Matematika G3 kidolgozott tételek

Kis Erhard

2022/2023

Matematika G3 szóbeli tételek

Vektoranalízis I:

1. Duális tér

 $\mathbf{V}^* := Hom(V, \mathbb{R})$, ahol $(V, +, \lambda)$ vektortér, \mathbf{V}^* elemei pedig lineáris formák, azaz:

$$\underline{v} \to \varphi(\underline{v})$$

$$\varphi(\alpha \underline{v} + \beta \underline{w}) = \alpha \varphi(\underline{v}) + \beta \varphi(\underline{w})$$

- Homomorfizmus: Két algebrai struktúra közötti művelettartó leképezés. Pl. ha az egyik struktúrában valamely elemek közt valamilyen reláció áll fenn, akkor ezen elemeiknek képei a másik struktúrában is ebben a relációban állnak.
- ullet Endomorfizmus: A képhalmaz részhalmaza az alaphalmaznak. pl: $\mathbb{Z} \to \mathbb{N}$

 V^* halmazt természetes módon vektortérré tehetjük a következőképpen:

$$(\alpha + \beta)\underline{v} = \alpha\underline{v} + \beta\underline{v} \qquad \alpha, \beta \in \mathbf{V}^*$$

$$(\rho \cdot \varphi)\underline{v} = \rho \cdot \varphi(\underline{v}) \qquad \rho \in \mathbb{R}, \varphi \in \mathbf{V}^*$$

Így $(\mathbf{V}^*, +, \lambda)$ már vektortér, amit V duális terének is nevezünk. Vektortér és duális terének dimenziója megegyezik.

2. Leképezés adjungáltja, szimmetrikus és antiszimmetrikus leképezés

Leképezés adjungáltja:

Legyen E = (V, <, >) adott euklédeszi tér és $\varphi : V \to V$ egy lineáris leképezés.

Ekkor $\varphi^*: V \to V$ a leképezés adjungáltja ha $\forall v_1, v_2 \in V$ esetén:

$$<\underline{v_1}; \varphi(\underline{v_2})> = <\varphi^*(\underline{v_1}); \underline{v_2}>$$

• Idempotens: Az adjungált adjungáltja megegyezik az eredeti leképezéssel. $(\varphi^*)^* = \varphi$

Szimmetrikus leképezés:

Egy leképezés szimmetrikus, ha adjungáltja önmaga $\varphi^* = \varphi$ ekkor:

$$< v_1; \varphi(v_2) > = < \varphi(v_1); v_2 > \quad \forall v_1, v_2 \in V$$

Antiszimmetrikus leképezés:

Egy leképezés antiszimmetrikus, ha $\varphi^* = -\varphi$ ekkor:

$$-<\underline{v_1};\varphi(\underline{v_2})>=<\varphi(\underline{v_1});\underline{v_2}> \qquad \forall \ \underline{v_1},\underline{v_2}\in V$$

3. Mátrix vektorinvariánsa és nyoma (trace, spur)

Vektorinvariáns:

Tekintsük a következő, 3x3-as antiszimmetrikus mátrixnak és a \underline{w} vektornak a szorzatát:

$$\begin{bmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a_{12}w_2 + a_{13}w_3 \\ -a_{12}w_1 + a_{23}w_3 \\ -a_{13}w_1 - a_{23}w_2 \end{bmatrix}$$

Egy antiszimmetrikus lineáris transzformáció mindig leírható egy rögzített vektorral való vektoriális szorzatként. Ezt a vektort nevezzük a mátrix vektorinvariánsának.

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \times \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{bmatrix}$$

$$\underline{A} \cdot \underline{w} = \underline{v} \times \underline{w}$$

 \underline{w} együtthatóinak meg kell egyeznie, tehát a vektorinvariáns:

$$\underline{v} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -a_{23} \\ a_{13} \\ -a_{12} \end{bmatrix}$$

A vektorinvariáns csak ortogonális transzformációkkal szemben invariáns.

