Homework-2

1. Householder Reflector
$$F = I - 299*$$

Where $9 = ||hx||_2 e_1 - x$.

$$y - \frac{299*}{9*}y = \lambda y$$

$$(1-\lambda)y = \left(\frac{299*}{9*}\right)y$$

$$(1-\lambda)y = 2\left(\frac{9*}{9}\right)y$$

So one possible solution is $\chi = 1$ and the corresponding eigenvector y is perpendicular to 9(0) the RHS, 9*y = 0

If $\lambda \neq 1$, we can see that y is a scalar multiple of 9:

If $y=x^y$, $x\in C$, then $(1-\lambda)x=2x$ or $\lambda=-1$ the corresponding set of eigenvectors are scalar multiples of ν .

D We know
$$F^2 = I$$

 $(I - 2q, q^*)(I - 2q, q^*)$
 $= I - 4q, q^* + 4q, q^*q, q^* = I$
So det $(F) = \pm 1$

Now, consider det $(I + xy^*)$ can be written as $det(I - y^*)$. (where $xy^* = I$) = I - xty (using the determinant expression for a 2x2 matrix). If 29 = Cy, then det(F) = det(I - 20/9*) = det(I - 20/9) = -1 C F*= (I-200*) = I - 200 = F Since F is Hermitian, it has real eighnvalues and the eigendecomposition of F= D. A. D. yields a Orthonormal matrix Q(Q=Q-1) So, we can write $F = Q | \Delta | sign(\Delta) Q,$ sign (A) is a diagonal matrix with signs of each of the eigenvalues in 1. Since Sign (1) &* is unitary, we have ourselves a singular value decomposition for F. => The singular values of F = | ± 1 | = 1

(Since the eigenvalues of F= ±1).