The Frequency Response
What Is The Bode Plot
How To Construct A Bode Plot (by hand)
Constructing The Bode Plot In Matlab
Introduction To Nyquist Plots

Chapter 6: Frequency response to dynamical systems

July 9, 2015

Outline

- 1 The Frequency Response
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Constructing The Bode Plot In Matlab
- 5 Introduction To Nyquist Plots

What is the frequency response of a system?

- Frequency response = steady state response of a system to a sinusoidal input.
- Assume an input $x(t) = X \sin(\omega t)$.
- The output in a linear system is then also sinusoidal, with a change in the magnitude and phase, i.e. $y(t) = Y \sin(\omega t + \phi)$
- It can be shown that: $Y = X \cdot |H(j\omega)|$ and $\phi = \angle H(j\omega)$
- $H(j\omega)$ is therefore also called the sinusoidal transfer function.

Relation of sinusoidal input/output in a linear system

The Frequency Response
What Is The Bode Plot
How To Construct A Bode Plot (by hand)
Constructing The Bode Plot In Matlab
Introduction To Nyquist Plots

Outline

- 1 The Frequency Response
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Constructing The Bode Plot In Matlab
- 5 Introduction To Nyquist Plots

The bode plot

- A bode plot is a graphical representation of the sinusoidal transfer function $H(j\omega)$
- It consists of two seperate plots, a magnitude and a phase plot
- In this way, we can see the relation of a sinusoidal input with a given frequency ω to a linear system and its output
- After all, the relation between the amplitudes is given by $|H(j\omega)|$, and the phase shift by $\angle H(j\omega)$

Example bode plot

$$H(s) = \frac{14s^2 + 7s + 3}{s^4 + 10s^3 + 10s^2 + 10s + 10}$$

- Say we use an input $x(t) = 2\sin(100t)$ in this system.
- The steady state response would be

$$y(t) = |H(j100)| \cdot 2\sin(100t + \angle H(j100))$$

The magnitude plot

Convention:

- for the ordinate (y-axis) we use $20 \log_{10} |H(j\omega)|$ with the unit dB
- ullet for the abscissa (x-axis) we use a logarithmic plot of ω

This is thus a bi-log plot

The reason for using the logarithm of the modulus of $H(j\omega)$ will become clear later

The Frequency Response
What Is The Bode Plot
How To Construct A Bode Plot (by hand)
Constructing The Bode Plot In Matlab
Introduction To Nyquist Plots

The phase plot

Convention:

- for the ordinate (y-axis) we use $\angle H(j\omega)$ in degrees
- ullet for the abscissa (x-axis) we use a logarithmic plot of ω

This is thus a semi-log plot

Discrete time systems

- The transfer function is a function of z, i.e. H(z)
- In contrast to continuous time systems, we do not use $H(j\omega)$. Instead, $H(e^{j\omega T_s})$ is now the sinusoidal transfer function.
- T_s is the sample time, i.e. the amount of time in between each sample.

Outline

- 1 The Frequency Response
- 2 What Is The Bode Plot
- 3 How To Construct A Bode Plot (by hand)
- 4 Constructing The Bode Plot In Matlab
- 5 Introduction To Nyquist Plots

A new representation of the transfer function

From before:

$$H(s) = \frac{\beta_0 s^r + \beta_1 s^{r-1} + \ldots + \beta_r}{s^n + \alpha_1 s^{n-1} + \ldots + \alpha_n}$$

Factorization in zeros and poles

$$\Rightarrow H(s) = \frac{\beta_0(s - n_1)(s - n_2) \dots (s - n_r)}{(s - p_1)(s - p_2) \dots (s - p_n)}$$

This is the usual representation. Now however, we will look for factors $(1 + \frac{s}{s_i})$, with s_i a so-called breakpoint.

A new representation of the transfer function

We can do this by bringing all the zeros and poles not equal to zero outside the brackets, as follows:

$$H(s) = \beta_0 \frac{\prod (-n_i)}{\prod (-p_j)} \frac{(1 + \frac{s}{-n_1})(1 + \frac{s}{-n_2}) \dots (1 + \frac{s}{-n_i})}{s'(1 + \frac{s}{-p_1})(1 + \frac{s}{-p_2}) \dots (1 + \frac{s}{-p_i})}$$

Replacing the constants by K, and setting

$$r_k = -n_k$$

$$s_k = -p_k$$

A new representation of the transfer function

We ultimately get:

$$H(s) = K \frac{(1 + \frac{s}{r_1})(1 + \frac{s}{r_2})\dots(1 + \frac{s}{r_i})}{s'(1 + \frac{s}{s_1})(1 + \frac{s}{s_2})\dots(1 + \frac{s}{s_i})}$$

Now we are able to construct the bode plot of each different factor of H(s). Afterwards we can just add up these plots using the calculation rules of complex numbers.

