CPT-S 415

Big Data

Yinghui Wu

EME B45

CPT-S 415 Big Data

Data cleaning

- Data cleaning: An overview
- Error detection
- Data repairing
- Record matching and its interaction with data repairing
- Certain fixes

A platform for improving data quality

A practical data cleaning system

profiling

validating

error detecting

data repairing

record matching

certain fixes

Standardization

Auditing

Enrichment

Monitoring

Data explorer

Profiling: Discovering conditional dependencies

- Input: sample data D
- Output: a cover of conditional dependencies that hold on D

Several effective algorithms for discovering conditional dependencies and matching dependencies are already in place

Question: automatic discovery of conditional inclusion dependencies?

Automatic discovery of data quality rules

Assessing the quality of conditional dependencies

- Input: a set of conditional functional dependencies
- Output: a maximum satisfiable subset of dependencies

Complexity: the MAXSC problem

are the dependencies discovered "dirty" themselves?

Theorem: there is an ε-approximation algorithm for IVIAXSC

✓ there exist constant ε such that for the subset $Σ_m$ found by the algorithm has a bound: $card(Σ_m) > ε card(OPT(Σ))$

Approximation algorithms

- Efficient: low polynomial time
- Performance guarantee

Automated methods for reasoning about data quality rules

Profiling: Discovering conditional dependencies

Where do dependencies (data quality rules) come from?

- ✓ Manual design: domain knowledge analysis
- ✓ Business rules
- Discovery

- Input: sample data D
- Output: a cover of conditional dependencies that hold on D

Several effective algorithms for discovering conditional dependencies, developed by researchers in the UK, Canada and the US (e.g., AT&T)

Automatic discovery of data quality rules

Detecting violations of CFDs

tid	name	title	CC	AC	phn	str	city	zip
t1	Mike	MTS	44	131	1234567	Mayfield	MXC	EH4.8LE
t2	Rick	DMTS	44	131	3456789	Mayfield Onrichton	NYC	EH4 8LE
t3						Chrichton		

Input: A set ∑ of CFDs, and a database D

Output: All tuples in D that violate at least one CFD in \(\subseteq \)

Automatically check whether the data is dirty or clean

Detecting CFD violations

- ✓ Input: a set Σ of CFDs and a database DB
- \checkmark Output: the set of tuples in DB that violate at least one CFD in Σ

Approach: automatically generate SQL queries to find violations

Complication 1: consider (R: $X \rightarrow Y$, Tp), the pattern tableau may be large (recall that each tuple in Tp is in fact a constraint)

Goal: the size of the SQL queries is independent of Tp

Trick: treat Tp as a data table

CINDs can be checked along the same lines

Single CFD: step 1

A pair of SQL queries, treating Tp as a data table

- Single-tuple violation (pattern matching)
- Multi-tuple violations (traditional FDs)

(cust(country, area-code, phone → street, city, zip), Tp)

```
Single-tuple violation: Qc
select *
from R t, Tp tp
where t[country] ≈ tp[country] AND t[area-code] ≈ tp[area-code]
        AND t[phone] ≈ tp[phone]
        (t[street] <> tp[street] OR t[city] <> tp[city] OR t[zip] <> tp[zip]))
        - <>: not matching;
        - t[A1] ≈ tp[A1]: (t[A1] = tp[A1] OR tp[A1] = _)
```

Single CFD: step 2

(cust(country, area-code, phone → street, city, zip), Tp)

✓ Multi-tuple violations (the semantics of traditional FDs): Qv select distinct t.country, t.area-code, t.phone from R t, Tp tp where t[country] ≈ tp[country] AND t[area-code] ≈ tp[area-code] AND t[phone] ≈ tp[phone] group by t.country, t.area-code, t.phone having count(distinct street, city, zip) > 1

Tp is treated as a data table

The semantics of FDs

Multiple CFDs

Complication 2: if the set Σ has n CFDs, do we use 2n SQL queries, and thus 2n passes of the database DB?

Goal:

- ✓ 2 SQL queries no matter how many CFDs are in Σ
- ✓ the size of the SQL queries is independent of Tp.

