

DART Tutorial Section 20: Model Parameter Estimation

©UCAR 2014

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Model Parameter Estimation

Suppose a model is governed by a (stochastic) Difference Equation:

$$dx_t = f(x_t, t; u) + G(x_t, t; w)d\beta_t, \quad t \ge 0$$
(1)

where u and w are vectors of parameters. Also, suppose we really don't know the parameter values (very well). Can we use observations with assimilation to help constrain these values?

Rewrite (1) as:

$$dx_t^A = f^A(x_t^A, t) + G^A(x_t^A, t)d\beta_t, \quad t \ge 0$$
 (2)

where the augmented state vector includes x_t , u, and w.

The model is modified so values of u and w can be changed by assimilation. The model might also introduce some time tendency for u and w.

Model Parameter Estimation

From the ensemble filter perspective:

Just add any parameters of interest to the model state vector; Proceed to assimilate as before.

Possible difficulties:

- 1. Where are parameters 'located' for localization?
- Parameters won't have any error growth in time (unless we add some): could lead to fiilter divergence.
- 3. Parameters may not be strongly correlated with any observations.

Testing Parameter Estimation in DART

DART includes a *models/forced_lorenz_96* directory.

Each state variable has a corresponding forcing variable, F_i .

$$dX_{i} / dt = (X_{i+1} - X_{i-2})X_{i-1} - X_{i} + F_{i}$$
(3)

Observational errors for obs. in set i independent of those in set j.

$$dF_i / dt = N(0, \sigma_{noise}) \tag{4}$$

Can observations of some function of state variables constrain F?

Adding namelist control aspects required for experimentation:

- 1. reset_forcing if .true., F_i = forcing (also from namelist) for all i,t.
- 2. random_forcing_amplitude σ_{noise} for F_i time tendency, not used if reset_forcing is .true.

Using these, can create OSSE sets with fixed, global F value.

Assimilate these with filter, estimate state and forcing.

Get an ensemble sample of F_i at each time.

Random noise can be useful for avoiding filter divergence.

Assimilation in the forced Lorenz-96 model

cd models/forced_lorenz_96/work
csh workshop_setup.csh

Use matlab, etc. to examine output.

Same 40 randomly-located observations as in lorenz_96 cases.

Forcing was fixed at 8.0 in the perfect_model run.

Values of F_i are modified in the assimilation.

There was some noise (amplitude of 0.1) added to the time tendency.

Amazing Fact: Best assimilations of state come when Fi varies, even better than when Fi is set to exact known value of 8.0!

Contest: Given an observation set, what was the value of F?

In models/forced_lorenz_96/work edit input.nml

```
&filter_nml

change to

change to

obs_sequence_in_name = "obs_seq.out"

obs_seq.out.CONTEST"
```

Question: What was the value of the forcing in the perfect_model run?

You can try anything (ethical) you want.

Feel free to ask for help to try experiments you don't know how to do.

Remember: The Truth is NO LONGER KNOWN!

Consistent with the theme of the workshop ... in the event of a tie, a random number generator will be used to decide the winner.

Honor, fame, and fabulous(?) prizes go to the winning team!!!

DART Tutorial Index to Sections

- 1. Filtering For a One Variable System
- 2. The DART Directory Tree
- 3. DART Runtime Control and Documentation
- 4. How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.
- 5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
- 6. Other Updates for An Observed Variable
- 7. Some Additional Low-Order Models
- 8. Dealing with Sampling Error
- 9. More on Dealing with Error; Inflation
- 10. Regression and Nonlinear Effects
- 11. Creating DART Executables
- 12. Adaptive Inflation
- 13. Hierarchical Group Filters and Localization
- 14. Quality control
- 15. DART Experiments: Control and Design
- 16. Diagnostic Output
- 17. Creating Observation Sequences
- 18. Lost in Phase Space: The Challenge of Not Knowing the Truth
- 19. DART-Compliant Models and Making Models Compliant
- 20. Model Parameter Estimation
- 21. Observation Types and Observing System Design
- 22. Parallel Algorithm Implementation
- 23. Location module design (not available)
- 24. Fixed lag smoother (not available)