

Winning Space Race with Data Science

Marcos Antonio Teixeira 08/08/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

- Project background and context
- Problems you want to find answers

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

Several datasets were used to collect rocket, launchpads, payloads and cores data from api.spacex.com/v4 website.

Data Collection – SpaceX API

1. Collecting the data with API call

```
def getBoosterVersion(data):
    for x in data['rocket']:
        response = requests.get("https://api.spacexdata.com/v4/rockets/"+str(x)).json()
        BoosterVersion.append(response['name'])
```

3. Preprocessing the data

```
data = data[['rocket', 'payloads', 'launchpad', 'cores', 'flight_number', 'date_utc']]

# We will remove rows with multiple cores because those are falcon rockets with 2 extra rocket boosters and rows that have multiple payloads in a single rocket.
data = data[data['cores'].map(len)==1]
data = data[data['payloads'].map(len)==1]

# Since payloads and cores are lists of size 1 we will also extract the single value in the list and replace the feature.
data['cores'] = data['cores'].map(lambda x : x[0])
data['payloads'] = data['payloads'].map(lambda x : x[0])

# We also want to convert the date_utc to a datetime datatype and then extracting the date leaving the time
data['date'] = pd.to_datetime(data['date_utc']).dt.date

# Using the date we will restrict the dates of the launches
data = data[data['date'] <= datetime.date(2020, 11, 13)]</pre>
```

2. Converting to a dataframe using JSON

4. Filtering data to retrieve Falcon 9 launches

```
getBoosterVersion(data)

the list has now been update

BoosterVersion[0:5]

['Falcon 1', 'Falcon 1', 'Falcon 1', 'Falcon 9']
```

Data Collection - Scraping

1. Creating the BeautifulSoup

```
Create a BeautifulSoup object from the HTML response

# Use BeautifulSoup() to create a BeautifulSoup object from a response text content soup = BeautifulSoup(data, 'html5lib')
```

2. Getting Column names

```
for row in first_launch_table.find_all('th'):
    name = extract_column_from_header(row)
    if (name != None and len(name) > 0):
        column_names.append(name)
```

3. Creating launch dict

```
launch dict= dict.fromkeys(column names)
# Remove an irrelvant column
del launch dict['Date and time ( )']
# Let's initial the launch_dict with each value to be an empty list
launch dict['Flight No.'] = []
launch dict['Launch site'] = []
launch dict['Payload'] = []
launch dict['Payload mass'] = []
launch dict['Orbit'] = []
launch dict['Customer'] = []
launch dict['Launch outcome'] = []
# Added some new columns
launch dict['Version Booster']=[]
launch_dict['Booster landing']=[]
launch dict['Date']=[]
launch dict['Time']=[]
```

4. Converting to a dataframe

```
df=pd.DataFrame(launch_dict)
df.head()

Flight No. Launch site Payload Payload mass Orbit Customer Launch outcome Version Booster Booster landing Date Time
```

Link to Github

Data Wrangling

Link to Github repo

Loading the Dataset

```
df=pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_p
art_1.csv")
df.head(10)
```

Identify and calculate the percentage of the missing values in each attribute

```
df.isnull().sum()/df.count()*100
```

Identify which columns are numerical and categorical:

```
df.dtypes
```

• Calculate the number of launches on each site

```
df['LaunchSite'].value_counts()
```

Calculate the number and occurrence of each orbit

```
landing_outcomes = df['Outcome'].value_counts()
landing_outcomes
```

- Categorical plot between Flight Number and Payload Mass (Kg)
- Scatter plot between Orbit and Flight Number
- Bar chart between Orbit and Success rate of each orbit
- Line chart between Year and Success rate

EDA with SQL

• SQL queries performed include:

•

Displaying the names of the unique launch sites in the space mission

•

Displaying 5 records where launch sites beginwith the string 'KSC'

•

 Displaying the total payload mass carried by boosters launched by NASA(CRS)

Build an Interactive Map with Folium

Link to Github repo

Link to Github repo

Build a Dashboard with Plotly Dash

- Dash and html components were used as they are the most important thing and almost everything depends on them, such as graphs, tables, dropdown and so on.
- To simplify things, I used Pandas to create a dataframe.
- To plot the graphs I used Plotty.
- Scatter and pie chart were used as well.
- Dropdown was used to visualize launch sites.

Predictive Analysis (Classification)

• Logistic Regression, SVM and Decision Tree were the best models

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

 As flight numbers were increasing, the success rate also increased as well.

Payload vs. Launch Site

Success rate were increased after increasing the Payload Mass in the launch sites.

Success Rate vs. Orbit Type

• ES-L1, GEO, HEO, and SSO have a success rate of 100%.

 SO has a success rate of 0%.

•

Flight Number vs. Orbit Type

 LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar,LEO and ISS.
- However for GTO we cannot distinguish this well as both positive landing rate and negative landing(unsuccessful mission) are both there here.

Launch Success Yearly Trend

 We can observe that the success rate since 2013 kept increasing till 2020.

All Launch Site Names

Unique launch sites in the space mission

1 %sql select distinct LAUNCH_SITE from SPACEX;

* ibm_db_sa://spw36786:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done.

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

```
% sql SELECT LAUNCH_SITE from SPACEX where (LAUNCH_SITE) LIKE 'CCA%' LIMIT 5;

* ibm_db_sa://spw36786:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludbDone.

| launch_site | CCAFS LC-40 | CCAFS LC-40
```

Total Payload Mass

Calculate the total payload carried by boosters from NASA

Display the total payload mass carried by boosters launched by NASA (CRS)

```
1 %sql select SUM(PAYLOAD_MASS__KG_) from SPACEX

* ibm_db_sa://spw36786:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb
Done.

1 619967
```

Average Payload Mass by F9 v1.1

Calculate the average payload mass carried by booster version F9 v1.1

Display average payload mass carried by booster version F9 v1.1

```
1 %sql select AVG(PAYLOAD_MASS__KG_) from SPACEX where BOOSTER_VERSION = 'F9 v1.1';

* ibm_db_sa://spw36786:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done.

1 2928
```

First Successful Ground Landing Date

Find the dates of the first successful landing outcome on ground pad

```
1 %sql SELECT MIN(DATE) FROM SPACEX WHERE LANDING__OUTCOME = 'Success (ground pad)';

* ibm_db_sa://spw36786:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done.

1 01-05-2017
```

Successful Drone Ship Landing with Payload between 4000 and 6000

Payload mass data taken between 4000 and 6000 only.

Total Number of Successful and Failure Mission Outcomes

99 successful missions and 1 failed mission.

```
% sql select count(MISSION_OUTCOME) as missionoutcomes from SPACEX GROUP BY MISSION_OUTCOME;

* ibm_db_sa://spw36786:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludbDone.

missionoutcomes

1
99
1
```

Boosters Carried Maximum Payload

%sql select booster_version, max(payload_mass__kg_) as"maximum payload mass" from (select booster_version , payload

booster_version	maximum payload mass
F9 B4 B1039.2	2647
F9 B4 B1040.2	5384
F9 B4 B1041.2	9600
F9 B4 B1043.2	6460
F9 B4 B1039.1	3310
F9 B4 B1040.1	4990
F9 B4 B1041.1	9600
F9 B4 B1042.1	3500
F9 B4 B1043.1	5000
F9 B4 B1044	6092
F9 B4 B1045.1	362
F9 B4 B1045.2	2697
F9 B5 B1046.1	3600
F9 B5 B1046.2	5800
F9 B5 B1046.3	4000
F9 B5 B1046.4	12050

2015 Launch Records

DATE	booster_version	launch_site	landing_outcome
2015-01-10	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
2015-04-14	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

%sql select date, booster_version, launch_site, landing_outcome from spacex where landing_outcome ='Failure (dron

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
%sql select count(*) as "count of landing outcomes", landing_outcome from spacex where date between '2010-06-04' a
```

count of landing outcomes	landing_outcome
10	No attempt
5	Failure (drone ship)
5	Success (drone ship)
3	Controlled (ocean)
3	Success (ground pad)
2	Failure (parachute)
2	Uncontrolled (ocean)
1	Precluded (drone ship)

Folium Map Screenshot

Lauchs sites are in Florida and California, USA.

Launch Sites Outcome

- Green means successful
- Red means Failure

Launch Site Vicinity

Total success launches by all sites

Sucess Rate by site

KSC LC-39A achieved a success rate of 76.95%

Payload vs Launch outcome

Classification Accuracy

 Logistic Regression, SVM and Decision Tree were the best models with accuracy around 0.83

Confusion Matrix

• Logistic Regression, SV and Decision Tree got similar confusion matrizes

Conclusions

 Launch site with highest score was KSC LC-39A

• The payload of 0 to 5000 Kg was more diverse than 6000 to 10000 kg.

Logistic Regression, SVM and Decision
 Tree were very similar with accuracy around
 0.83

Appendix

