

Report No.: FR650917AZ

FCC Test Report

Equipment Nest Cam Outdoor

Brand Name Nest Labs

Model No. : A0033

FCC ID **ZQANC21**

Standard 47 CFR FCC Part 15.247 2400 MHz - 2483.5 MHz Frequency

FCC Classification DTS

Function ☐ Point-to-multipoint; **☐** Point-to-point

Applicant Nest Labs Inc.

3400 Hillview Ave, Pola Alto, CA 94304 USA

Manufacturer Chicony Electronics (Dong Guan) Co., Ltd.

San Zhong Guan Li Qu, Qingxi Town, Dongguan City

Guangdong 523651 China

The product sample received on May 16, 2016 and completely tested on Jul. 04, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang T Assistant Manager

1190

SPORTON INTERNATIONAL INC. Page No. : 1 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	7
1.3	Testing Location Information	
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	Test Channel Mode	9
2.2	The Worst Case Measurement Configuration	10
2.3	Accessories and Support Equipment	11
2.4	Test Setup Diagram	
3	TRANSMITTER TEST RESULT	14
3.1	AC Power-line Conducted Emissions	14
3.2	DTS Bandwidth	16
3.3	Fundamental Emission Output Power	17
3.4	Power Spectral Density	20
3.5	Emissions in Non-restricted Frequency Bands	22
3.6	Transmitter Radiated Unwanted Emissions	23
4	TEST EQUIPMENT AND CALIBRATION DATA	27

Appendix I. Test Result of AC Power-line Conducted Emissions

Appendix A. Test Result of Emission Bandwidth

Appendix B. Test Result of Maximum Conducted Output Power

Appendix C. Test Result of Power Spectral Density

Appendix D. Test Result of Transmitter Radiated Bandedge Emissions

Appendix E. Test Result of Transmitter Radiated Unwanted Emissions

Appendix F. Test Photos

Appendix G. Photographs of EUT

Report No.: FR650917AZ

Summary of Test Result

Report No.: FR650917AZ

	Conformance Test Specifications							
Report Clause			Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 15.15MHz 35.03(Margin 14.97dB) - AV 40.37(Margin 19.63dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	DTS Bandwidth	Refer as Appendix A	≥500kHz	Complied			
3.3	15.247(b)	Fundamental Emission Output Power	Refer as Appendix B	Power [dBm]:30	Complied			
3.4	15.247(e)	Power Spectral Density	Refer as Appendix C	PSD [dBm/3kHz]:8	Complied			
3.5	15.247(d)	Emissions in Restricted Frequency Bands	Refer as Appendix D	Non-Restricted Bands:> 20 dBc Bands: FCC 15.209	Complied			
3.6	15.247(d)	Emissions in Non-restricted Frequency Bands	Refer as Appendix E	Restricted Bands: FCC 15.209	Complied			

SPORTON INTERNATIONAL INC. Page No. : 3 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

Revision History

Report No.: FR650917AZ

Report No.	Version	Description	Issued Date
FR650917AZ	Rev. 01	Initial issue of report	Jul. 05, 2016

SPORTON INTERNATIONAL INC. Page No. : 4 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

1 General Description

1.1 Information

1.1.1 RF General Information

Band	Mode	BWch (MHz)	Nss-Min	Nant
2.4G	Zigbee	5	1	1

Report No.: FR650917AZ

Note:

- 2.4G is the 2.4GHz Band (2.4-2.4835GHz).
- Zigbee using O-QPSK modulation for DTS digital modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs.

1.1.2 Antenna Information

	Antenna Category
\boxtimes	Integral antenna (antenna permanently attached)
	☐ Temporary RF connector provided
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.

Antenna General Information							
No.	No. Ant. Cat. Ant. Type Gain (dBi)						
1	Integral	PIFA	-0.08				

SPORTON INTERNATIONAL INC. Page No. : 5 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report

1.1.3 Type of EUT

	Identify EUT				
EU	T Serial Number	N/A			
Pre	sentation of Equipment				
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

Report No.: FR650917AZ

1.1.4 Mode Test Duty Cycle

SPORTON INTERNATIONAL INC. Page No. : 6 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report

1.1.5 EUT Operational Condition

Supply Voltage	\boxtimes	AC mains	\boxtimes	DC	
Type of DC Source	\boxtimes	External AC adapter	\boxtimes	From Host System	Battery

Report No.: FR650917AZ

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 558074 D01 v03r05

1.3 Testing Location Information

	Testing Location							
\boxtimes	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.							
	TEL : 886-3-327-3456							
Test Condition Test Site				Test Site No.	Test Engineer	Test Environment	Test Date	
	AC Conduction	1		CO04-HY	Ryan	24°C / 58%	Jun. 07, 2016	
RF Conducted		Conducted TH01-HY		Howard	23°C / 63%	Jul. 04, 2016		
	Radiated			03CH09-HY	Joe	22.2°C / 51.8%	Jun. 02, 2016	

Test site registered number [553509] with FCC.

