Introducción al estudio de procesos de relajación

1.1 Procesos de Markov

Sea Y una variable estocástica que puede tomar valores y_1,y_2,\dots

Las P son densidades de probabilidad, cuando el espacio muestral sea continuo.

$$P_1(y_1,t) \equiv \mbox{Prob.}$$
de tomar y_1 en
 t (1 paso)

 $P_2(y_1,t_1;y_2,t_2) \equiv \mbox{Prob.}$ conjunto de tomar y_1 en t_1 y y_2 en t_2

 $P_{1/1}(y_1,t_1|y_2,t_2)\equiv$ Prob. condicional de tomar y_2 en t_2 habiendo tomado y_1 en t_1 (certeza de y_1)

Abreviaremos obviando el tiempo. Además se tiene

$$P\!(y_1;y_2) \leq P\!(y_1|y_2)$$

donde el lhs evalúa los caminos que comunican y_1,y_2 del total y el rhs evalúa los c
minos que comunican y_1,y_2 del subconjunto de los que parten de
 y_1 .

Además

$$P_2(y_1;y_2) = P_1(y_1) P_{1/1}(y_1|y_2)$$

cumpliéndose lo siguiente

- $\int P_1(y_1)dy_1 = 1$ normalización
- $\int P_{1/1}(y_1|y_2)dy_2 = 1$ normalización
- $\int P_2(y_1;y_2)dy_1 = \int P_1(y_1)P_{1/1}(y_1|y_2)dy_1 = P_1(y_2)$ reducción

Ejemplito numérico

$$\begin{split} P(y_1;y_2) &= P(y_1)P(y_1|y_2) = \frac{4}{4}\frac{1}{2} = \frac{2}{7} \\ P(y_2;y_1) &= P(y_2)P(y_2|y_1) = \frac{3}{7}\frac{2}{3} = \frac{2}{7} \end{split}$$

Notemos que $P(A|B) \neq P(B|A)$ aunque P(A;B) = P(B;A)

Las densidades de muchos pasos: $P(y_1;y_2;y_3)$ son relevantes cuando el sistema tiene "memoria".

Un proceso es de Markov cuando el estado del sistema depende del paso inmediato anterior únicamente. Se define por

$$P_1(y_1),\quad P_{1/1}(y_1|y_2)\equiv$$
 Probabilidad de transición
$$P_{3/1}(y_1,y_2,y_3|y_4)\underset{\rm Markov}{\longrightarrow}P_{1/1}(y_3|y_4)$$

Se puede demostrar una ecuación de Chapman-Kolmogorov

$$P_{1/1}(y_1|y_3) = \int P_{1/1}(y_1|y_2) P_{1/1}(y_2|y_3) dy_2$$

1.1.1 Ecuación maestra

Queremos ver la evolución de la $P_1(\boldsymbol{y}_1,t)$

$$\frac{dP_1(y,t)}{dt} = \lim_{\tau \to 0} \frac{P_1(y,t+\tau) - P_1(y,t)}{\tau}$$

Usando que

$$\begin{split} P_1(y_2,t+\tau) &= \int dy_1 P_1(y_1,t) P_{1/1}(y_1,t|y_2,t+\tau) \\ P_1(y_2,t) &= \int dy_1 P_1(y_1,t) P_{1/1}(y_1,t|y_2,t) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) \left[\lim_{\tau \to 0} \frac{1}{\tau} (P_{1/1}(y_1,t|y_2,t+\tau) - P_{1/1}(y_1,t|y_2,t)) \right] \end{split}$$

que se puede escribir de modo que

$$\frac{1}{\tau} \left\{ [1 - \tau \int dy W(y_1,y)] \delta(y_1 - y_2) + \tau W(y_1,y_2) - \delta(y_1 - y_2) \right\}$$

y entonces

$$\begin{split} \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) \left[-\int dy W(y_1,y) \delta(y_1-y_2) + W(y_1,y_2) \right] \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - \int dy_1 P_1(y_1,t) \int dy W(y_1,y) \delta(y_1-y_2) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - \int dy P_1(y_2,t) W(y_2,y) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - P_1(y_2,t) \int dy W(y_2,y) \end{split}$$

donde el primer término en el rhs se interpreta como ganancia (lo que entra) y el segundo pérdida (pues la integral es lo que sale).

$$W\!(y_1,y_2) \equiv \text{Transiciones} \; y_1 \rightarrow y_2 \; \text{por la unidad de tiempo}$$

1.1.2 Camino aleatorio y ecuación de difusión

Si ℓ , T son escalas y n_2 , s un número entero de pasos

$$P_1(n_2\ell,s\mathbf{T}) = \sum_{n_1} P_1(n_1\ell,[s-1]\mathbf{T}) P_{1/1}(n_1\ell,[s-1]\mathbf{T}|n_2\ell,s\mathbf{T})$$

Quiero saber cuáles son las chances de estar en $n_2\ell$ al tiempo $s{\rm T}$ sumando todas las transiciones desde diferentes lugares $n_1\ell$.

