INSTITUTO TECNOLÓGICO DE AERONÁUTICA

MP-273: Sliding Mode Control Exame

Prof. Davi Antônio dos Santos 23 de junho de 2021

Considere o sistema massa-mola-amortecedor ilustrado na Figura 1. Vamos modelar essa planta com a seguinte equação diferencial ordinária:

$$m\ddot{y} + b\dot{y}|\dot{y}| + k_0 x + k_1 y^3 = d, (1)$$

onde $y \in \mathbb{R}$ representa a posição do bloco, sendo que y = 0 corresponde à posição não deformada da mola, $m \in \mathbb{R}_+$ é a massa do bloco, $b \in \mathbb{R}_+$ é o coeficiente de atrito do amortecedor, $k_0, k_1 \in \mathbb{R}_+$ são as constantes de mola e $d \in \mathbb{R}$ é uma força de distúrbio.

Figura 1: Sistema massa-mola-amortecedor.

Em todas as simulações solicitadas abaixo, considere m=1 kg, b=0,1 N/(m/s)², $k_0=0,05$ N/m e $k_1=0,05$ N/m³. Adicionalmente, adote as condições iniciais y(0)=0,1 m e $\dot{y}(0)=-0,1$ m/s.

Questão 1. Obtenha um modelo em espaço de estados na forma regular, correspondente a (1). Defina os estados como $x_1 \triangleq y$ e $x_2 \triangleq \dot{y}$ e considere que y seja a única variável mensurável.

Questão 2. Escreva as equações do observador de Slotine (na versão vista no curso) para o sistema modelado na Questão 1. Levando em conta os testes de simulação e as Proposições 4 e 5 do Capítulo 8, escolha os parâmetros do observador de forma a atingir um bom desempenho. Plote um gráfico para os erros de estimação de x_1 e de x_2 e outro para os estados reais e estimados, ambos em função do tempo. Faça simulações considerando tempos de amostragem de 0.0001 s e 0.01 s e inicialize o observador com $\hat{x}_1(0) = 0$ e $\hat{x}_2(0) = 0$. Analise os gráficos.

Questão 3. Escreva as equações do observador super-twisting (na versão vista no curso) para o sistema modelado na Questão 1. Escolha os parâmetros do observador de acordo com as fórmulas (28)–(29) do Capítulo 8. Plote um gráfico para os erros de estimação de x_1 e de x_2 e outro para os estados reais e estimados, ambos em função do tempo. Faça simulações considerando tempos de amostragem de 0.0001 s e 0.01 s e inicialize o observador com $\hat{x}_1(0) = 0$ e $\hat{x}_2(0) = 0$. Analise os gráficos.