中国"碳"路新发展

——基于不同经济体碳排放规律的预测及减排建议

团队信息: Tan 达人 团队成员: 沈书好、林毅楠、金郅烁、郑静楠 指导老师: 闫辛、刘亮亮

2021年11月

目 录

摍	j 要	2
1	问题重述与分析	3
2	数据来源及数据分析	3
3	相关理论概述	4
	3.1 聚类组合模型	4
	3.2 ARIMA 模型	5
	3.3 ARIMAX 模型	6
	3.4 LSTM 模型	7
	3.5 Prophet 模型	8
4	基于 GDP 的各国 CO2排放规律	8
	4.1 数据预处理	8
	4.2 各国总体 CO ₂ 排放量与 GDP 趋势	9
	4.3 各时期 CO ₂ 排放趋势	.11
	4.4 小结	19
5	中国 CO ₂ 排放预测	19
	5.1 基于 ARIMA 和 Prophet 对中国 CO2的预测	19
	5.2 基于 ARIMAX 和 LSTM 对中国 CO₂的预测	
	5.3 小结	
6	国际气候治理模式分析	.25
	6.1 国际气候合作现状	
	6.2 典型国家相关指标分析	.26
	6.3 典型国家减排建议	.28
	6.4 中国国际减排责任: 以"一带一路"为例	.28
7	中国减排政策建议	.29
	7.1 中国承担的大国责任	
	7.2 中国国内减排政策建议	.30
	7.3 小结	
8	总结	
	·考文献	
际		34

摘要

本文在数据探索性分析的基础上结合统计与机器学习方法,分析不同 GDP 类型国家的 CO₂排放规律,并进一步预测中国未来三十年(2021-2050)的 CO₂排放趋势;通过分析各国 CO₂排放差异,根据人口、能源结构等确定其减排责任,并给出中国在面对双碳目标时的政策建议,以期实现碳达峰、碳中和的目标。

首先,根据 GDP 的差异分析各国之间 CO₂排放规律,将时间划分为三个时期: 1800年-1900年,1901年-1960年,1961年-2013年,结合描述性统计与聚类组合模型分析,将国家分为中高速发展型、中速发展型、中低速发展型、低速发展型这四类。发现在第一时期各国处于发展的初级阶段,GDP 水平差异较小,且 CO₂排放量差异也较小;在第二时期各国 CO₂排放量变化大体趋势与 GDP 同方向变化;在第三时期,各个国家由于内、外因素(产业结构和能源结构的调整、低碳意识、技术创新),导致 CO₂排放量与 GDP 之间的相关性表现有较大差异。此外,还需注意 CO₂排放量在国家的不同发展阶段呈现出不同变化规律。

为进一步预测中国 CO₂排放量,我们运用时间序列模型对中国的年 CO₂排放进行预测。首先通过统计方法对指标进行了初次筛选,剔除了可以相互计算的指标,再根据相关性热力图选择出最终的特征。之后分别运用 ARIMA、ARIMAX、LSTM、Prophet 等模型,预测中国碳排放未来三十年(2021-2050)碳排放情况,并分别讨论了以上模型的精度和稳定性。基于预测结果发现中国的 CO₂排放量在自然状态下将持续增长,因此想要达到碳达峰需要政策干预。

为国家提出完成双碳目标建议,通过分析国际气候合作现状,针对典型国际进行相关指标分析。最终基于上述结论和我国国情,列举出了我国可以积极承担的气候责任和可规划筹备的政策措施,保证国家按时按量完成双碳目标。

关键词: 碳达峰、K-medoids、softDTW、时间序列

中国"碳"路新发展 ——基于不同经济体研究碳排放预测规律及减排建议

1 问题重述与分析

全球气候变暖问题日益加剧,以二氧化碳为主的温室气体是主要影响因素。 在第七十五届联合国大会上基于此问题我国承诺将提高国家自主贡献力度,采取 更加有力的政策和措施,力争于 2030 年实现碳达峰,2060 年实现碳中和[1]。

本文聚焦于碳达峰数据分析问题,根据 GDP 的差异分析各国之间 CO₂排放规律,并对中国 CO₂排放量进行预测。对于前者,需要考虑不同阶段经济发展对于碳排放的需求,从而研究 CO₂排放规律。例如,当国家经济发展速度不断加快,碳排放需求增大,碳排放量将同时增大,反之亦然。其次,还需考虑人们的意识。例如,当温室气体排放对世界的影响恶劣时,各国为了遏制 CO₂排放将会采取各类措施和政策。结合两者,得出猜测: CO₂排放量根据各国发展情况和发展阶段呈现出一定规律性,并由此进行数据分析与模型验证。对于后者,预测时主要考虑二氧化碳本身数据的变化规律以及若干特征因子对其的影响。因此,可以利用时间序列模型,例如 ARIMA、ARIMAX,LSTM、Prophet,通过观察预测量以及相关特征随着时间变化的趋势来对中国未来的 CO₂排放量进行预测。

无论是全球变暖问题,还是碳排放,都不是一个国家的问题或责任。因此, 我们基于上述结论和我国国情,列举出了我国可以积极承担的气候责任和可规划 筹备的政策措施。从中国的角度出发,为"碳"难题提出一些建议。

2 数据来源及数据分析

碳达峰数据一部分来自蓝鹰实验室数据分析平台所提供的 CO₂数据库,此外, 另行收集了中国 1965 年至 2020 年的相关数据,其中能源消费和 CO₂ 排放来自 英国石油公司《Statistical Review of World Energy》^[2],其他数据来自世界银行数 据库《World Development Indicators》^[3]。我们发现 CO₂数据库数据中多个指标可 以相互计算,因此只需要选择其中一部分。在详细分析这些指标后,遵循简明性 原则、可操作性原则、独立性原则进行选取,表 1 仅罗列本文所用指标。

衣ICO2数据库指标解释(共宗结未见的求衣I)		
指标	解释	
CO2	基于生产排放的二氧化碳量,按照地域划分,不考虑	
	贸易商品的排放。(单位:百万吨)	
	基于消费排放的二氧化碳量,如果 consumption_CO ₂ >	
consumption_CO2	CO ₂ ,那么该国为 CO ₂ 的净进口国,反之则为 CO ₂ 的净	
	出口国。(单位:百万吨)	
trade_CO2	贸易中的 CO ₂ 排放量;正值则说明该国是净进口国,	

表 1 CO₂数据库指标解释(其余结果见附录表 1)

	负值则说明该国是净出口国。(单位:百万吨)		
	$trade_{CO_2} = consumption_{CO_2} - CO_2$		
	基于生产的 CO ₂ 排放从 1750 年到当年的累计		
1.4° CO	(单位:百万吨)		
cumulative_CO2	$cumulative_{CO_2} = \sum CO2$		
CO2_per_unit_energy	每单位能量所排放的 CO ₂ (单位: 千克/千瓦时)		
coal_CO2	coal_CO ₂ 不同行业排放的二氧化碳量(单位:百万吨)		
cement_CO2	$CO_2 = coal_CO_2 + cement_CO_2 + flaring_CO_2$		
flaring_CO2	$+gas_{2}CO_{2} + oil_{2}CO_{2} + Other_{industry_{2}CO_{2}}$		
gas_CO2	(单位:百万吨)		
oil_CO2			
Other_industry_CO2			
total_ghg	温室气体排放总量(单位:百万吨)		
methane	甲烷总排放量(单位:百万吨)		
nitrous_oxide	一氧化二氮总排放量(单位:百万吨)		
population	人口(单位:人)		
gdp	国内生产总值(单位:美元)		
energy_per_capita	人均能源消耗(单位:千瓦时/年)		
energy_per_gdp	单位: 千瓦时/美元		

3 相关理论概述

3.1 聚类组合模型

a) 模型建立

模型以 K-medoids 通过准则函数 softDTW 进行聚类。在聚类前,通过 Elbow 肘部法则选定较优聚类组别数 k, 再选定使当前聚类组中的其他点到该点的 softDTW 距离最小点为聚类组别的中心,从而实现 K-medoids,该方法考虑了动态规划的时间序列,同时有明显减弱极端点影响的效果。

