BEST AVAILABLE COPY

日本国特許庁 JAPAN PATENT OFFICE

JP03/14478

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 2月24日

RECEIVED

0 9 JAN 2004

WIPO PCT

出 願 番 号 Application Number:

特願2003-045883

[ST. 10/C]:

[JP2003-045883]

出 願 人
Applicant(s):

株式会社巴川製紙所

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年12月22日

今 井 康

【書類名】

特許願

【整理番号】

J10397A1

【提出日】

平成15年 2月24日

【あて先】

特許庁長官 殿

【国際特許分類】

G02B 5/02

F21V 8/00 601

【発明の名称】

異方性光拡散粘着積層体、多層シート、光学積層体並び

に照明装置

【請求項の数】

19

【発明者】

【住所又は居所】

静岡県静岡市用宗巴町3番1号 株式会社巴川製紙所

技術研究所内

【氏名】

中島 敏博

【発明者】

【住所又は居所】

静岡県静岡市用宗巴町3番1号 株式会社巴川製紙所

技術研究所内

【氏名】

東 健策

【特許出願人】

【識別番号】

000153591

【氏名又は名称】

株式会社巴川製紙所

【代理人】

【識別番号】

100064908

【弁理士】

【氏名又は名称】

志賀 正武

【選任した代理人】

【識別番号】

100108578

【弁理士】

【氏名又は名称】 高橋 詔男

【選任した代理人】

【識別番号】

100089037

【弁理士】

【氏名又は名称】 渡邊 隆

【選任した代理人】

【識別番号】 100101465

【弁理士】

【氏名又は名称】 青山 正和

【選任した代理人】

【識別番号】 100094400

【弁理士】

【氏名又は名称】 鈴木 三義

【選任した代理人】

【識別番号】 100107836

【弁理士】

【氏名又は名称】 西 和哉

【選任した代理人】

【識別番号】 100108453

【弁理士】

【氏名又は名称】 村山 靖彦

【手数料の表示】

【予納台帳番号】 008707

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9705370

【プルーフの要否】

【書類名】

明細書

【発明の名称】 異方性光拡散粘着積層体、多層シート、光学積層体並びに照

明装置

【特許請求の範囲】

【請求項1】 粘着剤を含有する粘着層を2層以上有する粘着積層体であっ て、

その少なくとも1層の粘着層は、前記粘着剤と屈折率の異なる針状フィラーを 含有すると共に、前記針状フィラーが略同一方向に配向して分散されていること を特徴とする異方性光拡散粘着積層体。

【請求項2】 針状フィラーを含有する粘着層を少なくとも2層有し、それ ぞれの粘着層に含まれる針状フィラーが異なる方向に配向していることを特徴と する請求項1に記載の異方性光拡散粘着積層体。

【請求項3】 少なくとも1層の粘着層が、非針状フィラーを含有すること を特徴とする請求項1又は請求項2に記載の異方性光拡散粘着積層体。

【請求項4】 少なくとも1層の粘着層が、無配向の針状フィラーを含有す ることを特徴とする請求項1から請求項3のいずれか1項に記載の異方性光拡散 粘着積層体。

【請求項5】 針状フィラーおよび非針状フィラーを含有しない透明粘着層 を有することを特徴とする請求項1から請求項4のいずれか1項に記載の異方性 光拡散粘着積層体。

【請求項6】 前記針状フィラーが無色又は白色であることを特徴とする請 求項1から請求項5のいずれか1項に記載の異方性光拡散粘着積層体。

【請求項7】 前記非針状フィラーが無色又は白色であることを特徴とする 請求項3から請求項6のいずれか1項に記載の異方性光拡散粘着積層体。

【請求項8】 透明基体の一方の面または両面に、請求項1から請求項7の いずれか1項に記載の異方性光拡散粘着積層体が設けられたことを特徴とする多 層シート。

【請求項9】 セパレータ上に、請求項1から請求項7のいずれか1項に記 載の異方性光拡散粘着積層体が設けられたことを特徴とする多層シート。

【請求項10】 一対のセパレータに、請求項1から請求項7のいずれか1 項に記載の異方性光拡散粘着積層体が挟持されたことを特徴とする多層シート。

【請求項11】 光反射素子、光拡散素子、プリズム素子、偏光素子、位相差素子、視野角拡大素子から選ばれる光学素子上に、請求項1から請求項7のいずれか1項に記載の異方性光拡散粘着積層体とセパレータとが順次積層されたことを特徴とする光学積層体。

