Chapter 43 Espace probabilisé fini

43.1 Le langage de l'aléatoire

Solution 43.1

43.2 Espace probabilisé fini

Solution 43.2

Solution 43.3

Solution 43.4

Solution 43.5

Solution 43.6

Solution 43.7

Solution 43.8

Solution 43.9

Considérons ici comme univers Ω l'ensemble des arrangements des cinq boules 3 à 3; card $\Omega = 5!/(5-3)! = 60$.

1. Il n'existe qu'un seul arrangement «bleue, blanche, rouge», d'où

card
$$A = 1$$
 et $P(A) = \frac{1}{60}$.

2. Si B est l'ensemble des arrangements des trois boules bleue, blanche, rouge, 3 à 3, il vient

card
$$B = 3! = 6$$
 et $P(A) = \frac{6}{60} = \frac{1}{10}$.

On a fait, bien sûr, l'hypothèse d'équiprobabilité de chaque boule pour un tirage, et donc de chaque arrangement de trois boules, pour un tirage de trois boules successivement.

Solution 43.10

arque

 Ω est ici l'ensemble des 3-combinaisons des sept pièces que contient le sac, card $\Omega = \binom{7}{3} = 35$.

1. L'événement A considéré est l'ensemble des 3-combinaisons des quatre pièces de 2 euros. D'où

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega} = \frac{\binom{4}{3}}{\binom{7}{3}} = \frac{4}{35}.$$

2. Pour calculer le cardinal de B deux méthodes sont possibles

card
$$B = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

(respectivement, exactement une pièce, deux pièces et trois pièces de 2 euros). Ou

card
$$\bar{B} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1$$
 (0 pièce de 2 euros).

D'où

card
$$B = 34$$
 et $P(B) = \frac{34}{35}$.

Solution 43.11

Prenons pour Ω l'ensemble $\{1, 2, 3, 4, 5, 6\}^3$.

1. Le système admet une infinité de solutions si, et seulement si,

$$\frac{a}{1} = \frac{b}{2} = \frac{c}{3}.$$

Il n'admet aucune solution si, et seulement si, $\frac{a}{1} = \frac{b}{2} \neq \frac{c}{3}$.

Il admet une solution unique si, et seulement si, $\frac{a}{1} \neq b2$. On a donc

$$\begin{split} A_0 &= \{ \ (1,2,3); (2,4,6) \ \} \\ A_1 &= \{ \ (1,2,c \neq 3) \ \} \cup \{ \ (2,4,c \neq 6) \ \} \cup \{ \ 3,6,c \ \} \\ A_2 &= \overline{A_0 \cup A_1}. \end{split}$$

Il vient

$$card \Omega = 6^3 = 216;$$
 $card A_0 = 2;$ $card A_B = 16;$

et

$$p_0 = \frac{1}{108}$$
 $p_1 = \frac{8}{108}$ $p_2 = 1 - (p_0 + p_1) = \frac{99}{108}.$

2. Le sytème admet la solution unique (3,0) si, et seulement si,

$$\begin{cases} 2a \neq b & \text{(solution unique)} \\ c = 3a & \text{((3,0) est solution).} \end{cases}$$

 A_3 est donc l'ensemble des triplets $(a, b \neq 2a, 3a)$; on a donc $(1, b \neq 2, 3)$ ou $(2, b \neq 4, 6)$ d'où

card
$$A_3 = 10$$
 et $p_3 = \frac{5}{108}$.

Solution 43.12

Numérotons les packs de 1 à 150, les packs numérotés de 1 à 50 étant avariés.

Une distribution de 150 packs est décrite par une permutation de l'ensemble E = [1, 150] (à la k-ème place figure le numéro du pack emporté par le k-ème acheteur).

Soit A_k l'évenement: «le k-ème acheteur emporte un pack avarié».

Toute les permutations de E sont équiplobables donc

$$P(A_k) = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$$

et il y a 150! cas possibles.

Il y a 50 façons de choisir le numéro du pack avarié mis à la *k*-ème place puis, pour chacune d'elles, 149! façons de répartir les 149 autres packs, d'où

$$P(A_k) = \frac{50 \times 149!}{150!} = \frac{1}{3}$$

et cela pour tout $k \in [1, 150]$. Le range de l'acheteur est donc indiffèrent!

Solution 43.13

Une «main» est une combinaison de 5 cartes prises parmi 32.

Toute ces combinaisons sont équiprobables; donc pour tout événement P(A) est le quotient du nombre de cas favorables par le nombre de cas possibles et il y a $\binom{32}{5}$ cas possibles.

