

מבוא למערכות לומדות (236756)

סמסטר אביב תשפ"ב – 23 בספטמבר 2022

מרצה: ד"ר ניר רוזנפלד

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- **משך הבחינה:** 3 שעות. •
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - מחשבון: מותר.
 - כלי כתיבה: עט בלבד.
 - יש לכתוב את התשובות **על גבי שאלון זה**.
 - מותר לענות בעברית או באנגלית.
 - :קריאוּת
 - o תשובה בכתב יד לא קריא **לא תיבדק**.
- o בשאלות רב-ברירה הקיפו את התשובות <u>בבירור</u>. סימונים לא ברורים יביאו לפסילת התשובה.
 - . לא יתקבלו ערעורים בנושא. ס
- . במבחן 14 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - . נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

מבנה הבחינה:

- **חלק א' [76 נק']:** 3 שאלות פתוחות.
- **חלק ב' [24 נק']:** 4 שאלות סגורות (אמריקאיות) [כל אחת 6 נק'].

בהצלחה!

חלק א' – שאלות פתוחות [76 נק']

['נק'] Multi-Layer Perceptron (MLP) שאלה 1:

 ± 1 נתון דאטה דו-ממדי עם סיווגים בינאריים

ים אמוגדרת: $F:\mathbb{R}^2 o (0,1)$ עם שתי שכבות ליניאריות בתור פונקציה שתי שכבות ליניאריות נבנה רשת

$$F(x_1, x_2) = \sigma(w_5 \cdot \text{ReLU}(w_1x_1 + w_2x_2 + b_1) + w_6 \cdot \text{ReLU}(w_3x_1 + w_4x_2 + b_2) + b_3)$$

 $ext{ReLU}(z) = \left\{egin{array}{ll} 0, \ z \leq 0 \\ z, \ z > 0 \end{array}
ight.$ היא $w_1, \dots, w_6, b_1, b_2, b_3 \in \mathbb{R}$ כאשר $\sigma(z) = rac{1}{1 + \exp\{-z\}}$.

נכין את הרשת לאימון.

נשים לב שהרשת מחזירה הסתברות ובסעיפים הבאים נשתמש ב-Negative-log-likelihood-loss המוגדר בתור:

$$\ell(\underbrace{x}_{\in\{0,1\}^2},\underbrace{y}_{\in\{0,1\}}) = -y \ln(F(x_1,x_2)) - (1-y) \ln(1-F(x_1,x_2))$$

 $rac{\partial \ell}{\partial F}$ א. [2 נק'] חשבו את הנגזרת החלקית

תשובה סופית (לרשותכם טיוטה בסוף הגיליון):
$$\frac{\partial \ell(x,y)}{\partial F} = - \int_{F(X_{i},X_{2})}^{\mathcal{F}} \frac{1-\mathcal{G}}{1-F(x_{i},X_{2})}$$

ב. [2 נק'] כָּתָבוּ פונקציה שמהווה <u>subgradient</u> לפונקציית ה-ReLU.

תשובה סופית (לרשותכם טיוטה בסוף הגיליון):
$$\operatorname{ReLU}'(z) = \left\langle \begin{array}{c} 0 & Z \leq 0 \\ 1 & / O. w \end{array} \right\rangle$$

לשם הפשטות, נגדיר שלושה סימוני עזר:

$$F(x_1, x_2) = \sigma(\underbrace{w_5 \cdot \text{ReLU}(w_1 x_1 + w_2 x_2 + b_1)}_{\triangleq a_3} + \underbrace{w_6 \cdot \text{ReLU}(w_3 x_1 + w_4 x_2 + b_2)}_{\triangleq a_3} + \underbrace{b_3}_{\triangleq a_3})$$

לשימושכם בהמשך, להלן כמה נגזרות חלקיות מהשכבה הראשונה:

$\frac{\partial a_3}{\partial w_1} = w_5 \cdot \text{ReLU}'(a_1) \cdot x_1$	$\frac{\partial a_3}{\partial w_2} = w_5 \cdot \text{ReLU}'(a_1) \cdot x_2$	$\frac{\partial a_3}{\partial w_3} = w_6 \cdot \text{ReLU}'(a_2) \cdot x_1$	$\frac{\partial a_3}{\partial w_4} = w_6 \cdot \text{ReLU}'(a_2) \cdot x_2$
$\frac{\partial a_3}{\partial b_1} = w_5 \cdot \text{ReLU}'(a_1)$	$\frac{\partial a_3}{\partial b_2} = w_6 \cdot \text{ReLU}'(a_2)$	de daz	

$\frac{\partial a_3}{\partial w_5} = \text{ReLU}(a_1)$	$\frac{\partial a_3}{\partial w_6} = \text{ReLU}(a_2)$	$\frac{\partial a_3}{\partial b_3} = 1$
--	--	---

ומהשכבה השנייה:

 $\frac{\partial \ell(x,y)}{\partial F}$ את הנגזרת החלקית (שימו לב שכבר חישבנו את (שימו לב שכבר חישבנו את (שימו לב ביק') .ג . $\frac{\mathrm{d}}{\mathrm{d}z}\sigma(z)=\sigma(z)ig(1-\sigma(z)ig)$ הסיגמואיד היא הסיגמואיד הנגזרת של הסיגמואיד היא

$$\frac{\partial \ell(x,y)}{\partial a_3} = \frac{\partial \ell(x,g)}{\partial F} \cdot \frac{\partial F}{\partial a_3} = \frac{\partial \ell(x,g)}{\partial F} \cdot \frac{\partial F}{\partial a_3} = \frac{\partial \ell(x,g)}{\partial a_3} - \frac{\partial \ell(x,g)}{\partial a_3} -$$

$$w_1 = \cdots = w_6 = 0, \quad b_1 = b_2 = b_3 = -1$$

 $\eta=1$ עם גודל צעד (x,y) <u>יחיד</u> לפי דוגמה <u>נתונה</u> gradient descent נחשב את <u>ערכי</u> הפרמטרים אחרי צעד מלאו את התשובות הסופיות בטבלאות.

 a_1, a_2, a_3 - אבל אב (x, y) אבל להיות להיות להיות יכולות יכולות אבל יכולות להיות שימו לב

.מספר קבוע מפורש, מבלי לחשב את ערכם במחשבון $c\in\mathbb{R}$ מספר כמו $\sigma(c)$ כאשר $\sigma(c)$

First layer

Parameter	Value
w_1	O = N.O = 0
w_2	0-1.0=0
W_3	0 - N.O. D
W_4	0- N.0=0
b_1	-1-6.0=-1
b_2	-1-4:0:-1
`	-

Second layer

ד. [7 נק'] נניח שהפרמטרים מאותחלים באופן הבא:

Parameter	Value
w_5	0-N·0 = 0
w_6	0-11.0=0
b_3	- 1+y- 5(-1)

$$\frac{\partial \mathcal{C}(x,y)}{\partial \omega_{1}} = \frac{\partial \mathcal{C}(x,y)}{\partial \alpha_{3}} \cdot \frac{\partial \alpha_{3}}{\partial \omega_{1}} - (\sigma(\alpha_{3}) - y) \omega_{r} \operatorname{Rel}_{0}(\alpha_{r}) X_{r}$$

K(03)= X(-1)

.(qualitative) אותו η ענו בקצרה ובאופן איכותי $T \geq 2$ צעדי גרדיינט (לפי אותה דוגמה (x,y) ואותו (x,y)? ענו בקצרה ובאופן איכותי

תשובה סופית (לרשותכם טיוטה בסוף הגיליון):

[6 נקי] אילו מפונקציות האקטיבציה הבאות ימנעו את הבעיה שהדגמנו בסעיפים הקודמים (עבור אתחול זהה)?

