

# **Geodatenanalyse I: Interpolation – Kriging**

#### Kathrin Menberg



#### Stundenplan



|            | 08:30 – 12:30 Uhr | 13:30 – 17:30 Uhr |
|------------|-------------------|-------------------|
| Montag     | Tag 1 / Block 1   | Tag 1 / Block 2   |
| Dienstag   | Tag 2 / Block 1   | Tag 2 / Block 2   |
| Mittwoch   | Tag 3 / Block 1   | Tag 3 / Block 2   |
| Donnerstag | Tag 4 / Block 1   | Tag 4 / Block 2   |
| Freitag    | Tag 5 / Block 1   | Tag 5 / Block 2   |

▶ 2.10 Interpolation: Deterministische Verfahren

**▶** 2.11 Interpolation: Kriging

2.12 Gauß-Prozesse

#### Lernziele Block 2.11



#### Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen der Semivariogramm Analyse vertraut sein.
- verschiedenen Typen von Variogrammen kennen und diese auf Datensätze anpassen können.
- ... in Python Kriging für Datensätze mit und ohne Trend durchführen können.

## **Stochastische Interpolation**



- Geostatistische Verfahren
- Ergebnis ist eine von vielen möglichen Realisationen
- Interpolation basierend auf den statistischen Eigenschaften der Daten
- Statistische Auswertung der Wahrscheinlichkeit und Unsicherheit der Interpolationsergebnisse
- Möglichkeit der Qualitätsbestimmung der Interpolation
- z.B. Kriging

## Kriging



- Motivation: Bestimmung der Wahrscheinlichkeit an einem Ort Gold zu finden, basierend auf Proben von ein paar wenigen Bohrlöchern
- Verfahren basierend auf Inverse Distance Weighting...
- ... unter Berücksichtigung der räumlichen Varianz der Daten
- Kriging gliedert sich in zwei Schritte:
  - Analyse der räumlichen Korrelation, bzw. Varianz der Daten
  - eigentliche Kriging-Interpolation

#### **Kriging Grundgleichung**



$$\hat{Z}(x_0) = \sum_{i=1}^n \lambda_i \cdot Z(x_i), \quad mit \sum_{i=1}^n \lambda_i = 1$$

- $\hat{Z}(x_0)$  = Schätzwert am Punkt  $x_0$
- $\triangleright$  n = Anzahl Datenwerte, die zur Schätzung herangezogen werden
- $ightharpoonup Z(x_i)$  = Messwert am Punkt  $x_i$
- $\lambda_i$  = Gewichte, mit der der jeweilige Datenwert bei der Interpolation gewichtet wird
- Unterschiede zu IDW:
  - Berechnung der Gewichte
  - Annahme dass  $\hat{Z}(x_0)$  eine Zufallsgröße ist

#### **Kriging Gewichtung**



- Berücksichtigung von Heterogenität der Messpunkte
  - Gewichte von Punkten innerhalb von Clustern werden gesenkt
- Bestimmung der Gewichte so, dass Varianz des Schätzfehlers möglichst gering ist
- Ermittlung der Gewichte mittels (Semi-) Variogrammanalyse



#### Variogrammanalyse



Semivarianz  $\gamma(h)$ : Maß für den Grad der räumlichen Abhängigkeit von Messwerten

$$\gamma(h) = \frac{1}{2n} \sum_{i=1}^{n} (Z(x_i) - Z(x_i + h))^2$$

- $\triangleright$  n = Anzahl Datenwerte, die zur Schätzung herangezogen werden
- $ightharpoonup Z(x_i) = \text{Messwert am Punkt xi}$
- $ightharpoonup Z(x_i + h) = Messwert an einem Punkt im Abstand h$

Bivand et al. (2008)

halbe, mittlere,
quadrierte euklidische
Distanz zwischen zwei
Messwerten



## **Experimentelles Variogramm**



- ▶ Auftragen der (Semi-)Varianz  $\gamma(h)$  über dem Abstand h
- ► Experimentelles Variogramm → Messwerte



