FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY (FISAT)TM

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

DATA SCIENCE
I AROBATORY RECORD

Name: Rahul Roy

Branch: MASTER OF COMPUTER APPLICATION

Semester: 3 Batch: B Roll No: 30

FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY

 $(FISAT)^{TM}$

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

Name : Rahul Roy

Branch: MASTER OF COMPUTER APPLICATION

Semester : 3 Roll No: 30

University Exam.Reg. No:

<u>CERTIFICATE</u>	
This is to certify that this is a Bonafide record of the Prac Kerala Technological University in partial fulfillment of Computer Applications is a record of the original research	for the award of the Master Of
the DATA SCIENCE Laboratory of the Federal Insti	tute of Science and Technology
during the academic year 2021-2022.	
Signature of Staff in Charge	Signature of H.O.D
Name:	Name:
Date:	
Date of University practical examination	
Signature of	Signature of
Internal Examiner	External Examiner

CONTENT

SI No	Date :	Name of Experiment:	Page No:	Signature of Staff –In – Charge:
1	18/11/2021	Matrix operations (using vectorization) and transformation using python and SVD using Python	1	
2	30/11/2021	Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.	4	
3	25/11/2021	Programs to handle data using pandas	14	
4	07/12/2021	Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.	26	
5	14/12/2021	Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm	38	
6	04/01/2022	Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.	41	
7	13/01/2022	Program to implement text classification using Support vector machine.	44	

8	21/12/2022	Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm	48	
9	13/01/2022	Program to implement k-means clustering technique using any standard dataset available in the public domain	50	
10	27/01/2022	Programs on feedforward network to classify any standard dataset available in the public domain	55	
11	27/01/2022	Programs on convolutional neural network to classify images from any standard dataset in the public domain.	57	

AIM

1. Matrix operations (using vectorization) and transformation using python and SVD using Python.

CODE:

```
import numpy as np
y=np.arange(1,26)
print(y)

y=y.reshape(5,5)
print(y)

print(y[:5,:5])
print(y[:,:-1])
print(y[::,::2])
print(y[1::2,::])
```

```
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[[ 1 2 3 4 5]
[ 6 7 8 9 10]
 [11 12 13 14 15]
  [16 17 18 19 20]
 [21 22 23 24 25]]
[[ 1 2 3 4 5]
[ 6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]
 [21 22 23 24 25]]
[[ 1 2 3 4]
[ 6 7 8 9]
 [11 12 13 14]
  [16 17 18 19]
 [21 22 23 24]]
[[1 3 5]
  6 8 10]
 [11 13 15]
 [16 18 20]
[21 23 25]]
[[ 6 7 8 9 10]
[16 17 18 19 20]]
[[ 7 9]
[17 19]]
```

```
import numpy
x=numpy.array([[1,2],[4,5]])
y=numpy.array([[7,8],[9,10]])
print(np.add(x,y))
print(np.subtract(x,y))
print(np.divide(x,y))
print(np.dot(x,y))
```

OUTPUT:

```
[[ 8 10]

[13 15]]

[[-6 -6]

[-5 -5]]

[[0.14285714 0.25]

[0.444444444 0.5]]

[[25 28]

[73 82]]
```

CODE:

```
print(x.sum())
print(x.sum(axis=0))
print(x.sum(axis=1))
print(x.max())
print(x.transpose())
```

```
12
[5 7]
[3 9]
5
[[1 4]
[2 5]]
```

CODE:	
<pre>print(y[4:-1])</pre>	
OUTPUT:	
[5 6 7 8 9 10 11 12 13 14 15 16 17 1	18 19 20 21 22 23 24]

<u>AIM</u>

2. Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.

Dataset used: iris.csv

CODE:

```
import pandas as pd
iris = pd.read_csv('/content/iris.csv')

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

# scatter the sepal_length against the sepal_width
ax.scatter(iris['sepal.length'], iris['sepal.width'])
# set a title and labels
ax.set_title('Iris Dataset')
ax.set_xlabel('sepal_length')
ax.set_ylabel('sepal_width')
```



```
#matplotlib plot with diferent colors for Iris flower varities
fig, ax = plt.subplots()
colors = {'Setosa':'r', 'Versicolor':'g', 'Virginica':'b'}

for i in range(len(iris['sepal.length'])):
    ax.scatter(iris['sepal.length'][i], iris['sepal.width'][i], co
lor=colors[iris['variety'][i]])
ax.set_title('Iris Dataset')
ax.set_xlabel('sepal_length')
ax.set_ylabel('sepal_width')
```

OUTPUT:

Text(0, 0.5, 'sepal_width')


```
import seaborn as sns
sns.scatterplot(x='sepal.length', y='sepal.width', data=iris)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f01f4191210>

CODE:

sns.lineplot(x="sepal.length", y="sepal.width", data=iris)
plt.show()


```
#seaborn histogram plot
sns.set(style="darkgrid")
df = sns.load_dataset("iris")
sns.histplot(data=df, x="sepal_length",bins=20)
plt.show()
```

OUTPUT:


```
#matplotlib histogram plot
iris_feat = iris.iloc[:,:-1]
iris_species = iris.iloc[:,-1]
fig, ax = plt.subplots()
# plot histogram
ax.hist(iris_feat['sepal.length'])
# set title and labels
ax.set_title('sepal_length')
ax.set_xlabel('Points')
ax.set_ylabel('Frequency')
```



