Professor: Ekaterina Kostina Tutor: Philipp Elja Müller

Aufgabe	1	2	3	4	Bonus	\sum
Punkte						

Aufgabe 1

Betrachte für $k \in \mathbb{N}$ die Funktion $f_k : \mathbb{R} \longrightarrow \mathbb{R}$ definiert durch

$$f_k(x) := \begin{cases} x^k \sin(\frac{1}{x}), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

(a) **ZZ:** f_1 ist für $x_0 = 0$ stetig, aber nicht differenzierbar.

Beweis. 1. Stetigkeit: Es gilt $\lim_{x \to 0} x \sin(1/x) = \lim_{x \to 0} x \sin(1/x) = 0$ nach Aufgabe 9.3.

2. Differenzierbarkeit: Es gilt für $x_0 = 0$

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h)\sin(\frac{1}{x_0 + h}) + x_0\sin(\frac{1}{x_0})}{h}$$

$$= \lim_{h \to 0} \frac{h \cdot \sin(\frac{1}{h}) + 0}{h}$$

$$= \lim_{h \to 0} \sin\left(\frac{1}{h}\right)$$

$$= \sin\left(\lim_{h \to 0} \left(\frac{1}{h}\right)\right)$$

$$= \sin(0)$$

$$= 0$$

(b) **ZZ:** f_2 ist für $x_0 = 0$ differenzierbar, aber $f_2^{'}$ ist an der Stelle nicht stetig.

Beweis. 1. Differenzierbarkeit: Es gilt für $x_0 = 0$

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h)^2 \sin(\frac{1}{x_0 + h}) + x_0^2 \sin(\frac{1}{x_0})}{h}$$

$$= \lim_{h \to 0} \frac{h^2 \cdot \sin(\frac{1}{h}) + 0}{h}$$

$$= \lim_{h \to 0} h \cdot \sin(1/h)$$

$$= 0$$

2. Stetigkeit: Es gilt $f_2^{''}=2x\sin(1/x)-\frac{x^2\cos(1/x)}{x^2}=2x\sin(1/x)-\cos(1/x)\Longrightarrow\lim_{x\to 0}(2x\sin(1/x)-\cos(1/x))$ ist nicht definiert. Somit ist $f_2^{'}$ insbesondere nicht stetig in $x_0=0$.

(c) **ZZ:** f_3 ist nicht in $x_0 = 0$ zweimal differenzierbar:

Beweis. Es gilt für $x_0 = 0$

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h)^3 \sin(\frac{1}{x_0 + h}) + x_0^3 \sin(\frac{1}{x_0})}{h}$$

$$= \lim_{h \to 0} \frac{h^3 \cdot \sin(\frac{1}{h}) + 0}{h}$$

$$= \lim_{h \to 0} h^2 \cdot \sin(1/h)$$

$$= 0$$

Nach Kettenregel gilt jedoch $f_3^{'} = 3x^2 \sin(1/x) - x \cos(1/x)$ und somit insbesondere

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h)^3 \sin(\frac{1}{x_0 + h}) - (x_0 + h) \cos(\frac{1}{x_0 + h}) + x_0^3 \sin(\frac{1}{x_0}) + x_0 \cos(\frac{1}{x_0})}{h}$$

$$= \lim_{h \to 0} \frac{h^3 \sin(\frac{1}{h}) + h \cos(\frac{1}{h})}{h}$$

$$= \lim_{h \to 0} \frac{h \cdot (h^2 \sin(\frac{1}{h}) - \cos(\frac{1}{h}))}{h}$$

$$= \lim_{h \to 0} h^2 \sin(\frac{1}{h}) - \cos(\frac{1}{h})$$

$$= \lim_{h \to 0} h^2 \sin(\frac{1}{h}) - \cos(\frac{1}{h})$$

Der Grenzwert $\lim_{h\to 0}\cos(\frac{1}{h})$ ist nicht definiert. Somit ist f_3 für $x_0=0$ nicht zweimal differenzierbar.

