is also subspace of V.

Email: klaus-robert.mueller@tu-berlin.de

Week 1: Euclidean Vector Spaces

Exercise 1

1.	The Cartesian product $A_1 \times \cdots \times A_n$ of	f sets A_1, \ldots, A_n is defined as		
	$\Box A_1 \times \cdots \times A_n := A_1 \setminus (A_2 \cup \ldots \cup A_n)$ $\boxtimes A_1 \times \cdots \times A_n := \{(a_1, \ldots, a_n) \mid a_1 \in A_1 \times \cdots \times A_n := \{a_1 \cdot a_2 \cdot \ldots \cdot a_n \mid a_n \in A_n \in$	$\{a_1,\ldots,a_n\in A_n\}$ set of all ordered pairs		
2.	Let $n \in \mathbb{N} \setminus \{0\}$. Then \mathbb{R}^n contains			
	\square n real numbers	\boxtimes <i>n</i> -tuples of real numbers	\Box <i>n</i> -tuples of vectors	
3.	Which of the following sets together with standard addition and scalar multiplication does <u>not</u> form a real vector space \square The set of integers \square The set of complex numbers \square The set of real-valued, continuous functions $\{f\colon \mathbb{R}^n\to\mathbb{R}\mid f \text{ continuous }\}$			
	Solution: Integers not closed under s	calar multiplication with reals.		
4.	alar multiplication in a real vector space $V=(\mathcal{V},+,\cdot)$ is given by a mapping			
	$\square \ \ \mathcal{V} \times \mathcal{V} \to \mathbb{R}$	$oxed{\boxtimes} \ \mathbb{R} imes \mathcal{V} o \mathcal{V}$	$\square \ \ \mathbb{R} \times \mathcal{V} \to \mathbb{R}$	
	How many vector subspaces does \mathbb{R}^2 have? \square two: $\{0\}$ and \mathbb{R}^2 \square four: $\{0\}$, $\mathbb{R} \times \{0\}$, $\{0\} \times \mathbb{R}$ (the axes), \mathbb{R}^2 \boxtimes infinitely many Which of the following subsets of \mathbb{R}^2 is <u>not</u> a vector subspace?			
	□ {0 }	$\square \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 = 2x_2 \}$	$\boxtimes \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 = x_2 + 1 \}$	
			. 1\ / \ 1	
7		ition: Because of scalar multiplication: $(x_1, x_2) \mapsto (\lambda x_1, \lambda x_2), \lambda x_1 = \lambda (x_2 + 1) \neq \lambda x_2 + 1$ which of the following objects does it make sense to say that they are "linearly independent"?		
	For which of the following objects does it make sense to say that they are linearly independent : \boxtimes Elements of a vector space $v_1, \ldots, v_n \in \mathcal{V}$ \square Real numbers $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ \square The linear combination $\lambda_1 v_1 + \ldots + \lambda_n v_n$ Which of the following vectors form a basis of \mathbb{R}^2 ?			
	$oxtimes \left[egin{array}{c} 2 \\ 4 \end{array} ight], \left[egin{array}{c} 2 \\ 3 \end{array} ight]$	$\square \left[egin{array}{c} 1 \ 0 \end{array} ight], \left[egin{array}{c} -1 \ 0 \end{array} ight]$	$\square \left[\begin{array}{c} 1 \\ 5 \end{array} \right], \left[\begin{array}{c} 3 \\ -6 \end{array} \right], \left[\begin{array}{c} 2 \\ 3 \end{array} \right]$	
9.	What is the scalar product of the vector	$\operatorname{rs} \left[\begin{array}{c} 1 \\ -2 \\ 0 \end{array} \right] \text{ and } \left[\begin{array}{c} 3 \\ 0 \\ 3 \end{array} \right] ?$		
10.	\boxtimes 3 Which of the following statements is <u>fai</u>	□ 5 l <u>se</u> ?	□ 7	
	 □ For any Euclidean vector space (V, ⟨·,·⟩) the function · defined by v := √⟨v, v⟩ (v ∈ V) satisfies the properties of a norm. □ For any Euclidean vector space (V, ⟨·,·⟩) it holds that ⟨v, w⟩ ≥ 0 for all v, w ∈ V. □ Let M be a subspace of an Euclidean vector space (V, ⟨·,·⟩). Then 			
		$\{ \boldsymbol{v} \in \mathcal{V} \mid \forall \boldsymbol{u} \in M : \boldsymbol{v} + \boldsymbol{u} \}$		

Solution: Why 3 is true: If two vectors v and w are orthogonal to u, so is their sum and any rescaling.

