Vector Semantics & Embeddings Word Meaning

What do words mean?

N-gram or text classification methods we've seen so far

- Words are just strings (or indices w_i in a vocabulary list)
- That's not very satisfactory!

Introductory logic classes:

The meaning of "dog" is DOG; cat is CAT
 ∀x DOG(x) → MAMMAL(x)

Old linguistics joke by Barbara Partee in 1967:

- Q: What's the meaning of life?
- A: LIFE

That seems hardly better!

Desiderata

What should a theory of word meaning do for us? Let's look at some desiderata

From lexical semantics, the linguistic study of word meaning

Lemmas and senses

lemma

mouse (N)

sense /

- 1. any of numerous small rodents...
- 2. a hand-operated device that controls a cursor...

Modified from the online thesaurus WordNet

A sense or "concept" is the meaning component of a word Lemmas can be polysemous (have multiple senses)

Relations between senses: Synonymy

Synonyms have the same meaning in some or all contexts.

- filbert / hazelnut
- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- water / H₂0

Relations between senses: Synonymy

Note that there are probably no examples of perfect synonymy.

- Even if many aspects of meaning are identical
- Still may differ based on politeness, slang, register, genre, etc.

```
Relation: Synonymy?
```

```
water/H<sub>2</sub>0

"H<sub>2</sub>0" in a surfing guide?

big/large

my big sister != my large sister
```

The Linguistic Principle of Contrast

Difference in form → difference in meaning

Abbé Gabriel Girard 1718

Re: "exact" synonyms

je ne crois pas qu'il y ait demot synonime dans aucune Langue

[I do not believe that there is a synonymous word in any language]

LA JUSTESSE

LANGUE FRANÇOISE.

LES DIFFERENTES SIGNIFICATIONS

DES MOTS QUI PASSENT

POUR

SYNONIMES

Par M. l'Abbé GIRARD C. D. M. D. D. B.

Chez LAURENT D'HOURY, Imprimeur-L'braire, au bas de la rue de la Harpe, visà vis la rue S. Severin, au Saint Esprit.

M. DCC. XVIII.

Avec Approbation & Privilega du Roy.

Thanks to Mark Aronoff!

Relation: Similarity

Words with similar meanings. Not synonyms, but sharing some element of meaning

car, bicycle cow, horse

Ask humans how similar 2 words are

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

SimLex-999 dataset (Hill et al., 2015)

Relation: Word relatedness

Also called "word association"

Words can be related in any way, perhaps via a semantic frame or field

o coffee, tea: similar

• coffee, cup: related, not similar

Semantic field

Words that

- cover a particular semantic domain
- bear structured relations with each other.

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital

restaurants

waiter, menu, plate, food, menu, chef

houses

door, roof, kitchen, family, bed

Relation: Antonymy

Senses that are opposites with respect to only one feature of meaning

Otherwise, they are very similar!

dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can

- define a binary opposition or be at opposite ends of a scale
 - long/short, fast/slow
- Be reversives:
 - · rise/fall, up/down

Connotation (sentiment)

- Words have affective meanings
 - Positive connotations (happy)
 - Negative connotations (sad)
- Connotations can be subtle:
 - Positive connotation: copy, replica, reproduction
 - Negative connotation: fake, knockoff, forgery
- Evaluation (sentiment!)
 - Positive evaluation (great, love)
 - Negative evaluation (terrible, hate)

Connotation

Osgood et al. (1957)

Words seem to vary along 3 affective dimensions:

- valence: the pleasantness of the stimulus
- arousal: the intensity of emotion provoked by the stimulus
- dominance: the degree of control exerted by the stimulus

	Word	Score	Word	Score
Valence	love	1.000	toxic	0.008
	happy	1.000	nightmare	0.005
Arousal	elated	0.960	mellow	0.069
	frenzy	0.965	napping	0.046
Dominance	powerful	0.991	weak	0.045
	leadership	0.983	empty	0.081

Values from NRC VAD Lexicon (Mohammad 2018)

So far

Concepts or word senses

 Have a complex many-to-many association with words (homonymy, multiple senses)

Have relations with each other

- Synonymy
- Antonymy
- Similarity
- Relatedness
- Connotation

Vector
Semantics &
Embeddings

Vector Semantics & Embeddings

Computational models of word meaning

Can we build a theory of how to represent word meaning, that accounts for at least some of the desiderata?

