

# 现代控制理论

第一章 绪论

第二章 系统的状态空间模型

第三章 状态空间方程的解

第四章 系统的稳定性

第五章 能控性与能观性

第六章 传递函数的状态空间实现

第七章 状态反馈与状态观测器

第八章 最优性原理与动态规划

第九章 极小值原理

第十章 二次型指标的线性最优控制

中国科学技术大学自动化系



# 本课程的篇章结构

| 建模 | 直接获取 | 第2章 系统的状态空间模型                                    |
|----|------|--------------------------------------------------|
|    | 模型转换 | 第2章 系统的状态空间模型<br>第6章 传递函数矩阵的状态空间实现               |
| 分析 | 定量分析 | 第3章 状态空间方程的解                                     |
|    | 定性分析 | 第4章 系统的稳定性<br>第5章 能控性和能观性                        |
| 设计 | 常规控制 | 第7章 状态反馈和状态观测器                                   |
|    | 最优控制 | 第8章 最优性原理与动态规划<br>第9章 极小值原理<br>第10章 二次型指标的线性最优控制 |



- § 3.1 矩阵指数
- § 3.2 状态空间方程的解
- § 3.3 预解矩阵及频域求解



#### 本章的主要目的是——求解状态空间方程:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

已知的A、B、C、D、x(0),  $u(\cdot)$ , 求 x(t), y(t)

#### 拟从考察已知初态的线性定常系统零输入响应开始

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$$
  $\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{u} \equiv \mathbf{0}$ 

即齐次状态方程的求解:

$$\dot{\mathbf{x}} = A\mathbf{x}$$

$$\mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{x}(t) = ?$$



- § 3.1 矩阵指数
  - 3.1.1 状态转移矩阵
  - 3.1.2 矩阵指数的定义和性质
  - 3.1.3 矩阵指数的求取
  - 3.1.4 模态与模态分解
- § 3.2 状态空间方程的解
- § 3.3 预解矩阵及频域求解



# § 3.1 矩阵指数

### 3.1.1 状态转移矩阵

定义3.1: 若时变线性系统的齐次状态方程

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t), \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

的解可写作

$$\mathbf{x}(t,t_0) = \Phi(t,t_0)\mathbf{x}_0$$

则称矩阵  $\Phi(t,t_0)$ 为该系统的状态转移矩阵。

对于线性定常系统,因总可以将初始时间平移至  $t_0 = 0$ ,故其状态转移矩阵是时间 t 的单变量函数,在不致产生误解时,通常直接简写为 $\Phi(t)$ 。

线性定常系统:  $\Phi(t,t_0) = \Phi(t-t_0,0)$ 



# § 3.1 矩阵指数

#### 3.1.1 状态转移矩阵

$$\dot{\mathbf{x}} = A\mathbf{x} \quad \mathbf{x}(0) = \mathbf{x}_0 \quad \longrightarrow \quad \mathbf{x}(t) = ?$$

试着用熟知的拉氏变换法解之:

$$s\hat{\mathbf{x}}(s) - \mathbf{x}(0) = A\hat{\mathbf{x}}(s) \implies (s\mathbf{I} - \mathbf{A})\hat{\mathbf{x}}(s) = \mathbf{x}_0 \implies \hat{\mathbf{x}}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}_0$$
$$\mathbf{x}(t) = L^{-1}[(s\mathbf{I} - \mathbf{A})^{-1}]\mathbf{x}_0 \qquad \mathbf{x}(t) = \Phi(t)\mathbf{x}_0$$

在得到线性定常系统的零输入响应(齐次状态方程的解、自由运动的解)的同时,也得到该系统状态转移矩阵的拉氏反变换表示形式:

$$\Phi(t) = L^{-1}[(sI - A)^{-1}]$$



### 3.1.1 状态转移矩阵

为进一步揭示线性定常系统状态转移矩阵

$$\Phi(t) = L^{-1}[(sI - A)^{-1}]$$

的本质,注意到对于标量系统

$$\phi(t) = L^{-1}\left[\frac{1}{s-a}\right] = e^{at} = \sum_{k=0}^{\infty} \frac{1}{k!} (at)^k = 1 + at + \frac{1}{2!} (at)^2 + \frac{1}{3!} (at)^3 + \cdots$$

于是,我们非常希望能够定义一个矩阵函数  $f(A,t) = e^{At}$  使

$$\Phi(t) = L^{-1}[(s\mathbf{I} - \mathbf{A})^{-1}] = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A}t)^k = e^{\mathbf{A}t}$$

显然,需要对这个指数为方阵的矩阵函数给予更数学化的定义:



- § 3.1 矩阵指数
  - 3.1.1 状态转移矩阵
  - 3.1.2 矩阵指数的定义和性质
  - 3.1.3 矩阵指数的求取
  - 3.1.4 模态与模态分解
- § 3.2 状态空间方程的解
- § 3.3 预解矩阵及频域求解



