

Année 2016-2017 Logique mathématique Durée: 02 h

Examen 1

ightharpoonup Exercice 1. [2,5 pts]

Soit nv[F] le nombre de variables propositionnelles distinctes dans F. Soit nc[F] le nombre d'occurrences de connecteurs binaires dans F. Montrer par récurrence structurelle que pour toute formule F on a:

$$nv[F] \le nc[F] + 1.$$

Soit $F \in \mathcal{F}_0$, c'est-à-dire une variable ou une constante.

Dans ce cas, on a nc[F] = 0 et $nv[F] \le 1$. (En effet si F est une variable alors nv[F] = 1, et si F une constante alors nv[F] = 0). La propriété est bien vérifiée: $nv[F] \le 1 = nc[F] + 1$.

2. Soit *G* une formule vérifiant $nv[G] \leq nc[G] + 1$.

Soit $F = \neg G$. On a nc[F] = nc[G] et nv[F] = nv[G]. Donc on déduit $nv[F] \le nc[F] + 1$.

3. Soient G et H deux formules vérifiant $nv[G] \leq nc[G] + 1$ et $nv[H] \leq nc[H] + 1$.

Soit $F = (G\alpha H)$ où α un connecteur binaire. On a $nv[F] \leq nv[G] + nv[H]$ et nc[F] = nc[G] + nc[H] + 1.

Rappelons que $\operatorname{card}(A \cup B) \leq \operatorname{card}(A) + \operatorname{card}(B)$.

Il vient alors que:

$$nv[F] \le nc[G] + 1 + nc[H] + 1 = (nc[G] + nc[H] + 1) + 1 = nc[F] + 1.$$

Donc la propriété est vérifiée pour toute formule $F \in \mathcal{F}$.

Exercice 2. 4 pts Soit la formule à priorité

$$\mathbf{F} = \mathbf{x} \wedge (\mathbf{y} \vee \mathbf{z} \Rightarrow \neg \mathbf{x}) \Rightarrow \mathbf{y} \Rightarrow \neg \mathbf{z}.$$

1. Donner la forme complètement parenthésée de F.

 \angle . Transformer la formule F en une somme de monômes(FND).

1. La formule F est-elle satisfaisable? La formule F est-elle valide? Justifier.

Q4. Déduire que $\{\mathbf{A}, \mathbf{B} \lor \mathbf{C} \Rightarrow \neg \mathbf{A}\} \models \mathbf{B} \Rightarrow \neg \mathbf{C}$.

Réponse.

1. 0.5 pt

$$\mathbf{F} = \left(\left(\mathbf{x} \land ((\mathbf{y} \lor \mathbf{z}) \Rightarrow \neg \mathbf{x}) \right) \Rightarrow \left(\mathbf{y} \Rightarrow \neg \mathbf{z} \right) \right).$$

2. 1.5 pt

$$F = \underbrace{(x((y+z) \Rightarrow \bar{x}))}_{} \Rightarrow (y \Rightarrow \bar{z})$$

$$\equiv \overline{(x((y+z) \Rightarrow \bar{x}))} + (y \Rightarrow \bar{z})$$

$$\equiv \bar{x} + \overline{((y+z) \Rightarrow \bar{x})} + (y \Rightarrow \bar{z})$$

$$\equiv \bar{x} + (y+z)x + \bar{y} + \bar{z}$$

$$\equiv \bar{x} + yx + zx + \bar{y} + \bar{z}$$

3. 1 pt

- $\overline{}$ F est satisfaisable. Du premier monôme on déduit que x=0,y=*,z=* sont des modèles de F.
- $\overline{}$ F est valide. Par exemple, il suffit de montrer que $\neg F$ insatisfaisable:

$$\neg F \equiv xyz(\bar{y} + \bar{x})(\bar{z} + \bar{x}) \equiv 0.$$

4. 1 pt On a $\vDash F$. (F est valide). Donc par le théorème de substitution, $G = F_{\sigma}$ est valide pour $\sigma(x) = A, \sigma(y) = B, \sigma(z) = C$. Alors

$$\vDash (A \land (B \lor C \Rightarrow \neg A)) \Rightarrow (B \Rightarrow \neg C).$$

De la propriété de la conséquence

$$H_1, \ldots, H_n \vDash Cssi \vDash H_1 \land \cdots \land H_n \Rightarrow C.$$

on déduit alors que

$${A, B \lor C \Rightarrow \neg A} \vDash B \Rightarrow \neg C.$$

Exercice 3. 3 pts

Montre que si $\Gamma, A \vDash B$ et $\Gamma, B \vDash A$ alors $\Gamma \vDash A \Leftrightarrow B$.

2. Soit F et G deux formules et x une variable qui ne figure pas dans G. Montrer que $(F \vee \neg x) \wedge G$ est satisfaisable ssi G est satisfaisable.

1. 1pt Supposons que Γ , $A \vDash B$ et Γ , $B \vDash A$. Montrons $\Gamma \vDash A \Leftrightarrow B$.

