

Loan Approval System with Bias Mitigation

- Students will work on a **loan approval prediction task**, where they will develop a model that predicts whether a loan should be approved or not based on various features.
- They will apply different bias mitigation techniques (pre-processing, in-processing, and post-processing) to ensure fairness in the loan approval system across different demographic groups.
- At the end of the project, students will compare the model's fairness and accuracy before and after applying these techniques.

Dataset (available on blackboard)

• Features:

- o **Demographics**: Gender, Married, Dependents, Education, Self_Employed, Property_Area
- **Financial information**: ApplicantIncome, CoapplicantIncome, Credit_History
- o **Loan details**: LoanAmount, Loan_Amount_Term
- **Target variable**: Loan_Status
- CSV format

Project tasks

- Data Exploration, Pre-processing and basic visualizations
 - o Identify sensitive attributes
 - Choose your fairness metric
 - Analyze biases in the data
- Model training (baseline model)
 - Train a baseline
 - Evaluate the performance and the fairness
- Bias mitigation
 - o Apply bias mitigation techniques (pre-processing, in-processing and post-processing)
 - Evaluate the performance and the fairness
- Fairness evaluation
 - Compare the fairness metrics for different mitigation techniques

Final deliverable

One jupyter notebook per group with your code and analysis

- The code should include:
 - Data cleaning and preprocessing steps.
 - Model training, evaluation, and comparison of baseline vs. biased model.
 - Application of bias mitigation techniques (pre-processing, in-processing, and post-processing).
 - Calculation of fairness metrics.
- The **analysis** should be integrated within the Jupyter Notebook as markdown cells (with visualizations), covering:
 - · Data exploration and potential biases identified.
 - Fairness issues in the baseline model.
 - Impact of each bias mitigation technique on fairness and accuracy.
 - Visualizations of fairness metrics before and after applying bias mitigation.
 - Key trade-offs and final recommendations for real-world applications.
- Make sure the code is well-commented to explain the rationale behind each step.

Oral presentation

- The situation: imagine you are in front of a client that got its loan denied. You need to explain to them how your algorithm work and why it is fair.
- Your presentation should include :
 - o Overview of the project: the problem, dataset, and goals.
 - Summary of model training results (accuracy and fairness metrics).
 - A clear discussion of each bias mitigation technique applied (pre-processing, in-processing, postprocessing).
 - Visualizations comparing fairness before and after applying each technique.
 - Trade-offs between fairness and accuracy, and final recommendations.
 - o Discussion about the importance of fairness in this use case.
- Each member of the team should present.
- You have 10 min per group: 8 min presentation + 2 min Q&A