OGUN DIGICLASS

CLASS: SECONDARY SCHOOL

SUBJECT: MATHEMATICS

TOPIC: COORDINATE GEOMETRY

(PART 1)

+

LEARNING OBJECTIVE:

- DISTANCE BETWEEN TWO POINT
- COORDINATE OF MID POINT
- GRADIENT

Deriving and Using the Distance Formula

solve for d

$$a = x_2 - x_1$$

$$b = y_2 - y_1$$

$$a^2 + b^2 = d^2$$

Pythagorean Theorem

$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

+

EXAMPLE

A STRAIGHT LINE PASSES
THROUGH THE POINT A(2, 2)
AND B (2,6). CALCULATE THE
DISTANCE AB

DISTANCE BETWEEN POINTS - EXAMPLE 1

Use the Distance Formula

$$AB = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

AB =
$$\sqrt{(2 - 2)^2 + (6 - 2)^2}$$

$$AB = \sqrt{(4)^2 + (8)^2}$$

AB =
$$\sqrt{80}$$
 or 8.94 $\sqrt{\ }$

Find the Distance

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-1)^2 + (-2)^2} = \sqrt{1 + 4} = \sqrt{5} \approx 2.24$$

Determine the length of the segment.

The distance between the two points (x_1, y_1) and (x_2, y_2) is given as

$$d = \sqrt{\left(X_{2} - X_{1}\right)^{2} + \left(Y_{2} - Y_{1}\right)^{2}}$$

		-3				
			(-2		+	
		-2	, 1) —			
		-1				
2 3 4	1	-1	-5	-9	-4	y
		1				
		2				
		3				
		4		,4, صر	(4	
				Ĭ	3	

Midpoint Formula B(x2, y2) $C(x_1 + x_2, y_1 + y_2)$ A(x1, y1) y-axis

The XY coordinate plane

MID POINT FORMULA

$$\left(rac{x_1+x_2}{2}, rac{y_1+y_2}{2}
ight)$$

The midpoint of M of the line segment from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Practice

 \overline{AB} has endpoints (8, 9) and (-6, -3). Find the coordinates of its midpoint M.

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$\frac{8 + (-6)}{2} = \frac{2}{2} = 1$$

$$\frac{9 + (-3)}{2} = \frac{6}{2} = 3$$

The coordinates of midpoint M are (1, 3).

FIND THE MIDPOINT

$$(x,y)_{MDPT} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{3+2}{2}, \frac{4+2}{2}\right) = \left(\frac{3+2}{2}, \frac{4+2}{2}\right)$$

GRADIENT/SLOPE/TANGENT

Gradient Slope Calculation

The "Gradient" or "Slope" between two points is how far UP we have gone, DIVDED BY how far we have gone ACROSS.

GRADIENT CAN BE DESCRIBED AS TANGENT

Gradient of a Straight Line

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{Change in y}}{\text{Change in x}}$$

Example: what is the gradient of this graph line?

$$y = 8 - 2 = 6$$

$$x = 4 - 1 = 3$$

slope =
$$\frac{y}{x} = \frac{6}{3} = 2$$

Calculating the gradient of a straight-line graph

Gradient Slope - STEPS

- Step 1 Have two points that are on a straight line
- Step 2 Work out the Vertical and Horizontal Distances
- Step 3 Substitute the Step 2 values into the Gradient Slope formula:

m = RISE (Vertical Change)
RUN (Horizontal Change)

Step 4 - Reduce Down Fraction Answers to simplest form

Step 5 Write Gradient Slope value as Positive for Uphill and Negative for Downhill.

DETERMINE THE SLOPE OF THE PAIR OF THE FOLLOWING POINTS ON A LINE

7.
$$(4, -3)$$
 and $(6, -3)$

8.
$$(2, -4)$$
 and $(-2, -16)$

Slope formula	change in v vise v – v
Slope formula	$slope, m = \frac{change \ in \ y}{change \ in \ x} = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$
	change in x run $x_2 - x_1$
	Parallel lines have equal slopes.
	The slopes of perpendicular lines are opposite reciprocals of each other
General Form	Ax + By = C
Slope Intercept	y = mx + b
Form	where m is the slope and b is the y-intercept
Point Slope Form	$(y-y_1)=m(x-x_1)$
	where <i>m</i> is the slope
Midpoint Formula	$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$
Distance Formula	$\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}$

+

ASSIGNMENT

2016 WASSCE OBJ

A STRAIGHT LINE PASSES THROUGH THE POINT P(1, 2) AND Q(5,6),

I) CALCULATE THE GRADIENT PQ

II) CALCULATE THE DISTANCE PQ