Topic 4: Internal Sensors for Mobility

- 4.1 Introduction
- 4.2 Internal position sensors
 - 4.2.1 Introduction
 - 4.2.2 Potentiometers
 - 4.2.3 Optical position sensors
- 4.3 Internal state sensors
 - 4.3.1 Velocity sensors
 - 4.3.2 Accelerometers
 - 4.3.3 Gyroscopes
 - 4.3.4 Tilt sensors
- 4.4 Inertial Measurement Units
- 4.5 Conclusion

4.1 Introduction

In robotics & embedded systems, sensors are used for:

Mobility: (Internal sensors)

- measuring system parameters (position, velocity, acceleration) for stable control
- detecting and avoiding failure situations
- adapting to changes that may effect system performance

Navigation: (External sensors)

- abstracting features & correcting errors in a world model
- monitoring the changes in robot's environments
- detecting and avoiding unexpected obstacles
- finding the location of objects or reaching a goal

4.1.1 Typical internal sensors for mobility

General classification (typical use)	Sensor Sensor System
Tactile sensors (detection of physical contact or closeness; security switches)	Contact switches, bumpers Optical barriers Noncontact proximity sensors
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders
Heading sensors (orientation of the robot in relation to a fixed reference frame)	Compass Gyroscopes Inclinometers

4.1.2 Typical external sensors for navigation

General classification (typical use)	Sensor Sensor System
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons
Active ranging (reflectivity, time-of-flight, and geo-metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages

4.1.3 A brief Sensor Comparison

Sensor	Information	Accuracy	Adv./Disadv.
Odometry	Pose change	±1mm/m	cheap, simple subject to drift
Sonar	Range	±2 cm,±5-30°	cheap rel. well understood low angular res. rel. low scan rate
Laser	Range	±1-5 cm, ≈0.5°	high angular res. high scan rate expensive transparent materials
IR	Range	1-10 cm	cheap material dependent
Radar	Range		long range used extensively outdoor
Inertial	Acc, vel, pos		easy to use drift
Compass	Direction		easy to use sensitive to disturb.
Vision	Various		pot. very powerful difficult to use not well understood

4.2 Internal Position Sensors

4.2.1 introduction

Contact sensors

- * Micro switch -- to measure the danger situation (on/off output)
- * Potentiometers -- to measure position (continuous output)
- * Strain gauges -- to measure force or position (*continuous output*)

Non-contact sensors

- * Optical interrupters -- to measure positions (on/off output)
- * Incremental optical encoders -- to measure position & velocity (digital output)
- * Absolute optical encoders -- to measure position (*digital output*)
- * Synchros -- to measure angular displacement (continuous output)
- * Resolvers -- A rotary electrical transformer for measuring degrees of rotation.

Note: The resolvers and synchros are used in automatic systems as sensors and receivers for the angle remote transmission systems. They have been replaced by optical rotary encoders.

Potentiometers: (pot for short) They are the simplest device to measure actuator position, e.g. the angle of the steering wheel of the robot.

(a) rotary--output proportional to ;

(b)linear--output proportional to d.

The voltage V_{out} is proportional to linear or rotary distance of the sliding contact (or wiper) from the reference point a.

$$V_{out} = \frac{r}{R} V_s$$

Typical application:

The potentiometer can be used to measure the steering angle:

Note: The potentiometer is in the feedback loop in order to provide position information for the servo control.

1. Opto-Interrupters: Opto-interrupter can be used to sense the and of travel for robot actuators with a long life.

(a) Light emitter-receiver and disk with black flag

(b) Block diagram of a motor control circuit (unidirectional)

2. Incremental optical encoder:

• An rotating disk with N radial grating lines, e.g., 100, 128

• An LED light source.

• A set of light receivers or phototransistors.

Single channel: Cheap and easy to use, but can not determine the direction of rotation.

Two/Three channels of Incremental optical encoder:

Able to determine the direction of rotation, as shown in the next figure.

4. Absolute optical encoder:

Figure 1.3: Rotating an 8-bit absolute Gray code disk.

- a. Counterclockwise rotation by one position increment will cause only one bit to change.
- b. The same rotation of a binary-coded disk will cause all bits to change in the particular case (255 to 0) illustrated by the reference line at 12 o'clock.

[Everett, 1995].

- A multiple-track (or channel) light source
- A multiple-channel light receiver
- A multiple-track rotary disk
- Grey code -- one bit changes at a time.
- Binary code --- multiple bit changes
- Binary-coded decimal -- possible multiple bit changes each time.

4. Absolute optical encoder:

4.3 Internal State Sensors

1. Velocity sensors -- DC Tachometers (Tacho *for short*):

Analog tacho showing only one coil mounted on an iron core. Note that there are many coils in practice.

