第三次习题课答案(欧氏空间和酉空间)

1、设 $\alpha_1=(1,0,2,1)^T$, $\alpha_2=(2,1,2,3)^T$, $\alpha_3=(i,0,i,1)^T$, $W=L(\alpha_1,\alpha_2,\alpha_3)$ 。 求W在 C^4 中的正交补。

解: 法一: 设 $\alpha=(x_1,x_2,x_3,x_4)^T\in C^4$, $\alpha=(x_1,x_2,x_3,x_4)^T\in W^\perp$ 当且仅当 α 同时与 $\alpha_1,\alpha_2,\alpha_3$ 正交,即 α 满足

$$\begin{cases} x_1 + 2x_3 + x_4 = 0 \\ 2x_1 + x_2 + 2x_3 + 3x_4 = 0 \\ ix_1 + ix_3 + x_4 = 0 \end{cases}$$

可求得其基础解系为: $\eta = (1 + 2i, -3 - 2i, -1 - i, 1)^T$ 。故 $W^{\perp} = L(\eta)$ 。

法二:可验证 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,可以添加一个向量 $\alpha_4=(0,0,0,1)^T$ 扩充成 C^4 的基。用施米特正交化方法,将其化为两两正交的向量组。

正交化:

- 2、设 σ 为欧式空间V的一个线性变换。证明:
- (1) σ 为欧式空间V的一个全等变换(即保持向量的长度和向量间夹角的变换)当且仅当 σ 为V的正交变换。
- (2) σ 为欧式空间V的一个相似变换(即保持向量间夹角的变换)当且仅当 σ 满足 $(\sigma\alpha,\sigma\beta)=\lambda(\alpha,\beta)$, $\forall\alpha,\beta\in V$,其中 λ 为正的常数。
 - (3) σ 为相似变换当且仅当 σ 为一非零的实数与一正交变换的乘积。

证明: (1) 若 σ 保持向量的长度和向量间的夹角,则($\sigma\alpha$, $\sigma\beta$) = (α , β),对于 $\forall\alpha$, $\beta \in V$. 故 σ 为正交变换。反之若 σ 为正交变换, σ 保持向量的长度和向量间的夹角。

(2) 只证必要性。由已知 σ 为可逆变换。对V的维数归纳证明。若 $\dim(V)=1$ 时显然成立。若 $\dim(V)=2$ 时,取 $\varepsilon_1, \varepsilon_2$ 为V的标准正交基。先设($\sigma\varepsilon_i, \sigma\varepsilon_i$) = $\lambda_i(\varepsilon_i, \varepsilon_i)=\lambda_i$, i=1,2, 由已知很容易得到 $\lambda_i\neq 0$. 由于 σ 保持 ε_1 和 $\varepsilon_1+\varepsilon_2$ 的夹角,即: $\frac{(\sigma(\varepsilon_1),\sigma(\varepsilon_1+\varepsilon_2))}{(\||(\sigma(\varepsilon_1)\||)(\||\sigma(\varepsilon_1+\varepsilon_2)\||))}=\frac{(\varepsilon_1,\varepsilon_1+\varepsilon_2)}{(\||\varepsilon_1\||)(\||\varepsilon_1+\varepsilon_2\||)}$,两边平方得: $\frac{(\sigma(\varepsilon_1),\sigma(\varepsilon_1+\varepsilon_2))^2}{(\sigma(\varepsilon_1),\sigma(\varepsilon_1))(\sigma(\varepsilon_1+\varepsilon_2),\sigma(\varepsilon_1+\varepsilon_2))}=\frac{1}{2}$ 。因为 σ 保持 $\varepsilon_1,\varepsilon_2$ 的夹角,故($\sigma\varepsilon_1,\sigma\varepsilon_2$) = 0,将($\sigma\varepsilon_i,\sigma\varepsilon_i$) = $\lambda_i(\varepsilon_i,\varepsilon_i)=\lambda_i$,i=1,2代入上式,并整理得到 $\lambda_1^2-\lambda_1\lambda_2=0$,故 $\lambda_1=\lambda_2$ 。综合上面得到 $\lambda_1=\lambda_2=\lambda>0$ 。进一步可证明对于 $\forall \alpha=a\varepsilon_1+b\varepsilon_2,\beta=c\varepsilon_1+d\varepsilon_2\in V$,($\sigma\alpha,\sigma\beta$) = $\lambda(\alpha,\beta)$.