Nyom /Spur /Trace:

Egy lineáris transzformáció mátrixának főátlójában lévő elemek összege minden koordinátarendszerben ugyanannyi, tehát a koordináta-transzformációkkal szemben invariáns.

Ezt az összeget a lineáris transzformáció ($V_1 = V_2$) első skalárinvariánsának /nyomának /spurjának /tracejének nevezzük. (És ez a sajátértékek összege.)

4. Gradiens, divergencia, rotáció

Gradiens:

A gradiens csak skalármező (azaz skalár-vektor függvény) esetében értelmezhető.

$$u: \mathbb{R}^{3} \to \mathbb{R}$$
$$grad\ u = \frac{\partial u}{\partial x}\mathbf{i} + \frac{\partial u}{\partial y}\mathbf{j} + \frac{\partial u}{\partial z}\mathbf{k}$$

A gradienst tehát úgy kapjuk, hogy a skalármezőt az összes változója szerint, külön-külön (parciálisan) lederiváljuk, és egy oszlopvektorba rendezzük.

$$grad \ u = \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial z} \end{pmatrix}$$

A gradiens tehát vektormennyiség. Ha bevezetjük az úgynevezett nabla vektort:

$$\underline{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

Akkor $grad\ u$ a nabla vektornak és az u skalármezőnek a szorzataként írható fel:

$$grad\ u = \nabla \cdot u$$

Skalármező gradiense, illetve vektormező divergenciája és rotációja független a koordinátarend-szertől.

Divergencia:

A divergencia csak vektormező (azaz vektor-vektor függvény) esetében értelmezhető. Eredménye skalármennyiség.

$$\underline{v}: \mathbb{R}^3 \to \mathbb{R}^3$$

Definíció szerint $div \ \underline{v} = sp(\underline{\mathcal{I}_v})$, tehát \underline{v} Jakobi-mártixának a nyoma:

$$div \ \underline{v} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

Ahol f_i a \underline{v} vektormező i-edik komponensfüggvénye.

 $div \ \underline{v}$ a nabla vektornak és a \underline{v} vektormezőnek a (skaláris) szorzataként írható fel:

$$div \ v = \nabla \cdot v(r)$$

Ha $div \ \underline{v} = 0$, akkor a vektormező forrásmentes.

Rotáció:

A rotáció csak vektormező (azaz vektor-vektor függvény) esetében értelmezhető. Eredménye viszont vektormennyiség.

Definíció szerint $\frac{1}{2}rot$ $f = \frac{1}{2}(Df - Df^*)$, ahol Df a derivált mátrix (Jakobi-mátrix), aminek a soraiban az egyes komponensfüggvények gradiensei vannak. Df^* pegid Df transzponáltja. rot v a nabla vektornak és a v vektormezőnek a vektoriális szorzataként írható fel:

$$rot \ \underline{v} = \underline{\nabla} \times \underline{v}(\underline{r})$$

4. Gradiens, divergencia, rotáció

 $v: \mathbb{R}^3 \to \mathbb{R}^3$ esetén:

$$rot \ \underline{v} = \begin{pmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \\ \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} \\ \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \end{pmatrix}$$

Fontosabb azonosságok: $\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$div \ \underline{r} = 3$$

$$rot \ \underline{r} = 0$$

Zérus azonosságok:

$$rot grad u = \underline{0}$$

$$\operatorname{div}\operatorname{rot}\,\underline{v}=0$$

5. Nabla vektor

Igazából nem vektor, hanem operátor, de vektorként kezelve a legtöbb művelet könnyebben elvégezhető a segítségével.

$$\underline{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

6. Laplace operátor, harmonikus függvény

Laplace operátor:

$$\Delta = \underline{\nabla} \cdot \underline{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Harmonikus függvény:

Akkor harmonikus például az u skalár-vektor ($\mathbb{R}^3 \to \mathbb{R}$) függvény, ha:

$$\Delta u = 0 = \underline{\nabla} \cdot \underline{\nabla} u = \underline{\nabla} \cdot \operatorname{grad} u = \operatorname{div} \operatorname{grad} u = 0$$

Tehát kielégíti az úgynevezett Laplace-egyenletet. (Feltétel: legyen kétszeresen differenciálható az u függvény.)

