Universidad Nacional de Río Negro Física III B - 2022

Unidad O1 – El calor

Clase U02 C01 - 07/30

Cont Primer Principio

Cátedra Asorey

• **Web** https://campusbimodal.unrn.edu.ar/course/view.php?id=24220

Contenidos: B5331 Física IIIB 2022 alias Termodinámica

Ley de Dulong-Petite

$$E_{K} = \sum_{i=1}^{N} \left[\frac{1}{2} m \left(v_{x,i}^{2} + v_{y,i}^{2} + v_{z,i}^{2} \right) + \frac{1}{2} k_{ef} \left(x_{i}^{2} + y_{i}^{2} + z_{i}^{2} \right) \right]$$

- ¿Grados de libertad?
 - v_x , v_y , v_z , x, y, z \leftarrow 6
- Equipartición: ½ kT
- Energía interna: $U = \frac{6}{2} NkT = 3nRT$
- Calor específico:

$$Q = \Delta U = Cn\Delta T \rightarrow C = 3R$$

Física IIIB 4/24

¿Cómo se explica ese resultado?

- Entonces, para calentar 100K a 1 kg de metal:
 - Cobre: 39250.3 J
 - Plomo: 12037,6 J
- ¿Por qué es menor para el plomo respecto al cobre?
- La capacidad calorífica c de un cuerpo con calor específico C y masa molar M es entonces:

$$c = \frac{C}{M}$$

$$[c] = \frac{[C]}{[M]} = \frac{\frac{J}{mol K}}{\frac{kg}{mol}} = \frac{J}{kg K}$$

Física IIIB 5/24

- Sistema termodinámico: contenido total de energía, en cualquiera de sus formas (incluyendo la masa), que se encuentra en una región macroscópica del espacio.
 - Variables de estado termodinámicas que definen al sistema → temperatura, energía interna, presión, entropía, ...

- Sistema en equilibrio
 - Las variables de estado no cambian con el tiempo
- Fuera de equilibrio
 - Transferencia "lenta" de energía

Física IIIB 6/24

Fases de un sistema termodinámico

- Fases (¡no confundir con estado de agregación!)
 zonas macroscópicas de un sistema con propiedades físicas y químicas homogéneas
 - Sistema monofásico (una fase) → sistema homogéneo
 - Sistema de varias fases → sistema heterogéneo o mezcla

Física IIIB 7/24

Calor latente específico

- Calor latente: calor liberado o absorbido por un sistema termodinámico durante una transformación a temperatura constante (latente = escondido, 1762 J. Black)
- Propiedad intensiva L: calor requerido para cambiar completamente de fase a una determinada cantidad de substancia (usualmente en masa)
- Calor requerido para cambiar de fase una masa m:

$$L \stackrel{\text{def}}{=} \frac{Q}{m} \rightarrow Q = mL$$

- Agua: valores anormalmente altos (¡puentes H!). ¡Usos!
 - Fusión (a 273K): 334 kJ/kg, vaporización (a 373K): 2257 kJ/kg
 - Transpiración, Refrigeración, ¿rocío?...

Física IIIB 8/24

Calor latente versus calor sensible

Física IIIB 9/24

Nada se gana, nada se pierde, todo se transforma

 La conservación de la energía para un sistema termodinámico se expresa de la siguiente forma

Primer principio de la termodinámica

Q= Calor cedido al sistema (signo de Δ T) Δ U= Cambio de la energía interna del sistema (signo de Δ T) W = Trabajo realizado por el sistema (signo de Δ V)

Nueva transformación

- Vimos transformaciones a P=cte (isobara) y V=cte (isocora)
 - Isobara:

•
$$\Delta U = z/2 n R \Delta T$$

•
$$Q = \Delta U + W$$

• W = O

socora:

•
$$Q = C_V n \Delta T$$

•
$$Q = \Delta U$$

- ¿Cómo será una expansión isotérmica?
 - Baño térmico (p. ej.: Atmósfera, Océano, ...)
 - Reservorio de calor a una temperatura T dada
 - Puede ceder o absorber calor sin que T se vea afectada
 - Un sistema en contacto con un baño → evolución isotérmica

Física IIIB 11/24

Transformación Isotérmica, Tecte

Si $T = \text{cte pV} = nRT \rightarrow p V = \text{cte (a n cte)}$

Transformación isotérmica

El gas se encuentra en el estado "B"
 Evoluciona en forma isotérmica (baño térmico a T_B=T_C)
 El gas finaliza en el estado "C"

Física IIIB 13/24

Transformación isotérmica

En resumen....

