

Uma Datar, Sarah Lozina, Amelia Klaus

Introduction

Capital Bikeshare or Lyft app to

scan its QR code.

- 2 year historical log of daily data from the Capital Bikeshare system in Washington D.C.
- We want to analyze what factors contribute to the most bikes being rented out

Bikeshare docking station. When

the lock-in light turns green, you're all set.

The Variables

- Our Y variable is the **count of total rental bikes**, including casual and registered users
- Our X (independent) variables are:
 - Dteday (**Date**)
 - **Season** (1: winter, 2: spring, 3: summer, 4: fall)
 - Year (0: 2011, 1: 2012)
 - **Holiday** (0: not a holiday, 1: holiday)
 - **Weekday** (O: Sunday, 1: Monday, 2: Tuesday, 3: Wednesday, 4: Thursday, 5: Friday, 6: Saturday)
 - **Workingday** (0: otherwise, 1: weekend or holiday)
 - **Weathersit** (1: Clear, few clouds, partly cloudy, 2: mist and cloudy, 3: light snow or rain, 4: heavy rain or ice or thunderstorm or snow and fog)
 - **Temp** (Normalized temperature in Celsius)
 - **Atemp** (Normalized feels like temperature in Celsius)
 - **Hum** (Normalized humidity)
 - Windspeed (Normalized wind speed)

Collect Sample Data

instant ‡	dteday [‡]	season ÷	yr ÷	mnth ‡	holiday [‡]	weekday [‡]	workingday [‡]	weathersit *	temp ‡	atemp =	hum ‡	windspeed [‡]	casual =	registered ÷	cnt ‡
1	2011-01-01	1	0	1	0	6	0	2	0.3441670	0.3636250	0.805833	0.1604460	331	654	985
2	2011-01-02	1	0	1	0	0	0	2	0.3634780	0.3537390	0.696087	0.2485390	131	670	801
3	2011-01-03	1	0	1	0	1	1	1	0.1963640	0.1894050	0.437273	0.2483090	120	1229	1349
4	2011-01-04	1	0	1	0	2	1	1	0.2000000	0.2121220	0.590435	0.1602960	108	1454	1562
5	2011-01-05	1	0	1	0	3	1	1	0.2269570	0.2292700	0.436957	0.1869000	82	1518	1600
6	2011-01-06	1	0	1	0	4	1	1	0.2043480	0.2332090	0.518261	0.0895652	88	1518	1606
7	2011-01-07	1	0	1	0	5	1	2	0.1965220	0.2088390	0.498696	0.1687260	148	1362	1510
8	2011-01-08	1	0	1	0	6	0	2	0.1650000	0.1622540	0.535833	0.2668040	68	891	959
9	2011-01-09	1	0	1	0	0	0	1	0.1383330	0.1161750	0.434167	0.3619500	54	768	822
10	2011-01-10	1	0	1	0	1	1	1	0.1508330	0.1508880	0.482917	0.2232670	41	1280	1321
11	2011-01-11	1	0	1	0	2	1	2	0.1690910	0.1914640	0.686364	0.1221320	43	1220	1263
12	2011-01-12	1	0	1	0	3	1	1	0.1727270	0.1604730	0.599545	0.3046270	25	1137	1162
13	2011-01-13	1	0	1	0	4	1	1	0.1650000	0.1508830	0.470417	0.3010000	38	1368	1406
14	2011-01-14	1	0	1	0	5	1	1	0.1608700	0.1884130	0.537826	0.1265480	54	1367	1421
15	2011-01-15	1	0	1	0	6	0	2	0.2333330	0.2481120	0.498750	0.1579630	222	1026	1248

For example: On Saturday January 1st, 2011 it was misty and cloudy with 985 total users!

> range(day\$cnt) [1] 22 8714

Preliminary Analysis

> mean(day\$cnt)
[1] 4504.349

First Order Linear Model

Model 1 Global F-Test Adj R² = 0.7972 Standard Error = 872.4 Model 1: Full first order model with all terms included.

> vif(bikemodel1)

Model 2: First order model with multicollinearity resolved (temp removed)

Model 3: First order model from all-possible-regression selection (removed month and

hum windspeed

1.199259

working day).

```
> summary(bikemodel1)
Call:
lm(formula = cnt ~ season + yr + mnth + holiday + weekday + workingday +
   weathersit + temp + atemp + hum + windspeed, data = day)
Residuals:
             10 Median
                  49.5 546.2 2946.4
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1469.00
              509.78
             2040.70
              -38.98
holiday
             -518.99
weekdav
               69.06
workingday
             120.36
            -610.99
weathersit
            2028.92
                        1403.67
            3573.27
            -1018.86
windspeed
            -2557.57
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 872.4 on 719 degrees of freedom
Multiple R-squared: 0.8002,
                             Adjusted R-squared: 0.7972
```

F-statistic: 261.9 on 11 and 719 DF, p-value: < 2.2e-16

```
season
                 yr
                                    holiday
                                                 weekday workingday weathersit
                                                                                                    atemp
          1.020253
                                               1.024076 1.076392 1.748741 63.321299 64.343361
                       3.333672
                                   1.083126
                                       All Possible Regression
R-Square
Adi, R-Square
                                                 12300 -
                                                  12000 -
```

