Code	Name and Key Concepts
MMu1t1	Functions and graphs: Lines, Quadratics, Inverse Proportions, Polynomials, Relations, Translations and Dilations
MMu1t2 MMu1t3	Trigonometric functions: Unit Circle, Radians, SOH CAH TOA, Sine Rule, Exact Values, Amplitude/ Period/ Phase, Sum of Angles Identities Counting and probability: Binomial Coefficients, Set Complement
MMu2t1	Intersection and Union, Probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, Conditional Probability, Independence Exponential functions: Index Laws, Fractional Indices, Functions,
MMu2t2	Asymptotes, Graphs Arithmetic and geometric sequences and series: Arithmetic and
MMu2t3	Geometric Sequences as Recurrence Relations, Limiting Behaviour, and Partial Sum Formulae, Growth and Decay Introduction to differential calculus Average Rate of Change, First
	Principles, Leibniz Notation, Instantaneous Rate of Change, Slope of Tangent, Derivitive of Polynomials, Linearity of Differentiation, Optimisation, Anti-Derivitives, Interpret Position-Time Graphs
MMu3t1	Further differentiation and applications: Define e as a s.t. $\lim_{h\to 0} \frac{a^h-1}{h} = 1$, Derivitives of $e^x \sin(x)$ and $\cos(x)$, Chain Product and Quotient Rules, Second Derivitives
MMu3t2	Integrals: Integrate Polynomial Exponential and Trigonometric Functions, Linearity of Integration, Determine Displacement given Velocity, Definite Integrals, Fundamental Theorem of Calculus, (signed) Area Un-
MMu3t3	der a Curve Discrete random variables: Frequencies, General Properties, Expected Value, Variance, Standard Deviation, Bernoulli and Binomial
MMu4t1	Distribtions The logarithmic function: Logs as Inverse of Exponentials, Log-Scales, Log Function Graphs, Natural Log, $\frac{d}{dx} \ln(x) = \frac{1}{x}$, $\int \frac{1}{x} dx =$
MMu4t2	$\ln(x) + c$ for $x > 0$ Continuous random variables and the normal distribution: Probability Density Function, Cumulative Distribution Function, Probabilities
	Expected Value, Variance and Standard Deviation as Integrals, Linear Transformation of Random Variables, Normal Distribution using Technology
MMu4t3	Interval estimates for proportions Simple Random Sampling, Bias, Sample Proportion, Normal Approximation to the Binomial Proportion,
	Wald Confidence Interval, Trade-Off Between Width and Level of Confidence
SMu1t1	Combinatorics Multiplication of Possibilities, Factorial Notation, Permutations with and without Repeated Objects, Union of Three Sets, Pigeon-Hole Principle, Combinations, Pascals Triangle
SMu1t2	Vectors in the plane : Magnetude and Direction, Scalar Multiplication, Addition and Substraction as a Triangle, Vector Notation, $a\mathbf{i} + b\mathbf{j}$ Notation, Scalar Dot Product, Projection, Parallel and Perpendicular
SMu1t3	Vectors Geometry : Notation for Implication (\Rightarrow) and Equivalence (\Leftrightarrow), Converse ($B \Rightarrow A$) Negation ($\neg A \Rightarrow \neg B$) and Contrapositive ($\neg B \Rightarrow \neg A$),
SMu2t1	Proof by Contradiction, \forall and \exists Notation, Counter-Examples, Circle Theorems, Quadrilateral Proofs in \mathbb{R}^2 Trigonometry: Graph and Solve Trig Functions, Prove Various Trig
SMu2t2	Indentities, Reciprocal Trig Functions Matrices: Notation, Addition and Scalar Multiplication of Matrices, Multiplicative Identity and Inverse, Determinant, Matrices as Transfor-
SMu2t3	mations Real and complex numbers: Rationality and Irrationality, Induction, $i=\sqrt{-1}$, Complex Numbers $a+bi$ and Arithmetic $(+,-,\times,$
SMu3t1	$t = \sqrt{-1}$, Complex Numbers $u + u$ and Artifffed $(+, -, \times, \div)$, Complex Conjugates, Complex Plane, Complex Conjugate Roots of Polynomials Complex numbers: Modulus and Argument, Arithmetic $(\times, \div, \text{ and })$
SMu3t1	Complex numbers : Modulus and Argument, Arithmetic $(\times, \div, \text{ and } z^n)$ in Polar Form, Convert between Polar and Cartesian Form, De Moivre's Theorem, Roots of Complex Numbers, Factorising Polynomials Functions and sketching graphs : Composition of Functions, One-
SMu3t2	to-One, Inverse Functions, Absolute Value Function, Rational Functions Vectors in three dimensions: $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ Notation, Equation for Spheres, Parameterised Vector Equations, Equations of Lines, the Cross
