BỘ GIÁO DỰC VÀ ĐÀO TẠO ĐỀ CHÍNH THỰC

ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối B (Đáp án - thang điểm gồm 04 trang)

ĐÁP ÁN - THANG ĐIỂM

Câu	Đáp án	Điểm
I	1. (1,0 điểm)	
(2,0 điểm)	Khi $m = 1$, ta có: $y = x^4 - 4x^2 + 1$.	
	• Tập xác định: $D = \mathbb{R}$.	0,25
	• Sự biến thiên:	
	- Chiều biến thiên: $y' = 4x^3 - 8x$; $y' = 0 \Leftrightarrow x = 0$ hoặc $x = \pm \sqrt{2}$.	
	Hàm số nghịch biến trên các khoảng $(-\infty; -\sqrt{2})$ và $(0; \sqrt{2})$; đồng biến trên các khoảng $(-\sqrt{2}; 0)$ và $(\sqrt{2}; +\infty)$.	
	- Cực trị: Hàm số đạt cực tiểu tại $x = \pm \sqrt{2}$; $y_{\text{CT}} = -3$, đạt cực đại tại $x = 0$; $y_{\text{CD}} = 1$.	0,25
	- Giới hạn: $\lim_{x \to -\infty} y = \lim_{x \to +\infty} y = +\infty$.	
	– Bảng biến thiên: $x - \infty - \sqrt{2}$ 0 $\sqrt{2}$ +∞	
	y' - 0 + 0 - 0 +	0.25
	$y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	0,25
	• Đồ thị:	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	2. (1,0 điểm)	
	$y'(x) = 4x^3 - 4(m+1)x = 4x(x^2 - m - 1); \ y'(x) = 0 \Leftrightarrow x = 0 \text{ hoặc } x^2 = m + 1 \ (1).$	0,25
	Đồ thị hàm số có ba điểm cực trị, khi và chỉ khi: (1) có hai nghiệm phân biệt khác $0 \Leftrightarrow m > -1$ (*).	0,25
	Khi đó: $A(0; m)$, $B(-\sqrt{m+1}; -m^2 - m - 1)$ và $C(\sqrt{m+1}; -m^2 - m - 1)$. Suy ra: $OA = BC \Leftrightarrow m^2 = 4(m+1) \Leftrightarrow m^2 - 4m - 4 = 0$	0,25
	$\Leftrightarrow m = 2 \pm 2\sqrt{2}$; thỏa mãn (*). Vậy, giá trị cần tìm: $m = 2 - 2\sqrt{2}$ hoặc $m = 2 + 2\sqrt{2}$.	0,25
II	1. (1,0 điểm)	•
(2,0 điểm)	Phương trình đã cho tương đương với: $\sin x(1 + \cos 2x) + \sin x \cos x = \cos 2x + \sin x + \cos x$	0,25
	$\Leftrightarrow \cos 2x(\sin x - 1) + \cos x(\sin x - 1) = 0 \Leftrightarrow (\sin x - 1)(\cos 2x + \cos x) = 0$	0,25
	• $\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi$.	0,25
	• $\cos 2x = -\cos x = \cos(\pi - x) \Leftrightarrow x = \frac{\pi}{3} + k\frac{2\pi}{3}$. Vây, phương trình đã cho có nghiệm: $x = \frac{\pi}{2} + k2\pi$; $x = \frac{\pi}{3} + k\frac{2\pi}{3}$ $(k \in \mathbb{Z})$.	0,25
	Trang $1/4$	

