- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08 Profesor: Rafael López Camino

Nombre:

- 1. Se considera un conjunto $X, p \in X$, y τ la topología del punto incluído (para p). Probad que una aplicación $f:(X,\tau)\to (X,\tau)$ que satisface f(p)=p es continua.
- 2. Se considera en \mathbb{R} la topología τ que tiene como base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probad que una aplicación creciente $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ es continua.
- 3. Hallad un homeomorfismo entre el elipsoide $X=\{(x,y,z)\in\mathbb{R}^3; \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}$ y la esfera $Y=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2+z^2=1\}.$
- 4. Probad que el conjunto

$$X = \{(x, y, z) \in \mathbb{R}^3; 2 < x^2 + y^2 < 3, -1 < z < 1\}$$

es abierto en \mathbb{R}^3

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08

Profesor: Rafael López Camino

- 1. Se considera un conjunto $X, p \in X, y \tau$ la topología del punto incluído (para p). Probad que una aplicación $f:(X,\tau)\to (X,\tau)$ que satisface f(p)=p es continua. Solución: La topología es $\tau=\{O\subset X; p\in O\}\cup\{\emptyset\}$.
 - (a) (primera forma). Probamos que si $O' \in \tau$, $f^{-1}(O') \in \tau$. Para ello se prueba que $p \in f^{-1}(O')$. Esto será cierto si $f(p) \in O'$. Pero f(p) = p y $O' \in \tau$.
 - (b) (segunda forma) Se probó que una base de entornos es $\beta_x = \{\{x,p\}\}$. Probamos que f es continua en cada punto. Sea $x \neq p$. Dado $V' = \{f(x),p\} \in \beta_{f(x)}$, tomamos $U = \{x,p\} \in \beta_x$. Es evidente que $f(U) = \{f(x),f(p)=p\} = V'$. Si x=p, se toma $V' = \{p\} \in \beta_{f(p)}$ y $U = \{p\} \in \beta_p$ y es evidente que f(U) = V'.
- 2. Se considera en \mathbb{R} la topología τ que tiene como base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probad que una aplicación creciente $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ es continua.

Solución: Se demostró para esta topología que una base de entornos es $\beta_a = \{[a, \infty)\}$. Probamos que es continua en todo punto. Sea $a \in \mathbb{R}$ y $[f(a), \infty) \in \beta_{f(a)}$. Demostramos que $f([a, \infty)) \subset [f(a), \infty)$. Sea $x \in [a, \infty)$, es decir, $a \leq x$. Como f es una aplicación creciente, $f(a) \leq f(x)$. En particular, $f(x) \in [f(a), \infty)$.

3. Hallad un homeomorfismo entre el elipsoide $X=\{(x,y,z)\in\mathbb{R}^3; \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}$ y la esfera $Y=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2+z^2=1\}.$

Solución: Se define la aplicación $f: \mathbb{R}^3 \to \mathbb{R}^3$ mediante f(x,y,z) = (ax,by,cz). Esta aplicación es una afinidad ya que $a,b,c \neq 0$. Por tanto, f es un homeomorfismo. Es evidente que f(Y) = X. Luego $f_{|Y|}: Y \to f(Y) = X$ es un homeomorfismo.

4. Probad que el conjunto

$$X = \{(x, y, z) \in \mathbb{R}^3; 2 < x^2 + y^2 < 3, -1 < z < 1\}$$

es abierto en \mathbb{R}^3

Solución:

- (a) (primera forma) Las aplicaciones $f,g:\mathbb{R}^3\to\mathbb{R}$ definidas por $f(x,y,z)=x^2+y^2$ y g(x,y,z)=z son continuas. En particular, los conjuntos $f^{-1}((2,3))$ y $g^{-1}((-1,1))$ son abiertos en \mathbb{R}^3 . Finalmente, $X=f^{-1}((2,3))\cap g^{-1}((-1,1))$ y por tanto, es un conjunto abierto al ser intersección de dos conjuntos abiertos.
- (b) (segunda forma) Se define la aplicación $h: \mathbb{R}^3 \to \mathbb{R}^2$ mediante $h(x, y, z) = (x^2 + y^2, z)$. Esta aplicación es continua ya que $p_1 \circ h = f$ y $p_2 \circ h = g$. Es evidente que $X = h^{-1}((2,3) \times (-1,1))$ y este conjunto es abierto porque (ya se probó en clase) el rectángulo $(2,3) \times (-1,1)$ es abierto en \mathbb{R}^2 .