常规 K-medoids 通过最小化两个样本之间的欧几里得距离总和以匹配路径。但是由于该数据集具有时效性,以具有时间影响的折线形式呈现,因此采用对跨越时间维度的移动和膨胀具有鲁棒性的 DTW 作为距离衡量方式。DTW 通过使用动态规划的时间序列,计算累计距离矩阵,求解两者之间的最小成本对齐问题。公式如下[1]:

$$DTW(Q,C) = min \sqrt{\sum_{k=1}^{K} w_k}$$

$$\gamma(i,j) = d(q_i, c_i) + min \{ \gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1) \}$$

常规 DTW 选择最优的路径,对噪音敏感,避免不了存在过拟合的问题,因此引入 $softDTW^{[5]}$ 中的顺滑参数 γ ,可以改善过拟合现象,起到一个正则化作用,使得聚类效果更好。

$$\min^{\gamma}\{a_1,\dots,a_n\} \coloneqq \begin{cases} \min_{i \leq n} a_i &, \gamma = 0 \\ -\gamma log \Sigma_{i=1}^n e^{-\frac{a_i}{\gamma}}, \gamma > 0 \end{cases}$$

b) 模型优化

通过 Elbow 肘部法则进行聚类 k 值的选定,对不同的 k 值,依次进行聚类 组合模型聚类。计算各组内平方误差和的总和,并绘制 k 值和 SSE 的趋势图,从拐点确定最佳 k 值。

$$SSE = \sum_{i=1}^{k} \sum_{xi \in c_i} ||x - \mu_i||^2$$

c) 模型检验

在模型检验阶段,采用 Peter J. Rousseeuw 提出的轮廓系数,它通过取组别轮廓系数的平均值、全部组轮廓系数的平均值进行对聚类的单独类别和、总体分类的评价。以下为评价系数:

$$s(i) = \frac{b(i) - a(i)}{max\{b(i), a(i)\}} \quad \Rightarrow \quad s(i) = \begin{cases} 1 - \frac{a(i)}{b(i)}, a(i) < b(i) \\ 0, & a(i) = b(i) \\ \frac{b(i)}{a(i)} - 1, a(i) > b(i) \end{cases}$$

$$b(i) = min\{b(i1), b(i2), ..., b(ik)\}\$$

- b(ij)是点i到他组所有点的平均距离;
- a(i)是该样本点到同聚类组的平均距离。

3.2 ARIMA 模型

ARIMA 模型^[6]即差分整合移动平均自回归模型,是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR 是"自回归",p为自回归项数;MA 为"滑动平均",q为滑动平均项数,d 为使之成为平稳序列所做的差分次数(阶数),通过确认三个参数即可进行模型建立,对 CO_2 排放量进行预测。ARIMA(p,d,q)模型可以表示为:

$$(1-\sum_{i=1}^p \varphi_i L^i)(1-L)^d X_t = (1+\sum_{i=1}^p \varphi_i L^i)\epsilon_t$$

其中 L 是滯后算子(Lag operator), $d \in \mathbb{Z}, d > 0$ 。

非平稳时间序列,在消去其局部水平或者趋势之后,其显示出一定的同质性, 也就是说,此时序列的某些部分与其它部分很相似。这种非平稳时间序列经过差 分处理后可以转换为平稳时间序列。

将⊽记为差分算子,那么有

$$\nabla^2 y_t = \nabla (y_t - y_{t-1}) = y_t - 2y_{t-1} + y_{t-2}$$

对干延迟算子B,有

$$y_{t-p} = B^P y_t, \forall p \ge 1$$

因此可以得出

$$\nabla^k = (1 - B)^k$$

设有 d 阶齐次非平稳时间序列 y_t ,那么有 $\nabla^2 y_t$ 是平稳时间序列,则可以设其为 ARMA(p,q)模型,即

$$\lambda(B)(\nabla^2 y_t) = \theta(B)\varepsilon_t$$

其中

$$\begin{split} \lambda(B) &= 1 - \lambda_1 B - \lambda_2 B^2 - \dots - \lambda_p B^p \\ \theta(B) &= 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_p B^p \end{split}$$

分别为自回归系数多项式和滑动平均系数多项式。 ε_t 为零均值白噪声序列。可以将模型记为 ARIMA(p,d,q)。

应用 ARIMA 模型对 CO2排放预测的步骤简化如下:

- a) 平稳性检验;
- b) 确定模型阶数以建立预测模型;
- c) 检测参数;
- d) 预测和还原。

3.3 ARIMAX 模型

ARIMAX 模型^[6]指带回归项的 ARIMA 模型,又称扩展的 ARIMA 模型,回归项的引入有利于提高模型的预测效果。即引入这个模型观测预测值和其余变量

之间的关系,从而得到与 CO₂排放相关的特征,并根据系数具体分析两者之间的 关系。

该模型的构造思想是:假设响应序列 $\{Y_t\}$ 和输入变量序列(即自变量序列) $\{X_{1t}\}$, $\{X_{2t}\}$,..., $\{X_{kt}\}$ 均平稳,首先构建响应序列和输入变量序列的回归模型:

$$Y_t = \mu + \sum_{i=1}^k \frac{\theta_i(B)}{\Phi_i(B)} B^{li} X_{it} + \varepsilon_t$$

因为 $\{Y_t\}$ 和 $\{X_{1t}\}$, $\{X_{2t}\}$,..., $\{X_{kt}\}$ 均平稳,而且平稳序列的线性组合仍然是平稳的,所以残差序列 $\{\varepsilon_t\}$ 为平稳序列:

$$\varepsilon_t = Y_t - (\mu + \sum_{i=1}^k \frac{\theta_i(B)}{\Phi_i(B)} B^{li} X_{it} + \varepsilon_t)$$

使用 ARMA 模型继续提供残差序列 $\{\varepsilon_t\}$ 中的相关信息,最终得到模型为:

$$\begin{cases} Y_t = \mu + \sum_{i=1}^k \frac{\Theta_i(B)}{\Phi_i(B)} B^{li} X_{it} + \varepsilon_t \\ \varepsilon_t = \frac{\Theta(B)}{\Phi(B)} a_t \end{cases}$$

该模型称为动态回归模型,简记为 ARIMAX。使用 ARIMAX 的步骤与 ARIMA 大体类似,简述如下:

- a) 单位根检验序列的平稳性;
- b) 计算自相关系数和偏相关系数;
- c) 确定模型的参数以建立预测模型;
- d) 对参数进行解释。

3.4 LSTM 模型

考虑到时间序列模型是依赖于事件发生的先后顺序,同样大小的值改变顺序后输入模型可以产生不同的结果。长短期记忆人工神经网络(LSTM)^[8]在 RNN结构以外添加了各层的阀门节点。阀门有 3 类:遗忘阀门(forget gate),输入阀门(input gate)和输出阀门(output gate)。这些阀门可以打开或关闭,用于将判断模型网络的记忆态(之前网络的状态)在该层输出的结果是否达到阈值从而加入到当前该层的计算中。如图 1 中所示,阀门节点利用 sigmoid 函数将网络的记忆态作为输入计算:如果输出结果达到阈值则将该阀门输出与当前层的计算结果相乘作为下一层的输入);如果没有达到阈值则将该输出结果遗忘掉。每一层

包括阀门节点的权重都会在每一次模型反向传播训练过程中更新。

图 1 LSTM 神经网络记忆细胞

3.5 Prophet 模型

Prophet 模型^{[9][10]}是 2017 年 Facebook 发布的时序模型,是一种针对时序的有效集成解决方案,它主要研究时序数据特征和时序变化规律,并对未来走势进行预测。该模型不仅能够弥补传统时序模型对时序数据过于局限、缺失值需要填充、模型缺乏灵活性等不足,而且相较传统的时序模型,在模型准确率以及使用者之间的互动方面具有更好效果。

模型构成如下:

$$y(t) = g(t) + s(t) + h(t) + \varepsilon$$

其中, g(t)是趋势函数, 用来分析时间序列中的非周期性变化; s(t)代表周期性变化, 例如年; h(t)代表节假日等偶然一天或几天造成的影响, ε为随机波动, 代表模型没有考虑到的误差影响。

4 基于 GDP 的各国 CO₂排放规律

4.1 数据预处理

对于根据 GDP 差异分析各国 CO_2 排放规律的问题,需使用各国 GDP 和 CO_2 排放量相关数据。因此选取 CO_2 数据库以及《World Development Indicators》中 GDP 数据库。GDP 数据集中包含 184 个国家 1800 年-2013 年 GDP(PPP\$)数据,PPP 即购买力平价。该 GDP 通过购买力平价将国内生产总值折算为国际美元。

GDP 数据库中有两个需要说明的地方: 1)由于 2013年后各国的 GDP 有不同的统计方式,通过使用购买力平价率进行折算的统计方式逐渐被取代,导致了2013年后各国 GDP (PPP\$)数据的缺失。但为保证各国 GDP 数据能够包含各个

经济发展阶段,因此,采用 1800 年后至 2013 年使用平价购买率计算的 GDP 数据更为合理; 2) 该 GDP 数据库中不包含联合经济体相关数据,如欧盟、金砖国家等。考虑到本问题旨在研究不同国家之间的差异性比较,因此,假设 GDP 数据中不考虑联合经济体对于本题的研究不会有严重影响。

根据缺失值的填补处理需要合并两数据库,并保留两个数据库中共有的国家 (即剔除 EU-27 之类的联盟经济体),保证 CO₂和 GDP 没有缺失值。GDP 数据 将单位统一为百万美元。

4.2 各国总体 CO₂排放量与 GDP 趋势

为研究整体 GDP 趋势,根据各国 1800 年-2013 年 GDP 的相关数据绘制各国 1800 年-2013 年 GDP 变化趋势图,见图 2。

图 2 各国 1800 年-2013 年 GDP 变化趋势图

从图 2 可得,自 1800 年至 2013 年,世界各国 GDP 整体趋势不断走高,表明世界经济发展水平不断提高。从各国 GDP 增长速率和波动性来看,不同国家间 GDP 增长差异较大。

为研究 CO₂趋势,根据各国 1800 年-2019 年 CO₂排放量的相关数据绘制各国 1800 年-2019 年 CO₂排放量变化趋势图,见图 3。

图 3 各国 1800 年-2013 年 CO₂排放量变化趋势图

从图 3 可知, 自 1800 年至 2013 年,世界各国 CO₂排放量整体趋势不断走高。从各国 GDP 增长速率和波动性来看,不同国家间 GDP 增长差异较大。

根据图 2 和图 3 走势可以发现,1800年-1900年、1901年-1960年、1961年-2013年三个时间段的 CO₂随 GDP 变化趋势有明显区别,为了进一步研究 CO₂碳排放规律,特此将时间段进行分类。为展示得更清晰,图 4 将图 2 和图 3 进行分段呈现。

图 4 各国 1800 年-2013 年 GDP 和 CO2变化趋势图

第一时期: 1800 年-1900 年,各国处于发展的初级阶段,GDP 水平差异较小,且 CO₂排放量差异也较小;第二时期: 1901 年-1960 年,大部分国家 GDP 都在缓慢增长,同时 CO₂排放量也大致呈上升趋势,尽管波动更为剧烈;第三时期: 1961 年-2013 年,各国经济飞速发展,但 CO₂排放量的趋势变化差异也逐渐扩大。

为进一步观察 CO_2 排放量与 GDP 之间的关系,根据各国 1800 年-2013 年 GDP 和 CO_2 排放量数据绘制路径图,见图 5。

图 5 各国 1800 年-2013 年 GDP 和 CO2变化路径图

从图 5 可知,大部分国家 GDP 与 CO₂排放量之间具有极大的正相关性,部分国家已实现随着 GDP 增长,CO₂排放量下降的趋势,呈现出环境库兹涅茨曲线态势。

环境库兹涅茨曲线^[7]是指,当一个国家经济发展水平较低的时候,环境污染的程度较轻,但是随着人均收入的增加,环境污染由低趋高,环境恶化程度随经济的增长而加剧;当经济发展达到一定水平后,即到达某个临界点或称"拐点"以后,随着人均收入的进一步增加,环境污染又由高趋低,其环境污染的程度逐渐减缓,环境质量逐渐得到改善,这种现象被称为环境库兹涅茨曲线。

4.3 各时期 CO2排放趋势

4.3.1 1800 年-1900 年 CO2排放趋势

为研究第一时期(1800年-1900年)CO2随GDP变化趋势,根据该时间段各

国 GDP 和 CO2排放量的相关数据绘制图 6 趋势图。

图 6 1800 年-1900 年各国 GDP 和 CO2排放量变化趋势图

各国处于发展的初级阶段,GDP 水平差异较小,且 CO₂排放量差异也较小。 因此,研究该时期的意义不大,在后文中也将着重分析第二、三阶段。

4.3.2 1901 年-1960 年 CO2排放趋势

为研究第二时期(1901年-1960年)CO₂随 GDP 变化趋势,根据该时间段各国 GDP 和 CO₂排放量的相关数据绘制图 7 趋势图。

图 7 1901 年-1960 年各国 GDP 和 CO2排放量变化趋势图

大部分国家 GDP 都在缓慢增长,同时 CO₂排放量也大致呈上升趋势,尽管波动更为剧烈。其中,1929 年美国经济危机时,国内 GDP 开始下跌时,CO₂排放量同样下跌。推测在该阶段 CO₂排放量受 GDP 的影响。

为综合考虑时间因素和 GDP 趋势,基于聚类组合模型,用 GDP 发展情况将各国进行分类.该模型将这些国家根据 GDP 总量的大小清楚地划分为四类,见表 2。

表 2 1901-1960 国家分类情况(详细数据见附录表 2)

类型	中心国家	特征
		GDP 总量最大
中高速发展型	俄罗斯	发展波动剧烈
		发展速度最快
		GDP 总量较大
中速发展型	法国	发展波动较为剧烈
		发展速度较快
		GDP 总量较小
中低速发展型	澳大利亚	发展波动较大
		发展速度较慢
		GDP 总量最小
低速发展型	利比亚	发展波动平缓
		发展速度最慢

不同类别下 GDP 的走势也比较相近,可整理得出分类后的四类国家 GDP 走势图,其中,红色折线代表各类别的中心国家,见图 8。

图 8 1901-1960 根据 GDP 变化的国家分类情况

其中,中高速发展型国家以北美洲和欧洲大经济体国家为主,中速发展型以欧洲较为发达的国家和亚洲大经济体国家为主。

为研究各种类下国家 CO₂随 GDP 变化趋势,根据不同类型国家绘制 1901 年 -1960 年相关 CO₂和 GDP 绘制趋势图,见图 9。

图 9 1901 年-1960 年各国 CO2和 GDP 变化图

a) 组内情况分析

中高速发展型:除日本外,各国 CO₂与 GDP 变化方向相同,当 CO₂排放量下降幅度较大时,GDP 总量也会开始呈下降趋势;其中日本作为一个特例存在,GDP 总量在不断上涨,但 CO₂排放量基本趋于不变。

中速发展型:各国 CO2与 GDP 变化方向大致相同。

中低速发展型、低速发展型:各国 CO₂与 GDP 都较为平缓。由于该时期内各个国家生产力较为落后,以发展第一产业为主,因此,CO₂排放量都比较少,GDP 总量也较低。

b) 组间情况分析

除美国外,其他中高速发展型国家与中速发展型国家 CO₂排放总量大致相同,但 GDP 总量存在差异。CO₂排放量主要是基于工业生产而产生的,这一指标可以衡量一国的工业发展规模。说明该时期内,这两种类型国家都已发展工业,关于 GDP 总量的差异推测可能是由于工业发展水平不足导致的。

