Ampliación de teoría de la probabilidad

16 de enero de 2023

Índice general

1.			2	
	1.1.	Introducción	2	
	1.2.	Propiedades	2	
		Convolución en funciones de distribución		
	1.4.	Convergencia en distribución	1	
2.	Función característica 20			
	2.1.	Propiedades	1	
	2.2.	Teorema de inversión	2	
	2.3.	Teorema de continuidad	4	
	2.4.	Momentos	5	
	2.5.	Reconocimiento de funciones características	0	
3.	Con	vergencia 3	3	
	3.1.	Tipos de convergencia	5	
		Leyes de los grandes números		
		Teorema central del límite		

Capítulo 1

Función de distribución

1.1. Introducción

Sea (Ω, \mathcal{A}, P) espacio de probabilidad, donde $\mathcal{A} \subset P(\Omega)$ es una σ -álgebra y $P: \mathcal{A} \to [0, 1]$ es una medida de probabilidad.

Una variable aleatoria es una función $X:\Omega \to \mathbb{R}$ tal que

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}$$

para todo $B \in \mathcal{B}$ σ -álgebra de Borel. X induce una medida en $(\mathbb{R}, \mathcal{B})$:

$$P_X: \mathcal{B} \to [0,1], \quad P_X(B) = P(X^{-1}(B))$$

Definición 1.1. Sea (Ω, \mathcal{A}, P) espacio de probabilidad. Sean $X : \Omega \to \mathbb{R}$ una variable aleatoria en (Ω, \mathcal{A}, P) y P_X la medida de probabilidad inducida por X en $(\mathbb{R}, \mathcal{B})$. La función de distribución asociada a X es:

$$F: \mathbb{R} \to [0, 1], \quad F(a) = P_X((-\infty, a]) = P(X \le a)$$

Nota. Variables aleatorias distintas pueden tener la misma función de distribución.

1.2. Propiedades

Sea F la función de distribución asociada a una variable aleatoria X. Entonces:

- \blacksquare F es creciente.

 \blacksquare F es continua por la derecha:

$$\lim_{h \to 0^+} F(x+h) = F(x), \quad \forall x \in \mathbb{R}$$

• Existe $\lim_{h \to 0^-} F(x+h) = F(x^-) = F(x) - P_X(\{x\})$

Teorema 1.1 (Teorema de correspondencia). Si $F : \mathbb{R} \to [0,1]$ es una función que verifica:

- F es creciente.
- $F(-\infty) = 0, \quad F(\infty) = 1$
- F es continua por la derecha.

Entonces existe una única medida de probabilidad P_F en $(\mathbb{R}, \mathcal{B})$ tal que F es su función de distribución. Es decir, tal que $F(a) = P_F((-\infty, a])$.

Definición 1.2. Sea F función de distribución. El conjunto de continuidad de F se define como:

$$C(F) = \{x \in \mathbb{R} : F(x) = F(x^{-})\}\$$

También se puede definir el conjunto de puntos de discontinuidad de F como:

$$D(F) = \{x \in \mathbb{R} : F(x) - F(x^{-}) > 0\}$$

Observación. $D(F) = \bar{C(F)}$.

Proposición 1.2. D(F) es a lo sumo numerable.

Corolario 1.3. C(F) es denso en \mathbb{R} .

Proposición 1.4. Sean F y G funciones de distribución tales que F(x) = G(x) para todo $x \in E \subset \mathbb{R}$, con E denso en \mathbb{R} . Entonces F(x) = G(x) para todo $x \in \mathbb{R}$.

Definición 1.3. La función de masa de probabilidad se define como:

$$p: \mathbb{R} \to [0,1], \quad p(x) = P_F(\{x\}) = F(x) - F(x^-)$$

Definición 1.4. Sea X variable aleatoria con función de distribución F y función de masa p. Entonces:

- X es discreta cuando $\sum_{x \in D(F)} p(x) = 1$.
- X es continua cuando p(x) = 0 para todo $x \in \mathbb{R}$.

En otro caso, X es mixta.

Definición 1.5. Sea $X: \Omega \to \mathbb{R}$ variable aleatoria. X es singular si existe $B \in \mathcal{B}$ con m(B) = 0 tal que $P_X(B) = 1$.

Observación. Las variables aleatorias discretas son singulares.

Definición 1.6. Sea X variable aleatoria. X es absolutamente continua si para cualquier $B \in \mathcal{B}$ con m(B) = 0 se tiene que $P_X(B) = 0$.

Teorema 1.5. Sea F función de distribución. F es absolutamente continua si y solo si existe una función medible f no negativa y finita tal que

$$F(b) - F(a) = \int_{a}^{b} f(x)dx, \quad \forall a < b$$

La función f se llama función de densidad.

Observaci'on. F es continua cuando no hay saltos y absolutamente continua cuando tiene una densidad.

Teorema 1.6 (Mixtura de distribuciones). *Toda función de distribución F se puede descomponer de la forma:*

$$F = \alpha F_d + (1 - \alpha)F_c, \quad 0 \le \alpha \le 1$$

donde F_d es la función de distribución de una variable aleatoria discreta y F_c de una continua.

Ejemplo. Consideramos la función de distribución:

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{x^2}{16} & \text{si } 0 \le x < 2\\ \frac{1}{4} & \text{si } 2 \le x < 4\\ \frac{x}{4} - \frac{5}{8} & \text{si } 4 \le x < 5\\ 1 - \frac{5}{4x} & \text{si } x \ge 5 \end{cases}$$

Estudiamos sus puntos de discontinuidad y la probabilidad en ellos.

$$D(F) = \{4, 5\}, \quad \begin{cases} p(4) = F(4) - F(4^{-}) = \frac{1}{8} \\ p(5) = F(5) - F(5^{-}) = \frac{1}{8} \end{cases} \Rightarrow \alpha = \frac{1}{4}$$

Luego la función de distribución discreta es:

$$F_d(x) = \begin{cases} 0 & \text{si } x < 4\\ \frac{\frac{1}{8}}{4} & \text{si } 4 \le x < 5 = \begin{cases} 0 & \text{si } x < 4\\ \frac{1}{2} & \text{si } 4 \le x < 5\\ 1 & \text{si } x \ge 5 \end{cases}$$

Por último podemos calcular la función de distribución continua:

$$F_c(x) = \frac{1}{1 - \frac{1}{4}} \left(F(x) - \frac{1}{4} F_d(x) \right) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{x^2}{12} & \text{si } 0 \le x < 2 \\ \frac{1}{3} & \text{si } 2 \le x < 4 \\ \frac{5x}{24} - \frac{1}{6} & \text{si } 4 \le x < 5 \\ 1 - \frac{5}{3x} & \text{si } x \ge 5 \end{cases}$$

Lema 1.7. Sea F función de distribución. Entonces:

- Existe F' en casi todo punto y es no negativa y finita.
- Siendo $F_{ac}(x) = \int_{-\infty}^{x} F'(t)dt \ y \ F_s(x) = F(x) F_{ac}(x)$, entonces $F'_{ac}(x) = F'(x)$ en casi todo punto $y \ F'_s(x) = 0$.

Teorema 1.8 (Descomposición de Lebesgue). Toda función de distribución F se puede descomponer de la forma:

$$F = \beta F_{ac} + (1 - \beta) F_s$$

con F_{ac} función de distribución absolutamente continua y F_s singular.

Observación. Se pueden aplicar ambas descomposiciones (continua-discreta y Lebesgue) a una función de distribución F.

$$F = \beta F_{ac} + (1 - \beta) \left(\alpha F_d + (1 - \alpha) F_{cs} \right)$$

Definición 1.7 (Esperanza). Sea X variable aleatoria en (Ω, \mathcal{A}, P) . La esperanza de X se define como:

$$E(X) = \int_{\Omega} X dP = \int_{\mathbb{R}} x dF(x)$$

Observación.

 \blacksquare Si F es absolutamente continua,

$$E(X) = \int_{\mathbb{R}} x f(x) dx$$

 \blacksquare Si F es discreta,

$$E(X) = \sum_{x \in D(F)} x p(x)$$

1.3. Convolución en funciones de distribución

Definición 1.8. Sean F y G funciones de distribución. Definimos la convolución de F y G como la función definida por:

$$(F*G)(z) = \int_{\mathbb{R}} F(z-y)dG(y), \quad z \in \mathbb{R}$$

Nota. La convolución es conmutativa con funciones medibles no negativas.

Proposición 1.9. F * G es una función de distribución.

Teorema 1.10. Sean X e Y variables aleatorias independientes con funciones de distribución F_X y F_Y respectivamente. Entonces $F_X * F_Y$ es la función de distribución de la variable aleatoria X + Y.

Teorema 1.11. Si F es absolutamente continua con densidad f, entonces F*G es absolutamente continua con densidad

$$(f * G)(z) = \int_{-\infty}^{\infty} f(z - y) dG(y)$$

Teorema 1.12. Si F y G son absolutamente continuas con densidades f y g respectivamente, entonces F * G es absolutamente continua con densidad f * g.

Ejemplo. Sean $X, Y \sim U([0,1])$. Sus funciones de distribución son:

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } 0 \le x < 1 , \quad F_Y(y) = \begin{cases} 0 & \text{si } y < 0 \\ y & \text{si } 0 \le y < 1 \\ 1 & \text{si } y \ge 1 \end{cases}$$

Sea Z=X+Y y $z\in\mathbb{R}.$ Como X e Y son absolutamente continuas, Z es absolutamente continua. Queremos calcular:

$$F_Z(z) = (F_X * F_Y)(z) = \int_{\mathbb{R}} F_X(z - y) dF_y(y) = \int_{\mathbb{R}} F_X(z - y) f_Y(y) dy$$

Consideramos todos los casos:

- Si z < 0 entonces z y < 0 para todo $y \in [0,1]$. Luego $F_X(z y) = 0$, así que $F_Z(z) = 0$.
- Si $0 \le z < 1$ distinguimos dos casos:
 - Si $0 \le y < z$ entonces 0 < z y < 1, así que $F_X(z y) = z y$.
 - Si $z \le y < 1$ entonces z y < 0, luego $F_X(z y) = 0$.

$$F_Z(z) = \int_0^z (z - y)dy + \int_z^1 0dy = \frac{z^2}{2}$$

- Si $1 \le z < 2$ de nuevo distinguimos dos casos:
 - Si $0 \le y < z 1$ entonces $z y \ge 1$, luego $F_X(z y) = 1$.
 - Si $z-1 \le y < 1$ entonces $0 \le z-1 < 1$, así que $F_X(z-y) = z-y$.

$$F_Z(z) = \int_0^{z-1} 1 dy + \int_{z-1}^1 (z - y) dy = 2z - \frac{z^2}{2} - 1$$

■ Si $z \ge 2$ entonces $z - y \ge 1$ para todo $y \in [0, 1]$. Luego $F_X(z - y) = 1$, de forma que $F_Z(z) = \int_0^1 1 dx = 1$.

Por tanto:

$$F_Z(z) = \begin{cases} 0 & \text{si } z < 0\\ \frac{z^2}{2} & \text{si } 0 \le z < 1\\ 2z - \frac{z^2}{2} - 1 & \text{si } 1 < z \le 2\\ 1 & \text{si } x \ge 2 \end{cases}$$

Ejemplo. Sea $X \sim U([-1,1])$ y sea Y absolutamente continua con densidad:

$$f_Y(y) = \begin{cases} \frac{y+2}{4} & \text{si } -2 \le y < 0\\ \frac{2-y}{4} & \text{si } 0 \le y < 2\\ 0 & \text{en el resto} \end{cases}$$

Sabemos que X es absolutamente continua con función de densidad:

$$f_X(x) = \begin{cases} \frac{1}{2} & \text{si } -1 \le x \le 1\\ 0 & \text{en el resto} \end{cases}$$

Sea Z=X+Y. Como X e Y son absolutamente continuas, Z es absolutamente continua con función de densidad f*g.

$$(f_X * f_Y)(z) = (f_Y * f_X)(z) = \int_{-\infty}^{\infty} f_Y(z - x) f_X(x) dx$$

Sabemos que $S_X = [-1, 1]$ y $S_Y = [-2, 2]$, así que $S_Z = [-3, 3]$. Consideramos los casos:

- Si z < -3 entonces z x < 2 para todo $x \in [-1, 1]$. Luego $f_Y(z x) = 0$, así que $f_Z(z) = 0$.
- Si $-3 \le z < -1$ distinguimos dos casos:
 - Si $-1 \le x < z+2$ entonces $-2 \le z-x < 0$, así que $f_Y(z-x) = \frac{z-x+2}{4}$.
 - Si $z + 2 \le x < 1$ entonces z x < -2, luego $f_Z(z) = 0$.

$$f_Z(z) = \int_{-1}^{z+2} \frac{z-x+2}{4} \frac{1}{2} dx = \frac{(z+3)^2}{16}$$

- Si $-1 \le z \le 1$ distinguimos dos casos:
 - Si $-1 \le x < z$ entonces $0 \le z x < 2$, así que $f_Y(z x) = \frac{2 z + x}{4}$.
 - Si $z \le x < 1$ entonces $-2 \le z x < 0$, luego $f_Y(z x) = \frac{z x + 2}{4}$.

$$f_Z = \int_{-1}^{z} \frac{2-z+x}{4} \frac{1}{2} dx + \int_{z}^{1} \frac{z-x+2}{4} \frac{1}{2} dx = \frac{3-z^2}{8}$$

- Si $1 \le z \le 3$ distinguimos dos casos:
 - Si $-1 \le x < z 2$ entonces $z x \ge 2$, luego $f_Z(z) = 0$.

