AArch64 Instructions Index by Encoding External Registers

GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register

The GICV AIAR characteristics are:

Purpose

Provides the INTID of the signaled Group 1 virtual interrupt. A read of this register by the PE acts as an acknowledge for the interrupt.

This register corresponds to the physical CPU interface register GICC AIAR.

Configuration

This register is present only when FEAT_GICv3_LEGACY is implemented and EL2 is implemented. Otherwise, direct accesses to GICV_AIAR are res0.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV AIAR is a 32-bit register.

Field descriptions

31 30 29 28 27 26 25	$24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16\ 15\ 14\ 13\ 12\ 11\ 10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1\ 0$
RES0	INTID

Bits [31:25]

Reserved, res0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

- Bits [23:13] are res0.
- For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are res0.

The operation of this register is similar to the operation of <u>GICV_IAR</u>. When a vPE reads this register, the corresponding <u>GICH_LR<n></u>.Group field is checked to determine whether the interrupt is in Group 0 or Group 1:

- If the interrupt is Group 0, the spurious INTID 1023 is returned and the interrupt is not acknowledged.
- If the interrupt is Group 1, the INTID is returned. The List register entry is updated to active state, and the appropriate bit in GICH APR<n> is set to 1.

A read of this register returns the spurious INTID 1023 if any of the following are true:

- When the virtual CPU interface is enabled and GICH HCR.En == 1:
 - There are no pending interrupts of sufficiently high priority value to be signaled to the PE.
 - The highest priority pending interrupt is in Group 0.
- Interrupt signaling by the virtual CPU interface is disabled.

Accessing GICV_AIAR

This register is used only when System register access is not enabled. When System register access is enabled:

- For AArch32 implementations, ICC_IAR1 provides equivalent functionality.
- For AArch64 implementations, <u>ICC_IAR1_EL1</u> provides equivalent functionality.

This register is used for Group 1 interrupts only. <u>GICV_IAR</u> provides equivalent functionality for Group 0 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV AIAR can be accessed through the memory-mapped interfaces:

Component	Offset	Instance
GIC Virtual CPU interface	0x0020	GICV_AIAR

This interface is accessible as follows:

- When GICD CTLR.DS == 0, accesses to this register are **RO**.
- When an access is Secure, accesses to this register are **RO**.

• When an access is Non-secure, accesses to this register are **RO**.

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.