PROJECTO DE ALGORITMOS E MODELAÇÃO COMPUTACIONAL

AGRUPAMENTO (CLUSTERING) PARA MODELOS FARMACOCINÉTICOS

Professor: Paulo Mateus **Aluno:** Ricardo J. D. Ferreira Mestrado Integrado em engenharia Biomédica (69407)
Instituto Superior Técnico 3 de Junho de 2014

Introdução

O projecto consiste em descobrir um conjunto de parâmetros θ_j relativos a j gaussianas, de segundo um algortimo de *Expectation—maximization*. Este algoritmo, mas adaptado a uma *Gaussian Mixture Model*, permite encontrar os parâmetros das gaussianas que maximizam a verosimilhança dos dados.

Tal como descrito no enunciado, é necessário iterar o processo até a uma dada condição de paragem, em que os parametros b_{dj} não variam muito de iterada para iterada, sendo assim os parametros de cada gaussiana os ideiais para aproximar e fazer *clustering* aos dados (sendo este *clustering não-supervisionado*).

Deste modo, a função $f(\theta_j,t)=\sum_{i=1}^2 a_{ij}e^{-b_{ij}t}$ é a que se quer estimar, para um conjunto de dados com j gaussianas.

IMPLEMENTAÇÃO

DADOS PARA A PRIMEIRA ENTREGA

Para a primeira entrega, foram pedidos pelo professor as implementações de três classes, sejam elas a "Amostra", "Grafos de compartimentos" e "Misturas de gaussianas". De seguida serão enunciadas as justificações à forma como se procedeu à escolha de cada tipo de dados para determinada classe.

"AMOSTRA" (AMOSTRA.JAVA)

Nesta classe, optou-se por se organizar os dados da amostra, neste caso o i_d do paciente, um tempo e uma concentração, numa lista ligada, em que cada nó representava um vector contituido por 3 entradas, sendo as características acima descritas.

Sendo relativamente fácil operar sobre listas simplesmente ligadas, a adição (ordenada!) e manipulação de elementos nas mesmas são operações de baixa complexidade.

Essas mesmas listas ligadas estão dissimuladas numa *ArrayList* do java, tornando o processo de manuseamento da mesma muito mais rápido.

FIGURA 1: ESQUEMA DA IMPLEMENTAÇÃO DOS NÓS LIGADOS NA CLASSE *AMOSTRA*

"GRAFOS DE COMPARTIMENTOS" (GRAFOO.JAVA)

Como o nome da classe indica, foi necessário implementar grafos que simulassem os compartimentos, neste caso, os diferentes orgãos do corpo humano, em que cada nó seria um orgão, e cada aresta a interação entre esses mesmos orgãos.

No presente projecto, é apenas considerado um compartimento, neste caso simular-se-á a entrada e saída de fármacos de todo o organismo humano.

Foi escolhida a implementação de grafos com uma *Matriz de Adjacência*, neste caso um *"Tensor de Adjacência"*, já que nas duas primeiras dimensões se indicam os compartimentos de partida e de chegada, e a aresta é representada pela terceira e quarta dimensões, em que um tensor possui a estimativa inicial para a mistura de gaussianas entre esses dois compartimentos.

A título de exemplo, dados n compartimentos, tem-se uma matriz n x n x 4 x 6, como seria de esperar.

"MISTURAS DE GAUSSIANAS" (MIX.JAVA)

Como indicado no enunciado do projecto, a classe de mistura de gaussianas implementa rotinas que permitem operações sobre o método de misturas de gaussianas, sendo a principal a prob, que devolve a probabilidade de uma lista de pontos ser observado por uma mistura.

Também se pode actualizar os parâmetros de uma mistura após cada ciclo do algoritmo EM.

ALTERAÇÕES À PRIMEIRA ENTREGA

"AMOSTRA" (AMOSTRA.JAVA)

A alteração feita aos dados da primeira entrega feita na classe amostra, em que uma implementação usando os dados primitivos de java (*ArrayList*) em substituição à implementação de listas ligadas anteriormente feita, permite agora ordenar, inserir e procurar dados na amostra quer a partir do início do mesmo, quer a partir do fim, sendo a pesquisa de dados na mesma mais eficiente.

Também foi adicionada uma rotina amostra.individuos() que devolve os índices dos indivíduos presentes na amostra.

"GRAFOS DE COMPARTIMENTOS" (GRAFOO.JAVA)

Nesta classe, quase todas as funções foram alteradas, devido a uma incompreensão sobre o enunciado do projecto, o que levou à mudança da definição de aresta do grafo, que anteriormente continha os parâmetros para apenas uma gaussiana, e agora contém os parâmetros relativos a uma mistura.

"MISTURAS DE GAUSSIANAS" (MIX.JAVA)

Nesta classe foi retirado o parâmetro M, referente ao número de gaussianas na mistura, uma vez que o mesmo é definido pelos parametros dados no ficheiro init.

Também algumas atribuições matriciais foram reescritas, de modo a aumentar a eficiência das rotinas nesta classe.

SEGUNDA ENTREGA

"LEITURA DE DADOS" (CSVREADER.JAVA)

Nesta classe, foram implementadas duas rotinas: uma para ler os ficheiros EM#### .csv, de modo a ser possível criar a amostra a partir de dados fornecidos no exterior, e outra para ler os ficheiros init.csv, de modo a ler os valores para as estimativas iniciais de θ para uma aresta.

Estas rotinas fazem uso das classes implementadas anteriormente, e transformam os dados raw presentes nos ficheiros fornecidos pelo docente em dados que seguem as estruturas implementadas em amostra.java, mix.java e grafoo.java, devolvendo, no caso da rotina reader uma amostra, e no caso da rotina readertheta uma mistura.

"INTERFACE GRÁFICA" (GUI.JAVA)

A interface gráfica permite ao utilizador carregar dados relativos à amostra (ou amostras), aos dados iniciais, e introduzir o número de nós do grafo representativo dos vários

"compartimentos", e a respectiva ligação (caso exista).

No final de todo o procesoo permite ao utilizador guardar os dados num ficheiro .txt.

Mais adiante, no manual do utilizador, serão discriminados todos os campos da interface gráfica, e como devem ser preenchidos de modo a iniciar o processo e obter os dados resultantes do algortimo.

"ALGORITMO DE APRENDIZAGEM NÃO SUPERVISIONADA - EM" (EM.JAVA)

Esta é talvez a classe mais importante implementada em todo o projecto. Com a mesma, e usando o método *em.alg((args))* é possível obter os parâmetros das gaussianas que melhor descrevem os dados que serviram de input.

A ordem de actualização dos parametros foi a seguinte:

- X_{ii}^(k);
- W_i(k+1);
- b_{1j} (k+1);
- a_i (k+1);
- b_{2i}(k+1);
- $\sigma_i^{(k+1)}$;

A implementação por esta ordem, e com $a_j^{(k+1)}$ a depender de $b_{1j}^{(k+1)}$, e consequentemente $b_{2j}^{(k+1)}$ a depender de $b_{1j}^{(k+1)}$ e $a_j^{(k+1)}$ fez com que o algoritmo convergisse mais rapidamente para a solução óptima.

O mesmo pára quando todos os b_{dj} satisfazem a condição de paragem descrita no enunciado deste projecto.

MANUAL DE UTILIZAÇÃO

De seguida serão descritos os passos necessários para visualizar os resultados da aplicação do algoritmo.

FIGURA 2: JANELA DE INTERFACE GRÁFICA

A janela representada na figura 2 possui alguns campos a preencher, com as seguintes características:

- No campo "Nº de compartimentos" o número de nós do grafo, isto é, o número de compartimentos necessário para a simulação;
- No campo "Arestas" são colocadas ligações separadas por ponto e virgula, e nó de partida e chegada por virgula. Deste modo, caso se queira colocar uma ligação do nó 1 para o nó 2, deve indicar-se assim

1,2;

- De seguida devem abrir-se os ficheiros relativos às amostras e condições iniciais para as misturas de gaussianas correspondentes a cada nó, os quais ficarão representados na interface para o utilizador poder confirmar;
- Para correr o algoritmo basta pressionar o botão "EM";
- Caso seja necessário corrigir os valores introduzidos na interface o botão reiniciar deve ser pressionado;
- No final de todo o processo, e quando todos as arestas do grafo são processadas, o resultado é indicado na janela, com o botão "Gravar resultados" a permitir guardar os mesmos num ficheiro .txt.

RESULTADOS

De notar que os resultados são impressos em ficheiros .txt, e os mesmos contêm toda a informação necessária sobre a Mistura de Gaussianas. Noutros ficheiros anexos a este relatório estão alguns exemplos de resultados para as amostras EM20.csv, EM100.csv e EM1000.csv, sejam eles resultadosEM20.txt, resultadosEM100.txt e resultadosEM1000.txt.

Também serão anexados os prints na consola do Eclipse dos valores de cada variável

durante as diferentes iteradas para cada uma destas amostras. Analogamente os mesmos seguem em ficheiros denominados *printEM20.txt*, *printEM100.txt* e *printEM1000.txt*.

Como resultados estão também 3 ficheiros de Excel que possuem os pontos relativos às concentrações vs tempo, onde é possivel observar as misturas de gaussianas, e sobrepostas estão as curvas calculadas pelo algoritmo de EM. Cada curva será representada numa cor diferente e serão apresentadas de seguida:

Como seria de esperar, não foram calculados valores de *EM3000.csv* por falta de tempo, no entanto, tentar-se-á processar os dados num computador com melhor velocidade de processamento e tentar-se-á levar resultados à discusão do projecto.

Deste modo foi possível fazer clustering de 4 diferentes comportamentos farmacocinéticos, e descobrir a expressão matemática que aproxima as concentrações relativas a cada um desses comportamentos.

Em baixo estão discriminados os parametros para cada gaussiana nas diferentes amostras.

Parametros para gaussianas EM20

a1	a2	b1	b2
75,20802	-75,208	0,543043	0,765000896
53,16345	-53,1635	0,697298	1,542997996
33,39763	-33,3976	0,332034	0,490973967
33,1993	-33,1993	0,886179	1,268959176

Parametros para gaussianas EM 1000

a1	a2	b1	b2
74,44019996	-74,4402	0,539827	0,762143895
53,32808744	-53,3281	0,698606	1,545908843
32,94241002	-32,9424	0,330703	0,488484971
33.16866499	-33.1687	0.891828	1.266668488

Parametros para gaussianas EM 100

a1	a2	b1	b2
74,80447781	-74,8045	0,542335	0,763016775
53,20726503	-53,2073	0,697447	1,542768562
32,91995977	-32,92	0,332184	0,488378467
33.19001913	-33.19	0.892785	1.266921914