PATENT ABSTRACTS OF JAPAN

(11) Publication number:

64-003009

(43) Date of publication of application: **06.01.1989**

(51)Int.Cl.

C01G 1/02 C01B 21/06 C01B 31/30 C01B 35/04 C01G 1/06 C01G 1/12 C01G 3/00 C01G 31/00 C01G 35/00 CO4B 35/00 C23C 14/08 C23C 14/34 H01B 12/00

(21)Application number : **63-066899**

(71)Applicant: SUMITOMO ELECTRIC IND LTD

(22) Date of filing:

19.03.1988

(72)Inventor: FUJITA NOBUHIKO

KOBAYASHI CHUICHI

ITOZAKI HIDEO

TANAKA SABURO

YATSU SHUJI

JODAI TETSUJI

(30)Priority

Priority number : **62 65281**

Priority date : **19.03.1987**

Priority country: JP

(54) SUPERCONDUCTING MATERIAL AND PRODUCTION THEREOF

(57)Abstract:

PURPOSE: To obtain a superconducting material having high superconductive critical temperature and small difference between the superconductive critical temperature and the temperature to complete phase transition, by sintering a powdery mixture of oxides, carbonates, sulfates or nitrates of four specific kinds of

α, β, γ, δ, ε,

elements.

CONSTITUTION: A superconducting material having a composition of formula (ε is at least one kind of element selected from O, B, C, N, F and S; u, v, w and x are 0 or 1; y is 1W4) is produced by mixing oxides, carbonates, sulfates or nitrates of an element (α) selected from the group IIa and group IIIa elements of the periodic table, an element (β) selected from the group IIa and the group IIIa elements of the periodic table including the same element as the element (α), at least one kind of element (γ) selected from V, Ta, Nb, Cr, Ca, In, Cd, Sn, TI, Pb, Mo, W and Zn and an element (δ) selected from the groups Ib, IIb, IIIb and VIIIa elements of the periodic table at atomic ratios of (0.5W2):(0.5W3):(1W4):(0.01W0.1) and sintering the obtained powdery mixture at 700W1,600°C.

⑩ 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭64-3009

@Int_Cl_4

識別記号

庁内整理番号

砂公開 昭和64年(1989)1月6日

C 01 G 1/02 C 01 B 21/06

ZAA ZAA 7202-4G A-7508-4G M-7508-4G **

審査請求 未請求 請求項の数 3 (全10頁)

60発明の名称 超電導材料とその製造方法

> ②)特 願 昭63-66899

22出 願 昭63(1988)3月19日

優先権主張 ③昭62(1987)3月19日3日本(JP)3時額 昭62-65281

兵庫県伊丹市昆陽北1丁目1番1号 住友電気工業株式会 78発明者 藤 \blacksquare 順 彦 社伊丹製作所内

②発 明 渚 小 林 忠 兵庫県伊丹市昆陽北1丁目1番1号 住友電気工業株式会

社伊丹製作所内

72発 明 渚 糸 齨 秀 兵庫県伊丹市昆陽北1丁目1番1号 住友電気工業株式会 夫

社伊丹製作所内

⑦出 願 人 住友電気工業株式会社

邳代 理 人 弁理士 越場 隆 最終頁に続く

大阪府大阪市東区北浜5丁目15番地

明細書

- 1. 発明の名称 超電導材料とその製造方法
- 2. 特許請求の範囲
- (1) 一般式: α, β, γ, δ, ε,

(但し、αは周期律表Ⅱa、Ⅲa族元素から選択 された1種であり、

βは周期律表Ⅱa、Ⅲa族元素でαと同じもの を含む元素から選択された1種であり、

δは周期律表Ⅰb、Ⅱb、Ⅲb、Ⅷa族元素か ら選択された1種であり、

εはO、B、C、N、F及びSのうちから選択 された少なくとも1種であり、

r は V 、Ta、 Nb、 Cr、 Ga、 In、 Cd、 Sn、 Tl、 Pb、 Mo、W、Znからなる群から選択した少なくとも 1種であり、

u、v、w、xはO以上1以下の数であり、y は1以上4以下の数である)

で表される組成を有する超電導材料。

(2) 周期律表Ⅱa、Ⅱa族元素から選択された1 種の元素αと、周期律表Ⅱa、Ⅲa族元素で該元 素αと同じものを含む元素から選択された1種の 元素 B と、 V、 Ta、 Nb、 Cr、 Ga、 In、 Cd、 Sn、 Ti、 Pb、Mo、W、2nからなる群から選択された少なく とも1種の元素でと、周期律表Ⅰb、Ⅱb、Ⅲb、 伽α族元素から選択された1種の元素δとの各々 の酸化物、炭酸塩、硫酸塩あるいは硝酸塩の粉末 の混合物を焼結することを特徴とする複合酸化物 からなる超電導材料の製造方法。

(3) 周期律表Ⅱa、Ⅲa族元素から選択された1 種の元素αと、周期律表Ⅱa、Ⅲa族元素で該元 素αと同じものを含む元素から選択されたⅠ種の 元素 B と、 V、 Ta、 Nb、 Cr、 Ga、 In、 Cd、 Sn、 Tl、 Pb、Mo、W、Znからなる群から選択された少なく とも1種の元素でと、周期律表Ⅰb、Ⅱb、Ⅲb、 Wa族元素から選択された【種の元素δとを含有 する酸化物をターゲットとして物理蒸着を行い、

ペロブスカイト型酸化物または擬似ペロブスカイト型酸化物の薄膜を形成することを特徴とする超 電導薄膜の作製方法。

3. 発明の詳細な説明

産業上の利用分野

本発明は超電導材料に関する。より詳細には、 高い超電導臨界温度を有し、超電導臨界温度と相 転移の終了温度との差が小さく、且つ、超電導特 性が安定した新規な超電導材料とその製造方法に 関する。

従来の技術

超電導現象下の物質は完全な反磁性を示し、内部で有限な定常電流が流れているにも関わらず電位差が現れなくなる。そこで、超電導体は電力損失の全くない伝送媒体として各種の応用が提案されている。

即ち、MHD発電、電力送電、電力貯蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船舶

等の動力分野、更に、磁場、マイクロ波、放射線 等の超高感度センサとしてNMR、π中間子治療、 高エネルギー物理実験装置などの計測の分野等、 極めて多くの利用分野を挙げることができる。

また、ジョセフソン素子に代表されるエレクトロニクスの分野でも、単なる消費電力の低減のみならず、極めて高速な動作を実現し得る技術として期待されている。

ところで、これまで超電導現象は超低温下においてのみ観測されていた。即ち、従来の超電導材料として最も高い超電導臨界温度Tcを有するといわれているNb。Geにおいても23.2 Kに止まっている。そこで、従来は、超電導現象を実現するために沸点が 4.2 Kの液体へリウムを用いて超電導材料をTc以下まで冷却していた。しかしながら、液体へリウムの使用は、液化設備を含めた冷却設備による技術的負担並びにコスト的負担が極めて大きく、超電導技術の実用化への妨げとなっていた。

ところが、1986年秋になり高いT。をもつ超電

導酸化物が発見されるにいたって、高温超電導の可能性が大きく開けてきた(Bednorz, Muller, "Phys. B64(1986) 189)。この酸化物超電導体は〔La, Ba〕2 Cu〇.または〔La, Sr〕2Cu〇.で表され、K2NiF.型酸化物呼ばれるもので、従来から知られていたペロブスカイト型超電導酸化物と結晶構造が似ている。これらの物質のTcは30~50Kと、従来に比べて飛躍的に高い値である。Tcがこの温度に達すると、超電導を起こさせるための冷媒として液体水素(沸点20.4K)または液体ネオン(沸点27.3K)が使えるようになる。

更に、1987年2月になって、チュー達によって 90 K クラスの臨界温度を示すBa - Y系の複合酸化 物が発見されたことが新聞報道され、非低温超電 導体実現の可能性が俄かに高まっている。

