Advanced Machine Learning

Singular Value Decomposition (SVD)

Singular Valued Decomposition, SVD, general linear maps

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

Singular Valued Decomposition

• Consider an arbitrary $n \times m$ matrix \mathbf{X} , and construct the $(n+m) \times (n+m)$ symmetric matrix, \mathbf{B} ,

- $\binom{u}{v}$ is an eigenvector of ${\bf B}$ with eigenvalue s
- We observe that

$$\mathbf{X} \mathbf{v} = s \mathbf{u}$$
 $\mathbf{X}^\mathsf{T} \mathbf{u} = s \mathbf{v}$ $\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v} = s \mathbf{X}^\mathsf{T} \mathbf{u} = s^2 \mathbf{v}$ $\mathbf{X} \mathbf{X}^\mathsf{T} \mathbf{u} = s \mathbf{X} \mathbf{v} = s^2 \mathbf{u}$

Outline

- 1. Singular Value Decomposition
- 2. General Linear Mappings
- 3. Linear Regression Revisited

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Eigenvectors

ullet Note that as $\mathbf{X}oldsymbol{v} = soldsymbol{u}$ and $\mathbf{X}^\mathsf{T}oldsymbol{u} = soldsymbol{v}$ then

$$\mathbf{X}(-\mathbf{v}) = (-s)\mathbf{u}$$
 $\mathbf{X}^{\mathsf{T}}\mathbf{u} = (-s)(-\mathbf{v})$

if $\binom{u}{v}$ is an eigenvector of B with eigenvalue s then so is $\binom{u}{-v}$ with eigenvalue $-s \mathbf{I}$

- ullet If n < m then $\mathbf{X}^\mathsf{T}\mathbf{X}$ is not full rank so some eigenvalues are zerol
- ullet As a consequence m-n vectors exist such that ${m X}{m v}=0$
- The eigenvalues and eigenvectors are

$$n \times \left(s_i, \begin{pmatrix} \boldsymbol{u}_i \\ \boldsymbol{v}_i \end{pmatrix}\right) \quad n \times \left(-s_i, \begin{pmatrix} \boldsymbol{u}_i \\ -\boldsymbol{v}_i \end{pmatrix}\right) \quad m - n \times \left(0, \begin{pmatrix} 0 \\ \boldsymbol{v}_k \end{pmatrix}\right) \blacksquare$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Matrix Decomposition

• Stacking the eigenvectors into a matrix

- ullet Since the vectors $inom{u_i}{v_i}$ are eigenvectors of a symmetric matrix they from an orthogonal matrix if they are normalised.
- Multiply on the right by the transpose of the orthogonal matrix

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

SVD

- ullet Any matrix, old X, can be written as $old X = U S V^{\mathsf{T}}$
 - * U, V are orthogonal matrices
 - $\star S = \operatorname{diag}(s_1, s_2, \dots, s_n)$
- ullet s_i can always be chosen to be positive and are known as **singular** values
- Singular value decomposition applies to both square and non-square matrices—they describe general linear mappings

Normalisation Subtlety

• Multiplying out we have

$$X = 2USV^T$$

$$X^T = 2VSU^T$$

ullet Now the vectors $oldsymbol{u}_i$ and $oldsymbol{v}_i$ form an orthogonal set as it satisfy

$$\mathbf{X}^\mathsf{T}\mathbf{X}\mathbf{v} = s^2\mathbf{v}$$

$$\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{u} = s^2\mathbf{u}$$

• But they are not normalised (since $\binom{u_i}{v_i}$ is normalised). If we define $\tilde{\mathbf{U}}=\sqrt{2}\mathbf{U}$ and $\tilde{\mathbf{V}}=\sqrt{2}\mathbf{V}$ we find

$$X = \tilde{U} S \tilde{V}^T$$

$$\boldsymbol{X}^\mathsf{T} = \tilde{\boldsymbol{V}} \boldsymbol{S} \tilde{\boldsymbol{U}}^\mathsf{T} \boldsymbol{\mathsf{I}}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Finding SVD

- Most libraries will compute the SVD for youl
- They can do this by choosing the smaller of two matrices XX^T and X^TX and then compute the eigenvalues
- The singular values are the square root of the eigenvalues (notice that XX^T and X^TX are both positive semi-definite so the eigenvalues will be non-negative)
- It can compute the U matrix or V matrix by multiplying through by X or X^T ($U = XVS^{-1}$ and $V = X^TUS^{-1}$)
- In practice to perform PCA most people subtract the mean from their data and then perform SVDI

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Economical Forms of SVD

ullet Often the rows or columns of the orthogonal matrices U and V that are not associated with a singular value are ignored

$$\begin{array}{ccc}
X &= & & & & & & \mathbf{V}^{\mathsf{T}} \\
\begin{pmatrix} & & \\ & & \end{pmatrix} = \begin{pmatrix} & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & \end{pmatrix}$$

$$\mathbf{X} = \mathbf{U} \quad \mathbf{S} \quad \mathbf{V}^{\mathsf{T}}$$

• In Matlab these are obtained using

General Matrix

COMP6208 Advanced Machine Learning

- Recall that we can compute the SVD for any matrix, XI
- As matrices describe the most general linear mapping

$$oldsymbol{v} o \mathcal{T}[oldsymbol{v}] = oldsymbol{\mathsf{X}} oldsymbol{v}$$

- We can use SVD to understand any linear mapping
- Thus any linear mapping can be seen as a rotation followed by a squashing or expansion independently in each coordinate followed by another rotation.

