《离散数学》期末考试题(F)参考答案

-, 1.{1, 3, {1, 2}, {3}}; {{2, 3}, {1}}; {1, 3, {1, 2}, {3}, {2, 3}, {1}}.

2.0, 1, 0.

3.
$$\neg \forall x (Z(x) \rightarrow O(x))$$
.

 $4. p^n, p$ 为素数, n 为正整数.

5. 是, 3, 10.

 \equiv , 1(B); 2(C); 3(D); 4(C); 5(A).

 \equiv , $1(\sqrt{1})$; $2(\times)$; $3(\sqrt{1})$; $4(\sqrt{1})$; $5(\times)$.

四、证 对于任意 $z \in C$, 由于 $f \circ g$ 是满射, 必存在 $x \in A$, 使得 $(f \circ g)(x) = g(f(x)) = z$.

令 $y = f(x) \in B$, 有 g(y) = z, 因此, g 是满射.

设
$$A = \{a,b,c\}$$
 , $B = \{1,2,3\}$, $C = \{\alpha,\beta\}$, $\diamondsuit f : A \to B$, $g : B \to C$,

$$f(a) = 2, f(b) = 3, f(c) = 3$$
 , $g(1) = \beta, g(2) = \alpha, g(3) = \beta$. $\dot{\boxtimes}$ $\dot{\boxtimes}$ $\dot{\boxtimes}$

$$(f \circ g)(a) = g(f(a)) = \alpha$$
 , $(f \circ g)(b) = g(f(b)) = \beta$, 显然有 $\operatorname{ran}(f \circ g) = \{\alpha, \beta\}$,

 $f \circ g$ 是满射. 而 ran $f = \{2, 3\}$, f 不是满射.

五、证 (1)对于任意 $x \in \mathbb{Z}$, 由于 $x^2 + x = x^2 + x$, 所以 $(x, x) \in \mathbb{R}$, 即 \mathbb{R} 是自反的.

- (2)因为 $(0,0) \in R$,因此 R 不是反自反的.
- (3)对于任意 $x, y \in \mathbb{Z}$, 若 $(x, y) \in R$, 则 $x^2 + x = y^2 + y$, 于是 $y^2 + y = x^2 + x$, 进而 $(y, x) \in R$, 即 R 是对称的.
- (4)因为 $(2, -3) \in R$ 且 $(-3, 2) \in R$,因此 R 不是反对称的.

(5)对于任意
$$x, y, z \in \mathbb{Z}$$
, 若 $(x, y) \in R$ 且 $(y, z) \in R$, 则 $x^2 + x = y^2 + y$ 且 $y^2 + y = z^2 + z$,于

是 $x^2 + x = z^2 + z$, 所以 $(x, z) \in R$, 即R是传递的.

综上所述,知 R 是自反的、对称的和传递的.

六、**解** 命题公式 $A = \neg (p \rightarrow q)) \leftrightarrow (p \rightarrow \neg q)$ 的真值表如下:

p q	$\neg (p \rightarrow q)$	$p \rightarrow \neg q$	A
1 1	0	0	1
1 0	1	1	1
0 1	0	1	0
0 0	0	1	0

A 的主析取范式为:

$$A = (p \land q) \lor (p \land \neg q).$$

A 的主合取范式为:

$$A = (p \lor \neg q) \land (p \lor q).$$

七、**证** 将组里的每个人看作节点,两个人是朋友当且仅当对应的节点邻接,于是得到一个n 阶简单无向图G,进而G中每节点的度数可能为0.1,2,...,n-1中一个.

当G中无孤立点时,于是每节点的度数可能为1,2,...,n-1. 由于共有n个节点,于是必有两节点度数相同.

当G中有孤立点时,这时每节点的度数只可能为0,1,2,...,n-2.同样由于共有n个节点,因此必有两节点度数相同.

八、证 对于任意的 K_6 的节点v,因为 $\deg(v)=5$,与v邻接的边有 5条,当用红、蓝颜色 去涂时,至少 3 条边涂的是同一种颜色,不妨设 vv_1,vv_2,vv_3 是红色。若 3 条边 v_1v_2,v_2v_3,v_3 是红色,则存在红色 K_3 ;若 v_1v_2 , v_2v_3 , v_1v_3 都是蓝色,则存在蓝色。