Measure Theory

Claudio Landim

January 30, 2020

Contents

1	Introduction: a non-measurable set	2
2	Classes of subsets	3
3	Set functions	4

1 Introduction: a non-measurable set

Suppose we want a measure that satisfies:

0.
$$\lambda: \mathcal{P}(\mathbb{R}) \to \mathbb{R}_+ \cup \{+\infty\}$$

1.
$$\lambda((a,b]) = b - a$$

2.
$$A \subseteq \mathbb{R}, A + x = \{x + y : y \in A\}$$

$$\forall A \subseteq \mathbb{R} \forall x \in \mathbb{R}, \lambda(A+x) = \lambda(A)$$

3.
$$A = \bigcup_{j>1} A_j, A_j \cap A_k = \emptyset$$

$$\lambda(A) = \sum_{k \ge 1} \lambda(A_k)$$

Define $x \sim y$ for $x, y \in \mathbb{R}$ if $y - x \in \mathbb{Q}$. $\Lambda = \mathbb{R}/\sim$ and $\alpha, \beta \in \Lambda$. Γ is uncountable since each equivalent class is countable.

By the **Axiom of Choice**, we have a $\Omega \subseteq \mathbb{R}$ s.t. for each $[x] \in \mathbb{R}/\sim$, there is a $x \in [x]$ s.t. $x \in \Omega$. Hence we can assume $\Omega \subseteq (0,1)$.

Claim: For $p, q \in \mathbb{Q}$, either $\Omega + p = \Omega + q$ or $\Omega + p \cap \Omega + q = \emptyset$.

Proof. Assume $(\Omega + p) \cap (\Omega + q) \neq \emptyset$, $x = \alpha + p = \beta + q$. Hence $\alpha - \beta = q - p \in \mathbb{Q}$, which implies $\alpha = \beta$.

Claim: $\Omega + q \subseteq (-1, 2)$ since -1 < q < 1.

In particular,

$$\bigcup_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} (\Omega + q) \subseteq (-1, 2)$$

Claim: If $E \subseteq F$, then $\lambda(E) < \lambda(F)$

Proof.
$$\lambda(F) = \lambda(E \cup (F - E)) = \lambda(E) + \lambda(F - E)$$

If $q \neq p$,

$$\lambda(\bigcup_{\substack{q\in\mathbb{Q}\\-1< q<1}}(\Omega+q))=\sum_{\substack{q\in\mathbb{Q}\\-1< q<1}}\lambda(\Omega+q)=\sum_{\substack{q\in\mathbb{Q}\\-1< q<1}}\lambda(\Omega)\leq\lambda((-1,2))=3$$

Hence $\lambda(\Omega) = 0$

Claim: $(0,1) \subseteq \sum_{q \in \mathbb{Q}, -1 < q < 1} (\Omega + q)$

Proof. Fix $x \in [0,1]$, $\exists \alpha \in [x] \cap \Omega$ and $\alpha \in (0,1)$. Hence $\alpha - x = q \in \mathbb{Q}$. Then $x \in \Omega + q$

Hence we have a contradiction and there is no such λ function.

Classes of subsets 2

Definition 2.1. For $S \subseteq \mathcal{P}(\Omega)$, S is a **semi-algebra** if

- 1. $\Omega \in \mathcal{S}$
- 2. If $A, B \in \mathcal{S}$, then $A \cap B \in \mathcal{S}$
- 3. For all $A \in \mathcal{S}$, there are $E_1, \ldots, E_n \in \mathcal{S}$ s.t. $A^c = \sqcup E_i$

Example 2.1. If $\Omega = \mathbb{R}$ and

$$\mathcal{S} = \mathbb{R} \cup \{(a, b] : a < b, a, b \in \mathbb{R}\}$$
$$\cup \{(-\infty, b] : b \in \mathbb{R}\}$$
$$\cup \{(a, \infty) : a \in \mathbb{R}\}$$
$$\cup \emptyset$$

then S is a semi-algebra

Definition 2.2. Take $A \subseteq \mathcal{P}(\Omega)$, A is an **algebra** if

- 1. $\Omega \in \mathcal{A}$
- 2. If $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$
- 3. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$

If A is an algebra, then it is also semi-algebra.

Definition 2.3. $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is a σ -algebra if

- 1. $\Omega \in \mathcal{F}$
- 2. If $A_j \in \mathcal{F}$ for $j \geq 1$, then $\bigcap_{j \geq 1} A_j \in \mathcal{F}$
- 3. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$

Proposition 2.4. Suppose $A_{\alpha} \subseteq \mathcal{P}(\Omega)$, A_{α} is an $(\sigma$ -)algebra, $\alpha \in I$. Then $\mathcal{A} = \bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ is an $(\sigma$ -)algebra

Definition 2.5. Suppose class $C \subseteq \mathcal{P}(\Omega)$. An $(\sigma$ -)algebra $\mathcal{A}(C)$ generated **by** \mathcal{C} is the smallest (*σ*-)algebra s.t. for any (*σ*-)algebra $\mathcal{B} \supseteq \mathcal{C}$ and \mathcal{B} is an $(\sigma$ -)algebra, then $\mathcal{B} \supseteq \mathcal{A}$. Hence $\mathcal{A}(\mathcal{C}) = \bigcap_{\alpha} \mathcal{A}_{\alpha}$

Lemma 2.6. Let S be a semi-algebra and $S \subseteq \mathcal{P}(\Omega)$. $A \in \mathcal{A}(S)$ iff there exists $1 \leq j \leq n, E_j \in \mathcal{S} \text{ s.t.}$

$$A = \sum_{j=1}^{n} E_j$$

Proof. Suppose $A = \sum_{j=1}^n E_j, E_j \in \mathcal{S} \subseteq \mathcal{A}(\mathcal{S})$ • If $E, F \in \mathcal{A}$ then $E \cup F \in \mathcal{A}$ since $E \cup F = (E^c \cap F^c)^c$

Suppose $A \in \mathcal{A}(\mathcal{S})$, let $\mathcal{B} = \{\sum_{j=1}^n F_j : F_j \in \mathcal{S}\} \subseteq \mathcal{P}(\Omega)$

- \mathcal{B} is an algebra
- ullet $\mathcal{B}\supseteq\mathcal{S}$

Definition 2.7. $C \subseteq \mathcal{P}(\Omega), \emptyset \in \mathcal{C}$ and $\mu : \mathcal{C} \to \mathbb{R}_+ \cup \{+\infty\}$, μ is additive if

- 1. $\mu(\emptyset) = 0$
- 2. $E_1, ..., E_n \in C, E = \sum_{j=1}^n E_j \in C$, then $\mu(E) = \sum_{j=1}^n \mu(E_j)$

Remark. 1. Assume there is a set $A \in \mathcal{C}$, $\mu(A) < \infty$, then $A = A \cup \emptyset$ and $\mu(\emptyset) = 0$

2. If $E\subseteq F$ and $F-E\in\mathcal{C}$, if $\mu(E)=+\infty$, $F=E\cup(F-E)$, hence $\mu(F)=\mu(E)+\mu(F-E)=+\infty$. If $\mu(E)<\infty$, $\mu(F-E)=\mu(F)-\mu(E)$. We can conclude $\mu(E)\leq\mu(F)$

Example 2.2. Discrete measure. Suppose we have $\{X_j: j \geq 1\}, \{P_j: j \geq 1\}$ and $\mu(A) = \sum_j P_j 1\{X_j \in A\}$ (indicator function), then μ is additive

Definition 2.8. $\emptyset \in \mathcal{C} \subseteq \mathcal{P}(\Omega), \mu : \mathcal{C} \to \mathbb{R}_+ \cup \{+\infty\}$. μ is σ -additive if

- 1. $\mu(\emptyset) = 0$
- 2. $E = \sum_{j>1} E_j \in C, \mu(E) = \sum_{j>1} \mu(E_j)$

Example 2.3. $\Omega = (0,1), \mathcal{C} = \{(a,b] : 0 \le a < b < 1\}$

$$\mu((a,b]) = \begin{cases} +\infty & a = 0\\ b - a & b > a \end{cases}$$

 $(a,b]=\sum_{j=1}^n(a_j,b_j].$ μ is additive but not sigma-additive. If x_j converges to 0, $x_0=1/2$, then $\mu((0,1/2])=+\infty, \mu(\sum_{j\geq 1}(x_{j+1},x_j])=1/2$

3 Set functions

Definition 3.1. 1. μ is **continuous from below** at E if for all $(E_n)_{n\geq 1}$,

 $E_n \in \mathcal{C}, E_n \subseteq E_{n+1}, \bigcup_{n \geq 1} E_n = E, \lim_{n \to \infty} \mu(E_n) = \mu(E)$ 2. μ is continuous from above at E if $E_n \supseteq E_{n+1}, \bigcap_{n \geq 1} E_n = E, \exists n \ \mu(E_{n_0}) < \infty$, then $\lim_{n \to \infty} \mu(E_n) = \mu(E)$

Lemma 3.2. Algebra $A \subseteq \mathcal{P}(\Omega)$, $\mu : A \to \mathbb{R}_+ \cup \{+\infty\}$ additive, then

- 1. If μ is σ -additive, then μ is continuous at E for all $E \in \mathcal{A}$
- 2. If μ is continuous from below, then μ is σ -additive
- 3. If μ is continuous from above at \emptyset and μ is finite, then μ is σ -additive

