1284 - Lights inside 3D Grid

You are given a 3D grid, which has dimensions **X**, **Y** and **Z**. Each of the **X x Y x Z** cells contains a light. Initially all lights are off. You will have **K** turns. In each of the **K** turns,

- 1. You select a cell A randomly from the grid,
- 2. You select a cell **B** randomly from the grid and
- 3. Toggle the states of all the bulbs bounded by cell **A** and cell **B**, i.e. make all the ON lights OFF and make all the OFF lights ON which are bounded by **A** and **B**. To be clear, consider cell **A** is $(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1)$ and cell **B** is $(\mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2)$. Then you have to toggle all the bulbs in grid cell $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ where $\min(\mathbf{x}_1, \mathbf{x}_2) \le \mathbf{x} \le \max(\mathbf{x}_1, \mathbf{x}_2)$, $\min(\mathbf{y}_1, \mathbf{y}_2) \le \mathbf{y} \le \max(\mathbf{y}_1, \mathbf{y}_2)$ and $\min(\mathbf{z}_1, \mathbf{z}_2) \le \mathbf{z} \le \max(\mathbf{z}_1, \mathbf{z}_2)$.

Your task is to find the expected number of lights to be ON after **K** turns.

Input

Input starts with an integer $T \leq 50$, denoting the number of test cases.

Each case starts with a line containing four integers X, Y, Z ($1 \le X$, Y, $Z \le 100$) and K ($0 \le K \le 10000$).

Output

For each case, print the case number and the expected number of lights that are ON after K turns. Errors less than 10^{-6} will be ignored.

Sample Input	Output for Sample Input
5	Case 1: 2.9998713992
1 2 3 5	Case 2: 1
1 1 1 1	Case 3: 0
1 2 3 0	Case 4: 6.375
2 3 4 1	Case 5: 9.09765625
2 3 4 2	