$\overline{D} = D \cup$ (множество предельных точек D) — замыкание.

Примечание. $a \in \overline{D}$, тогда $\exists (x_n)$ из $D, x_n \to a$

 Π римечание. $\overline{D} = \bigcap_{\substack{D \subset F \\ F-\text{ замкн.}}} F-$ мин. (по вкл.) замкн. множество, содержащее D.

Примечание. D — замкнуто $\Leftrightarrow D = \overline{D}$

Определение. a — граничная точка D, если $\forall U(a) \quad U(a)$ содержит точки как из D, так и из D^c

Определение. Граница множества — множество его граничных точек. Обозначается ∂D

Упражнение:

1.
$$\partial D = \overline{D} \setminus IntD$$

- 2. ∂D замкнута
- 3. \forall множество предельных точек замнуто.

Определение. T — множество, U — набор неких подмножеств T.

При этом:

1.
$$\emptyset \in U, T \in U$$

2.
$$G_1, G_2 \dots G_n \in U \Rightarrow \bigcap_{i=1}^n G_i \in U$$

3.
$$(G_{\alpha})_{\alpha \in A}, \forall \alpha G_{\alpha} \in U \quad \bigcup_{\alpha \in A} \in U$$

Тогда T называется топологическим пространством, U — "набор" открытых множеств в T (мн-ва G^c , где $G \in U$ — замкн.)

 $a\in T,$ U(a) — любое открытое множество, содержащее a и $\neq \emptyset$.

Аксиома 1. Об отделимости: $\forall x,y \in T \exists U(x), U(y): U(x) \cap U(y) = \emptyset$

Определение. В \mathbb{R} :

1.
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2.
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3.
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

Примечание. Требование > 0 не обязательно.

Примечание. 1. $x_n \to \infty \Rightarrow x_n$ не огр. (по модулю)

$$x_n \to +\infty \Rightarrow x_n$$
 не огр. сверху

$$x_n \to -\infty \Rightarrow x_n$$
 не огр. снизу

2.
$$x_n \to +\infty$$
. Тогда $x_n \not\to -\infty$

Откр. множества:

1. Ограниченные открытые множества — те, что открыт. в $\mathbb R$

2.
$$U_E(+\infty) = (E, +\infty] \subset \overline{\mathbb{R}}$$

 $U_E(-\infty) = [-\infty, E) \subset \overline{\mathbb{R}}$

3. Произвольное открытое множество — либо огр. откр., либо огр. $\cup U_E(+\infty)$, огр. $\cup U_E(-\infty)$, огр. $\cup U_E(+\infty) \cup U_E(-\infty)$

Proof. Рассмотрим $y = \tan x$

Положим $\tan(\frac{\pi}{2}) = +\infty$, $\tan(\frac{\pi}{2}) = -\infty$

an — монотонная биекция $[-\frac{\pi}{2},\frac{\pi}{2}]$ на $\mathbb R$

Она обеспечивает биекцию между совокупностью открытых множеств $[-\frac{\pi}{2},\frac{\pi}{2}]$ и . . . в $\overline{\mathbb{R}}$

В $\overline{\mathbb{R}}$ рассмотрим функцию $\rho(x,y)=|\arctan x-\arctan y|$ — метрика. Покажем, что $x_n\to +\infty$ в смысле исх. опр. $\Leftrightarrow x_n\to +\infty$ в пространстве $(\overline{\mathbb{R}},\rho)$

Proof.
$$x_n \to +\infty \Leftrightarrow \forall U(+\infty) \;\; \exists N \;\; \forall n > N \;\; x_n \in U(+\infty)$$
 $x_n \to +\infty$ в пространстве $(\overline{\mathbb{R}}, \rho) \Leftrightarrow$ высказыванию выше.

Примечание. $a \in \mathbb{R}$, (x_n) — вещ. посл. Тогда $x_n \to a$ в смысле обычного опр. $\Leftrightarrow x_n \to a$ в пространстве $(\overline{\mathbb{R}}, \rho)$

$$\begin{cases} x_n \to a, a \in \overline{\mathbb{R}} \\ x_n \to b, b \in \overline{\mathbb{R}} \end{cases} \Rightarrow a = b$$

$$\mathbf{B} \ \mathbb{R}^m \quad x_n \to \infty \quad \forall E \ \exists N \ \forall n > N \ ||x_n|| > E$$

$$U_E(+\infty) = \{x \in \mathbb{R}^m : ||x|| > E\}$$

1 Ревизия

 $(x_n),(y_n)\quad x_n\leq y_n\quad x_n\to x,y_n\to y,\; x,y\in\overline{\mathbb{R}}.$ Тогда $x\leq y.$

- $y=+\infty$ или $x=-\infty$ тривиально.
- $x = +\infty, y = a = \in \mathbb{R}$ невозможно
- остальное как в основной теореме.

Определение. Последовательность (y_n) называется бесконечно большой, если $y_n \to +\infty$.

Примечание. x_n — бесконечно малая ($\forall n \ x_n \neq 0$) $\Leftrightarrow \frac{1}{x_n}$ — бесконечно большая.

