EXERCISES 4, TMA4160 - KRYPTOGRAFI

Сн. 6

4.

- c) By a) we need to find an element α such that α is a primitive root modulo 29, but $\alpha^{p-1} \equiv 1 \mod 29^2$. By some trial and error we eventually find that 14 is the smallest integer such that it is a primitive root modulo 29, but not modulo 29^2 (Note that 14 + 29 = 43 however is a primitive root in 29^2).
- d) Set n=24389, $\beta=3344$ and $\alpha=3$ with $\alpha^a=\beta$. We now compute $a=\log_{\alpha}(\beta)=\log_{3}(3344)$ in the group \mathbb{Z}^{*}_{24389} using Pohlig-Hellman. We compute the order of the group and factor it to obtain $|\mathbb{Z}^{*}_{n}|=\phi(n)=2^{2}\cdot7\cdot29^{2}$. We compute the linear congruences that constitute the solution via. the Chinese remainder theorem. First we set q=2, c=2 and $a=a_{0}+2a_{1}$. Using that $\beta^{\phi(n)/q}=\alpha^{a_{0}\phi(n)/q}\Rightarrow 3344^{11774}\equiv 24388^{a_{0}}\mod 24389\Rightarrow 1\equiv 24388^{a_{0}}\mod 24389$ implying that $a_{0}=0$. Now using the recurrence relation $\beta_{j+1}=\beta_{j}\alpha^{-a_{j}q^{j}}$ we get $\beta_{1}=\beta$ and from $\beta_{j}^{n/q^{j+1}}=\alpha^{a_{j}n/q}$ we have $\beta^{\phi(n)/q^{2}}=\alpha^{a_{0}\phi(n)/q}\Rightarrow 3344^{5887}\equiv 24388^{a_{1}}\mod 24389$ implying that $a_{1}=1$. In other words we have $a\equiv 2\mod 4$. Similarly we get $a\equiv 2\mod 7$ and $a\equiv 260\mod 29^{2}$. This gives:

 $a \equiv 2 \mod 4$ $a \equiv 2 \mod 7$ $a \equiv 260 \mod 841$

Solving this system by applying the Chinese remainder theorem we get that $\log_3(3344) = a \equiv 18762 \mod \phi(n)$.

Сн. 5

20. The MATLAB-code for this exercise is given below:

```
function [s] = JacSym(m, n)
% Jacobi\ symbol\ of\ (m/n),\ where\ n\ is\ always\ odd.
if mod(n,2)==0
    fprintf('Error: _is _not _odd.\n');
end
m = mod(m, n);
if mod(n,2)==0
    s=0;
elseif m==1;
    s=1;
elseif mod(m,2)==0
    if abs(mod(n,8))==1
         s=JacSym(m/2,n);
    else
         s=-JacSym(m/2,n);
    end
else
    if mod(n,4)==3 && mod(m,4)==3
         s=-JacSym(n,m);
    else
         s=JacSym(n,m);
    end
end
end
```

This gives:

$$\left(\frac{610}{987}\right) = -1, \left(\frac{20964}{1987}\right) = 1, \left(\frac{1234567}{11111111}\right) = 1$$

21. We are given n = 837, 851, 1189 and we are asked to find the number of bases b such that n is an Euler pseudoprime to the base b; i.e. gcd(b,n) = 1 and $b^{(n-1)/2} \equiv \left(\frac{b}{n}\right) \mod n$. Using the function above in a simple for-loop checking for gcd we find that the number of bases are: 1, 1 and 7 respectively. We can also keep track over the numbers that are Euler pseudoprimes and get:

```
n=837 gives the base: 836 n=851 gives the base: 850 n=1189 gives the bases: 204, 278, 360, 829, 911, 985, 1188
```

(Note that we have excluded the case b = 1).

22. Define:

$$G(n) = \{a : a \in \mathbb{Z}_n^*, \left(\frac{a}{n}\right) \equiv a^{(n-1)/2} \mod n\}$$

a) Obviously $G(n) \subset \mathbb{Z}_n^*$ and since $1 \in G(n)$ we need to show that it is also a group. That is, we need to show that if $a, b \in G(n)$, then $ab^{-1} \in G(n)$. Since $a, b \in G(n)$ and $G(n) \subset \mathbb{Z}_n^*$ we have that there

is an $b^{-1} \in \mathbb{Z}_n^*$ such that $bb^{-1} = 1$. We therefore have:

$$1 = \left(\frac{1}{n}\right) = \left(\frac{b}{n}\right) \left(\frac{b^{-1}}{n}\right) \equiv b^{(n-1)/2} \left(\frac{b^{-1}}{n}\right) \Rightarrow \left(\frac{b^{-1}}{n}\right) = \left(b^{(n-1)/2}\right)^{-1} = \left(b^{-1}\right)^{(n-1)/2}$$

