Ácido base

♦ PROBLEMAS

• Ácido ou base débil

- 1. Se prepara una disolución acuosa de ácido cianhídrico, HCN, disolviendo 0,67 g del ácido en un volumen final de disolución de 500 mL. Si el pH de la disolución resultante es de 4,9, calcule:
 - a) El valor del grado de ionización del ácido.
 - b) El valor de la constante del ácido (K_a) y el valor de la constante de su base conjugada (K_b).

(A.B.A.U. extr. 24)

Rta.: a) $\alpha = 0.0254 \%$; b) $K_a = 3.20 \cdot 10^{-9}$; $K_b = 3.13 \cdot 10^{-6}$.

- 2. Unha disolución de amoníaco de concentración 0,03 mol/dm³ está disociada nun 2,42 %. Calcula:
 - a) O valor da constante K_b do amoníaco.
 - b) O pH da disolución e o valor da constante K_a do ácido conxugado.

Dato: $K_w = 1.0 \cdot 10^{-14}$ **Rta.:** a) $K_b = 1.80 \cdot 10^{-5}$; b) pH = 10.86; $K_a = 5.55 \cdot 10^{-10}$ (A.B.A.U. ord. 23)

- 3. Disólvense 46 g de ácido metanoico, HCOOH, en 10 dm³ de auga, obtendo unha disolución de pH igual a 2,52.
 - a) Calcula o grao de disociación do ácido.
 - b) Determina a constante K_a do ácido e a constante K_b da súa base conxugada.

Datos: $K_w = 1,0 \cdot 10^{-14}$. **Rta.**: a) $\alpha = 3,02 \%$; b) $K_a = 9,4 \cdot 10^{-5}$; $K_b = 1,1 \cdot 10^{-10}$. (A.B.A.U. ord. 22)

- 4. Unha disolución acuosa de concentración 0,03 mol/dm³ dun ácido monoprótico (HA) ten un pH de 3,98. Calcula:
 - a) A concentración molar de A- na disolución e o grao de disociación do ácido.
 - b) O valor da constante do ácido (K_a) e o valor da constante da súa base conxugada (K_b) .

(A.B.A.U. extr. 21)

Rta.: a) [A⁻] = 1,05·10⁻⁴ mol/dm³; $\alpha = 0,349 \%$; b) $K_a = 3,67·10^{-7}$; $K_b = 2,73·10^{-8}$.

- 5. Sabendo que K_b (NH₃) = 1,78·10⁻⁵, calcula:
 - a) A concentración que debe ter unha disolución de amoníaco para que o seu pH sexa 10,6.
 - b) O grao de disociación do amoníaco na disolución.

(A.B.A.U. ord. 20)

Rta.: a) $[NH_3]_0 = 0,00930 \text{ mol/dm}^3$; b) $\alpha = 4,28 \%$.

- 6. 1,12 dm³ de HCN gas, medidos a 0 °C e 1 atm, disólvense en auga obténdose 2 dm³ de disolución. Calcula:
 - a) A concentración de todas as especies presentes na disolución.
 - b) O valor do pH da disolución e o grao de ionización do ácido.

Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa; $K_a(\text{HCN}) = 5.8 \cdot 10^{-10}$.

(A.B.A.U. extr. 19)

Rta.: a) [HCN] = 0,025 mol/dm³; [CN⁻] = [H₃O⁺] = 3,8·10⁻⁶ mol/dm³; b) pH = 5,43; α = 0,015 %.

- 7. Unha disolución de concentración 0,064 mol/dm³ dun ácido monoprótico (HA) ten un pH de 3,86. Calcula:
 - a) A concentración de todas as especies presentes na disolución e o grao de ionización do ácido.
 - b) O valor da constante K_a do ácido e da constante K_b da súa base conxugada.

