BALKAN OLYMPIAD IN INFORMATICS

Udine, 27 September 2025

popswap • RU

PopSwap (popswap)

Для заданного целого числа $N,\,S_N$ — это множество всех перестановок чисел от (0,...,N-1). Более того, E_N — это множество всех упорядоченных пар (p,q), где:

- p и q являются элементами S_N ;
- \bullet p и q могут быть получены друг из друга путём обмена двух соседних элементов.

Обратите внимание, что если $(p,q) \in E_N$, то и $(q,p) \in E_N$ тоже.

Ваша цель — пометить каждый элемент S_N уникальным натуральным числом в диапазоне $[0,2^{60})$, то есть создать инъективную функцию \mathcal{L} (называемую *разметкой*) из S_N в множество натуральных чисел, меньших 2^{60} .

Качество разметки измеряется двумя параметрами, которые должны быть минимизированы:

- величина $M(\mathcal{L})$, определяемая как наименьшее натуральное число k такое, что $2^k > \mathcal{L}(p)$ для всех элементов p из S_N .
- близость, определяемая как:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

где \oplus — это побитовое исключающее ИЛИ, а popcount(x) — это количество установленных битов в двоичном представлении x.

Ваша задача — найти разметку \mathcal{L} , которая достигает низких значений как для $M(\mathcal{L})$, так и для $C(\mathcal{L})$. Обратите внимание, что оптимальное решение не требуется.

Реализация

Это задача только на вывод. Вам нужно сдать отдельный файл вывода для каждого входного файла. Входные и выходные файлы должны соответствовать следующему формату.

Формат входных данных

Входные файлы состоят из одной строки, содержащей целое число N и индекс G входного файла.

Формат выходных данных

Выходные файлы должны состоять из N! строк, i-я из которых содержит метку i-й перестановки в лексикографическом порядке.²

Система оценки

В этой задаче ровно 2 тестовых случая: input000.txt и input001.txt, в обоих из которых N=10.

Оценка за ваше решение по каждому тестовому случаю определяется как $S_M(\mathcal{L}) \times S_C(\mathcal{L})$, где $S_C(\mathcal{L})$ и $S_M(\mathcal{L})$ — это функции от вашей выходной разметки \mathcal{L} .

- $S_C(\mathcal{L}) = \left(\min(1, 36\cdot 10^6/C(\mathcal{L}))\right)^2$ для каждого входа.
- $S_M(\mathcal{L})$ отличается для каждого входа, согласно следующим таблицам. Между значениями, указанными в таблицах, S_M меняется линейно.

рорѕ
wар Страница 1 из 2

 $^{^{1}}$ Функция называется инъективной, если она отображает различные элементы в различные элементы

 $^{^2\}Phi$ ормально, даны две перестановки $p \neq q$, мы говорим, что p лексикографически меньше q тогда и только тогда, когда $p_k < q_k$, где k — это наименьший индекс, такой что $p_k \neq q_k$.

Неправильно сформированный вывод всегда получает ноль баллов.

input000.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 60	0
60	6
< 25	60

input001.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 25	0
25	0
≤ 22	40

Оценка за задачу — это сумма оценок по каждому тестовому случаю.

Примеры ввода/вывода

input	output
3 -1	32
	16
	8
	4
	2
	1

Пояснение

Обратите внимание, что **первый пример** не является официальным тестовым случаем, так как $N \neq 10$ и $G \notin \{0,1\}$.

Пример вывода представляет следующую разметку:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ если } p = (0,1,2) \\ 16 \text{ если } p = (0,2,1) \\ 8 \text{ если } p = (1,0,2) \\ 4 \text{ если } p = (1,2,0) \\ 2 \text{ если } p = (2,0,1) \\ 1 \text{ если } p = (2,1,0) \end{cases}$$

Поскольку $2^5 \not\geqslant 32$, но $2^6 > 32$, величина разметки $M(\mathcal{L}) = 6.$

Поскольку в E_3 есть $3!\cdot(3-1)=12$ элементов, и поскольку $\operatorname{popcount}(\mathcal{L}(p),\mathcal{L}(q))=2$ для всех $p,q\in S_N$, близость разметки $C(\mathcal{L})=12\cdot 2=24$.

Страница 2 из 2