HW_3_Maheshwari

Saurabh Maheshwari - 100%

May 3, 2018

Problem 1

E and M steps are derived in writing. The result for the MLE and EM algorithms are as follows:

```
## [1] "MLE estimate of theta = 0.601549641643992"
```

```
## [1] "EM estimate of theta = 0.60157127643068"
```

Thus, estimates in part a and b are approximately equal.

Problem 2

Method derived in writing, attached.

Problem 3

Details of the algorithm is provided in writing, attached. The estimated density curve has the following shape.

Histogram of fval

Problem 4

Using rejection sampling, f was sampled using g1 and g2. Also, g1 and g2 were sampled using inverse transform methods. The implemented code is provided. The derivations regarding alphas is in writing and attached. The results are as follows:

```
## [1] "time taken for sampling f using g1 = 1.176139 secs"
```

```
## [1] "time taken for sampling f using g2 = 1.861408 secs"
```

As the alpha used for g1 (1) is smaller than alpha used for g2 (pi/2), the probability of acceptance is greater for the algorithm using g1, hence, it is faster.

Problem 5All the derivations are provided in writing, attached. The code is provided. The density plots are as follows:

As seen in the density graph above, the graph with theta = 0.5 is skewed to left the most, as probability density at small x in high.

Also, the density shown on y axis should not be confused with the actual probability densities, rather used as an indicative of the curve shape. The y axis is such that the total area under the histogram bins equals 1, due to small bins, sometimes the density scales above 1.

Problem 6

The methadology is provided in writing, attached.


```
Ans.1)
 a) 1(0) = x, log (2+0) + (x2+x3) log (1-0) + xy logo + c
    de 2+0 1-0 (FORMLE)
    1: 7= (125,21,20,33)
  \Rightarrow \frac{\pi}{100}(\theta)(1-\theta) - (\pi_2 + \pi_3)(2+\theta)\theta + \pi (2+\theta)(1-\theta) = 0
       125(0)(1-0) - 41(2+0)0+33(2+0)(1-0)=0
 3
       Solving for 0: 0= -0.443, 0 895 0 = -0.5512, 0.6015
                : D=4py, hence can't be me negative
        thus, 0= 0.895 0 = 0.6015
 b) Now, 1c(0) = (x12 + x4) log 0+ (x2+73) log (1-0)
    Expectation Step:
              9(0,0°) = E [ tog (d0) | x]
                         = E ((x12+x4) log 0+ (x2+x3) log (1-0)) (X11/2/3/1)
                         = Equ[ 2(12/x)] log0 + xy log0 + (x2+x3) log(1-0)
       EOK[212 | X1] = X1 x Px (x12 | X1)
                          = \chi_{1} \times \frac{\theta^{k}/4}{\theta^{k}/4 + 1/2} = \frac{\theta^{k} \times_{1}}{2 + \theta^{k}}
           \mathcal{B}(\theta, \theta^{k}) = \frac{\theta^{k} \chi_{1}}{2 + 0^{k}} \log \theta + \eta_{1} \log \theta + (\chi_{2} + \chi_{3}) \log (1 - \theta)
```

M step:
$$Q^{\dagger}(\theta, \theta^{k}) = 0$$

$$\frac{1}{2+0^{K}}\left(\frac{\theta^{K}\chi_{1}}{2+0^{K}}\right)\frac{1}{\theta}+\frac{\chi_{4}}{\theta}+\frac{(\chi_{2}+\chi_{3})}{1-\theta}\left(-1\right)=0$$

$$\frac{1}{2}\left(\frac{\theta^{k}x_{1}}{2+\theta^{k}}+x_{1}\right)(1-\theta)-(x_{2}+x_{3})\theta=0$$

$$\frac{\partial^{k} \chi_{1} + \chi_{4}}{2+\theta^{k}}$$

$$\frac{\partial^{k} \chi_{1}}{\partial^{k} \chi_{1}} + \chi_{4} + \chi_{2} + \chi_{3}$$

$$\frac{\partial^{k} \chi_{1}}{\partial^{k} \chi_{1}} + \chi_{4} + \chi_{5} + \chi$$

Solving iteratively using R

Hence, θ in part $\alpha = 0.6015496$ θ in part θ using EM algorithm = 0.6015713

Thus, I are almost the same.

11.0-11
Ans.2) $\mu = (\mu_1, \mu_2)$, $\Xi = (612)$
512 6 ₂ 2
$l_{c}(\omega M, \Sigma) = -n \log 2\pi - \underline{l} n \log \Sigma - \underline{l} \stackrel{\mathcal{D}}{=} (w_{j} - M)^{T} \Sigma^{-1}(w_{j} - M)$
where, w; = (wj, wjz) are the observations.
for the first pobsurvations, Wil is missing
for the Second of observations, Wiz ismissing
hast robservations, complete data available.
Solving le (M, E) more:
$l_{c}(\mu, \Sigma) = -n\log 2\kappa - Ln\log \Sigma - L \sum_{j=1}^{\infty} (w_{j1} - \mu_{1})^{2} \delta_{2}^{2} - (w_{j2} - \mu_{2})(w_{j1} - \mu_{2})$
- (W)2-M2) (W)1-M1) 512
VetScan / (W) 2 (1) 2 511
+ 1 1
$= \frac{1}{2} \left[\frac{1}{2}$
-2 Wj, Wj2 512 + 510 Wj2
Expectation step:
= Enchrething (0,0(N)) = Ench (Alc(ME))
Defented, the training Q (0,0 (K)) = Eoch (Kle(M.E)) where 0 (K) = { M (K) M2 (62 (K) (62 (K))}.
For first b observations:
For first pobservations:

 $E_{g(N)}(l_{c}(N_{1}E)) = -n \log 2\pi - \underline{l} n \log |\underline{\xi}| - \underline{l} \int_{\underline{z}_{1}}^{\underline{z}_{1}} E(W_{j}^{2}) |W_{j}^{2}| + 2E(W_{j}^{2}|W_{j}^{2}) \times 2|\underline{z}_{1}|$ $+ 2W_{j}^{2} (M_{1}e_{12} - M_{2}e_{12}^{2})$ $+ 2W_{j}^{2} (M_{1}e_{12} - M_{2}e_{12}^{2})$

3240 Whipple Road • Union City • CA 94587 510.675.6500 vetscansales@abaxis.com

$$E[W_{j2}|W_{j2}] = W_{j2} + \underbrace{\sigma_{12}^{(k)}(W_{j2} - M_{2}^{(k)})}_{\sigma_{2}^{(k)}} = W_{j1}^{(k)} - 0$$
and $E[W_{j1}^{k}|W_{j2}^{k}] = W_{j1}^{(k)} + \underbrace{\sigma_{2}^{(k)}}_{2}^{2} - 0$

For sword q observations:

$$E_{gik}(l_{c}(\mathbf{e}_{jk}, \mathbf{z})) = -n \log_{2k} (-\frac{1}{2} n \log_{2k} (\mathbf{z}^{(k)}) - \frac{1}{2} \sum_{l \neq l} | = 2^{(k)} | w_{jl}|^{2} + 2 w_{jl} (w_{j} + \frac{1}{2} | w_{jl}|^{2} | w_{$$

for last robsurvations:

M step!-

differentiating
$$Q(\theta, Q^{(k)})$$
 postially wre $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k, \epsilon_2 k, \epsilon_2 k, \epsilon_2 k)$ and $\theta^{(k)} = (\mu, k, \mu_2, \epsilon_1 k, \epsilon_2 k,$

, where, while and while are defined in equations () and (3) respectively.

Ans.3) f	(a) × e-x
	(x) & 1-e-x (exponential distribution)
	$-1(x) \propto -\log(1-x)$
	is conditioned, such that $\chi \in (0,2)$
	→ A+(B-A)U, where A = F(0), B=F(1), u~ unif (0,1)
	-1 (A+(B-A) W) ~ -log (1-11-e-2) W)
	s, generating 5000 samples from the above function, estimated
	neity plot is provided.
	hetscant 1
Ans.4) To so	emple trang, and gz, invesse transformation method is used.
To Sa	umble from f(x) value q, a = Sup 960) = P-x = 1
	imple from $f(x)$ using g_1 , $\alpha_1 = \sup_{x \in S_1} g(x) = e^{-x} = 1$
	HMD = 1
D2 0T	ample from $f(x)$ using g_{2} , $q_{2} = \sup_{g_{2}(x)} g_{2}(x) = \sup_{g_{2}(x)} \left(\frac{\pi}{24}e^{-x}\right) = \pi_{12}$
	$\Rightarrow \alpha_2 = \pi/2$
Alsor	ithm and results are depicted on the page attached.
0	

Ans. 5) a) It
$$g(x) = c \left(2x^{\theta-1} + x^{\theta-1/2}\right)e^{-x}$$
, $x > 0$
where, c is the normalizing constant
 $\Rightarrow \int g(x)dx = 1$ (as $g(x)$ is a density function)
 $\Rightarrow c \int (2x^{\theta-1} + x^{\theta-1/2})e^{-x}dx = 1$
 $\Rightarrow 2c \int x^{\theta-1}e^{-x}dx + c \int x^{(\theta+1/2)-1}e^{-x}dx = 1$

$$C = \frac{1}{2\Gamma(\theta) + \Gamma(\theta + 1/2)}$$
, where $\Gamma(0)$ is the gamma function.

b)
$$g(x) = c(2x^{\theta-1} + x^{\theta-1/2})e^{-x}$$

= $c \cdot 2\Gamma(\theta) x^{\theta-1} e^{-x} + c \cdot \Gamma(\theta+1/2) \cdot x^{(\theta+1/2)-1} e^{-x}$
 $\Gamma(\theta) = c \cdot 2x^{(\theta+1/2)} \cdot x^{(\theta+1/2)} \cdot x^{(\theta$

Thus, g(x) is a mixture of two gamma distributions, with weight

$$\Rightarrow W_{1} = 2C\Gamma(\theta) = \frac{2\Gamma(\theta)}{2\Gamma(\theta) + \Gamma(\theta + 1/2)}$$

bura

$$W_{2} = C \Gamma(\theta + 1/2) = \frac{\Gamma(\theta + 1/2)}{2\Gamma(\theta) + \Gamma(\theta + 1/2)}$$

(c)	$g(x) = W_1 gamma(\theta, 1) + W_2 gamma(\theta + Y_2, 1)$ To sample from $g(x)$, the following simple method can be followed
	To sand be from a (2) the tollowing sind to method can be tollowed
	Jever year), 10 so process of the
1)	Generate a burnoulli trial with probability w,
- 1	

2) If Success, generate from gamma (0,1), otherwise, generate from gamma (0+1/2,1)

3) Repeat the above steps n times, to generate in random samples.

In order to generate Samples from a gamma distribution, Statistical packages can be used straight away.

(d)
$$g(x) = w_1 gamma(\theta_{11}) + w_2 gamma(\theta_{11})$$

$$q(x) = \sqrt{\frac{1}{14}} x x^{\theta_{11}} + w_2 gamma(\theta_{11})$$

$$q(x) = \sqrt{\frac{1}{14}} x x^{\theta_{11}} + w_2 gamma(\theta_{11})$$

$$q(x) = \sqrt{\frac{1}{14}} x x^{\theta_{11}} + w_2 gamma(\theta_{11})$$

Thus, for
$$0 = 0.5$$
, $\alpha = 4.55$
 $0 = 1$, $\alpha = 3.68$
 $0 = 1.5$, $\alpha = 2.78$

The algorithm is disigned in R and plots are attached

Ans. 6)
$$f(x_1y) d x^{\alpha}y$$
; $x_170, y_170 \text{ and } x^2+y^2(1)$

If $y = x^{\alpha}y$

We the auxiliary function be $g(x_1y) = x^{\alpha}.(\alpha+1)$; $x \in (0,1]$

Thus, $\alpha' = \sup_{\alpha \in X} \frac{g(x_1y)}{g(x_1y)}$
 $f(\alpha+1) x^{\alpha} = \sup_{\alpha \neq 1} \frac{y}{\alpha+1}$

Thus, $f(\alpha) = \lim_{\alpha \neq 1} \frac{y}{\alpha+1}$
 $f(\alpha) = \lim_{\alpha \neq 1} \frac{y}{\alpha+1}$

Thus, $f(\alpha) = \lim_{\alpha \neq 1} \frac{y}{\alpha+1}$

Hunce,
$$\alpha'g(x,y) = x^{\alpha} 7 x^{\alpha} y \quad (as y \leq 1)$$
 $\Rightarrow \alpha'g(x,y) 7 g(x,y)$

Thus, rejection sampling can be used considering $g(x,y) = x^{\alpha}$ and $g(x,y) = x^{\alpha} \cdot (\alpha + 1)$

Step 1) Sample
$$g(x_1y)$$
 or $g(x_1)$ using invuse transform method

$$\begin{array}{cccc}
\vdots & g(x) = (\alpha + 1) \times^{\alpha}; & G(x) = 2^{\alpha + 2} & [C \cdot D \cdot F] \\
X = g G'(u) = \frac{\log u}{\alpha + 2}; & u \sim \text{unif}[0,1]
\end{array}$$

and sample unuif[0,1]

Step3) Repeat 1 and 2 as many times required.