What is ... a variational inequality?

Ed Bueler

Dept of Mathematics and Statistics and Geophysical Institute University of Alaska Fairbanks

30 January, 2014

what is ... the source of my title?

WHAT IS...

a Gröbner Basis?

Bernd Sturmfels

WHAT IS...

a Quasi-morphism?

D. Kotschick

<u>W H A T I S . . .</u>

a Random Matrix?

Persi Diaconis

WHAT IS...

a Systole?

Marcel Berger

Outline

problems you can write as variational inequalities

obstacle problem example

three variational inequalities for glaciers

- suppose you have a smooth function
- and you want to minimize it

- suppose you have a smooth function on a closed, bounded interval
- · and you want to minimize it

because f is smooth, you can say about the minimizer u that:

- if a < u < b then f'(u) = 0 or
- if u = a then $f'(u) \ge 0$ or
- if u = b then $f'(u) \le 0$

because f is smooth, you can say about the minimizer u that: the variational inequality applies,

$$f'(u)(v-u) \ge 0$$
 for all $v \in [a,b]$

what is a variational inequality?

1. cute way to rewrite a calc problem in \mathbb{R}^1 ; min f solves:

$$u: f'(u)(v-u) \ge 0$$
 for all $v \in [a,b]$

the above is a *necessary condition* only

projection onto a closed, convex set $K \subset \mathcal{H}$

Suppose $K \subset \mathbb{R}^n$ is closed and convex. (Or $K \subset \mathcal{H}$ closed and convex, where \mathcal{H} is a Hilbert space.)

Definition. Given $x \in \mathbb{R}^n$ (or $x \in \mathcal{H}$), the unique minimizer

$$y = \min_{z \in K} \|x - z\|$$

is the *projection* of x onto K, written $y = \Pi x$.

projection onto a closed, convex set $K \subset \mathcal{H}$

Theorem.

$$y = \Pi x \iff (y - x) \cdot (\eta - y) \ge 0 \text{ for all } \eta \in K$$

This is also a variational inequality.

Idea. The angle between y - x and $\eta - y$ is $\leq 90^{\circ}$ for all $\eta \in K$.

projection onto a closed, convex set $K \subset \mathcal{H}$

Theorem.

$$y = \Pi x \iff (y - x) \cdot (\eta - y) \ge 0 \text{ for all } \eta \in K$$

This is also a variational inequality.

Idea. The angle between y - x and $\eta - y$ is $\leq 90^{\circ}$ for all $\eta \in K$.

what is a variational inequality?

1. cute way to rewrite a calc problem in \mathbb{R}^1 ; min f solves:

$$u: f'(u)(v-u) \ge 0$$
 for all $v \in [a, b]$

2. dot-product for projection on a closed, convex $K \subset \mathcal{H}$:

$$y = \Pi x$$
: $(y - x) \cdot (\eta - y) \ge 0$ for all $\eta \in K$

Consider a mainstream math problem:

- let $K \subset \mathbb{R}^n$ be convex
- let $f: \mathbb{R}^n \to \mathbb{R}$ be smooth (C^1)
- find $u \in K$ so that f is minimum?

Consider a mainstream math problem:

- let $K \subset \mathbb{R}^n$ be convex
- let $f: \mathbb{R}^n \to \mathbb{R}$ be smooth (C^1)
- find $u \in K$ so that f is minimum?

Claim: if $u \in K$ minimizes f then u solves

$$\nabla f(u) \cdot (v - u) \ge 0$$
 for all $v \in K$

which is a variational inequality

Theorem. $K \subset \mathbb{R}^n$ convex. $f: \mathbb{R}^n \to \mathbb{R}$ smooth. If $u \in K$ minimizes f then

$$\nabla f(u) \cdot (v - u) \ge 0$$
 for all $v \in K$.

Proof. If $0 \le t \le 1$ then

$$(1-t)u + tv \in K$$

But t = 0 is minimizer of

$$g(t) = f((1-t)u + tv)$$

so by the "calculus I problem", $g'(0) \ge 0$. By chain rule

$$g'(t) = (\nabla f)((1-t)u + tv) \cdot (-u+v)$$

so
$$g'(0) = (\nabla f)(u) \cdot (v - u) \ge 0$$
.

