Sapienza University of Rome

Master in Artificial Intelligence and Robotics Master in Engineering in Computer Science

Machine Learning

A.Y. 2020/2021

Prof. L. locchi, F. Patrizi

L. locchi, F. Patrizi

2. Classification Evaluation

1 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

2. Classification Evaluation

L. Iocchi, F. Patrizi

L. locchi, F. Patrizi

Overview

- Statistical evaluation
- Performance metrics

References

T. Mitchell. Machine Learning. Chapter 5

L. locchi, F. Patrizi

2. Classification Evaluation

3 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Statistical methods for estimating accuracy

Performance evaluation in classification based on accuracy or error rate.

Questions:

- How to estimate accuracy of a hypothesis *h*?
- Given accuracy of *h* over a limited sample of data, how well does this estimate its accuracy over additional examples?
- Given that h outperforms h' over some sample of data, how probable is it that h is more accurate in general?
- When data is limited what is the best way to use data to both learn *h* and estimate its accuracy?
- Is accuracy the unique performance metric to evaluate classification methods?

Example

Consider a typical classification problem:

$$f: X \to Y$$

 \mathcal{D} : probability distribution over X

S: sample of n instances drawn from X (according to distribution \mathcal{D}) and for which we know f(x)

Consider a hypothesis h, solution of a learning algorithm obtained from S.

What is the best estimate of the accuracy of *h* over future instances drawn from the same distribution?

What is the probable error in this accuracy estimate?

L. locchi, F. Patrizi

2. Classification Evaluation

5 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Two Definitions of Error/Accuracy

The **true error** of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The **sample error** of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

Note: $accuracy(h) \equiv 1 - error(h)$

L. locchi, F. Patrizi

Two Definitions of Error

The **true error** cannot be computed, the **sample error** is computed only on a small data sample.

How well does $error_{\mathcal{S}}(h)$ estimate $error_{\mathcal{D}}(h)$?

Note: the goal of a learning system is to be accurate in h(x), $\forall x \notin S$ If $accuracy_S(h)$ is very high, but $accuracy_D(h)$ is poor, then our system would not be very useful.

L. locchi, F. Patrizi

2. Classification Evaluation

7 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Problems in Estimating the True Error

Estimation bias

$$bias \equiv E[error_S(h)] - error_D(h)$$

- **1** If S is the training set used to compute h, $error_S(h)$ is optimistically biased
- ② For unbiased estimate, h and S must be chosen independently $E[error_S(h)] = error_D(h)$
- **3** Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$. The smaller the set S, the greater the expected variance.

L. locchi, F. Patrizi

Confidence Intervals

lf

- \bullet S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

• With approximately N% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm z_{N}\sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where

N%:	50%	68%	80%	90%	95%	98%	99%
z _N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

L. locchi, F. Patrizi

2. Classification Evaluation

9 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Estimators

How to compute $error_S(h)$

- ① Partition the data set D ($D = T \cup S$, $T \cap S = \emptyset$, |T| = 2/3|D|)
- 2 Compute a hypothesis h using training set T
- 3 Evaluate $error_S(h) = \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$

 $error_S(h)$ is a random variable (i.e., result of an experiment)

 $error_{\mathcal{S}}(h)$ is an unbiased estimator for $error_{\mathcal{D}}(h)$

NOTE:

- $error_{\mathcal{D}}(h)$ is needed to evaluate hypothesis h, but cannot be computed!
- We must use an estimate
- The best we can do is to use $error_S(h)$ (suitably computed)

Trade off between training and testing

In general

- Having more samples for training and less for testing improves performance of the model: potentially better model, but $error_{\mathcal{D}}(h)$ does not approximate well $error_{\mathcal{D}}(h)$
- Having more samples for evaluation and less for training reduces variance of estimation: $error_{\mathcal{D}}(h)$ approximates well $error_{\mathcal{D}}(h)$, but this value may be not satisfactory.

Trade off for medium sized datasets: 2/3 for training, 1/3 for testing.

L. locchi, F. Patrizi

2. Classification Evaluation

11 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Comparing two hypotheses

Given two hypotheses h_1 , h_2 , the true comparison is

$$d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2)$$

and its estimator is

$$\hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$$

 \hat{d} is an *unbiased estimator* for d, iff h_1 , h_2 , S_1 and S_2 are independent from each other.

$$E[\hat{d}] = d$$

Note: still valid if $S_1 = S_2 = S$.

Overfitting

Consider error of hypothesis h over

- training data: error_S(h)
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$error_S(h) < error_S(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

L. locchi, F. Patrizi

2. Classification Evaluation

13 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Evaluation of a learning algorithm

How can we evaluate the performance of a learning algorithm?

h is the solution of learning algorithm L when using a training set T h = L(T)

 $error_S(h)$ is the result of only one experiment and the confidence interval can be large.

