

AMENDMENTS TO THE CLAIMS:

The following list of claims will replace all prior versions and listings of claims in the application.

LISTINGS OF CLAIMS:

1. (currently amended) A manufacturing method of an active matrix device including a top gate type TFT, which comprises a process of forming the top gate type TFT, wherein the process of forming the top gate type TFT includes the steps of:

forming an oxide film specifically on a substantially entire inner wall of a CVD processing chamber, wherein the oxide film is selected from the group consisting of Al₂O₃, TiO₂, Al₂(Si₂O₅)(OH)₄, MgAl₂O₄, TaO_x and ZrO_x;

arranging a substrate having source and drain electrodes formed therein in the processing chamber;

doping the source and drain electrodes with P;

forming an a-Si layer and a gate insulating film in the CVD processing chamber, wherein the step of doping the source and drain electrodes with P and the step of forming the a-Si layer and the gate insulating film are carried out in-situ in the CVD processing chamber; and

wherein forming the oxide film specifically on the substantially entire inner wall of the CVD processing chamber is performed before doping the source and drain electrodes with P.

2. (previously presented) A manufacturing method of an active matrix device according to claim 1, wherein the process of forming the top gate type TFT further comprises the step of removing the oxide film from the substantially entire inner wall after the step of forming the a-Si layer and the gate insulating film.

3. (original) A manufacturing method of an active matrix device according to claim 1, wherein the oxide film contains SiO_x.

4. (original) A manufacturing method of an active matrix device according to claim 1, wherein the active matrix device is a liquid crystal display.

5. (original) A manufacturing method of an active matrix device according to claim 1, wherein the active matrix device is an electroluminescence display.

6. (original) A manufacturing method of an active matrix device according to claim 2, wherein the oxide film contains SiO_x.

7. (original) A manufacturing method of an active matrix device according to claim 2, wherein the active matrix device is a liquid crystal display.

8. (original) A manufacturing method of an active matrix device according to claim 3, wherein the active matrix device is a liquid crystal display.

9. (original) A manufacturing method of an active matrix device according to claim 2, wherein the active matrix device is an electroluminescence display.

10. (original) A manufacturing method of an active matrix device according to claim 3, wherein the active matrix device is an electroluminescence display.

Claims 11-16 (cancelled)

17. (previously presented) A manufacturing method of an active matrix device according to claim 1, further comprising heating the substantially entire inner wall of the CVD processing chamber so as to facilitate forming the oxide film specifically on the substantially entire inner wall of the CVD processing chamber.

Claim 18 (cancelled)

19. (currently amended) A manufacturing method of an active matrix device including a top gate type TFT, which comprises a process of forming the top gate type TFT, wherein the process of forming the top gate type TFT includes the steps of:

forming an oxide film specifically on a[[n]] substantially entire inner wall of a CVD processing chamber, the oxide film being at least 50nm thick, wherein the oxide film is selected from the group consisting of Al₂O₃, TiO₂, Al₂(Si₂O₅)(OH)₄, MgAl₂O₄, TaOx and ZrOx;

arranging a substrate having source and drain electrodes formed therein in the CVD processing chamber;

doping the source and drain electrodes with P;

forming an a-Si layer and a gate insulating film in the CVD processing chamber, wherein the step of doping the source and drain electrodes with P and the step of forming the a-Si layer and the gate insulating film are carried out in-situ in the CVD processing chamber; and

wherein forming the oxide film on the substantially entire inner wall of the CVD processing chamber is performed before doping the source and drain electrodes with P.

20. (previously presented) A manufacturing method of an active matrix device according to claim 19, wherein the oxide film is approximately 100nm.

Claim 21 (cancelled)

22. (currently amended) A manufacturing method of an active matrix device according to claim 1, further comprising:

depositing a first gate insulating film;

forming the first gate insulating film before forming the oxide film on the substantially entire inner wall of the CVD processing chamber;

depositing a second gate insulating film after forming the a-Si layer;

removing the oxide film after depositing the second gate insulating film;

wherein forming the oxide film on the substantially entire inner wall of the CVD processing chamber is performed before doping the source and drain electrodes with P; and

wherein the step of doping the source and drain electrodes with P, the step of forming the a-Si layer, and the step of depositing the second gate insulating film are carried out in-situ in the CVD processing chamber.

23. (previously presented) A manufacturing method of an active matrix device according to claim 19, wherein the oxide film contains SiO_x.

Claim 24 (cancelled)