

VAB - Veicolo auto bilanciato Relazione di progetto

Laboratorio di Sistemi Meccatronici II Università degli Studi di Bergamo Kilometro rosso A.A. 2019/2020

> Calegari Andrea - 1041183 Piffari Michele - 1040658

> > May 5, 2020

Contents

1	Introduzione	1
Ι	Dinamica	3
2	Scomposizione del VAB	5
II	Controllo	7
3	OPC - UA	9

iv CONTENTS

List of Figures

2.1	Baricentri dei singoli corpi rigidi		5
-----	-------------------------------------	--	---

vi LIST OF FIGURES

1

Introduzione

L'approccio seguito per la stesura del modello dinamico del veicolo autobilanciato ha da subito preso una via meno tradizionale rispetto al classico metodo risolutivo: abbiamo infatti preferito, data il nostro background informatico, approcciare il problema direttamente in ambiente Matlab, sfruttando sin da subito le potenzialità di calcolo offerte dal software di Mathworks.

Nello specifico, per la parte di stesura e definizione della dinamica, abbiamo inzialmente seguito una via risolutiva duale, portando avanti sia un'analisi letterale, sfruttando le potenzialità del calcolo simbolico messe a disposizione delle funzionalità di live scripting, sia uno studio numerico (considerando quindi le varie grandezze fisiche con i valori definiti delle specifiche di progetto).

In linea di massima lo sviluppo del progetto ha seguito un andamento a step graduali, cadenziati da incontri settimanali in cui poter confrontare e consolidare lo *stato di avanzamento dei lavori*: nello specifico, il lavoro ha seguito uno sviluppo in questa direzione, step by step, rappresentabile in linea di massima da queste *pietre miliari*:

- Dinamica di ogni singolo corpo rigido: abbiamo impostato il problema della dinamica andando a considerare il veicolo auto bilanciato come un insieme di corpi rigidi di cui poterne studiare la dinamica in maniera separata;
- Dinamica completa del VAB: siamo andati poi a considerare il sistema nella sua completezza, andando ad unire i contributi dei corpi rigidi considerati in prima battuta singolarmente;
- Linearizzazione: TODO
- Definizione del controllo: prima lineare poi non lineare TODO
- Discretizzazione: TOOD
- TODO altri step

TODO: note varie

1. INTRODUZIONE

Part I Dinamica

Scomposizione del VAB

Per il calcolo delle equazioni dinamiche del sistema siamo andati a considerare ogni singolo corpo rigido componente il sistema, calcolandone le grandezze fisiche di posizione e velocità, seguendo un approccio cartesiano. Nello specifico abbiamo considerato il sistema composto da:

- Asta
- Utente a bordo dello chassis
- Chassis (nel corso della trattazione sarà chiamata talvolta anche base)
- Ruota (che poi sarà considerata con un contributo, essendo il VAB composto da due ruote)

Ognuno di questi corpi rigidi separati è individuato da un punto, che ne rappresenta il centro di massa (o baricentro del corpo stesso): avremo quindi questo insieme di punti caratterizzanti il sistema (figura 2.1)

- Pa
- P_b
- \bullet P_c
- \bullet P_r

Figure 2.1: Baricentri dei singoli corpi rigidi

Prima di andare a definire le componenti di energia potenziale e cinetica di ogni singolo corpo, siamo andati ad introdurre alcune grandezze geometriche di supporto che definiremo qui di seguito.

Part II Controllo

OPC - UA

3. OPC - UA

Bibliography

[1] bla bla bla blablabla