Devoir surveillé n° 3 : corrigé

SOLUTION 1.

- 1. On rappelle que $\cos(\arccos x) = x$ pour tout $x \in [-1, 1]$.
 - ▶ Pour tout $x \in [-1, 1]$, $T_0(x) = \cos(0) = 1$.
 - ▶ Pour tout $x \in [-1, 1]$, $T_1(x) = \cos(\arccos(x)) = x$.
 - ▶ Pour tout $x \in [-1, 1]$, $T_2(x) = 2\cos^2(\arccos(x)) 1 = 2x^2 1$.

2.

$$\begin{split} T_n(0) &= \cos\left(n\frac{\pi}{2}\right) = \begin{cases} 0 & \text{si n est impair} \\ (-1)^{\frac{n}{2}} & \text{si n est pair} \end{cases} \\ T_n(1) &= \cos(0) = 1 \\ T_n(-1) &= \arccos(n\pi) = (-1)^n \end{split}$$

- 3. a. Soit $x \in [-1, 1]$. D'une part, $\cos(\arccos(-x)) = -x$. D'autre part, $\cos(\pi \arccos(x)) = -\cos(\arccos(x)) = -x$. Ainsi $\cos(\arccos(-x)) = \cos(\pi \arccos(x))$.
 - De plus, $\arccos(-x) \in [0,\pi]$ et $\arccos(x) \in [0,\pi]$ donc $\pi \arccos(x) \in [0,\pi]$. Les réels $\arccos(-x)$ et $\pi \arccos(x)$ appartiennent tous deux à l'intervalle $[0,\pi]$ et ont la même image par cos qui est injective sur $[0,\pi]$ car strictement monotone sur cet intervalle. On en déduit que $\arccos(-x) = \pi \arccos(x)$.
 - **b.** Pour tout $x \in [-1, 1]$,

$$\begin{split} T_n(-x) &= \cos(n \arccos(-x)) \\ &= \cos(n(\pi - \arccos(x))) \qquad \text{d'après la question précédente} \\ &= \cos(n\pi - n \arccos(x)) \\ &= (-1)^n \cos(-n \arccos(x)) \\ &= (-1)^n \cos(n \arccos(x)) \qquad \text{par parité de cos} \\ &= (-1)^n T_n(x) \end{split}$$

On en déduit que T_n a la parité de n.

- 4. a. Pour $t \in [0,\pi]$, $\arccos(\cos(t)) = t$ donc $T_n(\cos(t)) \cos(nt) = \cos(nt) \cos(nt) = 0$. Autrement dit, g_n est nulle sur $[0,\pi]$.
 - **b.** g_n est paire car cos est paire donc g_n est également nulle sur $[-\pi, \pi]$. De plus, g_n est 2π -périodique par 2π -périodicité de cos donc g_n est nulle sur \mathbb{R} . On en déduit le résultat demandé.
- **5.** Soit $x \in [-1, 1]$. Posons $t = \arccos x$ de sorte que $x = \cos t$. Alors

$$T_m \circ T_n(x) = T_m(T_n(\cos t)) = T_m(\cos(nt)) = \cos(mnt) = T_{mn}(\cos t) = T_{mn}(x)$$

d'après la question 4.b.

6. a. D'après la question **4.b**, pour tout $t \in \mathbb{R}$

$$\begin{split} T_{n+2}(\cos(t)) - 2\cos(t)T_{n+1}(\cos(t)) + T_n(\cos t) &= \cos((n+2)t) - 2\cos(t)\cos((n+1)t) + \cos(nt) \\ &= \cos((n+2)t) + \cos(nt) - 2\cos(t)\cos((n+1)t) \\ &= 2\cos\left(\frac{(n+2)t + nt}{2}\right)\cos\left(\frac{(n+2)t - nt}{2}\right) - 2\cos(t)\cos((n+1)t) \\ &= 0 \end{split}$$

Soit $x \in [-1, 1]$. Posons $t = \arccos x$ de sorte que $x = \cos t$. Il suffit alors d'appliquer la relation précédente pour obtenir

$$T_{n+2}(x) - 2xT_{n+1}(x) + T_n(x) = 0$$

b. Pour tout $x \in [-1, 1]$,

$$\begin{split} T_3(x) &= 2xT_2(x) - T_1(x) = 2x(2x^2 - 1) - x = 4x^3 - 3x \\ T_4(x) &= 2xT_3(x) - T_2(x) = 2x(4x^3 - 3x) - (2x^2 - 1) = 8x^4 - 8x^2 + 1 \end{split}$$

