

p-adic field p-adic 整数 村河 1-adic ty p进部程 二次1934 4. x2= 2 (mod 7 4) 0n=1 x2=2 Lmod7) X = 3 (mod 7) x= 4 (mod 7) n=2 $(7a_1+3)^2=2 \pmod{49}$ $(7a_2+4)^2=2 \pmod{49}$ $a_1=1 \pmod{7}$ $a_2=-2 \pmod{7}$. V= 3+ 7x1 = (0 4+7x(-2)=-10=39 108 - 2166---Q - 31 - 235 - 235 x = 90 + 91 x) + 92 × 72 + ... 7/ x2 = v5 (mod 3h) -2-5-5-- | - 1 | 21 | 2211 ...

$$Z_{l} := \underbrace{\lim_{x \to \infty} Z_{l}/p^{i}}_{(a_{1}, a_{2}, \dots)} \in \underbrace{\lim_{x \to 1} Z_{l}/p^{i}}_{(a_{1}, a_{2}, \dots)} \in \underbrace{\lim_{x \to 1} Z_{l}/p^{i}}_{(a_{1}, a_{2}, \dots)} \in \underbrace{\lim_{x \to 1} Z_{l}/p^{i}}_{(a_{1}, a_{2}, \dots)} \times \underbrace{\lim_{x \to 1} Z_{l}/p^{i}}_{(a_{1}, \dots)} \times \underbrace{\lim_{x \to 1} Z_{l}/p^{i}}_{(a_{1}, \dots)} \times \underbrace{\lim_{x \to 1} Z_{l}/p^{i}}_{(a$$

p进整数: x= a, + a, p + azp2 + ... $|x|_p = p^{-y(x)}$ 其中 Vp : ZL- 803 - P $h = p^{\nu_p(n)} \cdot n' \quad p + n'$ 度量: 7 (x)=0 (=) x=0. cò) (xy| = (x| 1y) [ω) (x+y) ≤ (x| + |y| $x, y \in R$. (nx > |y|) $x \in \mathbb{R}^3$: $|x+y| \leq \max\{|x|, |y|\}$. |y|| | | x , p | y | a > b . | x+y $|x|_p = p^{-\nu_p(x)}$ 1713 = | 1+2x31 = 3 = 1. Q. 5 2: $x = p \frac{V_{p}(x)}{b} \frac{a}{b} + p + a, b.$ |z| = |... |z| = |z| - |z| = |z| - |z|Example 1, 10.

Topo(09y -	d(x,y) < max { d(x,z), d(z,y)}.
,	$B(a,r) : \{x \in Q : x-a \leq r\}.$
propositi	m: Every point in $B(a, v)$ is the centre
	$x \in B(a,r)$, $ x-a _p \in r$
	$\forall y \in B(q,r).$ $\leq r \leq r$
	y-x p = y-a+a-x px ∈ max { (y-a p), (a-x) p}
Carallana	1: B(a,r) is both open and closed.
Correlary	y (a)) is poth open and corsea.
Corollary	2: V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	学に B1 ハB2 キタ. 子に、 B1 <b2 b1<="" c="" th="" ちv="" 改=""></b2>
Corollary	3: 从集咨询 U C Q. p-adic norm.
	fixed r. $U = \frac{0}{1-1}$ 为 有限不交.
楞	1) 00 xf Z Vp 7.0. Z \leq p° = .
	` '
	$Z \not\in P^{\text{-adic } \text{-} \text{-} \text{-} \text{-} \text{-} \text{-} \text{-} $

Q & p-adic norm Cauchy sequence. { xn} lim (xn+1) - xn/ -> 0. C(Q): Cauchy sequence in Q. p-adic norm. N:= { (xn): (xn/p -> 0 }. $Q_p = C(Q)/N$. Op 30 2 25 ws. p-adic til. $Z_p = \{x \in O_p \mid |x|_p \leq 1\}.$ Zero. $- | = | (p-1) + | (p-1) p + (p-1) p^{2} + - \cdots |$ Example $= 3^{-1} - \frac{1}{1+1} = 3^{-1} (1-3+3^{2}-3)^{3} + \cdots).$ $\chi = p^{r} \cdot (\chi) = 3^{-1} + 2\chi + 3 + 2\chi^{2} + \cdots$ Vp(71)= . Ostrowski Theorem Q上的 非平凡绝对值 只有面种. (等价意义下). $|x| = \sqrt{\frac{-\nu_p(x)}{n}}$ $q^2, pq. = 1$

Product Formula T |x|p = (x) = P, a, p, a, ... Px (x/pc = 10-90 p-adic field. $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(h)}{h}$ h = (a + a p + ... + d n p + + apadic numbers an introduction. >) Fernando Q. Gonvea. ce P-adic analysis and mathematical physics >> V.S. Vadimirov $f(b) - f(a) = f(\xi) (b-a).$ $(\xi) = at + b(1-t).$ $f(x) = x^{1}$ f(0) = 0, f(0) = 0

$$|\vec{s}| = |at + b(t + t)| \in \mathbb{Z}t. \qquad |\vec{s}| = e^{\circ} = 1.$$

$$|\vec{f}(\vec{s})| = p^{-1} = p^{-1}.$$

$$|\vec{f}(\vec{s})| = p^{-1} = p^{-1}.$$

$$|\vec{f}(\vec{s})| = p^{$$

f & Zp[X1, -", Xm]. Proposition J.

f (1)

