

Course: MIS 545

Toronto Crime Data Analysis

Executive summary of results and findings

The major crime classification in 2016 was assault followed by breaking and entering and then auto theft. The next question to be answered was to look at the top crime classification and break it down into types. What are the different types of crime? The main classification was assault followed by breaking and entering (B&E) and then Theft of a Motor Vehicle. Next question was what time of the day did the crimes occur and what were the peak times of crime? The peak crime hour was found to be around midnight, another peak time is around noon, then again at around 8pm. Assaults had two peak times 11pm and 2pm. Breaking and entering occurred more often in the early mornings. Robberies and auto thefts were more likely to occur in the late evenings and nights. The next question to answer was where are the top crimes are most likely to occur? What are the safe neighborhoods and what are the dangerous one? This helped me to highlight some of the most dangerous areas of the city. Cluster 1 indicates neighborhoods with low assault, low auto theft, low break and enter, low robbery and low theft. Cluster 2 indicates neighborhoods with high assault, high auto theft, high break and enter, high robbery and high theft. The most dangerous neighborhood in Toronto was the Waterfront Communities. The sprawling downtown area is not only densely packed but also a busy entertainment district. This might explain the higher crime rate. The results indicate a staggering number of violent crimes and arsons. Finally I compared neighborhoods and crime types. This highlighted which areas have a problem with a specific type of crime. Church-Yonge Corridor and Waterfront had the most break and enter. West Humber-Clairville had the most auto theft. What were the safest areas of the city to live in? Our results indicate that the Malvern, Mount Olive and South Parkdale area where the safest.

The Dataset

A section about the dataset: What is the data about, what are the records and attributes, what kind of pre-processing did it require, etc.

I am going to use various data mining techniques to examine the Toronto Police Service Major Crime Indicators (MCI) data base. The database is available for download at http://data.torontopolice.on.ca/datasets/mci-2016. The information contained in this dataset refers to current Year-to-Date as well as previous full Year End content. Current Year-to-Date data was not available for download so I will be using the 2016 database. The database contains **32,613** records. Each record represents an individual crime report. There are 29 columns.

A glossary of each of these terms and what they mean is provided here. To reduce the complexity of dealing with the full source data I will remove various data as needed.

Data selection and transformation

First task will be to check for duplicated **event_unique_id**. A quick inspection of the data indicated that there were multiple instances of duplicated records. (see below) If any are found they will be removed. After I ran this process, we are now down to **28,147** records. Also some of the crimes may have been reported in 2016 but happened much earlier. We are only interested in crimes that happened in 2016 so we will remove the other reports. We will do this by checking the **occurrenceyear**. The occurrence year ranged from 2000 to 2016. I ran a report to see how many late reported incidents are present. The vast majority of reports were in 2016. A total of 27705 total. These are the reports we are interested in. The rest will be removed. To reduce the complexity of dealing with the full source data I will remove other columns that we do not need. We are now down to 14 columns.

You can see from this view above that there is qualitative data (neighborhood) and missing values present. Any missing value in the data must be removed or estimated. **The data must be standardized (i.e., scaled) to make variables comparable.** Standardization consists of transforming the variables such that they have mean zero and standard deviation one. We are now ready to begin our analysis of the data. With the data finally cleaned, integrated, selected and transformed, the actual data mining will begin.

Implications answering these questions will have.

A section about the questions, the implications answering these questions will have, etc.

I want to answer three main questions. Where are the main high crime areas in Toronto? Where are the low crime areas in Toronto and what classification of crime is being committed. In the process, I will also answer a variety of other questions. I will start with some simple plots of variables I processed using the powerful ggplot2. We will then use k-means clustering. As one of the unsupervised learning algorithms, I will use K-Mean to build models that help me understand the data better. The purpose of unsupervised learning with clustering is to find meaningful relationships in the data, preferably where you could not have seen them otherwise. In addition, I will attempt to use Naïve Bayes to predict a class, given a set of features using probability. Crime analysis and prevention is a useful tool for identifying and analyzing patterns and trends in crime. We will attempt to predict regions, which have high probability for crime occurrence and can visualize crime prone areas. This will help Law enforcement officers with the process of protecting neighborhoods. Using the concept of data mining, we can extract previously unknown, useful information from an unstructured data.

Summary statistics and descriptive analysis of data

Visualizing data is a powerful way to derive high-level insights about the underlying patterns in the data. To see a few examples, we start with some plots processed using the powerful ggplot2.

Visualizations provide helpful clues as to where we need to look for information. We are interested in MCI (Major Crime Indicators) and Neighborhoods. The MCI classification is is made up of assault, auto theft, break and enter, robbery and theft over.

Results from model executions

Each model needs to answer one specific question that you identified earlier. Models can be classification, clustering, association rule mining, etc. You need to explain each model and justify the operators that you use.

K-means Clustering

```
K-means clustering with 2 clusters of sizes 10, 121
                                                          First cluster has 10
                                                         neighbourhoods, and the
  Assault Auto Theft Break and Enter
                              Robbery Theft Over
                    2.6337422 2.1521148 2.7689425
                                                         second cluster has 121
 2.335808 1.639429
2 -0.193042 -0.135490
                    -0.2176646 -0.1778607 -0.2288382
                                                           neighbourhoods.
clustering vector:
Within cluster sum of squares by cluster:
[1] 170.2395 183.3436
(between_SS / total_SS = 45.6 \%)
Available components:
                         "totss"
                                    "withinss"
                                               "tot.withinss" "betweenss"
[1] "cluster"
              "centers"
                                                                     "size"
              "ifault"
[8] "iter'
> str(kc)
List of 9
 $ cluster
               : int [1:131] 1 1 1 2 1 1 2 1 1 1 ...
               : num [1:2, 1:5] -0.193 2.336 -0.135 1.639 -0.218 ...
 $ centers
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:2] "1" "2"
  ....$ : chr [1:5] "Assault" "Auto Theft" "Break and Enter" "Robbery" ...
 $ totss
               : num 650
              : num [1:2] 183 170
 $ withinss
 $ tot.withinss: num 354
 $ betweenss : num 296
 $ size
              : int [1:2] 121 10
               : int 1
 $ iter
 $ ifault
              : int 0
 - attr(*, "class")= chr "kmeans"
>
```

