

Substitute specification
09/1374,041

50246-068

APPARATUS, SYSTEMS AND
METHODS FOR CONTROLLING
GRAPHICS AND VIDEO DATA IN
MULTIMEDIA DATA PROCESSING
AND DISPLAY SYSTEMS

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to multimedia processing and display systems and in particular to apparatus, systems and methods for controlling graphics and video data overlay in multimedia processing and display systems.

CROSS-REFERENCE TO RELATED APPLICATIONS

The following copending and coassigned United States patent applications contain related information and are incorporated herein by reference:

- 10 U.S. patent application Ser. No. 08/098,846 (Attorney's Docket No. P3510-P11US), entitled "System And Method For The Mixing Of Graphics And Video Signals," and filed Jul. 29, 1993; and
- 15 U.S. patent application Ser. No. 08/223,845 (Attorney's Docket No. P3510-P21US), entitled "Apparatus, Systems And Methods For Processing Video Data In Conjunction With A Multi-Format Frame Buffer," and filed Apr. 6, 1994.

BACKGROUND OF THE INVENTION

As multimedia information processing systems increase in popularity, system designers must consider new techniques for controlling the processing and display of data simultaneously generated by multiple sources. In particular, there has been substantial demand for processing systems which have the capability of concurrently displaying both video and graphics data on a single display screen.

The development of such systems presents a number of design challenges, not only because the format differences between graphics and video data must be accounted for, but also because of end user driven requirements that these systems allow for flexible manipulation of the data on the display screen.

- 5 One particular technique for simultaneously displaying video and graphics data on a single display screen involves the generation of "windows." In this case, a stream of data from a selected source is used to generate a display within a particular region or "window" of the display screen to the exclusion of any non-selected data streams defining a display or part of a display corresponding to the
10 same region of the screen. The selected data stream generating the display window "overlays" or "occludes" the data from the nonselected data streams which lie "behind" the displayed data. In one instance, the overall content and appearance of the display screen is defined by graphics data and one or more "video windows" generated by data from a video source occlude a corresponding
15 region of that graphics data. In other instances, a video display or window may be occluded or overlaid by graphics data or even another video window.

- In the multimedia environment, the "windowing" described above yields substantial advantages. Among other things, the user can typically change the size and location on the display screen of a given window to flexibly manipulate the
20 content and appearance of the data being displayed. For example, in the case of combined graphics and video, the user can advantageously create custom composite visual displays by combining multiple video and graphics data streams in windowing environment.

- In order to efficiently control windows in a multimedia environment
25 efficient frame buffer management is required. Specifically, a frame buffer control scheme must be developed which allows for the efficient storage and retrieval of multiple types of data, such as video data and graphics data. To be cost competitive as well as functionally efficient, such a scheme should minimize the number of memory devices and the amount of control circuitry required and

should insure that data flow to the display is subjected to minimal delay notwithstanding data type.

One of the major difficulties in managing video in a combined video and graphics windowing environment results from the fact that the video data being received and displayed are constantly being updated, typically at a rate of thirty frames per second. In contrast, the graphics data are normally generated once to define the graphics display and then remain static until the system CPU change that graphics display. Thus, the occlusion (overlay) of video data with graphics data requires that the static graphics data "in front of" the video data not be destroyed each time the video window is updated. A second concern with windowing systems operating on both video and graphics data is the formatting differences between the video and graphics data themselves since video is typically digitized into a YUV color space while graphics is digitized into an RGB color space. Hence, any combination video and graphics windowing system must have the capability of efficiently handling data within both the YUV and RGB formats.

Thus, due to the advantages of windowing, the need has arisen for efficient and cost effective windowing control circuitry. Such windowing circuitry should allow for the simultaneous processing of data received from multiple sources and in multiple formats. In particular, such windowing control circuitry should be capable of efficiently and inexpensively controlling the occlusion and/or overlay of video and graphics data in a windowing environment.

SUMMARY OF THE INVENTION

The principles of the present invention in general provide for the flexible control of graphics and video data in a display control environment. In particular, an entire frame of video data, graphics data, or a combination of both, may be stored in on-screen memory and rastered out with the generation of the corresponding display screen. A window of graphics or video data can then be

stored in off-screen memory and retrieved when the raster scan generating the display reaches the desired position on the display for the video window. The window of data from off-screen memory can then be overlayed over the data being rastered out of the on-screen memory under one of three conditions. In a 5 first mode, pixels from the off-screen memory are rastered only when the raster scan has reached the position on the display selected for the window. In a second mode, a window of data is rastered from the off-screen memory when the display raster scan has reached the display window position and graphics data being rastered from the on-screen memory matches a color key. In a third mode, the 10 window data is rastered out of the off-screen memory when the data being output from the on-screen memory matches the color key, notwithstanding the position of the raster scan.

According to a first embodiment of the present invention, a graphics and video controller is provided which includes a dual aperture interface, each word 15 associated with an address to a selected one of on-screen and off-screen areas of an associated unified frame buffer as either graphics or video pixel data. Circuitry is provided for writing a word of the pixel data received by the interface to a one of the on-screen and off-screen memory areas corresponding to the address associated with the received word. Circuitry is also included for selectively 20 retrieving graphics and video data from the on-screen and off-screen memory areas. A first pipeline is provided for processing graphics data retrieved from the frame buffer and a second pipeline is provided for video processing data retrieved from the frame buffer.

According to a second embodiment of the present invention, a controller is 25 provided which includes a dual aperture port for receiving video and graphics data, each word of the data received with an address associated directing the word to be processed as either graphics or video data and off-screen memory spaces of a frame buffer. A second port is included for receiving real-time video data. Circuitry is provided for generating an address associated with a selected one of

20070107-00000
TODAY'S THOUGHTS

the memory spaces for each word of received real-time video data. Circuitry is included for writing selectively the words into the on-screen and off-screen memory spaces of the frame buffer. Circuitry is also provided for selectively retrieving the words of data from the on-screen and off-screen spaces as data is rastered for driving a display. A graphics backend pipeline processes ones of the graphics words of data retrieved from the frame buffer. A video backend pipeline is provided for processing ones of the video words of data retrieved from the frame buffer, the circuitry for retrieving always rastering a stream of graphics data from the frame buffer to the graphics pipeline and rastering video data to the video backend pipeline when a display raster scan reaches a display position of a video window. An output selector is included for selecting for output between words of data output from the graphics backend pipeline and words of data output from the video backend pipeline.

According to a third embodiment of the present invention, a display system is provided which includes first and second parallel backend pipelines. A multi-format frame buffer memory is included having on-screen and off-screen memories each operable to simultaneously store data in graphics and video formats. A dual aperture port is provided for receiving both graphics and video data as directed by an address associated with each word of data received.

Circuitry for writing is included for writing a word of video or graphics data into a selected one of the on-screen and off-screen areas of the multi-frame buffer. Memory control circuitry controls the transfer of data between the first and second backend pipelines and the frame buffer. The system further includes a display unit and overlay control circuitry for selecting for output to the display unit between data provided by the first backend pipeline and data provided by the second backend pipeline.

A fourth embodiment of the present invention comprises a display data processing system which includes circuitry for writing data into an on-screen space of a frame buffer and circuitry for writing data into an off-screen space of

the frame buffer. A video pipeline is provided for processing video data output from a selected one of the on-screen and off-screen spaces. The video pipeline includes a first first-in/first-out memory for receiving selected pixel data from the selected space. The video pipeline also includes a second first-in/first-out memory
5 disposed in parallel to the first first-in/first-out memory for receiving other selected data from the selected space in the frame buffer. An interpolator is provided as part of the video pipeline for generating additional data by interpolating data output from the first and second first-in/first-out memories. A graphics pipeline is disposed in parallel to the video pipeline for processing
10 graphics data output from a selected one of the on-screen and off-screen spaces. Finally, an output selector is provided for selecting between data output from the video pipeline and data output from the graphics pipeline.

The principles of the present invention allow for the construction of circuits and systems with substantial advantages over the prior art. Among other
15 things, the principles of the present invention allow both graphics and video data to be stored in a single unified frame buffer and retrieved therefrom in a number of different ways. For example, a combination of graphics and video data may be stored in the on-screen memory and simply rastered out during screen refresh. In another case, an entire screen of graphics or video data may be stored in the on-
20 screen memory while a window of graphics or video data is stored in the off-screen portion of memory. The window data can then be rastered out to selectively overlay a portion of the data being rastered out of the on-screen memory. The overlay may be controlled by either window display position with a match of the on-screen data being rastered out and a color key, or both.

25 The embodiments of the present invention provide for the efficient and inexpensive overlay of video and graphics data in a windowing environment. In particular, the use of color comparison to determine the overlay of data in a window region eliminates the need for precise x- and y-position data for the location of that window and allows for video cropping to be performed. Further,

200701070002

the use of graphics data to control overlay provides substantial advantages in that graphics data is less subject to the graininess and noise problems often found with video data. Further, the user is given total control of overlay operations when keying on graphics data because the graphics data is computer generated, whereas
5 the video data is captured data.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in
10 conjunction with the accompanying drawings, in which:

FIG. 1 is a top level functional block diagram of a multi-media processing and display system embodying the principles of the present invention;

FIG. 2 is a more detailed functional block diagram of the VGA controller depicted in FIG. 1;

15 FIG. 3 is an expanded functional block diagram of portions of the controller of FIG. 2 with emphasis on the overlay control features;

FIG. 4A is a detailed functional block diagram of a first embodiment of the color comparison circuitry of FIG. 3;

20 FIG. 4B is a detailed functional block diagram of a second embodiment of the color comparison circuitry of FIG. 3; and

FIG. 5 is a detailed functional block diagram of a selected one of the video window position control circuits depicted in FIG. 3.

