1. Análisis de la protección

Se decidió utilizar una protección foldback dado que esta evita el pasarnos de la corriente de salida máxima establecida, $Io_{m\acute{a}x}=1.5\,A$ y nos limita la cantidad de potencia a disipar por una menor a la dada por una protección lineal reduciendo costos. Al agregar la protección foldback nos quedamos con el siguiente circuito:

Figura 1: Circuito con protección

De la figura 1 podemos observar que la protección va a tener los siguientes parámetros:

Figura 2: Análisis del circuito

De la 2 al recorrer la malla marcada obtenemos la siguiente ecuación:

$$(I_o - I_{e4})R_4 = V_{be} + \frac{V_0 + (I_o - I_{e4})R_4}{R_2 + R_3}R_3$$

Dado que la corriente I_{e4} es la corriente que viene de la fuente de corriente y debido a que la corriente I_o es dado por $\beta_1\beta_2$ podemos despreciar la corriente I_{e4} dando como resultado la siguiente ecuación:

$$I_o R_4 = V_{be} + \frac{V_0 + I_o R_4}{R_2 + R_3} R_3$$

Para la elección de los componentes se fijaron los componentes R_3 y R_4 de forma tal que el componente R_2 se elige a partir del siguiente despeje:

$$R_2 = \frac{(V_o + I_O R_4)R3}{I_0 R_4 - V_{be}} R_3 - R_3$$

Se despejo el valor de \mathbb{R}_2 utilizando las siguientes condiciones:

Elemento	Valor
R_4	0.6Ω
R_3	$1k\Omega$
V_o	9V
I_0	1,58A

Dando como resultado que $R_2=396112\Omega$ donde asumiendo la posibilidad de un error del 8% se eligió a I_0 como el valor dado por 1 así como el valor de V_o fue elegido para mantener la máxima corriente requerida incluso para el valor más chico de V_o . Finalmente, con la simulación generada en LTSpice se vario ligeramente el valor para tener el resultado querido, dando como valor final a $R_2=39\!k\Omega$. Al realizar la comprobación empírica para obtener lo querido se tuvo que cambiar $R_3=1,5k\Omega$ dando como resultado final los siguientes valores para los componentes:

Elemento	Valor
R_4	0.6Ω
R_3	$1,5k\Omega$
R_2	$39k\Omega$