第3节 四个常见条件的翻译 (★★★)

内容提要

本节归纳 $y = A\sin(\omega x + \varphi)$ 这类函数的图象性质有关考题中常见的四个条件的翻译方法.

- 1. 单调区间: 从左到右,最大值点到相邻最小值点为减区间,最小值点到相邻最大值点为增区间. 当条件给出在某区间单调时,则该区间不超过半个周期.
- 2. 函数值相等:一个周期内(若恰好为一个周期,则结论不一定成立),两个点的函数值相等,则它们中间必为对称轴;如图 1 中同周期内的 A, B 两点处函数值相等,则中间为对称轴;又如同周期内的 B, C 两点处函数值相等,中间也为对称轴; A, C之间恰好为一个周期,它们的中间不是对称轴;
- 3. 函数值相反:半个周期内(不包括恰好为半个周期)或同一段单调区间上,两个点的函数值相反,则它们中点必为对称中心. 如图 2 中的 D, E 两点在半个周期内(也在同一段单调区间上),函数值相反,所以它们的中点 F 为对称中心; G 和 H 之间恰好为半个周期(不在同一段单调区间上),它们的中点不是对称中心.
- 4. 隐含的最值点: 若 $f(x) \le f(x_0)$,则 f(x)在 $x = x_0$ 处取得最大值; 若 $f(x) \ge f(x_0)$,则 f(x)在 $x = x_0$ 处取得最小值; 若 $f(x) \le |f(x_0)|$,则 f(x)在 $x = x_0$ 处取得最值(最大值、最小值均可).

典型例题

【例 1】若函数
$$f(x) = \sin(\omega x + \frac{7\pi}{12})$$
 在 $[\frac{\pi}{6}, \frac{2\pi}{3}]$ 上单调,且 $f(-\frac{\pi}{3}) = f(\frac{\pi}{6})$,则正数 ω 的值为_____.

解析:给出了在某区间单调的条件,根据内容提要 1,可由此限定周期 T 的范围,进而得到 ω 的范围,

因为
$$f(x)$$
在 $\left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$ 上单调,所以 $\frac{T}{2} \ge \frac{2\pi}{3} - \frac{\pi}{6} = \frac{\pi}{2}$,从而 $T = \frac{2\pi}{\omega} \ge \pi$,故 $0 < \omega \le 2$ ①,

另一条件 $f(-\frac{\pi}{3}) = f(\frac{\pi}{6})$ 涉及函数值相等,尝试用它分析对称轴,先看看它们是否在一个周期内,

由 $T \ge \pi$ 知 $-\frac{\pi}{3}$ 和 $\frac{\pi}{6}$ 在同一个周期内,又 $f(-\frac{\pi}{3}) = f(\frac{\pi}{6})$,所以它们的中间 $x = -\frac{\pi}{12}$ 必为对称轴,如图,

所以 $-\frac{\pi}{12}\omega + \frac{7\pi}{12} = k\pi + \frac{\pi}{2}$,从而 $\omega = 1 - 12k(k \in \mathbb{Z})$,结合①可得k只能取 0,故 $\omega = 1$.

答案: 1

【反思】对于 $f(x) = A\sin(\omega x + \varphi)$ 这类函数,①若 f(x) 在某区间单调,则该区间的宽度不超过半个周期;

②若 $f(x_1) = f(x_2)$,且 x_1 , x_2 在同一周期内(不恰好为一个周期),则可推断 $x = \frac{x_1 + x_2}{2}$ 为对称轴.

【例 2】已知函数 $f(x) = 2\sin(\omega x + \varphi)(\omega > 0)$ 的部分图象如图所示,且 $f(\frac{\pi}{4}) + f(\frac{\pi}{12}) = 0$,则 $f(\frac{\pi}{12}) = 0$

(A)
$$\frac{\sqrt{2}}{2}$$
 (B) $\frac{\sqrt{3}}{2}$ (C) $\sqrt{2}$ (D) $\sqrt{3}$

(B)
$$\frac{\sqrt{3}}{2}$$

(C)
$$\sqrt{2}$$

(D)
$$\sqrt{3}$$

解析: 先观察最值点、零点这些关键点,图中只标注了 $x = \frac{\pi}{\epsilon}$ 处为最大值点,仅由此无法求出周期,但可 根据 $f(\frac{\pi}{4}) + f(\frac{7\pi}{12}) = 0$ 推断出 $\frac{\pi}{4}$ 和 $\frac{7\pi}{12}$ 的中间应为对称中心,从而求得周期,

由图可知 $\frac{\pi}{4}$ 和 $\frac{7\pi}{12}$ 在同一段单调区间上,又 $f(\frac{\pi}{4})+f(\frac{7\pi}{12})=0$,所以($\frac{5\pi}{12}$,0)是图象的一个对称中心,

