Skill-Portfolio

대표 기술

Java, Python

개인 정보

성 명 : 임동선

생년월일 : 1994-8-14

연 락 처 : 010-3393-2244

E - m a i I : asme12@naver.com

Portfolio: https://limdongsun0814.github.io/react/

학력사항	
재학기간	학교명 및 전공
2020.3.1. ~ 2023.2.22.	홍익대학교 전기공학 (석사)
2013.3.1. ~ 2020.2.21. 홍익대학교 전자전기공학과	

교육 이수사항		
교육명 내용 교육기관		교육기관
신한DS 금융 SW 아카데미	JAVA 웹 서비스 풀스텍 과정(Sping F/W & boot, JSP, JPA, React, RDBMS, Azure, Docker, JavaScipt)	대한상공회의소

자격 사항		
자격증명	취득일	시행기관
SQLD	2023.12.15	한국데이터산업진흥원
라눅스 마스터 2급	2024.06.28.	한국정보통신진흥협회

전문설계 소프트웨어 능력	
언어(툴)	활용능력
java	(상) Java 내장 라이브러리 및 exe 배포 가능
Python	(상) tensorflow, opency, pandas, ROS
JavaScript	(상) jQuery를 이용한 백앤드 연동, 카카오 API 사용 경험
SQL	(상) Oracle, MariaDB, MySQL 등 다양한 RDBMS 사용 경험
React / React Native	(상) React.js, 외부 라이브러리 활용 가능
Spring boot	(상) 외장 라이브러리 및 aws, Azure 배포 가능

	프로젝트 수행사항		
번호	프로젝트명	프로젝트 내용	수행기관
1	멍줍	반려동물을 대상으로 각종 정보 및 서비스 제공 어플리케이션	신한 DS 금융 SW 아카데미
2	동네빵집 플랫폼	동네빵집 플랫폼소비자에게 빵을 제공하고 재고 관리 및 대시보 드 제공 플랫폼	신한 DS 금융 SW 아카데미
3	SmartValve	LoRa 통신기반 원격 수로 모니 터링 시스템	동해에코에너지
4	SmartFarm	반사판을 활용한 SmartFarm 자 동제어 및 모니터링	산학협력단
5	접촉식 나사산 검사기	나사산의 불량 여부를 자동으로 판별하고 어플리케이션과 연동하 는 검사기 개발	산학협력단
6	Space Robotics Challenge	현장 자원 활용 가능한 자동 제 어 로봇 개발	NASA

프로젝트 기술서

작 성 자

임동선

1	프로젝트명 : 멍줍
수행기간	2024.01.08. ~ 2024.02.29
담당역할	DB 설계 / 최대 해택 / 딥러닝 모델 설계 / CSS 및 기능 통합
수행목표	반려동물를 대상으로 각종 정보 및 서비스 제공 어플리케이션
사용 기술	Sping Framework, JSP, MariaDB, Docker, MyBatis
github 링크	https://github.com/shinhan3/mungzoup
세부수행내용	

1. 프로젝트 개요

- 반려인들을 위한 반려동물 지원하는 Application

- 분산된 여러 기능을 하나의 Application으로 제공하는 통합앱

반려동물 앱 실태조사

특화된 기능만을 제공하는 앱이 다수

반려동물 Application 실태조사

2. 서비스 특징

- OpenStreetMap API를 사용한 내비게이션, 산책 대시보드
- 완전탐색 알고리즘을 사용한 카드 최대 혜택
- 크롤링을 활용한 숨은 가맹점 추천
- 유기견 전단지 팝업
- 딥러닝 모델을 사용한 피부 질환 검사, 강아지 이미지 검색

3. Tools

Figma, STS, HeidiSQL, Sourcetree, Slack, Discord, Docker desktop, gogle docs, google sheets, Visual Studio Code

4. 시연 영상

https://drive.google.com/file/d/1rrG0gRPi75u7ww52cGdlxt8NGNOxLUfX/view

2	프로젝트명 : 동네빵집 플랫폼
수행기간	2023.11.14. ~ 2024.01.05
담당역할	DB 설계 및 docker 배포 / 회원가입 및 로그인 / 장바구니 / 결제 / 검색
수행목표	빵 배달 및 픽업 플랫폼 서비스 개발 및 배포
사용 기술	Sping Framework, JSP, MariaDB, Docker, MyBatis
github 링크	https://github.com/limdongsun0814/4shinhan

1. 프로젝트 개요

- 동네 빵집에서 갓 나온 따뜻한 빵을 소비자에게 제공하는 플랫폼

서비스 구조

2. 서비스 특징

- 소셜 로그인(카카오, 네이버) 및 아이디 저장
- SSE 통신을 사용한 소비자와 판매자 알람 서비스
- 지속적인 사용을 위한 자동 적립 마일리지 시스템
- 카카오 지도 API와 다음 주소 API를 사용한 주변 빵집 검색
- 포트원 결제 API를 이용한 결제 시스템
- 판매자 메뉴 및 재고 관리 시스템
- 갤린더와 조건 검색을 통한 대시보드
- 소비자의 편리성을 올리기 위한 메뉴 및 가게 검색 시스템

3. Tools

Figma, STS, HeidiSQL, Sourcetree. Slack, Discord, Docker desktop, gogle docs, google sheets 4. 시연 영상

https://drive.google.com/file/d/16vK9lkI7RS1tnhUrsYuiQ7cQz7uIFz24/view?usp=sharing

