```
In [42]: import pandas as pd
    import numpy as np
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_auc_
    from sklearn.metrics import log_loss, f1_score, precision_score, recall_score
    import matplotlib.pyplot as plt
    from pandas_profiling import ProfileReport
    import seaborn as sns
    import pickle
    %matplotlib inline
```

Diabeties Dataset

In [124]: df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/diabet

In [126]: df

Out[126]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
763	10	101	76	48	180	32.9	0.171
764	2	122	70	27	0	36.8	0.340
765	5	121	72	23	112	26.2	0.245
766	1	126	60	0	0	30.1	0.349
767	1	93	70	31	0	30.4	0.315

768 rows × 9 columns

EDA and Feature Engineering

```
In [127]: # Profile report df.profile_report(minimal=True)

Summarize dataset: 15/15 [00:00<00:00, 38.89it/s, Completed]

Generate report structure: 1/1 [00:12<00:00, 100% 12.72s/it]

Render HTML: 100% 1/1 [00:08<00:00, 8.25s/it]
```

Observation:- Features like glucose, BloodPressure, skinThickness, Insulin, BMI have zeros which, not possible for living body. These features are almost normally distributed so we can use mean to fill the zeros.

In [130]: ProfileReport(df,minimal=True)

Summarize dataset: 15/15 [00:00<00:00, 33.24it/s,

100% Completed]

Generate report structure: 1/1 [3:11:09<00:00,

100% 11469.19s/it]

Render HTML: 100% 1/1 [00:35<00:00, 35.25s/it]

Overview

Dataset st	atistics				
Number of v	variables	9			
Number of o	bservations	768			
Missing cell	s	0			
Missing cell	s (%)	0.0%			
Total size in	memory	54.1 KiB			
Average red	ord size in memory	72.2 B			
Variable ty	pes				
Numeric		9			
lerts					
Pregnancies h	nas 111 (14.5%) zeros	Zeros			
Outcome has 5	00 (65.1%) zeros	Zeros			
Reproduct					
Analysis started	2022-09-09 13:01:31.240407				
Analysis finished	2022-09-09 13:01:31.379103				

Out[130]:

Observation:- Zeros are replaced. There is no null values in the dataset.

```
In [131]: df.isnull().sum()
Out[131]: Pregnancies
                                       0
          Glucose
                                       0
          BloodPressure
                                       0
          SkinThickness
                                       0
          Insulin
                                       0
          BMI
                                       0
          DiabetesPedigreeFunction
                                       0
                                       0
                                       0
          Outcome
          dtype: int64
In [132]: ## Checking Outliers using box plots
          fig ,ax = plt.subplots(figsize = (20,20))
```

Out[132]: <AxesSubplot:>

sns.boxplot(data = df , ax = ax)

Observation:- There are outliers in many features of the dataset.

```
In [133]: df.shape
Out[133]: (768, 9)
In [134]: df.columns
Out[134]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                   'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                 dtype='object')
In [151]: # As we have less numbers of data rows so we are carefully choosing our quantiles
           q = df['Pregnancies'].quantile(.99)
           df new = df[df['Pregnancies'] < q]</pre>
           q = df new['Insulin'].quantile(.95)
           df new = df new[df new['Insulin']< q]</pre>
           q = df_new['Age'].quantile(.97)
           df_new = df_new[df_new['Age']< q]</pre>
           q = df_new['BloodPressure'].quantile(.98)
           df_new = df_new[df_new['BloodPressure']< q]</pre>
           q = df new['SkinThickness'].quantile(.98)
           df_new = df_new[df_new['SkinThickness']< q]</pre>
           q = df new['BMI'].quantile(.99)
           df_new = df_new[df_new['BMI']< q]</pre>
           q = df new['Glucose'].quantile(.99)
           df new = df new[df new['Glucose'] < q]</pre>
In [152]: df_new.shape
Out[152]: (648, 9)
In [153]: df new.isnull().sum()
Out[153]: Pregnancies
                                         0
           Glucose
                                         0
           BloodPressure
                                         0
           SkinThickness
                                         0
           Insulin
                                         0
           BMI
                                         0
           DiabetesPedigreeFunction
                                         0
                                         0
           Age
           Outcome
                                         0
           dtype: int64
```

```
In [154]: fig ,ax = plt.subplots(figsize = (20,20))
sns.boxplot(data = df_new , ax = ax)
```

Out[154]: <AxesSubplot:>

Observation:- Quantile technique to remove outlier removed outliers from some columns. We can try standardscaler as well.

```
In [155]: df_new.isnull().sum()
Out[155]: Pregnancies
                                         0
           Glucose
                                         0
           BloodPressure
                                         0
           SkinThickness
                                         0
           Insulin
                                         0
           BMI
                                         0
           {\tt DiabetesPedigreeFunction}
                                         0
                                         0
                                         0
           Outcome
           dtype: int64
In [156]: # Segregating output column
           y = df_new['Outcome']
Out[156]: 0
                  1
                  0
           1
           2
                  1
                  0
           4
                  1
           762
                  0
           764
                  0
           765
                  0
           766
                  1
           767
           Name: Outcome, Length: 648, dtype: int64
In [157]: X = df_new.drop(columns=['Outcome'])
```

In [158]:

Out[158]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
0	6	148.0	72.0	35.000000	79.799479	33.6	0
1	1	85.0	66.0	29.000000	79.799479	26.6	0
2	8	183.0	64.0	20.536458	79.799479	23.3	0
3	1	89.0	66.0	23.000000	94.000000	28.1	0
4	0	137.0	40.0	35.000000	168.000000	43.1	2
762	9	89.0	62.0	20.536458	79.799479	22.5	0
764	2	122.0	70.0	27.000000	79.799479	36.8	0
765	5	121.0	72.0	23.000000	112.000000	26.2	0
766	1	126.0	60.0	20.536458	79.799479	30.1	0
767	1	93.0	70.0	31.000000	79.799479	30.4	0

648 rows × 8 columns

In [159]: # Transformation of data using standardScaler()

scalar = StandardScaler()

X_scaled = scalar.fit_transform(X)

```
In [160]: # Boxplot ploting to check the dataset after standard scaler
    df_new_scalar = pd.DataFrame(scalar.fit_transform(df_new))
    fig ,ax = plt.subplots(figsize = (20,20))
    sns.boxplot(data = df_new_scalar , ax = ax)
```

Out[160]: <AxesSubplot:>

Observation:- After StandardScaling data looks normalized.

```
In [162]: X scaled
Out[162]: array([[ 0.78080278, 1.10205322, 0.09293203, ..., 0.30463329,
                   0.52496906, 1.8616411 ],
                 [-0.84190473, -1.16279909, -0.4581753, ..., -0.82128998,
                  -0.3490655 , -0.05334973],
                 [1.42988579, 2.36030449, -0.64187774, ..., -1.35208237,
                   0.66747469, 0.04743926],
                 [0.45626128, 0.13140223, 0.09293203, ..., -0.88562845,
                  -0.68474543, -0.15413872],
                 [-0.84190473, 0.31115241, -1.00928262, ..., -0.25832834,
                  -0.35539908, 1.55927413],
                 [-0.84190473, -0.87519879, -0.09077041, ..., -0.21007449,
                  -0.46307 , -0.85966166]])
In [163]: |y
Out[163]: 0
                 1
                 0
          2
                 1
          3
                 0
          4
                 1
          762
                 0
          764
          765
                 0
          766
                 1
          767
          Name: Outcome, Length: 648, dtype: int64
In [180]:
          # To check Multicollinearity we use vif
          def vif score(x):
              scaler = StandardScaler()
              arr = scaler.fit_transform(x)
              return pd.DataFrame([[x.columns[i], variance_inflation_factor(arr,i)] for i i
```

```
In [181]: vif_score(X)
```

Out[181]:

	FEATURE	VIF_SCORE
0	Pregnancies	1.566153
1	Glucose	1.277012
2	BloodPressure	1.223138
3	SkinThickness	1.458437
4	Insulin	1.252390
5	ВМІ	1.520853
6	DiabetesPedigreeFunction	1.056995
7	Age	1.759953

Observation:- No Multicollinearity among features

Train Test Split

Logistics Regression

```
In [208]: # logis object by default it uses lbfgs solver and penalty= l2
          logis = LogisticRegression()
In [209]: logis.fit(x train,y train )
Out[209]: LogisticRegression()
In [210]: # All default parameters we can see
          logis.get_params()
Out[210]: {'C': 1.0,
            'class_weight': None,
            'dual': False,
            'fit intercept': True,
            'intercept_scaling': 1,
            'l1_ratio': None,
            'max iter': 100,
            'multi class': 'auto',
            'n_jobs': None,
            'penalty': '12',
            'random state': None,
            'solver': 'lbfgs',
            'tol': 0.0001,
            'verbose': 0,
            'warm start': False}
```

Observation:- By default, lbfgs solver and penalty=I2 also fit_intercept=True

```
In [212]: # Binary classes
          logis.classes
Out[212]: array([0, 1], dtype=int64)
In [219]: # Intercept of the best fit line
          logis.intercept
Out[219]: array([-1.12817895])
In [236]: # Prediction probabilty of class 0 and 1
          pred_prob = logis.predict_proba([x_test[1]])
In [237]: # let's predict just one values from test data
          print("predicted value: ",logis.predict([x test[1]]))
          print(f"prediction probabilty of 0 is {pred_prob[0][0]} and of 1 is {pred_prob[0]
          predicted value:
                           [1]
          prediction probabilty of 0 is 0.2726911636295054 and of 1 is 0.7273088363704946
In [239]: # log probabilty
          logis.predict_log_proba([x_test[1]])
Out[239]: array([[-1.29941539, -0.31840408]])
In [246]: # Model accuracy using x_test dataset
          logis.score(x_test,y_test)
Out[246]: 0.7461538461538462
In [250]: # Making prediction on x test
          y pred = logis.predict(x test)
```