SPORTON INTERNATIONAL INC. Page No. : 7 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR650917AZ

Measurement Uncertainty					
Test Item		Uncertainty			
AC power-line conducted emissions	±2.3 dB				
Emission bandwidth, 6dB bandwidth	±0.6 %				
RF output power, conducted	±0.1 dB				
Power density, conducted	±0.6 dB				
Unwanted emissions, conducted 9 – 150 kHz		±0.4 dB			
	0.15 – 30 MHz	±0.4 dB			
	30 – 1000 MHz	±0.6 dB			
	1 – 18 GHz	±0.5 dB			
	18 – 40 GHz	±0.5 dB			
	40 – 200 GHz	N/A			
All emissions, radiated	9 – 150 kHz	±2.5 dB			
	0.15 – 30 MHz	±2.3 dB			
	30 – 1000 MHz	±2.6 dB			
	1 – 18 GHz	±3.6 dB			
	18 – 40 GHz	±3.8 dB			
	40 – 200 GHz	N/A			
Temperature		±0.8 °C			
Humidity		±5 %			
DC and low frequency voltages		±0.9%			
Time		±1.4 %			
Duty Cycle		±0.6 %			

SPORTON INTERNATIONAL INC. Page No. : 8 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report No.: FR650917AZ

2 Test Configuration of EUT

2.1 Test Channel Mode

	Test Software	Dos
--	---------------	-----

Band	Mode	BWch (MHz)	Nss-Min	Nant	Ch. (MHz)	Range	Power Setting
2.4G	Zigbee	5	1	1	2405	L	-4
2.4G	Zigbee	5	1	1	2440	М	-4
2.4G	Zigbee	5	1	1	2475	Н	-5

Abbreviation Explanation

ADDICTIO	tion Explain	ation						
Band	Mode	BWch (MHz)	Nss-Min	Nant	Ch. (MHz)	Range	Test Cond.	Abbreviation
2.4G	Zigbee,	5	1	1	2405	L	TN,VN	2.4G;Zigbee;5;1;1;2405;TN,VN

Note:

SPORTON INTERNATIONAL INC. Page No. : 9 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

[•] Test range channel consist of L (Low Ch.), M (Middle Ch.), H (High Ch.), S (Single Ch).

2.2 The Worst Case Measurement Configuration

TI	ne Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	USB Mode
2	Adapter Mode

Report No.: FR650917AZ

Th	ne Worst Case Mode for Following Conformance Tests
Tests Item	DTS Bandwidth, Fundamental Emission Output Power, Power Spectral Density, Emissions in Non-restricted Frequency Bands
Test Condition	Conducted measurement at transmit chains

Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts		
Tests Item	Emissions in Restricted Fr	equency Bands			
Test Condition	regardless of spatial multi		e antenna are used in EUT n), the radiated test should nna type.		
	☐ EUT will be placed in	fixed position.			
User Position		mobile position and operati ree orthogonal planes.	ng multiple positions. EUT		
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.				
Operating Mode < 1GHz	□ 1. USB Mode				
	X Plane	Y Plane	Z Plane		
Orthogonal Planes of EUT					
Worst Planes of EUT	V				

SPORTON INTERNATIONAL INC. Page No. : 10 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report

2.3 Accessories and Support Equipment

		Accessories In	formation	
	Brand Name	I.T.E	Model Name	A0038
AC Adapter	Power Rating	I/P: 100-240Vac, 0.35	A, O/P: 5 Vdc, 1.4	łA
	Power Cord	4.4 meter, non-shield	ed cable, with w/c	ferrite core

Report No.: FR650917AZ

Reminder: Regarding to more detail and other information, please refer to user manual.

	Supp	ort Equipment - RF Conducted	
No.	Equipment	Brand Name	Model Name
1	Notebook	DELL	E6400
2	AC Adapter for Notebook	DELL	HA65NM130

	Support Equipme	ent - AC Conduction and Radiate	ed Emission
No.	Equipment	Brand Name	Model Name
1	Notebook	DELL	E5540
2	AC Adapter for Notebook	DELL	LA65NS2-01

SPORTON INTERNATIONAL INC. Page No. : 11 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

2.4 Test Setup Diagram

Report No.: FR650917AZ

SPORTON INTERNATIONAL INC. Page No. : 12 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report

SPORTON INTERNATIONAL INC. Page No. : 13 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

	imit
Quasi-Peak	Average
66 - 56 *	56 - 46 *
56	46
60	50
	66 - 56 * 56

Report No.: FR650917AZ

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method	
 Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions. 	

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 14 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report

3.1.5 Test Result of AC Power-line Conducted Emissions

Report No.: FR650917AZ

Refer as Appendix I

SPORTON INTERNATIONAL INC. Page No. : 15 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report No.: FR650917AZ

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit
Systems using digital modulation techniques:
■ 6 dB bandwidth ≥ 500 kHz.

