

Computer Networks Fundamentals

Prepared by: Mohamed Abosehly

References

Books

- Cisco Student Guide ICND1
- CompTIA Network
- Data and Computer Communications William Stallings 8th Edition
- TCP/IP Protocol Suite Behrouz A. Forouzan 4th Edition
- Understanding IPv6 Joseph Davies 2nd Edition

Course Objective

- Introduction to Computer Networks
- OSI Model
- TCP/IP Model
- Ethernet Protocol
- Network Devices
- Network media
- Introduction to Wireless Networks
- Security Fundamentals

What is the Computer Network (CN)?

Computer Network:

a collection of computers, and other devices, or peripherals connected together through connecting media to perform certain task such as share resources

Benefits of Computer Networks

- Resources Sharing
 - File Sharing
 - Devices Sharing
 - -Software Sharing with multi-user licenses.
 - Voice and Video calls
- Shared Internet Access

Basic Network Terminologies

❖ NIC (Network Interface Card)

The hardware that plugs into the motherboard and directly access the network

Mac address:

Physical Address, Unique address over the world burned on the NIC card

❖ IP address :

Logical Address, identify each device on an IP network layer

Protocols

Communication rules that all entity must agree on

Basic Network Terminologies

Hub

Allow different nodes to communicate with each other at the same network(Slow the network)

Switch

Allow different nodes to communicate with each other at the same network and time without slowing each other

Router

Allow different networks to communicate with each other

How to apply networks?

Networks Classifications

- > According to Covered Area
 - How large is the network?
- According to network topology
 - How the computer are connected?
- > According to network model
 - What type of model?

Networks Classifications

According to Covered Area

PAN – MAN- WAN-INTERNET

- Personal Area Networks (PAN)
 - A computer network for interconnecting devices centered on an individual person's workspace.
 - A PAN provides data transmission among devices such as computers, smartphones, tablets and personal digital assistants

- Local Area Networks (LAN)
 - a group of computers connected in small geographical area
 - a limited area such as a residence, school, laboratory, <u>university campus</u> or <u>office building</u>
 - Allow users to share files and services
 - High speed of communications
 - Under your administrative Control

Metropolitan Area Networks (MAN)

A MAN connects an area larger than a LAN but smaller than a WAN

such as a city.

dedicated or high-performance hardware

- Wide Area Networks (WAN)
 - A WAN is a group of computers connected in Large geographical area such as country
 - A WAN often connects two LANs (WAN Link)
 - Very low Speed
 - Under your ISP Administrative control

Internet

Internet (WWW)

- –The internet is defined as a **global mesh** of interconnected networks
- -the most used service on the Internet is the **World Wide Web**
- No one actually owns the Internet
- Many Orgs, ISPs, Companies, Govs own pieces of Internet Infrastructure.
 - ISOC: Internet Society
 - IETF: Internet Engineering Task Forum
 - ICANN: Internet Corporation for Assigned Names and Numbers

Internet Gateway in Egypt

- **√** 1993
- 9.6Kbps link between the Egyptian Universities Network and France
- √ 1994
- Provide 64Kbps digital access to France

Networks Classifications

According to Network Topology

Bus – Star- Ring- Mesh-Hybrid

Topology

- refers to the **shape of a network**, or the network's layout.
- Two types of Network topologies:

The physical topology: physical way (<u>how computers</u> connected to each other physically: wired or wireless)

The logical topology: the way the he message are sent. (<u>how</u> to send message from device to other)

- > The choice of topology is dependent upon :
 - ✓ Type and number of equipment being used
 - ✓ Cost
- Each topology has its own **advantages and disadvantages**.

Bus Topology

- All devices are connected to a central cable, called the bus or backbone
- Both ends of the network must be terminated with a <u>terminator</u>.
- A barrel connector can be used to extend the network.

Frame Transmission - Bus LAN

- The backbone functions as a shared communication medium
- Device wanting to communicate with another device on the network sends a message onto the backbone
- The message is heard by all stations, but only the intended recipient actually accepts and processes the message.
- <u>Terminator absorbs frames at end</u> of medium

Station C want to transmit a frame of data to station A.

Bus Advantages and Disadvantages

Advantages

- Simple, easy to use and construct
- Requires least amount of cable (less expensive)
- Reliable

Disadvantages

- A faulty cable take the entire LAN down
- Difficult to troubleshoot
- No security
- Slow during peak traffic period

Star Topology

- All the devices are connected to a **centralized unit** such as a <u>Hub or Switch.</u>
- Nodes communicate across the network by passing data through the central device.