 $K_{\rm w} = 1,0 \cdot 10^{-14}$. (A.B.A.U. ord. 19)

Rta.: a) [HA] = 0,0639 mol/dm³; [A⁻] = [H⁺] = 1,38·10⁻⁴ mol/dm³; [OH⁻] = 7,24·10⁻¹¹ mol/dm³; $\alpha = 0,216 \%$; b) $K_a = 2,98\cdot10^{-7}$; $K_b = 3,35\cdot10^{-8}$.

- 8. Unha disolución acuosa contén 5,0.10⁻³ moles de ácido cloroetanoico (CICH₂-COOH) por cada 100 cm³ de disolución. Se a porcentaxe de ionización é do 15 %, calcula:
 - a) A concentración de todas as especies presentes na disolución.
 - b) O pH da disolución e o valor da constante K_a do ácido.

(A.B.A.U. extr. 18)

Rta.: a) $[CICH_2-COOH]_e = 0.0425 \text{ mol/dm}^3$; $[H_3O^+]_e = [CICH_2-COO^-]_e = 0.00750 \text{ mol/dm}^3$; $[OH^-] = 1.33 \cdot 10^{-12} \text{ mol/dm}^3$; b) pH = 2.12; $K_a = 1.32 \cdot 10^{-3}$.

- 9. Ao disolver 0,23 g de HCOOH en 50 mL de auga obtense unha disolución de pH igual a 2,3. Calcula:
 - a) A constante de acidez (K_a) do ácido.
 - b) O grao de ionización do mesmo.

(A.B.A.U. extr. 17)

Rta.: a) $K_a = 2.6 \cdot 10^{-4}$; b) $\alpha = 5.0 \%$.

- 10. Para unha disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipropanoico), calcula:
 - a) O grao de ionización do ácido en disolución e o pH da mesma.
 - b) Que concentración debe ter unha disolución de ácido benzoico (C₆H₅COOH) para dar un pH igual ao da disolución de ácido láctico de concentración 0,200 mol/dm³?

 $K_a(CH_3CH(OH)COOH) = 3,2 \cdot 10^{-4}; K_a(C_6H_5COOH) = 6,42 \cdot 10^{-5}.$

(A.B.A.U. ord. 17)

Rta.: a) $\alpha = 3.92 \%$; pH = 2.11; b) [C₆H₅COOH]₀ = 0.965 mol/dm³.

• Mesturas ácido base

- Calcula:
 - a) O pH dunha disolución de hidróxido de sodio de concentración 0,010 mol/dm³.
 - b) O pH dunha disolución de ácido clorhídrico de concentración 0,020 mol/dm³.
 - c) O pH da disolución obtida ao mesturar 100 cm³ da disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ da disolución de ácido clorhídrico de concentración 0,020 mol/dm³.

Dato: $K_w = 1,0.10^{-14}$.

(A.B.A.U. ord. 18)

Rta.: a) pH = 12; b) pH = 1,7; c) pH = 11,6.

♦ CUESTIÓNS

- 1. Dadas dúas disolucións de igual concentración inicial de dous ácidos monopróticos débiles HA e HB, compróbase que, tras alcanzar o equilibrio, a concentración [A-] é maior ca [B-]. Razoa se son certas as seguintes afirmacións:
 - a) O valor da constante de disociación do ácido HA é menor có valor da constante do ácido HB.
 - b) O pH da disolución do ácido HA é maior có pH da disolución do ácido HB.

(A.B.A.U. ord. 24)

2. Dadas dúas disolucións, unha de ácido nítrico e outra de HNO_2 ($K_a(HNO_2) = 7,2\cdot10^{-4}$), razoe cal delas terá un pH menor se ambas teñen a mesma concentración inicial.

(A.B.A.U. extr. 23)

3. Razoe mediante as reaccións correspondentes o pH que terán as disolucións acuosas das seguintes especies químicas: NaNO₃ e NH₄NO₃.

