Taller 2: Álgebra Lineal 2

Jonathan Andrés Niño Cortés

17 de mayo de 2015

Sean K un cuerpo de característica diferente de 2 (e.d. $1+1 \neq 0$) y (V, σ) un espacio simpléctico sobre K de dimensión finita. Denote $2n = \dim(V)$, n > 0. Sea f un operador en V auto-adjunto (e.d. $f \in \operatorname{Hom}_K(V, V)$, y $\sigma(v, f(w)) = \sigma(f(v), w)$ para todo $v, w \in V$).

■ Sea $U \leq V$. Demuestre que U es un subespacio simpléctico de V si y solo si $U \cap U^{\sigma} = \{0\}$.

Demostración. Suponga primero que σ restringido a $U \times U$ es un espacio simpléctico. Entonces la propiedad no degenerativa implica que si $u \in U$ es tal que para todo $u' \in U$, $\sigma(u, u') = 0$ entonces u = 0. Utilizando la propiedad que $\sigma(u, u') = -\sigma(u', u)$ entonces tenemos de manera equivalente que si para todo $u' \in U$ se cumple que $\sigma(u', u) = 0$ entonces u = 0. Pero esto implica que cualquier elemento $v \in U^{\sigma} \cap U$ que por definición es un elemento en U tal que $\sigma(u, v) = 0$ para todo $u \in U$, debe ser igual a 0. Por lo tanto, $U \cap U^{\sigma} = \{0\}$.

Para el converso asuma que $U \cap U^{\sigma} = \{0\}$. Vemos que σ restringido a U es bilineal y alternante solo por el hecho que U es un subespacio de V. Para ver que es no-degenerada basta ver si $u \in V$ es tal que $\sigma(u', u) = 0$ para todo $u' \in U$ entonces u = 0 y los u son precisamente el conjunto $U \cap U^{\sigma} = \{0\}$ por lo que efectivamente u = 0.

■ Sea $P(t) \in K$. Demuestre que P(f) es auto-adjunto. (Sugerencia: demuestre primero que una combinación lineal de operadores auto-adjuntos es auto-adjunto y que una potencia de un operador auto-adjunto es autoadjunto.)

Demostración. Sean f y g dos operadores auto-adjuntos y sea $a,b \in K$. Entonces tenemos que

$$\sigma((a \cdot f + b \cdot g)(u), v) = \sigma(af(u) + bg(u), v)$$

$$= a\sigma(f(u), v) + b\sigma(g(u), v) \text{ (Bilinealidad)}$$

$$= a\sigma(u, f(v)) + b\sigma(u, g(v)) \text{ (f y g auto-adjuntos)}$$

$$= \sigma(u, af(v) + bg(v)) \text{ (Bilinealidad)}$$

$$= \sigma(u, (a \cdot f + b \cdot g)(v))$$

Por lo que cualquier combinación lineal de operadores auto-adjuntos es auto-adjunto.

Ahora sea f un operador auto-adjunto y $n \in \mathbb{N}$ y considere $f^n = \underbrace{f \circ \cdots \circ f}_{n\text{-veces}}$.

Vamos a demostrar por inducción que f^n es auto-adjunto. Para el caso base observese que si n=0 entonces $f^0=id$ y $\sigma(id(u),v)=\sigma(u,id(v))$. Ahora para el paso inductivo asuma que f^{n-1} es auto-adjunto. Entonces

$$\sigma(f^{n}(u), v) = \sigma(f(f^{n-1}(u)), v)
= \sigma(f^{n-1}(u), f(v))
= \sigma(u, f^{n-1}(f(v)))
= \sigma(u, f^{n}(v))$$

Por lo tanto, f^n también es auto-adjunto.

■ Suponga que f es una proyección. Demuestre que U = f(V) es un subespacio simpléctico.

Demostración. Sea $u \in U$ tal que para todo $u' \in U$, $\sigma(u, u') = 0$.

