IN THE CLAIMS

The status of each claim in the present application is listed below.

Claims 1-11: (Canceled).

12. (Previously Presented) A method of crystallizing organic pigments, comprising crystallizing an organic pigment in the presence of a compound represented by formula I:

$$B^1$$
 A
 X

wherein

A is =N-;

X is methyl or a radical of the formula IIa:

Y is an R radical or a radical of the formula IIb:

$$O \longrightarrow Z$$
O IIb

with either X being a radical of the formula IIa or Y being a radical of the formula IIb;

R is hydrogen, halogen, C_1 - C_4 -alkyl, $-SO_3$ H, $-SO_3$ Me⁺, $-SO_3$ N⁺R¹R²R³R⁴, $-SO_2$ NR¹R², $-CH_2$ NR¹R², $-CH_2$ R⁵, -COOH, -COON⁺R¹R²R³R⁴, -COOR6 or -COR6;

 R^1 , R^2 , R^3 and R^4 are each independently hydrogen; C_1 - C_{22} -alkyl or C_2 - C_{22} -alkenyl whose carbon chain may in either case be interrupted by one or more –O-, -S-, -NR⁷-, -CO- or -SO₂- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C_1 - C_4 -alkoxy and acetyl; C_3 - C_8 -cycloalkyl whose carbon skeleton may be interrupted by one or more -O-, -S-, -NR⁷- or -CO- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C_1 - C_4 -alkoxy and acetyl; hydroabietyl, abietyl or aryl; R^1 and R^2 or R^1 , R^2 and R^3 may combine to form a 5- to 7-membered cyclic radical which contains the nitrogen atom and may contain further hetero atoms;

R⁵ is a radical of the formula IIb':

$$O \longrightarrow N$$

R⁶ is one of the R¹ alkyl radicals;

 R^7 is hydrogen or C_1 - C_4 -alkyl;

Me is an alkali metal ion;

Z and Z' are each independently arylene which may be substituted by one or more of halogen, $-SO_3H$, $-SO_3^-Me^+$, $-SO_3^-N^+R^1R^2R^3R^4$, and C_1-C_{12} -alkyl, and

the rings B^1 and B^2 may each be independently additionally substituted by one or more identical or different R radicals other than hydrogen.

13. (Currently Amended) The method of Claim 12, wherein the compound represented by formula I is represented by formula Ia:

$$R^{a2}$$
 B^{1a}
 B^{2a}
 A^{a}
 A^{a}
Ia

wherein

X^a is methyl or a radical of formula IIa:

Y^a is hydrogen, halogen, C₁-C₄-alkyl or a radical of the formula IIb

$$0 \xrightarrow{N} 0$$
 IIb

with either X^a being a radical of the formula IIa or Y^a being a radical of the formula IIb;

 R^{a1} , R^{a2} are each hydrogen, halogen, C_1 - C_4 -alkyl or a D radical, although R^{a1} can be a D radical only when \underline{X}^a [[X]] is methyl and R^{a2} can be a D radical only when \underline{X}^a [[X]] is a radical of the formula IIa;

D is
$$-SO_3H$$
, $-SO_3^-Me^+$, $-SO_3^-N^+R^1R^2R^3R^4$, $-SO_2NR^1R^2$ or $-CH_2NR^1R^2$;

 R^1 , R^2 , R^3 and R^4 are each independently hydrogen; C_1 - C_{22} -alkyl or C_2 - C_{22} -alkenyl whose carbon chain may in each case be interrupted by one or more -O- or -NR⁷- moieties; hydroabietyl, abietyl or aryl;

Me is an alkali metal ion;

Z is arylene which may be substituted by one or more of halogen, $-SO_3H$, $-SO_3^-Me^+$, $-SO_3^-N^+R^1R^2R^3R^4$ and C_1-C_{12} -alkyl, and

the rings B^{1a} and B^{2a} may each be independently additionally substituted by halogen or C_1 - C_4 -alkyl at different positions than R^{a1} and R^{a2} .

- 14. (Previously Presented) The method of Claim 12, wherein X is a radical of the formula IIa and Y is an R radical.
- 15. (Previously Presented) The method of Claim 12, wherein X is methyl and Y is a radical of the formula IIb.
- 16. (Previously Presented) The method of Claim 14, wherein Z is tetrachlorophenylene.
- 17. (Previously Presented) The method of Claim 15, wherein Z is tetrachlorophenylene.
- 18. (Previously Presented) The method of Claim 14, wherein B^1 and B^2 are unsubstituted.