DESCRIPTION OF THE INVENTION

25 FIG. 1 is a high level functional block diagram of a multi-media processing and display system 100 operable to process and simultaneously display on a single display screen both graphics and video data according to the principles of the present invention. Display system 100 includes a central processing unit (CPU) 101 which controls the overall operation of system 100 and generates

P2
TOP SECRET//PROTECTED

graphics data defining graphics images to be displayed. CPU 101 communicates with the remainder of the system discussed below via a local bus 103. System 100 also includes a real-time video data source 104. A real time video stream may be presented to the system VGA controller 105 in one of two ways. First, video data source 104 may be coupled to local bus 103 and a video data stream introduced through dual aperture addresses. In this case, video source 104 will directly address the system frame buffer 107. Second, video source 104 may be coupled directly to VGA controller 105 via a dedicated bus 109 or "video port." In this instance, VGA controller 105 generates the required addresses into frame buffer 107. Real-time video source 104 may be, for example, a CD ROM unit, a laser disk unit, a videotape unit, television cable outlet or other video data source outputting video data in a YUV format. CPU 101 operates in conjunction with a system memory 108 which stores graphics and video data on a real-time basis. System memory 108 may be for example random access memory (RAM), floppy disk, hard disk or other type of storage device.

A VGA controller 105 embodying the principles of the present invention is also coupled to local bus 103. VGA controller 105 will be discussed in detail below; however, VGA controller 105 generally interfaces CPU 101 and video source 104 with a display unit 106 and a multiformat system frame buffer 107. Frame buffer memory 107 provides temporary storage of the graphics and video data during processing prior to display on display unit 106. According to the principles of the present invention, VGA controller is operable in selected modes to store graphics and video data together in frame buffer 107 in their native formats. In a preferred embodiment, the frame buffer area is partitioned into on-screen memory and off-screen memory. Frame buffer 107 is also a "unified" memory in which video or graphics data can be stored in either the on-screen or off-screen areas. In the preferred embodiment, display unit 106 is a conventional raster scan display device and frame buffer 107 is constructed from dynamic random access memory devices (DRAMs).

DRAFT - PROVISIONAL

- FIG. 2 is a more detailed functional block diagram of VGA controller 105. The primary circuitry blocks of VGA controller 105 include video front-end video pipeline 200, memory (frame buffer) control circuitry 201, CRT/window control circuitry 202, video window control registers 203, video backend pipeline 204 and graphics backend pipeline 205. VGA controller 105 further includes a CPU interface 206 for exchanging instructions and data via a PCI or VL bus, such as local bus 103 in system 100, with CPU 101. A write buffer 207 and conventional graphics controller 208 allow CPU 101 to directly control data within frame buffer 107 via memory control circuitry 201.
- In the preferred embodiment of system 100, CPU 101 can write video data and/or read and write graphics data to frame buffer 107 via CPU interface 206. In particular, CPU 101 can direct each pixel to the frame buffer using one of two maps depending on whether that pixel is a video pixel or a graphics pixel. In the preferred embodiment, each word of pixel data ("pixel") is associated with one of two addresses, one which directs interpolation of the pixel as a video pixel through video front-end pipeline 200 and the other which directs interpolation of the pixel as a graphics pixel through write buffer 207 and graphics controller 208. As a consequence, either video or graphics pixel data can then be input to CPU interface 206 from the PCI/VI bus through a single "dual aperture" port as a function of the selected address.

Data which is input through the video port 211 is address-free. In this case, video window controls 213 generates the required addresses to either the on-screen memory area or the off-screen memory as a function of display location for the video window. In the preferred embodiment, window controls 213 generate addresses using the same video control registers 203 used to control retrieval of the video in the backend pipeline (i.e., the screen x and y position registers 500 and 501 discussed below in conjunction with FIG. 5). When data is being received through both the CPU interface 206 and the VPORT 211 simultaneously, the data is interleaved into memory with the two write buffers 207 and 217

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
913

buffering the data such that neither stream is interrupted or forced into a wait state at the source component (i.e., bus 103 or video source 104).

