BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES AUX POLYGONES

CHRISTOPHE BAL

 $Document,\ avec\ son\ source\ L^{A}T_{E}\!X,\ disponible\ sur\ la\ page\\ https://github.com/bc-writings/bc-public-docs/tree/main/drafts.$

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

0.1. Au moins une solution, ou presque

2

Date: 18 Jan. 2025 - 2 Mars 2025.

0.1. Au moins une solution, ou presque. Le cas des quadrilatères a montré que la convexité était un ingrédient central. Ceci sera aussi le cas pour les n-gones, bien que moins immédiat à justifier, comme nous le verrons dans le fait ??, dont la preuve est indépendante des résultats de cette section. Ceci explique que nous allons chercher à justifier l'existence d'au moins un n-gone convexe d'aire maximale parmi les n-gones convexes de longueur fixée. Nous allons presque y arriver... Pour ce faire, commençons par vérifier que notre définition d'un n-gone convexe correspond bien à ce que nous connaissions des polygones convexes au lycée.

Fait 1. Pour tout n-gone convexe $\mathcal{P} = A_1 A_2 \cdots A_n$, l'une des alternatives suivantes a lieu.

- $\forall (i,k) \in [1;n]^2$, $si \ k \notin \{i;i+1\}$, $alors \det(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}) > 0$.
- $\forall (i,k) \in [1;n]^2$, $si \ k \notin \{i;i+1\}$, $alors \det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) < 0$.

 $D\'{e}monstration$. Le cas n=3 des triangles est immédiat. On considère alors \mathcal{P} un n-gone convexe où $n\geq 4$. Nous savons que, relativement à \mathcal{P} , les sommets sont distincts deux à deux, et qu'aucun triplet de sommets consécutifs alignés n'existe. Dès lors, dans le plan orienté, les trois premiers sommets sont placés suivant l'une des deux configurations suivantes.

Considérons le cas positif, c'est-à-dire supposons que det $(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_3'}) > 0$.

- $\overrightarrow{A_1'A_3'} = \overrightarrow{A_1'A_2'} + \overrightarrow{A_2'A_3'}$ donne det $(\overrightarrow{A_2'A_3'}, \overrightarrow{A_2'A_1'}) > 0$.
- Comme A_2 , A_3 et A_4 ne sont pas alignés, et de plus A_1 et A_4 du même côté, au sens large, de la droite (A_2A_3) , nous obtenons det $(\overrightarrow{A_2'A_3'}, \overrightarrow{A_2'A_4'}) > 0$.
- En continuant de proche en proche, nous arrivons à $\det\left(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_{i+2}'}\right) > 0$ pour $i \in [1; n]$ quelconque.
- Le point précédent et la convexité donnent det $(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}) \ge 0$ pour $(i, k) \in [1; n]^2$ tel que $k \notin \{i; i+1\}$.
- Montrons maintenant que det $(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_k'}) > 0$ pour $k \in [3; n]$. Nous savons déjà l'inégalité vraie pour k = 3, donc passons à k = 4. Pour avoir det $(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_k'}) > 0$, le point précédent donne qu'il faut vérifier que det $(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_k'}) = 0$ est impossible. Supposons donc l'égalité vraie, ce qui implique d'avoir $n \geq 5$, et donne les configurations suivantes où les hachures et la droite en trait plein sont des zones interdites pour A_4 .

Le cas 2 est impossible par raison de convexité, car A_1 et A_2 sont de part et d'autre de la droite (A_3A_4) . Voyons donc ce qu'implique le 1^{er} cas pour A_5 .

Le cas 1-2 est impossible par raison de convexité à cause de (A_4A_5) . Notons que dans le cas 1-1, il est possible d'avoir $A_5 \in A_4A_1$ [. Comme $A_5 \in (A_1A_2)$, nous devons avoir $n \geq 6$. Dès lors, nous avons de nouveau $A_6 \in (A_1A_2)$, mais ceci donne la contradiction $A_6 \in (A_4A_5)$. Continuons ensuite de proche en proche, nous obtenons bien $\det\left(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_k'}\right) > 0 \text{ pour } k \in [3; n].$

• En généralisant le raisonnement précédent, ¹ nous avons det $(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}) > 0$ pour tout couple $(i, k) \in [1; n]^2$ vérifiant $k \notin \{i; i+1\}$.

