Zusammenfassung: Jahr 1

Inhaltsverzeichnis

1	LF04 - Einfache IT-Systeme (Wissmann)						
	1.1	tl;dr - Zusammenfassung der Zusammenfassung					
		1.1.1 Definitionen					
		1.1.2 Formelzeichen und Einheiten					
		1.1.3 Formeln					
	1.2	Elektrische Grundgrößen					
		1.2.1 Elektrische Ladung, Spannung und Potential					
		1.2.2 Spannungsarten					
		1.2.3 Elektrischer Strom und Stromdichte					
		1.2.4 Elektrischer Widerstand und Leitwert					
		1.2.5 Elektrische Leistung					
		1.2.6 Elektrische Arbeit					
		1.2.7 Messung der elektrische Leistung mittels Elektrizitätszähler					
	1.3	Zusammenschaltung von Widerständen					
		1.3.1 Reihenschaltung					
		1.3.2 Parallelschaltung					
		1.3.3 Gemischte Schaltungen					
		1.3.4 Spannungsleiter					
		1.3.5 Arten von Widerständen					
	1.4	Kondensatoren und elektrisches Feld					
		1.4.1 Elektrisches Feld eines Kondensators					
		1.4.2 Kondensatoren als Ladungsspeicher					
		1.4.3 Schaltungen von Kondensatoren					
		1.4.4 Kondensatoren im Gleichstromkreis					
	1.5	Spule und magnetisches Feld					
		1.5.1 Magnetisches Feld in einer Spule					
		1.5.2 Spule im Gleichstromkreis					
	1.6	Elektromagnetische Verträglichkeit					

1 LF04 - Einfache IT-Systeme (Wissmann)

1.1 tl;dr - Zusammenfassung der Zusammenfassung

1.1.1 Definitionen

Elektr. Ladung	Eine Menge von Elementarladungenen nennt man elektrische Ladung				
Elektr. Spannung	Die elektrische Spannung ist das Ausgleichsbestreben getrennter elektrischer Ladung				
Elektr. Potential	Ein elektrisches Potential ist eine Spannungsangabe gegenüber einem				
	Bezugspunkt (meinst Ground)				
Elektr. Strom	Ein elektrischer Strom ist die gerichtete Bewegung von Ladungsträgern (im Leiter = Elektronen)				
Elektr. Stromstärke	Die elektrische Stromstärke ist die Ladungsmenge, die pro Sekunde durch den Leitungsquerschnitt fließt				
Elektr. Stromdichte	Die Stromdichte gibt den Strom pro Flächeneinheit an und ermöglicht				
	die Beurteilung von bspw. der Erwärmung des Leiters				
Elektr. Widerstand	Elektrischer Widerstand ist die Eigenschaft eines Leiters die Fortbewegung elektrischer Ladungsträger zu behindern				
Elektr. Leistung	Elektrische Leistung ist das Produkt aus Spannung und Strom.				
Nennleistung	Die Nennleistung gibt an, welche Leistung dauernd (z.B. an der Motorwelle) abgegeben werden kann.				
Wirkungsgrad	Der Wirkungsgrad η (eta) gibt an, wie viel Prozent der zugeführten Leistung in nutzbare Leistung umgewandelt werden.				
Elektr. Arbeit	Elektrische Arbeit wird verrichtet, wenn ein Verbraucher mit der elektrischen Leistung P eine bestimmte Zeit t eingesetzt wird.				

1.1.2 Formelzeichen und Einheiten

Begriff	Formezeichen	Einheit	Wert
Elektr. Ladung	Q	C	$6.24\times10^{19}\times e$
Elektr. Spannung	U	V	$1\frac{Nm}{C}$
Elektr. Potential	ϕ (Phi)	V	C
Elektr. Stromstärke	I	A	
Elektr. Stromdichte	J	$1\frac{A}{mm^2}$	
Elektr. Widerstand	R	Ω^{m}	
Spez. Widerstand	arrho (Rho)	$1\frac{\Omega mm^2}{m}$	
Spez. Leitfähigkeit	γ	$1\frac{m}{\Omega mm^2}$	
Elektr. Leistung	P	$1W = 1V \times 1A$	
Wirkungsgrad	η		
Elektr. Arbeit	W	1VAs = 1Ws	

