

Final Projects - Computer Vision

703089. PS Introduction to Visual Computing

Assoz. Prof. Antonio Rodríguez-Sánchez, PhD.

Image classification with SVM

key-patch detection feature extraction histogram computation classification

- SVM: Support Vector Machine
- Process:
 - Download the dataset:
 http://www.vision.caltech.edu/Image_Datasets/Caltech256/
 And select five classes of animals (for each each class use the same number of images so that the training is balanced)
 - 2. Extract two types of features that you will compare: SIFT and HoG.
 - 3. Use 80% of images for training, 20% leave for testing. Images are randomly selected.
 - 4. Training and test sets must be in a matrix where rows are the images and columns are the N feature histogram values. Each image must be associated with a label.

	Feat.	Feat. 2	Feat. 3	Feat. 4	Feat. 5	Feat. 6	Feat. 7	 F. N
Image 1								
Image 2								
Image 3								
Image 400								

- 5. Use SVM to classify:

 https://docs.opencv.org/3.4/d1/d73/tutorial_introduction_to_svm.html

 Each image will be considered a point in N-dimensional space
- 6. Write a report that includes: Introduction, the methods and experimental evaluation. Report on the confusion matrix and accuracy for each feature.

 Discussion: Compare results and comment on strengths and weaknesses of each feature.

Eyes and smile classification

- Use Viola and Jones
- Process:
 - 1. From the Caltech256 dataset: http://www.vision.caltech.edu/
 Image_Datasets/Caltech256/ Use the class "159.people"
 - Use cascade classifiers, there is a number of haar cascades already available: https://github.com/opencv/opencv/tree/master/data/haarcascades
 https://github.com/opencv/opencv/tree/master/data/haarcascades
 https://github.com/opencv/opencv/tree/master/data/haarcascades
 https://github.com/opencv/opencv/tree/master/data/haarcascades
 https://github.com/opencv/opencv/tree/master/data/haarcascades
 https://github.com/opencv/opencv/tree/master/data/haarcascades
 https://github.com/opencv/opencv/tree/master/data/haarcascades
 https://github.com/opencv/tree/master/data/haarcascades
 https://github.com/opencv/tree/master/data/haarcascades
 https://github.com/opencv/tree/master/data/haarcascades
 https://github.com/opencv/tree/master/data/haarcascades
 https://github.com/opencv/tree/master/data/haarcascades
 https://github.com/opencv/tree/master/data/haarcascades
 https://github.com/opencv/tree/master/data/haa
 - 3. Use a process similar to: https://docs.opencv.org/3.4/d2/d99/tutorial_js_face_detection.html to find the eyes and smiles in the pictures.
 - 4. Another interesting links:

 https://www.mygreatlearning.com/blog/viola-jones-algorithm/

 https://docs.opencv.org/master/db/d28/tutorial_cascade_classifier.html
 - 5. Write a report that includes: Introduction, the methods and experimental evaluation. Report on the confusion matrix and accuracy for each class.