How about existence of u? It happens if either:

- K is compact
- K is closed and f is coercive

How about uniqueness of u? It happens if:

f is strictly convex

what is a variational inequality?

1. cute way to rewrite a calc problem in \mathbb{R}^1 ; min f solves:

$$u: f'(u)(v-u) \ge 0$$
 for all $v \in [a, b]$

2. dot-product for projection on a closed, convex $K \subset \mathcal{H}$:

$$y = \Pi x: \qquad (y - x) \cdot (\eta - y) \ge 0 \text{ for all } \eta \in K$$

3. rewriting of "min f on convex $K \subset \mathbb{R}^n$ ":

$$u: \quad \nabla f(u) \cdot (v-u) \ge 0 \quad \text{for all } v \in K$$

solve
$$F(x) = 0$$
 on \mathbb{R}^n

Consider another mainstream applied math problem:

• Given continuous function $F: \mathbb{R}^n \to \mathbb{R}^n$, find $x \in \mathbb{R}^n$ so that

$$F(x) = 0.$$

• That is, solve n nonlinear equations in n unknowns.

solve
$$F(x) = 0$$
 on \mathbb{R}^n

Consider another mainstream applied math problem:

• Given continuous function $F: \mathbb{R}^n \to \mathbb{R}^n$, find $x \in \mathbb{R}^n$ so that

$$F(x) = 0.$$

- That is, solve n nonlinear equations in n unknowns.
- No one has anything positive to say about this problem:
 - no guarantee of existence
 - no guarantee of uniqueness
 - no effective theory of approximation

solve F(x) = 0 on compact, convex $K \subset \mathbb{R}^n$

But we can change the problem minimally, and have something positive to say:

- Assume $K \subset \mathbb{R}^n$ is compact and convex.
- Seek $x \in K$ so that F(x) = 0.
- Theorem. There is $x \in K$ so that

$$F(x) \cdot (y - x) \ge 0$$
 for all $y \in K$

which is a variational inequality

solve F(x) = 0 on compact, convex $K \subset \mathbb{R}^n$

Theorem. There is $x \in K$ so that

$$F(x) \cdot (y - x) \ge 0$$
 for all $x \in K$.

Proof. $x' \mapsto \Pi(x' - F(x'))$, as map on K, has a fixed point.

what is a variational inequality?

1. cute way to rewrite a calc problem in \mathbb{R}^1 ; min f solves:

$$u: f'(u)(v-u) \ge 0$$
 for all $v \in [a,b]$

2. dot-product for projection on a closed, convex $K \subset \mathcal{H}$:

$$y = \Pi x$$
: $(y - x) \cdot (\eta - y) \ge 0$ for all $\eta \in K$

3. rewriting of "min f on convex $K \subset \mathbb{R}^n$ ":

$$u: \quad \nabla f(u) \cdot (v-u) \ge 0 \quad \text{for all } v \in K$$

4. gets existence for *any* continuous nonlinear eqns on compact, convex $K \subset \mathbb{R}^n$:

$$x: F(x) \cdot (y-x) \ge 0$$
 for all $y \in K$

on convex K

if K is convex and $u,v\in K$ and $0\leq \varepsilon \leq 1$ then

$$(1 - \epsilon)u + \epsilon v = u + \epsilon(v - u) \in \mathcal{K}$$

 $(1-\epsilon)u+\epsilon v$ as a linear combination in K

 $u+\epsilon(v-u)$ as a vector from u directed into K

Outline

problems you can write as variational inequalities

obstacle problem example

three variational inequalities for glaciers

elastic membrane over obstacle

• elastic membrane z = u(x, y) minimizes energy

$$J[v] = \int_{\Omega} \frac{1}{2} |\nabla v|^2 - fv$$

where f is upward force on the membrane

• if surface v(x,y) is above an obstacle $\psi(x,y)$ then it's in convex set

$$\mathcal{K} = \left\{ v \in H_0^1(\Omega) : v \ge \psi \right\}$$

variational inequality for obstacle problem

• if $u \in \mathcal{K}$ is minimizer and if $v \in \mathcal{K}$ and if $0 \le \epsilon \le 1$ then

$$0 \le J[u + \epsilon(v - u)] - J[u]$$

= $\epsilon \int_{\Omega} \nabla u \cdot \nabla(v - u) - f(v - u) + \epsilon^2 \int_{\Omega} |\nabla(v - u)|^2$