Isobara:

•
$$\Delta U = (z/2) n R \Delta T$$

•
$$Q = \Delta U + W$$

Isoterma:

•
$$W = n R T ln (V_f / V_i)$$

•
$$Q = \Delta U + W \rightarrow Q = W$$

Isocora:

•
$$Q = C_V n \Delta T$$

•
$$Q = \Delta U$$

Adiabática

Índice adiabático

$$\gamma = \frac{C_p}{C_v} \rightarrow \gamma = \frac{z+2}{z}$$

Física IIIB 15/24

Último caso: No hay intercambio de calor

- No hay intercambio de calor con el medio
 - Recipiente muy aislado (calorímetro); ó
 - Transformación muy rápida (abriendo una Coca Cola)
- En este caso: Q = O ← Transformación Adiabática
- Q = $\Delta U + W \rightarrow O = \Delta U + W \rightarrow W = -\Delta U$
- En una expansión adiabática, el trabajo se realiza a costa de la energía interna del gas
- Expansión adiabática → Brusco descenso de T
 Y viceversa: en una compresión adiabática, todo el trabajo se convierte en energía interna (Zonda)

Física IIIB 16/24

El zonda: efecto Föhn

Física IIIB 17/24

El primer principio dice:

- Q=0 \rightarrow W = Δ U \rightarrow límite: dW = -dU \rightarrow p dV=-dU
- Pero dU = (z/2) d (n R T) y por la ec. Estado, nRT=pV:

$$dU = \left(\frac{z}{2}\right)d(pV) \rightarrow dU = \left(\frac{z}{2}\right)(dpV + pdV)$$

$$\Rightarrow$$
 pdV = $-\frac{z}{2}$ V dp $-\frac{z}{2}$ pdV

$$p dV + \left(\frac{z}{2}\right) p dV = -\left(\frac{z}{2}\right) V dp \rightarrow \left(\frac{z+2}{2}\right) p dV = -\left(\frac{z}{2}\right) V dp$$

$$\left(\frac{z+2}{z}\right)p\,dV = -V\,dp \rightarrow \gamma p\,dV = -V\,dp \rightarrow -\gamma \left(\frac{dV}{V}\right) = \frac{dp}{p}$$
Fisica IIIB

• Integrando ambos lados:

$$-\gamma \int_{V_{i}}^{V_{f}} \frac{dV}{V} = \int_{p_{i}}^{p_{f}} \frac{dp}{p}$$

$$-\gamma \ln \left(\frac{V_{f}}{V_{i}}\right) = \ln \left(\frac{p_{f}}{p_{i}}\right)$$

$$\ln \left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \ln \left(\frac{p_{f}}{p_{i}}\right)$$

$$\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \left(\frac{p_{f}}{p_{i}}\right)$$

Transformación Adiabática

$$p_i V_i^{\gamma} = p_f V_f^{\gamma} \rightarrow p V^{\gamma} = cte \rightarrow T V^{\gamma-1} = cte$$

Física IIIB 19/24

La cuenta "a mano"

Curvas adiabáticas

Física IIIB 21/24

Adiabáticas vs isotermas

- Se aproximan asintóticamente a los ejes
- Cada adiabática intersecta a una isoterma en un único punto (volveremos...)
 - Las adiabáticas son isentrópicas (volveremos...)

Física IIIB 22/24

Trabajo adiabático

Según el primer principio y teniendo en cuenta Q=0:

$$W = -\Delta U \rightarrow W = -\frac{z}{2} nR\Delta T \rightarrow W = -\frac{z}{2} nR(T_f - T_i)$$

$$W = -\frac{z}{2} (P_f V_f - P_i V_i)$$

$$W = -\left(\frac{P_f V_f - P_i V_i}{\gamma - 1}\right)$$

Física IIIB 23/24

En resumen.... II

Isobara:

- W = $p \Delta V$
- $\Delta U = (z/2) n R \Delta T$
- $Q = \Delta U + W$

Isoterma:

- $W = n R T ln (V_f / V_i)$
- ∆U = O
- $Q = \Delta U + W \rightarrow Q = W$

$$Q = \Delta U + W$$

Isocora:

- W = O
- $Q = C_V n \Delta T$
- $Q = \Delta U$

Adiabática

- W = $-\Delta U$
- $\Delta U = (z/2) n R \Delta T$
- $Q = O \rightarrow W = -\Delta U$

$$PV = nRT$$