1 Hamiltonian Monte Carlo for fuzzy spaces

1.1 Statement of the problem

The fuzzy space action considered here is:

$$S[D] = g_2 \operatorname{Tr} D^2 + \operatorname{Tr} D^4 \tag{1}$$

where $g_2 \in \mathbb{R}$ and D is of the form:

$$D = \sum_{i} \omega_{i} \otimes (M_{i} \otimes I + \epsilon_{i} I \otimes M_{i}^{T})$$
(2)

for Hermitian ω_i and M_i , and $\epsilon_i = \pm 1$.

The dynamical variables in the Monte Carlo are the $n \times n$ matrices M_i . Hamiltonian Monte Carlo requires to take derivatives such as:

$$\frac{\partial S[M_i]}{\partial M_k} \tag{3}$$

which amounts to finding formulas for terms like:

$$\frac{\partial \operatorname{Tr} D^p}{\partial M_k}. (4)$$

In the following, formulas for p = 2 and p = 4 are developed.

1.2 Matrix calculus

Let $A \in M_n(\mathbb{C})$ and f(A) be a complex valued function of A. The derivative of f with respect to A is defined in components as the $n \times n$ matrix:

$$\left(\frac{\partial f}{\partial A}\right)_{lm} \equiv \frac{\partial f}{\partial A_{lm}}.$$
(5)

The two special cases of interest here are:

$$\frac{\partial \operatorname{Tr} A}{\partial A} = I \tag{6}$$

$$\frac{\partial \operatorname{Tr} AB}{\partial A} = B^T. \tag{7}$$

1.3 The case p = 2

When p=2 the M_i matrices are decoupled:

$$\operatorname{Tr} D^{2} = \sum_{i} \operatorname{Tr} \omega_{i}^{2} (2n \operatorname{Tr} M_{i}^{2} + 2\epsilon_{i} (\operatorname{Tr} M_{i})^{2}). \tag{8}$$

Taking a derivative with respect to M_k yields:

$$\frac{\partial}{\partial M_k} \left(\sum_i \operatorname{Tr} \omega_i^2 (2n \operatorname{Tr} M_i^2 + 2\epsilon_i (\operatorname{Tr} M_i)^2) \right) = \sum_i \delta_{ik} \operatorname{Tr} \omega_i^2 \left(4n M_i^T + 4\epsilon_i (\operatorname{Tr} M_i) I \right) = 4C \left(n M_k^T + \epsilon_k (\operatorname{Tr} M_k) I \right) \tag{9}$$

where $C \equiv \text{Tr}\,\omega_i^2$ is the dimension of the Clifford module.

1.4 The case p = 4

First expand $\operatorname{Tr} D^4$:

$$\operatorname{Tr} D^{4} = \sum_{i_{1}, i_{2}, i_{3}, i_{4}} \operatorname{Tr}(\omega_{i_{1}} \omega_{i_{2}} \omega_{i_{3}} \omega_{i_{4}}) \cdot$$

$$\left(n[1 + \epsilon *] \operatorname{Tr}(M_{i_{1}} M_{i_{2}} M_{i_{3}} M_{i_{4}}) +$$

$$\epsilon_{i_{1}} \operatorname{Tr} M_{i_{1}} [1 + \epsilon *] \operatorname{Tr}(M_{i_{2}} M_{i_{3}} M_{i_{4}}) +$$

$$\epsilon_{i_{2}} \operatorname{Tr} M_{i_{2}} [1 + \epsilon *] \operatorname{Tr}(M_{i_{1}} M_{i_{3}} M_{i_{4}}) +$$

$$\epsilon_{i_{3}} \operatorname{Tr} M_{i_{3}} [1 + \epsilon *] \operatorname{Tr}(M_{i_{1}} M_{i_{2}} M_{i_{4}}) +$$

$$\epsilon_{i_{4}} \operatorname{Tr} M_{i_{4}} [1 + \epsilon *] \operatorname{Tr}(M_{i_{1}} M_{i_{2}} M_{i_{3}}) +$$

$$\epsilon_{i_{1}} \epsilon_{i_{2}} [1 + \epsilon] \operatorname{Tr}(M_{i_{1}} M_{i_{2}}) \operatorname{Tr}(M_{i_{3}} M_{i_{4}}) +$$

$$\epsilon_{i_{1}} \epsilon_{i_{3}} [1 + \epsilon] \operatorname{Tr}(M_{i_{1}} M_{i_{3}}) \operatorname{Tr}(M_{i_{2}} M_{i_{4}}) +$$