从而
$$\frac{5\pi}{12} - \frac{\pi}{6} = \frac{T}{4}$$
,故 $T = \pi$,所以 $\omega = \frac{2\pi}{T} = 2$,还需求 φ ,可代 $x = \frac{\pi}{6}$ 这个最大值点,

又
$$f(\frac{\pi}{6}) = 2\sin(2\times\frac{\pi}{6}+\varphi) = 2$$
,所以 $\sin(\frac{\pi}{3}+\varphi) = 1$,从而 $\frac{\pi}{3}+\varphi = 2k\pi+\frac{\pi}{2}$,故 $\varphi = 2k\pi+\frac{\pi}{6}(k\in \mathbb{Z})$,

所以
$$f(x) = 2\sin(2x + 2k\pi + \frac{\pi}{6}) = 2\sin(2x + \frac{\pi}{6})$$
, 故 $f(\frac{\pi}{12}) = 2\sin(2\times\frac{\pi}{12} + \frac{\pi}{6}) = 2\sin\frac{\pi}{3} = \sqrt{3}$.

答案: D

【反思】看到 $f(x_1) + f(x_2) = 0$,先分析 x_1 , x_2 是否在同一段单调区间上或同在半个周期内,若是,则可推

【例 3】设函数 $f(x) = \sin(\omega x + \varphi)(\omega > 0, |\varphi| < \frac{\pi}{2})$ 满足 $f(0) = \frac{1}{2}$, $f(\frac{\pi}{2}) + f(\frac{\pi}{2}) = 0$, 且 f(x)在 $(\frac{\pi}{2}, \frac{\pi}{2})$ 上单调, 则 $\omega =$ ____.

解析: 由题意, $f(0) = \sin \varphi = \frac{1}{2}$, 又 $|\varphi| < \frac{\pi}{2}$, 所以 $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$, 故 $\varphi = \frac{\pi}{6}$, $f(x) = \sin(\omega x + \frac{\pi}{6})$,

再求 ω ,可先通过代点把 ω 表示出来,但条件中已无点可代,怎么办呢?如图,f(x)在($\frac{\pi}{6}$, $\frac{\pi}{3}$)上单调,结 合 $f(\frac{\pi}{6}) + f(\frac{\pi}{3}) = 0$, 由内容提要 3 可得 $x = \frac{\pi}{4}$ 处为对称中心, 函数值为 0, 点就有了,

由图可知,
$$f(\frac{\pi}{4}) = \sin(\frac{\pi}{4}\omega + \frac{\pi}{6}) = 0$$
, 所以 $\frac{\pi}{4}\omega + \frac{\pi}{6} = k\pi$, 故 $\omega = 4k - \frac{2}{3}(k \in \mathbb{Z})$,

我们发现只要 k 取正整数,就能满足 $\omega > 0$,那 k 能取所有的正整数吗?其实不能,因为 $f(\frac{\pi}{4}) = 0$ 不能保证 $f(x) \times (\frac{\pi}{6}, \frac{\pi}{3})$ 上单调,所以还得把这个条件翻译出来,在 $f(\frac{\pi}{4}) = 0$ 的情况下,只要区间 $(\frac{\pi}{6}, \frac{\pi}{3})$ 的宽度不超 过半个周期,那么 f(x) 在该区间就单调了,

所以
$$\frac{T}{2} \ge \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}$$
,故 $T \ge \frac{\pi}{3}$,即 $\frac{2\pi}{\omega} \ge \frac{\pi}{3}$,所以 $\omega \le 6$,

又 $\omega > 0$,所以 $0 < \omega \le 6$,从而k只能取 1,故 $\omega = \frac{10}{3}$.

答案: $\frac{10}{3}$

强化训练

1. $(2022 \cdot 四川绵阳模拟 \cdot ★★)若 <math>f(x) = \sin(\omega x + \varphi)(\omega > 0)$ 的图象与直线 y = m的三个相邻交点的横坐标分别是 $\frac{\pi}{6}$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, 则 $\omega = _____$.

《一数•高考数学核心方法》

- 2. $(2023 \cdot 安徽模拟 \cdot ★★★)$ 已知函数 $f(x) = \sin(\omega x + \varphi)(\omega$ 为正整数, $0 < \varphi < \pi$) 在区间 $(\frac{\pi}{4}, \pi)$ 上单调,且 $f(\pi) = f(\frac{3\pi}{2})$,则 $\varphi = ($
- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

4. $(2022 \cdot 上海模拟 \cdot \star \star \star \star \star)$ 已知函数 $f(x) = \sin x + a \cos x$ 满足 $f(x) \le f(\frac{\pi}{6})$,若 f(x) 在 $[x_1, x_2]$ 上单调,

且 $f(x_1) + f(x_2) = 0$,则 $|x_1 + x_2|$ 的最小值为 ()

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $\frac{2\pi}{3}$ (D) $\frac{4\pi}{3}$