Bachelor Thesis

Benchmark of RISC-V in BTOR2

Jan Krister Möller

Examiner: Dr. Mathias Fleury

University of Freiburg
Faculty of Engineering
Department of Computer Science
Chair of Computer Architecture

August 27, 2025

Writing Period

 $24.\,06.\,2025 - 24.\,09.\,2025$

Examiner

Dr. Mathias Fleury

Declaration

I hereby declare that I am the sole author and o	composer of my thesis and that no
other sources or learning aids, other than those li	sted, have been used. Furthermore,
I declare that I have acknowledged the work of oth	ners by providing detailed references
of said work.	
I hereby also declare that my Thesis has not been	n prepared for another examination
or assignment, either wholly or excerpts thereof.	
Place, Date Sig	nature

Declaration on Usage of generative AI

I hereby declare that, with the approval of my examiner, I have employed the
generative AI tool "GitHub Copilot" during the preparation of this thesis solely for
spellchecking and enhancing the formality of my written expression. Furthermore,
I expressly confirm that this tool was not used to generate data or as a source of
factual information or content for this thesis.
Place, Date Signature

Abstract

foo bar [1] [2] [3]

Contents

1	Mot	ivation	I	1
2	RIS	C-V		3
	2.1	Overv	iew	3
	2.2	The R	RV64I ISA	4
	2.3	Simul	ation of RISC-V	6
		2.3.1	Representing the State of a RISC-V Processor	6
		2.3.2	Instruction detection	6
		2.3.3	Instruction execution	6
		2.3.4	Saving the State of a RISC-V Processor	6
3	вто	DR2		9
	3.1	Model	Checking	9
	3.2	The E	TOR2 Language	9
	3.3	The E	BTOR2 Witness	10
4	Trai	nsformi	ing RISC-V to BTOR2	11
	4.1	The C	${ m Concept}$	11
	4.2	Encod	ling	12
		4.2.1	Constants	13
		4.2.2	State Representation	15
		4.2.3	Initialization	15
		4.2.4	Fetching the current instruction	16

	4.2.5	Deconstruction of the instruction	16			
	4.2.6	Instruction Detection	22			
	4.2.7	Next-State Logic	22			
	4.2.8	Creating all Values of Instruction execution	22			
	4.2.9	Constraints	27			
4.3	Testin	g for Correctness	30			
4.4	Functi	onal vs Relational Next-State Logic	31			
Ben	chmark	KS.	33			
5.1	Multi	Add in Functional and Relational Next-State-Logic	33			
5.2	Memo	ry Operations	33			
5.3	Result	S	33			
Bibliography 3						
	4.4 Ben 5.1 5.2 5.3	4.2.6 4.2.7 4.2.8 4.2.9 4.3 Testin 4.4 Functi Benchmark 5.1 Multin 5.2 Memo 5.3 Result	4.2.6 Instruction Detection			

List of Figures

1	RV64I encoding formats	5
2	Construction of .state files	7
3	Sorts and non-progressive Constants	14
4	State representation for transforming RISC-V to ${\tt BTOR2}$	15
5	Fetching instruction	18
6	Extraction (without immediate)	19
7	Extraction of immediate types	20
8	Finding the correct immediate	21
9	Examples for instruction detection	22
10	Examples for instruction execution	24
	10.1 AUIPC	24
	10.2 JALR	24
	10.3 BEQ	24
	10.4 LHU	25
	10.5 SD	25
	10.6 ANDI	26
	10.7 SLLIW	26
	10.8 SLT	26
	10.9 SUBW	26
11	Next-State logic for memory	26
12	Next-State logic for pc	27

13	Iterations counter constraint	28
14	Unknown Instruction constraints	29
15	Instruction address misaligned constraint	29

List of Tables

1	RV64I Instruction Subset													6	

Liste der Algorithmen

1	progressive constants	13
2	Generating initialisation constants	17
3	Initialising states	18
4	Value extraction from $rs1$	21
5	Instruction detection	23
6	Next-state logic for rd	28

1 Motivation

This is a template for an undergraduate or master's thesis. The first sections are concerned with the template itself. If this is your first thesis, consider reading.

2 RISC-V

As the first foundation for my benchmarks and, consequently, this thesis, I will discuss RISC-V and its operational principles.

2.1 Overview

RISC-V is an open-source instruction set architecture first published in May 2011 by A. Waterman et al. [4]. As indicated by its name, it is based on the RISC design philosophy. (TODO: Explain RISC (compare wiki)) Since 2015, the development of RISC-V has been coordinated by the RISC-V International Association, a non-profit corporation based in Switzerland since 2020 [5]. Its objectives include providing an *open* ISA that is freely available to all, a *real* ISA suitable for native hardware implementation, and an ISA divided into a *small* base integer ISA usable independently, for example in educational contexts, with optional standard extensions to support general-purpose software development [1, Chapter 1].

Currently, RISC-V comprises four base ISAs: RV32I, RV64I, RV32E, and RV64E, which can be extended with one or more of the 47 ratified extension ISAs [1, Preface].

(EXTEND: Additional content may be required here) (TODO: Mention little endian?)

For the purposes of this work, I will focus on a subset of the RV64I ISA.

2.2 The RV64I ISA

RV64I is not overly complex, but its structure is essential for understanding the subsequent work presented in this thesis. Therefore, I will explain all elements relevant to my research.

RV64I features 32 64-bit registers, labeled x0-x31, where x0 is hardwired to zero across all bits. Registers x1-x31 are general-purpose and may be interpreted by various instructions as collections of booleans, two's complement signed binary integers, or unsigned integers. Additionally, there is a register called pc, which serves as the program counter and holds the address of the current instruction [1, Chapters 4.1, 2.1].

In RV64I, memory addresses are 64 bits in size. As the memory model is defined to be single-byte addressable, the address space of RV64I encompasses 2⁶⁴ bytes [1, Chapter 1.4].

Like nearly all standard ISAs of RISC-V, RV64I employs a standard instruction encoding length of 32 bits, or one *word*. Only the compressed extension C introduces instructions with a length of 16 bits [1, Chapter 1.5], which is not relevant for this discussion. All RV64I instructions are encoded in one of the six formats illustrated in Figure 1.

