Probabilidade e Estatística com R

Fernando Náufel

(versão de 02/03/2022)

Sumário

1 O Que É Estatística? 1.1 Vídeo 1	5 5
1.2 Exercícios	6
1.3 Vídeo 2 1.4 Exercícios 2 Introdução a R 2.1 Vídeo 1 Vídeo 1	6
1.4 Exercícios	6
2 Introdução a R 2.1 Vídeo 1	7
2.1 Vídeo 1	9
	10
	10
2.2 Vídeo 2	10
2.3 Exercícios	
3 Introdução ao tidyverse	12
3.1 Criando uma tibble	12
3.2 Operador de <i>pipe</i> (%>%)	
3.3 Formato <i>tidy</i>	
3.4 Manipulando os dados	
4 Visualização com ggplot2	33
4.1 Vídeo 1	33
4.2 Componentes de um gráfico ggplot2	
4.3 Conjunto de dados	
4.4 Gráficos de dispersão (scatter plots)	
4.5 Vídeo 2	
4.6 Histogramas e cia	
4.7 Ogiva	
4.8 Ramos e folhas	
4.9 Personalização do tema	

	4.10	Exercícios	69
5	Visu	alização com ggplot2 (continuação)	73
	5.1	Vídeo 1	73
	5.2	Boxplots	73
	5.3	Vídeo 2	83
	5.4	Gráficos de barras e de colunas	83
	5.5	Gráficos de linha e séries temporais	97
	5.6	Exercícios	101
	5.7	Referências sobre visualização e R	102
6	Med	lidas	103

Apresentação

Atenção

Este material ainda está em construção.

Pode haver mudanças a qualquer momento.

Verifique, no rodapé da página *web* ou na capa do arquivo pdf, a data desta versão.

Este livro/site foi iniciado em 2020, durante a pandemia de COVID-19, quando a Universidade Federal Fluminense (UFF) funcionou em regime de ensino remoto durante mais de um ano.

Para atender os alunos do curso de Probabilidade e Estatística do curso de graduação em Ciência da Computação da UFF, decidi gravar aulas em vídeo e disponibilizar os arquivos usados nelas. Foram esses arquivos que deram origem a este livro/site.

Este livro/site foi construído para pessoas que já saibam programar, embora não necessariamente em R.

Para tirar o máximo proveito deste material, você deve fazer o seguinte:

- 1. Assistir aos vídeos contidos em cada capítulo. A *playlist* completa está em https: //www.youtube.com/playlist?list=PL7SRLwLs7ocaV-Y1vrVU3W7mZnnS0qkWV.
- Instalar o R no seu computador ou abrir uma conta no RStudio Cloud, para poder usar o R online. Você encontra instruções para fazer isto no capítulo de introdução a R.
- 3. Baixar, neste repositório do Github, o código-fonte deste livro/site, para poder rodar e alterar os exemplos.
- 4. Seguir os *links* para outras fontes *online* que abordam assuntos que não são cobertos em detalhes neste curso.
- 5. Fazer os exercícios. Ao longo do tempo, acrescentarei *links* para vídeos explicando as soluções.

Se você estiver lendo este material na *web*, você pode clicar nos comandos e funções que aparecem nos blocos de código em R para abrir páginas da documentação sobre eles.

Se você preferir ler este livro em pdf, ou se quiser imprimi-lo, faça o *down-load* do arquivo aqui.

Referências recomendadas

Em português

- Sillas Gonzaga, *Introdução a R para Visualização e Apresentação de Dados*, http://sillasgonzaga.com/material/curso_visualizacao/index.html
- Allan Vieira de Castro Quadros, Introdução à Análise de Dados em R utilizando Tidyverse, https://allanvc.github.io/book_IADR-T/
- Paulo Felipe de Oliveira, Saulo Guerra, Robert McDonnel, Ciência de Dados com R Introdução, https://cdr.ibpad.com.br/index.html
- Curso R, Ciência de Dados em R, https://livro.curso-r.com/

Em inglês

- Garrett Grolemund, Hadley Wickham, R for Data Science, https://r4ds.had.co.nz/
- Chester Ismay, Albert Y. Kim, A ModernDive into R and the Tidyverse, https://moderndive.com/

Exercício

1. Pesquise sobre a imagem do início deste capítulo. Ela foi criada em 1858 por Florence Nightingale.

CAPÍTULO 1

O Que	É	Estatística?
O Guc	_	LJIGIIJICG:

1.1

Vídeo 1

https://youtu.be/6Q_XSoLCIpc

1.2

Exercícios

- Você está interessado em estimar a altura de todos os homens da sua faculdade. Para isso, você decide medir as alturas de todos os homens da sua turma de Estatística.
 - Qual é a amostra?
 - Qual é a população?
- 2. Um instituto de pesquisa entrevista um grupo de 1000 pessoas, perguntando a cada uma se ela vai votar a favor do candidato A na próxima eleição. Dos entrevistados, 600 responderam que sim. A proporção 0,6 (ou 60%) é uma estatística ou um parâmetro?
- 3. Você vê alguma diferença entre as cinco situações abaixo? Quais das situações são equivalentes em termos da probabilidade de conseguir 10 cartas do mesmo naipe?
 - a. Usando um baralho normal, você retira $10\,\mathrm{cartas}$ e registra as cartas retiradas.

- b. Usando um baralho normal, você repete a seguinte sequência de ações 10 vezes: retirar uma carta do baralho, registrar a carta retirada e repor a carta no baralho.
- c. Usando uma caixa contendo todas as cartas de 1 milhão de baralhos reunidos, você retira 10 cartas e registra as cartas retiradas.
- d. Usando uma caixa contendo todas as cartas de 1 milhão de baralhos reunidos, você repete a seguinte sequência de ações 10 vezes: retirar uma carta da caixa, registrar a carta retirada e repor a carta na caixa.
- e. Usando um baralho *infinito*, você retira 10 cartas e registra as cartas retiradas.
- f. Usando um baralho *infinito*, você repete a seguinte sequência de ações 10 vezes: retirar uma carta do baralho, registrar a carta retirada e repor a carta no baralho.
- 4. Qual a graça dos quadrinhos na Figura 1.1, que também aparecem no vídeo?

Figura 1.1: http://xkcd.com/552/

- 5. Qual a graça dos quadrinhos na Figura 1.2?
- 6. Veja este vídeo sobre o cavalo Hans:

https://youtu.be/G3VkCmdUfZE

Qual a relação entre esta história e a necessidade de duplo cegamento?

1.3

Vídeo 2

https://youtu.be/492VASxIDRo

LIMITAÇÕES DE ESTUDOS COM CEGAMENTO

Figura 1.2: http://xkcd.com/1462/

1.4

Exercícios

- 1. Por que não faz sentido calcular a média dos CEPs de um grupo de pessoas?
- 2. Uma temperatura de -40 graus Celsius é igual a uma temperatura de -40 graus Fahrenheit?
- 3. Uma temperatura de zero graus Celsius é igual a uma temperatura de zero graus Fahrenheit?
- 4. Uma variação de temperatura de 1 grau Celsius é igual a uma variação de temperatura de 1 grau Fahrenheit?
- 5. Um saldo bancário de zero reais é igual a um saldo bancário de zero dólares?
- 6. Um produto de 1 milhão de reais custa o mesmo que um produto de 1 milhão de dólares?
- 7. Meses representados por números de 1 a 12 são dados de que nível?

CAPÍTULO 2

Introdução a R	
0.1	
2.1	
Vídeo 1	
	https://youtu.be/1kXQDNqm41c
2.2	
Vídeo 2	
	https://youtu.be/3GEc1oiKDrU
2.3	
Exercícios	

- 1. Para criar sua conta no RStudio Cloud, acesse https://rstudio.cloud/.
- 2. Se você preferir instalar o R no seu computador, acesse
 - https://cran.r-project.org/ para baixar e instalar o R, e
 - https://rstudio.com/products/rstudio/download/ para baixar e instalar o RStudio, um IDE específico para R.

- 3. Abra o RStudio Cloud ou o seu RStudio instalado localmente.
- 4. Crie um novo projeto. Sempre trabalhe em projetos para ter seus arquivos organizados.
- 5. Para instalar o swirl (pacote do R para exercícios interativos), execute o seguinte comando no console do RStudio:

```
install.packages("swirl")
```

6. Para instalar os exercícios de introdução a R, execute os seguintes comandos no console do RStudio:

```
library(swirl)
install_course_github('fnaufel', 'introR')
```

7. Mude o idioma para português e execute o swirl.

```
select_language('portuguese', append_rprofile = TRUE)
swirl()
```

- 8. Na primeira execução, você vai precisar se identificar (qualquer nome serve). Com essa identificação, o swirl vai registrar o seu progresso nas lições.
- 9. No swirl, as perguntas são mostradas no console. Você também deve responder no console.
- 10. Às vezes, um script será aberto no editor de textos para que você complete um programa. Quando seu programa estiver pronto, salve o arquivo e digite submit() no console para o swirl processar o script.
- 11. O swirl dá instruções claras no console. Na dúvida, digite info() no *prompt* do R (>).
- 12. Se, em vez do *prompt* do R, o console mostrar reticências (...), tecle *Enter*.
- 13. Se nada funcionar, tecle *ESC*.
- 14. Para sair do swirl(), digite bye() no prompt do R.
- 15. Para voltar para os exercícios, digite

```
library(swirl)
swirl()
```

CAPÍTULO 3

Introdução ao tidyverse

Busque mais informações sobre os pacotes que compõem o tidyverse nas referências recomendadas.

3.1

Criando uma tibble

• Cada coluna é um vetor:

```
cores <- tibble(
  pessoa = c('João', 'Maria', 'Pedro', 'Ana'),
  'cor favorita' = c('azul', 'rosa', 'preto', 'branco')
)

cores
## # A tibble: 4 x 2
## pessoa `cor favorita`
## <chr> <chr>
## 1 João azul
## 2 Maria rosa
## 3 Pedro preto
## 4 Ana branco
```

• A função tribble permite a entrada de forma mais natural. Lembre-se de usar ~ antes dos nomes das colunas.

```
cores <- tribble(</pre>
 ~pessoa, ~'cor favorita',
            "azul",
"rosa",
  "João",
 "Maria",
 "Pedro",
                "preto",
          "branco"
   "Ana",
)
cores
## # A tibble: 4 x 2
## pessoa `cor favorita`
## <chr> <chr>
## 1 João azul
## 2 Maria rosa
## 3 Pedro preto
## 4 Ana branco
```

• Se uma coluna não puder ser armazenada em um vetor, a coluna será uma lista:

```
cores <- tibble(</pre>
 pessoa = c('João', 'Maria', 'Pedro', 'Ana'),
 'cor favorita' = list(
   c('azul', 'roxo'),
   c('rosa', 'magenta'),
   NA,
   'branco'
 )
)
cores
## # A tibble: 4 x 2
## pessoa `cor favorita`
## <chr> <list>
## 1 João <chr [2]>
## 2 Maria <chr [2]>
## 3 Pedro <lgl [1]>
## 4 Ana <chr [1]>
```

• Use View() para examinar interativamente o conteúdo de uma coluna-lista:

```
cores %>% View()
```

Operador de pipe (%>%)

- O tidyverse inclui o pacote magrittr¹, que contém este operador.
- A idéia é facilitar a leitura de composições de comandos. O código

```
y \leftarrow h(g(f(x)))
```

pode ser escrito como

```
y <- x %>% f() %>% g() %>% h()
```

- Esta segunda versão é mais fiel à ordem em que as operações acontecem.
- Na verdade, R tem um operador de atribuição para a direita, mas poucas pessoas recomendam usá-lo:

```
x %>% f() %>% g() %>% h() -> y
```

• Se f, g e h forem funções de um argumento só, os parênteses podem ser omitidos:

```
y <- x %>% f %>% g %>% h
```

• Se a função f tiver outros argumentos, escreva-os normalmente na chamada a f:

```
y <- x %>% mean(na.rm = TRUE)
```

- O *pipe* EXP %>% f(...) sempre insere o resultado da expressão EXP do lado esquerdo como o primeiro argumento da função f.
- Se você precisar que o resultado da expressão EXP seja inserido em outra posição na lista de argumentos de f, use um ponto "." para isso:

```
x %>% consultar(df, .)
```

3.3

Formato tidy

• Nossa última versão da tibble cores é um pouco mais complexa do que deveria ser:

```
cores
## # A tibble: 4 x 2
```

¹Por que o nome do pacote e o nome do operador (*pipe*) formam um trocadilho?

```
## pessoa `cor favorita`
## <chr> t>
## 1 João <chr [2]>
## 2 Maria <chr [2]>
## 3 Pedro <lgl [1]>
## 4 Ana <chr [1]>
```

- O formato tidy exige que
 - 1. Cada linha da tibble corresponda a uma observação sobre um indivíduo,
 - 2. Cada coluna corresponda a <mark>uma variável observada</mark>, e
 - 3. Cada célula contenha um valor da variável.
- Na *tibble* cores, a primeira e a segunda exigências são satisfeitas, mas a terceira não, pois algumas células contém valores múltiplos.
- A tibble não está no formato tidy.
- Podemos "extrair" estes vetores "aninhados" usando o comando unnest, do pacote tidyr:

