

Dynamic lightning NO_x production rates obtained with spacebased low-Earth orbiting and geostationary lightning imagers

Rebekah P. Horner¹(rebekah.horner.20@ucl.ac.uk), Eloise A. Marais¹, Lee T. Murray²

Department of Geography, University College London, UK; ²Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA

We derive spatially and hourly varying lightning NO_x production rates with satellite observations of lightning energies for improved representation of NO_x sources in models

NO_x formation from lightning

- Lightning-produced NO_x is the most dominant source of NO_x throughout most of the troposphere.
- High-energy lightning discharges break apart N₂ and O₂ molecules, that then recombine as NO, which rapidly
- reacts to form NO₂

 Lightning NO_x forms through N₂ and O₂ breakdown

Tropospheric NO_x chemistry and influence on O₃

- radical cycles involving OH and HO2, which influence the atmosphere's oxidation
- Compounds like PAN, PPN, and nighttime N₂O₅ act as temporary NO_x reservoirs, enabling redistribution across different regions before releasing NO₂ back into the

 NO_x drives O_3 formation while reservoir compounds like PAN, PPN and N_2O_5 redistribute

(3) The current representation of lightning NO_x in atmospheric chemistry models

- Lightning flash rates are calculated using the relationship with cloud-top height..
- Flash rates are adjusted with local scaling factors to match lightning flash climatologies from space-based detectors (Murray et al.,
- NO_x emissions are calculated using static production rate of 500 mol/flash in the northern midlatitudes and 260 mol/flash everywhere else.

• Wu et al. (2023) estimated

optical energy from the

lightning NO_x production rates

using satellite-based lightning

Geostationary Lightning Mapper

LN Coproduction rate Thermochemical NOx yield:

 $9 \times 10^6 \text{ mol/J}$

Radiances from satellite

Highly parameterised lightning NO_x production rates lead to upper troposphere NO_x model biases in GEOS-Chem

Lightning flash energies from the Lightning Imaging Sensor

- Lightning Imaging Sensors (LIS) onboard the TRMM satellite and the International Space Station measures lightning flash energies that can constraint NO_x production.
- Flash radiances are ~60% greater over oceans than land, driven by oceanic conductivity, larger storms, and cloud microphysics. ISS-LIS (International Space Station) radiances are 31% greater than TRMM-LIS (Tropical Rainfall Measuring Mission), with a greater difference between ocean and
- Flash radiances over land peak at 7-10 LST due to overnight charge build-up, while ocean radiance stays elevated from 5-18 LST due

temperatures.

Diurnal variation in LIS lightning flash radiances

LIS flash radiances are higher over oceans than land, with ISS-LIS exceeding TRMM-LIS

mol/flash respectively).

Calculating lightning NO_x production rates from flash radiances

New LIS derived lightning NO_x production rates

Diurnal variation in lightning NO_x production rates and flash counts

 We adapt this so-called β-method (Koshak et al., 2017) to use LIS flash radiances (µJ/sr/m²/µm) instead of optical energies (J), assuming a proportional relationship between lightning optical energy and NO_x production:

-75 -50 -25 0 25 50 75

-24 -16 -8 0 8 16 24

New minus old lightning [ppbv]

Evaluation using the Geostationary Lightning Mapper

- Normalising GLM, TRMM, and ISS lightning energy data enables direct comparison, revealing a similar morning peak (9:00 LST) in over land, 10-55% higher than average.
- GLM peaks earlier over oceans (4:00 LST) than land (9:00 LST) due to its continuous geostationary coverage, while ISS consistently peaks between 9:00-10:00 LST over both land and ocean and TRMM peaks at 7:00 LST over ocean and 10:00 LST over land.
- These morning peaks align with increased convection driven by solar heating, which destabilises the lower atmosphere, enhances updrafts, and intensifies thunderstorms, leading to higher

Data show morning peaks, driven by solar heating and atmospheric convection

enhancing

oxidative capacity

and accelerating

CH₄ and VOCs

removal

Impact on simulated lightning NO_x emissions

Annual change in lightning NO_x emissions Updated lightning NO_x production rates decrease global lightning -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

New lightning minus old [Gg NO]

→ Old — New 250.0 200.0 100.0 12.0 Local Solar Time (LST)

 NO_x emissions from 5.5 \pm 0.2 Tg N yr⁻¹ to 3.6 \pm 0.1 Tg N yr⁻¹ between 2015-2019. Global lightning NO_x emissions peak in JJA (1.14 \pm 0.04 Tg N yr⁻¹) and a minimum in DJF (0.65 \pm 0.03 Tg N yr⁻¹).

• NO_x emissions increase in tropical/subtropical areas (e.g., Central America, Gulf of Mexico, South Africa) due to higher energy marine lightning flashes, while parts of the tropics (Central Africa, South Diurnal variation in lightning NO_x emissions America show significant decreases due to updated lower lightning NO_x production rates (decrease from 260 mol/flash to 220 & 180

> • NO_x emissions peak between 13-16 LST but the variability is dampened because the previous parameterisation has no diurnal

Updated lightning NO_x production rates reduce global lightning NO_x emissions from 5.5 TgN yr⁻¹ to 3.6 TgN yr⁻¹

Impact of updated lightning NO_x on tropospheric composition

The β-method is adapted to estimate lightning NOx production rates using LIS flash radiant energy

 The same spatial changes are seen in other seasons of the year though the magnitude is smaller because of the reduced convective

-75 -50 -25 0 25 50 75

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

New minus old lightning [pptv]

Key References

Price, C. & D. Rind (1992), Journal of Geophysical Research, 97(D9), Murray et al. (2012), Journal of Geophysical Research: Atmospheres, 117(D20), Horner et al. (2024), Atmospheric Chemistry & Physics, 24(11), Wu et al. (2023), Journal of Geophysical Research: Atmospheres, 128(4), Koshak et al. (2017), 16th Annual

Acknowledgements

This work is funded by the ERC under the EU's Horizon 2020 research and innovation programme (through a Starting Grant awarded to Eloise A. Marais, UpTrop (grant no. 851854)).

unlift