Proof. 1. Suppose
$$E_n \uparrow E$$
, define $F_1 = E_1, F_2 = E_2 - E_1, \dots, F_n = E_n - E_{n-1}$, then $\bigcup E_n = \sum F_n = E, \mu(E) = \sum \mu(F_k) = \lim_{n \to \infty} \sum_{k=1}^n \mu(F_k) = \lim \mu(\sum F_k) = \lim \mu(E_n)$

Suppose $E, E_n \in \mathcal{A}, E_n \downarrow E, \mu(E_{n_0}) < \infty$. Define $G_1 = E_{n_0} - E_{n_0+1}, G_2 = E_{n_0} - E_{n_0+2}, \dots, G_k = E_{n_0} - E_{n_0+k}$, we know $G_k \uparrow E_{n_0} - E$. By the first part, $\mu(G_k) \uparrow \mu(E_{n_0} - E)$. $\mu(E_{n_0} - E) = \mu(E_{n_0}) - \mu(E) = \lim_k \mu(E_{n_0} - E_{n_0+k}) = \lim_k (\mu(E_{n_0}) - \mu(E_{n_0+k}))$

2.
$$\sum_{k=1}^{n} E_k \subseteq E$$
, $\mu(\sum E_k) \le \mu(E)$, $\sum (\mu(E_k)) \le \mu(E)$, hence $\sum \mu(E_k) \le \mu(E)$. Let $F_n = \sum_{k=1}^{n} E_k \in \mathcal{A}$, $F_n \uparrow E$. σ -additivity follows.

3.
$$F_n = \sum_{k \geq n} E_k$$
. $\mu(E) = \mu(\sum_{k=1}^n E_k \cup \sum_{k > n} E_k) = \sum_{k=1}^n \mu(E_k) + \mu(F_{n+1})$ converges to $\sum_{k \geq 1} \mu(E_k)$

Example 3.1. $(a, b], 0 \le a < b < 1$,

$$\mu((a,b]) = \begin{cases} b-a & a > 0 \\ +\infty & a = 0 \end{cases}$$

Take $E_n \downarrow \emptyset$, μ won't be finite in some cases

Theorem 3.3. *Suppose we have a semi-algebra* $S \subseteq \mathcal{P}(\Omega)$ *,* μ *is additive, there is* $a \ \nu \ s.t. \ \nu : \mathcal{A}(S) \to \mathbb{R}_+ \cup \{+\infty\}$

- 1. ν is additive
- 2. $\nu(A)=\mu(A)$ for all $A \in \mathcal{S}$
- 3. If $\mu_1, \mu_2 : \mathcal{A}(\mathcal{S}) \to \mathbb{R}_+ \cup \{+\infty\}, \forall A \in \mathcal{S}, \mu_1(A) = \mu_2(A)$, then $\forall E \in \mathcal{A}(\mathcal{S}), \mu_1(E) = \mu_2(E)$
- 4. ν is σ -additive

Proof. If
$$A \in \mathcal{A}(\mathcal{S})$$
, then $A = \sum_{j=1}^n E_j, E_j \in \mathcal{S}$. $\nu(A) = \sum_{j=1}^n \nu(E_j) = \sum_{j=1}^n \mu(E_j)$

1. ν is well-defined

If
$$A = \sum_{k=1}^{m} F_k$$
, $F_k \in \mathcal{S}$, $E_j = E_j \cap \sum_{k=1}^{m} F_k = \sum_{k=1}^{m} E_j \cap F_k$ and $\mu(E_j) = \sum_{k=1}^{m} \mu(E_j \cap F_k)$. Hence $\nu(A) = \sum_{j=1}^{n} \sum_{k=1}^{m} \mu(E_j \cap F_k)$

- 2. ν is additive
- 3. unique

4.
$$A = \sum_{j \ge 1} A_j, A, A_j \in \mathcal{A}(\mathcal{S}), A = \sum_{j=1}^n E_j, E_j \in \mathcal{S}, A_k = \sum_{l=1}^{m_k} E_{k,l} \in \mathcal{S}.$$

$$E_j = E_j \cap A = E_j \cap (\sum_{k \ge 1} A_k)$$

$$= E_j \cap (\sum_{k \ge 1} \sum_{l=1}^{m_k} E_{k,l}) = \sum_{k \ge 1} \sum_{l=1}^{m_k} E_j \cap E_{k,l}$$

$$\mu(E_j) = \sum_{k \geq 1} \sum_{l=1}^{m_k} \mu(E_j \cap E_{k,l}) \text{ and } \nu(A) = \sum_{j=1}^n \mu(E_j) = \sum_{j=1}^n \sum_{k \geq 1} \sum_{l=1}^{m_k} \mu(E_j \cap E_{k,l}).$$

$$E_{k,l} = E_{k,l} \cap A = \sum_{j=1}^{n} E_{k,l} \cap E_j$$

$$\mu(E_{k,l}) = \sum_{j=1}^n \mu(E_{k,l} \cap E_j)$$
. Finish.