# Table of Contents

- 1. MT Part III: Endogeneity and IV
  - 1. 3 1 Endogeneity
    - 1. Measurement Errors
    - 2. Omitted Variables
  - 2. 3 2 Instrument Variables
  - 3. 3 4 2 Local Average Treatment Effects
  - 4. 3 5 GMM

## MT Part III: Endogeneity and IV

## 3 1 Endogeneity

#### Measurement Errors

#### Measurement Error in Y → No Problem #flashcard

• Consider an additive, zero-mean, uncorrelated with  $x_i$  measurement error in the dependent variable only:

$$y_i = y_i^\star + v_i \iff y_i^\star = y_i - v_i$$

- ullet  $y_i$  is the observed value
- $y_i^{\star}$  is the true value
- $\mathbb{E}\left[v_i
  ight]=0$  (zero mean)
- $\mathbb{E}\left[x_iu_i\right]=0$  (important assumption)
- We estimate the model:

$$y_i = y_i^\star + u_i \ = x_i eta + v_i + u_i$$

- We still have  $\mathbb{E}\left[(v_i+u_i)x_i\right]=0 \implies \mathsf{OLS}$  is consistent

### Measurement Error in X → Attenuation Bias (Case of Classical Errors-in-variable Assumptions) #flashcard

· General setup:

$$x_i = x_i^\star + e_i \iff x_i^\star = x_i - e_i$$

- Classical Error-in-variable assumptions:
  - $\mathbb{E}\left[x_i^{\star}e_i\right]=0$  measurement error is uncorrelated with the true value of  $x_i^{\star}$
  - ullet  $\mathbb{E}\left[u_ie_i
    ight]=0$  measurement error is uncorrelated with the true model error  $u_i$
  - $Var[e_i] = \sigma_e^2$  measurement error is homoskedastic
  - $Var[x_i^{\star}] = \sigma_{x^{\star}}^2$  population variance of the true  $x_i^{\star}$  exists and is finite
- SLR

Now 
$$\widehat{\beta}_{OLS} = (X'X)^{-1}X'y^* = \frac{1}{n}\sum_{i=1}^n x_iy_i^* = \frac{1}{n}\sum_{i=1}^n x_i^* = \frac{1}{n}\sum_{i=1}^n x_$$

- MLR
  - The OLS estimator of the coefficient on the variable with ME will have attenuation bias
  - The OLS estimator of other coefficients will also be biased, but with unknown directions

## Omitted Variables

#### **Omitted Variable in SLR**

True DGP:

$$y_i = x_{1i}\beta_1 + x_{2i}\beta_2 + u_i$$

with  $\mathbb{E}\left[x_{1i}u_i
ight]=\mathbb{E}\left[x_{2i}u_i
ight]=0$  and  $\mathbb{E}\left[u_i
ight]=\mathbb{E}\left[x_{1i}
ight]=\mathbb{E}\left[x_{2i}
ight]=0$  for simplicity

We omit x<sub>2i</sub> and estimate:

$$y_i = x_{1i}\beta_1 + (x_{2i}\beta_2 + u_i)$$

Result:

$$\mathrm{plim}_{n o\infty}\hat{eta}_1=eta_1+eta_2
ho_{x_1,x_2}$$

Proof:

The OLS estimator of  $\beta_1$  is

$$\widehat{\beta}_1 = (X_1' X_1)^{-1} X_1' y$$

Substituting for  $y = X_1\beta_1 + X_2\beta_2 + u$  from the true model

$$\widehat{\beta}_1 = (X_1'X_1)^{-1}X_1'(X_1\beta_1 + X_2\beta_2 + u)$$

$$= \beta_1 + \left[ (X_1'X_1)^{-1}X_1'X_2 \right] \beta_2 + (X_1'X_1)^{-1}X_1'u$$

$$= \beta_1 + \widehat{\delta}\beta_2 + (X_1'X_1)^{-1}X_1'u$$

where  $\hat{\delta} = (X_1'X_1)^{-1}X_1'X_2$  is the OLS estimator of ...

