```
In [1]: # import general libraries for data manipulation
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        from sklearn.metrics.pairwise import cosine_similarity
        from scipy.sparse import csr_matrix
        warnings.filterwarnings("ignore")
        from surprise import Reader, Dataset, SVD, KNNBaseline
        from surprise.model_selection import train_test_split
        from surprise import accuracy
        from collections import defaultdict
        c:\Users\rauna\Anaconda3\envs\scaler\lib\site-packages\numpy\_distributor_init.py:
        30: UserWarning: loaded more than 1 DLL from .libs:
        c:\Users\rauna\Anaconda3\envs\scaler\lib\site-packages\numpy\.libs\libopenblas.FB5
        AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll
        c:\Users\rauna\Anaconda3\envs\scaler\lib\site-packages\numpy\.libs\libopenblas.GK7
        GX5KEQ4F6UY03P26ULGBQYHGQ07J4.gfortran-win amd64.dll
          warnings.warn("loaded more than 1 DLL from .libs:"
```

Loading Data

```
In [2]: movies = pd.read_fwf('ZEE-data/zee-movies.dat', encoding='ISO-8859-1')
    ratings = pd.read_fwf('ZEE-data/zee-ratings.dat', encoding='ISO-8859-1')
    users = pd.read_fwf('ZEE-data/zee-users.dat', encoding='ISO-8859-1')
```

Preprocessing

```
In [3]: movies.drop(columns=['Unnamed: 1','Unnamed: 2'], inplace=True)
movies = movies['Movie ID::Title::Genres'].str.split('::', expand=True)
movies.columns = ['Movie ID', 'Title', 'Genres']
display(movies.head())
print(movies.shape)
```

	Movie ID	Title	Genres
0	1	Toy Story (1995)	Animation Children's Comedy
1	2	Jumanji (1995)	Adventure Children's Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama
4	5	Father of the Bride Part II (1995)	Comedy
(38	883, 3)		

```
In [4]: # do same for ratings
ratings = ratings['UserID::MovieID::Rating::Timestamp'].str.split('::', expand=True
```

```
ratings.columns = ['User ID', 'Movie ID', 'Rating', 'Timestamp']
ratings.drop(columns=['Timestamp'], inplace=True)
display(ratings.head())
print(ratings.shape)
```

	User ID	Movie ID	Rating
0	1	1193	5
1	1	661	3
2	1	914	3
3	1	3408	4
4	1	2355	5

(1000209, 3)

```
In [5]: users = users['UserID::Gender::Age::Occupation::Zip-code'].str.split('::', expand=T
    users.columns = ['User ID', 'Gender', 'Age', 'Occupation','Zip-code']
    users.drop(columns=['Zip-code'], inplace=True)
    display(users.head())
    print(users.shape)
```

	User ID	Gender	Age	Occupation
0	1	F	1	10
1	2	М	56	16
2	3	М	25	15
3	4	М	45	7
4	5	М	25	20

(6040, 4)

```
In [6]: # merge the dataframes

df = pd.merge(movies, ratings, on='Movie ID')

df = pd.merge(df, users, on='User ID')

display(df.head())
print(df.shape)
```

	Movie ID	Title	Genres	User ID	Rating	Gender	Age	Occupatio
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	F	1	1
1	48	Pocahontas (1995)	Animation Children's Musical Romance	1	5	F	1	1
2	150	Apollo 13 (1995)	Drama	1	5	F	1	1
3	260	Star Wars: Episode IV - A New Hope (1977)	Action Adventure Fantas	1	4	F	1	1
4	527	Schindler's List (1993)	Drama War	1	5	F	1	1
(1	000209,	8)						

EDA

```
In [7]: df.shape, users.shape, movies.shape
Out[7]: ((1000209, 8), (6040, 4), (3883, 3))
```

• We have 1 million ratings from 6000 users on 4000 movies

```
In [8]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 1000209 entries, 0 to 1000208
        Data columns (total 8 columns):
            Column
                        Non-Null Count
                                          Dtype
           Movie ID 1000209 non-null object
                     1000209 non-null object
996144 non-null object
         1
           Title
         2 Genres
         3 User ID
                       1000209 non-null object
         4 Rating
                       1000209 non-null object
         5
            Gender
                       1000209 non-null object
         6
            Age
                        1000209 non-null object
             Occupation 1000209 non-null object
        dtypes: object(8)
        memory usage: 68.7+ MB
```