- A maioria das funções do tidyverse exige que as tibbles estejam neste formato tidy.
- Um exemplo mais complexo é o dataset billboard:

```
<dbl> 77, NA, 67, 69, 17, 26, 95, 41, 28, 69, 73, 29, ~
## $ wk4
## $ wk5
            <dbl> 87, NA, 66, 67, 17, 26, 100, 38, 21, 68, 73, 23,~
            <dbl> 94, NA, 57, 65, 31, 19, NA, 35, 18, 67, 69, 18, ~
## $ wk6
## $ wk7
            <dbl> 99, NA, 54, 55, 36, 2, NA, 35, 16, 61, 68, 11, 2~
            <dbl> NA, NA, 53, 59, 49, 2, NA, 38, 14, 58, 65, 9, 17~
## $ wk8
## $ wk9
            <dbl> NA, NA, 51, 62, 53, 3, NA, 38, 12, 57, 73, 9, 17~
## $ wk10
            <dbl> NA, NA, 51, 61, 57, 6, NA, 36, 10, 59, 83, 11, 1~
            <dbl> NA, NA, 51, 61, 64, 7, NA, 37, 9, 66, 92, 1, 17,~
## $ wk11
## $ wk12
            <dbl> NA, NA, 51, 59, 70, 22, NA, 37, 8, 68, NA, 1, 3,~
## $ wk13
            <dbl> NA, NA, 47, 61, 75, 29, NA, 38, 6, 61, NA, 1, 3,~
## $ wk14
            <dbl> NA, NA, 44, 66, 76, 36, NA, 49, 1, 67, NA, 1, 7,~
## $ wk15
            <dbl> NA, NA, 38, 72, 78, 47, NA, 61, 2, 59, NA, 4, 10~
            <dbl> NA, NA, 28, 76, 85, 67, NA, 63, 2, 63, NA, 8, 17~
## $ wk16
## $ wk17
            <dbl> NA, NA, 22, 75, 92, 66, NA, 62, 2, 67, NA, 12, 2~
## $ wk18
            <dbl> NA, NA, 18, 67, 96, 84, NA, 67, 2, 71, NA, 22, 2~
## $ wk19
            <dbl> NA, NA, 18, 73, NA, 93, NA, 83, 3, 79, NA, 23, 2~
## $ wk20
            <dbl> NA, NA, 14, 70, NA, 94, NA, 86, 4, 89, NA, 43, 4~
## $ wk21
            <dbl> NA, NA, 12, NA, NA, NA, NA, NA, S, NA, NA, 44, 4~
## $ wk22
            ## $ wk23
## $ wk24
            <dbl> NA, NA, 6, NA, NA, NA, NA, NA, 9, NA, NA, NA, NA~
## $ wk25
            <dbl> NA, NA, 6, NA, NA, NA, NA, NA, 13, NA, NA, NA, N~
## $ wk26
            <dbl> NA, NA, 5, NA, NA, NA, NA, NA, 14, NA, NA, NA, N~
## $ wk27
            <dbl> NA, NA, 5, NA, NA, NA, NA, NA, 16, NA, NA, NA, N~
## $ wk28
            <dbl> NA, NA, 4, NA, NA, NA, NA, NA, 23, NA, NA, NA, N~
## $ wk29
            <dbl> NA, NA, 4, NA, NA, NA, NA, NA, 22, NA, NA, NA, N~
## $ wk30
            ## $ wk31
            ## $ wk32
            <dbl> NA, NA, 3, NA, NA, NA, NA, NA, A3, NA, NA, NA, N~
## $ wk33
            ## $ wk34
            ## $ wk35
            ## $ wk36
            ## $ wk37
            ## $ wk38
            ## $ wk39
            ## $ wk40
            ## $ wk41
## $ wk42
            ## $ wk43
            <dbl> NA, NA, 14, NA, NA, NA, NA, NA, NA, NA, NA, NA,
## $ wk44
            <dbl> NA, NA, 16, NA, NA, NA, NA, NA, NA, NA, NA, NA,
## $ wk45
            <dbl> NA, NA, 17, NA, NA, NA, NA, NA, NA, NA, NA, NA,
## $ wk46
            ## $ wk47
## $ wk48
            <dbl> NA, NA, 24, NA, NA, NA, NA, NA, NA, NA, NA, NA,
## $ wk49
            ## $ wk50
            <dbl> NA, NA, 33, NA, NA, NA, NA, NA, NA, NA, NA, NA,
```

```
## $ wk51
  ## $ wk52
  ## $ wk53
  ## $ wk54
  ## $ wk55
  ## $ wk56
  ## $ wk57
  ## $ wk58
## $ wk59
  ## $ wk60
  ## $ wk61
  ## $ wk62
  ## $ wk63
## $ wk64
  ## $ wk65
  ## $ wk66
  ## $ wk67
  ## $ wk68
  ## $ wk69
  ## $ wk70
  ## $ wk71
  ## $ wk72
  ## $ wk73
  ## $ wk74
  ## $ wk75
  ## $ wk76
```

Vamos renomear as colunas:

```
bb <- billboard %>%
  rename(
    artista = artist,
    musica = track,
    entrou = date.entered
)
```

```
bb %>% head()
## # A tibble: 6 x 79
##
     artista
                musica entrou
                                      wk1
                                             wk2
                                                    wk3
                                                          wk4
                                                                 wk5
                                                                       wk6
                                                                              wk7
                                                              <db1> <db1>
##
     <chr>
                <chr>
                                    <dbl> <dbl> <dbl> <
                                                                            <db1>
                        <date>
                                                        <dbl>
## 1 2 Pac
                                       87
                                              82
                                                     72
                                                           77
                                                                        94
                Baby ~ 2000-02-26
                                                                  87
                                                                               99
## 2 2Ge+her
                The H~ 2000-09-02
                                       91
                                              87
                                                     92
                                                           NA
                                                                  NA
                                                                        NA
                                                                               NA
## 3 3 Doors ~ Krypt~ 2000-04-08
                                       81
                                              70
                                                     68
                                                           67
                                                                  66
                                                                        57
                                                                               54
## 4 3 Doors ~ Loser
                        2000-10-21
                                       76
                                              76
                                                     72
                                                           69
                                                                  67
                                                                        65
                                                                               55
                                              34
                                                     25
                                                           17
## 5 504 Boyz Wobbl~ 2000-04-15
                                       57
                                                                  17
                                                                        31
                                                                               36
## 6 98^0
                Give ~ 2000-08-19
                                       51
                                              39
                                                     34
                                                           26
                                                                  26
                                                                        19
                                                                                2
## # ... with 69 more variables: wk8 <dbl>, wk9 <dbl>, wk10 <dbl>,
```

```
## # wk11 <dbl>, wk12 <dbl>, wk13 <dbl>, wk14 <dbl>, wk15 <dbl>,
## # wk16 <dbl>, wk17 <dbl>, wk18 <dbl>, wk19 <dbl>, wk20 <dbl>,
## # wk21 <dbl>, wk22 <dbl>, wk23 <dbl>, wk24 <dbl>, wk25 <dbl>,
## # wk26 <dbl>, wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>,
## # wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>,
## # wk36 <dbl>, wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>, ...
```

O que é uma observação neste conjunto de dados?

Uma música que esteve no top 100 da Billboard durante o ano 2000.

- Quais são as variáveis que qualificam cada observação?
 - O artista,
 - O título da música,
 - A colocação da música no $top\ 100$ da $\it Billboard$ em cada uma das 76 semanas depois que ela entrou na lista.
- Este último item é complexo, e o criador da tibble decidiu criar uma coluna por semana.
- Uma decisão ruim, pois existe informação embutida nos nomes das colunas. A coluna wk68 corresponde à posição da música na semana 68 após ela entrar na lista.
- Isto nunca deve acontecer. A informação deve sempre estar nas células.
- Vamos simplificar as coisas criando duas colunas:
 - semana, com o número da semana; perceba que esta informação vem dos nomes das colunas,
 - pos, com a posição da música naquela semana.
- A tibble, que antes era larga, vai ser mais estreita e mais longa.
- A função pivot_longer, do pacote tidyr, vai fazer o trabalho inclusive extraindo os números das semanas dos nomes das colunas:

```
bb_tidy <- bb %>%
  pivot_longer(
    wk1:wk76,
    names_to = 'semana',
    names_prefix = 'wk',
    names_transform = list(
        semana = as.integer
    ),
    values_to = 'pos'
)

bb_tidy
## # A tibble: 24.092 x 5
## artista musica entrou semana pos
```

```
## <chr>
            <chr>
                                  <date> <int> <dbl>
## 1 2 Pac
           Baby Don't Cry (Keep... 2000-02-26
                                                 1
                                                     87
## 2 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                 2
                                                     82
## 3 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                 3
                                                     72
## 4 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                 4
                                                     77
## 5 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                5
                                                     87
## 6 2 Pac
           Baby Don't Cry (Keep... 2000-02-26
                                                     94
## # ... with 24.086 more rows
```

• Existem linhas onde pos tem o valor NA. São resultado da organização original dos dados. No novo formato, não servem mais. Vamos eliminá-las.

```
bb tidy <- bb tidy %>%
 filter(!is.na(pos))
bb_tidy
## # A tibble: 5.307 x 5
    artista musica
                                   entrou
                                            semana
                                                       pos
    <chr> <chr>
                                   <date>
                                               <int> <dbl>
## 1 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                  1
                                                        87
## 2 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                   2
                                                        82
## 3 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                        72
## 4 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                   4
                                                        77
## 5 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                   5
                                                       87
## 6 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                        94
## # ... with 5.301 more rows
```

3.4

Manipulando os dados

3.4.1

Criando novas colunas: mutate, transmute

• O data frame cars tem dados (de 1920!) sobre as distâncias de frenagem (em pés) de um carro viajando a diversas velocidades (em milhas por hora):

```
cars
## # A tibble: 50 x 2
     speed dist
##
     <dbl> <dbl>
## 1
         4
## 2
         4
              10
## 3
         7
              4
## 4
         7
              22
## 5
              16
```

```
## 6 9 10
## # ... with 44 more rows
```

 Vamos criar colunas novas com os valores convertidos para km/h e metros; além disso, uma coluna com a taxa de frenagem:

```
cars %>%
 mutate(
   velocidade = speed * 1.6,
   distancia = dist * .33,
   taxa = velocidade / distancia
 )
## # A tibble: 50 x 5
    speed dist velocidade distancia taxa
    <dbl> <dbl>
                 <dbl>
                            <dbl> <dbl>
## 1
       4
            2
                     6.4
                             0.66 9.70
## 2
       4
            10
                    6.4
                             3.3
                                  1.94
## 3
       7
           4
                   11.2
                             1.32 8.48
       7 22
## 4
                    11.2
                             7.26 1.54
## 5
                   12.8
                             5.28 2.42
      8 16
      9
## 6
            10
                   14.4
                             3.3 4.36
## # ... with 44 more rows
```

 Perceba que as colunas antigas continuam lá. Se quiser manter apenas as colunas novas, use transmute:

```
cars %>%
 transmute(
   velocidade = speed * 1.6,
   distancia = dist * .33,
   taxa = velocidade / distancia
 )
## # A tibble: 50 x 3
    velocidade distancia taxa
        <db1>
##
                <dbl> <dbl>
## 1
         6.4
                  0.66 9.70
## 2
          6.4
                   3.3
                         1.94
## 3
        11.2
                  1.32 8.48
## 4
        11.2
                   7.26 1.54
         12.8
                   5.28 2.42
## 5
## 6
          14.4
                   3.3 4.36
## # ... with 44 more rows
```

 Ou use o argumento .keep de mutate para escolher com mais precisão. Veja a ajuda de mutate. Selecionando colunas: select, distinct, pull

- Vamos voltar à nossa *tibble* dos *top* 100 da *Billboard*.
- Para ver só a coluna de artistas:

```
bb_tidy %>%
    select(artista)
## # A tibble: 5.307 x 1
## artista
## <chr>
## 1 2 Pac
## 2 2 Pac
## 3 2 Pac
## 4 2 Pac
## 4 2 Pac
## 6 2 Pac
## 6 2 Pac
## # ... with 5.301 more rows
```

• Para eliminar as repetições:

```
bb_tidy %>%
    select(artista) %>%
    distinct()
## # A tibble: 228 x 1
## artista
## <chr>
## 1 2 Pac
## 2 2Ge+her
## 3 3 Doors Down
## 4 504 Boyz
## 5 98^0
## 6 A*Teens
## # ... with 222 more rows
```

Artistas e músicas:

```
## 4 3 Doors Down Loser
## 5 504 Boyz Wobble Wobble
## 6 98^0 Give Me Just One Nig...
## # ... with 311 more rows
```

• Para especificar colunas a não mostrar:

```
bb_tidy %>%
 select(-entrou)
## # A tibble: 5.307 x 4
## artista musica
                                  semana pos
## <chr> <chr>
                                  <int> <dbl>
## 1 2 Pac Baby Don't Cry (Keep...
                                     1 87
## 2 2 Pac Baby Don't Cry (Keep...
                                      2
## 3 2 Pac Baby Don't Cry (Keep...
                                      3
                                          72
## 4 2 Pac Baby Don't Cry (Keep...
                                      4 77
## 5 2 Pac Baby Don't Cry (Keep...
                                      5 87
## 6 2 Pac Baby Don't Cry (Keep...
                                           94
## # ... with 5.301 more rows
```

