Validation results

Meg Cychosz

04 December 2020

```
# get total # of clips from each recording
complete2 <- complete %>%
  group_by(id) %>%
  distinct(file_name, .keep_all = T) %>%
  mutate(num_clips = NROW(Media)*2)
clips <- complete2 %>%
  select(id, num_clips) %>%
  distinct(id, .keep_all = T)
data <- merge(clips, random, by='id')</pre>
data2 <- rbind(data, complete2)</pre>
data3 <- data2 %>%
  group_by(method, id) %>%
  mutate(num_clips_drawn = (NROW(file_name))) %>%
  mutate(percen_ofallclips_drawn=(NROW(file_name)/num_clips)*100) # sanity check - complete method shou
data_annon <- data3 %>%
 gather("addressee", "language", Adult2OtherChild, Adult2Others, Adult2TargetChild, Adult2unsure, Other
  filter(language=='Mixed' | language=='Spanish' | language=='English/Quechua' | language =='Unsure') %
  group_by(id, method) %>%
  distinct_at(., vars(file_name, language), .keep_all = T) %>% # don't record multiple speakers speakin
  mutate(total_annotations = NROW(file_name)) # N of annotations made; distinct from N of speech clips
# separately, calculate the num and % of annotated clips
data_annon_cts <- data_annon %>%
  group_by(id, method) %>%
  distinct(file_name, .keep_all = T) %>%
  mutate(speech_clips = NROW(file_name)) %>% # N of unique clips annotated - NOT the # of annotations
  mutate(percen_ofallclips_annon=(NROW(file_name)/num_clips)*100) %>% # % of total clips annotated
  select(speech_clips, percen_ofallclips_annon, id, method, file_name, num_clips_drawn, percen_ofallcli
for_speech_clips <- data_annon_cts %>%
  select(id, method, speech_clips) %>%
  distinct_at(., vars(id, method), .keep_all = T)
# calculate the num and % of all clips available for annotation
data_annon$Childsleep <- as.factor(data_annon$Childsleep)</pre>
data_avbl <- data3 %>%
  group_by(id, method) %>%
```

```
distinct(file_name, .keep_all = T) %>% # two, for random and complete
  mutate(voc = if_else(percents_voc > 0, "1", "0")) %>% # turn percents_voc binary
  filter(sleeping=='1' | researcher_present == '1' | voc == '0') %>%
  count() %>%
  rename(not_avl_clips = n) %>%
  merge(., data_annon, by=c('id', 'method')) %>%
  mutate(avbl_clips = num_clips - not_avl_clips) %>% # clips that were *available* for annotation
  merge(., for_speech_clips, by=c('id', 'method')) %% # N of unique clips annotated - NOT the # of ann
  mutate(percen_avl_annon = (speech_clips / avbl_clips)*100) %>% # the % of available clips that were a
  distinct_at(., vars(id, method), .keep_all = T) %>%
  group_by(method) %>%
  mutate(avbl_clips = paste(speech_clips, "(",round(percen_avl_annon,2),"%)")) %>%
  ungroup()%>%
  select(avbl_clips, id, method) %>%
  pivot_wider(names_from=method, values_from=c("avbl_clips"))
percen_tbl <- data_annon_cts %>%
  select(-file_name) %>%
  distinct_at(., vars(id,method), .keep_all = T) %>%
  mutate(clips_drawn = paste(num_clips_drawn,"(",round(percen_ofallclips_drawn,2),"%)")) %>%
  mutate(clips_annon = paste(speech_clips,"(",round(percen_ofallclips_annon,2),"%)")) %>%
  select(-num_clips_drawn, -percen_ofallclips_annon, -speech_clips, -percen_ofallclips_drawn) %>%
  relocate(c(id, method, clips_drawn, clips_annon)) %>%
  pivot_wider(names_from=method, values_from=c("clips_drawn", "clips_annon")) %>%
  merge(., data avbl, by=c('id'))
percen_tbl$id <- plyr::mapvalues(percen_tbl$id,</pre>
                                 from=c('267-12mo', '261-8mo', '199', '198-9mo', '179', '1081', '1077',
            to=c('Spanish-English (267)', 'Spanish-English (261)', 'Spanish-English (199)',
  'Spanish-English (198)', 'Spanish-English (179)', 'Quechua-Spanish (1081)', 'Quechua-Spanish (1077)',
# actually decided to split this table and move part to the appendix
clip_annon_tbl <- percen_tbl %>%
  select(id, clips_annon_random, clips_annon_complete) %>%
  arrange(desc(id))
knitr::kable(clip_annon_tbl, caption = 'Number of clips annotated by child and annotation method.',
             booktabs=T,
             row.names = FALSE.
             col.names = c("Corpus (ID)", "Random", "Complete")) %>% # "
  kable_styling() %>%
  add_header_above(c(" " = 1, "# of clips annotated (% of total clips)" = 2)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
  \begin{table}[!h]
     \caption{(#tab:% drawn and annotated table)Number of clips annotated by child and annotation
                                         method.
```

	# of clips annotated (% of total clips)		
Corpus (ID)	Random	Complete	
Spanish-English (267)	101 (5.26 %)	274 (14.27 %)	
Spanish-English (261)	92 (4.79 %)	294 (15.31 %)	
Spanish-English (199)	118 (6.15 %)	467 (24.32 %)	
Spanish-English (198)	81 (4.22 %)	302 (15.73 %)	
Spanish-English (179)	120 (6.25 %)	633 (32.97 %)	
Quechua-Spanish (1081)	92 (7.5 %)	285 (23.25 %)	
Quechua-Spanish (1077)	83 (7.23 %)	355 (30.92 %)	
Quechua-Spanish (1075)	81 (8.69 %)	199 (21.35 %)	
Quechua-Spanish (1060)	111 (10.51 %)	405 (38.35 %)	
Quechua-Spanish (1032)	97 (5.05 %)	372 (19.38 %)	

```
clip_drawn_avbl_tbl <- percen_tbl %>%
    select(-clips_annon_random, -clips_annon_complete) %>%
```

```
relocate(id, clips_drawn_random, clips_drawn_complete, random, complete) %>%
arrange(desc(id))
```

