

Universidad Nacional Autónoma de México Facultad de Ciencias

Compiladores Práctica 2

Laura Itzel Rodríguez Dimayuga (nombre 2)

(nombre 3)

Ejercicio 1

Indica los valores asignados a w, x, y y z. en los siguientes dos códigos estructurados por bloques. Muestrala tabla de símbolos en cada bloque con una implementación imperativa en cada caso:

Solución.

Variable	Scope	Comentario
int $i = 4$	Bloque 1	Nueva variable
int j = 5	Bloque 1	Nueva variable
int j = 7	Bloque 2	Nueva variable, solo queda en el Bloque 2
i=6	Bloque 2	Afecta al Bloque 1
x = 6 + 5 = 11	Bloque 1	Afecta al Bloque 1
int i = 8	Bloque 3	Nueva variable, solo queda en el Bloque 3
y = 13	Bloque 3	Afecta al Bloque 1
z = 6 + 5	Bloque 1	El valor de i cambio, pero el de j es el del primer reglon
Final		w = 13, x = 11, y = 13, z = 11

Cuadro 1: Tabla de símbolos y valores para el primer código estructurado por bloques

Variable	Scope	Comentario
int i = 3	Bloque 1	Nueva variable
int j = 4	Bloque 1	Nueva variable
int i = 5	Bloque 1	Afecta solo al Bloque 1
w = 5 + 4	Bloque 2	Asignación, afecta al bloque 1
x = 3 + 4	Bloque 1	Asignación, afecta al bloque 1
j=6	Bloque 3	Afecta al Bloque 3
i=7	Bloque 3	Afecta al Bloque 1
int i = 8	Bloque 3	Nueva variable, solo queda en el Bloque 3
y = 7 + 6 = 13	Bloque 3	Afecta al Bloque 1
z = 7 + 4 = 11	Bloque 1	El valor de i cambio, pero el de j es el del primer reglón
Final		w = 9, x = 7, y = 13, z = 11

Cuadro 2: Tabla de símbolos y valores para el segundo código estructurado por bloques

Divide el siguiente programa en C++ en lexemas y genera los tokens correspondientes:

```
float limitedSquare(x) float x; {
           return(x <= -10.0 || x>=10.0) ? 100 : x*x;
  Solución.
      Después del escaneo no tenemos comentarios. Ni espacios en blanco. Lexemas: float, limitedSquare,
   (, x, ), float, x, ;,, return, (, x, <=, -10.0, ||, x, >=, 10.0, ), ?, 100, :, x, *, x, ;,
      Tokens:
2 < id, limitedSquare > 3 < (>
4 <id, x>
9 <{>
13 <<=>
14 <float,-10.0>
15 <||>
16 <id, x>
17 <>=>
18 <float,10.0>
21 <100>
23 <id, x>
24 <*>
25 <id, x>
27 <}>
```

Ejercicio 3

Define una función recursiva que compute los prefijos de una expresión regular. La base de tal función recursiva es:

$$prefix(\varepsilon) = \{\varepsilon\}$$

 $prefix(a) = \{a\}$

Completa la definición.

Solución. Para definir los prefijos de una expresión regular, podemos considerar las siguientes reglas:

Podemos definir las reglas que aplicamos para cada una de las operaciones básicas de las expresiones regulares, si tenemos que R y S son expresiones regulares y a es un símbolo, entonces:

$$prefix(\epsilon) = \{\epsilon\}$$

$$prefix(a) = \{\epsilon, a\}$$

$$prefix(RS) = prefix(R) \cup R \circ prefix(S)$$

$$prefix(R|S) = prefix(R) \mid prefix(S)$$

$$prefix(R*) = R^* \circ prefix(R)$$

Ejercicio 4

Para las siguientes expresiones regulares, da el lenguaje que definen:

- 1. $[ab][cd\epsilon]$
- 2. $[a zA Z]^*at^*$
- 3. ca[tr]

Solución.

- 1. $[ab][cd\epsilon]$ define el lenguaje $\{a, b, ac, ad, bc, bd\}$
- 2. $[a-zA-Z]^*at^*$ define el lenguaje de (letras) at^* , es decir,todas cadenas de letras seguidas de a y luego de cero o más t. Por ejemplo: at, bat, cat, a, rattt, etc.
- 3. ca[tr] define el lenguaje $\{cat, car\}$

Ejercicio 5

Para el siguiente automata, finito no determinista, construye el automata finito determinista equivalente.

