인공지능/머신러닝기초

Module 10: 퍼셉트론

신경망이란?

신경망이전의연구는?

얼굴 인식

```
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
```

숫자 및 문자 인식

프로그래밍으로 풀 수 없는 문제들

신경망이전의연구는?

```
if () then {
    else if () then {
    } else if () then {
} else if () then {
} else if () then {}
```

발생하는 모든 경우에 대비 그래도 예외 상황은 존재함

신경망

사람의 신경 시스템 (Neuron System)

사람의 신경 시스템 (Neuron)

Structure of a Typical Neuron

두뇌의 가장 작은 정보처리 단위 사람은 10^{11} 개의 뉴런을 가지며, 뉴런은 10^{3} 개 가량 다른 뉴런과 연결

인공 신경망

사람의 신경망과 유사한 기능을 하는 학습 모델을 구성 모델 스스로 데이터의 특성을 학습 하기에 지도 학습, 비지도 학습 가능

인공 신경망은 만능?

BIGDATA

방대한 데이터 필요

긴 학습 시간을 극복할 하드웨어 필요

퍼셉트론 (Perceptron)

퍼셉트론 (Perceptron)

인공신경망 시스템은 동물의 신경계 시스템을 모사하여 설계

퍼셉트론구조

변수	의미
x_1, x_2	입력 값
w_1, w_2	가중치
В	Bias
y	출력 값
$y = activation(w_1x_1 + w_2x_2 + B)$	

퍼셉트론구조

Activation function

퍼셉트론파이썬코드

```
def perceptron(x, weights):
    sum_ = weights[0] # bias
    for i in range(len(x)-1):
        pre_y += weights[i+1]*x[i]
    return 1.0 if pre_y >= 0.0 else 0.0
```

다수의 신호 $(x_1 \sim x_i)$ 와 가중치 (weight)의 곱셈, 덧셈 곱셈과 덧셈이 완료된 이후 activation 함수

퍼셉트론작동예시

y = activation(w1x1 + w2x2 + B)

변수	의미
$oldsymbol{x}_1$	비가 온다
\boldsymbol{x}_2	여친이 만나자고 한다
\boldsymbol{w}_1	비를 좋아하는 정도
\boldsymbol{w}_2	여친을 좋아하는 정도
\boldsymbol{B}	외출을 좋아하는 정도
y	외출 한다/외출 하지 않는다

퍼셉트론작동예시

$$y = activation(w1x1 + w2x2 + B)$$

변수	값	의미
$oldsymbol{x}_1$	1	비가 온다
\boldsymbol{x}_2	1	여친이 만나자고 한다
$oldsymbol{w}_1$	-5	비를 좋아하는 정도
\boldsymbol{w}_2	6	여친을 좋아하는 정도
В	-2	외출을 좋아하는 정도
y	activation(-1) = 0	외출 하지 않는다

퍼셉트론 선형 분류기

퍼셉트론은 인공지능을 만들기 위해 시작

퍼셉트론은 주어지는 정보를 뒤로 전달하거나 무시하거나 하는 논리회로(logic gate)의 역할을 할 수 있을 거라 믿음

AND gate

A/B	C
0/0	0
1/0	0
0/1	0
1/1	1

Ex)
$$C = activation(1 * A + 1 * B - 1.5)$$

OR gate

A/B	С
0/0	0
1/0	1
0/1	1
1/1	1

Ex)
$$C = activation(1 * A + 1 * B - 0.5)$$

NAND(NOT-AND) gate

A/B	C
0/0	1
1/0	1
0/1	1
1/1	0

Ex)
$$C = activation((-1) * A + (-1) * B + 1.5)$$

NOR(NOT-OR) gate

A/B	C
0/0	1
1/0	0
0/1	0
1/1	0

Ex)
$$C = activation((-1) * A + (-1) * B + 0.5)$$

퍼셉트론 선형 분류기

0, 1만의 데이터를 계산하던 퍼셉트론 논리 회로에서 확장 선형 분류기로 데이터를 분류 가능

비선형적인문제

퍼셉트론 선형 분류기

하나의 선만으로는 분류 불가능

비선형적인문제

XOR gate

A/B	C
0/0	0
1/0	1
0/1	1
1/1	0

비선형적인문제

선형 분류기이기 때문에 문제 해결 불가능

퍼셉트론문제점

단층 퍼셉트론은 XOR 문제 뿐만 아니라 **다양한 문제의 해결 불가능** 선형적인 특성을 벗어난 비선형 적인 접근 방법 필요

1차 Al 겨울

그렇다면 비 선형적인 문제도 해결이 가능할까?

다층 퍼셉트론

퍼셉트론을 여러 개 쌓는다면?

XOR 연산은 **하나의 레이어**를 사용하여 표현하는 것은 불가능 하지만, NAND와 OR 연산을 사용하여 표현 가능

다층 퍼셉트론(MLP)

다층 퍼셉트론은 **입력 층, 히든 층, 출력 층**으로 구성

딥러닝이란?

Hidden Layer가 3층 이상 되면 Deep NN (DNN)

MLP가 결정할 수 있는 영역

1층일 경우는 선형분리만 가능, 2층은 구역분리 가능 N층은 더 세분화된 분리 가능