First Name:	Last Name:	Student ID:	
Polynomial Equations and Inequalities (2)			
1. Factor fully.			

a. x³-x²+x-1	e. $5x^3+3x^2-12x+4$
b. 2x ³ +11x ² +12x-9	$f. x^3 + 9x^2 + 8x - 60$
c. x ³ -7x-6	$g. x^4 - 5x^2 + 4$
d. 3x ³ -3x ² +6x-24	$h. \ x^4 + 3x^3 - 38x^2 + 24x + 64$

2. Determine the values of m and n if $3x^2-x-2$ is a factor of the polynomial $3x^4+mx^3-19x^2+nx+12$. Express the polynomial in factored form.

3. If x–2 and x+2 are factors of $6x^3+ax^2+bx+16$, determine the values of a and b, and any remaining factors.

4. Given $f(x) = 2x^4 + 3x^3 - 5x^2 + 3x + 2$. If k is a non-zero real root of f(x) = 0, show that $\frac{1}{k}$ is a also a root.

- **5.** Find all possible roots of the polynomial equation where $x \in \mathbb{C}$.
 - a. $2x^3+5x^2+14x+6=0$
 - b. $8x^4 = x$
 - c. $X^2(4x^2+17)=15$

- **6.** Sketch a possible graph for each polynomial function, using the intercepts and end behavior of the function.
 - a. $y=2x^3-12x^2+18x$
 - b. $y=-x^3+4x^2+x-4$
 - c. $y=x^4-8x^2+16$

- **7.** Explain why
 - a. $15x^5+4x^4+9x^2+7x+380=0$ has at least one real root.
 - b. $5x^6+3x^4+8x^2+120=0$ has no real roots.

- **8.** Solve each of the following polynomial inequalities using a graphical approach, $x \in \mathbb{R}$.
 - a. -2x(x+2)(x-3)<0
 - b. $(x+4)(x+1)(x-2)^2 \le 0$

9. Solve each of the following polynomial inequalities using an interval sign table, $x \in \mathbb{R}$

a.
$$2(x+3)(x-1)(x-5) \le 0$$

b.
$$-3(x+4)(x-3)^3>0$$

10. Suppose P(x) is a quadratic whose coefficients are all odd integers. Prove that P(x)=0 has no rational roots.