season yr holiday weekday weathersit atemp hum windspeed

8

Final First Order Linear Model

 \hat{Y} = 1467.57 + 407.23(season) + 2038.35(yr) - 614.59(holiday) + 69.21(weekday) - 592.12(weathersit) + 5931.29(atemp) - 1132.22(hum) - 2449.82(windspeed)

```
Call:
lm(formula = cnt \sim season + yr + holiday + weekday + weathersit +
    atemp + hum + windspeed, data = day)
Residuals:
    Min
            10 Median
-4138.0 -425.5
                  73.3
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1467.57
                        228.77 6.415 2.55e-10 ***
             407.23
                         31.91 12.762 < 2e-16 ***
season
            2038.35
                         65.50 31.121 < 2e-16 ***
holiday
            -614.59
                        195.40 -3.145 0.001728 **
              69.21
                         16.35 4.234 2.60e-05 ***
weekday
weathersit -592.12
                         78.49 -7.544 1.37e-13 ***
            5931.29
                        219.28 27.048 < 2e-16 ***
atemp
            -1132.22
hum
                        313.36 -3.613 0.000323 ***
           -2449.82
                        452.25 -5.417 8.27e-08 ***
windspeed
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 876.8 on 722 degrees of freedom
Multiple R-squared: 0.7974, Adjusted R-squared: 0.7952
F-statistic: 355.2 on 8 and 722 DF. p-value: < 2.2e-16
```


Second Order Linear Model

> summary(bikemodel6)

Call:

 $lm(formula = cnt \sim season + yr + holiday + weekday + weathersit + atemp + hum + windspeed + hum * atemp, data = day)$

Residuals:

Min 1Q Median 3Q Max -4124.1 -442.0 76.7 547.3 2804.9

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1974.16 480.20 4.111 4.39e-05 *** 407.93 31.91 12.785 < 2e-16 *** season yr 2041.19 65.52 31.154 < 2e-16 *** holiday -625.51 195.56 -3.199 0.00144 ** 70.24 weekday 16.36 4.292 2.01e-05 *** weathersit -588.48 78.52 -7.494 1.96e-13 *** 4782.13 atemp 982.57 4.867 1.39e-06 *** 786.30 -2.540 0.01128 * hum -1997.51 windspeed -2491.53 453.45 -5.495 5.43e-08 *** 1922.16 1602.09 1.200 0.23062 atemp:hum Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 876.5 on 721 degrees of freedom Multiple R-squared: 0.7978, Adjusted R-squared: 0.7953 F-statistic: 316.1 on 9 and 721 DF, p-value: < 2.2e-16 Playing around with second order terms

Model 4: Adding only curvilinear terms with no interactions.

Model 5: Model with curvilinear terms and one interaction.

Model 6: Created model with just an interaction term.

Final Second Order Linear Model

 $\hat{Y} = -3302.5 + 328.34(season) + 1925.87(yr) - 619.45(holiday) + 67.14(weekday) - 447.46(weathersit) + 20445.12(atemp) - 16785.60(atemp^2) + 4241.07(hum) - 6462.92(hum^2) + 3968.87(windspeed) - 9531.22(windspeed^2) + 3861.96(atemp*hum) - 5815.16(atemp*windspeed)$

```
> summary(bikemodel7)
Call:
lm(formula = cnt \sim season + yr + holiday + weekday + weathersit +
   atemp + I(atemp^2) + hum + I(hum^2) + windspeed + I(windspeed^2) +
   hum * atemp + atemp * windspeed, data = day)
Residuals:
   Min
            10 Median
                                   Max
-3886.1 -425.2
                  27.3
                         494.4 2750.5
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                -3302.57
                             722.32 -4.572 5.69e-06 ***
                  328.34
season
                              28.69 11.445 < 2e-16 ***
yr
                 1925.87
                              58.23 33.073 < 2e-16 ***
holiday
                 -619.45
                             172.04 -3.601 0.000339 ***
weekday
                   67.14
                              14.37 4.672 3.57e-06 ***
weathersit
                 -447.46
                              73.85 -6.059 2.21e-09 ***
                20445.12
                            1621.76 12.607 < 2e-16 ***
atemp
                -16785.60
I(atemp^2)
                            1193.16 -14.068 < 2e-16 ***
hum
                 4241.07
                            1474.33 2.877 0.004139 **
                -6462.92
                            1134.53 -5.697 1.78e-08 ***
I(hum^2)
windspeed
                 3968.87
                            2207.10
                                    1.798 0.072562 .
                -9531.22
                            3571.38 -2.669 0.007785 **
I(windspeed^2)
                 3861.96
                            1438.46
                                    2.685 0.007425 **
atemp:hum
atemp:windspeed -5816.16
                            2708.82 -2.147 0.032119 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 769.2 on 717 degrees of freedom
Multiple R-squared: 0.8451, Adjusted R-squared: 0.8423
F-statistic: 301 on 13 and 717 DF, p-value: < 2.2e-16
```

Residual Analysis

Nested F-Test

- Complete Model: Second order model with curvilinear and interaction terms.
- **Reduced Model:** Final first order model

 H_0 : $\beta_9 = \beta_{10} = \beta_{11} = \beta_{12} = \beta_{13} = 0$ (the true value of all coefficients is equal to 0) H_A : at least one β_i is nonzero i = 9, 10, 11, 12, 13

P-value $< 2.2 \times 10^{-16}$

Reject H_o and conclude at least one coefficient is nonzero, so we choose the complete model

Predictions

Prediction: More users on Uma (September 10th) and Amelia's (August 3rd) birthdays than Sarah's (December 19th) in 2012

- Assigned arbitrary values for the weather on those dates
- Created a dataframe for each birthday

Conclusions + Limitations

Conclusions

- The second order model performed better than the first order model
- This model is useful for predicting the number of rented out bikes for a given day

Limitations + Future Directions

- Lot of variables, did not create a complete second order model
- Residual shape could be improved, but pretty homoscedastic

Coefficient of Variation:

```
> (100 * 769.2)/mean(day$cnt)
[1] 17.07683
```

This is not < 10%, therefore the prediction intervals for count of users generated by the model may be deemed too wide to be of practical use. This model did have the smallest s however.

THANK YOU 🎉 🤤

