Harvard CS 121 and CSCI E-207

Lecture 8: Non-Regular Languages; Minimization

Harry Lewis

September 29, 2009

• Reading: Sipser, §1.4.

Goal: Explicit Non-Regular Languages

It appears that a language such as

$$L = \{a^{2^n} : n \ge 0\}$$
$$= \{a, aa, aaaa, aaaaaaaa, \ldots\}$$

can't be regular because the "gaps" in the set of possible lengths become arbitrarily large, and no DFA could keep track of them.

But this isn't a proof!

Proof that $L = \{a^{2^n} : n \ge 0\}$ is not regular

ullet Suppose it were. Then some DFA M accepts L.

• . . .

A more general principle so we don't have to repeat essentially the same argument

Approach:

- 1. Prove some general property P of all regular languages.
- 2. Show that L does not have P.
- The property P is that for any sufficiently long string in a regular language L, some substring can be repeated to produce more strings in L.

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length) such that

every string $s \in L$ of length at least p can be divided into s = xyz, where $y \neq \varepsilon$ and for every $n \geq 0$, $xy^nz \in L$.

$$n=1$$
 x y z
 $n=0$ x z
 $n=2$ x y y z

- Why is the part about p needed?
- Why is the part about $y \neq \varepsilon$ needed?

Proof of Pumping Lemma

(Another fooling argument)

- Since L is regular, there is a DFA M recognizing L.
- Let p = # states in M.
- Suppose $s \in L$ has length $l \geq p$.
- M passes through a sequence of l+1>p states while accepting s (including the first and last states): say, q_0, \ldots, q_l .
- Two of these states must be the same: say, $q_i = q_j$ where i < j

Pumping, continued

• Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

- If more copies of y are inserted, M "can't tell the difference," i.e., the state entering y is the same as the state leaving it.
- So since $xyz \in L$, then $xy^nz \in L$ for all n.

Proof also shows (why?):

- We can take p = # states in smallest DFA recognizing L.
- Can guarantee division s=xyz satisfies $|xy| \leq p$ (or $|yz| \leq p$).

Pumping Lemma Example

Consider

 $L = \{x : x \text{ has an even # of } a \text{'s and an odd # of } b \text{'s} \}$

- Since *L* is regular, pumping lemma holds.
 - (i.e, every sufficiently long string s in L is "pumpable")
- For example, if s = aab, we can write $x = \varepsilon$, y = aa, and z = b.

Pumping the even a's, odd b's language

- Claim: L satisfies pumping lemma with pumping length p=4.
- Proof:

 Q: Can the Pumping Lemma be used to prove that L is regular?

Use PL to Show Languages are NOT Regular

Claim: $L = \{a^nb^n : n \ge 0\} = \{\varepsilon, ab, aabb, aaabb, ...\}$ is not regular.

Proof by contradiction:

- Suppose that L is regular.
- So L has some pumping length p > 0.
- Consider the string $s = a^p b^p$. Since |s| = 2p > p, we can write s = xyz for some strings x, y, z as specified by lemma.
- Claim: No matter how s is partitioned into xyz with $y \neq \varepsilon$, we have $xy^2z \notin L$.
- This violates the conclusion of the pumping lemma, so our assumption that L is regular must have been false.

Strings of exponential lengths are a nonregular language

Claim: $L = \{a^{2^n} : n \ge 0\}$ is not regular.

Proof:

"Regular Languages Can't Do Unbounded Counting"

Claim: $L = \{w : w \text{ has the same number of } a\text{'s and } b\text{'s}\}$ is not regular.

Proof #1:

• Use pumping lemma on $s = a^p b^p$ with $|xy| \le p$ condition.

"Regular Languages Can't Do Unbounded Counting"

Claim: $L = \{w : w \text{ has the same number of } a \text{'s and } b \text{'s} \}$ is not regular.

Proof #1:

• Use pumping lemma on $s = a^p b^p$ with $|xy| \le p$ condition.

Proof #2:

• If L were regular, then $L \cap a^*b^*$ would also be regular.

Reprise on Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- $\{x: x \in L_1 \text{ and } x \notin L_2\}$, L_1 and L_2 are both regular
- A subset of a regular language

What Happens During the Transformations?

- NFA → DFA
- DFA → Regular Expression
- Regular Expression → NFA

Minimizing DFAs

Many different DFAs accept the same language. But there is a smallest one—and we can find it!

- Let M be a DFA
- Say that states p,q of M are distinguishable if there is a string w such that exactly one of $\delta^*(p,w)$ and $\delta^*(q,w)$ is final.
- ullet Start by dividing the states of M into two equivalence classes: the final and non-final states

Minimizing DFAs, continued

- Break up the equivalence classes according to this rule: If p,q are in the same equivalence class but $\delta(p,\sigma)$ and $\delta(q,\sigma)$ are not equivalent for some $\sigma \in \Sigma$, then p and q must be separated into different equivalence classes
- When all the states that must be separated have been found, form a new and finer equivalence relation
- Repeat
- How do we know that this process stops?