Višnja Jankov

Vizuelna posmatranja promenljivih zvezda na primeru RR Lyrae i AI Draconis

Promenljive zvezde RR Lyr i AI Dra posmatrane su u ISP od 4. do 13. avgusta. Posmatranja su obavljena vizuelnom Argelanderovom metodom. Iako zbog kratkog perioda posmatranja krive sjaja nisu u potpunosti pokrivene, prepoznaju se tipični detalji na njima.

Uvod

Posmatranja promenljivih zvezda važna su, kako u profesionalnoj, tako i u amaterskoj astronomiji. U domenu amaterske astronomije ona pojedincu mogu služiti kao uvod u tehniku posmatračkog rada, a zbog velikog broja ovih zvezda profesionalnim astronomima ona služe kao podaci ukoliko su posmatranja vršena dovoljno dugo i precizno (najčešće posmatranja iskusnijih amatera).

U periodu od 4. do 13. avgusta posmatrane su kratkoperiodična cefeida RR Lyr i eklipsno promenljiva zveda Algolovog tipa AI Dra. Sva posmatranja su vršena Njutnovim reflektorom od 2".5. Osnovni podaci o ovim zvezdama su (Tirion et al. 1987; AAVSO 1990):

```
RR Lyr period: 0^{d}.566867 promena sjaja: 7^{m}.06-8^{m}.12 promena sjaja: 7^{m}.05-8^{m}.09 \alpha = 19^{h}25^{m}.5 \alpha = 16^{h}56^{m}.3 \alpha = 16^{h}56^{m}.3
```

Metod

Sva posmatranja vršena su vizuelnom Argelanderovom metodom. Ona se zasniva na upoređivanju sjaja promenljive sa poredbenim zvezdama i, u zavisnosti od razlike sjaja, davanju ocena sjaja od 1 do 4.

Višnja Jankov (1980), Zrenjanin, B. Ristića B1 L3/10, učenica 1. razreda Zrenjaninske gimnazije Pri odabiru poredbenih zvezda vodi se računa da one budu konstantnog sjaja i približno iste spektralne klase kao promenljiva (zbog Purkinjeovog efekta), a po mogućnosti i u vidnom polju sa njom.

Zbog kratkog perioda RR Lyr ocene su davane na svakih 5–10 minuta a za AI Dra na svakih 25–30 minuta, pri čemu nije bilo potrebno beleženje oblačnosti neba jer su noći posmatranja bile izuzetno vedre.

Dobijeni podaci o promenama sjaja obrađeni su metodom najmanjih kvadrata. Tok obrade je sledeći:

- 1. Određivanje razlike sjaja između poredbenih zvezda u Argelanderovim stepenima i računanje srednje aritmetičke vrednosti sjaja.
- 2. Određivanje zavisnosti sjaja u magnitudama i Argelanderovim stepenima vrši se tako što se najsjajnijoj poredbenoj zvezdi da vrednost 0.00, a vrednosti ostalih dobijaju se dodavanjem razlika sjaja u Argelanderovim stepenima. Sjaj poredbenih zvezda uporedo u magnitudama i stepenima dat je u narednoj tabeli. Kataloški naziv poredbenih zvezda uzet je iz Sky Catalogue (1991) za AI Dra, a poredbene za RR Lyr predložene su u Praktičnoj astronomiji (Muminović 1990).

Parametri poredbenih zvezda				
Parametar	Poredbena zvezda			
	A	В	C	D
RR Lyr				
Sjaj u Argelander. st.	0.00	0.32	3.87	6.01
Sjaj u magnitudama	6.78	6.94	7.50	7.80
AI Dra				
Katal. ozn. (SAO)	30200	30164	30195	/
rektascenzija	$17^{h}01^{m}14^{s}$	$16^{\rm h}56^{\rm m}18^{\rm s}$	$17^{h}00^{m}03^{s}$	$16^{\rm h}43^{\rm m}00^{\rm s}$
deklinacija	+523617	+524154	+530241	+550000
Sjaj u Argelander. st.	0.00	3.12	4.24	5.36
Sjaj u magnitudama	6.78	7.10	7.60	8.10
Napomena: rektascenzija i deklinacija su date za epohu 2000.0				

3. Određivanje veze između sjaja u magnitudama i Argelanderovog stepena. Veza je dobijena preko jednačine:

$$m = m s + y,$$

gde je: m – sjaj u magnitudama, x – vrednost Argelanderovog stepena (za RR Lyr iznosi $0^{\rm m}$.165, a za AI Dra $0^{\rm m}$.152), s – sjaj u stepenima, y – magnituda najsjajnije poredbene zvezde čija vrednost u stepenima iznosi 0.00.

