

山东省九校 2019 年 12 月高三检测考试

数

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮 擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一个选项是符合题 目要求的。
- 1. 已知复数 $z = \frac{1-3i}{3+i}$, i 为虚数单位,则

A. |z| = i

B. $\bar{z} = i$

 $C_{x}z^{2}=1$

D.z 的虚部为 -i

2. 已知集合 $A = \{x \mid 2^x \le 1\}, B = \{x \mid y = \lg(x-1)\}, \bigcup A \cap (\mathbb{C}_R B) = \{x \mid y = \lg(x-1$

A. Ø

B.(0,1)

D. $(-\infty, 0]$

3. 已知点 A 在圆 $x^2 + y^2 = 4$ 上,且 $\angle xOA = \frac{7}{12}\pi$,则点 A 的横坐标为

A. $\frac{\sqrt{2} - \sqrt{6}}{2}$ B. $\frac{\sqrt{2} - \sqrt{6}}{4}$

C. $\frac{1-\sqrt{3}}{4}$

D. $\frac{1-\sqrt{3}}{2}$

4. 汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎的五个螺栓,记为 $A \setminus B \setminus C \setminus D \setminus E$ (在正五边形的顶点 上),紧固时需要按一定的顺序固定每一个螺栓,但不能连续固定相邻的两个.则不同固定螺栓顺序的种 数为

A. 20

B. 15

C. 10

D. 5

5. 若函数 y = f(x) 的大致图象如图所示,则 f(x) 的解析式可以为

A. $f(x) = \frac{x}{2^x + 2^{-x}}$

B. $f(x) = \frac{x}{2^x - 2^{-x}}$

 $C.f(x) = \frac{2^x + 2^{-x}}{x}$

D. $f(x) = \frac{2^x - 2^{-x}}{x}$

6. 已知直线 l_1 , l_2 为双曲线 $M: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条渐近线, 若 l_1 、 l_2 与圆 $N: (x-2)^2 + y^2 = 1$ 相切, 则双曲线 M 离心率的值为

A. $\frac{\sqrt{3}}{2}$

B. $\frac{2\sqrt{3}}{3}$

 $C.\sqrt{3}$

D. $\frac{4\sqrt{3}}{3}$

数学试题 第1页(共4页) 7. 如图是一个近似扇形的鱼塘,其中 OA = OB = r, \widehat{AB} 长为 l(l < r). 为方便投放饲料,欲在如图位置修建简易廊桥 CD,其中 $OC = \frac{3}{4}OA$, $OD = \frac{3}{4}OB$. 已知 $x \in (0, \frac{1}{2})$ 时, $\sin x \approx x - \frac{x^3}{3!}$, $O < x = \frac{x^3}{3!}$

A. $\frac{3}{4}r - \frac{r^3}{32l^2}$

则廊桥 CD 的长度大约为

B. $\frac{3}{4}l - \frac{l^3}{32r^2}$

C. $\frac{3}{2}l - \frac{l^3}{4r^2}$

D. $\frac{3}{2}r - \frac{r^3}{4l^2}$

8. 吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的"戒烟口香糖",并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则"口香糖吃完时还剩2支香烟"的概率为

A. $\frac{1}{5}$

B. $\frac{8}{15}$

C: $\frac{3}{5}$

D. $\frac{3}{20}$

- 二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。
- 9. 下列结论正确的是

A. $\forall x \in \mathbf{R}, x + \frac{1}{x} \ge 2$

B. 若 a < b < 0,则 $(\frac{1}{a})^3 > (\frac{1}{b})^3$

C. 若 x(x-2) < 0,则 $\log_2 x \in (0,1)$

- D. 若 $a > 0, b > 0, a + b \le 1, 则 0 < ab \le \frac{1}{4}$
- 10. 关于函数 $f(x) = 2\cos^2 x \cos(2x + \frac{\pi}{2}) 1$ 的描述正确的是
 - A. 其图象可由 $y = \sqrt{2} \sin 2x$ 的图象向左平移 $\frac{\pi}{8}$ 个单位得到

B.f(x)在 $(0,\frac{\pi}{2})$ 单调递增

C.f(x)在[0, π]有2个零点

D. f(x)在[$-\frac{\pi}{2}$,0]的最小值为 $-\sqrt{2}$

11. 已知 $\triangle ABC$ 是边长为 2 的等边三角形,D,E 分别是 AC,AB 上的两点,且 $\overrightarrow{AE} = \overrightarrow{EB}$, $\overrightarrow{AD} = 2\overrightarrow{DC}$,BD 与 CE 交 于点 O. 则下列说法正确的为

A. $\overrightarrow{AB} \cdot \overrightarrow{CE} = -1$

B. $\overrightarrow{OE} + \overrightarrow{OC} = \overrightarrow{0}$

C. $|\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}| = \frac{\sqrt{3}}{2}$

- D. \overrightarrow{ED} 在 \overrightarrow{BC} 方向上的投影为 $\frac{7}{6}$
- 12. 已知四棱锥 P ABCD,底面 ABCD 为矩形,侧面 $PCD \perp$ 平面 ABCD, $BC = 2\sqrt{3}$, $CD = PC = PD = 2\sqrt{6}$. 若点 M 为 PC 的中点,则下列说法正确的为

