Exercice 1

$$\sin^{5} t = \left(\frac{e^{it} - e^{-it}}{2i}\right)^{5}$$

$$= \frac{1}{2^{5}i^{5}} \left[(e^{it})^{5} + 5(e^{it})^{4} (-e^{-it}) + 10(e^{it})^{3} (-e^{-it})^{2} + 10(e^{it})^{2} (-e^{-it})^{3} + 5(e^{it}) (-e^{-it})^{4} + (-e^{-it})^{5} \right]$$

$$= \frac{1}{32i} \left[e^{5it} - e^{-5it} - 5\left(e^{3it} - e^{-3it}\right) + 10\left(e^{it} - e^{-it}\right) \right]$$

$$= \frac{1}{32i} \left(2i\sin(5t) - 10i\sin(3t) + 20i\sin(t) \right)$$

$$= \frac{1}{16} \left(\sin(5t) - 5\sin(3t) + 10\sin(t) \right)$$

Exercice 2

1. On calcule

$$\sum_{k=1}^{n} e^{2ik\theta} = e^{2i\theta} \sum_{k=0}^{n-1} \left(e^{2i\theta} \right)^k = e^{2i\theta} \cdot \frac{1 - (e^{2i\theta})^n}{1 - e^{2i\theta}},$$

ce calcul étant possible car le nombre $e^{2i\theta}$, raison de la progression géométrique, est différent de 1 (hypothèse $\theta \notin \pi \mathbb{Z}$).

En factorisant par l'angle moitié,

$$\sum_{k=1}^{n} e^{2ik\theta} = e^{2i\theta} \cdot \frac{e^{in\theta} \left(e^{-in\theta} - e^{in\theta} \right)}{e^{i\theta} \left(e^{-i\theta} - e^{i\theta} \right)}$$
$$= e^{i\theta(2+n-1)} \cdot \frac{-2i\sin(n\theta)}{-2i\sin(\theta)}$$
$$= e^{i(n+1)\theta} \cdot \frac{\sin(n\theta)}{\sin(\theta)}.$$

2. On connaît la formule de duplication ci-dessous (pour x réel)

$$\cos(2x) = 1 - 2\sin^2(x)$$
, ce qui donne $\sin^2(x) = \frac{1 - \cos(2x)}{2}$

3. On a

$$S_n = \sum_{k=1}^n \sin^2(k) = \sum_{k=1}^n \frac{1 - \cos(2x)}{2} = \frac{n}{2} - \frac{1}{2} \sum_{k=1}^n \cos(2k),$$

ce qui donne

$$\frac{S_n}{n} = \frac{1}{2} - \frac{1}{2n} \sum_{k=1}^{n} \cos(2k) \qquad (*)$$

Or, nous avons

$$\sum_{k=1}^{n} \cos(2k) = \sum_{k=1}^{n} \operatorname{Re}\left(e^{2ik}\right) = \operatorname{Re}\left[\sum_{k=1}^{n} e^{2ik}\right].$$

On a fait apparaître la somme complexe calculée en question 1 avec $\theta = 1$, qui est bien dans $\mathbb{R} \setminus \pi \mathbb{Z}$. On a donc

$$\sum_{k=1}^{n} \cos(2k) = \operatorname{Re}\left[e^{i(n+1)} \cdot \frac{\sin(n)}{\sin(1)}\right]$$
$$= \frac{\sin(n)}{\sin(1)} \operatorname{Re}\left[e^{i(n+1)}\right]$$
$$= \frac{\sin(n)}{\sin(1)} \cos((n+1)).$$

Cette somme est bornée : pour le montrer, majorons-la en valeur absolue :

$$\left| \sum_{k=1}^{n} \cos(2k) \right| = \left| \frac{\sin(n)\cos(n+1)}{\sin(1)} \right| \le \frac{1}{\sin(1)}.$$

Ainsi,

$$\frac{1}{n} \sum_{k=1}^{n} \cos(2k) \underset{n \to +\infty}{\longrightarrow} 0.$$

En revenant à l'expression (*) donnée plus haut, on obtient que

$$\begin{array}{|c|c|}\hline S_n & \longrightarrow & 1\\ \hline n & n \to +\infty & 2\\ \hline \end{array}$$

Exercice 3 Un exercice de plus sur les ensembles.

- 1. Preuve de l'équivalence $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$.
 - Supposons $A \subset B$. Montrons $\mathcal{P}(A) \subset \mathcal{P}(B)$. Soit $X \in \mathcal{P}(A)$. Alors $X \subset A$. Or, $A \subset B$. Par transitivité, $X \subset B$, c'est-à-dire $X \in \mathcal{P}(B)$.
 - Supposons $\mathcal{P}(A) \subset \mathcal{P}(B)$. Montrons $A \subset B$. Soit $x \in A$. Alors $\{x\} \in \mathcal{P}(A)$. Or, $\mathcal{P}(A) \subset \mathcal{P}(B)$ donc $\{x\} \in \mathcal{P}(B)$. Le singleton contenant x est inclus dans B donc $x \in B$.
- 2. Preuve de $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$ par double inclusion.
 - Puisque $A \cap B \subset A$, on a $\mathcal{P}(A \cap B) \subset \mathcal{P}(A)$ d'après 1. De même, $A \cap B \subset B$, on a $\mathcal{P}(A \cap B) \subset \mathcal{P}(B)$. On a bien montré $\mathcal{P}(A \cap B) \subset \mathcal{P}(A) \cap \mathcal{P}(B)$.
 - Soit $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$. On a $X \in \mathcal{P}(A)$ et $X \in \mathcal{P}(B)$. Puisque $X \subset A$, tous les éléments de X sont dans A. Puisque $X \subset B$, tous les éléments de X sont dans BTous les éléments de X sont donc dans $A \cap B$ donc $X \subset A \cap B$, soit $X \in \mathcal{P}(A \cap B)$. On a bien montré $\mathcal{P}(A) \cap \mathcal{P}(B) \subset \mathcal{P}(A \cap B)$.
- 3. Montrons que $\mathcal{P}(A \cup B) \supset \mathcal{P}(A) \cup \mathcal{P}(B)$.

Soit $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Premier cas : $X \in \mathcal{P}(A)$. Ceci s'écrit $X \subset A$. Or, $A \subset A \cup B$. Par transitivité, $X \subset A \cup B$. Second cas : $X \in \mathcal{P}(B)$. Ceci s'écrit $X \subset B$. Or, $B \subset A \cup B$. Par transitivité, $X \subset A \cup B$. Dans les deux cas, $X \in \mathcal{P}(A \cup B)$. \bullet Prouvons que $\mathcal{P}(A \cup B) \subset \mathcal{P}(A) \cup \mathcal{P}(B)$ est fausse en général. Prenons

$$A = \{1, 2\}$$
 et $B = \{3\}$.

On a $A \cup B = \{1, 2, 3\}$. Ainsi, $X = \{1, 3\}$ est une partie de $A \cup B$ mais ce n'est ni une partie de A, ni une partie de B. On a donc

$$X \in \mathcal{P}(A \cup B)$$
 mais $X \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.

Quelques remarques:

- 1. Lorsqu'il s'agit de prendre un élément d'un ensemble... d'ensembles, on utilise une lettre capitale pour cet élément, puisque c'est lui-même un ensemble.
- 2. Avec un élément de A, comment faire un élément de $\mathcal{P}(A)$? Réponse : en le mettant dans une boîte! Si l'élément x appartient à A, le singleton $\{x\}$ appartient à $\mathcal{P}(A)$.