Computing Large Scale Linear Least Squares with SKiLLS

Zhen Shao

December 9, 2020

1 Overview

SKiLLS (SKetchIng-Linear-Least-Sqaures) is a C++ package for finding solutions to over-determined linear least square problems. SKiLLS uses a modern dimensionality reduction technique called sketching, and is particularly suited for large scale linear least squares where the number of measurements/observations is far greater than the number of variables.

Mathematically, SkiLLS solves

$$\min_{x \in \mathbb{R}^d} f(x) := \|Ax - b\|_2^2,\tag{1}$$

where $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$ given. The matrix A is allowed to be rank-deficient or nearly rank-deficient.

1.1 When to use SKiLLS

Problem (1) frequently appears as a sub-problem in many computational and data science problems, for example, in many non-linear/general function minimisation routine linearises the problem and iteratively solve problems of the form (1). In the following situations using SKiLLS yields significant computational advantage comparing to state-of-the-arts¹:

- 1. A is dense, large, sufficiently over-determined with unknown rank.
- 2. A is dense, large, sufficiently over-determined with high coherence².
- 3. A is sparse, large, sufficiently over-determined with non-zero entries randomly distributed.
- 4. A is moderately sparse (e.g. one percent of entries are non-zero), large, moderately over-determined.

In the following situations using SKiLLS is competitive with state-of-the-arts

- 1. A is dense, large, sufficiently over-determined with full rank.
- 2. A is sparse, large, moderately over-determined.

For further details of computational advantages, see our paper. Computing Large Scale Linear Least Squares with SKiLLS, C. Cartis and Z. Shao.

¹Blendenpik [1] for dense problems, SPQR [2] and Cholesky-preconditioned LSQR [4] for sparse problems

²The coherence of a matrix A is defined as the largest Euclidean norm of U, where U is defined in the reduced singular value decomposition of A.

2 Installing SKiLLS

- 2.1 Dependency
- 2.2 Installation instruction
- 2.3 Test the installation

3 Using SKiLLS

This is a libary of two/three routines etc....

3.1 Data structure

Maybe point out to the header file (or quote the header file).

Dense Vector SKiLLS uses C++ class Vec for dense vectors. To create a $n \times 1$ vector from already existed data, take a pointer to the data and call Vec(n, *data).

Dense Matrix SKiLLS uses C++ class Mat for dense matrices. To create a $n \times d$ matrix from already existed data, take a pointer to the data and call Mat(n, d, *data). Basic matrix operations such as return a specific row, column, or matrix-matrix and matrix vector multiplications are implemented.

Sparse Matrix Skills uses Compressed Column Data structure for sparse matrices and vectors. The sparse data structure is from SuiteSparse [3]. In particular, the cs_dl structure used as the input matrix format for sparse linear least squares is taken from the CXSparse package from SuiteSparse. It is a C structure with 7 fields:

- nzmax: maximum number of non-zeros.
- m: number of rows.
- n: number of columns.
- *p: column indices (size nzmax)
- *i: row indices, size nzmax.
- *x: numerical values of non-zeros, size nzmax.
- nz: -1 for compressed column format.

Sometimes we will also use the data structure cholmod_sparse for sparse matrix in compressed column format. It has a similar structures. For more information, see the header file or documentation of SuiteSparse.

Examples We give two examples of constructing dense and sparse matrices from user given data. The below code snippet creates a dense matrix and a vector.

```
long m = 4;
long n = 2;
double data_A[8] = \{0.306051, 1.53078, 1.64493, 1.61322, 0.2829, 0.474476, 0.586278, 0.610202\};
double data_b[4] = \{0.0649338, 0.845946, 0.0164085, 0.247119\};
Mat_{A}(m, n, data_{A});
Vec_{A}(m, n, data_{B});
```

The below code snippet creates a sparse matrix.

```
long m = 4;
long n = 3;
long nnz = 5;
long \ col[4] = \{1, 2, 4, 6\};
long row[5] = \{1, 1, 3, 2, 4\};
double val[5] = \{2.0, 3.0, 1.0, 4.0, 5.0\};
long col 0 [4];
long row 0/5/;
// convert to zero based indices
for (long i=0; i< n+1; i++) \{
 col \ 0/i/ = col/i/1;
for (long i = 0; i < nnz; i++)
 row\_0[i] = row[i] 1;
cholmod\ common\ Common,\ *cc;
cc = \&Common;
cholmod l start(cc);
cc > print = 4;
cholmod sparse* A;
A = cholmod \ l \ allocate \ sparse(
m, n, nnz, true, true, 0, CHOLMOD REAL, cc);
A > p = col \theta;
A > i = row \theta;
A > x = val:
cholmod l print sparse (A, "A", cc);
cholmod_ l finish(cc);
```

3.2 Dense problems

To compute a solution of a linear least square problem where the matrix A is dense, a call of the following form should be made.

ls_dense_hashing_blendenpik(A, b, x, rank, flag, it, gamma, k, abs_tol, rcond, it_tol, max_it, debug, wisdom):

seperate into input, output and options typical correct values of these parameters

- A is an input of derived type containing the $\mathbb{R}^{m \times n}$ matrix.
- b is an input of derived type containing the \mathbb{R}^m vector.
- x is an output of derived type containing the \mathbb{R}^n vector solution on exit.
- rank is an output of derived type containing a scaler, detected rank of the matrix A.
- flag indicates LSQR convergence.
- it indicates LSQR iteration count.
- qamma is the over-sampling ratio used in sketching.
- k is number of non-zeros per column in the hashing matrix.