【請求項12】 導光板の光出射面と反対の面上に、請求項1から請求項7のいずれか1項に記載の異方性光拡散粘着積層体と光反射素子とが順次積層されたことを特徴とする光学積層体。

【請求項13】 導光板の光出射面に請求項1から請求項7のいずれか1項に記載の異方性光拡散粘着積層体が形成され、該異方性光拡散粘着積層体上に光拡散素子及び/又はプリズム素子を備えたことを特徴とする光学積層体。

【請求項14】 光拡散素子と請求項1から請求項7のいずれか1項に記載の異方性光拡散粘着積層体とプリズム素子とが順次積層されたことを特徴とする 光学積層体。

【請求項15】 プリズム素子と請求項1から請求項7のいずれか1項に記載の異方性光拡散粘着積層体と偏光素子とが順次積層されたことを特徴とする光学積層体。

【請求項16】 光反射型偏光素子と請求項1から請求項7のいずれか1項に記載の異方性光拡散粘着積層体と光吸収型偏光素子とが順次積層されたことを特徴とする光学積層体。

【請求項17】 位相差素子と請求項1から請求項7のいずれか1項に記載の異方性光拡散粘着積層体と偏光素子とが順次積層されたことを特徴とする光学積層体。

【請求項18】 請求項1から請求項7のいずれか1項に記載の異方性光拡 散粘着積層体を備えたことを特徴とする照明装置。

【請求項19】 光源、導光板、光反射素子を必須構成部材とし、光拡散素子、プリズム素子、偏光素子、位相差素子、視野角拡大素子を任意構成部材とする照明装置において、導光板、光反射素子、光拡散素子、プリズム素子、偏光素

子、位相差素子、視野角拡大素子から選ばれる一対の光学素子に、請求項1から 請求項7のいずれか1項に記載の異方性光拡散粘着積層体が挟持されたことを特 徴とする照明装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、液晶表示装置のバックライト等の照明装置に用いて好適な異方性光 拡散粘着積層体、多層シート、光学積層体並びに照明装置に関するものである。

[0002]

【従来の技術】

液晶表示装置には各種光学素子が使用されており、例えば、バックライトには 光反射素子、光拡散素子、プリズム素子、偏光素子等が広く用いられている。

これら光学素子のうち光拡散素子としては、フィルム基材中に基材と異なる屈 折率を有するフィラーを含有させたものや、レプリカ法によりフィルム表面の樹 脂層に多数の微細な凹凸を形成したもの、透明フィルム上にフィラーを含有する 塗料を塗工したもの等が知られている。従来の光拡散素子においては、細い直線 光を垂直入射させると透過光が等方的に拡散され、透過光を白い紙等に投射する と光像が円形状を呈するものが一般的であった。

[0003]

近年、光拡散素子として、透過光が等方的でなく特定方向に偏って拡散される 異方性光拡散素子が提案されている。異方性光拡散素子の透過光を投射した場合 、得られる光像は円形状ではなく直線状や楕円形状等を呈する。

かかる異方性光拡散素子としては、例えば以下のものが開示されている。

特許文献1及び2には、繊維状粒子又は針状粒子を基材中に分散し、一方向に 配向させた投射スクリーンが開示されている。

特許文献3には、バインダー中に繊維状光拡散剤を略平行に分散した異方性拡 散層を基材層上に設けた光拡散シートが開示されている。

特許文献4~6には、透明マトリックス中にこれとは異なる屈折率の棒状樹脂 を同一方向に配向分散させてなる投射スクリーンや光拡散性シートが開示されて

おり、これらは、屈折率の異なる海島構造の樹脂組成物を延伸加工して島に相当する樹脂微粒子を棒状に変形・配向させることにより製造できることが記載されている。

特許文献7には、繊維状粒子や樹脂微粒子の代わりに棒状の気泡をシート面と 平行にかつ一方向に配向させた異方性拡散シートが開示されている。

特許文献8には、熱可塑性高分子樹脂フィルムを一軸延伸する条件を制御して、フィルム表面に延伸方向とは垂直方向に伸びた溝を生じさせる透過光散乱性制御フィルムの製造方法が開示されている。

その他、表面レリーフホログラム技術により、光の拡散方向や投射像形状を精密に制御する例も多数開示されている。

[0004]

従来提案されている異方性光拡散素子にあっては、樹脂シートを延伸加工して 製造されるものが多い。そのため、大型の設備と高度の製造技術が必要であり、 透過光の異方性の程度や厚さの異なる品種の少量生産への対応は困難となってい る。

[0005]

