

Department of Mechanical Engineering, Pulchowk campus, Institute of Engineering, Tribhuvan University

Project Risk Analysis

Dr. Shree Raj Shakya 2019 Lecture 12

Project Risk

Cash flows are the outcome of several variables such as prices, exchange rates, costs, wages etc.

Hence, forecasts of cash flows are subject to a degree of uncertainty.

We can use the term *risk* in describing an investment whose cash flows are not known in advance with absolute certainty, but for which an array of alternative outcomes and their probabilities are known.

If there is greater variability, then the risk is higher and if there is lower variability, then risk is lower.

We use the term *project risk* to refer to the variability in a project's NPV.

Methods of describing project risk

- 1. Sensitivity analysis
- 2. Breakeven analysis
- 3. Scenario analysis, and
- 4. Risk analysis

1. Sensitivity Analysis

It shows how an output variable changes with changes in the input variable when other input variables are taken as constant.

One of the best ways to show the results of sensitivity analysis is to plot sensitivity graphs and find out which input variables affect the output variable most and monitor the most sensitive input variable.

Example

After-tax Cash Flow for WMC's Transmission-Housings Project

		n								
	0	1	2	3	4	5				
Income Statement										
Revenues		\$100,000	\$100,000	\$100,000	\$100,000	\$100,000				
Variable cost		30,000	30,000	30,000	30,000	30,000				
Fixed cost		10,000	10,000	10,000	10,000	10,000				
CCA*		18,750	31,875	22,313	15,619	10,933				
Taxable income		41,250	28,125	37,688	44,381	49,067				
Income taxes		16,500	11,250	15,075	17,753	19,627				
Net income		\$24,750	\$16,875	\$22,613	\$26,629	\$29,440				
Cash Flow Statement										
Net income		\$24,750	\$16,875	\$22,613	\$26,629	\$29,440				
CCA		18,750	31,875	22,313	15,619	10,933				
Investment/Salvage	(\$125,000)					50,000				
Disposal tax effect						(9,796)				
Net cash flow	(\$125,000)	\$43,500	\$48,750	\$44,925	\$42,248	\$80,578				

Demand: 2000 units

Unit price: \$50 per unit

Unit variable (direct labor, direct material) cost: \$15 per unit

Annual fixed cost excluding CCA: \$10,000 per year

Present worth = \$43,443 Annual worth = \$12,960 Internal ROR = 27.8%

CCA= Capital Cost Allowance

Sensitivity graph-WMC's transmission-housings project

Lecture 12 - Dr. Shree Raj Shakya

17.25

\$34,392

11,500

57,500

\$45,681

\$40,427

20%

2,400

60 \$83,669

18

\$71,602

\$31,376

12,000

60,000

\$39,421

\$46,426

	(%S1)Md 20 10 0	Unit sales -20% -15	% -10%	-5% Va	0 5%	Varia	able cost 15% 20%	
Deviation	-20%	-15%	-10%	-5%	0	5%	10%	15%
Unit sales PW(15%)	1,600	1,700	1,800	1,900	2,000	2,100	2,200	2,300
	\$15,285	\$22,325	\$29,364	\$36,404	\$43,443	\$50,483	\$57,523	\$64,562
Price (\$)	40	42.5	45	47.5	50	52.5	55	57.5
PW(15%)	\$ 3,218	\$13,274	\$23,331	\$33,387	\$43,443	\$53,500	\$63,556	\$73,613

in thousands \$

Variable cost

PW(15%)

Fixed cost

PW(15%)

PW(15%)

Salvage

	20 10 0	Unit sales -20% -15		-5% Var	0 5%	10%	able cost	20%
Deviation	-20%	-15%	-10%	-5%	0	5%	10%	b
Unit sales	1,600	1,700	1,800	1,900	2,000	2,100	2,2	
PW(15%)	\$15,285	\$22,325	\$29,364	\$36,404	\$43,443	\$50,483	\$57,5	
Price (\$)	40	42.5	45	47.5	50	52.5	\$63,5	55
PW(15%)	\$ 3,218	\$13,274	\$23,331	\$33,387	\$43,443	\$53,500		56

