ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

PEARSON

Chapter 3:
Bipolar Junction Transistors

Transistor Construction

There are two types of transistors:

- pnp
- npn

The terminals are labeled:

- E Emitter
- B Base
- C Collector

Transistor Operation

With the external sources, V_{EE} and V_{CC} , connected as shown:

- The emitter-base junction is forward biased
- The base-collector junction is reverse biased

Currents in a Transistor

Emitter current is the sum of the collector and base currents:

$$I_E = I_C + I_B$$

The collector current is comprised of two currents:

$$I_C = I_{C_{majority}} + I_{CO_{minority}}$$

Common-Base Configuration

The base is common to both input (emitter-base) and output (collector-base) of the transistor.

Common-Base Amplifier

Input Characteristics

This curve shows the relationship between of input current (I_E) to input voltage (V_{CB}) for three output voltage (V_{CB}) levels.

Common-Base Amplifier

Output Characteristics

This graph demonstrates the output current (I_C) to an output voltage (V_{CB}) for various levels of input current (I_E) .

Operating Regions

- Active Operating range of the amplifier.
- Cutoff The amplifier is basically off. There is voltage, but little current.
- Saturation The amplifier is full on. There is current, but little voltage.

Electronic Devices and Circuit Theory, 10/e

Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc.

Upper Saddle River, New Jersey 07458 • All rights reserved.

Approximations

Emitter and collector currents:

$$I_C \cong I_E$$

Base-emitter voltage:

$$V_{BE} = 0.7 V \text{ (for Silicon)}$$

Alpha (α)

Alpha (α) is the ratio of I_C to I_E :

$$a_{dc} = \frac{I_C}{I_E}$$

Ideally: $\alpha = 1$

In reality: α is between 0.9 and 0.998

Alpha (α) in the AC mode:

$$\alpha_{ac} = \frac{\Delta I_C}{\Delta I_E}$$

Transistor Amplification

Currents and Voltages:

$$I_E = I_i = \frac{V_i}{R_i} = \frac{200 \text{mV}}{20\Omega} = 10 \text{mA}$$

$$I_C \cong I_E$$

$$I_L \cong I_i = 10 \,\mathrm{mA}$$

$$V_L = I_L R = (10 \,\mathrm{ma})(5 \,\mathrm{k}\Omega) = 50 \,\mathrm{V}$$

Voltage Gain:

$$A_{v} = \frac{V_{L}}{V_{i}} = \frac{50V}{200mV} = 250$$

Common–Emitter Configuration

The emitter is common to both input (base-emitter) and output (collector-emitter).

The input is on the base and the output is on the collector.

Common-Emitter Characteristics

 $I_B(\mu A)$ $V_{CF} = 1 \text{ V}$ $V_{CE} = 10 \text{ V}$ 100 90 80 70 60 50 40 30 20 10 0.8 0.6 V_{BE} (V)

Collector Characteristics

Base Characteristics

Common-Emitter Amplifier Currents

Ideal Currents

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

Actual Currents

$$I_C = \alpha I_E + I_{CBO}$$

where I_{CBO} = minority collector current

 I_{CBO} is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When $I_B = 0$ μA the transistor is in cutoff, but there is some minority current flowing called I_{CEO} .

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \, \mu A}$$

Beta (β)

 β represents the amplification factor of a transistor. (β is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)

In DC mode:

$$\beta_{\rm dc} = \frac{I_C}{I_B}$$

In AC mode:

$$\beta_{\rm ac} = \frac{\Delta I_C}{\Delta I_B}\Big|_{V_{CE} = {
m constant}}$$

Beta (β)

Determining β from a Graph

$$\beta_{AC} = \frac{(3.2 \text{mA} - 2.2 \text{mA})}{(30 \mu \text{A} - 20 \mu \text{A})}$$
$$= \frac{1 \text{mA}}{10 \mu \text{A}} |_{V_{CE} = 7.5}$$
$$= 100$$

$$\beta_{DC} = \frac{2.7 \text{ mA}}{25 \mu \text{A}} |_{V_{CE}} = 7.5$$

$$= 108$$

Electronic Devices and Circuit Theory, 10/e

Robert L. Boylestad and Louis Nashelsky

Beta (β)

Relationship between amplification factors β and α

$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{\alpha - 1}$$

$$\beta = \frac{\alpha}{\alpha - 1}$$

Relationship Between Currents

$$I_C = \beta I_B$$

$$I_C = \beta I_B$$
 $I_E = (\beta + 1)I_B$

Common–Collector Configuration

The input is on the base and the output is on the emitter.

