Team Contest Reference Ballmer Peak

Universität zu Lübeck

19. November 2013

Inhaltsverzeichnis

1	Mat	thematische Algorithmen	1
	1.1	Primzahlen	1
		1.1.1 Sieb des Eratosthenes	1
		1.1.2 Primzahlentest	2
	1.2	Binomial Koeffizient	2
	1.3	Modulare Arithmetik	2
		1.3.1 Erweiterter Euklidischer Algorithmus	2
	1.4	Matrixmultiplikation	2
2	Date	enstukturen	2
	2.1	Fenwick Tree (Binary Indexed Tree)	2
3	Gra	phenalgorithmen	2
J	3.1	Topologische Sortierung	2
	3.2	Minimum Spanning Tree	2
	3.2	3.2.1 Prim's Algorithm	2
		3.2.2 Union and Find: Kruskal's Algorithm	3
	3.3	Maximaler Fluss (Ford-Fulkerson)	3
	3.4	Floyd-Warshall	4
	3.5	Dijkstra	4
	3.6	Bellmann-Ford	5
	3.7	Starke Zusammenhangskomponenten (Kosaraju)	5
4	Geo	ometrische Algorithmen	5
	4.1	Rotate a Point	5
	4.2	Graham Scan (Convex Hull)	5
	4.3	Maximum Distance in a Point Set	6
	4.4	Area of a Polygon	6
	4.5	Punkt in Polygon	6
	4.6	Line Intersection	6
5	Vers	schiedenes	7
	5.1	Potenzmenge	7
	5.2	Longest Common Subsequence	7
	5.3	Longest Increasing Subsequence	7
6	CYI	K-Algorithmus	7
7	Fine	a klaine C-Referenz	7

1 Mathematische Algorithmen

1.1 Primzahlen

Für Primzahlen gilt immer (aber nicht nur für Primzahlen)

```
a^p \equiv a \mod p bzw. a^{p-1} \equiv 1 \mod p.
```

Ein paar Primzahlen für den Hausgebrauch: $1000003, 2147483647(2^{31}), 4294967291(2^{32})$

1.1.1 Sieb des Eratosthenes

1.1.2 Primzahlentest

```
static boolean isPrim(int p) {
   if (p < 2 || p > 2 && p % 2 == 0) return false;
   for (int i = 3; i <= Math.sqrt(p); i += 2)
   if (p % i == 0) return false;
   return true;
}</pre>
```

1.2 Binomial Koeffizient

```
1 static int[][] mem = new int[MAX_N][(MAX_N + 1) / ▼
2];
2 static int binoCo(int n, int k) {
3    if (k < 0 || k > n) return 0;
4    if (2 * k > n) binoCo(n, n - k);
5    if (mem[n][k] > 0) return mem[n][k];
6    int ret = 1;
7    for (int i = 1; i <= k; i++) {
8        ret *= n - k + i;
9        ret /= i;
10        mem[n][i] = ret;
11    }
12    return ret;
13 }</pre>
```

1.3 Modulare Arithmetik

Bedeutung der größten gemeinsamen Teiler:

$$d = ggT(a, b) = as + bt$$

Verwendung zu Berechnung des inversen Elements b zu a bezüglich einer Restklassengruppe n (a und n müssen teilerfremd sein):

```
ab \equiv 1 \mod n \Leftrightarrow s \equiv b \mod n \text{ für } 1 = ggT(a, n)
```

1.3.1 Erweiterter Euklidischer Algorithmus

```
static int[] eea(int a, int b) {
int[] dst = new int[3];
if (b == 0) {
  dst[0] = a;
  dst[1] = 1;
```

```
return dst; // a, 1, 0

dst = eea(b, a % b);

int tmp = dst[2];

dst[2] = dst[1] - ((a / b) * dst[2]);

dst[1] = tmp;

return dst;

return dst;
```

Zur Berechnung des Inversen von n im Restklassenring p gilt: d = eea(p, n).

1.4 Matrixmultiplikation

```
Strassen-Algorithmus: \mathbf{C} = \mathbf{AB} \mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{2^n \times 2^n}
```

```
\begin{array}{rcl} \mathbf{C}_{1,1} & = & \mathbf{A}_{1,1}\mathbf{B}_{1,1} + \mathbf{A}_{1,2}\mathbf{B}_{2,1} \\ \\ \mathbf{C}_{1,2} & = & \mathbf{A}_{1,1}\mathbf{B}_{1,2} + \mathbf{A}_{1,2}\mathbf{B}_{2,2} \\ \\ \mathbf{C}_{2,1} & = & \mathbf{A}_{2,1}\mathbf{B}_{1,1} + \mathbf{A}_{2,2}\mathbf{B}_{2,1} \\ \\ \mathbf{C}_{2,2} & = & \mathbf{A}_{2,1}\mathbf{B}_{1,2} + \mathbf{A}_{2,2}\mathbf{B}_{2,2} \end{array}
```

2 Datenstukturen

2.1 Fenwick Tree (Binary Indexed Tree)

```
class FenwickTree {
    private int[] values;
    private int n;
    public FenwickTree(int n) {
     this.n = n;
      values = new int[n];
    }
    public int get(int i) { //get value of i
      int x = values[0];
      while (i > 0) {
       x += values[i];
       i -= i & -i; }
12
13
      return x;
    public void add(int i, int x) { // add x to \P
         interval [i,n]
      if (i == 0) values[0] += x;
16
      else {
17
       while (i < n) {
         values[i] += x;
19
         i += i & -i; }
20
   }
22
23 }
```

3 Graphenalgorithmen

3.1 Topologische Sortierung

```
ı static List<Integer> topoSort(Map<Integer, List<▼
       Integer>> edges,
     Map<Integer, List<Integer>> revedges) {
    Queue<Integer> q = new LinkedList<Integer>();
   List<Integer> ret = new LinkedList<Integer>();
    Map<Integer, Integer> indeg = new HashMap<Integer▼</pre>
         . Integer>():
    for (int v : revedges.keySet()) {
     indeg.put(v, revedges.get(v).size());
     if (revedges.get(v).size() == 0)
       q.add(v);
10
   while (!q.isEmpty()) {
     int tmp = q.poll();
     ret.add(tmp);
13
     for (int dest : edges.get(tmp)) {
       indeg.put(dest, indeg.get(dest) - 1);
```

```
if (indeg.get(dest) == 0)
          q.add(dest);
17
18
      }
    }
19
20
   return ret;
21 }
```