ところで、液晶表示装置用の光学素子には、粘着剤により貼着されて液晶表示 装置に組み込まれるものがあるが、従来かかる用途には透明なアクリル系粘着剤 が広く用いられている。そして、アクリル系粘着剤からなる粘着層中に、粘着剤 とは異なる屈折率を有する微粒子を分散せしめることによって光拡散機能を発現 させた光拡散粘着層が特許文献 9 や 1 0 等に開示されている。

かかる光拡散粘着層は製造が比較的容易で、厚さの調整も容易である。

[0006]

【特許文献1】

特開昭59-176734号公報

【特許文献2】

特開平8-327805号公報

【特許文献3】

特開2001-249205号公報

特開平2-199444号公報

【特許文献5】

特開平4-314522号公報

【特許文献6】

特開平9-311205号公報

【特許文献7】

特開2002-98810号公報

【特許文献8】

特開平10-119125号公報

【特許文献9】

特表平11-508622号公報

【特許文献10】

特開平11-223712号公報

[0007]

【発明が解決しようとする課題】

しかしながら、従来提案されている光拡散粘着層の光拡散機能は等方的なものであり、異方性を示すものは知られていない。

本発明は上記事情に鑑みてなされたものであり、異方性光拡散機能と粘着機能とを併せ持つ異方性光拡散粘着積層体、及びこれを用いた多層シート、光学積層体や照明装置を提供することを目的とする。

[0008]

【課題を解決するための手段】

本発明者は上記課題を解決するべく検討を行い、以下の異方性光拡散粘着積層 体、光学積層体並びに照明装置を発明した。

本発明の異方性光拡散粘着積層体は、粘着剤を含有する粘着層を2層以上有する粘着層体であって、その少なくとも1層の粘着層は、前記粘着剤と屈折率の異なる針状フィラーを含有すると共に、前記針状フィラーが略同一方向に配向して分散されていることを特徴とする。

本発明の光学積層体は、上記の本発明の異方性光拡散粘着積層体を導光板、光 反射素子、光拡散素子、プリズム素子、偏光素子、位相差素子、視野角拡大素子 から選ばれる少なくともひとつの光学素子上に積層したことを特徴とし、液晶表 示装置や液晶表示装置用バックライト等の各種光学装置に好適に利用できる。

本発明の照明装置は、上記の本発明の異方性光拡散粘着積層体を備えたことを 特徴とし、その具体的な態様としては、光源、導光板、光反射素子を必須構成部 材とし、光拡散素子、プリズム素子、偏光素子、位相差素子、視野角拡大素子を 任意構成部材とする照明装置において、導光板、光反射素子、光拡散素子、プリ ズム素子、偏光素子、位相差素子、視野角拡大素子から選ばれる一対の光学素子 に、本発明の異方性光拡散粘着積層体が挟持されたものが挙げられる。

[0010]

【発明の実施の形態】

以下、本発明について詳述する。

[異方性光拡散粘着積層体]

本発明の異方性光拡散粘着積層体は、粘着剤を含有する粘着層を2層以上有する粘着積層体であって、その少なくとも1層の粘着層が、粘着剤と屈折率の異なる針状フィラーとを含有すると共に、前記針状フィラーが略同一方向に配向して分散されていることを特徴とする。

但し、本発明の異方性光拡散粘着積層体において、針状フィラーは、本発明の 目的である異方性拡散機能を発現できる程度に配向していれば足り、必ずしも全 ての針状フィラーが正確に配向している必要はない。

[0011]

本発明において、異方性光拡散を示すのは、粘着積層体の中でも配向した針状フィラーを含有する粘着層である。図2に基づいて、この配向した針状フィラーを含有する粘着層における異方性光拡散機構について簡単に説明する。図2において、(a)は、配向した針状フィラーを含有して異方性光拡散を示す粘着層及びこれに細い直線光を垂直入射させた時の透過光の拡散状態を模式的に示す図であり、(b)は、異方性光拡散を示す粘着層の透過光の投射像を模式的に示す図

である。なお、図2では、便宜上、針状フィラーの長軸方向をx軸、異方性光拡 散粘着層の面をxy平面、異方性光拡散粘着層の厚さ方向をz軸としてある。

図2に示すように、異方性光拡散を示す粘着層に直線光を垂直入射させると、 入射光は粘着剤と異なる屈折率を有する針状フィラーの表面で屈折される。その 結果、針状フィラーの長軸方向と直交する面やその近傍への光拡散量が増すこと になり、拡散光は異方性を示す。すなわち、透過光の投射像は針状フィラーの長 軸方向と直交する方向に伸びた楕円形状となる。

なお、針状フィラーの代わりに、球状フィラーや不定形フィラーを用いた光拡 散粘着層では、図3に示すように、入射光はフィラーの表面で等方的に拡散され ることとなり、異方性を示さない。すなわち、透過光の投射像は円形状となる。

[0012]

本発明の異方性拡散粘着積層体は、上述の異方性光拡散を示す粘着層だけでなく、その粘着層とは異なる他の光学特性を有する粘着層を組み合わせることができる。そして、様々な光学特性を発現させることができる。

例えば、図1に示すような、配向した針状フィラーを含有する粘着層11と、 粘着層11とは異なる他の光学特性を有する粘着層12とを有する異方性拡散粘 着積層体10としては、以下のようなものが挙げられる。

- (1)配向した針状フィラーを含有する粘着層(A)と、(A)とは異なる方向 に配向した針状フィラーを含有する粘着層(B)とを積層したもの。
- (2)配向した針状フィラーを含有する粘着層(A)と、非針状フィラーを含有する粘着層(C)とを積層したもの。
- (3)配向した針状フィラーを含有する粘着層(A)と、無配向の針状フィラーを含有する粘着層(D)とを積層したもの。
- (4)配向した針状フィラーを含有する粘着層(A)と、針状フィラーおよび非 針状フィラーを含まない透明粘着層(E)とを積層したもの。
- (5)配向した針状フィラーを含有する粘着層(A)と、上記(B)~(E)から選択された2つ以上の粘着層を積層したもの。

[0013]

また、配向した針状フィラーを含有する粘着層中に、更に非針状フィラーを含

有せしめることも可能である。

さらに、粘着層は3層以上であってもよい。粘着層が3層以上の異方性光拡散 粘着積層体としては、例えば、少なくとも2層の粘着層に略同一方向に配向され た針状フィラーが含まれ、それぞれの粘着層に含まれる針状フィラーが異なる方 向に配向しているものが挙げられる。粘着層が3層以上であっても、少なくとも 1層の粘着層が非針状フィラーを含有してもよいし、無配向の針状フィラーを含 有してもよい。

[0014]

以下、本発明の異方性光拡散粘着積層体を構成する粘着層について詳述する。 (粘着剤)

用いる粘着剤としては特に限定されないが、本発明の異方性光拡散粘着積層体を液晶表示装置や液晶表示装置用バックライト等に用いる場合、(a)光学的透明性が高いこと、(b)粘着層を形成する基材(例えば、偏光板の保護フィルムであるTACフィルム等)と近い屈折率を有すること、(c)偏光素子用の粘着剤等として信頼性が高く実績が多いこと、(d)比較的安価なこと等の要件を満たすものが好ましい。かかる要件を満たすものとしては、アクリル系粘着剤等が挙げられる。

[0015]

アクリル系粘着剤の主成分としては、アクリル酸及びそのエステル、メタクリル酸及びそのエステル、アクリルアミド、アクリロニトリル等のアクリルモノマーの単独重合体もしくはこれらの共重合体、前記アクリルモノマーの少なくとも1種と、酢酸ビニル、無水マレイン酸、スチレン等のビニルモノマーとの共重合体等が挙げられる。

中でも、粘着性を発現するエチルアクリレート、ブチルアクリレート、2-エ チルヘキシルアクリレート等の主モノマーと、凝集力成分となる酢酸ピニル、ア クリルアミド、アクリロニトリル、スチレン、メタクリレート等のモノマーと、 接着力を向上させ架橋化起点を付与するアクリル酸、メタクリル酸、イタコン酸 、無水マレイン酸、ヒドロキシルエチルメタクリレート、ヒドロキシルプロピル メタクリレート、ジメチルアミノエチルメタクリレート、メチロールアクリルア

アクリル系粘着剤には上記主成分の他、必要に応じて、金属キレート系、イソ シアネート系、エポキシ系等の架橋剤を1種あるいは2種以上配合することもで きる。

[0016]

また、アクリル系粘着剤としては、末端や側鎖にアクリル基を有するオリゴマ ーとアクリル系モノマーに光重合開始剤等を配合してなり、基材上に塗工した後 、紫外線等を照射することにより塗工層が粘着化するものを用いることもできる

[0017]

用いるアクリル系粘着剤は、にごりや着色がなく透明性の高いものが好ましく 、その屈折率は1. 45~1. 55であることが好ましい。なお、本明細書にお いて、粘着層の屈折率は、JIS K-7142 (1996) に記載のA法に基 づいて測定されるものとする。

