Содержание

Предисловие
Глава 1. МНК без матриц и вероятностей 6
Глава 2. Парный МНК без матриц
Глава 3. Многомерный МНК без матриц
Глава 4. МНК с матрицами и вероятностями
Глава 5. Метод максимального правдоподобия
Глава 6. Логит и пробит
Глава 7. Мультиколлинеарность
Глава 8. Гетероскедастичность
Глава 9. Ошибки спецификации
Глава 10. Случайные регрессоры
Глава 11. Временные ряды
Глава 12. Метод опорных векторов
Глава 13. Деревья и Random Forest
Глава 14. Линейная алгебра
Глава 15. Случайные векторы
Глава 16. Многомерное нормальное распределение
Глава 17. Задачи по программированию
Глава 18. Устав проверки гипотез

```
require(knitr)
opts_chunk$set(cache=FALSE,
              dev="png",dpi=300,
              warning=FALSE,
              tidy=FALSE,
               echo=TRUE,
              out.height="7cm",out.width="7cm")
require(ggplot2)
require(Hmisc)
require(lmtest)
require(apsrtable)
require(xtable)
require(MASS)
require(car)
require(texreg)
require(econru)
theme set(theme bw())
load('pset_data.Rdata')
```

Предисловие

В задачнике мы собрали задачи, собранные или придуманные нами за многолетний опыт преподавания эконометрики в Высшей Школе Экономики. Эти задачи полностью покрывают курс эконометрики-1 в бакалавриате и частично — курс эконометрики-2 в магистратуре.

Огромную помощь в создании задачника оказали нам замечательные студенты факультета экономики: Сергей Васильев, Анастасия Тихонова, Анна Тихонова и Артём Языков. Спасибо!

Для поддержки задачника мы создали страничку http://bdemeshev.github.io/empset/. На ней можно будет найти список известных нам опечаток и данные, необходимые для решения практических задач. Там же со временем там появятся дополнительные решения или ответы к задачам.

Мы активно пропагандируем изучение программирования для решения эконометрических задач. Именно поэтому мы сознательно открыли весь код R, который использовался для создания данного задачника. Установить R можно бесплатно c официального сайта http://www.r-project.org/, а удобную графическую оболочку R-studio — c сайта http://www.rstudio.com/ide/

Удачи в освоении эконометрики!!!

Дмитрий Борзых, Борис Демешев

Глава 1

МНК без матриц и вероятностей

Задача 1.1. Верно ли, что для любых векторов $a=(a_1,\ldots,a_n)$ и $b=(b_1,\ldots,b_n)$ справедливы следующие равенства?

$$1. \sum_{i=1}^{n} (a_i - \overline{a}) = 0$$

2.
$$\sum_{i=1}^{n} (a_i - \overline{a})^2 = \sum_{i=1}^{n} (a_i - \overline{a})a_i$$

3.
$$\sum_{i=1}^{n} (a_i - \overline{a})(b_i - \overline{b}) = \sum_{i=1}^{n} (a_i - \overline{a})b_i$$

4.
$$\sum_{i=1}^{n} (a_i - \overline{a})(b_i - \overline{b}) = \sum_{i=1}^{n} a_i b_i$$

Ответ. да, да, да, нет.

Задача 1.2. При помощи метода наименьших квадратов найдите оценку неизвестного параметра θ в следующих моделях:

1.
$$y_i = \theta + \theta x_i + \varepsilon_i$$

2.
$$y_i = \theta - \theta x_i + \varepsilon_i$$

3.
$$\ln y_i = \theta + \ln x_i + \varepsilon_i$$

4.
$$y_i = \theta + x_i + \varepsilon_i$$

5.
$$y_i = 1 + \theta x_i + \varepsilon_i$$

6.
$$y_i = \theta/x_i + \varepsilon_i$$

7.
$$y_i = \theta x_{i1} + (1 - \theta)x_{i2} + \varepsilon_i$$

Задача 1.3. Покажите, что для моделей $y_i = \alpha + \beta x_i + \varepsilon_i$, $z_i = \gamma + \delta x_i + v_i$ и $y_i + z_i = \mu + \lambda x_i + \xi_i$ МНК-оценки связаны соотношениями $\widehat{\mu} = \widehat{\alpha} + \widehat{\gamma}$ и $\widehat{\lambda} = \widehat{\beta} + \widehat{\delta}$.

Задача 1.4. Найдите МНК-оценки параметров α и β в модели $y_i = \alpha + \beta y_i + \varepsilon_i$.

Задача 1.5. Рассмотрите модели $y_i = \alpha + \beta(y_i + z_i) + \varepsilon_i$, $z_i = \gamma + \delta(y_i + z_i) + \varepsilon_i$.

- 1. Как связаны между собой $\widehat{\alpha}$ и $\widehat{\gamma}$?
- 2. Как связаны между собой $\widehat{\beta}$ и $\widehat{\delta}$?

Ответ. $\widehat{lpha}+\widehat{\gamma}=0$ и $\widehat{eta}+\widehat{\delta}=1$.

Задача 1.6. Как связаны МНК-оценки параметров α , β и γ , δ в моделях $y_i = \alpha + \beta x_i + \varepsilon_i$ и $z_i = \gamma + \delta x_i + v_i$, если $z_i = 2y_i$.

Задача 1.7. Для модели $y_i=\beta_1x_{i1}+\beta_2x_{i2}+\varepsilon_i$ решите условную задачу о наименьших квадратах: $Q(\beta_1,\beta_2):=\sum\limits_{i=1}^n(y_i-\beta_1x_{i1}-\beta_2x_{i2})^2 o \min_{\beta_1+\beta_2=1}$

Задача 1.8. Даны n пар чисел: $(x_1,y_1), ..., (x_n,y_n)$. Мы прогнозируем y_i по формуле $\widehat{y}_i=\widehat{\beta}x_i$. Найдите $\widehat{\beta}$ методом наименьших квадратов.

Ответ.
$$\widehat{eta} = \sum x_i y_i / \sum x_i^2$$
 .

9

Задача 1.9. Даны n чисел: $y_1, ..., y_n$. Мы прогнозируем y_i по формуле $\widehat{y}_i = \widehat{\beta}$. Найдите $\widehat{\beta}$ методом наименьших квадратов.

Ответ. $\widehat{eta}=\overline{y}$.

Задача 1.10. Даны n пар чисел: $(x_1,y_1),...,(x_n,y_n)$. Мы прогнозируем y_i по формуле $\widehat{y}_i=\widehat{\beta}_1+\widehat{\beta}_2x_i$. Найдите $\widehat{\beta}_1$ и $\widehat{\beta}_2$ методом наименьших квадратов.

Ответ.
$$\widehat{eta}_2 = \sum (x_i - \overline{x})(y_i - \overline{y}) / \sum (x_i - \overline{x})^2, \ \widehat{eta}_1 = \overline{y} - \widehat{eta}_2 \overline{x}.$$

Задача 1.11. Даны n пар чисел: $(x_1,y_1), ..., (x_n,y_n)$. Мы прогнозируем y_i по формуле $\widehat{y}_i=1+\widehat{\beta}x_i$. Найдите $\widehat{\beta}$ методом наименьших квадратов.

Ответ.
$$\widehat{eta} = \sum x_i (y_i - 1) / \sum x_i^2$$
.

Задача 1.12. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток — 200 грамм, взвесив оба слитка — 400 грамм. Оцените вес каждого слитка методом наименьших квадратов.

Ответ.
$$(300-\widehat{\beta}_1)^2+(200-\widehat{\beta}_2)^2+(400-\widehat{\beta}_1-\widehat{\beta}_2)^2 \to \min$$
.

Задача 1.13. Аня и Настя утверждают, что лектор опоздал на 10 минут. Таня считает, что лектор опоздал на 3 минуты. С помощью мнк оцените на сколько опоздал лектор.

Ответ.
$$2 \cdot (10 - \widehat{\beta})^2 + (3 - \widehat{\beta})^2 \rightarrow \min$$
.

Задача 1.14. Функция f(x) непрерывна на отрезке [0; 1]. Найдите аналог МНК-оценок для регрессии без свободного члена в непрерывном случае. Более подробно: найдите минимум по $\widehat{\beta}$ для функции

$$Q(\widehat{\beta}) = \int_{0}^{1} (f(x) - \widehat{\beta}x)^{2} dx$$
 (1.1)

Задача 1.15. Есть двести наблюдений. Вовочка оценил модель $\widehat{y}=\widehat{\beta}_1+\widehat{\beta}_2x$ по первой сотне наблюдений. Петечка оценил модель $\widehat{y}=\widehat{\gamma}_1+\widehat{\gamma}_2x$ по второй сотне наблюдений. Машенька оценила модель $\widehat{y}=\widehat{m}_1+\widehat{m}_2x$ по всем наблюдениям.

- 1. Возможно ли, что $\widehat{\beta}_2 > 0$, $\widehat{\gamma}_2 > 0$, но $\widehat{m}_2 < 0$?
- 2. Возможно ли, что $\widehat{\beta}_1 > 0$, $\widehat{\gamma}_1 > 0$, но $\widehat{m}_1 < 0$?
- 3. Возможно ли одновременное выполнение всех упомянутых условий?

Ответ. Да, возможно. Два вытянутых облачка точек. Первое облачко даёт первую регрессию, второе — вторую. Прямая, соединяющая центры облачков, — общую.

Задача 1.16. Вася оценил модель $y = \beta_1 + \beta_2 d + \beta_3 x + \varepsilon$. Дамми-переменная d обозначает пол, 1 для мужчин и 0 для женщин. Оказалось, что $\widehat{\beta}_2 > 0$. Означает ли это, что для мужчин \overline{y} больше, чем \overline{y} для женщин?

Решение. Нет. Коэффициенты можно интерпретировать только «при прочих равных», т.е. при равных x. Из-за разных x может оказаться, что у мужчин \overline{y} меньше, чем \overline{y} для женщин. \rhd

Задача 1.17. Какие из указанные моделей можно представить в линейном виде?

1.
$$y_i = \beta_1 + \frac{\beta_2}{x_i} + \varepsilon_i$$

2.
$$y_i = \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)$$

3.
$$y_i = 1 + \frac{1}{\exp(\beta_1 + \beta_2 x_i + \epsilon_i)}$$

4.
$$y_i = \frac{1}{1 + \exp(\beta_1 + \beta_2 x_i + \epsilon_i)}$$

5.
$$y_i = x_i^{\beta_2} e^{\beta_1 + \varepsilon_i}$$

6.
$$y_i = \beta_1 \exp(\beta_2 x_i + \varepsilon_i)$$

Задача 1.18. У эконометриста Вовочки есть переменная 1_f , которая равна 1, если i-ый человек в выборке — женщина, и 0, если мужчина. Есть переменная 1_m , которая равна 1, если i-ый человек в выборке — мужчина, и 0, если женщина. Какие \widehat{y} получатся, если Вовочка попытается построить регрессии:

- 1. y на константу и 1_f
- $2. \ y$ на константу и 1_m
- $3. \ y$ на 1_f и 1_m без константы
- 4. y на константу, 1_f и 1_m

Задача 1.19. У эконометриста Вовочки есть три переменных: r_i — доход i-го человека в выборке, m_i — пол (1 — мальчик, 0 — девочка) и f_i — пол (1 — девочка, 0 — мальчик). Вовочка оценил две модели

Модель А: $m_i = \beta_1 + \beta_2 r_i + \varepsilon_i$

Модель В: $f_i = \gamma_1 + \gamma_2 r_i + u_i$

- 1. Как связаны между собой оценки $\widehat{\beta}_1$ и $\widehat{\gamma}_1$?
- 2. Как связаны между собой оценки $\widehat{\beta}_2$ и $\widehat{\gamma}_2$?

<u>Решение</u>. Оценки МНК линейны по объясняемой переменной. Если сложить объясняемые переменные в этих двух моделях, то получится вектор из единичек. Если строить регрессию вектора из единичек на константу и r, то получатся оценки коэффициентов 1 и 0. Значит, $\widehat{\beta}_1 + \widehat{\gamma}_1 = 1$, $\widehat{\beta}_2 + \widehat{\gamma}_2 = 0$.

Задача 1.20. Эконометрист Вовочка оценил линейную регрессионную модель, где y измерялся в тугриках. Затем он оценил ту же модель, но измерял y в мунгу (1 тугрик = 100 мунгу). Как изменятся оценки коэффициентов?

Ответ. Увеличатся в 100 раз.

Задача 1.21. Возможно ли, что при оценке парной регрессии $y = \beta_1 + \beta_2 x + \varepsilon$ оказывается, что $\widehat{\beta}_2 > 0$, а при оценке регрессии без константы, $y = \gamma x + \varepsilon$, оказывается, что $\widehat{\gamma} < 0$?

Ответ. Да.

Задача 1.22. Эконометрист Вовочка оценил регрессию y только на константу. Какой коэффициент R^2 он получит?

Ответ. $R^2 = 0$.

Задача 1.23. Эконометрист Вовочка оценил методом наименьших квадратов модель 1, $y = \beta_1 + \beta_2 x + \beta_3 z + \varepsilon$, а затем модель 2, $y = \beta_1 + \beta_2 x + \beta_3 z + \beta_4 w + \varepsilon$. Сравните полученные *ESS*, *RSS*, *TSS* и R^2 .

Ответ. $TSS_1 = TSS_2$, $R_2^2 \geqslant R_2^1$, $ESS_2 \geqslant ESS_1$, $RSS_2 \leqslant RSS_1$.

Задача 1.24. Создайте набор данных с тремя переменными y, x и z со следующими свойствами. При оценке модели $\widehat{y}=\widehat{\beta}_1+\widehat{\beta}_2x$ получается $\widehat{\beta}_2>0$. При оценке модели $\widehat{y}=\widehat{\gamma}_1+\widehat{\gamma}_2x+\widehat{\gamma}_3z$ получается $\widehat{\gamma}_2<0$. Объясните принцип, руководствуясь которым легко создать такой набор данных.

Задача 1.25. У меня есть набор данных с выборочным средним \bar{y} и выборочной дисперсией s_y^2 . Как нужно преобразовать данные, чтобы выборочное среднее равнялось 7, а выборочная дисперсия — 9?

Ответ. $y_i^* = 7 + 3(y_i - \bar{y})/s_y$.

Глава 2

Парный МНК без матриц

Задача 2.1. Рассмотрим модель $y_t = \beta_1 + \beta_2 \cdot t + \varepsilon_t$, где ошибки ε_t независимы и равномерны на [-1;1]. С помощью симуляций на компьютере оцените и постройте график функции плотности для $\widehat{\beta}_1$, $\widehat{\beta}_2$, \widehat{s}^2 , $\widehat{\text{Var}}(\widehat{\beta}_1)$, $\widehat{\text{Var}}(\widehat{\beta}_2)$ и $\widehat{\text{Cov}}(\widehat{\beta}_1,\widehat{\beta}_2)$.

Задача 2.2. Пусть $y_i=\mu+\varepsilon_i$, где $\mathbb{E}(\varepsilon_i)=0$, $\mathrm{Var}(\varepsilon_i)=\sigma^2$, $\mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0$ при $i\neq j$. Найдите:

- 1. $\mathbb{E}(\overline{y})$
- 2. $Var(\overline{y})$
- 3. $\mathbb{E}(\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2)$
- 4. $\operatorname{Var}(\frac{1}{n}\sum_{i=1}^n(y_i-\overline{y})^2)$, если дополнительно известно, что ε_i нормально распределены

Задача 2.3. Рассматривается модель $y_i=\beta x_i+\varepsilon_i,\ \mathbb{E}(\varepsilon_i)=0,$ $\mathrm{Var}(\varepsilon_i)=\sigma^2,\ \mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0$ при $i\neq j.$ При каких значениях параметров c_i несмещённая оценка $\widehat{\beta}=\frac{\sum\limits_{i=1}^n c_i y_i}{\sum\limits_{i=1}^n c_i x_i}$ имеет наименьшую дисперсию?

Ответ. $c_i = c \cdot x_i$, где $c \neq 0$.

Глава 2. Парный МНК без матриц

Задача 2.4. Пусть $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и $i = 1, \ldots, 5$ — классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5 y_i^2 = 55, \sum_{i=1}^5 x_i^2 = 3, \sum_{i=1}^5 x_i y_i = 12, \sum_{i=1}^5 y_i = 15, \sum_{i=1}^5 x_i = 3.$

Используя их, найдите:

- 1. $\widehat{\beta}_1$ и $\widehat{\beta}_2$
- 2. $Corr(\widehat{\beta}_1, \widehat{\beta}_2)$
- 3. *TSS*
- 4. *ESS*
- 5. *RSS*
- 6. R^2
- 7. $\widehat{\sigma}^2$

Проверьте следующие гипотезы:

1.
$$\begin{cases} H_0: \beta_2 = 2\\ H_a: \beta_2 \neq 2 \end{cases}$$

$$\begin{cases} H_a: \beta_2 \neq 2 \\ \\ H_0: \beta_1 + \beta_2 = 1 \\ \\ H_a: \beta_1 + \beta_2 \neq 1 \end{cases}$$

Задача 2.5. Пусть $y_i=\beta_1+\beta_2x_i+\varepsilon_i$ и $i=1,\ldots,5$ — классическая регрессионная модель. Также имеются следующие дан-

ные:
$$\sum_{i=1}^{5} y_i^2 = 55$$
, $\sum_{i=1}^{5} x_i^2 = 2$, $\sum_{i=1}^{5} x_i y_i = 9$, $\sum_{i=1}^{5} y_i = 15$, $\sum_{i=1}^{5} x_i = 2$.

Используя их, найдите:

- 1. $\widehat{\beta}_1$ и $\widehat{\beta}_2$
- 2. $Corr(\widehat{\beta}_1, \widehat{\beta}_2)$
- 3. *TSS*
- 4. *ESS*
- 5. *RSS*
- 6. R^2
- 7. $\widehat{\sigma}^2$

Проверьте следующие гипотезы:

1.
$$\begin{cases} H_0: \beta_2 = 2\\ H_a: \beta_2 \neq 2 \end{cases}$$

1.
$$H_a: \beta_2 \neq 2$$
2.
$$\begin{cases} H_0: \beta_1 + \beta_2 = 1 \\ H_a: \beta_1 + \beta_2 \neq 1 \end{cases}$$

Задача 2.6. Рассмотрите классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$. Найдите $\mathbb{E}\widehat{\beta}$. Какие из следующих оценок параметра β являются несмещенными:

1.
$$\widehat{\beta} = \frac{y_1}{x_1}$$

2.
$$\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$$

$$3. \widehat{\beta} = \frac{1}{n} \frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n}$$

4.
$$\widehat{\beta} = \frac{\overline{y}}{\overline{y}}$$

$$5. \widehat{\beta} = \frac{y_n - y_1}{x_n - x_1}$$

6.
$$\widehat{\beta} = \frac{1}{2} \frac{y_2 - y_1}{x_2 - x_1} + \frac{1}{2} \frac{y_n - y_{n-1}}{x_n - x_{n-1}}$$

7.
$$\widehat{\beta} = \frac{1}{n} \frac{y_2 - y_1}{x_2 - x_1} + \frac{1}{n} \frac{y_3 - y_2}{x_3 - x_2} + \ldots + \frac{1}{n} \frac{y_n - y_{n-1}}{x_n - x_{n-1}}$$

8.
$$\widehat{\beta} = \frac{1}{n-1} \frac{y_2 - y_1}{x_2 - x_1} + \frac{y_3 - y_2}{x_3 - x_2} + \dots + \frac{y_n - y_{n-1}}{x_n - x_{n-1}}$$

9.
$$\widehat{\beta} = \frac{x_1 y_1 + \ldots + x_n y_n}{x_1^2 + \ldots + x_n^2}$$

10.
$$\widehat{\beta} = \frac{1}{2} \frac{y_n - y_1}{x_n - x_1} + \frac{1}{2n} \frac{y_1}{x_1} + \dots + \frac{y_n}{x_n}$$

11.
$$\widehat{\beta} = \frac{1}{2} \frac{y_n - y_1}{x_n - x_1} + \frac{1}{2} \frac{x_1 y_1 + \ldots + x_n y_n}{x_1^2 + \ldots + x_n^2}$$

12.
$$\widehat{\beta} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}$$

13.
$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(\overline{y} - y_i)}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

14.
$$\widehat{\beta} = \frac{y_1 + 2y_2 + \ldots + ny_n}{x_1 + 2x_2 + \ldots + nx_n}$$

15.
$$\widehat{\beta} = \frac{\sum_{i=1}^{n} i(y_i - \overline{y})}{\sum_{i=1}^{n} i(x_i - \overline{x})}$$

$$16. \ \widehat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}$$

17.
$$\widehat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \overline{y}}{x_i - \overline{x}}$$

Задача 2.7. Рассмотрите классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$. Найдите $\mathrm{Var}(\widehat{\beta})$.

1.
$$\widehat{\beta} = \frac{y_1}{x_1}$$

2.
$$\widehat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$$

$$3. \widehat{\beta} = \frac{1}{n} \left(\frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n} \right)$$

4.
$$\widehat{\beta} = \frac{\overline{y}}{\overline{x}}$$

$$5. \widehat{\beta} = \frac{y_n - y_1}{x_n - x_1}$$

6.
$$\widehat{\beta} = \frac{1}{2} \frac{y_2 - y_1}{x_2 - x_1} + \frac{1}{2} \frac{y_n - y_{n-1}}{x_n - x_{n-1}}$$

7.
$$\widehat{\beta} = \frac{x_1 y_1 + \ldots + x_n y_n}{x_1^2 + \ldots + x_n^2}$$

8.
$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

9.
$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(\overline{y} - y_i)}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

10.
$$\widehat{\beta} = \frac{y_1 + 2y_2 + \ldots + ny_n}{x_1 + 2x_2 + \ldots + nx_n}$$

11.
$$\widehat{\beta} = \frac{\sum\limits_{i=1}^{n} i(y_i - \overline{y})}{\sum\limits_{i=1}^{n} i(x_i - \overline{x})}$$

$$12. \ \widehat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}$$

13.
$$\widehat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \overline{y}}{x_i - \overline{x}}$$

 \triangleright

Задача 2.8. Рассмотрите классическую линейную регрессионную модель $y_i = \beta \cdot i + \varepsilon_i, \ i = 1, \dots, n.$ Какая из оценок $\widehat{\beta}$ и $\widetilde{\beta}$ является более эффективной?

1.
$$\widehat{\beta} = y_1$$
 и $\widetilde{\beta} = y_2/2$

2.
$$\hat{\beta} = y_1$$
 и $\tilde{\beta} = \frac{1}{2}y_1 + \frac{1}{2}\frac{y_2}{2}$

3.
$$\widehat{\beta} = \frac{1}{n} \left(\frac{y_1}{1} + \ldots + \frac{y_n}{n} \right)$$
 и $\widetilde{\beta} = \frac{1 \cdot y_1 + \ldots + n \cdot y_n}{1^2 + \ldots + n^2}$

Задача 2.9. На основе 100 наблюдений была оценена функция спроса:

$$\widehat{\ln Q} = 0.87 - 1.23 \ln P$$
(8.e.) (0.04) (0.02)

Значимо ли коэффициент эластичности спроса по цене отличается от -1? Рассмотрите уровень значимости 5%.

Задача 2.10. На основе 100 наблюдений была оценена функция спроса:

$$\widehat{\ln Q} = 2.87 - 1.12 \ln P$$
(s.e.) (0.04) (0.02)

На уровне значимости 5% проверьте гипотезу H_0 : $\beta_{\ln P} = -1$ против альтернативной H_a : $\beta_{\ln P} < -1$. Дайте экономическую интерпретацию проверяемой гипотезе и альтернативе.

Задача 2.11. Используя годовые данные с 1960 по 2005 г., была построена кривая Филлипса, связывающая уровень инфляции Inf и уровень безработицы Unem:

$$\widehat{Inf} = 2.34 - 0.23Unem$$

$$\sqrt{\widehat{Var}(\widehat{\beta}_{Unem})} = 0.04, R^2 = 0.12$$

На уровне значимости 1% проверьте гипотезу $H_0: \beta_{Unem} = 0$ против альтернативной $H_a: \beta_{Unem} \neq 0$.

Задача 2.12. Пусть $y_i=\beta_1+\beta_2x_i+\varepsilon_i$ и $i=1,\ldots,18$ — классическая регрессионная модель, где $\mathbb{E}(\varepsilon_i)=0,\ Var(\varepsilon_i)=\sigma^2.$ Также имеются следующие данные: $\sum_{i=1}^{18}y_i^2=4256, \sum_{i=1}^{18}x_i^2=185, \sum_{i=1}^{18}x_iy_i=814.25, \sum_{i=1}^{18}y_i=225, \sum_{i=1}^{18}x_i=49.5.$ Используя эти данные, оцените эту регрессию и на уровне значимости 5% проверьте гипотезу $H_0:\beta_1=3.5$ против альтернативной $H_a:\beta_1>3.5$:

- 1. Приведите формулу для тестовой статистики
- 2. Укажите распределение тестовой статистики
- 3. Вычислите наблюдаемое значение тестовой статистики
- 4. Укажите границы области, где основная гипотеза не отвергается
- 5. Сделайте статистический вывод

Задача 2.13. Рассматривается модель $y_i=\mu+\varepsilon_i$, где $\mathbb{E}(\varepsilon_i)=0$, $\mathrm{Var}(\varepsilon_i)=\sigma^2$ и $\mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0$ при $i\neq j$. При каких c_i несмещенная оцека

$$\widehat{\mu} = \sum_{i=1}^n c_i y_i$$

имеет наименьшую дисперсию?

Решение. Через теорему Гаусса-Маркова или через условную

минимизацию, $c_i = 1/n$.

Глава 2. Парный МНК без матриц

Задача 2.14. Рассмотрим классическую линейную регрессионную модель, $y_t = \beta \cdot t + \varepsilon_t$. Какая из оценок, $\widehat{\beta}$ или $\widehat{\beta}'$ является более эффективной?

1.
$$\widehat{\beta} = y_1$$
, $\widehat{\beta}' = y_2/2$

2.
$$\widehat{\beta} = y_1$$
, $\widehat{\beta}' = 0.5y_1 + 0.5\frac{y_2}{2}$

3.
$$\widehat{\beta} = \frac{1}{n} \left(y_1 + \frac{y_2}{2} + \frac{y_3}{3} + \ldots + \frac{y_n}{n} \right), \ \widehat{\beta}' = \frac{y_1 + 2y_2 + \ldots + ny_n}{1^2 + 2^2 + \ldots + n^2}$$

Задача 2.15. Ошибки регрессии ε_i независимы и равновероятно принимают значения +1 и -1. Также известно, что $y_i = \beta \cdot i + \varepsilon_i$. Модель оценивается всего по двум наблюдениям.

- 1. Найдите закон распределения $\widehat{\beta}$, RSS, ESS, TSS, R^2
- 2. Найдите $\mathbb{E}(\widehat{\beta})$, $Var(\widehat{\beta})$, $\mathbb{E}(RSS)$, $\mathbb{E}(ESS)$, $\mathbb{E}(R^2)$
- 3. При каком β величина $\mathbb{E}(R^2)$ достигает максимума?

Задача 2.16. Рассмотрим модель с линейным трендом без свободного члена, $y_t = \beta t + \varepsilon_t$.

- 1. Найдите МНК оценку коэффициента β
- 2. Рассчитайте $\mathbb{E}(\widehat{\beta})$ и $\mathrm{Var}(\widehat{\beta})$ в предположениях теоремы Гаусса-Маркова
- 3. Верно ли, что оценка $\widehat{\beta}$ состоятельна?

Ответ.

1.
$$\widehat{\beta} = \frac{\sum y_t t}{\sum t^2}$$

2.
$$\mathbb{E}(\widehat{\beta}) = \beta$$
 и $\operatorname{Var}(\widehat{\beta}) = \frac{\sigma^2}{\sum\limits_{t=1}^{T} t^2}$.

3. Да, состоятельна.

Задача 2.17. В модели
$$y_t=eta_1+eta_2x_t+arepsilon_t$$
, где $x_t=\left\{egin{array}{ll} 2,\ t=1 \\ 1,\ t>1 \end{array}\right.$:

- 1. Найдите мнк-оценку $\widehat{\beta}_2$
- 2. Рассчитайте $\mathbb{E}(\widehat{\beta}_2)$ и $\mathrm{Var}(\widehat{\beta}_2)$ в предположениях теоремы Гаусса-Маркова
- 3. Верно ли, что оценка $\widehat{\beta}_2$ состоятельна?

Ответ. Несостоятельна.

Задача 2.18. В модели
$$y_t=eta_1+eta_2x_t$$
, где $x_t=egin{dcases} 1,\ t=2k+1 \ 0,\ t=2k \end{cases}$

- 1. Найдите мнк-оценку \widehat{eta}_2
- 2. Рассчитайте $\mathbb{E}(\widehat{\beta}_2)$ и $\mathrm{Var}(\widehat{\beta}_2)$ в предположениях теоремы Гаусса-Маркова
- 3. Верно ли, что оценка $\widehat{\beta}_2$ состоятельна?

Задача 2.19. Априори известно, что парная регрессия должна проходить через точку (x_0, y_0) .

- 1. Выведите формулы МНК оценок;
- 2. В предположениях теоремы Гаусса-Маркова найдите дисперсии и средние оценок

Решение. Вроде бы равносильно переносу начала координат и применению результата для регрессии без свободного члена. Должна остаться несмещенность. ▷

Задача 2.20. Мы предполагаем, что y_t растёт с линейным трендом, т.е. $y_t = \beta_1 + \beta_2 t + \varepsilon_t$. Все предпосылки теоремы Гаусса-Маркова выполнены. В качестве оценки $\widehat{\beta}_2$ предлагается $\widehat{\beta}_2 = \frac{Y_T - Y_1}{T - 1}$, где T — общее количество наблюдений.

Глава 2. Парный МНК без матриц

- 1. Найдите $\mathbb{E}(\widehat{\beta}_2)$ и $Var(\widehat{\beta}_2)$
- 2. Совпадает ли оценка $\widehat{\beta}_2$ с классической мнк-оценкой?
- 3. У какой оценки дисперсия выше, у $\hat{\beta}_2$ или классической мнк-оценки?

Задача 2.21. Вася считает, что выборочная ковариация $sCov(y, \vec{y})$ $\frac{\sum (y_i - \overline{y})(\widehat{y}_i - \overline{y})}{n-1}$ это неплохая оценка для $Cov(y_i, \widehat{y}_i)$. Прав ли он?

Решение. Не прав. Ковариация $Cov(y_i, \widehat{y}_i)$ зависит от i, это не одно неизвестное число, для которого можно предложить одну оценку.

Задача 2.22. В классической линейной регрессионной модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, дисперсия зависимой переменной не зависит от номера наблюдения, $Var(y_i) = \sigma^2$. Почему для оценки σ^2 вместо известной из курса математической статистики формулы $\sum (y_i - \overline{y})^2/(n-1)$ используют $\sum \widehat{\varepsilon}_i^2/(n-2)$?

Ответ. Формула $\sum (y_i - \bar{y})^2/(n-1)$ неприменима так как $\mathbb{E}(y_i)$ не является константой.

Задача 2.23. Оценка регрессии имеет вид $\widehat{y}_i = 3 - 2x_i$. Выборочная дисперсия x равна 9, выборочная дисперсия y равна 40. Найдите R^2 и выборочные корреляции sCorr(x, y), $sCorr(y, \hat{y})$.

Ответ. R^2 — это отношение выборочных дисперсий \widehat{y} и y.

Задача 2.24. Слитки-вариант. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток — 200 грамм, взвесив оба слитка — 400 грамм. Предположим, что ошибки взвешивания — независимые одинаково распределенные случайные величины с нулевым средним.

- 1. Найдите несмещеную оценку веса первого слитка, обладающую наименьшей дисперсией.
- 2. Как можно проинтерпретировать нулевое математическое ожидание ошибки взвешивания?

Ответ. Как отсутствие систематической ошибки.

Задача 2.25. Рассмотрим линейную модель $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, где ошибки ε_i нормальны $N(0; \sigma^2)$ и независимы.

- 1. Верно ли, что y_i одинаково распределены?
- 2. Верно ли, что \overline{y} это несмещенная оценка для $\mathbb{E}(y_i)$?
- 3. Верно ли, что $\sum (y_i \vec{y})^2/(n-1)$ несмещенная оценка для σ^2 ? Если да, то докажите, если нет, то определите величину смещения

Ответ. нет, нет, нет.

Задача 2.26. Модель регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, в которой ошибки ε_i независимы и нормальны $N(0; \sigma^2)$, оценивается по 22 наблюдениям. Найдите $\mathbb{E}(RSS)$, Var(RSS), $\mathbb{P}(10\sigma^2 < RSS <$ $30\sigma^2$), $\mathbb{P}(10\widehat{\sigma}^2 < RSS < 30\widehat{\sigma}^2)$

Ответ. $RSS/\sigma^2 \sim \chi^2_{n-k}$, $\mathbb{E}(RSS) = (n-k)\sigma^2$, $\mathrm{Var}(RSS) = 2(n-k)\sigma^2$ $k)\sigma^4$, $\mathbb{P}(10\sigma^2 < RSS < 30\sigma^2) \approx 0.898$.

25

Задача 2.27. Модель регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, в которой ошибки ε_i независимы и нормальны $N(0; \sigma^2)$, оценивается по 12 наблюдениям. Найдите

- 1. $\mathbb{P}(\widehat{\beta}_1 > \beta_1)$, $\mathbb{P}(\beta_1 > 0)$, $\mathbb{P}(|\widehat{\beta}_1 \beta_1| < se(\widehat{\beta}_1))$, $\mathbb{P}(\widehat{\beta}_2 > \beta_2 + se(\widehat{\beta}_2))$, $\mathbb{P}(\widehat{\beta}_2 > \beta_2 se(\widehat{\beta}_2))$
- 2. $\mathbb{E}(\widehat{\beta}_1)$, $\mathbb{E}(\widehat{\beta}_2)$, $\mathbb{E}(\beta_2)$
- 3. Закон распределения, математическое ожидание и дисперсию величин $\frac{\widehat{\beta}_2 \beta_2}{\sqrt{\text{Var}(\widehat{\beta}_2)}}$, $\frac{\widehat{\beta}_2 \beta_2}{\sqrt{\widehat{\text{Var}}(\widehat{\beta}_2)}}$, $\frac{\widehat{\beta}_1 + \widehat{\beta}_2 \beta_1 \beta_2}{\sqrt{\sqrt{\text{Var}}(\widehat{\beta}_1 + \widehat{\beta}_2)}}$
- 4. $\mathbb{P}(\widehat{s} > \sigma)$, $\mathbb{P}(\widehat{s} > 2\sigma)$

Задача 2.28. Для модели парной регрессии известны y = (1, 2, 3, 4, 5)' и $\widehat{y} = (2, 2, 2, 4, 5)'$. Найдите $RSS, TSS, R^2, \widehat{s}^2$.

Задача 2.29. В классической парной регрессионной модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ с нормально распределенными ошибками, оцениваемой по 30 наблюдениям, дополнительно известно, что $Var(\varepsilon_7) = 9$. Найдите

- 1. $\mathbb{E}(\varepsilon_2)$, $Cov(\varepsilon_1, \varepsilon_3)$, $\mathbb{E}(\varepsilon_3^5)$, $\mathbb{E}(e_5^3)$, $Var(e_5)$, $Var(y_3)$
- 2. $\mathbb{P}(e_2 > \varepsilon_3)$, $\mathbb{P}(e_1 > 0)$, $\mathbb{P}(e_1 > 3)$
- 3. $\mathbb{E}(RSS)$, Var(RSS), $\mathbb{P}(RSS > 200)$

Задача 2.30. В модели парной регрессии придумайте такие наблюдения, чтобы:

- $R^2 = 0.9$
- $R^2 = 0.8$ и регрессия имела вид $\hat{y} = 2 + 3x$

Решение. Можно взять четыре наблюдения равноотстоящих по вертикали от данной прямой. Подбирая остатки, добиваемся нужного \mathbb{R}^2 .

Задача 2.31. Оцененная с помощью линейной модели $y_t=\beta_1+\beta_2t+\varepsilon_t$ методом наименьших квадратов зависимость расходов на питание y от времени, определённого как t=1 для 1995 г., t=2 для 1996 г., ..., t=12 для 2006 г., задана уравнением $\widehat{y}_t=95+2.5t$.

Чему были бы равны оценки коэффициентов β_1 и β_2 , если бы в качестве t использовались фактические даты (1995 - 2006), а не числа от 1 до 12?

Решение.
$$\widehat{eta}_1 = -4890$$
 и $\widehat{eta}_2 = 2.5$
$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ \dots & 1 \\ 1 & 12 \end{bmatrix}$$
 — матрица исходных регрессоров; $\widetilde{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ \dots & 1 \end{bmatrix}$

$$egin{bmatrix} 1 & 1+1994 \ 1 & 2+1994 \ \dots & \dots \ 1 & 12+1994 \ \end{bmatrix}$$
 — матрица новых регрессоров.

$$\widetilde{X}=X\cdot D$$
, где $D=egin{bmatrix}1\ 1994\ 0\ 1\end{bmatrix}$.

Итак, уравнение регрессии \bar{c} новыми регрессорами имеет вид $y=\widetilde{X}\beta+\varepsilon$ и МНК-оценки коэффициентов равны:

$$\widehat{\beta} = \left(\widetilde{X}^{T}\widetilde{X}\right)^{-1}\widetilde{X}^{T}y = \left([XD]^{T}[XD]\right)^{-1}[XD]^{T}y = D^{-1}(X^{T}X)^{-1}(D^{T})^{-1}D^{T}X^{T}y = D^{-1}(X^{T}X)^{-1}X^{T}y \quad (2.1)$$

$$\widehat{\beta} = D^{-1}\widehat{\beta}_{old} = \begin{bmatrix} 1 & -1994 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 95 \\ 2.5 \end{bmatrix} = \begin{bmatrix} -4890 \\ 2.5 \end{bmatrix}$$

 \triangleright

Задача 2.32. Пусть есть набор данных (x_i, y_i) , $i = 1, \ldots, n$, $(x_i > 0, y_i > 0)$, порожденных уравнением $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, удовлетворяющих условиям стандартной модели парной регрессии. Рассматриваются следующие оценки параметра β_2 :

$$\widetilde{eta}_2^a = rac{1}{n} \sum_{i=1}^n rac{y_i}{x_i}, \ \widetilde{eta}_2^b = rac{\overline{y}}{\overline{x}}$$

Найти дисперсию и смещение каждой из оценок.

