Eine Woche, ein Beispiel 7.4. Polyvectur parallelograms ref: https://pbelmans.ncag.info/blog/2018/11/22/polyvector-parallelogram/#parallelogram

we will make a little varience for the notation, e.g. $g^{i,j} = H^{j}(X, \Lambda^{i}T_{x})$

we also have polyvector parallelograms:

$$\chi(Q_{x})\chi(T_{x})\chi(\omega_{x}^{*})$$
 g^{*}
 $g^{}$
 g^{*}
 g^{*}
 g^{*}
 g^{*}
 g^{*}
 g^{*}
 g^{*}

e.g. dim X = 1 X cplx alg curve, smooth

e.g. din X = 2 X cplx alg surf, smooth

BL. IP

	0	o	0	0	0	0 n-3 0 n-1 n+6 0 n+5	
	0 0	0 0	0 0	0 0	0 1		
	009	009	019	029	0 3 10		
	0 6	0 6	0 7	0 8	09		
	1	1	1	1	ı	ı	
	IP'xIP'	BI, IP	IF.	IF,	1F4	IF.	
)	o	o	O	0	0	o	υ
0	0 0	0 0	00	00	0 0	00	0 0
) 10	009	0 0 7	006	025	044	063	08
8	0 6	0 2	0 0	00	ου	0 0	0 0
	1	1	1	1	1	1	1

e.g. Calabi-Yao 3-fold

Use
$$\Lambda^i \epsilon \otimes \Lambda^{r-i} \epsilon \longrightarrow \det \epsilon \implies \Lambda^i \epsilon \cong \Lambda^{r-i} \epsilon^{r} \otimes \det \epsilon$$

then $\mathcal{O}_X = \Lambda^i T_X \cong \Lambda^i \Omega_X = \omega_X$
 $T_X = \Lambda^i T_X \cong \Lambda^i \Omega_X$
 $\Lambda^i T_X \cong \Lambda^i \Omega_X = \Omega_X$
 $\omega_X^i = \Lambda^i T_X \cong \Lambda^i \Omega_X = \mathcal{O}_X$

polyvector

one case.

e.g. projective space

Q. Does the combinational identity $\sum_{i=0}^{n+1} (-1)^i \frac{(n+i)!}{i! i! (n+1-i)!} = 0$ have some easier explanation? (Maybe related to Weyl character formula)

How to use
$$\Omega_{A \times B_{/k}} \cong \widetilde{\mathfrak{J}}^* \Omega_{B/k} \oplus \widetilde{\beta}^* \Omega_{A/k...}$$

Maybe the result can be computed by this package:

 $https://www2.math.upenn.edu/StringMath2011/notes/Jurke_StringMath2011_talk.pdf$