Key Generation

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Encryption

Plaintext: M < n

Ciphertext: $C = M^{\epsilon} \mod n$

Decryption

Ciphertext:

Plaintext: $M = C^d \mod n$

Figure 9.6. Example of RSA Algorithm