(A.B.A.U. extr. 22)

4. Das seguintes substancias: PO¾-, HNO₂ e HCO₃, unha é ácida, outra básica e outra anfótera segundo a teoría de Brönsted-Lowry. Razoa cal é cada unha, escribindo os equilibrios que así o demostren.

(A.B.A.U. ord. 21)

5. Xustifica se a seguinte afirmación é verdadeira ou falsa: No equilibrio: HSO¼(aq) + H₂O(l) ⇌ HSO¾(aq) + H₃O⁺(aq) a especie HSO¾ actúa como unha base e a molécula de auga como un ácido de Brönsted-Lowry.

(A.B.A.U. extr. 20)

6. b) Indica se o pH dunha disolución de NH₄Cl será ácido, básico ou neutro.

(A.B.A.U. ord. 20)

- 7. Para os sales NaCl e NH₄NO₃:
 - a) Escribe as ecuacións químicas da súa disociación en auga.
 - b) Razoa se as disolucións obtidas serán ácidas, básicas ou neutras.

(A.B.A.U. extr. 19)

8. b) Razoa se a seguinte afirmación é correcta: a igual concentración molar, canto máis débil é un ácido menor é o pH da súa disolución acuosa.

(A.B.A.U. extr. 18)

- 9. a) Completa as seguintes reaccións e identifica os pares conxugados ácido-base.
 - a.1) $HNO_3(aq) + H_2O(1) \rightarrow$
 - a.2) $NH_3(aq) + H_2O(1) \rightleftharpoons$

(A.B.A.U. ord. 18)

10. c) Xustifica o carácter ácido, básico ou neutro dunha disolución acuosa de KCN.

(A.B.A.U. extr. 17)

11. b) Xustifica se a disolución obtida ao disolver NaNO₂ en auga será ácida, neutra ou básica.

(A.B.A.U. ord. 17)

♦ LABORATORIO

- 1. Dunha disolución de concentración 4,0 mol/dm³ de hidróxido de magnesio tómanse 50,0 cm³ e dilúense con auga ata un volume final de 250 cm³. A continuación úsanse 15,0 cm³ desta disolución para valorar 20,0 cm³ dunha disolución de ácido clorhídrico.
 - a) Escribe a reacción que ten lugar e calcula a concentración molar da disolución do ácido.
 - b) Describe o procedemento que empregarías para levar a cabo a valoración, indicando o material necesario.

(A.B.A.U. ord. 24)

Rta.: a) [HCl] = 1,2 mol/dm³

- Para neutralizar 150 cm³ dunha disolución de ácido nítrico de concentración 0,010 mol/dm³ gastáronse
 15 cm³ dunha disolución de hidróxido de calcio de concentración descoñecida.
 - a) Escribe a reacción que ten lugar e calcula a concentración molar da disolución do hidróxido de calcio.
 - b) Indica o material que empregaría e explica o procedemento experimental para realizar a valoración.

(A.B.A.U. ord. 23)

Rta.: $[Ca(OH)_2] = 0.050 \text{ mol/dm}^3 (D).$

- 3. Emprégase unha disolución de ácido nítrico de riqueza 2 % en masa e densidade 1,009 g/cm³ para neutralizar 50 cm³ dunha disolución de concentración 0,25 mol/dm³ de hidróxido de bario.
 - a) Escribe a reacción química que ten lugar e calcula o volume da disolución de ácido nítrico gastado.
 - b) Describe o procedemento experimental e nomea o material necesario para realizar a valoración.

(A.B.A.U. extr. 22)

Rta.: a) $V = 78 \text{ cm}^3 \text{ D HNO}_3$.

- 4. Tómanse 30,0 cm³ dunha disolución de HCl de concentración 6,0 mol/dm³ e dilúense con auga ata un volume final de 250 cm³. 25,0 cm³ desta disolución diluída necesitaron 20,0 cm³ dunha disolución de hidróxido de calcio para a súa neutralización.
 - a) Escribe a reacción que ten lugar e calcula a concentración molar da disolución da base.
 - b) Nomea e debuxa o material necesario e indica o procedemento empregado para a valoración.

