

Devoir maison corrigé

Question 1. Si on note π la preuve suivante

$$\frac{(p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \Rightarrow ((p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))}{(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)} \mathcal{S} \qquad \frac{p \Rightarrow ((p \Rightarrow p) \Rightarrow p)}{p \Rightarrow (p \Rightarrow p)} \mathcal{K}$$

$$\frac{(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)}{p \Rightarrow p} \mathcal{K}$$

$$p \Rightarrow (p \Rightarrow p) \mathcal{K}$$

$$p \Rightarrow (p \Rightarrow p) \mathcal{K}$$

$$p \Rightarrow (p \Rightarrow p)$$

on obtient comme terme de preuve associée $\Phi(\pi)=(\mathcal{S}\ \mathcal{K}\ \mathcal{K}).$

Question 2.

$$\forall f_1, f_2 \in \mathcal{F},$$

$$\forall f_1, f_2, f_3 \in \mathcal{F},$$

$$\forall f_1, f_2, f_3 \in \mathcal{F},$$

$$\forall f_1, f_2, f_3 \in \mathcal{F},$$

$$\forall f_1, f_2 \in \mathcal{F},$$

$$\forall f_1, f_2 \in \mathcal{F},$$

$$\exists f_1 \Rightarrow (f_2 \Rightarrow f_3) \Rightarrow ((f_1 \Rightarrow f_2) \Rightarrow (f_1 \Rightarrow f_3))$$

$$\exists f_1 : f_1 \Rightarrow f_2 \qquad f_2 : f_1 \\ (f_1 f_2) : f_2 \Rightarrow f_3 \Rightarrow f_4 \Rightarrow f$$

Question 3. La preuve va se dérouler selon deux parties.

 $\forall A \in \mathcal{F}, \ \overline{A} \text{ est démontrable } \Longrightarrow A \text{ est habité}$

On montre par induction structurelle¹ sur les arbres de preuve du système de Hilbert, la propriété

- cas de base : π est un axiome. Soit f une formule prouvable par π , f est nécessairement de la forme $A \Rightarrow (B \Rightarrow A)$ ou $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$ avec A, B, C des formules. Dans le premier cas, f est habité par K, dans le deuxième par S.

– pour toute formule
$$f$$
, $\mathcal{P}\left(\frac{f}{f}\right)$ est vrai – pour toute formule f , $\mathcal{P}\left(\frac{f}{f}\right)$ est vrai

– pour toute formule
$$f$$
, $\mathcal{P}\left(\frac{1}{f}\mathcal{S}\right)$ est vrai

alors, la propriété \mathcal{P} est vérifiée par tout arbre de preuve.

¹Il est en effet clair, d'après la définition du système de Hilbert, que les arbres de preuve de ce système ont une structure inductive. Le principe d'induction associée est le suivant : pour toute propriété \mathcal{P} sur les arbres de preuves, si

⁻ pour toute formule f, pour tous arbres π_1 , π_2 tels que $P(\pi_1)$ et $\mathcal{P}(\pi_2)$ soient vrais, $\mathcal{P}\left(\frac{\pi_1 - \pi_2}{f}\operatorname{MP}\right)$

– cas général : π est de la forme $\frac{\pi_1 - \pi_2}{f}$ MP avec π_1 une preuve d'une formule $g \Rightarrow f$ et π_2 une preuve de g. Par hypothèse d'induction sur π_1 et π_2 , $g \Rightarrow f$ et g sont habités par des termes t_1 et t_2 . Donc, d'après la règle T_{MP} , f est habité par le terme $(t_1 \ t_2)$. On a ainsi montré que toute formule démontrable est habitée.

2ème partie : $\forall A \in \mathcal{F}, \ A \text{ est habit\'e} \implies A \text{ est d\'emontrable}$. On va s'intéresser à l'énoncé équivalent suivant

$$\forall t \in \mathcal{T}, \ \forall A \in \mathcal{F}, \ (t : A) \Rightarrow (\vdash f)$$

On peut alors prouver par induction structurelle sur les termes, la propriété

 $\mathcal{P}(t) = \emptyset$ pour toute formule A telle que t habite A, A est démontrable.

