II

Infinite Series and Complex numbers

Practice Examples

2.1 Tests of convergence of series viz., comparison test, ratio test, root test, Leibnitz test

Test the convergence of the following series

1	$\sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right).$
	Answer: divergent.
2	$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \cdots$
	Answer: convergent.
3	$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots$
	Answer: convergent.
4	$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots$
	2! + 3! + 4! +
	Answer: convergent.
5	$\sum_{n=1}^{\infty} \frac{n^2-1}{n^2+1}$.
	$\Delta n = 1 n^2 + 1$
	Answer: divergent.
6	$\sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \cdots$
	$\sqrt{2} + \sqrt{3} + \sqrt{4} + \cdots$
	Answer: divergent.
	inswell divergent.
7	$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2-1}}.$
	$\Delta n=2\sqrt{n^2-1}$.
	Answer: divergent.
8	$\sum_{n=1}^{\infty} \frac{1}{n^2+1}$.

	Answer: convergent.
9	$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}+1} .$
	Answer: convergent.
10	$\frac{1}{1+\sqrt{2}} + \frac{2}{1+2\sqrt{3}} + \frac{3}{1+3\sqrt{4}} + \cdots$
	Answer: divergent.
11	$\sum_{n=1}^{\infty} \frac{5n^3 + 3}{3n^5 + 4} .$
	Answer: convergent.
12	$\sum_{n=1}^{\infty} \frac{n!}{n^n}.$
	Answer: convergent.
13	$\sum_{n=1}^{\infty} e^{-n^3} .$
	Answer: convergent.
14	$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}.$
	Answer: convergent.
15	$\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \cdots$
	Answer: convergent.
16	$\sum_{n=1}^{\infty} \left(\frac{n+1}{3n}\right)^n .$
	Answer: convergent.
17	$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}.$
	Answer: divergent.
18	$1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \cdots$
	Answer: convergent.
19	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\log(n+1)}{(n+1)^2}.$
	Answer: convergent.

20	1	1 ,	1	
20	4.	- - +	$\frac{10}{10}$ - •	٠٠ .

Answer: convergent.

21
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{5^n}$$
.

Answer: convergent.

$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{5 + n^5}.$$

Answer: convergent.

$$23 \quad \sum_{n=1}^{\infty} \frac{n}{(n^2+1)^{2/3}}.$$

Answer: divergent.

24
$$\sum_{n=1}^{\infty} \sqrt{n^4 + 1} - \sqrt{n^4 - 1}$$
.

Answer: convergent.

$$\sum_{n=1}^{\infty} \frac{n^2}{3^n}.$$

Answer: divergent.

$$26 \quad 1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \cdots$$

Answer: convergent.

2.2 Complex numbers and their geometric representation

1 Find the real and imaginary parts of the following complex numbers

(a)
$$z = 2 + 3i$$

(b)
$$z = 4i^2 + i - 2i^3$$
.

Answer: (a) x = 2, y = 3 (b) = -4, y = 3.

Solve the equation $xy - 2i + x + 2xyi - 5 = \frac{3}{2} - 3i$ for x and y.

Answer: x = 7, $y = -\frac{1}{14}$.

Let $z = \frac{-2+3i}{3-2i}$. Find the complex conjugate, \bar{z} . Write your answer in the form a + ib.

A	12	<i>.</i> 5
Answer:	$-{13}$ +	$l{13}$.

4 Given $z_1 = -2 + 2i$, and $z_2 = 4 - 6i$. Find $\frac{2}{\overline{z_1} + \overline{z_2}}$.

Answer: $\frac{1}{5} - \frac{2}{5}i$.

5 If $z_1 = i$, $z_2 = -3i$ and $z_3 = -1 - 4i$. Find (a) $z_2 - z_3$ (b) $z_2 + z_3$

(c) $\frac{z_2}{z_3}$ (d) $z_1 \cdot z_3$ (e) $z_1 - z_3$ (f) $z_1 + z_3$ (g) $\frac{z_2}{z_1}$ (h) $z_2 \cdot z_3$.

