UVA CS 4501: Machine Learning

Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Five major sections of this course

- ☐ Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
 - ☐ Graphical models

Three major sections for classification

 We can divide the large variety of classification approaches into roughly three major types

1. Discriminative

- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree, logistic regression,
- e.g. neural networks (NN), deep NN

2. Generative:

- build a generative statistical model
- e.g., Bayesian networks, Naïve Bayes classifier

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

Today:

- - ✓ K-nearest neighbor
 - ✓ Model Selection / Bias Variance Tradeoff
 - ✓ Bias-Variance tradeoff
 - ✓ High bias ? High variance ? How to respond ?

Nearest neighbor classifiers

Requires three inputs:

- The set of stored training samples
- 2. Distance metric to compute distance between samples
- 3. The value of *k*, i.e., the number of nearest neighbors to retrieve

Nearest neighbor classifiers

To classify unknown sample:

- Compute distance to training records
- Identify k nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of nearest neighbor

k-nearest neighbors of a sample x are datapoints that have the *k* smallest distances to x

1-nearest neighbor

Voronoi diagram:
partitioning of a
plane into
regions based
on distance to
points in a
specific subset
of the plane.

- Compute distance between two points:
 - For instance, Euclidean distance

e.g. cosine distance
$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the k-nearest neighbors
 - Weight the votes according to distance
 - example: weight factor w = 1 / d²

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include (many) points from other classes

- Choosing the value of k:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points

from other classes

KU flexible varies a lot KT Smooth/varies little

Scaling issues

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

– Example:

- height of a person may vary from 1.5 m to 1.8 m
- weight of a person may vary from 90 lb to 300 lb
- income of a person may vary from \$10K to \$1M

- k-Nearest neighbor classifier is a lazy learner
 - Does not build model explicitly.
 - Classifying unknown samples is relatively expensive.

 k-Nearest neighbor classifier is a local model, vs. global model like linear classifiers.

Computational Time Cost

	Train (n)	Test (m=1)
Linear Reg	$+eSlon O(np^2+p^3)$	0(7)
KNN	0(1)	0(np)+ 0(sort n-k)

K-Nearest Neighbor

Decision boundaries in global vs. local models

What ultimately matters: **GENERALIZATION**

unstable

can be inaccurate

Today:

- ✓ K-nearest neighbor
- ✓ Model Selection / Bias Variance Tradeoff

- ✓ Bias-Variance tradeoff
- ✓ High bias ? High variance ? How to respond ?

e.g. Training Error from KNN, Lesson Learned

- When k = 1,
- No misclassifications (on training): Overtraining

 Minimizing training error is not always good (e.g., 1-NN) 1-nearest neighbor averaging

X

Review: Mean and Variance of Random Variable (RV)

- Mean (Expectation): $\mu = E(X)$
 - Discrete RVs:

$$E(X) = \sum_{v_i} v_i * P(X = v_i)$$

- Continuous RVs: $E(X) = \int_{-\infty}^{+\infty} x * p(x) dx$

Review: Mean and Variance of Random Variable (RV)

- Mean (Expectation): $\mu = E(X)$
 - Discrete RVs: $E(X) = \sum_{v_i} v_i P(X = v_i)$

$$E(g(X)) = \sum_{v_i} g(v_i) P(X = v_i)$$

- Continuous RVs: $E(X) = \int_{-\infty}^{+\infty} x * p(x) dx$

$$E(g(X)) = \int_{-\infty}^{+\infty} g(x) * p(x) dx$$

Review: Mean and Variance of RV

Variance:

$$Var(X) = E((X - \mu)^2)$$

– Discrete RVs:

$$V(X) = \sum_{v_i} (v_i - \mu)^2 P(X = v_i)$$

– Continuous RVs:

$$V(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 p(x) dx$$

BIAS AND VARIANCE TRADE-OFF

- θ : true value (normally unknown)
- $\widehat{\theta}$: estimator
- $\bar{\theta}$: = $E[\hat{\theta}]$ (mean, i.e. expectation of the estimator)
- Bias $E[(\bar{\theta} \theta)^2]$
 - measures accuracy or quality of the estimator
 - low bias implies on average we will accurately estimate true parameter from training data
- Variance $E[(\hat{\theta} \bar{\theta})^2]$
 - Measures precision or specificity of the estimator
 - Low variance implies the estimator does not change much as the training set varies

