# Lecture 2

Basic dynamical systems theory I

AEM-ADV12 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline 2/24

- 1. Phase portrait and equilibria
- 2. Linear stability analysis

Lecture outline 3/24

- 1. Phase portrait and equilibria
- Linear stability analysis

## **Example: Nonlinear pendulum**

$$x = y$$
 and  $y = -\sin x$ 



## **Definition: Equilibrium point**

 $\overline{\mathbf{X}}$  is an equilibrium point if  $\mathbf{X}(t) = \overline{\mathbf{X}}$  is a solution of the given dynamical system such that

$$f(\overline{x}) = 0$$

## **Example 1: Nonlinear pendulum**

$$x = y$$
 and  $y = \sin x$ 

## **Example 2: Plane Couette flow**

$$(\mathbf{U} \cdot \nabla)\mathbf{U} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{U}$$
$$\nabla \cdot \mathbf{U} = 0$$

Lecture outline 8/24

- 1. Phase portrait and equilibria
- 2. Linear stability analysis

#### Jacobian linearisation

Let  $\overline{\mathbf{x}}$  be an equilibrium point such that  $\mathbf{f}(\overline{\mathbf{x}}) = \mathbf{0}$ . Consider a small perturbation  $\mathbf{\delta x}$ , i.e.  $\mathbf{x} = \overline{\mathbf{x}} + \varepsilon \mathbf{\delta x}$ , then the given nonlinear system is approximated by the following linear dynamical system:

$$\left. \frac{d\mathbf{\delta x}}{dt} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x} = \overline{\mathbf{x}}} \mathbf{\delta x}$$

#### Remark

Linear dynamical system is much easier to analyse.

## **Example 1**

Find the linearised system around the equilibrium point.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 0 \\ x^2 y \end{bmatrix}$$

#### **Example 2: Linearised Navier-Stokes equation**

Find the linearised equation around an equilibrium point (basic state) given by  ${f U}$ 

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

#### **Definition: Linear instability or stability**

If the linearised dynamical system around the given basic state  $\overline{\mathbf{x}}$  has a solution such that  $\|\mathbf{\delta x}\| \to \infty$  as  $t \to \infty$ , the basic state is called **linearly unstable**.

Let the linearised system around the basic state  $\overline{\mathbf{X}}$  be

$$\frac{d\mathbf{\delta x}}{dt} = \mathbf{A} \, \mathbf{\delta x} \qquad \text{where} \quad \mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \overline{\mathbf{x}}}$$

#### Case I

 $\lambda_1,\lambda_2$  are both real, and  $\lambda_1 \neq \lambda_2$ . The two corresponding eigenvectors  $\mathbf{V}_1$  and  $\mathbf{V}_2$  are then linearly independent.

$$i) \lambda_1, \lambda_2 < 0, |\lambda_1| > |\lambda_2|$$



#### Case I

 $\lambda_1,\lambda_2$  are both real, and  $\lambda_1 \neq \lambda_2$ . The two corresponding eigenvectors  $\mathbf{V}_1$  and  $\mathbf{V}_2$  are then linearly independent.

$$ii) \lambda_1, \lambda_2 > 0, |\lambda_1| > |\lambda_2|$$



#### Case I

 $\lambda_1,\lambda_2$  are both real, and  $\lambda_1 \neq \lambda_2$ . The two corresponding eigenvectors  $\mathbf{V}_1$  and  $\mathbf{V}_2$  are then linearly independent.

$$iii) \lambda_2 < 0 < \lambda_1$$



#### Case II

 $\lambda_1,\lambda_2$  are both real, and  $\lambda_1=\lambda_2$  .

$$i)$$
 rank( $\mathbf{A} - \lambda \mathbf{I}$ ) = 0



#### Case II

 $\lambda_1,\lambda_2$  are both real, and  $\lambda_1=\lambda_2$  .

$$ii$$
) rank( $\mathbf{A} - \lambda \mathbf{I}$ ) = 1



#### **Case III**

 $\lambda_1,\lambda_2$  are both complex such that  $\lambda_1=lpha\pm ieta,\lambda_2=lpha-ieta$ 

$$i)\alpha = 0$$



#### **Case III**

 $\lambda_1,\lambda_2$  are both complex such that  $\lambda_1=lpha\pm ieta,\lambda_2=lpha-ieta$ 



#### **Case III**

 $\lambda_1,\lambda_2$  are both complex such that  $\lambda_1=lpha\pm ieta,\lambda_2=lpha-ieta$ 



**Example: Unforced duffing equation** 

$$x + x - x + x^3 = 0$$



Summary 24/24

- 1. Phase portrait and equilibria
- 2. Linear stability analysis