Program no: 15

Program Title: RBG colour display

Aim : To display RGB colour with LCD display.

Hardware Required

- Arduino Board
- Wires
- Breadboard
- Resistor
- RGB led
- LCD display

Circuit Diagram:

Code:

	Sumalata IBM19CS 409 Page No: / /20
-2-	Program - 15 RGB Color de May
	It include < Liquid Crystal. h >
	Liquid Crystal led (12, 11, 5, 4, 3, 2);
	int green light - Pin = 8; int blue light - Pin = 9;
	Penmode (sed - light pin , OUTPUT);
- 2	Prinmode (green_light_Prin, OUTPUT); Prinmode (blue-light-Prin, OUTPUT);
	Void loof()
	1cd. sot curs 06 (0,0); RGB - color (255,0,0); 1cd-Print ("RED");
	Lelay (1000);

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

//Parameters: (rs, enable, d4, d5, d6, d7)

```
int red_light_pin= 10;
int green_light_pin = 8;
int blue_light_pin = 9;
void setup() {
 pinMode(red_light_pin, OUTPUT);
 pinMode(green_light_pin, OUTPUT);
 pinMode(blue_light_pin, OUTPUT);
}
void loop() {
 lcd.setCursor(0,0);
 RGB_color(255, 0, 0); // Red
 lcd.print("RED");
 delay(1000);
 lcd.clear();
 RGB_color(0, 255, 0); // Green
 lcd.print("GREEN");
 delay(1000);
 lcd.clear();
 RGB_color(0, 0, 255); // Blue
 lcd.print("BLUE");
 delay(1000);
 lcd.clear();
 RGB_color(255, 255, 255); // White
 lcd.print("WHITE");
 delay(1000);
 lcd.clear();
```

```
void RGB_color(int red_light_value, int green_light_value, int blue_light_value)
{
    analogWrite(red_light_pin, red_light_value);
    analogWrite(green_light_pin, green_light_value);
    analogWrite(blue_light_pin, blue_light_value);
}
```

Observation / Output:

