Introduction to Biochemistry

Anatomy of an atom:

An atom has a nucleus (with neutrons, protons) and electrons

Electronegativity of an atom:

Electronegativity is a measure of an atom's attraction for electrons in a bond.

Hydrogen Bond:

Electropositive hydrogen partially shared with two electronegative atoms

Hydrophobic forces:

pushing nonpolar surfaces out of hydrogen-bonded water network

Atomic composition of four building-block elements:		
G Form backbones of organic molecules		
Can form four bonds with other atoms		
Component of all proteins and nucleic acids		
G For Cellular respiration		
Found in most organic compound		
❖ Food (Be more specific: Glucose)		
resence in all organic compounds		
S For acid-base balance		

These four elements that make up the human body.

Some Elements / Ion our human body		
NI-	Major cation in tissue fluid → Vital for fluid balance	
Na	C3 Vital for conduction of nerve impulses	
	○ Needed in Blood	
Mg	Needed in other body tissue	
	তেঃ Vital as a co-enzyme	
	C3 Part of nucleic acids	
P	Structural part of Bone and Cell walls	
	তে Vital in energy transfer	
S	C3 Part of Most proteins	
	☐ Activation of Enzymes	
	Major anion in tissue fluid	
Cl	থে Vital for fluid balance	
	প্তে Part of NaCl and gastric juice	
	C3 Vital in nerve function	
K	প্রে Affect muscle contraction	
	S Fluid and Electrolyte Balance	

BMSN1601 - Part I - Basic Biochemistry

Са	Structural Component of Bones and Teeth Acid-base balance Muscle Contraction Nerve Impulse	
	প্তে Blood Clotting	
F	☑ Incorporated into the tooth enamel & bone structure	
Cr	Maintain blood sugar level / (Insulin)	
Mn	☐ It is a co-factor for enzymes → found in liver, kidney and mitochondria	
10111	প্তে maturation of red blood cells	
	needed in saliva for the taste buds	
Zn	☑ vital for growth → sexual development	
	Vital in protein synthesis and cell division	
I	Part of thyroid hormones	

Major feature of Chemical Reaction:

- cs Energy is conserved by first law of Thermodynamic
 - Energy cannot be created or destroyed → Total Energy of a system and its surroundings is constant

Although those elements are less common in our body, they are essential for body functions and metabolisms

■ For any cyclic reaction is no net change in the reaction

Some Example of Important Reaction:

- ❖ First reaction in glycolysis is a coupled reaction to ATP conversion to ADP.
 - ♦ Glucose → Glucose-6-phosphate, at the same time ATP is converted into ADP + Phosphate Group

Some Example of Hydrolysis reaction:

- Proteins/Polypeptide are hydrolyzed to amino acids
- Fats are hydrolyzed to fatty acids and glycerol
- Starch and complex sugars (glycogen) are hydrolyzed to simple sugar (glucose/galactose)
- Anions of weak acids dissolve in water to give basic solution.

$CH_3COO^- + H_2O \rightarrow CH_3COOH + OH^-$

- Kinetic of a reaction = Rate of the reaction
 - Enzymes/Catalyst can change the rate of the reactions → Speed up reaction
 - ◆ For Positive Enzymes/Catalyst: It can lower the activation energy of the reaction
- Classification of Chemical Reaction:
 - By Type of reactants:
 - ♦ Redox reaction
 - ♦ Acid-base reaction
 - The Bronsted-Lowry theory: An acid is defined as a proton donor and a base as a proton acceptor
 - The Arrhenius theory
 - The Lewis theory
 - By the reaction outcome:
 - lacktriangle Condensation \rightarrow Water is formed during combination of the reactants
 - Combining 2 molecules (either the same or different) with the elimination of a stable small molecule
 - ♦ Hydrolysis → Water is used to break the bond

Introduction to Water:

- The two hydrogen atoms each share a pair of electrons with the oxygen by covalent bonding
 - Uneven distribution of electron density → Water is polar

Oxygen atom in water molecule	Partial negative charge
Hydrogen atom in water molecule	Partial positive charge

