

# Specification of Concretization and Symbolization Policies in Symbolic Execution

Sébastien Bardin joint work with Robin David, Josselin Feist, Laurent Mounier, Marie-Laure Potet, Thanh Dihn Ta, Jean-Yves Marion

CEA LIST (Paris-Saclay, France)

**ISSTA 2016** 



## Takeaway

### Dynamic Symbolic Execution (DSE): powerful approach to verif. and testing

three key ingredients: path predicate computation & solving, path search, concretization & symbolization policy (C/S)

### C/S is an essential part, yet mostly not studied

- many policies (one per tool), no systematic study of C/S
- undocumented, unclear
- tools : often a single hardcoded policy, no reuse across tools

### Our goal : establish C/S as a proper field of study [focus first on specification]

- $\blacksquare$  CSML, a specification language for C/S  $\checkmark$ 
  - ► clear, non-ambiguous
  - ▶ tool independent
  - executable
- lacksquare implemented in BINSEC  $\checkmark$
- an experimental comparison of C/S policies ✓

[documentation] [reuse, sharing, tuning] [input for tools]

### About formal verification

- Between Software Engineering and Theoretical Computer Science
- Goal = proves correctness in a mathematical way





Preamble













### $\mathsf{Key}\;\mathsf{concepts}: M \models \varphi$

- *M* : semantic of the program
- $\blacksquare \varphi$ : property to be checked
- |= : algorithmic check

### Kind of properties

- absence of runtime error
- pre/post-conditions
- temporal properties

Bardin et al. ISSTA 2016 3/ 27

#### Preamble

## From (a logician's) dream to reality

#### Industrial reality in some key areas, especially safety-critical domains

 hardware, aeronautics [airbus], railroad [metro 14], smartcards, drivers [Windows], certified compilers [CompCert] and OS [Sel4], etc.

#### Ex : Airbus

#### Verification of

- runtime errors [Astrée]
- functional correctness [Frama-C]
- numerical precision [Fluctuat]
- source-binary conformance [CompCert]
- ressource usage [Absint]





### Next big challenge

- Apply formal methods to less-critical software
- Very different context : no formal spec, less developer involvement, etc.



Preamble



add B A cmp B 0

ile label label:





Executable RFFF7808D70696C41010018DF45

45FEDBCADACBDAD45970034690





### **Difficulties**

- robustness [w.r.t. software constructs]
- no place for false alarms
- scale
- sometimes, not even source code



### Next big challenge

- Apply formal methods to less-critical software
- Very different context : no formal spec, less developer involvement, etc.





Preamble





Model





int foo(int x, int y) {
 int k= x;
 int c=y;
 while (c>0) do {
 k++;
 c-;}
 return k;
}

Executable













#### **Difficulties**

- robustness [w.r.t. software constructs]
- no place for false alarms
- scale
- sometimes, not even source code

### DSE as a first step

- very robust
- (mostly) no false alarm
- scale in some ways
- ok for binary code



## Introducing DSE

### Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler ]

- a very powerful formal approach to verification and testing
- many tools and successful case-studies since mid 2000's
  - ► SAGE, Klee, Mayhem, etc.
  - coverage-oriented testing, bug finding, exploit generation, reverse
- arguably one of the most wide-spread use of formal methods

### Very good properties

mostly no false alarm, robust, scale, ok for binary code



## Introducing DSE

### Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler ]

- a very powerful formal approach to verification and testing
- many tools and successful case-studies since mid 2000's
  - ► SAGE, Klee, Mayhem, etc.
  - coverage-oriented testing, bug finding, exploit generation, reverse
- arguably one of the most wide-spread use of formal methods

### Very good properties

mostly no false alarm, robust, scale, ok for binary code

### Key idea : path predicate [King 70's]

- $\blacksquare$  consider a program P on input v, and a given path  $\sigma$
- $\blacksquare$  a path predicate  $\varphi_{\sigma}$  for  $\sigma$  is a formula s.t.

