

Customer No.	026418	
Attorney's Docket No.:	GK-BUE-102 / 500647.20003	
U.S. Application No.:	09/856833	
International Application No.:	PCT/CH99/00515	
International Filing Date:	NOVEMBER 03, 1999	03 NOVEMBER 1999
Priority Date Claimed:	NOVEMBER 26, 1998	26 NOVEMBER 1998
Title of Invention:	METHOD AND DEVICE FOR PROCESSING A THERMOPLASTIC CONDESAEATION POLYMER	
Applicant(s) for (DO/EO/US):	Franz GOEDICKE and Federico INNEREBNER	

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- 1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
- 2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
- 3. This express request to begin national examination procedures [35 U.S.C. 371 (f)] at any time rather than delay examination until the expiration of the applicable time limit set forth in 35 U.S.C. 371(b) and PCT Articles 22 and 43.
- 4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- 5. A copy of the **Publication No. WO 00/32377 published 8JUN00 International Application as filed** [35 U.S.C. 371(c)(2)]
 - a) __ is transmitted herewith (required only if not transmitted by the International Bureau)
 - b) __ has been transmitted by the International Bureau
 - c) __ is not required, as the application was filed in the United States Receiving Office (RO/US)
- 6. A translation of the **Publication No. WO 00/32377 published 8JUN00 International Application** into English [35 U.S.C. 371(c)(2)]
- 7. Amendments to the claims of the International Application under PCT Article 19 [35 U.S.C. 371(c)(3)]
 - a) __ are transmitted herewith (required only if not transmitted by the International Bureau)
 - b) __ have been transmitted by the International Bureau
 - c) __ have not been made; however, the time limit for making such amendments has **NOT** expired.
 - d) __ have not been made and will not be made
- 8. A translation of the amendments to the claims under PCT Article 19 [35 U.S.C. 371(c)(3)]
- 9. An **UNSIGNED Oath or declaration of the inventor(s)** [35 U.S.C. 371(c)(4)] **Executed Decl/POA TO FOLLOW**
- 10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 [35 U.S.C. 371(c)(5)]

Items 11. to 16. Below concern other document(s) or information included:

- 11. • An Information Disclosure Statement under 37 C.F.R. 1.97 and 1.98
- 12. An Assignment document for recording. A separate cover sheet (PTO-1619A) in compliance with 37 CFR 3.28 and 3.31 is included.
- 13. • __ A **FIRST** preliminary amendment
__ A **SECOND** or **SUBSEQUENT** preliminary amendment
- 14. A **substitute specification**
- 15. A change of power of attorney and/or address letter
- 16. (other items or information) **PCT/IB/308 dated 8JUN00, PCT/IPEA/416 and 409 dated 19FEB01**

EXPRESS MAIL No.: **EL 915 668 586 US**

Deposited: **May 25, 2001**

I hereby certify that this correspondence is being deposited with the United States Postal Service Express mail under 37 CFR 1.10 on the date indicated above and is addressed to: BOX PCT, Commissioner for Patents, Washington, DC 20231.

/Ruth Montalvo Date: **May 25, 2001**

[X] 17. The following fees are submitted: <u>BASIC NATIONAL FEE [37 CFR 1.492(a)(1)-(5)]</u>					JCT Rec'd PCT/PTO 25 MAY 2001																		
[X]	Search Report has been prepared by the EPO or JPO.....	\$ 860.00																					
[]	International preliminary examination fee paid to USPTO [37 CFR 1.482].....	\$ 690.00																					
[]	No International preliminary examination fee paid to USPTO [37 CFR 1.482] but International search fee paid to USPTO [37 CFR 1.445(a)(2)].....	\$ 710.00																					
[]	Neither International preliminary examination fee [37 CFR 1.482] nor International search fee [37 CFR 1.445(a)(2)] paid to USPTO.....	\$ 1,000.00																					
[]	International preliminary examination fee paid to USPTO [37 CFR 1.482] and all claims satisfied provisions of PCT Article 33(1)-(4).....	\$ 100.00																					
ENTER APPROPRIATE BASIC FEE AMOUNT:					\$860.00																		
<table border="1"> <tr> <td>Claims</td> <td>Number Filed</td> <td></td> <td>Number Extra</td> <td>Rate</td> <td></td> </tr> <tr> <td>Total Claims</td> <td>32(31)</td> <td>-20</td> <td>12</td> <td>x \$ 18. =</td> <td rowspan="2">\$216.00</td> </tr> <tr> <td>Indep. Claims</td> <td>3</td> <td>-03</td> <td></td> <td>x \$ 80. =</td> </tr> </table>					Claims	Number Filed		Number Extra	Rate		Total Claims	32(31)	-20	12	x \$ 18. =	\$216.00	Indep. Claims	3	-03		x \$ 80. =		
Claims	Number Filed		Number Extra	Rate																			
Total Claims	32(31)	-20	12	x \$ 18. =	\$216.00																		
Indep. Claims	3	-03		x \$ 80. =																			
<input checked="" type="checkbox"/> Multiple Dependent Claim(s) (if applicable) + \$ 270. =					\$270.00																		
TOTAL OF ABOVE CALCULATIONS:					\$1,346.00																		
Surcharge of \$130.00 for furnishing the oath or declaration later than [] 20 [] 30 months from the earliest claimed priority date [37 CFR 1.492(e)]																							
TOTAL OF ABOVE CALCULATIONS:																							
Applicant claims Small Entity Status [See 37 CFR 1.27] Reduction by ½ for filing by small entity																							
					SUBTOTAL:	\$1,346.00																	
Processing fee of \$130.00 for furnishing the English Translation later than [] 20 [] 30 months from the earliest claimed priority date [37 CFR 1.492(f)]																							
					TOTAL NATIONAL FEE:	\$1,346.00																	
Fee for recording the enclosed assignment [37 CFR 1.21(h)] The assignment must be accompanied by an appropriate cover sheet (PTO-1595) [37 CFR 3.28, 3.31]. \$ 40.00 per property +																							
					TOTAL FEE(S):	\$1,346.00																	
AMOUNTS TO BE REFUNDED OR CHARGED					REFUNDED CHARGED	\$																	
<input checked="" type="checkbox"/> Check in the amount of \$ 1,346.00 to cover the above fees is enclosed. (The Commissioner is hereby authorized to charge any additional fees required with this submission or to credit any overpayment to Deposit Account No: 50-1529.) NOTE: Where an appropriate time limit under 36 CFR 1.494 or 1.495 has not been met, a petition to revive [37 CFR 1.137(a) or (b)] must be filed and granted to restore the application to pending status.																							
SEND ALL CORRESPONDENCE TO:																							
Gerald h. Kiel, Esq. (Customer No. 026418)																							
Reed Smith LLP 375 Park Avenue New York, NY 10152																							
Gerald H. Kiel Name (Tel. (212) 521-5400)		Signature	25,116 Reg. No.	May 25, 2001 Date																			

