

Methods for Sensor Failure Mitigation in 3D Object Detection

Alexander Fuchs, B.Sc.

Garching, 27. March 2024

State of the Art

Approach

Results

Discussion

Summary

Sensing the Environment

Ш

Real-World Conditions

Full Sensor Failure (e.g. damaged sensor)

Partial Sensor Failure (e.g. occlusion)

→ Detection system should be **robust** against sensor failure

State of the Art

Approach

Results

Discussion

Input Modalities

Camera

LiDAR

1 Caesar et al. "nuScenes: A multimodal dataset for autonomous driving"

State of the Art

Approach

Results

Discussion

Input Modalities

1 Caesar et al. "nuScenes: A multimodal dataset for autonomous driving"

State of the Art

Approach

Results

Input Modalities

LiDAR outperforms camera for 3D object detection

Fusion models have a higher reliance on LiDAR

Sensor Fusion: Bird's Eye View (BEV)

2 J. Philion, S. Fidler "Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D"
7

Ш

Robustness of existing fusion methods

Performance in the event of **full sensor failure**:

Example: BEVFusion³

Robustness of existing fusion methods

Existing sensor fusion methods fail when the LiDAR sensor fails

→ Goal: Make sensor fusion robust against LiDAR failure

Approach: Baseline

Introduction State of the Art

Approach

Results

Discussion

Summary

Approach: Modifications

Approach: Evaluation

ШП

Method #1: Pretraining Strategy

Original BEVFusion: **only pretrain LiDAR** model

→ Try different variations

Ш

Method #2: Data Augmentation

Simulate total sensor failure during training.

Blackout is applied randomly for each batch at 20% chance.

Ш

Method #3: Strengthen Camera Encoder

Strengthening the camera model could improve performance when the LiDAR sensor fails.

Camera depth prediction

True LiDAR-based depth

The camera model **explicitly predicts** the **depth** of each pixel. This prediction is very inaccurate.

=> Improve prediction by using LiDAR-based depth as supervision during training

Results: Pretraining

=> Pretraining has a noticeable effect on robustness against sensor failure

Approach

Results: Data Augmentation

=> Data augmentation has a substantial effect on robustness against sensor failure

State of the Art

Approach

Results

Discussion

Summary

Results: Camera Encoder

Camera view

LiDAR-based depth

Original depth prediction

Improved depth prediction

Results: Camera Encoder

Noticeable increase in performance for the base camera model.

mAP NDS 42.58 41.21 40 37.96 35.56 30 20 10 Camera Camera Depth Aug. Model

Baseline Performance

→ Does this translate to the fusion model?

Results: Camera Encoder

Effect, including pretraining and data augmentation:

Approach

=> Increased camera model performance directly translates to improved robustness during fusion

Ш

Generalization to partial sensor failure

So far, the focus has been only on **full** sensor failure (blackout)

<u>Do the presented methods improve performance in the event of **partial** sensor failure?</u>

FoV 360°

FoV 180°

FoV 120°

State of the Art

Approach

Results

Discussion

Summary

Generalization to partial sensor failure

Ground Truth

Baseline Model

Augmented Model

=> Performance for **partial** sensor failure **increases significantly**

Introduction State of the Art

Approach

Results

Discussion

Limitations

- Reduced baseline performance vs. BEVFusion (resource and time constraints)
 - > Higher performance might lead to trade-off with robustness

Introduction State of the Art

Approach

Results

Discussion

Limitations

- Reduced baseline performance vs. BEVFusion (resource and time constraints)
 - Higher performance might lead to trade-off with robustness

- Limited camera model performance
 - > Possible trade-off between LiDAR and camera contribution

Generalization to other sensor failure types unclear

ПЛ

Summary

Visualization of LiDAR sensor failure

Before and after:

LiDAR view: Ground truth

Back view: Original model

Back view: Augmented model

Summary

Existing sensor fusion methods struggle in the event of sensor failure

- > The presented methods significantly increase robustness against sensor failure
 - > Both the camera failure and the LiDAR failure cases are improved
 - > Strong results are achieved when using only **train-time** augmentations

- > The **negative impact** on base performance is **negligible**
- ➤ Methods generalize well to partial sensor failure

Introduction State of the Art

Approach

Results

Discussion

Open Questions

- > Do the presented methods also have a positive effect on **other** failure cases? (e.g. sensor miscalibration/misalignment)
- > Are the presented methods also effective for **other** detection **tasks**? (e.g. map segmentation)
- > When increasing base performance, is there a trade-off between a **robust** and a **high- performance** model?

Image Sources

https://www.eetindia.co.in/wp-content/uploads/sites/4/images/9d124bd9-84d5-4089-8e87-64831cb754d9.jpg