Data Mining

18.06.2021

Fakultät für Ingenieurwissenschaften Bereich Elektrotechnik und Informatik C. Werner, J. Prothmann

Gliederung I

1 Entscheidungsbäume

Decision Tree Learner

- Standardknoten von Knime
- Zielattribut: nominal
- Entscheidungsfindungsattribute: nominal, numerisch
- Qualitätsmaße für Splitberechnung:
 - □ Gini-Index
 - Gain-Ratio
- Pruning möglich

SimpleCart

- Weka-Knoten
- Erzeugung von Binärbäumen
- Pruning möglich
- Je höher der Informationsgehalt eines Attributs in Bezug auf die Zielgröße, desto weiter oben im Baum findet sich dieses Attribut.

Bild 1: CART Tree Beispiel

J48

- Weka-Knoten
- C4.5 Algorithmus von J. Ross Quinlan
- Ahnlich zu CART, jedoch kein Binärbaum
- Deutlich breiter und weniger tief als CART
- Pruning möglich

NBTree

- Weka-Knoten
- Hybridalgorithmus aus Entscheidungsbaum- und Naive-Bayes-Klassifikatoren
- "klassische" Knoten
- Blätter enthalten Naive-Bayes'sche Klassifikatoren

Bild 2: NB Tree Beispiel

REPTree

- Weka-Knoten
- basiert auf C4.5 Algorithmus
- Generierung unter Berücksichtigung
 - Informationsgewinn
 - Varianz

LMT

- Weka-Knoten
- Blätter: lineare Regressionsfunktionen
- stufenweiser Anpassungsprozess
- Automatische Auswahl relevanter Attribute

DecisionStump

- Weka-Knoten
- einstufiger Entscheidungsbaum
- Vorhersage anhand des Wertes eines Eingabe-Features
- Knoten: Schwellenwert
- Blätter: Werte unterhalb und oberhalb des Schwellenwerts
- Einsatz als "schwache Lerner" (z.B. Gesichtserkennung)

J48Graft

- Weka-Knoten
- nutzt den C4.5++ Algortihmus
- Verbesserung durch "all-tests-but-one-partition" (ATBOP)
- Reduzierte Rechenzeit
- Reduzierte Komplexität des Baums

BFTree

- Weka-Knoten
- Best-First-Entscheidungsbaum
- "beste" Knoten zuerst expandieren
- "beste" Knoten: maximalen Reduktion der Unreinheit (z.B. Gini-Index)
- resultierende Baum nur in Reihenfolge unterschiedlich

RandomTree

- Weka-Knoten
- zufällig ausgewählte Attribute an den Knoten
- kein Pruning

RandomForest

- Weka-Knoten
- Kombination von Baumprädiktoren
- Abhängigkeit jedes Baumes von Werten eines Zufallsvektors
- Zufallsvektor: unabhängig und besitzt gleiche Verteilung für alle Bäume im 'Wald'

Test

- mehr Energie und Sorgfalt bei Suchanfragenformulierung
- Wahl der passenden Suchbegriffe
- Nutzung spezieller Befehle und Operatoren
- "Effective internet searching is part science, part art, part skill and part luck." (Bradley 2013, S.18)

