

Linux Network Servers

Objetivos:

- Introdução Teórica;
- Conhecer a infraestrutura da empresa;
- Conhecer os tipos de tabelas do Iptables;
- Compreendendo as políticas e as exceções;
- Implementação prática com Script de Firewall.

Introdução ao Firewall

Um firewall faz o filtro de pacotes que passam na rede. Para configurar um firewall é necessário o conhecimento sobre a estrutura da rede em questão e dos diferentes protocolos envolvidos na comunicação, isto é, dos serviços que a rede usa para que eles não percam a comunicação. O objetivo em ter uma máquina fazendo o papel de Firewall Gateway em nossa é rede é minimizar as tentativas de ataques que elas recebem, tentando impedir possíveis invasões e levantamento de informações.

Tipos de Tabelas

- Filter
- Nat
- Mangle
- Raw

Para listar as "chains" que cada tabela possui use a sinxtaxe:

iptables -L -t <tabela>

Tipos de Chain

Uma chain é local onde vão ser definidas as regras para o nosso firewall. Cada Tabela possui suas CHAINS.

Chais da tabela Filter:

INPUT – Regras de entrada de pacotes;

OUTPUT – Regras de saída de pacotes;

FORWARD – Regras de passagem de pacotes pelo firewall.

Tipos de Chain

Chais da tabela NAT:

PREROUTING – Regras que serão processadas antes do roteamento dos pacotes nas interfaces do firewall;

POSTROUTING – Regras que serão processadas pós roteamento dos pacotes nas interfaces do firewall;

OUTPUT – Regras de saída de pacotes.

Compreendendo as políticas e as exceções

Políticas básicas:

Negar todo o tráfego para as "chains"de "INPUT", "OUTPUT"
 e "FORWARD".

• Exceções:

 Definir a relação dos serviços que devem ser liberados no "Firewall".

Controles:

 O que não for oficialmente permitido já está expressa e previamente negado.

SIntaxe do Iptables

A sintaxe do comando iptables:

iptables [-t tabela] [opção] [chain] [dados] -j [alvo]

Exemplo para compartilhar a internet:

Iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Parâmetros e alvos do Iptables

	Parâmetros	Descrição
-P	policy	Estabelece a politica de acesso de uma chain.
-t	table	Seleciona uma tabela
-A	append	Adiciona como ultima regra da sequencia de uma chain
-I	insert	Insere como primeira regra da sequencia de uma chain
-N	new-chain	Cria uma nova chain
-D	delete	Remove uma regra
-X	delete-chain	Elimina todas as regras presentes em chains de usuário
-F	flush	Elimina todas as regras presentes em uma chain padrão
-s	-source	Determina a origem do pacote
-d	destination	Determina o destino do pacote

Parâmetros e alvos do Iptables

sport	source-port	Define a porta de origem
-i	in-interface	Define a interface de entrada
-O	out-interface	Define a interface de saida
-p	protocol	Seleciona o protocolo (tcp, udp, icmp)
Alv	o (target)	Descrição
ACCEPT		O pacote é aceito
REJECT		O pacote é rejeitado imediatamento
DROP		O pacote é negado silenciosamente

Implementação prática com script de Firewall

1 – Antes de começar o script, ative de forma permanente o repasse de pacotes entre as interfaces de rede:

vim +28 /etc/sysctl.conf

net.ipv4.ip_forward=1

sysctl -p

2 – Adicione um cabeçalho para inicialização durante o boot, e permissão de execução ao script de Firewall:

head /etc/init.d/ssh > /etc/init.d/firewall

chmod u+x /etc/init.d/firewall; vim /etc/init.d/firewall

Implementação prática com script de Firewall

3 – Abra o script e após o cabeçalho, declare as variáveis

ALL="0:65535"

PA="1024:65535"

LAN="192.168.200.0/24"

LANVPN="10.0.0.0/24"

WAN1="200.100.50.99"

WAN2=\$(ifconfig eth1 | grep "inet end.:" | awk -F" " '{print \$3 }')

FW="192.168.200.1"

DC="192.168.200.2"

DMZ="192.168.200.3"

STORAGE="192.168.200.4"

AUDIT="192.168.200.5"

Implementação prática com script de Firewall

4 – Após as variáveis continue a construção do script:

case \$1 in

stop)

politicas que aceitam qualquer tipo de conexão

iptables -P OUTPUT ACCEPT

iptables -P INPUT ACCEPT

iptables -P FORWARD ACCEPT

limpar as regras das tabelas nat e filter

iptables -t nat -F

Implementação prática com script de Firewall

```
iptables -t filter -F
,,
start)
# politicas que bloqueiam qualquer tipo de conexão
iptables -P OUTPUT DROP
iptables -P INPUT DROP
iptables -P FORWARD DROP
,,
```


