Deep Learning with Differential Privacy

Kaoutar BOULIF, Charlotte DURAND

Introduction

Article: « Deep Learning with Differential Privacy »

Authors: Martín Abadin and colleagues

Submission year: 2016

Contribution: combine machine learning algorithms with advanced privacy preserving mechanisms, training neural networks within a modest privacy budget

Implementation: Tensorflow

Datasets: MNIST / CIFAR-10

Basic concepts

DIFFERENTIAL PRIVACY:

Definition 1. A randomized mechanism $\mathcal{M} \colon \mathcal{D} \to \mathcal{R}$ with domain \mathcal{D} and range \mathcal{R} satisfies (ε, δ) -differential privacy if for any two adjacent inputs $d, d' \in \mathcal{D}$ and for any subset of outputs $S \subseteq \mathcal{R}$ it holds that

$$\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta.$$

SENSITIVITY:

$$\Delta f = \max \lVert f(D_1) - f(D_2) \rVert_1$$

on datasets *D*1, *D*2 differing on at most one element

Differentially private SGD algorithm

```
Algorithm 1 Differentially private SGD (Outline)
Input: Examples \{x_1, \ldots, x_N\}, loss function \mathcal{L}(\theta) =
   \frac{1}{N}\sum_{i}\mathcal{L}(\theta,x_{i}). Parameters: learning rate \eta_{t}, noise scale
   \sigma, group size L, gradient norm bound C.
   Initialize \theta_0 randomly
   for t \in [T] do
      Take a random sample L_t with sampling probability
      L/N
       Compute gradient
      For each i \in L_t, compute \mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)
       Clip gradient
       \bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)
       Add noise
       \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left( \sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)
       Descent
      \theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t
   Output \theta_T and compute the overall privacy cost (\varepsilon, \delta)
   using a privacy accounting method.
```

Hyperparameter tuning and results

MNIST:

Baseline model: 98.3% in about 100 epochs

<u>Differentially private model:</u>

small noise scale (σ = 2, σ p = 4): 90% accuracy for (ϵ =0.5, δ =10–5)DP

medium (σ = 4, σ p = 7) : 95% accuracy for (ϵ =2, δ =10–5) DP

large (σ = 8, σ p = 16) : 97% accuracy for (ϵ =8, δ =10–5) DP

Figure 4: Accuracy of various (ε,δ) privacy values on the MNIST dataset. Each curve corresponds to a different δ value.

MNIST

Architecture du modèle

MNIST

Evolution of the accuracy after 15 epoch depending on epsilon

Fashion MNIST

- lower accuracy
- fine tuning
 hyperparameters:
 l2_norm=5
 increase of the learning
 rate
- Longer computation
- Need to decrease the learning rate when Noise Multiplier is bigger

Fashion MNIST

Evolution of the accuracy after 10 epoch depending on epsilon

Similar dependance than for MNIST

Find the good trade-off between accuracy and differential privacy

Conclusion

- → Fine-tuning hyperparameters isn't easy
- → Yet, we obtain interesting results but computation is time consuming

Future possibilities:

- training with another optimizer (RMSProp for example)
- training on other dataset
- seeing the influence of the norm clipping

Thank you for your attention!

Any questions?