Решение. Мы можем существенно упростить решение, воспользовавшись матричным представлением:

$$\widetilde{\beta}_{2}^{a} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_{i}}{x_{i}} = \frac{1}{n} \begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} \frac{1}{x_{1}} & \frac{1}{x_{2}} & \dots & \frac{1}{x_{n}} \end{bmatrix} y \quad (2.2)$$

$$\mathbb{E} \widetilde{eta}_2^a = rac{1}{n} \sum_{i=1}^n rac{\mathbb{E} y_i}{x_i} = rac{1}{n} \left[rac{1}{x_1} rac{1}{x_2} \ldots rac{1}{x_n}
ight] egin{bmatrix} \mathbb{E} y_1 \ \mathbb{E} y_2 \ dots \ \mathbb{E} y_n \end{bmatrix} =$$

$$rac{1}{n}\left[rac{1}{x_1}\,rac{1}{x_2}\,\ldots\,rac{1}{x_n}
ight]egin{bmatrix}eta_1+eta_2x_1\eta_1+eta_2x_2\dots\eta_1+eta_2x_n\end{matrix}
ight]=$$

$$\frac{1}{n} \begin{bmatrix} \frac{1}{x_1} & \frac{1}{x_2} & \dots & \frac{1}{x_n} \end{bmatrix} \begin{bmatrix} \beta_1 & \begin{bmatrix} 1\\1\\1\\\vdots\\1 \end{bmatrix} + \beta_2 & \begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix} \end{bmatrix} = \frac{\beta_1}{n} \sum_{k=1}^n \frac{1}{x_k} + \beta_2 \quad (2.3)$$

Значит, смещение для первой оценки равно $\frac{\beta_1}{n}\sum_{k=1}^n \frac{1}{x_k}.$

$$\operatorname{Var}(\widetilde{\beta}_{2}^{a}) = \operatorname{Var}\left(\frac{1}{n} \left[\frac{1}{x_{1}} \frac{1}{x_{2}} \dots \frac{1}{x_{n}}\right] y\right) =$$

$$\frac{1}{n^{2}} \left[\frac{1}{x_{1}} \frac{1}{x_{2}} \dots \frac{1}{x_{n}}\right] \operatorname{Var}(y) \left[\frac{1}{x_{1}} \frac{1}{x_{2}} \dots \frac{1}{x_{n}}\right]^{T} =$$

$$\frac{1}{n^{2}} \left[\frac{1}{x_{1}} \frac{1}{x_{2}} \dots \frac{1}{x_{n}}\right] \operatorname{Var}(\varepsilon) \left[\frac{1}{x_{1}} \frac{1}{x_{2}} \dots \frac{1}{x_{n}}\right]^{T} =$$

$$\frac{1}{n^{2}} \left[\frac{1}{x_{1}} \frac{1}{x_{2}} \dots \frac{1}{x_{n}}\right] \sigma_{\varepsilon}^{2} I \left[\frac{1}{x_{1}} \frac{1}{x_{2}} \dots \frac{1}{x_{n}}\right]^{T} =$$

$$\frac{\sigma_{\varepsilon}^{2}}{n^{2}} \sum_{k=1}^{n} \frac{1}{x_{k}^{2}}$$
(2.4)

Перейдём ко второй оценке.

$$\widetilde{\beta}_2^b = \frac{\overline{y}}{\overline{x}} = \frac{1}{\overline{x}} \frac{1}{n} \left[1 \ 1 \ \dots \ 1 \right] y$$

$$\mathbb{E}\widetilde{\beta}_2^b = \frac{\overline{y}}{\overline{x}} = \frac{1}{\overline{x}} \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \mathbb{E}y = \frac{1}{\overline{x}} \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} \beta_1 + \beta_2 x_1 \\ \beta_1 + \beta_2 x_2 \\ \vdots \\ \beta_1 + \beta_2 x_n \end{bmatrix} =$$

$$\frac{1}{\overline{x}} \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} \beta_1 & \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + \beta_2 \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \end{bmatrix} = \frac{1}{n} \frac{\beta_1 n}{\overline{x}} + \frac{1}{n} \frac{\beta_2 \sum x_i}{\overline{x}} = \frac{\beta_1}{\overline{x}} + \beta_2 \quad (2.5)$$

Значит, смещение равно $\frac{\beta_1}{\overline{x}}$

$$\operatorname{Var}(\widetilde{\beta}_{2}^{b}) = \frac{1}{\overline{x}^{2}} \frac{1}{n^{2}} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \operatorname{Var}(y) \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{\overline{x}^{2}} \frac{1}{n^{2}} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \operatorname{Var}(\varepsilon) \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{\sigma_{\varepsilon}^{2}}{\overline{x}^{2} n} \quad (2.6)$$

Задача 2.33. Уравнение $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$ оценивается по МНК. Может ли коэффициент детерминации быть малым (<0.05) а статистика $t_{\widehat{\beta}_2}$ большой (>10)?

 \triangleright

Решение. Известно, что для парной регрессии $t_{\widehat{\beta}_2}^2 = \frac{R^2}{(1-R^2)/(n-2)}$. Поэтому из выражения $t_{\widehat{\beta}_2}^2 = \frac{0.05^2}{(1-0.05^2)/(n-2)} = \frac{0.05^2(n-2)}{1-0.05^2}$ становится очевидным, что при надлежащем выборе числа наблюдений можно сделать величину $t_{\widehat{\beta}_3}$ сколь угодно большой. \rhd

Задача 2.34. Докажите, что в случае, когда $|\operatorname{sCorr}(x,y)| = 1$, линия парной регрессии y на x совпадает с линией парной регрессии x на y.

Решение. Пусть $Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$, $i = 1, \dots, n$.

Тогда $Y_i = \widehat{\beta}_1 + \widehat{\beta}_2 X_i + \widehat{\varepsilon}_i$ $Y_i - \overline{Y} + \overline{Y} = \widehat{\beta}_1 + \widehat{\beta}_2 (X_i - \overline{X} + \overline{X}) + \widehat{\varepsilon}_i$ $Y_i - \overline{Y} = \widehat{\beta}_1 - \overline{Y} + \widehat{\beta}_2 \overline{X} + \widehat{\beta}_2 (X_i - \overline{X}) + \widehat{\varepsilon}_i$ $Y_i - \overline{Y} = \widehat{\beta}_2 (X_i - \overline{X}) + \widehat{\varepsilon}_i$ $y_i \equiv Y_i - \overline{Y}, \ i = 1, \dots, n$ $x_i \equiv X_i - \overline{X}, \ i = 1, \dots, n$ $y_i = \widehat{\beta}_2 x_i + \widehat{\varepsilon}_i$ $\mathbf{y} = \widehat{\beta}_2 \mathbf{x} + \widehat{\varepsilon}, \text{ где } \mathbf{y} = \begin{bmatrix} y_1 \dots y_n \end{bmatrix}^T, \ \mathbf{x} = \begin{bmatrix} x_1 \dots x_n \end{bmatrix}^T, \ \varepsilon = \begin{bmatrix} \varepsilon_1 \dots \varepsilon_n \end{bmatrix}^T$ $\mathbf{x}^T \mathbf{y} = \widehat{\beta}_2 \mathbf{x}^T \mathbf{x} + \underbrace{\mathbf{x}^T \widehat{\varepsilon}}_{=0}$ $\widehat{\beta}_2 = \underbrace{\mathbf{x}^T \mathbf{y}}_{\mathbf{x}^T \mathbf{x}}$ (2.7)

Аналогично получаем, что в обратной регрессии $X_i=eta_3+eta_4Y_i+\xi_i,\ i=1,\dots,n$

$$\widehat{\beta}_4 = \frac{\mathbf{y}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}$$
 (2.8)
$$ESS = (\widehat{Y} - \overline{Y}_i)^T (\widehat{Y} - \overline{Y}_i)$$
 Заметим, что $\widehat{Y} - \overline{Y}_i = (I - \pi)(\widehat{Y} - \overline{Y}_i)$.

Действительно,
$$(I-\pi)(P-\pi)=P-\pi$$
, следовательно, $\widehat{Y}-\overline{Y}_i=(P-\pi)Y=(I-\pi)(P-\pi)Y=(I-\pi)(\widehat{Y}-\overline{Y}_i).$

Далее,
$$\widehat{Y}-\overline{Y}_i=(I-\pi)(\widehat{Y}-\overline{Y}_i)=(I-\pi)(\widehat{eta}_1+\widehat{eta}_2X-\overline{Y}_i)=$$

$$_2$$
х
Значит, $ESS=\widehat{eta}_2^2$ х T х.

Получаем:

$$R^{2} = \frac{ESS}{TSS} = \frac{\widehat{\beta}_{2}^{2} \mathbf{x}^{T} \mathbf{x}^{(2)}}{\mathbf{y}^{T} \mathbf{y}} = \frac{\mathbf{x}^{T} \mathbf{y}^{(2)}}{(\mathbf{x}^{T} \mathbf{x})(\mathbf{y}^{T} \mathbf{y})} = \operatorname{Corr}^{2}(X, Y)$$
(2.9)

Заметим также, что из формул (2.7), (2.8) и (2.9) следует, что $R^2=\widehat{eta}_2\widehat{eta}_4$.

Если $\operatorname{Corr}^2(X,Y)=1$, то $R^2=\widehat{\beta}_2\widehat{\beta}_4=1$.

Отметим также, что из $R^2=1$ следует, что $\widehat{arepsilon}_1=\ldots=\widehat{arepsilon}_n=0$ и $\widehat{\xi}_1=\ldots=\widehat{\xi}_n=0$.

Тогда
$$Y_i=\widehat{eta}_1+\widehat{eta}_2X_i+\underbrace{\widehat{arepsilon}_i}_{=0}$$
 и $X_i=\widehat{eta}_3+\widehat{eta}_4Y_i+\underbrace{\widehat{ar{\xi}}_i}_{=0}$,

 $i=1,\ldots,n$.

$$X_{i} = \widehat{\beta}_{3} + \widehat{\beta}_{4}Y_{i} = (\overline{X} - \widehat{\beta}_{4}\overline{Y}) + \widehat{\beta}_{4}Y_{i} = (\overline{X} - \frac{1}{\widehat{\beta}_{2}}\overline{Y}) + \frac{1}{\widehat{\beta}_{2}}Y_{i}$$

$$\widehat{\beta}_{2}X_{i} = (\widehat{\beta}_{2}\overline{X} - \overline{Y}) + Y_{i}$$

$$Y_{i} = (\overline{Y} - \widehat{\beta}_{2}\overline{X}) + \widehat{\beta}_{2}X_{i} = \widehat{\beta}_{1} + \widehat{\beta}_{2}X_{i}$$

Следовательно, в случае когда $\mathrm{Corr}^2(X,Y)=1$, линия парной регрессии X на X.

Задача 2.35. Сгенерите выборку из двух зависимых но некоррелированных случайных величин. Можно ли «поймать» зависимость используя парную регрессию?

Решение. Да, если строить регрессию функции от y на функцию от x. А если строить регрессию просто y на x, то оценка наклона будет распределена симметрично около нуля. \triangleright

Задача 2.36. Все предпосылки классической линейной модели выполнены, $y=\beta_1+\beta_2x+\varepsilon$. Рассмотрим альтернативную оценку коэффициента β_2 ,

$$\widehat{\beta}_{2,IV} = \frac{\sum z_i(y_i - \overline{y})}{\sum z_i(x_i - \overline{x})}$$
 (2.10)

- 1. Является ли оценка несмещенной?
- 2. Любые ли z_i можно брать?
- 3. Найдите $Var(\widehat{\beta}_{2,IV})$

Ответ. Да, является. Любые, кроме констант. $\mathrm{Var}(\widehat{eta}_{2,IV})=\sigma^2\sum(z_i-\|ar{z})^2/\left(\sum(z_i-ar{z})x_i\right)^2.$

Задача 2.37. Напишите формулу для оценок коэффициентов в парной регрессии без матриц. Напишите формулу для дисперсий оценок коэффициентов.

Задача 2.38. Рассматривается модель линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, в которой ошибки $\varepsilon_1, \dots, \varepsilon_n$ являются независимыми нормально распределенными случайными величинами с математическим ожиданием 0 и дисперсией σ^2 . Найдите

- 1. $\mathbb{P}\{\varepsilon_1 > 0\}$,
- $2. \ \mathbb{P}\{\varepsilon_1^2 + \varepsilon_2^2 > 2\sigma^2\},\$
- 3. $\mathbb{P}\left\{\frac{\varepsilon_1}{\sqrt{\varepsilon_2^2+\varepsilon_3^2}}>2\right\}$,
- 4. $\mathbb{P}\left\{\frac{\varepsilon_1}{\sqrt{\varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2}} > \frac{5}{4\sqrt{3}}\right\}$,
- 5. $\mathbb{P}\left\{\frac{\varepsilon_1+2\varepsilon_2}{\sqrt{\varepsilon_3^2+\varepsilon_4^2+\varepsilon_5^2}}<\frac{9}{2}\right\},$
- 6. $\mathbb{P}\left\{\frac{\varepsilon_1^2}{\varepsilon_2^2+\varepsilon_3^2}>17\right\}$.

Решение. Вспомните про t, χ^2, F распределения.

Глава 3

 \triangleright

Многомерный МНК без матриц

Задача 3.1. Эконометрэсса Ширли зашла в пустую аудиторию, где царил приятный полумрак, и увидела на доске до боли знакомую надпись:

$$\widehat{y} = 1.1 - 0.7 \cdot x_2 + 0.9 \cdot x_3 - 19 \cdot x_4 = (-0.67) \cdot x_4$$

Помогите эконометрэссе Ширли определить, что находится в скобках

- P-значения
- 2. t-статистики
- 3. стандартные ошибки коэффициентов
- 4. R^2 скорректированный на номер коэффициента
- 5. показатели VIF для каждого коэффициента

Ответ. t-статистики.

Задача 3.2. Для нормальной регрессии с 5-ю факторами (включая свободный член) известны границы симметричного по вероятности 80% доверительного интервала для дисперсии σ_{ε}^2 : [45; 87.942].

- 1. Определите количество наблюдений в выборке
- 2. Вычислите $\widehat{\sigma}_{\varepsilon}^2$

Решение.

1. Поскольку $\frac{\widehat{\sigma}_{\varepsilon}^2(n-k)}{\sigma_{\varepsilon}^2}\sim \chi^2(n-k)$, где $\widehat{\sigma}_{\varepsilon}^2=\frac{RSS}{n-k}$, k= 5. $P(\chi_l^2<\frac{\widehat{\sigma}_{\varepsilon}^2}{\sigma_{\varepsilon}^2}<\chi_u^2)=0.8$. Преобразовав, получим $P(\frac{\widehat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2}<\sigma_{\varepsilon}^2<\frac{\widehat{\sigma}_{\varepsilon}^2(n-5)}{\chi_l^2})=$

0.8, где $\chi^2_u=\chi^2_{n-5;0.1}$, $\chi^2_l=\chi^2_{n-5;0.9}$ — соответствующие квантили. По условию $\frac{\widehat{\sigma}^2_{\varepsilon}(n-5)}{\chi^2_l}=A=45$, $\frac{\widehat{\sigma}^2_{\varepsilon}(n-5)}{\chi^2_u}=B=87.942$. Поделим B на A, отсюда следует $\frac{\chi^2_u}{\chi^2_l}=1.95426$. Перебором квантилей в таблице для хи-квадрат распределения мы находим, что $\frac{\chi^2_{30;0.1}}{\chi^2_{30;0.9}}=\frac{40.256}{20.599}=1.95426$. Значит, n-5=30, отсюда следует, что n=35.

2.
$$\hat{\sigma}_{\varepsilon}^2 = 45 \frac{\chi_u^2}{n-5} = 45 \frac{40.256}{30} = 60.384.$$

Решение в R:

```
df <- 1:200
a <- qchisq(0.1,df)
b <- qchisq(0.9,df)
c <- b/a
d <- 87.942/45
penalty <- (c-d)^2
df.ans <- df[which(penalty==min(penalty))]</pre>
```

Количество степеней свободы n-5 должно быть равно ${\tt df.ans}=30.$

Задача 3.3. Рассмотрим следующую регрессионную модель зависимости логарифма заработной платы индивида $\ln W$ от его уровня образования Edu, опыта работы Exp, Exp^2 , уровня образования его отца Fedu, и уровня образования его матери Medu:

$$\widehat{\ln W} = \widehat{\beta}_1 + \widehat{\beta}_2 E du + \widehat{\beta}_3 E x p + \widehat{\beta}_4 E x p^2 + \widehat{\beta}_5 F e du + \widehat{\beta}_6 M e du$$

Модель регрессии была отдельно оценена по выборкам из 35 мужчин и 23 женщин, и были получены остаточные суммы квадратов $RSS_1=34.4$ и $RSS_2=23.4$ соответственно. Остаточная сумма квадратов в регрессии, оценённой по объединённой выборке, равна 70.3. На уровне значимости 5% проверьте гипотезу об отсутствии дискриминации в оплате труда между мужчинами и женщинами.

Решение.

Упорядочим нашу выборку таким образом, чтобы наблюдения с номерами с 1 по 35 относились к мужчинам, а наблюдения с номерами с 36 по 58 относились к женщинам. Тогда уравнение

$$\ln W_i = \beta_1 + \beta_2 E du_i + \beta_3 E x p_i + \beta_4 E x p_i^2 +$$

$$\beta_5 F e du_i + \beta_6 M e du_i + \varepsilon_i, i = 1, ..., 35 \quad (3.1)$$

соответствует регрессии, построенной для подвыборки из мужчин, а уравнение

$$\ln W_i=\gamma_1+\gamma_2Edu_i+\gamma_3Exp_i+\gamma_4Exp_i^2+$$

$$\gamma_5Fedu_i+\gamma_6Medu_i+\varepsilon_i,\,i=36,...,58 \quad (3.2)$$

соответствует регрессии, построенной для подвыборки из женщин. Введем следующие переменные:

$$d_i = egin{cases} 1, & ext{ если } i ext{--oe} \ ext{наблюдение соответствует мужчине,} \ 0, & ext{в противном случае;} \end{cases}$$

 $dum_i = egin{cases} 1, & ext{ если } i ext{--oe} \ ext{наблюдение соответствует женщине,} \ 0, & ext{в противном случае.} \end{cases}$

Рассмотрим следующее уравнение регрессии:

$$\begin{split} \ln W_i &= \beta_1 d_i + \gamma_1 du m_i + \beta_2 E du_i d_i + \gamma_2 E du_i du m_i + \beta_3 Exp_i d_i + \\ \gamma_3 Exp_i du m_i + \beta_4 Exp_i^2 d_i + \gamma_4 Exp_i^2 du m_i + \beta_5 Fe du_i d_i + \gamma_5 Fe du_i du m_i + \\ \beta_6 Me du_i d_i + \gamma_6 Me du_i du m_i + \varepsilon_i, \, i = 1, ..., 58 \end{split} \tag{3.3}$$

Гипотеза, которую требуется проверить в данной задаче, имеет вид

$$H_0: egin{cases} eta_1=\gamma_1, \ eta_2=\gamma_2, & H_1: |eta_1-\gamma_1|+|eta_2-\gamma_2|+\ldots+|eta_6-\gamma_6|>0. \ \ldots \ eta_6=\gamma_6 \end{cases}$$

Тогда регрессия

$$\ln W_i=eta_1d_i+\gamma_1dum_i+eta_2Edu_id_i+\gamma_2Edu_idum_i+eta_3Exp_id_i+$$
 $\gamma_3Exp_idum_i+eta_4Exp_i^2d_i+\gamma_4Exp_i^2dum_i+eta_5Fedu_id_i+$ $\gamma_5Fedu_idum_i+eta_6Medu_id_i+\gamma_6Medu_idum_i+arepsilon_i,\,i=1,...,58$ (3.4) по отношению к основной гипотезе H_0 является регрессией без ограничений, а регрессия

$$\ln W_i=\beta_1+\beta_2Edu_i+\beta_3Exp_i+\beta_4Exp_i^2+$$

$$\beta_5Fedu_i+\beta_6Medu_i+\varepsilon_i,\,i=1,...,58 \quad (3.5)$$

является регрессией с ограничениями.

Кроме того, для решения задачи должен быть известен следующий факт: $RSS_{UR} = RSS_1 + RSS_2$, где RSS_{UR} — это сумма квадратов остатков в модели:

$$\ln W_i = \beta_1 d_i + \gamma_1 dum_i + \beta_2 E du_i d_i + \gamma_2 E du_i dum_i + \beta_3 Exp_i d_i +$$

$$\gamma_3 Exp_i dum_i + \beta_4 Exp_i^2 d_i + \gamma_4 Exp_i^2 dum_i + \beta_5 Fedu_i d_i +$$

$$\gamma_5 Fedu_i dum_i + \beta_6 Medu_i d_i + \gamma_6 Medu_i dum_i + \varepsilon_i, i = 1, ..., 58 \quad (3.6)$$

$$RSS_1 - \text{ это сумма квадратов остатков в модели:}$$

$$\ln W_i = \beta_1 + \beta_2 E du_i + \beta_3 E x p_i + \beta_4 E x p_i^2 +$$

$$\beta_5 F e du_i + \beta_6 M e du_i + \varepsilon_i, i = 1, ..., 35 \quad (3.7)$$

 RSS_2 — это сумма квадратов остатков в модели:

$$\ln W_i=\gamma_1+\gamma_2Edu_i+\gamma_3Exp_i+\gamma_4Exp_i^2+$$

$$\gamma_5Fedu_i+\gamma_6Medu_i+\varepsilon_i,\,i=36,...,58 \quad (3.8)$$

1. Тестовая статистика:

$$T = rac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(n-m)},$$

где

 RSS_R — сумма квадратов остатков в модели с ограничениями; RSS_{UR} — сумма квадратов остатков в модели без ограничений; q — число линейно независимых уравнений в основной гипотезе H_0 ;

n – общее число наблюдений;

m – число коэффициентов в модели без ограничений

2. Распределение тестовой статистики при верной H_0 :

$$T \sim F(q, n-m)$$

3. Наблюдаемое значение тестовой статистики:

$$T_{obs} = \frac{(70.3 - (34.4 + 23.4))/6}{(34.4 + 23.4)/(58 - 12)} = 1.66$$

4. Область, в которой H_0 не отвергается:

$$[0; T_{cr}] = [0; 2.3]$$

5. Статистический вывод:

Поскольку $T_{obs} \in [0;T_{cr}]$, то на основе имеющихся данных мы не можем отвергнуть гипотезу H_0 в пользу альтернативной H_1 . Следовательно, имеющиеся данные не противоречат гипотезе об отсутствии дискриминации на рынке труда между мужчинами и женщинами.

 \triangleright

Задача 3.4. Рассмотрим следующую регрессионную модель зависимости логарифма заработной платы $\ln W$ от уровня образования Edu, опыта работы Exp, Exp^2 :

$$\widehat{\ln W} = \widehat{eta}_1 + \widehat{eta}_2 E du + \widehat{eta}_3 E x p + \widehat{eta}_4 E x p^2$$

Модель регрессии была отдельно оценена по выборкам из 20 мужчин и 20 женщин, и были получены остаточные суммы квадратов $RSS_1=49.4$ и $RSS_2=44.1$ соответственно. Остаточная сумма квадратов в регрессии, оценённой по объединённой выборке, равна 105.5. На уровне 5% проверьте гипотезу об отсутствии дискриминации в оплате труда между мужчинами и женщинами.

Задача 3.5. Ниже приведены результаты оценивания спроса на молоко для модели $y_i = \beta_1 + \beta_2 I_i + \beta_3 P_i + \varepsilon_i$, где y_i — стоимость молока, купленного i—ой семьёй за последние 7 дней (в руб.), I_i — месячный доход i—ой семьи (в руб.), P_i — цена 1 литра молока (в руб.). Вычисления для общей выборки, состоящей из 2127 семей, дали RSS = 8841601. Для двух подвыборок, состоящих из 348 городских и 1779 сельских семей, соответствующие суммы квадратов остатков оказались следующими: $RSS_1 = 1720236$ и $RSS_2 = 7099423$. Можно ли считать зависимость спроса на молоко от его цены и дохода единой для городской и сельской местности? Ответ обоснуйте подходящим тестом.

Задача 3.6. По 52 наблюдениям была оценена следующая зависимость цены квадратного метра квартиры Price (в долларах) от площади кухни K (в квадратных метрах), времени в пути пешком до ближайшего метро M (в минутах), расстояния до центра города C (в км) и наличия рядом с домом лесопарковой зоны P (1 — есть, 0 — нет).

$$\widehat{Price} = 16.12 + 1.7 K - 0.35M - 0.46C + 2.22P$$
(s.e.) (0.12) (0.12) (0.98)

$$R^2 = 0.78, \sum_{i=1}^{52} (Price_i - \overline{Price})^2 = 278$$

Предположим, что все квартиры в выборке можно отнести к двум категориям: квартиры на севере города (28 наблюдений) и квартиры на юге города (24 наблюдения). Модель регрессии была оценена отдельно только по квартирам на севере и только по квартирам на юге. Ниже приведены результаты оценивания.

Для квартир на севере:

$$\widehat{Price} = 14 + 1.6 K - 0.33M - 0.4 C + 2.1 P, RSS = 21.8$$

Для квартир на юге:

$$\widehat{Price} = 16.8 + 1.62K - 0.29M - 0.51C + 1.98P, RSS = 19.2$$

На уровне значимости 5% проверьте гипотезу о различии в ценообразовании квартир на севере и на юге.

Задача 3.7. По 52 наблюдениям была оценена следующая зависимость цены квадратного метра квартиры Price (в долларах) от площади кухни K (в квадратных метрах), времени в пути пешком до ближайшего метро M (в минутах), расстояния до центра города C (в км) и наличия рядом с домом лесопарковой зоны P (1 — есть, 0 — нет).

$$\widehat{Price} = 16.12 + 1.7 K - 0.35 M - 0.46 C + 2.22 P$$
(s.e.) (3.73) (0.14) (0.03) (0.12) (0.98)

$$R^2 = 0.78, \sum_{i=1}^{52} (Price_i - \overline{Price})^2 = 278$$

Предположим, что все квартиры в выборке можно отнести к двум категориям: квартиры на севере города (28 наблюдений) и квартиры на юге города (24 наблюдения). Пусть S — это фиктивная переменная, равная 1 для домов в южной части города и 0 для домов в северной части города. Используя эту переменную, была оценена следующая регрессия:

$$\widehat{Price} = 14.12 + 0.25S + 1.65K + 0.17K \cdot S - 0.37M + (0.13) + (0.14) + (0.13) + (0.14) + (0.039) + (0.0012) + (0.0012) + (0.13) + (0.18) + (0.088) + (0$$

$$R^2 = 0.85$$

На уровне значимости 5% проверьте гипотезу о различии в ценообразовании квартир на севере и на юге.

Задача 3.8. На основе квартальных данных с 2003 по 2008 год было получено следующее уравнение регрессии, описывающее зависимость цены на товар P от нескольких факторов:

$$P = 3.5 + 0.4X + 1.1W$$
, $ESS = 70.4$, $RSS = 40.5$

Когда в уравнение были добавлены фиктивные переменные, соответствующие первым трем кварталам года Q_1, Q_2, Q_3 , оцениваемая модель приобрела вид:

$$P_t = \beta + \beta_X X_t + \beta_W W_t + \beta_{Q_{1t}} Q_{1t} + \beta_{Q_{2t}} Q_{2t} + \beta_{Q_{3t}} Q_{3t} + \varepsilon_t$$

При этом величина ESS выросла до 86.4. Сформулируйте и на уровне значимости 5% проверьте гипотезу о наличии сезонности.

Задача 3.9. Рассмотрим следующую функцию спроса с сезонными переменными SPRING (весна), SUMMER (лето), FALL (осень):

$$\widehat{\ln Q} = \widehat{\beta}_1 + \widehat{\beta}_2 \cdot \ln P + \widehat{\beta}_3 \cdot SPRING + \widehat{\beta}_4 \cdot SUMMER + \widehat{\beta}_5 \cdot FALL$$

$$R^2 = 0.37, n = 20$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \beta_3 = \beta_5$. Дайте интерпретацию проверяемой гипотезе. Пусть для регрессии с ограничениями был вычислен коэффициент $R_R^2 = 0.23$. На уровне значимости 5% проверьте нулевую гипотезу.

Задача 3.10. Рассмотрим следующую функцию спроса с сезонными переменными SPRING (весна), SUMMER (лето), FALL (осень):

$$\widehat{\ln Q} = \widehat{\beta}_1 + \widehat{\beta}_2 \cdot \ln P + \widehat{\beta}_3 \cdot SPRING + \widehat{\beta}_4 \cdot SUMMER + \widehat{\beta}_5 \cdot FALL$$

$$R^2 = 0.24, n = 24$$

Напишите спецификацию регрессии с ограничениями для про-

верки статистической гипотезы H_0 : $\begin{cases} eta_3=0, \\ \beta_4=eta_5 \end{cases}$. Дайте интер-

претацию проверяемой гипотезе. Пусть для регрессии с ограничениями был вычислен коэффициент $R_R^2=0.13$. На уровне значимости 5% проверьте нулевую гипотезу.

Задача 3.11. Исследователь собирается по выборке, содержащей данные за 2 года, построить модель линейной регрессии с константой и 3-мя объясняющими переменными. В модель предполагается ввести 3 фиктивные сезонные переменные SPRING (весна), SUMMER (лето) и FALL (осень) на все коэффициенты регрессии. Однако в процессе оценивания статистический пакет вывел на экран компьютера следующее сообщение "insufficient number of observations". Объясните, почему имеющегося числа наблюдений не хватило для оценивания параметров модели.

Задача 3.12. По данным для 57 индивидов оценили зависимость длительности обучения индивида S от способностей индивида, описываемых обобщённой переменной IQ, и пола индивида, описываемого с помощью фиктивной переменной MALE (равной 1 для мужчин и 0 для женщин), с помощью двух регрессий (в скобках под коэффициентами указаны оценки стандартных отклонений):

$$\widehat{S}_{(s.e.)} = 6.12 + 0.147 \cdot IQ, RSS = 2758.6$$

$$\widehat{S}_{(s.e.)} = 6.12 + 0.147 \cdot IQ - 1.035 \cdot MALE + 0.0166 \cdot (MALE \cdot IQ)$$

$${}_{(0.018)}$$

$${}_{(0.018)}$$

$${}_{(0.101)}$$

Во второй регрессии сумма квадратов остатков равна RSS=2090.98 Зависит ли длительность обучения от пола индивида и почему?

Задача 3.13. По данным, содержащим 30 наблюдений, построена регрессия:

$$\hat{y} = 1.3870 + 5.2587 \cdot x + 2.6259 \cdot d + 2.5955 \cdot x \cdot d,$$

где фиктивная переменная d определяется следующим образом:

$$d_i = egin{cases} 1 & ext{при } i \in \{1, \dots, 20\}, \ 0 & ext{при } i \in \{21, \dots, 30\}. \end{cases}$$

Найдите оценки коэффициентов в модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, построенной по первым 20-ти наблюдениям, т.е. при $i \in \{1,\ldots,20\}$.

Задача 3.14. Выборка содержит 30 наблюдений зависимой переменной y и независимой переменной x. Ниже приведены результаты оценивания уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ по первым 20-ти и последним 10-ти наблюдениям соответственно:

$$\widehat{y} = 4.0039 + 2.6632 \cdot x$$
$$\widehat{y} = 1.3780 + 5.2587 \cdot x$$

По имеющимся данным найдите оценки коэффициентов модели, рассчитанной по 30-ти наблюдениям $y_i=\beta_1+\beta_2x_i+\Delta\beta_1\cdot d_i+\Delta\beta_2\cdot x_i\cdot d_i+\varepsilon_i$, где фиктивная переменная d определяется следующим образом:

$$d_i = egin{cases} 1 & ext{при } i \in \{1, \dots, 20\}, \ 0 & ext{при } i \in \{21, \dots, 30\}. \end{cases}$$

Задача 3.15. Пусть регрессионная модель имеет вид $y_i=\beta_1+\beta_2x_{i1}+\beta_3x_{i2}+\beta_4x_{i3}+\varepsilon_i, i=1,\ldots,n$. Тестируемая гипотеза $H_0:\beta_2=\beta_3=\beta_4$. Запишите, какой вид имеет модель «с ограничением» для тестирования указанной гипотезы.

Задача 3.16. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \ldots, n$. Тестируемая гипотеза $H_0: \beta_3 = \beta_4 = 1$. Какая модель из приведённых ниже может выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

1.
$$y_i - (x_{i2} + x_{i3}) = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$$

2.
$$y_i + (x_{i2} - x_{i3}) = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$$

3.
$$y_i + x_{i2} + x_{i3} = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$$

4.
$$y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 + \beta_4 + \varepsilon_i$$

Задача 3.17. Пусть регрессионная модель имеет вид $y_i=\beta_1+\beta_2x_{i1}+\beta_3x_{i2}+\beta_4x_{i3}+\varepsilon_i, i=1,\dots,n.$ Тестируемая гипотеза $H_0: \begin{cases} \beta_2+\beta_3+\beta_4=1, \\ \beta_3+\beta_4=0. \end{cases}$ Какая модель из приведённых ни-

же может выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

1.
$$y_i - x_{i1} = \beta_1 + \beta_3(x_{i2} - x_{i3}) + \varepsilon_i$$

2.
$$y_i - x_{i1} = \beta_1 + \beta_4(x_{i3} - x_{i2}) + \varepsilon_i$$

3.
$$y_i + x_{i1} = \beta_1 + \beta_3(x_{i2} + x_{i3}) + \varepsilon_i$$

4.
$$y_i + x_{i1} = \beta_1 + \beta_3(x_{i2} - x_{i3}) + \varepsilon_i$$

Задача 3.18. Пусть регрессионная модель имеет вид $y_i=\beta_1+\beta_2x_{i1}+\beta_3x_{i2}+\beta_4x_{i3}+\varepsilon_i, i=1,\dots,n.$ Тестируемая гипотеза $H_0: \begin{cases} \beta_2-\beta_3=0, \\ \beta_3+\beta_4=0. \end{cases}$ Какая модель из приведённых ниже мо-

жет выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

1.
$$y_i = \beta_1 + \beta_3(x_{i2} - x_{i1} - x_{i3}) + \varepsilon_i$$

2.
$$y_i - x_{i1} = \beta_1 + \beta_4(x_{i3} - x_{i2}) + \varepsilon_i$$

3.
$$y_i = \beta_1 + \beta_3(x_{i1} + x_{i2} + x_{i3}) + \varepsilon_i$$

4.
$$y_i = \beta_1 + \beta_3(x_{i1} + x_{i2} - x_{i3}) + \varepsilon_i$$

Задача 3.19. Известно, что P-значение для коэффициента регрессии равно 0.087, а уровень значимости 0.1. Является ли значимым данный коэффициент в регрессии?

Ответ. Значим.

Задача 3.20. Известно, что P-значение для коэффициента регрессии равно 0.078, а уровень значимости 0.05. Является ли значимым данный коэффициент в регрессии?

Ответ. Не значим.

Задача 3.21. Известно, что P-значение для коэффициента регрессии равно 0.09. На каком уровне значимости данный коэффициент в регрессии будет признан значимым?

Ответ. $\alpha > 0.09$.

Задача 3.22. Ниже приведены результаты оценивания уравнения линейной регрессии зависимости количества смертей в автомобильных катастрофах от различных характеристик:

 $deaths_{i} = eta_{1} + eta_{2}drivers_{i} + eta_{3}popden_{i} + eta_{4}temp + eta_{5}fuel + arepsilon_{i}$ $\widehat{deaths}_{i} = -27.1_{(222.8803)} + 4.64_{(0.3767)} \cdot drivers_{i} - 0.0228 \cdot popden_{i} + 5.3_{(4.6016)} \cdot temp_{i} - 0.663 \cdot fuel_{i}$ $temp_{i} - 0.663 \cdot fuel_{i}$

	Estimate	St.Error	t value	P-value
Intercept	-27.10	222.88	-0.12	0.90
Drivers	4.64	0.38	12.30	0.00
Popden	-0.02	0.02	-0.95	0.35
Temp	5.30	4.60	1.15	0.26
Fuel	-0.66	0.87	-0.76	0.45

Перечислите, какие из переменных в регрессии являются значимыми и на каком уровне значимости.

Задача 3.23. Была оценена функция Кобба-Дугласа с учётом человеческого капитала H (K — физический капитал, L — труд):

$$\widehat{\ln Q} = 1.4 + 0.46 \ln L + 0.27 \ln H + 0.23 \ln K$$

 $ESS = 170.4, RSS = 80.3, n = 21$

- 1. Чему равен коэффициент R^2 ?
- 2. На уровне значимости 1% проверьте гипотезу о значимости регрессии «в целом»

Задача 3.24. На основе опроса 25 человек была оценена следующая модель зависимости логарифма зарплаты $\ln W$ от уровня образования Edu (в годах) и возраста Age:

Глава 3. Многомерный МНК без матриц

$$\widehat{\ln W} = 1.7 + 0.5Edu + 0.06Age - 0.0004Age^{2}$$

$$ESS = 90.3, RSS = 60.4$$

Когда в модель были введены переменные Fedu и Medu, учитывающие уровень образования родителей, величина ESS уведичилась до 110.3.

- 1. Напишите спецификацию уравнения регрессии с учётом образования родителей
- 2. Сформулируйте и на уровне значимости 5% проверьте гипотезу о значимом влиянии уровня образования родителей на заработную плату:
 - а) Сформулируйте гипотезу
 - b) Приведите формулу для тестовой статистики
 - с) Укажите распределение тестовой статистики при верной H_0
 - d) Вычислите наблюдаемое значение тестовой статистики
 - e) Укажите границы области, где основная гипотеза не отвергается
 - f) Сделайте статистический вывод

Решение.

Ограниченная модель (Restricted model):

$$\ln W_i = eta + eta_{Edu} Edu_i + eta_{Aqe} Age_i + eta_{Aqe^2} Age_i^2 + arepsilon_i$$

Неограниченная модель (Unrestricted model):

$$\ln W_i = eta + eta_{Edu}Edu_i + eta_{Age}Age_i + eta_{Age^2}Age_i^2 + eta_{Eedu}Fedu_i + eta_{Medu}Medu_i + arepsilon_i \quad (3.11)$$

По условию $ESS_R=90.3$, $RSS_R=60.4$, $TSS=ESS_R+RSS_R=90.3+60.4=150.7$. Также сказано, что $ESS_{UR}=110.3$. Значит, $RSS_{UR}=TSS-ESS_{UR}=150.7-110.3=40.4$

1. Спецификация:

$$\ln W_i = eta + eta_{Edu}Edu_i + eta_{Age}Age_i + eta_{Age^2}Age_i^2 + \ eta_{Fedu}Fedu_i + eta_{Medu}Medu_i + arepsilon_i \quad (3.12)$$

2. Проверка гипотезы

a)
$$H_0: egin{cases} eta_{Fedu}=0 \ eta_{Medu}=0 \ eta_{Medu}=0 \end{cases}$$

- b) $T=\frac{(RSS_R-RSS_{UR})/q}{RSS_{UR}/(n-k)}$, где q=2 число линейно независимых уравнений в основной гипотезе H_0 , n=25 число наблюдений, k=6 число коэффициентов в модели без ограничения
- c) $T \sim F(q; n-k)$

d)
$$T_{obs} = \frac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(n-k)} = \frac{(60.4 - 40.4)/2}{40.4/(25-6)} = 4.70$$

- е) Нижняя граница = 0, верхняя граница = 3.52
- f) Поскольку $T_{obs}=4.70$, что не принадлежит промежутку от 0 до 3.52, то на основе имеющихся данных можно отвергнуть основную гипотезу на уровне значимости 5%. Таким образом, образование родителей существенно влияет на заработную плату.

49

51

Задача 3.25. Рассмотрим следующую модель зависимости цены дома *Price* (в тысячах долларов) от его площади *Hsize* (в квадратных метрах), площади участка Lsize (в квадратных метрах), числа ванных комнат Bath и числа спален BDR:

$$\widehat{Price} = \widehat{\beta}_1 + \widehat{\beta}_2 H size + \widehat{\beta}_3 L size + \widehat{\beta}_4 B ath + \widehat{\beta}_5 B D R$$

$$R^2 = 0.218, n = 23$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \beta_3 = 20\beta_4$. Дайте интерпретацию проверяемой гипотезе. Для регрессии с ограничением был вычислен коэффициент $R_R^2 = 0.136$. На уровне значимости 5% проверьте нулевую гипотезу.

Задача 3.26. Рассмотрим следующую модель зависимости почасовой оплаты труда W от уровня образования Educ, возраста Age, уровня образования родителей Fathedu и Mothedu:

$$\widehat{\ln W} = \widehat{\beta}_1 + \widehat{\beta}_2 E duc + \widehat{\beta}_3 A ge + \widehat{\beta}_4 A ge^2 + \widehat{\beta}_5 F a the du + \widehat{\beta}_6 M o the du$$

$$R^2 = 0.341, n = 27$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \beta_5 = 2\beta_4$. Дайте интерпретацию проверяемой гипотезе. Для регрессии с ограничением был вычислен коэффициент $R_R^2 = 0.296$. На уровне значимости 5% проверьте нулевую гипотезу.

