信息安全数学基础----习题集二

– ,	填空题(把答案写在题目中的横线上。)		
	1、设 a=24、b=78, 求 a 和 b 的最小公倍数[a,b]=	<u>.</u>	
	2、求欧拉函数φ(125)=		
	3 、设 p 是奇素数,则勒让得符号 $\left(\frac{1}{p}\right)$ =	<u>.</u>	
	4、设 $m=6$,则模 m 的最小非负简化剩余系={	}}.	
	5、-5 (mod 11)= (结果要在模 11 的最小非负乘	余系中	1)
	6、设 m=5,求 2 对模 5 的阶ord ₅ (2) =		
	7、设 $p=113$,则勒让得符号 $\left(\frac{1}{p}\right)=$		
二、	判断题(在题目后面的括号中,对的画"√",错的画"×")		
	1、设 a,b,c 是三个整数,且 $c \neq 0$. 如果 $c ab,(a,c) = 1$,则 $c b$	()
	2、0 是任何整数的倍数	()
	3、 设 a, b 是两个给定的整数, $b > 0$. 那么, 一定存在唯一的一次	对整数 <i>c</i>	η与r
满足	$\frac{1}{2}a = qb + r, 0 < r < b.$	()
	4、设 m 为正整数, a,b,d 为整数, $ad \equiv bd \pmod{m}$, 则 $a \equiv$	b(mod	m)
		()
	5、{1,-3,8,4}是模 5 的一个简化剩余系	()
	6、设加为正整数,模加的一个简化剩余系中的元素,可以都是奇	数或都	是很
数		()
	7、一次同余方程 $12x \equiv 1 \pmod{15}$ 有解	()
	8、设 p 为奇素数,模 p 的平方剩余和平方非剩余的数量各为 $\frac{p-1}{2}$ 个	. ()
	9、设 $a,m \in Z, m > 1$. 则ord $_m(a) m$.	()

	10、设< G , o>为群,则群中任何元素 a 与其逆元 a^{-1} 具有相同的阶.	()
	11、设 a, b, c \neq 0 是三个整数, 若 c a, c b, 且存在整数 s, t, 有 m = sa	+ tb,	,则
c m		()
	12、设 p 为素数, a 为正整数,则欧拉函数 $\varphi(p^a)=(p-1)p^{a-1}$.	()
	13、若用 Miller-Rabin 素性检测算法,如果该算法判定一个数是素	数 , i	这个
数肯	定是素数。	()
	14、设 m 为正整数, a, b 为整数, a ≡ b(mod m)且 d m, 则 a ≡ b	(mod	dd)
		()
	15、设 p 是素数,则模 p 的完全剩余系和简化剩余系中元素个	ン数オ	目等
		()
	16、只有 m 是素数时, 模 m 的原根才存在.	()
	17 、同余方程 x^2 ≡ 4 (mod 8)有解, 因此 4 叫做模 8 的平方剩余	()
	18、设 p 为奇素数,模 p 的平方剩余和平方非剩余的数量各为 $\frac{p-1}{2}$ 个.	()
	19、设 a , m 为整数, $m > 1$, $(a,m) = 1$,若 a 是模 m 的原根,则 a 模	m的扌	旨数
等于	$f \varphi(\varphi(m)).$	()
三、	单项选择题(把答案写在题目后面的括号中)		
	1. 关于下面说法描述 错误 的是:		
	A. 设 p 为素数,则欧拉函数 $\varphi(p) = p - 1$;		
	B. 设 p , q 为素数,则欧拉函数 $\varphi(pq) = (p-1)(q-1)$;		
	C. 设 p 素数, a 为整数,则 $a^{p-1} \equiv 1 \pmod{p}$;		
	D. 设 p 为素数, a 为正整数,则欧拉函数 $\varphi(p^a) = (p-1)p^{a-1}$ 。		

2. 关于 Miller-Rabin 素性检测算法,下面描述正确的是:

B. 如果该算法判定一个数是素数,这个数肯定是素数。
C. 该算法常用来求两个整数的最大公因数;
D. 其理论基础是欧几里德除法;
3. 关于下面说法描述 错误 的是: ()
A. 设 m 是一个正整数, a 满足(a , m)=1 的整数,如果 x 遍历模 m 的一个完全
剩余系,则ax也遍历模m的一个完全剩余系.
B. 设 m 是正整数,模 m 的最小非负完全剩余系和绝对值最小完全剩余系中
元素个数相等.
C.设 m 为正整数,整数 r_1 , r_2 ,, $r_{\phi(m)}$ 均与 m 互素,且模 m 两两不同余,则它
们构成模 m 的一个简化剩余系.
D、设 a 是非零整数, b 为任意整数. 若 r_0 , r_1 ,, r_{m-1} 为模 m 的一个完全剩余
系,则 ar_0 + b , ar_1 + b ,, ar_{m-1} + b 也是模 m 的一个完全剩余系.
4. 一次同余方程 12×7^{168} x ≡ 9(mod 27)的解数是()
A. 4 B. 3 C. 2 D.1
5. 模 11 的所有平方非剩余为 ()
A. 2,6,7,8,10 B. 1,6,7,8,10
C. 2,6,7,8 D. 1,2,6,7,8
6.下面哪个一次同余方程无解? ()
A. $22x \equiv 55 \pmod{77}$ B. $33x \equiv 55 \pmod{66}$ C. $66x \equiv 33 \pmod{99}$ D. $55x \equiv 44 \pmod{66}$
7.设 p 是奇素数, $(a_1,p) = 1$, $(a_2,p) = 1$,则下列说法 错误 的是: ()
A. 如果 a_1 是模 p 的平方剩余, a_2 是模 p 的平方非剩余,则 a_1a_2 是模 p 的平方剩余.

A. 如果该算法判定一个数是合数,这个数肯定是合数;

- B. 如果 a_1 , a_2 都是模 p 的平方剩余,则 a_1a_2 是模 p 的平方剩余.
- C. 如果 a_1 是模 p 的平方剩余, a_2 是模 p 的平方非剩余,则 a_1a_2 是模 p 的平方非剩余.
 - D. 如果 a_1 , a_2 都是模 p 的平方非剩余,则 a_1a_2 是模 p 的平方剩余.
 - 8. 下面描述**错误**的是: ()
- A. 若设 $a \in Z$, (a, m) = 1, 如果同余方程 $x^2 \equiv a \pmod{m}$ 有解, 则 a 叫做模 m 的平方剩余
- B. 设 p 为奇素数, 设 a \in Z, (a, p) = 1, 若 a 是模 p 的平方剩余,则a $\frac{p-1}{2} \equiv 1 \pmod{p}$
- C. 设 p 为奇素数, a \in Z, (a, p) = 1, 若 a 是模 p 的非平方剩余,则勒让得符 号 $\left(\frac{a}{p}\right)$ = -1
- D. 设 p 为奇素数, a \in Z, (a, p) = 1, 若 a 是模 p 的平方剩余,则勒让得符号 $\left(\frac{a}{p}\right) = (-1)^{\frac{p-1}{2}}$
- 9. 设a, m为整数, m > 1, (a, m) = 1. 关于原根和指数, 下列描述哪个是错误的? ()
 - A. a模m的指数一定存在;
- C. 若a是模m的原根,则 $1 = a^0$, a, a^2 , …, $a^{\text{ord}_m(a)-1}$ 构成模m的一个完全剩余系:
 - D. a模m的指数整除 $\varphi(m)$ 。
- 10. 下面哪个一次同余方程组可以直接用孙子定理求解? ()

A.
$$\begin{cases} x \equiv 5 \pmod{13} \\ x \equiv 20 \pmod{23} \end{cases}$$
B.
$$\begin{cases} x \equiv 3 \pmod{13} \\ x \equiv 5 \pmod{26} \end{cases}$$
C.
$$\begin{cases} x \equiv 5 \pmod{15} \\ x \equiv 20 \pmod{25} \end{cases}$$
D.
$$\begin{cases} x \equiv 15 \pmod{25} \\ x \equiv 5 \pmod{15} \end{cases}$$

11. 关于素数,下面描述错误的是: ()

- A. 设p是大于1的整数,如果除了约数1和它本身外没有其它的约数,p就是素数;
 - B. p为素数, n是正整数, 当 $2 \le p \le \sqrt{n} \perp p \mid n$, 则n是素数;
 - C. 素数的个数有无穷多。
 - D. 互素的两个整数必有一个为素数;
 - 12. 下面关于完全剩余系说法描述正确的是:()
 - A. 模 m 的完全剩余系中,集合 1, ..., m-1, m 称为最小非负完全剩余系;
- B. 设 m 是一个正整数, a 满足 (a,m) =1 的整数, 如果 x 遍历模 m 的一个完全剩余系, 则 ax 也遍历模 m 的一个完全剩余系;
- C. 设 a 是非零整数, b 为任意整数. 若 \mathbf{r}_0 , \mathbf{r}_1 , ..., \mathbf{r}_{m-1} 为模 m 的一个完全剩余系,则 \mathbf{ar}_0 + b, \mathbf{ar}_1 + b, ..., \mathbf{ar}_{m-1} + b 也是模 m 的一个完全剩余系;
 - D. 设 m 为正整数, 完全剩余系则恰好由φ(m)个数组成。
- 13. 设 p, q 是素数,整数 a, b, p, q 两两互素.若 a 既是模 p 的平方剩余也是模 q 的平方剩余, b 既不是模 p 的平方剩余也不是模 q 的平方剩余,则下面说法不正确的是: ()
 - A. a 不是模 pq 的平方剩余.
 - B. ab 不是模 p 的平方剩余.
 - C. ab 不是模 q 的平方剩余.
 - D. b 不是模 pq 的平方剩余.
 - 14. 一次同余方程 $12x \equiv 8 \pmod{28}$ 的解数是 ()
 - A. 4 B. 3 C. 2 D.1
 - 15. 下面哪个数是模 5 的原根 ()

