# The chemicals of life

**Biological molecules** 

## Water

Most cells contain about 70% water, the space between our cells are also filled with a watery fluid called tissue fluid.

- Importance of water
- Water is a good solvent.
- Water form a transport medium for many substance, for example, glucose, amino acids, urea ......
- Water molecules take part in a great many vital chemical reaction (metabolic reactions). e.g. photosynthesis and hydrolysis.
- Water pressure in the plant vacuoles keeps the cell turgid (firm).
- Water has a high thermal capacity. It absorbs a lot of heat without changing temperature of the body.

## **Carbohydrates**

- All carbohydrates contain three kinds of elements/atoms carbon, together with hydrogen and oxygen.
- The ratio of hydrogen to oxygen atoms in the molecules is usually 2:1

| Group                                          | Properties                                                                                                                                       | Examples                                                                                    |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Monosaccharides (simple sugars) With ring form | small molecules<br>sweet tasting;<br>crystalline;<br>readily soluble in water;<br>Reducing sugars;                                               | hexoses, e.g. glucose, fructose and galactose; all with a chemical formula $(C_6H_{12}O_6)$ |
| Disaccharides (double sugars)                  | small molecules<br>sweet tasting;<br>crystalline; soluble in water, but less<br>readily than monosaccharides;<br>Reducing sugars except sucrose; | sucrose, maltose, lactose; all with chemical formula $C_{12}H_{22}O_{11}$                   |
| Polysaccharides                                | large molecules<br>do not taste sweet;<br>not crystalline;<br>insoluble or not readily soluble in water;<br>Non-reducing complex sugars.         | glycogen, starch, cellulose; Each with n molecules of glucose molecules;                    |



Figure 4.2 Formation of maltose



Figure 4.3 Part of a glycogen molecule

## Glucose

- The common sugar is glucose  $(C_6H_{12}O_6)$ .
- They are the main source of energy for many cells;
- Easily oxidized;



Figure 4.1 Glucose molecule showing ring structure

### **Disaccharides**

- Disaccharides form from two simple sugars joined together.
- For example, maltose (malt sugar) made up of glucose and glucose;
- Sucrose (table sugar) made up of glucose and fructose;
- Lactose (milk sugar) made up of glucose and galactose;



## <u>Polysaccharides</u>

#### **Examples**

- Glycogen: food (energy) storage in animals (liver and muscle cells).
- Starch: food (energy) storage in plant cells.
- Cellulose: consists of longer chains of glucose, which are grouped together to form the criss-crossing tough microscopic fibers, which form the cell wall in plant cells.



 $\alpha(1\rightarrow 4)$ -glycosidic linkage

#### **AMYLOSE**

## Functions of carbohydrates

- Carbohydrates are needed for energy;
- 1 g of a carbohydrate releases 16 kj of energy, the energy is released in respiration;
- The carbohydrate that is normally used in respiration is glucose;
- Glucose is the blood sugar dissolved in the blood plasma transported to all the cells;
- Plants transports sucrose instead of glucose, sucrose is less reactive than glucose;
- Plants store carbohydrates as starch (long term energy storing molecule) in chloroplasts, seeds and potato tubers;
- Animal cells store carbohydrates as glycogen instead of starch, glycogen is mostly stored in the cells in the liver and the muscles;
- The polysaccharide cellulose is used to make the criss-crossing fibers which make plant cell walls. Cellulose fibers are very strong, so the cell wall helps to maintain the shape of the plant cell and their turgidity.

## Testing for carbohydrates

#### Testing for starch (Iodine Test)

shake a little starch powder in a test tube with some cold water and then boil it to make a clear solution.

When it is cold, add 3 or 4 drops of iodine solution. A *dark blue* color should be produced.

If there is no starch, the iodine solution remains *orange* –*brown*.





## Testing for carbohydrates

 <u>Testing for glucose or reducing</u> <u>sugar (Benedict's Test)</u>

Heat a little glucose with same volume of benedict solution in a test tube.

The heating is done by placing the test tube in a beaker of boiling water.

The solution will change from clear blue to cloudy green, then yellow, orange and finally to a brick red precipitate of copper I oxide.

Note, if there is no reducing sugar, then the Benedict's remains blue.