```
#Bar chart using Matplotlib
df = iris.groupby('variety')['sepal.length'].sum().to_frame().rese
t_index()
#Creating the bar chart
plt.bar(df['variety'],df['sepal.length'],color = ['cornflowerblue'
,'lightseagreen','red'])
#Adding the aesthetics
plt.title('Bar Chart')
plt.xlabel('class')
plt.ylabel('sepal.length')
#Show the plot
plt.show()
```


CODE

import seaborn as sns
sns.boxplot('sepal.length', 'sepal.width', data=iris)

OUTPUT:

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning <matplotlib.axes. subplots.AxesSubplot at 0x7f01ef6944d0>


```
import pandas as pd
iris = pd.read csv('/content/company sales data.csv')
#Line plot with matplotlib
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv("company sales data.csv")
profitList = df ['total profit'].tolist()
monthList = df ['month_number'].tolist()
plt.plot(monthList, profitList, label = 'Month-
wise Profit data of last year')
plt.xlabel('Month number')
plt.ylabel('Profit in dollar')
plt.xticks(monthList)
plt.title('Company profit per month')
plt.yticks([100000, 200000, 300000, 400000, 500000])
plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# create data
x = np.random.rand(15)
y = x+np.random.rand(15)
z = x+np.random.rand(15)
z=z*z
# Change color with c and transparency with alpha.
# I map the color to the X axis value.
plt.scatter(x, y, s=z*2000, c=x, cmap="Blues", alpha=0.4, edgecol
ors="grey", linewidth=2)
# Add titles (main and on axis)
plt.xlabel("the X axis")
plt.ylabel("the Y axis")
plt.title("A colored bubble plot")
# Show the graph
plt.show()
```


<u>AIM</u>

3. Programs to handle data using pandas

CODE:

```
import numpy as np
import pandas as pd

s = pd.Series([1, 3, 5, 6, 8])
print(s)
```

OUTPUT:

```
0 1
1 3
2 5
3 6
4 8
dtype: int64
```

```
country capital area population

Brazil Brasilia 8.516 200.40

Russia Moscow 17.100 143.50

India New Dehli 3.286 1252.00

China Beijing 9.597 1357.00

South Africa Pretoria 1.221 52.98
```

CODE:

```
b.index = ["BR", "RU", "IN", "CH", "SA"]
print(b)
```

OUTPUT:

	country	capital	area	population
BR	Brazil	Brasilia	8.516	200.40
RU	Russia	Moscow	17.100	143.50
IN	India	New Dehli	3.286	1252.00
CH	China	Beijing	9.597	1357.00
SA	South Africa	Pretoria	1.221	52.98

Dataset used: cars1.csv

```
import pandas as pd
cars = pd.read_csv('cars1.csv')
print(cars)
```

			_		
	Car	Model	Volume	Weight	C02
0	Toyoty	Aygo	1000	790	99
1	Mitsubishi	Space Star	1200	1160	95
2	Skoda	Citigo	1000	929	95
3	Fiat	500	900	865	90
4	Mini	Cooper	1500	1140	105
5	VW	Up!	1000	929	105
6	Skoda	Fabia	1400	1109	90
7	Mercedes	A-Class	1500	1365	92
8	Ford	Fiesta	1500	1112	98
9	Audi	A1	1600	1150	99
10	Hyundai	120	1100	980	99
11	Suzuki	Swift	1300	990	101
12	Ford	Fiesta	1000	1112	99
13	Honda	Civic	1600	1252	94
14	Hundai	130	1600	1326	97
15	Opel	Astra	1600	1330	97
16	BMW	1	1600	1365	99
17	Mazda	3	2200	1280	104
18	Skoda	Rapid	1600	1119	104
19	Ford	Focus	2000	1328	105
20	Ford	Mondeo	1600	1584	94
21	Opel	Insignia	2000	1428	99
22	Mercedes	C-Class	2100	1365	99
23	Skoda	Octavia	1600	1415	99
24	Volvo	S60	2000	1415	99
25	Mercedes	CLA	1500	1465	102
26	Audi	A4	2000	1490	104
27	Audi	A6	2000	1725	114
28	Volvo	V70	1600	1523	109
29	BMW	5	2000	1705	114
30	Mercedes	E-Class	2100	1605	115
31	Volvo	XC70	2000	1746	117
32	Ford	B-Max	1600	1235	104
33	BMW	216	1600	1390	108
34	Opel	Zafira	1600	1405	109
35	Mercedes	SLK	2500	1395	120

```
# Print out first 4 observations
print(cars[0:4])
# Print out fifth and sixth observation
print(cars[4:6])
```

OUTPUT:

```
Model Volume Weight CO2
        Car
                                790
      Toyoty
                 Aygo
                         1000
1 Mitsubishi Space Star
                         1200
                               1160
                                     95
2
      Skoda
              Citigo
                        1000
                                929
                                    95
3
       Fiat
                  500
                         900
                                865 90
       Model Volume Weight CO2
   Car
4 Mini Cooper
                1500 1140 105
    VW Up!
                1000
                       929 105
```

CODE:

```
import pandas as pd
cars = pd.read_csv('cars1.csv', index_col = 0) #first column is t
aen as index column
print(cars.iloc[2])
```

```
Model Citigo
Volume 1000
Weight 929
CO2 95
Name: Skoda, dtype: object
```

OUTPUT:

```
Name Gender Age
      Jay
              Μ
                18
0
1 Jennifer
                 17
2 Preity
              F 19
3
     Neil
             M 17
    Name Gender Age
2 Preity
           F 19
3
   Neil
           M 17
     Name Gender Age
0
      Jay M 18
1 Jennifer
```

```
import pandas as pd
import numpy as np

#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print(s)

print ("The actual data series is:")
print( s.values)
```

```
0 -1.138968
1 -1.097746
2 0.109717
3 1.159537
dtype: float64
The actual data series is:
[-1.13896826 -1.09774589 0.10971687 1.15953676]
```

CODE:

```
print (s.head(2))
```

OUTPUT:

```
0 -1.138968
1 -1.097746
dtype: float64
```

CODE:

```
print(s.tail(3))
```

```
1 -1.097746
2 0.109717
3 1.159537
dtype: float64
```

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

# Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("The transpose of the data series is:")
print(df.T)
```

OUTPUT:

```
Age Rating
   Name
   Tom
        25
              4.23
0
1 James
        26
              3.24
2 Ricky
              3.98
        25
3
   Vin
        23
              2.56
4 Steve 30
              3.20
5 Smith 29
              4.60
   Jack
        23
               3.80
The transpose of the data series is:
                           3
                                  4
                1
                      2
        Tom James Ricky
                          Vin Steve Smith Jack
Name
Age
         25
               26
                     25
                           23
                                 30
                                       29
                                             23
Rating 4.23
             3.24
                   3.98 2.56
                                3.2
                                      4.6
                                            3.8
```

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
```

```
print(df)
print ("Row axis labels and column axis labels are:")
print (df.axes)
OUTPUT:
    Name Age Rating
    Tom
         25
              4.23
 1 James
        26
             3.24
 2 Ricky
             3.98
        25
 3
             2.56
    Vin 23
 4 Steve
         30
29
              3.20
   Smith
              4.60
        23
   Jack
              3.80
 Row axis labels and column axis labels are:
 [RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age', 'Rating'], dtype='object')]
CODE:
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("The data types of each column are:")
print (df.dtypes)
OUTPUT:
 The data types of each column are:
 Name
            object
             int64
 Age
 Rating
           float64
 dtype: object
```

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Is the object empty?")
print (df.empty)
```

OUTPUT:

Is the object empty? False

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith
','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]), 'Rating':pd.Series([
4.23,3.24,3.98,2.56,3.20,4.6,3.8])
    }

#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print (df)
print ("The dimension of the object is:")
print (df.ndim)
```

```
Our object is:
   Name
         Age Rating
0
    Tom
         25
              4.23
              3.24
1
 James
        26
2 Ricky
             3.98
        25
3
    Vin
        23
               2.56
4 Steve
        30
             3.20
5 Smith
        29
            4.60
   Jack
        23
               3.80
6
The dimension of the object is:
```

CODE:

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smit
h','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,30]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("Our object is:")
print ("The shape of the object is:")
print (df.shape)
```

```
Name Age Rating
             4.23
0
   Tom
         25
1 James
         26
               3.24
2 Ricky
          25
               3.98
3
    Vin
         23
              2.56
               3.20
4 Steve
          30
5 Smith
               4.60
          29
          30
               3.80
   Jack
Our object is:
The shape of the object is:
(7, 3)
```

```
print (df.size)
print (df.values)
```

OUTPUT:

21

```
[['Tom' 25 4.23]

['James' 26 3.24]

['Ricky' 25 3.98]

['Vin' 23 2.56]

['Steve' 30 3.2]

['Smith' 29 4.6]

['Jack' 30 3.8]]
```

CODE:

```
df.isnull().sum()
```

```
Name 0
Age 0
Rating 0
dtype: int64
```

```
A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11
```

AIM

4. Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

```
weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Over
cast','Sunny','Sunny',
'Rainy','Sunny','Overcast','Overcast','Rainy']

# Second Feature
temp=['Hot','Hot','Hot','Mild','Cool','Cool','Mild','Cool',
'Mild','Mild','Mild','Hot','Mild']

# Label or target varible

play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes',
```

OUTPUT:

```
[2 2 0 1 1 1 0 2 2 1 2 0 0 1]
```

```
temp_encoded=le.fit_transform(temp)
print(temp_encoded)
print(" ")
label=le.fit_transform(play)
print(label)
```

```
[1 1 1 2 0 0 0 2 0 2 2 2 1 2]
[0 0 1 1 1 0 1 0 1 1 1 1 1 0]
```

CODE:

```
features=list(zip(weather_encoded,temp_encoded))
print(features)
```

OUTPUT:

```
[(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 1), (1, 2)]
```

CODE:

```
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

# Train the model using the training sets

model.fit(features,label)

predicted= model.predict([[0,1]]) # 0:Overcast, 1:Hot

print(predicted)
```

OUTPUT:

[1]

Dataset used: iris.csv

CODE:

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
dataset = pd.read_csv("iris.csv")
print(dataset.describe)
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values
```

OUTPUT:

<body> d bound me</body>	thod NDFrame.	describe of	sepal.length	sepal	.width petal.length	n petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa		
1	4.9	3.0	1.4	0.2	Setosa		
2	4.7	3.2	1.3	0.2	Setosa		
3	4.6	3.1	1.5	0.2	Setosa		
4	5.0	3.6	1.4	0.2	Setosa		
***	***	222		***	200		
145	6.7	3.0	5.2	2.3	Virginica		
146	6.3	2.5	5.0	1.9	Virginica		
147	6.5	3.0	5.2	2.0	Virginica		
148	6.2	3.4	5.4	2.3	Virginica		
149	5.9	3.0	5.1		Virginica		

[150 rows x 5 columns]>

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_si
ze=0.20)

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
print(X_train)
print(X_train)
```

```
[[ 2.17968894 -0.14585275 1.67223212 1.24723193]
  1.09336496 0.52731379 1.16075926 1.24723193]
  0.61055431 -1.26779698 0.76294703 0.98465678]
 [ 1.09336496 -0.14585275 0.76294703 0.72208164]
 [-0.23436434 -0.59463044 0.70611671
                                     1.11594435]
 [-1.32068831 0.30292494 -1.33977476 -1.24723193]
 [-0.47576967 0.75170264 -1.11245349 -1.24723193]
 [-0.11366168 -0.59463044 0.47879543 0.19693136]
 [-0.83787766 -1.26779698 -0.37365934 -0.06564379]
 [-1.07928299 1.20048033 -1.28294444 -1.3785195 ]
 [ 0.61055431 -0.81901929  0.70611671  0.85336921]
 [-0.83787766
             1.64925802 -0.99879285 -0.98465678]
 [ 0.12774365  0.30292494  0.64928639  0.85336921]
 [-0.11366168 -0.3702416
                         0.30830448 0.19693136]
  0.61055431 -1.26779698 0.70611671
                                     0.4595065
 [ 0.61055431 -0.59463044 0.81977735 0.4595065 ]
 [ 0.00704099  2.09803572 -1.39660508 -1.24723193]
 [-0.83787766
             1.64925802 -1.16928381 -1.24723193
 [-1.07928299 -1.26779698 0.47879543 0.72208164]
 [-0.71717499 0.75170264 -1.28294444 -1.24723193]
  1.45547296 0.30292494 0.59245607 0.32821893]
  0.12774365 -0.14585275 0.81977735 0.85336921]
 [-1.19998565 -0.14585275 -1.28294444 -1.3785195 ]
  0.00704099 -1.04340814 0.19464384 0.06564379]
  1.21406763 0.30292494 1.27441989 1.50980707]
 [-0.71717499 -0.81901929 0.13781352 0.32821893]
 0.36914898 -0.59463044 0.59245607
                                     0.06564379]
  0.36914898 -1.04340814 1.10392894
                                     0.32821893]
 0.00704099 -0.59463044 0.81977735
                                     1.64109464
[-0.83787766 0.75170264 -1.22611412 -1.24723193]
[-1.44139098 0.0785361 -1.22611412 -1.24723193]
[-1.07928299 -1.49218583 -0.20316839 -0.19693136]
[-1.07928299 -0.14585275 -1.28294444 -1.24723193]
[ 0.73125697  0.30292494  0.93343798  1.50980707]
0.48985164 0.75170264 0.9902683
                                    1.50980707]
[ 1.33477029  0.30292494  1.16075926  1.50980707]
[-0.83787766 1.42486918 -1.22611412 -0.98465678]
[-1.68279631 -0.14585275 -1.33977476 -1.24723193]
[ 0.85195964 -0.59463044 0.53562575 0.4595065 ]
[-1.44139098 1.20048033 -1.51026572 -1.24723193]
[-0.83787766 1.64925802 -1.22611412 -1.11594435]
[-0.71717499 2.32242456 -1.22611412 -1.3785195 ]
[ 0.73125697  0.0785361
                         1.04709862 0.85336921]
[-0.95858032 -0.14585275 -1.16928381 -1.24723193]
```

```
[ 1.33477029 0.0785361
                         0.9902683
                                     1.24723193
[-1.44139098 0.75170264 -1.28294444 -1.11594435]
 0.61055431
             0.52731379
                        1.33125021
                                     1.77238221
[-0.23436434 -1.26779698 0.13781352 -0.06564379]
 0.48985164 -0.59463044 0.64928639 0.85336921]
 0.85195964 -0.14585275 1.04709862 0.85336921]
            -1.49218583 0.02415289 -0.19693136]
[-0.355067
[-0.23436434 -0.81901929 0.30830448 0.19693136]
 1.21406763 -0.14585275 1.04709862 1.24723193]
 0.61055431 0.75170264 1.10392894 1.64109464]
 1.69687828 1.20048033 1.38808053 1.77238221]
 2.3003916
           -0.14585275 1.38808053 1.50980707]
 -1.07928299 0.0785361 -1.22611412 -1.24723193
0.61055431 -0.3702416
                         1.10392894 0.85336921]
 0.36914898 -0.59463044 0.19464384 0.19693136
 -0.47576967
            1.87364687 -1.11245349 -0.98465678]
[-0.47576967 -0.14585275 0.47879543 0.4595065 ]
 1.93828361 -0.59463044
                         1.38808053 0.98465678]
 1.09336496 -0.14585275
                         0.87660766
                                     1.50980707]
[-1.80349897 -0.14585275 -1.4534354 -1.3785195 ]
                       -1.22611412 -0.98465678]
[-0.11366168
            2.9955911
[-0.95858032 -1.71657468 -0.20316839 -0.19693136]
[-0.95858032 -2.38974122 -0.08950775 -0.19693136]
[-0.23436434 -0.14585275 0.47879543 0.4595065 ]
 0.36914898 -0.14585275
                        0.53562575
                                     0.32821893]
[ 0.24844632 -0.14585275  0.64928639  0.85336921]
[-1.19998565
            0.0785361 -1.16928381 -1.24723193
[ 0.12774365 -0.14585275  0.30830448  0.4595065 ]
 0.73125697 0.30292494 0.47879543 0.4595065
[-0.95858032 0.97609148 -1.16928381 -0.72208164]
[ 2.3003916
             1.64925802 1.72906244 1.3785195
 0.73125697 -0.59463044 1.10392894
                                    1.24723193
 1.33477029
             0.0785361
                         0.81977735
                                     1.50980707]
[-0.83787766   0.52731379   -1.11245349   -0.85336921]
1.57617562 -0.14585275 1.27441989
                                     1.24723193]
             0.97609148 -1.33977476 -1.24723193]
[-0.355067
[-0.47576967 0.75170264 -1.22611412 -0.98465678]
[-1.19998565 0.75170264 -0.99879285 -1.24723193]
             -1.26779698 0.19464384 0.19693136]
-0.355067
 0.73125697 -0.59463044 1.10392894 1.3785195
 0.00704099 -0.81901929 0.81977735 0.98465678]
  1.09336496 0.0785361
                         1.10392894 1.64109464]
[-0.11366168 -0.59463044 0.25147416 0.19693136]
 0.61055431 0.52731379 0.59245607 0.59079407]
 0.48985164 -1.94096352
                         0.47879543
                                     0.4595065
 0.85195964 0.30292494 0.81977735
                                     1.11594435]
[-0.83787766 0.97609148 -1.28294444 -1.11594435]
  1.69687828 -0.14585275
                         1.21758958
                                     0.59079407]
 1.09336496 -1.26779698 1.21758958 0.85336921]]
```

```
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(y_test)
print(' ')
print(y pred)
```

OUTPUT:

```
['Virginica' 'Virginica' 'Setosa' 'Virginica' 'Versicolor' 'Virginica' 'Virginica' 'Setosa' 'Versicolor' 'Versicolor' 'Setosa' 'Virginica' 'Virginica' 'Setosa' 'Setosa' 'Setosa' 'Setosa' 'Setosa' 'Versicolor' 'Virginica' '
```

CODE:

```
from sklearn.metrics import classification_report, confusion_matr
ix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

```
[[ 8 0 0]
 [0 7 0]
 [0 1 14]]
           precision recall f1-score support
     Setosa
              1.00
                      1.00
                               1.00
              0.88
 Versicolor
                      1.00
                               0.93
                                         7
              1.00
  Virginica
                      0.93
                               0.97
                                         15
   accuracy
                               0.97
                                         30
           0.96
  macro avg
                       0.98
                               0.97
                                         30
weighted avg
               0.97
                       0.97
                               0.97
                                         30
```

CODE:

```
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

fruits=pd.read_table('/content/fruit_data_with_colors.txt')

fruits.head()
```

OUTPUT:

	<pre>fruit_label</pre>	<pre>fruit_name</pre>	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79

```
fruits.shape
predct = dict(zip(fruits.fruit_label.unique(), fruits.fruit_name.u
nique()))
predct
```

```
(59, 7)
{1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon'}
```

CODE:

```
apple_data=fruits[fruits['fruit_name']=='apple']
orange_data=fruits[fruits['fruit_name']=='orange']
lemon_data=fruits[fruits['fruit_name']=='lemon']
mandarin_data=fruits[fruits['fruit_name']=='mandarin']
apple_data.head()
```

OUTPUT:

	<pre>fruit_label</pre>	<pre>fruit_name</pre>	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89

```
plt.scatter(fruits['width'],fruits['height'])
```

<matplotlib.collections.PathCollection at 0x7f1a659c7690>

CODE:

plt.scatter(fruits['mass'],fruits['color_score'])

OUTPUT:

<matplotlib.collections.PathCollection at 0x7f1a65485a50>

CODE:

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

X=fruits[['mass','width','height']]
Y=fruits['fruit_label']
X_train,X_test,y_train,y_test=train_test_split(X,Y,random_state=0))

X_train.describe()
```

OUTPUT:

	mass	width	height
count	44.000000	44.000000	44.000000
mean	159.090909	7.038636	7.643182
std	53.316876	0.835886	1.370350
min	76.000000	5.800000	4.000000
25%	127.500000	6.175000	7.200000
50%	157.000000	7.200000	7.600000
75%	172.500000	7.500000	8.250000
max	356.000000	9.200000	10.500000

CODE:

X_test.describe()

	mass	width	height
count	15.000000	15.00000	15.000000
mean	174.933333	7.30000	7.840000
std	60.075508	0.75119	1.369463
min	84.000000	6.00000	4.600000
25%	146.000000	7.10000	7.250000
50%	166.000000	7.20000	7.600000
75%	185.000000	7.45000	8.150000
max	362.000000	9.60000	10.300000