The design of these formats results in the following features:

- Due to RISC-V's little-endian nature, the *opcode*, which encodes the general instruction, is always read first. Further specification of the instruction via funct3 and funct7 is consistently located at the same positions.
- If utilized by the instruction, the destination register rd and the source registers rs1 and rs2 are always found in the same locations, simplifying decoding.

31		25 24		20 :	19		15	14	12	11			7	6		0	,
L	funct7		rs2		Ċ	rs1		fu	inct3			rd			opcode		R-Type
31				20 :	19		15	14	12	11			7	6		0	
L	imm	[11:0]			Ċ	rs1		fu	inct3			rd			opcode		I-Type
31		25 24		20 :	19		15	14	12	11			7	6		0	-
L	imm[11:5]		rs2		Ċ	rs1		fu	inct3		imi	m[4:0]		opcode		S-Type
31 30)	25 24		20	19		15	14	12	11		8	7	6		0	_
[12]	imm[10:5]	<u>. L</u>	rs2			rs1		fı	ınct3	i	mm	4:1]	[11]		opcode		В-Туре
31									12	11			7	6		0	
L			imm[31	L:12]	Ċ							rd			opcode		U-Type
31 30)		2	1 20	19				12	11			7	6		0	-
[20]	imm	[10:1]		111	Ċ	imm[19:1	2]				rd			opcode		J-Type

Figure 1: RV64I encoding formats, used in [1, Chapter 2.3]

• The highest bit of the immediate value *imm* is always bit 31, making it straightforward to sign-extend the immediate value.

Note that each immediate subfield is labeled with its bit position within the immediate value. Immediate values are always sign-extended to 31 bits, and in the case of U-, B-, and J-type formats, the missing lower bits are filled with zeros.

The instructions relevant to my work are listed in Table 1

I have divided the instructions in Table 1 into nine groups based on their operations. LUI and AUIPC move a high immediate into rd; JA* instructions are unconditional jumps, and B* instructions are conditional jumps. L* instructions load sign-extended values from memory, either as Byte, Halfword, Word, or Doubleword lengths. Conversely, S* instructions write values of the specified length to memory. (TODO: arithmetic) Note that the suffix U denotes operations where values are processed as unsigned.

I left out FENCE, ECALL and EBREAK instructions as without I/O interaction or an environment like an OS or a debugger, these are not needed.

INSTR	TYPE	INSTR	TYPE	INSTR	TYPE	INSTR	TYPE
LUI	U	LW	Ι	XORI	Ι	SLT	R
AUIPC	U	LD	Ι	ORI	Ι	SLTU	R
JAL	J	LBU	Ι	ANDI	I	XOR	R
JALR	I	LHU	I	SLLI	I	OR	R
BEQ	В	LWU	Ι	SRLI	I	AND	R
BNE	В	SB	S	SRAI	I	SLL	R
BLT	В	SH	S	ADDIW	Ι	SRL	R
BGE	В	SW	S	SLLIW	Ι	SRA	R
BLTU	В	SD	S	SRLIW	I	ADDW	R
BGEU	В	ADDI	Ι	SRAIW	I	SUBW	R
LB	I	SLTI	Ι	ADD	R	SLLW	R
LH	I	SLTIU	Ι	SUB	R	SRLW	R
						SRAW	R

Table 1: Subset of RV64I instructions (TODO: Maybe rework, not happy yet)

2.3 Simulation of RISC-V

(TODO: This may be better placed in Chapter 4, but the state file is relevant here.) [6]

2.3.1 Representing the State of a RISC-V Processor

2.3.2 Instruction detection

2.3.3 Instruction execution

2.3.4 Saving the State of a RISC-V Processor

To preserve the current state of a RISC-V processor, both the registers and memory must be stored. For this purpose, I have devised the format shown in Figure 2. The

- 1 REGISTERS:
- 2 PC: current pc in hex
- 3 x(0-31): value of register in hex

5 MEMORY:

6 (address in hex): byte, halfword, word or doubleword in hex

Figure 2: Construction of .state files

minimal file consists only of the two designators "REGISTERS:" and "MEMORY:", the current pc, and one empty line.

3 BTOR2

The second foundation of my benchmarks is BTOR2, a word-level model checking

format published by A. Niemetz et al. [2].

3.1 Model Checking

(TODO: Write something about model checking...)

3.2 The BTOR2 Language

Generally in BTOR2, every line represents either a sort or a node, where normally the

line number acts as an identifier. A sort behaves similar to a type as with it, either

the length of a bitvector or the size of an array of bitvectors is defined. Nodes on the

other hand represent a value of a defined sort and come as constants, operations or

constraints. These values can later on be referenced by the node identifier, so the

line number. The syntax of BTOR2 can be found at [2, figure 1] and corresponding

operators in [2, table 1]

Key features of BTOR2 include its ability to operate sequentially, which makes

the implementation of a RISC-V structure highly convenient. The main feature is

the state operator, which defines a node that is sequentially updated. With an

init node, this state can be assigned an initial value, and with a next node, the

9

sequentially next state can be defined. Finally, constraints can be used to specify endpoints for a model. These endpoints may indicate that something unintended has occurred or that the intended information has been found. In either case, the resulting model is provided as a witness.

3.3 The BTOR2 Witness

After receiving a witness, it must be interpreted. On the second line of a witness, the constraint that was triggered is specified. Subsequently, for each sequential iteration, the witness first presents—marked with #x, where x is the iteration number—a representation of all states in the current iteration. Second, marked with @x, all inputs for the iteration are listed.

(TODO: Maybe a bit more, its a bit bare bones)

4 Transforming RISC-V to BTOR2

(TODO: explain naming conventions for the model nodes)

This chapter addresses the main problem of the thesis: transforming a RISC-V state into the BTOR2 format for benchmarking purposes. My primary reference for this endeavor is F. Schrögendorfer's master's thesis, "Bounded Model Checking in Lockless Programs"[3], in which he describes, among other topics, an encoding concept for a minimal machine in a multiprocessor context [3, Chapter 2] and two approaches to next-state logic: a functional [3, Chapter 6] and a relational [3, Chapter 7] approach. I will focus on the relational approach; a discussion of both approaches can be found in Section 4.4.

