Disambiguating Sources II an alternative and an extension

Luis Campos (with David Jones, David van Dyk, Aneta Siemiginowska, Vinay Kashyap, Xiao-Li Meng)

April 18, 2017

X-Ray Telescope: Chandra and psf

X-Ray Telescope: Chandra and psf

When Spatial Information is not enough.

Spectral Energy Distribution

David E. Jones, Vinay L. Kashyap, and David A. van Dyk (2015) "Disentangling Overlapping Astronomical Sources using Spatial and Spectral Information" The Astrophysical Journal

Time Arrival Information

Luis F. Campos, et.al (2017? 2018?)

- Part of a system of multiple young stellar objects
- ▶ Discovered in 2012
- Difficult to Study: One study pulished in 2016 Principe, et.al. 'The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity'

- Part of a system of multiple young stellar objects
- Discovered in 2012
- ▶ **Difficult to Study**: One study pulished in 2016 Principe, et.al. 'The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity'

Methods:

- "The point spread functions of the two binary components overlap significantly, however, complicating their photometric and spectral decomposition."
- "Hence, we used two spectral extraction regions for each of the component sources"

Given:

- (x_i, y_i, E_i, t_i) : photon-level information
- ► *S*: number of sources (assume known for now)

Given:

- (x_i, y_i, E_i, t_i) : photon-level information
- ► S: number of sources (assume known for now)

Can we

- approximate the source locations?
- (probabilistically) allocate each photon?

Given:

- (x_i, y_i, E_i, t_i) : photon-level information
- S: number of sources (assume known for now)

Can we

- approximate the source locations?
- (probabilistically) allocate each photon?

 $\downarrow\downarrow$

- distance between sources
- source intensities
- better understand source spectral information
- better models for time arrival (O-U process, flares), etc.

Overarching plan:

- ▶ Jones, et.al. used (x_i, y_i, E_i) with *unknown* number of sources
- ▶ First use (x_i, y_i, t_i) with fixed number of sources (MVP)
- Extend to unknown number of sources
- ▶ Then combine with Jones, et.al.

$$p(z_i = s | x_i, y_i, t_i) = \frac{p(x_i, y_i, t_i | z_i = s) \ p(z_i = s)}{p(x_i, y_i, t_i)}$$

$$p(z_i = s|x_i, y_i, t_i) = \frac{p(x_i, y_i, t_i|z_i = s) \ p(z_i = s)}{p(x_i, y_i, t_i)}$$

Assume photon location distribution can be modeled the same accross time.

$$p(x_i, y_i, t_i|z_i = s) = p(x_i, y_i|z_i = s) p(t_i|z_i = s)$$

$$p(z_i = s | x_i, y_i, t_i) = \frac{p(x_i, y_i, t_i | z_i = s) \ p(z_i = s)}{p(x_i, y_i, t_i)}$$

Assume photon location distribution can be modeled the same accross time.

$$p(x_i, y_i, t_i | z_i = s) = p(x_i, y_i | z_i = s) p(t_i | z_i = s)$$

Onward!

$$p(z_i = s|x_i, y_i, t_i) \propto p(x_i, y_i|z_i = s) p(t_i|z_i = s) p(z_i = s)$$

Onward!

$$p(z_i = s|x_i, y_i, t_i) \propto p(x_i, y_i|z_i = s) p(t_i|z_i = s) p(z_i = s)$$

- ▶ $p(x_i, y_i | z_i = s)$: Can use the King Profile (a 2-d Cauchy)
- $p(z_i = s)$: Can use a Dirichlet distribution.
- $p(t_i|z_i=s)?$

$$p(t_i \in [b_{k-1}, b_k]|z_i = s) = \alpha_{k,s}$$
 and $\sum_i \alpha_{k,s} = 1$

$$p(t_i \in [b_{k-1}, b_k]|z_i = s) = \alpha_{k,s}$$
 and $\sum_{k=1}^K \alpha_{k,s} = 1$

Model Considerations:

- ► Number of breakpoints K
- ▶ Breakpoint locations $\{b_k\}_{k=1}^K$

$$p(t_i \in [b_{k-1}, b_k]|z_i = s) = \alpha_{k,s}$$
 and $\sum_{k=1}^K \alpha_{k,s} = 1$

Overarching answer:

- ► Goal: allocation
- Models should capture some overall structure
- Err on the side of caution

$$p(t_i \in [b_{k-1}, b_k]|z_i = s) = \alpha_{k,s}$$
 and $\sum_{k=1}^K \alpha_{k,s} = 1$

Model Choices:

- ► K same across sources, relatively small (10, 15).
- $\{b_k\}_{k=1}^K$ are fixed and evenly spaced across sources.

Simulated Data

We want to study:

- 1. Should we even use time?
- 2. How does the distance between sources affect out ability to distinguish them?

Simulated Data

We want to study:

- 1. Should we even use time?
- 2. How does the distance between sources affect out ability to distinguish them?

Simulation:

- 1. Two sources with background
- 2. Source separation (0.5, 0.6, 0.75, 1, 1.5, 2)
- 3. Ideal time arrival distributions (for now)

Simulated Data (separation = 2)

Simulated Data (separation = 0.5)

What we have to work with (separation = 2)

What we have to work with (separation = 0.5)

Source Location (separation = 2)

Source Location (separation = 0.5)

Source Separation (with replicates)

Source Intensity: Bright Source (with replicates)

Posterior CI: Weight - Bright Source

Source Intensity: Dim Source (with replicates)

Source Intensity: Background (with replicates)

Posterior CI: Weight - Background

Average Correct Source Allocation (with replicates)

Average Correct Source Allocation by Source (with replicates)

Where do we go from here?

What we've done:

- ▶ We've shown that using time **can** help disambiguate sources.
- Even simple models (constant functions) can prove useful.

Future directions:

- Real light curve shapes (mine were too simple)
- Reversible Jump MCMC for unknown number of sources
- Merge with spectral energy models.

Data Analysis (time permitting)

Posterior Means of Two Overlapping Sources

Posterior: Relative Brightness

Bright Source

Dim Source

Light Curves

Thank you!

