Project Three for Statistical Data Mining

Raymond Anthony Ford*

Due: 22 October 2018

Contents

1	PageRank	1
2	Anomaly Detection	9
	2.1 MCD	,
	2.2 iForest	4
	2.3 LOF	(
	2.4 Conclusion	(

1 PageRank

We first begin by translating the information contained in the graph for this problem into a link matrix.

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
##
## [1,]
            0
## [2,]
                  0
                        0
                                                0
## [3,]
                                                0
            0
                  0
                        0
                              1
## [4,]
                              0
                                                0
                  1
                        0
## [5,]
                  1
                        0
                              1
                                    0
                                                1
            0
## [6,]
            0
                  0
                        1
                              1
                                    0
                                          0
                                                1
## [7,]
                                                0
```

Next, we need to compute the PageRank values so that we can rank the webpages.

```
pagerank <- function(G, method='eigen',d=.85,niter=100){
  cvec <- apply(G,2,sum) # COMPUTING COLUMN SUMS
  cvec[cvec==0] <- 1 # nodes with indegree 0 will cause problems</pre>
```

^{*}raford2@miners.utep.edu

Figure 1: Barplot of the PageRank results from the link matrix.

```
n \leftarrow nrow(G)
  delta \leftarrow (1-d)/n
  A <- matrix(delta,nrow(G),ncol(G))
                   A[i,] \leftarrow A[i,] + d*G[i,]/cvec
  for (i in 1:n)
  if (method=='power'){
    x \leftarrow rep(1,n)
    for (i in 1:niter) x <- A%*%x</pre>
  } else {
    x <- Re(eigen(A)$vector[,1])
  }
  x/sum(x)
}
pg <- pagerank(L)</pre>
pg
## [1] 0.13438041 0.15491010 0.09047138 0.27197905 0.17753139 0.14625695
## [7] 0.02447073
```

Finally, we plot the PageRank given to each webpage in a barplot.

From both the R output and the barplot in Figure 1, we see that the top three webpages are D, E, and B, respectively.

2 Anomaly Detection

Before we can use the required anomaly detection techniques, we need to bring the data into R. This task is accomplished with the following code.

```
suppressMessages(library(ICSOutlier))
data(HTP)
dat <- HTP
known.outliers <- c(581, 619)</pre>
```

2.1 MCD

The first anomaly detection technique that we will use is MCD. We obtain the robust estimates of the mean vector and variance-covariance matrix with the covMcd() function available in the robustbase package.

```
library(robustbase)
fit.robust <- covMcd(dat, cor=FALSE, alpha=0.75)</pre>
```

Next, we compute the robust Mahalanobis distance of each observation with respect to the MCD estimates and plot them with the following code.

```
library(CerioliOutlierDetection)
RD <- mahalanobis(dat, fit.robust$center, fit.robust$cov)</pre>
cutoff.chi.sq <- qchisq(0.975, df = ncol(dat))</pre>
n <- nrow(dat)</pre>
p <- ncol(dat)</pre>
cutoff.GM <- hr05CutoffMvnormal(n.obs=n, p.dim=p, mcd.alpha = 0.75,
    signif.alpha = 0.025, method = "GM14",
    use.consistency.correction = TRUE)$cutoff.asy
colPoints <- ifelse(RD >= min(c(cutoff.chi.sq, cutoff.GM)), "orange", "gray")
pchPoints <- ifelse(RD >= min(c(cutoff.chi.sq, cutoff.GM)), 16, 4)
labs <- rep(NA, n)
labs[581] <- "581"
labs[619] <- "619"
plot(seq_along(RD), RD, pch = pchPoints, col = colPoints,
    vlim=c(0, max(RD, cutoff.chi.sq, cutoff.GM) + 2), cex.axis = 0.7,
    cex.lab = 0.7, ylab = expression(RD**2), xlab = "Observation Number",
    main="Minimum Covariance Determinate (MCD)")
abline(h = c(cutoff.chi.sq, cutoff.GM), lty = c("dashed", "dotted"),
       col=c("blue", "red"))
```

Minimum Covariance Determinate (MCD)

Figure 2: Outlier plot using MCD.

```
legend("topleft", lty = c("dashed", "dotted"), cex = 0.7, ncol = 2, bty = "n",
    legend = c(expression(paste(chi[p]**2, " cut-off")), "GM cut-off"),
    col=c("blue", "red"))
text(RD, labels=labs)
```

We see in Figure 2 that when we use both the χ^2 and GM cuttoff, MCD is able to identify our known outliers as outliers.

2.2 iForest

The second anomaly detection technique that we use is isolation forest. We construct 1000 trees and take advantage of the multicore=TRUE option to dramatically speed up computation time. We then plot the outliers with the code below.

Isolated Forest

Figure 3: Outlier plot using iForest.

In Figure 3 we see that iForest has identified several outliers. Rather than check the id numbers in the plot individually, we can use the is.element() function in R, as shown below.

```
is.element(known.outliers, id.outliers)
```

[1] FALSE FALSE

From the above output we see that iForest was unable to identify our known outliers.

2.3 LOF

The final anomaly detection technique that we use is local outlier factor. We then plot the outliers with the code below.

Local Outlier Factor (LOF)

Figure 4: Outlier plot using LOF.

In Figure 4 we see that LOF has identified several outliers. Rather than check the id numbers in the plot individually, we can use the is.element() function in R, as shown below.

```
is.element(known.outliers, id.outliers)
```

[1] TRUE TRUE

From the above output we see that LOF was able to identify our known outliers.

2.4 Conclusion

Only two of the methods were able to identify our known outliers: LOF and MCD. IForest was unable to identify any of our known outliers.