Vektoranalízis II:

1. Skalárpotenciálos vektormező

Egy $\underline{v}:V\to V$ vektormező skalárpotenciálos, ha $\exists~u:V\to\mathbb{R}$ skalármező, hogy $\underline{v}=grad~u.$ (Fizikai) erőtér esetén a vektortér más néven konzervatív, ha ez teljesül.

Ekkor u-t \underline{v} potenciálfüggvényének nevezzük. Feltétel: $rot \underline{v} = \underline{0}$ (örvénymenteség)

Ha egy vektormező előáll egy skalármező gradienseként, akkor a vektormező bármely görbe menti skalárértékű vonalintegrálja csak a kezdő- és a végponttól függ, tehát független az úttól. Egy vektortérnek végtelen sok skalárpotenciálja van (a konstans miatt).

A skalárértékű vonalintegrál értéke (a munka) a potenciálkülönbséggel egyenlő:

$$\int_{A}^{B} \langle \underline{v}(\underline{r}(\underline{t})), \underline{\dot{r}}(t) \rangle = u(B) - u(A)$$

A potenciálfüggvénynek a vonalintegrállal kapcsolatban az a szerepe, mint egy egyváltozós függvény határozott integráljával kapcsolatban a primitív függvénynek.

2. Vektorpotenciálos vektormező

Egy $\underline{v}:V\to V$ vektormező vektorpotenciálos, ha $\exists \ \underline{w}:V\to V$ vektormező, hogy $\underline{v}=rot \ \underline{w}$, azaz előáll egy másikmező rotációjaként. (\underline{w} vektor tetszőleges koordinátáját nullának választjuk a megoldás során.) Feltétele: $div \ \underline{v}=0$. (forrásmenteség)

3. Görbe

Legyen $I \in \mathbb{R}$ egy nem feltétlenül korlátos intervallum. Ekkor az $\underline{r}: I \to \mathbb{R}^3$ leképezést reguláris görbének hívjuk, ha r immerzió, azaz a derivált leképezése injektív (a képek egyenlőségéből következik az ősképek egyenlősége: $\varphi(a) = \varphi(b) \to a = b$).

4. Görbe ívhossza

A pályasebesség I fölötti integrálját a térgörbe ívhosszának nevezzük (sebesség idő szerinti vonalintegrálját):

$$L(\underline{r}) = \int_{I} ||\underline{\dot{r}}(\tau)|| \, d\tau$$

Más definíció szerint, amikor egy tetszőleges síkgörbe ívhosszát olyan húrok összegével közelítjük, amik 0-hoz tartanak.

Egy y = f(x) egyenlettel adott, szakaszonként sima görbe $a \le x \le b$ határok közötti ívhossza:

$$s = \int_{r=a}^{b} ds = \int_{r=a}^{b} \sqrt{1 + y'^2} \, dx$$

A "töröttvonalak" hosszának az összege is az ívhossz, minden határon túli finomítás esetén:

$$\sum_{i} ||\underline{r}(t_i) - \underline{r}(t_{i-1})||$$

5. Felület

Legyen $S \subset \mathbb{R}^3$, ekkor S-t reguláris (szabályos) felületnek mondjuk, ha $\forall p \in S$ ponthoz létezik p-nek olyan $V \subset \mathbb{R}^3$ környezete, hogy a $\varphi : U \subset \mathbb{R}^2 \to V \cap S$ leképezés:

- differenciálható homeomorfizmus (diffeomorfizmus, azaz differenciálható bijekció)
- és φ immerzió, azaz a $\varphi_q': \mathbb{R}^2 \to \mathbb{R}^3$ (q pontban) injektív lineáris leképezés φ neve: parametrizáció, $p \in V \cap S$ neve: p koordinátakörnyezete

6. Felszínszámítás

Triangularizáció (felszín lefedése háromszögekkel) helyett kicsi, elemi, érintő paralelogrammákkal közelítjük a felszínt, amik már nem tudnak elválni a felülettől (ez az alapelve).

