

End-to-End Memory Networks on bAbi

Ekrem Guzelyel – Hasan Rizvi A20384767 A20374805

What do you see in these pictures?

Attention!

because, we don't need the clutter.

Attention!

Human brain doesn't have to render the full image.

Whereas the machines do? or do they?

Attention!

Embedding Layer Association

Attention is all you need.

$$w_t^c(i) = \operatorname{softmax}(\beta_t \cdot \operatorname{cosine}[\mathbf{k}_t, \mathbf{M}_t(i)]) = \frac{\exp(\beta_t \frac{\mathbf{k}_t \cdot \mathbf{M}_t(i)}{\|\mathbf{k}_t\| \cdot \|\mathbf{M}_t(i)\|})}{\sum_{j=1}^N \exp(\beta_t \frac{\mathbf{k}_t \cdot \mathbf{M}_t(j)}{\|\mathbf{k}_t\| \cdot \|\mathbf{M}_t(j)\|})}$$

Remember the animals? What are they doing?

Memory Networks

If you don't want to do the same mistake twice.

What is Memory?

Facebook Research - Weston Team

Towards AI Complete Question Answering: A Set of Prerequisite Toy Tasks

bAbI tasks

Single Layer

 $u = embedding_B(q)$

Memory Networks

 $u = embedding_B(q)$

Single Layer

$$p_i = softmax(u^T m_i).$$

Memory Networks

Single Layer

$$c_i = embedding_C(x_i)$$

$$o=\sum_i p_i c_i.$$

Single Layer Output

$$\hat{a} = softmax(W(o + u))$$

Single Layer

Memory Networks

Multi Layer (Hops) MemN2N

$$u^{k+1} = u^k + o^k.$$

Memory Networks

Multi Layer (Hops) Adjacent

Layer-wise

$$A^1 = A^2 = \dots = A^K \text{ and } C^1 = C^2 = \dots = C^K.$$

$$u^{k+1} = Hu^k + o^k.$$

- 1. Single Supporting Fact
- 7. Counting
- 16. Basic Induction
- 18. Size Reasoning

bAbI Examples

1 John travelled to the hallway.
2 Mary journeyed to the bathroom.
3 Where is John? hallway 1
4 Daniel went back to the bathroom.
5 John moved to the bedroom.
6 Where is Mary? bathroom 2
7 John went to the hallway.
8 Sandra journeyed to the kitchen.
9 Where is Sandra? kitchen 8

1 Sandra went to the garden.
2 Daniel journeyed to the bedroom.
3 Mary picked up the apple there.
4 Sandra got the milk there.
5 How many objects is Sandra carrying? one 4
6 Mary went to the kitchen.
7 Sandra discarded the milk.
8 How many objects is Sandra carrying? none 4
7

1 Lily is a frog.
2 Bernhard is a frog.
3 Bernhard is green.
4 Brian is a lion.
5 Brian is white.
6 Julius is a swan.
7 Julius is green.
8 Lily is green.
9 Greg is a swan.
10 What color is Greg? green 9 6 7

1 The box of chocolates fits inside the chest. 2 The box is bigger than the chest. 3 The box is bigger than the suitcase. 4 The suitcase fits inside the box. 5 The container is bigger than the box of chocolates. 6 Does the box fit in the box of chocolates? 1 2 no 7 Is the box of chocolates bigger than the box? no 1 2 8 Is the box bigger than the box of chocolates? yes 2 1 9 Does the box of chocolates fit in the box? 2 1 yes 10 Does the box fit in the box of chocolates? 1 2 no

	Baseline			MemN2N								
	Strongly						PE	1 hop	2 hops	3 hops	PE	PE LS
	Supervised	LSTM	MemNN			PE	LS	PE LS	PE LS	PE LS	LS RN	LW
Task	MemNN [22]	[22]	WSH	BoW	PE	LS	RN	joint	joint	joint	joint	joint
1: 1 supporting fact	0.0	50.0	0.1	0.6	0.1	0.2	0.0	0.8	0.0	0.1	0.0	0.1
2: 2 supporting facts	0.0	80.0	42.8	17.6	21.6	12.8	8.3	62.0	15.6	14.0	11.4	18.8
3: 3 supporting facts	0.0	80.0	76.4	71.0	64.2	58.8	40.3	76.9	31.6	33.1	21.9	31.7
4: 2 argument relations	0.0	39.0	40.3	32.0	3.8	11.6	2.8	22.8	2.2	5.7	13.4	17.5
5: 3 argument relations	2.0	30.0	16.3	18.3	14.1	15.7	13.1	11.0	13.4	14.8	14.4	12.9
6: yes/no questions	0.0	52.0	51.0	8.7	7.9	8.7	7.6	7.2	2.3	3.3	2.8	2.0
7: counting	15.0	51.0	36.1	23.5	21.6	20.3	17.3	15.9	25.4	17.9	18.3	10.1
8: lists/sets	9.0	55.0	37.8	11.4	12.6	12.7	10.0	13.2	11.7	10.1	9.3	6.1
9: simple negation	0.0	36.0	35.9	21.1	23.3	17.0	13.2	5.1	2.0	3.1	1.9	1.5
10: indefinite knowledge	2.0	56.0	68.7	22.8	17.4	18.6	15.1	10.6	5.0	6.6	6.5	2.6
11: basic coreference	0.0	38.0	30.0	4.1	4.3	0.0	0.9	8.4	1.2	0.9	0.3	3.3
12: conjunction	0.0	26.0	10.1	0.3	0.3	0.1	0.2	0.4	0.0	0.3	0.1	0.0
13: compound coreference	0.0	6.0	19.7	10.5	9.9	0.3	0.4	6.3	0.2	1.4	0.2	0.5
14: time reasoning	1.0	73.0	18.3	1.3	1.8	2.0	1.7	36.9	8.1	8.2	6.9	2.0
15: basic deduction	0.0	79.0	64.8	24.3	0.0	0.0	0.0	46.4	0.5	0.0	0.0	1.8
16: basic induction	0.0	77.0	50.5	52.0	52.1	1.6	1.3	47.4	51.3	3.5	2.7	51.0
17: positional reasoning	35.0	49.0	50.9	45.4	50.1	49.0	51.0	44.4	41.2	44.5	40.4	42.6
18: size reasoning	5.0	48.0	51.3	48.1	13.6	10.1	11.1	9.6	10.3	9.2	9.4	9.2
19: path finding	64.0	92.0	100.0	89.7	87.4	85.6	82.8	90.7	89.9	90.2	88.0	90.6
20: agent's motivation	0.0	9.0	3.6	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2
Mean error (%)	6.7	51.3	40.2	25.1	20.3	16.3	13.9	25.8	15.6	13.3	12.4	15.2
Failed tasks (err. $> 5\%$)	4	20	18	15	13	12	11	17	11	11	11	10
On 10k training data		C340379 00	202924-0040		907 (01)	1944 (1955)				500000000		19-19/19/A
Mean error (%)	3.2	36.4	39.2	15.4	9.4	7.2	6.6	24.5	10.9	7.9	7.5	11.0
Failed tasks (err. $> 5\%$)	2	16	17	9	6	4	4	16	7	6	6	6

Implemented the Paper Explanation

Train: 10000

Test: 1000

Used Keras

Losses

Adding LSTM/Dense

Result Orig.	Task 1	Task 7	Task 16	Task 18
MemNN	93% 98%	34%	92%	~92% 88%
MemN2N	94% 98%	36%	50%	~91%

Results

Adding LSTM/Dense

Task 1: 94% Acc

Task 7: 34% Acc

Results

Adding LSTM/Dense

Task 16: 49% Acc

Task 18: 92% Acc

Overall good results when combined with different layers.

Memory Networks is a new era.

THANKS!

Any questions?

You can find the full code @ github.com/Eguzelyel/MemN2N_QA github.com/hizvi/MemN2N

- 1. End-To-End Memory Networks by Sukhbaatar, Szlam, Weston, Fergus
- 2. Memory Networks by Weston, Chopra, Bordes
- 3. Towards AI Complete Question Answering: A Set of Prerequisite Toy Tasks by Weston, Border, Chopra
- 4. jhui.github.io/2017/03/15/Memory-network/
- 5. lilianweng.github.io/lil-log/2018/06/24/attention-attention. html