09/856833

JC18 Rec'd PCT/PTO 25 MAY 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No. :

U.S. National Serial No. :

Filed :

PCT International Application No. : PCT/CH99/00515

VERIFICATION OF A TRANSLATION

I, the below named translator, hereby declare that:

My name and post office address are as stated below;

That I am knowledgeable in the German language in which the below identified international application was filed, and that, to the best of my knowledge and belief, the English translation of the international application No. PCT/CH99/00515 is a true and complete translation of the above identified international application as filed.

I hereby declare that all the statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the patent application issued thereon.

Date: January 31, 2001

Full name of the translator :

Derek Ernest LIGHT

For and on behalf of RWS Group plc

Post Office Address :

Europa House, Marsham Way,
Gerrards Cross, Buckinghamshire,
England.

Method and device for the reprocessing of a
thermoplastic polycondensate

The invention relates to a method and a device in the
5 form of an extruder for the reprocessing of a
thermoplastic polycondensate. The method according to
the invention and the extruder according to the
invention serve in particular for the recycling of
thermoplastic polycondensates, such as polyethylene
10 terephthalate, polyester or polyamide.

DE 42 08 099 A1 already discloses a method according to
the precharacterizing clause of claim 1 and an extruder
according to the precharacterizing clauses of claim 20
15 and claim 26. In the case of the method for the
reprocessing of a thermoplastic polycondensate known
from this document, the size-reduced polycondensate is
fed to an extruder in a still solid, non-molten state.
The extruder is a twin-screw extruder with two screws
20 running parallel in a barrel and closely intermeshing.
The still solid polycondensate is heated in a first
reprocessing zone to a temperature below the melting
point, so that low-molecular-weight constituents, in
particular water, can at least partially escape via a
25 degassing opening provided in the barrel. Then, the
polycondensate is worked and made to melt by means of
kneading elements. In a following processing zone, the
polycondensate melt is subjected to a reduced pressure,
so that more of the low-molecular-weight constituents,
30 in particular water, still remaining in the melt can
escape via a discharge opening. The polycondensate
melt is then fed to a mixing vessel, in which the melt
is agitated by mixing implements. At the surface
constantly being renewed by the mixing operation, the
35 low-molecular-weight constituents can outgas further
and escape from the mixing vessel via a degassing
opening.

In the case of this known method, it is disadvantageous that the degassing and drying of the polycondensate in the still solid state is incomplete, since the low-molecular-weight constituents released during the heating escape only incompletely via the degassing opening, especially since the degassing opening cannot be dimensioned to any desired size. In the processing zone, in which the polycondensate to be reprocessed is heated for the degassing and drying to a temperature below the melting point, a thermodynamic equilibrium is therefore established between the vapor phase of the low-molecular-weight constituents and the low-molecular-weight constituents bonded in the polycondensate. The effectiveness of the degassing and drying is restricted on account of the limited escape of the vapor phase from the degassing opening.

DE 42 31 231 C1 discloses in principle a multi-screw extruder with a plurality of screw shanks arranged in an annular form between an inner barrel and an outer barrel for the degassing of a polycondensate melt. In the case of the method disclosed by this document, however, the polycondensate is fed to the extruder in the already molten state and degassing does not take place in the still solid state. The effectiveness of this method is therefore likewise limited. Moreover, the melting of the polycondensate takes place in a device which is separate from the multi-screw extruder, which leads to increased expenditure. This method is therefore only conditionally suitable for the recycling of thermoplastic polycondensates.

