Universitat Oberta de Catalunya

Estudis d'Informàtica, Multimèdia i Telecomunicació

ASSIGNATURA: Grafs i Complexitat

Tercera PAC. Mòduls 6 i 7.

Semestre de primavera de 2012 (del 9 de maig al 30 de maig).

Si us plau, feu cas de les instruccions següents:

- Envieu la solució en un fitxer que haureu d'anomenar:
 PAC3_Cognom1Cognom2nom.pdf
- L'heu de lliurar a l'apartat "Lliurament i Registre d'AC" de l'aula.
- Numereu les respostes d'acord amb la numeració de les preguntes i els apartats.
- No us limiteu a donar les respostes als problemes proposats. Doneu, també, una explicació que justifiqui la resposta.
- 1. (Valoració d'un 20%) Considereu les fórmules booleanes següents:
 - $\bullet f_1 = (x \vee \bar{y}) \wedge (\bar{x} \vee y).$
 - $f_2 = (x \vee y \vee \bar{z}) \wedge (\bar{x} \vee \bar{y} \vee z).$
 - $f_3 = (x \wedge y) \vee (\bar{x} \wedge z).$
 - $f_4 = (\bar{x} \vee y \vee z) \wedge (x \vee \bar{y} \vee z) \wedge (x \vee y \vee \bar{z}).$
 - a) Digueu quines fórmules estan en FNC.
 - b) Justifiqueu si alguna d'elles són instàncies del problema SAT o 3SAT.
 - c) Considereu el problema 3SAT-EQUILIBRAT: donada una fórmula booleana en FNC on cada clàusula conté 3 literals i cada variable apareix negada i no negada el mateix nombre de vegades a la fórmula, decidir si hi ha una assignació de variables a la fórmula que la satisfà.
 - Digueu si alguna de les fórmules anteriors és una instància del problema 3SAT-EQUILIBRAT.
 - d) Demostreu que 3SAT-EQUILIBRAT $\in NP$.

e) Demostreu que 3SAT-EQUILIBRAT és NP-complet.

Solució:

- a) Estan en FNC les fórmules f_1, f_2, f_4 .
- b) Les tres que estan en FNC són instàncies del problema SAT però només f_2 i f_4 són instàncies del problema 3SAT.
- c) La fórmula f_2 és una instància del problema 3SAT-EQUILIBRAT.
- d) El problema 3SAT-EQUILIBRAT és un subconjunt del problema 3SAT. Igual que el SAT i el 3SAT podem verificar una assignació de valors de veritat a cada variable en temps polinomial (repasseu l'exemple 29 del mòdul 6).
- e) Com que 3SAT-EQUILIBRAT $\in NP$ és suficient demostrar que 3SAT-EQUILIBRAT és NP-Difícil. És fàcil construir una reducció polinòmica de 3SAT \leq_p 3SAT-EQUILIBRAT. Només cal, per a cada variable x, comptar quantes vegades apareix negada i no negada i afegirem les clàusules $(x \vee t \vee \bar{t})$ o $(\bar{x} \vee t \vee \bar{t})$ que calguin, on t és una nova variable.
- 2. (Valoració d'un 20%) Siguin els problemes següents:

CONNEX: Donat G = (V, A), determinar si G és connex.

COMPONENTS: Donat G = (V, A), decidir si G té exactament k components connexos.

- a) Demostreu que $CONNEX \in P$.
- b) Demostreu que CONNEX \leq_p COMPONENTS.
- c) Podem afirmar a partir de l'apartat anterior que COMPONENTS $\in P$? I que COMPONENTS $\notin P$?

Solució:

- a) Un possible algorisme en temps polinòmic seria: escollim un vèrtex inicial qualsevol i fem una exploració BFS. Si acabem obtenint tots els vèrtexs és que el graf és connex. Recordem que l'algorisme BFS té complexitat O(n+m).
- b) La funció de reducció seria f(G) = (G, 1). Només cal observar que $\mathsf{CONNEX}(G) \iff \mathsf{COMPONENTS}(G, 1)$.
- c) No podem afirmar que pertany a P, podríem si la reducció fos COMPONENTS \leq_p CONNEX. Tampoc podem afirmar que no hi pertanyi, ja que els dos problemes podrien ser polinòmicament equivalents.

