Formularium Systeemtheorie

Oplossing van de lineaire homogene differentievergelijking

$$\sum_{i=0}^{n} a_{i} y[k+i] = 0 \text{ voor } k \ge 0 \text{ met beginvoorwaarden } y[0], y[1], \dots, y[n-1].$$
 (2.2.8)

de *karakteristieke vergelijking* is de veelterm van graad
$$n$$
 met n wortels $r_1, r_2, ..., r_n$
$$\sum_{i=0}^{n} a_i r^i = 0.$$
 (2.2.9.b)

Als de wortels niet samenvallen, dan is de algemene oplossing
$$y[k] = \sum_{i=1}^{n} c_i r_i^k \text{ voor } k \ge 0.$$
 (2.2.10)

De constanten c_i kunnen bepaald worden uit de beginvoorwaarden

$$\begin{bmatrix} y[0] \\ y[1] \\ \dots \\ y[n-1] \end{bmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ r_1 & r_2 & \dots & r_n \\ \dots & \dots & \dots & \dots \\ r_1^{n-1} & r_2^{n-1} & \dots & r_n^{n-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix}$$
(2.2.11.b)

Voor twee complex toegevoegde getallen r_i en r_{i+1}

$$\begin{split} r_i &= R \, e^{j\phi}, \, c_i = R_0 e^{j\phi_0} \\ r_{i+1} &= R \, e^{-j\phi}, \, c_{i+1} = R_0 e^{-j\phi_0}, \end{split} \tag{2.2.17}$$

wordt de bijdrage in de oplossing (2.2.11)

$$c_i r_i^k + c_{i+1} r_{i+1}^k = 2R_0 R^k \cos(k\phi + \phi_0) \ . \tag{2.2.18} \label{eq:2.2.18}$$

Oplossing van de lineaire differentievergelijking met rechterlid (niet-homogene lineaire differentievergelijking)

$$\sum_{i=0}^{n} a_i y[k+i] = \sum_{i=0}^{n} b_i u[k+i] \text{ met gegeven rechterlid } u[k] \text{ en beginvoorwaarden } y[0], y[1], \dots, y[n-1]$$
 (2.2.19)

Oplossing met de methode van de onbepaalde coëfficiënten afhankelijk van het rechterlid (coëfficiënten α_i en ϕ_0)

rechterlid op ogenblik k	voorgestelde oplossing op ogenblik k	
k	$\alpha_1 k + \alpha_0$	(2.2.28.a)

k^n	$\sum_{i=0}^n \alpha_i k^i$	(2.2.28.b)
a^k	αa^k	(2.2.28.c)
$k^n a^k$	$\left(\sum_{i=0}^{n} \alpha_{i} k^{i}\right) a^{k}$	(2.2.28.d)
$\cos k\phi$	$\alpha\cos(k\phi+\phi_0)$	(2.2.28.e)
$a^k \cos k\phi$	$\alpha a^k \cos(k\phi + \phi_0)$	(2.2.28.f)
$k^n a^k \cos k\phi$	$\left(\sum_{i=0}^{n} \alpha_{i} k^{i}\right) a^{k} \cos(k\phi + \phi_{0})$	(2.2.28.g)

Als a of a $e^{\pm j\phi}$ een wortel van multipliciteit i van de karakteristieke veelterm van de differentievergelijking is, moeten de voorgestelde oplossingen met k^i vermenigvuldigd worden.

Oplossing van de toestandsvergelijking

$$\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k] + \mathbf{B}\mathbf{u}[k] \tag{2.2.29.a}$$

$$\mathbf{y}[k] = \mathbf{C}\mathbf{x}[k] + \mathbf{D}\mathbf{u}[k] \qquad \text{voor } k \ge 0, \mathbf{x}[0]$$
 (2.2.29.b)

$$\mathbf{x}[k] = \mathbf{A}^{k} \mathbf{x}[0] + \sum_{i=0}^{k-1} \mathbf{A}^{k-i-1} \mathbf{B} \mathbf{u}[i]$$
 (2.2.30.c)

$$\mathbf{y}[0] = \mathbf{C}\mathbf{x}[0] + \mathbf{D}\mathbf{u}[0] \tag{2.2.31a}$$

$$\mathbf{y}[k] = \mathbf{C} \mathbf{A}^{k} \mathbf{x}[0] + \sum_{i=0}^{k-1} \mathbf{C} \mathbf{A}^{k-i-1} \mathbf{B} \mathbf{u}[i] + \mathbf{D} \mathbf{u}[k], k > 0$$
 (2.2.31b)

convolutie van twee willekeurige discrete tijd signalen u[k] en v[k] is het discrete tijd signaal w[k]

$$w[k] = \sum_{i=-\infty}^{+\infty} u[i]v[k-i] = u[k] * v[k]$$
 (2.3.2 a, b)

eigenschappen van de convolutie.

1. Impulse equentie
$$\delta[k] : u[k] * \delta[k] = u[k]$$
 (2.3.6)

2. Impulssequentie verschoven over
$$l$$
 tijdstappen $\delta[k-l]$: $u[k]*\delta[k-l] = u[k-l]$ (2.3.7)

formularium signalen en systemen versie 11.10.2003

3. De convolutie-operatie van signalen is *commutatief* :
$$u[k]*v[k] = v[k]*u[k]$$
. (2.3.8)

4. De convolutie-operatie is *lineair*:
$$(\alpha u[k] + \beta v[k]) * w[k] = \alpha u[k] * w[k] + \beta v[k] * w[k]$$
. (2.3.9)

5. De convolutie-operatie is associatief:
$$(u[k]*v[k])*w[k] = u[k]*(v[k]*w[k])$$
. (2.3.10)

Uit de lineariteit en tijdsinvariantie van het systeem verkrijgen we dan de volgende ingangs-uitgangsparen:

ingang uitgang
$$\delta[k] \longrightarrow h[k] \qquad (2.3.12)$$

$$\delta[k-i] = u[k] \longrightarrow h[k-i] u[i]$$

$$\sum_{i=-\infty}^{+\infty} \delta[k-i] u[i] \longrightarrow \sum_{i=-\infty}^{+\infty} h[k-i] u[i]$$

$$= y[k]$$

Tabel 2.3.1 Afleiding van de nultoestandsresponsie op een willekeurige ingang via convolutie met de impulsresponsie

of
$$y[k] = h[k] * u[k] = \sum_{i=-\infty}^{k} h[k-i]u[i]$$
 (2.3.13-14)

de impulsresponsie $\mathbf{H}[k]$ van een systeem dat beschreven is door toestandsvergelijkingen (2.2.29)

$$\mathbf{H}[k] = \begin{cases} \mathbf{0} & k < 0 \\ \mathbf{D} & k = 0 \\ \mathbf{C} \mathbf{A}^{k-1} \mathbf{B} & k > 0. \end{cases}$$
 (2.3.15)

Voor een multivariabel systeem met 2 ingangen en 2 uitgangen

$$\begin{bmatrix} y_1[k] \\ y_2[k] \end{bmatrix} = \begin{bmatrix} h_{11}[k] & h_{12}[k] \\ h_{21}[k] & h_{22}[k] \end{bmatrix} * \begin{bmatrix} u_1[k] \\ u_2[k] \end{bmatrix} = \begin{bmatrix} h_{11}[k] * u_1[k] + h_{12}[k] * u_2[k] \\ h_{21}[k] * u_1[k] + h_{22}[k] * u_2[k] \end{bmatrix}$$
(2.3.16)

We noemen de complex toegevoegde van een complex getal z=a+jb

$$\overline{z} = a - jb \tag{2.5.3}$$

Merk op dat er een aantal rekenregels zijn voor deze complexe getallen

formularium signalen en systemen versie 11.10.2003

$$r^{2} = z\overline{z}$$

$$a = \operatorname{Re}(z) = (z + \overline{z})/2$$

$$b = \operatorname{Im}(z) = (z - \overline{z})/2$$
(2.5.4)

Exponentiële notatie van complexe getallen
$$z = re^{j\theta}$$
 $\bar{z} = re^{-j\theta}$ (2.5.5)

Deze voorstelling is vaak handig voor de berekeningen van vermenigvuldigingen en machten van complexe getallen nl.

$$z^{k} = r^{k}e^{jk\theta}$$

$$\bar{z}^{k} = r^{k}e^{-jk\theta}$$

$$z^{k} + \bar{z}^{k} = r^{k}e^{jk\theta} + r^{k}e^{-jk\theta} = r^{k}\cos k\theta$$
(2.5.6)

De dubbelzijdige z-getransformeerde $Z\{x[k]\}$ van de sequentie x[k] is

$$Z\{x[k]\} = X(z) = \sum_{k=-\infty}^{+\infty} x[k]z^{-k} . \tag{3.1.1}$$

Het absolute convergentiegebied van de z-getransformeerde X(z) van x[k] is het gebied van complexe getallen z waarvoor

$$\sum_{k=-\infty}^{+\infty} \left| x[k] z^{-k} \right| < \infty. \tag{3.1.3}$$

De enkelzijdige z-getransformeerde is:

$$X(z) = \sum_{k=0}^{+\infty} x[k] z^{-k} . \tag{3.1.8}$$

<u>Tabel 3.1.1</u>: Eigenschappen van de enkelzijdige *z*-getransformeerde.

Eig	genschap	Discrete tijd signaal	z-transformatie	
1.	lineariteit	af[k] + bg[k]	aF(z) + bG(z)	(3.1.9.a)
2.	verschuiving naar rechts $(m > 0)$	f[k-m]	$z^{-m}F(z)$	(3.1.9.b)
3.	convolutie	$\sum_{i=0}^{k} f[i]g[k-i] = \sum_{i=0}^{k} f[k-i]g[i]$	F(z)G(z)	(3.1.9.c)
4.	verschuiving naar links $(m > 0)$	f[k+m]	$z^{m}F(z) - \sum_{i=0}^{m-1} f[i]z^{m-i}$	(3.1.9.d)

5.	lopende som	$\sum_{i=0}^{k} f[i]$	$\frac{z}{z-1}F(z)$	(3.1.9.e)
6.	vermenigvuldiging met a^k	$a^k f[k]$	$F(a^{-1}z)$	(3.1.9.f)
7.	beginwaarde	$f[0] = \lim_{ z \to \infty} F(z)$		(3.1.9.g)
8.	eindwaarde	$f[\infty] = \lim_{z \to 1} (z - 1)F(z)$ als $(z-1)$ $F(z)$ analytisch is in $ z \ge 1$		(3.1.9.h)
9.	periodische reeks	f[k] = f[k+N]	$F(z) = \frac{z^{N}}{z^{N} - 1} F_{1}(z)$ $met F_{1}(z) = \sum_{k=0}^{N-1} f[k]z^{-k}$	(3.1.9.i)
10.	afgeleide naar z	kf[k]	$-z\frac{dF(z)}{dz}$	(3.1.9.j)
11.	hogere afgeleide naar $z (m > 0)$	k"'f[k]	$\left(-z\frac{d}{dz}\right)^m F(z)$	(3.1.9.k)

 $\underline{\text{Tabel 3.1.2}}$: De meest voorkomende enkelzijdige *z*-transformaties.

discrete tijd sequentie $f[k]$	z-transformatie $F(z) = \sum_{k=0}^{\infty} f[k]z^{-k}, z > R$
1. $\delta[k]$	1
2. $\delta[k-m]$	Z ^{-m}
3. 1	$\frac{z}{z-1}$
4. k	$\frac{z}{(z-1)^2}$
$5. k^2$	$\frac{z(z+1)}{\left(z-1\right)^3}$

$6. k^3$	$\frac{z(z^2 + 4z + 1)}{(z - 1)^4}$
7. k^4	$\frac{z(z^3 + 11z^2 + 11z + 1)}{(z-1)^5}$
8. k ⁵	$\frac{z(z^4 + 26z^3 + 66z^2 + 26z + 1)}{(z-1)^6}$
9. a ^k	$\frac{z}{z-a}$
10. ka ^k	$\frac{az}{(z-a)^2}$
11. k^2a^k	$\frac{az(z+a)}{(z-a)^3}$
12. $k^3 a^k$	$\frac{az(z^2+4az+a^2)}{(z-a)^4}$
13. $k^4 a^k$	$\frac{az(z^{3}+11az^{2}+11a^{2}z+a^{3})}{(z-a)^{5}}$
14. $k^5 a^k$	$\frac{az(z^4 + 26az^3 + 66a^2z^2 + 26a^3z + a^4)}{(z-a)^6}$
15. $(k+1)a^k$	$\frac{z^2}{(z-a)^2}$
16. $\frac{(k+1)(k+2)a^k}{2!}$	$\frac{z^3}{(z-a)^3}$
17. $\frac{(k+1)(k+2)(k+3)a^k}{3!}$	$\frac{z^4}{(z-a)^4}$
18. $\frac{(k+1)(k+2)(k+m)a^k}{m!}$	$\frac{z^{m+1}}{(z-a)^{m+1}}$
19. sin <i>kω</i> Γ	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$

20. cos <i>kω</i> Γ	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$
21. $a^k \sin k\omega T$	$\frac{az\sin\omega T}{z^2 - 2az\cos\omega T + a^2}$
22. $a^k \cos k\omega T$	$\frac{z(z - a\cos\omega T)}{z^2 - 2az\cos\omega T + a^2}$
23. $\sin(k\omega T + \theta)$	$\frac{z[z\sin\theta + \sin(\omega T - \theta)]}{z^2 - 2z\cos\omega T + 1}$
24. $\cos(k\omega T + \theta)$	$\frac{z[z\cos\theta-\cos(\omega T-\theta)]}{z^2-2z\cos\omega T+1}$
25. $ka^k \sin k \omega T$	$\frac{z(z-a)(z+a)a\sin\omega T}{\left[z^2 - 2az\cos\omega T + a^2\right]^2}$
26. $ka^k \cos k\omega T$	$\frac{az\left[z^2\cos\omega T - 2az + a^2\cos\omega T\right]}{\left[z^2 - 2az\cos\omega T + a^2\right]^2}$
27. sinh <i>kω</i> Γ	$\frac{z \sinh \omega T}{z^2 - 2z \cosh \omega T + 1}$
28. cosh <i>kω</i> Γ	$\frac{z(z-\cosh\omega T)}{z^2-2z\cosh\omega T+1}$
29. $a^k/k!$	$e^{a/z}$
30. $(\ln a)^k / k!$	$a^{1/z}$
31. $\frac{n!}{(n-k)!k!}a^kb^{n-k}voor k = 0,1,n \text{ en nul erbuiten}$	$\frac{(bz+a)^n}{z^n}$
32. $\frac{1}{k}$ (voor k = 1, 2, 3,)	$\ln\left(\frac{z}{z-1}\right)$
33. $\frac{k(k-1)}{2!}$	$\frac{z}{(z-1)^3}$
34. $\frac{k(k-1)(k-2)}{3!}$	$\frac{z}{(z-1)^4}$

35.
$$\frac{k(k-1)(k-2)...(k-m+1)}{m!}$$

$$\frac{z}{(z-1)^{m+1}}$$

de inverse enkelzijdige z-transformatie van
$$F(z) = \frac{b_n z^n + b_{n-1} z^{n-1} + \dots + b_0}{a_n z^n + a_{n-1} z^{n-1} + \dots + a_0}$$
. (3.2.1)

(a) Als de polen $p_1, p_2, ..., p_n$ van F(z) <u>niet samenvallen</u>, dan kan F(z) ontbonden worden als

$$F(z) = \frac{\sum_{i=0}^{n} b_i z^i}{a_n (z - p_1)(z - p_2)...(z - p_n)} = \alpha_0 + \alpha_1 \left(\frac{z}{z - p_1}\right) + \alpha_2 \left(\frac{z}{z - p_2}\right) + ... + \alpha_n \left(\frac{z}{z - p_n}\right)$$
(3.2.2)

De coëfficiënten $\alpha_0, \alpha_1, \ldots, \alpha_n$ worden bepaald uit :

$$\alpha_0 = \frac{b_0}{a_n(-p_1)(-p_2)...(-p_n)}$$
(3.2.4)

$$\alpha_i = \left[\frac{z - p_i}{z} F(z)\right]_{z = p_i}, i = 1, 2, ..., n.$$
 (3.2.5)

Het discrete tijd signaal is dan (via Tabel 3.1.2)

$$f[k] = \begin{cases} \alpha_0 \delta[k] + \alpha_1 p_1^k + \alpha_2 p_2^k + \dots + \alpha_n p_n^k & k \ge 0\\ 0 & k < 0. \end{cases}$$
(3.2.6)

Als er samenvallende polen zijn, dan kan F(z) ontbonden worden als

$$F(z) = \frac{b_n z^n + b_{n-1} z^{n-1} + \dots + b_0}{a_n (z - p_1)^{n_1} (z - p_2)^{n_2} \dots}$$
(3.2.7)

$$= \alpha_0 + \frac{\alpha_1 z}{z - p_1} + \frac{\alpha_2 z^2}{(z - p_1)^2} + \dots + \frac{\alpha_{n_1} z^{n_1}}{(z - p_1)^{n_1}} + \frac{\beta_1 z}{z - p_1} + \frac{\beta_2 z^2}{(z - p_2)^2} + \dots + \frac{\beta_{n_2} z^{n_2}}{(z - p_2)^{n_2}} + \dots$$

$$+ \dots$$
(3.2.8)

Sommige coëfficiënten zoals $\alpha_0, \alpha_{n_1}, \beta_{n_2}, \dots$ kunnen opnieuw eenvoudig bepaald worden

$$\alpha_0 = [F(z)]_{z=0} = \frac{b_0}{a_n (-p_1)^{n_1} (-p_2)^{n_2} \dots}$$
(3.2.9)

$$\alpha_{n_1} = \left[\left(\frac{z - p_1}{z} \right)^{n_1} F(z) \right]_{z = p_1}$$
(3.2.10)

$$\beta_{n_2} = \left[\left(\frac{z - p_2}{z} \right)^{n_2} F(z) \right]_{z = p_2}.$$
 (3.2.11)

formularium signalen en systemen versie 11.10.2003

$$f[k] = \alpha_0 \delta[k] + \left[\alpha_1 + \alpha_2(k+1) + \dots + \alpha_{n_1} \frac{(k+n_1-1)!}{(n_1-1)!k!}\right] p_1^k + \left[\beta_1 + \beta_2(k+1) + \dots + \beta_{n_2} \frac{(k+n_2-1)!}{(n_2-1)!k!}\right] p_2^k \quad (3.2.12)$$

$$\text{voor } k \ge 0$$

$$= 0 \quad \text{voor } k < 0.$$

<u>Tabel 3.2.1</u>: z-transformatieparen gebruikt bij de inversie via partieelbreuken.

F(z)	f[k], k = 0,1,2,
$\frac{z}{z-a}$	a^k
$\frac{z^2}{(z-a)^2}$	$(k+1) a^k$
$\frac{z^3}{(z-a)^3}$	$\frac{(k+1)(k+2)a^k}{2!}$
$\frac{z^4}{(z-a)^4}$	$\frac{(k+1)(k+2)(k+3)a^k}{3!}$

$\frac{z^{m+1}}{(z-a)^{m+1}}$	$\frac{(k+1)(k+2)\dots(k+m)a^k}{m!}$

Uit de differentievergelijking:

$$Y(z) = \frac{\sum_{i=0}^{n} b_{i} z^{i}}{\sum_{i=0}^{n} a_{i} z^{i}} U(z) + \frac{\sum_{s=1}^{n} \left(\sum_{j=0}^{n-s} a_{s+j} y[j] - b_{s+j} u[j]\right) z^{s}}{\sum_{i=0}^{n} a_{i} z^{i}}.$$
 (3.3.11)

met de overdrachtsfunctie

$$H(z) = \left(\sum_{i=0}^{n} b_i z^i\right) / \left(\sum_{i=0}^{n} a_i z^i\right).$$
(3.3.19)

Uit de toestandbeschrijving:

$$\mathbf{X}(z) = z \left(z \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{x} [0] + \left(z \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{B} \mathbf{U}(z).$$
 (3.3.25)

$$\mathbf{Y}(z) = z \mathbf{C} \left(z \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{x} [0] + \left[\mathbf{C} \left(z \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{B} + \mathbf{D} \right] \mathbf{U}(z).$$
 (3.3.26)

met de overdrachtsfunctie

$$\mathbf{H}(z) = \mathbf{C}(z\,\mathbf{I} - \mathbf{A})^{-1}\,\mathbf{B} + \mathbf{D} \tag{3.3.27}$$

 $\mathbf{x} = \mathbf{x}[k]$ is een evenwichtstoestand van dit systeem als het systeem in dezelfde toestand blijft (d.w.z. $\mathbf{x}[k] = \mathbf{x}[k+1]$) voor ingang nul ($\mathbf{u}[k] \equiv 0$). $\mathbf{x} = \mathbf{0}$ is altijd een evenwichtspunt. Dit systeem wordt inwendig stabiel genoemd in dit evenwichtspunt als voor ingang nul ($\mathbf{u}[k] \equiv 0$) en voor elke willekeurige begintoestand $\mathbf{x}[0] = \mathbf{x}_0$ de toestand $\mathbf{x}[k]$ naar nul gaat voor $k \to \infty$.