其中,中国 CO₂排放量在 1949 年中华人民共和国成立后迅速上升,达到第一类国家 CO₂的排放水平,但 GDP 总量却低于第一类国家。因此,这段时期中国尽管在大力发展工业,可能由于技术落后等原因,存在许多无效生产,导致 GDP 总量并未等比例提高。

中低速发展型国家与低速发展型国家 CO₂排放总量大致相同。由于这两类国

家在该时期内以第一产业为主,CO₂排放呈较低水平,即工业规模非常小,导致各国 GDP 总量差异不大。

4.3.3 1961 年-2013 年 CO2排放趋势

为研究第三时期(1961年-2013年)CO₂随 GDP 变化趋势,根据该时间段各国 GDP和 CO₂排放量的相关数据绘制图 10 趋势图。

图 10 1961 年-2013 年各国 GDP 和 CO₂排放量变化趋势图

1961年-2013年,各国经济飞速发展,但 CO₂排放量的趋势变化差异也逐渐扩大。在 1990年后,各发达国家和部分小国陆续完成碳达峰目标。推测这是由于资源利用率提高、国家产业的转型以及各国对于温室气体排放颁布的治理措施等人为因素导致 GDP与 CO₂的相关性更加不显著。

为综合考虑时间因素和 GDP 趋势,基于聚类组合模型,用 GDP 发展情况将各国进行分类,可整理得出表 3,其中,高速发展型以北美洲和欧洲大经济体国家为主,中高速发展型以欧洲较为发达的国家和亚洲大经济体国家为主。

表 3 1961-2013 国家分类情况(详细数据见附录表 3)

	中心国家	
		GDP 总量最大
高速发展型	中国	发展波动剧烈
		发展速度最快
		GDP 总量较大
中高速发展型	巴西	发展波动较为剧烈
		发展速度较快
		GDP 总量较小
中速发展型	尼日利亚	发展波动较大
		发展速度较慢
		GDP 总量最小
中低速发展型	埃塞俄比亚	发展波动平缓
		发展速度最慢

分类后的四类国家 GDP 走势图见,见图 11。其中,红色折线代表各类别的中心国家。

图 11 1961-2013 根据 GDP 变化的国家分类情况

为研究各种类下国家 CO₂随 GDP 变化趋势,根据不同类型国家绘制 1961 年-2013 年相关 CO₂和 GDP 绘制趋势图,见图 12。

图 12 1961 年-2013 年各国 CO2和 GDP 变化图

a) 组内情况分析

高速发展型:中国 CO₂排放量与 GDP 变化方向相同、速度相同;美国 CO₂与 GDP 变化方向相反、速度不同,即 CO₂排放量增长率低于 GDP 增长率。基于美国的变化情况,存在两种可能的原因。一方面,美国的工业规模与中国相当,但因其工业技术水平高或其他清洁能源的开发利用导致 CO₂排放量较低;另一方面,美国对产业结构做出调整,致力于发展第三产业,使得工业排放的 CO₂较少。此外,中国在 1996-2001 年有一段下降回升的趋势,对于该阶段,朱勤等[11]曾应用 LMDI 分解方法分析得出影响的主要原因是 GDP 的高速增长和能源效率的提高[11]。因此,科技水平减排是其中一个关键因素,第三产业与第二产业对国家经济发展起相近的推动作用。

中低速发展型:大部分国 CO₂排放量与 GDP 变化方向基本一致。

中高速发展型:各国 CO₂与 GDP 变化方向差异大。为研究组内差异,继续基于聚类组合模型将各国按照 CO₂排放量进行分类,见图 13。除印度、印度尼西亚、巴西、墨西哥以外,该组内剩余国家 CO₂排放量与 GDP 呈相反方向变化。

图 13 中高速发展型国家根据 CO₂分类情况

中速发展型:各国 CO₂与 GDP 变化方向差异大。为研究组内差异,继续基于聚类组合模型将各国按照 CO₂排放量进行分类,见图 14。除波兰和乌克兰以外,剩余国家 CO₂排放量与 GDP 变化方向基本一致。

图 14 中速发展型国家根据 CO₂分类情况

b) 组间情况分析

为分析各组内碳达峰情况,根据 World RESOURCES INSTITUTE 发表的文章^[12]中达峰国家的汇总数据进行标记并绘制饼图,见图 15。

图 15 各类型国家碳达峰情况

由图 15 可得, GDP 发展速度更快的类型, 碳达峰比例越高, 碳达峰的时间越早。

由于高速发展型国家仅有中国和美国,中国的人均 GDP 要远低于美国。尽管中国发展速度快,但发展水平不高,所以还未实现达峰。由此得出,想要实现碳达峰,则必须让经济发展速度变快,发展水平提高。

中低速发展型中尽管有约四分之一的国家实现碳达峰,但其 GDP 与 CO₂排放量变化方向一致,说明这些国家是由于工业无法发展下去导致经济水平下降。

4.4 小结

第一时期(1800-1960)由于各个国家还处于发展初期,GDP 差异较小,工业化水平较低,CO₂排放量较低且增长缓慢。

第二时期(1901-1960)综合可得,各国均处于发展和待发展阶段,CO₂排放量对于 GDP 的影响较大,GDP 总量较大的国家,CO₂排放总量相应较大(日本除外)。第一产业发展难以拉开各国 GDP 的差距,而工业发展才是提升国家经济水平的主要方向。因此,调整产业结构、扩大工业规模以及提升工业发展水平是该时期内各国领导人主要考虑的重要方向。

第三时期(1961-2013)综合可得,各个国家间发展情况差异大,通过比较不同类型国家的碳达峰占比情况和达峰时间的占比可得,要实现碳达峰,应让经济发展速度变快,发展水平提高。

比较第二时期与第三时期可得,国家的不同发展阶段,CO₂排放规律不一样。即发展中国家 CO₂排放呈上涨趋势,发达国家 CO₂排放量呈下降趋势或上升速度放缓。

为进一步探索中国碳达峰的相关政策,下文分析国际气候合作现状,针对典型国际进行相关指标分析以及提出减排建议。

5 中国 CO2排放预测

5.1 基于 ARIMA 和 Prophet 对中国 CO2的预测

ARIMA模型要求时间序列必须是平稳的,因此在第一步对 CO₂排放量数据进行二阶差分使数据平稳。绘制出 CO₂二阶差分的图像,如图 16 所示。

结合 CO₂排放量数据并观察平稳序列图像可知中国的 CO₂排放量在 1995 年 之后出现较大的震荡,在其余时间均较为平稳,其中,结合图 10(b)可得 CO₂排放量 1996 年-1999 年开始下降,2000 年以后,中国 CO₂排放量迅速上升。

得到平稳序列后需确定模型参数,绘制 ACF(自相关函数)和 PACF(偏自相关函数)见图 17。可依据附录表 3(ACF和 PACF一般特征表)进行确定 p和 q,但是在该问下,根据图像选择参数会导致 p,q 偏大,因此利用 BIC 最小的模型作为识别的依据,确定参数 p 和参数 q。

图 17 二阶差分 CO2的自相关函数与偏自相关函数

通过计算, 当p = 0, q = 1时, $BIC \approx 1542.486$, 选择此组为较优参数。

依据参数建立 ARIMA 预测模型,并与原数据进行比较。发现除波动较大的 1999~2015 年这一区间以外,其他时间段拟合结果较好,之后进行模型检验。

图 18 ARIMA 模型 CO2二阶差分数据预测比较

依次绘制出预测结果残差的 pp 图、qq 图和残差密度图。观测 pp 图和 qq 图,数据点基本沿着红色斜线分布,残差密度图中残差满足正态分布。由此认为预测结果通过检验。

