Высокопроизводительные вычисления

Лабораторная работа №1

Исследование алгоритмических и программных методов ускорения реализации функций вещественных переменных

Цель работы: Изучение методов реализации функций от вещественных переменных, представленных степенными рядами. Приобретение умений и навыков варьирования соотношения «затраты памяти – время реализации» в рамках этих методов.

Порядок работы и содержание отчета:

1. Анализ разложения в ряды функций, фигурирующих в варианте задания.

В отчете должны быть приведены отдельные формулы для каждой из функций варианта задания и общая формула, получаемая в результате композиции функций согласно выражению в варианте задания.

2. Разработка процедуры-функции контроля *int flverify(float fl, PFLOAT* p), на вход которой подается значение аргумента и указатель на процедуру, реализующую исследуемую функцию при представлении чисел данными типа float. Тип указателя объявляется на языке Си так: typedef float (*PFLOAT)(float)). Эта процедура пробегает по ряду значений из диапазона значений аргумента x и для каждого из них сравнивает результат вычисления по процедуре p(x) с результатом вычисления по эталонной реализации. Если модуль разности больше заданной погрешности, то функция *verify* возвращает 1, иначе 0. Эталонная реализация для плавающей точки должна быть в теле процедуры flverify.

Отчет должен содержать самодокументированный исходный текст этой процедуры.

3. Исследование времени вычисления для данных типа float

- А) Разработка на языке Си набора процедур реализации функции для случая использования данных типа float. В этот набор включаются следующие процедуры: а) процедура FlMath с использованием вызовов функции, фигурирующей в качестве первого слагаемого в выражении варианта задания на лабораторную работу (функции библиотеки math); б) процедура FlCyclNoGorner с циклом, построенным без использования схемы Горнера; в) процедура FlCyclGorner для многочлена с циклом на основе схемы Горнера; г) процедура FlNoCyclNoGorner с бесцикловой реализацией функции на основе выражения ряда без схемы Горнера; д) процедура FlNoCyclGorner с бесцикловой реализацией функции на основе выражения, представляющего схему Горнера многочлена.
- Б) Проведение измерений затрат времени вычисления функции через различные процедуры. Отчет должен содержать самодокументированный исходный текст разработанных процедур и пять чисел, представляющих среднее значение времени вычисления каждой из функции для диапазона значений аргумента.

4. Разработка макросов обработки чисел с фиксированной точкой.

Здесь разрабатываются макросы, которые обеспечивают следующее:

- а) преобразование чисел между форматом float и форматом с фиксированной точкой,
- б) базовые арифметические операции над данными с фиксированной точкой. Формат с фиксированной точкой предполагает использование в Си-программе целочисленных данных типа *long* если этого потребуют ограничения на погрешность.

Отчет должен содержать самодокументированные тексты макросов, вспомогательных программ для их отладки и протоколы отладки.

5. Исследование времени вычисления для данных с фиксированной точкой.

Здесь разрабатываются и исследуются две процедуры: a) FixCyclGorner на основе реализации схемы Горнера с циклом; б) FixNoCyclGorner на основе бесцикловой реализации схемы Горнера. Предварительно разрабатывается функция верификации *int fixverify (int fix, PFIX p)*, которая

отличается от *flverify* тем, что обслуживает данные и процедуры с фиксированной точкой (тип PFIX объявлен как typedef float (*PFIX)(fix)). Преобразование типов не должно попадать в интервал измерения времени.

Отчет должен содержать самодокументированный исходный текст разработанных процедур и два числа, представляющих среднее значение времени вычисления каждой из функции для диапазона значений аргумента.

6. Исследование таблично-алгоритмических реализаций функций.

- А) Разработка процедуры генерации таблиц с коэффициентами степенного ряда.
- Б) Разработка и исследование нескольких таблично-алгиритмических реализаций. В первой реализации разрядность адреса таблицы равна 8, во второй 9 и т.д. до значения N, при котором заданная точность обеспечивается линейной функцией $a_0 + a_1 * x$. Здесь должна использоваться бесцикловая схема Горнера и данные с фиксированной точкой.