Implementação prática com script de Firewall

```
restart)
$0 stop
sleep 0.5
$0 start
*)
echo 'POR FAVOR USE "stop|start|restart"
,,
esac
```


Testando a primeira parte do script de Firewall

Liste as regras da tabela Filter:

iptables -nL

Execute o script para aplicar as regras de bloqueio:

service firewall start

Liste novamente as regras:

iptables -nL

Execute o script para aplicar as regras de acesso:

service firewall stop

Criando a segunda parte do script de Firewall

1 – Abra o script e adicione novas regras no final da seção "start"

permite que a maquina FIREWALL ping a loopback

iptables -A OUTPUT -p icmp -d 0/0 -j ACCEPT

iptables -A INPUT -p icmp -d 127.0.0.1 -j ACCEPT

permite que a maquina FIREWALL ping para o resto do mundo

iptables -A INPUT -p icmp -d \$WAN1 -j ACCEPT

iptables -A INPUT -p icmp -d \$WAN2 -j ACCEPT

iptables -A INPUT -p icmp -d \$FW -j ACCEPT

Criando a segunda parte do script de Firewall

permite que a maquina ping para o resto do mundo por nomes

iptables -A INPUT -p udp --sport 53 -s 0/0 -d \$WAN2 --dport \$PA -j ACCEPT

iptables -A OUTPUT -p udp --sport \$PA -s \$WAN2 -d 0/0 --dport 53 -j ACCEPT

permite a passagem de pacotes pela porta http

iptables -A INPUT -p tcp --sport 80 -s 0/0 -d \$WAN2 --dport \$PA -j ACCEPT

iptables -A OUTPUT -p tcp --sport \$PA -s \$WAN2 -d 0/0 --dport 80 -j ACCEPT

Criando a segunda parte do script de Firewall

permite que a maquina FIREWALL receba conexões remotas por SSH

iptables -A INPUT -p tcp -s 0/0 --sport \$PA -d \$WAN1 --dport 51000 -j ACCEPT

iptables -A OUTPUT -p tcp -s \$WAN1 --sport 51000 -d 0/0 --dport \$PA -j ACCEPT

2 – Salve e teste o script

service firewall restart; iptables -nL

Criando a terceira parte do script de Firewall

1 – Abra o script e adicione novas regras no final da seção "start"

habilita a passagem de pacotes da REDE local em direção ao mundo.

iptables -t nat -I POSTROUTING -o eth1 -s \$LAN -j MASQUERADE

habilita a passagem de pings da REDE para o mundo.

iptables -A FORWARD -p icmp -d \$LAN -j ACCEPT

iptables -A FORWARD -p icmp -s \$LAN -j ACCEPT

Criando a terceira parte do script de Firewall

habilita a resolução de nomes do mundo para a REDE.

iptables -A FORWARD -p udp --sport 53 -s 0/0 -d \$LAN --dport \$PA -j ACCEPT

iptables -A FORWARD -p udp --sport \$PA -s \$LAN -d 0/0 --dport 53 -j ACCEPT

habilita a passagem e o uso dos protocolos comuns para as maquinas internas.

for serv_ext in 80 443 25 110 143 993 995 21 20

do

Criando a terceira parte do script de Firewall

```
iptables -A FORWARD -p tcp --sport $serv_ext -s 0/0 -d $LAN --dport $PA -j ACCEPT iptables -A FORWARD -p tcp --sport $PA -s $LAN -d 0/0 --dport $serv_ext -j ACCEPT done
```

- 2 Salve e teste o script
- # service firewall restart
- # iptables -nL ; iptables -t nat -nL

Criando a quarta parte do script de Firewall

1 – Abra o script e adicione novas regras no final da seção "start"

habilita o redirecionamento de portas do SSH da maquina Firewall para as maquinas internas.

for ip in 2 3 4 5

do

iptables -A OUTPUT -p tcp -s 0/0 --sport \$PA -d 192.168.200.\$ip --dport 5\$ip'000' -j ACCEPT

iptables -A INPUT -p tcp --sport 5\$ip'000' -s 192.168.200.\$ip -d 0/0

--dport \$PA -j ACCEPT

Criando a quarta parte do script de Firewall

iptables -A FORWARD -p tcp --sport 5\$ip'000' -s 192.168.200.\$ip -d 0/0 --dport \$PA -j ACCEPT

iptables -A FORWARD -p tcp --sport \$PA -s 0/0 -d 192.168.200.\$ip --dport 5\$ip'000' -j ACCEPT

iptables -t nat -A PREROUTING -p tcp --sport \$PA -s 0/0 -d \$WAN1 --dport 5\$ip'000' -j DNAT --to-destination 192.168.200.\$ip':'5\$ip'000' done

2 – Salve e teste o script

service firewall restart; iptables -nL

Carregando o script no boot

Para que ele seja iniciado junto com sistema quando a máquina for ligada, podemos colocar o "script" nos níveis de execução:

```
# insserv -d firewall
```

Is -I /etc/rc2.d

Utilização dos comandos "iptables-save" e "iptables-restore".