het <u>vrije of autonome systeem</u>, is het systeem met ingang $\mathbf{u}[k]$ nul of

$$\mathbf{x}[k+1] = \mathbf{A} \, \mathbf{x}[k]. \tag{4.4.3}$$

<u>Voorwaarde</u> Een systeem met toestandsbeschrijving is inwendig stabiel als en alleen als al de eigenwaarden van de matrix **A** een absolute waarde kleiner dan 1 hebben of m.a.w. binnen de eenheidscirkel van het complexe vlak liggen.

De sequentie f[k] is <u>begrensd</u> als er een (eindig) getal M bestaat zodanig dat $|f[k]| \le M$ voor alle k.

Gegeven een discrete tijd systeem met impulsresponsie h[k], dan wordt dit systeem ingangs-uitgangsstabiel genoemd als het systeem voor iedere begrensde ingang met een begintoestand nul ook een begrensde uitgang heeft.

 $\underline{\text{Voorwaarde}}$: Een lineair tijdsinvariant discrete tijd systeem met impulsresponsie h[k] is ingangs-uitgangsstabiel als en

alleen als
$$\sum_{k=0}^{\infty} \left| h[k] \right| < \infty .$$

of als en alleen als de polen van H(z) binnen de eenheidscirkel liggen.

responsie y[k] in het tijdsdomein is dan

$$y[k] = \left| H(e^{j\omega\pi}) \right| \cos(k\omega\pi + \theta + \angle H(e^{j\omega\pi})) + \left(d_1 p_1^k + \dots + d_n p_n^k + g \delta[k] \right)$$
(4.5.7).

waarin $\angle p$ het argument of de hoek φ van het complex getal $p = re^{j\varphi}$ voorstelt.

<u>Tabel 4.6.1</u>: Equivalente blokdiagrammen.

TRA	NSFORMATIE	VERGELIJKING	BLOKDIAGRAM	EQUIVALENT BLOKDIAGRAM
1	blokken in cascade	$Y = (P_1 P_2) U$	P_1 P_2 P_2	U P2 P1 Y
2	blokken in parallel	$Y=P_1U\pm P_2U$	<i>U</i>	U
3	een blok uit een voorwaarts pad verwijderen	$Y = P_1 U \pm P_2 U$	P ₂	P_2 P_2 P_2 P_2 P_2
4	teruggekoppelde blokken	$Y = P_1(U \mp P_2 Y)$	<u>U</u> <u>+</u> ← P ₁	$ \begin{array}{c c} U & & Y \\ \hline & P_1 \\ \hline & 1 \pm P_2 & P_1 \end{array} $
5	een blok uit een terugkoppeling verwijderen	$Y = P_1(U \mp P_2 Y)$	P ₂	$\begin{array}{c c} U & & 1 \\ \hline P_2 & & P_1 P_2 \\ \hline \end{array}$
6a	herschikken van	$Z = W \pm X \pm Y$	X \downarrow X	W → → Z Y X
6b	de sommatoren		Y	X ± + Z

7	verschuiven van een sommator voor een blok	$Z = PU \pm Y$	<i>U</i>	$ \begin{array}{c c} U & + & & Z \\ \hline & & P & & Z \\ \hline & & & & Y \\ \hline & & & & P \\ \hline & & & & & Y \end{array} $
8	verschuiven van een sommator achter een blok	$Z = P(U \pm Y)$		P \uparrow
9	verschuiven van een aftakpunt voor een blok	Y = PU	<i>U P Y</i>	<u>у</u> Р
10	verschuiven van een aftakpunt achter een blok	Y = PU	<i>U P Y</i>	$\begin{array}{c c} U & P & Y \\ \hline U & \frac{1}{P} & \end{array}$
11	verschuiven van een aftakpunt voor een sommator	$Z = U \pm Y$	<u>U</u> + <u>Z</u> Z	
12	verschuiven van een aftakpunt achter een sommator	$Z = U \pm Y$		<i>v z z z z z z z z z z</i>