Outline

- 1. Singular Value Decomposition
- 2. General Linear Mappings
- 3. Linear Regression Revisited

12

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Matrices

 $\mathbf{M} = \begin{pmatrix} -0.45 & 1.9 \\ -0.77 & -0.025 \end{pmatrix} = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}} = \begin{pmatrix} \cos(-175) & \sin(-175) \\ -\sin(-175) & \cos(-175) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

11

Determinants

- ullet The determinant, |M| of a matrix M is defined for square matrices
- It describes the change in volume under the mapping
- ullet Now for any two matrices |AB|=|A||B|
- Thus

$$|M| = |U||S||V^T|$$

- \bullet For and orthogonal matrix $|\mathbf{U}|=\pm 1$
- Thus

$$|\mathbf{M}| = \pm |\mathbf{S}| \mathbf{I} = \pm \prod_i s_i \mathbf{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Duality Revisited

• If $X = USV^T$ then

$$\begin{split} C &= XX^T & D &= X^TX \text{I} \\ &= USV^TVS^TU^T &= VS^TU^TUSV^T \text{I} \\ &= U(SS^T)U^T &= V(S^TS)V^T \text{I} \end{split}$$

- If X is an $p \times m$ matrix then $\mathbf{SS^T}$ is a $p \times p$ diagonal matrix with elements $S^2_{ii} = s^2_i$
- $\mathbf{S}^{\mathsf{T}}\mathbf{S}$ is an $m \times m$ matrix with elements $S_{ii}^2 = s_i^2$
- ullet U and V are matrices of eigenvectors for C and DI
- ullet The eigenvalues are $\lambda_i = S_{ii}^2 = s_i^2$

Non-Square Matrices

- When the matrices are non-square then the matrix of singular value matrix will either
 - ⋆ Squash some directions to zero
 - * Introduce new dimensions orthogonal to the vector

• The rank of an arbitrary matrix is the number of non-zero singular values (also number of linearly independent rows or columns)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

SS^T and S^TS

$$\mathbf{S} = \begin{pmatrix} s_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_m & 0 & 0 \cdots & 0 \end{pmatrix} \mathbf{I}$$

$$\mathbf{S}^{\mathsf{T}}\mathbf{S} = \begin{pmatrix} s_1^2 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & s_2^2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_m^2 & 0 & 0 \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 \end{pmatrix} \mathbf{I}$$

$$\mathbf{S}\mathbf{S}^{\mathsf{T}} = egin{pmatrix} s_1^2 & 0 & \cdots & 0 \\ 0 & s_2^2 & \cdots & 0 \\ dots & dots & \ddots & dots \\ 0 & 0 & \cdots & s_2^2 \end{pmatrix}$$

Having A Go

It's really easy to verify this in MATLAB or OCTAVE

```
>> X = rand(3,2)

>> [U, S, V] = svd(X)

>> U*S*V'

>> U(:,1)'*U(:,2)

>> U'*U'

>> [Ua,L] = eig(X*X')

>> S*S'
```

• Test yourself!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Linear Regression

- \bullet Given a set of data $\mathcal{D} = \{(\boldsymbol{x}_i, y_i) | k = 1, 2, \ldots, m\}$
- In linear regression we try to fit a linear model

$$f(\boldsymbol{x}|\boldsymbol{w}) = \boldsymbol{x}^\mathsf{T} \boldsymbol{w}^\mathsf{I}$$

• Which we fit by minimising the squared error loss

$$L(\boldsymbol{w}) = \sum_{k=1}^{m} (f(\boldsymbol{x}_i | \boldsymbol{w}) - y_i)^2 \mathbf{I}$$

Outline

- 1. Singular Value Decomposition
- 2. General Linear Mappings
- 3. Linear Regression Revisited

o	x	$oldsymbol{u}$		$oldsymbol{u}$
Χ ^T	0	$oldsymbol{v}$	=s	$oldsymbol{v}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Matrix Form

ullet In matrix from we write $L(oldsymbol{w}) = \| oldsymbol{X} oldsymbol{w} - oldsymbol{y} \|^2$

$$\mathbf{X} = egin{pmatrix} oldsymbol{x}_1^{\mathsf{T}} \ oldsymbol{x}_2^{\mathsf{T}} \ dots \ oldsymbol{x}_m^{\mathsf{T}} \end{pmatrix} \qquad \qquad oldsymbol{y} = egin{pmatrix} y_1 \ y_2, \ dots \ y_m \end{pmatrix}$$

