Deep Learning 101

Capítulo 1: Neurona

Overview

ChatGPT

Modelo "Transformer" (2017)

https://deeprevision.github.io/posts/001-transformer/

https://deeprevision.github.io/posts/001-transformer/

Agenda

- Problemas que puede resolver una neurona.
- Modelo de neurona: perceptrón.
- Entrenamiento: qué significa que la neurona "aprenda".
- Implementación desde cero, sin librerías.

Problema

Clasificación de especies de flores.

Longitud del Sépalo (cm)	Ancho del Sépalo (cm)	Es Iris Setosa
5.1	3.5	1
4.9	3.0	1
6.2	5.4	-1

 x_1

 x_2

y

Problema

Estimación del precio de una casa.

Tamaño de la Casa (m^2)	Precio de la casa (miles de usd)
95	100
134	150
281	375

 x_1

y

Modelo de neurona: Perceptrón

Su función es hacer predicciones sobre datos de entrada.

Conjunto de entrenamiento

Se otorgan al perceptrón inputs (x1, x2) con sus respectivos outputs "y" esperados.

x_1	x_2	y
1	1	1
2	2	1
1	2	-1

Predicciones

- El perceptrón calculará una salida (predicción) para cada input.
- Su objetivo será ajustar las predicciones para que coincidan con los datos de entrenamiento.

x_1	x_2	y
1	1	1
2	2	1
1	2	-1

x_1	x_2	\hat{y}
1	1	-1
2	2	1
1	2	1

Al inicio, las predicciones serán aleatorias.

Perceptrón

- ullet Datos de entrenamiento: $x=(x_1,x_2,\ldots,x_m)$
- ullet Pesos: $w=(w_1,w_2,\ldots,w_m)$

Perceptrón: ejemplo

w=(1,2)

x = (3, 4)

 $\hat{y} = 11$

Perceptrón: bias

$$x=(1,x_1,x_2,\ldots,x_m) \qquad w=(w_0,w_1,w_2,\ldots,w_m)$$

Tipos de perceptrones

Según su función de activación

Perceptrón escalón: usos

Clasificación binaria.

Input

$$X=(x_1,x_2)=(x,y)$$

Predicción

$$\hat{r} = 1 =$$

$$\hat{Y} = 1 = \square$$

$$\hat{Y} = -1 = \square$$

Los grupos deben ser linealmente separables.

Perceptrón lineal

Perceptrón lineal: usos

• Regresión (lineal).

Perceptrón no lineal

Perceptrón no lineal: usos

- Clasificación binaria.
- Regresión (lineal y no lineal).

Aprendizaje y entrenamiento

Problema

Estimación del precio de una casa.

Al inicio, las predicciones serán aleatorias.

Tamaño de la Casa (m^2)	Precio de la casa (miles de usd)	Predicción del precio
95	100	70
134	150	200
281	375	300

Función de costo

Se utiliza para medir qué tan mal está la predicción actual de la neurona, en comparación con la salida esperada.

$$J=rac{1}{n}\sum_{i=1}^n (y^i-\hat{y}^i)^2$$

Cómo ajustamos las predicciones de la neurona para alcanzar las salidas esperadas?

$$w_i = (w_0, w_1, \dots, w_m)$$
 $\Delta w = (\Delta w_0, \Delta w_1, \dots, \Delta w_m)$ $w_{i+1} = w_i + \Delta w \longrightarrow ext{`aprendizaje''}$

$$w_i = (w_0, w_1, \dots, w_m)$$
 $\Delta w = (\Delta w_0, \Delta w_1, \dots, \Delta w_m)$ $w_{i+1} = w_i + \Delta w$

Para el **perceptrón escalón**, la actualización de pesos estará dada por:

$$\Delta w = \eta (y - \hat{y})x$$

$$\eta\in(0,1)$$

Tasa de aprendizaje

Actualización de pesos

SOS $\Delta w = (\Delta w_0, \Delta w_1, \dots, \Delta w_m) \ w_{i+1} = w_i + \Delta w$

