Class 7

Lauren Waters (A16326738)

#Clustering We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans().

Let's try it on some made up data where we know that the answer should be.

```
x <- rnorm(10000, mean=3)
hist(x)</pre>
```

Histogram of x


```
tmp <- c(rnorm(30, mean=3), rnorm(30, -3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 2.394197 -3.269939
[2,] 5.230119 -2.269711
[3,] 3.468628 -3.035253
[4,] 1.958489 -4.297168
[5,] 3.303750 -3.165322
[6,] 3.608458 -2.756978
```

We can pass this to the base R plot() function for a quick run

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
Clustering vector:
Within cluster sum of squares by cluster:
[1] 62.65098 62.65098
(between_SS / total_SS = 90.4 %)
Available components:
[1] "cluster"
            "centers"
                                "withinss"
                                         "tot.withinss"
                      "totss"
[6] "betweenss"
            "size"
                                "ifault"
                      "iter"
   Q1. How many point are in each cluter?
 k$size
[1] 30 30
   Q2. Cluster membership?
 k$cluster
Q3. Cluster centers?
 k$centers
      X
1 3.081036 -3.189227
2 -3.189227 3.081036
   Q4. Plot the cluster results
```

plot(x, col = k\$cluster, pch = 16)

Q5. Cluster the sata again with kmeans() into 4 groups and plot the results.

```
k4 <- kmeans(x, centers = 4, nstart = 20)
plot(x, col = k4$cluster, pch = 16)</pre>
```


K-means is common becuase it's fast and easy to understand. Limitation: you need to tell it the number of groups (k or centers) you want.

Hierarchical Clusters

The main function in base R is hcluster(). You have to pass it in a "distance matrx" and not just put data in.

```
hc <- hclust(dist(x))
plot(hc)</pre>
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find the clusters (sluter membership vector) from a hclut() result we can 'cut' the tree at a certain height we like using cutree()

```
plot(hc)
abline(h = 8, col = "blue")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h = 8)
table(grps)</pre>
```

Q6. Plot the hclust results.

```
plot(x, col = grps)
```


Principle Component Analysis

Read the data showing the consumption in grams of 17 different types of food-stuff measured and averaged in the 4 countries of the UK in 1997.

Let's see how PCA can help us, but first we can try conventional analysis.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187

11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

```
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

dim(x)

[1] 17 4

There are 17 rows and 4 columns. Use dim() to find rows and columns after using row.names() to remove column from being "x"

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

row.names() is better because it fixes the designated column, and $x \leftarrow x[,-1]$ will keep remove a column from the data

Q3. Changing what optional argument in the above barplot() function results in the following plot?

```
barplot(as.matrix(x), beside = T, col = rainbow(nrow(x)))
```



```
barplot(as.matrix(x), beside = F, col = rainbow(nrow(x)))
```


beside=() turns a bar graph into a stacked bar graph

Q5. Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs(x, col = rainbow(17), pch = 16, cex = 2)
```


It made the biaganal lines show the standard and any data that skew are values that differ from the OG.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

N. Ireland has the biggest deviation from the other countries because there are more data points skewed from the line.

Principal Compenent Analysis (PCA)

PCA can help make sense of these kinds of datasets.

The main function in "base" R is prcomp(). In this case we want to first take the transpose of our input x so the columns are the food types and the countries are the rows.

	Cheese	Carcass_meat	Other_meat	Fish	Fats_and_oils	Sugars
England	105	245	685	147	193	156
Wales	103	227	803	160	235	175
Scotland	103	242	750	122	184	147

N.Ireland	66	267	586 93	3	209 139
	Fresh_potatoes	${\sf Fresh_Veg}$	Other_Veg	Processed	i_potatoes
England	72	0 253	48	8	198
Wales	87	4 265	57	0	203
Scotland	56	6 171	418	8	220
N.Ireland	103	3 143	35	5	187
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	110	2 1472	57	1374
Wales	365	113	7 1582	73	1256
Scotland	337	95	7 1462	53	1572
N.Ireland	334	67	4 1494	47	1506
	Alcoholic_drin	ks Confecti	onery		
England		375	54		
Wales		475	64		
Scotland		458	62		
N.Ireland		135	41		

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

PC1 captures 67.44% of all data, PC2 captures 96.50% of all data, ...

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-4.894696e-14
Wales	-240.52915	-224.646925	-56.475555	5.700024e-13
Scotland	-91.86934	286.081786	-44.415495	-7.460785e-13
N.Ireland	477.39164	-58.901862	-4.877895	2.321303e-13

Plot PC1 vs PC2

```
plot(pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "green"), pch = 16)
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "green"), pch = 16, cex = 3)

text(pca$x[,1], pca$x[,2], colnames(x))
```


The "loadings" tells us how much the original variables (in this case the foods) contribute to the new variables (i.e. the PCs).

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-4.894696e-14
Wales	-240.52915	-224.646925	-56.475555	5.700024e-13
Scotland	-91.86934	286.081786	-44.415495	-7.460785e-13
N.Ireland	477.39164	-58.901862	-4.877895	2.321303e-13

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334

```
Fresh_potatoes
                   0.401402060 -0.715017078 -0.20668248 -0.090972715
                   -0.151849942 -0.144900268 0.21382237 -0.039901917
Fresh_Veg
Other_Veg
                   -0.243593729 -0.225450923 -0.05332841
                                                       0.016719075
Processed_potatoes
                  -0.036488269 -0.045451802 0.05289191 -0.013969507
Processed Veg
Fresh fruit
                   -0.632640898 -0.177740743
                                           0.40012865
                                                       0.184072217
Cereals
                   -0.047702858 -0.212599678 -0.35884921
                                                       0.191926714
Beverages
                   -0.026187756 -0.030560542 -0.04135860
                                                       0.004831876
Soft_drinks
                   0.232244140
                               0.555124311 -0.16942648
                                                       0.103508492
Alcoholic_drinks
                   -0.463968168
                               0.113536523 -0.49858320 -0.316290619
Confectionery
                   -0.029650201 0.005949921 -0.05232164 0.001847469
```

Lets focus on PC1 as it accounts for > 90% of variance

```
par(mar=c(10, 3, 0.35, 0))
barplot(pca$rotation[,1], las = 2)
```

