

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BOARD OF PATENT APPEALS AND INTERFERENCES

In Re Application of : Gengying Gao Serial No.: 09/670,154 Examiner: Trung Q. Nguyen Filed: 9/26/2000 Art Unit: METHOD OF TESTING THE For: ELECTROSTATIC DISCHARGE PERFORMANCE OF AN IC DEVICE SUPPLEMENTAL APPEAL BRIEF

IN SUPPORT OF APPELLANTS' APPEAL

TO THE BOARD OF PATENT APPEALS AND INTERFERENCES

Hon. Commissioner of Patents and Trademarks Washington, DC 20231

Dear Sir:

The Appellants hereby submit this Supplemental Brief in triplicate in support of their request for reinstatement of the appeal after the examiner sought to reopen prosecution by way of Office action mailed August 13, 2003, after an Appeal Brief had been file. The Appellants respectfully request consideration of this appeal by the Board of Patent Appeals and Interferences for allowance of the above patent application.

Serial No. 09/670,154

SUPPLEMENTAL APPEAL BRIEF

40		TABLE OF CONTENTS	
41			
42	I.	REAL PARTY IN INTEREST	
43	П.	RELATED APPEALS AND INTERFERENCES	
44	III.	STATUS OF THE CLAIMS	
45	IV.	STATUS OF AMENDMENTS	
46	V.	SUMMARY OF INVENTION	
47	VI.	ISSUES4	
48	VII.	GROUPING OF CLAIMS4	
49	VIII.	ARGUMENT5	20
50 51	IX.	APPENDIX12	

51	I. REAL PARTY IN INTEREST			
52	The real party in interest is National Semiconductor Corporation, a			
53	corporation of Delaware having a principle place of business at 2900			
54	Semiconductor Drive, M/S D3-579, Santa Clara, CA 95051			
55				
56 57	II. RELATED APPEALS AND INTERFERENCES			
58 59	There are no related appeals or interferences			
60	III. STATUS OF THE CLAIMS			
61	Claims 1 to 20 are currently pending. No claims have been cancelled or			
62	added. Claims 1 to 20 stand rejected by the Examiner under the Final Rejection			
63	mailed December 18, 2002 and after the non-final rejection mailed 8/13/2003.			
64				
65	Claims 1 to 20 stand rejected under 35 U.S.C. § 112, and under 35 U.S.C. §			
66	102 as being unpatentable over Paniccia et al (US 5,872,360) and are being			
67 68	appealed.			
69	IV. STATUS OF AMENDMENTS			
70	Amendments to claims 1 and 8 were filed after the final rejection and were			
71	initially not entered on the premise that they would not place the application in			
72	better form for appeal. However, the examiner subsequently reopened			
73	prosecution and thus the amendments stand as entered.			
74	V. SUMMARY OF INVENTION			
75	The invention deals with a new method of testing the resilience of an integrated			
76	circuit device to electrostatic discharge (ESD). In the past ESD resilience			
	Serial No. 09 /670 154 SUPPLEMENTAL APPEAU RRIE			

77	involved a destructive approach involving discharging charge into the pins of
78	the IC device. In contrast, the present invention provides a way of determining
79	the ESD resilience in a non-destructive manner using a laser beam, and making a
80	determination based on the amount of light reflected by the diffusion region of
81	the IC compared to the amount of light absorbed by the diffusion region. This is
82	described in the first paragraph of the Summary of the Invention (page 1, lines
83	22-24), page 3, lines 13-17, and page 4 lines 23-31 read with Figure 3.
84	Testing of ESD resilience has nothing to do with debugging a chip to determine
85	whether it has defects. In fact, the chip may very well work fine but simply have
86	a low ability to handle electrostatic discharges. It is a chip's ability to handle
87	ESD that the present invention addresses, and it manages to do this in a non-
88	destructive manner.
89	
90	
91	VI. ISSUES
92	The issues are whether the specification provides support for good ESD
93	performance, and whether references dealing with the debugging of a chip or IC
94	can be used in rejecting claims directed to a method of detecting resilience of a
95	chip to ESD events.
96	Also, the question remains whether an explicit limitation in a claim dealing with
97	a comparison of the light reflection results from a tested chip with light reflection
98	results from a chip with known ESD resilience, can simply be ignored.
99	
100	VII. GROUPING OF CLAIMS
101	Claims 1-20 were rejected based on the common argument that Paniccia et
102	al anticipated each of the claims. Claim 1 is the only independent claim, with
103	claims 2-20 depending from it.

104	VIII. ARGUMENT
105	Claim rejections - 35 USC 112
106	Claim 27 was rejected under 35 USC 112 as containing subject matter
107	which is not described in the specification.
108	It is respectfully pointed out that there is no claim 27 in the application.
109	Claim 1 was rejected on the basis that the specification and drawings do
110	not support good ESD performance, and that it is unclear what the characteristics
111	of good ESD performance were.
112	It is respectfully pointed out that ESD (Electrostatic Discharge) is a term
113	commonly used in the art of electronic devices and protection of electronic
114	devices. The high current associated with an ESD event can cause damage to
115	electronic circuit elements by exceeding the current handling capabilities of the
116	circuit elements. This is common knowledge in the art, hence ESD protection
117	devices are employed to shunt ESD current to ground, or alternatively the
118	devices are made self-protecting by making them more robust to be able to
119	withstand the high ESD currents. This invention deals with the latter situation
120	and provides a way of testing the resilience of the devices to ESD events. In fact,
121	the Discussion of the Prior Art section of the present application discusses the
122	issue of ESD resilience and the destructive nature of prior art ESD testing
123	techniques.
124	The examiner also argues that it is well known to all those skilled in the
125	art to use a laser beam to test the ESD.
126	The examiner, however, fails to disclose a single reference in support of this
127	contention except for citing Paniccia, which misstates what Paniccia stands for, as
128	is discussed in more detail below in response to the examiner's 35 USC 102
129	rejection.
130	The examiner also argues that the drawing and specification do not give
131	any support for I/O cells.
132	It is respectfully pointed out that page 4, lines 10-25 deal in detail with I/O cells
133	since I/O cells are the circuit elements typically exposed to ESD events.
	Serial No. 09/670,154 SUPPLEMENTAL APPEAL BRIEF

134	
135	Claim rejections - 35 USC 102
136	Claims 1-20 were rejected under 35 USC 102(b) over Paniccia.
137	It is respectfully submitted that Paniccia does not disclose testing ESD
138	performance. As discussed in response to the previous Office actions and in the
139	original Appeal Brief, (lines 103-110 on page 5), Paniccia does not deal with
140	testing of ESD resilience, and in fact nowhere states or suggests that it does so.
141	Paniccia, instead, discusses the problems of debugging a new product (col. 1,
142	lines 53-57). It then proposes a solution for determining voltage applied to a p-n
143	junction by monitoring the electric field by monitoring the electro-absorption of a
144	mode-locked laser (col. 7,lines 18-23).
145	Nowhere does Paniccia describe or suggest ways of monitoring ESD
146	performance of an IC device.
147	Claim 1, in contrast, specifically defines a method of monitoring ESD
148	performance. This is not a feature proposed in arguments or only in the
149	specification, but is specifically mentioned in claim 1.
150	However, in order to further distinguish the present invention from
151	Paniccia, claim 1 was amended to include the step of comparing the amount of
152	reflected light to the amount of reflected light from an I/O cell having good ESD
153.	performance (see page 4, lines 23-31). This step also not present in Paniccia and is
154	not suggested anywhere in Paniccia.
155	Since the remaining claims 2-20 depend from claim 1, they will include the
156	new limitation, and are therefore also distinguishable over Paniccia.
157	
158	As to claim 8, it is respectfully submitted that Paniccia does not mention
159	averaging a number of measurements. Nevertheless, claim 8 was amended to

160

specify that the samples are taken at the same I/O signal voltage level. This

further distinguishes from Paniccia, which clearly discusses measurements at different electric fields and temperatures (Fig. 7 and col. 7, lines 7-17).

163

164

165

166

167

168

169

170

161

162

As to claim 15, it is respectfully submitted that Paniccia does not discuss any testing in pre-packaged form. The section referred to by the examiner (col. 5, lines 50-55) has to be read in the context of the rest of the sentence which clearly states that it is often necessary to do the testing while the chip is packaged. In other words the section specifically sets the context of the problem, namely testing a packaged device. This is used by Paniccia to justify the need for a laser. Nowhere does it mention or contemplate testing of unfinished devices.

171

172

173

174

175

176

As to claim 16, it is respectfully submitted that Paniccia does not disclose that the device includes only some of its layers. The section referred to by the examiner (col. 1, lines 62-67) merely states that a typical IC has multiple layers and that it is therefore difficult to access nodes buried deep in the chip. There is no mention of testing while there are only some of the layers formed.

177

178

Response to specific arguments raised by examiner

179

180

181

182

183

184

The examiner argued that ESD testing using a laser beam is known to all those skilled in the art. This is entirely unsupported by any fact since there is no cited reference to support this contention. Furthermore, claim 1 specifically includes the limitation of comparing to an I/O cell having good ESD performance. This is not disclosed or suggested in Paniccia or any other IC testing references.

