Introduction au Machine Learning

Yann Chevaleyre, Paul Caillon

Intervenants

Yann Chevaleyre

- Professeur des Universités @ Dauphine-PSL;
- yann.chevaleyre@lamsade.dauphine.fr

Paul Caillon

- Chercheur post-doctorant @ Dauphine-PSL;
- paul.caillon@dauphine.psl.eu

Planning du cours

Séance 1 : Jeudi 15 mai 18-21h (3 h) – Introduction et Définitions

- Définition du Machine Learning
- Types de données (numériques, catégorielles, textuelles, images)
- Jeux d'entraînement et de test : découpage, overfitting et underfitting
- définition, sur- et sous-apprentissage
- Approches non-supervisée vs supervisée : quelques exemple d'applications sur des données
- k-plus proches voisins: utilisation en classification, régression, estimation de densité
 - o distance, choix de k, sensibilité aux outliers
 - Malédiction de la dimension : concentration des distances
 - sur- et sous-apprentissage en fonction de k

Séance 2 : Jeudi 22 mai matin (3,5 h) - Apprentissage supervisé Linéaire

- Risque statistique et fonctions de perte : MSE, log-loss
- Modèles linéaires en régression+classification
 - Régression Linéaire
 - Classifieur Bayes naïf : hypothèse d'indépendance, calcul des probabilités
 - Régression logistique : modèle linéaire, sigmoïde, multiclasse (softmax), interprétation des coefficients
- Descente de Gradient

Séance 3 : Jeudi 22 mai après-midi (3,5 h) – Apprentissage supervisé : Arbres de Décision + méthodes ensemblistes

- Decision Trees, interprétabilité des Decision Trees
- Bagging et Random Forest : bootstrap, agrégation d'arbres, importance des variables
- Boosting (AdaBoost, Gradient Boosting) : pondération séquentielle
- Comparaison des approches ensemblistes vs modèles simples
- Hyperparamètres méthodes ensemblistes

Planning du cours

Séance 4 : Mardi 27 mai 18-21h (3 h) - Réduction de Dimension

- Pourquoi réduire la dimension ?
 - o pour visualiser
 - o pour combattre le surapprentissage
- Réduction de Dimention
 - sélection de variables
 - PCA et SVD
 - LSA (Latent Semantic Analysis)
 - UMAP

Séance 5 : Mardi 3 juin 18-21h (3 h) - Clustering

- Clustering
 - o Clustering hiérarchique : distances, liens et dendrogrammes
 - K-means : principe, initialisation, choix de k, convergence
 - DBSCAN : notion de densité, paramètres ε & min_samples, gestion du bruit
 - Soft-Clustering (EM)

Séance 6 : Jeudi 19 juin matin (3,5 h) – Introduction au Deep Learning (MLP)

- Perceptron multicouche (MLP): architecture, couches denses, fonctions d'activation
- Rétropropagation : calcul du gradient, descente de gradient, régularisation (weight decay)
- Entraînement d'un MLP simple sur MNIST avec Pytorch

Séance 7 : Jeudi 19 juin après-midi (3,5 h) – CNN + Grands Modèles de langue

- Réseaux convolutionnels (CNN): convolution, pooling, architectures classiques (LeNet, VGG)
- Expliquer les LLMs en simplifiant (embeddings, attention, etc...)
- expliquer le pre-training, fine-tuning, etc.
- Leur faire jouer avec des LLMs en inférence LLMs en TP (soit la librairie huggingface, soit avec une librairie en ligne, comme openai ou openrouter)
- Jouer en TP avec des réseaux pre-trained, non post-trained

Les Méthodes de ML en IA

Quelques repères historiques sur les méthodes d'Apprentissage Supervisé

- XIX siècle Régression linéaire [Legendre, Gauss]
- 1936 Linear Discriminant Analysis [Fisher]
- 1943 Modèle mathématique du neurone. Pas d'apprentissage [McCulloch & Pitts]
- 1949 Algorithme d'apprentissage non supervisé pour neurone [Hebb]
- 1958 Algorithme du Perceptron [Rosenblatt]
- 1951 Algorithme de la descente de gradient stochastique [Robbins, Monro]
- 1963 Arbres de décision [Morgan, Sonquist]
 Classifieurs à vaste marge [Vapnik]
- 1971 Réseaux de neurones à 8 couches [Ivakhnenko & Lapa]
- 1974 Algorithme de rétro-propagation du gradient [Werbos]
- 1979 Convolutional neural networks (*Neocognitron*, pas de back-prop. [Fukushima])
- 1988 Naïve Bayes [Ohmann]
- 1989 Réseau de neurone LeNet [Y. Lecun]
- 1990 Méthodes de Boosting
- 1992 Méthodes à Noyaux [V. Vapnik]
- 2012 AlexNet [A.Krizhevsky]
- 2015 ResNets
- 2017 Transformers

