Problème: Similitude entre une matrice et son inverse. Petites Mines

Partie A

- 1. C'est du cours.
- 2. (a) Pour tout $y \in \operatorname{Im} w$, il existe $x \in \operatorname{Ker} u^{i+j}$ tel que $y = u^j(x)$. Alors $u^i(y) = u^{i+j}(x) = 0$ vu que $x \in \operatorname{Ker} u^{i+j}$, d'où $y \in \operatorname{ker} u^i$. Ceci établit l'inclusion $\operatorname{Im} w \subset \operatorname{Ker} u^i$.
 - (b) Le théorème du rang appliqué à w donne $\dim \operatorname{Ker} u^{i+j} = \dim \operatorname{Im} w + \dim \operatorname{Ker} w$. Or $\dim \operatorname{Im} w \leq \dim \operatorname{Ker} u^i$ d'après l'inclusion obtenue au (a), et $\dim \operatorname{Ker} w \leq \dim \operatorname{Ker} u^j$ (étant donné que w est la restriction de u^j à un s.e.v. de E). L'inégalité $\dim \operatorname{Ker} u^{i+j} \leq \dim \operatorname{Ker} u^i + \dim \operatorname{Ker} u^j$ en découle alors.
- 3. Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et $\operatorname{rg} u = 2$.
 - (a) En appliquant le 2.(b). aux couples (i, j) = (1, 1) et (2, 1), on obtient :

 $\dim \operatorname{Ker} u^2 \le 2 \dim \operatorname{Ker} u$ et $\dim \operatorname{Ker} u^3 \le \dim \operatorname{Ker} u^2 + \dim \operatorname{Ker} u$.

Or dim Ker $u = 3 - \dim \operatorname{Im} u = 2$ (d'après le théorème du rang) et dim Ker $u^3 = 3$ (car $u^3 = 0$).

Les deux inégalités conduisent à $\dim \mathrm{Ker} u^2 \leq 2$ et $\dim \mathrm{Ker} u^2 \geq 2,$ et on conclut sur l'égalité.

- (b) L'existence de a est assurée par le fait que $u^2 \neq 0$. Pour tous réels α , β , γ , l'égalité $\alpha u^2(a) + \beta u(a) + \gamma a = 0$ implique, en composant par u^2 , que $\gamma u^2(a) = 0$ (vu que $u^3(a) = u^4(a) = 0$). Il en résulte $\gamma = 0$ puisque $u^2(a) \neq 0$. En reportant dans l'égalité de départ et en composant par u, on obtient de même $\beta u^2(a) = 0$, d'où $\beta = 0$ et en reportant à nouveau, on montre enfin la nullité de α .
 - La famille $\mathcal{B}' = (u^2(a), u(a), a)$ est donc libre de cardinal $3 = \dim E$:

c'est une base de
$$E$$

(c) Par définition de la matrice U et de la base \mathcal{B}' , on a immédiatement

$$U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

La matrice de $u^2 - u$ dans la base \mathcal{B}' étant $U^2 - U$, on en déduit

$$V = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

- 4. (a) L'existence d'un vecteur b tel que $u(b) \neq 0$ est due au fait que $u \neq 0$ (puisque rang u = 1).
 - (b) Comme $u^2=0$, le vecteur u(b) appartient à Keru, de dimension 2 d'après le théorème du rang.

On peut alors compléter le vecteur non nul u(b) en une base (u(b), c) de Keru par application du théorème de la base incomplète.

Enfin, b n'appartenant pas à Keru, la droite vectorielle D qu'il engendre est en somme directe avec le plan vectoriel Keru et, par suite, (b, u(b), c) est une base de $D \oplus \text{Ker}u$: cette famille libre de cardinal 3 est ainsi une base de E.

(c) Par définition de U' et V', on obtient $U' = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ puis V' = -U'.