K-means clustering will enable me to learn groupings of unlabeled data points. Here I will attempt to measure the number of assaults and other indicators. Neighborhoods with a high number of assaults will be grouped together. In this project the goal of clustering is to assign a cluster to each data point (neighborhood). I will first partition datapoints (neighborhoods) into k clusters in which each neighborhood belongs to the cluster with the nearest mean, serving as a prototype of the cluster. If we examine the Cluster Means, the negative values mean "lower than most" and positive values mean "higher than most". Cluster 1 indicates neighborhoods with low assault, low auto theft, low break and enter, low robbery and low theft. Cluster 2 indicates neighborhoods with high assault, high auto theft, high break and enter, high robbery and high theft. If we examine the Clustering vector: The first, second and third neighborhoods should all belong to cluster 1, the fourth neighborhood should belong to cluster 2 and so on. Withinss is a Vector of within-cluster sum of squares, one component per cluster. Lower is better. The between-cluster sum of squares. Ideally we want cluster centers far apart from each other. We can

also view our results by using fviz_cluster. This provides a nice illustration of the clusters. If there are more than two dimensions (variables) fviz_cluster will perform principal component analysis (PCA) and plot the data points according to the first two principal components that explain the majority of the variance.

Hierarchical clustering

In hierarchical clustering we do not specify the number of clusters upfront. These were determined by looking at the dendogram after the algorithm had done its work. I will undertake some hierarchical clustering. Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters. I will use hierarchical clustering to create a sequence of nested clusters to explore deeper insights from the data.

```
> hc <- hclust(distance)
> hc
call:
hclust(d = distance)
Cluster method : complete
                 : euclidean
Number of objects: 131
            Length Class Mode
                   -none- numeric
height
            130
                   -none- numeric
labels
                   -none- NULL
method
                   -none- character
                   -none- call
```

The denogram below represents a two-cluster solution; by following the line down through all its branches, we can see the names of the neighborhoods that are included in these two clusters. From the top of the tree, there are two distinct groupings. One group consists of many groups within groups. The other group consists of only a few neighborhoods. These neighborhoods are high crime rate neighborhoods.

Naïve Bayes

A sample size is calculated and I randomly decide which ones are training data. The next step is to divide the available data into training and test datasets. The former will be used to train the algorithm and produce a predictive model. The effectiveness of the model will then be tested using the test dataset. An important consideration is that both sets must contain records that are representative of the entire dataset. Next, we invoke the Naive Bayes method from the e1071 package. The first argument uses R's formula notation. In this notation, the dependent variable (to be predicted) appears on the left hand side of the \sim and the independent variables (predictors or features) are on the right hand side. Now that we have a model, we can do some predicting. We do this by feeding our test data into our model and comparing the predicted data with the known ones. The latter is done via the confusion matrix — a table in which true and predicted values for each of the predicted classes are displayed in a matrix format. Below is the model showing crime category by neighborhood.

```
> toronto.model
Naive Bayes Classifier for Discrete Predictors
naiveBayes.default(x = X, y = Y, laplace = laplace)
A-priori probabilities:
                        Auto Theft Break and Enter
         Assault
                                                                Robbery
                                                                                Theft Over
                        0.09981218
Conditional probabilities:
                          Γ.17
  Assault -79.38934 0.10447589
Auto Theft -79.44047 0.11100928
Break and Enter -79.38837 0.09791290
  Robbery
                    -79.40079 0.11050821
-79.40154 0.09869889
  Theft Over
                   Neiahbourhood
                    Agincourt North (129) Agincourt South-Malvern West (128) Alderwood (20)
  Assault
                               0.0050525741
                                                                       0.0078519732
                                                                                        0.0021166189 0.0182985115
  Auto Theft
                               0.0057603687
                                                                        0.0065284178
                                                                                         0.0049923195 0.0076804916
  Break and Enter
                               0.0090961873
                                                                       0.0094832591
                                                                                        0.0038707180 0.0210954132
0.0031612223 0.0182648402
                               0.0049174570
  Robberv
                                                                       0.0063224447
  Theft Over
                               0.0060606061
                                                                        0.0121212121
                                                                                         0.0084848485 0.0230303030
                    Neighbourhood
                     Banbury-Don Mills (42) Bathurst Manor (34) Bay Street Corridor (76) Bayview Village (52)
  Assault
                                0.0038918476
0.0023041475
                                                       0.0023897310
                                                                                    0.0266967090
                                                                                                             0.0040284037
                                                       0.0061443932
  Auto Theft
                                                                                    0.0049923195
                                                                                                             0.0042242704
  Break and Enter
                                0.0087091155
                                                       0.0044513257
                                                                                    0.0143216567
                                                                                                             0.0056125411
                                0.0035124693
                                                       0.0014049877
                                                                                                             0.0035124693
  Robberv
                                                                                    0.0196698279
  Theft over
                                0.0084848485
                                                       0.0024242424
                                                                                    0.0387878788
                                                                                                             0.0036363636
                    Neighbourhood
                    Bayview Woods-Steeles (49) Bedford Park-Nortown (39) Beechborough-Greenbrook (112) Bendale (127)
                                                                                                     0.0030725113 0.0131776594
0.0023041475 0.0107526882
  Assault
                                     0.0021166189
                                                                   0.0018435068
  Auto Theft
                                     0.0057603687
                                                                   0.0088325653
  Break and Enter
                                     0.0056125411
                                                                   0.0133539772
                                                                                                      0.0017418231
                                                                                                                      0.0079349719
                                                                                                      0.0017562346 0.0151036178
  Robberv
                                     0.0000000000
                                                                   0.0024587285
  Theft Over
                                     0.0000000000
                                                                   0.0072727273
                                                                                                      0.0036363636 0.0109090909
                    Neighbourhood
                    Birchcliffe-Cliffside (122) Black Creek (24) Blake-Jones (69) Briar Hill-Belgravia (108)
0.0100368701 0.0134507715 0.0028676772 0.0030042332
0.0053763441 0.0149769585 0.0019201229 0.0046082949
  Assault
                                                                                                             0.0046082949
  Auto Theft
  Break and Enter
                                      0.0110315464
                                                          0.0048383975
                                                                             0.0021288949
                                                                                                             0.0048383975
  Robbery
                                      0.0042149631
                                                          0.0105374078
                                                                             0.0017562346
                                                                                                             0.0052687039
  Theft Over
                                      0.0072727273
                                                                                                             0.0048484848
                                                                             0.0012121212
```

For the complete model see the appendix.

Model evaluation

K-Means

It is sometimes difficult to decide how many clusters to use. While one solution may be technically correct, the two-cluster solution may seem to give better results. If you increase the number of clusters beyond three, your predictions' success rate starts to break down. It can be seen that as the value of K increases, distortion decreases.

```
> kmeans.totwithinss.k(z, 2)
[1] 353.5831
> kmeans.totwithinss.k(z, 3)
[1] 257.0361
```

Evaluating the performance of an algorithm requires a label that represents the expected value and a predicted value to compare it with. Remember that when you apply a clustering algorithm to an unsupervised learning model, you do not know what the expected values are — and you don't give labels to the clustering algorithm. The algorithm puts data points into clusters on the basis of which data points are similar to one another; different data points end up in other clusters. The basic idea behind cluster partitioning methods, such as k-means clustering, is to define clusters such that the total within-cluster sum of square is minimized.

Elbow method:

We can implement this in R with the following code. The results suggest that 2 is the optimal number of clusters as it appears to be the bend in the knee (or elbow).

```
> wss <- (nrow(z)-1) * sum(apply(z, 2, var))
> for (i in 2:20) wss[i] <- sum(kmeans(z, centers=i)$withiness)
> plot(1:20, wss, type='b', xlab='Clusters', ylab='sum of squares')
```


Average Silhouette Method

The average silhouette approach measures the quality of a clustering. It determines how well each object lies within its cluster. A high average silhouette width indicates a good clustering. The average silhouette method computes the average silhouette of observations for different values of k. The optimal number of clusters k is the one that maximizes the average silhouette over a range of possible values for k.2 **The results show that 2 clusters maximize the average silhouette values with 4 clusters coming in as second optimal number of clusters.** Because the number of clusters (k) must be set before we start the algorithm, it is often useful to use several different values of k and examine the differences in the results. We can execute the same process for 3, 4, and 5 clusters, and the results are shown below:

Gap Statistic Method

The gap statistic approach can be applied to any clustering method (i.e. K-means clustering, hierarchical clustering). The gap statistic compares the total intracluster variation for

different values of k with their expected values under null reference distribution of the data (i.e. a distribution with no obvious clustering). This one indicates that 4 is the best choice.

Based on the above plots, we can say with confidence that we do not need more than two clusters (centroids). Ways I could improve on the process could include merging neighboring clusters if the resulting cluster's variance is below the threshold. I could also isolate elements that are "far" if a cluster's variance is above the threshold and move some elements between neighboring clusters if it decreases the sum of squared errors.

K-means clustering is a very simple and fast algorithm. Furthermore, it can efficiently deal with very large data sets like the Toronto MCI database. However, there are some weaknesses of the k-means approach. One potential disadvantage of K-means clustering is that it requires us to pre-specify the number of clusters. Hierarchical clustering is an alternative approach which does not require that we commit to a particular choice of clusters. Hierarchical clustering has an added advantage over K-means clustering in that it results in an attractive tree-based representation of the observations, called a dendrogram which I have included in this report. An additional disadvantage of K-means is that it's sensitive to outliers and different results can occur if you change the ordering of your data.

Naïve Bayes

In the confusion matrix (as defined below), the **true values are in columns** and the **predicted values in rows**.

```
> toronto.predict <- predict(toronto.model, test, type = 'class')</pre>
> results <- data.frame(Predicted = toronto.predict, Actual = test[,'MCI'])
> table(results)
               Actual
Predicted
                 Assault Auto Theft Break and Enter Robbery Theft Over
                    47
                               250
 Assault
                   1777
                                              556
                                                      292
                                                                 82
  Auto Theft
                                50
                                               35
                                                      19
                                                                 14
 Break and Enter
                     44
                                18
                                               51
                                                      6
                                                                  6
 Robbery
                                                                  2
                      5
                                7
                                                0
                                                       1
                      0
                                 0
                                                                  0
 Theft Over
```

A simple measure of efficacy would be the fraction of predictions that the algorithm gets right. The simplest way to calculate this in R is:

```
> mean(toronto.predict==test[,'MCI'])
[1] 0.576027
> |
```

The total accuracy is calculated as follows.

