

Deep Learning

Mohammad Reza Mohammadi 2021

Self-supervised learning

- Self-supervised learning methods are proposed to learn general features from large-scale unlabeled data without using any human-annotated labels
- The pretext tasks share two common properties:
 - Visual features need to be captured by ConvNets to solve the pretext tasks
 - Pseudo labels for the pretext task can be automatically generated based on the attributes of images or videos

Example pretext task: context prediction

$$\mathcal{L}_{rec}(x) = \left\| \widehat{M} \odot \left(x - F\left(\left(1 - \widehat{M} \right) \odot x \right) \right) \right\|_{2}$$

(c) Random region

Multi-task learning

 The results show that combining tasks (even via a naive multihead architecture) always improves performance

Word embeddings

- Word embeddings pack more information into far fewer dimensions
- They can be pre-trained on large amounts of text training data

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

One-hot word vectors:

- Sparse
- High-dimensional
- Hardcoded

Neural language model

Other context/target pairs

- Example sentence:
 - I want a glass of orange juice to go along with my cereal.
- Context
 - Last 4 words
 - 4 words on left & right
 - Last 1 word
 - Nearby 1 word

• Skip-grams

- rather than having the context be always the last *N* words
- randomly pick a word to be the context word
- randomly pick another word within some window
- set up a supervised learning problem where:
 - given the context word
 - predict what is a randomly chosen word

I want a glass of orange juice to go along with my cereal.

Context Target

• Vocab size: 10,000

Context c ("orange")
$$\Rightarrow$$
 Target t ("juice")
$$6257 4834$$

Context	Target	
orange	juice	
orange	glass	
orange	with	

$$\mathcal{L}_{ce} = -\sum_{j=1}^{10,000} y_j \log \hat{y}_{jj}$$

$$p(t|c) = \frac{e^{w_t^T e_c + b_t}}{\sum_{j=1}^{10,000} e^{w_j^T e_c + b_j}}$$

- Problems with Softmax classification
 - The primary problem is the computational speed
 - Especially for very large vocabularies (e.g., size 100,000 or 1,000,000)

$$p(t|c) = \frac{e^{w_t^T e_c + b_t}}{\sum_{j=1}^{10,000} e^{w_j^T e_c + b_j}}$$

- Negative sampling
 - Create a new supervised learning problem
 - Given a pair of words
 - predict that is a context-target pair?
 - So the problem is really given a pair of words, do you think they appear together?
 - recommend that maybe k is:
 - 5 to 20 for smaller data sets
 - 2 to 5 for larger data sets

Contex	t Wo	rd	Target

I want a glass of orange juice to go along with my cereal.

Negative sampling

orange
$$\longrightarrow e_{6257}$$

$$p(t|c) = \frac{e^{w_t^T e_c + b_t}}{\sum_{j=1}^{10,000} e^{w_j^T e_c + b_j}}$$
Softmax

Context	Word	Target
orange	juice	1
orange	king	0
orange	book	0
orange	the	0
orange	of	0

orange
$$\longrightarrow e_{6257} \longrightarrow \bigcap_{c} p(y=1|t,c) = \sigma(w_t^T e_c + b_t)$$
Sigmoid

One shot learning

 One-shot learning is a classification task in which one example for each class is used to classify many new examples

One shot face recognition

- Learning from example to recognize the person again
 - Is a ConvNet + Softmax well for one shot face recognition?
 - Not enough data to train a robust neural network
 - What if a new person joins our team?
 - Instead, we are going to learn a "similarity" function