Задача 3.27. По данным для 27 фирм исследователь оценил зависимость объёма выпуска y от труда l и капитала k с помошью двух моделей:

$$\ln y_i = eta_1 + eta_2 \ln l_i + eta_3 \ln k_i + arepsilon_i$$

$$\ln y_i = eta_1 + eta_2 \ln (l_i \cdot k_i) + arepsilon_i$$

Он получил для этих двух моделей суммы квадратов остатков $RSS_1 = 0.851$ и $RSS_2 = 0.894$ соответственно. Сформулируйте гипотезу, которую хотел проверить исследователь. На уровне значимости 5% проверьте эту гипотезу и дайте экономическую интерпретацию.

Задача 3.28. Пусть задана линейная регрессионная модель:

$$y_i = \beta_1 + \beta_2 x_{1i} + \beta_3 x_{2i} + \beta_4 x_{3i} + \beta_5 x_{4i} + \varepsilon_i, i = 1, \dots, 20$$

По имеющимся данным оценены следующие регрессии:

$$\widehat{y}_i = 10.01 + 1.05x_1 + 2.06x_2 + 0.49x_3 - 1.31x_4, RSS = 6.85$$

$$\widehat{y_i - x_1} - 2x_2 = 10.00 + 0.50x_3 - 1.32x_4, RSS = 8.31$$

$$y_i + \widehat{x_{1} + 2x_{2}} = 9.93 + 0.56x_{3} - 1.50x_{4}, RSS = 4310.62$$

$$y_i - x_1 + 2x_2 = 10.71 + 0.09x_3 - 1.28x_4, RSS = 3496.85$$

$$y_i + \widehat{x_1} - 2x_2 = 9.22 + 0.97x_3 - 1.54x_4, RSS = 516.23$$

На уровне значимости 5% проверьте гипотезу H_0 : $\begin{cases} eta_2=1 \\ eta_3=2 \end{cases}$

против альтернативной гипотезы $H_a: |\beta_2 - 1| + |\beta_3 - 2| \neq 0$.

53

Задача 3.29. Рассмотрим следующую модель зависимости расходов на образование на душу населения от дохода на душу населения, доли населения в возрасте до 18 лет, а также доли городского населения:

Глава 3. Многомерный МНК без матриц

 $education_i = \beta_1 + \beta_2 income_i + \beta_3 young_i + \beta_4 urban_i + \varepsilon_i$

Ниже приведены результаты оценивания уравнения этой линейной регрессии:

$$\begin{array}{c} \widehat{education_i} = \\ -287 \\ -(64.9199) \\ (0.0093) \\ \end{array} + \begin{array}{c} 0.0807 \cdot income_i + 0.817 \cdot young_i - 0.106 \cdot urban_i \\ (0.1598) \\ \end{array}$$

	Estimate	St.Error	t value	P-value
Intercept	-286.84	64.92	-4.42	0.00
Income	0.08	0.01	8.67	0.00
Young	0.82	0.16	5.12	0.00
Urban	-0.11	0.03	-3.09	0.00

- 1. Сформулируйте основную и альтернативую гипотезы, которые соответствуют тесту на значимость коэффициента при переменной доход на душу населения в уравнении регрессии
- 2. На уровне значимости 10% проверьте гипотезу о значимости коэффициента при переменной доход на душу населения в уравнении регрессии:
 - а) Приведите формулу для тестовой статистики
 - ь) Укажите распределение тестовой статистики при верной H_0
 - Вычислите наблюдаемое значение тестовой статисти-
 - Укажите границы области, где основная гипотеза не отвергается
 - е) Слелайте статистический вывол
- 3. На уровне значимости 5% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_a: \beta_1 > 1$:

Задача 3.30. Рассмотрим следующую модель зависимости расходов на образование на душу населения от дохода на душу населения, доли населения в возрасте до 18 лет, а также доли городского населения:

 $education_i = \beta_1 + \beta_2 income_i + \beta_3 young_i + \beta_4 urban_i + \varepsilon_i$

Ниже приведены результаты оценивания уравнения этой линейной регрессии:

$$education_i = \ -287 + 0.0807 \cdot income_i + 0.817 \cdot young_i - 0.106 \cdot urban_i \ {}^{(64.9199)} + {}^{(0.0093)} + {}^{(0.0093)} + {}^{(0.1598)} + {}^{(0.0343)}$$

		Estimate	St.Error	t value	P-value
In	tercept	-286.84	64.92	-4.42	0.00
]	ncome	0.08	0.01	8.67	0.00
	Young	0.82	0.16	5.12	0.00
	Urban	-0.11	0.03	-3.09	0.00

- 1. Сформулируйте основную и альтернативую гипотезы, которые соответствуют тесту на значимость коэффициента при переменной доля населения в возрасте до 18 лет в уравнении регрессии
- 2. На уровне значимости 10% проверьте гипотезу о значимости коэффициента при переменной доля населения в возрасте до 18 лет в уравнении регрессии:
 - а) Приведите формулу для тестовой статистики
 - b) Укажите распределение тестовой статистики при верной H_0
 - Вычислите наблюдаемое значение тестовой статисти-
 - d) Укажите границы области, где основная гипотеза не отвергается
 - е) Слелайте статистический вывол

Далее приведены результаты оценивания уравнения регрессии без переменной, отражающей долю населения в возрасте по 18 лет.

Задача 3.31. Вася построил регрессию оценки за первую контрольную работу на константу, рост и вес студента, $\widehat{kr1}_i = \widehat{\beta}_1 + \widehat{\beta}_2 height_i + \widehat{\beta}_3 weight_i$. Затем построил регрессию оценки за вторую контрольную работу на те же объясняющие переменные, $\widehat{kr2}_i = \widehat{\beta}_1' + \widehat{\beta}_2' height_i + \widehat{\beta}_3' weight_i$. Накопленная оценка считается по формуле $nak_i = 0.25 \cdot kr1_i + 0.75 \cdot kr2_i$. Чему равны оценки коэффициентов в регрессии накопленной оценки на те же объясняющие переменные? Ответ обоснуйте.

Ответ. $0.25\widehat{\beta}_1 + 0.75\widehat{\beta}_1'$, $0.25\widehat{\beta}_2 + 0.75\widehat{\beta}_2'$ и $0.25\widehat{\beta}_3 + 0.75\widehat{\beta}_3'$.

Задача 3.32. Истинная модель имеет вид $y_i = \beta x_i + \varepsilon_i$. Вася оценивает модель $\widehat{y}_i = \widehat{\beta} x_i$ по первой части выборки, получает $\widehat{\beta}_a$, по второй части выборки — получает $\widehat{\beta}_b$ и по всей выборке — $\widehat{\beta}_{tot}$. Как связаны между собой $\widehat{\beta}_a$, $\widehat{\beta}_b$, $\widehat{\beta}_{tot}$? Как связаны между собой дисперсии $\mathrm{Var}(\widehat{\beta}_a)$, $\mathrm{Var}(\widehat{\beta}_b)$ и $\mathrm{Var}(\widehat{\beta}_{tot})$?

Решение. Сами оценки коэффициентов никак детерминистически не связаны, но при большом размере подвыборок примерно равны. А дисперсии связаны соотношением $\mathrm{Var}(\widehat{\beta}_a)^{-1} + \mathrm{Var}(\widehat{\beta}_b)^{-1} = \mathrm{Var}(\widehat{\beta}_{tot})^{-1}$

Задача 3.33. Сгенерируйте вектор y из 300 независимых нормальных N(10,1) случайных величин. Сгенерируйте 40 «объясняющих» переменных, по 300 наблюдений в каждой, каждое наблюдение — независимая нормальная N(5,1) случайная величина. Постройте регрессию y на все 40 регрессоров и константу.

- 1. Сколько регрессоров оказалось значимо на 5% уровне?
- 2. Сколько регрессоров в среднем значимо на 5% уровне?
- 3. Эконометрист Вовочка всегда использует следующий подход: строит регрессию зависимой переменной на все имеющиеся регрессоры, а затем выкидывает из модели те регрессоры, которые оказались незначимы. Прокомментируйте Вовочкин эконометрический подход.

Задача 3.34. Мы попытаемся понять, как введение в регрессию лишнего регрессора влияет на оценки уже имеющихся. В регрессии будет 100 наблюдений. Возьмем $\rho=0.5$. Сгенерим выборку совместных нормальных x_i и z_i с корреляцией ρ . Настоящий y_i задаётся формулой $y_i=5+6x_i+arepsilon_i$. Однако мы будем оценивать модель $\widehat{y}_i=\widehat{eta}_1+\widehat{eta}_2x_i+\widehat{eta}_3z_i$.

- 1. Повторите указанный эксперимент 500 раз и постройте оценку для функции плотности \widehat{eta}_1 .
- 2. Повторите указанный эксперимент 500 раз для каждого ρ от -1 до 1 с шагом в 0.05. Каждый раз сохраняйте полученные 500 значений $\widehat{\beta}_1$. В осях $(\rho, \widehat{\beta}_1)$ постройте 95%ый предиктивный интервал для $\widehat{\beta}_1$. Прокомментируйте.

Задача 3.35. Цель задачи — оценить модель САРМ несколькими способами.

- 1. Соберите подходящие данные для модели САРМ. Нужно найти три временных ряда: ряд цен любой акции, любой рыночный индекс, безрисковый актив. Переведите цены в лоходности.
- 2. Постройте графики
- 3. Оцените модель CAPM без свободного члена по всем наборам данных. Прокомментируйте смысл оцененного коэффициента
- 4. Разбейте временной период на два участка и проверьте устойчивость коэффициента бета
- 5. Добавьте в классическую модель CAPM свободный член и оцените по всему набору данных. Какие выводы можно сделать?
- 6. Методом максимального правдоподобия оцените модель с ошибкой измерения ${\it R}^m {\it R}^0$, т.е.

истинная зависимость имеет вид

$$(R^{s} - R^{0}) = \beta_{1} + \beta_{2}(R_{m}^{*} - R_{0}^{*}) + \varepsilon$$
 (3.13)

величины R_m^* и R_0^* не наблюдаемы, но

$$R_m - R_0 = R_m^* - R_0^* + u (3.14)$$

Задача 3.36. По 47 наблюдениям оценивается зависимость доли мужчин занятых в сельском хозяйстве от уровня образованности и доли католического населения по Швейцарским кантонам в 1888 году.

 $Agriculture_i = \beta_1 + \beta_2 Examination_i + \beta_3 Catholic_i + \varepsilon_i$

xtable(coef.t)

	Оценка	Ст. ошибка	t-статистика
(Intercept)		8.72	9.44
Examination	-1.94		-5.08
Catholic	0.01	0.07	

- 1. Заполните пропуски в таблице
- 2. Укажите коэффициенты, значимые на 10% уровне значимости.
- 3. Постройте 99%-ый доверительный интервал для коэффициента при переменной Catholic

Набор данных доступен в пакете R:

```
h <- swiss
```

Таблица 3.1

Statistical models				
	Model 1	Model 2		
(Intercept)	91.06***	80.52***		
	(6.95)	(3.31)		
Agriculture	-0.22**			
	(0.07)			
Education	-0.96***			
	(0.19)			
Examination	-0.26			
	(0.27)			
Catholic	0.12**	0.07*		
	(0.04)	(0.03)		
I(Education + Examination)		-0.48***		
		(0.08)		
\mathbb{R}^2	0.65	0.55		
Adj. R ²	0.62	0.53		
Num. obs.	47	47		

Глава 3. Многомерный МНК без матриц

Задача 3.37. Оценивается зависимость уровня фертильности всё тех же швейцарских кантонов в 1888 году от ряда показателей. В таблице представлены результаты оценивания двух моделей.

Модель 1: $Fertility_i = \beta_1 + \beta_2 Agriculture_i + \beta_3 Education_i +$ $\beta_4 Examination_i + \beta_5 Catholic_i + \varepsilon_i$

Модель 2: $Fertility_i = \gamma_1 + \gamma_2(Education_i + Examination_i) +$ $\gamma_3 Catholic_i + u_i$

```
m1 <- lm(Fertility~Agriculture+Education+
  Examination+Catholic,data=h)
m2 <- lm(Fertility~I(Education+Examination)+Catholic,
texreg(list(m1,m2))
```

Набор данных доступен в пакете R:

```
h <- swiss
```

- 1. Проверьте гипотезу о том, что коэффициент при *Education* в модели 1 равен -0.5.
- 2. На 5% уровне значимости проверьте гипотезу о том, что переменные Education и Examination оказывают одинаковое влияние на Fertility.

^{***} p < 0.001, ** p < 0.01, * p < 0.05

Задача 3.38. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража и метража жилой площади.

```
model1 <- lm(price~totsp+livesp,data=flats)
report <- summary(model1)
coef.table <- report$coefficients
rownames(coef.table) <-
    c(""," ", " ")
xtable(coef.table)</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
Константа	-88.81	4.37	-20.34	0.00
Общая площадь	1.70	0.10	17.78	0.00
Жилая площадь	1.99	0.18	10.89	0.00

Оценка ковариационной матрицы $\widehat{Var}(\widehat{\beta})$ имеет вид

```
var.hat <- vcov(model1)
xtable(var.hat)</pre>
```

	(Intercept)	totsp	livesp
(Intercept)	19.07	0.03	-0.45
totsp	0.03	0.01	-0.02
livesp	-0.45	-0.02	0.03

- 1. Проверьте H_0 : $\beta_{totsp} = \beta_{livesp}$. В чём содержательный смысл этой гипотезы?
- 2. Постройте доверительный интервал дли $\beta_{totsp} \beta_{livesp}$. В чём содержательный смысл этого доверительного интервала?

Решение.

Из оценки ковариационной матрицы находим, что $se(\widehat{eta}_{totsp} =$

$$\widehat{\beta}_{livesp}$$
) = 0.2696.

Исходя из $Z_{crit}=1.96$ получаем доверительный интервал,

$$[-0.8221; 0.2348].$$

Вывод: при уровне значимости 5% гипотеза о равенстве

63

Задача 3.39. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража и метража жилой площади.

Глава 3. Многомерный МНК без матриц

```
model1 <- lm(price~totsp+livesp,data=flats)</pre>
report <- summary(model1)</pre>
coef.table <- report$coefficients</pre>
rownames(coef.table) <-</pre>
  c(""," ", " ")
xtable(coef.table)
```

	Estimate	Std. Error	t value	Pr(> t)
Константа	-88.81	4.37	-20.34	0.00
Общая площадь	1.70	0.10	17.78	0.00
Жилая площадь	1.99	0.18	10.89	0.00

Оценка ковариационной матрицы $\widehat{Var}(\widehat{eta})$ имеет вид

xtable(vcov(model1))

	(Intercept)	totsp	livesp
(Intercept)	19.07	0.03	-0.45
totsp	0.03	0.01	-0.02
livesp	-0.45	-0.02	0.03

- 1. Постройте 95%-ый доверительный интервал для ожидаемой стоимости квартиры с жилой площадью 30 м² и общей площадью 60 м^2 .
- 2. Постройте 95%-ый прогнозный интервал для фактической стоимости квартиры с жилой площадью 30 м² и общей плошалью 60 м^2 .

Задача 3.40. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража, метража жилой площади и дамми-переменной, равной 1 для кирпичных домов.

```
model1 <- lm(price~totsp+livesp+brick+brick:totsp+</pre>
  brick:livesp,data=flats)
report <- summary(model1)</pre>
coef.table <- report$coefficients</pre>
# rownames(coef.table) <- c("Константа", "Общая площадь",
# "Жилая площадь")
xtable(coef.table)
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-66.03	6.07	-10.89	0.00
totsp	1.77	0.12	14.98	0.00
livesp	1.27	0.25	5.05	0.00
brick	-19.59	9.01	-2.17	0.03
totsp:brick	0.42	0.20	2.10	0.04
livesp:brick	0.09	0.38	0.23	0.82

- 1. Выпишите отдельно уравнения регрессии для кирпичных домов и для некирпичных домов
- 2. Проинтерпретируйте коэффициент при $brick_i \cdot totsp_i$

Задача 3.41. По 20 наблюдениям оценивается линейная регрессия $\widehat{y} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, причём истинная зависимость имеет вид $y = \beta_1 + \beta_2 x + \varepsilon$. Случайная ошибка ε_i имеет нормальное распределение N(0,1).

- 1. Найдите вероятность $\mathbb{P}(\widehat{\beta}_3 > se(\widehat{\beta}_3))$
- 2. Найдите вероятность $\mathbb{P}(\widehat{\beta}_3 > \sigma_{\widehat{\beta}_3})$

Решение.

- 1. $\mathbb{P}(\widehat{\beta}_3 > se(\widehat{\beta}_3)) = \mathbb{P}(t_{17} > 1) = 0.1657$
- 2. $\mathbb{P}(\widehat{\beta}_3 > \sigma_{\widehat{\beta}_3}) = \mathbb{P}(N(0, 1) > 1) = 0.1587$

Задача 3.42. К эконометристу Вовочке в распоряжение попали данные с результатами контрольной работы студентов по эконометрике. В данных есть результаты по каждой задаче, переменные $p_1,\ p_2,\ p_3,\ p_4$ и $p_5,\$ и суммарный результат за контрольную, переменная kr. Чему будут равны оценки коэффициентов, их стандартные ошибки, t-статистики, p-значения, $R^2,\ RSS,\$ если

- 1. Вовочка построит регрессию kr на константу, $p_1,\ p_2,\ p_3,\ p_4$ и p_5
- 2. Вовочка построит регрессию kr на $p_1,\ p_2,\ p_3,\ p_4$ и p_5 без константы

Задача 3.43. Сгенерируйте данные так, чтобы при оценке линейной регрессионной модели оказалось, что скорректированный коэффициент детерминации, R^2_{adi} , отрицательный.

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-k}$$

Следовательно, при R^2 близком к 0 и большом количестве регрессоров k может оказаться, что $R^2_{adi} < 0$.

Например,

```
set.seed(42)
y <- rnorm(200,sd=15)
X <- matrix(rnorm(2000),nrow=200)
model <- lm(y~X)
report <- summary(model)
report$adj.r.squared
## [1] -0.02745</pre>
```

Задача 3.44. Для коэффициентов регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$ даны 95%-ые доверительные интервалы: $\beta_2 \in (0.16; 0.66), \ \beta_3 \in (-0.33; 0.93)$ и $\beta_4 \in (-1.01; 0.54)$.

- 1. Найдите $\widehat{\beta}_2$, $\widehat{\beta}_3$, $\widehat{\beta}_4$
- 2. Определите, какие из переменных в регрессии значимы на уровне значимости 5%.

Ответ. $\widehat{eta}_2=0.41,~\widehat{eta}_3=0.3,~\widehat{eta}_4=-0.235,$ переменная x значи-

ма.

 \triangleright

67

Задача 3.45. Для коэффициентов регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$ даны 95%-ые доверительные интервалы: $\beta_2 \in (-0.15; 1.65), \ \beta_3 \in (0.32; 0.93)$ и $\beta_4 \in (0.14; 1.55)$.

- 1. Найдите $\widehat{\beta}_2$, $\widehat{\beta}_3$, $\widehat{\beta}_4$
- 2. Определите, какие из переменных в регрессии значимы на уровне значимости 5%.

Ответ. $\widehat{eta}_2=0.75,\ \widehat{eta}_3=0.625,\ \widehat{eta}_4=0.845,$ переменные z и w значимы.

Задача 3.46. Эконометрэсса Мырли очень суеверна и поэтому оценила три модели:

M1 $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \varepsilon_i$ по всем наблюдениям.

М2 $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \beta_4 d_i + \varepsilon_i$ по всем наблюдениям, где d_i — дамми-переменная равная 1 для 13-го наблюдения и нулю иначе.

М3 $y_i=\beta_1+\beta_2x_i+\beta_3w_i+arepsilon_i$ по всем наблюдениям, кроме 13-го.

- 1. Сравните между собой RSS во всех трёх моделях
- 2. Есть ли совпадающие оценки коэффициентов в этих трёх моделях? Если есть, то какие?
- 3. Может ли Мырли не выполняя вычислений узнать ошибку прогноза для 13-го наблюдения при использовании третьей модели? Если да, то как?

 $\mathit{OTВет.}\ RSS_1 > RSS_2 = RSS_3$, в моделях два и три, ошибка прогноза равна \widehat{eta}_4 .

Задача 3.47. Рассмотрим модель $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \beta_4 z_i + \varepsilon_i$. При оценке модели по 24 наблюдениям оказалось, что $RSS=15, \ \sum (y_i-\overline{y}-w_i+\overline{w})^2=20$. На уровне значимости 1% протестируйте гипотезу

$$H_0: egin{cases} eta_2+eta_3+eta_4=1 \ eta_2=0 \ eta_3=1 \ eta_4=0 \end{cases}$$

Задача 3.48. Модель регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$, в которой ошибки ε_i независимы и нормальны $N(0;\sigma^2)$, оценивается по 13 наблюдениям. Найдите $\mathbb{E}(RSS)$, $\mathrm{Var}(RSS)$, $\mathbb{P}(5\sigma^2 < RSS < 10\sigma^2)$, $\mathbb{P}(5\widehat{\sigma}^2 < RSS < 10\widehat{\sigma}^2)$

Ответ. $RSS/\sigma^2 \sim \chi^2_{n-k}$, $\mathbb{E}(RSS) = (n-k)\sigma^2$, $\mathrm{Var}(RSS) = 2(n-k)\sigma^4$, $\mathbb{P}(5\sigma^2 < RSS < 10\sigma^2) \approx 0.451$.

Задача 3.49. Рассмотрим модель регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$, в которой ошибки ε_i независимы и имеют нормальное распределение $N(0,\sigma^2)$. Известно, что выборка в n=30 наблюдений была разбита на три непересекающиеся подвыборки, содержащие $n_1=13,\ n_2=4$ и $n_3=13$ наблюдений. Пусть \widehat{s}_j^2 — это оценка дисперсии случайных ошибок для регрессии, оцененной по j-ой подвыборке. Найдите

- 1. $\mathbb{P}(\widehat{s}_3^2 > \widehat{s}_1^2)$, $\mathbb{P}(\widehat{s}_1^2 > 2\widehat{s}_2^2)$
- 2. $\mathbb{E}(\widehat{s}_2^2/\widehat{s}_1^2)$, $\operatorname{Var}(\widehat{s}_2^2/\widehat{s}_1^2)$

Глава 3. Многомерный МНК без матриц

68

Ответ. $\mathbb{P}(\widehat{s}_3^2 > \widehat{s}_1^2) = 0.5$, $\mathbb{P}(\widehat{s}_1^2 > 2\widehat{s}_2^2) = 0.5044$, $\mathbb{E}(\widehat{s}_2^2/\widehat{s}_1^2) = 1.25$, $Var(\widehat{s}_2^2/\widehat{s}_1^2) = 4.6875$.

Задача 3.50. Рассмотрим модель регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$, в которой ошибки ε_i независимы и имеют нормальное распределение $N(0,\sigma^2)$. Для n=13 наблюдения найдите уровень доверия следующих доверительных интервалов для неизвестного параметра σ^2 :

- 1. (0; *RSS*/4.865)
- 2. (RSS/18.307; RSS/3.940)
- 3. $(RSS/15.987; \infty)$

Ответ. 90% во всех пунктах.

Задача 3.51. Пусть \widehat{eta}_1 и \widehat{eta}_2 — МНК-оценки коэффициентов в регрессии $y_i=eta_1+eta_2x_i+arepsilon_i$, оцененной по наблюдениям $i=1,\ldots,m$, а $\widehat{\mu}$, $\widehat{\nu}$, $\widehat{\gamma}$ и $\widehat{\delta}$ — МНК-коэффициенты в регрессии $y_i=\mu+\nu x_i+\gamma d_i+\delta x_i d_i+arepsilon_i$, оцененной по наблюдениям $i=1,\ldots,n$, где фиктивная переменная d определяется следующим образом

$$d_i = egin{cases} 1 & ext{ при } i \in \{1, \dots, m\} \ 0 & ext{ при } i \in \{m+1, \dots, n\} \end{cases}$$

Покажите, что $\widehat{eta}_1=\widehat{\mu}+\widehat{\gamma}$ и $\widehat{eta}_2=\widehat{
u}+\widehat{\delta}.$

Решение. Поскольку $\widehat{\mu}$, $\widehat{\nu}$, $\widehat{\gamma}$ и $\widehat{\delta}$ являются МНК-коэффициентами в регрессии $y_i=\mu+\nu x_i+\gamma d_i+\delta x_i d_i+\varepsilon_i,\ i=1,\ldots,n$, то для любых μ , ν , γ и δ имеет место

$$\sum_{i=1}^n (y_i - \widehat{\mu} - \widehat{
u} x_i - \widehat{\gamma} d_i - \widehat{\delta} x_i d_i - arepsilon_i)^2 \leqslant$$

$$\sum_{i=1}^{n} (y_i - \mu - \nu x_i - \gamma d_i - \delta x_i d_i - \varepsilon_i)^2 \quad (3.15)$$

69

Перепишем неравенство (3.15) в виде

$$\sum_{i=1}^{m} (y_i - (\widehat{\mu} + \widehat{\gamma}) - (\widehat{\nu} + \widehat{\delta})x_i)^2 + \sum_{i=m+1}^{n} (y_i - \widehat{\mu} - \widehat{\nu}x_i)^2 \leqslant \sum_{i=1}^{m} (y_i - (\mu + \gamma) - (\nu + \delta)x_i)^2 + \sum_{i=m+1}^{n} (y_i - \mu - \nu x_i)^2$$
(3.16)

Учитывая, что неравенство (3.16) справедливо для всех μ , ν , γ и δ , то оно останется верным для $\mu=\widehat{\mu}$, $\nu=\widehat{\nu}$ и произвольных γ и δ . Имеем

$$\sum_{i=1}^{m} (y_i - (\widehat{\mu} + \widehat{\gamma}) - (\widehat{\nu} + \widehat{\delta})x_i)^2 + \sum_{i=m+1}^{n} (y_i - \widehat{\mu} - \widehat{\nu}x_i)^2 \leqslant$$

$$\sum_{i=1}^{m} (y_i - (\widehat{\mu} + \gamma) - (\widehat{\nu} + \delta)x_i)^2 + \sum_{i=m+1}^{n} (y_i - \widehat{\mu} - \widehat{\nu}x_i)^2 \quad (3.17)$$

Следовательно

$$\sum_{i=1}^{m} (y_i - (\widehat{\mu} + \widehat{\gamma}) - (\widehat{\nu} + \widehat{\delta})x_i)^2 \leqslant \sum_{i=1}^{m} (y_i - (\widehat{\mu} + \gamma) - (\widehat{\nu} + \delta)x_i)^2$$
 (3.18)

Обозначим $\widetilde{eta}_1:=\widehat{mu}+\gamma$ и $\widetilde{eta}_2:=\widehat{
u}+\delta$. В силу произвольности γ и δ коэффициенты \widetilde{eta}_1 и \widetilde{eta}_2 также произвольны. тогда для любых \widetilde{eta}_1 и \widetilde{eta}_2 выполнено неравенство:

$$\sum_{i=1}^m (y_i - (\widehat{\mu} + \widehat{\gamma}) - (\widehat{
u} + \widehat{\delta}) x_i)^2 \leqslant \sum_{i=1}^m (y_i - \widetilde{eta}_1 - \widetilde{eta}_2 x_i)^2$$

которое означает, что $\widehat{\mu}+\widehat{\gamma}$ и $\widehat{\nu}+\widehat{\delta}$ являются МНК-оценками коэффициентов β_1 и β_2 в регрессии $y_i=\beta_1+\beta_2x_i+\varepsilon_i$, оцененной по наблюдениям $i=1,\ldots,m$, то есть $\widehat{\beta}_1=\widehat{\mu}+\widehat{\gamma}$ и $\widehat{\beta}_2=\widehat{\nu}+\widehat{\delta}$. \rhd

Задача 3.52. Верно ли, что $R^2_{adj} = 1 - (1 - R^2) \frac{n-1}{n-k}$ распределен по F(n-k,n-1)? Если да, то объясните, почему, если нет, то тоже объясните, почему.

Ответ. Не верно, поскольку R^2_{adj} может принимать отрицательные значения, а F(n-k,n-1) — не может.

Задача 3.53. Сгенерируйте набор данных, обладающий следующим свойством. Если попытаться сразу выкинуть регрессоры x и z, то гипотеза о их совместной незначимости отвергается. Если вместо этого попытаться выкинуть отдельно x, или отдельно z, то гипотеза о незначимости не отвергается.

Решение. Сгенерировать сильно коррелированные x и z.

Задача 3.54. Сгенерируйте набор данных, обладающий следующим свойством. Если попытаться сразу выкинуть регрессоры x и z, то гипотеза о их совместной незначимости отвергается. Если вместо сначала выкинуть отдельно x, то гипотеза о незначимости не отвергается. Если затем выкинуть z, то гипотезы о незначимости тоже не отвергается.

Задача 3.55. Напишите свою функцию, которая бы оценивала регрессию методом наименьших квадратов. На вход функции должны подаваться вектор зависимых переменных y и матрица регрессоров X. На выходе функция должна выдавать список из $\widehat{\beta}$, $\widehat{\text{Var}}(\widehat{\beta})$, \widehat{y} , $\widehat{\varepsilon}$, ESS, RSS и TSS. По возможности функция должна проверять корректность аргументов, например, что в y и X одинаковое число наблюдений и т.д. Использовать \lim или \lim запрещается.

Задача 3.56. Сгенерируйте данные так, чтобы при оценке модели $\widehat{y} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$ оказывалось, что $\widehat{\beta}_2 > 0$, а при оценке модели $\widehat{y} = \widehat{\beta}_1 + \widehat{\beta}_2 x$ оказывалось, что $\widehat{\beta}_2 < 0$.

Задача 3.57. Предложите способ, как построить доверительный интервал для вершины параболы.

Ответ. bootstrap, дельта-метод.

Задача 3.58. Скачайте результаты двух контрольных работ по теории вероятностей, https://github.com/bdemeshev/em301/raw/master/datasets/tvims2012_data.csv с описанием данных, https://github.com/bdemeshev/em301/raw/master/datasets/tvims2012_data_description.txt. Наша задача попытаться предсказать результат второй контрольной работы зная позадачный результат первой контрольной, пол и группу студента.

- 1. Какая задача из первой контрольной работы наиболее существенно влияет на результат второй контрольной?
- 2. Влияет ли пол на результат второй контрольной?
- 3. Что можно сказать про влияние группы, в которой учится студент?

Задача 3.59. Сформулируйте теорему Гаусса-Маркова

Задача 3.60. Эконометресса Эвридика хочет оценить модель $y_i=\beta_1+\beta_2x_i+\beta_3z_i+\varepsilon_i$. К сожалению, она измеряет зависимую переменную с ошибкой. Т.е. вместо y_i она знает значение $y_i^*=y_i+u_i$ и использует его в качестве зависимой переменной при оценке регрессии. Ошибки измерения u_i некоррелированы между собой и с ε_i .

- 1. Будут ли оценки Эвридики несмещенными?
- 2. Могут ли дисперсии оценок Эвридики быть ниже чем дисперсии МНК оценок при использовании настоящего y_i ?
- 3. Могут ли оценки дисперсий оценок Эвридики быть ниже чем оценок дисперсий МНК оценок при использовании настоящего y_i ?

Решение. При наличии ошибок в измерении зависимой пере-

менной оценки остаются несмещенными, их дисперсия растет.

Однако оценка дисперсии может случайно оказаться меньше.

Например, могло случиться, что ошибки u_i случайно компенси-

ровали $arepsilon_i$.

 \triangleright

Задача 3.61. Эконометресса Ефросинья исследует зависимость удоев от возраста и породы коровы. Она оценила модель

$$\widehat{y}_i = \widehat{eta}_1 + \widehat{eta}_2 a g e_i + \widehat{eta}_3 d_{1i} + \widehat{eta}_4 d_{2i}$$

Эконометресса Глафира исследует ту же зависимость:

$$\widehat{y}_i = \widehat{eta}_1' + \widehat{eta}_2' age_i + \widehat{eta}_3' d_{1i}' + \widehat{eta}_4' d_{2i}'$$

но вводит дамми-переменные вводит по-другому:

Порода коровы	d_1	d_2	d_1'	d_2'
Холмогорская	0	0	1	1
Тагильская	1	0	0	1
Ярославская	0	1	1	0

Выразите оценки коэффициентов Глафиры через оценки коэффициентов Ефросиньи.

Задача 3.62. Для проверки гипотезы о нормальности ошибок регрессии используют в частности статистику Харке-Бера (Jarque-Bera):

$$JB = \frac{S^2}{6} + \frac{(K-3)^2}{24},$$

где $S=\sum_{i}^{n}\widehat{\varepsilon}_{i}^{3}/\widehat{\sigma}_{ML}^{3}$ Строго говоря статистика Харке-Бера проверяет гипотезу о том, что скошенность равна нулю, а эксцесс равен 3, т.е. $H_{0}:\mathbb{E}(\varepsilon_{i}^{3})=0,\ \mathbb{E}(\varepsilon_{i}^{4})=3\sigma^{4}.$ Асимптотически при верной H_{0} статистика имеет хи-квадрат распределение с двумя степенями свободы.

По аналогии со статистикой Харке-Бера придумайте асимптотические статистики, которые бы проверяли гипотезы:

- 1. H_0 : $\mathbb{E}(\varepsilon_i^3) = 0$
- 2. H_0 : $\mathbb{E}(\varepsilon_i^4) = 3\sigma^4$
- 3. $H_0: \mathbb{E}(\varepsilon_i^5) = 0$

Какое асимптотическое распределение при верной H_0 будут иметь придуманные статистики?

Глава 4

МНК с матрицами и вероятностями

Задача 4.1. Пусть $y = X\beta + \varepsilon$ — регрессионная модель.

- 1. Сформулируйте теорему Гаусса-Маркова
- 2. Верно ли, что оценка $\widehat{\beta} = (X'X)^{-1}X'y$ несмещённая?
- 3. В условиях теоремы Гаусса-Маркова найдите ковариационную матрицу \widehat{eta}

Задача 4.2. Пусть $y = X\beta + \varepsilon$ — регрессионная модель и $\widetilde{\beta} = ((X'X)^{-1}X' + A)y$ — несмещённая оценка вектора неизвестных параметров β . Верно ли, что AX = 0?

Задача 4.3. Пусть $y = X\beta + \varepsilon$ — регрессионная модель, X =

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}, \mathbb{E}(\varepsilon) = 0, \operatorname{Var}(\varepsilon) =$$

 $\sigma^2 I$. Найдите коэффициент корреляции $\operatorname{Corr}(\widehat{\beta}_1,\widehat{\beta}_2)$.

Задача 4.4. Пусть $y = X\beta + \varepsilon$ — регрессионная модель, где

$$eta=egin{pmatrix}eta_1\eta_2\eta_3\end{pmatrix}$$
 . Пусть $Z=XD$, где $D=egin{pmatrix}1&1&0\0&1&1\0&0&1\end{pmatrix}$. Рассмотрите

«новую» регрессионную модель $y=Z\alpha+u$, где $\alpha=$

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

Задача 4.5. Пусть $y=X\beta+\varepsilon$ — регрессионная модель, где

$$eta=egin{pmatrix}eta_1\eta_2\eta_3\end{pmatrix}$$
 . Пусть $Z=XD$, где $D=egin{pmatrix}1&1&1\0&1&1\0&0&1\end{pmatrix}$. Рассмотрите

«новую» регрессионную модель $y=Z\alpha+u$, где $\alpha=$

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

Задача 4.6. Пусть $y = X\beta + \varepsilon$ — регрессионная модель, где

$$eta=egin{pmatrix}eta_1\eta_2\eta_3\end{pmatrix}$$
 . Пусть $Z=XD,$ где $D=egin{pmatrix}1&0&0\0&1&1\0&0&1\end{pmatrix}$. Рассмотрите

«новую» регрессионную модель $y=Z\alpha+u$, где $\alpha=$

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

Задача 4.7. Пусть $y = X\beta + \varepsilon$ — регрессионная модель. Верно ли, что $\widehat{\varepsilon}'\widehat{y}=0$ и $\widehat{y}'\widehat{\varepsilon}=0$?

Ответ. да, да.

Задача 4.8. Пусть $y = X\beta + \varepsilon$ — регрессионная модель, где $\mathbb{E}(\varepsilon) = 0$, $Var(\varepsilon) = \sigma_{\varepsilon}^2 I$. Пусть A — неслучайная матрица размера $k \times k$, det $(A) \neq 0$. Совершается преобразование регрессоров по правилу Z = XA. В преобразованных регрессорах уравнение выглядит так: $y=Z\gamma+u$, где $\mathbb{E}(u)=0$, $\mathrm{Var}(u)=\sigma_u^2I$.

- 1. Как связаны между собой МНК-оценки $\widehat{\beta}$ и $\widehat{\gamma}$?
- 2. Как связаны между собой векторы остатков регрессий?
- 3. Как связаны между собой прогнозные значения, полученные по двум регрессиям?

Решение.

$$\widehat{\gamma} = (Z'Z)^{-1}Z'y = A^{-1}(X'X)^{-1}(A')^{-1}A'X'y = A^{-1}(X'X)^{-1}X'y = A^{-1}\widehat{\beta} \quad (4.1)$$

Глава 4. МНК с матрицами и вероятностями

79

2. $\widehat{u} = y - Z\widehat{\gamma} = y - XAA^{-1}\widehat{\beta} = y - X\widehat{\beta} = \widehat{\varepsilon}$

3. Пусть $z^0=\left(1\ z_1^0\ ...\ z_{k-1}^0\right)$ — вектор размера $1\times k$ и $x^0=\left(1\ x_1^0\ ...\ x_{k-1}^0\right)$ — вектор размера $1\times k$. Оба эти вектора представляют собой значения факторов. Тогда $z^0=x^0A$ и прогнозное значение для регрессии с преобразованными факторами равно $z^0\widehat{\gamma}=x^0AA^{-1}\widehat{\beta}=x^0\widehat{\beta}$ прогнозному значению для регрессии с исходными факторами.

 \triangleright

Задача 4.9. Рассмотрим оценку вида $\widetilde{\beta} = ((X'X)^{-1} + \gamma I)X'y$ для вектора коэффициентов регрессионного уравнения $y = X\beta + \varepsilon$, удовлетворяющего условиям классической регрессионной модели. Найдите $\mathbb{E}(\widetilde{\beta})$ и $\mathrm{Var}(\widetilde{\beta})$.

Решение.

1.

$$\mathbb{E}(\widetilde{\beta}) = ((X'X)^{-1} + \gamma I)X'\mathbb{E}(y) =$$

$$((X'X)^{-1} + \gamma I)X'X\beta = \beta + \gamma X'X\beta \quad (4.2)$$

2.

$$\operatorname{Var}(\widetilde{\beta}) = \operatorname{Var}(((X'X)^{-1} + \gamma I)X'y) =$$

$$\operatorname{Var}(((X'X)^{-1} + \gamma I)X'\varepsilon) =$$

$$(((X'X)^{-1} + \gamma I)X')\operatorname{Var}(\varepsilon)(((X'X)^{-1} + \gamma I)X')' =$$

$$(((X'X)^{-1} + \gamma I)X')\sigma_{\varepsilon}^{2}I(((X'X)^{-1} + \gamma I)X')' =$$

$$\sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)X'X((X'X)^{-1} + \gamma I) =$$

$$\sigma_{\varepsilon}^{2}((X'X)^{-1} + \gamma I)(I + \gamma X'X) =$$

Задача 4.10. Верно ли, что при невырожденном преобразовании факторов R^2 не меняется? А именно, пусть заданы две регрессионные модели: $y=X\beta+\varepsilon$ и $y=Z\alpha+u$, где y- вектор размера $n\times 1$, X и Z — матрицы размера $n\times k$, β и α — вектора рамзера $k\times 1$, ε и u — вектора размера $n\times 1$, а также Z=XD, $\det(D)\neq 0$. Верно ли, что коэффициенты детерминации представленных выше моделей равны между собой?

Задача 4.11. Верно ли, что при невырожденном преобразовании факторов RSS не меняется. А именно, пусть заданы две регрессиионные модели: $y = X\beta + \varepsilon$ и $y = Z\alpha + u$, где y — вектор размера $n \times 1$, X и Z — матрицы размера $n \times k$, β и α — вектора рамзера $k \times 1$, ε и u — вектора размера $n \times 1$, а также Z = XD, $\det(D) \neq 0$. Верно ли, что сумма квадратов остатков в представленных выше моделях равны между собой?

Задача 4.12. Пусть регрессионная модель $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i, \ i=1,\dots,n,$ задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = \left(\beta_1 \ \beta_2 \ \beta_3\right)^T$. Известно, что $\mathbb{E} \varepsilon = 0$ и $\mathrm{Var}(\varepsilon) = 4 \cdot I$. Известно также, что:

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Для удобства расчётов ниже приведены матрицы:

$$X^T X = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 и $(X^T X)^{-1} = \begin{pmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 1 & -0.5 \\ 0 & -0.5 & 1.5 \end{pmatrix}$.

Найлите:

- 1. $Var(\varepsilon_1)$
- 2. $Var(\beta_1)$
- 3. $Var(\widehat{\beta}_1)$
- 4. $\widehat{\text{Var}}(\widehat{\beta}_1)$
- 5. $\mathbb{E}(\widehat{\beta}_1^2) \beta_1^2$
- 6. $Cov(\widehat{\beta}_2, \widehat{\beta}_3)$
- 7. $\widehat{\text{Cov}}(\widehat{\beta}_2, \widehat{\beta}_3)$
- 8. $Var(\widehat{\beta}_2 \widehat{\beta}_3)$
- 9. $\widehat{\text{Var}}(\widehat{\beta}_2 \widehat{\beta}_3)$
- 10. $Var(\beta_2 \beta_3)$
- 11. $\operatorname{Corr}(\widehat{\beta}_2, \widehat{\beta}_3)$
- 12. $\widehat{\mathrm{Corr}}(\widehat{\beta}_2, \widehat{\beta}_3)$
- 13. $\mathbb{E}(\widehat{\sigma}^2)$
- 14. $\hat{\sigma}^2$

Задача 4.13. Пусть $y_i=eta_1+eta_2x_{1i}+eta_3x_{2i}+arepsilon_i$ — регрессионная

модель, где
$$X=\begin{pmatrix}1&0&0\\1&0&0\\1&0&0\\1&1&0\\1&1&1\end{pmatrix},\;y=\begin{pmatrix}1\\2\\3\\4\\5\end{pmatrix},\;\beta=\begin{pmatrix}\beta_1\\\beta_2\\\beta_3\end{pmatrix},\;\varepsilon=\begin{pmatrix}\varepsilon_1\\\varepsilon_2\\\varepsilon_3\\\varepsilon_4\\\varepsilon_5\end{pmatrix},$$

ошибки ε_i независимы и нормально распределены с $\mathbb{E}(\varepsilon)=0,\ Var(\varepsilon)=\sigma^2I.$ Для удобства расчётов даны матрицы: X'X=

$$\begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \begin{pmatrix} 0.3333 & -0.3333 & 0.0000 \\ -0.3333 & 1.3333 & -1.0000 \\ 0.0000 & -1.0000 & 2.0000 \end{pmatrix}$$

- 1. Укажите число наблюдений
- 2. Укажите число регрессоров в модели, учитывая свободный член
- 3. Найдите $TSS = \sum_{i=1}^n (y_i \overline{y})^2$
- 4. Найдите $RSS = \sum\limits_{i=1}^{n} (y_i \widehat{y}_i)^2$
- 5. Методом МНК найдите оценку для вектора неизвестных коэффициентов
- 6. Чему равен \mathbb{R}^2 в модели? Прокомментируйте полученное значение с точки зрения качества оценённого уравнения регрессии
- 7. Сформулируйте основную и альтернативную гипотезы, которые соответствуют тесту на значимость переменной x_1 в уравнении регрессии
- 8. Протестируйте на значимость переменную x_1 в уравнении регрессии на уровне значимости 10%:
 - а) Приведите формулу для тестовой статистики
 - b) Укажите распределение тестовой статистики при верной H_0
 - с) Вычислите наблюдаемое значение тестовой статисти-

Решение.

- 1. n = 5
- 2. k = 3
- 3. TSS = 10
- 4. RSS = 2

5.
$$\widehat{\beta} = \begin{pmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \\ \widehat{\beta}_3 \end{pmatrix} = (X'X)^{-1}X'y = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

- 6. $R^2=1-\frac{RSS}{TSS}=0.8$. R^2 высокий, построенная эконометрическая модель «хорошо» описывает данные
- 7. Основная гипотеза $H_0: \beta_1 = 0$, альтернативная гипотеза $H_a: \beta_1 \neq 0$
- 8. Проверка гипотезы

a)
$$T = \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\widehat{\beta}_1)}} = \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}[(X'X)^{-1}]_{22}}}; n = 5; k = 3$$

b) $T \sim t(n-k); n = 5; k = 3$

c)
$$T_{obs} = \frac{\widehat{\beta}_1 - 0}{\sqrt{\widehat{Var}(\widehat{\beta}_1)}} = \frac{\widehat{\beta}_1 - 0}{\sqrt{\frac{RSS}{n-k}}[(X^t X)^{-1}]_{22}} = \frac{2 - 0}{\sqrt{\frac{2}{5-3}} \cdot 1.3333}} = 1.7321$$

- d) Нижняя граница = -2.920, верхняя граница = 2.920
- е) Поскольку $T_{obs}=1.7321$, что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- 9. $p-value(T_{obs})=\mathbb{P}(|T|>|T_{obs}|)=2F_T(|T_{obs}|)$, где $F_T(|T_{obs}|)$ функция распределения t- распределения с n-k=5-3=2 степенями свободы в точке $|T_{obs}|$. $p-value(T_{obs})=2tcdf(-|T_{obs}|,n-k)=2tcdf(-1.7321,2)=0.2253$. Поскольку P- значение превосходит уровень значимости 10%, то основная гипотеза H_0 : $\beta_1=0$ не может быть отвергнута
- 10. Проверка гипотезы

a)
$$T = \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\widehat{\beta}_1)}} = \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}[(X'X)^{-1}]_{22}}}; n = 5; k = 3$$

b)
$$T \sim t(n-k); n = 5; k = 3$$

c)
$$T_{obs} = \frac{\widehat{\beta}_1 - 1}{\sqrt{\widehat{Var}(\widehat{\beta}_1)}} = \frac{\widehat{\beta}_1 - 1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}} = \frac{2 - 1}{\sqrt{\frac{2}{5-3}}1.3333}} = 0.8660$$

- d) Нижняя граница = -2.920, верхняя граница = 2.920
- е) Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- 11. Проверка гипотезы

a)
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}[(X'X)^{-1}]_{22}}}; n = 5; k = 3$$

b) $T \sim t(n-k); n = 5; k = 3$

c)
$$T_{obs} = \frac{\widehat{\beta}_1 - 1}{\sqrt{\widehat{Var}(\widehat{\beta}_1)}} = \frac{\widehat{\beta}_1 - 1}{\sqrt{\frac{RSS}{n-k}}[(X^t X)^{-1}]_{22}} = \frac{2 - 1}{\sqrt{\frac{2}{5-3}1.3333}} = 0.8660$$

- d) Нижняя граница $= -\infty$, верхняя граница = 1.8856
- е) Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от $-\infty$ до 1.8856, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- 12. Проверка гипотезы

a)
$$T = \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\widehat{\beta}_1)}} = \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}[(X'X)^{-1}]_{22}}}; n = 5; k = 3$$

b) $T \sim t(n-k); n = 5; k = 3$

c)
$$T_{obs} = \frac{\widehat{\beta}_1 - 1}{\sqrt{\widehat{Var}(\widehat{\beta}_1)}} = \frac{\widehat{\beta}_1 - 1}{\sqrt{\frac{RSS}{n-k}}[(X^t X)^{-1}]_{22}} = \frac{2 - 1}{\sqrt{\frac{2}{5-3}1.3333}} = 0.8660$$

- d) Нижняя граница = -1.8856, верхняя граница $= +\infty$
- е) Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -1.8856 до $+\infty$, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- 13. Основная гипотеза $H_0: \beta_1 = \beta_2 = 0$, альтернативная гипотеза $H_a: |\beta_1| + |\beta_2| > 0$
- 14. Проверка гипотезы

a)
$$T = \frac{R^2}{1-R^2} \cdot \frac{n-k}{k}$$
; $n = 5$; $k = 3$

b)
$$T \sim F(n-k); n = 5; k = 3$$

c)
$$T_{obs} = \frac{R^2}{1-R^2} \cdot \frac{n-k}{k} = \frac{0.8}{1-0.8} \cdot \frac{5-3}{2} = 4$$

d) Нижняя граница = 0, верхняя граница = 19

- е) Поскольку $T_{obs}=4$, что принадлежит промежутку от 0 до 19, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%. Следовательно, регрессия в целом незначима. Напомним, что $R^2=0.8$, то есть он высокий. Но при этом регрессия «в целом» незначима. Такой эффект может возникать при малом объёме выборки, например, таком, как в данной задаче
- 15. $p-value(T_{obs})=\mathbb{P}(|T|>|T_{obs}|)=2F_T(|T_{obs}|)$, где $F_T(|T_{obs}|)$ функция распределения F— распределения с k=3 и n-k=5-3=2 степенями свободы в точке T_{obs} . $p-value(T_{obs})=1-fcdf(-|T_{obs}|,n-k)=1-fcdf(4,2)=0.2$. Поскольку P— значение превосходит уровень значимости 10%, то основная гипотеза $H_0:\beta_1=\beta_2=0$ не может быть отвергнута. Таким образом, регрессия «в целом» незначима
- 16. Проверка гипотезы

а)
$$T = \frac{\widehat{\beta}_1 + \widehat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\widehat{\beta}_1 + \widehat{\beta}_2)}}$$
, где $\widehat{\operatorname{Var}}(\widehat{\beta}_1 + \widehat{\beta}_2) = \widehat{\operatorname{Var}}(\widehat{\beta}_1) + \widehat{\operatorname{Var}}(\widehat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\widehat{\beta}_1; \widehat{\beta}_2) = \widehat{\sigma}^2[(X'X)^{-1}]_{22} + 2\widehat{\sigma}^2[(X'X)^{-1}]_{23} + \widehat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$

b) $T \sim t(n-k); n = 5; k = 3$

c)
$$\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2)=\frac{RSS}{n-k}([(X'X)^{-1}]_{22}+2[(X'X)^{-1}]_{23}+[(X'X)^{-1}]_{33})=$$
 $\frac{2}{5-3}(1.3333+2(-1.0000)+2.0000)=1.3333.$ Тогда $T_{obs}=\frac{\widehat{\beta}_1+\widehat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$

- d) Нижняя граница = -4.3027, верхняя граница = 4.3027
- е) Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -4.3027 до 4.3027, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%
- 17. Проверка гипотезы

а)
$$T = \frac{\widehat{\beta}_1 + \widehat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\widehat{\beta}_1 + \widehat{\beta}_2)}}$$
, где $\widehat{\operatorname{Var}}(\widehat{\beta}_1 + \widehat{\beta}_2) = \widehat{\operatorname{Var}}(\widehat{\beta}_1) + \widehat{\operatorname{Var}}(\widehat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\widehat{\beta}_1; \widehat{\beta}_2) = \widehat{\sigma}^2[(X'X)^{-1}]_{22} + 2\widehat{\sigma}^2[(X'X)^{-1}]_{23} + \widehat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$

b)
$$T \sim t(n-k); n = 5; k = 3$$

- c) $\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2)=\frac{RSS}{n-k}([(X'X)^{-1}]_{22}+2[(X'X)^{-1}]_{23}+[(X'X)^{-1}]_{33})=$ $\frac{2}{5-3}(1.3333+2(-1.0000)+2.0000)=1.3333.$ Тогда $T_{obs}=\frac{\widehat{\beta}_1+\widehat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$
- d) Нижняя граница $= -\infty$, верхняя граница = 2.9200
- е) Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от $-\infty$ до 2.9200, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%

18. Проверка гипотезы

а)
$$T = \frac{\widehat{\beta}_1 + \widehat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\widehat{\beta}_1 + \widehat{\beta}_2)}}$$
, где $\widehat{\operatorname{Var}}(\widehat{\beta}_1 + \widehat{\beta}_2) = \widehat{\operatorname{Var}}(\widehat{\beta}_1) + \widehat{\operatorname{Var}}(\widehat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\widehat{\beta}_1; \widehat{\beta}_2) = \widehat{\sigma}^2[(X'X)^{-1}]_{22} + 2\widehat{\sigma}^2[(X'X)^{-1}]_{23} + \widehat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$

b)
$$T \sim t(n-k); n = 5; k = 3$$

c)
$$\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2)=\frac{RSS}{n-k}([(X'X)^{-1}]_{22}+2[(X'X)^{-1}]_{23}+[(X'X)^{-1}]_{33})=\frac{2}{5-3}(1.3333+2(-1.0000)+2.0000)=1.3333.$$
 Тогда $T_{obs}=\frac{\widehat{\beta}_1+\widehat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$

- d) Нижняя граница = -2.9200, верхняя граница $= +\infty$
- е) Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -2.9200 до $+\infty$, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%

ми

Задача 4.14. Пусть $y = X\beta + \varepsilon$ — регрессионная модель, где

$$X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \end{pmatrix}, \mathbb{E}(\varepsilon) = 0,$$

 $Var(\varepsilon) = \sigma^2 I$.

На уровне значимости 5% проверьте гипотезу $H_0: \beta_1+\beta_2=2$ против альтернативной $H_a: \beta_1+\beta_2\neq 2$:

- 1. Приведите формулу для тестовой статистики
- 2. Укажите распределение тестовой статистики при верной H_0
- 3. Вычислите наблюдаемое значение тестовой статистики
- 4. Укажите границы области, где основная гипотеза не отвергается
- 5. Сделайте статистический вывод

Задача 4.15. По 13 наблюдениям Вася оценил модель со свободным членом, пятью количественными регрессорами и двумя качественными. Качественные регрессоры Вася правильно закодировал с помощью дамми-переменных. Одна качественная переменная принимала четыре значения, другая — пять.

- 1. Найдите SSR, R^2
- 2. Как выглядит матрица $X(X'X)^{-1}X'$?
- 3. Почему 13 несчастливое число?

Задача 4.16. В рамках классической линейной модели найдите все математические ожидания и все ковариационные матрицы всех пар случайных векторов: ε , y, \widehat{y} , $\widehat{\varepsilon}$, $\widehat{\beta}$. Т.е. найдите $\mathbb{E}(\varepsilon)$, $\mathbb{E}(y)$, ...и $\mathrm{Cov}(\varepsilon,y)$, $\mathrm{Cov}(\varepsilon,\widehat{y})$, ...

Ответ. $\operatorname{Var}(\widehat{\beta}) = \sigma^2(X'X)^{-1}$.

Задача 4.17. Найдите $\mathbb{E}(\sum (\varepsilon_i - \bar{\varepsilon})^2)$, $\mathbb{E}(RSS)$

Ответ. $(n-1)\sigma^2$, $(n-k)\sigma^2$.

Задача 4.18. Используя матрицы $P = X(X'X)^{-1}X'$ и $\pi = \vec{\mathbf{l}}(\vec{\mathbf{l}}'\vec{\mathbf{l}})^{-1}\vec{\mathbf{l}}'$ запишите RSS, TSS и ESS в матричной форме

Ответ. $TSS=y'(I-\pi)y$, RSS=y'(I-P)y, $ESS=y'(P-\pi)y$.

Задача 4.19. Найдите $\mathbb{E}(TSS)$, $\mathbb{E}(ESS)$. Надо быть морально готовым к тому, что они выйдут громоздкие

Ответ. $\mathbb{E}(TSS) = (n-1)\sigma^2 + \beta' X'(I-\pi)X\beta$.

Задача 4.20. Вася строит регрессию y на некий набор объясняющих переменных и константу. А на самом деле $y_i = \beta_1 + \varepsilon_i$. Чему равно $\mathbb{E}(TSS)$, $\mathbb{E}(RSS)$, $\mathbb{E}(ESS)$ в этом случае?

Ответ. $(n-1)\sigma^2$, $(n-k)\sigma^2$, $(k-1)\sigma^2$.

Задача 4.21. Рассмотрим классическую линейную модель. Являются ли векторы $\widehat{\varepsilon}$ и \widehat{y} перпендикулярными? Найдите $\text{Cov}(\widehat{\varepsilon}, \widehat{y})$

Глава 4. МНК с матрицами и вероятностями

89

Задача 4.22. Чему в классической модели регрессии равны $\mathbb{E}(\varepsilon),\ \mathbb{E}(\widehat{\varepsilon})$? Верно ли что $\sum \varepsilon_i$ равна 0? Верно ли что $\sum \widehat{\varepsilon}_i$ равна 0?

Решение. $\mathbb{E}(\varepsilon)=0$, $\mathbb{E}(\widehat{\varepsilon})=0$, $\sum \varepsilon_i$ может оказаться равной нулю только случайно, в нормальной модели это происходит с вероятностью 0, $\sum \widehat{\varepsilon}_i=0$ в модели со свободным членом. \rhd

Задача 4.23. Найдите на Картинке все перпендикулярные векторы. Найдите на Картинке все прямоугольные треугольники. Сформулируйте для них теоремы Пифагора.

Ответ.
$$\sum y_i^2 = \sum \widehat{y}_i^2 + \sum \widehat{arepsilon}_i^2$$
, $TSS = ESS + RSS$.

Задача 4.24. Покажите на Картинке TSS, ESS, RSS, R^2 , $sCov(\widehat{y}, \cdot)$

Задача 4.25. Предложите аналог R^2 для случая, когда константа среди регрессоров отсутствует. Аналог должен быть всегда в диапазоне [0;1], совпадать с обычным R^2 , когда среди регрессоров есть константа, равняться единице в случае нулевого $\hat{\varepsilon}$.

Решение. Спроецируем единичный столбец на «плоскость», обозначим его 1'. Делаем проекцию y на «плоскость» и на 1'. Далее аналогично.

Задача 4.26. Вася оценил регрессию y на константу, x и z. А затем, делать ему нечего, регрессию y на константу и полученный \widehat{y} . Какие оценки коэффициентов у него получатся? Чему будет равна оценка дисперсии коэффицента при \widehat{y} ? Почему оценка коэффициента неслучайна, а оценка её дисперсии положительна?

Решение. Проекция y на \widehat{y} это \widehat{y} , поэтому оценки коэффициентов будут 0 и 1. Оценка дисперсии $\frac{RSS}{(n-2)ESS}$. Нарушены предпосылки теоремы Гаусса-Маркова, например, ошибки новой модели в сумме дают 0, значит коррелированы.

Задача 4.27. При каких условиях TSS = ESS + RSS?

Решение. Либо в регрессию включена константа, либо единичный столбец можно получить как линейную комбинацию регрессоров, например, включены дамми-переменные для каждого возможного значения качественной переменной.

Задача 4.28. Истинная модель имеет вид $y = X\beta + \varepsilon$. Вася оценивает модель $\widehat{y} = X\widehat{\beta}$ по первой части выборки, получает $\widehat{\beta}_a$, по второй части выборки — получает $\widehat{\beta}_b$ и по всей выборке — $\widehat{\beta}_{tot}$. Как связаны между собой $\widehat{\beta}_a$, $\widehat{\beta}_b$, $\widehat{\beta}_{tot}$? Как связаны между собой ковариационные матрицы $\mathrm{Var}(\widehat{\beta}_a)$, $\mathrm{Var}(\widehat{\beta}_b)$ и $\mathrm{Var}(\widehat{\beta}_{tot})$?

Решение. Сами оценки коэффициентов никак детерминистически не связаны, но при большом размере подвыборок примерно равны. А ковариационные матрицы связаны соотношением $\operatorname{Var}(\widehat{\beta}_a)^{-1} + \operatorname{Var}(\widehat{\beta}_b)^{-1} = \operatorname{Var}(\widehat{\beta}_{tot})^{-1}$ \rhd

Глава 4. МНК с матрицами и вероятностями

91

Задача 4.29. Модель линейной регрессии имеет вид $y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + u_i$. Сумма квадратов остатков имеет вид $Q\left(\widehat{\beta}_1, \widehat{\beta}_2\right) = \sum_{i=1}^n (y_1 - \widehat{\beta}_1 x_{i,1} - \widehat{\beta}_2 x_{i,2})^2$.

- 1. Выпишите необходимые условия минимума суммы квадратов остатков
- 2. Найдите матрицу X'X и вектор X'y если матрица X имеет

вид
$$X=egin{pmatrix} x_{1,1} & x_{1,2} \ dots & dots \ x_{n,1} & x_{n,2} \end{pmatrix}$$
 , а вектор y имеет вид $y=egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix}$

- 3. Докажите, что необходимые условия равносильны матричному уравнению $X'X\widehat{\beta}=X'y$, где $\widehat{\beta}=\begin{pmatrix}\widehat{\beta}_1\\\widehat{\beta}_2\end{pmatrix}$
- 4. Предполагая, что матрица X'X обратима, найдите $\widehat{\beta}$

Задача 4.30. Вася оценил исходную модель:

$$y_i = \beta_1 + \beta_2 x_i + u_i$$

Для надежности Вася стандартизировал переменные, т.е. перешёл к $y_i^*=(y_i-\bar{y})/s_y$ и $x_i^*=(x_i-\bar{x})/s_x$. Затем Вася оценил ещё две модели:

$$y_i^* = \beta_1' + \beta_2' x_i^* + u_i'$$

И

$$y_i^* = \beta_2'' x_i^* + u_i''$$

В решении можно считать s_x и s_y известными.

- 1. Найдите $\widehat{\beta}'_1$
- 2. Как связаны между собой $\widehat{\beta}_2$, $\widehat{\beta}_2'$ и $\widehat{\beta}_2''$?
- 3. Как связаны между собой \widehat{u}_i , \widehat{u}'_i и \widehat{u}''_i ?
- 4. Как связаны между собой $\widehat{\mathrm{Var}}\left(\widehat{\beta}_{2}\right)$, $\widehat{\mathrm{Var}}\left(\widehat{\beta}_{2}'\right)$ и $\widehat{\mathrm{Var}}\left(\widehat{\beta}_{2}''\right)$?
- 5. Как выглядит матрица $\widehat{\operatorname{Var}}\left(\widehat{\beta'}\right)$?
- 6. Как связаны между собой t-статистики $t_{\widehat{eta}_7}$, $t_{\widehat{eta}_7}$ и $t_{\widehat{eta}_7'}$?
- 7. Как связаны между собой R^2 , $R^{2\prime}$ и $R^{2\prime\prime}$?
- 8. В нескольких предложениях прокомментируйте последствия перехода к стандартизированным переменным

Задача 4.31. Регрессионная модель задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = (\beta_1, \beta_2, \beta_3)'$. Известно, что $\mathbb{E}(\varepsilon) = 0$ и $\mathrm{Var}(\varepsilon) = \sigma^2 \cdot I$. Известно также, что

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Для удобства расчетов приведены матрицы

$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 4 & -3 \\ 0 & -3 & 6 \end{pmatrix}.$$

- 1. Укажите число наблюдений.
- 2. Укажите число регрессоров с учетом свободного члена.
- 3. Запишите модель в скалярном виде
- 4. Рассчитайте $TSS=\sum (y_i-\overline{y})^2,\ RSS=\sum (y_i-\widehat{y}_i)^2$ и $ESS=\sum (\widehat{y}_i-\overline{y})^2.$
- 5. Рассчитайте при помощи метода наименьших квадратов $\widehat{\beta}$, оценку для вектора неизвестных коэффициентов.
- 6. Чему равен $\hat{\varepsilon}_5$, МНК-остаток регрессии, соответствующий 5-ому наблюдению?
- 7. Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
- 8. Используя приведенные выше данные, рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- 9. Рассчитайте $\widehat{\mathrm{Var}}(\widehat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов $\widehat{\beta}$.
- 10. Найдите $\widehat{\text{Var}}(\widehat{\beta}_1)$, несмещенную оценку дисперсии МНК-коэффициента $\widehat{\beta}_1$.
- 11 Найлите $\widehat{\text{Var}}(\widehat{\beta}_2)$ несмешенную оценку лисцевски МНК-

Задача 4.32. Теорема Фриша-Вау. Регрессоры разбиты на две группы: матрицу X_1 размера $n \times k_1$ и матрицу X_2 размера $n \times k_2$. Рассмотрим две процедуры:

М1. Строим регрессия вектора y на все регрессоры, т.е. оцениваем модель:

$$y = X\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

- М2. Процедура из двух шагов:
 - а) Строим регрессию вектора y на все регрессоры первой группы и получаем вектор остатков M_1y , где $M_1=I-X_1(X_1'X_1)^{-1}X_1'$. Строим регрессию каждого регрессора из второй группы на все регрессоры первой группы и получаем в каждом случае вектор остатков. Эти остатки можно записать матрицей M_1X_2 .
 - b) Строим регрессию вектора M_1y на остатки M_1X_2 . Другими словами мы оцениваем модель:

$$M_1y = M_1X_2\gamma_2 + u$$

- 1. Верно ли, что МНК оценки коэффициентов $\widehat{\beta}_2$ и $\widehat{\gamma}_2$ совпадают?
- 2. Верно ли, что остатки в обеих регрессиях совпадают?

Ответ. да, да.

Глава 4. МНК с матрицами и вероятностями

Глава 4. МНК с матрицами и вероятностями

95

 \triangleright

Задача 4.33. Всего имеется 100 наблюдений. Для первых 50ти наблюдений $X'X=\begin{pmatrix} 50 & 300 \\ 300 & 2100 \end{pmatrix}$, $X'y=\begin{pmatrix} 300 & 2000 \end{pmatrix}'$, $y'y=\begin{pmatrix} 300 & 2000 \end{pmatrix}'$

2100. По последним 50-ти наблюдениям: $X'X = \begin{pmatrix} 50 & 300 \\ 300 & 2100 \end{pmatrix}$,

 $X'y = \left(300\ 2200
ight)', \ y'y = 2500.$ По первым 50-ти наблюдениям оценивается модель $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, по последним 50-ти наблюдениям оценивается модель $y_i = \gamma_1 + \gamma_2 x_i + \varepsilon_i$. Предположеним, что во всех 100 наблюдениях ε_i независимы и нормальны $N(0; \sigma^2)$. На уровне значимости 5% проверьте гипотезу H_0 : $\beta = \gamma$.

Задача 4.34. Докажите, что МНК-оценки $\widehat{\beta} = (X^T X)^{-1} X^T y$ являются несмещенными и линейными по переменной у.

Решение. Докажем несмещенность МНК-оценок.

$$\mathbb{E}\widehat{\beta} = \mathbb{E}\left((X^TX)^{-1}X^Ty\right) = (X^TX)^{-1}X^T\mathbb{E}(y) =$$

$$= (X^TX)^{-1}X^T\mathbb{E}(X\beta + \varepsilon) = (X^TX)^{-1}X^TX\beta = \beta$$

Обозначим $\varphi(X,y)=(X^TX)^{-1}X^Ty$. Тогда $\widehat{\beta}=\varphi(X,y)$. Покажем, что функция φ линейна по переменной u

1.
$$\varphi(X, \lambda \cdot y) = (X^T X)^{-1} X^T (\lambda \cdot y) = \lambda (X^T X)^{-1} X^T y = \lambda \cdot \varphi(X, y)$$

2.
$$\varphi(X, y+z) = (X^TX)^{-1}X^T(y+z) = (X^TX)^{-1}X^Ty + (X^TX)^{-1}X^Tz =$$
 $\varphi(X, y) + \varphi(X, z)$

Что и требовалось доказать.

Задача 4.35. Являются ли МНК-оценки линейными по переменной X?

Решение. Нет, так как для функции $\varphi(X,y) = (X^TX)^{-1}X^Ty$ не выполнено, например, свойство однородности по переменной X. Действительно,

$$\varphi(X, \lambda \cdot y) = ((\lambda \cdot X)^T (\lambda \cdot X))^{-1} (\lambda \cdot X)^T y = \frac{1}{\lambda} \cdot (X^T X)^{-1} X^T y = \frac{1}{\lambda} \varphi(X, y)$$

Задача 4.36. Приведите пример несмещенной и линейной по переменной у оценки, отличной от МНК.

Решение. $\widetilde{\beta} = (X^T C X)^{-1} X^T C y$, где

$$C = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & n \end{bmatrix}$$

Задача 4.37. Если для регрессии $y = X\beta + \varepsilon$ не выполняется условие Pi=i, где i — единичный столбец, а $P\equiv$ $X(X^TX)^{-1}X^T,\ \pi\equiv rac{ii^T}{i^Ti},$ то будут неверны равенства:

(1)
$$P\pi = \pi$$

(3)
$$\sum_{i=1}^{n} \widehat{\varepsilon}_i = 0$$

(2)
$$P^2 = P$$

 \triangleright

$$(4) \ \overline{Y} = \overline{\widehat{Y}}$$

Решение. $Pi=i\Leftrightarrow P\pi=\pi$ поскольку, если матрицу π записать по столбцам $\pi=rac{1}{n}\left[i\;i\;\ldots\;i
ight]$, то можно записать следующую цепочку равенств $P\pi=Prac{1}{n}\left[i\;i\;\ldots\;i
ight]=rac{1}{n}\left[Pi\;Pi\;\ldots\;Pi
ight]=$ $\frac{1}{n}\left[i\;i\;\ldots\;i\right]\Leftrightarrow Pi=i.$

Свойство $P^2=P$ имеет место независимо от выполнимости условия Pi=i . Действительно, $P^2=X(X^TX)^{-1}X^TX(X^TX)^{-1}X^T=$ $X(X^{T}X)^{-1}X^{T} = P.$

Глава 4. МНК с матрицами и вероятностями

Рассмотрите пример $y=\begin{bmatrix}1&-1&0\end{bmatrix}^T$, $x=\begin{bmatrix}1&0&-1\end{bmatrix}^T$. Постройте регрессию $y=\beta x+\varepsilon$ без свободного члена. Убедитесь, что $\sum\limits_{i=1}^{n}\widehat{arepsilon}_{i}=0$ и $\overline{Y}=\overline{\widehat{Y}}=0$, но Pi
eq i . Ответ: $P\pi = \pi$. \triangleright

Задача 4.38. Необходимыми условиями теоремы Гаусса-Марков в являются

- 1. Правильная специфицикация модели: $y = X\beta + \varepsilon$,
- 2. Полный ранг матрицы X,
- 3. Невырожденность матрицы $X^{T}X$
- 4. Нормальность распределения случайной составляющей
- 5. Скалярность (пропорциональность единичной матрице) ковариационной матрицы случайной составляющей,
- 6. Наличие в матрице X единичного столбца

Ответ. (1), (2) \Leftrightarrow (3), (5).

Задача 4.39. Для регрессии $y=X\beta+\varepsilon$ с $\mathbb{E}(\varepsilon)=0,\ \mathrm{Var}(\varepsilon)=$ найдите математическое ожидание квадратичной формы $\varepsilon^T \pi \varepsilon$.

Решение.

$$\mathbb{E}(\varepsilon^T \pi \varepsilon) = \mathbb{E}(\operatorname{tr}[\varepsilon^T \pi \varepsilon]) = \mathbb{E}(\operatorname{tr}[\pi \varepsilon \varepsilon^T]) = \operatorname{tr}[\pi \mathbb{E}(\varepsilon \varepsilon^T)] =$$

$$\operatorname{tr}[\pi \operatorname{Var}(\varepsilon)] = \operatorname{tr} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \sigma_n^2 \end{bmatrix} \end{bmatrix} =$$

$$\frac{1}{n}tr\begin{bmatrix}\sigma_1^2 & \sigma_2^2 & \dots & \sigma_n^2\\ \sigma_1^2 & \sigma_2^2 & \dots & \sigma_n^2\\ \dots & \dots & \dots\\ \sigma_1^2 & \sigma_2^2 & \dots & \sigma_n^2\end{bmatrix} = \frac{1}{n}\sum_{i=1}^n \sigma_i^2 \quad (4.4)$$

97

99

Задача 4.40. Рассмотрим регрессию, для которой выполнены условия теоремы Гаусса-Маркова. Уравнение регрессии имеет вид $\widehat{y} = \widehat{\beta}_1 i + \widehat{\beta}_2 x_2 + \widehat{\beta}_3 x_3 + \widehat{\beta}_4 x_4$. Известны следующие данные:

$$X^{T}X = \begin{bmatrix} 100 & 123 & 96 & 109 \\ & 252 & 125 & 189 \\ & & 167 & 146 \\ & & & 168 \end{bmatrix}$$

$$(X^T X)^{-1} = \begin{bmatrix} 0.03767 \\ -0.06263 & 1.129 \\ -0.06247 & 1.107 & 1.110 \\ 0.1003 & -2.192 - 2.170 & 4.292 \end{bmatrix}$$

$$X^{T}y = egin{bmatrix} 460 \\ 810 \\ 615 \\ 712 \end{bmatrix}; \ y^{T}y = 3924$$

- 1. Найти $\widehat{\mathrm{Corr}}(\widehat{\beta}_1,\widehat{\beta}_2)$ (1 балл)
- 2. Найти $\widehat{\mathrm{Corr}}(x_2, x_3)$ (1 балл)
- 3. Проверить гипотезу $H_0: \beta_2 = 0$ (1 балл)

Решение.

1.

$$RSS = \widehat{\varepsilon}^T \widehat{\varepsilon} y^T (I - P) y = y^T y - y^T P y = y^T y - y^T X (X^T X)^{-1} X^T y;$$
(4.5)

При этом $y^T y = 3924$, а

$$y^T X (X^T X)^{-1} X^T y =$$

$$\begin{bmatrix} 460\ 810\ 615\ 712 \end{bmatrix} \begin{bmatrix} 0.038\ -0.063\ -0.063\ 0.100 \\ -0.063\ 1.129\ 1.107\ -2.192 \\ -0.063\ 1.107\ 1.110\ -2.170 \\ 0.100\ -2.192\ -2.170\ 4.292 \end{bmatrix} \cdot \begin{bmatrix} 460\\ 810\\ 615\\ 712 \end{bmatrix} = 3051.2 \quad (4.6)$$

Итого,
$$RSS = 3924 - 3051.2 = 872.8$$

$$\widehat{\sigma}_{\varepsilon}^2 = \frac{RSS}{n-k} = \frac{872.8}{100-4} = 9.0917$$

$$\widehat{\text{Var}}(\widehat{\beta}) = \widehat{\sigma}_{\varepsilon}^2 (X^T X)^{-1} \Rightarrow \widehat{\text{Cov}}(\widehat{\beta}_1, \widehat{\beta}_2) = -0.56939, \widehat{\text{Var}}(\widehat{\beta}_1) = 0.34251, \widehat{\text{Var}}(\widehat{\beta}_2) = 10.269$$

$$\widehat{\text{Corr}}(\widehat{\beta}_1, \widehat{\beta}_2) = \frac{\widehat{\text{Cov}}(\widehat{\beta}_1, \widehat{\beta}_2)}{\sqrt{\widehat{\text{Var}}(\widehat{\beta}_1)} \sqrt{\widehat{\text{Var}}(\widehat{\beta}_2)}} = -0.30361$$

2. (указание) $\widehat{\mathrm{Corr}}(x_2,x_3)=\frac{\sum (x_{i2}-\overline{x}_2)(x_{i3}-\overline{x}_3)}{\sqrt{\sum (x_{i2}-\overline{x}_2)}\sqrt{\sum (x_{i3}-\overline{x}_3)}}$. Все необходимые величины можно извлечь из матрицы X^TX — это величины $\sum x_{i2}$ и $\sum x_{i3}$, а остальное — из матрицы $X^T(I-\pi)X=X^TX-X^T\pi X=X^TX-(\pi X)^T\pi X$. При этом имейте в виду, что

$$\pi X = \begin{bmatrix} 1 & \overline{x}_1 & \overline{x}_2 & \overline{x}_3 \\ \dots & \dots & \dots \\ 1 & \overline{x}_1 & \overline{x}_2 & \overline{x}_3 \end{bmatrix} \text{ if } \overline{x}_1 = 1.23, \ \overline{x}_2 = 0.96, \ \overline{x}_3 = 1.09$$

3.
$$\begin{bmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \\ \widehat{\beta}_3 \\ \widehat{\beta}_4 \\ \widehat{\beta}_5 \end{bmatrix} = \begin{bmatrix} 0.03767 & -0.06263 & -0.06247 & 0.1003 \\ -0.06263 & 1.129 & 1.107 & -2.192 \\ -0.06247 & 1.107 & 1.110 & -2.170 \\ 0.1003 & -2.192 & -2.170 & 4.292 \end{bmatrix} \begin{bmatrix} 460 \\ 810 \\ 615 \\ 712 \end{bmatrix} = \begin{bmatrix} -0.40221 \\ 6.1234 \\ 5.9097 \\ -7.5256 \end{bmatrix}$$

$$t=rac{\widehat{eta}_2}{\sqrt{{
m Var}(\widehat{eta}_2)}}\sim t_{100-4}$$
 $t=rac{\widehat{eta}_2}{\sqrt{{
m Var}(\widehat{eta}_2)}}=rac{6.1234}{\sqrt{10.269}}=1.9109\Rightarrow \widehat{eta}_2$ — не значим.

 \triangleright

Задача 4.41. По данным для 15 фирм (n=15) была оценена производственная функция Кобба-Дугласа: $\ln Q_i = \beta_1 + \beta_2 \ln L_i + \beta_3 \ln K_i + \varepsilon_i$. Полученные оценки:

$$\widehat{\ln Q} = 0.5 + 0.76 \ln L + 0.19 \ln K$$
s.e. (4.48) (0.7) (0.138)

где Q — выпуск, L — трудозатраты, K — капиталовложения. Матрица обратная к матрице регрессоров имеет вид:

$$(X^T X)^{-1} = \begin{bmatrix} 121573 & -19186 & 3718 \\ -19186 & 3030 & -589 \\ 3718 & -589 & 116 \end{bmatrix}$$

Требуется:

- 1. Написать формулу для несмещенной оценки ковариации $\widehat{\text{Cov}}(\widehat{\beta}_2,\widehat{\beta}_3)$ и вычислить её по имеющимся данным (если это возможно);
- 2. Проверить $H_0: \beta_2 + \beta_3 = 1$ при помощи t-статистики (обязательно требуется указать формулу для статистики, а также указать число степеней свободы);
- 3. Построить 95% доверительный интервал для величины $\beta_2 + \beta_3$.

Решение.

1.
$$\widehat{\mathrm{Cov}}\begin{bmatrix}\widehat{eta}_1\\\widehat{eta}_2\\\widehat{eta}_3\end{bmatrix}=\widehat{\sigma}_{arepsilon}^2(X^TX)^{-1}$$
 — несмещённая оценка для ковариационной матрицы

МНК-коэффициентов. Действительно,
$$\widehat{\mathbb{E}\mathrm{Cov}}egin{bmatrix} \widehat{eta}_1 \\ \widehat{eta}_2 \\ \widehat{eta}_3 \end{bmatrix} = \widehat{\mathbb{E}}\widehat{\sigma}_{arepsilon}^2(X^TX)^{-1} =$$

$$\sigma_arepsilon^2(X^TX)^{-1}=\mathrm{Cov}egin{bmatrix} \widehat{eta}_1\ \widehat{eta}_2\ \widehat{eta}_3 \end{bmatrix}$$
 . Поэтому искомая оценка $\widehat{\mathrm{Cov}}(\widehat{eta}_2,\widehat{eta}_3)=$

 $\widehat{\sigma}_{arepsilon}^2\left[(X^TX)^{-1}
ight]_{23}$, где $\left[(X^TX)^{-1}
ight]_{23}$ — элемент матрицы $(X^TX)^{-1}$, расположенный во второй строке, 3-м столбце.

Заметим, что $\widehat{\sigma}_{\widehat{\beta}_2}^2=\widehat{\sigma}_{\varepsilon}^2\left[(X^TX)^{-1}\right]_{22}\Rightarrow 0.7^2=\widehat{\sigma}_{\varepsilon}^2\cdot(3030)\Rightarrow \widehat{\sigma}_{\varepsilon}^2=0.00016172$

Значит, $\widehat{\text{Cov}}(\widehat{\beta}_2, \widehat{\beta}_3) = 0.00016172 \cdot (-589) = -0.095253$.

2.
$$t = \frac{\widehat{\beta}_2 + \widehat{\beta}_3 - \beta_2 - \beta_3}{\sqrt{\widehat{\text{Var}}(\widehat{\beta}_2 + \widehat{\beta}_3)}} \sim t_{n-k}$$
 Требуется проверить $H_0: \beta_2 + \beta_3 = 1$. $\widehat{\text{Var}}(\widehat{\beta}_2 + \widehat{\beta}_3) = \widehat{\text{Var}}(\widehat{\beta}_2) + \widehat{\text{Var}}(\widehat{\beta}_3) + 2\widehat{\text{Cov}}(\widehat{\beta}_2, \widehat{\beta}_3) = 0.7^2 + 0.138^2 + 2 \cdot 0.095253 = 0.319044$ $t = \frac{\widehat{\beta}_2 + \widehat{\beta}_3 - \beta_2 - \beta_3}{\sqrt{\widehat{\text{Var}}(\widehat{\beta}_2 + \widehat{\beta}_3)}} = \frac{0.76 + 0.19 - 1}{\sqrt{0.319044}} = -0.088520674$

Значит, гипотеза не отвергается на любом «разумном» уровне значимости.

3. Мы знаем, что $\frac{\widehat{eta}_2+\widehat{eta}_3-eta_2-eta_3}{\sqrt{\widehat{\mathrm{Var}}(\widehat{eta}_2+\widehat{eta}_3)}}\sim t_{n-k}=t_{15-3}$, поэтому построить доверительный интервал для eta_2+eta_3 не составляет труда. $\mathbb{P}\left(\left|\frac{\widehat{eta}_2+\widehat{eta}_3-eta_2-eta_3}{\sqrt{\widehat{\mathrm{Var}}(\widehat{eta}_2+\widehat{eta}_3)}}\right|< t^*\right)=0.95$ Обозначим $se=\sqrt{\widehat{\mathrm{Var}}(\widehat{eta}_2+\widehat{eta}_3)}$, тогда:

$$\begin{split} \mathbb{P}\left(\left|\frac{\widehat{\beta}_2+\widehat{\beta}_3-\beta_2-\beta_3}{\sqrt{\widehat{\mathrm{Var}}(\widehat{\beta}_2+\widehat{\beta}_3)}}\right| < t^*\right) = \\ \mathbb{P}\left(-t^*se < \widehat{\beta}_2+\widehat{\beta}_3-\beta_2-\beta_3 < t^*se\right) = \\ \mathbb{P}\left(-t^*se - (\widehat{\beta}_2+\widehat{\beta}_3) < -\beta_2-\beta_3 < -(\widehat{\beta}_2+\widehat{\beta}_3) + t^*se\right) = \end{split}$$

$$\mathbb{P}\left((\widehat{\beta}_2 + \widehat{\beta}_3) + t^*se > \beta_2 + \beta_3 > (\widehat{\beta}_2 + \widehat{\beta}_3) - t^*se\right) \quad (4.7)$$

Отсюда получаем доверительный интервал

$$eta_2+eta_3\in$$

$$[(0.76+0.19)-2.16\cdot0.319;(0.76+0.19)+2.16\cdot0.319] \quad \mbox{(4.8)}$$
 Или 0.26

 \triangleright

Задача 4.42. Напишите формулу для оценок коэффициентов в множественной регрессии с матрицами. Напишите формулу для ковариационной матрицы оценок.

Задача 4.43.

```
model <- lm(dist~speed,data=cars)
model.sum <- summary(model)
hat.sigma <- model.sum$sigma</pre>
```

Исследователь оценил зависимость длины тормозного пути в футах от скорости автомобиля в милях в час по данным 1920-х годов. При построении парной регрессии у него получилась $\widehat{\sigma}=15.3796$ и оценка ковариационной матрицы

xtable(vcov(model))

	(Intercept)	speed
(Intercept)	45.68	-2.66
speed	-2.66	0.17

- 1. Определите количество наблюдений
- 2. Найдите среднюю скорость автомобиля в милях в час

Решение. Находим X'X, её элементы и есть то, что нужно. \rhd

Глава 5

Метод максимального правдоподобия

Пусть

 $X=(X_1,\ldots,X_n)$ — случайная выборка

 $x=(x_1,\ldots,x_n)$ — реализация данной случайной выборки

 $f_{X_i}(x_i, heta)$ — плотность распределения случайной величины $X_i,$ $i=1,\dots,n$

 $\theta = (\theta_1, \dots, \theta_k)$ — вектор неизвестных параметров

 $\Theta \subseteq \mathbb{R}^k$ — множество допустимых значений вектора неизвестных параметров

 $\mathsf{L}(\theta) = \prod_{i=1}^n f_{X_i}(x_i, \theta)$ — функция правдоподобия

 $l(\theta) := \ln \mathsf{L}(\theta)$ — логарифмическая функция правдоподобия

Пусть требуется протестировать систему (нелинейных) ограничений относительно вектора неизвестных параметров

$$H_0: egin{cases} g_1(heta) = 0 \ g_2(heta) = 0 \ & \dots \ g_r(heta) = 0 \end{cases}$$

где $g_i(\theta)$ — функция, которая задаёт i-ое ограничение на вектор параметров θ , $i=1,\ldots,r$.

$$I(\theta) = -\mathbb{E}\left(\frac{\partial g_1}{\partial \theta} / \partial \theta'\right) = \begin{bmatrix} \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_1}{\partial \theta_2} & \cdots & \frac{\partial g_1}{\partial \theta_k} \\ \frac{\partial g_2}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \cdots & \frac{\partial g_2}{\partial \theta_k} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial g_r}{\partial \theta} & \frac{\partial g_r}{\partial \theta_2} & \cdots & \frac{\partial g_r}{\partial \theta_k} \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \cdots & \frac{\partial g_r}{\partial \theta_k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_r}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \cdots & \frac{\partial g_r}{\partial \theta_k} \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_1} & \cdots & \frac{\partial g_r}{\partial \theta_1} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \cdots & \frac{\partial g_r}{\partial \theta_2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \frac{\partial g_1}{\partial \theta_k} & \frac{\partial g_2}{\partial \theta_k} & \cdots & \frac{\partial g_r}{\partial \theta_k} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 l}{\partial \theta_1 \partial \theta_2} & \frac{\partial^2 l}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 l}{\partial \theta_1 \partial \theta_k} \\ \frac{\partial^2 l}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 l}{\partial \theta_2 \partial \theta_2} & \cdots & \frac{\partial^2 l}{\partial \theta_2 \partial \theta_k} \end{bmatrix} - \text{MH-}$$

формационная матрица Фишера

$$rac{\partial l}{\partial heta} = egin{bmatrix} rac{\partial l}{\partial heta_1} \ rac{\partial l}{\partial heta_2} \ dots \ rac{\partial l}{\partial heta_k} \end{bmatrix}$$

 $\Theta_{UR} := \Theta$ — множество допустимых значений вектора неизвестных параметров без учёта ограничений

 $\Theta_R := \{\theta \in \Theta : g(\theta) = 0\}$ — множество допустимых значений вектора неизвестных параметров с учётом ограничений

 $\widehat{\theta}_{UR} \in \Theta_{UR}$ — точка максимума функции l на множестве Θ_{UR} $\widehat{\theta}_R \in \Theta_R$ — точка максимума функции l на множестве Θ_R

Тогда для тестирования гипотезы H_0 можно воспользоваться одной из следующих ниже статистик.

Глава 5. Метод максимального правдоподобия

 $LR:=-2(l(\widehat{ heta}_R)-l)\stackrel{a}{\sim}\chi_r^2$ — статистика отношения правдоподобия

 $W:=g'(\widehat{ heta}_{UR})\cdot\left[rac{\partial g}{\partial heta'}(\widehat{ heta}_{UR})\cdot I^{-1}(\widehat{ heta}_{UR})\cdot rac{\partial g'}{\partial heta}(\widehat{ heta}_{UR})
ight]^{-1}g(\widehat{ heta}_{UR})\stackrel{a}{\sim}\chi_r^2$ статистика Вальда

 $LM:=\left[rac{\partial l}{\partial heta}(\widehat{ heta}_R)
ight]'\cdot I^{-1}(\widehat{ heta}_R)\cdot \left[rac{\partial l}{\partial heta}(\widehat{ heta}_R)
ight]\stackrel{a}{\sim}\chi_r^2$ — статистика множителей Лагранжа

Задача 5.1. Дядя Вова (Владимир Николаевич) и Скрипач (Гедеван) зарабатывают на Плюке чатлы, чтобы купить гравицапу. Число заработанных за i-ый день чатлов имеет пуассоновское распределение, заработки за разные дни независимы. За прошедшие 100 дней они заработали 250 чатлов.

- 1. Оцените параметр λ пуассоновского распределения методом максимального правдоподобия
- 2. Сколько дней им нужно давать концерты, чтобы оценка вероятности купить гравицапу составила 0.99? Гравицапа стоит пол кц или 2200 чатлов.
- 3. Постройте 95% доверительный интервал для λ
- 4. Проверьте гипотезу о том, что средний дневной заработок равен 2 чатла с помощью теста отношения правдоподобия, теста Вальда, теста множителей Лагранжа

Задача 5.2. Инопланетянин Капп совершил вынужденную посадку на Землю. Каждый день он выходит на связь со своей далёкой планетой. Продолжительность каждого сеанса связи имеет экспоненциальное распределение с параметром λ . Прошедшие 100 сеансов связи в сумме длились 11 часов.

- 1. Оцените параметр λ экспоненциального распределения методом максимального правдоподобия
- 2. Постройте 95% доверительный интервал для λ
- 3. Проверьте гипотезу о том, что средняя продолжительность сеанса связи равна 5 минутам с помощью теста отношения правдоподобия, теста Вальда, теста множителей Лагранжа

109

Задача 5.3. [R] По ссылке http://people.reed.edu/jones/141/Coal ntml скачайте данные о количестве крупных аварий на английских угольных шахтах.

- 1. Методом максимального правдоподобия оцените две модели:
 - а) Пуассоновская модель: количества аварий независимы и имеют Пуассоновское распределение с параметром λ .
 - b) Модель с раздутым нулём «zero inflated poisson model»: количества аварий независимы, с вероятностью p аварий не происходит вообще, с вероятностью (1-p) количество аварий имеет Пуассоновское распределение с параметром λ . Смысл этой модели в том, что по сравнению с Пуассоновским распределением у события $\{X_i = 0\}$ вероятность выше, а пропорции вероятностей положительных количеств аварий сохраняются. В модели с раздутым нулём дисперсия и среднее количества аварий отличаются. Чему в модели с раздутым нулём равна $\mathbb{P}(X_i = 0)$?
- 2. С помощью тестов множителей Лагранжа, Вальда и отношения правдоподобия проверьте гипотезу H_0 : верна пуассоновская модель против H_a : верна модель с раздутым нулём
- 3. Постройте доверительные интервалы для оценённых параметров в обоих моделях
- 4. Постройте доверительный интервал для вероятности полного отсутствия аварий по обеим моделям

Задача 5.4. Совместное распределение величин X и Y задано функцией

$$f(x,y) = rac{ heta(eta y)^x e^{-(heta+eta)y}}{x!}$$

Величина X принимает целые неотрицательные значения, а величина Y — действительные неотрицательные. Имеется случайная выборка $(X_1, Y_1), ... (X_n, Y_n)$.

- 1. С помощью метода максимального правдоподобия оцените θ и β
- 2. С помощью метода максимального правдоподобия оцените $a = \theta/(\beta + \theta)$

Ответ.
$$\widehat{\theta}=1/\overline{Y}$$
, $\widehat{eta}=\overline{X}/\overline{Y}$, $\widehat{a}=1/(1+\overline{X})$.

Задача 5.5. Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией ν ; $\mu\in\mathbb{R}$ и $\nu>0$ — неизвестные параметры. Реализация случайной выборки $x=(x_1,\ldots,x_n)$ известна: -2.80, -1.12, -2.27, -1.31, -0.98, -2.15, -1.52, -2.82, -1.19, 0.87.

При помощи теста отношения правдоподобия, теста Вальда и теста множителей Лагранжа протестируйте гипотезу:

$$H_0: egin{cases} \mu = 0 \
u = 1 \end{cases}$$

на уровне значимости 5%.

Решение. В данном примере мы имеем

$$heta = \left[\mu \;
u
ight]'$$
 — вектор неизвестных параметров

 $\Theta=\mathbb{R} imes(0;+\infty)$ — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$L(\theta) = \prod_{i=1}^{n} f_{X_i}(x_i, \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\nu}} \cdot \exp\left\{-\frac{(x_i - \mu)^2}{2\nu}\right\} =$$

$$(2\pi)^{-n/2} \cdot \nu^{-n/2} \cdot \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\nu}\right\}$$
(5.1)

Логарифмическая функция правдоподобия:

$$l(\theta) := \ln \mathsf{L}(\theta) = -\frac{n}{2} \ln (2\pi) - \frac{n}{2} \ln \nu - \frac{\sum\limits_{i=1}^{n} (x_i - \mu)^2}{2\nu}$$
 $\Theta_{UR} = \Theta$
 $\Theta_R = \{(0, 1)\}$

$$\begin{cases} \frac{\partial l}{\partial \mu} = \frac{\sum_{i=1}^{n} (x_i - \mu)}{\nu} = 0\\ \frac{\partial l}{\partial \mu} = -\frac{n}{2\mu} + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\mu^2} = 0 \end{cases}$$

нахолим

$$\widehat{ heta}_{UR}=(\widehat{\mu}_{UR},\widehat{
u}_{UR})$$
, где $\widehat{\mu}_{UR}=\overline{x}=-1.5290$, $\widehat{
u}_{UR}=rac{1}{n}\sum_{i=1}^n(x_i-x_i)$

$$(\overline{x})^2 = 1.0603$$
 $\widehat{\theta}_R = (\widehat{\mu}_R, \widehat{\nu}_R) = (0, 1)$

Из системы уравнений

По имеющимся данным находим

$$l(\widehat{\theta}_R) = -\frac{10}{2} \ln (2\pi) - \frac{10}{2} \ln 1 - \frac{\sum_{i=1}^{n} (x_i - 0)^2}{2 \cdot 1} = -26.1804$$

$$l = -\frac{10}{2} \ln (2\pi) - \frac{10}{2} \ln (1.0603) - \frac{\sum_{i=1}^{n} (x_i + 1.5290)^2}{2 \cdot 1.0603} = -14.4824$$

$$LR_{\text{Ha}6} = -2(l(\widehat{\theta}_R) - l) = -2 \cdot (-26.1804 + 14.4824) = 23.3959$$

Критическое значение χ^2 распределения с двумя степенями свободы, отвечающее уровню значимости 5%, равно 5.9915. Следовательно, тест отношения правдоподобия говорит о том, что гипотеза H_0 должна быть отвергнута.

Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера

$$\begin{split} \frac{\partial^{2}l}{\partial\mu^{2}} &= -\frac{n}{v}, \ \frac{\partial^{2}l}{\partial\nu\partial\mu} &= -\frac{\sum\limits_{i=1}^{n}(x_{i}-\mu)}{v^{2}}, \ \frac{\partial^{2}l}{\partial\nu^{2}} &= \frac{n}{2v^{2}} - \frac{\sum\limits_{i=1}^{n}(x_{i}-\mu)^{2}}{v^{3}} \\ &\mathbb{E}\frac{\partial^{2}l}{\partial\nu\partial\mu} &= -\frac{\sum\limits_{i=1}^{n}\mathbb{E}(x_{i}-\mu)}{v^{2}} &= 0, \ \mathbb{E}\frac{\partial^{2}l}{\partial\nu^{2}} &= \frac{n}{2v^{2}} - \frac{\sum\limits_{i=1}^{n}\mathbb{E}(x_{i}-\mu)^{2}}{v^{3}} &= \frac{n}{2v^{2}} - \frac{n}{2v^{2}} \\ I(\theta) &= -\mathbb{E}\left[\frac{\partial^{2}l}{\partial\mu^{2}} \frac{\partial^{2}l}{\partial\nu\partial\mu} \frac{\partial^{2}l}{\partial\nu^{2}}\right] &= \begin{bmatrix} \frac{n}{v} & 0\\ 0 & \frac{n}{2v^{2}} \end{bmatrix} \\ I(\hat{\theta}_{UR}) &= \begin{bmatrix} \frac{n}{\widehat{\nu}_{UR}} & 0\\ 0 & \frac{n}{2\cdot\widehat{\nu}_{UR}^{2}} \end{bmatrix} &= \begin{bmatrix} \frac{n}{v} & 0\\ 0 & \frac{n}{2v^{2}} \end{bmatrix} \\ g(\hat{\theta}_{UR}) &= \begin{bmatrix} \frac{\widehat{\mu}_{UR} - 0}{\widehat{\nu}_{UR} - 1} \end{bmatrix} &= \begin{bmatrix} -1.5290 - 0\\ 1.0603 - 1 \end{bmatrix} &= \begin{bmatrix} -1.5290\\ 0.0603 \end{bmatrix} \\ \frac{\partial g}{\partial\theta} &= \begin{bmatrix} \frac{\partial c_{1}}{\partial\mu} \frac{\partial c_{1}}{\partial\nu}\\ \frac{\partial c_{2}}{\partial\mu} \frac{\partial c_{2}}{\partial\nu} \end{bmatrix} &= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \ \frac{\partial g}{\partial\theta} &= \begin{bmatrix} \frac{\partial c_{1}}{\partial\mu} \frac{\partial c_{2}}{\partial\mu}\\ \frac{\partial c_{1}}{\partial\nu} \frac{\partial c_{2}}{\partial\nu} \frac{\partial c_{2}}{\partial\nu} \end{bmatrix} &= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \\ W_{\text{Ha6n}} &= g'(\widehat{\theta}_{UR}) \cdot \begin{bmatrix} \frac{\partial g}{\partial\theta'}(\widehat{\theta}_{UR}) \cdot I^{-1}(\widehat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial\theta}(\widehat{\theta}_{UR}) \end{bmatrix}^{-1} &= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -1.5290\\ 0.0603 \end{bmatrix} &= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 9.4307 & 0\\ 0 & 4.4469 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -1.5290\\ 0.0603 \end{bmatrix} &= \begin{bmatrix} 2.2.0635 \end{bmatrix} \end{aligned}$$

Тест Вальда также говорит о том, что на основании имеющихся наблюдений гипотеза H_0 должна быть отвергнута.

$$I(\widehat{\theta}_R) = \begin{bmatrix} \frac{n}{\widehat{\nu}_R} & 0\\ 0 & \frac{n}{2 \cdot \widehat{\nu}_R^2} \end{bmatrix} = \begin{bmatrix} \frac{10}{1} & 0\\ 0 & \frac{10}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} 10 & 0\\ 0 & 5 \end{bmatrix}$$

$$rac{rac{\partial l}{\partial heta}(\widehat{ heta}_R)}{\left[rac{\widehat{
u}_R}{\partial \widehat{ heta}}(\widehat{ heta}_R) = egin{bmatrix} rac{\sum\limits_{i=1}^n (x_i - \widehat{\mu}_R)}{\widehat{
u}_R} \ -rac{\sum\limits_{i=1}^n (x_i - \widehat{\mu}_R)^2}{2 \cdot \widehat{
u}_R} + rac{\sum\limits_{i=1}^n (x_i - \widehat{\mu}_R)^2}{2 \cdot \widehat{
u}_R^2} \end{bmatrix} = egin{bmatrix} rac{\sum\limits_{i=1}^n (x_i - 0)}{1} \ -rac{10}{2 \cdot 1} + rac{\sum\limits_{i=1}^n (x_i - 0)^2}{2 \cdot 1^2} \end{bmatrix} = egin{bmatrix}
\end{array}$$

$$LM_{\mathsf{Ha6}\mathsf{D}} = \left[\frac{\partial l}{\partial \theta}(\widehat{\theta}_R)\right]' \cdot I^{-1}(\widehat{\theta}_R) \cdot \left[\frac{\partial l}{\partial \theta}(\widehat{\theta}_R)\right] = \left[-15.29 \ 11.9910\right] = \left[10 \ 0 \ 0 \ 5\right]^{-1} \cdot \left[-15.29 \ 11.9910\right] = 52.1354$$

Тест множителей Лагранжа также указывает на то, что гипотеза H_0 должна быть отвергнута.

Задача 5.6. Пусть p — неизвестная вероятность выпадения орла при бросании монеты. Из 100 испытаний 42 раза выпал «Орел» и 58 — «Решка». Протестируйте на 5%-ом уровне значимости гипотезу о том, что монетка — «правильная» с помощью:

- 1. теста отношения правдоподобия
- 2. теста Вальда
- 3. теста множителей Лагранжа

Решение. В данной задаче мы имеем:

 $\theta=p$ — вектор неизвестных параметров

 $\Theta = (0,1)$ — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$\mathsf{L}(heta) = \prod_{i=1}^n \mathbb{P}_{ heta}(X_i = x_i) = \prod_{i=1}^n p^{x_i} \cdot (1-p)^{1-x_i} = p^{\sum\limits_{i=1}^n x_i} \cdot (1-p)^{n-\sum\limits_{i=1}^n x_i}$$

Логарифмическая функция правдоподобия:

$$l(heta) := ln \mathsf{L}(heta) = \left(\sum_{i=1}^n x_i
ight) \cdot \ln p + \left(n - \sum_{i=1}^n x_i
ight) \cdot \ln \left(1 - p
ight)$$

$$\Theta_{UR} = \Theta$$
$$\Theta_{P} = \{0.5\}$$

Решая уравнение правдоподобия

$$\frac{\partial l}{\partial p} = \frac{\sum\limits_{i=1}^{n} x_i}{p} - \frac{n - \sum\limits_{i=1}^{n} x_i}{1 - p} = 0$$

получаем

$$\widehat{\widehat{
ho}}_{UR}=\widehat{p}_{UR}$$
, где $\widehat{p}_{UR}=\overline{x}=0.42$

$$\widehat{\theta}_R = \widehat{p}_R = 0.5$$

По имеющимся данным находим

$$l(\widehat{\theta}_R) = 42 \cdot \ln(0.5) + (100 - 42) \cdot \ln(1 - 0.5) = -69.3147$$

$$l(\widehat{\theta}_{UR} = 42 \cdot \ln(0.42) + (100 - 42) \cdot \ln(1 - 0.42) = -68.0292$$

$$LR_{\text{Hafin}} = -2(l(\widehat{\theta}_R) - l) = -2 \cdot (-69.3147 + 68.0292) = 2.5710$$

Критическое значение χ^2 распределения с одной степенью свободы, отвечающее за 5% уровень значимости, равно 3.8414. Следовательно, тест отношения правдоподобия говорит о том, что на основании имеющихся данных, основная гипотеза H_0 : p=0.5 не может быть отвергнута.

Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера

$$\begin{aligned} \frac{\partial^2 l}{\partial p^2} &= -\frac{\sum\limits_{i=1}^n x_i}{p^2} - \frac{n - \sum\limits_{i=1}^n x_i}{(1-p)^2} \\ I(\theta) &= -\mathbb{E}\left[\frac{\partial^2 l}{\partial p^2}\right] = -\mathbb{E}\left[-\frac{\sum\limits_{i=1}^n x_i}{p^2} - \frac{n - \sum\limits_{i=1}^n x_i}{(1-p)^2}\right] = -\left(-\frac{np}{p^2} - \frac{n - np}{(1-p)^2}\right) = -\frac{n}{n} \end{aligned}$$

$$I(\widehat{\theta}_{UR}) = \frac{n}{\widehat{p}_{UR}(1-\widehat{p}_{UR})} = \frac{100}{0.42 \times (1-0.42)} = 172.4138$$

$$g(\widehat{\theta}_{UR}) = \widehat{\theta}_{UR} - 0.5 = 0.42 - 0.5 = -0.08$$

$$\frac{\partial g}{\partial \theta'} = 1', \ \frac{\partial g'}{\partial \theta} = 1$$

$$W_{\mathsf{набл}} = g'(\widehat{\theta}_{UR}) \cdot \left[\frac{\partial g}{\partial \theta'}(\widehat{\theta}_{UR}) \cdot I^{-1}(\widehat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta}(\widehat{\theta}_{UR}) \right]^{-1} g(\widehat{\theta}_{UR}) = [-0.08]' \cdot [1' \cdot 172.4138^{-1} \cdot 1]^{-1} \cdot [-0.08] = 2.6272$$

Тест Вальда также говорит о том, что гипотеза ${\cal H}_0$ не отвергается.

$$\begin{split} I(\widehat{\theta}_R) &= \frac{n}{\widehat{p}_R(1-\widehat{p}_R)} = \frac{100}{0.5 \times (1-0.5)} = 400 \\ &\frac{\partial l}{\partial \theta}(\widehat{\theta}_R) = \frac{\sum\limits_{i=1}^{n} x_i}{\widehat{p}_R} - \frac{n - \sum\limits_{i=1}^{n} x_i}{1-\widehat{p}_R} = \frac{42}{0.5} - \frac{100 - 42}{1-0.5} = -32 \\ &LM_{\mathsf{Ha6n}} = \left[\frac{\partial l}{\partial \theta}(\widehat{\theta}_R)\right]' \cdot I^{-1}(\widehat{\theta}_R) \cdot \left[\frac{\partial l}{\partial \theta}(\widehat{\theta}_R)\right] = [-32]' \cdot [400]^{-1} \cdot \\ [-32] &= 2.56 \end{split}$$

Согласно тесту множителей Лагранжа, основная гипотеза H_0 не может быть отвергнута.

Задача 5.7. Пусть $x=(x_1,\ldots,x_n)$ — реализация случайной выборки из распределения Пуассона с неизвестным параметром $\lambda>0$. Известно, что выборочное среднее \overline{x} по 80 наблюдениям равно 1.7. Протестируйте на 5%-ом уровне значимости гипотезу $H_0: \lambda=2$ с помощью

- 1. теста отношения правдоподобия
- 2. теста Вальда
- 3. теста множителей Лагранжа

Решение. В данной задаче мы имеем

 $heta=\lambda$ — вектор неизвестных параметров

 $\Theta=(0,+\infty)$ — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$\mathsf{L}(heta) = \prod_{i=1}^n \mathbb{P}_{ heta}(X_i = x_i) = \prod_{i=1}^n rac{\lambda^{x_i}}{x_i!} e^{-\lambda} = rac{\lambda^{\sum\limits_{i=1}^n x_i}}{x_i! \dots x_n!} e^{-\lambda n}$$

Логарифмическая функция правдоподобия:

$$l(heta) := ln \mathsf{L}(heta) = \left(\sum_{i=1}^n x_i
ight) \cdot \ln \lambda - \sum_{i=1}^n \ln \left(x_i!
ight) - \lambda n$$

$$\Theta_{UR} = \Theta$$
$$\Theta_R = \{2\}$$

Решая уравнение правдоподобия

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{\lambda} - n = 0$$

получаем

$$\widehat{ heta}_{UR}=\widehat{\lambda}_{UR}$$
, где $\widehat{\lambda}_{UR}=\overline{x}=1.7$ $\widehat{ heta}_{R}=\widehat{p}_{R}=2$

По имеющимся данным находим

$$l(\widehat{\theta}_R) = (80 \cdot 1.7) \cdot \ln(2) - \sum_{i=1}^n \ln(x_i!) - 2 \cdot 80 = -65.7319$$

$$l(\widehat{\theta}_{UR} = (80 \cdot 1.7) \cdot \ln(1.7) - \sum_{i=1}^n \ln(x_i!) - 1.7 \cdot 80 = -63.8345$$

$$LR_{\text{Hafn}} = -2(l(\widehat{\theta}_R) - l) = -2 \cdot (-65.7319 + 63.8345) = 3.7948$$

Критическое значение χ^2 распределения с одной степенью свободы, отвечающее за 5% уровень значимости, равно 3.8414. Следовательно, тест отношения правдоподобия говорит о том, что на основании имеющихся данных, основная гипотеза H_0 : $\lambda=2$ не может быть отвергнута.

Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера

$$\begin{split} \frac{\partial^2 l}{\partial p^2} &= -\frac{\sum\limits_{i=1}^n x_i}{\lambda^2} \\ I(\theta) &= -\mathbb{E}\left[\frac{\partial^2 l}{\partial p^2}\right] = -\mathbb{E}\left[-\frac{\sum\limits_{i=1}^n x_i}{\lambda^2}\right] = -\left(-\frac{n\lambda}{\lambda^2}\right) = \frac{n}{\lambda} \\ I(\widehat{\theta}_{UR}) &= \frac{n}{\widehat{\lambda}_{UR}} = \frac{80}{1.7} = 47.0588 \\ g(\widehat{\theta}_{UR}) &= \widehat{\theta}_{UR} - 2 = 1.7 - 2 = -0.3 \\ \frac{\partial g}{\partial \theta'} &= 1', \ \frac{\partial g'}{\partial \theta} &= 1 \\ W_{\text{HaGn}} &= g'(\widehat{\theta}_{UR}) \cdot \left[\frac{\partial g}{\partial \theta'}(\widehat{\theta}_{UR}) \cdot I^{-1}(\widehat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta}(\widehat{\theta}_{UR})\right]^{-1} g(\widehat{\theta}_{UR}) = [-0.3]' \cdot [1' \cdot 47.0588^{-1} \cdot 1]^{-1} \cdot [-0.3] = 4.2352 \end{split}$$

Поскольку наблюдаемое значение статистики Вальда превосходит критическое значение 3.8414, то гипотеза H_0 должна быть отвергнута.

$$I(\widehat{\theta}_R) = \frac{n}{\widehat{\lambda}_R} = \frac{80}{2} = 40$$

$$\frac{\partial l}{\partial \theta}(\widehat{\theta}_R) = \frac{\sum_{i=1}^n x_i}{\widehat{\lambda}_R} - n = \frac{80 \cdot 1.7}{2} - 80 = -12$$

$$LM_{\mathsf{Haбл}} = \left[\frac{\partial l}{\partial \theta}(\widehat{\theta}_R)\right]' \cdot I^{-1}(\widehat{\theta}_R) \cdot \left[\frac{\partial l}{\partial \theta}(\widehat{\theta}_R)\right] = [-12]' \cdot [40]^{-1} \cdot [-12] = 3.6$$

Согласно тесту множителей Лагранжа, основная гипотеза H_0 не может быть отвергнута.

Задача 5.8. Выпишите в явном виде функцию максимального правдоподобия для модели $y=\beta_1+\beta_2x+\varepsilon$, если $\varepsilon\sim N(0,A)$. Матрица A устроена по принципу: $\mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0$ при $i\neq j$, и $\mathrm{Var}(\varepsilon_i)=\sigma^2x_i^2$.

Задача 5.9. Выпишите в явном виде функцию максимального правдоподобия для модели $y=\beta_1+\beta_2x+\varepsilon$, если $\varepsilon\sim N(0,A)$. Матрица A устроена по принципу: $\mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0$ при $i\neq j$, и $\mathrm{Var}(\varepsilon_i)=\sigma^2|x_i|$.

Задача 5.10. Предположим, что в классической линейной модели ошибки имеют нормальное распределение, т.е.

$$y_i = eta_1 + eta_2 x_{2,i} + \ldots + eta_k x_{k,i} + arepsilon_i$$

где ε_i нормальны $N(0, \sigma^2)$ и независимы

- 1. Найдите оценки для β и σ^2 методом максимального правдоподобия.
- 2. Являются ли полученные оценки \widehat{eta}_{ML} и \widehat{s}_{ML}^2 несмещенными?
- 3. Выведите формулу LR-статистики у теста отношения правдоподобия для тестирования гипотезы об адекватности регрессии H_0 : $\beta_2 = \beta_3 = \ldots = \beta_k = 0$.

Задача 5.11. Наблюдения $X_1, ..., X_n$ независимы и нормальны $N(\mu, 1)$. По 100 наблюдениям оказалось, что $\sum x_i = 200$, $\sum x_i^2 = 900$.

- 1. Оцените μ методом максимального правдоподобия
- 2. Постройте 95% доверительный интервал для μ
- 3. Проверьте гипотезу о том, что $\mu=3$ против альтернативной $\mu\neq 3$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
- 4. Постройте 95% доверительный интервал для неизвестной величины $\mathbb{P}(X_i>2.5)$

Наблюдения $X_1, ..., X_n$ независимы и нормальны $N(\mu, 1)$. По 100 наблюдениям оказалось, что $\sum x_i = 200, \sum x_i^2 = 900$.

- 1. Оцените μ методом максимального правдоподобия
- 2. Постройте 95% доверительный интервал для μ
- 3. Проверьте гипотезу о том, что $\mu=3$ против альтернативной $\mu\neq 3$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
- 4. Постройте 95% доверительный интервал для неизвестной величины $\mathbb{P}(X_i>2.5)$

Задача 5.12. Наблюдения $X_1, ..., X_n$ независимы и нормальны $N(0, \sigma^2)$. По 100 наблюдениям оказалось, что $\sum x_i = 200$, $\sum x_i^2 = 900$.

- 1. Оцените σ^2 методом максимального правдоподобия
- 2. Постройте 95% доверительный интервал для σ^2
- 3. Проверьте гипотезу о том, что $\sigma^2=4$ против альтернативной $\sigma^2\neq 4$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
- 4. Постройте 95% доверительный интервал для неизвестной величины $\mathbb{P}(X_i > 2.5)$

Задача 5.13. Наблюдения $X_1, ..., X_n$ независимы и нормальны $N(\mu, \sigma^2)$. По 100 наблюдениям оказалось, что $\sum x_i = 200$, $\sum x_i^2 = 900$.

- 1. Оцените μ и σ^2 методом максимального правдоподобия
- 2. Постройте 95% доверительный интервал для μ, σ^2
- 3. [R] Проверьте гипотезу о том, что $\sigma^2=4$ против альтернативной $\sigma^2\neq 4$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
- 4. [R] Проверьте гипотезу о том, что $\mu=3$ против альтернативной $\mu\neq 3$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
- 5. [R] Постройте 95% доверительный интервал для неизвестной величины $\mathbb{P}(X_i > 2.5)$
- 6. [R] На графике постройте двумерную 95% доверительную область для вектора (μ, σ^2)

Задача 5.14. [R] Эконометрессе Зульфие нравятся жёлтые и красные эмэндэмсины. Она записала цвета сотни случайно выбранных эмэндэмсин. Из сотни оказалось X_1 жёлтых и X_2 красных. Настоящие вероятности обнаружить жёлтую и красную эмэндэмсину неизвестны и равны p_1 и p_2 , $p_1+p_2<1$.

- 1. Оцените неизвестные параметры с помощью максимального правдоподобия в общем виде. Найдите точечное значение оценки, если $X_1=20$ и $X_2=30$.
- 2. Оцените ковариационную матрицу оценок правдоподобия двумя способами: простой подстановкой оценок в матрицу Гессе и подстановкой оценок в математическое ожидание матрицы Гессе. Совпадают ли эти два способа в данном случае?
- 3. Постройте 95% доверительный интервал для каждого неизвестного параметра
- 4. С помощью теста отношения правдоподобия, теста множителей Лагранжа, теста Вальда проверьте гипотезу H_0 : $p_1=0.25$ и $p_2=0.25$.
- 5. С помощью теста отношения правдоподобия, теста множителей Лагранжа, теста Вальда проверьте гипотезу H_0 : $p_1=0.25$
- 6. С помощью теста отношения правдоподобия, теста множителей Лагранжа, теста Вальда проверьте гипотезу H_0 : $p_1+p_2=0.5$. Постройте 95%-ый доверительный интервал для суммы p_1+p_2

Ответ. $\widehat{p}_1=X_1/n$, $\widehat{p}_2=X_2/n$.

Глава 6

Логит и пробит

Задача 6.1. Случайная величина X имеет логистическое распределение, если её функция плотности имеет вид $f(x) = e^{-x}/(1+e^{-x})^2$.

- 1. Является ли f(x) чётной?
- 2. Постройте график f(x)
- 3. Найдите функцию распределения, F(x)
- 4. Найдите $\mathbb{E}(X)$, Var(X)
- 5. На какое известный закон распределения похож логистический?

Ответ. f(x) чётная, $\mathbb{E}(X)=0$, ${\rm Var}(X)=\pi^2/3$, логистическое похоже на $N(0,\pi^2/3)$.

Задача 6.2. Логит модель часто формулируют в таком виде:

$$y_i^* = eta_1 + eta_2 x_i + arepsilon_i$$

где ε_i имеет логистическое распределение, и

- 1. Выразите $\mathbb{P}(y_i=1)$ с помощью логистической функции распределения
- 2. Найдите $\ln \left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)} \right)$

Глава 6. Логит и пробит

123

Ответ. In $\left(rac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)}
ight)=eta_1+eta_2x_i$.

Задача 6.3. [R] Сравните на одном графике

- 1. Функции плотности логистической и нормальной $N(0,\pi^2/3)$ случайных величин
- 2. Функции распределения логистической и нормальной $N(0,\pi^2/3)$ случайных величин

Задача 6.4. Как известно, Фрекен Бок любит пить коньяк по утрам. За прошедшие 4 дня она записала, сколько рюмочек коньяка выпила утром, x_i , и видела ли она в этот день привидение, y_i ,

Зависимость между y_i и x_i описывается логит-моделью,

In
$$\left(rac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)}
ight)=eta_1+eta_2x_i$$

- 1. Выпишите в явном виде логарифмическую функцию максимального правдоподобия
- 2. [R] Найдите оценки параметров β_1 и β_2

Задача 6.5. При оценке логит модели

$$\mathbb{P}(y_i = 1) = \Lambda(\beta_1 + \beta_2 x_i)$$

оказалось, что $\widehat{\beta}_1 = 0.7$ и $\widehat{\beta}_2 = 3$. Найдите максимальный предельный эффект роста x_i на вероятность $\mathbb{P}(y_i = 1)$.

Задача 6.6. Винни-Пух знает, что мёд бывает правильный, $honey_i=1$, и неправильный, $honey_i=0$. Пчёлы также бывают правильные, $bee_i=1$, и неправильные, $bee_i=0$. По 100 своим попыткам добыть мёд Винни-Пух составил таблицу сопряженности:

$$egin{array}{c|cccc} honey_i = 1 & honey_i = 0 \\ \hline bee_i = 1 & 12 & 36 \\ bee_i = 0 & 32 & 20 \\ \hline \end{array}$$

Используя метод максимального правдоподобия Винни-Пух хочет оценить логит-модель для прогнозирования правильности мёда с помощью правильности пчёл:

$$\ln \left(rac{\mathbb{P}(honey_i = 1)}{\mathbb{P}(honey_i = 0)}
ight) = eta_1 + eta_2 bee_i$$

- 1. Выпишите функцию правдоподобия для оценки параметров β_1 и β_2
- 2. Оцените неизвестные параметры
- 3. С помощью теста отношения правдоподобия проверьте гипотезу о том, правильность пчёл не связана с правильностью мёда на уровне значимости 5%.
- 4. Держась в небе за воздушный шарик, Винни-Пух неожиданно понял, что перед ним неправильные пчёлы. Помогите ему оценить вероятность того, что они делают неправильный мёд.