图 19 CO2二阶差分数据预测 pp 图

图 20 CO2二阶差分数据预测 qq 图

图 21 CO2二阶差分数据预测残差密度图

最后运用模型对 2021 年~2050 年的 CO₂排放数据进行预测。由于预测值是差分数值,需要对数据进行还原,最终得到预测原始格式数据,整理后得表4。

表 4 2021 年-2050 年 CO2排放预测

Voor	CO ₂	year	CO ₂
year		ycai	
	(百万吨)		(百万吨)
2021	10236.161	2036	12463.222
2022	10384.632	2037	12611.692
2023	10533.102	2038	12760.163
2024	10681.573	2039	12908.634
2025	10830.044	2040	13057.105
2026	10978.515	2041	13205.575
2027	11126.985	2042	13354.046
2028	11275.456	2043	13502.517
2029	11423.927	2044	13650.988
2030	11572.397	2045	13799.458
2031	11720.868	2046	13947.929
2032	11869.339	2047	14096.4
2033	12017.81	2048	14244.87
2034	12166.28	2049	14393.341
2035	12314.751	2050	14541.81

根据表中数值,我们可以发现 ARIMA 模型的预测结果保留了上升这一总体趋势,并且由于预测的区间较大(30年),因此最终的预测结果趋近于一条直线而非拟合成为一条曲线。总体看来,中国的 CO₂排放将持续增长,且增速较为稳定。

为了检验效果如何,我们运用 Prophet 模型进行预测,并与 ARIMA 模型预测的结果进行对比。Prophet 模型整体由三部分组成: growth(增长趋势)、seasonality(季节趋势)以及 holidays(节假日对预测值的影响)。不同于 ARIMA,上述的模型将预测问题视作曲线拟合问题。这样做具有很多好处: 灵活度高,许多具有不同周期以及不同假设的季节性趋势能很容易的被引入; 时间序列中无需有一个固定的周期,也不需要在拟合前对缺失值进行填补,这是 ARIMA模型所办不到的; 拟合非常快,允许交互式的探索模型的效果; 模型中参数的解释性很强,可以让根据启发来增强某部分假设。

在本题中,时间间隔为一年,缺少季节缺失和节假日对预测值的影响,但是 Prophet 模型仍然可以判断出增长趋势以及以年为单位的周期性因素。

最终根据 Prophet 模型拟合得:

图 22 Prophet 预测 CO2排放结果

通过上图可以发现,与 ARIMA 较为不同的是在拟合过程中 Prophet 用一条较为平滑的曲线对所有数据点进行了拟合,并给出了一个上下置信区间。在最终的预测中,预测结果与 ARIMA 的预测结果较为相近,图像均表明在未来中国的 CO₂排放将呈现持续上升趋势。故可认为预测结果较为合理。

5.2 基于 ARIMAX 和 LSTM 对中国 CO2的预测

ARIMAX 的步骤与 ARIMA 相似。首先用单位根检验序列的平稳性,再计算 CO₂数据的自相关系数和偏相关系数,以此确定模型的参数 p 和 q。针对 ARIMAX 模型的分析对所有指标数据进行了单位根平稳性检验,发现仅少量指标通过平稳性检验,包括:总人口和 GDP 增速,绝大部分变量数据 P 值过大,不能通过平稳性检验。因此,进一步对数据进行一阶差分或二阶差分。其中取一阶差分后通过平稳性检验的指标包括: CO₂排放量、石油生产量、石油消费量、煤炭消费量、水电消费量和谷物产量,取二阶差分后通过平稳性检验的指

标包括:水电生产量、城市人口占比。剩余变量无法用差分操作通过平稳性检验,包括:主要能源消费量、天然气消费量、农业用地占比。综上,最终选取了石油生产量、煤炭消费量、水电消费量和 GDP 增速作为 ARIMAX 模型的自变量。根据最终选定的特征进行模型拟合:

 $CO_2 = \beta_0 + \beta_1 Oil_Con + \beta_2 Coal_Con + \beta_3 Hyd_Con + \beta_4 GDP_growth$

图 23 ARIMAX 模型拟合效果比较

拟合得到结果如下:

表 5 拟合结果

Dependent Variable: Differenced Carbon Start Date: 2 End Date: 41 Number of observations: 39		Method: MLE Log Likelihood: -206.3818 AIC: 430.7635 BIC: 445.7356			18
Latent Variable	Estimate	Std Error	z	P> z	95% C. I.
AR(1)	0. 1911	0. 1484	1. 2879	0. 1978	(-0.0997 0.482)
MA(1)	1.1177	0.013	85.8661	0.0	(1.0922 1.1432)
MA (2)	1. 7923	0.0025	716. 2954	0.0	(1.7874 1.7972)
Beta 1	-25.9459	8. 7658	-2.9599	0.0031	(-43. 127 -8. 7649)
Beta Oil_Con	-0.1397	1. 3152	-0.1062	0.9154	(-2.7175 2.4382)
Beta Coal_Con	23. 157	7. 5205	3.0792	0.0021	(8.417 37.8971)
Beta Hyd_Con	-224. 7743	116. 2775	-1.9331	0.0532	(-452.6782 3.1297)
Beta GDP_growth	2.83	0.3341	8.4706	0.0	(2.1751 3.4848)
Normal Scale	56. 7097				

通过以上输出结果可以观察到 CO₂的排放与煤炭的消费量呈现较强的正相关,与氢能源的消费呈现极强的负相关关系。因此在最终减少 CO₂排放时可以考虑增加氢能源的使用,减少煤炭能源的利用。

之后,通过 LSTM 模型对中国 CO₂排放量及其特征变量数据进行预测。由于除了 GDP 增速以外的其他各变量之间都有较高的线性相关性,因此只选择相

关性较低的指标(农业用地占比、天然气消费量和石油生产量),以及与 CO₂ 相关性较大的指标(城市人口占比),以避免自变量之间的多重共线性。

同时,选择输入时序数据的窗口长度时也设为 6 年,以降低数据维度,输出预测年份设为 5 年,则 LSTM 模型通过时间反向传播,根据前 6 年预测后面的数据。一般来说 LSTM 模块的层数越多,对高级别的时间表示的学习能力越强,但为保证训练时收敛,一般不超过 3 层;最后增加一层神经网路层用于输出结果的降维。结果如图 24 所示。

图中 0 至 55 的值原数据 1965 年至 2020 年数据,56 至 60 的值为预测的后 5 年数值。可见预测的 CO₂排放量有减少的趋势,与其余三个模型预测的结果 有较大的出入。因此我们最终采用其余三个模型预测出的结果,即 CO₂排放量 在未来将保持上升的趋势。

5.3 小结

从上述模型应用可得:整体上,中国的CO₂排放量将呈现持续上涨的趋势,在没有其余因素的干预下(如政策等),CO₂的排放量将持续增加,并不会在某一时刻达到峰值,因此想要在2030年做到碳达峰需要人为的控制。并且CO₂排放量与能源的使用有较大的相关性,CO₂的排放与煤炭的消费量呈正相关关系,与氢能源的消费呈负相关关系。

6 国际气候治理模式分析

6.1 国际气候合作现状

为积极应对气候变化,2015年12月《联合国气候变化框架公约》第21次缔约方会议通过了具有里程碑式意义的《巴黎协定》,提出到本世纪末将全球平均温升控制在2摄氏度以内,并努力控制在1.5摄氏度以内,且在本世纪中

叶实现全球温室气体净零排放的目标^[13]。在全球二氧化碳减排的问题上,应该承担多少责任是发达国家和发展中国家之间的核心矛盾。与 1997 年签订后实施进展缓慢的《京都议定书》不同,《巴黎协定》号召各国以国家自主贡献(INDCs)的方式自行制定减排目标。这在一方面表明减少温室气体排放已成国际共识,多数国家皆有强烈的减排意愿^[14],另一方面,这一自下而上的过程也巧妙规避了碳排放权在国家间横向分配的问题。

在这样的背景下,国家以下区域的碳排放权分配问题逐渐成为研究重点。 长期以来,全球气候治理的核心问题是在发达国家和发展中国家形成的"南北格局"下如何清晰界定各方的责任与权利的问题。从历史发展角度来看,落后国家不是温室气体的主要排放者,而是气候变暖的受害者。从工业革命以来积累在大气中的二氧化碳主要来自于现在说的工业化国家和富裕国家。现在不让发展中国家排放,等于停止发展。

