Permutation Closed Testing with Sum-Based Statistics

1 Sum-Based Test Statistics

Given a full model $F = \{1, ..., f\}$ of univariate hypotheses, let $S \subseteq F$ be a subset under test by closed testing with level α . Hence S is rejected if and only if all its supersets V ($S \subseteq V \subseteq F$) are rejected.

Let

$$q_i^{\pi}$$
 $(i = 1, \dots, f, \pi = 1, \dots, B)$

be some test statistics corresponding to the f covariates and B random permutations, where the first permutation is the identity. Assume that such test statistics are such that

$$g_V^{\pi} = \sum_{i \in V} g_i^{\pi} \quad (V \subseteq F, \ \pi = 1, \dots, B).$$

Moreover, define the centered test statistics

$$d_i^{\pi} = g_i^{\pi} - g_i \quad (i = 1, \dots, f, \ \pi = 1, \dots, B),$$

so that the observed values are all $d_i = 0$, and the variability due to g_i is excluded.

For $V \subseteq F$, the vector of its statistics is

$$\mathbf{d}_{\mathbf{V}} = (0, d_V^2, \dots, d_V^B)^{\top}.$$

Consider $d_V^{(1)} \leq d_V^{(2)} \leq \ldots \leq d_V^{(B)}$, and define $k = \lceil (1 - \alpha)B \rceil$. The permutation test rejects V if

$$d_V^{(k)} \ge 0.$$

Such a test can be slightly conservative, but it can be adapted to be exact by randomizing it.

2 Shortcut

Let s = |S| and m = f - s. The possible superset sizes are |V| = s + v, with $v = 0, \ldots, m$. Fix a value v. We will define a shortcut for the analysis of the supersets in

$$\mathcal{V}_v = \{ V : S \subseteq V \subseteq F, |V| = s + v \},$$

that does not require the critical values of all the $\binom{m}{v}$ vectors \mathbf{d}_V ($V \in \mathcal{V}_v$). It relies on the construction of a lower and an upper critical values, L_v and U_v , such that

- if $L_v \geq 0$, then at least one superset $\tilde{V} \in \mathcal{V}_v$ is not rejected, and thus S is not rejected;
- if $U_v < 0$, then all supersets $V \in \mathcal{V}_v$ are rejected, and other sizes can be explored.

Notice that if $L_v < 0 \le U_v$, then the outcome is indecisive.

Lower critical value. In order not to reject S, it is sufficient to find a non-rejected superset. Hence we consider $\tilde{V} \in \mathcal{V}_v$ which is likely to be non-rejected, and define the lower critical value as $L_v = d_{\tilde{V}}^{(k)}$.

In particular, \tilde{V} is defined by considering S and the indices of the remaining v smallest observed statistics. If (i_1, \ldots, i_m) is a permutation of the indices in $F \setminus S$ such that

$$g_{i_1} \le g_{i_2} \le \ldots \le g_{i_m},$$

then $\tilde{V} = S \cup \{i_1, \dots, i_v\}$ and

$$d_{\tilde{V}}^{\pi} = d_{S}^{\pi} + \sum_{h=1}^{v} d_{i_{h}}^{\pi} \quad (\pi = 1, \dots, B).$$

Upper critical value. The upper critical value is $U_v = u_v^{(k)}$, where

$$\mathbf{u}_v = (0, u_v^2, \dots, u_v^B)^\top$$

is a vector such that

$$u_v^{\pi} \ge d_V^{\pi} \quad (V \in \mathcal{V}_v, \ \pi = 1, \dots, B).$$

As a consequence,

$$U_v \ge d_V^{(k)} \quad (V \in \mathcal{V}_v).$$

If $U_v < 0$, then all supersets in \mathcal{V}_v are rejected.

For each $\pi=1,\ldots,B$, the element u_v^{π} is defined by considering d_S^{π} and the remaining v highest centered statistics. If $(j_1(\pi),\ldots,j_m(\pi))$ is a permutation of the indices in $F\setminus S$ such that

$$d_{j_1(\pi)}^{\pi} \ge d_{j_2(\pi)}^{\pi} \ge \dots d_{j_m(\pi)}^{\pi},$$

then

$$u_v^{\pi} = d_S^{\pi} + \sum_{h=1}^{v} d_{j_h(\pi)}^{\pi}.$$

Testing. The values v = 0, ..., m are checked in sequence.

- As soon as a non-rejection is found (there exists v^* such that $L_{v^*} \geq 0$), the analysis stops and S is not rejected.
- If all values lead to rejection $(U_v < 0 \text{ for all } v)$, then S is rejected.
- If some values $v \in \{1, ..., m-1\}$ lead to indecisive outcomes $(L_v < 0 \le U_v)$, the Branch and Bound method is applied. Notice that an indecisive outcome cannot occur for v = 0 or v = m, since

$$L_0 = U_0 = d_S^{(k)}$$
 $L_m = U_m = d_F^{(k)}$.

Early stop. Assume that there exists $w \in \{1, ..., m\}$ such that

$$d_{j_m(\pi)}^{\pi} \leq 0 \quad (\pi = 1, \dots, B)$$

or, equivalently,

$$u_w^{\pi} = u_{w-1}^{\pi} + d_{j_w(\pi)}^{\pi} \le u_{w-1}^{\pi} \quad (\pi = 1, \dots, B).$$

Then the upper critical value is non-increasing for $v \geq w$:

$$d_{j_{m}(\pi)}^{\pi} \leq \ldots \leq d_{j_{w}(\pi)}^{\pi} \leq 0 \quad (\pi = 1, \ldots, B)$$

$$u_{m}^{\pi} \leq \ldots \leq u_{w}^{\pi} \leq u_{w-1}^{\pi} \quad (\pi = 1, \ldots, B)$$

$$U_{m} \leq \ldots \leq U_{w} \leq U_{w-1}.$$

In this case, it is sufficient to stop the analysis as soon as we find a value $v^* \ge w - 1$ such that $U_{v^*} < 0$. All the supersets with $v \ge v^*$ are automatically rejected.

3 Branch and Bound

Assume that some values $v \in \{1, \dots, m-1\}$ lead to an indecisive outcome.

For a fixed index $e \in F \setminus S$, the total space $\mathbb{S} = \{V : S \subseteq V \subseteq F\}$ is partitioned into two disjoint subspaces, according to the inclusion of e:

$$\mathbb{S}_{-e} = \{ V : S \subseteq V \subseteq F \setminus \{e\} \}$$

$$\mathbb{S}_{+e} = \{ V : S \cup \{e\} \subseteq V \subseteq F \}.$$

The shortcut is applied to each subspace, in order to evaluate the indecisive values v:

- if S is not rejected in at least one subspace, it is not rejected in the total space;
- if S is rejected in both subspaces, it is rejected in the total space;
- if there is an indecisive outcome in at least one subspace, the procedure is iterated by partitioning the indecisive subspace(s).

For any choice of e, U_v does not increase in the subspaces (since it is defined by taking the maximum statistics over smaller subsets). However, the choice of e and the order in which the subspaces are explored influence L_v , and thus the efficiency of the algorithm. We wish to begin with the subspaces that are more likely to lead to a non-rejection, i.e. where L_v is more likely to be high.

We will evaluate the efficiency in four different scenarios, employing the order of the observed statistics in $F \setminus S$. The scenarios differ by the index e used for branching:

- highest statistic $e = i_m$ (L_v does not vary in \mathbb{S}_{-e} , and is likely to decrease in \mathbb{S}_{+e});
- lowest statistic $e = i_1$ (L_v may decrease in \mathbb{S}_{-e} , and does not vary in \mathbb{S}_{+e}).

Moreover, they differ by the branch that is explored first:

- \mathbb{S}_{-e} , removal;
- \mathbb{S}_{+e} , keeping.

Preliminary simulations suggest that removing the highest statistic could lead to the smallest number of iterations in most cases.