MATH F111- Mathematics I

Saranya G. Nair Department of Mathematics

BITS Pilani

August 9, 2024

Notations

- N- Set of Natural numbers
- Q- Set of rational numbers
- \mathbb{R} Set of real numbers
- ∀ For all
- ∃- There exists

Intervals

Definition

A subset I of \mathbb{R} is said to be an interval if $a, b \in I$ and $a < x < b \implies x \in I$.

Let $a, b \in \mathbb{R}$ and a < b.

- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ (open interval)
- $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$ (closed interval)
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ and $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ are half-open (or half-closed) intervals.
- $(a, \infty) := \{x \in \mathbb{R} : x > a\}$ and $(-\infty, a) := \{x \in \mathbb{R} : x < a\}$ are infinite open intervals.
- $[a, \infty) := \{x \in \mathbb{R} : x \ge a\}$ and $(-\infty, a] := \{x \in \mathbb{R} : x \le a\}$ are infinite closed intervals.

Let $a \in \mathbb{R}$ and $\epsilon > 0$. Then $(a - \epsilon, a + \epsilon)$ is called the ϵ -neighborhood of

Sequences

Definition

A sequence of real numbers (or a sequence in \mathbb{R}) is a function $x : \mathbb{N} \to \mathbb{R}$.

Sequences

Definition

A sequence of real numbers (or a sequence in \mathbb{R}) is a function $x : \mathbb{N} \to \mathbb{R}$.

• If $x : \mathbb{N} \to \mathbb{R}$ is a sequence, we will usually denote the value of x(n) by the symbol x_n .

Sequences

Definition

A sequence of real numbers (or a sequence in \mathbb{R}) is a function $x : \mathbb{N} \to \mathbb{R}$.

- If $x : \mathbb{N} \to \mathbb{R}$ is a sequence, we will usually denote the value of x(n) by the symbol x_n .
- The values x_n are also called the terms or the elements of the sequence and x_n (that is, the value of x at n) is called the n-th term of the sequence.

We will denote this sequence by the notations

$$(x_n)$$
, or $(x_n : n \in \mathbb{N})$.

In this course, we will consider only Real sequences.

• $(n: n \in \mathbb{N}) = (1, 2, 3, 4, \ldots)$

- $(n: n \in \mathbb{N}) = (1, 2, 3, 4, \ldots)$
- $(1/n: n \in \mathbb{N}) = (1, 1/2, 1/3, 1/4,...)$

- $(n: n \in \mathbb{N}) = (1, 2, 3, 4, \ldots)$
- $(1/n : n \in \mathbb{N}) = (1, 1/2, 1/3, 1/4, ...)$
- $(n^2: n \in \mathbb{N}) = (1, 4, 9, 16, \ldots)$

- $(n: n \in \mathbb{N}) = (1, 2, 3, 4, \ldots)$
- $(1/n : n \in \mathbb{N}) = (1, 1/2, 1/3, 1/4, ...)$
- $(n^2: n \in \mathbb{N}) = (1, 4, 9, 16, ...)$
- If $b \in \mathbb{R}$, the sequence (b, b, b, ...), all of whose terms equal b, is called the constant sequence b.

- $(n: n \in \mathbb{N}) = (1, 2, 3, 4, \ldots)$
- $(1/n : n \in \mathbb{N}) = (1, 1/2, 1/3, 1/4, ...)$
- $(n^2: n \in \mathbb{N}) = (1, 4, 9, 16, ...)$
- If $b \in \mathbb{R}$, the sequence (b, b, b, ...), all of whose terms equal b, is called the constant sequence b.
- $(2^n : n \in \mathbb{N}) = (2, 4, 8, 16, \ldots)$

- $(n: n \in \mathbb{N}) = (1, 2, 3, 4, \ldots)$
- $(1/n : n \in \mathbb{N}) = (1, 1/2, 1/3, 1/4, ...)$
- $(n^2: n \in \mathbb{N}) = (1, 4, 9, 16, ...)$
- If $b \in \mathbb{R}$, the sequence (b, b, b, ...), all of whose terms equal b, is called the constant sequence b.
- $(2^n : n \in \mathbb{N}) = (2, 4, 8, 16, \ldots)$
- $((-1)^n : n \in \mathbb{N}) = (-1, 1, -1, 1, \ldots)$

- $(n: n \in \mathbb{N}) = (1, 2, 3, 4, \ldots)$
- $(1/n: n \in \mathbb{N}) = (1, 1/2, 1/3, 1/4, ...)$
- $(n^2: n \in \mathbb{N}) = (1, 4, 9, 16, ...)$
- If $b \in \mathbb{R}$, the sequence (b, b, b, ...), all of whose terms equal b, is called the constant sequence b.
- $(2^n : n \in \mathbb{N}) = (2, 4, 8, 16, \ldots)$
- $((-1)^n : n \in \mathbb{N}) = (-1, 1, -1, 1, \ldots)$
- $x_1 := 1, x_2 := 1$ and $x_n := x_{n-1} + x_{n-2}$ for $n \ge 3$: (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...) This sequence is known as the Fibonacci sequence.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$. eg. $(a_n) = -n$.

A sequence (a_n) of real numbers is said to be **bounded below** if there is a real number β such that $\beta \leq a_n$ for every $n \in \mathbb{N}$.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$. eg. $(a_n) = -n$.

A sequence (a_n) of real numbers is said to be **bounded below** if there is a real number β such that $\beta \leq a_n$ for every $n \in \mathbb{N}$. eg. $(a_n) = n^2$

A sequence (a_n) of real numbers is said to be **bounded** if there are real numbers α, β such that $\beta \leq a_n \leq \alpha$ for every $n \in \mathbb{N}$.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$. eg. $(a_n) = -n$.

A sequence (a_n) of real numbers is said to be **bounded below** if there is a real number β such that $\beta \leq a_n$ for every $n \in \mathbb{N}$. eg. $(a_n) = n^2$

A sequence (a_n) of real numbers is said to be **bounded** if there are real numbers α, β such that $\beta \leq a_n \leq \alpha$ for every $n \in \mathbb{N}$. eg. $(a_n) = \frac{1}{n}$, $(a_n) = (-1)^n$

If a sequence is not bounded, it is said to be **unbounded**. eg. $(a_n) = (-1)^n n$

•
$$(a_n) = \{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n} \cdots \}$$

- $(a_n) = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n} \dots\}$ approaches 0 as n gets large.
- $(a_n) = \{0, \frac{1}{2}, \frac{2}{3}, \cdots, 1 \frac{1}{n} \cdots \}$

- $(a_n) = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n} \dots\}$ approaches 0 as n gets large.
- $(a_n) = \{0, \frac{1}{2}, \frac{2}{3}, \cdots, 1 \frac{1}{n} \cdots\}$ approaches 1 as n gets large.
- $(a_n) = {\sqrt{1}, \sqrt{2}, \sqrt{3}, \cdots, \sqrt{n} \cdots}$

- $(a_n) = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n} \dots\}$ approaches 0 as n gets large.
- $(a_n) = \{0, \frac{1}{2}, \frac{2}{3}, \dots, 1 \frac{1}{n} \dots\}$ approaches 1 as n gets large.
- $(a_n) = {\sqrt{1}, \sqrt{2}, \sqrt{3}, \cdots, \sqrt{n} \cdots}$ have terms that get larger than any number as n increases.

- $(a_n) = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$ approaches 0 as n gets large.
- $(a_n) = \{0, \frac{1}{2}, \frac{2}{3}, \cdots, 1 \frac{1}{n} \cdots\}$ approaches 1 as n gets large.
- $(a_n) = {\sqrt{1}, \sqrt{2}, \sqrt{3}, \cdots, \sqrt{n} \cdots}$ have terms that get larger than any number as n increases.
- $(a_n) = \{1, -1, 1, -1, \cdots\}$

- $(a_n) = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$ approaches 0 as n gets large.
- $(a_n) = \{0, \frac{1}{2}, \frac{2}{3}, \cdots, 1 \frac{1}{n} \cdots\}$ approaches 1 as n gets large.
- $(a_n) = {\sqrt{1}, \sqrt{2}, \sqrt{3}, \cdots, \sqrt{n} \cdots}$ have terms that get larger than any number as n increases.
- $(a_n) = \{1, -1, 1, -1, \cdots\}$ bounce back and forth between 1 and -1, never approaching to a single value.

- $(a_n) = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n} \dots\}$ approaches 0 as n gets large.
- $(a_n) = \{0, \frac{1}{2}, \frac{2}{3}, \cdots, 1 \frac{1}{n} \cdots\}$ approaches 1 as n gets large.
- $(a_n) = {\sqrt{1}, \sqrt{2}, \sqrt{3}, \cdots, \sqrt{n} \cdots}$ have terms that get larger than any number as n increases.
- $(a_n) = \{1, -1, 1, -1, \cdots\}$ bounce back and forth between 1 and -1, never approaching to a single value.

Remark

Question: What do we mean by a sequence converges?

It says that if we go far enough out in the sequence, the difference between a_n and the limit of the sequence becomes less than any preselected number $\epsilon > 0$.

• Can you find an integer N such that $|a_n - 0| < \frac{1}{2}, \forall n \geq N$?

• Can you find an integer N such that $|a_n - 0| < \frac{1}{2}$, $\forall n \ge N$? Yes, choose N = 3.

- Can you find an integer N such that $|a_n 0| < \frac{1}{2}$, $\forall n \ge N$? Yes, choose N = 3.
- Can you find an integer N such that $|a_n-0|<rac{1}{10000},\, orall n\geq N$?

- Can you find an integer N such that $|a_n 0| < \frac{1}{2}$, $\forall n \ge N$? Yes, choose N = 3.
- Can you find an integer N such that $|a_n 0| < \frac{1}{10000}$, $\forall n \ge N$? Yes, choose N = 10001.

- Can you find an integer N such that $|a_n 0| < \frac{1}{2}$, $\forall n \ge N$? Yes, choose N = 3.
- Can you find an integer N such that $|a_n 0| < \frac{1}{10000}$, $\forall n \ge N$? Yes, choose N = 10001.
- For any preselected positive number, say $\epsilon > 0$, can you find an integer N such that $|a_n 0| < \epsilon$, $\forall n \ge N$?

- Can you find an integer N such that $|a_n 0| < \frac{1}{2}$, $\forall n \ge N$? Yes, choose N = 3.
- Can you find an integer N such that $|a_n 0| < \frac{1}{10000}$, $\forall n \ge N$? Yes, choose N = 10001.
- For any preselected positive number, say $\epsilon>0$, can you find an integer N such that $|a_n-0|<\epsilon$, $\forall n\geq N$? Yes, choose $N>\frac{1}{\epsilon}$. In particular choose $N=\lfloor\frac{1}{\epsilon}\rfloor+1$.

The Limit of a Sequence

Definition

A sequence (a_n) in $\mathbb R$ is said to converge to $\ell \in \mathbb R$, or ℓ is said to be a limit of (a_n) ,

if for every $\epsilon > 0$, there exists an integer $N \in \mathbb{N}$ such that

$$|a_n - \ell| < \epsilon$$
, for all $n \ge N$.

The Limit of a Sequence

Definition

A sequence (a_n) in $\mathbb R$ is said to converge to $\ell \in \mathbb R$, or ℓ is said to be a limit of (a_n) ,

if for every $\epsilon > 0$, there exists an integer $N \in \mathbb{N}$ such that

$$|a_n - \ell| < \epsilon$$
, for all $n \ge N$.

ie,

$$a_n \in (\ell - \epsilon, \ell + \epsilon), \forall n \geq N.$$

The Limit of a Sequence

Definition

A sequence (a_n) in $\mathbb R$ is said to converge to $\ell \in \mathbb R$, or ℓ is said to be a limit of (a_n) ,

if for every $\epsilon > 0$, there exists an integer $N \in \mathbb{N}$ such that

$$|a_n - \ell| < \epsilon$$
, for all $n \ge N$.

ie,

$$a_n \in (\ell - \epsilon, \ell + \epsilon), \forall n \geq N.$$

Remark

The choice of N depends on the value of ϵ .

When a sequence (a_n) has limit ℓ , we will use the notation

$$\lim a_n = \ell$$
.

We will sometimes use the symbolism $a_n \to \ell$, which indicates the intuitive idea that the values a_n "approach" the number ℓ as $n \to \infty$.

- If a sequence has a limit, we say that the sequence is convergent
- If a sequence has no limit, we say that the sequence is divergent.

There is also a notion of divergence if the sequence is not bounded.

Definition

The sequence (a_n) diverges to infinity or

$$\lim_{n\to\infty}a_n=\infty$$

Definition

The sequence (a_n) diverges to infinity or

$$\lim_{n\to\infty}a_n=\infty$$

if for every number M there is an integer N such that $\forall n > N, a_n > M$.

Definition

The sequence (a_n) diverges to infinity or

$$\lim_{n\to\infty}a_n=\infty$$

if for every number M there is an integer N such that $\forall n > N, a_n > M$. Similarly we say (a_n) diverges to negative infinity or

$$\lim_{n\to\infty}a_n=-\infty$$

if for every number m, there is an integer N such that $\forall n > N$, we have $a_n < m$.

The convergence of a sequence is unaltered if a finite number of its terms are replaced by some other terms.

The convergence of a sequence is unaltered if a finite number of its terms are replaced by some other terms.

Examples:

(i) Let $a \in \mathbb{R}$ and $a_n := a$ for all $n \in \mathbb{N}$. Then $a_n \to a$. We can let N := 1 for any choice of ϵ .

The convergence of a sequence is unaltered if a finite number of its terms are replaced by some other terms.

Examples:

- (i) Let $a \in \mathbb{R}$ and $a_n := a$ for all $n \in \mathbb{N}$. Then $a_n \to a$. We can let N := 1 for any choice of ϵ .
- (ii) $a_n := 1/n$ for all $n \in \mathbb{N}$. Then $a_n \to 0$.

(iii)
$$a_n := 2/(n^2+1)$$

(iii)
$$a_n := 2/(n^2 + 1)$$

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

(iii)
$$a_n := 2/(n^2 + 1)$$

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

$$N > \sqrt{\frac{2}{\epsilon}}$$
.

Then

$$|a_n-0|<\frac{2}{n^2}<\epsilon, \ \forall n\geq N.$$

(iii)
$$a_n := 2/(n^2 + 1)$$

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

$$N > \sqrt{\frac{2}{\epsilon}}$$
.

Then

$$|a_n-0|<\frac{2}{n^2}<\epsilon, \ \forall n\geq N.$$

Then $a_n \to 0$.

(iii)
$$a_n := 2/(n^2 + 1)$$

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

$$N > \sqrt{\frac{2}{\epsilon}}$$
.

Then

$$|a_n-0|<\frac{2}{n^2}<\epsilon, \ \forall n\geq N.$$

Then $a_n \to 0$.

(iv)
$$a_n := 5/(3n+1)$$

(iii)
$$a_n := 2/(n^2 + 1)$$

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

$$N > \sqrt{\frac{2}{\epsilon}}$$
.

Then

$$|a_n-0|<\frac{2}{n^2}<\epsilon, \ \forall n\geq N.$$

Then $a_n \to 0$.

(iv)
$$a_n := 5/(3n+1)$$

$$\frac{5}{3n+1} < \frac{5}{3n}$$
 for all $n \in \mathbb{N}$.

(iii)
$$a_n := 2/(n^2 + 1)$$

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

$$N > \sqrt{\frac{2}{\epsilon}}$$
.

Then

$$|a_n-0|<\frac{2}{n^2}<\epsilon, \ \forall n\geq N.$$

Then $a_n \to 0$.

(iv)
$$a_n := 5/(3n+1)$$

$$\frac{5}{3n+1} < \frac{5}{3n}$$
 for all $n \in \mathbb{N}$.

Choose $N \in \mathbb{N}$ such that $N > 5/3\epsilon$. Then $|a_n - 0| < \frac{5}{3n} < \epsilon$ for all n > N. Then $a_n \to 0$.

(v).
$$\lim_{n\to\infty} r^n = 0$$
 for $|r| < 1$.

(v).
$$\lim_{n\to\infty} r^n = 0$$
 for $|r| < 1$.

Case 1. r = 0

In this case the sequence is $\{0,0,0,\ldots\}$ which converges to 0.

(v).
$$\lim_{n\to\infty} r^n = 0$$
 for $|r| < 1$.

Case 1. r = 0

In this case the sequence is $\{0,0,0,\ldots\}$ which converges to 0.

Case 2. $r \neq 0$ and |r| < 1.

Since |r| < 1, $\frac{1}{|r|} > 1$. Let $\frac{1}{|r|} = 1 + a$ where a > 0.

(v).
$$\lim_{n\to\infty} r^n = 0$$
 for $|r| < 1$.

Case 1. r = 0

In this case the sequence is $\{0,0,0,\ldots\}$ which converges to 0.

Case 2. $r \neq 0$ and |r| < 1.

Since |r| < 1, $\frac{1}{|r|} > 1$. Let $\frac{1}{|r|} = 1 + a$ where a > 0. Then

$$|r^n - 0| = |r|^n = \frac{1}{(1+a)^n}.$$

(v).
$$\lim_{n\to\infty} r^n = 0$$
 for $|r| < 1$.

Case 1. r = 0

In this case the sequence is $\{0,0,0,\ldots\}$ which converges to 0.

Case 2. $r \neq 0$ and |r| < 1.

Since |r| < 1, $\frac{1}{|r|} > 1$. Let $\frac{1}{|r|} = 1 + a$ where a > 0. Then

$$|r^n - 0| = |r|^n = \frac{1}{(1+a)^n}.$$

We have $(1+a)^n > na$ for all $n \in \mathbb{N}$ and hence,

$$|r^n - 0| < \frac{1}{na}$$
 for all $n \in \mathbb{N}$.

Let $\epsilon > 0$ be given. Then

$$|r^n - 0| < \epsilon \text{ holds if } n > \frac{1}{a\epsilon}.$$

Choose any $N \in \mathbb{N}$ such that $N > \frac{1}{a\epsilon}$. Then

$$\forall n \geq N, \ |r^n - 0| < \epsilon.$$

Since $\epsilon > 0$ is arbitrary,

$$\lim_{n\to\infty}r^n=0.$$