Aufgabe 2

(a) Behauptung: $f^{(k)}(x) = \left(-\frac{1}{2}\right)^k \cdot \prod_{n=1}^{k-1} (2n-1) \cdot x^{-\frac{2k-1}{2}}$

Beweis. Induktionsanfang: k=1: $f^{(1)}(x)=\left(-\frac{1}{2}\right)^1\cdot\prod_{n=1}^0(2-1)\cdot x^{-\frac{2-1}{2}}=-\frac{1}{2}\cdot x^{-\frac{1}{2}}$ Induktionsbehauptung: Für ein beliebiges, aber festes $k\in\mathbb{N}$ gelte die Behauptung. Induktionsschritt: $k\to k+1$:

$$f^{(k+1)}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(-\frac{1}{2} \right)^k \cdot \prod_{n=1}^{k-1} (2n-1) \cdot x^{-\frac{2k-1}{2}}$$

$$= \left(-\frac{1}{2} \right)^k \cdot \prod_{n=1}^{k-1} (2n-1) \cdot -\frac{1}{2} \cdot (2k-1) \cdot x^{-\frac{2k-1}{2}-1}$$

$$= \left(-\frac{1}{2} \right)^{k+1} \cdot \prod_{n=1}^{k} (2n-1) \cdot x^{-\frac{2k+1}{2}}$$

(b)
$$f^{(k)}(x) = \left(-\frac{1}{2}\right)^k \cdot \prod_{n=1}^{k-1} (2n-1) \cdot x^{-\frac{2k-1}{2}} = \frac{\sqrt{\pi}}{2\Gamma(\frac{3}{2}-k)} \cdot x^{-\frac{2k-1}{2}}$$

(c)

$$T_{\infty}(x, x_0) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k$$

$$= \sum_{k=0}^{\infty} \frac{\frac{\sqrt{\pi}}{2\Gamma(\frac{3}{2} - k)} \cdot x_0^{-\frac{2k-1}{2}}}{k!} \cdot (x - x_0)^k$$

$$= \frac{\sqrt{\pi}}{2} \sum_{k=0}^{\infty} \frac{x_0^{\frac{1}{2} - k}}{\Gamma(\frac{3}{2} - k) k!} \cdot (x - x_0)^k$$

(d) Zunächst formen wir Aussage (ii) zu (ii') um.

$$\Gamma(\varepsilon - k) = (-1)^{k-1} \frac{\Gamma(-\varepsilon)\Gamma(1+\epsilon)}{\Gamma(k+1-\epsilon)}$$
$$(-1)^{k-1} \frac{\Gamma(k+1-\varepsilon)}{\Gamma(-\varepsilon)\Gamma(1+\varepsilon)} = \frac{1}{\Gamma(\varepsilon-k)}$$

Es gilt

$$\left(-\frac{1}{2}\right)^k \cdot \prod_{n=1}^{k-1} (2n-1) = \frac{1}{2} \cdot (-1)^{k-1} \cdot -\frac{1}{2^{k-1}} \cdot \prod_{n=1}^{k-1} (2n-1)$$

Mit (i) folgt

$$=\frac{1}{2}\cdot(-1)^{k-1}\cdot\frac{\Gamma\left(k-\frac{1}{2}\right)}{\sqrt{\pi}}$$

Mit Aussage (iii) folgt sofort

$$=\frac{1}{2}\cdot(-1)^{k-1}\cdot\frac{\Gamma\left(k-\frac{1}{2}\right)\cdot\sqrt{\pi}}{\Gamma\left(-\frac{3}{2}\right)\cdot\Gamma\left(\frac{5}{2}\right)}$$

Mit Aussage (ii') folgt für $\varepsilon = \frac{3}{2}$

$$= \frac{1}{2} \cdot \sqrt{\pi} \cdot \frac{1}{\Gamma\left(\frac{3}{2} - k\right)}$$
$$= \frac{\sqrt{\pi}}{2 \cdot \Gamma\left(\frac{3}{2} - k\right)}$$