Typologie des problèmes d'apprentissage

Apprentissage Supervisé

 Régression, classification, analyse de série temporelle filtrage collaboratif (recommandation)

Apprentissage non-supervisé

Clustering, réduction de dimension, estimation de densité

Apprentissage par renforcement

Supervised ML: Learning a Model from Data

Source: https://bbvaopen4u.com

Supervised ML: Learning a Model from Data

Supervised ML: Learning a Model from Data Using this Model for Prediction

Apprentissage Supervisé: Classification vs Régression

 Si les prédictions sont des catégories (Yes/No, Colors), c'est de la classification

• Si les prédictions sont des nombre, c'est de la régression

Jeu de données d'apprentissage Refund Cheat Status Income etje vette n°1 125K Yes Single No 100K No Married Single 70K No No Married 120K No Yes No Divorced 95K Yes No Married 60K No 220K No Yes Divorced Single 85K Yes No No No Married 75K No Single 90K Yes Variable, attributes explicately étiquette, classe, Variable à prédire

for example $f(x) = \begin{cases} YES & \text{if Refun=No and Mar} \in \{Sing,Div\} \text{ and } Tax > 80 \\ NO & \text{otherwise} \end{cases}$

Yann Chevaleyre

Dauphine | PSL €

Jeu de données d'apprentissage

Jeu de test

'n	cal	orical	JOUS
categori	cated	orical	class

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	١,
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Apprenti	crape
----------	-------

Refund	Marital Status	Taxable Income	Cheat
No	Single	75K	?
Yes	Married	50K	?
No	Married	150K	?
Yes	Divorced	90K	?
No	Single	40K	?
No	Married	80K	?

for example

$$f(x) = \begin{cases} YES \\ NO \end{cases}$$

 $f(x) = \begin{cases} YES & \text{if Refun=No and Mar} \in \{\text{Sing,Div}\} \text{ and Tax} > 80 \\ NO & \text{otherwise} \end{cases}$

Application de l'apprentissage supervisé

Banque/Assurance/Commerce:

- Prédire la solvabilité d'un individu
- Détection de fraude
- Identifier des profils type de client
- Prédire combien un client potentiel peut rapporter
- « Analyse de sentiment »

Vision

Reconnaissance d'images, d'objet dans les images

Texte

- Traduction de texte d'une langue vers une autre
- Texte->parole
- parole->texte
- Chatbots

Robotique:

- Voiture autonome
- Robotique humanoïde

X	у
	Chien
	Pandas
	Bus

X	У
My tailor is rich	Mon tailleur est riche
The cat eats the mouse	Le chat mange la souris
•••	

	:
X	У
My tailor is	Rich
•••	Dauphine

Yann Chevaleyre

Apprentissage non supervisé

Clustering

Pas de supervision (juste $x_1...x_N$, pas d'étiquette y)

Apprentissage non supervisé

Réduction de dimension

Pas de supervision (juste $x_1...x_N$, pas d'étiquette y)

Jeu de données

$x^{(1)}$	$\chi^{(2)}$	$\chi(3)$
3	1.1	2.1
10.1	4.9	5.2
4.2	2.2	23

Représentation graphique des données

Représentation graphique des données en basse dimension

Jeu de données en basse dimension

Apprentissage non supervisé

Estimation de density

Pas de supervision (juste $x_1...x_N$, pas d'étiquette y)

Jeu de données

$x^{(1)}$	$x^{(2)}$
3	1.1
10.12	4.9
4.2	2.2
•••	•••

$$P(x^{(1)}, x^{(2)})$$

https://commons.wikimedia.org/wiki/File:Bivariate_example.png

Apprentissage par Renforcement

Apprentissage par essais/erreurs

Ex: apprendre à marcher, à gagner à des jeux vidéos, à exécuter une tâche dans une usine, à conduire une voiture automatiquement