- abs_tol is absolute residual tolerance, the algorithm will immediately return if it founds a vector x with $||Ax b|| \le abs$ tol.
- record a parameter used in column pivoted QR to determine rank. After a column pivoted QR factorization of the matrix SAP = QR, diagonal entried of R less than record is treated as zero and the whole corresponding column in the matrix Q is discarded.
- it to is tolerance used in the preconditioned LSQR algorithm for LSQR convergence.
- max it is maximum iteration allowed in the preconditioned LSQR algorithm.
- debug is a flag. If debug=1 then the solver will print some additional information.
- wisdom is a flag. If wisdom=1 then the user is expected to have provided a wisdom file for the Discrete Cosine Transform used in sketching.

If the matrix A is known to be of full numerical rank, then a different routine can be used which is slightly faster:

 $ls_dense_hashing_blendenpik_noCPQR(A, b, x, rank, flag, it, gamma, k, it_tol, max_it, debuq, wisdom):$

The arguments usage is the same as above, but we don't need the rank-detection parameter roond, and the shortcut related to abs tol is not implemented.

Example The following program solves an example of problem (1) with given A and b. The matrix A is created by

```
\#include < iostream >
\#include "Config.hpp"
\#include "SpMat.hpp"
#include "Random.hpp"
\#include < math.h >
#include "RandSolver.hpp"
#include "cs.h"
\#include < stdio.h >
\#include "SuiteSparseQR.hpp"
\#include "cholmod.h"
\#include "lsex all in c.h"
\#include "IterSolver.hpp"
\#include < sys/timeb.h>
\#include "bench config.hpp"
\#include "blendenpik.hpp"
int main(int argc, char ** argv)
         // create data
        long m = 4;
         long n = 2;
         double data A[8] = \{0.306051, 1.53078, 1.64493, 1.61322,
         0.2829, 0.474476, 0.586278, 0.610202;
         double data b[4] = \{0.0649338, 0.845946, 0.0164085, 0.247119\};
        Mat \ d \ A(m, n, data \ A);
         Vec \ d \ b (m, data \ b);
         // parameters
         long k = NNZ PER COLUMN:
         double \ qamma = OVER \ SAMPLING \ RATIO;
         long max it = MAX IT;
         double it tol = IT TOL;
         double \ rcond = 1e \ 10;
```

```
int wisdom = 0;
double \ abs \ tol = ABS \ TOL;
// storage
long it;
int flag;
long rank;
double residual;
Vec \ d \ x(A.n());
// solve
ls dense hashing blendenpik (
A, b, x, rank, flag, it, gamma, k, abs tol,
rcond, it tol, max it, debug, wisdom);
std::cout << "A_ is: _ "<< A << std::endl;
std::cout << "b is: "<< b << std::endl;
std::cout << "solution_is:_i" << x << std::endl;
// compute residual
A.mv('n', 1, x, 1, b);
std::cout << "Residual of ls blendenpik hashing is: "<< nrm2(b) << std::endl;
std::cout \ll "Iteration\_of\_ls blendenpik hashing\_is:\_" \ll it \ll std::endl;
```

3.3 Sparse problems

To compute a solution of a linear least square problem where the matrix A is sparse, a call of the following form should be made.

 $ls_sparse_spqr(*A, b, x_ls_qr, rank, flag, it, gamma, k, abs_tol, ordering, it_tol, max_it, rcond, peturb, debug):$

- A is an input of derived type containing the $\mathbb{R}^{m \times n}$ matrix.
- b is an input of derived type containing the \mathbb{R}^m vector.
- x is an output of derived type containing the \mathbb{R}^n vector solution on exit.
- rank is an output of derived type containing a scaler, detected rank of the matrix A.
- flag indicates LSQR convergence.
- it indicates LSQR iteration count.
- gamma is the over-sampling ratio used in sketching.
- k is number of non-zeros per column in the hashing matrix.
- abs_tol is absolute residual tolerance, the algorithm will immediately return if it founds a vector x with $||Ax b|| \le abs_tol$.
- ordering is a parameter used in to select fill-reduced ordering strategy in sparse QR factorization.
- it to is tolerance used in the preconditioned LSQR algorithm for LSQR convergence.
- max it is maximum iteration allowed in the preconditioned LSQR algorithm.
- round is a parameter used in sparse rank-revealing QR to determine rank.
- perturb is a potential pivot perturbation if R_{11} returned by the sparse QR factorization is ill-conditioned.
- debug is a flag. If debug=1 then the solver will print some additional information.

4 Reference

References

- [1] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging LAPACK's Least-Squares Solver. SIAM Journal on Scientific Computing, 32(3):1217–1236, Jan. 2010.
- [2] T. A. Davis. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. ACM Transactions on Mathematical Software (TOMS), 38(1):8, Nov. 2011.
- [3] T. A. Davis. Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization. ACM Transactions on Mathematical Software (TOMS), 38(1), Dec. 2011.
- [4] J. Scott and M. Tůma. HSL_MI28: An Efficient and Robust Limited-Memory Incomplete Cholesky Factorization Code. ACM Transactions on Mathematical Software, 40(4):1–19, June 2014.