Minimum Spanning Tree 3.2

3.2.1 Prim's Algorithm

```
#define WHITE 0
2 #define BLACK 1
3 #define INF INT_MAX
5 int baum( int **matrix, int N){
    int i, sum = 0;
    int color[N];
    int dist[N]:
     // markiere alle Knoten ausser 0 als unbesucht
11
    color[0] = BLACK;
12
    for( i=1; i<N; i++){</pre>
13
     color[i] = WHITE;
14
     dist[i] = INF;
15
16
17
      // berechne den Rand
    for( i=1; i<N; i++){</pre>
19
          if( dist[i] > matrix[i][nextIndex]){
20
              dist[i] = matrix[i][nextIndex];
21
22
23
      }
24
25
    while(1){
      int nextDist = INF, nextIndex = -1;
      /* Den naechsten Knoten waehlen */
28
      for(i=0; i<N; i++){</pre>
        if( color[i] != WHITE) continue;
30
31
        if( dist[i] < nextDist){</pre>
32
         nextDist = dist[i];
33
          nextIndex = i;
34
        }
35
      }
36
      /* Abbruchbedingung*/
38
39
      if( nextIndex == -1) break;
      /* Knoten in MST aufnehmen */
41
42
      color[nextIndex] = RED;
      sum += nextDist;
43
44
       /* naechste kuerzeste Distanzen berechnen */
      for( i=0; i<N; i++){</pre>
46
47
             if( i == nextIndex || color[i] == BLACK )
                    continue;
48
             if( dist[i] > matrix[i][nextIndex]){
49
                 dist[i] = matrix[i][nextIndex];
50
51
      }
    }
53
54
    return sum;
55
```

3.2.2 Union and Find: Kruskal's Algorithm

```
Amortized time per operation is O(\alpha(n)).
_{1} // Only the tree root is stored. The edges must be \P
       stored separately.
2 // Path compression and union by rank
```

```
4 int *par = (int *) malloc(n * sizeof(int));
5 int *rank = (int *) malloc(n * sizeof(int));
7 // Create new forest of n vertices
8 void init(int n, int *par, int *rank) {
   int i;
    for (i = 1; i \le n; i++) {
11
     par[i] = i; // every vertex is its on root
     rank[i] = 0;
   }
13
14 }
15
16 // Union two trees which contain x and y \P
       respectively, returns new root
17 int union(int n, int *par, int *rank, int x, int y)▼
    y = find(n, par, y);
    x = find(n, par, x);
    if (rank[x] > rank[y]) return par[y] = x;
    if (rank[x] < rank[y]) return par[x] = y;</pre>
    rank[x]++; // rank[x] == rank[y]
    return par[y] = x;
24 }
26 // Find the tree root of x
27 int find(int n, int *par, int x) {
    // if parent is not a tree root
    if (par[x] != par[par[x]]) par[x] = find(n, par, ▼
         par[x]);
    return par[x];
31 }
```

Maximaler Fluss (Ford-Fulkerson) 3.3

```
/* die folgende Zeile anpassen! */
3 #define N_MAX 30*30+30
5 /* hier drunter nichts anfassen! */
6 /* ----- */
7 #define SIZE_MAX (N_MAX+2)
8 #define SIZE (N+2)
9 #define QUELLE (N)
10 #define SENKE (N+1)
extern int capacity[SIZE_MAX][SIZE_MAX];
12 extern int N;
14 int maxFlow():
15 void reset();
#include <stdio.h>
2 #include <limits.h>
3 #include <string.h>
4 #include "flow.h'
6 #define NONE -1
7 #define INF INT_MAX/2
int capacity[SIZE_MAX][SIZE_MAX];
int flow[SIZE_MAX][SIZE_MAX];
int queue[SIZE_MAX], *head, *tail;
int state[SIZE_MAX];
int pred[SIZE_MAX];
16 enum { UNVISITED, WAITING, PROCESSED };
18 void enqueue( int x){
     *tail++ = x;
     state[x] = WAITING;
20
23 int dequeue(){
     int x = *head++;
     state[x] = PROCESSED;
```

```
return x:
27 }
28
29 void reset(){
                                                                 11
      int i, j;
                                                                 12
30
      for(i=0; i<SIZE;i++){</pre>
          memset( capacity[i], 0, sizeof(int)*SIZE );
32
33
34 }
                                                                 15
35
                                                                 16
36 int bfs( int start, int target){
                                                                 17
                                                                     }
      int u, v;
                                                                 18
37
38
      for( u=0; u< SIZE; u++){
          state[u] = UNVISITED;
40
                                                                 20
41
      head = tail = queue;
                                                                 21
      pred[start] = NONE;
43
                                                                 23
44
      enqueue(start);
45
                                                                 24
      while( head < tail){</pre>
46
                                                                 25
          u = dequeue();
47
                                                                 26
                                                                 27
48
          for( v= 0; v< SIZE; v++){</pre>
49
                                                                 28
              if( state[v] == UNVISITED &&
                                                                 29 }
                  capacity[u][v] - flow[u][v] > 0){
51
                                                                 30
52
                                                                 31 /**
53
                  enqueue(v);
                                                                 32
                  pred[v] = u;
54
                                                                 33
              }
55
          }
56
                                                                 35
      }
57
      return state[target] == PROCESSED;
59
                                                                 38
                                                                 39 */
60 }
61
62 int maxFlow(){
      int max_flow = 0;
      int u:
                                                                 42
64
65
                                                                 43
66
      int i, j;
      for(i=0; i<SIZE;i++){</pre>
67
                                                                 44
          memset( flow[i], 0, sizeof(int)*SIZE );
68
                                                                 45
                                                                 46
69
70
                                                                 47
      while( bfs( QUELLE, SENKE)){
71
          int increment = INF, temp;
                                                                 49
72
73
                                                                 50
          for( u= SENKE; pred[u] != NONE; u = pred[u])▼
                                                                 52
75
              temp = capacity[pred[u]][u] - flow[pred[u]]
                                                                 53
                   ]][u];
                                                                       }
              if( temp < increment){</pre>
76
                  increment = temp;
77
78
          }
79
          for( u= SENKE; pred[u] != NONE; u = pred[u])▼
81
82
              flow[pred[u]][u] += increment;
              flow[u][pred[u]] -= increment;
83
84
85
          max_flow += increment;
86
88
89
      return max_flow;
90 }
                                                                 11
1 /**
   * Ford Fulkersen
2
                                                                 13
   * @param s source
                                                                 14
    * @param d destination
   * @param c capacity
                                                                 15 }
   * @param f flow, init with 0
                                                                 3.5
                                                                        Dijkstra
    * @return
   */
```

```
9 static int ff(int s, int d, int[][] c, int[][] f) {
   List<Integer> path = dfs(s, d, c, f, new boolean[\nabla
         c.length]); // find path
    if (path.size() < 2) {</pre>
     int flow = 0;
     for (int i = 0; i < f[s].length; i++) { // \nabla
          leaving flow of source
       flow += f[s][i];
     return flow;
    int cap = Integer.MAX_VALUE; // capacity of ▼
         current path
    for (int i = 0; i < path.size() - 1; i++) {</pre>
     int a = path.get(i), b = path.get(i + 1);
     cap = Math.min(cap, c[a][b] - f[a][b]);
    for (int i = 0; i < path.size() - 1; i++) { //\nabla
         update flow
     int a = path.get(i), b = path.get(i + 1);
     f[a][b] += cap;
     f[b][a] -= cap;
   return ff(s, d, c, f); // tail recursion
   * depth first search in flow network
   * @param s source
  * @param d destination
   * @param c capacity
   * @param f flow
  * @param v visited, init with false
   * @return
40 static List<Integer> dfs(int s, int d, int[][] c, ▼
       int[][] f, boolean[] v) {
    v[s] = true;
   if (s == d) { // destination found
     LinkedList<Integer> path = new LinkedList<▼
          Integer>();
     path.add(d);
     return path;
    for (int i = 0; i < c[s].length; i++) {</pre>
     if (!v[i] \&\& c[s][i] - f[s][i] > 0) {
       List<Integer> path = dfs(i, d, c, f, v);
       if (path.size() > 0) {
         ((LinkedList<Integer>) path).addFirst(s);
         return path;
   return ((List<Integer>) Collections.EMPTY_LIST);
3.4 Floyd-Warshall
static int n;
2 static int[][] path = new int[n][n];
3 static int[][] next = new int[n][n];
4 static void floyd(int[][] ad) {
    for (int i = 0; i < n; i++)
     path[i] = Arrays.copyOf(ad[i], n);
    for (int i = 0; i < n; i++)
     for (int j = 0; j < n; j++)
       for (int k = 0; k < n; k++)
         if (path[i][k] + path[k][j] < path[i][j]) {</pre>
           path[i][j] = path[i][k] + path[k][j];
           next[i][j] = k;
   // there is a negative circle iff. there is a i \P
         such that path[i][i] < 0</pre>
```

```
1 HashMap<Integer, List<Edge>> graph = new HashMap<▼</pre>
       Integer, List<Edge>>();
2 for (int i = 0; i < n; i++) graph.put(i, new \triangledown
       ArrayList<Edge>());
3 int dist[] = new int[n];
4 Arrays.fill(dist, Integer.MAX_VALUE);
5 int shortest = dijkstra(source, dest, graph, dist);

    static int dijkstra(int s, int d, HashMap<Integer, ▼
</p>
       List<Edge>> graph, final int[] dist) {
    dist[s] = 0;
    TreeSet<Integer> queue = new TreeSet<Integer>(
10
        new Comparator<Integer>() {
         public int compare(Integer o1, Integer o2) {
           if (dist[o1] == dist[o2]) return o1.▼
12
                compareTo(o2);
           return ((Integer) o1).compareTo(o2);
        } });
14
15
    queue.add(s);
    while (queue.size() > 0) { // || queue.first() !=▼
16
          d) {
      int c = queue.pollFirst();
17
      for (Edge e : graph.get(c)) {
18
19
        if (dist[e.to] > dist[c] + e.val) {
          queue.remove(e.to);
          dist[e.to] = dist[c] + e.val;
21
          queue.add(e.to);
22
23
    } } }
    return dist[d];
24
25 }
26
27 class Edge {
    int from, to, val;
    public Edge(int from, int to, int val) {
29
      this.from = from;
      this.to = to;
      this.val = val;
32
33 } }
```

