Claims

5

10

15

25

30

1. A compound of formula

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine and a stereochemically isomeric form thereof, wherein

ring A represents phenyl, pyridyl, pyrimidinyl, pyridazinyl or pyrazinyl;

R¹ represents hydrogen; aryl; formyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyl;

C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl substituted with formyl, C₁₋₆alkylcarbonyl,

 $C_{1\text{-}6}$ alkyloxycarbonyl, $C_{1\text{-}6}$ alkylcarbonyloxy; or $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxycarbonyl optionally substituted with $C_{1\text{-}6}$ alkyloxycarbonyl;

 X_1 represents a direct bond; -(CH₂)_{n3}- or -(CH₂)_{n4}- X_{1a} - X_{1b} -;

with n₃ representing an integer with value 1, 2, 3 or 4;

with n₄ representing an integer with value 1 or 2;

with X_{1a} representing O, C(=O) or NR⁵; and

with X_{1b} representing a direct bond or C₁₋₂alkyl;

R² represents C₃₋₇cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula

20 wherein -B-C- represents a bivalent radical of formula

-CH₂-CH₂-CH₂- (b-1); -CH₂-CH₂-CH₂-CH₂- (b-2); -X₃-CH₂-CH₂-(CH₂)_n- (b-3); -X₃-CH₂-(CH₂)_n-X₃- (b-4); -X₃-(CH₂)_n-CH=CH- (b-5); -CH=N-X₃- (b-6);

with X₃ representing O or NR⁵;

n representing an integer with value 0, 1, 2 or 3;

n' representing an integer with value 0 or 1;

wherein said R² substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

10

15

20

25

30

35

 $C_{1\text{-4}alkyloxy}C_{1\text{-4}alkyloxy}, C_{1\text{-4}alkyloarbonyl}, C_{1\text{-4}alkyloxycarbonyl}, C_{1\text{-}4alkyloxycarbonyl}, C_{1\text{-}4alkyloxycarbonyl}, C_{1\text{-}4alkyloxycarbonyl}, C_{1\text{-}4alkyloxy}, NR^6R^7, -C(=O)\text{-NR}^6R^7, -NR^5\text{-}C(=O)\text{-NR}^6R^7, -S(=O)\text{-1}\text{-R}^8 \text{ or } -NR^5\text{-}S(=O)\text{-1}\text{-R}^8; C_{2\text{-6}alkenyl} \text{ or } C_{2\text{-6}alkynyl}, \text{ each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, <math>C_{1\text{-4}alkyloxy},$

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,
-C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸; polyhalo-C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, -C(=O)-NR⁶R⁷,

-C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸; C₁₋₆alkylthio; polyhaloC₁₋₆alkylthio; C₁₋₆alkylcarbonyl; C₁₋₆alkylcarbonyl; cyano; carboxyl; aryloxy; arylthio;

arylcarbonyl; arylC₁₋₄alkyl; arylC₁₋₄alkyloxy; NR^6R^7 ; $C(=O)NR^6R^7$; -NR⁵-C(=O)-NR⁶R⁷; -NR⁵-C(=O)-R⁵; -S(=O)_{n1}-R⁸; -NR⁵-S(=O)_{n1}-R⁸; -S-CN; -NR⁵-CN; oxazolyl optionally substituted with C_{1-4} alkyl; imidazolyl optionally

substituted with C_{1-4} alkyl; or $(CH_2)_{n2}-X_4-(CH_2)_{n2}-X$

with n2 representing an integer with value 0, 1, 2, 3 or 4; with X_4 representing O, NR^5 or a direct bond; with X_5 representing O, CH_2 , CHOH, $CH-N(R_5)_2$, NR^5 or $N-C(=O)-C_{1.4}$ alkyl;

 X_2 represents a direct bond; -NR¹-; -NR¹-(CH₂)_{n3}-; -O-; -O-(CH₂)_{n3}-; -C(=O)-; -C(=O)- (CH₂)_{n3}-; -C(=O)-NR⁵-(CH₂)_{n3}-; -C(=S)-; -S-; -S(=O)_{n1}-; -(CH₂)_{n3}-; -(CH₂)_{n4}- X_{1a} - X_{1b} -; - X_{1a} - X_{1b} -(CH₂)_{n4}-; -S(=O)_{n1}-NR⁵-(CH₂)_{n3}-NR⁵-; or -S(=O)_{n1}-NR⁵-(CH₂)_{n3}-;

R³ represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, or a 9-or 10-membered bicyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R³ substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least

one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C_{1-4} alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or -NR⁵-S(=O)_{n1}-R⁸; C₂₋₆alkenyl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C1-4alkyloxy, 5 C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhaloC₁₋₆alkyl; C₁₋₆alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, -C(=O)-NR⁶R⁷, 10 $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhalo C_{1-6} alkyloxy; C₁₋₆alkylthio; polyhaloC₁₋₆alkylthio; C₁₋₆alkyloxycarbonyl; C₁₋₆alkylcarbonyloxy; C₁₋₆alkylcarbonyl; polyhaloC₁₋₆alkylcarbonyl; cyano; carboxyl; NR⁶R⁷;

 $C(=O)NR^6R^7$; $-NR^5-C(=O)-NR^6R^7$; $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^8$; $-NR^5-S(=O)_{n1}-R^8$; -S-CN; 15

-(CH₂)_{n2}-X₄-(CH₂)_{n2}N X_5 ; and in case \mathbb{R}^3 represents a saturated or a partially saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R³ may also be substituted with at least one

- R⁴ represents hydrogen; halo; hydroxy; C₁₋₄alkyl optionally substituted with at least one 20 substituent selected from hydroxy, cyano, carboxyl, C1-4alkyloxy, C1-4alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, $-NR^5-C(=O)-NR^9R^{10}$, $-S(=O)_{n1}-R^{11}$ or $-NR^5-S(=O)_{n1}-R^{11}$; C_{2-4} alkenyl or C_{2-4} alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C1-4alkyloxy, C1-4alkylcarbonyl, C1-4alkyloxycarbonyl, 25 C_{1-4} alkylcarbonyloxy, NR^9R^{10} , $-C(=O)-NR^9R^{10}$, $-NR^5-C(=O)-NR^9R^{10}$, $-S(=O)_{n1}-R^{11}$ or -NR5-S(=O)n1-R11; polyhaloC1.3alkyl; C1.4alkyloxy optionally substituted with carboxyl; polyhaloC₁₋₃alkyloxy; C₁₋₄alkylthio; polyhaloC₁₋₃alkylthio; C₁₋₄alkyloxycarbonyl; C₁₋₄alkylcarbonyloxy; C₁₋₄alkylcarbonyl; polyhaloC₁₋₄alkylcarbonyl; nitro; cyano; carboxyl; NR⁹R¹⁰; C(=O)NR⁹R¹⁰; 30 $-NR^5-C(=O)-NR^9R^{10}$; $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^{11}$; $-NR^5-S(=O)_{n1}-R^{11}$; -S-CN; or -NR5-CN;
 - R⁵ represents hydrogen, C₁₋₄alkyl or C₂₋₄alkenyl;

35

R⁶ and R⁷ each independently represent hydrogen; cyano; C_{1.6}alkylcarbonyl optionally substituted with C₁₋₄alkyloxy or carboxyl; C₁₋₆alkyloxycarbonyl; C₃₋₇cycloalkylcarbonyl; adamantanylcarbonyl; C₁₋₄alkyloxyC₁₋₄alkyl;

 C_{1-4} alkyl substituted with C_{1-4} alkyl-NR⁵-; C_{1-6} alkyl optionally substituted with at least one substituent selected from halo, hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, polyhalo C_{1-4} alkyloxy C_{1-4} alkyloxy C_{1-4} alkyloxy, NR^{6a}R^{7a}, C(=O)NR^{6a}R^{7a} or

$$-N$$
 X_6 ; with X_6 representing O, CH₂, CHOH, CH-N(R₅)₂, NR⁵ or

5 N-C(=O)- C_{1-4} alkyl;

10

15

20

25

30

R^{6a} and R^{7a} each independently represent hydrogen; C₁₋₄alkyl or C₁₋₄alkylcarbonyl; R⁸ represents C₁₋₄alkyl optionally substituted with hydroxy; polyhaloC₁₋₄alkyl or NR⁶R⁷:

R⁹ and R¹⁰ each independently represent hydrogen; C₁₋₆alkyl; cyano; C₁₋₆alkylcarbonyl; C₁₋₄alkyloxyC₁₋₄alkyl; or C₁₋₄alkyl substituted with C₁₋₄alkyl-NR⁵-; R¹¹ represents C₁₋₄alkyl or NR⁹R¹⁰;

n1 represents an integer with value 1 or 2;

aryl represents phenyl or phenyl substituted with at least one substituent selected from halo, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, cyano, nitro, polyhaloC₁₋₆alkyl or polyhaloC₁₋₆alkyloxy.