Exercise 2

Consider $(\mathbb{R} \setminus \{-1\}, \star)$, where $a \star b := ab + a + b$ with $a, b \in \mathbb{R} \setminus \{-1\}$.

1. Show that $(\mathbb{R} \setminus \{-1\}, \star)$ is an Abelian group.

Solution:

(a) associativity:

$$a \star (b \star c) = a \star (bc + b + c) = a(bc + b + c) + a + (bc + b + c) = abc + ab + ac + a + bc + b + c$$

 $(a \star b) \star c = (ab + a + b) \star c = (ab + a + b)c + (ab + a + b) + c = abc + ac + bc + ab + a + b + c$

(b) identity element:

$$a \star e = a \Leftrightarrow ae + a + e = a \Leftrightarrow (a+1)e = 0 \Leftrightarrow e = 0$$

(c) inverse element: (we only show $a \star a^{-1} = e$, the other condition follows from commutativity)

$$a \star a^{-1} = e \Leftrightarrow aa^{-1} + a + a^{-1} = 0 \Leftrightarrow a^{-1} = -\frac{a}{a+1}$$

(d) commutativity:

$$a \star b = ab + a + b = ba + b + a = b \star a$$

2. Solve $3 \star x \star x = 15$ in the Abelian group $(\mathbb{R} \setminus \{-1\}, \star)$.

Solution:

$$3 \star x \star x = (3x + 3 + x) \star x = (3x + 3 + x)x + (3x + 3 + x) + x = 4x^{2} + 8x + 3 = 15 \Leftrightarrow x = 1$$

3. Is $(\mathbb{R} \setminus \{-1\}, +, \star)$ a field? Justify!

Solution: No, because it is not distributive: $a \star (b+c) \neq a \star b + a \star c$.

Exercise 3

Show: If v_1, \ldots, v_n form an orthonormal basis of a Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$, the following holds for all $x \in \mathcal{V}$:

$$oldsymbol{x} = \sum_{i=1}^n raket{oldsymbol{x}, oldsymbol{v}_i}{oldsymbol{v}_i}$$

Hint: Establish first that x can be expressed as $x = \lambda_1 v_1 + \ldots + \lambda_n v_n$. Then show that $\langle x, v_i \rangle = \lambda_i$ for all $1 \le i \le n$.

Solution: For all $1 \le i \le n$ it holds that

$$\langle \boldsymbol{x}, \boldsymbol{v}_i \rangle = \langle \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_n \boldsymbol{v}_n, \boldsymbol{v}_i \rangle = \lambda_1 \langle \boldsymbol{v}_1, \boldsymbol{v}_i \rangle + \ldots + \lambda_n \langle \boldsymbol{v}_n, \boldsymbol{v}_i \rangle = \lambda_i \langle \boldsymbol{v}_i, \boldsymbol{v}_i \rangle = \lambda_i$$

Exercise 4

Let $(V, \langle \cdot, \cdot \rangle)$ be a Euclidean vector space and U an r-dimensional vector subspace $\mathcal{U} \subseteq \mathcal{V}$ with orthonormal basis u_1, \ldots, u_r . The orthogonal projection of a vector $v \in \mathcal{V}$ onto \mathcal{U} is given by

$$p(\boldsymbol{v}) := \sum_{i=1}^r \langle \boldsymbol{v}, \boldsymbol{u}_i \rangle \, \boldsymbol{u}_i$$

- 1. Compute the orthogonal projection of the vector $(25,0)^{\top}$ onto the subspace spanned by the vector $(3,4)^{\top}$. Visualize the subspace and the projection in a drawing with both vectors.
- 2. Let $x \in \mathcal{V}$ and $\lambda \in \mathbb{R}$. Show:

$$p(\lambda \boldsymbol{x}) = \lambda p(\boldsymbol{x}).$$

3. Let $x, y \in \mathcal{V}$. Show:

$$p(\boldsymbol{x} + \boldsymbol{y}) = p(\boldsymbol{x}) + p(\boldsymbol{y}).$$

Solution:

1.
$$\left\| \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\| = \sqrt{25} = 5$$
, therefore $\frac{1}{5} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ orthonormal basis. Then $\left[\begin{array}{c} 25 \\ 0 \end{array} \right] \mapsto \left\langle \begin{bmatrix} 25 \\ 0 \end{array} \right], \left[\begin{array}{c} 3/5 \\ 4/5 \end{array} \right] \right\rangle \left[\begin{array}{c} 3/5 \\ 4/5 \end{array} \right] = 15 \cdot \left[\begin{array}{c} 3/5 \\ 4/5 \end{array} \right] = \left[\begin{array}{c} 9 \\ 12 \end{array} \right]$

