# CS 189 Fall 2018

# Introduction to Machine Learning

Midterm

After the exam starts, please write your student ID (or name) on **EVERY PAGE**.

There are 4 questions for a total of 13 parts. You may consult your sheet of notes. Calculators, phones, computers, and other electronic devices are not permitted. There are 17 pages on the exam. Notify a proctor immediately if a page is missing. You may, without proof, use theorems and lemmas that were proven in the notes and/or in lecture, unless we explicitly ask for a derivation. However, you must clearly state what theorem or lemma you are using and where/how you are using it.

Please write legibly if you want full credit on all problems.

#### You have 75 minutes.

| PRINT and SIGN Your Name: | <b>,</b>                    |                        | ,           |
|---------------------------|-----------------------------|------------------------|-------------|
|                           | (last)                      | (first)                | (signature) |
| PRINT Your Student ID:    |                             |                        |             |
| Person before you:        |                             |                        |             |
|                           | (name)                      |                        | (SID)       |
| Person behind you:        |                             | ,                      |             |
|                           | (name)                      |                        | (SID)       |
| Person to your left:      |                             |                        |             |
|                           | (name)                      |                        | (SID)       |
| Person to your right:     |                             |                        |             |
|                           | (name)                      |                        | (SID)       |
| Seat Number:              |                             |                        |             |
|                           |                             |                        |             |
|                           |                             |                        |             |
| Do not tui                | n this page until your inst | ructor tells you to do | so.         |

## 1 Finding the Centroid (3 parts, 20 points)

Let  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ . We consider computing the centroid of this dataset. Consider the loss function

$$\mathcal{L}(\mathbf{w}) := \frac{1}{2n} \sum_{i=1}^{n} \|\mathbf{x}_i - \mathbf{w}\|_2^2.$$

(a) (5 points) First, we compute the gradient of the loss function. Show that

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \mathbf{w} - \bar{\mathbf{x}},$$

where  $\bar{\mathbf{x}} := \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ .

(b) (5 points) Show that the minimizer of the loss function is given by  $\bar{\mathbf{x}}$ , i.e.  $\arg\min_{\mathbf{w}\in\mathbb{R}^d}\mathcal{L}(\mathbf{w})=\bar{\mathbf{x}}$ . Make sure to justify your answer.

(c) (10 points) Suppose  $\mathbf{x}_1,\dots,\mathbf{x}_n$  are identically and independently distributed according to a normal distribution with mean  $\mathbf{x}_*$  and diagonal covariance, i.e.  $\mathbf{x}_i \sim \mathcal{N}(\mathbf{x}_*,\sigma^2\mathbf{I}_d)$  for  $i=1,\dots,n$ . Calculate  $\mathbb{E}[\|\bar{\mathbf{x}}-\mathbf{x}_*\|_2^2]$ .

### 2 A Spectral View of Linear Regression (5 parts, 25 points)

Assume we are given training data in the form of the matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  where the rows are the d-dimensional feature vectors  $\mathbf{x}_i$  and  $\mathbf{y} \in \mathbb{R}^n$  which is the vector of the corresponding target values. We do not assume that  $\mathbf{X}$  is full rank, and take its rank to be r. Note that  $d \leq n$ .

Recall that the compact singular value decomposition is  $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$  where  $\mathbf{U} \in \mathbb{R}^{n \times d}$ ,  $\mathbf{V} \in \mathbb{R}^{d \times d}$ , and  $\mathbf{\Sigma} = \operatorname{diag}(\sigma_1, \dots, \sigma_d)$ . We denote the *n*-dimensional column vectors of  $\mathbf{U}$  by  $\mathbf{u}_i$  and the *d*-dimensional column vectors of  $\mathbf{V}$  by  $\mathbf{v}_i$ . Furthermore, let  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d$ .

In this problem, we consider the result of two different linear regression techniques: ridge regression and applying ordinary least squares after using PCA to reduce the feature dimension from d to k (PCA-OLS). In particular, we compare the predicted value  $\hat{y}$  of a new datapoint  $\mathbf{x}$  by writing an expression of the form:

$$\widehat{y}(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{w} = \mathbf{x}^{\top} \sum_{i=1}^{d} \rho(\sigma_i) \mathbf{v}_i \mathbf{u}_i^{\top} \mathbf{y}.$$
 (1)

In the following questions you will find the form of the spectral function  $\rho(\sigma)$  for ridge regression and PCA-OLS.

(a) (5 points) Recall that the ridge regression optimizer is defined (for  $\lambda > 0$ ) as

$$\mathbf{w}_{\text{ridge}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_2^2 .$$

Show that the closed-form solution for  $w_{\text{ridge}}$  has the form

$$\mathbf{w}_{\text{ridge}} = \mathbf{V} \operatorname{diag}(\rho_{\lambda}(\sigma_1), \dots, \rho_{\lambda}(\sigma_d)) \mathbf{U}^{\top} \mathbf{y},$$

and find the ridge-regression spectral function  $\rho_{\lambda}$ .

(b) (5 points) Using the expression for  $\mathbf{w}_{ridge}$  from the previous part, write down the ridge regression predictor function in the form of (1).

(c) (5 points) The ordinary least squares problem on the reduced k-dimensional PCA feature space (PCA-OLS) can be written as

$$\tilde{\mathbf{w}}_{\text{PCA}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X} \mathbf{V}_k \mathbf{w} - \mathbf{y}\|^2$$

where the columns of  $V_k$  consist of the first k right singular vectors of X. This expression embeds the raw feature vectors onto the top k principle components by the transformation  $V_k^{\mathsf{T}} \mathbf{x}_i$ . Assume the PCA dimension is less than the rank of the data matrix,  $k \leq r$ .

