### **Table of Contents**

| Delivery report Pt 2                                       |
|------------------------------------------------------------|
| Deliverable 3ci                                            |
| Deliverable 3cii                                           |
| Part 3 Training a machine to understand emtion (The Sweep) |
| Part 3 ROC curves of each iteration                        |
| Part 4 Methods to reduce complexity                        |
| Part 5 Sweep ROC                                           |
|                                                            |

clc; clear all; close all;

# **Delivery report Pt 2**

This report contains the awnsers to questions posed in the Deliverable

## **Deliverable 3ci**

- % The number of neurons that worked better for step 3  $% \left( 1\right) =0$  was 400 for a sample
- % size of 9000. This number of neurons worked better because increasing the
- % number of neurons showed a decrese in accuracy and favorable readings
- % from the ROC (Receiver Operating Characteristic). This is most commanly
- % because of overfitting to the training set of the data.

## **Deliverable 3cii**

%The extraction method that worked better was the one with less inputs and

%more information. The extraction of the frequency magnatude components

%showed an increased accuraccy at different levels of neurons in the sweep.

%This was because the features that were fed to the input had more %information in them for the neural network.

# Part 3 Training a machine to understand emtion (The Sweep)

%Let it be known that the whole training dataset was not used in training

%this neural network. It was modified to only take 15,000 training
samples

%and use 9,000 of it to sweep for the number of hidden neurons.

```
image1 = imresize(imread('./Final/100.jpg'), 0.5);
image2 = imresize(imread('./Final/200.jpg'), 0.5);
image3 = imresize(imread('./Final/300.jpg'), 0.5);
image4 = imresize(imread('./Final/400.jpg'), 0.5);
image5 = imresize(imread('./Final/500.jpg'), 0.5);
image6 = imresize(imread('./Final/600.jpg'), 0.5);
image7 = imresize(imread('./Final/700.jpg'), 0.5);
image8 = imresize(imread('./Final/800.jpg'), 0.5);
image9 = imresize(imread('./Final/900.jpg'), 0.5);
image10 = imresize(imread('./Final/1000.jpg'), 0.5);
final = imread('./Final/1000.jpg');
plot = [image1 image2];
plot2 = [image3 image4];
plot3 = [image5 image6];
plot4 = [image7 image8];
plot5 = [image9 image10];
figure; imshow(plot); title('100 and 200 hidden neurons sweep');
figure; imshow(plot2); title('300 and 400 hidden neurons sweep');
figure; imshow(plot3); title('500 and 600 hidden neurons sweep');
figure; imshow(plot4); title('700 and 800 hidden neurons sweep');
figure; imshow(plot5); title('900 and 1000 hidden neurons sweep');
figure; imshow(final); title('Final System Accuracy');
Below shows each sweep iteration from 100 to 1000, incrementing by
 100
%each time. The fluctuation that we are seeing is due to
%the fact that the neural network is being trained with a different
% of neurons each iteration. As can be seen, the accuracy per neurons
%decreases until it reaches 400 where it spikes to a 25% accuracy and
%continues to decrease until the final iteration. This means that
 training
%the neural network with 400 neurons would give us the most accurate
%outputs. The final system accuracy is shown below also. As you can
%400 neurons is the most accurate in our sweep.
image_p = imread('./Final/percentage.jpg');
figure; imshow(image_p); title('Accuracy after percentage change');
%We also manipulated the percentage of data going to training and
 testing
% in the sweep iteration for loop in the hopes that we would correct
%overfitting more. However, the results yielded less accuracy as seen
%below.
```

#### 100 and 200 hidden neurons sweep





#### 300 and 400 hidden neurons sweep





#### 500 and 600 hidden neurons sweep





#### 700 and 800 hidden neurons sweep





#### 900 and 1000 hidden neurons sweep









#### Accuracy after percentage change



## Part 3 ROC curves of each iteration

```
image1_n = imresize(imread('./Final/100 neurons.jpg'), 0.5);
image2_n = imresize(imread('./Final/200 neurons.jpg'), 0.5);
image3_n = imresize(imread('./Final/300 neurons.jpg'), 0.5);
image4_n = imresize(imread('./Final/400 neurons.jpg'), 0.5);
image5_n = imresize(imread('./Final/500 neurons.jpg'), 0.5);
image6_n = imresize(imread('./Final/600 neurons.jpg'), 0.5);
image7_n = imresize(imread('./Final/700 neurons.jpg'), 0.5);
image8_n = imresize(imread('./Final/800 neurons.jpg'), 0.5);
image9_n = imresize(imread('./Final/900 neurons.jpg'), 0.5);
image10_n = imresize(imread('./Final/1000 neurons.jpg'), 0.5);
final_n = imread('./Final/ROC_sweep.jpg');
plot_n = [image1_n image2_n];
plot2_n = [image3_n image4_n];
plot3_n = [image5_n image6_n];
plot4_n = [image7_n image8_n];
plot5_n = [image9_n image10_n];
figure; imshow(plot_n); title('100 and 200 hidden neurons ROC curve');
figure; imshow(plot2_n); title('300 and 400 hidden neurons ROC
 curve');
figure; imshow(plot3_n); title('500 and 600 hidden neurons ROC
figure; imshow(plot4_n); title('700 and 800 hidden neurons ROC
 curve');
figure; imshow(plot5_n); title('900 and 1000 hidden neurons ROC
figure; imshow(final_n); title('Final ROC curve');
%Each of the ROC curves shown below represent the performance of the
%network when being trained with the specified number of hidden
 neurons.
Each emotion is represented by a class, as can be seen on each graph:
%(7=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral)
%What we are looking for is the ROC curve with the most classes
*located primarily in the upper left hand quadrant of the plot. This
%indiacte that the neural networks performance, with respect to each
%class, is good. It can be seen that the plot utilizing 400 hidden
 neurons
%shows the best ROC curve.
%The final ROC curve is the overall ROC curve for the neural network.
```

Warning: Image is too big to fit on screen; displaying at 67%

#### 100 and 200 hidden neurons ROC curve





#### 300 and 400 hidden neurons ROC curve





#### 500 and 600 hidden neurons ROC curve





#### 700 and 800 hidden neurons ROC curve





#### 900 and 1000 hidden neurons ROC curve





#### Final ROC curve









# Part 4 Methods to reduce complexity

```
Three different methods that could be used to reduce the complexity
of the
%system are:
%1. wavelet: using wavelet transform would take out a lot of the noise
%the images, allowing the neural network to grab better pixel values
from
%the data sets.
%2. frequency domain: by taking the frequency domain, we could take
%values of an image and create a more precise data set for training
and
%testing
%3. downsize image: downsizing an image would decrease the size of the
%dataset which could decrease the chance of overfitting the training
This could reduce the complexity of the training set and increase the
%accuracy.
%All three of the above methods would manipulate the input images and
%create a more precise training and testing set for the neural network
%be trained with. This would create a better performing and more
accurate
%neural network.
```

# Part 5 Sweep ROC

```
sweep = [10, 10:10:250];
for i = 1:21
    formatSpec = "./Q5figSaves/N%dRoc";
    savefigpath = sprintf(formatSpec,sweep(i));
    openfig(savefigpath);
end
% close all
Error using openFigure
The value of 'Filename' is invalid. It must satisfy the function:
 ischar.
Error in openfig>localGetFileAndOptions (line 98)
ip.parse(args{:});
Error in openfig (line 37)
[filename, reuse, visibleAction] = localGetFileAndOptions(varargin);
Error in report2 (line 130)
    openfig(savefigpath);
```

