CS145 Midterm "Cheat Sheet"

October 25, 2015

1 Possibly Useful Information

• Canonical SQL Statement:

SELECT <attributes>
FROM <tables>
WHERE <conditions>
GROUP BY <attributes>
HAVING <conditions>

- Functional Dependency (FD): For a relation R, and sets of attributes X and Y, the functional dependency $X \to Y$ holds if for any $t_1, t_2 \in R$, $t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$.
- Armstrong's Axioms: Let the A_i s, B_i s, and C_k s be attributes:
 - 1. Split/Combine: If $A_1, ..., A_n \to B_j$ for j = 1, ..., m, then this is equivalent to $A_1, ..., A_n \to B_1, ..., B_m$ and vice-versa
 - 2. Reduction/Trivial: $A_1,...,A_n \rightarrow A_i$ for any i=1,...,n
 - 3. Transitive Closure: If $A_1,...,A_n \to B_1,...,B_m$ and $B_1,...,B_m \to C_1,...,C_p$ then $A_1,...,A_n \to C_1,...,C_p$
- Closure: Given a set of attributes X and a set of FDs F, the closure X^+ is the set of all attributes y such that $X \to y$.
- Superkey: Given a relation R, a superkey is a set of attributes X such that X^+ is equal to the full set of attributes of R.
- **Key:** A key is a minimal superkey, i.e. a superkey where no subset of it is also a superkey.
- Boyce-Codd Normal Form (BCNF): A relation R is in BCNF if for all sets of attributes X, either $X^+ = X$ (X is trivial) or $X^+ =$ the set of all attributes (X is a superkey).
- Conflicts: Two actions conflict if they are part of different TXNs, involve the same variable, and at least one of them is a write.
- Serializable: A schedule is serializable if it is equivalent to some serial ordering.
- Multi-Value Dependency (MVD): Given a relation R with a set of attributes A, two sets of attributes $X, Y \subseteq A$, we say that the MVD $X \rightarrow Y$ holds if for any tuples $t_1, t_2 \in R$ such that $t_1[X] = t_2[Y]$, there is a tuple t_3 such that:
 - $-t_3[X] = t_1[X]$
 - $-t_3[Y] = t_1[Y]$
 - $-t_3[A \setminus Y] = t_2[A \setminus Y]$