3.6 Bellmann-Ford

Single source all paths, negative weights.

```
1 // returns true iff negative-weight cycle reachable
_2 private static boolean bellmannford(Node start, int\blacktriangledown
        n, List<Edge> edges) {
    start.dist = 0; // others: dist = Integer.▼
         MAX\_VALUE
    while (n-->0) { // number of nodes --> for all \blacktriangledown
         vertices
      for (Edge edge : edges) { // --> for all edges
        if (edge.from.dist < Integer.MAX_VALUE</pre>
           && edge.from.dist + edge.w < edge.to.dist)
          edge.to.dist = edge.from.dist + edge.w; // ▼
               update predecessor
    } }
    for (Edge edge : edges) {
10
11
      if (edge.from.dist < Integer.MAX_VALUE</pre>
          && edge.from.dist + edge.w < edge.to.dist)
12
        return true;
13
    }
14
    return false;
15
16 }
17 class Node {}
18 class Edge {
    Node from, to;
19
    int w;
    public Edge(Node from, Node to, int w) {
21
      this.from = from; this.to = to; this.w = w;
22
23
    }
24 }
```

3.7 Starke Zusammenhangskomponenten (Kosaraju)

```
#define POS(X,Y) ((X)+size*(Y))
2 #define M(X,Y) (M[POS((X),(Y))])
4 int *top;
5 int *color;
void Kosaraju( int *M, int size);
8 void DFS( int *M, int u, int size);
  void RDFS( int *M, int u, int size, int colorN);
void Kosaraju( int *M, int size){
    int i;
12
    int *stack = malloc( size * sizeof(int));
    top = stack;
15
    for(i=0;i<size;i++)
      color[i] = 0;
    for(i=0;i<size;i++){</pre>
      if(color[i] != 0) continue;
20
      DFS(M,i,size);
22
23
    }
24
    for(i=0;i<size;i++)</pre>
      color[i] = 0;
26
27
28
    int colorN = 1;
29
    while( top > stack ){
      int v = *(--top);
31
      if( color[v] != 0 ) continue;
32
      RDFS( M, v, size, colorN++);
34
35
36
    free( stack);
37 }
39 void DFS( int *M, int u, int size){
40
    int v;
    color[u] = 1;
    for(v=0;v<size;v++){</pre>
      if(M(u,v) \& color[v] == 0){
44
       DFS( M, v, size);
45
    }
47
    *top++ = u;
49 }
51 void RDFS( int *M, int u, int size, int colorN){
    color[u] = colorN:
    for(v=0;v<size;v++){</pre>
      if(M(v,u) \&\& color[v] == 0){
56
        RDFS( M, v, size, colorN);
57
    }
58
59 }
```

4 Geometrische Algorithmen

4.1 Rotate a Point

```
static P rotate(P origin, P p, double ccw) {
double x = (p.x - origin.x) * Math.cos(ccw) - (p.▼
y - origin.y) Math.sin(ccw);
double y = (p.x - origin.x) * Math.sin(ccw) + (p.▼
y - origin.y) Math.cos(ccw);
return new P(x, y);
}
```

4.2 Graham Scan (Convex Hull)

```
ı class P {
```

```
double x, y;
    P(double x, double y) {
4
      this.x = x;
      this.y = y;
    // polar coordinates (not used in graham scan)
    double r() { return Math.sqrt(x * x + y * y); }
    double d() { return Math.atan2(y, x); }
11 }
12
13 // turn is counter-clockwise if > 0; collinear if = \mathbb{V}
        0: clockwise else
14 static double ccw(P p1, P p2, P p3) {
    return (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1▼
15
         .y) * (p3.x - p1.x);
17
18 static List<P> graham(List<P> 1) {
   if (1.size() < 3)
19
20
     return 1;
    P \text{ temp} = 1.get(0);
21
    for (P p : 1)
22
      if (temp.y > p.y \mid \mid temp.y == p.y \&\& temp.x > p.V
          x)
        temp = p;
2.4
    final P start = temp; // min y (then leftmost)
25
    Collections.sort(1, new Comparator<P>() {
2.7
      public int compare(P o1, P o2) {
28
        if (new Double(Math.atan2(o1.y - start.y, o1.x▼
29
              - start.x)) // same angle
            .compareTo(Math.atan2(o2.y - start.y, o2.x ▼
                 - start.x)) == 0)
         return new Double((o1.x - start.x) * (o1.x -V
31
                start.x)
             + (o1.y - start.y) * (o1.y - start.y))
32
             .compareTo((o2.x - start.x) * (o2.x - ▼
33
                  start.x)
             + (o2.y - start.y) * (o2.y - start.y)); ▼
34
                  // use distance
        return new Double(Math.atan2(o1.y - start.y, ▼
35
             o1.x - start.x))
            .compareTo(Math.atan2(o2.y - start.y, o2.x ▼
                 - start.x));
      }
37
    });
38
    Stack<P> s = new Stack<P>();
39
    s.add(start);
    s.add(1.get(1));
41
    for (int i = 2; i < 1.size(); i++) {</pre>
42
      while (s.size() >= 2
         && ccw(s.get(s.size() - 2), s.get(s.size() -▼
44
                1), l.get(i)) <= 0)
        s.pop();
      s.push(l.get(i));
46
    }
48
    return s;
49 }
```

