

شبكههاى عصبى كانولوشني

Convolutional Neural Networks

لایه کانولوشنی

• در لایه کانولوشن از چند فیلتر مجزا استفاده می کنیم

شبکه کانولوشنی (ConvNet)

• شبکه کانولوشنی دنبالهای از لایههای کانولوشنی با توابع فعالسازی است

گام (Stride)

- برای کاهش هزینه محاسباتی میتوانیم از برخی موقعیتها پرش کنیم
 - به قیمت استخراج نشدن ویژگیها با رزولوشن کامل
 - به نوعی downsampling انجام می شود

گام (Stride)

- برای کاهش هزینه محاسباتی میتوانیم از برخی موقعیتها پرش کنیم
 - به قیمت استخراج نشدن ویژگیها با رزولوشن کامل
 - به نوعی downsampling انجام می شود
 - باعث افزایش میدان تاثیر میشود

تجميع (Pooling)

• یک تابع تجمیع، خروجی شبکه در یک موقعیت مشخص را با یک مشخصه آماری از مقادیر در همسایگی آن جایگزین میکند

• در همه موارد، تجمیع کمک میکند تا بازنمایی نسبت به جابجاییهای کوچک ورودی حساسیت کمتری داشته باشد

تجميع (Pooling)

یک تابع تجمیع، خروجی شبکه در یک موقعیت مشخص را با یک مشخصه آماری از مقادیر در همسایگی
آن جایگزین می کند

• می توانیم پس از تجمیع مقادیر، برای کاهش محاسبات بعدی و افزایش کارآیی، برخی مقادیر را حذف کنیم

• این کاهش در اندازه ورودی لایههای کاملاً متصل میتواند منجر به بهبود بازدهی آماری و کاهش نیاز به حافظه برای ذخیرهسازی پارامترها شود

