Lab3 數位錄音機 教學手冊

電機二 王彥稀 電機三 段逸林 電機三 邱子芸

1 數位錄音機

1.1 Object:

設計一個具有以下功能的數位錄音機系統:

- 1. 錄音、播放 (正放或倒放)、暫停錄音和播放、錄音和播放時調整時間軸、快播、慢播 (支援 0 次和 1 次內插)。
- 2. 取樣頻率 32kHz, 每個取樣為 16 bits。
- 3. 可以錄製的時間為64秒。
- 4. 以 LCD 和七段顯示器顯示目前狀態和時間。

1.2 How to do it?

這個系統有三個主要部分:

- 1. I2C: 設定 WM8731, Input clock。
- 2. 訊號處理: 將從 SRAM 中拿到的 sample 依據左聲道、右聲道作處理。 麥克風收到的訊號皆可依單聲道處理,因為左聲道與右聲道相同。
- 3. LCD 顯示: 將目前錄音機的狀態顯示到 LCD 面板上。

2 I2C

初始化 WM873,Input clock 使用 100 KHz 的訊號,先 reset 後給它想要的初始值,之後就可以輸入 AUD_XCK 取得 AUD_BCLK ,並使用 audio_recorder 模組來接收與傳遞訊號。

利用 I2C_SCLK 與 I2C_SDAT 兩軌來傳遞訊號每當 SCLK 為 1 時 WM8741 會讀取 SDAT,如下圖所示,一次傳遞 24bits 的訊息:

0011 010 0 000 1111 0 0000 0000 先傳送此訊號來 Reset WM8731。

將上圖放大來看,需要注意的地方在於每傳送 8 bis 後,WM8731 會回傳一個bit 的 Acknowledgement,所以 ADCDAT 是以 inout port 的形式呈現。

下圖為建議設定:

Recommend	ed settings
Left Line In	000_0000_0_1001_0111
Right Line In	000_0001_0_1001_0111
Left Headphone Out	000_0010_0_0111_1001
Right Headphone Out	000_0011_0_0111_1001
Analogue Audio Path Control	000_0100_0_000 1_0101
Digital Audio Path Control	000_0101_0_0000_ 0 000
Power Down Control	000_0110_0_0000_0000
Digital Audio Interface Format	000_0111_0_0 1 00_ 0010
Sampling Control	000_1000 _ 0_00 01_10 0 1
Active Control	000_1001_0_0000_000 1

3 訊號處理

3.1 記億區塊 **SRAM**

3.1.1 SRAM 基本架構圖與重要參數表格

PIN DESCRIPTIONS A0-A19 Address Inputs I/O0-I/O15 Data Inputs/Outputs Œ Chip Enable Input ŌĒ Output Enable Input WE Write Enable Input LΒ Lower-byte Control (I/O0-I/O7) ŪΒ Upper-byte Control (I/O8-I/O15) NC No Connection VDD Power **GND** Ground

TRUTH TABLE

						I/O			
Mode	WE	Œ	OE	LB	UB	1/00-1/07	1/08-1/015	Von Curren	
Not Selected	X	Н	X	X	X	High-Z	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	X	X	High-Z	High-Z	loc	
	X	L	X	H	Н	High-Z	High-Z		
Read	Н	L	L	L	Н	Dout	High-Z	loc	
	H	L	L	H	L	High-Z	Dout		
	H	L	L	L	L	Dout	Dout		
Write	L	L	X	L	Н	DIN	High-Z	loc	
	L	L	X	H	L	High-Z	DIN		
	L	L	X	L	L	DIN	DIN		

3.1.2 與錄音機相關使用方法

- 1. 由於不須控制晶片是否可使用,常設 CE。
- 2. 由於不須分開讀寫一個位址的 Lower-byte 與 Upper-byte,常設 LB、UB。
- 3. 須注意 SRAM 的參數 delay 狀況。

3.1.3 Reference

- 1. http://www.cnblogs.com/spartan/archive/2011/11/21/2258208.html
- 2. http://dclab.ee.ntu.edu.tw/static/Document/Exp3/Exp3_2.pdf

3.2 WM8731

3.2.1 錄音: ADC 與 SRAM

1. ADCLRCK 與 ADCDAT

2. 讀取 WM8731 晶片上傳輸的資料,在適當時機與 SRAM 相接,並打開 WE。

3.2.2 播放: DAC

- 1. DACLRCK 與 DACDAT: 和 ADC 非常類似,在 DACLRCK 變動時需要等待 一個 bclk 的 delay 之後才能開始傳資料。
- 2. 在需要從 SRAM 讀取 sample 時,將 OE 設為 Low,不需要時將 OE 設為 High。
- 3. State diagram:

