

Welcome to the Securing Cloud Data: this is the Techniques and Best Practices module, part of the Security in Google Cloud course.

Securing your cloud data is obviously extremely important. In this module, we are going to cover many topics related to securing Google Cloud storage, and there will be several labs so you can get some hands-on experience with the topics we discuss.

Agenda

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Ouiz and Module Review

Google Cloud

We will start with controlling IAM permissions and access control lists on Cloud Storage buckets.

We will also discuss auditing cloud data, including finding and remediating data that has been set to publicly accessible.

Then we will cover how to use signed Cloud Storage URLs and signed policy documents to provide detailed control on what users without Google Cloud accounts, or visitors can download or uploaded to a bucket.

Next, we will discuss encrypting data at rest with customer managed encryption keys (or CMEK) and customer supplied encryption keys (or CSEK) and give you a chance to see it in action with a few hands on labs.

After that, we will talk about adding extra security to how data is encrypted and decrypted using Cloud HSM - or, the Cloud Hardware Security Module.

In addition, BigQuery IAM roles and authorized views will be covered to demonstrate managing access to datasets and tables. You will also get a chance to try this out in a lab.

This module will conclude with a few considerations on storage best practices.

Agenda

Cloud Storage IAM Permissions, and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Quiz and Module Review

Coogle Cloud

OK, let's get started with Cloud storage IAM permissions and ACLs.

You can control who has access to your Cloud Storage buckets and objects as well as what level of access they have. Members can be granted access to Cloud Storage at the organization, folder, project, or bucket levels.

Any allocated permissions flow down from higher levels.

There are no explicit deny rules, so it is not possible remove a permission from a lower level that was granted at a higher level. Be sure to only grant access that is required. Always use the principle of least privilege.

Predefined storage roles Roles can be added to member and service

Roles can be added to member and service accounts at the project or bucket level.

□ ⊙	Storage Admin	Storage	Enabled	:
□ ⊙	Storage Legacy Bucket Owner	Storage Legacy	Enabled	:
□ ⊙	Storage Legacy Bucket Reader	Storage Legacy	Enabled	:
□ ⊙	Storage Legacy Bucket Writer	Storage Legacy	Enabled	:
□ ⊙	Storage Legacy Object Owner	Storage Legacy	Enabled	:
□ ⊙	Storage Legacy Object Reader	Storage Legacy	Enabled	:
□ ⊙	Storage Object Admin	Storage	Enabled	:
□ ⊙	Storage Object Creator	Storage	Enabled	:
□ ◎	Storage Object Viewer	Storage	Enabled	:

There are many predefined roles that are related to Cloud Storage.

Storage role permissions

Storage Object Admin

Description: Full control of storage objects.

9 assigned permissions:

- storage.objects.create
- storage.objects.delete
- storage.objects.get
- storage.objects.getlamPolicy
- storage.objects.list
- storage.objects.setlamPolicy
- storage.objects.update

Storage Object Creator

Description: Access to create objects in storage.

3 assigned permissions:

- resourcemanager.projects.get
 resourcemanager.projects.get
 resourcemanager.projects.get

 - storage.objects.create

Storage Object Viewer

Description: Read access to storage objects.

4 assigned permissions:

- resourcemanager.projects.list
 resourcemanager.projects.list
 resourcemanager.projects.list
 - storage.objects.get
 - storage.objects.list

Google Cloud

A few of the pre-defined storage roles are shown here.

The Storage Object Admin role, as its name implies, provides full control of Cloud Storage objects.

The Storage Object Creator role, provides the ability to get and list projects as well as create Cloud Storage objects.

The Storage Object Viewer role, provides the ability to get and list projects as well as get and list Cloud Storage objects.

Setting IAM permissions on buckets

Use IAM roles to grant permissions to Storage buckets.

• Permissions are inherited from higher levels.

IAM permissions give you broad control over your projects and buckets, but not fine-grained control over individual objects.

Cloud Storage ACLs

Access control lists (ACLs) can be used to grant access to objects in buckets.

You can use Access Control Lists (or ACLs) to define who has access to individual buckets and objects, as well as what level of access they have. You apply ACLs to individual buckets and objects.

IAM and ACLs can work in tandem to grant access to your buckets and objects. A user only needs a permission from either IAM or an ACL to access a bucket or object.

In most cases, you should use IAM permissions instead of ACLs. Use ACLs only when you need fine-grained control over individual buckets or objects.

In cloud storage it is possible to make entire buckets or individual objects public. An entire bucket can be made public by granting the **Storage Object Viewer** role to the **allUsers** group on the bucket.

To make individual objects in a bucket public, grant the **Reader** access to **allUsers** on the individual objects.

Be very careful on which objects or buckets you make public - use this option with extreme caution. Making buckets or objects public should only be done for publicly accessible web content.

Agenda

Cloud Storage IAM Permissions, and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Google Cloud

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Quiz and Module Review

Another important security concern is how to audit cloud data and record project related activity.

Auditing storage buckets

Cloud Storage bucket administrative activity is logged automatically:

• Logs of bucket data access must be turned on.

In Google Cloud, Cloud Storage bucket administrative activity is logged automatically - there is nothing to enable.

Admin Activity includes operations that modify the configuration or metadata of a bucket, or object.

Note that Data Access logs pertaining to Cloud Storage operations are not recorded by default and must be configured. Data Access includes operations that modify objects or read a project, bucket, or object.

All logs can be viewed in Cloud Logging.

Enable logging within a bucket

- Make a bucket to hold the logs.
- Allow write access to the bucket.
- Set logging on and specify the log bucket:
 - Storage logs are created once a day
 - Usage logs are created every hour

```
gsutil mb gs://example-logs-bucket

gsutil acl ch -g cloud-storage-analytics@google.com:W gs://example-logs-bucket

gsutil defacl set project-private gs://example-logs-bucket

gsutil logging set on -b gs://example-logs-bucket gs://example-bucket
```


The data access logs can be turned on at the bucket level. To do so, first create a new bucket to hold the log files.

You must allow write access to that bucket for cloud-storage-analytics@google.com To be safe, we also set the ACL of the logging bucket to project-private. Then, enable logging for the original bucket, specifying that the bucket holds logs with the -b option.

Export the logs to BigQuery for analysis

- Create a BigQuery dataset.
- Use a load job to copy log data into BigQuery tables.

```
$ bq mk storageanalysis

$ bq load --skip_leading_rows=1 storageanalysis.usage
gs://example-logs-bucket/example-bucket_usage_2018_01_15_14_00_00_1702e6_v0
./cloud_storage_usage_schema_v0.json

$ bq load --skip_leading_rows=1 storageanalysis.storage
gs://example-logs-bucket/example-bucket_storage_2018_01_05_14_00_00_091c5f_v0
./cloud_storage_storage_schema_v0.json
```


One of the most effective ways to analyze log files is to leverage BigQuery. To do so, you must first create a BigQuery dataset and this will be used to hold the log data with the **bq mk <DataSet_Name>** command.

From this point, the log files can then be loaded into a BigQuery table with the bq load command. The example shown here is loading some log files into two different BigQuery tables, one called "usage" and the other "storage". Once the logs are exported to BigQuery, they can then be analyzed using the power that BigQuery offers.

Agenda

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Ouiz and Module Review

In this section, we will cover how to use signed Cloud Storage URLs and signed policy documents which provide detailed control over users; such as those without Google Cloud accounts, or visitors, enabling them to download or uploaded to a bucket.

Signed URLs

Allow access to Cloud Storage without adding a user to an ACL or IAM:

- Temporary access with a timeout.
- Anyone with the signed URL has access.

In some scenarios, you might not want to require your users to have a Google account in order to access Cloud Storage. Signed URLs provide a great way to give time-limited read or write access to anyone in possession of the URL, regardless of whether they have a Google account.

Creating a signed URL with gsutil

- Create a service account with rights to storage.
- · Create a service account key.
- Use signurl command, which returns a URL that allows access to the resource.
 - -d parameter is used to specify duration

gcloud iam service-accounts keys create ~/key.json --iam-account
storage-admin-sa@doug-demo-project.iam.gserviceaccount.com
gsutil signurl -d 10m ~/key.json gs://super-secure-bucket/noir.jpg

Signed URLs can be created manually using the gsutil tool or from a program. Google App Engine applications can use the App Engine Identity service.

When creating a signed URL with gsutil, it is a 3 step process:

- First, you need to create a service account with the desired rights and then
 use this to generate the signed URL for storage object
- Next, create a key for the service account and store it in a file such as key ison
- Lastly, use the gsutil signurl command to specify the service account key and object that we want to allow access to.

Note the -d parameter specifies how long (i.e. the duration) the URL will be available for.

