EXERCISE 2.2

Question # 1 (i)

Let
$$y = (ax+b)^3$$

 $\Rightarrow y + \delta y = (a(x+\delta x)+b)^3$
 $\Rightarrow \delta y = (ax+b+a\delta x)^3 - y$
 $= ((ax+b)+a\delta x)^3 - (ax+b)^3$
 $= [(ax+b)^3 + 3(ax+b)^2(a\delta x) + 3(ax+b)(a\delta x)^2 + (a\delta x)^3] - (ax+b)^3$
 $= 3a(ax+b)^2 \delta x + 3a^2(ax+b)\delta x^2 + a^3 \delta x^3$
 $= \delta x (3a(ax+b)^2 + 3a^2(ax+b)\delta x + a^3 \delta x^2)$

Dividing by δx

$$\frac{\delta y}{\delta x} = 3a(ax+b)^2 + 3a^2(ax+b)\delta x + a^3\delta x^2$$

Taking limit as $\delta x \rightarrow 0$

$$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \left[3a(ax+b)^2 + 3a^2(ax+b)\delta x + a^3\delta x^2 \right]$$

$$\Rightarrow \frac{dy}{dx} = 3a(ax+b)^2 + 3a^2(ax+b)(0) + a^3(0)^2$$

$$\Rightarrow \frac{dy}{dx} = 3a(ax+b)^2 + 0 + 0 \qquad \Rightarrow \boxed{\frac{dy}{dx} = 3a(ax+b)^2}$$

Question # 1 (ii)

Let
$$y = (2x+3)^5$$

 $\Rightarrow y + \delta y = (2(x+\delta x)+3)^5$
 $\Rightarrow \delta y = (2x+2\delta x+3)^5 - y$
 $= ((2x+3)+2\delta x)^5 - (2x+3)^5$
 $= \begin{bmatrix} 5 \\ 0 \end{bmatrix} (2x+3)^5 + \begin{bmatrix} 5 \\ 1 \end{bmatrix} (2x+3)^4 (2\delta x) + \begin{bmatrix} 5 \\ 2 \end{bmatrix} (2x+3)^3 (2\delta x)^2 +$
 $... + \begin{bmatrix} 5 \\ 5 \end{bmatrix} (2\delta x)^5 \end{bmatrix} - (2x+3)^5$
 $= \begin{bmatrix} (1)(2x+3)^5 + 2 \begin{bmatrix} 5 \\ 1 \end{bmatrix} (2x+3)^4 \delta x + 4 \begin{bmatrix} 5 \\ 2 \end{bmatrix} (2x+3)^3 \delta x^2 +$
 $... + 32 \begin{bmatrix} 5 \\ 5 \end{bmatrix} \delta x^5 \end{bmatrix} - (2x+3)^5$
 $= 2 \begin{bmatrix} 5 \\ 1 \end{bmatrix} (2x+3)^4 \delta x + 4 \begin{bmatrix} 5 \\ 2 \end{bmatrix} (2x+3)^3 \delta x^2 + + 32 \begin{bmatrix} 5 \\ 5 \end{bmatrix} \delta x^5$

Dividing by δx

$$\frac{\delta y}{\delta x} = 2 \binom{5}{1} (2x+3)^4 + 4 \binom{5}{2} (2x+3)^3 \delta x + \dots + 32 \binom{5}{5} \delta x^4$$

Taking limit as $\delta x \rightarrow 0$

$$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \left[2 \binom{5}{1} (2x+3)^4 + 4 \binom{5}{2} (2x+3)^3 \delta x + \dots + 32 \binom{5}{5} \delta x^4 \right]$$

$$\Rightarrow \frac{dy}{dx} = \left[2\binom{5}{1}(2x+3)^4 + 0 + 0 + \dots + 0\right]$$

$$\Rightarrow \frac{dy}{dx} = 2(5)(2x+3)^4 \quad \text{or} \quad \boxed{\frac{dy}{dx} = 10(2x+3)^4}$$

Question # 1 (iii)

Let
$$y = (3t + 2)^{-1}$$

 $\Rightarrow y + \delta y = (3(t + \delta t) + 2)^{-2}$
 $\Rightarrow \delta y = (3t + 3\delta t + 2)^{-2} - y$
 $\Rightarrow \delta y = ((3t + 2) + 3\delta t)^{-2} - (3t + 2)^{-2}$
 $= (3t + 2)^{-2} \left[\left(1 + \frac{3\delta t}{3t + 2} \right)^{-2} - 1 \right]$
 $= (3t + 2)^{-2} \left[\left(1 + (-2) \frac{3\delta t}{3t + 2} + \frac{-2(-2 - 1)}{2!} \left(\frac{3\delta t}{3t + 2} \right)^2 + \dots \right) - 1 \right]$
 $\Rightarrow \delta y = (3t + 2)^{-2} \left[1 - \frac{6\delta t}{3t + 2} + \frac{-2(-3)}{2} \left(\frac{\delta t}{3t + 2} \right)^2 - + \dots - 1 \right]$
 $= (3t + 2)^{-2} \left[-\frac{6\delta t}{3t + 2} + 3 \left(\frac{3\delta t}{3t + 2} \right)^2 - + \dots \right]$
 $= (3t + 2)^{-1} \cdot \frac{3\delta t}{3t + 2} \left[-2 + 3 \left(\frac{3\delta t}{3t + 2} \right) - + \dots \right]$

Dividing by δt

$$\frac{\delta y}{\delta t} = 3(3t+2)^{-2-1} \left[-2 + \left(\frac{3\delta t}{3t+2} \right) - + \dots \right]$$

Taking limit when $\delta t \rightarrow 0$, we have

$$\lim_{\delta t \to 0} \frac{\delta y}{\delta t} = \lim_{\delta t \to 0} 3(3t+2)^{-3} \left[-2 + \left(\frac{3\delta t}{3t+2} \right) - \dots \right]$$

$$\Rightarrow \frac{dy}{dx} = 3(3t+2)^{-3} \left[-2 + 0 - 0 + \dots \right] \Rightarrow \frac{dy}{dx} = -6(3t+2)^{-3}$$

Question # 1 (iv)

$$Let y = (ax+b)^{-5}$$

Do yourself

Question # 1 (vii)

Let
$$y = \frac{1}{(az-b)^7} = (az-b)^{-7}$$

 $\Rightarrow y + \delta y = (a(z+\delta z)-b)^{-7}$
 $\Rightarrow \delta y = ((az-b)+a\delta z)^{-7} - (az-b)^{-7}$
 $\Rightarrow \delta y = (az-b)^{-7} \left[\left(1 + \frac{a\delta z}{(az-b)} \right)^{-7} - 1 \right]$
Now do yourself