# § 3.1 矩阵指数

### 3.1.2 矩阵指数的定义和性质

定义3.2(矩阵指数)对方阵S,其矩阵指数定义为

$$e^{S} = \sum_{k=0}^{\infty} \frac{1}{k!} S^{k} = I + S + \frac{1}{2!} S^{2} + \frac{1}{3!} S^{3} + \cdots$$

因线性定常系统的状态转移矩阵(它还是时间 t 的函数)是最常见的矩阵指数,故在控制理论的书籍中,经常把

$$e^{At} = \exp(At) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2!} A^2 t^2 + \frac{1}{3!} A^3 t^3 + \cdots$$

就默认为矩阵指数的定义式。以下,尤其是关于矩阵指数的性质的讨论,也将在此基础上展开。同学们自当可以辨别。



# § 3.1 矩阵指数

### 3.1.2 矩阵指数的定义和性质

一、矩阵指数(状态转移矩阵)定义

$$e^{\mathbf{A}t} = \exp(\mathbf{A}t) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k t^k = \mathbf{I} + \mathbf{A}t + \frac{1}{2!} \mathbf{A}^2 t^2 + \frac{1}{3!} \mathbf{A}^3 t^3 + \cdots$$

二、状态转移矩阵的性质

性质1: 
$$\Phi(t) = e^{At} = L^{-1}[(sI - A)^{-1}]$$

性质2: 
$$\Phi(0) = e^{A0} = I$$

性质3: 
$$\dot{\Phi}(t) = A\Phi(t) = \Phi(t)A$$
 
$$\frac{d}{dt}(e^{At}) = Ae^{At} = e^{At}A$$

### 3.1.2 矩阵指数的定义和性质

二、状态转移矩阵的性质 
$$\Phi(t) = e^{At} = \sum_{k=1}^{\infty} \frac{1}{k!} (At)^k$$

性质**4:** 
$$\Phi(t)\Phi(\tau) = \Phi(t+\tau)$$

$$e^{At}e^{A\tau} = e^{A(t+\tau)}$$

推论1: 状态转移矩阵是可逆阵, 且总有

$$[\Phi(t)]^{-1} = \Phi(-t)$$
  $[e^{At}]^{-1} = e^{-At}$ 

推论2:对一切整数k,总有

$$[\Phi(t)]^k = \Phi(kt) \qquad [e^{At}]^k = e^{Akt}$$

易见,性质4是熟知的标量指数的一般规则  $e^{at}e^{a\tau}=e^{a(t+\tau)}$ 的简单推广。于是,我们立刻想到并希望,上述规则的另 一个写法  $e^{at}e^{bt} = e^{(a+b)t}$  能简单地推广至矩阵情形,非常 遗憾的是,这个推广一般而言不能成立!

### 3.1.2 矩阵指数的定义和性质



性质5: 
$$AB = BA \Leftrightarrow e^{At}e^{Bt} = e^{(A+B)t}$$

推论3: 若对标量  $\sigma$  和方阵 B ,有  $A = \sigma I + B$  则:  $e^{At} = e^{\sigma t} e^{Bt}$ 

性质6:对任一非奇异矩阵 P 有  $e^{P^{-1}APt} = P^{-1}e^{At}P$ 



## 习题: p123-127 (118-121)

3.7, 3.8, 3.9

3.11, 3.12, 3.13, 3.14(ab)

补1:证明:

$$\exp\left[\begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix} t\right] = e^{\sigma t} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix}$$

补2: 对 $n \times n$ 矩阵A, 证明: 对所有自然数 k

$$\mathbf{A}^k = \sum_{m=0}^{n-1} \alpha_{k,m} \mathbf{A}^m$$



- § 3.1 矩阵指数
  - 3.1.1 状态转移矩阵
  - 3.1.2 矩阵指数的定义和性质
  - 3.1.3 矩阵指数的求取
  - 3.1.4 模态与模态分解
- § 3.2 状态空间方程的解
- § 3.3 预解矩阵及频域求解



# § 3.1 矩阵指数

## 3.1.3 矩阵指数的求取

一、直接计算法 
$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k$$

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k$$

• 若矩阵A呈对角线形,即:  $A = diag(a_1, a_2, \dots, a_m)$ 则  $e^{At} = \text{diag}(e^{a_1t}, e^{a_2t}, \dots, e^{a_mt})$ 

• 若矩阵A呈对角块形,即: A = Diag(A<sub>1</sub>, A<sub>2</sub>, ···, A<sub>m</sub>)则  $e^{At} = \text{Diag}(e^{A_1t}, e^{A_2t}, \dots, e^{A_mt})$ 