21

...the coefficient  $\delta$  in a linear projection of the omitted variable  $x_{2i}$  on the included variable  $x_{1i}$ , i.e.

$$x_{2i} = x_{1i}\delta + e_i$$

Taking probability limits, and using  $E(x_{1i}u_i) = 0$ , we obtain

$$\operatorname{p}\lim_{n\to\infty}\widehat{\beta}_1=\beta_1+(\operatorname{p}\lim_{n\to\infty}\widehat{\delta})\beta_2=\beta_1+\delta\beta_2$$

#### Omitted Variables in MLR #flashcard

- Single Omitted Variable in MLR
  - Model:

$$y_i = \beta_1 + \beta_2 x_{2i} + \dots + \beta_{K-1} x_{K-1,i} + (\beta_K x_{Ki} + u_i)$$

where  $\mathbb{E}\left[x_{ki}u_i\right]=0$  for  $k=1,\ldots,K$ 

Result:

$$ext{plim}_{n o\infty}\hat{eta}_k=eta_k+eta_K
ho_{x_k,x_K|x_{i
eq K}}$$

where  $ho_{x_k,x_K|x_{i\neq K}}$  is the partial correlation between  $x_k,x_K$ , which can be obtained as  $\delta_k$  in the linear projection:

$$x_{Ki} = \delta_1 + \delta_2 x_{2i} + \cdots + \delta_{K-1} x_{K-1,i} + v_i$$

Proof:



- Multiple Omitted Variable in MLR
  - Model:

$$y = X_1 \beta_1 + (X_2 \beta_2 + u)$$

- We can show that:

$$ext{plim}_{n o\infty}\hat{eta}_1=eta_1+ig( ext{plim}_{n o\infty}(X_1^TX_1)^{-1}X_1^TX_2ig)eta_2$$

- OLS estimators will be biased and inconsistent (unless all omitted variables are orthogonal to all included variables) but the direction is hard to predict

Sinultaneity Bias #flashcard

• The dependent variable and at least one of the explanatory variables are chosen jointly as part of the same decision problem.

#### 3 2 Instrument Variables

THE FOLLOWING IS NOT A COMPREHENSIVE SUMMARY FOR THE IV PART!

Formulas for 2SLS Estimator #flashcard

$$\begin{split} \hat{\beta}_{2SLS} &= \left(\hat{X}^T\hat{X}\right)^{-1}\hat{X}^Ty \\ &= X^T\underbrace{Z(Z^TZ)^{-1}Z^T}_{P_z}X X^T\underbrace{Z(Z^TZ)^{-1}Z^T}_{P_z}y \\ &= \left(\hat{X}^TX\right)^{-1}\hat{X}^Ty \\ &= (Z^TX)^{-1}Z^Ty \qquad \text{(only in the just-identified case)} \end{split}$$

## 2SLS as Control Function #flashcard

- 1. Preform 1st stare projection
- 2. Plug in 1st-stage residuals as additional variables in the main regression

#### 2SLS as Indirect Least Square #flashcard

- · When just-identified, 2SLS coincides with indirect least squares
  - Example: we have an IV  $z_i$  for the endogenous regressor  $x_i$
  - 1. Run a first stage projection

$$x_i = z_i \pi + r_i$$

2. Run a reduced-form regression:

$$y_i = z_i d + u_i$$

3. Divide reduced-form coefficient by 1st-stage coefficient:

$$\hat{eta}_{ ext{indirect square}} = rac{\hat{d}}{\hat{\pi}}$$

#### Consistency of 2SLS #flashcard

Y Of To establish conditions under which  $\widehat{\beta}_{2\text{SLS}}$  is a consistent estimator of  $\beta$ , we express  $\widehat{\beta}_{2\text{SLS}}$  in the form

$$\begin{split} \widehat{\beta}_{\mathrm{2SLS}} &= (\widehat{X}'X)^{-1}\widehat{X}'y \quad (\widehat{S}ul \text{ begression}) \\ &= (\widehat{X}'X)^{-1}\widehat{X}'(X\beta + u) \\ &= (\widehat{X}'X)^{-1}\widehat{X}'X\beta + (\widehat{X}'X)^{-1}\widehat{X}'u \\ &= \beta + \left(\frac{\widehat{X}'X}{n}\right)^{-1}\left(\frac{\widehat{X}'u}{n}\right) \end{split}$$
 willity limits