Genres has some missing values

```
In [9]: for c in ['Rating', 'Age', 'Movie ID', 'User ID']:
    df[c] = df[c].astype('int')
```

```
In [10]: # data checks
         display(df['User ID'].agg(['min', 'max']))
         display(df['Movie ID'].agg(['min', 'max']))
         display(df['Rating'].agg(['min', 'max']))
         print(f"Minimum ratings per user : {df.groupby('User ID').size().min()}")
         min
                   1
         max
                6040
         Name: User ID, dtype: int32
         min
                   1
                3952
         max
         Name: Movie ID, dtype: int32
         min
                1
         max
         Name: Rating, dtype: int32
         Minimum ratings per user: 20
```

• All the above checks are in line with data description

```
In [11]: # Outlier detection
    plt.figure(figsize=(10,5))
    sns.boxplot(df.groupby('User ID').size())
    plt.title('Distribution of number of ratings per user')
    plt.show()
```

Distribution of number of ratings per user


```
In [12]: # write function to remove outliers using IQR

def remove_outliers(df, col, k=1.5):
    q1 = df[col].quantile(0.25)
    q3 = df[col].quantile(0.75)
    iqr = q3 - q1
    lower_bound = q1 - (k * iqr)
    upper_bound = q3 + (k * iqr)
    return df[(df[col] > lower_bound) & (df[col] < upper_bound)]</pre>
```

```
In [13]: valid_users = remove_outliers(pd.DataFrame(df.groupby('User ID').size()), col=0, k=
```

```
In [14]: print(df['User ID'].nunique(), valid_users.nunique(), df['Movie ID'].nunique())
    df = df[df['User ID'].isin(valid_users)]
    print(df['User ID'].nunique(), valid_users.nunique(), df['Movie ID'].nunique())
    6040 5564 3706
    5564 5564 3613
```

Feature Creation

```
In [15]: # create a new column for year
    df['ReleaseYear'] = df['Title'].str.extract('.*\((.*)\).*', expand=True)

# create new feature for total number of words in title
    df['TitleWordCount'] = df['Title'].str.split().str.len()

# create new feature for number of genres
    df['GenreCount'] = df['Genres'].str.count('\|') + 1
    df['GenreCount'].fillna(0, inplace=True)
```

In [16]: df.head()

Out[16]:

	Movie ID	Title	Genres	User ID	Rating	Gender	Age	Occupation
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	F	1	1
1	48	Pocahontas (1995)	Animation Children's Musical Romance	1	5	F	1	1
2	150	Apollo 13 (1995)	Drama	1	5	F	1	1
3	260	Star Wars: Episode IV - A New Hope (1977)	Action Adventure Fantas	1	4	F	1	1
4	527	Schindler's List (1993)	Drama War	1	5	F	1	1

```
In [17]: df_grouped = df.groupby('User ID').agg({'Rating': ['count', 'mean'],'Gender': 'firs
    df_grouped.columns = ['_'.join(col).strip() for col in df_grouped.columns.values]
    df_grouped.reset_index(inplace=True)
    df_grouped.rename(columns={'Gender_first': 'Gender', 'Age_first': 'Age', 'Occupatio
    display(df_grouped.head())
    print(df_grouped.shape)
```

	User ID	Rating_count	Rating_mean	Gender	Age	Occupation
0	1	53	4.188679	F	1	10
1	2	129	3.713178	М	56	16
2	3	51	3.901961	М	25	15
3	4	21	4.190476	М	45	7
4	5	198	3.146465	М	25	20
(5	564, 6)					

```
In [18]: sns.set_style('darkgrid')
         sns.set_context('talk')
         sns.set_palette('Set3')
         plt.rcParams['figure.autolayout'] = True
         fig,axes = plt.subplots(2,3,figsize=(20, 12))
         # set title
         fig.suptitle('User Demographics', fontsize=20)
         for e,c in enumerate(['Rating_count', 'Rating_mean', 'Age', 'Occupation', 'Gender'])
             if df_grouped[c].dtype == 'object':
                 # plot countplot as percentage
                 (df_grouped[c].value_counts(normalize=True)*100).plot(kind='bar', ax=axes[e
                 axes[e//3,e%3].set_ylabel('Percentage')
             else:
                 sns.histplot(df_grouped[c], ax=axes[e//3,e%3], bins=15)
         # remove last subplot
         fig.delaxes(axes[1,2])
         plt.show()
```


- Users have an exponential distribution when it comes to # of movies rated
- Users usually rate movies between 3 and 4