# 一、直接计算法 $e^{At} = \sum_{k=1}^{\infty} \frac{1}{k!} A^k t^k$

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k$$

【例3.1】求以下方阵的矩阵指数  $e^{At}$ 

$$A_1 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A_3 = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

$$e^{A_2t} = \sum_{k=0}^{\infty} \frac{1}{k!} A_2^k t^k = I + t \times A_2 + \frac{t^2}{2!} \times A_2^2 + \frac{t^3}{3!} \times A_2^3$$

$$e^{A_2 t} = \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \frac{t^3}{3!} \\ 0 & 1 & t & \frac{t^2}{2!} \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



$$A = \begin{bmatrix} \lambda & 1 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 \\ 0 & 0 & \lambda & 1 & 0 \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{bmatrix} \qquad \Longrightarrow \qquad e^{At} = e^{\lambda t} \begin{bmatrix} 1 & t & \frac{1}{2}t^2 & \frac{1}{3!}t^3 & \frac{1}{4!}t^4 \\ 0 & 1 & t & \frac{1}{2}t^2 & \frac{1}{3!}t^3 \\ 0 & 0 & 1 & t & \frac{1}{2}t^2 \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \lambda I + A_5, A_5 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$e^{At} = e^{(\lambda I + A_5)t} = e^{\lambda It} \times e^{A_5t} = e^{\lambda t}e^{A_5t}$$



# 二、拉氏变换法 $e^{At} = L^{-1}[(sI - A)^{-1}]$

$$e^{At} = L^{-1}[(sI - A)^{-1}]$$

【例3.2】: 已知 
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$
, 试求  $e^{At}$ 

$$(sI - A)^{-1} = \begin{bmatrix} s & -1 \\ 2 & s+3 \end{bmatrix}^{-1} = \frac{1}{s^2 + 3s + 2} \begin{bmatrix} s+3 & 1 \\ -2 & s \end{bmatrix}$$

$$e^{At} = L^{-1}[(s\mathbf{I} - \mathbf{A})^{-1}] = L^{-1} \begin{bmatrix} \frac{s+3}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)} \end{bmatrix}$$

$$=L^{-1}\left[\begin{bmatrix} \frac{2}{(s+1)} - \frac{1}{(s+2)} & \frac{1}{(s+1)} - \frac{1}{(s+2)} \\ \frac{-2}{(s+1)} + \frac{2}{(s+2)} & \frac{-1}{(s+1)} + \frac{2}{(s+2)} \end{bmatrix}\right] = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$



### 三、标准型法

$$e^{At} = \mathbf{Q} e^{(\mathbf{Q}^{-1}A\mathbf{Q})t} \mathbf{Q}^{-1} = \mathbf{Q} e^{At} \mathbf{Q}^{-1}$$

当矩阵 A 有 n 个互不相关的特征向量时,可以通过相似变换将 A 变换为对角线形。

#### 【例3.3】用标准型法重做例3.2

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \qquad A = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}, \quad Q^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-t} & e^{-2t} \\ -e^{-t} & -2e^{-2t} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 2e^{-2t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$



三、标准型法 
$$e^{At} = \mathbf{Q} e^{(\mathbf{Q}^{-1}A\mathbf{Q})t} \mathbf{Q}^{-1} = \mathbf{Q} e^{At} \mathbf{Q}^{-1}$$

一定存在相似变换, 化方阵//为约当型。

注意:对角线形是约当型的一个特殊形式(所有约当块均为 一阶)。在使用标准型法求取约当矩阵的矩阵指数时,需记忆如 下结论(以五阶为例):

$$A = \begin{bmatrix} \lambda & 1 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 \\ 0 & 0 & \lambda & 1 & 0 \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{bmatrix} \qquad \Longrightarrow \qquad e^{At} = e^{\lambda t} \begin{bmatrix} 1 & t & \frac{1}{2}t^2 & \frac{1}{3!}t^3 & \frac{1}{4!}t^4 \\ 0 & 1 & t & \frac{1}{2}t^2 & \frac{1}{3!}t^3 \\ 0 & 0 & 1 & t & \frac{1}{2}t^2 \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$



#### 三、标准型法

$$e^{At} = \mathbf{Q} e^{(\mathbf{Q}^{-1}A\mathbf{Q})t} \mathbf{Q}^{-1} = \mathbf{Q} e^{At} \mathbf{Q}^{-1}$$

