Formulas & Definitions: Section 16-5

Definition: If F = Pi + Qj + Rk is a vector field on \mathbb{R}^3 and the partial derivatives of P, Q, and R all exist, then the curl of F is the vector field on \mathbb{R}^3 defined by

$$\operatorname{curl} F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)i + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)j + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)k$$

or

$$\operatorname{curl} F = \nabla \times F$$

Theorem: If f is a function of three variables that has continuous second-order partial derivatives, then

$$\operatorname{curl}(\nabla f) = 0.$$

Theorem: If F is a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and $\operatorname{curl} F = 0$, then F is a conservative vector field.

Definition: If F = Pi + Qj + Rk is a vector field on \mathbb{R}^3 and $\partial P/\partial x$, $\partial Q/\partial y$, and $\partial R/\partial z$ exist, then the **divergence of** F is the function of three variables defined by

$$\operatorname{div} F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

or

$$\operatorname{div} F = \nabla \cdot F.$$

Theorem: If F = Pi + Qj + Rk is a vector field on \mathbb{R}^3 and P, Q, R have continuous second-order partial derivatives, then

$$\operatorname{div}\operatorname{curl} F = 0.$$

Definition: If $\operatorname{div} F = 0$, then F is said to be **incompressible**.

The operator

$$abla^2 =
abla \cdot
abla$$

is called the **Laplace operator**.

Vector forms of Green's Theorem:

First vector form:

$$\oint_C F \cdot dr = \iint_D (\operatorname{curl} F) \cdot k \, dA.$$

Second vector form:

$$\oint_C F \cdot n \, ds = \iint_D \operatorname{div} F(x, y) \, dA.$$