Câu	Đáp án	Điểm
	2. (1,0 điểm)	_
	Điều kiện: $-2 \le x \le 2$ (*).	0,25
	Khi đó, phương trình đã cho tương đương: $3(\sqrt{2+x}-2\sqrt{2-x})+4\sqrt{4-x^2}=10-3x$ (1).	0,23
	Đặt $t = \sqrt{2+x} - 2\sqrt{2-x}$, (1) trở thành: $3t = t^2 \Leftrightarrow t = 0$ hoặc $t = 3$.	0,25
	• $t = 0$, suy ra: $\sqrt{2+x} = 2\sqrt{2-x} \Leftrightarrow 2+x = 4(2-x) \Leftrightarrow x = \frac{6}{5}$, thỏa mãn (*).	0,25
	• $t = 3$, suy ra: $\sqrt{2+x} = 2\sqrt{2-x} + 3$, vô nghiệm (do $\sqrt{2+x} \le 2$ và $2\sqrt{2-x} + 3 \ge 3$ với mọi $x \in [-2; 2]$).	0,25
	Vậy, phương trình đã cho có nghiệm: $x = \frac{6}{5}$.	
III (1,0 điểm)	$I = \int_{0}^{\frac{\pi}{3}} \frac{1 + x \sin x}{\cos^{2} x} dx = \int_{0}^{\frac{\pi}{3}} \frac{1}{\cos^{2} x} dx + \int_{0}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^{2} x} dx.$	0,25
	Ta có: $\int_{0}^{\frac{\pi}{3}} \frac{1}{\cos^{2} x} dx = (\tan x) \Big _{0}^{\frac{\pi}{3}} = \sqrt{3}.$	0,25
	$va: \int_{0}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^{2} x} dx = \int_{0}^{\frac{\pi}{3}} x d\left(\frac{1}{\cos x}\right) = \left(\frac{x}{\cos x}\right) \Big _{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}} \frac{dx}{\cos x} = \frac{2\pi}{3} + \int_{0}^{\frac{\pi}{3}} \frac{d\sin x}{\sin^{2} x - 1}$	0,25
	$= \frac{2\pi}{3} + \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \left(\frac{1}{\sin x - 1} - \frac{1}{\sin x + 1} \right) d\sin x$	
	$= \frac{2\pi}{3} + \frac{1}{2} \left(\ln \left \frac{\sin x - 1}{\sin x + 1} \right \right) \Big _{0}^{\frac{\pi}{3}} = \frac{2\pi}{3} + \ln(2 - \sqrt{3}). \text{Vây, } I = \sqrt{3} + \frac{2\pi}{3} + \ln(2 - \sqrt{3}).$	0,25
IV	Gọi O là giao điểm của AC và $BD \Rightarrow A_1O \perp (ABCD)$.	
(1,0 điểm)	Gọi E là trung điểm $AD \Rightarrow OE \perp AD$ và $A_1E \perp AD$	0,25
	$\Rightarrow \widehat{A_1}E\widehat{O}$ là góc giữa hai mặt phẳng (ADD_1A_1) và $(ABCD) \Rightarrow \widehat{A_1}E\widehat{O} = 60^\circ$.	
	$\Rightarrow A_1O = OE \tan \widehat{A_1EO} = \frac{AB}{2} \tan \widehat{A_1EO} = \frac{a\sqrt{3}}{2}.$ Diện tích đáy: $S_{ABCD} = AB.AD = a^2\sqrt{3}.$ Thể tích: $V_{ABCD.A_1B_1C_1D_1} = S_{ABCD}.A_1O = \frac{3a^3}{2}.$	0,25
	Ta có: $B_1C /\!/ A_1D \Rightarrow B_1C /\!/ (A_1BD)$ $\Rightarrow d(B_1, (A_1BD)) = d(C, (A_1BD)).$ Hạ $CH \perp BD$ $(H \in BD) \Rightarrow CH \perp (A_1BD) \Rightarrow d(C, (A_1BD)) = CH.$	0,25
	Suy ra: $d(B_1, (A_1BD)) = CH = \frac{CD.CB}{\sqrt{CD^2 + CB^2}} = \frac{a\sqrt{3}}{2}$.	0,25
V (1,0 điểm)	Với a, b dương, ta có: $2(a^2 + b^2) + ab = (a + b)(ab + 2)$ $\Leftrightarrow 2(a^2 + b^2) + ab = a^2b + ab^2 + 2(a + b) \Leftrightarrow 2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 = (a + b) + 2\left(\frac{1}{a} + \frac{1}{b}\right).$	0,25

