Geometry - Cylinder by radius & end points pt2

$$\frac{1}{\ln_{12}} = \text{pt2} - \text{pt1} = (x2 - x1) + (y2 - y1) + (z2 - z1)$$

$$|\ln_{12}| = \sqrt{(x2 - x1) + (y2 - y1) + (z2 - z1)}$$

normalized
$$\frac{}{\ln}$$
 $\ln \frac{}{\ln \ln }$

After translating to pt2 and selecting i_{local} aligned to ln_N

$$i_{local} = ln_N = \langle a,b,c \rangle_{global}$$

$$\mathbf{b}$$
 $\mathbf{i}_{global} = \langle 1, 0, 0 \rangle_{global}$

$$tan(rot-z) = c/a$$

$$tan(rot-y) = b/a$$

Algorithm Coding For (idx;;) Loop

angle = 360/divisions ex) 6 divisions idx=0,1,2,4,5 idx*60 = 0,60,120,180,240,300

1]<0,0,0>

 $2 \mid < 0$, r*sin(idx*angle), r*cos(idx*angle)>

 $3 \] < 0 \ , \ r*sin((idx + 1)*angle) \ , \ r*cos((idx + 1)*angle) >$

X_{local}

Vector equation of a plane

$$< a$$
, b, c > $\cdot < (x2 - x1) + (y2 - y1) + (z2 - z1) > = 0$