作业16.1 若已知两个放大器的频响为:

①
$$A_1(f) = \frac{100f^2}{(1+jf/10^2)(1+10jf)(1+jf/10^8)(1+jf/10^5)}$$

请分别绘制二者的波特图的草图(幅频和相频特性),并标出各极点处的频率、增益、相移,以及各直线段的斜率。

16.3 右图电路中: V_{CC} =10V, R_{B1} =7KΩ, R_{B2} =3KΩ, R_{E} =2.3KΩ, R_{C} =3KΩ R_{L} = 100KΩ, V_{CC} = 10V, C_{B} = C_{E} = C_{C} =10 μ F

BJT: $\beta = 100$, $r_b \approx 0$, $r_e = 26 \text{mV/I}_{EQ}$, $C_{B'E} = C_{B'C} = 10 \text{pF}$

请估算和分析:

- ① 中频电压增益 $A_V = V_{RL} / V_S$
- ② 中频输入电阻 R_i 和 输出电阻 R_o
- ③ 低频截止频率 f_L
- ④ 当源Vs幅度逐步增大时,先出现饱和还是截止?
- ⑤ 在输入最大不失真信号时,放大器效率

$$\eta = \overline{P_{RL}} / \overline{P_{VCC}}$$

