UNIVERSIDADE FEDERAL DO PARÁ FACULDADE DE ENGENHARIA DE COMPUTAÇÃO E TELECOMUNICAÇÕES

Técnicas de Otimização

Dualidade e Análise de Sensibilidade

Professor Dr. Lamartine Vilar de Souza lvsouza@ufpa.br www.lvsouza.ufpa.br

Belém - 2015

Introdução

• Os conceitos e textos abordados neste capítulo foram retirados integralmente e textualmente da bibliografia contida no plano de aula desta disciplina.

• Estes *slides* não substituem nem suprem uma leitura detalhada e completa dos assuntos que serão estudados e dos relacionados existentes nas bibliografias sugeridas e em outras referências bibliográficas eventualmente encontradas pelos estudantes.

• Utilize estes *slides* **APENAS** como um direcionador para os seus estudos em livros ou materiais da área.

Técnicas de Otimização Tópicos

1. Dualidade

2. Análise de Sensibilidade

Técnicas de Otimização

Dualidade

 Um problema dual é um problema de PL definido direta e sistematicamente de acordo com o problema de PL primal (ou original).

• O dual é definido para os vários formatos do **primal** dependendo do sentido de otimização (maximização ou minimização), dos tipos de restrições (≤, ≥ ou =) e da orientação das variáveis (não-negativa ou irrestrita).

Um par de modelos matemáticos denominado **primal** (original) e **dual** preservam as seguintes características:

- Possuem funções objetivo simétricas: se um **Max**, o outro é **Min** e vice-versa.
- Os lados direitos das equações no primal são os coeficientes da Função Objetivo do dual.
- O número de restrições no primal é o número de variáveis do dual e vice-versa.
- A matriz de restrição do primal é a transposta da matriz de restrição do dual e vice-versa.
- · A solução ótima de um fornece a solução ótima do outro.

- Construção do dual a partir do primal:
 - Uma variável **dual** é definida para cada equação **primal**.
 - Uma restrição **dual** é definida para cada variável **primal**.
 - Os coeficientes da restrição de uma variável **primal** definem os coeficientes do lado esquerdo da restrição **dual** e seus coeficientes na função objetivo definem os coeficientes do lado direito.
 - —Os coeficientes da função objetivo do problema **dual** são iguais aos coeficientes do lado direito das equações de restrição do problema **primal**.

•Regras de construção do problema dual

Problema de Maximização		Problema de Minimização
Restrições		Variáveis
>	\Leftrightarrow	≤ 0
≤	\Leftrightarrow	≥ 0
=	\Leftrightarrow	Irrestrita ($\in \Re$)
Variáveis		Restrições
≥ 0	\Leftrightarrow	>
≤ 0	\Leftrightarrow	≤
Irrestrita	\Leftrightarrow	=

• Exemplo 1

Primal: Maximizar
$$z = 5x_1 + 12x_2 + 4x_3$$

sujeito a
$$x_1 + 2x_2 + x_3 \le 10$$

$$2x_1 - x_2 + 3x_3 = 8$$

$$x_1, x_2, x_3 \ge 0$$

- Solução
 - -1º Passo (tipo)
 - •Primal $(max) \rightarrow Dual (min)$

•Solução (exemplo 1)

Maximizar $z = 5x_1 + 12x_2 + 4x_3$ sujeito a

$$x_1 + 2x_2 + x_3 \le 10$$

$$2x_1 - x_2 + 3x_3 = 8$$

$$x_1, x_2, x_3 \ge 0$$

Problema de Maximização		Problema de Minimização
Restrições		Variáveis
≥	\Leftrightarrow	≤0
≤	\Leftrightarrow	≥0
=	\Leftrightarrow	Irrestrita (∈ ℜ)
Variáveis		Restrições
≥0	\Leftrightarrow	≥
≤0	\Leftrightarrow	≤
Irrestrita	\Leftrightarrow	=

• 2º Passo (restrições)

-Primal (2 restrições) \rightarrow Dual (duas variáveis - y_1 , y_2)

•1^a Restrição: $\leq \rightarrow$ Variável $y_1 \geq 0$

•2° Restrição: \Rightarrow Variável y_2 irrestrita ($y_2 \in \Re$)