Trick: merge multiple CFDs into one

- ✓ Given (R: X1 \rightarrow Y1, Tp1), (R: X2 \rightarrow Y2, Tp2)
- ✓ Create a single pattern table: $Tm = X1 \cup X2 \cup Y1 \cup Y2$,
- ✓ Introduce @, a don't-care variable, to populate attributes of pattern tuples in X1 X2, etc (tp[A] = @)
- Modify the pair of SQL queries by using Tm

Handling multiple CFDs

 CFD_1 : (area \rightarrow state, T_1)

 CFD_2 : (zip \rightarrow state, T_2)

zip	state
07974	NJ
90291	CA
01202	_

area	state
_	_
212	NY

 CFD_3 : (area,zip \rightarrow state, T_3)

area	zip	state
480	95120	CA
310	90995	CA

 CFD_M :(area,zip \rightarrow state, T_M)

	area	zip	state
CFD ₂ :	@	07974	NJ
CFD ₂ :	@	90291	CA
CFD ₂ :	@	01202	_
CFD ₁ :	_	@	_
CFD ₁ :	212	@	NY
CFD ₃ :	480	95120	CA
CFD ₃ :	310	90995	CA

Qc: select * from R t, $T_M t_p$ where $t[area] \times t_p[area]$ AND $t[zip] \times t_p[zip]$ AND $t[state] \Leftrightarrow t_p[state]$

Qv: select distinct area, zip from Macro group by area, zip having count(distinct state) > 1

Don't care

Macro:

select (case $t_p[area]$ when "@" else t[area] end) as area . . . from R t, T_M t_p where $t[area] \times t_p[area]$ AND $t[zip] \times t_p[zip]$ AND $t_p[state] = _$

Detecting errors in horizontally partitioned data

$$\varphi$$
1 [CC=44, zip] →[street]

[CC=44, AC=131] →[city=Edi]

distributed data

	tid	name	title	CC	AC	phn	str	city	zip
	t1	Mike	MTS	44	131	1234567	Mayfield	NYC	EH48LE
,	Hori	zontal pa	artition			Parti	tioned by title		

If To find violations of $\varphi 1$, it is necessary to ship data (part of t1 or t2) from one site to another

Detecting errors in vertically partitioned data

ti	d	name	title	CC	AC	phn	str	city	zip
ť	1	Mike	MTS	44	131	1234567	Mayfield	NYC	EH4 8LE
tź	2	Rick	DMTS	44	131	3456789	Chrichton	NYC	EH4 8LE
t3	3	Phil	DMTS	44	131	2909229	Chrichton	Edi	EH4 8LE

vertical partition

tid	name	title	CC	AC	phn
t1 ~	pi	hone _	4 4	131	1234567
t2	Rick		Tax .	131	3456789
t3	Phil	DMTS	44	131	2909229

tid	str	city	zip
T	Vfield	NYC	EH4 8LE
t2	address <	NYC	EH4 8LE
t3	Chichen	Edi	EH4 8LE

To find violations of φ **2**, it is necessary to ship data

Error detection in distributed data

The error detection problem for CFDs NP-complete for

- horizontally partitioned data, and
- vertically partitioned data,

_ distributed data when either minimum data shipment or minimum response time is concerned.

In contrast, error detection in centralized data is trivial

Heuristic (approximation) algorithms

Read: Detecting Inconsistencies in Distributed Data

Error detection in distributed data is far more intriguing than its centralized counterpart

Data Repairing

Data repairing: Fixing the errors identified

- \triangleright Input: a set Σ of conditional dependencies, and a database DB
- Output: a candidate repair DB' such that DB' satisfies ∑, and cost(DB', DB) is maximal

How to define?

The most challenging part of data cleaning

Example: networking service provider

- Assume the billing and maintenance departments have separate databases.
 - Internally consistent,
 - yet containing errors.
- ✓ Goal: reconcile and improve data quality of, for example, integrated customer and billing data.