- # iptables-save > /root/firewall ; service firewall stop
- # iptables-restore /root/firewall
- # iptables -nL ; iptables -t nat -nL

Objetivos:

- Introdução Teórica;
- Entender o funcionamento do serviço;
- Implementar na prática o Servidor DHCP;
- Configurar Servidor DHCP;
- Configurar clientes DHCP;
- Fixar IP via DHCP.

Introdução ao DHCP

O protocolo **DHCP** (Dynamic Host Configuration Protocol)} funciona nas camadas 2 e 3 do modelo OSI e é amplamente utilizado para oferecer endereço IP a um "host" que ainda não está configurado, o que oferece uma flexibilidade ao Administrador de Redes.

O "DHCP" oferece três tipos de alocação de endereços IP:

- Atribuição manual
- Atribuição automática
- Atribuição dinâmica

Funcionamento do DHCP

Implementação prática: Configuração do Servidor

1 – Primeiro iremos instalar o pacote do servidor dhcp na maquina Datacenter:

aptitude install isc-dhcp-server

2 – Vamos renomear o arquivo original do DHCP para uma possível consulta:

cd /etc/dhcp

mv dhcpd.conf dhcpd.conf.dist

Implementação prática: Configuração do Servidor

3 - Agora vamos iniciar nossa configuração num arquivo zerado

```
# vim /etc/dhcp/dhcpd.conf
```

```
ddns-update-style none;
```

#deny unknown-clients;

log-facility local7;

subnet 192.168.200.0 netmask 255.255.255.0 {
 range 192.168.200.10 192.168.200.100;
 authoritative;

Implementação prática: Configuração do Servidor

```
option domain-name "dexter.com.br";
option domain-name-servers 192.168.200.3,192.168.200.2;
option netbios-name-servers 192.168.200.2;
option routers 192.168.200.1;
default-lease-time 600;
max-lease-time 7200;
min-lease-time 120;
```

Para habilitar o suporte ao servidor dinâmico, utilize dynamic-bootp

Implementação prática: Configuração do Servidor

- 4 Ative os Logs para o servidor DHCP
- # vim /etc/rsyslog.conf
- local7.* /var/log/dhcpd.log
- # service rsyslog restart
- 5 Reinicie o serviço e verifique os Logs
- # service isc-dhcp-server restart
- # tail -f /var/log/dhcpd.log

Implementação prática: Configuração do Cliente

1 – Na maquina **interna**, abra o arquivo de rede e configure a interface eth0 para pegar IP via DHCP :

vim /etc/network/interfaces

auto eth0

iface eth0 inet dhcp

- 2 Reinicie o serviço de rede para obter as configurações do servidor
- # service networking restart
- # dhclient eth0 -v

Fixar IP via DHCP

1 – Na maquina **Datacenter**, ping o cliente para testar a conectividade:

ping -c4 192.168.200.10

2 – Envie para o final do arquivo de configuração o **"MAC Address"** do cliente:

arp -n | awk -F" " '{print \$3}' >> /etc/dhcp/dhcpd.conf

Fixar IP via DHCP

3 – Adicione no final do arquivo de configuração o bloco abaixo, para "fixar" um IP ao **"MAC Address"** do cliente:

```
host maq-interna {
    hardware ethernet 00:00:00:00:00:00;
    fixed-address 192.168.200.10;
}
```

4 – Reinicie o serviço par aplicar as mudanças

service isc-dhcp-server restart

Próximos passos

Para que você tenha um melhor aproveitamento do curso, participe das seguintes atividades disponíveis no Netclass:

- Executar as tarefas do "Laboratório" dexterlab-2 para treinar a configuração de um servidor Firewall e DHCP;
- Resolver o "Desafio" para bloquear a duplicação de IPs, no servidor de DHCP, e postar o resultado no Fórum Temático;
- Responder as questões do "Teste de Conhecimento" sobre o conteúdo visto em aula.

Mãos a obra!