• Solução (exemplo 1)

Maximizar
$$z = 5x_1 + 12x_2 + 4x_3$$
 sujeito a

$$x_1+2x_2+x_3 \le 10$$

 $2x_1-x_2+3x_3=8$
 $x_1,x_2,x_3 \ge 0$

Problema de Maximização		Problema de Minimização
Restrições		Variáveis
≥	\Leftrightarrow	≤0
≤	\Leftrightarrow	≥0
=	\Leftrightarrow	Irrestrita (∈ ℜ)
Variáveis		Restrições
≥0	\Leftrightarrow	≥
≤0	\Leftrightarrow	≤
Irrestrita	\Leftrightarrow	=

- 3º Passo (variáveis)
 - -Primal (3 variáveis) → Dual (3 restrições)
 - $\geq 0 \rightarrow \text{Restrições} \geq$

• Solução (exemplo 1)

Maximizar
$$z = 5x_1 + 12x_2 + 4x_3$$

sujeito a

$$x_1+2x_2+x_3 \le 10 \ y_1$$

 $2x_1-x_2+3x_3=8 \ y_2$
 $x_1,x_2,x_3 \ge 0$

• Construção da função objetivo

$$Minimizar w = 10y_1 + 8y_2$$

Os coeficientes da FO do problema dual são iguais aos coeficientes do lado direito das equações de restrição do problema primal.

• Solução (exemplo 1)

Maximizar
$$z = 5x_1 + 12x_2 + 4x_3$$
 sujeito a

$$x_1+2x_2+x_3 \le 10$$

 $2x_1-x_2+3x_3=8$
 $x_1,x_2,x_3 \ge 0$

• Construção das restrições

Matriz de restrição:
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$

Transposta:
$$\begin{vmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 3 \end{vmatrix}$$

Os coeficientes da restrição de uma variável **primal** definem os coeficientes do lado esquerdo da restrição **dual** e seus coeficientes na FO definem os coeficientes do lado direito.

$$\begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 + 2y_2 \\ 2y_1 - y_2 \\ y_1 + 3y_2 \end{bmatrix}$$

• Solução (exemplo 1)

Maximizar
$$z = 5x_1 + 12x_2 + 4x_3$$
 sujeito a

$$x_1 + 2x_2 + x_3 \le 10$$

$$2x_1 - x_2 + 3x_3 = 8$$

$$x_1, x_2, x_3 \ge 0$$

Construção das restrições

LD da restrição

No passo 3 as restrições são todas ≥

Os coeficientes da restrição de uma variável **primal** definem os coeficientes do lado esquerdo da restrição **dual** e seus coeficientes na FO definem os coeficientes do lado direito.

$$y_1 + 2y_2 \ge 5$$

$$2y_1 - y_2 \ge 12$$

$$y_1 + 3y_2 \ge 4$$

•Formulação completa (exemplo 1)

Minimizar
$$w = 10y_1 + 8y_2$$

sujeito a

$$y_1+2y_2 \ge 5$$

 $2y_1-y_2 \ge 12$
 $y_1+3y_2 \ge 4$
 $y_1 \ge 0$
 y_2 irrestrita

Maximizar
$$z = 5x_1 + 12x_2 + 4x_3$$

sujeito a
$$x_1 + 2x_2 + x_3 \le 10$$
$$2x_1 - x_2 + 3x_3 = 8$$
$$x_1, x_2, x_3 \ge 0$$

Exemplo 2

```
Primal: Minimizar z = 15x_1 + 12x_2 sujeito a x_1 + 2x_2 \ge 3 2x_1 - 4x_2 \le 5 x_1, x_2 \ge 0
```

- Solução
 - 1º Passo (tipo)
 - •Primal (min) → Dual (max)

Solução (exemplo 2)

Minimizar $z = 15x_1 + 12x_2$ sujeito a

$$x_1+2x_2 \ge 3$$

 $2x_1-4x_2 \le 5$
 $x_1,x_2 \ge 0$

• 2º Passo (restrições)

−Primal (2 restrições) →

- Dual(2 variáveis y_1 , y_2)
- •1ª Restrição: $\geq \rightarrow$ Variável $y_1 \geq 0$
- •2° Restrição: $\leq \rightarrow$ Variável $y_2 \leq 0$

• Solução (exemplo 2)

Minimizar
$$z = 15x_1 + 12x_2$$
 sujeito a

$$x_1 + 2x_2 \ge 3$$

 $2x_1 - 4x_2 \le 5$
 $x_1, x_2 \ge 0$

Problema de Maximização		Problema de Minimização
Restrições		Variáveis
≥	\Leftrightarrow	≤0
≤	\Leftrightarrow	≥0
=	\Leftrightarrow	Irrestrita (∈ ℜ)
Variáveis		Restrições
≥0	\Leftrightarrow	≥
≤0	\Leftrightarrow	≤
Irrestrita	\Leftrightarrow	=

- 3º Passo (variáveis)
 - **−Primal (2 variáveis)** → **Dual (2 restrições)**
 - •≥ 0 → Restrições ≤

• Solução (exemplo 2)

Minimizar
$$z = 15x_1 + 12x_2$$
 sujeito a

$$x_1+2x_2 \ge 3$$
 y_1
 $2x_1-4x_2 \le 5$ y_2
 $x_1,x_2 \ge 0$

· Construção da função objetivo

$$Maximizar w = 3 y_1 + 5 y_2$$

Os coeficientes da FO do problema dual são iguais aos coeficientes do lado direito das equações de restrição do problema primal.

• Solução (exemplo 2)

$$\begin{aligned} & \text{Minimizar } z = 15x_1 + 12x_2 \\ & \text{sujeito } a \end{aligned}$$

$$x_1 + 2x_2 \ge 3$$

 $2x_1 - 4x_2 \le 5$
 $x_1, x_2 \ge 0$

• Construção das restrições

Matriz de restrição

$$\begin{bmatrix} 1 & 2 \\ 2 & -4 \end{bmatrix} \stackrel{T}{\Rightarrow} \begin{bmatrix} 1 & 2 \\ 2 & -4 \end{bmatrix}$$

Os coeficientes da restrição de uma variável **primal** definem os coeficientes do lado esquerdo da restrição **dual** e seus coeficientes na FO definem os coeficientes do lado direito.

$$\begin{bmatrix} 1 & 2 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 + 2y_2 \\ 2y_1 - 4y_2 \end{bmatrix}$$

Solução (exemplo 2)

Minimizar
$$z = 15x_1 + 12x_2$$
 sujeito a

$$x_1+2x_2 \ge 3$$

 $2x_1-4x_2 \le 5$
 $x_1,x_2 \ge 0$

Construção das restrições

LD da restrição

No passo 3 as restrições são todas ≤

Os coeficientes da restrição de uma variável **primal** definem os coeficientes do lado esquerdo da restrição **dual** e seus coeficientes na FO definem os coeficientes do lado direito.

$$y_1 + 2y_2 \le 15$$

$$2y_1 - 4y_2 \le 12$$

• Formulação completa (exemplo 2)

Maximizar
$$w = 3y_1 + 5y_2$$

sujeito a $y_1 + 2y_2 \le 15$
 $2y_1 - 4y_2 \le 12$
 $y_1 \ge 0$
 $y_2 \le 0$

Minimizar
$$z = 15x_1 + 12x_2$$

sujeito a
$$x_1 + 2x_2 \ge 3$$
$$2x_1 - 4x_2 \le 5$$
$$x_1, x_2 \ge 0$$

•Exemplo 2

•Exemplo 2

Exemplo 3

Primal: sujeito a

$$Maximizar z = 5x_1 + 6x_2$$

$$x_1 + 2x_2 = 5$$
 $-x_1 + 5x_2 \ge 3$
 $4x_1 + 7x_2 \le 8$
 x_1 irrestrita, $x_2 \ge 0$

Problema de Maximização		Problema de Minimização
Restrições		Variáveis
≥	\Leftrightarrow	≤0
≤	\Leftrightarrow	≥0
=	\Leftrightarrow	Irrestrita (∈ ℜ)
Variáveis		Restrições
≥0	\Leftrightarrow	≥
≤0	\Leftrightarrow	≤
Irrestrita	\Leftrightarrow	=

Exemplo 3

```
Primal: Maximizar z = 5x_1 + 6x_2

sujeito a
x_1+2x_2 = 5
-x_1+5x_2 \ge 3
4x_1+7x_2 \le 8
x_1 \text{ irrestrita}, x_2 \ge 0
```

Solução

```
-1° Passo (tipo)
•Primal (max) → Dual (min)
```

Solução (exemplo 3)

Maximizar
$$z = 5x_1 + 6x_2$$
 sujeito a

$$x_1+2x_2 = 5$$

 $-x_1+5x_2 \ge 3$
 $4x_1+7x_2 \le 8$
 x_1 irrestrita, $x_2 \ge 0$

• 2º Passo (restrições)

- -Primal (3 restrições) \rightarrow Dual(3 variáveis- y_1 , y_2 , y_3)
 - •1^a Restrição: = \rightarrow Variável y_1 irrestrita
 - •2ª Restrição: $\geq \rightarrow$ Variável $y_2 \leq 0$
 - •3° Restrição: $\leq \rightarrow$ Variável $y_3 \geq 0$

Solução (exemplo 3)

Maximizar $z = 5x_1 + 6x_2$ sujeito a

$$x_1+2x_2 = 5$$
 $-x_1+5x_2 \ge 3$
 $4x_1+7x_2 \le 8$
 $x_1 \text{ irrestrita}, x_2 \ge 0$

- 3º Passo (variáveis)
 - **−Primal (2 variáveis) → Dual (2 restrições)**
 - •1^a variável primal: irrestrita → Restrições =
 - •2° variável primal: $\geq 0 \rightarrow \text{Restrições} \geq$

Solução (exemplo 3)

Maximizar $z = 5x_1 + 6x_2$ sujeito a

$$x_1 + 2x_2 = 5$$
 y_1
 $-x_1 + 5x_2 \ge 3$ y_2
 $4x_1 + 7x_2 \le 8$ y_3
 x_1 irrestrita, $x_2 \ge 0$

• Construção da função objetivo Minimizar $w = 5y_1 + 3y_2 + 8y_3$ Os coeficientes da FO do problema dual são iguais aos coeficientes do lado direito das equações de restrição do problema primal.

• Solução (exemplo 3)

Maximizar $z = 5x_1 + 6x_2$ sujeito a

$$x_1 + 2x_2 = 5$$
 $-x_1 + 5x_2 \ge 3$
 $4x_1 + 7x_2 \le 8$
 x_1 irrestrita, $x_2 \ge 0$

Os coeficientes da restrição de uma variável **primal** definem os coeficientes do lado esquerdo da restrição **dual** e seus coeficientes na FO definem os coeficientes do lado direito.

Construção das restrições

Usando a ideia da transposta....

$$\begin{bmatrix} 1 & 2 \\ -1 & 5 \\ 4 & 7 \end{bmatrix} \xrightarrow{T} \begin{bmatrix} 1 & -1 & 4 \\ 2 & 5 & 7 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} y_1 & -y_2 & +4y_3 \\ 2y_1 & +5y_2 & +7y_3 \end{bmatrix}$$

Solução (exemplo 3)

Maximizar
$$z = 5x_1 + 6x_2$$
 sujeito a

$$x_1 + 2x_2 = 5$$
 $-x_1 + 5x_2 \ge 3$
 $4x_1 + 7x_2 \le 8$

 x_1 irrestrita, $x_2 \ge 0$

Os coeficientes da restrição de uma variável **primal** definem os coeficientes do lado esquerdo da restrição **dual** e seus coeficientes na FO definem os coeficientes do lado direito.

