# Chapter 1 (AEPV)

DJM, Revised: NAK
22 January 2019

# The Linear Model

In a purely vector/matrix form, the linear model can be written as:

$$y = \underline{X}\beta + \underline{\epsilon}$$

- $y = [y_i]$  is an  $n \times 1$  vector of the observed responses.
- $\underline{X} = [x_{ij}]$  is the  $n \times p$  'design matrix'. Column  $j = 1, \ldots, p$  is the observed values of the  $j^{\text{th}}$  'predictor' variable. Each row is the set of observed values of all p 'predictor' variables.
- $\beta = [\beta_j]$  is the  $p \times 1$  vector of the p parameters or coefficients associated with each predictor variable.
- $\underline{\epsilon}$  is the  $n \times 1$  error vector.

If we write  $\underline{x}_i^{\top}$  as the  $i^{\text{th}}$  row of  $\underline{X}$ , we can look at the model in terms of individual y observations.

$$y_i = \underline{x}_i^{\top} \beta + \epsilon_i$$

- 1. What are all of these things?
- 2. What is the mean of  $y_i$ ?
- 3. What is the distribution of  $\epsilon_i$ ?

#### Simulating The Model

$$y_i = \underline{x}_i^{\top} \underline{\beta} + \epsilon_i$$

We can break down the model in to two components:

- a deterministic component
- a random component

This gives us the form for how we could picture the data produced by the system we try to model.

```
m=50

# Need x values
x <- rnorm(n, 33, 5) #n, mu, sigma

#need a value for coefficients.
beta <- c(300, -5) # don't forget the y-intercept.

# Create the design matrix
X <- cbind(1, x) # Pastes 'columns' side-by-side together. Why the '1'?

# Deterministic portion
mu_y <- X%*%beta

# Going to create side-by-side plots</pre>
```

```
opar <- par() # save current R settings
par(mfrow = c(1,2), mar = c(3,3,3,1)) # Change plot() grid, and margins

plot(x, mu_y, main = "Deterministic Portion")

# Introducing error
err <- rnorm(length(x), 0, 20)

y <- mu_y + err

plot(x, y, main = "Introducing Randomness", col = 3)
abline(coef = beta)</pre>
```

# **Deterministic Portion**

# **Introducing Randomness**





```
dev.off() # This turns off the graphic device and resets par()
```

```
## null device
## 1
```

What needs to be changed here if we want to simulate a multiple regression situation?

Will this work?

```
# Need SOMETHING for X
X <- cbind(1, rnorm(n, 37, 5), rnorm(n, 82, 20), rnorm(n, 2.52, .5))
# Parameter vector
beta <- c(-10, 1.5, -3, 5.2)</pre>
```

# How do we estimate $\beta$ ?

- 1. Ordinary least squares (OLS).
- 2. Maximum likelihood.
- 3. Do something more creative.

### Method 1. OLS

Suppose I want to find an estimator  $\widehat{\beta}$  which makes small errors on my data.

I measure errors with the difference between predictions  $\underline{X}\widehat{\beta}$  and the responses  $\underline{y}$ .

I don't care if the differences are positive or negative, so I try to measure the total error with

$$\sum_{i=1}^{n} \left| y_i - \underline{x}_i^{\top} \widehat{\underline{\beta}} \right|.$$

This is fine, but hard to minimize (what is the derivative of  $|\cdot|$ ?)

So I use

$$\sum_{i=1}^{n} (y_i - \underline{x}_i^{\top} \widehat{\beta})^2.$$

#### **OLS** solution

We write this as

$$\widehat{\underline{\beta}} = \arg\min_{\underline{\beta}} \sum_{i=1}^{n} (y_i - \underline{x}_i^{\top} \underline{\beta})^2.$$

"Find the  $\beta$  which minimizes the sum of squared errors."

Note that this is the same as

$$\widehat{\underline{\beta}} = \arg\min_{\underline{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \underline{x}_i^{\top} \underline{\beta})^2.$$

"Find the beta which minimizes the mean squared error."