- Primary user base is in 20s
- College/Grad Student makes up the highest of our user base ~ 12%
- 70 % of users are male

```
In [19]: for e,c in enumerate(['Age','Gender','Occupation']):
    plt.figure(figsize=(10,5))
    sns.boxplot(x=c, y='Rating_mean', data=df_grouped)
    plt.title(f'Average rating by {c}')
    plt.show()
```


- There is a slight positive relationship between age and average user rating showing older people are less critical
- Gender doesnt have much difference in ratings
- Occupation 8 ie Farmers rate the lowest on average

In [20]:	<pre># Creating a pivot table of movie titles & user id and imputing the NaN values with user_movie_ratings = df.pivot_table(index='User ID', columns='Movie ID', values='Ra display(user_movie_ratings.head()) print(user_movie_ratings.shape)</pre>																	
	Movie ID	1	2	3	4	5	6	7	8	9	10	•••	3943	3944	3945	3946	3947	3948
	User ID																	
	1	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	5 rows × 3613 columns																	
	(5564,	361	3)															
In [21]:	<pre>print(f"Empty percentage : {round((user_movie_ratings == 0).mean().mean() * 100,1)}</pre>											100,1)}						
	Empty	perc	enta	ige :	96.	7 %												

Recommendation System

```
In [22]: df.head()
Out[22]:
             Movie
                                                                User
                         Title
                                                        Genres
                                                                     Rating Gender Age Occupation
                ID
                      Toy Story
          0
                 1
                                      Animation|Children's|Comedy
                                                                          5
                                                                                  F
                                                                                                  1
                        (1995)
                    Pocahontas
          1
                48
                               Animation|Children's|Musical|Romance
                                                                          5
                                                                                  F
                                                                                       1
                                                                                                  1
                        (1995)
                     Apollo 13
          2
                                                                                  F
               150
                                                                          5
                                                                                       1
                                                        Drama
                                                                                                  1
                        (1995)
                     Star Wars:
                     Episode IV
          3
               260
                       - A New
                                          Action|Adventure|Fantas
                         Hope
                        (1977)
                     Schindler's
               527
                                                                          5
                                                                                  F
                                                     Drama|War
                                                                                       1
                                                                                                  1
                     List (1993)
In [23]: # Setting up
          reader = Reader(rating_scale=(1, 5))
          data = Dataset.load_from_df(df[['User ID', 'Movie ID', 'Rating']], reader)
          trainset, testset = train_test_split(data, test_size=0.2, random_state=42)
In [24]: def build_rec_sys(algo):
              algo.fit(trainset)
              predictions = algo.test(testset)
              print(f"Test RMSE : {round(accuracy.rmse(predictions),2)} ,Test MAE: {round(acc
              return algo, predictions
          Using Pearson Correlation
In [25]: model_1 , predictions_1 = build_rec_sys(KNNBaseline(sim_options={'name': 'pearson_b'
          Estimating biases using als...
          Computing the pearson_baseline similarity matrix...
          Done computing similarity matrix.
          RMSE: 0.8820
```

```
Computing the pearson_baseline similarity matrix...

Done computing similarity matrix.

RMSE: 0.8820
MAE: 0.6894
Test RMSE: 0.88 ,Test MAE: 0.69

In [26]: movie_dict = dict(zip(df['Movie ID'], df['Title']))

def get_top_n(predictions, movie_dict, n=10):
    top_n = defaultdict(list)
    for uid, iid, true_r, est, _ in predictions:
        top_n[uid].append((movie_dict[iid], est ))
    for uid, user_ratings in top_n.items():
        user_ratings.sort(key=lambda x : x[1], reverse=True)
        top_n[uid] = user_ratings[:n]
    return top_n
```

```
In [27]: top_n_1 = get_top_n(predictions_1, movie_dict, n=10)
```

Top 10 recommendations for user 1

```
In [28]:
    user_1 = df[df['User ID'] == 1]
    user_1 = user_1[['User ID', 'Movie ID', 'Title', 'Rating']]
    print('\nMovies liked by user 1: ')
    display(user_1.sort_values('Rating', ascending=False).head(10))
    print('\nTop 10 recommendations for user 1')
    for e,i in enumerate(top_n_1[1]):
        print(f"{e+1}. {i[0]} with predicted rating {round(i[1],2)}")
```

Movies liked by user 1:

	User ID	Movie ID	Title	Rating
0	1	1	Toy Story (1995)	5
17	1	1022	Cinderella (1950)	5
49	1	3105	Awakenings (1990)	5
47	1	2804	Christmas Story, A (1983)	5
40	1	2355	Bug's Life, A (1998)	5
36	1	2028	Saving Private Ryan (1998)	5
33	1	1961	Rain Man (1988)	5
31	1	1836	Last Days of Disco, The (1998)	5
27	1	1287	Ben-Hur (1959)	5
1	1	48	Pocahontas (1995)	5

Top 10 recommendations for user 1

- 1. Wizard of Oz, The (1939) with predicted rating 4.72
- 2. Ben-Hur (1959) with predicted rating 4.6
- 3. Star Wars: Episode IV A New Hope (1977) with predicted rating 4.55
- 4. E.T. the Extra-Terrestrial (1982) with predicted rating 4.45
- 5. Dead Poets Society (1989) with predicted rating 4.39
- 6. Beauty and the Beast (1991) with predicted rating 4.34
- 7. Tarzan (1999) with predicted rating 4.1
- 8. Secret Garden, The (1993) with predicted rating 3.91
- 9. Hunchback of Notre Dame, The (1996) with predicted rating 3.8
- 10. Antz (1998) with predicted rating 3.59

Top 10 movies similar to Toy Story (1995)

```
In [38]: toy_story_raw_id = df[df['Title'] == 'Toy Story (1995)']['Movie ID'].iloc[0]
In [30]: [movie_dict[trainset.to_raw_iid(i)] for i in model_1.get_neighbors(trainset.to_inne)
```

Using Cosine Similarity

Item Item Similiarity

Out[36]:		First Wives Club, The (1996)	Sphere (1998)	L.A. Confidential (1997)	Rocky Horror Picture Show, The (1975)	Lone Star (1996)	Stand by Me (1986)	On the Waterfront (1954)	Chinatow (1974
	First Wives Club, The (1996)	1.000000	0.926677	0.957309	0.923407	0.962500	0.949004	0.954030	0.94070
	Sphere (1998)	0.926677	1.000000	0.927770	0.875052	0.926874	0.934048	0.879211	0.90605
	L.A. Confidential (1997)	0.957309	0.927770	1.000000	0.929263	0.970224	0.969329	0.974220	0.98159
	Rocky Horror Picture Show, The (1975)	0.923407	0.875052	0.929263	1.000000	0.936119	0.917318	0.910525	0.93178
	Lone Star	0.962500	0.926874	0.970224	0.936119	1.000000	0.963328	0.980775	0.97718

5 rows × 3575 columns

Top 10 movies similar to Toy Story (1995)

User User Similarity

```
      user_similarity_matrix.head()

      Computing the cosine similarity matrix...

      Done computing similarity matrix.

      Out[43]:
      0 1.000000 0.991837 0.993809 0.992171 0.972677 0.957209 0.962583 0.938436 0.934335 0.9676

      1 0.991837 1.000000 0.994850 0.967989 0.913393 0.993610 0.966842 0.936390 0.962720 0.8734

      2 0.993809 0.994850 1.000000 0.994536 0.970429 0.990947 0.991408 0.972369 0.947534 0.9902

      3 0.992171 0.967989 0.994536 1.000000 0.942957 0.987541 0.972629 0.968922 1.000000 0.7889

      4 0.972677 0.913393 0.970429 0.942957 1.000000 0.968521 0.963240 0.944295 0.956269 0.9429
```

5 rows × 5564 columns

Top 10 recommendations for user 1

```
In [45]: top_n_3 = get_top_n(predictions_3, movie_dict, n=10)

In [47]: user_1 = df[df['User ID'] == 1]
    user_1 = user_1[['User ID', 'Movie ID', 'Title', 'Rating']]
    print('\nMovies liked by user 1: ')
    display(user_1.sort_values('Rating', ascending=False).head(10))
    print('\nTop 10 recommendations for user 1')
    for e,i in enumerate(top_n_3[1]):
        print(f"{e+1}. {i[0]} with predicted rating {round(i[1],2)}")
```

Movies liked by user 1:

	User ID	Movie ID	Title	Rating
0	1	1	Toy Story (1995)	5
17	1	1022	Cinderella (1950)	5
49	1	3105	Awakenings (1990)	5
47	1	2804	Christmas Story, A (1983)	5
40	1	2355	Bug's Life, A (1998)	5
36	1	2028	Saving Private Ryan (1998)	5
33	1	1961	Rain Man (1988)	5
31	1	1836	Last Days of Disco, The (1998)	5
27	1	1287	Ben-Hur (1959)	5
1	1	48	Pocahontas (1995)	5

```
Top 10 recommendations for user 1
```