3.3 audio recorder.sv

這個模組裡面包含了 ADC 與 DAC 控制器,Input clock 使用 AUD_BLCK(12MHz),他主要的功能便是接收 FPGA 上的按鍵訊號,並對兩個子模組進行操作,並輸出各種信號讓 LCD 顯示。

總共分成三個 state, STOP, PLAY, RECORD:

1. STOP

用 SW[0] reset 並初始化 WM8731 後,便進入這個 state,這個 state 需要接收 [3:0] KEY 訊號並做出反應,其中包含播放 (PLAY)、錄音 (RECORD)、游標向前、游標向後,裡面使用一個 counter 來紀錄現在的位置 $SRAM_ADDR$ 。

2. PLAY

在這個 state 中,DACcontroller 會根據給予的訊號做出不同的播放方式,有內插次數 (SW[1]), 正放倒放 (SW[2]), 與另外 4 個 bits 控制播放速度,在外面接收到 finish 訊號前都不會停止。

3. RECORD

在這個 state 中,ADCcontroller 會接收來自 WM8731 的訊號並儲存於 SRAM 裡面。

4 LCD 顯示

4.0.1 基礎架構

- 1. Display type: character(由 CGRAM 查表)
- 2. Display dimention: 16(columns)x2(lines)

4.0.2 Block Diagram

1. controller: instruction register(IR), data register(DR)

2. Data Register 儲存下個時間點要拿給 DDRAM 與 CGRAM 的資料

4.0.3 Instruction 基本說明 (low/high)

1. RS: command(設置 LCD)/data(顯示之字元)

2. RW: write/read

3. DB: 共 8bits

4.0.4 Display Data Ram (DDRAM)(共有 16x5 個位址可存字元)

1. Address: 存取 DDRAM 的位址是顯示字元的位置

2. Content: 存取於 DDRAM 位址內的內容,是顯示於該位置上的字元於 CGRAM 查表上的位址

4.0.5 character generator(CGRAM)(5x8dots)

1. 存取 CGRAM 的位址,供字元查表用

Lower Dec	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	HAM (1)			0	a	Р	`	P				-	9	Ξ,	α	р
xxxx0001	(2)		Ţ	1	A	Q	а	9				7	Ŧ	4	ä	q
xxxxx0010	(3)		П	2	В	R	b	r			Г	1	ŋ	×	β	0
xxxx0011	(4)		#	3	С	5	C	s			ı	ゥ	Ŧ	ŧ	ε	00
xxxxx0100	(5)		\$	4	D	T	d	t			×.	I	ŀ	Þ	μ	Ω
xxxx0101	(6)		7	5	E	U	e	u			•	7	t	ı	Ġ	ü
xxxxx0110	(7)		8.	6	F	Ų	f	V			7	Ħ	Ξ	3	ρ	Σ
xxxxx0111	(8)		,	7	G	W	9	W			7	ŧ	Z	Þ	g	π
xxxx1000	(1)		(8	Н	Х	h	×			4	2	礻	IJ	J	X
xxxx1001	(2))	9	Ι	Υ	i	У			÷	ን	J	ıЬ	-1	ч
xxxx1010	(3)		*	ı	J	Z	j	z			I	J	ń	V	.i	Ŧ
xxxx1011	(4)		+	;	K	Г	k	{			#	Ħ	E		×	Б
xxxx1100	(5)		,	<	L	¥	1				tz	Ð	フ	7	¢	m
xxxx1101	(6)		-	=	М]	M	}			_	Z	ኅ	b	Ł	÷
xxxx1110	(7)			>	И	^	n	÷			3	t	#	*	ň	
xxxx1111	(8)		/	?	0	_	0	÷			·y	y	7	0	ö	

4.0.6 Some useful instructions

- 1. display_clear(清空顯示) = 00_{000} _ 0001
- 2. display_on = 00_0000_11(顯示開闢)0(不顯示游標)1(游標不閃爍)
- 3. function_set = $00_{011}(8bits)_{1}(2 \approx 5)0(5*8dots)00$
- 4. mode_set(設置每次輸入一個值後,游標移動方向) = 00_0000_011(游標右移)0(螢幕不動)
- 5. 對 DDRAM 寫入字元 = 10_DB7-DB0(需顯示的字元在 CGRAM 上的位址)

4.0.7 Time Delay: LCD 模組最需注意的地方! 每次設置都需等待 module 基本的時間延遲

1. Write Operation

2. 詳細時間請參照 LCD 模組參考資料

4.0.8 Reference

- 1. ftp://ftp.altera.com/up/pub/Altera_Material/11.1/University_Program_IP_Cores/Audio_Video/Character_LCD.pdf
- 2. http://matidavid.com/pic/LCD%20interfacing/basics.htm
- 3. http://www.cnblogs.com/halflife/archive/2011/07/02/2096463.html
- 4. http://dclab.ee.ntu.edu.tw/static/Document/Exp3/Exp3_3.pdf