 Para extrair uma coluna na forma de vetor (unique é uma função do R base, aplicável a vetores):

```
bb_tidy %>%
 pull(artista) %>%
 unique()
     [1] "2 Pac"
                                          "2Ge+her"
##
     [3] "3 Doors Down"
##
                                          "504 Boyz"
   [5] "98^0"
                                          "A*Teens"
##
    [7] "Aaliyah"
                                          "Adams, Yolanda"
   [9] "Adkins, Trace"
                                          "Aguilera, Christina"
##
##
    [11] "Alice Deejay"
                                          "Allan, Gary"
## [13] "Amber"
                                          "Anastacia"
## [15] "Anthony, Marc"
                                          "Avant"
## [17] "BBMak"
                                          "Backstreet Boys, The"
## [19] "Badu, Erkyah"
                                          "Baha Men"
## [21] "Barenaked Ladies"
                                          "Beenie Man"
## [23] "Before Dark"
                                          "Bega, Lou"
## [25] "Big Punisher"
                                          "Black Rob"
## [27] "Black, Clint"
                                          "Blaque"
## [29] "Blige, Mary J."
                                          "Blink-182"
                                          "Bon Jovi"
## [31] "Bloodhound Gang"
## [33] "Braxton, Toni"
                                          "Brock, Chad"
## [35] "Brooks & Dunn"
                                          "Brooks, Garth"
## [37] "Byrd, Tracy"
                                          "Cagle, Chris"
## [39] "Cam'ron"
                                          "Carey, Mariah"
## [41] "Carter, Aaron"
                                          "Carter, Torrey"
```

```
## [43] "Changing Faces"
                                          "Chesney, Kenny"
## [45] "Clark Family Experience"
                                          "Clark, Terri"
## [47] "Common"
                                          "Counting Crows"
## [49] "Creed"
                                          "Cyrus, Billy Ray"
                                          "DMX"
## [51] "D'Angelo"
## [53] "Da Brat"
                                          "Davidson, Clay"
## [55] "De La Soul"
                                          "Destiny's Child"
## [57] "Diffie, Joe"
                                          "Dion, Celine"
                                          "Dr. Dre"
## [59] "Dixie Chicks, The"
                                          "Dream"
## [61] "Drama"
## [63] "Eastsidaz, The"
                                          "Eiffel 65"
## [65] "Elliott, Missy \"Misdemeanor\"" "Eminem"
## [67] "En Vogue"
                                          "Estefan, Gloria"
## [69] "Evans, Sara"
                                          "Eve"
## [71] "Everclear"
                                          "Fabian, Lara"
                                          "Filter"
## [73] "Fatboy Slim"
## [75] "Foo Fighters"
                                          "Fragma"
## [77] "Funkmaster Flex"
                                          "Ghostface Killah"
## [79] "Gill, Vince"
                                          "Gilman, Billy"
## [81] "Ginuwine"
                                          "Goo Goo Dolls"
## [83] "Gray, Macy"
                                          "Griggs, Andy"
## [85] "Guy"
                                          "Hanson"
## [87] "Hart, Beth"
                                          "Heatherly, Eric"
## [89] "Henley, Don"
                                          "Herndon, Ty"
## [91] "Hill, Faith"
                                          "Hoku"
## [93] "Hollister, Dave"
                                          "Hot Boys"
## [95] "Houston, Whitney"
                                          "IMx"
## [97] "Ice Cube"
                                          "Ideal"
## [99] "Iglesias, Enrique"
                                          "J-Shin"
## [101] "Ja Rule"
                                          "Jackson, Alan"
## [103] "Jagged Edge"
                                          "Janet"
## [105] "Jay-Z"
                                          "Jean, Wyclef"
## [107] "Joe"
                                          "John, Elton"
## [109] "Jones, Donell"
                                          "Jordan, Montell"
## [111] "Juvenile"
                                          "Kandi"
## [113] "Keith, Toby"
                                          "Kelis"
## [115] "Kenny G"
                                          "Kid Rock"
## [117] "Kravitz, Lenny"
                                          "Kumbia Kings"
## [119] "LFO"
                                          "LL Cool J"
## [121] "Larrieux, Amel"
                                          "Lawrence, Tracy"
## [123] "Levert, Gerald"
                                          "Lil Bow Wow"
## [125] "Lil Wayne"
                                          "Lil' Kim"
## [127] "Lil' Mo"
                                          "Lil' Zane"
## [129] "Limp Bizkit"
                                          "Lonestar"
## [131] "Lopez, Jennifer"
                                          "Loveless, Patty"
## [133] "Lox"
                                          "Lucy Pearl"
## [135] "Ludacris"
                                          "M2M"
```

```
## [137] "Madison Avenue"
                                           "Madonna"
                                           "Mary Mary"
## [139] "Martin, Ricky"
## [141] "Master P"
                                           "McBride, Martina"
## [143] "McEntire, Reba"
                                           "McGraw, Tim"
## [145] "McKnight, Brian"
                                           "Messina, Jo Dee"
## [147] "Metallica"
                                           "Montgomery Gentry"
## [149] "Montgomery, John Michael"
                                           "Moore, Chante"
                                           "Mumba, Samantha"
## [151] "Moore, Mandy"
                                           "Mya"
## [153] "Musiq"
## [155] "Mystikal"
                                           "N'Sync"
## [157] "Nas"
                                           "Nelly"
## [159] "Next"
                                           "Nine Days"
## [161] "No Doubt"
                                           "Nu Flavor"
## [163] "Offspring, The"
                                           "Paisley, Brad"
## [165] "Papa Roach"
                                           "Pearl Jam"
## [167] "Pink"
                                           "Price, Kelly"
## [169] "Profyle"
                                           "Puff Daddy"
## [171] "Q-Tip"
                                           "R.E.M."
## [173] "Rascal Flatts"
                                           "Raye, Collin"
## [175] "Red Hot Chili Peppers"
                                           "Rimes, LeAnn"
## [177] "Rogers, Kenny"
                                           "Ruff Endz"
## [179] "Sammie"
                                           "Santana"
## [181] "Savage Garden"
                                           "SheDaisy"
## [183] "Sheist, Shade"
                                           "Shyne"
## [185] "Simpson, Jessica"
                                           "Sisao"
## [187] "Sister Hazel"
                                           "Smash Mouth"
## [189] "Smith. Will"
                                           "Son By Four"
## [191] "Sonique"
                                           "SoulDecision"
## [193] "Spears, Britney"
                                           "Spencer, Tracie"
## [195] "Splender"
                                           "Sting"
                                           "Stone, Angie"
## [197] "Stone Temple Pilots"
## [199] "Strait, George"
                                           "Sugar Ray"
## [201] "TLC"
                                           "Tamar"
## [203] "Tamia"
                                           "Third Eye Blind"
## [205] "Thomas, Carl"
                                           "Tippin, Aaron"
## [207] "Train"
                                           "Trick Daddy"
## [209] "Trina"
                                           "Tritt, Travis"
## [211] "Tuesday"
                                           "Urban, Keith"
## [213] "Usher"
                                           "Vassar, Phil"
## [215] "Vertical Horizon"
                                           "Vitamin C"
## [217] "Walker, Clay"
                                           "Wallflowers, The"
## [219] "Westlife"
                                           "Williams, Robbie"
## [221] "Wills, Mark"
                                           "Worley, Darryl"
## [223] "Wright, Chely"
                                           "Yankee Grey"
## [225] "Yearwood, Trisha"
                                           "Ying Yang Twins"
## [227] "Zombie Nation"
                                           "matchbox twenty"
```

Filtrando linhas: filter, slice

Apenas as músicas da Britney Spears:

```
bb_tidy %>%
 filter(artista == 'Spears, Britney')
## # A tibble: 51 x 5
##
     artista
                   musica
                                             entrou
                                                        semana
                                                                 pos
     <chr>
                                                         <int> <dbl>
##
                     <chr>
                                             <date>
## 1 Spears, Britney From The Bottom Of M... 2000-01-29
                                                             1
                                                                  76
## 2 Spears, Britney From The Bottom Of M... 2000-01-29
                                                             2
                                                                  59
## 3 Spears, Britney From The Bottom Of M... 2000-01-29
                                                                  52
## 4 Spears, Britney From The Bottom Of M... 2000-01-29
                                                                  52
## 5 Spears, Britney From The Bottom Of M... 2000-01-29
                                                             5
                                                                  14
## 6 Spears, Britney From The Bottom Of M... 2000-01-29
                                                             6
                                                                  14
## # ... with 45 more rows
```

• Apenas músicas que chegaram à posição 1:

```
bb_tidy %>%
 filter(pos == 1) %>%
 select(-pos)
## # A tibble: 55 x 4
    artista
                         musica
                                                 entrou
                                                             semana
##
     <chr>
                         <chr>>
                                                 <date>
                                                              <int>
                         Try Again
                                                 2000-03-18
## 1 Aaliyah
                                                                 14
## 2 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                 11
## 3 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                 12
## 4 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                13
## 5 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                 14
## 6 Aguilera, Christina What A Girl Wants 1999-11-27
                                                                 8
## # ... with 49 more rows
```

• Apenas músicas que chegaram à posição 1 em menos de 10 semanas:

```
bb_tidy %>%
  filter(pos == 1, semana < 10) %>%
 distinct(artista, musica)
## # A tibble: 5 x 2
##
    artista
                         musica
##
     <chr>
                         <chr>
## 1 Aguilera, Christina What A Girl Wants
## 2 Destiny's Child
                         Independent Women Pa...
## 3 Madonna
                         Music
## 4 Santana
                         Maria, Maria
## 5 Sisqo
                         Incomplete
```

- As funções da família slice filtram linhas de diversas maneiras.
- De acordo com seus índices (números de linha):

```
bb_tidy %>%
  slice(c(1, 1000, 5000))
## # A tibble: 3 x 5
     artista
                              musica
                                                     entrou
                                                                semana
                                                                         pos
##
     <chr>
                              <chr>
                                                     <date>
                                                                 <int> <dbl>
## 1 2 Pac
                              Baby Don't Cry (Keep~ 2000-02-26
                                                                     1
                                                                          87
## 2 Clark Family Experience Meanwhile Back At Th~ 2000-11-18
                                                                     3
                                                                          81
                                                                     3
## 3 Vassar, Phil
                              Carlene
                                                     2000-03-04
                                                                           64
```

```
bb_tidy %>%
 slice_head(n = 4)
## # A tibble: 4 x 5
    artista musica
                                     entrou
                                                semana
    <chr>
             <chr>
##
                                     <date>
                                                 <int> <dbl>
## 1 2 Pac
            Baby Don't Cry (Keep... 2000-02-26
                                                     1
                                                          87
## 2 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                          82
## 3 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                          72
                                                     3
## 4 2 Pac Baby Don't Cry (Keep... 2000-02-26
                                                          77
```

```
bb_tidy %>%
 slice_tail(n = 4)
## # A tibble: 4 x 5
    artista
                    musica entrou
                                      semana
                                               pos
##
    <chr>
                     <chr> <date>
                                       <int> <dbl>
## 1 matchbox twenty Bent 2000-04-29
                                          36
                                                37
## 2 matchbox twenty Bent 2000-04-29
                                          37
                                                38
## 3 matchbox twenty Bent 2000-04-29
                                          38
                                                38
## 4 matchbox twenty Bent 2000-04-29
                                          39
                                                48
```

De acordo com a ordenação de uma coluna ou de uma função das colunas:

```
bb_tidy %>%
 slice min(pos)
## # A tibble: 55 x 5
    artista
                         musica
                                                 entrou
                                                            semana
                                                                     pos
##
     <chr>
                         <chr>
                                                 <date>
                                                             <int> <dbl>
## 1 Aaliyah
                         Try Again
                                                 2000-03-18
                                                                14
## 2 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                11
                                                                       1
## 3 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                12
                                                                       1
## 4 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                13
                                                                       1
## 5 Aguilera, Christina Come On Over Baby (A... 2000-08-05
                                                                14
                                                                       1
## 6 Aguilera, Christina What A Girl Wants
                                                1999-11-27
                                                                 8
                                                                       1
## # ... with 49 more rows
```

```
bb_tidy %>%
    slice_max(semana)

## # A tibble: 1 x 5

## artista musica entrou semana pos

## <chr> <chr> <chr> <date> <int> <dbl>
## 1 Creed Higher 1999-09-11 65 49
```

• Aleatoriamente, criando uma amostra:

```
bb_tidy %>%
 slice_sample(n = 5)
## # A tibble: 5 x 5
## artista musica
                            entrou
                                     semana
                                             pos
              <chr>
                            <date> <int> <dbl>
##
  <chr>
           Incomplete
## 1 Sisqo
                            2000-06-24
                                         7
                                              2
## 2 3 Doors Down Kryptonite
                                         23
                                               6
                            2000-04-08
## 3 Lonestar Amazed
                             1999-06-05
                                         64 50
## 4 Jones, Donell Where I Wanna Be 2000-04-22
                                        9
                                              38
## 5 Dream He Loves U Not 2000-09-30
                                              47
```

- Veja a ajuda de slice para saber mais sobre estas funções. Por exemplo:
 - slice_min e slice_max podem considerar ou não empates.
 - Você pode especificar uma proporção de linhas (usando prop) em vez da quantidade de linhas (n).
 - Você pode fazer amostragem com reposição, ou com probabilidades diferentes para cada linha.

3.4.4 ____

Ordenando linhas: arrange

• Por título, sem repetições:

```
bb_tidy %>%
  select(musica) %>%
  distinct() %>%
  arrange(musica)

## # A tibble: 316 x 1

## musica

## <chr>
## 1 (Hot S**t) Country G...

## 2 3 Little Words

## 3 911

## 4 A Country Boy Can Su...

## 5 A Little Gasoline
```

```
## 6 A Puro Dolor (Purest...
## # ... with 310 more rows
```

• Por título, sem repetições, em ordem inversa:

```
bb_tidy %>%
    select(musica) %>%
    distinct() %>%
    arrange(desc(musica))
## # A tibble: 316 x 1
## musica
## <chr>
## 1 Your Everything
## 2 You're A God
## 3 You'll Always Be Lov...
## 4 You Won't Be Lonely ...
## 5 You Should've Told M...
## 6 You Sang To Me
## # ... with 310 more rows
```

3.4.5 __

Contando linhas: count

• Quantas semanas cada artista ficou nos $top\ 100$? Duas músicas na mesma semana contam como duas semanas.

```
bb_tidy %>%
 count(artista, sort = TRUE)
## # A tibble: 228 x 2
## artista
                     n
## <chr>
                <int>
## 1 Creed
                   104
## 2 Lonestar
                   95
## 3 Destiny's Child 92
              74
## 4 N'Sync
## 5 Sisqo
                    74
                73
## 6 3 Doors Down
## # ... with 222 more rows
```

• Quantas semanas cada música ficou nos $top\ 100$?

```
## 1 Higher 57

## 2 Amazed 55

## 3 Breathe 53

## 4 Kryptonite 53

## 5 With Arms Wide Open 47

## 6 I Wanna Know 44

## # ... with 310 more rows
```

 Se houve músicas com o mesmo nome, mas de artistas diferentes, o código acima está errado. O certo é

```
bb_tidy %>%
 count(musica, artista, sort = TRUE)
## # A tibble: 317 x 3
## musica
                    artista
                                  \boldsymbol{n}
##
  <chr>
                     <chr>
                                 <int>
                                    57
                     Creed
## 1 Higher
                     Lonestar
## 2 Amazed
                                    55
## 3 Breathe Hill, Faith 53
## 4 Kryptonite 3 Doors Down 53
## 5 With Arms Wide Open Creed
                                    47
## 6 I Wanna Know Joe
                                     44
## # ... with 311 more rows
```