$$Accuracy = \frac{TP + TN}{Total} = \frac{1879}{3262} = 0.576$$
 58%

	Assault	Auto Theft	Breaking & Entering	Robbery	Theft Over
Sensitivity	0.94	0.15	0.08	0.003	0.0
Specificity	0.15	0.96	0.98	1.0	0.1
FP	0.85	0.30	0.03	0.005	0.0
FN	0.05	0.85	0.92	0.997	1.0
Precision	0.06	0.30	0.40	0.7	0.0
Recall	0.94	0.15	0.08	.003	0.0
F Score	0.74	0.20	0.13	.006	0.0

```
> cm
Confusion Matrix and Statistics
                Reference
Prediction
                 Assault Auto Theft Break and Enter Robbery Theft Over
                                                 556
 Assault
                    1777
                                250
                                                         292
                                                                     82
  Auto Theft
                      47
                                 50
                                                          19
                                                  35
                                                                     14
 Break and Enter
                       44
                                                                      6
                                 18
                                                  51
                                                           6
                       5
                                                  0
 Robberv
                                                          1
                                                                      2
  Theft Over
                                                           0
Overall Statistics
               Accuracy: 0.576
                95% CI: (0.5589, 0.5931)
    No Information Rate: 0.5742
    P-Value [Acc > NIR] : 0.4231
                  Карра : 0.0911
Mcnemar's Test P-Value : <2e-16
Statistics by Class:
                     Class: Assault Class: Auto Theft Class: Break and Enter Class: Robbery
Sensitivity
                             0.9487
                                              0.15385
                                                                     0.07944
                                                                     0.97176
Specificity
                             0.1505
                                              0.96084
                                                                                  0.9952446
Pos Pred Value
                                              0.30303
                                                                     0.40800
                             0.6009
                                                                                  0.0666667
                                                                     0.81160
                                                                                  0.9023714
Neg Pred Value
                                              0.91120
                             0.6852
                                              0.09963
                             0.5742
                                                                     0.19681
                                                                                  0.0974862
Prevalence
Detection Rate
                            0.5448
                                              0.01533
                                                                     0.01563
                                                                                  0.0003066
                           0.9065
Detection Prevalence
                                              0.05058
                                                                     0.03832
                                                                                  0.0045984
Balanced Accuracy
                            0.5496
                                              0.55735
                                                                     0.52560
                                                                                  0.4991946
                    Class: Theft Over
Sensitivity
                               0.00000
Specificity
Pos Pred Value
Neg Pred Value
                               0.96812
Prevalence
                               0.03188
Detection Rate
                               0.00000
Detection Prevalence
                               0.00000
Balanced Accuracy
                               0.50000
```

My accuracy rate could possibly be improved from 58% by adjusting the classifier's tunable parameters. I could also apply some sort of classifier combination technique (eg, boosting, bagging). In addition I could look at the data used in the project and either add more data, improve my basic parsing, or refine the features I select from the data. Naïve

Bayes is an algorithm that allows us to predict a class, given a set of features using probability. Naïve Bayes operates on the common principle, that every feature being classified is independent of the value of any other feature. Features, however, are not always independent. This can be a disadvantage of using the Naïve Bayes algorithm. I suppose this is why it is called Naïve. However, the model I used for this report was relatively simple to understand and build. In addition, it was also easily trained and did not require a huge dataset.

Implications and conclusion

This report has helped to highlight some of the most dangerous and safest areas of Toronto. It also highlighted what types of crimes were committed in these neighborhoods. For example, the most dangerous neighborhood in Toronto was the Waterfront Communities. West Humber-Clairville had the most vehicle theft. Our analysis indicated these neighborhoods also have high assault rates and a staggering number of violent crimes. The safest areas of the city to live in were Malvern, Mount Olive and South Parkdale. I used various approaches to measure the quality of my clustering. The correct number of clusters is often ambiguous and depends on the shape and scale of the distribution of points in a data set and the desired clustering resolution of the user. I attempted to make the optimal choice of clusters that would strike a balance between maximum compression of the data using a single cluster, and maximum accuracy by assigning each data point to its own cluster. My Naïve Bayes classifier had an accuracy of 58%. In future, I may want to focus on my data and the quality of my pre-processing and feature selection to help improve the accuracy. Perhaps identifying and separating out segments could give me increased performance and focus on the elements of the problem that are more difficult to model. Perhaps future research could include comparisons with previous years, observing the characteristics of a particular region over time. In addition, certain crimes types have very different characteristics from others. The 5 MCI (Major Crime Indicators) I used may have been too broad. Crimes like murder, aggravated assault, and rape, may need special attention and much more specific modeling to be really useful. Crime data is not easy to work with. It has both spatial and temporal attributes. Processing them can be a challenging task. The challenge is not limited to handling spatial and temporal data but also deriving information from them at these levels. In other words what information is useful? The purpose behind building these models and analyzing this data is to build a resource that will help law enforcement agencies deploy their limited resources more proactively and efficiently.

Appendices

List of Libraries

```
library(ggthemes)
library(dplyr)
library(viridis)
library(tidyr)
library(cluster)
library(ggmap)
library(maps)
library(factoextra) # clustering algorithms & visualization
library(cluster) # clustering algorithms
```

Naive Bayes Classifier for Discrete Predictors

```
call:
naiveBayes.default(x = X, y = Y, laplace = laplace)
A-priori probabilities:
        Assault
                     Auto Theft Break and Enter
                                                        Robbery
                                                                     Theft Over
    0.56138602
                     0.09981218
                                     0.19805282
                                                     0.10912645
                                                                     0.03162252
Conditional probabilities:
                 ï..X
                       [,1]
                                  [,2]
 Assault
                 -79.38934 0.10447589
 Auto Theft
                 -79.44047 0.11100928
 Break and Enter -79.38837 0.09791290
                 -79.40079 0.11050821
 Robbery
 Theft Over
                 -79.40154 0.09869889
                 Neighbourhood
                  Agincourt North (129) Agincourt South-Malvern West (128) Alderwood (20)
  Annex (95)
  Assault
                           0.0050525741
                                                               0.0078519732
                                                                              0.0021166189
```

