機器人動力與控制

FINAL PROJECT

王奕勝 陳若桐 林昱宏 武敬祥

OUTLINE

- ■期末專題任務
- 硬體及軟體
- Flow Chart
- 策略及演算法
- ■影像辨識
- Q & A
- ■實際運作情形

任務及流程

- 讓車體向前移動,同時操控4R手臂使其能在停到目標物前時,讓手臂插進目標物之洞裡
- 車體擺放在某一位置(可看到目標物)→車子移動到目標物旁→手臂移動並依序插進目標物的 洞裡(大中小)

硬體—設計和零件組

- ■車體
- 手臂
- 底座
- ■馬達

i₽	α_{i-1} \circ	a_{i-1}	$d_{i^{arphi}}$	$ heta_{i}$ $^{\wp}$
1₽	90°₽	0 +2	23₽	$ heta_1$ \circ
2₽	0.	100.4	042	$ heta_2$ $^{\wp}$
3₽	0.	170₽	043	θ₃₽
4₽	0.	95₽	042	$ heta_4$ $^{\wp}$

車體

側視圖

正视圖

上视圖

手臂

底座

實際圖

模擬圖

馬達- MG996R、24V DC MOTOR

軟體應用

- Python (上層決策)
- Arduino(底層控制)
- Matlab (模擬)

MATLAB

Inverse Kinematics

Inverse kinematics solution-

已知 X, Y, Z 和 $\phi = \theta_2 + \theta_3 + \theta_4$

$$\theta_1 = \tan^{-1}(\frac{Y}{X})$$

計算

$$\begin{aligned} \mathbf{A} &= \mathbf{X} - l_4 \cos \! \theta_1 \mathrm{cos} \boldsymbol{\varphi} \cdot \\ \mathbf{B} &= \mathbf{Y} - l_4 \sin \! \theta_1 \mathrm{cos} \boldsymbol{\varphi} \cdot \end{aligned}$$

$$C = Z - l_1 - l_4 \sin \phi$$

得出一

$$\theta_3 = \cos^{-1} \frac{A^2 + B^2 + C^2 - l_2^2 - l_3^2}{2 l_2 l_3}.$$

再計算

$$a = l_3 \sin \theta_3$$

$$b = l_2 + l_3 \cos \theta_3$$

$$c = Z - l_1 - l_4 \sin \phi$$

$$r = \sqrt{a^2 + b^2}$$

得出-

$$\theta_2 = \tan^{-1} \frac{c}{\sqrt{r^2 - c^2}} - \tan^{-1} \frac{a}{b}$$

最後可知-

$$\theta_4 = \phi - \theta_2 - \theta_3$$

Kinematics simulation

Dynamics Simulation

MATLAB

initial position

final position

座標系轉換

Coordinate Transform

世界座標 $\begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{W_R}{c} & \frac{W}{c} P_{CORG} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{Z_c}{camera_fx} & 0 & \frac{-Z_c camera_cx}{camera_fx} \\ 0 & \frac{Z_c}{camera_fy} & \frac{-Z_c camera_cy}{camera_fy} \\ 0 & 0 & Z_c \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

內部參數(intrinsic parameter):

Realsense d435i

camera_cx = 321.798
camera_cy = 239.607
camera_fx = 615.899
camera_fy = 616.468

外部參數(extrinsic parameter):

外部參數=手臂順向Transform matrix * Rotation matrix
Rotation matrix:使相機坐標系與手臂end_effeter 的方向一致

外部參數

內部參數

0

座標系轉換

(Xc,Yc,Zc):相機坐標系

(Xe,Ye,Ze):end_effecter坐標系

FLOW CHART

車體控制

pseudo code:

```
目標物在車體右邊
k = 0.30
            #gain
if 找到三個圓:
   將圓從大排到小
   if (相機中心-圓中心) < 30mm:
      velocity = 0
   else :
      velocity = (相機中心-圓中心) * k
   if velocity > 0:
      go backward
   else:
      go forward
else:
   跑很快
```

```
k = 0.5
if np.size(coordinate,0) == 3:
    coordinate = rad_sort(coordinate)
   if -coordinate[0][0] < 10:</pre>
       vel = 0
   else:
       vel = -coordinate[0][0] * k
   if vel < 0:
       vel = -vel
        velocity = str(vel) + "," + "1\n"
    else:
        velocity = str(vel) + "," + "0\n"
   ser.write(velocity.encode())
else:
   ser.write(("50,0\n").encode())
```

影像辨識

影像辨識演算法

$$(c-c_c)^2 + (r-r_c)^2 = R^2$$

$$c_c = c - R \cos \theta$$

$$r_c = r - R\sin\theta$$

$$\cos\theta = \frac{g_x}{\sqrt{g_x^2 + g_y^2}}$$

$$\sin\theta = \frac{g_y}{\sqrt{g_x^2 + g_y^2}}$$

 $\mathbf{g}\mathbf{x}:\mathbf{gradient}\;\mathbf{in}\;\mathbf{x}\;\mathbf{axis}$

gy: gradient in y axis

Implementation

(1)初始化一個三維累加器 $\mathbf{accu}=(X_C, Y_C, R)$,分別代表圓心 \mathbf{X} 座標,圓心 \mathbf{Y} 座標 及圓半徑 \mathbf{R}

(2)利用 sobel filter 取出圓形的gx,gy

(3)給定圓半徑R的最大Rmax及最小值Rmin

(4)利用下式:

$$X_C = x - R\cos\theta$$

$$Y_C = y - Rsin\theta$$

對每一個R及圓心pixel座標(x,y)求出圓心(Xc,Yc)

(5)將累加器 $accu(X_C, Y_C, R)+1$

(6)得到accu最大的值及求得圓的圓心及半徑

實際運作情形

■ 請見7/3下午兩點半

THANKS FOR LISTENING