- 1. Star Wars: Episode IV A New Hope (1977) with predicted rating 4.53
- 2. Wizard of Oz, The (1939) with predicted rating 4.51
- 3. Ben-Hur (1959) with predicted rating 4.25
- 4. Dead Poets Society (1989) with predicted rating 4.24
- 5. Beauty and the Beast (1991) with predicted rating 4.17
- 6. Secret Garden, The (1993) with predicted rating 4.02
- 7. Tarzan (1999) with predicted rating 3.96
- 8. E.T. the Extra-Terrestrial (1982) with predicted rating 3.77
- 9. Antz (1998) with predicted rating 3.7
- 10. Hunchback of Notre Dame, The (1996) with predicted rating 3.64

Using Matrix Decomposition

```
In [52]: model_4 , predictions_4 = build_rec_sys(SVD(n_factors=4, n_epochs=100))

RMSE: 0.8881
    MAE: 0.6934
    Test RMSE : 0.89 ,Test MAE: 0.69
```

Top 10 recommendations for user 1

```
In [54]: top_n_4 = get_top_n(predictions_4, movie_dict, n=10)

In [55]: user_1 = df[df['User ID'] == 1]
    user_1 = user_1[['User ID', 'Movie ID', 'Title', 'Rating']]
    print('\nMovies liked by user 1: ')
    display(user_1.sort_values('Rating', ascending=False).head(10))
    print('\nTop 10 recommendations for user 1')
    for e,i in enumerate(top_n_4[1]):
        print(f"{e+1}. {i[0]} with predicted rating {round(i[1],2)}")
```

Movies liked by user 1:

	User ID	Movie ID	Title	Rating
0	1	1	Toy Story (1995)	5
17	1	1022	Cinderella (1950)	5
49	1	3105	Awakenings (1990)	5
47	1	2804	Christmas Story, A (1983)	5
40	1	2355	Bug's Life, A (1998)	5
36	1	2028	Saving Private Ryan (1998)	5
33	1	1961	Rain Man (1988)	5
31	1	1836	Last Days of Disco, The (1998)	5
27	1	1287	Ben-Hur (1959)	5
1	1	48	Pocahontas (1995)	5

Top 10 recommendations for user 1

- 1. Wizard of Oz, The (1939) with predicted rating 4.61
- 2. Star Wars: Episode IV A New Hope (1977) with predicted rating 4.5
- 3. Ben-Hur (1959) with predicted rating 4.41
- 4. E.T. the Extra-Terrestrial (1982) with predicted rating 4.37
- 5. Dead Poets Society (1989) with predicted rating 4.34
- 6. Beauty and the Beast (1991) with predicted rating 4.28
- 7. Tarzan (1999) with predicted rating 4.06
- 8. Secret Garden, The (1993) with predicted rating 3.99
- 9. Antz (1998) with predicted rating 3.74
- 10. Hunchback of Notre Dame, The (1996) with predicted rating 3.68

Embeddings

User Embeddings:

$Embedding_1 \quad Embedding_2 \quad Embedding_3 \quad Embedding_4$

96	-0.449350	-0.053914	-0.329087	-0.260830
2101	0.388652	-0.174531	0.033435	0.921491

Item Embeddings :

	Embedding_1	Embedding_2	Embedding_3	Embedding_4
First Wives Club, The (1996)	-0.501219	-0.191519	-0.594369	-0.474218
Sphere (1998)	-0.091231	0.331609	-0.044451	-0.739272

```
In [65]: user_similarity_cosine = pd.DataFrame(cosine_similarity(user_embeddings), index=use
   item_similarity_cosine = pd.DataFrame(cosine_similarity(items_embeddings), index=it

In [66]: print('\nUser Similarity Matrix : ')
   display(user_similarity_cosine.head(2))
   print('\n\nItem Similarity Matrix : ')
```

User Similarity Matrix :

display(item_similarity_cosine.head(2))

	96	2101	5846	2284	1984	1699	2185	5699	196
96	1.000000	-0.664299	0.310701	-0.620868	0.354540	0.081156	0.230757	-0.713970	0.52354
2101	-0.664299	1.000000	0.336351	0.841520	-0.393141	0.626136	0.523050	0.979375	-0.03801