3.4.6

Agrupando linhas: group_by e summarize

Qual foi a melhor posição que cada artista alcançou?

```
bb_tidy %>%
 group_by(artista) %>%
 summarize(melhor = min(pos)) %>%
 arrange(melhor)
## # A tibble: 228 x 2
##
    artista melhor
## <chr>
                     <db1>
## 1 Aaliyah
## 2 Aguilera, Christina
## 3 Carey, Mariah
                           1
## 4 Creed
                           1
## 5 Destiny's Child
                           1
## 6 Iglesias, Enrique
                           1
## # ... with 222 more rows
```

· Qual foi a melhor posição que cada música alcançou?

```
bb_tidy %>%
 group_by(artista, musica) %>%
 summarize(melhor = min(pos)) %>%
 arrange(melhor)
## `summarise()` has grouped output by 'artista'. You can override using the
## `.groups` argument.
## # A tibble: 317 x 3
## artista
                       musica
                                             melhor
## <chr>
                       <chr>
                                                <db1>
## 1 Aaliyah
                       Try Again
## 2 Aguilera, Christina Come On Over Baby (A...
## 3 Aguilera, Christina What A Girl Wants
## 4 Carey, Mariah Thank God I Found Yo...
## 5 Creed
                       With Arms Wide Open
## 6 Destiny's Child Independent Women Pa...
## # ... with 311 more rows
```

- Quando usamos summarize, o agrupamento mais interno é desfeito. Isto significa que o resultado acima ainda está agrupado por artista.
- Quantas semanas cada artista ficou na posição 1?

```
bb_tidy %>%
 filter(pos == 1) %>%
 group_by(artista) %>%
 summarize(semanas = n()) %>%
 arrange(desc(semanas))
## # A tibble: 15 x 2
## artista
                       semanas
## <chr>
                         <int>
## 1 Destiny's Child
                           14
## 2 Santana
                             10
## 3 Aguilera, Christina
## 4 Madonna
## 5 Savage Garden
## 6 Iglesias, Enrique
## # ... with 9 more rows
```

• Perceba que count, que vimos mais acima, faz agrupamentos do mesmo modo:

```
## 2 Santana 10

## 3 Aguilera, Christina 6

## 4 Madonna 4

## 5 Savage Garden 4

## 6 Iglesias, Enrique 3

## # ... with 9 more rows
```

• Uma pergunta diferente: quais são os artistas cujas músicas apareceram nos top 100 mais tempo depois do lançamento da música?

```
bb_tidy %>%
 group_by(artista) %>%
 summarize(semanas = max(semana)) %>%
 arrange(desc(semanas))
## # A tibble: 228 x 2
## artista semanas
                    <int>
## <chr>
## 1 Creed
## 2 Lonestar
                        64
## 3 3 Doors Down
                       53
                      53
## 4 Hill, Faith
## 5 Joe
                         44
## 6 Vertical Horizon
                         41
## # ... with 222 more rows
```

 Qual a posição média de cada música? Lembre-se de que eliminamos as linhas com NA; logo, a média é sobre a quantidade de semanas em que a música esteve na lista.

```
media1 <- bb_tidy %>%
 group_by(artista, musica) %>%
 summarize(media = mean(pos), .groups = 'drop') %>%
 arrange(media)
media1
## # A tibble: 317 x 3
## artista
                                    musica
                                                         media
## <chr>
                                    <chr>
                                                          <dbl>
                                                          10.5
## 1 "Santana"
                                  Maria, Maria
## 2 "Madonna"
                                  Music
                                                          13.5
## 3 "N'Sync"
                                    Bye Bye Bye
                                                          14.3
## 4 "Elliott, Missy \"Misdemeanor\"" Hot Boyz
                                                           14.3
                                Independent Women Pa... 14.8
## 5 "Destiny's Child"
## 6 "Iglesias, Enrique"
                                   Be With You
                                                            15.8
## # ... with 311 more rows
```

 E se quisermos a média sobre o número de semanas desde a entrada da música até a última semana em que a música apareceu na lista?

```
media2 <- bb_tidy %>%
 group_by(artista, musica) %>%
 summarize(media = sum(pos)/max(semana), .groups = 'drop') %>%
 arrange(media)
media2
## # A tibble: 317 x 3
## artista
                                   musica
                                                          media
## <chr>
                                    <chr>
                                                          <dbl>
## 1 "Santana"
                                    Maria, Maria
                                                           10.5
## 2 "Madonna"
                                    Music
                                                           13.5
## 3 "N'Sync"
                                    Bye Bye Bye
                                                           14.3
## 4 "Elliott, Missy \"Misdemeanor\"" Hot Boyz
                                                           14.3
## 5 "Destiny's Child"
                                    Independent Women Pa... 14.8
## 6 "Iglesias, Enrique"
                                   Be With You
                                                            15.8
## # ... with 311 more rows
```

```
identical(media1, media2)
## [1] FALSE
```

CAPÍTULO 4

Visualização com ggplot2				
7	Busque mais informações sobre os pacotes tidyverse e ggplot2 nas referências recomendadas.			
4.1				
Vídeo 1				
	https://youtu.be/OBpNjqIIyhI			
4.2				
Compo	nentes de um gráfico ggplot2			
4.2.1				

• Observe o gráfico abaixo, obtido de https://www.gapminder.org/downloads/upda ted-gapminder-world-poster-2015/.

Geometrias e mapeamentos estéticos (*mappings*)

- O gráfico mostra como, em cada país, a saúde (mais precisamente, a expectativa de vida) se relaciona com a riqueza (mais precisamente, o PIB *per capita*).
- Além da expectativa de vida e o do PIB per capita, o gráfico traz mais informações sobre cada país.
- Cada país é representado por um ponto (a geometria).
- Informações sobre cada país são representadas por características do ponto correspondente (as estéticas):

Variável	Geometria	Estética
PIB per capita	ponto	posição x
Expectativa de vida	ponto	posição y
População	ponto	tamanho
Continente	ponto	cor

- Você pode usar outras estéticas para representar informações:
 - Cor de preenchimento.
 - Cor do traço.
 - Tipo do traço (sólido, pontilhado, tracejado etc.).
 - Forma (círculo, quadrado, triângulo etc.).

- Opacidade.
- etc.
- Você pode usar outras geometrias:
 - Linhas.
 - Barras ou colunas.
 - Caixas.
 - etc.

4.2.2

Escalas (scales)

- As escalas controlam os detalhes da aparência da geometria e do mapeamento (eixos, cores etc.).
- Os eixos do gráfico acima são escalas contínuas, com valores reais.
- Observe o eixo horizontal. Os valores não aumentam linearmente, mas sim exponencialmente: cada passo à direita equivale a dobrar o valor do PIB. O eixo horizontal segue uma escala logarítmica.
- Os tamanhos dos pontos formam uma escala $\frac{\text{discreta}}{\text{discreta}}$, com 4 valores possíveis (veja a legenda no canto inferior direito do gráfico).
- As cores também formam uma escala discreta.

4.2.3

Rótulos (labels)

- O gráfico também representa informação na forma de texto.
- Além de rótulos (por exemplo, o texto que identifica cada eixo), o texto também pode, ele mesmo, ser uma geometria, com suas próprias estéticas: observe como o nome de cada país é escrito em um tamanho proporcional à sua população.

4.2.4

Outros componentes

- · Coordenadas:
 - Este gráfico usa coordenadas cartesianas, com eixos x e y.
 - Existem gráficos que usam um sistema de coordenadas polares.
- Temas:
 - Incluem todos os elementos "decorativos": cor de fundo, linhas de grade, etc.
 Ajudam a facilitar a leitura e a interpretação.

- No gráfico acima, um detalhe interessante do tema é a divisão de cada eixo em segmentos claros e segmentos escuros.
- Legendas (guides).
- · Facetas:
 - Às vezes, um gráfico é composto por múltiplos subgráficos.
 - Cada subgráfico é uma faceta.
 - Facetas evitam que informações demais sejam apresentadas no mesmo lugar.

Conjunto de dados

- Nossos exemplos de gráficos vão usar dados sobre o sono de diversos mamíferos.
- O conjunto de dados se chama msleep e está incluído no pacote ggplot2.
- Para ver a documentação, digite

```
library(ggplot2)
?msleep
```

• Vamos atribuir o conjunto de dados à variável df:

```
df <- msleep
df
## # A tibble: 83 x 11
           genus vore order conservation sleep_total sleep_rem
## name
   <chr>
                  <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 Cheetah
                   Acin~ carni Carn~ lc
                                                     12.1
                                                               NA
## 2 Owl monkey
                                                     17
                                                               1.8
                   Aotus omni Prim~ <NA>
## 3 Mountain beaver Aplo~ herbi Rode~ nt
                                                     14.4
                                                               2.4
## 4 Greater short-t~ Blar~ omni Sori~ lc
                                                     14.9
                                                               2.3
## 5 Cow
                    Bos
                         herbi Arti~ domesticated
                                                4
                                                                0.7
## 6 Three-toed sloth Brad~ herbi Pilo~ <NA>
                                                     14.4
                                                                2.2
## # ... with 77 more rows, and 4 more variables: sleep_cycle <dbl>,
## # awake <dbl>, brainwt <dbl>, bodywt <dbl>
```

Vamos examinar a estrutura — usando R base:

```
## $ conservation: chr [1:83] "lc" NA "nt" ...

## $ sleep_total : num [1:83] 12,1 17 14,4 14,9 4 14,4 8,7 7 ...

## $ sleep_rem : num [1:83] NA 1,8 2,4 2,3 0,7 2,2 1,4 NA ...

## $ sleep_cycle : num [1:83] NA NA NA 0,133 ...

## $ awake : num [1:83] 11,9 7 9,6 9,1 20 9,6 15,3 17 ...

## $ brainwt : num [1:83] NA 0,0155 NA 0,00029 0,423 NA NA NA ...

## $ bodywt : num [1:83] 50 0,48 1,35 0,019 ...
```

• Podemos usar glimpse, uma função do tidyverse:

```
glimpse(df)
## Rows: 83
## Columns: 11
## $ name
                <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Gre~
## $ genus
                <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "B~
## $ vore
                <chr> "carni", "omni", "herbi", "omni", "herbi", "herb~
## $ order
                <chr> "Carnivora", "Primates", "Rodentia", "Soricomorp~
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", ~
## $ sleep_total <dbl> 12,1, 17,0, 14,4, 14,9, 4,0, 14,4, 8,7, 7,0, 10,~
## $ sleep_rem <dbl> NA, 1,8, 2,4, 2,3, 0,7, 2,2, 1,4, NA, 2,9, NA, 0~
## $ sleep_cycle <dbl> NA, NA, NA, 0,1333333, 0,6666667, 0,7666667, 0,3~
## $ awake
                <dbl> 11,9, 7,0, 9,6, 9,1, 20,0, 9,6, 15,3, 17,0, 13,9~
## $ brainwt
                <dbl> NA, 0,01550, NA, 0,00029, 0,42300, NA, NA, NA, 0~
## $ bodywt
                <dbl> 50,000, 0,480, 1,350, 0,019, 600,000, 3,850, 20,~
```

• Para examinar só as primeiras linhas do data frame:

```
head(df)
## # A tibble: 6 x 11
                     genus vore order conservation sleep_total sleep_rem
    name
    <chr>
                     <chr> <chr> <chr> <chr> <chr>
                                                          <db1>
                                                                    <dbl>
## 1 Cheetah
                     Acin~ carni Carn~ lc
                                                           12.1
                                                                     NA
                     Aotus omni Prim~ <NA>
                                                           17
                                                                      1.8
## 2 Owl monkey
## 3 Mountain beaver Aplo~ herbi Rode~ nt
                                                          14.4
                                                                      2.4
## 4 Greater short-t~ Blar~ omni Sori~ lc
                                                           14.9
                                                                      2.3
## 5 Cow
                     Bos herbi Arti~ domesticated
                                                           4
                                                                      0.7
## 6 Three-toed sloth Brad~ herbi Pilo~ <NA>
                                                           14.4
                                                                      2.2
## # ... with 4 more variables: sleep cycle <dbl>, awake <dbl>,
      brainwt <dbl>, bodywt <dbl>
## #
```

• Para examinar o data frame interativamente:

```
view(df)
```

 Podemos produzir um sumário dos dados usando o pacote summarytools (que já foi carregado neste documento):

df %>% dfSummary() %>% print()

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
name	1. African elephant	1 (1,2%)	0
[character]	African giant pouched rat	1 (1,2%)	(0,0%)
	African striped mouse	1 (1,2%)	
	4. Arctic fox	1 (1,2%)	
	Arctic ground squirrel	1 (1,2%)	
	6. Asian elephant	1 (1,2%)	
	7. Baboon	1 (1,2%)	
	8. Big brown bat	1 (1,2%)	
	Bottle-nosed dolphin	1 (1,2%)	
	10. Brazilian tapir	1 (1,2%)	
	[73 outros]	73 (88,0%)	
genus	1. Panthera	3 (3,6%)	0
[character]	2. Spermophilus	3 (3,6%)	(0,0%)
	3. Equus	2 (2,4%)	
	4. Vulpes	2 (2,4%)	
	5. Acinonyx	1 (1,2%)	
	6. Aotus	1 (1,2%)	
	7. Aplodontia	1 (1,2%)	
	8. Blarina	1 (1,2%)	
	9. Bos	1 (1,2%)	
	10. Bradypus	1 (1,2%)	
	[67 outros]	67 (80,7%)	
vore	1. carni	19 (25,0%)	7
[character]	2. herbi	32 (42,1%)	(8,4%)
_	3. insecti	5 (6,6%)	
	4. omni	20 (26,3%)	
order	1. Rodentia	22 (26,5%)	0
[character]	2. Carnivora	12 (14,5%)	(0,0%)
-	3. Primates	12 (14,5%)	
	4. Artiodactyla	6 (7,2%)	
	5. Soricomorpha	5 (6,0%)	
	6. Cetacea	3 (3,6%)	
	7. Hyracoidea	3 (3,6%)	
	8. Perissodactyla	3 (3,6%)	
	9. Chiroptera	2 (2,4%)	
	10. Cingulata	2 (2,4%)	
	[9 outros]	13 (15,7%)	
conservation	1. cd	2 (3,7%)	29
[character]	2. domesticated	10 (18,5%)	(34,9%)
[Silaraciei]	3. en	4 (7,4%)	()- <i></i>)
	4. lc	27 (50,0%)	
	5. nt	4 (7,4%)	
	6. vu	7 (13,0%)	