Aufgabe 3

(a) Es gilt

$$\lim_{x \to 0} \left(e^{3x} - 5x \right)^{1/x} = \lim_{x \to 0} e^{\ln(e^{3x} - 5x) \cdot \frac{1}{x}} \Longrightarrow \lim_{x \to 0} \frac{\left(\ln(e^{3x} - 5x) \right)'}{(x)'} = \lim_{x \to 0} \frac{3e^{3x} - 5}{e^{3x} - 5x} = -2$$

$$\Longrightarrow \lim_{x \to 0} \left(e^{3x} - 5x \right)^{1/x} = e^{-2}$$

(b) Es gilt

$$\lim_{x \to \infty} \left(e^{3x} - 5x \right)^{1/x} = \lim_{x \to \infty} e^{\ln(e^{3x} - 5x) \cdot \frac{1}{x}} \Longrightarrow \lim_{x \to 0} \frac{\left(\ln(e^{3x} - 5x) \right)'}{(x)'} = \lim_{x \to 0} \frac{3e^{3x} - 5}{e^{3x} - 5x}$$
$$= \lim_{x \to \infty} \frac{3 - \frac{5}{e^{3x}}}{1 - \frac{5x}{e^{3x}}} = 3 \Longrightarrow \lim_{x \to \infty} \left(e^{3x} - 5x \right)^{1/x} = e^{3}$$

(c) Es gilt

$$\lim_{x \to 0} \frac{5^x - 2^x}{x} \Longrightarrow (5^x - 2^x)' = (e^{\ln(5) \cdot x} - e^{\ln(2) \cdot x})' = \ln(5)e^{\ln(5) \cdot x} - \ln(2)e^{\ln(2) \cdot x}$$

$$\Longrightarrow \lim_{x \to 0} \frac{5^x - 2^x}{x} = \lim_{x \to 0} \ln(5)e^{\ln(5) \cdot x} - \ln(2)e^{\ln(2) \cdot x} = \ln(5) - \ln(2) = \ln(\frac{5}{2})$$

(d) Es gilt

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{\sin(x)}{x^2} \right) = \lim_{x \to 0} \frac{x - \sin(x)}{x^2} \Longrightarrow \left(\frac{x - \sin(x)}{x^2} \right)' = \frac{1 - \cos(x)}{2x}$$

$$\Longrightarrow \left(\frac{1 - \cos(x)}{2x} \right)' = \frac{\sin(x)}{2} \Longrightarrow \lim_{x \to 0} \left(\frac{1}{x} - \frac{\sin(x)}{x^2} \right) = \lim_{x \to 0} \frac{\sin(x)}{2} = 0$$

(e) Es gilt

$$\lim_{x \to 0} \frac{\ln(1+x) - \sin(x)}{x^2} \Longrightarrow \left(\frac{\ln(1+x) - \sin(x)}{x^2}\right)' = \frac{\frac{1}{1+x} - \cos(x)}{2x}$$

$$\Longrightarrow \left(\frac{\frac{1}{1+x} - \cos(x)}{2x}\right)' = \frac{\frac{-1}{(1+x)^2} + \sin(x)}{2}$$

$$\Longrightarrow \lim_{x \to 0} \frac{\ln(1+x) - \sin(x)}{x^2} = \lim_{x \to 0} \frac{\frac{-1}{(1+x)^2} + \sin(x)}{2} = -\frac{1}{2}$$

(f) Es gilt

$$\lim_{x \to 0} ((1+x^{-1})^x - e) \cdot x = \lim_{y \to \infty} \frac{((1+y)^{\frac{1}{y}} - e)}{y} = 0$$