- cas de base : $t = \mathcal{K}$ ou $t = \mathcal{S}$. Si f est une formule habitée par t, f est nécessairement de la forme $A \Rightarrow (B \Rightarrow A)$ ou $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$ avec A, B, C des formules. Dans le premier cas, f est démontrable par l'axiome \mathcal{K} , dans le deuxième par \mathcal{S} .
- cas général : t est de la forme $(t_1 \ t_2)$ avec, par hypothèse d'induction, $(\forall f_1 \in \mathcal{F}, \ t_1 : f_1 \Rightarrow \vdash f_1)$ et $(\forall f_2 \in \mathcal{F}, \ t_2 : f_2 \Rightarrow \vdash f_2)$. On considère une formule f habités par f et on cherche à prouver que f est démontrable. D'après les règles de typage que nous avons définies, puisque $(t_1 \ t_2) : f$, il existe nécessairement une formule g telle que la règle f0 soit vérifiée :

$$\frac{t1:g\Rightarrow f\quad t_2:g}{(t_1\ t_2):f}T_{\mathsf{MP}}$$

En utilisant l'hypothèse d'induction faite sur t_1 , on peut affirmer que $g\Rightarrow f$ est démontrable ($\vdash g\Rightarrow f$). De la même manière, en utilisant l'hypothèse d'induction faite sur t_2 , on peut affirmer que g est démontrable ($\vdash g$). La règle MP nous permet alors d'affirmer que f est démontrable.

$$\frac{\vdash g \Rightarrow f \quad \vdash g}{\vdash f} \mathsf{MP}$$

On a ainsi démontré que toute formule habitée est démontrable.

Question 4.

$$\mathrm{Types}(\mathcal{K}) = \{A \Rightarrow B \Rightarrow A \mid A, B \in \mathcal{F}\}$$

Les types les plus simples de $\mathrm{Types}(\mathcal{K})$ sont ceux de la forme $p \Rightarrow q \Rightarrow p$ avec p et q des variables propositionnelles distinctes.

$$Types(\mathcal{K}) = \{ p \Rightarrow q \Rightarrow p \mid p, q \in \mathcal{P}, \ p \neq q \}$$

Pour définir la relation ≺, on définit tout d'abord la notion de substitution sur les formules.

Définition : On appelle substitution une liste de couples $(p_i, g_i)_{1 \leq i \leq n}$, avec pour chaque $i, p_i \in \mathcal{P}$ et $g_i \in \mathcal{F}$ et n un entier quelconque. On impose de plus que les $(p_i)_{1 \leq i \leq n}$ soient distincts. Une telle substitution est notée $[g_1/p_1, \ldots, g_n/p_n]$.

Définition : Étant données une formule f et une substitution $\sigma = [g_1/p_1, \ldots, g_n/p_n]$ l'application de la substitution σ sur la formule f (notée $\sigma(f)$) est définie inductivement par

- $-\sigma(p)=g \ \text{si} \ (p,g)\in\sigma$,
- $-\sigma(q)=q \text{ si } (p,g) \not\in \sigma$,
- $-\sigma(f_1 \Rightarrow f_2) = \sigma(f_1) \Rightarrow \sigma(f_2)$

Définition: Étant données deux formules f_1 et f_2 , f_1 est plus simple que f_2 (notée $f_1 \leq f_2$) si et seulement si il existe une substitution σ telle que $f_2 = \sigma(f_1)$.

Question 5. On prouve la propriété demandée par induction structurelle sur le terme t, en prenant comme propriété

$$\mathcal{P}(t) = \langle \langle \forall f_1, f_2 \in \mathcal{F}, \text{ si } t : f_1 \text{ et } f_1 \leq f_2 \text{ alors } t : f_2 \rangle$$

- case de base $1: t = \mathcal{K}$. Soient f_1 et f_2 telles que $\mathcal{K}: f_1$ et $f_1 \leq f_2$, montrons qu'on a $\mathcal{K}: t_2$. Puisque $f_1 \in \operatorname{Types}(\mathcal{K})$, il existe $A, B \in \mathcal{F}$ telles que $f_1 = A \Rightarrow B \Rightarrow A$. Puisque $f_1 \leq f_2$, il existe une substitution σ telle que

$$\begin{array}{ll} f_2 &=& \sigma(f_1) \\ &=& \sigma(A \Rightarrow B \Rightarrow A) \\ &=& \sigma(A) \Rightarrow \sigma(B) \Rightarrow \sigma(A) \end{array} \quad \text{par d\'efinition de l'application d'une substitution}$$

On en déduit que f_2 appartient à $\mathrm{Types}(\mathcal{K})$. On a donc bien $\mathcal{K}:t_2$.