2 rows × 5564 columns

Item Similarity Matrix :

	First Wives Club, The (1996)	Sphere (1998)	L.A. Confidential (1997)	Rocky Horror Picture Show, The (1975)	Lone Star (1996)	Stand by Me (1986)	On the Waterfront (1954)	Chinatown (1974)
First Wives Club, The (1996)	1.000000	0.472701	-0.587955	-0.438781	0.134283	-0.484963	-0.233838	-0.466187
Sphere (1998)	0.472701	1.000000	-0.943650	-0.429908	-0.653336	-0.676069	-0.947037	-0.787606

2 rows × 3575 columns

Top 10 movies similar to Toy Story (1995)

```
In [71]: item_similarity_cosine['Toy Story (1995)'].sort_values(ascending=False).head(11)
Out[71]: Toy Story (1995)
                                                1.000000
         Jungle Book, The (1967)
                                                0.996004
         Splash (1984)
                                                0.991048
         E.T. the Extra-Terrestrial (1982)
                                                0.989616
         Muppet Christmas Carol, The (1992)
                                                0.984511
         Sleeping Beauty (1959)
                                                0.981426
         Old Yeller (1957)
                                                0.981204
         Big (1988)
                                                0.974407
         Oliver! (1968)
                                                0.968310
         Ayn Rand: A Sense of Life (1997)
                                                0.967853
         Rescuers, The (1977)
                                                0.966946
         Name: Toy Story (1995), dtype: float64
```

Embeddings Visulization with d=2

```
columns=['Embedding_1', 'Embedding_2'])
          items embeddings = pd.DataFrame(model 5.qi,
                                      index=[movie_dict[trainset.to_raw_iid(i)] for i in rang
                                      columns=['Embedding_1', 'Embedding_2'])
In [160... # merge item embeddings with movie data
          items_embeddings = movies.merge(items_embeddings, left_on='Title', right_index=True
          # extract year from title
          items_embeddings['year'] = items_embeddings['Title'].str.extract('.*\((.*)\).*', ex
          items_embeddings['year'] = pd.to_numeric(items_embeddings['year'], errors='coerce')
          items_embeddings['released_after_1995'] = (items_embeddings['year'] > 1995)
          # extract number of genres from Genre
          items_embeddings['genre_count'] = items_embeddings['Genres'].str.count('\\') + 1
          items_embeddings['multiple_genre'] = (items_embeddings['genre_count'] > 1)
         display(items_embeddings.head(2))
            Movie
                      Title
                                            Genres Embedding_1 Embedding_2
                                                                               year released after
                ID
                       Toy
          0
                     Story Animation|Children's|Comedy
                                                        0.385643
                                                                     0.232034 1995.0
                1
                    (1995)
                   Jumanji
                                                                    -0.419186 1995.0
                            Adventure|Children's|Fantasy
                                                        0.605638
                     (1995)
In [165... # merge user embeddings with user data
         users['User ID'] = users['User ID'].astype('int')
          users['Age'] = users['Age'].astype('int')
          user_embeddings = users.merge(user_embeddings, left_on='User ID', right_index=True)
          user_embeddings['older_than_30'] = (user_embeddings['Age'] > 30)
         display(user_embeddings.head(2))
            User ID Gender Age Occupation Embedding_1 Embedding_2 older_than_30
          0
                  1
                                        10
                                                0.573303
                                                             -0.115888
                                                                              False
                              1
          1
                  2
                         M
                             56
                                        16
                                                0.854225
                                                             -0.092019
                                                                              True
In [166... fig,ax = plt.subplots(2,2,figsize=(25, 10))
          sns.scatterplot(x='Embedding_1', y='Embedding_2', data=user_embeddings, hue='Gender
          ax[0,0].set_title('User Embeddings : Gender')
          sns.scatterplot(x='Embedding_1', y='Embedding_2', data=user_embeddings, hue='older_
          ax[0,1].set_title('User Embeddings : Older than 30')
          sns.scatterplot(x='Embedding_1', y='Embedding_2', data=items_embeddings, hue='relea
```

ax[1,0].set_title('Itme Embeddings : Released after 1995')

ax[1,1].set_title('Item Embeddings : Multiple Genre')

sns.scatterplot(x='Embedding_1', y='Embedding_2', data=items_embeddings, hue='multi

Out[166]: Text(0.5, 1.0, 'Item Embeddings : Multiple Genre')

- No correlation between the embeddings
- Embeddings have captured gender differences (female top right, male bottom left)