The present invention is based on the object of providing a method and an extruder for the reprocessing of a thermoplastic polycondensate in which the degassing and/or drying of the polycondensate in the still solid state is improved.

The object is achieved with regard to the method by the characterizing features of claim 1 and with regard to an extruder suitable for this method by the characterizing features of claim 20 or claim 26, in each case in conjunction with the generic features.

The invention is based on the finding that the effectiveness of the degassing and/or drying of the polycondensate in the still solid state can be improved by the polycondensate being subjected to a reduced pressure, below atmospheric pressure, and/or by adding an inert gas. The reduction in pressure has the effect that the vapor pressure of the low-molecular-weight constituents is reduced, so that these constituents evaporate more easily from the still solid polycondensate. The adding of an inert gas has the effect in the thermodynamic equilibrium of reducing the partial pressure of the undesired low-molecular-weight constituents, in particular of the water constituents bonded in the still solid polycondensate. On account of the reduced partial pressure, these undesired low-molecular-weight constituents can likewise evaporate more easily from the polycondensate. In this connection, the term inert gas is to be understood as meaning that this gas is not enriched, or only to a slight extent, in the polycondensate and does not change the properties of the polycondensate in an undesired way. The measures of the reduced pressure and the addition of the inert gas can also be combined with one another in such a way as to increase effectiveness.

The invention is also based on the finding that an extruder suitable for carrying out the aforementioned method has to be modified in comparison with a known extruder in such a way that the still solid polycondensate cannot escape via the degassing opening. The polycondensate is fed to the extruder in the solid state, generally in the form of flakes or granules,

- 4 -

which are obtained for example from the recycled products, for example disposable plastic bottles, by shredding or other size-reducing methods. These polycondensate flakes or the granules are relatively 5 lightweight and can escape at the degassing opening, at which a reduced pressure has to be applied or via which the inert gas flows for the method according to the invention, on account of the pressure gradient prevailing there. A screen or filter arranged at the 10 degassing opening would wear away in a short time and is therefore not suitable. The invention therefore proposes, in a way corresponding to the solution according to claim 20, providing a conveying device at the degassing opening of a twin-screw or multi-screw 15 extruder, which device conveys the polycondensate which has escaped via the degassing opening back into the extruder. This device can clean itself on the screw shanks of the extruder. Alternatively, in a way corresponding to the solution according to claim 26, it 20 is proposed to use a multi-screw extruder in which an inner space is formed between an inner barrel and the screw shanks arranged in an annular form and an outer space, which is separate from the inner space, is formed between an outer barrel and the screw shanks. 25 The still solid polycondensate may then either be located in the inner space and the degassing opening may be connected to the outer space, or the still solid polycondensate may conversely be located in the outer space and the degassing opening may be connected to the 30 inner space. The screw shanks, closely intermeshing with one another, in any event prevent the solid polycondensate flakes from pushing forward to the degassing opening. Escape of the polycondensate flakes via the degassing opening is therefore prevented.

35

Claims 2 to 19 concern advantageous developments of the method according to the invention.

- 5 -

The method according to the invention is suitable in particular, but in no way exclusively, for the recycling of polyester, in particular polyethylene terephthalate and polyamide. The polycondensate is
5 introduced into the extruder preferably in the form of flakes, the thickness of which is on average less than 2 mm and the greatest extent of which is on average less than 20 mm. It is advantageous to subject the polycondensate to a pressure below atmospheric pressure
10 and/or to the inert gas already before it is introduced into the extruder, in order to increase further the effectiveness of the method. The polycondensate may also be heated to a temperature below the melting temperature of the polycondensate already before it is
15 introduced into the extruder.

After the melting of the polycondensate, a further degassing of the polycondensate melt may take place. In this process, an inert gas, preferably in condensed
20 form, may be added to the polycondensate melt at an increased pressure. By causing foaming, this leads to an increase in the surface area of the phase boundary. Here, too, the inert gas reduces the partial pressure of the undesired low-molecular-weight constituents in
25 the polycondensate melt and makes it easier for them to outgas. Nitrogen, carbon dioxide or dried air are suitable in particular as the inert gas.

It is advantageous if the polycondensate melt is passed
30 through at least one melt filter. Melt filters may be connected to the conveying zone of the extruder, following the kneading elements or downstream of the extruder. The use of melt filters leads to the polymer melts from the further processing having a constant and
35 high product quality. Melt particles with a size of 20-50 µm which have not been expelled in the region of the first conveying zone, in which the polycondensate is still in the solid state, can be separated from the melt stream during the filtration. For plastics

- 6 -

processing (polycondensates such as PA, PET etc.), the wire gauze filter is used, with smallest filter grades of between 5 and 100 µm.