Отчет должен содержать самодокументированные тексты программ и оценку времени реализации функции для каждого из значений разрядности адреса.

7. Формирование итоговых результатов

Итоговые результаты представляются в виде сводной таблицы, куда должны попасть все результаты, полученные в ходе измерения времени, и гистограммы, обеспечивающей наглядность сопставления результатов.

Варианты заданий

Во всех вариантах по умолчанию считается, что диапазон аргумента равен 0 < = x < 1.

№	Функция	Число точных знаков	Фамилия студента
		результата после	
		двоичной точки	
1.	$sin x \circ fl(x),$	21	
2.	$tg x \circ f2(x)$	20	
3.	$\cos x \circ f3(x)$	22	
4.	$csc x \circ f4(x)$	21	
5.	$ln(1-x) \circ f5(x)$	22	
6.	$ln((1+x)/(1-x)) \circ f6(x)$	23	
7.	$ln(\cos x) \circ f7(x)$	20	
8.	$arcsin x \circ f8(x)$	18	
9.	$arcos x \circ f9(x)$	22	
10.	$arcctg x \circ f10(x)$	21	
11.	$ch x \circ fl l(x)$	22	
12.	$sch x \circ fl2(x)$	23	
13.	$sin(x + a) \circ f13(x)$	22	
14.	$cos(x+a)\circ f14(x)$	20	
15.	$e^x \circ f15(x)$	19	
	$th \ x \circ fl6(x)$	21	
17.	$arctg \ x \circ f17(x)$	19	
18.	$sc x \circ fl8(x)$	22	
19.	$sh x \circ f19(x)$	23	
20.	$x/(e^x-1)\circ f20(x)$	20	

Приложение 1. Базовые сведения из математического справочника

Таблица разложения функций в ряды

Функция	Разложение в ряд	Область сходимостя
	Тригонометрические функции	
sin x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$	$ x < \infty$
$\sin(x+a)$	2! 3!	
	$+\frac{x^4\sin a}{4!}+\ldots+\frac{x^n\sin\left(a+\frac{n\pi}{2}\right)}{n!}\pm\ldots$	
• cos x	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} \pm \ldots$	1x1< 0
$\cos(x+a)$	$\cos a - x \sin a - \frac{x^2 \cos a}{2!} + \frac{x^3 \sin a}{3!} +$	
	$+\frac{x^4\cos a}{4!}-\ldots+\frac{x^n\cos\left(a+\frac{n\pi}{2}\right)}{n!}\pm\ldots$	1 * 1 < ∞
lg x	$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \frac{62}{2835}x^8 + \dots$	
	$\dots + \frac{2^{2n}(2^{2n}-1)B_n}{(2n)!}x^{2n-1} + \dots *$	$ x < \frac{\pi}{2}$
ctg x	$\frac{1}{x} = \left[\frac{x}{3} + \frac{x^3}{45} + \frac{2x^5}{945} + \frac{x^7}{4725} + \dots\right]$	
	$\ldots + \frac{2^{2n} B_n}{(2n)!} x^{2n-1} + \ldots \Big]^*$	$0 < x < \pi$
sc x	$1 + \frac{1}{2} x^2 + \frac{5}{24} x^4 + \frac{61}{720} x^6 + \frac{277}{8061} x^8 + \dots$	
	$\cdots + \frac{E_n}{(2n)!} x^{2n} + \cdots **$	$ x < \frac{\pi}{2}$
csc x	$\frac{1}{x} + \frac{1}{6}x + \frac{7}{360}x^3 + \frac{31}{15120}x^5 +$	With
8	$+\frac{127}{604890}x^7+\ldots+\frac{2(2^{2n-1}-1)}{(2n)!}B_nx^{2n-1}$	$6 < x < \varepsilon$

В_п — числа Бернулли (см. стр. 297),
 № Е_п — числа Эйлера (см. стр. 297),

Функция	Разложение в ряд	Область еходимости
e*	Показательные функции $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x}{n!} + \dots$	x < ∞
	$1 + \frac{x \ln a}{1!} + \frac{(x \ln a)^3}{21} + \frac{(x \ln a)^3}{1!} + \dots + \frac{(x \ln a)^3}{a!} + \dots$	
$\frac{x}{e^{X}-1}$	$1 - \frac{x}{2} + \frac{B_1 x^2}{2!} - \frac{B_2 x^4}{4!} + \frac{B_3 x^6}{6!} - \dots$ $\dots + (-1)^{n+1} \frac{B_n x^{2n}}{(2n)!} \pm \dots^*$	
. ln x	Логарифмические функции $2\left[\frac{x-1}{x+1} + \frac{(x-1)^3}{3(x+1)^3} + \frac{(x-1)^5}{5(x+1)^5} + \dots\right]$	
In x	$ 2\left[\frac{x+1}{x+1} + \frac{3(x+1)^3 + 5(x+1)^5 + \dots}{(x-1)^2 n + 1} + \dots + \frac{(x-1)^2 n + 1}{(2n+1)(x+1)^2 n + 1} + \dots\right] $ $ (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^3}{4} + \dots $	x > 0
ln x	$\frac{\dots + (-1)^{n+1} \frac{(x-1)^n}{n} \cdot \dots}{\left[\frac{x-1}{x} + \frac{(x-1)^2}{2x^2} + \frac{(x-1)^3}{3x^3} + \dots + \frac{(x-1)^n}{n \cdot n} + \dots\right]}{x} + \dots$	
$\ln (1+x)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-1 < x \le 1$
$\ln (1 - x)$	[2 3 4 3 4]	$-1 \le x < 1$
$n\left(\frac{1+x}{1-x}\right) = 2 \operatorname{Arth} x$		< 1
$\ln\left(\frac{x+1}{x-1}\right) = 2 \operatorname{Arcth} x$	$ \frac{2\left[\frac{1}{x} + \frac{1}{3x^2} + \frac{1}{6x^5} + \frac{1}{7x^7} + \dots + \frac{1}{(2n+1)x^{2n+1}} + \dots\right]}{\dots + \frac{1}{(2n+1)x^{2n+1}} + \dots} $	> 1

^{*} B_{n} — числа Бернулли (см. стр. 297).

323 дифференциальное исчисление

Функция	Раклонських и рид	arbsučký resemba oz n
In sin x '	$ 0_{+}x_{+}^{+} - \frac{x^{2}}{6} - \frac{x^{4}}{185} - \frac{x^{6}}{2835} - \dots$	
	$\dots = \frac{2^{2n-1}B_n v^{2n}}{n(2n)} - \dots$	2<:51<
In cos x	$ \begin{vmatrix} -\frac{x^2}{2} - \frac{x^3}{12} - \frac{x^3}{12} - \frac{17x^3}{1222} - \dots \\ -2^{x^{n-1}} (2^{x^n} - 1) B_n x^{2n} \end{vmatrix} $	
	$h(x^{\prime})$.	$ x < \frac{\pi}{2}$
In I tg x	$\ln x + \frac{1}{3} x^2 + \frac{7}{17} x^4 + \frac{61}{170} x^6 + \dots$	
	$\dots + \frac{2^{2R} \cdot 2^{-r_1}}{n} \cdot \frac{1}{2n \cdot 2} \cdot \frac{1 - B_n}{r} \cdot x^{2n} = \dots $	$0 < 1x < \frac{\pi}{2}$
arcsin x	Objective inputs consensus fraction $x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3 \cdot x}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 \cdot x^3}{2 \cdot 4 \cdot 5 \cdot 7} + \dots$	
•	$\dots + \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1) \cdot x^{2n+1}}{2 \cdot 4 \cdot 6 \cdot \dots (2n-2n-2n-1)} + \dots$	x . < 1
arccos x	$\frac{\pi}{2} = \left\{ x : \left\{ \frac{x^3}{2\cdot 3} - \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^2}{3 \cdot 4 \cdot 6 \cdot 7} + \dots \right. \right.$	
	$\cdots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot 12n + 1 \cdot x^{3 \cdot 6 \cdot 1}}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n \cdot 2n + 1} + \dots $	x:<1
acutg x	$\mathbf{c} = \frac{x^{2}}{5} + \frac{x^{3}}{5} + \frac{x^{3}}{5} + \dots + \dots + \frac{n}{2n-1} \frac{n^{-2n+1}}{2n-1} \underline{1} \dots$ $= \underline{1} + \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^{3}} - \frac{1}{5x^{5}} + \frac{1}{4x^{7}} - \dots$	1x1<1
	$\dots + (-D^{n-1}) \frac{1}{(2n+1)x^{2(n+1)}} \stackrel{!}{\xrightarrow{!}} \dots \stackrel{!}{\xrightarrow{!}}$	12151
arcety a	$\left \frac{\pi}{2} - \left[x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \right] \right $	
	$\dots = 1 \frac{n}{\frac{\lambda^{2n+1}}{2n-1}} \pm \dots$	x < 1

