Feng Chia University 110-1 Class Purdue I Calculus Final Exam

(Time: 90 minutes. Pages: Three Pages, Total 100 points)

Name:	SID:				
A · Filling blanks : (4	4% each. total 40%, Answer	should be in the	corresponding box.)		
(A)	(B)	(B)		(C)	
(D)	(E)		(F)		
(G)	(H)		(I)		
(J)		GRADES:			
1. Evaluate the o	critical number(s) of t	the function	$f(x) = 2x - 3x^{\frac{2}{3}}$	$\frac{2}{3}$ is(are)	

- x=(A).
- 2. Find all value of c that satisfies the Rolle's Theorem for $f(x) = x^4 2x^2$ on the interval [-2, 2] is (are) c = (B).
- 3. Find the interval(s) of increasing of the function $f(x) = \frac{x^4+1}{x^2}$ is(are) (C).
- 4. Find the interval(s) of concave upward of the function $f(x) = e^{\frac{-x^2}{2}}$ is(are) (D).
- 5. Find the point(s) of inflection of the function $f(x) = x^4 4x^3$ is(are) (E).
- 6. Find the differential of the function $f(x) = \sqrt{1 + x^2}$ is df = (F).
- 7. Find the antiderivative of $f(x) = \frac{\sin x}{\cos^2 x}$ is $F(x) = \underline{(G)} + C$.
- 8. Evaluate $\int_{-1}^{4} |x 2| dx = (H)$.
- 9. Evaluate the definite integral $\int_{-5}^{5} \left(\frac{x^3}{x^2+1} \sqrt{25-x^2}\right) dx = \underline{\qquad (I)}$
- 10. Let $h(x) = \int_3^x \sqrt{t^2 + 1} dt$, $x \ge 3$, evaluate $(h^{-1})'(0) = \underline{\qquad (J)}$.

В,	Computations:	(total 60%,	Show all your	work, NO DETA	AIL WORK, NO	POINTS!!)
----	---------------	-------------	---------------	---------------	--------------	-----------

1. (6%) Find the absolute extrema of function $f(x) = 3x^4 - 4x^3$ on the interval [-1, 2].	2. (6%) To approximate the value of $\sqrt{16.5}$ by the linear approximation
3. (6%) Solve the initial value problem	4. (6%) Evaluate $\int \sin 3x \ e^{\cos 3x} dx$
f''(x) = 2, f'(2) = 5, f(2) = 10.	
5. (6%) Evaluate $\int_{1}^{9} \frac{1}{\sqrt{x}(\sqrt{x}+1)^2} dx$	6. (6%) Evaluate $\lim_{x\to 0^+} x^x$.

7. (6%) Evaluate $\int \frac{x^2 + x + 2}{x^2 + 1} dx$	8. (6%) Evaluate $\int \frac{1}{\sqrt{-x^2+4x}} dx$.		
9.(6%) Show that $tanh^{-1}x = \frac{1}{2}\ln(\frac{1+x}{1-x})$	10.(6%) Find the area of the region bounded by the graph of $f(x) = 9 - x^2$, x-axis and the vertical lines $x=-1$ and $x=2$.		
for $x \in (-1, 1)$			