ЭЛЕКТРОХИМИЧЕСКАЯ АКТИВНОСТЬ $BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3-\delta}$ ЭЛЕКТРОДА В КОНТАКТЕ С ПРОТОНПРОВОДЯЩИМ ЭЛЕКТРОЛИТОМ $BaCe_{0.7}Zr_{0.1}Y_{0.1}Yb_{0.1}O_{3-\delta}$

Селиверстова О.Е. $^{(1,2)}$, Федорова К.А. $^{(1,2)}$, Гордеев Е.В. $^{(1,2)}$, Антонова Е.П. $^{(1,2)}$ Институт высокотемпературной электрохимии УрО РАН 620137, г. Екатеринбург, ул. Академическая, д. 20 $^{(2)}$ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Применение протонпроводящих материалов в твердооксидных топливных элементах предлагает множество преимуществ, включая возможность работы при более низких температурах, что способствует повышению общей эффективности и долговечности устройств. Однако скорость электрохимических реакций снижается при уменьшении рабочей температуры, что обуславливает необходимость поиска новых электродных материалов с высокой электрохимической активностью. Электродный материал состава $BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3-\delta}$ рассматривается как перспективный электрод для электрохимических ячеек с протонпроводящими электролитами, но данные по исследованию кинетики протекания реакции восстановления кислорода на таких электродах в литературе практически отстутствуют. Настоящее исследование посвящено детальному анализу электрохимической активности электродов $BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3-\delta}$ (BCFZY) в контакте с протонпроводящим электролитом $BaCe_{0.7}Zr_{0.1}Y_{0.1}Y_{0.1}O_{3-\delta}$ (BCZYYb).

Порошки состава ВСГZY получали стандартным цитрат-нитратным методом сжигания с конечной температурой обжига 1200 °C. Электролитный материал ВСZYYb синтезировали твердофазным методом при температуре 1400 °C. Из полученного порошка формировали плотные таблетки с помощью холодного одноосного прессования с последующим спеканием при температуре 1550 °C. Симметричные ячейки ВСГZY|ВСZYYb|ВСГZY изготавливали с помощью метода трафаретной печати с последующим припеканием при температуре 1050 °C в муфельной печи в течение 2 часов со скоростью нагрева и охлаждения 80 град/час. Электрохимическую активность электродов измеряли методом импедансной спектроскопии (Elins P-40X) в температурном интервале 500-700 °C в воздушной атмосфере, увлажненной $\rm H_2O$ или $\rm D_2O$, а также при 700 °C в диапазоне парциальных давлений кислорода $\rm 0,21-10^{-4}$ атм.

Установлено, что смена H_2O на D_2O влияет на величину поляризационного сопротивления: при 700 °C поляризационное сопротивление составило 1,14 и 0,99 Om^*cm^2 в атмосфере с H_2O и D_2O соответственно, тогда как при 500 °C 11,83 и 20,69 Om^*cm^2 в атмосфере с H_2O и D_2O соответственно. Анализ данных методом распределения времен релаксации показал, что электродный процесс является многостадийным, основной вклад в поляризационное сопротивление вносят стадии, которые релаксируют в области низких частот.

Исследование выполнено за счет гранта Российского научного фонда № 24-23-00238, https://rscf.ru/project/24-23-00238/.