Macroéconomie 1 (5/6)

Politique budgétaire dans le modèle à agent représentatif (Cass-Koopmans-Ramsey)

Olivier Loisel

ENSAE

Septembre - Décembre 2022

But et motivation du chapitre

- Ce chapitre introduit la politique budgétaire et étudie ses effets dans le modèle de Cass-Koopmans-Ramsey.
- Politique budgétaire ≡ dépenses publiques financées par des recettes publiques ou par émission de dette publique.
- Dans de très nombreux pays, la politique budgétaire peut jouer un rôle important compte tenu du montant substantiel des dépenses publiques et de la dette publique.

Evolution des dépenses publiques en France, 1960-2010

Source : INSEE, calculs DG Trésor.

Evolution de la dette publique en France, 1978-2011

Source : INSEE.

Evolution de la dette publique en France, 1996-2021

Source: INSEE.

- On se restreint à l'analyse des dépenses publiques
 - n'affectant pas la fonction de production,
 - n'affectant pas l'utilité de la consommation privée,
 - financées par impôt forfaitaire ou par émission de dette.
- Impôt forfaitaire (resp. distorsif) ≡ impôt conditionnel à une caractéristique que l'individu ne peut pas modifier (resp. peut modifier).
- En pratique, tous les impôts sont distorsifs de nos jours. La partie 6 des TDs étudie le cas d'un impôt distorsif.
- On se restreint à l'analyse positive (et non normative) des effets de la politique budgétaire (de fait, il n'y aura pas de rôle pour des variations discontinues du montant des dépenses publiques dans le temps).
- On suppose que le risque de défaut souverain est nul.

Aperçu général du modèle *

- Les entreprises louent du capital (détenu par les ménages) et emploient du travail (fourni par les ménages) pour produire des biens.
- Les biens produits par les entreprises sont utilisés pour
 - la consommation des ménages,
 - la consommation du gouvernement,
 - l'investissement en nouveau capital.
- Le taux d'épargne (quantité de biens épargnés—investis par les ménages / quantité de biens consommés ou épargnés—investis par les ménages) est endogène, choisi optimalement par les ménages.
- Le capital évolue dans le temps en fonction de l'investissement et de la dépréciation du capital.

(Dans les pages dont le titre est suivi d'un astérisque, en bleu : ajouts par rapport au chapitre 2 ; en rouge : remplacements par rapport au chapitre 2.)

Introduction

000000000000

- Un seul type de bien, utilisé pour
 - la consommation privée,
 - la consommation publique,
 - l'investissement.
- Deux sortes d'agents privés :
 - des ménages,
 - des entreprises.

Marchés *

• Cing marchés :

- marché des biens,
- marché du travail,
- marché du capital,
- marché des prêts,
- marché de la dette publique.
- Sur le marché de la dette publique,
 - l'offre vient du gouvernement,
 - la demande vient des ménages.

Variables exogènes *

Ni flux ni stocks :

- temps continu, indicé par t.
- prix des biens \equiv numéraire =1.
- (grand) nombre d'entreprises 1.

Flux:

- offre de travail = 1 par tête.
- montant réel des dépenses publiques G_t .
- montant réel des impôts forfaitaires T_t .

Stocks :

- capital agrégé initial $K_0 > 0$.
- population $L_t = L_0 e^{nt}$, où $L_0 > 0$ et n > 0.
- paramètre de productivité $A_t = A_0 e^{gt}$, où $A_0 > 0$ et g > 0,
- montant réel initial de la dette publique D_0 .

Sept.-Déc. 2022

• Prix:

Introduction

00000000000

- coût réel d'usage du capital z_t,
- salaire réel w_t,
- taux d'intérêt réel r_t .

• Quantités — flux :

- production agrégée Y_t ,
- ullet demande de travail agrégée N_t ,
- ullet consommation agrégée C_t .

Quantités – stocks :

- capital agrégé K_t (sauf en t=0),
- montant réel des actifs privés B_t .
- montant réel de la dette publique D_t (sauf en t=0).