\caption{(#tab:% drawn and annotated table)Number of clips drawn and number of clips annotated, by child and annotation method.}

	# of clips drawn (% of total clips)		# of clips annotated (% of available clips)	
Corpus (ID)	Random	Complete	Random	Complete
Spanish-English (267)	345 (17.97 %)	960 (50 %)	101 (5.8 %)	274 (20.4 %)
Spanish-English (261)	290 (15.1 %)	960 (50 %)	92 (5.06 %)	294 (19.3 %)
Spanish-English (199)	192 (10 %)	960 (50 %)	118 (6.36 %)	467 (30.83 %)
Spanish-English (198)	284 (14.79 %)	960 (50 %)	81 (4.52 %)	302 (20.53 %)
Spanish-English (179)	192 (10 %)	960 (50 %)	120~(~6.36~%)	633 (37.04 %)
Quechua-Spanish (1081)	249 (20.31 %)	613 (50 %)	92 (8.16 %)	285 (30.19 %)
Quechua-Spanish (1077)	137 (11.93 %)	574 (50 %)	83 (7.33 %)	355 (32.75 %)
Quechua-Spanish (1075)	267 (28.65 %)	466 (50 %)	81 (9.68 %)	199 (26.36 %)
Quechua-Spanish (1060)	154 (14.58 %)	528 (50 %)	111 (10.65 %)	405 (40.87 %)
Quechua-Spanish (1032)	263 (13.7 %)	960 (50 %)	97 (5.38 %)	372 (25.89 %)

 $\ensuremath{\ensuremath{\mathsf{Nend}}}$

0.0.1 Language categories across random and full methods

```
lang_annon <- data_annon %>%
filter(language=='Mixed' | language=='Spanish' | language=='English/Quechua') %>% # only clips where
```

```
group_by(id, method) %>%
  distinct_at(., vars(file_name, language), .keep_all = T) %>% # don't record multiple speakers speakin
  mutate(total_lang_annotations = NROW(file_name)) # N of language annotations made; distinct from N of
que <- lang_annon %>%
  group_by(id, method) %>%
  filter(language=='English/Quechua') %>%
  group by (method) %>%
  distinct(file_name, .keep_all = T) %>%
  group_by(id, method) %>% # irrespective of speaker/addressee; by-child only
  mutate(n_que=n()) %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_que = n_que / total_lang_annotations) # compute que/eng ratio
span <- lang_annon %>%
  group_by(id, method) %>%
  filter(language=='Spanish') %>%
  group_by(method) %>%
  distinct(file_name, .keep_all = T) %>%
  group_by(id, method) %>%
  mutate(n_{span} = n()) %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_span = n_span / total_lang_annotations) # compute span ratio
mixed <- lang_annon %>%
  group_by(id, method) %>%
  filter(language=='Mixed') %>%
  group_by(method) %>%
  distinct(file_name, .keep_all = T) %>%
  group_by(id, method) %>%
  mutate(n_mxd = n()) %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_mxd = n_mxd / total_lang_annotations) # compute mixed ratio
vars <- data_annon_cts %>%
  select(percen_ofallclips_drawn, id, method) %>%
  colnames(.)
final_data <- span %>%
  merge(., data_annon_cts, by=vars) %>%
  select(id, num_clips, age_YYMMDD, gender, location, method, percen_span, speech_clips, percen_ofallcl
final_data2 <-
  merge(final_data, que, by=c('id', 'method', 'percen_ofallclips_drawn', 'gender', 'location', 'num_cli
  select(id, gender, location, method, percen_span, percen_que, num_clips, percen_ofallclips_drawn, spe
plot_data <-
  merge(final_data2, mixed, by=c('id', 'method', 'percen_ofallclips_drawn', 'gender', 'location', 'num_
  select(id, gender, location, method, percen_span, percen_que, percen_mxd, num_clips, percen_ofallclip
# sanity check: calculate percen mixed + spanish + english/quechua
plot_data$total <- plot_data$percen_mxd + plot_data$percen_span + plot_data$percen_que
```

```
# compute correlations
us_cor <- plot_data %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(method, id, percen_span, location) %>%
  spread("method", "percen span") %>%
  filter(location=='US') %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
bo_cor <- plot_data %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(method, id, percen_que, location) %>%
  spread("method", "percen_que") %>%
  filter(location=='Bolivia') %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
# compute avq. %s of target lang categories
us_lang_tbl <- plot_data %>%
  filter(location=='US') %>%
  group_by(method) %>%
  summarize(avg=round(mean(percen_span),2),
            sd=round(sd(percen_span),2)) %>%
  mutate(stats=paste(avg,"(",sd,")")) %>%
  select(-avg, -sd) %>%
  spread(key='method', value = "stats")
bo_lang_tbl <- plot_data %>%
  filter(location=='Bolivia') %>%
  group_by(method) %>%
  summarize(avg=round(mean(percen_que),2),
            sd=round(sd(percen_que),2)) %>%
  mutate(stats=paste(avg,"(",sd,")")) %>%
  select(-avg, -sd) %>%
  spread(key='method', value = "stats")
# calculate relative errors
us_rel_error <- plot_data %>%
  filter(location=='US') %>%
  group by (method, id) %>%
  summarize(avg=mean(percen_span)) %>%
  spread(key='method', value='avg') %>%
  mutate(relative_error = ((abs((random - complete)) / complete)*100),
         avg_rel_error = round(mean(relative_error),2),
         sd_rel_error = round(sd(relative_error),2)) %>%
  mutate(rel_error_stats=paste(avg_rel_error,"(",sd_rel_error,")")) %>%
  distinct(rel_error_stats)
bo_rel_error <- plot_data %>%
  filter(location=='Bolivia') %>%
  group_by(method, id) %>%
  summarize(avg=mean(percen_que)) %>%
  spread(key='method', value='avg') %>%
  mutate(relative_error = ((abs((random - complete)) / complete)*100),
         avg_rel_error = round(mean(relative_error),2),
```

```
mutate(rel_error_stats=paste(avg_rel_error,"(",sd_rel_error,")")) %>%
  distinct(rel_error_stats)
# add correlations to table - will make pretty below
us_lang_tbl <- cbind(us_lang_tbl, us_cor) %>%
  cbind(., us_rel_error) %>%
  mutate(Corpus = "Spanish-English (Spanish)") %>%
  relocate(c(Corpus, random, complete))
bo_lang_tbl <- cbind(bo_lang_tbl, bo_cor) %>%
  cbind(., bo_rel_error) %>%
  mutate(Corpus = "Quechua-Spanish (Quechua)") %>%
  relocate(c(Corpus, random, complete))
lang_tbl <- rbind(us_lang_tbl, bo_lang_tbl)</pre>
knitr::kable(lang_tbl, caption = 'Minority language estimates by corpus and annotation method.',
             booktabs=T,
             row.names = FALSE,
             col.names = c("Corpus (language)", "Random", "All-day", "Correlation between estimates", ".
  kable_styling() %>%
  add_header_above(c(" " = 1, "Annotation Method" = 2, " " = 2)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
```