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2008/09

Profesor: Rafael López Camino

Nombre:

- 1. Sea (\mathbb{R}, τ_{in}) para p = 0, (\mathbb{R}, τ_{ex}) para q = 1 y la aplicación $f : (\mathbb{R}, \tau_{in}) \to (\mathbb{R}, \tau_{ex})$, $f(x) = x^2$. Probad que f es continua en x = 1 pero no en x = 2.
- 2. Construir explícitamente un homeomorfismo entre \mathbb{S}^1 y la elipse

$$E = \{(x,y) \in \mathbb{R}^2; \frac{x^2}{1} + \frac{y^2}{4} = 1\}.$$

3. Construir explícitamente un homeomorfismo entre el conjunto $X=\{(0,y);y\in\mathbb{R}\}$ y el dado por $Y=\{(x,x^2);-1< x<1\}.$

Soluciones.

1. En (\mathbb{R}, τ_{in}) , una base de entornos de x=1 es $\beta_1=\{U=\{0,1\}\}$, de $x=2,\,\beta_2=\{V=\{0,2\}\}$. En $(\mathbb{R}, \tau_{ex}),\,\beta_1'=\{W=\mathbb{R}\}$ y $\beta_4'=\{O=\{4\}\}$.

Es continua en x=1 pues $f(U)=U\subset W$. No es continua en x=2 pues $f(V)=\{0,4\}\not\subset O$.

- 2. Se define la aplicación $f:\mathbb{R}^2\to\mathbb{R}^2$ dada por f(x,y)=(x,2y). Esta aplicación es una afinidad y por tanto, un homeomorfismo. Por otro lado, es evidente que $f(\mathbb{S}^1)=E$. Luego $f_{|\mathbb{S}^1}:\mathbb{S}^1\to f(\mathbb{S}^1)=E$ es un homeomorfismo.
- 3. X es homeomorfo a \mathbb{R} mediante $f: X \to \mathbb{R}$, f((0,y)) = y ($X \cong \{(y,0) \in \mathbb{R}^2; y \in \mathbb{R}\}$ mediante un giro de 90 grados, y el último conjunto era homeomorfo a \mathbb{R}).

La recta real \mathbb{R} es homeomorfa al intervalo (-1,1), por ejemplo, con $g(x) = \frac{x}{1-|x|}$.

El conjunto Y es homeomorfo al intervalo (-1,1) por ser el grafo de la función x^2 ; concretamente, $h:(-1,1)\to Y, h(x)=(x,x^2)$.

El homeomorfismo buscado es $h \circ g \circ f$, es decir,

$$(0,y)\longmapsto (\frac{y}{1-|y|},(\frac{y}{1-|y|})^2).$$

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11

Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. Se considera en \mathbb{R} la topología τ que tiene por base $\beta = \{[a,b); a < b, a, b \in \mathbb{R}\}$. Estudiar la continuidad de la aplicación $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ dada por f(x) = 0 si x < 0 y f(x) = 1 si $x \ge 0$.
- 2. Establecer un homeomorfismo entre los siguientes subconjuntos de \mathbb{R} :

$$A = (0,1) \cup [2,3],$$
 $B = (-1,0) \cup [3,4].$

3. Estudiar en qué puntos es continua la aplicación $f:(\mathbb{R},\tau_i)\to(\mathbb{R},\tau_u), f(x)=x^2$, donde τ_i es la topología del punto incluido para p=0.

1. Se considera en \mathbb{R} la topología τ que tiene por base $\beta = \{[a,b); a < b, a, b \in \mathbb{R}\}$. Estudiar la continuidad de la aplicación $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ dada por f(x) = 0 si x < 0 y f(x) = 1 si $x \ge 0$.