14.25

9,500

\$46,460

\$44,449

47,500

\$42,698

15

\$43,443

10,000

\$43,443

50,000

\$43,443

15.75

\$40,426

10,500

\$42,438

52,500

\$44,189

16.5

\$37,410

11,000

\$41,432

55,000

\$44,935

13.5

9,000

\$49,477

\$45,455

45,000

\$41,952

12.75

8,500

\$52,494

\$46,460

42,500

\$41,206

12

\$55,511

\$47,466

40,000

\$40,460

8,000

2. Breakeven Analysis

Managers sometimes want to know at what sales volume the project begins to lose money or NPV becomes negative.

This kind of analysis is called *breakeven* analysis.

Example

Breakeven Analysis with Unknown Annual Sales X

Items	0	1	2	3	4	5 .
Cash inflow						
Net salvage:						\$40,204
Revenue:						
X(1-0.4)50		30X	30X	30X	30X	30X
CCA credit:						,
+0.4 (CCA)		\$7,500	\$12,750	\$8,925	\$6,248	\$4,373
Cash outflow						
Investment:	-\$125,000					
Variable cost:						
-X(1-0.4)15		-9X	-9X	-9X	-9X	-9X
Fixed cost:						
-0.6(10,000)		-\$6,000	-\$6,000	-\$6,000	-\$6,000	-\$6,000
Net cash flow	-\$125,000	21X + \$1,500	21X + \$6,750	21X + \$2,925	21X + \$248	21X + \$38,577

```
PW of cash inflows = (PW of after-tax net revenue)
                       + (PW of net salvage value)
                       + (PW of tax savings from CCA)
         PW(15\%)_{inflow} = 30X(P/A, 15\%, 5) + $40,204(P/F, 15\%, 5)
                          + \$7500(P/F, 15\%, 1) + \$12,750(P/F, 15\%, 2)
                          + $8925(P/F, 15%, 3) + $6248(P/F, 15%, 4)
                          + $4373(P/F, 15\%, 5)
                       = 30X(P/A, 15\%, 5) + $47,766
                       = 100.566X + $47,766
PW of cash outflows = (PW of capital expenditure)
                        + (PW of after-tax expenses)
       PW(15\%)_{\text{outflow}} = \$125,000 + (9X + \$6000)(P/A, 15\%, 5)
                                                                    10
                      = 30.1694X + $145,113
```

The NPW of all cash flows for the WMC is thus

NPW(15%) = PW of cash inflow – PW of cash outflow

$$= 70.3962X - \$97,347$$

Units (X)	PW of Inflow (100.566X + \$47,766)	PW of Outflow (30.1694X + \$145,113)	NPW (70.3962X - \$97,347)
0	\$ 47,766	\$145,113	(\$97,347)
500	98,049	160,198	(62,149)
1000	148,332	175,282	(26,951)
1500	198,615	190,367	8,247
2000	248,898	205,452	43,443
2500	299,181	220,537	78,643

3. Scenario Analysis

Both the sensitivity and breakeven analyses have limitations, they cannot give the right relations, when input variables are interdependent.

A scenario analysis shows the sensitivity of NPV with regard to changes in important variables to the range of likely values of the input variables.

The decision-maker can have the worst case scenario, most likely scenario, and the best case scenario.

Then these scenarios are compared to the base case value of NPV.

Example

Scenario Analysis for WMC

Variable Considered	Worst-case Scenario	Most-likely-case Scenario	Best-case Scenario
Unit demand	1600	2000	2200
Unit price (\$)	48	50	53
Variable cost (\$)	17	15	12
Fixed cost (\$)	11,000	10,000	8,000
Salvage value (\$)	30,000	50,000	60,000
PW(15%)	(\$5,564)	\$43,443	\$91,077

Risk Analysis (Risk Simulation)

Risk simulation, in general, is the process of modeling reality to observe and weigh the likelihood of possible outcomes of a risky undertaking.

