EECS 376: Foundations of Computer Science

Chris Peikert 27 March 2023

"God does not play dice with the universe."
- Albert Einstein

"Wanna bet?" - Quantum Mechanics

Randomized Algorithms

Example: Rock-Paper-Scissors

Moral: Randomization can sometimes help us avoid "worst-case" behavior.

(Fact: It can also enable things that are impossible deterministically!)

- * Goal: Maximize our odds of *not losing* in a best-of-one game of rock-paper-scissors against an opponent that *knows our strategy*.
- * Idea: play (uniformly) at <u>random</u>.
- * Analysis: if opponent plays rock (other cases similar):

Pr[we lose | they play rock] Pr[we play scissors | they play rock]

= Pr[we play scissors]

= 1/3

So overall, Pr[we lose] = 1/3.

Example: Cards

Moral: Probability lets us quantify how "unlucky" we are. (worst-case vs. average-case vs. w/ high probability)

- * 2n cards, n red and n blue, are shuffled, face-down
- * Goal: Find a blue card by flipping cards over, one at a time, in any order we want.
- * Q: How many flips do we need, in the worst case?
- * Q: What if we <u>randomly</u> chose cards to flip?
 - * How many flips do we need, on average (expectation)?
 - * How many flips do we need, 99% of the time (w.h.p.)?
- * Analysis: geometric(-ish) distribution

Maximum 3CNF Satisfiability

- * Problem: Given a 3CNF formula, find an assignment that satisfies the *maximum* number of clauses.
- * Example: An <u>unsatisfiable</u> 3CNF formula, but any assignment satisfies <u>7 out of 8</u> clauses:

$$\begin{array}{l} \left(x \vee y \vee z\right) \wedge \left(\neg x \vee y \vee z\right) \wedge \left(x \vee \neg y \vee z\right) \wedge \left(x \vee y \vee \neg z\right) \\ \wedge \left(\neg x \vee \neg y \vee z\right) \wedge \left(\neg x \vee y \vee \neg z\right) \wedge \left(x \vee \neg y \vee \neg z\right) \wedge \left(\neg x \vee \neg y \vee \neg z\right) \end{array}$$

Theorem: There is an efficient algorithm that, given <u>any</u> 3CNF formula <u>with distinct variables in each clause</u>, outputs an assignment satisfying $\geq 7/8$ ths of clauses. (*Expectation maximization*, a derandomization technique.)

Random Assignments

- * Fix a 3CNF formula $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ with m clauses, each of which contains <u>distinct</u> variables.
- * Claim: If we pick a <u>random assignment</u> of ϕ , then we satisfy at least 7/8ths of the clauses, "on average".
- st Let N be the number of satisfied clauses.
 - * This is a <u>random variable</u>.
- * Goal: Show that the <u>expected value</u> of N is 7m/8.
- * Let's first review these terms...

Review: Random Variables

- * A *random variable* is a *quantity* determined by the *outcome* of *a random experiment*.
- * Example: Let N be the number of satisfied clauses of 3CNF formula φ when we generate an assignment of φ by assigning its variables T/F independently and uniformly at random.

$$\phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$$

Note: this ϕ doesn't satisfy our theorem's hypothesis.

Outcome	FFF	FFT	FTF	FTT	TFF	TFT	TTF	TTT
Sat?	NNY	NNY	NYY	NYY	YNY	YNY	YYY	YYN
N	1	1	2	2	2	2	3	2

Review: Distribution of an RV

- * The *probability* that a random variable equals some fixed value is the sum of the probabilities of all outcomes that result in that value.
- **Example:** N = number of satisfied clauses of a 3CNF formula ϕ when we generate an assignment by assigning its variables T/F independently and uniformly at random.

$$\phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$$

Outcome	FFF	FFT	FTF	FTT	TFF	TFT	TTF	TTT
Sat?	NNY	NNY	NYY	NYY	YNY	YNY	YYY	YYN
N	1	1	2	2	2	2	3	2

$$\Pr[N=1] = \frac{2}{8}$$

$$\Pr[N=2] = \frac{5}{8}$$

$$Pr[N = 1] = \frac{2}{8}$$
 $Pr[N = 2] = \frac{5}{8}$ $Pr[N = 3] = \frac{1}{8}$

Review: Expected Value of an RV

* The *expected value* of a random variable is the *weighted average* of its values (value's weight = its probability):

$$\mathbb{E}[N] = \sum_{v} v \cdot \Pr[N = v].$$

*

* Example: N = number of satisfied clauses of a 3CNF formula ϕ ...

$$\Pr[N=1] = \frac{2}{8} \qquad \Pr[N=2] = \frac{5}{8} \qquad \Pr[N=3] = \frac{1}{8}$$

$$\mathbb{E}[N] = 1 \cdot \frac{2}{8} + 2 \cdot \frac{5}{8} + 3 \cdot \frac{1}{8} = \frac{1}{8} (1+1+2+2+2+2+3+2)$$

"In expectation, a random assignment satisfies 15/8 clauses of ϕ ."

