2022 年全国职业院校技能大赛

中职组

物联网技术应用与维护

任

务

书

第二赛程

赛位号: _____

竞赛须知

一、注意事项

- 1、检查硬件设备、电脑设备是否正常,检查竞赛所需的各项设备、软件和 竞赛材料等;
- 2、 竞赛任务中所使用的各类软件工具、软件安装文件等,都已拷贝至 U 盘上,请自行根据竞赛任务要求使用;
- 3、竞赛过程中请严格按照竞赛任务中的描述,对各物联网设备进行安装配置、操作使用,对于竞赛前已经连接好的设备,可能与后续的竞赛任务有关,请勿变动;
- 4、 竞赛任务完成后,需要保存设备配置,不要关闭任何设备,不要拆动硬件的连接,不要对设备随意加密。

二、竞赛环境

序号	设备名称	单位	数量
1	物联网工程应用实训系统 3.0	套	1
2	物联网工具箱及耗材包	套	1
3	服务器(计算机上有标注)	台	1
4	工作站(计算机上有标注)	台	1

第二赛程

模块 E: 物联网应用辅助开发(25分)

*注:根据要求完成相应的任务,本模块的结果文件需保存到**服务器电脑上的"D:\提交资料\模块**E"文件夹下,该目录需参赛选手自行创建。比赛结束后将"D:**提交资料**"文件夹及以下的全部内容拷贝到 U 盘根目录下,作为提交资料的副本备份。

1、网络链路系统

搭建物联网网络链路环境,在网络链路系统区域安装相应的设备:路由器、 交换机、物联网应用开发终端,为后续的各功能模块提供稳定的网络传输链路。

*注:参赛选手需自行制作合格的网线,若选手无法实现,可以填写"协助申请单"后,领取成品网线,但提出申请后,将按标准扣分。该网线处理不好,会影响后续部分任务完成。

灯光控制系统	网络链路系统	公告板发布系统
液晶面板系统		温湿度实时显示系统
A	В	С
		实线表示网孔板间隙

设备安装布局图

网络配置项	配置内容	
网络设置		
WAN 口连接类型	固定 IP 地址	
IP 地址	192.168.【赛位号】.1	
子网掩码	255. 255. 255. 0	
网关	192.168.【赛位号】.254	
首选 DNS	192.168.【赛位号】.254	
无线设置		
无线网络	关闭	
局域网设置		
LAN 口 IP 设置	手动	
IP 地址	172.16.【赛位号】.1	
子网掩码	255. 255. 255. 0	

路由器配置表

设备	连接器名称	连接设备	端口
LED 显示屏	Led 连接器		COM2
ADAM4150	ADAM4150 连接器	串口服务器	COM3
ZigBee 协调器	ZigBee 连接器	中口瓜为葡	COM4
ADAM4017	ADAM4017 连接器		COM5

串口服务器配置表

设备	参数	值
	网络号(PanID)	参考关键信息表设定
所有模块	信道号 (Channel)	参考关键信息表设定
	序列号	自行设定

ZigBee 配置表

设备名称	配置内容	备注
服务器	IP 地址: 172.16.【赛位号】.11	
工作站	IP 地址: 172.16.【赛位号】.12	
物联网应用开发终端	IP 地址: 172.16.【赛位号】.14	
串口服务器	IP 地址: 172.16.【赛位号】.15	
中心网关	IP 地址: 172.16.【赛位号】.16	用户名:newland 密 码:newland

网络设备 IP 地址表

- ▶ 将路由器、交换机、服务器、工作站、串口服务器、物联网网关等设备 组成局域网,并确保整个网络畅通。
- ▶ 请参赛选手根据以上表格参数内容分别设置路由器、串口服务器、设备的网络地址。

完成以上任务后请做以下步骤:

- ◆ 将路由器上网设置的界面截图,另存为 E-1-1.jpg。
- ◆ 将路由器 LAN 口设置的界面截图, 另存为 E-1-2. jpg。
- ◆ 将路由器无线设置的界面进行截屏,另存为 E-1-3. jpg。
- ◆ 将 IP 扫描工具的扫描结果截图(IP 地址至少需体现:中心网关、串口服务器、服务器、工作站),另存为 E-1-4.jpg。

2、物联网应用原型设计

请参赛选手使用提供的素材完成原型设计,原型界面要求如下图所示,使用原型设计工具完成应用界面的设计。

➤ Axure RP 设计原型界面。

完成以上任务后请做以下步骤:

◆ 完成以上功能,请将生成的 Axure 工程文件另存为"原型设计.rp"。

3、AIOT 智能家居系统

系统需要实时监测室内的光照、温度、湿度,监测厨房的烟雾,大厅是否有人,监测卧室地面是否有水,楼道入户门是否关紧,并在室内装有警示灯在发生异常时提示业主。业主特别要求不改动室内的装修。请参赛选手使用提供的 AIoT 账号登录系统,根据任务要求完成相关任务。

- ▶ 该系统采用 ZigBee 通讯方案。
- ▶ 在虚拟仿真界面中,根据需求完成智能家居设备的选型、连线,配置。
- 配置各设备每隔 5 秒生成一个随机值,温度范围设定在-10℃-60℃之间,湿度范围设定在 0%-100%之间,光照范围设定在 0Lux-20000Lux 之间。
 人体、水浸、门磁要求生成随机值,间隔 5 秒,开启模拟实验。
- ➤ 在虚拟机终端界面下载 HomeAssistant 安装文件,使用命令解压缩下载的文件。
- ▶ 配置 m2m 容器使用的 MQTT 服务地址和端口。
- ▶ 启动 HomeAssistant 服务所需的相关 docker 容器(该过程需要耗费一定

的时间,请耐心等待)。

- ➤ 在 HomeAssistant 配置文件中完成 MQTT 服务的正确配置。
- ▶ 打开 HomeAssistant 页面,使用给定的 AIoT 平台账号和密码完成用户 注册,确保与设备的数据通讯。
- ▶ 根据下表要求将 HomeAssistant 上的设备名称修改成中文名称。

序号	中文名称	英文名称
1	人体	occupancy
2	烟雾	smoke
3	温度	temperature
4	湿度	humidity
5	光照	illuminance
6	水浸	waterleak
7	警示灯	alarm
8	门磁	contact

➤ 在 HomeAssistant 平台添加一个名为"智能家居"的仪表盘,为此仪表盘添加一个"图片元素"卡片,根据以下效果完成卡片的配置。

第 7 页 共 12 页

▶ 根据以下要求完成自动化配置。

序号	名称	具体要求
1	报警灯开	在报警灯关闭的环境中,检测到烟雾信息时,打开报警灯。
2	报警灯关	在报警灯打开的环境中,未检测到烟雾 信息时,关闭报警灯。

完成以上任务请做以下操作:

- ◆ 在虚拟仿真界面开启模拟实验后,进行界面截图,另存为 E-3-1.jpg。
- ◆ 将 m2m 配置文件界面截图,另存为 E-3-2.jpg。要求截图中可以看到具体的配置内容。
- ◆ 将 HomeAssistant 配置 MQTT 服务文件界面截图,另存为 E-3-3.jpg。要求截图中可以看到 MQTT 服务相关的配置信息。
- ◆ 将 HomeAssistant 的概览界面截图,另存为 E-3-4.jpg。要求在截图中可以看到要求修改的中文设备名称。
- ◆ 将 HomeAssistant 的"智能家居"仪表盘界面截图,另存为 E-3-5.jpg。 要求截图中可以看到各传感器和执行器的具体监测数值。
- ◆ 将 HomeAssistant 的自动化配置管理界面截图,另存为 E-3-6.jpg。要求截图中可以看到配置的两条自动化规则,并且"上次触发"时间都有值。

4、灯光控制系统

使用一块 ZigBee 板(黑色)模块,模块上安装双联继电器外接一个照明灯与风扇,同时该模块连接 RGB 灯带。利用竞赛资料提供的引用库与文档说明等资源,实现程序的开发,实现对设备的控制。

- ▶ 模块上电或复位后板上的灯全灭,外接的灯全灭、风扇停止。
- ▶ 按键功能分单击、双击,并能反复执行。
- ▶ 单击 SW1 键,板上的 D4 灯亮,其它灯灭,RGB 灯带亮红色;继续单击 SW1 键,板上的 D3 灯亮,其它灯灭,RGB 灯带亮绿色;再一次单击 SW1,板上的 D6 灯亮,其它灯灭,RGB 灯带亮蓝色;能循环执行。

- ➤ 双击 SW1 键,板上的灯进入流水灯状态(D4->D3->D6->D5)和 RGB 灯带进入(红->绿->蓝)颜色切换状态。
- ▶ 单击 SW2 键,照明灯亮,同时关闭风扇,板上的 D4、D3 和 D6、D5 灯进入交替亮灭状态(D4、D3 灯亮,D6、D5 灯灭;D4、D3 灯灭,D6、D5 灯亮,以此类推);继续单击 SW2 键,开风扇,同时照明灯灭,板上的灯全亮;能循环执行。
- ➤ 双击 SW2 键,板上的灯全灭,关风扇,照明灯灭,RGB 灯带灭。
- > 安装设备时需考虑能方便点击板上的按键。

完成以上任务后请做以下步骤:

- ◆ 在这块 ZigBee 板上贴上标签纸并标明"E4"。
- ◆ 开发完成后,将可以运行上述任务要求的 Zigbee 板安装到物联网设备 搭建平台中标注的安装区域,接上电源。
- ◆ 把工程源码拷贝到**服务器电脑"D:\提交资料\模块E\题4"**目录下。