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
sleep_total [numeric]	Média (dp) : 10,4 (4,5) mín < mediana < máx: 1,9 < 10,1 < 19,9 IQE (CV) : 5,9 (0,4)	65 valores distintos	0 (0,0%)
sleep_rem [numeric]	Média (dp) : 1,9 (1,3) mín < mediana < máx: 0,1 < 1,5 < 6,6 IQE (CV) : 1,5 (0,7)	32 valores distintos	22 (26,5%)
sleep_cycle [numeric]	Média (dp) : 0,4 (0,4) mín < mediana < máx: 0,1 < 0,3 < 1,5 IQE (CV) : 0,4 (0,8)	22 valores distintos	51 (61,4%)
awake [numeric]	Média (dp) : 13,6 (4,5) mín < mediana < máx: 4,1 < 13,9 < 22,1 IQE (CV) : 5,9 (0,3)	65 valores distintos	0 (0,0%)
brainwt [numeric]	Média (dp) : 0,3 (1) mín < mediana < máx: 0 < 0 < 5,7 IQE (CV) : 0,1 (3,5)	53 valores distintos	27 (32,5%)
bodywt [numeric]	Média (dp) : 166,1 (786,8) mín < mediana < máx: 0 < 1,7 < 6654 IQE (CV) : 41,6 (4,7)	82 valores distintos	0 (0,0%)

- Vemos que há muitos NA em diversas variáveis. Para nossos exemplos simples de visualização, vamos usar as colunas
 - name
 - genus
 - order
 - sleep_total
 - awake
 - bodywt
 - brainwt
- Mas... a coluna que mostra a dieta (vore) tem só 7 NA. Quais são?

```
df %>%
  filter(is.na(vore)) %>%
  select(name)
## # A tibble: 7 x 1
## name
## <chr>
## 1 Vesper mouse
```

```
## 2 Desert hedgehog
## 3 Deer mouse
## 4 Phalanger
## 5 Rock hyrax
## 6 Mole rat
## # ... with 1 more row
```

- OK. Vamos manter a coluna vore também, apesar dos NA. Quando formos usar esta variável, tomaremos cuidado.
- Também... a coluna bodywt tem 0 como valor mínimo. Como assim?

```
df %>%
 filter(bodywt < 1) %>%
 select(name, bodywt) %>%
 arrange(bodywt)
## # A tibble: 35 x 2
## name
                               bodywt
## <chr>
                                <db1>
## 1 Lesser short-tailed shrew 0.005
## 2 Little brown bat
                               0.01
## 3 Greater short-tailed shrew 0.019
## 4 Deer mouse
                               0.021
## 5 House mouse
                              0.022
## 6 Big brown bat
                               0.023
## # ... with 29 more rows
```

- Ah, sem problema. A função dfSummary arredondou estes pesos para 0. Os valores de verdade ainda estão na *tibble*.
- Vamos criar uma tibble nova, só com as colunas que nos interessam:

```
sono <- df %>%
select(
  name, order, genus, vore, bodywt,
  brainwt, awake, sleep_total
)
```

· Vamos ver o sumário:

```
sono %>% dfSummary() %>% print()
```

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
name	1. African elephant	1 (1,2%)	0
[character]	African giant pouched rat	1 (1,2%)	(0,0%)
	African striped mouse	1 (1,2%)	
	4. Arctic fox	1 (1,2%)	
	Arctic ground squirrel	1 (1,2%)	
	6. Asian elephant	1 (1,2%)	
	7. Baboon	1 (1,2%)	
	8. Big brown bat	1 (1,2%)	
	Bottle-nosed dolphin	1 (1,2%)	
	10. Brazilian tapir	1 (1,2%)	
	[73 outros]	73 (88,0%)	
order	1. Rodentia	22 (26,5%)	0
[character]	2. Carnivora	12 (14,5%)	(0,0%)
	3. Primates	12 (14,5%)	
	4. Artiodactyla	6 (7,2%)	
	5. Soricomorpha	5 (6,0%)	
	6. Cetacea	3 (3,6%)	
	7. Hyracoidea	3 (3,6%)	
	8. Perissodactyla	3 (3,6%)	
	9. Chiroptera	2 (2,4%)	
	10. Cingulata	2 (2,4%)	
	[9 outros]	13 (15,7%)	
genus	1. Panthera	3 (3,6%)	0
[character]	2. Spermophilus	3 (3,6%)	(0,0%)
-	3. Equus	2 (2,4%)	. , ,
	4. Vulpes	2 (2,4%)	
	5. Acinonyx	1 (1,2%)	
	6. Aotus	1 (1,2%)	
	7. Aplodontia	1 (1,2%)	
	8. Blarina	1 (1,2%)	
	9. Bos	1 (1,2%)	
	10. Bradypus	1 (1,2%)	
	[67 outros]	67 (80,7%)	
vore	1. carni	19 (25,0%)	7
[character]	2. herbi	32 (42,1%)	(8,4%)
-	3. insecti	5 (6,6%)	
	4. omni	20 (26,3%)	
bodywt	Média (dp) : 166,1 (786,8)	82 valores distintos	0
[numeric]	mín < mediana < máx:		(0,0%)
	0 < 1,7 < 6654		(-,,
	IQE (CV): 41,6 (4,7)		
brainwt	Média (dp) : 0,3 (1)	53 valores distintos	27
[numeric]	mín < mediana < máx:		(32,5%)
	0 < 0 < 5,7		(,- / 0 /
	IQE (CV): 0,1 (3,5)		
	(O+) . O, - (O,O)		

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
awake [numeric]	Média (dp) : 13,6 (4,5) mín < mediana < máx: 4,1 < 13,9 < 22,1 IQE (CV) : 5,9 (0,3)	65 valores distintos	0 (0,0%)
sleep_total [numeric]	Média (dp) : 10,4 (4,5) mín < mediana < máx: 1,9 < 10,1 < 19,9 IQE (CV) : 5,9 (0,4)	65 valores distintos	0 (0,0%)

Gráficos de dispersão (scatter plots)

- Servem para visualizar a *relação* entre duas variáveis quantitativas.
- Essa relação *não* é necessariamente de causa e efeito.
- Isto é, a variável do eixo horizontal não determina, necessariamente, os valores da variável do eixo vertical.
- Pense em associação, correlação, não em causalidade.
- Troque as variáveis de eixo, se ajudar a deixar isto claro.

4.4.1 _____

Horas de sono e peso corporal

• Como as variáveis sleep_total e bodywt estão relacionadas?

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total))
```


- O que houve? Cadê os pontos?
- O problema foi que só especificamos o mapeamento estético (com aes, que são as iniciais de *aesthetics*). Faltou a geometria.

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
geom_point()
```


- · Que horror.
- \bullet A única coisa que percebemos aqui é que os mamíferos muito pesados dormem menos de 5 horas por noite.
- Estes animais muito pesados estão estragando a escala do eixo x.
- · Que animais são estes?

```
sono %>%
 filter(bodywt > 250) %>%
  select(name, bodywt) %>%
 arrange(bodywt)
## # A tibble: 6 x 2
    name
                      bodywt
     <chr>
                       <db1>
## 1 Horse
                        521
## 2 Cow
                        600
## 3 Pilot whale
                        800
## 4 Giraffe
                        900.
## 5 Asian elephant
                       2547
## 6 African elephant 6654
```

- Além disso, há muitos pontos sobrepostos. Em bom português, temos um problema de *overplotting*.
- Existem diversas maneiras de lidar com isso.
- A primeira delas é alterando a opacidade dos pontos. Isto é um ajuste na geometria

apenas, pois a opacidade, aqui, não representa informação nenhuma.

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
  geom_point(alpha = 0.2)
```


• Outra maneira é usar geom_jitter em vez de geom_point. "Jitter" significa "tremer". As posições dos pontos são ligeiramente perturbadas, para evitar colisões. Perdemos precisão, mas a visualização fica melhor.

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
  geom_jitter(width = 100)
```


• Vamos mudar os limites do gráfico para nos concentrarmos nos animais menos pesados. Observe que isto é um ajuste na escala.

```
sono %>%
ggplot(aes(x = bodywt, y = sleep_total)) +
   geom_point() +
   scale_x_continuous(limits = c(0, 200))
## Warning: Removed 7 rows containing missing values (geom_point).
```


• Nestes limites, a relação entre horas de sono e peso não é mais tão pronunciada.

4.4.2

Horas de sono e peso corporal para animais pequenos

- Vamos restringir o gráfico a animais com no máximo $5\mathrm{kg}.$

```
limite <- 5
```

• Em vez de mudar a escala do gráfico, vamos filtrar as linhas do data frame:

```
sono %>%
  filter(bodywt < limite) %>%
  ggplot(aes(x = bodywt, y = sleep_total)) +
    geom_point()
```


4.4.3 __

Incluindo a dieta

• Com a estética color. Observe como a legenda aparece automaticamente.

```
sono %>%
filter(bodywt < limite) %>%
ggplot(aes(x = bodywt, y = sleep_total, color = vore)) +
   geom_point()
```


444

A estética pode ser especificada na geom

• Compare com o código anterior.

```
sono %>%
filter(bodywt < limite) %>%
ggplot() +
geom_point(aes(x = bodywt, y = sleep_total, color = vore))
```


• Fazendo deste modo, a estética só vale para uma geometria. Se você acrescentar outras geometrias (linhas, por exemplo), a estética não valerá para elas.

4.4.5 _

Aparência fixa ou dependendo de variável?

- Se for fixa, não é estética. Não representa informação.
- Se depender de variável, é estética. Representa informação.
- Compare o último *chunk* acima com:

```
sono %>%
filter(bodywt < limite) %>%
ggplot() +
geom_point(aes(x = bodywt, y = sleep_total), color = 'blue')
```


• Se for uma estética, precisa estar <mark>associada a uma variável</mark>, não a um valor fixo. Um erro comum seria fazer:

```
sono %>%
filter(bodywt < limite) %>%
ggplot() +
geom_point(aes(x = bodywt, y = sleep_total, color = 'blue'))
```


4.4.6

Uma correlação mais clara

• Peso cerebral versus peso corporal:

```
sono %>%
ggplot(aes(x = bodywt, y = brainwt)) +
  geom_point()
## Warning: Removed 27 rows containing missing values (geom_point).
```


• A mensagem de aviso (warning) diz que há 27 valores faltantes (NA) em bodywt ou brainwt. De fato:

• Vamos restringir aos animais mais leves e mudar a opacidade:

```
sono %>%
filter(bodywt < limite) %>%
ggplot(aes(x = bodywt, y = brainwt)) +
geom_point(alpha = .5)
```


• Vamos incluir horas de sono e dieta. Observe as estéticas usadas.

```
sono %>%
  filter(bodywt < limite) %>%
  ggplot(
   aes(
      x = bodywt,
      y = brainwt,
      size = sleep_total,
      color = vore
   )
) +
   geom_point(alpha = .5)
## Warning: Removed 18 rows containing missing values (geom_point).
```


• Vamos mudar a escala dos tamanhos e incluir rótulos:

```
grafico <- sono %>%
  filter(bodywt < limite) %>%
 ggplot(
   aes(
     x = bodywt,
     y = brainwt,
     size = sleep_total,
     color = vore
   )
  ) +
   geom_point(alpha = .5) +
   scale_size(
     breaks = seq(0, 24, 4)
   ) +
   labs(
      title = 'Peso do cérebro versus peso corporal',
      subtitle = paste0(
        'para mamíferos com menos de ',
       limite,
        ' kg'
      caption = 'Fonte: dataset `msleep`',
      x = 'Peso corporal (kg)',
```

```
y = 'Peso do\n cérebro (kg)',
color = 'Dieta',
size = 'Horas\nde sono'
)

grafico
## Warning: Removed 18 rows containing missing values (geom_point).
```

Peso do cérebro versus peso corporal

Peso corporal (kg)

Fonte: dataset 'msleep'

• Vamos mudar as cores usadas para a dieta, usando uma escala diferente.

```
grafico2 <- grafico +
    scale_color_discrete(
    palette = 'RdBu',
    na.value = 'black',
    type = scale_color_brewer
)

grafico2
## Warning: Removed 18 rows containing missing values (geom_point).</pre>
```

Peso do cérebro versus peso corporal

- Observe como usamos o gráfico já salvo na variável grafico e simplesmente acrescentamos a nova escala. Este tipo de "montagem" de gráficos ggplot2 é bem conveniente, para evitar repetição de código.
- Um último ajuste na aparência: os pontos na legenda "Dieta" estão pequenos demais. Quase não identificamos as cores deles.

Vamos usar a função guides para modificar (*override*) a estética color — apenas na legenda, não nos pontos mostrados no gráfico, cujos tamanhos representam o número de horas de sono — tornando o tamanho maior. Leia mais sobre override.aesneste *link* (em inglês).

```
grafico3 <- grafico2 +
  guides(color = guide_legend(override.aes = list(size = 10)))
grafico3
## Warning: Removed 18 rows containing missing values (geom_point).</pre>
```


- Agora podemos finalmente comentar sobre a informação que o gráfico mostra sobre os dados:
 - De fato, existe uma correlação entre peso cerebral e peso corporal: quanto maior o peso corporal, maior o peso cerebral. Nada surprenndente.
 - Podemos fazer o ggplot2 traçar uma reta de regressão com a geometria geom_smooth. Vamos falar mais sobre correlação em um capítulo futuro.

```
grafico4 <- grafico3 +
  geom_smooth(
    aes(group = 1),
    show.legend = FALSE,
    method = 'lm',
    se = FALSE
)

grafico4
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 18 rows containing non-finite values (stat_smooth).
## Warning: Removed 18 rows containing missing values (geom_point).</pre>
```


Fonte: dataset 'msleep'

- Todos os carnívoros têm peso corporal maior que $1{\rm kg}$ e peso cerebral maior ou igual a $10{\rm g}.$
- Só um carnívoro dorme 8 horas ou menos. Qual?
- Todos os insetívoros com exceção de um (qual?) são muito leves e dormem muito.
- Todos os onívoros têm menos de $2{\rm kg}$ de peso corporal e $20{\rm g}$ ou menos de peso cerebral.

