Universidad Autónoma de Nuevo León Facultad De Ingeniería Mecánica y Eléctrica

Programación Científica

 $Trabajo\ Final$

Autores: Alanís Fernández, Eder Ismael Del Toro Peña, Arnoldo 15 de diciembre de 2021

Introducción

Como lo mencionaba el psicólogo estadounidense Abraham Maslow, uno de los pilares de nuestras necesidades más básicas es el alimento. Por tal motivo una de las prioridades de un gobierno prospero o que tiene como objetivo seguir en el poder es tener la capacidad de satisfacer las necesidades de sus ciudadanos entre las que van incluidas las alimentarias y los productos derivados de los animales como por ejemplo pieles, cintos de piel, lana de oveja, etc. es decir, la producción pecuaria.

El gobierno de México a tenor de su transparencia con los ciudadanos a puesto en disposición del público en general los datos históricos concretamente relacionados con la producción pecuaria en este país para los años 1980 hasta 2020.

El propósito de este trabajo consiste en hacer diferentes análisis estadísticos empleando varias herramientas tecnológicas entre las que mencionamos a Orange y OverLeaf y como datos usaremos las bases de datos de producción pecuaria como mencionamos anteriormente, cabe señalar que estas bases de datos vienen en 2 apartados, 1980 a 2005 y de 2006 a 2020. Cabe aclarar que el uso de Orange en si es para el análisis y transformación de los datos, el Overleaf será nuestro editor de textos y el github será para poder hacer diversos cambios contando con la seguridad de poder regresarnos si cometemos uno o varios errores.

Una vez mencionada la introducción sobre la procedencia de los datos y de lo que se espera de este trabajo, daremos una segunda introducción desde el punto de vista matemático, concretamente desde una óptica de modelos matemáticos.

Podríamos decir que estos surgen como un intento de poder describir algo que sucede en el mundo real usando términos o mejor dicho lenguaje matemático, evidentemente dado que las matemáticas son abstractas, este modelo es una abstracción de lo que sucede en la realidad expresado de una manera clara y concreta.

Una de sus características más importantes es que debe de ser lo suficientemente general para poder describir un objeto, fenómeno, evento o cualquiera otra cosa de la cual se tenga la intención de modelar.

Naturalmente dado que no se está considerando todas las características de lo que se trata de describir esta es la parte de su desventaja, podemos decir que son modelos de analogía incompleta, es decir reflejan solamente alguna o algunas de las propiedades (cabe señalar que las más importantes).

Formalmente un modelo matemático se establece un conjunto de relaciones (de igualdad y/o de desigualdad) definidas en un conjunto de variables que reflejan la esencia de los fenómenos en el objeto de estudio.

Objetivo

- 1. Ordenar las entidades federativas según el crecimiento promedio para cada año durante el periodo que se estudia para la especie "Bovina".
- 2. Ordenar las entidades federativas según el valor promedio de su producción pecuaria para cada año el periodo que se estudia para la especie "Bovina".
- 3. Grafique la relación entre los valores para el crecimiento promedio y el valor promedio establecidos en las tareas anteriores para cada una las entidades: Veracruz, Sonora, Tamaulipas, Sinaloa, Oaxaca. ¿Qué observa?
- 4. Determine coeficientes de correlación de Spearman para cada entidad federativa seleccionada en la actividad anterior. ¿Qué puede decir?
- 5. Estime el crecimiento de la producción bovina de las entidades federativas Veracruz y Tamaulipas para el año 2020 (empleando los datos hasta 2019). ¿Cuan precisa es la estimación al comparar con los datos reales de 2020?

Hipótesis

No existe una correlación entre ninguno de los valores de la producción agrícola.

Evaluación de Riesgos

Estimar cuanto vamos a producir de manera errónea puede tener graves consecuencias tanto si estimamos de más, como de menos.

Si nuestras estimaciones son bajas, y la producción del próximo año está basado en cuanto vamos a necesitar, dado que por error produciremos menos, y la demanda del producto es muy superior por tanto habrá incremento de los precios, escacez de productos y descontento por parte de la población hacia el gobierno y los productores locales y extranjeros.

En dado caso de que produzcamos más de lo que se vaya a necesitar, es decir hay más oferta que demanda, cada productor al tratar de vender sus productos por sobre la competencia tendrá que bajar sus precios para ser más atractivo es decir como diferenciador de la competencia, esta práctica al ser replicada por los demás traerá pérdidas significativas para los productores.