• Si $z-2 \le x < 1$ entonces $0 \le z-x < 2$, así que $f_Y(z-x) = \frac{2-z+x}{4}$.

$$f_Z(z) = \int_{z-2}^1 \frac{2-z+x}{4} \frac{1}{2} dx = \frac{(z-3)^2}{16}$$

• Si $z \geq 3$ entonces $z - x \geq 2$ para todo $x \in [-1, 1]$, así que $f_Z(z) = 0$.

Por tanto:

$$f_Z(z) = \begin{cases} \frac{(z+3)^2}{16} & \text{si } -3 \le z < -1\\ \frac{3-z^2}{8} & \text{si } -1 \le z < 1\\ \frac{(z-3)^2}{16} & \text{si } 1 \le z < 3\\ 0 & \text{en el resto} \end{cases}$$

Ejemplo. Sean X, Y variables aleatorias con funciones de distribución:

$$F_X(x) = \begin{cases} 0 & \text{si } x < -2\\ \frac{x+2}{4} & \text{si } -2 \le x < 1 \ , \quad F_Y(y) = \begin{cases} 0 & \text{si } y < 0\\ \frac{y}{2} & \text{si } 0 \le y < 2\\ 1 & \text{si } y \ge 2 \end{cases}$$

Observamos que Y es absolutamente continua y X es mixta, así que Z=X+Y es absolutamente continua. Queremos calcular la función de densidad de Z. Como F_X es discontinua en 1,

$$f_Z(z) = \int_{-\infty}^{\infty} f_Y(z - x) dF_x(x) = \int_{-2}^{1} f_Y(z - x) f_X(x) dx + f_Y(z - 1) p_x(1)$$

Nota. Para no lidiar con discontinuidades, también se podría calcular:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y) dF_y(y) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

Calculamos las funciones de densidad, pseudodensidad y masa:

$$f_Y(y) = \begin{cases} \frac{1}{2} & \text{si } 0 \le y \le 2\\ 0 & \text{en el resto} \end{cases}$$

$$f_X(x) = \begin{cases} \frac{1}{4} & \text{si } -2 \le x < 1\\ 0 & \text{en el resto} \end{cases}, \quad p_X(x) = \begin{cases} \frac{1}{4} & \text{si } x = 1\\ 0 & \text{en el resto} \end{cases}$$

 $S_X = [-2, 1]$ y $S_Y = [0, 2]$, así que $S_Z = [-2, 3]$. Consideramos los casos:

- Si z < -2 entonces z x < 0 para todo $x \in [-2, 1]$. Luego $f_Y(z x) = 0$, así que $f_Z(z) = 0$.
- Si $-2 \le z < 0$ entonces $0 \le z x \le 2$, así que $f_Y(z x) = \frac{1}{2}$ y $f_X(x) = \frac{1}{4}$.

$$f_Z(z) = \int_{-2}^{z} \frac{1}{2} \frac{1}{4} dx = \frac{z+2}{8}$$

- Si $0 \le z \le 1$, $f_Y(z-1) = 0$. Distinguimos tres casos:
 - Si $-2 \le x < z 2$ entonces z x > 2. Luego $f_Y(z x) = 0$, así que $f_Z(z) = 0$.
 - Si $z-2 \le x < z$ entonces $0 \le z-x < 2$. Así que $f_Y(z-x) = \frac{1}{2}$ y $f_X(x) = \frac{1}{4}$.
 - Si $z \le x \le 1$ entonces $z x \le 0$. Luego $f_Y(z x) = 0$, así que $f_Z(z) = 0$.

$$f_Z(z) = \int_{-2}^{z-2} 0 dx + \int_{z-2}^{z} \frac{1}{2} \frac{1}{4} dx + \int_{z}^{1} 0 dx + 0 p_x(1) = \frac{1}{4}$$

- Si $1 < z \le 3$, $f_Y(z-1) = \frac{1}{2}$ y $p_X(1) = \frac{1}{4}$. Distinguimos dos casos:
 - Si $-2 \le x < z 2$ entonces $z x \ge 2$, así que $f_Y(z x) = 0$.
 - Si $z-2 \le x < 1$ entonces $0 \le z-x < 2$, luego $f_Y(z-x) = \frac{1}{2}$ y $f_X(x) = \frac{1}{4}$.

$$f_Z(z) = \int_{z-2}^1 \frac{1}{2} \frac{1}{4} dx + \frac{1}{2} \frac{1}{4} = \frac{4-z}{8}$$

• Si $z \ge 3$ entonces $f_Y(z-x) = 0$, así que $f_Z(z) = 0$.

Por tanto:

$$f_Z(z) = \begin{cases} \frac{z+2}{8} & \text{si } -2 \le z < 0\\ \frac{1}{4} & \text{si } 0 \le z \le 1\\ \frac{4-z}{8} & \text{si } 1 < z \le 3\\ 0 & \text{en el resto} \end{cases}$$

Ejercicio. Sean X y Y variables aleatorias con funciones de distribución:

$$F_X(x) = \begin{cases} 0 & \text{si } x < -1\\ \frac{x+1}{3} & \text{si } -1 \le x < 1 \ , \end{cases} \quad F_Y(y) = \begin{cases} 0 & \text{si } y < 0\\ \frac{2y}{7} & \text{si } 0 \le y < 2\\ \frac{5}{7} & \text{si } 2 \le y < 4\\ 1 & \text{si } y \ge 4 \end{cases}$$

Observamos que X es una variable aleatoria mixta con funciones de pseudodensidad y de masa:

$$f_X(x) = \begin{cases} \frac{1}{3} & \text{si } -1 \le x < 1\\ 0 & \text{en el resto} \end{cases}, \quad p_X(x) = \begin{cases} \frac{1}{3} & \text{si } x = 1\\ 0 & \text{en el resto} \end{cases}$$

Y también es mixta con pseudodensidad y masa:

$$f_Y(y) = \begin{cases} \frac{2}{7} & \text{si } 0 \le y < 2\\ 0 & \text{en el resto} \end{cases}, \quad p_Y(y) = \begin{cases} \frac{1}{7} & \text{si } y = 2\\ \frac{2}{7} & \text{si } y = 4\\ 0 & \text{en el resto} \end{cases}$$

Sea Z = X + Y, queremos calcular F_Z . Observamos que $S_X = [-1,1) \cup \{1\} = [-1,1]$ y $S_Y = [0,2) \cup \{2\} \cup \{4\} = [0,2] \cup \{4\}$. Por tanto, $S_Z = [-1,5]$. Calculamos:

$$F_Z(z) = \int_{-\infty}^{\infty} F_Y(z - x) dF_X(x) = \int_{-1}^{1} F_Y(z - x) f_X(x) dx + F_Y(z - 1) p_X(1)$$

Consideramos los casos:

- Si z < -1, $F_Z(z) = 0$.
- Si $-1 \le z < 1$, consideramos tres casos:
 - Si $-1 \le x < z$ entonces $0 \le z x < 2$, luego $F_Y(z x) = \frac{2(z x)}{7}$.
 - Si $z \le x < 1$ entonces z x < 0, así que $F_Z(z) = 0$.
 - Si x = 1 entonces z 1 < 0, luego $F_Z(z) = 0$.

$$F_Z(z) = \int_{-1}^{z} \frac{2(z-x)}{7} \frac{1}{3} dx = \frac{(z+1)^2}{21}$$

- Si $1 \le z < 3$, consideramos tres casos:
 - Si $-1 \le x < z 2$ entonces $2 \le z x < 4$, así que $F_Y(z x) = \frac{5}{7}$.
 - Si $z-2 \le x < 1$ entonces $0 \le z-x < 2$, luego $F_Y(z-x) = \frac{2(z-x)}{7}$.
 - Si x=1 entonces $0 \le z-1 < 2$, así que $F_Y(z-1) = \frac{2(z-1)}{z}$.

$$F_Z(z) = \int_{-1}^{z-2} \frac{5}{7} \frac{1}{3} dx + \int_{z-2}^{1} \frac{2(z-x)}{7} \frac{1}{3} + \frac{2(z-1)}{7} \frac{1}{3} = \frac{-z^2 + 9z - 4}{21}$$

- Si $3 \le z < 5$, consideramos tres casos:
 - Si $-1 \le x < z 4$ entonces $z x \ge 4$, luego $F_Y(z x) = 1$.
 - Si $z-4 \le x < 1$ entonces $2 \le z-x < 4$, así que $F_Y(z-x) = \frac{5}{7}$.
 - Si x=1 entonces $2 \le z-1 < 4$, luego $F_Y(z-x) = \frac{5}{7}$.

$$F_Z(z) = \int_{-1}^{z-4} 1\frac{1}{3}dx + \int_{z-4}^{1} \frac{5}{7}\frac{1}{3}dx + \frac{5}{7}\frac{1}{3} = \frac{2z+9}{21}$$

• Si $z \ge 5$, $F_Z(z) = 1$.

Por tanto:

$$F_Z(z) = \begin{cases} 0 & \text{si } z < -1\\ \frac{(z+1)^2}{21} & \text{si } -1 \le z < 1\\ \frac{-z^2 + 9z - 4}{21} & \text{si } 1 \le z < 3\\ \frac{2z + 9}{21} & \text{si } 3 \le z < 5\\ 1 & \text{si } z \ge 5 \end{cases}$$

1.4. Convergencia en distribución

Sea $n \in \mathbb{N}$ y sea X_n una variable aleatoria en $(\Omega_n, \mathcal{A}_n, P_n)$. $\{X_n\}_n$ tiene una sucesión asociada $\{F_n\}_n$ de funciones de distribución.

Definición 1.9. Sean F y F_n funciones de distribución. Decimos que la sucesión $\{F_n\}_n$ converge a F débilmente cuando

$$\lim_{n \to \infty} F_n(x) = F(x), \quad \forall x \in C(F)$$

Se escribe $F_n \xrightarrow{d} F$.

Ejemplo. Sea $X_n \sim \delta(\frac{1}{n})$, es decir, $P(X_n = \frac{1}{n}) = 1$. Su función de distribución es:

$$F_n(x) = \begin{cases} 0 & \text{si } x < \frac{1}{n} \\ 1 & \text{si } x \ge \frac{1}{n} \end{cases}$$

Calculamos el límite puntual de la sucesión:

$$F(x) = \lim_{n \to \infty} F_n(x) = \begin{cases} 0 & \text{si } x \le 0\\ 1 & \text{si } x > 0 \end{cases}$$

Aunque $\{F_n\}_n$ converge puntualmente a F, observamos que F no es continua por la derecha. Así que F no es función de distribución y no puede ser el límite débil de la sucesión. Definimos:

$$G(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

Ges función de distribución y además $\lim_{n\to\infty}F_n(x)=G(x)$ para todo $x\in C(G)=$

 $\mathbb{R}\setminus\{0\}$, luego $F_n\stackrel{d}{\to}G$. Es función de distribución de una variable aleatoria $\delta(0)$.

Ejemplo. Sea $Y_n \sim \delta(-\frac{1}{n})$. Procedemos de forma análoga al ejemplo anterior. Su función de distribución es:

$$F_{Y_n}(y) = \begin{cases} 0 & \text{si } x < -\frac{1}{n} \\ 1 & \text{si } x \ge -\frac{1}{n} \end{cases}$$

y su límite puntual es:

$$F_Y(y) = \lim_{n \to \infty} F_{Y_n}(y) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

En este caso el límite puntual F_Y sí es función de distribución, así que el límite puntual coincide con el límite débil.

$$F_{Y_n} \xrightarrow{d} F_Y$$

Teorema 1.13. El límite débil de una sucesión de funciones de distribución es único en caso de existir.

Ejemplo. Sea $X_n \sim U([-\frac{1}{n}, \frac{1}{n}])$. Su función de distribución es:

$$F_n(x) = \begin{cases} 0 & \text{si } x < -\frac{1}{n} \\ \frac{nx+1}{2} & \text{si } -\frac{1}{n} \le x < \frac{1}{n} \\ 1 & \text{si } x \ge \frac{1}{n} \end{cases}$$

El límite puntual es:

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{2} & \text{si } x = 0 \\ 1 & \text{si } x > 0 \end{cases}$$

F no es función de distribución porque no es continua por la derecha en x=0. Definimos entonces:

$$G(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

Ges función de distribución y $\lim_{n\to\infty}F_n(x)=G(x)$ para todo $x\in C(G),$ así que $F_n\stackrel{d}{\to} G.$

Ejemplo. Consideramos la sucesión de funciones de distribución $\{F_n\}_n$, con

$$F_n(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{1}{2} + \frac{x}{2n} & \text{si } 0 \le x < n\\ 1 & \text{si } x \ge n \end{cases}$$

Su límite puntual es:

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{1}{2} & \text{si } x \ge 0 \end{cases}$$

Podemos descomponer F_n como mixtura de distribuciones de la forma $F_n=\alpha F_n^d+(1-\alpha)F_n^c$. Calculamos el valor de α :

$$\alpha = \sum_{x \in D(F_n)} p(x) = p(0) = \frac{1}{2}$$

Por tanto, las funciones de distribución son:

$$F_n^d(x) = \frac{1}{\alpha} \sum_{t \le x, t \in D(F_n)} p(t) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases} \xrightarrow{n \to \infty} F^d(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

$$F_n^c(x) = \frac{1}{1 - \alpha} (F_n(x) - \alpha F_n^d(x)) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{x}{n} & \text{si } 0 \le x < n \xrightarrow[n \to \infty]{} F^c(x) = 0 \\ 1 & \text{si } x \ge n \end{cases}$$

Observamos que $F = \alpha F^d + (1 - \alpha)F^c$.

Definición 1.10. La sucesión de variables aleatorias $\{X_n\}_n$ converge en distribución a otra variable aleatoria X cuando $F_n \stackrel{d}{\to} F$, siendo F_n y F las funciones de distribución asociadas a X_n y X, respectivamente. Se escribe $X_n \stackrel{d}{\to} X$.