[0018]

また、この粘着層にあっては、JIS Z-0237(1980)に基づく1 80°剥離強度が100~2000g/25mmの範囲になるように、粘着力が 調整されていることが実用上好ましい。180゜剥離強度が100g/25mm 未満では、耐環境性が不十分となり、特に高温高湿時に剥離が生じる恐れがあり 、逆に2000g/25mm超では貼り直しが困難であり、貼り直しができても 剥離部分に粘着剤が残る恐れがあるため、好ましくない。

[0019]

(針状フィラー)

本発明で用いる針状フィラーは、粘着剤と屈折率が異なり、針状(繊維状を含 む)を呈する高アスペクト比のフィラーであれば特に限定されないが、本発明の 異方性光拡散粘着積層体を液晶表示装置や液晶表示装置用バックライト等に用い る場合、透過光の着色を防ぐために、無色又は白色のものが好ましい。

具体的には、酸化チタン、酸化ジルコニウム、酸化亜鉛等の金属酸化物、ベーマイト、ホウ酸アルミニウム、ケイ酸カルシウム、塩基性硫酸マグネシウム、炭酸カルシウム、チタン酸カリウム等の金属化合物、ガラス、合成樹脂等からなる針状または繊維状物が好適に用いられる。

[0020]

針状フィラーのサイズとしては、長径が $2\sim5000\,\mu\,\mathrm{m}$ 、短径が $0.1\sim20\,\mu\,\mathrm{m}$ であることが好ましく、長径が $10\sim300\,\mu\,\mathrm{m}$ 、短径が $0.3\sim5\,\mu\,\mathrm{m}$ であることが特に好ましい。長径が $2\,\mu\,\mathrm{m}$ 未満あるいは $5000\,\mu\,\mathrm{m}$ 超では、粘着層中に針状フィラーを良好に分散・配向させることが困難となり、異方性光拡散機能を安定して発現させることができなくなる恐れがあるため、好ましくない。一方、短径が $0.1\,\mu\,\mathrm{m}$ 未満では、針状フィラーを良好に分散・配向させることが困難であると共に、光拡散機能が低下する恐れがあり、短径が $20\,\mu\,\mathrm{m}$ 超では、拡散光がぎらつきの強いものとなるため、好ましくない。

[0021]

(非針状フィラー)

本発明で使用する非針状フィラーは、粘着剤と屈折率が異なり、針状でないものであれば特に制限されず、例えば、球状フィラー、不定形フィラーなどが挙げられる。この非針状フィラーは、針状フィラーと同様の理由から、無色又は白色のものが好ましい。

具体的には、球状フィラーとしては、アクリル樹脂、ポリスチレン樹脂、スチレンーアクリル共重合体樹脂、ポリエチレン樹脂、エポキシ樹脂等の樹脂微粒子が好適に使用される。

また不定形フィラーとしては、シリカ、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、クレー、タルク、二酸化チタン等の無機系白色顔料が挙げられる。なお、本発明で言う不定形フィラーとは、明らかな針状や球状を示さないという意味であり、一定の結晶形も有していても実質的に粘着層中で配向することが出来ず、そのため拡散異方性に寄与しないものを示すものである。

[0022]

非針状フィラーの粒子径(JIS B9921)は、通常0.1~20.0μ

m、好ましくは1.0~10.0 μ m、より好ましくは0.5~10 μ mの範囲である。粒子径が0.1 μ mを下回ると、光拡散性が低下することがあり、粒子径が20.0 μ mを上回ると、拡散光がぎらつきの強いものとなるため、好ましくない。

[0023]

本発明では粘着剤と、針状フィラーおよび非針状フィラーとの屈折率に差があることが必須であるが、良好な光拡散機能を発現させるためには、屈折率差が 0.01以上であることが好ましく、0.05以上であることが特に好ましい。なお、本明細書において、これらフィラーの屈折率は、JIS K-7142 (1996)に記載のB法に基づいて測定されるものとする。

[0024]

粘着層中における針状フィラーの含有量は特に限定されず、所望の光学特性や、針状フィラーのサイズや比重、粘着剤と針状フィラーとの屈折率差等に応じて適宜設計されるが、0.1~50.0質量%であることが好ましく、5~45質量%であることが特に好ましい。針状フィラーの含有量が0.1質量%未満では光拡散性が不十分となる恐れがあり、50.0質量%超では粘着力が低下して剥離を生じる恐れがあるため、好ましくない。

[0025]

