Part C: Designing DFAs [10 Points]

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{the length of } w \text{ is at most three} \}$

 $L_2 = \{w : 00 \text{ appears at least twice as a substring in } w\}$

Now solve the following problems.

0001, 1000, 0000 (a) Write down all the length-four strings in L_2 . (1.5 points)

(b) Give the state diagram of a DFA that recognizes L₁. (3.5 points)

$$\longrightarrow \bigcirc \bigcirc \stackrel{0,1}{\longrightarrow} \bigcirc \bigcirc \stackrel{0,1}{\longrightarrow} \bigcirc \stackrel{0,1}{\longrightarrow$$

(c) Give the state diagram of a DFA that recognizes L2. You might want to do this after you have completed all the other problems. (2 points)

(d) Write down all the strings in L₁ ∩ L₂. (1 point)

(e) Give a five-state DFA that recognizes $L_1 \cap L_2$. Your answer to (d) should help you here. (2 points)

