Cours de Statistiques - Données Continues

1. Définitions

Données continues : Ce sont des données qui peuvent prendre une infinité de valeurs dans un intervalle donné (par exemple, les poids, les tailles, les durées).

Une **classe** regroupe des données dans un intervalle [a;b[.

La **fréquence** (f_i) est calculée par :

$$f_i = rac{n_i}{N}$$

2. Organisation des données dans un tableau

Pour analyser un ensemble de données continues, nous utilisons un tableau regroupant les classes, les centres des classes ($c_i=\frac{a_i+b_i}{2}$), les effectifs (n_i) , et les fréquences.

Exemple de tableau : résultats des examens sur 50

	Exemple de tableat	riidiis sui s									
	Classe $[a_i;b_i[$	$\ddot{c_i}$	n_i	f_i	f_{ic}	$c_i imes n_i$	$n_i imes (c_i - \widehat{ar{x}})^2$				
1/41	, b ₁ [10 ; 20[15	16	0,16	0,16	240	16. (15-39,6)2=3893,7				
ı [a 2	, b ₂] [20 ; 30[25	28	0,28	0,44	700	278,08				
23	[30 ; 40[35	40	0,4	0,84	1400	774,4				
= 4	[40 ; 50[45	16	0,16	1	720	3317, 76				
	Total	-	100		-	3060	8 86 4				
			M, N Zm:			Zc;.n;	∑ n; (c;-x)2				
•											
$ \sqrt{c} = \frac{\sum C_i n_i}{n} = \frac{3060}{100} = 30,60 \text{ (estimate)} $											

4. Questions à résoudre

- 1. Complétez le tableau.
- 2. Calculez la moyenne \bar{x} :

$$ar{x} = rac{\sum c_i imes n_i}{\sum n_i}$$

3. Calculez l'écart-type:

$$\sigma = \sqrt{\frac{\sum n_i \times (c_i - \bar{x})^2}{\sum n_i}} = \sqrt{\frac{8864}{100}}$$

$$= \sqrt{88,64} \approx 9,4$$

4. Calculez l'étendue:

Étendue = Valeur max
$$-$$
 Valeur min
 $= 50 - 10 = 40$

5. Interpréter les éléments suivants du tableau on des voleurs calculer étendue (40): touts les notes sont dans un intervalle de 40 paints (entre 10 et 50)

(9,4): l'icart type: · c'est un écart "moyen" entre les notes et la moyenne ... (mesure de la dispersion des notes p/r à la moyenne)

par rapport

m3 = 40: le nombre de notes entre 30 et 40

5. Diagramme des fréquences cumulées (variable continue)

6. Exercice : analyse statistiquement de la même façon les données suivantes :

Taille des individus dans une population de mammifères

Classe $[a_i;b_i[$	c_i	n_i	f_i	f_{ic}	$c_i imes n_i$	$n_i imes (c_i - \widehat{ar{(x)}})^2$						
[30 ; 50[40	50	0,25	0,250	2000	50x (40-65,5)2						
[50 ; 70[60	75	0,375	0,625	4500	75 × (60 -65,5)2 2268,75						
[70 ; 90[80	45	0,225	0,85	3 60P	45 × (80-65,5)2= 3461,25						
[90 ; 110[100	30	0,15	1	3000	30 x (100-65,5)2-35707,5						
Total	-	200	1	-	13,100	73350						
$\bar{x} = \frac{13100}{200} = 65,5$ $\bar{x} = \frac{79350}{200} = 399,75$												
evant type $\sigma = \sqrt{\sigma^2} = \sqrt{339,75} = 20$.												