BIAS AND VARIANCE TRADE-OFF for Mean Squared Error of parameter estimation

$$MSE(\widehat{\theta}) = E[(\widehat{\theta} - \theta)^{2}]$$

$$= E[((\widehat{\theta} - \overline{\theta}) + (\overline{\theta} - \theta))^{2}]$$

$$= E[((\widehat{\theta} - \overline{\theta})^{2}] + E[((\overline{\theta} - \theta)^{2})] + 2E[(((\widehat{\theta} - \overline{\theta})((\overline{\theta} - \theta)))]$$

$$= Var((\widehat{\theta})) + Bias^{2}((\widehat{\theta})) + 0$$

$$= Var((\widehat{\theta})) + Bias^{2}((\widehat{\theta})) + 0$$
Error due to incorrect assumptions

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Bias^2(\hat{\theta}) + Var(\hat{\theta})$$

Bias-Variance Tradeoff / Model Selection

24

(1) Training vs Test Error

(1) Training vs Test Error

 Training error can always be reduced when increasing model complexity,

(1) Training vs Test Error

 Training error can always be reduced when increasing mod complexity,

 Expected Test error and CV error → good approximation of EPE

Statistical Decision Theory (Extra)

- Random input vector: X
- Random output variable: Y
- Joint distribution: Pr(X, Y)
- Loss function L(Y, f(X))

Expected prediction error (EPE);

$$EPE(f) = E(L(Y, f(X))) = \int L(y, f(x)) Pr(dx, dy)$$

$$e.g. = \int (y - f(x))^2 Pr(dx, dy)$$

One way to consider generalization: by considering the joint population distribution

(2) Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).

 Thy kgkssn: d snell knn: k large
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample randomness).

S poly regression: d large KNN: K small

(2.1) Regression:

Complexity versus Goodness of Fit

Highest Bias Lowest variance Model complexity = low Medium Bias
Medium Variance
Model complexity = medium

Smallest Bias
Highest variance
Model complexity = high

Prediction Error

Low Bias
/ High Variance

(2.2) Classification, Decision boundaries in global vs. local models

Low Variance / High Bias

linear regression

- global
- stable
- can be inaccurate

local

accurate

• unstable

Low Bias
/ High Variance

What ultimately matters: **GENERALIZATION**

Bias-Variance Tradeoff / Model Selection

Model "bias" & Model "variance"

- Middle RED:
 - TRUE function
- Error due to bias:
 - How far off in general from the middle red

E(0-0)

- Error due to variance:
 - How wildly the blue points spread

Model "bias" & Model "variance"

- Middle RED:
 - TRUE function (middle held)
- Error due to bias:
 - How far off in general from the middle red

E(0-0)

- Error due to variance:
 - How wildly the blue points spread

Randomness of Train Set => Variance of Models, e.g.,

Randomness of Train Set => Variance of Models, e.g.,

need to make assumptions that are able to generalize

- Components
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other

Today:

- ✓ K-nearest neighbor
- ✓ Model Selection / Bias Variance Tradeoff
 - ✓ Bias-Variance tradeoff
- ✓ High bias ? High variance ? How to respond ?

need to make assumptions that are able to generalize

- Underfitting: model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

(1) High variance

Typical learning curve for high variance:

- Test error still decreasing as m increases. Suggests larger training set will help.
- Large gap between training and test error.
- Low training error and high test error

How to reduce variance?

- Choose a simpler classifier
- Regularize the parameters
- Get more training data
- Try smaller set of features

(2) High bias

- Even training error is unacceptably high.
- Small gap between training and test error.

High training error and high test error

How to reduce Bias?

E.g.

Get additional features

- Try adding basis expansions, e.g. polynomial

- Try more complex learner

(3) For instance, if trying to solve "spam detection" using (Extra)

L2 - logistic regression, implemented with gradient descent.

Fixes to try: If performance is not as desired

- Try getting more training examples.
- Try a smaller set of features.
- Try a larger set of features.
- Try email header features.
- Run gradient descent for more iterations.
- Try Newton's method.
- Use a different value for λ .
- Try using an SVM.