- cas de base 2 : t = S, la preuve est similaire au cas précédent.
- cas général : $t = (t_1, t_2)$ avec t_1 et t_2 qui vérifient les hypothèse d'induction suivantes

$$\forall g_1, g_2 \in \mathcal{F}$$
, si $t_1 : g_1$ et $g_1 \leq g_2$ alors $t_1 : g_2$

et

$$\forall h_1, h_2 \in \mathcal{F}, \text{ si } t_2 : h_1 \text{ et } h_1 \leq h_2 \text{ alors } t_2 : h_2$$

Soient f_1 et f_2 telles que $(t_1 \ t_2): f_1$ et $f_1 \leq f_2$, montrons que $(t_1 \ t_2): f_2$.

D'après la définition de la règle T_{MP} , il existe nécessairement g_1 telle que $t_1:g_1\Rightarrow f_1$ et $t_2:g_1$. On sait, de plus, qu'il existe une substitution σ telle que $f_2=\sigma(f_1)$.

Si on considère les formules g_1 et $\sigma(g_1)$, on a $g_1 \leq \sigma(g_1)$ et $t_2 : g_1$, on peut donc en déduire, en utilisant l'hypothèse d'induction faite sur t_2 , que $t_2 : \sigma(g_1)$.

Si on considère les formules $g_1 \Rightarrow f_1$ et $\sigma(g_1) \Rightarrow f_2$, on a $g_1 \Rightarrow f_1 \leq \sigma(g_1) \Rightarrow f_2$ (car $\sigma(g_1 \Rightarrow f_1) = \sigma(g_1) \Rightarrow f_2$) et $t_1 : g_1 \Rightarrow f_1$, on peut donc en déduire, en utilisant l'hypothèse d'induction faite sur t_1 , que $t_1 : \sigma(g_1) \Rightarrow f_2$.

La règle de typage T_{MP} permet alors d'affirmer que $(t_1\ t_2)$ admet le type f_2 .

$$\frac{t_1:\sigma(g_1)\Rightarrow f_2\quad t_2:\sigma(g_1)}{(t_1\ t_2):f_2}T_{\mathsf{MP}}$$

On a ainsi démontré la propriété demandée.

Question 6. On donne l'algorithme en pseudo-syntaxe Ocaml.

```
let rec infere_type t = match t with  \mathcal{K} = \text{let p = fresh() and q = fresh() in}   \text{true,p} \Rightarrow \text{q} \Rightarrow \text{p}   \mid \mathcal{S} = \text{let p = fresh() and q = fresh() and r = fresh() n}   \text{true,(p} \Rightarrow \text{q} \Rightarrow \text{r}) \Rightarrow \text{(p} \Rightarrow \text{q}) \Rightarrow \text{(p} \Rightarrow \text{r})   \mid \text{(t1 t2)} = \text{match (infere_type t1,infere_type t2) with}   \text{((true,f1} \Rightarrow \text{f2),(true,f3))} = \text{match unification f1 f3 with}   \text{(true,\sigma)} = \text{true,\sigma(f2)}   \mid \text{(false,\_)} = \text{false,\emptyset}   \mid \text{infere_type : terme} \rightarrow \text{bool * formule}
```

Avec unification : formule -> formule -> bool * substitution une fonction qui calcule l'unificateur principal des deux formules données en argument et ∅ une formule quel-

Question 7. On suppose que la fonction unification utilisée est correcte, c'est à dire :

$$\forall f_1, f_2 \in \mathcal{F}, \; (\mathtt{unification} \; f_1 \; f_2 = (\mathtt{true}, \sigma)) \Leftrightarrow \left(\begin{array}{c} \sigma(f_1) = \sigma(f_2) \; \land \\ \forall \sigma', \sigma'(f_1) = \sigma'(f_2) \Rightarrow \exists \beta, \; \sigma' = \beta \circ \sigma \end{array} \right)$$

et

conque.

$$\forall f_1,f_2\in\mathcal{F}, \ (\mathtt{unification}\ f_1\ f_2=(\mathtt{false},\underline{\ }))\Leftrightarrow\neg\left(\exists\sigma,\ \sigma(f_1)=\sigma(f_2)\right)$$