Common–Collector Configuration

The characteristics are similar to those of the common-emitter configuration, except the vertical axis is $I_{\rm E}$.

Operating Limits for Each Configuration

 V_{CE} is at maximum and I_{C} is at minimum ($I_{Cmax} \!\! = I_{CEO}$) in the cutoff region.

 I_{C} is at maximum and V_{CE} is at minimum ($V_{CE\;max} = V_{CEsat} = V_{CEO}$) in the saturation region.

The transistor operates in the active region between saturation and cutoff.

Power Dissipation

Common-base:

$$P_{Cmax} = V_{CB}I_{C}$$

Common-emitter:

$$P_{\text{Cmax}} = V_{\text{CE}}I_{\text{C}}$$

Common-collector:

$$P_{Cmax} = V_{CE}I_{E}$$

Transistor Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Einfitter Voltage	V _{CSEY}	30	Vdc
Collector-Base Voltage	Vcao	40	Vdc
Emitter-Base Voltage	V _{EBO} :	5.0	Vdc
Collector Current - Continuous	Ie.	200	mAde
Total Device Dissipation @ T _A = 25°C Derate above 25°C	Po	625 5.0	mW mW C
Operating and Storage Junction Temperature Range	T _p T _{ng}	-55 to +150	,C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{µJC}	83.3	'C W
Thermal Resistance, Junction to Ambient	Rula	200	'C W

Transistor Specification Sheet

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	(100 Vin 100 V			
Collector-Emitter Breakdown Voltage (1) (I _C = 1.0 mAdc, I _E = 0)	Vouceio	-30		Vde
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	Voirceo	40		Vde
Emitter-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_C = 0)$	V _{(BR)EB()}	5.0	5	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	lcao		.50	nAde
Emitter Cutoff Current $(V_{BB} = 3.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	50	nAde
ON CHARACTERISTICS				
DC Current Gain(1) (I _C = 2.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc)	ben	50 25	150	180
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	Vermo	-	0.3	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	Various		0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product (I _C = 10 mAde, V _{CR} = 20 Vdc, f = 100 MHz)	fr	250		MHz
Output Capacitance $(V_{CB} = 5.0 \text{ V/ck}, I_E = 0, f = 100 \text{ MHz})$	Coho		4.0	pF
Input Capacitance $(V_{BB} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$	Cita	5.	8.0	pF
Collector-Base Capacitance $(I_E = 0, V_{CB} = 5.0 \text{ V}, f = 100 \text{ kHz})$	C _{rb}	- 5	4.0	pF
Small-Signal Current Gain $G_C = 2.0 \text{ mAde}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$	hu	50	-200	2
Current Gain – High Frequency ($I_C = 10 \text{ mAdc}$, $V_{CL} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$) ($I_C = 2.0 \text{ mAdc}$, $V_{CL} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$)	hie	2.5 50	200	5
Noise Figure $(I_C = 100 \mu Adc, V_{CE} = 5.0 \text{ Vdc}, R_S = 1.0 \text{ k ohm}, f = 1.0 \text{ kHz})$	NF	15	6.0	dB

⁽¹⁾ Pulse Test: Pulse Width = 300 μs . Duty Cycle = 2.0%

Transistor Testing

- Curve Tracer
 Provides a graph of the characteristic curves.
- DMM Some DMMs measure β_{DC} or h_{FE} .
- Ohmmeter

Transistor Terminal Identification

