

Course > Unit 7: ... > Proble... > 4. LLM...

4. LLMS estimation with random sums

Problem Set due Apr 15, 2020 05:29 IST Completed

Problem 4. LLMS estimation with random sums

4/4 points (graded)

Let N be a random variable with mean $\mathbf{E}\left[N\right]=m$, and $\operatorname{Var}\left(N\right)=v$; let A_1,A_2,\ldots be a sequence of i.i.d random variables, all independent of N, with mean 1 and variance 1; let B_1,B_2,\ldots be another sequence of i.i.d. random variables, all independent of N and of A_1,A_2,\ldots , also with mean 1 and variance 1. Let $A=\sum_{i=1}^N A_i$ and $B=\sum_{i=1}^N B_i$.

1. Find the following expectations using the law of iterated expectations. Express each answer in terms of m and v, using standard notation.

$$\mathbf{E}\left[AB\right]=$$
 m^2+v
 m^2+v
 $\mathbf{E}\left[NA\right]=$
 m^2+v
 m^2+v
 m^2+v
 m^2+v
 m^2+v

2. Let $\hat{N}=c_1A+c_2$ be the LLMS estimator of N given A. Find c_1 and c_2 in terms of m and v.

$$c_2 = \frac{1}{m^2 - m^2}$$
 Answer: m^2/(m+v)

STANDARD NOTATION

Solution:

1. We begin by finding $\mathbf{E}\left[AB\right]$.

$$\begin{split} \mathbf{E}\left[AB\right] &= \mathbf{E}\left[\left(A_1 + \dots + A_N\right)\left(B_1 + \dots + B_N\right)\right] \\ &= \mathbf{E}\left[\mathbf{E}\left[\left(A_1 + \dots + A_N\right)\left(B_1 + \dots + B_N\right) \mid N\right]\right] \\ &= \mathbf{E}\left[\mathbf{E}\left[\left(A_1 + \dots + A_N\right) \mid N\right]\mathbf{E}\left[\left(B_1 + \dots + B_N\right) \mid N\right]\right] \\ &= \mathbf{E}\left[N\mathbf{E}\left[A_1\right]N\mathbf{E}\left[B_1\right]\right] \\ &= \mathbf{E}\left[N^2\right] \\ &= \mathsf{Var}\left(N\right) + \left(\mathbf{E}\left[N\right]\right)^2 \\ &= m^2 + v. \end{split}$$

Similarly,

$$egin{aligned} \mathbf{E}\left[NA
ight] &= \mathbf{E}\left[\mathbf{E}\left[N\left(A_1+\cdots+A_N
ight)\mid N
ight] \ &= \mathbf{E}\left[N\mathbf{E}\left[A_1+\cdots+A_N\mid N
ight]
ight] \ &= \mathbf{E}\left[N\left(N\mathbf{E}\left[A_1
ight]
ight)
ight] \ &= \mathbf{E}\left[N^2
ight] \ &= m^2+v. \end{aligned}$$

2. A is the sum of a random number, N, of independent and identically distributed random variables A_1, \ldots, A_N . Therefore,

$$\mathbf{E}\left[A
ight] = \mathbf{E}\left[\mathbf{E}\left[A\mid N
ight]
ight] = \mathbf{E}\left[\mathbf{E}\left[A_{1}
ight]N
ight] = m,$$

and

$$\mathsf{Var}(A) = \mathsf{Var}(A_i) \, \mathbf{E}[N] + (\mathbf{E}[A_i])^2 \mathsf{Var}(N) = m + v.$$

Similarly, $\mathbf{E}\left[B
ight]=m$, and $\mathsf{Var}\left(B
ight)=m+v$. Furthermore,

$$egin{aligned} \operatorname{cov}\left(N,A
ight) &= \mathbf{E}\left[NA
ight] - \mathbf{E}\left[N
ight]\mathbf{E}\left[A
ight] \ &= \left(m^2 + v
ight) - m^2 \ &= v. \end{aligned}$$

Finally,

$$egin{align} \hat{N} &= \mathbf{E}\left[N
ight] + rac{\mathrm{cov}\left(N,A
ight)}{\mathsf{Var}\left(A
ight)}(A - \mathbf{E}\left[A
ight]) \ &= m + rac{v}{m+v}(A-m) \ &= rac{m^2}{m+v} + rac{v}{m+v}A. \end{split}$$

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7: Bayesian inference:Problem Set 7b / 4. LLMS estimation with random sums

Show all posts

var(A)

Meaning of i.i.d?

Problem says > ... be a sequence of i.i.d random variables I was wondering what is **i.i.d**? Sorry, I skip...

Part 1 variance

I am struggling with this question, including the first part. My answer only involves m, yet is wrong. But I ...

Result of FIAB I N12

	INCOUNT ENTE 1835	7
?	Need some hints Problem at first looked very easy but I am completely stuck. I used law of iterated expectations, consider	9
?	Sleight of hand?	5
?	No calculation hint for 2 I solve it just by using results from last question, for c1: answer should be some combinations of varianc	5
Q	<u>part 2 is a lot harder than it looks</u> <u>wow, this problem I managed to solve it after looking through multiple weeks of videos and using up</u>	4
Q	General advice for this problem This problem is pretty straightforward if you apply with care the results from Unit 6. My advice is, if you	2
?	Why is Cov(N,A) not 0 due to each 'A' being Ind. of N? I know that must be the case, but what's the intuition behind it?	5
2	Recomendation for part 1	1
2	<u>Hints</u>	9
∀	Product of independent random variables conditionally independent?	2

© All Rights Reserved

