

Uczenie maszynowe w medycynie

Warsztaty PoweR 2022 x deepsense.ai

22.03.2022

Agenda

- 1. Kim jesteśmy?
- 2. O deepsense.ai
- 3. Przykłady uczenia maszynowego w medycynie
- 4. Czym jest uczenie maszynowe?
- Wyzwania uczenia maszynowego w analizie obrazów medycznych
- 6. Odpowiedzialność
- 7. Case Study

Kim jesteśmy?

Maciej Domagała

Adam Maciaszek

We are data science experts delivering Al-driven competitive edge for global leaders across industries

> 100 commercial AI projects in the US and Europe.

20 R&D projects i.a. with Intel and Google Brain on topics involving reinforcement learning and generative adversarial networks.

Winning team of over 70 world class AI/ML experts - data scientists and data engineers supported by software engineers.

Top notch capabilities in: predictive analytics, computer vision and natural language processing.

Global tyre manufacturer

Leading CEE fashion retailer

Global industrial player

Leading CEE CPG player

Przykłady uczenia maszynowego w medycynie

Detekcja zębów oraz zmian chorobowych na zdjęciach pantomograficznych

Wykrywanie retinopatii cukrzycowej na zdjęciach dna oka

brak zmian retinopatycznych

zmiany retinopatyczne

Obliczanie objętości końcoworozkurczowej i końcowoskurczowej na animacjach z obrazowania rezonansem magnetycznym

Ocena odczynu alergicznego w punktowych testach skórnych w paśmie widzialnym i podczerwieni

Klasyfikacja ujścia szyjki macicy na podstawie zdjęć z kolposkopii

Typ 1 Typ 2 Typ 3

Czym jest uczenie maszynowe?

Tradycyjny algorytm

Inżynierowie decydują jak przekształcić wejście w wyjście.

Uczenie maszynowe

Schemat uczenia bez nadzoru

Trenujemy model korzystając ze zbioru uczącego

Uczenie maszynowe

Schemat uczenia z nadzorem

Trenujemy model korzystając ze zbioru uczącego oraz etykiet

Zalety i wady uczenia maszynowego

Zalety:

- bardzo duża dokładność rozwiązania
- modele nie są ograniczone naszą wiedzą
- + stosowane gdy danych jest za dużo do ręcznego przetwarzania
- oszczędność czasu i pieniędzy

Wady:

- potrzeba dużo dobrej jakości danych
- proces etykietowania jest kosztowny
- skomplikowany model może działać wolno
- bardzo często dobre modele są trudne do zinterpretowania

Wyzwania dla uczenia maszynowego w analizie obrazów medycznych

Wyzwania

- 1. Mała ilość danych / występowanie "uprzedzeń" (ang. bias) w danych
- 2. RODO i wyzwania dotyczące ochrony danych osobowych
- 3. Proces etykietowania danych jest kosztowny, trwa długo i jest trudny
- 4. Każdy człowiek ma inne ciało
- 5. Kosztowny i złożony prawnie proces wprowadzenia produktu na rynek
- 6. Brak zaufania ze strony środowiska medycznego
- Medycyna to ryzykowna dziedzina reperkusje spowodowane błędem modelu są bardziej dotkliwe

Odpowiedzialność

Załóżmy, że rozwiązanie oparte na sztucznej inteligencji dokonuje błędnej predykcji. Kto jest odpowiedzialny za ten błąd?

- 1. Ten, kto zapewnił dane do trenowania algorytmu?
- 2. Autor modelu?
- 3. Autor produktu?
- 4. Właściciel praw autorskich produktu?
- 5. Lekarz stosujący model?
- 6. Jednostka w której lekarz pracuje?
- 7. Pacjent?

Warsztaty - wykrywanie ryzyka udaru

Stworzenie środowiska:

- Wejdź w link: https://colab.research.google.com
- Jeśli nie jesteś zalogowany na koncie google zaloguj się!
- Otwórz zakładkę GitHub i wklej podany adres. Następnie otwórz notebook:
 https://github.com/mcszk/uczenie-maszynowe-w-medycynie/blob/main/PoweR x deepsense ai.ipynb

Warsztaty - wykrywanie ryzyka udaru

 Po otwarciu notebooka, utwórz kopię na swoim Dysku Google, żeby móc zapisywać wprowadzone przez siebie zmiany:

- Nie musimy normalizować danych
- W zasadzie potrzebujemy tylko, żeby dane były w dobrej kolejności, nie interesują nas konkretne wartości
- Stosując je do regresji, nie możemy dokonać predykcji wartości spoza zbioru treningowego

Bagging

Bagging

initial dataset

L bootstrap samples

weak learners fitted on each bootstrap sample

ensemble model (kind of average of the weak learners)

Las losowy

Las losowy

Dużo drzew decyzyjnych

- każde drzewo widzi podzbiór cech
- drzewa są ustalonej głębokości
- każde drzewo głosuje

Zalety

- obserwacje odstające nie są problemem
- stosowane do regresji i klasyfikacji
- nie musimy przetwarzać danych

Wady

- nie może dokonywać predykcji spoza zbioru treningowego
- nieużyteczne dla szeregów czasowych

Las losowy

initial dataset

bootstrap samples + selected features deep trees fitted on each bootstrap sample and considering only selected features

random forest (kind of average of the trees)

Im więcej drzew tym lepiej?

Im więcej drzew tym lepiej?

Boosting

Boosting

train a weak model and aggregate it to the ensemble model

update the training dataset (values or weights) based on the current ensemble model results

XGBoost

- szybki i dobry oryginalnie napisany w C++, szybszy niż inne metody oparte o tzw. ensembling
- świetnie się spisuje mnóstwo wygranych konkursów na Kaggle,
- mnóstwo sposobów tuningu walidacja krzyżowa, regularyzacja, parametry drzew etc.

Im więcej drzew tym lepiej?

- Więcej drzew lepsze dopasowanie do danych treningowych.
- Za dużo drzew przeuczenie!
- Liczba drzew jest określana przez hiperparametr.

Im więcej drzew tym lepiej?

- Za dużo drz
- Liczba drzew hiperparamet

Kontakt

Formularz kontaktowy: https://lnkd.in/dBSg-gzQ

Program stażowy: https://deepsense.ai/intern/

Dziękujemy!

deepsense.ai Sp. z o.o. Al. Jerozolimskie 162A

02-342 Warsaw Poland

deepsense.ai, Inc. 2100 Geng Road, Suite 210 Palo Alto, CA 94303 United States of America

Contact us:

Maciej Domagała maciej.domagala@deepsense.ai

Adam Maciaszek adam.maciaszek@deepsense.ai

Our offer contact@deepsense.ai

Media relations & marketing media@deepsense.ai