- 1. Вычисление скоростей, длин, площадей, объёмов;
- 2. Решение дифференциальных уравнений для решения физических задач

Примеры задач

Задача 1. Пусть пара непрерывно дифференцируемых функций $(x(t),y(t)),\ 0\leqslant t\leqslant T$ задаёт замкнутую несамопересекающуюся кривую. Кривая ограничивает область площади S. Доказать, что

 $S = \left| \int_{0}^{T} y(t)x'(t)dt \right|.$

Задача 2. Доказать, что объём тела, образованного вращением вокруг оси Oy плоской фигуры $0\leqslant a\leqslant x\leqslant b,\, 0\leqslant y\leqslant y(x),$ где y(x) — непрерывная функция, равен $V=2\pi\int\limits_a^b xy(x)\,dx.$

Задача 3. а) Найдите объём шара радиуса R. б) Определите центр масс однородного полушария радиуса R. в) Найдите площадь сферы радиуса R. г)* Найдите объём четырёхмерного шара радиуса R. д)** Найдите объём n-мерного шара радиуса R. Докажите, что при достаточно большом n почти весь объём шара заключён в тонком слое на границе.

Задача 4*. С какой силой материальная бесконечная прямая постоянной плотности μ_0 притягивает материальную точку массы m, находящуюся на расстоянии a от этой прямой?

Задача 5*. Найти кинетическую энергию цилиндра высоты h радиуса R постоянной плотности ϱ , вращающегося вокруг своей оси с угловой скоростью ω .

Задача 6*. Для остановки речных судов у пристани с них бросают канат, который наматывают на столб, стоящий на пристани. Какая сила будет тормозить судно, если канат делает три витка вокруг столба, коэффициент трения каната о столб равен $\frac{1}{3}$, и рабочий на пристани тянет за свободный конец каната с силой $10 \cdot g$ H? (g — ускорение свободного падения) Скорость верёвки считать постоянной.

(Указание: Сила трения $F_{mp} = \mu \cdot N$, N можно найти для куска каната радианной меры $\Delta \varphi$, а силу можно выразить как функцию радианной меры угла φ .)

Литература: Фихтенгольц Г.М. "Основы математического анализа в 2-х томах"

- 1. Числовые ряды, их сходимость.
- 2. Ряды Тейлора, функциональные ряды.
- 3. Формальные степенные ряды.
- 4. Производящие функции.

Примеры задач

Задача 1. Рассмотрим ряд $\sum_{i=1}^{\infty} x_i$. Сумма $S_n = \sum_{i=1}^n x_i$ называется n-ой частичной суммой ряда. Ряд называется сходящимся к S, если существует $\lim n \to \infty S_n = S$.

Задача 2. Докажите, что ряд $\sum_{i=1}^{\infty} \frac{1}{i}$ расходится.

Задача 3. Докажите, что ряд $\sum\limits_{i=1}^{\infty} \frac{1}{i^2}$ сходится. (Его сумма равна $\frac{\pi^2}{6}$).

Задача 4. Докажите, что в каждой точке x сходится ряд $\sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x$;

Задача 5. Найдите такой ряд F, что $(1-t)\cdot F=1$.

Задача 6. При каких условиях на степенной ряд F разрешимо уравнение $X^2 = F$ относительно неизвестного степенного ряда X?

Задача 7. Сколькими способами можно заплатить 1 рубль копейками, алтынами (трехкопеечными монетами) и пятаками (пятикопеечными монетами)?

Задача 8. Найдите все решения дифференциального уравнения F'(s) = F(s).

Литература: С.К. Ландо "Введение в дискретную математику"

- 1. События и их вероятности;
- 2. Опыт с непрерывным пространством элементарных событий;
- 3. Строгое определение вероятности. Аксиоматика Колмогорова;
- 4. Условные вероятности. Формула полной вероятности. Формула Байеса;
- 5. Независимость. Схема Бернулли

Примеры задач

Задача 1. Тест состоит из 10 вопросов, по 4 варианта ответа на каждый, причём только один из них правильный. Если к каждому вопросу подбирать случайный ответ, то какова вероятность ответить верно а) на все 10 вопросов; б) ровно на 5 вопросов; в) не менее, чем на 5 вопросов?

Задача 2. В теннисном турнире участвуют 32 спортсмена, причём силы всех спортсменов постоянны, а более сильный всегда выигрывает у более слабого. Найдите вероятность того, что в финале встретятся два самых сильных спортсмена, если:

- **a)** Перед началом турнира создаётся сетка и спортсмены случайным образом распределяются по ней;
- **б)** Перед началом каждого тура спортсмены случайным образом разбиваются на пары, победители которых проходят в следующий тур.

Задача 3. Метровую линейку случайным образом разрезают ножницами. Найдите вероятность того, что длина обрезка составит на менее 80 см.

Задача 4. (*Теорема умножения вероятностей*) Пусть A_1, A_2, \ldots, A_n — события, вероятность которых больше 0. Докажите, что $P(A_1A_2 \ldots A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1A_2) \cdot \ldots \cdot P(A_n|A_1 \ldots A_{n-1})$.

Задача 5. (Формула полной вероятности) Пусть H_1, H_2, \dots, H_n — попарно несовместимые события, причём $H_1 \cup H_2 \cup \dots \cup H_n = \Omega$. Докажите, что $\forall B \in \mathscr{U} \hookrightarrow \mathsf{P}(B) = \sum_{i=1}^n \mathsf{P}(H_i) \cdot \mathsf{P}(B|H_i)$.

Задача 6. (Формула Байеса) Пусть H_1, H_2, \ldots, H_n — попарно несовместимые события, причём $H_1 \cup H_2 \cup \ldots \cup H_n = \Omega$. Предположим, стало известно, что событие A произошло. Докажите, что тогда

 $P(H_i|A) = \frac{P(H_i) \cdot P(A|H_i)}{\sum_{k=1}^{n} P(A) \cdot P(A|H_k)}.$

Задача 7. (3adaчa о разорении) Игрок, имеющий n монет, играет против казино, имеющего неограниченное количество монет. За одну игру игрок либо проигрывает монету, либо выигрывает с вероятностью 1/2. Он играет, пока не разорится. Найдите вероятность разориться ровно за m игр.

Задача 8. Радиоактивная бактерия делится на две таких же бактерии с вероятностью 0.6, а с вероятностью 0.4 погибает. Вначале в лаборатории живет одна радиоактивная бактерия. С какой вероятностью популяция радиоактивных бактерий вымрет через некоторое количество поколений?

Задача 9. n претендентов на должность в случайном порядке приходят на собеседование. Если в результате собеседования выясняется, что новый претендент лучше того, кто в данный момент занимает должность, первого нанимают, а последнего — увольняют. а) С какой вероятностью k-й по силе претендент будет нанят в какой-либо момент. б) Найдите матожидание числа увольнений.

- 1. Цепные дроби: цепные дроби, алгоритм Евклида и решения диофантовых уравнений; наилучшие приближения вещественных чисел при помощи цепных дробей; квадратичные иррациональности и периодические цепные дроби; алгебраические числа и их приближения.
- 2. Геометрические построения и поля алгебраических чисел: построения одним циркулем, теорема Маскерони; задачи о трисекции угла и удвоении куба и квадратичные расширения полей. гауссовы числа; круговые поля.
- 3. Алгебраические уравнения и теория Галуа: решение уравнений 3 и 4 степени, группа Галуа уравнения; проблема разрешимости уравнения в радикалах; уравнения деления круга и построения Гаусса правильных многоугольников.

Примеры задач

Задача 1. а) Сформулируйте и докажите утверждение: всякое вещественное число может быть единственным образом записано в виде цепной дроби

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}},$$

где все a_k - целые, и $a_k > 0$ при k > 0.

б) при этом конечным цепным дробям соответствуют рациональные числа, а периодическим - квадратичные иррациональности, т.е., решения уравнений

$$b_2x^2 + b_1x + b_0 = 0, \qquad b_i \in \mathbb{Z}$$

Задача 2. Убедитесь, что дробь

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

представляет золотое сечение.

Задача 3. Число Архимеда $\frac{22}{7}$ является первым нетривиальным приближением числа π при помощи цепных дробей. Оно является наилучшим приближением π с точностью до второго знака после запятой. Постройте следующее за архимедовым приближение π цепными дробями.

Задача 4. Постройте с помощью циркуля и линейки

- а) правильный 5- угольник
- б) правильный 17- угольник (это в свое время проделал Гаусс).

Литература

В.И.Арнольд, Цепные дроби М.М.Постников, Теория Галуа

Введение

Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них — эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках.

В специальной теории относительности координаты приписываются не частицам, а элементарным событиям, то есть включают в себя время.

Приблизительная программа

- 1. Линейная алгебра: группа движений плоскости и пространства. Запись преобразований матрицами. Композиция преобразований и произведение матриц.
- 2. Принцип относительности Галилея. Принцип относительности Эйнштейна. Предпосылки для специальной теории относительности. Описания и результаты опытов.
- 3. Пространство-время. Преобразования пространства-времени, группа Преобразований Лоренца.
- 4. Сокращение размеров: парадокс шеста и сарая.
- 5. Углы в пространстве-времени. Сложение скоростей.
- 6. Разные задачи и парадоксы.

Примеры задач

Задача 1. Известно, что скорость света постоянна во всех системах отсчёта. При какой скорости будет наблюдаться (относительно "лаборатории") сокращение объёма вдвое?

Задача 2. (Парадокс поезда) Пусть на поезде, движущемся со скоростью, близкой к скорости света (такой поезд, видимо, стоит ожидать раньше всего в Японии (если где-нибудь ещё не научатся значительно влиять на скорость света)), едут три человека: A в голове, O — в середине и B — в хвосте поезда. На земле около пути стоит четвёртый человек O'. В тот самый момент, когда O проезжает мимо O', сигналы ламп от A и B достигают O и O'. Покажите, что на вопрос "Кто раньше включил фонарь" наблюдатели O и O' дадут различные ответы. Объясните этот парадокс качественно.

Задача 3. а) Покажите, что если два события происходят одновременно и в одном и том же месте в одной системе отсчёта, то они будут одновременными в любой другой системе отсчёта. б) Покажите, что если два события происходят одновременно в разных точках в одной системе отсчёта, то они не будут одновременными ни в какой другой системе отсчёта.

Задача 4. Как синхронизировать часы на спутнике и на Земле? (требуются точные расчёты)

Задача 5. Известно, что скорость света в среде (например, в воздухе) меньше скорости света в вакууме. Оказывается, что "светящиеся" частицы, двигающиеся в среде быстрее скорости света, создают световой "конус Маха". Вычислите угол этого конуса для электронов, летящих в воздухе, если скорость электронов составляет $\frac{999\,999}{1\,000\,000}$ скорости света в вакууме, а скорость света в воздухе

— "всего"
$$\frac{999710}{1000000}$$
.

Предостережение

Большинство задач специальной теории относительности очень сложны: требуют длительных аккуратных расчётов, противоречат нашей привычной логике.

Для того, чтобы разобраться, придётся изучить несколько дополнительных тем. Описание действительно интересных эффектов не дастся без труда.

Если нет уверенности в своих силах и любопытстве, то не стоит даже начинать!

- 1. Многочлены от двух переменных.
- 2. Теорема Безу.
- 3. Приложение к геометрии.
- 4. Разные задачи алгебраической геометрии

Примеры задач

Задача 1. Докажите, что любой многочлен из $\mathbb{R}[x,y]$ однозначно (с точностью до множителей из \mathbb{R}) раскладывается в произведение неприводимых над \mathbb{R} многочленов.

Задача 2. Пусть A, B — различные многочлены из $\mathbb{R}[x,y]$. Может ли система A(x,y) = 0, B(x,y) = 0 иметь конечное число решений, бесконечное число решений?

Задача 3. Еще Исаак Ньютон заметил следующий интересный факт, называемый теоремой Безу: если A(x,y) и B(x,y) — ненулевые взаимно простые многочлены, то система A(x,y) = 0, B(x,y) = 0 имеет не более $\deg A \cdot \deg B$ решений. Докажите теорему Безу для произвольного ненулевого многочлена A, взаимно простого с многочленом B.

Задача 4. Пусть никакие три из точек A, B, C, D, E на плоскости не лежат на одной прямой. Докажите, что через эти точки проходит ровно одна коника.

Задача 5. ($Teopema\ \Piackans$) Пусть вершины шестиугольника ABCDEF лежат на кривой, задающейся неприводимым многочленом второй степени. Докажите, что тогда точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой (смотрите рисунок справа).

Литература

Н.Б.Васильев. Гексаграммы Паскаля и кубические кривые.

"Квант" №8-1987, с.2;

И.Р.Шафаревич. Основы алгебраической геометрии. М., Наука, 1988, Т.1.

- 1. Дифференцирование комплексных функций;
- 2. Интегрирование комплексных функций по кривой;
- 3. Формула Ньютона Лейбница;
- 4. Лемма Гурса и её следствия;
- 5. Бесконечная дифференцируемость функций, имеющих производную;

Примеры задач

Задача 1. (формула Ньютона – Лейбница) Пусть f непрерывна в области D, и существует первообразная F к f в области D; $\gamma = \{z(t) \mid t \in [a,b]\}$ — кусочно-гладкая кривая в D, соединяющая точки A и B. Тогда

$$\int_{\gamma} f(z) dz = F(B) - F(A). \tag{1}$$

Задача 2. Если интеграл от непрерывной функции f по любому замкнутому контуру в области D равен нулю, то f обладает первообразной.

Задача 3. (*лемма Гурса*) Пусть \triangle — треугольник, лежащий в области D вместе с внутренностью, и f голоморфна в окрестности \triangle . Тогда

$$\int_{\triangle} f(z) \, dz = 0. \tag{2}$$

Задача 4. (*интегральная теорема Коши*) Если D — односвязная область, и f(z) голоморфна в D, а γ — кусочно-гладкий контур в D, то

$$\int_{\gamma} f(z) \, dz = 0. \tag{3}$$

Задача 5. (*Теорема Лиувилля*) Если f(z) голоморфна в $\mathbb C$ и ограничена, тогда $f(z) \equiv \mathrm{const.}$

Задача 6. (*Основная теорема алгебры*) Любой многочлен $P(z) \in \mathbb{C}[z]$ положительной степени имеет в \mathbb{C} хотя бы один корень.

Задача 7. Докажите, что функция комплексно дифференцируема в области D тогда и только тогда, когда для $\forall a \in D$ найдётся r > 0 такое, что в круге $\Delta(a, r)$ функция f(z) разлагается в ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n.$$
(4)

Литература

Б.В.Шабат. "Введение в комлексный анализ."

А.С.Мищенко, А.Т.Фоменко. "Курс дифференциальной геометрии и топологии"

Э.Б.Винберг. "Курс алгебры"