• Then $\nabla L(\boldsymbol{w}^*) = 0$ implies

$$oldsymbol{w}^* = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

• This is known as the pseudo-inversel

19

Using SVD

• Using $X = USV^T$ then

$$\begin{aligned} X^+ &= \left(X^\mathsf{T} X\right)^{-1} X^\mathsf{T} \mathbf{I} \\ &= \left(V S^\mathsf{T} S V^\mathsf{T}\right)^{-1} V S^\mathsf{T} U^\mathsf{T} \mathbf{I} \\ &= V \left(S^\mathsf{T} S\right)^{-1} V^\mathsf{T} V S^\mathsf{T} U^\mathsf{T} \mathbf{I} \\ &= V \left(S^\mathsf{T} S\right)^{-1} S^\mathsf{T} U^\mathsf{T} \mathbf{I} = V S^+ U^\mathsf{T} \mathbf{I} \end{aligned}$$

• If m > p

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

III-Conditioned Data Matrix

Recall that

$$w^* = X^+ y = V S^+ U^T y$$

- ullet If any of the singular values of X are small then S^+ will magnify components in that direction
- ullet Any errors in the target y will be magnified ullet
- This leads to poor weights

Pseudo-Inverse of S

$$\mathbf{S}^{\mathsf{T}}\mathbf{S} = \begin{pmatrix} s_1^2 & 0 & \cdots & 0 \\ 0 & s_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_p^2 \end{pmatrix} \mathbf{I} \ \left(\mathbf{S}^{\mathsf{T}}\mathbf{S}\right)^{-1} = \begin{pmatrix} s_1^{-2} & 0 & \cdots & 0 \\ 0 & s_2^{-2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_p^{-2} \end{pmatrix} \mathbf{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Regularisation

• Consider linear regression with a regulariser

$$\mathcal{L}(\boldsymbol{w}) = \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|^2 + \eta \|\boldsymbol{w}\|^2$$
$$= \boldsymbol{w}^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \eta \boldsymbol{I}) \boldsymbol{w} - 2 \boldsymbol{w}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y}^{\mathsf{T}}$$

Thus

Adam Prügel-Bennett

$$\nabla \mathcal{L}(\boldsymbol{w}) = 2 \left(\mathbf{X}^\mathsf{T} \mathbf{X} + \eta \mathbf{I} \right) \boldsymbol{w} - 2 \mathbf{X}^\mathsf{T} \boldsymbol{y}$$

 \bullet and ${f
abla} {\cal L}({m w}^*) = 0$ gives

$$oldsymbol{w}^* = \left(\mathbf{X}^\mathsf{T} \mathbf{X} + \eta \mathbf{I} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

3

COMP6208 Advanced Machine Learning

24

Regularisation Continued

• Using $X = USV^T$

$$egin{aligned} oldsymbol{w}^* &= \left(oldsymbol{X}^\mathsf{T} oldsymbol{X} + \eta \mathbf{I}
ight)^{-1} oldsymbol{X}^\mathsf{T} oldsymbol{y}^\mathsf{I} \ &= oldsymbol{V} oldsymbol{(S}^\mathsf{T} oldsymbol{S} + \eta \mathbf{I})^{-1} oldsymbol{S}^\mathsf{T} oldsymbol{\mathsf{U}}^\mathsf{T} oldsymbol{y}^\mathsf{I} \end{aligned}$$

where

$$(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \eta \mathbf{I})^{-1}\mathbf{S}^{\mathsf{T}} = \begin{pmatrix} \frac{s_1}{s_1^2 + \eta} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \frac{s_2}{s_2^2 + \eta} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \frac{s_3}{s_3^2 + \eta} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{s_p}{s_p^2 + \eta} & 0 & 0 \cdots & 0 \end{pmatrix} \mathbf{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Summary

- ullet Any matrix can be decomposed as $old X = old U S V^\mathsf{T}$ where
 - \star U and V are orthogonal (rotation matrices)
 - \star $\mathbf{S} = \mathrm{diag}(s_1, ..., s_n)$ is a diagonal matrix of positive singular values
- This describes the most general linear transform
- The transform exploits the duality between XX^T and X^TXI
- In linear regression the pseudo-inverse involves the reciprocal of the singular values, which can lead to poor generalisation.
- Regularisation improves the conditioning of the "inverse" matrix

Effect of Regularisation

- Without regularisation if $s_i=0$ the problem would be ill-posed (even \mathbf{S}^+ does not exist since s_i^{-1} would be ill defined) and if s_i is small then \mathbf{S}^+ is ill conditioned
- ullet Using $\hat{\mathbf{S}}^+ = (\mathbf{S}^\mathsf{T}\mathbf{S} + \eta)^{-1}\mathbf{S}^\mathsf{T}$ instead of \mathbf{S}^+ then

 Regularisation makes the machine much more stable (reduces the variance)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning