Package 'BHSBVAR'

November 5, 2022

Encoding UTF-8

Language en-US

Type Package

Title Structural Bayesian Vector Autoregression Models

Version 3.1.1

Date 2022-11-05

Author Paul Richardson

Maintainer Paul Richardson <p.richardson.54391@gmail.com>

Description Provides a function for estimating the parameters of Structural Bayesian Vector Autoregression models with the method developed by Baumeister and Hamil-

ton (2015) <doi:10.3982/ECTA12356>, Baumeister and Hamil-

ton (2017) <doi:10.3386/w24167>, and Baumeister and Hamil-

ton (2018) <doi:10.1016/j.jmoneco.2018.06.005>. Functions for plotting impulse responses, historical decompositions, and posterior distributions of model parameters are also provided.

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.6)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.1

Suggests rmarkdown, knitr

VignetteBuilder knitr

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-11-05 15:30:05 UTC

2 BHSBVAR-package

R topics documented:

BHSB	VAR-package	BHSB	VAR:	Structu	ral Ba	yesian Ve	ector Autoreg	ression Models	
Index									28
	USLMData								27
	IRF_Plots								
	IRF								
	HD_Plots								18
	HD								
	FEVD_Plots								. 13
	FEVD								
	Dist_Plots								7
	BH_SBVAR								3
	BHSBVAR-package								2

Description

Provides a function for estimating the parameters of Structural Bayesian Vector Autoregression models with the method developed by Baumeister and Hamilton (2015) doi:10.3982/ECTA12356, Baumeister and Hamilton (2017) doi:10.3386/w24167, and Baumeister and Hamilton (2018) doi:10.1016/j.jmoneco.2018.06.005. Functions for plotting impulse responses, historical decompositions, and posterior distributions of model parameters are also provided.

Details

See vignette.

References

Baumeister, C., & Hamilton, J.D. (2015). Sign restrictions, structural vector autoregressions, and useful prior information. *Econometrica*, 83(5), 1963-1999.

Baumeister, C., & Hamilton, J.D. (2017). Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks (No. w24167). National Bureau of Economic Research.

Baumeister, C., & Hamilton, J.D. (2018). Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations. *Journal of Monetary Economics*, 100, 48-65.

See Also

Dr. Christiane Baumeister's website https://sites.google.com/site/cjsbaumeister/.

Dr. James D. Hamilton's website https://econweb.ucsd.edu/~jhamilton/.

BH_SBVAR

Structural Bayesian Vector Autoregression

Description

Estimates the parameters of a Structural Bayesian Vector Autoregression model with the method developed by Baumeister and Hamilton (2015/2017/2018).

Usage

```
BH_SBVAR(
y,
nlags,
pA,
pdetA = NULL,
pH = NULL,
pP = NULL,
pP_sig = NULL,
pR_sig = NULL,
kappa1 = NULL,
itr = 5000,
burn = 0,
thin = 1,
cri = 0.95
)
```

Arguments

У

 $(T \times n)$ matrix containing the endogenous variables. T is the number of observations and n is the number of endogenous variables.

nlags

Integer specifying the lag order.

рΑ

 $(n \times n \times 8)$ array where n is the number of endogenous variables and each slice of the third dimension contains the prior distributions (NA - no prior, 0 - symmetric t-distribution, 1 - non-central t-distribution, 2 - inverted beta distribution, 3 - beta distribution), sign restrictions (NA - no restriction, 1 - positive restriction, -1 - negative restriction), distribution position parameters, distribution scale or shape 1 parameters for t-distributions or inverted beta and beta distributions, distribution degrees of freedom or shape 2 parameters for t-distributions or inverted beta and beta distributions, distribution skew parameters for t-distributions, indication for long-run restrictions (NA - no long-run restriction, 1 - long-run restriction), and random-walk proposal scale parameters for A, respectively.

pdetA

(1 x 1 x 6) array where each slice of the third dimension contains the prior distributions (NA - no prior, 0 - symmetric t-distribution, 1 - non-central t-distribution, 2 - inverted beta distribution, 3 - beta distribution), sign restrictions (NA - no restriction, 1 - positive restriction, -1 - negative restriction), distribution position parameters, distribution scale or shape1 parameters for t-distributions

or inverted beta and beta distributions, distribution degrees of freedom or shape 2 parameters for t-distributions or inverted beta and beta distributions, and distribution skew parameters for t-distributions for the determinant of A , respectively (default = NULL). NULL indicates no priors for the determinant of A .
$(n \times n \times 6)$ array where n is the number of endogenous variables and each slice of the third dimension contains the prior distributions (NA - no prior, 0 - symmetric t-distribution, 1 - non-central t-distribution, 2 - inverted beta distribution, 3 - beta distribution), sign restrictions (NA - no restriction, 1 - positive restriction, -1 - negative restriction), distribution position parameters, distribution scale or shape1 parameters for t-distributions or inverted beta and beta distributions, distribution degrees of freedom or shape2 parameters for t-distributions or inverted beta and beta distributions, and distribution skew parameters for t-distributions for H , the inverse of A , respectively (default = NULL). NULL indicates no priors for the inverse of A .
$(k\ x\ n)$ matrix containing the prior position parameters for the reduced form lagged coefficient matrix Φ (default = NULL). $k=nL+1$, n is the number of endogenous variables, and L is the lag length. NULL indicates no priors for Φ .
(kxk) matrix containing values indicating confidence in the priors for Φ (default = NULL). $k=nL+1$, n is the number of endogenous variables, and L is the lag length. NULL indicates no priors for Φ .
$(k\ x\ k\ x\ n)$ array containing values indicating confidence in long-run restrictions on the lagged structural coefficient matrix B (default = NULL). $k=nL+1,n$ is the number of endogenous variables, and L is the lag length. NULL indicates no long-run restrictions.
$(1 \ x \ n)$ matrix containing values indicating confidence in priors for the structural variances (default = NULL). n is the number of endogenous variables. NULL indicates no priors for structural variances.
Integer specifying the total number of iterations for the algorithm (default = 5000).
Integer specifying the number of draws to throw out at the beginning of the algorithm (default = 0).
Integer specifying the thinning parameter (default = 1). All draws beyond burn are kept when thin = 1. Draw 1, draw 3, etc. beyond burn are kept when thin =

Details

рΗ

pΡ

pP_sig

pR_sig

kappa1

itr

burn

thin

cri

2.

credibility intervals.

Estimates the parameters of a Structural Bayesian Vector Autoregression model with the method developed in Baumeister and Hamilton (2015/2017/2018). The function returns a list containing the results.

credibility intervals for the estimates to be returned (default = 0.95). A value of 0.95 will return 95% credibility intervals. A value of 0.90 will return 90%

Value

A list containing the following:

accept_rate: Acceptance rate of the algorithm.

y and x: Matrices containing the endogenous variables and their lags.

nlags: Numeric value indicating the number of lags included in the model.

pA, pdetA, pH, pP, pP_sig, pR, pR_sig, tau1, and kappa1: Matrices and arrays containing prior information.

A_start: Matrix containing estimates of the parameters in A from the optimization routine.

A, detA, H, B, Phi, and D: Arrays containing estimates of the model parameters. The first, second, and third slices of the third dimension are lower, median, and upper bounds of the estimates.

A_den, detA_den, and H_den: Lists containing the horizontal and vertical axis coordinates of posterior densities of A, det(A), and H.

A_chain, B_chain, D_chain, detA_chain, H_chain: Arrays containing the raw results for A, B, D, detA, H.

Line and ACF plots of the estimates for A, det(A), and H.

Author(s)

Paul Richardson

References

Baumeister, C., & Hamilton, J.D. (2015). Sign restrictions, structural vector autoregressions, and useful prior information. *Econometrica*, 83(5), 1963-1999.

Baumeister, C., & Hamilton, J.D. (2017). Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks (No. w24167). National Bureau of Economic Research.

Baumeister, C., & Hamilton, J.D. (2018). Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations. *Journal of Monetary Economics*, 100, 48-65.

See Also

Dr. Christiane Baumeister's website https://sites.google.com/site/cjsbaumeister/.

