МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Методы оптимизации»

Тема: РЕШЕНИЕ ТРАНСПОРТНОЙ ЗАДАЧИ

Студент гр. 1384	Бобков В. Д.
Студент гр. 1384	Усачева Д. В.
Студент гр. 1384	Пчелинцева К. Р.
Преподаватель	Балтрашевич В.Э

Цель работы.

Решение транспортной задачи при помощи метода минимальной стоимости и метода потенциалов.

Исходный текст задачи.

Однородный груз сосредоточен у m поставщиков в объемах a1, a2, ... am. Данный груз необходимо доставить n потребителям в объемах b1, b2, ..., bn. Стоимость перевозки груза от поставщика i до потребителя j - cij. Требуется составить план перевозок, позволяющий полностью вывезти продукты всех производителей, полностью обеспечивающий потребности всех потребителей и обеспечивающий минимум суммарных затрат на перевозку.

Основные теоретические положения.

Метод наименьшей стоимости. Этот метод предполагает выбор наименьшей стоимости из всей таблицы, а затем установление этой минимальной стоимости в соответствующей ячейке, где значения представлены как ыры. Далее, либо исключается строка, a_{i} ИЛИ соответствующая поставщику, у которого все запасы исчерпаны, либо исключается столбец, соответствующий потребителю, потребности удовлетворены, либо и строка и столбец, если и запасы поставщика и потребности потребителя полностью удовлетворены. Затем процесс продолжается, выбирая минимальную стоимость из оставшейся части таблицы стоимостей и продолжая распределение запасов до тех пор, пока все запасы не будут распределены и потребности не будут удовлетворены.

Метод потенциалов. Метод потенциалов является способом быстро нахождения оптимального решения транспортной задачи в несколько шагов. Однако для использования этого метода необходимо

предварительно найти допустимое начальное решение перед решением задачи.

Алгоритм решения.

- 1. Выделение базисных и свободных ячеек. Ячейки (клетки) транспортной таблицы с ненулевыми перевозками называются базисными, а клетки с нулевыми объемами перевозки свободными
- 2. Проверка на вырожденность. Базисных ячеек таблицы должно быть не менее m + n 1, где m число поставщиков, n число потребителей. Если условие не выполняется, то план считается вырожденным и требует введения в базис одной ячейки с нулевой перевозкой.
- 3. Вычисление потенциалов. Каждому поставщику соответствует потенциал ui, каждому потребителю соответствует потенциал vj. Для нахождения потенциалов полагают какой-либо из них равным 0, а остальные находят из соотношения: ui + vj = cij, где cij стоимость перевозки груза от поставщика i к потребителю j. Таким образом получаем решение системы уравнений.
- 4. Проверка на оптимальность. Для всех незанятых ячеек (с нулевым объемом перевозки) вычисляется $\Delta ij=ui+vj-cij$. Для всех занятых ячеек $\Delta ij=0$. Если в получившейся таблице нет значений $\Delta ij>0$, то план перевозок оптимален и задача решена.
- 5. Построение цикла. Цикл перераспределения поставок представляет собой замкнутую ломаную линию, которая соединяет начальную вершину (ячейка с минимальной ценой) и занятые ячейки транспортной таблицы по определенным правилам:
 - 5.1. Все вершины, кроме начальной, находятся в занятых ячейках таблицы. при этом охвачены циклом могут быть не все, а лишь некоторые занятые ячейки.

- 5.2. В каждой вершине цикла встречаются ровно два звена ломаной линии, причем одна из них находится по строке, а другая по столбцу. Иначе говоря, они пересекаются под прямым углом.
- 5.3. Линия может пересекать занятые ячейки, не включая их в цикл. Другими словами, никакие три последовательные вершины не могут находиться в одной и той же строке или одном и том же столбие.
- 5.4. Линия может пересекать саму себя, при этом точка пересечения не включается в цикл.
- 6. Перераспределение поставок по циклу. Начальной вершине присваивается знак +, следующей -, далее знаки чередуются по такому же принципу. Необходимо найти вершину со знаком -, имеющую минимальный объем поставки Θ . Затем Θ вычитается из объема поставки во всех вершинах, помеченных знаком -, и прибавляется к объему поставки в вершинах со знаком +.

Далее алгоритм повторяется с пункта 4, пока не будет получено оптимальное решение.

Выполнение работы.

Условие задачи:

```
Истоков: 4;
                           Стоков : 5.
C11=
        2.0
                            C13=
                                          C14=
                                                   4.0
                                                         C15=
                                                                       A1 = 300.0
                                                                 2.0
4.0
3.0
                                                                      A2= 350.0
A3= 400.0
A4= 450.0
        1.0
3.0
                                   10.0
7.0
1.0
C21=
              C22=
                      3.0
8.0
                            C23=
                                          C24=
                                                   6.0
5.0
                                                        C25=
C31=
              C32=
                            C33=
                                          C34=
                                                         C35=
C41=
        1.0
              C42=
                      1.0
                            C43=
                                          C44=
                                                   1.0
                                                        C45=
B1 = 350.0 B2 = 300.0 B3 = 100.0
                                          B4 = 350.0
                                                        B5 = 400.0
🕨 Исправъте данные и нажмите Enter; для выбора поля служат стрелки, выход – Esc
```

Метод наименьшей стоимости.

Выбор вершины с наименьшей стоимость перевозки:

Исключение верхней строки таблицы:

Начальный план, построенный методом минимальной стоимости:

Метод потенциалов

Первая итерация:

Был выбран 4 ответ: u2 + v1 = 1.0. Полученная система уравнений:

План, полученный на 1 итерации:

Не является оптимальным, т.к. несколько значений Δ больше нуля. Построение цикла пересчета:

Выберем ячейку с наибольшей Δ

Получен новый базис:

Задача сделана:

Вывод.

В процессе выполнения данной лабораторной работы, мы изучили способы решения транспортной задачи, включая метод наименьшей стоимости и метод потенциалов. Более того, мы успешно применили эти методы для решения конкретной транспортной задачи.