Equipe
Emanuel Ricardo Silveira
lêssa Soares de Paula
Pedro Barros da Silva Dias

Trabalho Final de Eletrotécnica Geral Moinho de Barras

Brasil

Equipe Emanuel Ricardo Silveira lêssa Soares de Paula Pedro Barros da Silva Dias

Trabalho Final de Eletrotécnica Geral Moinho de Barras

Trabalho prático em conformidade com as normas ABNT apresentado à Matéria de Eletrotécnica Geral. LaTEX.

Universidade Federal de Ouro Preto - UFOP Escola de Minas Programa de Graduação

Brasil

2017

Lista de ilustrações

Figura 1 –	Funcionamento	10
$Figura\ 2\ -$	Cascata	11
Figura 3 -	Catarata	1.

Sumário

1	OBJETIVO
2	REQUISITOS 8
3	MATERIAIS USADOS 9
4	FUNCIONAMENTO
5	DINÂMICA INTERNA 11
6	MOTOR CORRENTE CONTÍNUA 12
7	USO DO CARREGADOR COMO RETIFICADOR
8	VELOCIDADE CRÍTICA 14
9	CONCLUSÃO

1 Objetivo

Projetar uma réplica simplificada de um moinho de barras com o objetivo de utilizar um motor de corrente continua cuja potência não faça o moinho girar acima da velocidade critica. As escolhas dos materias também foram feitas de forma a permitir a visualização da dinamica interna do moinho, funcionando de modo a valorizar a exibição dos regimes de funcionamento, que podem ser cascata, catarata ou regime critico. Permitindo assim uma compreensão mais completa por parte do observado da replica.

2 Requisitos

Para o funcionamento do moinho de barras foi necessário a utilização de um motor de corrente contínua de 6 volts, um carregador de celular acoplado ao motor para mudar de ${\rm CA}$ - ${\rm CC}$.

3 Materiais Usados

Galão de água de 20 linhos - Simulando a carcaça/ revestimento do moinho original. Duas caixas - Usadas para o encaixe do mesmo. Motor de corrente contínua Carregador de celular - Usado como retificador. Canos de pvc - Simular as barras . Mini copos de plastico - Simulando o minério.

4 Funcionamento

O funcionamento será simples, sendo o motor acoplado num galão através de um eixo sendo responsável pelo giro do galão. O giro fará com que o material interior entre em regime de cascata ou catarata, dependendo da velocidade de rotação. O galão ficou suspenso por duas caixas, em que uma continha o motor e a outra servia como base do galão.

Figura 1 – Funcionamento

5 Dinâmica Interna

Cascata: O material não "salta" dentro do moinho. Todo cominuição se dá pelo rolamento e atrito dos corpos.

Figura 2 – Cascata

Catarata: O material é jogado de forma que a moagem se dá tanto pelo atrito do rolamento quanto pelos choques.

Figura 3 – Catarata

6 Motor Corrente Contínua

São motores de custo mais elevado e, além disso, precisam de uma fonte de corrente contínua, ou de um dispositivo que converta em C a CA que comumente se encontra disponível. Podem funcionar com velocidade ajustável entre amplos limites e normalmente se prestam a serem acionados por controles de grande flexibilidade e precisão na regulação de velocidade. O funcionamento de um motor de corrente contínua (MCC) está baseado nas forças produzidas da interação entre o campo magnético e a corrente de armadura no rotor, que tendem a mover o condutor num sentido que depende do sentido do campo e da corrente na armadura (regra de Fleming ou da mão direita).

No nosso trabalho, usamos de um motor ce oferecido pelo laboratorio de aula, e para converter em corrente alternada foi usado o carregador de celular, que tem a função de retificar as ondas.

7 Uso do carregador como retificador

Retificador é um dispositivo que permite que uma tensão, ou corrente alternada(CA) (normalmente senoidal) seja constante , ou seja transformada em contínua. O carregador do celular tem essa função. Para usá-lo, tivemos que descarcar as pontas de seu fio depois conectamos os fios também descascados do motor à ele, depois só ligar à tomada.

8 Velocidade Crítica

A velocidade crítica é a velocidade a partir do qual as partículas saem dos regimes de catarata e/ou cascata e passam a sofrer centrifugação, nesse regime as partículas são atiradas contra as paredes do moinho perdendo eficiência na operação já que o material não será eficientemente moído, podendo causar também danos na estrutura da máquina. As barras começam a se chocar danificando-se e danificando o revestimento interno.

$$Vc = 60/2pi * raiz(g/R - r)$$

$$g = 981cm/s^2$$

$$R = raio do moinho em cm.$$

$$r = raio das esferas/ diâmetro da barra.$$
 É aconselhável que se trabalhe cerca de 60 a 70

9 Conclusão

O motor inical girava em uma velcidade alta, porém com o torque insuficiente para girar o galão. Após conseguir solucionar os problemas para a adaptação do novo motor, um motor mais forte, de meio cavalo, foi possivel perceber, ainda que de forma rápida, que o mateial passava pelas três fases de movimentação. O material começou em regime cascata, e apos ganhar velocidade e rodar em catarata, mudava para regime critico rapidamente, de forma que após alguns segundos era de necessidade desligar o motor para evitar acidentes com a montagem.

- [1] http://www.hjcrusher.com.pt/1-rod-mill-12.html. Acesso: 5/07/2017.
- [2] http://furlan.com.br/moinho-de-barras-bolas/
- $[3] \ https://pt.slideshare.net/130682/cominuio-moagem-12145032$
- [4]http://www.ceermin.demin.ufmg.br/monografias/2.PDF
- [5] http://pontociencia.org.br/experimentos/visualizar/adaptando-carregador-de-celular/251
- [6]