Signed URL output (example)

```
me@doug-demo-project:~$ gsutil signurl -d 10m ~/key.json gs://super-secure-bucket/noir.jpg
URL HTTP Method Expiration Signed URL
gs://super-secure-bucket/noir.jpg GET 2018-08-31 16:29:25 https://storage.google
apis.com/super-secure-bucket/noir.jpg?x-goog-signature=107d26e38f5c962296c26f4153alcbeb61a84ac
a905009752e849f8f890de1f9a80e482da3bae562c7796389e12a8657a70c87860700149c4b2218c81ad3d57730cd3
5ced850b266cdffd84de01898ee8c807d742a85136e56f46d83c29ceb792bdd3a22adbe2e540ba27b0f565bbf8f31a
ee6ae61d6ae20968021d5a47c8d0aada43f2d32407f2977a4c7b4c66ef64ddd68bd6f6135936f847ace3530a968d72
63ff5e70f9fc39bf16fabbd472f63584a8d8c6b24b1f81859f1c5176b8e97580a6b4a7613ad76bfcdd403e6afc9a70
90a3e1b4cf95c7fb68142416af86ef5ef6bfab93c00492b307233180df9b3dfeefe1bb9a5bf81cb441f879ecc2e57c
def6x-goog-algorithm=GOOG4-RSA-SHA2566x-goog-credential=storage-admin-sa%40doug-demo-project.i
am.gserviceaccount.com%2F20180831%2Fus%2Fstorage%2Fgoog4_request&x-goog-date=20180831T201925Z&
x-goog-expires=600&x-goog-signedheaders=host
me@doug-demo-project:~$
```


Once requested, the gsutil command will return the signed URL. An example of a signed URL is shown on this slide.

Signed Policy Documents

- Signed Policy Documents specify what can be uploaded to a bucket with a form POST.
- Allow greater control over size, content type, and other upload characteristics than signed URLs.
- Created as JavaScript Object Notation (JSON).

Signed Policy Documents specify what can be uploaded to a bucket with a form POST.

Policy documents allow greater control over size, content type, and other upload characteristics, in comparison to signed URLs, and can also be used by website owners to allow visitors to upload files to Cloud Storage.

A policy document is constructed in JavaScript Object Notation (JSON).

Signed Policy Document example

```
{"expiration": "2019-08-15T11:11:11Z",
    "conditions": [
    ["starts-with", "$key", "" ],
    {"acl": "bucket-owner-read" },
    {"bucket": "travel-maps"},
    {"success_action_redirect": "http://www.example.com/success.html" },
    ["eq", "$Content-Type", "image/jpeg" ],
    ["content-length-range", 0, 10000000]
    ]
}
```

In this slide you can see an example of a typical policy document that defines the following conditions:

The form expires on August 15, 2019 at 11:11:11 UTC.

The file name can start with any valid character. To specify this, you can use the "starts-with condition modifier" with a value of an empty string

An ACL of "bucket-owner-read" is applied to the file.

If the upload is successful, the user is redirected to http://www.example.com/success.html.

The form also allows only jpeg images to be uploaded.

The form restricts uploading files larger than 1 MB.

Using Policy Documents

- 1 Ensure sure the policy document is UTF-8 encoded.
- Encode the policy document as a Base64 representation.
- Sign your policy document using RSA with SHA-256 using the secret key provided to you in the Google Cloud Console.
- 4 Encode the message digest as a Base64 representation.
- Add the policy document information to the HTML form.

Using a policy document for an HTML form post requires the following:

- 1: Create a policy document for your form, ensuring it is UTF-8 encoded.
- 2: Encode the policy document as a Base64 representation.
- 3: Sign your policy document using RSA with SHA-256 encoding using the secret key provided to you in the Google Cloud Console. This step will create a message digest.
- 4: Encode the message digest as a Base64 representation.
- 5: Add the policy document information to the HTML form.

Example HTML form

Google Cloud

Here is an example HTML form using the policy document shown earlier.

Notice there are hidden form fields for each value and most match the values from the policy document.

- The GoogleAccessId is used to specify the service account required for access
- The value of the policy field must be the base64 encoded policy document
- The value of the signature field must be the base64 signature of the policy document.

Agenda

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Ouiz and Module Review

6 Google Cloud

Google Cloud encrypts all customer data stored at rest, without any action required from you, the customer. Google uses a common cryptographic library, Keyczar, to implement consistent encryption across almost all Google Cloud products.

This includes data stored in cloud storage. In this section we will review how to use customer managed encryption keys and customer supplied encryption keys and then move on to complete a hands-on lab.