4.3 Maximum Distance in a Point Set

```
tmp = dist(p, q);
       max = Math.max(max, tmp);
16
17
     }
18
   }
19
   return max;
20 }
4.4 Area of a Polygon
1 // area of a polygon, e.g. area(graham(list))
2 static double area(List<P> 1) {
    double sum = 0;
    // points must be in ccw order, otherwise ▼
         negative area returned
    for (int i = 0; i < 1.size(); i++) {</pre>
      sum += l.get(i).x * l.get((i + 1) % l.size()).y;
      sum -= 1.get(i).y * 1.get((i + 1) % 1.size()).x;
   }
    return sum / 2;
10 }
4.5 Punkt in Polygon
   * -1: A liegt links von BC (ausser unterer ▼
        Endpunkt)
   * 0: A auf BC
   * +1: sonst
6 public static int KreuzProdTest(double ax, double ▼
       ay, double bx, double by,
      double cx, double cy) {
    if (ay == by && by == cy) \{
      if ((bx <= ax && ax <= cx) || (cx <= ax && ax <=\overline{\ \ \ \ \ }
            bx)) return 0;
      else return +1:
10
    if (by > cy) {
12
      double tmpx = bx, tmpy = by;
      bx = cx;
      by = cy;
15
      cx = tmpx;
      cy = tmpy;
    }
    if (ay == by && ax == bx) return 0;
    if (ay \leftarrow by \mid \mid ay > cy) return +1;
    double delta = (bx - ax) * (cy - ay) - (by - ay)
         * (cx - ax);
    if (delta > 0) return -1;
    else if (delta < 0) return +1;</pre>
24
    else return 0;
25 }
28 * Input: P[i] (x[i],y[i]); P[0]:=P[n]
```

4.6 Line Intersection

* -1: Q ausserhalb Polygon

 * +1: Q innerhalb des Polygons

1], y[i + 1]);

y, double qx, double qy) {

for (int i = 0; i < x.length - 1; i++)

* 0: Q auf Polygon

int t = -1:

return t;

30

31

35

```
1 // intersection of p0-p1 and p2-p3.
2 static P intersect(P p0, P p1, P p2, P p3) {
3    double a_x, a_y, b_x, b_y, r, s, t;
4    a_x = p1.x - p0.x;
5    a_y = p1.y - p0.y;
```

public static int PunktInPoly(double[] x, double[] ▼

t = t * KreuzProdTest(qx, qy, x[i], y[i], x[i + ∇

```
b_x = p3.x - p2.x;
     b_y = p3.y - p2.y;
7
      r = (-b_x * a_y + a_x * b_y); // lines are 
           parallel if r == 0
      s = (-a_y * (p0.x - p2.x) + a_x * (p0.y - p2.y))
            / r;
      t = (b_x * (p0.y - p2.y) - b_y * (p0.x - p2.x))
11
12
      // remove this condition when looking at lines 
lap{}
13
           and not only segments
      if (s >= 0 && s <= 1 && t >= 0 && t <= 1)
14
         return new P(p0.x + (t * a_x), p0.y + (t * ▼
              a_v));
16
      return null;
17
18 }
```

5 Verschiedenes

5.1 Potenzmenge

```
static <T> Iterator<List<T>> powerSet(final List<T>▼
        1) {
    return new Iterator<List<T>>() {
      int i; // careful: i becomes 2^l.size()
      public boolean hasNext() {
       return i < (1 << l.size());
     public List<T> next() {
       Vector<T> temp = new Vector<T>();
       for (int j = 0; j < 1.size(); j++)
         if (((i >>> j) \& 1) == 1)
10
           temp.add(l.get(j));
11
12
       return temp;
13
     public void remove() {}
15
16
     };
    }
```

5.2 Longest Common Subsequence

```
#include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
  int lcs( char *a, char *b){
      int len = strlen( a);
      int lenb =strlen(b);
      int *zeile = malloc( (len+1) * sizeof(int)), *▼
10
          *neue = malloc( (len+1) * sizeof(int)), i, j\nabla
11
      for(i=0; i<len+1; i++){</pre>
13
          zeile[i] = neue[i] = 0;
14
16
17
      for(j=0; j<lenb; j++){
          for(i=0; i<len; i++){</pre>
18
             if( a[i] == b[j]){
19
                 neue[i+1] = zeile[i] + 1;
20
21
             } else {
                 neue[i+1] = neue[i] > zeile[i+1] ? 
22
                      neue[i] : zeile[i+1];
             }
23
24
          temp = zeile;
25
          zeile = neue:
26
27
          neue = temp;
      }
```

```
int res = zeile[len];
free( zeile);
free( neue);
return res;
```

5.3 Longest Increasing Subsequence

```
#include <stdio.h>
2 #include <stdlib.h>
4 int lis( int *list, int n){
      int *sorted = malloc( n*sizeof(int)), sorted_n;
      int i, *lower, *upper, *mid, *pos;
      if( n == 0) return 0:
      sorted[0] = list[0]:
10
      sorted_n = 1;
      for( i=1; i<n; i++){</pre>
         /* binaere Suche */
         lower = list;
         upper = list + sorted_n;
         mid = list + sorted_n / 2;
          while( lower < upper-1){</pre>
20
             if( list[i] < *mid){
21
                 upper = mid;
             } else {
23
24
                 lower = mid;
26
27
             mid = lower + (upper-lower) / 2;
28
29
    if( mid == list + sorted_n -1 && *mid < list[i]){</pre>
              *mid = list[i];
31
32
              sorted_n++;
         if( list[i] < *mid){
              *mid = list[i];
37
39
40
      free( sorted):
42
      return sorted_n;
43 }
```

6 CYK-Algorithmus

```
_{\text{I}} let the input be a string S consisting of n \blacktriangledown
       characters: a1 ... an.
2 let the grammar contain r nonterminal symbols R1 ▼
       ... Rr.
3 This grammar contains the subset Rs which is the ▼
       set of start symbols.
4 let P[n,n,r] be an array of booleans. Initialize ▼
       all elements of P to false.
5 for each i = 1 to n
   for each unit production Rj -> ai
     set P[i,1,j] = true
s for each i = 2 to n -- Length of span
   for each j = 1 to n-i+1 -- Start of span
      for each k = 1 to i-1 -- Partition of span
       for each production RA -> RB RC
11
         if P[j,k,B] and P[j+k,i-k,C] then set P[j,i,V]
              Al = true
13 if any of P[1,n,x] is true (x is iterated over the ▼
       set s, where s are all the indices for Rs) ▼
```

- 14 S is member of language
- 15 else
- S is not member of language

7 Eine kleine C-Referenz

C Reference Card (ANSI)