Solución. Una base de entornos de x es $\beta_x = \{[x,y); x < y\}$. Sea $x \in \mathbb{R}$ tal que x < 0. Entonces f(x) = 0. Dado V' = [0,y), se toma U = [x,x/2) como entorno de x. Entonces $f(U) = \{0\} \subset V'$.

Sea ahora $x \geq 0$. Entonces f(x) = 1. Sea V' = [1, y). Sea U = [x, x + 1) entorno de x que satisface $f(U) = \{1\} \subset V'$. Esto prueba que f es continua en \mathbb{R} .

2. Establecer un homeomorfismo entre los siguientes subconjuntos de \mathbb{R} :

$$A = (0,1) \cup [2,3],$$
 $B = (-1,0) \cup [3,4].$

Solución. Se sabe que dos intervalos del mismo "tipo" son homeomorfos entre sí. Sean por tanto, f un homeomorfismo entre (0,1) y (-1,0) y g otro entre [2,3] y [3,4]. Se define $\phi:A\to B$ como $\phi_{|(0,1)}=f$ y $\phi_{|[2,3]}=g$. Es evidente que ϕ es biyectiva al serlos f y g. Además la restricción de ϕ a (0,1) y [2,3] son continuas: veámoslo por ejemplo, en (0,1). Sea $i:(-1,0)\to B$ la aplicación inclusión, que es continua. Entonces $\phi_{|(0,1)}=i\circ f$.

Para finalizar, ϕ es continua globalmente ya que (0,1) y [2,3] constituyen una partición por abiertos de A: que sea una partición es trivial, y lo mismo con que (0,1) sea un abierto de A; por último, [2,3] es abierto ya que $[2,3] = (1'5,3'5) \cap A$.

3. Estudiar en qué puntos es continua la aplicación $f:(\mathbb{R},\tau_i)\to(\mathbb{R},\tau_u), f(x)=x^2$, donde τ_i es la topología del punto incluido para p=0.

Solución. Una base de entornos de x en (\mathbb{R}, τ_i) es $\beta_x = \{U_x := \{\{x, 0\}\}\}.$

- (a) f es continua en x = 0. Como f(0) = 0, dado $(-\epsilon, \epsilon)$ entorno de f(0), se tiene $f(U_0) = \{0\} \subset (-\epsilon, \epsilon)$.
- (b) f no es continua si $x \neq 0$. Supongamos que x > 0. Sea $\epsilon = x/2$ y $V' = (x \epsilon, x + \epsilon)$. Entonces $f(U_x) = \{0, x^2\} \not\subset V'$. De la misma forma se hace si x < 0.

- Grado en Matemáticas -Curso 2011/12

Nombre:

Razonar todas las respuestas

- 1. Sea (\mathbb{R}, τ_{in}) para p = 0, (\mathbb{R}, τ_{ex}) para q = 1 y la aplicación $f : (\mathbb{R}, \tau_{in}) \to (\mathbb{R}, \tau_{ex})$, $f(x) = x^2$. Estudiar si f es o no continua y probad que f es continua en x = 1.
- 2. Construir explícitamente un homeomorfismo entre el conjunto $X = \{(0, y); y \in \mathbb{R}\}$ y el dado por $Y = \{(x, x^2); -1 < x < 1\}$.
- 3. Sea un espacio topológico (X, τ) y $A = \{(x, x) \in X \times X; x \in X\}$. Establecer un homeomorfismo entre (X, τ) y $(A, (\tau \times \tau)_{|A})$. Estudiar cuándo A es abierto en $(X \times X, \tau \times \tau)$.
- 4. Sea X = [-1,2] y $A = [-1,0] \cup [1,2]$. En X se define la relación de equivalencia:

$$x R y$$
 si
$$\begin{cases} & \text{son iguales, \'o} \\ & x, y \in A \end{cases}$$

Probar que X/R es homeomorfo a \mathbb{S}^1 .

