```
In [1]: # Question 1 - Import and Explore Data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
from sklearn import metrics, linear_model, svm
from sklearn.model_selection import train_test_split

os.chdir('C:\\Users\\micha\\Documents\\DAAN862')

df = pd.read_csv('breastcancer.csv')
display(df)
```

	Age	ВМІ	Glucose	Insulin	НОМА	Leptin	Adiponectin	Resistin	MCP.1	CI
0	48	23.500000	70	2.707	0.467409	8.8071	9.702400	7.99585	417.114	
1	83	20.690495	92	3.115	0.706897	8.8438	5.429285	4.06405	468.786	
2	82	23.124670	91	4.498	1.009651	17.9393	22.432040	9.27715	554.697	
3	68	21.367521	77	3.226	0.612725	9.8827	7.169560	12.76600	928.220	
4	86	21.111111	92	3.549	0.805386	6.6994	4.819240	10.57635	773.920	
•••			•••		•••	•••			•••	
111	45	26.850000	92	3.330	0.755688	54.6800	12.100000	10.96000	268.230	
112	62	26.840000	100	4.530	1.117400	12.4500	21.420000	7.32000	330.160	
113	65	32.050000	97	5.730	1.370998	61.4800	22.540000	10.33000	314.050	
114	72	25.590000	82	2.820	0.570392	24.9600	33.750000	3.27000	392.460	
115	86	27.180000	138	19.910	6.777364	90.2800	14.110000	4.35000	90.090	

116 rows × 10 columns

```
In [2]: # Question 1 Cont - Explore data
display(df.describe())
display(df.corr())
```

		Age		вмі		Glucose	Insulin	нома	Leptin	Adiponecti
count			116.0	00000				116.000000	116.000000	116.00000
mean	57.301724			27.582111		.793103	10.012086	2.694988	26.615080	10.18087
std	16.112766		5.020136				10.067768	3.642043	19.183294	6.84334
min	24.000000		18.370000		60.000000		2.432000	0.467409	4.311000	1.65602
25%	45.000000		22.973205		85.750000		4.359250	0.917966	12.313675	5.47428
50%	56.000000		27.662416		92.000000		5.924500	1.380939	20.271000	8.35269
75%	71.000	0000	31.2	41442	102	.000000	11.189250	2.857787	37.378300	11.81597
max 89.00		0000	38.5	78759	201	.000000	58.460000	25.050342	90.280000	38.04000
			Age	E	вМІ	Glucose	Insulin	нома	Leptin	Adiponectin
	Age	1.00	0000	0.008	530	0.230106	0.032495	0.127033	0.102626	-0.219813
	вмі	0.00	8530	1.000	000	0.138845	0.145295	0.114480	0.569593	-0.302735
G	lucose	0.23	0106	0.138	845	1.000000	0.504653	0.696212	0.305080	-0.122121
I	nsulin	0.03	2495	0.145	295	0.504653	1.000000	0.932198	0.301462	-0.031296
ı	нома	0.12	7033	0.114	480	0.696212	0.932198	1.000000	0.327210	-0.056337
	Leptin	0.10	2626	0.569	593	0.305080	0.301462	0.327210	1.000000	-0.095389
Adipo	nectin	-0.21	9813	-0.302	735	-0.122121	-0.031296	-0.056337	-0.095389	1.000000
	esistin	0.00	2742	0.195	350	0.291327	0.146731	0.231101	0.256234	-0.252363
R					USB	0.264879	0.174356	0.259529	0.014009	-0.200694
	MCP.1	0.01	3462	0.224	030					

```
In [5]: # Find coefs of SVM
        print(svm_linear.coef0)
        print(svm_linear.coef_)
       0.0
       -0.02750599 0.0050329
                               0.0007635 ]]
 In [6]: # Get accuracy of Linear SVM
        svm_linear_pred = svm_linear.predict(X_test)
        metrics.accuracy_score(y_test, svm_linear_pred)
 Out[6]: 0.7714285714285715
 In [7]: # Build rbf SVM
        svm_rbf = svm.SVC(kernel='rbf', gamma=0.1)
        svm_rbf.fit(X_train, y_train)
 Out[7]: ▼
              SVC
        SVC(gamma=0.1)
 In [8]:
        # Evaluate
        svm_rbf_pred = svm_rbf.predict(X_test)
        metrics.accuracy_score(y_test, svm_rbf_pred)
 Out[8]: 0.5142857142857142
 In [9]: # Build Poly SVM
        svm_poly = svm.SVC(kernel='poly', degree=3)
        svm_poly.fit(X_train, y_train)
 Out[9]: ▼
                SVC
        SVC(kernel='poly')
In [10]:
        # Evaluate
        svm_poly_pred = svm_poly.predict(X_test)
        metrics.accuracy_score(y_test, svm_poly_pred)
        # We can see that betwen the three SVMs used, Linear provided the best accuracy
Out[10]: 0.5142857142857142
```

```
# Question 3 - Find the best n-estimator of RBF Model
         from sklearn.ensemble import RandomForestClassifier
         #Start by building and evaluting RBF with n=100
         RF = RandomForestClassifier(n_estimators=100, random_state=42)
         RF.fit(X_train, y_train)
Out[11]:
                   RandomForestClassifier
         RandomForestClassifier(random_state=42)
In [12]:
         # Evaluate
         RF_pred = RF.predict(X_test)
         metrics.accuracy_score(y_test, RF_pred)
Out[12]: 0.7142857142857143
In [13]: # Test to see which values have the most importance to model
         pd.DataFrame({'feature':df.columns[0:9],
                       'importance':RF.feature_importances_})
Out[13]:
                feature importance
          0
                   Age
                           0.167139
          1
                   BMI
                           0.070999
          2
                Glucose
                           0.265373
          3
                 Insulin
                           0.067388
          4
                 HOMA
                           0.111275
          5
                 Leptin
                           0.089793
          6 Adiponectin
                           0.069396
          7
                Resistin
                           0.079909
                 MCP.1
          8
                           0.078728
```

```
In [49]: # One way of determing the best number of n-estimator is to
    # Loop through each value and analyze the performance
    from sklearn.model_selection import cross_val_score

    n_estimator = range(1, 100)

accuracy = []

for i in n_estimator:
    RF = RandomForestClassifier(n_estimators=i, random_state=10)
    scores = cross_val_score(RF, X_train, y_train)
    accuracy.append(scores.mean())
```

```
In [34]: # We can plot each accuracy in relation to its n-value
plt.figure()
plt.plot(n_estimator, accuracy)
plt.title('Ensemble Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Number of Base Estimators in Ensemble')

ymax = max(accuracy)
xpos = accuracy.index(ymax)
xmax = n_estimator[xpos]
text = 'Best n-estimator = {:.0f}, Acc = {:.4f}'.format(xmax, ymax)
plt.annotate(text, xy=(xmax, ymax))

plt.show()

# As shown, n-estimators of 29 (along with a few other values) can
# give us the best accuracy
```


Out[32]: {'n_estimators': 29}

```
# Re-evaluate the accuracy with the optimal param again.
         RF_opt_pred = RF_opt.predict(X_test)
         metrics.accuracy_score(y_test, RF_opt_pred)
         # We went from an accuracy of 0.714 to 0.771 with optimized model
Out[36]: 0.7714285714285715
In [55]: # Question 4 - Find the best n-estimator for Adaboost
         # We can implement the same methods used in Question 3, this time we
         # can start with GridSearchCV
         from sklearn.ensemble import AdaBoostClassifier
         # Some slight expiermentation was done with Learning_rate here, too low of
         # a value was initially given where all accuracies were the same independent
         # of n_estimators
         Ada = AdaBoostClassifier(n_estimators=50, learning_rate=0.5, random_state=42)
         Ada_opt = GridSearchCV(Ada, n_estimator_params)
         Ada_opt.fit(X_train, y_train)
              GridSearchCV
Out[55]: •
          ▶ estimator: AdaBoostClassifier
                ► AdaBoostClassifier
In [56]: # Call the best param found
         Ada_opt.best_params_
         # 15 for n is noted as the best values
Out[56]: {'n_estimators': 15}
```

7/16/2023, 4:39 PM

```
In [54]:
         # We can verify the above results by using the same plot methodology as
         # shown in Question 3
         accuracy = []
         for i in n_estimator:
             Ada_plot = AdaBoostClassifier(n_estimators=i, learning_rate=0.5, random_state=4
             scores = cross_val_score(Ada_plot, X_train, y_train)
             accuracy.append(scores.mean())
         plt.figure()
         plt.plot(n_estimator, accuracy)
         plt.title('Ensemble Accuracy')
         plt.ylabel('Accuracy')
         plt.xlabel('Number of Base Estimators in Ensemble')
         ymax = max(accuracy)
         xpos = accuracy.index(ymax)
         xmax = n_estimator[xpos]
         text = 'Best n-estimator = {:.0f}, Acc = {:.4f}'.format(xmax, ymax)
         plt.annotate(text, xy=(xmax, ymax))
         plt.show()
```



```
In [ ]:
```