This examination is intended for the examination part TEN2. The examination consists of five RANDOMLY ORDERED problems each of which is worth at maximum 4 points. The PASS-marks 3, 4 and 5 require a minimum of 9, 13 and 17 points respectively. The minimum points for the ECTS-marks E, D, C, B and A are 9, 10, 13, 16 and 20 respectively. If the obtained sum of points is denoted S_2 , and that obtained at examination TEN1 S_1 , the mark for a completed course is according to the following:

Solutions are supposed to include rigorous justifications and clear answers. All sheets of solutions must be sorted in the order the problems are given in.

1. Find the values of β for which the function f, defined by

$$f(x) = 4x^3 + 7\beta x^2 + 4\beta^2 x + 7,$$

has a local maximum at the point -2.

2. Evaluate the integral

$$\int_{\sqrt{2}}^{\sqrt{3}} \frac{dx}{(4-x^2)^{3/2}} \,,$$

and write the result in as simple form as possible.

3. Solve the initial-value problem $\begin{cases} y' = x(y-1)(y-3), \\ y(0) = 2. \end{cases}$

4. Is the series $\sum_{n=1}^{\infty} \frac{(1+2n)^3}{(4n+5)\sqrt{n^6+7}}$ convergent or divergent? Explain!

5. Find the length of the curve $\begin{cases} x = \frac{1}{2}t^2, \\ y = \frac{1}{3}t^3, \end{cases} \sqrt{3} \le t \le 2\sqrt{2}.$

MÄLARDALENS HÖGSKOLA

Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik

Examinator: Lars-Göran Larsson

TENTAMEN I MATEMATIK

MAA151 Envariabelkalkyl, TEN2

Datum: 2016-06-10 Skrivtid: 3 timmar

Hjälpmedel: Skrivdon, linjal

Denna tentamen är avsedd för examinationsmomentet TEN2. Provet består av fem stycken om varannat SLUMPMÄSSIGT ORDNADE uppgifter som vardera kan ge maximalt 4 poäng. För GODKÄND-betygen 3, 4 och 5 krävs erhållna poängsummor om minst 9, 13 respektive 17 poäng. Om den erhållna poängen benämns S_2 , och den vid tentamen TEN1 erhållna S_1 , bestäms graden av sammanfattningsbetyg på en slutförd kurs enligt följande:

$$S_1 \ge 11, \, S_2 \ge 9$$
 OCH $S_1 + 2S_2 \le 41$ \rightarrow 3
 $S_1 \ge 11, \, S_2 \ge 9$ OCH $42 \le S_1 + 2S_2 \le 53$ \rightarrow 4
 $54 < S_1 + 2S_2$ \rightarrow 5

Lösningar förutsätts innefatta ordentliga motiveringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sorterade i den ordning som uppgifterna är givna i.

1. Bestäm de värden på β för vilka funktionen f, definierad genom

$$f(x) = 4x^3 + 7\beta x^2 + 4\beta^2 x + 7,$$

har ett lokalt maximum i punkten -2.

2. Beräkna integralen

$$\int_{\sqrt{2}}^{\sqrt{3}} \frac{dx}{(4-x^2)^{3/2}} \,,$$

och skriv resultatet på en så enkel form som möjligt.

3. Lös begynnelsevärdesproblemet $\left\{ \begin{array}{l} y'=x(y-1)(y-3),\\ y(0)=2\,. \end{array} \right.$

4. Är serien $\sum_{n=1}^{\infty} \frac{(1+2n)^3}{(4n+5)\sqrt{n^6+7}}$ konvergent eller divergent? Förklara!

5. Bestäm längden av kurvan $\begin{cases} x = \frac{1}{2}t^2, \\ y = \frac{1}{3}t^3, \end{cases} \sqrt{3} \le t \le 2\sqrt{2}.$

MAXISI/ Solutions to the final exam TEN2 2016-06-10 (1) $f(x) = 4x^3 + 78x^2 + 4\beta^2 x + 7$ Since fis differentiable for all x in R, the only possibility for f to have a local maxmum at -2 is that the point is at least a stationary point of f. If also f'(=2) <0, then we are sure that -2 is a local maximum point. If f'(=2) =0, then some other method has to be applied for a final conclusion whether -2 is a local minimum point, a local maximum point or a terrisce point.

