MH1812 Tutorial Chapter 2: Propositional Logic

Q1: Decide whether the following statements are propositions. Justify your answer.

1. 2 + 2 = 5.

Solution: Yes, because this statement always takes the truth value "false". \Box

 $2. \ 2 + 2 = 4.$

Solution: Yes, because this statement always takes the truth value "true". \Box

3. x = 3.

Solution: No, because this statement can be "true" when x is 3 and "false" when x is not 3.

4. Every week has a Sunday.

Solution: Yes, because this statement always takes the truth value "true". \Box

5. Have you read "Catch 22"?

Solution: No, because the truth value depends on who is answering the question.

Q2: Show the second law of de Morgan:

$$\neg (p \lor q) \equiv \neg p \land \neg q.$$

Solution: We show the equivalence using truth tables:

p	q	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
Т	Т	F	F	F
\mathbf{T}	F	\mathbf{F}	Т	F
\mathbf{F}	Т	Τ	F	F
F	F	Τ	Τ	Τ

p	$\mid q \mid$	$p \lor q$	$\neg (p \lor q)$
Т	Т	Т	F
\mathbf{T}	F	${ m T}$	\mathbf{F}
\mathbf{F}	Т	${ m T}$	\mathbf{F}
F	F	F	${ m T}$

Since both truth tables are the same, the two logical expressions are equivalent. \Box

Q3: Show that second absorption law $p \land (p \lor q) \equiv p$ holds.

Solution: We show the equivalence using a truth table:

p	q	$p \lor q$	$p \land (p \lor q)$
\overline{T}	Т	Т	T
Τ	F	Τ	${ m T}$
F	T	Т	F
F	F	F	F

Since the columns of p and $p \land (p \lor q)$ are identical, so these two logical expressions are equivalent.

Q4: These two laws are called distributivity laws. Show that they hold:

1. Show that $(p \wedge q) \vee r \equiv (p \vee r) \wedge (q \vee r)$.

Solution:

p	q	$\mid r \mid$	$p \wedge q$	$(p \land q) \lor r$	$p \vee r$	$q \vee r$	$(p \lor r) \land (q \lor r)$
T	Т	Т	Т	T	Т	Т	T
Τ	Т	F	Τ	${ m T}$	Т	Т	T
Τ	F	Т	F	${ m T}$	Т	Т	T
Τ	F	F	F	F	Т	F	F
F	Т	Γ	F	${ m T}$	Т	Т	T
\mathbf{F}	Т	F	F	F	F	Т	F
F	F	Т	F	${ m T}$	Т	Т	T
F	F	F	F	F	F	F	F

2. Show that $(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$.

Solution:

p	q	$\mid r \mid$	$p \lor q$	$(p \lor q) \land r$	$p \wedge r$	$q \wedge r$	$(p \wedge r) \vee (q \wedge r)$
Т	Т	Т	Т	Τ	Т	Т	Т
Τ	Т	F	Τ	${ m F}$	F	F	F
Τ	F	Т	Τ	${ m T}$	Т	F	T
T	F	F	Τ	${ m F}$	F	F	F
F	Т	Т	Τ	${ m T}$	F	Т	T
\mathbf{F}	Т	F	Τ	${ m F}$	F	F	F
F	F	Т	F	${ m F}$	F	F	F
\mathbf{F}	F	F	F	${ m F}$	F	F	F

Q5: Verify $\neg (p \lor \neg q) \lor (\neg p \land \neg q) \equiv \neg p$ by

• constructing a truth table,

Solution:

2

p	q	$\neg p$	$\neg q$	$p \vee \neg q$	$\neg (p \lor \neg q)$	$\neg p \land \neg q$	$ \neg (p \lor \neg q) \lor (\neg p \land \neg q) $
Т	Т	F	F	Т	F	F	F
T	F	\mathbf{F}	Τ	Τ	F	${ m F}$	F
F	Т	Τ	F	F	Γ	F	m T
\mathbf{F}	F	Τ	Τ	Т	\mathbf{F}	${ m T}$	m T

• developing a series of logical equivalences.

Solution:

$$\neg (p \lor \neg q) \lor (\neg p \land \neg q) \equiv (\neg p \land q) \lor (\neg p \land \neg q) \quad \text{(de Morgan)}$$

$$\equiv \neg p \land (q \lor \neg q) \quad \text{(distributivity)}$$

$$\equiv \neg p \land T \quad \text{(since } (q \lor \neg q) \equiv T)$$

$$\equiv \neg p.$$

Q6: Using a truth table, show that:

$$\neg q \rightarrow \neg p \equiv p \rightarrow q$$
.

Solution:

p	q	$\neg p$	$\neg q$	$\neg q \to \neg p$	$p \to q$
Т	Т	F	F	Τ	Т
\mathbf{T}	F	\mathbf{F}	Τ	${ m F}$	\mathbf{F}
\mathbf{F}	Т	Τ	F	${ m T}$	${ m T}$
F	F	Τ	Τ	Τ	${ m T}$

Q7: Show that $p \lor q \to r \equiv (p \to r) \land (q \to r)$.