It should be noted at this point that frame buffer 107 includes at least two different data areas or spaces to which data can be directed by the given address
5 (either CPU 103 or controls 213 generated). Each space can simultaneously store graphics or video data depending on the selected display configuration. The on-screen area corresponds to the display screen; each pixel rastered out of a given pixel location in the on-screen area defines a corresponding screen pixel. The off-screen area is used to store data defining a window for selectively overlaying the
10 data from the on-screen memory, fonts and other data necessary by controller 105. Further, as will be discussed below, both graphics and video data may be rastered from frame buffer 107 and passed through video backend pipeline 204 while only graphics data is ever passed through graphics backend pipeline 205.

According to the principles of the present invention, there are alternate
15 ways of storing and retrieving graphics and video data from unified frame buffer 107.

For example, CPU 103 may write a static graphics background into part of the on-screen memory with the remaining "window" in the on-screen memory area filled with playback video data. "Playback" video data can be either (1) live
20 video data input from the VPORT; (2) YUV (video) data written through interface 206 by CPU 103; or (3) true color (5:5:5, 5:6:5, or 8:8:8) RGB graphics data (for example animation graphics data) written in through either the VPORT or interface 206. Similarly, a playback video background and a window of graphics data may be written into the on-screen area. In each of these cases, the data is
25 rastered out as the display is without overlay; the video playback data is passed through the video backend pipeline 204 as a function of display position by controls 202 and the graphics data passed through the graphics backend pipeline 250.

PCT/US2007/041202

Windows of data retrieved from the off-screen memory can be retrieved and used to occlude a portion of the data being rastered out of the on-screen memory. For example, a window of playback data can be stored in the off-screen memory and a frame of static graphics data (either true color data or indices to CLUT 234) stored in the on-screen memory. In this case, the static graphics are rastered out of the on-screen memory without interruption and passed through the graphics backend pipeline 205. The window of data in the off-screen memory is rastered out only when the display position for the window has been reached by the display raster and is passed through video backend pipeline 204. As discussed below, data from the video backend pipeline 204 can then be used to selectively occlude (overlay) the data being output from the graphics backend pipeline 205. A window of static graphics data (true color or indices to the CLUT 234) can be stored in off-screen memory and used to overlay playback video from the on-screen memory. The playback video data is passed through the video backend pipeline 204 and the window of static graphics data is passed through the graphics backend pipeline 205.

Bit block transfer (BitBLT) circuitry 209 is provided to allow blocks of graphics data within frame buffer 107 to be transferred, such as when a window of graphics data is moved on the display screen by a mouse. Digital-to-analog converter (DAC) circuitry 210 provides the requisite analog signals for driving display 106 in response to the receipt of either video data from video backend pipeline 204 or graphics data from backend pipeline 208.

In implementing the operations discussed above, video front-end pipeline 200 can receive data from two mutually exclusive input paths. First, in the "playback mode," playback (non-real time) data may be received via the PCI bus through CPU interface 206. Second, in the "overlay emulation mode" either real-time or playback video may be received through the video port interface 211 (in system 100 video port interface 211 is coupled to bus 109 when real-time data is being received). The selection of video from the PCI bus or video from video port

DRAFT - PROPOSED

interface 211 is controlled by a multiplexer 212 under the control of bits stored in a video front-end pipeline control register within video control registers 203. In the playback mode, either CPU 101 or a PCI bus master controlling the PCI bus provides the frame buffer addresses allowing video front-end pipeline 200 to map
5 data into the frame buffer separate and apart from the graphics data. In the overlay emulation mode, overlay input window controls 213 receives framing signals such as VSYNC and HSYNC, tracks these sync signals with counters to determine the start of each new frame and each new line, generates the required addresses for the real-time video to the frame buffer space using video window
10 position data received from window controls 222 (as discussed above, in the preferred embodiment, video data is always retrieved from either the on-screen or off-screen memory and passed through video back-end pipeline 204 as a function of display position) and thus the position data from controls 222 is used to both write data to memory and retrieve data therefrom. In general, overlay input video
15 control windows are controlled by the same registers which control the backend video pipeline 204, although the requisite counters and comparators are located internal to overlay input video control circuitry 213.

Video front-end pipeline 200 also includes encoding circuitry 214 that is operable to truncate 16-bit YUV 422 data into an 8-bit format and then pack four such 8-bit encoded words into a single 32-bit word which is then written into the video frame buffer space of frame buffer 105. Conversion circuitry 215 is operable to convert RGB 555 data received from either the CPU interface 206 and the PCI bus or VPORT I/F 211 into YCrCb (YUV) data prior to encoding by encoding circuitry 214. Conversion circuitry 215 allows graphics data (for example in a 5:5:5 or 5:6:5 format) to be introduced through the VPORT or graphics data to be converted, packed and stored in a YUV format in the off-screen memory space by CPU 101. For a more complete description of encoder
25 214 and the associated decoder 225 of video pipeline 204, reference is now made to incorporated copending coassigned application Ser. No. 08/223,845. The

2007-04-23 10:22:20

selection and control of the encoding circuitry 214 and conversion circuitry 215 is implemented through multiplexing circuitries 212 and 216, each of which are controlled by bits in the video control registers. Finally, video front-end pipeline 200 includes a write buffer/FIFO 217 which in one embodiment acts as a write buffer and in an alternate embodiment acts as a FIFO for the video backend pipeline 204. In embodiments where buffer 217 acts as a write buffer for then Y, zooming on the backend, as discussed below is by replication. In embodiments where buffer 217 operates as a FIFO, then the VPORT and front and end color conversion by converter circuitry 215 are not used for writing data to frame buffer

5 107.

Memory control circuitry 201 includes an arbiter 218 and a memory interface 219. Arbiter 218 prioritizes and sequences requests for access to frame buffer 107 received from video front-end pipeline 200, graphics controller 208 and bit block transfer circuitry 209. Arbiter 218 further sequences each of these
15 requests with the refresh of the display screen of display 106 under the control of CRT controller 202. Memory interface 219 controls the exchange of addresses, data, and control signals (such as RAS, CAS and read/write enable) to and from frame buffer 107.

CRT control/video window control circuitry 202 includes the CRT
20 controller 220, window arbiter 221, and video display window controls 222. CRT controller 202 controls the refresh of the screen of display 106 and in particular the rastering of data from frame buffer 107 to display unit 107 through DAC 210. In the preferred embodiment, CRT controller 220, through arbiter 218 and memory interface 219, maintains a constant stream of graphics data into graphics
25 backend pipeline 205 from memory; video or playback graphics data is rastered out only when a window has been reached by the display raster as determined by display position controls of window controls 222 (see FIGS. 3 and 5 and accompanying text) and CRT controller 220. As will be discussed in further detail

7
Y
DRAFTED BY: FREDERIC E. DAVIS
DATE: 10/27/00

below, the display of windows within the display according to the principles of the present invention is controlled in part by circuitry 202.

Video backend pipeline 204 receives a window of graphics video data defining a display window from the on-screen or off-screen spaces in frame buffer 107 through a pair of first-in/first-out memories 223 and 217 (in embodiments where buffer 217 is acting as FIFO B). In the preferred embodiment, each FIFO receives the data for every other display line of data being generated for display on the display screen. For example, for a pair of adjacent lines n-1 and n+1 in memory (although not necessarily adjacent on the display) for the display window, FIFO 223 receives the data defining window display line n-1 while FIFO 224 receives the data defining window display line n+1. When buffer 217 is used as FIFO B, writes through video front end pipeline 200 are made through write buffer I 207 and multiplexer 235. Alternatively, if buffer 217 is used as write buffer II, then FIFO B is not implemented and only a single stream is processed by video backend pipeline 204 (no Y interpolation is performed and Y expansion is by replication). As will be discussed further below (assuming both FIFO A and FIFO B are being used), one or more display lines, which falls between line n-1 and line n+1, may be selectively generated by interpolation. Decoder circuitry 225 receives two 32-bit packed words (as encoded by encoder 214), one from each adjacent scan line in memory, from FIFOs 223 and 217. Each 32-bit word, which represents four YCrCb pixels, is expanded and error diffused by decoder 225 into four 16-bit YCrCb pixels. In modes where video data is stored in the frame buffer in standard 555 RGB or 16 YCrCb data formats, decoder block 225 is bypassed.

Backend video pipeline 204 further includes a Y interpolator 226 and X interpolator 227. In the preferred embodiment, during Y zooming (expansion) Y interpolator 226 accepts two vertically adjacent 16-bit RGB or YCrCb pixels from the decoder 225 and calculates one or more resampled output pixels using a four subpixel granularity. X interpolator 227 during X zooming (expansion) accepts horizontally adjacent pixels from the Y interpolator 226 and calculates one or

more resampled output pixels using a four subpixel granularity. For data expansion using line replication, Y interpolator 226 is bypassed. Y interpolator 226 and X interpolator 227 allow for the resizing of a video display window being generated from one to four times.

- 5 The output of X interpolator 227 is passed to a color converter 228 which converts the YCrCb data into RGB data for delivery to output multiplexer 304. To reiterate, if graphics data is passed through the video pipeline, converter 228 is not used.

- Backend video circuitry 204 further includes pipeline control circuitry
10 229, overlay control circuitry 230 and output multiplexer 231. Pipeline control circuitry 239 controls the reading of data from video FIFOs 223 and 217, controls the generation of interpolation coefficients for use by X and Y interpolators 226 and 227 to resize the video window being pipelined, and times the transfer of data through the pipeline. Overlay control circuitry 230 along with control circuitry
15 202, controls the output of data through output multiplexer 231, including the overlay of the video window over the graphics data output through the graphics backend pipeline 205. A pixel doubler is provided to double the number of pixels being generated such that a 1280.times.1024 display can be driven.

- Graphics backend pipeline 205 includes a first-in/first-out memory 232,
20 attribute controller 233, and color look-up table 234. Each 32-bit word output from graphics FIFO 232 is serialized into either 8-bit, 16-bit or 24-bit words. The 8-bit words, typically composed of an ASCII code and an attribute code, are sent to attribute controller 233. When 16-bit and 24-bit words, which are typically color data, are serialized, those words are sent directly to overlay controls 230.
25 Attribute controller 233 performs such tasks as blinking and underlining operations in text modes. The eight bits output from attribute controller 233 are pseudo-color pixels used to index CLUT 234. CLUT 234 preferably outputs 24-bit words of pixel data to output multiplexer 231 with each index. When video

Y
B
TOP SECRET//PHONE 60

data is being pipelined through graphics backend pipeline 205 from the on-screen memory, CLUT 234 is bypassed.

The eight bit pseudo-color pixels output from attribute controller 233 are also sent to overlay controls 230. In the preferred embodiment, data is continuously pipelined from on-screen memory through graphics backend pipeline 205 to the inputs of output multiplexer 231. Window data from off-screen memory however is only retrieved from memory and pipelined through video backend pipeline 204 when a window is being displayed. In other words, when a window has been reached, as determined by control bits set by CPU 101 in VW control registers 222, video window display controls 222 generate addresses to retrieve the corresponding data from the off-screen memory space of frame buffer 107. Preferably, video FIFOs 223 and 224 are filled before the raster scan actually reaches the display window such that the initial pixel data is available immediately once the window has been reached. In order to insure that graphics memory data continues to be provided to graphics backend pipeline 205, video window display controls 222 "steal" page cycles between page accesses to the graphics memory. It should be noted that once the window has been reached the frequency of cycles used to retrieve window data increases over the number used to fill the video FIFOs when outside a window. When the frequency of window page accesses increases, video window display controls 222/arbiter 221 preferably "steal" cycles from page cycles being used to write data into the frame buffer.

FIG. 3 is a more detailed functional block diagram emphasizing the circuitry controlling the overlay of data from graphics pipeline 205 with window data from video pipeline 204. As discussed briefly above, the inputs to output multiplexer 231 are data from video backend pipeline 204 (pixel doubler 237), 25 16 or 24-bit color data directly from graphics backend pipeline 205 serializer 236 and 24-bit color data from the color look-up table 234. The output of data to DAC 210 through output multiplexer 231 is controlled by a latch 301 clocked by the video

clock (VCLK). The remaining circuitry shown in FIG. 3, which will be discussed in further detail below, provide the necessary control signals to the control inputs of output multiplexer 231 to select between the video and graphics pipelines.

The graphics pseudo-pixels output from attribute controller 233 and the
 5 16-bit or 24-bit graphics or video data output directly from serializer 236 are provided to the inputs of color comparison circuitry 302. Also input to color comparison circuitry 302 are 16 or 24-bit overlay color key bits stored in overlay color key register 303. Overlay color key register 303 resides within the address space of, and is loaded by, CPU 101. Depending on the mode, color comparison
 10 circuitry 302 compares selected bits from the overlay color key register 303 with either the 8 bits indexing look-up table 234 in the color look-up table mode (pseudo-color mode) or the 16-bits (24-bits in the alternate embodiment) passed directly from serializer 236. It should be noted that in the illustrated embodiment, overlay color key register 303 holds 24 overlay color key bits, eight each for red,
 15 green, and blue index comparisons. The specific overlay color key bits compared with the input graphics data are provided in Table I:

MODE	OVERLAY COLOR KEY BITS COMPARED		
CLUT	--	--	Blue/Index <7:0>
Index			
5:5:5	Red<4:0>	Green<4:0>	Blue<4:0>
5:6:5	Red<4:0>	Green<5:0>	Blue<4:0>
8:8:8	Red<7:0>	Green<7:0>	Blue<7:0>