$$v \models \varphi_{\sigma} \Rightarrow P(v)$$
 follows  $\sigma$ 

- intuitively the conjunction of all branching conditions
- old idea, recent renew interest [powerful solvers, dynamic+symbolic]

Bardin et al. ISSTA 2016 6/ 27



```
int main () {
   int x = input();
   int y = input();
   int z = 2 * y;
   if (z == x) {
      if (x > y + 10)
            failure;
   }
   success;
}
```

- given a path of the program
- automatically find input that follows the path
- then, iterate over all paths



 $\mathcal{PC}$ := $\top \land 2y_0 = x_0 \land x_0 \le y_0 + 10$ 

■ then, iterate over all paths



```
int main () {
                                                                             \sigma := \emptyset
      int x = input();
                                                                             \mathcal{PC} := T
     int y = input( Three key ingredients
      int z = 2 * y;
                                path predicate computation & solving
      if (z == x) {
            if (x > y)
                                path search
                                                                                      \rightarrow x_0, y \rightarrow y_0, z \rightarrow 2y_0
                  failur
                                ■ C/S policy
                                                                                    \mathcal{PC} := \top \wedge 2y_0 = x_0
      success;
                                                                               x > y + 10
                                                         \mathcal{PC} := \top \wedge 2y_0 \neq x_0
   ■ given a path of the program
   automatically find input that
```

 $\mathcal{PC}$ := $\top \land 2y_0 = x_0 \land x_0 > y_0 + 10$ 

 $\mathcal{PC} := \top \land 2y_0 = x_0 \land x_0 \le y_0 + 10$ 

Bardin et al. ISSTA 2016 7/ 27



**Usually easy to compute** [forward, introduce new logical variables at each step]

| Loc | Instruction                    |
|-----|--------------------------------|
| 0   | input(y,z)                     |
| 1   | w := y+1                       |
| 2   | x := w + 3                     |
| 3   | if $(x < 2 * z)$ [True branch] |
| 4   | if $(x < z)$ [False branch]    |





**Usually easy to compute** [forward, introduce new logical variables at each step]

| Loc | Instruction                    |
|-----|--------------------------------|
| 0   | input(y,z)                     |
| 1   | $w := y{+}1$                   |
| 2   | x := w + 3                     |
| 3   | if $(x < 2 * z)$ [True branch] |
| 4   | if $(x < z)$ [False branch]    |

let 
$$W_1 \triangleq Y_0 + 1$$
 in



**Usually easy to compute** [forward, introduce new logical variables at each step]

| Loc | Instruction                    |
|-----|--------------------------------|
| 0   | input(y,z)                     |
| 1   | w := y+1                       |
| 2   | x := w + 3                     |
| 3   | if $(x < 2 * z)$ [True branch] |
| 4   | if $(x < z)$ [False branch]    |

let 
$$W_1 \triangleq Y_0 + 1$$
 in let  $X_2 \triangleq W_1 + 3$  in



**Usually easy to compute** [forward, introduce new logical variables at each step]

| Loc | Instruction                    |
|-----|--------------------------------|
| 0   | input(y,z)                     |
| 1   | w := y+1                       |
| 2   | x := w + 3                     |
| 3   | if $(x < 2 * z)$ [True branch] |
| 4   | if $(x < z)$ [False branch]    |

let 
$$W_1 \triangleq Y_0 + 1$$
 in let  $X_2 \triangleq W_1 + 3$  in  $X_2 < 2 \times Z_0$ 



#### **Usually easy to compute**

[forward, introduce new logical variables at each step]

| Loc | Instruction                    |
|-----|--------------------------------|
| 0   | input(y,z)                     |
| 1   | w := y+1                       |
| 2   | x := w + 3                     |
| 3   | if $(x < 2 * z)$ [True branch] |
| 4   | if $(x < z)$ [False branch]    |