1. Soit A_1 l'événement «obtenir une seule paire». Il y a 8 façons de choisir la hauteur de la paire puis, pour chacune d'elles, $\binom{4}{2}$ façons de choisir une paire de cette hauteur puis $\binom{7}{3}$ façons de choisir une combinaison de 3 hauteurs parmi les 7 restantes puis 4³ façons de choisir une carte de chacune de ces 3 hauteurs. Donc

$$P(A_1) = \frac{8 \times {4 \choose 2} \times {7 \choose 3} \times 4^3}{{32 \choose 5}} = \frac{480}{899} \approx 0.534.$$

2. Pour la suite, revoir le chapitre dénombrement... On trouve

$$P(A_2) = \frac{\binom{8}{2}\binom{4}{2}^2 24}{\binom{32}{5}} = \frac{108}{899} \approx 0.120.$$

3. $P(A_3) = \frac{8\binom{4}{3}\binom{7}{2}4^2}{\binom{32}{2}} = \frac{48}{899} \approx 0.53.$

4. $P(A_4) = \frac{8 \times 28}{\binom{32}{\varepsilon}} = \frac{1}{899} \approx 0.001.$

5. $P(A_5) = \frac{8\binom{4}{3}7\binom{4}{2}}{\binom{32}{1}} = \frac{6}{899} \approx 0.007.$

Solution 43.14

Solution 43.15 Un exemple de marche aléatoire

Solution 43.16 *Un exemple de marche aléatoire*

Solution 43.17

Solution 43.18

Solution 43.19

L'espace probabilisé Ω correspondant à cette expérience est

$$\Omega = \left\{ \; \left((a_1, \ldots, a_n), (b_1, \ldots, b_n) \right) \; \middle| \; a_i = 0, 1 \; \text{et} \; b_i = 0, 1 \; \right\}.$$

On suppose que l'on a équiprobabilité sur l'espace Ω . On a card $(\Omega) = 2^{2n}$.

L'évènement A_k : «tous les deux obtiennent k fois face» est représenté par

$$A_k = \left\{ \left. \left((a_1, \dots, a_n), (b_1, \dots, b_n) \right) \mid a_i = 1 \text{ } k \text{ fois et } b_i = 1 \text{ } k \text{ fois } \right\}.$$

On a card $(A_k) = \binom{k}{n}$ et donc $P(A_k) = \frac{\binom{k}{n}^2}{2^{2n}}$. Comme $A = \bigcup_{k=0}^n A_k$ et que les A_k sont deux à deux disjoints, on a

$$P(A) = \sum_{k=0}^{n} P(A_k) = \sum_{k=0}^{n} \frac{\binom{k}{n}^2}{2^{2n}} = \frac{1}{2^{2n}} \sum_{k=0}^{n} \binom{k}{n}^2.$$

Or

$$\sum_{k=0}^{n} \binom{k}{n}^2 = \sum_{k=0}^{n} \binom{k}{n} \binom{n-k}{n}$$

est le coefficient de x^n dans le polynôme produit $(1+x)^n(1+x)^n=(1+x)^{2n}$, c'est donc $\binom{n}{2n}$.

Conclusion

$$P(A) = \frac{\binom{n}{2n}}{2^{2n}}.$$

43.3 Conditionnement

Solution 43.20

Solution 43.21

Soit A l'événement «la pièce est acceptée par le contrôle» et B l'événement «la pièce est bonne». L'énoncé donne

$$P(\bar{B}) = 0.05$$
, $P_R(A) = 0.96$, $P_{\bar{R}}(\bar{A}) = 0.98$.

1. Soit E l'événement «il y a une erreur de contrôle».

$$P(E) = P\left((B \cap \bar{A}) \cup (\bar{B} \cap A)\right) = P(B \cap \bar{A}) + P(\bar{B} \cap A)$$

car les événements $(B \cap \bar{A})$ et $(\bar{B} \cap A)$ sont disjoints. Donc

$$P(E) = P(B)P_{R}(\bar{A}) + P(\bar{B})P_{\bar{B}}(A).$$

Or
$$P_B(\bar{A}) = 1 - P_B(A) = 0.04$$
 et $P_{\bar{B}}(A) = 1 - P_{\bar{B}}(\bar{A}) = 0.02$ et $P(B) = 1 - P(\bar{B}) = 0.95$. D'où
$$P(E) = 0.95 \times 0.04 + 0.05 \times 0.02 = 0.039.$$

2. On applique la formule de Bayes pour le système complet d'événements de probabilités non nulles (B, \bar{B}) ,

$$P_A(\bar{B}) = \frac{P(\bar{B})P_{\bar{B}}(A)}{P(B)P_{\bar{B}}(A) + P(\bar{B})P_{\bar{B}}(A)} = \frac{0.05 \times 0.02}{0.95 \times 0.96 + 0.05 \times 0.02} = \frac{1}{913} \approx 0.039.$$

Solution 43.22

L'ensemble Ω des éventualités est l'ensemble des combinaisons de 3 pommes prises parmi 14. Il y a donc $\binom{14}{3} = 364$ éventualités. Les pommes sont prises au hasard, il y a donc équiprobabilité.