Решение. Для краткости введем следующие обозначения: $y_i = honey_i, \ d_i = bee_i^{\ 1)}.$

1. Функция правдоподобия имеет следующий вид:

$$\mathsf{L}(\beta_1,\beta_2) = \prod_{i=1}^n \mathbb{P}_{\beta_1,\beta_2}\left(\{Y_i = y_i\}\right) =$$

 $^{^{1)}}$ Y_i — случайный Мёд, y_i — реализация случайного Мёда (наблюдаемый Мёд)

$$\begin{split} \prod_{i:y_{i}=0} \mathbb{P}_{\beta_{1},\beta_{2}} \left(\{Y_{i}=1\} \right) \cdot \prod_{i:y_{i}=1} \mathbb{P}_{\beta_{1},\beta_{2}} \left(\{Y_{i}=0\} \right) = \\ \prod_{i:y_{i}=1} \Lambda(\beta_{1}+\beta_{2}d_{i}) \cdot \prod_{i:y_{i}=0} \left[1 - \Lambda(\beta_{1}+\beta_{2}d_{i}) \right] = \\ \prod_{i:y_{i}=1,d_{i}=1} \Lambda(\beta_{1}+\beta_{2}) \cdot \prod_{i:y_{i}=1,d_{i}=0} \Lambda(\beta_{1}) \cdot \prod_{i:y_{i}=0,d_{i}=1} \left[1 - \Lambda(\beta_{1}+\beta_{2}) \right] \cdot \\ \cdot \prod_{i:y_{i}=0,d_{i}=0} \left[1 - \Lambda(\beta_{1}) \right] = \\ \Lambda(\beta_{1}+\beta_{2})^{\#\{i:y_{i}=1,d_{i}=1\}} \cdot \Lambda(\beta_{1})^{\#\{i:y_{i}=1,d_{i}=0\}} \cdot \left[1 - \Lambda(\beta_{1}+\beta_{2}) \right]^{\#\{i:y_{i}=0,d_{i}=1\}} \cdot \\ \cdot \left[1 - \Lambda(\beta_{1}) \right]^{\#\{i:y_{i}=0,d_{i}=0\}} \quad (6.1) \end{split}$$

где

$$\Lambda(x) = \frac{e^x}{1 + e^x} \tag{6.2}$$

логистическая функция распределения, #A означает число элементов множества A.

2. Введём следующие обозначения:

$$a := \Lambda(\beta_1) \tag{6.3}$$

$$b := \Lambda(\beta_1 + \beta_2) \tag{6.4}$$

Тогда с учетом имеющихся наблюдений функция правдоподобия принимает вид:

$$L(a,b) = b^{12} \cdot a^{32} \cdot [1-b]^{36} \cdot [1-a]^{20}$$

Логарифмическая функция правдоподобия:

$$l(a, b) = \ln L(a, b) = 12 \ln b + 32 \ln a + 36 \ln [1 - b] + 20 \ln [1 - a]$$

Решая систему уравнений правдоподобия

$$\begin{cases} \frac{\partial l}{\partial a} = \frac{32}{a} - \frac{20}{1-a} = 0\\ \frac{\partial l}{\partial b} = \frac{12}{b} - \frac{36}{1-b} = 0 \end{cases}$$

получаем $\widehat{a}=\frac{8}{13}$, $\widehat{b}=\frac{1}{4}$. Из формул (6.2) и (6.3), находим $\widehat{eta}_{1,UR}=\ln\left(\frac{\widehat{a}}{1-\widehat{a}}\right)=\ln\left(\frac{8}{5}\right)=0.47$. Далее, из (6.2) и (6.4) имеем $\widehat{eta}_{1,UR}+\widehat{eta}_{2,UR}=\ln\left(\frac{\widehat{b}}{1-\widehat{b}}\right)$. Следовательно, $\widehat{eta}_{2,UR}=\ln\left(\frac{\widehat{b}}{1-\widehat{b}}\right)-\widehat{eta}_{1,UR}=\ln\left(\frac{1}{3}\right)-\ln\left(\frac{8}{5}\right)=-1.57$.

3. Гипотеза, состоящая в том, что «правильность Мёда не связана с правильностью пчёл» формализуется как $H_0: \beta_2=0$. Протестируем данную гипотезу при помощи теста отношения правдоподобия. Положим в функции правдоподобия $L(\beta_1,\beta_2)$ $\beta_2=0$. Тогда с учетом (6.3) и (6.4) получим

$$L(a, b = a) = a^{32+12} \cdot [1-a]^{20+36}$$

В этом случае логарифмическая функция правдоподобия имеет вид:

$$l(a, b = a) := L(a, b = a) = 44 \ln a + 56 \ln [1 - a]$$

Решаем уравнение правдоподобия

$$\frac{\partial l}{\partial a} = \frac{44}{a} - \frac{56}{1-a} = 0$$

и получаем $\widehat{a}=\frac{11}{25}.$ Следовательно, согласно (6.2) и (6.3), $\widehat{\beta}_{1,R}=-0.24$ и $\widehat{\beta}_{2,R}=0.$

Статистика отношения правдоподобия имеет вид:

$$LR = -2(l(\widehat{eta}_{1,R},\widehat{eta}_{2,R}) - l(\widehat{eta}_{1,UR},\widehat{eta}_{2,UR}))$$

и имеет асимптотическое χ^2 распределение с числом степеней свободы, равным числу ограничений, составляющих гипотезу H_0 , т.е. в данном случае $LR \stackrel{a}{\sim} \chi_1^2$.

Находим наблюдаемое значение статистики отношения правдоподобия:

$$l(\widehat{\beta}_{1,R}, \widehat{\beta}_{2,R}) = l(\widehat{a}_R, \widehat{b}_R = \widehat{a}_R) = 44 \ln \widehat{a}_R + 56 \ln [1 - \widehat{a}_R] =$$

$$44 \ln \left[\frac{11}{25} \right] + 56 \ln \left[1 - \frac{11}{25} \right] = -68.59 \quad (6.5)$$

$$l(\widehat{\beta}_{1,UR}, \widehat{\beta}_{2,UR}) = l(\widehat{a}_{UR}, \widehat{b}_{UR}) =$$

$$12 \ln \widehat{b}_{UR} + 32 \ln \widehat{a}_{UR} + 36 \ln [1 - \widehat{b}_{UR}] + 20 \ln [1 - \widehat{a}_{UR}] =$$

$$12 \ln \left[\frac{1}{4}\right] + 32 \ln \left[\frac{8}{13}\right] + 36 \ln \left[1 - \frac{1}{4}\right] + 20 \ln \left[1 - \frac{8}{13}\right] = -61.63$$
(6.6)

Следовательно, $LR_{\text{набл}}=-2(-68.59+61.63)=13.92$, при этом критическое значение χ^2 распределения с одной степенью свободы для 5% уровня значимости равна 3.84. Значит, на основании теста отношения правдоподобия гипотеза $H_0:\beta_2=0$ должна быть отвергнута. Таким образом, данные показывают, что, в действительности, правильность мёда связана с правильностью пчёл.

4.

$$\widehat{\mathbb{P}}\{honey = 0 | bee = 0\} = 1 - \widehat{\mathbb{P}}\{honey = 1 | bee = 0\} = 1 - \frac{\exp{\{\widehat{\beta}_{1,UR} + \widehat{\beta}_{2,UR} \cdot 0\}}}{1 + \exp{\{\widehat{\beta}_{1,UR} + \widehat{\beta}_{2,UR} \cdot 0\}}} = 1 - \frac{\exp{\{\ln{(\frac{8}{5})}\}}}{1 + \exp{\{\ln{(\frac{8}{5})}\}}} = 1 - 0.62 = 0.38 \quad (6.7)$$

Глава 7

 \triangleright

Мультиколлинеарность

Задача 7.1. Сгенерируйте данные так, чтобы при оценке модели $\widehat{y} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$ оказывалось, что по отдельности оценки коэффициентов $\widehat{\beta}_2$ и $\widehat{\beta}_3$ незначимы, но модель в целом — значима.

Задача 7.2. В этом задании нужно сгенерировать зависимую переменную y и два регрессора x и z.

- 1. Сгенерируйте данные так, чтобы корреляция между регрессорами x и z была больше 0.9, и проблема мультиколлинеарности есть, т.е. по отдельности регрессоры не значимы, но регрессия в целом значима.
- 2. А теперь сгенерируйте данные так, чтобы корреляция между регрессорами была по-прежнему больше 0.9, но проблемы мультиколлинеарности бы не было, т.е. все коэффициенты были бы значимы.
- 3. Есть несколько способов, как изменить генерации случайных величин, чтобы перейти от ситуации «а» к ситуации «b». Назовите хотя бы два.

Ответ. Увеличить количество наблюдений, уменьшить дисперсию случайной ошибки.

Верст.: Окружить задачу shadowbox-c

Задача 7.3. Исследуем зависимость длины тормозного пути авто- shadowbox-ом мобиля от скорости по историческим данным 1920-х годов.

```
h <- cars
ggplot(h,aes(x=speed,y=dist))+geom_point()+
    labs(title=" ",
    x=", ",y=", ")</pre>
```



```
speed.mean <- mean(h$speed)</pre>
```

Построим результаты оценивания нецентрированной регрессии:

```
cars.model <- lm(dist~speed+I(speed^2)+I(speed^3),data=h)
cars.table <- as.table(coeftest(cars.model))
rownames(cars.table) <-
c("","speed","speed^2","speed^3")</pre>
```

xtable(cars.table)

	Estimate	Std. Error	t value	Pr(> t)
Константа	-19.51	28.41	-0.69	0.50
speed	6.80	6.80	1.00	0.32
speed^2	-0.35	0.50	-0.70	0.49
speed ³	0.01	0.01	0.91	0.37

Ковариационная матрица коэффициентов имеет вид:

```
cars.vcov <- vcov(cars.model)
rownames(cars.vcov) <-
    c("","speed","speed^2","speed^3")
colnames(cars.vcov) <-
    c("","speed","speed^2","speed^3")
xtable(cars.vcov)</pre>
```

	Константа		speed^2	speed^3
Константа	806.86	-186.20	12.88	-0.27
speed	-186.20	46.26	-3.35	0.07
speed^2	12.88	-3.35	0.25	-0.01
speed ³	-0.27	0.07	-0.01	0.00

- 1. Проверьте значимость всех коэффициентов и регрессии в целом
- 2. Постройте 95%-ый доверительный интервал для $\mathbb{E}(dist)$ при speed=10

- 3. Постройте 95%-ый доверительный интервал для $\mathbb{E}(ddist/dspeed)$ при speed=10
- 4. Как выглядит уравнение регрессии, если вместо *speed* использовать центрированную скорость? Известно, что средняя скорость равна 15.4
- 5. С помощью регрессии с центрированной скоростью ответьте на предыдущие вопросы.

Задача 7.4. Пионеры, Крокодил Гена и Чебурашка собирали металлолом несколько дней подряд. В распоряжение иностранной шпионки, гражданки Шапокляк, попали ежедневные данные по количеству собранного металлолома: вектор g-для Крокодила Гены, вектор h-для Чебурашки и вектор x-для Пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $\mathrm{sCorr}(g,h) = -0.9$. Гена и Чебурашка собирали независимо от Пионеров, поэтому выборочные корреляции $\mathrm{sCorr}(g,x) = 0$, $\mathrm{sCorr}(h,x) = 0$. Если регрессоры g,h и x центрировать и нормировать, то получится матрица \widetilde{X} .

- 1. Найдите параметр обусловленности матрицы $(\widetilde{X}'\widetilde{X})$
- 2. Вычислите одну или две главные компоненты (выразите их через вектор-столбцы матрицы \widetilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров
- 3. Шпионка Шапокляк пытается смоделировать ежедневный выпуск танков, y. Выразите коэффициенты регрессии $y=\beta_1+\beta_2g+\beta_3h+\beta_4x+\varepsilon$ через коэффициенты регрессии на главные компоненты, объясняющие не менее 70% общей выборочной дисперсии.

Задача 7.5. Для модели $y_i=\beta x_i+\varepsilon$ рассмотрите модель Ridge regression с коэффициентом λ .

- 1. Выведите формулу для \widehat{eta}_{RR}
- 2. Найдите $\mathbb{E}(\widehat{\beta}_{RR})$, смещение оценки $\widehat{\beta}_{RR}$,
- 3. Найдите $Var(\widehat{\beta}_{RR})$, $MSE(\widehat{\beta}_{RR})$
- 4. Всегда ли оценка \widehat{eta}_{RR} смещена?
- 5. Всегда ли оценка \widehat{eta}_{RR} имеет меньшую дисперсию, чем \widehat{eta}_{ols} ?
- 6. Найдите такое λ , что $MSE(\widehat{\beta}_{RR}) < MSE(\widehat{\beta}_{ols})$

Задача 7.6. Известно, что в модели $y=X\beta+\varepsilon$ все регрессоры ортогональны.

- 1. Как выглядит матрица X'X в случае ортогональных регрессоров?
- 2. Выведите $\widehat{\beta}_{rr}$ в явном виде
- 3. Как связаны между собой $\widehat{\beta}_{rr}$ и $\widehat{\beta}_{ols}$?

Задача 7.7. Для модели $y_i = \beta x_i + \varepsilon_i$ выведите в явном виде $\widehat{eta}_{lasso}.$

Задача 7.8. Предположим, что для модели $y_i=\beta_1+\beta_2x_{i2}+\beta_3x_{i3}+\beta_4x_{i4}+\varepsilon_i$ выборочная корреляционная матрица регрессоров $x_2,\ x_3,\ x_4$ имеет вид

$$C = \begin{pmatrix} 1 & r & r \\ r & 1 & r \\ r & r & 1 \end{pmatrix}$$

- 1. Найдите такое значение $r^* \in (-1; 1)$ коэффициента корреляции, при котором $\det C = 0$.
- 2. Найдите собственные значения и собственные векторы матрицы C при корреляции равной найденному r^* .
- 3. Найдите число обусловленности матрицы C при корреляции равной найденному r^* .
- 4. Сделайте вывод о наличии мультиколлинеарности в модели при корреляции равной найденному r^* .

Задача 7.9. Предположим, что для модели $y_i=\beta_1+\beta_2x_{i2}+\beta_3x_{i3}+\beta_4x_{i4}+\beta_5x_{i5}+\varepsilon_i$ выборочная корреляционная матрица регрессоров $x_2,\ x_3,\ x_4$ и x_5 имеет вид

$$C = egin{pmatrix} 1 & r & r & r \ r & 1 & r & r \ r & r & 1 & r \ r & r & r & 1 \end{pmatrix}$$

- 1. Найдите такое значение $r^* \in (-1; 1)$ коэффициента корреляции, при котором $\det C = 0$.
- 2. Найдите собственные значения и собственные векторы матрицы C при корреляции равной найденному r^* .
- 3. Найдите число обусловленности матрицы C при корреляции равной найденному r^{*} .
- 4. Сделайте вывод о наличии мультиколлинеарности в модели при корреляции равной найденному r^* .

Ответ. $r^* = -1/3$.

Глава 8

Гетероскедастичность

Задача 8.1. Что такое гетероскедастичность? Гомоскедастичность?

Задача 8.2. В модели $y=\widehat{\beta}_1+\widehat{\beta}_2x+\varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i)=\sigma^2x_i^2$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность?

Решение. Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на $|x_i|$.

Задача 8.3. В модели $y = \widehat{\beta}_1 + \widehat{\beta}_2 x + \varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i) = \lambda |x_i|$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность?

Решение. Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на $\sqrt{|x_i|}$.

Задача 8.4. Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на x_i^2 гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $\text{Var}(\varepsilon_i)$?

Задача 8.5. Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на $\sqrt{x_i}$ гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $Var(\varepsilon_i)$?

Ответ. $Var(\varepsilon_i) = cx_i$.

Задача 8.6. Диаграмма рассеяния стоимости квартиры в Москве (в 1000\$) и общей площади квартиры имеет вид:

```
ggplot(flats,aes(x=totsp,y=price))+geom_point()+
labs(x=" , ..",
    y=" , 1000$")
```

Какие подходы к оцениванию зависимости имеет смысл посоветовать исходя из данного графика?

Решение. По графику видно, что с увеличением общей площади увеличивается разброс цены. Поэтому разумно, например, рассмотреть следующие подходы:

- 1. Перейти к логарифмам, т.е. оценивать модель $\ln price_i = \beta_1 + \beta_2 \ln totsp_i + \varepsilon_i$
- 2. Оценивать квантильную регрессию. В ней угловые коэффициенты линейной зависимости будут отличаться для разных квантилей переменной price.
- 3. Обычную модель линейной регрессии с гетероскедастичностью вида $Var(arepsilon_i) = \sigma^2 tots p_i^2$

Задача 8.7. По наблюдениям x=(1,2,3)', y=(2,-1,3)' оценивается модель $y=\beta_1+\beta_2x+\varepsilon$. Ошибки ε гетероскедастичны и известно, что $\mathrm{Var}(\varepsilon_i)=\sigma^2\cdot x_i^2$.

- 1. Найдите оценки \widehat{eta}_{ols} с помощью МНК и их ковариационную матрицу
- 2. Найдите оценки \widehat{eta}_{gls} с помощью обобщенного МНК и их ковариационную матрицу

Задача 8.8. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

_	· ·					
	Выборка	\widehat{eta}_1	\widehat{eta}_2	\widehat{eta}_3	RSS	
	$i=1,\ldots,30$	1.21	1.89	2.74	48.69	
	i = 1,, 30 i = 1,, 11 i = 12,, 19 i = 20,, 30	1.39	2.27	2.36	10.28	
	$i = 12, \dots, 19$	0.75	2.23	3.19	5.31	
	$i=20,\ldots,30$	1.56	1.06	2.29	14.51	

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

<u>Решение</u>. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: {\rm Var}(\varepsilon_i) = \sigma^2, \ H_a: {\rm Var}(\varepsilon_i) = f(x_i)$

- 1. Тестовая статистика $GQ=rac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1=11$ число наблюдений в первой подгруппе, $n_3=11$ число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
- 2. Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- 3. Наблюдаемое значение $GQ_{obs}=1.41$

- 4. Область в которой H_0 не отвергается: $GQ \in [0; 3.44]$
- 5. Статистический вывод: поскольку $GQ_{obs} \in [0; 3.44]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.

 \triangleright

Задача 8.9. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка				
i = 1,, 50 i = 1,, 21 i = 22,, 29	1.16	1.99	2.97	174.69
$i=1,\ldots,21$	0.76	2.25	3.18	20.41
$i=22,\ldots,29$	0.85	1.81	3.32	3.95
$i=30,\ldots,50$	1.72	1.41	2.49	130.74

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 1%.

<u>Решение</u>. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: {\rm Var}(\varepsilon_i)=\sigma^2,\ H_a: {\rm Var}(\varepsilon_i)=f(x_i)$

- 1. Тестовая статистика $GQ=\frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1=21$ число наблюдений в первой подгруппе, $n_3=21$ число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
- 2. Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- 3. Наблюдаемое значение $GQ_{obs}=6.49$
- 4. Область в которой H_0 не отвергается: $GQ \in [0; 3.12]$

5. Статистический вывод: поскольку $GQ_{obs} \notin [0; 3.12]$, то на основании имеющихся наблюдений на уровне значимости 1% основная гипотеза H_0 отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.

 \triangleright

Задача 8.10. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

	Выборка	\widehat{eta}_1	\widehat{eta}_2	\widehat{eta}_3	RSS
•	i = 1,, 30 i = 1,, 11 i = 12,, 19 i = 20,, 30	0.96	2.25	3.44	52.70
	$i=1,\ldots,11$	1.07	2.46	2.40	5.55
	$i = 12, \dots, 19$	1.32	1.01	2.88	11.69
	$i=20,\ldots,30$	1.04	2.56	4.12	16.00

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

<u>Решение</u>. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: {\rm Var}(\varepsilon_i) = \sigma^2, \ H_a: {\rm Var}(\varepsilon_i) = f(x_i)$

- 1. Тестовая статистика $GQ=rac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1=11$ число наблюдений в первой подгруппе, $n_3=11$ число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
- 2. Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- 3. Наблюдаемое значение $GQ_{obs} = 2.88$
- 4. Область в которой H_0 не отвергается: $GQ \in [0; 3.44]$
- 5. Статистический вывод: поскольку $GQ_{obs} \in [0; 3.44]$, то на основании имеющихся наблюдений на уровне значимости 5% основная

гипотеза H_0 не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.

 \triangleright

Задача 8.11. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\widehat{eta}_1	\widehat{eta}_2	\widehat{eta}_3	RSS
$i=1,\ldots,50$	0.93	2.02	3.38	145.85
$i=1,\ldots,21$	1.12	2.01	3.32	19.88
$i=22,\ldots,29$	0.29	2.07	2.24	1.94
$i=30,\ldots,50$	0.87	1.84	3.66	117.46

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

<u>Решение</u>. Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: {\rm Var}(\varepsilon_i)=\sigma^2,\ H_a: {\rm Var}(\varepsilon_i)=f(x_i)$

- 1. Тестовая статистика $GQ=\frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1=21$ число наблюдений в первой подгруппе, $n_3=21$ число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
- 2. Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- 3. Наблюдаемое значение $GQ_{obs} = 5.91$
- 4. Область в которой H_0 не отвергается: $GQ \in [0; 2.21]$
- 5. Статистический вывод: поскольку $GQ_{obs} \not\in [0; 2.21]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.

 \triangleright

Задача 8.12. Рассмотрим линейную регрессию $y_i = \beta_1 + \beta_2 x_i + \blacksquare$ $\beta_3 z_i + \varepsilon_i$. При оценивании с помощью МНК были получены результаты: $\hat{\beta}_1 = 1.21$, $\hat{\beta}_2 = 1.11$, $\hat{\beta}_3 = 3.15$, $R^2 = 0.72$.

Оценена также вспомогательная регрессия: $\widehat{\varepsilon}_i = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i + u_i$. Результаты оценивания следующие: $\widehat{\delta}_1 = 1.50, \ \widehat{\delta}_2 = -2.18, \ \widehat{\delta}_3 = 0.23, \ \widehat{\delta}_4 = 1.87, \ \widehat{\delta}_5 = -0.56, \ \widehat{\delta}_6 = -0.09, \ R_{aux}^2 = 0.36$

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

<u>Решение</u>. Протестируем гетероскедастичность ошибок при помощи теста Уайта. $H_0: \text{Var}(\varepsilon_i) = \sigma^2$, $H_a: \text{Var}(\varepsilon_i) = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i$.

- 1. Тестовая статистика $W=n\cdot R_{aux}^2$, где n число наблюдений, R_{aux}^2 коэффициент детерминации для вспомогательной регрессии.
- 2. Распределение тестовой статистики при верной H_0 : $W \sim \chi^2_{k_{aux}-1}$, где $k_{aux}=6$ число регрессоров во вспомогательной регрессии, считая константу.
- 3. Наблюдаемое значение тестовой статистики: $W_{obs}=18$
- 4. Область в которой H_0 не отвергается: $W \in [0; W_{crit}] = [0; 11.07]$
- 5. Статистический вывод: поскольку $W_{obs} \notin [0;11.07]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 отвергается. Таким образом, тест Уайта выявил гетероскедастичность.

Задача 8.13. Объясните, с какой целью используются стандартные ошибки в форме Уайта. Приведите развернутый ответ. Верно ли, что стандартные ошибки в форме Уайта позволяют

- 1. устранить гетероскедастичность?
- 2. корректно тестировать гипотезы относительно коэффициентов регрессии в условиях гетероскедастичности?

Задача 8.14. Объясните, с какой целью используются стандартные ошибки в форме Невье-Веста. Приведите развернутый ответ. Верно ли, что стандартные ошибки в форме Невье-Веста позволяют

- 1. устранить гетероскедастичность?
- 2. корректно тестировать гипотезы относительно коэффициентов регрессии в условиях гетероскедастичности?

Задача 8.15. Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Задача 8.16. Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Глава 8. Гетероскедастичность

143

Задача 8.17. Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Задача 8.18. Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Задача 8.19. Докажите, что в условиях гетероскедастичности МНК- оценки остаются несмещенными.

Задача 8.20. Оценка коэффициентов обобщенного МНК име- ет вид $\widehat{\beta}_{GLS} = (X'V^{-1}X)^{-1}X'V^{-1}y$, где $V = \text{Var}(\varepsilon)$. Совпадает ли оценка $\widehat{\beta}_{GLS}$ с оценкой обычным МНК в условиях гомоскедастичности?

Задача 8.21. Модель $y_i=\beta_1+\beta_2x_i+\varepsilon_i$ оценивается по трём наблюдениям, $y=(9,3,6),\ x=(1,2,4).$ Имеется гетероскедастичность вида $\mathrm{Var}(\varepsilon_i)=\sigma^2x_i^2,$ ошибки ε_i нормально распределены.

- 1. Оцените $\widehat{\beta}$ с помощью МНК проигнорировав гетероскедастичность. Постройте 95% доверительный интервал для каждого коэффициента, проигнорировав гетероскедастичность
- 2. Оцените $\widehat{\beta}$ с помощью обобщенного МНК учтя гетероскедастичность. Постройте 95% доверительный интервал для каждого коэффициента с учётом гетероскедастичности

Задача 8.22. Рассмотрим модель $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, где ошибки ε_i некоррелированы, $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma_i^2$. Предлагается два способа оценить коэффициенты модели:

- WLS. Взвешенный метод наименьших квадратов. Поделим каждое уравнение $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на σ_i . Затем обычным методом наименьших квадратов в преобразованной модели $y_i/\sigma_i = \beta_1 \cdot 1/\sigma_i + \beta_2 x_i/\sigma_i + \varepsilon_i/\sigma_i$ найдем оценки $\widehat{\beta}_{WLS}$.
- GLS. Обобщенный метод наименьших квадратов. Оценки $\widehat{\beta}_{GLS}$ находим по формуле $\widehat{\beta}_{GLS} = (X'V^{-1}X)^{-1}X'V^{-1}y$, где

$$V = \operatorname{Var}(arepsilon) = egin{pmatrix} \sigma_1^2 & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \sigma_n^2 \end{pmatrix}$$

- 1. Докажите, что в матричном виде преобразование взвешенного МНК записывается как $V^{-1/2}y = V^{-1/2}X\beta + V^{-1/2}\varepsilon$.
- 2. Верно ли, что $\widehat{\beta}_{WLS} = \widehat{\beta}_{GLS}$?
- 3. Найдите $\mathbb{E}(\widehat{\beta}_{WLS})$, $Var(\widehat{\beta}_{WLGS})$
- 4. В явном виде выпишите $\widehat{\beta}_{2WLS}$

Задача 8.23. Рассмотрим модель регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$, в которой ошибки ε_i независимы и имеют нормальное распределение $N(0,\sigma^2)$. Для n=200 наблюдений найдите

- 1. вероятность того, что статистика Уайта окажется больше 10.
- 2. ожидаемое значение статистики Уайта,
- 3. дисперсию статистики Уайта.

Ответ. 0.0752, 5, 10

Глава 8. Гетероскедастичность

145

Задача 8.24. Найдите число коэффициентов во вспомогательной регрессии, необходимой для выполнения теста Уайта, если число коэффициентов в исходной регрессии равно k, включая свободный член.

Ответ. k(k+1)/2.

Задача 8.25. (Кирилл Фурманов) По 35 наблюдениям сотрудники НИИ оценили уравнение регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и рассчитали остатки ε_i . После того они приступили к диагностике возможных недостатков модели, обнаружили гетероскедастичность и решили её побороть.

- (a) Самый младший научный сотрудник выдвинул предположение, что стандартное отклонение случайной составляющей может быть выражено так: $\sigma_{\varepsilon,i}=ax_i$, где a неизвестный коэффициент. Каким образом нужно преобразовать исходное уравнение регрессии, чтобы избавиться от гетероскедастичности?
- (b) Профессор решил перепроверить результаты и оценил регрессию:

$$\hat{e}_i^2 = -0.3 + 0.08x_i - 0.01x_i^2, R^2 = 0.15$$

Свидетельствует ли полученный профессором результат о наличии гетероскедастичности?

Задача 8.26. Пусть $y_t = \beta x_t + \varepsilon$ где $\mathbb{E}(\varepsilon_t) = 0$ и известно, что оценки для параметров $\widetilde{\beta} = \left(\sum_{t=1}^n y_t\right) / \left(\sum_{t=1}^n x_t\right)$ являются наилучшими (в смысле минимума дисперсии) среди линейных несмещенных оценок параметра β . Чему равна в этом случае матрица ковариаций вектора ε с точностью до пропорциональности?

Решение. Известно, что оценки параметров, получаемые по обобщённому методу наименьших квадратов, являются наилуч-

шими, поэтому:
$$\delta^2 egin{bmatrix} x_1 & 0 \dots & 0 & 0 \\ 0 & & 0 & 0 \\ & \dots & & \\ 0 & & 0 & \\ 0 & 0 \dots & 0 & x_n \end{bmatrix}$$

Задача 8.27. Для регрессии $y = X\beta + \varepsilon$ с $\mathbb{E}(\varepsilon) = 0$, $\mathrm{Var}(\varepsilon) = \Sigma \neq \sigma^2 I$, оцененной с помощью обобщённого метода наименьших квадратов, найдите ковариационную матрицу $\mathrm{Cov}(\widehat{\beta}_{GLS}, \varepsilon)$

Решение.

$$\operatorname{Cov}(\widehat{\beta}_{GLS}, \varepsilon) = \operatorname{Cov}\left((X^{T}\Sigma^{-1}X)^{-1}X^{T}\Sigma^{-1}y, \varepsilon\right) =$$

$$\operatorname{Cov}\left((X^{T}\Sigma^{-1}X)^{-1}X^{T}\Sigma^{-1}\varepsilon, \varepsilon\right) =$$

$$= (X^{T}\Sigma^{-1}X)^{-1}X^{T}\Sigma^{-1}\operatorname{Cov}(\varepsilon, \varepsilon) =$$

$$(X^{T}\Sigma^{-1}X)^{-1}X^{T}\Sigma^{-1}\Sigma = (X^{T}\Sigma^{-1}X)^{-1}X^{T} \quad (8.1)$$

Задача 8.28. Найдите наиболее эффективную оценку коэффициента β_1 для модели $y_i=\beta_1+\varepsilon$, $\mathbb{E}(\varepsilon_i)=0$, $\mathbb{E}(\varepsilon_i\varepsilon_j)=0$, $\mathrm{Var}(\varepsilon_i)=\sigma_\varepsilon^2/x_i,\ x_i>0$ в классе линейных несмещенных оценок

Решение. Для нахождения эффективной оценки воспользуемся взвешенным методом наименьших квадратов. Разделим каждое из уравнений $y_i = \beta_1 + \varepsilon$ на корень из дисперсии ε_i с тем, чтобы ошибки в полученных уравнениях имели равные дисперсии (в этом случае можно будет сослаться на т. Гаусса-Маркова). Итак,

после деления i-го уравнения на величину $\sqrt{x_i}/\sigma_{arepsilon}$, мы получаем:

$$egin{bmatrix} y_1\sqrt{x_1}/\sigma_arepsilon \ y_2\sqrt{x_2}/\sigma_arepsilon \ \dots \ y_n\sqrt{x_n}/\sigma_arepsilon \end{bmatrix} = eta_1 egin{bmatrix} \sqrt{x_1}/\sigma_arepsilon \ \sqrt{x_2}/\sigma_arepsilon \ \dots \ \sqrt{x_n}/\sigma_arepsilon \end{bmatrix} + egin{bmatrix} arepsilon_1\sqrt{x_1}/\sigma_arepsilon \ arepsilon_2\sqrt{x_2}/\sigma_arepsilon \ \dots \ arepsilon_n\sqrt{x_n}/\sigma_arepsilon \end{bmatrix}$$

Поскольку условия т. Гаусса-Маркова для последней модели выполнены, то МНК-оценка для последней модели будет наиболее эффективной. Поэтому

$$\widehat{eta}_1 = rac{\sum\limits_{i=1}^n (y_i \sqrt{x_i}/\sigma_arepsilon)(\sqrt{x_i}/\sigma_arepsilon)}{\sum\limits_{i=1}^n (\sqrt{x_1}/\sigma_arepsilon)} = rac{\sum\limits_{i=1}^n y_i x_i}{\sum\limits_{i=1}^n x_i^2}$$

Задача 8.29. Фурманов Кирилл. Исследователь оценил регрессионную модель $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \varepsilon_i$ и провёл диагностику различных проблемных явлений. Результаты его стараний приведены ниже:

Также
$$VIF_2 = 1.06$$
, $VIF_3 = 1.07$, $VIF_4 = 1.02$

- (а) Определите, какие проблемные явления обнаружил исследователь. Обоснуйте свой ответ.
- (b) Найдите коэффициент детерминации для регрессии: $x_{i2} = \gamma_1 + \gamma_2 x_{i3} + \gamma_3 x_{i4} + u_i$

Глава 9

 \triangleright

Ошибки спецификации

Задача 9.1. По 25 наблюдениям при помощи метода наименьших квадратов оценена модель $\widehat{y}=\widehat{\beta}_1+\widehat{\beta}_2x+\widehat{\beta}_3z$, для которой RSS=73. При помощи вспомогательной регрессии $\widehat{\widehat{y}}=\widehat{\gamma}_1+\widehat{\gamma}_2x+\widehat{\gamma}_3z+\widehat{\gamma}_4\widehat{y}^2$, для которой RSS=70, выполните тест Рамсея на уровне значимости 5%.

Задача 9.2. По 20 наблюдениям при помощи метода наименьших квадратов оценена модель $\widehat{y}=\widehat{\beta}_1+\widehat{\beta}_2x+\widehat{\beta}_3z$, для которой $R^2=0.7$. При помощи вспомогательной регрессии $\widehat{\widehat{y}}=\widehat{\gamma}_1+\widehat{\gamma}_2x+\widehat{\gamma}_3z+\widehat{\gamma}_4\widehat{y}^2$, для которой $R^2=0.75$, выполните тест Рамсея на уровне значимости 5%.

Задача 9.3. По 30 наблюдениям при помощи метода наименьших квадратов оценена модель $\widehat{y}=\widehat{\beta}_1+\widehat{\beta}_2x+\widehat{\beta}_3z$, для которой RSS=150. При помощи вспомогательной регрессии $\widehat{\widehat{y}}=\widehat{\gamma}_1+\widehat{\gamma}_2x+\widehat{\gamma}_3z+\widehat{\gamma}_4\widehat{y}^2+\widehat{\gamma}_5\widehat{y}^3$, для которой RSS=120, выполните тест Рамсея на уровне значимости 5%.

Задача 9.4. По 35 наблюдениям при помощи метода наименьших квадратов оценена модель $\widehat{y}=\widehat{\beta}_1+\widehat{\beta}_2x+\widehat{\beta}_3z$, для которой $R^2=0.7$. При помощи вспомогательной регрессии $\widehat{\widehat{y}}=\widehat{\gamma}_1+\widehat{\gamma}_2x+\widehat{\gamma}_3z+\widehat{\gamma}_4\widehat{y}^2+\widehat{\gamma}_5\widehat{y}^3$, для которой $R^2=0.8$, выполните тест Рамсея на уровне значимости 5%.

Задача 9.5. Используя 80 наблюдений, исследователь оценил две конкурирующие модели: $\widehat{y} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_1 = 36875$ и $\widehat{\ln y} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_2 = 122$.

Выполнив преобразование $y_i^* = y_i / \sqrt[n]{\prod y_i}$, исследователь также оценил две вспомогательные регрессии: $\widehat{y}^* = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_1^* = 239$ и $\widehat{\ln y^*} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_2^* = 121$.

Завершите тест Бокса-Кокса на уровне значимости 5%.

Задача 9.6. Используя 40 наблюдений, исследователь оценил две конкурирующие модели: $\widehat{y} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_1 = 250$ и $\widehat{\ln y} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_2 = 12$.

Выполнив преобразование $y_i^* = y_i / \sqrt[n]{\prod y_i}$, исследователь также оценил две вспомогательные регрессии: $\widehat{y}^* = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_1^* = 20$ и $\widehat{\ln y^*} = \widehat{\beta}_1 + \widehat{\beta}_2 x + \widehat{\beta}_3 z$, в которой $RSS_2^* = 25$.

Завершите тест Бокса-Кокса на уровне значимости 5%.

Задача 9.7. Почему при реализации теста Бокса-Кокса на компьютере предпочтительнее использовать формулу $y_i^* = \exp\left(\ln y_i - \sum \ln y_i/n\right)$, а не формулу $y_i^* = y_i/\sqrt[n]{\prod y_i}$?

 $\mathit{Oтвет}.$ Чтобы избежать переполнения при подсчете произведения всех $y_i.$

Задача 9.8. Обследовав выборку из 27 домохозяйств, исследователь оценил уравнение регрессии:

$$\frac{\widehat{Exp}_i}{Size_i} = 926 + 235 \frac{1}{Size_i} + 0.3 \frac{Income_i}{Size_i}$$

где Exp_i — месячные затраты i-го домохозяйства на питание в рублях, $Income_i$ — месячный доход домохозяйства (также в рублях), $Size_i$ — число членов домохозяйства. Известен коэффициент детерминации, $R^2=0.3$.

- 1. Каково, согласно оценённой модели, ожидаемое различие в затратах на питание между двумя домохозяйствами с одинаковым доходом, первое из которых больше второго на одного человека?
- 2. Известно, что нормировка переменных модели на размер семьи $Size_i$ была проведена с целью устранения гетероскедастичности в модели $Exp_i=\beta_1+\beta_2Size_i+\beta_3Income_i+\varepsilon_i$. Какое предположение сделал исследователь о виде гетероскедастичности?
- 3. Для проверки правильности выбранной спецификации было оценено ещё одно уравнение:

$$\frac{\widehat{\widehat{Exp}_i}}{Size_i} = 513 + 1499 \frac{1}{Size_i} + 0.5 \frac{Income_i}{Size_i} - 0.001 \left(\frac{\widehat{Exp}_i}{Size_i}\right)^2$$

Известно, что $R^2=0.4$. Даёт ли эта проверка основание считать модель исследователя неверно специфицированной? Используйте уровень значимости 1%

Задача 9.9. Мартовский Заяц и Безумный Шляпник почти всё время пьют чай. Известно, что количество выпитого за день чая (в чашках) зависит от количества пирожных (в штуках) и печенья (в штуках). Алиса, гостившая у героев в течение 25 дней, заметила, что если оценить зависимость выпитого чая от закуски для Мартовского Зайца и Шляпника, то получится регрессия с RSS=11.5:

$$\widehat{Tea}_i = 6 + 0.5Biscuit_i + 1.5Cake_i$$

Чтобы понять, удачную ли модель она построила, Алиса оценила ещё одну регрессию с RSS = 9.5:

$$\widehat{\widehat{Tea}}_i = 12.7 + 0.65 Biscuit_i - 0.8 Cake_i - 0.59 \widehat{Tea}_i^2 + 0.03 \widehat{Tea}_i^3$$

Помогите Алисе понять, верную ли спецификацию модели она выбрала

- 1. Проведите подходящий тест
- 2. Сформулируйте основную и альтернативную гипотезы
- 3. Алиса решила проверить первоначальную короткую модель на наличие гетероскедастичности с помощью теста Уайта. Выпишите уравнение регрессии, которое она должна оценить.

Глава 10

Случайные регрессоры

Экзогенность, $\mathbb{E}(\varepsilon \mid x) = 0$ Предопределённость, $\mathbb{E}(\varepsilon_t \mid x_t) = 0$ для всех t

Задача 10.1. Настоящая зависимость между y_i и x_i имеет вид $y_i = \beta x_i + \varepsilon_i$, где ε_i независимы и равновероятно принимают значения -1 и +1. Эконометресса Аврора оценивает коэффициент β по двум наблюдениям. Аврора не знает чему равны настоящие x_i , вместо них она наблюдает значения $x_i^* = x_i + u_i$, где u_i — ошибки измерения, поэтому она строит регрессию y_i на x_i^* . Ошибки измерения регрессора, u_i , независимы и равновероятно принимают значения -1 и +1. Величины u_i и ε_j независимы.