Google Cloud encryption at rest

DEKs are encrypted with ("wrapped" by) key encryption keys (KEKs) and stored with the data.

The data encryption keys are encrypted with (or "wrapped" by) key encryption keys, or KEKs. The wrapped data encryption keys are then stored with the data.

Google Cloud encryption at rest

KEKs are exclusively stored and used inside Google's central Cloud Key Management Service (Cloud KMS).

The key encryption keys are exclusively stored and used inside Google's central Cloud Key Management Service (or Cloud KMS). Cloud KMS-held keys are also backed up for disaster recovery purposes, and are indefinitely recoverable.

Decrypting data requires the unwrapped data encryption key (DEK) for that data chunk.

When a Google Cloud service accesses an encrypted chunk of data, here's what happens:

- For each chunk, the storage system pulls the wrapped DEK stored with that chunk, and calls Cloud KMS to retrieve the unwrapped data encryption key for that data chunk.
- Cloud KMS passes the unwrapped DEK back to the storage system, which then is able to decrypt the data chunk.

Google Cloud encryption by default

- By default, KEKs are fully managed by Google.
- There is nothing to enable or configure.

Encryption

Data is encrypted automatically. Select an encryption key management solution.

Google-managed key

No configuration required

Customer-managed key

Manage via Google Cloud Key Management Service

By default, this entire process is enabled by default and is fully managed by Google - including the key encryption keys. There is absolutely nothing to enable or configure.

Google Cloud encryption by default

- The actual rotation schedule for a KEK varies by service:
 - The standard rotation period is 90 days.
- Google stores up to 20 versions.
- Re-encryption of data is required at least once every 5 years.

Google Cloud

Google also manages the key rotation schedule.

This schedule varies slightly depending on the service, but Google Cloud Storage specifically rotates its KEKs every 90 days, and can store up to 20 versions, requiring re-encryption of data at least once every 5 years - though in practice, data re-encryption is much more frequent.

Customer-managed encryption keys (CMEK) Allows you to manage the KEKs: Generate keys Rotation periods Expire keys KEKs still stored on Cloud KMS. Encryption Data is encrypted automatically. Select an encryption key management solution. Google-managed key No configuration required Customer-managed key Manage via Google Cloud Ky Manage was Go

You can control the generation of the keys, the rotation periods, and when to expire keys.

Google Cloud

Customer managed keys are still stored in Cloud KMS, but you control of the keys' lifecycle.

Cloud KMS uses an object hierarchy: a key belongs to a key ring, and a key ring resides in a particular location.

A keyring is a grouping of keys attached to a project and created for organizational purposes. When creating keys, you must first create a key ring and specify its location, which can be regional, multi-regional, or global.

A key can then be created and added to the key ring.

Cloud KMS supports both symmetric and asymmetric key types.

The keys rotation period can also be defined to meet your requirements.

Using customer-managed encryption keys

- Choose your managed key when creating VMs, disks, images, storage buckets, etc.
- Grant permissions to the service account to use your key.

Using customer-managed keys is as simple as choosing the key when creating VMs, disks, images, or storage buckets.

You also need to grant permissions to the service account to be able to use your key.

The general process is the same as when using the default Google managed keys.

Customer-supplied keys

You can also create keys on premises. You are then responsible for all key management and rotation.

Google will not store the keys:

Don't lose them!

Another available option for encryption is customer-supplied keys. This allows you to create your keys yourself outside of Google Cloud, on your premises.

Remember, Google will not store these keys. You are responsible for ALL key management and rotation.

Be sure to not lose these keys. If you lose them, there will be no way to decrypt your data.

Using customer-supplied encryption keys You must provide the key when Encryption creating or using the storage Data is encrypted automatically. Select an encryption key management solution. Google-managed key resource. No configuration required Customer-managed key Manage via Google Cloud Key Management Service Customer-supplied key Manage outside of Google Cloud A Google can't recover your data if you lose keys you manage outside of Google Cloud Platform - store them somewhere secure. Enter key Google Cloud

When using customer-supplied encryption, since Google never stores the keys, you must provide the appropriate key whenever accessing the storage resource.

Encryption review

- All data stored on Google Cloud is encrypted at rest by default.
 - o Includes data in Storage, Persistent disks, Cloud SQL, etc.
 - Also includes disk snapshots and custom images.
- All data in Google Cloud is encrypted with a unique data encryption key (DEK).
- DEKs are encrypted with ("wrapped" by) key encryption keys (KEKs) and stored with the data.
- By default, KEKs are stored and used inside Cloud Key Management Service (Cloud KMS).
- Decrypting data requires the unwrapped data encryption key (DEK) for that data chunk.