Fixes high variance.

Fixes high variance.

Fixes high bias.

Fixes high bias.

Fixes optimization algorithm.

Fixes optimization algorithm.

Fixes optimization objective.

Fixes optimization objective.

(4) Model Selection and Assessment

Model Selection

 Estimating performances of different models to choose the best one

Model Assessment

 Having chosen a model, estimating the <u>prediction error</u> on new data

4/5/18 45

Model Selection and Assessment (Extra)

When Data Rich Scenario: Split the dataset

- When Insufficient data to split into 3 parts
 - Approximate validation step analytically
 - AIC, BIC, MDL, SRM
 - Efficient reuse of samples
 - Cross validation, bootstrap

Today Recap:

- ✓ K-nearest neighbor
- ✓ Model Selection / Bias Variance Tradeoff
 - ✓ Bias-Variance tradeoff
 - ✓ High bias ? High variance ? How to respond ?

References

- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
 - ☐ Prof. Andrew Moore's slides
 - ☐ Prof. Eric Xing's slides
 - ☐ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No. 1. New York: Springer, 2009.

Statistical Decision Theory (Extra)

- Random input vector: X
- Random output variable: Y
- Joint distribution: Pr(X, Y)
- Loss function L(Y, f(X))

Expected prediction error (EPE):

$$EPE(f) = E(L(Y, f(X))) = \int L(y, f(x)) Pr(dx, dy)$$

$$e.g. = \int (y - f(x))^2 Pr(dx, dy)$$

Consider population distribution

Expected prediction error (EPE)

Consider joint distribution

$$EPE(f) = E(L(Y, f(X))) = \int L(y, f(x)) Pr(dx, dy)$$

• For L2 loss: e.g. = $\int (y - f(x))^2 \Pr(dx, dy)$

under L2 loss, best estimator for EPE (Theoretically) is:

$$\hat{f}(x) = E(Y | X = x)$$

e.g. KNN NN methods are the direct implementation (approximation)

• For 0-1 loss: $L(k, \ell) = 1 - d_{kl}$

$$\hat{f}(X) = C_k$$
 if
 $\Pr(C_k | X = x) = \max_{g \in C} \Pr(g | X = x)$

EXPECTED PREDICTION ERROR for L2 Loss

• Expected prediction error (EPE) for L2 Loss:

EPE(f) = E(Y - f(X))² =
$$\int (y - f(x))^2 \Pr(dx, dy)$$

• Since $Pr(X, Y) = Pr(Y \mid X) Pr(X)$, EPE can also be written as

$$EPE(f) = E_X E_{Y|X} ([Y - f(X)]^2 | X)$$

Thus it suffices to minimize EPE pointwise

Best estimator under L2 loss: $f(x) = \operatorname{arg\,min}_c \operatorname{E}_{Y|X}([Y-c]^2 \mid X = x)$ conditional expectation

Conditional

mean

Solution for Regression:

Solution for kNN:

$$f(x) = E(Y \mid X = x)$$

KNN FOR MINIMIZING EPE

• We know under L2 loss, best estimator for EPE (theoretically) is:

Conditional mean
$$f(x) = E(Y | X = x)$$

- Nearest neighbors assumes that f(x) is well approximated by a locally constant function.

Review: WHEN EPE USES DIFFERENT LOSS

Loss Function	Estimator $\hat{f}(x)$
$L_2 \qquad \stackrel{L(\epsilon)}{\longleftarrow} \epsilon$	$\widehat{f}(x) = E[Y X = x]$
$L_1 \qquad \stackrel{L(\epsilon)}{\longleftarrow} \epsilon$	$\widehat{f}(x) = \text{median}(Y X=x)$
$\begin{array}{c c} & & L(\epsilon) \\ \hline & & \\ \hline & -\delta & \delta \\ \end{array}$	$\widehat{f}(x) = \arg\max_{Y} P(Y X=x)$ (Bayes classifier / MAP)

hat in estimating f

Decomposition of EPE

- When additive error model:
- Notations

$$Y = f(X) + \epsilon, \ \epsilon \sim (0, \sigma^2)$$

- $\begin{array}{c} \text{ \footnessed} \\ \text{ \footnessed} \\ \text{ \footnessed} \\ \end{array}$
- Prediction estimator:

$$EPE(x_0) = E[(Y - \hat{f})^2 | X = x_0]$$

$$= E[((Y - f) + (f - \hat{f}))^2 | X = x_0]$$

$$= E[\underbrace{(Y - f)}^2 | X = x_0] + \underbrace{E[(f - \hat{f})^2 | X = x_0]}_{MSE}$$

$$= \sigma^2 + Var(\hat{f}) + Bias^2(\hat{f})$$
MSE component of f-

4/5/18

Irreducible / Bayes error

Bias-Variance Trade-off for EPE:

EPE $(x_0) = noise^2 + bias^2 + variance$

Unavoidable error

Error due to incorrect assumptions

Error due to variance of training samples

$$E\left[\left(Y-\hat{f}(x)\right)^{2}\right]=E\left[\left(f(X)+\epsilon-\hat{f}(x)\right)^{2}\right]$$

$$= E\left[\left(f(X) - \hat{f}(X)\right)^{2}\right] + 2E\left[\epsilon\left(f(X) - \hat{f}(X)\right)\right] + E\left[\epsilon^{2}\right] = MSE\left(f, \hat{f}\right) + Var(\epsilon)$$

Assuming the Bayes error is independent of $\hat{f}(x)$,

$$E[\epsilon(f(x) - \hat{f}(x))] = E[\epsilon]E[f(x) - \hat{f}(x)] = 0$$
$$E[\epsilon^2] = \sigma^2 + E[\epsilon]^2 = \sigma^2$$

$$E\left[\left(f(X)-\hat{f}(x)\right)^2\right]=E\left[\left(\left(f(X)-E\left[\hat{f}(x)\right]\right)+\left(E\left[\hat{f}(x)\right]-\hat{f}(x)\right)\right)^2\right]$$

$$= E\left[\left(f(X) - E[\hat{f}(x)] \right)^2 + 2 \left(f(X) - E[\hat{f}(x)] \right) \left(E[\hat{f}(x)] - \hat{f}(x) \right) + \left(E[\hat{f}(x)] - \hat{f}(x) \right)^2 \right]$$

$$= E\left[\left(f(X) - E[\hat{f}(x)]\right)^{2}\right] + 2E\left[\left(f(X) - E[\hat{f}(x)]\right)\left(E[\hat{f}(x)] - \hat{f}(x)\right)\right] + E\left[\left(E[\hat{f}(x)] - \hat{f}(x)\right)^{2}\right]$$
We can show:

We can show:

$$2E\left[\left(f(X)-E\left[\hat{f}(x)\right]\right)\left(E\left[\hat{f}(x)\right]-\hat{f}(x)\right)\right]=2\left(f(X)-E\left[\hat{f}(x)\right]\right)E\left[E\left[\hat{f}(x)\right]-\hat{f}(x)\right]=0$$

Finally,

$$E\left[\left(f(X)-\hat{f}(x)\right)^2\right]=E\left[\left(f(X)-E\left[\hat{f}(x)\right]\right)^2\right]+E\left[\left(E\left[\hat{f}(x)\right]-\hat{f}(x)\right)^2\right]$$

$$= Bias(f(x), \hat{f}(x))^2 + Var(\hat{f}(x))$$

Putting it all together:

$$E\left[\left(Y-\hat{f}(x)\right)^{2}\right] = Bias(f(x),\hat{f}(x))^{2} + Var\left(\hat{f}(x)\right) + \sigma^{2}$$

MSE of Model, aka, Risk

• More so than just these intuitive descriptions, the expected test error mathematically decomposes into a sum of three corresponding parts. Begin by writing the model

$$Y = f(X) + \varepsilon$$
,

where ε has mean zero, variance σ^2 , and is independent of X. Note that the independence condition is the an actual (nontrivial) assumption. Recall that (x_i, y_i) , $i = 1, \ldots n$ are independent of each other and of (X, Y), all with the same distribution. We'll look at the expected test error, conditional on X = x for some arbitrary input x. It follows that

$$\mathbb{E}\left[\left(Y - \hat{f}(x)\right)^{2} \middle| X = x\right] = \sigma^{2} + \underbrace{\mathbb{E}\left[\left(f(x) - \hat{f}(x)\right)^{2}\right]}_{\text{Risk}(\hat{f}(x))}.$$