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method
•	For	the emission bandwidth shall be measured using one of the options below:
		Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix A

SPORTON INTERNATIONAL INC. Page No. : 16 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

3.3 Fundamental Emission Output Power

3.3.1 Fundamental Emission Output Power Limit

	00-2483.5 MHz Band:					
-	 If G_{TX} ≤ 6 dBi, then P_{Out} ≤ 30 dBm (1 W) 					
-	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm					
•	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm					
•	Smart antenna system (SAS):					
	- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm					
	- Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm					
	- Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm					
.r.p.	Power Limit:					
24	00-2483.5 MHz Band					
•	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)					
•	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$					
•	Smart antenna system (SAS)					
	- Single beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm					
	- Overlap beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm					
	· · · · · · · · · · · · · · · · · · ·					

Report No.: FR650917AZ

SPORTON INTERNATIONAL INC. Page No. : 17 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method
•	Maximum Peak Conducted Output Power
	Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).
	Refer as FCC KDB 558074, clause 9.1.2 Option 2 (peak power meter for VBW ≥ DTS BW)
•	Maximum Conducted Output Power
	[duty cycle ≥ 98% or external video / power trigger]
	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
	Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty cycle < 98% and average over on/off periods with duty factor
	Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
	Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF power meter and average over on/off periods with duty factor or gated trigger
	Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
\boxtimes	For conducted measurement.
	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = $P_{total} + DG$

Report No.: FR650917AZ

Note: Duty cycle correction factor already take into account in shown result by adding offset during measurement.

SPORTON INTERNATIONAL INC. Page No. : 18 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

3.3.4 Test Setup

Report No.: FR650917AZ

3.3.5 Test Result of Maximum Peak Conducted Output Power

Refer as Appendix B

3.3.6 Test Result of Maximum Average Conducted Output Power

Refer as Appendix B

SPORTON INTERNATIONAL INC. Page No. : 19 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

	Power Spectral Density Limit
•	Power Spectral Density (PSD) ≤ 8 dBm/3kHz

Report No.: FR650917AZ

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

			Test Method				
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).						
	\boxtimes	Refe	er as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; Detector=peak).				
	[dut	y cyc	le ≥ 98% or external video / power trigger]				
		Refe	er as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).				
		Refe	er as FCC KDB 558074, clause 10.4 Method AVGPSD-2 (slow sweep speed)				
	duty	/ cycl	e < 98% and average over on/off periods with duty factor				
		Refe	er as FCC KDB 558074, clause 10.5 Method AVGPSD-1 Alt (spectral trace averaging).				
		Refe	er as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)				
\boxtimes	For	cond	ucted measurement.				
		If Th	ne EUT supports multiple transmit chains using options given below:				
	Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB In-band power spectral density (PSD). Sample all transmit ports simultaneously spectrum analyzer for each transmit port. Where the trace bin-by-bin of each trans summing can be performed. (i.e., in the first spectral bin of output 1 is summed with the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on under the North Nort						
Option 2: Measure and sum spectral maxima across the outputs. With this technique, sare measured at each output of the device at the required resolution bandwidth maximum value (peak) of each spectrum is determined. These maximum values are summed mathematically in linear power units across the outputs. These operations sperformed separately over frequency spans that have different out-of-band or specific maximum values are summed mathematically in linear power units across the outputs. These operations sperformed separately over frequency spans that have different out-of-band or specific maxima across the outputs.							
			Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.				

SPORTON INTERNATIONAL INC. Page No. : 20 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report

3.4.4 Test Setup

Report No.: FR650917AZ

3.4.5 Test Result of Power Spectral Density

Refer as Appendix C

SPORTON INTERNATIONAL INC. Page No. : 21 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit				
RF output power procedure	Limit (dB)			
Peak output power procedure	20			
Average output power procedure	30			

Report No.: FR650917AZ

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method	
 Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands. 	

	Test setting				
Bandedge Emissions	RBW/VBW				
Non-restricted Band	100k/300k				
Restricted Band	Peak : 1M/3M Average : 1M/1k				

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix D

SPORTON INTERNATIONAL INC. Page No. : 22 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Report No.: FR650917AZ

- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 23 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

FCC Test Report No.: FR650917AZ

3.6.3 Test Procedures

		Test Method							
•	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].							
•		er as ANSI C63.10, clause 6.9.2.2 band-edge testing shall be performed at the lowest frequency and highest frequency channel within the allowed operating band.							
•	For t	the transmitter unwanted emissions shall be measured using following options below:							
	•	 Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands. 							
		☐ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)							
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).							
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).							
		☐ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 558074, clause 12.2.4 measurement procedure peak limit.							
•	For t	the transmitter band-edge emissions shall be measured using following options below:							
	•	Refer as FCC KDB 558074 clause 13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.							
	•	Refer as FCC KDB 558074, clause 13.2 (ANSI C63.10, clause 6.9.3) for marker-delta method for band-edge measurements.							
	•	Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).							
\boxtimes	For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 12.2.2.							
		For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB							
		For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.							