A. 1 B. 4 C. 2 D. 0

16.下面哪个一次同余方程有解?

()

- $A. 12x \equiv 1 \pmod{24}$
- $B. 12x \equiv 2 \pmod{15}$
- $C. 3x \equiv 12 \pmod{24}$
- $D. 12x \equiv 4 \pmod{15}$
- 17. 设 p, q 是奇素数, (ab, pq) = 1, 对于二次方程 $x^2 \equiv ab \pmod{pq}$ 的解的判断, 下面说法正确的是: ()
 - A. 只有 $x^2 \equiv a \pmod{pq}$ 和 $x^2 \equiv b \pmod{pq}$ 同时有解, 原方程有解.?

 - C. 只有 $x^2 \equiv ab \pmod{p}$ 和 $x^2 \equiv ab \pmod{q}$ 同时无解, 原方程无解.
 - D. 只有 $x^2 \equiv ab \pmod{p}$ $\pi x^2 \equiv ab \pmod{q}$ 同时有解,原方程有解.
 - **18**. 下面描述**错误**的是:()
- A. 若设 $a \in \mathbb{Z}$, (a, m) = 1, 如果同余方程 $x^2 \equiv a \pmod{m}$ 无解, 则 a 叫做模 m 的平方非剩余
- B. 设 p 为奇素数, 设 a \in Z, (a, p) = 1, 若 a 是模 p 的平方非剩余,则a $\frac{p-1}{2}$ \equiv 1(mod p)
- C. 设 p 为奇素数, a \in Z, (a, p) = 1, 若 a 是模 p 的非平方剩余,则勒让得符 号 $\left(\frac{a}{p}\right)$ = -1
- D. 设 p 为奇素数, a \in Z, (a, p) = 1, 若 a 是模 p 的平方剩余,则勒让得符号 $\left(\frac{a}{p}\right) = 1$
 - 19. 关于原根和指数,下列描述哪个是正确的? ()
 - A. 设a, m为整数,m > 1,(a, m) = 1, a 模 m 的指数一定存在.
 - B. 根据费马小定理, 2⁶ ≡ 1(mod7), 故 ord₇(2)=6;

- C. 设 m 是正整数, m > 1, (a, m) = 1, $\Xi a^d \equiv 1 \pmod{m}$, 则 $d|\phi(m)$ 。
- D. 设 p 是素数, a 是模 p 的原根, 若 $a^x \equiv 1 \pmod{p}$, 则 x 是 p 的整数倍.
- 20. 设 b_i , m_i 是正整数, 对于一次同余方程组 $x \equiv b_i \pmod{m_i}$, i = 1,2,3,下面 说法正确的是: ()
 - A. 若 $(b_i, m_i) = 1$,则同余方程组一定有解.
 - B. 如果同余方程组无解,则b₁,b₂,b₃不是两两互素的整数.
 - C. 若b₁, b₂, b₃是两两互素的整数,则同余方程组一定有解.

四、简答题/计算题

- 1. 设 m 为正整数, a,b,c,d 为整数, 如果 a≡b(mod m), c≡d(mod m), 则
- (i) $a+c \equiv b+d \pmod{m}$;
- (ii) ac≡bd(mod m). 给出证明。
- 2. 求模 19 的原根个数,并给出模 19 的所有原根。(给出具体求解过程)
- 3. 判断同余方程 $x^2 \equiv 54 \pmod{101}$ 的解的情况。(给出具体求解过程)
- 4. 设a = 75, b = 21,求整数s,t,使得as + tb = (a,b). (给出具体求解过程)
- 5. 求模 13 的原根个数,并给出模 13 的所有原根。(给出具体求解过程)
- 6. 已知 $F_2[x]$ 中多项式 $f(x) = x^4 + x + 1$, $g(x) = x^2$, 求(f(x), g(x)).
- 7. 计算6¹⁰⁸⁴(mod 247)。(给出具体求解过程,提示:可以利用欧拉定理简化计算)

五、综合题(备注,每题必须给出具体求解过程)

1. 解一次同余方程 $12x \equiv 9 \times 5^{127} \pmod{27}$.