שאלות להגשה

- נסמן ב-* את הפעולה על קבוצת השלמים .1 נסמן ב-* את קבוצת הפסוקים מעל הקבוצה את ב-* את הפעולה על קבוצת השלמים .1 t(q)=-2 , t(p)=6 המידה המקיימת $t:\mathcal{F}\to\mathbb{Z}$. תהי $t:\mathcal{F}\to\mathbb{Z}$ המוגדרת על-ידי: t(q)=0 . לכל t(q)=0 לכל t(q)=0 . מובטח במשפט 2.2.2 מהרשימות).
 - $(\langle\langle p \rightarrow \langle q \rightarrow 0 \rangle\rangle \rightarrow 0 \rangle)$ הוא קיצור ל- $(p \land q)$ את (א) (א)
 - (3ב בחלוקה ב-אם (רמז: שארית בחלוקה ב- $\phi \in \mathcal{F}$ בסוק קיים פסוק (ב)
 - $.F_b = \{a \in \mathcal{B} \mid b \leq a\}$ נסמן, $b \in \mathcal{B}$ עבור. עבור בוליאנית. \mathcal{B} -ש אלגברה בוליאנית. 2
 - (א) נקרא הוכיחו ש-b מסנן אם ורק אם על-מסנן אם ושהוא על-מסנן אם ורק אם אסום (על-מסנן אם ורק אם אם הוכיחו (א)
- הוכיחו $b=b_1\vee\dots\vee b_k$ כך שאבר $b=b_1\vee\dots\vee b_k$ כך הוא שיבר שאיבר שאבר אם הוא שישר אם הוא באורך סופי. הוכיחו שיבר שאבר באורך סופית אם ורק אם 1 באורך סופית
- גם הסתכלו על הסתכלו ב- \mathcal{B} הוא ראשי (רמז: הסתכלו על הקבוצה (ג) הוכיחו שהאלגברה ($F = \{ \neg b \mid$ סופי באורך סופי שובר באורך סופי ו
 - :P ברשימות, כלומר, לכל קבוצה :P הוכיחו את טענה 2.2.12 ברשימות, כלומר, לכל קבוצה
 - $\mathcal{F}(P)$ אן שקילות שקילות היא היא היא שקילות לוגית (א)
- (ב) אם $x \equiv x'$ ו- $x \equiv x'$ אז $y \equiv y'$ אז $y \equiv x'$ ו- $x \equiv x'$ אם $x \equiv x'$ אם היטב על המנה $x \equiv x'$ (שמסומנות באותו סימון).
- המחלקה את מסמל (כאשר $\mathcal{B}=\langle B,\wedge,\neg,0\rangle$ המבנה הפעולות אלגברה בוליאנית המלגברה הוא אלגברה המבנה (ג) של $\mathcal{B}=\langle B,\wedge,\neg,0\rangle$ ויתר המבנה נקבע)
 - \mathcal{B} -ם משוכנת ב- P_0 משוכנת ב-אינם שקולים, ולכן אינם של P_0 משוכנת ב-