Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №1.4.8

Электромагнитные волны в волноводах

Маршрут III

3 ноября 2018 г. 10 ноября 2018 г.

Работу выполнил Ринат Валиев, 711 гр.

Под руководством Г.И. Лапушкина, к.ф.-м.н.

Постановка эксперимента

Цель работы: ознакомление с методами получения и анализа электромагнитных волн СВЧ-диапазона.

Оборудование: генератор СВЧ типа Г4-83, измерительная линия Р1-28, усилитель 28 ИМ, заглушка, отрезок волновода с поглощающей нагрузкой, отрезки волноводов различных сечений, детекторная головка.

Теоретическая часть

Передача энергии электромагнитных (э.м.) колебаний низкой частоты (скажем, 50 Γ ц) не представляет проблем и делается широко известным способом — по проводам. На более высоких частотах (до 300 М Γ ц) эта задача решается с помощью двухпроводных линий и коаксиальных кабелей. На ещё более высоких частотах (до 300 Γ Γ ц), при колебаниях с длинами волн (в вакууме) от 1 метра до 1 миллиметра (этот диапазон называется диапазоном сверхвысоких частот или, сокращённо, СВЧ), передача энергии с помощью двухпроводной линии или коаксиальных кабелей становится малоэффективной из-за больших потерь: во-первых, резко возрастает сопротивление проводов из-за скин-эффекта — вытеснения тока на поверхность, а в двухпроводной линии, кроме того, потери растут вследствие излучения энергии в окружающее пространство ($\sim \nu^4$).

В СВЧ-диапазоне энергия передаётся с помощью металлических труб, называемых волноводами. Электромагнитные волны могут распространяться по металлическим трубам любого профиля, но из технологических соображений сечения волноводов делаются либо круглыми, либо прямоугольными.

В волноводе прямоугольного сечения может распространяться э.м. волна, которую в пределах волновода можно рассматривать как результат суперпозиции двух плоских волн. Каждая плоская волна является чисто поперечной, так что электрическое и магнитное поля перпендикулярны к направлению их распространения. В суммарной волне электрическое поле имеет только составляющую E_y и, следовательно, перпендикулярно оси волновода, а магнитное поле имеет составляющие H_x и H_z .

Электромагнитное поле в волноводе не является чисто поперечным, а имеет продольные составляющие.

В работе будем использовать обозначения: k – волновое число, λ – длина волны, ω – круговая частота, v_{Φ} – фазовая скорость (в вакууме равна скорости света).

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{v_{\rm ch}}$$

Для э.м. волны с начальной фазой φ_0 векторы напряженностей E и H удовлетворяют волновым уравнениям типа:

$$\begin{cases} \nabla^2 \mathbf{E} = \frac{1}{v^2} \frac{d^2 \mathbf{E}}{dt^2} \\ \nabla^2 \mathbf{H} = \frac{1}{v^2} \frac{d^2 \mathbf{H}}{dt^2} \end{cases} \implies \begin{cases} E = E_0 \cos(\omega t - kx + \varphi_0) \\ H = H_0 \cos(\omega t - kx + \varphi_0) \end{cases}$$

Рис. 1:

Рассмотрим отражение плоской э.м. волны от идеально проводящей, бесконечно протяжённой плоской поверхности x=0 (рис. 1). Пусть вектор напряжённости электрического поля падающей волны E параллелен этой плоскости. В наших обозначениях вектор $veE_{\text{пад}}$ направлен по оси Y (на нас). Фронт волны, падающей подуглом Θ к нормали, показан на рис. 1 пунктиром. Оба вектора напряжённости E и H лежат в плоскости фронта волны, им перпендикулярен волновой вектор k, описывающий распространение волны.

Суммарное электрическое поле в произвольной точке M(x,0,z) имеет вид:

$$E = 2iE_0 \sin(kx \cos\Theta) e^{i\omega(t-z\sin\Theta/c)}$$

Это выражение для волны с амплитудой $2iE_0\sin(kx\cos\Theta)$, бегущей по направлению z с фазовой скоростью $v_{\Phi}=c/\sin\Theta$

При фиксированном угле Θ амплитуда поля гармонически зависит от x и не меняется со временем. Иначе говоря, в результате интерференции падающей и отражённой волн в пространстве над проводящей поверхностью в направлении оси X образуется система стоячих волн. Электрическое поле стоячей волны равно нулю в точках, где $kx\cos\Theta=n\pi$, т.е. там, где:

$$x = \frac{n\pi}{k\cos\Theta}; \qquad n = 0, 1, 2, \dots$$

Если даны две параллельные проводящие плоскости, расположенные на расстоянии a друг от друга, то $\omega_{\rm kp}=\pi c/a,\ \lambda_{\rm kp}=2a$

Фазовая скорость (скорость перемещения поверхности постоянной фазы $v_{\Phi} = \omega/k$) в волноводе больше скорости света в пустоте, а групповая (скорость распространения возмущения $u = d\omega/dk$) всегда меньше. Интересно отметить, что фазовая скорость зависит от частоты.