5 Claims 20 to 25 and 26 to 30 comprise advantageous developments of the extruder according to the invention.

10 The conveying devices may be designed as conveying screws, in particular as in each case two closely intermeshing conveying screws. It is advantageous if the conveying devices or the surrounding barrel are heatable. This prevents condensation of the degassing low-molecular-weight constituents at the conveying 15 device and conveying back of them into the extruder. If appropriate, the degassing opening may also coincide with the inlet opening for feeding the polycondensate into the extruder and the conveying device provided there may at the same time serve for the metered 20 feeding of the polycondensate into the extruder.

It is also advantageous if the barrel is heatable in the region of the first conveying zone, in which the polycondensate is still in the solid state, in order to 25 ensure rapid and uniform heating of the polycondensate.

The invention is described in more detail below on the basis of exemplary embodiments with reference to the drawing, in which:

30 Figure 1 shows a first exemplary embodiment of an extruder according to the invention in a longitudinal representation;

35 Figure 2 shows a second exemplary embodiment of an extruder according to the invention in a longitudinal representation;

Figure 3 shows a cross section through a third exemplary embodiment of an extruder according to the invention;

5 Figure 4 shows a sectioned longitudinal half-representation of an extruder corresponding to the exemplary embodiment represented in Figure 3; and

10 Figure 5 shows a sectioned longitudinal half-representation of an extruder corresponding to an exemplary embodiment modified with respect to Figure 4.

15 Figure 1 shows a first exemplary embodiment of an extruder 1 according to the invention. The extruder 1 represented in Figure 1 is designed as a twin-screw extruder. The extruder 1 comprises a barrel 2, which is constructed in a modular manner from a plurality of 20 part-barrels 2a - 2i. The part-barrels 2a - 2i are flanged to one another. The first part-barrel 2a has an inlet opening 3, via which the polycondensate to be reprocessed is fed to the extruder 1 in a still solid state, preferably in the form of flakes. The 25 polycondensate is located in a silo 4 and is metered in via a metering system 5 and a conveying device 6. At the end of the last part-barrel 2i is the output flange 7, with an outlet opening 8, at which the reprocessed polycondensate melt emerges.

30 Two longitudinal bores, which are arranged offset with respect to one another and only one of which, bore 9, can be seen in Figure 1, are provided in the barrel 2. Inserted in each of the two longitudinal bores there is 35 in each case a screw shank 10, which in Figure 1 is drawn outside the associated longitudinal bore 1 for reasons of improved representation. The screw shanks 10 extend from the inlet opening 3 to the outlet opening 8. The two screw shanks 10 intermesh closely

with one another and are driven in the same direction of rotation.

The screw shanks 10 are divided roughly into a first 5 conveying zone 11, for conveying the polycondensate in the solid state, and a second conveying zone 12, for conveying the polycondensate in the molten state. Between the first conveying zone 11 and the second conveying zone 12 there are kneading elements 13. 10 While the conveying screw 10 initially has a relatively great pitch in its first conveying zone 11, in the region of the inlet opening 3, the pitch is reduced in the direction of the outlet opening 8, as a result of which the polycondensate is drawn in relatively quickly 15 at the inlet opening 3. The dwell time or dwell time spectrum of the polycondensate in the first conveying zone 11 is relatively long, so that the polycondensate can heat up to a temperature below the melting point. For this purpose, the barrel 2 is heated in the region 20 of the first conveying zone 11 by heating elements (not represented). As a result, low-molecular-weight constituents of the polycondensate, in particular water, can outgas from the polycondensate in the still solid state and escape via a degassing opening 14. To 25 improve the effectiveness of the outgassing of the low-molecular-weight constituents, the first conveying zone 11 of the extruder 1 is subjected to a reduced pressure in comparison with atmospheric pressure or it is flushed with an inert gas. By reducing the pressure in 30 the barrel 2, the vapor pressure of the undesired low-molecular-weight constituents is reduced, so that these low-molecular-weight constituents outgas more easily. The adding of the inert gas brings about a reduction in 35 the partial pressure of these low-molecular-weight constituents, so that the effectiveness of the outgassing is likewise improved. If an inert gas is used, it can be added via an inert-gas inlet opening 15. Nitrogen, carbon dioxide or dried air are suitable in particular as the inert gas. In principle, noble

gases are also suitable. The inert gas escaping via the degassing opening 14 can be filtered and fed again to the extruder 1 in a cleaned state via the inert-gas inlet opening 15 in a closed cycle.

5

A line 16, which is connected to the degassing opening 14, serves for generating a negative pressure in the longitudinal bores 9 or for carrying away the inert gas. According to the invention, a conveying device 17, designed as a conveying screw, is provided at the degassing opening 14 in order to convey polycondensate flakes escaping via the degassing opening 14, due to the negative pressure or the inert gas flowing away, back into the extruder 1 and consequently prevent polycondensate flakes from being able to escape from the extruder 1. The conveying device 17 may also be made up of two closely intermeshing conveying screws arranged next to one another. It is advantageous if the conveying device 17 is heatable. This avoids condensation of the degassing low-molecular-weight constituents, in particular the water vapor, at the conveying device 17 and consequently conveying back of these condensed constituents into the extruder 1.