Sept.-Déc. 2022

Plan du chapitre

- Introduction
- Conditions d'équilibre
- 3 Détermination de l'équilibre
- Effets de la politique budgétaire
- Conclusion

Conditions d'équilibre

- Introduction
- Conditions d'équilibre
 - Comportement des ménages
 - Comportement du gouvernement
 - Autres conditions d'équilibre
- Oétermination de l'équilibre
- Effets de la politique budgétaire
- Conclusion

Utilité intertemporelle des ménages *

• A la date 0, l'utilité intertemporelle du ménage représentatif est

$$U_0 \equiv \int_0^{+\infty} e^{-\rho t} L_t[u(c_t) + v(g_t)] dt = L_0 \int_0^{+\infty} e^{-(\rho - n)t} [u(c_t) + v(g_t)] dt$$

οù

- $c_t \equiv \frac{C_t}{L_t}$ et $g_t \equiv \frac{G_t}{L_t}$,
- ho le taux de préférence pour le présent (ho>n>0),
- *u* est la fonction d'utilité instantanée de la consommation.
- v est la fonction d'utilité instantanée des dépenses publiques.
- Comme dans la seconde partie du chapitre 2, on suppose que u est telle que l'élasticité de substitution intertemporelle est constante, égale à $\frac{1}{a}$.

Actifs des ménages *

- Chaque ménage peut détenir trois types d'actifs :
 - prêts aux autres ménages (nuls à l'équilibre),
 - titres de propriété sur le capital,
 - dette publique.
- A l'équilibre, les ménages doivent être indifférents entre ces trois types d'actifs, donc

$$r_t \equiv \text{taux d'intérêt réel sur les prêts aux ménages}$$
 $= \text{taux de rendement réel des titres de propriété}$
 $= \text{taux d'intérêt réel sur la dette publique.}$

- On peut donc additionner ces trois types d'actifs, et noter E_t le total des actifs en unités de bien.
- On note $b_t \equiv \frac{B_t}{L_t}$, $d_t \equiv \frac{D_t}{L_t}$ et $e_t \equiv \frac{E_t}{L_t}$ respectivement les actifs privés, la dette publique et le total des actifs en unités de bien par tête.

Contrainte budgétaire des ménages I *

La contrainte budgétaire instantanée du ménage représentatif est

$$\dot{E}_t = w_t L_t - T_t + r_t E_t - C_t.$$

• En notant $t_t \equiv \frac{T_t}{L_t}$, on la réécrit, en grandeurs par tête,

$$\dot{\mathbf{e}_t} = \mathbf{w}_t - \mathbf{t}_t + (\mathbf{r}_t - \mathbf{n})\mathbf{e}_t - \mathbf{c}_t.$$

En réarrangeant les termes et en multipliant par l'exponentielle, on obtient

$$\begin{bmatrix} \dot{\mathbf{e}}_t - (r_t - n)\mathbf{e}_t \end{bmatrix} e^{-\int_0^t (r_\tau - n)d\tau} = (w_t - t_t - c_t)e^{-\int_0^t (r_\tau - n)d\tau}.$$

Contrainte budgétaire des ménages II *

• Puis, en intégrant,

$$e_T e^{-\int_0^T (r_{\tau}-n)d\tau} - e_0 = \int_0^T (w_t - t_t - c_t) e^{-\int_0^t (r_{\tau}-n)d\tau} dt.$$

• En passant à la limite $T \to +\infty$, on obtient la **contrainte budgétaire** intertemporelle des ménages

$$\begin{split} \int_0^{+\infty} c_t e^{-\int_0^t (r_\tau - n) d\tau} dt &\leq \mathbf{e_0} + \int_0^{+\infty} (w_t - t_t) e^{-\int_0^t (r_\tau - n) d\tau} dt \\ \text{si et seulement si} & \lim_{T \to +\infty} \left[\mathbf{e_T} e^{-\int_0^T (r_\tau - n) d\tau} \right] \geq 0. \end{split}$$

Cette dernière inégalité est la contrainte de solvabilité des ménages.