разложение финкции в степенные ряды 329

Функция	Разрожение в ряд	Область Область Область
	Сапербогичестве функции	
sh.x	$x + \frac{x^3}{2!} + \frac{x^4}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{2^{n+1} + 1 \cdot 1} + \dots$, x , < ∞
ch x	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^3}{6!} + \ldots + \frac{x^{2n}}{(2n)!} + \ldots$	
lh x	$\begin{bmatrix} x - \frac{1}{3} x^3 + \frac{2}{15} x^5 - \frac{17}{315} x^7 + \frac{62}{2835} x^9 - \dots \\ \frac{(-1)^{n+1} z^{2n} (2^{2n} - 1)}{2n z^4} B_n x^{2n+4} \pm \dots \end{bmatrix}$	
eth x	$ \begin{array}{c} \frac{1}{x} + \frac{x}{3} - \frac{x^3}{45} + \frac{2x^5}{945} - \frac{x^7}{4725} + \dots \\ \dots + \frac{1 - 17^{n+1}}{(2n)^2} - n_n x^{2n-1} + \dots \end{array} $	_
sch x	$1 - \frac{1}{2!} x^2 + \frac{5}{4!} x^3 + \frac{61}{6!} x^2 - \frac{1385}{6!} x^3 - \dots$	
esch x	$\begin{array}{c} \frac{1}{x} = \frac{x}{8} \pm \frac{7x^2}{360} + \frac{51x^3}{15425} + \frac{51x^3}{15425} + \frac{51x^3}{15425} + \frac{51x^3}{15425} + \frac{1}{15425} + $	-
	Обратные гиперболические эквеции	ĺ
Arch x	$x = \frac{1}{2\cdot3}x^3 + \frac{1\cdot3}{2\cdot4\cdot5}x^5 - \frac{1\cdot3\cdot5}{2\cdot7\cdot6\cdot57}x^2 + \dots$	
Aich x •••	$\begin{array}{l} \dots + (-1)^{n} \cdot \frac{1 \cdot {}^{2} \cdot 5 \cdot \dots \cdot {}^{2} (n-1)}{2 \cdot 1 \cdot 5 \cdot \dots \cdot 2 (n-1)} \cdot x^{2 \cdot n+1} \cdot 1 \\ \dots \\ \underline{1} \left[(n \cdot (x) - \frac{1}{2}, \frac{1 \cdot 3}{2 \cdot 4}, \frac{1 \cdot 3}{2 \cdot 4 \cdot 5}, \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 5}, \frac{1}{6 \cdot 3} \delta - \dots \right] \end{array}$	v < 1
	$x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \ldots + \frac{x^{2R+1}}{2n+1} + \ldots$	\x < 1
	$\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{1x^7} + \dots$	
	$\cdots + \frac{1}{(2q+1)^{3/2+1}} + \cdots$	* > 1

^{*} B_{η} — числа Бернулли (см. стр. 297). ** B_{η}^{η} — числа Эйлера (см. стр. 297). *** Функции доузначила.