【例3.4】已知
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$$
,用标准型法求 $e^{At}$ 

$$f(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = \lambda^3 - 4\lambda^2 + 5\lambda - 2 = (\lambda - 1)^2 (\lambda - 2)$$

$$\boldsymbol{Q} = \begin{bmatrix} 1 & 0 & 1 \\ \lambda_1 & 1 & \lambda_2 \\ \lambda_1^2 & 2\lambda_1 & \lambda_2^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}, \quad \boldsymbol{Q}^{-1} = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 3 & -1 \\ 1 & -2 & 1 \end{bmatrix} \quad \boldsymbol{\Lambda} = \boldsymbol{Q}^{-1} \boldsymbol{\Lambda} \boldsymbol{Q} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad e^{\boldsymbol{\Lambda}t} = \begin{bmatrix} e^t & te^t & 0 \\ 0 & e^t & 0 \\ 0 & 0 & e^{2t} \end{bmatrix}$$

$$e^{At} = \mathbf{Q}e^{At}\mathbf{Q}^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} e^{t} & te^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{2t} \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 \\ -2 & 3 & -1 \\ 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -2te^{t} + e^{2t} & (3t+2)e^{t} - 2e^{2t} & -(t+1)e^{t} + e^{2t} \\ -2(t+1)e^{t} + 2e^{2t} & (3t+5)e^{t} - 4e^{2t} & -(t+2)e^{t} + 2e^{2t} \\ -2(t+2)e^{t} + 4e^{2t} & (3t+8)e^{t} - 8e^{2t} & -(t+3)e^{t} + 4e^{2t} \end{bmatrix}$$





四、待定系数法 
$$e^{At} = \sum_{m=0}^{n-1} \alpha_m(t) A^m$$

凯利-哈密尔顿定理:方阵满足自身的特征方程。 (Cayley Hamilton)

对于  $n \times n$  矩阵 A , 设其特征多项式为

$$f(\lambda) = |\lambda I - A| = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

则凯利-哈密尔顿定理保证如下的矩阵方程成立

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_{n-1} A^{n-1} + A^n = 0$$

推论: 若  $A \in \mathbb{R}^{n \times n}$ 则对任意自然数 k 总有  $A^k = \sum_{k=1}^{n-1} \beta_{k,m} A^m$ 更进一步:

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = \sum_{k=0}^{\infty} \frac{t^k}{k!} \sum_{m=0}^{n-1} \beta_m A^m = \sum_{m=0}^{n-1} \alpha_m(t) A^m$$



 $e^{At} = \sum_{m=0}^{n-1} \alpha_m(t) A^m$ 

结论:已知某函数  $f(\lambda)$ 和一方阵 A,若多项式  $g(\lambda)$ 在 A 的谱 (spectrum)上与  $f(\lambda)$ 相等,则矩阵函数 f(A) = g(A)。

若方阵 A 有 n 个互不相同的特征值  $\lambda_i(i=1,2,\cdots n)$  ,则函数  $f(\lambda)$  与  $g(\lambda)$  在矩阵 A 的 **谱上相等**可理解为如下 n 个等式:

$$f(\lambda_i) = g(\lambda_i), \quad (i = 1, 2, \dots, n)$$
 
$$e^{\lambda_i t} = \sum_{m=0}^{n-1} \alpha_m(t) \lambda_i^m$$

若方阵 A 有 m 个互不相同的特征值,其第 k 个特征值为  $l_k$  重,则函数  $f(\lambda)$  与多项式函数  $g(\lambda)$  在矩阵 A 的谱上相等可理解为:

$$\left. \frac{d^{(i)}}{d\lambda^{i}} f(\lambda) \right|_{\lambda = \lambda_{k}} = \left. \frac{d^{(i)}}{d\lambda^{i}} g(\lambda) \right|_{\lambda = \lambda_{k}} \qquad (i = 0, 1, 2, \dots, l_{k} - 1; \quad k = 1, 2, \dots m)$$



矩阵函数、标量函数的相互构造:

$$f(A) = e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!} \Leftrightarrow f(\lambda) = \sum_{k=0}^{\infty} \frac{\lambda^k t^k}{k!} = e^{\lambda t}$$

构造另一个低阶多项式标量函数:

$$g(\lambda) = \sum_{k=0}^{n-1} \alpha_k \lambda^k \neq f(\lambda)$$

特征多项式: 
$$\Delta(\lambda) = |\lambda I - A| = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_n$$
  
  $\Delta(A) = 0$ 

特征多项式除高阶多项式:

$$f(\lambda) = \Delta(\lambda) \times h(\lambda) + g(\lambda)$$

$$f(A) = \Delta(A) \times h(A) + g(A) = 0 \times h(A) + g(A)$$

$$= g(A) = ??? \qquad \{\alpha_{n-1}, \alpha_{n-2}, \dots, \alpha_0\} = ?$$

$$\{\alpha_{n-1}, \alpha_{n-2}, \cdots, \alpha_0\} = ?$$



$$f(\lambda) = \Delta(\lambda) \times h(\lambda) + g(\lambda)$$

$$\Delta(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_l)^{n_l}$$

$$f(\lambda_1) = \Delta(\lambda_1) \times h(\lambda_1) + g(\lambda_1) = 0 \times h(\lambda_1) + g(\lambda_1) = g(\lambda_1)$$

$$\frac{d}{d\lambda}f(\lambda_1) = \frac{d}{d\lambda}(\Delta(\lambda_1) \times h(\lambda_1)) + \frac{d}{d\lambda}g(\lambda_1) = 0 + \frac{d}{d\lambda}g(\lambda_1) = \frac{d}{d\lambda}g(\lambda_1)$$