Table 1: (#tab:generate lang tables)Minority language estimates by corpus and annotation method.

sd_rel_error = round(sd(relative_error),2)) %>%

Annotation Method				
Corpus (language)	Random	All-day	Correlation between estimates	Average relative error (SD)
Spanish-English (Spanish) Quechua-Spanish (Quechua)	0.75 (0.13) 0.48 (0.11)	. ` /	r = 0.96, $p = 0.01r = 0.9$, $p = 0.04$	5.36 (4.82) 11.02 (4.28)

```
# for later
per_ann <- plot_data %>%
  filter(method=='random') %>%
  select(id, percen_ofallclips_drawn)
us_plot <- plot_data %>%
  filter(location=='US') %>%
  distinct_at(., vars(method, id), .keep_all = T)%>%
  select(-percen_que, -percen_ofallclips_drawn, -percen_mxd, -speech_clips, -total) %>%
  spread("method", "percen_span") %>%
merge(., per_ann, by='id') %>%
  distinct(id, .keep_all = T) %>%
ggplot(., aes(random, complete)) +
  geom_smooth(method = "lm", color="black") +
  geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
  scale_size_continuous(range = c(5, 9)) +
  scale_colour_gradient(low='indianred1', high = 'indianred4') +
  ylab("Proportion computed over \n entire recording") +
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/us_plot.jpeg", height = 500, width = 60
us_plot
dev.off()

## pdf
## 2

bo_plot <- plot_data %>%
    filter(location=='Bolivia') %>%
    distinct_at(., vars(method, id), .keep_all = T) %>%
    select(-percen_span, -percen_ofallclips_drawn, -percen_mxd, -speech_clips, -total) %>%
    spread("method", "percen_que") %>%
    merge(., per_ann, by='id') %>%
```

```
distinct(id, .keep_all = T) %>%
ggplot(., aes(random, complete)) +
  geom_smooth(method = "lm", color="black") +
  geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
  scale_size_continuous(range = c(5, 9)) +
  scale_colour_gradient(low='indianred1', high = 'indianred4') +
  ylab("Proportion computed over \n entire recording") +
  xlab("Proportion computed over \n randomly sampled clips") +
  ylim(0,1) +
  xlim(0,1)+
  #facet_wrap(~location, scales = "free") +
  labs(col='% of clips drawn \n in random sampling') +
       #title = 'Proportion of Quechua clips \n in Bolivian corpus') +
 theme(title = element_text(size=18, face="bold"),
   axis.text=element_text(size=14),
      axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(size=15))+
       \#legend.position = c(.8, .5)) +
      guides(size=guide_legend(title="Total # of clips in \n recording"))
bo_plot
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/bolivia_plot.jpeg", height = 500, width
bo_plot
dev.off()
```

pdf

2

```
# finally, we want to actuallly plot the proportions of each language category by child and annotation
lang_props <- plot_data %>%
  gather("language", "proportion", percen_span, percen_que, percen_mxd) %>%
  distinct_at(., vars(id, proportion, language), .keep_all = T) %>%
  mutate(method=plyr::mapvalues(method, "complete", "all-day"),
         id=plyr::mapvalues(id, c("198-9mo", "261-8mo", "267-12mo"), c("198", "261", "267")),
         language=case_when(language=='percen_que' & location=='Bolivia' ~ " Quechua",
                         language=='percen_que' & location=='US' ~ ' English',
                         TRUE ~ as.character(language)),
        language=plyr::mapvalues(language, c("percen_mxd", "percen_span"), c("Mixed", "Spanish"))) %>%
  ggplot(., aes(fill=language, y=proportion, x=method)) +
  geom_bar(position='stack', stat='identity') +
  facet_grid(~id) +
  xlab('annotation method') +
  labs(title="Proportion of language categories, by child and annotation method",
       subtitle = "Quechua-Spanish corpus
                                                                                   Spanish-English corp
  theme(axis.text.x = element_text(angle = 45, hjust = .9, vjust=.8),
       plot.title = element_text(face="bold"),
       plot.subtitle = element_text(color='gray57',hjust = .55))
lang_props
```

Proportion of language categories, by child and annotation method

jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/stacked_lang_plot.jpeg", height = 500,
lang_props
dev.off()

```
## pdf
## 2
```