Solución. 1. Primero, identificamos los estados iniciales:

$$S_0 = \{q_0\} \cup \{r: q \in S_0 \land S(q,\epsilon)\}$$
 No hay epsilon transiciones $S_0 = \{q_0\}$

2. Ahora, construimos la función de transición para el autómata determinista. Para cada estado en S₀,

determinamos las transiciones para cada símbolo de entrada.

$$\begin{split} \delta(S_0,a) &= \{q_1\} \ cup\epsilon - closure(\{q_1\}) \\ &= \{q_1\} = S_1 \\ \delta(S_0,b) = \varnothing \\ \delta(S_1,a) &= \{q_2\} \cup \epsilon - closure(\{q_2\}) \\ &= \{q_2\} = S_2 \\ \delta(S_1,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_2,a) &= \{q_3\} \cup \epsilon - closure(\{q_3\}) \\ &= \{q_3,q_0\} = S_4 \\ \delta(S_2,b) = \varnothing \\ \delta(S_3,a) &= \{q_1,q_3\} \cup \epsilon - closure(\{q_1,q_2,q_3\}) \\ &= \{q_0,q_1,q_3\} = S_5 \\ \delta(S_3,b) = \varnothing \\ \delta(S_4,a) &= \{q_1,q_2\} \cup \epsilon - closure(\{q_1,q_2\}) \\ &= \{q_1,q_2\} = S_6 \\ \delta(S_4,b) = \varnothing \\ \delta(S_5,a) &= \{q_1,q_2\} \cup \epsilon - closure(\{q_1,q_2\}) \\ &= \{q_1,q_2\} = S_6 \\ \delta(S_5,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_6,a) &= \{q_2,q_3\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_7,a) &= \{q_1,q_2,q_3\} \cup \epsilon - closure(\{q_1,q_2,q_3\}) \\ &= \{q_0,q_1,q_2,q_3\} = S_8 \\ \delta(S_7,b) &= \varnothing \\ \delta(S_8,a) &= \{q_1,q_2,q_3\} \cup \epsilon - closure(\{q_1,q_2,q_3\}) \\ &= \{q_0,q_1,q_2,q_3\} = S_8 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_1,q_2,q_3\} = S_8 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_1,q_2,q_3\} = S_8 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_1,q_2,q_3\} = S_8 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_1,q_2,q_3\} = S_8 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closure(\{q_0,q_2\}) \\ &= \{q_0,q_2\} = S_3 \\ \delta(S_8,b) &= \{q_0,q_2\} \cup \epsilon - closu$$

Como no tenemos nuevos estados terminamos. Ahora construimos los estados Finales

$$F = \{S_0, S_3, S_4, S_7, S_8\}$$

Figura 1: Automata Finito Determinista, ejercicio 5

Para los siguientes DFA obten el DFA mínimo:

1. Primero iniciamos con dos grupos, los estados de aceptacion y los estados que no son de aceptacion.

$$G_1 = \{q_0\}$$
 Finales
$$G_2 = \{q_1, q_2, q_3, q_4\}$$
 No finales

Como G_1 tiene un solo estado, es consistente y seguimos. Ahora revisamos el grupo de mayor consistencia en G_2 .

G_2	a	b
q_1	$q_2 \in G_2$	Ø
q_2	$q_3 \in G_2$	Ø
q_3	$q_4 \in G_2$	$q_0 \in G_1$
q_4	$q_3 \in G_2$	$q_0 \in G_1$

Dividimos G_2 en dos grupos nuevos, G_2 = $\{q_1,q_2\}$ y G_3 = $\{q_3,q_4\}.$

G_2	a	b
q_1	$q_2 \in G_2$	Ø
q_2	$q_3 \in G_3$	Ø

Vemos que G_2 no es consistente así que lo volvemos a dividir en $G_2 = \{q_1\}$ y $G_4 = \{q_2\}$.

G_3	a	b
q_3	$q_4 \in G_3$	$q_0 \in G_1$
q_4	$q_3 \in G_3$	$q_0 \in G_1$

Este grupo es consistente, por lo que ya no se puede dividir mas. Entonces los grupos finales son:

G_1 = $\{q_0\}$	Finales
G_2 = $\{q_1\}$	No finales
$G_3 = \{q_3, q_4\}$	No finales
$G_A = \{q_2\}$	No finales

El DFA mínimo es:

Estado	a	b
G_1	$q_1 \in G_2$	$q_2 \in G_4$
G_2	$q_2 \in G_4$	Ø
G_4	$q_3 \in G_3$	Ø
G_3	G_3	$q_0 \in G_1$

Figura 2: DFA mínimo, ejercicio 6a

2. :

Separemos nuestros estados en dos grupos: los estados de aceptación y los que no lo son.