#### Optimize = Calculus

We differentiate and set to zero

$$\frac{\partial}{\partial \underline{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \underline{x}_i^{\top} \underline{\beta})^2$$

$$= \frac{2}{n} \sum_{i=1}^{n} \underline{x}_i (y_i - \underline{x}_i^{\top} \underline{\beta})$$

$$= \frac{2}{n} \sum_{i=1}^{n} -\underline{x}_i \underline{x}_i^{\top} \underline{\beta} + \underline{x}_i y_i$$

$$0 \equiv \sum_{i=1}^{n} -\underline{x}_i \underline{x}_i^{\top} \underline{\beta} + \underline{x}_i y_i$$

$$\Rightarrow \sum_{i=1}^{n} \underline{x}_i \underline{x}_i^{\top} \underline{\beta} = \sum_{i=1}^{n} \underline{x}_i y_i$$

$$\Rightarrow \underline{\beta} = \left(\sum_{i=1}^{n} \underline{x}_i \underline{x}_i^{\top}\right)^{-1} \sum_{i=1}^{n} \underline{x}_i y_i$$

#### Matrix OLS Solution

Very often, it is said that the OLS solution is:

$$\widehat{\beta} = (X^{\top} X)^{-1} X^{\top} Y.$$

A more general solution is the following:

$$\widehat{\beta} = \underline{X}^{-}y + (\underline{I} - \underline{X}^{-}\underline{X})\underline{h}$$

- Here  $X^-$  is the Moore-Penrose Generalized Inverse.
- It is used when all columns of X are not linearly independent.
- This usually arises in 'Effects Model' representations of Analysis of Variance models.

### Method 2: Maximum Likelihood Estimation, MLE

Method 1 didn't use anything about the distribution of  $\epsilon$ .

But if we know that  $\epsilon$  has a normal distribution, we can write down the joint distribution of  $Y = (y_1, \dots, y_n)$ :

$$f_Y(y; \underline{\beta}) = \prod_{i=1}^n f_{y_i; \underline{\beta}}(y_i)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_i - \underline{x}_i^{\top} \underline{\beta})^2\right)$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \underline{x}_i^{\top} \underline{\beta})^2\right)$$

We initially learn to think of  $f_Y$  as a function of y with  $\beta$  fixed:

- 1. If we integrate over y from  $-\infty$  to  $\infty$ , it's 1.
- 2. If we want the probability of (a, b), we integrate from a to b.
- 3. etc.

#### Likelihood Functions

Instead, think of it as a function of  $\beta$ .

We call this "the likelihood" of beta:  $\mathcal{L}(\beta)$ .

Given some data, we can evaluate the likelihood for any value of  $\beta$  (assuming  $\sigma$  is known).

It won't integrate to 1 over  $\beta$ .

But it is "convex", meaning we can maximize it (the second derivative wrt  $\beta$  is everywhere negative).

#### Another Round of Optimization: Log Likelihood Functions

The derivative of  $L(\beta)$  tractable but a pain to work with. (Why is it so bad?)

- If we're trying to maximize over  $\underline{\beta}$ , we can take the log of  $L(\underline{\beta})$ , and maximize over the log function instead
- We will get the same solution for  $\beta$ . Why?
- It will be easier too. Again... Why?

$$\mathcal{L}(\underline{\beta}) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \underline{x}_i^{\top} \underline{\beta})^2\right)$$
$$\ell(\underline{\beta}) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \underline{x}_i^{\top} \underline{\beta})^2$$

But we can ignore constants (assume sigma is constant for simplicity), so this gives

$$\widehat{\underline{\beta}} = \arg\max_{\underline{\beta}} - \sum_{i=1}^{n} (y_i - \underline{x}_i^{\top} \underline{\beta})^2$$

The same as before!

#### Other Methods

#### Weighted Least Squares (Make OLS More Complex)

- OLS treats each observation equally.
- Some observations may be more reliable than others for different reasons.
- We can weight each  $i^{th}$  observation by a 'weight',  $w_i$ .

$$\widehat{\underline{\beta}} = \arg_{\underline{\beta}} \min \sum_{i=1}^{n} w_i (y_i - \underline{x}_i^{\top} \underline{\beta})^2$$

#### Options Beyond "Least Squares"

In general, we want to minimize some form of the Sum of Squared Error (SSE).

SSE is just one of what are referred to as **Loss Functions**.

Loss functions are functions that measure the cost of a predicted value  $\hat{y}_i$  when it is compared to the observed value  $y_i$ .

 $L(y_i, \widehat{y}_i) =$ 

- $(y_i \widehat{y}_i)^2$
- $|y_i \widehat{y}_i|$   $I(y_i \neq \widehat{y}_i)$
- And many more depending on the problem at hand.

What ever the loss function is, we seek to minimize it across the sample.

# Mean Square Error (MSE): The $L_2$ Loss

Forget about the linear model. We can get more general.

Suppose we think that there is **some** function which relates y and x.

Let's call this function g for the moment:  $Y = g(X) + \epsilon$ 

How do we estimate q?

What is g?