^{*} B_A — ческая бырьумам (см. стр. 207). ** Первыя член $\frac{\pi}{2}$ берется со знаком с+5 при x>1 и со зва-

Таблица первых чисел Бернулли

k	B _k	k	$ B_k $	k	B_k	k	B_k
t	1 6	4	1 30	7	7 6	10	174 611 330
2	30	5	5 66	8	3617 510	11	854 513 138
3	1 42	6	691 2730	9	43 867 798		

$$\begin{array}{c} \textit{Quena Sûsepa} \ E_k; \\ 22) \ 1 - \frac{1}{3^{2k+1}} + \frac{1}{5^{2k+1}} - \frac{1}{7^{2k+1}} + \ldots \pm \frac{1}{(2n-1)^{2k+1}} \mp \ldots = \frac{\pi^{2k+1}}{2^{2k+2}(2k)!} \ E_k \end{array}$$

Таблица первых чисел Эйлера

k	E_k	k	E_{lk}
1 2 3 4	1 5 61 1385	5 6 7	50 521 2 702 785 199 360 981

Числа Бернулли получаются как решения системы равенств:

$$\begin{array}{l} C_1^1B_0=1\\ C_1^2B_1+C_2^2B_0=0\\ C_1^3B_2+C_2^3B_1+C_3^3B_0=0\\ C_1^4B_3+C_2^4B_2+C_3^4B_1+C_4^4B_0=0\\ \dots\\ C_k^n=\frac{n!}{k!(n-k)!} \end{array}$$

Имеем
$$\sum_{k=0}^n C_{n+1}^{k+1}B_{n-k}=0$$
 Или $(n+1)B_n+\sum_{k=1}^n C_{n+1}^{k+1}B_{n-k}=0$ Отсюда $B_n=-\frac{1}{n+1}\sum_{k=1}^n C_{n+1}^{k+1}B_{n-k}$

Т.е. рекуррентно можно вычислить числа

Приложение 2. Схемы вычисления степенных рядов

2.1. Наивная схема (FlCyclNoGorner и FlNoCyclNoGorner)

Берется формула из справочника и программируется без всяких оптимизационных «премудростей». 2.2. Схема Горнера (FlCyclGorner и FlNoCyclGorner, FixCyclGorner и FixNoCyclGorner)

 $a[0] + a[1]*x + a[2]*x^2 + a[3]*x^3 + \dots a[n]*x^n = ((\dots(a[n]*x+a[n-1])*x + a[n-2])*x + \dots + a[1])*x + a[0]$ Бесцикловое вычисление предполагает непосредственную запись формулы из правой части в виде арифметического выражения. Здесь возможны два варианта: обращение к элементам массива коэффициентов и явное вписывание констант в выражение.

Цикловое вычисление схемы Горнера строится на основе тела цикла: s = s*x+a[i];

Приложение 3. Таблично-алгоритмическая реализация

Используется разложение аргумента функции на два слагаемых: x = xст + xмл, где первое слагаемое формируется на основе старших разрядов аргумента x.

Например, 24-разрядное число .10101010101010101010101010 при разрядности старшей части, равной 12, можно разложить как

.1010101010100000000000000

При таком разложении аргументов формируется таблица коэффициентов для 4096 разложений функций в степенные ряды. Каждое разложение действует для своего значения xст. По сути дела мы имеем 4096 функций: $F_{000000000}(x$ мл), $F_{000000001}(x$ мл), $F_{000000001}(x$ мл), $F_{01111111111}(x$ мл). Такое разложение позволяет уменьшить длину ряда. Пусть, например, допустимая погрешность вычисления функции равна 2^{-23} . Тогда в степенном ряду величина [2] * xмл² при [2] не больше единицы окажется меньше 2^{-24} . Это связано с тем, что максимальное значение xмл чуть меньше 2^{-12} (когда все разряды xмл равны 1). Возведение в куб даст число, меньшее 2^{-36} и т.п. Это означает, что любая функция из 4096-ти представляется рядом a[0]+a[1]*x. Ясно, что при разрядности старшей части от 8 до 11 нам придется использовать ряд со степенью 2, а при разрядности 6 или 7 — со степенью 3. Увеличение разрядности старшей части укорачивает ряд, но увеличивает таблицу и вероятность кэш-промаха. Значит, возникает задача рационального выбора, для решения которой в лабораторной работе предлагается поставить несколько экспериментов.

