

First Semester 2015-2016 Course Handout (Part-II)

Date: 03/08/2015

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE F418

Course Title : Modeling and Simulation in Chemical Engineering

Instructor-in-Charge : Subhajit Majumder

Course Description

The Modeling and Simulation of Chemical Engineering processes is a subject of major importance for the knowledge of unitary processes of transport and kinetics. Basically it deals with three aspects, namely; modeling of chemical engineering processes, parameter estimations and application of numerical methods for solution of models. In this course first chapter is devoted to introduction of the course and discusses the process modeling and need of simulation. Subsequently it follows the parameter estimation, tools of simulation, development of models, classification of models, unit models of unit process, models of mass transfer equipment, heat transfer equipment, reactors, and application of numerical methods for solutions of models.

Scope & Objective

Process simulation, tools of simulation, parameter estimation, models and classification of models, alternate classification of models, mathematical modeling based on transport phenomena, population balance, principles of probability and experimental data. Unit models of unit processes, detailed mathematical models of mass transfer equipment, heat transfer equipment, reactors, modular and equation-solving approaches in simulation, decomposition of network, convergence promotion.

Pre-requisites

Basic knowledge of Courses on Material & Energy Balance; Transport Phenomena and Numerical methods.

Text Books

TB Babu B.V., "Process Plant Simulation", 1st Ed., Oxford University Press, 2004.

Reference Books:

- R1 Luyben W. L., "Process Modeling Simulation and Control for Chemical Engineers", 2nd Ed., McGraw Hill, 1990.
- R2 Najim K., "Process Modeling and Control in Chemical Engineering", CRC, 1990.
- R3 Aris R., "Mathematical Modeling, Vol. 1: A Chemical Engineering Perspective (Process System Engineering)", Academic Press, 1999.

Course Plan

Lecture	Learning Objectives	Reference						
No.	Learning Objectives	Topics to be covered	Chap./Sec. (Text					
			Book/ Reference					
			Book)					
1	Introduction	Introduction to process modeling and	Ch. 1.1, 1.2 and					
		simulation, Process synthesis and process	Ch. 2.1 of TB					
		analysis, Process modeling, Deterministic vs stochastic processes						
PART I (MODELING)								
2-3	Process Modeling	Physical modeling, Mathematical modeling,	Ch. 2.2, 2.3, 2.4 of					
		Chemical system modeling	TB					
4-5		Fundamental laws	Ch. 2.2 of R1					
6-7		Classification of Mathematical modeling	Ch. 3 of TB					
8-12	Chemical System	Models in mass transfer operations: solvent	Ch. 4 of TB and					
	Modeling	extraction, CSTR, mixing tank, gas absorption,	Class notes					
		distillation						
13-17		Models in heat transfer operations: conduction	Ch. 5 of TB					
		through hollow cylindrical pipe, heating of a						
		liquid, heat loss through maturing tank, heat						
		transfer through extended surfaces, heat						
		transfer in tubular gas preheater						
18-21		Models in fluid flow operations: continuity	Ch. 6.1 and 6.2 of					
		equation, flow through packed bed column	TB					
22-23		Models in reaction engineering: chemical	Ch. 7.1 and 7.4 of					
		reaction with diffusion in a tubular reactor,	TB					
	reactors in series							
24-26	Madylan Ammaaahaa and	PART II (SIMULATION)	Ch. 11 of TB					
24-26	Modular Approaches and	Analysis vs design mode, precedence, disjoining, the SWS algorithm	Cn. 11 01 1B					
27-31	Equation-solving approach Decomposition of	Algorithm based on Signal Flow Graph:	Ch. 12.1 and 12.2					
27-31	Networks	Tearing algoriths, Barkley and Motard	of TB					
	INCLWOINS	algorithm, Basic Tearing algorithm	OLID					
32-35		Algorithm based on Reduced Digraph: Kehat	Ch. 12.3 of TB					
		algorithm, M&H algorithm						
36-37	Convergence Promotion	Newton's method, Direct substitution and	Ch. 13.1 of TB					
		Quasi Newton methods						
38-40	Industrial Simulation	Aspen Plus, methodology of Aspen Plus usage	Class notes/					
	Package	for industrial case studies	Demonstration					

Evaluation Scheme (Total Marks 200)

EC	Evaluation component	Duration	Weightage (%)	Date and time	Nature of
No.	(EC)	(Minutes)			component
1	Mid-Semester Test	90	30	7/10 2:00 - 3:30	Closed Book
				PM	
2	Surprise Tests [#]	-	20	-	Closed Book/
	_				Open Book*
3	Assignment ^{\$}	-	10	To be	Continuous
	_			announced in	Monitoring
				the class in due	
				course of time	
4	Comprehensive	180	40	7/12 FN	Closed Book
	Examination				

[#] Total <u>six</u> surprise tests will be conducted. Out of these, the performance in <u>best four</u> will be considered for final evaluation. Each surprise test will carry 10 marks. During surprise tests, students will be asked to solve problems and submit the answer sheet to the instructor.

Chamber Consultation Hour: To be announced in the class.

Make-up policy: Make-up will be granted only when one attends more than 75% classes and has genuine reason(s) (medical ground only) for not appearing in the regular test. Proper proofs (medical certificate, prescription etc. from Medical Center) must be submitted along with Make-up application. **Prior permission** of IC is compulsory.

Notices: All notices concerning this course will be displayed on the Notice Board of Chemical Engineering Department and will also be available online on NALANDA Portal.

> Instructor-in-charge **CHE F418** Email: subhajit@pilani.bits-pilani.ac.in

^{\$}Conceptual problems/case studies will be given as Assignment.

^{*}During open book evaluation, only text book and class notes are allowed. Xerox copies of any other materials are not allowed.