סמנו את <u>כֹּל</u> האפשרויות המתאימות. ReLu (-1) +0

שאלה 2: מסווגים ליניאריים [20 נק']

.(±1) עם סיווגים בינאריים ($(x_i,y_i)\}_{i=1}^m$ נתון דאטה d

- .argmin $\frac{1}{m}\sum_{i=1}^m \max\{0, 1-y_i \pmb{w}^{\top} \pmb{x}_i\}$ ונגדיר את הבעיה הקמורה (ללא רגולריזציה): Hinge loss א. [10] נק'] נשתמש ב-10% ונגדיר את הבעיה וועדיר את הבעיה הקמורה (ללא רגולריזציה):
- . עבור דוגמה כלשהי (x_i, y_i), האם הפונקציה $\max\{0, 1-y_i m{w}^{\mathsf{T}} x_i\}$ חוסמת מלמעלה את ה-20-1 loss. נמקו בקצרה.

.ii. **נתון:** הדאטה פריד ליניארית הומוגנית.

 $\|oldsymbol{w}^\star\|_2 < \infty$ עם נורמה סופית (משמע שיים פיתרון אופטימלי כלשהו שהוגדרה קיים פיתרון אופטימלי כלשהו שהוגדרה קיים פיתרון אופטימלי (משמע

(MAIEU: (121) CON (11) DUNN XI CON (11) ONSI
12 pigna leiem Gobour S INIK 217 DWE DRESS W
(D>1) pi317 // DK y: WTX:>0
[1521 = + M ((150 pila)) 1 1 × 4 mbm 801 Ct ct ct ct
<u> (ω*) = (ω) = ωημη π Σ μαν (ο, 1- γ; ω χ;) (ων 1 γρηνο γνβανε γρην</u>
912 WING CICID OVUL 110), Mg. 90 ((CAR 0101K

- .argmin $\left\{ \frac{1}{m} \sum_{i=1}^m -\ln\left(\frac{1}{1+\exp\{-y_i w^\mathsf{T} x_i\}}\right) \right\}$:ב. [10] נקי] נשתמש ב-Log. loss ונגדיר את הבעיה הקמורה (ללא רגולריזציה):
- . עבור דוגמה כלשהי (x_i, y_i), האם הפונקציה ($\ln\left(\frac{1}{1+\exp\{-y_i \pmb{w}^{\mathsf{T}} x_i\}}\right)$ האם הפונקציה (פונקציה (x_i, y_i) ווסמת מלמעלה את .i

.ii. נתון: הדאטה פריד ליניארית הומוגנית.

 $\|oldsymbol{w}^\star\|_2 < \infty$ עם נורמה סופית (משמע שיים פיתרון אופטימלי כלשהו שהוגדרה קיים פיתרון אופטימלי עם נורמה $oldsymbol{w}^\star \in \mathbb{R}^d$

	תשובה:
(

(נק'] 30] Kernel SVM שאלה 3

- $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ כלשהי Kernel עם סיווגים בינאריים (± 1). נתונה פונקציית $\{(x_i,y_i)\}_{i=1}^m$ א. צוות מחקר פתר שתי בעיות אופטימיזציה שלמדנו:
 - $\pmb{\alpha} \in \mathbb{R}^m_+$ נסמן את וקטור המשתנים הדואליים שנלמדו ניסמן. raw features- לפי ה-Dual Linear SVM (i)
 - $\pmb{\alpha}' \in \mathbb{R}^m_+$ לפי פונקציית הקרנל K. נסמן את וקטור המשתנים הדואליים שנלמדו בתור Dual Kernel SVM (ii)

support vectors נתון שבשני המקרים נמצאו פתרונות שמשתמשים בְּר $[\log m]$ וקטורים בתור משמעה פתרונות lpha,lpha' יש בדיוק $[\log m]$ כניסות שאינן lpha).

בזמן מבחן (לאחר האימון) כשמקבלים דוגמה חדשה לסיווג $x \in \mathbb{R}^d$, כללי ההחלטה של המודלים הינם:

Kernel SVM

Linear SVM

$$h_{\alpha'}(x) = \operatorname{sign}\left(\sum_{i=1}^{m} \alpha'_i y_i K(x_i, x)\right)$$
 $h_{\alpha}(x) = \operatorname{sign}\left(\sum_{i=1}^{m} \alpha_i y_i x_i^{\mathsf{T}} x\right)$

- (i) בזמן המבחן, מה סיבוכיות <u>המקום</u> המינימלית שנדרשת עבור כלל ההחלטה של Linear SVM? סמנו והסבירו בקצרה.
 - $\mathcal{O}(m^2)$.e

 $\mathcal{O}(\log(m) \cdot d)$.c

 $\mathcal{O}(d)$.a

 $\mathcal{O}(d^2)$.f

 $\mathcal{O}(m \cdot d)$.d

 $\mathcal{O}(m)$.b

		הסבר <u>תמציתי</u> :

- (ii) בזמן המבחן, מה סיבוכיות המקום המינימלית שנדרשת עבור כלל ההחלטה של Kernel SVM (ללא הנחות על הקרנל)?
 - $\mathcal{O}(m^2)$.e

 $\mathcal{O}(\log(m) \cdot d)$.c

 $\mathcal{O}(d)$.a

 $\mathcal{O}(d^2)$.f

 $\mathcal{O}(m \cdot d)$.d

 $\mathcal{O}(m)$.b

הטבו <u>ונמציוני</u> :

 $\sigma^2>0$ עבור היפרפרמטר אבור אינו ש-RBF-Kernel מוגדר בתור: $\{-rac{1}{2\sigma^2}\|m{u}-m{v}\|_2^2\}$ מוגדר בתור:

 $\sigma^2 \to \infty$ בגבול RBF-Kernel SVM ב. [4 נק'] בגבול את ההתנהגות של כלל

<u>ניתן להניח:</u>

- $\|m{lpha}'\|_2 \leq c_1$ ביך שמתקיים $\infty > c_1 > 0$ הדואליים חסום. משמע, קיים משמע, קיים $m{lpha}' \in \mathbb{R}_+^m$
 - $\|x\|_2 \leq c_2$ מתקיים $\forall x \in \mathcal{X}$ -שֶּׁ כך שֶּׁ- $\infty > c_2 > 0$ מתקיים סומות. משמע, קיים סומות. משמע, קיים

 $\lim_{\sigma^2 o \infty} h_{lpha'}(x) = \lim_{\sigma^2 o \infty} \mathrm{sign}(\sum_{i=1}^m lpha_i' y_i K(x_i, x))$ חשבו את הגבול

$$\lim_{\sigma^2 \to \infty} \mathrm{sign}(\sum_{i=1}^m \alpha_i' y_i K(\pmb{x}_i, \pmb{x})) = \mathrm{sign}\left(\lim_{\sigma^2 \to \infty} (\sum_{i=1}^m \alpha_i' y_i K(\pmb{x}_i, \pmb{x}))\right)$$
במן: כאן הגבול מקיים

תשובה:

 (± 1) וסיווגים בינאריים ($\forall x \in \mathcal{D}$: $\|x\|_2 \le 1$ נתונה התפלגות \mathcal{D} כלשהי על דוגמאות דוגמאות חסומות (נניח 1 בינאריים) $\Pr_{(x,y)\sim\mathcal{D}}[y=1]=\Pr_{(x,y)\sim\mathcal{D}}[y=-1]=rac{1}{2}$ מתאימים. וידוע שההתפלגות מאוזנת כך שמתקיים

דוגמים 200 דוגמאות אימון ומאמנים עליהן חמישה מודלים שונים. לפניכם טבלה עם תוצאות האימון וההכללה.

