Tema 5: Normalización en Bases de Datos

Andrés Cordón Franco e-mail: acordon@us.es

Bases de Datos 2007/08

Ciencias de la Computación e IA (http://www.cs.us.es/)
Universidad de Sevilla

- 1 Introducción
- 2 Dependencias funcionales
 - Definición
 - Dependencia funcional elemental
 - Dependencia funcional transitiva. Campos equivalentes
- 3 Formas normales
 - Primera Forma Normal
 - Segunda Forma Normal. Campos principales
 - Tercera Forma Normal
- 4 Bibliografía

Introducción (I)

AUTOR	PAÍS	COD-LIBRO	TÍTULO	EDITORIAL
Date, C.	USA.	01	DB	Ad
Date, C.	USA	02	SQL(I)	Ad
Gardarin	Chile	03	ModeloER	Verlag
Gardarin	Chile	04	SQL(II)	ACM
Kim,W.	China	04	SQL(II)	ACM

Problemas:

- Redundancia de datos
- 2 Anomalías de modificación de datos
- 3 Anomalías de inserción de datos
- 4 Anomalías de borrados de datos

Introducción (II)

Definición

Formas normales (FN): conjunto de restricciones sobre tablas relacionales que evitan los problemas de redundancia de datos y de anomalías de modificación, inserción y borrado de datos.

$$1FN \longleftarrow 2FN \longleftarrow 3FN \longleftarrow FNBC \longleftarrow 4FN \longleftarrow 5FN$$

Nota: En este curso sólo estudiaremos hasta la tercera forma normal, 3FN.

Dependencias funcionales

Definición

Sean R una tabla relacional y X_1, \ldots, X_k e Y campos de R. Diremos que Y depende funcionalmente de X_1, \ldots, X_k si al fijar un valor de los campos X_1, \ldots, X_k , se fija también el valor que puede tomar el campo Y en la tabla R.

Lo escribiremos: $X \rightarrow Y$.

 $X \equiv determinante o implicante$

 $Y \equiv campo implicado$

Nota: $X_1, \ldots, X_k \to Y_1, \ldots, Y_n$ significa que cada campo Y_i tiene dependencia funcional respecto del conjunto X_1, \ldots, X_k .

Dependencias funcionales. Ejemplo

```
ESCRIBE(autor,país,código,título,editorial,páginas) autor \rightarrow pais codigo \rightarrow titulo \quad codigo \rightarrow editorial \quad codigo \rightarrow paginas codigo \rightarrow titulo, editorial, paginas cod, autor \rightarrow editorial, pais
```

Nota: No debe confundirse con el concepto de *campo derivado*. Es claro que si Y es un campo derivado de X (por ejemplo, edad de fechanacimiento), entonces $X \to Y$.

Sin embargo, al revés no es cierto. Para que Y tenga dependencia funcional de X, no es necesario que se pueda deducir el valor concreto del campo Y a partir del campo X.

Dependencia funcional plena (I)

Definición

Diremos que Y tiene dependencia funcional **plena** o **completa** del conjunto de campos X_1, \ldots, X_k si depende funcionalmente de dicho conjunto, pero NO depende de ningún subconjunto **propio** de X_1, \ldots, X_k .

Dependencia funcional plena (II)

<u>Ejemplo</u>: EVAL(alumno,asignatura,dpto,nota)

(ullet) El campo *nota* tiene dependencia **plena** de *alumno*, *asignatura*: alumno, asignatura
ightarrow nota alumno
ightarrow nota asignatura
ightarrow nota

(•) El campo dpto **NO** tiene dependencia **plena** de alumno, asignatura:

 $alumno, asignatura \rightarrow dpto$ $asignatura \rightarrow nota$

Dependencia funcional trivial

Definición

Diremos que el campo Y tiene dependencia funcional **trivial** del conjunto de campos X_1, \ldots, X_k si Y es uno de los campos X_1, \ldots, X_k .

Ejemplo: Las siguientes dependencias funcionales son triviales:

```
autor, cod \rightarrow autor

alumno, asignatura, nota \rightarrow nota

libro \rightarrow libro
```

Dependencia funcional elemental (I)

Definición

El campo Y tiene dependencia funcional **elemental** del conjunto de campos X_1, \ldots, X_k si dicha dependencia es:

- completa, y
- no trivial

<u>Nota</u>: En una dependencia funcional elemental $X_1, \ldots, X_k \to Y$, el campo implicado Y siempre ha de ser **unitario**.

Dependencia funcional elemental (II)

Ejemplo: EVAL(alumno,edad,asignatura,dpto,nota)

Un conjunto de dependencias funcionales **elementales** que describen la tabla EVAL es:

 $alumno, asignatura \rightarrow nota$ $alumno \rightarrow edad$ $asignatura \rightarrow dpto$

<u>Nota</u>: Para la normalización de una tabla relacional, solamente se tienen en cuenta las dependencias funcionales **elementales**.

Dependencia funcional transitiva (I)

Definición

El campo Z tiene dependencia funcional **transitiva** respecto de los campos X_1, \ldots, X_k a través de los campos Y_1, \ldots, Y_n si se cumple que:

- $lacksquare X_1,\ldots,X_k o Y_1\ldots,Y_n$, y
- $lacksquare Y_1,\ldots,Y_n o Z$, pero
- $Y_1,\ldots,Y_n \nrightarrow X_1,\ldots,X_k$

Dependencia funcional transitiva (II)

Ejemplo 1: LIBRO(isbn,páginas,autor,país)

pais depende transitivamente de isbn a través de autor, pues:

$$isbn \rightarrow autor, \quad autor \rightarrow pais, \; \; \mathsf{y} \\ autor \rightarrow isbn$$

Ejemplo 2: CORREO(login,NIF,nombre,apellidos,edad,país)

pais NO depende de manera transitiva de NIF a través de login, puesto que:

$$NIF
ightarrow login, \quad login
ightarrow pais, \quad {\sf pero} \ login
ightarrow NIF$$

Nota: NIF y login son campos equivalentes

Campos equivalentes (I)

Definición

Sean R una tabla relacional y X_1, \ldots, X_k , Y_1, \ldots, Y_n campos de R. Diremos que X_1, \ldots, X_k e Y_1, \ldots, Y_n son conjuntos de campos equivalentes si:

- $lacksquare X_1, \ldots, X_k$ depende funcionalmente de Y_1, \ldots, Y_n , e
- Y_1, \ldots, Y_n depende funcionalmente de X_1, \ldots, X_k , e

Lo escribiremos

$$X_1, \ldots, X_k \leftrightarrow Y_1 \ldots, Y_n$$

Nota: Habitualmente k = n = 1 y hablaremos de campos equivalentes de una tabla.

Campos equivalentes (II)

VENTA(código, número, vendedor, artículo, color, precio)

 $codigo \leftrightarrow numero, vendedor$ $codigo \rightarrow articulo$ $articulo \rightarrow color, precio$

- (•) articulo NO depende transitivamente de numero, vendedor: $numero, vendedor \rightarrow codigo, codigo \rightarrow articulo, pero numero, <math>vendedor \leftrightarrow codigo$
- (•) $precio\ S\'i\ depende\ transitivamente\ de\ numero, vendedor:$ $numero, vendedor \to articulo, articulo \to precio,$ pero $articulo \to numero, vendedor\ (\star)$ ($\star\ Se\ admiten\ devoluciones\ de\ artículos$)

Primera Forma Normal: 1FN

Definición (Codd, 1970)

Una tabla relacional R está en primera forma normal (1FN) si NO contiene campos multivaluados.

Nota: Por la propia definición del modelo de datos relacional, NO se admiten campos multivaluados. En consecuencia, TODAS las relaciones del modelo de datos relacional están automáticamente en 1FN.

Campos principales y no principales (I)

Para estudiar si una tabla R está en 2FN o 3FN se parte de:

- \blacksquare Conjunto de las **dependencias elementales** de R,
- ${f 2}$ conjunto de todas las **claves candidatas** para R,
- $oxed{3}$ conjunto de los **campos equivalentes** de R,
- f 4 conjunto de los **campos principales** de R, y
- $lue{5}$ conjunto de los **campos no principales** de R.

Definición

Un campo de una tabla relacional R es **principal** si pertenece a alguna de las claves candidatas de R.

Campos principales y no principales (II)

VENTA(código, número, vendedor, artículo, color, precio)

■ Dependencias elementales:

```
codigo \rightarrow numero, \ codigo \rightarrow vendedor, \ codigo \rightarrow articulo \ numero, vendedor \rightarrow codigo \ articulo \rightarrow color, \ articulo \rightarrow precio
```

- Claves candidatas:
 - 1 codigo
 - 2 (numero, vendedor)
- Campos equivalentes: $codigo \leftrightarrow numero, vendedor$
- Campos principales: codigo, numero, vendedor
- Campos no principales: articulo, color, precio

Segunda Forma Normal: 2FN

Definición (Codd, 1970)

Una tabla relacional R está en **segunda forma normal** (2FN) si:

- R está en 1FN, y
- cada campo **no principal** de R tiene dependencia funcional **plena** respecto de cada una de las claves candidatas de R.

<u>Nota</u>: Si R tiene k claves candidatas y m campos no principales, entonces para asegurar que R está en 2FN son necesarias $m \cdot k$ comprobaciones.

Segunda Forma Normal. Ejemplo (I)

EVAL(alumno,edad,asignatura,dpto,nota)

Dependencias funcionales elementales:

```
alumno \rightarrow edad

asignatura \rightarrow dpto

alumno, asignatura \rightarrow nota
```

- Claves candidatas: (alumno, asignatura)
- Campos equivalentes: no hay
- Campos principales: alumno, asignatura
- Campos no principales: edad, dpto, nota

Número de comprobaciones: $3 \cdot 1 = 3$

Segunda Forma Normal. Ejemplo (II)

EVAL(alumno,edad,asignatura,dpto,nota)

Comprobaciones:

- **1** ¿Es $alumno, asignatura \rightarrow edad$ completa? NO
- **2** ¿Es $alumno, asignatura \rightarrow dpto$ completa? NO
- \blacksquare ¿Es $alumno, asignatura \rightarrow nota$ completa? SÍ

EVAL **no está en 2FN** porque el campo no principal *edad* no tiene dependencia plena respecto de la clave *alumno*, *asignatura*.

