Определение 1. Пусть функция f определена на интервале (или на любом открытом множестве, или на промежутке). Первообразная или неопределённый интеграл функции f — это такая дифференцируемая функция F, что F' = f. Обозначение: $\int f(x) dx$. Замечание: первообразная определена неоднозначно!

Задача 1. Пусть F_1 и F_2 — первообразные f на интервале I. Докажите, что $F_1 - F_2$ — константа (на I).

Задача 2. а) Пусть функция f непрерывна на некотором интервале. Зафиксируем точку a из этого интервала. Рассмотрим функцию $F(x) = \int_{0}^{x} f(t) dt$. Докажите, что F дифференцируема на этом интервале. Чему равна её производная? б) Докажите, что у каждой функции, непрерывной на интервале, существует первообразная. в)* Приведите пример разрывной функции, у которой существует первообразная.

Задача 3. Пусть на некотором интервале существуют $\int f(x) dx$ и $\int g(x) dx$. Докажите, что для любых $\alpha, \beta \in \mathbb{R}$ на этом интервале существует $\int (\alpha f(x) + \beta g(x)) dx$, причём $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$.

Задача 4. Найдите все первообразные функций (на их области определения): **a)** f=1; **b)** f=x; **b)** $f=x^k$, $k \in \mathbb{N}$; г) f = 1/x; д) $f = x^k, k \in \mathbb{Z}$; е) $f = e^x$; ж) $f = \sin x$; з) $f = \cos x$.

Задача 5°. (Φ ормула Ньютона-Лейбница) Пусть f — непрерывная функция и F — её первообразная. Докажите, что $\int_{b}^{a} f(x) dx = F(a) - F(b)$.

Задача 6. Найдите площадь фигуры, ограниченной осью абцисс и одной дугой синусоиды.

Формула замены переменных

Задача 7. Пусть $\int f(x) dx = F(x)$. Докажите, что $\int f(ax+b) dx = \frac{1}{a} F(ax+b)$.

Задача 8°. Пусть $\omega(x)$ — дифференцируемая функция с непрерывной производной. Пусть f — непрерывная функция, и $\int f(x) dx = F(x)$. Докажите, что существует $\int f(\omega(x))\omega'(x) dx$ и $\int f(\omega(x))\omega'(x) dx = F(\omega(x))$.

Задача 9. Найдите: а) $\int e^{e^x+x} dx$; б) $\int x e^{x^2} dx$; в) $\int \frac{\ln x}{x} dx$; г) $\int \sin x \cos x dx$; д) $\int \operatorname{tg} x$; е) $\int \operatorname{ctg} x$. Задача 10. Пусть ω отображает [a,b] в [c,d] так, что $\omega(a)=c,\,\omega(b)=d$, причём ω дифференцируема на [a,b], а $\omega'(x)$ непрерывна на [a,b]. Докажите, что $\int\limits_{c}^{d}f(t)\,dt=\int\limits_{a}^{b}f(\omega(x))\omega'(x)\,dx$ для любой f, непрерывной на [c;d].

Задача 11. Вычислите интегралы **a)** $\int_{0}^{1} \sqrt{1-x^2} \, dx$; **б)** $\int_{0}^{\ln 2} \sqrt{e^x-1} \, dx$.

Интегрирование по частям.

Задача 12°. а) Пусть u(x) и v(x) — дифференцируемые функции. Пусть существует интеграл $\int u(x)v'(x)\,dx$. Докажите, что существует интеграл $\int u'(x)v(x) dx$ и $\int u'(x)v(x) dx = u(x)v(x) - \int u(x)v'(x) dx$.

б) Пусть u'(x) и v'(x) непрерывны на [a,b]. Докажите, что $\int\limits_{a}^{b}u'(x)v(x)\,dx = u(x)v(x)\big|_{a}^{b} - \int\limits_{a}^{b}u(x)v'(x)\,dx$.

Задача 13. Найдите $(k \in \mathbb{N})$: а) $\int \ln x \, dx$; б) $\int x^k e^x \, dx$; в) $\int e^x \sin x \, dx$; г) $\int \ln^k x \, dx$; д) $\int_0^\pi x \sin x \, dx$.

Задача 14°. (Φ ормула Tейлора) Пусть f(x) — функция с непрерывной n+1 производной. Докажите, что $f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$

Задача 15. Приведите пример функции, определённой на интервале и не имеющей на нём первообразной.

Задача 16. а) (Интегральный признак cxodumocmu) Пусть $f:[1,+\infty]\to\mathbb{R}$ неотрицательна, монотонна и непрерывна. Докажите, что ряд $\sum_{n=1}^{+\infty} f(n)$ сходится, если и только если существует $\lim_{x\to +\infty} \int\limits_{1}^{x} f(t)dt$.

б) При каких s>0 сходится ряд $\zeta(s)=\sum\limits_{n=1}^{+\infty}\frac{1}{n^s}?$ в) Найдите $\lim\limits_{\varepsilon\to 0}\int\limits_{\varepsilon}^{1}\ln tdt.$

Задача 17. Пусть M — максимум |f'| на отрезке $[0;2\pi], n \in \mathbb{N}$. Докажите, что $\left|\int\limits_{0}^{2\pi} f(x) \cos nx \, dx\right| \leqslant 2\pi M/n$.

Задача 18. а) Найдите точную верхнюю грань чисел $\int\limits_0^1 x f(x) \, dx$ по всем непрерывным неотрицательным на

[0; 1] функциям f, для которых $\int_{0}^{1} f(x) dx \le 2$. 6) Найдите ответ, если не требовать неотрицательность f.

Задача 19. Пусть $n \in \mathbb{N}$. Разделите отрезок [-1;1] на черные и белые отрезки так, чтобы суммы определённых интегралов любого многочлена степени n по белым отрезкам и по чёрным были бы равны друг другу.

1	2 a	2 6	2 B	3	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	4 г	4 д	4 e	4 ж	4 3	5	6	7	8	9 a	9 6	9 B	9 Г	9 д	9 e	10	11 a	11 б	$\begin{vmatrix} 12 \\ a \end{vmatrix}$	12 б	13 a	13 б	13 B	13 г	13 д	14	15	16 a	16 б	16 B	17	18 a	18 б	19