発明が解決しようとする課題

Tc は一般に超電導現象の開始温度あるいは超 電導を維持できなくなる臨界温度を意味するが、 物質によっては、その物質が完全な超電導体とな る相転移の終了温度TcfがTc と大きく隔たっている。従って、実際にはTc よりもかなり低い温度まで冷却する必要があり、この点からTc とTcf との差をできるだけ小さくすることが望まれている。

更に、超電導体は、一定以上の強度の磁場中では超電導効果を失うことが知られている。この超電導体がその特性を失う臨界磁場は、一般にその物質の臨界温度と共に上下することが知られており、特に高磁場電磁石等への用途を考えた場合には、臨界磁場下での超電導の安定性を向上させる必要性が論じられている。

そこで、本発明の目的は、上記従来技術の課題を解決し、高いて。を維持したまま、高磁場下でも超電導効果を失うことが無く、Tc とTcfとの差が小さい新規な超電導材料と、その超電導材料を得るための製造方法を提供することにある。

尚、以下の記述において、超電導材料の超電導 開始温度あるいは臨界温度をTc 、材料の電気抵 抗が完全に零となる相転移終了温度をTcf、Tc 施することが有利である。

また、上記焼結後、直ちに急冷する、または焼結後、 700~930 ℃の範囲に再加熱し、急冷する工程を含む処理を行うごとも好ましい。

更に、本発明に従って、周期律表Ⅱ a、Ⅲ a族元素から選択された1種の元素αと、周期律表Ⅱ a、Ⅲ a族元素でαと同じものを含む元素から選択された1種の元素β、 V、 Ta、 Nb、 Cr、 Ga、 in、Cd、 Sn、 Tl、 Pb、 Mo、 W、 Znからなる群から選択した少なくとも1種の元素 r と、周期律表Ⅰ b、 Ⅱ b、Ⅲ b、 Ⅲ a族元素から選択された1種の元素 r と、周期律表Ⅰ b、 Ⅱ b、 Ⅲ b、 Ⅲ a族元素から選択された1種の元素を含有する酸化物をターゲットとして物理蒸着を行い、ペロブスカイト型酸化物または促促 ペロブスカイト型酸化物の薄膜を形成することを特徴とする超電導薄膜の作製方法が提供される。

ここで、本発明の好ましい態様によれば、上記

クーゲットがペロブスカイト型酸化物または擬似 ペロブスカイト型酸化物であることが挙げられる。

上記方法において、本発明の一態様に従えば、上記元素 α がBaであり、元素 β がYであり、元素 δ がCuである。ここで、Ba、Y、Cuおよび上記記号rで示される元素の原子比が $(0.5\sim2)$: $(0.5\sim3)$: $(1\sim4)$: $(0.01\sim0.1)$ となるようBa、Y、Cuおよび元素 δ の酸化物、炭酸塩、硝酸塩または硫酸塩の粉末を調製することが有利である。

また、上記ターゲットは、Ba、Y、Cuおよび上記元素δの酸化物、炭酸塩、硝酸塩または硫酸塩の混合粉末を 250~1200℃の温度で焼成したものであり得、更に、上記ターゲットが、上記焼成後、更に 700~1000℃の範囲の温度で本焼結したものであることが有利である。

ターゲットとしては、上記ターゲットが本焼結体または仮焼結体の粉末を用いてもよいし、ブロックとして使用してもよい。

また、複数のターゲットを使用することもでき、 この場合、本発明の一態様に従えば、上記ターゲ

ットはそれぞれBa、Y、Cuおよび元素 8 の酸化物であり得る。

ここで、本発明の好ましい態様に従えば、ターゲットのBa、Y、Cuおよび元素δの原子比が、形成される薄膜のBa、YおよびCuの原子比を基準として、Ba、Y、Cuおよび元素δの蒸着効率に応じて調整されていることが有利である。

また、蒸着雰囲気はArとO。とを含み、Ar分圧を 1×10^{-3} 乃至 3×10^{-1} Torrの範囲内、O。分圧を 1.0×10^{-3} 乃至 3×10^{-1} Torrの範囲内とすることが好ましい。

また、上記物理蒸着はRFスパッタリングであり得、この場合、スパッタリング時の高周波電力は104W/cd以下であることが好ましい。

また、マグネトロンスパッタリングで蒸着を実施することもできる。

尚、本発明の好ましい態様に従えば、スパッタリング時に、基板をヒータにより加熱することが有利であり、この加熱温度としては 260~1500 での範囲であることが有利である。