(ה)	(T)	(\(\lambda\)	(ב)	(א)	דיוק / מודל
100%	100%	89%	92%	53%	אימון
84%	23%	50%	89%	50%	הכללה

(m)

 $e^{-\frac{1}{6}|\mathbf{x}_1-\mathbf{x}_1|}$ בבין חמשת המודלים שנלמדו, שניים הם מודלי RBF-Kernel SVM עם ערכי σ^2 קיצוניים מאוד: σ^2 המדוברים שואפים לאינסוף ולאפס). אילו? (יצאה הבהרה בזמן הבחינה שלצורך השאלה, ערכי σ^2 המדוברים שואפים לאינסוף ולאפס). $. \forall i \colon \alpha_i' \in [0.1, 10]$ שנלמד מקיים שבשני המודלים האלה הווקטור הדואלי $\pmb{\alpha}' \in \mathbb{R}_+^m$ שנלמד מקיים

<u>הערות</u>: אנו עוסקים במקרה הסביר ולא במקרי קצה. מדובר בניתוח <u>אנליטי,</u> לכן הניחו שאין שגיאות נומריות.

- $?\sigma^2 = 10^6$ עם RBF איזו עמודה מתאימה למודל .i
- $?\sigma^2=10^{-6}$ עם RBF איזו עמודה מתאימה למודל.ii.

הסעיף הבא בלתי תלוי בסעיפים הקודמים.

 $oldsymbol{w} \in \mathbb{R}^d$ נתונה נקודה

$$K(m{u},m{v}) = rac{1}{2}(\|m{u}-m{w}\|^2 + \|m{v}-m{w}\|^2 - \|m{u}-m{v}\|^2)$$
 בתור $K:\left(\mathbb{R}^d imes \mathbb{R}^d
ight) o \mathbb{R}$ נגדיר את הפונקציה

ד. [7] נק'] הוכיחו שהפונקציה K מהווה קרנל חוקי.

 $K(\pmb{u},\pmb{v})=\langle \pmb{\phi}(\pmb{u}),\pmb{\phi}(\pmb{v})
angle$ שמתקיים $\phi\colon\mathbb{R}^d o\mathbb{R}^p$ עשו זאת ע"י הגדרה ברורה של פונקציית מיפוי p=d .p=d

$\frac{1}{2}\left((u-\omega)^2+(v-\omega)^2-(u-v)^2\right)$ לרשותכם טיוטה בסוף הגיליון):	תשובה (י
= \frac{1}{2} (\omega^2 - 2\omega \omega^2 + \omega^2 - 2\omega \omega^2 + 2\omega \omega^2) =	
$\mathcal{F} = \omega^2 - \mathbf{x} \omega \omega + \omega v - v \omega =$	
$ \omega(u - \omega) + v(u - \omega) = (v - \omega)(u - \omega)$	
$\varphi(u) = u - \omega$	
· 	

<u>חלק ב' – שאלות רב-ברירה [24 נק']</u>

בשאלות הבאות סמנו את התשובות המתאימות (לפי ההוראות). בחלק זה אין צורך לכתוב הסברים.

 \mathcal{X} אט לשהי \mathcal{H} מעל $\mathcal{X}\subseteq\mathbb{R}^d$ ומחלקת היפותזות כלשהי $\mathcal{X}\subseteq\mathbb{R}^d$ מעל

 $\mathcal{X}' \subset \mathcal{X}$ בנוסף, נתונה תת-קבוצה

 \mathcal{X}' נגדיר את מחלקת ההיפותזות \mathcal{Q} על ידי **צמצום תחום ההגדרה** של ההיפותזות ב- \mathcal{H} לתת-הקבוצה

$$.\,\mathcal{Q} = \{\,q_h \triangleq h|_{\mathcal{X}'} \mid h \in \mathcal{H}\,\}, \text{ where } q_h(x) = \left\{\begin{matrix} h(x), & x \in \mathcal{X}' \\ \text{undefined}, & x \notin \mathcal{X}' \end{matrix}\right.$$

סמנו את הטענה הנכונה.

