Finite MLPs can be treated as analytic approximations of infinite width MLPs

ReLU MLPs Can Compute Numerical Integration Mechanistic Interpretation of a Non-linear Activation

We build upon Nanda 2023 and Zhong 2023 interpretations of the "pizza" modular addition transformer model, which has a black-box treatment of its MLP.

While we cannot compactly describe the behavior of 128 MLP neurons individually, we look for continuous functions capturing the **aggregate input behavior**, treating the finite-width MLP as an approximation of some **infinite-width** counterpart.

We apply amplitude-phase Fourier transforms to rewrite each neuron's input and output maps. Neurons are single frequency with $k_{\rm in} = k_{\rm out}$, output map phases are 2× the input map phase, and the phases are uniformly distributed.

We can sort the neurons by phase and plot one rectangle for each neuron. Given the input x + y, the contributions of neurons to the z = x + y logit look remarkably like **numerical integration**.

We confirm this interpretation by using it to **compactly bound error** in the network approximation.

$$\left|\int_{-\pi}^{\pi}f(x)-f(\phi_i)\,\mathrm{d}x
ight|\leq \int_{-\pi}^{\pi}\underbrace{\left|f(x)-f(\phi_i)
ight|}_{\leq |x-\phi_i|\underbrace{\sup_x|f'(x)|}_{\leq 2}}\mathrm{d}x\leq 2\sum_i\left(\int_{a_{i-1}-\phi_i}^{a_i-\phi_i}|x|\,\mathrm{d}x
ight)$$

Error Bound Type \ Freq.	12	18	21	22
Normalised abs error	0.04	0.03	0.04	0.03
Normalised id error	0.06	0.05	0.04	0.04
Numerical abs \int_0^{π} bound	0.60	0.41	0.46	0.41
Numerical abs $\int_0^{\pi/2}$ bound	0.45	0.31	0.37	0.30
Naive abs bound	0.74	0.74	0.74	0.74