4.1 The Concept

To successfully execute a RISC-V instruction, three fundamental steps must occur in sequence:

- Fetch the current instruction from memory
- Identify the instruction
- Execute the instruction

Due to the fixed instruction length of RISC-V, as mentioned in Section 2.2, fetching the current instruction is straightforward. Ultimately, we want a node that retrieves a word from memory at the location specified by pc.

For basic identification, the opcode must be extracted and checked. Depending on the opcode, further distinctions between instructions require extracting and checking funct3 and, if necessary, funct7. Ultimately, we want a node for each instruction, which holds a boolean value indicating whether this instruction was fetched.

To execute the instruction, we need to extract the values of the immediate imm and, if used, the registers rs1 and rs2. All instructions only modify rd, pc, or memory. Therefore, the next-state logic can be generalized for these three cases.

Memory is only modified when a store instruction is identified. As all store instructions share the same type, computing the memory address is consistent across them. The final step is overwriting the memory at this address.

For the pc, except for jump commands, it always increments to point to the next instruction. The two unconditional jumps, JAL and JALR, must be handled separately. For branch instructions, after determining whether the relevant condition for the instruction holds, we can generalize, as all branch instructions execute the same operation from this point onward.

With rd, generalization across instructions is not feasible. However, we can generalize across all possible registers by adding a check in each register's update function to determine whether the register in question is rd.

4.2 Encoding

For better visualisation in the BTOR2 code I will mark all sort-ids in grey, all node-ids in red and all non-id numbers blue. As described in the BTOR2 syntax [2, Figure 1], each line can get an accompanying symbol. Sadly those cant be used as an alias to

the line numbers, but for increased clarity, in the following figures I will use them as such aliases. With this I can also start each new figure with the relative line number n and it makes it feasible to describe processes with algorithms. It is implied that n is sufficiently incremented after adding to the model so that ids will not overlap. In the following, I will describe how I construct a BTOR2 model for a RISC-V state file.

4.2.1 Constants

First off, I added the sorts and non-progressive constants needed into the BTOR2 model as seen in Figure 3. This is extended by a set of progressive constants used for comparison e.g. against the register number. Algorithmus 1 describes how they are added.

Of note is the Representation of the memory as an array of addressable memory cells of each 1byte. Obviously, the set address space of 16bit is magnitudes away of the expected address space of 64bit, but representing a 64bit addressable memory with its resulting $2^{64}B \approx 18Exabyte$ is not implementable. Therefore, as I needed a feasible amount of memory space, I artificially chose a 16bit address space as a soft minimum. With 65kB and therefore programs with possibly > 10000 instructions I deemed this memory sufficient for most use cases. Despite this, the encoding is implemented in such a way that the address space can be altered with. (TODO: benchmark auswirkungen von memory size)

Algorithmus 1: progressive constants for encoding RISC-V in BTOR2

1	sort	bitvec	1		Bool
2	sort	bitvec	16		AS
3	sort	bitvec	8		В
4	sort	bitvec	16		Н
5	sort	bitvec	32		W
6	sort	bitvec	64		D
7	sort	array	2	3	Mem
8	one	Bool			true
9	zero	Bool			false
10	one	AS			addressInc
11	constd	AS	4		pcInc
12	zero	В			emptyCell
13	one	\mathbb{W}			bitPicker
14	zero	D			emptyReg
15	consth	\mathbb{W}	01F		5Bitmask
16	consth	\mathbb{W}	03F		6Bitmask
17	consth	\mathbb{W}	07F		7Bitmask
18	consth	\mathbb{W}	OFFF		12Bitmask
19	consth	\mathbb{W}	OFFFFF		20Bitmask
20	constd	\mathbb{W}	7		${\it shiftToRd}$
21	constd	\mathbb{W}	15		shiftToRs1
22	constd	\mathbb{W}	20		${ t shift ToRs 2}$
23	constd	$\overline{\mathbb{W}}$	12		${\it shiftToFunct3}$
24	constd	$\overline{\mathbb{W}}$	25		${\it shiftToFunct7}$
25	constd	$\overline{\mathbb{W}}$	5		shiftBy5
26	constd	\mathbb{W}	11		shiftBy11
27	constd	\mathbb{W}	3		load
28	constd	\mathbb{W}	19		opImm
29	constd	\mathbb{W}	23		auipc
30	constd	\mathbb{W}	27		opImm32
31	constd	\mathbb{W}	35		store
32	constd	\mathbb{W}	51		op
33	constd	\mathbb{W}	55		lui
34	constd	\mathbb{W}	59		op32
35	constd	\mathbb{W}	99		branch
36	constd	\mathbb{W}	103		jalr
37	constd	\mathbb{W}	111		jal
1		-			<u> </u>

(TODO: Maybe neusortieren, andere constanten aufnehmen. Explain)

Figure 3: Sorts and non-progressive Constants for encoding RISC-V in ${\tt BTOR2}$

```
(n + 0)
                    D
                          x0
           state
                                         (n + 17)
                                                                       x17
                                                     state
                                                              D
(n + 1)
                    D
                          x1
           state
                                         (n + 18)
                                                     state
                                                              D
                                                                       x18
(n + 2)
                          x2
           state
                    D
                                         (n + 19)
                                                              D
                                                     state
                                                                       x19
 (n + 3)
                    D
           state
                          x3
                                         (n + 20)
                                                                       x20
                                                     state
                                                              D
 (n + 4)
           state
                    D
                          х4
                                         (n + 21)
                                                              \mathbb{D}
                                                                       x21
                                                     state
(n + 5)
                    D
                          х5
           state
                                         (n + 22)
                                                     state
                                                              D
                                                                       x22
(n + 6)
                    D
                          х6
           state
                                         (n + 23)
                                                                       x23
                                                     state
                                                              D
(n + 7)
                    D
           state
                          x7
                                         (n + 24)
                                                     state
                                                              D
                                                                       x24
(n + 8)
           state
                    D
                          х8
                                         (n + 25)
                                                     state
                                                              D
                                                                       x25
(n + 9)
           state
                    D
                          х9
                                         (n + 26)
                                                              \mathbb{D}
                                                                       x26
                                                     state
(n + 10)
                    D
           state
                          x10
                                         (n + 27)
                                                              D
                                                                       x27
                                                     state
(n + 11)
                    D
           state
                          x11
                                         (n + 28)
                                                     state
                                                              D
                                                                       x28
(n + 12)
           state
                    D
                          x12
                                         (n + 29)
                                                     state
                                                              D
                                                                       x29
(n + 13)
                    D
                          x13
           state
                                         (n + 30)
                                                     state
                                                              D
                                                                       x30
(n + 14)
           state
                    D
                          x14
                                         (n + 31)
                                                              D
                                                                       x31
                                                     state
(n + 15)
                    D
                          x15
           state
                                         (n + 32)
                                                     state
                                                              AS
                                                                       рс
(n + 16)
                    D
           state
                          x16
                                         (n + 33)
                                                     state
                                                              Mem
                                                                       memory
```

Figure 4: State representation for encoding

4.2.2 State Representation

The next logical step is defining a representation of a RISC-V state. Tis is straightforward as shown in Figure 4. I also introduced a flag for each register in my code. They track if the register was written to and makes it possible to shorten a state file transformed from a witness to only the relevant registers. As they have no impact on the operation of the BTOR2 model, I will not mention them again.

4.2.3 Initialization

To initialize a state in BTOR2 from a RISC-V state file, the values in the registers must be loaded as constants, and for each memory address mentioned in the state file, the value and address has to be loaded as constants. Due to the inability to represent a full 64bit address space, the shrinking of the address space from state file to BTOR2 model must be handled. I decided to just initialiase the addresses up to

the BTOR2 model address space maximum and cut all others in the state file as I deem this the most predictable behaviour. Everything not mentioned in the state file will be zero-initialised. At last these constants must be used to initialise the state. For the registers this is straight forward, for the memory we must first write all memory addresses into a placeholder array wich then we can use to initialise the real memory. Due to constraints in BTOR2, these constants have to be defined **before** the states, but initialisation with the values must happen after the states. This means that this initialisation process **wrappes around** the state representation. The generation of constants is shown in Algorithmus 2, whereas the actual initialization is shown in Algorithmus 3.

4.2.4 Fetching the current instruction

To fetch the current instruction, i read the 4 bytes of the instruction and concatenate them as seen in Figure 5

4.2.5 Deconstruction of the instruction

Now having the instruction, we can deconstruct it to extract the opcode, rd, rs1, rs2, funct3, funct7 and imm. For everything apart of imm, this can be done by a shift and a masking. This is shown in Figure 6.

The immediate on the other hand must be first constructed from its subfields, which can be referenced in Figure 1. In the BTOR2 model this looks like in Figure 7. (TODO: Reference to same method in riscvsim) There are three things i want to point out:

First, some of the immediate subfields overlap exactly. I made use of this fact in lines (n + 1) with the overlap of imm[11:5] of I- and S-type, and (n + 21) with J- and B-types imm[10:5] overlap. Second, as described in Section 2.2 the immediate is always sign-extended. To archive this we make arithmetic right shifts, which do

```
truePc \leftarrow value of pc in state file
maxPc \leftarrow \text{number of addresses in BTOR2 model}
pcValue \leftarrow truePc \text{ modulo } maxPc
add to model:
               AS
                     pcValue
                                 pcConst
     constd
for every register x_i do
   if register is initialised in state file then
       registerValue \leftarrow value of x_i
       if registerValue \neq 0 then
           add to model:
                 constd D registerValue
                                                  x_i Const
       end
   end
end
add to model:
                                                    memPH
 (n + 0)
                      Mem
             state
 (n + 1)
                             memPH (n + 0)
             init
                      Mem
\overline{lastPH \leftarrow memPH}
allInitialCells \leftarrow all initialised memory cells in the state file
cutInitialCells \leftarrow remove all cells with address over maxPc
for every cell c in cutInitialCells do
   address \leftarrow address of c
    value \leftarrow \text{value of } c
    add to model:
                                  \overline{address}
     (n + 0)
                 constd
     (n + 1)
                                  value
                 constd
                           В
     (n + 2)
                                  lastPH (n + 0) (n + 1) PHAfterC
                 write
                            Mem
   \overline{lastPH \leftarrow PHAfterC}
end
keep lastPH for initialisation
```

Algorithmus 2: Generating initialisation constants from state file in BTOR2

Algorithmus 3: Initialising states in the BTOR2 model

(n + 0)	read	В	memory	pc	instrB1
(n + 1)	add	AS	addressInc	pc	$pc{+}1$
(n + 2)	read	В	memory	$pc{+}1$	instrB2
(n + 3)	add	AS	addressInc	$pc{+}1$	pc+2
(n + 4)	read	В	memory	pc+2	instrB3
(n + 5)	add	AS	addressInc	pc+2	$pc{+}3$
(n + 6)	read	В	memory	pc+3	instrB4
(n + 7)	concat	Н	instrB2	instrB1	instrH1
(n + 8)	concat	Н	instrB4	instrB3	instrH2
(n + 9)	concat	W	instrH2	instrH1	instr

Figure 5: Fetching the current instruction from memory

(n + 0)	and	$\overline{\mathbb{W}}$	instr	7Bitmask	opcode
(n + 1)	srl	\mathbb{W}	instr	shiftToRd	rdPre
(n + 2)	and	\mathbb{W}	rdPre	5Bitmask	rd
(n + 3)	srl	\mathbb{W}	instr	shift ToRs1	rs1Pre
(n + 4)	and	\mathbb{W}	rs1Pre	5Bitmask	rs1
(n + 5)	srl	\mathbb{W}	instr	shift ToRs 2	rs2Pre
(n + 6)	and	\mathbb{W}	rs2Pre	5Bitmask	rs2
(n + 7)	srl	\mathbb{W}	instr	shift To Funct 3	funct 3 Pre
(n + 8)	and	\mathbb{W}	funct 3 Pre	shiftRd	funct3
(n + 9)	srl	W	instr	shift To Funct 7	funct7

Figure 6: Extraction of values from the instruction without imm

sign extension for us and with this pull our highest immediate bit to its correct place. Third, at line (n + 8), for sign extension we must shift right by 19. As this matches the opcode for arithmetic instructions with immediates, so I used this and did not create a new constant.

Now I have *iTypeImm*, *sTypeImm*, *bTypeImm*, *uTypeImm* and *jTypeImm*. But it would be easier to just have one node *imm* where we can reference the immediate value regardless of the instruction. This is done in Figure 8, where first I defined Bools wich check all opcodes that are neither R-type nor I-type. Then I chained if-then-else nodes to catch instructions that are of J-type, U-Type, B-Type or S-type. If the instruction is none of them, I can safely default to I-type as R-type does not handle with an immediate value. At the end I extend *imm* to the 64bit RV64I demands.

At this point I can also extract the values of the designated rs1 and rs2 registers. I show this for rs1 in Figure 4, it is the same for rs2 except that the names must be changed to rs2. Also, the comparison constants can be left out as they are already defined for rs1 and can be referenced from there.

(n + 0)	sra	W	instr	shiftToRs2	iTypeImm
(n + 1)	and	W	iTypeImm	-5Bitmask	s[11:5]
(n + 1)	add	W	s[11:5]	rd	sTypeImm
(II + Z)	auu	VV	8[11.0]	Id	srypemiii
(n + 3)	and	W	rd	-bitPicker	b[4:0]
(n + 4)	and	W	funct7	6Bitmask	b[10:5]Pre
(n + 5)	sll	W	b10:5Pre	shiftBy5	b[10:5]
(n + 6)	and	\overline{W}	bitPicker	rd	b[11]Pre
(n + 7)	sll	\overline{W}	b[11]Pre	shiftBy11	b[11]
(n + 8)	sra	\overline{W}	instr	mathI	b[31:12]Pre
(n + 9)	and	\overline{W}	b[31:12]Pre	12Bitmask	b[31:12]
(n + 10)	add	\overline{W}	b[10:5]	b[4:0]	b[10:0]
(n + 11)	add	\overline{W}	b[11]	b[10:0]	b[11:0]
(n + 12)	add	W	b[31:12]	b[11:0]	bTypeImm
(n + 13)	and	W	instr	-12Bitmask	uTypeImm
(n + 14)	and	W	rs2	-bitPicker	j[4:0]
(n + 15)	and	\overline{W}	rs2	bitPicker	j[11]Pre
(n + 16)	sll	\overline{W}	j[11]Pre	shiftBy11	j[11]
(n + 17)	sll	\overline{W}	funct3	shift To Funct 3	j[14:12]
(n + 18)	sll	\overline{W}	rs1	shiftToRs1	j[19:15]
(n + 19)	sra	\overline{W}	instr	shiftBy11	j[31:20]Pre
(n + 20)	and	\overline{W}	j[31:20]Pre	-20 Bitmask	j[31:20]
(n + 21)	add	\overline{W}	b[10:5]	j[4:0]	j[10:0]
(n + 22)	add	\overline{W}	j[11]	j[10:0]	j[11:0]
(n + 23)	add	\overline{W}	j[14:12]	j[11:0]	j[14:0]
(n + 24)	add	\overline{W}	j[19:15]	j[14:0]	j[19:0]
(n + 25)	add	W	j[31:20]	j[19:0]	jTypeImm

Figure 7: Extraction of all imm types from the instruction

```
(n + 0)
                          opcode
                                                                isSType
                   Bool
                                      store
            eq
 (n + 1)
                   Bool
                           opcode
                                      branch
                                                                isBType
            eq
 (n + 2)
                                      auipc
                                                                uType1
                   Bool
                          opcode
            eq
 (n + 3)
                           opcode
                                      lui
                                                                uType2
                   Bool
            eq
 (n + 4)
            or
                   Bool
                           uType1
                                      uType2
                                                                is UType
 (n + 5)
                   Bool
                           opcode
                                     jal
                                                                isJType
            eq
 (n + 6)
                                                                checkS
            ite
                   \overline{\mathbb{W}}
                           isSType
                                     sTypeImm
                                                   iTypeImm
 (n + 7)
            ite
                   \mathbb{W}
                           isBType
                                     bTypeImm
                                                   checkS
                                                                checkB
 (n + 8)
                                                   checkB
                                                                checkU
            ite
                   \overline{W}
                           isUType
                                     uTypeImm
 (n + 9)
                                     jTypeImm
                                                   checkU
                                                                imm32
            ite
                           isJType
                                      32
(n + 10)
            sext
                   D
                          imm32
                                                                imm
```

Figure 8: Finding the correct immediate by opcode

```
for i from 1 to 31 do
   add to model:
                                    isRs1Xi
                         iConst
                    rs1
end
add to model:
    ite
          D
              isRs1X1
                             x0
                                  checkX1
for i from 2 to 30 do
   add to model:
                 isRs1Xi
                                checkX(i-1)
                                               checkXi
        ite
                           хi
end
add to model:
              isRs1X31
                         x31
                               check X30
                                           rs1val
    ite
```

Algorithmus 4: Extracting the value of the register designated by rs1

(isJALR already exists)								
n	and	Bool	isLoad	is 5 Funct 3	is LHU			
(n + 0)	consth	W	20		SUBWf7			
(n + 1)	eq	Bool	funct7	SUBWf7	fits F7SUBW			
(n + 2)	and	Bool	is 0 Funct 3	fits F7SUBW	fitsF3SUBW			
(n + 3)	and	Bool	isLoad	fitsF3SUBW	is SUBW			

(TODO: Use subfigs)

Figure 9: Instruction detection of JALR, LHU and SUBW as described in Algorithmus 5

4.2.6 Instruction Detection

For the next-state logic, the only thing left that we need to know is the actual current command. So I defined a check is Instruction for each instruction. As this is quite repetetive, Algorithmus 5 describes a generalised approach to reach these Bools. An example for each instruction subgroup in Algorithmus 5 can be found in Figure 9. Of course the funct7 checks from the needsf7 subgroup can be reused if multiple instructions use the same funct7.

4.2.7 Next-State Logic

The next state logic is basically the core of the model. Almost everything else works towards this point. The Goal is to create the changes each instruction would make and then only inserting the changes specific to the instruction in the state. Each state node in the model must have an accompanying next node to work as intended. But first the changed values are needed.

4.2.8 Creating all Values of Instruction execution

It would be too long and unnecessary to go through all instructions, as this is simply following the RV64I ISA, but I want to give an example for each group of instructions as they were divided in Table 1. I show this for AUIPC, JALR, BEQ, LHU, SD, ANDI, SLLIW, SLT and SUBW in Figure 10. In this examples one can see multiple overlaps which can

```
add to model:
  (n + 0)
                          opcode
                                    load
                                                   isLoad
                  Bool
              eq
  (n + 1)
                          opcode
                                    opImm
                                                   isOpImm
              eq
                  Bool
  (n + 2)
                                                   isAUIPC
                  Bool
                          opcode
                                    auipc
              eq
  (n + 3)
                          opcode
                                    opImm32
                                                   isOpImm32
                  Bool
  (n + 4)
                                                   isStore
                  Bool
                          opcode
                                    store
  (n + 5)
                          opcode
                                                   isOp
                  Bool
              eq
                                    op
                                                   isLUI
  (n + 6)
              eq
                  Bool
                          opcode
                                    lui
  (n + 7)
                          opcode
                                    op32
                                                   isOp32
              eq
                  Bool
  (n + 8)
                                                   isBranch
                  Bool
                          opcode
                                    branch
              eq
                                                   is JALR
  (n + 9)
                          opcode
                                    jalr
              eq
                  Bool
 (n + 10)
                                                   isJAL
                          opcode
                  Bool
                                    jal
              eq
for i from 0 to 7 do
   add to model:
                     funct3
                              iConst
                                          isiFunct3
             Bool
        eq
end
onlyOp \leftarrow [LUI, AUIPC, JAL, JALR]
needsf7 \leftarrow [SRL, SRA, SRLI, SRAI, SRLW, SRAW, SRLWI, SRAWI, ADD,
SUB, ADDW, SUBW]
rest \leftarrow [ all other instructions ]
for all instructions I in onlyOp do
|isI| is already defined
end
for all instructions I in rest do
   opname \leftarrow opcode name of I
   f3val \leftarrow \text{expected funct3 of I as digit}
   add to model:
                                   isf3valFunct3
        and
                       <mark>is</mark>opname
                                                      isI
end
for all instructions I in needs f7 do
   opname \leftarrow opcode name of I
   f3val \leftarrow \text{expected funct3 of I as digit}
   f7hex \leftarrow expected funct 7 of I as hexadecimal number
   add to model:
                                  f7hex
                                                              If7
     (n + 0)
                          W
                consth
                                  funct7
                                                  If7
                                                              fitsF7I
     (n + 1)
                          Bool
                eq
     (n + 2)
                          Bool
                                  isf3valFunct3
                                                  fitsF7I
                                                              fitsF3I
                and
     (n + 3)
                                                  fitsF3I
                and
                          Bool
                                  isopname
                                                              isI
end
```

Algorithmus 5: Generalised approach to instruction detection

	n	add	D	imm	pc	rdAUIPC
--	---	-----	---	-----	----	---------

10.1: AUIPC

Figure 10: Instruction execution for chosen instructions

(n + 0)	add	AS	pc	pcInc	nextPc
(n + 1)	add	D	imm	rs1val	pcJALR64pre
(n + 2)	and	D	-1Const	pcJALR64pre	pcJALR64
(n + 3)	slice	AS	pcJALR64	15	pcJALR
(n + 4)	uext	D	nextPc	48	rdJALR

(TODO: pc overflow erwähnen)

10.2: JALR

Figure 10: Instruction execution for chosen instructions

be used, e.g. the adresses for load and store instructions or the 32bit versions of the word instructions. Also I took SD to show that all other store instructions happen as interim results of preparing SD. It is similar with load instructions, but here we only get overlapping pre-results which each have to be sign extended to the expected 64bit on their own.

With this done we can sort each change to its instruction.

The next Memory

Defining the next memory array is simple. I just cascade through all store instructions with if-then-else nodes and by setting the final 'else' as the current memory array, if no 'if' catches, the array is not changed. All this is shown in Figure 11.

(n + 0)	add	AS	pc	pcInc		nextPc
(n + 1)	slice	AS	imm	15	0	ImmAS
(n + 2)	add	AS	pc	ImmAS		pcBranch
(n + 3)	eq	Bool	rs1val	rs2val		is BEQ cond
(n + 4)	ite	AS	is BEQ cond	pcBranch	nextPc	pcBEQ

10.3: BEQ

Figure 10: Instruction execution for chosen instructions

(n + 0)	add	D	rs1val	imm		1stAddrPre
(n + 1)	slice	AS	1stAddrPre	15	0	1stAddr
(n + 2)	add	AS	1stAddr	addressInc		2ndAddr
(n + 3)	read	В	memory	1stAddr		loadB1
(n + 4)	read	В	memory	2ndAddr		loadB2
(n + 5)	concat	Н	loadB2	loadB1		loadB2B1
(n + 6)	uext	D	loadB2B1	48	0	rdLHU

10.4: LHU

Figure 10: Instruction execution for chosen instructions

(n + 0)	add	D	rs1val	imm		1stAddrPre
(n + 1)	slice	AS	1stAddrPre	15	0	1stAddr
(n + 2)	add	AS	1stAddr	addressInc		2ndAddr
(n + 3)	add	AS	2ndAddr	addressInc		3rdAddr
(n + 4)	add	AS	3rdAddr	addressInc		4thAddr
(n + 5)	add	AS	4thAddr	addressInc		5thAddr
(n + 6)	add	AS	5thAddr	addressInc		6thAddr
(n + 7)	add	AS	6thAddr	addressInc		7thAddr
(n + 8)	add	AS	7thAddr	addressInc		8thAddr
(n + 9)	slice	В	rs2val	7	0	storeB1
(n + 10)	slice	В	rs2val	15	8	storeB2
(n + 11)	slice	В	rs2val	23	16	storeB3
(n + 12)	slice	В	rs2val	31	24	store B4
(n + 13)	slice	В	rs2val	39	32	store B5
(n + 14)	slice	В	rs2val	47	40	store B6
(n + 15)	slice	В	rs2val	55	48	storeB7
(n + 16)	slice	В	rs2val	63	56	store B8
(n + 17)	write	Mem	memory	1stAddr	storeB1	memorySB
(n + 18)	write	Mem	memorySB	2ndAddr	storeB2	memorySH
(n + 19)	write	Mem	memorySH	3rdAddr	storeB3	memoryB3
(n + 20)	write	Mem	memoryB3	4thAddr	store B4	memorySW
(n + 21)	write	Mem	memorySW	5thAddr	store B5	memoryB5
(n + 22)	write	Mem	memoryB5	6thAddr	store B6	memoryB6
(n + 23)	write	Mem	memoryB6	7thAddr	storeB7	memoryB7
(n + 24)	write	Mem	memoryB7	8thAddr	storeB8	memorySD

 $\textbf{10.5:} \ \mathrm{SD}$

 ${\bf Figure~10:~Instruction~execution~for~chosen~instructions}$

n	and	D	rs1val	imm	rdANDI
			10.6	ANDI	

Figure 10: Instruction execution for chosen instructions

(n + 0)	and	W	imm32	5Bitmask		shamtIW
(n + 1)	slice	$\overline{\mathbb{W}}$	rs1val	31	0	rs1val32
(n + 2)	sll	\mathbb{W}	rs1val32	shamtIW		rdSLLIW pre
(n + 3)	sext	D	rs1val32	32		rdSLLIW

10.7: SLLIW

Figure 10: Instruction execution for chosen instructions

(n + 0)	slt	Bool	rs1val	rs2val	rdSLTpre
(n + 1)	uext	D	rdSLTpre	63	rdSLT

10.8: SLT

Figure 10: Instruction execution for chosen instructions

(n + 0)	slice	W	rs1val	31	0	rs1val32
(n + 1)	slice	\mathbb{W}	rs2val	31	0	rs2val32
(n + 2)	sub	\overline{W}	rs1val32	rs2val32		rdSUBWpre
(n + 3)	sext	D	rdSUBWpre	32		rdSUBW

10.9: SUBW

Figure 10: Instruction execution for chosen instructions

(n + 0)	ite	Mem	isSB	memorySB	memory	newMem3
(n + 1)	ite	Mem	isSH	memorySH	newMem3	newMem2
(n + 2)	ite	Mem	isSW	memorySW	newMem2	newMem1
(n + 3)	ite	Mem	isSD	memorySD	newMem1	newMem
(n + 4)	next	Mem	memory	newMem		

Figure 11: Next-State logic for the memory array

(n + 0)	ite	AS	isBGEU	pcBGEU	nextPc	newPc7
(n + 1)	ite	AS	isBLTU	pcBLTU	newPc7	newPc6
(n + 2)	ite	AS	isBGE	pcBGE	newPc6	newPc5
(n + 3)	ite	AS	isBLT	pcBLT	newPc5	newPc4
(n + 4)	ite	AS	isBNE	pcBNE	newPc4	newPc3
(n + 5)	ite	AS	isBEQ	pcBEQ	newPc3	newPc2
(n + 6)	ite	AS	is JALR	pcJALR	newPc2	newPc1
(n + 7)	ite	AS	is JAL	pcJAL	newPc1	newPc
(n + 8)	next	AS	pc	newPc		

Figure 12: Next-State logic for the pc register

The next pc

For the next pc it looks mostly the same as shown in Figure 12. Only the behaviour if no 'if' catches is different as pc must point to the next instruction to execute. This nextPc was already computed for the JAL and JALR instructions so I reused it. The unconditional jumps also change the value in rd, but this is done in the next subsection.

The next rd

At last the x registers must be updated. The procedure is defined in Figure 6. Whith exeption of x0 this is the same for all these registers. Also it is similar in its procedure as defining the next memory or pc but instead of a hand full of instructions, I have to go over 39 of them as only branch and store instructions do not change rd. Because of this, I took the liberty to not exactly show the cascade for all relevant instructions in Algorithmus 6 but only indicate it.

4.2.9 Constraints

The only thing left is to define constraints to end the model checker. First is the intended end of reaching a set number of Iterations. It is shown in Figure 13.

```
add to model:
                   x0
    next
               x0
for i from 1 to 31 do
   add to model:
                                                               newXi-49
                               isLUI
                                         rdLUI
       (n + 0)
                 ite
                        D
                                                    xi
                        D
                 ite
     (n + 47)
                        D
                               isSRAW
                                         rdSRAW
                                                    newXi-2
                                                               newXi-1
                 ite
     (n + 48)
                 eq
                        Bool
                               rd
                                         iConst
                                                               isRdXi
     (n + 49)
                               isRdXi
                                         newXi-1
                                                               newXi
                 ite
                        D
                                                    xi
     (n + 50)
                                         newXi
                        D
                               xi
                 next
end
```

Algorithmus 6: Next-state logic for all x registers

(n + 0) (n + 1)	one constd	D D	nIterations		counterInc maxIterations
(n + 2)	state	D			counter
(n + 3)	init	D	counter	emptyReg	
(n + 4)	add	D	counter	counterInc	newCounter
(n + 5)	next	D	counter	newCounter	
(n + 6)	eq	Bool	counter	maxIterations	is Max Iter
(n + 7)	bad		is Max Iter		

Figure 13: Constraining the model by iteration count

After this I defined some extra constraints to check for bad instructions. First is checked if the opcode is valid for my model. The second constraint catches if the instruction can not be detected even whilst the opcode is valid. This is shown in Figure 14. The constraint in Figure 15 handles instruction-address-misaligned exceptions for jump instructions.

Of course other constraints can be defined. Options would be to stop on a specific pc or if a register reaches a specified value.

```
(TODO: Maybe add examples on how to do?)(TODO: Maybe internal references in figures should be numbers...)
```

(n + 0)	or	Bool	isLoad	isOpImm	isOpcodeValid9
(n + 1)	or	Bool	is AUIPC	is Op code Valid 9	is Opcode Valid 8
(n + 2)	or	Bool	isOpImm32	is Opcode Valid 8	is Opcode Valid 7
(n + 3)	or	Bool	isStore	is Opcode Valid 7	is Opcode Valid 6
(n + 4)	or	Bool	isOp	is Opcode Valid 6	is Opcode Valid 5
(n + 5)	or	Bool	is LUI	is Op code Valid 5	is Opcode Valid 4
(n + 6)	or	Bool	isOp32	is Opcode Valid 4	is Opcode Valid 3
(n + 7)	or	Bool	is Branch	is Opcode Valid 3	isOpcodeValid2
(n + 8)	or	Bool	is JALR	is Opcode Valid 2	is Opcode Valid 1
(n + 9)	or	Bool	is JAL	is Opcode Valid 1	isOpcodeValid
(n + 10)	bad		-isOpcodeValid		
(n + 11)	or	Bool	is LUI	is AUIPC	is Instr Valid 47
(n + 12)	or	Bool	is JAL	is Instr Valid 47	is Instr Valid 46
:	or	Bool	:	:	:
			· CD AIII	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
(n + 58)	or	Bool	isSRAW	is Instr Valid1	is Instr Valid
(n + 59)	and	Bool	-is Instr Valid	isOpcodeValid	unknownInstr
(n + 60)	bad		unknownInstr		

Figure 14: Constraining the model on unknown instructions

(n + 0) (n + 1) (n + 2) (n + 3) (n + 4)	zero constd and and	AS AS AS AS	3 pcBitmask pcBitmask pcBitmask	pcJAL pcJALR pcBEQ	pcZero pcBitmask lowbitsJAL lowbitsJALR lowbitsBEQ
:	and	AS	pcBitmask	:	:
(n + 9)	and	AS	pcBitmask	pcBGEU	lowbitsBGEU
(n + 10) (n + 11) (n + 12)	neq neq neq	Bool Bool	pcZero pcZero pcZero	$lowbits JAL \\ lowbits JALR \\ lowbits BEQ$	pcMsaJAL pcMsaJALR pcMsaBEQ
:	neq	Bool	pcZero	:	:
(n + 17)	neq	Bool	pcZero	lowbitsBGEU	pcMsaBGEU
(n + 18)	or	Bool	pcMsaJAL	pcMsaJALR	pcMsa6
(n + 19)	or	Bool	pcMsaBEQ	pcBEQ	pcMsa5
(n + 24) (n + 25)	or or bad	Bool Bool	: pcMsaBGEU pcMsa	: pcMsa1	: pcMsa

Figure 15: Constraining the model on misaligned addresses

4.3 Testing for Correctness

To test my model, I compared its results to my RISC-V simulators (Section 2.3) results.

With a given state, both the simulation and the BTOR2 model are run. For both the iteration maximum is set to 1. The resulting BTOR2 witness can not be directly compared to the resulting state of the simulation. So I also implemented a simple converter from witness to state [7, src/restate_witness.c]. These two states now can be compared. I have written a shell script for this at [7, sh_utils/compare_iterations.sh]

To generate RISC-V states, I implemented a fuzzer [7, src/state_fuzzer.c] to generate randomised states with one valid instruction at the address of pc. The fuzzer first chooses an instruction to test, on this basis it fills all variable parts of the instruction, e.g. rd or imm. Now all registers relevant to the instruction are filled with a random 64bit value. Also a pc value is generated so that the instruction still fits in the limited address space of the BTOR2 model. At last if a jump instruction was chosen, a possible address misalignment is fixed and an address overflow prevented. The second part is for simplifying later comparison on the resulting states, as now a correct execution of the instruction always results in the exact same resulting state although the differences between simulation and the BTOR2 model.

With this it is possible to start test series. For this I implemented a shell script, too [7, sh_utils/test_btor2_model.sh]. Also, as with big amounts of tests, it becomes harder to keep an overview over failed tests. To counter this I also have written a script to unite all failed tests into one file and also add some not so easy to access information like instruction name or immediate value [7, sh_utils/diff_logger.sh].

I have run around 5.000.000 tests on this model without one failing, so I conclude that my implementation is correct.

4.4 Functional vs Relational Next-State Logic

F. Schrögendorfer gives two options for the next state logic, a functional approach [3, Chapter 6], and a relational approach [3, Chapter 7].

5 Benchmarks

- 5.1 MultiAdd in Functional and Relational Next-State-Logic
- 5.2 Memory Operations
- 5.3 Results

Bibliography

- [1] The RISC-V Instruction Set Manual Volume I: Unprivileged ISA, 2025, version 20250508. [Online]. Available: https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
- [2] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, "Btor2, BtorMC and Boolector 3.0," in *Computer Aided Verification*, H. Chockler and G. Weissenbacher, Eds. Cham: Springer International Publishing, 2018, pp. 587–595.
- [3] F. Schrögendorfer, "Bounded Model Checking of Lockless Programs," Master's thesis, Johannes Kepler University Linz, August 2021. [Online]. Available: https://epub.jku.at/obvulihs/download/pdf/6579523
- [4] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, "The risc-v instruction set manual, volume i: Base user-level isa," UC Berkeley, Tech. Rep. UCB/EECS-2011-62, May 2011. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
- [5] "History of RISC-V," https://riscv.org/about/, accessed: 15.08.2025.
- [6] "RISC-V-Simulator," https://github.com/Kr1mo/Risc-V-Simulator.
- [7] "RISC-V_to_BTOR2," https://github.com/Kr1mo/RISC-V_to_BTOR2.

(TODO: Add repo versions)