Service provider example, continued.

			cust			
	phno	name	street	city	state	zip
tC	949-1212	Alice Smith	17 bridge	midville	az	05211
1 t1	555-8145	Bob Jones	5 valley rd	centre	ny	10012
t2	555-8195	Bob Jones	5 valley rd	centre	nj	10012
t3	212-6040	Carol Blake	9 mountain	davis	ca	07912
t4	949-1212	Ali Stith	27 bridge	midville	az	05211

					е	quip)				
	phn	10	serr	10	eqn	nfct	eqm	nodel	inst	date	
*	t5	949-12	12	AC130	06	AC		XE5000)	Mar-02	2
	t6	555-81	45	L5500°	1	LU		ze400		Jan-03	
	t7	555-81	95	L55011		LU		ze400		Mar-03	}
	t8	555-81	95	AC223	50	AC		XE5000)	Feb-99)
	t9	949-22	12	L32400)	LU		ze300		Oct-01	

Billing Dept.

Maintenance Dept

Constraints and Violations (1)

Consider inclusion and functional dependencies, (so each x is a violation of one or the other).

✓ A functional dependency (FD) says that the values of some fields determine the values of others.

t1 and t2 violate cust[zip] -> cust[state]

cust[phno] -> cust[name, street, city, state, zip]

	cust								
	phno	name	street	city	state	zip			
t0	949-1212	Alice Smith	17 bridge	midville	az	05211			
t1	555-8145	Bob Jones	5 valley rd	centre	ny	10012			
t2	555-8195	Bob Jones	5 valley rd	centre	nj	10012			
t3	212-6040	Carol Blake	9 mountain	davis	ca	07912			
t4	949-1212	Ali Stith	27 bridge	midville	az	05211			

Constraints and Violations (2)

An inclusion dependency (IND) says that the values of some fields should appear in some others.

t9 violates equip[phno] ⊆ cust[phno]

•	equip						
	phno serno eqmfct eqmodel instdate						
t9	949-2212	L32400	LU	ze300	Oct-01		

•	cust							
	phno	name	street	city	state	zip		
t0	949-1212	Alice Smith	17 bridge	midville	az	05211		
t1	555-8145	Bob Jones	5 valley rd	centre	ny	10012		
t2	555-8195	Bob Jones	5 valley rd	centre	nj	10012		
t3	212-6040	Carol Blake	9 mountain	davis	ca	07912		
t4	949-1212	Ali Stith	27 bridge	midville	az	05211		

Constraint Repair

- ✓ Find a "repair" to suggest
- ✓ A repair is a database which does not violate constraints
 - A good repair is also similar to the original database

Constraint 1: FD: R[A] -> R[B, C]

R:

Α	В	С
a1	b1	c2
a2	b1	c1
a2	b1	c2

"Bad" repair:

Α	В	С

"Good" repair:

Α	В	С
a1	b1	c2
a2	b1	с1
a2	b1	с1

Problem Statement

Input: a relational database D, and a set C of integrity constraints (FDs, INDs)

Question: find a "good" repair D' of D

- ✓ repair: D' satisfies C
- ✓ "good": D' is "close" to the original data in D
 - changes are minimal: what metrics (referred to as cost) should we use?
 - changes: value modification, tuple insertion to avoid loss of information (tuple deletion can be expressed via modification)

We want to compute D' efficiently, as suggested fix to the users

Repair Model

- ✓ For the duration of constraint repair, each input tuple is uniquely identified, t₁, t₂, ...
- ✓ This value of attribute A of tuple t in the input database is D(t,A)
- ✓ The output of the algorithm is a repaired database, D', so D'(t,A) is the value of t.A in the current proposed repair.
- ✓ For example, D = D' below, except $D(t_3,C) <> D'(t_3,C)$.

D:

	Α	В	С
1	a1	b1	c2
2	a2	b1	c1
3	a2	b1	c2

D':

	Α	В	С
t ₁	a1	b1	c2
t_2	a2	b1	с1
t_3	a2	b1	c1

Cost Model Components

Distance

Weight

Distant:

"Smith" "Jones" "a" "b"

"949-<mark>2</mark>212" "949-**1**212"

Close:

"1.99" "2.0"

"GM" "General Motors"

dist(v,v') : [0,1)

Confidence placed by the user in the accuracy of a tuple or attribute.

weight(t)
weight(t.A)

Intuition: Tuple/Attribute Weights

- ✓ Simple model of data reliability
 - Example: Billing department may be more reliable about address information, weight = 2, but less about equipment, weight = 1
 - Example 2: Download table of zip codes from post-office web site,
 weight = 100
- ✓ In the absence of other information, all weights default to 1.