1.1.3 Formeln

Elektr. Stromstärke I = $\frac{Q}{t}$ Elektr. Stromdichte J = $\frac{I}{A}$ Elektr. Widerstand U = $R \times I$ Elektr. Widerstand R = $\varrho \times \frac{l}{A}$ Spez. Widerstand ϱ = $\frac{AR}{l}$ Länge des Leiters l = $\frac{AR}{\varrho}$ Querschnitt R = $\varrho \times \frac{l}{R}$ Leitfähigkeit R = $\frac{1}{\varrho} = 1 \frac{m}{\Omega mm^2} = 1 \frac{10^6}{\Omega} = \frac{1 \times 10^6 \times S}{m} = 1 \frac{MS}{m}$ Leitfähigkeit R_{LTG} = $\frac{l}{A\gamma}$ Elektr. Leistung P = $U \times I = R^2 \times I = \frac{U^2}{R}$

1.2 Elektrische Grundgrößen

1.2.1 Elektrische Ladung, Spannung und Potential

Elementarladung

Proton: positive Elementarladung e^+ Elektron: negative Elementarladung e^-

 $e = 1.6 \times 10^{-19} As$

Elektrische Ladung

Eine Menge von Elementarladungen nennt man elektrische Ladung.

 ${\sf Formelzeichen} \ = \ Q$

Einheit $= C = 6.24 \times 10^{19} \times e$

Entstehung von Spannung

Elektrische Spannung entsteht, wenn durch Arbeitsaufwand Ladungen getrennt werden. Es bedarf einer Kraft, um U zu überwinden.

Definition: elektrische Spannung

Die elektrische Spannung ist das Ausgleichsstreben getrennter elektrischer Ladung.

Formelzeichen = U

Einheit $=V=1\frac{Nm}{C}$

Spannungsmessung

Elektrisches Potential

Ein elektrisches Potential ist eine Spannungsangabe gegenüber einem Bezugspunkt (meistens: Masse [GND]).

Formelzeichen = ϕ

Einheit = V

1.2.2 Spannungsarten

Gleichspannung

Wechselspannung

Mischspannung

Kenngrößen der Netzwechselspannung

Kenngröße	Formelzeichen	Einheit	Zahlwert	Bemerkung
Augenblickswert	U	1V		$u(t) = \hat{u} \times \sin(2\pi f t)$
Scheitelwert	\widehat{U}	1V	325V	größter Wert der Spannung
Spitze-Spitze	U_{ss}	1V	650V	
Effektivwert	U_{eff}	1V	230V	$U_{eff} = \frac{\hat{u}}{\sqrt{2}}$
Periodendauer	r	1s	0.02s	v -
Frequenz	f	1	50Hz	$T = \frac{1}{f}$

1.2.3 Elektrischer Strom und Stromdichte

Modellvorstellung

Elektrischer Strom ist die gerichtete Bewegung von Ladungsträgern (im Leiter = Elektronen).

Elektrischer Stromkreis

Elektronen fließen vom -Pol zum +Pol. Die technische Stromrichtung ist allerdings umgekehrt: $+ \rightarrow -$.

Stromgeschwindigkeit

Die Geschwindigkeit von Elektronen beträgt etwa 0.001mm bis 10mm pro Sekunde. Bei 1A beträgt die Elektronengeschwindigkeit etwa $1\frac{mm}{s}$. Im Gegensatz dazu beträgt die Signalausbreitungsgeschwindigkeit typischerweise etwas mehr als die halbe Lichtgeschwindigkeit $(0.6 \times c)$.

Elektrische Stromstärke

Die elektrische Stromstärke ist die Ladungsmenge, die pro Sekunde durch den Leitungsquerschnitt fließt.

Messung der Stromstärke

Stromwirkung

Lichtwirkung, Wärmewirkung, magnetische Wirkung, chemische Wirkung, physiologische Wirkung. . .

Elektrische Stromdichte

Die Stromdichte gibt den Strom pro Flächeneinheit an ermöglicht die Beurteilung von beispielsweise die Erwärmung des Leiters.

Formelzeichen =
$$J$$
 Einheit = $1\frac{A}{mm^2}$ Beispiel: Lampe $55W$ bei $12V \stackrel{?}{=} 4.5A$
$$A_{LTG} = 1.5mm^2 = 3\frac{A}{mm^2}$$

$$A_{Lampe} = 0.006mm^2 = 750\frac{A}{mm^2}$$

1.2.4 Elektrischer Widerstand und Leitwert

Definition

Elektrischer Widerstand ist die Eigenschaft eines Leiters die Fortbewegung elektrischer Ladungsträger zu behindern.

Ohmsches Gesetz

Bei einem elektrischen Widerstand ist die Stromstärke proportional zu der Spannung $(I \sim U)$ und umgekehrt proportional zum Widerstand $(I \sim \frac{1}{R})$.