25

The kneading elements 13 adjoining the first conveying zone 11 have both distributive and dispersive properties and lead to melting of the polycondensate in a heating region which is kept very short. The melting takes place in a process length of preferably 1 L/D to 2 L/D. The kneading elements are preferably made up of conveying kneading elements 13a and conveying-back kneading elements 13b, in order to increase the dwell time spectrum of the polycondensates at the kneading elements 13 and consequently keep the melting region short. The polycondensates are heated up as close as possible to the melting temperature already in the first conveying zone 11, by the barrel 2 being heated, so that the melting enthalpy to be transferred from the kneading elements 13 to the polycondensates is low.

DEGASSING OPENING

- In the second conveying zone 12, adjoining the kneading elements, the polycondensate melt is conveyed in the direction of the outlet opening 8. Here, too, the
5 pitch of the screw shanks 10 is reduced in the direction of the outlet opening 8. A further degassing of the polycondensate melt preferably takes place in this region. Here, too, the degassing may take place as a result of a reduction in the operating pressure or
10 else additionally as a result of the adding of an inert gas, in particular nitrogen. The adding of the inert gas preferably takes place in a condensed state, the polycondensate melt being subjected to an increased pressure when the gas is added. During a subsequent
15 reduction in pressure of the polycondensate melt, the inert gas and the undesired low-molecular-weight constituents outgas from the polycondensate melt and can leave via a further degassing opening 18.
- 20 It is advantageous to expose the polycondensate in the silo 4 already to an inert gas atmosphere and/or a reduced pressure and subject it to an increased temperature, in order to increase the effectiveness of the method and reduce the heating-up time in the first
25 conveying zone 11.

The kneading elements are preferably located at the end of a part-barrel 2f. This has the advantage that the melt zone lies at the end of the part-barrel 2f, so
30 that the further processing in the adjoining part-barrel 2g can be configured in an optimum way.

The method according to the invention is also suitable for a reactive extrusion based on the reaction principle of polyaddition with the aid of additives and/or polycondensation. In this case, the additives are optimally mixed by the kneading elements 13 at the same time as the melting. A possibly necessary increase in the dwell time spectrum is preferably

- 11 -

realized by toothed elements. The incorporation of additional substances, in particular glass or pigments, is also possible. These substances are preferably metered in shortly after the melting and are 5 incorporated by means of narrow kneading elements directly after the melting.

In a way corresponding to patent claim 15 [sic], suitable as additional substances (additives, color 10 pigments, fillers, processing aids, stabilizers, reactive substances etc.), which are introduced into the extruder along with the polycondensate [sic]. The use of additional substances ensures that a constant melt viscosity of the polycondensate melt is achieved.

15

Figure 2 shows an exemplary embodiment of an extruder 1 according to the invention modified with respect to Figure 1. Elements already described on the basis of Figure 1 are provided with the same reference numerals, 20 so that to this extent there is no need for the description to be repeated.

The difference between the exemplary embodiment represented in Figure 2 and the exemplary embodiment 25 already described on the basis of Figure 1 is that the polycondensate is fed in the solid state to the inlet opening 3 of the extruder 1 from the silo 4 via a conveying device 20 designed as a conveying screw or as two closely intermeshing conveying screws. The inert 30 gas can be fed in at the same time via the stub 21, the polycondensate stored in the silo 4 already being kept under an inert-gas atmosphere before the feeding into the extruder.

35 It is conversely also possible to carry the inert gas away via the stub 21 and the silo 4, the conveying device 20 then conveying counter to the direction of flow of the inert gas. The conveying device 17 and the degassing opening 14 can then also be omitted. The

- same applies if flushing with an inert gas is not carried out, but instead the extruder 1 is kept at a negative pressure in the first conveying region 11. The vacuum connection necessary for this may be provided directly at the silo 4, the polycondensate being charged into the silo 4 via a suitable air lock. Here, too, the inlet opening 3 may serve at the same time as a degassing opening and the conveying device 17 can be omitted. If the inert-gas inlet opening 15 is arranged in the vicinity of the kneading elements 13, this has the advantage that the direction of flow in the extruder 1 runs counter to the conveying direction and therefore the flushing is particularly effective.
- Figures 3 and 4 show a completely differently configured extruder 1, which is likewise suitable for carrying out the method according to the invention. In this case, Figure 3 shows a cross section through the extruder 1 and Figure 4 shows a longitudinal half-section up to the center axis 30. Elements already described are denoted by the same reference numerals.

In contrast to the twin-screw extruders represented in Figures 1 and 2, the extruder 1 represented in Figures 3 and 4 is a multi-screw extruder, in which a plurality of screw shanks, twelve in the exemplary embodiment, 10a - 10l are arranged in an annular form between an inner barrel 31 and an outer barrel 32. The screw shanks 10a - 10l are also designed in a closely intermeshing manner in the case of the multi-screw extruder represented in Figures 3 and 4, so that the screw shanks 10a - 10l arranged in an annular form separate an inner space 33, formed between the inner barrel 31 and the screw shanks 10a - 10l, from an outer space 34, formed between the outer barrel 32 and the screw shanks 10a - 10l. In a subregion of the first conveying zone 11 of the extruder 1, which is still to be described in more detail and in which the polycondensate is conveyed in the solid state, the

- 13 -

polycondensate is located in the inner space 33, which is indicated in the drawing by cross hatching. The outer space 34, on the other hand, is connected in the exemplary embodiment to a plurality of degassing 5 openings 14, via which evaporating low-molecular-weight constituents of the polycondensate to be reprocessed can escape.

