ThinkFast: Scaling Machine Learning to Modern Demands

Hristo Paskov

The Genomic Data Deluge

- Precision Medicine Initiative: sequence
 1,000,000 genomes
 - \$**215 Million** in 2015
 - Pilot study
 - Outputs 10-50 GB/person

How do we analyze all of this data to drive progress?

Massive Data Sources

Bioinformatics

Social Media

The Analysis Refinement Cycle

Model captures data nuance?

Model

Solver exists, is fast enough?

Solver

 $x^+ = x - \alpha M \nabla f(x)$

✓ Yes?

Proceed

! No?

Quit

Increase time, money, experience, resources

More Than Just Training Models

- Regularization paths
- Model risk assessment
- Interpretability

Brief History of Statistical Learning

Kernel Methods

Trees & Ensembles

Structured Regularization

Interpretability & Statistical Guarantees

Structured Regularization

$$\min_{\beta \in \mathbb{R}^d} L(X\beta) + \lambda R(\beta)$$

Losses

Regression Classification Ranking Motif Finding Matrix Factorization Feature Embedding Data Imputation

Regularizers

Sparsity
Spatial/ Temporal /
Manifold Structure
Group Structure
Hierarchical Structure
Structured & Unstructured
Multitask Learning

•••

The Lasso's Combinatorial Side

$$\min_{\beta \in \mathbb{R}^d} L(y - X\beta) + \lambda \|\beta\|_1$$

$$\min_{\beta \in \mathbb{R}^d} L(y - X\beta) + \lambda \|\beta\|_1$$

$$-X^{T}\partial_{y-X\beta}L(y-X\beta)+\lambda\partial_{\beta}\|\beta\|_{1}$$

$$-X^{T}\partial_{y-X\beta}L(y-X\beta)+\lambda\partial_{\beta}\|\beta\|_{1}$$

Feature & label storage

$$-X^{T}\partial_{y-X\beta}L(y-X\beta)+\lambda\partial_{\beta}\|\beta\|_{1}$$

Data access operations

Feature & label storage

$$u = y - X\beta$$
$$v = \partial_u L(u)$$
$$w = X^T v$$

$$-X^{T}\partial_{y-X\beta}L(y-X\beta) + \lambda\partial_{\beta}\|\beta\|_{1}$$

ML "Query Language"

 $\min_{\beta \in \mathbb{R}^d} L(y - X\beta) + \lambda \|\beta\|_1$

Data access operations

$$u = y - X\beta$$
$$v = \partial_u L(u)$$
$$w = X^T v$$

Feature & label storage

$$\min_{\beta_1,\beta_2,\beta_3 \in \mathbb{R}^d} \sum_{t=1}^3 [L_t(y_t - X_t\beta_t) + \lambda_t R_t(\beta_t)] \\ + \omega \| [\beta_1 \quad \beta_2 \quad \beta_3] \|_*$$

$$\text{yelp:} \quad \text{amazon} \quad \text{where } \beta_1 = \beta_2 = \beta_3$$

ML "Query Language"

Data access operations

Feature, label and model storage

Mathematical Structure

$$\min_{\beta \in \mathbb{R}^d} L(y - X\beta) + \lambda \|\beta\|_1$$

$$u = y - X\beta$$
$$v = \partial_u L(u)$$
$$w = X^T v$$

Efficient Feature Storage

"Query Language" Optimization

Static analysis

$$||y - Xw||_{2}^{2} + ||w||_{2}^{2}$$

$$||y - Xw||_{2}^{2} + \frac{1}{2}(||w||_{2}^{2} + ||w||_{1})$$

$$||y - Xw||_{2}^{2} + ||w||_{1}$$

"Query Language" Optimization

Static analysis

$$||y - Xw||_2^2 + ||w||_2^2$$

$$||y - Xw||_2^2 + \frac{1}{2}(||w||_2^2 + ||w||_1)$$

$$\varepsilon(y - Xw) + \frac{1}{2}(\|w\|_2^2 + \|w\|_1)$$

$$||y - Xw||_2^2 + ||w||_1$$

"Query Language" Optimization

Static analysis

Runtime analysis

Some Bioinformatics Applications

- Personalized medicine, Memorial Sloan Kettering Cancer Center
 - 35% accuracy improvement over state-of-the-art
- Metagenomic binning and DNA quality assessment, Stanford School of Medicine
 - Previously unsolved problem
- Toxicogenomic analysis, Stanford University
 - Improved on state-of-the-art results

Upcoming

- Massive scale character level sentiment and text analysis on Amazon data
 - Billions of features, hours to solve a model
 - Efficient multitask learning
- Characterize the global limitations of learning word structure
 - Devise provably more efficient regularizers for uncovering structure