		cust						
,		phno	name	street	city	state	zip	
	t0	949-1212	Alice Smith	17 bridge	midville	az	05211	2
'	t1	555-8145	Bob Jones	5 valley rd	centre	ny	10012	2
1	t2	555-8195	Bob Jones	5 valley rd	centre	nj	10012	1
	t3	212-6040	Carol Blake	9 mountain	davis	ca	07912	1
	t4	949-1212	Ali Stith	27 bridge	midville	az	05211	1

Attribute-Level Cost Model

✓ If D(t.A) = v and D'(t.A) = v', then
Cost(t.A) = dist(v, v') * weight(t.A)

Cost(D'): the sum of Cost(t.A) for all changed tuples t and attributes A

✓ Example: (if we model delete as dist(x,null))

R:

Α	В	С
a1	b1	c2
a2	b1	с1
a2	b1	c2

Repair: cost = 9

Α	В	С
+1	+1	+1
+1	+1	+1
+1	+1	+1

Repair: cost = 1/2

Α	В	С	
a1	b1	c2	
a2	b1	c1	
a2	b1	c1	-

+1/2

Problem and complexity

Input: a relational database D, and a set C of integrity constraints Question: find a repair D' of D such that cost(D') is minimal

Complexity: Finding an optimal repair is NP-complete in size of database

- ✓ Intractable even for a small, constant number of FDs alone.
- ✓ Intractable even for a small, constant number of INDs alone
- ✓ By contrast, in delete-only model, repair with either INDs or FDs alone is in PTime, while repair with both is CoNP hard

What should we do?

Heuristic approach to value-based repair

- ✓ In light of intractability, we turn to heuristic approaches. However, most have problems.
- Straightforward constraint-by-constraint repair algorithms fail to terminate (fixing individual constraints one by one) consider R1(A, B), R2(B, C), with
 - FD: R1[A] \rightarrow R1[B]
 - IND: R2[B] ⊆ R1[B]
 - D(R1): {(1, 2), (1, 3)}, D(R2) = {(2, 1), (3, 4)}
- Also, user must be involved since any single decision can be wrong.
- One approach: Equivalence-Class-Based Repair.

Equivalence Classes

	cust							
	phno	name	street	city	state	zip		
tO	949-1212	Alice Smith	17 bridge	midville	az	05211		
t1	555-8145	Bob Jones	5 valley rd	centre	ny	10012		
t2	555-8195	Bob Jones	5 valley rd	centre	nj	10012		
t3	212-6040	Carol Blake	9 mountain	davis	ca	07912		
t4	949-1212	Ali Stith	27 bridge	midville	az	05211		

eq1

- An equivalence class is a set of "cells" defined by a tuple t and an attribute A.
- ✓ An equivalence class eq has a target value targ(eq) drawn from eq -- to be assigned after all the equivalence classes are found
- ✓ For example, targ(EQ1) = "Alice Smith" or "Ali Stith"

Equivalence Classes Continued

- In the repair, give each member of the equivalence class the same target value: that is **for all** (t,A) in eq, D'(t,A) = targ(eq)
- ✓ Target value is chosen from the set of values associated with eq in the input: {D(t_i,Ai)}
- ✓ A given eq class has an easily computed cost w.r.t. a particular target value. For example, if weights are all 1, we might have,
 - $Cost(\{"A","A","B"\},"A") = dist("B","A") = 1$
 - $Cost(\{"A","A","B"\},"B") = 2*dist("A","B") = 2$

Separate

- ✓ The decision of which attribute values need to be equivalent.
- The decision of exactly what value targ(eq) should be assigned

Resolving FD violations

- ✓ To resolve a tuple t violating FD R[A]->R[B], violations: compute the set of tuples V from R that match t on A, and union equivalence classes of the attributes in B among all tuples in V changing RHS
 - Changing the left-hand side to an existing value may not resolve the violation
 - Changing left-hand side to a new value is arbitrary loss of e.g., keys

FD: cust[phno] -> cust[name, street, city, state, zip]

	phno	name	street	city	state	zip
tO	949-1212	Alice Smith	17 bridge	midville	az	05211
t1	555-8145	Bob Jones	5 valley rd	centre	ny	10012
t2	555-8195	Bob Jones	5 valley rd	centre	nj	10012
t3	212-6040	Carol Blake	9 mountain	davis	ca	07912
t4	949-1212	Ali Stith	27 bridge	midville	az	05211

