Sistema de recomendación de inmuebles Bancolombia basado en simulación bayesiana y redes neuronales

Juan Camilo Díaz Zapata

Cientifico de Datos lider

Gerencia de Modelos Analíticos Centro de Excelencia en Analítica Bancolombia

MAPI – Segunda Conferencia Colombiana de Matemáticas Aplicadas e Industriales

Contenido

- Introducción
- 2 Implementación
 - Preguntas tipo filtro
 - Preguntas tipo clasificación: gusto y afinidades
 - Preguntas tipo clasificación: composición familiar
 - Algoritmo Aplicado
- Resultados
 - Resultado Simulación
 - Resultado Modelación
 - Puesta en producción
- Referencias

Motivación

Crear un sistema de recomendación de inmuebles para Bancolombia donde la experiencia del cliente y no cliente al conseguir su próxima vivienda sea memorable, ya que te permita acompañar desde la etapa de búsqueda de la vivienda hasta la legalización del inmueble

Planteamiento del Problema

Bancolombia no cuenta con la información suficiente para recomendar viviendas de acuerdo a las a las características definidas como afinidades y composición familiar de los clientes y los no clientes

Planteamiento del Problema

Bancolombia no cuenta con la información suficiente para recomendar viviendas de acuerdo a las a las características definidas como afinidades y composición familiar de los clientes y los no clientes

Se desarrolló un sistema de recomendación en tiempo real basado en cinco preguntas fundamentales hacia cualquier persona:

1. Zona geográfica de interés

- 1. Zona geográfica de interés
- 2. Rango de precio de búsqueda

- 1. Zona geográfica de interés
- 2. Rango de precio de búsqueda
- 3. Presupuesto para cuota inicial

- 1. Zona geográfica de interés
- 2. Rango de precio de búsqueda
- 3. Presupuesto para cuota inicial
- 4. Gustos y afinidades

- 1. Zona geográfica de interés
- 2. Rango de precio de búsqueda
- 3. Presupuesto para cuota inicial
- 4. Gustos y afinidades
- 5. la composición familiar del usuario

Preguntas tipo filtro

clave	nombre_urbanizacion	area	price
3#40480396	Paseo Viscaya	88	290326000
1#324749778	Parma Apartamentos	111	899500000
2#81262589	Venecia Central	67	194900000
0.5#1296798118	Senior Suites Guaymaral	60	344177000
0.5#1298999773	Catalana	77	398691000
0.5#1296698808	Hábitat Infinity	37	173858000
1#325030943	Biel	69	327120000
1#324208360	Fontana Park	67	253465000
2#81257733	Simplicity	56	304105964
5#20262423	Turó	102	614411260
0.5#1296794778	Alameda de San Diego	77	335000000

- Presupuesto cuota inicial

	clave	nombre_urbanizacion	area	price
	2#81262589	WJ Towers	25	160320000
	2#81262589	WJ Towers	30	203814000
	2#81262589	WJ Towers	36	231232000
	2#81262589	WJ Towers	40	271484000
	2#81262589	Venecia Central	62	133000000
	2#81262589	Venecia Central	67	194900000
	2#81262589	Venecia Central	67	219900000
	2#81262589	Edificio El Vigia	101	385820000
	2#81262589	Edificio El Vigia	137	523340000
0	2#81262589	Edificio El Vigia	187	731170000

Figura 1: Filtrado de ofertas existentes

Dentro de esta pregunta el usuario puede optar por seleccionar cada una de ocho posibles categorías, donde cada variable es dicótoma:

$$x_i = \begin{cases} 1 & \text{si 1-\'esima caracter\'istica es seleccionada} \\ 0 & \text{en otros casos} \end{cases}$$

$$i = 1, 2, \dots, 8$$

Dentro de esta pregunta el usuario puede optar por seleccionar cada una de ocho posibles categorías, donde cada variable es dicótoma:

$$x_i = \begin{cases} 1 & \text{si 1-\'esima caracter\'istica es seleccionada} \\ 0 & \text{en otros casos} \end{cases}$$

$$i=1,2,\ldots,8$$

generando un vector binario del tipo:

$$X = [x_1, x_2, \dots, x_8]$$

Dentro de esta pregunta el usuario puede optar por seleccionar cada una de ocho posibles categorías, donde cada variable es dicótoma:

$$x_i = \begin{cases} 1 & \text{si 1-\'esima caracter\'istica es seleccionada} \\ 0 & \text{en otros casos} \end{cases}$$

$$i=1,2,\ldots,8$$

generando un vector binario del tipo:

$$X = [x_1, x_2, \dots, x_8]$$

adicional cada inmueble seleccionado tiene un vector de características previamente calculado que califica la influencia de cada categoría en cada inmueble:

$$A = [a_1, a_2, \dots, a_8]$$

donde $0 \le a_i \le 1$

adicional cada inmueble seleccionado tiene un vector de características previamente calculado que califica la influencia de cada categoría en cada inmueble:

$$A = [a_1, a_2, \dots, a_8]$$

donde $0 \le a_i \le 1$

Al final cada inmueble tendrá un score de gusto que permitirá clasificar los inmuebles de acuerdo a los gustos y afinidades:

$$S_1 = \frac{A^\top \cdot X}{\sum_{i=1}^8 x_i} \tag{1}$$

Planteamento Solución

Dado que Bancolombia no cuenta con información que permita concluir de acuerdo a la composición familiar cuales son los inmuebles más acordes y dada la relevancia de esta pregunta en la elección de un inmueble [3], se aplicó una **elicitación** basada en el algoritmo de Tangarife y Barrera [5] para la obtención de una **base de datos simulada** de la cual se estimaron los parámetros de una **red neuronal** que permitió dar un score de clasificación para cada inmueble de las ofertas filtradas por las tres primeras preguntas.

Se deben fijar los niveles de las covariables

$$X_1, X_2, \ldots, X_k$$

Se deben fijar los niveles de las covariables

$$X_1, X_2, \ldots, X_k$$

donde:

$$X_i = [x_{i1}, x_{i2}, x_{i3}, x_{i4}]$$

Se deben fijar los niveles de las covariables

$$X_1, X_2, \ldots, X_k$$

donde:

$$X_i = [x_{i1}, x_{i2}, x_{i3}, x_{i4}]$$

donde:

 x_{i1} : Número de personas en habitar el inmueble.

 x_{i2} : Tamaño del inmueble (mts).

 x_{i3} : Número de habitaciones del inmueble.

 x_{i4} : Número de baños del inmueble.

En la tabla 1 se describe los puntos de diseño seleccionados para las variables x_{i2}, x_{i3}, x_{i4} .

x_{i2}	x_{i3}	x_{i4}
46	1	1
63	2	2
70	3	2
85	3	2
100	3	2
120	4	3
180	4	3

Cuadro 1: Puntos de diseño para las variables x_{i2}, x_{i3}, x_{i4}

En la tabla 1 se describe los puntos de diseño seleccionados para las variables x_{i2}, x_{i3}, x_{i4} .

x_{i2}	x_{i3}	x_{i4}
46	1	1
63	2	2
70	3	2
85	3	2
100	3	2
120	4	3
180	4	3

Cuadro 1: Puntos de diseño para las variables x_{i2}, x_{i3}, x_{i4}

Cada uno de los puntos descritos en la tabla 1 es combinado con los valores de la variable $x_{i1}=1,2,3,4,5$; obteniendo un total de 35 (k=35) puntos de diseño.

La variable respuesta esta definida como:

$$y_j = \begin{cases} 1 & \text{si j-\'esimo usuario con una composici\'on familiar } x_{i1} \text{ adquiere el inmueble} \\ 0 & \text{en otros casos} \end{cases}$$

$$j = 1, 2, \dots, n$$

Se fija un n y se pide al experto dar el número personas con alguna composición familiar x_{i1} que comprarían en una muestra hipotética de tamaño n, dígase Y_0 , calcule $E(\pi) = Y_0/n$.

Se fija un n y se pide al experto dar el número personas con alguna composición familiar x_{i1} que comprarían en una muestra hipotética de tamaño n, dígase Y_0 , calcule $E(\pi) = Y_0/n$.

Para el mismo n se pide al experto dar el número mínimo de éxitos que él esperaría aceptable, Y_I , calcule $\hat{\pi_I} = Y_I/n$.

