IPSC Project Progress Report

<u>Title</u>: Parallel Face Recognition Using SVD

Team Members:

Name: Chittaranjan Rath Roll No: 2018201007

Name: Nitish Srivastava Roll No: 2018201012

Name: Prakash Nath Jha Roll No: 2018201013

Deliverables:

- Implementation of face recognition using open mp
- Observing the various aspects of our implementation using other approaches like
 - k-NN
 - Nearest Mean
 - K Means
- Applying PCA for dimensionality reduction by using SVD

Technologies to be used:

- C++14
- Python 3
- Open MP
- Intel MKL libraries (Eigen Library)
- C++ Boost library(to be used for primitive operations)
- GNU Plot

Implementation Approches:

Nearest Mean (serial implementation):

Accuracy: 90%

Execution Time: 0.020303 sec

Nearest Mean (parallel implementation):

Threads: 2

Accuracy: 90%

Execution Time: 0.226169 sec

Threads: 4

Accuracy: 90%

Execution Time: 0.068082 sec

Threads: 8

Accuracy: 90%

Execution Time: 0.081548 sec

K-NN (serial implementation):

K = 4:

Accuracy: 91.25%

Execution Time: 0.060538 sec

K = 10:

Accuracy: 76.25%

Execution Time: 0.098322 sec

Visualization:

It is performed for parallel immplementation of algorithms No of threads vs time No of processors vs time

Threads vs Time Means (execution #1)

Threads vs Time Means (execution #2):

Observation:

- As the number of threads increases, time taken for execution is reduced.
- The reduction in time is till we approach a threshold (when number of threads exceeds number of available cores)
- As number of threads increases the execution time increases (seen beyond #threads > no_of_cores (8))

Resources:

- Face Recognition Using Singular Value
 Decomposition of Facial Colour Image Database
 Reference:
 https://pdfs.semanticscholar.org/cdab/c8ec5e0629752
 980f8cb613a56a33efb05c7.pdf
- Face Recognition using Eigenfaces and Distance Classifiers Reference_ https://onionesquereality.wordpress.com/2009/02/11/f https://onionesquereality.wordpress.com/2009/02/11/f https://onionesquereality.wordpress.com/2009/02/11/f https://onionesquereality.wordpress.com/2009/02/11/f
- Face Recognition Using Tensor SVD Chapter 14
 Book: Matrix Methods in Data Mining and Pattern Recognition

Github Repository:

https://github.com/chittaranjan-rath/Parallel-Face-Recognition

Probable DataSets:

- https://facedetection.com/datasets/
- http://www.face-rec.org/databases/

Assumptions:

The datasets were collected with the assumptions that the algorithm implementation is performed only for face recognition. Face detection is currently beyond the scope of project.

Testing Plan:

Various analysis criteria such as

- Comparision of serial vs parallel execution
- Speed up w.r.t number of threads(equal or less than number of cores)
- Speed up w.r.t number of threads(may be more than number of cores)
- Observe the factors of memory bound and computation bound in algorithm
- Performance (accuracy) of parallel face recognition algorithm