Le cas négatif se traite de façon similaire.

^{1.} Se souvenir de la définition de la suite (A_i) .

Nous allons établir une réciproque élargie du résultat précédent. Ce nouveau fait va nous rendre un grand service par la suite. ²

Fait 2. Soit $\mathcal{L} = A_1 A_2 \cdots A_n$ un n-cycle convexe vérifiant l'une des alternatives suivantes.

- $\forall (i,k) \in [1;n]^2$, $\det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) \geq 0$.
- $\forall (i,k) \in [1;n]^2$, $\det\left(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}\right) \leq 0$.

Ceci implique la validité de l'une des deux assertions ci-dessous.

- i. Tous les sommets de \mathcal{L} sont alignés, autrement dit, \mathcal{L} est totalement dégénéré.
- ii. XXXX

Démonstration. Par symétrie des alternatives à vérifier, nous pouvons nous concentrer sur le cas positif, c'est-à-dire supposer que $\forall (i,k) \in [\![1\,;n]\!]^2$, $\det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) \geq 0$. Supposons alors \mathcal{L} non totalement dégénéré, de sorte qu'il existe $(i,k) \in [\![1\,;n]\!]^2$ tel que $k \notin \{i\,;i+1\}$ et $\det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) > 0$. Pour raisonner algorithmiquement, nous aurons besoin d'un ensemble \mathscr{T} de sommets testés, et d'une liste \mathbb{U} de sommets utiles, tous les deux initialement vides.

- (1) XXXX
- (2) XXXX
- (3) XXXX
- (4) Prenons alors k minimal.

YYYY

Quitte à changer l'origine de \mathcal{L} , sans changer le sens de parcours des sommets, nous pouvons supposer avoir i=1, et donc $k \in [3;n]$ tel que det $(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_k'}) > 0$. Lors de ce renommage, on met aussi à jour tous les noms des points contenus dans \mathscr{T} et \mathbb{U} .

^{2.} Pourquoi s'attarder sur des inégalités larges? Parce que nous allons travailler dans un ensemble compact, et donc fermé, de *n*-cycles, même si cela aura pour inconvénient de ne pas garantir le caractère *n*-gonal, selon le fait 2, mais nous n'avons pas le choix!

XXX

Le résultat qui suit est juste là pour simplifier la justification du fait 4 à venir.

Fait 3. Soient $n \in \mathbb{N}_{\geq 3}$, $\ell \in \mathbb{R}_{+}^{*}$, $(O; \vec{\imath}, \vec{\jmath})$ un repère orthonormé direct du plan et $\mathcal{U} \subset \mathbb{R}^{2n}$ l'ensemble des uplets de coordonnées $(x(A_1); y(A_1); \ldots; x(A_n); y(A_n))$ où $\mathcal{L} = A_1 A_2 \cdots A_n$ désigne un n-cycle vérifiant les conditions suivantes.

- Long(\mathcal{L}) = ℓ .
- $\forall (i,k) \in [1;n]^2$, $\det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) \geq 0$.

On considère alors la fonction $\alpha: \mathcal{U} \to \mathbb{R}_+$ qui à un uplet de \mathcal{U} associe l'aire algébrique du n-cycle qu'il représente. Avec ces notations, la fonction $\alpha: \mathcal{U} \to \mathbb{R}_+$ admet au moins un maximum.

Démonstration. \mathcal{U} est fermé dans \mathbb{R}^{2n} , car les conditions le définissant le sont, et il est borné, car inclus dans la boule fermée de centre O et de rayon ℓ , donc \mathcal{U} est un compact de \mathbb{R}^{2n} . De plus, α est continue d'après le fait ??. Finalement, par continuité et compacité, α admet un maximum sur \mathcal{U} .