A. BM L 平面 PCD

B. PA//平面 MBD

C. 四棱锥 M - ABCD 外接球的表面积为 36π

D. 四棱锥 M-ABCD 的体积为 6

数学试题 第2页(共4页)

三、填空题:本题共4小题,每小题5分,共20分。

- 13. 直线 y = x 与圆 $x^2 4x + y^2 = 0$ 相交于 $A \setminus B$ 两点,则 $|AB| = ______.$
- 14. 直线 y = x 与曲线 $y = 2\ln(x + m)$ 相切,则 $\dot{m} = _____.$
- 15. 已知数列 $\{a_n\}$ 中 $a_1 = \frac{1}{2}$,其前n项和 S_n 满足 $S_n^2 a_nS_n + a_n = 0$ $(n \ge 2)$,则 $a_2 = _____; S_{2019} = _____.$ (本题第一空2分,第二空3分。)
- 16. 已知[x]表示不超过 x 的最大整数,如[3] = 3,[1.5] = 1,[-1.7] = -2. 令 $f(x) = x \cdot 2^x$,g(x) = f(x-[x]),则下列说法正确的是______
 - ①g(x)是偶函数

②g(x)是周期函数

③方程 $g(x) - \sqrt{x} = 0$ 有 4 个根

(4)g(x)的值域为[0,2]

四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。

17. (10 分)

在非直角 $\triangle ABC$ 中,a,b,c分别是A,B,C的对边.已知 $a=4,\overrightarrow{AB}\cdot\overrightarrow{AC}=5$,求:

- $(1)\frac{\tan A}{\tan B} + \frac{\tan A}{\tan C}$ 的值;
- (2)BC 边上的中线 AD 的长.

18. (12 分)

已知数列 $\{a_n+1\}$ 是等比数列, $a_1=1$ 且 a_2,a_3+2,a_4 成等差数列.

- (1)求数列 $\{a_n\}$ 的通项公式;
- (2)设 $b_n = \frac{a_{n+1} a_n}{a_n a_{n+1}}$,求数列 $\{b_n\}$ 的前 n 项和 S_n .

19. (12分)

已知四棱柱 $ABCD - A_1B_1C_1D_1$ 的底面为菱形 $AB = AA_1 = 2$, $\angle BAD = \frac{\pi}{3}$, $AC \cap BD = O$, $AO \perp \Psi$ 面 A_1BD ,

 $A_1B = A_1D.$

- (1)证明: B_1C //平面 A_1BD ;
- (2)求钝二面角 $B-AA_1-D$ 的余弦值.

数学试题 第3页(共4页)

20. (12 分)

已知椭圆 $L: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离心率为 $\frac{\sqrt{3}}{2}$,短轴长为 2.

- (1)求椭圆L的标准方程;
- (2)过点 Q(0,2)的直线 l 与椭圆 L 交于 $A\setminus B$ 两点,若以 AB 为直径的圆恰好过坐标原点,求直线 l 的方程及 |AB| 的大小.

21. (12 分)

已知函数
$$f(x) = \frac{2}{e} - \frac{x}{e^x}, g(x) = x \ln x - \frac{a}{2}x^2 - x.$$

- (1)求 f(x)的极值;
- (2) 若 $x \in (1, +\infty)$ 时, f(x) 与 g(x) 的单调性相同, 求 a 的取值范围;
- (3) 当 $a \in [0, \frac{1}{e})$ 时,函数 y = g(x), $x \in (0, e]$ 有最小值,记 g(x) 的最小值为 h(a).

证明:
$$-\frac{e}{2} < h(a) \le -1$$
.

22. (12分)

学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为"B类解答".为评估此类解答导致的失分情况,某市教研室做了一项试验:从某次考试的数学试卷中随机抽取若干属于"B类解答"的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:

教师评分(满分12分)	11	10	9
各分数所占比例	$\frac{1}{4}$	$\frac{1}{2}$	1/4

某次数学考试试卷评阅采用"双评+仲裁"的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的"B类解答"所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).

- (1)本次数学考试中甲同学某题(满分 12 分)的解答属于"B 类解答",求甲同学此题得分 X 的分布列及数学期望 E(X);
- (2)本次数学考试有 6 个解答题,每题满分均为 12 分,同学乙 6 个题的解答均为"B 类解答",记该同学 6 个题中得分为 $x_i(x_1 < x_2 < x_3 < x_4 < x_5)$ 的题目个数为 $a_i, a_i \in \mathbb{N}$ (i = 1, 2, 3, 4, 5), $\sum_{i=1}^5 a_i = 6$. 计算事件 " $a_1 + a_4 + a_5 = 4$ "的概率.

数学试题 第 4 页(共 4 页)