Nótese que esto tiene mayor peso (este tipo de prácticas) en productos perecederos porque tiene un tiempo muy limitado en el que pueden ser comercializados factores externos como la refrigeración y/o congelación aumentan su costo de producción y dado que se está manejando un precio bajo para venderse, no ayuda en nada tener costos más altos en los productos.

Método

Como ya se mencionó antes, utilizaremos el software **Orange** (en su versión gratuita) para estimar el año 2020 (datos ya existentes), además compararemos algunos estados, tanto específicamente en años como en precios.

Antes de continuar, en la introducción hablamos de manera general de los modelos matemáticos, ahora procederemos a mostrar un diagrama de flujo y posteriormente nos concentraremos en la modelación lineal que es lo que nos ocupa.

Diagrama de flujo

Figura 1: Diagrama de flujo.

Evidentemente iniciamos teniendo un problema del mundo real, el cual identificamos sus variables de decisión, que es lo que se quiere mejorar, evitar, aumentar o cualquiera otra forma que se le quiera llamar para referirnos a la función o funciones objetivos, aunado al hecho de definir sus restricciones y la naturaleza de sus variables estamos haciendo la formulación necesaria para tener nuestro modelo matemático.

Al tener esto podemos resolverlo, ya sea por métodos exactos, híbridos, o con algún software, para continuar extraemos los datos que en si con conclusiones matemáticas porque nos indican cuales son los mejores valores que mejoran lo que yo espero optimizar.

Ahora estos datos deben de ser interpretados o hasta traducidos se podría decir porque si bien un matemático o alguien con formación en ciencias exactas entenderá los valores de las variables de decisión y a que se refieren, el público en general no entenderá los valores a menos que le des un contexto o una interpretación de dichos valores. Para terminar esto se pone a prueba, ya sea que el modelo nos arroje una predicción sobre que ocurrirá en el siguiente ciclo y midamos que tanto nos aproximamos o que se mejore sustancialmente la producción y esto es validado al recibir los nuevos reportes, ya si se ocupan ajustes el proceso se repite.

Elementos clave en términos matemáticos

- 1.-Variables de decisión.
- 2.-Determinar que se maximizara o minimizara.
- 3.-Sujeto a n ecuaciones y/o desigualdades.
- 4.-Naturaleza de las variables.

Elementos clave en lenguaje coloquial

```
1.-¿Qué es lo que decidiré?
```

- 2.-¿Cuál es mi fin?, ¿qué quiero mejorar?
- 3.-¿Cuáles son mis limitaciones?
- 4.-Los valores qué quiero saber son ¿enteros?, ¿fraccionarios? ¿Si y no / 0 o 1?

Modelación lineal

Para introducir el concepto de la programación lineal visualicemos el siguiente ejemplo:

Supongamos que tenemos una pastelería y sabemos que todos los pasteles que hagamos van a ser vendidos, podemos decidir cuantos pasteles haremos de cada tipo y cualquier propuesta es válida, pero si se queremos obtener la mayor ganancia posible no podemos dejar a la ligera que se producirá dado que estamos limitados en recursos.

La modelación lineal o también conocida como programación lineal es un caso particular de la modelación matemática, su palabra clave versa sobre lo "lineal".

En términos matemáticos tenemos un sistema de ecuaciones y/o desigualdades, a las cuales llamamos restricciones, y tenemos una función objetivo cuyo propósito es ser maximizada o minimizada según sea el caso.

El modelo matemático lineal en su forma estándar.

```
(2)Maximizar \sum_{i=1}^{n} x_i c_i (3)
```

$$(4) \sum_{i=1}^{n} a_{ij} x_j \le b_i, \forall i$$

$$x_i \geq 0, \forall i \ (1)$$

Una vez mencionado esto, hicimos una prueba previa de Python dentro de Orange para cerciorarnos de que todo corriera con normalidad, creamos un problema simple de minimizar, lo resolvimos de manera independiente y luego comprobamos que la solución que nos arrojara Orange cuadrada, el ejemplo usado fue el siguiente:

```
Minimizar - x - 2y,
```

```
Sujeto a: 2x + y \le 20

-4x + 5y \le 10

x - 2y \le 2

-x + 5y = 15

x, y \ge 0
```

De antemano sabemos que la función objetivo optima es $-\frac{185}{11} = -16,818181$, y $x = \frac{85}{11} = 7,7272$, $y = \frac{50}{11} = 4,5454$.

Figura 2: Prueba del método simplex.

Esto solo fue una pequeña prueba para saber que está funcionando correctamente, observemos que nos retorna el valor óptimo y los valores en x,y que dan ese óptimo.