185

186

187

The examiner argued that Paniccia discloses testing a device with only some of its layers and that it disclosed using a continuous wave laser to probe the IC Serial No. 09/670,154

-7-

188 device. As has been discussed above, Paniccia does not disclose a device having 189 only some of its layers (see arguments above). 190 It is unclear what the examiner's argument is regarding the use in Paniccia of a 191 continuous wave laser. In fact Paniccia specifically refers to using a mode-locked 192 laser. Fig 7 and col. 8, lines 6-15 of Paniccia specify a mode-locked laser, not a 193 continuous wave laser. In any event the present application uses the continuous 194 wave laser simply as one way of positioning the mode-locked laser. Paniccia 195 does not disclose using a continuous wave laser as a positioning means or for 196 any other purpose for that matter. 197 In any event, all of the dependent claims depend from claim 1 and therefore 198 include the limitations of claim 1, and are therefore, by that reason alone, 199 distinguishable over the prior art.

200

201

202

203

204

205

206

207

208

The examiner states that any special structural or functional aspects of the Applicant's invention have to be clear from the claims themselves, and goes on to state various case law. The examiner's arguments, while correct, do not bear on the present facts where the limitations are specifically recited in the claims. The claims themselves include the limitation of testing ESD performance and also include the limitation of comparing reflected light to the light reflected from an I/O cell with good ESD performance. Each of these limitations explicitly distinguish over the cited art.

209

210

211

212

213

214

In view of the fact that claim 1 specifically deals with testing of ESD performance and is further amended to specifically include the limitation of comparing the light reflected to the light reflected from an I/O cell with good ESD performance, it is respectfully submitted that all of the claims are distinguishable over the prior art. Furthermore, claims 10, 15, 16, 18 add additional limitations not disclosed in Serial No. 09/670,154 SUPPLEMENTAL APPEAL BRIEF

-8-

215 Paniccia.

216 Allowance of all of the claims is therefore respectfully requested.

217

218

219

220	
221	Charge Our Deposit Account
222	If there are any further charges not accounted for herein, please charge
223	them to our deposit account No. 140448
224	
225	
226	
227	
228	
229	·
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	

247		
248		
249		
250	Respectfully submitted,	
251		Vollrath & Associates
252		
253 254 255 256 257 258 259	Date:	Jurgen K. Vollrath Reg. No. 49,098 Attorney for Appellants

250		IV	A DDENINIV
259 260		IX.	APPENDIX
261	1.	Αı	method of testing the ESD performance of an IC device, comprising
262			probing the device with a laser beam,
263			monitoring the amount of light reflected from the device, and
264			comparing the amount of light reflected to the amount of light
265			reflected from an I/O cell having good ESD performance.
266		2.	A method of Claim 1, wherein the laser beam is used to probe the IC
267			device.
268		3.	A method of Claim 2, wherein the energy of the laser beam
269			corresponds substantially to the bandgap of the substrate of the
270			device.
271		4.	A method of Claim 3, wherein the substrate is silicon and the energy of
272			the laser beam is about 1.1eV.
273		5.	A method of claim 3, wherein the diffusions of the IC device are
274			probed with the laser beam.
275		6.	A method of Claim 5, wherein in the device is probed through the back
276			of the device.
277		7.	A method of Claim 6, wherein the diffusions of I/O cells are probed to
278			determine how much light is absorbed and how much light is reflected
279			by the diffusions.
280		8.	A method of Claim 5, wherein several samples are taken of each
281			probed location, at the same I/O signal voltage level, and the results
282			averaged.
283	-	9.	A method of Claim 1, wherein a mode-locked laser is used to probe
284			the IC device.
285		10.	A method of Claim 9, wherein a continuous wave laser is used in
286			addition to the mode-locked laser, to provide an image of the IC device
287			in order to facilitate the positioning of the beam of the mode-locked
288			laser.
289		11.	A method of Claim 9, wherein the mode-locked laser is positioned by a

user.

290

12. 291 A method of Claim 9, wherein the mode-locked laser is positioned 292 automatically using image recognition. 293 13. A method of Claim 5, wherein power is supplied to the device during 294 testing. 295 14. A method of Claim 13, wherein the testing is performed on the device 296 in a packaged form. 297 15. A method of Claim 13, wherein the testing is performed on the device 298 in a prepackaged form. 299 16. A method of Claim 15, wherein the device includes only some of its 300 layers. 301 17. A method of Claim 6, wherein a mode-locked laser is used to probe 302 the IC device. 303 18. A method of Claim 17, wherein a continuous wave laser is used in 304 addition to the mode-locked laser, to provide an image of the IC device 305 in order to facilitate the positioning of the beam of the mode-locked 306 laser. 307 19. A method of Claim 17, wherein the mode-locked laser is positioned by 308 a user. 309 20. A method of Claim 17, wherein the mode-locked laser is positioned 310 automatically using image recognition. 311 312