### Path predicate (input $Y_0$ et $Z_0$ )

let 
$$W_1 \triangleq Y_0 + 1$$
 in  
let  $X_2 \triangleq W_1 + 3$  in  
 $X_2 < 2 \times Z_0 \land X_2 \ge Z_0$ 

Bardin et al. ISSTA 2016 8/ 27

input: a program P

**output**: a test suite TS covering all feasible paths of  $Paths^{\leq k}(P)$ 

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_{\sigma}$  of  $\sigma$
- solve  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover

. . .

input: a program P

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_\sigma$  of  $\sigma$
- **solve**  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover



input: a program P

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_{\sigma}$  of  $\sigma$
- **solve**  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover



input: a program P

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_\sigma$  of  $\sigma$
- **solve**  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover



### DSE in a nutshell

### Path Exploration

input : a program P

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_\sigma$  of  $\sigma$
- **solve**  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover



### DSE in a nutshell

### Path Exploration

input : a program P

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_\sigma$  of  $\sigma$
- **solve**  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover



input: a program P

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_{\sigma}$  of  $\sigma$
- **solve**  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover



#### DSE in a nutshell

### Path Exploration

input : a program P

- lacktriangle pick a path  $\sigma \in Paths^{\leq k}(P)$
- lacktriangle compute a path predicate  $\varphi_{\sigma}$  of  $\sigma$
- **solve**  $\varphi_{\sigma}$  for satisfiability
- SAT(s)? get a new pair < s,  $\sigma>$
- loop until no more path to cover



#### DSE in a nutshell

### C/S for robustness and tradeoffs

Robustness: what if the instruction cannot be reasoned about?

- missing code, self-modification
- hash functions, dynamic memory accesses, NLA operators

#### program

### input: a, b x := a × b x := x + 1 //assert x > 10

### path predicate

$$x1 = a \times b$$
  
 $\land x2 = x1 + 1$   
 $\land x2 > 10$   
 $(\phi_1)$ 

### concretization

### symbolization

```
x1 = fresh

\land x2 = x1 + 1

\land x2 > 10

(\phi_3)
```

#### Solutions

- Concretization : replace by runtime value [lose completeness]
- Symbolization : replace by fresh variable [lose correctness]

### C/S for robustness and tradeoffs

Robustness: what if the instruction cannot be reasoned about?

- missing code, self-modification
- hash functions, dynamic memory accesses, NLA operators



#### Solutions

■ Concretization : replace by runtime value [lose completeness]

■ **Symbolization**: replace by fresh variable [lose correctness]

Bardin et al. ISSTA 2016 10/27

# The problem Outline

- about DSE
- the problem with C/S
- goal and results
- experiments
- conclusion

Bardin et al. ISSTA 2016 11/ 27



### The problem with C/S policies

#### State of DSF

- Path predicate computation + solving ✓
- Path search : under active research
- C/S:?? kind of black magic
- hardcoded
- often a single C/S
- no easy tuning
- no reuse across tools

- undocumented, unclear
- many policies (one per tool)
- no comparison of C/S
- no systematic study of C/S



## Unclear C/S policies

### Consider the following situation

- $\blacksquare$  instruction x := 0(a \* b)
- your tool documentation says : "memory accesses are concretized"
- $\blacksquare$  suppose that at runtime : a = 7, b = 3

### What is the intended meaning? [perfect reasoning : $x == select(M, a \times b)$ ]

$$CS1: x == select(M, 21)$$

[incorrect]

**CS2**: 
$$x == select(M, 21) \land a \times b == 21$$

[minimal]

**CS3**: 
$$x == select(M, 21) \land a == 7 \land b == 3$$

[atomic]

#### No best choice, depends on the context

- acceptable loss of correctness / completeness?
- $\blacksquare$  is it mandatory to get rid off  $\times$ ?



