Lógica Aula 8

Leliane Nunes de Barros

2018

leliane@ime.usp.br

Quando definimos uma lógica (ou qualquer tipo de cálculo), queremos mostrar que ela é útil:

- Correção: As fórmulas derivadas usando a lógica (cálculo) refletem a verdade "real".
- Completude: Toda fórmula correspondendo à verdade "real" pode ser inferida usan do as regras da lógica (cálculo).

A dedução natural é correta em relação à semântica:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \quad \implies \quad \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

A dedução natural é correta em relação à semântica:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \quad \implies \quad \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

A dedução natural é completa em relação à semântica:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

A dedução natural é correta e completa em relação à semântica:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \iff \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$$

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Ideia: indução no comprimento das provas!

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Ideia: indução no comprimento das provas!

M(k): Todo sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$ com prova de tamanho k implica em $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$.

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Ideia: indução no comprimento das provas!

M(k): Todo sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$ com prova de tamanho k implica em $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$.

Problema:

 Dividir uma prova pode n\u00e3o gerar uma sub-prova, uma vez que algumas caixas podem ficar abertas!

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Ideia: indução no comprimento das provas!

M(k): Todo sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$ com prova de tamanho k implica em $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$.

Problema:

- Dividir uma prova pode n\u00e3o gerar uma sub-prova, uma vez que algumas caixas podem ficar abertas!
- Porém, uma prova dividida pode gerar uma prova correta se as suposições das caixas abertas forem adicionadas às premissas.

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Ideia: indução no comprimento das provas!

M(k): Todo sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$ com prova de tamanho k implica em $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$.

Problema:

- Dividir uma prova pode não gerar uma sub-prova, uma vez que algumas caixas podem ficar abertas !
- Porém, uma prova dividida pode gerar uma prova correta se as suposições das caixas abertas forem adicionadas às premissas.

Exemplo: $M(6) \Rightarrow M(7)$

$$(p \land q) \rightarrow r, p \vdash q \rightarrow r \implies (p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

Caso Base: (k = 1) Provas de 1 linha

Caso Base: (k = 1) Provas de 1 linha

1 φ premissa

Caso Base: (k = 1) Provas de 1 linha

 $1 \qquad \varphi \qquad \text{premissa}$

A prova é trivial, estamos considerando um sequente do tipo: $\varphi \vdash \varphi$

Passo de indução: $(k > 1) M(k') \Rightarrow M(k)$

Passo de indução: $(k > 1) M(k') \Rightarrow M(k)$

Seja k o tamanho da prova do sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$. Vamos supor que toda prova de tamanho k', com k' < k, satisfaz M Isto é, a propriedade M(k') é verdadeira.

Passo de indução: $(k > 1) M(k') \Rightarrow M(k)$

Seja k o tamanho da prova do sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$. Vamos supor que toda prova de tamanho k', com k' < k, satisfaz M Isto é, a propriedade M(k') é verdadeira.

Estrutura da prova de tamanho *k*:

1	φ_1	premissa
2	φ_2	premissa
3	φ_3	premissa
n	φ_n	premissa
k	ψ	justificativa-k

7

Passo de indução: $(k > 1) M(k') \Rightarrow M(k)$

Seja k o tamanho da prova do sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$. Vamos supor que toda prova de tamanho k', com k' < k, satisfaz M Isto é, a propriedade M(k') é verdadeira.

Estrutura da prova de tamanho k:

Qual a última regra aplicada?

Prova de correção: justificativa-k

A justificativa-k depende da última regra aplicada na prova. Com a tabela verdade correspondente a essa regra, podemos provar que ψ é verdade.

$$\frac{\neg \phi}{\phi} \neg \neg_e \qquad \frac{\phi \quad \neg \phi}{\bot}$$

$$\frac{\perp}{\phi}$$
 \perp_e

Prova da correção: última regra \wedge_i

Se a última regra aplicada foi ∧; então:

- ψ é da forma $\psi_1 \wedge \psi_2$ e
- a justificativa da linha k se refere às 2 linhas anteriores k_1 e k_2 que possuem, respectivamente, ψ_1 e ψ_2 como conclusões.

Como k_1 e k_2 são menores que k então existem provas dos sequentes:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi_1 e$$

 $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi_2,$

com provas de tamanho menor que k, e pela hipótese de indução temos:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi_1 \text{ e}$$

 $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi_2.$

Portanto:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi_1 \land \psi_2$$

uma vez que todas as valorações que tornem ψ_1 verdade e ψ_2 verdade, também tornam $\psi_1 \wedge \psi_2$ verdade (tabela verdade do \wedge).

Prova da correção: última regra \wedge_i

Estrutura da prova de tamanho *k*:

```
premissa
       \varphi_1
2 \qquad \varphi_2
                   premissa
3
                   premissa
         \varphi_3
                    premissa
n
         \varphi_n
k_1
         \psi_1
k_2
         \psi_2
k \psi_1 \wedge \psi_2 \wedge_i k_1, k_2
```

Prova da correção: última regra \vee_e

Se a última regra aplicada foi Ve então:

- temos uma premissa ou uma prova de uma fórmula do tipo $\eta_1 \vee \eta_2$ em uma linha k' < k e
- a aplicação de \vee_e se refere a linha k'

Estrutura da prova:

Consequência da correção

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \quad \implies \quad \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Contra-exemplo indica que não há prova!

Consequência da correção

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \quad \implies \quad \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Contra-exemplo indica que não há prova!

$$\varphi_1,\varphi_2,\varphi_3,...,\varphi_n \not \models \psi$$

Consequência da correção

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi \quad \implies \quad \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$$

Contra-exemplo indica que não há prova!

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \not\models \psi \implies \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \not\vdash \psi$$

• v satisfaz φ sse $v(\varphi) = T$

- v satisfaz φ sse $v(\varphi) = T$
- φ é satisfatível sse existe v tal que $v(\varphi)$ = T

- v satisfaz φ sse $v(\varphi) = T$
- φ é satisfatível sse existe v tal que $v(\varphi) = T$
- φ é falsificável sse existe v tal que $v(\varphi) = F$

- v satisfaz φ sse $v(\varphi) = T$
- φ é satisfatível sse existe v tal que $v(\varphi) = T$
- φ é falsificável sse existe v tal que $v(\varphi) = F$
- φ é uma tautologia (ou válida) sse para qualquer v, $v(\varphi) = T$

- v satisfaz φ sse $v(\varphi) = T$
- φ é satisfatível sse existe v tal que $v(\varphi) = T$
- φ é falsificável sse existe v tal que $v(\varphi) = F$
- φ é uma tautologia (ou válida) sse para qualquer v, $v(\varphi) = T$
- φ é uma contradição (ou insatisfatível) sse para qualquer v, $v(\varphi) = F$

 $\bullet \;\; \mathsf{Tautologia} \Longrightarrow \mathsf{SAT}$

- ullet Tautologia \Longrightarrow SAT
- Contradição ⇒ UNSAT

- Tautologia ⇒ SAT
- Contradição ⇒ UNSAT
- φ é tautologia $\Longleftrightarrow \neg \varphi$ é UNSAT

- Tautologia ⇒ SAT
- Contradição ⇒ UNSAT
- φ é tautologia $\Longleftrightarrow \neg \varphi$ é UNSAT
- φ é contradição $\Longleftrightarrow \neg \varphi$ é SAT