We'll introduce vector semantics

The standard model in language processing! Handles many of our goals!

Ludwig Wittgenstein

PI #43:

"The meaning of a word is its use in the language"

Let's define words by their usages

One way to define "usage":

words are defined by their environments (the words around them)

Zellig Harris (1954):

If A and B have almost identical environments we say that they are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:

- Ong choi is delicious sautéed with garlic.
- Ong choi is superb over rice
- Ong choi leaves with salty sauces

And you've also seen these:

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

Conclusion:

- Ongchoi is a leafy green like spinach, chard, or collard greens
 - We could conclude this based on words like "leaves" and "delicious" and "sauteed"

Ongchoi: *Ipomoea aquatica "Water Spinach"*

空心菜 kangkong rau muống

Yamaguchi, Wikimedia Commons, public domain

Idea 1: Defining meaning by linguistic distribution

Let's define the meaning of a word by its distribution in language use, meaning its neighboring words or grammatical environments.

Idea 2: Meaning as a point in space (Osgood et al. 1957)

3 affective dimensions for a word

• valence: pleasantness

• arousal: intensity of emotion

• dominance: the degree of control exerted

	Word	Score	Word	Score
Valence	love	1.000	toxic	0.008
	happy	1.000	nightmare	0.005
Arousal	elated	0.960	mellow	0.069
	frenzy	0.965	napping	0.046
Dominance	powerful	0.991	weak	0.045
	leadership	0.983	empty	0.081

NRC VAD Lexicon (Mohammad 2018)

Hence the connotation of a word is a vector in 3-space

Idea 1: Defining meaning by linguistic distribution

Idea 2: Meaning as a point in multidimensional space

Defining meaning as a point in space based on distribution

Each word = a vector (not just "good" or " w_{45} ")

Similar words are "nearby in semantic space"

We build this space automatically by seeing which words are **nearby in text**

```
not good
                                                       bad
to
      by
                                             dislike
                                                          worst
                                            incredibly bad
that now
                    are
                                                             worse
               you
than
        with
                is
                          very good incredibly good
                                     fantastic wonderful
                   amazing
                terrific
                                   nice
```

We define meaning of a word as a vector

Called an "embedding" because it's embedded into a space (see textbook)

The standard way to represent meaning in NLP

Every modern NLP algorithm uses embeddings as the representation of word meaning

Fine-grained model of meaning for similarity

Intuition: why vectors?

Consider sentiment analysis:

- With words, a feature is a word identity
 - Feature 5: 'The previous word was "terrible"'
 - requires exact same word to be in training and test
- With embeddings:
 - Feature is a word vector
 - 'The previous word was vector [35,22,17...]
 - Now in the test set we might see a similar vector [34,21,14]
 - We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings

tf-idf

- Information Retrieval workhorse!
- A common baseline model
- Sparse vectors
- Words are represented by (a simple function of) the counts of nearby words

Word2vec

- Dense vectors
- Representation is created by training a classifier to predict whether a word is likely to appear nearby
- Later we'll discuss extensions called contextual embeddings

From now on:

Computing with meaning representations instead of string representations

荃者所以在鱼,得鱼而忘荃 Nets are for fish;

Once you get the fish, you can forget the net.

言者所以在意,得意而忘言 Words are for meaning;

Once you get the meaning, you can forget the words 庄子(Zhuangzi), Chapter 26 Vector Semantics & Embeddings Vector Semantics & Embeddings

Term-document matrix

Each document is represented by a vector of words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Vectors are the basis of information retrieval

Vectors are similar for the two comedies

But comedies are different than the other two Comedies have more *fools* and *wit* and fewer *battles*.

Idea for word meaning: Words can be vectors too!!!

