WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/200	88
C09K 3/00, E21B 43/26	A1	(43) International Publication Date: 14 May 1998 (14.05.9	98)
(21) International Application Number: PCT/US (22) International Filing Date: 29 October 1997 (DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, I	
 (30) Priority Data: 08/743,007 1 November 1996 (01.11.96) (71) Applicant: CLEARWATER, INC. [US/US]; 5605 Genue, Pittsburgh, PA 15225 (US). (72) Inventors: SMITH, Kevin, W.; 103 Fairway Road, MPA 15317 (US). PERSINSKI, Leonard, J.; 340 Spring Road, Pittsburgh, PA 15220 (US). (74) Agent: KRAYER, William, L.; 241 Merion Drive, PipA 15228 (US). 	rand A cMurra Orcha	ny, ard	
(54) Title: PREPARATION OF HYDROCARBON GEL		DM FERRIC SOURCES, POLYCARBOXYLIC ACID COMPOUND	S,

(57) Abstract

This invention relates to improved hydrocarbon gels which find use in the fracturing of petroleum producing formations. In particular it relates to the use of a define class of gelling agents for hydrocarbons which provide excellent results in such fracturing. The gelling agents comprise combinations of (1) selected orthophosphate esters and (2) a composition comprising a source of ferric ions, an amine, and a polycarboxylic acid or salt thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon .	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TC	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DB	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-

PREPARATION OF HYDROCARBON GELS FROM FERRIC SOURCES, POLYCARBOXYLIC ACID COMPOUNDS, AND OPTIONAL AMINES, IN COMBINATION WITH PHOSPHATE ESTERS

Related Application

5

10

15

20

25

30

35

This application is a continuation-in-part of (a) our US Patent Application SN 08/592,592 filed January 26, 1996 and (b) our US Patent Application SN 08/580,171 filed December 28, 1995, both of which are continuations-in-part of US Patent Application SN 08/360,438 filed December 21, 1994, now abandoned, which is a division of Application Serial Number 08/209,266 now US Patent 5,417,287.

Technical Field

This invention relates to improved hydrocarbon gels which find use in petroleum producing formation fracturing. In particular it relates to the use of a defined class of gelling agents for hydrocarbons which provide excellent results in such fracturing. The gelling agents are combinations of (A) selected orthophosphate esters and (B) sources of iron mixed optionally with ammonium sources or alkyl or alkanol amines, and further with polycarboxylic acids or their alkali metal salts. The mixtures (B) may be reacted to form such compounds as ferric ammonium citrate and/or lower alkyl or alkanol derivatives thereof.

Background of the Invention

The development of the use of gelled hydrocarbons as fracturing fluids is reviewed by Weldon M. Harms in a chapter entitled "Application of Chemistry in Oil and Gas Well Fracturing", at pages 59-60 of the book "Oil-Field Chemistry (ACS Symposium #396 - 1988)" published

5

10

15

20

25

30

35

-2-

by the American Chemical Society in 1989. The basic technique of formation fracturing involves injection of a fracturing fluid down the well bore, which is usually cemented in place and at least 0.3 mile long, and then through horizontal holes in the steel pipe, or casing, of the well, to obtain access to the subterranean formation. The fracturing fluid is under high pressure and must be able to survive the severe shear forces caused when flow is forced through the casing perforations of perhaps $\frac{1}{4}$ to $\frac{1}{2}$ inch in diameter, as well as the shear forces encountered at the leading edge of the fracture. Whatever chemical additives are used to influence viscosity, induce gel formation, stabilize against resident chemicals, pH or temperature conditions in the formation, inhibit scale formation or corrosion, or inhibit paraffin deposition, for example, must also be able to withstand the shear forces and other inhospitable conditions of use. Most commonly available liquids typically are viscosified before they are particularly effective in carrying the large quantities proppants widely used in the fracturing process.

When hydrocarbons are used in the fracturing process, they are commonly treated to increase their viscosity. As reviewed by Harms, an early viscosifying agent was napalm, an aluminum soap of fatty acids. Aluminum salts of orthophosphate esters were introduced in the late 1960's, followed by the suggestion of the use of Fe₃O₄ for combination with the orthophosphate esters, in Monroe US Patent 3,505,374. While many other combinations of metals and other materials have been suggested as viscosifying agents, aluminum crosslinked orthophosphate esters are still, according to Harms, the most widely used.

5

10

15

20

25

30

35

-3-

The aluminum compounds present problems, however, particularly where any significant amount of water is They generally will not satisfactorily perform the desired crosslinking function in the presence of more than about 1200 ppm of water, nor where the pH is outside a relatively narrow range. Moreover, an inadvertent excess of aluminum compound treatment is detrimental to the desired performance because the aluminum compound itself adversely affects the pH. The iron provided by ferric salts as in the present invention and described in the parent applications hereof and in related US 5,417,287, on the contrary, permits operation in wider pH ranges.

In describing a gel which can be used as a pig in a pipeline, Jaggard et al in US Patent 4,003,393 recite the possibility of iron as one of a number of metals to combine with a class of aliphatic substituted orthophosphoric esters. No other qualifiers are used to describe the iron, however.

In US Patent 4,153,649, Griffin proposes reacting a pentavalent phosphorous compound with a class of hydroxy ethers before employing the metal salt. Among the metal salts he uses is ferric nitrate, but he further requires a "separate source of base" to be used with the hydroxy ether modified phosphates, as spelled out in column 4, lines 55-58 and column 11, lines 37-68. In the latter passage, the ferric nitrate is combined with ethylene diamine tetraacetic acid, a well-known chelating agent.

Monroe, in US Patent 3,505,374, uses a gelling agent

-4-

for hydrocarbons characterized as a ferroso-ferric salt of an alkyl oleyl diester of orthophosphoric mono acid. The iron compound is further described as magnetite, or Fe₃O₄. He suggests this combination for fracturing subterranean oil-bearing formations, but says none of the "other oxidized forms of iron including ferrous and ferric oxides and hydroxides, chlorides, sulfates and nitrates" (col 3, lines 2-4) yielded a gel as obtained with the magnetite.

10

5

Burnham, in US Patent 4,200,540, describes a large class of phosphates and phosphate esters which he mixes with aluminum salts, aluminates and aluminum metal. He chooses combinations of the materials as a function of various down-hole temperatures. No mention is made of iron salts; the reference is cited mainly for its comprehensive description of the phosphates deemed to be useful. See also Burnham's US Patent 4,316,810.

20

15

In United States Patent 5,514,645, McCabe utilizes a reaction product of an inorganic iron or aluminum salt with a C_{8-18} surface active amine to mix with a phosphate ester in a hydrocarbon to viscosify it as a fracturing medium. He does not include a polycarboxylic acid, however, as in the present continuation-in-part application.

30

35

25

A reaction product of citric acid and monoethanolamine is used with phosphoric acid in treating sandstone formations by Young et al in US Patent 4,605,068. The treatment has nothing to do with gelling hydrocarbons, however.

Summary of the Invention

-5-

ferric salts can be found that We advantageously used in the gelling of hydrocarbons, particularly for use in formation fracturing, rather aluminum compounds, for combination The present continuation-inorthophosphate esters. application is concerned specifically ferric with of salts amines mixtures and polycarboxylic acids, and also with reaction products of polycarboxylic acid in which the polycarboxylic acid moiety has from 2-12 carbon atoms and/or lower alkyl and alkanol derivatives thereof such as, to name a few examples, ferric butanol amine citrate, ferric isopropanolamine citrate, ferric triethanolamine succinate, and ferric dibutanolamine tartrate, i.e. where each alkyl or alkanol moiety may have up to six (6) carbons..

5

10

15

20

25

30

35

The ferric salts have the advantage that they can be used in the presence of large amounts of water, such as up to 20%. One of the advantages of fracturing with hydrocarbon gels is that some formations may tend to imbibe large quantities of water, while others are water-sensitive and will swell inordinately if water is introduced; our invention permits one to use a hydrocarbon gel in areas where water may cause trouble not only with the formation itself, but with the fracturing agent or the gelling agent. Also, ferric salts are not adversely affected by commonly used such as methanol and isopropanol. addition, they can be used in broad ranges of pH, yet the linkages formed can still be broken with gel breaking additives conventionally used for that In addition, ferric salts such as ferric sulfate and the more complex ferric salts and other ferric iron sources we use crosslink rapidly and can

-6-

be made to link even more rapidly with the use of surfactants and/or alkaline or caustic agents such as potassium hydroxide, triethylamine, and triethanolamine.

5

10

15

When dissolved in a hydrocarbon such as gasoline, diesel oil, crude oil, or kerosene, the ferric salt in combination with orthophosphate esters as defined below will cause the hydrocarbon to gel. generally stable to heat, and the degree of gelling can be controlled bv the concentration orthophosphate ester in the fluid. described herein, ferric ammonium (or alkyl or alkanol amine) citrate or other polycarboxylate will generate gels of enhanced strength and temperature resistance. In addition, the apparent chelation of the iron by the polycarboxylic acid moiety inhibits the precipitation of the iron in the form of ferric hydroxide.

20

25

Thus our invention includes a method of fracturing a formation subterranean comprising adding hydrocarbon liquid to be used as a fracturing fluid (a) about 0.3% to about 1.5% by weight, based on the hydrocarbon liquid, of an organic phosphate of the formula HPO,RR' where R is a straight or branch chain alkyl, aryl, alkoxy or alkaryo group having from 6 to about 18 carbon atoms and R' is hydrogen or an aryl, alkaryl, alkoxy or alkyl group having from 1 to about 18 carbon atoms, and (b) a composition comprising (i) a source of ferric iron in an amount effective to form a gel with the phosphate ester in the hydrocarbon (ii) an amine having the general formula

35

30

$$\sum_{R^2}^{R^1} N - R^3$$

-7-

where R' is $(CH_2)_{2-6}R^4$, R⁴ is H or OH, R² is $(CH_2)_{0-6}H$ or $(CH_2)_{2-4}OH$,

 R^3 is R^2 or $(CH_2)_{2-6}N < R_2 \atop R^5$ and R^5 is R^2 or $-(CH_2)_{2-6}N < R^2 \atop R^2$

and (iii) a polycarboxylic acid or an alkali metal salt thereof, having from 2-12 carbon atoms and up to three amine groups. The amounts and preferred methods of addition of the amine and polycarboxylic acid are discussed below.

