EPITA / InfoS3		Novembre 2022
NOM:	. Prénom :	Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (4 points – Sans point négatif)

Soit le circuit ci-dessous :

Q1. Quelle est l'expression de U si K_1 et K_2 sont ouverts ?

a-
$$U = \frac{E}{2}$$

$$c-U=E$$

b-
$$U = 0$$

d-
$$U = \frac{E}{3}$$

Q2. Quelle est l'expression de U si K_1 est ferméet K_2 est ouvert ?

a-
$$U = \frac{E}{2}$$

$$c-U=E$$

b-
$$U = 0$$

d-
$$U = \frac{E}{3}$$

Q3. Dans un semi-conducteur, le courant est composé :

- a- D'électrons libres uniquement
- b- D'électrons et de trous se déplaçant dans des sens opposés
- c- D'électrons et de trous se déplaçant dans le même sens
- d- De trous uniquement.

Q4. Dans un semi-conducteur intrinsèque, le nombre d'électrons libres est :

a- égal au nombre de trous

- c- plus petit que le nombre de trous
- b- plus grand que le nombre de trous
- d- aucun des cas précédents

Q5. Le dopage permet d'augmenter la conductivité du semi-conducteur.

a- VRAI

b- FAUX

Q6. Qu'est-ce-que la thermogénération

a- Un dégagement de chaleur

b- La création de paires Electrons/Trous sous l'effet de la température c- C'est un autre terme pour désigner l'effet Joule

d- La fabrication de capteurs de température

Q7. On utilise l'élément semi-conducteur de silicium avec 4 électrons dans la bande de valence. Si on le dope avec de l'aluminium, élément ayant 3 électrons dans sa bande de valence, quel est le type de dopage :

a- Dopage N

c- Dopage NP

b- Dopage P

d- Aucun dopage

Q8. Par quoi remplace-t-on la diode bloquée si on utilise le modèle réel (source de tension imparfaite)?

Exercice 2. Révisions SUP+Diode (5 points)

Soit le circuit ci-dessous.

1. Déterminer le générateur de Thévenin vu par la diode.

2. A quelle condition reliant E , I et R la diode sera-t-elle passeuil (Modèle source de tension idéale).	ssante ? On utilisera le modèle à
Exercice 3. Diodes (6 points)	
Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil (générateur de tension idéal) avec $V_0=0.7V$. Pour les 2 questions suivantes, vous utiliserez un raisonnement par l'absurde.	
1. Si $R=1$ $k\Omega$, $I_0=5$ mA et $E=5$ V , montrer que la diod l'intensité du courant I_R qui traverse la résistance.	e est bloquée. Déterminer alors

2. Si R=1 $k\Omega$, $I_0=10$ mA et E=5 V, montrer que la diode est passante. Déterminer alors l'intensité du courant I_D qui traverse la diode.

Exercice 4. Caractéristique de transfert (5 points+1)

Soit le circuit suivant :

On souhaite tracer la caractéristique U = f(V).

On utilisera le modèle à seuil (source de tension parfaite) pour modéliser la diode; et on appellera $V_{\mathcal{O}}$ sa tension de seuil.

1. Donner l'expression de $\it U$ si la diode est passante.

2.	Donner l'expression de \emph{U} si la diode est bloquée.
3.	Pour quelles valeurs de \emph{V} la diode est-elle bloquée?
4.	Tracer $U = f(V)$.

BONUS: On considère maintenant que le générateur de tension V est un générateur de tension sinusoïdale $V=e(t)=E.\sqrt{2}.\sin{(\omega t)}.$ On donne $E.\sqrt{2}=30~V.$ Tracer l'allure de la courbe u(t) si la diode est idéale.

