CS 581 Notes

0.1 Agent

An agent is just something that acts (from the Latin agere, to do).

Of course, we would prefer "acting" to be:

- autonomous
- situated in some environment (that could be really complex)
- adaptive
- create and goal-oriented

0.2 Rational Agent

A rational agent is one that acts to achieve the best outcome, or when there is uncertainty, the best expected outcome¹.

0.3 AI: Constructing Agents

You can say that: AI is focused on the study and construction of agents that do the right thing.

0.4 Percepts and Percept Sequences

Percept – content/information that agent's sensors are perceiving / capturing currently

Percept Sequence – a complete history of everything that agent has ever perceived

- any practical issues that you can see here?
- what can a percept sequence be used for?

0.5 Agent Function/Program

Specifying an action choice for every possible percept sequence would define an agent

- Action <-> percept sequence mapping IS the agent function.
- Agent function describes agent behavior.

¹no worries, we will make it a little less vague soon

- Agent function is an abstract concept.
- Agent program implements agent function.

0.6 Actions Have Consequences

An agent can act upon its environment, but how do we know if the end result is "right"? After all, actions have consequences: either good or bad. Recall that agent actions change environment state! If state changes are desirable, and agent performs well. Performance measure evaluates state changes.

0.7 Rationality

Rational decisions at the moment depend on:

- The performance measure that defines success criteria
- The agent's prior knowledge of the environment
- The actions that the agent can perform
- The agent's percept sequence so far

0.8 Rational Agent

For each possible percept sequence, a rational agent should select an action that is expected to maximize

0.9 Rationality in Reality

- An omniscient agent will ALWAYS know the final outcome of its action. Impossible in reality. That would be perfection.
- Rationality maximizes what is EXPECTED to happen.
- Perfection maximizes what WILL happen.
- Performance can be improved by information gathering and learning.

0.10 Designing the Agent for the Task

0.10.1 Analyze the Problem

Task Environment — PEAS

In order to start the agent design process, we need to specify/define:

- The Performance measure
- The Environment in which the agent will operate
- The Actuators that the agent will use to affect the environment
- The Sensors

Task Environment Properties

Key dimensions by which task environments can be categorized:

- Fully vs partially observable (can be unobservable too)
- Single agent vs multi-agent
 - multi-agent: competitive vs. co-operative
- Deterministic vs. non-deterministic (stochastic)
- Episodic vs. sequential
 - Sequential requires planning ahead
- Static vs. dynamic
- Discrete vs. continuous
- Known vs. unknown (to the agent)

0.10.2 Select Agent Architecture

Agent = Architecture + Program

Typical Agent Architectures

- Simple reflex agent.
- Model-based reflex agent.
- Goal-based reflex agent.
- Utility-based reflex agent.

0.10.3 Select Internal Representations

0.11 Typical Agent Architectures

- Simple reflex agent: uses condition-action rules
- Model-based reflex agent: keeps track of the unobserved parts of the environment by maintaining internal state:
 - "how the world works": state transition model
 - how percepts and environment is related: sensor model
- Goal-based reflex agent: maintains the models of the world and goals to select decisions (that lead to goal)
- Utility-based reflex agent: maintains the model of the world and utility function to select PREFERRED decisions (that lead to the best expected utility: avg (EU * p))

0.12 State and Transition Representations

- Atomic: state representation has NO internal structure
- Factored: state representation includes fixed attributes (which can have values)
- Structured: state representation includes objects and their relationships

0.13 Problem-Solving / Planning Agent

- Context / Problem:
 - correct action is NOT immediately obvious
 - a plan (a sequence of actions leading to a goal) may be necessary
- Solution / Agent:
 - come up with a computational process that will search for that plan
- Planning Agent:
 - uses factored or structured representations of states
 - uses searching algorithms

0.14 Defining Search Problem

- Define a set of possible states: State Space
- Specify Initial State
- Specify Goal State(s) (there can be multiple)
- Define a FINITE set of possible Actions for EACH state in the State Space
- Come up with a TRANSITION model which describes what each action does
- Specify the Action COST Function (a function that gives the cost of applying action a to state s)

0.15 Measuring Searching Performance

Search algorithms can be evaluated in four ways:

- Completeness: Is the algorithm guaranteed to find a solution when there is one, and to correctly report failure when there is not?
- Cost optimality: Does it find a solution with the lowest path cost of all solutions?
- Time complexity: How long goes it take to find a solution? (in seconds, actions, states, etc.)
- Space complexity: How much memory is needed to perform the search?

0.16 Informed Search and Heuristics

Informed search relies on domain-specific knowledge / hints that help locate the goal state.

$$h(n) = h(\text{State } n)$$

 $h(n) = n(\text{relevant information about State } n)$

0.17 Romanian Roadtrip: Heuristics h(n)

For this particular problem, the heuristic function h(n) is defined by a straight line (Euclidean) distance between two states (cities). As the crow flies in other words.

0.18 A* Algorithm: Evaluations Function

Calculate/obtain:

$$f(n) = g(State_n) + h(State_n)$$