Ejercicio. Sea (Ω, \mathcal{A}, P) espacio de probabilidad, donde:

$$\Omega = [0, 3], \quad \mathcal{A} = \{B \cap [0, 3] : B \in \mathcal{B}\}$$

$$P: \mathcal{A} \to [0, 1], \quad P(A) = \begin{cases} \frac{1}{6} & \text{si } A = \{0\} \\ 0 & \text{si } A \subset (0, 1) \\ \frac{m(A)}{6} & \text{si } A \subset [1, 3) \\ \frac{1}{2} & \text{si } A = \{3\} \end{cases}$$

Sobre este espacio definimos para $n \in \mathbb{N}$ las variables aleatorias:

$$X_n: \Omega \to \mathbb{R}, \quad X_n(\omega) = \begin{cases} \frac{\omega - 1}{n\omega + 1} & \text{si } 0 \le \omega < 1 - \frac{1}{n} \\ 2 & \text{si } 1 - \frac{1}{n} \le \omega < 3 - \frac{1}{n} \\ n(\omega - 3) & \text{si } 3 - \frac{1}{n} \le \omega \le 3 \end{cases}$$

 $\{X_n\}_n$ es una sucesión de variables aleatorias.

1. Determinar los puntos de discontinuidad y sus masas. Sabemos que x es punto de discontinuidad de F_n si $F_n(x) - F_n(x^-) > 0$, es decir, $P_{X_n}(\{x\}) > 0$. En primer lugar estudiamos las imágenes por X_n de los puntos con masa en la definición de P. En este caso, estos puntos son 0 y 3, con imágenes $X_n(0) = -1$ y $X_n(3) = 0$.

$$P_{X_n}(-1) = P(X_n^{-1}(-1)) = P(\{0\} \cup \{3 - \frac{1}{n}\}) = \frac{1}{6}$$
$$P_{X_n}(0) = P(X_n^{-1}(0)) = P(\{3\}) = \frac{1}{2}$$

Además, estudiamos los puntos cuya imagen inversa es un intervalo, es decir, donde X_n es constante.

$$P_{X_n}(2) = P([1 - \frac{1}{n}, 3 - \frac{1}{n})) = P([1, 3 - \frac{1}{n})) = \frac{2n - 1}{6n}$$

Así que $D = \{-1, 0, 2\}.$

2. Calcular la función de distribución F_n asociada a X_n . Recordamos que la función de distribución F_n asociada a una variable aleatoria X_n se define como:

$$F_n(x) = P(X_n \le x) = P(\{\omega \in \Omega : X(\omega) \le x\})$$

Distringuimos varios casos:

• Si
$$x < -1$$
, $F_n(x) = P(\emptyset) = 0$.

 \bullet Si $-1 \le x < -\frac{1}{n^2}$,

$$F_n(x) = P(X_n \le x) = P([0, \alpha] \cup [3 - \frac{1}{n}, \beta])$$

donde:

$$X_n(\alpha) = x \Leftrightarrow \frac{\alpha - 1}{n\alpha + 1} = x \Leftrightarrow \alpha = \frac{x + 1}{1 - nx}$$
$$X_n(\beta) = x \Leftrightarrow n(\beta - 3) = x \Leftrightarrow \beta = \frac{x + 3n}{n}$$

Así que

$$F_n(x) = P([0, \frac{x+1}{1-nx}] \cup [3-\frac{1}{n}, \frac{x+3n}{n}]) = \frac{x+1+n}{6}$$

■ Si $-\frac{1}{n^2} \le x < 0$,

$$F_n(x) = P(\{0\}) + P([0, 1 - \frac{1}{n})) + P([3 - \frac{1}{n}, \frac{x+3n}{n}]) = \frac{x+1+n}{6}$$

• Si 0 < x < 2,

$$F_n(x) = P({0}) + P([0, 1 - \frac{1}{n})) + P([3 - \frac{1}{n}, 3)) + P({3}) = \frac{4n + 1}{6n}$$

• Si $X \ge 2$, $F_n(x) = 1$.

Por tanto,

$$F_n(x) = \begin{cases} 0 & \text{si } x < -1\\ \frac{x+1+n}{6} & \text{si } -1 \le x < 0\\ \frac{4n+1}{6n} & \text{si } 0 \le x < 2\\ 1 & \text{si } x \ge 2 \end{cases}$$

3. Analizar la convergencia en distribución de $\{X_n\}$ Sabemos que $X_n \xrightarrow{d} X$ cuando $F_n \xrightarrow{d} F$. Tomamos el límite puntual en $\{F_n\}$.

$$F(x) = \lim_{n \to \infty} F_n(x) = \begin{cases} 0 & \text{si } x < -1\\ \frac{1}{6} & \text{si } -1 \le x < 0\\ \frac{2}{3} & \text{si } 0 \le x < 2\\ 1 & \text{si } x \ge 2 \end{cases}$$

Fes continua por la derecha y $D(F)=\{-1,0,2\}$ con $p_X(-1)=\frac{1}{6},$ $p_X(0)=\frac{1}{2}$ y $p_X(2)=\frac{1}{3}.$ Observamos que estas masas coinciden con los límites cuando $n\to\infty$ de las masas de los puntos de discontinuidad de $X_n.$ Por tanto, $F_n\stackrel{d}{\to} F.$

Lema 1.14. Sean F_n y F funciones de distribución. $F_n \stackrel{d}{\to} F$ si y solo si

$$\limsup_{n \to \infty} F_n(x) \le F(x) \quad y \quad \liminf_{n \to \infty} F_n(x) \ge F(x^-) \quad \forall x \in \mathbb{R}$$

Teorema 1.15 (Helly-Bray). Sean F_n y F funciones de distribución. $F_n \xrightarrow{d} F$ si y solo si

$$\lim_{n\to\infty}\int_{\mathbb{R}}g(x)dF_n(x)=\int_{\mathbb{R}}g(x)dF(x)$$

para toda función g real, continua y acotada.

Observación. En general, el teorema de Helly-Bray no implica que $E(X_n) \xrightarrow[n \to \infty]{} E(X)$ porque g(x) = x no siempre está acotada.

Ejemplo. Sean $n \in \mathbb{N}$, consideramos la función de distribución:

$$F_n(x) = \begin{cases} 0 & \text{si } x < -1\\ \frac{x+1}{2n} & \text{si } -1 \le x < 0\\ \frac{1}{2n} + \frac{1}{4} & \text{si } 0 \le x < \frac{2}{n}\\ \frac{x}{4} + \frac{1}{2} & \text{si } \frac{2}{n} \le x < 2\\ 1 & \text{si } x \ge 2 \end{cases}$$

Su límite puntual es:

$$G(x) = \lim_{n \to \infty} F_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{4} & \text{si } x = 0 \\ \frac{x}{4} + \frac{1}{2} & \text{si } 0 < x < 2 \\ 1 & \text{si } x \ge 2 \end{cases}$$

Observamos que G no es función de distribución. Definimos entonces:

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{x}{4} + \frac{1}{2} & \text{si } 0 \le x < 2\\ 1 & \text{si } x \ge 2 \end{cases}$$

F es función de distribución así que $F_n \xrightarrow{d} F$.

Sea $g(x) = I_{(0,2]}(x)$, veamos si $E(g(X_n)) \xrightarrow[n \to \infty]{} E(g(X))$.

$$E(g(X_n)) = E(I_{(0,2]}(X_n)) = \int_{\mathbb{R}} I_{(0,2]}(x) dF_n(x) = \int_0^2 dF_n(x) =$$

$$= F_n(2) - F_n(0) = \frac{3}{4} - \frac{1}{2n} \xrightarrow[n \to \infty]{} \frac{3}{4}$$

$$E(g(X)) = \int_0^2 dF(x) = F(2) - F(0) = 1 - \frac{1}{2} = \frac{1}{2}$$

Observamos que $E(g(X_n))$ no tiende a E(g(X)) con $n \to \infty$. No se cumplen las hipótesis del teorema de Helly-Bray porque g no es continua.

Sea ahora g(x) = x. Queremos calcular $E(g(X_n)) = \int_{\mathbb{R}} x dF_n(x)$. Como F_n es mixta, hallamos primero las masas de sus puntos de discontinuidad y su función de pseudodensidad:

$$D(F_n) = \{0, \frac{2}{n}\}, \quad p(0) = \frac{1}{4}, \quad p(\frac{2}{n}) = \frac{1}{4}$$

$$f_n(x) = F'_n(x) = \begin{cases} \frac{1}{2n} & \text{si } -1 \le x < 0\\ \frac{1}{4} & \text{si } \frac{2}{n} \le x < 2\\ 0 & \text{en el resto} \end{cases}$$

$$E(g(X_n)) = 0\frac{1}{4} + \frac{2}{n}\frac{1}{4} + \int_{-1}^{0} \frac{x}{2n} dx + \int_{\frac{2}{n}}^{2} \frac{x}{4} dx = \frac{1}{2} + \frac{1}{4n} - \frac{1}{2n^2} \xrightarrow[n \to \infty]{} \frac{1}{2}$$

Procedemos de forma análoga para F.

$$D(F) = \{0\}, \quad p(0) = \frac{1}{2}, \quad f(x) = \begin{cases} \frac{1}{4} & \text{si } 0 \le x < 2\\ 0 & \text{en el resto} \end{cases}$$

$$E(g(X)) = 0\frac{1}{2} + \int_0^2 \frac{x}{4} dx = \frac{1}{2}$$

Luego en este caso $E(g(X_n)) \xrightarrow[n \to \infty]{} E(g(X))$. Se verifica el teorema de Helly-Bray porque g(x) = x está acotada en los soportes de f_n y f, que son acotados.

Ejemplo. Sea $n \in \mathbb{R}$, consideramos la función de distribución:

$$F_n(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{n-1}{n} & \text{si } 0 \le x < n\\ 1 & \text{si } x \ge n \end{cases}$$

Es claro que:

$$F_n \xrightarrow{d} \delta(0) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

Sea g(x) = x, procedemos igual que en el ejemplo anterior.

$$D(F_n) = \{0, n\}, \quad p(0) = \frac{n-1}{n}, \quad p(n) = \frac{1}{n}$$

$$E(g(X_n)) = 0 \frac{n-1}{n} + n \frac{1}{n} = 1 \xrightarrow[n \to \infty]{} 1$$
$$E(g(X)) = E(\delta(0)) = 0 \neq 1$$

No se cumplen las hipótesis del teorema porque g no está acotada en el soporte, ya que no está acotado.

Definición 1.11. Una función F es función de distribución impropia si verifica:

- \blacksquare F es creciente.
- \blacksquare F es continua por la derecha.
- Existe $\lim_{h\to 0^-} F(x+h) = F(x^-)$ para todo $x\in \mathbb{R}$.
- $F(-\infty) > 0$ o $F(\infty) < 1$.

Definición 1.12. Sea $\{F_n\}$ una sucesión de funciones de distribución y sea F una función de distribución propia o impropia. Decimos que $\{F_n\}$ converge de forma vaga o vagamente a F si:

$$\lim_{n \to \infty} F_n(x) = F(x), \quad \forall x \in C(F)$$

Se escribe $F_n \xrightarrow{v} F$.

Observación. Convergencia débil implica convergencia vaga.

Ejemplo. Sea $n \in \mathbb{N}$, consideramos la función de distribución:

$$F_n(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{1}{2} + \frac{x}{2n} & \text{si } 0 \le x < n\\ 1 & \text{si } x \ge n \end{cases}$$

El límite puntual de $\{F_n\}$ es:

$$G(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{1}{2} & \text{si } x \ge 0 \end{cases}$$

G es una función de distribución impropia. Por tanto, $F_n \xrightarrow{v} G$.

Ejemplo. Consideramos la función de distribución:

$$F_0(x) = \begin{cases} 0 & \text{si } x < 2\\ 1 & \text{si } x \ge 2 \end{cases}$$

Definimos:

$$F_n(x) = F_0(x+n) = \begin{cases} 0 & \text{si } x+n < 2\\ 1 & \text{si } x+n \ge 2 \end{cases}$$

El límite puntual de $F_n(x)$ es F(x)=1, que es una función de distribución impropia. Por tanto, $F_n \stackrel{v}{\to} F$.

