Previous Summary & New Framework

- Old method
- New Method

Old Method

- Literally Just Rules
- Too much rules, absolutely overfitting
- Even a little denoising filtering on the input signal could change the result a lot.
- The code is piled together, and not purely m file, horrible and even impossible to maintain and modify.

A lot of surveys, tries and failures.

- PVCoder (to improve frequency resolution)
- Upsample (same as above)
- Wavelet
- Miscellaneous ACC methods

New Method(not perfect currently)

- Based on the wavelet transform
- I observe roughly 100 frames, the peak of hr won't be minimized, and if the hr don't have peak, it would get a new peak.

For Example before

For Example, after

For Example, after

In detail

- Apply level 7 haar wavelet transform
- Set level 0 to all zeros (very low frequency)
- Threshold each level into mean(each level)*R
- Suppress MA!
- R is the parameter that needed to tweak.

More

- When use different R, different frequency domain status could be observed
- Could observe the process that the small hr peak being generated!
- Examples Next

R = 0.3

R = 0.8

R = 1.5

How to pick that new but small Peak

- Apply different r
- Observe changes of peaks
- Peak the special one

Version One Already!

- Only Simple Rules
 - Magnitude Unit
 - Peak the larger one
 - Memory Unit
 - find the peaks that not so far from the previous estimation
 - Not find all peaks from 0.5 to 3.0
 - Simple rule: 0.8*current + 0.2* previous
 - Wavelet Unit
 - Find the Special peak as above
 - Have higher priority than the memory unit.

Version One Already!

- For the first peak
 - Magnitude Unit
 - Wavelet Unit
- For the next peak
 - Memory Unit
 - Magnitude Unit

Version One Already!

- The Code is very Clean and Modular
- Provide a lot of utilities for easy debug and test.

Result one

Error: 1.5% Dataset: 11

Result two (this one is bad)

Data Set: 10

Analysis --- not perfect but

- Though it goes wrong in dataset 10, but the first frame is very accurate which no way we could do before
- Still need more Rules or other information to help it!
- For the rest frames, I only use Mem & Mag Unit,
- should try Wavelet Unit as well.

Also Try other techniques

ANC

- Won't work at all
- Some methods will totally ruin the ppg signal
- other won't make any good changes
- Maybe our PPG too dirty or totally different signal collection methods

• ICA

- If ICA don't converge, it would hurt a lot
- If ICA converge, hard to say it's good or not.

The End

Also Try other techniques

- Upsampling
 - Won't work
- Pvcoder
 - Already written
 - maybe would work, haven't integrated into this method
- Improve old method rules
 - It's hard
 - But we should see the result of old method is not bad, it could be our baseline and provide some inspirations on rules

Also Try other techniques

ANC

- Won't work at all
- Some methods will totally ruin the ppg signal
- other won't make any good changes
- Maybe our PPG too dirty or totally different signal collection methods

• ICA

- If ICA don't converge, it would hurt a lot
- If ICA converge, hard to say it's good or not.