Materiales utilizados

Los materiales utilizados se mencionarán a continuación:

- 1. El complemento para Google Chrome Batch link Downloader.
- 2. Software Libre Calc.
- 3. Orange (Versión Libre).
- 4. Git.
- 5. Overleaf.

Pasos

Los pasos que seguimos se enumerarán enseguida, estos van en orden a los objetivos.

- Creación de un repositorio: Primero lo que hicimos fue crear un repositorio en la página de Git-Hub, para suerte ya contabamos con una, después creamos un proyecto nuevo junto con una rama, cada uno siguió una rama durante el resto del proyecto.
- 2. Creación del documento en Overleaf: Arnoldo por su parte creó una cuenta en Overleaf, yo por mi parte ya tenía una, después pocedemos a crear un documento.
- 3. **Descarga de Documentos:** En este paso descargamos los documentos con la ayuda del ya mencionado Batch link Downloader y lo guardamos en una carpeta llamada data.
- 4. **Orange:** En este paso fue en el que estuvimos más tiempo entretenidos, primero creamos un archivo nuevo y con la ayuda de multifile cargamos todos los archivos que habíamos descargado, una vez cargados procedimos a resolver cada uno de los objetivos, que veremos enseguida:
 - Objetivo 1. Para el objetivo uno que es: Ordenar las entidades federativas según el crecimiento promedio para cada año durante el periodo que se estudia para la especie "Bovina", tuvimos un problema que era que al parecer algunos de los archivos tenían diferentes datos, lo cual ya se nos había recomendado dividir en dos grupos, pero después nos enontramos con otro problema con que algunos de los datos de Asacrificados estaban divididos, por lo cual Orange lo tomaba como datos perdidos, por lo cual seleccionando filas y columnas terminamos por concatenar ambas columnas en una sola; sin embargo nos surgió otro problema el cual era que algunos de los nombres no estaban bien escritos (debido a los acentos) entonces utilizando la búsqueda de Orange encontramos los años en los cuales estaban mal escritos y los corregimos, después de estos procedimientos por fin teniamos un data table sin datos perdidos, por lo cual pasamos a descargar el add-ons Spectroscopy, para obtener los promedios de nuestra tabla.

Antes de obtener los promedios filtramos por especie.

Se adjuntan las imágenes de lo mencionado anteriormente, en la figura 1 podemos observar el proceso en **Orange** de la concatenación y filtrado para obtener todos los datos correspondientes mientras que en la figura.

