Data structures and Algorithms

SORTING ALGORITHMS (Part II)

Nguyễn Ngọc Thảo nnthao@fit.hcmus.edu.vn

Outline

- Heap sort
- Merge sort
- Quick sort

Heap sort

Heap structures

- A max heap is a sequence of n elements, $(h_1, h_2, ..., h_n)$, such that $h_i \ge h_{2i}$ and $h_i \ge h_{2i+1}$ for all $i = 1, 2, ..., \left|\frac{n}{2}\right|$
- The sequence of elements $h_{\left[\frac{n}{2}\right]+1}, \dots, h_n$ is a natural heap.
- The element h_1 of a heap is the largest value.
- We also have min heap with opposite characteristics.

Heap construction

 The heap is extended to the left where in each step a new element is included and properly positioned by a sift.

```
left = \left\lfloor \frac{n}{2} \right\rfloor;
while (left > 0) {
    sift(a, left, n);
    left--;
}
```

```
heapify! \rightarrow [3, 2, 6, 8, 10, 1]
```

- "Sift down": The element on top of the subheap is swapped with its larger comparands.
 - This procedure stops when the element on top of the subheap is larger than or equal to both its comparands.

Heap construction: Implementation

```
void heapRebuild(int start, int arr[], int n){
  int leftChild = 2 * start + 1; // A left child must exist
  if (leftChild >= n) return;
  int largerChild = leftChild; // Make assumption about larger child !
  int rightChild = 2 * start + 2;  // A right child might not exist
  // A right child exists; check whether it is larger
     if (arr[rightChild] > arr[largerChild])
        largerChild = rightChild;  // Assumption was wrong
  // If arr[start] is smaller than the larger child, swap values
  if (arr[start] < arr[largerChild]){</pre>
     swap(arr[largerChild], arr[start]);
     heapRebuild(largerChild, arr, n); // Recursion at that child
```

An example of heap construction

Array Tree representation of the array Original array After heapRebuild(2) After heapRebuild(1) After heapRebuild(0)

Example: Build max/min heap from an array of integers

Create a max heap from the following array.

Similarly, create a min heap from the given array.

Heap sort (J.W.J. Williams, 1964)

- Improve selection sort by retaining from each scan more information than just the recognition of the single least item.
- Construct a max heap from the given array and repeatedly move the largest element in the heap to the end of the array
- Elements are moved from the heap in descending order and placed into sequentially decreasing positions in the array.

Heap sort: Algorithm

- Consider the array of n elements, a[1..n].
- Phase 1. Heap construction. Construct a heap for the array
- Phase 2. Maximum deletion. Apply maximum key deletion n-1 times to the remaining heap
 - Swap the first element and the last element of the heap
 - Decrease heapSize by 1, heapSize = n 1;
 - While *heapSize* > 1
 - Rebuild the heap at the first position, a[1.. heapSize]
 - Swap the first element and the last element of the heap
 - Decrease heapSize by 1, heapSize = heapSize 1;

Heap sort: Imeplementation

```
void heapSort(int arr[], int n){
   // Build initial heap
   for (int index = (n - 1) / 2; index >= 0; index--)
      heapRebuild(index, arr, n);
   swap(arr[0], arr[n - 1]); // swap the largest element to the end
   int heapSize = n - 1;  // Heap region size decreases by 1
   while (heapSize > 1) {
      heapRebuild(0, arr, heapSize);
      heapSize--;
      swap(arr[0], arr[heapSize]);
```

Example: Heap sort on an array of integers

Sort the following array of integers, **{6, 3, 5, 9, 2, 10}**

Heap sort: An analysis

Heap sort: An analysis

- The heap sort algorithm includes two stages.
- Heap construction takes $O(n \log_2 n)$ time.
 - There are $\left|\frac{n}{2}\right|$ sifts, each of which runs in $O(\log_2 n)$ time.
- Sorting takes $O(n \log_2 n)$ time.
 - It executes n-1 steps where each step runs in $O(\log_2 n)$ time.
- Thus, heap sort is $O(n \log_2 n)$ in all cases.
- It is not recommended for small numbers of elements.