We can perform many experiments and compute $error_{S_i}(h)$ for different independent sample data S_i .

⇒ K-Fold Cross Validation method

K-Fold Cross Validation

- **1** Partition data set D into k disjoint sets S_1, S_2, \ldots, S_k ($|S_i| > 30$)
- ② For i = 1, ..., k do

 use S_i as test set, and the remaining data as training set T_i
 - $T_i \leftarrow \{D S_i\}$
 - $h_i \leftarrow L(T_i)$
 - $\delta_i \leftarrow error_{S_i}(h_i)$
- Return

$$error_{L,D} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Note: $accuracy_{L,D} = 1 - error_{L,D}$

L. locchi, F. Patrizi

2. Classification Evaluation

15 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Comparing learning algorithms L_A and L_B

Which algorithm is better?

We would like to estimate:

$$E_{S\subset\mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

where L(S) is the hypothesis output by learner L using training set S

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution \mathcal{D} .

This measure can be again approximated by a K-Fold Cross Validation.

L. locchi, F. Patrizi

Comparing learning algorithms L_A and L_B

Use K-Fold Cross Validation to compare algorithms L_A and L_B .

- Partition data set D into k disjoint sets S_1, S_2, \ldots, S_k ($|S_i| > 30$)
- 2 For i from 1 to k, do

 use S_i as test set, and the remaining data as training set T_i
 - $T_i \leftarrow \{D S_i\}$
 - $h_A \leftarrow L_A(T_i)$
 - $h_B \leftarrow L_B(T_i)$
 - $\delta_i \leftarrow error_{S_i}(h_A) error_{S_i}(h_B)$
- Return

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Note: if $\bar{\delta} < 0$ we can estimate that L_A is better than L_B .

L. locchi, F. Patrizi

2. Classification Evaluation

17 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Performance metrics in classification

Is accuracy always a good performance metric?

Example:

Binary classification $f: X \to \{-, +\}$, with training set D containing 90% of negative samples.

 $h_1(x)$ has 90% of accuracy, $h_2(x)$ has 85% of accuracy.

Which one is better?

Performance metrics in classification

 $h_1(x) = -$ (most common value of Y in D) $h_2(x)$ is the result of a classification algorithm

In some cases, accuracy only is not enough to assess the performance of a classification method.

Unbalanced data sets are very common in problems related to anomaly detection (e.g, malware analysis, fraud detection, medical tests, etc.)

L. locchi, F. Patrizi

2. Classification Evaluation

19 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Performance metrics in classification

	Predicted class			
True Class	Yes	No		
Yes	TP: True Positive	FN: False Negative		
No	FP: False Positive	TN: True Negative		

Error rate =
$$|$$
 errors $|$ $/$ $|$ instances $|$ = (FN + FP) $/$ (TP + TN + FP + FN)
Accuracy = 1 - Error rate = (TP + TN) $/$ (TP + TN + FP + FN)

Problems when datasets are unbalanced.

L. locchi, F. Patrizi

Other performance metrics in classification

	Predicted class			
True Class	Yes	No		
Yes	TP: True Positive	FN: False Negative		
No	FP: False Positive	TN: True Negative		

Recall = | true positives | / | real positives | = TP / (TP + FN) ability to avoid false negatives (1 if FN = 0)

Precision = | true positives | / | predicted positives | = TP / (TP + FP) ability to avoid false positives (1 if FP = 0)

Impact of false negatives and false positives depend on the application.

F1-score = $2(Precision \cdot Recall)/(Precision + Recall)$

L. locchi, F. Patrizi

2. Classification Evaluation

21 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Confusion Matrix

In a classification problem with many classes, we can compute how many times an instance of class C_i is classified in class C_i .

	C_1	C_2	<i>C</i> ₃	C ₄	<i>C</i> ₅
C_1 C_2 C_3					
C_2					
C_3					
C_4 C_5					
C_5					

Main diagonal contains accuracy for each class.

Outside the diagonal, the errors. It is possible to see which classes are more often confused.

Confusion Matrix

Often represented with color-maps

L. locchi, F. Patrizi

2. Classification Evaluation

23 / 25

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Other performance measures

- Recall, Sensitivity, True Positive Rate TPR = TP/P = TP/(TP + FN)
- Specificity, True Negative Rate TNR = TN/N = TN/(TN + FP)
- False Positive Rate FPR = FP/N = TP/(TN + FP)
- False Negative Rate FNR = FN/P = FN/(TP + FN)
- ROC curve: plot TPR vs FPR varying classification threshold
- AUC (Area Under the Curve)

Summary

- Performance evaluation of machine learning methods is important and tricky.
- k-Fold Cross Validation is a general prototype method to evaluate classification methods.
- Several performance metrics can be considered and in some cases best metrics to use depend on the application.
- Performance estimation is very useful also during the execution of an algorithm.

L. locchi, F. Patrizi

2. Classification Evaluation

25 / 25