	QUAN	τυL	ME ASU	rement	
I. PROJECT	IVE N	EASURE	MENT		
les û	be an	observa	ble û	- 5, m P	
wher	re Pn	projec	tor anto	the eigen	space of m
. Weasure	uent:	Upon ne sy	observing stem e	putcaue n	n, the state of
	Ju	2> —	→	Pm 14>	_ = 14m>
The pre	obability	40 05			= <41Pm14>
For a wi	xed Stat	e ĵ	: p(m)	= Tr (p P.	(n) = E[m] = <û>
2	aveloges	:	- Qua	thu averag	e <417m14>
			- Clas	sical plas.	average

$$|\Psi_{SM}\rangle = |\Psi\rangle \otimes |\Psi\rangle , |\Theta\rangle \in \mathcal{H}_{M}$$

$$|\Psi\rangle \in \mathcal{H}_{S}$$

$$|\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle$$

$$|\Psi\rangle \in \mathcal{H}_{S}$$

$$|\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle \otimes |\Psi\rangle$$

$$|\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle \otimes |\Psi\rangle \otimes |\Psi\rangle$$

$$|\Psi\rangle = |\Psi\rangle \otimes |\Psi\rangle \otimes$$

II. Generalized Measurements 1. Definition: let \hat{M}_r measurement operators, and Er = Mr Mr such that 3 Er= I Er are probability operators Hermitian, positive _, Measurement outcomes are labelled by r { En, r} = Positive operator-valued measurement (POVM) Then p(r) = probability of outcome r per) = Tr (pêr) After the measurement: 77 r has been observed $\hat{p} \rightarrow \hat{p} = \frac{\hat{U}_r \hat{p} \hat{U}_r}{p(r)}$