Soit v modèle de Γ . On distingue deux cas:

 $[A]_v = 1. \ \text{Donc} \ v \ \text{est modèle de} \ \Gamma \cup A. \ \text{Comme} \ \Gamma, A \models B \ \text{on déduit que} \ [B]_v = 1 \ \text{et donc} \ [A \Leftrightarrow B]_v = 1.$

 $[A]_v = 0$. Par l'absurde supposons $[B]_v = 1$. Comme $\Gamma, B \models A$, on aura $[A]_v = 1$. Contradiction. Donc $[B]_v = 0$. Alors $[A \Leftrightarrow B]_v = 1$.

2. 2pt

Supposons $(F \vee \neg x) \wedge G$ satsifaisable. Donc il existe v telle que $[(F \vee \neg x) \wedge G]_v = 1$. Par définition du \wedge , on a $[G]_v = 1$. Donc G a au moins un modèle(satisfaisable).

 \Leftarrow Supposons G satsifaisable. Donc il existe v telle que $[G]_v = 1$.

Considérons l'assignation w(y) = v(y) si $y \neq x$ et w(x) = 0.

 $[(F \vee \neg x) \wedge G]_w = \min([(F \vee \neg x)]_w, [G]_w).$

 $[(F \vee \neg x)]_w = 1 \text{ (car } [\neg x]_w = 1.)$

Comme w coincide avec v sur les variables de G on a : $[G]_w = [G]_v = 1$. Il vient que $[(F \vee \neg x) \wedge G]_w = 1$.

Exercice | 4 | | 3 pts |

1. Transformer $\neg F$ en forme normale conjonctive où

$$\mathbf{F} = \mathbf{p} \wedge (\mathbf{q} \Rightarrow \neg \mathbf{p}) \Rightarrow (\mathbf{p} \wedge \mathbf{r} \Rightarrow \mathbf{q}) \Rightarrow (\mathbf{p} \Rightarrow \mathbf{s}) \Rightarrow \mathbf{s} \Rightarrow \mathbf{q}.$$

2. En utilisant l'arbre sémantique, étudier la validité de F.

1. 1,5 pts

$$\neg F \equiv \overline{\left(p(q \Rightarrow \bar{p})\right)} \Rightarrow \overline{\left((pr \Rightarrow q) \Rightarrow ((p \Rightarrow s) \Rightarrow (s \Rightarrow q))\right)}$$

$$\equiv \left(p(q \Rightarrow \bar{p})\right) \overline{\left((pr \Rightarrow q) \Rightarrow ((p \Rightarrow s) \Rightarrow (s \Rightarrow q))\right)}$$

$$\equiv \left(p(q \Rightarrow \bar{p})\right) \overline{\left((pr \Rightarrow q)(p \Rightarrow s)\overline{s \Rightarrow q}\right)} \equiv p(\bar{q} + \bar{p})(\bar{p} + \bar{r} + q)(\bar{p} + s)s\bar{q}.$$

2. 1,5 pts

On trouve que l'arbre n'est pas fermé. $\neg F$ est satisfaisable, et on reconnaît le seul modèle qui est (p = 1, s = 1, q = 0, r = 0). Alors F n'est pas valide.

Exercice 5. [4 pts]

En utilisant la méthode de résolution, montrer que

$$\{\mathbf{a}\Rightarrow\mathbf{b},\mathbf{b}\Rightarrow\mathbf{c},\mathbf{a}\vee\neg\mathbf{c}\}\vDash(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\vee(\neg\mathbf{a}\wedge\neg\mathbf{b}\wedge\neg\mathbf{c}).$$

Réponse. On sait que

 $\{\mathbf{a}\Rightarrow\mathbf{b},\mathbf{b}\Rightarrow\mathbf{c},\mathbf{a}\vee\neg\mathbf{c}\}\vDash(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\vee(\neg\mathbf{a}\wedge\neg\mathbf{b}\wedge\neg\mathbf{c})\text{ ssi }\{\mathbf{a}\Rightarrow\mathbf{b},\mathbf{b}\Rightarrow\mathbf{c},\mathbf{a}\vee\neg\mathbf{c}\},\neg(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\vee(\neg\mathbf{a}\wedge\neg\mathbf{b}\wedge\neg\mathbf{c})\vDash\bot.$

Et par les équivalences remarquables , ssi $\{\bar{\mathbf{a}}+\mathbf{b},\bar{\mathbf{b}}+\mathbf{c},\mathbf{a}+\bar{\mathbf{c}},\bar{\mathbf{a}}+\bar{\mathbf{b}}+\bar{\mathbf{c}},\mathbf{a}+\mathbf{b}+\mathbf{c}\} \vDash \bot$. **0,5 pts**