Checkpoint 05b: Heap sort on an array

Trace the heap sort as it sorts the following array into ascending order, {20, 80, 40, 25, 60, 30}.

Merge sort

Merge sort (John von Neumann, 1945)

 Recursively divide the array into halves, sort each half, and then merge the sorted halves into one sorted array.

Merge sort: Divide-and-conquer

18

Merge sort: Divide-and-conquer

Merge sort: Algorithm

theArray:

Divide the array in half

Sort the halves

Merge the halves:

- a. 1 < 2, so move 1 from left half to tempArray
- b. 4 > 2, so move 2 from right half to **tempArray**
- c. 4 > 3, so move 3 from right half to **tempArray**
- d. Right half is finished, so move rest of left half to tempArray

Copy temporary array back into original array

Merge sort: Implementation

- The recursive calls continue dividing the array into pieces until each piece contains only one element
- Obviously, an array of one element is sorted.

Merge sort: Implementation

 The algorithm then merges these small pieces into larger sorted pieces until one sorted array results.

```
ivoid merge(int arr[], int first, int mid, int last){
    // Initialize the local indices to indicate the subarrays
    int first1 = first, last1 = mid;
                                       // The first subarray
    int first2 = mid + 1, last2 = last;  // The second subarray
    // Copy the smaller element into the temp array
    int tempArr[MAX SIZE];
                                         // Temporary array
    int index = first1;
                         // Next available location in tempArr
    while ((first1 <= last1) && (first2 <= last2)) {</pre>
       // At this point, tempArr[first..index-1] is in order
```

Merge sort: Implementation

```
void merge(int arr[], int first, int mid, int last){
      if (arr[first1] <= arr[first2])</pre>
         tempArr[index++] = arr[first1++];
      else
         tempArr[index++] = arr[first2++];
   while (first1 <= last1) // Finish the first subarray, if necessary</pre>
      tempArr[index++] = arr[first1++];
   while (first2 <= last2) // Finish the second subarray, if necessary
      tempArr[index++] = arr[first2++];
   // Copy the result back into the original array
   for (index = first; index <= last; ++index)</pre>
      arr[index] = tempArr[index];
```

Example: Merge sort on an array of integers

• At most n-1 comparisons to merge the two segments whose total number of elements is n

- n moves from the original array to the temporary array, and
- n moves for copying the data back
- Thus, each merge requires 3n 1 major operations

Each call to mergeSort recursively calls itself twice.

• The levels of recursive calls: $k = \log_2 n$ (for $n = 2^k$) or $k = 1 + \lfloor \log_2 n \rfloor$ (for $n \neq 2^k$)

- At level 0, the original call to **mergeSort** call **merge** once: 3n-1 operations
- At level 1, two calls to mergeSort, and hence to merge, occur: $2 \times \left(3\frac{n}{2} 1\right) = 3n 2$ operations
- •
- At level m, 2^m calls to merge occur: $2^m \left(3 \frac{n}{2^m} 1\right) = 3n 2^m$
- Each level of the recursion requires O(n) operations, and there are either $\log_2 n$ or $1 + \lfloor \log_2 n \rfloor$ levels.
- Thus, merge sort is $O(n \log_2 n)$ in all cases.

- Same performance regardless of the initial order of elements
- The merge step requires an auxiliary array, which requires a non-constant amount of memory.
- The extra storage and copying of entries are disadvantages.

Checkpoint 06: Merge sort on an array

Trace the merge sort as it sorts the following array into ascending order, {20, 80, 40, 25, 60, 30}.

Quick sort

Quick sort (C. A. R. Hoare, 1962)

Partition the initial array segment into two regions as follows

• Recursively partition on smaller segments, i.e. S_1 and S_2 , until the array contains only one element

Quick sort (V1): Algorithm

- Consider an initial array, a[first..last]
- Step 1. Pick the pivot p = a[k], where $k = \lfloor (first + last)/2 \rfloor$
- Step 2. Identity pairs of elements that are not in their correct positions and swap them
 - Set the increment variables, i = first and j = last
 - While a[i] < p do increase i by 1. While a[j] > p do decrease j by 1.
 - If $i \le j$ then swap a[i] with a[j], increase i by 1 and decrease j by 1.
 - Go to Step 3
- Step 3. Check whether the two smaller subarrays overlap
 - If i < j then go to **Step 2**
 - Otherwise, recursively go to **Step 1** with a[first..j] and a[i..last]

Quick sort (V1): Implementation

```
void quickSort(int arr[], int first, int last) {
   int pivot = arr[(first + last) / 2];
   int i = first, j = last;
  do {
       while (arr[i] < pivot) i++;</pre>
       while (arr[j] > pivot) j--;
       if (i <= j) {</pre>
          swap(arr[i], arr[j]);
          i++; j--;
   } while (i <= j);</pre>
   if (first < j) quickSort(arr, first, j);</pre>
   if (i < last) quickSort(arr, i, last);</pre>
```

Example: Quick sort (V1) on an array of integers

• Partition the original array: first = 0, last = 7, pivot = a[3]

• Partition the subarray a[0..2] with pivot = a[1]

$$i = 0, j = 1$$
 6
 2
 3
 7
 8
 15
 9
 17
 $i = 1, j = 0$
 2
 6
 3
 7
 8
 15
 9
 17

Example: Quick sort (V1) on an array of integers

• Partition the subarray a[1..2] with pivot = a[2]

$$i = 1, j = 2$$
 2 6 3 7 8 15 9 17
 $i = 2, j = 1$ 2 3 6 7 8 15 9 17

Continue with the other subarrays

Quick sort (V2): Algorithm

- The chosen pivot is swapped with the last element a[last] to get it out of the way during partition.
 - Various strategies exist for making the choice of pivot.
- The algorithm still maintains two searches
 - A forward search starting at the first entry looks for the first entry that is greater than or equal to the pivot, and
 - A backward search starting at the next-to-last entry looks for the first entry that is less than or equal to the pivot.
- Place the pivot between the two subarrays, S_1 and S_2 , by swapping a[indexFromLeft] and a[last]

Example: A partitioning using Quick sort (V2)

Entries equal to the pivot

- Both of S_1 and S_2 can contain entries equal to the pivot.
 - Both forward and backward searches stop when they encounter an entry that equals the pivot, and a swap occurs.
 - Such an entry has a chance of landing in each of the subarrays.
- Why not always place any entries that equal the pivot into the same subarray?
 - Such a strategy would tend to make one subarray larger than the other, and thus diminish the performance of quick sort.

Median-of-three pivot: Idea

- The ideal pivot should be the median value in the array.
- Take as pivot the median of three entries: the first entry, the middle entry and the last entry
 - 5
 8
 6
 4
 9
 3
 7
 1
 2
- Sort only those entries and use the middle value as the pivot
 - 2 8 6 4 5 3 7 1 9 Pivot
- Position the pivot before partitioning

Median-of-three pivot: Implementation

```
int sortFirstMiddleLast(int arr[], int first, int last){
  int mid = first + (last - first) / 2;
  if (arr[first] > arr[mid])
    swap(arr[first], arr[mid]);
  if (arr[mid] > arr[last])
    swap(arr[mid], arr[last]);
  if (arr[first] > arr[mid])
    swap(arr[first], arr[mid]);
  return mid;
```

Quick sort (V2): Implementation

Use insertion sort instead on arrays of fewer than ten entries

```
ivoid quickSort(int arr[], int first, int last){
    if (last - first + 1 < MIN SIZE)</pre>
       insertionSort(arr + first, last - first + 1);
   else {
       // Create the partition: S1 | Pivot | S2
       int pivotIndex = partition(arr, first, last);
      // Sort subarrays S1 and S2
       quickSort(arr, first, pivotIndex - 1);
       quickSort(arr, pivotIndex + 1, last);
```

Quick sort (V2): Implementation

```
int partition(int arr[], int first, int last){
   // Choose pivot using median-of-three selection
   int pivotIndex = sortFirstMiddleLast(arr, first, last);
   // Reposition pivot so it is last in the array
   swap(arr[pivotIndex], arr[last-1]);
   pivotIndex = last-1;
   int pivot = arr[pivotIndex];
   // Determine the regions S1 and S2
   . . . . . .
   // Place pivot in proper position between S1 and S2
   swap(arr[pivotIndex], arr[indexFromLeft]);
   pivotIndex = indexFromLeft; // and mark its new location
   return pivotIndex;
```

Quick sort (V2): Implementation

```
int partition(int arr[], int first, int last){
   int indexFromLeft = first+1, indexFromRight = last - 2;
   bool done = false;
   while (!done) {
      // Locate first entry on left that is >= pivot
      while (arr[indexFromLeft] < pivot) indexFromLeft++;</pre>
      // Locate first entry on right that is <= pivot</pre>
      while (arr[indexFromRight] > pivot) indexFromRight--;
      // Swap the two found entries
      if (indexFromLeft < indexFromRight){</pre>
          swap(arr[indexFromLeft], arr[indexFromRight]);
          indexFromLeft++; indexFromRight--;
      else done = true;
```

Quick sort: An analysis

Best case	Worst case	Average case
$O(n \log_2 n)$	$O(n^2)$	$O(n \log_2 n)$

- Quick sort is at least as well as any known comparison algorithm on data of random order.
- Quick sort vs. Merge sort
 - Quick sort can be faster in practice and does not require the additional memory that merge sort needs for merging
 - The efficiency of a merge sort is somewhere between the possibilities for a quick sort.

Checkpoint 07: Quick sort on an array

Trace the **quick sort**'s partitioning algorithm as it partitions the following array,

{24, 97, 40, 67, 88, 85, 15, 66, 53, 44, 26, 48, 16, 52, 45, 23, 90, 18, 49, 80}

Acknowledgements

This part of the lecture is adapted from the following materials.

- [1] Pr. Nguyen Thanh Phuong (2020) "Lecture notes of CS163 Data structures" University of Science Vietnam National University HCMC.
- [2] Pr. Van Chi Nam (2019) "Lecture notes of CSC14004 Data structures and algorithms" University of Science Vietnam National University HCMC.
- [3] Frank M. Carrano, Robert Veroff, Paul Helman (2014) "Data Abstraction and Problem Solving with C++: Walls and Mirrors" Sixth Edition, Addion-Wesley. Chapter 10.
- [4] Anany Levitin (2012) "Introduction to the Design and Analysis of Algorithms" Third Edition, Pearson.

Exercises

01. Sorting algorithms on an array

- Consider the following array of integers, {26, 48, 12, 92, 28, 6, 33}.
- Apply each of the following sorting algorithms to arrange the elements in the given array in ascending order.
 - Heap sort
 - Quick sort (with median-of-three pivot)
 - Merge sort

02. Which algorithm is best?

- For each of the following situations, name the best sorting algorithm from among those we studied. There may be more than one answer.
 - a) You need a very fast sort on average, and you can only use a constant amount of extra space.
 - b) The array is in perfect sorted order.
 - c) You have a large data set, but you know all the values are between 0 and 999.
 - d) Copying your data is very fast, but comparisons are relatively slow

03. Parsimony in sorting algorithms

- A sorting algorithm is parsimonious if it never compares the same pair of input value twice (Assuming that all input values are distinct).
- Which of the following sorting algorithms is parsimonious?
 - Heap sort
 - Quick sort
 - Merge sort
- Give an example or counter-example for each of the above algorithms.