MATH 231B, FALL 2017 HOMEWORK 6 SOLUTIONS

1. (Sec. 4.12, ex. 20) (\Rightarrow) Assume A is unitary and let (e_n) be a complete orthonormal sequence. Since A preserves the inner product, it follows that

$$\langle Ae_m, Ae_n \rangle = \langle e_m, e_n \rangle = \delta_{mn},$$

which means that (Ae_n) is an orthonormal sequence. Let us show that it is complete. Let $y \in H$ be arbitrary. Since A is unitary, it is surjective, hence y = Ax, for some $x \in H$. Since (e_n) is a complete orthonormal sequence, we have

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n,$$

hence

$$y = Ax = \sum_{n=1}^{\infty} \langle x, e_n \rangle Ae_n,$$

proving that (Ae_n) is complete.

(\Leftarrow) Now assume that A maps complete orthonormal sequences to complete orthonormal sequences. Let (e_n) be a complete orthonormal sequence in H and let $x \in H$ be arbitrary. Then

$$x = \sum_{n=1}^{\infty} \alpha_n e_n,$$

where $\alpha_n = \langle x, e_n \rangle$. Since A is continuous, it follows that

$$Ax = \sum_{n=1}^{\infty} \alpha_n A e_n.$$

By Parseval's identity we have

$$||x||^2 = \sum_{n=1}^{\infty} |\alpha_n|^2$$

as well as

$$||Ax||^2 = \sum_{n=1}^{\infty} |\alpha_n|^2$$

Thus A preserves the norm of every vector and is therefore an isometry. To show that A is unitary it remains to show that A is surjective. Let $y \in H$ be arbitrary. Choose a complete orthonormal sequence (e_n) in H. Then (Ae_n) is a complete orthonormal sequence and therefore

$$y = \sum_{n=1}^{\infty} \beta_n A e_n,$$

where $\beta_n = \langle y, Ae_n \rangle$. It therefore follows that y = Ax, where $x = \sum_{n=1}^{\infty} \beta_n e_n$, proving that A is surjective. Thus A is unitary. This completes the proof.

2. (Sec. 4.12, ex. 23) To show that e^A is a well-defined bounded linear operator, denote the N^{th} partial sum of the given series by S_N ; i.e.,

$$S_N = \sum_{n=0}^N \frac{A^n}{n!}.$$

For all M > N we have:

$$||S_M - S_N|| = \left\| \sum_{n=N+1}^M \frac{A^n}{n!} \right\|$$

$$\leq \sum_{n=N+1}^M \frac{||A||^n}{n!}$$

$$\leq \sum_{n=N+1}^\infty \frac{||A||^n}{n!}$$

$$\to 0,$$

as $N \to \infty$. This follows from the fact that the series $\sum_{0}^{\infty} t^n/n!$ converges for every $t \in \mathbb{R}$. Therefore, (S_N) is a Cauchy sequence in $\mathcal{B}(H)$, hence convergent since $\mathcal{B}(H)$ is complete. This proves that $e^A \in \mathcal{B}(H)$.

(d) Assume AB = BA. Then Newton's binomial formula holds:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}.$$

We therefore have:

$$e^{A+B} = \sum_{n=0}^{\infty} \frac{1}{n!} (A+B)^n$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} A^k B^{n-k}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} A^k B^{n-k}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{A^k}{k!} \frac{B^{n-k}}{(n-k)!}$$

$$= \sum_{n=0}^{\infty} \sum_{k+\ell=n} \frac{A^k}{k!} \frac{B^{\ell}}{\ell!}$$

$$= \sum_{k=0}^{\infty} \frac{A^k}{k!} \cdot \sum_{\ell=0}^{\infty} \frac{B^{\ell}}{\ell!}$$

$$= e^{A_{\ell}B}$$

- (a) This follows by repeated application of (d) with B = A.
- (b) It is clear that $e^0 = I$ since all terms in the defining series except the zeroth one vanish.

- (c) Follows by taking B = -A in (d).
- (e) Assume $A^* = A$. It is easy to see that $(e^T)^* = e^{T^*}$, for all bounded operators T, so

$$(e^{iA})^* = e^{(iA)^*} = e^{-iA^*} = e^{-iA},$$

which equals $(e^{iA})^{-1}$ by (c). Thus e^{iA} is unitary.

3. (Sec. 4.12, ex. 28) No, $T^*T = I$ does **not** imply that $TT^* = I$. Take the shift operator $T: \ell^2 \to \ell^2$ defined by

$$T(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots).$$

To compute T^* , start with arbitrary vectors $x, y \in H$. Then:

$$\langle Tx, y \rangle = \sum_{n=2}^{\infty} x_{n-1} \overline{y}_n$$
$$= \sum_{m=1}^{\infty} x_m \overline{y}_{m+1}$$
$$= \langle x, T^*y \rangle,$$

where we did a simple index change m = n - 1. Thus

$$T^*(y_1, y_2, y_3, \ldots) = (y_2, y_3, \ldots).$$

It is easy to verify that $T^*T = I$. It is also not hard to see that $T^*e_1 = 0$, so $TT^*e_1 = T0 = 0 \neq e_1$ and thus $TT^* \neq I$.

4. (Sec. 4.12, ex. 31) Since A + B = 0, we have for every $x \in H$:

$$0 = \langle (A+B)x, x \rangle$$
$$= \langle Ax + Bx, x \rangle$$
$$= \langle Ax, x \rangle + \langle Bx, x \rangle.$$

Since A and B are positive operators, both $\langle Ax, x \rangle$ and $\langle Bx, x \rangle$ are non-negative, so since they add up to zero, they both have to equal zero. It was shown in an earlier homework that this implies A=0 and B=0.

5. (Sec. 4.12, ex. 54) Consider the multiplication operator T on $L^2[0,1]$ defined by

$$(Tf)(x) = xf(x).$$

It was shown in class that T is self-adjoint.

Assume λ is an eigenvalue of T. Then $Tf = \lambda f$, for some $f \neq 0$, i.e.,

$$xf(x) = \lambda f(x),$$

for almost every $x \in [0, 1]$. Since $f \neq 0$ (in the L^2 sense), it follows that $f(x) \neq 0$ on a set A of positive measure. For every $x \in A$, $xf(x) = \lambda f(x)$ implies $x = \lambda$, which is of course impossible. This shows that T has no eigenvalues.