Câu	Đáp án	Điểm
	$(a+b) + 2\left(\frac{1}{a} + \frac{1}{b}\right) \ge 2\sqrt{2(a+b)\left(\frac{1}{a} + \frac{1}{b}\right)} = 2\sqrt{2\left(\frac{a}{b} + \frac{b}{a} + 2\right)}$, suy ra:	0,25
	$2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 \ge 2\sqrt{2\left(\frac{a}{b} + \frac{b}{a} + 2\right)} \implies \frac{a}{b} + \frac{b}{a} \ge \frac{5}{2}.$	
	$\text{Dặt } t = \frac{a}{b} + \frac{b}{a}, \ t \ge \frac{5}{2}, \text{ suy ra: } P = 4(t^3 - 3t) - 9(t^2 - 2) = 4t^3 - 9t^2 - 12t + 18.$	0,25
	Xét hàm $f(t) = 4t^3 - 9t^2 - 12t + 18$, với $t \ge \frac{5}{2}$.	
	Ta có: $f'(t) = 6(2t^2 - 3t - 2) > 0$, suy ra: $\min_{\left[\frac{5}{2}; +\infty\right)} f(t) = f\left(\frac{5}{2}\right) = -\frac{23}{4}$.	
	Vậy, min $P = -\frac{23}{4}$; khi và chỉ khi: $\frac{a}{b} + \frac{b}{a} = \frac{5}{2}$ và $a + b = 2\left(\frac{1}{a} + \frac{1}{b}\right)$	0,25
VI.a	\Leftrightarrow $(a; b) = (2; 1) \text{ hoặc } (a; b) = (1; 2).$ 1. (1,0 điểm)	
(2,0 điểm)	$N \in A$ $M \in A$ có tọa đô dạng: $N(a: 2a - 2)$ $M(b: b - A)$	
	$O, M, N \text{ cùng thuộc một đường thẳng, khi và chỉ khi:}$ $a(b-4) = (2a-2)b \Leftrightarrow b(2-a) = 4a \Leftrightarrow b = \frac{4a}{2-a}.$ $OM.ON = 8 \Leftrightarrow (5a^2 - 8a + 4)^2 = 4(a-2)^2.$	0,25
	$O \bullet N = 8 \Leftrightarrow (5a^2 - 8a + 4)^2 = 4(a - 2)^2.$	0,25
	$\Leftrightarrow (5a^2 - 6a)(5a^2 - 10a + 8) = 0 \Leftrightarrow 5a^2 - 6a = 0$	
	$\Leftrightarrow a = 0 \text{ hoặc } a = \frac{6}{5}.$	0,25
	Vậy, $N(0; -2)$ hoặc $N(\frac{6}{5}; \frac{2}{5})$.	0,25
	2. (1,0 điểm)	1
	Tọa độ điểm I là nghiệm của hệ: $\begin{cases} \frac{x-2}{1} = \frac{y+1}{-2} = \frac{z}{-1} \Rightarrow I(1; 1; 1). \\ x+y+z-3=0 \end{cases}$	0,25
	Gọi $M(a; b; c)$, ta có:	
	$M \in (P), MI \perp \Delta \text{ và } MI = 4\sqrt{14} \iff \begin{cases} a+b+c-3=0\\ a-2b-c+2=0\\ (a-1)^2+(b-1)^2+(c-1)^2=224 \end{cases}$	0,25
	b = 2a - 1	
	$\Leftrightarrow \left\{ c = -3a + 4 \right\}$	0,25
	$(a-1)^2 + (2a-2)^2 + (-3a+3)^2 = 224$	-
	\Leftrightarrow $(a; b; c) = (5; 9; -11) \text{ hoặc } (a; b; c) = (-3; -7; 13).$ Vậy, $M(5; 9; -11) \text{ hoặc } M(-3; -7; 13).$	0,25
VII.a	Gọi $z = a + bi$ với $a, b \in \mathbb{R}$ và $a^2 + b^2 \neq 0$, ta có:	
(1,0 điểm)	$\frac{-z}{z} - \frac{5 + i\sqrt{3}}{z} - 1 = 0 \iff a - bi - \frac{5 + i\sqrt{3}}{a + bi} - 1 = 0$	0,25

Câu	Đáp án	Điểm
	$\Leftrightarrow a^{2} + b^{2} - 5 - i\sqrt{3} - a - bi = 0 \Leftrightarrow (a^{2} + b^{2} - a - 5) - (b + \sqrt{3})i = 0$	0,25
	$\Leftrightarrow \begin{cases} a^2 + b^2 - a - 5 = 0 \\ b + \sqrt{3} = 0 \end{cases} \Leftrightarrow \begin{cases} a^2 - a - 2 = 0 \\ b = -\sqrt{3} \end{cases}$	0,25
	\Leftrightarrow $(a; b) = (-1; -\sqrt{3})$ hoặc $(a; b) = (2; -\sqrt{3})$. Vậy $z = -1 - i\sqrt{3}$ hoặc $z = 2 - i\sqrt{3}$.	0,25
VI.b	1. (1,0 điểm)	·
(2,0 điểm)	$\overrightarrow{BD} = \left(\frac{5}{2}; 0\right) \Rightarrow BD // EF \Rightarrow \tan \operatorname{giác} ABC \operatorname{cân tại} A;$	0,25
	\Rightarrow đường thẳng AD vuông góc với EF, có phương trình: $x - 3 = 0$.	
	F có tọa độ dạng $F(t; 3)$, ta có: $BF = BD \Leftrightarrow \left(t - \frac{1}{2}\right)^2 + 2^2 = \frac{25}{4} \Leftrightarrow t = -1$ hoặc $t = 2$.	0,25
	• $t = -1 \Rightarrow F(-1; 3)$; suy ra đường thẳng BF có phương trình: $4x + 3y - 5 = 0$. A là giao điểm của AD và $BF \Rightarrow A\left(3; -\frac{7}{3}\right)$, không thỏa mãn yêu cầu (A có tung độ dương).	0,25
	• $t = 2 \Rightarrow F(2; 3)$; suy ra phương trình BF : $4x - 3y + 1 = 0$. $\Rightarrow A\left(3; \frac{13}{3}\right)$, thỏa mãn yêu cầu. Vậy, có: $A\left(3; \frac{13}{3}\right)$.	0,25
	2. (1,0 điểm)	1
	$M \in \Delta$, suy ra tọa độ M có dạng: $M(-2+t; 1+3t; -5-2t)$.	0,25
	$\Rightarrow \overrightarrow{AM} = (t; 3t; -6 - 2t) \text{ và } \overrightarrow{AB} = (-1; -2; 1) \Rightarrow \left[\overrightarrow{AM}, \overrightarrow{AB}\right] = (-t - 12; t + 6; t).$	0,25
	$S_{\Delta MAB} = 3\sqrt{5} \iff (t+12)^2 + (t+6)^2 + t^2 = 180$	0,25
	$\Leftrightarrow t^2 + 12t = 0 \Leftrightarrow t = 0 \text{ hoặc } t = -12. \text{ Vậy, } M(-2; 1; -5) \text{ hoặc } M(-14; -35; 19).$	0,25
VII.b (1,0 điểm)	$1 + i\sqrt{3} = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \text{ và } 1 + i = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right);$	0,25
	suy ra: $z = \frac{8(\cos \pi + i \sin \pi)}{2\sqrt{2}\left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)}$	0,25
	$=2\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$	0,25
	= 2 + 2i. Vậy số phức z có: Phần thực là 2 và phần ảo là 2.	0,25

----- Hết -----