Monte Carlo Simulation is specific type of randomized sampling method in which a random sample of outcomes is generated for specified probability distributions of values of random input variables.

Simulation output analysis

Through the descriptive statistics and histogram of the values of the output variable, we can determine and analyze the probability distribution of the output variable such as net profit, NPV, IRR etc.

Example

Assessments of Conditional and joint Probabilities

Unit price Y	Probability	Unit Sales X	Conditional Probability	Joint Probability
		1600	0.10	0.030
\$48	0.30	2000	0.64	0.192
		2400	0.26	0.078
		1600	0.17	0.085
50	0.50	2000	0.66	0.330
'	,	2400	0.17	0.085
		1600	0.50	0.100
53	0.20	2000	0.40	0.080
		2400	0.10	0.020
		P(x,y) = P(x = 16	600, y = \$48)	
		= P(x = 16	y = \$48)P(y)	= \$48)
		$= 0.10 \times 0$.30	17
		= 0.03.		

Joint Event (X,Y)	P(X,Y)
(1600, \$48)	0.030
(2000, \$48)	0.192
(2400, \$48)	0.078
(1600, \$50)	0.085
(2000, \$50)	0.330
(2400, \$50)	0.085
(1600, \$53)	0.100
(2000, \$53)	0.080
(2400, \$53)	0.020
	Sum = 1.000

NPW Probability Distribution with Independent Random Variables

Event No.	Outcome x	Outcome y	Marginal Probability X $p(x)$	Marginal Probability Y $p(y)$	Joint Probability $P(x, y)$	Cumulative Joint Probability	NPW
1	1600	\$ 48	0.200	0.300	0.060	> 0.060	\$ 8,850
2	1600	50	0.200	0.500	0.100	0.160	15,286
3	1600	5 3	0.200	0.200	0.040	0.200	24,940
4	2000	48	0.600	0.300	0.180=	0.380	35,399
5 *	2000	50	0.600	0.500	0.309	0.680	43,443*
6	2000	5 3	0.600	0.200	0.120	0.800	55,512
7	2400	48	0.200	0.300	0.060	0.860	61,948
8	2400	50	0.200	0.500	0.100	0.960	71,602
9	2400	53	0.200	0.200	0.040	1.000	86,084

NPW probability distributions: When X and Y are independent

Lecture 12 - Dr. Shree Raj Shakya

Calculation of the Mean of NPW Distribution

Event No.	Outcome x	Outcome y	$egin{aligned} ext{Marginal} \ ext{Probability } X \ p(x) \end{aligned}$	$\begin{array}{c} Marginal \\ Probability \ Y \\ p(y) \end{array}$	Joint Probability $P(x, y)$	NPW	Weighted NPW
1	1600	\$ 48	0.200	0.300	0.060	\$ 8,850	\$ 531
2	1600	50	0.200	0.500	0.100	15,286	1,529
3	1600	53	0.200	0.200	0.040	24,940	998
4	2000	48	0.600	0.300	0.180	35,399	6,372
5	2000	50	0.600	0.500	0.300	43,443	13,033
6	2000	53	0.600	0.200	0.120	55,512	6,661
7	2400	48	0.200	0//	0.060	61,948	3,717
8	2400	50	0.200	5 0	0.100	71,602	7,160
9	2400	53	0.200	<i>s</i> .200	0.040	86,084	3,443
		D (NIDW)	42 442) 20	20/		E[PW(15%])] = \$43,443

P(NPW = 43,443) = 30% $P(NPW \le 43,443) = 68\%$ $P(NPW \ge 43,443) = 62\%$

A logical sequence of Monte Carlo simulation

Logical steps involved in simulating a risky investment

Practice

12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12, 12.12, 12.14, 12.15

End