$GF(2^m)$ Chapter 4. Finite Fields

$GF(2^m)$

Finite fields of order 2^m are called binary fields or characteristic-two finite fields. They are of special interest because they are particularly efficient for implementation in hardware, or on a binary computer.

The elements of $GF(2^m)$ are binary polynomials, i.e. polynomials whose coefficients are either 0 or 1. There are 2^m such polynomials in the field and the degree of each polynomial is no more than m-1. Therefore the elements can be represented as m-bit strings. Each bit in the bit string corresponding to the coefficient in the polynomial at the same position. For example, $GF(2^3)$ contains 8 element $\{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$. x+1 is actually $0x^2+1x+1$, so it can be represented as a bit string 011. Similarly, $x^2+x=1x^2+1x+0$, so it can be represented as 110.

In modulo 2 arithmetics, $1+1 \equiv 0 \mod 2$, $1+0 \equiv 1 \mod 2$ and $0+0 \equiv 0 \mod 2$, which coincide with bit-XOR, i.e. $1 \oplus 1 = 0$, $1 \oplus 0 = 1$ $0 \oplus 0 = 0$. Therefore for binary polynomials, addition is simply bit-by-bit XOR. Also, in modulo 2 arithmetics, $-1 \equiv 1 \mod 2$, so the result of subtraction of elements is the same as addition. For example:

- $(x^2+x+1) + (x+1) = x^2+2x+2$, since $2 \equiv 0 \mod 2$ the final result is x^2 . It can also be computed as $111 \oplus 011 = 100$. 100 is the bit string representation of x^2 .
- $(x^2+x+1) (x+1) = x^2$

Multiplication of binary polynomials can be implemented as simple bit-shift and XOR. For example:

• $(x^2+x+1)*(x^2+1) = x^4+x^3+2x^2+x+1$. The final result is x^4+x^3+x+1 after reduction modulo 2. It can also be computed as $111*101=11100\oplus111=11011$, which is exactly the bit string representation of x^4+x^3+x+1 .

$$\begin{array}{r}
111 \\
\times 101 \\
\hline
111 \\
0000 \\
\underline{11100} \\
11011
\end{array}$$

In GF(2^m), when the degree of the result is more than m-1, it needs to be reduced modulo a irreducible polynomial. This can be implemented as bit-shift and XOR. For example, x^3+x+1 is an irreducible polynomial and $x^4+x^3+x+1 \equiv x^2+x$ mod

 (x^3+x+1) . The bit-string representation of x^4+x^3+x+1 is 11011 and the bit-string representation of x^3+x+1 is 1011. The degree of 11011 is 4 and the degree of the irreducible polynomial is 3, so the reduction starts by shifting the irreducible polynomial 1011 one bit left, you get 10110, then 11011 \oplus 10110 = 1101. The degree of 1101 is 3 which is still greater than m-1=2, so you need another XOR. But you don't need to shift the irreducible polynomial this time. 1101 \oplus 1011 =0110, which is the bit-string representation of x^2+x .

Useful Links

• Binary Polynomial Calculator

_		
Prev	Up	Next
$GF(p^m)$	Home	Chapter 5. Elementary
		Number Theory