4.5

Vídeo 2

https://youtu.be/c-LoZ9e8xWc

4.6

Histogramas e cia.

• A idéia agora é <mark>agrupar indivíduos em classes,</mark> dependendo do valor de uma variável quantitativa.

Distribuições de frequência

Vamos nos concentrar nas horas de sono.

```
sono$sleep_total

## [1] 12,1 17,0 14,4 14,9 4,0 14,4 8,7 7,0 10,1 3,0 5,3 9,4 10,0

## [14] 12,5 10,3 8,3 9,1 17,4 5,3 18,0 3,9 19,7 2,9 3,1 10,1 10,9

## [27] 14,9 12,5 9,8 1,9 2,7 6,2 6,3 8,0 9,5 3,3 19,4 10,1 14,2

## [40] 14,3 12,8 12,5 19,9 14,6 11,0 7,7 14,5 8,4 3,8 9,7 15,8 10,4

## [53] 13,5 9,4 10,3 11,0 11,5 13,7 3,5 5,6 11,1 18,1 5,4 13,0 8,7

## [66] 9,6 8,4 11,3 10,6 16,6 13,8 15,9 12,8 9,1 8,6 15,8 4,4 15,6

## [79] 8,9 5,2 6,3 12,5 9,8
```

- Antes de montar o histograma, vamos construir uma distribuição de frequência.
- A amplitude é a diferença entre o valor máximo e o valor mínimo. A função range não retorna a amplitude, mas sim os valores mínimo e máximo:

```
sono$sleep_total %>% range()
## [1] 1,9 19,9
```

• Vamos decidir que cada classe vai ter 2 horas. A função ${\tt cut}$ substitui os valores do vetor pelos nomes das classes:

```
sono$sleep_total %>%
 cut(breaks = seq(0, 20, 2), right = FALSE)
## [1] [12,14) [16,18) [14,16) [14,16) [4,6) [14,16) [8,10)
                                                             [6.8)
## [9] [10,12) [2,4) [4,6) [8,10) [10,12) [12,14) [10,12) [8,10)
## [17] [8,10) [16,18) [4,6) [18,20) [2,4) [18,20) [2,4)
                                                              [2,4)
## [25] [10,12) [10,12) [14,16) [12,14) [8,10) [0,2)
                                                      [2,4)
                                                              [6,8)
                                      [18,20) [10,12) [14,16) [14,16)
## [33] [6,8)
               [8,10) [8,10) [2,4)
## [41] [12,14) [12,14) [18,20) [14,16) [10,12) [6,8)
                                                      [14,16) [8,10)
## [49] [2,4) [8,10) [14,16) [10,12) [12,14) [8,10) [10,12) [10,12)
## [57] [10,12) [12,14) [2,4) [4,6)
                                     [10,12) [18,20) [4,6)
                                                              [12, 14)
## [65] [8,10) [8,10) [8,10) [10,12) [10,12) [16,18) [12,14) [14,16)
## [73] [12,14) [8,10) [8,10) [14,16) [4,6) [14,16) [8,10) [4,6)
## [81] [6,8)
               [12,14) [8,10)
## 10 Levels: [0,2) [2,4) [4,6) [6,8) [8,10) [10,12) [12,14) ... [18,20)
```

• A função table faz a contagem dos elementos de cada classe:

```
sono$sleep_total %>%
  cut(breaks = seq(0, 20, 2), right = FALSE) %>%
  table(dnn = 'Horas de sono') %>%
  as.data.frame()
## # A tibble: 10 x 2
```

4.6.2 ____

Histograma

- Na verdade, o ggplot2 já faz esses cálculos para nós.
- O default é criar 30 classes (bins):

```
sono %>%
ggplot(aes(x = sleep_total)) +
   geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


• Vamos mudar isto passando um vetor de limites das classes (*breaks*). Vamos acrescentar rótulos também:

```
sono %>%
ggplot(aes(x = sleep_total)) +
  geom_histogram(breaks = seq(0, 20, 2)) +
  scale_x_continuous(breaks = seq(0, 20, 2)) +
  labs(
    title = 'Horas de sono de diversos mamíferos',
    x = 'horas de sono',
    y = NULL,
    caption = 'Fonte: dataset `msleep`'
)
```

Horas de sono de diversos mamíferos

Fonte: dataset 'msleep'

• Nossas impressões:

- A classe que mais tem elementos é a de $8\,\mathrm{a}\ 10\,\mathrm{horas}.$
- A distribuição é mais ou menos simétrica.
- A distribuição tem forma aproximada de sino: há poucos mamíferos com valores extremos de horas de sono; a maioria está próxima do valor médio:

```
mean(sono$sleep_total)
## [1] 10,43373
```

Polígono de frequência

- Em vez das barras do histograma, podemos desenhar uma linha ligando seus topos.
- O resultado é um polígono de frequência.

```
pf <- sono %>%
  ggplot(aes(x = sleep_total)) +
    geom_freqpoly(breaks = seq(0, 20, 2), color = 'red') +
    scale_x_continuous(breaks = seq(0, 20, 2))

pf
```


• Vamos sobrepor o polígono de frequência ao histograma, para deixar claro o que está acontecendo:

```
pf + geom_histogram(breaks = seq(0, 20, 2), alpha = .3)
```


Ogiva

- A ogiva é um gráfico que mostra a frequência acumulada: para cada valor v da variável no eixo x, a proporção de indivíduos com valor menor ou igual a v.
- A geometria geom_step gera o gráfico de uma função degrau.
- Cada geometria está ligada a uma stat, um algoritmo para computar o que vai ser desenhado. Aqui, passamos para a geometria a função ecdf (empirical cumulative distribution function), do pacote stats, que calcula as frequências acumuladas.

```
sono %>%
ggplot(aes(x = sleep_total)) +
  geom_step(stat = 'ecdf') +
  scale_x_continuous(breaks = seq(0, 20, 2)) +
  scale_y_continuous(breaks = seq(0, 1, .1)) +
  labs(y = NULL)
```


- Com a ogiva, podemos obter informações difíceis de visualizar no histograma. Por exemplo:
 - Cerca de 20% dos mamíferos têm menos de 6 horas de sono.
 - Cerca de metade dos mamíferos têm menos de $10\,\mathrm{horas}$ de sono.
 - Cerca de 10% dos mamíferos têm mais de 16 horas de sono.

Ramos e folhas

- No início dos anos 1900, quando estatísticas eram feitas à mão, Arthur Bowley criou os diagramas de ramos e folhas.
- Um diagrama de ramos e folhas é, basicamente, uma listagem de todos os valores de uma variável, agrupados de maneira que todos os valores de uma classe (i.e., de uma linha) têm os algarismos iniciais dentro de um intervalo.
- Para as horas de sono dos mamíferos:

```
sono$sleep_total %>%
  stem()
##
## The decimal point is at the |
##
```

```
##
##
      2 | 79013589
##
      4 | 0423346
##
      6 | 23307
      8 | 03446779114456788
##
##
     10 | 01113346900135
     12 | 15555880578
##
##
     14 | 234456996889
##
     16 | 604
     18 | 01479
```

- A primeira linha representa um indivíduo com 0.9 horas de sono.
- A penúltima linha representa 3 valores:
 - 16,6
 - **-** 17,0
 - **-** 17,4

Personalização do tema

• O ggplot2 tem um tema *default*, chamado theme_gray, que gera o *scatterplot* de um exemplo anterior deste capítulo do seguinte modo:

• Para este material, escolhi o tema theme_linedraw, que usa linhas pretas sobre fundo

branco:

- Para deixar os gráficos mais leves e facilitar a leitura, fiz as seguintes alterações no tema:
 - Mudei o tamanho do texto dos rótulos.
 - Fiz o rótulo do eixo y aparecer na horizontal; embora isto ocupe um pouco mais de espaço, evita que o leitor tenha que girar a cabeça para ler o rótulo.
 - Eliminei as linhas dos eixos, para o gráfico ficar mais leve.
 - Eliminei a moldura da área de dados, para o gráfico ficar mais leve.
 - Eliminei a grade secundária, para o gráfico ficar mais leve.
- O resultado é

• Os meus comandos para alterar o tema são

```
# Tamanho do texto depende do formato de saída (html ou pdf):
plot_text_size = ifelse(is_html_output(), 12, 13)
# Tema mais leve:
theme set(
  theme_linedraw() +
    theme(
      # Tamanho do texto
      text = element_text(size = plot_text_size),
      # Eixo y
      axis.title.y.left = element_text(
        # Nunca girar o rótulo do eixo y
        angle = 0,
        # Separar o rótulo do eixo um pouco
       margin = margin(r = 20),
        # Posicionar verticalmente no meio
        vjust = .5
      ),
      # Eixo y secundário (à direita), quando presente
      axis.title.y.right = element_text(
        # Nunca girar o rótulo do eixo y
        angle = 0,
        # Separar o rótulo do eixo um pouco
```

```
margin = margin(1 = 20),
        # Posicionar verticalmente no meio
        viust = .5
      ),
      # Não colocar marcas no eixo y secundário
      axis.ticks.y.right = element_blank(),
      # Separar o eixo x do rótulo um pouco mais
      axis.title.x.bottom = element_text(
       margin = margin(t = 20)
      ),
      # Eliminar linhas dos eixos
      axis.line = element blank(),
      # Eliminar a moldura da área de dados
      panel.border = element blank(),
      # Eliminar a grade secundária
     panel.grid.minor = element_blank()
)
```

Exercícios

Não se esqueça de incluir títulos nos gráficos e rótulos nos eixos.

4.10.1 _

Peso cerebral e peso corporal

- 1. Observe os comandos que geraram o gráfico grafico4.
- 2. O que acontece se você retirar aes (group = 1) da chamada a geom_smooth? Explique.
- 3. O que acontece se você mudar show.legend = FALSE para show.legend = TRUE na chamada a geom_smooth? Explique.
- 4. O que acontece se você mudar se = FALSE para se = TRUE na chamada a geom_smooth? Explique.
- 5. Acrescente ao gráfico a camada facet_wrap(~vore). O que acontece?
- 6. Examine o data frame sono e identifique o único insetívoro com mais de 4kg.
- 7. Instale o pacote gg_repel e acrescente ao gráfico grafico4 (não facetado) a geometria geom_label_repel (consulte a ajuda) para rotular o mamífero insetívoro identificado no item anterior com o seu nome, sem cobrir outros pontos do gráfico. Cuidado para não alterar a legenda que já existe.

)

Peso cerebral e horas de sono

name, order, genus, vore, bodywt,

brainwt, awake, sleep_total

Use o data frame sono definido como library(ggplot2) sono <- msleep %>% select(

1. Construa um histograma da variável brainwt. Escolha o número de classes que você achar melhor. O que acontece com os valores NA?

- 2. Descubra que função da forma $scale_x$... usar para fazer com que o eixo x tenha uma escala logarítmica. Gere um novo histograma.
- 3. Qual dos dois histogramas é melhor para responder a pergunta "Qual a faixa de peso cerebral que tem mais animais?" de forma satisfatória?
- 4. Construa um *scatter plot* de horas de sono versus peso do cérebro. Você percebe alguma correlação entre estas variáveis? Se precisar, concentre-se em um subconjunto dos dados.
- 5. Usando geom_smooth (leia a respeito), sobreponha uma reta de regressão ao gráfico de dispersão, usando o método 1m e sem o erro padrão (i.e., com se = FALSE). O que você observa? Discuta.

4.10.3

Igualdade de gênero entre furacões?

Este artigo tenta achar uma relação entre o gênero do nome de um furação e a quantidade de vítimas fatais provocadas por ele.

Os dados estão no pacote DAAG, que deve ser instalado:

```
if (!require(DAAG))
  install.packages("DAAG")
```

Vamos usar apenas algumas das variáveis, com nomes em português.

