

Efficient dynamic FBA for microbial communities.

Brunner

Efficient dynamic FBA for microbial communities.

James D. Brunner, Ph.D.

Mayo Clinic Center for Individualized Medicine Microbiome Program

Metabolite mediated models explain growth data

Efficient dynamic FBA for microbial communities.

Brunner

To build a metabolite mediated model, we need to know:

- 1 What microbes are present?
- 2 What metabolites are present?
- 3 How do they interact?

Questions 1 & 2 aren't necessarily easy, but they can be answered for an individual. The practicality of metabolite mediated modeling for n-of-one situations therefore depends on question 3. We can answer it using genome-scale information about the microbes involved.

$$\Gamma = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} I & -\Gamma^* \\ 0 & \Gamma^{\dagger} \end{bmatrix}$$

Metabolite mediated models explain growth data

Efficient dynamic FBA for microbial communities.

Brunner

Determine an instantaneous growth rate g of an organism by the optimization problem

$$\begin{split} & \max(\boldsymbol{\chi} \cdot \boldsymbol{v}) \\ & \Gamma^{\dagger} \boldsymbol{v} = 0 \\ & v_{j,min} \leq v_{j} \leq v_{j,max} \\ & \tilde{v}_{j,min} \leq (\Gamma^{*} \boldsymbol{v})_{j} \leq \tilde{v}_{j,max} \end{split}$$

This is called flux balance analysis a type of constraint based analysis 1 .

- χ determines a cellular objective, generally increased "biomass" (e.g. DNA or protein).
- We assume intracellular pathways are at equilibrium flux (the network is node balanced).
- There are constraints on reaction fluxes (v_{min}, v_{max}) .

Notice here I've separated the internal and exchange reactions, that will let us also determine the rate of change in the external metabolite pools.

1

Metabolite mediated models explain growth data

Efficient dynamic FBA for microbial communities.

Brunner

The optimization of flux balance analysis (FBA) suggests a dynamical, metabolite mediated model for community growth, meaning we can define a vector field:

$$\frac{dx_i}{dt} = x_i(\boldsymbol{\chi}_i \cdot \boldsymbol{v}_i)$$
$$\frac{d\boldsymbol{y}}{dt} = -\sum_i x_i \Gamma_i^* \boldsymbol{v}_i$$

where each v_i solves the respective optimization:

$$\begin{aligned} &\max(\boldsymbol{\chi}_i \cdot \boldsymbol{v}_i) \\ &\Gamma^{\dagger} \boldsymbol{v}_i = 0 \\ &v_{ij,min} \leq v_{ij} \leq v_{ij,max} \\ &\tilde{v}_{ij,min} \leq (\Gamma^* \boldsymbol{v}_i)_j \leq \kappa_{ij} y_j \end{aligned}$$

But of course there's a few problems.

- \mathbf{v}_i is not unique
- \bullet $\kappa_{ij} y(t)$ is a time-dependent constraint, and we don't know κ_{ij} .
- Scalability!

An ODE Approximation

Efficient dynamic FBA for microbial communities.

Brunner

We'd like to approximate this system with a set of ODEs.

$$\begin{split} \frac{d}{dt}x_i &= x_i(\boldsymbol{\chi}_i \cdot \boldsymbol{v}_i) \\ \frac{d}{dt}\boldsymbol{y} &= -\sum_i x_i \Gamma_i^* \boldsymbol{v}_i \\ \frac{d}{dt}\boldsymbol{v}_i &= \boldsymbol{h}_i(x_i, \boldsymbol{v}_i, \boldsymbol{y}) \end{split}$$

Smoothly evolving v should be a huge boost to computation speed, and ODE systems are easier to analyze.

Efficient dynamic FBA for microbial communities.

Brunner

Consider the system

$$\frac{dx}{dt} = x^{2}$$

$$\frac{dy}{dt} = -x^{2}$$

where v is "maximized" with the constraints $0 \le v \le 1$ and $v \le \kappa y$.