- 1. Выведите явную формулу для оценки $\widehat{\beta}$
- 2. Чему равно u_i^2 ? Чему равно ε_i^2 ?
- 3. Найдите $\mathbb{E}(\widehat{\beta})$, если $x_1 = 0$ и $x_2 = 1$
- 4. Найдите $\mathbb{E}(\widehat{\beta})$, если $x_1=0$ и $x_2=2$
- 5. Интуитивно объясните, как меняется смещение с ростом расстояния между x_1 и x_2

Решение. $u_i^2 = \varepsilon_i^2 = 1$, $\mathbb{E}(\widehat{\beta} \mid x_1 = 0, x_2 = 1) = 0.2\beta$, $\mathbb{E}(\widehat{\beta} \mid x_1 = 0, x_2 = 2) = 0.8\beta$. Интуитивно объясняем: рисуем прямую по двум точкам. Мы знаем абсциссы точек с точностью ± 1 . Если точки близки, то это может сильно менять оценку наклона, если точки далеки, то случайность слабо влияет на наклон.

Задача 10.2. Известна совместная функция плотности пары величин X_i, Y_i

$$f(x, y) =$$

Найлите

- 1. $\mathbb{E}(X_i)$, $\mathbb{E}(Y_i)$, $\text{Var}(X_i)$, $\text{Var}(Y_i)$, $\text{Cov}(X_i, Y_i)$
- 2. $\mathbb{E}(Y_i \mid X_i)$, $\mathbb{E}(X_i \mid Y_i)$
- 3. Вася оценивает модель $y_i = \beta_1 + \beta_2 x_i + \epsilon_i$ по огромному количеству наблюдений, n >> 0. Чему примерно у него окажутся равны $\widehat{\beta}_1$, $\widehat{\beta}_2$, \widehat{s}^2 , $\widehat{\text{Var}}(\widehat{\beta}_2)$? Чему равно $\mathbb{E}(\widehat{\beta}_2)$? (или оно не будет браться???)
- 4. Петя оцениваем модель $y_i = \beta_1 + \beta_2 x_i + \beta_2 x_i^2 + \epsilon_i$. Найдите $\mathbb{E}(\widehat{\beta}_1), \ \mathbb{E}(\widehat{\beta}_2), \ \mathbb{E}(\widehat{\beta}_3), \ \text{Var}(\widehat{\beta})$ (?)

Задача 10.3. Табличка 2 на 2. Найдите $\mathbb{E}(\varepsilon)$, $\mathbb{E}(\varepsilon \mid x)$, $\mathrm{Cov}(\varepsilon, x)$.

Задача 10.4. Приведите примеры дискретных случайных величин ε и x, таких, что

- 1. $\mathbb{E}(\varepsilon)=0,\ \mathbb{E}(\varepsilon\mid x)=0,$ но величины зависимы. Чему в этом случае равно $\mathrm{Cov}(\varepsilon,x)$?
- 2. $\mathbb{E}(\varepsilon)=0$, $\mathrm{Cov}(\varepsilon,x)=0$, но $\mathbb{E}(\varepsilon\mid x)\neq 0$. Зависимы ли эти случайные величины?

Глава 11

Временные ряды

Задача 11.1. Что такое автокорреляция?

Задача 11.2. На графике представлены данные по уровню озера Гуро́н в футах в 1875-1972 годах:

```
ggplot(df,aes(x=obs,y=level))+geom_line()+
labs(x="»",ylab=" ()")
```


График автокорреляционной и частной автокорреляционной функций:

```
ggplot(acfs.df,aes(x=lag,y=acf,fill=acf.type))+
    geom_histogram(position="dodge",stat="identity")+
    xlab("")+ylab("") +
    guides(fill=guide_legend(title=NULL))+
    geom_hline(yintercept=1.96/sqrt(nrow(df)))+
    geom_hline(yintercept=-1.96/sqrt(nrow(df)))
```


Решение.

- 1. Процесс AR(2), т.к. две первые частные корреляции значимо отличаются от нуля, а гипотезы о том, что каждая последующая равна нулю не отвергаются.
- 2. Можно использовать одну из двух статистик

Ljung-Box
$$= n(n+2)\sum_{k=1}^3 rac{\widehat{
ho}_k^2}{n-k} = 0.4289$$

Box-Pierce
$$=n\sum_{k=1}^3\widehat{
ho}_k^2=0.4076$$

Критическое значение хи-квадрат распределения с 3-мя степенями свободы для $\alpha=0.05$ равно $\chi^2_{3,crit}=7.8147$. Вывод: гипотеза H_0 об отсутствии корреляции ошибок модели не отвергается.

 \triangleright

Задача 11.3. Винни-Пух пытается выявить закономерность в количестве придумываемых им каждый день ворчалок. Винни-Пух решил разобраться, является ли оно стационарным процессом, для этого он оценил регрессию

$$\Delta \widehat{y}_t = 4.5 - 0.4 y_{t-1} + 0.7 \Delta y_{t-1}$$

Из-за опилок в голове Винни-Пух забыл, какой тест ему нужно провести, то ли Доктора Ватсона, то ли Дикого Фуллера.

- 1. Аккуратно сформулируйте основную и альтернативную гипотезы
- 2. Проведите подходящий тест на уровне значимости 5%
- 3. Сделайте вывод о стационарности ряда
- 4. Почему Сова не советовала Винни-Пуху пользоваться широко применяемым в Лесу t-распределением?

<u>Решение</u>.

1. H_0 : ряд содержит единичный корень, $\beta=0$; H_0 : ряд не содержит единичного корня, $\beta<0$

- 2. ADF = -0.4/0.1 = -4, $ADF_{crit} = -2.89$, H_0 отвергается
- 3. Ряд стационарен
- 4. При верной H_0 ряд не стационарен, и t-статистика имеет не t-распределение, а распределение Дики-Фуллера.

 \triangleright

Задача 11.4. Рассматривается модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$. Ошибки ε_t гомоскедастичны, но в них возможно присутствует автокорреляция первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$. При известном числе наблюдений T на уровне значимости 5% сделайте статистический вывод о наличии автокорреляции.

- 1. T = 25, k = 2, DW = 0.8
- 2. T = 30, k = 3, DW = 1.6
- 3. T = 50, k = 4, DW = 1.8
- 4. T = 100, k = 5, DW = 1.1

Задача 11.5. По 100 наблюдениям была оценена модель линейной регрессии $y_t=\beta_1+\beta_2x_t+\varepsilon_t.$ Оказалось, что RSS=120,

$$\widehat{arepsilon}_1=-1,\ \widehat{arepsilon}_{100}=2,\ \sum_{t=2}^{100}\widehat{arepsilon}_t\widehat{arepsilon}_{t-1}=-50.$$
 Найдите DW и $ho.$

Задача 11.6. Применяется ли статистика Дарбина-Уотсона для выявления автокорреляции в следующих моделях

- 1. $y_t = \beta_1 x_t + \varepsilon_t$
- $2. \ y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$
- 3. $y_t = \beta_1 + \beta_2 y_{t-1} + \varepsilon_t$
- 4. $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + \varepsilon_t$
- 5. $y_t = \beta_1 t + \beta_2 x_t + \varepsilon_t$
- 6. $y_t = \beta_1 + \beta_2 t + \beta_3 x_t + \beta_4 x_{t-1} + \varepsilon_t$

Задача 11.7. По 21 наблюдению была оценена модель линейной регрессии $\widehat{y}_{(se)}=1.2+0.9\cdot y_{t-1}+0.1\cdot t,\ R^2=0.6,$

DW = 1.21. Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.

Задача 11.8. По 24 наблюдениям была оценена модель линейной регрессии $\widehat{y}=0.5+2\atop(se)=(0.01)$ $t,\ R^2=0.9,\ DW=1.3.$

Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.

Задача 11.9. По 32 наблюдениям была оценена модель линейной регрессии $\widehat{y}=10+2.5\cdot t-0.1\cdot t^2$, $R^2=0.75$, DW=1.75.

Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.

Задача 11.10. Рассмотрим модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$, где ε_t подчиняются автокорреляционной схеме первого порядка, т.е.

- 1. $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, $-1 < \rho < 1$
- 2. $Var(\varepsilon_t) = const$, $\mathbb{E}(\varepsilon_t) = const$
- 3. $Var(u_t) = \sigma^2$, $\mathbb{E}(u_t) = 0$
- 4. Величины u_t независимы между собой
- 5. Величины u_t и ε_s независимы, если $t \geqslant s$

Найдите:

- 1. $\mathbb{E}(\varepsilon_t)$, $Var(\varepsilon_t)$
- 2. $Cov(\varepsilon_t, \varepsilon_{t+h})$
- 3. $Corr(\varepsilon_t, \varepsilon_{t+h})$

Ответ.

- 1. $\mathbb{E}(\varepsilon_t) = 0$, $\operatorname{Var}(\varepsilon_t) = \sigma^2/(1 \rho^2)$
- 2. $Cov(\varepsilon_t, \varepsilon_{t+h}) = \rho^h \cdot \sigma^2/(1-\rho^2)$
- 3. $\operatorname{Corr}(\varepsilon_t, \varepsilon_{t+h}) = \rho^h$

Задача 11.11. Ошибки в модели $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$ являются автокоррелированными первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$. Шаман-эконометрист Ойуун выполняет два камлания-преобразо поясните смысл камланий:

- 1. Камлание A, при $t\geqslant 2$, Ойуун преобразует уравнение к виду $y_t-\rho y_{t-1}=\beta_1(1-\rho)+\beta_2(x_t-\rho x_{t-1})+\varepsilon_t-\rho\varepsilon_{t-1}$
- 2. Камлание Б, при t=1, Ойуун преобразует уравнение к виду $\sqrt{1-\rho^2}y_1=\sqrt{1-\rho^2}\beta_1+\sqrt{1-\rho^2}\beta_2x_1+\sqrt{1-\rho^2}\varepsilon_1$.

Задача 11.12. Пусть y_t — стационарный процесс. Верно ли, что стационарны:

- 1. $z_t = 2y_t$
- 2. $z_t = y_t + 1$
- 3. $z_t = \Delta y_t$
- 4. $z_t = 2y_t + 3y_{t-1}$

Ответ. Все линейные комбинации стационарны.

Задача 11.13. Известно, что временной ряд y_t порожден стационарным процессом, задаваемым соотношением $y_t=1+0.5y_{t-1}+\varepsilon_t$. Имеется 1000 наблюдений. Вася построил регрессию y_t на константу и y_{t-1} . Петя построил регрессию на константу и y_{t+1} . Какие примерно оценки коэффициентов они получат?

Решение. Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией. ⊳

Задача 11.14. Рассмотрим следующий AR(1)-ARCH(1) процесс, $y_t = 1 + 0.5y_{t-1} + \varepsilon_t$, $\varepsilon_t = \nu_t \cdot \sigma_t$

 u_t независимые N(0;1) величины.

$$\sigma_t^2 = 1 + 0.8\varepsilon_{t-1}^2$$

Также известно, что $y_{100} = 2$, $y_{99} = 1.7$

- 1. Найдите $\mathbb{E}_{100}(\varepsilon_{101}^2)$, $\mathbb{E}_{100}(\varepsilon_{102}^2)$, $\mathbb{E}_{100}(\varepsilon_{103}^2)$, $\mathbb{E}(\varepsilon_t^2)$
- 2. $Var(y_t)$, $Var(y_t|\mathcal{F}_{t-1})$
- 3. Постройте доверительный интервал для y_{101} :
 - а) проигнорировав условную гетероскедастичность
 - b) учтя условную гетерескедастичность

Задача 11.15. Пусть x_t , t = 0, 1, 2, ... - случайный процесс и $y_t = (1 + L)^t x_t$. Выразите x_t с помощью y_t и оператора лага L.

Ответ. $x_t = (1 - L)^t y_t$.

Задача 11.16. Пусть F_n — последовательность чисел Фибоначчи. Упростите величину

$$F_1 + C_5^1 F_2 + C_5^2 F_3 + C_5^3 F_4 + C_5^4 F_5 + C_5^5 F_6$$

Решение. $F_n=\mathrm{L}(1+\mathrm{L})F_n$, значит $F_n=\mathrm{L}^k(1+\mathrm{L})^kF_n$ или $F_{n+k}=(1+\mathrm{L})^kF_n$

Задача 11.17. Пусть y_t , t=...-2,-1,0,1,2,... - случайный процесс. И $y_t=x_{-t}$. Являются ли верными рассуждения?

- 1. $Ly_t = Lx_{-t} = x_{-t-1}$
- 2. L $y_t = y_{t-1} = x_{-t+1}$

Ответ. а - неверно, б - верно.

161

Задача 11.18. Представьте процесс AR(1), $y_t = 0.9y_{t-1} - 0.2y_{t-2} + \varepsilon_t$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

- а) Выбрав в качестве состояний вектор $egin{pmatrix} y_t \\ y_{t-1} \end{pmatrix}$
- б) Выбрав в качестве состояний вектор $\begin{pmatrix} y_t \\ \widehat{y}_{t,1} \end{pmatrix}$ Найдите дисперсии ошибок состояний

Задача 11.19. Представьте процесс MA(1), $y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$, $\varepsilon \sim$ WN(0;1) в виде модели состояние-наблюдение.

a)
$$\begin{pmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{pmatrix}$$

b) $\begin{pmatrix} \varepsilon_t + 0.5\varepsilon_{t-1} \\ 0.5\varepsilon_t \end{pmatrix}$

Задача 11.20. Представьте процесс ARMA(1,1), $y_t = 0.5y_{t-1} + \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon \sim \text{WN}(0;1)$ в виде модели состояние-наблюдение. Вектор состояний имеет вид x_t, x_{t-1} , где $x_t = \frac{1}{1-0.5L}\varepsilon_t$

Задача 11.21. Рекурсивные коэффициенты

- 1. Оцените модель вида $y_t = a + b_t x_t + arepsilon_t$, где $b_t = b_{t-1}$.
- 2. Сравните графики filtered state и smoothed state.
- 3. Сравните финальное состояние b_T с коэффициентом в обычной модели линейной регрессии, $y_t = a + bx_t + \varepsilon_t$.

Задача 11.22. Пусть u_t — независимые нормальные случайные величины с математическим ожиданием 0 и дисперсией σ^2 . Известно, что $\varepsilon_1 = u_1$, $\varepsilon_t = u_1 + u_2 + \ldots + u_t$. Рассмотрим модель $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$.

- 1. Найдите $Var(\varepsilon_t)$, $Cov(\varepsilon_t, \varepsilon_s)$, $Var(\varepsilon)$
- 2. Являются ли ошибки ε_t гетероскедастичными?
- 3. Являются ли ошибки ε_t автокоррелированными?
- 4. Предложите более эффективную оценку вектора коэффициентов регрессии по сравнению МНК-оценкой.
- 5. Результаты предыдущего пункта подтвердите симуляциями Монте-Карло на компьютере.

Задача 11.23. Найдите безусловную дисперсию GARCH-процессов

1.
$$\varepsilon_t = \sigma_t \cdot z_t$$
, $\sigma_t^2 = 0.1 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$

2.
$$\varepsilon_t = \sigma_t \cdot z_t, \ \sigma_t^2 = 0.4 + 0.7\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$$

3.
$$\varepsilon_t = \sigma_t \cdot z_t$$
, $\sigma_t^2 = 0.2 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$

Задача 11.24. Являются ли верными следующие утверждения?

- 1. GARCH-процесс является процессом белого шума, условная дисперсия которого изменяется во времени
- 2. Модель GARCH(1,1) предназначена для прогнозирования меры изменчивости цены финансового инструмента, а не для прогнозирования самой цены инструмента
- 3. При помощи GARCH-процесса можно устранять гетероскедастичность
- 4. Безусловная дисперсия GARCH-процесса изменяется во времени
- 5. Модель GARCH(1,1) может быть использована для прогнозирования волатильности финансовых инструментов на несколько торговых недель вперёд

Задача 11.25. Рассмотрим GARCH-процесс $\varepsilon_t=\sigma_t\cdot z_t,\ \sigma_t^2=k+g_1\sigma_{t-1}^2+a_1\varepsilon_{t-1}^2.$ Найдите

- 1. $\mathbb{E}(z_t)$, $\mathbb{E}(z_t^2)$, $\mathbb{E}(\varepsilon_t)$, $\mathbb{E}(\varepsilon_t^2)$
- 2. $Var(z_t)$, $Var(\varepsilon_t)$, $Var(\varepsilon_t \mid \mathcal{F}_{t-1})$
- 3. $\mathbb{E}(\varepsilon_t \mid \mathcal{F}_{t-1})$, $\mathbb{E}(\varepsilon_t^2 \mid \mathcal{F}_{t-1})$, $\mathbb{E}(\sigma_t^2 \mid \mathcal{F}_{t-1})$
- 4. $\mathbb{E}(z_t z_{t-1})$, $\mathbb{E}(z_t^2 z_{t-1}^2)$, $\text{Cov}(\varepsilon_t, \varepsilon_{t-1})$, $\text{Cov}(\varepsilon_t^2, \varepsilon_{t-1}^2)$
- 5. $\lim_{h\to\infty} \mathbb{E}(\sigma_{t+h}^2 \mid \mathcal{F}_t)$

Задача 11.26. Используя 500 наблюдений дневных логарифмических доходностей y_t , была оценена GARCH(1,1)-модель: $\widehat{y}_t = -0.000708 + \widehat{\varepsilon}_t$, $\varepsilon_t = \sigma_t \cdot z_t$, $\sigma_t^2 = 0.000455 + 0.6424 \sigma_{t-1}^2 + 0.2509 \varepsilon_{t-1}^2$. Также известно, что $\widehat{\sigma}_{499}^2 = 0.002568$, $\widehat{\varepsilon}_{499}^2 = 0.000014$, $\widehat{\varepsilon}_{500}^2 = 0.002178$. Найдите

- 1. $\widehat{\sigma}_{500}^2$, $\widehat{\sigma}_{501}^2$, $\widehat{\sigma}_{502}^2$
- 2. Волатильность в годовом выражении в процентах, соответствующую наблюдению с номером $t=500\,$

Задача 11.27. Докажите, что в условиях автокорреляции МНКоценки остаются несмещенными.

Задача 11.28. Продавец мороженного оценил динамическую модель объёмов продаж:

$$\ln \widehat{Q}_t = 26.7 + 0.2 \ln \widehat{Q}_{t-1} - 0.6 \ln P_t$$

Здесь Q_t — число проданных в день t вафельных стаканчиков, а P_t — цена одного стаканчика в рублях. Продавец также рассчитал остатки \widehat{e}_t .

- 1. Чему, согласно полученным оценкам, равна долгосрочная эластичность объёма продаж по цене?
- 2. Предположим, что продавец решил проверить наличие автокорреляции первого порядка с помощью теста Бройша-Годфри. Выпишите уравнение регрессии, которое он должен оценить.

165

Задача 11.29. Рассматривается модель $y_t = \mu + \varepsilon_t$, $t = 1, \ldots, T$, где $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, случайные величины ε_0 , u_1, \ldots, u_T независимы, причем $\varepsilon_0 \sim N(0, \sigma^2/(1-\rho^2))$, $u_t \sim N(0, \sigma^2)$. Имеются наблюдения y' = (1, 2, 0, 0, 1).

1. Выпишите функцию правдоподобия

$$\mathrm{L}(\mu,
ho,\sigma^2) = f_{Y_1}(y_1) \prod_{t=2}^T f_{Y_t|Y_{t-1}}(y_t|y_{t-1}).$$

2. Найдите оценки неизвестных параметров модели максимизируя условную функцию правдоподобия

$$\mathrm{L}(\mu,
ho,\sigma^2|Y_1=y_1) = \prod_{t=2}^T f_{Y_t|Y_{t-1}}(y_t|y_{t-1})$$

Решение. 1. Поскольку имеют место соотношения $\varepsilon_1 = \rho \varepsilon_0 + u_1$ и $Y_1 = \mu + \varepsilon_1$, то из условия задачи получаем, что $\varepsilon_1 \sim N(0, \sigma^2/(1-\rho^2))$ и $Y_1 \sim N(\mu, \sigma^2/(1-\rho^2))$. Поэтому

$$f_{Y_1}(y_1) = rac{1}{\sqrt{2\pi\sigma^2/(1-
ho^2)}} \exp\left(-rac{(y_1-\mu)^2}{2\sigma^2/(1-
ho^2)}
ight).$$

Далее, найдем $f_{Y_2|Y_1}(y_2|y_1)$. Учитывая, что $Y_2=\rho Y_1+(1-\rho)\mu+u_2$, получаем $Y_2|\{Y_1=y_1\}\sim N(\rho y_1+(1-\rho)\mu,\sigma^2)$. Значит,

$$f_{Y_2|Y_1}(y_2|y_1) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(y_2-
ho y_1-(1-
ho)\mu)^2}{2\sigma^2}
ight).$$

Действуя аналогично, получаем, что для всех $t\geqslant 2$ справедлива формула

$$f_{Y_t|Y_{t-1}}(y_t|y_{t-1}) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(y_t -
ho y_{t-1} - (1-
ho)\mu)^2}{2\sigma^2}
ight).$$

Таким образом, находим функцию правдоподобия

$$\mathrm{L}(\mu,
ho,\sigma^2) = f_{Y_T,\dots,Y_1}(y_T,\dots,y_1) = f_{Y_1}(y_1) \prod_{t=2}^T f_{Y_t|Y_{t-1}}(y_t|y_{t-1}),$$

где $f_{Y_1}(y_1)$ и $f_{Y_t|Y_{t-1}}(y_t|y_{t-1})$ получены выше.

2. Для нахождения неизвестных параметров модели запишем логарифмическую условную функцию правдоподобия:

$$egin{split} l(\mu,
ho,\sigma^2|Y_1=y_1) &= \sum_{t=2}^T \log f_{Y_t|Y_{t-1}}(y_t|y_{t-1}) = \ &= -rac{T-1}{2} \log (2\pi) - rac{T-1}{2} \log \sigma^2 - rac{1}{2\sigma^2} \sum_{t=2}^T (y_t -
ho y_{t-1} - (1-
ho)\mu)^2. \end{split}$$

Найдем производные функции $l(\mu, \rho, \sigma^2|Y_1=y_1)$ по неизвестным параметрам:

$$\frac{\partial l}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1 - \rho)\mu) \cdot (\rho - 1),$$

$$\frac{\partial l}{\partial \rho} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1 - \rho)\mu) \cdot (\mu - y_{t-1}),$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{T - 1}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{t=2}^{T} (y_t - \rho y_{t-1} - (1 - \rho)\mu)^2.$$

Оценки неизвестных параметров модели могут быть получены как решение следующей системы уравнений:

$$\begin{cases} \frac{\partial l}{\partial \mu} = 0, \\ \frac{\partial l}{\partial \rho} = 0, \\ \frac{\partial l}{\partial \sigma^2} = 0. \end{cases}$$

Из первого уравнения системы получаем, что

$$\sum_{t=2}^T y_t - \widehat{
ho} \sum_{t=2}^T y_{t-1} = (T-1)(1-\widehat{
ho})\widehat{\mu},$$

откуда

$$\widehat{\mu} = \frac{\sum_{t=2}^{T} y_t - \widehat{\rho} \sum_{t=2}^{T} y_{t-1}}{(T-1)(1-\widehat{\rho})} = \frac{3 - \widehat{\rho} \cdot 3}{4 \cdot (1-\widehat{\rho})} = \frac{3}{4}.$$

167

Далее, если второе уравнение системы переписать в виде

$$\sum_{t=2}^T (y_t - \widehat{\mu} - \widehat{
ho}(y_{t-1} - \widehat{\mu}))(y_{t-1} - \widehat{\mu}) = 0,$$

то легко видеть, что

$$\widehat{
ho} = rac{\sum\limits_{t=2}^T (y_t - \widehat{\mu})(y_{t-1} - \widehat{\mu})}{\sum\limits_{t=2}^T (y_{t-1} - \widehat{\mu})^2}.$$

Следовательно, $\hat{\rho} = -1/11 = -0.0909$.

Наконец, из третьего уравнения системы

$$\widehat{\sigma}^2 = rac{1}{T-1} \sum_{t=2}^T (y_t - \widehat{
ho} y_{t-1} - (1-\widehat{
ho}) \widehat{\mu})^2.$$

Значит, $\widehat{\sigma}^2=165/242=0.6818$. Ответы: $\widehat{\mu}=3/4=0.75$, $\widehat{\rho}=-1/11=-0.0909$, $\widehat{\sigma}^2=165/242=0.6818$.

Задача 11.30. Была оценена AR(2) модель

$$\widehat{y}_t = 2.3 + 0.8y_{t-1} - 0.2y_{t-2}$$

Дополнительно известно, что $se(\widehat{\beta}_{y_{t-1}})=0.3$ и $\widehat{
ho}_1=0.7$. Найдите $se(\widehat{\beta}_{y_{t-2}})$ и $\widehat{\mathrm{Cov}}(\widehat{\beta}_{y_{t-2}},\widehat{\beta}_{y_{t-1}})$.

<u>Решение</u>. Рассмотрим модель без константы. Тогда ковариационная матрица коэффициентов пропорциональна матрице

$$\begin{pmatrix} 1 & -\widehat{\rho}_1 \\ -\widehat{\rho}_1 & 1 \end{pmatrix}$$

Задача 11.31. Рассмотрите следующие два утверждения:

- (a) GARCH-процесс является слабо стационарным процессом,
- (b) GARCH-процесс является процессом с изменяющейся во времени условной дисперсией.

Поясните смысл каждого из них. Объясните, почему между ними нет противоречия.

Задача 11.32. Предложите способ, при помощи которого из моделей GARCH(1,1) и GARCH(2,1) можно выбрать лучшую.

Задача 11.33. Опишите тест, при помощи которого можно выявить необходимость использовать GARCH-модель.

Задача 11.34. Рассматривается GARCH(1,1)-процесс $\sigma_t^2=1+0.8\cdot\sigma_{t-1}^2+0.1\cdot\varepsilon_{t-1}^2.$ Известно, что $\sigma_T^2=9,\ \varepsilon_T=-2.$ Найдите

- (a) $\mathbb{E}[\sigma_{T+1}^2|\mathcal{F}_T]$
- (b) $\mathbb{E}[\sigma_{T+2}^2|\mathcal{F}_T]$,
- (c) $\mathbb{E}[\sigma_{T+3}^2|\mathcal{F}_T]$.

Задача 11.35. Рассмотрите два ряда цен интересующих вас финансовых инструментов, действующих в одной отрасли. Примером могут выступать цены обыкновенных акций Сбербанка и ВТБ. По данным для выбранных инструментов, содержащим не менее 250 наблюдений (за одни и тот же промежуток времени), рассчитайте при помощи GARCH-модели историческую волатильность в годовом выражении в процентах.

- (а) В одних координатных осях постройте графики полученных волатильностей.
- (b) На основании графика, построенного в пункте (a), сделайте качественный вывод относительно риска каждого финансового инструмента.
- (c) Для каждого из выбранных инструментов постройте прогноз волатильности (в годовом выражении в процентах) на три торговых дня вперед.

Глава 12

Метод опорных векторов

Задача 12.1. Имеются три наблюдения A, B и C:

- 1. Найдите расстояние AB и косинус угла ABC
- 2. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью гауссовского ядра с $\sigma=1$.
- 3. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью полиномиального ядра второй степени

Задача 12.2. Переход из двумерного пространства в расширяющее задан функцией

$$f:(x_1,x_2) o (1,x_1,x_2,3x_1x_2,2x_1^2,4x_2^2)$$

Найдите соответствующую ядерную функцию

Задача 12.3. Ядерная функция имеет вид

$$K(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

Как может выглядеть функция $f:\mathbb{R}^2 \to \mathbb{R}^3$ переводящие исходные векторы в расширенное пространство?

Ответ. $f(x_1,x_2)=(x_1^2,x_2^2,\sqrt{2}x_1x_2)$.

Задача 12.4. На плоскости имеются точки двух цветов. Красные: (1,1), (1,-1) и синие: (-1,1), (-1,-1).

- 1. Найдите разделяющую гиперплоскость методом опорных векторов при разных C.
- 2. Укажите опорные вектора.

Задача 12.5. На плоскости имеются точки двух цветов. Красные: (1,1), (1,-1) и синие: (-1,1), (-1,-1) и (2,0).

- 1. Найдите разделяющую гиперплоскость методом опорных векторов при разных C.
- 2. Укажите опорные вектора

Глава 13

Деревья и Random Forest

Задача 13.1. Для случайных величин X и Y найдите индекс Джини и энтропию

$$X = 0 = 1$$
 $Y = 0 = 1 = 5$ $\mathbb{P}() = 0.2 = 0.8$ $\mathbb{P}() = 0.2 = 0.3 = 0.5$

Задача 13.2. Случайная величина X принимает значение 1 с вероятностью p и значение 0 с вероятностью 1-p.

- 1. Постройте график зависимости индекса Джини и энтропии от p
- 2. При каком p энтропия и индекс Джини будут максимальны?

Задача 13.3. Кот Леопольд анкетировал 20 мышей по трём вопросам: x — «Одобряете ли Вы непримиримую к котам позицию Белого и Серого?», y — «Известно ли Вам куда пропала моя любимая кошка Мурка?» и z — «Известны ли Вам настоящие имена Белого и Серого?» Результаты опроса в таблице:

```
set.seed(1975)
x <- sample(c("yes","no"),size=20,rep=TRUE)
y <- sample(c("yes","no"),size=20,rep=TRUE)
z <- sample(c("yes","no"),size=20,rep=TRUE)
library(xtable)
xtable(data.frame(x,y,z))</pre>
```

	X	у	z
1	no	no	yes
2	no	yes	yes
3	yes	yes	yes
4	yes	yes	no
5	no	no	no
6	no	yes	yes
7	no	no	yes
8	no	no	no
9	yes	no	yes
10	yes	no	yes
11	no	no	no
12	yes	yes	yes
13	no	yes	yes
14	no	yes	no
15	yes	no	no

Глава 14

Линейная алгебра

Задача 14.1. Найдите каждую из следующих матриц в каждой из следующих степеней $\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{2}$, $-\frac{1}{3}$, -1, 100.

1.
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

2.
$$\begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$$

Задача 14.2. Найдите ортогональную проекцию и ортогональную составляющую (перпендикуляр) вектора u_1 на линейное подпространство $L = \mathcal{L}(u_2)$, порождённое вектором u_2 , если

1.
$$u_1 = (1 \ 1 \ 1 \ 1), u_2 = (1 \ 0 \ 0 \ 1)$$

2.
$$u_1 = (2\ 2\ 2\ 2), u_2 = (1\ 0\ 0\ 1)$$

3.
$$u_1 = (1 \ 1 \ 1 \ 1), u_2 = (7 \ 0 \ 0 \ 7)$$

Глава 14. Линейная алгебра

Задача 14.3. Найдите обратные матрицы ко всем матрицам, представленным ниже.

1.
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$3. \quad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$4. \begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Задача 14.4. Найдите ранг следующих матриц в зависимости от значений параметра λ .

1.
$$\begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$$

$$2. \quad \begin{pmatrix} 1 - \lambda & 1 - 2\lambda \\ 1 + \lambda & 1 + 3\lambda \end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$$

4.
$$\begin{pmatrix} \lambda & 1 & -1 & -1 \\ 1 & \lambda & -1 & -1 \\ 1 & 1 & -\lambda & -1 \\ 1 & 1 & -1 & -\lambda \end{pmatrix}$$

Задача 14.5. Пусть $i=(1,\ldots,1)'$ — вектор из n единиц и $\pi=i(i'i)^{-1}i'$. Найдите:

- 1. $tr(\pi)$ и $rk(\pi)$
- 2. $\operatorname{tr}(I-\pi)$ и $\operatorname{rk}(I-\pi)$

Задача 14.6. Пусть X — матрица размера $n \times k$, где n > k, и пусть $\operatorname{rk}(X) = k$. Верно ли, что матрица $P = X(X'X)^{-1}X'$ симметрична и идемпотентна?

Глава 14. Линейная алгебра

Задача 14.7. Пусть X — матрица размера $n \times k$, где n > k, и пусть $\mathrm{rk}(X) = k$. Верно ли, что каждый столбец матрицы $P = X(X'X)^{-1}X'$ является собственным вектором матрицы P, отвечающим собственному значению 1?

Задача 14.8. Пусть X — матрица размера $n \times k$, где n > k, пусть $\mathrm{rk}(X) = k$ и $P = X(X'X)^{-1}X'$. Верно ли, что каждый вектор-столбец u, такой что X'u = 0, является собственным вектором матрицы P, отвечающим собственному значению 0?

Задача 14.9. Верно ли, что для любых матриц A размера $m \times n$ и матриц B размера $n \times m$ выполняется равенство $\mathrm{tr}(AB) = \mathrm{tr}(BA)$?

Задача 14.10. Верно ли, что собственные значения симметричной и идемпотентной матрицы могут быть только нулями и единицами?

Задача 14.11. Пусть P — матрица размера $n \times n$, P' = P, $P^2 = P$. Верно ли, что $\mathrm{rk}(P) = \mathrm{tr}(P)$?

Задача 14.12. Верно ли, что для симметричной матрицы собственные векторы, отвечающие различным собственным значениям, ортогональны?

Задача 14.13. Найдите собственные значения и собственные векторы матрицы $P = X(X'X)^{-1}X'$, если

$$1. \ X = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

$$2. \ X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$$

$$3. \ X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

4.
$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Задача 14.14. Приведите пример таких A и B, что $\det{(AB)} \neq \det{(BA)}$.

Ответ. Например, A = (1, 2, 3), B = (1, 0, 1)'.

Задача 14.15. Для матриц-проекторов $\pi=\vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$ и $P=X(X'X)^{-1}X'$ найдите $\mathrm{tr}(\pi),\,\mathrm{tr}(P),\,\mathrm{tr}(I-\pi),\,\mathrm{tr}(I-P).$

Ответ. $\operatorname{tr}(I) = n$, $\operatorname{tr}(\pi) = 1$, $\operatorname{tr}(P) = k$.

Задача 14.16. Выпишите в явном виде матрицы X'X, $(X'X)^{-1}$ и X'y, если

$$y = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}$$
 и $X = egin{pmatrix} 1 \ x_1 \ 1 \ x_2 \ dots \ dots \ 1 \ x_n \end{pmatrix}$

Задача 14.17. Выпишите в явном виде матрицы π , πy , $\pi \varepsilon$, $I - \pi$, если $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$.

Задача 14.18. Формула Фробениуса. Матрицу A размера (n+

$$m) imes (n+m)$$
 разрезали на 4 части: $A=egin{pmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{pmatrix}$. Кусок

 A_{11} имеет размер $n \times n$ и обратим, кусок A_{22} имеет размер $m \times m$. Известно, что A — обратима и $A^{-1} = B$. На аналогичные по размеру и расположению части разрезали матрицу

$$B = egin{pmatrix} B_{11} & B_{12} \ B_{21} & B_{22} \end{pmatrix}.$$

- 1. Каковы размеры кусков A_{12} и A_{21} ?
- 2. Чему равно $B_{22}(A_{22} A_{21}A_{11}^{-1}A_{12})$?

Ответ. $n \times m$, $m \times n$, I.

Задача 14.19. Спектральное разложение. Симметричная матрица A размера $n \times n$ имеет n собственных чисел $\lambda_1, ..., \lambda_n$ с собственными векторами $u_1, ..., u_n$. Докажите, что A можно представить в виде $A = \sum \lambda_i u_i u_i'$.

Задача 14.20. Найдите определитель, след, собственные значения, собственные векторы и число обусловленности матрицы A. Также найдите A^{-1} , $A^{-1/2}$ и $A^{1/2}$.

1.
$$A = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.1 \end{pmatrix}$$

$$2. \ A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$3. \ A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$$

$$4. \ A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

5.
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

$$6. \ A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

7.
$$A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$$

$$8. \ A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$

Задача 14.21. В этом упражнении исследуется связь определителя, следа и собственных значений. Везде имеются ввиду действительные собственные значения с учетом кратности.

- 1. Приведите пример матрицы для которой след равен сумме собственных значений.
- 2. Приведите пример матрицы для которой след не равен сумме собственных значений.
- 3. Верно ли, что для симметричной матрицы след всегда равен сумме собственных значений?
- 4. Приведите пример матрицы для которой определитель равен произведению собственных значений.
- 5. Приведите пример матрицы для которой определитель не равен произведению собственных значений.
- 6. Верно ли, что для симметричной матрицы определитель всегда равен произведению собственных значений?

Задача 15.1. Пусть $y=(y_1,y_2,y_3,y_4,y_5)'$ — случайный вектор доходностей пяти ценных бумаг. Известно, что $\mathbb{E}(y')=(5,10,20,30,40),\ \mathrm{Var}(y_1)=0,\ \mathrm{Var}(y_2)=10,\ \mathrm{Var}(y_3)=20,\ \mathrm{Var}(y_4)=40,\ \mathrm{Var}(y_5)=40$ и

$$Corr(y) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0.3 & -0.2 & 0.1 \\ 0 & 0.3 & 1 & 0.3 & -0.2 \\ 0 & -0.2 & 0.3 & 1 & 0.3 \\ 0 & 0.1 & -0.2 & 0.3 & 1 \end{pmatrix}$$

С помощью компьютера найдите ответы на вопросы:

- 1. Какая ценная бумага является безрисковой?
- 2. Найдите ковариационную матрицу Var(y)
- 3. Найдите ожидаемую доходность и дисперсию доходности портфеля, доли ценных бумаг в котором равны соответственно:
 - a) $\alpha = (0.2, 0.2, 0.2, 0.2, 0.2)'$
 - b) $\alpha = (0.0, 0.1, 0.2, 0.3, 0.4)'$
 - c) $\alpha = (0.0, 0.4, 0.3, 0.2, 0.1)'$
- 4. Составьте из данных бумаг пять некоррелированных портфелей

Задача 15.2. Пусть $i=(1,\ldots,1)'$ — вектор из n единиц, $\pi=i(i'i)^{-1}i'$ и $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)'\sim N(0,I).$

- 1. Найдите $\mathbb{E}(\varepsilon'\pi\varepsilon)$, $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$ и $\mathbb{E}(\varepsilon\varepsilon')$
- 2. Как распределены случайные величины $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$?
- 3. Запишите выражения $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$, используя знак суммы

Задача 15.3. Пусть
$$X=\begin{pmatrix}1\\2\\3\\4\end{pmatrix},\ P=X(X'X)^{-1}X',$$
 случайные

величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0,1)$.

- 1. Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \left(\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3 \ \varepsilon_4\right)'$
- 2. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- 3. При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$

Задача 15.4. Пусть $X=\begin{pmatrix}1&1\\1&2\\1&3\\1&4\end{pmatrix}$, $P=X(X'X)^{-1}X'$, случайные

величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0, 1)$.

- 1. Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \left(\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3 \ \varepsilon_4\right)'$
- 2. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- 3. При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$

Задача 15.5. Пусть
$$X=egin{pmatrix}1&0&0\\1&0&0\\1&1&0\\1&1&1\end{pmatrix},\ P=X(X'X)^{-1}X',$$
 случай-

ные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0,1)$.

- 1. Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \left(\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3 \ \varepsilon_4\right)'$.
- 2. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$.
- 3. При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$.

Задача 15.6. Пусть
$$x=\begin{pmatrix}x_1\\x_2\end{pmatrix}$$
 , $\mathbb{E}(x)=\begin{pmatrix}1\\2\end{pmatrix}$, $\mathrm{Var}(x)=\begin{pmatrix}2&1\\1&2\end{pmatrix}$.

