Diagonalization과 Eigendecomposition

수업 목표

이번 수업의 핵심:

- Diagonalization (대각화)의 개념과 대각화가 가능하기 위한 필요충분조건
- Diagonalization과 Eigendecomposition의 관계
- Eigendecomposition을 통한 선형 변환 과정의 이해

핵심 개념

- Diagonalization
- Eigendecomposition

Diagonalization (대각화)

정사각행렬 $A \in \mathbb{R}^{n \times n}$ 가 주어졌을 때 이를 대각 행렬로 바꾸고자 함:

$$D = P^{-1}AP$$

- 행렬 $P \in \mathbb{R}^{n \times n}$ 는 역행렬이 존재
- 행렬 $D \in \mathbb{R}^{n \times n}$ 는 대각 행렬
- 이러한 변환을 Diagonalization (대각화)라고 부름
- 모든 A가 대각화가 가능한 것은 아님
 - A가 대각화가 가능하기 위해선 D가 대각행렬이 되면서 역행렬이 존재하는 P가 있어야 함

Diagonalization (대각화)

대각 행렬 $D = P^{-1}AP$ 가 되는 P를 찾는 방법은?

$$D = P^{-1}AP \Longrightarrow PD = AP$$

다음과 같이 표현해보자:

$$P = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] \text{ where } \mathbf{v}_i \vdash P$$
의 열벡터, $D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$

•
$$AP = A[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] = [A\mathbf{v}_1 \quad A\mathbf{v}_2 \quad \cdots \quad A\mathbf{v}_n]$$

•
$$PD = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} = [\lambda_1 \mathbf{v}_1 \quad \lambda_2 \mathbf{v}_2 \quad \cdots \quad \lambda_n \mathbf{v}_n]$$

•
$$PD = AP \iff [A\mathbf{v}_1 \quad A\mathbf{v}_2 \quad \cdots \quad A\mathbf{v}_n] = [\lambda_1\mathbf{v}_1 \quad \lambda_2\mathbf{v}_2 \quad \cdots \quad \lambda_n\mathbf{v}_n]$$

Eigenvector와 Diagonalization의 관계

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$
, $A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2$, \cdots , $A\mathbf{v}_n = \lambda_n \mathbf{v}_n$

- 따라서, \mathbf{v}_1 , \mathbf{v}_2 , …, \mathbf{v}_n 는 Eigenvector, λ_1 , λ_2 , …, λ_n 는 Eigenvalue
- $PD = AP \Rightarrow D = P^{-1}AP$ 가 참이 되기 위해선 P의 역행렬이 존재 필요
 - $P \vdash \mathbb{R}^{n \times n}$ 형태의 정사각행렬
 - $P \vdash n$ 개의 선형 독립인 Eigenvector를 가져야함
 - 모든 행렬이 이러한 조건을 만족하지 않지만, 만족하다면 그 행렬 A는 Diagonalizable
- 이때, 대각행렬 D는 Eigenvalue를 대각선 원소로 가짐

Eigendecomposition

• 만약 A가 Diagonalizable하다면, $D = P^{-1}AP$

← 이를 거꾸로 $A = PDP^{-1}$ 로도 쓸 수 있음

- 이를 A의 Eigendecomposition이라 부름
- "A가 대각화가 가능하다"는 "A가 Eigendecomposition이 가능하다"와 동치

선형 변환 관점에서의 Eigendecomposition

- 선형 변환 $T(\mathbf{x}) = A\mathbf{x}$ 를 가정
- A가 대각화가 가능하다고 가정 \rightarrow Eigendecomposition $A = PDP^{-1}$

$$T(\mathbf{x}) = A\mathbf{x} = PDP^{-1}\mathbf{x} = P(D(P^{-1}\mathbf{x}))$$

Basis 변환

$$T(\mathbf{x}) = A\mathbf{x} = PDP^{-1}\mathbf{x} = P(D(P^{-1}\mathbf{x}))$$

QIA)
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}^{-1}, \quad \mathbf{x} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

• $y = P^{-1}x$ 로 둔다면,

$$Py = x$$

- → y는 x를 새로운 Basis로 옮긴 좌표
 - Eigenvector $\{v_1, v_2\}$ 를 Basis로 가짐

$$\mathbf{x} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
$$= P\mathbf{y} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 2\mathbf{v}_1 + 1\mathbf{v}_2 \Longrightarrow \mathbf{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Dimension-wise Scaling

$$T(\mathbf{x}) = P(D(P^{-1}\mathbf{x})) = P(D\mathbf{y})$$

• z = Dy로 두면, 해당 연산은 y의 단순한 요소 단위 크기 조절

예시)
$$D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
이라면:

$$\mathbf{z} = \mathbf{D}\mathbf{y} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} (-1) \times 2 \\ 2 \times 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

Dimension-wise Scaling

원래의 Basis로 변환

$$T(\mathbf{x}) = P(\mathbf{D}\mathbf{y}) = Pz$$

• z는 아직 새로운 Basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ 의 좌표로 표현되어 있음

- $P\mathbf{z}$ 는 \mathbf{z} 를 원래의 표준좌표계 $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$ 으로 변환
 - $P_{\mathbf{Z}}$ 는 \mathbf{Z} 를 계수로 사용한 \mathbf{v}_1 와 \mathbf{v}_2 의 선형 결합

$$P\mathbf{z} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \mathbf{v}_1 z_1 + \mathbf{v}_2 z_2$$

원래의 Basis로 변환

•
$$T(\mathbf{x}) = P\mathbf{z} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

$$= -2\mathbf{v}_1 + 2\mathbf{v}_2$$

$$= -2\begin{bmatrix} 3 \\ 1 \end{bmatrix} + 2\begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -10 \\ 0 \end{bmatrix}$$

• 따라서 $T(\mathbf{x}) = A\mathbf{x} = PDP^{-1}\mathbf{x} = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -10 \\ 0 \end{bmatrix}$

Eigendecomposition 도식화

A^k 를 통한 선형 변환

재귀적 변환 $A \times A \times \cdots \times A\mathbf{x} = A^k \mathbf{x}$ 을 가정:

• A가 Diagonalizable하다면, A는 Eigendecomposition을 가짐

$$A = PDP^{-1}$$

- $A^k = (PDP^{-1})(PDP^{-1})\cdots(PDP^{-1}) = PD^kP^{-1}$
- D^k 는 간단히 계산이 가능:

$$D^k = \begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n^k \end{bmatrix}$$

• $A^k \mathbf{x}$ 를 직접 계산하기보다 $P\left(D^k(P^{-1}\mathbf{x})\right)$ 로 계산하는 것이 훨씬 빠름

요약

- Diagonalization의 개념과 Diagonalization이 가능한 조건
- Diagonalization을 통한 Eigendecomposition 식 표현
- 선형 변환 예시를 통한 Eigendecomposition의 의미 확인
- Diagonalization을 활용한 A^k의 계산 효율화