Test setting					
Unwanted emissions	RBW/VBW (CSE&RSE)				
Below 1G	100k/300k				
Above 1G	Peak : 1M/3M Average : 1M/1k				

SPORTON INTERNATIONAL INC. Page No. : 24 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

3.6.4 Test Setup

Report No.: FR650917AZ

Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna.

SPORTON INTERNATIONAL INC. Page No. : 25 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

Report No.: FR650917AZ

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.6.6 Transmitter Radiated Unwanted Emissions

Refer as Appendix E

SPORTON INTERNATIONAL INC. Page No. : 26 of 27
TEL: 886-3-327-3456 Report Version : Rev. 02

4 Test Equipment and Calibration Data

Instrument for AC Conduction

motrament i	instrument for Ac conduction						
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date	
EMC Receiver	KEYSIGHT	N9038A	MY54130031	20Hz ~ 8.4GHz	Apr. 14, 2016	Apr. 13, 2017	
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 26, 2016	Jan. 25, 2017	
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2015	Oct. 29, 2016	
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	NCR	NCR	

Report No.: FR650917AZ

Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101500	9KHz~40GHz	May 12, 2016	May 11, 2017
Power Sensor	Anritsu	MA2411B	917017	300MHz ~ 40GHz	Feb. 04, 2016	Feb. 03, 2017
Power Meter	Anritsu	ML2495A	949003	300MHz ~ 40GHz	Feb. 04, 2016	Feb. 03, 2017
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 28, 2015	Jul. 27, 2016

Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	30MHz ~ 1GHz 3m	May 14, 2016	May 13, 2017
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	1GHz ~ 18GHz 3m	Jul. 01, 2015	Jun. 30, 2016
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	1GHz ~ 18GHz 3m	Jul. 01, 2016	Jun. 30, 2017
Amplifier	EMC	EMC9135	980232	9kHz ~ 1.0GHz	Jan. 29, 2016	Jan. 28, 2017
Amplifier	Agilent	8449B	3008A02096	1GHz ~ 26.5GHz	Apr. 11, 2016	Apr. 10, 2017
Spectrum	KEYSIGHT	N9010A	MY54200885	10Hz ~ 44GHz	Jul. 15, 2015	Jul. 14, 2016
Bilog Antenna & 5dB Attenuator	TESEQ & MTJ	CBL 6111D & MTJ6102	35418	30MHz ~ 1GHz	Mar. 31, 2016	Mar. 30, 2017
Horn Antenna	SCHWARZBECK	BBHA 9120D	BBHA 9120D 1534	1GHz ~ 18GHz	Apr. 22, 2016	Apr. 21, 2017
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170614	18GHz ~ 40GHz	Jan. 04, 2016	Jan. 03, 2017
Amplifier	MITEQ	JS44-18004000-33- 8P	1840917	18GHz ~ 40GHz	Jun. 02, 2015	Jun. 01, 2017
Loop Antenna	ROHDE&SCHWARZ	HFH2-Z2	100330	9 kHz~30 MHz	Nov. 10, 2014	Nov. 09, 2016

SPORTON INTERNATIONAL INC. Page No. : 27 of 27 TEL: 886-3-327-3456 Report Version : Rev. 02

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 11 of I4

TEL: 886-3-3273456 Report Version : Rev. 02

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 12 of 14
TEL: 886-3-3273456 Report Version : Rev. 02

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 13 of 14
TEL: 886-3-3273456 Report Version : Rev. 02

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 14 of 14
TEL: 886-3-3273456 Report Version : Rev. 02

EBW Result
Appendix A

Summary

FAX: 886-3-327-0973

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4G;Zigbee;5;1;1	1.625M	2.411M	2M41G1D	1.431M	2.393M

SPORTON INTERNATIONAL INC. : A1 of A3
TEL: 886-3-327-3456 : Report Version : Rev. 02

EBW Result
Appendix A

Result

Mode	Result	Limit	P1-N dB	P1-OBW	
			(Hz)	(Hz)	
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	500k	1.45M	2.411M	
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	500k	1.431M	2.405M	
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	500k	1.625M	2.393M	

 SPORTON INTERNATIONAL INC.
 Page No.
 : A2 of A3

 TEL: 886-3-327-3456
 Report Version
 : Rev. 02

EBW Result
Appendix A

 SPORTON INTERNATIONAL INC.
 Page No.
 : A3 of A3

 TEL: 886-3-327-3456
 Report Version
 : Rev. 02

 FAX: 886-3-327-0973

PowerPK Result

Appendix B

Summary

Mode	Sum	Sum EIRP		EIRP
	(dBm)	(W)	(dBm)	(W)
2.4G;Zigbee;5;1;1	18.09	0.06442	18.01	0.06324

Result

Mode	Result	DG	EIRP	EIRP Lim.	Sum	Sum Lim.	P1
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	-0.08	18.01	36.00	18.09	30.00	18.09
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	-0.08	17.01	36.00	17.09	30.00	17.09
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	-0.08	15.60	36.00	15.68	30.00	15.68

SPORTON INTERNATIONAL INC. : B1 of B2
TEL: 886-3-327-3456 : Report Version : Rev. 02

TEL: 886-3-327-3456 FAX: 886-3-327-0973

PowerAV Result

Appendix B

Summary

Mode	Sum	Sum	EIRP	EIRP	
	(dBm)	(W)	(dBm)	(W)	
2.4G;Zigbee;5;1;1	17.91	0.0618	17.83	0.06067	

Result

Mode	Result	DG	EIRP	EIRP Lim.	Sum	Sum Lim.	P1
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	-0.08	17.83	36.00	17.91	30.00	17.91
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	-0.08	16.76	36.00	16.84	30.00	16.84
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	-0.08	15.43	36.00	15.51	30.00	15.51

 SPORTON INTERNATIONAL INC.
 Page No.
 : B2 of B2

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

TEL: 886-3-327-3456 FAX: 886-3-327-0973

PSD Result
Appendix C

Summary

FAX: 886-3-327-0973

Mode	PD	EIRP.PD
	(dBm/RBW)	(dBm/RBW)
2.4G;Zigbee;5;1;1	2.92	2.84

SPORTON INTERNATIONAL INC. : C1 of C3
TEL: 886-3-327-3456 : Report Version : Rev. 02

PSD Result
Appendix C

Result

Mode	Result	Meas.RBW	Lim.RBW	BWCF	DG	Sum.Max	PD	PD.Limit	EIRP.PD	EIRP.PD.Li m	P1
		(Hz)	(Hz)	(dB)	(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	3k	3k	0.00	-0.08	2.92	2.92	8.00	2.84	Inf	2.92
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	3k	3k	0.00	-0.08	2.12	2.12	8.00	2.04	Inf	2.12
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	3k	3k	0.00	-0.08	0.86	0.86	8.00	0.78	Inf	0.86

SPORTON INTERNATIONAL INC. : C2 of C3
TEL: 886-3-327-3456 : Report Version : Rev. 02

TEL: 886-3-327-3456 FAX: 886-3-327-0973

FAX: 886-3-327-0973

PSD Result
Appendix C

SPORTON INTERNATIONAL INC. : C3 of C3
TEL: 886-3-327-3456 : Report Version : Rev. 02

CSENdB Result
Appendix D

Summary

FAX: 886-3-327-0973

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	2.404676G	17.65	-2.35	2.30622G	-53.47	2.39998G	-22.81	2.48866G	-53.23	6.406818G	-52.70	1

SPORTON INTERNATIONAL INC. : D1 of D3
TEL: 886-3-327-3456 : Report Version : Rev. 02

CSENdB Result
Appendix D

Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	2.404676G	17.65	-2.35	2.30622G	-53.47	2.39998G	-22.81	2.48866G	-53.23	6.406818G	-52.70	1
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	2.439579G	18.05	-1.95	2.3015G	-56.19	2.39212G	-46.44	2.48816G	-46.05	6.218326G	-52.71	1
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	2.475317G	14.91	-5.09	2.3074G	-56.25	2.39312G	-52.35	2.48392G	-36.02	6.9526G	-52.96	1

SPORTON INTERNATIONAL INC. : D2 of D3
TEL: 886-3-327-3456 : Report Version : Rev. 02

TEL: 886-3-327-3456 FAX: 886-3-327-0973

CSENdB Result
Appendix D

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : D3 of D3
Report Version : Rev. 02

Appendix D

SPORTON INTERNATIONAL INC. Page No. : D1 of D3
TEL: 886-3-327-3456 Report Version : Rev. 02

SPORTON INTERNATIONAL INC. Page No. : D2 of D3
TEL: 886-3-327-3456 Report Version : Rev. 02

SPORTON INTERNATIONAL INC. Page No. : D3 of D3
TEL: 886-3-327-3456 Report Version : Rev. 02

CSE Result Appendix E

Summary

FAX: 886-3-327-0973

Mode	Result	F-Start	F-Stop	RBW	Туре	Freq	EIRP	Limit	Margin	DG	Loss	Refl	Psum	P1
		(Hz)	(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)	(dBi)	(dB)	(dB)	(dBm)	(dBm)
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	2.4835G	2.4935G	1M	AV	2.48352G	-41.83	-41.30	-0.53	2.00	1.00	0.00	-43.83	-43.83

 SPORTON INTERNATIONAL INC.
 Page No.
 : E1 of E3

 TEL: 886-3-327-3456
 Report Version
 : Rev. 02

CSE Result
Appendix E

Result

Mode	Result	F-Start	F-Stop	RBW	Туре	Freq	EIRP	Limit	Margin	DG	Loss	Refl	Psum	P1
		(Hz)	(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)	(dBi)	(dB)	(dB)	(dBm)	(dBm)
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	1G	2.39G	1M	PK	2.39G	-34.84	-21.30	-13.54	2.00	1.00	0.00	-36.84	-36.84
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	2.4835G	2.4935G	1M	PK	2.48466G	-38.56	-21.30	-17.26	2.00	1.00	0.00	-40.56	-40.56
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	2.4935G	25G	1M	PK	4.808856G	-35.97	-21.30	-14.67	2.00	1.94	0.00	-37.97	-37.97
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	1G	2.39G	1M	AV	2.39G	-48.13	-41.30	-6.83	2.00	1.00	0.00	-50.13	-50.13
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	2.4835G	2.4935G	1M	AV	2.48426G	-62.83	-41.30	-21.53	2.00	1.00	0.00	-64.83	-64.83
2.4G;Zigbee;5;1;1;2405;L;TN,VN	Pass	2.4935G	25G	1M	AV	4.808856G	-43.45	-41.30	-2.15	2.00	1.94	0.00	-45.45	-45.45
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	1G	2.39G	1M	PK	2.39G	-37.93	-21.30	-16.63	2.00	1.00	0.00	-39.93	-39.93
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	2.4835G	2.4935G	1M	PK	2.48434G	-38.26	-21.30	-16.96	2.00	1.00	0.00	-40.26	-40.26
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	2.4935G	25G	1M	PK	4.879189G	-38.55	-21.30	-17.25	2.00	1.96	0.00	-40.55	-40.55
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	1G	2.39G	1M	AV	2.34552G	-54.80	-41.30	-13.50	2.00	1.00	0.00	-56.80	-56.80
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	2.39G	2.4G	1M	AV	2.39G	-60.85	-41.30	-19.55	2.00	1.00	0.00	-62.85	-62.85
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	2.4835G	2.4935G	1M	AV	2.48802G	-47.32	-41.30	-6.02	2.00	1.00	0.00	-49.32	-49.32
2.4G;Zigbee;5;1;1;2440;M;TN,VN	Pass	2.4935G	25G	1M	AV	4.879189G	-45.04	-41.30	-3.74	2.00	1.96	0.00	-47.04	-47.04
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	1G	2.39G	1M	PK	2.39G	-38.51	-21.30	-17.21	2.00	1.00	0.00	-40.51	-40.51
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	2.4835G	2.4935G	1M	PK	2.48356G	-29.38	-21.30	-8.08	2.00	1.00	0.00	-31.38	-31.38
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	2.4935G	25G	1M	PK	4.949522G	-39.51	-21.30	-18.21	2.00	1.99	0.00	-41.51	-41.51
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	1G	2.39G	1M	AV	2.38166G	-56.01	-41.30	-14.71	2.00	1.00	0.00	-58.01	-58.01
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	2.39G	2.4G	1M	AV	2.39G	-62.05	-41.30	-20.75	2.00	1.00	0.00	-64.05	-64.05
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	2.4835G	2.4935G	1M	AV	2.48352G	-41.83	-41.30	-0.53	2.00	1.00	0.00	-43.83	-43.83
2.4G;Zigbee;5;1;1;2475;H;TN,VN	Pass	2.4935G	25G	1M	AV	4.949522G	-46.86	-41.30	-5.56	2.00	1.99	0.00	-48.86	-48.86

 SPORTON INTERNATIONAL INC.
 Page No.
 : E2 of E3

 TEL: 886-3-327-3456
 Report Version
 : Rev. 02

 FAX: 886-3-327-0973

FAX: 886-3-327-0973

CSE Result
Appendix E

: E1 of E10

: Rev. 02

Transmitter Radiated Unwanted Emissions (Below 1GHz)

			Over	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
8	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1 2	30.000	36.94	-3.06	40.00	49.14	24.90	0.32	37.42	Peak
2	43.580	34.20	-5.80	40.00	53.69	17.40	0.38	37.27	Peak
3	249.220	31.85	-14.15	46.00	49.44	17.92	0.88	36.39	Peak
3 4 5	367.560	30.65	-15.35	46.00	45.43	20.72	1.07	36.57	Peak
5	485.900	39.39	-6.61	46.00	52.01	23.05	1.27	36.94	Peak
6	840.920	36.15	-9.85	46.00	43.98	28.05	1.72	37.60	Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No.
TEL: 886-3-327-3456 Report Version

	Freq	Level	Over Limit	OF STREET, THE		Antenna Factor		Preamp Factor	
3	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	30.000	36.81	-3.19	40.00	49.01	24.90	0.32	37.42	Peak
2	177.440	29.36	-14.14	43.50	50.46	14.65	0.74	36.49	Peak
3	260.860	40.37	-5.63	46.00	56.90	18.97	0.90	36.40	Peak
4	400.540	31.69	-14.31	46.00	45.72	21.51	1.12	36.66	Peak
4 5	718.700	38.07	-7.93	46.00	47.67	26.34	1.56	37.50	Peak
6	833.160	41.92	-4.08	46.00	49.87	27.93	1.71	37.59	Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : E2 of E10
TEL: 886-3-327-3456 Report Version : Rev. 02

