

VLP for Computer Vision in the Wild

Focused Topics: Knowledge & Benchmark

Chunyuan Li Microsoft Research, Redmond June 19, 2022

Zero-Shot Learning	Class-level Transfer VL Pre-training	g Task-level Transfer
Definition	Generalizing to unseen object categories	Generalizing to unseen datasets/tasks
	eg, DeViSE	eg, CLIP
	Object classes whose instances have not been observed during training	Datasets whose instances have not been observed during training
Modeling: External Knowledge	 Key: Associate observed and non-observed classes through some form of auxiliary information: Implicit: Pre-trained semantic embeddings Explicit: Attributes, knowledge bases A rich line of research for decades 	KLITE
Benchmark	 Animal with Attributes (AwA) Caltech-UCSD Birds-200 (CUB), SUN, aPY, ZS-ImageNet 	ELEVATER

KLITE:

Learning Transferable Visual Models with External Knowledge

https://arxiv.org/abs/2204.08790

- Image Classification
- Object Detection

Sheng Shen*[‡], Chunyuan Li*[†]♠, Xiaowei Hu*[†], Yujia Xie[†], Jianwei Yang[†]
Pengchuan Zhang[†], Anna Rohrbach[‡], Zhe Gan[†], Lijuan Wang[†], Lu Yuan[†]
Ce Liu[†], Kurt Keutzer[‡], Trevor Darrell[‡], Jianfeng Gao[†]

†Microsoft [‡]University of California, Berkeley

Motivating Scenarios

First time to a Japanese restaurant?

1. Language:

Hard to understand the menu by looking at dish names

2. Knowledge:

Waitress explains it with her knowledge

3. Image:

Dishes served with the best fit

Takoyaki

A **ball-shaped** Japanese **dumpling** made of batter, filled with diced octopus, **tempura scraps**, pickled ginger, and **green onion**.

Sashimi

A dish consisting of **thin slices** or pieces of **raw fish or meat**.

Q: How humans generalize to novel concepts?

A: Instead of trying to memorize all concepts, humans leverage the structured knowledge

Idea: External knowledge is generally available for a variety of domains (eg, textbooks, databases), Can we leverage them to build a systematic and generic approach for task-level visual transfer?

K-Lite: Knowledge-augmented Language Image Training and Evaluation

Knowledge-Augmented Language-Image Learning

Order <u>sashimi</u> from Oishi Japanese Restaurant for delivery or take-out!

himi

- WordNet Hierarchy:
 [sashimi, dish, nutriment, food, substance, matter, physical_entity, entity]
- 2. WordNet Definition: very thinly sliced raw fish
- Wiktionary Definition:A dish consisting of thin slices or pieces of raw fish or meat.

The knowledge-augmentation process in executed in two phases:

- Training: the model is endowed with an ability to read and understand a specific knowledge source
- Evaluation: knowledge provides an additional information source to enhance model inference

Image Classification (Zero & Few-shot Task Transfer to ImageNet-1K and 20 public datasets)

Baseline: UniCL is the academic version of Microsoft Florence, trained on large public datasets

Training Data Dataset # Samples		Method	ImageNet-1K	20 datasets	
			Zero-shot	Zero-shot	Linear Probing
ImageNet-21K	13M (full) 13M (full)	UniCL K-LITE	28.16 30.23	27.15 33.44	53.07 ± 4.15 53.92 ± 1.05
GCC-15M + ImageNet-21K	15M (half) 15M (half) 15M (half)	UniCL K-LITE K-LITE	41.64 44.26 47.30	36.31 39.53 40.32	53.86 ± 2.73 55.91 ± 2.53 57.38 ± 2.70
	28M (full) 28M (full)	UniCL K-LITE	46.83 48.76	38.90 41.34	57.92 ± 3.31 58.56 ± 3.12

Sample-efficiency in Pre-training:

When scaled up to the largest academic datasets, K-LITE achieves the prior best performance with only a half number of pretraining image-text pairs

UniCL: Unified contrastive learning in image-label-text space, CVPR 2022

Florence: A new foundation model for computer vision

Image Classification (Why does external knowledge help zero-shot transfer?)

- English marigold: Any of the Old World plants, of the genus Calendula, with orange, yellow or reddish flowers.
- Wallflower: Any of several short-lived herbs or shrubs of the Erysimum genus with bright yellow to red flowers.

