Practice Questions for Mar 19, 2019

1. Consider the "disjoint" relationship between subsets of $S = \{a, b\}$. We write $R_{disjoint}(x, y)$ or $(x, y) \in R_{disjoint}$ when subsets x is disjoint from subsett y; we draw all such links (x, y) in the digraph representation for $R_{disjoint}$. Fill-in the links in the diagram in (a) below for the relation $R_{disjoint}$.

Likewise, fill-in the links in the diagram in (b) above for the relation "disjoint or equal", fill-in the links in the diagram in (c) above for the relation "subset", and fill-in the links in the diagram in (d) above for the relation "proper subset", and fill-in the links in the diagram in (e) above for the relation "subset and disjoint".

- 2. Indicate which of the relations in Q1 that are symmetric. Also, for all non-symmetric relations, mark 'X' every link in the relation that causes the relation to be non-symmetric.
- 3. Recall the formula $\sum_{d} C(n, d)C((n^2 n)/2, (m d)/2)$, summed over all $0 \le d \le n$ such that m d is divisible by 2, for counting the number of symmetric relations on an n-set having size m, i.e., having m links.
 - (a) What does the symbol d represents in the above formulas and why we have the restriction $0 \le d \le n$?
 - (b) Why do we have the factor C(n, d) in the above formula?
 - (c) Why do we have the restriction m d is divisible by 2 and what does (m d)/2 represent?
 - (d) What does $(n^2 n)/2$ correspond to in the above formula.
 - (e) Why do we have the factor $C((n^2 n)/2, (m d)/2)$ in the above formula.
- 4. Complement of a relation R on S is a relation R^c on S defined as follow:

$$(x, y)$$
 is in R^c if and only if (x, y) is not in R .

Show the diagram of $R_{not\text{-}disjoint}$ corresponding to $R_{disjoint}$ in Q1. Is it true that R^c is symmetric when R is symmetric? How about R^c is non-symmetric when R is non-symmetric?

Apply the formula in Q3 to determine $S_{n,m} = \#(n \times n \text{ symmetric relations with m links})$ for n = 3 and $m = 0, 1, 2, \dots, 9$. Make a table like the one shown below for computations for $S_{3,m}$'s.

\overline{m}	d	C(3, d)	C(3, (m-d)/2)	#(3×3 Symm. rels. with m links)
•••	•••			

Finally, verify the formula $2^{n(n+1)/2}$ for the total number of symmetric relations on an *n*-set.