Checking Acurracy, confusion matrix, f1 score etc using sklearn. metrics

```
In [266]: # function shows accuracy, confusion matrix using sklearn.metrics
          def model metrics(y test,y pred):
              print("Accuracy: ",accuracy score(y test,y pred))
                                                                       # Model Accuracy
              print("Confusion Matrix: ",confusion matrix(y test,y pred))
                                                                             # confusion n
              print("log loss :",log_loss(y_test,y_pred))
                                                             # log loss
              print("precision score: ", precision_score(y_test,y_pred))
                                                                            # precision so
              print("recall score : ",recall_score(y_test,y_pred)) # recall score
              print("F1 score : ",f1 score(y test,y pred))
          model metrics(y test,y pred)
          Accuracy: 0.7461538461538462
          Confusion Matrix: [[80 10]
           [23 17]]
          log loss: 8.767597053895035
          precision score: 0.6296296296297
          recall score: 0.425
          F1 score: 0.5074626865671642
```

Checking model accuracy, confusion matrix using formula

ROC AUC SCORE AND GRAPH

```
In [331]: # plot
    fpr, tpr, thresholds = roc_curve(y_test,y_pred)
    plt.plot(fpr, tpr, color='orange', label='ROC')
    plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--',label='ROC curve (area
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver Operating Characteristic (ROC) Curve')
    plt.legend()
    plt.show()
```



```
In [ ]:
```

Creating and testing model using Solver=liblinear, penalty='l1'

```
In [275]: logis_lib = LogisticRegression(verbose=1,solver='liblinear',penalty='l1')
In [276]: logis_lib.fit(x_train,y_train)
        [LibLinear]
Out[276]: LogisticRegression(penalty='l1', solver='liblinear', verbose=1)
```

```
In [278]: # see all parameter
          logis_lib.get_params()
Out[278]: {'C': 1.0,
            'class weight': None,
           'dual': False,
            'fit intercept': True,
            'intercept_scaling': 1,
            'l1 ratio': None,
            'max_iter': 100,
            'multi class': 'auto',
            'n jobs': None,
            'penalty': 'l1',
            'random_state': None,
            'solver': 'liblinear',
           'tol': 0.0001,
            'verbose': 1,
            'warm start': False}
In [280]: # slopes
          logis_lib.coef_
Out[280]: array([[ 0.27969855, 1.17511063, -0.07810108, 0.00365199, -0.08997112,
                   0.59970065, 0.46837545, 0.21484829]])
In [281]: # intercepts
          logis_lib.intercept_
Out[281]: array([-1.10817926])
In [283]: y pred lib = logis lib.predict(x test)
In [284]: # Checking accuracy etc
          model_metrics(y_test,y_pred_lib)
          Accuracy: 0.7461538461538462
          Confusion Matrix: [[80 10]
           [23 17]]
          log loss: 8.767597053895035
          precision score: 0.6296296296297
          recall score : 0.425
          F1 score: 0.5074626865671642
          ROC_AUC_SCORE
In [333]: |roc_auc_score(y_test,y_pred_lib)
Out[333]: 0.65694444444444444
```

```
In [334]: # plot
    fpr, tpr, thresholds = roc_curve(y_test,y_pred_lib)
    plt.plot(fpr, tpr, color='orange', label='ROC')
    plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--',label='ROC curve (area plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver Operating Characteristic (ROC) Curve')
    plt.legend()
    plt.show()
```


Observation:- Model of solver='lbfgs' ,penalty='l2' AND Model of solver='liblinear',penalty='l1' have almost same performance

Creating and testing model with solver='saga' and penalty='elasticnet'

```
In [318]: # see all parameter
          logis_saga.get_params()
Out[318]: {'C': 1.0,
            'class weight': None,
            'dual': False,
            'fit intercept': False,
            'intercept scaling': 1,
            'l1 ratio': 0.5,
            'max_iter': 100,
            'multi class': 'auto',
            'n jobs': None,
            'penalty': 'elasticnet',
            'random_state': None,
            'solver': 'saga',
            'tol': 0.0001,
            'verbose': 0,
            'warm start': False}
In [319]: logis_saga.coef_ # slopes
Out[319]: array([[ 0.26350835, 1.11069258, -0.07539441, -0.03970395, -0.16687024,
                    0.52891693, 0.43414594, 0.16602705])
In [320]: logis saga.intercept #intercept will 0
Out[320]: array([0.])
In [321]: y pred saga = logis saga.predict(x test)
In [322]: |model_metrics(y_test,y_pred_saga)
          Accuracy: 0.6923076923076923
          Confusion Matrix: [[60 30]
           [10 30]]
          log loss: 10.627500336302564
          precision score: 0.5
          recall score: 0.75
          F1 score : 0.6
          Observation:- model solver='saga',penalty='elastinet' and fit_intercept=False has low
```

accuracy than above models

AUC_ROC_SCORE

```
In [335]: roc_auc_score(y_test,y_pred_saga)
Out[335]: 0.7083333333333334
```

```
In [337]: fpr, tpr, thresholds = roc_curve(y_test,y_pred_saga)
    plt.plot(fpr, tpr, color='orange', label='ROC')
    plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--',label='ROC curve (area plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver Operating Characteristic (ROC) Curve')
    plt.legend()
    plt.show()
```