Soluciones

- 1. La aplicación no es continua. Por ejemplo, el conjunto $O = \{4\}$ es abierto en (\mathbb{R}, τ_{ex}) , pero $f^{-1}(O) = \{-2, 2\}$ no pertenece a τ_{in} .
 - Como $f(1) = 1^2 = 1$, tomamos bases de entornos de 1 en (\mathbb{R}, τ_{in}) , a saber, $\beta_1 = \{V = \{0, 1\}\}$ y base de entornos de 1 en (\mathbb{R}, τ_{ex}) , esto es, $\beta_1' = \{V' = \mathbb{R}\}$. Es evidente que $f(V) = \{0, 1\}$ está incluido en V' y por tanto, f es continua en x = 1.
- 2. El giro $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ dado por $\phi(x,y) = (-y,x)$ es un homeomorfismo y por tanto, $f_{|X}: X \to f(X) = \mathbb{R} \times \{0\}$ es un homeomorfismo.

El conjunto $\mathbb{R} \times \{0\}$ es homeomorfo a \mathbb{R} mediante $\psi(x,0) = x$.

La recta real \mathbb{R} es homeomorfa a (-1,1) mediante $\eta(x) = x/(1+|x|)$.

El conjunto Y es el grafo de la función x^2 y por tanto, es homeomorfo a su dominio, es decir, a (-1,1). El homeomorfismo es $\alpha(x,y)=x$.

El homeomorfismo pedido es por tanto, $f = \alpha^{-1} \circ \eta \circ \psi \circ \phi$, es decir,

$$f(0,y) = \left(-\frac{y}{1+|y|}, \frac{y^2}{(1+|y|)^2}\right)$$

3. Se define la aplicación $f:A\to X$ mediante f(x,x)=x. Esta aplicación es biyectiva y su inversa es g(x)=(x,x). La aplicación f es continua, ya que $f=p_{|A}$, donde $p:(X\times X,\tau\times\tau)\to (X,\tau)$ es la primera proyección, p(x,y)=x. La aplicación g es continua. Para ello, se considera $h:X\to X\times X$ mediante h(x)=(x,x). Esta aplicación es continua ya que al componer con las proyecciones queda $p\circ h=1_X$. Como Im(h)=A, entonces $h:(X,\tau)\to (A,(\tau\times\tau)_{|A})$ es continua. Pero esta aplicación es justamente g.

Si el conjunto A es abierto, entonces todo punto suyo es interior a A. Sea $x \in X$. Entonces existen $O, O' \in \tau$ tales que $(x, x) \in O \times O' \subset A$. Tomamos $G = O \cap O'$. Entonces $(x, x) \in G \times G \subset A$. Si G tiene más de un elemento, a saber, $y \in G$, $x \neq y$, entonces $(x, y) \in G \times G \subset A$: contradicción. Por tanto, $G = \{x\}$. Esto prueba que $\{x\}$ es un conjunto abierto. Ya que esto se hace para todo $x \in X$, se concluye que si A es abierto, entonces la topología τ es la discreta. El recíproco es inmediato, es decir, si τ es la topología discreta,

entonces $\tau \times \tau$ es la topología discreta en $X \times X$, luego todo subconjunto suyo es abierto, en particular, el conjunto A.

Se concluye entonces con que A es abierto en $(X \times X; \tau \times \tau)$ si y sólo si τ es la topología discreta.

4. Las clases de equivalencia son [0] = A y $[x] = \{x\}$ si $x \notin A$.

Se define $f:X\to\mathbb{S}^1$ mediante

$$f(x) = \begin{cases} (1,0) & \text{si } x \in [-1,0] \\ (\cos(2\pi x), \sin(2\pi x)) & \text{si } x \in [0,1] \\ (1,0) & \text{si } x \in [1,2] \end{cases}$$

Ya que f(x)=(1,0)=f(0)=f(1) para $x\in A,$ entonces xR_fy si y sólo si xRy.

La aplicación f es continua pues la restricción a los cerrados de X dados por A y [0,1] es continua: en el primer caso, la aplicación es constante; en el segundo es la aplicación $x \longmapsto (\cos(2\pi x), \sin(2\pi x))$, que ya es continua vista de \mathbb{R} a \mathbb{S}^1 .