0.0.2 Chid-directed speech across random and full methods

```
reg_annon <- data_annon %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild' | addressee=='Adult2Other
  group_by(id, method) %>%
  distinct_at(., vars(file_name, addressee), .keep_all = T) %>% # don't record multiple speakers speaki
  mutate(total_reg_annotations = NROW(file_name)) # N of register annotations made; distinct from N of s
cds <- reg_annon %>%
  group_by(id, method) %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild') %>%
  group_by(id, method) %>%
  mutate(n_cds = n()) %>% # # of CDS clips
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_cds = n_cds / total_reg_annotations) %>%
  select(id, num_clips, age_YYMMDD, gender, location, method, percen_cds, n_cds, percen_ofallclips_draw
ads <- reg_annon %>%
  filter(addressee=='Adult2Others' | addressee=='Otherchild2adults') %>%
  group_by(id, method) %>%
  mutate(n_ads = n()) %>% # # of ADS clips
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_ads = n_ads / total_reg_annotations) %>%
  select(id, num_clips, age_YYMMDD, gender, location, method, percen_ads, n_ads, percen_ofallclips_draw
o_child <- reg_annon %>%
  filter(addressee=='Adult2OtherChild' | addressee=='Otherchild2OtherChild') %>%
  group_by(id, method) %>%
  mutate(n_ods = n()) %>% # # of ODS clips
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_ods = n_ods / total_reg_annotations) %>%
  select(id, num_clips, age_YYMMDD, gender, location, method, percen_ods, n_ods, percen_ofallclips_draw
o2 <- merge(cds, ads, all=T)
o3 <- merge(o2, o_child, all = T)
o3[is.na(o3)] <- 0 # one child doesn't have any ODS
o3$total <- o3$percen_ods + o3$percen_ads + o3$percen_cds
# for later
percen_cds_df <- o3 %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  filter(method=='random') %>%
  select(id, percen_ofallclips_drawn) # get the % of clips annotated for each id and method
cds_plot_data <- o3 %>%
  select(id, gender, location, num_clips, method, percen_cds) %>%
  spread("method", "percen cds") %>%
  merge(., percen_cds_df, by='id')
```

```
# compute correlations
cds_cors <- cds_plot_data %>%
  group_by(location) %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
#reg_tbl <- o3 %>%
# group_by(method, location) %>%
# summarize(avg=round(mean(percen cds),2),
             sd=round(sd(percen_cds),2)) %>%
# mutate(stats=paste(avg,"(",sd,")")) %>%
# select(-avg, -sd) %>%
# spread(key='method', value = "stats")
# calculate relative errors
cds_rel_error <- o3 %>%
  group_by(id) %>%
  #summarize(avg=mean(percen_cds)) %>%
  select(id,method,percen_cds,location) %>%
  spread(key='method', value='percen_cds') %>%
  mutate(relative_error = round(((abs(random - complete) / complete)*100),2)) %>%
  #mutate(avg_rel_error = round(mean(relative_error),2),
          sd_rel_error = round(sd(relative_error),2),
          rel_error_stats=paste(avg_rel_error, "(",sd_rel_error,")")) %>%
  distinct(relative_error, .keep_all = T)
# add correlations to table - will make pretty below
final_reg_tbl <- merge(cds_rel_error, cds_cors, by='location')</pre>
final_reg_tbl$location <-
  plyr::mapvalues(final_reg_tbl$location,
                  from = c("Bolivia", "US"),
                  to =c("Quechua-Spanish", "Spanish-English"))
final_reg_tbl2 <- final_reg_tbl %>%
  mutate(random = round(random, 2),
         complete = round(complete,2)) %>%
  mutate(corpus_id = paste(location, "(",id,")")) %>%
  select(-location, -id) %>%
  relocate(corpus_id, random, complete)
knitr::kable(final_reg_tbl2, caption = 'Child-directed speech estimates by child and annotation method.
             booktabs=T,
             row.names = FALSE,
             col.names = c("Corpus (ID)", "Random", "All-day", "Relative error", "Within-corpus correla
  #column_spec(2, width = "4cm") %>% # force column headers onto two rows
  #column_spec(3, width = "3cm") %>%
  column_spec(5, width = "5cm") %>%
  kable_styling() %>%
```

```
add_header_above(c(" " = 1, "Annotation Method" = 2, " " = 2)) %>%
kableExtra::kable_styling(latex_options = "hold_position")
```

Table 2: (#tab:cds proportion stats)Child-directed speech estimates by child and annotation method.

	Annotation	n Method		
Corpus (ID)	Random	All-day	Relative error	Within-corpus correlation between estimates
Quechua-Spanish (1032)	0.19	0.17	11.53	r = 0.64, $p = 0.24$
Quechua-Spanish (1060)	0.12	0.07	55.09	r = 0.64, $p = 0.24$
Quechua-Spanish (1075)	0.12	0.14	12.50	r = 0.64, $p = 0.24$
Quechua-Spanish (1077)	0.10	0.11	10.48	r = 0.64, $p = 0.24$
Quechua-Spanish (1081)	0.13	0.05	145.09	r = 0.64, $p = 0.24$
Spanish-English (179)	0.53	0.47	13.24	r = 0.97, $p = 0.01$
Spanish-English (198-9mo)	0.65	0.66	1.09	r = 0.97, $p = 0.01$
Spanish-English (199)	0.29	0.31	6.06	r = 0.97, $p = 0.01$
Spanish-English (261-8mo)	0.80	0.82	2.37	r = 0.97, $p = 0.01$
Spanish-English (267-12mo)	0.40	0.47	15.23	r = 0.97, $p = 0.01$

```
ads plot data <- o3 %>%
  #filter(location=='Bolivia') %>%
  select(id, gender, location, num_clips, method, percen_ads) %>%
  spread("method", "percen_ads") %>%
  merge(., percen_cds_df, by='id')
# compute correlations
ads_cors <- ads_plot_data %>%
  group_by(location) %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
reg_tbl <- o3 %>%
  group_by(method, location) %>%
  summarize(avg=round(mean(percen_ads),2),
            sd=round(sd(percen_ads),2)) %>%
  mutate(stats=paste(avg,"(",sd,")")) %>%
  select(-avg, -sd) %>%
  spread(key='method', value = "stats")
# calculate relative errors
ads_rel_error <- o3 %>%
  group_by(method, location, id) %>%
  summarize(avg=mean(percen_ads)) %>%
  spread(key='method', value='avg') %>%
  group_by(id) %>%
  mutate(relative_error = ((abs(random - complete) / complete)*100)) %>%
  ungroup() %>%
  group_by(location) %>%
  mutate(avg_rel_error = round(mean(relative_error),2),
         sd rel error = round(sd(relative error),2),
         rel_error_stats=paste(avg_rel_error,"(",sd_rel_error,")")) %>%
```

Table 3: (#tab:ads proportion stats) Average adult-directed speech estimates by corpus and annotation method.

