Quiz II

Angular momentum

- 1. <u>Commutation relations involving angular momentum:</u> Evaluate or establish the following commutation relations involving angular momentum:
 - (a) $[\hat{L}_i, \hat{x}_i]$, 2 marks
 - (b) $\hat{\boldsymbol{L}} \times \hat{\boldsymbol{r}} + \hat{\boldsymbol{r}} \times \hat{\boldsymbol{L}} = 2 i \hbar \hat{\boldsymbol{r}},$ 3 marks
 - (c) $[\hat{L}^2, \hat{r}] = -2i\hbar\hat{\Theta}$, where $\hat{\Theta} = \hat{L} \times \hat{r} i\hbar\hat{r}$
 - (d) $[\hat{L}_x^2, \hat{L}_y^2] = [\hat{L}_y^2, \hat{L}_z^2] = [\hat{L}_z^2, \hat{L}_x^2].$ 2 marks

Note: $\epsilon_{ijk} \, \epsilon_{ljk} = 2 \, \delta_{il}$.

- 2. Rotation matrix for j = 1: Consider a system with j = 1.
 - (a) Construct the matrix describing \hat{J}_y .
 - (b) Using the matrix representation, show that $\hat{J}_{y}^{3} = \hat{J}_{y}$.
 - (c) As a result, when j = 1, show that we can write 4 marks

$$\exp -\left(\frac{i\,\hat{J}_y\,\alpha}{\hbar}\right) = 1 - i\sin\alpha\,\frac{\hat{J}_y}{\hbar} - (1-\cos\alpha)\,\frac{\hat{J}_y^2}{\hbar^2}.$$

3. (a) Energy of a spin- $\frac{3}{2}$ particle: A spin- $\frac{3}{2}$ particle is described by the Hamiltonian

$$\hat{H} = \frac{\alpha}{\hbar^2} \left(\hat{S}_x^2 + \hat{S}_y^2 - 2 \, \hat{S}_z^2 \right) - \frac{\beta}{\hbar} \, \hat{S}_z,$$

where α and β are real constants. Determine the energy eigen values of the particle. 5 marks

- (b) <u>Particle in a central potential:</u> A particle in a spherically symmetric potential is known to be in the eigenstate $|l,m\rangle$ of the operators $\hat{\boldsymbol{L}}^2$ and \hat{L}_z with eigenvalues $l(l+1)\hbar^2$ and $m\hbar$, respectively.
 - i. Evaluate $\langle \hat{L}_x \rangle$, $\langle \hat{L}_y \rangle$ and $\langle \hat{L}_z \rangle$ in the state $|l, m\rangle$.
 - ii. Similarly, evaluate $\langle \hat{L}_x^2 \rangle$, $\langle \hat{L}_y^2 \rangle$ and $\langle \hat{L}_z^2 \rangle$ in $|l,m\rangle$.
- 4. Expectation value in the singlet state: Suppose two spin- $\frac{1}{2}$ particles are known to be in the singlet configuration. Let S_{1a} be the component of the spin angular momentum of the first particle in the direction defined by the unit vector \hat{a} . Similarly, let S_{2b} be the component of second particle's spin angular momentum in the direction \hat{b} . Evaluate the expectation value of the operator $\hat{S}_{1a} \hat{S}_{2b}$ in the singlet state.
- 5. <u>Addition of spin angular momentum:</u> Consider a system composed of two particles, one with spin- $\frac{1}{2}$ and another with spin-1.
 - (a) List all the allowed spin states of the composite system. 3 marks
 - (b) Express all the spin states of the composite system in terms of the spin states of the individual systems. $\boxed{7 \text{ marks}}$