FSAIN

Supervised Machine Learning: Análise de Regressão Simples e Múltipla

Prof. Dr. Luiz Paulo Fávero

"Diferentes pesquisadores, a partir de uma mesma base de dados, podem estimar diferentes modelos e, consequentemente, obter diferentes valores previstos do fenômeno em estudo. O objetivo é estimar modelos que, embora simplificações da realidade, apresentem a melhor aderência possível entre os valores reais e os valores previstos".

Silberzahn, R.; Uhlmann, E. L. Many hands make tight work. **Nature**, v. 526, p. 189-191, Out 2015.

Modelos Supervisionados de Machine Learning: Modelos Lineares Generalizados (GLM)

Modelos Lineares Generalizados (GLM)

$$\eta_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + ... \beta_k X_{ki}$$

Modelos lineares generalizados, características da variável dependente e funções de ligação canônica.

Modelo de Regressão Linear	Característica da Variável Dependente Quantitativa	Distribuição Normal	Função de Ligação Canônica (η) \hat{Y}
Com Transformação de Box-Cox	Quantitativa	Normal Após a Transformação	$\frac{\hat{Y}^{\lambda} - 1}{\lambda}$
Logística Binária	Qualitativa com 2 Categorias (<i>Dummy</i>)	Bernoulli	$ \ln\left(\frac{p}{1-p}\right) $
Logística Multinomial	Qualitativa <i>M</i> (<i>M</i> > 2) Categorias	Binomial	$ \ln\left(\frac{p_m}{1-p_m}\right) $
Poisson	Quantitativa com Valores Inteiros e Não Negativos (Dados de Contagem)	Poisson	$\ln \left(\lambda_{poisson} ight)$
Binomial Negativo	Quantitativa com Valores Inteiros e Não Negativos (Dados de Contagem)	Poisson-Gama	$\ln\!\left(\lambda_{\!\scriptscriptstyle bneg} ight)$

Modelos Supervisionados: Modelos Lineares Generalizados (GLM)

Fundamentação teórica e conceitos em modelos de regressão Especificação dos modelos GLM e funções de ligação canônica Estimação dos parâmetros Variáveis dummy Procedimento Stepwise Teste de normalidade dos resíduos Modelos não lineares e transformações de Box-Cox Diagnósticos de multicolinearidade e heterocedasticidade Estimações em R

Regressão Linear Simples

Objetivo:

Desenvolver uma equação linear que apresente a relação entre uma variável dependente e uma variável explicativa.

Equação linear de uma reta num plano cartesiano:

$$Y_i = \alpha + \beta . X_i + u_i$$

em que temos um intercepto (α) , um coeficiente de inclinação da reta (β) , uma variável explicativa X e um termo de erro u.

Análise de Regressão: Coeficiente de Ajuste do Modelo (R²)

Indica o percentual de variância da variável Y que é devido ao comportamento de variação conjunta da(s) variável(is) explicativa(s) X. Varia de 0 a 1 e, quanto maior o coeficiente, maior o poder preditivo do modelo de regressão, ou seja, maior o poder de explicação do comportamento da variável dependente frente ao comportamento da(s) variável(is) explicativa(s).

Análise de Regressão: Coeficiente de Ajuste do Modelo (R²)

Análise de Regressão: Estimação dos Parâmetros

Critérios:

1 – Soma dos erros igual a zero:

$$\left| \sum_{i=1}^{n} u_i = 0 \right|$$

2 – Soma dos erros ao quadrado sendo a mínima possível:

$$\sum_{i=1}^{n} u_i^2 = \min$$

Parâmetros α e β podem ser estimados por meio do método dos mínimos quadrados ordinários (MQO), em que a somatória dos quadrados dos termos de erro é minimizada.

Análise de Regressão: Cálculo do R²

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2} + \sum_{i=1}^{n} (u_{i})^{2}}$$

Apenas Parâmetros e R²?

Significância Estatística do Modelo

- **Teste** F: Permite analisar se pelo menos um dos β 's é estatisticamente significante para a explicação do comportamento de Y.
 - Hipóteses: H_0 : $\beta_1 = \beta_2 = \beta_3 = \cdots = \beta_k = 0$ H_1 : pelo menos um $\beta \neq 0$

Na rejeição da hipótese nula, pelo menos um dos β 's será estatisticamente diferente de zero para explicar o comportamento de Y -> p-valor abaixo do nível crítico (0,05, usualmente).

Significância Estatística dos Parâmetros do Modelo

■ **Teste** *t*: Permite analisar se cada um dos parâmetros, individualmente, é estatisticamente diferente de zero (no caso de regressão simples, apresenta a mesma significância da estatística *F*).

• Hipóteses: H_0 : $\beta = 0$ H_1 : $\beta \neq 0$

Avalia-se a significância estatística de cada parâmetro do modelo, para determinado nível de significância (0,05, usualmente).

Comparação entre Modelos

Quando houver o intuito de se compararem os resultados das estimações de dois modelos com quantidades distintas de parâmetros e/ou obtidos a partir de amostras com tamanhos diferentes, faz-se necessário o uso do R² ajustado.

$$R_{ajust.}^2 = 1 - \frac{n-1}{n-k} \cdot (1 - R^2)$$

Qual a diferença entre um modelo de regressão simples para um modelo de regressão múltipla?

A inclusão de novas variáveis explicativas no modelo!

A forma funcional passa a ser a seguinte:

$$Y_i = \alpha + \beta_1 \cdot X_{1i} + \beta_2 \cdot X_{2i} + \beta_3 \cdot X_{3i} \cdot ... + \beta_k \cdot X_{ki} + u_i$$

Variáveis Explicativas (X) Qualitativas

- Modelando com variáveis explicativas (X) qualitativas.
- É muito comum observar que diversas variáveis explicativas podem se apresentar de maneira qualitativa (exemplo: rating de crédito, setor de atuação, etc.).
- Dado que tais características não possuem média e nem variância, como incorporá-las ao modelo de regressão?

Variáveis Explicativas (X) Qualitativas

Variáveis dummy

São variáveis categóricas que representam um atributo por meio de combinação binária (0 para a ausência ou 1 para presença).

E quando tivermos uma variável categórica com mais de uma categoria?

Neste caso, devemos incluir n-1 dummies, em que n é a quantidade de categorias existentes na variável original.

Modelos Não Lineares

Modelos Não Lineares e Transformações de Box-Cox

An Analysis of Transformations

G. E. P. Box and D. R. Cox

Journal of the Royal Statistical Society. Series B (Methodological) Vol. 26, No. 2 (1964), pp. 211-252 (42 pages) Published By: Wiley

https://www.jstor.org/stable/2984418

$$Y_{Box-Cox}^* = \frac{Y^{\lambda} - 1}{\lambda}$$

Qual o valor de λ (λ varia entre $-\infty$ e $+\infty$) que maximiza a aderência da distribuição da nova variável Y^* à normalidade?

Modelos Não Lineares e Transformações de Box-Cox

$Y_i = \alpha + \beta_1 . X_1 + \beta_2 . X_2 + + \beta_k . X_k$	Especificação Linear (λ = 1)
$Y_i^2 = \alpha + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k$	Especificação Quadrática (λ = 2)
$Y_i^3 = \alpha + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k$	Especificação Cúbica (λ = 3)
$\sqrt{Y_i} = \alpha + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k$	Especificação de Raiz (λ = 0,5)
$\frac{1}{Y_i} = \alpha + \beta_1 . X_1 + \beta_2 . X_2 + + \beta_k . X_k$	Especificação Inversa (λ = -1)
$\ln(Y_i) = \alpha + \beta_1.X_1 + \beta_2.X_2 + + \beta_k.X_k$	Especificação Semilogarítmica (λ = 0) Expansão de Taylor

Modelos Não Lineares e Transformações de Box-Cox

$$\frac{Y_i^{\lambda} - 1}{\lambda} = \alpha + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k + u_i$$

Diagnóstico de Multicolinearidade

- Multicolinearidade: consequência da existência de alta correlação entre duas ou mais variáveis explicativas (preditoras).
- Possibilidade de interpretações erradas pela eventual distorção dos sinais dos parâmetros.
- Erros nas predições.
- Como detectar a multicolinearidade?
 - Sinais inesperados dos coeficientes.
 - Testes *t* não significantes e teste *F* significante.