Annotation Method				
Corpus	Random	All-day	Correlation between estimates	Average relative error (SD)
Bolivia US	\ /	(/	r = 0.84, $p = 0.08r = 0.95$, $p = 0.01$	12.17 (12.56) 17.57 (12.74)

```
# reorder location variable
cds_plot_data$location <- factor(cds_plot_data$location, levels = c("US", "Bolivia"))</pre>
cds_plot <- ggplot(cds_plot_data, aes(random, complete)) +</pre>
  geom_smooth(method = "lm", color="black") +
  geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
  scale_size_continuous(range = c(5, 9)) +
  scale_colour_gradient(low='indianred1', high = 'indianred4') +
  ylab("Proportion computed over entire recording") +
  xlab("Proportion computed over randomly sampled clips") +
  ylim(0,0.9) +
  xlim(0,0.9)+
  facet_wrap(~location, scales = "fixed") +
  labs(col='% of clips annotated \n in random sampling') +
       \#title = Proportion \ of \ child-directed \ speech \ clips \ n \ in \ U.S. \ and \ Bolivian \ corpora') +
 theme(title = element_text(size=18, face="bold"),
   axis.text=element_text(size=14),
      axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(size=9),
      \#legend.position = c(.85, .55),
      strip.text.x = element_text(size=12, face="bold")) +
      guides(size=guide_legend(title="Total # of clips in \n recording"))
cds_plot
```


jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/cds_plot.jpeg", height = 500, width = 5
cds_plot

```
## pdf
## 2
```

dev.off()

```
# finally, we want to actuallly plot the proportions of each speech register category by child and anno
reg_props <- o3 %>%
  gather("register", "proportion", percen_cds, percen_ods, percen_ads) %>%
  distinct_at(., vars(id, proportion, register), .keep_all = T) %>%
  mutate(method=plyr::mapvalues(method, "complete", "all-day"),
         id=plyr::mapvalues(id, c("198-9mo", "261-8mo", "267-12mo"), c("198", "261", "267")),
         register=plyr::mapvalues(register, c("percen_cds", "percen_ods", "percen_ads"), c("Child-direc
  ggplot(., aes(fill=register, y=proportion, x=method)) +
  geom_bar(position='stack', stat='identity') +
  facet_grid(~id) +
  xlab('annotation method') +
  labs(title="Proportion of speech register categories, by child and annotation method",
       subtitle = "Quechua-Spanish corpus
                                                                                Spanish-English corpus"
  theme(axis.text.x = element_text(angle = 45, hjust = .9, vjust=.8),
       plot.title = element_text(face="bold"),
        plot.subtitle = element_text(color='gray57',hjust = .55))
reg_props
```

Proportion of speech register categories, by child and annotation met


```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/stacked_register_plot.jpeg", height = 5
reg_props
dev.off()
```

pdf ## 2

0.0.3 Part III: language across random and questionnaire methods

Table 4: (#tab:make table for questionnaire method)Spanish language estimates in U.S. corpus, by child and estimation method.

	From daylon	g recording	
Child ID	Random	All-day	Parental Questionnaire
179	0.57	0.57	.71
198-9mo	0.87	0.78	.57
199	0.76	0.70	.94
261-8mo	0.69	0.65	.69
267 - 12 mo	0.92	0.92	.87

```
# we also want to know what the results are for the combination of CDS*Spanish, not just Spanish
reg_annon <- data_annon %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild') %% # only CDS clips
  group_by(id, method) %>%
 distinct_at(., vars(file_name, addressee), .keep_all = T) %>% # don't record multiple speakers speaki
  mutate(total cds annotations = NROW(file name))#
span_cds_tbl <- reg_annon %>%
  group_by(id, method) %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild' & location=='US') %>% # o
  merge(., ques, by='id') %>%
  filter(language=='Spanish') %>% # only Spanish clips
  group_by(id, method) %>%
  mutate(n_span_cds = n()) %% # # of CDS clips where Spanish was spoken
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_span_cds = round(n_span_cds / total_cds_annotations,2)) %>%
  select(method, percen_span_cds, id, ques_est) %>%
  spread("method", "percen_span_cds") %>%
  relocate(id, random, complete, ques_est)
# compute correlations
cor.test(as.numeric(span_cds_tbl$ques_est), span_cds_tbl$complete)
##
   Pearson's product-moment correlation
##
```

##

```
## data: as.numeric(span_cds_tbl$ques_est) and span_cds_tbl$complete
## t = 1.022, df = 3, p-value = 0.382
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6781348 0.9600192
## sample estimates:
         cor
## 0.5081637
cor.test(as.numeric(span_cds_tbl$ques_est), span_cds_tbl$random)
##
   Pearson's product-moment correlation
##
##
## data: as.numeric(span_cds_tbl$ques_est) and span_cds_tbl$random
## t = 0.12188, df = 3, p-value = 0.9107
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8656838 0.8969149
## sample estimates:
##
         cor
## 0.0701952
# create table
knitr::kable(span_cds_tbl, caption = 'Spanish language in child-directed speech \n estimates in U.S. co
             booktabs=T,
             row.names = FALSE,
             col.names = c("Child ID", "Random", "All-day", "Parental Questionnaire")) %>%
  kable_styling() %>%
  add_header_above(c(" " = 1, "From daylong recording" = 2, " " = 1)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
```

Table 5: (#tab:make table for questionnaire method)Spanish language in child-directed speech estimates in U.S. corpus, by child and estimation method.

	From daylor	ng recording	
Child ID	Random	All-day	Parental Questionnaire
179	0.53	0.52	.71
198-9mo	0.78	0.64	.57
199	0.64	0.66	.94
261-8mo	0.55	0.48	.69
267-12mo	0.82	0.87	.87

```
# for later
per_ann <- plot_data %>%
    filter(method=='random' & location=='US') %>%
    select(id, percen_ofallclips_drawn)

ques_plot <- plot_data %>%
    filter(location=='US') %>%
```

```
merge(., ques, by='id') %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(-percen_que, -percen_ofallclips_drawn, -percen_mxd, -speech_clips, -total) %>%
  spread("method", "percen_span") %>%
  select(-complete) %>%
  merge(., per_ann, by='id') %>%
  distinct(id, .keep_all = T) %>%
ggplot(., aes(as.numeric(ques_est), random)) +
  geom_smooth(method = "lm", color="black", se=FALSE) +
  geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
  scale_size_continuous(range = c(5, 9)) +
  scale_colour_gradient(low='indianred1', high = 'indianred4') +
  ylab("Proportion computed from \n background questionnaire") +
  xlab("Proportion computed over \n randomly sampled clips") +
  ylim(0,1) +
  xlim(0,1)+
  labs(col='% of clips drawn \n in random sampling') +
       #title = 'Proportion of Spanish clips \n in U.S. corpus: random sampling and background question
 theme(title = element_text(size=18, face="bold"),
   axis.text=element_text(size=14),
      axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(size=15)) +
      guides(size=guide_legend(title="Total # of clips in \n recording"))
ques_plot
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/ques_plot.jpeg", height = 500, width = ques_plot
dev.off()

## pdf
## 2
```

