Different Types of Bootstraps

Spenser Steele June 19, 2014

Below are three bootstraps discussed in the paper Resampling Multilevel Models by Rien van der Leeden et al..

Overall model

$$y_i = X_i \beta + Z_i b + \epsilon_i$$

$$\epsilon_i \sim (iid) N(0, \sigma_{\epsilon_i}^2)$$

$$b_i \sim (iid) N(0, D)$$

$$Cov(\epsilon_i, b) = 0$$

These are two equations used in the following outlines:

$$(1) \hat{\theta}_B = \hat{\theta} - B\hat{i}as_B = 2\hat{\theta} - \theta^*_{(.)}$$

(2)
$$\hat{se}_B = \sqrt{\hat{Var}(\theta^*)}$$

Parametric Bootstrap

- 1. Draw J vectors of level-2 residuals from a multivariate normal distribution with mean zero and covariance matrix \hat{D} .
- 2. Draw J vectors ϵ_j^* of sizes n_j containing level-1 residuals from a normal distribution with means zero and covariance matrices $\hat{\sigma}^2 I_{n_j}$.
- 3. Generate the bootstrap sample y_j^* from $y_j^* = X_j \hat{\beta} + Z_j \delta_j^* + \epsilon_j^*$.
- 4. Compute estimates for all parameters of the two-level model.
- 5. Repeat steps 1-4 B times and compute bias-corrected estimates and bootstrap standard errors using formulas 1 and 2.

Residual Bootstrap

- 1. Draw a sample δ_j^* of size J with replacement from the set of estimated level-2 residuals.
- 2. Draw J samples ϵ_{ij}^* of size n_j with replacement from the elements $\hat{\epsilon}_{ij}$.
- 3. Generate the bootstrap samples y_i^* from $y_i^* = X_j \hat{\beta} + Z_j \delta_i^* + \epsilon_i^*$.
- 4. Compute estimates for all parameters of the two-level model.
- 5. Repeat steps 1-4 B times and compute bias-corrected estimates and bootstrap standard errors using formulas 1 and 2.

Cases Bootstrap

- 1. Draw a sample of size J with replacement from the level-2 units(unit numbers)
- 2. For each k, draw a sample of entire cases, with replacement, from the original level-2 unit. This sample has the same size as the original unit from which the cases are drawn. Then, for each k, we have a set
- 3. Compute estimates for all parameters of the two-level model
- 4. Repeat steps 1-3 B times and compute bias-corrected estimates and bootstrap standard errors using formulas 1 and 2.

Random Effect Block Bootstrap

- 1. Using the marginal residuals: $r_{ij} = y_{ij} x_{ij}^T \hat{\beta}$, j = 1, ..., D, calculate the level-2 average residuals for each of the D groups: $\bar{r}_h = \frac{1}{n_h} \sum_{j=1}^{n_h} r_{hj}$, h = 1, ..., D, and the level-1 residuals within each group has $r_{hj}^{(1)} = r_{hj} - \bar{r}_h, j = 1, \dots, n_h.$
- 2. Sample independently and with replacement from these two sets of residuals to define bootstrap errors for levels 1 and 2. In particular, level-2 boostrap errors are given by $r^{*(2)} = srswr(\bar{r}^{(2)}, D)$, while level-1 errors in cluster i are given by $r^{*(1)} = srswr(r_{h(i)}^{(1)}, n_i)$, where $h(i) = srswr(\{1, \dots, D\}, 1)$.
- 3. Simulate bootstrap sample data (y_{ij}^*, x_{ij}) using the model $y_{ij}^* = x_{ij}^T \hat{\beta} + r_i^{*(2)} + r_{ij}^{*(1)}$.

 4. Fit the two-level random effects model (1) to the bootstrap sample data generated in Step 3 to obtain bootstrap parameter estimates $\hat{\theta}^* = (\hat{\beta}^*, \hat{\sigma}_u^{2*}, \hat{\sigma}_e^{2*}).$
- 5. Repeat steps 2-4 B times to obtain B sets of bootstrap parameter estimates.