Kada se unesu podaci za x, s, y dobijaju se korigovane vrednosti magnituda poredbenih zvezda koje, u ovom slučaju, iznose:

Za RR LyrZa AI Dra
$$A - 6^{m}.83$$
 $A - 6^{m}.76$ $B - 6^{m}.88$ $B - 7^{m}.23$ $C - 7^{m}.47$ $C - 7^{m}.41$ $D - 7^{m}.82$ $D - 7^{m}.88$ $E - 8^{m}.38$

Slika 1. Karte okolina posmatranih promenljivih zvezda: RR Lyrae (levo) AI Draconis desno).

4. Određivanje sjaja promenljive zvezde u magnitudama na osnovu dobijenih korigovanih vrednosti za predbene zvezde preko jednačina:

Figure 1. Surroundings of the stars observed: RR Lyrae (left) AI Draconis (right)

$$m_v = -\ m_a + m \, \frac{m_b - m_a}{m+n}, \label{eq:mv}$$

ili:

$$m_v = -m_b - n \frac{m_b - m_a}{m + n},$$

gde su: m_V , m_d , m_b – magnitude promenljivih odnosno poredbenih zvezda, a m i n – ocene sjaja u stepenima.

Kada se sjaj promenljivih zvezda u stepenima prevede u magnitude vrši se svođenje na fazu (preko programa pisanog u Borland Pascal-u 7.0 i QBASIC-u 4.5) i korekcija svođenja na centar Sunca (samo za RR Lyr zbog kratkog perioda) preko formule (Muminović 1990):

$$\Delta t = -8$$
 m.308 cos β cos ($\lambda - \lambda_o$) = -0 d.0058 cos β cos ($\lambda - \lambda_o$),

gde su:

Slika 2. Dobijene tačke krive sjaja: RR Lyrae (gore) AI Draconis (dole)

Figure 2.
Light curve data
points:
RR Lyrae (above)
AI Draconis (bellow).

β – ekliptička širina zvezde

λ – ekliptička dužina zvezde

 λ_0 – ekliptička dužina Sunca.

Rezultati i diskusija

Rezultati posmatranja prikazani su na graficima (sl. 2). Na apscisi je unešena faza a na ordinati magnituda.

Na krivi sjaja RR Lyr (slika 2, gore) može se uočiti brži prelazak iz minimuma u maksimum nego iz maksimuma u minimum. Zbog dužeg perioda AI Dra (slika 2, dole) kriva sjaja nije u potpunosti prekrivena, ali se na njoj mogu uočiti primarni i sekundarni minimum i kraći period zadržavanja u maksimumu koji su karakteristični za eklipsno promenljive zvezde Algolovog tipa.

Literatura

- [1] Vujnović, V. 1990. Astronomija. Zagreb: Školska knjiga.
- [2] Tirion, W., Rappaport, B., Lovi, G. 1987. *Uranometria 2000.0*. Richmond: Willmann-Bell.
- [3] Muminović, M. 1990. Praktična astronomija. Sarajevo: UAD i CEDUS.
- [4] AAVSO. 1990. The AAVSO Variable Star Atlas. AAVSO.
- [5] Sky Catalogue 2000.0. 1991. Sky Publishing Corporation.

Višnja Jankov

Light Curves of RR Lyrae and AI Draconis

Variable stars RR Lyrae and AI Draconis were observed with 2.5" Newtonian telescope during the nights from August 4th to 13th 1996. Visual Argelander method was used. Partial light curves were obtained.

DEO I ASTRONOMIJA • 31