### Too many C/S policies

#### Just for C/S on memory accesses

- 4 basic policies : concretize or keep symbolic reads / writes
- exotic variations: multi-level dereferencement [exe], domain restriction [osmose], taint-based [s. heelan], dataflow-based [mayhem], etc.
- flavors of concretization : minimal, atomic, incorrect
- all can be combined together



Bardin et al. ISSTA 2016 14/ 27



# Our goal

### Establish C/S as a proper field of study

- $\blacksquare$  what is a generic C/S?
- how DSE can handle generic C/S?
- identify tradeoffs, sweetspots, etc.

### First step: a specification mechanism for C/S

- clear, non-ambiguous
- tool independent
- executable

[documentation]

[reuse, sharing, tuning]

[input for tools]

Bardin et al. ISSTA 2016 15/ 27



### Our goal Our goal

### Establish C/S as a proper field of study

- what is a generic C/S?
- how DSE can handle generic C/S?
- identify
- formal definition of a generic C/S ✓
- a variant of DSE supporting generic C/S √ ■ CSML, a specification language for C/S ✓
- First step: a

  - clear. nd ■ implementation in BINSEC √ tool inde
    - , tuning ■ an experimental comparison of C/S policies ✓
    - imput for tools executable

Bardin et al. **ISSTA 2016** 15/27

entation]



Bardin et al. ISSTA 2016 16/27







## Our goal Overview



Bardin et al. ISSTA 2016 16/27



### What is a C/S policy?

#### A decision function queried

- within path predicate computation
- before logical evaluation of an expression
- in the scope of a given location, instruction and memory state

Bardin et al. ISSTA 2016 17/ 27



## DSE with parametric C/S

#### Example:

- loc:x := a + b
- lacktriangledown concrete memory state :  $\{a \mapsto 3; b \mapsto 5\}$
- symbolic memory state :  $\{a \mapsto a_2; b \mapsto b_9\}$

Standard evaluation, no C/S :  $[a + b] \mapsto a_2 + b_9$ 

Evaluation with propagation :  $[a + b]_{cs=P} \mapsto (a_2 + b_9, \top)$ 

Evaluation with symbolization :  $[a + b]_{cs=S} \mapsto (fresh, \top)$ 

Evaluation with concretization :  $[a + b]_{cs=C} \mapsto (8, a_2 + b_9 = 8)$ 

. . .

# CSML overview

### Rule-based language $guard \Rightarrow \{C, S, P\}$

**Guard** of the form  $\pi_{\textit{loc}} :: \pi_{\textit{ins}} :: \pi_{\textit{expr}} :: \pi_{\Sigma}$ 

- predicates on the location, instruction, expression, concrete memory state
- $\pi_{ins}$  and  $\pi_{expr}$  mostly based on pattern matching and subterm checking
- predicates checked sequentially
- limited communication : meta-variables (?x,?\*) and placeholders  $(!x,!_{\square})$

#### Set of rules

- checked sequentially, the first fireable rule returns
- presence of a default rule



# Example of specifications (1)

$$\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{\mathcal{C}, \mathcal{S}, \mathcal{P}\}$$

### Meaning

- concretize result of a read value
- or: "if we are evaluating an expression e built with @, then e is concretized, otherwise it is propagated."

### **Examples**

■ x := a + @b : @b is concretized



# Example of specifications (2)

$$\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{\mathcal{C}, \mathcal{S}, \mathcal{P}\}$$

### Meaning

- concretize write addresses
- or: "if we are evaluating an expression e in the context of an assignment where e is used as the write address, then e is concretized, otherwise it is propagated."

### **Examples**

- x := a + @b : nothing is concretized



# Example of specifications (3)

$$\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{\mathcal{C}, \mathcal{S}, \mathcal{P}\}$$

consider instruction x := 0(a \* b), suppose at runtime : a = 7, b = 3

- minimal concretization of r/w expressions [CS2]
  - $* :: \langle ?i \rangle :: (@!_{\square}) \prec !i :: * \Rightarrow C$
- recursive concretization of r/w expressions :
  - \* ::  $\langle ?i \rangle$  ::  $! \Box \prec (@?*) \prec !i :: * \Rightarrow C$
- atomic concretization of r/w expressions [CS3]
  - \* ::  $\langle ?i \rangle$  ::  $var(!_{\square}) \wedge !_{\square} \prec (@?*) \prec !i :: * <math>\Rightarrow C$
- incorrect concretization of r/w expressions [CS1]
  - $* \ :: \ \langle ?i \ \rangle :: \ (@ \ !_{\square}) \prec !i :: \ * \ \Rightarrow \ \mathcal{S}_{[\textit{eval}_{\Sigma}(!_{\square})]}$

[replace a\*b by 21]

[concretize a, b]

[concretize a\*b]

[concretize a\*b, a, b]



# CSML good properties

#### Well-defined

- any CSML spec defines a C/S policy
- lacksquare only  ${\mathcal C}$  and  ${\mathcal P}$  : keeps correctness
- $\blacksquare$  only  ${\mathcal S}$  and  ${\mathcal P}$  : keeps completeness

### Expressive enough

- sufficient for all examples from literature [systematic review]
- yet, still limited [say something about current C/S?]

Implementable : see after



# CSML good properties

#### Well-defined

- any CSML spec defines a C/S policy
- lacksquare only  ${\mathcal C}$  and  ${\mathcal P}$  : keeps correctness
- lacksquare only  ${\mathcal S}$  and  ${\mathcal P}$  : keeps completeness

### Expressive enough

- sufficient for all examples from literature [systematic review]
- yet, still limited [say something about current C/S?]

### Implementable : see after

### About the langage itself

- we describe the inner engine, not the user view
- syntax can be improved
- complexity can be hidden (predefined options, patterns)



# Implementation and experiments

### CSML implemented in BINSEC/SE [binary-level dse tool]

■ first DSE tool with generic C/S support

### Experiment 1: evaluate CSML overhead

- vs : no C/S, C/S encoded via callbacks
- result : CSML does yield a cost, yet negligible wrt. solving time

### Experiment 2: experimental comparison of C/S policies

- five C/S policies for memory accesses : CC, CP, PC, PP\*, PP
- result : PP\* better on average, yet no clear winner : need different C/S!
- first time such a C/S comparison is performed!

# Experiments

### **CSML** Overhead

#### Bench

- 167 programs (100 coreutils, 17 malware, 50 nist samate/verisec )
- $\blacksquare$   $\approx$  45,000 queries

|            |      | min   | max   | average |
|------------|------|-------|-------|---------|
| base       | (PP) | 0.04% | 3%    | 0.3%    |
|            | CC   | 0.1%  | 17%   | 1.2%    |
| rule-based | CP   | 0.1%  | 23.5% | 1.45%   |
| C/S policy | PC   | 0.08% | 12.8% | 0.85%   |
|            | PP*  | 0.08% | 12.3% | 0.95%   |
|            | PP   | 0.05% | 4%    | 0.48%   |
|            | CC   | 0.05% | 8.5%  | 0.5%    |
| hard-coded | CP   | 0.05% | 8.2%  | 0.5%    |
| C/S policy | PC   | 0.05% | 8%    | 0.45%   |
|            | PP*  | 0.05% | 6%    | 0.45%   |
|            | PP   | 0.04% | 3%    | 0.3%    |

### Reported figures

- ratio between cost of formula creation and creation + solving
- note : solving time does not depend on the way C/S is implemented



# Quantitative comparison

### Five policies for memory accesses

- CC, PC, CP, PP\*, PP
- lacktriangleright first letter  $\mapsto$  read operation, second letter  $\mapsto$  write operation

|     | samate |      | core |      | malware |      | total |      |
|-----|--------|------|------|------|---------|------|-------|------|
|     | opt    | best | opt  | best | opt     | best | opt   | best |
| CC  | 20     | 0    | 44   | 1    | 5       | 0    | 69    | 1    |
| PC  | 20     | 2    | 49   | 4    | 6       | 1    | 75    | 7    |
| CP  | 23     | 1    | 61   | 11   | 4       | 0    | 88    | 12   |
| PP* | 36     | 12   | 71   | 24   | 10      | 5    | 117   | 41   |
| PP  | 33     | 9    | 36   | 7    | 7       | 2    | 76    | 18   |

best (resp. opt): number of programs for which the considered policy returns the strictly highest (resp. highest) number of SAT answers



# Conclusion Conclusion

### Dynamic Symbolic Execution (DSE): powerful approach to verif. and testing

three key ingredients: path predicate computation & solving, path search, concretization & symbolization policy (C/S)

### C/S is an essential part, yet mostly not studied

- many policies (one per tool), no systematic study of C/S
- undocumented, unclear
- tools : often a single hardcoded policy, no reuse across tools

### Our goal : establish C/S as a proper field of study [focus first on specification]

- $\blacksquare$  CSML, a specification language for C/S  $\checkmark$ 
  - ► clear, non-ambiguous
  - ▶ tool independent
  - executable
- lacksquare implemented in BINSEC  $\checkmark$
- an experimental comparison of C/S policies ✓

[documentation] [reuse, sharing, tuning] [input for tools]



### Bonus **Dynamic** Symbolic Execution

### Dynamic Symbolic Execution [Korel+, Williams+, Godefroid+]

- interleave dynamic and symbolic executions
- drive the search towards feasible paths for free
- give hints for relevant under-approximations [robustness]

### Concretization: force a symbolic variable to take its runtime value

- application 1 : follow only feasible path for free
- application 2 : correct approximation of "difficult" constructs [out of scope or too expensive to handle]

Bonus

```
\begin{aligned} \text{Goal} &= \text{find input leading to ERROR} \\ &\quad \text{(assume we have only a solver for linear integer arith.)} \end{aligned}
```

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

| Loc | Instruction                 |
|-----|-----------------------------|
| 0   | input(x,y)                  |
| 1   | z := x * x                  |
| 2   | if $(z == y)$ [True branch] |

Path predicate (input  $X_0$  et  $Y_0$ ) — Unrealistic perfect symbolic reasoning  $\top$ 

Bonus

Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)

f(int x, int y) {
$$z=x*x$$
; if (y == z) ERROR; else OK }

| Loc | Instruction                       |
|-----|-----------------------------------|
| 0   | input(x,y)                        |
| 1   | z := x * x                        |
| 2   | $if\; (z == y)\; [True\; branch]$ |

Path predicate (input  $X_0$  et  $Y_0$ ) — Unrealistic perfect symbolic reasoning  $\top \wedge Z_1 = X_0 \times X_0$ 

Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)

Bonus

f(int x, int y) {
$$z=x*x$$
; if (y == z) ERROR; else OK }

| Loc | Instruction                 |
|-----|-----------------------------|
| 0   | input(x,y)                  |
| 1   | z := x * x                  |
| 2   | if $(z == y)$ [True branch] |

Path predicate (input  $X_0$  et  $Y_0$ ) — Unrealistic perfect symbolic reasoning  $\top \wedge Z_1 = X_0 \times X_0 \wedge Z_1 = Y_0$ 

Bonus

```
Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)
```

```
Loc Instruction
```

f(int x, int y) {z=x\*x; if (y == z) ERROR; else OK }

| LOC | IIIStiuction                |
|-----|-----------------------------|
| 0   | input(x,y)                  |
| 1   | z := x * x                  |
| 2   | if $(z == y)$ [True branch] |

Path predicate (input  $X_0$  et  $Y_0$ ) — Unrealistic perfect symbolic reasoning OK, but how to solve?  $\times$ 

Bonus

```
Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)
```

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

| Loc | Instruction                 |
|-----|-----------------------------|
| 0   | input(x,y)                  |
| 1   | z := x * x                  |
| 2   | if $(z == y)$ [True branch] |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited symbolic reasoning  $\top$ 

