Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №15326 Лабораторная работа №3 по дисциплине Основы профессиональной деятельности

> Выполнил Студент группы Р3115 Владимир Мацюк Преподаватель: Абузов Ярослав Александрович

1 Текст задания

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

```
4D0:
       04E0
                 4DE:
                         CEFB
4D1:
       A000
                 4DF:
                         0100
                         44D4
4D2:
       E000
                 4E0:
4D3:
       E000
                         CE00
                 4E1:
4D4: + 0200
                 4E2:
                         0900
4D5:
       EEFD
                 4E3:
                         0900
4D6:
       AF04
       EEFA
4D7:
4D8:
       AEF7
4D9:
       EEF7
4DA:
       AAF6
       F301
4DB:
4DC:
       3AF6
4DD:
       84D2
```

Адрес	Код команды	Мнемоника	Комментарии
4D0	04E0	a	
4D1	A000	b	
4D2	E000	n	
4D3	E000	r	
4D4	+0200	CLA	Очистка аккумулятора
4D5	EEFD	ST IP-3	(г)Сохранение (Прямая относительная адресация)
4D6	AF04	LD 0x04	Загрузка (Прямая загрузка операнда)
4D7	EEFA	ST IP-6	(n) Сохранение (Прямая относительная адресация)
4D8	AEF7	LD IP-9	(а) Загрузка (Прямая относительная адресация)
4D9	EEF7	ST IP-9	(b) Сохранение (Прямая относительная адресация)
4DA	AAF6	LD (IP-A)+	(b) loop: Загрузка (Косвенная относительная автоинкрементная адресация)
4DB	F301	BPL IP+1	Переход, если плюс
4DC	3AF6	OR (IP-A)+	(r) Логическое или (Косвенная относительная автоинкрементная адресация)
4DD	84D2	LOOP 0x4D2	(n) Декремент и пропуск (Прямая абсолютная адресация)
4DE	CEFB	JUMP IP-5	Безусловный переход (loop) (прямая относительная адресация)
4DF	0100	HLT	Остановка
4E0	44D4	arr[0]	
4E1	CE00	arr[1]	
4E2	0900	arr[2]	
4E3	0900	arr[3]	

2 Описание программы

Программа находит количесво отрицательных чисел и сохраняет результат в ячейке 4D3. Псевдокод:

```
1
    a = 0x4e0
 2
    b = a
 3
    n = 4
    r = 0
 5
 6
    do {
 7
     ac = *(b++)
 8
     if ac ≤ 0 {
 9
       ac \models *(r++)
10
   } while (--n > 0)
```

3 Область представления

- а, b 11-ти разрядные, адрес БЭВМ.
- r, n 16-ти разрядные целые, беззнаковое.
- arr[i] 16-ти разрядные знаковые целые числа.

4 Область допустимых значений

- $n \in [1; 2^{11} 4e0_{16}] = [1; 800] \mid [1, 4CF_{16}]$ 1 т.к. цикл выполнится как минимум 1 раз
- $r \in [0; n]$
- $\bullet \ a,b \in [4e0_{16};2^{11}] \mid [0;4CF_{16}]$
- $arr[i] \in [-2^{15}; 2^{15} 1]$

5 Расположение данных в памяти

- \bullet 4E0, 4E1, 4E2, 4E3 исходные данные;
- \bullet 4D0, 4D1, 4D2, 4D3 промежуточные значения;
- \bullet 4D4 4DF команды

6 Адреса первой и последней выполняемой команды

- Адрес первой команды: 4D4
- Адрес последней команды: 4Df

7 Таблица трассировки

Адр	Код	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Код
4D4	0200	4D4	0000	000	0000	000	0000	0000	004	0100		
4D4	0200	4D5	0200	4D4	0200	000	04D4	0000	004	0100		
4D5	EEFD	4D6	EEFD	4D3	0000	000	FFFD	0000	004	0100	4D3	0000
4D6	AF04	4D7	AF04	4D6	0004	000	0004	0004	000	0000		
4D7	EEFA	4D8	EEFA	4D2	0004	000	FFFA	0004	000	0000	4D2	0004
4D8	AEF7	4D9	AEF7	4D0	04E0	000	FFF7	04E0	000	0000		
4D9	EEF7	4DA	EEF7	4D1	04E0	000	FFF7	04E0	000	0000	4D1	04E0
4DA	AAF6	4DB	AAF6	4E0	44D4	000	FFF6	44D4	000	0000	4D1	04E1
4DB	F301	4DD	F301	4DB	F301	000	0001	44D4	000	0000		
4DD	84D2	4DE	84D2	4D2	0003	000	0002	44D4	000	0000	4D2	0003
4DE	CEFB	4DA	CEFB	4DE	04DA	000	FFFB	44D4	000	0000		
4DA	AAF6	4DB	AAF6	4E1	CE00	000	FFF6	CE00	008	1000	4D1	04E2
4DB	F301	4DC	F301	4DB	F301	000	04DB	CE00	008	1000		
4DC	3AF6	4DD	3AF6	000	0000	000	31FF	CE00	008	1000	4D3	0001
4DD	84D2	4DE	84D2	4D2	0002	000	0001	CE00	008	1000	4D2	0002
4DE	CEFB	4DA	CEFB	4DE	04DA	000	FFFB	CE00	008	1000		
4DA	AAF6	4DB	AAF6	4E2	0900	000	FFF6	0900	000	0000	4D1	04E3
4DB	F301	4DD	F301	4DB	F301	000	0001	0900	000	0000		
4DD	84D2	4DE	84D2	4D2	0001	000	0000	0900	000	0000	4D2	0001
4DE	CEFB	4DA	CEFB	4DE	04DA	000	FFFB	0900	000	0000		
4DA	AAF6	4DB	AAF6	4E3	0900	000	FFF6	0900	000	0000	4D1	04E4
4DB	F301	4DD	F301	4DB	F301	000	0001	0900	000	0000		
4DD	84D2	4DF	84D2	4D2	0000	000	FFFF	0900	000	0000	4D2	0000
4DF	0100	4E0	0100	4DF	0100	000	04DF	0900	000	0000		

8 Вывод

Во время выполнения лабораторной работы я научился работать в БЭВМ с массивами, ветвлением и циклами. Я изучил прямую и косвенную адресацию и цикл выполнения таких команд, как LOOP и JUMP.