- $VCdim(\mathcal{H}) > VCdim(Q)$ וייתכנו מקרים שבהם VCdim $(\mathcal{H}) \geq VCdim(Q)$ מתקיים בהכרח וייתכנו
- $VCdim(\mathcal{H}) < VCdim(\mathcal{Q})$ וייתכנו מקרים שבהם VCdim $(\mathcal{H}) \leq VCdim(\mathcal{Q})$ מתקיים בהכרח שבהם VCdim
 - $VCdim(\mathcal{H}) = VCdim(\mathcal{Q})$ מתקיים בהכרח.
 - . כל הטענות הקודמות שגויות. וּלּ

.**Feature selection**- נק'] סמנו את <u>כֹּל</u> הטענות הנכונות ביחס ל

- .data imputation- יש להפעיל <u>לפני</u> שלב ה-Sequential feature selection .a
- .data normalization- יש להפעיל <u>לפני</u> שלב ה (Sequential feature selection למשל). Wrapper שיטות. b
- .c בבעיות סיווג: לפני האימון, ניתן להסיר כל פיצ'ר שיש קורלציה 0 בינו לבין ה-target variable, מבלי לפגוע .c בביצועים של אלגוריתמי למידה על סֶט האימון.
 - .d נתון עץ החלטה כלשהו בעומק L (מספר הקשתות המקסימלי מהשורש לעלה כלשהו).
 - כפי שלמדנו, כל צומת מְסַוַּג לשתי אפשרויות בעזרת threshold על פיצ'ר אחד.
 - . אזי, העץ כולו משתמש לכל היותר ב(2L-1) פיצ'רים
 - .e מאמנים מסווג בסיס במשך T איטרציות. AdaBoost מאמנים מסווג ה"חזק" שמתקבל משתמש לכל היותר ב-T פיצ'רים.

 \mathcal{C} ג. [6] נקי] נתונות שתי פונקציות קמורות $f,g:\mathcal{C} o \mathbb{R}$ המוגדרות מעל סט קמור

סמנו את <u>כֹּל</u> הטענות הנכונות בהכרח.

- הינה קמורה. h(z) = f(z) + g(z) הינה הפונקציה
- הינה קמורה. $h(z) = \max\{f(z), g(z)\}$ הינה קמורה.
- הינה קמורה. $h(z) = \min\{f(z), g(z)\}$ הינה קמורה.
 - הינה קמורה. h(z) = f(g(z)) הינה קמורה.

 $\ell_{\mathrm{hinge}}(z) = \max\{0,1-z\}, \;\; \ell_{\mathrm{ramp}}(z) = \min\{1,\max\{0,1-z\}\}$ שלמדנו: loss שלמדנו (נק'] ניזכר בשתי פונקציות מגדירים שתי בעיות סיווג ליניארי (עם דאטה זהה):

$$.\underbrace{\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \ell_{\operatorname{hinge}}(y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i)}_{\triangleq P_{\operatorname{hinge}}} \quad , \quad \underbrace{\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \ell_{\operatorname{ramp}}(y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i)}_{\triangleq P_{\operatorname{ramp}}}$$

סמנו את $\underline{\vec{c}}$ ל הטענות הנכונות (השאלה עוסקת במקרה הסביר ולא במקרי קצה).

- . $P_{
 m ramp}$ צפויה להיות יותר רגישה ל-outliers צפויה להיות יותר מאשר בעיה P $_{
 m hinge}$
 - אינה קמורה. P_{ramp} אינה קמורה אילו הבעיה Phinge
- . עבור הבעיה $P_{
 m hinge}$, נקודה בה הנגזרת מוגדרת ומתאפסת היא מינימום גלובאלי.
- . עבור הבעיה אינימום גלובאלי, אינימום ומתאפסת, נקודה בה הנגזרת מוגדרת (\widehat{a}
- .0 הוא P_{ramp} הוא המינימום הגלובאלי של P_{hinge} הוא P_{ninge} הוא פרר המינימום הגלובאלי של (.e)

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

/	$\overline{}$
•	
ı	

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):