#### Schwellenwert und Reichweite



Schwellenwert (Sill): verglichene Werte haben keinen Bezug mehr zueinander, ihre quadrierten Differenzen entsprechen der Varianz um den Mittelwert

Reichweite (Range) = Abstand, unterhalb dem die Werte als räumlich in Beziehung stehend gelten können, darüber keine räumliche Korrelation

mehr



## **Nugget-Effekt**



- Nugget (y-Achsen-Abstand): charakterisiert Variablen, deren Variabilität kleinräumiger als die geringsten Probenabstände ist.
- kann aber auch durch Fehler im Datensatz, z.B. durch aufgrund der Probenahme oder der Analyse, verursacht werden.



#### **Theoretisches Variogramm**



- Anpassung des experimentellen Variogramms mit einer Funktion
- z.B. sphärische Funktion, lineare Funktion, usw.



11.03.2021

#### **Ordinary Kriging**



- ➤ Es liegt kein Trend (und keine Drift) in den Daten vor, d.h. die Differenz zwischen Schätzung und den wahren Werten soll im Mittel gleich 0 sein
- ▶ Die Varianz (Kriging-/Schätzvarianz) des Schätzfehlers soll minimal sein.
- ▶ Die Summe aller Gewichte muss 1 ergeben

$$\hat{\sigma}^2 = \sum_{i=1}^n \lambda_i \cdot \gamma_{i0} + \mu \quad \Rightarrow \text{min.}$$
 
$$\text{und} \qquad \sum_{i=1}^n \lambda_i = 1$$

 $\hat{\sigma}^2$  = Varianz  $\lambda_i$  = Gewicht für Messpunkt i  $\gamma_{i0}$  = Semivarianz für Messpunkt i und Punkt 0  $\mu$  = Lagrange-Faktor

$$Z(s) = \mu(s) + \varepsilon(s)$$

Z(s): Vorhersagewert (an Lokalität s)

 $\mu(s)$ : deterministischer Trend (Erwartungswert)

 $\varepsilon(s)$ : autokorrelierte Zufallsfehler



#### **Universal Kriging**



- Finden Anwendung, wenn Daten mit einem Trend (oder Drift) behaftet sind
- Trend: über das gesamte Gebiet (globaler Trend)
- Drift: nur lokal (lokale Drift)

$$Z(s) = \mu(s) + \varepsilon(s)$$

mit: Z(s): Vorhersagewert (an Lokalität s)

Z(s): Vorhersagewert (an Lokalität s)  $\mu(s)$ : deterministischer Trend (Erwartungswert)

 $\varepsilon(s)$ : autokorrelierte Zufallsfehler



#### **Root Mean Square Error (RMSE)**



dt. Wurzel der mittleren Fehlerquadratsumme

RMSE

**y**: Beobachtungen,  $\hat{y}_i$  Vorhersagen

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$



- Maß für die Güte der Anpassung, bzw. Genauigkeit der Vorhersagen
- ▶ Perfekte Anpassung, bzw. Übereinstimmung RMSE = 0
- Je größer, desto schlechter ist die Anpassung
- Magnitude abhängig vom Maßstab der Datenwerte
  - Relatives Fehlermaß!

# Übung 2.11: Interpolation II



- Kriging mit Grundwasserdaten aus Karlsruhe
  - Ordinary Kriging der Grundwassertemperaturen
  - Universal Kriging der Grundwasserstände
  - Analyse derVorhersagegenauigkeit
- Aufgaben in Jupyter Notebook: geodatenanalyse\_1-2-11





Menberg et al. (2013)

#### Aufgabenbesprechung





## Aufgabenbesprechung





#### Aufgabenbesprechung





11.03.2021

#### Literatur



- Bivand, Pebesma & Gomez-Rubio (2008): Applied Spatial Data Analysis with R, Springer
- ▶ Oliver & Webster (2015): Basic Steps in Geostatistics: The Variogram and Kriging, Springer
- Menberg et al. (2013): Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island, Environ. Sci. Technol. 47(17) (2013) 9747-9755

#### Nützliche Weblinks:

https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e