E Zp [X1,..., Xm]. i). f(i) 有关同零点 在 (Zp) 中. i) For all not, for the (Z/phz) m = -7 11. K/Z. L. (Z/phZ) h. Defiation:

(X) x = (X1, ..., Xm) of (Zy) m g primitive 7·中有一个可逆。(不可被)整除) (An) M. Proposition 6. f(i) 未次多版式 TFAE: a) f(i) 在 (Op) 上角 非平凡 co 心大意.
b) f(i) 在 (Zp) 上 (i) た の primitive zero.
c) f(i) 在 (An) 上 有 以无 co primitive zero. $f \in Zp[X]$ and f'. Let X + Zp, $n, t \in Z$ sit. 0=2k<n, f(x)=0 (mod ph) Vp (f(x))=k. there exist yell st. f(y) = 0 (mod pati) | vp(f'(y)) = k, y = x (modp *- k)

$$f(y) = f(x) + p^{n-k} \ge f'(x) + p^{2n-2k} a. \quad a \in \mathbb{Z}_p.$$

$$f(y) = f(x) + p^{n-k} \ge f'(x) + p^{2n-2k} a. \quad a \in \mathbb{Z}_p.$$

$$f(y) = f(x) + p^{n-k} \ge 0 \pmod{p}.$$

$$f(y) = f'(x) + p^{n-k} \ge 0 \pmod{p}.$$

$$f(y) = f'(x) + p^{n-k} \ge 0 \pmod{p}.$$

$$f(y) = f'(x) + p^{n-k} \ge 0 \pmod{p}.$$

$$2(p^n) = p^n \pmod{p}.$$

Nezessity $x = p^{r(x)} (x + x p + \cdots)$ $\chi^2 = p^{2r(x_1)} \left(\chi_0 + \chi_1 p + \dots \right)^2 = \left(r(a) \left(a_1 + q_1 p + \dots \right) \right)$ V(a) is even. $\left(\frac{q_{0}}{r}\right) = \left(\frac{q_{0}}{r}\right)$ $\left(\frac{x_1 + x_1^2}{2} + x_2\right) z^3 = a_1 = a_2 = 0.$ 2% $(X_j) = a_j + (N_j) \pmod{p}$. 无治: Nj about (xo, x, ,..., x,-1 p = 2. $\chi_{j} \equiv a_{j+1} + N_{j} \pmod{2}$. Corollaries. p+2 m· 所有水平方数 只有3分中. ti= 9. pg, p. # y (1 2 00 (p) \$ 1. a) + a, p+ -. a, p+ a, p1 p. ξ^{2} , $\xi^{2}\eta$, $\xi^{2}\eta$, $\xi^{2}\eta$. Q 少面存在 新 不同构的 二次对张. Op (5 ki).

$$F = 2 \text{ rd}.$$

$$F_{2} = 3, \quad K_{3} = 5, \quad K_{4} = 7.$$

$$F_{5} = 2, \quad K_{6} = 4, \quad K_{7} = 10. \quad F_{8} = 14.$$

$$\left(\pm 1, \quad \pm 2, \quad \pm 3, \quad \pm 6. \right).$$

$$Q_{2}^{*} \setminus Q_{2}^{*2} = 8 \text{ fixed}.$$

$$Q_{1}^{*} \setminus Q_{1}^{*2} = 4 \text{ fixed}.$$

$$Piscrete \quad Valuation \quad Rings.$$

$$K \cdot \text{ fidd.}$$

$$V = K \rightarrow 20 \infty$$

$$discrete \quad Valuation.$$

$$(i) \quad V \stackrel{?}{=} \text{ ris} = 12. \quad K^{*} \rightarrow 20.$$

$$(ii) \quad V(x+y) \Rightarrow \inf S V(x), V(y).$$

$$R_{1} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{2} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{3} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{3} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{3} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

$$P_{4} = \{x \in K \mid V(x) \geq 0\}. \quad \stackrel{E}{=} \text{ fide.}$$

Pv 一个"好难想." (I) C K. Rv 月 (1) al CRV. p-n (90+91/-1 ...). /n. I = (Pu)". $V(I) = \inf_{x \in I} V(x)$. I=aT a = K* v(I) = v(J) + v(a). choose $b \in I$. v(b) = v(I). πV(b) RV = b RV < Z. 1 c [* + k | V(x) 7, V(])]. ICTUITIEN = TUB $I = (\pi R \iota)^{V(I)}$ $I = (pv)^{v(I)}$ Ic Ru. V(I) 7,0. Discrete valuation King. O PID ② 在且只有一个素理想。 "E" du ring R. & Ru: {xek |v(x) 70}. P = TR $x = \pi^0 U$. u. u.t.

during R ?
$$k = P/P$$
.

$$P^{n}/P^{n+1} \cong k$$

$$O \rightarrow O \rightarrow k^{*} \rightarrow Z \rightarrow O$$

$$N_{7}/P^{n} = 0$$

$$\pi(x) = |x|_{p}^{\alpha-1} \pi_{o}(|x|_{p}, x).$$

$$|\pi_{o}(x')|_{p} = |...$$

$$|\pi_{o}(x')|_{p} = |...$$

$$\int dx = |...$$

$$|\pi|_{p} = |...$$

$$d(xa) = |a|_{p} dx.$$

$$f_{1}g \in L^{1} \cap L^{2}.$$

$$\int fg = \int fg. \quad (Qq | 2, Q).$$

$$|x_{0}|_{p} = |...$$

$$|x_{0}|_{p} = |.$$