Answer: (a) 1+i (b) -1-7i (c) $\frac{12}{17}+\frac{3}{17}i$ (d) 4-i (e) 1+5i

(f) -1-3i (g) -3 (h) -12+3i.

6 Express the following numbers into x + iy form:

(a) $\frac{1}{1+i}$ (b) $\frac{1}{(2+i)^2} - \frac{1}{(2-i)^2}$.

Answer: (a) $\frac{1}{2} - \frac{1}{2}i$ (b) $-\frac{8}{25}i$.

7 Reduce each of the following quantities to a real number:

(a) $\frac{1+2i}{3-4i} + \frac{2-i}{5i}$ (b) $\frac{5i}{(1-i)(2-i)(3-i)}$

Answer: (a) $-\frac{2}{5}$ (b) $-\frac{1}{2}$.

8 Simplify $\frac{1+i}{i} + \frac{i}{1-i}$ into x + iy form.

Answer: $-\frac{1}{2} - \frac{1}{2}i$.

9 Convert $\frac{(1+i)^3}{1-i}$ into x + iy form.

Answer: -2 + 0i.

2.3 Complex number in the polar (or exponential) form

1 Express the complex number $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ in the polar form.

Answer: $\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)$.

2 Express the following complex numbers in their polar form.

(a) i (b) -8i

Answer: (a) $\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)$, (b) $8\left[\cos\left(\frac{\pi}{2}\right) - i\sin\left(\frac{\pi}{2}\right)\right]$.

Find Arg(z), arg(z) and polar form of (a) z = 1 + i (b) z = 1 - i.

Answer: (a) $\sqrt{2} \left[\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right]$ (b) $\sqrt{2} \left[\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right]$.

Express the following complex numbers in their polar form. (a) -2 + i (b) -2.

Answer: (a) $\sqrt{5} \left[\cos \left(\pi - \tan^{-1} \frac{1}{2} \right) + i \sin \left(\pi - \tan^{-1} \frac{1}{2} \right) \right]$ (b) $2 \left[\cos \pi + i \sin \pi \right]$.

Find Arg(z), arg(z) and polar form of (a) z = 2i (b) z = -1 + 3i (c) z = 3.

Answer: (a) $2 \left[\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right]$ (b) $\sqrt{10} \left[\cos(\pi - \tan^{-1} 3) + i \sin(\pi - \tan^{-1} 3) \right]$

2.4 De Moivre's theorem and its applications

(c) $3(\cos 0 + i \sin 0)$.