本発明の一態様に従えば、上記基板として、ガラス、石英、Si、ステンレス鋼およびセラミックスからなる群より選択された1種を使用することができる。

また、蒸着時の基板とターゲットと間の距離は 3 ~ 230mmの範囲であることが好ましい。

更に、上記物理蒸着はイオンプレーティング、 真空蒸着、イオンピーム蒸着、分子線蒸着のいず れか1種であり得る。

前述のように、本発明によって焼結体あるいは 薄膜として得られた超電導材料は、更に、熱処理 することが好ましい。ここで、本発明の一態様に 従えば、上記加熱温度は 750~1500 ℃の範囲内で あることが好ましく、 750~ 930 ℃の範囲の温度 範囲内であることが更に好ましい。

<u>作用</u>

本発明の提供する超電導材料は、

一般式: $\alpha_u\beta_v\gamma_w\delta_x\epsilon_y$

(但し、αは周期律表Ⅱa、Ⅲa族元素から選択

とTcfとの差をATと表す。

課題を解決するための手段

本発明者達は、最近発見された上記のような室温超電導材料に他の添加元素を添加することによって、上記課題を解決しようと試みた。即ち、他の元素を添加することによって上記超電導材料の結特性が改善され、結果的に、臨界電流密度JCの向上、高磁場下でのJCの安定化等の超電導の諸特性を改善することを試みた。

本発明者は実験の結果、V、Ta、Nb、Cr、Ga、In、Cd、Sn、T1、Pb、Mo、WまたはZnの1種または2種以上を添加することによって高いT。を維持したまま、高磁場下でも超電導効果を失うことが無く、TcとTcfとの差が小さい超電導材料が得られることを見出した。

そこで、本発明に従い、

一般式: α, β, γ, δ, ε,

(但し、αは周期律表Ⅱ a、Ⅲ a 族元素から選択 されたⅠ種であり、

ることを特徴とする超電導材料

③ 上記αが周期律表Ⅱ a 族元素であり、β が 周期律表Ⅲ a 族元素であることを特徴とする 超電導材料。

本発明の一態様に従えば、上記超電導材料は、 例えば焼結体として得られる。また、他の態様に 従えば、気相合成により形成された薄膜としても 形成される。

上記本発明に係る製造方法により得られる超電

βは周期律表Ⅱa、Ⅲa族元素でαと同じもの を含む元素から選択されたⅠ種であり、

るは周期律表 I b、 II b、 II b、 Wa 族元素から選択された 1 種であり、

εはO、B、C、N、F及びSのうちから選択 された少なくとも1種であり、

rはV、Ta、Nb、Cr、Ga、In、Cd、Sn、T1、Pb、 Mo、W、Znからなる群から選択した少なくとも 1種であり、

u、v、w、xは0以上1以下の数であり、y は1以上4以下の数である)

で表される組成を有する超電導材料が提供される。 上記本発明に係る超電導材料として、具体的に は以下のような化合物を代表的な例として挙げる ことができる。

- ① 上記一般式中の € が であり、上記超電導材料は複合酸化物である超電導材料。
- ② 上記一般式中の δ がCu であり、上記一般式 で示される複合酸化物がペロブスカイト型酸 化物または擬似ペロブスカイト型酸化物であ

導材料としては、上記一般式中のδがCoであり、 上記複合酸化物がペロブスカイト型酸化物または 擬似ペロブスカイト型酸化物である超電導材料、 あるいは、上記αが周期律表Ⅱ a 族元素であり、 βが周期律表Ⅲ a 族元素である超電導材料が具体 的に例示できる。

更に具体的には、上記 α がBaであり、 β がYである超電 β 材料が挙げられ、本発明の1態様に従えば、Ba、Y、Cuおよび上記記号 γ で示される元素の原子比が $(0.5\sim2):(0.5\sim3):(1\sim4):(0.01\sim0.1)$ となるようBa、Y、Cuおよび元素 δ の酸化物、炭酸塩、硝酸塩または硫酸塩の粉末を混合することが挙げられる。