0.0.4 Part I: Running variance

```
random$id <- plyr::mapvalues(random$id,
                               from=c("198-9mo", "261-8mo", "267-12mo"),
                               to=c("198", "261", "267"))
# only doing for CDS first - filter for other languages for language
cds_var <- random %>%
   group by(id) %>%
   mutate(total=n()) %>% # total clips drawn & listened to
   filter(researcher_present!='1' & sleeping!='1' & percents_voc>0) %>% # criteria for draw, but don't l
   distinct(file_name, .keep_all = T) %>%
   mutate(annotation_num = as.numeric(1:n())) %% # total clips annotated for lang/reg/childvoc/media, n
   select(-Otherchild2OtherChild, -Otherchild2adults, -Otherchild2unsure, -Adult2OtherChild, -Adult2Otherchild2unsure, -Adult2OtherChild, -Adult2Otherchild2unsure, -Adult2Otherchild3unsure, -Adult3unsure, -Adult3unsur
   gather("addressee", "language", Adult2TargetChild, Otherchild2TargetChild) %>%
   distinct_at(., vars(file_name, timestamp_HHMMSS), .keep_all = T) %% # CDS only gets counted 1x/clip;
   select(-addressee)
cds_var$cds_cts <- plyr::mapvalues(cds_var$language,</pre>
                               from=c("Categorize language to target child", "English/Quechua", "Mixed", "Spanish", "U
                               to=c("0", "1", "1", "1", "1")) # where 'cat lang...' are ADS or OCDS
cds_var$cds_cts <- as.numeric(cds_var$cds_cts)</pre>
cds_var$total <- as.numeric(cds_var$total)</pre>
cds rolling <- cds var %>%
   group by(id) %>%
   mutate(cds running cts = as.numeric(cumsum(cds cts))) %>%
   mutate(roll_prop_cds = cds_running_cts / annotation_num,
                 roll_mean_cds = rollmean(roll_prop_cds, k=10, fill = NA),
                 roll_sd_cds = rollapply(roll_prop_cds, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
cds_rolling2 <- cds_rolling %>%
   group_by(id, annotation_num) %>% # group by id and sample size
   summarize(cis = binom.confint(cds_running_cts, annotation_num, methods = 'wilson', conf.level = .95))
   merge(., cds_rolling, by = c('id', 'annotation_num'))
# for models, compute binomial confidence interval in 5-clip batches
#cds_batches <- cds_rolling %>%
# group_by(id) %>%
# mutate(five\_clip\_batch = as.integer(ql(n(), 5, n())) * 5,
                   five_clip_batch = replace(five_clip_batch, ave(five_clip_batch, five_clip_batch, FUN = lengt
# ungroup %>%
# fill(five_clip_batch) #%>%
```

```
#cds_batches2 <- cds_batches %>%
# group_by(id, five_clip_batch) %>%
# summarize(five_cis = binom.confint(cds_running_cts, 5, methods = 'wilson', conf.level = .95)) %>%
# merge(., cds_batches, by = c('id', 'five_clip_batch'))
cds_var_plot <- cds_rolling2 %>%
#filter(roll_sd_cds!='NA') %>% # remove rows where variance wasn't estimated
mutate(mean ci = cis$mean,
       upper_ci = cis$upper,
       lower_ci = cis$lower) %>%
ggplot(., aes(annotation_num, roll_prop_cds)) +
  #geom_line(aes(y=rollapply(roll_prop_cds, 10, FUN=sd, fill=NA))) +
  geom_ribbon(aes(ymax=upper_ci, ymin=lower_ci), fill='lightblue', color='deepskyblue4') +
    geom_line(aes(y=mean_ci), color='gray40', size=.8) +
  xlab("# of clips annotated") +
  ylab("CDS estimation and variance") +
  facet_wrap(~id, scales = "free") +
  #title = 'Variance in child-directed estimation as a function of clips annotated') +
 theme(title = element_text(size=12),
   axis.text=element_text(size=8),
      axis.title=element text(size=17,face="bold"),
      legend.title = element_text(size=15)) +
  labs(caption = "Number of clips annotated refers to those annotated for language, speech register, ch
cds_var_plot
                1032
                                                               1075
                                                                                       1077
                                       1060
     8.0
                            8.0
                                                    8.0
                                                                           1.00
DS estimation and variance
     0.6
                            0.6 -
                                                    0.6 -
                                                                           0.75 -
     0.4
                            0.4 -
                                                    0.4 -
                                                                           0.50 -
     0.2
                            0.2 -
                                                    0.2 -
                                                                           0.25
     0.0
                            0.0 -
                                                    0.0 -
                                                                           0.00
                                            100
                                                                                        60
                                                             50
                                                                                    30
                                                                                             90
               50
                     100
                                      50
                                                                    100
                                                       0
                                                                                0
                                                                                                 120
                                0
                1081
                                        179
                                                               198
                                                                                        199
     0.8
                                                    8.0
                                                                            0.8 -
                            0.8 -
     0.6 -
                                                    0.6 -
                            0.6 -
                                                                            0.6 -
     0.4 -
                                                    0.4 -
                                                                            0.4 -
                            0.4 -
     0.2 -
                                                    0.2 -
                                                                            0.2 -
                            0.2 -
                            0.0 -
     0.0
                                                    0.0
                                                                            0.0
                     100
               .
50
                                      .
50
                                           100
                                                             .
50
                                                                   100
                                                                                   25
                                                                                      50 75 100 125
                                                 150
                261
                                       267
     0.8 -
                            1.0 -
     0.6
                            0.8 -
     0.4
                            0.6
     0.2
                            0.4
     0.0
                            0.2
                                           100
                                      50
                 100
             50
                      150
        0
                                    # of clips annotated
```

