Visual Perception

- Based on sampled visual information
 - Need-to-know basis
- Optimization of resource allocation
 - Physical action
 - Eye movement, head movement.
 - Cognitive actions
 - Relying on working memory to retain visual images
 - Analyzing and interpreting visual images with the help of short-term and long-term memory.
- Goal-oriented
 - Intentionally or unintentionally
- What we see is a distorted version of the physical world.

Goal-Driven

- The goal is usually predefined and with an action plan.
- Actions are often visually guided.
 - Eye movement
- Visual attention follows the action plan.
- Often very contextual.
 - Prior knowledge, training, etc.

Key Messages

- Our eyes capture optical information from the external worlds, just as photo sensors do.
- However, our overall visual system, involving eyes and brain, is good at catching difference in luminance, rather than the absolute value of luminance.

Opponent Process Theory

Black and White Is the Best.

Some natural philosophers
Suppose that these colors arise from the accidental vapours diffused in the air, which communicates their own hues to the shadow

Some natural philosophers
Suppose that these colors arise from the accidental vapours diffused in the air, which communicates their own hues to the shadow

Black and white

- Only require two types of cones
 - They are distributed widely.

Large and Small Areas

- Small areas of interest: saturated colors.
 - Background colors: less saturated.

Color Coding

- Using colors to distinguish object types
 - Learnability
 - Using the unique hues first
 - Red, green, yellow, blue
 - Limited number of different colors.

Unique Hues

Six basic colors

Cross-Culture Names

Spectrum Sequence

- The whole spectrum sequence is not perceptually ordered.
 - Part of the spectrum is.
- Provide color keys.
 - Ordering colors according to their luminance.

Quantitative Comparison

Perceptually ordered colors

- Grayscale

- Same color, different saturations

Semantics of Color

Could be culture-dependent

What Color Is This Dress?

What Happed to the Market?

Two Different Designs

Cognitive Foundation for Visualization -- II

More Pictures

What Stands Out? (What We Can Easily See)

Pop-out Effect

- Certain unique visual features make an object pop out of the distracters in the background.
 - The number of distracters does not matter.
- Very quick
 - 0.1 second

Pop Out Effect

- Certain unique features make an object pop out of the distracters in the background.
 - The number of distracters does not matter.
- Very quick
 - 0.1 second
- Visual distinction between the target and the distracters should be large enough.

Pop-out Channels

- Prominent channels
 - Form (orientation/size)
 - Color
 - Simple motion/blinking
 - Spatial, stereo depth, shading, position

Color

Orientation

Motion

Size

Pop-out Conjunctions

- In general: spatial feature and some aspect of form
 - Color and motion
 - Color and position
 - Shape and position

Design of Pop-out Conjunctions

- Good design
 - Sufficient differences in feature dimensions

- Otherwise, hard to use.
 - Learning does not help much.

Visibility Enhancement Is Asymmetric

Large size vs. small size

Visibility Enhancement Is Asymmetric

- Large size vs. small size
- Adding an extra part vs. taking a part away.

Motion

Very powerful pop-out effect.

In particular, things that emerge into the view.

- Abuse of motion
 - Online commercials
 - High-frequency, rapid motion
 - TV commercials

BANDWIDTH SPEEDS -

CONGRATULATIONS! YOU'VE WON!

Implications for Design

- Making objects of interest different from its surroundings
- More complex search: combining different channels
 - Form, color, motion

More Pictures

Visual Patterns

Visual Patterns Are Important!

- Finding patterns is key to information visualization.
- Expertise often is about seeing visual patterns.

Static Patterns

- Gestalt Laws
 - Proximity
 - Similarity
 - Continuity
 - Symmetry
 - Closure
 - Relative Size
 - Figure and Ground

Proximity

Proximity

Similarity

Visual Grouping by similarity

Continuity

Visual entities tend to be smooth and continuous

Closure

Such Pattern Recognition

Very important to our perception and cognition

 "The whole is greater than the sum of its parts!"

Pattern Interference

The more the background differs in element granularity, in feature similarity, and in the overall contrast, the easier the text will be to read.

Subtle, low-contrast background texture with little feature similarity will interfere less.

Pattern Recognition as High-Level Activities

- Can be learned and trained.
 - Intelligence analysts
 - Air traffic controllers
 - Chess grandmasters
- Complex patterns can be encoded for rapid processing.

A structured knowledge of chess positions enables a grandmaster to spot the correct move quickly. The position at the right comes from a famous 1889 game between Emanuel Lasker (white) and Johann Bauer (black). Although a novice player would have to analyze the position extensively to see the winning move for white, any grandmaster would immediately recognize it. The correct move is shown on page 71.

- Patterns are about spatial relationship among objects.
 - Same group

- Patterns are about spatial relationship among objects.
 - Same group
 - More complex relationship

- Patterns are about spatial relationship among objects.
 - Same group
 - More complex relationship
 - Apprehendable chunks in web design
 - News web sites

- Patterns are about spatial relationship among objects.
 - Same group
 - More complex relationship
 - Apprehendable chunks in web design
 - News web sites
 - Semantic pattern mappings
 - Considering user tasks and needs in spatial layout

Can You Recognize This Map?

Programming Assignment 3

name	economy	cylinders	displaceme	power	weight	acceleration	year
AMC Ambassador	13	8	360	175	3821	11	73
AMC Ambassador	15	8	390	190	3850	8.5	70
AMC Ambassador	17	8	304	150	3672	11.5	72
AMC Concord DL 6	20.2	6	232	90	3265	18.2	79
AMC Concord DL	18.1	6	258	120	3410	15.1	78
AMC Concord DL	23	4	151	0	3035	20.5	82
AMC Concord	19.4	6	232	90	3210	17.2	78
AMC Concord	24.3	4	151	90	3003	20.1	80
AMC Gremlin	18	6	232	100	2789	15	73
AMC Gremlin	19	6	232	100	2634	13	71
AMC Gremlin	20	6	232	100	2914	16	75
AMC Gremlin	21	6	199	90	2648	15	70
AMC Hornet Sport	18	6	258	110	2962	13.5	71
AMC Hornet	18	6	199	97	2774	15.5	70
AMC Hornet	18	6	232	100	2945	16	73
AMC Hornet	19	6	232	100	2901	16	74
AMC Hornet	22.5	6	232	90	3085	17.6	76

Goals

- Visualizing multi-dimensional data
 - Cars: maker, cylinder #, power, weight, year, etc.
- Understand the overall patterns
- Understand the relationships among selective dimensions.

- Two graphs in one view
 - Parallel Coordinates + Scatter Plot

Parallel Coordinates

Popular tools for multi-dimensional data

Scatter Plot

Scatter Plot

- Location and size of individual dots
 - Circles: x, y, r
- One step further from bar charts

```
chart.selectAll(".bar")
   .data(bardata)
   .enter().append("circle")
   .attr("class", "bar")
   .attr("cx", function(d) { return x(d.name); })
   .attr("cy", function(d) { return y(d.value); })
   .attr("r", function(d) { return (height - y(d.value))/50; });
```


Group Project

- Progress report 1 due this week
- Four sections
 - Introduction, Data, Tasks and Visualization,
 Collaboration Plan

See the description on CANVAS