• Le problème d'optimisation des ménages est donc le suivant :

à la date 0, pour $(r_t, w_t, g_t, t_t)_{t>0}$ et e_0 donnés,

$$\max_{\substack{(c_t)_{t\geq 0}, (e_t)_{t>0}}} L_0 \int_0^{+\infty} e^{-(\rho-n)t} [u(c_t) + v(g_t)] dt$$

sous les contraintes

- $0 \quad \forall t \geq 0, c_t \geq 0$ (contrainte de positivité de la consommation),
- $\forall t \geq 0, \ \dot{e_t} = w_t t_t + (r_t n)e_t c_t$ (contrainte budgétaire instant.),
- $\lim_{t \to +\infty} \left[\frac{\mathbf{e_t}}{\mathbf{e_t}} e^{-\int_0^t (r_\tau \mathbf{n}) d\tau} \right] \ge 0 \text{ (contrainte de solvabilité)}.$

Résolution du problème d'optimisation des ménages *

- La résolution de ce problème d'optimisation aboutit, par des calculs similaires à ceux du chapitre 2, aux conditions suivantes sur $(c_t)_{t\geq 0}$ et $(e_t)_{t>0}$:

 - $\mathbf{e}_{t} = w_{t} t_{t} + (r_{t} n)\mathbf{e}_{t} c_{t}$ (contrainte budgétaire instantanée),
- La condition 1 (équation d'Euler) ne fait intervenir ni g_t ni t_t car
 - l'utilité instantanée est séparable,
 - les impôts sont forfaitaires.

Contrainte budgétaire du gouvernement I

• La contrainte budgétaire instantanée du gouvernement est

$$\dot{D}_t = r_t D_t + G_t - T_t.$$

• Elle se réécrit, en grandeurs par tête,

$$\overset{\cdot}{d_t} = (r_t - n)d_t + g_t - t_t.$$

• En réarrangeant les termes et en multipliant par l'exponentielle, on obtient

$$\left[\dot{d}_t - (r_t - n) d_t\right] e^{-\int_0^t (r_\tau - n) d\tau} = (g_t - t_t) e^{-\int_0^t (r_\tau - n) d\tau}.$$

Contrainte budgétaire du gouvernement II

• Puis, en intégrant,

$$d_T e^{-\int_0^T (r_\tau - n) d\tau} - d_0 = \int_0^T (g_t - t_t) e^{-\int_0^t (r_\tau - n) d\tau} dt.$$

 En passant à la limite T → +∞, on obtient la contrainte budgétaire intertemporelle du gouvernement

$$d_0 \le \int_0^{+\infty} (t_t - g_t) e^{-\int_0^t (r_\tau - n) d\tau} dt$$

(dette à la date $0 \le valeur$ actualisée à la date 0 des surplus primaires futurs)

$$\lim_{T\to +\infty} \left[d_T e^{-\int_0^T (r_\tau-n)d\tau} \right] \leq 0.$$

Contrainte de solvabilité du gouvernement

La condition

$$\lim_{t\to+\infty}\left[d_t \mathrm{e}^{-\int_0^t (r_\tau-n)d\tau}\right]\leq 0$$

est la contrainte de solvabilité du gouvernement.

- Elle impose que la valeur actualisée à la date 0 de la dette publique à long terme doit être négative ou nulle.
- Elle implique qu'à long terme, la dette publique D_t ne peut pas croître à un taux plus élevé que le taux d'intérêt r_t .
- Elle élimine la possibilité de montage financier où chaque emprunt serait remboursé au moyen d'un nouvel emprunt ("jeu de Ponzi").

Autres conditions d'équilibre *

- Aucune des autres conditions d'équilibre obtenues au chap. 2, concernant
 - le comportement des entreprises,
 - l'équilibre des marchés,

n'est modifiée, à une exception près.