Taking probability limits

$$\mathrm{p}\lim_{n\to\infty}\widehat{\beta}_{\mathrm{2SLS}} = \beta + \mathrm{p}\lim_{n\to\infty} \left(\frac{\widehat{X}'X}{n}\right)^{-1} \mathrm{p}\lim_{n\to\infty} \left(\frac{\widehat{X}'u}{n}\right)$$

We assume the data on  $(y_i, x_i, z_i')$  are independent and identically distributed, with  $E(z_i u_i') = 0$  and  $E(z_i x_i) \neq 0 \leftrightarrow \pi \neq 0$ 

From the Law of Large Numbers, the vector of sample means

$$\frac{1}{n}\sum_{i=1}^{n} z_{i}u_{i} \stackrel{\mathrm{P}}{\to} \mathrm{E}(z_{i}u_{i}) = 0$$

We can also write  $\frac{1}{n}\sum_{i=1}^{n}z_{i}u_{i}=\frac{1}{n}(Z'u)$ , so we have

$$\left(\frac{Z'u}{n}\right) \stackrel{P}{\to} 0$$

 $\hat{\pi}$  is a consistent estimator of the coefficient vector  $\pi$  in the first stage linear projection, so we also have  $\hat{\pi} \stackrel{P}{\rightarrow} \pi \neq 0$ 

$$\beta_{255} = (\widehat{X}^{\dagger}X)^{-1}\widehat{X}^{\dagger}X + iu)$$

$$= (\widehat{X}^{\dagger}X)^{-1}\widehat{X}^{\dagger}X + iu)$$

$$= \beta + (\widehat{X}^{\dagger}X)^{-1}\widehat{X}^{\dagger}u$$

$$= \beta_{1555} = \beta + \beta_{1555} = \beta_{155} = \beta_{15$$

Since  $\widehat{X} = Z\widehat{\pi}$ , we can express

$$\left(\frac{\widehat{X}'u}{n}\right) = \left(\frac{(Z\widehat{\pi})'u}{n}\right) = \left(\frac{(\widehat{\pi}'Z')u}{n}\right) = \widehat{\pi}'\left(\frac{Z'u}{n}\right)$$

Then using Slutsky's theorem, we have

$$p \lim_{n \to \infty} \left( \frac{\widehat{X}'u}{n} \right) = \pi'0 = 0$$

Similarly, from the Law of Large Numbers, the vector of sample means

$$\frac{1}{n} \sum_{i=1}^{n} z_i x_i \stackrel{P}{\to} E(z_i x_i) = M_{ZX} \neq 0$$

where  $M_{ZX} = E(z_i x_i)$  is an  $L \times 1$  column vector

We can also write  $\frac{1}{n}\sum_{i=1}^n z_i x_i = \frac{1}{n}(Z'X)$ , so we have

$$\left(\frac{Z'X}{n}\right) \stackrel{\mathrm{P}}{\to} M_{ZX} \neq 0$$

Since  $\widehat{X} = Z\widehat{\pi}$ , we can express

$$\left(\frac{\widehat{X}'X}{n}\right) = \left(\frac{(Z\widehat{\pi})'X}{n}\right) = \left(\frac{(\widehat{\pi}'Z')X}{n}\right) = \widehat{\pi}'\left(\frac{Z'X}{n}\right)$$

Then using Slutsky's theorem, we have

$$p \lim_{n \to \infty} \left( \frac{\widehat{X}'X}{n} \right) = \pi' M_{ZX} \neq 0$$

and

$$\mathbf{p} \lim_{n \to \infty} \left( \frac{\widehat{X}'X}{n} \right)^{-1} = (\pi' M_{ZX})^{-1}$$
 is finite