Figura 3: Concatenación de archivos

						Estado						
nfo	-	Anio	Cveestado	Cveespecie	Nomespecie	Precio	Nomestado	Cveproducto	Nomproducto	Volumen	Valor	Asacrificado *
34 instances (no missing data) 11 features No target variable. No meta attributes	34	2018.50	9	4	Bovino	37.5381	Ciudad de M	3.33	Ganado en pie	685.03290	8829.43281	121.76190
	33	2017	9	4	Bovino	37.8657	Ciudad de M	3.33	Ganado en pie	756.21790	9388.82014	126.8095
	9	2006.43	9	4	Bovino	19.2542	Distrito Federal	3.33	Ganado en pie	5167.52543	10751.36412	260.4411
	16	2011.47	17	4	Bovino	22.6772	Morelos	3.33	Ganado en pie	1043.80942	8379.76003	398.8172
'ariables	20	2015.30	20	4	Bovino	27.2492	Oaxaca	3.33	Ganado en pie	762.08845	8414.25556	411.5694
✓ Show variable labels (if present) Visualize numeric values	21	2012.33	21	4	Bovino	22.3871	Puebla	3.08	Ganado en pie	2016.94740	12101.63403	415.5901
	29	2011.92	29	4	Bovino	24.5524	Tlaxcala	3.33	Ganado en pie	1824.15659	11773.46078	437.0689
	17	2012.21	15	4	Bovino	26.2783	México	3.33	Ganado en pie	4431.55842	25643.70289	804.9728
✓ Color by instance classes	13	2012.08	13	4	Bovino	27.0719	Hidalgo	3.28	Ganado en pie	4608.83561	29275.76007	883.8388
•	31	2011.98	31	4	Bovino	31.3751	Yucatán	2.31	Cera	1147.09545	16720.15814	1045.4082
Selection	23	2008.93	23	4	Bovino	28.0038	Quintana Roo	2.86	Cera	1322.32256	19948.37586	1115.4675
✓ Select full rows	12	2012.05	12	4	Bovino	24.9613	Guerrero	3.18	Ganado en pie	2177.50586	24855.85686	1428.9451
V Sciece ian ions	15	2012.20	16	4	Bovino	23.3506	Michoacán	3.33	Ganado en pie	3804.78164	32876.11403	1568.0628
	32	2011.91	32	4	Bovino	24.5967	Zacatecas	3.33	Ganado en pie	4089.29342	40348.94210	2066.6977
Restore Original Order	24	2011.92	24	4	Bovino	26,6976	San Luis Potosí		Ganado en pie	4606.58489	57111.58817	2124.0760
	8	2009.45	6	4	Bovino	24.9777	Colima		Ganado en pie	5136.55297	52705.86633	2125.0666
	> 11	2011.67	11	4	Bovino		Guanajuato		Ganado en pie	14287.80679	82355.26434	2272.4487
	5	2012.20	7	4	Bovino	20.3219			Ganado en pie	4602.50204	39495.18068	2350.9886
	3	2006.93	3		Bovino		Baia Californi		Ganado en pie	6292.55593	57299.20412	2556.1402
	19	2011.62	19		Bovino		Nuevo León		Ganado en pie	3018.57354	51466.34904	2578.3555
	30	2012.33	30		Bovino		Veracruz		Ganado en pie	5457.75810	57038.29989	2662.9222
	18	2010.86	18		Bovino	24.8786			Ganado en pie	4930.25469	48036.86987	2849.7262
	26	2012.03	26		Bovino	31.9500			Ganado en pie	4066,78888	55839.65352	3142.9838
	22		22		Bovino		Querétaro		Ganado en pie	13684.42955	107914.82333	3293.3561
	28	2011.60	28		Bovino		Tamaulipas		Ganado en pie	4435.38115	57980.31384	3495.2470
	7	2011.53	5		Bovino		Coahuila		Ganado en pie	23539.75914	131599.14592	3501.9543
	6	2011.94	8		Bovino		Chihuahua		Cera	13727.56608	101050.25365	3608.1193
	1	2009.69	1		Bovino		Aguascalientes		Ganado en pie	25212.11668	159235.51105	3612.7765
	14	2012.21	14		Bovino	26.2094			Ganado en pie	15229.86704	109869.54443	3781.6660
	4	2012.21	4		Bovino		Campeche		Ganado en pie	5417.53658	62220.00306	3807.9900
	10	2010.03	10		Bovino		Durango		Ganado en pie	21024.12393	141954.98538	5466.2700
	25	2011.56	25		Bovino	22.3668			Ganado en pie	11613.05246	162905.80280	8179.9916
	27	2010.92	27		Bovino		Tabasco		Ganado en pie		158507.79690	8485.9112
▼ Send Automatically	4	2010.59	21	4	DUVIIIU	22.4743	Idudaco	3.33	Garrago en pre	14110.70351	136307.79690	
Z Seliu Automatically	4											

Figura 4: Estados Federativos ordenados por Sacrificados

Figura 5: Estados Federativos ordenados por valor

Objetivo 2. Para el objetivo 2 que es: ordenar las entidades federativas según el valor promedio de su producción pecuaria para cada año, el periodo que se estudia para la especie "Bovina", hicimos el mismo procedimiento que el anterior, obteniendo claro la siguiente imagen en la figura 3.

Objetivo 3. En el objetivo 3:

Grafique la relación entre los valores para el crecimiento promedio y el valor promedio establecidos en las tareas anteriores para cada una las entidades: Veracruz, Sonora, Tamaulipas, Sinaloa, Oaxaca. ¿Qué observa?, primero tuvimos que filtrar los estados por medio de Orange para solo seleccionar los estados que nos pedían.

Una vez que tenemos el filtro procedimos a obtener la siguiente gráfica en la cual se ve que: Sinaloa fue el estado con un promedio más alto tanto en producción como en valor, enseguida se adjuntan las imágenes de lo obtenido.

Se observa que Sinaloa es el mayor en ambas gráficas.

Figura 6: Gráfica Estados ordenados por sacrificio

Figura 7: Gráfica Estados ordenados por valor

Objetivo 4. En este objetivo es en el que decidiremos nuestra hipótesis, la cual si recordamos era que no existía ninguna correlación entres los valores de nuestros registros.

Una vez que tenemos nuestra tabla filtrada por los datos pedidos en el objetivo anterior pasamos a obtener sus coeficientes de correlación de Spearman, los cuales se muestran en la siguiente imagen.

Figura 8: Correlación de Spearman

Como podemos ver existen varias correlaciones, pero las más importantes son las existentes entre Valor-Volumen y Asacrificado-Precio, por lo cual podemos rechazar nuestra hipótesis.