1. Soit A l'événement «il donne une pomme de chaque sorte»,

$$\operatorname{card}(A) = 3 \times 4 \times 7 = 84$$

$$P(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)} = \frac{3}{13}.$$

2. Soit *B* l'événement «il donne 3 pommes de la même espèce»,

$$\operatorname{card}(B) = {3 \choose 3} + {4 \choose 3} + {7 \choose 3} = 40 P(B) = \frac{\operatorname{card}(B)}{\operatorname{card}(\Omega)} = \frac{10}{91}.$$

3. Soit *C* l'événement «il donne 3 pommes de saignette»,

$$\operatorname{card}(C) = \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1 \qquad P(C) = \frac{\operatorname{card}(C)}{\operatorname{card}(\Omega)} = \frac{1}{364},$$

$$P_B(C) = \frac{P(B \cap C)}{P(B)} = \frac{P(C)}{P(B)} = 0,025.$$

Solution 43.23

Appelons

- A l'événement: «La première boule tirée est rouge».
- B l'événement: «La deuxième boule tirée est rouge».
- C l'événement: «La troisième boule tirée est noire».

Alors

$$P(A \cap B \cap C) = P(A).P_A(B).P_{A \cap B}(C) = \frac{5}{6} \times \frac{4}{5} \times \frac{1}{4} = \frac{1}{6}.$$

Solution 43.24

Notons A l'événement «il pleut» et B l'événement «il annonce qu'il pleut». L'événement A a pour probabilité $P(A) = \frac{9}{10}$.

Quand il pleut, il dit la vérité en annoçant qu'il pleut: $P_A(B) = 2/3$. Quand il ne pleut pas, il se trompe en annoçant qu'il pleut: $P_{\bar{A}}(B) = 1/2$.

Avec la formule des probabilités totales, nous obtenons

$$P(B) = P(A)P_A(B) + P(\bar{A})P_{\bar{A}}(B) = \frac{9}{10} \times \frac{2}{3} + \frac{1}{10} \times \frac{1}{2} = \frac{13}{20}.$$

La probabilité pour qu'il pleuve effectivement sachant qu'il annoce «je crois qu'il pleut est

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P_A(B)}{P(B)} = \frac{12}{13}.$$

Solution 43.25

Pour que le dernier tiroir ouvert contienne plusieurs chaussettes roses, il faut que ce soit celui qui en contenait quatre. Considérons les événements suivants

- A «la première chaussette est rose»,
- R «le deuxième tiroir contenait les quatre chaussettes roses»,
- B «la deuxième chaussette est rose».

On utilise la formule des probabilités totales avec les système complet d'événements $(R \cap A, \bar{R} \cap A, R \cap \bar{A}, \bar{R} \cap \bar{A})$ (de probabilités non nulles):

$$\begin{split} P(B) &= P(A)P_A(R)P_{R\cap A}(B) + P(A)P_A(\bar{R})P_{\bar{R}\cap A}(B) + P(\bar{A})P_{\bar{A}}(R)P_{R\cap \bar{A}}(B) + P(\bar{A})P_{\bar{A}}(\bar{R})P_{\bar{R}\cap \bar{A}}(B) \\ &= \frac{3}{5}\frac{1}{2} + \frac{3}{5}\frac{1}{2}\frac{1}{5} + \frac{2}{5}\frac{1}{2}\frac{4}{5} + \frac{2}{5}\frac{1}{2}0 = \frac{23}{50}. \end{split}$$

Nous obtenons ainsi la probabilité conditionnelle

$$P_B(R) = \frac{P(B \cap R)}{P(B)} = \frac{23}{26}.$$

Solution 43.26

Notons R_i (respectivement N_i) l'événement : «le tirage dans la i-ème urne donne une boule rouge » (resp. noire).

L'énoncé donne : $P(R_1) = \frac{3}{5}$, $P(R_2) = \frac{4}{5}$, $P(N_1) = \frac{2}{5}$, $P(N_2) = \frac{1}{5}$. On cherche

$$P(R_1|N_3) = \frac{P(R_1 \cap N_3)}{P(N_3)}.$$

 (N_2, R_2) est un système complet d'évennement donc

$$R_1 \cap N_3 = (R_1 \cap N_2 \cap N_3) \cup (R_1 \cap R_2 \cap N_3)$$

et cette union est disjointe, d'où

$$\begin{split} P(R_1 \cap N_3) &= P(R_1 \cap N_2 \cap N_3) + P(R_1 \cap R_2 \cap N_3) \\ &= P(R_1) P(N_2 | R_1) P(N_3 | R_1 \cap N_2) + P(R_1) P(R_2 | R_1)) P(N_3 | R_1 \cap R_2), \end{split}$$