Intermezzo complex numbers

- The magnitude of the product of complex numbers is equal to the product of the magnitudes of these numbers
- The phase of the product of complex numbers is equal to the sum of the phases of these numbers
- The logarithm of a product of numbers is equal to the sum of the logarithms of these numbers

This comes down to

$$20 \log_{10} |H(j\omega)| = \sum 20 \log_{10} |factors|$$
 $\angle H(j\omega) = \sum (\angle factors)$

Next we will quickly go over the simple bodeplots of the different factors of H(s)

The constant K

- $20 \log_{10} |K| = \text{constant}$
- $\angle K = 0^{\circ}$ or $\pm 180^{\circ}$ (resp K > 0 and K < 0)

Example: K = 10

$(1+rac{j\omega}{r_i})$ in the numerator

(Assume $r_i > 0$)

- What if $\omega \to 0$? $(1 + \frac{j\omega}{r_i}) \to 1$
 - $20 \log_{10} |1| = 0$
 - $\angle 1 = 0^{\circ}$
- What if $\omega \to \infty$? $(1 + \frac{j\omega}{r_i}) \to j\infty$
 - $20 \log_{10} |j\infty| = \infty$
 - $\angle j\infty = 90^{\circ}$
- The two terms balance each other out for $\omega = r_i$ (remember, this is called a breakpoint).
 - $20 \log_{10} |1+j| = 20 \log_{10}(\sqrt{2}) \approx 3 dB$
 - $\angle(1+j) = 45^{\circ}$

A breakpoint is therefore also called a 3dB point

$(1+rac{j\omega}{r_i})$ in the numerator

Example: $r_i = 100$

$(1+\frac{j\omega}{s_i})$ in the denominator

This factor is equivalent to the previous one. The only difference is the sign change in both plots:

$$ullet$$
 What if $\omega o 0$? $rac{1}{1+rac{j\omega}{s_i}} o 1$

•
$$20 \log_{10} |1| = 0$$

•
$$\angle 1 = 0^{\circ}$$

• What if
$$\omega \to \infty$$
 ? $\frac{1}{1+\frac{j\omega}{s_i}} \to \frac{1}{j\infty} \to -j0$

•
$$20 \log_{10} |-j0| = -\infty$$

•
$$\angle - i0 = -90^{\circ}$$

• The two terms balance each other out for $\omega = s_i$

•
$$20 \log_{10} \frac{1}{|1+j|} = 20 \log_{10} (\frac{1}{\sqrt{2}}) \approx -3 dB$$

•
$$\angle \frac{1}{(1+j)} = -45^{\circ}$$

$(1+rac{j\omega}{s_i})$ in the denominator

Example $s_i = 100$

$j\omega$ in the numerator

- This is simply a (ascending) straight line in the magnitude plot, with a slope of 20 dB/decade
- Constant phase of 90°
- What if $\omega \to 0$? $j\omega \to j0$
 - $20 \log_{10} |j0| = -\infty$
 - $\angle j0 = 90^{\circ}$
- What if $\omega \to \infty$? $j\omega \to j\infty$
 - $20 \log_{10} |j\infty| = \infty$
 - $\angle j\infty = 90^{\circ}$

$j\omega$ in the numerator

$j\omega$ in the denominator

- This is simply a (descending) straight line in the magnitude plot, with a slope of -20 dB/decade
- Constant phase of -90°
- What if $\omega \to 0$? $\frac{1}{j\omega} \to \frac{1}{j0} \to -j\infty$
 - $20 \log_{10} |-j\infty| = \infty$
 - $\angle -j\infty = -90^{\circ}$
- What if $\omega \to \infty$? $\frac{1}{j\omega} \to \frac{1}{j\infty} \to -j0$
 - $20 \log_{10} |-j0| = -\infty$
 - $\angle j0 = -90^{\circ}$

$j\omega$ in the denominator

What if the multiplicity is higher than 1?

Take for example multiplicity 2, a second order factor. A second order factor has twice the effect of a first order factor. Consider for example the effect of a double zero:

- Slope of 40dB/decade instead of 20dB/decade after the breakpoint
- Phase shift of 180° instead of 90°

Second order factor

$$(1 + \frac{j\omega}{100})^2$$

Exception

Up until now we always considered r_i and $s_i > 0$, but what if we have a factor $(1 - \frac{j\omega}{r_i})$ for example?

- The magnitude plot remains unchanged, as $|1+rac{j\omega}{r_i}|=|1-rac{j\omega}{r_i}|$
- The phase plot is reversed, as $\angle(1+\frac{j\omega}{r_i})=-\angle(1-\frac{j\omega}{r_i})$
- If we have such a factor in the denominator, the system will be unstable!

Exception

Example $(1-\frac{j\omega}{100})$ in the numerator

Quadratic factors and resonance

- Also possible is a quadratic factor $[1 + 2\zeta(j\frac{\omega}{\omega_n}) + (j\frac{\omega}{\omega_n})^2]^{\pm 1}$
- \bullet ζ is called the damping factor, ω_n is the natural frequency
- If $\zeta > 1$, this quadratic factor can be expressed as two first order factors with real zeros/poles
- But if $0 < \zeta < 1$, this quadratic factor is the product of two complex-conjugate factors
- For low ζ , the asymptotic approximations are not accurate. Instead, a peak occurs in the magnitude plot around ω_n
- This peak is a phenomenon known as resonance.

Quadratic factors and resonance