### Minimizing MSE

Let's try to minimize the **expected** sum of squared errors (MSE)

$$\begin{split} \mathbb{E}\left[(Y - g(X))^2\right] &= \mathbb{E}\left[\mathbb{E}\left[(Y - g(X))^2 \mid X\right]\right] \\ &= \mathbb{E}\left[\operatorname{Var}\left[Y \mid X\right] + \mathbb{E}\left[(Y - g(X)) \mid X\right]^2\right] \\ &= \mathbb{E}\left[\operatorname{Var}\left[Y \mid X\right]\right] + \mathbb{E}\left[\mathbb{E}\left[(Y - g(X)) \mid X\right]^2\right] \end{split}$$

The first part doesn't depend on g, it's constant, and we toss it.

To minimize the rest, take derivatives and set to 0.

$$\begin{split} 0 &= \frac{\partial}{\partial g} \mathbb{E} \left[ \mathbb{E} \left[ (Y - g(X))^2 \mid X \right] \right] \\ &= -\mathbb{E} \left[ \mathbb{E} \left[ 2(Y - g(X) \mid X) \right] \right] \\ &\Rightarrow 2\mathbb{E} \left[ g(X) \mid X \right] = 2\mathbb{E} \left[ Y \mid X \right] \\ &\Rightarrow g(X) = \mathbb{E} \left[ Y \mid X \right] \end{split}$$

#### The regression function

We call this solution:

$$\mu(X) = \mathbb{E}[Y \mid X]$$

#### the regression function.

If we assume that  $\mu(x) = \mathbb{E}[Y \mid X = x] = x^{\top}\underline{\beta}$ , then we get back exactly OLS.

But why should we assume  $\mu(x) = x^{\top} \beta$ ?

#### **Estimating The Regression Function**

In mathematics:  $\mu(x) = \mathbb{E}[Y \mid X = x].$ 

In words: Regression is really about estimating the mean.

- 1. If  $Y \sim N(\mu, 1)$ , our best guess for a **new** Y is  $\mu$ .
- 2. For regression, we let the mean  $(\mu)$  depend on X.
- 3. Think of  $Y \sim N(\mu(X), 1)$ , then conditional on X = x, our best guess for a **new** Y is  $\mu(x)$  [whatever this function  $\mu$  is]

#### Causality

For any two variables Y and X, we can **always** write

$$Y \mid X = \mu(X) + \eta(X)$$

such that  $\mathbb{E}[\eta(X)] = 0$ .

- Suppose,  $\mu(X) = \mu_0$  (constant in X), are Y and X independent?
- Suppose Y and X are independent, is  $\mu(X) = \mu_0$ ?

# Previews of future chapters

#### Linear smoothers

What is a linear smoother?

- 1. Suppose I observe  $y_1, \ldots, y_n$ .
- 2. A linear smoother is any **prediction function** that's linear in y.
  - Linear functions of y are simply premultiplications by a matrix, i.e.  $\hat{y} = \underline{W}y$  for any matrix  $\underline{W}$ .
- 3. Examples:
  - $\overline{y} = \frac{1}{n} \sum y_i = \frac{1}{n} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \underline{y}$
  - OLS Regression:  $\hat{y} = \underline{X}\hat{\beta} = X(\underline{X'X})^{-1}\underline{X'y}$
  - You will see many other smoothers in this class

#### k-nearest neighbors (kNN)

(We will see **smoothers** in more detail in Ch. 4)

- 1. For kNN, consider a particular pair  $(Y_i, X_i)$
- 2. Find the k covariates  $X_j$  which are closest to  $X_i$
- 3. Predict  $Y_i$  with the average of those  $X_i$ 's
- 4. This turns out to be a linear smoother
- How would you specify W?

#### Kernels

(Again, more info in Ch. 4)

Kernel Regression is a linear smoothing technique that is similar in nature to kNN.

First, the definition of a "kernel" function, K(u).

- 1.  $K(u) \ge 0$
- 2.  $\int uK(u) du = 0$
- 3.  $0 < \int u^2 K(u) du < \infty$

Usually, it's a density function with a finite variance and mean of 0.

To predict at a point x we look at an average the of the  $y_i$  centered around x, like kNN.

However, we do not restrict ourselves to estimating the mean with a limited number of observations.

We use a weighted average where the weight of a  $y_i$  is determined by its horizontal distance from the point x via the kernel K.

$$\frac{1}{\sum_{i=1}^{n} K(\frac{x-x_i}{h})} \sum_{i=1}^{n} K(\frac{x-x_i}{h}) y_i$$