Если в волноводе имеется какое-либо препятствие, нерегулярность (в предельном случае он просто закрыт металлической пластиной), то в нём появляется отражённая волна. Падающая и отражённая волны интерферируют и создают в волноводе стоячую волну, похожую на стоячие волны в струне. Запишем прямую волну, движущуюся в положительном направлении оси Z, и отраженную в виде:

$$E_1 = E_0 e^{i(\omega t - k_z z)} \qquad E_2 = E_0 \rho e^{i(\omega t + k_z z + \varphi)}$$

где ρ – коэффициент отражения по амплитуде, а φ – фаза отраженной волны. Суммарное поле в волноводе имеет вид:

$$E(z) = E_1 + E_2 = E_0 e^{-ik_z z} (1 + \rho e^{i(2k_z z + \varphi)}) e^{i\omega t} = A_0 e^{i\omega t}$$

Максимальное (в пучности) и минимальное (в узле) значения поля равны соответственно:

$$E_{max} = E_0(1+\rho)$$
 $E_{min} = E_0(1-\rho)$

Расстояние между двумя узлами $l = \pi/k_z = \lambda_{\rm B}/2$. Отношение $K = E_{max}/E_{min}$ называется коэффициентом стоячей волны (к.с.в.).

$$\rho = \frac{E_{max} - E_{min}}{E_{max} + E_{min}} = \frac{K - 1}{K + 1}$$

А. Волны в волноводе при частоте выше критической

Экспериментальная установка

Схема для исследования структуры волн в волноводе при частоте выше критической представлена на рис. 2. Модулированный сигнал от высокочастотного генератора поступает на вход А измерительной линии, вдоль которой перемешается зонд S. Высокочастотный сигнал с зонда поступает на кристаллический детектор D.

Рис. 2: Схема для исследования структуры волн СВЧ

Определив расстояние между узлами, можно рассчитать длину волны и фазовую скорость СВЧ-сигнала в волноводе. Устройство детекторной головки, установленной на измерительной линии, таково, что отклик вольтметра U на величину напряжённости электрического поля E в волноводе.

$$U \sim E^n$$

По графику по графику $\ln(U) = f[\ln(E)]$ можно определить n, если известно распределение поля E(z). Распределение E(z) нетрудно рассчитать для волновода с закороченным концом (металлической заглушкой), когда фаза отражённой волны $\varphi = \pi$, а $\rho = 1$. При этом:

$$E(z) = E_0 e^{-ik_z z} (1 - e^{2ik_z z}) e^{i\omega t} = E_0 e^{i\omega t} (e^{-ik_z z} - e^{ik_z z}) = 2E_0 e^{i\omega t} \sin(k_z z) \sim \sin(k_z z)$$

Меняя нагрузку на выходе измерительной линии (В на рис. 2) и сравнивая максимальное и минимальное показания вольтметра, можно рассчитать коэффициент стоячей волны (к.с.в.) и коэффициент отражения ρ .

Б. Волны в волноводе при частоте ниже критической

Рис. 3: Схема для исследования затухания

Для исследования затухания волн в волноводе при частоте ниже критической используются те же генератор, усилитель, измерительная линия и дополнительный

набор волноводов с отдельной детекторной головкой G (рис. 3). Дополнительный набор начинается и заканчивается волноводами переменного сечения I и II. Между ними можно разместить 1, 2 или 3 одинаковых отрезка с постоянным сечением. В такой системе волны с частотами меньше критической экспоненциально затухают. Мощность сигнала на выходе из волновода W можно связать с мощностью входного сигнала W_0 двумя способами:

$$W=W_0e^{-\alpha z}$$
 или $W=W_010^{-\beta z}$ $z-$ длина волновода.
$$(\beta z)=10\lg\frac{W_0}{W} \qquad \alpha=2.3\cdot\beta$$

$$\alpha=2ik=\frac{2\omega}{c}\sqrt{\left(\frac{\omega_{\rm KP}}{\omega}\right)^2-1}=\frac{2\pi}{a}\sqrt{1-\left(\frac{2a}{\lambda_0}\right)^2}$$

Выполнение эксперимента

В работе предлагается при частоте выше критической исследовать стоячую волну в измерительной линии (рис. 2): измерив распределение сигнала вдоль волновода, рассчитать фазовую скорость и определить характер детектирования (линейный, квадратичный и т.д.); затем, меняя нагрузку на выходе волновода (заглушка, открытый конец или поглотитель), определить коэффициенты отражения электромагнитной волны. При частоте ниже критической предлагается определить коэффициент затухания волны в сборном волноводе (рис. 3) и сравнить с теоретическим.