7. **a.** T_0 et T_1 sont clairement de classe \mathcal{C}^{∞} sur [-1,1]. Supposons T_n et T_{n+1} de classe \mathcal{C}^{∞} sur [-1,1] pour un certain $n \in \mathbb{N}$. Puisque $x \mapsto x$ est également de classe \mathcal{C}^{∞} sur [-1,1], $x \mapsto 2xT_{n+1}(x) - T_n(x)$ autrement dit T_{n+2} est de classe \mathcal{C}^{∞} sur [-1,1]. Par récurrence double, T_n est de classe \mathcal{C}^{∞} sur [-1,1] pour tout $n \in \mathbb{N}$.

Remarque. L'expression définissant T_n permet seulement de montrer que T_n est de classe \mathcal{C}^{∞} sur]-1,1[puisque arccos n'est de classe \mathcal{C}^{∞} que sur]-1,1[et non sur [-1,1].

b. On sait d'après la question **4.b** que pour tout $t \in \mathbb{R}$,

$$T_n(\cos(t)) = \cos(nt)$$

En dérivant une première fois cette relation, on obtient pour tout $t \in \mathbb{R}$,

$$-\sin(t)T'_n(\cos(t)) = -n\sin(nt)$$

En dérivant une seconde fois, on obtient pour tout $t \in \mathbb{R}$,

$$-\cos(t)T_n'(\cos(t))+\sin^2(t)T_n''(\cos(t))=-n^2\cos(nt)$$

ou encore

$$\sin^2(t)T_n''(\cos(t)) - \cos(t)T_n'(\cos(t)) + n^2\cos(nt) = 0$$

ce qui, d'après la question 4.b s'écrit encore

$$\sin^2(t)T_n''(\cos(t)) - \cos(t)T_n'(\cos(t)) + n^2T_n(\cos t) = 0$$

On peut également dire que pour tout $t \in \mathbb{R}$,

$$(1-\cos^2(t))T_n''(\cos(t)) - \cos(t)T_n'(\cos(t)) + n^2T_n(\cos t) = 0$$

Soit $x \in [-1, 1]$. En posant $t = \arccos x$ de sorte que $x = \cos t$ et en appliquant la relation précédente, on obtient le résultat voulu.

8. a.

$$\begin{split} &T_n(x)=0\\ \iff \cos(n\arccos(x))=0\\ \iff n\arccos(x)\equiv\frac{\pi}{2}[\pi]\\ \iff \exists k\in\mathbb{Z},\ n\arccos x=\frac{\pi}{2}+k\pi\\ \iff \exists k\in\mathbb{Z},\ \arccos x=\frac{(2k+1)\pi}{2n}\\ \iff \exists k\in[0,n-1],\ \arccos x=\frac{(2k+1)\pi}{2n} \qquad \text{car arccos est à valeurs dans }[0,\pi]\\ \iff \exists k\in[0,n-1],\ x=\cos\left(\frac{(2k+1)\pi}{2n}\right) \qquad \cot\left(\frac{(2k+1)\pi}{2n}\right) \end{split}$$

L'équation $T_n(x)=0$ admet donc pour solutions les réels $\cos\left(\frac{(2k+1)\pi}{2n}\right)$ pour $k\in[0,n-1]$. Ces réels sont bien distincts deux à deux puisque $\frac{(2k+1)\pi}{2n}\in[0,\pi]$ pour tout $k\in[0,n-1]$ et que cos est injective sur $[0,\pi]$.

b. Puisque cos est à valeurs dans [-1,1], T_n l'est également. On cherche donc les réels $x \in [-1,1]$ tels que $T_n(x) = 1$ ou $T_n(x) = -1$.