• Cette exception concerne la condition d'équilibre sur le marché des biens, qui devient

$$Y_t = C_t + G_t + \dot{K}_t + \delta K_t.$$

• Enfin, la condition d'équilibre sur le marché de la dette publique s'écrit

$$E_t = B_t + D_t$$
.

Détermination de l'équilibre

- Introduction
- Conditions d'équilibre
- Oétermination de l'équilibre
 - ullet Conditions d'équilibre sur κ_t et γ_t
 - Etat régulier pour $\chi_t \equiv \frac{g_t}{A_t}$ constant
 - Trajectoire d'équilibre pour χ_t constant
- Effets de la politique budgétaire
- Conclusion

Conditions d'équilibre sur κ_t et γ_t I *

• Par simplicité, on se restreint aux valeurs de d_0 , $(g_t)_{t\geq 0}$ et $(t_t)_{t\geq 0}$ telles que la contrainte budgétaire intertemporelle du gouvernement est saturée :

$$d_0 = \int_0^{+\infty} (t_t - g_t) e^{-\int_0^t (r_\tau - n) d\tau} dt.$$

• La contrainte de solvabilité du gouvernement devient alors

$$\lim_{t\to +\infty} \left[d_t e^{-\int_0^t (r_\tau-n)d\tau} \right] = 0.$$

• En utilisant $e_t = b_t + d_t$, on peut alors réécrire la condition de transversalité

$$\lim_{t\to +\infty} \left[\underbrace{e_t} e^{-\int_0^t (r_\tau-n)d\tau} \right] = 0 \quad \text{comme} \quad \lim_{t\to +\infty} \left[b_t e^{-\int_0^t (r_\tau-n)d\tau} \right] = 0.$$

Conditions d'équilibre sur κ_t et γ_t II *

• On obtient alors, de la même façon qu'au chapitre 2,

$$\lim_{t\to +\infty} \left\{ \kappa_t e^{-\int_0^t [f'(\kappa_\tau)-(n+g+\delta)]d\tau} \right\} = 0 \text{,}$$

où $\kappa_t \equiv \frac{k_t}{A_t}$ (avec $k_t \equiv \frac{K_t}{L_t}$), δ est le taux de dépréciation du capital et $f(x) \equiv F(x,1)$ pour tout $x \geq 0$, F étant la fonction de production.

• En utilisant la contrainte budgétaire instantanée du gouvernement $d_t = (r_t - n)d_t + g_t - t_t$, on peut réécrire la contrainte budgétaire instantanée des ménages $e_t = w_t - t_t + (r_t - n)e_t - c_t$ comme

$$b_t = w_t - g_t + (r_t - n)b_t - c_t.$$

Conditions d'équilibre sur κ_t et γ_t III *

• On obtient alors, de la même façon qu'au chapitre 2,

$$\begin{split} \dot{\kappa}_t &= f(\kappa_t) - \gamma_t - \chi_t - (n+g+\delta) \, \kappa_t \\ \text{où } \gamma_t &\equiv \frac{c_t}{A_t} = \frac{C_t}{A_t L_t} \text{ et } \chi_t \equiv \frac{g_t}{A_t} = \frac{G_t}{A_t L_t}. \end{split}$$

- Cette équation différentielle implique l'équilibre sur le marché des biens : $K_t = Y_t C_t G_t \delta K_t$ (conséquence de la loi de Walras).
- Enfin, comme au chapitre 2, l'équation d'Euler se réécrit comme

$$\frac{\dot{\gamma}_t}{\gamma_t} = \frac{1}{\theta} \left[f'(\kappa_t) - \delta - \rho - \theta g \right].$$

Conditions d'équilibre sur κ_t et γ_t IV *

• $(\kappa_t)_{t\geq 0}$ et $(\gamma_t)_{t\geq 0}$ sont donc déterminés par deux équations différentielles, une condition initiale et une condition terminale :

$$\begin{split} \dot{\kappa}_t &= f(\kappa_t) - \gamma_t - \chi_t - \left(n + g + \delta\right) \kappa_t, \\ \frac{\dot{\gamma}_t}{\gamma_t} &= \frac{1}{\theta} \left[f'(\kappa_t) - \delta - \rho - \theta g \right], \\ \kappa_0 &= \frac{K_0}{A_0 L_0}, \\ \lim_{t \to +\infty} \left\{ \kappa_t e^{-\int_0^t [f'(\kappa_\tau) - (n + g + \delta)] d\tau} \right\} &= 0. \end{split}$$

 Les autres variables endogènes sont déterminées résiduellement, à partir de $(\kappa_t)_{t\geq 0}$ et $(\gamma_t)_{t\geq 0}$, par les autres conditions d'équilibre.

Etat régulier pour χ_t constant I *

- On suppose provisoirement que $\forall t \geq 0$, (i) $\chi_t = \chi > 0$ et (ii) les ménages anticipent que $\forall \tau \geq t$, $\chi_\tau = \chi$.
- On montre alors, de la même façon qu'au chapitre 2, que κ_t et γ_t sont constants à l'**état régulier** (\equiv situation dans laquelle κ_0 est tel que, à l'équilibre, toutes les quantités sont non nulles et croissent à taux constants).
- En remplaçant $\dot{\kappa}_t$ par 0 dans l'équation différentielle en $\dot{\kappa}_t$, on obtient

$$\gamma_t = f(\kappa_t) - (n + g + \delta) \kappa_t - \chi$$

qui correspond à une **courbe en cloche** dans le plan (κ_t, γ_t) .

Etat régulier pour χ_t constant II *

• En remplaçant $\dot{\gamma}_t$ par 0 dans l'équation différentielle en $\dot{\gamma}_t$, on obtient

$$f'(\kappa_t) = \delta + \rho + \theta g$$
,

qui correspond à une **droite verticale** dans le plan (κ_t, γ_t) .

- Le **point d'intersection** de cette courbe et cette droite correspond à la valeur de (κ_t, γ_t) à l'état régulier, notée (κ^*, γ^*) .
- Par rapport au graphique du chapitre 2, la seule différence est que la courbe en cloche est translatée vers le bas.
- Donc, comme au chapitre 2, à l'état régulier, il n'y a pas d'inefficience dynamique due à une sur-accumulation du capital : $\kappa^* < \kappa_{or}$.

Etat régulier pour χ_t constant III *

Trajectoire d'équilibre pour χ_t constant I *

- Comme au chapitre 2, il existe un unique sentier, appelé "sentier-selle", le long duquel (κ_t, γ_t) peut converger vers (κ^*, γ^*) .
- On montre, de la même façon qu'au chapitre 2, que l'unique trajectoire d'équilibre de (κ_t, γ_t) pour un κ_0 donné est le sentier-selle.

Trajectoire d'équilibre pour χ_t constant II *

Effets de la politique budgétaire

- Introduction
- Conditions d'équilibre
- Oétermination de l'équilibre
- Effets de la politique budgétaire
 - Equivalence ricardienne
 - ullet Effet d'une hausse non anticipée et permanente de χ_t
 - ullet Effet d'une hausse non anticipée et temporaire de χ_t
- Conclusion

Equivalence ricardienne I

- Les impôts forfaitaires n'apparaissent dans aucune des quatre conditions d'équilibre sur κ_t et γ_t .
- Donc, à l'équilibre, aucune variable endogène (sauf la dette publique) ne dépend des impôts forfaitaires.
- En d'autres termes, **l'effet des dépenses publiques sur l'économie ne dépend pas de leur mode de financement** (impôt forfaitaire immédiat ou emprunt remboursé par impôt forfaitaire futur).
- Ce résultat est appelé "équivalence ricardienne".