Proof.
$$|x_n| < \varepsilon \Leftrightarrow \left|\frac{1}{x_n}\right| > \frac{1}{\varepsilon}$$

Теорема 1. Об арифметических свойствах пределов в $\overline{\mathbb{R}}$.

$$(x_n),(y_n)-$$
вещ., $x_n o a,y_n o b,\quad a,b\in\overline{\mathbb{R}}$ Тогда:

1.
$$x_n \pm y_n \rightarrow a \pm b$$

2.
$$x_n y_n \to ab$$
 Если $\forall n \ y_n \neq 0; b \neq 0$

3.
$$\frac{x_n}{y_n} \to \frac{a}{b}$$

При условии, что выражения в правых частях имеют смысл.

 y_n отделено от нуля при больших n.

Примечание. Верны аналогичные теоремы, где вместо $\overline{\mathbb{R}}-\overline{\mathbb{C}}=\mathbb{C}\cap\{\infty\}$

Неопределенности:

•
$$\begin{cases} x_n \to +\infty \\ y_n \to -\infty \end{cases} \Rightarrow x_n + y_n \to ?$$

•
$$\begin{cases} x_n \to n + \sin n \\ y_n \to -n \end{cases} \Rightarrow x_n + y_n = \sin n, \not\exists \lim$$

•
$$\begin{cases} x_n \to n \\ y_n \to -\sqrt{n} \end{cases} \Rightarrow x_n + y_n = n - \sqrt{n} \to +\infty$$

•
$$\begin{cases} x_n \to 0 \\ y_n \to a \neq 0 \end{cases} \Rightarrow \frac{x_n}{y_n} \to \infty$$

2 Точные границы числовых множеств

Теорема 2. Теорема Кантора о стягивающихся отрезках.

Дана последовательность отрезков $[a_1,b_1]\supset [a_2,b_2]\supset\dots$ Длины отрезков $\to 0$, m.e. $(b_n - a_n) \to_{n \to +\infty} 0$

Тогда
$$\exists!c\in\mathbb{R} \quad \bigcap_{k=1}^{+\infty}[a_k,b_k]=\{c\}$$
 и при этом $a_n\to_{n\to+\infty}c,b_n\to_{n\to+\infty}c$

Примечание. Вместо " $b_n-a_n \to 0$ " $\forall \varepsilon>0 \ \exists n:b_n-a_n<\varepsilon$

Proof. Берем из аксиомы Кантора $c\in\bigcap_{k=1}^{+\infty}[a_k,b_k]$

$$\begin{cases} 0 \le b_n - c \le b_n - a_n \\ 0 \le c - a_n \le b_n - a_n \end{cases} \Rightarrow \begin{cases} b_n - c \to 0 \\ c - a_n \to 0 \end{cases} \Rightarrow \begin{cases} b_n \to c \\ a_n \to c \end{cases}$$

По теореме об единственности предела c однозначно определено.

Определение. $E \subset \mathbb{R}$. E — огр. сверху, если $\exists M \in \mathbb{R} \ \forall x \in E \ x \leq M$. Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

Определение. $E \subset \mathbb{R}, E \neq \emptyset$.

Для E — огр. сверху **супремум** (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу **инфимум** (sup E) — наибольщая из нижних границ E.

Примечание. Техническое описание супремума: $b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$

Аналогично для inf

Определение. $M = \max E : M \in E \ \forall x \in E \ x \leq M$

Теорема 3. О существовании супремума.

$$E\subset\mathbb{R},E
eq \mathcal{O},E$$
 — огр. сверху. Тогда $\exists\sup E\in\mathbb{R}$

Proof. Строим систему вложенных отрезков $[a_k, b_k]$ со свойствами:

- 1. b_k верхняя граница E
- 2. $[a_k, b_k]$ содержит точки E.

 a_1 — берём любую точку E, b_1 — любая верхняя граница.

Границы следующего отрезка найдём бинпоиском (математики это называют полоивнное деление).

Если
$$\frac{a_1+b_1}{2}$$
 — верхняя граница $E, [a_2,b_2]:=[a_1,\frac{a_1+b_1}{2}].$ Иначе на $[\frac{a_1+b_1}{2},b_1]$ есть элементы $E, [a_2,b_2]:=[\frac{a_1+b_1}{2},b_1]$ Длина $[a_k,b_k]=b_k-a_k=\frac{b_1-a_1}{2^{k-1}}\to 0$ $\exists! c\in \prod [a_k,b_k]$ Проверим: $c=\sup E$

- 1. $\forall x \in E \ \forall n \ x \leq b_n$
- 2. $\forall \varepsilon > 0 \ c \varepsilon$ не верхн. гран.

Доказательство 1:
$$x \to x, b_n \to c \Rightarrow x \le b_n$$
 Доказательство 2: $\forall \varepsilon > 0$ возьмём $n: \frac{b_1-a_1}{2^n} < \varepsilon.$ $c-\varepsilon < a_n \Leftrightarrow c-a_n < \varepsilon \Leftrightarrow c-a_n < b_n-an < \varepsilon$