Problem 5

1.

- (a) False. Consider $n = \frac{3}{2}\pi + 2k\pi$, $k \in \mathbb{N} \Longrightarrow \sin n = -1$ and $n^{\sin n} = \frac{1}{n}$. We cannot find a constant c such that $\sqrt{n} \le c \cdot \frac{1}{n}$ for all such n.
- (b) True. $f(n) = \Theta(g(n)) \Longrightarrow \exists c_0, c_1, n_0 \text{ such that } c_0 \cdot g(n) \leq f(n) \leq c_1 \cdot g(n), \forall n \geq n_0$ Take logarithm on both sides, we have

$$\frac{1}{2}\log g(n) \le \log c_0 + \log g(n) \le \log f(n) \le \log c_1 + \log g(n) \le 2\log g(n)$$

which holds for all $n \geq n_0$, with $n_0 \in \mathbb{R}$ and $g(n_0) \geq c_1$ and $g(n_0) \geq \frac{1}{c_0^2}$

- (c) False. Let $f_1(n) = g_1(n) = e^n$, $f_2(n) = 2n$, $g_2(n) = n$, then $f_2(n) = O(g_2(n))$ and $f_1(n) = O(g_1(n))$, but $e^{2n} \neq O(e^n)$
- (d) True. We have $n + a \le n + |a| \le 2n$ for $n \ge |a|$, and $n + a \ge n |a| \ge \frac{1}{2}n$ for $\frac{1}{2}n \ge |a|$ So for $n \ge 2|a| \ge |a|$, $\frac{1}{2}n \le n + a \le 2n \Longrightarrow \frac{1}{2}^b n^b \le (n+a)^b \le 2^b n^b$. Take $c_0 = \frac{1}{2}^b$, $c_1 = 2^b$, $n_0 = 2|a|$

2.

(a) We expand T(n) to get $T(n) = \sum_{i=1}^{\frac{n}{127}} \frac{127}{\log(127 \cdot i)}$. It is clear that $\frac{n}{127} \cdot \frac{127}{\log n} \leq \sum_{i=1}^{\frac{n}{127}} \frac{127}{\log(127 \cdot i)}$, so we have $T(n) = \Omega(\frac{n}{\log n})$

Then we consider the big-O bound. Since 127 is only a constant and it does not change the asymptotic behavior of a function, we ignore it and get

$$\sum_{i=1}^{\frac{n}{127}} \frac{1}{\log{(127 \cdot i)}} \le 1 + \int_{1}^{\frac{n}{127}} \frac{1}{\log{(127 \cdot x)}} dx \stackrel{\text{change of variable}}{=} 1 + \frac{1}{127} \int_{2}^{n} \frac{1}{\log{x}} dx.$$

Let k be a constant such that $\log x \le 127 \cdot (\log x - 1)$ for $x \ge k$, then we have

$$1 + \frac{1}{127} \int_{2}^{k} \frac{1}{\log x} dx + \frac{1}{127} \int_{k}^{n} \frac{1}{\log x} dx \le 1 + \frac{1}{127} \int_{2}^{k} \frac{1}{\log x} dx + \int_{k}^{n} \frac{\log x - 1}{\log^{2} x} dx$$

$$= 1 + \frac{1}{127} \int_{2}^{k} \frac{1}{\log x} dx + \frac{n}{\log n} - \frac{k}{\log k}$$

$$= O(\frac{n}{\log n})$$

Thus $T(n) = \Theta(\frac{n}{\log n})$.

(b)

The figure above shows a small part of the recursion tree.

Let the base of logarithm be 2. Then the sum is at most $((\frac{7}{8})^i n \log n)$ at the *i-th* layer, for $i \in \{0\} \cup \mathbb{N}$. For the upper bound, we assume the tree has infinite layers with the same pattern, then we have

$$\sum_{i=0}^{\infty} \left(\frac{7}{8}\right)^i \cdot n \log n = 8n \log n$$

As for the lower bound, we already have $n \log n$ at the root, so we conclude that $T(n) = \Theta(n \log n)$

- (c) By master theorem case 1, we have $a=4,b=2,f(n)=n\log n$. Let $\epsilon=0.5,$ then we have $f(n)=O(n^{\log_b a-\epsilon}),$ so $T(n)=\Theta(n^2)$
- (d) Consider $S(n) = \frac{T(n)}{n}$, we have

$$\begin{split} nS(n) &= nS(\sqrt{n}) + n \\ \Longrightarrow &S(n) = S(\sqrt{n}) + 1 \\ \Longrightarrow &S(2^k) = S(2^{\frac{k}{2}}) + 1 \quad (k = \log_2 n) \end{split}$$

Further let $P(k) = S(2^k)$, we have $P(k) = P(\frac{k}{2}) + 1$. By master theorem

$$P(k) = \Theta(\log k)$$

$$\Longrightarrow S(n) = \Theta(\log \log n)$$

$$\Longrightarrow T(n) = \Theta(n \log \log n)$$