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark
8	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	8
1	30.000	33.36	-6.64	40.00	45.56	24.90	0.32	37.42	Peak
2	59.100	28.48	-11.52	40.00	53.85	11.28	0.47	37.12	Peak
3	272.500	26.48	-19.52	46.00	43.41	18.55	0.92	36.40	Peak
4	367.560	29.67	-16.33	46.00	44.45	20.72	1.07	36.57	Peak
5	497.540	34.90	-11.10	46.00	47.32	23.26	1.29	36.97	Peak
6	935.980	31.29	-14.71	46.00	37.37	29.62	1.83	37.53	Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : E3 of E10 TEL: 886-3-327-3456 Report Version : Rev. 02

			Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark
12	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	30.000	32.76	-7.24	40.00	44.96	24.90	0.32	37.42	Peak
1 2	61.040	26.73	-13.27	40.00	52.32	11.05	0.47	37.11	Peak
3	225.940	34.03	-11.97	46.00	53.85	15.73	0.84	36.39	Peak
4	367.560	29.92	-16.08	46.00	44.70	20.72	1.07	36.57	Peak
4 5	499.480	31.32	-14.68	46.00	43.72	23.29	1.29	36.98	Peak
6	871.960	35.22	-10.78	46.00	42.82	28.29	1.76	37.65	Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : E4 of E10 TEL: 886-3-327-3456 Report Version : Rev. 02

Transmitter Radiated Unwanted Emissions (Above 1GHz)

Tra	nsmitter Radiated Unwan	ted Emissions (Above 1G	Hz)
Modulation Mode	Zigbee	Test Freq. (MHz)	2405
Operating Function	Transmit	Polarization	V

	Freq	Level	Over Limit	TEST TOTAL		Antenna Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	4810.000	39.18	-14.82	54.00	37.10	31.13	6.11	35.16	Average
2	4810.000	48.29	-25.71	74.00	46.21	31.13	6.11	35.16	Peak
3	7215.000	52.53			44.52	35.86	7.56	35.41	Peak
4	9620.000	57.28			45.81	38.67	8.75	35.95	Peak

- Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
- Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
- Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
- Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
- Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level (117.76 dBuV/m).
- Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

SPORTON INTERNATIONAL INC. Page No. : E5 of E10 TEL: 886-3-327-3456 Report Version : Rev. 02

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	Modulation ModeZigbeeTest Freq. (MHz)2405							
Operating Function	Transmit	Polarization	Н					

Freq	Level	Over Limit	THE STATE OF THE S					Remark
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
4810.000	35.93	-18.07	54.00	33.85	31.13	6.11	35.16	Average
4810.000	46.36	-27.64	74.00	44.28	31.13	6.11	35.16	Peak
7215.000	51.77			43.76	35.86	7.56	35.41	Peak
9620.000	56.34			44.87	38.67	8.75	35.95	Peak
	MHz 4810.000 4810.000 7215.000	MHz dBuV/m 4810.000 35.93 4810.000 46.36 7215.000 51.77	Freq Level Limit MHz dBuV/m dB 4810.000 35.93 -18.07 4810.000 46.36 -27.64 7215.000 51.77	Freq Level Limit Line MHz dBuV/m dB dBuV/m 4810.000 35.93 -18.07 54.00 4810.000 46.36 -27.64 74.00 7215.000 51.77	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 4810.000 35.93 -18.07 54.00 33.85 4810.000 46.36 -27.64 74.00 44.28 7215.000 51.77 43.76	Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV dB/m 4810.000 35.93 -18.07 54.00 33.85 31.13 4810.000 46.36 -27.64 74.00 44.28 31.13 7215.000 51.77 43.76 35.86	Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB 4810.000 35.93 -18.07 54.00 33.85 31.13 6.11 4810.000 46.36 -27.64 74.00 44.28 31.13 6.11 7215.000 51.77 43.76 35.86 7.56	Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 4810.000 35.93 -18.07 54.00 33.85 31.13 6.11 35.16 4810.000 46.36 -27.64 74.00 44.28 31.13 6.11 35.16 7215.000 51.77 43.76 35.86 7.56 35.41

- Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
- Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
- Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
- Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
- Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level (117.76dBuV/m).
- Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

SPORTON INTERNATIONAL INC. Page No. : E6 of E10
TEL: 886-3-327-3456 Report Version : Rev. 02

	Freq	Level	Level	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2		
1	4880.000	40.67	-13.33	54.00	38.46	31.23	6.13	35.15	Average		
2	4880.000	47.88	-26.12	74.00	45.67	31.23	6.13	35.15	Peak		
3	7320.000	50.46	-3.54	54.00	42.15	36.13	7.60	35.42	Average		
4	7320.000	57.76	-16.24	74.00	49.45	36.13	7.60	35.42	Peak		
5	9760.000	56.15			44.41	38.76	8.94	35.96	Peak		

- Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
- Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
- Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
- Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
- Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level (116.93 dBuV/m).
- Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

SPORTON INTERNATIONAL INC. Page No. : E7 of E10
TEL: 886-3-327-3456 Report Version : Rev. 02

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	Modulation ModeZigbeeTest Freq. (MHz)2440							
Operating Function	Transmit	Polarization	Н					

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	4880.000	36.55	-17.45	54.00	34.34	31.23	6.13	35.15	Average
2	4880.000	46.51	-27.49	74.00	44.30	31.23	6.13	35.15	Peak
3	7320.000	48.32	-5.68	54.00	40.01	36.13	7.60	35.42	Average
4	7320.000	56.51	-17.49	74.00	48.20	36.13	7.60	35.42	Peak
5	9760.000	55.61			43.87	38.76	8.94	35.96	Peak

- Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
- Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
- Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
- Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
- Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level (116.93 dBuV/m).
- Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

SPORTON INTERNATIONAL INC. Page No. : E8 of E10 TEL: 886-3-327-3456 Report Version : Rev. 02

Transmitter Radiated Unwanted Emissions (Above 1GHz)							
Modulation ModeZigbeeTest Freq. (MHz)2475							
Operating Function	Transmit	Polarization	V				

Freq	Level	Over Limit	Limit Line					Remark
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
4950.000	34.12	-19.88	54.00	31.77	31.33	6.17	35.15	Average
4950.000	46.20	-27.80	74.00	43.85	31.33	6.17	35.15	Peak
7425.000	39.50	-14.50	54.00	30.89	36.40	7.64	35.43	Average
7425.000	51.44	-22.56	74.00	42.83	36.40	7.64	35.43	Peak
9900.000	55.34			43.38	38.84	9.08	35.96	Peak
	MHz 4950.000 4950.000 7425.000 7425.000	MHz dBuV/m 4950.000 34.12 4950.000 46.20 7425.000 39.50 7425.000 51.44	Freq Level Limit MHz dBuV/m dB 4950.000 34.12 -19.88 4950.000 46.20 -27.80 7425.000 39.50 -14.50 7425.000 51.44 -22.56	Freq Level Limit Line MHz dBuV/m dB dBuV/m 4950.000 34.12 -19.88 54.00 4950.000 46.20 -27.80 74.00 7425.000 39.50 -14.50 54.00 7425.000 51.44 -22.56 74.00	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 4950.000 34.12 -19.88 54.00 31.77 4950.000 46.20 -27.80 74.00 43.85 7425.000 39.50 -14.50 54.00 30.89 7425.000 51.44 -22.56 74.00 42.83	Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV dB/m 4950.000 34.12 -19.88 54.00 31.77 31.33 4950.000 46.20 -27.80 74.00 43.85 31.33 7425.000 39.50 -14.50 54.00 30.89 36.40 7425.000 51.44 -22.56 74.00 42.83 36.40	Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB 4950.000 34.12 -19.88 54.00 31.77 31.33 6.17 4950.000 46.20 -27.80 74.00 43.85 31.33 6.17 7425.000 39.50 -14.50 54.00 30.89 36.40 7.64 7425.000 51.44 -22.56 74.00 42.83 36.40 7.64	Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 4950.000 34.12 -19.88 54.00 31.77 31.33 6.17 35.15 4950.000 46.20 -27.80 74.00 43.85 31.33 6.17 35.15 7425.000 39.50 -14.50 54.00 30.89 36.40 7.64 35.43 7425.000 51.44 -22.56 74.00 42.83 36.40 7.64 35.43

- Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
- Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
- Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
- Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
- Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level (106.84 dBuV/m).
- Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

SPORTON INTERNATIONAL INC. Page No. : E9 of E10
TEL: 886-3-327-3456 Report Version : Rev. 02

Transmitter Radiated Unwanted Emissions (Above 1GHz)							
Modulation ModeZigbeeTest Freq. (MHz)2475							
Operating Function	Transmit	Polarization	Н				

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	4950.000	33.01	-20.99	54.00	30.66	31.33	6.17	35.15	Average
2	4950.000	44.85	-29.15	74.00	42.50	31.33	6.17	35.15	Peak
3	7425.000	39.36	-14.64	54.00	30.75	36.40	7.64	35.43	Average
4	7425.000	51.27	-22.73	74.00	42.66	36.40	7.64	35.43	Peak
5	9900.000	55.30			43.34	38.84	9.08	35.96	Peak

- Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
- Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
- Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
- Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
- Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level (106.84dBuV/m).
- Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

SPORTON INTERNATIONAL INC. Page No. : E10 of E10
TEL: 886-3-327-3456 Report Version : Rev. 02

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page Number : G14 of G14 Report Version : Rev. 02