EQ1

EQ2

Resolving IND violations

To resolve a tuple t violating IND $R[A] \subseteq S[B]$, we pick a tuple s from S and union equivalence classes between t.A and s.B for attributes A in **A** and B in **B**.

equip[phno] ⊆ cust[phno]

equip										
EQ1			phno	serno	no eqmfct		el ins	stdate		
		t9 9		949-2212	19-2212 L32400		LU ze300		:t-01	
						cust				
	phn		name		street		city	state	zip	
	tO	949-1212 Alice Smith		ith 17 b	17 bridge		az	05211	1	
		0.4.0.0	0.40						07040	
	t3	212-6	040	Carol Bla	ake 9 m	ountain	davis	ca	07912	
	t4	4 949-1212 Ali Stith		27 b	oridge	midville	az	05211		

How to repair data using CFDs? CINDs?

Record matching

- Input: large, unreliable data sources
- Output: tuples that refer to the same real-world entity

Read: Interaction between Record Matching and Data Repairing

Unifying repairing and matching

	FN	LN	St	City	AC	post	phn	item	(tran)
	Robert	Brady	5 Wren St	Ldn	020	WC1H 9SE	3887644	watcl	1
1	Robert	Brady	5 Wren St	Ldn	020	WC1E 7HX	3887644	neckl	ace

FN LN
Robert Brady

matching

Zip te 3887644

Master data (card)

Input

data

- 1. tran([AC = $0 \ge 0$] \rightarrow [c.t.]
- repairing

repairing helps matching

matching helps repairing

- 2. tran([FN = Bob] -> [FN = \textsquare]
- 3. tran[LN, city, St, post] = card[LN,city, St, zip] ^
 tran[FN] ≈ card[FN] -> tran[FN,phn] ⇔card[FN, tel]
 - 4. tran([city, phn] -> [St, AC, post])

Repairing and matching operations should be interleaved

Summary and review

Review questions:

- What is data cleaning? Why bother?
- What are the main approaches to cleaning data? Pros and cons?
- Given a database D and a set C of FDs and INDs, can you always find a repair D' of D?
- What is the complexity of detecting errors in distributed data?
- How to repair the data when the problem is NP-hard

Research issues:

- Algorithms for finding certain fixes for a set of input tuples
- Incremental error detection in distributed data
- XML data cleaning

Certain fix 40

How to fix the errors detected?

- 1. [AC=020] →[city=Ldn]
- 2. $[AC=131] \rightarrow [city=Edi]$

Heuristic methods may not fix the erroneous t[AC], and worse still, may mess up the correct attribute t[city]

FN	LN	AC	phn	type	str	city	41 0	;•em
I Bob	Brady	020	079172485	2	501 Elm S	Ldn	EH7 4)	¿D

Dependencies can detect errors, but do not tell us how to fix them

The quest for certain fixes

- ✓ Certain fixes: 100% correct. The need for this is evident when repairing critical data
 - Every update guarantees to fix an error;
 - The repairing process does not introduce new errors.
- ✓ Editing rules instead of dependencies
 - Editing rules tell us which attributes to change and how to change them; dynamic semantics
 Dependencies have static semantics; violation or not
 - Dependencies have static semantics: violation or not
 - Editing rules are defined on a master relation and an input relation – correcting errors with master data values
 Dependencies are only defined on input relation

Editing rules are a departure from data dependencies

Applying editing rules does not introduce new errors

How do we find certain fixes?

far less costly to correct a tuple at the point of data entry than fixing it afterward.

How do we find certain fixes?

FN	LN	AC	Hphn	Mphn	str	city	zip	DOB	gender
Robert	Brady	131	6884563	079172485	501 Elm Row	Edi	EH7 4AH	11/11/55	M
Mark	Smiths	020	6884563	075568485	20 Baker St.	Ldn	NW1 6XE	25/12/67	M

Master relation D_m

How do we find certain fixes?

Read: Towards certain fixes with editing rules and master data

Certain fixes: editing rules, master data, certain region