car $P(R_1 \cap N_2) > 0$ et $P(R_1 \cap R_2) > 0$ (formule des probabilités composées). Or R_1 et N_2 sont indépendants, ainsi que R_1 et R_2 , d'où

$$P(N_2|R_1) = P(N_2) = \frac{1}{5}$$
 $P(R_2|R_1) = P(R_2) = \frac{4}{5}.$

Finalement,

$$P(R_1 \cap N_3) = \frac{3}{5} \times \frac{1}{5} \times \frac{4}{9} + \frac{3}{5} \times \frac{4}{5} \times \frac{3}{9} = \frac{3 \times 4^2}{5^2 \times 9}.$$

Un calcul similaire donne

$$\begin{split} P(N_1 \cap N_3) &= P(N_1)P(N_2|N_1)P(N_3|N_1 \cap N_2) + P(N_1)P(R_2|N_1))P(N_3|N_1 \cap R_2), \\ &= \frac{2}{5} \times \frac{1}{5} \times \frac{5}{9} + \frac{2}{5} \times \frac{4}{5} \times \frac{4}{9} \\ &= \frac{2 \times 21}{5^2 \times 9} \end{split}$$

On en déduit donc

$$P(R_1|N_3) = \frac{3 \times 4^2}{3 \times 4^2 + 2 \times 21} = \frac{8}{15}.$$

Solution 43.27

Solution 43.28

Solution 43.29 La chaîne des menteurs

En notant A_n l'événement « l'information transmise par M_n est identique à celle envoyée par M_0 , la formule des probabilités totales donne

$$a_{n+1} = P(A_n)P(A_{n+1}|A_n) + P(A_n^c)P(A_{n+1}|A_n^c) = a_np + (1 - a_n)(1 - p) = (2p - 1)a_n + (1 - p).$$

On reconnaît une suite arithmético-géométrique de point fixe $\ell = \frac{1}{2}$: pour tout entier n, on a donc $(a_{n+1} - \ell) = (2p-1)(a_n - \ell)$. d'où

$$a_n = \frac{1}{2}(2p-1)^{n-1} + \frac{1}{2}.$$

Bien entendu, $\lim a_n = \frac{1}{2}$: après un grand nombre de transmissions hasardeuses, on a perdu toute information!

Solution 43.30

Solution 43.31

43.4 Indépendance stochastique

Solution 43.32

Solution 43.33

1. On a le système complet d'événement (B, \bar{B}) donc $P(A) = P(A \cap B) + P(A \cap \bar{B})$, d'où

$$P(A \cap \bar{B}) = P(A) - P(A \cap B) = P(A) - P(A)P(B) = P(A)(1 - P(B)) = P(A).P(\bar{B}).$$

Les autres assertions se démontrent de façon analogue.

2. Dans un ensemble $\Omega = \{a, b\}$ de cardinal 2, prenons $A = \{a\}$ et $B = \{b\}$. Les deux applications P et Q telles que $Q(A) = Q(B) = \frac{1}{2}$ et P(A) = 1, P(B) = 0 permettent de définir deux probabilités sur $(\Omega, \mathcal{P}(\Omega))$. On vérifie immédiatement que les deux événements A et B sont indépendants pour P et ne le sont pas pour Q.

Solution 43.34

Notons A l'événement «il va pleuvoir», B_1 l'événement «la première grenouille annoce qu'il va faire beau» et B_2 l'événement «la deuxième grenouille annoce qu'il va faire beau».

L'événement A a pour probabilité $P(A) = \frac{2}{5}$.

Quand il va pleuvoir, les grenouilles annoncent le beau temps quand elles se trompent:

$$P_A(B_1) = P_A(B_2) = \frac{2}{10}$$
 et $P_A(B_1 \cap B_2) = \frac{1}{25}$.

Quand il va faire beau, elle annoncent le beau temps neuf fois sur dix

$$P_{\bar{A}}(B_1) = P_{\bar{A}}(B_2) = \frac{9}{10}.$$

La formule des probabilité totale nous donne

$$P(B_1) = P(A)P_A(B_1) + P(\bar{A})P_{\bar{A}}(B_1) = \frac{2}{5} \times \frac{2}{10} + \frac{3}{5} \times \frac{9}{10} = \frac{31}{50}.$$

Le même calcul donne $P(B_2) = \frac{31}{50}$.

Nous devons calculer $P_{B_1 \cap B_2}(A) = \frac{P(A \cap (B_1 \cap B_2))}{P(B_1 \cap B_2)}$.

$$P(A \cap (B_1 \cap B_2)) = P(A)P_A(B_1 \cap B_2) = \frac{2}{5} \times \frac{1}{25} = \frac{2}{125}.$$

Comme les comportements des grenouilles sont indépendants, les événements B_1 et B_2 sont indépendants:

$$P(B_1 \cap B_2) = P(B_1)P(B_2) = \frac{961}{2500}.$$

Nous avons ainsi

$$P_{B_1 \cap B_2}(A) = \frac{P(A \cap (B_1 \cap B_2))}{P(B_1 \cap B_2)} = \frac{40}{961}.$$

Solution 43.35

Soit A l'événement «la ceinture cède», B_1 et B_2 les événements respectifs «la bretelle droite lâche» et «la bretelle gauche lâche» et C l'événement «la culotte tombe». Les bretelles et la ceinture ayant des résistances indépendantes, A, B_1 et B_2 sont indépendants, ainsi que A, B_1^c et B_2^c .

1. On a

$$P(A) = \frac{1}{15}$$
 $P(B_1) = \frac{1}{5}$ $P(B_2) = \frac{1}{5}$ $P(C) = P(A \cap B_1 \cap B_2).$

Les événements A, B_1 et B_2 étant indépendants,

$$P(C) = P(A)P(B_1)P(B_2) = \frac{1}{375}.$$

2. On a

$$P_{C^c}(A) = \frac{P(A \cap C^c)}{P(C^c)}$$
 $P(C^c) = 1 - P(C) = \frac{374}{375}.$

 $A \cap C^c$ est égal à

$$A\cap (B_1^c\cup B_2^c)=(A\cap B_1^c)\cup (A\cap B_2^c)$$

Les événement A, B_1^c et B_2^c sont indépendants, donc

$$\begin{split} P\left((A\cap B_1^c) \cup (A\cap B_2^c)\right) &= P(A\cap B_1^c) + P(A\cap B_2^c) - P(A\cap B_1^c\cap B_2^c) \\ &= P(A)P(B_1^c) + P(A)P(B_2^c) - P(A)P(B_1^c)P(B_2^c) \\ &= \frac{4}{5} \cdot \frac{1}{15} + \frac{4}{5} \cdot \frac{1}{15} - \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{1}{15} = \frac{8}{125}. \end{split}$$

Ce qui donne

$$P_{C^c}(A) = \frac{P(A \cap C^c)}{P(C^c)} = \frac{12}{187}.$$

Solution 43.36 Tirages dans des urnes de façon aléatoire

Solution 43.37

Solution 43.38 Trois face d'affilée

Chapter 44 Variables aléatoires sur un univers fini

Solution 44.1

Solution 44.2

- $X(\Omega) = \{4, 2, 1, 0, -1, -2\}.$
- P(X = 4) = 6/91, P(X = 2) = 8/91, P(X = 1) = 32/91, P(X = 0) = 1/91, P(X = -1) = 16/91, P(X = -2) = 28/91.

Solution 44.3

X suit une loi hypergéométrique (usuelle mais hors-programme).

Solution 44.4

Solution 44.5

Solution 44.6

Solution 44.7

En cours!

Solution 44.8

- 1. La probabilité de rencontrer un lapin rose est constante, on répète donc deux fois un tirage de Bernoulli de paramètre p = 0.1, de manière indépendante. La variable aléatoire T suit la loi binomiale B(2; 0.1).
- **2.** La variable aléatoire X suit la loi binomiale B(7; 0.1).
- **3.** Le chapeau contient sept lapins mutuellement indépendants. Ils ont chacun la probabilité 0.1 d'être rose. La variable aléatoire Y suit la loi binomiale B(2;0.1).
- **4.** Le sexe est indépendant de la couleur. Comme un lapin a une chance sur deux d'être une lapine, la probabilité pour qu'ils soient de sexes opposés est 0.5. La probabilité pour qu'il soient blancs tous les deux est P(Y = 0). La probabilité p pour qu'il y ait des lapereaux roses est donc

$$p = 0.5 \times (1 - (0.9)^2) = 0.095.$$

Solution 44.9

Les deux événements

- D : «perdre le crayon droit»
- G: «perdre le crayon gauche»

sont indépendants et ont la même probabilité q. Soit X le nombre de crayons perdus par un boucher.

X suit la loi binomiale B(2; q).

$$P_{\{X \ge 1\}}(X=1) = \frac{P(X=1)}{P(X \ge 1)} = \frac{2q(1-q)}{(1-q)^2 + 2q(1-q)} = \frac{2q}{1+q}.$$

En assimilant la proportion p de bouchers qui ont un seul crayon parmi ceux qui en ont au moins un à $P_{\{X \ge 1\}}(X = 1)$, on obtient

$$p \approx \frac{2q}{1+q}$$
 d'où $q \approx \frac{p}{2-p}$.