Equivalence ricardienne II

- Ce résultat a été
 - énoncé pour la première fois par Ricardo (1817),
 - formalisé pour la première fois par Barro (1974).
- David Ricardo : économiste anglais, né en 1772 à Londres, mort en 1823 à Gatcombe Park.
- **Robert J. Barro** : économiste américain, né en 1944 à New York, professeur à l'Université de Harvard depuis 1987.
- Ce résultat est dû au fait que le mode de financement des dépenses publiques n'affecte pas la contrainte budgétaire intertemporelle des ménages.

Equivalence ricardienne III *

• En effet, en utilisant la contrainte budgétaire intert. du gouvernement

$$d_0 = \int_0^{+\infty} (t_t - g_t) e^{-\int_0^t (r_\tau - n) d\tau} dt,$$

on peut réécrire la contrainte budgétaire intertemporelle des ménages

$$\int_{0}^{+\infty} c_{t} e^{-\int_{0}^{t} (r_{\tau} - n) d\tau} dt \leq \underbrace{e_{0}} + \int_{0}^{+\infty} (w_{t} - t_{t}) e^{-\int_{0}^{t} (r_{\tau} - n) d\tau} dt$$

comme

$$\int_{0}^{+\infty} c_{t} e^{-\int_{0}^{t} (r_{\tau} - n) d\tau} dt \leq b_{0} + \int_{0}^{+\infty} (w_{t} - g_{t}) e^{-\int_{0}^{t} (r_{\tau} - n) d\tau} dt.$$

• En d'autres termes, le mode de financement des dépenses publiques (impôt immédiat ou futur) n'affecte pas les choix des ménages car il n'affecte pas la valeur actualisée de leurs revenus futurs nets d'impôt.

Equivalence ricardienne IV

- Considérons un montant donné de dépenses publiques à une date donnée.
- Dans le cas (noté A) où le gouvernement les finance par impôt immédiat, les ménages réduisent leur consommation présente pour payer cet impôt.
- Dans le cas alternatif (noté B) où le gouvernement les finance par endettement, les ménages réduisent aussi leur consommation présente, de façon à épargner en vue des impôts futurs.
- Du fait que le taux de rendement de l'épargne des ménages est égal au taux d'intérêt auquel s'endette le gouvernement, les ménages épargnent dans le cas B un montant égal à celui qu'ils paient en impôt dans le cas A.
- Par conséquent, la consommation présente des ménages est la même dans les deux cas.

Equivalence ricardienne V

- La littérature n'est pas vraiment conclusive sur la validité empirique de l'équivalence ricardienne (Seater, 1993).
- Plusieurs facteurs pourraient expliquer un manque de validité empirique :
 - 1 le renouvellement de la population et l'absence d'altruisme ou d'héritage entre les générations (cas étudié au chapitre 6),
 - 2 le comportement non optimisateur des ménages (cas étudié dans la partie 6 des TDs),
 - 3 les impôts non forfaitaires (cas étudié dans la partie 6 des TDs),
 - les contraintes de liquidité des ménages.
- L'équivalence ricardienne reste néanmoins un repère utile pour toute analyse des effets du mode de financement des dépenses publiques.

Equivalence ricardienne VI

 Dans le contexte de consolidation budgétaire en zone euro après la crise de 2008-2009, la validité empirique de l'équivalence ricardienne a été un élément important des débats — par exemple, chez Trichet (2010) :

"The concern is, however, that in the short run the deficit reductions — although unavoidable in the long run — have negative effects on aggregate demand. The economy, it is sometimes argued, is at present too fragile and thus consolidation efforts should be postponed or even new fiscal stimulus measures added.

As I pointed out recently, I am sceptical about this line of argument. Indeed, the strict Ricardian view may provide a more reasonable central estimate of the likely effects of consolidation. For a given expenditure, a shift from borrowing to taxation should have no real demand effects as it simply replaces future tax burden with current one."

