Queueing Theory and Simulation, lecture 2

Nicky van Foreest

June 22, 2021

Contents

1 Simulations	1
2 Exponential distribution, 2.4	2
3 My programming environment, only for the interested	2
1 Simulations	
1.1 Discrete time, Section 2.1	
$d_k = \min\{L_{k-1}, c_k\}$	(1)
$L_k = L_{k-1} + a_k - d_k$	(2)
• Time chopped up in periods.	
• Often $a_k \sim \text{Poi}(\lambda)$, c.f. Section 2.2.	
• Handy to compute queue length behavior over time	
• How to estimate waiting times? See exercise in the book. Not entirely simple	
1.2 Continuous time, Section 2.3	
X_k = interarrival time between job $k-1$ and job k ,	(3)
$A_k = A_{k-1} + X_k$	(4)
$D_k = \min\{A_k, D_{k-1}\} + S_k,$	(5)
$J_k = D_k - A_k$, sojourn time	(6)
$W_k = J_k - S_k$, sojourn time	(7)

- Also a very elegant recursive procedure.
- Now the waiting is easy to find, but not the queue length (try it is you like)
- Simple to use simulation to estimate fraction of jobs that waiting longer than 10 (or whatever number you like).

1.3Another continuous construction, 2.3

$$W_k = \max\{W_{k-1} + S_{k-1} - X_k, 0\} \tag{8}$$

$$= [W_{k-1} + S_{k-1} - X_k]^+, (9)$$

$$J_k = W_k + S_k \tag{10}$$

$$D_k = A_k + J_k \tag{11}$$

Multiserver queue

- Job k sees, upon arrival, a waiting time $w_{k,i}$ at queue i.
- I represents here a vector $(1, 1, \ldots, 1)$.

$$s_k = \underset{i}{\arg\min} \{ w_{k,i} \}$$

$$w_{k+1} = [w_k + S_k e_{s_k} - X_{k+1} I]^+.$$
(12)

$$w_{k+1} = [w_k + S_k e_{s_k} - X_{k+1} I]^+. (13)$$

Exponential distribution, 2.4 $\mathbf{2}$

2.1Origin

- A customer goes to a shop, every day uniformly distributed between 12 and 13.
- Superimpose many, N say, of such customers that go to a shop, every day uniformly distributed between 12 and 13.
- The interarrival times of these customers (as seen by the shop) has mean 1/N.
- Very quickly (for N > 10 or so), the interarrival times appear to be $\sim \text{Exp}(\lambda)$.

2.2 Relation to Poisson

Crucial ideas:

- Random variables that are exponentially distributed have the memoryless property, look it up in the book
- $X_k \sim \text{Exp}(\lambda) \iff N[0,t] \sim \text{Poi}(\lambda t)$.

3 My programming environment, only for the interested

- 3.1 emacs
- 3.2 literate programming
- org mode 3.3