Now recalling that

$$\mathbf{p}\lim_{n\to\infty}\widehat{\boldsymbol{\beta}}_{2\mathrm{SLS}} = \boldsymbol{\beta} + \mathbf{p}\lim_{n\to\infty} \left(\frac{\widehat{X}'X}{n}\right)^{-1} \mathbf{p}\lim_{n\to\infty} \left(\frac{\widehat{X}'u}{n}\right)$$

we have shown:

i) p  $\lim_{n\to\infty} \left(\frac{\widehat{X}'u}{n}\right)=0$ , given the instrument validity condition  $\mathrm{E}(z_iu_i)=0$ 

ii) p $\lim_{n\to\infty}\left(\frac{\hat{X}'X}{n}\right)^{-1}$  exists and is finite, given the instrument informative-

ness condition  $E(z_i x_i) \neq 0 \leftrightarrow \pi \neq 0$ 

Given these two properties of the instrumental variables in  $z_i$ , we obtain

the consistency result

$$\mathrm{p}\lim_{n\to\infty}\widehat{\beta}_{2\mathrm{SLS}} = \beta \quad \text{or} \quad \widehat{\beta}_{2\mathrm{SLS}} \overset{\mathrm{P}}{\to} \beta$$

#### 2SLS as GMM #flashcard

- GMM tries to best match the sample analogue of population moment  $\mathbb{E}\left[z_{i}u_{i}
  ight]=0$
- Just identified case:  $\hat{eta}_{GMM} = \hat{eta}_{2SLS}$
- Over-identified case: the GMM estimator minimises a weighted quadratic distance:

$$egin{aligned} \hat{eta}_{GMM} &= arg \min_{eta} \left\{ u^T Z W_n Z^T u 
ight\} \ &= arg \min_{eta} \left\{ \left( rac{1}{n} \sum_{i=1}^n u_i(eta) z_i^T 
ight) W_n \left( rac{1}{n} \sum_{i=1}^n u_i(eta)^T z_i 
ight) 
ight\} \end{aligned}$$

- 2SLS uses a particular weight matrix  $W_{2SLS} = (Z^T Z)^{-1}$ , which is the most efficient one under homoskedascity

### Inference and Var Estimation for 2SLS #flashcard

· Assumptions: Validity + Informative

Large-sample distribution:

$$\hat{eta}_{2SLS} \sim^a N\left(eta, rac{V}{n}
ight)$$

- Under homoskedasticity ( $\mathbb{E}\left[u_i^2|z_i\right]=\sigma^2$ ), the consistent estimator for estimation variance is:

$$\widehat{Var}(\hat{eta}_{2SLS}) = rac{\hat{V}}{n} = \hat{\sigma}^2 \Big(\hat{X}^T\hat{X}\Big)^{-1}$$

where  $\hat{\sigma}^2 = rac{1}{n} \sum_{i=1}^n \hat{u}_i^2$ 

Thus:

$$\hat{eta}_{2SLS} \sim^a N\left(eta, \hat{\sigma}^2 \Big(\hat{X}^T \hat{X}\Big)^{-1}
ight)$$

- Under heteroskedasticity, there is a HR estimator:

$$\widehat{Var}_{HR}(\hat{eta}_{2SLS}) = rac{\hat{V}_{HR}}{n} = \left(\hat{X}^T\hat{X}
ight)^{-1} \left(\sum_{i=1}^n \hat{u}_i^2\hat{x}_i\hat{x}_i^T
ight) \left(\hat{X}^T\hat{X}
ight)^{-1}$$

- Thus:

$$\hat{eta}_{2SLS} \sim^a N\left(eta, \left(\hat{X}^T\hat{X}
ight)^{-1} \left(\sum_{i=1}^n \hat{u}_i^2 \hat{x}_i \hat{x}_i^T
ight) \left(\hat{X}^T\hat{X}
ight)^{-1}
ight)$$

