

5G承载需求白皮书

IMT-2020(5G)推进组 5G承载工作组

2018年6月22日

一、5G业务和架构特性分析

- 二、5G承载关键性能需求
- 三、5G承载组网及功能需求

四、总结与展望

5G业务场景和架构特性提出承载需求新挑战

(一) 5G三大业务场景差异明显

eMBB 增强移动宽带 峰值10~20Gbps 新兴业务: VR/AR 对承载网带宽需求大, 时延4ms对承载网无挑战 GB/s诵信 3D视频 云计算 智能家居 AR 语音 工业自动化 智慧城市 自动驾驶 远程医疗

mMTC 大连接机器类通信 1M/km²

新兴业务:工业机器人、 直播机器人、家用机器 人;低时延、高可靠 uRLLC 超高可靠性超低时延通信 1ms

新兴业务:车联网自动驾驶、无人机远程控制;端到端最低时延0.5~1ms,对承载网挑战较大

(二) 5G无线接入网分割形成多种架构

(三) 5G核心网向服务型架构演进

- 一、5G业务和架构特性分析
- 二、5G承载关键性能需求

- 三、5G承载组网及功能需求
- 四、总结与展望

5G承载关键性能需求将聚焦三大参数

单基站带宽需求: 出现10G/25G接口需求

	5G低频	5G高频	
频谱资源	3.4G~3.5G,100MHz频宽	28G以上频谱,800MHz带宽	
基站配置	3 Cells,64T64R	3 Cells, 4T4R	
频谱效率	峰值40bit/Hz,均值7.8bit/Hz	峰值15bit/Hz,均值2.6bit/Hz	
其它考虑	10%封装开销,5%Xn流量,1:3 TDD上下行配比	10%封装开销,1:3 TDD上下行配比	

小区带宽=频宽*频谱效率*(1+封装开销)*TDD下行占比				
小区峰值	100MHz*40bit/Hz*1.1*0.75=3.3G	800MHz*15bit/Hz*1.1*0.75=9.9G		
小区均值	100MHz*7.8bit/Hz*1.1*0.75*1.05=0.675G (Xn流量主要发生于均值场景)	800MHz*2.6bit/Hz*1.1*0.75=1.176G (高频站主要用于补盲补热,Xn流量已计入低频站)		

	单站峰值=单小区峰值+均值*(N-1),单	单站均值=单小区均值*N
单站峰值	3.3G+ (3-1) *0.675G= 4.65G	9.9G+ (3-1) *1.176G= 13.33G
单站均值	0.675G*3= 2.03G	1.176G*3= 5.15G

- 口 5G低频站的传输接口: 10GE;
- 口 5G高频站的传输接口: 2*10GE或1*25GE;
- □ 5G低频+高频站的传输接口: 2*10GE或1*25GE

回传带宽需求:接入环25/50/100G,汇聚核心为N*100/200/400G

网络层次	模型	型I [Gbps] 模型II [Gbps]		II [Gbps]
	一般流量场景	热点流量场景	一般流量场景	热点流量场景
接入层	18.86	46.90	18.86	46.90
汇聚层	113.16	281.40	56.58 (上联链路带宽)	140.70 (上联链路带宽)
核心层	452.64	1125.60	452.64	1125.60

	模型I [Gbps]		模型II [Gbps]	
网络层次	一般流量场景 (小集中)	热点流量场景 (大集中)	热点流量场景 (小集中)	热点流量场景 (大集中)
接入层	33.07	NA	33.07	NA
汇聚层	198.42	83.82	99.21 (上联链路带宽)	83.82 (上联链路带宽)
核心层	793.68	335.28	793.68	670.56

前传/中传带宽需求: 与CU/DU物理层分割位置密切相关

- (a) 考虑下行带宽大于上行,本报告仅估算下行[DL]带宽
- (b) 工作频段, 3.4GHz~3.5GHz, 100MHz频宽
- (c) MIMO参数: 32T32R, 映射数据流/层为8[DL]
- (d) I/Q量化比特2×16, 调制格式: 256QAM[DL]

CU/DU分割方式	选项8 (CPRI)	选项7-1	选项7-2 (eCPRI)	选项6
前传带宽[DL] (Gbps)	157.3	113.6	29.3	4.546

超低时延需求: uRLLC对前传时延挑战明显

	时延类型	时延指标	参考标准	
еМВВ	用户面时延(UE-CU)	4ms	3GPP TR38.913	
	控制面时延 (UE-CN)	10ms		
uRLLC	用户面时延(UE-CU)	0.5ms		
	控制面时延 (UE-CN)	10ms		