Analyzing $\mathbb{E}[N]$

- * Fix <u>any</u> 3CNF formula $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ with m clauses, each of which contains <u>distinct</u> variables.
- * Suppose we generate a random assignment of φ (i.e., set its variables to T/F independently, uniformly at random).
- *N =number of clauses satisfied by the assignment
- * Goal: Show that $\mathbb{E}[N] = 7m/8$.
- * Q: How can we analyze $\mathbb{E}[N]$?
- * **Very useful tricks:** <u>linearity of expectation</u> + <u>indicator random variables</u>

Review: 0/1 random variables

Useful Property: If
$$Z$$
 is an indicator r.v., then $\mathbb{E}[Z] = 1 \cdot \Pr[Z = 1] + 0 \cdot \Pr[Z = 0] = \Pr[Z = 1]$

- * An *indicator* random variable is <u>always</u> either 0 or 1.
- * Example: random assignment in 3CNF formula $\phi = C_1 \wedge C_2 \wedge ... \wedge C_m$.
 - * For $1 \leq i \leq m$, let N_i be the indicator random variable for whether clause C_i is satisfied by the assignment. $\phi = (x \vee x \vee x) \wedge (y \vee y \vee y) \wedge (\neg x \vee \neg y \vee \neg z)$

Observation: The number of clauses satisfied by the assignment is $N=N_1+N_2+N_3+\cdots+N_m$.

Review: Linearity of Expectation

Observation: The number of clauses satisfied by the assignment is $N=N_1+N_2+N_3+\cdots+N_m$.

* Linearity of \mathbb{E} : for any (possibly dependent!) r.v.s N_i ,

$$\mathbb{E}\big[\sum_i N_i\big] = \sum_i \mathbb{E}[N_i].$$

- **Example:** random assignment to 3CNF formula $\varphi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$.
 - * For $1 \le i \le m$, let N_i be the indicator random variable for whether clause C_i is satisfied by the assignment. $\phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$

$$\phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$$

Outcome	FFF	FFT	FTF	FTT	TFF	TFT	TTF	TTT
N	1	1	2	2	2	2	3	2

$$\mathbb{E}[N_1] = 1/2$$

*

$$\mathbb{E}[N_2] = 1/2$$

$$\mathbb{E}[N_3] = 7/8$$

$$\mathbb{E}[N] = \mathbb{E}[N_1] + \mathbb{E}[N_2] + \mathbb{E}[N_3] = 15/8$$

Review: Independence

- * An event is a set of outcomes.
- * Example: Let V be an r.v. for the sum of two fair dice.
 - * V = 5 is an event: the set of outcomes $\{(1,4), (2,3), (3,2), (4,1)\}$
 - * Pr[V = 5] = 4/36 = 1/9
- * Informally: Two events are *independent* if the occurrence of one does not affect the probability of the other occurring.
- * Formal Definition: Events A and B are *independent* if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$.
- * A <u>collection of r.v.s</u> $Z_1, ..., Z_n$ is **independent** if for <u>every</u> $b_1, ..., b_n$: $\Pr[Z_1 = b_1, ..., Z_n = b_n] = \prod_i \Pr[Z_i = b_i]$.

Analyzing $\mathbb{E}[N]$

- * Fix <u>any</u> 3CNF formula $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ with *m* clauses, each of which contains <u>distinct</u> variables.
- * Let r.v. $N = \sum N_i = \#$ clauses satisfied by a random assignment, where N_i is the indicator r.v. for whether clause C_i is satisfied.
- * Claim: $\mathbb{E}[N] = \mathbb{E}[N_1] + \mathbb{E}[N_2] + \dots + \mathbb{E}[N_m] = 7m/8$ * $\mathbb{E}[N_i] = \Pr[N_i = 1] = 1 - \Pr[N_i = 0]$
 - $=1-\Pr[\ell_{i1}=0,\ell_{i2}=0,\ell_{i3}=0] \quad (N_i=0 \text{ iff all of } C_i\text{'s literals are false})$
 - $= 1 \Pr[\ell_{i1} = 0] \cdot \Pr[\ell_{i2} = 0] \cdot \Pr[\ell_{i3} = 0]$ (independence: vars are *distinct*)
 - $= 1 (1/2)^3 = 7/8$
- * Therefore, a random assignment satisfies 7/8ths of the clauses of φ in expectation, as claimed.

Quote of the Day #2

"Every student's score was above average" - No professor ever

Fact: For any RV X there *exists* an outcome a s.t. $X(a) \ge \mathbb{E}[X]$.

Fact: For any RV X there exists an outcome b s.t. $X(b) \leq \mathbb{E}[X]$.

(Note: these don't imply anything about the likelihood of X being "above/below average (expectation).")

Averaging Argument

- * Since a random assignment satisfies $\geq 7/8$ ths of the clauses <u>on</u> <u>average</u>, there <u>exists an assignment</u> that satisfies $\geq 7/8$ ths of the clauses.
 - * Analogy: If the average money of a group of people is \$100, then someone in that group has at least \$100!
 - * This is called an averaging argument, or "probabilistic method."
- * Similarly, at least one of $\mathbb{E}[N \mid \text{first variable was set to } T]$ and $\mathbb{E}[N \mid \text{first variable was set to } F]$ is $\geq 7m/8$.
 - * $\mathbb{E}[N]$ is the <u>average</u> of the two expressions! (Fact: for any RV X and event A, $\mathbb{E}[X] = \Pr[A] \bullet \mathbb{E}[X \mid A] + \Pr[\overline{A}] \bullet \mathbb{E}[X \mid \overline{A}])$

Derandomizing the Algorithm

- * Fix any 3CNF formula $\phi = C_1 \wedge C_2 \wedge ... \wedge C_m$ on n variables $x_1, x_2, ..., x_n$, with distinct variables in each clause.
- * We can <u>deterministically</u> build an assignment for ϕ by setting $x_i = a_i$ iteratively (i = 1, ..., n) as follows:
 - * If $\mathbb{E}[N\mid x_1=a_1,...,x_{i-1}=a_{i-1},x_i=T]\geq \mathbb{E}[N\mid x_1=a_1,...,x_{i-1}=a_{i-1},x_i=F]$ then set $a_i=T$; Otherwise, set $a_i=F$. (Can compute these efficiently by linearity of expectation!)
- * Key: Each step, we fix one variable to keep (for remaining vars) the expected number of satisfied clauses $\geq 7m/8$.

Theorem: There is an efficient deterministic algorithm that outputs an assignment satisfying 7/8ths of the clauses.

Markov's Inequality

- * Example: The average score on the midterm was 60. What's the *maximum* fraction of students that could have a score of at least 90? (there are no negative scores)
 - * 1/2? 2/3? 3/4? 99/100?
- * Markov's Inequality: If X is a <u>non-negative</u> random variable and a > 0, then $\Pr[X \ge a] \le \mathbb{E}[X]/a$.
 - * Proof: choose a random student
 - * X = score of student, a = some arbitrary score
 - * $\mathbb{E}[X] \ge a \Pr[X \ge a]$. Divide by a.

How Often Does the Randomized Max-3SAT Algorithm "Do Well"?

- * Theorem: There is an efficient randomized algorithm that, given any 3CNF formula φ with distinct variables in each clause, outputs an assignment that satisfies 7/8ths of the clauses, *in expectation*.
- * Q: What is (a bound on) the probability that \geq half of the clauses are satisfied?
- * Let N be number of clauses satisfied. How to bound $\Pr\left[N \ge \frac{m}{2}\right]$?
- * Markov's Inequality: If X is a non-negative random variable and a>0, then $\Pr[X\geq a]\leq \mathbb{E}[X]/a$.
 - * Therefore: $\Pr\left[N \ge \frac{m}{2}\right] \le \left(\frac{7m}{8}\right) / \left(\frac{m}{2}\right) = 1.75...$ unhelpful!
- * What about # of <u>unsatisfied</u> clauses $N' = m N \ge 0$?

*
$$\Pr\left[N' \ge \frac{m}{2}\right] \le \left(\frac{m}{8}\right) / \left(\frac{m}{2}\right) = \frac{1}{4}$$
, hence $\Pr\left[N > \frac{m}{2}\right] \ge 3/4$.

Verifying Matrix Multiplication

Goal: Given n-by-n matrices A, B, C, check whether AB = C.

Trivial: Compute AB, check if AB = C. Naïve matrix-mult time: $O(n^3)$.

Using randomization, can do it in $O(n^2)$ time! Algorithm:

- * Choose a uniformly random vector r with each entry 0 or 1.
- * Check if A(Br) = Cr.

Running time: $O(n^2)$. (Compute v = Br, then Av.)

Correctness: If AB = C, we accept with certainty.

Claim: If $AB \neq C$, then $\Pr[\text{accept}] \leq 1/2$. (Repeat to reduce!)

Proof of Claim

Claim: If $AB \neq C$, then $Pr[ABr = Cr] \leq 1/2$.

Proof: Let $D = AB - C \neq 0$. (D does not have all-zero entries.) We want to show that $\Pr[Dr \neq \mathbf{0}] \geq 1/2$.

Suppose (wlog) that column $D_1 \neq \mathbf{0}$. Fix any choice of the entries $r_2, ..., r_n$ (so only random r_1 remains).

$$Dr = r_1 D_1 + r_2 D_2 + \dots + r_n D_n.$$
fixed z

Conclusion: Dr cannot be **0** for both $r_1 = 0$ and $r_1 = 1$. QED.

