Cocientes compactos vs marcos arreglados

30 de abril de 2025

Juan Carlos Monter Cortés

Universidad de Guadalajara

Contenido

Cocientes compactos

Marcos arreglados

C. C. vs M. A.

Por si acaso...

Cocientes en Frm

Frm proporciona correspondencias biyectivas interesantes

Congruencias ↔ Conjuntos implicativos ↔ Núcleos

Definición:

Sea $A \in \mathbf{Frm}$ y $j: A \to A$, decimos que j es un núcleo si:

- 1. *j* infla.
- 2. j es monótona.
- 3. *j* es idempotente.
- 4. *j* respeta ínfimos finitos.

NA = núcleos de A.

Definición:

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f: A \rightarrow B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

- A_j es un cociente de A.
- ¿Qué es un cociente compacto?

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un *filtro* si:

- 1. $1 \in F$.
- 2. $a \leqslant b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leq b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Existen diferentes tipos de filtros:

- Propio
- Primo

- (Scott) abierto
- Admisible $(\nabla(j))$
- Completamente primo

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

• $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.

Definición:

Sea $A \in \mathbf{Frm}$. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si cada cubierta tiene una subcubierta finita.

Definición:

Sea $A \in \mathbf{Frm}$. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si cada cubierta tiene una subcubierta finita.

Definición:

Sea $A \in \mathbf{Frm}$. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si cada cubierta tiene una subcubierta finita.

• A_i es un cociente de A.

Definición:

Sea $A \in \mathbf{Frm}$. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si cada cubierta tiene una subcubierta finita.

- A_i es un cociente de A.
- A_i es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.

¿Qué son los marcos arreglados?

- Una de las aplicaciones de la teoría de marcos es que, en cierto punto, un marco puede llegar a mimetizar el comportamiento de la topología de un espacio.
- En este sentido, los marcos arreglados buscan imitar la propiedad de que un espacio sea empaquetado.
- Como es habitual, las variantes que proporcionan los marcos son caracterizaciones "libres de puntos".

Marcos arreglados

Sea $A \in \mathbf{Frm} \ y \ \alpha \in \mathbf{Ord}$.

• $F \in A^{\wedge}$ es α -arreglado si

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$
,

donde
$$d = d(\alpha) = f^{\alpha}(0)$$
 y $f = \bigvee \{v_a \mid a \in F\}$

- A es α -arreglado si todo $F \in A^{\wedge}$ es α -arreglado.
- A es arreglado si A es α -arreglado para algún α .

Marcos arreglados

Propiedades:

- Parche trivial ⇔ arreglado
- Arreglado ⇔ empaquetado + apilado
- Un espacio S tiene topología 1-arreglada $\Leftrightarrow S$ es T_2 .
- Arreglado $\Rightarrow T_1$
- Regularidad ⇒ arreglado
- $(\mathbf{fH}) \Rightarrow \text{arreglado}$

Cocientes compactos vs marcos arreglados

References I

- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- J. Monter; A. Zaldívar, El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos [tesis de maestría], 2022. Universidad de Guadalajara.
- J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.
- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.

References II

- Rosemary A Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- Harold Simmons, *The assembly of a frame*, University of Manchester (2006).
- RA Sexton and H. Simmons, *Point-sensitive and point-free* patch constructions, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.
- A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2024. Universidad de Guadalajara.