The method illustrated Terminology Factoring Polynomials Partial fraction decompositions Further examples

§7.4–Partial Fractions

Tom Lewis

Spring Semester 2015

The method illustrated Terminology Factoring Polynomials Partial fraction decompositions Further examples

Outline

The method illustrated

Terminology

Factoring Polynomials

Partial fraction decompositions

Further examples

Problem

Let

$$f(x) = \frac{x+1}{2x^2 + 7x + 6}.$$

1. Show that

$$f(x) == \frac{1}{x+2} - \frac{1}{2x+3}.$$

The expression on the right is called the partial fraction decomposition.

2. Use this decomposition to evaluate $\int f(x)dx$.

The method illustrated

Terminology

Factoring Polynomials Partial fraction decompositions

Further examples

Definition

A rational function is any function of the form f(x) = P(x)/Q(x), where P and Q are polynomials. The rational function f is said to be proper if $\deg P < \deg Q$.

Example

Here are two examples:

- $f(x) = \frac{x+1}{2x^2+7x+6}$ is proper.
- $g(x) = \frac{x^3 + 2x + 4}{x^2 1}$ is not proper.

Long division

Using long division, an improper rational function can be written as a sum of a polynomial and a proper rational function.

The method illustrated

Terminology

Factoring Polynomials Partial fraction decompositions

Further examples

Problem

Express

$$\frac{x^4 - 4x^2 + 3x + 4}{x^2 - 4}$$

as the sum of a polynomial plus a proper rational function.

Definition (Types of factors)

There are two types of factors:

- 1. A factor of the form Ax + B is called linear.
- 2. A factor of the form $Ax^2 + Bx + C$ for which $B^2 4AC < 0$ is called an irreducible quadratic.

Check!

Is $2x^2 - x - 36$ irreducible?

The method illustrated Terminology Factoring Polynomials Partial fraction decompositions Further examples

Problem

- 1. Factor $P(x) = x^3 + 2x^2 4x 8$. Identify the factors and their multiplicities.
- 2. Factor $Q(x) = x^4 1$. Identify the factors and their multiplicities.

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be expressed as a product of powers of linear factors $(ax + b)^m$ and powers of irreducible quadratic factors $(ax^{2} + bx + c)^{n}$.

The method illustrated Terminology Factoring Polynomials Partial fraction decompositions Further examples

Theorem (Partial Fraction Decompositions)

Assume that the rational function $\frac{P(x)}{Q(x)}$ is proper.

- Each factor of Q will generate terms of the partial fraction decomposition of P/Q.
- To each linear factor $(ax + b)^m$ of Q, the decomposition of P/Q will contain the terms

$$\frac{D_1}{(ax+b)^1}+\cdots+\frac{D_m}{(ax+b)^m}.$$

• To each irreducible quadratic factor $(ax^2 + bx + c)^n$ of Q, the decomposition will contain the terms

$$\frac{E_1x + F_1}{(ax^2 + bx + c)^1} + \cdots + \frac{E_nx + F_n}{(ax^2 + bx + c)^n}.$$

Problem

Find the partial fraction decomposition of $f(x) = (x+1)/(2x^2+7x+6)$ and evaluate $\int f(x)dx$.

The method illustrated Terminology Factoring Polynomials Partial fraction decompositions Further examples

Problem

Find the partial fraction decomposition of $f(x) = (3x^2 + 3x - 2)/(x^3 + 2x^2 - 4x - 8)$ and evaluate $\int f(x)dx$.

Problem Evaluate
$$\int \frac{x^6 + 2x^4 + x^3 - 2x^2 - x - 5}{x^4 - 1} dx$$
.