Solution:

$$\begin{split} p \lor q \to r &\equiv (p \lor q) \to r \quad \text{(precedence)} \\ &\equiv \neg (p \lor q) \lor r \quad \text{(conversion theorem)} \\ &\equiv (\neg p \land \neg q) \lor r \quad \text{(de Morgan)} \\ &\equiv (\neg p \lor r) \land (\neg q \lor r) \quad \text{(distributivity)} \\ &\equiv (p \to r) \land (q \to r) \quad \text{(conversion theorem)} \end{split}$$

Q8: Are $(p \to q) \lor (q \to r)$ and $p \to r$ equivalent statements?

Solution: They are not equivalent. Here is a proof using truth table:

p	q	$\mid r \mid$	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \lor (q \to r)$	$p \rightarrow r$
\overline{T}	Т	Т	Т	Т	Τ	Т
Τ	Т	F	Τ	F	T	F
Τ	F	$\mid T \mid$	F	Т	${ m T}$	Τ
Τ	F	F	F	Т	${ m T}$	F
F	Т	$\mid T \mid$	Т	Т	${ m T}$	Τ
F	Т	F	Τ	F	${ m T}$	Τ
F	F	Γ	Т	Т	${ m T}$	T
F	F	F	Т	Т	T	Γ

We can see that the second row are giving different truth values, for example. This can be done using equivalences as well:

$$(p \to q) \lor (q \to r) \equiv (\neg p \lor q) \lor (\neg q \lor r) \quad \text{(conversion theorem)}$$

$$\equiv \neg p \lor r \lor T \quad \text{(since } \neg q \lor q \equiv T)$$

$$\equiv T$$

Since $p \to r$ is not equivalent to T, both statements cannot be equivalent.

Q9: Show that this argument is valid:

$$\neg p \to F;$$

$$\therefore p.$$

Solution: The premise is $\neg p \to F \equiv p \lor F$, which is true only when p is true. \Box

Q10: Show that this argument is valid, where C denotes a contradiction.

$$\neg p \to C;$$

$$\therefore p.$$

Solution: The premise is $\neg p \to C \equiv p \lor C$, which is true only when p is true.

Q11: Determine whether the following argument is valid:

Solution: Reasoning in the succinct form:

Step	Formula	Reason
(1)	$u \vee w$	Premise
(2)	$\neg w$	Premise
(3)	u	(1) + (2), disjunctive syllogism
(4)	$u \to \neg p$	Premise
(5)	$\neg p$	(3) + (4), modus ponens
(6)	$\neg p \to r \land \neg s$	Premise
(7)	$r \wedge \neg s$	(5) + (6), modus ponens
(8)	$\neg s$	(7), conjunction simplification
(9)	$t \to s$	Premise
(10)	$\neg t$	(8) + (9), modus tollens
(11)	$\neg t \lor w$	(10), disjunctive addition
(12)	$t \to w$	equivalent form of (11)

Alternatively, one can write the above reasoning in a verbose form as follows. We start by noticing that we have by disjunctive syllogism that

$$u \vee w$$
; $\neg w$; $\therefore u$.

Next, by modus ponens,

$$u \to \neg p; \ u; \ \therefore \neg p.$$

Again by modus ponens,

$$\neg p \to r \land \neg s; \ \neg p; \ \therefore r \land \neg s,$$

Then by conjunction simplification,

$$r \wedge \neg s$$
; $\therefore \neg s$.

Finally, by modus tollens,

$$t \to s; \ \neg s; \ \therefore \neg t$$

It follows by disjunctive addition that

$$\neg t$$
; $\therefore \neg t \lor w$

or, equivalently,

$$\neg t \vee w \equiv t \to w$$

using the Conversion theorem, which shows that the argument is valid.

Q12: Determine whether the following argument is valid:

$$p;$$

$$p \lor q;$$

$$q \to (r \to s);$$

$$t \to r;$$

$$\therefore \neg s \to \neg t.$$

Solution: For this question, there is no obvious way to combine the known statements with inference rules. The only 2 related statements are p and $p \lor q$, and assuming that both are true, all can be deduced is that q is either true or false (this gives no information about q at all). Now if q is false, $q \to (r \to s)$ is always true, while if q is true, $q \to (r \to s)$ is true only if $(r \to s)$ is true, which excludes the possibility r = T and s = F. Now we look at the last premise $t \to r$. For it to be true, we need t false, or t true and r true. If s is true, then $\neg s$ is always false, and the conclusion is always true. We thus focus on s is false, and $\neg t$ is false, that is t is true. So we have a counter-example (which makes all premises true and conclusion false):

$$q = F, \ r = T, \ s = F, \ t = T.$$

One can also draw the truth table and find a counterexample from the critical rows. \Box