

KAIST Summer Session 2018

Module 3. Deep Learning with PyTorch

Regression and Neural Network

KAIST College of Business

Jiyong Park

16 August, 2018

Let's Get Started

Please ensure that you are on the latest pip and numpy packages. Anaconda is our recommended package manager

Run this command: conda install pytorch-cpu -c pytorch pip3 install torchvision

https://pytorch.org/

(Optional) if any problems,
Try to run the anaconda prompt as administrator
In addition, type these first:
 python -m pip install -upgrade pip
 pip install -upgrade setuptools
 pip install torchvision

Linear Regression

- (Statistical style) Maximum likelihood estimation (MLE)
 - ➤ MLE is same as Ordinary Least Square (OLS) under the GM assumptions

• Linear regression in a machine learning style

Linear regression in the PyTorch way

- (Statistical style) Maximum likelihood estimation (MLE)
 - Suppose that we have observed $X_1 = x_1, X_2 = x_2, X_3 = x_3, ..., X_n = x_n$. The maximum likelihood estimate of θ is the value that maximizes the likelihood function, $L(x_1, x_2, ..., x_n; \theta)$

➤ We need to the likelihood function. What if there are many variables and it has a complex functional form?

- Machine learning is to gradually train the model to minimize a loss function
 - > (1) Loss function

Mean squared error (MSE) for linear regression

➤ (2) Optimization

Gradient descent for back-propagation

➤ (3) Learning rate

Forward and back-propagation

Forward and back-propagation in neural networks

Linear Regression

M3.4 Linear Regression.ipynb

Neural Network

Neural Networks

- Artificial neural network mimics the human brain
 - \triangleright Single neuron is activated (=1) or not (=0).

Linear Model + Activation = Neuron

Linear Model

Activation Function

Linear Model + Activation = Neuron

Activation function

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

Neural Network

M3.4 Neural Network.ipynb

Go Wide & Go Deep

Neural networks consist of multiple neurons at multiple layers

Neural Network

M3.4 Neural Network.ipynb

Multi-class Output

- Softmax function
 - \triangleright softmax (neuron j) = $\frac{e^{z_j}}{\sum_K e^{z_k}}$

- Cross-entropy loss function for multi-class classification
 - ightharpoonup Cross-entropy loss function = $-\sum_{K} \log\{softmax (neuron j)\}$

Neural Network

M3.4 Neural Network.ipynb

Projects for Neural Networks

MNIST Classifier using Neural Network

M3.4 Neural Network_MNIST.ipynb

CIFAR10 Classifier using Neural Network

M3.4 Neural Network_CIFAR10.ipynb

End of Document