Для получения 2^m групп коэффициентов, где m – разрядность старшей части, можно использовать формулу разложения в ряд Тейлора:

$$f(x) = f(a) + (x-a)*f`(a)/1! + (x-a)^2 *f``(a)/2! + ... + (x-a)^n *f^{(n)}(a)/n! + ...$$

$$f(a+h) = f(a) + h*f`(a)/1! + h^2 *f``(a)/2! + ... + h^n *f^{(n)}(a)/n! + ...$$

Выражение остаточного члена:

$$R_n = (h^n + 1) *f^{(n+1)}(a)*(a+g*h)/(n+1)!, \ roe \ 0 < g < 1.$$

Формулы для некоторых производных:

$$(x^n) = n * x^{n-1}$$

$$f`(a[0]+a[1]*x+a[2]*x^2+...+a[n]*x^n) = a[1]+2*a[2]*x+3*a[3]*x^2+4*a[4]*x^3+...+n*a[n]*x^{n-1}$$

$$f``(a[0]+a[1]*x+a[2]*x^2+...+a[n]*x^n) = 2*a[2]+2*3*a[3]*x+3*4*a[4]*x^2+4*5*a[5]*x^3+...+n*(n-1)*a[n]*x^{n-2}$$

$$f ```(a[0]+a[1]*x+a[2]*x^2+ ... + a[n]*x^n) = 2*3*a[3] + 2*3*4*a[4]*x + 4*5*a[4]*x^3 + ... + n*(n-1)*a[n]*x^{n-2}$$

Впрочем, производная берется в точке (например, a=.101010101010 для приведенного выше примера), поэтому можно вычислить ее численным методом через $\Delta y/\Delta x$, выбирая Δx достаточно малым, чтобы не нарушить ограничения точности вычислений.

Лабораторная работа №2

Исследование параллельных реализаций алгоритма численного интегрирования

Цель работы: Изучение методов распараллеливания реализации вычисления определенного интеграла.

Порядок работы и содержание отчета:

1. Выбор метода численного интегрирования.

В отчете должны быть приведены формулы и описание выбранного метода численного интегрирования для случая, когда в качестве подинтегрального выражения берется основная функция из варианта лабораторной работы N_2 I

2. Исследование многопоточных реализаций выбранного метода численного интегрирования в среде одно-, двух- и четырехядерных микропроцессоров.

В отчете должны быть приведены исходные тексты и результаты замеров времени вычисления при варьировании числа потоков (от 1 до 8), числа ядер и гранулярности задачи (от 100 вычислений подинтегральной функции до 1000000). Должен быть представлен текст выводов по результатам измерений.

3. Исследование многопоточных реализаций выбранного метода численного интегрирования в среде одно-, двух-, трех- и четырехмашинных кластеров.

В отчете должны быть приведены исходные тексты и результаты замеров времени вычисления при варьировании числа потоков(от 1 до 8), числа машин и гранулярности задачи (от 100 вычислений подинтегральной функции до 1000000). Должен быть представлен текст выводов по результатам измерений. Эти выводы должны отражать сравнение не только внутри многомашинных кластеров, но и сравнение многоядерных одномашинных реализаций с кластерными реализациями.

БОНУСЫ!

Студент может претендовать на простановку экзамена по результатам сдачи лабораторных работ (автомат) при двух условиях:

- а) Отчеты оформляются с использованием построителя диаграмм (tools.zip, доступен с этой вебстраницы);
- б) В отчете дается развернутый аналитический отчет, объясняющий причины изменения времени вычисления в зависимости применяемых структур данных, программно-технических приемов, изменения условий трансляции и исполнения (изменение свойств платформы).