## Linear Algebra – MAT 2610

Section 2.3 (Characterizations of Invertible Matrices)

Dr. Jay Adamsson

jay@aorweb.ca

<u>jadamsson@upei.ca</u>

## Theorem 8 (Invertible Matrix Theorem)

If A is a square  $n \times n$  matrix, then the following are equivalent:

- a. The matrix A is invertible
- b. The matrix A is row equivalent to  $I_n$
- c. There are n pivot positions in A
- d. The equation Ax = 0 has only the trivial solution
- e. The columns of A are linearly independent
- f. The linear transformation  $x \mapsto Ax$  is one-to-one
- g. The equation Ax = b has at least one solution for every b in  $\mathbb{R}^n$
- h. The columns of A span  $\mathbb{R}^n$
- i. The linear transformation  $x \mapsto Ax$  maps  $\mathbb{R}^n$  onto  $\mathbb{R}^n$
- j. There is an  $n \times n$  matrix C such that  $AC = CA = I_n$
- k. The matrix  $A^T$  is invertible





## Theorem 9

Let  $T: \mathbb{R}^n \to \mathbb{R}^n$  be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by  $S(x) = A^{-1}(x)$  is the unique function satisfying

- S(T(X)) = x for all x in  $R^n$ ; and
- T(S(X)) = x for all x in  $R^n$

## Linear Algebra – MAT 2610

Section 2.3 (Characterizations of Invertible Matrices)

Dr. Jay Adamsson

jay@aorweb.ca

<u>jadamsson@upei.ca</u>