Ejercicio. Sea (Ω, \mathcal{A}, P) espacio de probabilidad con:

$$\Omega = \mathbb{N} \cup \{0\}, \quad \mathcal{A} = \mathcal{P}(\Omega), \quad P(\omega) = e^{-\lambda} \frac{\lambda^{\omega}}{w!}, \quad w \in \mathbb{R}, \lambda > 0$$

Consideramos la sucesión de variables aleatorias:

$$X_n: \Omega \to \mathbb{R}, \quad X_n(\omega) = e^{n\omega}$$

Observamos que $x = e^{n\omega} \Leftrightarrow \omega = -\frac{\log(x)}{n}$, con x > 0.

$$P(X_n^{-1}(x)) = P\left(-\frac{\log(x)}{n}\right) = \begin{cases} e^{-\lambda} \frac{\lambda^{-\frac{\log(x)}{n}}}{\left(-\frac{\log(x)}{n}\right)!} & \text{si } \frac{-\log(x)}{n} \in \mathbb{N} \cup \{0\} \\ 0 & \text{en el resto} \end{cases}$$

Calculamos la función de distribución de X_n :

$$\begin{split} F_n(x) &= P(X_n^{-1}((-\infty,x])) = P(X_n^{-1}([0,x])) = P(X_n^{-1}([0,e^{-nk}])) = \\ &= P(\{\omega \in \Omega : \omega \geq k\}) = 1 - P(\{\omega \in \Omega : \omega < k\}) = 1 - \sum_{\omega=0}^{k-1} e^{-\lambda} \frac{\lambda^{\omega}}{\omega!} = \\ &= \begin{cases} 0 & \text{si } x <= 0 \\ 1 - \sum_{\omega=0}^{k-1} e^{-\lambda} \frac{\lambda^{\omega}}{\omega!} & \text{si } e^{-nk} \leq x < e^{-n(k-1)}, \quad k = 1, 2, \dots \\ 1 & \text{si } x \geq 1 \end{cases} \\ &= \begin{cases} 0 & \text{si } x <= 0 \\ \vdots & \\ 1 - e^{-\lambda}(1+\lambda) & \text{si } e^{-2n} \leq x < e^{-n} \\ 1 - e^{-\lambda} & \text{si } e^{-n} \leq x < 1 \\ 1 & \text{si } x > 1 \end{cases} \end{split}$$

Observamos que $F_n(x)$ tiene como límite puntual:

$$G(x) = \begin{cases} 0 & \text{si } x <= 0 \\ 1 - e^{-\lambda} & \text{si } 0 < x < 1 \\ 1 & \text{si } x \ge 1 \end{cases}$$

G no es función de distribución. Podemos definir:

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda} & \text{si } 0 <= x < 1 \\ 1 & \text{si } x \ge 1 \end{cases}$$

Como F sí es función de distribución, $F_n \xrightarrow{d} F$.

$$\lim_{n \to \infty} \int_{[a,b]} g(x) dF_n(x) = \int_{[a,b]} g(x) dF(x)$$

Teorema 1.17. Supongamos que $F_n \xrightarrow{v} F$ con F función de distribución impropia. Sea g real g continua con $g(\infty) = g(-\infty) = 0$. Entonces:

$$\lim_{n \to \infty} \int_{\mathbb{R}} g(x) dF_n(x) = \int_{\mathbb{R}} g(x) dF(x)$$

Lema 1.18. Una sucesión $\{F_n\}_n$ converge vagamente si y solo si converge en algún conjunto denso $D \subset \mathbb{R}$.

Teorema 1.19 (Principio de selección de Helly). Toda sucesión $\{F_n\}_n$ de funciones de distribución tiene una subsucesión que converge vagamente.

Definición 1.13. Sea \mathcal{H} una familia de funciones de distribución. \mathcal{H} es ajustada si para todo $\varepsilon > 0$ existe a > 0 tal que:

$$P_F((-a,a]) > 1 - \varepsilon, \quad \forall F \in \mathcal{H}$$

Equivalentemente,

$$P_F((-\infty, -a] \cup (a, \infty)) < \varepsilon, \quad \forall F \in \mathcal{H}$$

Definición 1.14. \mathcal{H} es relativamente compacta si cada $\{F_n\}_n$ con $F_n \in \mathcal{H}$ tiene una subsucesión convergente.

Teorema 1.20 (Prokhorov). \mathcal{H} es relativamente compacta si y solo si es ajustada.

Teorema 1.21. Sea $\{F_n\}_{n\geq 1}$ una sucesión ajustada. Si todas sus subsucesiones convergentes tienen el mismo límite F, entonces $F_n \xrightarrow{d} F$.

Capítulo 2

Función característica

Definición 2.1. Sea X variable aleatoria en (Ω, \mathcal{A}, P) con función de distribución F. La función característica asociada a X es:

$$\varphi_X : \mathbb{R} \to \mathbb{C}$$

$$\varphi_X(t) = E(e^{itX}) = \int_{\mathbb{R}} e^{itx} dF(x)$$

Observación. Usando que $e^{ix} = \cos(x) + i\sin(x)$, podemos escribir:

$$\varphi_X(t) = \int_{\mathbb{R}} \cos(tx) dF(x) + i \int_{\mathbb{R}} \sin(tx) dF(x)$$

Ejemplo. Sea $X \sim \delta(a)$, con $a \in \mathbb{R}$. Su función característica es:

$$\varphi_X(t) = E(e^{itX}) = e^{ita}P(X=a) = e^{ita}$$

Ejemplo. Sea $X \sim Bi(n,p)$, con $n \ge 0$ y $0 \le p \le 1$. Su función característica es:

$$\varphi_X(t) = \sum_{k=0}^n e^{itk} P(X = k) = \sum_{k=0}^n e^{itk} \binom{n}{k} p^k (1-p)^{n-k} =$$

$$= \sum_{k=0}^n \binom{n}{k} (pe^{it})^k (1-p)^{n-k} = (pe^{it} + 1 - p)^n$$

Ejemplo. Sea $X \sim Po(\lambda)$. Su función característica es:

$$\varphi_X(t) = \sum_{k=0}^{n} e^{itk} P(X = k) = \sum_{k=0}^{n} e^{itk} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{n} \frac{(\lambda e^{it})^k}{k!} = e^{-\lambda} e^{\lambda e^{it}} = e^{\lambda(e^{it} - 1)}$$

Observación.

$$\varphi_{Bi}(x) = (pe^{it} + 1 - p)^n = \left(1 + \frac{np(e^{it} - 1)}{n}\right)^n \xrightarrow[n \to \infty]{np \to \lambda} e^{\lambda(e^{it} - 1)} = \varphi_{Po}(t)$$

Ejemplo. Sea $X \sim U([0,1])$. Su función característica es:

$$\varphi_X(t) = E(e^{itX}) = \int_{\mathbb{R}} e^{itx} dF(x) = \int_{\mathbb{R}} e^{itx} f_X(x) dx = \int_0^1 e^{itx} dx = \frac{e^{it} - 1}{it}$$

Ejemplo. Sea $X \sim N(0,1)$. Su función característica es:

$$\varphi_X(t) = \int_{\mathbb{R}} e^{itx} f_X(x) dx = \int_{\mathbb{R}} e^{itx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{(x^2 - 2itx)}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{t^2}{2}} e^{-\frac{x^2 - t^2 - 2it}{2}} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \int_{\mathbb{R}} e^{-\frac{(x - it)^2}{2}} dx = e^{-\frac{t^2}{2}}$$

Nota. $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$

2.1. Propiedades

Veamos las propiedades más importantes de las funciones características. Sea φ la función característica de una variable aleatoria X. Entonces:

1.
$$\varphi(0) = 1$$
.

$$E(e^{i0X}) = E(1) = 1$$

2. $|\varphi(t)| \leq 1$, para todo $t \in \mathbb{R}$.

$$|\varphi(t)| = |E(e^{itX})| \leq E|e^{itX}| = E|\cos(tx) + i\sin(tx)| = 1$$

3.
$$\varphi(-t) = \overline{\varphi(t)}$$
.

$$\begin{split} \varphi(-t) &= E(e^{itX}) = E(\cos(-tx) + i\sin(-tx)) = \\ &= E(\cos(tx)) - iE(\sin(tx)) = \overline{E(\cos(tx)) + iE(\sin(tx))} = \\ &= \overline{E(\cos(tx)) + i\sin(tx)} = \overline{\varphi(t)} \end{split}$$

4. φ es función definida positiva, es decir,

$$\sum_{k,j=1}^{n} z_k \varphi(t_j - t_k) \overline{z_j} \ge 0, \quad \forall n \ge 1, \quad \forall z \in \mathbb{C}^n$$

Además,

• $\varphi \in \mathbb{R} \Leftrightarrow f$ es simétrica.

$$\varphi(-t) = \overline{\varphi(t)} = \varphi(t)$$

• Sea Y = a + bX. Entonces:

$$\varphi_Y(t) = E(e^{it(a+bX)}) = e^{ita}E(e^{itbX}) = e^{ita}\varphi_X(bt)$$

Teorema 2.1. φ es uniformemente continua en \mathbb{R} .

2.2. Teorema de inversión

Teorema 2.2 (Teorema de inversión). Sea X variable aleatoria en (Ω, \mathcal{A}, P) con función de distribución F y función característica φ . Sean $a, b \in \mathbb{R}$ con a < b, entonces:

$$\frac{F(b)+F(b^-)}{2}-\frac{F(a)+F(a^-)}{2}=\lim_{T\to\infty}\frac{1}{2\pi}\int_{-T}^T\frac{e^{-itb}-e^{-ita}}{-it}\varphi(t)dt$$

Corolario 2.3. Sea X variable aleatoria en (Ω, \mathcal{A}, P) con función de distribución F y función característica φ . Sean $a, b \in C(F)$ con a < b, entonces:

$$F(b) - F(a) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-itb} - e^{-ita}}{-it} \varphi(t) dt$$

Teorema 2.4 (Unicidad). Sean X_1 y X_2 variables aleatorias, con funciones de distribución F_1 y F_2 y funciones características φ_1 y φ_2 respectivamente. Entonces:

$$F_1 = F_2 \Leftrightarrow \varphi_1 = \varphi_2$$

Teorema 2.5. Existe $k \in (0, \infty)$ tal que para todo a > 0 y toda medida de probabilidad P_F se tiene que:

$$P_F\left(\left[-\frac{1}{a}, \frac{1}{a}\right]^c\right) \le \frac{k}{a} \int_0^a (1 - Re(\varphi_F(t))) dt$$

donde φ_F es la función característica asociada a P_F .

Corolario 2.6. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias X_n con F_n , P_{F_n} y φ_{F_n} . Supongamos que:

- 1. Existe $\delta > 0$ tal que $\varphi_{F_n}(t) \xrightarrow[n \to \infty]{} \varphi(t)$ para todo $t \in [-\delta, \delta]$, siendo φ una función.
- 2. φ es continua en 0.

Entonces $\{X_n\}_{n\geq 1}$ es una sucesión ajustada. Es decir, $\{F_n\}$ forma una familia ajustada.

Ejercicio. Sea X con función de densidad:

$$f(x) = \begin{cases} \frac{1}{a} \left(1 - \frac{|x|}{a} \right) & \text{si } |x| \le a, \ a > 0 \\ 0 & \text{en otro caso} \end{cases}$$

Calculemos su función característica φ .

Como f es simétrica, sabemos que $\varphi \in \mathbb{R}$.

$$\varphi(t) = E(e^{itX}) = \int_{\mathbb{R}} e^{itx} dF(x) = \int_{\mathbb{R}} e^{itx} f(x) dx =$$

$$= \int_{-a}^{a} \cos(tx) f(x) dx + \int_{-a}^{a} \sin(tx) f(x) dx = 2 \int_{0}^{a} \cos(tx) \frac{1}{a} \left(1 - \frac{x}{a}\right) dx =$$

$$= \frac{2(1 - \cos(at))}{a^{2}t^{2}} = \frac{\sin^{2}\left(\frac{at}{2}\right)}{\left(\frac{at}{2}\right)^{2}}$$

En el último paso hemos usado que $\sin^2(\frac{\alpha}{2}) = \frac{1-\cos(\alpha)}{2}$.

Ejercicio. Sea X con función de densidad:

$$f(x) = \frac{1}{2\beta} e^{-\frac{|x-\alpha|}{\beta}}, \quad \alpha \in \mathbb{R}, \ \beta > 0$$

Calculemos su función característica φ_X .

Para facilitar los cálculos, consideramos la variable estandarizada $Y = \frac{X-\alpha}{\beta}$ y calculamos φ_Y . Para ello, hallamos primero F_Y y f_Y :

$$F_Y(y) = P(Y \le y) = P\left(\frac{X - \alpha}{\beta} \le y\right) = P(X \le \beta y + \alpha) = F_X(\beta y + \alpha)$$
$$f_Y(y) = F_Y'(y) = F_X'(\beta y + \alpha)\beta = f_X(\beta y + \alpha)\beta = \frac{1}{2}e^{-|y|}$$

Observamos que f_Y es simétrica, así que $\varphi_Y \in \mathbb{R}$.

$$\varphi_Y(t) = \int_{\mathbb{R}} e^{ity} \frac{1}{2} e^{-|y|} dy = \int_{\mathbb{R}} (\cos(ty) + i\sin(ty)) \frac{1}{2} e^{-|y|} dy = \int_0^\infty \cos(ty) e^{-y} dy = \frac{1}{1+t^2}$$

Por tanto:

$$\varphi_X(t) = e^{it\alpha} \varphi_Y(\beta t) = \frac{e^{it\alpha}}{1 + \beta^2 t^2}$$

También se puede ver que $Y=Y_1-Y_2,$ con $Y_i\sim Exp(1)$ independientes. De esta forma:

$$\begin{split} \varphi_Y(t) &= E(e^{itY}) = E(e^{it(Y_1 - Y_2)}) = E(e^{itY_1})E(e^{-itY_2}) = \varphi_{Y_1}(t)\varphi_{Y_2}(-t) = \\ &= \varphi_{Y_1}(t)\overline{\varphi_{Y_2}(t)} = \frac{1}{1 - it}\frac{1}{1 + it} = \frac{1}{1 + t^2} \end{split}$$

2.3. Teorema de continuidad

Teorema 2.7 (Teorema de continuidad de Lévy). Sea $\{X_n\}_{n\geq 1}$ y sean φ_n las funciones características asociadas. Supongamos que existe una función φ tal que:

- 1. $\varphi_n(t) \to \varphi(t), t \in \mathbb{R}$.
- 2. φ es continua en 0.

Entonces $X_n \xrightarrow{d} X$, donde X es la variable aleatoria con función característica φ .

Teorema 2.8. Una sucesión $\{F_n\}_{n\geq 1}$ es ajustada si y solo si

$$\lim_{t \to 0} \left(\limsup_{n \to \infty} Re(1 - \varphi_n(t)) \right) = 0$$

Observación (Teorema central del límite de De Moivre). Sean $X_n \sim Bi(n,p)$. Sabemos que $E(X_n)=np$ y $V(X_n)=npq$, con q=1-p. Consideramos:

$$Z_n = \frac{X_n - np}{\sqrt{npq}} = \frac{X_n - np}{\sigma_n}$$

Veamos que $Z_n \xrightarrow{d} Z$.

Calculamos:

$$\varphi_{Z_n}(t) = E(e^{itZ_n}) = E(e^{it\frac{X_n - np}{\sigma_n}}) = e^{-\frac{itnp}{\sigma_n}} E(e^{\frac{it}{\sigma_n}X_n}) = e^{-\frac{itnp}{\sigma_n}} \varphi_{X_n} \left(\frac{t}{\sigma_n}\right) =$$

$$= e^{-\frac{itnp}{\sigma_n}} (pe^{i\frac{t}{\sigma_n}} + q)^n = (pe^{i\frac{t}{\sigma_n}q} + qe^{-i\frac{t}{\sigma_n}p})^n$$

Se puede comprobar que:

$$\lim_{n\to\infty}\varphi_{Z_n}(t)=\lim_{n\to\infty}(pe^{i\frac{t}{\sigma_n}q}+qe^{-i\frac{t}{\sigma_n}p})^n=e^{-\frac{t^2}{n}}=\varphi_Z(t)$$

con $Z \sim N(0,1)$.

Por el teorema de continuidad de Lévy, $Z_n \xrightarrow{d} Z \sim N(0,1)$.

2.4. Momentos

Recordamos los momentos de una variable aleatoria X.

- Momento de orden n: $E(X^n)$.
- Momento central de orden n: $E((X E(X))^n)$.
- Momento absoluto de orden n: $E(|X|^n)$.
- Momento central absoluto de orden n: $E(|X E(X)|^n)$.

Proposición 2.9. Si $E(|X|^p) < \infty$ para algún $n \ge 1$, entonces:

$$E(X^r), E(|X|^r) < \infty, \quad 0 < r \le n$$

Definición 2.2. El espacio L^p es el conjunto de las variables X tales que $E(|X|^r) < \infty$.

$$L^r = \left\{ X \text{ variable aleatoria } : \int |X|^r dF(x) < \infty \right\}$$

 $(L^p,\|.\|_p)$ es un espacio normado, con $\|X\|_p=(E(|X|^p))^{1/p},\,X\in L^p.$

Teorema 2.10. Sea $X \in L^n$ para algún $n \ge 1$ y con función característica φ . Entonces existen las derivadas $\varphi^{(k)}$ con $k = 1, \ldots, n$ y son uniformemente continuas. Además,

$$\varphi^{(k)}(t) = i^k \int x^k e^{itx} dF(x)$$

 $y \varphi^{(k)}(0) = i^k E(X^k)$. Así que φ se puede expresar como:

$$\varphi(t) = 1 + \sum_{k=1}^{n} \frac{(it)^k}{k!} E(X^k) + O(t^n)$$

Proposición 2.11. Sean X e Y variables aleatorias independientes con funciones características φ_X y φ_Y respectivamente. Entonces la función característica de S = X + Y es $\varphi_S(t) = \varphi_X(t)\varphi_Y(t)$.

En general, si X_1, \ldots, X_n son variables aleatorias independientes, la función característica de $S = X_1 + \cdots + X_n$ es:

$$\varphi_S(t) = \prod_{i=1}^n \varphi_{X_i}(t)$$

Si además X_1, \ldots, X_n son igualmente distribuidas, entonces $\varphi_S(t) = \varphi_{X_k}(t)^n$ para cualquier $k \in \{1, \ldots, n\}$.

Ejercicio. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independeintes, cada una con función característica:

$$\varphi_{X_n}(t) = \left(\frac{1 - (1 - \alpha)it}{1 - it}\right), \quad 0 \le \alpha \le 1$$

1. Determinar la distribución de X_n .

$$\varphi_{X_n}(t) = \left(\frac{1 - \alpha + \alpha - (1 - \alpha)it}{1 - it}\right)^n = \left(\frac{\alpha}{1 - it} + \frac{(1 - \alpha)(1 - it)}{1 - it}\right)^n = \left(\alpha \frac{1}{1 - it} + (1 - \alpha)\right)^n = \varphi_W(t)^n$$

donde
$$\varphi_W(t) = \alpha \frac{1}{1-it} + (1-\alpha)$$
. Luego $X_n = \sum_{i=1}^n W$.

Observamos que $\frac{1}{1-it}$ es función característica de Exp(1) y 1 es función característica de $\delta(0)$, así que W es mixtura de estas dos distribuciones. Por tanto, X_n es la suma de n variables aleatorias con distribuciones mixtura de Exp(1) y $\delta(0)$.

2. Calcular $E(X_n)$ y $V(X_n)$.

$$E(X_n) = E\left(\sum_{i=1}^n W\right) = nE(W) = n(\alpha E(Exp(1)) + (1 - \alpha)E(\delta(0)))$$

$$= n\alpha$$

$$V(X_n) = nV(W) = n(E(W^2) - E(W)^2) =$$

$$= n(\alpha E(Exp(1)^2) + (1 - \alpha)E(\delta(0)^2) - \alpha^2) =$$

$$= n(\alpha(V(Exp(1)) + E(Exp(1))^2) - \alpha^2) =$$

$$= n(2\alpha - \alpha^2) = n\alpha(2 - \alpha)$$

También se podría haber usado que $\varphi^{(k)}(0) = i^k E(X^k)$.

$$\varphi_W'(t) = \frac{i\alpha}{(1-it)^2} \qquad \varphi_W''(t) = \frac{-2\alpha}{(1-it)^3}$$

De esta forma podemos calcular:

$$E(W) = \frac{1}{i}\varphi'_W(0) = \alpha$$
$$E(W^2) = \frac{1}{i^2}\varphi''_W(0) = 2\alpha$$

3. Determinar el límite en distribución de la sucesión $\{Y_n\}_{n\geq 1}$ con:

$$Y_n = \frac{X_n - n\alpha}{\sqrt{n}}$$

Por el teorema de continuidad de Lévy, basta hallar $\lim_{n\to\infty} \varphi_{Y_n}(t), t\in\mathbb{R}$.

$$\varphi_{Y_n}(t) = E(e^{itY_n}) = E(e^{it\frac{X_n - n\alpha}{\sqrt{n}}}) = e^{-it\sqrt{n}\alpha}\varphi_{X_n}\left(\frac{t}{\sqrt{n}}\right) =$$
$$= e^{-it\sqrt{n}\alpha}\left(\frac{\alpha}{1 - i\frac{t}{\sqrt{n}}} + 1 - \alpha\right)$$

Como este límite es difícil de resolver podemos proceder de otra forma. Podemos escribir $X_n - n\alpha = \sum_{i=1}^n (W - \alpha) = \sum_{i=1}^n U$, con $U = W - \alpha$. Entonces:

$$\varphi_{Y_n}(t) = \varphi_{X_n - n\alpha}\left(\frac{t}{\sqrt{n}}\right) = \varphi_{\sum_{i=1}^n U}\left(\frac{t}{\sqrt{n}}\right) = \varphi_U\left(\frac{t}{\sqrt{n}}\right)^n$$

Nota. Hemos usado que $\varphi_{aX}(t) = \varphi_X(at)$.

Sabemos que E(U)=0 y $E(U^2)=V(U)=V(W)=\alpha(2-\alpha)$. También sabemos que:

$$\varphi_U(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \varphi_U^{(k)}(0) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} E(U^k) = 1 + it E(U) - \frac{t^2}{2} E(U^2) + O(t^2)$$

Luego:

$$\varphi_V\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2}{2n}\alpha(2-\alpha) + O\left(\frac{t^2}{n}\right)$$

Así que:

$$\lim_{n \to \infty} \varphi_{Y_n}(t) = \lim_{n \to \infty} \varphi_U \left(\frac{t}{\sqrt{n}}\right)^n =$$

$$= \lim_{n \to \infty} \left(1 - \frac{t^2}{2n}\alpha(2 - \alpha) + O\left(\frac{t^2}{n}\right)\right)^n =$$

$$= e^{\lim_{n \to \infty} n\left(1 - \frac{t^2}{2n}\alpha(2 - \alpha) + O\left(\frac{t^2}{n} - 1\right)\right)} = e^{-\frac{t^2}{2}\alpha(2 - \alpha)}$$

Por tanto, $Y_n \xrightarrow{d} Y \sim N(0, \alpha(2-\alpha)).$

Observación (Teorema central del límite de Lévy-Lindeberg). Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independientes e igualmente distribuidas, con $\mu=E(X_n)<\infty$ y $\sigma^2=V(X_n)<\infty$.

Consideramos $Y_n = \frac{X_n - \mu}{\sigma}$, con $E(Y_n) = 0$, $V(Y_n) = 1$ y $\varphi_{Y_n}(t) = 1 - \frac{t^2}{2} + O(t^2)$. Sea $Z_n = \frac{1}{\sigma\sqrt{n}} \sum_{i=1}^n (X_i - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i$. Veamos que $Z_n \xrightarrow{d} N(0, 1)$.

$$\varphi_{Z_n}(t) = \varphi_{\sum_{j=1}^n Y_j} \left(\frac{t}{\sqrt{n}} \right) = \varphi_{Y_1} \left(\frac{t}{\sqrt{n}} \right)^n = \left(1 - \frac{t^2}{2n} + O\left(\frac{t^2}{n} \right) \right)^n \to e^{-t^2/2}$$

Lema 2.12.

$$\left| e^{iy} - \sum_{k=0}^{n} \frac{(iy)^k}{k!} \right| \le \min\left\{ 2 \frac{|y|^n}{n!}, \frac{|y|^{n+1}}{(n+1)!} \right\}$$

Teorema 2.13. Si φ es absolutamente integrable, entonces F es absolutamente continua con densidad:

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi(t) dt$$

Teorema 2.14 (Lema de Riemman-Lebesgue). $Si\ F$ es absolutamente continua, entonces:

$$\lim_{|t| \to \infty} \varphi(t) = 0$$

Definición 2.3. Sea X una variable aleatoria con función característica φ . Definimos su función generatriz de cumulantes como:

$$K: \mathbb{R} \to \mathbb{C}, \quad K(t) = \log(\varphi(t))$$

Proposición 2.15. Sean X_1, \ldots, X_n variables aleatorias con funciones características $\varphi_1, \ldots, \varphi_n$ y sea $S = X_1 + \cdots + X_n$. Entonces:

$$K_S(t) = \sum_{i=1}^n K_{x_i}(t)$$

Teorema 2.16. Sea X una variable aleatoria. Supongamso que $E(|X|^n) < \infty$ para algún $n \ge 1$. Entonces:

$$K_X(t) = \sum_{j=0}^{n} \frac{(it)^j}{j!} c_j + O(t^n)$$

donde $c_j = \frac{K^{(j)}(0)}{i^j}$ es el cumulante de orden j.

Nota

$$c_1 = \frac{K'(0)}{i} = \frac{1}{i} \frac{\varphi'(0)}{\varphi(0)} = \frac{1}{i} \varphi'(0) = E(X)$$

$$c_2 = \frac{K''(0)}{i^2} = -K''(0) = -\left(\frac{\varphi''(0)}{\varphi(0)} - \left(\frac{\varphi'(0)}{\varphi(0)}\right)^2\right) = (E(X^2) - E(X)^2) =$$

$$= V(X)$$

Definición 2.4. Sea X una variable aleatoria y $\sigma = \sqrt{V(X)}$.

■ Definimos el sesgo de X como $\frac{c_3}{\sigma^3}$.

■ Definimos la curtosis de X como $\frac{c_4}{\sigma^4}$.

Definición 2.5. Sea X una variable aleatoria con función característica φ . Definimos la función de generatriz de momentos de X como:

$$\psi(t) = E(e^{tX}) = \int_{\mathbb{R}} e^{tx} dF(x)$$

 ψ está definida en un entorno del 0.

Observación. Si existe ψ entonces $E(|X|^n) < \infty$ para todo $n \ge 1$.

Definición 2.6. Sea X una variable aleatoria con valores en $\mathbb{Z}_+ = \{0, 1, 2, \dots\}$. La función generatriz de probabilidad de X es:

$$G_X(t) = E(t^X) = \sum_{n=0}^{\infty} t^n P(X=n), \quad |t| < 1$$

Observación.

$$G_x^{(k)}(0) = k! P(X = k) \Rightarrow P(X = k) = \frac{G_X^{(k)}(0)}{k!}$$

Sea $X=Y_1+\cdots+Y_N$, con Y_i variables aleatorias independientes e idénticamente distribuidas y N una variable aleatoria en \mathbb{Z}_+ . X sigue una distribución compuesta.

$$\varphi_X(t) = E(e^{itX}) = E(E(e^{itX}|N)) = \sum_{n=0}^{\infty} E(e^{itX}|N=n)P(N=n) =$$

$$= \sum_{n=0}^{\infty} E(e^{it\sum_{i=1}^{n} X_i})P(N=n) = \sum_{n=0}^{\infty} \varphi_Y(t)^n P(N=n) = G_N(\varphi_Y(t))$$

Ejemplo. Sea $X = Y_1 + \cdots + Y_N$, con Y_i variables aleatorias independientes e idénticamente distribuidas y $N \sim Po(\lambda)$ una variable aleatoria en \mathbb{Z}_+ .

$$\varphi_X(t) = G_N(\varphi_Y(t)) = e^{\lambda(\varphi_Y(t)-1)}$$

donde

$$G_N(t) = E(t^N) = \sum_{n=0}^{\infty} t^n P(N=n) = \sum_{n=0}^{\infty} t^n e^{-\lambda} \frac{\lambda^n}{n!} = e^{\lambda(t-1)}$$

Además,

$$K_X(t) = \log(\varphi_X(t)) = \lambda(\varphi_Y(t) - 1)$$

Luego podemos calcular:

$$E(X) = c_1 = \frac{K'(0)}{i} = \frac{1}{i}\lambda\varphi_Y'(0) = \lambda E(Y)$$

2.5. Reconocimiento de funciones características

Para identificar funciones características usamos alguna de las siguientes estrategias:

- Reconocer la función característica de alguna distribución conocida.
- Encontrar una variable aleatoria cuya función característica sea la que buscamos.
- Usar otros resultados.

Ejercicio. Supongamos que φ_X es una función característica. Veamos que $|\varphi_X|^2$ también lo es.

$$|\varphi_X(t)|^2 = \varphi_X(t)\overline{\varphi_X(t)} = \varphi_X(t)\varphi_{-X}(t), \quad t \in \mathbb{R}$$

Definimos X' como una copia independiente de -X. Entonces, la variable Y = X + X' tiene como función característica a $|\varphi_X|^2$.

Lema 2.17. Sean μ_1, \ldots, μ_n medidas de probabilidad con funciones características $\varphi_1, \ldots, \varphi_n$ respectivamente. Sean $\alpha_1, \ldots, \alpha_n \in [0,1]$ tales que $\sum_{i=1}^n \alpha_i = 1$. Entonces la función característica asociada a la medida $\sum_{i=1}^n \alpha_i \mu_i$ es:

$$\varphi(t) = \sum_{i=1}^{n} \alpha_i \varphi_i(t)$$

Es decir, toda combinación lineal convexa de funciones características es una función característica.

Ejercicio. Supongamos que φ_X es una función característica. Veamos que $Re(\varphi_X)$ también lo es.

$$Re(\varphi_X) = \frac{\varphi_X + \overline{\varphi_X}}{2} = \frac{1}{2}\varphi_X + \frac{1}{2}\varphi_{X'}$$

donde X' es una copia independiente de -X.

Definimos la variable aleatoria Y cuya distribución de probabilidad es una mixta de las distribuciones X y X' con pesos $\frac{1}{2}$ y $\frac{1}{2}$. Entonces, Y tiene como función característica $\varphi_Y(t) = Re(\varphi_X(t))$.

Definición 2.7. Una función $g: \mathbb{R} \to \mathbb{C}$ es definida positiva si:

$$\sum_{j=1}^{n} \sum_{k=1}^{n} g(t_j - t_k) z_j \bar{z}_k \ge 0$$

para todo $t_1, \ldots, t_n \in \mathbb{R}$ y $z_1, \ldots, z_n \in \mathbb{C}$.

Observación. La función característica es definida positiva.

Teorema 2.18. Sea g una función definida positiva. Si g es continua en 0 entonces es uniformemente continua en \mathbb{R} .

Lema 2.19 (Herglotz). Sea $\phi : \mathbb{Z} \to \mathbb{C}$ definida positiva con $\phi(0) = 1$. Entonces existe μ distribución de probabilidad en $[-\pi, \pi]$ tal que ϕ es su función característica asociada, es decir,

$$\phi(t) = \int_{-\pi}^{\pi} e^{itx} \mu(dx), \quad \forall t \in \mathbb{Z}$$

Teorema 2.20 (Bochner). Sea $\varphi : \mathbb{R} \to \mathbb{C}$ tal que:

- 1. φ es definida positiva.
- 2. φ es continua en 0.
- 3. $\varphi(0) = 1$.

Entonces φ es una función característica.

Proposición 2.21. La función φ_T dada por:

$$\varphi(t) = \max\left\{1 - \frac{|t|}{T}, 0\right\} = \begin{cases} 1 - \frac{|t|}{T} & si \; |t| \leq T \\ 0 & si \; |t| > T \end{cases}$$

es una función característica.

Lema 2.22. Sea $\varphi : \mathbb{R} \to \mathbb{R}$ tal que:

- 1. $\varphi(0) = 1$.
- 2. $\varphi(t) \geq 0 \ \forall t \in \mathbb{R}$.
- 3. φ es par.
- 4. φ es una poligonal convexa no creciente en \mathbb{R}_+ .

Entonces φ es una función característica.

Teorema 2.23 (Criterio de Pólya). Sea $\varphi : \mathbb{R} \to \mathbb{R}$ tal que:

- 1. $\varphi(0) = 1$.
- 2. φ es no negativa, par y continua.
- 3. φ es convexa y no creciente en \mathbb{R}_+ .

Entonces φ es función característica.

Ejercicio. Sea φ la función dada por:

$$\varphi(t) = \begin{cases} 1 - 0.025|t| & \text{si } |t| < 2\\ 0.9 - 0.2|t| & \text{si } 2 \le |t| < 3\\ 0.6 - 0.1|t| & \text{si } 3 \le |t| < 4\\ 0.2 & \text{si } |t| \ge 4 \end{cases}$$

Veamos que φ es función característica.

Para ello expresamos φ como combinación lineal convexa de funciones características de la forma $1-\frac{|t|}{T}$ en |t|< T. Escribimos φ como:

$$\varphi(t) = \alpha_1 \varphi_2(t) + \alpha_2 \varphi_3(t) + \alpha_3 \varphi_4(t) + \alpha_4, \quad \varphi_a(t) = \begin{cases} 1 - \frac{|t|}{a} & \text{si } |t| \le a \\ 0 & \text{si } |t| > a \end{cases}$$

Ahora encontramos los α_i .

$$\begin{cases} \varphi(0) = 1 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \\ \varphi(2) = \alpha_2 \varphi_3(2) + \alpha_3 \varphi_4(2) + \alpha_4 = \alpha_2 \left(1 - \frac{2}{3}\right) + \alpha_3 \left(1 - \frac{1}{2}\right) + \alpha_4 \\ \varphi(3) = \alpha_3 \varphi_4(3) + \alpha_4 = \alpha_3 \left(1 - \frac{3}{4}\right) + \alpha_4 \\ \varphi(4) = \alpha_4 \end{cases}$$

Resolviendo el sistema obtenemos que:

$$\alpha_1 = 0.1$$
, $\alpha_2 = 0.3$, $\alpha_3 = 0.4$, $\alpha_4 = 0.2$

Por tanto,

$$\varphi(t) = 0.1\varphi_2(t) + 0.3\varphi_3(t) + 0.4\varphi_4(t) + 0.2$$

Como cada φ_a es función característica, φ es función característica por ser combinación lineal convexa de ellas.

Capítulo 3

Convergencia

Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, con $P : \mathcal{A} \to [0, 1]$. Estudiaremos las sucesiones $\{A_n\}_{n \geq 1}$ con $A_i \in \mathcal{A}$ para todo $i \geq 1$.

Definición 3.1. Sea $\{A_n\}_n \subset \mathcal{A}$.

■ Definimos el límite superior de la sucesión como:

$$\limsup_{n\to\infty}A_n=\bigcap_{n\geq 1}\bigcup_{m\geq n}A_m\in\mathcal{A}$$

■ Definimos el límite inferior de la sucesión como:

$$\liminf_{n\to\infty}A_n=\bigcup_{n\geq 1}\bigcap_{m\geq n}A_m\in\mathcal{A}$$

Observación.

$$\liminf_{n \to \infty} A_n \subseteq \limsup_{n \to \infty} A_n$$

La sucesión $\{A_n\}_n$ converge si:

$$\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = \lim_{n \to \infty} A_n$$

Definición 3.2. Sea $\{A_n\}_n \subset \mathcal{A}$. $\{A_n\}_n$ es monótona creciente si:

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \ldots$$

En ese caso,

$$\lim_{n \to \infty} A_n = \bigcup_{n \ge 1} A_n$$

Definición 3.3. Sea $\{A_n\}_n \subset \mathcal{A}$. $\{A_n\}_n$ es monótona decreciente si:

$$A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq \cdots$$

En ese caso,

$$\lim_{n \to \infty} A_n = \bigcap_{n > 1} A_n$$

Teorema 3.1. Sea $\{A_n\}_n \subset \mathcal{A}$ monótona. Entonces:

$$P(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} P(A_n)$$

Teorema 3.2. Sea $\{A_n\}_n \subset \mathcal{A}$. Entonces:

1.

$$P(\limsup_{n\to\infty}A_n)=\lim_{n\to\infty}P(\bigcup_{m>n}A_m)$$

2.

$$P(\liminf_{n\to\infty}A_n)=\lim_{n\to\infty}P(\bigcap_{m\geq n}A_m)$$

Teorema 3.3. Sean $\{A_n\}_n \subset \mathcal{A} \ y \ \omega \in \Omega$. Entonces:

1. $w \in \limsup_{n \to \infty} A_n$ si y solo si existe una sucesión de índices

$$n_1 < n_2 < \ldots < n_k < \ldots$$

tal que $w \in A_{n_k}$, para $k = 1, 2, \ldots$

2. $w \in \liminf_{n \to \infty} A_n$ si y solo si existe $n_0 \ge 1$ tal que $w \in A_m$ para todo $m \ge n_0$.

Teorema 3.4 (Primer lema de Borel-Cantelli). Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y sea $\{A_n\}_n \subset \mathcal{A}$ tal que $\sum_{n>1} P(A_n) < \infty$. Entonces:

$$P(\limsup_{n \to \infty} A_n) = 0$$

Veamos que el recíproco del primer lema de Borel-Cantelli no es cierto.

Ejemplo. Sea (Ω, \mathcal{A}, P) el espacio de probabilidad dado por $\Omega = (0, 1), A = \mathcal{B}_{\Omega}$ y P la medida de Lebesgue. Consideramos la sucesión $\{A_n\}_n$ con $A_n = \left\{\left(0, \frac{1}{\sqrt{n}}\right)\right\}$. Observamos que:

$$\limsup_{n \to \infty} A_n = \bigcap_{n \ge 1} \bigcup_{m \ge n} \left(0, \frac{1}{\sqrt{n}} \right) = \emptyset \Rightarrow P(\limsup_{n \to \infty} A_n) = 0$$

Sin embargo,

$$\sum_{n=1}^{\infty} P(A_n) = \sum_{i=1}^{\infty} \frac{1}{\sqrt{n}} = \infty$$

Observación.

$$\limsup_{n \to \infty} I_{A_n}(\omega) = I_{\limsup_{n \to \infty} A_n}(\omega)$$
$$\liminf_{n \to \infty} I_{A_n}(\omega) = I_{\liminf_{n \to \infty} A_n}(\omega)$$

Teorema 3.5 (Segundo lema de Borel-Cantelli). Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y sea $\{A_n\}_n \subset \mathcal{A}$ con A_i independientes tal que $\sum_{n\geq 1} P(A_n) = \infty$. Entonces:

$$P(\limsup_{n \to \infty} A_n) = 1$$

Observación.

$$P(\liminf_{n\to\infty}A_n)\leq \liminf_{n\to\infty}P(A_n)\leq \limsup_{n\to\infty}P(A_n)\leq P(\limsup_{n\to\infty}A_n)$$

Ejemplo. Un mono pulsando teclas al azar sobre un teclado durante un periodo de tiempo infinito escribirá el Quijote y cualquier texto un número infinito de veces.

Corolario 3.6 (Ley 0-1 de Borel-Cantelli). Sea $\{A_n\}_n \subset \mathcal{A}$ con A_i independientes. Entonces:

$$P(\limsup_{n \to \infty} A_n) = 0$$
 o $P(\limsup_{n \to \infty} A_n) = 1$

3.1. Tipos de convergencia

Sea X variable aleatoria en el espacio de probabilidad (Ω, \mathcal{A}, P) , definimos:

$$\Omega_1 = \{\omega \in \Omega : \liminf_{n \to \infty} X_n(\omega) = \limsup_{n \to \infty} X_n(\omega)\}$$

Recordamos que:

- Sean $X: \Omega \to S$ y $f: S \to T$ dos funciones medibles. Entonces f(X) es medible.
- Sean X_1, \ldots, X_n variables aleatorias y $f : \mathbb{R}^n \to \mathbb{R}$ una función. Entonces $f(X_1, \ldots, X_n)$ es variable aleatoria.
- Toda función continua es medible Borel.

Teorema 3.7. Sea X_n una sucesión de variables aleatorias en (Ω, \mathcal{A}, P) . Entonces son variables aleatorias:

- $\inf X_n$
- \blacksquare sup X_n
- $\blacksquare \liminf_{n \to \infty} X_n$

 $\blacksquare \lim_{n \to \infty} \lim X_n$

Corolario 3.8. Ω_1 es medible.

Definición 3.4. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias en (Ω, \mathcal{A}, P) . Decimos que X_n converge casi seguro si $P(\Omega_1) = 1$.

En tal caso escribimos $X_n \xrightarrow{cs} X$, con $X = \limsup_{n \to \infty} X_n$.

Teorema 3.9. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independientes en (Ω, \mathcal{A}, P) . Entonces las siguientes afirmaciones son equivalentes:

- 1. $X_n \xrightarrow{cs} X$.
- 2. $P(\liminf_{n\to\infty} Y_{n,k}) = 1 \text{ para todo } k \ge 1.$
- 3. $P(\limsup_{n\to\infty} Y_{n,k}^c) = 0 \text{ para todo } k \ge 1.$

donde

$$Y_{n,k} = \left\{ \omega \in \Omega : |X_n(\omega) - X(\omega)| < \frac{1}{k} \right\}$$

Ejemplo. Veamos un contrajemplo para el caso en el que no hay independencia.

Sea $\Omega = [0,1], \ \mathcal{A} = \mathcal{B}_{[0,1]}$ y P = m la medida de Lebesgue. Consideramos:

$$X_n(\omega) = \begin{cases} 1 & \text{si } 0 \le \omega \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} < \omega \le 1 \end{cases}$$

Veamos que las variables aleatorias no son independientes dos a dos:

$$P(X_n = 1 | X_{n-1} = 0) = \frac{P((X_n = 1) \cap (X_{n-1} = 0))}{P(X_{n-1} = 0)} = \frac{m\left([0, \frac{1}{n}] \cap (\frac{1}{n-1}, 1]\right)}{1 - \frac{1}{n-1}} = 0$$
$$P(X_n = 1) = \frac{1}{n}$$

Calculamos el límite de la sucesión:

$$\lim_{n \to \infty} X_n(\omega) = \begin{cases} 1 & \text{si } \omega = 0\\ 0 & \text{si } 0 < \omega \le 1 \end{cases}$$

Sea $X(\omega) = 0, X_n \xrightarrow{cs} X$ porque:

$$P(\{\lim_{n\to\infty} X_n \neq X\}) = P(\{0\}) = 0$$

Sea $\varepsilon > 0$,

$$Y_{n,1/\varepsilon}^c = \{\omega \in [0,1] : |X_n(\omega) - 0| \ge \varepsilon\}$$

Sin embargo, observamos que:

$$\sum_{n=1}^{\infty} P(Y_{n,1/\varepsilon}^c) = \sum_{n=1}^{\infty} P(|X_n| \ge \varepsilon) = \sum_{n=1}^{\infty} P(X_n = 1) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Definición 3.5. Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias en (Ω, \mathcal{A}, P) . Decimos que X_n converge en probabilidad a X si para todo $\varepsilon>0$

$$P(Y_{n,\varepsilon}) \xrightarrow[n\to\infty]{} 1$$

En tal caso escribimos $X_n \xrightarrow{p} X$.

Teorema 3.10. El límite en probabilidad es único en casi todo punto.

Teorema 3.11. Si $X_n \xrightarrow{cs} X$, entonces $X_n \xrightarrow{p} X$.

Ejemplo. Sea $\Omega=[0,1],\, \mathcal{A}=\mathcal{B}_{[0,1]}$ y P=m la medida de Lebesgue. Consideramos:

$$X_n(\omega) = \omega^n$$

Calculamos el límite de la sucesión:

$$\lim_{n \to \infty} X_n(\omega) = \begin{cases} 0 & \text{si } 0 \le \omega < 1 \\ 1 & \text{si } \omega = 1 \end{cases}$$

Sea $X(\omega) = 0, X_n \xrightarrow{cs} X$ porque:

$$P(\{\lim_{n \to \infty} X_n \neq X\}) = P(\{1\}) = 0$$

Como X_n converge casi seguro, sabemos que X_n converge en probabilidad. Veamos que esto es cierto.

Sea $\varepsilon > 0$,

$$Y_{n,\varepsilon} = \{|X_n - X| < \varepsilon\} = \{X_n < \varepsilon\}$$

Observamos que:

$$F_n(x) = P(X_n \le x) = \begin{cases} 0 & \text{si } x < 0 \\ \sqrt[n]{x} & \text{si } 0 \le x < 1 \\ 1 & \text{si } x \ge 1 \end{cases}$$

Por tanto, si tomamos $\varepsilon \leq 1$,

$$P(Y_{n,\varepsilon}) = F_n(\varepsilon^-) = \sqrt[n]{\varepsilon} \xrightarrow[n \to \infty]{} 1$$

Ejemplo. Sean X_n variables aleatorias independientes de Bernoulli en un espacio de medida (Ω, \mathcal{A}, P) .

$$X_n(\omega) = \begin{cases} 1 & \text{si hay \'exito en la prueba } n \\ 0 & \text{si no hay \'exito en la prueba } n \end{cases}$$

Observamos que:

$$P(X_n = x) = \begin{cases} \frac{1}{n} & \text{si } x = 1\\ 1 - \frac{1}{n} & \text{si } x = 0\\ 0 & \text{en otro caso} \end{cases}$$

Sea X=0, veamos que X_n no converge casi seguro a X. Sea $\varepsilon>0$,

$$\sum_{n=1}^{\infty} P(Y_{n,\varepsilon}^c) = \sum_{n=1}^{\infty} P(X_n \ge \varepsilon) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Veamos que aún así X_n converge en probabilidad a X.

$$P(Y_{n,\varepsilon}^c) = P(X_n \ge \varepsilon) = \begin{cases} \frac{1}{n} & \text{si } 0 < \varepsilon \le 1\\ 0 & \text{si } \varepsilon > 1 \end{cases} \Rightarrow \lim_{n \to \infty} P(Y_{n,\varepsilon}^c) = 0 \quad \forall \varepsilon$$

Por tanto, $X_n \xrightarrow{p} X$.

Teorema 3.12. Si $X_n \stackrel{p}{\to} X$, entonces existe una subsucesión $\{X_{n_k}\}$ tal que $X_{n_k} \stackrel{cs}{\underset{k \to \infty}{\longleftarrow}} X$.

Teorema 3.13. $X_n \xrightarrow{p} X$ si y solo si toda subsucesión contiene una subsucesión convergente casi seguro.

Teorema 3.14. La convergencia en probabilidad implica la convergencia en distribución.

Teorema 3.15. Sean X_n y X en (Ω, \mathcal{A}, P) con $X \sim \delta(c)$ y c constante. Entonces la convergencia en probabilidad es equivalente a la convergencia en distribución.

Convergencia en L^p

Dado 0 , definimos:

$$L^{p}(\Omega, \mathcal{A}, P) = \{X : \Omega \to \mathbb{R} : E(|X|^{p}) < \infty\}$$

Nota. Los elementos de L^p son en realidad clases de equivalencia, con la relación de equivalencia dada por:

$$X \sim Y \Leftrightarrow X = Y$$
 en casi todo punto

Nota. Si X es una variable aleatoria que verifica $E(|X|^p) < \infty$, se dice que es p-integrable. Esta condición es equivalente a que:

$$\int_{\Omega} |X|^p dP < \infty$$

Para $1 \le p < \infty$ podemos definir la norma:

$$||X||_p = \left(\int_{\Omega} |X|^p dP\right)^{1/p}$$

Si $0 , <math>\|.\|$ es una pseudonorma.

Esta norma induce una métrica:

$$d: L^p \times L^p \to \mathbb{R}^+$$
$$d(X, Y) = ||X - Y||_p$$

Definición 3.6. Sean $X_n, X \in L^p(\Omega, \mathcal{A}, P)$. Decimos que X_n converge a X en L^p si:

$$||X_n - X||_p \xrightarrow[n \to \infty]{} 0$$

Equivalentemente, si:

$$E(|X_n - X|^p) \xrightarrow[n \to \infty]{} 0$$

En tal caso escribimos $X_n \xrightarrow{L^p} X$.

Ejemplo. Sean $\Omega = [0,1], \ \mathcal{A} = \mathcal{B}_{[0,1]} \ \text{y} \ P = m$ la medida de Lebesgue. Consideramos:

$$X_n(\omega) = nI_{[0,\frac{1}{n}]}(\omega) = \begin{cases} n & \text{si } 0 \le \omega \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} < \omega \le 1 \end{cases}$$

Veamos si X_n converge a X en L^p .

$$E(|X_n - X|^p) = E(|X_n|^p) = 0^p P(X_n = 0) + n^p P(X_n = n) =$$

$$= n^p m\left(\left[0, \frac{1}{n}\right]\right) = \frac{n^p}{n} = n^{p-1} \xrightarrow[n \to \infty]{} \begin{cases} 0 & \text{si } p < 1\\ 1 & \text{si } p = 1\\ \infty & \text{si } p > 1 \end{cases}$$

Luego X_n converge a X en L^p si p < 1.

Ejemplo. Sean $\Omega=[0,1],\ \mathcal{A}=\mathcal{B}_{[0,1]}$ y P=m la medida de Lebesgue. Consideramos:

$$X_n(\omega) = 2^n I_{\left[0, \frac{1}{n}\right]}(\omega) = \begin{cases} 2^n & \text{si } 0 \le \omega \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} < \omega \le 1 \end{cases}$$

Sea $X \sim \delta(0)$, se puede comprobar que $X_n \xrightarrow{p} X$. Veamos si X_n converge a X en L^p .

$$E(|X_n - X|^p) = E(|X_n|^p) = 0^p P(X_n = 0) + 2^{np} P(X_n = 2^n) =$$

$$= 2^{np} m\left(\left[0, \frac{1}{n}\right]\right) = \frac{2^{np}}{n} \xrightarrow[n \to \infty]{} \infty$$

Luego X_n no converge a X en L^p .

Proposición 3.16 (Desigualdad de Márkov). Sean X no negativa y a>0. Entonces:

$$P(X \ge a) \le \frac{E(X)}{a}$$

 $Si\ X\in L^p$,

$$P(X \ge a) \le \frac{E(X^p)}{a^p}$$

Observación. Si $X \in L^p$ cualquiera, |X| es no negativa luego:

$$P(|X| \ge a) \le \frac{E(|X|^p)}{a^p}$$

Teorema 3.17. Sean $X_n, X \in L^p$, con $0 . Si <math>X_n \xrightarrow{L^p} X$, entonces $X_n \xrightarrow{p} X$.

Teorema 3.18. El límite en L^p es único.

Teorema 3.19. Si $X_n \xrightarrow{p} X$ con $X_n, X \in L^p$ y existe $Y \in L^p$ tal que $|X_n| \leq Y$ para todo $n \in \mathbb{N}$, entonces $X_n \xrightarrow{L^p} X$.

3.2. Leyes de los grandes números

Ley débil de los grandes números

Sean X_1, \ldots, X_n variables aleatorias en (Ω, \mathcal{A}, P) y sea $S_n = X_1 + \cdots + X_n$. La sucesión $\{X_n\}_{n\geq 1}$ verifica la ley débil de los grandes números si existen sucesiones numéricas $\{a_n\}$ y $\{b_n\}$ con $b_n \uparrow \infty$ tales que:

$$\frac{S_n - a_n}{b_n} \xrightarrow{p} 0$$

Nota. Escribir $X_n \to c$ con $c \in \mathbb{R}$ es equivalente a $X_n \to X$ con $X \sim \delta(c)$.

Teorema 3.20 (Bernoulli). Sean X_1, \ldots, X_n variables aleatorias independientes con $X_i \sim Ber(p)$, donde 0 . Entonces:

$$\frac{S_n}{p} \xrightarrow{p} p$$

Es decir, $\{X_n\}_{n\geq 1}$ verifica la ley débil de los grandes números para $a_n=np$ y $b_n=n$.

Ejemplo (Ciclos de permutaciones aleatorias). Sea Ω_n el conjunto de permutaciones de n elementos, consideramos la permutación $\pi \in \Omega_9$ dada por:

Observamos que π tiene tres ciclos y se puede escribir como (1 3 6)(2 9 7 5)(4 8).

Tomando una permutación al azar de Ω_n , queremos estudiar cuántos ciclos tendrá. Definimos las variables:

$$X_{n,k} = \begin{cases} 1 & \text{si se cierra un ciclo tras el número en la posición } k \\ 0 & \text{en otro caso} \end{cases}$$

En el caso de π tenemos que $x_{9,3}=x_{9,7}=x_{9,9}=1$, con $x_{9,m}=0$ en el resto.

Observamos que $S_n = X_{n,1} + \cdots + X_{n,n}$ es el número de ciclos. Se puede demostrar que $X_{n,1}, \ldots, X_{n,n}$ son variables aleatorias independientes y que:

$$P(X_{n,k} = 1) = \frac{1}{n-k+1}$$

Calculemos su esperanza:

$$E(S_n) = E(X_{n,1}) + \dots + E(X_{n,n}) = \frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + 1 = \sum_{i=1}^{n} \frac{1}{i}$$

Podemos aproximar:

$$\sum_{i=1}^{n} \frac{1}{j} \sim \int_{1}^{n} \frac{1}{x} dx = \log(n)$$

Por tanto, sean $b_n = \log(n)$ y $a_n = E(S_n) = \log(n)$, entonces:

$$\frac{S_n - \log(n)}{\log(n)} \xrightarrow{p} 0 \Leftrightarrow \frac{S_n}{\log(n)} \xrightarrow{p} 1$$

Ejemplo (Polinomios de Bernstein). Sea f continua en [0,1]. Para cada $x \in [0,1]$, el polinomio de Bernstein de grado n asociado a f es:

$$f_n(x) = \sum_{m=0}^{n} \binom{n}{m} x^m (1-x)^{n-m} f\left(\frac{m}{n}\right)$$

Sean $X_i \sim Ber(p)$ para $i \geq 1$ con $0 . Entonces <math>S_n = X_1 + \cdots + X_n \sim Bi(n, p)$, con:

$$P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Por la ley débil de los grandes números de Bernoulli:

$$\frac{S_n}{n} \xrightarrow{p} p \Leftrightarrow \frac{S_n}{n} - p \xrightarrow{p} 0$$

Teorema 3.21 (Chebyshev). Sea $\{X_n\}_{n\geq 1}$ una sucesión de variables aleatorias independientes con media μ y varianza σ^2 constantes. Entonces:

$$\frac{S_n}{n} \xrightarrow{p} \mu$$

Teorema 3.22 (Chebyshev). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes con varianza acotada por una constante c. Entonces:

$$\frac{S_n - E(S_n)}{n} \xrightarrow{p} 0$$

Teorema 3.23 (Márkov). Sea $\{X_n\}$ una sucesión de variables aleatorias con $V\left(\frac{S_n}{n}\right) \xrightarrow[n \to \infty]{} 0$. Entonces:

$$\frac{S_n - E(S_n)}{n} \xrightarrow{p} 0$$

Teorema 3.24 (Khinchin). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con media $\mu < \infty$. Entonces:

$$\frac{S_n}{n} \xrightarrow{p} \mu$$

Ejemplo. Sean X_1, X_2, \ldots variables aleatorias independientes e idénticamente distribuidas con $X_j \sim U([0,1])$ para todo j. Sea $f:[0,1] \to \mathbb{R}$ una función medible en [0,1] tal que:

$$\int_0^1 |f(x)| dx < \infty$$

Consideramos las variables aleatorias $f(X_1), f(X_2), \ldots$ Observamos que:

$$E(f(X_j)) = \int_0^1 f(x)dx < \infty$$

Por la ley débil de los grandes números:

$$\frac{1}{n}(f(X_1) + \dots + f(X_n)) \xrightarrow{p} \int_0^1 f(x)dx$$

Ejemplo. Sean X_1, X_2, \ldots variables aleatorias independientes e idénticamente distribuidas con valores en $\{1, \ldots, n\}$ con n fijo, donde X_i es el valor del dato i-ésimo. Definimos la variable $\tau_k^n = \inf\{m \leq n : \#\{X_1, \ldots, X_m\} = k\}$, que representa el instante en el cual obtenemos k datos distintos. Es claro que $\tau_1^n = 1$ y asumimos $\tau_0^n = 0$.

Definimos también $X_{n,k} = \tau_k^n - \tau_{k-1}^n$, para $1 \le k \le n$, que indica el tiempo en conseguir el k-ésimo dato distinto. Observamos que:

$$X_{n,k} \sim Ge\left(\frac{n-(k-1)}{n}\right)$$

Por tanto:

$$E(X_{n,k}) = \frac{n}{n - (k-1)}, \quad V(X_{n,k}) = \left(\frac{n}{n - (k-1)}\right)^2$$

Por último, definimos $T_n = \sum_{k=1}^n X_{n,k} = \tau_n^n$, que es el tiempo en completar la colección.

$$E(T_n) = \sum_{k=1}^n \frac{n}{n - (k-1)} = n \sum_{m=1}^n \frac{1}{m} \sim n \log(n)$$

$$V(T_n) = \sum_{k=1}^n \left(\frac{n}{n - (k-1)}\right)^2 = n^2 \sum_{m=1}^n \frac{1}{m^2} \le n^2 \sum_{m=1}^\infty \frac{1}{m^2} = n^2 \frac{\pi^2}{6}$$

Tomamos $a_n = E(T_n)$ y $b_n = n \log(n)$. Como $\frac{V(T_n)}{b_n} \to 0$ y se verifica la ley débil de los grandes números, entonces:

$$\frac{T_n - n\log(n)}{n\log(n)} \xrightarrow{p} 0$$
, es decir, $\frac{T_n}{n\log(n)} \xrightarrow{p} 1$

Si n=365, entonces el tiempo en completar la colección será aproximadamente $T_n \sim 365 \log(365) > 2153$.

Ley fuerte de los grandes números

Definición 3.7. Una sucesión $\{X_n\}_{n\geq 1}$ de una variable aleatoria verifica la ley fuerte de los grandes números si existen sucesiones numéricas $\{a_n\}$ y $\{b_n\}$ con $b_n \uparrow \infty$ tales que:

$$\frac{S_n - a_n}{b_n} \xrightarrow{cs} 0$$

donde $S_n = \sum_{i=1}^n X_i$.

Observación. Estudiaremos el caso $a_n=E(S_n),\ b_n=n.$ Queremos estudiar la convergencia de series de variables aleatorias, como $\sum_{i=1}^{\infty} X_n$ y $\sum_{i=1}^{\infty} (X_n-E(X_n))$. Diremos que una serie $\sum_{i=1}^{\infty}$ converge casi seguro para indicar que $\sum_{i=1}^{\infty} X_n < \infty$ en casi todo punto.

Lema 3.25. Sea $\{X_n\}$ una sucesión de variables aleatorias. Entonces $\sum_{n=1}^{\infty} X_n$ converge casi seguro si y solo si:

$$\lim_{n \to \infty} \lim_{m \to \infty} P(\max_{1 \le j \le m} |S_j - S_n| \ge \varepsilon) = 0, \quad \forall \varepsilon > 0$$

Teorema 3.26 (Criterio de convergencia de Kolmogórov). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes con $\sum_{n=1}^{\infty} V(X_n) < \infty$. Entonces $\sum_{n=1}^{\infty} (X_n - E(X_n)) < \infty$ casi seguro.

Observación. Si $\sum_{n=1}^{\infty} (X_n - E(X_n)) < \infty$ casi seguro, entonces:

$$\sum_{n=1}^{\infty} X_n < \infty \text{ casi seguro } \Leftrightarrow \sum_{n=1}^{\infty} E(X_n) < \infty$$

Teorema 3.27 (Recíproco del criterio de convergencia de Kolmogórov). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes. Si existe una constante c > 0 tal que $\{X_n\} \le c$ casi seguro para todo $n \ge 1$, entonces:

$$\sum_{n=1}^{\infty} (X_n - E(X_n)) < \infty \ casi \ seguro \ \Leftrightarrow \sum_{n=1}^{\infty} V(X_n) < \infty$$

Corolario 3.28. Sea $\{X_n\}$ una sucesión de variables aleatorias independientes tales que $\{X_n\} \leq c$ para alguna constante c > 0. Si $\sum_{n=1}^{\infty} X_n < \infty$ casi seguro, entonces también convergen casi seguro las series:

$$\sum_{n=1}^{\infty} (X_n - E(X_n)), \quad \sum_{n=1}^{\infty} E(X_n), \quad \sum_{n=1}^{\infty} V(X_n)$$

Teorema 3.29 (Condición suficiente de Kolmogórov). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes con varianza finita. Si $\sum_{n=1}^{\infty} \frac{V(X_n)}{n^2} < \infty$ entonces $\{X_n\}$ verifica la ley fuerte de los grandes números, es decir,

$$\frac{S_n - E(S_n)}{n} \xrightarrow{cs} 0$$

Lema 3.30 (Kronecker). Sean $\{X_n\}$ una sucesión de variables aleatorias y $\{a_n\}$ una sucesión de números reales con $a_n \uparrow \infty$. Si $\sum_{n=1}^{\infty} \frac{X_n}{a_n} < \infty$ casi seguro, entonces:

$$\frac{1}{a_n} \sum_{k=1}^n X_k \xrightarrow{cs} 0$$

Definición 3.8. Sean $\{X_n\}$ una sucesión de variables aleatorias y $\{c_n\}$ una sucesión de reales no negativos. Se define la sucesión de las variables aleatorias truncadas como $\{Y_n\}_{n\geq 1}$, donde:

$$Y_n = X_n I_{\{|X_n| < c_n\}}$$

Definición 3.9. Dos sucesiones de variables aleatorias $\{X_n\}$ e $\{Y_n\}$ son equivalentes en convergencia cuando:

$$\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty$$

Teorema 3.31. Si $\{X_n\}$ e $\{Y_n\}$ son equivalentes en convergencia, entonces se verifican:

1.
$$P(\limsup_{n\to\infty} \{X_n \neq Y_n\}) = 0$$

2.
$$\sum_{n=1}^{\infty} X_n < \infty$$
 casi seguro $\Leftrightarrow \sum_{n=1}^{\infty} Y_n < \infty$ casi seguro

3.
$$\frac{1}{n} \sum_{k=1}^{n} (X_k - Y_k) \xrightarrow[n \to \infty]{cs} 0$$

Observación. Si elegimos $c_n = c$ constante para todo $n \in \mathbb{N}$,

$$Y_n = X_n I_{\{|X_n| < c\}} = \begin{cases} X_n & \text{si } |X_n| < c \\ 0 & \text{en otro caso} \end{cases}$$

Entonces:

$$\sum_{n=1}^{\infty} P(X_n \neq Y_n) = \sum_{n=1}^{\infty} P(|X_n| \ge c)$$

Si existe c tal que esa serie es finita, tenemos equivalencia entre $\{X_n\}$ e $\{Y_n\}$.

Ejemplo. Sea $\{X_n\}$ una sucesión de variables aleatorias independientes con medida de probabilidad inducida:

$$P_{X_n}(a) = \begin{cases} \frac{1}{2} \left(1 - \frac{1}{n^2} \right) & \text{si } a = -1, 1\\ \frac{1}{2n^2} & \text{si } a = -e^n, e^n\\ 0 & \text{en el resto} \end{cases}$$

Observamos que X_n es discreta, con $sop(X_n) = \{-e^n, -1, 1, e^n\}$.

Queremos ver que $\{X_n\}$ verifica la ley fuerte de los grandes números. Sin embargo:

$$\sum_{n=1}^{\infty} \frac{V(X_n)}{n^2} = \sum_{n=1}^{\infty} \left(\frac{1}{n^2} - \frac{1}{n^4} + \frac{e^{2n}}{n^4} \right) = \infty$$

El problema es que las variables no tienen $E(X_n^2) < \infty$. Para solucionarlo, consideramos las variables truncadas:

$$Y_n = X_n I_{\{-1,1\}} = X_n I_{\{|X_n| < 1 + \varepsilon\}}$$

Observamos que:

$$\sum_{n=1}^{\infty} P(X_n \neq -1, 1) = \sum_{n=1}^{\infty} P(X_n = e^n, X_n = e^{-n}) = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$

Teorema 3.32 (Tres series de Kolmogórov). Sean $\{X_n\}$ una sucesión de variables aleatorias independientes y $\{X_n^c\}$ la sucesión de variables aleatorias truncadas por alguna constante c > 0. Supongamos que las tres siguientes series convergen:

$$\sum_{n=1}^{\infty} P(X_n \neq X_n^c), \quad \sum_{n=1}^{\infty} E(X_n^c), \quad \sum_{n=1}^{\infty} V(X_n^c)$$

Entonces $\sum_{n=1}^{\infty} X_n$ converge casi seguro.

Reciprocamente, si $\sum_{n=1}^{\infty} X_n < \infty$ casi seguro, entonces las tres series convergen para todo c > 0.

Lema 3.33. Sea X una variable aleatoria. Entonces:

$$E(|X|) < \infty \Leftrightarrow \sum_{n=1}^{\infty} P(|X| \ge n) < \infty$$

Además:

$$\sum_{n=1}^{\infty} P(|X| \ge n) \le E(|X|) \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n)$$

Teorema 3.34 (Ley fuerte de los grandes números). Sean X_1, X_2, \ldots variables aleatorias independientes e idénticamente distribuidas con $E(X_i) = \mu < \infty$ para todo i. Sea $S_n = X_1 + \cdots + X_n$. Entonces:

$$\frac{S_n}{n} \xrightarrow{cs} \mu$$

Recíprocamente, si $\frac{S_n}{n} \xrightarrow{cs} c$, con c constante, entonces $E(X_i) = c$ para todo i.

3.3. Teorema central del límite

Teorema 3.35 (Teorema central del límite de Lindeberg-Lévy). Sean variables aleatorias X_1, X_2, \ldots independientes e idénticamente distribuidas con media $E(X_i) = \mu < \infty$ y varianza $V(X_i) = \sigma^2 < \infty$ para todo i. Sean $S_n = X_1 + \cdots + X_n$. Entonces:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{\sqrt{n}}{\sigma} \left(\frac{S_n}{n} - \mu\right) \xrightarrow{d} Z \sim N(0, 1)$$

Observación. En particular, si $\mu = 0$ y $\sigma^2 = 1$, entonces:

$$\frac{S_n}{\sqrt{n}} \xrightarrow{d} Z \sim N(0,1)$$

Ejercicio. Sean $X_n \sim U([0,\pi])$ variables aleatorias independientes e idénticamente distribuidas. Sea $S_n = \sum_{j=1}^n \sin(X_j)$. Queremos encontrar sucesiones $\{a_n\}$ y $\{b_n\}$ tales que:

$$\frac{S_n - a_n}{b_n} \xrightarrow{d} Z \sim N(0, 1)$$

Definimos $Y_j = \sin(X_j)$, de forma que $S_n = \sum_{j=1}^n Y_j$. Veamos si $E(Y_j)$ y $V(Y_j)$ son constantes para aplicar el teorema central del límite de Lindeberg-Lévy.

$$E(Y_j) = \int_0^{\pi} \sin(x) f(x) dx = \frac{1}{\pi} \int_0^{\pi} \sin(x) dx = \frac{2}{\pi}$$
$$E(Y_j^2) = \frac{1}{\pi} \int_0^{\pi} \sin^2(x) dx = \frac{1}{2}$$

Como $E(Y_j)=\frac{2}{\pi}$ y $V(Y_j)=\frac{1}{2}-\left(\frac{2}{\pi}\right)^2$ son constantes, los X_n verifican el teorema central del límite de Lindeberg-Lévy para:

$$a_n = n\mu = \frac{2n}{\pi}, \quad b_n = \sqrt{n\left(\frac{1}{2} - \frac{4}{\pi^2}\right)}$$

Teorema 3.36 (Teorema central del límite de Lindeberg-Feller). Sean variables aleatorias X_1, X_2, \ldots independientes con $E(X_n) = \mu_n < \infty$ y $V(X_n) = \sigma_n^2 < \infty$. Sea $S_n = X_1 + \cdots + X_n$ y sea $S_n = V(S_n) = \sum_{j=1}^n \sigma_j$. Entonces:

1.
$$\frac{1}{s_n} \sum_{j=1}^n (X_j - \mu_j) \xrightarrow{d} Z \sim N(0,1)$$

2.
$$\max_{1 \le j \le n} \frac{\sigma_j^2}{s_n^2} \xrightarrow[n \to \infty]{} 0$$

es equivalente a:

$$L_n(\varepsilon) = \frac{1}{s_n^2} \sum_{j=1}^n \int_{|x-\mu_j| > \varepsilon s_n} (x - \mu_j)^2 dF_j(x) \xrightarrow[n \to \infty]{} 0, \quad \forall \varepsilon > 0$$