XXX

Nous arrivons, ci-dessous, au résultat central pour les n-gones convexes où la perte éventuelle de sommets est un faux problème, car nous aboutirons, plus tard, à la comparaison de k-gones réguliers convexes pour k variable, une tâche aisée, puisque le périmètre et l'aire d'un k-gone régulier convexe s'expriment en fonction de k.

Fait 4. Soient $n \in \mathbb{N}_{\geq 3}$ et $\ell \in \mathbb{R}_+^*$. Il existe un k-gone convexe K validant les assertions suivantes.

- $k \le n$ et $\text{Long}(\mathcal{K}) = \ell$.
- $Si \mathcal{P}$ est un n-gone convexe tel que $Long(\mathcal{P}) = \ell$, $alors Aire(\mathcal{P}) \leq Aire(\mathcal{K})$.

Démonstration. Reprenons les notations du fait 3, et considérons $\mathcal{M} \in \mathcal{U}$ maximisant α .

- Une simple translation permet de se ramener au cas de n-gones convexes d'origine O.
- XXXX
- XXXX
- XXXX
- XXXX
- XXXX

XXXX

Commençons par chercher un n-cycle \mathcal{M} tel que $\mathrm{Aire}(\mathcal{P}) \leq \mathrm{Aire}(\mathcal{M})$ pour tout n-gone convexe \mathcal{P} vérifiant $\mathrm{Long}(\mathcal{P}) = \ell$.

De plus, selon le fait 1,

 $\overline{\text{Aire}}(\mathcal{L}^{\text{op}}) = -\overline{\text{Aire}}(\mathcal{L})$ pour tout n-cycle \mathcal{L} d'après le fait ??, donc nous pouvons nous concentrer sur les n-cycles convexes vérifiant det $(\overline{A'_i A'_{i+1}}, \overline{A'_i A'_k}) \geq 0$ pour tous les sommets A_i et A_k grâce au fait précédent.

- Munissons le plan d'un repère orthonormé direct $(O; \vec{\imath}, \vec{\jmath})$, puis notons $\mathcal{U} \subset \mathbb{R}^{2n}$ l'ensemble des uplets de coordonnées $(x(A_1); y(A_1); \dots; x(A_n); y(A_n))$ où $\mathcal{L} = A_1 A_2 \cdots A_n$ est un n-cycle vérifiant les conditions suivantes.
 - (1) $A_1 = O$.
 - (2) $\operatorname{Long}(\mathcal{L}) = \ell$.
 - (3) $\forall (k,i) \in [1;n]^2$, $\det(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}) \ge 0$.
- \mathcal{U} est fermé dans \mathbb{R}^{2n} , car les conditions le définissant le sont, et il est borné, car inclus dans la boule fermée de centre O et de rayon ℓ . En résumé, \mathcal{U} est un compact de \mathbb{R}^{2n} .
- Nous définissons la fonction $\alpha: \mathcal{U} \to \mathbb{R}_+$ qui à un uplet de \mathcal{U} associe l'aire algébrique du n-cycle qu'il représente. Cette fonction est continue d'après le fait \ref{aire} . Donc, α admet un maximum sur \mathcal{U} par continuité et compacité. Affaire conclue!
- Reprenons les notations de la preuve du fait 3, puis notons \mathcal{K} un n-cycle convexe maximisant la fonction α sur \mathcal{U} , de sorte que $\operatorname{Long}(\mathcal{K}) = \ell$ est validée. Il est immédiat que pour tout n-gone convexe \mathcal{P} tel que $\operatorname{Long}(\mathcal{P}) = \ell$, nous avons $\overline{\operatorname{Aire}}(\mathcal{P}) \leq \overline{\operatorname{Aire}}(\mathcal{K})$, puis le fait ?? donne que $\operatorname{Aire}(\mathcal{P}) \leq |\overline{\operatorname{Aire}}(\mathcal{K})|$, après avoir noté que nécessairement $\overline{\operatorname{Aire}}(\mathcal{K}) \geq 0$. Pour finir, voyons pourquoi \mathcal{K} est un k-gone convexe avec $k \leq n$, ce qui impliquera ensuite $|\overline{\operatorname{Aire}}(\mathcal{K})| = \operatorname{Aire}(\mathcal{K})$.

Affaire conclue!