0.0182985115				
Auto Theft	0.0057603687	0	.0065284178	0.0049923195
0.0076804916	0.0037003087	O	.0003204176	0.0049923193
Break and Enter	0.0090961873	0	.0094832591	0.0038707180
0.0210954132	0.0090901873	O	.0094632391	0.0038707180
Robbery	0.0049174570	0	.0063224447	0.0031612223
0.0182648402	0.0049174370	O	.0003224447	0.0031012223
Theft Over	0.0060606061	0	0121212121	0 0004040405
	0.0060606061	U	.0121212121	0.0084848485
0.0230303030	and			
Neighbourh		Managa (24) Ba	Church Comm	
	Oon Mills (42) Bathu	rst manor (34) Ba	y Street Corr	100r (76) Bay
view Village (52)	0.0020010476	0.0022007210	0.0	255057000
Assault	0.0038918476	0.0023897310	0.0	266967090
0.0040284037				
Auto Theft	0.0023041475	0.0061443932	0.0	049923195
0.0042242704				
Break and Enter	0.0087091155	0.0044513257	0.0	143216567
0.0056125411				
Robbery	0.0035124693	0.0014049877	0.0	196698279
0.0035124693				
Theft Over	0.0084848485	0.0024242424	0.0	387878788
0.0036363636				
Neighbourh				
	Noods-Steeles (49) B	edford Park-Norto	wn (39) Beech	borough-Green
brook (112) Bendale (127)				
Assault	0.0021166189	0.003	18435068	
0.0030725113 0.0131776594				
Auto Theft	0.0057603687	0.008	88325653	
0.0023041475 0.0107526882				
Break and Enter	0.0056125411	0.013	33539772	
0.0017418231 0.0079349719				
Robbery	0.000000000	0.002	24587285	
0.0017562346 0.0151036178				
Theft Over	0.000000000	0.007	72727273	
0.0036363636 0.0109090909				
Neighbourh	ood			
Y Birchclin	ffe-Cliffside (122)	Black Creek (24)	Blake-Jones (69) Briar Hil
l-Belgravia (108)				
Assault	0.0100368701	0.0134507715	0.0028676	772
0.0030042332				
Auto Theft	0.0053763441	0.0149769585	0.0019201	229

0.0046082949)				
Break and Enter 0.0048383975		0.0110315464	0.0048383975	0.0021288949	
Robbery		0.0042149631	0.0105374078	0.0017562346	
0.0052687039)				
Theft Over		0.0072727273	0.0072727273	0.0012121212	
0.0048484848					
	Neighbourhood				
Υ	Bridle Path-Sur	nnybrook-York Mil	ls (41) Broadv	iew North (57) Bro	okhaven-
Amesbury (30)					
Assault		0.000	8876144	0.0025945651	
0.0051891301					
Auto Theft		0.001	9201229	0.0019201229	
0.0096006144					
Break and Enter	•	0.007	7414360	0.0029030385	
0.0032901103					
Robbery		0.000	3512469	0.0035124693	
0.0077274324					
Theft Over		0.004	8484848	0.0012121212	
0.0024242424					
	Neighbourhood				
Υ	Cabbagetown-Sou	ıth St.James Town	(71) Caledonia	a-Fairbank (109) C	asa Loma
(96)					
Assault		0.00553	05203	0.0044380718	0.00218
48969					
Auto Theft		0.00307	21966	0.0038402458	0.00153
60983					
Break and Enter	,	0.00716	08283	0.0021288949	0.00329
01103					
Robbery		0.00351	24693	0.0080786793	0.00035
12469					
Theft Over		0.00606	06061	0.0012121212	0.00727
27273					
	Neighbourhood				
Υ	Centennial Scar	borough (133) Ch	urch-Yonge Cor	ridor (75) Clairle	a-Birchm
ount (120) Clanto	on Park (33)				
Assault		0.0032090673	0.0	0435613819	0.
0187081797	0.0032773454				
Auto Theft		0.0019201229	0.0	0122887865	0.
0168970814	0.0176651306				
Break and Enter		0.0036771821	0.0	0280627056	0.

0149022644	0.0067737565		
Robbery	0.004214963	1 0.0509308	044 0.
0122936424	0.0021074816		
Theft Over	0.001212121	2 0.0472727	273 0.
0169696970	0.0060606061		
	Neighbourhood		
Υ	Cliffcrest (123) Corso Ital	ia-Davenport (92) Danfort	h (66) Danforth Eas
t York (59)			
Assault	0.0058719104	0.0049842961 0.0058	3036324
0.0039601256			
Auto Theft	0.0030721966	0.0026881720 0.0020	5881720
0.0034562212			
Break and En	ter 0.0089026514	0.0019353590 0.0067	7737565
0.0079349719			
Robbery	0.0063224447	0.0084299262 0.010	5374078
0.0031612223			
Theft Over	0.0024242424	0.000000000 0.0060	0606061
0.0036363636			
	Neighbourhood		
Υ	Don Valley Village (47) Dor	set Park (126) Dovercourt	-Wallace Emerson-Ju
nction (93)			
Assault	0.0053256862	0.0107196504	
0.0141335518			
Auto Theft	0.0049923195	0.0157450077	
0.0103686636			
Break and En	ter 0.0092897232	0.0135475131	
0.0116121541			
Robbery	0.0035124693	0.0196698279	
0.0122936424			
Theft Over	0.0036363636	0.0157575758	
0.0121212121			
	Neighbourhood		
Υ	Downsview-Roding-CFB (26) D	oufferin Grove (83) East E	nd-Danforth (62) Ed
enbridge-Humbe	r Valley (9)		
Assault	0.0180253994	0.0045746279	0.0066912468
	0.0010924485		
Auto Theft	0.0257296467	0.0015360983	0.0072964670
(0.0057603687		
Break and En	ter 0.0087091155	0.0044513257	0.0092897232
	0.0069672924		
Robbery	0.0126448894	0.0049174570	0.0091324201