Skaláris felületelem:

$$dS = \left| \left| \frac{\partial \underline{r}}{\partial u} \times \frac{\partial \underline{r}}{\partial v} \right| \right| \Delta u \Delta v$$

Ahol $\frac{\partial r}{\partial u}$ és $\frac{\partial r}{\partial v}$ a paramétervonalak P pontbeli érintővektorai. (A felületen a P pontot az u és v úgynevezett paramétervonalak metszéseként vettük fel; \underline{r} a P pontba mutató vektor). A skaláris felületelem a két differenciálvektor által kifeszített elemi paralelogramma területe. Amit, ha minden határon túl finomítunk, akkor a következő integrál megadja a teljes felszínt:

$$S = \iint_T dS = \iint_T \left| \left| \frac{\partial \underline{r}}{\partial u} \times \frac{\partial \underline{r}}{\partial v} \right| \right| du dv$$

7. Stokes-tétel

A görbe menti és a felületi integrálok közötti kapcsolatot írja le. "Kétdimenziós Newton-Leibnizformulának" is szokták nevezni.

Legyen $F:[a,b]\times[a,b]\to\mathbb{R}^3$ jobbkéz-szabály szerint irányított, parametrizált peremes felület Továbbá, legyen $v:\mathbb{R}^3\to\mathbb{R}^3$ legalább egyszer folytonosan differenciálható vektormező, ekkor:

$$\oint_{\mathcal{G}} <\underline{v}(\underline{r}), d\underline{s} > \iint_{F} < rot \ \underline{v}, d\underline{F} >$$

Tehát a \mathcal{G} görbe menti vonalintegrál megegyezik az F felületen vett felületi integrállal. $d\underline{F} = \underline{n}$ Ezáltal is belátható, hogy ha a vektormező örvénymentes, akkor bármely zárt görbe menti integrálja zérus, hiszen, ha $rot \ \underline{v} = 0$, akkor a skalárszorzat nulla a kettős integrálban.

Megjegyzések:

- Kétoldalú, zárt felület legyen adott, amit egy zárt görbe határol
- \bullet Azonos peremmel rendelkező S_1 és S_2 felületek esetén az integrálok megegyeznek
- Perem nélküli felület esetén nulla a kettős integrál értéke
- Ha nem irányítható a felület, akkor felbontjuk irányítható részekre
- Fizikai alkalmazás pl. gerjesztési törvény

8. Gauss-Osztrogradszkij-tétel

A felületi integrál és a térfogati integrál között teremt kapcsolatot. Szükséges egy korlátos, zárt felület és egy kifelé mutató normálvektor. Legyen $V:[a,b]^3\to\mathbb{R}^3$ irányított, paraméterezett elemi tértartomány és $\underline{v}:\mathbb{R}^3\to\mathbb{R}^3$ V-n legalább egyszer differenciálható vektormező, ekkor:

Ahol F a határfelülete V-nek. A tételből látható, hogy forrásmentes ($div \ \underline{v} = 0$) vektortér zárt felületre vett integrálja (avagy átáramlási feleslege) nulla.

9. Green-tételek

Legyenek $\varphi, \psi: \mathbb{R}^3 \to \mathbb{R}$ kétszeresen folytonosan differenciálható skalármezők. A Gauss-Osztrogradszkij-tételben vegyük fel a \underline{v} vektorteret $\underline{v} = \varphi \cdot grad \ \psi$ alakban.

$$div \ \underline{v} = \underline{\nabla} \cdot \underline{v} = \underline{\nabla}(\varphi \cdot \underline{\nabla}\psi) = \underline{\nabla}\varphi\underline{\nabla}\psi + \varphi\Delta\psi = grad \ \varphi grad \ \psi + \varphi\Delta\psi$$

Aszimmetrikus Green-tételt:

Az első Green-tételben φ és ψ szerepét felcseréljuk, és az így kapott egyenletet kivonjuk az első tétel egyenletéből.

