REPLICATION REPORT FOR "MATERNAL LABOR SUPPLY AND THE INTRODUCTION OF KINDERGARTENS INTO AMERICAN PUBLIC SCHOOLS"

Zhang Yuqi

Korea University

CONTENTS

- 1 Introduction
- 2 Data Cleaning
- 3 REPLICATION
- 4 EXPLANATION

ABOUT THE PAPER

Cascio, Elizabeth U. "Maternal Labor Supply and the Introduction of Kindergartens into American Public Schools." The Journal of Human Resources 44, no. 1 (2009): 140–70.

- **Background:** Since the mid-1960s, many states in the U.S. introduced subsidies for school districts that offer kindergarten.
- Aim: To examine policy affects on maternal labor supply as well as children's enrollment and estimates how the enrollment status affects maternal labor supply.
- **Data used:** PUMS of decennial *U.S. CENSUS* for employment information and *NCES* grade span data.

Data Resources

- CENSUS data: Public Used Micro Sample of 1950, 1960(1%), 1970(1%), 1980 (A sample 5%) and 1990(5%).
- NCES microdata: school year 1972 to 1989 datasets, 1974 absent.
- Education Directory: school year 1968 to 1971 datasets were manually drawn from a series of publications.

SPECIFICATION OF VARIABLES

VARIABLE	DESCRIPTION					
year	year of census					
Kratio	fraction of kindergarten contained school districts					
num*	number of children of some age					
five	=1 if the mother has a children at age 5 or 6					
work	=1 if worked in last week					
hrwork-mean	mean hours of work in she's interval					
public	=1 if enrolled in public school					
private	=1 if enrolled in private school					

Models

• DID

$$y_{ist} = \theta Kratio_{st} + X'_{ist}\beta + \alpha_s + \gamma_t + \epsilon_{ist}$$

Some of the findings imply a downward biased estimates from conventional DID. Then author employed DDD approach to uncover consistent estimates against unobservable factors.

DDD

$$y_{ist} = \theta_1 Kratio_{st} five_i + \theta_2 Kratio_{st} + X'_{ist} \beta_1 + X'_{ist} five_i \beta_2$$
$$+ \alpha_{1s} + five_i \alpha_{2s} + \gamma_{1t} + five_i \gamma_{1t} + \epsilon_{ist}$$

Here y_{ist} includes various outcome variables for mothers or kids.

CENSUS DATA

- A. Split and merge the datasets twice.
 - To match all individuals with household and subfamily information.
 - To match mothers with their children, also match children with their mother by identification of famlies they belong to .
- B. Restrict the sample.
 - On states: where kindergarten funding policy was passed after 1965.
 - On mothers: who has children aged 0 to 17.
 - On quality: drop observation with allocated employment data.

The final dataset size: 1545678 for mothers, 2802342 for children.

CODES FOR CENSUS DATA OPERATION

```
forvalues v=1/9 {
clear
infix rectype 120 hhid 2-6 state 7-8 ... relate 1 subfunit 3 ... using
DS000'v'/07756-000'v'-Data.txt,clear
save pick1960/ All1960_'v', replace }
cd ".../pick1960"
local data: dir ".../pick1960" files "All1960_*.dta"
foreach v of local data {
append using 'v', force }
save Census1960_All_mix,replace
use mother1960.clear
duplicates drop madehhid famunit subfunit madestate, force
merge 1:n madehhid madestate famunit subfunit using children1960
keep if _merge==3
bysort momid: gen ttchildren=_N
gen kid5=(kidage==5)
bysort momid: egen num5=sum(kid5)
```

POLICY VARIABLE AND WEIGHTS

Policy variable $(share_{st})$ is defined as $Kratio_{st} = \frac{Knum_{t-2,s}}{Allnum_{t-2,s}}$

- Kumt 2, s is number the school districts with public kindergarten available in state s two years prior to census year t; $Allnum_{t-2,s}$ is the number of all school districts.
- The reason of using lag values of school districts information:
 - 1. the census month and beginning month of semester differs;
 - 2. the potential lag on districts information updating.

The personal weights data is only available in some years, thus I applied total population by state and year as a substitute.

Codes for Descriptive Statistics

```
gen hrtitle="Hours last week"
keep if five==1&single==1&num04==0

tabout work year [weight=resipop]
using ...,replace c(col) ...

tabout hrtitle year
[weight=resipop] using ...,append
c(mean hrwork_mean) sum ...

tabout hrtitle year
[weight=resipop] using ...,append
c(sd hrwork_mean) sum ...
```

```
1970
              1960
=1 if hours of working is positive last week
not % 46.49 40.81 39.15
                             32.82
                                     34.45
Worked lastweek %
                     53 51
                             59.19
                                     60 85
                                            67 18
                                                   65 55
Total % 100.00 100.00 100.00 100.00 100.00
hrtitle
Hours last week 21.73 21.82
                             22.97
                                     25.85
                                            25.54
Total 21.73 21.82 22.97
                             25.85
                                     25.54
hrtitle
Hours last week 22.08 20.34
                             20.09
                                     19.75
                                            20.62
Total 22.08 20.34 20.09
                             19.75
                                     20.62
```