Star Topology types

- ☐ **Hubbed Star** (<u>Broadcasted</u> Star Topology)
 - Central node can broadcast (Hub)
 - Physical star, <u>logically bus</u>
 - Only one station can transmit at a time
- ☐ Switched Star
 - Central node can act as frame switch
 - Retransmits only to destination

Star Advantages and Disadvantages

□ Advantages:

- Network not affected if one PC fails
- Network expansion and reconfiguration is simple
- Network management and monitoring can be centralized
- Troubleshooting is easy

□ Disadvantages

If the central device fails, all the network fails

Ring Topology

- ➤ A cable connects one node to another to form a ring (shape of a closed loop)
- > each device is connected directly to two other devices, one on either side of it.
- All messages travel through a ring in the same direction
- token is used to transmit data and pass over each station

Frame Transmission - Ring LAN

Data transmitted in frames (token)

- Circulate past all stations
- Destination recognizes address and copies frame
- Data is passed one way from device to device.
- Frame circulates back to source where it is removed
- Medium access control determines when station can insert frame

Ring Advantages and Disadvantages

- **□** Advantages:
 - Fair (Equal access for all users)
 - Perform well under <u>heavy</u> <u>traffic</u>

□ Disadvantages

- Network <u>expansion or reconfiguration</u> will affect the network operation
- If one node fails, the entire network fails
- Difficult to troubleshoot
- very bad if we have about **60** pc, <u>Slow</u> Network

Mesh Topology

- Each device/PC is connected to every other device/PC in the network by its own cable
- Amount of cables needed can be calculated by:

$$CN = (D * (D-1)) / 2$$

(where CN is Cables Needed, and **D** is the amount of devices on the network)

- Mesh Types
 - o Full Mesh
 - Partial Mesh

Mesh Advantages and Disadvantages

- □ Advantages:
 - Mesh topology boasts the highest fault tolerance of all of the network topologies
 - Redundancy exist
 - Secure
- Disadvantages
 - Because each connection needs its own cable
 a Mesh topology can get very expensive

Hybrid Topology

- Hybrid means that there is more than one topology exist
- Combine bus ,star and ring topologies
- Allow network expansion
- Flexible

Hybrid Advantages and Disadvantages

- □ Advantages:
 - Network expansion is simple
- Disadvantages
 - If hub fails connections between failed hub and other hubs will fail

Networks Classifications

According to Network Model

- Peer to Peer Networks
- Client/Server Networks

Network Model

Peer-to-Peer Networks

- No dedicated resources to present specific service
- > Easy to work with
- > All nodes are the same (equal to use the resources)

Example: Windows Workgroup

Network Model

Client/Server Networks

- Some nodes (SERVER) are dedicated to present services to other nodes (CLIENTS)
- Server is more powerful

Examples:

- Mail Server
- Web Server
- > File Server
- Print Server

Network Model

Client/Server Networks

- Computers providing the service are called **Servers**
- Computers that request and use the service are called **Client** computers.
- number of servers is very small compared with the number of clients

Peer to peer vs client/server model

	Peer to peer	Client/server
Centralization	Local machine no central server All client machines connect to server to get service	
Storage	Each machine share its files equally with the others	All files and folders are on dedicated storage on the server and client access their files based on database on the server
Cost	inexpensive Expensive because of server OS	
scalable	In home or small office Medium/large enterprise	
Operating system	Client operating system	Server operating system to handle multiple requests

Building the network

What do you need to build your network?

Simple Network

Basic Network Elements

Hardware

- Computers / Peripherals
- NICs
- Connecting Media
- Networking Device(s)
 - Routers
 - Switches
 - Hubs

Software

- Protocols
 - Communication rules that all entity must agree on

Basic Network Elements (Hardware / Software)

□ Hardware

- **Devices** used to communicate with one another
 - Computers Printers Phone Routers Switches
- **Medium** how the devices are connected together
 - Wired -Wireless –Satellites

■ Software

- Messages

Information that travels over the medium

- Mails-WhatsApp....etc
- Protocols

Governs how messages flow across network

http –https-ftp-rdp

Software Protocols

What is Protocols?

- Communication rules that all entity must agree on it
- Method to connect internetworking elements

Why we need Protocols?

- To communicate efficiently
- Control the messages and the messages quantity in the network.

Open Systems Interconnection Reference Model OSI RM

OSI Reference Model

- OSI: Open Systems Interconnect
- OSI/RM was defined by ISO in 1983
 - International Organization for Standardization
- OSI Three practical functions
 - Give developers universal concepts so they can develop protocols
 - Explain the framework used to connect heterogeneous systems (Client/server can communicate even if they have different OS)
 - Describes the **process** of packet creation
- The OSI reference model breaks this approach into layers.