Szimmetrikus Green-tétel:

Differenciálegyenletek I:

1. Közönséges n-edrendű differenciálegyenlet

Differenciálegyenletnek az olyan egyenletet nevezzük, melyben ismeretlen függvények, ezek deriváltjai, valamint független változó(k) fordul(nak) elő.

Közönséges: csak egyetlen független (x) változó van benne (nem parciális, ahol több)

Rend: az ismeretlen (y', y'', ...) legmagasabb fokszámú deriváltja

Definíció:

 $y: \mathbb{R} \to \mathbb{R}$ n-szer folytonosan differenciálható függvény, $y = y^{(0)}, y' = y^{(1)}, \dots, y^{(n)}$ deriváltfüggvények szintén folytonosak és jelölje x a független változót.

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

egyenlet az y-ra vonatkozó, n-edrendű, közönséges differenciálegyenlet. (A fenti megadást implicit megadásnak is hívjuk, mivel a legmagasabb fokszámú derivált nem fejezhető ki egyértelműen, expliciten.)

2. Differenciálegyenlet megoldásának típusai

Általános:

Amely kielégíti a differenciálegyenletet (DE-t) és pontosan annyi, egymástól független, tetszőleges konstanst tartalmaz, ahányad rendű a DE. Az általános megoldás a homogén és az inhomogén rész összege: $y_{\acute{a}}=y_H+y_{IH}$

Partikuláris:

Amely az általános megoldásból úgy származtatható, hogy az abban szereplő konstansoknak meghatározott értéket adunk. (pl. Cauchy kezdetiérték-feladat) Általánosabban: partikuláris megoldás, ha a megoldásfüggvény legalább 1-gyel kevesebb egymástól független állandót tartalmaz, mint ahányad rendű a DE.

Szinguláris:

Olyan megoldás, amely NEM kapható meg az általános megoldásból az állandók megfelelő választásával. (pl. szeparábilis DE esetén)

3. Cauchy-feladat

Az n-edrendű DE olyan megoldását keressük, amely kielégíti:

$$y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$

kezdeti feltételt, ahol $x_0, y_0, y_0', \ldots, y_0^{(n-1)}$ adott számok. Egy DE megoldása során meg van adva megfelelő számú peremfeltétel (PF), amikkel az integrálás során feltűnő állandók értéke meghatározható. Annyi PF kell, ahányad rendű a DE.

4. Lipschitz-feltétel

Ha az f függvény teljesíti a Lipschitz-feltételt az adott tértartományon, akkor a megoldásgörbék nem metszik egymást (azaz létezik egyértelmű megoldás, egy ponton csak egy darab integrálgörbe halad át).

Definíció:

Az f függvény a D tartományon az y változóra nézve kielégíti a Lipschitz-feltételt, ha létezik M pozitív valós szám:

$$|f(x, y_2) - f(x, y_1)| \le M |y_2 - y_1| \quad \forall (x, y_1), (x, y_2) \in D$$

5. Picard-Lindelöf tétel

Ez egyben egzisztencia- és unicitástétel is. Legyen y'=f(x,y) explicit alakban adott DE, és $D=I_1\times I_2$ nyílt téglalap tartomány, ahol I_1,I_2 nyílt intervallumok és legyen $(x_0,y_0)\in D$, továbbá:

- \bullet f folytonos mindkét változójában D-n.
- \bullet f elégítse ki a Lipschitz-feltételt y változóra D-n.

Egyértelműen létezik $\varphi: (x_0 - \varepsilon, x_0 + \varepsilon) \to \mathbb{R}$ függvény melyre,

$$\varphi'(x) = f(x, \varphi(x))$$

$$\varphi'(x_0) = y_0$$

egyaránt teljesül, azaz a φ megoldás egyértelmű.

