25. Principy vrstvené architektury počítačových sítí, referenční model OSI. Charakteristika lokálních počítačových sítí. Technologie Ethernet, její principy a vývoj, algoritmus CSMA/CD. Bezdrátové lokální sítě standardu IEEE 802.11.

Principy vrstvené architektury počítačových sítí, referenční model OSI.

Vrstvená architektura

- zpravidla organizována do úrovní (vrstev)
- jedna vrstva řeší vždy vymezenou část problému
- rozkládá komunikaci na jednodušší podproblémy

protokol

- jak se domlouvají dva partneři na stejné vrstvě (hlavičky, dotazy, odpovědi, příkazy,...)
- nezávislý na implementaci, umožňuje interoperabilitu

rozhraní

- definice služeb nabízených nadřízené vrstvě
- implementace je skryta uvnitř vrstvy
- rozhraní závisí na implementaci (OS)
- navzájem komunikují komponenty ve stejné vrstvě
- vytvořené zprávy předávají k doručení podřízené vrstvě (skutečný přenos zajišťuje nejnižší vrstva)
- od vyšší vrstvy dostávají data k doručení (nerozumí jim)
- vrstvy jsou navzájem nezávislé změna protokolu v jedné z nich se ostatních nedotkne

Zpráva postupně bobtná

Model OSI

Open Systems Interconnection

- vytvořila ISO v roce 1983
- cíl: sada standardních komunikačních protokolů nezávislých na výrobci
- 7 vrstev
 - kompromis mezi složitostí vrstev a jejich počtem
- nejsou konkrétní protokoly, jen vymezení funkcí

1. Fyzická

- vlastní přenos bitů
- mechanické, elektrické a procedurální záležitosti
- konektory, kabely, napětí, kódování signálu,...

2. Spojová

- řízení a logika přenosu
- zajistit pomocí těchto služeb bezchybný přenos celých bloků dat (velikosti řádově stovek bytů), označovaných jako rámce (frames)
- zajišťuje přenos celých rámců, ovšem pouze mezi dvěma uzly, mezi kterými vede přímé spojení
- kontroluje celé rámce, zda byly přeneseny správně
- paketizace, pravidla přístupu k médiu, detekce chyb,...
- řízení toku, kterým se rozumí řízení rychlosti přenosu tak, aby příjemce stíhal rámce zpracovávat.

3. Síťová

- směrování (hledání vhodných cest, vyvažování zátěže)
- řízení sítě (např. účtování)
- Rámce jsou již odesílány jako pakety

4. Transportní

- implementována v počítači, může přizpůsobit vlastnosti sítě (vrstev 1–3) potřebám aplikace
- Transportní vrstvě díky tomu stačí zabývat se již jen komunikací koncových účastníků (tzv. end-to-end komunikací)
- rozlišení aplikací
- zpravidla bezchybný kanál zachovávající pořadí
- správa spojení

5. Relační

- doplňuje drobnosti (přidána později)
- přátelské ukončení spojení
- řízení dialogu (poloduplex), aktivity, synchronizační body

6. Prezentační

- zabývá se vyznamem přenášených dat
- jak reprezentovat data a struktury (ASN.1) a jak je přepravovat (BER.1)
- **kódování da**t (ASCII, UTF), šifrování, komprimace,...

7. Aplikační

- protokoly konkrétních služeb a aplikací
- elektronická pošta, přenos souborů, vzdálený přístup,...

Problémy OSI RM

přesto neuspělo

- schizma mezi spojovanými a nespojovanými službami
- nekompatibility různých verzí
- nepružné procedury, pomalý vývoj
- nedostatek a vysoká cena implementací
- zůstalo jako obecný model

Paralela mezi RM - OSI a dopisy

OSI vs Internet (TCP/IP)

aplikační			
prezentační	aplikační		
relační			
transportní	transportní		
síťová	síťová		
spojová	 přizpůsobení médiu		
fyzická	existující technologie		

Charakteristika lokálních počítačových sítí.

Technologie Ethernet, její principy a vývoj, algoritmus CSMA/CD.

Ethernet historicky

- určen pro kancelářské aplikace
- sběrnicová topologie na koaxiálním kabelu, přístup k médiu řízen metodou CSMA/CD
- přenosová rychlost 10 Mb/s

Skupina IEEE

- skupina 802 standardy pro lokální sítě
 - 802.3 CSMA/CD (Ethernet)
 - 802.11bezdrátové sítě
- podvrstvy
 - Logical Link Control (LLC) sjednocuje, IEEE 802.2
 - Media Access Control (MAC) konkrétní technologie

