Worksheet 1: Impartial games – answers

- 1. (a) Nim sum is 1. Remove 1 stick from any pile.
 - (b) Nim sum is 3. Remove 1 stick from the 2-heap, or remove 3 sticks from the 3-heap or 7-heap.
 - (c) Nim sum is 13. Remove 5 sticks from the 9-heap.
 - (d) Nim sum is 46. Remove 18 sticks from the 32-heap.
 - (e) Nim sum is 0. No winning move possible.
- 2. Cutthroat Stars Find all the winning moves, if any, in the following games.
 - (a) $K_{1,3}$, $K_{1,6}$ and $K_{1,4}$ are equivalent to *1, *2 and *2, respectively. The game is therefore in a \mathcal{N} -position. Remove the central node of $K_{1,3}$.
 - (b) $K_{1,4}$, $K_{1,2}$ and $K_{1,6}$ are equivalent to *2, *2 and *2, respectively. The game is therefore in a \mathcal{N} -position. Remove the central node of any graph.
 - (c) $K_{1,4}$, $K_{1,2}$, $K_{1,8}$ and $K_{1,2}$ are equivalent to *2, *2, *2 and *2, respectively. The game is therefore in a \mathcal{P} -position and there is no winning move.
 - (d) $K_{1,5}$, $K_{1,3}$, $K_{1,4}$ and $K_{1,7}$ are equivalent to *1, *1, *2 and *1, respectively. The game is therefore in a \mathcal{N} -position. Remove a radial node from either $K_{1,4}$ or $K_{1,5}$.

3.

n	Set of available options	mex	Nim equivalent	Type
n = 0	{}	0	*0	\mathcal{P}
n = 1	$\left\{ \lfloor \frac{1}{2} \rfloor, \lfloor \frac{1}{3} \rfloor, \lfloor \frac{1}{6} \rfloor \right\} = \{0, 0, 0\}$	1	*1	\mathcal{N}
n=2	$\left\{ \lfloor \frac{2}{2} \rfloor, \lfloor \frac{2}{3} \rfloor, \lfloor \frac{2}{6} \rfloor \right\} = \{1, 0, 0\}$	2	*2	\mathcal{N}
n=3	$\left\{ \lfloor \frac{3}{2} \rfloor, \lfloor \frac{3}{3} \rfloor, \lfloor \frac{3}{6} \rfloor \right\} = \{1, 1, 0\}$	2	*2	\sim
n=4	$\left\{ \left\lfloor \frac{4}{2} \right\rfloor, \left\lfloor \frac{4}{3} \right\rfloor, \left\lfloor \frac{4}{6} \right\rfloor \right\} = \{2, 1, 0\}$	3	*3	\mathcal{N}
n=5	$\left\{ \lfloor \frac{5}{2} \rfloor, \lfloor \frac{5}{3} \rfloor, \lfloor \frac{5}{6} \rfloor \right\} = \{2, 1, 0\}$	3	*3	\mathcal{N}

- For $6 \le n \le 11$, note that $\lfloor \frac{n}{2} \rfloor \ge 3$, $\lfloor \frac{n}{3} \rfloor \ge 2$ and $\lfloor \frac{n}{6} \rfloor \ge 1$, so the set of available options $\{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{3} \rfloor, \lfloor \frac{n}{6} \rfloor\}$ cannot contain 0. Therefore values of n for $6 \le n \le 11$ have mex 0 and are equivalent to *0, a \mathcal{P} -position.
- For n = 12, the available options are $\left\{ \lfloor \frac{12}{2} \rfloor, \lfloor \frac{12}{3} \rfloor, \lfloor \frac{12}{6} \rfloor \right\} = \{6, 4, 3\}$. Using the values above, this is equivalent to *0, *3, *2, so the mex is 1 and n = 12 is equivalent to *1, a \mathcal{N} -position.
- 4. Single-pile Nim is equivalent to *0. Cutthroat Stars is equivalent to *1. Multi-pile Nim is equivalent to *4. Overall Nim sum is $0 \oplus 1 \oplus 100 = 101 = *5$. Play in Multi-pile Nim by removing 3 sticks from the 4-heap.