$$\epsilon_{i_{1}} \epsilon_{i_{4}} [1 + \epsilon] \operatorname{Tr}(M_{i_{1}} M_{i_{4}}) \operatorname{Tr}(M_{i_{2}} M_{i_{3}}) \right)$$

$$(10)$$

where * denotes complex conjugation of everything that appears on the right, ϵ is defined as the product $\epsilon \equiv \epsilon_{i_1} \epsilon_{i_2} \epsilon_{i_3} \epsilon_{i_4}$, and the relation $M^T = M^*$ has been used. Since D is Hermitian, the expression must be real. It is not immediate to see that this is the case because of the $\epsilon = \pm 1$ factor inside

the square brackets. Reality nonetheless holds, and becomes manifest by observing that a simultaneous index exchange $i_1 \leftrightarrow i_4$ and $i_2 \leftrightarrow i_3$ is equivalent to taking the complex conjugate (in fact, this is not the only index exchange that amounts to complex conjugation).

Taking a matrix derivative with respect to M_k results in non-vanishing contributions when $k = i_1, k = i_2, k = i_3$ or $k = i_4$:

$$\frac{\partial}{\partial M_k} \operatorname{Tr} D^4 = \sum_{i_1, i_2, i_3, i_4} \operatorname{Tr}(\omega_{i_1} \omega_{i_2} \omega_{i_3} \omega_{i_4}) \cdot \left(\delta_{ki_1} A(i_1, i_2, i_3, i_4)^T + \delta_{ki_2} A(i_2, i_3, i_4, i_1)^T + \delta_{ki_3} A(i_3, i_4, i_1, i_2)^T + \delta_{ki_4} A(i_4, i_1, i_2, i_3)^T \right)$$
(11)

where A(a, b, c, d) is the following $n \times n$ matrix:

$$A(a, b, c, d) \equiv n[1 + \epsilon \dagger] M_b M_c M_d +$$

$$\epsilon_a I[1 + \epsilon *] \operatorname{Tr} M_b M_c M_d +$$

$$\epsilon_b \operatorname{Tr} M_b [1 + \epsilon \dagger] M_c M_d +$$

$$\epsilon_c \operatorname{Tr} M_c [1 + \epsilon \dagger] M_b M_d +$$

$$\epsilon_d \operatorname{Tr} M_d [1 + \epsilon \dagger] M_b M_c +$$

$$\epsilon_a \epsilon_b M_b [1 + \epsilon] \operatorname{Tr} M_c M_d +$$

$$\epsilon_a \epsilon_c M_c [1 + \epsilon] \operatorname{Tr} M_b M_d +$$

$$\epsilon_a \epsilon_d M_d [1 + \epsilon] \operatorname{Tr} M_b M_c$$

$$(12)$$

and \dagger denotes Hermitian conjugation of everything that appears on the right. Upon relabeling the indices and cycling the ω matrices in the trace, the equation becomes:

$$\frac{\partial}{\partial M_k} \operatorname{Tr} D^4 = 4 \sum_{i_1, i_2, i_3, i_4} \delta_{ki_1} \operatorname{Tr}(\omega_{i_1} \omega_{i_2} \omega_{i_3} \omega_{i_4}) A(i_1, i_2, i_3, i_4)^T$$

$$= 4 \sum_{i_1, i_2, i_3} \operatorname{Tr}(\omega_k \omega_{i_1} \omega_{i_2} \omega_{i_3}) A(k, i_1, i_2, i_3)^T \equiv 4 \sum_{i_1, i_2, i_3} \mathcal{B}_k(i_1, i_2, i_3)$$
(13)

with $\mathcal{B}_k(a,b,c)$ denoting the generic term in the sum.

To see that Eq.(13) defines a Hermitian matrix, notice that an exchange of

indices $i_1 \leftrightarrow i_3$ is equivalent to taking the Hermitian conjugate:

$$\mathcal{B}_k(i_1, i_2, i_3)^{\dagger} = \mathcal{B}_k(i_3, i_2, i_1) \tag{14}$$

therefore the sum in Eq.(13) reduces to:

$$\sum_{\substack{i_1 > i_3 \\ i_2}} [1 + \dagger] \mathcal{B}_k(i_1, i_2, i_3) + \sum_{i_1, i_2} \mathcal{B}_k(i_1, i_2, i_1). \tag{15}$$

In fact, by looking at the form of \mathcal{B} , it is clear that terms in the sum are qualitatively different based on the number of indices that coincide. Therefore it would be computationally convenient to write Eq.(15) in a way that emphasises this difference.

