

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Offenlegungsschrift**
(10) **DE 43 11 585 A 1**

(51) Int. Cl. 5:
B 65 G 1/20

DE 43 11 585 A 1

(21) Aktenzeichen: P 43 11 585.3
(22) Anmeldetag: 8. 4. 93
(43) Offenlegungstag: 13. 10. 94

(71) Anmelder:
Jürgens, Walter, Dr.-Ing., 52072 Aachen, DE

(61) Zusatz zu: P 42 30 953.0
(72) Erfinder:
gleich Anmelder

- (54) Stapelsäule zum Transport von Autokomponenten Y
(57) Die Erfindung betrifft eine Stapelsäule mit Klinken, wobei die Klinken zunächst an dem nicht durch das transportierende Teil beaufschlagten Teil, also jenseits des Drehpunktes mit konisch angeformten Abkantungen versehen sind, die bei der Kinematik ineinandergreifen und sich nicht behindern.

DE 43 11 585 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 08. 94 408 041/191

Beschreibung

Zum Transport von Autokomponenten z. B. Seiten-
teilen, Dächern usw. werden Gestelle mit Stapelsäulen
verwendet.

Diese Stapelsäulen haben Klinken, auf denen die Au-
tokomponenten abgelegt werden.

So werden die Teile getrennt und geordnet überein-
ander gestapelt. Dies geschah in der Regel automatisch.

Auch das Entnehmen ist so automatisiert möglich. Bei
dem System sind die Klinken miteinander verbunden.
Die unterste Klinke ist um 45° geneigt, die darüberlie-
gende liegt im Schatten der Säule. Sobald das zu lagern-
de Teil auf die unterste Klinke gelegt wird, klappt diese
um ihren Drehpunkt in die waagerechte Position und
nimmt die darüberliegende aufgrund der Gestängever-
bindung mit und schwenkt diese wieder in die Schräg-
stellung (Neigung ca. 45°). So geht das weiter. Bei waag-
gerechter Position steht natürlich die Klinke weiter vor.
Bei 45° Neigung steht sie um ein notwendiges Stück von
der Säulenkante, so daß das nächste Autoteil Auflage
findet, aber durch die darüberliegenden Klinken nicht
behindert wird.

Es gibt verschiedene Systeme. Alle sind kompliziert
und teuer. Die Klinken sind gegossen bearbeitet und mit
Verschleißblechen versehen. Das ist sehr teuer und zu-
dem aufgrund der schlechten Verbindung zwischen dem
Verschleißblech und der Klinke techn. nicht ausgereift.

Ein weiteres System hat ein flaches Blech am Ende
mit einer Börtelung versehen. Diese Börtelung ist die
Achsaufnahme. Diese Konstruktion hat kein Gegengewicht
jenseits der Achse, so daß eine Feder die Klinke in
die senkrechte Position holen muß. Zudem ist dies Blech
sehr schwach. Die Konstruktion ist störanfällig und
wackelig. Die Genauigkeit läßt zu wünschen übrig. Der
Erfinder hat ein System entwickelt, bei dem die Klinken
aus einem Blech in abgekanteter Ausführung bestehen.
Diese Klinken werden als Stanzteil gefertigt und kosten
einen Bruchteil der vorherigen Ausführungen.

Diese Klinken sind mit Gestängen, Mitnehmern ver-
sehen.

Bei kleiner werdenden Abständen der Drehachsen
kommt der Punkt, an der ein Gestänge geometrisch
nicht mehr möglich ist.

Der Erfinder schlägt vor die Mitnehmer starr anzu-
bringen bzw. anzuformen, z. B. durch einen Leerhub
kann so die Neigung der nächsthöherliegenden Klinke
beeinflußt werden. Der Abstand kann durch schräge
abgekantete Seiten stark verringert werden, so daß die
Klinken konisch ineinander greifen.

Fig. 1 zeigt perspektivisch die Anordnung der Klin-
ken (2+3) und der Stapelsäulen. Diese Klinken haben
angeformte Mitnehmer (4). Zudem sind die abgekanteten
Seiten der Blechteile (5, 6) konisch angeformt, so daß
bei sehr kleinen Abständen die Klinken ineinanderrei-
fen ohne sich bei der Kinematik zu stören.

Fig. 2 zeigt die Seitenansicht und die dicht übereinan-
der angeordneten Klinken.

Fig. 3 zeigt die Vorderansicht mit übereinander ver-
setzt angeordneten Klinken (7+8) mit konischen Ab-
kanten (10+11) und dem Mitnehmer (9), der seitlich
angeordnet ist. Auf diese Weise ist ein kleinerer Achsab-
stand möglich.

konisch angeformten Abkantungen versehen sind,
so daß eine Klinke konisch in die andere greift (um
die Abstände zu verringern) (insbesondere der
durch das zu transportierende Teil nicht beauf-
schlagte Teil, der Klinke jenseits der Achse, ist ko-
nisch ausgeführt).

2. Stapelsäulen nach Anspruch 1, dadurch gekenn-
zeichnet, daß die Klinken mit starr angebrachten
angeformten Mitnehmern versehen sind.

3. Stapelsäulen nach Anspruch 1 + 2, dadurch ge-
kennzeichnet, daß die Klinken übereinander ver-
setzt, also auf Luke angeordnet sind. s. Fig. 3.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

