Семинар 4-5: Продажи и линейная регрессия

Задача 1

Предположим, Олег хочет купить автомобиль и считает сколько денег ему нужно для этого накопить¹. Он пересмотрел десяток объявлений в интернете и увидел, что новые автомобили стоят около 20000, годовалые — примерно 19000, двухлетние — 18000 и так далее.

В уме Олег-аналитик выводит формулу: адекватная цена автомобиля начинается от 20000 и падает на 1000 каждый год, пока не упрётся в 10000. Олег сделал то, что в машинном обучении называют регрессией — предсказал цену по известным данным. Давайте попробуем повторить подвиг Олега.

- 1. Как выглядит формула в случае Олега?
- 2. За сколько продать старый афон? Как выглядит формула?
- 3. Сколько шашлыка брать на дачу? Как выглядит формула?
- 4. Сколько брать шашлыка, если есть толстый друг? Как можно назвать толстого друга в терминах машинного обучения? Испортит ли толстый друг формулу?
- 5. Сколько одежды брать с собой в путешествие? (тут они начнут рассуждать что это зависит не только от срока путешествия, но и от пола и бац у нас уже много факторов)

Было бы удобно иметь формулу под каждую проблему на свете. Но взять те же цены на автомобили: кроме пробега есть десятки комплектаций, разное техническое состояние, сезонность спроса и еще столько неочевидных факторов, которые Олег, даже при всём желании, не учел бы в голове. Люди тупы и ленивы — надо заставить вкалывать роботов.

Задача 2

Вот несколько ситуаций, как на ваш взгляд должны пройти линии регрессии? Да, это машинное обучение. Но обычно кривые рисуем не мы, а компуктер.

¹сделано по мотивам https://vas3k.ru/blog/machine_learning/

- 1. Нарисуйте на каждой из картинок линию регрессии.
- 2. Как выглядят уравнения регрессии в этих ситуациях? Какие параметры в них нам нужно обучить?
- 3. В чём проблема на картинке слева снизу? Проинтерпретируйте её на примере шашлыков.
- 4. Поговорить про полином и переобучение.
- 5. Как будет выглядеть рисунок, если y сколько вещей надо брать с собой в путешествие, x_1 время поездки, x_2 пол путешественника.
- 6. Ещё одна, на этот раз трёхмерная картинка! Слабо дополнить её также, как мы делали это выше? Как будет выглядеть уравнение регрессии?

Задача 3

Вася измерил вес трёх упаковок с конфетками, $y_1 = 6$, $y_2 = 6$, $y_3 = 10$. Вася хочет спрогнозировать вес следующего пакетика. Модель для веса пакетиков у Васи очень простая, $y_i = \mu + u_i$, поэтому прогнозирует Вася по формуле $\hat{y}_i = \hat{\mu}$.

Для оценки параметра µ Вася использует следующую целевую функцию:

$$\sum (y_{\mathfrak{i}} - \widehat{\mu})^2 + \lambda \cdot \widehat{\mu}^2$$

- 1. Найдите оптимальное $\hat{\mu}$ при $\lambda=0$.
- 2. Найдите оптимальное $\hat{\mu}$ при произвольном λ .
- 3. Подберите оптимальное λ с помощью кросс-валидации «выкинь одного».
- 4. Найдите оптимальное $\hat{\mu}$ при λ_{CV} .

Задача 4

Миша работает в маленькой кофейне. Харио Малабар Монсун является фирменным напитком этой кофейни. Мише интересно узнать как именно ведёт себя спрос на напиток y_i в зависимости от температуры за окном t_i . Четыре дня Миша записывал свои наблюдения:

t_{i}	yi
21	1
19	2
12	8
8	8

Сегодня он решил обучить регрессионное дерево. В качестве функции потерь он использует

$$\sum (y_i - \hat{y}_i)^2.$$

- 1. Обучите регрессионное дерево.
- 2. Какой прогноз на сегодня сделает дерево Миши, если за окном 13 градусов?

Ещё задачи

Задача 5

Маркетологи Вова и Вася строили регрессию $y=\beta_0+\beta_1x$. Каждый оценивал её по своим данным. У Васи получилось, что $\hat{\beta}_1=2$, у Вовы получилось, что $\hat{\beta}_1=8$.

Пришла Алиса, отобрала у Вовы и Васи данные, соединила их вместе и построила регрессию сразу на всём. У неё получилось, что $\hat{\beta}_1 = -10$. Может ли такое быть?

Задача 6

Выращиваем регрессионное дерево в домашних условиях! Вот вам выборка для этого:

χ_{i}	Уi
0	5
1	6
2	4
3	100

Критерий деления вершины — минимизация квадратичной функции потерь. Критерий остановки — три листа. Зачем нужен критерий остановки? Как дерево ведёт себя с выбросами?

Задача 7

Каждый день Маша ест конфеты и решает задачи по машинному обучению. Пусть x_i — количество решённых задач, а y_i — количество съеденных конфет.

χ_{i}	yi
1	1
2	2
2	8

Рассмотрим модель $y_i = \beta x_i + u_i$. Маша использует функцию потерь

$$\sum (y_i - \widehat{\beta} x_i)^2$$

- 1. Найдите МНК-оценку $\hat{\mathbf{b}}$ для имеющихся трёх наблюдений.
- 2. Нарисуйте исходные точки и полученную прямую регрессии.
- 3. Выведите формулу для \hat{b} в общем виде для n наблюдений.
- 4. На семинаре по машинному обучению неожиданно выяснилось, что Миша тоже каждый день решает задачи по машинному обучению. Правда он более сдержан в плане конфет. Миша решил взять Машины наблюдения и с помощью функционала

$$\sum |y_i - \hat{\beta} x_i|$$

оценить В. Помогите Мише найти оценку.

5. К поеданию конфет решает присоединиться Вадик. У него тоже есть своя функция потерь

$$\sum (y_i - \widehat{\beta} x_i)^2 + 3\beta^2$$

Оцените β для его случая. Нарисуйте все три прямые на одной картинке и порассуждайте почему они получились именно такими, какими получились.