Bonus

Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)

f(int x, int y) {
$$z=x*x$$
; if (y == z) ERROR; else OK }

| Loc | Instruction                        |
|-----|------------------------------------|
| 0   | input(x,y)                         |
| 1   | z := x * x                         |
| 2   | $if\; (z == y) \; [True\; branch]$ |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited symbolic reasoning  $\top \wedge Z_1 = X_0 \times X_0$ 

Bonus

```
Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)
```

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

| Loc | Instruction                 |
|-----|-----------------------------|
| 0   | input(x,y)                  |
| 1   | z := x * x                  |
| 2   | if $(z == y)$ [True branch] |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited symbolic reasoning  $\top \wedge \top$ 

Bonus

Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)

f(int x, int y) {
$$z=x*x$$
; if (y == z) ERROR; else OK }

| Loc | Instruction                 |
|-----|-----------------------------|
| 0   | input(x,y)                  |
| 1   | z := x * x                  |
| 2   | if $(z == y)$ [True branch] |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited symbolic reasoning  $\top \wedge \top \wedge Z_1 = Y_0$ 

et al. ISSTA 2016 27/ 27

Bonus

```
Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)
```

f(int x, int y) {z=x\*x; if (y == z) ERROR; else OK }

```
        Loc
        Instruction

        0
        input(x,y)

        1
        z := x * x

        2
        if (z == y) [True branch]
```

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited symbolic reasoning Incorrect, may find a bad solution (ex :  $X_0 = 10$ ,  $Y_0 = 34$ )  $\times$ 

Bonus

```
\begin{aligned} \text{Goal} &= \text{find input leading to ERROR} \\ &\quad \text{(assume we have only a solver for linear integer arith.)} \end{aligned}
```

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

| Loc | Instruction                 |
|-----|-----------------------------|
| 0   | input(x,y)                  |
| 1   | z := x * x                  |
| 2   | if $(z == y)$ [True branch] |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited dynamic symbolic reasoning  $\top$ 

Bonus

Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)

f(int x, int y) {
$$z=x*x$$
; if (y == z) ERROR; else OK }

| Loc | Instruction                       |
|-----|-----------------------------------|
| 0   | input(x,y)                        |
| 1   | z := x * x                        |
| 2   | $if\; (z == y)\; [True\; branch]$ |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited dynamic symbolic reasoning  $\top \land Z_1 = X_0 \times X_0$  [assume runtime values : x=3,z=9]

Bonus

Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)

f(int x, int y) {
$$z=x*x$$
; if (y == z) ERROR; else OK }

| Loc | Instruction                       |
|-----|-----------------------------------|
| 0   | input(x,y)                        |
| 1   | z := x * x                        |
| 2   | $if\; (z == y)\; [True\; branch]$ |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited dynamic symbolic reasoning  $\top \land Z_1 = 9 \land X_0 = 3$ 

Bonus

Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)

f(int x, int y) {
$$z=x*x$$
; if (y == z) ERROR; else OK }

| Loc | Instruction                       |
|-----|-----------------------------------|
| 0   | input(x,y)                        |
| 1   | z := x * x                        |
| 2   | $if\; (z == y)\; [True\; branch]$ |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited dynamic symbolic reasoning  $\top \land Z_1 = 9 \land X_0 = 3 \land Z_1 = Y_0$ 

Bonus

```
Goal = find input leading to ERROR (assume we have only a solver for linear integer arith.)
```

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

| Loc | Instruction                       |
|-----|-----------------------------------|
| 0   | input(x,y)                        |
| 1   | z := x * x                        |
| 2   | $if\; (z == y)\; [True\; branch]$ |

Path predicate (input  $X_0$  et  $Y_0$ ) — Limited dynamic symbolic reasoning Correct, find a real solution (ex :  $X_0 = 3$ ,  $Y_0 = 9$ )  $\checkmark$