中国作为全球最大的能源消费国和碳排放国,在全球变暖趋势不断加剧的 大背景下,承受着巨大的国际压力。而在第三时期国家分类中,美国属于高速 发展型国家,其 GDP 总量与中国相当,但已实现碳达峰,因此对于中国来说是 个较优的借鉴对象。日本属于中高速发展型的国家,作为已实现碳达峰的发达 国家,具有良好的代表性。而中国作为正在为实现碳达峰而努力着的发展中国 家,同样具有典型的代表性。因此,我们选择美国、日本、中国具体情况展开 进行分析。

6.2 典型国家相关指标分析

为分析美国、日本、中国的碳排放相关影响因素,整理 1990 年-2013 年各国人口密度、每单位 GDP 能源消耗和森林覆盖率数据并绘制相关折线图 24 和条形图 25。

图 24 人口密度、每创造单位 GDP 需要消耗的能源

图 25 2015 年三国森林覆盖率

美国从 1961 年到 2013 年,人口密度较于日本、中国,增长极其缓慢,基本保持不变,但是 2013 年之后有超过 2 的趋势;而每创造单位 GDP 需要消耗的能源,在 1962 年就在三国中位于首位,1970 年达到最高峰值,从 1978 年开始下降,至 1984 年,该阶段基本和中国重合,并在 1988 年低于中国,一路下降;数据统计的 43 个国家,平均森林覆盖率为 31.34%,美国排名 19,处于中间水平。

日本从 1961 年到 2013 年人口密度持续上升,总体增长速率有所减缓,三国中人口密度最多,总体是中国的三倍,而每创造单位 GDP 需要消耗的能源在 1980

年至 1983 年骤增,之后保持平稳趋势,并于 2000 年后有缓慢下降趋势。森林覆盖率位于三国之首,在 43 个统计国中排名第三。

中国从 1961 年到 2013 年人口密度保持上升趋势,总体增幅没有明显变化,三国中人口密度排第二。而每创造单位 GDP 需要消耗的能源在 1980 年至 1983 年有较明显起伏,在 1972、1977、1989、2005 分别存在小波峰,1977 年后整体峰值情况呈下降趋势。43 个统计国中排名第 29,森林覆盖率低于 43 个国家的平均森林覆盖面积。

6.3 典型国家减排建议

为了后续为我国政策提出建议,针对美国、日本、中国三个国家具体提出分担方案:

● 美国

通过对美国的人均土地占有而积、每创造单位 GDP 需要消耗的能源、森林 覆盖面积等数据的分析,美国人均土地占有面积较大,因此其人口数量的发展合 理。其创造单位 GDP 需要消耗的能源逐年下降,考虑是因为经济水平和科技水 平较高的原因引起。而森林覆盖的比例与大多数国家相差不大。因此提出以下方 案:

- ①继续发展科技水平,加强在科技上投入与分享。
- ②增加植被覆盖面积。

日本

通过对日本的相关数据的分析,日本人均土地占有面积较小,人口数量相对来说偏多。每创造单位 GDP 需要消耗的能源显著低于世界平均水平,其经济水平和科技水平较高。因此提出以下方案:

- ①继续发展科技水平,加强在科技上投入与分享。
- ②保持植被覆盖面积。
- ③控制人口增长速率。

● 中国

通过对中国的相关数据的分析,中国人均上地占有而积较小,人口效量偏多:每创造单位 GDP 需要消耗的能源与美国、日本差距逐渐拉大,经济水平和科技水平还有很大的上升空间,同时植被面积是三国中最少的。因此提出以下方案:

- ①增强科技实力,减少能源消耗。
- ②增加植被覆盖面积。
- ③控制人口增长速率。

6.4 中国国际减排责任: 以"一带一路"为例

而今全球经济一体化背景下,以污染密集型中间生产环节、生产活动外迁的方式带来了污染产业转移,其发生机制和由此引发的生态问题、气候责任归属问题被寄予了充分的重视。中国作为世界上最大的发展中国家,也致力于帮助他国尤其是未碳达峰的发展中国家尽快实现温室气体的减排。而中国的"一带一路"倡议和构建人类命运共同体理念受到世界广泛关注。

武岩等^[15]利用签署"一带一路"谅解备忘录的国家层面的面板数据检验了参与共建"一带一路"倡议对沿线国家碳排放强度和分行业碳排放强度的影响。通过 2002-2017 年 178 个国家的面板数据作者发现:第一,"一带一路"倡议总体上倾向于降低沿线国家的碳排放强度。第二,在较高和较低碳排放强度分位数下,"一带一路"倡议对降低碳排放强度的影响显著。第三,"一带一路"倡议对能源密集型行业碳排放强度的降低具有显著影响。这些结果表明,与中国建立一带一路合作将改善碳排放污染。

例如,中国企业承建的乌克兰大型太阳能光伏电站由乌最大私营能源企业顿 巴斯燃料和能源公司以及中国机械设备工程股份有限公司联合建造,设计装机容量 200 兆瓦,每年发电量预计可满足 14 万个家庭的用电需求,并可减少 30 万吨二氧化碳排放。

提高一带一路国家的可持续发展能力需要沿线国家坚持绿色能源与绿色生产的原则,进一步加强与中国在绿色"一带一路"倡议特别是高环境影响建设项目方面的合作。沿线国家可以直接引进中国节能减排技术、拓宽合作业务、加大在水电、太阳能、风能等清洁可再生能源领域的环境合作。

7 中国减排政策建议

7.1 中国承担的大国责任

2020 年 9 月,国家主席习近平在第七十五届联合国大会上郑重宣布: "中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030 年前达到峰值,努力争取 2060 年前实现碳中和。"面对日益严峻的气候危机,中国作为世界上最大的发展中国家,努力实现"碳达峰、碳中和",这向全世界展示了我国积极应对气候变化的雄心和控制温室气体的大国担当,也使得中国从应对全球变暖的参与者,逐步成为贡献引领者。据英国剑桥计量经济学会预测,中国若能如期实现减排承诺,全球升温水平就可降低 0.25℃左右,这对解决全球气候问题贡献显著。同时我们也应当注意到,国外向我国境内输入大量的碳转移排放,而中国区域内部的碳排放格局也较为明显,因此协调环境与经济以及区域协调发展的任务充满了复杂性和挑战性。我们分别从我国自身以及对周遭可辐射的诸多国家出发,浅析中国在其中应担当的责任。

7.2 中国国内减排政策建议

首先需要我国贯彻科技创新驱动低碳发展原则。能源技术进步和创新是推动能源革命和转型发展的根本动力,也是实现"双碳"目标的关键驱动力和必然选择。根据伯利兹、克鲁格曼(1993)的技术"蛙跳"模型^[16],欠发达地区和国家并不严格按照由简单到复杂的路径,可以跨越技术发展的某些阶段,直接开发、应用新技术、新产品,进入国际市场与先进国家进行竞争。为此我们需要大力引进和发展高新技术产业,加强人才引进与培养。

同时,需要重视中国陆地生态系统。2001 起后 10 年,陆地生态系统的年均固碳可抵消 14.1%化石燃料碳排放量;其中,森林贡献了约 80%的固碳量。此外,中科院"碳收支项目"在我国重大生态工程和秸秆还田农田管理措施的实施,贡献了很大程度的中国陆地生态系统固碳总量。可见,重视自然生态可以对减排产生显著效果。

其次,我国需要产业结构全面绿色转型。中国仍然处于工业化、现代化关键时期,能源结构偏煤炭,故中国传统污染物排放和二氧化碳排放都处于高位。需要注意到,碳排放和产业结构之间存在着互相影响,互相作用的关系——产业结构升级能够减少碳排放、提升碳排放绩效,同时碳排放政策对产业结构升级有推动作用。

此外,还要加快我国现代服务业、高技术产业和先进制造业、数字经济等新 兴产业发展。依靠技术进步和创新驱动产业增长,促进传统产业的低碳转型,大 力发展新型绿色低碳经济,推进产业结构调整和升级,降低工业产业的能源消费 和碳排放,逐步实现经济增长和碳排放的脱钩。

最后,我国还需要逐步完善碳交易市场。碳交易市场作为一种低成本减排的市场化政策工具,已在全球范围内广泛运用。它主要有激励功能和约束功能。我国应在总结此前碳交易试点工作经验基础上,逐步构建和完善全国统一的交易市场,从政府和市场两方面同时发挥两只手的作用,进一步加快推动碳排放交易权的优化配置,加快建设跨区域全国性的碳排放权交易市场及补偿机制。同样,在国内碳排放权的明确和交易市场及补偿机制的建立会给各地政府承接产业转移过程中避免高能耗高排放项目提供强大动力。

7.3 小结

在进行各国碳排放责任分配时我们需要注意到历史因素。历史上发达国家是主要排放者,落后国家是排放相对较少的。这个因素界定了历史责任。落后国家从历史发展角度来看不是主要排放者,而是气候变暖的受害者。

而中国这 40 年来 GDP 发展迅速,尽管从累积排放角度看,中国并不是二氧化碳排放的最大贡献者,从人均二氧化碳排放来看,我国人均碳排放量低于主要发达国家,但是截至 2019 年,中国在全世界二氧化碳排放占比达到了 28%,成为碳排放量最大的国家。

而且结合我国经济发展需求,预计未来一段时间,我国碳排放仍然将维持增长趋势。由于中国依然具有较大的经济增长需求,我国当前仍处于城镇化进程中,具有很重的经济发展和民生改善任务,与其他国家相比面临更严峻的脱碳挑战。因此中国实现"双碳"目标必须逐步调整能源、产业结构,提升清洁能源和可再生能源占比,鼓励碳汇技术、绿色金融市场,向高质量发展转型。

8 总结

我们根据 GDP 的差异分析各国之间碳排放规律,观察到总体上两者均呈现持续上升的趋势。之后,根据增速不同以及一定时期内的波动,将时间划分为三个时期: 1800 年-1900 年,1901 年-1960 年,1961 年-2013 年。发现在第一个时期 GDP 增速与 CO2排放量均缓慢增长且各国差异不大,因此着重分析第二、第三时期。对这两个时期的国家运用聚类组合模型划分为中高速发展型、中速发展型、中低速发展型、低速发展型这四类,得到不同类型的国家 CO2排放量规律差异较大且 CO2排放量在国家的不同发展阶段呈现出不同变化的规律。

为进一步探索 CO₂排放规律,运用时间序列的方法对中国的碳排放做出预测,运用 ARIMA 和 Prophet 对单独的 CO₂排放量进行预测,得出相似的结论——在未来,中国的 CO₂排放量将持续增长;之后用 LSTM 和 ARIMAX 对不同特征(如氢能源使用,GDP 增速等)对 CO₂的影响做出了分析,并在此基础上对 CO₂排放进行预测。发现中国的 CO₂排放量与能源消费具有较大的相关性,想要达到碳达峰,需要政策干预。

最终分析各国在碳排放中应该承担的责任以及中共应该具体落实的政策措施,选取其中具有代表性的日本、美国和中国进行具体讨论,并给出责任分配以及相应措施,最终列举中国可选的措施方案,助力中国实现碳达峰。

但同时,我们的研究也存在一些方面的局限性。首先,对于碳达峰的历史数据收集不足,导致神经网络模型训练效果不佳。其次,对于环境科学的背景知识专业掌握程度较弱,因此在选择碳排放影响因子时可能遗漏某些重要变量。另外,我们忽视了各国碳排放量受地缘政治因素影响的程度,导致不能识别出碳排放更具代表性的国家。

限于本次竞赛的时间限制,我们的研究工作尚有若干值得在未来补充的地方,包括本文涉及到的若干模型参数可能没有调整至最优参数。随着碳排放及相关领

域数据采集技术的更新迭代,未来可能收集到更大体量的可供训练的数据集,以优化模型训练效果。未来能源技术可能带来的革命性进步也可能为世界各国的合作方式发生新的变化和挑战。这些都是本文的研究在未来的工作中值得考虑的地方。

参考文献

- [1] 确保如期实现碳达峰碳中和[N].人民日报,2021-10-25(01).
- [2] B. P. Company. (2020). [Statistical Review of World Energy 2020]. : Centre for Energy Economics Research and Policy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
- [3] Fantom, N., & Prince, W. (2014). World development indicators 2014, 1–144.
- [4] 李正欣,张凤鸣,李克武 & 张晓丰.(2014).一种支持 DTW 距离的多元时间序 列索引结构. 软件学报(03),560-575. doi:10.13328/j.cnki.jos.004410.
- [5] 软件学报,2014,25(03):560-575.Cuturi, M., & Blondel, M. (2017, July). Softdtw: a differentiable loss function for time-series. In International Conference on Machine Learning (pp. 894-903). PMLR.
- [6] 何书元. (2003). 应用时间序列分析. 北京大学出版社.
- [7] 陈华文,刘康兵.经济增长与环境质量:关于环境库兹涅茨曲线的经验分析[J]. 复旦学报(社会科学版),2004(02):87-94.
- [8] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
- [9] Taylor SJ, Letham B. 2017. Forecasting at scale. PeerJ Preprints 5:e3190v2 https://doi.org/10.7287/peerj.preprints.3190v2.
- [10] Core Data Science (2017) Prophet: Automatic Forecasting Procedure [Version 1.0] https://facebook.github.io/prophet/docs/quick_start.html.
- [11]朱勤,彭希哲,陆志明 & 吴开亚.(2009).中国能源消费碳排放变化的因素分解及实证分析. 资源科学(12),2072-2079. doi:CNKI:SUN:ZRZY.0.2009-12-011.
- [12] Levin, K., & Rich, D. (2017). Turning Points: Trends in Countries' Reaching Peak Greenhouse Gas Emissions over Time.
- [13] United Nations. Adoption of the Paris Agreement//Conference of the Parties, Twenty-first Session. Paris: United Nations, 2015.
- [14] Rogelj J, Den Elzen M, Hohne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M. Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature, 2016, 534(7609):631-639.
- [15] Wu Yan, Chen Chunlai & Hu Cong.(2021). Does the Belt and Road Initiative Increase the Carbon Emission Intensity of Participating Countries?. China & World Economy(3), doi:10.1111/CWE.12374.
- [16] Brezis, E. S., Krugman, P. R., & Tsiddon, D. (1993). Leapfrogging in international competition: a theory of cycles in national technological leadership. American Economic Review, 83(5), 1211-1219.

表 1 CO2数据库的指标解释

解释 CO2 基于生产排放的二氧化碳量、按照地域划分,不考虑贸易商品的排放。(单位:百万吨) consumption_CO2 基于消费排放的二氧化碳量,如果 consumption_CO2>CO2, 那么该国为 CO2 的净进口国、反之则为 CO3的净出口国。 (单位:百万吨) CO2_growth_prct CO2_growth_prct = CO2_year+1 - CO2_year		·佑/年的指外牌样
の	指标	解释
consumption_CO ₂ >CO ₂ , 那么该国为 CO ₂ 的净进口国,反之则为 CO ₂ 的净进口国。(单位:百万吨) CO ₂ _growth_prct	CO ₂	分,不考虑贸易商品的排放。(单位:百
CO2_growth_abs CO2_growth_abs	consumption_CO2	consumption_CO ₂ >CO ₂ ,那么该国为 CO ₂ 的净进口国,反之则为 CO ₂ 的净出口国。
CO2_growth_abs CO2_growth_abs = CO2_year+1 - CO2_year	CO2_growth_prct	, , , , , , , , , , , , , , , , , , ,
### Process ##	CO2_growth_abs	CO_{2} _growth_abs = $CO_{2year+1} - CO_{2year}$
$CO_2_per_capita = \frac{CO_2\times1000000}{population} \ (单位: 吨/ \ \ \ \ \ \ \ \ \ \$	trade_CO2	贸易中的 CO ₂ 排放量;正值则说明该国是 净进口国,负值则说明该国是净出口国。 (单位:百万吨)
consumption_CO2_per_capita	CO2_per_capita	CO_2 _per_capita = $\frac{CO_2 \times 1000000}{\text{population}}$ (单位: 吨/
share_global_CO2每年基于生产的 CO2排放占同年全球生产 CO2排放法百分比(单位:%)share_global_CO2 = $\frac{CO_{2location}}{CO_{2global}} \times 100\%$ cumulative_CO2基于生产的 CO2排放从 1750 年到当年的累 计(单位:百万吨) cumulative_CO2 = $\sum CO2$ share_global_cumulative_CO2基于生产的累积的 CO2排放量占全球累积 的 CO2排放量(单位:%) share_global_cumulative_CO2 = $\frac{\text{cumulative}_{CO2}}{\text{cumulative}_{CO2}}$	consumption_CO2_per_capita	consumption_CO ₂ _per_capita =
cumulative_CO₂ 基于生产的 CO₂排放从 1750 年到当年的累 计(单位:百万吨) cumulative_CO₂ = ∑ CO2 share_global_cumulative_CO₂ 基于生产的累积的 CO₂排放量占全球累积 的 CO₂排放量(单位:%) share_global_cumulative_CO₂ = cumulative_CO₂ global	share_global_CO2	每年基于生产的 CO ₂ 排放占同年全球生产 CO ₂ 排放法百分比(单位:%)
share_global_cumulative_CO2 基于生产的累积的 CO2排放量占全球累积的 CO2排放量(单位:%) share_global_cumulative_CO2 share_global_cumulative_CO2 cumulative_CO2location cumulative_CO2global	cumulative_CO2	基于生产的 CO₂排放从 1750 年到当年的累 计(单位: 百万吨)
CO_2 _per_gdp = $\frac{CO_2 \times 1000000000}{\text{gdp}}$ (单位: 千	share_global_cumulative_CO2	基于生产的累积的 CO ₂ 排放量占全球累积的 CO ₂ 排放量(单位:%) share_global_cumulative_CO ₂ = cumulative_CO _{2location}
	CO2_per_gdp	0 1
	consumption_CO2_per_gdp	

	consumption_CO ₂ ×1000000000 (单位: 千克/美	
	gdp	
	元)	
CO ₂ _per_unit_energy	每单位能量所排放的 CO ₂ (单位: 千克/千	
	瓦时)	
coal_CO ₂	不同行业排放的二氧化碳量(单位:百万	
cement_CO ₂	吨)	
flaring_CO ₂	$CO_2 = coal_CO_2 + cement_CO_2 +$	
gas_CO ₂	flaring_ CO_2 +gas_ CO_2 + oil_ CO_2 +	
oil_CO ₂	Other_industry_ CO_2 (单位:百万吨)	
Other_industry_CO2		
cement_CO2_per_capita	不同行业的人均二氧化碳排放量(单位:	
coal_CO2_per_capita	吨/人)	
flaring_CO2_per_capita	$V_{c}CO_{c}$ nor capita = $X_{c}CO_{2} \times 1000000$	
gas_CO2_per_capita	X_{CO_2} per_capita = $\frac{X_{CO_2} \times 1000000}{\text{population}}$	
oil CO ₂ per capita		
Other industry CO ₂ per capita		
trade CO ₂ share	基于生产的 CO2排放的百分比,正值说明	
	该国是净进口国,负值说明该国是 CO2净	
	出口国。(单位:%)	
	$trade_CO_2_share = \frac{trade_CO_2}{CO_2} \times 100\%$	
share_global_cement_CO2	每年某地X行业生产排放的二氧化碳排放	
share global coal CO2	量占同年全球 X 行业生产排放二氧化碳量	
share global flaring CO2	(单位: %)	
share_global_gas_CO2	share global V CO $= \frac{X_{-CO_{2location}}}{10006}$	
share global oil CO2	share_global_X_CO ₂ = $\frac{X_{CO_{2location}}}{X_{CO_{2global}}} \times 100\%$	
share global Other industry CO ₂		
cumulative cement CO ₂	自 1750 年来, X 行业中二氧化碳排放累	
cumulative coal CO ₂	积量(单位:百万吨)	
cumulative_flaring_CO ₂	cumulative_ $X_CO_2 = \sum X_CO_2$	
cumulative gas CO ₂		
cumulative oil CO ₂		
cumulative_Other_industry_CO ₂		
share global cumulative cement CO ₂	某地 X 行业累积的二氧化碳排放量占全球	
share global cumulative coal CO ₂	X行业累积的二氧化碳排放量(单	
share_global_cumulative_flaring_CO ₂	位:%)	
share global cumulative gas CO ₂	share_global_cumulative_X_CO ₂ =	
share_global_cumulative_oil_CO ₂	_	
share_global_cumulative_Other_indus	$\frac{-\frac{1}{2} + \frac{1}{2} + \frac$	
try CO ₂	Ü	
total ghg	温室气体排放总量(单位:百万吨)	
ghg_per_capita	人均温室气体排放总量(单位:吨/人)	
methane	甲烷总排放量(单位:百万吨)	
memane	丁州心州以里(千世: 日月門)	

methane_per_capita	人均甲烷排放总量(单位:吨/人)
nitrous_oxide	一氧化二氮总排放量(单位:百万吨)
nitrous_oxide_per_capita 人均一氧化二氮排放总量(单位:『	
population	人口(单位:人)
gdp	国内生产总值(单位:美元)
primary_energy_consumption	单位:太瓦时/年
energy_per_capita	人均能源消耗(单位:千瓦时/年)
energy_per_gdp	单位: 千瓦时/美元

表 2 1901-1960 国家分类情况

类型	中心国家	成员国	特征
中高速发展型	Russia	Germany, United States, Japan	GDP 总量最大
(以北美洲和欧洲			发展波动剧烈
大经济体国家为			发展速度最快
主)			
中速发展型	France	China, India, Italy,	GDP 总量较大
(以欧洲较为发		United Kingdom	发展波动较为剧烈
达的国家和亚洲			发展速度较快
大经济体国家为			
主)			
中低速发展型	Australia	Algeria, Argentina, Austria,	GDP 总量较小
		Belgium, Brazil, Canada,	发展波动较大
		Czech Republic, Egypt,	发展速度较慢
		Hungary, Indonesia, Iran,	
		Kazakhstan, Mexico,	
		Netherlands, Nigeria,	
		Poland, Romania, South	
		Africa, Spain, Sweden,	
		Switzerland, Turkey, Ukraine	
低速发展型	Libya	Afghanistan, Albania, Angola,	GDP 总量最小
		Antigua and Barbuda, Armenia,	发展波动平缓
		Azerbaijan, Bahamas, Bahrain,	发展速度最慢
		Bangladesh, Barbados	

表 3 1961-2013 国家分类情况

类型	中心国家	成员国	特征
高速发展型 (以北美洲和欧洲	China	United States	GDP 总量最大 发展波动剧烈
大经济体国家为 主)			发展速度最快
中高速发展型 (以欧洲较为发 达的国家和亚洲 大经济体国家为 主)	Brazil	France, Germany, India, Indonesia, Italy, Japan, Mexico, Russia, United Kingdom	GDP 总量较大 发展波动较为剧烈 发展速度较快
中速发展型	Nigeria	Algeria, Argentina, Australia, Belgium, Canada, Colombia, Egypt, Iran, Iraq, Malaysia, Netherlands, Pakistan, Philippines, Poland, Romania, Saudi Arabia, South Africa, South Korea, Spain Sweden, Switzerland, Thailand, Turkey, Ukraine, Venezuela	GDP 总量较小 发展波动较大 发展速度较慢
中低速发展型	Ethiopia	Afghanistan, Albania, Andorra, Angola, Antigua and Barbuda, Armenia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brunei, Bulgaria, Burkina Faso, Burundi	GDP 总量最小 发展波动平缓 发展速度最慢

二、仪表盘

图 1 仪表盘: 1901-1960 各国 CO2与 GDP

图 2 仪表盘: 1961-2013 各国 CO2与 GDP

图 3 仪表盘: 美、中、日不同行业排放的二氧化碳量