Figura 3: Automata Finito Determinista, ejercicio 6 b

- Grupo 1 (aceptación): $\{q_4\}$
- Grupo 2 (no aceptación): $\{q_0, q_1, q_2, q_3, q_5\}$

Veamos como se comportarían los estados del Grupo 2 con las entradas posibles:

Estados	Transición con a	Transición con b
q_0	Grupo 1	Grupo 1
q_1	Grupo 1	Grupo 2
q_2	Grupo 1	Grupo 1
q_3	-	Grupo 2
q_5	Grupo 1	Grupo 1

Cuadro 3: Tabla de ejemplo 6×3

Vamos a agrupar los estados que se comportan igual:

- Grupo A: $\{q_0, q_2, q_5\}$
- \blacksquare Grupo B: $\{q_1\}$
- Grupo C: $\{q_3\}$

Veamos como se comportarían los estados del Grupo A con las entradas posibles: Ahora, agrupamos los estados que se comportan igual:

Estados	Transición con a	Transición con b
q_0	Grupo C	Grupo B
q_2	Grupo A	Grupo A
q_5	Grupo A	Grupo A

Cuadro 4: Tabla de ejemplo 6×3

■ Grupo A2: $\{q_0\}$ ■ Grupo B: $\{q_1\}$

■ Grupo C: $\{q_3\}$

Veamos como se comportarían los estados del Grupo A1 con las entradas posibles: Notemos que ambos estados se comportan igual, por lo que no es posible seguir dividiendo los grupos.

Estados	Transición con a	Transición con b
q_2	Grupo A1	Grupo A1
q_5	Grupo A1	Grupo A1

Cuadro 5: Tabla de ejemplo $6{\times}3$

Por lo tanto, los grupos finales son:

Grupo A1: {q₂, q₅}
 Grupo A2: {q₀}
 Grupo B: {q₁}
 Grupo C: {q₃}
 Grupo D (aceptación): {q₄}

Ahora, construimos el DFA mínimo usando estos grupos como estados:

Figura 4: Automata Finito Determinista Minimo, ejercicio 6 b

Convierte las siguientes expresiones regulares en autómatas finitos deterministas (DFA):

- 1. $[ab]^*$
- 2. $(a?b^*)^*$
- $3. [ab]^*abb[ab]^*$
- 1. $[ab]^*$ Primero aplicamos el algoritmo de Thompson para construir el AFN:

Figura 5: Automata Finito No Determinista, ejercicio 7 a

Donde q_4 es el estado inicial y q_5 es el estado final.

Ahora convertimos el AFN en un AFD:

$$\epsilon - Cerradura(q_4) = \{q_4, q_0, q_5\} \\
\epsilon - Cerradura(S_0) = \{q_4, q_0, q_5\} \\
\delta(S_0, a) = \{q_1\} \cup \epsilon - Cerradura(q_1) = \{q_1, q_2\} \\
\delta(S_0, b) = \emptyset \\
\delta(S_1, a) = \emptyset \\
\delta(S_1, b) = \{q_3\} \cup \epsilon - Cerradura(q_3) \\
\delta(S_2, a) = \{q_1\} \cup \epsilon - Cerradura(q_1) \\
\delta(S_2, b) = \emptyset$$

$$\leftarrow S_0 \\
\leftarrow S_1 \\
\leftarrow S_1 \\
\leftarrow S_1 \\
\leftarrow S_2 \\
= \{q_3, q_5, q_0\} \\
\leftarrow S_2 \\
= \{q_1, q_2\} = S_1 \\$$

Entonces el AFD queda así:

Figura 6: Automata Finito Determinista, ejercicio 7 a

El estado inicial es S_0 y los estados finales son S_0 y S_2 .