1.978 10.739 14.785

908

734

DESCRIPTIVE STATISTICS OF CHILDREN

 Table 2

 School Enrollment Rates of Five-year-olds, by Marital Status of Mother and Presence of Younger Siblings: 1960–90

	1960	1970	1980	1990	1960	1970	1980	1990	
	Mot	her Single, N	o Younger Sit	olings	Moth	ner Married, N	o Younger Sib	lings	
Public school (=1)	0.43	0.52	0.73	0.70	0.42	0.48	0.67	0.64	
Private school (=1)	0.05	0.12	0.14	0.10	0.07	0.15	0.18	0.17	
N	950	1457	12706	20548 8749 1082		10822	47878	51001	
	Moth	ner Single, W	ith Younger Si	blings	Mothe	er Married, Wi	th Younger Si	blings	
Public school (=1)	0.42	0.47	0.74	0.70	0.39	0.46	0.66	0.61	
Private school (=1)	0.04	0.07	0.09	0.09	0.07	0.14	0.16	0.16	
N	1,356	1,354	7,694	13,630	14,347	10,654	40,636	43,603	

Notes: Data are from the Decennial Census. Calculations are weighted by population weights. Sample includes children aged five or six as of the Census who are matched to mothers residing in the treated region (see Table 1). See text and Appendix 2 for further description of sample.

	1960	1970	1980	1990	1960	1970	1980	1990	
Mother Single	, No Youn	G SIBLINGS	Mother Married, No Young Siblings						
Public school	42.8	54.4	73.0	70.6	40.2	51.0	66.7	64.2	
Private school	6.4	11.4	13.9	9.6	7.7	15.3	18.7	16.4	
N	853	2,532	12,020	16,676	9,379 18,783		52,982	49,513	
Mother Single	, With Yo	UNG SIBLIN	IGS		MOTHER	Married, V	VITH YOUNG	SIBLINGS	
Public school	44.0	50.4	73.4	71.0	36.7	49.1	66.1	61.7	
Private school	te school 3.7 7.3		8.4	5.3	6.9	13.1	16.0	15.6	
N	1,123	2,395	6,943	12,728	15,601	21,017	44,617	42,902	

DESCRIPTIVE STATISTICS OF MOTHERS

Table 3a Characteristics of Mothers of Five-year-olds with No Younger Children, by Ma

	Single, No Younger Children						
	1950	1960	1970	1980	1990		
Employment							
Worked last week (=1)	0.52	0.56	0.59	0.65	0.67		
Hours last week	20.9	20.5	22.5	24.7	25.8		
	(21.9)	(20.3)	(20.4)	(19.9)	(20.4)		
Background							
High school degree (=1)	_	0.35	0.50	0.67	0.76		
White (=1)	0.71	0.65	0.61	0.59	0.58		
Children aged 7-12	0.84	1.01	1.13	0.66	0.62		
	(1.00)	(1.10)	(1.09)	(0.83)	(0.77)		
Children Aged 13-17	0.41	0.36	0.51	0.28	0.22		
	(0.75)	(0.66)	(0.87)	(0.66)	(0.52)		
Age	34.9	35.2	33.7	30.8	31.8		
· ·	(8.5)	(8.6)	(7.8)	(6.8)	(6.4)		
N	1,041	807	1,276	11,955	19,248		

1960 ENT 59.19	1970 60.85	1980 67.18	1990
ENT 59.19			
59.19	60.85	67 10	
	60.85	67 10	
01.00		07.10	65.55
21.82	22.97	25.85	25.54
(20.34)	(20.09)	(19.75)	(20.62)
UND			
32.53	48.76	65.70	72.83
8.76 63.87		57.36	56.99
.99 1.04		0.67	0.63
(1.11)	(1.18)	(0.86)	(0.83)
0.44	0.56	0.28	0.25
(0.73)	(0.93)	(0.67)	(0.58)
35.43	35.22	30.91	32.27
(8.59)	(10.22)	(6.89)	(8.46)
734	1,978	10,739	14,785
	32.53 63.87 1.04 (1.11) 0.44 (0.73) 35.43 (8.59)	UND 32.53	UND 32.53 48.76 65.70 32.53 48.76 65.70 63.87 62.17 57.36 1.04 1.24 0.67 (1.11) (1.18) (0.86) 0.44 0.56 0.28 (0.73) (0.93) (0.67) 35.43 35.22 30.91 (8.59) (10.22) (6.89)

 ${
m FIVE-YEAR-OLDS}$ is defined as age 5 or 6, for the fuzzy information on age attributed to absence of quarter age in some years.