Se fija un n y se pide al experto dar el número personas con alguna composición familiar x_{i1} que comprarían en una muestra hipotética de tamaño n, dígase Y_0 , calcule $E(\pi) = Y_0/n$.

Para el mismo n se pide al experto dar el número mínimo de éxitos que él esperaría aceptable, Y_I , calcule $\hat{\pi_I} = Y_I/n$.

Para el mismo n se pide al experto dar el número máximo de éxitos que él esperaría aceptable, Y_S , calcule $\hat{\pi_S} = Y_S/n$.

Se fija un n y se pide al experto dar el número personas con alguna composición familiar x_{i1} que comprarían en una muestra hipotética de tamaño n, dígase Y_0 , calcule $E(\pi) = Y_0/n$.

Para el mismo n se pide al experto dar el número mínimo de éxitos que él esperaría aceptable, Y_I , calcule $\hat{\pi_I} = Y_I/n$.

Para el mismo n se pide al experto dar el número máximo de éxitos que él esperaría aceptable, Y_S , calcule $\hat{\pi_S} = Y_S/n$.

Se fija un n y se pide al experto dar el número personas con alguna composición familiar x_{i1} que comprarían en una muestra hipotética de tamaño n, dígase Y_0 , calcule $E(\pi) = Y_0/n$.

Para el mismo n se pide al experto dar el número mínimo de éxitos que él esperaría aceptable, Y_I , calcule $\hat{\pi_I} = Y_I/n$.

Para el mismo n se pide al experto dar el número máximo de éxitos que él esperaría aceptable, Y_S , calcule $\hat{\pi_S} = Y_S/n$.

Este paso se hizo con un tamaño n de 100 y una muestra de 16 expertos para cada punto de diseño.

A los valores elicitados en el paso dos, se ajusta una distribución beta para estimar los parámetros α y β , sean:

$$E(\pi) = y_0/n$$

$$P(\pi \le Y_I/n) = 0.05$$

$$P(\pi \ge Y_S/n) = 0.05$$

A los valores elicitados en el paso dos, se ajusta una distribución beta para estimar los parámetros α y β , sean:

$$E(\pi) = y_0/n$$

$$P(\pi \le Y_I/n) = 0.05$$

$$P(\pi \ge Y_S/n) = 0.05$$

los valores de α y β se obtienen de minimizar la siguiente función:

$$f(\alpha, \beta) = (\pi_I - qbeta(0.05, \alpha, \beta))^2 + (\pi_S - qbeta(0.95, \alpha, \beta))^2 + (\pi + (\alpha/(\alpha + \beta)))^2$$

Calcule el N equivalente, esto permite cuantificar el conocimiento del experto en términos de tamaño muestral, este tamaño representa realmente el nivel de conocimiento que los expertos tienen en la clasificación adecuada de inmuebles a una composición familiar determinada.

$$N = \frac{4Z_{\alpha/2}^2 \hat{\pi} (1 - \hat{\pi})}{(\hat{\pi_S} - \hat{\pi_I})^2}$$

Para cada nivel se repiten los siguientes pasos m veces:

❖ Genere un valor de la beta con α_i y β_i hallados en el punto tres.

$$\begin{bmatrix} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_k \end{bmatrix}$$

En este paso se obtiene un vector de tamaño k, en nuestro caso k=35

 \clubsuit Genere una muestra de valores y a partir de la distribución conjugada de la beta, la distribución binomial.

$$\begin{bmatrix} y_1^{(1)}, & X_1 \\ y_2^{(1)}, & X_1 \end{bmatrix}$$

$$\vdots & \vdots \\ y_{n_{eq}}^{(1)}, & X_1 \end{bmatrix}$$

$$\vdots & \vdots \\ y_1^{(k)}, & X_k \\ y_2^{(k)}, & X_k \end{bmatrix}$$

$$\vdots & \vdots \\ y_{n_{eq}}^{(k)}, & X_k \end{bmatrix}$$

$$\vdots & \vdots \\ y_{n_{eq}}^{(k)}, & X_k \end{bmatrix}$$

Genere una muestra de valores y a partir de la distribución conjugada de la beta, la distribución binomial.

$$\begin{bmatrix} y_1^{(1)}, & X_1 \\ y_2^{(1)}, & X_1 \end{bmatrix}$$

$$\vdots & \vdots \\ y_{n_{eq}}^{(1)}, & X_1 \end{bmatrix}$$

$$\vdots & \vdots \\ y_1^{(k)}, & X_k \\ y_2^{(k)}, & X_k \end{bmatrix}$$

$$\vdots & \vdots \\ y_{n_{eq}}^{(k)}, & X_k \end{bmatrix}$$

En este paso se obtiene una matriz de tamaño $(n_{eq} * k)$ x5, donde n_{eq} es el N equivalente hallado en el paso cuatro y X_k es una variable que representa los niveles definidos en el paso uno de tamaño cuatro.

Resultado Simulación

El algoritmo fue construido en el sistema computacional R [4] y obtuvimos una base de datos con un total de 770 mil registros entre todas las combinaciones de puntos de diseño y composiciones familiares con su respectiva variable respuesta. Respositorio GitHub

i	y_1	x_1	x_2	x_3	x_4
1	1	1	46	1	1
2	1	1	46	1	1
3	0	2	46	1	1
4	0	4	63	2	2
5	1	2	63	2	2
:	:	:	:	:	:
768	1	3	70	3	2
769	0	1	85	3	2
770	1	5	180	3	2

Cuadro 2: Ejemplo de base de modelación resultante

Resultado Modelación

A partir de esta base de datos generada, se procedió a estimador una red neuronal por medio del paquete **Keras** en el sistema computacional Python [6] con cuatro neuronas de entrada dadas por x_{i1} , x_{i2} , x_{i3} y x_{i4} y una capa oculta de seis neuronas con función de activación sigmoide, obteniendo un AUC = 80% en base de validación y prueba.

```
self.logger.Info("Training model")
    keras.layers.Dense(6, activation='sigmoid',
                       input shape=(X train.shape[-1],)),
self.model.fit(X train, y train, batch size=self.batch size,
self.logger.Info("Computing metrics")
auc score = roc auc score(v train, v train hat)
self.logger.Info("Train AUC {}".format(auc score))
auc score = roc auc score(y test, y test hat)
self.logger.Info("Test AUC {}".format(auc score))
```


Puesta en producción

Al tener un modelo donde a partir de las características principales del inmueble (área, numero habitaciones, numero de baños) y la respuesta a la pregunta cinco (número integrantes a vivir en la inmueble) es posible dar un score o probabilidad de gusto sobre cada inmueble en oferta.

$$S_2 = f(x_{i1}, x_{i2}, x_{i3}, x_{i4}) (2)$$

donde $f(\cdot)$ es el modelo de red neuronal entrenado en 1.

Puesta en producción

Al tener un modelo donde a partir de las características principales del inmueble (área, numero habitaciones, numero de baños) y la respuesta a la pregunta cinco (número integrantes a vivir en la inmueble) es posible dar un score o probabilidad de gusto sobre cada inmueble en oferta.

$$S_2 = f(x_{i1}, x_{i2}, x_{i3}, x_{i4}) (2)$$

donde $f(\cdot)$ es el modelo de red neuronal entrenado en 1.

Dado las ecuaciones definidas en (1) y (2) podemos obtener un score final de clasificación que definirá el orden de recomendación de las ofertas que cumplen las tres primeras preguntas al cliente.

$$S_f = W_1 S_1 + W_2 S_2$$

donde $0 \le W_1 + W_2 \le 1$

Referencias I

J. Correa and C. Barrera.

Elicitation of the parameters of multiple linear models.

Revista Colombiana de Estadística - Applied Statistics, 44(1):159–170, 2021.

B. D. Finerri.

La prevision: ses lois logigues, ses sources subjectives.

Annal es de l'Institut Henri Poincard, 7:1-68, 1937.

Planeatubien.com.

La dimensión ideal para tu departamento, 2021.

R Core Team.

R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2021.

J. Tangarife and J. Correa.

Elicitación de una distribución a priori para el modelo logístico.

Comunicaciones en Estadística, 10(2):225–246, 2017.

Referencias II

G. Van Rossum and F. L. Drake. *Python 3 Reference Manual*. CreateSpace, Scotts Valley, CA, 2009.

Muchas Gracias...