Formát rámce

8	6	6	2	46-1500	4 bajt	ty
preambule	cíl	odesilate	délka typ	data	CRC	

Carrier Sense with Multiple Access and Collision Detection

- popisuje chování vysílajícího při odesílání rámce:
 - chvíli naslouchá
 - je-li volno, začne vysílat (jinak čeká na uvolnění)
 - při vysílání zároveň naslouchá hlídá kolizi
 - kolize: vysílá několik stanic najednou, data znehodnocena
 - při zjištění kolize:
 - vyšle "jam" signál (indikace kolize pro ostatní)
 - počká náhodnou dobu t_k a opakuje pokus
 - max. 16 pokusů, pak ohlásí neúspěch

- jakmile signál obsadí médium, kolize nemůže nastat
- kolizní okénko: čas od začátku vysílání do obsazení média – jen tehdy může dojít ke kolizi
- kolizní okénko < doba vysílání nejkratšího rámce iinak hrozí neobievené kolize. komplikuje zvvšování
- s opakovanými neúspěchy stanice "ředí" pokusy větší šance na úspěch
- odvysílání není zaručeno
- každá kolize znamená promarněný čas data se musí vysílat znovu
- v době největšího zájmu přibývá kolizí a klesá tak efektivita využití média
- využití závisí na velikosti rámců

Ethernet na kroucené dvojlince

- hvězdicová topologie
- uprostřed hub (rozbočovač) nebo switch (přepínač)

HUB

- vznikl s cílem simulovat sběrnici
- co přichází z jednoho kabelu rozešle do všech ostatních
- regeneruje signál jakmile rozpozná 0/1 posílá dál, zpoždění 1 bit
- všechny připojené počítače spolu soutěží o médium algoritmem CSMA/CD
- dnes už historie

Switch

- inteligentní pošle data jen do kabelu, kde se nachází adresát
- store & forward načte rámec, analyzuje hlavičku a poté odešle, příjem a vysílání nezávislé
- odděluje kolizní domény CSMA/CD
 - počítače na jednom kabelu nesoutěží s počítači jiných kabelech
- dříve drahé, dnes samozřejmostí
- automatická konfigurace
- z adresy odesilatele se dozví, kde kdo sídlí
- rámce určené neznámému adresátovi rozešle všen (jako rozbočovač)
- problém s cykly (redundancí) v síti:
 - řeší algoritmus spanning tree
 - některé linky deaktivuje a vytvoří strom pokrývající síť
 - při výpadku obnoví
 - problémy s kompatibilitou

Full duplex

- připojením počítačů k přepínači mizí sdílení média
- lze současný provoz oběma směry bez CSMA/CD
- jakmile má rámec, odvysílá jej; paralelně přijímá data z druhé strany (po jiných vodičích – UTP jich má osm)
- všechny současné karty a přepínače podporují
- autodetekce nebo ruční nastavení

Vývoj Ethernet

- 1. Ethernet
 - původní varianta s přenosovou rychlostí 10 Mbit/s. Definována pro koaxiální kabel, kroucenou dvojlinku a optické vlákno.
- 2. Fast Ethernet
- IEEE 802.3u (1995)
- rychlost 100 Mb/s
- maximum prvků převzato z Ethernetu formát rámce, CSMA/CD
- shodná logika software vyšších vrstev beze změn
- vzdálenost hub-počítač max. 100 m, na cestě max.
 3 huby nanejvýš 10 m od sebe: dosah 220 m
- zařízení "pod obojí", automatická detekce 10/100
- 100BASE-TX
 - 2 páry UTP kategorie 5, délka spoje do 100 m
- 100BASE-FX
 - optické vlákno, 400 m poloduplex (kvůli detekci kolizí),
 2 km plný duplex
- 3. Gigabitový ethernet
- IEEE 802.3z (optika), 802.3ab (UTP), 1998
- rychlost 1 Gb/s
- opět stejný formát rámce a CSMA/CD (spíše symbolicky, používá se plný duplex)
- původně pro páteře sítí, dnes běžně na základní desce 10/100/1000
- výměnný modul pro média – GBIC

= 1000BASE-T

UTP kategorie 5 a lepší, 100 m

1000BASE-SX

vícevidové vlákno, 500 m

1000BASE-LX

jednovidové vlákno, 2 km

1000BASE-ZX

jednovidové vlákno, 70 km

4. Desetigigabitový ethernet

- IEEE 802.3ae (optika, 2003), 802.3an (UTP, 2006)
- rychlost 10 Gb/s
- stejný formát rámce, bez CSMA/CD komunikace jen plně duplexní
- pro páteřní sítě (dosud velmi drahé)
- opět výměnné moduly pro média – XFP

10GBASE-T

UTP kat. 6 (50 m) nebo 6a (100 m), zatím vzácné

10GBASE-SR

vícevidové vlákno, dosah podle vlákna 25 až 300 m

10GBASE-LR

jednovidové vlákno, 10 km

= 10GBASE-ER

jednovidové vlákno, 40 km

5. Stogigabitový ethernet

- standard IEEE 802.3ba přijat v červnu 2010
- rychlosti 40 a 100 Gb/s
- zachovává formát rámce
- na trhu pro high-end zařízení
- používá se ve vysoce zatížených částech infrastruktury (páteřní sítě, peeringová centra)

Bezdrátové lokální sítě standardu IEEE 802.11.