2.

$$p(\lambda \boldsymbol{x}) = \sum_{i=1}^{r} \langle \lambda \boldsymbol{x}, \boldsymbol{u}_i \rangle \, \boldsymbol{u}_i = \lambda \sum_{i=1}^{r} \langle \boldsymbol{x}, \boldsymbol{u}_i \rangle \, \boldsymbol{u}_i = \lambda p(\boldsymbol{x}).$$

3.

$$p(\boldsymbol{x} + \boldsymbol{y}) = \sum_{i=1}^{r} \langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{u}_i \rangle \, \boldsymbol{u}_i = \sum_{i=1}^{r} \langle \boldsymbol{x}, \boldsymbol{u}_i \rangle \, \boldsymbol{u}_i + \sum_{i=1}^{r} \langle \boldsymbol{y}, \boldsymbol{u}_i \rangle \, \boldsymbol{u}_i = p(\boldsymbol{x}) + p(\boldsymbol{y}).$$

Exercise 5

Let $\langle \cdot, \cdot \rangle$ be the standard scalar product on \mathbb{R}^n .

1. Show that the mapping

$$k \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

 $(\boldsymbol{x}, \boldsymbol{y}) \mapsto \langle \boldsymbol{x}, \boldsymbol{y} \rangle^2$

does <u>not</u> define a scalar product on \mathbb{R}^2 .

2. Consider the mapping $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^3$ with

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \mapsto \left[\begin{array}{c} x_1^2 \\ x_2^2 \\ \sqrt{2} \cdot x_1 x_2 \end{array}\right].$$

Show:

$$\langle \Phi(\boldsymbol{x}), \Phi(\boldsymbol{y}) \rangle = k(\boldsymbol{x}, \boldsymbol{y})$$

Solution:

1. Violation of bilinearity:

$$k(\lambda \boldsymbol{x},\boldsymbol{y}) = \left\langle \lambda \boldsymbol{x}, \boldsymbol{y} \right\rangle^2 = \lambda^2 \left\langle \boldsymbol{x}, \boldsymbol{y} \right\rangle^2 = \lambda^2 k(\boldsymbol{x}, \boldsymbol{y})$$

2.

$$\langle \Phi(\boldsymbol{x}), \Phi(\boldsymbol{y}) \rangle = \left\langle \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2} \cdot x_1 x_2 \end{bmatrix}, \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2} \cdot y_1 y_2 \end{bmatrix} \right\rangle = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$
$$= (x_1 y_1 + x_2 y_2)^2 = k(\boldsymbol{x}, \boldsymbol{y})$$

Exercise 6

The 1-norm is often used for finding sparse solutions to an optimization problem (vectors or matrices with many entries equal to zero). This will be demonstrated in the following exercise:

We are looking for a vector $\boldsymbol{w} = (x, y)^{\top} \in \mathbb{R}^2$, which solves the optimization problem

$$\max_{\boldsymbol{w}} f(\boldsymbol{w})$$
 s.t. $\|\boldsymbol{w}\| = 1$

Consider $f(x,y) = \frac{1}{2}x + y$ and compare the solutions to this optimization problem for the 1- and the 2-norm.

1. Draw the set of all points on the x-y-plane that have 2-norm equal to 1 (i.e. the ℓ_2 unit circle).

$$C_2 := \left\{ \boldsymbol{w} \in \mathbb{R}^2 \mid \|\boldsymbol{w}\|_2 = \sqrt{x^2 + y^2} = 1 \right\}.$$

2. Draw the set of all points on the x-y-plane that have 1-norm equal to 1 (i.e. the ℓ_1 unit circle).

$$C_1 := \{ \boldsymbol{w} \in \mathbb{R}^2 \mid ||\boldsymbol{w}||_1 = |x| + |y| = 1 \}.$$

- 3. Draw contour lines c = f(x, y) for c = 0.5, c = 1 and c = 1.1.
- 4. Where in your drawing does the solution to the optimization problem lie for the 1-norm? Where does it lie for the 2-norm?

Solution:

Exercise 7

Given training data (red and blue) a new data point (green) should be classified using the k-NN algorithm. Which label does the new data point receive for $k \in {1, 2, 5}$?

Solution: 1: red

2: red5: blue