- Lobster bisque: A thick creamy soup made from fish, shellfish, meat or vegetables.
- Hot and sour soup: Any one of several soups, served in various Asian cuisines, which are both spicy and sour

- bus: A motor vehicle for transporting large numbers of people along roads.
- car: A wheeled vehicle that moves independently, with at least three wheels

permanent crop land: arable land

Knowledge **benefits** the most, when

• Fine-grained datasets, which typically present many rare concepts

Knowledge hurts performance, when

- Knowledge coverage/quality is low
- Spurious words are contained

Object Detection (Zero-shot Task Transfer to LVIS and 13 datasets)

Method		APr APc APf - $\mathcal{S}_{ ext{LVIS}}$ $\mathcal{S}_{ ext{wn_path}}$ $\mathcal{S}_{ ext{wn_def}}$ $\mathcal{S}_{ ext{wiki_def}}$								13 d	latasets	
	APr	APc	APf	-	$\mathcal{S}_{ ext{LVIS}}$	\mathcal{S}_{wn_path}	\mathcal{S}_{wn_def}	$\mathcal{S}_{\text{wiki_def}}$	-	\mathcal{S}_{wn_path}	\mathcal{S}_{wn_def}	$\mathcal{S}_{ ext{wiki_def}}$
GLIP-A [49]	14.2	13.9	23.4	18.5	-	-	-	-	28.8	-	-	-
GLIP-A [49] Baseline GLIP♡	8.6	14.0	23.1	17.9	17.6	17.1	17.2	15.0	27.5	26.8	21.0	18.5
K-LITE	14.8	18.6	24.8	16.9	21.3	18.7	21.4	20.5	25.0	30.3	28.4	31.7

doughnut: a small ring-shaped friedcake
bun: small rounded bread either plain or sweet

ELEVATER:

A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models

https://arxiv.org/abs/2204.08790

- Data
- Toolkit
- Evaluation Playgrounds

Why **ELEVATER**? Evaluation of Language-augmented Visual Task-level Transfer

Current Research — Computer Vision in the Wild

Image Classification

Object Detection

Trend

- Building transferable systems that can effortlessly adapt to a wide range of CV tasks in the wild
- Inspired by the success of CLIP, many language-augmented visual models appear

Challenges

- Fairness: Customized task sets may favor individual pre-trained model
- Transparency: Detailed model adaptation process is inaccessible

Benchmarks: **ELEVATER**

- Dataset Suite
- Image Classification: **20** datasets

Flowers 102 DTD Food 101
Country 211 RESISC45
FGVCAircraft Caltech 101
FER 2013 Kitti Distance Euro Sat VOC 2007
Stanford Cars MNIST GTSRB
Oxford Pets CIFAR 100 CIFAR 10

Object Detection: 35 datasets

ChessPieces
NorthAmericalMushrooms
OpenPoetryVision
WebsiteScreenshots
Aquarium
Dice
Dice
AmericanSignLanguageLetters
UnoCards
VehiclesOpenImages
VehiclesOpenImages
SelfDrivingCar
ShellfishopenImages
PascalVOC
AerialMaritimeDrone(large)
AerialMaritimeDrone(large)
PlantdOC
Raccoon
HardHardharkorkers
Advarium
Oice
AerialMaritimeDrone(large)
Pothole
PlantdOC
Raccoon
HardHardharkorkers
NaskWearing
CottontailRabblis
MountainDewCommercial
SelfDrivingCar
OxfordPets(breed)
EgoHands(specific)
AerialMaritimeDrone(tiled)EgoHands(generic)

External Knowledge

WordNet, Wiktionary, GPT-3

☐ Concept name: risotto

- Def_wik: An Italian savoury dish made with rice and other ingredients
- Def_wn: rice cooked with broth and sprinkled with grated cheese
- Path_wn: [risotto, dish, nutriment, food, substance, matter, physical_entity, entity]
 - GPT3: A rice dish made with arborio rice and typically served with meat or fish

Benchmarks: Review

		E	Benchmark Sta	atistics		Evalua	ation Setting	,s
Problem		#Datasets	#Image	#Concepts	Knowledge Source	Zero	Few	Full
	AwA [31]	1	30337 / 6985	40 / 10	Attributes	 		
	CUB [64]	1	8855 / 2933	150 / 50	Attributes	✓		
IC	SUN [47]	1	12900 / 1440	645 / 72	Attributes	✓		
	aPY [14]	1	12695 / 2644	20 / 12	Attributes	✓		
	ZS-ImageNet [52]	1	1.2M / 54K	1K/360	WordNet	✓		
	ImageNet-1K [9]	1	1.2M / 50K	1K	WordNet	✓		✓
	VTAB [73]	19	2.2M/-	940	-		\checkmark	\checkmark
	ELEVATER (Ours)	20	638K / 193K	1151 [♦]	WordNet, Wiki, GPT-3	✓	\checkmark	\checkmark
OD	LVIS [21]	1	120k / 40K	1723	WordNet			√
<u></u>	ELEVATER (Ours)	35	132K / 20K	314 [♦]	WordNet, Wiki, GPT-3	✓	✓	✓

• Trend: Benchmarking fast-developing techniques from class-level transfer to task-level transfer, with language-augmented visual models

Benchmarks: A more diverse set of tasks

Toolkits

- Automatic hyper-parameter tuning pipeline (eg, learning rate, weight decay)
 Avoid human-in-the-loop tuning
- Language-augmented model adaptation methods

Missing language encoder power

Leverage language or knowledge

Toolkits

• Effectiveness of Language-initialized model adaptation methods

 Language-initialized strategy consistently improves the baseline random initialization, for both linear probing (LP) and fine-tuning (FT)

• Few-shot performance is always better than zero-shot, in contrast to the discovery in original CLIP paper

Baseline Pre-trained Visual Models

		Checkpoints	Taxonomy		Pre-train	ning Settings
			Language	e Knowledge	Training Objective	Dataset
					Image Clas	ssification
		MoCo-v3 [6]	X	X	Self-Supervised	ImageNet-1K (1.2M)
	Languaga frag	MAE [23]	X	X	Self-Supervised	ImageNet-1K (1.2M)
	Language-free	DeiT [66]	X	X	Supervised	ImageNet-1K (1.2M)
		ViT [13]	X	X	Supervised	ImageNet-22K (14M)
		CLIP [55]	✓	X	Image-Text Contrast	WebImageText (400M)
Language-	J Knowledge-free	UniCL [73]	✓	X	Image-Text Contrast	ImageNet-21K (13M)
augmented	Knowledge-augmented	K-LITE [59]	✓	✓	Image-Text Contrast	ImageNet-21K (13M)
					Object D	etection
	Language-free	DyHead [9]	X	X	Supervised	Object365
Language-		GLIP [38]	✓	X	Supervised	Object365 & Grounding
	✓ Knowledge-free ≺	GLIP-A [38]	✓	X	Supervised	Object365
augmented	Knowledge-augmente	d K-LITE [59]	✓	✓	Supervised	Object365

Benchmarking Pre-trained Visual Models

	Pre-training Se	ettings	20 Image Classification Datasets				
Checkpoint	Method	Dataset	5-shot	20-shot	50-shot	Full-shot	
		Linear Pro	bing				
CLIP^{\ddagger}	Image-Text Contrast	WebImageText (400M)	68.27 ± 0.97	74.76 ± 1.11	77.75 ± 0.81	81.17	
${ m ViT}^{\dagger}$	Supervised	ImageNet-22K (14M)	57.61 ± 3.62	69.93 ± 0.71	73.74 ± 0.79	77.60	
DeiT	Supervised	ImageNet-1K (1.2M)	54.06 ± 3.02	68.57 ± 3.43	75.53 ± 0.72	79.56	
MAE	Self-Supervised	ImageNet-1K (1.2M)	33.37 ± 1.98	48.03 ± 2.70	58.26 ± 0.84	68.70	
MoCo-v3	Self-Supervised	ImageNet-1K (1.2M)	50.17 ± 3.43	61.99 ± 2.51	69.71 ± 1.03	74.92	
		Fine-tuni	ing				
CLIP^{\ddagger}	Image-Text Contrast	WebImageText (400M)	69.12 ± 1.66	74.76 ± 2.34	78.21 ± 2.04	83.63	
${ m ViT}^{\dagger}$	Supervised	ImageNet-22K (14M)	57.18 ± 2.02	72.45 ± 2.85	78.53 ± 0.69	82.02	
DeiT	Supervised	ImageNet-1K (1.2M)	54.06 ± 3.02	68.53 ± 3.47	75.57 ± 0.68	79.55	
MAE	Self-Supervised	ImageNet-1K (1.2M)	36.10 ± 3.25	54.13 ± 3.86	65.86 ± 2.42	74.43	
MoCo-v3	Self-Supervised	ImageNet-1K (1.2M)	39.30 ± 3.84	58.75 ± 5.55	70.33 ± 1.64	77.71	

Image Classification Performance Ranking: MAE < MoCo < DeiT < ViT < CLIP

Note: The conclusion is obtained using our auto-tuning adaptation process, without model / dataset –specific tuning for the best performance

Benchmarking Pre-trained Visual Models

Scaling success

- Research Innovation
- limited to large public datasets

Setti	ings	Init Method	20 IC datasets					
Checkpoint	Adaptation		Zero-shot	Few-shot (5, 20, 50)	Full			
Industry Track (No pre-train data scale limit)		ata scale limit)						
	LP	Random		$58.09 \pm 2.80, 69.97 \pm 1.30, 74.09 \pm 0.69$	78.38			
CLID	LP	Language-S		$65.35 \pm 1.24, 71.69 \pm 0.93, 74.89 \pm 0.79$	78.40			
CLIP (ViT-B32)	LP	Language-M	56.64	$65.88 \pm 0.79, 72.05 \pm 0.85, 75.08 \pm 0.73$	78.96			
	FT	Random		$29.75 \pm 6.64, 46.76 \pm 11.9, 61.70 \pm 9.97$	77.77			
	FT	Language-S		$63.29 \pm {\scriptstyle 3.18}, 72.19 \pm {\scriptstyle 1.31}, 75.70 \pm {\scriptstyle 1.14}$	80.35			
Supervised	LP	Random		$56.00 \pm 2.67, 67.23 \pm 1.66, 71.35 \pm 1.17$	75.29			
(ViT-B32)	FT	Random	-	$58.55 \pm \textbf{2.58}, 71.27 \pm \textbf{1.25}, 75.36 \pm \textbf{1.42}$	80.39			
Academic Trac	ck (Pre-trained o	n large establish	ed public dat	tasets)				
UniCL	LP	Language-S	27.15	54.31 ± 4.15 , 66.42 ± 2.08 , 70.49 ± 1.01	74.75			
(Swin-Tiny)	FT	Language-S	27.13	$44.75 \pm 5.42, 56.53 \pm 5.37, 67.90 \pm 5.31$	78.48			
K-LITE	LP	Language-S	22.44	$55.06 \pm 2.36, 66.26 \pm 1.56, 70.16 \pm 1.09$	74.47			
(Swin-Tiny)	FT	Language-S	33.44	$48.41 \pm 2.84, 58.06 \pm 4.30, 71.66 \pm 2.02$	78.05			

Language-free vs Language-augmented

- Language-augmented model (CLIP) consistently outperforms language-free model (Supervised ViT) in most settings, especially for the limited data settings.
- language-augmented models enables zero-shot task transfer

Playground I: Sample-efficiency

Zero-shot and Few-shot

Quick and more afford settings to assess pre-trained model quality

Existing & new VLP-for-CV models are welcome

• AGLIN, CoCa, DeCLIP, FILIP, SLIP, OpenCLIP, etc.

Playground II: Parameter-efficiency

Few-shot with VLP

A more meaning setting to study parameter-efficient methods

Existing & new VLP parameter-efficient model adaptation methods are welcome

• Color Prompt Tuning, VL-Adapter, CLIP-Adapter, Conditional Prompt Learning etc.

Playground III: Benefit of external knowledge

Combination of both explicit and implicit knowledge sources improves performance (K-Lite vs UniCL/GLIP)

The collected knowledge benefits knowledge-free pre-trained models (eg, CLIP)

Adaptation Mathoda	5-s	hot	Full-shot		
Adaptation Methods	LP	FT	LP	FT	
Knowledge-free adaptation Knowledge-augmented adaptation		$63.29 \pm 3.18 \\ \textbf{65.10} \pm 2.08$	78.40 78.75	79.97 80.32	
Gain # win / tie / lose	+0.48 7 / 8 / 5	+1.81 8/8/4	+0.35 12/4/4	+0.35 10 / 5 / 5	

ECCV Workshop & Challenges: **Computer Vision in the Wild**

https://computer-vision-in-the-wild.github.io/eccv-2022/

Benchmark Website:

https://computer-vision-in-the-wild.github.io/ELEVATER/

Advisory Committee

Trevor Darrell

Lei Zhang

Jeng-Neng Hwang

Organizers

Pengchuan Zhang, Microsoft

Jianwei Yang, Microsoft

Haotian Liu. Univ. of Wisconsin

at Madison

Chunyuan Li, Microsoft

Kai-Wei Chang, UCLA

Zicheng Liu, Microsoft

Jianfeng Gao, Microsoft

Ce Liu

Xuedong Huang

Jyoti Aneja, Microsoft

Xin Wang, Microsoft

Liunian Li. UCLA

Thanks

Next: Text-to-Image Generation