Найдите $\mathbb{E}(y)$, $\mathrm{Var}(y)$ и $\mathbb{E}(z)$, если

- 1. $y = x \mathbb{E}(x)$
- $2. \ \ y = \operatorname{Var}(x)x$
- 3. $y = \operatorname{Var}(x)(x \mathbb{E}(x))$
- 4. $y = Var(x)^{-1}(x \mathbb{E}(x))$
- 5. $y = Var(x)^{-1/2}(x \mathbb{E}(x))$
- 6. $z = (x \mathbb{E}(x))' \operatorname{Var}(x)(x \mathbb{E}(x))$
- 7. $z = (x \mathbb{E}(x))' \operatorname{Var}(x)^{-1} (x \mathbb{E}(x))$
- 8. $z = x' \operatorname{Var}(x)x$
- 9. $z = x' \text{ Var}(x)^{-1} x$

Задача 15.7. Пусть
$$x=\begin{pmatrix}x_1\\x_2\end{pmatrix},\,\mathbb{E}(x)=\begin{pmatrix}1\\4\end{pmatrix},\,\mathrm{Var}(x)=\begin{pmatrix}4&1\\1&4\end{pmatrix}.$$

Найдите $\mathbb{E}(y)$, $\mathrm{Var}(y)$ и $\mathbb{E}(z)$, если

- 1. $y = x \mathbb{E}(x)$
- 2. y = Var(x)x
- 3. $y = \operatorname{Var}(x)(x \mathbb{E}(x))$
- 4. $y = Var(x)^{-1}(x \mathbb{E}(x))$
- 5. $y = Var(x)^{-1/2}(x \mathbb{E}(x))$
- 6. $z = (x \mathbb{E}(x))' \operatorname{Var}(x)(x \mathbb{E}(x))$
- 7. $z = (x \mathbb{E}(x))' \operatorname{Var}(x)^{-1} (x \mathbb{E}(x))$
- 8. $z = x' \operatorname{Var}(x) x$
- 9. $z = x' \operatorname{Var}(x)^{-1} x$

Глава 15. Случайные векторы

187

Задача 15.8. Известно, что случайные величины x_1 , x_2 и x_3 имеют следующие характеристики:

- 1. $\mathbb{E}(x_1) = 5$, $\mathbb{E}(x_2) = 10$, $\mathbb{E}(x_3) = 8$
- 2. $Var(x_1) = 6$, $Var(x_2) = 14$, $Var(x_3) = 1$
- 3. $Cov(x_1, x_2) = 3$, $Cov(x_1, x_3) = 1$, $Cov(x_2, x_3) = 0$

Пусть случайные величины y_1 , y_2 и y_3 , представляют собой линейные комбинации случайных величин X_1 , X_2 и X_3 :

$$y_1 = x_1 + 3x_2 - 2x_3$$

 $y_2 = 7x_1 - 4x_2 + x_3$
 $y_3 = -2x_1 - x_2 + 4x_3$

- 1. Выпишите математическое ожидание и ковариационную матрицу случайного вектора $x = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}^T$
- 2. Напишите матрицу A, которая позволяет перейти от случайного вектора $x=\left(x_1\;x_2\;x_3\right)^T$ к случайному вектору $y=\left(y_1\;y_2\;y_3\right)^T$
- 3. С помощью матрицы A найдите математическое ожидание и ковариационную матрицу случайного вектора $y = \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix}^T$

Задача 15.9. Пусть ξ_1, ξ_2, ξ_3 — случайные величины, такие что $Var(\xi_1)=2$, $Var(\xi_2)=3$, $Var(\xi_3)=4$, $Cov(\xi_1,\xi_2)=1$, $Cov(\xi_1,\xi_3)=-1$, $Cov(\xi_2,\xi_3)=0$. Пусть $\xi=\left(\xi_1\ \xi_2\ \xi_3\right)^T$. Найдите $Var(\xi)$ и $Var(\xi_1+\xi_2+\xi_3)$.

Решение. По определению ковариационной матрицы:

$$Var(\xi) = \begin{pmatrix} Var(\xi_1) & Cov(\xi_1, \xi_2) & Cov(\xi_1, \xi_3) \\ Cov(\xi_2, \xi_1) & Var(\xi_2) & Cov(\xi_2, \xi_3) \\ Cov(\xi_3, \xi_1) & Cov(\xi_3, \xi_2) & Var(\xi_3) \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix}$$

$$\operatorname{Var}(\xi_{1} + \xi_{2} + \xi_{3}) = \operatorname{Var}\left(\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{pmatrix} \right) =$$

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \operatorname{Var}\begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 9 \quad (15.1)$$

 \triangleright

Задача 15.10. Пусть
$$h=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}; \ \mathbb{E}(h)=\begin{pmatrix} 1 \\ 2 \end{pmatrix}; \ \mathrm{Var}(h)=\begin{pmatrix} 2 \ 1 \\ 1 \ 2 \end{pmatrix}; \ z_1=\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}=\begin{pmatrix} 0 \ 0 \\ 0 \ 1 \end{pmatrix}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}.$$
 Найдите $\mathbb{E}(z_1)$ и $\mathrm{Var}(z_1)$.

Решение.

$$\mathbb{E}(z_1) = \mathbb{E}\left(egin{pmatrix}0&0\0&1\end{pmatrix}egin{pmatrix}\xi_1\\xi_2\end{pmatrix}
ight) = egin{pmatrix}0&0\0&1\end{pmatrix}\mathbb{E}egin{pmatrix}\xi_1\\xi_2\end{pmatrix} =$$

рицу.

$$\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
2
\end{pmatrix} = \begin{pmatrix}
0 \\
2
\end{pmatrix} \quad (15.2)$$

$$\operatorname{Var}(z_1) = \operatorname{Var}\left(\begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix}
\operatorname{Var}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix}^T = \begin{bmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix} 2 & 1 \\
1 & 2
\end{pmatrix}
\begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix}^T = \begin{bmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix} 0 & 1 \\
0 & 1
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 2
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 2
\end{pmatrix} = \begin{pmatrix} 0 & 0 \\
0 & 2
\end{pmatrix}$$

Задача 15.11. Пусть
$$h=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix};\; \mathbb{E}(h)=\begin{pmatrix} 1 \\ 2 \end{pmatrix};\; \mathrm{Var}(h)=\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix};\; z_2=\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}+\begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$
 Найдите $\mathbb{E}(z_2)$ и $\mathrm{Var}(z_2)$

Решение.
$$\mathbb{E}(z_2)=\mathbb{E}\left(\begin{pmatrix}0&0\\0&1\end{pmatrix}\begin{pmatrix}\xi_1\\\xi_2\end{pmatrix}+\begin{pmatrix}1\\1\end{pmatrix}\right)=\begin{pmatrix}0&0\\0&1\end{pmatrix}\mathbb{E}\begin{pmatrix}\xi_1\\\xi_2\end{pmatrix}+\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}0\\0&1\end{pmatrix}\mathbb{E}\begin{pmatrix}\xi_1\\\xi_2\end{pmatrix}+\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}0\\1\end{pmatrix}+\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}1\\1\end{pmatrix}$$
 Поскольку $z_2=z_1+\begin{pmatrix}1\\1\end{pmatrix}$, где z_1 — случайный вектор из предыдущей задачи, то $\mathrm{Var}(z_2)=\mathrm{Var}(z_1)$. Сдвиг случайного вектора на вектор-константу не меняет его ковариационную мат-

 \triangleright

Задача 15.12. Пусть
$$h=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix};\; \mathbb{E}(h)=\begin{pmatrix} 1 \\ 2 \end{pmatrix};\; \mathrm{Var}(h)=\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix};\; z_3=\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}-\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}.\;$$
 Найдите $\mathbb{E}(z_3)$ и $\mathrm{Var}(z_3)$

Решение. В данном примере проиллюстрирована процедура центрирования случайного вектора — процедура вычитания из случайного вектора его математического ожидания.

$$\mathbb{E}(z_3) = \mathbb{E}\left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}\right) = \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \mathbb{E}\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Заметим, что вектор z_3 отличается от вектора z_1 (из задачи

15) сдвигом на вектор-константу
$$egin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$$
, поэтому $\mathrm{Var}(z_3) = \mathrm{Var}(z_1)$.

Глава 15. Случайные векторы

191

Задача 15.13. Пусть r_1 , r_2 и r_3 — годовые доходности трёх рисковых финансовых инструментов. Пусть α_1 , α_2 и α_3 — доли, с которыми данные инструменты входят в портфель инвестора. Считаем, что $\sum\limits_{i=1}^3 \alpha_i = 1$ и $\alpha_i \geqslant 0$ для всех i=1,2,3. Пусть $r=\left(r_1\,r_2\,r_3\right)^T$, $\mathbb{E}(r)=\left(a_1\,a_2\,a_3\right)^T$, $\mathrm{Var}(r)=\left(c_{11}\,c_{12}\,c_{13}\right)^T$, $\mathrm{E}(r)=\left(a_1\,a_2\,a_3\right)^T$, $\mathrm{Var}(r)=\left(c_{11}\,c_{12}\,c_{13}\right)^T$. Параметры $\{a_i\}$ и $\{c_i\}$ известны.

- 1. Найдите годовую доходность портфеля П инвестора
- 2. Докажите, что дисперсия доходности портфеля Π равна $\sum_{i=1}^3 \sum_{j=1}^3 \alpha_i c_{ij} \alpha_j$
- 3. Для случая $lpha_1=0.1,\,lpha_2=0.5,\,lpha_3=0.4,\,\mathbb{E}(r)=\left(a_1\;a_2\;a_3
 ight)^T=\left(0.10\;0.06\;0.05
 ight)^T,$

$$Var(r) = \begin{pmatrix} 0.04 & 0 & -0.005 \\ 0 & 0.01 & 0 \\ -0.005 & 0 & 0.0025 \end{pmatrix}$$

найдите $\mathbb{E}(\Pi)$ и $Var(\Pi)$

Задача 15.14. Пусть
$$h=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix};\; \mathbb{E}(h)=\begin{pmatrix} 1 \\ 2 \end{pmatrix};\; \mathrm{Var}(h)=\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix};\; z_3=\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}-\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix};\; z_4=\mathrm{Var}(h)^{-1/2}z_3.$$
 Найдите $\mathbb{E}(z_4)$ и $\mathrm{Var}(z_4)$

Задача 15.15. Пусть
$$h=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix};\; \mathbb{E}(h)=\begin{pmatrix} 1 \\ 2 \end{pmatrix};\; \mathrm{Var}(h)=\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix};\; z_3=\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}-\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix};\; z_4=\mathrm{Var}(h)^{-1/2}z_3.$$
 Найдите $\mathbb{E}(z_4)$ и $\mathrm{Var}(z_4)$

Задача 15.16. Случайные величины w_1 и w_2 независимы с нулевым ожиданием и единичной дисперсией. Из них состав-

лено два вектора,
$$w=\left(egin{array}{c} w_1 \\ w_2 \end{array}
ight)$$
 и $z=\left(egin{array}{c} -w_2 \\ w_1 \end{array}
ight)$

- 1. Являются ли векторы w и z перпендикулярными?
- 2. Найдите $\mathbb{E}(w)$, $\mathbb{E}(z)$
- 3. Найдите Var(w), Var(z), Cov(w, z)

Задача 15.17. Есть случайный вектор $w = (w_1, w_2, \dots, w_n)'$.

- 1. Возможно ли, что E(w) = 0 и $\sum w_i = 0$?
- 2. Возможно ли, что $E(w) \neq 0$ и $\sum w_i = 0$?
- 3. Возможно ли, что E(w) = 0 и $\sum w_i \neq 0$?
- 4. Возможно ли, что $E(w) \neq 0$ и $\sum w_i \neq 0$?

Ответ. Каждый из вариантов возможен.

Задача 15.18. Известна ковариационная матрица вектора $\varepsilon = (\varepsilon_1, \varepsilon_2),$

$$Var(\varepsilon) = \begin{pmatrix} 9 & -1 \\ -1 & 9 \end{pmatrix}$$

Найдите четыре различных матрицы A, таких что вектор $v=A\varepsilon$ имеет некоррелированные компоненты с единичной дисперсией, то есть $\mathrm{Var}(A\varepsilon)=I$.

Глава 16

Многомерное нормальное распределение

Задача 16.1. Пусть $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)' \sim N(0, I)$ и матрица A представлена ниже. Найдите $\mathbb{E}(\varepsilon' A \varepsilon)$ и распределение случайной величины $\varepsilon' A \varepsilon$.

1.
$$\begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix}$$

2.
$$\begin{pmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1/3 & 1/3 & -1/3 \\ 1/3 & 1/3 & -1/3 \\ -1/3 & -1/3 & 1/3 \end{pmatrix}$$

4.
$$\begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

$$5. \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

$$(1/2, 0-1/2)$$

Задача 16.2. Пусть $i=(1,\ldots,1)'$ — вектор из n единиц, $\pi=i(i'i)^{-1}i'$ и $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)'\sim N(0,I).$

- 1. Найдите $\mathbb{E}(\varepsilon'\pi\varepsilon)$, $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$ и $\mathbb{E}(\varepsilon\varepsilon')$
- 2. Как распределены случайные величины $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$?
- 3. Запишите выражения $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$, используя знак суммы

Задача 16.3.

Пусть
$$X=egin{pmatrix}1\\2\\3\\4\end{pmatrix},\ P=X(X'X)^{-1}X',$$
 случайные величины

 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0, 1)$.

- 1. Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \left(\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3 \ \varepsilon_4\right)'$
- 2. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- 3. При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$

Задача 16.4. Пусть $X=\begin{pmatrix}1&1\\1&2\\1&3\\1&4\end{pmatrix}$, $P=X(X'X)^{-1}X'$, случайные

величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0,1)$.

- 1. Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \left(\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3 \ \varepsilon_4\right)'$
- 2. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- 3. При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$

Задача 16.5. Пусть $X=egin{pmatrix}1&0&0\\1&0&0\\1&1&0\\1&1&1\end{pmatrix},\ P=X(X'X)^{-1}X',$ случай-

ные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0,1)$.

- 1. Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \left(\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3 \ \varepsilon_4\right)'$.
- 2. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$.
- 3. При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$.

Задача 16.6. Пусть $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)' \sim N(0, I)$. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$ и распределение случайной величины $\varepsilon' P \varepsilon$, если $P = X(X'X)^{-1}X$ и матрица X' представлена ниже.

- 1. (111)
- 2. (1 2 3)
- 3. $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- $4. \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$
- $5. \quad \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Задача 16.7. Пусть $arepsilon=egin{pmatrix} arepsilon_1 \ arepsilon_2 \ arepsilon_3 \end{pmatrix}\sim N(0,\sigma^2I),\ i=(1,\dots,1)'$

вектор из n единиц, $\pi=i(i'i)^{-1}i'$, X — матрица размера $n\times k$, $P=X(X'X)^{-1}X'$. Найдите:

- 1. $\mathbb{E}(\varepsilon'(P-\pi)\varepsilon)$
- 2. $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$
- 3. $\mathbb{E}(\varepsilon' P \varepsilon)$
- 4. $\mathbb{E}(\sum_{i=1}^{n} (\varepsilon_i \bar{\varepsilon})^2)$

Задача 16.8. Пусть
$$\varepsilon=(\varepsilon_1,\varepsilon_2,\varepsilon_3)'\sim N(0,4I),\ A=\begin{pmatrix} 4\ 1\ 1 \\ 1\ 3\ 1 \\ 1\ 1\ 2 \end{pmatrix}.$$

Найдите:

- 1. $\mathbb{E}(\varepsilon' A \varepsilon)$
- 2. $\mathbb{E}(\varepsilon'(I-A)\varepsilon)$

Задача 16.9. Пусть $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ — случайный вектор, имеющий двумерное нормальное распределение с математическим

ожиданием $\mu = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ и ковариационной матрицей $\Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

- 1. Найдите Σ^{-1}
- 2. Найдите $\Sigma^{-1/2}$
- 3. Найдите математическое ожидание и ковариационную матрицу случайного вектора $y = \Sigma^{-1/2} \cdot (x \mu)$
- 4. Какое распределение имеет вектор y из предыдущего пункта?
- 5. Найдите распределение случайной величины $q=(x-\mu)^T\cdot \Sigma^{-1}\cdot (x-\mu)$

Задача 16.10. Пусть
$$z=\begin{bmatrix}z_1 & z_2 & z_3\end{bmatrix}^T \sim N(0,I_{3x3}),\, b=\begin{bmatrix}1 & 2 & 3\end{bmatrix}^T,$$
 $A=\begin{bmatrix}1 & 1 & 1\\0 & 1 & 1\\0 & 0 & 1\end{bmatrix},\, K=\begin{bmatrix}1 & 0 & 0\\0 & 1/2 & 1/2\\0 & 1/2 & 1/2\end{bmatrix}.$

- 1. Найдите $\mathbb{E} x$ и $\mathrm{Var}(x)$ случайного вектора $x = A \cdot z + b$
- 2. Найдите распределение случайного вектора x
- 3. Найдите $\mathbb{E}q$ случайной величины $q=z^T\cdot K\cdot z$
- 4. Найдите распределение случайной величины q

Задача 16.11. Известно, что $\varepsilon \sim N(0,I), \ \varepsilon = (\varepsilon_1,\varepsilon_2,\varepsilon_3)'.$

Матрица
$$A = \begin{pmatrix} 2/3 & -1/3 - 1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{pmatrix}$$
.

- 1. Найдите $\mathbb{E}(\varepsilon' A \varepsilon)$
- 2. Как распределена случайная величина $\varepsilon' A \varepsilon$?

Ответ. По χ^2 -распределению.

Задача 16.12. Известно, что $\varepsilon \sim N(0,A), \ \varepsilon = (\varepsilon_1,\varepsilon_2)'$. Мат-

рица
$$A=\begin{pmatrix}4&1\\1&4\end{pmatrix}$$
, матрица $B=\begin{pmatrix}-1&3\\2&1\end{pmatrix}$

- 1. Как распределен вектор $h = B\varepsilon$?
- 2. Найдите $A^{-1/2}$
- 3. Как распределен вектор $u = A^{-1/2} \varepsilon$?

Ответ. $u \sim N(0, I)$.

Глава 17

Задачи по программированию

Все наборы данных доступны по ссылке https://github.com/ bdemeshev/em301/wiki/Datasets.

Задача 17.1. Начиная с какого знака в числе $\pi = 3.1415\dots$ можно обнаружить твой номер телефона? Первый 10 миллионов знаков числа π можно найти на сайте http://code.google.com/p/pc2012grupo-18-turma-b/downloads/list. Если не хватает, то миллиард знаков, файл размера примерно в 1 гигабайт, доступен по ссылке http://stuff.mit.edu/afs/sipb/contrib/pi/. Настоящие челябинцы рассчитывают π самостоятельно. Краткая история о том, как маньяки считали π до 10 миллиардов знаков и потеряли полгода из-за сбоев компьютерного железа, http://www.numberword.org/misc_runs/pi-10t/details.html.

Задача 17.2. Отряд Иосифа Флавия из 40 воинов, защищающий город Йодфат, блокирован в пещере превосходящими силам римлян. Чтобы не сдаться врагу, воины стали по кругу и договорились, что сами будут убивать каждого третьего, пока не погибнут все. При этом двое воинов, оставшихся последними в живых, должны были убить друг друга. Хитренький Иосиф Флавий, командующий этим отрядом, хочет определить, где нужно встать ему и его товарищу, чтобы остаться последними. Не для того, чтобы убить друг друга, а чтобы сдать крепость римлянам. Напишите программу, которая для n воинов вставших в круг определяет, какие двое останутся последними, если будут убивать каждого k-го.

Задача 17.3. Напишите программу, которая печатает сама се-

Верст.: Окружить задачу

Задача 17.4. Задача Макар-Лиманова. У торговца 55 пустых ста- shadowbox-ом канчиков, разложенных в несколько стопок. Пока нет покупателей он развлекается: берет верхний стаканчик из каждой стопки и формирует из них новую стопку. Потом снова берет верхний стаканчик из каждой стопки и формирует из них новую стопку и т.д.

1. Напишите функцию makar_step. На вход функции подаётся вектор количества стаканчиков в каждой стопке до перекладывания. На выходе функция возвращает количества стаканчиков в каждой стопке после одного перекладывания.

2. Изначально стаканчики были разложены в две стопки, из 25 и 30 стаканчиков. Как разложатся стаканчики если покупателей не будет достаточно долго?

Задача 17.5. Напишите программу, которая находит сумму элементов побочной диагонали квадратной матрицы.

Задача 17.6. Напишите функцию, которая по матрице X и вектору y для модели $Y = X\beta + \varepsilon$ вычисляет значение статистики Дарбина-Уотсона.

Задача 17.7. Напишите функцию, которая по матрице X и вектору y для модели $Y = X\beta + \varepsilon$ вычисляет оценки дисперсии коэффициентов, скорректированные на гетероскедастичность по формуле Уайта

Глава 17. Задачи по программированию

$$\widehat{\operatorname{Var}}_{White}(\widehat{eta}_j) = rac{\sum\limits_{i=1}^n \widehat{arepsilon}_i^2 \widehat{u}_{ij}^2}{RSS_i},$$

где \widehat{u}_{ij} — остатки в линейной регрессии фактора x_j на остальные регрессоры, а RSS_j — сумма квадратов остатков в этой регрессионной модели.

Задача 17.8. Напишите функцию, которая по матрице X и вектору y для модели $Y = X\beta + \varepsilon$ вычисляет оценки ковариационной матрицы коэффициентов, скорректированную на гетероскедастичность по формуле Уайта:

$$\widehat{\operatorname{Var}}_{White}(\widehat{\beta}_{OLS}) = (X'X)^{-1} \left(\sum_{i=1}^{n} \widehat{\varepsilon}_{i}^{2} X'_{i} X_{i} \right) (X'X)^{-1},$$

где $X_{i\cdot}$ — i-ая строка матрицы X.

Задача 17.9. Напишите программу, которая по заданной матрице регрессоров X возвращает матрицу Z, столбцами которой являются все столбцы матрицы X, «квадраты» столбцов матрицы X, а также перекрестные «произведения» столбцов матрицы X.

Задача 17.10. Напишите функцию, которая по матрице X и вектору y возвращает значение статистики Уайта.

Задача 17.11. Напишите функцию, которая по матрице X, вектору y и уровню значимости реализует тест Уайта.

Задача 17.12. Напишите функцию, которая по матрице X, вектору y и количеству лагов L находит оценку ковариационной матрицу коэффициентов, скорректированную на гетероскедастичность и автокорреляцию по формуле Невье-Веста:

$$\widehat{\operatorname{Var}}_{NW}(\widehat{\beta}_{OLS}) = (X'X)^{-1}\widehat{S}(X'X)^{-1},$$

гле

$$\widehat{S} = \sum_{t=1}^n \widehat{arepsilon}_t^2 X_{t\cdot}' X_{t\cdot} + \sum_{j=1}^L w_j \left(\sum_{t=j+1}^n \widehat{arepsilon}_t \widehat{arepsilon}_t \widehat{arepsilon}_{t-j} (X_{t\cdot}' X_{t-j\cdot} + X_{t-j\cdot}' X_{t\cdot})
ight),$$

где ε_t — остатки в регрессии $y=X\beta+\varepsilon$, а X_t — строка номер t матрицы X. Напишите две версии данной функции, для разных способов рассчета весов w_i :

1.
$$w_j = 1 - j/L$$

2

$$w_j = egin{cases} 1 - rac{6j^2}{(1+L)^2} + rac{6j^3}{(1+L)^3}, \; ext{если} \; j \leqslant (1+L)/2 \ 2\left(1 - rac{j}{1+L}
ight)^2, \; ext{если} \; j > (1+L)/2 \end{cases}$$

Глава 18

Устав проверки гипотез

- 1. Условия применимости теста
- 2. Формулировка H_0 , H_a и уровня значимости α
- 3. Формула расчета и наблюдаемое значения статистики, S_{obs}
- 4. Закон распределения S_{obs} при верной H_0
- 5. Область в которой H_0 не отвергается
- 6. Точное Р-значение
- 7. Статистический вывод о том, отвергается ли H_0 или нет.

В качестве статистического вывода допускается только одна из двух фраз:

- Гипотеза H_0 отвергается
- Гипотеза H_0 не отвергается Остальные фразы считаются неуставными.

Глава 19

Таблицы

Таблицы с разрешения автора взяты со страницы http://www.york.ac.uk/depts/maths/tables/sources.htm

	Нормальное распределение	Хи-квадрат распределение
x	0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09	ν 0.1% 0.5% 1.0% 2.5% 5.0% 10.0% 12.5% 20.0% 25.0% 33.3% 50.0%
0.0	0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359	1 0.000 0.000 0.000 0.001 0.004 0.016 0.025 0.064 0.102 0.186 0.455
0.1	0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753	2 0.002 0.010 0.020 0.051 0.103 0.211 0.267 0.446 0.575 0.811 1.386
0.2	0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141	3 0.024 0.072 0.115 0.216 0.352 0.584 0.692 1.005 1.213 1.568 2.366
0.3	0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517	4 0.091 0.207 0.297 0.484 0.711 1.064 1.219 1.649 1.923 2.378 3.357
0.4	0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879	5 0.210 0.412 0.554 0.831 1.145 1.610 1.808 2.343 2.675 3.216 4.351
0.5	0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224	6 0.381 0.676 0.872 1.237 1.635 2.204 2.441 3.070 3.455 4.074 5.348
0.6	0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549	7 0.598 0.989 1.239 1.690 2.167 2.833 3.106 3.822 4.255 4.945 6.346
0.7	0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852	8 0.857 1.344 1.646 2.180 2.733 3.490 3.797 4.594 5.071 5.826 7.344
0.8	0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133	9 1.152 1.735 2.088 2.700 3.325 4.168 4.507 5.380 5.899 6.716 8.343
0.9	0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389	10 1.479 2.156 2.558 3.247 3.940 4.865 5.234 6.179 6.737 7.612 9.342
1.0	0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621	11 1.834 2.603 3.053 3.816 4.575 5.578 5.975 6.989 7.584 8.514 10.341
1.1	$0.8643\ 0.8665\ 0.8686\ 0.8708\ 0.8729\ 0.8749\ 0.8770\ 0.8790\ 0.8810\ 0.8830$	12 2.214 3.074 3.571 4.404 5.226 6.304 6.729 7.807 8.438 9.420 11.340
1.2	0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015	13 2.617 3.565 4.107 5.009 5.892 7.042 7.493 8.634 9.299 10.331 12.340
1.3	0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177	14 3.041 4.075 4.660 5.629 6.571 7.790 8.266 9.467 10.165 11.245 13.339
1.4	0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319	15 3.483 4.601 5.229 6.262 7.261 8.547 9.048 10.307 11.037 12.163 14.339
1.5	0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441	16 3.942 5.142 5.812 6.908 7.962 9.312 9.837 11.152 11.912 13.083 15.338
1.6	0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545	17 4.416 5.697 6.408 7.564 8.672 10.085 10.633 12.002 12.792 14.006 16.338
1.7	0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633	18 4.905 6.265 7.015 8.231 9.390 10.865 11.435 12.857 13.675 14.931 17.338
1.8	0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706	19 5.407 6.844 7.633 8.907 10.117 11.651 12.242 13.716 14.562 15.859 18.338
1.9	0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767	20 5.921 7.434 8.260 9.591 10.851 12.443 13.055 14.578 15.452 16.788 19.337
2.0	0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817	21 6.447 8.034 8.897 10.283 11.591 13.240 13.873 15.445 16.344 17.720 20.337
2.1	0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857	22 6.983 8.643 9.542 10.982 12.338 14.041 14.695 16.314 17.240 18.653 21.337

Хи-квадрат распределение

Распределение Стьюдента, t

ν 60.0% 66.7% 75.0% 80.0% 87.5% 90.0% 95.0% 97.5% 99.0% 99.5% 99.9%	$\nu = 60.0\% 66.7\% 75.0\% 80.0\% 87.5\% 90.0\% 95.0\% 97.5\% 99.0\% 99.5\% 99.9\%$
1 0.708 0.936 1.323 1.642 2.354 2.706 3.841 5.024 6.635 7.879 10.828	1 0.325 0.577 1.000 1.376 2.414 3.078 6.31412.70631.82163.657318.31
2 1.833 2.197 2.773 3.219 4.159 4.605 5.991 7.378 9.210 10.597 13.816	2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327
3 2.946 3.405 4.108 4.642 5.739 6.251 7.815 9.348 11.345 12.838 16.266	3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215
4 4.045 4.579 5.385 5.989 7.214 7.779 9.488 11.143 13.277 14.860 18.467	4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173
5 5.132 5.730 6.626 7.289 8.625 9.236 11.070 12.833 15.086 16.750 20.515	5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893
6 6.211 6.867 7.841 8.558 9.992 10.645 12.592 14.449 16.812 18.548 22.458	6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208
7 7.283 7.992 9.037 9.803 11.326 12.017 14.067 16.013 18.475 20.278 24.322	7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785
8 8.351 9.107 10.219 11.030 12.636 13.362 15.507 17.535 20.090 21.955 26.125	8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501
9 9.414 10.215 11.389 12.242 13.926 14.684 16.919 19.023 21.666 23.589 27.877	9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297
10 10.473 11.317 12.549 13.442 15.198 15.987 18.307 20.483 23.209 25.188 29.588	10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144
11 11.530 12.414 13.701 14.631 16.457 17.275 19.675 21.920 24.725 26.757 31.264	11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025
12 12.584 13.506 14.845 15.812 17.703 18.549 21.026 23.337 26.217 28.300 32.910	12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930
13 13.636 14.595 15.984 16.985 18.939 19.812 22.362 24.736 27.688 29.819 34.528	13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852
14 14.685 15.680 17.117 18.151 20.166 21.064 23.685 26.119 29.141 31.319 36.123	14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787
15 15.733 16.761 18.245 19.311 21.384 22.307 24.996 27.488 30.578 32.801 37.697	15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733
16 16.780 17.840 19.369 20.465 22.595 23.542 26.296 28.845 32.000 34.267 39.252	16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686
17 17.824 18.917 20.489 21.615 23.799 24.769 27.587 30.191 33.409 35.718 40.790	17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646
18 18.868 19.991 21.605 22.760 24.997 25.989 28.869 31.526 34.805 37.156 42.312	18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610
19 19.910 21.063 22.718 23.900 26.189 27.204 30.144 32.852 36.191 38.582 43.820	19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579
20 20.951 22.133 23.828 25.038 27.376 28.412 31.410 34.170 37.566 39.997 45.315	20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552
21 21.991 23.201 24.935 26.171 28.559 29.615 32.671 35.479 38.932 41.401 46.797	21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527
22 23.031 24.268 26.039 27.301 29.737 30.813 33.924 36.781 40.289 42.796 48.268	22
22 23.031 24.200 20.037 21.301 27.131 30.013 33.724 30./01 40.207 42./70 40.200	22 0.230 0.437 0.000 0.030 1.102 1.321 1.717 2.074 2.300 2.019 3.303

1.11 1.20 1.24 1.27 1.29 1.30 1.31 1.32 1.33 1.34 1.34 1.35 1.36 1.37

0.600

0.98 1.06 1.09 1.11 1.13 1.13 1.14 1.15 1.15 1.16 1.16 1.16 1.17 1.17

0.600

	Распределение Фишера, F											Распределение Фишера, F																			
$ u_2ackslash u_l$		2 3	4	5	6	7	8	10	12	15	20	30	50	∞	$ u_{i}$	$_2ackslash u_l$		2	3	4	5	6	7	8	10	12	15	20	30	50	∞
	q																q														
18	0.500	0.72 0.82	0.87	0.90	0.93	0.94	0.95	0.97	0.98	0.99	1.00	1.02	1.02	1.04		27	0.500	0.71	0.81	0.86	0.89	0.91	0.93	0.94	0.96	0.97	0.ga	0.99	1.00	1.01	1.03
	0.600	0.96 1.04	1.07	1.09	1.10	1.11	1.11	1.12	1.12	1.13	1.13	1.13	1.13	1.13			0.600	0.95	1.02	1.05	1.07	1.08	1.08	1.09	1.10	1.10	1.10	1.10	1.10	1.10	1.10
	0.667	1.17 1.21	1.23	1.24	1.24	1.24	1.24	1.24	1.23	1.23	1.23	1.22	1.22	1.21			0.667	1.14	1.19	1.20	1.21	1.21	1.21	1.20	1.20	1.20	1.19	1.19	1.18	1.17	1.16
	0.750	1.50 1.49	1.48	1.46	1.45	1.44	1.43	1.42	1.40	1.39	1.38	1.36	1.34	1.32			0.750	1.46	1.45	1.43	1.42	1.40	1.39	1.38	1.36	1.35	1.33	1.32	1.30	1.28	1.24
	0.800	1.76 1.71	1.67	1.64	1.62	1.60	1.58	1.55	1.53	1.51	1.49	1.46	1.44	1.40			0.800	1.71	1.66	1.61	1.58	1.55	1.53	1.51	1.48	1.46	1.44	1.41	1.3a	1.35	1.30
19	0.500	0.72 0.82	0.87	0.90	0.92	0.94	0.95	0.97	0.98	0.99	1.00	1.01	1.02	1.04		28	0.500	0.71	0.81	0.86	0.89	0.91	0.93	0.94	0.96	0.97	0.98	0.99	1.00	1.01	1.02
	0.600	0.96 1.03	3 1.07	1.09	1.10	1.10	1.11	1.12	1.12	1.12	1.13	1.13	1.13	1.13			0.600	0.95	1.02	1.05	1.07	1.08	1.08	1.09	1.09	1.10	1.10	1.10	1.10	1.10	1.10
	0.667	1.16 1.21	1.22	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.22	1.22	1.21	1.20			0.667	1.14	1.18	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.19	1.19	1.18	1.17	1.15
	0.750	1.49 1.49	1.47	1.46	1.44	1.43	1.42	1.41	1.40	1.38	1.37	1.35	1.33	1.30			0.750	1.46	1.45	1.43	1.41	1.40	1.39	1.38	1.36	1.34	1.33	1.31	1.29	1.27	1.24
	0.800	1.75 1.70	1.66	1.63	1.61	1.58	1.57	1.54	1.52	1.50	1.48	1.45	1.43	1.39			0.800	1.71	1.65	1.61	1.57	1.55	1.52	1.51	1.48	1.46	1.43	1.41	1.37	1.35	1.30
20	0.500	0.72 0.82	0.87	0.90	0.92	0.94	0.95	0.97	0.98	0.99	1.00	1.01	1.02	1.03		29	0.500	0.71	0.81	0.86	0.89	0.91	0.93	0.94	0.96	0.97	0.98	0.99	1.00	1.01	1.02
	0.600	0.96 1.03	3 1.06	1.08	1.09	1.10	1.11	1.11	1.12	1.12	1.12	1.12	1.12	1.12			0.600	0.95	1.02	1.05	1.06	1.08	1.08	1.09	1.09	1.10	1.10	1.10	1.10	1.10	1.10
	0.667	1.16 1.21	1.22	1.23	1.23	1.23	1.23	1.23	1.22	1.22	1.22	1.21	1.20	1.19			0.667	1.14	1.18	1.20	1.20	1.20	1.20	1.20	1.20	1.19	1.19	1.18	1.17	1.17	1.15
	0.750	1.49 1.48	3 1.47	1.45	1.44	1.43	1.42	1.40	1.39	1.37	1.36	1.34	1.32	1.29			0.750	1.45	1.45	1.43	1.41	1.40	1.38	1.37	1.35	1.34	1.32	1.31	1.29	1.27	1.23
	0.800	1.75 1.70	1.65	1.62	1.60	1.58	1.56	1.53	1.51	1.49	1.47	1.44	1.41	1.37			0.800	1.70	1.65	1.60	1.57	1.54	1.52	1.50	1.47	1.45	1.43	1.40	1.37	1.34	1.29
21	0.500	0.72 0.81														30	0.500								0.96						
	0.600	0.96 1.03														20	0.600								1.09						
	0.667	1.16 1.20															0.667								1.19						
	0.750	1.48 1.48															0.750								1.35						
	0.800	1.74 1.69															0.800								1.47						
22	0.500	0.72 0.81	0.87	0.90	0.92	0.93	0.95	0.96	0.97	0.99	1.00	1.01	1.02	1.03		60	0.500	0.70	0.80	0.85	0.88	0.90	0.92	0.93	0.94	0.96	0.97	0.98	0.99	1.00	1.01
	0.600	0.96 1.03	1.06	1.08	1.09	1.10	1.10	1.11	1.11	1.11	1.12	1.12	1.12	1.12			0.600	0.93	1.00	1.03	1.04	1.05	1.06	1.06	1.07	1.07	1.07	1.07	1.07	1.07	1.06

Глава 19. Таблицы

213

		Распределение Фишера, F										Распределение Фишера, F																		
$ u_2 ackslash u_l$		2 3	4	5	6	7	8	10	12	15	20	30	50	∞	$ u_2ackslash u_l$		2	3	4	5	6	7	8	10	12	15	20	30	50	∞
	q															q														
1	0.900	49.5 53.	6 55.8	57.2	58.2	59.1	59.7	60.5	61.0	61.5	62.0	62.6	63.0	63.3	9	0.900	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.42	2.38	2.34	2.30	2.25	2.22	2.16
	0.950	199. 216	5. 225.	230.	234.	237.	239.	242.	244.	246.	248.	250.	252.	254.		0.950	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.14	3.07	3.01	2.94	2.86	2.80	2.71
	0.975	800. 864	. 900.	922.	937.	948.	957.	969.	977.	985.	993.					0.975	5.71	5.08	4.72	4.48	4.32	4.20	4.10	3.96	3.87	3.77	3.67	3.56	3.47	3.33
	0.990															0.990	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.26	5.11	4.96	4.81	4.65	4.52	4.31
	0.999															0.999	16.4	13.9	12.6	11.7	11.1	10.7	10.4	9.89	9.57	9.24	8.90	8.55	8.26	7.81
2	0.900	9.00 9.1	6 9.24	9.29	9.33	9.35	9.37	9.39	9.41	9.43	9.44	9.46	9.47	9.49	10	0.900	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.32	2.28	2.24	2.20	2.16	2.12	2.06
	0.950	19.0 19.	2 19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5		0.950	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.98	2.91	2.84	2.77	2.70	2.64	2.54
	0.975	39.0 39.	2 39.2	39.3	39.3	39.4	39.4	39.4	39.4	39.4	39.4	39.5	39.5	39.5		0.975	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.72	3.62	3.52	3.42	3.31	3.22	3.08
	0.990	99.0 99.	2 99.2	99.3	99.3	99.4	100.	100.	100.	100.	100.	100.	100.	99.5		0.990	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.85	4.71	4.56	4.41	4.25	4.11	3.91
	0.999	999. 999).													0.999	14.9	12.6	11.3	10.5	9.93	9.52	9.20	8.75	8.45	8.13	7.80	7.47	7.19	6.76
3	0.900	5.46 5.3	9 5.34	5.31	5.28	5.27	5.25	5.23	5.22	5.20	5.18	5.17	5.15	5.13	11	0.900	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.25	2.21	2.17	2.12	2.08	2.04	1.97
	0.950	9.55 9.2	8 9.12	9.01	8.94	8.89	8.85	8.79	8.74	8.70	8.66	8.62	8.58	8.53		0.950	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.85	2.79	2.72	2.65	2.57	2.51	2.40
	0.975	16.0 15.														0.975											3.23			
	0.990	30.8 29.														0.990											4.10			
	0.999	149. 141														0.999											7.01			
4	0.999														12	0.999														
4		4.32 4.15													12												2.06			
	0.950	6.94 6.5														0.950											2.54			
	0.975	10.6 9.9														0.975											3.07			
	0.990	18.0 16.	7 16.0	15.5	15.2	15.0	14.8	14.5	14.4	14.2	14.0	13.8	13.7	13.5		0.990	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.30	4.16	4.01	3.86	3.70	3.57	3.36
	0.999	61.2 56.	2 53.4	51.7	50.5	49.7	49.0	48.0	47.4	46.8	46.1	45.4	44.9	44.1		0.999	13.0	10.8	9.63	8.89	8.38	8.00	7.71	7.29	7.00	6.71	6.40	6.09	5.83	5.42
5	0.900	3.78 3.6	2 3.52	3.45	3.40	3.37	3.34	3.30	3.27	3.24	3.21	3.17	3.15	3.10	13	0.900	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.14	2.10	2.05	2.01	1.96	1.92	1.85
	0.950	5.79 5.4	1 5.19	5.05	4.95	4.88	4.82	4.74	4.68	4.62	4.56	4.50	4.44	4.36		0.950	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.67	2.60	2.53	2.46	2.38	2.31	2.21

3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.30 2.23 2.15 2.07 1.98 1.91 1.78

3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.27 2.17 2.06 1.94 1.82 1.70 1.48

«"'...'"» Основной шрифт текста — unewton