Практика 2. Задачи

Задание 1.

Вычислим через какое время приемник получит последний из P пакетов. Время $(P-1)\frac{L}{R}$ этот последний пакет будет ждать, пока отправятся предыдущие пакеты, и еще $N\frac{L}{R}$ он будет идти по каналу. Итого $(N+P-1)\frac{L}{R}$.

Задание 2.

Если мы можем разбить файл на пакеты, то выгоднее всего разбивать в такой пропорции, чтобы по всем трем каналам данные шли одинаковое время. То есть по первому каналу мы отправляем $\frac{R1}{R1+R2+R3}L$ байт, по второму

$$\frac{R2}{R1+R2+R3}L$$
 и по третьему $\frac{R3}{R1+R2+R3}L$. В таком случае передача займет $d=\frac{1}{R1+R2+R3}L \approx 7.7$ с

Если же в условии подразумевается, что весь файл должен быть отправлен целиком по одному каналу, то надо воспользоваться каналом с наибольшей скоростью передачи данных, то есть вторым каналом. Время передачи в таком случае $d=\frac{L}{R2}~\approx~13.3~\mathrm{c}$

Задание 3.

Пусть p = 20% — вероятность передачи данных. Обозначим c[n][k] — вероятность того, что из n клиентов ровно k будут передавать данные. Легко вывести рекуррентное соотношение c[n][k] = p*c[n-1][k-1] + (1-p)*c[n-1][k]. Действительно, последний из n клиентов либо посылает данные c вероятностью p, u тогда из оставшихся n-1 клиентов ровно k-1 должны послать данные, либо последний клиент ничего не посылает c вероятностью c0, тогда из оставшихся c0, клиентов ровно c0, данные. Нам же требуется вычислить c1, c2, c3, c4, c4, c6, c6, c6, c6, c7, c8, c8, c9, c

Искомая вероятность ~55.1%.

Задание 4.

Воспользуемся первой задачей: $d = (3 + P - 1) \frac{L}{R} -> min$

Подставляем $P = \frac{X}{S}$ и L = S + 80:

$$d = (\frac{X}{S} + 2) \frac{S + 80}{R} -> min$$

Вычисляем производную $d'(S) = (\frac{-80X}{s^2} + 2) \frac{1}{R} = 0$

Корень
$$S = \sqrt{40X}$$
.

Легко убедиться, что в этой точке достигается именно минимум (например, вторая производная d(S) положительная).

Задание 5.

a.
$$\frac{IL}{R(1-I)} + \frac{L}{R} = \frac{L}{R} \frac{1}{1-I} = \frac{L}{R} \frac{1}{1-\frac{La}{R}}$$

b. Обозначим $t = \frac{L}{R}$. Тогда величина задержки это $\frac{t}{1-at} = -\frac{1}{a} + \frac{1}{a(1-at)}$, то есть гипербола от t.