(g) Es gilt

$$\lim_{x \to \infty} ((1 + x^{-1})^x - e) \cdot x$$

Substitution: $y = \frac{1}{x}$

$$= \lim_{y \to 0} ((1+y)^{\frac{1}{y}} - e) \cdot \frac{1}{y}$$
$$= \lim_{y \to 0} \frac{\left(e^{\ln(1+y) \cdot \frac{1}{y}} - e\right)}{y}$$

l'Hospital

$$= \lim_{y \to 0} \left(\frac{1}{y(1+y)} - \frac{\ln(1+y)}{y^2} \right) \cdot (1+y)^{\frac{1}{y}}$$

$$= e \cdot \lim_{y \to 0} \frac{1}{y(1+y)} - \frac{\ln(1+y)}{y^2}$$

$$e \cdot \lim_{y \to 0} \frac{\frac{y}{(1+y)} - \ln(1+y)}{y^2}$$

l'Hospital

$$=e \cdot \lim_{y \to 0} \frac{\frac{1}{1+y} - \frac{y}{(1+y)^2} - \frac{1}{1+y}}{2y}$$

$$=e \cdot \lim_{y \to 0} -\frac{1}{2(1+y)^2}$$

$$=e \cdot -\frac{1}{2} = -\frac{e}{2}$$

Aufgabe 4

(a) Folgende Funktion muss minimiert werden:

$$\frac{1}{2} \sum_{i=1}^{N} (y_i - m \cdot x_i - \overline{y} + m \cdot \overline{x})^2 = \frac{1}{2} \sum_{i=1}^{N} (m \cdot (\overline{x} - x_i) + y_i - \overline{y})^2$$

Daher setzen wir ihre Ableitung gleich 0.

$$0 = r'(m^*) = \frac{1}{2} \cdot \sum_{i=1}^{N} (\overline{x} - x_i) \cdot 2 \cdot (m^* \cdot (\overline{x} - x_i) + y_i - \overline{y})$$
$$= m^* \cdot \sum_{i=1}^{N} (\overline{x} - x_i)^2 + \sum_{i=1}^{N} (\overline{x} - x_i) \cdot (y_i - \overline{y})$$

Umstellen nach m* ergibt

$$m^* = \frac{\sum_{i=1}^{N} (\overline{x} - x_i) \cdot (\overline{y} - y_i)}{\sum_{i=1}^{N} (\overline{x} - x_i)^2}$$

Um zu zeigen, dass m^* wirklich ein Minimum von r ist, müssen wir überprüfen, dass $r''(m^*) > 0$ ist

$$r''(m^*) = \sum_{i=1}^{N} (\overline{x} - x_i)^2 \ge 0$$

(b) Wir möchten die Nullstelle der Gleichung $m^* \cdot x + b^*$ herausfinden. Umstellen ergibt: $x = -\frac{b^*}{m^*}$. Einsetzen der Werte liefert $m^* = -15.0\overline{6}$ und $b^* = 473.1\overline{6}$ und daher $x \approx 31.43$. Folglich wird nach diesem Modell ab dem 32. Zettel niemand mehr abgeben.

Bonusaufgabe

- (a) Es gilt $\lim_{n\to\infty} \sin\left(\frac{1}{n}x\right) \stackrel{\text{Stetigkeit}}{=} \sin\left(\lim_{n\to\infty}\frac{1}{n}x\right) = \sin(0) = 0$ für ein beliebiges $x\in[-\pi,\pi]$. Da $f_n(x)-0$ stetig differenzierbar ist, $|\sin\left(\frac{1}{n}\pi\right)|=|\sin\left(\frac{1}{n}-\pi\right)|$ und es sich bei $[-\pi,\pi]$ um ein kompaktes Intervall handelt, folgt mit dem Mittelwertsatz, dass es ein $x_0\in[-\pi,\pi]$ geben muss, sodass $|\sin(\frac{1}{n}\cdot x)-0|$ extremal wird. Da nur bei x=0 die Ableitung gleich 0 ist, sich dort aber ein Minimum des Betrags befindet, sind die globalen Maxima an den Rändern. Wegen $\lim_{n\to\infty}\sin\left(\frac{1}{n}\cdot\pm\pi\right)=0$, gilt $\forall \epsilon>0 \exists n_\epsilon\in\mathbb{N} \forall n\geq n_\epsilon:|f_n(\pm\pi)-0|<\epsilon$, wegen der Maximalität von $f(\pm\pi)$ gilt diese Aussage für alle $x\in[-\pi,\pi]$ und folglich ist die Funktionenfolge gleichmäßig konvergent.
- (b) Fallunterscheidung:
 - $\bullet \ \ x = 1: \lim_{n \to \infty} f_n(1) = 0$
 - $x = 0 : \lim_{n \to \infty} f_n(0) = 0$
 - 0 < x < 1: Es gilt $\lim_{n \to \infty} \frac{f_{n+1}(x)}{f_n(x)} = \lim_{n \to \infty} \frac{(n+1)x(1-x)^{n+1}}{nx(1-x)^n}$ $= \lim_{n \to \infty} \frac{n+1}{n} \cdot (1-x) = \lim_{n \to \infty} (1-x) + \frac{1}{n}(1-x) = 1-x < 1. \text{ Diese Folge ist also monoton}$ fallend und $\exists N \in \mathbb{N} : \forall n > N : \frac{f_{n+1}(x)}{f_n(x)} < 1. \text{ Außerdem ist stets } f_n(x) > 0. \text{ Endlich viele}$ Folgenglieder ändern nichts am Konvergenzverhalten, sodass $f_n(x) \forall n > N$ monoton fällt und durch 0 unten beschränkt ist. Für alle n > N gilt also, da die Folge der Quotienten monoton fallend ist: $f_n(x) \leq f_N(x) \cdot \left(\frac{f_{N+1}(x)}{f_N(x)}\right)^{n-N}$. Nun ist $\left(\frac{f_{N+1}(x)}{f_N(x)}\right)$ nach Definition von N kleiner als 1. Es gilt also $\lim_{n \to \infty} f_n(x) = 0$ für ein beliebiges $x \in [0,1]$. Gleichmäßige Konvergenz: Ableiten der Funktion führt zu $f'_n(x) = n(1-x)^n n^2x(1-x)^{n-1}$. Die Nullstelle dieser Funktion erhält man folgendermaßen.

$$0 = f'_n(x_0) = -n(1 - x_0)^{n-1}(nx_0 + x_0 - 1)$$
$$= nx_0 + x_0 - 1$$
$$(1 + n)x_0 = 1$$
$$x_0 = \frac{1}{1 + n}$$

$$f''(x) = n^{2}(1-x)^{n-2}(nx+x-2)$$

$$f''(x_{0}) = n^{2}(1-\frac{1}{1+n})^{n-2}(n\frac{1}{1+n}+\frac{1}{1+n}-2)$$

$$= n^{2}(\frac{n}{1+n})^{n-2}(\frac{n+1}{1+n}-2)$$

$$= -n^{2}(\frac{n}{1+n})^{n-2}$$

Wegen $n \in \mathbb{N}$ ist dieser Ausdruck kleiner 0. Daher hat $f_n(x)$ an der Stelle x_0 ein Maximum. Nun ist $\lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} \frac{n}{n+1} \cdot \left(1 - \frac{1}{n+1}\right)^n = \lim_{n \to \infty} \left(1 + \frac{-1}{n+1}\right)^{n+1} = e^{-1}$. Folglich gibt

es ein $N_1 \in \mathbb{N}$, sodass $\forall n \in \mathbb{N}: n > N_1: \left|f_n(x_0) - \frac{1}{e}\right| < \frac{1}{2e}$ und daher $f_n(x_0) > \frac{1}{e}$. Angenommen, die Funktionenfolge würde gleichmäßig konvergieren, dann gäbe es ein $N_\epsilon \in \mathbb{N}: \forall n \in \mathbb{N}: n > N_2: \forall x \in [0,1]: |f_n(x) - 0| = f_n(x) < \epsilon$. Diese Aussage gilt insbesondere auch für $x = x_0$. Wähle nun $\epsilon = \frac{1}{2e}$. Dann ist $\forall n \in \mathbb{N}: n > \max(N_0, N_\epsilon): \frac{1}{2e} < f_n(x_0) < \frac{1}{2e}$. Das ist allerdings ein Widerspruch.