Detailed Description of the Invention

15

20

25

30

35

10

5

The phosphate ester which we use is advantageously added first and mixed with the Diesel fuel or other hydrocarbon to be used as the fracturing agent, generally in amounts from about 0.3% to about 1.5% by weight, based on the total. Then the ferric salt or lower alkyl or alkanol derivative, specifically the ferric ammonium citrate (or other composition comprising ferric salt, amine (if used), and di-trior tetra- or pentacarboxylate having 2-12 carbon atoms and up to three amine groups) is added in amounts to provide preferably in the range of about 0.25 mole of ferric iron for each mole of phosphate or phosphate ester to about 2 moles of ferric iron for each mole of phosphate or phosphate ester. In this manner, the process materials can be prepared more or less continuously, as opposed to the batch approach sometimes used in the past. More broadly we may use any amount of ferric salt such as ferric ammonium lower alkyl or alkanolamine polycarboxylate which is effective to make a gel with the phosphate ester. This will be accomplished at about 0.1 to about 2.5 mole of ferric iron for each mole of phosphate ester,

-8-

preferably 0.8:1 to 1.2:1. Very small amounts (for example less than 0.1 mole/mole of phosphate ester) of ferric ammonium citrate or its lower alkyl or alkanol derivatives or other ferric containing composition as described herein will have at least some gelling effect; amounts over 2 or 2.5 moles/mole of phosphate will generally be superfluous. The choice of ratios will vary with the circumstances and the objectives of the practitioner.

10

15

5

We have also found that surfactants have the effect of decreasing the time for crosslinking. Generally, in the absence of a surfactant, our combination of materials will crosslink in about two minutes at room temperature; when a surfactant is used also, this time is significantly reduced, and in the presence of our preferred class of surfactants, it is reduced to the neighborhood of twenty seconds, as determined by viscosity tests. About 0.1% to about 10% (based on the gelling agent) of surfactant is frequently advantageous also.

The Phosphate Ester

25

20

The phosphate derivatives we use are described in the literature as orthophosphate esters. They are similar to those used by Burnham in US Patents 4,200,540 and 4,316,810. Griffin US Patents 4,174,283 and 4,153,649, and Harris et al in US Patent 4,622,155, having the structural formula

3.0

35

where R is a straight or branched chain alkyl, aryl, alkoxy, or alkaryl group having about 6 to about 18

PCT/US97/19411 WO 98/20088

-9-

carbon atoms and R' is hydrogen or an aryl, alkaryl, alkoxy, or alkyl group having up to about 18 carbon This structural formula will be referred to elsewhere herein as HPO4RR'.

Our preferred original source of the ferric ion is ferric sulfate, but any organic or inorganic ferric salt may be used, and it is apparent that the sulfate

or other anion is not important in our invention. In the discussion throughout, it should be understood that where ferric sulfate is mentioned, it could as well be any other ferric salt which will provide the desired ferric ion under the conditions, particularly

Typically we work first

5

The Iron Sources

10

15

The Amine

of solubility, described.

with a 50% solution of ferric sulfate.

20

As indicated above, the amine may be any amine having the general formula

25

$$R^{\prime}$$
 $N-R^{3}$

30

where R' is
$$(CH_2)_{2-6}R^4$$
, R⁴ is H or OH, R² is $(CH_2)_{0-6}H$ or $(CH_2)_{2-4}OH$, R³ is R² or $(CH_2)_{2-6}N$ and R⁵ is R² or $-(CH_2)_{2-6}N$

35

As is seen from the formula, the amine need not be a polyamine and if a monoamine it may be a primary, secondary or tertiary amine. The amine may be a primary, secondary or tertiary amine having at least

-10-

one substituent alkyl or terminal (OH on the terminus) alkanol group of two to six carbon atoms, the other two substituents being alkyl or terminal (OH on the terminus) alkanol groups having 0-6 carbons. If it is a polyamine, the connecting alkyl groups have two to six carbon atoms and the remaining positions on the nitrogens are filled by alkyl groups of 0-6 carbons or terminal alkanol groups of 2-6 carbon atoms.

The Polycarboxylic Acid

5

10

15

20

40

Instead of citric acid, one may use any polycarboxylic acid having from 2 to 12 carbon atoms and up to three amine groups. Suitable examples are oxalic acid, succinic acid, maleic or fumaric acid, tartaric acid, suberic, malonic, glutaric, adipic, pimelic, azeleic, or sebacic acid, nitrilitriacetic acid, ethylene diamine tetraacetic acid (EDTA), phthalic acid, isophthalic acid, and terephthalic acid. The polycarboxylic acids include compounds of the formulas

>NCH₂CH₂N< (I.) HOOCCH₂ 25 CH,COOH CH2COOH >NCH₂CH₂NCH₂CH₂N< (II) HOOCCH, CH,COOH 30 -H₂COOH or HOOCCH, CH2COOH >NCH2CH2N< (III) HOOCCH, CH,CH,OH 35

The Proportions

In making the iron-containing compound for use with the phosphate ester, the carboxylic acid containing

-11-

compound (typically an alkali metal salt thereof) is added to the combined iron/ammonium, alkyl or alkanol amine as stated above with respect to the addition of acid. For effective gelling hydrocarbon, the phosphate ester is present in the hydrocarbon in an amount from 0.3 to 1.5% by weight. It is generally most relevant to base the ferric eron content on the phosphate ester, and as little as 0.1 mole of ferric eron per mole of phosphate ester can bake a gel; however, we prefer about 0.25 to 2 moles ferric eron permole of phosphate ester. While 0.1 to 2.5 moles of ferric iron per mole of phosphate ester may be used, amounts greater than 2,5 moles of ferric iron per mole of phosphate ester are generally The amine is optional but frequently superfluous. If used, it may be present in an amount beneficial. up to ten times the amount by weight of the ferric More may be used, but such amounts will generally be superfluous. The polycarboxylic acid or alkali metal salt should be used in amounts from 10:1 to 1:10 weight/weight of the ferric iron. amounts higher than 10:1 may be used but generally be superfluous; amounts lower than 1:10 may also be used with commensurately small effect.

25

5

10

15

20

In the fracturing fluid, the iron from the ferric sulfate or other ferric salt such as ferric ammonium citrate, ferric butyl amine citrate, ferric isopropylamine citrate or ferric trialkanol tartrate, or from the unreacted ferric compound containing composition, including a polycarboxylic acid, forms linkages with the available oxygen, generally in more than one phosphate group, thus forming small chains which cause the hydrocarbon to gel.

35

30

-12-

It has been demonstrated in the laboratory that our invention may be used to form hydrocarbon gels, and that the gels can be broken in a manner familiar to persons who work with hydrocarbon gels in the field such as by the addition of common alkaline materials. In the following examples, the procedure was to employ a laboratory Waring blender with a voltage regulator set at 30. 300 ml of Diesel oil was placed in the blender and the power turned on. The phosphate ester preparation was first added and after it was blended, the ferric salt solution was introduced by pipette. The time was recorded from the initial introduction of the ferric compound to the gel point, determined by a concave shape of the material in the blender.

15

10

5

Blending was continued to determine the time required to reach maximum gel, which was estimated to be the first sign of conversion of the shape of the material to convex instead of concave. The blending was then stopped and the material transferred to a sample container, observing the consistency of the gel. Brookfield viscosity readings were then taken as shown in the Table I.

25

30

35

20

In the examples below, Composition M is about twothirds phosphate ester of the above formula HPO,RR', together with triethanolamine, and solvent. Composition L contains about two-thirds phosphate ester HPO₄RR¹, together with triethylamine, and high flash aliphatic solvent. Composition K is two-thirds of the same phosphate ester and 15.5g 45%KOH, also with a solvent. Composition F contains about 27% ferric sulfate, together with ethylene glycol, mixed surfactants, triethanolamine, and water. case, the amounts of composition M shown were added

-13-

first to the Diesel oil and blended; then the amount shown of Composition F was added and blended. Results are presented in Table I.

5					Table	I			
	Ex	M	F	X-link	Invers	Spindl	5min	30min	60min
	1	3ml	3ml	20 sec	30 sec	#3	2500	-	3890
	2	3ml	3ml	20 sec	30 sec	#3	2300	-	3460
	3	3ml	3ml	25 sec	35 sec	#3	2375	-	3400
10	4	3ml	3ml	30 sec	60 sec	#4	6360	11000	13800
	5	3ml	3ml	30 sec	55 sec	#4	7320	12300	13500
	6	3ml	3ml	45 sec	none at	180 sec			
	7	2ml	2m1	60 sec	150 sec	#4	-	-	-
	8	3m1*	3ml	20 sec	55 sec	#3	10000	-	130004
15	9	6ml*	3ml	15 sec	30 sec	#4	-	-	21500°
	10	2ml ^{\$}	3ml	20 sec	35 sec	#4	13650	-	13850
	*	Compo	sition	L used	instead of	М			
	\$	Compo	sition	K used	instead of	M			
20	4			10 rpm	_				

-14-

Persons skilled in the art will recognize from Table I that the formulations make excellent gels.

In a separate experiment, it was shown that the order of addition of the phosphate ester solution (sometimes herein called the gellant) and the ferric sulfate (or other iron salt such as ferric ammonium citrate) component (activator) is not important. In this experiment, 6.16g deionized water and 1.3g ferric sulfate were added to 85.95g Diesel oil and mixed with the blender; then 0.4 ml of phosphate esters of the formula HPO_4RR' was added and inversion took place in about one minute.

