Fine-tune the transformer model with LoRA

1. Task Analysis

Internet Movie Database (IMDb) is a Movies Reviews dataset for binary sentiment classification.

User Reviews

An excellent family movie... gives a lot to think on... There's absolutely nothing wrong in this film. Everything is just perfect. The script is great - it's so... real... such things could happen in everyone's life. And don't forget about acting - it's just awesome! Just look at Frankie and You'll know what I thought about... This picture is a real can't-miss!!!

Positive: 1

This is the worst film I have ever seen. I was watching this film with some friends and after 40 minutes we had enough. The plot was bad and there wasn't a single likeable character. I could get more entertainment watching static. I gave this movie a 1 only because the scale didn't go into negative numbers. Avoid this movie at all costs.

Negative: 0

Dataset overview

<pre>DatasetDict({</pre>				
train: Dataset({				
features: ['text', 'label'],				
num_rows: 25000				
})				
test: Dataset({				
features: ['text', 'label'],				
num_rows: 25000				
})				
unsupervised: Dataset({				
features: ['text', 'label'],				
num_rows: 50000				
})				
})				

	text	label
0	I rented I AM CURIOUS-YELLOW from my video sto	0
1	"I Am Curious: Yellow" is a risible and preten	0
2	If only to avoid making this type of film in t	0
3	This film was probably inspired by Godard's Ma	0
4	Oh, brotherafter hearing about this ridicul	0
4995	A hit at the time but now better categorised a	1
4996	I love this movie like no other. Another time	1
4997	This film and it's sequel Barry Mckenzie holds	1
4998	'The Adventures Of Barry McKenzie' started lif	1
4999	The story centers around Barry McKenzie who mu	1

	text_length
count	25000.00000
mean	1325.06964
std	1003.13367
min	52.00000
25%	702.00000
50%	979.00000
75%	1614.00000
max	13704.00000

2. How to classify?

Lightweight Models

- Relatively lower accuracy
- Need more text preprocessing:
 - LowerCasing Text
 - Remove HTML Tags
 - Remove URLs
 - Remove Punctuations
 - Handling ChatWords, like: ASAP, AFAIK, B4, IC, THX, JK, ZZZ, CSL
 - Spelling Correction

- Handling StopWords
- Handling Emojies
- Stemming
- Lemmatization

Large Language Models

- BERT-related model NLU has higher accuracy
- But have a large number of parameters and a huge amount of computation
- Difficult to train

How to finetune LLMs more efficiently?

Low-Rank Adaption (LoRA)

3. Understanding LoRA

- Parameter-Efficient Fine-Tuning (PEFT)
- Instead of adjusting all the parameters of a deep neural network, LoRA focuses on updating only a small set of low-rank matrices.


```
BertModel(
  (embeddings): BertEmbeddings(
    (word_embeddings): Embedding(28996, 768, padding_idx=0)
    (position_embeddings): Embedding(512, 768)
    (token_type_embeddings): Embedding(2, 768)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  (encoder): BertEncoder(
    (layer): ModuleList(
     (0-11): 12 x BertLayer(
        (attention): BertAttention(
          (self): BertSdpaSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
            (key): Linear(in_features=768, out_features=768, bias=True)
            (value): Linear(in_features=768, out_features=768, bias=True)
            (dropout): Dropout(p=0.1, inplace=False)
          (output): BertSelfOutput(
            (dense): Linear(in_features=768, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
        (intermediate): BertIntermediate(
          (dense): Linear(in features=768, out features=3072, bias=True)
          (intermediate_act_fn): GELUActivation()
        (output): BertOutput(
          (dense): Linear(in_features=3072, out_features=768, bias=True)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
    (dense): Linear(in_features=768, out_features=768, bias=True)
    (activation): Tanh()
```

Weight update in regular finetuning

Weight update in LoRA

- In regular finetuning, we compute the weight updates of a weight matrix W as ΔW
- In LoRA, we approximate ΔW through the matrix multiplication of two smaller matrices A, B
- W(updated) = W + △W
- Just like PCA or SVD, consider this as decomposing ΔW into A and B

- Suppose the weight matrix W
- It has a size of 5,000x10,000
- 50M parameters in total

- We choose a rank r=8
- Metrix *A* size of 5,000x8, Metrix *B* size of 8x10,000
- 40,000 + 80,000 = 120,000 parameters in total

Which is 400 times smaller than the 50M parameters.

4. Coding LoRA from Scratch

Best accuracy of LoRA

lora_r: 8
lora_alpha: 1
lora_query: True
lora_key: False
lora_value: True
lora_projection: False
lora_mlp: True
lora_head: False

Val acc: 92.72%
Test acc: 93.46%

**** Total number of parameters: 67471106

**** Number of trainable parameters: 516096 (0.76%)

Accuracy comparison

5. Summary

- LoRA is effective
- Choosing rank & alpha

Choosing modules

Choosing learning rate scheduler