3. (Valoració d'un 20%) Siguin els dos problemes següents:

 $\mathsf{MCD}(n,m,x)$: Donats n,m i x enters, $0 < n \le m$, decidir si el $\mathsf{mcd}(n,m)$ (és a dir, el màxim comú divisor de n i m) és igual a x.

COPRIMERS(n, m): Donats n i m enters, $0 < n \le m$, determinar si n i m no tenen cap divisor comú més gran que 1.

a) Considereu l'algorisme següent per trobar el mcd de n i m:

```
\begin{array}{l} \underline{\mathbf{funci\acute{o}}} \ MCD(n,m) \\ \underline{\mathbf{inici}} \\ mcd \leftarrow 1 \\ \underline{\mathbf{per}} \ i = 1 \ \underline{\mathbf{fins}} \ n \\ \underline{\mathbf{si}} \ (n \ \mathrm{mod} \ i = 0 \ \land \ m \ \mathrm{mod} \ i = 0) \ \underline{\mathbf{aleshores}} \\ mcd = i \\ \underline{\mathbf{fisi}} \\ \underline{\mathbf{fiper}} \\ \underline{\mathbf{retorn}} \ mcd \\ \mathbf{fi} \end{array}
```

Demostreu que aquest algorisme té complexitat exponencial respecte de la mida de l'entrada.

- b) A partir de l'apartat anterior, podem afirmar que MCD(n, m, x) és intractable?
- c) Demostreu que COPRIMERS $(n, m) \leq_{p} \mathsf{MCD}(n, m, x)$.

Solució:

- a) Dins del bucle té lloc un nombre constant d'operacions. El bucle s'executa n vegades. La mida de l'entrada és $N = \log_2(n) + \log_2(m) = \log_2(nm)$. Per tant, l'algorisme té complexitat $O(2^N)$ respecte la mida de l'entrada.
- b) A partir de l'apartat anterior, només podem afirmar que $\mathsf{MCD}(n, m, x) \in EXP$, però no exclou que existeixi un algorisme en temps polinòmic que resolgui el problema.
- c) La funció de reducció seria f(n,m)=(n,m,1). Només cal observar que COPRIMERS(n,m) \iff MCD(n,m,1).
- 4. (Valoració d'un 20%) Considereu els problemes següents:

SUMA_SUB: Donat un conjunt C d'enters positius i un enter t, decidir si existeix C', subconjunt de C, tal que la suma dels elements de C' és exactament t.

SUMA_RESTA_SUB: Donat un conjunt C d'enters i un enter t, decidir si existeix C', subconjunt de C, tal que sumant i/o restant els elements de C' obtenim exactament t. (Per exemple, si $C = \{1, 3, 6, 10\}$ i t = 8, C' podria ser $\{1, 3, 6\}$, perquè 3 + 6 - 1 = 8)

- a) De quina mena és cadascun dels problemes? (decisional, de càlcul, d'optimització).
- b) Demostreu que SUMA_RESTA_SUB \leq_p SUMA_SUB, usant la funció de reducció $f(C,t)=(\bar{C},t),$ on $\bar{C}=C\cup\{-x\mid x\in C\}.$ (seguint amb l'exemple anterior, \bar{C} seria $\{1,-1,3,-3,6,-6,10,-10\}$).

