Module : Analyse des Données

Enseignant : N. Laiche

TP 2: Matrices

1.1 Tableau de données

Pour convertir une liste en un tableau, on utilise la commande array

```
>>>import numpy as np
>>>A=np.array ([2.5, 5.8, 9.])
>>>A
array ([2.5, 5.8, 9.])
```

1.2 Matrices

Une matrice peut être vue comme un tableau multidimensionnel.

Calcul de valeurs propres d'une matrice

Pour ce faire, nous utilisons la commande linalg.eigvals.

Exemple

```
>>>import numpy as np

>>>X = np.array ([[3, 1],[1, 1]])

>>>X

    array ([[3, 1],

        [1, 1]])

>>>np.linalg.eigvals (X)

    array ([3.41421356, 0.58578644])
```

Pour la transposée d'une matrice

```
>>>y=np.transpose (X)
>>>y
array ([[3, 1],
[1, 1]])
```

Faculté d'Informatique Département d'IA et SD M1/ MIV

Module : Analyse des Données

Enseignant : N. Laiche

Ou bien

- Pour extraire la ieme ligne d'une matrice X.row[i]
- 2) Pour extraire la ieme colonne de la matrice X.T[i], pour retourner les éléments de la ieme colonne. Ou bien [row[i] for row in X]

Exercice 1

Soit la matrice X suivante : $X = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix}$.

- 1. Déclarer la matrice X.
- 2. La transposée de X.
- 3. Extraire les vecteurs lignes.
- 4. Extraire les vecteurs colonnes.
- 5. *Vérifier* que le vecteur $v = (-1 \ 0 \ 1)^t$ est un vecteur propre de X.
- 6. Déterminer les val propres et les vecteurs propres accoisés aux val p.

$$11.....v1///////$$
 si ssi : $X*v1=11*v1$

$$\mathbf{X}\mathbf{v} = \mathbf{c}\mathbf{v}$$
?????

Pour les vecteurs colonnes

```
Faculté d'Informatique
Département d'IA et SD
M1/ MIV
Module : Analyse des Données
Enseignant : N. Laiche

>>> X.T[0]
array([1, -2, 8])

>>> [row [1] for row in X]
```

Détermination des valeurs propres de X

```
>>> np.linalg.eigvals (X)
Array ([-2., 7., 13.])
```

[3, 11, -7]

Détermination des valeurs propres et vecteurs propres de X

Remarque

Les colonnes sont les vecteurs propres.

Remarque

Pour vérifier que les vecteurs obtenus sont des vecteurs propres de la matrice, nous pouvons effectuer les produits suivants et comparer les résultats.

```
Avec : D = le vecteur des valeurs propres.

>>> np.dot(X,V[0])
    array([-1.41421356e+00, -6.66133815e-16, 1.41421356e+00])

>>> V[0]*D[0]
    array ([-1.41421356e+00, 2.04930330e-16, 1.41421356e+00])
```

Faculté d'Informatique Département d'IA et SD M1/ MIV

Module : Analyse des Données

Enseignant : N. Laiche

Pour le produit scalaire, il suffit d'appliquer la commande *dot()*.

>>>np.dot(a,b).

Pour les fonctions statistiques

Ou bien

2

Des exercices à préparer pour la séance prochaine in chaa Allah.

Exercice 2

Soit la matrice des données suivante :

$$A = \begin{pmatrix} 10 & 10 & 10 & 8 & 8.04 & 9.14 & 7.46 & 6.58 \\ 8 & 8 & 8 & 8 & 6.95 & 8.14 & 6.77 & 5.76 \\ 13 & 13 & 13 & 8 & 7.58 & 8.14 & 12.74 & 7.71 \\ 9 & 9 & 9 & 8 & 8.81 & 8.77 & 7.11 & 8.84 \\ 11 & 11 & 11 & 8 & 8.33 & 9.26 & 7.81 & 8.47 \\ 14 & 14 & 14 & 8 & 9.96 & 8.10 & 8.84 & 7.04 \\ 6 & 6 & 6 & 8 & 7.24 & 6.13 & 6.08 & 5.25 \\ 4 & 4 & 4 & 19 & 4.26 & 3.10 & 5.39 & 12.50 \\ 12 & 12 & 12 & 8 & 10.84 & 9.13 & 8.15 & 5.56 \\ 7 & 7 & 7 & 8 & 4.82 & 7.26 & 6.42 & 7.91 \\ 5 & 5 & 5 & 8 & 5.68 & 4.74 & 5.73 & 6.89 \\ x^1 & x^2 & x^3 & x^4 & x^5 & x^6 & x^7 & x^8 \end{pmatrix}$$

- 1) Ecrire une fonction qui calcule la moyenne arithmétique des 8 variables de la matrice donnée. Prenez 6 chiffres décimaux.
- 2) Déterminer le centre de gravité et afficher le.
- 3) Ecrire une fonction qui calcule la variance des 8 variables de la matrice donnée. Prenez 6 chiffres décimaux.

Module : Analyse des Données

Enseignant : N. Laiche

- 4) Déterminer la matrice des covariances. Afficher le résultat.
- 5) Calculer les coefficients de corrélation des couples (x^1, x^5) , (x^2, x^6) , (x^3, x^7) , (x^4, x^8) . Que remarquez-vous ?.
- 6) Représenter graphiquement les individus dans l'espace \Re^2 des couples des variables : $(x^1, x^5), (x^2, x^6), (x^3, x^7), (x^4, x^8)$.
- 7) Interpréter les graphes obtenus.

Exercice 3 Soit la matrice des de corrélation associée à 6 variables :

Corr	\mathbf{X}^{1}	\mathbf{X}^2	\mathbf{X}^3	X ⁴	X ⁵	X^6
X ¹	1	-0.007	0.576	0.858	0.212	0.816
\mathbf{X}^2	-0.007	1	0.221	-0.152	-0.110	-0.144
X ³	0.576	0.221	1	0.488	0.025	0.441
X ⁴	0.858	-0.152	0.488	1	0.262	0.930
X ⁵	0.212	-0.110	0.025	0.262	1	0.342
X ⁶	0.816	-0.144	0.441	0.930	0.342	1

- 1) Quelles sont les propriétés de cette matrice.
- 2) Analyser les résultats du tableau et interpréter les corrélations données.
- 3) Peut-on représenter (schématiser) ces relations. Si oui, donner ce schéma.

Exercice 4 (A faire aussi cet exercice à la main)

On considère la matrice de données suivante :

$$X = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & -1 & 1 & -1 & 0 & 1 & -1 \\ 1 & -1 & 0 & 1 & 0 & 1 & -1 & -1 & 0 & 0 \end{pmatrix}$$

- 1) Donner le nuage des points N(I).
- 2) Calculer le centre de gravité de ce nuage. Que peut-on déduire ?.
- 3) Déterminer la matrice des variances-covariances V.
- 4) Posons $S = {}^{t}X.X$. Montrer que S possède une valeur propre nulle (sans faire de calculs).
- 5) Calculer les valeurs propres de S et en déduire celles de V.
- 6) Déterminer le meilleur plan qui ajuste N(I).