- Note that  $\hat{u}_i = y_i - \frac{\mathbf{x}_i}{2} \hat{\beta}_{2SLS}$  (we use the true  $x_i$  not the predicted  $\hat{x}_i$ )

#### 2SLS Procedures and Conditions for Multiple Endogenous Variables #flashcard

- Notations: L is the number of exogenous variables, K is the number of all variables in the equation of interest,  $\underbrace{z_i^T}_{1 \times L}$  is a row vector of all exogenous variables (IVs and exogenous regressors),  $\underbrace{x_i^T}_{1 \times K}$  is a row vector of all variables in the equation of interest
- 1st-stage Projection:

$$X_{n \times K} = Z_{n \times LL \times K} + R_{n \times K}$$

note that if we have an intercept, we will alway include an equation 1 = 1 and if some variables  $x_k$  are exogenous, we need to include  $x_k = x_k$ 

- · Conditions:
  - Validity:  $\mathbb{E}\left[z_iu_i\right]=0$
  - Informative
    - Order condition (necessary but not sufficient):  $L \ge K$
    - Rank condition (necessary and sufficient): the  $L \times K$  matrix has full rank
- Then, calculate  $\hat{X}$  and run the main regression

#### Testing IV Validity in Over-identifying Cases #flashcard

- Idea: when we have over-identification (L > K), we can examine whether the minimised value of the GMM criterion function is "small enough" to be consistent with our orthogonal assumption  $\mathbb{E}[z_i u_i] = 0$
- Conditional homoskedastic Sargan Test
  - Sargan/J-test statistic:

$$=rac{1}{\hat{\sigma}^2}\hat{u}^TZ(Z^TZ)^{-1}Z^T\hat{u}$$

where 
$$\hat{u}_i = y_i - x_i^T \hat{eta}_{2SLS}$$
 and  $\hat{\sigma}^2 = rac{1}{n} \sum_{i=1}^n \hat{u}_i^2$ 

• Distribution under  $H_0$  :  $\mathbb{E}\left[z_iu_i\right]=0$ :

$$\sim^a \chi^2_{L-K}$$

- Conditional heteroskedastic Hansen Test
  - No detail description

### Testing Endogeneity #flashcard

- · We assume the IVs are valid and informative
- Idea:  $\hat{eta}_{OLS}$  and  $\hat{eta}_{2SLS}$  should be similar if the variable is exogeous
- Conditional homoskedastic Hausman Test
  - Assumption:
    - Valid and informative IVs
    - Conditional homoskedasticity:

$$\mathbb{E}\left[u_i^2|z_i
ight]=\sigma^2$$

- The K imes K matrix  $\left(\widehat{Var}\left[\hat{eta}_{2SLS}\right]-\widehat{Var}\left[\hat{eta}_{OLS}\right]
  ight)$  is non-singular
  - If this is singular, we can use the Moore-Penrose pseudo-inverse with rank R, and the distribution will be  $h \sim^a \chi^2_P$
- $H_0: \mathbb{E}\left[x_iu_i
  ight] = 0, H_1: \mathbb{E}\left[x_iu_i
  ight] 
  eq 0$
- Test statistic:

$$h = \left(\hat{eta}_{2SLS} - \hat{eta}_{OLS}
ight)^T \left(\widehat{Var} \left[\hat{eta}_{2SLS}
ight] - \widehat{Var} \left[\hat{eta}_{OLS}
ight]
ight)^{-1} \left(\hat{eta}_{2SLS} - \hat{eta}_{OLS}
ight)$$

Distribution under H<sub>0</sub>:

$$h \sim^a \chi_K^2$$

- If we are only interested in a *sub-vector* of  $\beta$  with  $K_1$  variables, we simply repeat the above with our sub-vector, and the distribution will be  $\chi^2_{K_1}$
- If we are only interested in *one parameter*  $\beta_k$ , then the test simplifies to:

$$h = rac{\left(\hat{eta}_{k,2SLS} - \hat{eta}_{k,OLS}
ight)^2}{\widehat{Var}\left[\hat{eta}_{k,2SLS}
ight] - \widehat{Var}\left[\hat{eta}_{k,OLS}
ight]} \sim^a \chi_1^2$$

- Alternative method (can deal with heteroskedasticity easily): Control Function Test
  - Perform 2SLS estimation using the control function method
  - If there is only 1 endogenous variable of interest: use a t-test to test whether the coefficient on the 1st-stage residual is 0 in the 2nd-stage regression
  - If there are more than 1 endogenous variables of interest: use a Wald test to test whether all coefficients on the 1ststage residual are jointly 0 in the 2nd-stage regression
  - We can easily deal with heteroskedasticity using HR estimtor of variance, but testing on a sub-vector of  $\beta$  will be hard due to "generated regressors" problem.

#### Finite-Sample Problems #flashcard

- Overfitting:  $\hat{eta}_{2SLS} 
  ightarrow \hat{eta}_{OLS}$  as L 
  ightarrow n
  - A simple way to investigate: calculate a sequance of 2SLS estimates based on smaller and smaller subsets of the original IVs, and check whether there's systematic tendency for  $\hat{\beta}_{2SLS}$  to move away from  $\hat{\beta}_{OLS}$

Finite sample bias + Large inconsistency

### Tests for Weak Instruments #flashcard

- Run a Wald Test for the 1st stage:  $H_0: \delta_0 m = \delta_1 = \cdots = \delta_M = 0$
- Test statistics  $\sim F(M, n-L)$  and we typically require it to be greater than 10.

#### Weak IV Robust Inference: Anderson-Rubin Test #flashcard

- The Anderson-Rubin test is a robust test for the significance of endogenous regressors in IV models, and unlike the
  usual Wald or t-tests, it remains valid even when instruments are weak.
  - It tests the null hypothesis:

$$H_0: \beta = \beta_0$$

where  $\beta$  is the coefficient on the endogenous regressor.

- Procedures
  - We start with the model:

$$y = X\beta +$$

and instrument X using Z (with rank(Z) = m, number of instruments).

- Instead of relying on 2SLS estimates, the AR test does the following:
- 1. Move the hypothesized value to the left-hand side:

$$y - X\beta_0 = u$$

2. Test if the residual u is uncorrelated with the instruments Z:

$$H_0: \mathbb{E}[Z^T u] = 0$$

3. Form the test statistic:

$$AR(eta_0) = rac{\widehat{u}^T P_Z \widehat{u}}{\widehat{\sigma}^2}$$

#### where:

- $P_Z = Z(Z^TZ)^{-1}Z^T$  is the projection matrix onto the instrument space.
- $\hat{\sigma}^2$  is an estimator of the error variance (often from a reduced form).
- 4. Distribution under the null:

$$AR(eta_0) \sim \chi_m^2$$

where m = number of instruments.

## 3 4 2 Local Average Treatment Effects

### 3 5 GMM

#### GMM Estimator #flashcard

Setup:

$$y_i - x_i^T eta = u_i(eta), \; \mathbb{E}\left[u_i
ight] = 0, \mathbb{E}\left[z_i u_i
ight] = 0$$

GMM Estimator:

$$\hat{eta}_{GMM} = arg \min_{eta} \hat{u}^T Z W_n Z^T \hat{u}$$

Expressions and Weak Consistency:

- Assumptions:
- $y_i = x_i^T eta + u_i$
- $(x_i,y_i,z_i)$  are idd
- $Rank(\mathbb{E}\left[z_ix_i^T
  ight]) = K$
- $W_n 
  ightharpoonup^p W$  is a symmetric and psd L imes L matrix
- Then:

$$\hat{eta}_{GMM} = \left(\left(X^TZ
ight)W_n\left(Z^TX
ight)
ight)^{-1}\left(X^TZ
ight)W_n\left(Z^Ty
ight) \ 
ightarrow^p eta$$

- and:

$$\sqrt{n}(\hat{eta}_{GMM}-eta)
ightarrow^D N(0,V)$$