25

As shown in FIG. 4A, a first embodiment of color comparison circuitry 303 performs the comparisons set forth in Table I as a set of XNOR operations in series with an AND operation. FIG. 4A depicts first comparison circuitry 400 for
 30 comparing the 8-bits of graphics pixels received in the look-up table mode from attribute controller 233 with the 8-bit blue/index overlay key bits being held in overlay key register 303. Second comparison circuitry 401, performs the required comparisons of Table I for the 16-bit data or 24-bit received from serializer 236,

in either a 5:5:5, 5:6:5, or 8:8:8 format. An overlay register 402 includes a bit loaded by CPU 101 which is used by a selector 403, depending on the mode, to select for output, either the result of the comparisons being made by comparison circuitry 400 in the color look-up table mode or the results of the comparisons being made by comparison circuitry 401. In the illustrated embodiment, color comparison circuitry 303 processes data on a pixel-by-pixel basis and is resynchronized with both the graphics backend pipeline 205 and the video backend pipeline 204 by having its outputs latched to the video clock (VCLK) by latches 404.

10 The output of color comparison circuitry 303 is passed to the "K" control input of overlay control multiplexer 304. The "P" control input to multiplexer 304 is provided from pixel position comparison circuitry 305. The data inputs to multiplexer 304 are coupled to an 8-bit overlay OP Code (OOC) register 306. The output of multiplexer 304 is used as one control input to output multiplexer 307, 15 which along with a single bit set by CPU 101 into output control register 307, selects which of the data received at the data inputs of multiplexer 231 will be output to DAC 210.

Pixel position comparison circuitry 305 includes three inputs coupled respectively to video window 1 position control circuitry 308, CRT position control circuitry 309 and video window 2 position control circuitry 310. In the illustrated embodiment, CRT position controller 309 is located within CRT controller 220 while video window 1 position control circuitry and video window 2 position control circuitry 310 are located within video display window controls 222 (FIG. 2). CRT position control circuitry 309 includes counters which track the position of the current pixel being generated for display. In the preferred embodiment, CRT position control circuitry 309 includes at least an x-position counter which tracks the generation of each pixel along a given display line and a y-position counter which tracks the generation of each display line in a screen. The x-position counter may for example count pixels by counting each VCLK

DRAFT - PROVISIONAL

period between horizontal synchronization signal (Hsync) controlling display unit 106. The y-position counter may for example count each Hsync signal occurring between each vertical synchronization signal (Vsync) controlling the screen generation on display unit 106. FIG. 4B is an alternate embodiment of the
5 color comparison circuitry of FIG. 3. In a first mode, 8 bits from attribute controller 233 are passed through multiplexer 405 to comparator 406. Comparator 406 compares the received eight bits with an 8-bit color key in color key register 408; when the received 8-bits equal the 8-bit key 1, the output of comparator 406 goes active (high). In the first mode, control signal 16BITGR is high (and the
10 output of NOR gate 409 is consequently high) and an active output from comparator 406 is gated through AND gate 410. The output of AND gate 410 is passed to AND gate 411 and gated with the output from the pixel comparison circuitry 305. The output of AND gate 411 goes directly to the "B" control input of selector 231 (in this embodiment multiplexer 304 and register 306 are
15 eliminated). Thus, when the 8-bit graphics pixels output from attribute controller 233 of graphics backend 205 matches the 8-bit color key 1 and the window has been reached as determined by pixel comparison circuitry 305, the pixel data output from video backend 204 are passed through selector 231.

In a second mode, 16 bits are received from serializer 236. The eight LSBs
20 are passed through multiplexer 405 to comparator 406 and the eight MSBs passed to comparator 407. Control signal 16BITNG is set high. When the LSBs equal key 1 in color register key 408 and the 8 MSBs equal key 2 in color key register 408, the outputs from comparators 406 and 407 are active (high). The output of AND gate 411 then goes high when the output from pixel comparison circuitry
25 305, which is coupled to the "B" control input of selector 231, goes high. Thus, when the 16-bit pixel data output from serializer 236 of graphics backend 205 matches the 16-bit color key (keys 1 and 2) and a window has been reached, the output pixel data from video backend 204 are passed through selector 231.