CODE:

knn=KNeighborsClassifier()
knn.fit(X_train,y_train)

OUTPUT:

KNeighborsClassifier()

CODE:

knn.score(X_test,y_test)

0.5333333333333333

CODE:

```
prediction1=knn.predict([['100','6.3','8']])
predct[prediction1[0]]
```

OUTPUT:

lemon

CODE:

```
prediction2=knn.predict([['300','7','10']])
predct[prediction2[0]]
```

OUTPUT:

orange

<u>AIM</u>

5. Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: Social_Network_Ads.csv

```
import pandas as pd
dataset = pd.read_csv("/content/Social_Network_Ads.csv")
print(dataset.describe())
print(dataset.head())
X = dataset.iloc[:, [1, 2, 3]].values
y = dataset.iloc[:, -1].values
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X[:,0] = le.fit_transform(X[:,0])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_si
ze = 0.20, random_state = 0)
```

OUTPUT:

		User ID		Age	Estimate	dSalary	Purchased	
cou	nt 4.000	000e+02	400.	000000	400	.000000	400.000000)
mea	n 1.569	154e+07	37.	655000	69742	.500000	0.357500)
std	7.165	832e+04	10.	482877	34096	.960282	0.479864	ļ
min	1.556	669e+07	18.	000000	15000	.000000	0.000000)
25%	1.562	676e+07	29.	750000	43000	.000000	0.000000)
50%	1.569	434e+07	37.	000000	70000	.000000	0.000000)
75%	1.575	036e+07	46.	000000	88000	.000000	1.000000)
max	1.581	524e+07	60.	000000	150000	.000000	1.000000)
	User ID	Gender	Age	Estima	tedSalary	Purcha	sed	
0	15624510	Male	19		19000		0	
1	15810944	Male	35		20000		0	
2	15668575	Female	26		43000		0	
3	15603246	Female	27		57000		0	
4	15804002	Male	19		76000		0	

CODE:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)
```

OUTPUT:

GaussianNB()

CODE:

```
y_pred = classifier.predict(X_test)
y_pred
```

OUTPUT:

```
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1])
```

```
y_pred = classifier.predict(X_test)
y_test
```

CODE:

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
print(cm)
print(ac)
```

OUTPUT:

```
[[56 2]
[ 4 18]]
0.925
```

AIM

6. Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.

CODE:

```
import matplotlib.pyplot as plt
x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
plt.scatter(x, y)
plt.show()
```

OUTPUT:


```
import matplotlib.pyplot as plt
from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

slope, intercept, r, p, std_err = stats.linregress(x, y) # r corre
lation coefficient # p probability of hypothesis

def myfunc(x):
```

```
return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()
```

-0.758591524376155


```
import pandas
import warnings
warnings.filterwarnings("ignore")

df = pandas.read_csv("cars1.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']
```

```
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(X, y)

OUTPUT:
```

LinearRegression()

CODE:

predictedCO2 = regr.predict([[2300, 1000]])
print(predictedCO2)

OUTPUT:

[104.86715554]

AIM

7. Program to implement text classification using Support vector machine.

CODE:

Dataset used: iris.csv

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
# import some data to play with
iris = datasets.load iris()
X = iris.data[:, :2] # we only take the first two features. We co
uld
 # avoid this ugly slicing by using a two-dim dataset
y = iris.target
# we create an instance of SVM and fit out data. We do not scale
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
svc = svm.SVC(kernel='linear', C=1,gamma='auto').fit(X, y)
# create a mesh to plot in
\#x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
\#h = (x \max / x \min)/100
\#xx, yy = np.meshgrid(np.arange(x min, x max, h),
#np.arange(y min, y max, h
plt.subplot(1, 1, 1)
Z = svc.predict(np.c ravel[xx.(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
```

```
plt.title('SVC with linear kernel')
plt.show()
```


CODE:

Dataset used: True.csv, Fake.csv

```
#Importing Libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.metrics import accuracy_score, confusion_matrix,class
ification_report

from sklearn.svm import LinearSVC

import csv
true = pd.read_csv("True.csv")
fake = pd.read_csv("Fake.csv")
```

```
fake['target'] = 'fake'
true['target'] = 'true'
#News dataset
news = pd.concat([fake, true]).reset_index(drop = True)
news.head()
news.dropna()
```

	title	text	subject	date	target
0	you were wrong! 70-year-old men don t change	News	"December 31	2017"	fake
165	look at me! I m violating the U.S. flag code	News	*October 29	2017"	fake
277	particularly those where people are dying. Ob	News	"September 29	2017"	fake
294	utterly and completely misunderstanding it. T	News	*September 25	2017"	fake
379	I salute you.Featured image via David Becker/	News	"September 10	2017"	fake
				***	1744
39998	rescuers pulled Maria s body from the rubble	worldnews	"September 21	2017 "	true
40742	adding she had a Spanish passport but chose t	worldnews	"September 14	2017 "	true
40788	adding the Rohingya belong in camps for displ	worldnews	"September 14	2017 "	true
40824	said Reick.*	worldnews	"September 14	2017 "	true
41394	in general. *	worldnews	"September 7	2017 "	true

236 rows × 5 columns

```
#Train-test split
x_train,x_test,y_train,y_test = train_test_split(news['text'], new
s.target, test_size=0.2, random_state=1)