- velmi rychle se rozvíjejí
- přednosti:
 - pokrytí plochy, podpora mobility
 - umožňují propojení budov bez optických vláken

zápory:

- pomalejší
- větší chybovost

Architektura sítě

Buňka

Basic Service Set

- skupina stanic komunikujících navzájem
- nezávislá (ad hoc)
 - stanice komunikují přímo, problém se vzájemnou slyšitelností

infrastrukturní

- řízena základnovou stanicí (Access Point, AP)
- veškerý provoz prochází AP
- umožňuje lepší služby

Činnost AP

- řídí buňku
- veškeré přenosy procházejí přes AP
- ukládá rámce pro spící stanice (úspora energie)
- pravidelně vysílá Beacon Frame
 - synchronizace času
 - vyzývá nové stanice ke vstupu do buňky
 - systémové parametry
 - pravidelně 10 až 100× za sekundu

ESS

Extended Service Set

- skupina spolupracujících buněk
- propojeny distribučním systémem (lokální sítí)
 - portál zařízení propojující IEEE 802.11 síť s jinou sítí (typicky Ethernetem), obvykle integrován v AP
- vyžaduje komunikaci mezi AP
 - Inter-Access Point Protocol (IAPP)
 - standard IEEE 802.11F, přijat 2003, stažen 2006
 - firemní protokoly

Historie a vývoj

Standard	Rok vydání	Pásmo [GHz]	Maximální rychlost [Mbit/s]	Fyzická vrstva
původní IEEE 802.11	1997	2,4	2	DSSS a FHSS
IEEE 802.11a	1999	5	54	OFDM
IEEE 802.11b	1999	2,4	11	DSSS
IEEE 802.11g	2003	2,4	54	OFDM
IEEE 802.11n	2009	2,4 nebo 5	600	MIMO OFDM
IEEE 802.11y	2008	3,7	54	
IEEE 802.11ac	2013	2,4 a 5	1000	MU-MIMO OFDM
IEEE 802.11ad	2014	2,4 , 5 a 60	7000	

1. 802.11**b**

- první masově rozšířená varianta
- v pásmu 2,4 GHz
- Direct Sequence Spread-Spectrum (DSSS) menší amplituda, ale širší pásmo
- max. 11 Mb/s

- reálná max. rychlost sotva poloviční (velká režie)
- pásmo 2,4 GHz je přetíženo, problémy s rušením
- v dostupném pásmu je 11 kanálů (13 v Evropě), ale měly by být alespoň o 5 od sebe, aby se nerušily – reálně použitelné jsou kanály 1, 6 a 11 (případně 1, 5, 9, 13)
- 2. a
- starší než 802.11b, ale rozšířil se později
- pásmo 5 GHz (podstatně širší, ale vyšší útlum)
- Orthogonal Frequency Division Multiplexing (OFDM)
 rozkládá signál do desítek nezávislých frekvencí;
 tento princip používá i ADSL
- různé modulace + samoopravné kódy
- 8 rychlostí, max. 54 Mb/s
- 3. **g**
- snaha o vyšši rychlost při zachování zpětně kompatibility s 802.11b
- pásmo 2,4 GHz
- Orthogonal Frequency Division Multiplexing
- rvchlosti až 54 Mb/s
- podporuje i režimy 802.11b a režim ochrany (řídicí informace se vysílají tak, aby je zachytila i 802.11b zařízení) – pomalejší
- 4. **h**
- v Evropě kladeny technické požadavky na zařízení v bezlicenčním pásmu 5 GHz
 - DFS dynamická volba kmitočtu
 - TPC automatická regulace výkonu
- 802.11a je nesplňuje lze nasadit jen uvnitř budov
- 802.11h doplňuje potřebné vlastnosti, v podstatě evropská verze 802.11a
- novější (2004), málo rozšířená
- 5. **n**
- přijato na podzim 2009
- cíl: čistá přenosová rychlost alespoň 100 Mb/s
- pásmo 2,4 i 5 GHz
- zařízení jsou běžně dostupná na trhu
 - cena se příliš neliší od a/b/g
- 6. ac

802.11ac

- přijato v lednu 2014
- MIMO (až 8 antén)
- víceuživatelské MIMO stanice na různých kanálech
- rychlost linky až 867 Mb/s, celková několik Gb/s

7. ad

802.11ad (WiGig)

- přijato 2012
- tři frekvenční pásma: 2,4 GHz, 5 GHz a 60 GHz

až 7 Gb/s