La aplicación es sobreyectiva, pues $f(X) = f([0,1]) = \mathbb{S}^1$.

El conjunto X es un intervalo cerrado, luego es un conjunto cerrado y acotado en \mathbb{R} ; la imagen, \mathbb{S}^1 , está incluido en \mathbb{R}^2 . Por tanto, f es cerrada.

Como conclusión, f es una identificación, probamos que $X/R \cong \mathbb{S}^1$.

- Grado en Matemáticas - Curso 2012/13

Nombre:

Razonar todas las respuestas

- 1. Sean $p, q \in X$ y τ_p, τ_q las topologías del punto incluido para p y q, respectivamente. Probar que $f: (X, \tau_p) \to (X, \tau_q)$ es continua si y sólo si f es constante o f(p) = q. Deducir que $(X, \tau_p) \cong (X, \tau_q)$.
- 2. Hallar un homeomorfismo entre $B_1(0,0)=\{(x,y)\in\mathbb{R}^2:x^2+y^2<1\}$ y \mathbb{R}^2 .
- 3. Se considera $(\mathbb{R} \times \mathbb{R}, \tau_u \times \tau_D)$. Hallar la adherencia de $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Probar que la diagonal, con su topología relativa, es homeomorfa a (\mathbb{R}, τ_D) .
- 4. En X=[-1,2] se define la relación de equivalencia

$$x R y$$
 si
$$\begin{cases} & \text{son iguales, } ó \\ & x, y \in [-1, 0] \text{ } ó \\ & x, y \in [1, 2] \end{cases}$$

Probar que X/R es homeomorfo a [0,1]

Soluciones

1. Recordemos que la base de entornos de $x \in X$ en (X, τ_p) es $\beta_x = \{\{p, x\}\}\}$. Supongamos que f es continua. Ya que es continua en X, dado $V' = \{f(x), q\}$, debe existir $V = \{p, x\} \in \beta_x$ tal que $f(\{p, x\}) \subset \{f(x), q\}$. Esto quiere decir que $f(p) \in \{f(x), q\}$, para todo $x \in X$. Si f(p) = q, entonces se tiene probado el resultado. Si $f(p) \neq q$, entonces f(p) = f(x), $\forall x \in X$, es decir, f es constante.

Recíprocamente, se sabe que todas las aplicaciones constantes son continuas. Supongamos ahora que f(p) = q. Entonces por el mismo razonamiento anterior, decir que f es continua es equivalente a tener $f(\{p,x\}) \subset \{f(x),q\}$, $\forall x \in X$. Pero como f(p) = q, entonces $f(\{p,x\}) = \{q,f(x)\}$.

Para la segunda parte, sea $f:X\to X$ cualquier aplicación biyectiva que lleve p en q, por ejemplo:

$$f(x) = \begin{cases} q & \text{si } x = p \\ p & \text{si } x = q \\ x & \text{si } x \neq p, q \end{cases}$$

Como f(p) = q, f es continua. La inversa lleva q en p, luego es continua.

2. La aplicación $f: B_1(0,0) \to \mathbb{R}^2$ que se busca es una de la forma $f(x,y) = \lambda(x,y), \lambda \geq 0$ de forma que conforme |(x,y)| varíe de 0 a 1, |f(x,y)| varíe de 0 a ∞ . Sea $h: [0,\infty) \to [0,\infty)$ cualquier homeomorfismo tal que h(0) = 0 y $h(1) = \infty$, que sabemos que existe. Entonces el valor de λ viene dado por la condición

$$|f(x,y)| = h(|(x,y)|) \Rightarrow \lambda \sqrt{x^2 + y^2} = h(\sqrt{x^2 + y^2}).$$

Por tanto se define

$$f(x,y) = \begin{cases} h(\sqrt{x^2 + y^2})(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}) & (x,y) \neq (0,0) \\ (0,0) & (x,y) = (0,0). \end{cases}$$

De la forma que se ha construido f, se tiene que la inversa de f es

$$f^{-1}(x,y) = \begin{cases} h^{-1}(\sqrt{x^2 + y^2})(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}) & (x,y) \neq (0,0) \\ (0,0) & (x,y) = (0,0). \end{cases}$$

La continuidad de f en $B_1(0,0) - \{(0,0)\}$ (que es un abierto) se hace componiendo con las proyecciones, obteniendo inmediatamente

$$p_i \circ f = h \circ (\sqrt{p_1^2 + p_2^2}) \frac{p_i}{\sqrt{p_1^2 + p_2^2}}.$$

Para el (0,0), se tiene que si $(x_n, y_n) \to (0,0)$, entonces $|f(x_n, y_n)| = h(\sqrt{x_n^2 + y_n^2}) \to 0$, ya que $x_n^2 + y_n^2 \to 0$ y h(0) = 0.

También se podía haber hecho con el sólo cambio de haber tomado h un homeomorfismo entre (-1,1) y \mathbb{R} que lleve el 0 en 0 y definiendo f como $f(x,y) = h(\sqrt{x^2 + y^2})(x,y)/\sqrt{x^2 + y^2}$. En este caso, ya sabíamos que una tal aplicación h era $h(t) = t/(1-t^2)$, con $h^{-1}(t) = t/(1+t^2)$.

3. Una base de entornos de (x, y) es $\beta_{(x,y)} = \{(x - \epsilon, x + \epsilon) \times \{y\}; \epsilon > 0\}.$

Para los puntos del borde de A, los conjuntos $(x-\epsilon,x+\epsilon)\times\{y\}$ siempre intersecan a A, excepto para el punto (0,1) y (0,-1) ya que la ordenadas de los puntos del entorno básico o es 1 o es -1, que nunca interseca a A. Si (x,y) satisface $x^2+y^2>1$, no es adherente: se sabe que existe una bola euclídea de radio r>0 centrada en el punto que no interseca a A, pero esa bola contiene a $(x-r,x+r)\times\{y\}$. Por tanto $\overline{A}=\{(x,y):x^2+y^2\leq 1\}-\{(0,1),(0,-1)\}$.

Si $D = \{(x, x); x \in \mathbb{R}\}$ es la diagonal, entonces una base de entornos de (x, x) en $(\tau_u \times \tau_D)_{|D}$ es

$$\beta_{(x,x)} \cap D = \{((x - \epsilon, x + \epsilon) \times \{x\}) \cap D; \epsilon > 0\} = \{(x,x)\},\$$

probando que tiene la topología discreta. Por tanto, un homeomorfismo es cualquier aplicación biyectiva de D en \mathbb{R} , ya que las aplicaciones biyectivas entre espacios discretos son homeomorfismos. Por ejemplo, f(x,x) = x.

4. Se define $f: X \to [0,1]$ mediante

$$f(x) = \begin{cases} 0 & \text{si } x \in [-1, 0] \\ x & \text{si } x \in [0, 1] \\ 1 & \text{si } x \in [1, 2] \end{cases}$$

Esta apicación es evidentemente sobreyectiva. También es continua porque en cada uno de los tres trozos es continua (o es constante o es la identidad), y

cada uno de los trozos son cerrados en X, pues ya lo son en \mathbb{R} . El dominio de f es un compacto (cerrado, por ser un intervalo, y acotado, por ser un intervalo acotado) y llega a un subconjunto de \mathbb{R} . Esto prueba que f es cerrada y, de paso, f es una identificación. Sólo queda probar que $R_f = R$, pero esto es evidente por la propia definición de f.

(También se podía haber probado que f es una identificación observando que la inclusión $i:[0,1]\hookrightarrow X$ es una inversa (¡continua!) por la derecha, es decir, $f\circ i=1_{[0,1]}$.)

