Kalman Filter

Rudolf Emil Kálmán

- Born in 1930 in Hungary
- BS and MS from MIT
- PhD 1957 from Columbia
- Filter developed in 1960-61
- IEEE Medal of Honor in 1974
- National Medal of Science 2009
- Retired.

Applications

- Aerospace,
- Marine navigation,
- Nuclear power plant instrumentation,
- Demographic modeling,
- Manufacturing,
- Tracking,
- . . .

The Problem

- System state cannot be measured directly
- Need to estimate "optimally" from measurements

What is a Kalman Filter?

- Recursive data processing algorithm
 - Doesn't need to store all previous measurements and reprocess all data each time step
- Generates optimal estimate of desired quantities given the set of measurements
- Optimal?
 - □ For linear system and white Gaussian errors, Kalman filter delivers "best" estimate based on all previous measurements.
 - □ For non-linear system optimality is not guaranteed, but it works fine.

Conceptual Overview

- Simple example to motivate the workings of the Kalman Filter
- Theoretical Justification to come later for now just focus on the concept
- Important: Prediction and Correction

Conceptual Overview

Conceptual Overview

Lessons so far

Make prediction based on previous data - \widehat{x}_k^- , σ_k^-

Take measurement – z_k , σ

Optimal estimate $(\widehat{\boldsymbol{x}}_k)$ = Prediction $(\widehat{\boldsymbol{x}}_k^-)$ + ... (Kalman Gain) * (Measurement (\boldsymbol{z}_k) – Prediction $(\widehat{\boldsymbol{x}}_k^-)$)

Variance of estimate (σ_k) = Variance of prediction (σ_k^-) * (1 - Kalman Gain)

The state equation

The measurement equation

The errors

$$\longrightarrow P_k^- = E[e_k^- e_k^{-T}]$$

a posteriori covariance
$$P_k = E[e_k e_k^T]$$

Kalman Filter task:

$$\widehat{\boldsymbol{x}}_k^- \to \widehat{\boldsymbol{x}}_k \quad \mathbf{AND} \quad \boldsymbol{P}_k^- \to \boldsymbol{P}_k$$

Time update (predictor)

1. Update expected value for the state matrix

2. Update error covariance matrix **P**

a priori covariance error estimate at time
$$k$$
 $P_k^- = AP_{k-1}A^T + Q$ process noise covariance a posteriori covariance error estimate at time $k-1$

Measurement update(corrector)

1. Update expected value

2. Update error covariance matrix

a posteriori covariance error
$$P_k = (I - K_k H) P_k^-$$
 a priori estimate a priori estimate

The Kalman Gain

The optimal Kalman gain K_k is

$$m{K}_k = m{P}_k^- m{H}^T (m{H} m{P}_k^- m{H}^T + m{R})^{-1}$$

corresponds to the value that minimizes the trace of P_k , the covariance of posterior state estimate (see Brown & Hwang 2012 ch. 4 for details)

Summary

Process to be estimated

$$x_k = Ax_{k-1} + Bu_k + w_{k-1}$$
 Process Noise (w) with covariance Q

$$\mathbf{z}_k = \mathbf{H}\mathbf{x}_k + \mathbf{v}_k$$

Measurement Noise (v) with covariance R

Kalman Filter

Predicted: \hat{x}_k^- is estimated based on measurements at previous time-steps

$$\widehat{\boldsymbol{x}}_{k}^{-} = A\widehat{\boldsymbol{x}}_{k-1} + \boldsymbol{B}\boldsymbol{u}_{k}$$

$$\boldsymbol{P}_{k}^{-} = \boldsymbol{A}\boldsymbol{P}_{k-1}\boldsymbol{A}^{T} + \boldsymbol{Q}$$

Corrected: \hat{x}_k has additional information – the measurement at time k

$$\widehat{\boldsymbol{x}}_{k} = \widehat{\boldsymbol{x}}_{k}^{-} + \boldsymbol{K}_{k}(\boldsymbol{z}_{k} - \boldsymbol{H}\widehat{\boldsymbol{x}}_{k}^{-})
\boldsymbol{P}_{k} = (\boldsymbol{I} - \boldsymbol{K}_{k}\boldsymbol{H})\boldsymbol{P}_{k}^{-}$$

$$\boldsymbol{K}_{k} = \boldsymbol{P}_{k}^{-}\boldsymbol{H}^{T}(\boldsymbol{H}\boldsymbol{P}_{k}^{-}\boldsymbol{H}^{T} + \boldsymbol{R})^{-1}$$

Recursive data processing

Prediction

(1)
$$\widehat{\boldsymbol{x}}_k^- = A\widehat{\boldsymbol{x}}_{k-1} + B\boldsymbol{u}_k$$

(2)
$$P_k^- = AP_{k-1}A^T + Q$$

Time update

$$(1)K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$$

(2)
$$\widehat{\boldsymbol{x}}_k = \widehat{\boldsymbol{x}}_k^- + \boldsymbol{K}_k (\boldsymbol{z}_k - \boldsymbol{H}\widehat{\boldsymbol{x}}_k^-)$$

(3)
$$P_k = (I - K_k H) P_k^-$$

Measurement update

Exercise 1

Consider a Kalman Filter in 1D domain. From kinematics you know

$$x_k = x_{k-1} + v_{k-1}\Delta t + a\Delta t^2/2$$

 $v_k = v_{k-1} + a\Delta t$

Let's define $x_k = \begin{bmatrix} x_k \\ v_k \end{bmatrix}$. Assume that the sensor aims at measuring directly the variable of concern.

Write the corresponding state update equation, i.e., give the matrices A, B and H.

Exercise 2

Still in reference to the previous exercise, apply the Kalman filter to track the object. Assume that

$$\widehat{\boldsymbol{x}}_0^- = \begin{bmatrix} -1 \\ -2 \end{bmatrix} \quad \boldsymbol{P}_0 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \quad \boldsymbol{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \boldsymbol{R} = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix}$$

k	1	2	3	4	5	6	7	8	9
$\boldsymbol{z_k}$	1	4	9	16	25	36	49	64	81
	2	4			10				

Write a simple MATLAB program that implements the Kalman, and computes \hat{x}_k^- , P_k , K_k , \hat{x}_k and P_k^- for k=1,...,9.

References

Useful link

□ Kalman Filter Learning Tool. http://www.cs.unc.edu/~welch/kalman/

Books and Papers

- □ Kalman, R. E. 1960. "A New Approach to Linear Filtering and Prediction Problems," Transaction of the ASME—Journal of Basic Engineering, pp. 35-45 (March 1960).
- Brown, R. G., Hwang, P.Y.C., Random Signals and Applied Kalman Filtering with MATLAB Exercises, 4th Ed., Johna Wile & Sons, Inc, 2012.

References

Online lectures

□ Graphical Models 3 – Christopher Bishop.

MATLAB demos

Tracking with Kalman Filter – MATLAB demos (version 2015 onwards):

- kalmanFilterForTracking
- multiObjectTracking()

Kalman Filter

