Pattern Recognition - Coursework 1

February 6, 2018

0.1 Part 1

0.1.1 Parzen density estimation

The parzen window probability estimate for the three sample classes is as follows

0.1.2 Prior estimations

Using the equation for the prior

$$P(w_k) \approx \frac{n_k}{n}$$

in conjunction with the data in the sample classes the priors for each class was calculated. The values used were: $n_1=20, n_2=34, n_3=33$, and n=87

0.1.3 Posterior plots for d_1, d_2, d_3

Using the formula

$$P(w_k|x) = \frac{P(x|w_k)P(w_k)}{P(x)}$$

for each sample class, the posteriors were calculated in Matlab and the following graphs were plotted:

0.1.4 Posterior calculations for samples

Using the samples [-2, 0, 2, 4, 6, 8, 10] the posterior was calculated

Sample	Posterior,	Posterior,	Posterior,	Classification and
	class 1	class 2	class 3	Summary
-2				·
0				
2				
4				
6				
8				
10				

0.2 Part 2

0.2.1 k-nearest neighbours for d_1, d_2, d_3

Sample	k=1	k = 5
-2		
0		
2		
4		
6		
8		
10		

0.3. PART 3 3

0.2.2 Classification of new samples using new training data

- 0.2.3 Random value classification in Xtest
- 0.3 Part 3
- 0.3.1 Question 14 in
- 0.3.2 Random number in iterations