•

•

$$\Delta(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_l)^{n_l}$$

$$\frac{d^{n_1-1}}{d\lambda^{n_1-1}}f(\lambda_1) = \frac{d^{n_1-1}}{d\lambda^{n_1-1}}(\Delta(\lambda_1) \times h(\lambda_1)) + \frac{d^{n_1-1}}{d\lambda^{n_1-1}}g(\lambda_1) = 0 + \frac{d^{n_1-1}}{d\lambda^{n_1-1}}g(\lambda_1) = \frac{d^{n_1-1}}{d\lambda^{n_1-1}}g(\lambda_1)$$



$$g(\lambda_{1}) = f(\lambda_{1})$$

$$\frac{d}{d\lambda}g(\lambda_{1}) = \frac{d}{d\lambda}f(\lambda_{1})$$

$$\vdots$$

$$\frac{d^{n_{1}-1}}{d\lambda^{n_{1}-1}}g(\lambda_{1}) = \frac{d^{n_{1}-1}}{d\lambda^{n_{1}-1}}f(\lambda_{1})$$

$$\vdots$$

$$g(\lambda_{l}) = f(\lambda_{l})$$

$$\frac{d}{d\lambda}g(\lambda_{l}) = \frac{d}{d\lambda}f(\lambda_{l})$$

$$\vdots$$

$$\frac{d^{n_{l}-1}}{d\lambda^{n_{l}-1}}g(\lambda_{l}) = \frac{d^{n_{l}-1}}{d\lambda^{n_{l}-1}}f(\lambda_{l})$$

#### n个未知数:

$$g(\lambda) = \sum_{k=0}^{n-1} \alpha_k \lambda^k \neq f(\lambda)$$

#### n个方程:

$$n_1 + n_2 + \dots + n_l = n$$

$$f(A) = g(A) = \sum_{k=0}^{n-1} \alpha_k A^k$$

$$e^{At} = \sum_{m=0}^{n-1} \alpha_m(t) A^m$$

【例3.5】: 已知
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$
, 求  $e^{At}$ 

解: 
$$A$$
 特征多项式为:  $f(\lambda) = |\lambda I - A| = \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$ 

即特征值为 $\lambda = -1, \lambda_1 = -2$ 。

设 
$$f(\lambda) = e^{\lambda t}$$
,  $g(\lambda) = \alpha_0 + \alpha_1 \lambda$  则

$$e^{At} = \alpha_0(t)\boldsymbol{I} + \alpha_1(t)\boldsymbol{A}$$

解 
$$e^{-t} = \alpha_0(t) + \alpha_1(t)(-1)$$
 得  $\alpha_0(t) = 2e^{-t} - e^{-2t}$   $e^{-2t} = \alpha_0(t) + \alpha_1(t)(-2)$   $\alpha_1(t) = e^{-t} - e^{-2t}$ 

所以
$$e^{At} = (2e^{-t} - e^{-2t}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (e^{-t} - e^{-2t}) \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 2e^{-2t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$



【例3.6】: 己知 
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, 求  $A^{100}$ 

解: A 特征多项式为:  $|\lambda I - A| = (\lambda - 1)^2$  即特征值为  $\lambda_1 = \lambda_2 = 1$ 。

$$f(\lambda) = \lambda^{100}, \quad g(\lambda) = g_0 + g_1 \lambda \qquad A^{100} = g_0 I + g_1 A$$

解 
$$\lambda = 1$$
:  $f(\lambda) = g(\lambda)$ ,  $f'(\lambda) = g'(\lambda)$ 

即 
$$\lambda = 1$$
:  $\lambda^{100} = g_0 + g_1 \lambda \implies 1 = g_0 + g_1$   $g_0 = -99$   $\lambda = 1$ :  $100\lambda^{99} = g_1 \implies 100 = g_1$   $g_1 = 100$  得  $g(\lambda) = g_0 + g_1 \lambda = -99 + 100\lambda$ 