```
df <- hurricNamed %>%
  as_tibble() %>%
  transmute(
   id = paste(Year, Name, sep = '-'),
   nome = Name,
  ano = Year,
  velocidade = LF.WindsMPH * 1.8,  # convertido para km/h
  pressao = LF.PressureMB,  # mbar
  prejuizo = BaseDam2014 %>% round(), # milhões de dólares de 2014
  mortes = deaths,
  genero = mf
)
```

- 1. Crie histogramas para as seguintes variáveis, escolhendo a quantidade de barras que você achar melhor.
 - velocidade
 - prejuizo
 - mortes

Não se esqueça de incluir títulos nos gráficos e rótulos nos eixos.

Comente os histogramas.

2. Os histogramas de prejuízos e mortes não ficaram bons. Vamos gerar histogramas transformados.

No data frame, crie duas novas colunas:

- logprejuizo: logaritmo do prejuízo (na base 10)
- logmortes: *logaritmo* do número de mortes (na base 10)

Agora, gere histogramas destas duas novas variáveis.

- 3. O que significa o valor do logaritmo do prejuízo na base 10?
- 4. O que significa o valor do logaritmo do número de mortes na base 10?
- 5. Por que o histograma do logaritmo do número de mortes vem com uma mensagem de aviso?
- 6. Por que isto não acontece com o logaritmo do prejuízo?
- 7. Faça um gráfico de dispersão com pressao no eixo y e velocidade no eixo x.

- 8. Usando geom_smooth (leia a respeito), sobreponha uma reta de regressão ao gráfico, usando o método lm e sem o erro padrão (i.e., com se = FALSE). O que você observa? Discuta.
- 9. Faça um gráfico de dispersão com logmortes no eixo y e pressao no eixo x.
- 10. Usando geom_smooth (leia a respeito), sobreponha uma reta de regressão ao gráfico, usando o método lm e sem o erro padrão (i.e., com se = FALSE). O que você observa? Discuta.
- 11. Faça um gráfico de dispersão com logmortes no eixo y e pressao no eixo x, com pontos coloridos de acordo com o gênero do nome do furação.
- 12. Usando geom_smooth (leia a respeito), sobreponha retas de regressão ao gráfico, uma para cada gênero, usando o método lm e sem o erro padrão (i.e., com se = FALSE). O que você observa? Discuta.

Visualizações como esta ajudam a explorar os dados, mas não servem para testar rigorosamente a hipótese de que furacões mulheres matam mais do que furacões homens.

Mais adiante no curso, vamos aprender a fazer testes mais rigorosos sobre hipóteses como esta.

CAPÍTULO 5

Visualização com ggplot2 (continuação)

Busque mais informações sobre os pacotes tidyverse e ggplot2 nas referências recomendadas.

5.1 _____

Vídeo 1

https://youtu.be/TjgLDeIQHIc

5.2

Boxplots

5.2.1 _____

Conjunto de dados

 Vamos continuar a trabalhar com os dados sobre as horas de sono de alguns mamíferos:

```
sono <- msleep %>%
select(name, vore, order, sleep_total)
```

```
sono
## # A tibble: 83 x 4
    name
                             vore order
                                              sleep_total
##
    <chr>
                              <chr> <chr>
                                                    <dbl>
## 1 Cheetah
                             carni Carnivora
                                                     12.1
## 2 Owl monkey
                            omni Primates
                                                      17
## 3 Mountain beaver
                            herbi Rodentia
                                                     14.4
## 4 Greater short-tailed shrew omni Soricomorpha
                                                     14.9
## 5 Cow
                             herbi Artiodactyla
                                                       4
## 6 Three-toed sloth
                            herbi Pilosa
                                                      14.4
## # ... with 77 more rows
```

5.2.2

Mediana e quartis

- Para entender boxplots, precisamos, antes, entender algumas medidas.
- Se tomarmos as quantidades de horas de sono de todos os animais do conjunto de dados e classificarmos estas quantidades em ordem crescente, vamos ter:

```
horas <- sono %>%
    pull(sleep_total) %>%
    sort()

horas

## [1] 1,9 2,7 2,9 3,0 3,1 3,3 3,5 3,8 3,9 4,0 4,4 5,2 5,3

## [14] 5,3 5,4 5,6 6,2 6,3 6,3 7,0 7,7 8,0 8,3 8,4 8,4 8,6

## [27] 8,7 8,7 8,9 9,1 9,1 9,4 9,4 9,5 9,6 9,7 9,8 9,8 10,0

## [40] 10,1 10,1 10,1 10,3 10,3 10,4 10,6 10,9 11,0 11,0 11,1 11,3 11,5

## [53] 12,1 12,5 12,5 12,5 12,5 12,8 12,8 13,0 13,5 13,7 13,8 14,2 14,3

## [66] 14,4 14,4 14,5 14,6 14,9 14,9 15,6 15,8 15,8 15,9 16,6 17,0 17,4

## [79] 18,0 18,1 19,4 19,7 19,9
```

Quantos valores são?

```
length(horas)
## [1] 83
```

• O valor que está bem no meio desta fila — i.e., na posição 42 — é a mediana:

```
horas[ceiling(length(horas) / 2)]
## [1] 10,1
```

• Em R:

```
median(horas)
## [1] 10,1
```

Mediana e média são coisas muito diferentes.

Por acaso, neste exemplo, a média das horas é próxima da mediana:


```
mean(horas)
## [1] 10,43373
```

Isto costuma acontecer quando a distribuição dos dados é aproximadamente simétrica.

• Os quartis são os valores que estão nas posições $\frac{1}{4}$, $\frac{1}{2}$ e $\frac{3}{4}$ da fila. São o primeiro, segundo e terceiro quartis, respectivamente.

```
horas[
   c(
     ceiling(length(horas) / 4),
     ceiling(length(horas) / 2),
     ceiling(3 * length(horas) / 4)
   )
]
## [1] 7,7 10,1 13,8
```

- Sim, a mediana é o segundo quartil.
- Em R, a função quantile generaliza esta idéia: dado um número q entre 0 e 1, o quantil (com "N") q é o elemento que está na posição que corresponde à fração q da fila ordenada.

```
horas %>% quantile(c(.25, .5, .75))

## 25% 50% 75%

## 7,85 10,10 13,75
```

- Na verdade, R tem 9 algoritmos diferentes para calcular os quantis de uma amostra!
 Leia a ajuda da função quantile para conhecê-los.
- As diferenças entre nossos cálculos "à mão" e os resultados retornados por quantile são porque, em algumas situações, quantile calcula uma média ponderada entre elementos vizinhos. Por isso, quantile pode retornar valores que nem estão no vetor.
- Em R, a função summary mostra o mínimo, os quartis (com "R"), a média, e o máximo de um vetor:

```
summary(horas)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
```

```
## 1,90 7,85 10,10 10,43 13,75 19,90
```

5.2.3

Média × mediana

- Vamos ver um exemplo simples para entender a diferença entre a média e a mediana.
- Imagine o seguinte vetor com as receitas mensais de algumas pessoas (em milhares de reais:)

```
receitas <- c(1, 2, 2, 3.5, 1, 4, 1)
```

• Eis a mediana e a média deste vetor:

```
summary(receitas)[c('Median', 'Mean')]
## Median Mean
## 2,000000 2,071429
```

- A mediana e a média são bem próximas.
- Imagine, agora, que adicionamos ao vetor um sujeito com receita mensal de $100\,$ mil regis:

```
receitas <- c(1, 2, 2, 3.5, 1, 4, 1, 100)
```

• Eis a nova mediana e a nova média:

```
summary(receitas)[c('Median', 'Mean')]
## Median Mean
## 2,0000 14,3125
```

- O sujeito com a receita de 2 mil reais continua no meio da fila, mas a média (que é a soma de todas as receitas, dividida pelo número de indivíduos) ficou muito diferente.
- A receita do novo sujeito é um valor discrepante, ou, em inglês, um outlier.

Conclusão:

A mediana é robusta, pouco afetada por outliers.

A <mark>média é pouco robusta</mark>, muito sensível a *outliers*.

Intervalo interquartil (IQR) e outliers

Qual fração dos elementos está entre o primeiro e o terceiro quartis?

```
length(
  horas[between(horas, quantile(horas, .25), quantile(horas, .75))]
) /
length(
  horas
)
## [1] 0,4939759
```

- Metade do total de elementos está entre o primeiro e o terceiro quartis.
- Este é o chamado intervalo interquartil (interquartile range, em inglês).
- No nosso vetor horas, os limites do IQR são

```
quantile(horas, c(.25, .75))

## 25% 75%

## 7,85 13,75
```

O comprimento deste intervalo é calculado pela função IQR:

```
IQR(horas)
## [1] 5,9
```

- Valores muito abaixo do primeiro quartil podem ser considerados discrepantes (outliers), mas quão abaixo?
- A resposta (puramente convencional) é $1.5 \times IQR$ abaixo do primeiro quartil.
- No nosso vetor horas, isto significa valores abaixo de

```
limite_inferior <- quantile(horas, .25) - 1.5 * IQR(horas)
unname(limite_inferior)
## [1] -1</pre>
```

• Neste caso, não há outliers:

```
horas[horas < limite_inferior]
## numeric(0)</pre>
```

- Da mesma forma, valores muito acima do terceiro quartil podem ser considerados discrepantes (outliers), mas quão acima?
- De novo, a resposta (puramente convencional) é $1.5 \times IQR$ acima do terceiro quartil.

• No nosso vetor horas, isto significa valores acima de

```
limite_superior <- quantile(horas, .75) + 1.5 * IQR(horas)
unname(limite_superior)
## [1] 22,6</pre>
```

• Neste caso, também não há *outliers*:

```
horas[horas > limite_superior]
## numeric(0)
```

• Outro exemplo: vamos tomar apenas os mamíferos onívoros:

```
onivoros <- sono %>%
 filter(vore == 'omni')
onivoros
## # A tibble: 20 x 4
## name
                          omni Primates

w omni Sori
## <chr>
## 1 Owl monkey
## 2 Greater short-tailed shrew omni Soricomorpha
## 3 Grivet
                         omni Primates
                                               10
## 4 Star-nosed mole omni Soricomorpha
                                               10.3
## 5 African giant pouched rat omni Rodentia
                                                8.3
## 6 Lesser short-tailed shrew omni Soricomorpha
                                                 9.1
## # ... with 14 more rows
```

• Vamos extrair o vetor de horas de sono:

```
horas <- onivoros %>%
   pull(sleep_total)

horas
## [1] 17,0 14,9 10,0 10,3 8,3 9,1 18,0 10,1 10,9 9,8 8,0 10,1 9,7
## [14] 9,4 11,0 8,7 9,6 9,1 15,6 8,9
```

Vamos calcular o primeiro e terceiro quartis:

```
quartis <- horas %>%
  quantile(c(.25, .75))

quartis
## 25% 75%
## 9,100 10,925
```

• Vamos achar o IQR:

```
IQR(horas)
## [1] 1,825
```

• E os limites a partir dos quais os valores são *outliers*:

```
limites <- quartis + c(-1, 1) * 1.5 * IQR(horas)
unname(limites)
## [1] 6,3625 13,6625</pre>
```

• Existem *outliers* inferiores?

```
onivoros %>%
  filter(sleep_total < limites[1])
## # A tibble: 0 x 4
## # ... with 4 variables: name <chr>, vore <chr>, order <chr>,
## # sleep_total <dbl>
```

Não.

• Existem outliers superiores?

```
onivoros %>%
 filter(sleep_total > limites[2])
## # A tibble: 4 x 4
## name
                            vore order
                                                sleep_total
## <chr>
                             <chr> <chr>
                                                      <db1>
## 1 Owl monkey
                             omni Primates
                                                        17
## 2 Greater short-tailed shrew omni Soricomorpha
                                                        14.9
## 3 North American Opossum omni Didelphimorphia
                                                        18
                             omni Afrosoricida
## 4 Tenrec
                                                        15.6
```

Sim! Estes animais dormem demais em comparação com os outros onívoros.

5.2.5

Gerando boxplots

- Um *boxplot* é uma representação visual dos valores que calculamos acima.
- No ggplot2, a geometria geom_boxplot constrói boxplots:

```
sono %>%
ggplot(aes(y = sleep_total)) +
  geom_boxplot(fill = 'gray') +
  scale_x_continuous(breaks = NULL) +
  scale_y_continuous(breaks = seq(0, 20, 2))
```


- A <mark>caixa</mark> vai do valor do <mark>primeiro quartil</mark> (embaixo) até o <mark>terceiro quartil</mark> (em cima).
- A linha horizontal dentro da caixa representa o valor da mediana.
- As <mark>linhas verticais</mark> acima e abaixo da caixa (pitorescamente chamadas de "bigodes") vão até o <mark>limite inferior</mark> (primeiro quartil $-1.5 \times \text{IQR}$) e até o <mark>limite superior</mark> (terceiro quartil $+1.5 \times \text{IQR}$).
- Neste boxplot, não há outliers.
- Podemos usar a posição x para desenhar vários *boxplots*, um para cada dieta:

```
sono %>%
ggplot(aes(x = vore, y = sleep_total)) +
  geom_boxplot(fill = 'gray') +
  scale_y_continuous(breaks = seq(0, 20, 2))
```


- No boxplot de onívoros, os outliers aparecem como pontos isolados, acima da caixa, além dos alcances do bigode superior (aliás, onde está bigode superior?).
- Boxplots lado a lado são úteis para compararmos grupos diferentes de dados.
- Veja como, com exceção dos insetívoros, as medianas dos grupos são parecidas.
- Veja como carnívoros, insetívoros e herbívoros apresentam maior variação, enquanto onívoros e animais sem dieta registrada apresentam menor variação.
- · Vamos combinar, em um só gráfico
 - Os pontos representando os animais,
 - Os boxplots,
 - As médias (que podem estar próximas ou distantes das medianas).

```
sono %>%
ggplot(aes(x = vore, y = sleep_total)) +
   geom_boxplot(fill = 'gray') +
   scale_y_continuous(breaks = seq(0, 20, 2)) +
   geom_point(
      color = 'blue',
      alpha = .3
) +
   stat_summary(
   fun = mean,
   geom = 'point',
```

```
color = 'red',
    shape = 'cross',
    size = 5,
    stroke = 1
) +
labs(
    title = 'Sono total de diversos mamíferos, por dieta',
    subtitle = '(o X vermelho representa a média)',
    x = 'dieta',
    y = 'sono total\n(em horas)'
)
```

Sono total de diversos mamíferos, por dieta

(o X vermelho representa a média)

- Quando a caixa é longa, o IQR é grande, e os valores estão muito espalhados; é o caso dos herbívoros e insetívoros.
- Quando a caixa é curta, o IQR é pequeno, e os valores estão pouco espalhados; é o caso dos onívoros. Como o IQR é pequeno, os 4 mamíferos com mais de 14 horas de sono são *outliers*.
- Observe, ainda, como os outliers "puxam" a média dos onívoros para cima.

5.3

Vídeo 2

https://youtu.be/QqnOvgBXJ-s

5.4

Gráficos de barras e de colunas

5.4.1 ____

Conjunto de dados

- O R tem um array de 3 dimensões com dados sobre as cores dos cabelos e dos olhos de 592 alunos e alunas de uma universidade americana em 1974.
- Se pedirmos para o R exibir os dados, veremos <mark>duas matrizes</mark>, uma para cada sexo:

```
HairEyeColor
## , , Sex = Male
##
##
          Eye
## Hair Brown Blue Hazel Green
    Black 32 11 10 3
##
     Brown 53 50
                         25 15

      Red
      10
      10
      7
      7

      Blond
      3
      30
      5
      8

##
##
##
## , , Sex = Female
##
##
         Eye
## Hair Brown Blue Hazel Green
    Black 36 9 5 2
##
##
    Brown 66
                    34
                          29
                                14
##
   Red 16 7
                         7
                                7
                           5
    Blond
               4
                                  8
                    64
```

- Vamos transformar este array em um data frame.
- O array contém apenas os totais de cada classe. Vamos usar a função uncount para gerar uma linha para cada aluno:

```
df_orig <- as.data.frame(HairEyeColor) %>%
  uncount(Freq) %>%
  as_tibble()

df_orig
```

```
## # A tibble: 592 x 3
## Hair Eye Sex
## <fct> <fct> <fct>
## 1 Black Brown Male
## 2 Black Brown Male
## 3 Black Brown Male
## 4 Black Brown Male
## 6 Black Brown Male
## 5 Black Brown Male
## 6 Black Brown Male
```

- O ggplot2 e os outros pacotes do tidyverse foram projetados para trabalhar com data frames neste formato, com uma observação (um indivíduo, um elemento) por linha. É o chamado formato tidy.
- Usando vetores com elementos nomeados, podemos traduzir o conteúdo do *data frame* para português:

```
cabelo <- c(
 'Brown' = 'castanhos',
 'Blond' = 'louros',
 'Black' = 'pretos',
 'Red' = 'ruivos'
)
olhos <- c(
 'Brown' = 'castanhos',
 'Blue' = 'azuis',
 'Hazel' = 'avelã',
 'Green' = 'verdes'
)
sexo <- c(
 'Male' = 'homem',
  'Female' = 'mulher'
df <- df_orig %>%
 transmute(
   cabelos = cabelo[Hair],
  olhos = olhos[Eye],
   sexo = sexo[Sex]
  )
```

• Um sumário:

```
df %>% dfSummary() %>% print()
```

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Faltante
cabelos	1. castanhos	108 (18,2%)	0
[character]	2. louros	286 (48,3%)	(0,0%)
	3. pretos	71 (12,0%)	
	4. ruivos	127 (21,5%)	
olhos	1. avelã	93 (15,7%)	0
[character]	2. azuis	215 (36,3%)	(0,0%)
	3. castanhos	220 (37,2%)	
	4. verdes	64 (10,8%)	
sexo	1. homem	279 (47,1%)	0
[character]	2. mulher	313 (52,9%)	(0,0%)

5.4.2

Gerando gráficos de barras

- Um gráfico de barras contém uma barra para cada valor de uma variável categórica.
- Usamos geom_bar para gerar um gráfico de barras de cores de cabelo:

```
df %>%
  ggplot(aes(x = cabelos)) +
   geom_bar() +
  labs(y = NULL)
```


Gráfico de barras \times histograma:

- Os dois tipos de gráficos mostram a frequência (quantidade de elementos) no eixo vertical.
- No gráfico de barras:
 - * A variável é categórica (nominal).
 - Cada barra corresponde a um valor da variável.

- No histograma (veja o exemplo):
 - * A variável é quantitativa (intervalar ou racional).
 - Cada barra corresponde a uma classe de valores da variável.
 - As barras se tocam, para enfatizar que as classes são contíguas.
- Um gráfico de barras é mais legível quando as barras são mostradas em ordem crescente ou decrescente.
- Embora os valores da variável cabelos sejam *strings*, podemos aplicar a eles funções que manipulam fatores.
- A função fct_infreq, do pacote forcats, ordena os valores em ordem decrescente

de frequência.

• A função fct_rev, também do pacote forcats, inverte a ordenação.

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)))) +
   geom_bar() +
  labs(
    x = 'cabelos',
   y = NULL
  )
```


- A posição x e a altura de cada barra são estéticas: a posição x representa a cor dos cabelos, e a altura representa a frequência daquela cor.
- Vamos acrescentar mais uma estética: a cor de preenchimento vai representar o sexo.

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)), fill = sexo)) +
  geom_bar() +
  labs(
    x = 'cabelos',
    y = NULL
  )
```


• Se a cor dos homens incomoda você, altere a escala que especifica o preenchimento (scale_fill_discrete):

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)), fill = sexo)) +
    geom_bar() +
    scale_fill_discrete(type = c('blue', 'red')) +
    labs(
        x = 'cabelos',
        y = NULL
    )
```


• Podemos fazer um gráfico de barras horizontais com coord_flip. Isto geralmente é útil quando os rótulos das barras são longos:

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)), fill = sexo)) +
    geom_bar() +
    scale_fill_discrete(type = c('blue', 'red')) +
    labs(
        x = 'cabelos',
        y = NULL
    ) +
    coord_flip()
```


- Você consegue dizer se há mais homens ou mulheres com cabelos pretos? E castanhos? E ruivos?
- Se posicionarmos as barras lado a lado, fica mais fácil responder.
- Usamos o argumento position = 'dodge' de geom_bar. "Dodge" significa "esquivar-se", em inglês.

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)), fill = sexo)) +
  geom_bar(position = 'dodge') +
  labs(
    x = 'cabelos',
    y = NULL
  ) +
  scale_fill_discrete(type = c('blue', 'red'))
```


• Agora vamos examinar a relação entre as cores dos olhos e as cores dos cabelos:

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)), fill = olhos)) +
    geom_bar() +
    scale_fill_discrete(
       type = c('#908050', 'blue', 'brown', 'green')
    ) +
    labs(
       x = 'cabelos',
       y = NULL
    )
```


• Ou, com barras lado a lado:

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)), fill = olhos)) +
  geom_bar(position = 'dodge') +
  scale_fill_discrete(
    type = c('#908050', 'blue', 'brown', 'green')
  ) +
  labs(
    x = 'cabelos',
    y = NULL
  )
```


- Observações e perguntas:
 - 1. Há mais pessoas louras de olhos castanhos do que louras de olhos azuis. O esperado não seria mais pessoas louras de olhos azuis? Pessoas louras de olhos castanhos pintaram os cabelos?
 - 2. Há muito mais ruivos de olhos azuis do que ruivos de olhos verdes. Não deveria ser o contrário? Também são pessoas que pintaram os cabelos de ruivo? Ou houve erro no registro das cores dos olhos?
- Para incluir o sexo, podemos facetar o gráfico. Usando facet_wrap¹, geramos dois subgráficos lado a lado:

```
df %>%
  ggplot(aes(x = fct_rev(fct_infreq(cabelos)), fill = olhos)) +
    geom_bar(position = 'dodge') +
    scale_fill_discrete(type = c('#908050', 'blue', 'brown', 'green')) +
    facet_wrap(~sexo) +
    labs(
        title = 'Cores de cabelos e olhos por sexo',
        y = NULL,
        x = 'cabelos'
    )
```

¹O nome da variável segundo a qual facetar deve aparecer depois de um ~.

Cores de cabelos e olhos por sexo

cabelos

- Se a quantidade grande de pessoas louras de olhos castanhos (em comparação com pessoas louras de olhos azuis) for por causa da pintura de cabelos, então o gráfico acima mostra que as mulheres pintam os cabelos de louro com mais frequência do que os homens.
- Quando facetamos por cor de cabelos, também podemos observar as mesmas diferenças entre homens e mulheres:

```
df %>%
  ggplot(aes(x = sexo, fill = fct_infreq(olhos))) +
   geom_bar(position = 'dodge') +
   facet_wrap(~cabelos, labeller = label_both) +
   scale_fill_discrete(type = c('brown', 'blue', '#908050', 'green')) +
   labs(
        x = NULL,
        y = NULL,
        fill = 'olhos',
        title = 'Cor dos olhos e sexo por cor dos cabelos'
)
```

Cor dos olhos e sexo por cor dos cabelos

5.4.3

Data frame já contendo os totais

- Você percebeu que geom_bar analisa o data frame e calcula as frequências necessárias para construir o gráfico.
- Em algumas situações, <mark>o *data frame* já contém as frequências</mark> (em vez de conter uma linha por indivíduo).
- Vamos usar count para criar um data frame assim:

```
df_tot <- df %>%
 count(sexo, cabelos, olhos)
df_tot
## # A tibble: 32 x 4
     sexo cabelos
                     olhos
                                   n
     <chr> <chr>
                     <chr>
                               <int>
## 1 homem castanhos avelã
                                  10
## 2 homem castanhos azuis
                                  11
## 3 homem castanhos castanhos
                                  32
## 4 homem castanhos verdes
                                   3
## 5 homem louros
                     avelã
                                  25
## 6 homem louros
                                  50
                     azuis
## # ... with 26 more rows
```

- Para 4 cores de cabelo, 4 cores de olhos, e 2 sexos, são 32 combinações possíveis.
- Com este *data frame*, podemos gerar todos os gráficos anteriores usando geom_col no lugar de geom_bar. Por exemplo:

```
df_tot %>%
  ggplot(aes(x = cabelos, y = n)) +
    geom_col() +
    labs(
        y = NULL
    )
```


- Com $geom_col$, precisamos passar a estética y (no nosso exemplo, a variável n, que contém as frequências).
- Para ordenar as barras, usamos a função fct_reorder, que ordena os níveis de um fator (cabelos) de acordo com o resultado de uma função (sum) aplicada sobre os valores de outra variável (n):

```
df_tot %>%
  ggplot(aes(x = fct_reorder(cabelos, n, sum), y = n)) +
  geom_col() +
  labs(
    x = 'cabelos',
    y = NULL
```


5.5

Gráficos de linha e séries temporais

5.5.1 _____

Conjunto de dados

• O R tem uma matriz com as quantidades de telefones em várias regiões do mundo ao longo de vários anos:

```
WorldPhones
       N. Amer Europe Asia S. Amer Oceania Africa Mid. Amer
                                           89
## 1951 45939 21574 2876 1815
                                  1646
                                                  555
## 1956 60423 29990 4708 2568
                                  2366
                                                   733
                                         1411
## 1957 64721 32510 5230 2695
                                  2526
                                         1546
                                                  773
## 1958 68484 35218 6662 2845
                                  2691
                                         1663
                                                  836
## 1959 71799 37598 6856 3000
                                  2868
                                         1769
                                                  911
## 1960 76036 40341 8220 3145
                                  3054
                                         1905
                                                 1008
## 1961 79831 43173 9053 3338
                                  3224
                                         2005
                                                  1076
```

- Os números representam milhares.
- Os números dos anos são os nomes das linhas da matriz.

Vamos transformar esta matriz em uma tibble:

```
fones <- WorldPhones %>%
 as tibble(rownames = 'Ano') %>%
 mutate(Ano = as.numeric(Ano))
fones
## # A tibble: 7 x 8
##
      Ano N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1951 45939 21574 2876
                             1815 1646
                                          89
                                                   555
## 2 1956 60423 29990 4708
                             2568
                                    2366
                                          1411
                                                   733
## 3 1957 64721 32510 5230
                             2695 2526 1546
                                                   773
## 4 1958 68484 35218 6662
                             2845
                                    2691 1663
                                                   836
## 5 1959 71799 37598 6856
                             3000
                                    2868 1769
                                                  911
                                    3054 1905
## 6 1960 76036 40341 8220
                             3145
                                                  1008
## # ... with 1 more row
```

- Esta tibble não está no formato tidy. Queremos que cada linha corresponda a uma observação, contendo
 - Ano,
 - Região,
 - Quantidade de telefones.
- Usamos a função pivot_longer para mudar o formato da tibble:

```
fones_long <- fones %>%
 pivot_longer(
   cols = -Ano,
   names_to = 'Região',
   values_to = 'n'
 )
fones_long
## # A tibble: 49 x 3
      Ano Região
    <dbl> <chr>
                  <db1>
## 1 1951 N.Amer 45939
## 2 1951 Europe 21574
## 3 1951 Asia
                   2876
## 4 1951 S.Amer 1815
## 5 1951 Oceania 1646
## 6 1951 Africa
                     89
## # ... with 43 more rows
```

• Confira: antes, tínhamos 7 anos, com 7 quantidades por ano, uma quantidade por região. Eram 49 quantidades. Agora temos uma *tibble* de 49 linhas.

Gerando gráficos de linha

• A geometria geom_line gera gráficos de linha. Perceba como geramos uma linha por região:

```
fones_long %>%
  ggplot(aes(x = Ano, y = n, color = Região)) +
    geom_line() +
    scale_x_continuous(breaks = 1951:1961)
```


 Embora a legenda associe uma cor a cada região, a leitura seria mais fácil se a ordem das regiões na legenda coincidisse com a posição das linhas na borda direita da grade:

```
fones_long %>%
  ggplot(
    aes(
        x = Ano,
        y = n,
        color = fct_rev(fct_reorder(Região, n, max))
    )
) +
```

```
geom_line() +
scale_x_continuous(breaks = 1951:1961) +
labs(
    color = 'Região',
    y = '',
    x = NULL,
    title = 'Quantidade de aparelhos de telefone por ano, por região'
)
```

Quantidade de aparelhos de telefone por ano, por região

 Parece que está faltando uma linha, mas o que acontece é que as quantidades da América do Sul e da Oceania são bem parecidas:

```
fones_long %>%
  filter(Região %in% c('S.Amer', 'Oceania')) %>%
  ggplot(
   aes(
        x = Ano,
        y = n,
        color = fct_rev(fct_reorder(Região, n, max))
   )
) +
   geom_line() +
   scale_x_continuous(breaks = 1951:1961) +
   labs(y = NULL, color = 'Região')
```


- Estamos tratando estes dados como simples números, mas, na verdade, este conjunto de dados é uma série temporal (time series).
- R tem todo um conjunto de funções para tratar séries temporais, calcular tendências, achar padrões cíclicos, fazer estimativas, e gerar gráficos específicos, entre outras coisas.
- Mas não vamos falar mais sobre séries temporais aqui.
- O pacote tsibble oferece maneiras de trabalhar com séries temporais de maneira *tidy*. Você pode ler a documentação do pacote entrando

library(tsibble)	
<pre>?`tsibble-package`</pre>	

5.6

Exercícios

5.6.1 ____

O bigode dos onívoros

• Examine o data frame sono para descobrir o que houve com o bigode superior do boxplot dos onívoros neste gráfico.

5.6.2	
Usando geom_col	
• Use geom_col para reproduzir, a partir do <i>data frame</i> df_tot, todos os foram gerados com geom_bar na seção Gerando gráficos de barras.	gráficos qu
5.6.3	
5.7	

Referências sobre visualização e R

Busque mais informações sobre os pacotes tidyverse e ggplot2 nas referências recomendadas.

CAPÍTULO 6

Medidas