Differentiation gives f(x) = 12x²+14βx+4β², f'(x) = 24x+14β Necessary condition: $C = f(-2) = 48 - 28\beta + 4\beta^2 = 4(\beta - 3)(\beta - 4) \Leftrightarrow \beta = 3$ Necessary condition: 0-(6) if $\beta=3$ We conclude that only for $\beta=3$ Since $f(-2)=-48+14\beta=\begin{cases} -6 & \text{if }\beta=3\\ 9 & \text{if }\beta=4\end{cases}$ We conclude that only for $\beta=3$ is -2 a local maximum point. since $\cos(\theta) > 0$ In the interval $\frac{1}{2}$ Of θ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{3}}$ 3 (DE: Y'= × (2-1) (y-3) IV: y(0) = 2 The DE is nonlinear but separable, and may for 1 = y = 3) be written as (y-1)(y-3) y' = x $2\left(\frac{1}{y-3}-\frac{1}{y-1}\right)y'=x \Rightarrow \left(\frac{1}{y-3}-\frac{1}{y+1}\right)y'=2x$ Working out Sax on both sides gives $\ln |y-3| - \ln |y-1| = x^2 + \tilde{c} \iff \ln \left| \frac{y-3}{y-1} \right| = x^2 + \tilde{c}$ = $\begin{vmatrix} y-3 \\ y-1 \end{vmatrix} = e^{x^2+c} = e^{x^2}e^{-c} = e^{x^2}e^{-c$ where (applying the IV) $\frac{2-3}{2-1} = e^{\circ} \cdot c$ i.e. c = -1Thus $y-3 = -e^{x^2}(y-1)$ i.e. $y(1+e^{x^2}) = 3+e^{x^2}$ i.e. $y = \frac{3+e^{x^2}}{1+e^{x^2}}$

Examination TEN2 - 2016-06-10

Maximum points for subparts of the problems in the final examination

1. $\beta = 3$

- **1p**: Correctly concluded that for -2 to be a local maximum point of f it is necessary that -2 is a stationary point of f (since f is differentiable for all $x \in R$). Also correctly concluded that if f''(-2) < 0, then we are sure that -2 is a local maximum point. (If f''(-2) = 0 then some other method has to be applied for a final conclusion.)
- **1p**: Correctly differentiated f twice, and correctly found the two possible β -values for which -2 has to be analyzed
- **2p**: Correctly concluded that -2 is a local maximum point if $\beta = 3$, and a local minimum point if $\beta = 4$

2. $\frac{1}{4}(\sqrt{3}-1)$

- **1p**: Correctly by the substitution $x = 2\sin(\theta)$ translated the integrand and the limits of the integral
- **1p**: Correctly simplified the integrand into $1/(2\cos(\theta))^2$
- **1p**: Correctly found the antiderivative $tan(\theta)/4$
- **1p**: Correctly evaluated the antiderivative at the limits and by that correctly found the value of the integral

 $3. \qquad y = \frac{3 + e^{x^2}}{1 + e^{x^2}}$

- **1p**: Correctly identified the differential equation as nonlinear and separable, and correctly found the partial fractions of $[(y-1)(y-3)]^{-1}$
- **1p**: Correctly found the antiderivatives of both sides of the separated differential equation
- **1p**: Correctly adapted the solution to the initial value
- **1p**: Correctly solved for y

4. The series is divergent

- **1p**: Correctly found that the terms a_n of the series have the property of being equal to $n^{-1}B(n)$, where $B(n) \to 2$ as $n \to \infty$
- **1p**: Correctly found that the comparison test is applicable and that the series $\sum n^{-1}$ is the one to compare with
- **1p**: Correctly noted that the series $\sum n^{-1}$ is divergent according to the integral test
- **1p**: Correctly concluded that the series is divergent since the series compared with, namely $\sum n^{-1}$, is divergent

5. $\frac{19}{3}$ l.u.

- **1p**: Correctly formulated an integral (with explicit expressions of the derivatives dx/dt and dy/dt) whose value is the length of the curve
- **1p**: Correctly rewrited the integrand into $t(1+t^2)^{1/2}$ in preparation for finding the antiderivative
- **1p**: Correctly found an antiderivative of the integrand
- **1p**: Correctly found the value of the integral, and by that the length of the curve γ