0.0003512469

Theft Over		0.0109090909	0.003636	3636 0.009	96969697
	0.0024242424				
	Neighbourhood	d			
Υ	Eglinton Eas	st (138) Elms-0	old Rexdale (5)	Englemount-Lawrence	(32)
Assault	0.009	3540899	0.0042332377	0.006554	6907
Auto Theft	0.005	7603687	0.0046082949	0.006912	4424
Break and Er	nter 0.009	90961873	0.0019353590	0.011612	1541
Robbery	0.008	30786793	0.0052687039	0.013698	6301
Theft Over	0.007	72727273	0.0000000000	0.006060	6061
	Neighbourhood	d			
Υ	Eringate-Ce	ntennial-West	Deane (11) Etobi	coke West Mall (13)	Flemingdon
Park (44)					
Assault		0.	0030725113	0.0029359552	0.
0095589239					
Auto Theft		0.	0096006144	0.0042242704	0.
0015360983					
Break and Er	iter	0.	0042577898	0.0029030385	0.
0023224308					
Robbery		0.	0031612223	0.0014049877	0.
0080786793					
Theft Over		0.	0024242424	0.0000000000	0.
0024242424					
	Neighbourhood	d			
Υ	Forest Hill	North (102) F	orest Hill South	n (101) Glenfield-Jan	ne Heights
(25) Greenwood	d-Coxwell (65)				
Assault		0.0012290045	0.0002	048341	0.016455
0048	0.0055987983				
Auto Theft	1	0.0023041475	0.0026	881720	0.022657
4501	0.0042242704				
Break and Er	nter	0.0030965744	0.0034	836462	0.004838
3975	0.0098703309				
Robbery		0.0017562346	0.0003	512469	0.019318
5810	0.0024587285				
Theft Over	1	0.0024242424	0.0036	363636	0.008484
8485	0.0036363636				
	Neighbourhood	d			
Υ	Guildwood (140) Henry Far	m (53) High Park	x-Swansea (87) High	Park North
(88) Highland	Creek (134)				
Assault	0.002184	8969 0.0058	719104	0.0036870135	0.004574
6279	0.0043015158				

Auto Theft	0.0015360983	0.0038402458	0.0038402458	0.001920		
1229 0.00)26881720					
Break and Enter	0.0017418231	0.0027095026	0.0058060770	0.003870		
7180 0.00)42577898					
Robbery	0.0024587285	0.0042149631	0.0028099754	0.003863		
7162 0.00)38637162					
Theft Over	0.0012121212	0.0036363636	0.0048484848	0.002424		
2424 0.00	2424 0.0000000000					
	Neighbourhood					
Υ	Hillcrest Village	(48) Humber Heights	s-Westmount (8) Humb	er Summit (21)		
Humbermede (22)						
Assault	0.002733	11211	0.0020483408	0.0083299194		
0.0049842961						
Auto Theft	0.007680	04916	0.0061443932	0.0176651306		
0.0130568356						
Break and Enter	0.004451	13257	0.0034836462	0.0061931488		
0.0038707180						
Robbery	0.00456	52100	0.0035124693	0.0077274324		
0.0063224447						
Theft Over	0.002424	12424	0.0048484848	0.0169696970		
0.000000000						
	Neighbourhood					
Υ		e (106) Ionview (125	5) Islington-City Ce	ntre West (14)		
Junction Area (90						
Assault		4139014 0.003960125	66	0.0120852110		
0.006281578			_			
Auto Theft		2242704 0.002304147	' 5	0.0395545315		
0.005760368		4100053 0 001035350	.0	0.0172246052		
Break and Enter		4190052 0.001935359	10	0.0172246952		
0.005225469 Robbery		8637162 0.002809975	. 4	0.0119423955		
0.003512469		5037102 0.002809973	· ·	0.0119423933		
Theft Over		0606061 0.003636363	16	0.0351515152		
0.004848484		0.003030303		0.0331313132		
0.004848484	Neighbourhood					
Υ	_	on West (110) Kenned	dy Park (124) Kensin	aton-Chinatown		
(78)	Recression Lyrino	on hear (110) Kennet	A, I WITE (127) NCHOTH	g con chimacomi		
Assault		0.0035504575	0.0131776594	0.015703		
9465				1.020.00		
Auto Theft		0.0049923195	0.0038402458	0.008448		
5407						

Break and Enter	0.002	7095026	0.0071608283	0.011805
6900				
Robbery	0.008	0786793	0.0094836670	0.014401
1240				
Theft Over	0.000	0000000	0.0048484848	0.013333
3333				
Neighbou	rhood			
Y Kingsvi	ew Village-The พ	estway (6) Kin	gsway South (15) I	L'Amoreaux (117)
Lambton Baby Point (114)				
Assault	0.	0076471392	0.0013655606	0.0096954800
0.0008876144				
Auto Theft	0.	0138248848	0.0026881720	0.0080645161
0.0003840246				
Break and Enter	0.	0058060770	0.0040642539	0.0085155796
0.0013547513				
Robbery	0.	0094836670	0.0017562346	0.0126448894
0.0017562346				
Theft Over	0.	0048484848	0.0012121212	0.0036363636
0.0012121212				
Neighbou	rhood			
Y Lansing	-Westgate (38) L	awrence Park N	orth (105) Lawrend	ce Park South (10
3) Leaside-Bennington (56))			
Assault	0.0060767445	0.0	0010241704	0.00170695
0.001502116	6			
Auto Theft	0.0080645161	0.0	0038402458	0.00614439
32 0.001152073	7			
Break and Enter	0.0079349719	0.0	0036771821	0.00599961
29 0.0040642539	9			
Robbery	0.0031612223	0.0	0007024939	0.00000000
0.002458728	5			
Theft Over	0.0060606061	0.0	0024242424	0.00121212
12 0.001212121	2			
Neighbou	rhood			
Y Little	Portugal (84) Lo	ng Branch (19)	Malvern (132) Map	ole Leaf (29) Mar
kland Wood (12)				
Assault	0.0059401884	0.0032773454	0.0121534890	0.0019117848
0.0010241704				
Auto Theft	0.0026881720	0.0034562212	0.0099846390	0.0034562212
0.0046082949				
Break and Enter	0.0059996129	0.0048383975	0.0090961873	0.0030965744
0.0025159667				