1	Let n be a positive integer. Show that $(a+ib)^n + (a-ib)^n = 2r^n \cos n\theta$, where
	$r^2 = a^2 + b^2$ and $\theta = tan^{-1} \left(\frac{b}{a}\right)$. Hence deduce that
	$(1+i\sqrt{3})^8 + (1-i\sqrt{3})^8 = -2^8.$
2	Prove that $\frac{(\cos 5\theta - i\sin 5\theta)^2(\cos 7\theta + i\sin 7\theta)^{-3}}{(\cos 4\theta - i\sin 4\theta)^9(\cos \theta + i\sin \theta)^5} = 1.$
3	Find the values of $(1+i)^{\frac{2}{3}}$.
	Answer: $2^{\frac{1}{3}} \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right], 2^{\frac{1}{3}} \left[\cos \left(\frac{5\pi}{6} \right) + i \sin \left(\frac{5\pi}{6} \right) \right], 2^{\frac{1}{3}} \left[\cos \left(\frac{3\pi}{2} \right) + i \sin \left(\frac{\pi}{6} \right) \right]$
	$i\sin\left(\frac{3\pi}{2}\right)$].
4	Solve the equation $x^7 + x^4 + x^3 + 1 = 0$.
	Answer: $\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right), \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right), \cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right), \cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$
	$i\sin\left(\frac{7\pi}{4}\right),\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right),\cos(\pi)+i\sin(\pi),\cos\left(\frac{5\pi}{3}\right)+i\sin\left(\frac{5\pi}{3}\right).$
5	$Solve x^7 - 1 = 0.$
	Answer: $\cos(0) + i\sin(0)$, $\cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$, $\cos\left(\frac{4\pi}{7}\right) + i\sin\left(\frac{4\pi}{7}\right)$, $\cos\left(\frac{6\pi}{7}\right) + i\sin\left(\frac{4\pi}{7}\right)$
	$i\sin\left(\frac{6\pi}{7}\right),\cos\left(\frac{8\pi}{7}\right)+i\sin\left(\frac{8\pi}{7}\right),\cos\left(\frac{10\pi}{7}\right)+i\sin\left(\frac{10\pi}{7}\right),\cos\left(\frac{12\pi}{7}\right)+i\sin\left(\frac{12\pi}{7}\right).$
6	Find all values of $(-1+i)^{\frac{2}{5}}$.
	Answer: $2^{\frac{1}{5}} \left[\cos \left(-\frac{\pi}{10} \right) + i \sin \left(-\frac{\pi}{10} \right) \right]$, $2^{\frac{1}{5}} \left[\cos \left(\frac{3\pi}{10} \right) + i \sin \left(\frac{3\pi}{10} \right) \right]$, $2^{\frac{1}{5}} \left[\cos \left(\frac{7\pi}{10} \right) + i \sin \left(\frac{3\pi}{10} \right) \right]$

$$i\sin\left(\frac{7\pi}{10}\right)$$
, $2^{\frac{1}{5}}\left[\cos\left(\frac{11\pi}{10}\right)+i\sin\left(\frac{11\pi}{10}\right)\right]$, $2^{\frac{1}{5}}\left[\cos\left(\frac{3\pi}{2}\right)+i\sin\left(\frac{3\pi}{2}\right)\right]$.

2.5 Exponential, Logarithmic, Trigonometric and hyperbolic functions

1	Find the value of $Log(-5)$.
	Answer: $\log 5 + i(2n + 1)\pi$.
2	Find the value of <i>Log i</i> .
	Answer: $\frac{\pi}{2}i$.
3	Prove that $Log(-ei) = 1 - \frac{\pi}{2}i$.
4	Find the values of $log(1 + i)$.
	Answer: $\frac{1}{2} \ln 2 + i \left(\frac{\pi}{4} + 2n\pi \right)$, $n \in \mathbb{Z}$.
5	Separate real and imaginary parts of (i) $\sin(x \pm iy)$ (ii) $\sinh(x \pm iy)$.
	Answer: (i) $\sin(x \pm iy) = \sin x \cosh y \pm i \cos x \sinh y$,
	$(ii) \sinh(x \pm iy) = \sinh x \cos y \pm i \cosh x \sin y.$
6	Separate real and imaginary parts of (i) $\cos(x \pm iy)$ (ii) $\cosh(x \pm iy)$.
	Answer: $(i) \cos(x \pm iy) = \cos x \cosh y \mp i \sin x \sinh y$,
	$(ii) \cosh(x \pm iy) = \cosh x \cos y \pm i \sinh x \sin y.$
7	Separate real and imaginary parts of (i) $tan(x - iy)$ (ii) $tanh(x \pm iy)$.
	Answer: (i) $\tan(x - iy) = \frac{\sin 2x}{\cosh^2 y - \sin x} - i \frac{\sinh 2y}{\cosh^2 y - \sin x}$
	$(ii) \tanh(x \pm iy) = \frac{\sinh 2x}{\cosh 2x + \cos 2y} \pm i \frac{\sin 2y}{\cosh 2x + \cos 2y}.$