1. D'Angelo 1.56 Let p be a polynomial. Show that the series $\sum (-1)^n p(n)$ is Abel summable. More generally, for |z| < 1, show that $\sum_0^\infty p(n)z^n$ is a polynomial in $\frac{1}{1-z}$ with no constant term. Hence, the limit, as we approach the unit circle from within, exists at every point except 1.

Solution:

It suffices to prove only the general case since z=-1 is defined for any polynomial in $\frac{1}{1-z}$. In fact, given a polynomial $p(n)=c_0+c_1n+\cdots+c_dn^d$, by linearity it further suffices only to show that $\sum_{n=0}^{\infty} n^k z^n$ can be written as a polynomial in $\frac{1}{1-z}$.

Observe that $z \frac{d}{dz} z^n = nz^n$. Proceeding inductively, we have

$$\left[z\frac{d}{dz}\right]^k z^n = \left[z\frac{d}{dz}\right]^{k-1} nz^n = n \left[z\frac{d}{dz}\right]^{k-1} z^n = \dots = n^k z^n.$$

Now, we evaluate

$$\sum_{n=0}^{\infty} n^k z^n = \sum_{n=0}^{\infty} \left[z \frac{d}{dz} \right]^k z^n$$

$$\stackrel{*}{=} \left[z \frac{d}{dz} \right]^k \sum_{n=0}^{\infty} z^n$$

$$= z^n \frac{d^n}{dz^n} (1 - z)^{-1}$$

$$= z^n (1 - z)^{-n-1}$$

$$= \frac{1}{1 - z} \left(\frac{z}{1 - z} \right)^n$$

$$= \frac{1}{1 - z} \left(\frac{1}{1 - z} - 1 \right)^n.$$

In $\stackrel{*}{=}$ we used the fact that the sum is a power series to interchange the order of $\frac{d^n}{dz^n}$ and $\sum_{n=1}^{\infty}$.