Algorithm Selection for Maximum Common Subgraph

Paulius Dilkas

Supervisors: Dr Patrick Prosser and Dr Ciaran McCreesh

School of Computing Science University of Glasgow

23rd March 2018

Why Is It Important?

Source: Cook and Holder 1994

Source: M. Grindley et al. 1993 circuit graph representation

Source: Djoko, Cook and Holder 1997

Existing Ways to Solve It

- ► McSplit, McSplit↓
 - ► McCreesh, Prosser and Trimble 2017
- clique encoding
 - McCreesh, Ndiaye et al. 2016
- ▶ k↓
 - ► Hoffmann, McCreesh and Reilly 2017

 (G_1, G_2)

$$(G_1, G_2) \xrightarrow{\text{(i)}} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$(G_1, G_2) \xrightarrow{(r)} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \longrightarrow ML \checkmark$$

- ► Three cases:
 - no labels
 - vertex labels
 - vertex and edge labels

- Three cases:
 - no labels
 - vertex labels
 - vertex and edge labels
- ► How many different labels?
 - Measured as a percentage of the number of vertices/edges
 - **>** 5%, 10%, 15%, 20%, 25%, 33%, 50%

- Three cases:
 - no labels
 - vertex labels
 - vertex and edge labels
- How many different labels?
 - Measured as a percentage of the number of vertices/edges
 - **>** 5%, 10%, 15%, 20%, 25%, 33%, 50%
- Run every algorithm on every instance
 - \sim 500,000 experiments for each algorithm

- ▶ Three cases:
 - no labels
 - vertex labels
 - vertex and edge labels
- How many different labels?
 - Measured as a percentage of the number of vertices/edges
 - **>** 5%, 10%, 15%, 20%, 25%, 33%, 50%
- Run every algorithm on every instance
 - \sim 500,000 experiments for each algorithm
- Identify and extract features
 - > 34 in total
 - some from Kotthoff, McCreesh and Solnon 2016
 - some new

- ▶ Three cases:
 - no labels
 - vertex labels
 - vertex and edge labels
- How many different labels?
 - Measured as a percentage of the number of vertices/edges
 - **>** 5%, 10%, 15%, 20%, 25%, 33%, 50%
- Run every algorithm on every instance
 - \sim 500,000 experiments for each algorithm
- Identify and extract features
 - > 34 in total
 - some from Kotthoff, McCreesh and Solnon 2016
 - some new
- ► Train machine learning models
- Evaluate their performance and usefulness

Results

Results (27%)

Results

Results (86%)

Results

Results (88%)

Other Accomplishments

- Identified important features:
 - labelling percentage, standard deviation of degrees
- Discovered how algorithms' performance changes with fewer labels
- \blacktriangleright Extended $k \downarrow$ to support vertex labels
 - using neighbourhood degree sequences
- ▶ Defined and developed new algorithms capable of switching between McSplit and the clique encoding