EFFAT UNIVERSITY COLLEGE of ARCHITECTURE & DESIGN ARCHITECTURE DEPARTMAENT

ARCH350:

STRUCTURE in ARCHITECTURE - I

STRUCTURE IN ARCHITECTURE – I

MOMENT OF A FORCE

Today's Objectives:

Students will be able to:

- a) understand and define moment
- b) determine moments of a force, and
- c) define a couple, and its moment

In-Class Activities:

- Applications
- Moment of a force
- Concept quiz
- Group Problem Solving
- Reading quiz

APPLICATIONS

What is the net effect of the two forces on the wheel?

MOMENT OF A FORCE

The <u>magnitude</u> of the moment is $M_0 = F d$

As shown, d is the *perpendicular* distance from point O to the <u>line of action</u> of the force F.

The <u>direction</u> of M_O is either <u>clockwise</u> or <u>counter-clockwise</u> depending on the tendency for rotation.

MOMENT OF A FORCE

For example, $M_O = F$ d and the direction is counter-clockwise.

Often it is easier to determine M_O by using the components of \boldsymbol{F} as shown.

MOMENT OF A FORCE

Using this approach, $M_O = (F_Y a) - (F_X b)$

Note the different signs on the terms! The typical sign convention for a moment is that counter-clockwise is considered positive.

EXAMPLE 1

Given: A 400 N force is

applied to the frame

and $\theta = 20^{\circ}$.

Find: The moment of the

force at A.

Plan:

- 1) Resolve the force along x and y axes.
- 2) Determine M_A using scalar analysis.

EXAMPLE 1 (CONTINUED)

F_x = 400 cos 20° N (←)

 $F_y = 400 \sin 20^{\circ} N (\downarrow)$

$$+ \tilde{N}_A = (400 \cos 20^\circ) (2) + (400 \sin 20^\circ) (3)$$

= 1160 N·m

CONCEPT QUIZ

If a force of magnitude 10 kN can be applied in four different configurations (P, Q, R & S), select the cases resulting in the maximum and minimum moment values on the nut and point N (Max, Min).

A) (Q, P)

B) (R, S)

C) (P, R)

D) (Q, S)

GROUP PROBLEM SOLVING

Given: A 40 N force is

applied to the wrench.

Find: The moment of the

force at O.

Plan

- 1) Resolve the force along x and y axes.
- 2) Determine M_O

GROUP PROBLEM SOLVING

+
$$\uparrow$$
 F_y = -40 cos 20° N
Or F_v = 40 cos 20° N (\downarrow)

$$+\rightarrow$$
 F_x = -40 sin 20° N
Or Fx = 40 sin 20° N (\leftarrow)

+5
$$M_O = -(40 \cos 20^\circ)(200) + (40 \sin 20^\circ)(30)$$

= -7107 N·mm = -7.11 N·m

ATTENTION QUIZ

Using the CCW direction as positive, the net moment of the two forces about point P is

- A) $10 \text{ N} \cdot \text{m}$ B) $20 \text{ N} \cdot \text{m}$ C) $-20 \text{ N} \cdot \text{m}$
- D) 40 N⋅m E) 40 N⋅m

COUPLE

A couple (torque) of 12 N·m is required to rotate the wheel. Why does one of the two grips of the wheel above require less force to rotate the wheel?

READING QUIZ

In statics, a couple is defined as _____ separated by a perpendicular distance.

- A) two forces in the same direction
- B) two forces of equal magnitude
- C) two forces of equal magnitude acting in the same direction
- D) two forces of equal magnitude acting in opposite directions

EXAMPLE

Given: Two couples act on the

beam with the geometry shown.

Find: The magnitude of F so

that the resultant couple moment is 1.5 kN·m clockwise.

Plan:

- 1) Add the two couples to find the resultant couple.
- 2) Equate the net moment to 1.5 kN·m clockwise to find F.

EXAMPLE 2

The net moment is equal to:

$$(+ \Sigma M = - F (0.9) + (2) (0.3)$$

$$= -0.9 F + 0.6$$

$$-1.5 \text{ kN} \cdot \text{m} = -0.9 \text{ F} + 0.6$$

Solving for the unknown force F, we get

$$F = 2.33 \text{ kN}$$

EXAMPLE 3 +-2m-Given: Two couples act on the 300N beam with the geometry shown. Find: The resultant couple 2m 150 N 300N 2m150 N 2m Plan: 1) Resolve the forces in x and y-directions so they can be treated as couples. 2) Add the two couples to find the resultant couple.

EXAMPLE 3 |--2m--|--2m--| Now resolve the lower 150 300N force: B(150 lb) (sin 30°), acting up 2m(150 lb) (cos 30°), acting to the 300N 150 N left 2m150 N 2mDo both of these componen create a couple with components of the other 150 lb force?

The net moment is equal to: $(+\Sigma M = -(240 \text{ N}) (2 \text{ m})$ $-(150 \text{ N}) (\cos 30^{\circ}) (2 \text{ m})$ $(+\Sigma M = -480 - 259.8$ = -739.8 N.m. CCW = 739.8 N.m. CW

Determine the resultant moment produced by the forces about point O. $F_1 = 500 \text{ N}$ 0.125 m 0.25 m $F_2 = 600 \text{ N}$

EXAMPLE 7

F4–9. Determine the resultant moment produced by the forces about point O.

Determine the resultant force and couple moment at point \boldsymbol{A} .