• thus as $\epsilon \to 0$, we know that $u \in \mathcal{K}$ satisfies

$$\int_{\Omega} \nabla u \cdot \nabla (v - u) - f(v - u) \ge 0 \qquad \forall v \in \mathcal{K}$$

which is the variational inequality formulation

also written:

$$\langle \nabla J(u), v - u \rangle \ge 0 \qquad \forall v \in \mathcal{K}$$

PDE for obstacle problem

- where $u > \psi$, the variational inequality implies $-\nabla^2 u = f$
 - the standard PDE for an *unobstructed* elastic membrane
 - \circ $-\nabla^2 u = f$ is "Poisson equation"
- an engineer would say

the membrane u(x,y) solves $-\nabla^2 u = f$ except when it is in contact with the obstacle

but the set on which the contact happens is a priori unknown . . .

finite elements

- the finite element method (FEM) was built on variational *equalities*, i.e. "weak formulations"
- so variational inequalities play well with FEM
- FEM represents (approximates) function spaces on pretty meshes like this:

the 3-point, one-dimensional obstacle problem

- for example, consider a one-dimensional obstacle problem
- with an equally-spaced 3-point mesh
- and a constant force $f(x) = f_0$
- so $\Omega = [0, L]$ has mesh points $\{x_1, x_2, x_3\}$
- the energy is just a quadratic function in \mathbb{R}^3 :

$$J[v] = \int_0^L \frac{1}{2} (v')^2 - f_0 v$$

$$\approx \frac{1}{\Delta x} \left(v_1^2 + v_2^2 + v_3^2 - v_1 v_2 - v_2 v_3 \right) - f_0 \Delta x (v_1 + v_2 + v_3)$$

• and $\psi(x)$ and u(x) represented by just three values each

a 3-point case of the obstacle problem

1: zero force $f_0 = 0$, one-hump obstacle

a 3-point case of the obstacle problem

2: upward force $f_0 > 0$, flat obstacle

a 3-point case of the obstacle problem

3: downward force $f_0 < 0$, two-peak obstacle

a 3-point case of obstacle problem

1: zero force $f_0 = 0$, one-hump obstacle

a 3-point case of obstacle problem

2: upward force $f_0 > 0$, flat obstacle

a 3-point case of obstacle problem

3: downward force $f_0 < 0$, two-peak obstacle

Outline

problems you can write as variational inequalities

obstacle problem example

three variational inequalities for glaciers

the steady-climate question for ice sheets

- suppose a steady-state climate
- where it snows some places and melts in others
- the ice flows into areas where there is melting
- questions:
 - what land is covered by ice sheets?
 - o how thick are these sheets?

ice sheet geometry: an obstacle analogy

- ice surface s(x, y) \sim membrane
- bedrock b(x, y) \sim obstacle

v.i. 1: steady ice sheet surface "equation"

- ice sheet surface equation (so-called "SIA") applies only on domain where s>b
- let h = s b, the ice sheet thickness
- equation applies only where $s > b \iff h > 0$
- define p = n + 1 where $n \approx 3$ for shear-thinning ice
- change variables $h = u^{(p-1)/(2p)}$
- define convex set $\mathcal{K} = \{v \in W^{1,p}_0(\Omega), v \geq 0\}$
- Theorem (Jouvet-Bueler 2012). There is $u \in \mathcal{K}$ solving the steady transformed SIA,

$$\int_{\Omega} (\mu |\nabla u - \Phi(u)|^{p-2} (\nabla u - \Phi(u))) \cdot \nabla(v - u) \ge \int_{\Omega} \alpha(u)(v - u)$$

for all $v \in \mathcal{K}$

marine ice sheets: overview

- marine ice sheets are full of free boundaries:
 - boundary between floating ("shelf") and grounded
 - boundary between sliding ("stream") and not ("sheet")
 - boundary between wet base and dry base
- the Antarctic ice sheet is a marine ice sheet

cartoon from (Martin et al., 2011)

ice stream sliding: an analogy

- ice stream is a viscous membrane with basal stresses
- ice streams emerge where basal resistance is sufficiently low
- a basal resistance model:
 - o Coulomb friction, with
 - \circ a yield stress distribution au_c
- Schoof's slider analogy

v.i. 2: ice stream velocity "equation"