Program Structure/Functions

rosiani peracolo rancolonis	function declarations	external variable declarations	main routine	local variable declarations			function definition	local variable declarations				comments	1) main with area
7 7 7 7 7 7													*arout
10.	<u>:</u>						~ ~:						rhar
1	$type_1$,	е		hons	ints		$arg_1,$	tions	suts	value;			שבפר
50.	type $fnc(type_1,)$	type name	main() {	declarations	statements	_	type $fnc(arg_1,)$ {	declarations	statements	return value;	<u>~</u>	/* */	main(int argo char *argu[])

C Preprocessor

terminate execution

#include <filename></filename>	#include "flename"	#define name text	#define name(var) text	((A)>(B)?(A):(B))	#undef $name$	#	##	#if, #else, #elif, #endif	#ifdef, #ifndef	defined(name)	_
include library file	include user file	replacement text	replacement macro	Example. #define max(A,B) ((A)>(B) ? (A) : (B))	undefine	quoted string in replace	concatenate args and rescan	conditional execution	is name defined, not defined?	name defined?	line continuation char

Data Types/Declarations

	char	int	float	double	short	long	signed	unsigned	*int, *float,	enum	const	extern	register	static	void	struct		=t) sizeof $object$	<pre>ize_t) sizeof(type name)</pre>	
Jaca - J Pos/ Postaranom	character (1 byte)	integer	float (single precision)	float (double precision)	short (16 bit integer)	long (32 bit integer)	positive and negative	only positive	pointer to int, float,	enumeration constant	constant (unchanging) value	declare external variable	register variable	local to source file	no value	structure	create name by data type	size of an object (type is size_t)	size of a data type (type is size_t)	

Initialization

$type\ name=value$	$type name []=\{value_1, \ldots\}$	char name[]="string"
initialize variable	initialize array	initialize char string

© 1999 Joseph H. Silverman Permissions on back. v1.3

Constants

L or 1	F or f	O	0	0x or 0X	'a', '\000', '\xhh'	\n, \r, \t, \b	"/ '\' '\'	"abc de"
long (suffix)	float (suffix)	exponential form	octal (prefix zero)	hexadecimal (prefix zero-ex)	character constant (char, octal, hex)	newline, cr, tab, backspace	special characters	string constant (ends with ' $\0$ ')

Pointers, Arrays & Structures

<pre>type *name er to type type *f() rning type type (*pf)()</pre>	void * NULL	*pointer & name	$name[dim]$ $name[dim_1][dim_2]\dots$
declare pointer to type type *name declare function returning pointer to type type *f() declare pointer to function returning type type (*pf)()	generic pointer type null pointer	object pointed to by pointer address of object name	array multi-dim array Structures

structures struct tag { structure template declarations declaration of members };

struct tag name	name $.$ $member$	pointer -> member	he same	union	member: b
 create structure	member of structure from template	member of pointed to structure	Example. $(*p).x$ and $p->x$ are the same	single value, multiple type structure	bit field with b bits

Operators (grouped by precedence)

structure member operator	name . $member$
structure pointer	pointer->member
increment, decrement	- '‡
plus, minus, logical not, bitwise not	*, -, +
indirection via pointer, address of object	*pointer, &name
cast expression to type	(type) expr
size of an object	sizeof
multiply, divide, modulus (remainder)	*, /, %
add, subtract	ı , +
left, right shift [bit ops]	<<, >>
comparisons	>, >=, <, <=
comparisons	=i, i=
bitwise and	**
bitwise exclusive or	•
bitwise or (incl)	
logical and	88
logical or	
conditional expression exp	expr ₁ ? expr ₂ : expr ₃
assignment operators	+=, -=, *=,
expression evaluation separator	•

Unary operators, conditional expression and assignment operators group right to left, all others group left to right.

Flow of Control

· · · · ·	break continue	$ \begin{array}{c} \texttt{goto} \ label \\ label: \end{array}$	$\mathtt{return}\ expr$	<pre>if (expr) statement else if (expr) statement else statement</pre>	pr) nt	<pre>for (expr1; expr2; expr3) statement</pre>	$ment \ r);$	<pre>tch (expr) { case const; case const; default: statement break; default</pre>
4	do, for		on	if (expr) state else if (expr) else statement	while (expr) statement	<pre>for (expr1; statement</pre>	<pre>do statement while(expr);</pre>	<pre>switch (expr) { case const1: case const2: default: stat</pre>
statement terminator block delimeters	exit from switch, while, do, for next iteration of while, do, for	go to label	return value from function Flow Constructions	if statement	while statement	for statement	do statement	switch statement

ANSI Standard Libraries

1> 1 1 < limits.h>1 < < stdarg.h>1 < < time.h>	.h>	m(c)	ıa(c)	1(c)	.t(c)	р(c)	ır(c)	ıt(c)	t(c)	;e(c)	ır(c)	git(c)	ır(c)	ır(c)
<pre><float.h> <signal.h> <string.h></string.h></signal.h></float.h></pre>	<ctype.h></ctype.h>	isalnum(c)	isalpha(c)	iscntrl(c)	isdigit(c)	isgraph(c)	islower(c)	isprint(c)	? ispunct(c)	isspace(c)	isupper(c)	isxdigit(c)	tolower(c)	toupper(c)
<pre><errno.h> <setjmp.h> <stdlib.h></stdlib.h></setjmp.h></errno.h></pre>						cl space)?		pace)?	printing char except space, letter, digit?	space, formfeed, newline, cr, tab, vtab?				
<pre><ctype.h> <math.h> <stdio.h></stdio.h></math.h></ctype.h></pre>	Character Class Tests	c?		acter?	1.5	printing character (not incl space)?	tter?	printing character (incl space)?	r except space	eed, newline,	etter?	digit?	wer case?	pper case?
<pre><assert.h> <locale.h> <stddef.h></stddef.h></locale.h></assert.h></pre>	Charact	alphanumeric?	alphabetic?	control character?	decimal digit?	printing cha	lower case letter?	printing cha	printing cha	space, formfe	upper case letter?	hexadecimal digit?	convert to lower case?	convert to upper case?

String Operations <string.h>

s,t are strings, cs,ct are constant strings lenoth of s	gs strlen(s)
a To marror	(2) 10112
copy ct to s	strcpy(s,ct)
up to n chars	strncpy(s,ct,n)
concatenate ct after s	strcat(s,ct)
up to n chars	strncat(s,ct,n)
compare cs to ct	strcmp(cs,ct)
only first n chars	strncmp(cs,ct,n)
pointer to first c in cs	strchr(cs,c)
pointer to last c in cs	strrchr(cs,c)
copy n chars from ct to s	memcpy(s,ct,n)
copy n chars from ct to s (may overlap)	memmove(s,ct,n)
compare n chars of cs with ct	memcmp(cs,ct,n)
pointer to first c in first n chars of cs	memchr(cs,c,n)
put c into first n chars of cs	memset(s,c,n)

(+32,767)(-32,768)

(255)(65,535)

max value of unsigned char max value of unsigned long max value of unsigned int

(-128)

(+127)

max value of signed char min value of signed char

max value of long

min value of long

LONG_MIN SCHAR_MAX SCHAR_MIN max value of short min value of short

SHRT_MAX SHRT_MIN UCHAR_MAX UINT_MAX ULONG_MAX

(4,294,967,295)(65,536)

 $\begin{array}{c}
(8) \\
(127 \text{ or } 255) \\
(-128 \text{ or } 0)
\end{array}$

The numbers given in parentheses are typical values for the constants on a 32-bit Unix system.

CHAR_BIT bits in char (8)

max value of char

CHAR_MAX CHAR_MIN

min value of char

max value of int min value of int

INT_MAX INT_MIN LONG_MAX

Integer Type Limits imits.h>

(-32,768)(+2,147,483,647)(-2,147,483,648)

(+32,767)

C Reference Card (ANSI)

Input/Output <stdio.h>

Standard I/O	
standard input stream	stdin
standard output stream	stdout
standard error stream	stderr
end of file	EOF
get a character	getchar()
print a character	$\mathtt{putchar}(\mathit{chr})$
print formatted data	printf("format", arg1,)
print to string s	$sprintf(s,"format", arg_1,)$
read formatted data	$scanf("format", &name_1,)$
read from string s	$sscanf(s,"format", &name_1,)$
read line to string s (< max chars)	max chars) gets(s,max)
print string s	puts(s)
File I/O	•
declare file pointer	FILE * fp
pointer to named file	fopen("name", "mode")
modes: r (read), w	modes: r (read), w (write), a (append)
get a character	getc(fp)
write a character	putc(chr, fp)
write to file	$fprintf(fp,"format", arg_1,)$
read from file	$fscanf(fp,"format", arg_1,)$
close file	fclose (fp)
non-zero if error	ferror(fp)
non-zero if EOF	feof(fp)
read line to string s (< max chars)	max chars) fgets(s, max, fp)
write string s	fputs(s, fp)
Codes for Formatted I/O: " $\%$ -+ $0w.pmc$ "	1 I/O: "%-+ 0w.pmc"
- left justify	

L long double n number of chars written p pointer n number of chars writt g, G same as f or e, E depending on exponent x,X hexadecimal e, E exponential char string u unsigned 1 long, pad with leading zeros conversion character: space print space if no sign conversion character: h short, d,i integerc single charf double print with sign min field width precision o octal 0 % dc

Variable Argument Lists <stdarg.h>

initialization of argument pointer va_start(name, lastarg) access next unamed arg, update pointer va_arg(name,type) va_list name; $va_end(name)$ lastarg is last named parameter of the function declaration of pointer to arguments call before exiting function

Standard Utility Functions <stdlib.h>

abs(n) labs(n) div(n,d)	nd div_t.rem ldiv(n,d)	and ldiv_t.rem rand()	srand(n)	exit(status)	system(s)	atof(s)	atoi(s)	atol(s)	strtod(s,endp)	strtol(s,endp,b)	strtoul(s,endp,b)		/
absolute value of int n absolute value of long n quotient and remainder of ints n,d	returns structure with div_t.quot and div_t.rem quotient and remainder of longs n,d ldiv(n,d)	returns structure with ldiv_t.quot and ldiv_t.rem pseudo-random integer [0,RAND_MAX] rand()	set random seed to n	terminate program execution	pass string s to system for execution Conversions	convert string s to double	convert string s to integer	convert string s to long	convert prefix of s to double	convert prefix of s (base b) to long	same, but unsigned long	Storage Allocation	/

bsearch(key, array, n, size, cmp()) malloc(size), calloc(nobj,size) realloc(pts,size) free(ptr) change size of object deallocate space allocate storage

qsort(array,n,size,cmp()) sort array ascending order search array for key Array Functions

Time and Date Functions <time.h>

 (10^{-37})

 (10^{37})

maximum floating point number minimum floating point number

maximum exponent minimum exponent

FLT_MAX_EXP

number of digits in mantissa smallest $x \text{ so } 1.0 + x \neq 1.0$

FLT_MANT_DIG

FLT_MAX FLT_MIN

FLT_EPSILON

 (10^{-9})

(10)

 (10^{37})

max double floating point number min double floating point number

minimum exponent

DBL MIN EXP

number of digits in mantissa

DBL_MANT_DIG

DBL_EPSILON

DBL_MAX DBL_MAX_EXP

smallest $x \text{ so } 1.0 + x \neq 1.0$

decimal digits of precision

FLT_MIN_EXP DBL_DIG

 (10^{-37})

 (10^{-5})

floating point rounding mode

FLT_ROUNDS

FLT_RADIX FLT_DIG

radix of exponent rep

decimal digits of precision

Float Type Limits <float.h>

max value of unsigned short

USHRT_MAX

clock()	3 is time in seconds	time()	$difftime(time_2, time_1)$	clock_t,time_t	tm									ne flag	mktime(tp)	asctime(tp)	e ctime(tp)	gmtime(tp)	localtime(tp)	strftime(s,smax,"format",tp)
processor time used by program	Example. clock()/CLOCKS_PER_SEC is time in seconds	ar time	time2-time1 in seconds (double) d:	arithmetic types representing times	structure type for calendar time comps	seconds after minute	minutes after hour	hours since midnight	day of month	months since January	years since 1900	days since Sunday	days since January 1	Daylight Savings Time flag	convert local time to calendar time	n tp to string	convert calendar time in tp to local time ctime(tp)	convert calendar time to GMT	convert calendar time to local time	format date and time info strftime (
processor time	Example.	current calendar time	$time_2$ - $time_1$ i	arithmetic typ	structure type	tm_sec	tm_min	tm_hour	tm_mday	tm_mon	tm_year	tm_wday	tm_yday	tm_isdst	convert local t	convert time in tp to string	convert calend	convert calend	convert calend	format date a

Mathematical Functions <math.h>

tp is a pointer to a structure of type tm

Arguments and returned values are double

asin(x), acos(x), atan(x)
atan2(y,x) sinh(x), cosh(x), tanh(x)
exp(x), log(x), log10(x) ldexp(x,n), frexp(x,*e)
modf(x,*ip), fmod(x,y) sin(x), cos(x), tan(x) pow(x,y), sqrt(x)
ceil(x), floor(x), fabs(x) exponentials & logs exponentials & logs (2 power) hyperbolic trig functions inverse trig functions division & remainder trig functions arctan(y/x)rounding

Permission is granted to make and distribute copies of this card provided the copyright notice and this permission notice are preserved on all opies. May 1999 v1.3. Copyright © 1999 Joseph H. Silverman

Send comments and corrections to J.H. Silverman, Math. Dept., Brown Univ., Providence, RI 02912 USA. $\langle \text{jhs@math.brown.edu} \rangle$

	Theoretical	Computer Science Cheat Sheet					
	Definitions	Series					
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$					
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 $i=1$ $i=1$ In general:					
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$					
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$					
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:					
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$					
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$ Harmonic conics:					
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series:					
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$					
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$					
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$					
${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $					
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$					
$\langle\!\langle {n \atop k} \rangle\!\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$					
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$					
$14. \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	L ² J						
		$\begin{bmatrix} n \\ -1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$					
		$ 24. \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle, $					
$\begin{array}{ c c } 25. & \begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ & \end{pmatrix}$	if $k = 0$, otherwise 26. $\binom{r}{1}$	$\binom{n}{2} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$					
n-0	$28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$						
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \frac{1}{2^k}$	${n \choose k} {n-k \choose m} (-1)^{n-k-m} k!,$	32. $\left\langle \binom{n}{0} \right\rangle = 1$, 33. $\left\langle \binom{n}{n} \right\rangle = 0$ for $n \neq 0$,					
$34. \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle = (k + 1)^n$	$+1$ $\left\langle \left\langle \left$						
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \!\! \left(\!\! \left(\!\! \begin{array}{c} x+n-1-k \\ 2n \end{array} \!\! \right), $	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$					

Identities Cont.

$$\mathbf{38.} \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{m}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle \binom{x+k}{2n},$$

$$\mathbf{40.} \begin{cases} n \\ m \end{cases} = \sum_{k} \binom{n}{k} \begin{Bmatrix} k+1 \\ m+1 \end{Bmatrix} (-1)^{n-k}, \qquad \mathbf{41.} \begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \binom{k}{m} (-1)^{m-k},$$

39.
$$\begin{bmatrix} x-n \end{bmatrix} = \sum_{k=0} \langle \langle k \rangle \rangle \langle 2n \rangle$$
,
41. $\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \langle k \\ m \end{pmatrix} (-1)^{m-k}$,

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! {n \choose m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

46.
$${n \brace n-m} = \sum {m-n \choose m+k} {m+n \choose n+k} {m+k \brack k}$$

$$\mathbf{46.} \ \, \left\{ \begin{array}{l} n \\ n-m \end{array} \right\} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad \mathbf{47.} \ \, \left[\begin{array}{l} n \\ n-m \end{array} \right] = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \\ \mathbf{48.} \ \, \left\{ \begin{array}{l} n \\ \ell+m \end{array} \right\} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k}, \qquad \mathbf{49.} \ \, \left[\begin{array}{l} n \\ \ell+m \end{array} \right] \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k}.$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$$

49.
$$\begin{bmatrix} n \\ \ell+m \end{bmatrix} \binom{\ell+m}{\ell} = \sum_{k} \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n-k \\ m \end{bmatrix} \binom{n}{k}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$

$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$.

Summing the right side we get
$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:
$$\sum_{i\geq 0} g_{i+1}x^i = \sum_{i\geq 0} 2g_ix^i + \sum_{i\geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x): $\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \geq 0} x^i.$

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i>0} x^i$$

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$
$$= x \left(2 \sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i \right)$$
$$= \sum_{i \geq 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

			Theoretical Computer Science Cheat	Sheet
	$\pi \approx 3.14159,$	$e \approx 2.7$	1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$
i	2^i	p_i	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	Ja
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If
5	32	11	$\log_b x = \frac{\log_a x}{\log_b b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$
6	64	13	8a ·	then P is the distribution function of X . If
7	128	17	Euler's number e :	P and p both exist then
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$P(a) = \int_{-a}^{a} p(x) dx.$
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J-\infty$
10	1,024	29	$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}$.	Expectation: If X is discrete
11	2,048	31	(11) (11)	$E[g(X)] = \sum g(x) \Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$
15	32,768	47		Variance, standard deviation:
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$
17	131,072	59	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$
18	262,144	61	(")	For events A and B :
19	524,288	67	Factorial, Stirling's approximation:	$\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$
21	2,097,152	73	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	iff A and B are independent.
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{-}{e} \right) \left(1 + \Theta \left(\frac{-}{n} \right) \right).$	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
23	8,388,608	83	Ackermann's function and inverse:	For random variables X and Y :
24	16,777,216	89	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	33,554,432 67,108,864	97 101	$ \begin{vmatrix} a(i,j) - \\ a(i-1,a(i,i-1)) & i, i \ge 2 \end{vmatrix} $	if X and Y are independent.
$\frac{20}{27}$	134,217,728	101	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],
	, ,		Binomial distribution:	E[cX] = c E[X].
$ \begin{array}{c c} 28 \\ 29 \end{array} $	268,435,456	107 109		Bayes' theorem:
30	536,870,912 1,073,741,824	113	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{j=1}^n \Pr[A_j]\Pr[B A_j]}.$
31	2,147,483,648	127	n, (n) k $n-k$	
32	4,294,967,296	131	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion-exclusion:
- 02	Pascal's Triangl		Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] +$
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \mathbb{E}[X] = \lambda.$	i=1 $i=1$
	1 1		<i>n</i> .	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^k X_{i_j}\right].$
	1 2 1		Normal (Gaussian) distribution:	$ \sum_{k=2}^{\infty} \left(\begin{array}{c} 1 \\ i_i < \dots < i_k \end{array} \right) \int_{j=1}^{\infty} \left[\begin{array}{c} 1 \\ i_j \end{array} \right]. $
	1 3 3 1		$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:
	1 4 6 4 1		The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$
	1 5 10 10 5 1		random coupon each day, and there are n	A 1
	1 6 15 20 15 6 1	l	different types of coupons. The distribu-	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$
	1 7 21 35 35 21 7		tion of coupons is uniform. The expected number of days to pass before we to col-	Geometric distribution:
	1 8 28 56 70 56 28		lect all n types is	$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$
1	9 36 84 126 126 84	36 9 1	nH_n .	$E[X] = \sum_{k=0}^{\infty} kpq^{k-1} = \frac{1}{p}.$
1 10 4	5 120 210 252 210 1	20 45 10 1		$\sum_{k=1}^{n}\sum_{k=1}^{n-1}p^{k}$

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2.$$

Definitions:

$$\begin{split} \sin a &= A/C, &\cos a &= B/C, \\ &\csc a &= C/A, &\sec a &= C/B, \\ \tan a &= \frac{\sin a}{\cos a} &= \frac{A}{B}, &\cot a &= \frac{\cos a}{\sin a} &= \frac{B}{A}. \end{split}$$

Area, radius of inscribed circle:
$$\frac{1}{2}AB, \quad \frac{AB}{A+B+C}.$$

Identities:
$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{x}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x},$$

$$\cos 2x = \cos^2 x - \sin^2 x, \qquad \cos 2x = 2\cos^2 x - 1,$$

$$\cos 2x = 1 - 2\sin^2 x,$$
 $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$ $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden Matrices

Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A\cdot B=\det A\cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$= \frac{aei + bfg + cdh}{aei}$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \coth x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \mathrm{sech}^2 x = 1,$$

$$\coth^2 x - \mathrm{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

natics
ınder-
, you ed to
mann

More Trig.

Law of cosines: $c^2 = a^2 + b^2 - 2ab\cos C.$ Area:

$$A = \frac{1}{2}hc,$$

= $\frac{1}{2}ab\sin C,$
= $\frac{c^2\sin A\sin B}{2\sin C}.$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$= e^{ix} + e^{-ix}$$

 $\cos x = \cosh ix,$

$$\tan x = \frac{\tanh ix}{i}.$$

Number Theory The Chinese remainder theorem: There exists a number C such that:

$$C \equiv r_1 \bmod m_1$$

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^n p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b.$$

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n-1)$ and 2^n-1 is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \mod n$$
.

$$(n-1)! \equiv -1 \bmod n.$$
 Möbius inversion:
$$\mu(i) = \begin{cases} 1 & \text{if } i = 1.\\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d \mid a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

Definitions:

Loop An edge connecting a vertex to itself.

