Formulación Matemática Detallada de Kistmat_AI

1. Generación de Datos y Preprocesamiento

Sea P el conjunto de problemas matemáticos generados. Cada problema $p \in P$ se define como:

$$p = (t, s, d, c)$$

Donde:

- $t \in T$: texto del problema (espacio de todos los textos posibles)
- s ∈C: solución (número complejo para abarcar soluciones reales e imaginarias)
- $d \in [1, 3]$: nivel de dificultad (número real entre 1 y 3)
- c ∈ C: concepto matemático (conjunto finito de conceptos)

La función de generación de datos G está parametrizada por la etapa de aprendizaje e $\in E$ y el nivel de dificultad d:

$$G: E \times [1,3] \rightarrow P^n$$

Donde n es el número de problemas generados, típicamente entre 4000 y 5000.

Para cada etapa e, existe una función específica de generación $G_{\rm e}$:

$$G_e(d) = \{p_i = (t_i, s_i, d, c_i) \mid i = 1, ..., n\}$$

Por ejemplo, para la etapa "elementary1":

$$G_{elementary1}(d) = \{(f(a_i, b_i), eval(f(a_i, b_i)), d, op_i) | i = 1, ..., n\}$$

Donde $f(a,b)="a\ op\ b"$, $a_i,b_i \sim U(1,\lfloor 10d \rfloor)$, $op_i \in \{+,-\}$, y eval es la función de evaluación de la expresión.

2. Tokenización

La función de tokenización $T_{\rm e}$ para la etapa e se define como:

$$T_e: T \rightarrow N^m$$

Donde m es la longitud máxima de la secuencia (MAX_LENGTH en el código).

Para problemas básicos:

$$T_{basic}(t) = [hash(w_i) \mod V \mid w_i \in split(t)]$$

Para problemas avanzados:

$$T_{advanced}(t) = [f_{token}(w_i) | w_i \in split(t)]$$

Donde:

$$f_{token}(w) = \begin{cases} hash(w) \mod V & \text{si } w \text{ es alfab\'etico} \\ ord(w) & \text{si } w \text{ es d\'igito o s\'imbolo} \\ [float(w) \cdot 100] & \text{en otro caso} \end{cases}$$

Para problemas de cálculo:

$$T_{\text{calculus}}(t) = [\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_k]$$

Donde α_i son coeficientes normalizados y β_i son exponentes normalizados de los términos en la expresión de cálculo.

3. Modelo Principal (Kistmat_AI)

3.1 Capa de Embedding

$$E = Emb(x) \in \mathbb{R}^{m \times d_e}$$

Donde $x \in N^m$ es el vector de tokens de entrada, d_e es la dimensión del embedding.

3.2 LSTMs Bidireccionales

Para cada capa LSTM bidireccional l = 1, 2:

$$\overrightarrow{h}_{1} = LSTM_{1}(\overrightarrow{h}_{1-1}, E_{1})$$

$$\langle \operatorname{cevh}_{1,t} = \operatorname{LSTM}_1(\langle \operatorname{cevh}_{1,t+1}, \operatorname{E}_t) \rangle$$

$$H_1 = [\overrightarrow{h_{1,1}}, \dots, \overrightarrow{h_{1,m}}] \oplus [\langle \operatorname{cevh}_{1,1}, \dots, \langle \operatorname{cevh}_{1,m} \rangle]$$

Donde \oplus denota la concatenación, $H_0 = E$, y $H_1 \in R^{m \times 2d_h}$, siendo d_h la dimensión oculta del LSTM.

3.3 Capa de Dropout

$$H_{drop} = Dropout(H_2, p = 0.5)$$

3.4 Atención Multi-Cabeza

Para cada cabeza de atención i = 1, ..., h:

$$\begin{aligned} Q_i = & \text{ } H_{drop}W_i^Q, \quad K_i = & \text{ } H_{drop}W_i^K, \quad V_i = & \text{ } H_{drop}W_i^V \end{aligned}$$

$$\text{head}_i = & \text{ softmax} \left(\begin{array}{c} Q_iK_i^T \\ \sqrt{\overline{d_k}} \end{array} \right) V_i$$

$$MultiHead(H_{drop}) = Concat(head_1, ..., head_h)W^{O}$$

Donde $W_i^Q, W_i^K, W_i^V \in R^{2d_h \times d_k}$ y $W^O \in R^{hd_k \times 2d_h}$.

3.5 Consulta de Memoria

$$q = MemoryQuery(MultiHead(H_{drop}))$$

Donde $q \in R^{d_q}$ y d_q es la dimensión de la consulta de memoria.

3.6 Razonamiento y Salida

$$r = ReLU(W_rMultiHead(H_{drop}) + b_r)$$

$$y = W_o r + b_o$$

Donde $W_r \in R^{d_r \times 2d_h}$, $b_r \in R^{d_r}$, $W_o \in R^{2 \times d_r}$, $b_o \in R^2$, y $y \in R^2$ representa la parte real e imaginaria de la solución predicha.

4. Sistema de Memoria Integrado

4.1 Memoria Externa

Sea $M_{\text{ext}} \in R^{n_{\text{ext}} \times d_v}$ la matriz de embeddings de memoria externa, donde n_{ext} es el número de entradas y d_v es la dimensión del valor.

$$sim_{ext}(q) = q M_{ext}^{T}$$

$$m_{ext} = TopK(sim_{ext}(q), k) \cdot M_{ext}$$

4.2 Memoria Formulativa

Sea $F = \{(f_i, e_i, T_i) \mid i = 1, ..., n_f\}$ el conjunto de fórmulas almacenadas, donde f_i es la fórmula, $e_i \in R^{d_f}$ es su embedding, y T_i es el conjunto de términos asociados.

$$sim_{form}(q, T) = qE_T^T$$

$$m_{form} = TopK(sim_{form}(q, T), k) \cdot E_T$$

Donde $E_{\,T}\,$ es la matriz de embeddings de las fórmulas cuyos términos intersectan con los de la consulta.

4.3 Memoria Conceptual

Sea $C = \{(c_i, e_i) \mid i = 1, ..., n_c\}$ el conjunto de conceptos almacenados, donde c_i es el concepto y $e_i \in R^{d_c}$ es su embedding.

$$sim_{conc}(q) = qE_c^T$$

$$m_{conc} = TopK(sim_{conc}(q), k) \cdot E_c$$

4.4 Memoria a Corto Plazo

Sea $S = [s_1, \dots, s_{n_s}]$ la lista de estados recientes, donde $s_i \in R^{d_s}$.

$$sim_{short}(q) = qS^{T}$$

$$m_{short} = TopK(sim_{short}(q), k) \cdot S$$

4.5 Memoria a Largo Plazo

Sea $L=\{(l_i,\alpha_i)\mid i=1,\ldots,n_l\}$ el conjunto de memorias a largo plazo, donde $l_i\in R^{d_l}$ es la memoria y α_i es su importancia.

$$sim_{long}(q) = qL^T \odot \alpha$$

$$m_{long} = TopK(sim_{long}(q), k) \cdot L$$

4.6 Memoria de Inferencia

Sea $I = \{(i_j, \beta_j) \mid j = 1, \dots, n_i\}$ el conjunto de inferencias almacenadas, donde $i_j \in R^{d_i}$ es la inferencia y β_i es su confianza.

$$sim_{inf}(q) = qI^{T} \odot \beta$$

$$m_{inf} = TopK(sim_{inf}(q), k) \cdot I$$

4.7 Integración de Memorias

$$M = [m_{ext}; m_{form}; m_{conc}; m_{short}; m_{long}; m_{inf}]$$

$$m_{integrated} = Attention(q, M, M)$$

5. Razonamiento Simbólico

Sea S el espacio de expresiones simbólicas y $f_s:S\to C$ la función de evaluación simbólica.

Para una ecuación lineal ax + b = c:

$$f_s(ax + b = c) = \frac{c - b}{a}$$

Para una ecuación cuadrática $ax^2 + bx + c = 0$:

$$f_s(ax^2 + bx + c = 0) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Para límites:

$$f_s(\lim_{x\to a} g(x)) = \lim_{h\to 0} g(a+h)$$

Para derivadas:

$$f_s(\frac{d}{dx}(\sum_{i=0}^n a_i x^i)) = \sum_{i=1}^n i a_i x^{i-1}$$

6. Aprendizaje por Refuerzo (continuación)

Sea s_t el estado en el tiempo t, a_t la acción tomada, r_t la recompensa recibida, y $\pi_{\theta}(a|s)$ la política parametrizada por θ . El gradiente del objetivo $J(\theta)$ se define como:

$$\nabla_{\theta} J(\theta) = E_{\pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r_{t'} \right) \right]$$

Donde $\gamma \in [0, 1]$ es el factor de descuento.

Para el caso específico de Kistmat_Al, definimos:

- Estado s_t: El problema matemático actual y el contexto del aprendizaje.
- Acción a_t: La predicción del modelo para la solución del problema.
- Recompensa r_t: Una función del error entre la predicción y la solución real:

$$r_t = f(y_t, \hat{y}_t) = \begin{cases} 1 & \text{si } |y_t - \hat{y}_t| < \epsilon \\ -\frac{|y_t - \hat{y}_t|}{\max(|y_t|, 1)} & \text{en otro caso} \end{cases}$$

Donde y_t es la solución real, \hat{y}_t es la predicción del modelo, y ϵ es un umbral de tolerancia.

La actualización de los parámetros se realiza mediante:

$$\theta_{t^{+}\,1} = \; \theta_{t} + \; \alpha \boldsymbol{\nabla}_{\,\theta} \boldsymbol{J} \; (\theta_{t}) \label{eq:theta_t}$$

Donde α es la tasa de aprendizaje.

7. Entrenamiento Curricular

Sea $E = \{e_1, \dots, e_9\}$ el conjunto de etapas de aprendizaje, donde:

$$e_1 = elementary 1, \dots, e_9 = university$$

Para cada etapa e_i , definimos un umbral de preparación τ_i :

$$\tau = [\tau_1, \dots, \tau_9] = [0.95, 0.93, 0.91, 0.89, 0.87, 0.85, 0.83, 0.81, 0.80]$$

La función de pérdida $L_{e_{i}}$ para la etapa e_{i} se define como:

$$L_{e_i}(\theta) = \frac{1}{|P_{e_i}|} \sum_{p \in P_{e_i}} ||y_p - \hat{y}_p||^2$$

Donde P_{e_i} es el conjunto de problemas para la etapa e_i , y_p es la solución verdadera y \hat{y}_p es la predicción del modelo.

El criterio de avance a la siguiente etapa se define como:

Avanzar si:
$$R^2(P_{e_i}^{val}) \ge \tau_i$$

Donde $R^2(P_{e_i}^{\ val})$ es el coeficiente de determinación en el conjunto de validación de la etapa e_i .

8. Evaluación

8.1 Error Cuadrático Medio (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \|y_i - \hat{y}_i\|^2$$

Donde n es el número de muestras, y_i es la solución verdadera y \hat{y}_i es la predicción del modelo.

8.2 Coeficiente de Determinación (R2)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \|y_{i} - \hat{y}_{i}\|^{2}}{\sum_{i=1}^{n} \|y_{i} - \overline{y}\|^{2}}$$

Donde $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ es la media de los valores verdaderos.

8.3 Error Absoluto Medio (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

9. Optimización

El objetivo general de optimización se puede expresar como:

$$\min_{\theta} \sum_{e \in E} \lambda_e L_e(\theta) + \lambda_R R(\theta)$$

Donde λ_e son los pesos para cada etapa de aprendizaje, $L_e(\theta)$ es la función de pérdida para la etapa e, λ_R es el factor de regularización, y $R(\theta)$ es el término de regularización (por ejemplo, L2: $R(\theta) = \|\theta\|^2$).

La actualización de los parámetros se realiza mediante el algoritmo Adam:

$$\begin{split} m_t &= \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} L(\theta_t) \\ v_t &= \beta_2 v_{t-1} + (1 - \beta_2) (\nabla_{\theta} L(\theta_t))^2 \\ \hat{m}_t &= \frac{m_t}{1 - \beta_1^t} \\ \hat{v}_t &= \frac{v_t}{1 - \beta_2^t} \\ \theta_{t+1} &= \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t \end{split}$$

Donde β_1,β_2 son los factores de decaimiento para las estimaciones del primer y segundo momento, η es la tasa de aprendizaje, y ε es un pequeño valor para evitar la división por cero.