本発明の異方性光拡散粘着積層体の厚さは特に限定されないが、 $5\sim100~\mu$ mであることが好ましく、 $20\sim80~\mu$ mであることが特に好ましい。異方性光拡散粘着積層体の厚さが $5~\mu$ m未満では、十分な粘着力や異方性光拡散機能を発現できなくなる恐れがあり、 $100~\mu$ m超では、光学特性のさらなる向上効果が得られず、製造効率も悪くなるため、好ましくない。

[0026]

[異方性光拡散粘着積層体の製造方法]

本発明の異方性光拡散粘着積層体は、予め作製した複数の粘着層を積層することにより作製される。

単層の粘着層は、例えば、粘着剤中にフィラーを分散させたフィラー含有粘着 組成物を調製し、これを離型シートや各種光学素子等の基材上に塗工した後、溶

剤を乾燥除去し、その上に離型シートや各種光学素子をラミネートし、さらに必要に応じて粘着剤成分の硬化又は安定化のために、室温あるいは30~60℃程度の温度環境下で1日~2週間程度キュアーすることにより容易に製造できる。

[0027]

一般に、アクリル系粘着剤等の粘着剤は、酢酸エチル、アセトン、メチルエチルケトン、トルエン等の溶剤を含んだ状態で市販されているが、フィラー含有粘着組成物の調製にあたっては、濡れ性、レベリング性、乾燥性等の塗工適性を向上させるために、上記溶剤の他に、必要に応じて、酢酸ブチル、メチルイソブチルケトン、シクロヘキサノン等の溶剤を添加しても良い。

また、フィラーの粘着剤中への分散性を向上するために、予めフィラー表面に油脂類、界面活性剤、シランカップリング剤等の分散性向上剤を作用させ、フィラー表面を改質しておいても良い。なお、かかる分散性向上剤は、フィラーの表面に付着させる代わりに、フィラー含有粘着組成物に配合することもできる。フィラーの粘着剤中への分散は、デイスパー、アジター、ホモジナイザー、ボールミル、アトライター等の各種混合・攪拌装置、分散装置等を用いて行うことができる。

また、フィラー含有粘着組成物には、必要に応じて着色染料、蛍光染料、増粘剤、界面活性剤、レベリング剤等を添加することもできる。

調製したフィラー含有粘着組成物は、基材に塗工する前にあらかじめ脱泡しておくことが好ましい。フィラー含有粘着組成物の塗工は、例えば、リバースコーター、ダムコーター、コンマコーター、ダイコーター、ドクターバーコーター、グラビアコーター、マイクログラビアコーター、ロールコーター等のコーターを用いて行うことができる。

[0028]

フィラー含有粘着組成物を塗工する際には、フィラー含有粘着組成物にかかる 剪断力により、針状フィラーはその長軸が塗工方向にほぼ沿うように配向するた め、針状フィラーが略同一方向に配向して分散された異方性光拡散粘着層を比較 的に容易に製造することができる。なお、針状フィラーの配向の程度は、針状フィラーのサイズや、フィラー含有粘着組成物の粘度、塗工方式、塗工速度等によ

り調整できる。また、形成する粘着層の厚さは、粘着組成物の塗工厚さや、フィ ラー含有粘着組成物中の溶剤量等により容易に調整できる。

[0029]

本発明の異方性拡散粘着積層体は、以上のようにして作製された粘着層を公知のラミネート技術を用いて複数積層して作製できる。なお、前記(1)の「配向した針状フィラーを含有する粘着層(A)と、(A)とは異なる方向に配向した針状フィラーを含有する粘着層(B)とを積層したもの」については、針状フィラーの配向方向を考慮して、シートカットした粘着層を貼り合わせる必要がある。それ以外の組み合わせについては、シートカットせずにラミネートできる。

[0030]

以上説明した本発明の異方性光拡散粘着積層体は、粘着剤と、粘着剤と屈折率の異なる針状フィラーとを含有し、針状フィラーは略同一方向に配向して分散されている粘着層を有しているので、異方性光拡散機能と粘着機能とを併せ持っている。さらに、粘着層を2層以上有しているので、添加するフィラーの種類や配向方向に応じて様々な光学特性を得ることができる。

本発明の異方性光拡散粘着積層体は、上述したように、フィラー含有粘着組成物を調製し、これを塗工・乾燥することにより作製した粘着層をラミネートしたもので、比較的容易に製造することができる。加えて、本発明の異方性光拡散粘着積層体においては、フィラーの種類、サイズ、配合比の選定、及び針状フィラーの配向の程度、各粘着層の組み合わせ等により、透過光の異方性の程度を調整することが出来、好適である。また、本発明の異方性光拡散粘着積層体においては、それを構成する各粘着層の厚さを調整することによっても、透過光の異方性の程度を調整することが出来る。

本発明の異方性光拡散粘着積層体は、液晶表示装置や液晶表示装置用バックライト等の各種光学装置に好適に利用できる。

[0031]

上述した異方性光拡散粘着積層体を透明基体やセパレータと組み合わせて多層 シートにすることもできる。すなわち、本発明の多層シートは、透明基体の一方 の面または両面に上記異方性光拡散粘着積層体が設けられたもの、セパレータ上

に上記異方性光拡散粘着積層体が設けられたもの、一対のセパレータに上記異方性光拡散粘着積層体が挟持されたものである。このような多層シートによれば、 異方性光拡散粘着積層体の取り扱い性、加工性が向上する。

なお、「セパレータ」とは、片面又は両面に離型処理を施した離型フィルムや 離型紙を意味するものとする。

[0032]

[光学積層体]

本発明の光学積層体は、各種光学素子上に、上記異方性光拡散粘着積層体が積層されたものである。光学積層体の具体的な態様としては、

- (1) 光反射素子、光拡散素子、プリズム素子、偏光素子、位相差素子、視野角拡大素子から選ばれる光学素子上に、本発明の異方性光拡散粘着積層体とセパレータとが順次積層されたもの、
- (2) 導光板の光出射面と反対の面上に、本発明の異方性光拡散粘着積層体と光 反射素子とが順次積層されたもの、
- (3) 導光板の光出射面に本発明の異方性光拡散粘着積層体が形成され、該異方性光拡散粘着積層体上に光拡散素子及び/又はプリズム素子を備えたもの、
- (4) 光拡散素子と本発明の異方性光拡散粘着積層体とプリズム素子とが順次積層されたもの、
- (5) プリズム素子と本発明の異方性光拡散粘着積層体と偏光素子とが順次積層 されたもの、
- (6) 光反射型偏光素子と本発明の異方性光拡散粘着積層体と光吸収型偏光素子とが順次積層されたもの、
- (7)位相差素子と本発明の異方性光拡散粘着積層体と偏光素子とが順次積層されたもの等が挙げられる。

[0033]

また、偏光素子には、特定の偏光のみを透過し他の光を吸収する通常の「光吸収型偏光素子」の他、特定の偏光のみを透過し他の光を反射する「光反射型偏光素子」が含まれるものとする。光反射型偏光素子としては、例えば、延伸した際に延伸方向の屈折率が異なる2種類のポリエステル樹脂(PEN及びPEN共重

合体)を、押出成形技術により数百層交互に積層し延伸した構成の3M社製「D BEF | や、コレステリック液晶ポリマー層と1/4波長板とを積層してなり、 コレステリック液晶ポリマー層側から入射した光を互いに逆向きの2つの円偏光 に分離し、一方を透過、他方を反射させ、コレステリック液晶ポリマー層を透過 した円偏光を1/4波長板により直線偏光に変換させる構成の日東電工社製「ニ ポックス」やメルク社製「トランスマックス」等が市販されている。

[0034]

「照明装置〕

本発明の照明装置は、上記の本発明の異方性光拡散粘着積層体を備えたことを 特徴とし、その具体的な態様としては、光源、導光板、光反射素子を必須構成部 材とし、光拡散素子、プリズム素子、偏光素子、位相差素子、視野角拡大素子を 任意構成部材とする照明装置において、導光板、光反射素子、光拡散素子、プリ ズム素子、偏光素子、位相差素子、視野角拡大素子から選ばれる一対の光学素子 に、本発明の異方性光拡散粘着積層体が挟持されたものが挙げられる。

本発明の光学積層体を用いて照明装置を構成することにより、視野角拡大、照 度の均一化、輝線や暗線の解消を図ることができる。また、粘着層と異方性光拡 散層を1つの層で構成することができるので、部材点数の削減、薄型化を図るこ とができ、好適である。

本発明の照明装置は、液晶表示装置用バックライト等として好適に利用できる

[0035]

【実施例】

次に、本発明に係る実施例及び比較例について説明する。

(実施例)

アクリル系粘着剤(全固形分濃度30%、溶剤:酢酸エチル、メチルエチルケ トン、固形分の屈折率1.47)150質量部に、針状フィラーとしてホウ酸ア ルミニウムウイスカ(長径10~30μm、短径0.5~1.0μm、屈折率1 . 60) 7質量部を添加し、さらに、酢酸エチルとトルエンの混合溶剤120質 量部を添加し、アジターで30分間攪拌して針状フィラーを分散させた。この分

散液に、イソシアネート系硬化剤 0.7 質量部を添加して十分に混合し、フィラー含有粘着組成物を調製した。

・この組成物を、 75μ m厚の透明PETフィルム上に、アプリケーターを用いて塗工し、100 $\mathbb C$ で3分間乾燥し、異方性光拡散粘着層を形成した。この異方性光拡散粘着層上に 38μ m厚の離型PETフィルムをラミネートし、一対のPETフィルム間に異方性光拡散粘着層が挟持された異方性光拡散粘着積層体を得た。

形成された異方性光拡散粘着層の厚さは19 μ mであった。また、光学顕微鏡で観察したところ、針状フィラーは長軸が塗工方向にほぼ沿うように配向していることが確認された。

得られた積層体を白い紙から10cmの間隔をおいて平行に配置し、その上から積層体に細い直線光を垂直入射させたところ、針状フィラーの長軸方向と直交する向きに伸びた楕円形状の光像が紙上に投射された(図2参照)。

そして、この積層体を2枚取り、それぞれのセパレータを剥離した。そして、 針状フィラーの配向方向が互いに直交する角度で粘着面をラミネートして異方性 光拡散粘着積層体を作製した。

この光像を実施例1と同様の方法で観察したところ、十字形の光像が紙上に投射された(図4参照)。

[0036]

(比較例)

粘着剤中に添加するフィラーとして、球状フィラーだけを使用した以外は実施 例と同様にして、積層体を得た。

実施例と同様に投射像を観察したところ、円形状であることが判明した(図3 参照)。これは等方的に光が拡散されたためである。

[0037]

【発明の効果】

以上説明したように、本発明によれば、異方性光拡散機能と粘着機能とを併せ 持つ異方性光拡散粘着積層体、及びこれを用いた多層シート、光学積層体や照明 装置を提供することができる。

【図面の簡単な説明】

- 【図1】 本発明の異方性光拡散粘着積層体の一例を示す断面図である。
- 【図2】 図2(a)、(b)は、異方性光拡散粘着層の異方性光拡散機構を説明するための図である。
- 【図3】 図3(a)、(b)は、針状フィラーの代わりに球状フィラーを 用いた光拡散粘着層では異方性光拡散機能を発現しない理由を説明するための図 である。
- 【図4】 図4(a)、(b)は、実施例の異方性拡散粘着積層体の異方性 光拡散機構を説明するための図である。

【符号の説明】

- 10 異方性拡散粘着積層体
- 11 配向した針状フィラーを含有する粘着層

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【書類名】 要約書

【要約】

【課題】 異方性光拡散機能と粘着機能とを併せ持つ異方性光拡散粘着層を提供する。

【解決手段】 本発明の異方性光拡散粘着積層体は、粘着剤を含有する粘着層を2層以上有する粘着層体であって、その少なくとも1層の粘着層は、前記粘着剤と屈折率の異なる針状フィラーを含有すると共に、前記針状フィラーが略同一方向に配向して分散されていることを特徴とする。また、本発明の異方性光拡散粘着積層体においては、針状フィラーの配向方向が互いに異なる2層の粘着層を有していてもよい。

【選択図】 なし

認定・付加情報

特許出願の番号

特願2003-045883

受付番号

50300291593

書類名

特許願

担当官

第一担当上席

0090

作成日

平成15年 2月25日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000153591

【住所又は居所】

東京都中央区京橋1丁目5番15号

【氏名又は名称】

株式会社巴川製紙所

【代理人】

申請人

【識別番号】

100064908

【住所又は居所】

東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】

志賀 正武

【選任した代理人】

【識別番号】 100108578

【住所又は居所】

東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】

高橋 詔男

【選任した代理人】

【識別番号】 100089037

【住所又は居所】

東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】

渡邊 降

【選任した代理人】

【識別番号】 100101465

【住所又は居所】

東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】

青山 正和

【選任した代理人】

【識別番号】 100094400

【住所又は居所】

東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

次頁有

ページ: 2/E

認定・付加情報 (続き)

【氏名又は名称】

鈴木 三義

【選任した代理人】

【識別番号】

100107836

【住所又は居所】

東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】

西 和哉

【選任した代理人】

【識別番号】

100108453

【住所又は居所】

東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】

村山 靖彦

特願2003-045883

出願人履歴情報

識別番号

[000153591]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月13日 新規登録 東京都中央区京橋1丁目5番15号 株式会社巴川製紙所

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.