2. A compound according to claim 1 wherein

R² represents C₃₋₇cycloalkyl; phenyl or a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; or a radical of formula

wherein -B-C- represents a bivalent radical of formula

with X₃ representing O or NR⁵;

n representing an integer with value 0, 1, 2 or 3;

n' representing an integer with value 0 or 1;

wherein said R^2 substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxycarbonyloxy, NR^6R^7 ,

10

20

25

30

-C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸; C₂₋₆alkenyl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, -C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸; polyhaloC₁₋₆alkyl; C₁₋₆alkyloxy optionally substituted with carboxyl; polyhaloC₁₋₆alkyloxy; C₁₋₆alkylthio; polyhaloC₁₋₆alkylthio; C₁₋₆alkylcarbonyl; C₁₋₆alkylcarbonyl; cyano; carboxyl; NR⁶R⁷; C(=O)NR⁶R⁷; -NR⁵-C(=O)-NR⁶R⁷; -NR⁵-C(=O)-R⁵; -S(=O)_{n1}-R⁸; -NR⁵-S(=O)_{n1}-R⁸; -S-CN; -(CH₂)_{n2}-X₄-(CH₂)_n

with n2 representing an integer with value 0, 1, 2, 3 or 4; with X₄ representing O, NR⁵ or a direct bond; with X₅ representing O or NR⁵;

R³ represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R³ substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, -C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸; C₂₋₆alkenyl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, -C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸; polyhaloC₁₋₆alkyl; C₁₋₆alkyloxy optionally substituted with carboxyl; polyhaloC₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; polyhaloC₁₋₆alkylcarbonyl; cyano; carboxyl; NR⁶R⁷; C(=O)NR⁶R⁷; -NR⁵-C(=O)-NR⁶R⁷; -NR⁵-C(=O)-R⁵;

-S(=O)_{n1}-R⁸; -NR⁵-S(=O)_{n1}-R⁸; -S-CN; -NR⁵-CN; or and in case R³ represents a saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R³ may also be substituted with at least one oxo;

R⁵ represents hydrogen or C₁₋₄alkyl;

15

20

25

30

R⁶ and R⁷ each independently represent hydrogen; cyano; C₁₋₆alkylcarbonyl; C₁₋₄alkyloxyC₁₋₄alkyl; C₁₋₄alkyl substituted with C₁₋₄alkyl-NR⁵-; C₁₋₆alkyl optionally substituted with hydroxy, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, NR^{6a}R^{7a},

$$C(=O)NR^{6a}R^{7a}$$
 or

- R⁸ represents C₁₋₄alkyl, polyhaloC₁₋₄alkyl or NR⁶R⁷.
 - 3. A compound as claimed in claim 1 wherein ring A represents phenyl; R^1 represents hydrogen or C_{1-6} alkyl; X_1 represents a direct bond or $-(CH_2)_{n3}$ -; R^2 represents C_{3-7} cycloalkyl; phenyl; a 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl; or a radical of formula

wherein -B-C- represents a bivalent radical of formula

-CH₂-CH₂-CH₂- (b-1); ... -X₃-CH₂-(CH₂)_n-X₃- (b-4);

-CH= $N-X_3$ - (b-6);

with X₃ representing O or NR⁵;

n representing an integer with value 1;

wherein said R^2 substituent, where possible, may optionally be substituted with at least one substituent, in particular with 1 or 2 substituents selected from halo; C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, C_{1-4} alkyloxy, C_{1-4} alkyloxy C_{1-4} alkyloxy, NR^6R^7 or $-C(=O)-NR^6R^7$; polyhalo C_{1-6} alkyl; C_{1-6} alkyloxy optionally substituted with C_{1-4} alkyloxy; C_{1-6} alkylhio; C_{1-6} alkyloxy oxycarbonyl; cyano; arylthio; aryloxy; arylcarbonyl; NR^6R^7 ; $C(=O)NR^6R^7$; $-S(=O)_{n1}-R^8$; or imidazolyl optionally substituted with C_{1-4} alkyl; $-C(=O)-NR^5$, or imidazolyl optionally substituted with $-C_{1-4}$ alkyl; $-C(=O)-NR^5$, or $-S(=O)_{n1}-NR^5$, or $-C(=O)-NR^5$, represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said -C(C+O) substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; -C(-C+O) or -C(-C+O) and in case -C(-C+O) and in case

represents a saturated or a partially saturated 5-or 6-membered monocyclic heterocyc containing at least one heteroatom selected from O, S or N, said R³ may also be substituted with at least one oxo; R⁴ represents hydrogen; nitro or carboxyl; R⁵ represents hydrogen; R⁶ and R⁷ each independently represent hydrogen; cyano; C₁₋₆alkylcarbonyl optionally substituted with C₁₋₄alkyloxy; C₁₋₆alkyloxycarbonyl;

WO 2005/012304 PCT/EP2004/051457

C₃₋₇cycloalkylcarbonyl; adamantanylcarbonyl; or C₁₋₆alkyl; R⁸ represents NR⁶R⁷; n1 represents an integer with value 2; aryl represents phenyl.