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good fool	114	80	62	89
fool	36	58	1	4)
wit	20	15	2	3

 $\it battle$ is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

is traditionally followed by **cherry** often mixed, such as strawberry computer peripherals and personal digital a computer. This includes information available on the internet

pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually

	aardvark		computer	data	result	pie	sugar	
cherry	0		2	8	9	442	25	•••
strawberry	0	•••	0	0	1	60	19	•••
digital	0	•••	1670	1683	85	5	4	•••
information	0		3325	3982	378	5	13	•••

Vector Semantics & Embeddings Vector
Semantics &
Embeddings

Cosine for computing word similarity

Computing word similarity: Dot product and cosine

The dot product between two vectors is a scalar:

dot product(
$$\mathbf{v}, \mathbf{w}$$
) = $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + ... + v_N w_N$

The dot product tends to be high when the two vectors have large values in the same dimensions

Dot product can thus be a useful similarity metric between vectors

Problem with raw dot-product

Dot product favors long vectors

Dot product is higher if a vector is longer (has higher values in many dimension)

Vector length:

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

Frequent words (of, the, you) have long vectors (since they occur many times with other words).

So dot product overly favors frequent words

Alternative: cosine for computing word similarity

$$cosine(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Based on the definition of the dot product between two vectors a and b

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \cos \theta$$

Cosine as a similarity metric

- -1: vectors point in opposite directions •••
- +1: vectors point in same directions
- 0: vectors are orthogonal

But since raw frequency values are non-negative, the cosine for term-term matrix vectors ranges from 0–1

1/31/2025

Vector Semantics & Embeddings Cosine for computing word similarity

Vector Semantics & Embeddings

But raw frequency is a bad representation

- The co-occurrence matrices we have seen represent each cell by word frequencies.
- Frequency is clearly useful; if *sugar* appears a lot near *apricot*, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context
- It's a paradox! How can we balance these two conflicting constraints?

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Words like "the" or "it" have very low idf

PMI: (Pointwise mutual information)

•
$$PMI(w_1, w_2) = log \frac{p(w_1, w_2)}{p(w_1)p(w_2)}$$

See if words like "good" appear more often with "great" than we would expect by chance

Term frequency (tf) in the tf-idf algorithm

We could imagine using raw count:

$$tf_{t,d} = count(t,d)$$

But instead of using raw count, we usually squash a bit:

$$tf_{t,d} = \begin{cases} 1 + \log_{10} count(t,d) & \text{if } count(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Document frequency (df)

 df_t is the number of documents t occurs in.

(note this is not collection frequency: total count across all documents)

"Romeo" is very distinctive for one Shakespeare play:

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

Inverse document frequency (idf)

$$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

N is the total number of documents in the collection

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

What is a document?

Could be a play or a Wikipedia article
But for the purposes of tf-idf, documents can be
anything; we often call each paragraph a document!

Final tf-idf weighted value for a word

Raw counts: $w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
good fool	36	58	1	4
wit	20	15	2	3

tf-idf:

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.246	0	0.454	0.520
good	0	0	0	0
fool	0.030	0.033	0.0012	0.0019
wit	0.085	0.081	0.048	0.054

Vector Semantics & Embeddings Vector Semantics & Embeddings

Sparse versus dense vectors

tf-idf (or PMI) vectors are

- long (length |V|= 20,000 to 50,000)
- **sparse** (most elements are zero)

Alternative: learn vectors which are

- short (length 50-1000)
- dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?

- Short vectors may be easier to use as **features** in machine learning (fewer weights to tune)
- Dense vectors may generalize better than explicit counts
- Dense vectors may do better at capturing synonymy:
 - car and automobile are synonyms; but are distinct dimensions
 - a word with car as a neighbor and a word with automobile as a neighbor should be similar, but aren't
- In practice, they work better

Common methods for getting short dense vectors

"Neural Language Model"-inspired models

Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)

 A special case of this is called LSA – Latent Semantic Analysis

Alternative to these "static embeddings":

- Contextual Embeddings (ELMo, BERT)
- Compute distinct embeddings for a word in its context
- Separate embeddings for each token of a word

Simple static embeddings you can download!

Word2vec (Mikolov et al)

https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)

http://nlp.stanford.edu/projects/glove/

Word2vec

Popular embedding method

Very fast to train

Code available on the web

Idea: predict rather than count

Word2vec provides various options. We'll do:

skip-gram with negative sampling (SGNS)

Word2vec

Instead of **counting** how often each word w occurs near "apricot"

- Train a classifier on a binary **prediction** task:
 - Is w likely to show up near "apricot"?

