

Transformers

Modelo Revolucionário

Utilizado em GPT-3, T5 e BERT

Não usa recorrência como RNN

Basedo no mecasimo de atenção "Attention"

Arquitetura ENDEC

Attention / Self Attention

- Attention aprende a relação contextual entre palavras
- Wor2vec não!
- Precisa ser treinado
- Existem modelos pré-treinados

ENDEC: Encode / Decode

- Encoder: Colocar a mensagem em um formato que o computador compreenda
- Decoder: Colocar a mensagem em de volta ao formato original*

Transformer: Encoder

- NLP depende de ordem
- É natural processar em sequência
- A maioria das técnicas processam dados que dependem de Recorrência (RNN)
- Porém um Transformer submete texto (Embedding) em paralelo
 - Performance e melhoras no aprendizado

• Matriz com mesmas dimensões do embedding

The	0,42	0,70	0,04	
Law	0,70	0,62	0,80	
Will	0,17	0,04	0,41	

Embedding Original

The	0,61	0,52	0,89	
Law	0,17	0,29	0,16	
Will	0,62	0,39	0,08	

PΕ

The	1,04	1,22	0,93	
Law	0,87	0,91	0,96	::
Will	0,79	0,43	0,49	

Embedding Final

- Com a matriz PE é calculada?
 - Usa da função senoidal
 - pos é posição da palavra na sentença
 - i a posição no embedding
 - Seno quando é par e coseno quando é impar

$$PE_{(POS,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

$$PE_{(POS,2i)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

Transformer

Self-attention

- A função é descobrir a relação entre as palavras
- It se refere a *animal* ou *street*?
- Como saber a qual se refere?
- O transformer calcula a representação e a relação de cada palavra
- Assim ele compreende que it se refere street e n\u00e3o a animal

Self-attention

- Self-attention é o resultado do processamento
- Mostra que it tem um peso maior para street
- Como ele descobre a relação?
 - 5 etapas!

1. Matrizes Q,K e V

- The Animal Didn't (...)
- Produz o embedding da sentença gerando matriz X
- Dimensões de X é o da sentença * tamanho do embedding [3 x 300]
- Três novas matrizes ponderadas são geradas
 - Q: query matrix
 - K: key matrix
 - V: Value matrix
- Pesos são ajustados durante o treinamento

2º: Score: Produto escalar entre Query e Key

• Mostra o grau de similaridade entre palavras

animal	0,17	0,07	0,41	
•••				
street	0,61	0,08	0,79	
•••				
it	0,60	0,57	0,39	

Query

animal	0,77	0,64	0,80	
•••				
street	1,08	1,17	1,93	•••
•••				
it	0,93	0,29	0,73	

Key

animal	0,33	0,95	0,84	
•••				
street	0,36	0,64	0,36	•••
•••				
it	0,18	0,31	0,55	•••

Value

3º: Dividir QK pela raiz quadrada das dimensões de Key

• Objetivo: obter bons gradientes

$$\frac{QK^T}{\sqrt{D_X}}$$

4º Produção da Score Matrix

- Normalização entre 0 e 1 com softmax
- Objetivo é gerar um score de relação entre as palavras

$$\operatorname{softmax}\left(\frac{QK^T}{\sqrt{D_K}}\right)$$

animal	0,17	0,07	0,41	
••				
street	0,61	0,08	0,79	
•••				
it	0,60	0,57	0,39	

Score

5º:Calcular a matriz Z (matriz de atenção)

- Cálculo é Score Matrix * V
- Cada palavra terá um score: Z₁, Z₂, Z₃
- Mostra o peso da relação entre as palavras

	animal	street	it		
animal	0,83	0,07	0,41	•••	
•••					
street	0,61	0,08	0,79		
•••					
it	0,60	0,57	0,39	•••	
Score					

X

	animal	street	it	
animal	0,33	0,95	0,84	
street	0,36	0,64	0,36	•••
•••				
it	0,18	0,31	0,55	

Value

Attention

softmax
$$\left(\frac{QK^T}{\sqrt{D_K}}\right) * V$$

 A matriz Z está pronta para ser enviadas através da próxima camada Feedforward Network (porém antes será normalizada)

Encoder

Multi Attention

- Em vez de um processo Attention, múltiplos processos são processados e o resultado é somando
- Aumenta a precisão do sistema
- Todos as matrizes são concatenadas e multiplicadas por uma matriz ponderada, pois a RNA espera apenas uma matriz

Encoder

- Camada de Normalização
- Objetivo é conectar e normalizar
- Conecta a entrada do multi head attention com sua saída
- Conectada a entrada da feedforward com sua saída

Encoder

• Duas camadas densas com Relu