تمرین سری چهارم الگوریتمهای مدرن در بهینهسازی

علی بنیاسد ۲۲ دی ۱ °۲۴

١ سوال اول

برای بهینه سازی از الگوریتم PSO استفاده شده است. در تابع پیاده سازی شده ابتدا تعدادی پرنده به صورت تصادفی در بازه تعریف شده قرار میگیرند. برای هر پرنده یک سرعت اولیه به صورت تصادفی انتخاب می شود. تغیرات سرعت پرنده به صورت معادله ۱ است.

$$v = wv + C_1N(0,1)(p_{best} - x) + C_2N(0,1)(g_{best} - x)$$
(1)

در رابطه بالا ضرایب p_{best} بیانگر بهترین در رابطه بالا ضرایب p_{best} بیانگر بهترین تجربه هر پرنده است و g_{best} بیانگر بهترین تجربه ی پرنده هایی است که با آن در ارتباط است. توپولوژی همسایگی (شکل ۱) به صورت حلقه (Ring) در نظر گرفته شده است. در این سوال خواسته بخش اول گزارش CEC2005 انجام شده است، ولی، در گزارش تنها بخشی از نمودارها آورده شده است و سایر نمودار ها در فایل Figure است.

شکل ۲: نمودار همگرایی الگوریتم PSO تابع شماره یک (D=10) برای ۱۰۰۰ تکرار

شکل ۳: نمودار inertia weight الگوریتم PSO تابع شماره یک (D=10) برای ۱۰۰۰ تکرار

شکل (D=10) برای PSO تکرار ایک الگوریتم الم

شکل ۵: نمودار inertia weight الگوریتم PSO تابع شماره دو (D=10) برای ۱۰۰۰ تکرار

به علت اینکه تابع شماره دو دارای نویز است، پس، inertia weight آن نیز دارای نویز است.

Table 1: Values Achieved with PSO algorithm for Problems 1 and 2 (D=10)

FI	ES/Problem	Problem 1	Problem 2						
	$1^{th}(\mathrm{Best})$	-449.9999787052277	-449.9999999999955						
	7^{th}	-449.999853416358	-449.9999999983805						
	$13^{th}(Median)$	-449.9996680779018	-449.999985766405						
1e3	19^{th}	-449.9992664160519	-449.8254439788584						
	$25^{th}(Worst)$	-449.9935680412684	-61.45240223709476						
	Mean	-449.9992093850963	-423.450611298781						
	Std	0.001321429062858954	81.2593245611484						
	$1^{th}(\mathrm{Best})$	-450.0	-449.9999999999966						
	7^{th}	-450.0	-449.999999990536						
	$13^{th}(Median)$	-449.99999999999994	-449.9890024477813						
1e4	19^{th}	-449.99999999999994	-429.92744443669807						
	$25^{th}(Worst)$	-449.99999999999983	4782.609097090884						
	Mean	-450.0	-129.8996247758574						
	Std	5.796914039811765e-14	1068.5144300632844						
	$1^{th}(\mathrm{Best})$	-450.0	-450.0						
	7^{th}	-450.0	-450.0						
	$13^{th}(Median)$	-450.0	-450.0						
1e5	19^{th}	-449.9999999999999	-449.9999999999994						
	$25^{th}(Worst)$	-449.9999999999999	-449.99999999999994						
	Mean	-450.0	-450.0						
	Std	3.215549355384371e-14	3.215549355384371e-14						

Table 2: Values Achieved with PSO algorithm for Problems 1 and 2 (D=30)

Fl	ES/Problem	Problem 1	Problem 2					
	$1^{th}(\text{Best})$	-449.99998619166854	-449.99999999939354					
	7^{th}	-449.9998718525022	40420.10955750148					
	$13^{th}(Median)$	-449.9998195592621	56691.59162357271					
1e3	19^{th}	-449.99942177358423	79561.30101108812					
	$25^{th}(Worst)$	-449.9985720932928	123160.65222491047					
	Mean	-449.99962402843727	58183.77085117807					
	Std	0.0003711894716529072	30723.13488958691					
	$1^{th}(\mathrm{Best})$	-450.0	23595.40655734655					
	7^{th}	-450.0	33363.7352014709					
	$13^{th}(Median)$	-449.9999999999994	47183.89788197362					
1e4	19^{th}	-449.9999999999994	60886.23378363138					
	$25^{th}(Worst)$	-449.9999999999994	103569.85779628623					
	Mean	-450.0	49939.64569103153					
	Std	4.5474735088646414e-14	21155.063674898593					

Table 3: Values Achieved with PSO algorithm for Problems 1 and 2 (D=50)