Segunda Forma Normal. Ejemplo (III)

EVAL(alumno,edad,asignatura,dpto,nota)

(•) ¿Cómo conseguir un conjunto de tablas en 2FN equivalente?

R1(alumno, edad)

PK=alumno

R2(asignatura, dpto)

PK=asignatura

R3(alumno, asignatura, nota)

PK = (alumno, asignatura)

 $FK=alumno (\rightsquigarrow R1) FK=asignatura (\rightsquigarrow R2)$

Segunda Forma Normal. Propiedades

Si el implicante de una dependencia funcional es unitario, entonces la dependencia es automáticamente completa. Por tanto:

Propiedad 1: Si todas las claves candidatas de una tabla relacional R son *unitarias*, R está automáticamente en 2FN.

Ejemplo: ALUMNO(código, nif, nombre, edad, dirección)

Claves candidatas: (1) codigo, (2) nif

Puesto que ambas claves candidatas son unitarias, la tabla ALUMNO está en 2FN.

Tercera Forma Normal: 3FN

Definición (Cood, 1970)

Una tabla relacional R está en **tercera forma normal (3FN)** si:

- R está en 2FN, y
- ningún campo no principal de R depende transitivamente de alguna clave candidata de R.

<u>Nota</u>: Si R está en 2FN y tiene k claves candidatas y m campos no principales, entonces para asegurar que R también está en 3FN son necesarias $m \cdot k$ comprobaciones.

Tercera Forma Normal. Ejemplo (I)

LIBRO(código,isbn,título,autor,país)

Dependencias funcionales elementales:

$$codigo \rightarrow isbn$$

 $isbn \rightarrow codigo, \ isbn \rightarrow titulo, \ isbn \rightarrow autor$
 $autor \rightarrow pais$

- Claves candidatas: (1) codigo (2) isbn
- Campos equivalentes: $codigo \leftrightarrow isbn$
- Campos principales: codigo, isbn
- Campos no principales: *titulo*, *autor*, *pais*

Puesto que todas las claves candidatas son unitarias, la tabla LIBRO está automáticamente en 2FN.

Tercera Forma Normal. Ejemplo (II)

LIBRO(código,isbn,título,autor,país)

¿Está la tabla LIBRO en 3FN? Núm. de comprobaciones: $3 \cdot 2 = 6$

- 1 ¿titulo depende transitivamente de codigo? NO
- 2 ¿titulo depende transitivamente de isbn? NO
- 3 ¿autor depende transitivamente de codigo? NO
- \blacksquare ¿autor depende transitivamente de isbn? NO
- f j ipais depende transitivamente de codigo? SI
- $\mathbf{6}$ ipais depende transitivamente de isbn ? SI

El campo pais tiene dependencia transitiva de codigo a través del campo autor. Luego, LIBRO no está en 3FN.

Tercera Forma Normal. Ejemplo (III)

LIBRO(código,isbn,título,autor,país)

(•) ¿Cómo conseguir un conjunto de tablas en 3FN equivalente?

```
R1(autor, pais)
PK = autor
R2(codigo, isbn, titulo, autor)
PK = codigo
FK = autor ( \rightsquigarrow R1)
```

Tercera Forma Normal. Propiedades (I)

Propiedad 2: Si R está en 2FN y posee un único campo no principal, entonces R también está en 3FN.

- Claves candidatas: (1) nif, (2) codigo
- Campos equivalentes: $nif \leftrightarrow codigo$
- lacktriangle Campos principales: nif, codigo
- Campos no principales: edad

Puesto que todas las claves candidatas son unitarias, SOCIO está en 2FN. Puesto que tiene un único campo no principal(edad), SOCIO también está en 3FN.

Tercera Forma Normal. Propiedades (II)

Propiedad 3: Si todos los campos de R son principales, entonces R está automáticamente en 3FN.

Ejemplo: ESTUDIAR(nif,cod_alum,asignatura) $nif \rightarrow cod_alum, cod_alum \rightarrow nif$

- Claves candidatas:
 - 1 (nif, asignatura)
 - $2 (cod_alum, asignatura)$
- Campos equivalentes: $nif \leftrightarrow cod_alum$
- lacktriangleright Campos principales: $nif, cod_alum, asignatura$
- Campos no principales: no hay

ESTUDIAR está automáticamente en 3FN porque sólo posee campos principales.

Bibliografía

- Concepción y diseño de bases de datos, Adoración de Miguel, Mario Piattini, RA-MA Editorial (1993).
- Apuntes de Ficheros y Bases de Datos, Mercedes Marqués, Universidad Jaume I en Castellón (2001).

http://www3.uji.es/~mmarques/f47/apun/apun.html