

Which of these have time-series data?

Real world time-series data is often messy

Background

Objective

Predict True Air Speed (TAS) of flight based on other sensor measurements.

Dataset

The data set includes ~4600 different flights of plane with tail number 660. Each flight has measurement data from 2 different classes of sensors, one measured at 1 HZ and the other at 4 HZ.

(This dataset is a small subset of the Flight Data from Dashlink which is modified for the purpose of this demo)

1 HZ

```
TIME, FUEL QUANTITY, OIL PRESSURE, OIL TEMPERATURE, LATITUDE POSITION, LONGITUDE POSITION
02-Jun-2001 05:41:12.000,8048,0,23.6747741699219,44.8915134735503,-63.5191830149607
02-Jun-2001 05:41:13.000,8048,0,23.6747741699219,44.8915134735503,-63.5191830149607
02-Jun-2001 05:41:14.000,8048,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:15.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:16.000,8032,0,25.0178833007812,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:17.000,8048,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:18.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:19.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:20.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:21.000,8032,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:22.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:23.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:24.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:25.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:26.000,8032,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:27.000,8032,0,23.6747741699219,44.8915134735503,-63.5189992012946
02\text{-}\mathsf{Jun}\text{-}2001 \ 05\text{:}41\text{:}28.000,8032,0,23.6747741699219,}44.8915134735503,\text{-}63.5189992012946
02-Jun-2001 05:41:29.000,8040,0,23.6747741699219,44.8915134735503,-63.5189992012946
02-Jun-2001 05:41:30.000,8032,0,23.6747741699219,44.8915134735503,-63.5189992012946
```

4 HZ

```
TIME,ALTITUDE,EXHAUST GAS TEMPERATURE,FUEL FLOW,FAN SPEED,TRUE AIRSPEED,WIND DIRECTION,WIND SPEED
02-Jun-2001 05:41:12.000,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:12.250,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:12.500,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:12.750,175,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:13.000,173,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:13.250,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:13.500,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:13.750,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:14.000,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:14.250,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:14.500,173,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:14.750,174,17.5,0,1.5,0,0,0
02-Jun-2001 05:41:15.000,174,17,0,1.5,0,0,0
02-Jun-2001 05:41:15.250,173,17,0,1.5,0,0,0
02-Jun-2001 05:41:15.500,173,17,0,1.5,0,0,0
02-Jun-2001 05:41:15.750,173,17,0,1.5,0,0,0
02-Jun-2001 05:41:16.000,174,17,0,1.5,0,0,0
02-Jun-2001 05:41:16.250,172,17,0,1.5,0,0,0
02-Jun-2001 05:41:16.500,173,17,0,1.5,0,0,0
```

STEP 1. Import data into a timetable

Timetable is a special type of table for working with time series data.

```
t1HZ = readtimetable("flightData1HZ.csv")
```

 $t1HZ = 11828 \times 5 \text{ timetable}$

	Time	FuelQuantity	OilPressure	OilTemperature
1	02-Jun-2001 05:41:12.000	8048	0	23.6748

	Time	FuelQuantity	OilPressure	OilTemperature
2	02-Jun-2001 05:41:13.000	8048	0	23.6748
3	02-Jun-2001 05:41:14.000	8048	0	23.6748
4	02-Jun-2001 05:41:15.000	8040	0	23.6748
5	02-Jun-2001 05:41:16.000	8032	0	25.0179
6	02-Jun-2001 05:41:17.000	8048	0	23.6748
7	02-Jun-2001 05:41:18.000	8040	0	23.6748
8	02-Jun-2001 05:41:19.000	8040	0	23.6748
9	02-Jun-2001 05:41:20.000	8040	0	23.6748
10	02-Jun-2001 05:41:21.000	8032	0	23.6748
11	02-Jun-2001 05:41:22.000	8040	0	23.6748
12	02-Jun-2001 05:41:23.000	8040	0	23.6748
13	02-Jun-2001 05:41:24.000	8040	0	23.6748
14	02-Jun-2001 05:41:25.000	8040	0	23.6748

:

STEP 2. Visualize the flight path

Let's check the starting and stopping locations.

```
geoplot(t1HZ.LatitudePosition,t1HZ.LongitudePosition,'Color','b','LineWidth',3);
geobasemap colorterrain
```


STEP 3. Clean data

Data Cleaner app (New in R2022a)

Instead of just cleaning the current data, let's generate a MATLAB function that can be used for other 1HZ data files

. . .

t1HZ = clean1HZData(t1HZ)

t1HZ = 11828×5 timetable

	Time	FuelQuantity	OilPressure	OilTemperature
1	02-Jun-2001 05:41:12.000	8048	0	23.6748
2	02-Jun-2001 05:41:13.000	8048	0	23.6748
3	02-Jun-2001 05:41:14.000	8048	0	23.6748
4	02-Jun-2001 05:41:15.000	8040	0	23.6748
5	02-Jun-2001 05:41:16.000	8032	0	23.6748
6	02-Jun-2001 05:41:17.000	8048	0	23.6748
7	02-Jun-2001 05:41:18.000	8040	0	23.6748
8	02-Jun-2001 05:41:19.000	8040	0	23.6748
9	02-Jun-2001 05:41:20.000	8040	0	23.6748
10	02-Jun-2001 05:41:21.000	8032	0	23.6748

	Time	FuelQuantity	OilPressure	OilTemperature
11	02-Jun-2001 05:41:22.000	8040	0	23.6748
12	02-Jun-2001 05:41:23.000	8040	0	23.6748
13	02-Jun-2001 05:41:24.000	8040	0	23.6748
14	02-Jun-2001 05:41:25.000	8040	0	23.6748

:

Verify flight path with cleaned data

geoplot(t1HZ.LatitudePosition,t1HZ.LongitudePosition,'Color','b','LineWidth',3)
geobasemap colorterrain

STEP 4. Load and clean the 4 HZ Data by going through the same steps

Perform the same importing and cleaning steps for the 4HZ data file

```
t4HZ = readtimetable("flightData4HZ.csv");
```

 $t4HZ = 47312 \times 7 \text{ timetable}$

	Time	Altitude	ExhaustTemperature	FuelFlow	FanSpeed
1	02-Jun-2001 05:41:12.000	174	18.5736	0.0053	1.5000
2	02-Jun-2001 05:41:12.250	174	18.7119	0.0160	1.5000
3	02-Jun-2001 05:41:12.500	174	18.8555	0.0318	1.5000
4	02-Jun-2001 05:41:12.750	175	19.0046	0.0529	1.5000
5	02-Jun-2001 05:41:13.000	173	19.1589	0.0791	1.5000
6	02-Jun-2001 05:41:13.250	174	19.3186	0.1105	1.5000
7	02-Jun-2001 05:41:13.500	174	19.4834	0.1469	1.5000
8	02-Jun-2001 05:41:13.750	174	19.6535	0.1884	1.5000
9	02-Jun-2001 05:41:14.000	174	19.8287	0.2348	1.5000
10	02-Jun-2001 05:41:14.250	174	20.0090	0.2862	1.5000
11	02-Jun-2001 05:41:14.500	173	20.1944	0.3425	1.5000
12	02-Jun-2001 05:41:14.750	174	20.3848	0.4037	1.5000
13	02-Jun-2001 05:41:15.000	174	20.5802	0.4697	1.5000
14	02-Jun-2001 05:41:15.250	173	20.7805	0.5404	1.5000

STEP 5. Synchronize the two datasets

% Synchronize timetables t = synchronize(t1HZ,t4HZ,"union","linear")

 $t = 47312 \times 12 \text{ timetable}$

. . .

	Time	FuelQuantity	OilPressure	OilTemperature
1	02-Jun-2001 05:41:12.000	8048	0	23.6748
2	02-Jun-2001 05:41:12.250	8048	0	23.6748
3	02-Jun-2001 05:41:12.500	8048	0	23.6748
4	02-Jun-2001 05:41:12.750	8048	0	23.6748
5	02-Jun-2001 05:41:13.000	8048	0	23.6748
6	02-Jun-2001 05:41:13.250	8048	0	23.6748
7	02-Jun-2001 05:41:13.500	8048	0	23.6748
8	02-Jun-2001 05:41:13.750	8048	0	23.6748
9	02-Jun-2001 05:41:14.000	8048	0	23.6748
10	02-Jun-2001 05:41:14.250	8046	0	23.6748
11	02-Jun-2001 05:41:14.500	8044	0	23.6748
12	02-Jun-2001 05:41:14.750	8042	0	23.6748
13	02-Jun-2001 05:41:15.000	8040	0	23.6748
14	02-Jun-2001 05:41:15.250	8038	0	23.6748

:

STEP 6. Visualize timetables using stackedplot

stackedplot allows plotting multiple variables with common x-axis and exploring them in a synchronized way.

stackedplot(t)

STEP 7. Finding and saving cruising data using ischange

We can identify when the flight is cruising by checking when the altitude is not changing. So, we need to figure out when the cruise altitude starts and when it ends.


```
clear x y
```

Find the cruise start and end times

```
% Find the change points
changeIndices = find(changeIndices);
% Find cruise start and end times
cruiseStartTime = t.Time(changeIndices(1))

cruiseStartTime = datetime
    02-Jun-2001 06:14:15.250

cruiseEndTime = t.Time(changeIndices(2))
```

```
cruiseEndTime = datetime
   02-Jun-2001 08:15:58.750
```

Timetable allows slicing data based on a time range.

```
cruiseRange = timerange(cruiseStartTime,cruiseEndTime)

cruiseRange =
    timetable timerange subscript:

    Select timetable rows with times in the half-open interval:
    [02-Jun-2001 06:14:15, 02-Jun-2001 08:15:58)
```

See Select Timetable Data by Row Time and Variable Type.

tcruise = t(cruiseRange,:)

tcruise = 29214×12 timetable

. . .

	Time	FuelQuantity	OilPressure	OilTemperature
1	02-Jun-2001 06:14:15.250	7912	80.5860	110.9763
2	02-Jun-2001 06:14:15.500	7912	80.5860	110.9763
3	02-Jun-2001 06:14:15.750	7912	80.5860	110.9763
4	02-Jun-2001 06:14:16.000	7912	80.5860	110.9763
5	02-Jun-2001 06:14:16.250	7912	80.5860	110.9763
6	02-Jun-2001 06:14:16.500	7912	80.5860	110.9763
7	02-Jun-2001 06:14:16.750	7912	80.5860	110.9763
8	02-Jun-2001 06:14:17.000	7912	80.5860	110.9763
9	02-Jun-2001 06:14:17.250	7912	80.5860	110.9763
10	02-Jun-2001 06:14:17.500	7912	80.5860	110.9763
11	02-Jun-2001 06:14:17.750	7912	80.5860	110.9763
12	02-Jun-2001 06:14:18.000	7912	80.5860	110.9763
13	02-Jun-2001 06:14:18.250	7912	80.5860	110.9763
14	02-Jun-2001 06:14:18.500	7912	80.5860	110.9763

:

stackedplot(tcruise)

Summary

- MATLAB offers different low-code and code-based techniques for data cleaning and preparation
- Choose based on your familiarity with the data and the cleaning process

Copyright 2022 The MathWorks, Inc.