It can be shown that \otimes is associative and that

$$(A \otimes B)(C \otimes D) = AC \otimes BD$$
$$(A \otimes B)^{\top} = A^{\top} \otimes B^{\top},$$

whenever AC and BD are well defined. Then it is immediately verified that W_n is given by the following neat recursive equations:

$$W_n = \left(W_{n-1} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right),$$

with $W_0 = (1)$. If we let

$$B_1 = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

and for $n \geq 1$,

$$B_{n+1} = 2 \begin{pmatrix} B_n & 0 \\ 0 & I_{2^n} \end{pmatrix},$$

then it is not hard to use the Kronecker product formulation of W_n to obtain a rigorous proof of the equation

$$W_n^{\mathsf{T}} W_n = B_n$$
, for all $n \ge 1$.

The above equation offers a clean justification of the fact that the columns of W_n are pairwise orthogonal.

Observe that the right block (of size $2^n \times 2^{n-1}$) shows clearly how the detail coefficients in the second half of the vector c are added and subtracted to the entries in the first half of the partially reconstructed vector after n-1 steps.

5.4 Multiresolution Signal Analysis with Haar Bases

An important and attractive feature of the Haar basis is that it provides a multiresolution analysis of a signal. Indeed, given a signal u, if $c = (c_1, \ldots, c_{2^n})$ is the vector of its Haar coefficients, the coefficients with low index give coarse information about u, and the coefficients with high index represent fine information. For example, if u is an audio signal corresponding to a Mozart concerto played by an orchestra, c_1 corresponds to the "background noise," c_2 to the bass, c_3 to the first cello, c_4 to the second cello, c_5 , c_6 , c_7 , c_7 to the violas, then the violins, etc. This multiresolution feature of wavelets can be exploited to compress a signal, that is, to use fewer coefficients to represent it. Here is an example.

Consider the signal

$$u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, -1.1, -1.3),$$

whose Haar transform is

$$c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).$$