下面假设dim(V) > 2。首先证明:V有一个一维或二维的不变子空间。若 σ 有一实的特征值,则 σ 在V上有特征向量 α , α 生成的一维子空间为 σ 不变的;若 σ 没有实的特征值,则 σ 的特征值都为虚数,且成对出现。令a+bi和a-bi为 σ 的一对虚数特征值,且令 $(x-a-bi)(x-a+bi)=x^2+px+q$ 。显然 $\sigma^2+p\sigma+q\varepsilon$ 不是V上的可逆变换,因为设 σ 在一组基下的矩阵为A,则 $\sigma^2+p\sigma+q\varepsilon$ 在这组基下的矩阵为 $A^2+pA+qI=(A-(a+bi)I)(A-(a-bi)I)$ 不可逆,因为a+bi,a-bi为A的特征值。取 $0\neq\alpha\in\ker(\sigma^2+p\sigma+q\varepsilon)$,则 α , $\sigma\alpha$ 线性无关。否则 α 为 σ 的特征向量,则 σ 有实特征值,矛盾。于是 $L(\alpha,\sigma\alpha)$ 为 σ 的二维不变子空间,因为 $\sigma^2\alpha=-p\sigma\alpha-q\alpha$ 。令 $V=W\oplus W^\perp$,其中W为 σ 的一维或二维的不变子空间。由于 σ 保持向量间的夹角,可证 W^\perp 也为 σ 不变的。然后由归纳存在 $\lambda_1>0$ 和 $\lambda_2>0$ 使得对任意的 $\alpha,\beta\in W$,有 $(\sigma\alpha,\sigma\beta)=\lambda_1(\alpha,\beta)$;对于任意的 $\alpha,\beta\in W^\perp$ 有 $(\sigma\alpha,\sigma\beta)=\lambda_2(\alpha,\beta)$ 。下面证明 $\lambda_1=\lambda_2$,分别取单位向量 $\epsilon\in W$ 和 ϵ 0中间的夹角,以及 ϵ 1中,为力于任意的 ϵ 1中,类似前面dim(ϵ 2中)之时的讨论,可证明 ϵ 1中,以及 ϵ 2中,为可证明为于任意的 ϵ 2中,有 ϵ 2中,有 ϵ 3中,

- (3) 设 σ 为相似变换,故存在 $\lambda_{\sigma} > 0$ 使得 $(\sigma\alpha, \sigma\beta) = \lambda_{\sigma}(\alpha, \beta)$ 。令 $a = \sqrt{\lambda_{\sigma}}$,则 $\sigma = a\frac{\sigma}{a}$,且 $(\frac{\sigma}{a}\alpha, \frac{\sigma}{a}\beta) = \frac{1}{a^2}(\sigma\alpha, \sigma\beta) = (\alpha, \beta)$, $\forall \alpha, \beta \in V$ 。故 $\frac{\sigma}{a}$ 为一个正交变换。反过来,显然成立。
 - 3、设 $\{O: e_1, e_2\}$ 为平面 π 上的直角坐标系。
- (1)设 σ 为以OT为轴的反射变换,设以 e_1 为始边,OT为终边的角为 $\theta/2$,其中 $0 \le \theta < 2\pi$ 。证明 σ 在基 e_1, e_2 下的矩阵为 $\begin{pmatrix} cos\theta & sin\theta \\ sin\theta & -cos\theta \end{pmatrix}$. (2)设 σ 为 π 上逆时针旋转 φ 度角的旋转变换,其中 $0 \le \varphi < 2\pi$ 。证明 σ 在 e_1, e_2 下
- (2) 设 σ 为 π 上逆时针旋转 φ 度角的旋转变换,其中 $0 \le \varphi < 2\pi$ 。证明 σ 在 e_1, e_2 下的矩阵为 $\begin{pmatrix} cos\varphi & sin\varphi \\ -sin\varphi & cos\varphi \end{pmatrix}$.
 - (3)证明平面π上任意一个正交变换要么是旋转要么是反射。