clips annotated refers to those annotated for language, speech register, child vocalizations, and/or media.

```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/cds_CI_var_plot.jpeg", height = 450, wi-
cds_var_plot
dev.off()
## pdf
##
# now calculate rolling variances for US (Spanish)
span_var <- random %>%
 group_by(id) %>%
 mutate(total=n()) %>% # total clips drawn
 filter(researcher_present!='1' & sleeping!='1' & percents_voc>0) %>% # criteria for draw, but don't l
 distinct(file_name, .keep_all = T) %>%
 mutate(annotation_num = as.numeric(1:n())) %% # total clips annotated for lang/reg/childvoc/media, n
 gather("addressee", "language", Adult2TargetChild, Otherchild2TargetChild, Otherchild2OtherChild, Oth
        Otherchild2unsure, Adult2OtherChild, Adult2Others, Adult2unsure) %>%
 distinct_at(., vars(file_name, timestamp_HHMMSS, language), .keep_all = T) %% # each unique 'language
 select(-addressee)
span_var$span_cts <- plyr::mapvalues(span_var$language,</pre>
               from=c("Categorize language to adults", "Categorize language to other adults",
                      "Categorize language to other child(ren)",
                      "Categorize language to someone unknown",
                      "Categorize language to target child",
                      "Unsure",
                      "None", "English/Quechua", "Mixed", "Spanish"),
               span_var2 <- span_var %>%
 distinct_at(., vars(file_name, span_cts), .keep_all = T) %>%
 mutate(span cts = as.numeric(span cts),
        total = as.numeric(total)) %>%
 group_by(file_name, timestamp_HHMMSS) %>%
 add_count() %>%
 filter(!(n==2 & span cts==0)) %>% # when spanish and another category are marked, only count spanish
 group_by(file_name) %>%
 distinct at(., vars(annotation num, language), .keep all = T) %>% # remove 1 count of spanish (it get
 select(-n)
span_rolling <- span_var2 %>%
 filter(location=='US') %>%
 group_by(id) %>%
 arrange(annotation_num) %>%
 mutate(span_running_cts = as.numeric(cumsum(span_cts))) %>%
 mutate(roll_prop_span = span_running_cts / annotation_num,
        roll_mean_span = rollmean(roll_prop_span, k=10, fill = NA),
        roll_sd_span = rollapply(roll_prop_span, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
span_rolling2 <- span_rolling %>%
 group_by(id, annotation_num) %>% # group by id and sample size
 arrange(annotation num) %>%
 summarize(cis = binom.confint(span_running_cts, annotation_num, methods = 'wilson', conf.level = .95)
 merge(., span_rolling, by = c('id', 'annotation_num'))
```

```
span_var_plot <- span_rolling2 %>%
#filter(roll sd span!='NA') %>% # remove rows where variance wasn't estimated
    mutate(mean_ci = cis$mean,
         upper_ci = cis$upper,
         lower_ci = cis$lower) %>%
ggplot(., aes(annotation_num, roll_prop_span)) +
  geom_ribbon(aes(ymax=upper_ci, ymin=lower_ci), fill='lightblue', color='deepskyblue4') +
  geom_line(aes(y=mean_ci), color='gray40', size=.8) +
  xlab("# of clips annotated") +
  ylab("Spanish language estimation \n and variance") +
  facet wrap(~id, scales = "free") +
  #title = 'Variance in Spanish language estimation as a function of clips drawn: US corpus') +
 theme(title = element text(size=12),
   axis.text=element_text(size=8),
      axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(size=15)) +
  labs(caption = "Number of clips annotated refers to those annotated for language, speech register, ch
span_var_plot
```


clips annotated refers to those annotated for language, speech register, child vocalizations, and/or media.

```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/span_CI_var_plot.jpeg", height = 450, w
span_var_plot
dev.off()
## pdf
```

2

```
que_var <- random %>%
 group_by(id) %>%
 mutate(total=n()) %>% # total clips drawn
 filter(researcher_present!='1' & sleeping!='1' & percents_voc>0) %>% # criteria for draw, but don't l
 distinct(file_name, .keep_all = T) %>%
 mutate(annotation_num = as.numeric(1:n())) %>% # total clips annotated for lang/reg/childvoc/media, n
 gather("addressee", "language", Adult2TargetChild, Otherchild2TargetChild, Otherchild2OtherChild, Oth
        Otherchild2unsure, Adult2OtherChild, Adult2Others, Adult2unsure) %>%
 distinct_at(., vars(file_name, timestamp_HHMMSS, language), .keep_all = T) %>% # each unique 'language
 select(-addressee)
que_var$que_cts <- plyr::mapvalues(que_var$language,</pre>
                                    from=c("Categorize language to adults", "Categorize language to ot
                                           "Categorize language to other child(ren)",
                                           "Categorize language to someone unknown",
                                           "Categorize language to target child",
                                           "Unsure",
                                           "None", "English/Quechua", "Mixed", "Spanish"),
                                    que_var2 <- que_var %>%
 distinct_at(., vars(file_name, que_cts), .keep_all = T) %>%
 mutate(que_cts = as.numeric(que_cts),
        total = as.numeric(total)) %>%
 group by (file name, timestamp HHMMSS) %>%
 add count() %>%
 filter(!(n==2 & que_cts==0)) %>% # when quechua and another category are marked, only count quechua
 group_by(file_name) %>%
 distinct_at(., vars(annotation_num, language), .keep_all = T) %>% # remove 1 count of quechua (it get
 select(-n)
que_rolling <- que_var2 %>%
 filter(location=='Bolivia') %>%
 group_by(id) %>%
 arrange(annotation_num) %>%
 mutate(que_running_cts = as.numeric(cumsum(que_cts))) %>%
 mutate(roll_prop_que = que_running_cts / annotation_num,
        roll_mean_que = rollmean(roll_prop_que, k=10, fill = NA),
        roll_sd_que = rollapply(roll_prop_que, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
que_rolling2 <- que_rolling %>%
 group_by(id, annotation_num) %>% # group by id and sample size
 arrange(annotation_num) %>%
 summarize(cis = binom.confint(que_running_cts, annotation_num, methods = 'wilson', conf.level = .95))
 merge(., que_rolling, by = c('id', 'annotation_num'))
que_var_plot <- que_rolling2 %>%
#filter(roll_sd_que!='NA') %>% # remove rows where variance wasn't estimated
   mutate(mean_ci = cis$mean,
        upper_ci = cis$upper,
        lower_ci = cis$lower) %>%
ggplot(., aes(annotation_num, roll_prop_que)) +
```

```
geom_ribbon(aes(ymax=upper_ci, ymin=lower_ci), fill='lightblue', color='deepskyblue4') +
geom_line(aes(y=mean_ci), color='gray40', size=.8) +
xlab("# of clips annotated") +
ylab("Quechua language estimation \n and variance") +
facet_wrap(~id, scales = "free") +
#title = 'Variance in Quechua language estimation as a function of clips drawn: Bolivia corpus') +
theme(title = element_text(size=12),
    axis.text=element_text(size=8),
    axis.title=element_text(size=17,face="bold"),
    legend.title = element_text(size=15)) +
labs(caption = "Number of clips annotated refers to those annotated for language, speech register, ch
que_var_plot
```


clips annotated refers to those annotated for language, speech register, child vocalizations, and/or media.

```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/que_CI_var_plot.jpeg", height = 450, wide_var_plot
dev.off()

## pdf
## 2

# report CI ranges at 80-clip mark and when annotation stopped, by child
que_cis_table <- que_rolling2 %>%
    group_by(id) %>%
    filter(annotation_num==80 | annotation_num==NROW(id)) %>% # get values at 80-clip mark and cut-off
mutate(ci_range = cis$upper - cis$lower)
```

```
lang_cis_table <- span_rolling2 %>%
  group_by(id) %>%
  filter(annotation_num==80 | annotation_num==NROW(id)) %>% # get values at 80-clip mark and cut-off
  mutate(ci range = cis$upper - cis$lower) %>%
  rbind(., que_cis_table) %>%
  select(id, annotation_num, ci_range) %>%
  mutate(ci_range = round(ci_range,2)) %>%
  mutate(timept = if else(annotation num==80, '80-clip lang', 'Cut-off lang')) %>%
  select(-annotation num) %>%
  spread("timept", "ci_range")
final_cis_table <- cds_rolling2 %>%
  group_by(id) %>%
  filter(annotation_num==80 | annotation_num==NROW(id)) %>% # get values at 80-clip mark and cut-off
  mutate(ci_range = cis$upper - cis$lower) %>%
  select(id, annotation_num, ci_range) %>%
  mutate(ci_range = round(ci_range,2)) %>%
  mutate(timept = if_else(annotation_num==80, '80-clip', 'Cut-off')) %>%
  select(-annotation_num) %>%
  spread("timept", "ci_range") %>%
  merge(., lang_cis_table, by='id')
knitr::kable(final_cis_table, caption = 'Confidence interval range for Spanish/Quechua and child-direct
             booktabs=T,
             row.names = FALSE,
             col.names = c("Child ID", "80-clip", "Cut-off", "80-clip", "Cut-off")) %>% # "
  kable_styling() %>%
  add_header_above(c(" " = 1, "Language" = 2, "Child-directed speech" = 2)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
```

Table 6: (#tab:report CI ranges)Confidence interval range for Spanish/Quechua and child-directed speech estimation, by child, after annotating 80 clips and at annotation cut-off.

	Language		Language Child-directe		cted speech
Child ID	80-clip	Cut-off	80-clip	Cut-off	
1032	0.16	0.12	0.21	0.17	
1060	0.13	0.10	0.21	0.17	
1075	0.10	0.08	0.18	0.14	
1077	0.11	0.09	0.21	0.17	
1081	0.14	0.10	0.14	0.12	
179	0.21	0.16	0.21	0.16	
198	0.18	0.14	0.21	0.16	
199	0.20	0.16	0.17	0.15	
261	0.19	0.13	0.19	0.14	
267	0.21	0.16	0.20	0.16	

```
# cds model
cds_model_data <- cds_rolling2 %>%
group_by(id) %>%
```

```
arrange(annotation_num) %>%
  mutate(halfrow = as.numeric(n()/2)) %>% # for a sanity check
  filter(row_number() > n()*.50) # get the top 10% of rows from each group
cds_model <- cds_model_data %>%
  #filter(roll_sd_cds!='NA') %>%
 filter(location=='US') %>%
 mutate(ci range = cis$upper - cis$lower) %>%
 lmer(ci_range~annotation_num + (1|id), data = .) %>%
  summary()
# spanish model
# redo data to get the Bolivia corpus at the same time (more power for stats)
span_rolling_all <- span_var2 %>%
 group_by(id) %>%
 arrange(annotation_num) %>%
  mutate(span_running_cts = as.numeric(cumsum(span_cts))) %>%
  mutate(roll_prop_span = span_running_cts / annotation_num,
        roll_mean_span = rollmean(roll_prop_span, k=10, fill = NA),
         roll_sd_span = rollapply(roll_prop_span, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
span_rolling_all2 <- span_rolling_all %>%
  group_by(id, annotation_num) %>% # group by id and sample size
  arrange(annotation num) %>%
  summarize(cis = binom.confint(span_running_cts, annotation_num, methods = 'wilson', conf.level = .95)
  merge(., span_rolling_all, by = c('id', 'annotation_num'))
# fit the spanish models
span_model_data <- span_rolling_all2 %>%
 group_by(id) %>%
  arrange(annotation_num) %>%
  mutate(halfrow = as.numeric(n()/2)) %>% # for a sanity check
  filter(row_number() > n()*.50)
span_model <- span_model_data %>%
  #filter(roll_sd_span!='NA') %>%
  mutate(ci_range = cis$upper - cis$lower) %>% # get the variance
  lmer(ci_range~annotation_num + (1|id), data = .) %>%
  summary()
```