Modeling

Kelly Im, Brian Wang, Alvin Zou

Data Preprocessing

- Separated input and output variables
- Split training and test data (70%/30%)
- Fill numerical features with the feature's mean and filled categorical features with the feature's mode
- Removed features that implied that the participant already has diabetes
 - AB24 Currently Taking Insulin
- Removed features that were the same except in different units
 - WGHTK_P Weight in kilograms. Kept the alternative feature WGHTP_P - Weight in pounds.
- Used a Random Forest Classifier to get the important features for feature selection
 - \circ Number of features: 763 \rightarrow 52

Performance Metric Definitions

- Accuracy
 - The proportion of respondents who have or don't have Type 2 diabetes and are correctly classified among the total number of cases examined.
- Precision
 - The proportion of people who have Type 2 diabetes and are correctly classified among all respondents who are predicted to have Type 2 diabetes.
- Recall
 - The proportion of respondents who have Type 2 diabetes and are correctly classified among those who actually have Type 2 diabetes.
- F1 Score
 - The harmonic mean of precision and recall. The value is between 0 and 1 the closer the score is to 1, the more accurate the model.
- Confusion Matrix
 - A table used to describe the performance of a classification model on a set of test data for which the true values are known.

Performance Metric Equations

- Accuracy
 - \circ (TP + TN) / (TP + FP + FN + TN)
- Precision
 - \circ TP/(TP+FP)
- Recall
 - \circ TP/(TP+FN)
- F1 Score
 - 2 * ((Precision * Recall) / (Precision + Recall))
- Confusion Matrix
 - Shown in the next slide.

Models

- Logistic Regression
 - Estimates the probability on whether a data point belongs to a certain class
- K-Nearest Neighbors
 - Takes the *k* nearest neighbors of a data point and assigns the data point the same label as the majority label within its neighbors
- Stochastic Gradient Descent
 - Iterative algorithm that starts from a random point on a function and randomly picks one data point at each iteration to travel down its slope until it reaches the lowest point of the function
- Decision Trees
 - Builds up a set of decision rules in the form of a tree which helps predict an outcome
- Random Forest
 - Consists of many decision trees and takes the prediction from each tree and selects the final prediction based on the majority votes of predictions

Confusion Matrix

Predicted

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	True Negative (TN)	False Positive (FP)
Has Type 2 Diabetes	False Negative (FN)	True Positive (TP)

Actual

Methods Used To Deal With Unbalanced Classes

- Cost-Sensitive Learning
 - Takes the costs of prediction errors (and potentially other costs) into account when training a machine learning model.
 - Assigns different costs to the types of misclassification errors
- Synthetic Minority Oversampling Technique (SMOTE)
 - Oversampling method that selects a random sample in the minority class, finds its k nearest neighbors, randomly selects a neighbor, and then creates a synthetic example between the two examples

Logistic Regression

• Accuracy = 0.980118793732485

• Precision = 0.8885199240986718

Recall = 0.9299900695134061

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	49990	705
Has Type 2 Diabetes	423	5619

Logistic Regression Using Cost-Sensitive Learning

• Accuracy = 0.9853358478594215

• Precision = 0.8820768553828102

• Recall = 0.9953657729228732

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	49891	804
Has Type 2 Diabetes	28	6014

Logistic Regression Using SMOTE

• Accuracy = 0.9850890952993637

• Precision = 0.882171226831421

• Recall = 0.9925521350546177

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	49894	801
Has Type 2 Diabetes	45	5997

K Nearest Neighbors

• Accuracy = 0.9258861060683504

• Precision = 0.8048456687686691

• Recall = 0.40135716650115855

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	50107	588
Has Type 2 Diabetes	3617	2425

K Nearest Neighbors Using SMOTE

• Accuracy = 0.8295292313657754

• Precision = 0.3473507148864592

• Recall = 0.6835484938762

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	42935	7760
Has Type 2 Diabetes	1912	4130

Stochastic Gradient Descent

• Accuracy = 0.9386996140084953

• Precision = 0.9064679771718452

• Recall = 0.47318768619662366

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	50400	295
Has Type 2 Diabetes	3183	2859

Stochastic Gradient Descent Using SMOTE

• Accuracy = 0.9711475756560974

• Precision = 0.8236590742101396

• Recall = 0.9276729559748428

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	47871	2824
Has Type 2 Diabetes	24	6018

