Applied Data Science Capstone

IBM: (Use this one because you can see and interact with the maps)

https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/192d2983-e7c0-43df-8895-

b1d6672e4df6/view?access token=756c9afb215e04c3439f6482018d4e9f94892f619be0e42ad10b82eb2ff2949d

GitHub:

https://github.com/coursera-

coder/Coursera Capstone/blob/master/Applied%20Data%20Science%20Capstone.ipynb

Introduction

TL;DR; Going to find out what restaurant to open that best serves police stations, and which station(s) will benefit the most.

Problem Description

The purpose of this project is to find the best place for an associated business. For example, around a hospital you will most likely find pharmacies, or a Pawn shop and a Casino. Now we may think that police officers love donuts, so donut shops may be clustered around police stations. Is this true or just a stereotype? This project we will identify the most common restaurants around police stations in a particular city, then we will determine which type of restaurant around a particular police station that someone should open.

Why do I want to do this?

Intellectual curiosity on my part, but it does have some important impacts for others. First, it gives someone an opportunity to choose the best business to support an organization that they love. For me that would be to support local law enforcement.

Why is this important, and who would be interested?

Someone who wants to support an organization, but still open a successful business would be interested in the results of this project. For example, you might be a retired police officer in a new city. You may have your own opinions on what is best, but this city is different. The data provided by this project would give you a greater chance of success while still supporting the law enforcement community that you love.

As a side benefit of interest to anyone, this can support or discredit stereotypes.

Data

TL;DR; Get locations of police stations, Find closest businesses, K-Means cluster, find most common, apply suggestion to least common.

I am anticipating that most if not all data will be coming from Foursquare. This section is broken down into two parts, Gathering Data, Working with Data.

Gathering Data

We need to start somewhere, so seeing that our target audience is someone retiring from the industry, and Florida is a great place to retire, we will be using Orlando, Florida as our test market. However, we can use the data from any city and apply the same analysis. If this was a web-based tool, we would let the user select the location, and category that they would like to support, however this is a class assignment so I am choosing Police and Orlando Florida.

Get the locations of Police Stations and Filter as needed

Lucky for us, Foursquare has categorized venues, and Police Stations is one of the categories! (https://developer.foursquare.com/docs/build-with-foursquare/categories/)

Police Station

4bf58dd8d48988d12e941735

To get the police stations in Orlando Florida, we will use the venue search API call with the appropriate category ID (https://developer.foursquare.com/docs/api-reference/venues/search/)

The call is a nested structure and we do not know if they want a category or end node, therefore we will have to flatten the table.

Get nearby Venue Data

We will then gather and filter nearby venues. This includes location data so we will be using folium to map the data.

Analyze the areas surrounding the user defined category

Get the most common businesses for each area surrounding the user defined category, in our case police stations.

Cluster the data

use k-means to cluster by popularity. This lets us know what the categories are for popularity.

Find the most underserved area to recommend to our end user

Which police station ranks last? that is most likely the best location for opening up the top item(s) from the ranking.

We can also answer the stereotype problem. Let us see if donut shops rank #1.

Methodology

TL;DR; K Means used for clustering, Elbow curve and Silhouette Method used for automatic identification of clustering.

Setup:

We should be able to run this for any city. For the sake of demonstration, we are using Orlando, FL and Police stations as our inputs. The notebook was written to take in any city or venue.

What we are seraching for. This can be convereted to user input for future versions

Get 1

We need to get all the police stations. In order to do this, we need to find out what category police stations are. Getting the categories is easy. Just use this call:

https://developer.foursquare.com/docs/api-reference/venues/categories/

The issue is that the return is a nested structure. We need to flatten it. Check the notebook for the formula we used.

We get a list of categories:

	id	name	pluralName	shortName
0	52f2ab2ebcbc57f1066b8b4a	Tunnel	Tunnels	Tunnel
1	4f04b25d2fb6e1c99f3db0c0	Travel Lounge	Travel Lounges	Lounge
2	54541b70498ea6ccd0204bff	Transportation Service	Transportation Services	Transportation Services
3	52f2ab2ebcbc57f1066b8b51	Tram Station	Tram Stations	Tram
4	4bf58dd8d48988d129951735	Train Station	Train Stations	Train Station

From there it is easy to get our category:

	id	name	pluralName	shortName
839	4bf58dd8d48988d12e941735	Police Station	Police Stations	Police Station

Getting the police stations is easy:

https://developer.foursquare.com/docs/api-reference/venues/search/

We place the results on a map. The map is auto sized based on the returned results. See notebook for code. This eliminates the need for human input allowing returns for multiple locations without massaging.

Here is a map of the police stations that were found:

Cluster K-Means

We use K-Means to cluster the data. But we need to find the ideal number of clusters we use. Using the elbow method, we can visually see a good answer.

Elbow curves are good for visual, but we found that auto-selection of clusters was hit or miss. Using the silhouette method was much better and gave better results in our testing.

Our max is 16, We will use this number for KMeans for this run.

For this run, 16 clusters was the ideal number of clusters.

This chart shows the clustering. The additional benefit is that we can identify the center of each cluster. This will help us identify where to place a business in the future. For now we just store away all of the cluster centers because we don't know which cluster we should recommend.

Here are the clusters on the map. The large circles are the cluster centers, the smaller circles are the police stations. Each color is for a unique cluster assignment.

Get 2

Now that we have our cluster locations, let us get some additional data for each cluster area.

Here is a sample of that collected data. As you can see, we have assigned it to the appropriate cluster and we know what type of venue it is.

