Policy Gradient

Gole:

Given policy π find best θ .

$$\pi_ heta o \pi_{ heta^*}$$

How do we know which

Policy is good

or How to measure the quality of a policy π_{θ} ?

1. Start state value:

$$J_1(heta) = V^{\pi_ heta}(s_1) = \mathbb{E}[v_1]$$

2. Average value:

$$J_{avV}(heta) = \sum_s d^{\pi_ heta}(s) V^{\pi_ heta}(s)$$

or

$$J_{avR}(heta) = \sum_s d^{\pi_ heta}(s) \sum_a \pi_ heta(s,a) \mathcal{R}^a_s$$

Policy Optimization

- Policy Based RL is an optimization problem.
- Find θ that maximises $J(\theta)$.

Without Gradient	Uses Gradient
Hill climbing.	Gradient decent
Simplex /amoeba/ Nelder Mead.	Conjugate gradient
Genetic algorithms.	Quasi-newton

• We will focus on gradient descent.

Policy Gradient

Let $J(\theta)$ be andy policy objective function.

$$heta o heta'$$
 such that $J(heta) < J(heta')$

$$\Delta \theta = \alpha \nabla_{\theta} J(\theta)$$

Where

$$egin{aligned}
abla_{ heta} J(heta) := \left[rac{\partial J(heta)}{\partial heta_1}, rac{\partial J(heta)}{\partial heta_2}, ..., rac{\partial J(heta)}{\partial heta_n}
ight] \end{aligned}$$

Computing Gradients By Finite Differences

- ullet To evaluate policy gradient of $\pi_{ heta}(s,a)$
- ullet For each dimension $k \in [1,n]$
 - \circ Estimate kth partial derivative of objective function w.r.t. heta
 - \circ perturbing heta by small amount ϵ in k th dimension

$$rac{\partial J(heta)}{\partial heta_k} pprox rac{J\left(heta + \epsilon u_k
ight) - J(heta)}{\epsilon}$$

- where u_k is unit vector with 1 in kth component, 0 elsewhere
- ullet Uses n evaluations to compute policy gradient in n dimensions
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

Score Function

$$egin{aligned}
abla_{ heta}\pi_{ heta}(s,a) &= \pi_{ heta}(s,a) & rac{
abla_{ heta}\pi_{ heta}(s,a)}{\pi_{ heta}(s,a)} \ &= \pi_{ heta}(s,a) & rac{
abla_{ heta}\pi_{ heta}(s,a)}{
abla_{ heta}\log_{e}(\pi_{ heta}(s,a))} \ & ext{Score Function} \end{aligned}$$

Softmax Policy

- We will use a softmax policy as a running example
- ullet Weight actions using linear combination of features $\phi(s,a)^ op heta$
- Probability of action is proportional to exponentiated weight

$$\pi_{ heta}(s,a) \propto e^{\phi(s,a)^ op heta}$$

• The score function is

$$abla_{ heta} \log \pi_{ heta}(s,a) = \phi(s,a) - \mathbb{E}_{\pi_{ heta}}[\phi(s,\cdot)]$$

Gaussian Policy

- In continuous action spaces, a Gaussian policy is natural
- ullet Mean is a linear combination of state features $\mu(s) = \phi(s)^ op heta$
- Variance may be fixed σ^2 , or can also parametrised
- ullet Policy is Gaussian, $a \sim \mathcal{N}\left(\mu(s), \sigma^2
 ight)$
- The score function is

$$abla_{ heta} \log \pi_{ heta}(s,a) = rac{(a-\mu(s))\phi(s)}{\sigma^2}$$

Monte-Carlo Policy Gradient (REINFORCE)

- Update parameters by stochastic gradient ascent
- Using policy gradient theorem
- Using return v_t as an unbiased sample of $Q^{\pi_{\theta}}(s_t, a_t)$

$$\Delta\theta_t = \alpha\nabla_\theta \log \pi_\theta(s_t, a_t)v_t$$

function REINFORCE

```
Initialise \theta arbitrarily for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta end function
```

reducing variance using a critic

- monte-carlo policy gradient still has high variance
- we use a critic to estimate the action-value function,

$$q_w(s,a)pprox q^{\pi_ heta}(s,a)$$

- actor-critic algorithms maintain two sets of parameters
 - \circ **Critic** Updates action-value function parameters w
 - \circ **Actor** Updates policy parameters θ , in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$egin{aligned}
abla_{ heta} J(heta) &pprox \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s,a) Q_w(s,a)
ight] \ \Delta heta &= lpha
abla_{ heta} \log \pi_{ heta}(s,a) Q_w(s,a) \end{aligned}$$

Action-Value Actor-Critic

- Simple actor-critic algorithm based on action-value critic
- Using linear value fn approx. $Q_w(s, a) = \phi(s, a)^\top w$

Critic Updates w by linear TD(0)

Actor Updates θ by policy gradient

```
function QAC Initialise s, \theta Sample a \sim \pi_{\theta} for each step do Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_{s,\cdot}^a Sample action a' \sim \pi_{\theta}(s', a') \delta = r + \gamma Q_w(s', a') - Q_w(s, a)
```

 $heta = heta + lpha
abla_{ heta} \log \pi_{ heta}(s, a) Q_w(s, a)$ $w \leftarrow w + eta \delta \phi(s, a)$

 $a \leftarrow a', s \leftarrow s'$

end for end function

Critics at Different Time-Scales

- lacktriangle Critic can estimate value function $V_{\theta}(s)$ from many targets at different time-scales From last lecture...
 - For MC, the target is the return v_t

$$\Delta\theta = \alpha(\mathbf{v_t} - V_{\theta}(s))\phi(s)$$

■ For TD(0), the target is the TD target $r + \gamma V(s')$

$$\Delta\theta = \alpha(\mathbf{r} + \gamma \mathbf{V}(\mathbf{s}') - \mathbf{V}_{\theta}(\mathbf{s}))\phi(\mathbf{s})$$

■ For forward-view TD(λ), the target is the λ -return v_t^{λ}

$$\Delta \theta = \alpha (\mathbf{v}_t^{\lambda} - V_{\theta}(s)) \phi(s)$$

■ For backward-view $TD(\lambda)$, we use eligibility traces

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$
 $e_t = \gamma \lambda e_{t-1} + \phi(s_t)$
 $\Delta \theta = \alpha \delta_t e_t$

Policy Gradient with Eligibility Traces

■ Just like forward-view $TD(\lambda)$, we can mix over time-scales

$$\Delta\theta = \alpha(\mathbf{v}_t^{\lambda} - V_v(s_t))\nabla_{\theta}\log \pi_{\theta}(s_t, a_t)$$

- where $v_t^{\lambda} V_v(s_t)$ is a biased estimate of advantage fn
- Like backward-view $TD(\lambda)$, we can also use eligibility traces
 - By equivalence with $\mathsf{TD}(\lambda)$, substituting $\phi(s) = \nabla_{\theta} \log \pi_{\theta}(s, a)$

$$\delta = r_{t+1} + \gamma V_{v}(s_{t+1}) - V_{v}(s_{t})$$
 $e_{t+1} = \lambda e_{t} + \nabla_{\theta} \log \pi_{\theta}(s, a)$
 $\Delta \theta = \alpha \delta e_{t}$

This update can be applied online, to incomplete sequences

Summary of Policy Gradient Algorithms

■ The policy gradient has many equivalent forms

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ v_{t} \right] \qquad \text{REINFORCE}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{w}(s, a) \right] \qquad \text{Q Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ A^{w}(s, a) \right] \qquad \text{Advantage Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta \right] \qquad \text{TD Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta e \right] \qquad \text{TD}(\lambda) \text{ Actor-Critic}$$

$$G_{\theta}^{-1} \nabla_{\theta} J(\theta) = w \qquad \text{Natural Actor-Critic}$$

- Each leads a stochastic gradient ascent algorithm
- Critic uses policy evaluation (e.g. MC or TD learning) to estimate $Q^{\pi}(s, a)$, $A^{\pi}(s, a)$ or $V^{\pi}(s)$