Si la probabilidad es uniforme

$$\begin{split} P_{1/1}(n_1\ell,[s-1]\mathrm{T}|n_2\ell,s\mathrm{T}) &= \frac{1}{2}\delta(n_2-[n_1+1]) + \frac{1}{2}\delta(n_2-[n_1-1]) = \frac{1}{2} \begin{cases} \sin n_2 = n_1 + 1 \\ \sin n_2 = n_1 - 1 \end{cases} \\ P_1(n_2\ell,s\mathrm{T}) &= \sum_{n_1} P_1(n_1\ell,[s-1]\mathrm{T}) \left\{ \frac{1}{2}\delta(n_2-[n_1+1]) + \frac{1}{2}\delta(n_2-[n_1-1]) \right\} \end{split}$$

y sumando y restando convenientemente,

$$P_1(n_2\ell,s\mathbf{T}) = -\frac{1}{2}P_1([n_2-1]\ell,[s-1]\mathbf{T}) + \frac{1}{2}P_1([n_2+1]\ell,[s-1]\mathbf{T}) + P_1(n_2\ell,[s-1]\mathbf{T}) - P_1(n_2\ell,[s-1]\mathbf{T})$$

$$\begin{split} \frac{P_1(n_2\ell,s\mathbf{T}) - P_1(n_2\ell,s\mathbf{T})}{\mathbf{T}} = \\ \frac{\ell^2}{2\mathbf{T}} \left[\frac{P_1([n_2-1]\ell,[s-1]\mathbf{T}) - 2P_1(n_2\ell,[s-1]\mathbf{T}) + P_1([n_2+1]\ell,[s-1]\mathbf{T})}{\ell^2} \right] \end{aligned} \tag{1.1}$$

Pero esto no es otra cosa que expresiones de las derivadas, de manera que

$$\frac{\delta P(n_2\ell,s\mathbf{T})}{\delta\mathbf{T}} = \frac{\ell^2}{2\mathbf{T}} \frac{\delta^2 P(n_2\ell,[s-1]\mathbf{T})}{\delta\ell^2}$$

Esta es la ecuación de Fokker-Planck

$$\frac{\partial P(x,t)}{\partial t} = C \frac{\partial^2 P(x,t)}{\partial x^2}$$

una ecuación de onda para la probabilidad (?)

1.2 Cadenas de Markov

Espacio muestral discreto (dimensión L); medimos el tiempo en pasos

$$P_1(y_j, 1) = \sum_{i}^{L} P_1(y_i, 0) P_{1/1}(y_i, 0 | y_j, 1)$$

donde la información sobre las transiciones se introduce en

$$Q: Q_{ij} \equiv P_{1/1}(y_i, 0|y_j, 1)$$

que es la matriz estocástica. Se verifica

$$\sum_{i}^{L} Q_{ij} = 1 \,\forall i$$

y entonces las filas son vectores de probabilidad

$$\overbrace{P(1)}^{1\times L} = \overbrace{P(0)}^{1\times L} \stackrel{L\times L}{\widehat{Q}}$$

 $P_i(1) = P_i(0)Q_{ij}$ Asumimos convención de Einstein

$$\vec{P(s)} = \vec{P(s-1)}Q = \vec{P(s-2)}QQ = \dots = \vec{P(0)}Q^s$$

y decimos que Q es estocástica regular si existe $k:[Q^k]_{ij}>0 \forall i,j.$

Si Q es estocástica regular entonces existe $s:Q^{s+1}=Q^s\equiv T$ y por lo tanto

$$QT = Q^{s+1} = T$$

Si n > s

$$\vec{P(n)} = \vec{P(0)}Q^n = \vec{P(0)}Q^{n-s}Q^s = \vec{P(0)}T$$

T es la solución de equilibrio, pues T = QT

$$\begin{split} \lambda_{\alpha} & \overbrace{\widehat{P}^{\alpha}}^{1 \times L} = \overbrace{\widehat{P}^{\alpha}}^{1 \times L} \overbrace{\widehat{Q}}^{L \times L} \\ \lambda_{\beta} & \widehat{\widehat{P}^{\beta}} = \overbrace{\widehat{P}^{\beta}}^{1 \times L} \overbrace{\widehat{Q}}^{L \times L} \\ \lambda_{\beta} & \widehat{Q} & \rightarrow & 0 = (Q - \lambda_{\beta} \mathbb{1}) \overrightarrow{P}^{\beta} \\ \lambda_{\alpha} \chi_{i}^{\alpha} = \chi_{1i}^{\alpha} Q_{ii} & \overrightarrow{\chi} = (,,,) \end{split}$$

donde los índices j, 1i refieren a columnas y

$$\lambda_{\beta}\psi_{i1}^{\beta} = Q_{ij}\psi_{j1}^{\beta} \qquad \vec{\chi} = \left(\right)$$

donde los índices i1, j1 refieren a filas.

Y entonces deducimos que

- Autovectores a izquierda $\vec{\chi}$ y a derecha $\vec{\psi}$ son ortogonales.
- Los autovalores son $|\lambda_{\gamma}| \leq 1$.
- $\lambda = 1$ es siempre autovalor.

Sabemos que

$$P(m,s) = \sum_n P(n,0)Q^s_{nm} \qquad \rightarrow \text{con } s = 1$$

$$P(m,1) = \sum_n P(n,0)Q_{nm}$$

y esto es

$$\chi_m = \sum \chi_n Q_{n\,m} \qquad (\lambda = 1 \text{autovalor de } \vec{\chi} \text{ estacionario})$$

Siempre hay solución estacionaria P = PQ.

Para el autovector a derecha

$$\lambda_{\beta}\psi_{\ell 1}^{\beta} = \sum_{i} Q_{\ell i} \psi_{i 1}^{\beta}$$

Si
$$\vec{\psi}^{\beta} = (1, 1, ..., 1)^t \rightarrow$$

$$\lambda_{\beta} \psi_{\ell}^{\beta} = \lambda_{\beta} = \sum_{i} Q_{\ell i} \psi_{i}^{\beta} = \sum_{i} Q_{\ell i} = 1$$

y $\lambda_\beta=1$ autovalor de

$$\vec{\psi}^{\beta} = \begin{pmatrix} 1\\1\\...\\1 \end{pmatrix}$$