3	프로젝트명 : SmartValve
수행기간	2020.06.28. ~ 2022.12.28
담당역할	수로 벨브 제어, 유선 통신, LoRa, 회로 설계
수행목표	수로와 게이트웨이 간 LoRa를 이용한 무선 통신, 수로의 상태를 모니터링하고 원격 제어 및 고장 판별
사용 기술	Python / Arduino / PHP / MySQL
github 링크	https://github.com/limdongsun0814/SmartValve

1. 프로젝트 개요

- 인터넷이 되지 않은 수로 벨브 제어 및 상태를 송수신하는 시스템
- 수로 벨브의 고장 판별 시스템

수로의 구조

2. 서비스 특징

- 수로와 게이트웨이 간 LoRa를 이용해 연결하는 데이터 송수신 시스템
- 수로의 상태를 실시간 모니터링 및 대시보드를 통한 시각화
- 딥러닝 모델을 통한 수로 고장 유형 판별 시스템

3. Tools

Thonny Python IDE, Colab, Visual Studio Code, Arduino IDE, HeidiSQL

4	프로젝트명 : SmartFarm
수행기간	2019.01.02. ~ 2019.12.29
담당역할	반사판 제어, 센서 센싱
수행목표	반사판을 활용한 자동 제어 스마트팜
사용 기술	Arduino / MySQL / PHP
github 링크	https://github.com/limdongsun0814/SmartFarm

1. 프로젝트 개요

- 각종 센서 센싱 및 외부기기 자동제어
- 최적의 광량을 공급하는 반사판 제어 및 모니터링 시스템

구조

필드

2. 서비스 특징

- 반사판 제어 알고리즘
- 1. 공장이 처음으로 기동 시 회전 가능한 각도를 전부 탐색하는 scan
- 2. scan 이후 경사하강법을 활용한 최적의 광량 제어
- 스마트팜 모니터링 및 센서 기준치 제어 시스템

https://ieeexplore.ieee.org/document/9268238

3. Tools

Visual Studio Code, Arduino IDE, Fusion 360, HeidiSQL

5	프로젝트명 : 접촉식 나사산 검사기
수행기간	2019.01.02. ~ 2019.12.29
담당역할	검사기 제어, 회로, 3D 모델 설계
수행목표	나사산의 불량 여부를 자동으로 판별 및 어플리케이션과 연동하는 검사기 개발
사용 기술	OpenCV / Python / Android Studio / MySQL / PHP / PLC / Arduino
github 링크	https://github.com/limdongsun0814/Tap-Inspection

1. 프로젝트 개요

- 나사산이 불량인 경우 이상 토크를 발생
- 검사기의 토크를 측정해서 나사산의 정상 여부를 판별 및 어플리케이션 개발

2. 서비스 특징

- 하드웨어
- a. 접근기
- 1. 검사 진행 전 피검사물에 접촉할 수 있도록 해주는 역할
- b. 교정기
- 1. 원을 도출하고 나사산의 규격과 피검사물의 위치를 조절
- b. 검사기
- 1. 검사기의 운동에너지를 공급하는 동력부
- 2. 공급 받은 회전에너지의 일부분을 직선에너지로 변환하는 회전부
- 3. 검사기의 충격 보호 및 다양한 사양의 나사산 검사를 위한 완충부
- 4. 피검사물과 접촉해서 검사를 진행하는 검사부

접근기, 검사기

교정기

- Hough Circle Transform 알고리즘을 이용한 나사산 규격 판별

나사산 규격 판별

3. Tools

Visual Studio Code, Fusion 360, GX Work ,Thonny Python IDE, Arduino IDE, HeidiSQL

4. 논문

https://ieeexplore.ieee.org/document/9268255

6	프로젝트명 : Space Robotics Challenge
수행기간	2019.08.12. ~ 2021.08.31
담당역할	RTAB SLAM을 이용한 Mapping, 장애물 및 현장 자원 판별, Docker 배포
수행목표	다른 행성에서 현장 자원 활용이 가능한 자동화 제어 로봇 개발
사용 기술	ROS / YOLO / Docker / RTAB SLAM
github 링크	https://github.com/limdongsun0814/Space-Robotics-Challenge

1. 대회 목표

- 로봇을 제어하며 자원 탐지 / 자원 채취 / 기지 복귀 미션을 연속적으로 수행하면서 점수를 획득 하는 대회

2. 대회 규칙

- 로봇의 종류는 총 3가지 자원을 탐지하는 Scout, 채취하는 Excavator, 수송하는 Hauler
- 로봇들은 공통적으로 IMU, LIDAR 센서, 스테레오 카메라 제공
- 로봇들의 배터리는 태양광 패널 또는 Repair Station에서 충전 가능
- Hauler가 Plant에 광물을 제출하면 점수 획득

Scout Excavator Hauler

Repair Station

- IMU, SALM에서 발생된 누적 오차 제거를 위한 이미지 기반 좌표 보정
- YOLO를 사용한 이미지 분류
- 판별되지 못한 암석을 LIDAR 센서의 연속성로 감지로 추가로 판별 및 회피 기동

4. Tools

Visual Studio Code, Gazebo

5. 시연 영상

- 1 라운드 예선

https://drive.google.com/file/d/1161arEB8WDfVP7wevjUPv7leO1g2qhCu/view?usp=sharing

- 3 라운드 예선

https://drive.google.com/file/d/1uIz4RwHWjeaxpToT3wLkxYTKrm9KblQX/view?usp=sharing