4. A compound as claimed in any one of claims 1 to 3 wherein ring A is phenyl; R¹ is hydrogen; X₁ is a direct bond or -(CH₂)_{n3}-; R² is indanyl; 2,3-dihydro-1,4benzodioxanyl; phenyl optionally being substituted with 1 or 2 substituents each independently being selected from C₁₋₆alkyl which may optionally be substituted with hydroxy, cyano, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, NR⁶R⁷ or C(=O)NR⁶R⁷; C₁₋₆alkyloxy; halo; polyhaloC₁₋₆alkyl which may optionally be substituted with hydroxy, cyano, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, NR⁶R⁷ or C(=0)NR⁶R⁷; cyano; NR^6R^7 ; $C(=O)NR^6R^7$; $-S(=O)_{n_1}-R^8$; X_2 is direct bond; $-NR^1$ -; $-O-(CH_2)_{n_3}$ -; -C(=O)-; -C(=O)-NR⁵-(CH₂)_{n3}-; or -(CH₂)_{n3}-; R^3 is tetrazolyl; piperazinyl; imidazolyl; oxazolyl; pyrimidinyl; thiazolyl; triazolyl; pyridyl; piperidinyl, pyrazinyl; pyrazolyl or morpholinyl; said rings representing R3 may optionally be substituted with one substitutent selected from C₁₋₆alkyl; NR⁶R⁷; hydroxy; halo; and in case R³ represents a 15 saturated or a partially saturated ring system, said R³ may also be substituted with at least one oxo; R⁴ is hydrogen; R⁶ and R⁷ each independently represent hydrogen; cyano; C1-6alkylcarbonyl optionally substituted with C1-4alkyloxy; C₁₋₆alkyloxycarbonyl; C₃₋₇cycloalkylcarbonyl; or C₁₋₆alkyl; R⁸ represents NR⁶R⁷.

5. A compound as claimed in any one of claims 1 to 4 wherein the R³ substituent is linked to ring A in meta position compared to the NR¹ linker.

- 6. A compound as claimed in any one of claims 1 to 4 wherein the R³ substituent is linked to ring A in para position compared to the NR¹ linker.
 - 7. A compound as claimed in any one of claims 1 to 6 wherein the R³ substituent is an optionally substituted saturated 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N.
 - 8. A compound as claimed in any one of claims 1 to 7 wherein X_1 represents a direct bond.

30

9. A compound as claimed in any one of claims 1, 5 to 8 wherein R² represents
C₃₋₇cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula (a-1) wherein said R² substituent is substituted with at least one substituent selected from

 C_{1-6} alkyl substituted with NR⁶R⁷; C_{2-6} alkenyl or C_{2-6} alkynyl, each substituted with NR⁶R⁷; polyhalo C_{1-6} alkyl substituted with NR⁶R⁷; C_{1-6} alkyloxy substituted with NR⁶R⁷; polyhalo C_{1-6} alkyloxy substituted with NR⁶R⁷; or NR⁶R⁷.

- 5 10. A compound as claimed in any one of claims 1, 5, 6, 8 or 9 wherein R³ represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, or a 9-or 10-membered bicyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R³ substituent is substituted with at least one substituent selected from C₁₋₆alkyl substituted with NR⁶R³; C₂₋₆alkenyl or C₂₋₆alkynyl, each substituted with NR⁶R³; C₁₋₆alkyloxy substituted with NR⁶R³; or NR⁶R³.
 - 11. A compound as claimed in any one of claims 1, 5, 6, 7, 8 or 10 wherein R² represents C₃₋₇cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula (a-1), wherein said R² substituent is substituted with at least one substituent selected from halo; polyhaloC₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkyloxy-C₁₋₄alkyloxy, C₁₋₄alkyloxy-C₁₋₄alkyloxy, C₁₋₄alkyloxyonyl, C₁₋₄alkyloxyonyl, C₁₋₄alkyloxyonyl, C₁₋₆alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkyl

12. A compound as claimed in claim 1 wherein the compound is selected from

3 A	P ² N N N N N N N N N N N N N N N N N N N			
X_1	R ²	X ₂	R ³	
db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2-db	N-CH ₃	

			_3
X ₁	R ²	X ₂	R ³
db		2-db	1/2 N
db	The second secon	2-db	ĊH ₃
db	ОН	2-db	CH ₃
db	H CH ₃	2-db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
db	F	3-db	N—NH y ₁ N
db	NH ₂	2-db	N N
db	L, OH	3-NH	N N
db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2-db	NH ₂
db	— = N	3-db	The CH ₃

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine and a stereochemically isomeric form thereof.