In the first conveying zone 11, in which the 10 polycondensate is in the solid state, the barrel 2, in particular the inner barrel 31, is heated, in order to heat up the polycondensate as far as possible to just below the melting point, and in this way bring about effective outgassing of the low-molecular-weight 15 constituents. In addition, in a way corresponding to the method according to the invention already described, either a negative pressure is generated in the extruder 1 and/or an inert gas, in particular nitrogen, is added for flushing purposes via the 20 outgassing openings 14. The inert gas may in this case enter the inner space 33, in which the polycondensate is located, via inert-gas inlet openings (not represented), pass through between the closely intermeshing screw shanks 10a - 101 and escape via the 25 degassing openings 14, which is illustrated by corresponding arrows.

What is important is that, in this configuration, 30 conveying elements are not necessary at the degassing openings 14, because the polycondensate is already prevented from leaving from the degassing openings 14 by means of the closely intermeshing screw shanks 10a - 101.

35 Nevertheless, if need be, a conveying direction [sic] 17 may be provided at or in the input opening 14 [sic].

The configuration of the screw shanks 10a - 101 can be better seen from the longitudinal half-section

- 14 -

represented in Figure 4. A screw shank 10a is represented in the associated longitudinal bore 9, which is formed between the inner barrel 31 and the outer barrel 32. In this case, the inner space 33, 5 formed between the screw shank 10a and the inner barrel 31, and the outer space 34, formed between the screw shank 10a and the outer barrel 32, can likewise be seen. The polycondensate to be processed is fed to the extruder 1 via one or more inlet openings 3 in the 10 solid state, for example in the form of flakes. The screw shanks 10a - 10l are divided roughly into a first conveying zone 11, in which the polycondensate is conveyed in the solid state, and a second conveying zone 12, in which the polycondensate melt is conveyed. 15 Between the first conveying zone 11 and the second conveying zone 12 there are kneading elements 13 for the melting of the polycondensate.

The first conveying zone 11 is subdivided into a 20 drawing-in zone 35 and a degassing zone 36. In the drawing-in zone 35, the polycondensate is drawn in, the polycondensate being distributed essentially uniformly in the inner space 33 and the outer space 34. At the end of the drawing-in zone 35 there is a first barrier 25 comprising a conveying-back portion 38, arranged after a spacer ring 37. Provided on the inner barrel 31, but not on the outer barrel 32, is a groove 39, which reaches over the conveying-back region 38. The polycondensate can therefore pass over from the 30 drawing-in zone 35 into the degassing zone 36 only in the region of the inner space 33, so that it is ensured that the polycondensate in the degassing zone 36 is located virtually exclusively in the inner space 33. The barrel 2 is heated in the region of the first zone 35 11, so that the polycondensate is heated up to just below the melting temperature. At the same time, a negative pressure is generated and/or flushing with an inert gas is carried out. In this way, effective degassing is achieved. At the end of the degassing

- 15 -

zone 36 there are kneading elements 13, which have distributive and dispersive properties. The polycondensate is melted very quickly in this region and is subsequently in the form of a melt.

5

A second barrier, comprising a conveying-back portion 41 arranged after a spacer ring 40, in conjunction with a groove 42 provided on the inner barrel 31, has the effect of ensuring that the polycondensate melt is located with preference in the inner space 33. A second degassing opening 43, which permits additional degassing of the polycondensate melt, opens out in the outer space 34. The melt is distributed relatively uniformly on the surface of the screw shanks 10a - 101, the closely intermeshing screw shanks 10a - 101 causing a steady new stretching-out of the melts, whereby constantly new surfaces are produced. As a result, the degassing operation is significantly speeded up. The degassing operation can be promoted by applying a negative pressure to the degassing opening 43, in order to reduce the vapor pressure of the low-molecular-weight constituents, in particular the water content.

25 A variation of the exemplary embodiment represented in Figures 3 and 4 is represented in Figure 5. In this case, Figure 5 shows, in a way similar to Figure 4, a longitudinal half-section through an extruder 1 designed as a multi-screw extruder.

30 The difference in comparison with the exemplary embodiment represented in Figure 4 is that an inert gas in a preferably condensed form is added to the polycondensate melt via an inert-gas inlet opening 44. Both the inert gas and the undesired low-molecular-35 weight constituents of the polycondensate to be reprocessed, in particular the still remaining water content, leave the extruder 1 via the degassing opening 43. It may be more favorable to feed the inert gas in via the opening 43 and let it out via the opening 44.

DEESEE-TIBERI

The invention is not restricted to the exemplary embodiments represented. In particular, the multi-screw extruder represented in Figures 3 to 5 can also
5 be configured in such a way that, in the degassing zone 36, the polycondensate is located in the outer space 34 and the degassing openings 14 are connected to the inner space 33. For this purpose, the groove 39 is to be formed not on the inner barrel 31 but on the outer
10 barrel 32.