Comme $P(X=2)=q^2$, on peut prendre comme estimation de la proportion f de bouchers qui ont perdu leurs deux crayons

$$f \approx \left(\frac{p}{2-p}\right)^2.$$

Solution 44.10

- **1.** X = Y/10 où $Y \sim B(10, 1/2)$.
- **2.** $P(X > 0,5) = P(Y > 5) = P(Y \in \{6,7,8,9,10\}) \approx 0,377.$
- **3.** $P(0, 4 \le X \le 0, 6) = P(4 \le Y \le 6) = P(Y \in \{4, 5, 6\}) \approx 0,656$
- **4.** $P(3 \le Y \le 7) \approx 0,891$. $P(2 \le Y \le 8) \approx 0,978$. Donc a = 3.
- 5. Oui. Non.

Moments d'une variable aléatoire finie

Solution 44.11

1. Loi de *X*

$$E(x) = \sum_{i=1}^{6} x_i p_i = 3.7$$
 $E(X^2) = \sum_{i=1}^{6} x_i^2 p_i = 16.3$ donc $V(X) = 16.3 - 3.7^2 = 2.61$.

2. Loi de *Y*

On sait que $P(Y < 5) = \frac{1}{3}$ donc $a + b = \frac{1}{3}$, $P(Y > 5) = \frac{1}{2}$ donc $d = \frac{1}{2}$, P(Y = 3) = P(Y = 4) donc a = b. Enfin a + b + c + d = 1 car $\sum_{i=1}^{4} p_i = 1$.

On en déduit $a = b = \frac{1}{6}$, $d = \frac{1}{2}$, $c = \frac{1}{6}$ et la loi de Y

Donc $E(Y) = \sum_{i=1}^{4} y_i p_i = 5$.

$$E(Y^2) = \sum_{i=1}^4 y_i^2 p_i = \frac{158}{6} \text{ donc } V(Y) = \frac{158}{6} - 5^2 = \frac{4}{3}.$$

Solution 44.12

1. X prend les valeurs $k \in [1, 6]$. Si p = P(X = 1), on a P(X = k) = kp pour tout $k \in [1, 6]$. On doit avoir $\sum_{k=1}^{6} P(X = k) = 1$, donc

$$\sum_{k=1}^{6} kp = p \frac{6 \times 7}{2} = 1.$$

Donc p = 1/21 et la loi de X est donnée par el tableau suivant

$\overline{}$	1	2	3	4	5	6
P(X=k)	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{3}{21}$	$\frac{4}{21}$	$\frac{5}{21}$	$\frac{6}{21}$

2. $E(X) = \sum_{k=1}^{6} kP(X=k)$, donc

$$E(X) = \sum_{k=1}^{6} k \frac{k}{21} = \frac{1}{21} \sum_{k=1}^{6} k^2 = \frac{1}{21} \frac{6 \times 7 \times 13}{6} = \frac{13}{3}.$$

3. Y prend les valeurs $\frac{1}{k}$, $k \in [1, 6]$ et pour tout $k \in [1, 6]$, $P\left(Y = \frac{1}{k}\right) = P\left(X = k\right)$. Donc la loi de Y est donnée par le tableau

On a donc

$$E(Y) = \sum_{k=1}^{6} \frac{1}{k} P\left(Y = \frac{1}{k}\right) = \sum_{k=1}^{6} \frac{1}{k} \frac{k}{21} = \frac{6}{21} = \frac{2}{7}.$$

narque

On peut retrouver le résultat à l'aide de la formule de transfert:

$$E(Y) = \sum_{k \in X(\Omega)} \frac{1}{k} P(X = k).$$

Solution 44.13

Solution 44.14

L'ensemble Ω des éventualités est l'ensemble des combinaisons de 3 animaux pris parmi 30 animaux:

$$\operatorname{card}(\Omega) = \binom{30}{3} = 4060.$$

C'est une situation d'équiprobabilité. On note p = 1/4060.

• (X = 0) est l'événement «le visiteur photographie 3 lamas»,

$$P(X=0) = {5 \choose 3} \times p = \frac{10}{4060}.$$

• (X = 1) est l'événement «le visiteur photographie 1 dromadaire et 2 lamas»,

$$P(X = 1) = {15 \choose 1} {5 \choose 2} \times p = \frac{150}{4060}.$$

• (X = 2) est l'*union disjointe* des événements «le visiteur photographie 1 chameau et 2 lamas» et «le visiteur photographie 2 dromadaires et 1 lama»,

$$P(X = 2) = \left(\binom{10}{1} \binom{5}{2} + \binom{15}{2} \binom{5}{1} \right) \times p = \frac{625}{4060}.$$

• (X = 3) est l'*union disjointe* des événements «le visiteur photographie 1 chameau, 1 dromadaire et 1 lamas» et «le visiteur photographie 3 dromadaires»,

$$P(X=3) = \left(\binom{10}{1} \binom{15}{1} \binom{5}{1} + \binom{15}{3} \right) \times p = \frac{1205}{4060}.$$