The data in Table II demonstrate that our hydrocarbon gel former will operate in the presence of significant amounts of water; indeed the viscosity increases with increasing amounts of water. In this experiment, an initial mixture was made as above with 4g of gellant and 10g of activator in about 250g of Diesel oil. Water was then added incrementally and the viscosity measured immediately.

Table II

	Cumulative	Viscosity
25	Water, %	(511 sec ⁻¹)
	0.65%	1cp
	1.27%	6cp
	2.16%	12cp
	2.78%	19cp
30 .	3.50%	26cp
	4.18%	29cp
	5.06%	30cp
	6.17%	* -
	7.58%	*
35	8.38%	*
	10.41%	*
	14.78%	*
	20.2 %	*

5

10

15

20

40

* Dial bouncing and unreadable; excellent lipping gel observed.

-15-

Additional tests were made as shown in Table III, which records the viscosities achieved by various combinations within our invention.

Table III

5			
3	-3.4		
	ml M	ml F	cps ml other comment
	3	3	13,800
	3	3	13,500
	2	2	(bouncing dial)
10	a	3	13,000
	ь	3	21,500 6TEA*
	c	3	13,900 2КОН
	3	3	15,000
	3	3	16,000
15	ă	3	5,800 low acid value PE
1.0		3	
	e		9,400 high acid value PE
	f	3	20,800 КОН
	g 3	3	11,300 5кон
	3	3.	7,000 %кон
20	3	3	8,600 no TEA in F
	3	3	8,700 KOH in M; no TEA in F
	3	3	14,500 KOH in M; no TEA
	3	3	13,400
	3	3	- 4400 cps @ 20 rpm
25	i	3	9,300
2.5	‡	3	
	j 2 ml		20,400
	2 ml	3	12,700
	2 ml	1.5	8,300
~ ~	k	1.5	10,000
30	1	1.5	12,500 2 ph est; KOH; 1.5 Fe
	3	3	14,700
	m	3	20,000
	3	3	23,000 0.25g Na,CO,
	n	3	21,000
35		3	
22		3	18,400 0.25g Na,CO,
	3		19,500 0.5g CaCl,
	р 2	3	13,800 0.5g CaCl,
	2	3	7,000
	q	3	11,600
40	r	3	12,100
	3	3	10,500
	3	3	10,500 Fe Citrate
	3	3	9,700
	3	3	6,800 Fe Citrate
45	u	ž	8,200
	v	3 3	18,400 Na,CO,
		3	
	W		21,000 Na,CO,
	×	3	10,000
F.0	У	3	11,000
50	aa	2	6,700
	bb	1	780
	cc	4	12,300
	dd	3	13,000
	ee	4	12,200
55	ff	5	12,000
55	gg	6	11,500
		ž	12 200
	hh		12,300
	ii	9	11,500
60	jj	11	11,400
60	kk	13	13,300
	11	17	11,800
	mm	3	10,900
	nn	3	14,700
	00	2	14,900
65	pp	$\tilde{4}$	14,900
~~		6	12,500
	gq	8	
	rr		12,700
	99	11	10,400
	tt	15	7,600
70			
-			

-16-

In Table III, the following notes apply to the column headed "ml Other":

```
triethylamine with phosphate ester of M -- 3 ml triethylamine with phosphate ester of M -- 6 ml \,
  5
                              . KOH with phosphate ester of M -- 2 ml
                                triethanolamine with varied phosphate ester -- 3 ml
triethanolamine with varied phosphate ester -- 3 ml
                       d
                                KOH with phosphate ester of M -- 3 ml
                               same as f with half as much KOH -- 3 ml same as g with half as much KOH -- 3 ml
10
                      g
h
                       i, m, n, o, p
                                               KOH with phosphate ester of M -- 3 ml
                      k, 1 KOH with phosphate ester of M -- 2 ml
q, r, s KOH with varied phosphate ester -- 2 ml
                      t,u,v,w,x,y
                                           no alkali; phosphate ester of M -- 3 ml
15
                               3 ml non-neut phosphate ester; 2ml F
                               3 ml non-neut phosphate ester; 1 ml F
                               3 ml non-neut phosphate ester; 4 ml F
                      CC
                               3 ml KOH-treated phosphate ester; 3 ml F
                       dd
                               3 ml KOH-treated phosphate ester; 4 ml F
3 ml KOH-treated phosphate ester; 5 ml F
20
                       ee
                      ff
                               3 ml KOH-treated phosphate ester; 6 ml F

3 ml KOH-treated phosphate ester; 7 ml F

3 ml KOH-treated phosphate ester; 9 ml F
                      hh
                       ii
                               3 ml KOH-treated phosphate ester; 11 ml F
3 ml KOH-treated phosphate ester; 13 ml F
3 ml KOH-treated phosphate ester; 17 ml F
25
                      kk
                      11
                               3 ml non-neut phosphate ester; 3 ml F
                      mm
                               3 ml non-neut phosphate ester; 2 ml F
30
                               3 ml M; 4 ml F
                      00
                               3 ml M; 6 ml F
                      pp
                               3 ml M; 8 ml F
                      qq
                      rr
                               3 ml M; 11 ml F
                               3 ml M; 15 ml F
```

35

40

45

From the above table III, it is apparent that a broad range of ferric salts, neutralizing agents, and other additives such as breakers, and other materials are not detrimental to the gelling abilities of our invention.

In the following Table IV, ferric salts as shown were used in combination with a standard 3 ml concentration of phosphate ester solution, some with KOH and some without, in 300 ml oil. The viscosity was measured with a #4 spindle at 10 rpm unless otherwise noted.

-17-

Table IV

	Iron salt	<u>ml Fe</u>	<u>Viscosity</u>	Comment
	Fe Citrate	3	6,800	
	Fe Citrate	1	8,800	
5	Fe Citrate	3	16,700	
	Fe Citrate	3	7,000+	
	Fe Citrate	2	8,000	
	Fe Citrate	2.5	3,300 #3	spndl; 10rpm
	Fe Citrate	2.5	3,200	"
10	Fe Citrate	2.5	3,200	U
	Fe Citrate	2.5	2,700	11
	Fe Amm Sulf	1	13,000	
	Fe Amm Sulf	1	3,500	(20 rpm)
	Fe Amm Sulf	1.5	14,700	
15	Fe Amm Sulf	1.5	15,000	
	Fe Chloride	3	6,200	
	Fe Chloride	2	7,600	
	Fe Sulfate	1	9,700	
	Fe Sulfate	1.5	14,000	
20	Fe Sulfate	1	7,000	
	Fe Amm Citrate	3	12,000	
	Fe Gluconate	3	4,600	

25

30

35

40

A further series of tests was conducted specifically with ferric ammonium citrate, ferric butylamine citrate, and ferric isopropylamine citrate. ammonium citrate was made according to the procedures described by Kruse and Mounce in US Patent 2,644,828, which is hereby incorporated herein by reference in its entirety. Because the structural formula of this composition is uncertain, i.e. the amount of NH3 appears to vary with the color and physical form (see the listing of Ammonium Ferric Citrate in the Merck Index, Eighth Edition), we intend to include within the definition of ferric ammonium citrate any of the compositions contemplated within the aforesaid Kruse et al '828 patent. Both brown and green crystalline forms are described in the '828 patent. Generally, the procedure we followed was to form a solution of ammonium hydroxide and ferric sulfate, thus forming a ferric hydroxide precipitate, to which was added citric acid to form the ferric ammonium citrate.

-18-

5

10

15

20

25

intend to include ferric ammonium citrate made by any Likewise, method, however. the related, derivative, as sometimes called herein, materials ferric butylamine citrate and ferric isopropylamine citrate are made in a similar manner, substituting butyl amine for the amonium hydroxide or substituting isopropylamine for the ammonium hydroxide. case of isopropylamine, the designation "Fe IPA" in Table V means monoisopropylamine citrate and "Fe MIPA" means that the isopropylamine used to form the citrate was a mixture of monoisopropylamine, diisopropylamine, and triisopropylamine. Thus the term "ferric ammonium citrate or a lower alkyl substituted derivative thereof" is intended to include all versions of ferric ammonium citrate as described in the aforementioned Kruse and Mounce patent and those in which the ammonium moiety is substituted by amines having one, two or three alkyl groups, each having up to six carbon atoms. In each of the runs for which the results are shown in Table V, 3ml of a 67% solution of designated phosphate ester gelling (Phosphate esters R, S, and T in Table V are similar to those used in Table I, all within the previously defined formula HPO₄RR') was mixed with a 3ml solution (100% active) of the ferric citrate shown in 300 ml of Diesel oil and gels were formed by stirring at low speed for two minutes. As is known in the art, the Marsh funnel test (last column) measures the time for 100 ml of the gel to discharge from a standard funnel.

-19-

m -	3. 7	-	
ביוי	h	_	`\/

Phosphate <u>Ester</u>	Citrate	Gel <u>Eval</u>	Formed (seconds)	Marsh (seconds)
R	Fe Amm	good	12	235
S	Fe Amm	excel	17	291
${f T}$	Fe Amm	excel	-	239
R	Fe Bu Am	excel	13	94
T	Fe Bu Am	excel	-	17
S	Fe Bu Am	excel	-	7
R	Fe IPA	excel	27	18
T	Fe IPA	excel	31	10
S	Fe IPA	excel	24	6
R	Fe MIPA	excel	16	78
S	Fe MIPA	excel	44	6
T	Fe MIPA	excel	-	8

A further comparison of a phosphate ester gelled with ferric sulfate and the same phosphate ester gelled with ferric ammonium citrate showed the ferric ammonium citrate with a Fann 50 viscosity of 895-860 cps at 180°F while the ferric sulfate had a Fann 50 viscosity of 400-300 cps at 180°F.

In the following examples, a 50% ferric sulfate solution was used. About 14% by weight of the amine and about 14% by weight isopropanol were added to the ferric sulfate solution, with or without a polycarboxylic acid or an alkali metal salt thereof as indicated in the examples, to make an iron containing solution. Sufficient iron containing solution was then added to 300 ml Diesel oil containing about 0.3% phosphate ester to provide 0.6% of the iron containing solution in it, and the mixture was stirred and observed for the formation of a gel.

Example 11 -- various amines

	gel time
cyclohexylamine	1:20
butylamine	1:00 note Marsh funnel
	@ 1%: 11:27 min

-20-
2:00
2:00
3:00

Example 12 -- polycarboxylic acid

Here 30g of the indicated polycarboxylic acid were added to 100g of a 50% ferric sulfate solution; the Diesel oil had 1% phosphate ester in it. Fe/Al means that one-fifth of the iron was replaced with aluminum.

10

15

20

25

30

35

5

	gel time
Fe EDTA*	1:55
Fe citrate	1:27
Fe/Al EDTA*	1:00; Marsh 2:30
Fe/Al citrate	1:00; Marsh 1:34

^{*}Ethylene diamine tetraacetic acid

Example 13 -- Amino Chelates

In these experiments, ammonium hydroxide or the indicated substitute (a molar equivalent to precipitate the Fe⁺³) was added to 100g of 50% ferric sulfate solution, and 30g of the chelant (citric acid or other polycarboxylic acid) was then added, followed by mixing; this was used to combine with the phosphate ester/Diesel oil mixture.

Ferric monoisopropanolamine citrate (FANN 50 @220F:

170 sec⁻¹; 385 cps

Ferric ammonium / nitrilotriacetic acid: gel formed

Ferric Ammonium Oxalate: , gel formed Ferric Ammonium Gluconate: gel formed

Example 14 -- Chelates

The following results were obtained using 2% (based on

-21-

the Diesel oil) iron chelates indicated mixed with 1% phosphate ester in Diesel oil:

gel

Diethylene triamine pentaacetic acid

5

10

15

20

25

(Formula II above): fair

Triamine tetraacetic acid of formula (III) above:

(Formula III above: good

Ferric gluconate: excellent

Ferric tartrate: excellent

Example 15 -- Alkanolamine Citrates

In these cases the ferric sources were made by first preparing 100g of a 50% solution of ferric sulfate, then adding the indicated amine and citric acid (both molar equivalents of the ferric iron). The resulting composition was stirred and added to Diesel oil containing 1% phosphate ester to provide 1% ferric iron in the oil. The results were as follows:

Momoethanolamine; Citric Acid excellent gel

Triethanolamine; Citric Acid Very good gel

Monoethanolamine; Citric Acid;

Partially neutralized phos ester very good gel

Triethanolamine; Citric Acid;
Partially neutralized phos ester excellent gel

-22-

Claims

5

10

15

20

25

30

Method of fracturing a subterranean formation 1. comprising adding to a hydrocarbon liquid to be used as a fracturing fluid (a) about 0.3% to about 1.5% by weight, based on the hydrocarbon liquid, of an organic phosphate of the formula HPO4RR' where R is a straight or branch chain alkyl, aryl, alkoxy or alkaryl group having from 6 to about 18 carbon atoms and R' is hydrogen or an aryl, alkaryl, alkoxy or alkyl group having from 1 to about 18 carbon atoms, and (b) a composition comprising (i) ferric iron in an amount sufficient to form a gel with said organic phosphate in said hydrocarbon liquid, and (ii) a polycarboxylic acid or an alkali metal salt thereof, having from 2-12 carbon atoms and up to three amine groups, and fracturing a subterranean formation with said hydrocarbon liquid.

- 2. Method of claim 1 wherein said composition (b) is added in an amount sufficient to provide 0.1 to 2.5 mole(s) of ferric iron for each mole of phosphate ester present in said hydrocarbon.
- 3. Method of claim 1 wherein said polycarboxylic acid or alkali metal salt thereof is present in a weight ratio of about 1:10 to about 10:1 to said ferric iron.

WO 98/20088

Method of claim 1 wherein an amine of the 4. N-R³ formula

5

where R' is $-(CH_2)_{2-6}R^4$, R4 is H or OH, R2 is $-(CH_2)_{0-6}H$ or - (CH₂)₂₋₄OH, R^3 is R^2 or $-(CH_2)_{2-6}N$ R^2 and R^5 is R^2 or $-(CH_2)_{2-6}N$ R^2

10

is also a part of composition (b), in a weight ratio to ferric iron of 1:10 to 10:1.

15

A composition for viscosifying a hydrocarbon 5. containing a phosphate ester comprising (a) ferric iron (b) a polycarboxylic acid or alkali metal salt thereof having 2-12 carbon atoms and up to three amine groups in a weight ratio to said ferric iron of about 1:10 to about 10:1, and (c) an amine of the formula

 R^{1} $N-R^{3}$

25

20

where R' is - $(CH_2)_{2-6}R^4$, R^4 is H or OH, R^2 is - $(CH_2)_{0-6}H$ or R^3 is R^2 or $-(CH_2)_{2-6}N < R_2 \atop D^5$ and R^5 is R^2 or $-(CH_2)_{2-6}N < R_2 \atop D^2$

30.

in an amount up to about ten times by weight of the ferric iron.