2. $(a?b^*)^*$ Vamos a construir primero el AFN, con el algoritmo de Thompson:

Figura 7: Automata Finito No Determinista, ejercicio 7 b

Ahora vamos a convertir el AFN en un AFD, con el algoritmo de subconjuntos: Primero vamos a sacar las epsilon cerradura de cada estado:

- ϵ -Cerradura $(q_0) = \{q_0, q_1, q_2, q_3, q_4, q_6, q_7\}$
- ϵ -Cerradura $(q_1) = \{q_1, q_2, q_3, q_4, q_6, q_7\}$
- ϵ -Cerradura $(q_2) = \{q_1, q_2, q_3, q_4, q_6, q_7\}$
- ϵ -Cerradura $(q_3) = \{q_1, q_2, q_3, q_4, q_6, q_7\}$
- ϵ -Cerradura $(q_4) = \{q_4\}$
- ϵ -Cerradura $(q_5) = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$
- ϵ -Cerradura $(q_6) = \{q_1, q_2, q_3, q_4, q_6, q_7\}$
- ϵ -Cerradura $(q_7) = \{q_1, q_2, q_3, q_4, q_6, q_7\}$

Ahora vamos a construir la tabla de transiciones del AFD:

Estados	Transición con a	Transición con b
ϵ -Cerradura (q_0)	ϵ -Cerradura (q_2)	ϵ -Cerradura (q_5)
ϵ -Cerradura (q_2)	ϵ -Cerradura (q_2)	ϵ -Cerradura (q_5)
ϵ -Cerradura (q_5)	ϵ -Cerradura (q_5)	

Cuadro 6: Tabla de transiciones del AFD

Vease que el automata queda así:

Figura 8: Automata Finito Determinista, ejercicio 7 b

Sí aplicamos el algoritmo de minimización de DFA, queda de la siguiente manera:

Figura 9: Automata Finito Determinista Mínimo, ejercicio 7 b

3. $[ab]^*abb[ab]^*$ Note que el autómata para $[ab]^*$ es:

Figura 10: Automata Finito Determinista, $[ab]^{\ast}$

Ahora vamos a construir el autómata para $[ab]^*abb[ab]^*$:

Figura 11: Automata Finito Determinista, ejercicio 7 c

Utiliza el algoritmo de simulación de NFA para simular los siguientes NFAs en la entrada aabb:

Figura 12: Automata Finito No Determinista, ejercicio 8 a

■ 1. Inicalizamos S con ϵ – closure(0) y c con a:

$$S = \{0\}$$

$$c = a$$

2. Calculamos move(S,a), calculamos su cerradura asignamos el resultado a S y actualizamos c:

$$move(S, a) = \{0, 1\}$$

 $S = \epsilon - closure(move(S, a)) = \{0, 1\}$
 $c = a$

3. Es análogo al paso anterior:

$$move(S, a) = \{0, 1, 2\}$$

 $S = \epsilon - closure(move(S, a)) = \{0, 1, 2\}$
 $c = b$

4. Es análogo al paso anterior pero calculamos move(S, b):

$$move(S,b) = \{0,1,2,3\}$$

$$S = \epsilon - closure(move(S,b)) = \{0,1,2,3\}$$

$$c = b$$

5. Es análogo al paso anterior:

$$move(S,b) = \{0,1,2,3\}$$

$$S = \epsilon - closure(move(S,b)) = \{0,1,2,3,\}$$

$$c = eof$$

6. Como c = eof y S contiene el estado de aceptación 3, la cadena es aceptada.

Figura 13: Automata Finito No Determinista, ejercicio 8 b

■ 1. Inicalizamos S con ϵ – closure(0) y c con a:

$$S = \{0, 1, 2, 3\}$$

 $c = a$

2. Calculamos move(S,a), calculamos su cerradura asignamos el resultado a S y actualizamos c:

$$move(S, a) = \{0, 1\}$$

 $S = \epsilon - closure(move(S, a)) = \{0, 1, 2, 3\}$
 $c = a$

3. Es análogo al paso anterior:

$$move(S, a) = \{0, 1\}$$

 $S = \epsilon - closure(move(S, a)) = \{0, 1, 2, 3\}$
 $c = b$

4. Es análogo al paso anterior pero calculamos move(S, b):

$$move(S, b) = \{2, 3\}$$

 $S = \epsilon - closure(move(S, b)) = \{0, 1, 2, 3\}$
 $c = b$

5. Es análogo al paso anterior:

$$move(S, b) = \{2, 3\}$$

 $S = \epsilon - closure(move(S, b)) = \{0, 1, 2, 3, \}$
 $c = eof$

6. Como c = eof y S contiene el estado de aceptación 3, la cadena es aceptada.

Ejercicio 9