Furthermore, the multi-screw extruder represented is not restricted to the twelve-screw shank [sic] represented only by way of example in Figure 3.

Patent claims

1. Method for the reprocessing of a thermoplastic polycondensate, having the following method steps:

- 5 - introducing the polycondensate into an extruder (1) in a solid state,
- heating the polycondensate to a temperature below the melting point and degassing and/or drying the polycondensate,
10 - melting the polycondensate,
characterized in that the degassing and/or drying of the polycondensate takes place in the solid state at a pressure below atmospheric pressure and/or with an inert gas being added.

- 15 2. Method according to claim 1, characterized in that the thermoplastic polycondensate is polyester, in particular polyethylene terephthalate, or polyamide.

- 20 3. Method according to claim 1 or 2, characterized in that the polycondensate is introduced into the extruder (1) in the form of flakes or powder, the thickness of the flakes being on average less than 25 2 mm and the greatest extent being on average less than 20 mm.

- 30 4. Method according to one of claims 1 to 3, characterized in that the polycondensate is flushed with the inert gas in the solid state.

- 35 5. Method according to one of claims 1 to 4, characterized in that the polycondensate is subjected to a pressure below atmospheric pressure and/or the inert gas already before it is introduced into the extruder (1).

6. Method according to one of claims 1 to 5, characterized in that the polycondensate is heated

to a temperature below the melting temperature of the polycondensate already before it is introduced into the extruder (1).

- 5 7. Method according to one of claims 1 to 6, characterized in that the inert gas is added at a temperature of 60°C to 250°C, preferably 100°C to 160°C.
- 10 8. Method according to one of claims 1 to 7, characterized in that, after the melting of the polycondensate, further degassing of the polycondensate melt takes place.
- 15 9. Method according to claim 8, characterized in that the degassing of the polycondensate melt takes place with an inert gas being added beforehand.
- 20 10. Method according to claim 9, characterized in that the inert gas is added in a condensed state to the polycondensate melt at an increased pressure and, subsequently, the pressure of the polycondensate melt is lowered, so that the inert gas escapes from the polycondensate melt.
- 25 11. Method according to claim 1, 4, 5, 7, 9 or 10, characterized in that the inert gas is nitrogen, dried air, carbon dioxide or a noble gas.
- 30 12. Method according to claim 8, 9 or 10, characterized in that the polycondensate melt can be passed through at least one melt pump.
- 35 13. Method according to claim 8, 9, 10 or 12, characterized in that the polycondensate melt is passed through at least one melt filter.
14. Method according to claim 13, characterized in that the use of melt filters may take place in the

- 19 -

conveying direction of the polycondensate, after melting of the polycondensate, preferably downstream of the extruder.

- 5 15. Method according to claim 13 or 14, characterized in that, following the melt filter, further degassing of the polycondensate may take place.
- 10 16. Method according to one of claims 1 to 15, characterized in that additional substances, such as color pigments, fillers, processing aids, stabilizers, substances reacting with the polycondensate and the like, are introduced into the extruder (1) along with the polycondensate.
- 15 17. Method according to claim 16, characterized in that the melt viscosity and/or melt elasticity of the polycondensate melt is modified by the use of a substance reacting with the polycondensate.
- 20 18. Method according to claim 17, characterized in that the substance reacting with the polycondensate increases the melt viscosity and/or melt elasticity of the polycondensate by a chain-extending and/or chain-crosslinking reaction with the polycondensate.
- 25 19. Method according to one of the preceding claims, characterized in that further polycondensation of the polycondensate melt may take place under vacuum conditions.
- 30 20. Extruder (1) for the reprocessing of a thermoplastic polycondensate, with an inlet opening (3) for introducing the polycondensate to be reprocessed in the solid state, an outlet opening (8) for discharging the reprocessed polycondensate in the melted state, two or more closely intermeshing screw shanks (10), which are arranged

- 20 -

in a barrel (2), extend from the inlet opening (3) in the direction of an outlet opening (8) and have at least a first conveying zone (11), for conveying the polycondensate in the solid state, a second conveying zone (12), for conveying the polycondensate in the melted state, and also kneading elements (13), arranged between the first conveying zone (11) and the second conveying zone (12), for melting the polycondensate, and at least one degassing opening (14), provided in the barrel (2) in the region of the first conveying zone (11), characterized in that a conveying device (17) is provided at the degassing opening (14) in order to convey polycondensate escaping via the degassing opening (14) back into the extruder (1).

21. Extruder according to claim 20, characterized in that the conveying device (17) comprises at least one conveying screw.
22. Extruder according to claim 21, characterized in that the conveying device (17) has two or more closely intermeshing conveying screws.
23. Extruder according to one of claims 20 to 22, characterized in that the conveying device (17) and/or the barrel surrounding the conveying device (17) is heatable.
24. Extruder according to one of claims 20 to 22, characterized in that a conveying device (20) is provided at the inlet opening (3) in order to introduce the polycondensate into the extruder (1) in a metered manner.
25. Extruder according to claim 24, characterized in that the inlet opening (3) serves at the same time as a degassing opening (14).

- 21 -

26. Extruder (1) for the reprocessing of a thermoplastic polycondensate, with an inlet opening (3) for introducing the polycondensate to be reprocessed in the solid state, an outlet opening 5 (8) for discharging the reprocessed polycondensate in the melted state, a plurality of closely intermeshing screw shanks, which are arranged in a barrel (2), extend from the inlet opening (3) in the direction of an outlet opening (8) and have at 10 least a first conveying zone (11), for conveying the polycondensate in the solid state, a second conveying zone (12), for conveying the polycondensate in the melted state, and also kneading elements (13), arranged between the first 15 conveying zone (11) and the second conveying zone (12), for melting the polycondensate, and at least one degassing opening (14), provided in the barrel (2) in the region of the first conveying zone (11), characterized in that the barrel (2) is divided 20 into an inner barrel (31) and an outer barrel (32) and the screw shanks are arranged in an annular form between the inner barrel (31) and the outer barrel (32), the screw shanks separating an outer space (34), formed between the outer barrel (32) 25 and the screw shanks, from an inner space (33), formed between the inner barrel (31) and the screw shanks, and in that, in the region of the first conveying zone (11), the polycondensate is located either in the inner space (33) and the degassing 30 opening (14) is connected to the outer space (34), or the polycondensate is located in the outer space (34) and the degassing opening (14) is connected to the inner space (33).
- 35 27. Extruder according to one of claims 20 to 26, characterized in that the degassing opening (14) is subjected to a negative pressure and/or an inert gas serving for flushing purposes is carried away via the degassing opening (14).

28. Extruder according to claim 27, characterized in
that the barrel (2) has in the region of the first
conveying zone (11) at least one opening (15, 44)
5 for the feeding in of the inert gas.
29. Extruder according to one of claims 20 to 28,
characterized in that the barrel (2) is heatable in
the region of the first conveying zone (11).
10
30. Extruder according to claim 26, characterized in
that a conveying device (17) is provided at the
degassing opening (14).
- 15 31. Extruder according to one of claims 20 to 30,
characterized in that the kneading elements (13)
have a total length L, the ratio L/D of the total
length L of the kneading elements (13) to the
diameter D of the screw shanks lying between 1 and
20 2.

PCT/CH99/00515

1/4

Fig. 1

2/4

Fig. 2

Fig. 3

Fig. 5

UNITED STATES OF AMERICA
COMBINED DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION

FILE NO. GK-BUE-102/
500647.20003

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I verily believe that I am the original, first and sole inventor (if only one name is listed below) or a joint inventor (if plural inventors are named) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND DEVICE FOR THE REPROCESSING OF A THERMOPLASTIC POLYCONDENSATE

The specification of which

- is attached hereto.
 was filed on _____ as United States patent application Serial Number _____.
 was filed on November 3, 1999 as PCT international patent application No. PCT/CH99/00515 and was amended on _____ (if any).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose all information known to be material to patentability in accordance with Title 37, Code of Federal Regulations, § 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code § 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s)

COUNTRY	APPLICATION NUMBER	DATE OF FILING (day, month, year)	PRIORITY CLAIMED UNDER 35 U.S.C. § 119
Switzerland	198 54 689.0	26 November 1998	YES <input checked="" type="checkbox"/> NO _____
			YES _____ NO _____

I hereby appoint REED SMITH LLP and the members of the firm: Lloyd McAulay, Reg. No. 20,423; J. Harold Nissen, Reg. No. 17,283; Jules E. Goldberg, Reg. No. 24,408; Gerald H. Kiel, Reg. No. 25,116; Eugene LeDonne, Reg. No. 35,930; Stephen Chin, Reg. No. 39,938; Arthur Dresner, Reg. No. 24,403; Daniel Lent, Reg. No. 44,867; and Samir R. Patel, Reg. No. 44,998 as attorneys with full power of substitution and revocation to prosecute all business in the Patent & Trademark Office connected therewith and to receive all correspondence.

SEND CORRESPONDENCE TO: Gerald H. Kiel, Esq.
REED SMITH, LLP
375 Park Avenue
New York, New York 10152-1799, U.S.A.

DIRECT TELEPHONE CALLS TO: (212) 521-5400

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

FULL NAME OF SOLE OR FIRST INVENTOR <u>Frank GOEDICKE</u>	INVENTOR'S SIGNATURE 	DATE <u>28.08.01</u>
RESIDENCE <u>CH-9527 Niederhelfenschwil, Switzerland</u>	<u>CHX</u>	COUNTRY OF CITIZENSHIP <u>Switzerland</u>
POST OFFICE ADDRESS <u>Im Reckholder 36, CH-9527 Niederhelfenschwil, Switzerland</u>		
FULL NAME OF SECOND INVENTOR (IF ANY) <u>Federico INNEREBNER</u>	INVENTOR'S SIGNATURE 	DATE <u>4.9.01</u>
RESIDENCE <u>CH-8004 Zurich, Switzerland</u>	<u>CHX</u>	COUNTRY OF CITIZENSHIP <u>Switzerland</u>
POST OFFICE ADDRESS <u>Sihlfeldstrasse 164, CH-8004 Zurich, Switzerland</u>		