1、前传时延: 50us~100us, 相当于10~20km光纤传输时延, 其他环节时延待定, 前传设备节点处理时延【典型20~50us】需要降低到10us以内或更低, 但低于1us的必要性不强 (1km光纤5us)
2、URLLC业务需要无线和承载协同分配时延指标。

高精度同步需求:基本业务与4G相同,存在百ns及以下量级应用场景

名称	分类	同步需求	实现方式
基本业务	频率同步	0.05ppm	网同步
同步需求	时间同步	±1.5us (3GPP)	网同步
协同业务同步需求	MIMO、发射分集	65ns (相对)	RRU内同步,无需网同步
	带内连续CA	260ns或130ns(相对)	一般RRU内同步,无需网同步;可能站内RRU间 同步,需要网同步(基于前传网)
	带内非连续或带间CA	3us (相对)	网同步 (基于前传网)
基站定位等业务	基于TDOA的基站定位	± 10ns (3m定位精度) ± 3ns (米级定位精度)	网同步,结合其它定位技术(具体技术待研究)

来源: 3GPP TS38.104

- □ 5G 基本业务同步需求与4G相当,均为3us
- □ 5G协同业务需求指标: 65ns/130ns/260ns/3us
 - ▶ 绝大多数百纳秒量级的时间同步要求一般发生在同一个RRU内的2个载波,无需网同步,相对容易满足
 - > 少量百纳秒量级的时间同步要求可能发生在同一基站的不同RRU,需基于前传网实现网同步;
 - ▶ 所有3us的时间同步要求均需网同步,每个基站的绝对时间同步要求为±1.5us。
- □ 基站定位等业务: 时间同步精度与定位精度要求直接相关,实现难度较大(如3m定位精度需±10ns 时间精度),需结合其它定位技术实现。

- 一、5G业务和架构特性分析
- 二、5G承载关键性能需求
- 三、5G承载组网及功能需求

四、总结与展望

架构和连接需求: 多层级承载网络, 灵活化连接调度

切片和管控需求: 层次化网络切片, 智能化协同管控

•端到端切片: 5G承载需与无线、核心网协同,支持5G端到端网络切片和QoS;

·差异化业务: uRLLC等业务对时延、可靠性等需求差异明显,需不同的网络切片。

业务示例 大带宽 eMBB 灵活,资源可共享 软 资源存在竞争。 普通可靠性 切 L3: QoS, 拥塞时延增大 Internet 时延不敏感 L3 VPN **mMTC** L2: QoS, L2 VPN 独享资源 硬 高可靠性 **uRLLC** L1: TDM隔离 带宽效率较低 时延敏感 政企/金融专线 确定性低时延

面向5G承载的综合业务承载网需要提供包括硬切片和软切片的<mark>层次化</mark> 网络切片方案,满足不同优先级和不同客户的业务需求。

混合承载和成本需求: 4G/5G混合承载, 支持低成本高速组网

我国三大运营商 5G试点一阶段 (2018) 将主要基于 NSA的Option 3方案, 5G试点二阶段 (2019) 将基于 SA的option2方案。

5G RAN架构: 4G/5G混合组网 TR 38.801

4G/5G共站址部署,上下行解耦

EPC/NGC

5G UE

4G/5G支持双连接

1.8G 站点 站点 3.5G覆盖对齐1.8G

若5G部署NSA方案: 4G/5G一张网,混合承载是趋势,如果部署SA方案:新建5G承载网或4G承载网演进!

5G前传/中传/回传对成本非常敏感,除新型设备和光纤之外,新型高速率光模块更为突出,以满足低成本、低功耗、高密度等需求,25~400Gb/s高速光模块出现多种技术方案。

应用场景	传输距离[典型值,km]	接口速率[Gbps]	工作波段	调制方式	传输方式
前传	10~20	25~100	C/O	NRZ/PAM4/DMT (直调直检)	双纤双向/单纤双向
中传	20~40	25~100	C/O	NRZ/PAM4/DMT (直调直检)	双纤双向/单纤双向
回传	2~20	25~100	C/O	NRZ/PAM4/DMT (直调直检)	双纤双向/单纤双向
	40~80	N×100/200/400	C/O	n-QAM(相干)/ PAM4/DMT (直调直检)	双纤双向
	>80	N×100/200/400	С	n-QAM(相干)	双纤双向

单纤双向方案

单波100G方案

- 一、5G业务和架构特性分析
- 二、5G承载关键性能需求
- 三、5G承载组网及功能需求
- 四、总结与展望

总结与展望

- 口展望
 - > 完善5G承载方案:加速开展5G承载架构、组网及共性支撑技术的研究,与业界加强交流合作。
 - 》 推动5G承载产业化:推动5G承载技术方案和组网应用方案的产业化进程,支撑5G商用部署!

感谢聆听, 协同推进