- Hence, the partial positive charge Hydrogen can be attracted by the neighboring partial negative charge oxygen atom. → Hydrogen Bond is formed due to the electrostatic attraction
- When dissolving a solute (e.g: NaCl) into water:
 - Hydration shells surrounding anions and cation
 - ◆ Na⁺ and Cl⁻ are hydrated
- When dissolving a solute (e.g. Alcohol) into water:
 - Alcohol form hydrogen bond with the water molecule.
- Unique Physical Properties of water is due to the hydrogen bonding:
 - High heat of vaporization / Specific Heat
 - Strong Surface tension
 - A near universal solvent
 - Hydrophobic effect
 - Ionization of water, pH = pOH = 7
- Important information of solution and solute:
 - A liquid mixture in which minor solute is uniformly distributed within the solvent.
- (3) Important information of suspension:
 - Particles are <u>dispersed</u> throughout the <u>bulk of a fluid</u>.
 - ◆ Example: Blood

Building Blocks of Life:			
Lipid	Sugar	Nucleic Acid	Proteins
troduction to Lipids:			
Common Type of Lipids:			
Triglyceride → Fatty Acid and Glycerol		■ For long term storage (Fu	el Molecule)
riigiyeende 7 rany.	Acid alid Glycelol	■ For Making Cholesterol	
Phosphoacyl	glycerols	cell membrane (Phosphol	ipids)
		■ Enriched in the Central N	ervous System (CNS)
		■ Tissue development	
Sphingolipids		■ Cell recognition	
		■ Adhesion (黏附)	
		■ Act as receptors for toxins	S
		■ Energy metabolism	
Steroid (a cyclical chemical)		■ Reproduction	
		■ Homeostasis	
Difference between Oil and Lip	id:		
Fat		■ Saturated or fewer double	bond
		■ Fewer cis structure [No Tr	rans structure] → High M
Lipid	lc	■ A large number of double	bond → Unsaturated
		■ A large number of cis stru	cture → Low MP

Phospholipids = Phosphorus + 2Fatty Acids + Alcohol + Glycerol

Introduction to Sugar (Monosaccharides and Disaccharides):

- OB Definition of Monosaccharides:
 - Monosaccharides, which cannot be hydrolyzed to simpler compounds, generally have three to six carbons with a carbonyl group at either the terminal carbon or the carbon adjacent to it. Generally, all other carbons have OH groups bonded to them
- More about Monosaccharides:

- Triose = Monosaccharides has 3 Carbons:
 - ◆ *L-glyceraldehyde* and *D-glyceraldehyde*, and *dihydroxyacetone*,
- Tetrose = Monosaccharides has 4 Carbons:
 - ◆ *D-Erythrose*, *D-Threose* and *D-Erythrulose*
- Pentose = Monosaccharides has 5 Carbons:
 - ◆ Ribose (a Petose/核糖) is a constituent of RNA.
- Hexoses = Monosaccharides had 6 Carbons:
 - Hexoses acts as building blocks of other compounds such as starch.

2 Monosaccharides \rightarrow Disaccharides + H₂O (Linkage is **Glycosidic Bond**) 3 or more Monosaccharides \rightarrow Polysaccharides

- ♦ Hexoses can form dihexose (like sucrose) by a condensation reaction that makes **1,6-glycosidic bond**.
- Common Example of Monosaccharides:

D-Glucose	D-Galactose	D-Fructose
-----------	-------------	------------

©3 Common Example of Disaccharides:

Lactose	Galactose Ring + Glucose Ring Lactose is not appreciably sweet Lactose is not appreciable sweet L	galactose GH ₂ OH GH ₂ OH GH ₂ OH O
Sucrose	The Disaccharide found in sugarcane Most common in nature One Six-membered and one five membered rings Bonded by 1,6-glycosidic bond	CH ₂ OH H Sucrose

Introduction to Sugar (Polysaccharides):

- Glycogen:
 - \blacksquare A polymer of glucose containing α -glycosidic bonds
 - As a storage of energy in Liver and Muscle
 - Has an extensive branched structure
 - ♦ Glucose units are hydrolyzed from the ends of glycogen \rightarrow Metabolism \rightarrow Energy
- Cellulose / As a Digestive Fiber for human:
 - Provide Support and rigidity to wood, plant stems and grass
 - Unbranched Polymer (repeating glucose by $1\rightarrow 4$ -β-glycosidic linkage)
 - Cannot be digested by human
- Amylose / A type of Starch:
 - Has an unbranched skeleton of glucose molecules with $1\rightarrow 4-\alpha$ -glycoside bonds
 - Numerous of OH groups ⇒ leading to greater water solubility than cellulose.
- Amylopectin / A type of Starch
 - Similar to Amylose
 - Contains Branching along the chain.

Amylose/Amylopectin + $H_2O \rightarrow Glucose$ (Catalyzed by Amylase)

Introduction to Protein:

General Structure of Amino Acid & Peptide Bond

Amino Group + Carboxyl Group → Amino Acid

- \bigcirc Do Notice that: One end is COO⁻ and one end is R NH₃⁺
 - By Condensation: A water is removed, and Peptide bond is formed. (Whole compound is neutral.)

<u>Primary structure of Proteins – Only one poly peptide chain</u>

- (3) Definition:
 - Particular sequence of amino acids that is joined together by peptide bond
- Focus on the structure of Amide Bond

Secondary Structure Proteins – 2 Polypeptide Chains

- 3 α-helix and β-pleated sheet
- G Focus on the NH Bond and CO Double Bond
- The Secondary Structure of Proteins is formed by the hydrogen bond.

Tertiary Structure of Proteins – 3 Polypeptide Chains

- Many kinds of intramolecular forces that stabilize polypeptide chains.
 - Including: London Dispersion Forces (Van de Waal's force)

Example:

- Amino acids that contain hydroxyl (OH) and amino groups (NH2) in their side chains ⇒ Hydrogen Bond
- Nonpolar C-C and C-H bonds are stabilized by VDW.

Quaternary Structure of Proteins - More than 3 Polypeptide Chains

The shape adopted when two or more folded polypeptide chains come together into one protein complex.

n Polypepetide Chains (Subunit) → Quanternary Protein

Example: Hemoglobin

Introduction to Protein Complex (Quaternary Structure of Proteins):

The surface is hydrophilic
Enzymes and Transport Proteins are in this shape
■ Thus, soluble in blood
C3 Long, Linear, Compacted Polypeptide Chain
■ Rod / Sheet Shape
Insoluble in Water
Provide Strength and Protection to tissue or cells
(

Introduction to RNA (Nucleic Acid):

- Single Strands → Less stable than DNA
- cs RNA can form secondary structure
 - Hairpin Loops
 - 3D Structure

Some common type of RNA:

mRNA (Messager RNA)	★Corresponds to the genetic sequence of a gene
	★ Read by a ribosome (rRNA) ⇒ synthesizing a protein.
	\star Read by a Hoosoille (IRNA) \Rightarrow symmestizing a protein.
rRNA (Ribosomal RNA)	★ Non-coding RNA ⇒ Carries out protein synthesis in
	ribosomes
	★Essential to all cells
tRNA (Transfer RNA)	★Carry an amino acid to ribosome

Nucleic Acid – Introduction to Nucleoids and DNA:

Component of Nucleic Acid

Basic Structure of Nucleotides in DNA

The Bases of Nucleotides:

- \blacksquare A = adenine
- \blacksquare G = guanine
- \blacksquare C = cytosine
- \blacksquare T = thymine (Only Presence in DNA)
- U = uracil (Only Presence in RNA)
- Introduction to the relationship between the Nucleoids and the DNA/RNA
 - Nucleotides (monomer) \Rightarrow linked in linear manner \Rightarrow a strand of DNA / RNA
 - Two strands of DNA/RNA \Rightarrow A double helix structure
 - DNA would always interact with another strand of DNA to form double helix.
 - RNA may not interact with another strand to from double helix structure.
- The Complementary base Pairing of DNA / RNA
 - For DNA: A-T, C-G.

 Adenosine must pair with thymine (Paired/Bonded by 2 Hydrogen Bonds)

 Cytosine must pair with guanine (Paired/Bonded by 3 Hydrogen Bonds)
 - For RNA: A-U, C-G
 Adenosine must pair with Uracil
 Cytosine must pair with guanine

Major Classes of dietary fuels:

Major Fuels from food:

Carbohydrate Proteins Fats

oxidation of these fuels to CO_2 and $H_2O \rightarrow Heat + ATP$ (adenosine triphosphate)

How ATP is used:

The energy - generating pathways are shown in red; The energy -utilizing pathways in blue

Different Forms of Body Fuel Stores:

Fats	Store in Adipose tissues
	Accumulate in hips, thighs and abdomens
0.1.1.1.	Smaller fuel stores
Carbohydrates	Stores as Glycogen in liver and muscles
D	☑ From Large muscle masses in particular
Proteins	©3 Used when we are fasting

Introduction to metabolism:

Metabolism = all chemical reactions involved in maintaining the living state of the cells and the organism.

There are two type of metabolism: **Catabolism** and **Anabolism**

- cs Catabolism
 - To break down molecules
- 3 Anabolism
 - To build up molecules from building blocks