Benefits of using a layered model

 It divides the network communication process into Layers, so easier to troubleshooting.

- -It allows multiple-vendor development through standardization of network components.
- It allows various types of network hardware and software to communicate.
- Changes in one layer do not affect other layers because of layer separation
- Layers interact with each other.

Internetwork

Rule 1 Rule 2

Using a layered model helps in the design of complex, multi-use, multi-vendor networks.

Individual parts of the system can be

designed independently, but still work together seamlessly.

Why a Layered Network Model?

- Reduces complexity
- Standardizes interfaces
- Facilitates modular engineering
- Simplifies teaching and learning

OSI (7-Seven Layers)

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

OSI MODEL		
7		Application Layer
		Type of communication: E-mail, file transfer, client/server.
6		Presentation Layer
		Encryption, data conversion: ASCII to EBCDIC, BCD to binary, etc.
5		Session Layer
)		Starts, stops session. Maintains order.
1		Transport Layer
-		Ensures delivery of entire file or message.
3	3 -1	Network Layer
3		Routes data to different LANs and WANs based on network address.
2	2	Data Link (MAC) Layer
		Transmits packets from node to node based on station address.
1		Physical Layer
		Electrical signals and cabling.

TCP / IP
FTP,
SMTP,
DNS,
Telnet
TCP (delivery ensured)
UDP (delivery NOT ensured)
IP
(ICMP, ARP, RARP)

The Seven Layers Functions (Cont.)

Network Processes to Applications

- Provides network services to application processes (such as electronic mail, file transfer, and terminal emulation)
- Provides user authentication

♦ Application Layer

- Interface to end users
- ♦ File transfer
- Network management
- ♦ Email
- Many other services
- ♦ Protocols
 - ♦ HTTP (Hyper Text Transfer Protocol)
 - ♦ FTP (File transfer Protocol)
 - SMTP (Simple Mail transfer Protocol)
 - ♦ POP3 (Post office transfers Protocol)
 - ♦ Telnet/SSH (secure Shell)
 - ♦ RTP (Real-time Protocol)

The Seven Layers Functions (Cont.)

Network Process to Applications

Data Representation

- Ensures that data is readable by receiving system
- Formats data
- Structures data
- Negotiates data transfer syntax for application layer
- Provides encryption

Output Presentation Layer

- Finding common presentation between source and Destination
- Provide transformation of data to support standardized application interface
- Coding or Translation of data (ex: EBCDIC to ASCII)

The Seven Layers Functions (Cont.)

Network Process to Applications

Data Representation

Interhost Communication

 Establishes, manages, and terminates sessions between applications

♦ Session Layer

- Establishes, manages and terminates sessions (connections) between cooperating applications
- Synchronization (add checkpoints into a stream of data)
- Controls the sessions between the local and remote applications

The Seven Layers Functions (Cont.)

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

- Handles transportation issues between hosts
- Ensures data transport reliability
- Establishes, maintains, and terminates virtual circuits
- Provides reliability through fault detection and recovery information flow control

♦ Transport Layer

- Organize data intoSegments
- Provide reliable transport between end systems (source and destination hosts)
- End-to-end error recovery
- End-to-end flow control

The Seven Layers Functions (Cont.)

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

- Routes data packets
- Selects best path to deliver data
- Provides logical addressing and path selection

♦ Network

- Organize data into datagram (packets)
- It is responsible for the Internet Protocol
 Addressing (IP)
 (Addressing)
- It know the best path for the destination (Routing)
- ♦ End-to-end Addressing

The Seven Layers Functions (Cont.)

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

Access to Media

- Defines how data is formatted for transmission and how access to the network is controlled
- Provides error detection

♦ Data link

- Reliable data transfer across a physical link (Error Control)
- Organize the data into
 Frames, to be put on
 the physical medium
- Check the Frame For errors
- Hop to hop addressing

The Seven Layers Functions (Cont.)

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

Access to Media

Binary Transmission

 Defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating the physical link

♦ Physical

- Transmission of unstructured bit stream over the physical link
- Deals with the mechanical and electrical specifications of the interface and transmission media (cables and connectors)
- Representation of bits

OSI Example for Ethernet Media - TCP/IP STACK

By :Mohamed Abosehly

58

Data Encapsulation

Data De-Encapsulation I

HDR = Header HDR = Header

Peer-to-Peer Communication

OSI Exercise

OSI Exercise

Thanks