Ejemplo:
$$\Delta w = \eta (y - \hat{y}) x$$

$$\eta=0.1$$

$$y=1 \qquad \qquad \Delta w = 0.1(1-(-1))(3,4) \ \hat{y}=-1 \qquad \qquad \Delta w = 0.2(3,4) \qquad -$$

$$egin{aligned} \Delta w &= 0.2(3,4) \ \Delta w &= (0.6,0.8) \end{aligned}$$

$$w_{i+1} = (1.6, 2.8)$$

 $w_i = (w_0, w_1, \ldots, w_m)$

$$egin{aligned} x &= (3,4) \ w_i &= (1,2) \end{aligned}$$

$$\Delta w = \eta (y - \hat{y}) x$$

$$w = [0.5, 1, -0.1]$$
 $\eta = 0.1$

$$egin{aligned} \Delta w &= 0.1(-1-1)[1,2,5] \ \Delta w &= -0.2[1,2,5] = [-0.2,-0.4,-1] \ w' &= [0.5,1,-0.1] + [-0.2,-0.4,-1] \ w' &= [0.3,0.6,-1.1] \end{aligned}$$

$$h' = 1*0.3 + 2*0.6 - 5*1.1$$
 $h' = -4$ $heta(-4) = -1$

$$\hat{y} = -1 = y$$

$$w_i = (w_0, w_1, \ldots, w_m)$$
 $\Delta w = (\Delta w_0, \Delta w_1, \ldots, \Delta w_m)$ $w_{i+1} = w_i + \Delta w$

Para el **perceptrón lineal y no lineal**, la actualización de pesos estará dada por:

$$J = rac{1}{n} \sum_{i=1}^n (y^i - \hat{y}^i)^2$$

$$\Delta w = -\eta rac{\partial L}{\partial w}$$

$$\frac{\partial L}{\partial w} \stackrel{!}{=} \frac{\partial L}{\partial \theta} \frac{\partial \theta}{\partial h} \frac{\partial h}{\partial w}$$

 $\theta(h) = \hat{y}$

Regla de la cadena

Gradiente: ejemplo

 $\theta(h) = \hat{y}$

 $rac{\partial L}{\partial w} = rac{\partial L}{\partial heta} rac{\partial heta}{\partial h} rac{\partial h}{\partial w}$

Regla de la cadena

$$L = (y - y)$$

$$L=(y-\hat{y})^2$$
 \longrightarrow $\frac{\partial L}{\partial heta}=\frac{\partial L}{\partial \hat{y}}=2(y-\hat{y})(-1)=2(\hat{y}-y)$

Error cuadrático

$$\theta(h) = h$$
 $\frac{\partial \theta}{\partial h} = 1$

$$h = \sum_{i=0}^m w_i x_i \qquad \longrightarrow \qquad rac{\partial h}{\partial w} = (x_0, x_1, \dots, x_m)$$

Gradiente

$$rac{\partial L}{\partial w} = 2(\hat{y}-y)(x_0,\ldots,x_m)$$

$$\Delta w = -\eta rac{\partial L}{\partial w}$$

$$w_{i+1} = w_i + \Delta w$$

$$\Delta w = -\eta \frac{\partial L(w)}{\partial w}$$

Actualización de pesos: ejemplo 2

w = [0.5, 1, -0.1] $\eta = 0.02$ J = MSE

$\boxed{1} \qquad \qquad w_0 = 0.5$	$\theta(h)=h$
$egin{pmatrix} w_1 = 1 \ w_2 = -0.1 \ \end{pmatrix}$	$\hat{y} = 2$
$x_2 = 5$	h = 1*0.5 + 2*1 - 5*0.1 $ heta(2) = 2$ $h = 2$

y

(2, 5)

$$egin{aligned} rac{\partial L}{\partial w} = 2(\hat{y}-y)(x_0,\ldots,x_m) \end{aligned}$$

$$\Delta w = -0.02 \ 2(2 - (-1)) \ (1, 2, 5)$$

$$\Delta w = -0.12(1, 2, 5) = -(0.12, 0.24, 0.6)$$

$$w' = [0.5, 1, -0.1] - [0.12, 0.24, 0.6]$$

$$w' = [0.38, 0.76, -0.7]$$

$$h' = 1*0.38 + 2*0.76 - 5*0.7 \ h' = -1.6$$

$$\theta(-1.6) = -1.6$$

$$\hat{y} = -1.6$$

Bonus: Optimización

GD con Momentum

$$\Delta w_{i+1} = -\eta rac{\partial L}{\partial w} + lpha \Delta w_i$$

$$lpha \in (0,1)$$

Fin