We don't actually care about this task

• But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:

- A word c that occurs near apricot in the corpus cats as the gold "correct answer" for supervised learning
- No need for human labels
- Bengio et al. (2003); Collobert et al. (2011)

Approach: predict if candidate word c is a "neighbor"

- 1. Treat the target word *t* and a neighboring context word *c* as **positive examples**.
- 2. Randomly sample other words in the lexicon to get negative examples
- 3. Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

...lemon, a [tablespoon of apricot jam, a] pinch... c1 c2 [target] c3 c4

Skip-Gram Classifier

```
(assuming a +/- 2 word window)
```

```
...lemon, a [tablespoon of apricot jam, a] pinch... c1 c2 [target] c3 c4
```

Goal: train a classifier that is given a candidate (word, context) pair (apricot, jam) (apricot, aardvark)

...

And assigns each pair a probability:

$$P(+|w,c)$$

 $P(-|w,c) = 1 - P(+|w,c)$

Similarity is computed from dot product

Remember: two vectors are similar if they have a high dot product

Cosine is just a normalized dot product

So:

Similarity(w,c) ∝ w · c

We'll need to normalize to get a probability

(cosine isn't a probability either)

Turning dot products into probabilities

$$Sim(w,c) \approx w \cdot c$$

To turn this into a probability

We'll use the sigmoid from logistic regression:

$$P(+|w,c) = \sigma(c \cdot w) = \frac{1}{1 + \exp(-c \cdot w)}$$

$$P(-|w,c) = 1 - P(+|w,c)$$

$$= \sigma(-c \cdot w) = \frac{1}{1 + \exp(c \cdot w)}$$

How Skip-Gram Classifier computes P(+|w,c)

$$P(+|w,c) = \sigma(c \cdot w) = \frac{1}{1 + \exp(-c \cdot w)}$$

This is for one context word, but we have lots of context words. We'll assume independence and just multiply them:

$$P(+|w,c_{1:L}) = \prod_{i=1}^{L} \sigma(c_i \cdot w)$$

 $\log P(+|w,c_{1:L}) = \sum_{i=1}^{L} \log \sigma(c_i \cdot w)$

Skip-gram classifier: summary

A probabilistic classifier, given

- a test target word w
- its context window of L words c_{1:L}

Estimates probability that w occurs in this window based on similarity of w (embeddings) to $c_{1:L}$ (embeddings).

To compute this, we just need embeddings for all the words.

Word2vec: Learning the embeddings

```
Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch...
c1 c2 [target] c3 c4

positive examples +
t c
apricot tablespoon
apricot of
```

apricot jam apricot a

Skip-Gram Training data

```
...lemon, a [tablespoon of apricot jam, a] pinch...
c1 c2 [target] c3 c4
```

positive examples +

t c

apricot tablespoon
apricot of
apricot jam
apricot a

For each positive example we'll grab k negative examples, sampling by frequency

Skip-Gram Training data

```
...lemon, a [tablespoon of apricot jam, a] pinch...
c1 c2 [target] c3 c4
```

positive examples +		negative examples -			
t	c	t	c	t	c
apricot	tablespoon	apricot	aardvark	apricot	seven
apricot	of	apricot	my	apricot	forever
apricot	•	apricot	where	apricot	dear
apricot	a	apricot	coaxial	apricot	if

Word2vec: how to learn vectors

Given the set of positive and negative training instances, and an initial set of embedding vectors

The goal of learning is to adjust those word vectors such that we:

- Maximize the similarity of the target word, context word pairs (w, c_{pos}) drawn from the positive data
- Minimize the similarity of the (w, c_{neg}) pairs drawn from the negative data.

Loss function for one w with c_{pos} , c_{neg1} ... c_{negk}

Maximize the similarity of the target with the actual context words, and minimize the similarity of the target with the k negative sampled non-neighbor words.

$$L_{CE} = -\log \left[P(+|w, c_{pos}) \prod_{i=1}^{k} P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log \left(1 - P(+|w, c_{neg_i}) \right) \right]$$

$$= -\left[\log \sigma(c_{pos} \cdot w) + \sum_{i=1}^{k} \log \sigma(-c_{neg_i} \cdot w) \right]$$

Learning the classifier

How to learn?

Stochastic gradient descent!

We'll adjust the word weights to

- make the positive pairs more likely
- and the negative pairs less likely,
- over the entire training set.