B7 - 100760

FIG. 5 is an expanded functional block diagram of the video window position control circuits 308 and a corresponding portion of the gating of pixel position compare circuitry 305. Each position control circuit 310/312 is coupled to a screen position x-register 500 and a screen position y-register 501, and includes a screen x-position counter 502, and a screen y-position counter 503. In the preferred embodiment, registers 500 and 501 are located within video window control registers 203. For the window corresponding to the given video window control circuitry 308 or 310, registers 500 and 501 are loaded with a value representing the x and y screen position of the pixel in the upper left corner of that window (the starting pixel). Screen x-register 500 and screen y-register 501 in the preferred embodiment are loaded by CPU 101. The screen x-position counter 502 counts down from the value held in screen x-register 500 with each video clock when P is high for each display line and resets with each display horizontal synchronization signal (HSYNC) (Note that when P is high the CRT count matches the position count). Screen y-position counter 503 counts down from the value set into screen y-register 501 for each horizontal sync signal (HSYNC) at the start of each display line and resets with each VSYNC at the start of each new screen (The position counters are allowed to count only when they match their perspective CRT). The counts values in the counters of CRT position control circuitry 309 are compared pixel by pixel with the counts in screen x-position counter 502 and screen y-position 503 of each video window position control circuitry 308 and 310. When both the x and y counts in the counters of CRT position control circuitry 309 match the corresponding x and y counts in respective counters 502 and 503 of either video window control circuitry 308 or 310, the control signal P to multiplexer 304 is activated. The activation of control signal P indicates that the raster scan on display 106 has reached the position of a pixel within the window and data from video pipeline 205 may be painted depending on the value being held in overlay OP Code (OOC) register 306 and the K control inputs to multiplexer 304.

2
20
TO VTT&PHOTONICS 60

A 4-bit OP Code loaded by CPU 101 into overlay OP Code register 306 in conjunction with the control signals applied to the "P" and "K" control inputs to multiplexer 304 control the presentation of an active (assumed high in the illustrated embodiment) control signal to the "B" control input to output multiplexer 231. The other ("A") input to output multiplexer 231 receives a bit from overlay mode register 402 (FIG. 4), as loaded by CPU 101. In the illustrated embodiment, the selection between the streams from the graphics and video backends at the 0,1,2 inputs to output multiplexer 304 in response to the signals presented at the corresponding control inputs "A" and "B" is in accordance with

10 Table II:

	Control Input A		Control Input B	Selected Stream
15	0	0		Graphics or video pixels from graphics pipeline 205
20	1	0		Graphics pixels from CLUT 234 at input 1
	0	1		Video or
25	1	1		graphics from video backend 204

The OP Codes used in the illustrated embodiment, the effective overlay
 30 and the corresponding inputs to the control inputs of multiplexer 304 are listed in
 Table III (active state is assumed):

F047600 "PHOTONICS 6.0"

	Overlay Op Code Multiplexer 307 Register 309 Value	Control Inputs	Effect
5			
10			
15			
20			
25			
30			

In the illustrated embodiment, if a 0h is written into OOC register 306 by CPU 101, only pixels from graphics pipeline 205 are pipelined through multiplexer 304. In this case any signals applied to the P and K control inputs to multiplexer 304 have no effect (i.e., will not result in a high output from multiplexer 304). In the illustrated embodiment, if an Ah is written into OOC register 306, pixels from video pipeline 204 will be passed to DAC 210 only when pixel position comparison circuitry 305 determines that the raster scan has reached a pixel in the window and hence the control signal going to the P input of multiplexer 304 has been activated. If on the other hand, an 8h is written into OOC register 306, data is passed through output multiplexer 231 to DAC 210 when pixel position comparison circuitry 305 determines that the raster scan has reached a pixel on the display screen within the window and color compare

TOP SECRET - FEDERAL BUREAU OF INVESTIGATION

- circuitry 302 has determined that the incoming data from graphics pipeline 205 matches the overlay color key held in overlay color key register 303. In this case, the data from video pipeline 204 is passed to DAC 210 when both the P and the K inputs to multiplexer 304 are active. Finally, when an OpCode of C is
- 5 programmed into OOC register 306, data from video pipeline 204 is passed if the incoming data from graphics pipeline 205 matches the overlay color key held in overlay color key register 303. In this case, the activation of the K control input activate the output of multiplexer 304 to switch the input of multiplexer 231 to pass the corresponding video pixels.
- 10 Display control circuits embodying the principles of the present invention have substantial advantages over the prior art. In particular, output control circuits built in accordance with the principles of the present invention allow for the flexible display of both graphics and video on the same screen. In particular, pixel position comparison circuitry 305 along with video window position control
- 15 circuits 308 and 310 and CRT position control circuitry 309 allow for one or more windows from off-screen memory to be generated in specific areas of a display screen to the exclusion of any simultaneously generated data from on-screen memory. Further, color comparison circuitry 302 operating in conjunction with an overlay color key written into overlay color key register 303 allows window data
- 20 to be presented on the display screen, to the exclusion of any concurrently generated graphics data, without the need for precise x- and y-position data for the window. Finally, the use of the graphics data from the graphics pipeline 205 to control the output overlay provides additional advantages since the video data can be subject to graininess and noise.
- 25 Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

1027607704260