$$\begin{split} &T_n(x) = 1 \text{ ou } T_n(x) = -1 \\ \iff &\cos(n\arccos(x)) = 1 \text{ ou } \cos(n\arccos x) = -1 \\ \iff &n\arccos(x) \equiv 0[\pi] \\ \iff &\exists k \in \mathbb{Z}, \ n\arccos x = k\pi \\ \iff &\exists k \in \mathbb{Z}, \ \arccos x = \frac{k\pi}{n} \\ \iff &\exists k \in [\![0,n]\!], \ \arccos x = \frac{k\pi}{n} \quad \text{ car arccos est à valeurs dans } [\![0,\pi]\!] \\ \iff &\exists k \in [\![0,n]\!], \ x = \cos\left(\frac{k\pi}{n}\right) \quad \text{ car } \frac{k\pi}{n} \in [\![0,\pi]\!] \text{ pour tout } k \in [\![0,n]\!] \end{split}$$

 $T_n \text{ admet donc ses extrema en les } \cos \frac{k\pi}{n} \text{ pour } k \in [\![0,n]\!].$

9. Pour tout $t \in \mathbb{R}$,

$$\mathsf{T}_n(\cos t) = \cos(nt) = \frac{1}{2} \left(e^{\mathrm{i}nt} + e^{-\mathrm{i}nt} \right) = \frac{1}{2} \left(\left(e^{\mathrm{i}t} \right)^n + \left(e^{-\mathrm{i}t} \right)^n \right) = \frac{1}{2} \left[(\cos(t) + i\sin(t))^n + (\cos(t) - i\sin(t))^n \right]$$

Soit $x \in [-1, 1]$. Posons $t = \arccos x$. La relation précédente donne

$$\mathsf{T}_n(\cos(\arccos x)) = \frac{1}{2} \left[(\cos(\arccos x) + \mathfrak{i} \sin(\arccos x))^n + (\cos(\arccos x) - \mathfrak{i} \sin(\arccos x))^n \right]$$

autrement dit

$$T_n(x) = \frac{1}{2} \left[\left(x + i\sqrt{1 - x^2} \right)^n + \left(x - i\sqrt{1 - x^2} \right)^n \right]$$

SOLUTION 2.

- 1. $F_0 = 1 \geqslant 0$ et $F_1 = 1 \geqslant 0$. Supposons $F_n \geqslant 0$ et $F_{n+1} \geqslant 0$ pour un certain $n \in \mathbb{N}$. Alors $F_{n+2} = F_n + F_{n+1} \geqslant 0$. Par récurrence double, $F_n \geqslant 0$ pour tout $n \in \mathbb{N}$. La suite (F_n) est donc positive.
- 2. Pour tout $n \in \mathbb{N}^*$, $F_{n+1} F_n = F_{n-1} \ge 0$ et $F_1 F_0 = 0 \ge 0$. Finalement, $F_{n+1} F_n \ge 0$ pour tout $n \in \mathbb{N}$, ce qui prouve la croissance de la suite (F_n) .
- 3. Puisque $F_2 = F_0 + F_1 = 2$, $F_0F_2 = 2 = F_1^2 + (-1)^0$. Supposons que $F_nF_{n+2} = F_{n+1}^2 + (-1)^n$ pour un certain $n \in \mathbb{N}$. Alors

$$\begin{split} F_{n+1}F_{n+3} &= F_{n+1}(F_{n+1} + F_{n+2}) \\ &= F_{n+1}^2 + F_{n+1}F_{n+2} \\ &= F_nF_{n+2} - (-1)^n + F_{n+1}F_{n+2} \\ &= F_{n+2}(F_n + F_{n+1}) + (-1)^{n+1} \\ &= F_{n+2}^2 + (-1)^{n+1} \end{split}$$

Par récurrence, $F_nF_{n+2}=F_{n+1}^2+(-1)^n$ pour tout $n\in\mathbb{N}.$

4. Soit $n \in \mathbb{N}$.

$$\begin{split} F_{2n+1}(F_{2n+2}+F_{2n+3}) &= F_{2n+1}F_{2n+2} + F_{2n+1}F_{2n+3} \\ &= F_{2n+1}F_{2n+2} + F_{2n+2}^2 + (-1)^{2n+1} \\ &= F_{2n+2}(F_{2n+1}+F_{2n+2}) - 1 \\ &= F_{2n+2}F_{2n+3} - 1 \end{split}$$
 d'après la question **3**

On en déduit que $F_{2n+1} = \frac{F_{2n+2}F_{2n+3} - 1}{F_{2n+2} + F_{2n+3}}$.

