

UNIVERSIDAD NACIONAL DE CÓRDOBA

Facultad de Ciencias Exactas, Físicas y Naturales

Cátedra de Arquitectura de Computadoras

Trabajo Práctico Nro. 2: UART Fernández Oria, Luciano luchoof212@gmail.com

Sieber, Braian braiansieber@gmail.com

CONSIGNA:

En este trabajo práctico se nos solicitó desarrollar un sistema de comunicaion UART que reciba instrucciones para la ejecucion de operaciones en la ALU que desarrollamos en el TP1.

Requerimientos:

- Implementar en FPGA una comunicacion UART.
- -Utilizar las placas de desarrollo Basys 3.
- Desarrollar una interfaz que comunique el transmisor y el receptor con la ALU.
- Recibir y transmitir datos desde una PC.
- Validar el desarrollo por medio de Test Bench

Para probar el modulo utilizamos la placa de desarrollo Basys 3 que cuenta con una FPGA Artix 7 de la empresa Xilinx y un conector USB-UART.

La transmision de datos se realiza mediante una comunicion asincrona entre los modulos de recepcion y transmision de datos y la PC; por lo que usamos un bit de start y otro de stop.

Los datos transmitidos son en bloques de 8 bits. NO utilizamos bit de paridad y cada uno representa un valor en ASCII:

Cara	Caracteres de control ASCII				Caracteres ASCII imprimibles									ASCII extendido											
DEC	HEX	Si	mbolo ASCII	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	
00	00h	NULL	(carácter nulo)	32	20h	espacio	64	40h	@	96	60h		128	80h	С	160	A0h	á	192	COh	L	224	E0h	Ó	
01	01h	SOH	(inicio encabezado)	33	21h	. !	65	41h	A	97	61h	a	129	81h	ű	161	A1h	í	193	C1h	_	225	E1h	B	
02	02h	STX	(inicio texto)	34	22h		66	42h	В	98	62h	b	130	82h	é	162	A2h	ó	194	C2h	-	226	E2h	Ô	
03	03h	ETX	(fin de texto)	35	23h	#	67	43h	C	99	63h	C	131	83h	â	163	A3h	ú	195	C3h	Ŧ	227	E3h	Ò	
04	04h	EOT	(fin transmisión)	36	24h	\$	68	44h	D	100	64h	d	132	84h	ä	164	A4h	ñ	196	C4h	_	228	E4h	ő	
05	05h	ENQ	(enquiry)	37	25h	%	69	45h	E	101	65h	e	133	85h	à	165	A5h	Ñ	197	C5h	+	229	E5h	Ő	
06	06h	ACK	(acknowledgement)	38	26h	&	70	46h	F	102	66h	f	134	86h	å	166	A6h	8	198	C6h	ä	230	E6h	П	
07	07h	BEL	(timbre)	39	27h	•	71	47h	G	103	67h	q	135	87h	C	167	A7h	0	199	C7h	Ã	231	E7h	b	
08	08h	BS	(retroceso)	40	28h	(72	48h	H	104	68h	h	136	88h	ê	168	A8h	ż	200	C8h	L	232	E8h	b	
09	09h	HT	(tab horizontal)	41	29h	ì	73	49h	ï	105	69h	ï	137	89h	ë	169	A9h	8	201	C9h	E	233	E9h	Ú	
10	OAh	LF	(salto de linea)	42	2Ah	*	74	4Ah	j	106	6Ah	i	138	8Ah	è	170	AAh	7	202	CAh	<u>JL</u>	234	EAh	Ů	
11	0Bh	VT	(tab vertical)	43	2Bh	+	75	4Bh	K	107	6Bh	k	139	8Bh	ĭ	171	ABh	1/2	203	CBh	_	235	EBh	ù	
12	0Ch	FF	(form feed)	44	2Ch		76	4Ch	ï	108	6Ch	ï	140	8Ch	î	172	ACh	1/4	204		Ļ	236	ECh	Ý	
13	0Dh	CR	(retorno de carro)	45	2Dh		77	4Dh	M	109	6Dh	m	141	8Dh	i	173	ADh	-	205		<u>"</u>	237	EDh	Ý	
14	0Eh	SO	(shift Out)	46	2Eh	15	78	4Eh	N	110	6Eh	n	142	8Fh	Ä	174	AEh	«	206	CEh	JL Jr	238	EEh	÷	
15	0Fh	SI	(shift In)	47	2Fh	i	79	4Fh	Ö	111	6Fh	0	143	8Fh	A	175	AFh	33	207	CFh	1	239	EFh		
16	10h	DLE	(data link escape)	48	30h	ó	80	50h	P	112	70h	D	144	90h	É	176	B0h	222	208	DOh	ð	240	FOh		
17	11h	DC1	(device control 1)	49	31h	1	81	51h	Q	113	71h	q	145	91h	æ	177	B1h	866	209	D1h	Ð	241	F1h	±	
18	12h	DC2	(device control 2)	50	32h	2	82	52h	R	114	72h	r	146	92h	Æ	178	B2h		210	D2h	Ê	242	F2h	-	
19	13h	DC3	(device control 3)	51	33h	3	83	53h	S	115	73h	s	147	93h	ô	179	B3h	T	211	D3h	Ë	243	F3h	3/4	
20	14h	DC4	(device control 4)	52	34h	4	84	54h	T	116	74h	t	148	94h	ò	180	B4h		212	D4h	È	244	F4h	9	
21	15h	NAK	(negative acknowle.)	53	35h	5	85	55h	Ú	117	75h	u	149	95h	ò	181	B5h	Ā	213	D5h	-	245	F5h	§	
22	16h	SYN	(synchronous idle)	54	36h	6	86	56h	v	118	76h	v	150		û	182	B6h	Â	214			246	F6h	9	
23	17h	ETB	(end of trans. block)	55	37h	7	87	57h	w	119	77h	w	151	97h	ù	183	B7h	À	215	D7h		247	F7h	-	
24	18h	CAN	(cancel)	56	38h	8	88	58h	X	120	78h	X	152		Ÿ	184	B8h	©	216	D8h	ż	248	F8h	ô	
25	19h	EM	(end of medium)	57		9	89	59h	Ŷ	121	79h	v	153		Ö	185	B9h	1	217	D9h		249	F9h		
26	1Ah	SUB		58	3Ah	9	90	5Ah	Z	122	7Ah	,	154		ü	186	BAh	i	218	DAh	-	250	FAh	32	
27	1Bh	ESC	(substitute)	59			91	5Bh	2	123	7Bh	Z	155		_	187	BBh	Ш	219			251	FBh	1	
		FS	(escape)	200	3Ch	,		5Ch	Ļ		7Ch	1	156	9Ch	ø	188	BCh	1	219			251	FCh	3	
28	1Ch		(file separator)	60	3Dh	<	92		,	124		1			£		BDh	=			-			2	
29	1Dh	GS	(group separator)	61		=	93	5Dh	i	125	7Dh	}	157	9Dh	Ø	189		¢	221	DDh	i	253	FDh		
30	1Eh	RS	(record separator)	62	3Eh	>	94	5Eh	^	126	7Eh	~	158	9Eh	×	190	BEh	¥	222	DEh	-	254	FEh	•	
31	1Fh	US	(unit separator)	63	3Fh	?	95	5Fh	-	elCodigoASCII.com.ar		CII.com.ar	159	9Fh	f	191	BFh	٦	223	DFh	100	255	FFh		
127	20h	DEL	(delete)																						