	Cluster	Cluster Latitude	Cluster Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	0	28.754578	-81.296705	7-Eleven	28.755337	-81.297201	Convenience Store
1	0	28.754578	-81.296705	Bayhead Eye Centre	28.756624	-81.298470	Office
2	0	28.754578	-81.296705	Country Club Flower Shop	28.756665	-81.298470	Flower Shop
3	1	28.502287	-81.409602	Boating On Lake Holden	28.501700	-81.409418	Lake
4	1	28.502287	-81.409602	Aunt Lorry's House	28.505838	-81.412468	Karaoke Bar

Rank

For each area we rank the 10 most common venues

	luster	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	0	Flower Shop	Convenience Store	Office	Video Store	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop
1	1	Karaoke Bar	Lake	Video Store	Food & Drink Shop	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop
2	2	Convenience Store	Video Store	Grocery Store	Chinese Restaurant	Sandwich Place	Donut Shop	Fast Food Restaurant	Pharmacy	Intersection	Ice Cream Shop
3	3	Carpet Store	Video Store	Food & Drink Shop	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	Event Space
4	4	Hotel Bar	Lounge	Hotel Pool	American Restaurant	Bus Stop	Resort	Buffet	Ice Cream Shop	Jewelry Store	Laundromat

Find

For the entire city for areas around our clusters, the ranking of most popular venues are:

	Venue	Commonality
0	Bar	0.080321
1	American Restaurant	0.056225
2	Lounge	0.048193
3	Hotel	0.044177
4	Convenience Store	0.040161
5	Steakhouse	0.028112
6	Pizza Place	0.028112
7	Cocktail Bar	0.024096
8	Mexican Restaurant	0.024096
9	Burger Joint	0.024096

At the top of the list is a bar. So that is most likely what we should recommend that the user opens.

To find the most underserved area, we need to rank each category according to its commonality score with the top 10 venues.

	luster	1st Most Common	2nd Most Common Venue	3rd Most Common	4th Most Common	5th Most Common	6th Most Common	7th Most Common	8th Most Common Venue	9th Most Common	10th Most Common	Score
	iustoi	Venue	Zila most common venue	Venue	Venue	Venue	Venue	Venue	our most common venue	Venue	Venue	30010
0	1	Karaoke Bar	Lake	Video Store	Food & Drink Shop	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	0.104418
1	6	Airport Terminal	Gym	Baseball Field	Boat or Ferry	Video Store	French Restaurant	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	0.104418
2	3	Carpet Store	Video Store	Food & Drink Shop	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	Event Space	0.104418
3	11	Liquor Store	Auto Workshop	Financial or Legal Service	French Restaurant	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	0.112450
4	8	Airport Service	Burger Joint	Food & Drink Shop	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	Event Space	0.144578
5	0	Flower Shop	Convenience Store	Office	Video Store	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	0.176707
6	15	Cosmetics Shop	Southern / Soul Food Restaurant	Video Store	Flower Shop	Convenience Store	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	0.176707
7	5	Convenience Store	Mexican Restaurant	Intersection	Smoothie Shop	Garden Center	Construction & Landscaping	Mobile Phone Shop	Fast Food Restaurant	Bookstore	Furniture / Home Store	0.232932
8	2	Convenience Store	Video Store	Grocery Store	Chinese Restaurant	Sandwich Place	Donut Shop	Fast Food Restaurant	Pharmacy	Intersection	Ice Cream Shop	0.248996
9	9	Hotel	Video Store	Food & Drink Shop	Convenience Store	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	Donut Shop	0.257028
10	7	Convenience Store	Pizza Place	Food & Drink Shop	American Restaurant	Auto Workshop	Cosmetics Shop	Cuban Restaurant	Dessert Shop	Discount Store	Dive Bar	0.329317
11	4	Hotel Bar	Lounge	Hotel Pool	American Restaurant	Bus Stop	Resort	Buffet	Ice Cream Shop	Jewelry Store	Laundromat	0.361446
12	13	Pizza Place	American Restaurant	Discount Store	Steakhouse	Fast Food Restaurant	Food & Drink Shop	Convenience Store	Cosmetics Shop	Cuban Restaurant	Dessert Shop	0.393574
13	14	Bar	Lounge	Cocktail Bar	American Restaurant	Restaurant	Burger Joint	Art Gallery	Basketball Stadium	Cuban Restaurant	Pizza Place	0.610442
14	12	Hotel	American Restaurant	Steakhouse	Pizza Place	Bar	Mexican Restaurant	Restaurant	Theme Park Ride / Attraction	Pool	Gym	0.618474

We sorted the above by rank (lowest to highest) and found that Cluster 1 was the most underserved.

Results

The analysis recommends that the end user should open a "Bar" in Area 1 centered at [28.500289 -81.302449]

In [35]: printmd("# ", 'User should open a "{}" in Area {} centerd at {}'.format(most_popular_venue, least_common_zone, centers[least_common_zone]), color="#006400")

User should open a "Bar" in Area 16 centerd at [28.500289 -81.302449]

Discussion

There are a lot of improvements that can be made to this program, but it is a decent proof of concept. The biggest fault of the program is that there is more data collection that can be made and that Foursquare gives different results depending on the time of day. Data collection can easily be improved, but I am using the free addition and my calls (and number of results are limited). Time of day data would need to be added to the mix.

By the way, when looking at the data we did not find that Donut shops and Police Stations are usually close to each other. Guess we can throw that stereotype out.

Conclusion

You can try it yourself! All you need to do is copy the notebook and change the values in the beginning. (you will also need to add your Foursquare credentials.

I will leave you with the same data for Seattle Washington.

