

17	IIE0024				
Kursnummer:		HF0024			
		Matematik för basår II			
Moment:	TENB	TENB			
Program:	Tekniskt	Tekniskt basår			
Rättande lärare:	Staffan I	Staffan Linnaeus			
Examinator:	Niclas H	Niclas Hjelm			
Datum:	2019-01-	2019-01-14			
Tid:	08:00-12	08:00-12:00			
Hjälpmedel:	Formelsa	Formelsamling: Björk m fl "Formler och			
		tabeller" utan anteckningar , passare,			
		gradskiva, penna, radergummi och linjal			
		8			
	Miniräk	Miniräknare är ej tillåten!			
Omfattning och					
betygsgränser:		Poäng	Betyg		
octygsgranser.		11	Fx		
		12 – 14	E		
		15 – 17	D	-	
		18 – 20 21 – 23	C B	_	
		24 – 26	А	-	
		2. 20	, , ,	J	
	Till samtliga uppgifter krävs fullständiga				
	lösningar. Lösningarna skall vara tydliga				
	och lätta att följa.				
	Införda	Införda beteckningar skall definieras.			
		Uppställda samband skall motiveras.			
		Skriv helst med blyertspenna!			
	Svaret sk	Svaret ska framgå tydligt och vara förenklat			
		så långt som möjligt. Svara med enhet och			
		lämplig avrundning på tillämpade uppgifter.			
		Svara exakt på övriga uppgifter, om inte			
		annat anges.			
	aiiiat aii	5-0.			

- **1.** a) Skriv om det komplexa talet $z=2e^{i\pi/6}$ på formen z=a+bi. (1p)
 - b) Om $z_1=2e^{i\pi/2}$ och $z_2=e^{i\pi/4}$ bestäm då $w=\frac{{z_1}^2}{z_2}$ på formen $w=re^{iv}$. (1p)
 - c) Åskådliggör vilka tal z i det komplexa talplanet som uppfyller olikheten ${\rm Im}(z) \leq {\rm Re}(z) + 1. \tag{1p}$
- **2.** Lös följande ekvation: $4iz + 2z + 5 = -3i + 3 + \frac{z}{i}$. (2p)
- 3. Bestäm den allmänna lösningen y(x) till följande differentialekvation:

$$y' = -\frac{x+2}{y} \,. \tag{2p}$$

- **4.** Summan $\sum_{k=1}^{n} (3k+2)$ är given.
 - a) Bestäm den 301:a termen i summan. (1p)
 - b) Beräkna summan av de 200 första termerna. (2p)
- **5.** Lös ekvationen $3\bar{z} z = i(2+4i)$ där z är ett komplext tal. (2p)
- **6.** Skriv talet $(\sqrt{3}+i)^8$ på formen a+ib.
- 7. Beräkna integralen $\int_{0}^{\pi/2} (3x \cdot \cos 2x) dx$. (3p)
- 8. Kurvan $y = 5 x^2$ och x-axeln avgränsar ett ändligt område. Området roterar runt x-axeln. Bestäm rotationskroppens volym. (2p)
- **9.** Den 1 januari år 2000 var folkmängden i landet A 13 miljoner. Ett lands folkmängd påverkas av två saker, födelseöverskott (antal födda minus antal döda) och storleken av in/utvandringen.

Tillväxthastigheten i landet A på grund av födelseöverskottet är 0,6 % per år av den aktuella folkmängden. Landet har en konstant nettoutvandring på 70 000 personer per år. Bestäm ett exakt uttryck för folkmängden f(t) där f är folkmängden i miljoner invånare och t är antalet år efter januari 2000. (3p)

- **10.** Bestäm lösningen till differentialekvationen y'' + 2y' + 5y = 0 då lösningskurvan går genom punkten (0,1) och i denna punkt har en tangent som är parallell med linjen y = 3x. (2p)
- **11.** För z=x+iy gäller att 3y+4x-3=0 och z satisfierar dessutom likheten |z-3+3i|=5. Bestäm z.

