LAB 10

PCA:

```
In [1]: #heart dataset
         import pandas as pd
         from sklearn.preprocessing import LabelEncoder, StandardScaler
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.svm import SVC
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import accuracy_score
         from sklearn.decomposition import PCA
         from google.colab import files
         # Upload the CSV file
         uploaded = files.upload()
         df = pd.read_csv(next(iter(uploaded)))
         print(df.head())
         # 2. Encode categorical columns
         label_enc_cols = ['Sex', 'ExerciseAngina']
         for col in label_enc_cols:
             le = LabelEncoder()
             df[col] = le.fit_transform(df[col])
         # One-hot encode nominal categorical columns
         df = pd.get_dummies(df, columns=['ChestPainType', 'RestingECG', 'ST_Slope'], drop_first=True)
         # 3. Split features and target
         X = df.drop('HeartDisease', axis=1)
         y = df['HeartDisease']
         # 4. Scale features
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
         # 5. Train-Test Split
         X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
       # 6. Train classifiers and evaluate
       models = {
            'Logistic Regression': LogisticRegression(),
            'SVM': SVC(),
            'Random Forest': RandomForestClassifier()
       print("Without PCA:")
       for name, model in models.items():
           model.fit(X train, y train)
           preds = model.predict(X test)
           acc = accuracy_score(y_test, preds)
           print(f"{name} Accuracy: {acc:.4f}")
       # 7. Apply PCA
       pca = PCA(n_components=5) # Try fewer components for dimensionality reduction
       X_pca = pca.fit_transform(X_scaled)
        X\_train\_pca, \ X\_test\_pca, \ y\_train, \ y\_test = train\_test\_split (X\_pca, \ y, \ test\_size=0.2, \ random\_state=42) 
       print("\nWith PCA (5 components):")
       for name, model in models.items():
           model.fit(X_train_pca, y_train)
            preds = model.predict(X_test_pca)
            acc = accuracy_score(y_test, preds)
            print(f"{name} Accuracy: {acc:.4f}")
```

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving heart.csv to heart.csv

```
Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \
                           140
                                     289
  40 M
                ATA
                                                 0
                                                      Normal
                                                               172
                 NAP
                           160
                                      180
1 49 F
                                                 0
                                                      Normal
                                                               156
                 ATA
                           130
                                      283
                                                               98
2 37 M
                                                 0
                                                         ST
  48 F
                ASY
                           138
                                      214
                                                0
                                                      Normal
                                                               108
                NAP
  54 M
                           150
                                     195
                                                0
                                                      Normal
                                                               122
```

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving heart.csv to heart.csv

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	١
0	40	М	ATA	140	289	0	Normal	172	
1	49	F	NAP	160	180	0	Normal	156	
2	37	М	ATA	130	283	0	ST	98	
3	48	F	ASY	138	214	0	Normal	108	
4	54	М	NAP	150	195	0	Normal	122	

ExerciseAngina Oldpeak ST_Slope HeartDisease 0.0 Up 1.0 Flat N N 0 1 1 0.0 2 N Up 0 Flat Up 3 Υ 1.5 1 N 0.0 0

Without PCA:

Logistic Regression Accuracy: 0.8533 SVM Accuracy: 0.8750 Random Forest Accuracy: 0.8696

With PCA (5 components): Logistic Regression Accuracy: 0.8207 SVM Accuracy: 0.8424 Random Forest Accuracy: 0.8533

