Inference 2, 2023, lecture 7

Rolf Larsson

November 20, 2023

1/13

Today

Chap. 4. Estimation (continued):

- Unbiasedness and Mean Square Error (MSE)
- Best unbiased estimators

- Let $\mathbf{X} = (X_1, ..., X_n)$ be independent random variables distributed as X with parameter(s) θ .
- We want to estimate $\gamma = g(\theta)$. (Special case: $\gamma = \theta$.)
- The **bias** of *T* is given by

$$\operatorname{Bias}(T,\theta) = \operatorname{E}_{\theta}(T) - g(\theta).$$

Definition (4.7)

An estimator T for $\gamma = g(\theta)$ is called **unbiased** if

$$Bias(T,\theta)=0$$

for all $\theta \in \Theta$.

Example 1:

- Suppose $\mathbf{X} = (X_1, ..., X_n)$ are independent random variables distributed as $X \sim \operatorname{Exp}(\beta)$ where β is the intensity.
- We have observations $\mathbf{x} = (x_1, ..., x_n)$.
- Is $\hat{\beta}_{\text{MLE}} = 1/\bar{x}$ unbiased for β ?
- 2 Let $\mu = 1/\beta$. Is $\hat{\mu}_{MLE} = \bar{x}$ unbiased for μ ?

4 / 13

Definition (4.6)

Let T be an estimator of $g(\theta)$. The **mean square error (MSE)** of T is given by

$$MSE(T, \theta) = E_{\theta}[\{T - g(\theta)\}^2].$$

Observe that, with $E(T) = \mu$, (why?)

$$MSE(T, \theta) = Var_{\theta}(T) + {Bias(T, \theta)}^2.$$

Example 2:

- Suppose we have *n* independent observations from $N(\mu, \sigma^2)$.
- Consider $\hat{\sigma}_{\text{MLE}}^2 = n^{-1} \sum_{i=1}^n (X_i \bar{X})^2$ and $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- Is any of these unbiased?
- Which has the smallest MSE?

Hint:

$$V=\sigma^{-2}\sum_{i=1}^n(X_i-\bar{X})^2\sim \chi^2(n-1)$$
, which means that $\mathrm{E}(V)=n-1$ and $\mathrm{Var}(V)=2(n-1)$.

Definition (4.8)

An unbiased estimator T^* for a parameter $\gamma = g(\theta)$ is called the **best** unbiased estimator (BUE), if for any other unbiased estimator T,

$$\operatorname{Var}_{\theta}(T^*) \leq \operatorname{Var}_{\theta}(T)$$

for all $\theta \in \Theta$.

In a given (regular) situation

- is there a way to find a statistic which is BUE? (May be difficult!)
- for a given statistic, is it possible to know if it is BUE? (Possible!)

A regular unbiased estimator T fulfills

$$\int_{\mathcal{A}} T(\mathbf{x}) \frac{\partial}{\partial \theta} L(\theta; \mathbf{x}) d\mathbf{x} = \frac{\partial}{\partial \theta} \int_{\mathcal{A}} T(\mathbf{x}) L(\theta; \mathbf{x}) d\mathbf{x}.$$

Theorem (4.2)

The Cramér-Rao lower bound. Suppose that regularity conditions 3 and 4 are satisfied and that the Fisher information satisfies $0 < I_X(\theta) < \infty$. Let $\gamma = g(\theta)$ where g is a continuously differentiable function with derivative $g' \neq 0$.

If T is a regular unbiased estimator for γ , then

$$\operatorname{Var}_{\theta}(T) \geq rac{\{g'(\theta)\}^2}{I_{\mathbf{X}}(\theta)}$$

for all $\theta \in \Theta$. Equality holds if.f. for $\mathbf{x} \in \mathcal{A}$ and all $\theta \in \Theta$,

$$T(\mathbf{x}) - g(\theta) = \frac{g'(\theta)V(\theta; \mathbf{x})}{I_{\mathbf{X}}(\theta)}$$

where V is the score function.

Cramér-Rao, special case: If $\gamma = \theta$,

$$\operatorname{Var}_{\theta}(T) \geq \frac{1}{I_{\mathsf{X}}(\theta)}$$

with equality if

$$T(\mathbf{x}) - \theta = \frac{V(\theta; \mathbf{x})}{I_{\mathbf{X}}(\theta)}.$$

In the general case, observe:

$$1 \geq \frac{\{g'(\theta)\}^2}{\operatorname{Var}_{\theta}(T) I_{\mathbf{X}}(\theta)}.$$

Definition (4.9)

The **efficiency** of an unbiased estimator T is

$$e(T, \theta) = \frac{\{g'(\theta)\}^2}{\operatorname{Var}_{\theta}(T)I_{\mathbf{X}}(\theta)}.$$

An estimator which attains the Cramér-Rao lower bound is said to be **efficient**.

It may be shown that, under regularity conditions, maximum likelihood estimators are asymptotically unbiased and efficient.

Theorem (4.3)

Suppose that the distribution of $\mathbf{X} = (X_1, ..., X_n)$ belongs to a one-parameter exponential family in ζ and T.

Then the sufficient statistic T is an efficient estimator for the parameter $\gamma = g(\theta) = E_{\theta}(T)$.

11 / 13

Example 3: Check if the following estimators are efficient.

- **1** The sample mean when $X_i \sim N(\mu, \sigma^2)$ with known σ^2 .
- **②** The MLE of the expectation parameter μ in the exponential distribution.
- **3** The sample mean in the $Po(\lambda)$ distribution.

News of today

- Bias
- MSE (variance plus squared bias)
- Best unbiased estimator (has the smallest variance)
- Cramér-Rao inequality (gives smallest possible variance)
- Efficiency (lower bound divided by variance)
- Efficient estimator
- In the exponential family, the sufficient statistic is efficient.