Lösningsförslag

1. a) Ett komplext tal på polär form kan mha Eulers formel skrivas som

$$z=re^{i\theta}$$
, där $r=|z|$ och $\theta=\arg(z)$. Om $z=2e^{i\pi/6}$ ser vi att $|z|=2$ och $\theta=\frac{\pi}{6}$. Vi får då att $z=2\left(\cos\frac{\pi}{6}+i\cdot\sin\frac{\pi}{6}\right)=(\sqrt{3}+i)$

b)
$$=\frac{z_1^2}{z_2} = \frac{(2e^{i\pi/2})^2}{e^{i\pi/4}} = \frac{4e^{i\pi}}{e^{i\pi/4}} = \frac{4}{1}e^{i(\pi-\pi/4)} = 4e^{i3\pi/4}$$
 och $arg(w) = \frac{3\pi}{4}$

c) Om z = x + yi innebär olikheten att $y \le x + 1$. De komplexa tal som uppfyller detta är skissade nedan. Observera att linjen Im(z) = Re(z) + 1 ingår.

2.

$$4iz + 2z + 5 = -3i + 3 + \frac{z}{i}$$
 Lös ut z i ekvationen på vanligt sätt:

$$4iz + 2z + 5 = -3i + 3 - zi$$
 (förläng med i i det sista bråket)

$$(5i+2)\cdot z = -3i-2$$

$$z = \frac{-3i - 2}{5i + 2} = \frac{-2 - 3i}{2 + 5i} = \frac{(-2 - 3i) \cdot (2 - 5i)}{(2 + 5i) \cdot (2 - 5i)} = \frac{-4 + 10i - 6i + 15i^2}{2^2 - 5^2i^2} = \frac{-19 + 4i}{29} = -\frac{19}{29} + \frac{4}{29} \cdot i$$

Svar:
$$z = -\frac{19}{29} + \frac{4}{29} \cdot i$$

3. Differentialekvationen är separabel. Man samlar x och dx i ena ledet, y och dy i andra ledet. (C och D är konstanter.)

$$\frac{dy}{dx} = -\frac{x+2}{y}$$

$$\int ydy = \int -(x+2)dx$$

$$\frac{y^2}{2} = -\frac{x^2}{2} - 2x + C$$

$$y^2 = -x^2 - 4x + D$$

$$y = \pm \sqrt{-x^2 - 4x + D}$$

Man får alltså två lösningar för varje konstant D, en positiv och en negativ.

Svar: Den allmänna lösningen är: $y = \pm \sqrt{-x^2 - 4x + D}$

Anm: Om man ersätter D+4 med R^2 fås $y^2 + (x+2)^2 = R^2$, d.v.s. ekvationen för en cirkel med radien R och centrum i punkten (-2,0).

4.

$$\sum_{1}^{200} (3k+2) = (3+2) + (6+2) + (9+2) + \dots + (600+2) = 5+8+11+14+\dots + 602$$

Denna summa beräknas som $s_{200} = 200 \cdot \frac{5+602}{2} = 100 \cdot 607 = 60700$

Den 301:a termen fås med $a_{301} = a_1 + 300 \cdot d \ \Rightarrow \ a_{301} = 5 + (301 - 1) \cdot 3 = 905$

Svar: Den 301:a termen är 905. Summan av de 200 första termerna är 60700

5. Låt z = a + bi och $\overline{z} = a - bi$. Den givna ekvationen övergår då i

$$3(a - bi) - (a + bi) = i(2 + 4i)$$

$$3a - 3bi - a - bi = 2i + 4i^2$$

$$2a - 4bi = -4 + 2i$$

Realdelarna är lika om $2a = -4 \Rightarrow a = -2$

Imaginärdelarna är lika om $-4b = 2 \Rightarrow b = -0.5$

Svar: z = -2 - 0.5i

6. Potensen räknas enklast ut om man först skriver om på polär form $(r \cdot (\cos v + i \sin v))$.

$$\left| \sqrt{3} + i \right| = \sqrt{\left(\sqrt{3}\right)^2 + 1^2} = 2$$

$$arg(\sqrt{3}+i) = \theta$$
, $\tan \theta = \frac{1}{\sqrt{3}}$, $\theta = \frac{\pi}{6} + n\pi$

 $\sqrt{3} + i$ ligger i första kvadranten. Då är $\theta = \frac{\pi}{6}$.

Alltså:
$$\sqrt{3} + i = 2 \cdot (\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})$$

$$(\sqrt{3}+i)^8 = (2 \cdot (\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}))^8 = 2^8 \cdot (\cos\frac{8\pi}{6}+i\sin\frac{8\pi}{6}) = 256 \cdot (-\frac{1}{2}-\frac{\sqrt{3}}{2}\cdot i) = -128-128\sqrt{3}\cdot i$$

Svar: $(\sqrt{3}+i)^8 = -128-128\sqrt{3} \cdot i$

7.

$$\int_0^{\pi/2} 3x \cdot \cos 2x \, dx = \{partiell \ integration\} =$$

$$= 3 \left[x \cdot \frac{1}{2} \sin 2x \right]_0^{\pi/2} - \frac{3}{2} \int_0^{\pi/2} \sin 2x \, dx = 0 + 0 + \frac{3}{2} \left[\frac{1}{2} \cos 2x \right]_0^{\pi/2} = \frac{3}{4} (\cos \pi - \cos 0) = -\frac{6}{4} = -\frac{3}{2}$$

Svar: $\int_0^{\frac{\pi}{2}} 3x \cdot \cos 2x \ dx = -\frac{3}{2}$

8.

Kurvan skär x-axeln där $5 - x^2 = 0$, d.v.s. $x = \pm \sqrt{5}$

Rotationsvolymen beräknas med skivmetoden:

$$\int_{a}^{b} \pi y^{2} dx = \int_{-\sqrt{5}}^{\sqrt{5}} \pi (5 - x^{2})^{2} dx = \int_{-\sqrt{5}}^{\sqrt{5}} \pi (25 - 10x^{2} + x^{4}) dx =$$

$$= \pi \cdot \left[25x - \frac{10x^{3}}{3} + \frac{x^{5}}{5} \right]_{-\sqrt{5}}^{\sqrt{5}} = \pi \cdot (25\sqrt{5} - \frac{10\sqrt{5}^{3}}{3} + \frac{\sqrt{5}^{5}}{5} - (25 \cdot (-\sqrt{5}) - \frac{10 \cdot (-\sqrt{5})^{3}}{3} + \frac{(-\sqrt{5})^{5}}{5})) =$$

$$= \pi \cdot (25\sqrt{5} - \frac{10\sqrt{5}^{3}}{3} + \frac{\sqrt{5}^{5}}{5} + 25\sqrt{5} - \frac{10\sqrt{5}^{3}}{3} + \frac{\sqrt{5}^{5}}{5}) = \pi \cdot (50\sqrt{5} - \frac{20\sqrt{5}^{3}}{3} + \frac{2\sqrt{5}^{5}}{5}) =$$

$$= \pi \cdot (50\sqrt{5} - \frac{100\sqrt{5}}{3} + \frac{50\sqrt{5}}{5}) = \pi \cdot \frac{400}{15} \cdot \sqrt{5} = \frac{80\sqrt{5} \cdot \pi}{3} \quad v.e.$$

Svar: Volymen blir $\frac{80\sqrt{5} \cdot \pi}{3}$ *v.e.*

Tillväxthastigheten (i miljoner per år) = $y' = 0.006 \cdot y - 0.07$

$$y' - 0.006 \cdot y = -0.07$$
 (Inhomogen ekvation)

I) Partikulärlösning: Sätt $y_p = a \implies y_p' = 0$

Insättning ger
$$-0.006 \cdot a = -0.07 \implies a = \frac{-0.07}{-0.006} = \frac{70}{6} \implies y_p = \frac{70}{6}$$

II) Allmän lösning till motsvarande homogena ekvation ($y' - 0.006 \cdot y = 0$):

$$y_h = Ce^{0.006 \cdot x}$$

III) Allmän lösning till den inhomogena ekvationen: $y = y_h + y_p = Ce^{0.006 \cdot x} + \frac{70}{6}$

Ett begynnelsevillkor (y(0) = 13,0) är givet.

$$y(0) = Ce^{0.006 \cdot 0} + \frac{70}{6} = C + \frac{70}{6} = 13,0 \implies C = 13,0 - \frac{70}{6} = \frac{39}{3} - \frac{35}{3} = \frac{4}{3}$$

Svar:
$$y = \frac{4}{3} \cdot e^{0,006 \cdot x} + \frac{35}{3}$$

10.

$$y'' + 2y' + 5y = 0;$$

Karakteristisk ekv. $r^2 + 2r + 5 = 0$; $r = -1 \pm \sqrt{1^2 - 5}$; $r = -1 \pm 2i$

Detta ger oss den allmäna lösningen $y = e^{-x}(C\cos 2x + D\sin 2x);$

Villkoret y(0) = 1 ger:

$$e^{0}(C\cos 0 + D\sin 0) = 1;$$
 C = 1

Att lösningskurvan är parallell med y=3x då x=0 ger oss bivillkoret y'(0)=3:

$$y' = -e^{-x}(C\cos 2x + D\sin 2x) + e^{-x}(-2C\sin 2x + 2D\cos 2x)$$

$$y'(0) = 3$$

 $-e^{0}(\cos 0 + D\sin 0) + e^{0}(-2\sin 0 + 2D\cos 0) = 3;$
 $-1 + 2D = 3;$
 $D = 2$

Svar: $y = e^{-x}(\cos 2x + 2\sin 2x)$

11.
$$z = x + yi$$
 och $3y + 4x - 3 = 0 \implies y = -\frac{4}{3}x + 1$

Ekvationen visar sambandet mellan Im z och Re z: Im $z = -\frac{4}{3}$ Re z + 1

Illusteras i det komplexa talplanet:

Likheten |z - 3 + 3i| = 5 kan tolkas som att avståndet mellan z och punkten 3 - 3i ska vara 5.

Grafiskt framgår att det måste finnas två sådana punkter.

Dessa punkter, z = x + yi där $y = -\frac{4}{3}x + 1$, söks.

$$\left| x + \left(-\frac{4}{3}x + 1 \right)i - (3 - 3i) \right| = 5 \implies \sqrt{(x - 3)^2 + \left(-\frac{4}{3}x + 1 - (-3) \right)^2} = 5 \implies$$

$$x^2 - 6x + 9 + \frac{16x^2}{9} - \frac{32x}{3} + 16 = 25 \implies \frac{25x^2}{9} - \frac{50x}{3} = 0 \implies \frac{25x}{3} \cdot \left(\frac{x}{3} - 2 \right) = 0$$

$$x_1 = 0 \text{ och } x_2 = 6$$

Detta ger $y_1 = 1$ och $y_2 = -7$

Det finns alltså två tal z som satisfierar likheten:

$$z_1 = 0 + 1 \cdot i = i$$
 och $z_2 = 6 + (-7) \cdot i = 6 - 7i$

Svar: $z_1 = i$ $z_2 = 6 - 7i$

Rättningsmall

1.	a) –	
	b) —	
	c) Oklart om randen ingår eller ej, eller randen fel §	-1p
2.	Kommer fram till uttrycket $z = \frac{-2-3i}{2+5i}$ samt försöker förlänga med nämnarens	
	konjugat, sedan fel	-1p
3.	Saknar \pm i svaret	-1p
	Integraltecken och/eller dy dx saknas	-1p
	Konstanten D saknas eller står utanför rottecknet	-1p
4.	Mindre indexeringsfel t ex $a_{301}=a_1+301d$ -1p/hel	la uppgiften
5.	Korrekt ekvationssystem, där studenten Identifierar Re och Im för VL och HL	+1p
6.	. Påstår att något belopp är \pm -1p/he	
	Påstår att $arg(\sqrt{3}+i)$ även är $\frac{7\pi}{6}$	-1p
	Påstår att $arg(\sqrt{3}+i)$ bara är $\frac{7\pi}{6}$	-2p
7.	Ingen partiell integration	-3p
	Integrationsfel	-2p
	Deriveringsfel	-2p
	Korrekt partiell integration, fel vid insättning	-1p
8.	Fel område	-3p
	Bestämmer ej integrationsgränserna analytiskt -0p (denna gång)
	Korrekt metod för att bestämma integrationsgränser, men gör algebraiskt fel	-1p/fel
	Korrekt uttryck för integralen d v s $\pi \cdot \left[25x - \frac{10x^3}{3} + \frac{x^5}{5} \right]_{-\sqrt{5}}^{\sqrt{5}}$, sedan fel	-1p
9.	Teckenfel på 0,006 och/eller 70000	-1p
	Decimalfel/tiopotensfel på 0,006 eller 0,07	-1p
	Fel lösning till homogen DE	-1p
	Fel lösning till inhomogen DE	-1p
	Använder ej bivillkoret / felaktig användning av bivillkoret	-1p
	Löser med variabelseparation, integrerar fel (t ex glömmer inre derivatan)	-2p
	Funktionen är ej i angivna enheter	-1p
10.	Fel lösning till homogen DE	-1p
	Deriveringsfel	-2p

Fel värde på y'(0)	- 1 p
11. Prövar inte lösningar till rotekvation	-0p (denna gång)
Hittar bara en lösning	-1p
Bestämmer x_1 och x_2 men bestämmer inte z_1 och z_2	-1p