DirectedEach edge has a direction. Graph with no loops or Simplemulti-edges.

A sequence $v_0e_1v_1\dots e_\ell v_\ell$. WalkTrailA walk with distinct edges. Pathtrail with distinct vertices.

Connected A graph where there exists a path between any two vertices.

ComponentΑ maximal connected subgraph.

TreeA connected acyclic graph. A tree with no root. Free tree DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

A set of edges whose re-Cutmoval increases the number of components.

Cut-setA minimal cut. $Cut\ edge$ A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|.$

k-Regular A graph where all vertices have degree k. k-Factor Α k-regular spanning

subgraph. A set of edges, no two of Matching

which are adjacent. CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so f < 2n - 4, m < 3n - 6.

Any planar graph has a vertex with degree ≤ 5 .

Notation:

Graph Theory

- E(G)Edge set
- Vertex set V(G)
- c(G)Number of components G[S]Induced subgraph
- $\deg(v)$ Degree of v
- Maximum degree $\Delta(G)$
- $\delta(G)$ Minimum degree Chromatic number
- $\chi(G)$ Edge chromatic number $\chi_E(G)$
- G^c Complement graph
- K_n Complete graph
- K_{n_1,n_2} Complete bipartite graph
- $r(k, \ell)$ Ramsey number

Geometry

Projective coordinates: triples (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective

(x,y)(x, y, 1)(m, -1, b)y = mx + b(1,0,-c)x = c

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{n \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

$$\begin{split} \frac{\pi^2}{6} &= \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots \\ \frac{\pi^2}{8} &= \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots \\ \frac{\pi^2}{12} &= \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots \end{split}$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide

N by D, obtaining
$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)}$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

$$\mathbf{1.} \ \frac{d(cu)}{dx} = c\frac{du}{dx}, \qquad \mathbf{2.} \ \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}, \qquad \mathbf{3.} \ \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \mathbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \mathbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

6.
$$\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx},$$

$$8. \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$\mathbf{10.} \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

$$11. \ \frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

$$14. \ \frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

$$15. \ \frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

$$19. \ \frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}.$$

$$20. \ \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$21. \ \frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$$

$$22. \ \frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

1.
$$\int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) \, dx = \int u \, dx + \int v \, dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1,$$
 4. $\int \frac{1}{x} dx = \ln x,$ **5.** $\int e^x dx = e^x,$

4.
$$\int \frac{1}{x} dx = \ln x$$
, 5. $\int \epsilon$

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

$$8. \int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

$$12. \int \sec x \, dx = \ln|\sec x + \tan x|$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$
 22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx$$
, $n \neq 1$, **27.** $\int \sinh x \, dx = \cosh x$, **28.** $\int \cosh x \, dx = \sinh x$,

29.
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.** $\int \coth x \, dx = \ln |\sinh x|$, **31.** $\int \operatorname{sech} x \, dx = \arctan \sinh x$, **32.** $\int \operatorname{csch} x \, dx = \ln |\tanh \frac{x}{2}|$,

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$$
, **34.** $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x$,

$$35. \int \operatorname{sech}^2 x \, dx = \tanh x$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

$$48. \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2}.$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0,$$
 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} \, dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

$$\mathbf{66.} \int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$
$$\sum_{i=0}^{b} f(x)\delta x = \sum_{i=0}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + E v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(r^x) = x - x, \qquad \Delta(r^x) = (r - 1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}}\,\delta x=\tfrac{x^{\underline{n}+1}}{m+1}, \qquad \qquad \sum x^{\underline{-1}}\,\delta x=H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

 $x^{\underline{0}} = 1$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{0}} = 1.$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

= $1/(x + 1)^{\overline{-n}}$,

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$= 1/(x-1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} {n \brace k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brace k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{71}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{2x}(1 - \sqrt{1-4x}) = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + 2x + 6x^2 + 20x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{2}(\ln \frac{1}{1-x})^2 = \frac{1}{2}x^2 + \frac{3}{4}x$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

Escher's Knot

	Theoretical Co
	Series
Expansions:	
$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x}$	$= \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i,$
$x^{\overline{n}}$	$=\sum_{i=0}^{\infty} {n \brack i} x^i,$
$\left(\ln\frac{1}{1-x}\right)^n$	$=\sum_{i=0}^{\infty} \begin{bmatrix} i \\ n \end{bmatrix} \frac{n!x^i}{i!},$
$\tan x$	$= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!}$
$\frac{1}{\zeta(x)}$	$=\sum_{i=1}^{i=1}\frac{\mu(i)}{i^x},$
$\zeta(x)$	$=\prod_{p}\frac{1}{1-p^{-x}},$
$\zeta^2(x)$	$= \sum_{i=1}^{\infty} \frac{d(i)}{x^i} \text{where } d(n) = \sum_{d n} 1,$
$\zeta(x)\zeta(x-1)$	$= \sum_{i=1}^{\infty} \frac{S(i)}{x^i} \text{where } S(n) = \sum_{d n} d,$
$\zeta(2n)$	$= \frac{2^{2n-1} B_{2n} }{(2n)!} \pi^{2n}, n \in \mathbb{N},$
$\frac{x}{\sin x}$	$=\sum_{i=0}^{\infty} (-1)^{i-1} \frac{(4^i-2)B_{2i}x^{2i}}{(2i)!},$
$\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n$	$= \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^{i},$
$e^x \sin x$	$=\sum_{i=1}^{\infty} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^i,$
$\sqrt{\frac{1-\sqrt{1-x}}{x}}$	$= \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$
$\left(\frac{\arcsin x}{x}\right)^2$	$=\sum_{i=0}^{\infty}\frac{4^{i}i!^{2}}{(i+1)(2i+1)!}x^{2i}.$
	Cramer's Rule

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

William Blake (The Marriage of Heaven and Hell)

omputer Science Cheat Sheet

$\left(\frac{1}{x}\right)^{\overline{-n}}$	$=\sum_{i=0}^{\infty} \left\{ \frac{i}{n} \right\} x^i,$
(**)	i=0

$$(e^x - 1)^n = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^i}{i!},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{i=0} {i \choose n} \frac{n! x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!},$$

$$\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{i=1} \frac{\phi(i)}{i^x},$$

Stieltjes Integration

If G is continuous in the interval [a,b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

$$\int_{a}^{c} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{c} G(x) dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F^\prime at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$$

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 $59 \ 96 \ 81 \ 33 \ 07 \ 48 \ 72 \ 60 \ 24 \ 15$ 73 69 90 82 44 17 58 01 35 26 68 74 09 91 83 55 27 12 46 30 37 08 75 19 92 84 66 23 50 41 $14\ \ 25\ \ 36\ \ 40\ \ 51\ \ 62\ \ 03\ \ 77\ \ 88\ \ 99$ 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i ,
 $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$\begin{split} F_i &= F_{i-1} {+} F_{i-2}, \quad F_0 = F_1 = 1, \\ F_{-i} &= (-1)^{i-1} F_i, \\ F_i &= \frac{1}{\sqrt{5}} \left(\phi^i - \hat{\phi}^i \right), \end{split}$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$$
.
Additive rule:

 $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$ $F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$