(A.B.A.U. ord. 22)

Rta.: a) $[Ca(OH)_2] = 0.45 \text{ mol/dm}^3$.

- 5. Ao valorar 20,0 cm³ dunha disolución de Ca(OH)₂ gástanse 18,1 cm³ dunha disolución de HCl de concentración 0,250 mol/dm³.
 - a) Escribe a reacción que ten lugar e calcule a concentración molar da disolución da base.
 - b) Indica o material e reactivos necesarios, debuxa a montaxe e explica o procedemento realizado.

(A.B.A.U. extr. 21)

Rta.: a) $[Ca(OH)_2] = 0.113 \text{ mol/dm}^3 (D).$

- 6. Prepáranse 100 mL dunha disolución de HCl disolvendo, en auga, 10 cm³ dun HCl comercial de densidade 1,19 g·cm⁻³ e riqueza 36 % en peso. 20 cm³ da disolución de ácido preparada valóranse cunha disolución de NaOH de concentración 0,8 mol/dm³.
 - a) Calcula a concentración molar da disolución de ácido valorada, escribe a reacción que ten lugar na valoración e calcula o volume gastado da disolución de NaOH.
 - b) Indica o procedemento a seguir no laboratorio para a valoración do ácido indicando o material e reactivos.

(A.B.A.U. ord. 21)

Rta.: a) [HCl] = 1,2 mol/dm³; $V = 29 \text{ cm}^3 \text{ D NaOH}$.

- 7. 2,0 cm³ dun ácido nítrico do 58 % de riqueza en masa e densidade 1,36 g/cm³ dilúense en auga ata completar 250 cm³ de disolución.
 - a) Calcula o volume de disolución de hidróxido de sodio de concentración 0,10 mol/dm³ necesario para neutralizar 10 cm³ da disolución preparada de ácido nítrico, escribindo a reacción que ten lugar.
 - b) Describe o procedemento experimental e nomea o material necesario para realizar a valoración (A.B.A.U. extr. 20)

Rta.: $V = 10 \text{ cm}^3 \text{ D NaOH}.$

- 8. 15,0 cm³ dunha disolución de ácido clorhídrico de concentración descoñecida neutralízanse con 20,0 cm³ dunha disolución de hidróxido de potasio de concentración 0,10 mol/dm³:
 - a) Escribe a reacción que ten lugar e calcula a concentración molar da disolución do ácido.
 - b) Describe os pasos a seguir no laboratorio para realizar a valoración anterior, nomeando o material e o indicador empregados.

(A.B.A.U. extr. 19)

Rta.: $[HCl] = 0.13 \text{ mol/dm}^3$.

- 9. Na valoración de 20,0 cm³ dunha disolución de ácido sulfúrico gástanse 30,0 cm³ dunha disolución de hidróxido de sodio de concentración 0,50 mol/dm³.
 - a) Escribe a reacción que ten lugar e calcula a concentración molar do ácido.
 - b) Describe o procedemento experimental e nomea o material necesario para realizar a valoración.

(A.B.A.U. ord. 18)

Rta.: $[Na_2SO_4] = 0.375 \text{ mol/dm}^3$.

- 10. Na valoración de 25,0 cm³ dunha disolución de ácido clorhídrico gástanse 22,1 cm³ dunha disolución de hidróxido de potasio de concentración 0,100 mol/dm³.
 - a) Indica a reacción que ten lugar e calcula a concentración molar da disolución do ácido.
 - b) Detalla o material e os reactivos necesarios, así como o procedemento para levar a cabo a valoración no laboratorio.

(A.B.A.U. ord. 17)

Rta.: [HCl] = 0.884 mol/dm^3 .

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Actualizado: 17/07/24