35

Method of claim 1 wherein said polycarboxylic acid or alkali metal salt thereof is ethylene diamine tetraacetic acid or an alkali metal salt thereof.

-24-

7. Method of claim 1 wherein said polycarboxylic acid or alkali metal salt thereof is nitrilotriacetic acid or an alkali metal salt thereof.

5

8. Method of claim 1 wherein said polycarboxylic acid or an alkali metal salt thereof is tartaric acid.

10

 Method of claim 1 wherein said polycarboxylic acid or an alkali metal salt thereof is citric acid.

15

10. Method of claim 1 wherein said polycarboxylic acid as of the formula

 $\begin{array}{cccc} \text{HOOCCH}_2 & \text{CH}_2\text{COOH} \\ & \text{NCH}_2\text{CH}_2\text{N} & \text{CH}_2\text{CH}_2\text{OH} \end{array}$

20

25

11. A viscous fracturing fluid comprising a hydrocarbon liquid including about 0.3% to 1.5% by weight of an organic phosphate gelling agent, about 0.1 to about 2.5 mole(s) of ferric iron for each mole of phosphate gelling agent, a polycarboxylic acid or alkali metal salt thereof in a weight ratio of 1:10 to 10:1 to the ferric iron, and up to ten times the weight of the ferric iron of an amine of the formula

30

$$R^2$$
 $N-R^3$

where R' is $(CH_2)_{2-6}R^4$, R⁴ is H or OH, R² is $(CH_2)_{0-6}H$ or $(CH_2)_{2-4}OH$,

R³ is R² or
$$(CH_2)_{2-6}N = \begin{cases} R_2 \\ R^5 \end{cases}$$
 and R⁵ is R² or $-(CH_2)_{2-6}N = \begin{cases} R^2 \\ R^2 \end{cases}$

-25-

- 12. Composition of claim 5 wherein said polycarboxylic acid or alkali metal salt thereof is ethylene diamine tetraacetic acid or an alkali metal salt thereof.
- 13. Composition of claim 5 wherein said polycarboxylic acid or alkali metal salt thereof is nitrilotriacetic acid of an alkali metal salt thereof.

5

- 14. Composition of claim 5 wherein said polycarboxylic acid or alkali metal salt thereof is tartaric acid.
- 15. Composition of claim 5 wherein said polycarboxylic acid or alkali metal salt thereof is citric acid.
- 16. Fracturing fluid of claim 11 wherein said

 polycarboxylic acid is of the formula

 HOOCCH₂

 CH₂COOH

 HOOCCH₂

 CH₂CH₂OH
- 25 17. Fracturing fluid of claim 11 wherein said polycarboxylic acid or alkali metal salt thereof is ethylene diamine tetraacetic acid or an alkali metal salt thereof.
- 30 18. Fracturing fluid of claim 11 wherein said polycarboxylic acid or alkali metal salt thereof is nitrilotriacetic acid.
- 19. Fracturing fluid of claim 11 wherein said polycarboxylic acid or alkali metal salt thereof is tartaric acid.

-26-

20. Fracturing fluid of claim 11 wherein said polycarboxylic acid or alkali metal salt thereof is citric acid.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/19411

·						
A. CLASSIFICATION OF SUBJECT MATTER						
IPC(6) : C09K 3/00; E21B 43/26						
US CL: 507/238,922; 166/308 According to International Patent Classification (IPC) or to both	national classification and IPC					
B. FIELDS SEARCHED Minimum documentation searched (classification system follower	d by classification symbols)					
U.S. : 507/238,922; 166/308						
Documentation searched other than minimum documentation to the NONE	e extent that such documents are included in the fields scarched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) NONE						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.					
A US 5,514,645 A [MCCABE et al] document.	07 May 1996, see entire 1-20					
A US 4,153,649 A [GRIFFIN JR.] document.	08 May 1979, see entire 1-20					
Further documents are listed in the continuation of Box (C. See patent family annex.					
	•T• later document published after the international filing date or priority					
 Special estagories of cited documents: A. document defining the general state of the art which is not considered 	date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
to be of particular relevance	*X* document of perticular relevance; the claimed invention cannot be					
B earlier document published on or after the international filling data	considered novel or cannot be considered to involve an inventive step when the document is taken alone					
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	eye document of particular relevance; the claimed invention cannot be					
special reason (as specified)	considered to involve an inventive step when the document is combined with one or more other such documents, such combination					
O document referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in the art					
 P document published prior to the international filing date but later than the priority date claimed 	*&* document member of the same patent family					
Date of the actual completion of the international search	Date of mailing of the international search report					
13 MARCH 1998	0 9 APR 1998					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT	DAVID M BRUNSMAN (1)					
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (703) 308-6661					