Exploration 5-6a: Double Argument Properties

Objective: Express $\cos 2\theta$ and $\sin 2\theta$ in terms of functions of θ . Use the results to solve an equation containing $\cos 2\theta$.

1. Write the composite argument properties for $\cos(A + B)$ and for $\sin(A + B)$.

8. Solve $\cos 2\theta + \cos \theta = 1$ algebraically for $\theta \in [-100^{\circ}, 850^{\circ}]$. It is recommended that you first transform $\cos 2\theta$ so that it involves only $\cos \theta$. Don't forget the quadratic formula!

2. Write $\sin 2\theta$ as $\sin(\theta + \theta)$. Expand $\sin(\theta + \theta)$ using the composite argument for sine. The result should be an equation for $\sin 2\theta$ in terms of $\sin \theta$ and $\cos \theta$.

3. Use the technique of Problem 2 to find an equation for $\cos 2\theta$ in terms of $\cos \theta$ and $\sin \theta$.

4. Transform your answer to Problem 3 so that $\cos 2\theta$ is expressed in terms of $\cos \theta$ alone.

5. Transform your answer to Problem 3 so that $\cos 2\theta$ is expressed in terms of $\sin \theta$ alone.

6. Plot on your grapher the right side of your equation for $\sin 2\theta$ in Problem 2. Sketch here.

7. How does your graph in Problem 6 verify that your equation in Problem 2 is correct?

9. Plot the left and right members of the equation in Problem 8 on your grapher. Sketch here.

10. How does the graph in Problem 9 show that your answers to Problem 8 are correct?

11. What have you learned as a result of doing this Exploration that you did not know before?