By virtue of (E), we see that the system of equations (H) bassess a unique solution in $G_1(t)$, $G_2(t)$ --, $G_1(t)$. Already we have seen that unique values of $G_1(t)$, ---, $G_1(t)$ exist. Hence (B) shows that $G_1(t)$ ---, $G_1(t)$ are defined uniquely.

Thus we have established the existence and uniqueness of Green's function G(n,t). We have also indicated a procedure for constructing the Green's function in the above proof of the theorem.

Solved example based on construction of Green's function

Ex-1 Find the Green's function of the BVP y''(0), y(0) = y(1) = 0

Sol? The G.S. of $\eta'' = 0$ — (1) with $\eta(0) > 0$ — (2) and $\eta(1) > 0$ — (3) is $\eta > An + B$ and fulting B.G., the sol? is $\eta(2) > 0$. i. Only trivial sol? exists. So Green's f''? will be unique.

By property (i), Green's f^n is assumed to have the form $G(n+1) = \begin{cases} a_1n + a_2 & 0 \le n < t \\ b_1n + b_2 & t < n \le t \end{cases}$

The proposed Green's function must satisfy the following three proporties!

(i) G(x,t) is continuous at x>t i.e. $g_1t+g_2=g_1t+g_2$ => $(g_1-g_1)t+(g_2-g_2)>0$ (4) (ii) The derivative of a has a discontinuity of magnitude

— Le at the point 2>t, where \$0(2) = coefficient of

polt)

the highest order derivative in Eq. (1) = 1

$$\frac{1}{n}\left(\frac{\partial G}{\partial n}\right)_{n\geq t+0} - \left(\frac{\partial G}{\partial n}\right)_{n\geq t+0} = -1$$

(iii) G(a,t) must satisfy the B.C. (2) and (3),

$$G(0,t) \ge 0$$
 : $G(0,t) \ge 0$ G

Solving (4), (5) and (6),

$$G(n,t) = \begin{cases} \frac{\pi}{2}(l-t) & 0 \leq n < t \\ \frac{t}{2}(l-n) & t < n \leq l \end{cases}$$