Comparative Study of Deep Q Learning and Double Deep-Q Learning on Atari Breakout

Outline

- Introduction to Reinforcement learning
- Value Function
- The Bellman equation
- Q-learning
- Deep Q networks (DQN)
- Double DQN
- Results/Discussion
- Implementation Code (If time permits)

Reinforcement learning (RL)

- Setting: agent that can take actions affecting the state of the environment and observe occasional rewards that depend on the state
- Goal: learn a policy (mapping from states to actions) to maximize expected reward over time

Reinforcement learning loop

Components:

- States s, beginning with initial state s_0
- Actions a
- Transition model P(s' | s, a)

Assumption: The probability of going to s' from s depends only on s and a and not on any other past actions or states

- Reward function r(s)
- **Policy** $\pi(s)$: the action that an agent takes in any given state

Loop:

- From state s, take action a determined by policy $\pi(s)$
- Environment selects next state s' based on transition model P(s'|s,a)
- Observe s' and reward r(s'), update policy

Reinforcement learning for Atari Games

Open Gym Environment

State:

Frame as pixel values

Actions:

left ,right, fire (to reset the game when a life is lost

Reward:

Breaking Bricks (points depend on the colour of the brick)

Value function

• The value function $V^{\pi}(s)$ of a state s w.r.t. policy π is the expected cumulative reward of following that policy starting in s:

$$V^{\pi}(s) = \mathbb{E}_{\tau}[r(\tau)| s_0 = s, \pi]$$

where τ is a trajectory with starting state s, actions given by π , and successor states drawn according to transition model:

$$s_{t+1} \sim P(\cdot | s_{t}, a_{t})$$

 The optimal value of a state is the value achievable by following the best possible policy:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

The Bellman equation

 Recursive relationship between optimal values of successive states:

$$V^*(s) = r(s) + \gamma \max_{a} \mathbb{E}_{s' \sim P(\cdot|s,a)} V^*(s')$$

Discounting

- Problem: the sum of rewards of individual states is not normalized w.r.t. sequence length and can even be infinite
- Solution: define cumulative reward as sum of rewards discounted by a factor γ , $0 < \gamma \le 1$

Discounting

• Discounted cumulative reward of trajectory $\tau = (s_0, s_1, s_2, s_3, ...)$:

$$r(s_0, s_1, s_2, s_3, \dots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \gamma^3 r(s_3) + \dots$$
$$= \sum_{t \ge 0} \gamma^t r(s_t)$$

• Sum is bounded by $\frac{r_{\text{max}}}{1-\gamma}$ (assuming $0 < \gamma \le 1$)

trajectory starting at s_0

- Helps algorithms converge
- Notice:

$$r(s_0,s_1,s_2,s_3,\dots)=r(s_0)+\gamma \ r(s_1,s_2,s_3,\dots)$$

Cumulative reward of Reward Discounted reward of

at s_0

trajectory starting at s_1

Q-Learning

Relationship between regular values and Q-values:

$$V^*(s) = \max_a Q^*(s, a)$$

Regular Bellman equation:

$$V^*(s) = r(s) + \gamma \max_{a} \mathbb{E}_{s' \sim P(\cdot|s,a)} V^*(s')$$

Bellman equation for Q-values:

$$Q^{*}(s, a) = r(s) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^{*}(s', a')$$

= $\mathbb{E}_{s' \sim P(\cdot | s, a)} [r(s) + \gamma \max_{a'} Q^{*}(s', a')]$

Deep Q-learning

Train a deep neural network to estimate Q-values:

Deep Q-learning

$$Q^{*}(s,a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} [r(s) + \gamma \max_{a'} Q^{*}(s',a')|s,a]$$

 At each step of training, update model parameters w to "nudge" the left-hand side toward the right-hand "target":

$$y_{\text{target}}(s, a) = \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') | s, a \right]$$

Loss function:

$$L(w) = \mathbb{E}_{s,a} \left[(y_{\text{target}}(s, a) - Q_w(s, a))^2 \right]$$

Deep Q-learning

- Target: $y_{\text{target}}(s, a) = \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') | s, a \right]$
- Loss: $L(w) = \mathbb{E}_{s,a \sim \rho} \left[(y_{\text{target}}(s,a) Q_w(s,a))^2 \right]$
- Gradient update:

$$\nabla_{w}L(w) = \mathbb{E}_{s,a\sim\rho} \left[(y_{\text{target}}(s,a) - Q_{w}(s,a)) \nabla_{w}Q_{w}(s,a) \right]$$

$$= \mathbb{E}_{s,a\sim\rho,s'} \left[(r(s) + \gamma \max_{a'} Q_{\text{target}}(s',a') - Q_{w}(s,a)) \nabla_{w}Q_{w}(s,a) \right]$$

• SGD training: replace expectation by sampling transitions (s, a, s') using behavior distribution and experience replay

Deep Q-learning in practice

- Training is prone to instability
 - Unlike in supervised learning, the targets themselves are moving!
 - Successive experiences are correlated and dependent on the policy
 - Policy may change rapidly with slight changes to parameters, leading to drastic change in data distribution
- Solutions
 - Use experience replay
 - Freeze target Q network (Double-DQN)

Deep Q-learning in practice – Final Implementation

- At each time step:
 - Take action a_t according to epsilon-greedy policy
 - Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory buffer

s_1, a_1, r_2, s_2
s_2, a_2, r_3, s_3
<i>s</i> ₃ , <i>a</i> ₃ , <i>r</i> ₄ , <i>s</i> ₄
• • •
$s_t, a_t, r_{t+1}, s_{t+1}$

- Randomly sample mini-batch of experiences from the buffer
- Perform gradient descent step on loss:

$$L(w) = \mathbb{E}_{s,a,s'} \left[(r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a') - Q_w(s, a))^2 \right]$$

Deep Q-learning in Atari

- End-to-end learning of Q(s, a) from pixels s
- Output is Q(s, a) for 18 joystick/button configurations
- Reward is change in score for that step

Double Deep Q-learning

- Max operator in standard Q-learning is used both to select and evaluate an action, leading to systematic over-estimation of Q-values
- Modification: select action using the online (current) network, but evaluate Q-value using the target network
- Regular DQN target:

$$y_{\text{target}}(s, a) = r(s) + \gamma \max_{a'} Q_{\text{target}}(s', a')$$

Double DQN target:

$$y_{\text{target}}(s, a) = r(s) + \gamma Q_{\text{target}}(s', \operatorname{argmax}_{a'} Q_w(s', a'))$$

Results

DQN Results

Double - DQN Results

Discussion – Learning Trends

DQN Results

5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -

1000

Episodes

1500

2000

500

Double - DQN Results

Both DQN and DDQN show an increasing trend in rewards over episodes, but DDQN achieves a higher peak reward than DQN i.e., it performs better by mitigating the overestimation bias present in DQN

Discussion – Volatility in Rewards

DQN Results

Double - DQN Results

DDQN has more volatility in the reward values compared to the DQN (in the end) This could indicate that DDQN is exploring more diverse strategies / over-exploration, overfitting to particular states, or is more sensitive to the randomness in the environment which indicates need for more fine tuning of params

Visualization of Learned Policy

Link to the Project Code and my review paper

Code: https://github.com/vporwal3/Deep-Reinforcement-Learning/tree/main

Review Paper: https://github.com/vporwal3/Deep- Reinforcement-Learning/blob/main/RLpaper.pdf