- let $q=1+\frac{1}{n}$ where $n \approx 3$ for shear-thinning ice
- V is ice stream velocity, $\mathbf{f} = -\rho g h \nabla s$ is driving stress, \mathbf{F} is lateral stress along calving front
- Theorem (C. Schoof, 2006). There is unique velocity $\mathbf{U}=(u,v)\in W^{1,q}(\Omega)$ solving the *coulomb ice stream problem*. It minimizes

$$J[\mathbf{V}] = \int_{\Omega} \frac{2B}{q} h \| \mathbf{V} \|^{q} + \tau_{c} |\mathbf{V}| - \mathbf{f} \cdot \mathbf{V} - \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{V}$$

with no constraint

• but $J[\mathbf{V}]$ is not smooth because of " $\tau_c |\mathbf{V}|$ "

v.i. 2: ice stream velocity "equation"

- Schoof started with a PDE for ice stream velocity (MacAyeal, 1989)
- then derived the variational inequality form: $\mathbf{U} \in W^{1,q}(\Omega)$ solves

$$\int_{\Omega} T_{ij}(\mathbf{U}) D_{ij} (\mathbf{V} - \mathbf{U}) + \tau_c (|\mathbf{V}| - |\mathbf{U}|) - \mathbf{f} \cdot (\mathbf{V} - \mathbf{U})$$

$$\geq \int_{\partial \Omega} \mathbf{F} \cdot (\mathbf{V} - \mathbf{U})$$

for all $\mathbf{V} \in W^{1,q}(\Omega)$

• and then got J[V] on previous slide

some glaciers have cold ice

- to a glaciologist, ice is "cold" or "temperate"
 - cold ice has temperature below 0°C
 - temperate ice is at 0°C, but with liquid water
- temperature u, flow velocity V
- heat flux is $\mathbf{q} = -k\nabla u + \rho c \mathbf{V} u$
 - o conductive flux nearly zero in temperate ice ($\nabla u \approx 0$)
- viscous dissipation causes heating at rate S

[figures from A. Aschwanden]

v.i. 3: cold-ice temperature in polythermal glacier

in cold ice, everyone knows the steady temperature solves

$$0 = \nabla \cdot (k\nabla u - \rho c \mathbf{V} u) + S$$

but where is the free boundary of the cold ice? (the "CTS")

- define convex set $\mathcal{K} = \{\phi \in H^1(\Omega) \ \big| \ \phi \leq 0, \phi \text{ satisfies b.c.s} \}$
- Theorem (Gillispie-Bueler, in prep). there exists $u \in \mathcal{K}$ s.t.

$$\int_{\Omega} (k\nabla u - \rho c\mathbf{V}) \cdot \nabla(\phi - u) \ge \int_{\Omega} S(\phi - u)$$

for all $\phi \in \mathcal{K}$

variational inequalities for ice: a summary

- of the three variational inequalities:
 - 1 for the ice sheet surface is not a minimization
 - 2 for ice stream sliding is an unconstrained minimization, but of a non-smooth functional
 - 3 for the cold ice is not a minimization

variational inequalities for ice: a summary

- of the three variational inequalities:
 - 1 for the ice sheet surface is not a minimization
 - 2 for ice stream sliding is an unconstrained minimization, but of a non-smooth functional
 - 3 for the cold ice is not a minimization
- variational inequalities will be used in future glacier and ice sheet problems because of all the free boundaries between different equations
 - when a glaciologist says "this equation describes this ..."
 they mean "this equation describes this ... whereever the
 equation can be applied and I can't generally tell you where
 that is"
 - o this makes the job of building an ice sheet model harder

variational inequalities for ice: a summary

- of the three variational inequalities:
 - 1 for the ice sheet surface is not a minimization
 - 2 for ice stream sliding is an unconstrained minimization, but of a non-smooth functional
 - 3 for the cold ice is not a minimization
- variational inequalities will be used in future glacier and ice sheet problems because of all the free boundaries between different equations
 - when a glaciologist says "this equation describes this ..."
 they mean "this equation describes this ... whereever the
 equation can be applied and I can't generally tell you where
 that is"
 - o this makes the job of building an ice sheet model harder
- and that's it on variational inequalities for today