ECOLE POLYTECHNIQUE ECOLES NORMALES SUPERIEURES

CONCOURS D'ADMISSION 2022

FILIERE MP – Épreuve n° 1 MATHEMATIQUES A (XLCR)

— Notations et rappels —

- Dans tout le problème, p désigne un entier strictement positif.
- On note $\mathbb N$ l'ensemble des entiers naturels. Pour tous entiers a et b dans $\mathbb N$ tels que $a \leq b$, on note $[a,b] = \{n \in \mathbb N \mid a \leq n \leq b\}$.

On note \mathfrak{S}_p le groupe des permutations de l'ensemble fini $[\![1,p]\!]$ muni de la composition. On note $\epsilon:\mathfrak{S}_p\to\{-1,+1\}$ l'application signature, définie comme l'unique morphisme de groupes de (\mathfrak{S}_p,\circ) dans $(\{-1,+1\},\times)$ qui vaut -1 sur toutes les transpositions.

• On note $\mathcal{M}_p(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées de taille $p \times p$. Pour tout $(x_1, \ldots, x_p) \in (\mathbb{R}^p)^p$, on appelle produit mixte de (x_1, \ldots, x_p) la quantité

$$[x_1, \dots, x_p] = \sum_{\sigma \in \mathfrak{S}_p} \epsilon(\sigma) \prod_{i=1}^p x_{\sigma(i),i}$$

où pour tout $j \in [1, p]$, on a noté $x_j = (x_{i,j})_{1 \le i \le p} \in \mathbb{R}^p$. En particulier, si on note $(x_1 | \cdots | x_p)$ la matrice de taille $p \times p$ élément de $\mathcal{M}_p(\mathbb{R})$ dont les colonnes sont données par les vecteurs x_1, \ldots, x_p , on a donc l'égalité $[x_1, \ldots, x_p] = \det((x_1 | \cdots | x_p))$ où det est le déterminant usuel.

• Si F et G sont deux \mathbb{R} -espaces vectoriels, on dit que $f: F^p \to G$ est p-linéaire alternée si pour tout $u = (u_1, \dots, u_p) \in F^p$ et tout $i \in [\![1,p]\!]$, l'application

$$y \mapsto f(u_1, \dots, u_{i-1}, y, u_{i+1}, \dots, u_p)$$

de F dans G est linéaire et pour tout $\sigma \in \mathfrak{S}_p$ on a

$$f(u \cdot \sigma) = \epsilon(\sigma) f(u)$$

où $u \cdot \sigma = \left(u_{\sigma(i)}\right)_{1 \leqslant i \leqslant p}$.

On notera $\mathcal{A}_p(F,G)$ l'ensemble des applications p-linéaires alternées de F^p dans G.

- Dans tout le problème, on considère un espace euclidien E de dimension $d \ge 1$ muni de son produit scalaire $(x,y) \mapsto \langle x,y \rangle$. On note pour $x \in E, ||x|| = \langle x,x \rangle^{1/2}$ la norme associée.
- Pour tout entier q non nul, et toute famille (u_1, \ldots, u_q) d'éléments de E, Vect (u_1, \ldots, u_q) désigne le sous-espace vectoriel de E engendré par u_1, \ldots, u_q .
- Pour tous $u=(u_1,\ldots,u_p)$ et $v=(v_1,\ldots,v_p)$ dans E^p , on note $\operatorname{Gram}(u,v)$, la matrice carrée de $\mathcal{M}_p(\mathbb{R})$ définie pour tous $i,j\in [\![1,p]\!]$ par

$$Gram(u, v)_{i,j} = \langle u_i, v_j \rangle$$
.

- Partie I -

Soient V et V' deux sous-espaces de E de dimension p (on rappelle que $p\geqslant 1$).

(1) (a) Montrer qu'il existe $u_1 \in V$ et $u_1' \in V'$ de norme 1 tels que

$$\langle u_1, u_1' \rangle = \sup \{ \langle a, a' \rangle \mid (a, a') \in V \times V', ||a|| = ||a'|| = 1 \}.$$

- (b) Étendre ce résultat en montrant qu'il existe une famille $u=(u_1,\ldots,u_p)$ de vecteurs de V et une famille $u'=\left(u'_1,\ldots,u'_p\right)$ de vecteurs de V' telles que u et u' soient orthonormées et vérifient les deux conditions suivantes :
 - (i) Pour k = 1, on a

$$\langle u_1, u_1' \rangle = \sup \{ \langle a, a' \rangle \mid (a, a') \in V \times V', ||a|| = ||a'|| = 1 \}.$$

(ii) Pour $k \in [2, p]$, on a

$$\langle u_k, u_k' \rangle = \sup \{ \langle a, a' \rangle \mid (a, a') \in V \times V', ||a|| = ||a'|| = 1,$$

 $\langle a, u_l \rangle = \langle a', u_l' \rangle = 0 \text{ pour tout } l \in [1, k-1] \}.$

(Indication : On pourra construire les vecteurs u_k et u'_k par récurrence sur l'entier k.)

On fixe deux telles familles u et u' dans le reste de la partie I.

- (2) Montrer que si dim $(V \cap V') \ge 1$, on a $u_k = u'_k$ pour tout $1 \le k \le \dim(V \cap V')$.
- (3) (a) Montrer que u est une base orthonormée de V.
 - (b) Montrer que pour $k \in [1, p-1]$, on a $u'_k \in \text{Vect}(u_{k+1}, \dots, u_p)^{\perp}$. (Indication: on pourra considérer l'application $t \mapsto u_k(t) = \frac{u_k + tu_\ell}{\|u_k + tu_\ell\|}$ pour tous $t \in \mathbb{R}$ et $\ell \in [k+1, p]$ ainsi que sa dérivée.)
 - (c) Montrer que $u_{k+1} \in (\text{Vect}(u_1, \dots, u_k) + \text{Vect}(u_1', \dots, u_k'))^{\perp}$ pour tout k élément de [1, p-1].
 - (d) En déduire que les sous-espaces $W_k = \text{Vect}(u_k, u'_k)$ pour $k \in [1, p]$ sont orthogonaux deux à deux.
- (4) (a) Montrer qu'il existe $0 \le \theta_1 \le \cdots \le \theta_p \le \pi/2$ tel que $\cos(\theta_k) = \langle u_k, u_k' \rangle$ pour tout $k \in [1, p]$.
 - (b) Calculer la valeur de det (Gram (u, u')) en fonction des $\cos(\theta_k)$.
 - (c) En déduire que det $(Gram(u, u')) \leq 1$. Que dire sur V et V' dans le cas d'égalité?

— Partie II —

Pour tout $e \in E^p$, on considère $\Omega_p(e) : E^p \to \mathbb{R}$ définie pour tout $u \in E^p$ par

$$\Omega_n(e)(u) = \det(\operatorname{Gram}(e, u)).$$

- (5) (a) Vérifier que l'application $(x_1, \ldots, x_p) \mapsto [x_1, \ldots, x_p]$ appartient à $\mathcal{A}_p(\mathbb{R}^p, \mathbb{R})$.
 - (b) Vérifier que si F est un espace vectoriel sur \mathbb{R} et si $f: F \to \mathbb{R}^p$ est linéaire, alors $g: F^p \to \mathbb{R}$ définie pour $u = (u_1, \dots, u_p) \in F^p$ par $g(u) = [f(u_1), \dots, f(u_p)]$ est un élément de $\mathcal{A}_p(F, \mathbb{R})$.
- (6) (a) Montrer que pour tout $e \in E^p$, on a $\Omega_p(e) \in \mathcal{A}_p(E, \mathbb{R})$.
 - (b) Vérifier que pour tout $(e, u) \in E^p \times E^p$, on a $\Omega_p(e)(u) = \Omega_p(u)(e)$.
 - (c) Montrer que $\Omega_p \in \mathcal{A}_p(E, \mathcal{A}_p(E, \mathbb{R}))$.
- (7) (a) Soient $M \in \mathcal{M}_p(\mathbb{R}), e = (e_1, \dots, e_p)$ et $e' = \left(e'_1, \dots, e'_p\right)$ dans E^p vérifiant $e'_i = \sum_{j=1}^p M_{ij} e_j$ pour tout $i \in [1, p]$. Montrer que $\Omega_p(e') = \det(M)\Omega_p(e)$.
 - (b) Soit $e \in E^p$. Montrer que $\Omega_p(e) \neq 0$ si et seulement si e est une famille libre.

(c) Vérifier que $\Omega_p(e)(e) \ge 0$ pour toute famille $e \in E^p$. Dans la suite pour tout $e \in E^p$, on appelle p-volume de e la quantité

$$\operatorname{vol}_p(e) = \sqrt{\Omega_p(e)(e)} = \left(\det(\operatorname{Gram}(e, e))^{1/2}\right)$$

- (8) (a) Calculer $\operatorname{vol}_p(b)$ lorsque $b=(b_1,\ldots,b_p)$ est une famille orthonormée de vecteurs de E.
 - (b) On suppose ici que $p \ge 2$. Soit $e = (e_1, \dots, e_p) \in E^p$. On note pr la projection orthogonale sur l'orthogonal de l'espace engendré par la famille $e_2^p = (e_2, \dots, e_p)$. Montrer que $\operatorname{vol}_p(e) = \|\operatorname{pr}(e_1)\| \operatorname{vol}_{p-1}(e_2^p)$.
 - (c) Pour toute famille libre $e = (e_1, \dots, e_p) \in E^p$, montrer qué $\operatorname{vol}_p(e) \leq \prod_{i=1}^p ||e_i||$ avec égalité si et seulement si e est une famille de vecteurs orthogonaux 2 à 2.
- (9) (a) Montrer que si $e \in E^p$ est une famille libre et si $b \in E^p$ est une base orthonormée de Vect (e), alors $\operatorname{vol}_p(e) = |\det{(P_b^e)}|$ où P_b^e est la matrice de passage de b à e i.e. $e_j = \sum_{i=1}^p {(P_b^e)}_{ij} b_i$ pour tout $j \in [1, p]$.
 - (b) Montrer que pour tous $e, e' \in E^p$, on a $|\Omega_p(e)(e')| \leq \operatorname{vol}_p(e) \operatorname{vol}_p(e')$.