Variations de χ_t dans le temps

- On suppose dans la suite de ce chapitre que
 - χ_t peut varier dans le temps,
 - ces variations peuvent être anticipées ou non par les ménages,
 - à chaque date, les ménages n'ont pas conscience qu'ils pourront être surpris, à une date ultérieure, par la valeur de χ_t ou par l'annonce de son évolution future,
 - à chaque date à laquelle ils sont surpris par la valeur présente de χ_t ou par l'annonce de son évolution future, les ménages résolvent leur nouveau problème d'optimisation et modifient en conséquence leur comportement présent et futur anticipé,
 - la trajectoire des impôts dans le temps s'ajuste aux variations de χ_t de sorte que la contrainte budgétaire intertemporelle du gouvernement reste toujours saturée.

Continuité ou discontinuité de κ_t , γ_t et γ_t lorsque χ_t varie

- κ_t est un **stock**, donc une fonction **continue** du temps (sauf suite à un choc de type séisme, détruisant une partie du stock de capital).
- γ_t et $\dot{\gamma}_t$ sont des **flux**, donc des fonctions potentiellement **discontinues** du temps.
- γ_t et $\dot{\gamma}_t$ ne peuvent être discontinues qu'aux dates auxquelles les ménages sont surpris par la valeur présente de χ_t ou par l'annonce de son évolution future.
- En effet, en l'absence de surprise sur la trajectoire (même discontinue) de χ_t , il est optimal pour les ménages de lisser γ_t et $\dot{\gamma}_t$ dans le temps, comme l'implique l'équation différentielle en $\dot{\gamma}_t$.

Effet d'une hausse non anticipée et permanente de χ_t I

- On suppose maintenant qu'il existe une date t_0 telle que $t_0 > 0$ et
 - $\forall t \in [0; t_0[$, (i) $\chi_t = \chi$, (ii) les ménages anticipent que $\forall \tau \geq t$, $\chi_\tau = \chi$, et (iii) l'économie est à l'état régulier correspondant,
 - le gouv. annonce à t_0 , de manière crédible, que $\forall t \geq t_0$, $\chi_t = \chi' > \chi$,
 - ullet le gouv. mène, à partir de t_0 , la politique budg. qu'il a annoncée à t_0 .
- A partir de t_0 , χ_t est constant et il n'y a plus de surprise, donc l'économie est sur son nouveau sentier-selle (plus bas que l'ancien).
- Donc l'économie passe à t_0 de l'ancien état régulier (point A) au nouveau (point B) puis reste à ce dernier.
- La consommation γ_t chute à t_0 de $\chi'-\chi$ car la hausse permanente de χ_t réduit à t_0 de $(\chi'-\chi)e^{-\int_{t_0}^{+\infty}(r_\tau-n)d\tau}$ la valeur actualisée des revenus futurs nets d'impôt des ménages.

Effet d'une hausse non anticipée et permanente de χ_t II

Effet d'une hausse non anticipée et temporaire de χ_t I

- On suppose maintenant qu'il existe t_0 et t_1 tels que $0 < t_0 < t_1$ et
 - $\forall t \in [0; t_0[$, (i) $\chi_t = \chi$, (ii) les ménages anticipent que $\forall \tau \geq t$, $\chi_{\tau} = \chi$, et (iii) l'économie est à l'état régulier correspondant,
 - le gouvernement annonce à t_0 , de manière crédible, que (i) $\forall t \in [t_0; t_1], \ \chi_t = \chi' > \chi$, et (ii) $\forall t \geq t_1, \ \chi_t = \chi$, • le gouv. mène, à partir de t_0 , la politique budg. qu'il a annoncée à t_0 .
- A partir de t_1 , χ_t est constant, égal à son ancienne valeur, et il n'y a plus de surprise, donc l'économie est sur son ancien sentier-selle.
- De t_0 à t_1 , les trajectoires envisageables sont celles qui
 - partent d'un point C sur la droite verticale.
 - vont vers le nord-ouest si C est au-dessus de B.
 - restent à B si C coïncide avec B,
 - vont vers le sud-est si C est en-dessous de B.
- Pour que l'économie soit à t₁ sur son ancien sentier-selle, il faut que C soit entre A et B.

Effet d'une hausse non anticipée et temporaire de χ_t II

Effet d'une hausse non anticipée et temporaire de χ_t III

- Donc l'économie passe de A à C à t_0 , puis de C à D entre t_0 et t_1 , puis de D à A entre t_1 et $+\infty$.
- La consommation γ_t chute à t_0 de moins de $\chi' \chi$ car la hausse temporaire de χ_t réduit à t_0 de moins de $(\chi' \chi)e^{-\int_{t_0}^{+\infty}(r_\tau n)d\tau}$ la valeur actualisée des revenus futurs nets d'impôt des ménages.
- De t_0 à t_1 , γ_t augmente, malgré le niveau élevé de χ_t , au moyen d'une baisse de plus en plus forte de κ_t ($\kappa_t < 0$).
- A partir de t_1 , γ_t augmente au fur et à mesure que κ_t se reconstitue.
- Cette trajectoire est préférable à celle consistant à sauter de A à B à t_0 , rester à B entre t_0 et t_1 , puis sauter de B à A à t_1 , car elle lisse γ_t et $\dot{\gamma}_t$ dans le temps à partir de t_0 .

Effet d'une hausse non anticipée et temporaire de χ_t IV

Effet d'une hausse anticipée de χ_t

- La partie 6 des TDs étudie l'effet d'une hausse **anticipée** de χ_t selon qu'elle est permanente (cas 1) ou temporaire (cas 2) :
- **1** il existe deux dates t_0 et t_1 telles que $0 < t_0 < t_1$ et
 - $\forall t \in [0; t_0[$, (i) $\chi_t = \chi$, (ii) les ménages anticipent que $\forall \tau \geq t$, $\chi_\tau = \chi$, et (iii) l'économie est à l'état régulier correspondant,
 - le gouvernement annonce à t_0 , de manière crédible, que (i) $\forall t \in [t_0; t_1[, \chi_t = \chi, \text{ et (ii)} \ \forall t \geq t_1, \chi_t = \chi' > \chi,$
- ullet le gouv. mène, à partir de t_0 , la politique budg. qu'il a annoncée à t_0 ,
- ② il existe trois dates t_0 , t_1 et t_2 telles que $0 < t_0 < t_1 < t_2$ et
 - $\forall t \in [0; t_0[$, (i) $\chi_t = \chi$, (ii) les ménages anticipent que $\forall \tau \geq t$, $\chi_\tau = \chi$, et (iii) l'économie est à l'état régulier correspondant,
 - le gouv. annonce à t_0 , de manière crédible, que (i) $\forall t \in [t_0; t_1[, \chi_t = \chi, (ii) \forall t \in [t_1; t_2[, \chi_t = \chi' > \chi, et (iii) \forall t \geq t_2, \chi_t = \chi,$
 - ullet le gouv. mène, à partir de t_0 , la politique budg. qu'il a annoncée à t_0 .

Sept.-Déc. 2022

Conclusion

- Introduction
- Conditions d'équilibre
- Oétermination de l'équilibre
- Effets de la politique budgétaire
- Conclusion

Principales prédictions du modèle

- L'effet des dépenses publiques sur l'économie ne dépend pas de leur mode de financement (équivalence ricardienne).
- Une hausse inattendue et permanente des dépenses publiques abaisse la consommation de façon permanente sans affecter le stock de capital.
- Une hausse inattendue et temporaire des dépenses publiques abaisse la consommation et le stock de capital de façon temporaire.

Principale limite du modèle

- Le modèle prédit l'équivalence ricardienne, dont la validité empirique est incertaine.
- S'il était amendé de façon à ne plus la prédire, quel serait l'effet des dépenses publiques selon leur mode de financement ?
 - \hookrightarrow La partie 6 des TDs et le chapitre 6 étudient les effets de la politique budgétaire dans des modèles qui ne prédisent pas l'équivalence ricardienne, même lorsque les impôts sont forfaitaires :
 - modèle de Solow-Swan pour la partie 6 des TDs.
 - modèle à générations imbriquées pour le chapitre 6.