AULA 07 – PARADIGMAS DE PROGRAMAÇÃO 25/02/2013

PROFESSOR GLAUBER FERREIRA CINTRA SEMESTRE 2012.2 – ENGENHARIA DE COMPUTAÇÃO IFCE

TIPOS DE DADOS

O conceito de tipo de dados é uma abstração que nos permite enxergar uma mesma sequência de bits com significados diferentes.

Todo tipo de dados está associado a um domínio, que é o conjunto de valores admissíveis para aquele tipo.

Exemplo:

Tipo byte do Java:

As linguagens que possuem o conceito de tipo de dados são chamadas de tipadas. Uma linguagem é dita fortemente tipada se ela possui as seguintes características:

- Toda variável é associada a um tipo de dados na sua declaração;
 - É possível criar novos tipos;
- Executa uma verificação forte da compatibilidade dos tipos de dados envolvidos nas expressões.

Exemplo:

Fracamente tipada: Clipper

Fortemente tipada: Pascal

"Expoente mantissa,

- **Números inteiros**: -3, 8, 150...
- Números de precisão em ponto flutuante
 - o Simples

- Caractere: EBCDIC, ASCII, UNICODE
- **Strings**: Em algumas linguagens as strings tem tamanho fixo, em outras tamanhos variáveis.

Mantissa

• Boolean: Verdadeiro e Falso.

Sinal,

• **Data**: Em algumas linguagens como Perl este tipo é um tipo nativo. Normalmente, linguagens que possuem este tipo como primitivo são voltadas para fins comerciais.

Tipos estruturados

Vetor

Armazena uma coleção de valores homogêneos, ocupando assim uma região contígua de memória. O endereço da memória correspondente a posição do vetor é dado pela expressão (i - início)*tam+EB.

Onde o início é o índice da 1ª posição do vetor, tam é o tamanho de cada posição do vetor e EB é o endereço base do vetor. Exemplo:

Um vetor é subdividido em posições indexadas por números naturais, em geral.

Os vetores podem ser classificados como:

Estáticos: Vinculação de memória e definição do tamanho ocorre em tempo de compilação.

Stack-dinâmicos: Vinculação de memória em tempo de execução e definição do tamanho ocorre em tempo de compilação.

Heap-dinâmicos de tamanho fixo: Vinculação de memória e definição do tamanho ocorre em tempo de execução.

Heap-dinâmicos de tamanho variável: Vinculação de memória e definição do tamanho ocorre em tempo de execução, sendo que o tamanho pode variar livremente.

Exemplo em C:

```
int v[10]; //vetor estático

void enigma(int n) {
    int y[10]; //vetor Stack dinâmico
    int z[n]; // vetor Stack heap de tamanho
fixo
}
```

Matrizes

04/03/13

Uma matriz armazena uma coleção de dados de mesmo tipo. Uma matriz possui duas ou mais dimensões.

Cada posição da matriz é indexada por uma lista de índices, com um índice para cada dimensão da matriz.

Registros (structs, na linguagem C)

Um registro armazena uma coleção de dados heterogêneos. Um registro é subdividido em **campos** que são identificados por seus *nomes*. Em POO, *objetos* são equivalentes a registros.

Conjuntos

Um conjunto armazena uma coleção de elementos distintos. Em um conjunto **não existe** a noção de ordem.

Ponteiro

Um ponteiro armazena um endereço de memória.

Vetores associativos (Hashes)

Um vetor associativo armazena uma coleção de valores sendo que cada valor está associado a uma **chave**. As chaves são usadas no mapeamento dos valores da tabela. Esse mapeamento é feito por uma função de *hashing*.

Tipos enumerados

Em um tipo enumerado definimos de forma explícita os elementos do domínio.

Exemplo em Pascal:

```
Type LETRA = { 'A', 'B','Z'};
Type VOGAL = { 'A', 'E','I', 'O','U'};
```

Exemplo em C:

```
enum cores {
    AZUL = 1,
    VERDE,
    BRANCO,
};
```

Exemplo em Java:

```
public enum MarcasEnum {
    AMAZON, DELL, HP, TOSHIBA, LG, SAMSUNG;
}
```