- Grado en Matemáticas. Curso 2013/14 -

Nombre:

- 1. Estudiar en qué puntos es continua la aplicación $f:(\mathbb{R},\tau_u)\to(\mathbb{R},\tau_d), f(x)=\sin(x)$.
- 2. Probar que los espacios de cada pareja son homeomorfos entre sí:
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1, x \ge 0\}, B = [0, 1].$
 - (b) $A = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}, B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$
 - (c) $A = (0,1) \cup [2,3], B = (5,7) \cup [10,12].$
- 3. Se considera (\mathbb{R}, τ) donde τ es la topología del punto incluido para p=1. Estudiar la continuidad global de la aplicación $f: (\mathbb{R} \times \mathbb{R}, \tau \times \tau) \to (\mathbb{R}, \tau), \ f(x,y) = y x$. Hallar el interior del conjunto $A = \{(x,y) \in \mathbb{R}^2 : y > x\}$ en $(\mathbb{R} \times \mathbb{R}, \tau \times \tau)$.
- 4. En $X=([0,1]\times\{0\})\cup([0,1]\times\{1\})\subset\mathbb{R}^2$ se define la relación

$$(x,y) R (x',y') \Leftrightarrow \begin{cases} (x,y) = (x',y') \\ (0,0) R (0,1) \\ (1,0) R (1,1) \end{cases}$$

Hallar y probar a qué subconjunto de \mathbb{R}^2 es homeomorfo X/R.

Razonar todas las respuestas

Soluciones

1. Una base de entornos de $x \in (\mathbb{R}, \tau_u)$ es $\beta_x = \{(x - r, x + r) : r > 0\}$ y de $x \in (\mathbb{R}, \tau_d)$ es $\beta'_x = \{[x, \infty)\}$. La continuidad de f en x se expresa como: encontrar r > 0 tal que

$$f((x-r,x+r)) \subset [\sin(x),\infty) \Leftrightarrow f((x-r,x+r)) \ge \sin(x)$$
.

Analizando la gráfica de la función seno, se observa que para todo r>0, f((x-r,x+r)) tiene puntos menores estrictos que $\sin(x)$. Esto está asegurado al menos en los puntos donde la función es creciente o decreciente. En los puntos donde el seno es 1, es decir, si $x=\pi/2+2k\pi,$ $k\in\mathbb{Z}$, la continuidad equivale a que $f((x-r,x+r))\geq 1$, lo cual es imposible. Y en los puntos donde el seno es -1, es decir, si $x=3\pi/2+2k\pi$, $\sin(x)=-1$, y la continuidad exige que $f((x-r,x+r))\geq -1$, que siempre es cierto.

Por tanto, la función sólo es continua en los puntos donde el seno es -1, es decir, $\{3\pi/2 + 2k\pi : k \in \mathbb{Z}\}.$

- 2. (a) El conjunto A es el grafo sobre el eje y de la función $f(y)\sqrt{1-x^2}$ definida en [-1,1]. Por tanto, $A=G(f)\cong [-1,1]$ y se sabe que dos intervalos cerrados son homeomorfos entre sí, luego homeomorfo a B.
 - [Otra forma. Hacemos en \mathbb{R}^2 un giro de 90 grados (que es un homeomorfismo) y lleva A en $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1,y\geq 0\}$. Este conjunto es el grafo de la función $g(x)=\sqrt{1-x^2}$ definida en [-1,1) y el argumento sigue los mismos pasos que antes.]
 - (b) El conjunto A es $(0, \infty) \times (0, \infty)$. Como $(0, \infty) \cong \mathbb{R}$ ya que dos intervalos abiertos de \mathbb{R} son homeomorfos entre sí, entonces $A \cong \mathbb{R} \times \mathbb{R}$. Ahora bien, el producto topológico de \mathbb{R} con la topología usual sobre sí mismo es \mathbb{R}^2 con la topología usual. Por tanto, $A \cong \mathbb{R}^2$. El conjunto B es una bola y se probó en clase que una bola de \mathbb{R}^n es homeomorfa a \mathbb{R}^n .
 - (c) Escribimos $A = A_1 \cup A_2$ y $B = B_1 \cup B_2$. Sabemos que $A_1 \cong B_1$ (los dos son intervalos abiertos) y que $A_2 \cong B_2$ (los dos son intervalos cerrados). El homeomorfismo entre A y B es el que lleva A_1 en B_1 y A_2 en B_2 y observando que A_1 y A_2 son conjuntos abiertos en A:

$$A_1 = (0,1) \cap A, \ A_2 = (1,5) \cap A.$$

La continuidad de la inversa sigue los mismos pasos, observando de nuevo, que B_1 y B_2 son abiertos $en\ B$.