On démontre alors que infere_type est valide, c'est à dire

$$\forall t \in \mathcal{T}, \text{ si } t \text{ est typable, alors } (\text{infere_type } t) = (\text{true}, f)$$
 avec $t: f \text{ et } \forall g \in \mathcal{F}, \ t: g \Rightarrow f \leq g$ (1)

$$\forall t \in \mathcal{T}$$
, si t n'est pas typable, alors (infere_type t) = (false, _) (2)

Nous allons d'abord nous intéresser à la propriété (2). Nous allons pour cela démontrer le fait suivant

$$\forall t \in \mathcal{T}, \ \forall f \in \mathcal{F}, \ (\text{infere_type } t) = (\text{true}, f) \ \Rightarrow \ t : f$$
 (3)

On réalise, pour cela, une induction structurelle sur t, pour la propriété

$$\mathcal{P}(t) = \forall f \in \mathcal{F}, (infere_type\ t) = (true, f) \Rightarrow t: f \Rightarrow$$

- cas de base $1:t=\mathcal{K}$. Dans ce cas (infere_type t) = (true, $p\Rightarrow q\Rightarrow p$) avec p et q des variables propositionnelles. On a bien $\mathcal{K}:p\Rightarrow q\Rightarrow p$.
- cas de base 2 : t = S, cas similaire au cas précédent.

- cas général : t est de la forme $(t_1 \ t_2)$ avec t_1 et t_2 des termes vérifiant les hypothèses d'induction $\mathcal{P}(t_1)$ et $\mathcal{P}(t_2)$. On suppose que (infere_type t) est de la forme (true, f) avec f une formule. La définition de infere_type implique alors que
 - (infere_type t_1) est de la forme (true, $f_1 \Rightarrow f_2$)
 - (infere_type t_2) est de la forme (true, f_3)
 - (unification f_1 f_3) est de la forme (true, σ)
 - (infere_type t) = (true, $\sigma(f_2)$)

On en déduit alors que, par hypothèse d'induction sur t_1 , $t_1:f_1\Rightarrow f_2$. De même, par hypothèse d'induction sur t_2 , $t_2:f_3$. Enfin, par correction de unification, $\sigma(f_1)=\sigma(f_3)$. En utilisant le résultat de la question 5, on peut alors affirmer que $t_1:\sigma(f_1)\Rightarrow\sigma(f_2)$ et $t_2:\sigma(f_3)$. Puisque $\sigma(f_1)=\sigma(f_3)$, nous pouvons utiliser la règle MP pour affirmer que $(t_1:t_2):\sigma(f_2)$, ce qui démontre $\mathcal{P}(t)$.

(3) est ainsi démontré. Nous n'avons cependant pas montré grand chose si la fonction $infere_type$ ne termine pas! (le faux implique tout et son contraire...). Il est cependant facile de justifier la terminaison de $(infere_type\ t)$ pour toute entrée t car les appels récursifs se font uniquement sur des sous termes de t (récursion dite structurelle).

La terminaison de cette fonction et la propriété (3) permettent alors d'affirmer que (2) est vérifiée.

Pour (1), nous allons réaliser une induction sur t avec la propriété suivante.

Cette propriété est suffisante car (3) nous assure déjà que infere_type retourne un type valide.

- cas de base $1:t=\mathcal{K}$. Dans ce cas (infere_type t) = (true, $p\Rightarrow q\Rightarrow p$) avec p et q des variables propositionnelles distinctes (grâce aux propriétés de la fonction fresh). Pour toute formule f vérifiant $\mathcal{K}:f$, f est de la forme $A\Rightarrow B\Rightarrow A$ avec A et B des formules, donc $p\Rightarrow q\Rightarrow p\preceq f$ en prenant pour substitution [A/p,B/q] et en utilisant le fait que p et q sont distinctes.
- cas de base 2 : t = S, cas similaire au cas précédent.
- cas général : t est de la forme $(t_1 \ t_2)$ avec t_1 et t_2 des termes vérifiant les hypothèses d'induction $\mathcal{P}(t_1)$ et $\mathcal{P}(t_2)$. On suppose que t est typable, donc d'après la règle T_{MP} , t_1 et t_2 sont typables. Les hypothèses d'induction $\mathcal{P}(t_1)$ et $\mathcal{P}(t_2)$ nous donnent alors les faits suivants

