DEVELOPPEMENT LIMITE - DERIVEES

www.ecoles-rdc.net

1. Si «
$$\log$$
 » représente le logarithme népérien, la dérivée seconde de la fonction $y = \log(1 + \log^2 x)$ vaut :

1.
$$\frac{1}{1 + \log^2 x}$$
 3. $\frac{2 \log x}{x^2 (1 + \log^2 x)^2}$ 5. $2 \frac{1 - \log x - \log^2 x - \log^3 x}{x^2 (1 + \log^2 x)^2}$

2.
$$\frac{-2 \log x}{x(1-\log^2 x)^2}$$
 4. $\frac{1}{(1+\log^2 x)^2}$

$$\sqrt{2}$$
. Les premiers termes du développement de $f(x) = x \cdot e^{x+1}$ sont :

1.
$$f(x) = ex + ex^2 + ex^3 + ex^4 + ...$$

2.
$$f(x) = x + x^2 + \frac{x^3}{2!} + \frac{x^4}{3!} + \dots$$

3.
$$f(x) = ex + e^{\frac{x^2}{3!}} + e^{\frac{x^4}{4!}} + ...$$

•4.
$$f(x) = ex + ex^2 + e\frac{x^3}{2!} + e\frac{x^4}{2!} + ...$$

3. Les premiers termes du développement de Mac-Laurin de
$$f(x) = (x + 1) \ln(x + 1)$$
 sont :

1.
$$x - \frac{x^2}{2}! + \frac{x^3}{3}! - \frac{x^4}{4}!$$

2.
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

3.
$$x + \frac{x^2}{2!} - \frac{x^3}{2!3!} + \frac{x^4}{3!4!} - \cdots$$

$$x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$$

$$x^{2} - x^{3} - x^{4}$$

$$5. 1 + x + \frac{1}{2}x^{2} - \frac{1}{2}x^{3} + \dots$$

4. $1 + x + x^2 + \frac{1}{2}x^4 + \dots$

4. Le quatrième terme non nul du développement de Mac-Laurin de la fonction
$$\ln(1+2x)$$
 est :

1.
$$2x^4$$
 2. $-2x^4$ 3. $-4x^4$ 4. $4x^4$ 5. autre réponse