

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Reinforcement Learning: Value Iteration & Policy Iteration

Matt Gormley Lecture 23 Apr. 8, 2020

Reminders

- 3 extra grace days
- Homework 7: HMMs
 - Out: Thu, Apr 02
 - Due: Fri, Apr 10 at 11:59pm
- Homework 8: HMMs
 - Out: Fri, Apr 10
 - Due: Wed, Apr 22 at 11:59pm

- Today's In-Class Poll
 - http://poll.mlcourse.org

MARKOV DECISION PROCESSES

Markov Decision Process

 For supervised learning the PAC learning framework provided assumptions about where our data came from:

$$\mathbf{x} \sim p^*(\cdot)$$
 and $y = c^*(\cdot)$

 For reinforcement learning we assume our data comes from a Markov decision process (MDP)

Markov Decision Process

Whiteboard

- Components: states, actions, state transition probabilities, reward function
- Markovian assumption
- MDP Model
- MDP Goal: Infinite-horizon Discounted Reward
- deterministic vs. nondeterministic MDP
- deterministic vs. stochastic policy

Exploration vs. Exploitation

Whiteboard

- Explore vs. Exploit Tradeoff
- Ex: k-Armed Bandits
- Ex: Traversing a Maze

FIXED POINT ITERATION

- Fixed point iteration is a general tool for solving systems of equations
- It can also be applied to optimization.

$$J(\boldsymbol{\theta})$$

$$\frac{dJ(\boldsymbol{\theta})}{d\theta_i} = 0 = f(\boldsymbol{\theta})$$

$$0 = f(\boldsymbol{\theta}) \Rightarrow \theta_i = g(\boldsymbol{\theta})$$

$$\theta_i^{(t+1)} = g(\boldsymbol{\theta}^{(t)})$$

. Given objective function:

Compute derivative, set to zero (call this function f).

 Rearrange the equation s.t. one of parameters appears on the LHS.

4. Initialize the parameters.

5. For *i* in {1,...,*K*}, update each parameter and increment *t*:

6. Repeat #5 until convergence

- Fixed point iteration is a general tool for solving systems of equations
- It can also be applied to optimization.

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$

$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$

$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$

$$x \leftarrow \frac{x^2 + 2}{3}$$

Given objective function:

Compute derivative, set to zero (call this function f).

Rearrange the equation s.t. one of parameters appears on the LHS.

. Initialize the parameters.

For i in $\{1,...,K\}$, update each parameter and increment t:

6. Repeat #5 until convergence

We can implement our example in a few lines of python.

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$

$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$

$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$

$$x \leftarrow \frac{x^2 + 2}{3}$$

```
def f1(x):
    '''f(x) = x^2 - 3x + 2'''
    return x**2 - 3.*x + 2.
def gl(x):
    '''g(x) = \frac{x^2 + 2}{3}'''
   return (x**2 + 2.) / 3.
def fpi(g, x0, n, f):
    ""Optimizes the 1D function g by fixed point iteration
    starting at x0 and stopping after n iterations. Also
    includes an auxiliary function f to test at each value.""
    x = x0
    for i in range(n):
        print("i=%2d x=%.4f f(x)=%.4f" % (i, x, f(x)))
       x = g(x)
    1 += 1
    print("i=%2d x=%.4f f(x)=%.4f" % (i, x, f(x)))
    return x
if __name__ == "__main__":
    x = fpi(g1, 0, 20, f1)
```

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$

$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$

$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$

$$x \leftarrow \frac{x^2 + 2}{3}$$

```
$ python fixed-point-iteration.py
i = 0 x = 0.0000 f(x) = 2.0000
i = 1 \times -0.6667 f(x) = 0.4444
i = 2 \times 0.8148 f(x) = 0.2195
i = 3 \times 0.8880 f(x) = 0.1246
i = 4 \times -0.9295 f(x) = 0.0755
i = 5 \times 0.9547 f(x) = 0.0474
i = 6 \times 0.9705 f(x) = 0.0304
i = 7 \times 0.9806 f(x) = 0.0198
i = 8 \times 0.9872 f(x) = 0.0130
i = 9 \times -0.9915 f(x) = 0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 \times -0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 \times -0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 \times -0.9998 f(x)=0.0002
i=19 \times -0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001
```

VALUE ITERATION

Definitions for Value Iteration

Whiteboard

- State trajectory
- Value function
- Bellman equations
- Optimal policy
- Optimal value function
- Computing the optimal policy
- Ex: Path Planning

RL Terminology

Question: Match each term (on the left) to the corresponding statement or definition (on the right)

Terms:

- A. a reward function
- B. a transition probability
- C. a policy
- D. state/action/reward triples
- E. a value function
- F. transition function
- G. an optimal policy
- H. Matt's favorite statement

Statements:

- gives the expected future discounted reward of a state
- 2. maps from states to actions
- 3. quantifies immediate success of agent
- 4. is a deterministic map from state/action pairs to states
- 5. quantifies the likelihood of landing a new state, given a state/action pair
- 6. is the desired output of an RL algorithm
- 7. can be influenced by trading off between exploitation/exploration

Example: Path Planning

Example: Robot Localization

r(s, a) (immediate reward) values

Value Iteration

Whiteboard

- Value Iteration Algorithm
- Synchronous vs. Asychronous Updates

Value Iteration

Algorithm 1 Value Iteration

```
1: procedure ValueIteration(R(s, a) reward function, p(\cdot|s, a)
   transition probabilities)
       Initialize value function V(s) = 0 or randomly
2:
       while not converged do
3:
           for s \in S do
41
               for a \in A do
5:
                   Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')
6:
               V(s) = \max_a Q(s, a)
71
       Let \pi(s) = \operatorname{argmax}_a Q(s, a), \forall s
8:
       return \pi
g:
```