(infere_type
$$t_1$$
) = (true, f_1), et $\forall g_1 \in \mathcal{F}, \ t_1: g_1 \Rightarrow f_1 \leq g_1$
(infere_type t_2) = (true, f_2), et $\forall g_2 \in \mathcal{F}, \ t_2: g_2 \Rightarrow f_2 \leq g_2$

Or, toute formule habitée est de la forme $A\Rightarrow B.$ Ce résultat peut se démontrer de la manière suivante :

- une formule habitée est démontrable dans le système de Hilbert (question 3)
- le système de Hilbert est correct : tout formule démontrable dans ce système est une tautologie (car les règles du système sont correctes sémantiquement)
- aucune variable propositionnelle n'est une tautologie

On peut ainsi affirmer que f_1 est de la forme $A \Rightarrow B$. Le calcul de (infere_type t) nécessite donc celui de (unification $A f_2$).

Or t est typable donc il existe $g_1, g_2 \in \mathcal{F}$ telles que

$$\frac{t_1:g_2\Rightarrow g_1\quad t_2:g_2}{t:g_1}T_{\mathsf{MP}}$$

Par hypothèses d'induction, $A \Rightarrow B \leq g_2 \Rightarrow g_1$ et $f_2 \leq g_2$. Il existe donc des substitutions σ_1 et σ_2 telles que

$$\sigma_1(A) = g_2, \quad \sigma_1(B) = g_1 \quad \text{et } \sigma_2(f_2) = g_2$$

A et f_2 sont donc unifiables. (unification A f_2) est donc de la forme (true, σ) avec σ un unificateur principal de A et f_2 . On a ainsi démontré que (infere_type t) est bien de la forme (true, f) avec $f = \sigma(B)$.

Il nous reste à démontrer que $\sigma(B)$ est un des types les plus simples de t. Si g_1 est un type valide pour t, il existe nécessairement une formule g_2 telle que

$$\frac{t_1:g_2\Rightarrow g_1\quad t_2:g_2}{t:g_1}T_{\mathsf{MP}}$$

Comme précédemment, on arrive alors aux égalités suivantes

$$\sigma_1(A) = q_2, \quad \sigma_1(B) = q_1 \quad \text{et } \sigma_2(f_2) = q_2$$

Grâce à l'utilisation de la fonction fresh(), on est assuré que les formules $A\Rightarrow B$ et f_2 n'ont aucune variable en commun. Ceci nous permet d'affirmer que σ_1 et σ_2 peuvent être choisies de façon à ce qu'elle commutent : $\sigma_1\circ\sigma_2=\sigma_2\circ\sigma_1$. On a, de plus, $\sigma_2(A\Rightarrow B)=A\Rightarrow B$ et $\sigma_1(f_2)=f_2$.

La substitution $\sigma' = \sigma_1 \circ \sigma_2$ vérifie ainsi $\sigma'(A) = \sigma'(f_2)$: c'est un unificateur de A et f_2 donc il existe une substitution β vérifiant $\sigma' = \beta \circ \sigma$.

 σ' vérifie de plus $\sigma'(B) = g_1$, donc $g_1 = \beta(\alpha(B))$: on a ainsi $\alpha(B) \leq g_1$. CQFD!

Question 8.

$$(\mathcal{S}\ (\mathcal{S}\ (\mathcal{K}\ \mathcal{S})\ (\mathcal{S}\ (\mathcal{K}\ \mathcal{S})\ (\mathcal{K}\ \mathcal{K}))\ (\mathcal{K}\ \mathcal{K}))\ (\mathcal{S}\ (\mathcal{K}\ \mathcal{K}))): p \Rightarrow (p \Rightarrow q) \Rightarrow q$$

avec p et q des variables propositionnelles distinctes.

Question 9.

On doit vérifier que f est supérieure à un des plus petits types de t (si t est typable). On utilise pour cela une propriété forte de l'implémentation de l'algorithme d'unification que nous avons réalisé en TP (que nous transposons ici aux formules du système de Hilbert)

$$\forall f_1, f_2 \in \mathcal{F}, \text{ (unification } f_1 f_2) = (\texttt{true}, f_1) \Longleftrightarrow f_1 \leq f_2$$

Pour une autre implémentation de l'unification, le résultat subsiste à renommage près des variables propositionnelles.