上記本発明の製造方法において、本発明の好ましい態様に従えば、上記焼結を 700~1600 ℃、好ましくは 800~1000 ℃の範囲の温度で実施することが好ましい。

また、上記焼結を、前記混合粉末を予め焼成する予備焼結と、予備焼結後の焼成体を粉砕、成形した後焼結する本焼結との少なくとも2段階で実

された1種であり、

βは周期律表Ⅱa、Ⅲa族元素でαと同じもの を含む元素から選択された1種であり、

うは周期律表 1 b、Ⅱ b、Ⅲ b、Ⅲ a 族元素から選択された 1 種であり、

εはC、B、C、N、F及びSのうちから選択 された少なくとも1種であり、

rはV、Ta、Nb、Cr、Ga、In、Cd、Sn、T1、Pb、No、W、Znからなる群から選択した少なくとも
1 種であり、

u、v、w、xは0以上1以下の数であり、y は1以上4以下の数である)

で表される組成を有する。

また、上記元素δは一般に銅(Cu)であるが、 その一部を周期律表 I b、Ⅱ b、Ⅲ b、Ⅷ族元素 から選択された他の元素、例えば、チタン(Ti) 等で置換したものでもよい。

上記元素 α 、 β 、 τ および δ の原子比すなわち u、v、wおよびxは0以上1以下の数であり、 各元素の組合せに応じて適宜選択される。例えば、Ba-Y-Cu-r 系の複合酸化物の場合には、Ba、Y、Cuおよび上記記号rで示される元素の原子比Ba:Y:Cu:rが $(0.5\sim2):(0.5\sim3):(1\sim4):(0.01\sim0.1)$ となるように選択する。即 ち、各元素の原子比が上記範囲を見たしかときに、有効な超電導特性を発揮するベロブスカイト型または擬似ペロブスカイト型の結晶構造が形成される確率が高くなる。

このような本発明に係る超電導材料は、以下の ようにして作製することができる。

即ち、ひとつの方法としては、周期律表Ⅱa、Ⅲa族元素から選択された1種の元素αと、周期往表Ⅱa、Ⅲa族元素でαと同じものを含む元素から選択された1種の元素βと、V、Ta、Nb、Cr、Ga、In、Cd、Sn、Fl、Pb、Mo、W、Znからなる群から選択した少なくとも1種の元素γと、周期律表Ⅰb、Ⅱb、Ⅲb、Ⅲa族元素から選択された!種の元素δとの各々の酸化物、炭酸塩、硫酸塩あるいは硝酸塩の粉末を焼結する。

ここで、上記元素 α 、 β 、 γ および δ 並びにこれる元素の原子比すなわち u、v、w およびx は 焼結後に前記定義が満たされるように調整される。このようにして得られる焼結体は、上記元素 α 、 β 、 γ および δ を含む複合酸化物である。既に述べたように、この複合酸化物の酸素の一部を酸素以外の上記元素 ϵ の中から選択される他の元素すなわち、 β (硼素)、 β (炭素)、 β (変素)、 β 、 β

F)で置換することもできる。これらの元素は一般に窒化物の形の粉末、例えば B N 、 C N で原料粉末混合物に添加するか、上記元素α、β、 r およびδのフッ化物あるいは硫化物、例えばフッ化パリウム、フッ化イットリウムの形で原料粉末混合物に添加することができる。さらに、これら元素またはその化合物を気体状で直接添加することもできる。

上記焼結は700~1600℃、好ましくは800~1000 ℃の範囲の温度で実施することが好ましい。即ち、 焼結温度が該範囲に達しない場合は、有効な園相 反応の進行が進まない、あるいは極端に遅くなる。 一方、上記範囲を越えた場合は、原料粉末の一部 が溶融して、ペロブスカイトまたは擬似ペロブス カイト型の結晶構造の形成が狙害される。

また、この焼結操作は、上記粉末の混合物を、 予め焼成する予備焼結と、予備焼結後の焼成体を 粉砕し、成形後、焼結する本焼結との少なくとも 2 段階で実施することが極めて有利である。即ち、 このような操作を実施することによって、焼結体

