Recherche naïve

Pour recherche si un motif m se trouve dans une chaîne c, on peut :

parcourir chaque caractère de la chaine c

Exemple

Visualisation en ligne du fonctionnement de l'algorithme

Recherche naïve

Pour recherche si un motif m se trouve dans une chaîne c, on peut :

- parcourir chaque caractère de la chaine c
- ② si ce caractère correspond au premier caractère du motif m, alors on avance dans le motif tant que les caractères coïncident.

Exemple

Visualisation en ligne du fonctionnement de l'algorithme

Recherche naïve

Pour recherche si un motif m se trouve dans une chaîne c, on peut :

- 1 parcourir chaque caractère de la chaine c
- si ce caractère correspond au premier caractère du motif m, alors on avance dans le motif tant que les caractères coïncident.
- si on atteint la fin du motif, alors m se trouve dans c. Sinon on passe au caractère suivant de c.

Exemple

Visualisation en ligne du fonctionnement de l'algorithme

Proposition d'implémentation en Python

```
def recherche (motif, chaine):
  lm , lc = len(motif) ,len(chaine)
  for i in range(lc-lm+1):
    i motif, i chaine = 0, i
    while i_motif<Im and chaine[i_chaine] == motif[i_motif]:</pre>
      i motif += 1
      i chaine +=1
    if i_motif == lm:
      return True
  return False
```

Coût de la recherche simple

Soient l_m la longueur du motif et l_c celle de la chaine, on vérifie que l'algorithme de recherche simple demande au plus $l_m(l_c-l_m+1)$ comparaisons

Exemple

Combien de comparaisons seront nécessaires si on recherche le motif bbbbbbbbbb (neuf fois le caractère b suivi d'un a) dans une chaine contenant un million de b?

Accélération de la recherche

Supposons qu'on recherche le motif extra dans la chaine un excellent exemple et un exercice extraordinaire. La comparaison naïve ci-dessus commence par :

Supposons qu'on recherche le motif extra dans la chaine un excellent exemple et un exercice extraordinaire. La comparaison naïve ci-dessus commence par :

```
    u
    n
    e
    x
    c
    e
    l
    l
    e
    n
    t
```

Supposons qu'on recherche le motif extra dans la chaine un excellent exemple et un exercice extraordinaire. La comparaison naïve ci-dessus commence par :

```
      u
      n
      e
      x
      c
      e
      l
      l
      e
      n
      t
```

Deux idées vont permettre d'accélérer la recherche :

Supposons qu'on recherche le motif extra dans la chaine un excellent exemple et un exercice extraordinaire. La comparaison naïve ci-dessus commence par :

Deux idées vont permettre d'accélérer la recherche :

• Commencer par la fin du motif.

Supposons qu'on recherche le motif extra dans la chaine un excellent exemple et un exercice extraordinaire. La comparaison naïve ci-dessus commence par :

Deux idées vont permettre d'accélérer la recherche :

- Commencer par la fin du motif.
- Prétraiter le motif de façon à éviter des comparaisons inutiles.

Accélération de la recherche

Dans l'exemple ci-dessus cela donne :

Accélération de la recherche Dans l'exemple ci-dessus cela donne : u n e x c e l l e e

Dans l'exemple ci-dessus cela donne :

On peut avancer directement de 3 emplacements car le dernier x se trouve à 3 emplacements de la fin du motif.

Dans l'exemple ci-dessus cela donne :

u	n		е	Х	С	е	1	1	е	n	t
											
е	Х	t	r	а							

On peut avancer directement de 3 emplacements car le dernier \mathbf{x} se trouve à 3 emplacements de la fin du motif.

u	n		е	Χ	С	е		_	е	n	t	
	<u></u>											
			е	Χ	t	r	а					

Dans l'exemple ci-dessus cela donne :

u	n		е	Х	U	е			е	n	t
_											
е	Х	t	r	а							

On peut avancer directement de 3 emplacements car le dernier x se trouve à 3 emplacements de la fin du motif.

Cette fois, le 1 ne se trouve pas dans le motif, on peut donc avancer de la longueur du motif.

Dans l'exemple ci-dessus cela donne :

	u	n		е	Х	C	е		_	е	n	t
												
	е	Х	t	r	а							

On peut avancer directement de 3 emplacements car le dernier x se trouve à 3 emplacements de la fin du motif.

Cette fois, le 1 ne se trouve pas dans le motif, on peut donc avancer de la longueur du motif.

Visualisation en ligne du fonctionnement de l'algorithme accéléré

Remarques

• L'implémentation, plus délicate que la recherche naïve fait l'objet d'un exercice.

Remarques

- L'implémentation, plus délicate que la recherche naïve fait l'objet d'un exercice.
- L'étude du coût de cet algorithme n'est pas au programme, mais à titre d'exemple, on pourra rechercher le nombre de comparaisons de la recherche du motif aaaaaaaaa dans un texte contenant un million de b et comparer avec le cas de la recherche naïve.