Reminder: gradient descent

- At each step
 - Direction: We move in the reverse direction from the gradient of the loss function
 - Magnitude: we move the value of this gradient $\frac{d}{dw}L(f(x;w),y)$ weighted by a **learning rate** η
 - Higher learning rate means move w faster

$$w^{t+1} = w^t - h \frac{d}{dw} L(f(x; w) y)$$

The derivatives of the loss function

$$\begin{split} L_{\text{CE}} &= -\left[\log\sigma(c_{pos}\cdot w) + \sum_{i=1}^{k}\log\sigma(-c_{neg_i}\cdot w)\right] \\ &\frac{\partial L_{\text{CE}}}{\partial c_{pos}} = \left[\sigma(c_{pos}\cdot w) - 1\right]w \\ &\frac{\partial L_{\text{CE}}}{\partial c_{neg}} = \left[\sigma(c_{neg}\cdot w)\right]w \\ &\frac{\partial L_{\text{CE}}}{\partial w} = \left[\sigma(c_{pos}\cdot w) - 1\right]c_{pos} + \sum_{i=1}^{k} \left[\sigma(c_{neg_i}\cdot w)\right]c_{neg_i} \end{split}$$

Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates

$$c_{pos}^{t+1} = c_{pos}^{t} - \eta [\sigma(c_{pos}^{t} \cdot w^{t}) - 1] w^{t}$$

$$c_{neg}^{t+1} = c_{neg}^{t} - \eta [\sigma(c_{neg}^{t} \cdot w^{t})] w^{t}$$

$$w^{t+1} = w^{t} - \eta \left[[\sigma(c_{pos} \cdot w^{t}) - 1] c_{pos} + \sum_{i=1}^{k} [\sigma(c_{neg_{i}} \cdot w^{t})] c_{neg_{i}} \right]$$

Two sets of embeddings

SGNS learns two sets of embeddings $\begin{array}{c} \text{Target embeddings matrix W} \\ \text{Context embedding matrix C} \\ \text{It's common to just add them together,} \\ \text{representing word } \textit{i} \text{ as the vector } w_i + c_i \end{array}$

Summary: How to learn word2vec (skip-gram) embeddings

Start with V random d-dimensional vectors as initial embeddings

Train a classifier based on embedding similarity

- Take a corpus and take pairs of words that co-occur as positive examples
- Take pairs of words that don't co-occur as negative examples
- Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
- Throw away the classifier code and keep the embeddings.

Word2vec: Learning the embeddings

Properties of Embeddings

The kinds of neighbors depend on window size

Small windows (C= +/- 2): nearest words are syntactically similar words in same taxonomy

Hogwarts nearest neighbors are other fictional schools

Sunnydale, Evernight, Blandings

Large windows (C= +/- 5): nearest words are related words in same semantic field

• Hogwarts nearest neighbors are Harry Potter world:

Dumbledore, half-blood, Malfoy

Analogical relations via parallelogram

The parallelogram method can solve analogies with both sparse and dense embeddings (Turney and Littman 2005, Mikolov et al. 2013b)

king – man + woman is close to queen
Paris – France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:

$$\hat{b}^* = \underset{x}{\operatorname{argmax}} \operatorname{distance}(x, a^* - a + b)$$

Caveats with the parallelogram method

It only seems to work for frequent words, small distances and certain relations (relating countries to capitals, or parts of speech), but not others. (Linzen 2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research (Peterson et al. 2020)

Embeddings as a window onto historical semantics Train embeddings on different decades of historical text to see meanings shift ~30 million books, 1850-1990, Google Books data a daft gay (1900s) b spread C solemn awful (1850s) majestic

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In *NeurIPS*, pp. 4349-4357. 2016.

```
Ask "Paris: France:: Tokyo: x"
```

• x = Japan

Ask "father: doctor:: mother: x"

x = nurse

Ask "man: computer programmer:: woman: x"

• x = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences 115(16), E3635–E3644.

- Compute a gender or ethnic bias for each adjective: e.g., how much closer the adjective is to "woman" synonyms than "man" synonyms, or names of particular ethnicities
 - Embeddings for **competence** adjective (*smart, wise, brilliant, resourceful, thoughtful, logical*) are biased toward men, a bias slowly decreasing 1960-1990
 - Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre) were biased toward Asians in the 1930s, bias decreasing over the 20th century.
- These match the results of old surveys done in the 1930s

Properties of Embeddings