• Construção das restrições

LD da restrição

No passo 3 determinou-se que a 1ª restrição é =, a 2ª é ≥

$$y_1 - y_2 + 4y_3 = 5$$

$$2y_1 + 5y_2 + 7y_3 \ge 6$$

• Formulação completa (exemplo 3)

Minimizar
$$w = 5y_1 + 3y_2 + 8y_3$$

sujeito a

$$y_1 - y_2 + 4y_3 = 15$$

 $2y_1 + 5y_2 + 7y_3 \ge 6$
 y_1 irrestrita
 $y_2 \le 0$
 $y_3 \ge 0$

Maximizar
$$z = 5x_1 + 6x_2$$

sujeito a

$$x_1+2x_2 = 5$$

 $-x_1+5x_2 \ge 3$
 $4x_1+7x_2 \le 8$

$$x_1$$
 irrestrita, $x_2 \ge 0$

Técnicas de Otimização

Análise de Sensibilidade

Técnicas de Otimização Análise de Sensibilidade

• Em PL, os parâmetros (dados de entrada) de um modelo podem mudar dentro de certos limites, sem provocar alteração significativa na solução ótima.

 A análise destas variações é denominada de Análise de Sensibilidade.

Técnicas de Otimização Análise de Sensibilidade

• De um modo geral, os parâmetros em modelos de PL não são exatos.

 Com a análise de sensibilidade podemos averiguar o impacto dessa incerteza na solução ótima.

Técnicas de Otimização Análise de Sensibilidade

• Exemplo: Considere o caso do lucro estimado final de um determinado produto. Após a análise de sensibilidade, descobriu-se que a solução ótima continua a mesma com uma variação de ± 10% no lucro unitário do produto.

- O que nos indica esse resultado?
- É preferível ter uma variação menor ou maior da solução ótima, sendo você o tomador de decisão da empresa?
- Resposta: uma variação maior! Por quê?
- Porque assim temos uma faixa maior de valores que os parâmetros podem assumir sem alterar a solução ótima.

São possíveis dois casos:

 Sensibilidade da solução ótima às variações na disponibilidade de recursos (lado direito das restrições);

• Sensibilidade da solução ótima às variações do lucro unitário ou no custo unitário (coeficientes da função objetivo).

• Exemplo 4:

A FCT Máquinas produz dois produtos em duas máquinas. Uma unidade do produto 1 requer duas horas na máquina 1 e uma hora na máquina 2. Para o produto 2, uma unidade requer uma hora na máquina 1 e 3 horas na máquina 2. O tempo de processamento diário disponível para cada máquina é de 8 horas. As receitas por unidade dos produtos 1 e 2 são \$30 e \$20, respectivamente. Desejamos maximizar a receita para fabricação dos produtos.

• Pergunta 1: Se a FCT Máquinas puder aumentar a capacidade de ambas as máquinas, qual delas deve receber maior prioridade?

• Pergunta 2: É dada uma sugestão para aumentar as capacidades das máquinas 1 e 2 ao custo adicional de 10\$/hora. Isso é aconselhável?

• Pergunta 3: Se a capacidade da máquina 1 for aumentada das atuais 8 horas para 13 horas, qual será o impacto desse aumento na receita ótima?

• Pergunta 4: Supondo que a capacidade da máquina 1 seja aumentada para 20 horas, qual será o impacto desse aumento na receita ótima?

Resolução:

• Descrevendo o modelo de PL para o problema apresentado:

Maximizar
$$z = 30X_1 + 20X_2$$

 \mathbf{X}_1 e \mathbf{X}_2 são o número diário de unidades dos produtos 1 e 2, respectivamente.

• Descrevendo o modelo de PL para o problema apresentado:

$$Maximizar z = 30X_1 + 20X_2$$

Sujeito a:

$$2X_1 + X_2 \le 8$$
 (Máquina 1)
 $X_1 + 3X_2 \le 8$ (Máquina 2)
 $X_1, X_2 \ge 0$

Solução para o problema original:

Summary of Optimal Solution:

Objective Value = 128,00

x1 = 3,20

x2 = 1,60

Alterando a capacidade diária da máquina 1 de 8 horas para 9 horas:

Summary of Optimal Solution:

Objective Value = 142,00 x1 = 3,80

x2 = 1,40

Taxa de variação da função objetivo (preço dual ou preço sombra):

Taxa =
$$(z_2 - z_1)$$
 / (alteração na capacidade)

$$Taxa = (142 - 128) / (9 - 8) = $14/h$$

Taxa de variação na receita resultante do aumento de uma hora na capacidade da máquina 1.

