Malware en archivos PE

Integrantes
Bryann Alfaro
Diego Arredondo
Raul Jimenez
Donaldo García
Oscar Saravia

Motivación

El objetivo principal del proyecto de análisis de malware en archivos PE implementando data science es utilizar técnicas y herramientas de ciencia de datos para mejorar la detección, el análisis y la comprensión del comportamiento de los programas maliciosos en archivos Portable Executable (PE), utilizados en sistemas operativos Windows.

El proyecto incluye la aplicación de técnicas de análisis estadístico y de aprendizaje automático para identificar patrones y características comunes en el código malicioso, y la extracción de información importante del archivo PE. También se utilizan técnicas de visualización de datos para representar los resultados del análisis y facilitar la comprensión de los patrones y tendencias.

Además puede contribuir a la mejora de la seguridad informática en general al proporcionar una mejor comprensión de cómo prevenir y mitigar los ataques maliciosos en archivos PE.

Preguntas de investigación

- ¿Cuáles son las características más relevantes al momento de clasificar un archivo PE como malware?
- ¿Son los requerimientos mínimos solicitados por el PE útiles para determinar si es un malware?
- ¿El tamaño del código puede ser significativo al momento de detectar un archivo como malware?

Recolección de datos

- 1. Para la recolección de datos se utilizó la plataforma Kaggle. En esta plataforma se encontró un dataset de 19,612 archivos PE de entrenamiento y 18 de prueba
- La base de datos cuenta con una variedad de tipos de malware y cuenta con una etiqueta que sirve para identificar si la observación corresponde a un archivo malicioso o no.
- 3. El dataset se encuentra bajo la licencia CCO: Public Domain lo que permite que se pueda utilizar de manera pública para cualquier propósito.

1. Visualización de datos

2. Estandarización de nombres de columnas

3. Eliminación de observaciones NA


```
corr = train.corr()
   corr['malware'].sort_values(ascending=False).head(15)
malware
                             1.000000
sectionmaxchar
                             0.393282
sizeofstackreserve
                             0.251791
suspiciousimportfunctions
                             0.216656
dllcharacteristics
                             0.197023
e maxalloc
                             0.186079
filealignment
                             0.172926
minorlinkerversion
                             0.145848
checksum
                             0.135325
numberofsections
                             0.109373
sectionslength
                             0.109309
sizeofheapreserve
                             0.084892
e 1fanew
                             0.074879
suspiciousnamesection
                             0.058088
sectionmaxpointerdata
                             0.045360
Name: malware, dtype: float64
```

4. Se analizó la correlación para poder elegir las variables que presentan la correlación más alta con el target "malware"

5. Por medio de gráficos de caja y bigotes se buscaron datos atípicos dentro de las observaciones para su tratamiento.

6. Se realizó un balanceo de datos ya que habían diferencias notorias entre los datos de malware y los benignos.

```
# Remove some of the rows that has value "1" in the malware column to balance the data
train = train[train['malware'] == 0].sample(5012).append(train[train['malware'] == 1].sample(5012))
train['malware'].value_counts()

C:\Users\raula\AppData\Local\Temp\ipykernel_20128\967369620.py:2: FutureWarning: The frame.append met
as in a future version. Use pandas.concat instead.
    train = train[train['malware'] == 0].sample(5012).append(train[train['malware'] == 1].sample(5012))

0 5012
1 5012
Name: malware, dtype: int64
```