Megjegyzések:

- \bullet Ha f függvényről csak a folytonosságot feltételezzük: Peano-feltétel.
- Hasonlóan a Cauchy-feltételhez (ott I. feltétel ugyanaz, II. feltétel, hogy az f függvény y szerinti parciális deriváltja korlátos ∀ D-beli pontban), a Picard-Lindelöf tétel is erősebb, szigorúbb tétel. Hiszen, a tételben elegendő, de nem szükséges feltételek vannak, ezáltal lehet, hogy nem teljesül mindkét feltétel, mégis van egyértelmű megoldás!

6. Iránymező

Az iránymező a differenciálegyenlet megoldásairól ad szemléletes képet. Az y'=f(x,y) DE megoldása geometriailag a következőképpen szemléltethető. Az f függvény értelmezési tartományának minden egyes (x,y) pontjához rendeljük hozzá a rajta átmenő, y'=f(x,y) iránytangensű (meredekségű) egyenesnek (megoldásgörbének) a pontot tartalmazó kicsiny szakaszát. E szakaszok összessége alkotja a differenciálegyenlet iránymezőjét; a szakaszokból elég sokat ábrázolva kapjuk a DE megoldásának geometriai képét.

Tehát sok-sok pontban berajzoljuk az érintők egy kicsiny darabját, ezek lesznek a képen is látható vonalelemek, amik összessége az iránymező.

Izoklina: Az a görbe, amelynek pontjaihoz azonos irányú, vagyis párhuzamos vonalelemek tartoznak.

Differenciálegyenletek II:

1. Szeparábilis és arra visszavezethető DE

Definíció:

Az olyan y' = f(x, y) elsőrendű DE-et, amely $y' = h(x) \cdot g(y)$ alakra hozható, szeparábilis (változóiban szétválasztható) differenciálegyenletnek nevezzük. Feltesszük, hogy h és g valamely, alkalmas I és J intervallumon folytonosak.

Megoldás:

$$\frac{dy}{dx} = y' = h(x) \cdot g(y)$$

$$\int \frac{1}{g(y)} dy = \int h(x) dx$$

Szinguláris megoldás: g(y) = 0, amivel osztani kell

Nem szinguláris megoldás: $g(y) \neq 0$

Szeparábilis differenciálegyenletre visszavezethetőek más DE-ek is u helyettesítéssel:

$$y' = f(ax + by + c)$$

$$u := ax + by + c$$

$$u' = \frac{du}{dx} = a + by' = a + b \cdot f(u)$$

illetve

$$y' = f(1, \frac{y}{x})$$

$$u = \frac{y}{x}$$

$$u' = \frac{du}{dx} = \frac{y'x - y \cdot 1}{x^2} = \frac{y'}{x} - \frac{y}{x^2} = \frac{y' - \frac{y}{x}}{x}$$

Továbbá, fontos még az is, hogy az elsőrendű, lineáris differenciálegyenleteknek a homogén része is szétválasztható DE-re vezethető vissza.

2. Bernoulli-féle DE

Definíció:

Az $y' + p(x) \cdot y = q(x) \cdot y^n (n \neq 0, n \neq 1)$ alakú, elsőrendű, nemlineáris DE-et. Bernoulli-féle differenciálegyenletnek nevezzük, ahol $p, q: I \subset \mathbb{R} \to \mathbb{R}$ folytonos függvények.

Megoldás helyettesítéssel:

$$z(x) = z = y^{1-n}$$
 (eredeti DE)

$$z' = \frac{dz}{dx} = (1 - n) \cdot y^{-n} \cdot y' \qquad (1)$$

Ahonnan az eredeti DE-et y^n -nel leosztva, a (1) egyenletet pedig 1-n-nel leosztva és felhasználva a helyettesítést, azt kapjuk, hogy:

. . .