It now follows that

$$\left(\frac{ab^{-1}}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b^{-1}}{n}\right) \equiv (a)^{(n-1)/2} \left(b^{-1}\right)^{(n-1)/2} = \left(ab^{-1}\right)^{(n-1)/2}$$

And hence G(n) is a subgroup of \mathbb{Z}_n^* . Assume the inclusion is proper; Set |G(n)| = G and $|\mathbb{Z}_n^*| = P = \phi(n)$. Then by Lagrange's theorem we have $G|P \Leftrightarrow kG = P$ for some (positive) integer k. Since the inclusion is proper, and G(n) is nonempty we have that the smallest such k is 2, i.e. $2G \leq kG = P$. This and the fact that $\phi(n) \leq n-1$ yields:

$$|G(n)| \le \frac{|Z_n^*|}{2} \le \frac{n-1}{2}$$

b) Now suppose that $n=p^kq$ where p and q are odd, p prime, $k\geq 2$ and $\gcd(p,q)=1$. Let $a=1+p^{k-1}q$. Consider:

$$a^{(n-1)/2} = \left(1 + p^{k-1}q\right)^{(n-1)/2} = \sum_{i=0}^{(n-1)/2} \binom{(n-1)/2}{i} \left(p^{k-1}q\right)^{i}$$

Now since $M = (p^{k-1}q)^i = (p^{k-1})^i q^i$ we see that M is a multiple of n for all $i \geq 2$. Therefore:

$$a^{(n-1)/2} \equiv 1 + \frac{(n-1)}{2}p^{k-1}q$$

Furthermore:

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right)^k \left(\frac{a}{q}\right) = 1$$

Due to the properties of the Jacobi symbol. Therefore for the property $\left(\frac{a}{n}\right) \equiv a^{(n-1)/2} \mod n$ to hold we must have $\frac{(n-1)}{2}p^{k-1}q \equiv 0 \mod n \Leftrightarrow (p^kq)|\frac{(n-1)}{2}p^{k-1}q \Leftrightarrow p|\frac{(n-1)}{2} \Leftrightarrow n \equiv 1 \mod p$ which is impossible! Therefore we get:

$$\left(\frac{a}{n}\right) \not\equiv a^{(n-1)/2} \mod n$$

c) Suppose $n = p_1 \cdots p_s$ where the factors are distinct primes greater than 2. Suppose $a \equiv u \mod p_1$ and $a \equiv 1 \mod p_2 p_3 \cdots p_s$ where u is a quadratic non-residue modulo p_1 (Use C.R.T. for this). Note that:

$$\left(\frac{a}{n}\right) = \left(\frac{u}{p_1}\right) \left(\frac{1}{p_2 \cdots p_s}\right) = -1$$

From the properties of the Jacobi symbol and the assumptions. Furthermore:

$$a^{(n-1)/2} \equiv 1^{(n-1)/2} = 1 \mod p_2 \cdots p_s$$

Now since q|n we also have $a^{(n-1)/2} \equiv 1 \mod n$. And so $a^{(n-1)/2} \not\equiv -1 = \left(\frac{a}{n}\right) \mod n$.

- d) Let n be odd and composite.
- e)

Exercises.

c) The Matlab-code for the function is given below:

```
function [ S ] = MAC( A, k, l )
n=length(A);
A=double(A) - 97;
S=l;
```

```
\begin{array}{l} \textbf{for} \quad i=1:n \\ \quad if \quad A(1,i)==-65 \\ \quad A(1,i)=28; \\ \quad \textbf{elseif} \quad A(1,i)==-53 \\ \quad A(1,i)=27; \\ \quad \textbf{elseif} \quad A(1,i)==-51 \\ \quad A(1,i)=26; \\ \quad \textbf{end} \\ \quad S=S+A(1,i)*modexp(k,i,456979); \\ \quad S=mod(S,456979); \\ \quad \textbf{end} \\ \quad S = \mod(S+modexp(k,n+1,456979),456979); \\ \quad \textbf{end} \\ \quad S = mod(S+modexp(k,n+1,456979),456979); \\ \quad \textbf{end} \end{array}
```

d) Using the code above we see that the message that corresponds to the MAC 230887 is "invest in penny stocks".