

Разработка системы отслеживания перемещений рыбы с помощью компьютерного зрения

Студент: Крайников Александр Николаевич

Проблема и Актуальность

- Необходимость отслеживание притока и оттока рыбы из водных ресурсов.
- 1. Позволит принимать превентивные меры
- 2. Позволит подстраивать производственные мощности
- 3. Позволит проводить исследования

Заказчик:

 Северный филиал Федерального государственного бюджетного научного учреждения «Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии»

Цель и Задачи

- о Определять и отслеживать перемещения рыб в реках Архангельской области с помощью системы компьютерного зрения
- 1. Сбор датасета;
- 2. Обучение модели детектирования рыбы;
- 3. Разработка системы отслеживания перемещения рыбы;
- 4. Разработка программного обеспечения для работы системы в режиме реального времени.

1. Набор данных

- Поиск датасетов
- Первичная проверка
- Сбор тестовых данных
- Поиск повторяющихся изображений
- Поиск схожих изображений
- Сжатие картинок до единого разрешения
- Преобразование подписей по одному формату
- Преобразование задач сегментации в детекцию
- Поиск ошибок разметки
- Удаление не нужных классов
- Переименование файлов
- Разделение набора данных на группы
- Сжатие в архив
- Организация структуры

#	Название	Тип	Detect	Segment	Class	Local	Countour
1	DeepFish	Фото	-	662	39 770	3 202	-
2	Fishclef 2015	Видео	-	98	-	-	-
3	Fishnet	Фото	94 806	-	-	-	1
4	fishRecognition_GT	Фото	-	27 370	-	-	-
5	LABELED-FISHES-IN-THE-WILD	Фото, Видео	207 кадр.	1 видео	-	-	-
6	Fish detection and tracking	Видео	-	-	-	-	17
7	Underwater Object Detection Dataset	Фото	7 556	-	-	-	-
8	Deep Fish Object Detection	Фото	5 568	-	-	/ <u>-</u>	-
9	Luderick seagrass	Фото	-	-	-	-	4 280

DeepFish

Fishclef 2015

Fishnet

fishRecognition_GT

LABELED-FISHES-IN-THE-WILD

Fish detection and tracking

Underwater Object Detection Dataset

Deep Fish Object Detection

Luderick seagrass

1.2 Удаление дубликатов

Идентичные (hash)

- Менее 5 минут на 120 000 элементов
- Работает без настройки
- Находит только идентичные дубликаты

Похожие (embeddings)

- Для 120 000 элементов необходимо 100+ Гб
- Время вычисления 1000+ часов
- Необходима настройка
- Удаляет «скрытые дубликаты»

1.3 Унифицирование

Разрешение фото:

320x320

Больший батч

• Ускорение обучения

Структура датасета:

YOLO

Удобен у ручном создании

Распространен

Формат фото:

JPG

Сжатые фото

Поддерживается везде

Формат подписи:

TXT

• Простейший формат

Поддерживается везде

Первичная задача:

DETECT

Наиболее распространена

• Быстро обучается

1.4 Постобработка

Разметка не рыбы

Спец. Символы в названии

- 0b21f0579d247c855e05405d3ed805c1#201205251240_0.txt
 0b21f0579d247c855e05405d3ed805c1#201205251240_1.txt
 0b21f0579d247c855e05405d3ed805c1#201205251240_2.txt
 4 png.rf.8c6ec4f5f79b85a7df6081208f7d107a.txt
 - 7_png.rf.7f66055822fbd1c8754d3d047f1b5dde.txt

Потеря файлов

Дублирование подписей

1.5 Сборка

Весь набор данных								
120 194								
Train	Test	Valid						
~70%	~20%	~10%						
84 137	24 038	12 019						
Сподписью	Без	Без подписи						
110 069		9 375						

1.5 Сборка

Переворот Температура Яркость Мозаика Размытие Контраст Исходное HSV Разрезание ЧБ

- Цветной
- 100 эпох
- YOLOv8n
- dataset_v3
- SGD
- Batch 16
- mAP50 0. 98018

- Цветной
- 100 эпох
- YOLOv8n
- dataset_v3
- SGD
- Batch 16
- mAP50 0. 98018

3 Разработка системы отслеживания перемещения рыбы

Предобработка

- Сжатие разрешения
- Работа с цветами
- В тензор

Подсчет объектов

- Уникальные объекты
- Подсчёт параметров

Детектирование

- Выбор модели
- Получение bbox

Определение пересечение центра

- Слева направо
- В левой и в правой

Постобработка

- Преобразование bbox
- Исходное изображение
- Отбор данных

Вывод

- Нанесение bbox
- Преобразование

4 Разработка программного обеспечения для работы системы в режиме реального времени

4 Разработка программного обеспечения для работы системы в режиме реального времени

Заключение

- о Разработанное ПО полностью функционально, однако обладает крайне низкой точностью, не применимой. Необходима разработка новых моделей
- Необходима ручная сборка и обработка набора данных
- Необходимо провести эксперименты с архитектурами моделей
- Необходимо провести эксперименты с цветовым пространством
- Необходимо провести эксперименты с обработкой видео
- Планируется разработка сегментирующей головы
- Планируется определение глубины фото
- Планируется классификация рыбы
- Планируется определять размер рыбы