Dr. James D. Hamilton's website https://econweb.ucsd.edu/~jhamilton/.

```
# Set function arguments
nlags <- 8
itr <- 5000
burn <- 0
thin <- 1
cri <- 0.95
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] \leftarrow c(1, NA, -1, NA)
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] \leftarrow c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
# Confidence in the priors for Phi
x1 <-
  matrix(data = NA, nrow = (nrow(y) - nlags),
         ncol = (ncol(y) * nlags))
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
}
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-</pre>
  c(paste(rep(colnames(y), nlags),
           "_L",
           sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
                 decreasing = FALSE),
           sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))</pre>
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy \leftarrow matrix(data = y1[, i], ncol = 1)
  phi <- solve(t(xx) %*% xx, t(xx) %*% yy)
  ee[, i] <- yy - (xx %*% phi)
}
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)</pre>
```

Dist_Plots 7

```
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP_sig) <- v3</pre>
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
                 ((nlags * ncol(y)) + 1),
                 ncol(y)))
Ri <-
  cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                   matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",
    mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)
# Estimate the parameters of the model
results1 <-
  BH\_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP\_sig = pP\_sig,
           pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn,
           thin = thin, cri = cri)
```

Dist_Plots

Plot Posterior Distributions Against Priors

Description

Plot Posterior Distributions Against Priors.

Usage

```
Dist_Plots(results, A_titles, H_titles = NULL, xlab = NULL, ylab = NULL)
```

Arguments

results List containing the results from running BH_SBVAR().

A_titles $(n \times n)$ matrix containing the titles for the plots of the estimated parameters in the coefficient matrix A. n is the number of endogenous variables.

8 Dist_Plots

H_titles	$(n \times n)$ matrix containing the titles for the plots of the estimated parameters in the coefficient matrix H (default = NULL). n is the number of endogenous variables.
xlab	Character label for the horizontal axis of historical decomposition plots (default = NULL). Default produces plots without a label for the horizontal axis.
ylab	Character label for the vertical axis of historical decomposition plots (default = NULL). Default produces plots without a label for the vertical axis.

Details

Plots posterior distributions against prior distributions.

Author(s)

Paul Richardson

```
# Import data
library(BHSBVAR)
set.seed(123)
data(USLMData)
y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)</pre>
y \leftarrow y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%
              diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))
colnames(y) <- c("Wage", "Employment")</pre>
# Set function arguments
nlags <- 8
itr <- 5000
burn <- 0
thin <- 1
acc <- TRUE
h <- 20
cri <- 0.95
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] \leftarrow c(1, NA, -1, NA)
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] \leftarrow c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
```

Dist_Plots 9

```
# Confidence in the priors for Phi
  matrix(data = NA, nrow = (nrow(y) - nlags),
         ncol = (ncol(y) * nlags))
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-</pre>
  c(paste(rep(colnames(y), nlags),
          "_L",
          sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
                decreasing = FALSE),
          sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy <- matrix(data = y1[, i], ncol = 1)</pre>
 phi <- solve(t(xx) %*% xx, t(xx) %*% yy)
  ee[, i] <- yy - (xx %*% phi)
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP_sig) <- v3</pre>
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
                 ((nlags * ncol(y)) + 1),
                 ncol(y)))
Ri <-
  cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                   matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
```

10 FEVD

FEVD

Forecast Error Variance Decompositions

Description

Forecast Error Variance Decompositions

Usage

```
FEVD(results, h = 12, acc = TRUE, cri = 0.95)
```

Arguments

results	List containing the results from running BH_SBVAR().
h	Integer specifying the time horizon for computing impulse responses (default = 12).
acc	Boolean indicating whether accumulated impulse responses are to be returned (default = TRUE).
cri	credibility intervals for the estimates to be returned (default = 0.95). A value of 0.95 will return 95% credibility intervals. A value of 0.90 will return 90% credibility intervals.

Details

Computes forecast error variance decomposition estimates.

Value

An array containing forecast error variance decomposition estimates.

