Thresholding

Thresholding

- In our system, for long SPBs at the receiver
 - 1 bits usually result in received values close to c+k
 - 0 bits usually result in received values close to c
- This suggests we can recover original bits by comparing received value with a threshold T
 - Intuitively, a good threshold is halfway between c and c+k
 - i.e. T = c+k/2

r(n): received signal at time n

b(n): thresholded signal

$$\mathbf{r(n)} \quad \mathbf{b(n)} = \begin{cases} 1 & \mathbf{r(n)} \ge \mathbf{T} \\ 0 & \mathbf{r(n)} < \mathbf{T} \end{cases}$$

Training Sequence

- In order to choose a threshold, the receiver needs to know c and k.
- Unfortunately, these may change over time.
- To help the receiver estimate c and k, the transmitter sends a "training sequence"

r(n): received signal at time n

b(n): thresholded signal

$$\mathbf{r(n)} \quad \mathbf{b(n)} = \begin{cases} 1 & \mathbf{r(n)} \ge \mathbf{T} \\ 0 & \mathbf{r(n)} < \mathbf{T} \end{cases}$$

Our Training Sequence

- Assuming F_s = 1MHz, the training sequence consists of 500μs of 0, followed by 500 μs of 1, followed by 500μs of 0.
- Estimating channel parameters from the response
 - estimate of c = minimum value of the response
 - estimate of k = difference between minimum and maximum

Length of the training sequence

- Trade-off in the choice of the pulse width
 - Shorter pulse widths mean more time available to transmit data.
 - Longer pulse widths enable better estimates of channel parameters (c, k)

Length of the training sequence

 The choice of the pulse width is based on an assumption about the value of "a" in the step response.

$$s(n) = k(1 - a^{n+1}) u(n)$$

Question: If the value of "a" is larger (closer to 1), should the pulse width be made longer or shorter?

Example

- Consider a channel with a step response given by $s(n) = k(1 a^{n+1}) u(n)$
- Question: How long should the pulse width W be so that the maximum value of the pulse response is larger than c+0.9k?

Example

Solution: Let the pulse width be W samples.

Since the maximum (max) occurs at the end of the pulse: $max = c + k(1 - a^{w+1})$ To ensure that:

$$max > c + 0.9k$$
 \longrightarrow $c + k(1 - a^{w+1}) > c + 0.9k$

$$c + k (1 - a^{W+1}) > c + 0.9k$$

$$k (1 - a^{W+1}) > 0.9k$$

$$1 - a^{W+1} > 0.9$$

$$0.1 > a^{W+1}$$

$$\ln 0.1 > (W+1) \ln a$$

$$\frac{\ln 0.1}{\ln a} - 1 < W$$

$$0 < a < 1 \Rightarrow \ln a < 0$$

Example

Suppose we have a communication channel with c=0.15, k=0.75, and a=0.9. What is the minimum pulse width so that at the end of the pulse, the response is greater than c+0.9k = 0.825?

Solution: By our prior analysis

$$W > \frac{\ln 0.1}{\ln a} - 1 \approx 20.85$$