Diagnóstico de Multicolinearidade

$$Y_i = \alpha + \beta_1 \cdot X_{1i} + \beta_2 \cdot X_{2i} + \dots + \beta_k \cdot X_{ki} + u_i$$
$$\mathbf{Y} = \mathbf{X.b} + \mathbf{U}$$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ \dots \\ Y_n \end{bmatrix}_{nx1} = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \\ 1 & X_{21} & X_{22} & \dots & X_{2k} \\ 1 & X_{31} & X_{32} & \dots & X_{3k} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & X_{n1} & X_{n2} & \dots & X_{nk} \end{bmatrix}_{nxk+1} \begin{bmatrix} a \\ b_1 \\ b_2 \\ \dots \\ b_k \end{bmatrix}_{k+1x1} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \dots \\ u_n \end{bmatrix}_{nx1}$$

$$\beta = (X'X)^{-1}(X'Y)$$

Fontes Geradoras da Multicolinearidade

- 1 Existência de variáveis que apresentam a mesma tendência durante alguns períodos, em decorrência da seleção de uma amostra que inclua apenas observações referentes a estes períodos.
- 2 Utilização de amostras com reduzido número de observações.
- 3 Utilização de valores defasados em algumas das variáveis explicativas como "novas" explicativas.

$$Y_i = \alpha + \beta_1.X_{1i} + \beta_2.X_{2i}$$

(a) Correlação Perfeita:

$$\mathbf{X} = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}$$

$$\mathbf{X'X} = \begin{bmatrix} 5 & 20 \\ 20 & 80 \end{bmatrix}$$

e, portanto, det(X'X) = 0, ou seja, $(X'X)^{-1}$ não pode ser definida.

(b) Correlação Muito Alta, porém Não Perfeita:

$$\mathbf{X} = \begin{bmatrix} 1 & 4 \\ 2 & 7.9 \end{bmatrix}$$

$$\mathbf{X'X} = \begin{bmatrix} 5 & 19.8 \\ 19.8 & 78.41 \end{bmatrix}$$

de onde vem que det(X'X) = 0.01 e, portanto:

$$(\mathbf{X'X})^{-1} = \begin{bmatrix} 7.841 & -1.980 \\ -1.980 & 500 \end{bmatrix}$$

(c) Correlação Baixa:

$$\mathbf{X} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

$$\mathbf{X'X} = \begin{bmatrix} 5 & 10 \\ 10 & 25 \end{bmatrix}$$

de onde vem que det(X'X) = 25 e, portanto:

$$(\mathbf{X'X})^{-1} = \begin{bmatrix} 1 & -0.4 \\ -0.4 & 0.2 \end{bmatrix}$$

- 1 As significâncias estatísticas dos parâmetros β = (X'X)⁻¹X'Y são sensíveis às correlações entre as variáveis explicativas.
- 2 Os elementos da diagonal principal da matriz (X'X)⁻¹ aparecem no denominador da estatística t. Como a presença da multicolinearidade gera valores muito altos na diagonal da referida matriz, como vimos, ocorre a redução no valor da estatística t, sem alteração no cálculo da estatística F.

Identificação da Multicolinearidade

Regressões auxiliares entre cada uma das explicativas e as demais explicativas:

$$X_{2} = \beta_{1} + \beta_{2}.X_{3} + \dots + \beta_{k-1}.X_{k}$$

$$X_{3} = \beta_{1} + \beta_{2}.X_{2} + \dots + \beta_{k-1}.X_{k}$$

$$\dots$$

$$X_{k} = \beta_{1} + \beta_{2}.X_{2} + \dots + \beta_{k-1}.X_{k-1}$$

Estatísticas VIF (Variance Inflation Factor) e Tolerance:

Tolerance =
$$1 - R_p^2$$

VIF = 1 / Tolerance

em que o R_p^2 é o coeficiente de ajuste da regressão da variável explicativa X_p (p = 2, 3, ..., k) com as demais variáveis explicativas.

Diagnóstico de Heterocedasticidade

