Überblick

- sei eine Kurve C [a,b]->U stückweise differenzierbar
 - -t > z(t)
 - f holomorph auf U
- $\int_C f(z)dz = \int_a^b f(z(t))z'(t)dt$
 - Substitution mit z = z(t), dz = z'(t)dt
 - unabhängig von Parametrisierung
- Zerlegung in Real- und Imaginärteil

$$\begin{array}{l} -\int_C f(z)dz = \int_C (u(x,y)+i(v(x,y)))*(dx+idy) = \\ -\int_C u(x,y)dx - v(x,y)dy + i\int_C v(x,y)dy + u(x,y)dy \end{array}$$

- wegunabhängig, wenn
 - Definitionsbereich von f sternförming
 - $-\oint f(z)dz = 0$
 - * wegen Cauchy-Riemann-Gleichungen

Cauchyscher Integralsatz

- $\oint f(z)dz = 0$, wenn
 - U sternförmig
 - f holomorph
 - C geschlossen in U
- Beispiele:

· Umläufe zählen

• Cauchysche Integralformel

–
$$f(z_0)*Ind_C(z_0)=\frac{1}{2\pi}\oint_C\frac{f(z)}{z-z_0}dz$$

Erkenntnisse

- $-\,$ f lässt sich als Potenzreihe mit Konvergenzradius $\geq\!R$ darstellen
- f beliebig oft differenzierbar

$$-a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \oint_{|\zeta - z_0|} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

$$* = \frac{1}{2\pi} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

- st C eine Kurve in U mit $Ind_C(z_0)=1$
- Cauchy-Abschätzung
 - Maximumprinzip
 - * $|a_n| \leq \text{Maximum am Rand des Kreises}$

$$|Q_{\alpha}| = \frac{|\mathcal{L}^{(\alpha)}(z_{\alpha})|}{|\alpha|!} \leq \frac{1}{2\pi} \cdot 2\pi R \cdot \frac{1}{|R^{(\alpha)}|!} ||Q_{\alpha}(\xi)|| = \frac{1}{|R^{(\alpha)}|!} ||Q_{\alpha}(\xi)||$$

- Satz von Liouville
 - * Sei f eine ganze Funktion und beschränkt ==> f ist konstant

- Fundamentalsatz der Algebra
 - * Polynom p(z) mit Grad n≥1
 - * $\exists z_0 : p(z_0) = 0$
 - * jedes Polynom hat eine komplexe Nullstelle
 - * Beweis

- Nullstellen holomorpher Funktionen
 - $N_f = \{z \in U | f(z) = 0\}$ Nullstellenmenge
 - $-N_f$ entweder ganz U oder kein Häufungspunkt laut [[Satz von Bolzano-Weierstraß]]]

- Seien f,g holomorph auf U, C eine Kurve aus U
 - $\ \forall z \in \mathbb{C} : f(z) = g(z) \mathrel{\it ==>} f(z) = g(z) : \forall z \in U$
 - Definitionen der elementaren Funktionen (exp,log,...) für $z\in\mathbb{C}$ sind die einzig möglichen Fortsetzungen der reellen elementaren Funktionen

[[Komplexe Analysis]]