Quantum Neuron

an application of Repeat-Until-Success Circuits

Moritz Schmidt 20.07.2021

Outline

(small) Introduction Artificial Neuron

Quantum Artificial Neuron

• Implementation Issues In Qiskit

Classical Artificial Neuron

Neuron

$$y = \sigma(\sum_{i}^{N} x_i w_i + b)$$

Neural Networks As Function Approximator

- Used to learn unknown functions
- Training data:
 - Input data x
 - Expected output y
- Optimize weights based on training error
- Learn to generalize for unknown test data

Activation Functions

Neural Network

Training

correct result

output of network

- Loss Function: $\min_{\mathbf{W}, \mathbf{b}} \sum_{i=1}^{T} \|\mathbf{y}_j f(\mathbf{x}_j)\|_2^2$
- Often more sophisticated in practice (regularization terms,...)
- Optimization Problem!
- Backpropagation: Chain Rule + Gradient Descent + 'Optimizer'
- Requires Gradient => Activation functions should be differentiable

Quantum Artificial Neuron

Quantum Perceptron: Concept

Encoding on the Bloch Sphere

Assumption: $x \in [-1, 1]^n$

Encoding on the Bloch Sphere

Linear Combination

Linear Combination

- We want normalized data: $x \in [-1, 1]^n$
- ullet We don't want extra constraints for Optimization: $w \in \mathbb{R}^n$
- Output has to be in bounds again! $y = \sum_{i=1}^{N} x_i w_i + b$

arbitrary magnitude depending on w, b

Normalize by biggest magnitude of bias and weights

Linear Combination

$$y = \sum_{i=0}^{N} x_i w_i$$

We start at angle $\frac{n}{2}$ and rotate along the Y-Axis depending on each $x_i w_i$

At Maximum rotate: $\frac{\pi}{2}$

At Minimum rotate: $-\frac{\pi}{2}$

We start at 0 and add up the terms $x_i w_i$

At Maximum add 1

At Minimum add -1

- Assume: $x_i \in \{-1, 1\}$
- We start in state $|+\rangle$
- ullet We can view x_i as Rotation direction
- ullet We can view $\,w_i\,$ as Rotation angle
- How can we implement this as a Circuit?

Case $x_i = 1$:

The Input Qubit is in State $|1\rangle$

Apply controlled rotation around Y-axis with with angle w_i

Case $x_i = 0$:

The Input Qubit is in State $|0\rangle$

We want to rotate with angle $-w_i$

But controlled rotation does not work here..

Solution:

- ullet Rotate with angle $-w_i$ by default
- In case $x_i = 1$ rotate with angle $2w_i$
 - first rotation negates the default rotation
 - second rotation is the actual rotation

$$\begin{array}{c|c} |s_1\rangle & & \\ |s_2\rangle & & \\ \vdots & & \vdots \\ |s_n\rangle & & \\ |0\rangle & & & \\ R_y(2\gamma w_1) - R_y(2\gamma w_2) - & \cdots - \\ R_y(2\gamma w_n) - R_y(\beta) - & R_y(\varphi)|0\rangle \end{array}$$

$$\gamma = \frac{\pi}{2} \cdot \frac{1}{n \cdot w_{max} + b_{max}} \qquad \beta = \frac{\pi}{2} + \gamma (b - w_1 - w_2 - \dots - w_n)$$

Normalization Factor

$$\gamma = \frac{\pi}{2} \cdot \frac{1}{n \cdot w_{max} + b_{max}}$$

$$\gamma = \frac{\pi}{2} \cdot \frac{1}{n \cdot w_{max} + b_{max}} \qquad \beta = \frac{\pi}{2} + \gamma (b - w_1 - w_2 - \dots - w_n)$$

Initialize to
$$\ket{+}$$

$$\gamma = \frac{\pi}{2} \cdot \frac{1}{n \cdot w_{max} + b_{max}}$$

$$\gamma = \frac{\pi}{2} \cdot \frac{1}{n \cdot w_{max} + b_{max}} \qquad \beta = \frac{\pi}{2} + \gamma(b - w_1 - w_2 - \dots - w_n)$$

Bias + default rotations

$$\gamma = \frac{\pi}{2} \cdot \frac{1}{n \cdot w_{max} + b_{max}}$$

$$\gamma = \frac{\pi}{2} \cdot \frac{1}{n \cdot w_{max} + b_{max}} \qquad \beta = \frac{\pi}{2} + \gamma (b - w_1 - w_2 - \dots - w_n)$$

Activation Function

Quantum Neuron: Activation Function

Quantum Neuron: Activation Function

Traditional Non-Linear Activation Functions

$$q(\varphi) = \arctan(\tan^2 \varphi)$$

Quantum Neuron: Activation Function

Until now: Angle on Bloch Sphere

Here: Actual Angle

(0 and 1 State are orthogonal)

Activation Function: Interpretation

$$\varphi \in [0, \frac{\pi}{2}] \iff |\varphi\rangle = \cos(\varphi)|0\rangle + \sin(\varphi)|1\rangle$$

Activation Function: Interpretation

$$\varphi \in [0, \frac{\pi}{2}] \iff |\varphi\rangle = \cos(\varphi)|0\rangle + \sin(\varphi)|1\rangle$$

$$q(\varphi) = \arctan(\tan^2(\varphi))$$
 $tan^2(\varphi) = \frac{\sin^2(\varphi)}{\cos^2(\varphi)}$

Activation Function: Interpretation

$$\varphi \in [0, \frac{\pi}{2}] \iff |\varphi\rangle = \cos(\varphi)|0\rangle + \sin(\varphi)|1\rangle$$

$$q(\varphi) = \arctan(\tan^2(\varphi)) \Rightarrow |q(\varphi)\rangle = \frac{\cos^2(\varphi)}{z} |0\rangle + \frac{\sin^2(\varphi)}{z} |1\rangle$$

Normalization Term

(cancels out in tangens)

Activation Function

Repeat-Until-Success Circuit

Activation Function: RUS (k=1)

Repeat-Until-Success Circuit

Activation Function: RUS (k=2)

From Single Neuron to Neural Network

Comparing To Classical Neural Networks

Model allows to simulate a classical neural network computation!

But worse runtime then classically...

And we only did forward pass...

Entire optimization still has to be done classically....

Superposition As Input

Training Of Superposition

- Training again only classically,
- Gradients??..
- gradient-free optimization used in paper
- Testing: Each data point separately
- Still: In times of "Big Data", evaluate entire training data in one go!

Questions?

RUS Implementation Qiskit

