fonrier transform

4

- 1. * If $\phi(k) = A(a |k|), |k| \le a$, and 0 elsewhere. Where a is a positive parameter and A is a normalization factor to be found.
 - (a) Find the Fourier transform for $\phi(k)$
 - (b) Calculate the uncertainties Δx and Δp and check whether they satisfy the uncertainty principle.

Boundary and so Normalizate (probof particle in whole space is 1)
$$\phi(k) = \begin{cases} A(a-1k1) & -a < k < a \end{cases}$$
elsewhen

b)
$$\Delta n = \frac{4\pi}{a}$$
 plat graph

 $1 - \frac{1}{2000} = \frac{1}{200}$
 $1 - \frac{1}{2000} = \frac{1}{2000}$
 1

- 2. A wave packet is of the form $f(x) = \cos^2\left(\frac{x}{2}\right)$ (for $-\pi \le x \le \pi$) and f(x) = 0 elsewhere
 - (a) Plot f(x) versus x.
 - (b) Calculate the Fourier transform of f(x), i.e. $g(k) = \int_{-\infty}^{+\infty} f(x)e^{-ikx}dx$?
 - (c) At what value of k, |g(k)| attains its maximum value?
 - (d) Calculate the value(s) of k where the function g(k) has its first zero.
 - (e) Considering the first zero(s) of both the functions f(x) and g(k) to define their spreads (i.e. Δx and Δk), calculate the uncertainty product $\Delta x.\Delta k$.
- 4. A wave packet is of the form $f(x) = \exp(-\alpha|x|) \cdot \exp(ik_0x)$ (for $-\infty \le x \le \infty$) where α, k_0 are positive constants.
 - (a) Plot |f(x)| versus x.
 - (b) At what values of x does |f(x)| attain half of its maximum value? Consider the full width at half maxima (FWHM) as a measure of the spread (uncertainty) in x, find Δx
 - (c) Calculate the Fourier transform of f(x), i.e. $g(k) = \int_{-\infty}^{+\infty} f(x)e^{ikx}dx$
 - (d) Plot g(k) versus k.
 - (e) Find the values of k at which g(k) attains half its maximum value? Using the same concept of FWHM as in part (b), calculate Δk ? Hence calculate the product $\Delta x.\Delta k$ [Given : $\int_0^\infty e^{-(\alpha-ik)x} dx = \frac{1}{\alpha-ik}$]

Qy
$$= \frac{1}{\sqrt{2\pi}} e^{-(x-ik)n} dn = \frac{1}{\sqrt{2\pi}} e^{-(x-ik)(-t)} - dt$$