Write down the expression for the optimizer  $\tilde{\mathbf{w}}_{PCA} \in \mathbb{R}^k$  in terms of  $\mathbf{U}$ ,  $\mathbf{y}$  and the singular values of  $\mathbf{X}$ .

Hint:  $k \leq r$  implies that the matrix of PCA embedded data matrix  $\mathbf{X}\mathbf{V}_k$  is full rank.

(d) (5 points) Now, use the expression for  $\tilde{\mathbf{w}}_{PCA}$  from the previous part to write down the predictor function in the form of (1). In doing so, you should define the form of the PCA-OLS spectral function  $\rho_k$ .

(e) (5 points) The ridge regression regularization parameter  $\lambda$  and the PCA dimension k are both hyperparameters that affect the resulting model and predictions. In practice, we would tune these parameters based on the dataset we were given. **Briefly describe a principled method for choosing**  $\lambda$ .

- 3 Classification (3 parts, 25 points)
- (a) (5 points) The plots below show labeled data  $\{\mathbf{x}_i\}_{i=1}^n$ , where  $\mathbf{x}_i \in \mathbb{R}^2$ . For each plot, points corresponding to  $y_i = -1$  are denoted by an O, and points corresponding to  $y_i = +1$  are denoted by an X. The origin is labeled as the point (0,0). Now, consider classifiers of the form

$$\phi_{\mathbf{w}}(\mathbf{x}) = \begin{cases} +1, & \mathbf{w}^{\top} \mathbf{x} \ge 0 \\ -1, & \mathbf{w}^{\top} \mathbf{x} < 0 \end{cases}$$

where  $\mathbf{w} \in \mathbb{R}^2$ .

For each of the five plots, determine if the data can be perfectly classified by a classifier of this form.

- If so, draw the decision boundary of the classifier on the plot.
- If not, write "not separable" in the appropriate cell in the following table.

| Plot | Separable? |  |  |
|------|------------|--|--|
| 1    |            |  |  |
| 2    |            |  |  |
| 3    |            |  |  |
| 4    |            |  |  |
| 5    |            |  |  |



Figure 1: Problem 3(a)

(b) (10 points) Consider the data shown in Figure 2.



Figure 2: Problem 3(b)

Again, points corresponding to  $y_i = -1$  are denoted by an O, and points corresponding to  $y_i = +1$  are denoted by an X. Note that the O points (and only the O points) are contained between two circles of radii 2 and 4, both centered at the point (5,7). This data can not be perfectly classified by a classifier described in the previous problem. However, we can make a nonlinear transformation of the data to make it easier to classify. Specifically, we seek a transformation  $\varphi(\mathbf{x}): \mathbb{R}^2 \to \mathbb{R}$  such that each transformed point  $z_i = \varphi(\mathbf{x}_i)$  can be perfectly classified by a classifier  $h_b: \mathbb{R} \to \{-1, +1\}$  of the form

$$h_b(z) = \begin{cases} +1, & z \ge b \\ -1, & z < b \end{cases}.$$

- (i) Give such a transformation  $\varphi(\mathbf{x})$ . (You should not need to estimate exact locations of points.)
- (ii) Plot the (nonlinear) decision boundary on the original plot (Figure 2).
- (iii) Plot the transformed data and the decision boundary in the transformed space  $\mathbb{R}$ , i.e. on a number line (you should have a tick mark for 0). This plot should be qualitative to illustrate the situation; you do not need to find an explicit b for the decision boundary, nor do you need to exactly plot every transformed point.

(c) (10 points) Now consider classifying two data points  $x_1 = (a, b)$ ,  $x_2 = (-a, -b)$ , with labels  $y_1 = +1$  and  $y_2 = -1$ , respectively, shown in Figure 3.



Figure 3: Problem 3(c)

For this data, calculate the form of the maximum margin separating hyperplane which goes through the origin. Make sure you justify your answer mathematically. Recall that for linear classifiers, the maximum margin is defined as:

$$\max_{\mathbf{w} \in \mathbb{R}^d} \min_{1 \le i \le n} \left( \frac{\mathbf{w}^\top \mathbf{x}_i}{\|\mathbf{w}\|_2} y_i \right)$$

## 4 Checking Kernels (2 parts, 10 points)

Recall that for a function k to be a valid kernel, it must be symmetric in its arguments and its Gram matrices must be positive semi-definite. More precisely, for every sample  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$ , the Gram matrix

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & k(\mathbf{x}_i, \mathbf{x}_j) & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \cdots & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

must be positive semi-definite. Also, recall that a matrix is positive semi-definite if it is symmetric and all its eigenvalues are non-negative.

(a) (5 points) Give an example of two positive semi-definite matrices  $A_1$  and  $A_2$  in  $\mathbb{R}^{2\times 2}$  such that  $A_1-A_2$  is not positive semi-definite.

As a consequence, show that the function k defined by  $k(\mathbf{x}_i, \mathbf{x}_j) = k_1(\mathbf{x}_i, \mathbf{x}_j) - k_2(\mathbf{x}_i, \mathbf{x}_j)$  is not necessarily a kernel even when  $k_1$  and  $k_2$  are valid kernels.

(b) (5 points) Show that the function k defined by  $k(\mathbf{x}_i, \mathbf{x}_j) = \left\|\mathbf{x}_i - \mathbf{x}_j\right\|_2^2$  is not a valid kernel.

Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this page to report anything suspicious that you might have noticed.