C Programming Language (1)

Outline

- · Compiler drivers
- · Assembly code and object code
- · Suggested reading
 - 1.2

The Hello Program

```
#include <stdio.h>
2
3
    int main()
4
5
        printf("hello, world\n");
```

The Hello Program

i n c l u d e <sp> < s t d i o . 35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46

The Hello Program

- Source program
 - Created by editor and saved as a text file (Consists exclusively of ASCII characters)
 - Binary file
 - · Not text file
- · Begins life as a high-level C program
 - Can be read and understand by human beings
- The individual C statements must be translated by *compiler drivers*
 - So that the hello program can run on a computer system

The Hello Program

- · The C programs are translated into
 - A sequence of low-level machine-language instructions
- · These instructions are then packaged in a
 - called an object program
- · Object program are stored as a binary disk
 - Also referred to as executable object files

Source Code and Assembly Code //C code long mult2(long, long); void multstore (long x, long y, long *dest) long t = mult2(x, y); *dest = t; Assembly file mstore.s Obtain with command gcc -Og -S mstore.c multstore: pushq %rbx movq %rdx,%rbx call mult2 %rax, (%rbx) movq popq %rbx ret


```
Executable Object Code
#include <stdio.h>
                                   53 48 89 d3 e8 42 00
void mulstore(long, long, long *)
                                   00 00 48 89 03 5b c3
int main() {
   long d;
   multstore(2, 3, &d);
   printf( "2 * 3 --> %d\n", d);
   return 0;
                                   Obtain with command
                                       gcc -Og -o prog
                                       main.c mstore.c
long mult2(long a, long b) {
   long s = a * b;
   return s;
```

Manipulating Information

Outline

- · Bit-level operations
- · Suggested reading
 - 2.1.6~2.1.9

13

Boolean Algebra

- · Developed by George Boole(1815-1864)
 - Algebraic representation of logic
 - Encode "True" as 1 Encode "False" as 0
- · Claude Shannon(1916-2001)founded the information theory
 - made the connection between Boolean algebra and digital logic
- · Plays a central role in the design and analysis of digital systems

Boolean Algebra

0 1

1 0

And Or A&B = 1 when both A=1 and B=1 A|B = 1 when either A=1 or B=1 & 0 1 I 0 1 0 0 0 0 0 1 1 0 1 1 1 1 Exclusive-Or (Xor) A^B = 1 when either A=1 or B=1, but not both ~A = 1 when A=0 ^ | 0 <u>1</u>

0 0 1

1 1 0

General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

01101001 01101001 01101001 ~ 01010101 & 01010101 01000001 <u>| 01010101</u> 01111101 01010101 00111100

General Boolean Algebras

- Representation of Sets
 - Width w bit vector represents subsets of $\{0, ..., w-1\}$
 - a_j = 1 if $j \in A$
 - 01101001 {0,3,5,6}
 - 01010101 {0,2,4,6}
 - & Intersection 01000001 { 0, 6 }
 - | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 - ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 - ~Complement 10101010 { 1, 3, 5, 7 }

17

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - · long, int, short, char
 - View arguments as bit vectors
 - Arguments applied bit-wise

Bit-Level Operations in C

~0x41	0xBE
~0100 0001	1011 1110
~0x00	0xFF
~0000 0000	1111 1111
0x69 & 0x55	0X41
0110 1001 & 0101 0101	0100 0001
0x69 0x55	0x7D
0110 1001 0101 0101	0111 1101

19

23

Cool Stuff with Xor

- · Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 - A^A=0

20

Cool Stuff with Xor

Step	*x	*у	
Begin	Α	В	
1	A^B	В	
2	A^B	$(A^B)^B = A^B = $	
		A^0 = A	
3	(A^B)^A = (B^A)^A =	Α	
	B^(A^A) = B^0 = B		
End	В	A	

Cool Stuff with Xor

```
1 void reverse_array(int a[], int cnt) {
2     int first, last;
3     for (first = 0, last = cnt-1;
4         first <= last;
5         first++,last--)
6     inplace_swap(&a[first], &a[last]);
7 }
```

2

Mask Operations

- Bit pattern
 - 0xFF
 - · Having 1s for the least significant eight bits
 - · Indicates the lower-order byte of a word
- · Mask Operation
 - X = 0x89ABCDEF
 - X & 0xFF =?
- Bit Pattern ~0
 - Why not 0xFFFFFFF?

Mask Operations

- * Write C expressions that work for any word size $w \geq 8$
- For x = 0x87654321, with w = 32
- The least significant byte of x, with all other bits set to 0
 - [0x00000021] x & 0xFF

Mask Operations

- All but the least significant byte of complemented, with the least significant byte left unchanged
 [0x789ABC21] x^~0xFF
- The least significant byte set to all 1s, and all other bytes of x left unchanged.
 - [0x876543FF]. x | ~0xFF

25

Logical Operations in C

- · Logical Operators
 - &&, ||, !
 - · View 0 as "False"
 - · Anything nonzero as "True"
 - · Always return 0 or 1
 - Early termination (short cut)

26

Logical Operations in C

· Examples (char data type)

- !0x41 --> 0x00

- !0x00 --> 0x01

-!!0x41 --> 0x01

- 0x69 && 0x55 --> 0x01

 $-0x69 \mid \mid 0x55 \quad --> \quad 0x01$

27

Short Cut in Logical Operations

- · a && 5/a
 - If a is zero, the evaluation of 5/a is stopped
 - avoid division by zero
- p && *p
 - Never cause the dereferencing of a null pointer
- · Using only bit-level and logical operations
 - Implement x == y
 - it returns 1 when \boldsymbol{x} and \boldsymbol{y} are equal, and 0 otherwise
 - !(x^y)