The only terms that contribute when all indices are different are the following:

$$\sum_{i_1 > i_2 > i_3} [1 + \dagger] \Big(\mathcal{B}_k(i_1, i_2, i_3) + \mathcal{B}_k(i_1, i_3, i_2) + \mathcal{B}_k(i_2, i_1, i_3) \Big). \tag{16}$$

The three inequivalent permutations of indices that appear in this formula are based on a group-theoretical argument that will generalize easily to powers of D higher than 4. First consider the symmetric group of order three S_3 acting on the set of indices $\{i_1, i_2, i_3\}$, and the subgroup of permutations that induce a simple change in \mathcal{B} , which in this case is $H = \{(), (13)\} \cong S_2$ (the first element being the identical permutation, and the second the exchange $i_1 \leftrightarrow i_3$ which induces $\mathcal{B} \to \mathcal{B}^{\dagger}$). The idea is then to restrict the sum to $i_1 > i_2 > i_3$ and quotient out the action of H by introducing a suitable pre-factor that accounts for it (in this case $[1+\dagger]$). Practically, the inequivalent permutations of indices that appear in Eq.(16) are found by computing the (left or right) cosets of $H \subset S_3$ and acting on $\{i_1, i_2, i_3\}$ with a representative from each coset. In this case the representatives where chosen to be (), (23), (12).

What is left are terms in which at least two indices are equal. These are:

$$\sum_{i_1>i_2} [1+\dagger] \Big(\mathcal{B}_k(i_1, i_1, i_2) + \mathcal{B}_k(i_1, i_2, i_2) \Big) + \sum_{i_1\neq i_2} \mathcal{B}_k(i_1, i_2, i_1) + \sum_i \mathcal{B}_k(i, i, i).$$
 (17)

At this point, a useful property of the ω matrices can be exploited to simplify both Eq.(16) and Eq.(17):

$$\operatorname{Tr}(\omega_{\sigma(i_1)}\omega_{\sigma(i_2)}\omega_{\sigma(j)}\omega_{\sigma(k)}) \propto \operatorname{Tr}(\omega_j\omega_k) = 0$$
 if $i_1 = i_2$ and $j \neq k$ (18)

for any permutation σ acting on $\{i_1, i_2, j, k\}$. In other words, if two indices are the same and the other two are different, the trace on the ω matrices vanishes.

Putting together Eq.(16), Eq.(17) and Eq.(18), the final formula for $\partial_k \operatorname{Tr} D^4$ reads:

$$\frac{\partial}{\partial M_k} \operatorname{Tr} D^4 = 4 \left[\sum_{\substack{i_1 > i_2 > i_3 \\ i_1, i_2, i_3 \neq k}} [1 + \dagger] \left(\mathcal{B}_k(i_1, i_2, i_3) + \mathcal{B}_k(i_1, i_3, i_2) + \mathcal{B}_k(i_2, i_1, i_3) \right) + \sum_{\substack{i \\ i \neq k}} \left([1 + \dagger] \mathcal{B}_k(i, i, k) + \mathcal{B}_k(i, k, i) \right) + \mathcal{B}_k(k, k, k) \right].$$
(19)

The explicit form of $\mathcal{B}_k(i, i, k)$, $\mathcal{B}_k(i, k, i)$ and $\mathcal{B}_k(k, k, k)$ is given in Appendix A.

1.5 A general formula for every p

The first problem is to write Tr D^p in a useful form, along the lines of Eq.(10). Tr D^p expands to:

$$\operatorname{Tr} D^{p} = \sum_{i_{1} \dots i_{p}} \operatorname{Tr} \omega_{i_{1}} \dots \omega_{i_{p}} \cdot \operatorname{Tr} \left(\left(M_{i_{1}} \otimes I + \epsilon_{i_{1}} I \otimes M_{i_{1}}^{T} \right) \dots \left(M_{i_{p}} \otimes I + \epsilon_{i_{p}} I \otimes M_{i_{p}}^{T} \right) \right)$$
(20)

Ignoring (for now) the trace over the ω matrices, a typical term in the sum is:

$$\operatorname{Tr}\left(\epsilon_B A \otimes B^* + \epsilon_A B \otimes A^*\right) \tag{21}$$

where A and B are related to the product $M_{i_1} \dots M_{i_p}$ in the following way:

1. pick $r \ge 0$ numbers $k_1 < \ldots < k_r$ from $\{1, \ldots, p\}$ and call the remaining p - r numbers $j_1 < \ldots < j_{p-r}$;

2. define
$$A = M_{i_{k_1}} \dots M_{i_{k_r}}$$
 and $B = M_{i_{j_1}} \dots M_{i_{j_{p-r}}}$ (if $r = 0, A = I$);

3. define
$$\epsilon_A = \epsilon_{i_{k_1}} \dots \epsilon_{i_{k_r}}$$
 and $\epsilon_B = \epsilon_{i_{j_1}} \dots \epsilon_{i_{j_{p-r}}} = \epsilon_A \epsilon_{i_1} \dots \epsilon_{i_p}$.

In particular, a choice of A completely characterizes B.

By varying r from 0 to $\left[\frac{p}{2}\right]$ and summing over all possible choices of $k_1 \dots k_r$, every term in Tr D^p is generated.

One can verify that every term in Eq.(10) (p = 4) is of that type. For example:

$$\operatorname{Tr} M_{i_{1}}[\epsilon_{i_{1}} + \epsilon_{i_{2}}\epsilon_{i_{3}}\epsilon_{i_{4}}*] \operatorname{Tr}(M_{i_{2}}M_{i_{3}}M_{i_{4}}) =$$

$$\epsilon_{i_{2}}\epsilon_{i_{3}}\epsilon_{i_{4}} \operatorname{Tr} M_{i_{1}} \operatorname{Tr}(M_{i_{2}}M_{i_{3}}M_{i_{4}})^{*} + \epsilon_{i_{1}} \operatorname{Tr} M_{i_{1}} \operatorname{Tr}(M_{i_{2}}M_{i_{3}}M_{i_{4}}) =$$

$$\epsilon_{i_{2}}\epsilon_{i_{3}}\epsilon_{i_{4}} \operatorname{Tr} M_{i_{1}} \operatorname{Tr}(M_{i_{2}}M_{i_{3}}M_{i_{4}})^{*} + \epsilon_{i_{1}} \operatorname{Tr}(M_{i_{1}})^{*} \operatorname{Tr}(M_{i_{2}}M_{i_{3}}M_{i_{4}}) =$$

$$\operatorname{Tr} \left(\epsilon_{i_{2}}\epsilon_{i_{3}}\epsilon_{i_{4}}M_{i_{1}} \otimes (M_{i_{2}}M_{i_{3}}M_{i_{4}})^{*} + \epsilon_{i_{1}}M_{i_{2}}M_{i_{3}}M_{i_{4}} \otimes M_{i_{1}}^{*}\right) \tag{22}$$

which is of the form of Eq.(21) upon identifying M_{i_1} with A and $M_{i_2}M_{i_3}M_{i_4}$ with B (in the second equality the reality of Tr M_{i_1} has been used).

A way of expressing $\operatorname{Tr} B$ given A is using a modified derivative operator D_i defined as:

$$D_i \equiv \text{Tr } \circ \frac{\partial}{\partial M_i} \tag{23}$$

which allows to write:

$$A = M_{i_{k_1}} \dots M_{i_{k_r}} \implies \operatorname{Tr} B = D_{i_{k_r}} \dots D_{i_{k_1}} \operatorname{Tr} (M_{i_1} \dots M_{i_p}). \tag{24}$$

Therefore Eq.(21) becomes:

$$\epsilon_{A}[1+\epsilon_{i_{1}}\ldots\epsilon_{i_{p}}*](\operatorname{Tr}A)^{*}\operatorname{Tr}B =$$

$$\epsilon_{i_{k_{1}}}\ldots\epsilon_{i_{k_{r}}}[1+\epsilon_{i_{1}}\ldots\epsilon_{i_{p}}*](\operatorname{Tr}M_{i_{k_{1}}}\ldots M_{i_{k_{r}}})^{*}(D_{i_{k_{r}}}\ldots D_{i_{k_{1}}}\operatorname{Tr}(M_{i_{1}}\ldots M_{i_{p}})).$$
(25)

There are some special cases that make the expression simpler, namely:

- 1. r = 0 gives a factor Tr I = n;
- 2. r = 1, 2 make Tr A real;
- 3. p-r=1,2 (which can only occur for p=2,4) make Tr B real.