FEVD 11

Author(s)

Paul Richardson

```
# Import data
library(BHSBVAR)
set.seed(123)
data(USLMData)
y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)</pre>
y \leftarrow y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%
              diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))
colnames(y) <- c("Wage", "Employment")</pre>
# Set function arguments
nlags <- 8
itr <- 5000
burn <- 0
thin <- 1
acc <- TRUE
h <- 20
cri <- 0.95
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] \leftarrow c(1, NA, -1, NA)
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] \leftarrow c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
# Confidence in the priors for Phi
x1 <-
  matrix(data = NA, nrow = (nrow(y) - nlags),
         ncol = (ncol(y) * nlags))
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-</pre>
  c(paste(rep(colnames(y), nlags),
           "_L",
           sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
```

12 FEVD

```
decreasing = FALSE),
          sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy <- matrix(data = y1[, i], ncol = 1)</pre>
  phi <- solve(t(xx) %*% xx, t(xx) %*% yy)</pre>
  ee[, i] <- yy - (xx %*% phi)
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP_sig) <- v3</pre>
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
                 ((nlags * ncol(y)) + 1),
                 ncol(y)))
Ri <-
  cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                   matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",
    mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)
# Estimate the parameters of the model
results1 <-
  BH_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP_sig = pP_sig,
           pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn,
           thin = thin, cri = cri)
fevd <- FEVD(results = results1, h = h, acc = acc, cri = cri)</pre>
# Plot impulse responses
varnames <- colnames(USLMData)[2:3]</pre>
```

FEVD_Plots 13

FEVD_Plots

Plot Forecast Error Variance Decompositions

Description

Plot Forecast Error Variance Decompositions

Usage

```
FEVD_Plots(
  results,
  varnames,
  shocknames = NULL,
  xlab = NULL,
  ylab = NULL,
  rel = TRUE
)
```

Arguments

results	List containing the results from running BH_SBVAR().
varnames	Character vector containing the names of the endogenous variables.
shocknames	Character vector containing the names of the shocks.
xlab	Character label for the horizontal axis of impulse response plots (default = NULL). Default produces plots without a label for the horizontal axis.
ylab	Character label for the vertical axis of impulse response plots (default = NULL). Default produces plots without a label for the vertical axis.
rel	Boolean indicating whether to display forecast error variance explained by the shock as a percent of total forecast error variance (default = TRUE).

Details

Plots forecast error variance decompositions and returns a list containing the actual processed data used to create the plots.

Value

A list containing forecast error variance decompositions.

Author(s)

Paul Richardson

14 FEVD_Plots

```
# Import data
library(BHSBVAR)
set.seed(123)
data(USLMData)
y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)</pre>
y \leftarrow y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%
              diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))
colnames(y) <- c("Wage", "Employment")</pre>
# Set function arguments
nlags <- 8
itr <- 5000
burn <- 0
thin <- 1
acc <- TRUE
h <- 20
cri <- 0.95
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] \leftarrow c(1, NA, -1, NA)
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] \leftarrow c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
# Confidence in the priors for Phi
x1 <-
  matrix(data = NA, nrow = (nrow(y) - nlags),
         ncol = (ncol(y) * nlags))
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
}
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-
  c(paste(rep(colnames(y), nlags),
           "_L",
           sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
                decreasing = FALSE),
           sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
```

FEVD_Plots 15

```
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy \leftarrow matrix(data = y1[, i], ncol = 1)
  phi <- solve(t(xx) %*% xx, t(xx) %*% yy)
  ee[, i] <- yy - (xx %*% phi)
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)</pre>
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP\_sig) <- v3
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
                 ((nlags * ncol(y)) + 1),
                 ncol(y)))
Ri <-
  cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                   matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",
    mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)
# Estimate the parameters of the model
results1 <-
  BH\_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP\_sig = pP\_sig,
           pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn,
           thin = thin, cri = cri)
fevd <- FEVD(results = results1, h = h, acc = acc, cri = cri)</pre>
# Plot impulse responses
varnames <- colnames(USLMData)[2:3]</pre>
shocknames <- c("Labor Demand","Labor Supply")</pre>
fevd_results <-
  FEVD_Plots(results = fevd, varnames = varnames,
            shocknames = shocknames)
```

16 HD

HD

Historical Decompositions

Description

Historical Decompositions

Usage

```
HD(results, cri = 0.95)
```

Arguments

results List containing the results from running BH_SBVAR().

cri credibility intervals for the estimates to be returned (default = 0.95). A value

of 0.95 will return 95% credibility intervals. A value of 0.90 will return 90%

credibility intervals.

Details

Computes historical decomposition estimates.

Value

An array containing historical decomposition estimates.

Author(s)

Paul Richardson

```
# Import data
library(BHSBVAR)
set.seed(123)
data(USLMData)
y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)</pre>
y \leftarrow y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%
              diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))
colnames(y) <- c("Wage", "Employment")</pre>
# Set function arguments
nlags <- 8
itr <- 5000
burn <- 0
thin <- 1
acc <- TRUE
h <- 20
cri <- 0.95
```

HD 17

```
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] \leftarrow c(1, NA, -1, NA)
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] \leftarrow c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
# Confidence in the priors for Phi
x1 <-
  matrix(data = NA, nrow = (nrow(y) - nlags),
         ncol = (ncol(y) * nlags))
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
}
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-
  c(paste(rep(colnames(y), nlags),
           "_L",
           sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
                decreasing = FALSE),
           sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))</pre>
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy \leftarrow matrix(data = y1[, i], ncol = 1)
  phi <- solve(t(xx) %*% xx, t(xx) %*% yy)
  ee[, i] \leftarrow yy - (xx %*% phi)
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)</pre>
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP_sig) <- v3</pre>
```

18 HD_Plots

```
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
                ((nlags * ncol(y)) + 1),
                ncol(y)))
Ri <-
  cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                  matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",
    mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)
# Estimate the parameters of the model
results1 <-
  BH\_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP\_sig = pP\_sig,
           pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn,
           thin = thin, cri = cri)
hd <- HD(results = results1, cri = cri)</pre>
# Plot historical decompositions
varnames <- colnames(USLMData)[2:3]</pre>
shocknames <- c("Labor Demand","Labor Supply")</pre>
freq <- 4
start_date <-
  c(floor(USLMData[(nlags + 1), 1]),
    round(((USLMData[(nlags + 1), 1] %% 1) * freq), digits = 0))
hd_results <-
  HD_Plots(results = hd, varnames = varnames,
           shocknames = shocknames,
           freq = freq, start_date = start_date)
```

HD_Plots

Plot Historical Decompositions

Description

Plot Historical Decompositions.

Usage

HD_Plots(

HD_Plots 19

```
results,
  varnames,
  shocknames = NULL,
  xlab = NULL,
 ylab = NULL,
 freq,
  start_date
)
```

Arguments

List containing the results from running BH_SBVAR(). results Character vector containing the names of the endogenous variables. varnames shocknames Character vector containing the names of the shocks. Character label for the horizontal axis of historical decomposition plots (default xlab = NULL). Default produces plots without a label for the horizontal axis. ylab Character label for the vertical axis of historical decomposition plots (default = NULL). Default produces plots without a label for the vertical axis. Numeric value indicating the frequency of the data. freq start_date

Numeric vector indicating the date of the first observation of the endogenous

variables included in the model.

Details

Plots historical decompositions and returns a list containing the actual processed data used to create the plots.

Value

A list containing historical decompositions.

Author(s)

Paul Richardson

```
# Import data
library(BHSBVAR)
set.seed(123)
data(USLMData)
y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)</pre>
y \leftarrow y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%
             diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))
colnames(y) <- c("Wage", "Employment")</pre>
# Set function arguments
nlags <- 8
itr <- 5000
```

20 HD_Plots

```
burn <- 0
thin <- 1
acc <- TRUE
h <- 20
cri <- 0.95
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] \leftarrow c(1, NA, -1, NA)
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] <- c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
# Confidence in the priors for Phi
  matrix(data = NA, nrow = (nrow(y) - nlags),
         ncol = (ncol(y) * nlags))
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
}
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-</pre>
  c(paste(rep(colnames(y), nlags),
           sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
                decreasing = FALSE),
           sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy \leftarrow matrix(data = y1[, i], ncol = 1)
  phi <- solve(t(xx) %*% xx, t(xx) %*% yy)
  ee[, i] <- yy - (xx %*% phi)
}
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)</pre>
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
```

IRF 21

```
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP_sig) <- v3</pre>
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
                 ((nlags * ncol(y)) + 1),
                 ncol(y)))
Ri <-
  cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                   matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",
    mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)
# Estimate the parameters of the model
results1 <-
  BH\_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP\_sig = pP\_sig,
           pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn,
           thin = thin, cri = cri)
hd <- HD(results = results1, cri = cri)</pre>
# Plot historical decompositions
varnames <- colnames(USLMData)[2:3]</pre>
shocknames <- c("Labor Demand", "Labor Supply")</pre>
freq <- 4
start_date <-
  c(floor(USLMData[(nlags + 1), 1]),
    round(((USLMData[(nlags + 1), 1] \% 1) * freq), digits = 0))
hd_results <-
  HD_Plots(results = hd, varnames = varnames,
           shocknames = shocknames,
           freq = freq, start_date = start_date)
```

TRF

Impulse Responses

Description

Impulse Responses

IRF

Usage

```
IRF(results, h = 12, acc = TRUE, cri = 0.95)
```

Arguments

results	List containing the results from running BH_SBVAR().
h	Integer specifying the time horizon for computing impulse responses (default = 12).
acc	Boolean indicating whether accumulated impulse responses are to be returned (default = TRUE).
cri	credibility intervals for the estimates to be returned (default = 0.95). A value of 0.95 will return 95% credibility intervals. A value of 0.90 will return 90% credibility intervals.

Details

Computes impulse response estimates.

Value

An Array containing the impulse response estimates.

Author(s)

Paul Richardson

```
# Import data
library(BHSBVAR)
set.seed(123)
data(USLMData)
y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)</pre>
y \leftarrow y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%
              diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))
colnames(y) <- c("Wage", "Employment")</pre>
# Set function arguments
nlags <- 8
itr <- 5000
burn <- 0
thin <- 1
acc <- TRUE
h <- 20
cri <- 0.95
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] <- c(1, NA, -1, NA)
```

IRF 23

```
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] \leftarrow c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
# Confidence in the priors for Phi
  matrix(data = NA, nrow = (nrow(y) - nlags),
         ncol = (ncol(y) * nlags))
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
}
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-</pre>
  c(paste(rep(colnames(y), nlags),
           "_L",
           sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
                decreasing = FALSE),
           sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))</pre>
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy <- matrix(data = y1[, i], ncol = 1)</pre>
  phi <- solve(t(xx) \% xx, t(xx) \% yy)
  ee[, i] <- yy - (xx %*% phi)
}
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)</pre>
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP_sig) <- v3</pre>
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
```

24 IRF_Plots

```
((nlags * ncol(y)) + 1),
                ncol(y)))
 cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                  matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",
    mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)
# Estimate the parameters of the model
results1 <-
 BH\_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP\_sig = pP\_sig,
           pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn,
           thin = thin, cri = cri)
irf <- IRF(results = results1, h = h, acc = acc, cri = cri)</pre>
# Plot impulse responses
varnames <- colnames(USLMData)[2:3]</pre>
shocknames <- c("Labor Demand","Labor Supply")</pre>
irf_results <-
 IRF_Plots(results = irf, varnames = varnames,
            shocknames = shocknames)
```

IRF_Plots

Plot Impulse Responses

Description

Plot Impulse Responses.

Usage

```
IRF_Plots(results, varnames, shocknames = NULL, xlab = NULL, ylab = NULL)
```

Arguments

results	List containing the results from running BH_SBVAR().
varnames	Character vector containing the names of the endogenous variables.
shocknames	Character vector containing the names of the shocks.
xlab	Character label for the horizontal axis of impulse response plots (default = NULL). Default produces plots without a label for the horizontal axis.
ylab	Character label for the vertical axis of impulse response plots (default = NULL). Default produces plots without a label for the vertical axis.

IRF_Plots 25

Details

Plots impulse responses and returns a list containing the actual processed data used to create the plots.

Value

A list containing impulse responses.

Author(s)

Paul Richardson

```
# Import data
library(BHSBVAR)
set.seed(123)
data(USLMData)
y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2)</pre>
y \leftarrow y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*%
              diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1)))
colnames(y) <- c("Wage", "Employment")</pre>
# Set function arguments
nlags <- 8
itr <- 5000
burn <- 0
thin <- 1
acc <- TRUE
h <- 20
cri <- 0.95
# Priors for A
pA \leftarrow array(data = NA, dim = c(2, 2, 8))
pA[, , 1] \leftarrow c(0, NA, 0, NA)
pA[, , 2] \leftarrow c(1, NA, -1, NA)
pA[, , 3] \leftarrow c(0.6, 1, -0.6, 1)
pA[, , 4] \leftarrow c(0.6, NA, 0.6, NA)
pA[, , 5] \leftarrow c(3, NA, 3, NA)
pA[, , 6] \leftarrow c(NA, NA, NA, NA)
pA[, , 7] \leftarrow c(NA, NA, 1, NA)
pA[, , 8] \leftarrow c(2, NA, 2, NA)
# Position priors for Phi
pP \leftarrow matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA))
pP[1:nrow(pA), 1:ncol(pA)] <-</pre>
  diag(x = 1, nrow = nrow(pA), ncol = ncol(pA))
# Confidence in the priors for Phi
x1 <-
  matrix(data = NA, nrow = (nrow(y) - nlags),
          ncol = (ncol(y) * nlags))
```

26 IRF_Plots

```
for (k in 1:nlags) {
  x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <-
    y[(nlags - k + 1):(nrow(y) - k),]
}
x1 \leftarrow cbind(x1, 1)
colnames(x1) <-</pre>
  c(paste(rep(colnames(y), nlags),
          "_L",
          sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)),
                decreasing = FALSE),
          sep = ""),
    "cons")
y1 <- y[(nlags + 1):nrow(y),]</pre>
ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1))
for (i in 1:ncol(y1)) {
  xx \leftarrow cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1)
  yy \leftarrow matrix(data = y1[, i], ncol = 1)
  phi <- solve(t(xx) %*% xx, t(xx) %*% yy)</pre>
  ee[, i] <- yy - (xx %*% phi)
somega <- (t(ee) %*% ee) / nrow(ee)</pre>
lambda0 <- 0.2
lambda1 <- 1
lambda3 <- 100
v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1)</pre>
v1 <- v1^{(-2)} * lambda1)
v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1)</pre>
v3 <- kronecker(v1, v2)
v3 <- (lambda0^2) * rbind(v3, (lambda3^2))</pre>
v3 <- 1 / v3
pP\_sig \leftarrow diag(x = 1, nrow = nrow(v3), ncol = nrow(v3))
diag(pP\_sig) <- v3
# Confidence in long-run restriction priors
pR_sig <-
  array(data = 0,
        dim = c(((nlags * ncol(y)) + 1),
                 ((nlags * ncol(y)) + 1),
                 ncol(y)))
Ri <-
  cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags),
                   matrix(data = c(1, 0), nrow = 1)),
pR_sig[, , 2] \leftarrow (t(Ri) %*% Ri) / 0.1
# Confidence in priors for D
kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y))</pre>
# Set graphical parameters
par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif",
    mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1)
# Estimate the parameters of the model
```

USLMData 27

USLMData

U.S. Labor Market Data

Description

Quarterly U.S. labor market time-series data. These data are the data used in Baumeister and Hamilton (2015).

Usage

```
data(USLMData)
```

Format

Data frame object that includes "Date", "Wage", and "Employment" variables. These data are the percent change in U.S. real wage and employment and were created by taking the difference of the natural log of U.S. real wage and employment levels and multiplying by 100.

Source

Dr. Christiane Baumeister's website https://sites.google.com/site/cjsbaumeister/.

Dr. James D. Hamilton's website https://econweb.ucsd.edu/~jhamilton/.

References

Baumeister, C., & Hamilton, J.D. (2015). Sign restrictions, structural vector autoregressions, and useful prior information. *Econometrica*, 83(5), 1963-1999.

```
data(USLMData)
```

Index

```
* datasets
USLMData, 27

BH_SBVAR, 3
BHSBVAR (BHSBVAR-package), 2
BHSBVAR-package, 2

Dist_Plots, 7

FEVD, 10
FEVD_Plots, 13

HD, 16
HD_Plots, 18

IRF, 21
IRF_Plots, 24

USLMData, 27
```