1. Results:

1.1.Car Price Prediction:

Dataset:

Total Set Shape: 8218 Rows Train Set Shape: 5201 Rows Valid Set Shape: 1301 Rows Test Set Shape: 1626 Rows

Sampled Test Set Shape: 400 Rows

Learnings:

Wie erwartet: Mit besserem Modell und besseren prompts verbessert sich das Ergebnis
 Fehler bei sehr guten Abfragen werden teilweise relativ gering – ggf. auf ein Dataset mit

weniger Infos, nicht dem genauen Modell sondern nur der Brand abweichen?

Type	MAE	MSE	RMSE	R2
Zero Shot GPT-3.5-Turbo	102.472	53.579.280.930	231.471	(0.8964)
Zero Shot GPT-4-Turbo-Preview	86.124	27.711.918.630	166.468	(0.9464)
Dynamic Few Shot GPT-3.5-	65.557	22.055.967.680	148.512	(0.9574)
Turbo				
Dynamic Few Shot GPT-4-	60.372	12.884.017.255	113.507	(0.9751)
Turbo-Preview				
Linear Regression	205.091	102.227.548.422	319.730	0.8048

Prompt Examples:

Zero – Shot example:

System: Based on the provided features of a used car listed below, please predict its selling price in Indian Rupees in the Indian market. The predicted price should be expressed solely as a number followed by the currency "INR"

Ensure that the output contains no additional text or characters beyond this specified format.

```
Features:
name: Mahindra Scorpio VLX 2WD AIRBAG BSIII,
year: 2012,
km_driven: 120000,
fuel: Diesel,
seller_type: Individual,
transmission: Manual,
owner: First Owner,
mileage: 12.05 kmpl,
engine: 2179 CC,
max_power: 120 bhp,
torque: 290Nm@ 1800-2800rpm,
seats: 8.0
```

Required Output:

"price": redicted price> INR

Please provide the prediction strictly adhering to the above instructions.

Few – Shot example:

```
Example 1:
Features:
...

Output: "price": 459999 INR

Example 2:
Features:
...

Output: "price": 750000 INR

Example 3:
Features:
```

Output: "price": 600000 INR

System: Based on the provided features of a used car listed below, please predict its selling price in Indian Rupees in the Indian market. The predicted price should be expressed solely as a number followed by the currency "INR".

Ensure that the output contains no additional text or characters beyond this specified format.

Features

name: Mahindra Scorpio VLX 2WD AIRBAG BSIII,

...

Required Output:

"price": redicted price> INR

Please provide the prediction strictly adhering to the above instructions.

1.2. Sentiment Analysis:

Dataset:

Sampled Test Set Shape: 451 Entities

Learnings:

- Alle Abfragen machen genug Fehler

- Merkliche / Erklärbare Performance Unterschiede immer nur zwsichen Single-Term und Mutli-Term Abfragen → in Multi-Term wird "Neutral" wesentlich besser erkannt
- Sonst keine merklichen Performance Unterschiede "Neutral" immer mit schlechtestem F1 Score
- Keine Performance Steigerung durch Few Shot → Bester F1 Score bei Zero-Shot | Multi-Term | GPT-4

Overall Metrics Table (Weighted Averages)

Туре	Accuracy	Precision	Recall	F1-Score
Zero Shot Single Term	0.59	0.6	0.59	0.57
GPT-3.5-Turbo				
Zero Shot Multi Term	0.64	0.66	0.64	0.62
GPT-3.5-Turbo				
Zero Shot Single Term	0.59	0.61	0.59	0.57
GPT-4-Turbo-Preview				
Zero-Shot Multi Term	0.67	0.69	0.67	0.67
GPT-4-Turbo-Preview				
Fix Few Shot Single Term	0.48	0.51	0.48	0.40
GPT-3.5-Turbo				
Fix Few Shot Multi Term	0.63	0.65	0.63	0.61
GPT-3.5-Turbo				
D	0.62	0.62	0.62	0.62
Dynamic Few Shot Single	0.63	0.63	0.63	0.63
Term GPT-3.5-Turbo	0.62	0.65	0.62	0.62
Dynamic Few Shot Multi	0.63	0.65	0.63	0.62
Term GPT-3.5-Turbo				
Dynamic Few-Shot Single	0.58	0.62	0.58	0.56
Term GPT-4-Turbo-				
Preview				

Dynamic Few Shot Multi	0.67	0.67	0.67	0.66
Term GPT-4-Turbo-				
Preview				

Prompt Examples:

Single Term | Zero - Shot:

Amusing details distinguish desserts, from dulce de leche ice-cream profiteroles dotting a chocolate sauce tic-tactoe board, to coconut custard surrounded by a sea of Malibu-rum gelee and poached pineapple.

What is the sentiment on 'dulce de leche ice-cream'? Only respond with "positive", "negative" or "neutral" as one word.

Multi Term | Zero - Shot:

Task: Analyze the sentiment of specific terms mentioned in a sentence. You are required to evaluate whether the sentiment towards each term is 'positive', 'negative', or 'neutral'.

Sentence: "Amusing details distinguish desserts, from dulce de leche ice-cream profiteroles dotting a chocolate sauce tic-tac-toe board, to coconut custard surrounded by a sea of Malibu-rum gelee and poached pineapple.

```
Terms:
'desserts'
'dulce de leche ice-cream'
'chocolate sauce tic-tac-toe
'poached pineapple
```

Return the final result as JSON in the format {"term_sentiments": "<a list of [term, sentiment] pairs>"}. ONLY return the JSON. Answer:

Single Term | Few - Shot:

Example 1: Input: "The decor is not special at all but their food and amazing prices make up for it." \Box Term: decor Output: negative Example 2: Example 3

Task:

Input: Amusing details distinguish desserts, from dulce de leche ice-cream profiteroles dotting a chocolate sauce tic-tac-toe board, to coconut custard surrounded by a sea of Malibu-rum gelee and poached pineapple.

Prompt: What is the sentiment in the text towards 'desserts'? Only respond with "positive", "negative" or "neutral"

Multi Term | Few - Shot:

```
Example 1: Input: "The decor is not special at all but their food and amazing prices make up for it."
Terms:
'decor
'food'
'prices'
Output: {"term_sentiments": [["decor", "negative"], ["food", "positive"], ["prices", "positive"]]}
Example 2:
Example 3
Input: Amusing details distinguish desserts, from dulce de leche ice-cream profiteroles dotting a chocolate sauce
tic-tac-toe board, to coconut custard surrounded by a sea of Malibu-rum gelee and poached pineapple.
Terms:
'desserts
'dulce de leche ice-cream'
'chocolate sauce tic-tac-toe'
'poached pineapple
Prompt: Analyze the sentiment of specific terms mentioned in a sentence.
```

You are required to evaluate whether the sentiment towards each term is 'positive', 'negative', or 'neutral'.

Return the final result as JSON in the format {"term_sentiments": "<a list of [term, sentiment] pairs>"}. ONLY return the JSON.

1.3. Schema Matching:

... Bisher noch keine Ergebnisse, da Evaluation unklar

2. Fragen:

a) Car Price Prediction:

- a. Reicht hier Linear Regression (bzw. anderer Regressor wie RandomForestRegressor, GradientBoostingRegressor usw.) oder soll ich doch diskrete Variablen Predicten (also Preiseinordnung Hoch/Mittel/Niedrig) und dann Logistic Regression o.ä.
- b. Weniger Detailliertes Datenset für großere Fehler bei den LLMs?

b) Sentiment Analysis:

- a. Beide Variante oder auf eine spezialisieren bzgl. Single vs Multi Term?
- b. Welcher Machine Learning Classifier? —> Habe hier etwas geresearched, aber für Aspect Based Prediction findet sich nur sehr schwer in der nativen Machine Learning / Classifier Richtung etwas und es geht immer schnell in die NLP / LLM Richtung
 - i. Implementierung mit Naïve Bayes o.ä. schwierig, da die Sätze vorher immer nach Terms aufgeteilt werden müssen

c) Schema Matching:

- **a.** Was ist hier die richtige Interpretation der Positives / Negatives?
- **b.** Wie gehe ich hier bezüglich der Nativen ML Variante vor?

3. Next Steps:

- a) Schema Matching F1 Values
- b) Sentiment Analysis / Schema Matching ML Lösung (?)
- c) Fehlerklassen ermitteln u. Evaluieren