Decision Trees

• Accuracy = 0.974743112959797

• Precision = 0.8937297112591833

• Recall = 0.8657729228732208

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	50073	622
Has Type 2 Diabetes	811	5231

Decision Trees Using Cost-Sensitive Learning

• Accuracy = 0.9746197366797681

• Precision = 0.8961776859504132

• Recall = 0.8614697120158887

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	50092	603
Has Type 2 Diabetes	837	5205

Decision Trees Using SMOTE

• Accuracy = 0.9761531275886988

• Precision = 0.8952959028831563

• Recall = 0.8788480635551142

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	50074	621
Has Type 2 Diabetes	732	5310

Random Forest

• Accuracy = 0.9861994818196239

• Precision = 0.8881180811808118

• Recall = 0.9958622972525654

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	49937	758
Has Type 2 Diabetes	25	6017

Random Forest Using Cost-Sensitive Learning

• Accuracy = 0.9860056048081499

• Precision = 0.8916417910447761

• Recall = 0.9887454485269779

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	49969	726
Has Type 2 Diabetes	68	5974

Random Forest Using SMOTE

• Accuracy = 0.9861818566367626

• Precision = 0.8869590815425376

• Recall = 0.9973518702416418

	Doesn't Have Type 2 Diabetes	Has Type 2 Diabetes
Doesn't Have Type 2 Diabetes	49927	768
Has Type 2 Diabetes	16	6026

Best Model

- Random Forest Using SMOTE
- Highest F1 Score

Model	F1 Score
Logistic Regression	0.9087821445900048
Logistic Regression (Cost-Sensitive Learning)	0.9353032659409021
Logistic Regression (SMOTE)	0.9341121495327102
KNN	0.5356156819436775
KNN (SMOTE)	0.46062904305152796
Stochastic Gradient Descent	0.6217920835145716
Stochastic Gradient Descent (SMOTE)	0.8086535877452298
Decision Trees	0.8795292139554435
Decision Trees (Cost-Sensitive Learning)	0.8784810126582278
Decision Trees (SMOTE)	0.8869957404159359
Random Forest	0.9389092611375517
Random Forest (Cost-Sensitive Learning	0.937686391461309
Random Forest (SMOTE)	0.9389217824867561

Additional Models in Progress

- Neural Network Model
- Time Series Forecasting Model

PostgreSQL Databases

- 1. We have created multiple databases according to the different survey questionnaire sections. The database schema is attached to the email in a PDF.
 - a. Screening Information (Ex: Household Size, Language of Interview, Proxy Interview, etc.)
 - b. Demographic Information, Part I (Ex: Age, Gender, Race, Ethnicity, Marital Status, etc.)
 - c. General Health Condition (Ex: Asthma, Diabetes, High Blood Pressure, Heart Disease, etc.)
 - d. Health Behaviors (Ex: # Times Ate Fruit, # Times Ate Vegetables, # of Cigarettes per day, etc.)
 - e. General Health, Disability & Sexual Health (Ex: Height, Weight, BMI, Type of Birth Control, etc.)
 - f. Women's Health (Ex: Currently Pregnant)
 - g. Mental Health (Ex: Feeling Nervous, Hopeless, Depressed, Restless, Chore Impairment, etc.)
 - h. Demographic Information, Part II & Child Care (Ex: Citizen, English Proficiency, Education, etc.)
 - i. Health Insurance (Ex: Covered by Medicare/Medi-cal, Covered for Prescription Drugs, etc.)
 - j. Health Care Utilization/Access & Dental Health (Ex: Usual Source of Care, # Doctor Visits, etc.)
 - k. Employment, Income, Poverty Status & Food Security (Ex: Work Status, # Hours Worked, etc.)
 - I. Public Program Participation (Ex: Receiving TANF/CALWORKS, Food Stamps, SSI, Pension, etc.)
 - m. Housing & Community Involvement (Ex: Currently Paying Off Mortgage, Active Member in Community, Own or Rent Home, Feeling Safe in Neighborhood, etc.)
 - n. Demographic Information, Part III, Geographic Information (Ex: Rural or Urban)
 - o. Voter Engagement (Ex: Frequency of Voting, Voter Engagement)