate is arranged on an upper side of said cathode.

1 10. (Currently Amended) The field emission display device of claim [[9]] 8,
2 wherein the gate is arranged on a lower side of said cathode.

1 11: (Original) The field emission display device of claim 1, wherein an
2 intermediate material is arranged between said electron emission assembly and said mesh
3 grid.

1 12. (Currently Amended) The field emission display device of claim [[1]] 11,
2 wherein said intermediate material comprises an insulating material.

1 13. (Currently Amended) The field emission display device of claim [[12]] 11,
2 wherein said intermediate material comprises a resistive material.

1 14. (Original) The field emission display device of claim 1, further comprising a
2 focusing electrode arranged on said mesh grid.

1 15. (Currently Amended) A field emission display device, comprising:
2 a first substrate;
3 an electron emission assembly arranged on said first substrate;
4 a second substrate arranged a predetermined distance from said first substrate, said
5 first and second substrates forming a vacuum assembly;
6 an illumination assembly arranged on said second substrate, said illumination
7 assembly being illuminated by electrons emitted from said electron emission assembly;
8 and

9 a mesh grid arranged above said electron emission assembly, the mesh grid
10 including an effective screen portion having a plurality of beam passage holes arranged in
11 a predetermined pattern and having an inactive portion absent any beam passage holes;
12 wherein said mesh grid is bonded to said electron emission assembly by a frit.

1 16. (Currently Amended) A method of manufacturing a field emission display,
2 the method comprising:

3 providing a first substrate;
4 arranging an electron emission assembly on said first substrate;
5 arranging a second substrate a predetermined distance from said first substrate to
6 form a vacuum space with said first and second substrates;
7 arranging an illumination assembly on said second substrate, and illuminating said
8 illumination assembly with electrons emitted from said electron emission assembly; and
9 arranging a mesh grid above said electron emission assembly, the mesh grid
10 including an effective screen portion having a plurality of beam passage holes arranged in
11 a predetermined pattern and having an inactive portion absent any beam passage holes.

1 17. (Original) The method of claim 16, further comprising forming said mesh
2 grid of a metal.

1 18. (Original) The method of claim 16, further comprising forming said mesh

2 grid of one of stainless steel, invar, and an iron-nickel alloy.

1 19. (Original) The method of claim 16, further comprising forming a cathode and
2 a gate and an electron emission source in said electron emission assembly.

1 20. (Original) The method of claim 19, further comprising forming said gate on
2 one of an upper and lower side of said cathode.

1 21. (Original) The method of claim 16, further comprising forming an
2 intermediate material between said electron emission assembly and said mesh grid.

1 22. (Original) The method of claim 21, further comprising forming said
2 intermediate material of an insulating material.

1 23. (Original) The method of claim 21, further comprising forming said
2 intermediate material of a resistive material.

1 24. (Original) The method of claim 16, further comprising forming a focusing
2 electrode on said mesh grid.

1 25. (Currently Amended) A method of manufacturing a field emission display

2 device, the method comprising:

3 providing a first substrate;

4 arranging an electron emission assembly on said first substrate;

5 arranging a second substrate a predetermined distance from said first substrate to

6 form a vacuum assembly with said first and second substrates;

7 arranging an illumination assembly on said second substrate and illuminating said

8 illumination assembly with electrons emitted from said electron emission assembly;

9 arranging a mesh grid above said electron emission assembly the mesh grid

10 including an effective screen portion having a plurality of beam passage holes arranged in

11 a predetermined pattern and having an inactive portion absent any beam passage holes;

12 and

13 bonding said mesh grid to said electron emission assembly with a frit.