Ou seja, o preço dual ou preço sombra fornece uma ligação direta entre a entrada do modelo (recursos) e a sua saída (receita total).

O preço dual ou sombra representa o valor unitário equivalente de um recurso (em \$/hora), isto é, a variação no valor ótimo da função objetivo por unidade de variação na disponibilidade do recurso.

Qual é a faixa de aplicabilidade do preço dual ou preço sombra encontrado?

O preço dual de \$14/h permanece válido para variações (aumentos ou reduções) na capacidade da máquina 1 que se deslocam sobre o segmento de reta formado pela restrição da máquina $2(X_1 + 3X_2 \le 8)$:

Pontos extremos:

$$A = (0, 2,67)$$

$$B = (8, 0)$$

Recordando que a restrição da máquina 1 é dada por $2X_1 + X_2$

Podemos expressar matematicamente os limites:

Capacidade mínima [em A =
$$(0, 2,67)$$
] =
= $2 \times 0 + 1 \times 2,67 = 2,67$ horas
Capacidade máxima [em B = $(8, 0)$] =
= $2 \times 8 + 1 \times 0 = 16$ horas

Podemos concluir que o preço dual de \$14/h permanecerá válido para a faixa:

2,67 horas ≤ Capacidade da Máquina 1 ≤ 16 horas

Utilizando um raciocínio semelhante, podemos determinar o preço dual para a máquina 2:

\$2/h

4,0 horas ≤ Capacidade da Máquina 2 ≤ 24 horas

Preço dual para a máquina 2:

Taxa =
$$(z_2 - z_1)$$
 / (alteração na capacidade)

$$Taxa = (130 - 128) / (9 - 8) = $2/h$$

Restrição da máquina 1 $(2X_1 + X_2 \le 8)$:

Pontos extremos:

$$A = (0, 8)$$

$$B = (4, 0)$$

Recordando que a restrição da máquina 2 é dada por $X_1 + 3X_2$

Podemos expressar matematicamente os limites:

Capacidade máxima [em A =
$$(0, 8)$$
] =
= $0 + 3 \times 8 = 24$ horas
Capacidade mínima [em B = $(4, 0)$] =
= $4 + 3 \times 0 = 4$ horas

Preço dual para a máquina 2:

\$2/h

4,0 horas \leq Capacidade da Máquina $2 \leq 24$ horas

Os limites calculados para as máquinas 1 e 2 são denominados de faixas de viabilidade.

• Pergunta 1: Se a FCT Máquinas puder aumentar a capacidade de ambas as máquinas, qual delas deve receber maior prioridade?

Os preços duais para as máquinas 1 e 2 são \$14/h e \$2/h, respectivamente.

Cada hora adicional da máquina 1 resultará em um aumento de \$14 na receita, enquanto que a máquina 2 resultará em \$2. Então devemos priorizar a máquina 1.

• Pergunta 2: É dada uma sugestão para aumentar as capacidades das máquinas 1 e 2 ao custo adicional de 10\$/hora. Isso é aconselhável?

Para a máquina 1, a receita líquida adicional por hora é

e, para a máquina 2

$$$2 - $10 = -$8$$

Portanto, só a capacidade de máquina 1 deve ser aumentada.

• Pergunta 3: Se a capacidade da máquina 1 for aumentada das atuais 8 horas para 13 horas, qual será o impacto desse aumento na receita ótima?

O preço dual para a máquina 1 é \$14/h, aplicável na faixa de 2,67 a 16 horas.

O aumento proposto cai dentro da faixa de viabilidade.

O aumento da receita será $14 \times (13 - 8) = 70$.

• Pergunta 4: Supondo que a capacidade da máquina 1 seja aumentada para 20 horas, qual será o impacto desse aumento na receita ótima?

A alteração proposta está fora da faixa (2,67, 16) horas para a qual o preço dual \$14/h permanece aplicável.

São necessários mais cálculos (análise pós-otimização) para achar a resposta.

Ou seja, não temos informações para tomar uma decisão imediata.