[Nota: Los conjuntos A_1 y A_2 también son cerrados en A, luego el argumento de continuidad también se pueda realizar usando este hecho: $A_1 = [0,1] \cap A$ y $A_2 = [2,3] \cap A$.]

- 3. (a) El conjunto $O' = \{1\}$ es abierto en (\mathbb{R}, τ) . Hallamos su imagen inversa: $(x, y) \in f^{-1}(O')$ si $y x \in \{1\}$, es decir, $f^{-1}(O') = \{(x, y) : y = x + 1\}$, es decir, es una recta del plano. Este conjunto no es abierto en $(\mathbb{R}^2, \tau \times \tau)$ ya que al menos, contendría un elemento de la base $\tau \times \tau$, es decir, al menos $G_1 \times G_2 \in f^{-1}(O')$, con $G_i \in \tau$. En particular, $(1, 1) \in f^{-1}(O')$, lo cual no es cierto. Esto prueba que la aplicación no es continua globalmente.
 - [Nota: se puede tomar otros abiertos O', tales como $O' = \{1,2\}$, cuya imagen inversa son dos rectas paralelas y ninguna contiene al (1,1). Si se hubiera tomado como abierto el conjunto $G' = \{0,1\}$, entonces sí contiene al (1,1), pero esto no quiere decir que el conjunto $f^{-1}(G')$ sea abierto, ya que la topología $\tau \times \tau$ no es la topología del punto incluido en \mathbb{R}^2 para el punto (1,1). En verdad, tampoco dicho conjunto es abierto, ya que $(0,0) \in f^{-1}(G')$ y si es un punto interior, entonces $(0,0) \in \{0,1\} \times \{0,1\} \subset f^{-1}(G')$, lo cual tampoco es cierto.]
 - (b) Sea $(x, y) \in int(A)$. Entonces existe $O, O' \in \tau$ tal que $(x, y) \in O \times O' \subset A$. Ya que $1 \in O, O'$, entonces $(1, 1) \in A$, lo cual es falso. Esto prueba que $int(A) = \emptyset$.
- 4. El conjunto cociente X/R es homeomorfo a \mathbb{S}^1 donde $f:X\to\mathbb{S}^1$ está dada por

$$f(x,y) = \begin{cases} (\cos(\pi x), \sin(\pi x)) & y = 0\\ (\cos(\pi (1-x) + \pi), \sin(\pi (1-x) + 1)) & y = 1 \end{cases}$$

La aplicación f lleva $[0,1] \times \{0\}$ en la parte de arriba de \mathbb{S}^1 y lleva $[0,1] \times \{1\}$ en la de abajo de \mathbb{S}^1 , continuando desde el punto (-1,0) hasta (1,0). Por tanto, $R = R_f$. Además esto prueba que es sobreyectiva.

[Con algo más de detalle. Si $y=0, \pi x$ varía de 0 a π conforme vamos recorriendo el intervalo [0,1]. Si $y=1, (\pi(1-x)+\pi$ va de 2π a π , conforme vamos de 0 a 1. Por tanto, en el primer trozo, se cubre la parte de arriba $(y\geq 0)$ de \mathbb{S}^1 y en el segundo trozo, la parte de abajo $(y\leq 0)$ de \mathbb{S}^1 . Además, f(0,0)=f(0,1) y f(1,0)=f(1,1).]

La aplicación f es continua, ya que es continua en cada trozo de X (componiendo con las proyecciones de \mathbb{R}^2) y $[0,1] \times \{0\}$ y $[0,1] \times \{1\}$ son cerrados de \mathbb{R}^2 (producto de cerrados) y por tanto de cerrados en X.

Ya que X es acotado y cerrado en \mathbb{R}^2 (y f es continua), la aplicación f es cerrada. Por tanto una identificación, probando que $X/R_f = X/R \cong f(X) = \mathbb{S}^1$.