Robbery	0.0028099754	0.0014049877	0.0158061117	0.0021074816
0.0024587285				
Theft Over	0.0024242424	0.0000000000	0.0060606061	0.000000000
0.0012121212				
	eighbourhood			
Υ	Milliken (130) Mimico (includes Humber	Bay Shores) (17) Morningside (13
5) Moss Park (73)				
Assault	0.0041649597		0.012016933	0.00641813
46 0.0204834084				
Auto Theft	0.0096006144		0.009600614	4 0.00345622
12 0.0046082949				
Break and Enter	0.0098703309		0.007741436	0.00232243
08 0.0193535901				
Robbery	0.0094836670		0.003863716	2 0.00175623
46 0.0302072357				
Theft Over	0.0109090909		0.012121212	1 0.00000000
00 0.0121212121				
Ne	eighbourhood			
Υ	Mount Dennis (115) Moun	nt Olive-Silvers	tone-Jamestown (2) Mount Pleasant
East (99)				
Assault	0.0058036324		0.01310938	14 0.
0019800628				
Auto Theft	0.0069124424		0.00998463	90 0.
0026881720				
Break and Enter	0.0056125411		0.00464486	16 0.
0036771821				
Robbery	0.0115911486		0.02493853	18 0.
0010537408				
Theft Over	0.0012121212		0.00363636	36 0.
0024242424				
N€	eighbourhood			
Υ	Mount Pleasant West (10	(4) New Toronto	(18) Newtonbrook	East (50) Newton
brook West (36) Nia	agara (82)			
Assault	0.00689608	0.005940	1884 0.	0035504575
0.0082616414 0.0	0082616414			
Auto Theft	0.00153609	83 0.003072	1966 0.	0007680492
0.0153609831 0.0	0049923195			
Break and Enter	0.00638668	47 0.007354	3642 0.	0059996129
0.0085155796 0.0				
Robbery	0.00526870	39 0.005268	7039 0	0021074816
0.0052687039 0.0				-

Theft Over		0.004848	34848	0.00484848	48 0	.0024242424
0.0072727273	0.0157575758	3				
	Neighbourho	ood				
Υ	North Riv	erdale (68)	North	St.James Town	(74) O'Connoi	r-Parkview (54) Oa
kridge (121)						
Assault	0	.0040966817		0.00751	05831	0.0060767445
0.0053939642						
Auto Theft	0	.0007680492		0.00499	23195	0.0023041475
0.0038402458						
Break and Ent	er 0	.0073543642		0.00832	20437	0.0052254693
0.0077414360						
Robbery	0	.0084299262		0.00667	36916	0.0073761855
0.0066736916						
Theft Over	0	.0060606061		0.00727	27273	0.0060606061
0.0084848485						
	Neighbourho	ood				
Υ	Oakwood V	illage (107)	01d	East York (58)	Palmerston-L	ittle Italy (80) P
arkwoods-Donald	a (45)					
Assault	(0.0065546907	,	0.0015021166		0.0031407893
0.0082	616414					
Auto Theft	(0.0072964670)	0.0019201229		0.0034562212
0.0069	124424					
Break and Ent	er (0.0021288949)	0.0036771821		0.0040642539
0.0065	802206					
Robbery	(0.0035124693	3	0.0017562346		0.0049174570
0.0063	224447					
Theft Over	(0.0024242424	ļ	0.0012121212		0.0048484848
0.0024	242424					
	Neighbourho	ood				
Υ	Pelmo Pa	rk-Humberlea	(23)	Playter Estat	es-Danforth (6	67) Pleasant View
(46) Princess-R	osethorn (10))				
Assault		0.002526	2870		0.003209067	73 0.0021848
969	0.0019800628					
Auto Theft		0.007296	4670		0.002304147	75 0.0019201
229	0.0080645161					
Break and Ent	er	0.004257	7898		0.002709502	26 0.0036771
821	0.0054190052					
Robbery		0.003512	4693		0.002107483	0.0014049
877	0.0098349139					
Theft Over		0.002424	2424		0.002424242	0.0036363
636	0.0048484848					

N	Neighbourhood			
Υ	Regent Park (72) Re	xdale-Kipling (4)	Rockcliffe-Smythe (111)	Roncesvall
es (86)				
Assault	0.0063498566	0.0022531749	0.0080568073	0.006
5546907				
Auto Theft	0.0007680492	0.0038402458	0.0092165899	0.003
8402458				
Break and Enter	0.0042577898	0.0011612154	0.0056125411	0.006
7737565				
Robbery	0.0056199508	0.0021074816	0.0133473832	0.007
3761855				
Theft Over	0.0024242424	0.0000000000	0.0048484848	0.002
4242424				
N	Neighbourhood			
Υ	Rosedale-Moore Park	(98) Rouge (131) Runnymede-Bloor West \	/illage (89)
Rustic (28)				
Assault	0.00211	66189 0.009080977	7	0.0034139014
0.0051891301				
Auto Theft	0.00192	01229 0.006144393	2 (0.0026881720
0.0042242704				
Break and Enter	0.00735	43642 0.011225082	3 (0.0040642539
0.0030965744				
Robbery	0.00421	49631 0.008781173	2 (0.0070249385
0.0035124693				
Theft Over	0.00606	06061 0.015757575	8	0.0012121212
0.0012121212				
N	Neighbourhood			
Υ	Scarborough Village	(139) South Park	dale (85) South Riverdal	e (70) St.A
ndrew-Windfields ((40)			
Assault	0.0105	830944 0.0	129045473 0.0119	486549
0.0034821	1794			
Auto Theft	0.0026	881720 0.0	0.0103	686636
0.0023041	L475			
Break and Enter	0.0048	383975 0.0	123862977 0.0253	532030

