FP-growth Algorithm

Efficient Mining of Frequent Itemsets

What is FP-growth?

- FP-growth (Frequent Pattern Growth) is a data mining algorithm used for mining frequent itemsets without generating candidate sets.
- Purpose: Overcomes limitations of the Apriori algorithm by using a divide-and-conquer strategy.

• How It Works:

- Compresses the database into an FP-tree structure.
- Divides into smaller conditional databases for recursive mining.

Why Not Apriori?

- Problems with Apriori:
 - Generates Too Many Candidate Sets: For 10,000 frequent 1itemsets, Apriori generates over 10 million candidate 2-itemsets.
 - Multiple Database Scans: Apriori repeatedly scans the entire database, which is time-consuming and inefficient.
- FP-growth Solution:
 - No candidate generation.
 - Compresses data into a compact structure for efficient mining.

Why Use Pattern Growth for Mining Frequent Patterns?

- Apriori: A breadth-first search mining algorithm.
 - First, it finds the complete set of frequent k-itemsets.
 - Then, it generates candidates for frequent (k+1)-itemsets.
 - The database is scanned again to identify the true frequent (k+1)-itemsets.
- Motivation for a new approach:
 - Can we develop a more efficient depth-first search mining algorithm?
 - Can we confine the search for frequent itemsets to only the transactions containing a specific frequent itemset (denoted by ρ)?
- This idea leads to the frequent pattern growth approach: FP-growth.

FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)

FPGrowth Step 1: Building the FP-tree

• **Goal**: Compress the database into an FP-tree for mining.

• Steps:

- 1.1 First Scan: Identify frequent items and their support counts.
 - Sort items in descending order of frequency into a list **L**.
- 1.2 Second Scan: Build the FP-tree by inserting sorted transactions.
 - For each transaction, create a branch of the tree.
 - Share common paths for transactions that share items.

Step 1.1 First Scan: From Transactional DB to Ordered Frequent Itemlist

Example: A Sample Transactional Database

TID	Items in the Transaction
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o, w}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}

Let min_support = 3

Scan DB once, find single item frequent pattern:

f:4, a:3, c:4, b:3, m:3, p:3

□ Sort frequent items in frequency descending order, f-list

F-list = f-c-a-b-m-p

Scan DB again, use the ordered frequent itemlist for each transaction to construct an

FP-tree

TID	Items in the Transaction	Ordered, frequent itemlist
100	{f, a, c, d, g, i, m, p}	f, c, a, m, p
200	{a, b, c, f, l, m, o}	f, c, a, b, m
300	{b, f, h, j, o, w}	f, b
400	{b, c, k, s, p}	c, b, p
500	{a, f, c, e, l, p, m, n}	f, c, a, m, p

Step 1.2 Second Scan: Construct FP-tree from Transaction DB

TID	Ordered, frequent itemlist
100	f, c, a, m, p
200	f, c, a, b, m
300	f, b
400	c, b, p
500	f, c, a, m, p

FP-Tree Construction:

For each transaction, insert the ordered frequent itemlist into an FP-tree, with shared sub-branches merged, counts accumulated

Header Table

FPGrowth Step 2: Mining the FP-tree

• Goal: Extract frequent itemsets from the FP-tree.

• Steps:

- 2.1 Start from the Least Frequent Item
- 2.2 Construct Conditional Pattern Base: Find all paths in the FP-tree that contain the item
- 2.3 Create Conditional FP-tree: Use the conditional pattern base to build a smaller FP-tree.
- 2.4 Recursive Mining: Repeat the process for each item

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- Pattern mining can be partitioned according to current patterns
 - Patterns containing p: p's conditional database: fcam:2, cb:1
 - p's conditional database (i.e., the database under the condition that p exists):
 - transformed prefix paths of item p
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1

Conditional database of each pattern

<u>Item</u>	Conditional database
C	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Mine Each Conditional Database Recursively

min_support = 3

Conditional Data Bases

item cond. data base c f:3 a fc:3 b fca:1, f:1, c:1 m fca:2, fcab:1 p fcam:2, cb:1

- For each conditional database
 - Mine single-item patterns
 - Construct its FP-tree & mine it

p's conditional DB: $fcam:2, cb:1 \rightarrow c:3$

m's conditional DB: fca:2, $fcab:1 \rightarrow fca:3$

b's conditional DB: $fca:1, f:1, c:1 \rightarrow \phi$

 $\{\}$ $\{\}$ $\{\}$ Act f:3 f:3 f:3 f:3 c:3 cm's FP-tree f:3 f:3

Actually, for single branch FP-tree, all the frequent patterns can be generated in one shot

fm: 3, cm: 3, am: 3

fcm: 3, fam:3, cam: 3

fcam: 3

m: 3