- Partie III -

Soient $e = (e_1, \ldots, e_d)$ une base orthonormée de E, p un entier tel que $1 \leq p \leq d$ et $\mathcal{I}_p = \{\alpha = (i_1, \ldots, i_p) \in \mathbb{N}^p \mid 1 \leq i_1 < \cdots < i_p \leq d\}$. Pour tout $\alpha = (i_1, \ldots, i_p) \in \mathcal{I}_p$, on note $e_{\alpha} = (e_{i_1}, \ldots, e_{i_p}) \in E^p$ et pour tous ω et ω' éléments de $\mathcal{A}_p(E, \mathbb{R})$

$$\langle \omega, \omega' \rangle = \sum_{\alpha \in \mathcal{I}_p} \omega(e_\alpha) \omega'(e_\alpha).$$

- (10) (a) Montrer que pour tout $\omega \in \mathcal{A}_p(E, \mathbb{R})$, on a $\omega = \sum_{\alpha \in \mathcal{I}_p} \omega(e_\alpha) \Omega_p(e_\alpha)$.
 - (b) En déduire que $(\omega, \omega') \mapsto \langle \omega, \omega' \rangle$ est un produit scalaire sur $\mathcal{A}_p(E, \mathbb{R})$ pour lequel $(\Omega_p(e_\alpha))_{\alpha \in \mathcal{I}_p}$ est une base orthonormée de $\mathcal{A}_p(E, \mathbb{R})$ et donner la dimension de $\mathcal{A}_p(E, \mathbb{R})$.
 - (c) Construire dans le cas p = d 1 une isométrie entre $\mathcal{A}_p(E, \mathbb{R})$ et E.
- (11) On considère $u, v \in E^p$. Montrer que

$$\Omega_p(u)(v) = \langle \Omega_p(u), \Omega_p(v) \rangle$$
.

(12) Montrer que le produit scalaire $(\omega, \omega') \mapsto \langle \omega, \omega' \rangle$ défini par (1) ne dépend que du produit scalaire sur E et non du choix de la base orthonormée e.

- Partie IV -

Soit $p \in [1, d]$. On définit une relation sur l'ensemble des bases d'un sous-espace V de dimension p de E par : e et e' sont en relation di $\det_e(e') > 0$ où $\det_e(e')$ est le déterminant de e' dans la base e. On admet que cette relation est une relation d'équivalence sur l'ensemble des bases de V pour laquelle il existe exactement deux classes d'équivalence appelées orientations de V. Un sous-espace orienté est un couple (V, C) où C est une orientation de V.

On note $\widetilde{\mathrm{Gr}}(p,E)$ l'ensemble des sous-espaces orientés de dimension p de E.

- (13) (a) Montrer que si e et e' sont deux familles libres de cardinal p de E alors $\Omega_p(e)$ et $\Omega_p(e')$ sont colinéaires si et seulement si $\operatorname{Vect}(e) = \operatorname{Vect}(e')$.
 - (b) Montrer que pour tout sous-espace vectoriel orienté (V,C) de dimension p de E, il existe une unique $\Psi(V,C) \in \mathcal{A}_p(E,\mathbb{R})$ tel que pour tout $e \in C$ on a $\Omega_p(e) = \operatorname{vol}_p(e)\Psi(V,C)$.
- (14) On munit $\mathcal{A}_p(E,\mathbb{R})$ du produit scalaire introduit dans la partie III.
 - (a) Vérifier que $\Psi: (V, C) \mapsto \Psi(V, C)$ est une injection de $\widetilde{\mathrm{Gr}}(p, E)$ dans la sphère de rayon 1 de $\mathcal{A}_p(E, \mathbb{R})$.
 - (b) Montrer que $\Psi(\widetilde{\mathrm{Gr}}(p,E))$ est une partie compacte de $\mathcal{A}_p(E,\mathbb{R})$.
- (15) Montrer que $\Psi(\widetilde{\mathrm{Gr}}(p,E))$ est une partie connexe par arcs de $\mathcal{A}_p(E,\mathbb{R})$ si et seulement si $p \leq d-1$.

(Indication: On pourra utiliser la question 3d.)

* Fin de l'épreuve *