Variant 1: with Q(s,a) table

Value Iteration

Algorithm 1 Value Iteration

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a) transition probabilities)
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: V(s) = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')
6: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s'), \forall s
7: return \pi
```

Variant 2: without Q(s,a) table

Synchronous vs. Asynchronous Value Iteration

Algorithm 1 Asynchronous Value Iteration

```
1: procedure AsynchronousValueIteration(R(s,a), p(\cdot|s,a))
2: Initialize value function V(s)^{(0)} = 0 or randomly
3: t = 0
4: while not converged do
5: for s \in \mathcal{S} do
6: V(s)^{(t+1)} = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')^{(t)}
7: t = t + 1
8: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s'), \forall s
9: return \pi
```

asynchronous updates: compute and update V(s) for each state one at a time

Algorithm 1 Synchronous Value Iteration

```
1: procedure SynchronousValueIteration(R(s, a), p(\cdot|s, a))
       Initialize value function V(s)^{(0)} = 0 or randomly
2:
       t = 0
3:
       while not converged do
4:
            for s \in S do
5:
                 V(s)^{(t+1)} = \max_{a} R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s')^{(t)}
6:
            t = t + 1
7:
       Let \pi(s) = \operatorname{argmax}_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s'), \forall s
8:
       return \pi
9:
```

updates: compute all the fresh values of V(s) from all the stale values of V(s), then update V(s) with fresh values

Value Iteration Convergence

very abridged

Theorem 1 (Bertsekas (1989))

V converges to V^* , if each state is visited infinitely often

Theorem 2 (Williams & Baird (1993))

if
$$max_s|V^{t+1}(s) - V^t(s)| < \epsilon$$

$$\begin{aligned} & \text{if } \max_{s} |V^{t+1}(s) - V^t(s)| < \epsilon \\ & \text{then } \max_{s} |V^{t+1}(s) - V^*(s)| < \frac{2\epsilon\gamma}{1-\gamma}, \ \forall s \end{aligned}$$

Theorem 3 (Bertsekas (1987))

greedy policy will be optimal in a finite number of steps (even if not converged to optimal value function!)

Holds for both asynchronous and sychronous updates

Provides reasonable stopping criterion for value iteration

Often greedy policy converges well before the value function

Value Iteration Variants

Question:

True or False: The value iteration algorithm shown below is an example of **synchronous** updates

```
Algorithm 1 Value Iteration

1: procedure ValueITERATION(R(s,a) reward function, p(\cdot|s,a) transition probabilities)

2: Initialize value function V(s) = 0 or randomly

3: while not converged do

4: for s \in \mathcal{S} do

5: for a \in \mathcal{A} do

6: Q(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')

7: V(s) = \max_a Q(s,a)

8: Let \pi(s) = \operatorname{argmax}_a Q(s,a), \forall s

9: return \pi
```

POLICY ITERATION

Policy Iteration

Algorithm 1 Policy Iteration

- 1: procedure PolicyTeration(R(s, a) reward function, p(·|s, a) transition probabilities)
- Initialize policy π randomly
- 3: while not converged do
- 4: Solve Bellman equations for fixed policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V^{\pi}(s'), \forall s$$

Improve policy π using new value function

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s')$$

6: return π

Policy Iteration

Algorithm 1 Policy Iteration

4:

5:

- 1: procedure POLICYTERATION(R(s, a) transition probabilities)
- Initialize policy π randomly
- while not converged do
 - Solve Bellman equations for fixed policy π

Compute value function for fixed policy is easy

n, $p(\cdot|s,a)$

System of |S| equations and |S| variables

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V^{\pi}(s'), \forall s$$

Improve policy π using new value function

$$\pi(s) = \underset{a}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi}(s')$$

return π

Greedy policy w.r.t. current value function

Greedy policy might remain the same for a particular state if there is no better action

Policy Iteration Convergence

			•
In_{-}	1766	LVOR	CICA
	1022	LACI	cise:

How many policies are there for a finite sized state and action space?

In-Class Exercise:

Suppose policy iteration is shown to improve the policy at every iteration. Can you bound the number of iterations it will take to converge?

Value Iteration vs. Policy Iteration

- Value iteration requires
 O(|A| |S|²)
 computation per iteration
- Policy iteration requires
 O(|A| |S|² + |S|³)
 computation per iteration
- In practice, policy iteration converges in fewer iterations

Algorithm 1 Value Iteration

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a) transition probabilities)
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: for a \in \mathcal{A} do
6: Q(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')
7: V(s) = \max_a Q(s,a)
8: Let \pi(s) = \operatorname{argmax}_a Q(s,a), \forall s
9: return \pi
```

Algorithm 1 Policy Iteration

- 1: procedure POLICYITERATION(R(s,a) reward function, $p(\cdot|s,a)$ transition probabilities)
- 2: Initialize policy π randomly
- while not converged do
- Solve Bellman equations for fixed policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V^{\pi}(s'), \ \forall s$$

Improve policy π using new value function

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^{\pi}(s')$$

6: return π

Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to...

- 1. Compare the reinforcement learning paradigm to other learning paradigms
- 2. Cast a real-world problem as a Markov Decision Process
- 3. Depict the exploration vs. exploitation tradeoff via MDP examples
- 4. Explain how to solve a system of equations using fixed point iteration
- 5. Define the Bellman Equations
- 6. Show how to compute the optimal policy in terms of the optimal value function
- 7. Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
- 8. Implement value iteration
- 9. Implement policy iteration
- 10. Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
- 11. Identify the conditions under which the value iteration algorithm will converge to the true value function
- 12. Describe properties of the policy iteration algorithm