The first term σ^2 is the *irreducible error*, or sometimes referred to as the *Bayes error*, and the second term is called the risk, or mean squared error (MSE). The risk further decomposes into two parts, so that

$$\mathbb{E}\left[\left(Y - \hat{f}(x)\right)^{2} \middle| X = x\right] = \sigma^{2} + \underbrace{\left(f(x) - \mathbb{E}[\hat{f}(x)]\right)^{2}}_{\text{Bias}^{2}(\hat{f}(x))} + \underbrace{\mathbb{E}\left[\left(\hat{f}(x) - \mathbb{E}[\hat{f}(x)]\right)^{2}\right]}_{\text{Var}(\hat{f}(x))},\tag{2}$$

the latter terms being the squared estimation bias or simply bias, and the estimation variance or simply variance, respectively. The decomposition (2) is called the bias-variance decomposition or bias-variance tradeof. http://www.stat.cmu.edu/~ryantibs/statml/review/modelbasics.pdf

Cross Validation and Variance Estimation

• Cross-validation (CV) is quite a general tool for estimating the expected test error (1), that makes minimal assumptions—i.e., it doesn't assume that $Y = f(X) + \varepsilon$ with ε independent of X, it doesn't assume that the training inputs $x_1, \ldots x_n$ are fixed, all it really assumes is that the training samples $(x_1, y_1), \ldots (x_n, y_n)$ are i.i.d.

We split up our training set into K divisions or folds, for some number K; usually this is done randomly. Write these as $F_1, \ldots F_K$, so $F_1 \cup \ldots \cup F_K = \{1, \ldots n\}$. Now for each $k = 1, \ldots K$, we fit our prediction function on all points but those in the kth fold, denoted $\hat{f}^{-(k)}$, and evaluate squared errors on the points in the kth fold,

$$CV_k(\hat{f}^{-(k)}) = \frac{1}{n_k} \sum_{i \in F_k} (y_i - \hat{f}^{-(k)}(x_i))^2.$$

http://www.stat.cmu.edu/~ryantibs/statml/review/modelbasics.pdf

http://www.stat.cmu.edu/~ryantibs/statml/review/modelbasics.pdf

- What is the difference between choosing say K = 5 (a common choice) versus K = n?
 - When K = 5, the function $\hat{f}^{-(k)}$ in each fold k is fit on about $4/5 \cdot n$ samples, and so we are looking at the errors incurred by a procedure that is trained on less data than the full \hat{f} in (1). Therefore the mean of the CV estimate (7) could be off. When K = n, this is not really an issue, since each $f^{-(k)}$ is trained on n-1 samples
 - When K=n, the CV estimate (7) is an average of n extremely correlated quantities; this is because each $\hat{f}^{-(k)}$ and $\hat{f}^{-(\ell)}$ are fit on n-2 common training points. Hence the CV estimate will likely have very high variance. When K=5, the CV estimate will have lower variance, since it the average of quantities that are less correlated, as the fits $\hat{f}^{-(k)}$, $k=1,\ldots 5$ do not share as much overlapping training data

This is tradeoff (the bias-variance tradeoff, in fact!). Usually, a choice like K = 5 or K = 10 is more common in practice than K = n, but this is probably an issue of debate

 \bullet For K-fold CV, it's can be helpful to assign a notion of variability to the CV error estimate. We argue that

$$\operatorname{Var}\left(\operatorname{CV}(\hat{f})\right) = \operatorname{Var}\left(\frac{1}{K} \sum_{k=1}^{K} \operatorname{CV}_{k}(\hat{f}^{-(k)})\right) \approx \frac{1}{K} \operatorname{Var}\left(\operatorname{CV}_{1}(\hat{f}^{-(1)})\right). \tag{8}$$

Why is this an approximation? This would hold exactly if $CV_1(\hat{f}^{-(1)}), \ldots CV_K(\hat{f}^{-(K)})$ were i.i.d., but they're not. This approximation is valid for small K (e.g., K = 5 or 10) but not really for big K (e.g., K = n), because then the quantities $CV_1(\hat{f}^{-(1)}), \ldots CV_K(\hat{f}^{-(K)})$ are highly correlated