	Product, Equation for a Plane, Systems of Linear Equation (Elimination Method) and Geometric Interpretation of Solutions, Kinematics via
SMu4t1	Differentiation of Vector Equations, Projectile and Circular Motion Integration and applications of integration Substitution, $\int \frac{1}{x} dx = \ln x + c$ for $x \neq 0$, Inverse Trig Functions and their Derivitives, Integrate
SMu4t2	$\frac{\pm 1}{\sqrt{a^2-x^2}}$ and $\frac{a}{a^2+x^2}$, Partial Fractions, Integration by Parts, Volume of Solids of Revolution, Numerical Integration using Technology Rates of change and differential equations: Implicit Differentia-
SMu4t3	tion, First-Order Seperable Differential Equations, The Logistic Equation, Kinematics (Rates of Change) Statistical inference: Central Limit Theorem and the Resulting Con-
S1M1	fidence Interval for a Mean Functions and graphs: Equations for a Line, Slope, y-intercept, In-
S1M2	tersection of Lines, Reciprocal Function, Asymptotes, Functions vs Relations, Domain, Range, Function Notation Polynomials: Quadratic Equations in Vertex and Factorised Forms,
S1M3	Quadratic Formula, Completing the Square, The Leading Coefficient and Degree of a Polynomials, Cubics, Quartics Trigonometry: Pythagoras, SOH CAH TOA, Cosine Rule, Sine Rule,
	Unit Circle, Sine and Cosine Functions, Radians, Length of Arc, Area of Sector, Amplitude, Period, Phase, $\tan(x) = \frac{\sin(x)}{\cos(x)}$
S1M4	Counting and statistics : Factorial, Permutations, Multiplication Principle, Combinations, Discrete vs Continuous Random Variables, Mean, Median, Mode, Range, Interquartile Range, Standard Deviation, Normal
S1M5	Distribution, Growth and decay: Index and Logarithm Laws, Exponential Functions and their Graphs Introduction to differential calculus: Average Pate of Change First
S1M6	Introduction to differential calculus: Average Rate of Change, First Principles, Notation $f'(x) = \frac{df}{dx}$, $\frac{d}{dx}x^n = nx^{n-1}$, Linearity of Differentiation, Slope of Tangent, Increasing vs Decreasing, Local and Global
S1M7	Maxima and Minima, Stationary Points, Sign Diagram Arithmetic and geometric sequences and series : Arithmetic and Geometric Series as Recurrance Relations and Explicit Expressions, Par-
S1M8	tial Sums, Limiting Behaviour Geometry : Circle Properties, Proofs (Direct, Contradiction, and Contrapositive)
S1M9	Vectors in the plane : Component (column) vs $ai + bj$ Notation, Length and Direction, Linear Combinations of Vectors, Scalar Dot Product, Projection, Angle Between Two Vectors and Parallel/Perpendicular,
S1M10	Geometric Proof Further Trigonometry: Sketch Trigonometric Functions with Translations and Dilations, Solve for Angles, Trigonometric Identities, Recip-
S1M11	rocal Trigonometric Functions Matrices : Linear Combinations of Matrices, Matrix Multiplication, The Identity, Inverse Matrices, The 2×2 Inverse, The 2×2 Determinant, Lin-
S1M12	ear Transformations (including rotations, reflections and composition) Real and complex numbers: Rationals, Irrationals, Interval Notation, Induction, $i = \sqrt{-1}$, Real and Imaginary Components, Complex
	Conjugates and Arithmetic, Argand Diagram, Modulus, Complex Roots of Polynomals
S2MM1	Further differentiation and applications: S1M6, Chain Product and Quotient Rules, $e=2.718\ldots$, $\frac{d}{dx}e^x=e^x$, $\frac{d}{dx}\sin(x)=\cos(x)$, $\frac{d}{dx}\cos(x)=-\sin(x)$, Second Derivatives, Concavity and Points of In-
S2MM2	$\frac{1}{dx}\cos(x) = -\sin(x)$, Second Derivatives, Concavity and Points of Inflection Discrete random variables: Random Variables, Discrete vs Continuous, Probability Functions and Distributions, Properties of Probability
	ities, Frequency, Expected Value $E[X] = \sum xp(x) = \mu_X$, Standard Deviation $\sigma_X = \sqrt{\sum (x - \mu_X)^2 p(x)}$, Uniform Bernoulli and Binomial Distributions
S2MM3	Integral calculus: Anti-differentiation, If $F'(x) = f(x)$ then $\int f(x)dx = F(x) + c$, Reversing Chain Rule for $\int f(ax+b)dx$, Lin-
	earity of Integration, Finding the Constant of Integration, Area Under the Curve as Upper and Lower Sum Approximations, Definite Integral, Area Between Two Functions and Between a Negative Function and the