Objetivo 5. Para este objetivo tuvimos que filtrar de nuevo como se ve en la figura 9, ya que solo nos pedían los estados de Veracruz y Tamaulipas y tenemos que dividir el año 2020; después de esto pasamos a crear un guardado e incorporarlo en el documento, para hacer una predicción como se muestra en la figura 10, de igual manera cargamos los datos reales y los graficamos enseguida se adjuntan ambas imágenes.

Figura 9: Filtros Nuevos

Figura 10: Tercer filtro

Figura 11: Gráfica real 2020

Figura 12: Gráfica predicción 2020

Como podemos ver los datos entre ambas gráficas son demasiado similares. Entonces de cierto modo podemos decir que nuestra predicción es demasiado cerca a los datos reales.

Diagrama

El diagrama se modificó demasiadas veces, pero finalmente llegamos a esto:

Figura 13: Diagrama final.

Llegamos a este diagrama después de varios intentos, optamos por crear varias ramificaciones ya que se facilitaba visualizar las gráficas sin necesidad de mover los filtros o los ejes.

Como ya se mencionó, hicimos unas pruebas en python para cerciorarnos de que funcione de manera correcta el método simplex, ya se mostró una prueba corriendo y su pequeño diagrama.

Diagrama para método simplex

Figura 14: Diagrama para uso de python.

Este fue el diagrama para la segunda parte del proyecto final.

Figura 15: Diagrama para uso de python.

Resultados

Los resultados que obtuvimos son los siguientes:

- I. De las gráficas obtenidas al ordenar las entidades federativas, observamos que Sinaloa tiene un crecimiento demasiado desproporcionado a las demás.
- II. Observando las correlaciones que obtuvimos podemos observar que el volumen y valor están muy relacionados entre sí, así como el número de sacrificados y su precio.

III. Y por último la predicción que hicimos del año, si bien no es la misma, podemos observar que están en el mismo rango de valores y son casi idénticos en este último.

	Estado	Presupues_por_estado				
1	Aguascalientes	32380194.200				
2	Baja California	245942459.000				
3	Baja Californi	22779215.200				
4	Campeche	36853148.600				
5	Chiapas	23537175.500				
6	Chihuahua	30233019.000				
7	Ciudad de M	875369.133				
8	Ciudad de M	904809.191				
9	Coahuila	30212090.900				
10	Colima	24162229.900				
11	Distrito Federal	5178547.180				
12	Durango	42258137.400				
13	Guanajuato	23467589.700				
14	Guerrero	13165850.900				
15	Hidalgo	9434997.560				
16	Jalisco	40519555.400				
17	Michoacán	14709727.400				
18	Morelos	4581229.410				
19	México	9185818.380				
20	Nayarit	27537828.700				
21	Nuevo León	22828405.100				
22	Oaxaca	3967173.020				
23	Puebla	4471415.110				
24	Querétaro	32524530.400				
25	Quintana Roo	8398419.070				
26	San Luis Potosí	22367679.900				
27	Sinaloa	81842593.700				
28	Sonora	27798845.100				
29	Tabasco	99437719.400				
30	Tamaulipas	34918089.300				
31	Tlaxcala	3464033.130				
32	Veracruz	29365634.800				
33	Yucatán	7919385.750				
24	Tacatacac	10504012 100				

Figura 16: Presupuesto por estado

De la tabla que fue mostrada podemos ver cuál es la propuesta de presupuesto para cada uno de los estados. Y otra manera de visualizarlo es con un gráfico de barras:

Figura 17: Grafico de barras de presupuesto por estado.

Discusión

La discusión sería:

¿Qué podemos hacer para decidir si nuestra predicción es realmente eficaz?

Se nos ocurrió que tal vez en un futuro, podemos hacer un análisis entre los valores reales y los valores de la predicción, que por falta de tiempo no pudimos realizar. ¿Realmente es suficiente el análisis de correlación para determinar una estrecha dependencia de las variables?

Siguiendo este análisis es casi a simple vista la relación que existe e inclusive podemos decir que es una relación que se esperaba.

Conclusión

En primer lugar que una buena predicción sobre cuanto es necesario producir para tratar de estar lo más apegado a la demanda estimada del próximo año es evitar desperdicios de recursos y capital, y que la economía no sea alterada para mal por este tipo de errores.

Por otro lado, al comparar la producción REAL de las entidades federativas de Varacruz y Tamaulipas con respecto a lo que nosotros obtuvimos por medio de nuestro análisis estadístico observamos que fueron muy similares por lo que concluimos que hay consistencia de lo producido este año con respecto a los años pasados.