FI	ES/Problem	Problem 1	Problem 2					
	$1^{th}(\mathrm{Best})$	-449.99998100894874	18439.04388319432					
	7^{th}	-449.9999238343942	44613.926387444895					
	$13^{th}(Median)$	-449.9998536654368	69394.46049754831					
1e3	19^{th}	-449.9996903867559	96414.65498879585					
	$25^{th}(Worst)$	-449.99863762582254	153348.96108922383					
	Mean	-449.99973406754907	69754.01098699088					
	Std	0.0003002225766163943	37537.44745190397					
	$1^{th}(\mathrm{Best})$	-450.0	123434.7542796172					
	7^{th}	-450.0	161688.4767345813					
	$13^{th}(Median)$	-449.9999999999994	196405.68546559024					
1e4	19^{th}	-449.9999999999994	260789.9331202219					
	$25^{th}(Worst)$	-449.9999999999994	380963.02282124246					
	Mean	-450.0	215538.32784349122					
	Std	4.5474735088646414e-14	73059.88366852782					

۲ سوال دوم

در این سوال برای از الگوریتم ابتکاری مورچگان برای حل مسئله معروف فروشنده دورهگرد استفاده شده است. در بخش ۱۰۲ با فرض ترافیک و در بخش ۳۰۲ با فرض اینکه ترافیک تابعی از زمان است حل شده است. در شکل ۲ مکان شهرها رسم شده است.

۱.۲ پخش اول

با توجه به اینکه الگوریتم مورد استفاده ابتکاری است و تابع رندوم بخش مهمی از آن است در اینجا دو راه حل (شکل های ۱۰۲ و ۱۰۲) آورده شده است. طول هر مسیر نیز در جدول ۱۰۲ آورده شده است. برای حل این مسئله از یک ماتریس به اسم graph برای توصیف فاصله ی بین شهرها استفاده شده است

شكل ٧: راه حل اول توليد شده توسط الگوريتم ACO

شكل A: راه حل دوم توليد شده توسط الگوريتم ACO

Table 4: Cost of solution produced with ACO

solution 1 Cost	solution 2 Cost
881.0	899.8

۲.۲ بخش دوم

در بخش ۱۰۲ ماتریس graph معرفی شد. در این بخش برای اضافه کردن ترافیک، درایههای ماتریس $\operatorname{traffic}$ به نظیر به نظیر تقسیم بر درایههای ماتریس graph (هر چه سرعت بیشتر باشد هزینه رفتن از شهر i به i کمتر است) می شود.

شكل ٩: راه حل توليد شده توسط الگوريتم ACO با در نظر گرفتن ترافيك

۳.۲ بخش سوم

Table 5: Cost of solution produced with ACO

Time	local pheromone solution	global pheromone solution
i = 0	874.72	879.96
i = 1	1491.50	1571.60
i = 2	936.80	1138.58
i = 3	1130.20	1152.92
i = 4	1011.32	1095.87
i = 5	1030.46	1080.46
i = 6	1324.29	1357.68
i = 7	1081.62	1077.28
i = 8	1129.28	1163.53
i = 9	1329.87	1309.49
sum	11340.11	11827.44

فهرست مطالب

١																						ول	ل ا	سوال	(١
v																						وم	ى د	سوال	•	١
٨				•				•	 •	•				•		•								1.7		
۰ (•				•		•	 •	•						•				وم	ے د	بخشر	•	7.7		
١١																				موم	س ر	بخشر	,	٣.٢		

فهرست تصاویر فهرست تصاویر

٢	توپولوژي حلقه	١
٢	. تمودار همگرایی الگوریتم PSO تابع شماره یک $(D=10)$ برای $\circ \circ \circ$ تکرار	۲
	$O \circ \circ$ نمودار inertia weight الگوریتم PSO تابع شماره یک ($D = 10$) برای	٣
٣	تكرار	
٣	\cdot . نمودار همگرایی الگوریتم PSO تابع شماره دو $(D=10)$ برای $\circ \circ \circ \circ$ تکرار	۴
۴	نمودار inertia weight الگوریتم PSO تابع شماره دو ($D=10$) برای ۱۰۰۰ تکرار	۵
٨	مكان شهرها	۶
٩	راه حل اول توليد شده توسط الگوريتم ACO	٧
۰ (راه حل دوم توليد شده توسط الگوريتم ACO	٨
١١	راه حل توليد شده توسط الگوريتم ACO يا در نظر گرفتن ترافيک	٩

List of Tables

1	Values Achieved with PSO algorithm for Problems 1 and 2 (D=10)	5
2	Values Achieved with PSO algorithm for Problems 1 and 2 (D=30)	6
3	Values Achieved with PSO algorithm for Problems 1 and 2 (D=50)	7
4	Cost of solution produced with ACO	10
5	Cost of solution produced with ACO	12