Elektrischer Widerstand von Leitern

Der Widerstand ist proportional zur Länge des Leiters $(R \sim l)$, umgekehrt proportional zum Querschnitt $(R \sim \frac{1}{A})$ und abhängig vom Material. Mit dem Faktor ϱ wird die Materialabhängigkeit berücksichtigt. ϱ ist der spezifische Widerstand. Leitfähigkeit bezeichnet den Kehrwert des spezifischen Widerstandes $(\gamma \text{ oder } \kappa)$.

$$\begin{array}{lll} \text{Formelzeichen} &=& \varrho \\ \text{Einheit} &=& 1 \frac{\Omega m m^2}{m} \\ R &=& \varrho \times \frac{l}{A} \\ \varrho &=& \frac{AR}{l} \\ l &=& \frac{AR}{\varrho} \\ A &=& \varrho \times \frac{l}{R} \\ \gamma &=& \frac{1}{\varrho} = 1 \frac{m}{\Omega m m^2} = 1 \frac{10^6}{\Omega} = \frac{1 \times 10^6 \times S}{m} = 1 \frac{MS}{m} \end{array}$$

Spannungsabfall auf Leitern

Ein Motor soll über eine 100m lange Leitung angeschlossen werden. Dabei fließt ein Strom von I=16A bei einer Speisespannung von U=230V. Der Querschnitt der Leitung beträgt $A_{LTG}=1.5mm^2$ (Kuper). Gesucht ist die Spannung, die am Motor ankommt (U_{Motor}) .

$$R_{LTG} = \frac{l}{A \times \gamma} = \frac{100m}{1.5mm^2 \times 58 \frac{m}{mm^2 \times \Omega}} = 1.15\Omega$$
 $U_{LTG} = R_{LTG} \times I = 230V \times 16A = 18.4V$
 $U_{Motor} = U - 2 \times U_{LTG} = 230V - 2 \times 18.4V = 193.2V$

1.2.5 Elektrische Leistung

Definition

Die Leistung ist das Produkt aus Spannung und Strom.

Formelzeichen P

Einheit
$$W \quad 1W = 1V \times 1A$$

$$P = U \times I = R^2 \times I = \frac{U^2}{R}$$

Nennleistung

Die Nennleistung gibt an, welche Leistung dauernd (z.B. an der Motorwelle) abgegeben werden kann. Über die zugeführte Leistung gibt der Wirkungsgrad Auskunft.

Wirkungsgrad

Der Wirkungsgrad η (eta) gibt an, wie viel Prozent der zugeführten Leistung in nutzbare Leistung umgewandelt werden. $\eta=\frac{P_{ab}}{P_{zu}}\times 100$ Werden Anlagen im Verbund betrieben, muss der Gesamtwirkungsgrad berechnet werden. $\eta_{ges}=\frac{P_4}{P_1}$

Bsp.:
$$\eta_1 = 40\%$$
, $\eta_2 = 60\%$, $\eta_3 = 90\%$

$$\eta_{ges} = \eta_1 \times \eta_2 \times \eta_3 \dots$$
 Bsp.: $\eta_{ges} = 0.4 \times 0.6 \times 0.9 = 21.6\%$

Messung der elektrische Leistung

a) Indirekte Methode: Messung von Strom und Spannung mit anschließender Multiplikation. b) Direkte Methode: dabei wirkt ein Spannungsmesswerk und ein Strommesswerk direkt auf einen Zeiger

1.2.6 Elektrische Arbeit

Definition

Elektrische Arbeit wird verrichtet, wenn ein Verbraucher mit der elektrischen Leistung P eine bestimmte Zeit t eingesetzt wird.

Formelzeichen W

Einheit
$$1VAs = 1Ws$$
 (elektrisch)

$$W = P \times t$$

Kosten der elektrische Arbeit

Bsp.: Glühlampe P=100W

- 1.2.7 Messung der elektrische Leistung mittels Elektrizitätszähler
- 1.3 Zusammenschaltung von Widerständen
- 1.3.1 Reihenschaltung
- 1.3.2 Parallelschaltung
- 1.3.3 Gemischte Schaltungen
- 1.3.4 Spannungsleiter
- 1.3.5 Arten von Widerständen
- 1.4 Kondensatoren und elektrisches Feld
- 1.4.1 Elektrisches Feld eines Kondensators
- 1.4.2 Kondensatoren als Ladungsspeicher
- 1.4.3 Schaltungen von Kondensatoren
- 1.4.4 Kondensatoren im Gleichstromkreis
- 1.5 Spule und magnetisches Feld
- 1.5.1 Magnetisches Feld in einer Spule
- 1.5.2 Spule im Gleichstromkreis
- 1.6 Elektromagnetische Verträglichkeit