Putting everything together, $\operatorname{Tr} D^p$ can be written as:

$$\operatorname{Tr} D^{p} = \sum_{i_{1} \dots i_{p}} \operatorname{Tr} \omega_{i_{1}} \dots \omega_{i_{p}} \left[\sum_{r=0}^{\left[\frac{p}{2}\right]} \sum_{k_{1} < \dots < k_{r}=1}^{p} \epsilon_{i_{k_{1}}} \dots \epsilon_{i_{k_{r}}} [1 + \epsilon_{i_{1}} \dots \epsilon_{i_{p}} *] \right]$$

$$\left(\operatorname{Tr} M_{i_{k_{1}}} \dots M_{i_{k_{r}}}\right)^{*} \left(\operatorname{D}_{i_{k_{r}}} \dots \operatorname{D}_{i_{k_{1}}} \operatorname{Tr} (M_{i_{1}} \dots M_{i_{p}})\right) \right].$$

$$(26)$$

where:

$$r = 0 \longrightarrow n[1 + \epsilon_{i_1} \dots \epsilon_{i_p} *] \operatorname{Tr}(M_{i_1} \dots M_{i_p})$$
 (27)

$$r = 1 \longrightarrow \sum_{k_1=1}^p \epsilon_{i_{k_1}} \operatorname{Tr}(M_{i_{k_1}})[1 + \epsilon_{i_1} \dots \epsilon_{i_p} *] \operatorname{D}_{i_{k_1}} \operatorname{Tr}(M_{i_1} \dots M_{i_p})$$
 (28)

$$r = 2 \longrightarrow \sum_{k_1 < k_2 = 1}^{p} \epsilon_{i_{k_1}} \epsilon_{i_{k_2}} \operatorname{Tr}(M_{i_{k_1}} M_{i_{k_2}}) [1 + \epsilon_{i_1} \dots \epsilon_{i_p} *] D_{i_{k_2}} D_{i_{k_1}} \operatorname{Tr}(M_{i_1} \dots M_{i_p}).$$
(29)

1.6 Appendix A

The explicit form of $\mathcal{B}_k(i, i, k)$, $\mathcal{B}_k(i, k, i)$ and $\mathcal{B}_k(k, k, k)$ is given.

$$\mathcal{B}_{k}(i,i,k) = \operatorname{Tr}(\omega_{k}\omega_{i}\omega_{k})A(k,i,i,k)^{T} = CA(k,i,i,k)^{T}$$

$$\mathcal{B}_{k}(i,k,i) = \operatorname{Tr}(\omega_{k}\omega_{i}\omega_{k}\omega_{i})A(k,i,k,i)^{T}$$

$$\mathcal{B}_{k}(k,k,k) = \operatorname{Tr}(\omega_{k}\omega_{k}\omega_{k}\omega_{k})A(k,k,k,k)^{T} = CA(k,k,k,k)^{T}$$

$$(30)$$

where C is the dimension of the Clifford module and the A matrices are:

$$A(k, i, i, k) = n[1 + \epsilon \dagger] M_i^2 M_k +$$

$$\epsilon_k I[1 + \epsilon] \operatorname{Tr} M_i^2 M_k +$$

$$2\epsilon_i \operatorname{Tr} M_i [1 + \epsilon \dagger] M_i M_k +$$

$$2\epsilon_k \epsilon_i M_i [1 + \epsilon] \operatorname{Tr} M_i M_k +$$

$$\epsilon_k \operatorname{Tr} M_k [1 + \epsilon] M_i^2 +$$

$$M_k [1 + \epsilon] \operatorname{Tr} M_i^2$$
(31)

$$A(k, i, k, i) = n[1 + \epsilon] M_i M_k M_i +$$

$$\epsilon_k I[1 + \epsilon] \operatorname{Tr} M_i^2 M_k +$$

$$\epsilon_i \operatorname{Tr} M_i [1 + \epsilon] [1 + \dagger] M_i M_k +$$

$$2\epsilon_k \epsilon_i M_i [1 + \epsilon] \operatorname{Tr} M_i M_k +$$

$$\epsilon_k \operatorname{Tr} M_k [1 + \epsilon] M_i^2 +$$

$$M_k [1 + \epsilon] \operatorname{Tr} M_i^2$$
(32)

$$A(k, k, k, k) = 2nM_k^3 + 2\epsilon_k I \operatorname{Tr} M_k^3 + 6M_k \operatorname{Tr} M_k^2 + 6\epsilon_k M_k^2 \operatorname{Tr} M_k.$$
(33)