13. A compound as claimed in claim 1 wherein the compound is selected from

$$R^3 - X_2 - \begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

5

WO 2005/012304 PCT/EP2004/051457

-104-

\mathbf{X}_1	R ²	-X ₂ -R ³
db	Z.Cha	
db	oH	N N CH ₃
db	Z ₁ OH	² ζ N OH
db	'X, OH	N CH ₃
db	O CH ₃	
db	0_CH ₃	"The CH3
db	F	"\"CH ₃

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine and a stereochemically isomeric form thereof.

5 14. A compound as claimed in any one of claims 1 to 13 for use as a medicine.

15. The use of a compound as defined in any one of claims 1 to 13 for the manufacture of a medicament for the prevention or the treatment of diseases mediated through GSK3.

10

15

16. The use of a compound as defined in any one of claims 1 to 13 for the manufacture of a medicament for the prevention or the treatment of bipolar disorder (in particular manic depression), diabetes, Alzheimer's disease, leukopenia, FTDP-17 (Frontotemporal dementia associated with Parkinson's disease), cortico-basal degeneration, progressive supranuclear palsy, multiple system atrophy, Pick's disease, Niemann Pick's disease type C, Dementia Pugilistica, dementia with tangles only, dementia with

15

20

25

(II)

tangles and calcification, Downs syndrome, myotonic dystrophy, Parkinsonism-dementia complex of Guam, aids related dementia, Postencephalic Parkinsonism, prion diseases with tangles, subacute sclerosing panencephalitis, frontal lobe degeneration (FLD), argyrophilic grains disease, subacute sclerotizing panencephalitis (SSPE) (late complication of viral infections in the central nervous system), inflammatory diseases, depression, cancer, dermatological disorders, neuroprotection, schizophrenia, pain.

- 17. The use of a compound as claimed in claim 16 for the prevention or the treatment of Alzheimer's disease; diabetes; cancer; inflammatory diseases; bipolar disorder; depression; pain.
- 18. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in any one of claims 1 to 13.

19. A process for preparing a pharmaceutical composition as claimed-in-claim 18 characterized in that a therapeutically effective amount of a compound as claimed in any one of claims 1 to 13 is intimately mixed with a pharmaceutically acceptable carrier.

20. A process for preparing a compound as claimed in claim 1, characterized by a) cyclizing an intermediate of formula (II) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

wherein ring A, R^1 to R^4 , X_1 and X_2 are as defined in claim 1; b) cyclizing an intermediate of formula (II-a) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

(I)

WO 2005/012304 PCT/EP2004/051457

wherein ring A, R^1 to R^3 , X_1 and X_2 are as defined in claim 1;

c) cyclizing an intermediate of formula (II-b) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

(I-c)

(II-b)

wherein ring A, R¹, R³ and R⁴, X₁ and X₂ are as defined in claim 1;

d) reacting an intermediate of formula (III) with an intermediate of formula (IV) in the presence of a suitable solvent,

10

5

wherein ring A, R¹ to R⁴, X₁ and X₂ are as defined in claim 1;

e) reacting an intermediate of formula (XV) with an intermediate of formula (XVI), wherein R^b represents hydrogen, C_{1-4} alkyl or cyano, and R^c represents hydrogen or C_{1-4} alkyl, in the presence of a suitable solvent and a suitable salt

wherein ring A, R¹ R², R⁴ and X₁ are as defined in claim 1;

f) reacting an intermediate of formula (XV) with hydrazine in the presence of a suitable solvent,

wherein ring A, R^1 R^2 , R^4 and X_1 are as defined in claim 1;

5

15

g) reacting an intermediate of formula (III') with an intermediate of formula (IV) in the presence of a suitable solvent, and optionally in the presence of a suitable base,

wherein ring A, R^1 R^2 , R^3 , R^4 , X_1 and X_2 are as defined in claim 1;

or, if desired, converting compounds of formula (I) into each other following art-known transformations, and further, if desired, converting the compounds of formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, if desired, preparing stereochemically isomeric forms, quaternary amines or *N*-oxide forms thereof

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.