 $\begin{array}{l} \textbf{5. Soit } n \in \mathbb{N}. \ \text{Tout d'abord, } G_{2n+1} = \arctan\left(\frac{1}{F_{2n+1}}\right) \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[. \ \text{La suite } (F_n) \ \text{\'etant croissante, } F_{2n+2} \geqslant F_2 = 2 > 1 \\ \text{ et } F_{2n+3} \geqslant F_2 = 2 > 1 \ \text{donc } 0 \leqslant \frac{1}{F_{2n+2}} < 1 \ \text{et } 0 \leqslant \frac{1}{F_{2n+3}} < 1. \ \text{Par stricte croissance de arctan, } 0 \leqslant G_{2n+2} < \frac{\pi}{4} \ \text{et } 0 \leqslant G_{2n+3} < \frac{\pi}{4} \ \text{et a fortiori, } G_{2n+2} + G_{2n+3} \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[. \\ \text{Par ailleurs, } \tan(G_{2n+1}) = \frac{1}{F_{2n+1}} \ \text{et } \end{array}$

$$\begin{split} \tan(G_{2n+2}+G_{2n+3}) &= \frac{\tan(G_{2n+2}) + \tan(G_{2n+3})}{1 - \tan(G_{2n+2}) \tan(G_{2n+3})} \\ &= \frac{\frac{1}{F_{2n+2}} + \frac{1}{F_{2n+3}}}{1 - \frac{1}{F_{2n+2}} \cdot \frac{1}{F_{2n+3}}} \\ &= \frac{F_{2n+2} + F_{2n+3}}{F_{2n+2} F_{2n+3} - 1} \\ &= \frac{1}{F_{2n+1}} \qquad \text{d'après la question précédente} \\ &= \tan(G_{2n+1}) \end{split}$$

Puisque la fonction tan est injective sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[, G_{2n+1} = G_{2n+2} + G_{2n+3}]$.

6. D'après la question $\mathbf{5}$ $G_{2n}=G_{2n-1}-G_{2n+1}$ pour tout $n\in\mathbb{N}^*.$ Soit $n\in\mathbb{N}^*.$

$$\begin{split} \sum_{k=1}^{n} G_{2k} &= \sum_{k=1}^{n} G_{2k-1} - G_{2k+1} \\ &= G_1 - G_{2n+1} \quad \mathrm{par} \ \mathrm{t\acute{e}lescopage} \\ &= \arctan(1) - G_{2n+1} \\ &= \frac{\pi}{4} - G_{2n+1} \end{split}$$

On en déduit le résultat demandé.

SOLUTION 3.

- 1. Pour tout $x \in \mathbb{R}$, $ch(x) \ge 1 > 0$ et th est définie sur \mathbb{R} donc f est définie sur \mathbb{R} .
- 2. Le domaine de définition de \mathbb{R} est bien symétrique par rapport à 0. Il alors suffit d'utiliser le fait que ch est paire et que th est impaire.
- 3. ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. Comme $e \in [1, +\infty[$, e admet un unique antécédent par ch dans \mathbb{R}_+ . L'équation ch(x) = e admet donc une unique solution dans \mathbb{R}_+ .
- 4. On sait que ch est strictement croissante sur \mathbb{R}_+ . Ainsi, si $0 \le x < \alpha$, $\operatorname{ch}(x) < e$ et donc $\operatorname{ln}(\operatorname{ch}(x)) < 1$ par stricte croissance de ln. De même, si $x > \alpha$, $\operatorname{ch}(x) > e$ puis $\operatorname{ln}(\operatorname{ch} x) > 1$.

 Comme la fonction $x \mapsto \operatorname{ln}(\operatorname{ch} x)$ est paire, on a également $\operatorname{ln}(\operatorname{ch} x) < 1$ si $-\alpha < x \le 0$ et $\operatorname{ln}(\operatorname{ch} x) > 1$ si $x < -\alpha$. En résumé, si $|x| < \alpha$, $\operatorname{ln}(\operatorname{ch} x) < 1$ et si $|x| > \alpha$, $\operatorname{ln}(\operatorname{ch} x) > 1$.
- **5.** ch est dérivable sur \mathbb{R} à valeurs dans \mathbb{R}_+^* et ln est dérivable sur \mathbb{R}_+^* donc ln \circ ch est dérivable sur \mathbb{R} . Comme th est également dérivable sur \mathbb{R} , $x \mapsto \operatorname{th}(x) \ln(\operatorname{ch} x)$ est dérivable sur \mathbb{R} . Puisque $x \mapsto x$ est évidemment dérivable sur \mathbb{R} , f est dérivable sur \mathbb{R} .