Solució:

- a) Són problemes decisionals tots dos.
- b) Observem que f és una funció polinòmica (de fet, constant), ja que només cal afegir, per a cada $x \in C$, x i -x a \bar{C} . Cal veure que SUMA_RESTA_SUB(C) \iff SUMA_SUB (\bar{C}) : Si SUMA_RESTA_SUB(C) és cert, tot element de C' i el seu oposat són a \bar{C} , per la qual cosa $C' \cup \{-x \mid x \in C'\}$ conté un subconjunt de \bar{C} que ens garanteix que
 - SUMA_SUB(\bar{C}) és cert (a l'exemple de l'enunciat seria $\{-1,3,6\}$). Suposem ara que SUMA_SUB(\bar{C}) és cert. Sigui \bar{C}' el subconjunt que ens dóna t. Considerem $C' = \{x \in C \mid x \in \bar{C}'\} \cup \{x \in C \mid -x \in \bar{C}'\}$. Per definició de \bar{C} , si $x \in \bar{C}'$, aleshores o bé x o bé -x pertany a C. Sumant els termes de C' que es troben al primer cas i restant els que es troben en el segon obtenim t. Per tant, SUMA_RESTA_SUB(C) és cert.
- 5. (Valoració d'un 20%) Considereu un conjunt d'n fitxers S_1, \ldots, S_n , on el fitxer S_j té longitud c_j $(j = 1, \ldots, n)$ i un conjunt, $\{x_1, \ldots, x_m\}$, de m peticions d'unitats d'informació. Cada unitat d'informació està emmagatzemada en almenys un fitxer. Volem trobar un subconjunt de fitxers de cost total mínim tal que permetin respondre a totes les peticions d'unitats d'informació.
 - a) Modeleu aquest problema utilitzant la teoria de grafs i definiu el problema d'optimització associat.
 - b) Relacioneu-lo amb algun dels problemes estudiats en el mòdul 7 i justifiqueu si és un problema intractable.
 - c) Si la taula següent representa una instància del problema, doneu una solució òptima:

	S_1	S_2	S_3	S_4	S_5
$\overline{x_1}$	1	0	1	1	0
x_2	1	0	0	1	0
x_3	1	1	0	1	0
x_4	0	1	1	1	0
x_5	1	0	0	0	1
x_6	0	0	1	0	0
x_7	0	1	0	1	0
Cost	3	6	2	5	7

Solució:

- a) Definim un graf bipartit $G(S \cup X, A)$ on $S = \{S_1, \ldots, S_n\}$ i $X = \{x_1, \ldots, x_m\}$. S_i i x_j són adjacents si el fitxer S_i conté la petició x_j . A més, en el conjunt de vèrtexs S hi ha definits el conjunt de costos $C = \{c_1, \ldots, c_n\}$. El problema d'optimització seria, quin és el subconjunt S' de S de cost mínim que verifica que per a tot $x \in X$ és adjacent a algún vèrtex de S'?
- b) Es tracta d'una variant del problema del conjunt de dominació que és un problema NP-Complet. Per tant, també és un problema intractable.
- c) Podem resoldre la instància del problema com un problema de cobertura:

	S_1	S_2	S_3	S_4	S_5
x_1	1	0	1	1	0
x_2	1	0	0	1	0
x_3	1	1	0	1	0
x_4	0	1	1	1	0
x_5	1	0	0	0	1
x_6	0	0	1	0	0
x_7	0	1	0	1	0
Cost	3	6	2	5	7

La fila x_6 només té un 1 en la columna S_3 . Per tant, S_3 ha de formar part de la solució.

Ara podem eliminar les files x_1 , x_4 i x_6 :

	S_1	S_2	S_3	S_4	S_5
x_2	1	0	0	1	0
x_3	1	1	0	1	0
x_5	1	0	0	0	1
x_7	0	1	0	1	0
Cost	3	6	2	5	7

Ara, x_3 cobreix x_2 i x_7 . Per tant, podem eliminar x_3 .

	S_1	S_2	S_3	S_4	S_5
x_2	1	0	0	1	0
x_5	1	0	0	0	1
x_7	0	1	0	1	0
Cost	3	6	2	5	7

Ara, la fila x_2 és coberta per S_1 i S_4 . Hem de triar S_1 que també cobreix x_5 . Finalment, per cobrir x_7 hem de triar S_4 que té un cost menor que S_2 . la solució final és $S' = \{S_1, S_3, S_4\}$ amb un cost 10.