- 19. (Previously Presented) The method of Claim 15, wherein B^1 and B^2 are unsubstituted.
- 20. (Previously Presented) The method of Claim 14, wherein B^1 and B^2 are substituted once by-SO₃H.
- 21. (Previously Presented) The method of Claim 15, wherein B^1 and B^2 are substituted once by-SO₃H.
- 22. (Previously Presented) The method of Claim 12, wherein the organic pigment is a quinophthalone pigment.
- 23. (Previously Presented) The method of Claim 12, wherein the crystallizing is conducted in an organic solvent.
- 24. (Previously Presented) The method of Claim 12, wherein the crystallizing is conducted in a mixture of an organic solvent and water.
- 25. (Previously Presented) The method of Claim 23, wherein the organic solvent is an alcohol, ether alcohol, ether, ketone, carboxylic acid, carboxamide, carboxylic ester, alicyclic hydrocarbon or aromatic hydrocarbon.
- 26. (Previously Presented) The method of Claim 24, wherein the organic solvent is an alcohol, ether alcohol, ether, ketone, carboxylic acid, carboxamide, carboxylic ester, alicyclic hydrocarbon or aromatic hydrocarbon.

- 27. (Previously Presented) The method of Claim 12, wherein the amount of the compound represented by formula I is from 0.1 to 15% by weight based on the amount of the organic pigment.
- 28. (Previously Presented) The method of Claim 12, wherein the amount of the compound represented by formula I is from 1 to 10% by weight based on the amount of the organic pigment.
- 29. (Previously Presented) The method of Claim 12, wherein the crystallizing is conducted at from 25 to 160°C.
- 30. (Previously Presented) The method of Claim 12, wherein the crystallizing is conducted at from 60 to 140°C.
- 31. (Previously Presented) The method of Claim 12, wherein the mean particle size of the crystallized organic pigment is < 150 nm.
- 32. (Previously Presented) The method of Claim 12, wherein the crystallized pigment has a BET surface area of 30 to 120 m²/g.
 - 33. (Previously Presented) A method of coloring a media, comprising:
 - (a) crystallizing an organic pigment according to the method of Claim 12 followed by
 - (b) combining the organic pigment with a media.

34. (Previously Presented) A compound represented by the formula I':

$$O = \bigvee_{Z}^{N} O$$

wherein

A is =N-;

X' is methyl;

The rings B¹ and B² may be independently additionally substituted by one or more identical or different R radicals other than hydrogen, wherein B² is not substituted at the 4-position;

R is hydrogen, halogen,
$$C_1$$
- C_4 -alkyl, $-SO_3$ H, $-SO_3$ Me⁺, $-SO_3$ N⁺R¹R²R³R⁴, $-SO_2$ NR¹R², $-CH_2$ NR¹R², $-CH_2$ R⁵, $-COOH$, $-COO$ N⁺R¹R²R³R⁴, $-COOR$ 6 or $-COR$ 6:

 R^1 , R^2 , R^3 and R^4 are each independently hydrogen; C_1 - C_{22} -alkyl or C_2 - C_{22} -alkenyl whose carbon chain may in either case be interrupted by one or more -O-, -S-, -NR⁷-, -CO- or -SO₂- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C_1 - C_4 -alkoxy and acetyl; C_3 - C_8 -cycloalkyl whose carbon skeleton may be interrupted by one or more -O-, -S-, -NR⁷- or -CO- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C_1 - C_4 -alkoxy and acetyl; hydroabietyl, abietyl or aryl; R^1 and R^2 or R^1 , R^2 and R^3 may combine to form a 5- to 7-membered cyclic radical which contains the nitrogen atom and may contain further hetero atoms;

R⁵ is a radical of the formula IIb':

$$O = \bigvee_{Z'}^{N} O \qquad \qquad Ilb'$$

R⁶ is one of the R¹ alkyl radicals;

 R^7 is hydrogen or C_1 - C_4 -alkyl;

Me is an alkali metal ion;

Z and Z' are each independently phenylene which is substituted by one or more of halogen, $-SO_3H$, $-SO_3^-Me^+$, $-SO_3^-N^+R^1R^2R^3R^4$, and C_1-C_{12} -alkyl.