Home assignment 3

12.11.2022

Problem 1

We can trade a stock and a call option on the stock and use the bank account with interest rate r = 20%.

- 1. The initial price of the stock is $S_0 = \$100$. At t = 1 the stock pays the dividend D = \$6 and then its price S_1 takes one of the values: \$90, \$110, and \$130.
- 2. The call has strike $K^C = \$110$ and is traded at initial price $C_0 = \$5$. The delivery takes place at t = 1 after the dividend payment.
- (a) Is the model arbitrage-free? Is it complete?
- (b) Compute all AFPs for the put option with strike $K^P = \$102$ and the delivery taking place at t = 1 after the dividend payment. Can we replicate the put? If yes, then find the numbers Δ_0 and Δ_0^C of stocks and calls in the replicating strategy.

Problem 2

We can use the bank account with interest rate r = 25% and trade the forward on a stock at the forward price F = 4. The forward expires at t = 1, when the price of the stock S_1 takes one of the values: 2, 5, or 8. We can not trade the stock.

- (a) Is the model arbitrage-free? Is it complete?
- (b) Compute AFPs for the put option on the stock with strike K = 6 and maturity t = 1.

Problem 3

We can trade a forward contract on a stock and a put option on forward and use a money market account with interest rate $r = \frac{1}{4}$.

- 1. The forward expires at N = 2. The initial forward price is $F_0 = 4$. At t = 1, the forward price F_1 takes one of the values: 2, 4, or 9.
- 2. The put expires at t=1 and gives its holder the right to enter into the forward agreement to sell the stock at N for the price K=4. Note that, after the exercise, there is no payment at t=1. The initial price of the put is $P_0 = \frac{4}{5}$.
- (a) For a risk-neutral probability measure $\widetilde{\mathbb{P}}$, compute

$$\widetilde{p}_1 = \widetilde{\mathbb{P}}(F_1 = 2), \quad \widetilde{p}_2 = \widetilde{\mathbb{P}}(F_1 = 4), \quad \widetilde{p}_3 = \widetilde{\mathbb{P}}(F_1 = 9).$$

(b) For the digital option paying $V_1 = 1_{\{F_1 = 2\}}$ at t = 1, compute the AFP V_0 and the numbers Δ_0^F and Δ_0^P of forwards and puts in the replicating strategy.

Problem 4

The bank account pays the interest rate r = 20%. We can trade the forward contract and the put option on the same stock and with the same maturity t = 1. The forward price F = \$4. The put option has strike K = \$4 and is traded at the price $P_0 = \$0.5$. The stock price S_1 at t = 1 takes one of the values: \$1, \$4, or \$8. We can not trade the stock.

- (a) Is the model arbitrage-free? Is it complete?
- (b) Compute all RNPs $\widetilde{\mathbb{P}}$.
- (c) Compute all AFPs of the put option with strike $K^P = \$2$ and maturity t = 1.
- (d) Compute all AFPs of the call option with strike $K^C = \$5$ and maturity t = 1.