Entonces tenemos que u = f(v) y que u' = f(v') para algunos v y $v' \in V$. Por otro lado, tenemos que

$$0 = \sigma(u, u')$$

$$= \sigma(f(v), f(v'))$$

$$= \sigma(f(f(v)), v') \text{ (Auto-adjunto)}$$

$$= \sigma(f(v)), v') \text{ (Idempotencia)}$$

$$= \sigma(u, v')$$

Vemos por lo tanto que $\sigma(u, v') = 0$ para todo $v' \in V$ (esto porque $f^{-1}(U) = V$). Luego como V es simplectico esto implica que u = 0, lo que implica a su vez que U también es simpléctico.

Suponga que

$$P_f(t) = \prod_{i=1}^r (t - \lambda_i)^{m_i} \quad \lambda_1, \dots, \lambda_r \in K;$$

y, para $i = 1, \ldots, r$ defina

$$V_i = \ker \left((f - \lambda_i \mathrm{id}_V)^{m_i} \right).$$

Demuestre que para $i=1,\ldots,r,\ V_i\leq V$ es subespacio simpléctico.

Demostración. Por la propiedad 2.20 tenemos que para cada i existe un polinomio $\Pi_i(t) \in K[t]$ tal que $\Pi_i(f) = p_i$ donde p_i es la proyección sobre el espacio V_i . Anteriormente demostramos que cualquier polinomio de f es auto-adjunto por lo que p_i es auto-adjunto y además en el literal anterior demostramos que la imagen de una proyección auto-adjunto es un subespacio simpléctico. Luego, cada V_i es un subespacio simpléctico.

- Suponga que f es nilpotente y sea $V_0 \leq V$ un subespacio cíclico bajo f. Sea $v \in V_0$ tal que $\{v, f(v), \ldots, f^{d-1}(v)\}$ es una base de V_0 .
 - 1. Demuestre que V_0 es isotrópico.

Demostración. Por la Proposición 6.13, debemos demostrar que $\sigma(u, u') = 0$ para todo $u, u' \in V_0$. Por nuestra suposición, $u = \sum_{i=0}^{d-1} a_i f^i(v)$ y $u' = \sum_{i=0}^{d-1} a'_i f^i(v)$, con a_i y $a'_i \in K$.

Entonces por bilinealidad tenemos que

$$\sigma(u, u') = \sigma(\sum_{i=0}^{d-1} a_i f^i(v), \sum_{j=0}^{d-1} a'_j f^j(v))
= \sum_{i=0}^{d-1} a_i \sigma(f^i(v), \sum_{j=0}^{d-1} a'_j f^j(v))
= \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} a_i a'_j \sigma(f^i(v), f^j(v))$$

Pero obervese que $\sigma(f^i(v), f^j(v)) = 0$ para cualesquiera $0 \le i, j < d$. Supongamos primero que $i \le j$. Entonces si tomamos $k = j - i \ge 0$ tenemos que $f^j(v) = f^k(f^i(v))$. Entonces como probamos que f^k es auto-adjunta también tenemos que

$$\sigma(f^{i}(v), f^{j}(v)) = \sigma(f^{i}(v), f^{k}(f^{i}(v)))
= \sigma(f^{k}(f^{i}(v)), f^{i}(v)) (f \text{ es autoadjunto})
= -\sigma(f^{i}(v), f^{k}(f^{i}(v))) (Alternante)
= -\sigma(f^{i}(v), f^{j}(v))$$

Por lo tanto, $\sigma(f^i(v), f^j(v)) = 0$. El caso en que i > j es análogo al anterior. Finalmente concluimos que

$$\sigma(u, u') = \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} a_i a'_j \sigma(f^i(v), f^j(v)) = \sum_{j=0}^{d-1} a_i a'_j 0 = 0.$$

por lo que V_0 es isotrópico.

2. Sea $w \in V$ tal que $\sigma(w, f^{d-1}(v)) \neq 0$. Demuestre que para, $i = 1, \ldots, d, \sigma(f^{i-1}(w), f^{d-i}(v)) \neq 0$.

