Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Reverse-operatoren

- Givet en streng $x \in \Sigma^*$, definer reverse(x) i strukturen af x:
 - $reverse(\Lambda) = \Lambda$
 - reverse(ya) = a(reverse(y))hvor $y \in \Sigma^*$, $a \in \Sigma$

Eksempel: reverse(123) = ... = 321

Reverse på sprog

• Givet et sprog $L\subseteq \Sigma^*$, definer $Reverse(L) = \{ reverse(x) \mid x \in L \}$

Eksempel:

Hvis $L=\{\Lambda,123,abc\}$ så er $Reverse(L)=\{\Lambda,321,cba\}$

Rekursive definitioner og induktionsbeviser

 Rekursive definitioner giver ofte anledning til induktionsbeviser

Hvis vi skal bevise noget på form "for alle X gælder P(X)", hvor mængden af X'er er defineret rekursivt, så kan vi prøve bevisteknikken "induktion i strukturen af X"

Et induktionsbevis

Påstand: Hvis S er et regulært sprog, så er Reverse(S) også regulært (dvs. de regulære sprog er lukkede under Reverse)

Bevis:

- S er regulært, så der eksisterer et regulært udtryk r så L(r)=S
- Vi vil vise ved induktion i strukturen af r, at der eksisterer et regulært udtryk r' hvor L(r')=Reverse(L(r)), hvilket medfører, at Reverse(S) er regulært

Basis

 $r = \emptyset:$ $vælg r' = \emptyset$ $L(r') = \emptyset = Reverse(\emptyset) = Reverse(L(r))$

- $\underline{r} = \Lambda$: vælg $r' = \Lambda$...
- $\underline{r} = \underline{a}$ hvor $\underline{a} \in \Sigma$: vælg $\underline{r}' = \underline{a}$...

Induktionsskridt

For alle deludtryk s af r kan vi udnytte **induktionshypotesen**: der eksisterer et regulært udtryk s' hvor L(s')=Reverse(L(s))

- $\underline{r} = \underline{r_1} + \underline{r_2}$ hvor $\underline{r_1}, \underline{r_2} \in R$: vælg $\underline{r'} = \underline{r_1'} + \underline{r_2'}$ hvor $\underline{r_1'}$ og $\underline{r_2'}$ er givet af i.h. ...
- $\underline{r} = \underline{r_1}\underline{r_2}$ hvor $r_1, r_2 \in R$: vælg $r' = r_2'r_1'$...
- $r = r_1^*$ hvor $r_1 \in R$: vælg $r' = (r_1')^*$...

Lemma 1:

 $\forall x,y \in \Sigma^*$: reverse(xy) = reverse(y) reverse(x)bevis: induktion i strukturen (eller længden) af y

Lemma 2:

 $\forall i \geq 0, E \subseteq \Sigma^*$:

 $Reverse(E^{i}) = (Reverse(E))^{i}$

bevis: induktion i i

Konstruktive beviser

 Bemærk at dette induktionsbevis indeholder en algoritme til – givet et regulært udtryk for S – at konstruere et regulært udtryk for Reverse(S)

Sådanne beviser kaldes konstruktive

 Husk altid både konstruktionen og beviset for dens korrekthed

Algoritme

Input: et regulært udtryk r

Definer en rekursiv funktion REV ved:

- $REV(\emptyset) = \emptyset$
- $REV(\Lambda) = \Lambda$
- REV(a) = a, hvor $a \in \Sigma$
- $REV(r_1+r_2) = REV(r_1) + REV(r_2)$
- $REV(r_1r_2) = REV(r_2) REV(r_1)$
- $REV(r_1^*) = (REV(r_1))^*$

Output: det regulære udtryk REV(r)

dRegAut.RegExp

Java-repræsentation af regulære udtryk

- Speciel syntax:
 - # betyder Ø
 - % betyder Λ

 Alfabetet angives som en mængde af Unicode tegn

Resume

- Alfabeter, strenge, sprog
- Regulære udtryk og regulære sprog
- Rekursive definitioner, induktionsbeviser, konstruktive beviser
- Java: dRegAut.RegExp klassen

Øvelse

Lad r være det regulære udtryk ((a+Λ)cbc)* over alfabetet {a,b,c}. Bevis at enhver streng i sproget sproget L(r) har et lige antal c'er. Argumentér kort og præcist for hvert trin i beviset.

 Hint: Brug definitionen af sprog for regulære udtryk (Definition 3.1 i [Martin]), definitionen af '*' på sprog (s. 31 øverst i [Martin]), og lav induktion.

Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt