Procedimiento para elaborar la tabla ANOVA

Procedimiento para construir con éxito la tabla ANOVA en un diseño completamente aleatorizado y en un diseño en bloques.

Pasos.

1) Obtenga a partir de los datos las sumas de los valores para cada tratamiento ($\sum y$) y las sumas de los valores al cuadrado para cada tratamiento ($\sum y^2$). Esto para mayos facilidad lo puede más fácilmente realizar con el modo estadística de la calculadora.

Recuerde que y_1 , y_2 , y_3 , hasta y_k son las sumas $\sum y$ de los valores para cada tratamiento obtenidos en el paso 1.

2) Obtenga $y_{...}$ sabiendo que $y_{...} = y_{1.} + y_{2.} + y_{3.} + ... + y_{k.}$ (recuerde que k es el número de tratamientos)

3) Obtenga
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2$$

Recuerde que esta suma no es más que las sumas de los valores al cuadrado de cada tratamiento.

4) Obtenga
$$\frac{(y_{..})^2}{N}$$

5) Obtenga
$$\sum_{i=1}^{k} \frac{(y_{i.})^2}{n_i}$$

6) Obtenga
$$STC = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{(y_{..})^2}{N}$$

$$SCTr = \sum_{i=1}^{k} \frac{(y_{i.})^{2}}{n_{i}} - \frac{(y_{..})^{2}}{N}$$

$$SCE = STC - SCTr$$

7) Construya la Tabla ANOVA

Para el Diseño en Bloques, lo adicional a obtener es la suma de los valores para cada bloque, es decir, los y_{ij} y luego obtenga:

1)
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2$$

2)
$$\frac{(y_{..})^2}{N}$$

3)
$$\sum_{i=1}^{k} \frac{(y_i)^2}{b}$$

4)
$$\sum_{i=1}^{b} \frac{(y_{.i})^2}{k}$$

5)
$$STC = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{(y_{..})^2}{N}$$

6)
$$SCTr = \sum_{i=1}^{k} \frac{(y_{i.})^2}{b} - \frac{(y_{..})^2}{N}$$

7)
$$SCB = \sum_{j=1}^{b} \frac{(y_{.j})^2}{k} - \frac{(y_{.})^2}{N}$$

8)
$$SCE = STC - SCTr - SCB$$

9) Construya la Tabla ANOVA

Para aplicar el LSD. Si se quiere comparar el tratamiento i con el tratamiento j

$$|\bar{y}_i - \bar{y}_j|$$
 se comparan con $LSD = t_{\alpha/2;v} \sqrt{CME\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$ donde $v = g, l$. del CME

Los grados de libertad del CME son v=N-k si es un DCA y v=(k-1)(b-1) para el diseño en bloques.