

Mark scheme (Unused)

January 2022

Pearson Edexcel International Advanced Level In Physics (WPH15/01) Paper 5: Thermodynamics, Radiation, Oscillations

and Cosmology

Question Number				
1	B is the correct answer	(1)		
	A is not correct, as binding energy is not related to temperature			
	C is not correct, as a high collision rate is determined by the density			
	D is not correct, as a very high temperature doesn't mean a high density			
2	C is the correct answer, as $g = \frac{GM}{r^2}$ and $M = \rho V$	(1)		
3	B is the correct answer	(1)		
	A is not correct, as the electronic charge has been used to convert the mass			
	C is not correct, as the conversion of mass to kg is incorrect			
	D is not correct, as the conversion of mass to kg is incorrect			
4	D is the correct answer,	(1)		
	A is incorrect, as the amplitude decreases over time for a damped oscillation			
	B is incorrect, as the amplitude stays constant over time for a free oscillation			
	C is incorrect, as the amplitude may stay constant or decrease over time for a natural oscillation			
5	D is the correct answer, as the count rate halves for each thickness of 1.5 cm	(1)		
6	C is the correct answer, as $v_{\text{max}} = 2\pi f A$	(1)		
7	A is the correct answer, as $I = \frac{L}{4\pi d^2}$ gives d, so I and L must be known	(1)		
8	B is the correct answer, as it is incorrect to say frequency decreases over time	(1)		
9	B is the correct answer	(1)		
	A is incorrect, as X is a diagram for a very old star cluster (white dwarf stars present)			
	C and D are incorrect, as Z is a diagram for a medium age star cluster (red giant, but no white dwarf stars present)			
10	C is the correct answer	(1)		
	A is incorrect, as there are for more nucleons in a nucleus of ²³⁸ U than in ¹²⁰ Sn			
	B is incorrect, as a nucleus of ¹²⁰ Sn has a higher B.E./nucleon than ¹⁶ O			
	D is incorrect, as we cannot deduce this statement from the graph.			

Question	Answer	Mark
Number		
11	Use of $V = \frac{4}{3}\pi r^3$ (1)	
	Use of $pV = NkT$ (1)	
	Conversion of temperature to kelvin (1)	
	$N = 6.76 \times 10^{23} \tag{1}$	4
	Example of calculation	
	$V = \frac{4}{3}\pi (0.185 \text{ m})^3 = 2.65 \times 10^{-2} \text{ m}^3$	
	$N = \frac{pV}{kT} = \frac{1.04 \times 10^5 \text{Pa} \times 2.65 \times 10^{-2} \text{m}^3}{1.38 \times 10^{-23} \text{J K}^{-1} \times (273 + 22.5) \text{K}} = 6.76 \times 10^{23}$	
	Total for question 11	4

Question	Answer	Mark
Number		
12	Use of $\frac{v}{c} = \frac{\Delta \lambda}{\lambda}$	
	Use of $v = H_0 d$	
	$d = 1.4 \times 10^{24} \mathrm{m} \tag{1}$	3
	Example of calculation	
	$v = \frac{\Delta \lambda}{\lambda} c = \frac{(438.6 - 434.1) \times 10^{-9} \text{m}}{434.1 \times 10^{-9} \text{m}} \times 3.00 \times 10^{8} \text{m s}^{-1} = 3.11 \times 10^{6} \text{m s}^{-1}$	
	$d = \frac{3.11 \times 10^6 \text{ m s}^{-1}}{2.3 \times 10^{-18} \text{ s}^{-1}} = 1.35 \times 10^{24} \text{ m}$	
	Total for question 12	3

Question	Answer		Mark
Number			
13	MAX 4		
	The student is correct to say that the rate of decay decreases over time	(1)	
	However, the uranium doesn't become more stable, the number of unstable		
	uranium nuclei decreases.	(1)	
	The student should have said that radiation is emitted from the nucleus [accept atom]	(1)	
	The student was wrong to say that the particles emitted are radioactive	(1)	
	Because the emitted particles do not decay	(1)	
	In a time equal to the half-life the number of unstable nuclei (and not the		
	mass) decreases by 50%.	(1)	
	Because the product nuclei are nearly as massive as the unstable nuclei	(1)	4
	Total for question 13		4

Question	Answer		Mark
Number			
14(a)	The star is viewed from two positions at 6 month intervals Or the star is viewed from opposite ends of the diameter of the Earth's orbit about the Sun	(1)	
	The change in angular position of the star against backdrop of distant/fixed stars is measured	(1)	
	Trigonometry is used to calculate the distance to the star [Do not accept Pythagoras]	(1)	
	The diameter/radius of the Earth's orbit about the Sun must be known	(1)	4
	Full marks may be obtained from a suitably annotated diagram		
	$\begin{array}{c} E_2\\ R=1 \text{A.U.} \\ \theta_2\\ \theta_1\\ E_1 \end{array}$ to fixed/distant stars		
14(b)	Use of $s = ut$	(1)	
	$s = 9.7 \times 10^{16} (\text{m})$	(1)	2
	Example of calculation		
	$s = 3.00 \times 10^8 \text{ m s}^{-1} \times 10.3 \times (365 \times 86400) \text{ s} = 9.74 \times 10^{16} \text{ m}$		
	Total for question 14		6

Question	Answer		Mark
Number 15(a)	Use of $E_{\rm k} = \frac{1}{2}mv^2$	(1)	
	Ose of $E_{\rm k} = \frac{1}{2}m\nu$		
	Use of $E = mc\Delta\theta$	(1)	
	Use of efficiency= $\frac{\text{useful energy output}}{\text{total energy input}}$	(1)	
	Required energy = 1.9×10^4 J		
	Or temperature rise = 29 K	74 S	
	Or number of hits = 850	(1)	
	Conclusion based on calculated values of energy transfer Or Conclusion based on calculated value of temperature rise Or Conclusion based on calculated value of number of hits	(1)	5
	[conclusion must include a comparison of appropriate data]		
	Example of calculation		
	$E_{\rm k} = \frac{1}{2} \times 1.1 \text{ kg} \times (7.5 \text{ m s}^{-1})^2 = 30.9 \text{ J}$		
	$E = 1000 \times 30.9 \text{ J} \times 0.72 = 2.23 \times 10^4 \text{ J}$		
	$E = (1.1 + 0.45) \text{ kg} \times 490 \text{ J kg}^{-1} \text{ K}^{-1} \times 25 \text{ K} = 1.90 \times 10^4 \text{ J}$		
	[If mass of hammer neglected, $E = 0.45 \text{ kg} \times 490 \text{ J kg}^{-1}$ $\text{K}^{-1} \times 25 \text{ K} = 5.51 \times 10^3 \text{ J}$		
15(b)	No thermal energy is transferred (from the steel plate) to surroundings		
	Or hammer comes to rest after hitting the steel plate	(1)	1
	[Allow no energy is used to deform the steel]	(1)	1
	Total for question 15		6

Question Number	Answer	Mark
16(a)	Use of $\omega = \frac{2\pi}{T}$ (1)	
	T T	
	Use of $v = r\omega$ (1)	
	$v = 1.02 \times 10^3 \text{ m s}^{-1}$ (1)	3
	Example of calculation	
	$\omega = \frac{2\pi}{27.3 \times 86400 \text{ s}} = 2.66 \times 10^{-6} \text{ rad s}^{-1}$	
4.60.20	$v = 3.84 \times 10^8 \text{ m} \times 2.66 \times 10^{-6} \text{ rad s}^{-1} = 1023 \text{ m s}^{-1}$	
16(b)(i)	$\Delta E_{grav} = mg\Delta h$ is appropriate for situations in which g is approximately constant (1)	
	As the distance moved is only a small fraction of the distance to the Earth, the value of g hardly changes (1)	2
16(b)(ii)	Use of $g = \frac{GM}{r^2}$ (1)	
	Use of $\Delta E_{grav} = mg\Delta h$ (1)	
	$\Delta E_{\text{grav}} = 7.6 \times 10^{19} \text{J} \tag{1}$	
	OR	
	Use of $V_{\text{grav}} = -\frac{GM}{r}$ (1)	
	Recognises that $\Delta E_{\text{grav}} = m \times \Delta V_{\text{grav}}$ (1)	
	$\Delta E_{\text{grav}} = 7.6 \times 10^{19} \text{J} \tag{1}$	3
	Example of calculation	
	$g = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.02 \times 10^{24} \text{ kg}}{(3.84 \times 10^8 \text{ m})^2} = 2.72 \times 10^{-3} \text{ N kg}^{-1}$	
	$\Delta E_{grav} = 7.35 \times 10^{22} \text{kg} \times 2.72 \times 10^{-3} \text{N kg}^{-1} \times 0.38 \text{ m} = 7.61 \times 10^{19} \text{ J}$	
	Total for question 16	8

Question Number	Answ	er					Mark
*17				udent's ability to should reaso		nd logically structured	
			arded for indiffer reasoning.	icative content and t	for how the answ	ver is structured and	
	The for		g table shows	how the marks show	uld be awarded f	or structure and lines of	
						rks awarded for structure of stained line of reasoning	
	struc	ture wi	-	and logical d fully sustained strated throughout		2	
	Ansv linka	ver is pages and	artially struct	ured with some oning		1	
		ver has structui		etween points and		0	
			nwarded is the lines of reaso	sum of marks for in	ndicative conten	t and the marks for	
	IC p	ooints	IC mark	Max linkage mark	Max final mark		
		6	4	2	6	_	
		5	3	2	5	_	
		4	3	1	4	4	
		3	2	1	3	_	
		2 1	2 1	0	2	-	
		0	0	0	0	-	
		tive co	ntent	ces act on objects		_	
	IC2			s exert forces on o		rge	
	IC3	force Or e	es are always lectric poten	an be attractive or a s attractive tial can be positive ential is always ne	e or negative, b	•	
	IC4			an infinite range e an example of "a	action at a dista	nce"	
	IC5		-	ional field around int charge obey an	-		6
	IC6	inter Or tl	action betwe	etween unit charge en unit masses (at orce between point ee between unit ma	a given separa charges is larg	tion) er than the	
	[for 2	linkaga	e marks ther	e must be at least	1 similarity and	1 1 differencel	
			estion 17	- Indst oo ut loust	. Similarity and		6
		7.5					

Question Number	Answer		Mark
18(a)(i)	Use of $P = \frac{\Delta E}{\Delta t}$	(1)	
		(1)	
	Δm	(1)	3
	$\frac{\Delta m}{\Delta t} = 5.04 \times 10^9 (\text{kg s}^{-1})$		
	Example of calculation		
	$\frac{\Delta m}{\Delta t} = \frac{4.54 \times 10^{26} \mathrm{W}}{(3.00 \times 10^8 \mathrm{m})^2} = 5.04 \times 10^9 \mathrm{kg s^{-1}}$		
18(a)(ii)	Use of 0.08 %	(1)	
	Use of $\frac{\Delta m}{\Delta t}$ from (a)	(1)	
	$t = 9.9 \times 10^9$ years (ecf from (i))	(1)	3
	Example of calculation		
	$\Delta m = \frac{0.08}{100} \times 1.97 \times 10^{30} \text{ kg} = 1.576 \times 10^{27}$		
	$t = \frac{1.576 \times 10^{27} \text{ kg}}{5.04 \times 10^9 \text{ kg s}^{-1}} = 3.13 \times 10^{17} \text{ s} = 9.90 \times 10^9 \text{ years}$		
18(b)	(Gamma Pavonis is more massive so) there is a greater temperature (and pressure) in the core	(1)	
	Rate of fusion is (much) higher than in delta Pavonis	(1)	
	Hence the time spent on main sequence is less and the suggestion is incorrect	(1)	3
	MP3 dependent on MP2		
	Total for question 18		9

Question Number	Answer	Mark
19(a)(i)	Use of $\Delta F = k\Delta x$ with $F = mg$ (1)	
	$k = 213 \text{ (N m}^{-1})$	2
	Example of calculation	
	$k = \frac{mg}{\Delta x} = \frac{65.0 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{(48.0 - 45.0) \text{ m}} = 212.6 \text{ N m}^{-1}$	
19(a)(ii)	(For simple harmonic motion the) acceleration is:	
	 (directly) proportional to displacement from equilibrium position acceleration is in the opposite direction to displacement Or (always) acting towards the equilibrium position 	
	OR (always) acting towards the equinorium position (1)	
	(For simple harmonic motion the resultant) force is:	
	 (directly) proportional to displacement from equilibrium position force is in the opposite direction to displacement 	
	Or (always) acting towards the equilibrium position (1)	2
19(a)(iii)	Use of $T = 2\pi \sqrt{\frac{m}{k}}$ with $f = \frac{1}{T}$ (1)	
	f = 0.27 (Hz)	
	J = 0.27 (112)	
	Example of calculation	
	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{210 \text{ N m}^{-1}}{75 \text{ kg}}} = 0.266 \text{ Hz}$	
19(a)(iv)	Use of $\omega = 2\pi f$ (1))
	Use of $a = -\omega^2 x$	
	$a = 3.4 \text{ m s}^{-2} \text{ (ecf from (iii))}$ (1)	
	Example of calculation (1)	3
	$\omega = 2\pi \times 0.266 \text{ s}^{-1} = 1.67 \text{ rad s}^{-1}$ $a = (1.67 \text{ rad s}^{-1})^2 \times 1.2 \text{ m} = 3.35 \text{ m s}^{-2}$	
19(b)	Work is done against air resistance (1))
	Or air resistance causes damping (1)	
	So energy is transferred to the surroundings	
	Amplitude decreases to zero	3
	Total for question 19	12

Question Number	Answer		Mark		
20(a)	Top line correct Bottom line correct	(1) (1)	2		
	$^{210}_{82}\text{Pb} \rightarrow ^{210}_{83}\text{Bi} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\overline{\nu}_{e}$				
20(b)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)			
	Use of $\frac{\Delta N}{\Delta t} = (-)\lambda N$	(1)			
	Use of $A = A_0 e^{-\lambda t}$				
	Activity is 25 Bq after 1.87 years, so claim is false.	(1)	4		
	Example of calculation:				
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{372 \times 86400 \text{ s}} = 2.16 \times 10^{-8} \text{ s}^{-1}$				
	$\frac{\Delta N}{\Delta t} = \lambda N = 2.16 \times 10^{-8} \text{ s}^{-1} \times 4.15 \times 10^{9} = 89.6 \text{ Bq}$				
	$25 = 89.6 \times e^{-2.16 \times 10^{-8} t}$				
	$-2.16 \times 10^{-8} \mathrm{s}^{-1} \times t = \ln\left(\frac{25 \mathrm{Bq}}{89.6 \mathrm{Bq}}\right)$				
	$t = \frac{-1.28}{-2.16 \times 10^{-8} \text{ s}^{-1}} = 5.91 \times 10^7 \text{ s} = 1.87 \text{ year}$				
20(c)	One pair of readings taken from graph and Rx^2 calculated	(1)			
	2 more pairs of readings taken from graph and Rx^2 calculated	(1)			
	Check if Rx^2 is constant and conclusion consistent with calculations	(1)	3		
	Example of calculation				
	R/s^{-1} x/cm $Rx^2/cm^2 s^{-1}$				
	150.0 20.0 60000 45.0 40.0 72000				
	22.5 60.0 81000				
20(d)	The tracks are thick indicating a heavily ionizing radiation	(1)			
20(u)					
	The tracks are straight indicating that the radiations are massive Or the tracks are all about the same length so all the radiations have the same energy	(1)			
	Therefore the tracks are made by radiation from an alpha source [dependent on MP1 or MP2]	(1)	3		
	Total for question 20		12		

Question	Answer	Marl	k
Number 21(a)	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$ (1))	
	T = 5800 (K)) 2	
	Example of calculation		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{5.0 \times 10^{-7} \text{ m}} = 5796 \text{ K}$		
21(b)	Use of $I = \frac{L}{4\pi d^2}$)	
	Use of $L = \sigma A T^4$)	
	Use of $A = 4\pi r^2$)	
	$r = 7.0 \times 10^8 \text{ m (ecf from (a))}$ (1)) 4	
	Example of calculation		
	$L = 590 \text{ W m}^{-2} \times 4\pi \times (2.3 \times 10^{11} \text{ m})^2 = 3.92 \times 10^{26} \text{ W}$		
	$A = \frac{3.92 \times 10^{26} \text{ W}}{5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (5800 \text{ K})^4} = 6.11 \times 10^{18} \text{ m}^2$		
	$r = \sqrt{\frac{6.11 \times 10^{18} \text{ m}^2}{4\pi}} = 6.97 \times 10^8 \text{ m}$		
21(c)	Use of 22% (1)	
	Use of efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$ (1))	
	Use of $I = P/A$ with $A = \pi r^2$)	
	P = 1030 W (1.03 kW) so the power requirement is met. (1) 4	
	Example of calculation		
	$I = 0.78 \times 590 \text{ W m}^{-2} = 460 \text{ W m}^{-2}$		
	$A = \pi \times (1.1 \text{ m})^2 = 3.8 \text{ m}^2$		
	$P = 0.295 \times 460 \text{ W m}^{-2} \times 3.8 \text{ m}^2 \times 2 = 1030 \text{ W}$		
	Total for question 21	10	