CODES FOR REGRESSION

```
areg work Kratio c.age##c.age ... i.year if five==1&num04==0&single==1
[weight=resipop], absorb(state) vce(cl state)

reghdfe work Kratio c.age##c.age ... if five==1&num04==0&single==1
[weight=resipop], absorb(state year) vce(cl state)

qui areg...
mat var=e(V)
sca vK=var[1,1]
dis _b["Kratio"] " , " sqrt(vK)
```

DID REGRESSION RESULTS

Dependent Variable	(1)	(2)	
A. Single, no younger children			0.067
a. Worked last week	0.58	0.045	(0.061)
		(0.033)	3.616
b. Hours last week	21.85	1.314	(2.760)
		(1.419)	29144
N		34,327	0.142***
c. Child in public school	0.48	0.151***	*
		(0.050)	(0.058)
d. Child in private school	0.12	-0.050*	-0.023
-		(0.026)	(0.019)
N		35,322	32081
B. Married, no younger children			
a. Worked Last Week	0.36	-0.032***	-0.021
		(0.011)	(0.027)
b. Hours last Week	12.66	-1.259**	-0.618
		(0.461)	(1.039)
N		120,673	127957
c. Child in public school	0.43	0.153***	0.256***
		(0.035)	(0.071)
d. Child in private school	0.15	-0.058**	-0.121***
		(0.022)	(0.028)
N		116,891	130657

Estimates on Kratio;

State and time fixed effects, maternal characteristics are included in all regressions.

DDD REGRESSION RESULTS

Dependent Variable	(4)	(5)	(4)	(5)	
A. Single, no younger children			0.027	0.044	
a. Worked last week	0.060	0.069**	(0.032)	(0.050)	
	(0.037)	(0.033)	0.032)	2.005	
b. Hours last week	1.616	2.402*			
	(1.549)	(1.287)	(1.525)	(1.931)	
N	65,168	66,787	48535	51539	
c. Child in public school	_	0.152**		0.150**	
-		(0.059)		(0.065)	
d. Child in private school	_	-0.056*		-0.039**	
•		(0.033)		(0.018)	
N		68,827		80479	
B. Married, no younger children	n				
a. Worked Last Week	-0.001	-0.011	-0.002	-0.008	
	(0.010)	(0.011)	(0.021)	(0.014)	
b. Hours last Week	0.107	-0.309	0.226	-0.010	
	(0.368)	(0.475)	(0.777)	(0.470)	
N	226,088	230,368	259612	261104	
c. Child in public school		0.145***		0.235***	
-		(0.032)		(0.082)	
d. Child in private school		-0.057**		-0.097 ***	
-		(0.021)		(0.037)	
N		225,028		358718	
				338/18	

Estimates on Kratio*five; FE and controls interacted with five. Column (4): mother with 3-4 years-olds, column (5): with 7-8 years-olds.

WHY THE RESULTS DIFFER?

Issues	AUTHOR'S OPERATION	My Operation		
Weights	Population weights	Total population weights		
Policy Variable	Allocated: 1970, 1974, 1984	Allocated: 1967, 1970, 1974		
Data quality	Else unknown	Only allocated employment dropped		
Match	Unknown	Dropped		

127615.	rectype	hhio	,	ecnum	prw	sel	fwtpr	slperson	relate	P53 FAMUNIT	Family unit membership
	. Р	230694	.	9	38		1	1	5	P54~55 FAMSIZE	Family size of unit indicated in FAMUN
			_	т —	_	1				P56 FAMREL	Family relationship summary
	gqnemb	instyp 99	sex	race	age 18	birmo		active	wkstat	P57 FAMTYPE	Family type and presence of own children
	,		-	L, '	10	, ,,				P58 SUBFUNIT	Subfamily unit membership
	jobsek	havjob	enp	oy h	rwork	class	famunit	famsize	fanrel	P59 SUBFSIZE	Subfamily size of unit indicated in SUB
	1	1		6	99	9	2	11	4	P60 SUBFREL	Relationship to head of subfamily
	famty			ubfuni			bfrel	cubi	type	P61 SUBFTYPE	Subfamily type and presence of own chil
	Talley	2		10010113	1	30	2	Subi	1	P62 SURSIM	Surname similarity code
										P78 ACTIVEDQ	Data quality flag for ACTIVE
										P79 WKSTATDO	Data quality flag for WKSTAT
127616.	rectype	hhio	1 1	ecnum	prw	: sel	fwtpr	slperson	relate	P80 JOBSEKDQ	Data quality flag for JOBSEK
	P	230694	٠	8	30	•	1	1	5	P81 HAVJORDQ	Data quality flag for HAVJOB
	ganemb	instyp	sex	race	age	birmo	narsta	active	wkstat	P82 EMPLOYDQ	Data quality flag for EMPLOY
	gqiiciib 9	99	2	2	27	99		2	wkstat	P83 HRWORKDQ	Data quality flag for HRWORK
				_					_	P84 OCCUPDQ	Data quality flag for OCCUP
	jobsek	havjob	enp	oy h	rwork	class	famunit		fanrel	P85 INDUSDQ	Data quality flag for INDUS
	1	1		6	99	9	2	11	4	P86 CLASSDO	Data quality flag for CLASS
	fanty	rpe		ubfuni	t	su	bfrel	sub1	type		
		2			1		2		1		

Duplicated Observations

Variables for Matching and Restriction