La recepcion de datos comienza cuando se envia una señal de start al modulo de recepcion y termina con un bit de finalizacion.

Diagrama de estados del modulo de recepcion extraido del libro:

El muestreo de la señal de entrada se realiza mediante un modulo llamado baudrate generator, que cuenta la cantidad de ciclos de clock para realizar el muestreo del simbolo transmitido. Genera un Tick 16 veces por Baud Rate. Si baud rate es 19.200 ciclos por segundo, la frecuencia de muestreo debe ser 38.400 *16= 614.400 ticks por segundo. Si el clock de la placa es 100 Mhz, hay que generar un tick cada 163 ciclos de reloj. El Baud Rate Generator es un contador módulo 163.

Los modulos Rx y Tx los extrajimos del libro; y desarrollamos una interfaz para comunicar con la ALU. La solucion que implementamos utiliza dos interfaces, una para la recepcion de datos y otra para la transmision.

La interfaz de recepcion recibe los caracteres y los envia a la ALU dependiendo de caracteres especiales para la asignacion a las diferentes salidas; y cuando se recibe el caracter de finalizacion avisa a la interfaz de transmision para que comienze a enviar el resultado por el modulo tx.

Diagrama de estados de interfax rx:

La interfaz de transmision una vez que recibe aviso de la interfaz de recepcion, envia el valor recibido de la ALU separando cada digito de centena, decena y unidad, convirtiendolos a sus valores respectivos en ASCII. Diagrama de estado de la interfaz de transmision:

Simulaciones por medio de testbench:

```
reset = 1;
rx_done_tick = 0;
dout = 0;
#20 reset = 0;
                                   // #20
#20 dout = 53;
                           // 5
                                   // #40
rx done tick = 1;
#20 rx_done_tick = 0;
                                   // #60
#20 dout = 102;
                           // f
                                   // #80
rx_done_tick = 1;
#20 \text{ rx\_done\_tick} = 0;
                                   // #100
#20 dout = 49;
                           // 1
                                   // #120
rx done tick = 1;
#20 rx_done_tick = 0;
                                   // #140
#20 dout = 48;
                           // 0
                                   // #160
rx_done_tick = 1;
#20 rx_done_tick = 0;
                                   // #180
#20 dout = 51;
                           // 3
                                   // #200
rx done tick = 1;
                                   // #220
#20 rx_done_tick = 0;
#20 dout = 115;
                           // s
                                   // #240
rx_done_tick = 1;
#20 rx_done_tick = 0;
#20 dout = "+";
                                    // #260
                                  // #280
rx done tick = 1;
#20 rx_done_tick = 0;
                                   // #300
#20 dout = 111;
                           110
                                   // #320
rx_done_tick = 1;
#20 \text{ rx\_done\_tick} = 0;
                                   // #340
#20 dout = 100;
                           // d
                                   // #360
rx_done_tick = 1;
#20 rx_done_tick = 0;
                                   // #380
rx_done_tick = 1;
#20 rx_done_tick = 0;
                                   // #430
//#20 rx_empty = 1;
#20 tx done tick = 1;
#20 tx done tick = 0:
```

Ejecutamos una suma para comprobar el funcionamiento:

Realizamos una resta para comprobar si envia correctamente los numeros negativos:

Podemos comprobar que los datos se envian correctamente.

Conectamos la placa al osciloscopio para observar el envio de datos:

Enviamos un 7 por serial. Ponemos la escala en 25 micro segundo ya que la frecuencia de comunicacion es de 38400 bits por segundo, osea 1 bit cada 26 micro sec. Podemos ver que llega el bit de start, seguido de 1110 1100 y el bit de stop. El valor en binario lo vemos invertido por el orden de llegada.

Conclusion:

Este trabajo nos permitio desarrollar maquinas de estado en verilog y comprender mejor el funcionamiento de la comunicación serial. Pudimos obterner el resultado esperado implementando ambas interfaces de comunicación y probar su funcionamiento sobre la FPGA.