• (X = 4) est l'*union disjointe* des événements «le visiteur photographie 2 chameaux et 1 lamas» et «le visiteur photographie 1 chameau et 2 dromadaires»,

$$P(X = 4) = \left(\binom{10}{2}\binom{5}{1} + \binom{10}{1}\binom{15}{2}\right) \times p = \frac{1275}{4060}.$$

• (X = 5) est l'événement «le visiteur photographie 2 chameaux et 1 lama»,

$$P(X=5) = {10 \choose 2} {15 \choose 1} \times p = \frac{675}{4060}.$$

• (X = 6) est l'événement «le visiteur photographie 3 chameaux»,

$$P(X = 6) = {10 \choose 3} \times p = \frac{120}{4060}.$$

On en déduit

$$E(X) = 3.5$$
 $E(X^2) = \frac{5509}{406}$ $V(X) = E(X^2) - E(X)^2 = \frac{1071}{812} \approx 1.32.$

Solution 44.15 Solution 44.16

1. Déterminons la loi de X. La variable aléatoire X prend ses valeurs dans [1, n]. Notons, pour tout k de [1, n], B_k l'événement «on obtient la boule blanche au k-ème tirage».

Soit $i \in [[1, n]]$. Alors

$$(X=i)=\overline{B_1}\cap\overline{B_2}\cap\cdots\cap\overline{B_{i-1}}\cap B_i.$$

Par la formule des probabilités composées, on obtient

$$P(X = i) = P(\overline{B_1})P_{\overline{B_1}}(\overline{B_2}) \dots P_{\overline{B_1}}(\overline{B_2}) \cap \dots \cap \overline{B_{i-2}}(\overline{B_{i-1}})P_{\overline{B_1} \cap \dots \cap \overline{B_{i-1}}}(B_i)$$

$$= \frac{n-1}{n} \frac{n-2}{n-1} \dots \frac{n-i+1}{n-i+2} \frac{1}{n-i+1} = \frac{1}{n}.$$

Ainsi,

$$X(\Omega) = [1, n]$$
 et $\forall i \in [1, n], P(X = i) = \frac{1}{n}$.

Remarque

$$\sum_{i=1}^{n} P(X=i) = \sum_{i=1}^{n} \frac{1}{n} = \frac{n}{n} = 1.$$

La loi de X est uniforme sur [1, n].

2. (Question de cours) On a

$$E(X) = \sum_{i=1}^{n} i P(X = i) = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}.$$

$$E(X^{2}) = \sum_{i=1}^{n} i^{2} P(X = i) = \frac{1}{n} \sum_{i=1}^{n} i^{2} = \frac{(n+1)(2n+1)}{6}$$

$$\operatorname{donc} V(X) = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^{2}}{4} = \frac{n^{2}-1}{12}.$$

Solution 44.17

Solution 44.18

Solution 44.19

Solution 44.20

Solution 44.21

Solution 44.22

Solution 44.23

Solution 44.24

Solution 44.25

Solution 44.26

Solution 44.27

Solution 44.28 Fonction génératrice

Solution 44.29

Chapter 45 Couple de variables aléatoires réelles

Solution 45.1 Solution 45.2

1. On a $P((X = i) \cap (Y = j)) = 0$ si $j \neq i^2$ et $P((X = i) \cap (Y = i^2)) = P(X = i)$.

$X \setminus Y$	0	1	4
-2	0	0	$\frac{1}{6}$
- 1	0	$\frac{1}{4}$	ŏ
0	$\frac{1}{6}$	ō	0
1	ŏ	$\frac{1}{4}$	0
2	0	0	$\frac{1}{6}$

2. La loi de Y est la loi marginale de Y dans le couple (X,Y). On peut aussi obtenir directement cette loi car Y prend les valeurs i^2 pour $i \in X(\Omega)$.

Donc Y prend les valeurs 0, 1 et 4.

$$P(Y = 0) = P(X = 0) = \frac{1}{6},$$

$$P(Y = 1) = P(X = -1) + P(X = 1) = \frac{1}{2},$$

$$P(Y = 4) = P(X = -2) + P(X = 2) = \frac{1}{3}.$$

Dans les deux cas, on obtient le tableau

3. *X* et *Y* ne sont pas indépendante car

$$P((X = 0) \cap (Y = 1)) = 0 \neq P(X = 0)P(Y = 1).$$

4. Cov(X, Y) = E(XY) - E(X)E(Y). Ici

$$E(XY) = \sum_{i,j} x_i y_j P\left((X=x_i) \cap (Y=y_i)\right) = -\frac{1}{4} + \frac{1}{4} - \frac{8}{6} + \frac{8}{6} = 0;$$

et comme E(X) = 0, on a Cov(X, Y) = 0.

Conclusion

Deux variables dant la covariance est nulle ne sont pas nécéssairement indépendantes.

Solution 45.3

Solution 45.4

Solution 45.5

1. Pour tout $(i, j) \in [[1, n]]^2$,

$$P((X = i) \cap (Y = j)) = P(X = i)P_{(X = i)}(Y = j) = \begin{cases} 0 & \text{si } i < j \\ \frac{1}{n} \times \frac{1}{i} & \text{si } i \ge j. \end{cases}$$

2. L'événement (X = Y) est réalisé si, et seulement si X et Y prennent les même valeurs donc

$$P(X = Y) = \sum_{i=1}^{n} P((X = i) \cap (Y = i)) = \sum_{i=1}^{n} \frac{1}{ni} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i}.$$

3. Y prend les valeurs 1, 2, ..., n. Pour tout $j \in [1, n]$,

$$P(Y = j) = \sum_{i=1}^{n} P((X = i) \cap (Y = j)) = \sum_{i=1}^{n} \frac{1}{ni} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i}.$$

Finalement,

$$E(Y) = \sum_{j=1}^{n} j P(Y = j) = \sum_{j=1}^{n} \frac{j}{n} \sum_{i=j}^{n} \frac{1}{i} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{j}{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{i} j = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} \times \frac{i(i+1)}{2} = \frac{1}{2n} \sum_{i=1}^{n} (i+1)$$

$$= \frac{1}{2n} \left(\frac{(n+1)(n+2)}{2} - 1 \right) = \frac{n+3}{4}.$$

Solution 45.6

Si le résultat X du lancer du dé est divisible par 3, alors le nombre Y de boules blanches obtenues ensuite appartient à [0,3], sinon on ne peut extraire plus de 2 boules blanches de l'urne 2. Donc

$$Y(\Omega) = \{0, 1, 2, 3\}.$$

Le «hasard» intervenant à deux niveaux chronologiquement hiérarchisés (!), il est urgent de faire appel au conditionnement du second par le premier. Pour j = 3, 6, on a

$$\forall i \in [0,3], P(Y=i|X=j) = \frac{\binom{3}{i}\binom{5}{3-i}}{\binom{8}{3}}$$

et pour j = 1, 2, 4, 5,

arque

$$\forall i \in [0,3], P(Y=i|X=j) = \frac{\binom{2}{i}\binom{3}{j-i}}{\binom{5}{i}}.$$

On reconnait des lois hypergéométrique. Ce sont des lois usuelles, mais hors-programme.

Le dé étant honnête, X suit la loi uniforme sur [1,6]. Ainsi la formule des probabilités totales associée au système complet ($\{X=j\}$) $_{j\in[1,6]}$ s'écrit

$$\begin{aligned} \forall i \in [[0,3]], P(Y=i) &= \sum_{j=1}^{6} P(Y=i|X=j)P(X=j) \\ &= \frac{1}{6} \sum_{j=1}^{6} P(Y=i|X=j) \\ &= \frac{1}{6} \left(P(Y=i|X=3) + P(Y=i|X=6) + \sum_{j \in \{1,2,4,5\}} P(Y=i|X=j) \right) \end{aligned}$$

ce qui donne, compte tenu des lois conditionnelles

$$P(Y = i) = \frac{1}{6} \left(2 \frac{\binom{3}{i} \binom{5}{3-i}}{\binom{8}{3}} + \sum_{j \in \{1,2,4,5\}} \frac{\binom{2}{i} \binom{3}{j-i}}{\binom{5}{j}} \right).$$

Il n'y a plus qu'à faire les calculs!

i	0	1	2	3
P(Y=i)	176 840	346	313	<u>5</u> 840
iP(Y = i)	040	346 840	$\frac{626}{840}$	$\frac{840}{15}$
$i^2 P(Y=i)$		346 840	$\frac{1252}{840}$	$\frac{840}{45}$

D'où

$$E(Y) = \frac{987}{840} = \frac{47}{40},$$
 $E(Y^2) = \frac{1648}{840}$ et $V(Y) = \frac{405951}{(840)^2},$

c'est-à-dire $E(Y) \approx 1,175$ et V(Y) = 0,58.

Solution 45.7

Solution 45.8

Solution 45.9 Nombre de sommets isolés dans un graphe aléatoire (X-ENS)

Solution 45.10 Mines-Ponts PSI 2022

Solution 45.11

Solution 45.12

Solution 45.13

Solution 45.14 *E3A 2018 MP1 exercice 3*

Solution 45.15 Les urnes de Pólya (CCINP PC 2021 exercice 1)

Solution 45.16 Modèle de diffusion d'Ehrenfest