Demostración. Podemos demostrar esto usando inducción sobre i. El caso base es cuando i=1 y tenemos por suposición que $\sigma(w,f^{d-1}(v))\neq 0$. Ahora supongamos que $\sigma(f^{i-2}(w),f^{d-i+1}(v))\neq 0$ entonces como f es autoadjunto tenemos que $(f^{i-2}(w),f^{d-i+1}(v))=(f(f^{i-2}(w)),f^{d-i}(v))=(f^{i-1}(w),f^{d-i}(v))\neq 0$, lo cual concluye la demostración.

3. Demuestre que si $w \in V$ es tal que $\sigma(w, f^{d-1}(v)) \neq 0$,

$$U = \text{Sp}(\{v, \dots, f^{d-1}(v), f^{d-1}(w), \dots, w\})$$

es un subespacio simpléctico.

Demostración. Primero, la definición de espacio cíclico implica que $f^d(v) = 0$. Por otra parte, podemos demostrar que si $i + j \ge d$ entonces $\sigma(f^i(v), f^j(w)) = \sigma(f^i(w), f^j(v)) = 0$. Esto porque podemos demostrar de manera análoga al numeral anterior que $\sigma(f^i(v), f^j(w)) = \sigma(f^d(v), f^{i+j-d}(w)) = \sigma(0, f^{i+j-d}(w)) = 0$.

Por lo tanto, tomemos $u \in U$ tal que para todo $u' \in U$, $\sigma(u, u') = 0$ y probemos que debe ser igual a 0. Como tenemos una base para U podemos escribir $u = a_1v + a_2f(v) + \cdots + a_if^{i-1}(v) + \cdots + a_df^{d-1}(v) + a_{d+1}f^{d-1}(w) + \cdots + a_{d+j}f^{d-j}(w) + \cdots + a_{2d}w$.

En particular, tenemos que $\sigma(u,v)=0$ luego por bilinealidad obtenemos la ecuación

$$\sigma(u,v) = a_1 \sigma(v,v) + \dots + a_i \sigma(f^{i-1}(v),v) + \dots + a_d \sigma(f^{d-1}(v),v) + a_{d+1} \sigma(f^{d-1}(w),v) + \dots + a_{d+j} \sigma(f^{d-j}(w),v) + \dots + \sigma(a_{2d}w,v) = 0$$

Pero por el primer numeral, como V_0 es isotrópico concluimos que todo los términos de la forma $\sigma(f^{i-1}(v), v)$ son iguales a 0.

Ahora si tomamos en general $\sigma(u,f^{i-1}(v))=0$ obtenemos la ecuación

$$a_{d+1}\sigma(f^{d-1}(w), f^{i-1}(v)) + \dots + a_{d+j}\sigma(f^{d-j}(w), f^{i-1}(v)) + \dots + \sigma(a_{2d}w, f^{i-1}(v)) = 0$$

. Entonces obtenemos un sistema de d ecuaciones con d variables $\{a_{d+1}, \dots, a_{d+j}, \dots, a_{2d}\}$. Vemos que la matriz asociada va a ser tal que la ij-ésima entrada es igual a $\sigma(f^{d-j}(w), f^i(v))$.

Pero por lo discutido anteriormente todas las entradas tales que $i+j \geq d$ van a ser iguales a 0. Luego la matriz resultante es una matriz triangular superior cuyas entradas en la diagonal son diferentes a cero por el numeral anterior. Luego, el kernel de esta matriz es igual a 0, es decir que todos los coeficientes entre a^{d+1} y a2d son iguales a 0.

De manera similar tomando las expresiones $\sigma(u, f^{d-j}(w)) = 0$ podemos hacer un sistema de d ecuaciones y d incognitas $\{a_1, \dots, a_i, \dots, a_d\}$ que también tiene asociada una matriz triangulas superior con todas sus entradas en la diagonal diferentes de cero y que por lo tanto implica que todos los coeficientes desde a_1 hasta a_d son iguales a 0. Por lo tanto u = 0 y el espacio es un espacio simpléctico.