Partie B

- 5. La matrice T est inversible, ce qui est équivalent à dire qu'elle est de rang 3. On pouvait ici obtenir le rang de T en considérant les trois colonnes, ou en s'appuyant sur le caractère échelonné de T. On pouvait sinon dire que T est inversible car triangulaire à coefficients diagonaux non nuls. Reste ensuite à dire que A et T étant semblables, elles ont le même rang.
- 6. Un calcul matriciel sans difficulté amène à $N^3=0$. De plus, $(I_3+N)(I_3-N+N^2)$ se simplifie en $I_3-N^3=I_3$. L'inverse à droite donc l'inverse de I_3+N est donc I_3-N+N^2 , d'où $(P^{-1}AP)^{-1}=I_3-N+N^2$, ce qui s'écrit encore $P^{-1}A^{-1}P=I_3-N+N^2$.
- 7. Si N=0, alors $P^{-1}AP=I_3$, ce qui conduit rapidement à $A=I_3$, d'où $A^{-1}=A$ et $A\sim A^{-1}$.
- 8. (a) Soit \mathcal{B} la base canonique de \mathbb{R}^3 et u l'endomorphisme de \mathbb{R}^3 canoniquement associé. La matrice de u dans \mathcal{B} est N. Comme $u^3=0$ et que le rang de u vaut 2, il existe une base \mathcal{B}' de E telle que la matrice de u dans \mathcal{B}' s'écrive $U=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. d'après la question 3. Ceci entraı̂ne que N et U sont semblables.

Puisque M est la matrice dans \mathcal{B} de u^2-u , et que la matrice de ce dernier endomorphisme dans \mathcal{B}' est $\begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$, M est semblable à cette dernière matrice.

- (b) Pour M^3 , le plus simple est d'écrire $M^3 = (N(N-I_3))^3 = N^3(N-I_3)^3 = 0$, la deuxième égalité provenant du fait que N et $N-I_3$ commutent. Comme M et V sont semblables, ces matrices ont même rang. Celui de V se calcule directement : le premier vecteur colonne est nul et les deux autres non colinéaires, donc rang $M = \operatorname{rang} V = 2$.
- (c) Puisque $M^3 = 0$ et rg(M) = 2, le raisonnement effectué pour N au (a) en s'appuyant sur la question 3 s'applique alors aussi à M, qui est ainsi également semblable à U. Par transitivité de \sim , on conclut que M et N sont semblables.
- (d) Si $Q \in GL_3(\mathbb{R})$ est telle que $Q^{-1}NQ = N^2 N$, alors $Q^{-1}(I_3 + N)Q = I_3 + N^2 N$, ce qui établit que $A \sim I_3 N + N^2$, d'où $A \sim A^{-1}$ d'après 6.
- 9. Dire que le rang de N vaut 1 signifie que ses deux derniers vecteurs colonnes C_2 et C_3 sont proportionnels, c'est-à-dire que $\alpha=0$ (si $C_2=0$) ou $\gamma=0$ (si $C_2\neq 0$). Le calcul direct de N^2 donne alors $\begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, soit $N^2=0$. La question 4 s'applique donc à l'endomorphisme u de \mathbb{R}^3 canoniquement associé à N. En notant \mathcal{B} la base canonique de \mathbb{R}^3 , la matrice de u dans la base \mathcal{B} est N et il existe une base \mathcal{B}' dans laquelle la matrice de u est $U'=\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. On a donc $N\sim U'$ et $N^2-N\sim (-U')$. Comme $\operatorname{rg}(N^2-N)=\operatorname{rg}(-U')=1$ et que $(N^2-N)^2=0$, la matrice N^2-N est également semblable à U' et, en raisonnant comme au \mathbb{R} (d), on en déduit que A et A^{-1} sont semblables.
- 10. (a) $A I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ ayant un rang égal à 1 (matrice non nulle aux colonnes proportionnelles), le théorème du rang implique que dim $\operatorname{Ker}(u \operatorname{id}_E) = 3 1 = 2$. De plus, les vecteurs non colinéaires a et b c appartiennent clairement à $\operatorname{Ker}(u \operatorname{id}_E)$ donc (a, b c) en constitue une base.
 - (b) Pour faire court, on peut dire que (a, c, b-c) est échelonnée par rapport à la base (a, c, b) donc est aussi une base de E, et il en est de même de (e_1, e_2, c) par permutation. On a directement $u(e_1) = e_1$ et $u(e_2) = e_2$ par définition de $\operatorname{Ker}(u - \operatorname{id}_E)$. De plus, $u(c) = -b + 2c = -e_2 + c$ donc la matrice de u dans la base (e_1, e_2, c)

est

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

(c) La matrice A est alors semblable à une matrice du type T où, avec les notations précédentes, $(\alpha, \beta, \gamma) = (0, 0, -1)$.

La question 9 s'applique : A et A^{-1} sont semblables

11. Soit

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On a $A = A^{-1}$ (donc $A \sim A^{-1}$), mais A n'est pas semblable à une matrice du type T, sinon on aurait Tr(A) = 3.