Before we move into working with the first of the hands-on labs for this module, let's briefly review Google Cloud Encryption.

Google Cloud encrypts all customer data stored at rest, without any action required from you, the customer. A common cryptographic library, Keyczar, is used to implement encryption consistently across almost all Google Cloud products. This includes data stored in Cloud Storage, Compute Engine persistent disks, Cloud SQL databases, virtually everything! Even disk snapshots and custom compute engine virtual machine images are encrypted.

By default, KEKs are stored and used inside Cloud Key Management Service (Cloud KMS) and are fully managed by Google. There is nothing for you, the customer, to enable or configure.

Customer-managed and supplied keys review

- Allows you to manage the KEKs:
 - Generate keys
 - Rotation periods
 - o Expire keys
- KEKs are still stored on Cloud KMS.
- You can also create keys on premises:
 - You are then responsible for all key management and rotation.

Google will not store the keys: **Don't lose them!**

To recap the previous Module's CMEK and CSEK sections: remember, all data stored in Google Cloud is encrypted with a unique data encryption key or DEK.

Optionally, it is possible for you, the customer, to manage and supply the key encryption keys.

You can control the generation of the keys, the rotation periods, and when to expire keys.

When doing so, the keys are still stored in Cloud KMS, but you are now in control of the key's lifecycle.

Please note: Google does NOT store your keys! Be sure you keep copies in a secure place.

Agenda

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied **Encryption Keys with Cloud Storage**

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Quiz and Module Review

Google Cloud

Ok, It's time for a lab to see Customer-Supplied Encryption Keys in action. In this lab, you learn how to perform the following tasks:

- Create an encryption key and wrap it within the Google Compute Engine RSA public key certificate
- Encrypt a new persistent disk with your own key
- Attach the disk to an compute engine instance
- Create a snapshot from an encrypted disk

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed **Encryption Keys with Cloud Storage** and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Quiz and Module Review

Google Cloud

Great, now let's see how to use Customer-managed Encryption Keys.

In this lab, you learn how to perform the following tasks:

- Manage keys and encrypted data using Cloud Key Management Service (Cloud KMS)
- Create KeyRings and CryptoKeys
- Set a default encryption key for a storage bucket
- Encrypt an object with a Cloud KMS key
- Rotate encryption keys
- Manually perform server-side encryption with Cloud KMS keys

Cloud Storage IAM Permissions, and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Ouiz and Module Review

Some industries need increased security regarding data encryption. In these situation, encryption and decryption that uses software only is not sufficient; this must be done in a secure environment, using a hardware module designed expressly for this

purpose. In this section, you will learn about Cloud HSM - or Cloud Hardware Security

Module - and its features.

What is an HSM (hardware security module)?

- An HSM (hardware security module) is a physical device that manages digital keys.
- The HSM encrypts and decrypts data with secure cryptoprocessor chips.
- Using an HSM adds an extra layer of security to keys and data.

Google Cloud

An HSM, or hardware security module, is a physical device that manages digital keys. These keys are used to encrypt content in an extremely secure manner.

It also uses those keys to encrypt and decrypt data with secure microprocessing chips. These chips were designed and certified to perform encryption and decryption in the hardware, with more security than can be offered by a software-only encryption and decryption solution.

Doing encryption and decryption inside a separate, physical hardware module makes the keys and the data harder to hack, which adds an extra layer of security. The level of security provided by the HSM is beyond what is possible in a software-only based solution.

Cloud HSM

- Cloud HSM provides an HSM hardware cluster that is managed and maintained by Google.
- Cloud HSM is available:
 - Across all US regions.
 - o In multiple regions worldwide.
- Cloud HSM supports:
 - o FIPS 140-2 level 3.
 - Cavium V1 and V2 attestation formats.

Cloud HSM provides an HSM hardware cluster for you. Google manages and maintains the cluster for you. All you have to do is use it with the Google Cloud Console or with APIs.

Cloud HSM is available in all US regions. It is also available in multiple regions worldwide. Consult the Google <u>documentation</u> for the closest location to your site.

Cloud HSM supports FIPS 140-2 level 3. FIPS 140-2 is a US government computer security standard for cryptographic modules. Level 3 includes tamper-evident physical security mechanisms and has a high probability of detecting and responding to attempts at physical access, use, or modification of the cryptographic module. The physical security mechanisms may include the use of strong enclosures and tamper detection and response circuitry.

