

Year 12 Specialist TEST 1 Friday 8 February 2019

TIME: 45 minutes working

No Classpads nor calculators allowed!

37 marks 8 Questions

Name:	
Teacher:	
Note: All part questions worth more than 2 marks require working to obtain full marks.	
Q1 (1 & 2 = 3 marks)	
Express each of the following in the form $a + b$	0 where $a \otimes b$ are real numbers.
a) $(3-4i)(5i)$	

b)
$$\frac{2-3i}{5+i}$$

Q2 (3 marks)

Determine the remainder when $3x^2 - 5x + 7$ is divided by (x + 3 - 2i)

Q3 (3 marks)

Determine the complex number $\,^q\,$ in polar form.

Q4 (2 & 3 = 5 marks) Sketch the following in the complex plane showing all major features.

Q5 (2, 3 & 3 = 8 marks)

If z = a + ib and w = p + iq where a, b, p & q are real numbers, show the following:

a)
$$\overline{Z+W} = \overline{Z} + \overline{W}$$

b)
$$\overline{zw} = \overline{z} \overline{w}$$

c) Hence or otherwise show that if there is a complex root to the quadratic equation $ax^2 + bx + c = 0$ with real coefficients, then the conjugate is also a root. (Hint: Take the conjugate of both sides of the quadratic equation)

Page 4

Q6 (4 marks)

Consider the set of complex numbers z = x + iy that satisfy the following equation: |z+1-i| = |z-3-7i|

Determine the cartesian equation, in terms of ${}^{\chi} \& y$, of these numbers.

Q7 (2 & 4 = 6 marks)

Consider the function $f(z) = az^3 + bz^2 + cz + d$ where $a, b, c \otimes d$ are real constants. It is known that (z-1) is a factor, and $f(0) = -18 \otimes f(3i) = 0$.

- a) Determine all three factors of f(z).
- b) Determine the values of a,b,c&d.

Q8 (4 & 1 = 5 marks)

Consider the set of complex numbers, Z, that satisfy the following:

$$\left|z-2\sqrt{2}-2\sqrt{2}i\right| \le c$$
 , $c \ge 0$ a real constant, and $0 < Arg(z) < \frac{\pi}{2}$.

Determine:

a) The value of ^C given that the Maximum value of
$$Arg(z) = \frac{5\pi}{12}$$
.

b) Maximum value of |z|.