COL215L: Digital Logic & System Design

Lecture 8: Combinational Circuits (Cont.)

M. Balakrishnan CSE@IITD

August 25, 2021

Vireshwar Kumar CSE@IITD

Challenges with K-Map

- K-Map
 - A graphical method and thus not suitable for large no. of variables
 - Not suitable for programming
- Quine-Mcluskey (QM) method
 - Does not suffer from these disadvantages

QM Method

- $y = f(a,b,c,d,e) = \sum m(0,6,7,8,14,20,22,24,26,30,31)$
- Step-1: Order by number of 1's in the binary representation

	No. of 1's	Minterms
	0,	0 -
	1.	8,
	2	6, 20, 24
	3	7, 14, 22, 26
	4	30
	5	31
	•	

QM Method (Cont.)

- Step-2: Combine minterms considering following conditions
 - The integer values of the two minterms differ by 2^k for some $k \ge 0$.
 - The minterm with a larger integer value has one more 1's than the minterm with a smaller integer value.

The combination of the minterms is called an implicant.

			1/	-
	~ 0	0	(0,8)	
C de	1	851	(8,24)	
c de	2	6, 20, 24	(6,7), (6,14), (6,22), (20,22), (24,26)	(6,14,22,30), (6,22,14,30)
1 2 0	3	7, 14, 22, 26	(14,30), (22,30), (26,30)	
(6)M) (921)	$\sqrt{4}$	30	(30,31)	
cde	5	31		

QM Method (Cont.)

Step-3: Identify prime implicants

• A prime implicant is not fully contained in any other implicant, i.e., no other implicant contains all the minterms contained in this implicant.

			C'd'e			
0	0	$(0,8)$ $\sqrt{}$	(x2) By classes			
1	8	(8,24)	and all all			
2	6, 20, 24	$(6,7), \sqrt{(6,14)}, (6,22),$	(6,14,22,30),			
		$(20,22), \sqrt{(24,26)} $	(6,22,14,30)			
3	7, 14, 22, 26	(14,30), (22,30),				
	,, 1 i, 22 , 2 0	(26,30) $$				
4	30	(30,31) √				
5	31					
)22) 5			
	COL215: Digital Logic & System Design (Semester I, 2021-2022)					

QM Method (Cont.)

• Step-4: Prepare a cover table

Essential Prime Implicants

- Step-5: Identify essential prime implicants
 - Essential prime implicants are those which cover minterm(s) not covered by any other prime implicant.
- Any minimal function have to include the essential prime implicants
- There can be some non-essential prime implicants

QM Method: Steps

- 1. Order minterms by number of 1's
- 2. Generate implicants by combination of minterms/implicants
- 3. Identify prime implicants
- 4. Prepare a cover table
- 5. Identify essential/other prime implicants covering all minterms
- 6. Express the function as a sum of identified prime implicants