Neighbourhood

0.0096767950

0.0077274324

0.0096969697

Robbery

Theft Over

Y Steeles (116) Stonegate-Queensway (16) Tam O'Shanter-Sullivan (118) Tay

0.0012121212 0.0096969697

0.0112399017

0.0136986301

0.0242424242

0.0073761855

lor-Massey (61)					
Assault	0.0024580090	0.0045746279	0.0059401884		
0.0071691930					
Auto Theft	0.0103686636	0.0049923195	0.0088325653		
0.0034562212					
Break and Enter	0.0075479001	0.0079349719	0.0092897232		
0.0071608283					
Robbery	0.0045662100	0.0042149631	0.0080786793		
0.0073761855					
Theft Over	0.0024242424	0.0084848485	0.0096969697		
0.0084848485					
N	leighbourhood				
Υ	_	Thistletown-Beaumond Heights (3) Thorncliffe Park (55)		
Trinity-Bellwoods		-			
	0.0071691930	0.003004233	2 0.0051891301		
0.01283	62693				
Auto Theft	0.0034562212	0.005376344	1 0.0007680492		
0.00998	346390				
Break and Enter	0.0162570157	0.003870718	0.0040642539		
0.00948	332591				
Robbery	0.0066736916	0.007024938	5 0.0042149631		
0.00913	324201				
Theft Over	0.0024242424	0.002424242	4 0.0084848485		
0.00484	84848				
N	leighbourhood				
Υ	University (79) V	/ictoria Village (43) Waterfront	Communities-The Island		
(77) West Hill (1	.36)				
Assault	0.0052574082	0.0073057490	0.05209		
61355 0.0232828	8076				
Auto Theft	0.0015360983	0.0065284178	0.01344		
08602 0.0053763	441				
Break and Enter	0.0067737565	0.0030965744	0.03580		
41417 0.0104509	386				
Robbery	0.0031612223	0.0038637162	0.02318		
22972 0.0210748	3156				
Theft Over	0.0048484848	0.0048484848	0.06181		
81818 0.0072727	273				
N	Neighbourhood				
Υ	West Humber-Clair	ville (1) Westminster-Branson (35) Weston-Pellam Park		
(91) Weston (113)					
Assault	0.0	188447358 0.0087395	876 0.004369		

7938 0.0102417042					
Auto Theft	0.1033	026114	0.0084485407	0.004224	
2704 0.0107526882					
Break and Enter	0.0212	889491	0.0036771821	0.002322	
4308 0.0050319334					
Robbery	0.0323	3147172	0.0042149631	0.003863	
7162 0.0119423955					
Theft Over	0.0436	363636	0.0096969697	0.008484	
8485 0.0036363636					
N	leighbourhood				
Υ	Wexford/Maryvale (11	9) Willowdale East	t (51) Willowda	le West (37)	
Assault	0.00949064	59 0.00976	537580	0.0024580090	
Auto Theft	0.00960061	44 0.01459	929339	0.0023041475	
Break and Enter	0.01122508	23 0.01238	362977	0.0050319334	
Robbery	0.00597119	78 0.01053	374078	0.0014049877	
Theft Over	0.00969696	97 0.01212	212121	0.0024242424	
N	eighbourhood				
Y Willowridge-Martingrove-Richview (7) Woburn (137) Woodbine-Lumsden (60)					
Woodbine Corridor	(64)				
Assault		0.0047111839	0.0216441349	0.0008876144	
0.00245	80090				
Auto Theft		0.0149769585	0.0092165899	0.0007680492	
0.00192	01229				
Break and Enter		0.0058060770	0.0129669054	0.0013547513	
0.00638	66847				
Robbery		0.0154548648	0.0186160871	0.0007024939	
0.00070	24939				
Theft Over		0.0048484848	0.0121212121	0.0072727273	
0.00606	06061				
N	leighbourhood				
Υ	Wychwood (94) Yonge-	-Eglinton (100) Yo	nge-St.Clair (97) York University	
Heights (27)					
Assault	0.0032090673	0.0019117848	0.00293595	552	
0.0206199645					
Auto Theft	0.0057603687	0.0011520737	0.00268817	'20	
0.0337941628					
Break and Enter	0.0048383975	0.0025159667	0.00290303	885	
0.0149022644					
Robbery	0.0028099754	0.0021074816	0.00245872	285	
0.0214260625					
Theft Over	0.0036363636	0.0024242424	0.00727272	273	

0.0290909091

Neighbourhood

Y		Yorkdale-Glen	Park (31)
	Assault	0.0	0092175338
	Auto Theft	0.0	138248848
	Break and Enter	0.0)112250823
	Robbery	0.0	0059711978
	Theft Over	0.0	206060606

References:

Crime Analysis using K-Means Clustering, *International Journal of Computer Applications* (0975 – 8887), Volume 83 – No4, December 2013,

http://research.ijcaonline.org/volume83/number4/pxc3892579.pdf

Journal of Computational and Applied Mathematics, Volume 20, November 1987, Pages 53-65 Silhouettes: A graphical aid to the interpretation and validation of cluster analysis Author links open overlay panelPeter J.Rousseeuw

https://www.sciencedirect.com/science/article/pii/0377042787901257?via%3Dihub

Cluster Analysis with R, Gabriel Martos,

https://rpubs.com/gabrielmartos/ClusterAnalysis

Exploring, Clustering, and Mapping Toronto's Crimes, R-BLOGGERS, November 2, 2017, By Susan Li https://www.r-bloggers.com/exploring-clustering-and-mapping-torontos-crimes/

Analysis and Prediction of Crimes by Clustering and Classification, (IJARAI) International Journal of Advanced Research in Artificial Intelligence, Vol. 4, No.8, 2015

https://pdfs.semanticscholar.org/3643/74119cd633ac6396f81959700912acdf30ee.pdf

Crime Series Identification and Clustering, Michael D. Porter, 2015-09-19 https://cran.r-project.org/web/packages/crimelinkage/vignettes/crimeclustering.html

Crime Analyses Using R, Anindya Sengupta*, Madhav Kumar*, Shreyes Upadhyay{
https://irgn452.files.wordpress.com/2016/03/3-s2-0-b9780124115118000141-main.pdf
UC Business Analytics R Programming Guide, K-means Cluster Analysis
https://uc-r.github.io/kmeans clustering#silo

Eight to Late, Sensemaking and Analytics for Organizations, A gentle introduction to Naïve Bayes classification using R

https://eight2late.wordpress.com/2015/11/06/a-gentle-introduction-to-naive-bayes-classification-using-r/