Cloud HSM supports Cavium version 1 and version 2 attestation formats. An attestation statement shows that the key is HSM-protected. It is a token that is cryptographically signed directly by the physical hardware and can be verified by the user.

Cloud HSM leverages Cloud KMS

- Cloud HSM is fully integrated with Cloud KMS.
- For the Protection level, specify HSM.

Cloud HSM is fully integrated with Cloud KMS. Everything you learned earlier about creating key rings and keys applies here as well.

When creating a key, you can specify that you would like to use Cloud HSM by setting the Protection level to HSM. When HSM is selected, Google uses a physical HSM device within its environment to create and encrypt the key. The key can be generated and managed by Google or by the customer, as you learned earlier.

Attestation statements show that keys are protected

- For keys created in Cloud HSM, an attestation statement can be generated.
- The attestation statement:
 - o Provides evidence that the key is HSM-protected.
 - o Contains a token that is cryptographically signed directly by the physical hardware.
 - o Can be verified by the user.

For keys created in Cloud HSM, an attestation statement can be generated. Google provides scripts that can verify the authenticity of the attestation and parse the attestation contents. Information about scripts and how to use them can be found in the Cloud HSM documentation.

The attestation statement provides evidence that the key is HSM protected. It contains a token that is cryptographically signed directly by the physical hardware. This can be verified by the user; for example, by using a program or script to parse the contents.

Google provides scripts that can verify the authenticity of the attestation signature and parse and verify the attestation contents, such as the version ID and the metadata. Information about the scripts and how to use them is in the Cloud HSM documentation.

In this demo, you will learn how to generate and verify an encryption key in Cloud HSM.

https://drive.google.com/file/d/1uPB4R87FfHILpyz6yLwELYSzx3q00DJW/view?usp=sharing

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Google Cloud

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Ouiz and Module Review

This section covers BigQuery IAM roles and authorized views to demonstrate managing access to datasets and tables. You will also get a chance to try this out in a lab.

Permissions are granted to BigQuery datasets

- Cannot grant permissions at the table, row, or column level.
- Use IAM roles to control access to data.
- All tables in a dataset need to share the same permissions.

	BigQuery Admin	BigQuery	Enabled	:
	BigQuery Data Editor	BigQuery	Enabled	i
□ ⊙	BigQuery Data Owner	BigQuery	Enabled	i
	BigQuery Data Viewer	BigQuery	Enabled	:
□ ⊙	BigQuery Job User	BigQuery	Enabled	i
	BigQuery User	BigQuery	Enabled	:

BigQuery uses Identity and Access Management (IAM) to manage access to resources and permissions that are granted at the dataset level.

Tables, rows and columns are child resources of datasets — meaning they inherit permissions from their parent dataset.

It is not possible to grant permissions at the table, row or column level.

All tables in a dataset share the same permissions.

BigQuery IAM roles

Role	Description	
BigQuery Admin	Can do everything in BigQuery. Create and read data, run jobs, set IAM policies, etc.	
BigQuery Data Owner	Read/write access to data, plus can grant access to other users and groups by setting IAM policies.	
BigQuery Data Editor	Read/write access to data.	
BigQuery Data Viewer	Read-only access to data.	
BigQuery Job User	Can create and run jobs, but no access to data.	
BigQuery User	Can run jobs, create datasets, list tables, save queries. But no default access to data.	

Google Cloud

A few of the BigQuery IAM roles are shown here.

Notice how the role names are mapped to job functions, such as BigQuery admin or BigQuery Data Viewer.

Using BigQuery IAM roles

- Assign groups (or users) to BigQuery IAM roles.
 - o Generally considered a best practice to manage users in groups.
- Provide groups or users with access to datasets.
 - o Can be viewer, editor, or owner.
- The user who created a dataset is the owner.
 - Can add additional users and other owners.

When using BigQuery, you can assign IAM roles to individual users or groups. It is always better to assign roles to groups. There is much less operational overhead managing groups than managing each user individually.

The roles you assign provides the required access permission to the datasets: for example; viewer, editor, or owner.

By default the user who created the dataset is the owner, but additional members can be given permissions including the owner role.

Authorized views

What if I want admins or super users to see all the data in a table, and others to see only a subset of the data?

- Use views to provide row or column level permissions to datasets.
- Create a second dataset with different permissions from the first.
- Add a view to the second dataset that selects the subset of data you want to expose from the first dataset.
- In the first dataset, you have to give the view access to the data:
 - Known as an authorized view.

What if I want admins or super users to see all the data in a table, and others to only see a subset of the data? To do this, use Authorized Views.

Views provide row or column level permissions to datasets.

To create authorized views, Create a second dataset with different permissions from the first.

Add a view to the second dataset that selects the subset of data you want to expose from the first dataset.

In the first dataset, you must give the view access to the underlying data.

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Quiz and Module Review

Google Cloud

In this lab, you learn how to perform the following tasks:

- Set permissions on BigQuery Datasets
- Use Authorized Views to provide audiences read-only access to subsets of tables
- Use the CURRENT_USER() function to limit access to specific rows within a table/view

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Google Cloud

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Quiz and Module Review

And now we conclude with a few best practices for Cloud Storage and BigQuery Storage.

Cloud Storage best practices

- Don't use personally identifiable information (PII) in bucket names.
- Don't use PII in object names, because object names appear in URLs.
- Set default object ACLs on buckets.

The first recommendation is, don't use user IDs, email addresses, project names, project numbers, or any personally identifiable information in bucket names because anyone can probe for the existence of a bucket.

Remember, Cloud Storage bucket names must be unique across the entire Cloud Storage namespace, so come up with a naming convention. If you need a lot of buckets, use GUIDs or an equivalent for bucket names, put retry logic in your code to handle name collisions, and keep a list to cross-reference your buckets. Another option is to use buckets based on domain-name and then manage the bucket object names as sub-domains.

Similarly, do not use any personally identifiable information as object names. Remember object names appear in URLs.

Before adding objects to a bucket, first check that the default object ACLs meet your requirements. This could save you a lot of time updating ACLs for individual objects.

Cloud Storage best practices

- Use signed URLs to provide access for users with no account.
- Don't allow buckets to be publicly writable.
- Use lifecycle rules to remove sensitive data that is no longer needed.

If you need to make content available securely to users who don't have Google accounts, use signed URLs.

Sometimes it may be desirable to make public buckets readable - for example: hosting publicly available web content. However, there should never be a need to make public buckets writable. Doing so would be extremely dangerous and careless.

You can assign lifecycle management rules to a bucket. When an object meets the criteria of one of the rules, Cloud Storage automatically performs a specific action on the object. For example: Downgrade the storage class of objects older than 365 days to Coldline Storage, or Delete objects older than 3 years. Leverage this capability to remove sensitive data once it is no longer needed. This can help reduce the scope of your security management.

BigQuery storage best practices

- Use IAM roles to separate who can create and manage Datasets versus who can process the data.
 - o Be careful when giving all authenticated users access to data.
- Use authorized views to restrict access to sensitive data:
 - Principle of least privilege.
- Use the expiration settings to remove unneeded tables and partitions.

To get the most secure usage from BigQuery for your data storage and your applications, be sure to leverage the different BigQuery IAM roles to ensure users are provided with ONLY the permissions that align with their job functions. At a minimum, be sure to separate who is allowed to create and manage datasets from those who can query the datasets and process the data.

Always ensure you are providing the principle of least privilege when it comes to providing access to sensitive data. BigQuery Authorized view can limit users to see only a subset of the data.

You can control storage costs and optimize storage usage by setting the default table expiration for newly created tables in a dataset. If you set the property when the dataset is created, any table created in the dataset is deleted after the expiration period. If you set the property after the dataset is created, only new tables are deleted after the expiration period.

Cloud Storage IAM Permissions,

and ACLs

Auditing Cloud Data

Signed URLs and Policy Documents

Encrypting with CMEK and CSEK

Lab: Using Customer-Supplied Encryption Keys with Cloud Storage

Lab: Using Customer-Managed Encryption Keys with Cloud Storage

and Cloud KMS

Cloud HSM

BigQuery IAM Roles and Authorized

Views

Lab: Creating a BigQuery Authorized

View

Storage Best Practices

Quiz and Module Review

Google Cloud

Question

Which TWO of the following statements are TRUE when discussing Cloud Storage and IAM permissions?

- A. Access can be granted to Cloud Storage at the organization, folder, project, or bucket levels.
- B. It is possible to remove a permission from a lower level that was granted at a higher level.
- C. Using IAM permissions alone gives you control over your projects and buckets, but does not give control over individual objects.
- A user needs permission from both IAM or an ACL in order to access a bucket or object.

Answer

Which TWO of the following statements are TRUE when discussing Cloud Storage and IAM permissions?