4. Demuestre que si $w \in V$ es tal que $\sigma(w, f^{d-1}(v)) \neq 0$ y

$$U = \text{Sp}(\{v, \dots, f^{d-1}(v), f^{d-1}(w), \dots, w\})$$

entonces existe una base de Darboux de U,

$$T = \{v_1, \dots, v_d, w_1, \dots, w_d\}$$

tal que $v_i = f^{i-1}(v_1)$ y $w_i = f^{d-i}(w_d)$. Demuestre además que $f(w_1) = 0$. (Sugerencia: A partir de la base de U obtenida en el punto anterior, recursivamente, empiece con w tal que $\sigma(w, f^{d-1}(v)) = 1$, y defina w' = w - af(w) tal que $\sigma(w', f^{d-2}(v)) = 0$, luego $w'' = w' - bf^2(w')$ tal que $\sigma(w'', f^{d-3}(v)) = 0$ y así sucesivamente hasta completar d-1 pasos y obtener el w_d buscado.)

 $\begin{array}{l} Demostraci\'on. \ \ {\rm Tome} \ v_1=v \ {\rm y} \ {\rm sea} \ w_d=w^{(d-1)} \ {\rm el} \ {\rm elemento} \ {\rm encontrado} \ {\rm en} \ {\rm la} \ {\rm recursi\'on} \ {\rm descrita} \ {\rm en} \ {\rm la} \ {\rm sugerencia}. \ {\rm Podemos} \ {\rm encontrar} \ {\rm un} \ w \ {\rm tal} \ {\rm que} \ \sigma(w,f^{d-1}(v))=1 \ {\rm mediante} \ {\rm normalizaci\'on}. \ {\rm Adem\'as} \ {\rm tomamos} \ w'=w-\sigma(w,f^{d-2}(v))f(w). \ {\rm Entonces} \ \sigma(w',f^{d-2}(v))=\sigma(w-\sigma(w,f^{d-2}(v))f(w),f^{d-2}(v))=\sigma(w,f^{d-2}(v))-\sigma(w,f^{d-2}(v))=0. \ {\rm Similarmente} \ {\rm tomamos} \ w''=w'-\sigma(w',f^{d-3}(v))f^2(w) \ {\rm y} \ {\rm vemos} \ {\rm que} \ \sigma(w'',f^{d-3}(v))=\sigma(w'-\sigma(w',f^{d-3}(v))f^2(w),f^{d-3}(v))-\sigma(w',f^{d-3}(v))\sigma(f^2(w),f^{d-3})=\sigma(w',f^{d-3}(v))-\sigma(w',f^{d-3}(v))-\sigma(w',f^{d-3}(v))-\sigma(w',f^{d-3}(v))-\sigma(w',f^{d-3}(v))-\sigma(w',f^{d-3}(v))-\sigma(w',f^{d-3}(v))-\sigma(w',f^{d-3}(v))=0. \ {\rm Y} \ {\rm asi} \ {\rm sucesivamente} \ {\rm hasta} \ {\rm llegar} \ {\rm al} \ w_d \ {\rm buscado}. \ {\rm dos} \ {\rm dos}$

Entonces veamos que $\sigma(w_d, f^{d-1}(v)) = 1$ esto lo podemos demostrar mediante inducción, pues ya tenemos el caso base y si asumimos que $\sigma(w^{(n)}, f^{d-1}(v)) = 1$ entonces $\sigma(w^{(n+1)}, f^{d-1}(v)) = \sigma(w^{(n)} - \sigma(w^{(n)}, f^{d-n-i}(v))f^{n+1}(w), f^{d-1}(v)) = \sigma(w^{(n)}, f^{d-1}(v)) - \sigma(w^{(n)}, f^{d-n-i}(v))\sigma(f^{n+1}(w), f^{d-1}(v)) = \sigma(w^{(n)}, f^{d-1}(v)) = 1$ porque $\sigma(f^{n+1}(w), f^{d-1}(v)) = 0$. Pero además $\sigma(w_d, f^{j-1}(v)) = 0$ si $1 \leq j < d$.