S2MM4	x-axis, Fundamental Theorem of Calculus, Logarithmic functions : Sketching $y = a \ln(b(x-c))$, $\frac{d}{dx} \ln(x) = \frac{1}{x}$, For $x > 0$ $\int \frac{1}{x} dx = \ln(x) + c$
S2MM5	Continuous random variables and the normal distribution: $P(X = x) = 0$, Probability Density Function, $\mu_X = \int_{-\infty}^{\infty} x f(x) dx$, $\sigma_X = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$, $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$, Standard Normal
	$Z=rac{X-\mu}{\sigma}$, Simple Random Sampling, For $X\sim (\mu,\sigma)$ and $X_i\sim iidX$ Sampling Distributions of $S_n=\Sigma_{i=1}^n X_i$ $(n\mu,\sigma\sqrt{n})$ and $\bar{X}_n=rac{S_n}{n}$ $(\mu,rac{\sigma}{\sqrt{n}})$, If X is Normally Distributed, then so are S_n and \bar{X}_n , Centrally
S2MM6	tral Limit Theorem (CLT) Sampling and confidence intervals: Confidence Interval for a Mean
	using CLT $\left(\bar{x}-z^*\frac{s}{\sqrt{n}}\right) \leq \mu \leq \left(\bar{x}+z^*\frac{s}{\sqrt{n}}\right)$, Wald Interval for a Proportion
S2SM1 S2SM2	Mathematical induction: Initial Case and Induction Step Complex numbers: Cartesian vs Polar Form, Real and Imaginary Components, Modulus and Argument, Arithmetic in both Cartesian and Polar
	Forms, de Moivre's Theorem including Negative and Fractional Powers, Geometric Properties of the Argand Plane, Complex Arithmetic as Transformations, $n^{\rm th}$ Roots of a Complex Number, Factorising Polyno-
S2SM3	mials with Complex Roots Functions and sketching graphs: Function Composition, Informal Intro to Domain and Range, One-to-One, Inverse Functions, Absolute
S2SM4	Value Function, Graphing Rational Functions Vectors in three dimensions: Notation, Equations of a Line in \mathbb{R}^3 , Scalar Dot Product, Vector Cross Product, $ \mathbf{a} \times \mathbf{b} $ is the Area of their
	Parallelogram, Equation for a Plane in \mathbb{R}^3 , Systems of Linear Equations, Geometric Interpretation of No/Unique/Infinite Solutions to a System of Linear Equations in \mathbb{R}^3
S2SM5	Integration techniques and applications: Integration by Substitution, Using Trigonometric Identities for Integration, Derivatives of Inverse Trigonometric Functions (so $\int \frac{\pm 1}{\sqrt{a^2-x^2}} dx$ and $\int \frac{a}{a^2+x^2} dx$, Integra-
S2SM6	tion by Parts, Area Between two Curves, Volume of Solids of Revolution Rates of change and differential equations: Implicit Differentia-
	tion, First-Order Seperable Differential Equations, The Logistic Differential Equation, Parameterised Curves, Example: if $\mathbf{v} = \frac{d}{dt}(x(t), y(t))$ is Velocity, $ \mathbf{v} $ is Speed, and so the Arc Length along the Parameterised Curve is $\int_0^b \sqrt{\mathbf{v} \cdot \mathbf{v}} dt$. Trigonometric Parameterisations (unit circle and
, <u>-</u> .	Curve is $\int_a^b \sqrt{\mathbf{v} \cdot \mathbf{v}} dt$, Trigonometric Parameterisations (unit circle, and non-circular parameterisations)
MS1 MS2	Numbers & Functions: Natural Numbers, Integers, Rational Numbers, Real Numbers, Functions, Intervals Linear Functions: Equation for Linear Functions, Simultaneous Linear
MS3	Equations, Sketching Linear Inequalities Quadratic Functions: Sketching a Parabola, General Form of a Quadratic, Translations and Dilations
MS4 MS5	Rational Functions: Sketching Reciprocal Functions (Hyperbola), Lines of Symmetry, Limits and Asymptotes Trigonometry I: Pythagoras, Similar Triangles, SOH CAH TOA,
MS6	Trigonometric and Inverse Trigonometric Functions using Technology, Exact Values Trigonometry II: Unit Circle, Sketching Trigonometric Functions,
MS7	Finding all Solutions to Trigonometric Equations, The Sine Rule, The Cosine Rule, Introductory Trigonometric Identities, Radians Exponential Functions: Index Laws, Sketching Exponential Func-
MS8	tions, $e=2.718\ldots$, Growth and Decay Logarithms: Natural Logarithm, Logarithm Laws, Using Logarithm to Fit Growth/Decay Functions, Half-Life/ Doubling Time
MT1 MT2	Polynomials: Matrices:
MT3 MT4 MT6	Vectors and Applications: Systems of Linear Equations: Differentiation:
MT7 MT8	Applications of Differentiation: Exponential and Logarithm Functions:
MT9	Integration: