My VK Friends Network Analysis

Rim Shayakhmetov

Higher School of Economics Department of Computer Science

2016

Outline

My Network Summary

Network Source My Network Layout Friends

Structural Analysis

Degree Distribution
Main Properties
Node Similarity
Node Centrality and Network Layout

Community Detection

Clique Community detection

Outline

My Network Summary

Network Source My Network Layout Friends

Structural Analysis

Degree Distribution
Main Properties
Node Similarity
Node Centrality and Network Layout

Community Detection

Clique Community detection

Network Source

- VK API
 - friends.get
 - users.get
- Users' attributes
 - ▶ last name
 - ▶ first name
 - city
 - country
 - gender
 - birthday
- Size
 - ▶ 131 nodes
 - ▶ 760 edges

My Network

PageRank (size) and Degree Centrality (color)

Friends

My view

- MSU friends
 - ▶ friends from Astana
 - friends from Moscow
- HSE friends
 - ▶ data science programme
 - dormitory
- ▶ Home Town
 - school
 - relatives
- Others

Outline

My Network Summary

Network Source My Network Layout Friends

Structural Analysis

Degree Distribution
Main Properties
Node Similarity
Node Centrality and Network Layout

Community Detection

Clique Community detection

Degree Distribution

PDF and cCDF of the degree distribution of the nodes

Degree Distribution

Hypothesis

Divide degrees by some threshold s.t.:

Power Law holds on each region

Finding an optimal split by Kolmogorov-Smirnov test

Main Properties

- Average Clustering Coefficient = 0.71
- ▶ Diameter = 2
- ► Average Shortest Path Length = 1.91
- ► Transitivity = 0.38
- Assortativity coefficient
 - by gender = 0.01
 - ▶ by city = 0.04
 - \triangleright by country = 0.05
 - by degree = -0.17

Node Similarity

Cosine and Jaccard Similarity

Node Centrality

PageRank (size) and Degree Centrality (color)

Node Centrality

Betweeness (size) and Closeness Centrality (color)

Node Centrality

Eigenvector (size) and Katz Centrality (color)

Outline

My Network Summary

Network Source My Network Layout Friends

Structural Analysis

Degree Distribution
Main Properties
Node Similarity
Node Centrality and Network Layout

Community Detection

Clique Community detection

Clique

Maximal Cliques

The distribution of sizes of maximal cliques

Clique

Some Maximal Maximum Clique (color)

Edge Betweenness (color)

Fast Greedy (color)

Leading Eigenvector (color)

Springlass (color)

Walktrap (color)

Community detection Infomap (color)

Label Propagation (color)

Summary

- Maximal Maximum Cliques correspond to my previous classmates.
- ► The most reasonable community detection has been made with Edge Betweenness and Infomap.
- Springlass was good at identifying small communities inside the big MSU community.
- Centrality measures correlate with how the person is sociable (except for me, which is obvious as the network is centered on me)

Used tools I

- Python (numpy/pandas)
- NetworkX
- igraph