Esto porque para cada j < d, si tomamos $w^{(d-j)}$ tenemos por construcción que $\sigma(w^{(d-j)},f^{j-1}(v))=0$, entonces de nuevo por inducción tomando lo anterior como caso base tenemos que $\sigma(w_d,f^{j-1}(v))=0$, esto porque si $\sigma(w^{(n)},f^{j-1})=0$ entonces por un lado $n \geq d-j$ y por el otro $\sigma(w^{(n+1)},f^{j-1})=\sigma(w^{(n)}-\sigma(w^{(n)},f^{d-n-i}(v))f^{n+1}(w),f^{j-1}(v))=\sigma(w^{(n)},f^{j-1}(v))-\sigma(w^{(n)},f^{d-n-i}(v))\sigma(f^{n+1}(w),f^{j-1}(v))=\sigma(w^{(n)},f^{j-1}(v))=0$ porque $\sigma(f^{n+1}(w),f^{j-1}(v))=0$ si $n \geq d-j$.

Finalmente vamos a demostrar que T es una base de Darboux para U. Por el numeral 1 tenemos que $\sigma(v_i, v_j) = \sigma(w_i, w_j) = 0$ para $i, j \in \{1, \dots, j\}$. Por otra parte tenemos que si i + j = i' + j' entonces $\sigma(f^i(w), f^j(v)) = \sigma(f^{i'}(w), f^{j'}(v))$.

Por lo tanto, $\sigma(v_i, w_j) = \sigma(f^{i-1}(v_1), f^{d-j}(w_d)) = -\sigma(f^{d-j}(w_d), f^{i-1}(v_1))$ y esto ultimo es igual a -1 si i-1+d-j=d-1, es decir, si i=j y 0 de lo contrario, por lo tanto $\sigma(v_i, w_j) = -\delta_{ij}$ y T es por lo tanto una base de Darboux.

■ Demuestre que existe una base de Darboux T y una matriz $A \in M_{n \times n}(K)$ tal que

$$\begin{bmatrix} f \end{bmatrix}_T^T = \begin{bmatrix} A & 0 \\ 0 & A^\mathsf{T} \end{bmatrix}$$

.

Demostración. Ya se ha demostrado que para cualquier base S si la representación matricial de f es

entonces la representación del adjunto de f, g es igual a

$$\begin{bmatrix} g \end{bmatrix}_S^S = \begin{bmatrix} A_{22}^\mathsf{T} & -A_{12}^\mathsf{T} \\ -A_{21}^\mathsf{T} & A_{11}^\mathsf{T} \end{bmatrix}$$

y por lo tanto si el operador es autoadjunto entonces tenemos que $A_{11} = A_{22}^{\mathsf{T}}$. Solo nos falta demostrar que existe una base de Darboux tal que A_{12} y A_{21} son iguales a 0. Esta base la podemos obtener de la misma manera que se obtiene la forma canónica de Jordan. El resultado es una matriz diagonal con bloques que cumple los requisitos establecidos.

• Sea $F \in M_{6\times 6}(K)$ la matriz

$$F = \begin{bmatrix} -1 & 4 & 0 & 0 & -1 & 0 \\ -2 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 8 & 0 & -1 & -2 & 0 \\ -8 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Encuentre una matriz simpléctica $S \in M_{6\times 6}(K)$ y una matriz $A \in M_{3\times 3}(K)$ tales que

$$S^{-1}FS = \left[\begin{array}{cc} A & 0 \\ 0 & A^{\mathsf{T}} \end{array} \right]$$

.

Demostración. Sea f la transformación asocada a la matriz F. El polinomio característico de esta matriz es $P(x) = (x-1)^2(x+1)^4$. Esto nos da los valores propios -1 y 1. Entonces por lo demostrado anteriormente tenemos que $\ker((f-id_V)^2)$ y

$$S = \begin{pmatrix} 1 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -8 & 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Y

$$S^{-1} = \begin{pmatrix} 1 & 0 & 0 & -1/2 & 0 & 0 \\ 0 & -1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 8 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

por lo que vemos que la matriz es simpléctica. Y

$$S^{-1}FS = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Por lo que

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

es la matriz buscada.