1ière itération

500 itérations

https://www.freecodecamp.org/news/a-brief-introduction-to-reinforcement-learning-7799af5840db/ https://towardsdatascience.com/teach-your-ai-how-to-walk-5ad55fce8bca

Références

- T. Hastie, The Elements of Statistical Learning
- G. Saporta
 Probabilités, Analyse de données et Statistiques
- A. Cornuéjols
 Apprentissage Artificiel,
 concepts et algorithmes
- C.A. Azencott
 Introduction au Machine Learning

Scikit Learn: Un package Python pour le Machine Learning

learn

Apprentissage Supervisé - Evaluation des Modèles

Source: Olivier Bousquet

taux d'erreur en fonction de la complexité du modèle.

Matrice de confusion

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

- True positive = correctly identified
- False positive = incorrectly identified
- True negative = correctly rejected
- False negative = incorrectly rejected

Taux d'erreur : accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

$$\texttt{Accuracy} = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Taux d'erreur : accuracy

Quelques limitations

- On considère un problème à 2 classes avec : 9990 instances de classe 0 et 10 instances de classe 1.
- Si le modèle prédit que tout instance est de classe 0, on a

$$Accuracy = \frac{9990}{10000} = 99,9$$

Recall vs precision

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Recall (True positive rate sensitivity)

De ceux qui existent, combien l'algorithme a pu trouver $TPR = \frac{TP}{TP + FN}$

Precision

De ceux que l'algorithme a pu classer, combien sont corrects. $PPV = \frac{TP}{TP+FP}$

F-mesure

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Moyenne harmonique entre la precision et le rappel :

$$F1 = 2.\frac{precision.recall}{precsion + recall} = \frac{2TP}{2TP + FP + FN}$$

- Comment estimer le taux d'erreur?
- Méthode naïve : utiliser tous les échantillons pour entraîner et calculer le taux d'erreur sur l'ensemble d'apprentissage.
- Un classifier tend à s'ajuster aux données d'apprentissage
- Un taux d'erreur généralement trop optimiste : pas rare d'avoir un taux de 0 à l'entrainement.
 - Nécessité d'un ensemble de test indépendant de l'ensemble d'entrainement.
 - Typiquement 10% de l'ensemble \mathcal{D} pour tester.

- Qu'arrive-t-il si on dispose de très peu d'échantillons?
- Comment savoir si le taux d'erreur est précis ou si on est pas tombé par hasard sur un situation particulière en coupant l'ensemble \mathcal{D} ?
- Si pour un ensemble de données \mathcal{D} , 2 classifieurs C_1 et C_2 ont 80% et 85% de précision, est-ce que $C_2 > C_1$?
- Solution : Validation croisée :
 - aléatoire
 - k- blocs
 - n-blocs (leave one out)

melit Moyare (e, le

- Qu'arrive-t-il si on dispose de très peu d'échantillons?
- Comment savoir si le taux d'erreur est précis ou si on est pas tombé par hasard sur un situation particulière en coupant l'ensemble \mathcal{D} ?

• Si pour un ensemble de données \mathcal{D} , 2 classifieurs C_1 et C_2 ont 80% et 85% de précision, est-ce que $C_2 > C_1$?

• Solution : Validation croisée :

- aléatoire
- k- blocs

• n-blocs (leave one out)

- Qu'arrive-t-il si on dispose de très peu d'échantillons?
- Comment savoir si le taux d'erreur est précis ou si on est pas tombé par hasard sur un situation particulière en coupant l'ensemble \mathcal{D} ?
- Si pour un ensemble de données \mathcal{D} , 2 classifieurs C_1 et C_2 ont 80% et 85% de précision, est-ce que $C_2 > C_1$?
- Solution : Validation croisée :
 - aléatoire
 - k- blocs
 - n-blocs (leave one out)

Validation croisée K-blocs

- On prend K ensemble disjoints de $\frac{n}{K}$ échantillons chacun
- On teste avec l'un d'entre eux.
- Taux d'erreur = moyenne des K expériences.
- La variance peut être calculée
- Avantage : tous les échantillons de \mathcal{D} seront utilisés.