#Term frequency(TF)=count(word)/total(words)6+ OZXCVBNM,./
#TF-
IDF: we can even reduce the weightage of more common words like (t
he, is, an etc.) which occurs in all document.
#This is called as TF-
IDF i.e Term Frequency times inverse document frequency.
#count vectorizer: involves counting the number of occurrences ea
ch word appears in a document
```

```
pipe2 = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTran sformer()), ('model', LinearSVC())])

model_svc = pipe2.fit(x_train.astype('U'), y_train.astype('U'))
svc_pred = model_svc.predict(x_test.astype('U'))

print("Accuracy of SVM Classifier: {}%".format(round(accuracy_scor e(y_test, svc_pred)*100,2)))
print("\nConfusion Matrix of SVM Classifier:\n")
print(confusion_matrix(y_test, svc_pred))
print("\nClassification_Report of SVM Classifier:\n")
print(classification_report(y_test, svc_pred))
```

Accuracy of SVM Classifier: 51.43%

Confusion Matrix of SVM Classifier:

[[4302 3] [4085 26]]

Classification Report of SVM Classifier:

	precision	recall	f1-score	support
fake	0.51	1.00	0.68	4305
true	0.90	0.01	0.01	4111
accuracy			0.51	8416
macro avg	0.70	0.50	0.35	8416
weighted avg	0.70	0.51	0.35	8416

<u>AIM</u>

8. Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: iris

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
data=load_iris()
X=data.data
y=data.target
print(X.shape,y.shape)
```

OUTPUT:

```
(150, 4) (150,)
```

CODE:

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier#for checking testi
ng results
from sklearn.metrics import classification_report, confusion_matri
x#for visualizing tree
from sklearn.tree import plot_tree
X_train, X_test, y_train, y_test = train_test_split(X , y, test_si
ze = 25, random_state = 10)
clf=DecisionTreeClassifier()
clf.fit(X_train,y_train)
```

OUTPUT:

DecisionTreeClassifier()

```
y_pred =clf.predict(X_test)
print("Classification report - \n", classification_report(y_test,y
_pred))
```

Classification report -

Classificación	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	1.00	0.90	0.95	10
2	0.86	1.00	0.92	6
accuracy			0.96	25
macro avg	0.95	0.97	0.96	25
weighted avg	0.97	0.96	0.96	25

CODE:

```
cm = confusion_matrix(y_test, y_pred)
print(cm)
```

from sklearn import tree

fig,axes = plt.subplots(nrows=1,ncols=1,figsize =(3,3),dpi=200)

tree.plot_tree(clf,feature_names=data.feature_names,class_names=da
ta.target names,filled=True)

plt.show()

fig.savefig("/content/iris tree.png")

OUTPUT:

[[9 0 0] [0 9 1] [0 0 6]]

<u>AIM</u>

9. Program to implement k-means clustering technique using any standard dataset available in the public domain.

CODE:

Dataset used: GENERAL.csv

```
# importing the libraries
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt

dataset= pd.read_csv('./CC GENERAL.csv')

# checking the presence of null values
print(dataset.isnull().sum())

#CREDIT_LIMIT 1

#MINIMUM PAYMENTS 313
```

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	1
PAYMENTS	0
MINIMUM_PAYMENTS	313
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

CODE:

```
dataset['CREDIT_LIMIT'].fillna(dataset.CREDIT_LIMIT.mean(), inplac
e = True)
dataset['MINIMUM_PAYMENTS'].fillna(dataset.MINIMUM_PAYMENTS.mean()
, inplace = True) # unfilled vaues replaced using mean
print(dataset.isnull().sum())
print(dataset.describe())
```

OUTPUT:

CUST ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	0
PAYMENTS	0
MINIMUM_PAYMENTS	0
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

14 (2.14) T. 1.14 (2.14)				
	BALANCE	BALANCE_FREQUENCY	 PRC_FULL_PAYMENT	TENURE
count	8950.000000	8950.000000	 8950.000000	8950.000000
mean	1564.474828	0.877271	 0.153715	11.517318
std	2081.531879	0.236904	 0.292499	1.338331
min	0.000000	0.000000	 0.000000	6.000000
25%	128,281915	0.888889	 0.000000	12.000000
50%	873.385231	1.000000	 0.000000	12.000000
75%	2054.140036	1.000000	 0.142857	12.000000
max	19043.138560	1.000000	 1.000000	12.000000

```
dataset.drop(['CUST_ID'], axis= 1, inplace = True) #no relevance f
or custid
```

```
# No Categorical Values found
X = dataset.iloc[:,:].values
```

```
# Using standard scaler
from sklearn.preprocessing import StandardScaler
standardscaler= StandardScaler()
X = standardscaler.fit_transform(X) #scaling the values
print(X)
```

```
"""K MEANS CLUSTERING """
#Inertia, or the within-
cluster sum of squares criterion, can be recognized as a measure o
f how internally coherent clusters are
from sklearn.cluster import KMeans
wss= []
for i in range(1, 11):
    kmeans= KMeans(n_clusters = i, init = 'k-
means++', random_state = 0)
    kmeans.fit(X)
    wss.append(kmeans.inertia_)
plt.plot(range(1,11), wss) # selecting 4
```

[<matplotlib.lines.Line2D at 0x7f74661e8a90>]

CODE:

```
wss_mean=np.array(wss).mean()
print(wss)
print(wss_mean)
print([abs(wss_mean-x) for x in wss])
k=np.argmin([abs(wss_mean-x) for x in wss])+1
```

OUTPUT:

```
[152149.99999999983, 127784.92103208725, 111986.41162208859, 99073.93826774803, 91502.98328256077, 84851.13240432573, 79532.40237691796, 75568.97609993909, 69954.91393943134, 67546.56302862825] 95995.22420537268 [56154.775794627145, 31789.69682671457, 15991.187416715911, 3078.714062375351, 4492.240922811907, 11144.091801046947, 16462.82182845472, 20426.248105433595, 26040.31026594134, 28448.661176744426]
```

```
kmeans = KMeans(n_clusters = k, init= 'k-
means++', random_state = 0)
kmeans.fit(X)

Y_pred_K= kmeans.predict(X)
print(Y_pred_K)
```


<u>AIM</u>

10.Programs on feedforward network to classify any standard dataset available in the public domain.

Dataset used: HR_comma_sep.csv

CODE:

import numpy as np import pandas as pd

Load data
data=pd.read_csv('HR_comma_sep.csv')
data.head()

OUTPUT:

satisfa	ction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_Syears	sales	salary
0	0.38	0.53	2	157	3	0	1	0	sales	lov
1	0.80	0.86	5	262	6	0	1	0	sales	medium
2	0.11	0.88	7	272	4	0	4	0	sales	medium
3	0.72	0.67	5	223	5	Û	1	0	sales	low
4	0.37	0.52	2	159	3	0	1	0	sales	low

CODE:

from sklearn import preprocessing

Creating labelEncoder

le = preprocessing.LabelEncoder()

Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary'])

data['sales']=le.fit_transform(data['sales'])

```
X=data[['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hour
s', 'time_spend_company', 'Work_accident', 'promotion_last_5years', 'sales', 'salary']]
y=data['left']
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42
) # 70% training and 30% test
from sklearn.neural_network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden_layer_sizes=(6,5),
            random_state=5,
            verbose=False.
            learning_rate_init=0.01)
# Fit data onto the model
clf.fit(X_train,y_train)
OUTPUT:
  MLPClassifier(hidden layer sizes=(6, 5), learning rate init=0.01,
                  random state=5)
CODE:
ypred=clf.predict(X_test)
# Import accuracy score
from sklearn.metrics import accuracy_score
# Calcuate accuracy
accuracy_score(y_test,ypred)
OUTPUT:
  0.938666666666666
```

AIM

11.Programs on convolutional neural network to classify images from any standard dataset in the public domain.

Dataset used: cifar10

```
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
#The CIFAR10 dataset contains 60,000 color images in 10 classes, w
ith 6,000 images in each class
(train_images, train_labels), (test_images, test_labels) = dataset
s.cifar10.load data()
train images, test images = train images / 255.0, test images / 25
class names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(10,10))
for i in range (25):
   plt.subplot(5,5,i+1)
   plt.xticks([])
   plt.yticks([])
   plt.grid(False)
   plt.imshow(train_images[i])
    # The CIFAR labels happen to be arrays,
    # which is why you need the extra index
   plt.xlabel(class names[train labels[i][0]])
plt.show()
```



```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape
=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 15, 15, 32)	0
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 6, 6, 64)	0
conv2d_2 (Conv2D)	(None, 4, 4, 64)	36928
Total params: 56,320 Trainable params: 56,320 Non-trainable params: 0		

CODE:

```
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
model.summary()
```

OUTPUT:

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 15, 15, 32)	Ø
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 6, 6, 64)	Θ
conv2d_2 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	9
dense (Dense)	(None, 64)	65600
dense_1 (Dense)	(None, 10)	650
Total params: 122,570 Trainable params: 122,570 Non-trainable params: 0		

CODE:

OUTPUT:

```
Epoch 1/10
563/1563 [
               1563/1563 [-
                         -] - 72s 46ms/step - loss: 1.8184 - accuracy: 0.6444 - val_loss: 1.8100 - val_accuracy: 0.6584
1563/1563 [-
Epoch 4/16
1563/1563 [+
                         -) - 72s 46es/step - loss: 0.9112 - accuracy: 0.6800 - val_loss: 0.9435 - val_accuracy: 0.6742
Epoch 5/16
                           - 72s 46es/step - loss: 0.8387 - accuracy: 0.7050 - val_loss: 0.9262 - val_accuracy: 0.6807
Epoch 6/18
1563/1563 [-
                         -] - 72s 46ms/step - loss: 0.7794 - accuracy: 0.7276 - val_loss: 0.8774 - val_accuracy: 0.6951
                    1563/1560 [=
Epoch 8/18
                       ----] - 725 4605/step - Toss: 0.8793 - accuracy: 0.7616 - val_loss: 0.8734 - val_accuracy: 0.7059
1563/1563 7
Enoch 9/10
                        --] - 72s 46ms/step - loss: 0.6346 - accuracy: 0.7767 - val_loss: 0.8788 - val_accuracy: 0.7841
Epoch 18/18
```

```
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_images, test_labels, ve rbose=2)
```

313/313 - 4s - loss: 0.8842 - accuracy: 0.7078 - 4s/epoch - 12ms/step

CODE:

print(test acc)

OUTPUT:

0.7077999711036682