			(6) (7)	$b+c \\ a+c$	Res (1,2) Res (1,3)	On a prouvé que : $\{\bar{a}+b,\bar{b}+c,a+\bar{c},\bar{a}+\bar{b}+\bar{c},a+b+c\} \vdash \bot$.
			(8)	a+b	Res (1,4)	3pts Par le théorème de cor-
(1)	. 1 .	TT	(9)	$\frac{a}{7}$	Res (4,7)	rection de la résolution on déduit
(1)	a+b+c	Hyp	(10)	$b + \bar{c}$	$\operatorname{Res}(5,9)$	alors que
(2)	$\bar{a} + b$	Hyp	(11)	b	Res(2,8)	$\{\bar{a}+b,\bar{b}+c,a+\bar{c},\bar{a}+\bar{b}+\bar{c},a+b+c\} \vDash \bot.$
(3)	$\bar{b} + c$	Нур	(12)	c	Res (11,3)	
(4)	$\bar{c} + a$	Нур	(13)	$ar{b}$	Res (10,12)	0,5pt
(5)	$\bar{a} + \bar{b} + \bar{c}$	Hvp	(14)	\perp	Res (11.13)	

Exercice 6. [4 pts] Rappelons les résultats vus dans le cours: le système $\{\neg, \land, \lor\}$ est un système complet et le système $\{0, 1, \Leftrightarrow, \neg\}$ est incomplet.

Le connecteur binaire ou exclusif est défini par $x \oplus y \equiv (x \land \neg y) \lor (\neg x \land y)$.

- 1. Que vaut $0 \oplus 0$? Déduire que le système $\{\oplus\}$ est incomplet.
- 2. Exprimer $\neg x$ et $x \lor y$ dans le système $\{1, \land, \oplus\}$. Que peut-on déduire?
- 3. Le système $\{1, \wedge, \oplus\}$ est-il minimal? Justifier.

Réponse.

1. 1pt $0 \oplus 0 = 0$. Pour l'assignation constante donnant 0 à toutes les variables, la valeur de toute formule F écrite dans le système $\{\oplus\}$ sera 0. Donc on ne peut pas exprimer $\neg x$, 1. Donc $\{\oplus\}$ est incomplet.

2. 1,5pt $\neg x \equiv x \oplus 1. \ x \lor y \equiv \neg(\neg x \land \neg y) \equiv ((x \oplus 1) \land (y \oplus 1)) \oplus 1.$

Comme $\{\neg, \land, \lor\}$ est complet, on déduit que $\{1, \land, \oplus\}$ est complet.

3. 1,5pt Oui $\{1, \land, \oplus\}$ est minimal.

(a) $\{1, \wedge\}$ est incomplet:

Pour l'assignation constante 1, toute formule écrite dans ce système aura comme valeur 1. Donc on ne pourra pas exprimer ni 0 ni $\neg x$ par exemple.

(b) $\{\wedge, \oplus\}$ est incomplet: Avec une variable x, on peut exprimer x. On peut faire aussi le 0 car $x \oplus x \equiv 0$. Maintenant remarquons que $x \wedge x \equiv x$; $x \wedge 0 \equiv 0 \wedge 0 \equiv 0$.

 $x \oplus x \equiv 0; 0 \oplus 0 \equiv 0; x \oplus 0 \equiv x$. Donc les seules formules qu'on peut exprimer sont 0 et x.

(c) $\{1, \oplus\}$ est incomplet.

 $\overline{\operatorname{Par}}$ l'absurde, supposons que $\{1,\oplus\}$ est complet. Remarquons que $x\oplus y\equiv \neg(x\Leftrightarrow y)$. Donc $\{1,\neg,\Leftrightarrow\}$ est complet. Alors $\{0,1,\neg,\Leftrightarrow\}$ est complet. Ceci est en contradiction avec le résultat vu dans le cours. On conclut alors que $\{1,\oplus\}$ est incomplet.

Exercice 7. [[Bonus]] Formalisez le problème de déterminer si un graphe non orienté avec n sommets est connexe ou non avec la logique propositionnelle.

PS.

- Un graphe non orienté est caractérisé par l'ensemble de ses sommets et l'ensemble de ses arrêtes. Par exemple le graphe de droite: {{1,2,3,4,5,6},{(6,4),(2,4),(2,1),(2,3),(3,5)}}.
- Un graphe non orienté est connexe si pour touts sommets a et b il existe une chaîne(chemin) entre a et b. (voir figures).

Considérons les variables propositionnels a_{ij} qui seront interprétés comme la présence d'une arrête entre les sommets i et j.

Considérons les variables propositionnels c_{ij} qui seront interprétés comme l'existence d'un chemin entre les sommets i et j.

Soit Δ l'ensemble des paires de sommets qui sont reliés par une arrête.

Soit

$$A = \bigwedge_{(i,j) \in \Delta} a_{ij} \wedge \bigwedge_{(i,j) \notin \Delta} \neg a_{ij}.$$

La formule *A* code le graphe.

La connexité est donné par définition comme: $C \equiv \bigwedge_{i \neq j} c_{ij}$.

Il reste le plus important de coder la relation entre les a_{ij} et les c_{ij} .

$$D \equiv \bigwedge_{i \neq j} \left(c_{ij} \Leftrightarrow a_{ij} \vee \bigvee_{k} (c_{ik} \wedge a_{kj}) \right).$$

Le graphe codé par A est connexe ssi la formule suivante valide: $(A \wedge D) \Rightarrow C$. Autrement dit : $A \models (D \Rightarrow C)$. Donc on peut conclure que chaque modèle de la formule $(D \Rightarrow C)$ constitue un graphe connexe.