

Fluid Density (ρ)

- Total Mass (fluid and salt) / Volume
- Dimensions [ML⁻³]
- Commonly denoted with p
- Typical Values for Water
 - Fresh: $\rho = 1000 \text{ kg/m}^3$; $\rho = 62.43 \text{ lbs/ft}^3$
 - Seawater: $\rho = 1025 \text{ kg/m}^3$; $\rho = 64.00 \text{ lbs/ft}^3$

Pressure (P)

- Definition: Force per unit area
- Dimensions: [ML⁻¹T⁻²]
- Typical units: N/m²
- For a column of water of height, h, the hydrostatic pressure is:
 - $P = \rho g h$
- Absolute versus gauge pressure

Hydrostatic Conditions Pressure increases with depth according to the weight of the fluid dP/dz = ρg

Darcy's Law $q_x = -\frac{k_x}{\mu} \frac{\partial P}{\partial x}$ $q_z = -\frac{k_z}{\mu} \left(\frac{\partial P}{\partial z} + \rho g \right)$

Head-Based Formulation?

- Many variable-density codes solve equations in terms of pressure, but equations can also be formulated using head
- Why head instead of pressure?
 - Perhaps more intuitive
 - Use popular codes, such as MODFLOW?
- Complication: what is "head" in a variable-density system?

Lusczynski (1961)

- Horizontal flow is proportional to the gradient of freshwater head
- Vertical flow is proportional to the gradient in environmental head
- Horizontal and vertical flow are not necessarily proportional to the gradient of point-water head

Why use h_f in SEAWAT?

- Conceptually straightforward (i.e. for freshwater system, h_f = h)
- Finite-difference form of governing equation can be solved by MODFLOW (with a few modifications)

Storage Term (cont.)
$$\frac{\partial(\rho\theta)}{\partial t} = \rho[\xi(1-\theta) + \zeta\theta] \frac{\partial P}{\partial t} + \theta \frac{\partial \rho}{\partial c} \frac{\partial C}{\partial t}$$

$$S_{P} = \xi(1-\theta) + \zeta\theta \quad \text{Bear, 1979}$$

$$\frac{\partial(\rho\theta)}{\partial t} = \rho S_{P} \frac{\partial P}{\partial t} + \theta \frac{\partial \rho}{\partial C} \frac{\partial C}{\partial t}$$

$$P = \rho_{f}g(h_{f} - Z) \quad S_{f} = \rho_{f}g[\xi(1-\theta) + \zeta\theta]$$

$$\frac{\partial(\rho\theta)}{\partial t} = \rho S_{f} \frac{\partial h_{f}}{\partial t} + \theta \frac{\partial \rho}{\partial C} \frac{\partial C}{\partial t}$$
Formulated in terms of h; Used in SEAWAT

Coupled Flow and Transport

- Groundwater flow is affected by fluid density
 - $\mathbf{q} = f(\rho,...)$
- Concentration is affected by flow velocity (advection and dispersion)
 - \blacksquare C = f(q,...)
- Fluid density is function of solute concentration
 - $\rho = f(C)$

