Rob 501 - Mathematics for Robotics Recitation #2

Nils Smit-Anseeuw (Courtsey:Wubing Qin)

Sept 18, 2018

1 Truth Tables

Р	Q	$\sim P$	$\sim Q$	$P \wedge Q$	$P \vee Q$	$P \Longrightarrow Q$	$\sim P \vee Q$	$P \wedge \sim Q$
Т	Т	F	F	Τ	Τ	T	T	F
Τ	F	F	Т	F	Τ	F	F	Т
F	Т	Т	F	F	Τ	T	Т	F
F	F	Т	T	F	F	T	T	F

2 Negation of statements

1. Simple negation

Ex:

- $x > 2 \ x \le 2$
- at least 3 elements at most 2 elements
- $p \wedge q \sim p \vee \sim q$
- $p \lor q \sim p \land \sim q$
- $x \in \mathbb{R}, x \neq 0 \ x \in \mathbb{R}, x = 0$
- x satisfying f(x) = 0 is unique. x satisfying f(x) = 0 is not unique.
- 2. Statement with quantifiers Ex:
 - $\forall x \in X : P(x) < 0 \exists x \in X : P(x) \ge 0$
 - $\forall (x \in \mathbb{R}^n, x \neq 0) : x^T A x \geq 0 \ \exists (x \in \mathbb{R}^n, x \neq 0) : x^T A x < 0$
 - $\forall \epsilon > 0, \ \exists N \in \mathbb{N}: \ \forall n \geq N, |x_n x^*| < \epsilon \ \exists \epsilon > 0, \ \forall N \in \mathbb{N}: \ \exists n \geq N, |x_n x^*| \geq \epsilon$
- 3. Statement with implications
 - $p \implies q p \land \sim q$
 - $\begin{array}{l} \bullet \ \, \forall \, \epsilon > 0, \exists \, \delta > 0 : \forall \, x, \, \, |x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon \\ \exists \, \epsilon > 0, \forall \, \delta > 0 : \exists \, x, \, \, |x x_0| < \delta \wedge |f(x) f(x_0)| \geq \epsilon \end{array}$

3 Proofs

For all integers $n \in \mathbb{N}$, Prove:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$P(1) = \frac{1 \times 2}{2} = 1$$
, Valid

Assume it is true for k, $P(k) = \frac{k(k+2)}{2}$

$$P(k+1) = P(k) + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k^2 + k + 2k + 2}{2} = \frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2}$$

4 Subspace

Definition: Let $(\mathcal{X}, \mathcal{F})$ be a vector space and let $\mathcal{Y} \subset \mathcal{X}$. Then $(\mathcal{Y}, \mathcal{F})$ is a <u>subspace</u> of $(\mathcal{X}, \mathcal{F})$ if $(\mathcal{Y}, \mathcal{F})$ is a vector space when you use the rules of vector addition and scalar times vector multiplication defined on $(\mathcal{X}, \mathcal{F})$.

Proposition: $(\mathcal{X}, \mathcal{F})$ is a vector space and $\mathcal{Y} \subset \mathcal{X}$. The following are equivalent (TFAE):

- $(\mathcal{Y}, \mathcal{F})$ is a subspace
- a) $\forall y_1, y_2 \in \mathcal{Y}, y_1 + y_2 \in \mathcal{Y}$
 - b) $\forall y \in \mathcal{Y}, \ \forall \alpha \in \mathcal{F}, \ \alpha y \in \mathcal{Y}$
- $\forall y_1, y_2 \in \mathcal{Y}, \forall \alpha \in \mathcal{F}, y_1 + \alpha y_2 \in \mathcal{Y}$
- $\forall y_1, y_2 \in \mathcal{Y}, \forall \alpha_1, \alpha_2 \in \mathcal{F}, \alpha_1 y_1 + \alpha_2 y_2 \in \mathcal{Y}$

Which of the following are subspaces?:

- 1. $(\mathcal{X}, \mathcal{F}) = (\mathbb{R}^3, \mathbb{R}), \ \mathcal{Y} = \{x \in \mathbb{R}^3 : Cx = b; C, b \text{ are given constants} \}$ If $b = 0, (\mathcal{Y}, \mathcal{F})$ is a subspace of $(\mathcal{X}, \mathcal{F})$; but if $b \neq 0, (\mathcal{Y}, \mathcal{F})$ is not a subspace of $(\mathcal{X}, \mathcal{F})$. $\forall y_1, y_2 \in \mathcal{Y}, \ \forall \alpha \in \mathcal{F}, \ C(y_1 + \alpha y_2) = Cy_1 + \alpha C y_2 = b + \alpha b.$ If $b = 0, \ C(y_1 + \alpha y_2) = 0 = b$, i.e., $y_1 + \alpha y_2 \in \mathcal{Y}$.
 If $b \neq 0, \ C(y_1 + \alpha y_2) = (1 + \alpha)b \neq b$, i.e., $y_1 + \alpha y_2 \notin \mathcal{Y}$.
- 2. $(\mathcal{X}, \mathcal{F}) = (\mathbb{R}^{n \times n}, \mathbb{R}), \ \mathcal{Y} = \{A \in \mathbb{R}^{n \times n} : A = A^{\top}\}$ Yes. $\forall A_1, A_2 \in \mathcal{Y}, \ \forall \alpha \in \mathcal{F}, \ (A_1 + \alpha A_2)^{\top} = A_1^{\top} + \alpha A_2^{\top} = A_1 + \alpha A_2, \text{ i.e., } A_1 + \alpha A_2 \in \mathcal{Y}.$
- 3. $(\mathcal{X}, \mathcal{F}) = (\mathbb{R}^{n \times n}, \mathbb{R}), \ \mathcal{Y} = \{A \in \mathbb{R}^{n \times n} : A \text{ is not invertible} \}$ No. $A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \in \mathcal{Y}, A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \mathcal{Y}, A_1 + A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is invertible, so $A_1 + A_2 \notin \mathcal{Y}$.
- 4. $(\mathcal{X}, \mathcal{F}) = (\mathbb{R}^{n \times n}, \mathbb{R}), \ \mathcal{Y} = \{P \in \mathbb{R}^{n \times n} : A^2 = A\}$ No. $A_1, A_2 \in \mathcal{Y}, (A_1 + A_2)^2 = A_1^2 + A_1A_2 + A_2A_1 + A_2^2 = A_1 + A_2 + A_1A_2 + A_2A_1 \neq A_1 + A_2 \text{ if } A_1A_2 + A_2A_1 \neq 0.$