Chapitre 6 Transformée de Fourier des distributions tempérées

Toutes les fonctions (distributions) n'ont pas une transformée de Fourier, seules les distributions tempérées ont toujours une transformée de Fourier.

1. Les distributions tempérées

Soit l'espace \mathscr{S} des fonctions ϕ_s sur \mathbf{R} , indéfiniment dérivables et rapidement décroissantes :

$$\forall n, p \in N^* \quad \lim_{x \to \infty} \left[x^n \varphi_s^p(x) \right] = 0$$

Munissons \mathscr{S} de la règle de convergence suivante : Une suite de fonctions $\varphi_{\mathbf{k}}$ de \mathscr{S} converge vers $\mathbf{0}$ dans \mathscr{S} si, quels que soient les entiers $l,m\geq 0$ la suite :

 $x^l \varphi_k^m(x)$ Converge vers 0 uniformément sur **R**,

On appelle distribution tempérée toute forme linéaire et continue sur

Fonctions lentement croissantes

Une fonction **f(x)** définie sur **R** est lentement croissante (ou tempérée) si elle croit moins vite à l'infini qu'une puissance positive de **x**. Si de plus elle est localement sommable, l'intégrale :

$$\int f(x) \varphi(x) dx$$
 st absolument convergente $\forall \varphi \in \mathcal{S}$

f(x) définit une distribution tempérée T_f telle que :

$$\langle T_{\rm f}, \varphi \rangle = \int f(x) \varphi(x) dx$$

- les fonctions bornées sont tempérées
- les polynômes sont tempérés.

2. Transformées des distributions tempérées

On appelle transformée de Fourier d'une distribution tempérée la distribution \mathcal{F} [T] définie par :

$$\left| \left\langle \mathcal{F}[T], \varphi \right\rangle = \left\langle T, \mathcal{F}[\varphi] \right\rangle$$

$$\left\langle \widehat{T}(f), \varphi(f) \right\rangle = \left\langle T(x), \widehat{\varphi}(x) \right\rangle$$

Transformée de Fourier de φ prise pour la variable x

On démontre que la transformée de Fourier d'une distribution tempérée est également tempérée. Les propriétés sont les mêmes que la transformée de Fourier des fonctions à quelques restrictions près.

3. Exemples

Soit la fonction f(x)=1 (distribution tempérée)

$$\langle \mathcal{F}[1], \varphi \rangle = \langle 1, \mathcal{F}[\varphi] \rangle = \int \widehat{\varphi}(x) dx = \varphi(0) = \langle \delta, \varphi \rangle$$

$$\mathcal{F}[1] = \delta$$

De même en utilisant la propriété de modulation

$$\mathscr{F}[e^{2\pi jf_0x}.\mathbf{f}(x)] = \widehat{\mathbf{f}}(f - f_0)$$

Si
$$f(x)=1$$

$$\mathscr{F}[e^{2\pi i f_0 x}] = \mathcal{S}(f - f_0)$$

Ou encore:

$$\cos(2\pi f_0 x) = \frac{1}{2} \left[e^{2\pi i f_0 x} + e^{-2\pi i f_0 x} \right]$$
$$\sin(2\pi f_0 x) = \frac{1}{2i} \left[e^{2\pi i f_0 x} - e^{-2\pi i f_0 x} \right]$$

$$\mathcal{F}\left[\cos(2\pi f_0 x)\right] = \frac{1}{2} \left[\mathcal{S}(f - f_0) + \mathcal{S}(f + f_0)\right]$$

$$\mathcal{F}\left[\sin(2\pi f_0 x)\right] = \frac{1}{2j} \left[\mathcal{S}(f - f_0) - \mathcal{S}(f + f_0)\right]$$

Soit $f(x) = \delta(x)$

$$\langle \mathcal{F}[\mathcal{S}], \varphi \rangle = \langle \mathcal{S}, \mathcal{F}[\varphi] \rangle = \widehat{\varphi}(0) = \int \varphi(x) dx == \langle 1, \varphi \rangle$$

$$\mathcal{F}[\mathcal{S}] = 1$$