## Testing for Reducing Sugars (Benedict's Test)



#### Reducing Sugar Test: Colour Changes



The more reducing sugar (glucose) present, the greater the colour change. Lots of reducing sugar in food gives **orange/red colour**.

## <u>Lipids</u>

- They are organic compounds and contain the elements carbon, hydrogen and oxygen.
- The building units of lipids are fatty acids and glycerol.
- One triglyceride molecule is made up of 3 molecules of fatty acids and a glycerol molecule.
- Some lipids contain saturated fatty acids (more common in animal food) and others contain unsaturated fatty acids (with at least one carbon – carbon double bond – with less hydrogen atoms, they are more common in plant food).
- Lipids are insoluble in water.
- Lipids that are solids at room temperature are called fats. Lipids that are liquid at room temperature are called oils.



## Functions of lipids

- Lipids are used in the cells of the body to form part of the cell membrane and other membrane systems.
- Droplets of fats /oil form a source of energy when stored in the cytoplasm.
   (1 g of fat provides the cell with 39 Kj of energy).
- The fatty tissue, adipose tissue, under the skin forms a layer, which can reduce heat loss from the body.
- They also provide electrical insulation around nerve cells/nerves.
- Fats around some organs (for example the kidneys) form a protective layer.
- Excess of fat can be stored in the body, so providing a mean of long-term storage of energy in fat depots called adipose tissue.

## Testing for fats and oils (emulsion test)

- Firstly, you chop the food and shake it up with ethanol;
- Next, pour the ethanol into water;
- If there was any fat in the food, then the fat-ethanol mixture breaks up into many tiny droplets when it is mixed with the water;
- This mixture is called emulsion, it looks white and opaque, like milk;
- If there was no fat in the food, the mixture of water and ethanol remains transparent.

#### TEST FOR OIL AND FAT

- Place about 1cm<sup>3</sup> of ethanol in a test tube.
- o Add a few drops of oil and mix by shaking.
- Add an equal amount of water and shake again.
- Positive Result :
  - · A cloudy emulsion forms
- Negative results:
  - Liquid remains clear
- Note

Food with solid fats can be tested

by crushing them in ethanol.



### **Proteins**

- They are organic compounds.
- They contain the elements/atoms carbon, hydrogen, oxygen, nitrogen and sometimes Sulphur.
- Their molecules are made up of long chain of simpler chemicals called amino acids (basic units of proteins).
- In the chain of amino acids in a protein, the bonding between two neighbour amino acids is called peptide bond.
- When it's between two non neighbours is called cross linkage.
- When two amino acids join together, they form a dipeptide.
- When many amino acids join up by peptide bonds, they form a polypeptide.



## Functions of proteins

- As enzymes;
- As transport molecules (for example, haemoglobin in the blood);
- As structural materials (such as in cell membranes and in muscles), these proteins are also used for growth and repair;
- As hormones;
- In defense against disease (antibodies);



## Proteins and temperature

- When a protein is heated to temperature above 50 °C, cross linkages in its molecules break down and protein molecules lose their shape and never regain it, the protein is said to be denatured.
- When proteins are denatured, enzymes and cell structures will stop working and cell will die.

## Test for protein (Biuret test)

 To a solution of albumen add 5 cm<sup>3</sup> dilute sodium hydroxide followed by few drops of copper sulphate solution. Purple color indicates protein.



# Test for Proteins (Biuret test) – 1st method





### <u>DNA</u>

- DNA stands for deoxyribonucleic acid;
- DNA is the chemical that makes up our genes and chromosomes;
- It is the material that we inherit from our parents, which gives us many of our characteristics such as hair colour, blood group, ...
- DNA is made of two long strands, each with a series of bases arranged along it;
- There are four kinds of bases, Known by the letters A (Adenine), T (Thymine), C (Cytosine) and G (Guanine);
- The bases on the two strands are held together by bonds;
  - A always pairs with T;
  - C always pairs with G;



- The two strands then twist together into a spiral called a helix;
- The sequence of bases in our DNA provides a code that is used to determine the sequence of amino acids in a polypeptide in other words it determines the kind of proteins that are made in our cells;
- This in turns, determines how our cells, tissues and organs develop.