5、液晶面板系统

使用一个 LoRa 模块、一个温湿度光照二合一传感器,模拟液晶屏表盘功能的开发。

- ▶ 参照上图显示,
- ➤ 接钮 Key2、Key3 为页面切换键,能分别进行 A、B 页面的顺序切换, Key2 键为 A 页面, Key3 键为 B 页面。
- ➤ 显示 A 面时, 板上的灯全亮, 实时显示时间(默认时间 12:00:00, 文字 为 8px 小号字体), 点击 Key4 键, 按顺序切换表情的三种状态 "②②②"。
- ▶ 显示 B 面时,实时显示光照值,板上的 LED1 和 LED2 灯交替亮灭;当光 第 9 页 共 12 页

照大等于 100Lux 时,心跳处于正常状态,每隔 500 毫秒在"♥"和 "♥"之间切换;当光照小于 100Lux 时,心跳加速,每隔 100 毫秒切换状态。

- ▶ 光照需要用公式自行换算。
- ▶ 图例由参赛选手自行设计,要求与参考图一致。

完成以上任务后请做以下步骤:

- ◆ 开发完成后,将此设备贴上"E5"标签纸,安装到物联网设备搭建平台中标注的安装区域,接上电源。
- ◆ 把工程源码拷贝到**服务器电脑"D:\提交资料\模块 E\题 5"**目录下。

6、公告板发布系统

某小区进行了物联网信息的升级改造,安装智能化公告板(LED 显示屏代替),为了解决公告板发热和夜间补光问题,在边上安装风扇和照明灯,利用下述任务要求开发的Android应用程序,结合智能识别设备(超高频UHF代替)来控制风扇和照明灯的开与关。为了系统稳定,需使用数字量有线设备。新建Android应用程序,参考软件效果图,利用竞赛资料提供的引用库与文档说明、图片等资源,实现程序的开发。

*注:为考核参赛选手对 API 帮助文档的阅读理解能力,开发的调用包需选用 nle devices vl. jar 包进行设备的调用开发,否则将扣除一定的分数。

第 10 页 共 12 页

- > 完成系统的硬件设备选型,并安装到对应的区域。
- ▶ 所用到的串口服务器、数字量采集模块也安装在本区域。
- ▶ 使用 4 个超高频标签纸或卡,用不干胶标签纸贴上,分别标注"开照明灯"、"关照明灯"、"开风扇"、"关风扇",放在服务器电脑的桌面上。
- ▶ 请将4个纸或卡的卡号进行登记存储,存储方式由参赛选手自行选定。
- ▶ 在界面中输入公告信息,点击发送按钮,能将内容实时推送到公告板上。
- ▶ 点击界面上照明灯的开关按钮,能控制照明灯的开与关。
- ▶ 点击界面上风扇的开关按钮,能控制风扇的开与关。
- ▶ 当超高频 UHF 读取到"开照明灯"或"关照明灯"信息时,能自动控制照明灯的开与关。
- ▶ 当超高频 UHF 读取到"开风扇"或"关风扇"信息时,能自动控制风扇的开与关。
- ▶ 界面上风扇和照明灯要用动画形式展示。
- ▶ 要求从串口服务器的 TCP 模式下获取相应设备的数据。

完成以上任务后请做以下步骤:

- ◆ 开发完成后,请将程序以"公告板发布系统"命名,发布到物联网应 用开发终端,并连接好网络。
- ◆ 把工程源码拷贝到**服务器电脑"D:\提交资料\模块 E\题 6"**目录下。

7、温湿度实时显示系统

通过读取环境中的温度、湿度信息在界面上实时显示。全部选用稳定的有线设备。为了减少信号传输路径的问题,采用模拟量采集器和网关的 485 口对接。请参赛选手新建 Android 项目,参考软件效果图,利用提供的软件资源、插件,完成程序的开发。

- ▶ 完成系统的硬件设备选型,并安装到对应的区域。
- ▶ 所用到的网关、模拟量采集模块也安装在本区域。
- ▶ 点击开始采集按钮,界面上能实时显示当前的温度、湿度信息。
- ▶ 点击停止采集按钮,界面上的传感器数值停止变化。
- ▶ 阅读帮助文档,使用 MQTT 通讯方式直连网关并读取传感器数据。

完成以上任务后请做以下步骤:

- ◆ 开发完成后,请将程序以"温湿度实时显示系统"命名,发布到物联 网应用开发终端,并连接好网络。
- ◆ 把工程源码拷贝到**服务器电脑"D:\提交资料\模块 E\题 7"**目录下。

8、职业素养

在项目施工过程中正确选择设备,安全可靠的使用工具,设备安装稳固、 部件均匀排布、行列对齐、间距相等、整齐美观;布线合理、所有线都装入线 槽。施工完成后需对地板卫生进行打扫、对桌面进行整理、对工具设备进行还 原。

- ▶ 赛位区域地板、桌面等处卫生打扫。
- ▶ 使用的工具还原规整、设备摆放工整、设备手提箱的规整等。
- ▶ 工位设备安装整齐、设备部件均匀排布、布线合理美观等。