

CSD2201/CSD2200 Week 1 Tutorial Problems

28th August – 3rd September 2023

These are recap/revision questions from CSD1251/1250 Calculus I. Be sure to familiarize yourselves with the concepts focused in these questions, as they will be used actively in class, quizzes and examinations.

Question 1

Let f and g be differentiable functions, where the range of f is a subset of the domain of q. Name, and state the differentiation formula for

- (a) (fg)'(x)
- (b) $(f \circ g)'(x)$

Question 2

Differentiate the following functions with respect to their variables.

(a)
$$f(x) = x^3 + 2x^2 - 6x$$
 (b) $f(x) = \cos(2x)$ (c) $g(t) = \tan^2(2t)$

(b)
$$f(x) = \cos(2x)$$

(c)
$$g(t) = \tan^2(2t)$$

(d)
$$f(x) = \sqrt{x^2 + 2x}$$

(e)
$$g(n) = \frac{n}{n^2 + 1}$$

(f)
$$h(x) = \sec^2(x)$$

(g)
$$u(t) = \frac{\ln t}{t^2}$$

(d)
$$f(x) = \sqrt{x^2 + 2x}$$
 (e) $g(n) = \frac{n}{n^2 + 1}$ (f) $h(x) = \sec^2(x)$ (g) $u(t) = \frac{\ln t}{t^2}$ (h) $v(t) = \sin(t) + \cos^2(2t)$ (i) $f(x) = \frac{1}{(1-x)^2}$

(i)
$$f(x) = \frac{1}{(1-x)^2}$$

Question 3

Show that the function $f(x) = \frac{1}{x}$ is decreasing on $(0, \infty)$.

Question 4

Show that the function $f(x) = \frac{\ln x}{x}$ is decreasing on the interval (e, ∞) .

What can we say about the function $g(x) = -\frac{\ln x}{x}$?

Question 5

Compute the following limits.

(a)
$$\lim_{x \to 1} \frac{x^7 - 1}{x - 1}$$

(b)
$$\lim_{x \to \frac{\pi}{2}} \frac{e^{4x} \sin(3x) + e^{2\pi}}{x - \frac{\pi}{2}}$$

(a)
$$\lim_{x \to 1} \frac{x^7 - 1}{x - 1}$$
 (b) $\lim_{x \to \frac{\pi}{2}} \frac{e^{4x} \sin(3x) + e^{2\pi}}{x - \frac{\pi}{2}}$ (c) $\lim_{x \to \frac{\pi}{2}} \frac{e^{4x} \sin(3x) + e^{2\pi}}{\sqrt{x} - \sqrt{\frac{\pi}{2}}}$

Question 6

The inverse sine function $y = \sin^{-1}(x)$ has domain $-1 \le x \le 1$ and range y such that

$$\sin(y) = x$$
 where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Meanwhile, the inverse tangent function $y = \tan^{-1}(x)$ has domain $x \in \mathbb{R}$ and range y such that

$$tan(y) = x$$
 where $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Using implicit differentiation, show that

(a) The derivative of $y = \sin^{-1}(x)$ is

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}.$$

(b) The derivative of $y = \tan^{-1}(x)$ is

$$\frac{dy}{dx} = \frac{1}{1+x^2}.$$

You may need the following trigonometric identities here:

$$\sin^2 x + \cos^2 x = 1$$
 and $\tan^2 x + 1 = \sec^2 x$.