Notes Section 5.6 – Logarithmic Equations Using Properties

Lesson Objectives

1. Use logarithm properties to solve equations

Expanding/Condensing Logarithm Properties – Reminder for your reference:

• Product Rule:

$$\log_a(mn) = \log_a(m) + \log_a(n)$$
 EXPANDING (Product to Sum)

or
$$\log_a(m) + \log_a(n) = \log_a(mn)$$
 CONDENSING (Sum to Product)

• Quotient Rule:

$$\log_a\left(\frac{m}{n}\right) = \log_a(m) - \log_a(n)$$
 EXPANDING (Quotient to Difference)

or
$$\log_a(m) - \log_a(n) = \log_a\left(\frac{m}{n}\right)$$
 CONDENSING (Difference to Quotient)

• Power Rule:

$$\log_a(m^r) = r \log_a(m)$$
 EXPANDING (Exponent to Coefficient)

or
$$r \log_a(m) = \log_a(m^r)$$
 CONDENSING (Coefficient to Exponent)

• **EXAMPLE**: Solve the equation. $\log_5 2 + \log_5 x = 0$ [*Martin-Gay 9.8.13]

Use Product Rule (sum to product) to CONDENSE to a single logarithm. This will also the logarithm.	$\log_5(2) + \log_5(x) = 0$
Do NOT divide by the yet! It is trapped inside the logarithm.	$\log_5() = 0$
To undo the logarithm, convert to the form.	$\log_5(2x) = 0$ A logarithm is an exponent
Simplify. Remember property: $a^0 = $	
Solve the equation. (Divide both sides by 2)	
Simplify.	
Answer:	

Notes Section 5.6 – Logarithmic Equations Using Properties

•	EXAMPLE:	Solve the	following	logarithmic	equation.
		JOINE CITE	101101111115	106411111110	cquationi

$$\log_2 x + \log_2 7 = 3$$

[*Angel 13.6.47]

Use Rule (to product) to CONDENSE to a single logarithm. This will also isolate the logarithm.	$\log_2(x) + \log_2(7) = 3$
Do NOT divide by the 7 yet! It is trapped the logarithm.	$\log_2() = 3$
To the logarithm, convert to the exponential form. Simplify. $2^3 =$	$\log_2(7x) = 3$ A logarithm is an exponent
Solve the equation. (Divide both sides by 7)	
Simplify.	
Answer:	

• **EXAMPLE:** Solve the logarithmic equation. $\ln x + \ln x^2 = 4$ [5.6.59] (Round to the nearest thousandth as needed.)

Use Product Rule (sum to product) to CONDENSE	
to alogarithm.	$\ln(x) + \ln(x^2) = 4$
This will also isolate the logarithm.	
Simplify. $x \cdot x^2 = \underline{\qquad}$ (exponents)	ln()=4
Equation will be EASIER with just x than with x^3 .	ln()=4
Use Rule (exponent to coefficient)	$ \ln() = 4 $
Divide both sides by 3.	
Simplify. Remember that In is same as log_	
To undo the logarithm, convert to the exponential form.	A logarithm is an exponent
4/2	A logarithm is an exponent
This is the answer: $\pmb{x} = \pmb{e}^{4/3}$	
Use calculator to get the rounded answer:	Rounded
2ND LN 4 ÷ 3 ENTER	e ^{4/3} Answer:

Notes Section 5.6 – Logarithmic Equations Using Properties

(RESET – Here's another way to do the previous problem):

• **EXAMPLE:** Solve the logarithmic equation. $\ln x + \ln x^2 = 4$ [5.6.59] (Round to the nearest thousandth as needed.)

Rather than use the Product Rule like before, use the Rule (exponent to coefficient) on the second term.	$\ln(x) + \ln(x^2) = 4$
The first term has an understood coefficient	
Combine like terms: 1 of them + 2 of them = of them	$\frac{1}{\ln(x)} + \frac{2}{\ln(x)} = 4$
(From here, the steps are the same as before.) Divide both sides by 3.	
Simplify. Remember that In is same as log e	$\frac{3\ln(x)}{3} = \frac{4}{3}$
To undo the logarithm, convert to the exponential form.	$\log_e(x) = \frac{4}{3}$ A logarithm is an exponent
This is the exact answer : $\pmb{x} = \pmb{e}^{4/3}$	$e^{4/3} = x$
Use calculator to get the rounded answer: 2ND LN 4 3 ENTER	Rounded Answer: $x \approx 3.794$

You can use EITHER method when you solve a problem like the previous examples (for Question 7 in the Homework). Be ready to do either the **exact** answer (like $e^{4/3}$) or the rounded answer.

Sources Used:

- 1. MyLab Math for Elementary & Intermediate Algebra for College Students, 5th Edition, Angel, Pearson Education Inc.
- 2. MyLab Math for Intermediate Algebra: A Graphing Approach, 5th Edition, Martin-Gay, Pearson Education Inc.
- 3. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 4. Texas Instruments TI Connect® CE software, https://education.ti.com/en/products/computer-software/ti-connect-ce-sw