- A. Access can be granted to Cloud Storage at the organization, folder, project, or bucket levels.
- B. It is possible to remove a permission from a lower level that was granted at a higher level.
- C. Using IAM permissions alone gives you control over your projects and buckets, but does not give control over individual objects.
- D. A user needs permission from both IAM or an ACL in order to access a bucket or object.

- A. In addition to general access, you can also control what level of access members have.
- C. You can control who has access to your objects as well as what level of access they have using Cloud Storage.

Question

Which TWO of the following statements are TRUE when discussing storage and BigQuery best practices?

- A. In most cases, you should use Access Control Lists (ACLs) instead of IAM permissions.
- B. BigQuery data can be adequately secured using the default basic roles available in Google Cloud.
- C. Do not use any personally identifiable information as object names.
- D. One option to serve content securely to outside users is to use signed URLs.

Answer

Which TWO of the following statements are TRUE when discussing storage and BigQuery best practices?

- A. In most cases, you should use Access Control Lists (ACLs) instead of IAM permissions.
- B. BigQuery data can be adequately secured using the default basic roles available in Google Cloud.
- C. Do not use any personally identifiable information as object names.
- D. One option to serve content securely to outside users is to use signed URLs.

- C. Storage names often appear in URLs, so any information that is critical to maintaining system or data security should not be used in an object name.
- D. Using signed URLs, content can be securely made available to users who do not have Google accounts.

Question

Which TWO of the following statements is TRUE with regards to security in BigQuery and its datasets?

- A. It is always better to assign BigQuery roles to individuals as this will help to lower operational overhead.
- B. A BigQuery Authorized View allows administrators to restrict users to viewing only subsets of a dataset.
- Using IAM, you can grant users granular permissions to BigQuery tables, rows and columns.
- D. BigQuery has its own list of assignable IAM roles.

Answer

Which TWO of the following statements is TRUE with regards to security in BigQuery and its datasets?

- A. It is always better to assign BigQuery roles to individuals as this will help to lower operational overhead.
- B. A BigQuery Authorized View allows administrators to restrict users to viewing only subsets of a dataset.
- C. Using IAM, you can grant users granular permissions to BigQuery tables, rows and columns.
- D. BigQuery has its own list of assignable IAM roles.

- B. Views provide row or column level permissions to datasets.
- D. BigQuery role names are mapped to job functions, such as BigQuery admin or BigQuery Data Viewer.

Module Review

- Cloud Storage buckets can be given access permissions at the Organization, folder, project or bucket levels.
- Administrative operations on buckets is logged automatically.
 - o Data operations are not and have to be configured.
- Signed URLs and Signed Policy Documents give limited time permissions to read, write and upload to users who do not have Google accounts.
- BigQuery datasets can have permissions granted at the dataset, table, row and column level.
- Do not use personally identifiable information as bucket or object names, because these will appear in URLs and can give hackers info they can use to compromise your system.

In this module, we discussed how to secure your data on Google Cloud. Here are some of the key points to take away from this section...

You can control who has access to your Cloud Storage buckets and objects as well as what level of access they have.

Members can be granted access to Cloud Storage at the organization, folder, project, or bucket levels.

There are many pre-defined roles that are related to Cloud Storage: Storage Object Admin role, Storage Object Creator role, and Storage Object Viewer role.

Access Control Lists (or ACLs) is a mechanism you can use to define who has access to individual buckets and objects, as well as what level of access they have.

In Cloud Storage, administrative operations that modify the configuration or metadata of a bucket, or object, is logged automatically.

Data Access operations that modify objects or read a project, bucket, or object, is not recorded by default and must be configured.

All logs can be viewed in Cloud Logging and analyzed in BigQuery.

Signed URLs and Signed Policy Documents give limited time permissions Signed URLs provide a way to give time-limited read or write access to anyone in possession of the URL, even if they don't have a Google account. Signed Policy Documents specify what can be uploaded to a bucket with a form POST.

BigQuery uses Identity and Access Management (IAM) to manage access to resources

Permissions that are granted at the dataset level and tables, rows and columns are child resources of datasets.

BigQuery IAM roles include: Admin, Data Owner, Data Editor, Data Viewer, Job Editor, and User.

Do not use any personally identifiable information as bucket or object names.

Remember object names and bucket names will appear in URLs!

If you need to make content available securely to users who don't have Google accounts, use signed URLs.

Assign lifecycle management rules to a bucket to automatically downgrade or delete data.

I hope this module has given you some helpful information for securing your Cloud Data! See you again in the next module, Protecting Against DDoS.