28

Shift Operations in C

- · Left Shift: x << y
 - Shift bit-vector x left y positions
 - · Throw away extra bits on left
 - · Fill with 0's on right

Argument x	01100010		
<< 3	00010 <i>000</i>		

Argument x	10100010	
<< 3	00010 <i>000</i>	

20

Shift Operations in C

- · Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two's complement integer representation (especially for the negative number)

Argument x	01100010		
Log. >> 2	00011000		
Arith. >> 2	00011000		

Argument x 10100010
Log. >> 2 00101000
Arith. >> 2 11101000

Shift Operations in C

- · What happens?
 - int lval = 0xFEDCBA98 << 32;</p>
 - int aval = 0xFEDCBA98 >> 36;
 - unsigned uval = 0xFEDCBA98u >> 40;
- · It may be
 - lval 0xFEDCBA98 (0)
 - aval 0xFFEDCBA9 (4)
 - uval 0x00FEDCBA (8)
- · Be careful about
 - 1<<2+3<<4 means 1<<(2+3)<<4

bitCount

- · Returns number of 1's a in word
- Examples: bitCount(5) = 2, bitCount(7) = 3
- Legal ops: ! ~ & ^ | + << >>
- · Max ops: 40

32

Sum 8 groups of 4 bits each

```
int bitCount(int x) {
    int m1 = 0x11 | (0x11 << 8);
    int mask = m1 | (m1 << 16);
    int s = x & mask;
    s += x>>1 & mask;
    s += x>>2 & mask;
    s += x>>3 & mask;
```

33

Combine the sums

```
/* Now combine high and low order sums */
s = s + (s >> 16);

/* Low order 16 bits now consists of 4 sums.
Split into two groups and sum */
mask = 0xF | (0xF << 8);
s = (s & mask) + ((s >> 4) & mask);
return (s + (s>>8)) & 0x3F;
}
```

34

Information Storage

35

Outline

- · Pointers and word size
- · Suggested reading
 - The first paragraph of 2.1
 - 2.1.2
 - 1.7.3

Computer Hardware - Von Neumann Architecture Instructions / Program Arithmetic Unit Unit AC SR Addresses Input/Output Unit E.g. Storage

Storage

- The system component that remembers data values for use in computation
- · A wide-ranging technology
 - RAM chip
 - Flash memory
 - Magnetic disk
 - CD
- · Abstract model
 - READ and WRITE operations

38

READ/WRITE operations

- · Tow important concepts
 - Name and value
- WRITE(name, value) value \leftarrow READ(name)
- WRITE operation specifies
 - a value to be remembered
 - a name by which one can recall that value in the future
- READ operation specifies
 - the name of some previous remembered value
 - the memory device returns that value

39

Memory

• One kind of storage device

- Value has only fixed size (Usually byte)
- Name belongs to a set consisting of consecutive integers started from 0 0004

0011

0012

0013

- · The integer number is called address
- The set is called address space 0007 0008 0009 0010

40

Word Size

- · A virtual address is encoded by
 - a word with fixed size
- Word size indicates the size of such kind of the word
 - Which defines the maximum size of the virtual address space
 - the most important system parameter determined by the word size

41

Word Size

- · For machine with n-bit word size
 - Virtual address can range from 0 to 2 n-1
- Most current machines are 64 bits (8 bytes)
 - Potentially address $\approx 1.8~X~10^{19}~bytes$
- Most current machines also support 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- · Unfortunately
 - it also used to indicate the normal size of integer

Data Size

Machines support multiple data formats
 Always integral number of bytes

Data Size

C	Declaration	Bytes		
Signed	Unsigned	32-bit	64-bit	
char	unsigned char	1	1	
short	unsigned short	2	2	
int	unsigned	4	4	
long	unsigned long	4	8	
int32_t	uint_32	4	4	
int64_t	uint_64	8	8	
char *		4	8	
float		4	4	
double		8	8	

intN_t and uintN_t

- · Another class of integer types
 - specifying N-bit signed and unsigned integers
 - Introduced by the ISO C99 standard
 - In the file stdint.h.
- · Typical values
 - int8_t, int16_t, int32_t, int64_t
 - unit8_t, uint16_t, uint32_t, uint64_t
 - N are implementation dependent

45

Data Size Related Bugs

- Difficulty to make programs portable across different machines and compilers
 - The program is sensitive to the exact sizes of the different data types
 - The ${\it C}$ standard sets lower bounds on the numeric ranges of the different data types
 - but there are no upper bounds

46

Data Size Related Bugs

- 32-bit machines have been the standard from 1990s to 2010s
- · Many programs have been written
 - assuming the allocations listed as "32-bit" in the table
- · With the increasing of 64-bit machines
 - many hidden word size dependencies show up as
 - · bugs in migrating these programs to new machines

47

Example

- At the time 32-bit dominated, many programmers assumed that
 - a program object declared as type int can be used to store a pointer
- · This works fine for most 32-bit machines
- · But leads to problems on an 64-bit machine

Address issues

• IBM 5/360: 24-bit address

• PDP-11: 16-bit address

• Intel 8086: 16-bit address

• X86 (80386): 32-bit address

· X86 32/64: 32/64-bit address

64-bit data models

Data model	short	int	long	long long	pointers	Sample operating systems
LLP64	16	32	32	64	64	Microsoft Win64 (X64/IA64)
LP64	16	32	64	64	64	Most Unix and Unix-like systems (Solaris, Linux, etc.)
ILP64	16	64	64	64	64	HAL(Fujitsu subsidiary)
SILP64	64	64	64	64	64	3