证明: (1), (2) 略。

(3) 从 (1) (2) 可以看出旋转和反射都为正交变换。假设 σ 为平面 π 上的一个正交变换,且设 σ 在标准正交基 e_1,e_2 下的矩阵为 $P=\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ 。于是P为正交矩阵, 有 $a^2+b^2=1$, $c^2+d^2=1$,且ac+bd=0。可设 $a=cos\theta,b=sin\theta,0\leq\theta<2\pi$; $c=cos\varphi,d=sin\varphi,0\leq\varphi<2\pi$,由ac+bd=0得到 $cos(\theta-\varphi)=0$,所以 $\theta-\varphi=\pm\frac{\pi}{2},\pm\frac{3\pi}{2}$ 。 所以 $P=\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$, $or\begin{bmatrix} cos\theta & sin\theta \\ sin\theta & -cos\theta \end{bmatrix}$ 。

所以 $P = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$, $or \begin{bmatrix} cos\theta & sin\theta \\ sin\theta & -cos\theta \end{bmatrix}$.

如果 $P = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} = \begin{bmatrix} cos(2\pi - \theta) & sin(2\pi - \theta) \\ -sin(2\pi - \theta) & cos(2\pi - \theta) \end{bmatrix}$, 则 σ 为逆时针旋转 $2\pi - \theta$ 度角的旋转变换

$$4$$
、设 $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & i \\ 1 & -i & 1 \end{bmatrix}$,求酉矩阵 U 使得 $U^{-1}AU$ 为对角阵。

解: $|\lambda I - A| = \lambda(\lambda - 2)(\lambda + 1)$,所以A的特征值为: $\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = -1$ 。对于特征值 $\lambda_1 = 0$,可求得(-A)x = 0的基础解系 $\eta_1 = (i,1,0)^T$,单位化得到 $\varepsilon_1 = (i/\sqrt{2},1/\sqrt{2},0)$;对于特征值 $\lambda_2 = 1$,可求得(2I-A)x = 0的基础解系 $\eta_2 = (i,1,-2i)^T$,单位化得到 $\varepsilon_2 = (i/\sqrt{6},1/\sqrt{6},-2i/\sqrt{6})$;对于特征值 $\lambda_3 = -1$,可求得(-I-A)x = 0的基础解系 $\eta_3 = (-1,-i,1)^T$,单位化得到 $\varepsilon_3 = (-1/\sqrt{3},-i/\sqrt{3},1/\sqrt{3})$ 。由于A为艾尔米特矩阵,A的属于不同特征值的特征向量相互正交,令 $U = (\varepsilon_1,\varepsilon_2,\varepsilon_3)$,则U为酉矩阵,且 $U^{-1}AU = \mathrm{diag}(0,2,-1)$ 。

- 5、设 σ 为酉空间V上的艾尔米特变换,证明:
- (1) 对于任意的向量 $\alpha \in V$, $(\sigma\alpha, \alpha)$ 为实数;
- (2) 若 σ 在V的一组标准正交基下的矩阵为正定的埃尔米特矩阵则对V中任何非零向量 α 有($\sigma\alpha$, α) > 0.