Измерения и вычисления

А. Волны в волноводе при частоте выше критической

Определение длины волны СВЧ-сигнала в волноводе

1. Восстановим рабочую частоту $\nu=9320~{\rm M}\Gamma$ ц и снимем зависимость показаний вольтметра U от положения зонда z. Установим также ослабление выходной мощности $\gamma=20$ дБ. При этом $\lambda_0=c/\nu_0=32~{\rm mm},\,\lambda_{\rm kp}=2\cdot a=46~{\rm mm}.$

z, MM	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
U, мкВ	36	27	19	11	5	1	0	1	5	13	22	30	40	49	58	65	69
z, MM	17	18	19	20	21	23	24	25	26	27	28	30	31	33	35	37	40
U, мкВ	71	70	67	61	52	32	22	12	5	1	0	5	11	25	42	56	65

 $ext{Таблица 1: Зависимость } U = f(z)$

Вычислим длину волны $\lambda_{\scriptscriptstyle B}$ в волноводе.

$$\lambda_{\text{b}} = \frac{\lambda_0 \lambda_{\text{kp}}}{\lambda_{\text{kp}}^2 - \lambda_0^2} = \frac{32 \cdot 46}{46^2 - 32^2} = 44.5 \text{ mm}$$

2. Построим график U = f(z) используя данные из таблицы 1.

Рис. 4: График зависимости показаний вольтметра U от положения зонда z.

Из графика 4 находим значение $\lambda_{\scriptscriptstyle \rm B} = 44$ мм.

Рассчитаем также фазовую скорость v_{Φ} волн в волноводе, групповую скорость u, используя соотношение $v\cdot v_{\Phi}=c^2$, и волновое число k, описывающее распространение волны вдоль волновода.

$$v_{\Phi} = \nu_0 \cdot \lambda_{\text{B}} = 4.1 \cdot 10^8 \text{ m/c}$$
 $u = \frac{c^2}{v_{\Phi}} = 2.2 \cdot 10^8 \text{ m/c}$
 $k = \frac{\omega_0}{v_{\Phi}} = \frac{2\pi\nu_0}{v_{\Phi}}$

Определение характера детектирования

3. Установим зонд в узел стоячей волны $(U=U_{min})$. Снимем зависимость U от координаты зонда x внутри выбранного диапазона.

x, MM	2.9	3.0	3.2	3.6	4.2	4.7	5.2	5.9	6.6	7.2	7.5	8.2	8.4	8.7	8.8
U, мк B	12	11	10	8	6	5	3	0	3	5	6	8	10	11	12
$\ln(kz)$	1.4	1.4	1.4	1.2	1.0	0.9	0.6	-	0.6	0.9	1.1	1.2	1.3	1.4	1.4
ln(U)	2.5	2.4	2.3	2.1	1.8	1.5	0.9	-	0.9	1.5	1.8	2.1	2.3	2.4	2.5

Таблица 2: Зависимость U от координаты зонда x, где $z=|x-x_0|$, а x_0 – координата узла стоячей волны.

4. Построим график $\ln(U) = f\{\ln[\sin(kz)]\}$.

Рис. 5: График зависимости показаний вольтметра U от сдвига узла на z.

Из графика 5 по наклону прямой определим характер детектирования $U \sim E^n$: $n \simeq 2$. Следовательно, у нас квадратичный характер детектирования.

Определение коэффициентов отражения

5. Снимем металлическую заглушку с фланца измерительной линии. Перемещая зонд определим максимальное и минимальное напряжения в волне. Затем наденем поглощающую нагрузку, снова измерим максимальное и минимальное напряжения в волне. Определим коэффициент отражения ρ для открытого и закрытого волноводов и для волновода с поглощающей нагрузкой.

$$ho = rac{K-1}{K+1},$$
 где $K = rac{E_{max}}{E_{min}} = \left(rac{U_{max}}{U_{min}}
ight)^{1/2}$

	ρ	K
Без нагрузки	0.34	2
С нагрузкой	0.1	1.1
Зеркало	1	∞

Таблица 3: Коэффициенты отражения при разных выходах на волноводе.

Б. Волны в волноводе при частоте ниже критической

Измерение коэффициент затухания

- 6. Соберем установку по схеме, изображенной на рисунке 3. Для добавочных отрезков волноводов a=16 мм. Следовательно, $\lambda_{\rm kp}=32$ мм. При этом $\lambda_0=46$ мм. Это значит, что $\nu_0=9320$ М Γ ц $<\nu_{\rm kp}=9375$ М Γ ц.
- 7. Установим минимальное затухание $\gamma=20$ дБ. Последовательно уменьшая число промежуточных секций, каждый раз подберем ослабление γ сигнала, при котором показания вольтметра усилителя остаются неизменными.

Таблица 4: Зависимость минимального затухания γ от длины всего волновода z.

8. Построим график в удобных координатах по данным таблицы 4.

Рис. 6: График зависимости минимального затухания γ от длины всего волновода z.

Из графика 6 определяем:

$$\beta = 0.168 \text{ G/cm}$$

 $\alpha = 0.38 \text{ Hm/cm}$

При этом теоретическое значение α :

$$\alpha = \frac{2\pi}{a} \sqrt{1 - \left(\frac{2a}{\lambda_0}\right)^2} = 0.39 \text{ H} \text{п/cm}$$

Расчет погрешностей

Источники погрешностей

При измерениях длины детектора: $\sigma_z = \sigma_x = 0.2$ мм.

На генераторе для затухания: $\sigma_{\gamma} = 0.5$ дБ.

Hа вольтметре: $\sigma_U = 1$ мкВ.

При измерении длины волновода линейкой: $\sigma_l = 0.2~{\rm cm}.$

Систематическая погрешность

При определении длины волны СВЧ-сигнала в волноводе:

$$\sigma_{\lambda_{\scriptscriptstyle \mathrm{B}}} \simeq 2$$
 mm.

$$\sigma_{v_{\Phi}} = 2 \cdot 10^7 \text{ m/c}.$$

$$\sigma_u = 10^7 \text{ m/c}.$$

$$\sigma_k = 6$$
.

При определении характера детектирования:

$$\sigma_{\ln(U)} = (1/u)\sigma_U.$$

$$\sigma_z = \sqrt{2}\sigma_x$$
, где $z = |x - x_0|$

$$\sigma_{\ln(kz)} = \left(\left(\frac{\sigma_k}{k} \right)^2 + \frac{2\sigma_x^2}{z^2} \right)^{1/2}$$

При исследовании затухания волн:

$$\sigma_z = \sqrt{5}\sigma_l \simeq 0.5 \text{ cm}$$

Случайная погрешность

Для графика 5 из МНК: $\sigma_n \simeq 0.2$ $\varepsilon_n \simeq 13\%$

Для графика 6 из МНК: $\sigma_{\beta} \simeq 0.07$ $\varepsilon_{\eta} = 13\%$

Итоговые погрешности

$$\sigma_n \simeq 0.3 \implies \varepsilon_n \simeq 17\%$$

$$\sigma_{\beta} \simeq 0.07 \; \mathrm{дБ/cm} \quad \Longrightarrow \quad \varepsilon_{\beta} \simeq 4\%$$

$$\sigma_{\alpha} \simeq 0.02 \text{ H}\text{II/cm} \implies \varepsilon_{\alpha} = \varepsilon_{\beta}$$

Итоги

Определили длину волны СВЧ сигнала в волноводе теоретически и экспериментально, а также некоторое параметры для этой волны (записано выше):

$$\lambda_{\rm t} = 44.5 \; {\rm mm}, \quad \lambda_{\rm s} = (44 \pm 2) \; {\rm mm}$$

Установили характер детектирования в оборудовании, считывающей сигнал:

 $n=(1.9\pm0.3)$ \Longrightarrow квадратичный характер (n=2).

Также нашли коэффициенты отражения для разных случаев (см. таблицу 3).

Определены коэффициенты мощностей для разных представлений:

$$W=W_0e^{-\alpha z}$$
 или $W=W_010^{-\beta z}$ $\qquad z-$ длина волновода.

$$\alpha_{\rm reop} \simeq 0.39~{\rm Hm/cm}$$

$$\beta = (0.168 \pm 0.007)$$
 дБ/см $\implies \varepsilon_{\beta} \simeq 4\%$

$$\alpha = (0.38 \pm 0.02) \text{ Hm/cm} \implies \varepsilon_{\alpha} \simeq 4\%$$