得 
$$g(\lambda) = g_0 + g_1 \lambda = -99 + 100\lambda$$

所以

$$A^{100} = f(A) = g(A) = 100A - 99I = 100 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - 99 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 200 \\ 0 & 1 \end{bmatrix}$$

$$e^{At} = \sum_{m=1}^{n-1} \alpha_m(t) A^m$$



【例3.7】: 己知
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$$
, 求 $e^{At}$ 

解: 
$$A$$
 特征多项式为:  $f(\lambda) = |\lambda I - A| = \lambda^3 - 4\lambda^2 + 5\lambda - 2 = (\lambda - 1)^2 (\lambda - 2)$ 

故若设 
$$e^{At} = \alpha_0(t)\mathbf{I} + \alpha_1(t)\mathbf{A} + \alpha_1(t)\mathbf{A}^2$$

则可解得

$$\begin{bmatrix} \alpha_0(t) \\ \alpha_1(t) \\ \alpha_2(t) \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 \\ 0 & 1 & 2\lambda_1 \\ 1 & \lambda_2 & \lambda_2^2 \end{bmatrix}^{-1} \begin{bmatrix} e^{\lambda_1 t} \\ te^{\lambda_1 t} \\ e^{\lambda_2 t} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}^{-1} \begin{bmatrix} e^t \\ te^t \\ e^{2t} \end{bmatrix} = \begin{bmatrix} -2te^t + e^{2t} \\ (3t+2)e^t - 2e^{2t} \\ -(t+1)e^t + e^{2t} \end{bmatrix}$$

所以

$$e^{At} = (-2te^{t} + e^{2t}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + [(3t+2)e^{t} - 2e^{2t}] \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} + [-(t+1)e^{t} + e^{2t}] \begin{bmatrix} 0 & 0 & 1 \\ 2 & -5 & 4 \\ 8 & -18 & 11 \end{bmatrix}$$

$$= \begin{bmatrix} -2te^{t} + e^{2t} & (3t+2)e^{t} - 2e^{2t} & -(t+1)e^{t} + e^{2t} \\ -2(t+1)e^{t} + 2e^{2t} & (3t+5)e^{t} - 4e^{2t} & -(t+2)e^{t} + 2e^{2t} \\ -2(t+2)e^{t} + 4e^{2t} & (3t+8)e^{t} - 8e^{2t} & -(t+3)e^{t} + 4e^{2t} \end{bmatrix}$$



- § 3.1 矩阵指数
  - 3.1.1 状态转移矩阵
  - 3.1.2 矩阵指数的定义和性质
  - 3.1.3 矩阵指数的求取
  - 3.1.4 模态与模态分解
- § 3.2 状态空间方程的解
- § 3.3 预解矩阵及频域求解



# § 3.1 矩阵指数

#### 3.1.4 模态与模态分解

考察齐次状态空间方程的解,以互不相同特征值为例:

$$\mathbf{x}(t) = e^{At} \mathbf{x}_0 = e^{(\mathbf{Q}A\mathbf{Q}^{-1})t} \mathbf{x}_0 = \mathbf{Q}e^{At} \mathbf{Q}^{-1} \mathbf{x}_0$$

$$= \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & & & \\ & e^{\lambda_2 t} & & \\ & & \ddots & \\ & & & e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \vdots \\ \mathbf{p}_n \end{bmatrix} \mathbf{x}_0 = \begin{bmatrix} e^{\lambda_1 t} \mathbf{q}_1 & e^{\lambda_2 t} \mathbf{q}_2 & \cdots & e^{\lambda_n t} \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 \mathbf{x}_0 \\ \mathbf{p}_2 \mathbf{x}_0 \\ \vdots \\ \mathbf{p}_n \mathbf{x}_0 \end{bmatrix}$$

$$= (\mathbf{p}_1 \mathbf{x}_0) e^{\lambda_1 t} \mathbf{q}_1 + (\mathbf{p}_2 \mathbf{x}_0) e^{\lambda_2 t} \mathbf{q}_2 + \cdots + (\mathbf{p}_n \mathbf{x}_0) e^{\lambda_n t} \mathbf{q}_n$$

【注意】:式中,p为行向量,q、x为列向量,(px)为标量

对于一个给定的线性定常系统,不论进行怎样的状态变换,系统矩阵A的特征值及其相应的特征向量是不会改变的。

由于  $e^{\lambda_i t}$ 体现了系统的固有属性,一般将  $e^{\lambda_i t}$ , $(i=1,2,\cdots,n)$  称作系统的 **模态**,或者称作振荡振型,简称**振型**。 也称将系统矩阵约当化的状态变换阵 **Q**为该系统的**模态矩阵,**称该状态变换过程及结果为**模态分解**。



- § 3.1 矩阵指数
- § 3.2 状态空间方程的解
  - 3.2.1 非齐次状态方程的解
  - 3.2.2 状态空间方程的解
  - 3.3.3 状态空间方程的离散化
- § 3.3 预解矩阵及频域求解



# § 3.2 状态空间方程的解

### 3.2.1 线性定常非齐次状态方程的解

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \qquad \mathbf{x}(0) = \mathbf{x}_0$$

两端同时左乘  $e^{-At}$  并移项  $e^{-At}\dot{x}(t) - e^{-At}Ax(t) = e^{-At}Bu(t)$ 此即

$$e^{-At}\dot{\mathbf{x}}(t) - e^{-At}A\mathbf{x}(t) = e^{-At}\mathbf{B}\mathbf{u}(t)$$

$$d\left(-At\right) = e^{-At}\mathbf{B}\mathbf{v}(t)$$

$$\frac{d}{dt} \left( e^{-At} \mathbf{x}(t) \right) = e^{-At} \mathbf{B} \mathbf{u}(t)$$

对此式从0至t积分

$$e^{-At}\mathbf{x}(t) - e^{0}\mathbf{x}(0) = \int_{0}^{t} e^{-A\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

移项、等式两边同时左乘  $e^{At}$ 

$$\mathbf{x}(t) = e^{At}\mathbf{x}_0 + \int_0^t e^{A(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

变量代换后 
$$\mathbf{x}(t) = e^{At}\mathbf{x}_0 + \int_0^t e^{A\tau}\mathbf{B}\mathbf{u}(t-\tau)d\tau$$

### 3.2.1 线性定常非齐次状态方程的解



$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \qquad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau \qquad \mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{A}\tau}\mathbf{B}\mathbf{u}(t-\tau)d\tau$$

即使是定常系统,也会遇到初始时刻非零的问题。此时

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$
$$\mathbf{x}(t_0) = e^{\mathbf{A}t_0} \mathbf{x}_0 + \int_0^{t_0} e^{\mathbf{A}(t_0-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$

$$\mathbf{x}(t) = e^{A(t-t_0+t_0)} \mathbf{x}_0 + \int_0^{t_0} e^{A(t-t_0+t_0-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau + \int_{t_0}^t e^{A(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau 
= \left[ e^{A(t-t_0)} e^{At_0} \mathbf{x}_0 + e^{A(t-t_0)} \int_0^{t_0} e^{A(t_0-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau \right] + \int_{t_0}^t e^{A(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau 
= e^{A(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^t e^{\mathbf{A}\tau} \mathbf{B} \mathbf{u}(t-\tau) d\tau$$

### 3.2.1 线性定常非齐次状态方程的解



$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \qquad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau \qquad \mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{A}\tau}\mathbf{B}\mathbf{u}(t-\tau)d\tau$$

【例3.9】已知单输入线性定常系统的状态方程是 $\dot{x} = Ax + bu$ ,试综合以下的条件确定矩阵A和向量b

(1) 
$$\stackrel{\underline{u}}{=} \mathbf{x}(0) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
,  $u(t) \equiv 0 \text{ iff}$ ,  $\mathbf{x}(t) = e^{-t}\mathbf{x}(0)$ ;

(2) 
$$\stackrel{\text{deg}}{=} \mathbf{x}(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
,  $u(t) \equiv 0 \text{ Beg}$ ,  $\mathbf{x}(t) = e^{-2t} \mathbf{x}(0)$ ;

(3) 当
$$\mathbf{x}(0) = \mathbf{0}$$
,  $u(t)$  为单位阶跃信号时,  $\mathbf{x}(t) = \begin{bmatrix} 1 - e^{-t} \\ -1 + e^{-t} \end{bmatrix}$ 



- § 3.1 矩阵指数
- § 3.2 状态空间方程的解
  - 3.2.1 非齐次状态方程的解
  - 3.2.2 状态空间方程的解
  - 3.3.3 状态空间方程的离散化
- § 3.3 预解矩阵及频域求解



# § 3.2 状态空间方程的解

#### 3.2.2 状态空间方程的解

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} x(0) = x_0$$

$$\mathbf{x}(t) = e^{At}\mathbf{x}_0 + \int_0^t e^{A(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau = e^{At}\mathbf{x}_0 + \int_0^t e^{A\tau}\mathbf{B}\mathbf{u}(t-\tau)d\tau$$

$$y(t) = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du$$
$$= Ce^{At}x_0 + C\int_0^t e^{A\tau}Bu(t-\tau)d\tau + Du$$



- § 3.1 矩阵指数
- § 3.2 状态空间方程的解
  - 3.2.1 非齐次状态方程的解
  - 3.2.2 状态空间方程的解
  - 3.3.3 状态空间方程的离散化
- § 3.3 预解矩阵及频域求解



# § 3.2 状态空间方程的解

### 3.2.3 状态空间方程的离散化

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

$$\begin{cases} \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \\ \mathbf{v} = C\mathbf{x} + D\mathbf{u} \end{cases} \begin{cases} \mathbf{x}[k+1] = F\mathbf{x}[k] + H\mathbf{u}[k] \\ \mathbf{y}[k] = C_d\mathbf{x}[k] + D_d\mathbf{u}[k] \end{cases}$$

设  $\mathbf{u}(t)$  分段定常,且(采样T、保持、计算机控制)对所有的  $k = 0, 1, 2, \cdots$ 

$$\boldsymbol{u}(t) = \boldsymbol{u}(kT) =: \boldsymbol{u}[k] \qquad \forall kT \le t < (k+1)T$$

$$\forall kT \le t < (k+1)T$$

以kT时刻为时间起点应用状态方程解的公式:

$$\mathbf{x}((k+1)T) = e^{AT}\mathbf{x}(kT) + \int_{KT}^{(k+1)T} e^{A((k+1)T-\tau)} \mathbf{B}\mathbf{u}(\tau) d\tau$$

$$\mathbf{x}[k+1] = e^{\mathbf{A}T}\mathbf{x}[k] + \int_{KT}^{(k+1)T} e^{\mathbf{A}((k+1)T-\tau)} d\tau \cdot \mathbf{B} \cdot \mathbf{u}[k]$$

$$\overrightarrow{\Pi} \int_{KT}^{(k+1)T} e^{A((k+1)T-\tau)} d\tau \cdot \mathbf{B} = -\int_{T}^{0} e^{A\alpha} d\alpha \cdot \mathbf{B} = \int_{0}^{T} e^{A\tau} d\tau \cdot \mathbf{B} \qquad \alpha = (k+1)T - \tau$$

$$\alpha = (k+1)T - \tau$$

$$F = e^{AT}$$
  $H = (\int_0^T e^{A\tau} d\tau)B$   $C_d = C$   $D_d = D$ 

### 3.2.3 状态空间方程的离散化



$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \qquad \begin{cases} x[k+1] = Fx[k] + Hu[k] \\ y[k] = Cx[k] + Du[k] \end{cases}$$

$$F = e^{AT} \qquad H = (\int_{0}^{T} e^{A\tau} d\tau)B$$

证明: 令方阵函数 $M(t) = A^{-1}(e^{At} - I)$ ,则M(0) = O且

$$\frac{d}{dt}\mathbf{M}(t) = \frac{d}{dt}(\mathbf{A}^{-1}e^{\mathbf{A}t} - \mathbf{A}^{-1}) = \mathbf{A}^{-1}\frac{d}{dt}(e^{\mathbf{A}t}) = \mathbf{A}^{-1} \cdot \mathbf{A}e^{\mathbf{A}t} = e^{\mathbf{A}t}$$

于是:

$$\boldsymbol{H} = \int_0^T e^{\boldsymbol{A}\tau} d\tau \cdot \boldsymbol{B} = \int_0^T \left( \frac{d}{d\tau} \boldsymbol{M}(\tau) \right) d\tau \cdot \boldsymbol{B}$$
$$= [\boldsymbol{M}(T) - \boldsymbol{M}(0)] \boldsymbol{B} = \boldsymbol{M}(T) \boldsymbol{B} = \boldsymbol{A}^{-1} (e^{\boldsymbol{A}T} - \boldsymbol{I}) \boldsymbol{B}$$

#### 【例3-11】(本校2007年硕士研究生招生考试试题)对线性定常系统



$$\dot{x} = Ax + bu, \quad y = cx$$

若A非奇异,证明:系统在零初态条件下的单位阶跃响应是

$$y(t) = cA^{-1}(e^{At} - I)b$$

证明: 系统的状态方程的解为

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) + \int_0^t e^{A\tau}\mathbf{b}u(t-\tau)d\tau$$

当初态为零且输入为单位阶跃信号时

$$\mathbf{x}(t) = \int_0^t e^{A\tau} \mathbf{b} d\tau$$

对时间求微分并与状态方程联立

$$\dot{\boldsymbol{x}}(t) = e^{At}\boldsymbol{b} = A\boldsymbol{x} + \boldsymbol{b}$$

因此(注意后一等号),当A可逆时,系统的输出响应是

$$y(t) = cx = c \cdot A^{-1}(e^{At}b - b) = cA^{-1}(e^{At} - I)b$$



- § 3.1 矩阵指数
- § 3.2 状态空间方程的解
- § 3.3 预解矩阵及频域求解



# § 3.1 预解矩阵及频域求解

(自学)



## 习题: p123-127 (118-121)

3.7, 3.8, 3.9

3.11, 3.12, 3.13, 3.14(ab)

补1:证明:

$$\exp\left[\begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix} t\right] = e^{\sigma t} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix}$$

补2: 对 $n \times n$ 矩阵A, 证明: 对所有自然数 k

$$\mathbf{A}^k = \sum_{m=0}^{n-1} \alpha_{k,m} \mathbf{A}^m$$