Efficient dynamic FBA for microbial communities.

Brunner

Challenge:

- Decide which "waves" to ride
- Switch the set of "waves" we are riding when we need to
- Stay in $null(\Gamma^{\dagger})$

Solution:

Efficient dynamic FBA for microbial communities.

Brunner

Challenge:

- Decide which "waves" to ride
- Switch the set of "waves" we are riding when we need to
- Stay in $null(\Gamma^{\dagger})$

Solution:

Efficient dynamic FBA for microbial communities.

Brunner

Challenge:

- Decide which "waves" to ride
- Switch the set of "waves" we are riding when we need to
- Stay in $null(\Gamma^{\dagger})$

Solution:

Efficient dynamic FBA for microbial communities.

Brunner

Challenge:

- Decide which "waves" to ride
- Switch the set of "waves" we are riding when we need to
- Stay in $null(\Gamma^{\dagger})$

Solution:

Efficient dynamic FBA for microbial communities.

Brunner

Challenge:

- Decide which "waves" to ride
- Switch the set of "waves" we are riding when we need to
- Stay in $null(\Gamma^{\dagger})$

Solution:

Efficient dynamic FBA for microbial communities.

Brunner

Challenge:

- Decide which "waves" to ride
- Switch the set of "waves" we are riding when we need to
- Stay in $null(\Gamma^{\dagger})$

Solution:

Efficient dynamic FBA for microbial communities.

Brunner

Challenge:

- Decide which "waves" to ride
- Switch the set of "waves" we are riding when we need to
- Stay in $null(\Gamma^{\dagger})$

Solution:

Efficient dynamic FBA for microbial communities.

Brunner

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dy}{dt} = -x(v_1 + v_2)$$

Efficient dynamic FBA for microbial communities.

Brunner

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dy}{dt} = -x(v_1 + v_2)$$

Efficient dynamic FBA for microbial communities.

Brunner

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dy}{dt} = -x(v_1 + v_2)$$

$$\frac{dy}{dt} = -x(v_1 + v_2)$$

Where $v_1 + v_2$ is maximized subject to $0 < v_1 < 1$, $0 < v_2 < 1$, $v_1 + v_2 < y$.

Efficient dynamic FBA for microbial communities.

Brunner

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dy}{dt} = -x(v_1 + v_2)$$

Choose a basis that lets us follow the optimal point!

Efficient dynamic FBA for microbial communities.

Brunner

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dx}{dt} = -x(v_1 + v_2)$$

Choose a basis that lets us follow the optimal point!

Efficient dynamic FBA for microbial communities.

Brunner

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dx}{dt} = -x(v_1 + v_2)$$

Choose a basis that lets us follow the optimal point!

Efficient dynamic FBA for microbial communities.

Brunner

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dx}{dt} = -x(v_1 + v_2)$$

Efficient dynamic FBA for microbial

ties. Brunner

Choose a basis that lets us follow the optimal point!

Consider the differential algebraic system

$$\frac{dx}{dt} = x(v_1 + v_2)$$
$$\frac{dx}{dt} = -x(v_1 + v_2)$$

Algorithm Overview

Efficient dynamic FBA for microbial communities.

Brunner

- 1 Optimize growth rate
- 2 Compute rate of change of constraints
- 3 Choose constraint basis
- 4 While solution remains in feasible region:
 - Simulate forward
 - Check feasibility
- 5 Return to last feasible point and step (2)

Note that linearity of objective and convexity of feasible region insure we remain at optimal growth.

Dynamic Simulation

Efficient dynamic FBA for microbial communities.

Brunner

Dynamic Simulation

Efficient dynamic FBA for microbial communities.

Brunner

Species A has 7 reactions, B has

Thank You

Efficient dynamic FBA for microbial communities.

Brunner

Thank you

- Dr. Nick Chia, Mayo Clinic
- Theoretical Biology Group, Mayo Clinic

Financial Support

- Andersen Family Foundation
- NCI R01 CA179243