证明:证明: (1) $(\sigma\alpha, \alpha) = (\alpha, \sigma\alpha) = \overline{(\sigma\alpha, \alpha)}$, 所以 $(\sigma\alpha, \alpha)$ 为实数。

- (2) 设 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 为V的一组标准正交基,非零向量 α 在这组基下的坐标为x. 故 $(\sigma\alpha, \alpha) = (Ax)^T \bar{x} = x^T A^T \bar{x}$,由(1) $(\sigma\alpha, \alpha) = (Ax)^T \bar{x} = x^T A^T \bar{x} = \overline{(\sigma\alpha, \alpha)} = \overline{x^T A^T \bar{x}} = x^H A^H x = x^H A x$,由于A正定,故 $(\sigma\alpha, \alpha) = x^H A x > 0$ 。
- 6、设A,B为正规矩阵,且AB = BA。证明存在酉矩阵U使得 $U^{-1}AU$ 和 $U^{-1}BU$ 同时为对角阵。

证明: A正规,故存在酉矩阵 U_1 使得 $U_1^{-1}AU_1$ 为对角阵 $\operatorname{diag}(\lambda_1 I_{n_1},...,\lambda_s I_{n_s})$,其中 $\lambda_1,...,\lambda_s$ 为A的所有不同的特征值。由于 $U_1^{-1}AU_1U_1^{-1}BU_1=U_1^{-1}BU_1U_1^{-1}AU_1$,故 $U_1^{-1}BU_1=\operatorname{diag}(B_1,...,B_s)$,其中 B_i 为阶数 n_i 的正规矩阵。分别存在酉矩阵 Q_i 使得 $Q_i^{-1}B_iQ_i$ 为对角阵。令 $U_2=\operatorname{diag}(Q_1,...,Q_s)$,则 U_2 为酉矩阵。令 $U=U_1U_2$,则U为酉矩阵,且 $U^{-1}AU$ 和 $U^{-1}BU$ 都为对角阵。

7、设 σ 为酉空间V的线性变换, σ *为 σ 的共轭变换,W为V的子空间。证明W为 σ 不变的当且仅当 W^{\perp} 为 σ *不变的。特别地若 σ 为艾尔米特变换,W为 σ 不变的当且仅当 W^{\perp} 为 σ 不变的。

证明: 设W为 σ 不变的,令 $\alpha \in W^{\perp}$,对于 $\forall \beta \in W$ 有 $(\beta, \sigma^* \alpha) = (\sigma \beta, \alpha) = 0$,故 $\sigma^* \alpha$ 与W正交,所以 $\sigma^* \alpha \in W^{\perp}$ 。反之,证明同理。

8、设
$$A = \begin{bmatrix} 0 & i & 0 \\ 1 & 0 & 1 \\ 1 & i & 0 \end{bmatrix}$$
,求酉矩阵 U 和上三角矩阵 R 使得 $A = UR$. (上述分解称为

复可逆阵的U、R分解,类似于实可逆阵的O、R分解。

解: 具体计算略。思路如下: 令A的列向量分别为 $\alpha_1 = (0,1,1)^T$, $\alpha_2 = (i,0,i)^T$, $\alpha_3 = (i,0,i)^T$

 $(0,1,0)^{T}$ 。下面用施米特正交化方法将其化为两两正交的单位向量组。

(1) 正交化

$$\beta_1 = \alpha_1,$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1,
\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1.$$

(2) 单位化

$$\varepsilon_1 = \beta_1 / \|\beta_1\|,$$

$$\varepsilon_2 = \beta_2 / \|\beta_2\|,$$

$$\varepsilon_2 = \beta_3 / \|\beta_3\|.$$

故
$$A = (\alpha_1, \alpha_2, \alpha_3) = (\beta_1, \beta_2, \beta_3)R_1 = (\varepsilon_1, \varepsilon_2, \varepsilon_3)\operatorname{diag}(\|\beta_1\|, \|\beta_2\|, \|\beta_3\|)R_1$$

令
$$U = (\varepsilon_1, \varepsilon_2, \varepsilon_3), R = \operatorname{diag}(\|\beta_1\|, \|\beta_2\|, \|\beta_3\|) R_1$$
,即得到 A 的 U , R 分解。