Esercizi di Geometria Differenziale del 2 Ottobre

Marco Romagnoli (578061)*
18 ottobre 2021

Esercizio 1.3

Svolgimento. Sia $f: X \to Y$ una funzione continua tra spazi topologici e sia $A \subseteq Y$ un intorno di f(x), con $x \in X$ generico. Per definizione di intorno esiste un V aperto in Y tale che $f(x) \in V \subseteq A$ e data la continuità di f si ha che $f^{-1}(V)$ è a sua volta un aperto in X. Inoltre si ha che $x \in f^{-1}(V) \subseteq f^{-1}(A)$, quindi $f^{-1}(A)$ è un intorno di x e dato che è stato preso un punto generico, vale $\forall x \in X$.

Sia ora $f: X \to Y$ tale che $\forall x \in X$ la controimmagine di un intorno A di f(x) è un intorno di x. Quindi esistono U aperto in X tale che $x \in U \subseteq f^{-1}(A)$ e V aperto in Y tale che $f(x) \in V \subseteq A$. In particolare prendo U e V in modo tale che siano i più grandi possibili nei rispettivi intorni, cioè che ogni altro aperto che contiene x o f(x) sia contenuto in essi. Da questo si vede che l'immagine di $(f^{-1}(A) \setminus U) := B$ deve essere contenuta in A ma non è a sua volta un intorno di f(x). Quindi deve essere $V = A \setminus f(B)$, da cui $f^{-1}(V) = U$.

Esercizio 1.5

Svolgimento. Suppongo che per assurdo che I = [0, 1] non sia connesso e che quindi esistano U_1, U_2 aperti in I con le seguenti proprietà:

- 1. $U_1 \neq \emptyset, U_2 \neq I$ e viceversa
- 2. $U_1 \cap U_2 = \emptyset$
- 3. $U_1 \cup U_2 = I$.

Questi aperti dovranno essere della forma $U_1 = [0, b)$ e $U_2 = (c, 1]$, infatti, se scegliessi degli aperti del tipo (a, b) con a > 0 potrei semplicemente unirlo all'aperto $[0, a + \epsilon)$, per un certo $\epsilon > 0$, e ottenere un aperto più grande, stessa cosa per l'estremo opposto. Inoltre, se anche prendessi l'aperto (0, 1), il suo complementare $\{0\} \cup \{1\}$ non sarebbe un aperto in I. Per cui ci sono tre possibilità:

- 1. b > c ma allora l'intersezione non sarebbe nulla
- 2. b < c ma allora esisterebbe un intervallo [b,c] i cui elementi non sono contenuti né in U_1 né in U_2
- 3. b = c := x ma allora l'elemento $x \notin U_1 \cup U_2$.

^{*}svolti insieme a Bernardo Tomelleri (587829)

Esercizio 1.6

Svolgimento. Voglio dimostrare che l'insieme

$$X = \{(0, y) | y \in [-1, 1]\} \bigcup \left\{ \left(x, \sin \frac{1}{x} \right) | x > 0 \right\} := R \cup S$$

è connesso ma non connesso per archi.

Si vede subito che i singoli insiemi R e S sono entrambi connessi. Per R la dimostrazione è analoga a quella dell'esercizio 1.5, mentre per S si può notare che, essendo il grafico di una funzione $f:(0,+\infty)\to\mathbb{R}$ continua è connessa per archi (ogni arco è semplicemente una restrizione della funzione stessa). In particolare non possono esistere due aperti disgiunti la cui unione è uguale ad R, ma se prendessi un aperto in X (che si ottiene intersecando un aperto di \mathbb{R}^2 con X stesso) che contenga tutto R, dovrebbe avere intersezione non nulla con S, poiché sin (1/x) è ben definita $\forall x>0$, e quindi essere del tipo

$$R \cup \left\{ \left(x, \sin \frac{1}{x}\right) | x \in (0, \epsilon) \right\}.$$

Ma nemmeno S può essere formato da unione di due aperti disgiunti. Quindi X è connesso. Adesso provo a connettere un punto di R con $(1/\pi,0) \in S$ tramite una curva γ . La lunghezza di γ è sicuramente maggiore della lunghezza della curva spezzata λ definita come l'unione di tutti i segmenti che collegano uno zero di $\sin 1/x$, per $x = 1/(n\pi)$ all'estremo adiacente, per $x = 2/[(2n+1)\pi]$ (fig. 1). Si vede che la lunghezza di λ è

Figura 1: Grafici (parziali) di γ e λ .

$$l(\lambda) = \sum_{n=1}^{\infty} \sqrt{\left(\frac{1}{n\pi} - \frac{2}{(2n+1)\pi}\right)^2 + 1} \ge \sum_{n=1}^{\infty} 1 \longrightarrow \infty.$$

Allora γ ha lunghezza infinita e quindi, in generale, non posso connettere un punto di R ad un punto di S con una curva continua.