4.3 Internal State Sensors

4.3.1 Velocity Sensors

A Tacho sensor has the following features:

- Able to produce a dc voltage proportional to the shaft speed.
- Output voltage versus speed is linear over the operation range.
- Being relatively free of voltage ripple in the operating.
- Being small size, very light, and low costs (about \$50/unit).
- Let ω be the angular velocity, θ the rotating angle of coil plane, K the tacho's parameter. Then the output voltage of a tacho is:

$$V_{out} = K\omega\sin\theta$$

• Output voltage versus speed transfer characteristic of an analogue tacho. It usually becomes non-linear at low speed.

There are two kinds of acceleration:

- Angular acceleration
- · Linear acceleration.

Two methods to measure:

• Software implementation we can calculate acceleration by differentiating velocity, i.e, $A=\Lambda V$ ΛT

- -- This is normally done by software subroutine.
- Hardware implementation
 - -- using different accelerometers.

1. Angular accelerometer:

It is a closed-loop torque balance system, namely a servo accelerometer, for measuring angular acceleration based on Newton's second law: α =F M.

Main features of Angular accelerometer:

- A pendulous mass develops a torque proportional to the product of its mass unbalance and applied acceleration.
- The motion of the mass is detected with a position sensor.
- Position signal is compared to a fixed reference by a servo amplifier.
- The applied torque stops the motion of the mass at a position proportional to acceleration.
- The current through the torque motor produces a voltage across the output resistor, which is proportional to acceleration.
- The performance of accelerometers available on the market:

Range: $\pm 200 - \pm 1500$ radians/s²; Linearity: $\pm 0.05\%$ of full scale; Resolution: 0.0005% of full scale; Hysteresis: 0.02% of full scale.

2. <u>Linear accelerometers</u> -- a piezo-resistive accelerometer

• t is constructed by placing strain gauges on a cantilevered beam as follows

- (a) Accelerometer design using cantilever beam with overload stop & 2 semiconductor strain gauges
- (b) semiconductor strain gauge with large mounting pads & narrow active neck

Sensing principle:

- The gauges are placed across a slit in the beam. The outboard end of the beam forms a rigid mass & narrow slit forms a flexible member.
- The beam motion is concentrated in the slit, with the strain forces across the slit.
- Inertial forces cause the beam to bend when acceleration is applied to the sensor along the sensitive direction.
- Of two gauges attached to the beam, one measures tension and one measures compression when the beam bends.
- Strain gauges form two arms of a Wheatstone bridge, and imbalance causes an output voltage proportional to beam bending.

Main features:

Small size, low output impedance, zero phase shaft, One direction only, wide frequency response -0.1 Hz to 5kHz, measuring range: 10g to 50Kg

Gyroscopes

-- measures a robot's attitude relative to an inertial frame of reference,

including

mechanical & optical

Mechanical gyroscopes -operate by sensing the
change in direction of some
actively sustained angular
or linear momentum,
including flywheel
gyroscopes and vibrating
structure gyroscopes.

Optical gyroscopes -- have little or no moving parts, and are virtually maintenance free. Five general configurations of optical gyros are:

- (i) active optical resonators;
- (ii) passive optical resonators;
- (iii) open-loop fibre optic;
- (iv) closed-loop fibre optic;
- (v) fibre optical resonators.

4.3.4 Tilt Sensors

Simple LED tilt sensor

4.3.4 Tilt Sensors

Mercury Tilt Switch

Mercury Tilt Switch Demo

www.Society of Robots.com

9-axis IMU (Inertial measurement units)

- 3D orientation, 3D acceleration, 3D earth-magnetic field.
- Platform: Windows 2000/XP.
- Range: acceleration: +/- 2 G's;
 rate of turn: +/- 900 deg/s;
 magnetic field: +/- 750 mG.
- Power supply: 5.5 V; 40 mA.
- Outline Size: 39 X 54 X 28 mm.
- Weight: 35 g.

Track human motion-XSEN Inertial Sensor Suit, 2008

Hand Gesture for Robotic arm control

Wireless IMU in a Baseball Cap

- ☐ Detect head motion for wheelchair control
- ☐ Minimum user head motion required
- ☐ Adapt to people with weak neck abilities
- □ Obstacle avoidance with laser scanner
- ☐ Totally replace joystick control interface

Turn Right

Slow Down

4.5 Conclusion

Sensors in mobile robots can be grouped into two classes:

- *Internal sensors* that measure variables within the robot e.g. robot velocity, position, acceleration, etc.
- *External sensors* that deal with the unknown or dynamic environment e.g., range, gap, road width, object features, wall, etc.

In this lecture, we focus on the internal sensors.

• For motion control

They are mainly used to implement the low level feedback motion control of the mobile robots to achieve stability & good performance.

• For relative positioning

They can also be used to calculate the robot position in order to travel from one position to another, which will be reviewed in the later topics.