MATH 18.01 - MIDTERM 3 REVIEW: SUMMARY OF SOME KEY CONCEPTS

18.01 Calculus, Fall 2017 Professor: Jared Speck

- **a.** Differential equations: $\frac{dy}{dx} = F(x, y)$
 - (a) Separation of variables: allows one to solve equations of the form $\frac{dy}{dx} = g(x)h(y)$
 - (i) Solution: $\int \frac{dy}{h(y)} = \int g(x) dx + C$
 - (b) In general there are infinitely many solutions
 - (c) Initial value problem
 - (i) Finding the particular solution y(x) with $y(x_0) = y_0$
- **b.** Riemann sums for a function f(x) on an interval [a,b]: are sums of the form $\sum_{i=1}^n f(c_i) \Delta x$
 - (a) $f(c_i)\Delta x$ is the area of a thin rectangle that approximates a small portion of the area under the graph of y = f(x)
 - (b) $\Delta x = (b-a)/n$ when the rectangles have equal width
 - (c) When the rectangles have equal width, we partition [a, b] into the sub-intervals $[x_0, x_1]$, $[x_1, x_2], \dots, [x_{n-1}, x_n], \text{ where } x_0 = a, x_n = b, \text{ and } x_i - x_{i-1} = \Delta x \text{ for } 1 \le i \le n.$
 - (d) Generally, the c_i can be any points in the sub-interval $[x_{i-1}, x_i]$. $c_i = x_i$ is a "right Riemann sum" while $c_i = x_{i-1}$ is a "left Riemann sum."
 - (e) As $n \to \infty$, we have that $\Delta x \to 0$ and that $\sum_{i=1}^n f(c_i) \Delta x$ converges to $\int_0^{\infty} f(x) dx$, which represents the signed area under the graph of y = f(x) over the interval [a, b]
- c. First fundamental theorem
 (a) If F' = f, then $\int_a^b f(x) dx = F(b) F(a)$ d. Second fundamental theorem
- (a) $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$ **e.** $L(x) = \int_{1}^{x} \frac{dt}{t}$ is an alternate definition of $\ln x$ **f.** Areas between curves
- - (a) Area = $\int_a^b f(x) g(x) dx$ (using vertical rectangles)
 - (i) f is the upper function, g is the lower function
 - (ii) a and b are the x coordinates of the intersection points
 - (b) Area = $\int_{c}^{d} \widetilde{f}(y) \widetilde{g}(y) dy$ (using horizontal rectangles)
 - (i) f is the right function, \tilde{q} is the left function
 - (ii) c and d are the y coordinates of the intersection points
- **g**. Volume of a solid
 - (a) Total solid volume = $\int (Cross sectional area) dwidth$

- h. Volume of a solid of revolution
 - (a) Disk method
 - (i) Volume of a thin disk: $dV = \pi r^2 dx$, where r is the disk radius and dx is the disk thickness
 - (ii) Total solid volume = $\int dV$
 - (b) Shell method
 - (i) Volume of a thin shell of radius x, height h, and thickness dx is $dV = 2\pi x h dx$
- (ii) Total solid volume = $\int dV$ i. Average value of f(x) on [a,b] is $\frac{1}{b-a} \int_a^b f(x) \, dx$