De plus, pour tout $x \in \mathbb{R}$:

décroissante sur $[\mathfrak{a}, +\infty[$.

$$\begin{split} f'(x) &= 1 - \frac{\ln(\operatorname{ch}(x))}{\operatorname{ch}^2 x} - \operatorname{th}(x)^2 \\ &= \frac{1 - \ln(\operatorname{ch}(x))}{\operatorname{ch}^2 x} \end{split}$$

- 6. Comme $\frac{1}{\operatorname{ch}^2 x} > 0$ pour tout $x \in \mathbb{R}$, on en déduit que f'(x) est du signe de $1 \ln(\operatorname{ch}(x))$. D'après la question précédente, f'(x) < 0 pour |x| < a et f'(x) < 0 pour |x| > a.

 La fonction f est donc strictement décroissante sur $]-\infty, -a]$, strictement croissante sur [-a, a] puis strictement
- 7. Pour tout $x \in \mathbb{R}$:

$$\begin{split} \ln(\mathrm{ch}(x)) &= \ln\left(\frac{e^x + e^{-x}}{2}\right) \\ &= \ln(e^x) + \ln(1 + e^{-2x}) - \ln(2) \\ &= x - \ln(2) + \ln(1 + e^{-2x}) \end{split}$$

8. Pour tout $x \in \mathbb{R}$,

$$x(1 - th(x)) = \frac{2xe^{-2x}}{1 + e^{-2x}}$$

Par croissances comparées, on déduit que $\lim_{x\to +\infty} x(1-\operatorname{th}(x)) = 0$.

9. D'après une question précédente, pour tout $x \in \mathbb{R}$, on a :

$$\begin{split} f(x) &= x - \operatorname{th}(x) \ln(\operatorname{ch}(x)) \\ &= x - \operatorname{th}(x) [x - \ln(2) + \ln(1 + e^{-2x})] \\ &= \ln(2) \operatorname{th}(x) + x(1 - \operatorname{th}(x)) - \operatorname{th}(x) \ln(1 + e^{-2x}) \end{split}$$

Comme $\lim_{x \to +\infty} x(1 - \operatorname{th}(x)) = 0$ et $\lim_{x \to +\infty} \operatorname{th}(x) = 1$, on a :

$$\lim_{x \to +\infty} f(x) = \ln(2)$$

puis par imparité de f :

$$\lim_{x \to -\infty} f(x) = -\ln(2)$$

10. On déduit des questions précédentes l'allure du graphe de f :

SOLUTION 4.

1. f(z) est défini si et seulement si $e^z + e^{-z} \neq 0$. Or

$$e^z+e^{-z}=0\iff e^{2z}=-1\iff \exists k\in\mathbb{Z},\, 2z=(2k+1)\mathrm{i}\pi\iff \exists k\in\mathbb{Z},\, z=\mathrm{i}\frac{\pi}{2}+\mathrm{i}k\pi$$

Donc f(z) est défini pour $z \notin i\frac{\pi}{2} + i\pi\mathbb{Z}$.

2. f(z) = 0 équivaut à $e^z - e^{-z} = 0$. Or

$$e^z - e^{-z} = 0 \iff e^{2z} = 1 \iff \exists k \in \mathbb{Z}, 2z = 2ik\pi \iff \exists k \in \mathbb{Z}, z = ik\pi$$

L'ensemble des solutions est donc $i\pi\mathbb{Z}$.

3. Posons z = x + iy avec $(x, y) \in \mathbb{R}^2$.

$$\begin{aligned} |\tanh z| &< 1 \iff \left| e^z - e^{-z} \right|^2 < \left| e^z + e^{-z} \right|^2 \\ &\iff \left(e^z - e^{-z} \right) \overline{\left(e^z - e^{-z} \right)} < \left(e^z + e^{-z} \right) \overline{\left(e^z + e^{-z} \right)} \\ &\iff \left(e^z - e^{-z} \right) \left(e^{\overline{z}} - e^{-\overline{z}} \right) < \left(e^z + e^{-z} \right) \left(e^{\overline{z}} + e^{-\overline{z}} \right) \\ &\iff -e^{z - \overline{z}} - e^{\overline{z} - z} < e^{z - \overline{z}} + e^{\overline{z} - z} \\ &\iff e^{2iy} + e^{-2iy} > 0 \\ &\iff \cos(2y) > 0 \end{aligned}$$

$$\operatorname{Donc} \left\{ \begin{array}{l} |\operatorname{Im} z| < \frac{\pi}{2} \\ |\tanh z| < 1 \end{array} \right. \iff \left\{ \begin{array}{l} |y| < \frac{\pi}{2} \\ \cos(2y) > 0 \end{array} \right. \iff |y| < \frac{\pi}{4}.$$

- 4. Soit $z \in \Delta$. D'après la question précédente, |f(z)| < 1 i.e. $f(z) \in U$. Ainsi tout élément de Δ a pour image par f un élément de U, c'est-à-dire que $f(\Delta) \subset U$.
- 5. Existence : Puisque Z est non nul, Z possède des arguments. De plus, les arguments de Z étant égaux à un multiple de 2π près, il existe un argument θ de Z appartenant à $]-\pi,\pi]$. On ne peut avoir $\theta=\pi$ sans quoi Z serait un réel négatif. Considérons également le module r de Z, qui est strictement positif puisque Z est non nul. On peut alors poser $z = \ln r + i\theta$ de sorte que $e^z = Z$ et $\mathrm{Im}(z) = \theta \in]-\pi,\pi[$.

Unicité: Supposons qu'il existe deux complexes z et z' tels que $e^z = e^{z'} = Z$ et les réels $\operatorname{Im}(z)$ et $\operatorname{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[$. Puisque $e^z = e^{z'},$ il existe $k \in \mathbb{Z}$ tel que $z' = z + 2\mathrm{i}k\pi$. En partiulier, $\operatorname{Im}(z') - \operatorname{Im}(z) = 2k\pi$. Mais comme les réels $\operatorname{Im}(z)$ et $\operatorname{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[,-2\pi<\operatorname{Im}(z')-\operatorname{Im}(z)<2\pi,$ de sorte que -1 < k < 1. Puisque k est entier k est nul puis z' = z.

6. Remarquons que

$$\frac{1+u}{1-u} = \frac{(1+u)(1-\overline{u})}{|1-u|^2} = \frac{1-|u|^2+2i\operatorname{Im}(u)}{|1-u|^2}$$

On en déduit que si $\frac{1+u}{1-u} \in \mathbb{R}_-$, alors $1-|u|^2 \leqslant 0$ i.e. $|u| \geqslant 1$. Par contraposition, si $u \in U$, $\frac{1+u}{1-u} \notin \mathbb{R}_-$.

7. Montrons que tou élément de U admet un unique antécédent dans Δ . Soit $\mathfrak{u}\in \mathbb{U}$ et $z\in \mathbb{C}$. On a facilement $f(z)=\mathfrak{u}\iff e^{2z}=\frac{1+\mathfrak{u}}{1-\mathfrak{u}}$. D'après la question $\mathbf{6},\,\frac{1+\mathfrak{u}}{1-\mathfrak{u}}\notin\mathbb{R}_-$. D'après la question $\mathbf{5}$, cette équation admet une unique solution telle que $\mathrm{Im}(2z)\in]-\pi,\pi[$ i.e. $\mathrm{Im}(z)\in]-\frac{\pi}{2},\frac{\pi}{2}[$. Notons encore z cette solution. Comme on a également |f(z)|<1, la question $\mathbf{3}$ montre que $|\mathrm{Im}\,z|<\frac{\pi}{4}$ i.e. $z\in\Delta$. L'équation $f(z)=\mathfrak{u}$ admet donc une unique solution dans Δ

Puisqu'on a également montré que $f(\Delta) \subset U$, f réalise bien une bijection de Δ sur U.