Math 154
Instructor : Professor Verstraete
Homework 1
20 points = $4 + 6 + 4 + 3 + 3$
Instructions
this pdf file to submit your homework to gradescope (5 questions, 5 pages).
sent your solutions in the order the problems are listed.
w all your work on all problems and make sure your solutions are legible. proof-oriented problems, you must write a complete, coherent proof, as in the course notes
may study with others currently enrolled in the class, but work turned in should be your ow ot copy someone else's answer, or copy from an answer manual, answer key, or the inter

Homework 1 Question 1

Student Name Student ID SectionNumber

Question 1.3° For $n \geq 2$, let G_n be the grid graph , whose vertex set is	
$V = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : 0 \le x < n, 0 \le y < n\}$	
and whose edge set is	
$E = \{\{(x, y), (x', y')\} : (x - x')^2 + (y - y')^2 = 1\}.$	
Determine the number of vertices and number of edges in G_n for each $n \geq 2$.	
	_
	_

Homework 1 Question 2

Question 1.9. Let $K_{n:r}$ denote the Kneser graph , whose vertex set is the set of r -element subsets of an n -element sets, and where two vertices form an edge if the corresponding sets are disjoint.	
 (a) Describe K_{n:1} for n ≥ 1. (b) Draw K_{4:2} and K_{5:2}. (c) Determine E(K_{n:r}) for n ≥ 2r ≥ 1. 	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Student Name Student ID SectionNumber

Homework 1 Question 3

${\rm Question} 2.7^{\circ}$
(a) Draw the de Bruijn graph $\vec{G}(3,2)$.
(b) Find a de Bruijn sequence for words of length two over the alphabet $\{0, 1, 2\}$.

Student Name Student ID SectionNumber

Homework 1 Question 4

Question 2.11° A tournament is an orientation of a complete graph. Prove that every _
tournament contains a directed path containing all of its vertices.

3 POINTS

Homework 1 Question 5

Student Name Student ID SectionNumber TA Name

Question 2.16. Prove that a graph of minimum degree at least $k \geq 2$ containing no triangles contains a cycle of length at least $2k$.