CHAPTER FIVE

Curve Fitting

Numerical Analysis - prepared by: Eng Shatha Al-Hasan

Data Linearization - Example

• Use data linearization method to find the exponential fit $y = Ce^{Ax}$ for the following five data points: (0,1.5), (1,2.5), (2,3.5), (3,5.0), (4,7.5)

- From table:
- $\sum x_k = 10.0$
- $\sum \ln(y_k) = 6.198860$
- $\sum x_k^2 = 30.0$
- $\sum x_k \ln(y_k) = 16.309743$

Table 5.4 Obtaining Coefficients of the Normal Equations for the Transformed Data Points $\{(X_k, Y_k)\}$

xk	Уk	X_k	$Y_k = \ln(y_k)$	X_k^2	$X_k Y_k$
0.0	1.5	0.0	0.405465	0.0	0.000000
1.0	2.5	1.0	0.916291	1.0	0.916291
2.0	3.5	2.0	1.252763	4.0	2.505526
3.0	5.0	3.0	1.609438	9.0	4.828314
4.0	7.5	4.0	2.014903	16.0	8.059612
		10.0	6.198860	30.0	16.309743
		$=\sum X_k$	$=\sum Y_k$	$=\sum X_k^2$	$=\sum X_k Y_k$

Data Linearization – Example (cont'd)

• Using line fit equations:

$$(\sum_{k=1}^{N} x_k^2) A + (\sum_{k=1}^{N} x_k) B = \sum_{k=1}^{N} x_k \ln(y_k)$$

$$(\sum_{k=1}^{N} x_k) A + NB = \sum_{k=1}^{N} \ln(y_k)$$

$$C = e^B$$

• And using the values on previous slides we will have the following:

$$30A + 10B = 16.309743$$
 $A = 0.3912023$
 $10A + 5B = 6.198860$ $B = 0.457367$

• Then,
$$C = e^{0.457367} = 1.579910$$

$$y = 1.579910e^{0.3912023x}$$

Numerical Analysis - prepared by: Eng Shatha Al-Hasan

Transformation for data linearization

$$Y = AX + B$$

Table 5.6 Change of Variable(s) for Data Linearization

			
Function, $y = f(x)$	Linearized form, $Y = Ax + B$	Change of variable(s) and constants	
$y = \frac{A}{x} + B$	$y = A\frac{1}{x} + B$	$X = \frac{1}{x}, Y = y$	
$y = \frac{D}{x + C}$	$y + \frac{-1}{C}(xy) + \frac{D}{C}$	X = xy, Y = y	
		$C = \frac{-1}{A}, D = \frac{-B}{A}$	
$y = \frac{1}{Ax + B}$	$\frac{1}{y} = Ax + B$ $\frac{1}{y} = A\frac{1}{x} + B$	$X = x, Y = \frac{1}{y}$	
$y = \frac{x}{Ax + B}$	$\frac{1}{y} = A\frac{1}{x} + B$	$X = \frac{1}{x}, Y = \frac{1}{y}$	
$y = A \ln(x) + B$	$y = A \ln(x) + B$	$X = \ln(x), Y = y$	
$y = Ce^{Ax}$	$\ln(y) = Ax + \ln(C)$	$X=x, Y=\ln(y)$	
		$C=e^{B}$	
$y = Cx^A$	$\ln(y) = A \ln(x) + \ln(C)$	$X = \ln(x), Y = \ln(y)$	
		$C = e^B$	
$y = (Ax + B)^{-2}$	$y^{-1/2} = Ax + B$	$X = x, Y = y^{-1/2}$	
$y = Cxe^{-Dx}$	$\ln\left(\frac{y}{x}\right) = -Dx + \ln(C)$	$X = x, Y = \ln\left(\frac{y}{x}\right)$	
		$C=e^B, D=-A$	
$y = \frac{L}{1 + Ce^{Ax}}$	$ \ln\left(\frac{L}{y} - 1\right) = Ax + \ln(C) $	$X = x, Y = \ln\left(\frac{L}{y} - 1\right)$	
		$C = e^{B}$ and L is a constant that must be given	

Numerical Analysis - prepared by: Eng Shatha Al-Hasan

[1]

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

Numerical Analysis - prepared by: Eng Shatha Al-Hasan