DMML: Assignment 3 Semi-Supervised Learning

Aman (MDS202305) & Himanshu (MDS202327)

Task

Use Semi-Supervised Learning to *identify a small subset of labelled images to seed the classification process*. In the lecture, the MNIST example started with 50 clusters. Experiment with different (relatively small) values of K for these two datasets.

Method involved:

Here is the overview of the function (SSL(K)) assigned to perform the classification process for both datasets:

· K-Means Clustering:

- The function performs K-Means clustering on X_{train} to partition data into K clusters.
- Cluster centers are computed using the cluster_centers_ attribute.

• Assigning Labels to Clusters:

- Labels are assigned by finding the nearest labeled data point to each cluster center.

· Creating Pseudo Labels:

- Pseudo labels are generated for all training points based on cluster assignments.

· Neural Network Model:

- A feedforward neural network with different number of layers is defined using TensorFlow/Keras.

• Training:

- The model is trained over different epochs using pseudo labels.

• Evaluation:

- Model performance is evaluated on test set $(X_{\text{test}}, y_{\text{test}})$.

Fashion MNIST Dataset

Neural Network Model used:

- A feedforward neural network with three layers is defined using TensorFlow/Keras.
- Two dense layers follow:
 - 300 neurons with ReLU activation.
 - 100 neurons with ReLU activation.
- The output layer has 10 neurons with softmax activation.

Figure 1: Model Architecture

Using this Neural Network Model we look at accuracy score over the different number of clusters (peak at K = 90).

Figure 2: Accuracy scores VS Clusters

Overhead MNIST dataset

Neural Network Model used:

For this dataset we worked with 4 different neural networks:

Layers (Using ReLU & Softmax)	Accuracy Score
1000, 500, 300, 200, 100, 10	0.73 (Best)
500, 300, 200, 100, 10	0.67
300, 100, 10	0.64
1000, 700, 500, 300, 200, 100, 10	0.58

Table 1: Experiment with different MLP Models

Table 2: Model Architecture for Best

Using the best Accuracy Score Layers we look at accuracy score over the different number of clusters (peak at K = 80).

Figure 3: Accuracy scores VS Clusters