の均質化と結晶の粗大化防止が達成される。尚、 好ましい処理温度として、上記予備烧結を 550~ 950 ℃の範囲の温度で実施し、本焼結を800~930 ℃の範囲の温度で実施することが例示される。

また、本発明の一態様に従えば、前記本発明に 係る超電導材料は、薄膜として形成することもで きる。即ち、周期律表Ⅱa、Ⅲa族元素から選択 された1種の元素α、周期律表Ⅱa、Ⅲa — 素 でαと同じものを含む元素から選択された1種の 元素β、V、Ta、Nb、Cr、Ga、In、Cd、Sn、Tl、 Pb、Mo、W、Znからなる群から選択した少なくと も1種の元素で、周期律表Ib、Ib、IIb、WIb、WI a 族元素から選択された l 種の元素 δ を含有する 酸化物をターゲットとして物理蒸着を行い、ペロ ブスカイト型酸化物または擬似ペロブスカイト型 の結晶構造を有すると考えられる複合酸化物を薄 膜として合成することができる。

ここで、上記ターゲットとして、それ自体がペ ロブスカイト型酸化物または擬似ペロブスカイト 型酸化物であるものを使用することによって、薄

膜の結晶性はより精密に制御される。即ち、前述 の焼結体として得られた超電導複合酸化物をター ゲットとして使用することが極めて有効である。 尚、ターゲットとしての複合酸化物焼結体を作製 する場合は、前述の焼結体の超電導材料を作製す る場合の諸操作を全て適用することができる。

ターゲットは上記の本焼結体または仮焼結体の 粉末でも焼結体または仮焼結体のブロックでもよ い。さらに、複数のターゲットを使用することも できる。この場合には、各ターゲットを、Ba、Y、 Cuおよび元素δの各酸化物にすることができる。

上記ターゲットのBa、Υ、Cuおよび元素δの原 子比は、形成される薄膜のMg、ThおよびCuの原子 比を基準として、Ba、Υ、Cuおよび元素δの蒸着 効率に応じて調整することができる。

上記薄膜はガラス、石英、Si、ステンレス鋼お よびチタン酸化物ストロンチウム、マグネシア、 YS2等のセラミッグス等の基板上に行うことが

尚、既に述べたように、この複合酸化物の酸素

の一部を酸素以外の上記元素 € の中から選択され る他の元素すなわち、B(硼素)、C(炭素)、 N (窒素)、弗素 (F) および/または硫黄 (S)、 加熱することも有効である。 特に弗素(F)で置換することもできる。この場 合には、一般に、これらの元素を窒化物の形の粉 末、例えばBN、CN等の形の粉末で原料粉末混 合物に添加するか、上記元素 α 、 β 、 τ および δ のフッ化物あるいは硫化物、例えばフッ化パリウ ム、フッ化イットリウムの形で原料粉末混合物に 添加することによって、これらの元素を薄膜中に 入れることができる。さらに、物理蒸着雰囲気中 にこれら元素またはその化合物を気体状で添加す ることによっても添加できる。

上記物理蒸着はスパッタリング、イオンプレー ティング、真空蒸着、イオンピーム蒸着、分子線 蒸着で行うことができるが、特に、RFスパッタリ ング、さらには、マグネトロンスパッタリングで 行うのが好ましく、スパッタリング時の高周波電 力は 104W/cd以下であるのが好ましい。また、 基板とターゲット間の距離は 3~ 230mmの範囲に

するのが好ましい。また、スパッタリング時に、 基板をヒータにより 260~1500℃の範囲の温度に

物理蒸着雰囲気はArとO。とを含み、Ar分圧は 1×10-3から3 ×10-1Torrの範囲にすることがで き、この場合、O2 分圧を1.0 ×10-3から3×10-1 Torrの範囲とすることが有利である。

以上のような本発明による各種方法によって作 製された超電導材料は、作製後にさらに熱処理す ることによって、その組成の均質化と安定化を達 成することができる。ここで、好ましい処理温度 としては 750~1500℃、好ましくは 750~ 930℃ の温度範囲を挙げることができる。また、この熱 処理は酸素分圧が10⁻¹atm 以下の雰囲気で行うこ ともによって、超電導材料中の酸素含有量を制御 することもできる。

以下に実施例により本発明をより具体的に詳述 するが、以下の実施例は本発明の一実施例であっ て、本発明の技術的範囲を何ら制限するものでは ない。

実施例

先ず、本発明の方法を実施するために用いる装置について説明する。第1図は、本発明の超電導 酸化物薄膜の作製に用いた髙周波スパッタリング 装置の概略図である。

第1図に示す装置は、チャンバーと、チャンバ 1内に配置されたターゲット 2 およびこのターゲットをスパッタ原子でスパッタするためにそれに 併置されたスパッタ電源 3 と、原料ターゲット 2 に対向して設けられ、表面上に薄膜が形成される ことになる基板 4 とから主に構成されている。チャンバ1はポート 7 を介して真空ポンプ (不図示) に接続され、内部を真空にすることができる。

基板 4 には高圧電源 5 を用いてバイアス電圧が 印加される。基板 4 にはさらに、加熱用ヒーター 6 が取りつけられ、基板温度が調整可能である。 さらに、チャンバ 1 にはガス導入孔 8 が取りつけ られている。

第2図は、本発明の超電導酸化物薄膜の作製に

用いた高周波励起型イオンプレーティング装置の 概略図である。

第2図に示す装置は、チャンバ11と、チャンバ11内に配置された原料ターゲットi2およびこの原料クーゲットを電子ビームで溶融、気化するためにそれに併置された電子ガン13と、原料ターゲット12に対向して設けられ、表面上に薄膜が形成されることになる基板14とから主に構成されている。チャンバ11は真空ポンプ(不図示)に接続され、内部を真空にすることができる。

基板14には高圧電源15を用いてバイアス電圧が 印加される。基板14にはさらに、加熱用ヒーター 16が取りつけられ、基板温度が調整可能である。 チャンバ11内にはさらに、原料ターゲット12と基 板14の間に蒸発粒子をおおうように高周波コイル 17が設置されている。さらに、チャンバ11には酸 素導入用のガス導入孔18が取りつけられている。

作製例1

純度99.9%のBaCOa 粉末59.0gと、純度99.9

%のY₂O₃粉末45.0gと、純度99.99 %のCuO粉末40.0gとの混合物に、更に純度99.9%のV₂O₅粉末を 2.0g添加し、ボールミルによって粉砕すると共によく混合した。

続いて、この混合物を型押によって成形して、 大気中で成形体を930 ℃で12時間焼成した。この 焼成体をボールミルによって粉砕した後、再び成 形して、大気中で成形体を 930 ℃、12.5時間焼結 した。

こうして得られた焼結体から、約3×3×10mm のサンプル部材を切りだし、このサンプル部材の 両端に常法に従って金蒸着による電極形成を行い、 クライオスタット中で冷却しながら、直流4点プ ローブ法による抵抗測定を行った。温度測定はキャリブレーション済みのAu(Fc) Ag熱電対を用い た。

液体水素によって約21 K まで冷却した上記部材 が超電導現象を示すことを確認した後、ヒータに よって部材の温度を少しづつ上昇させながら抵抗 の変化を観察したところ、上記部材は52 K から抵 抗を示し始め、93 Kに至って漸く常態と同じ電気 抵抗を示すようになった。即ち、この作製例にお いて作製した超電導材料の臨界温度Tc は93 Kで あり、相転移の終了温度は52 Kである。また、こ のことはレメータを用いて測定した A C 帯磁率の 測定結果からも確認された。

次に、上記と同様なサンプル部材に対して常法に従って臨界電流密度Jcを測定したところ、80 Kにおいて 600 A / cm² の電流密度値が観測さた。この温度で外部磁場を上げて臨界電流密度Jcの変化を測定したところ、1テスラの磁界で、100 A / cm² の電流密度値が観測された。

作製例2

作製例1と同じ純度99.9%のBaCO、粉末59.0 gと、純度99.9%のY2O。粉末45.0 gと、純度99.9%のCuO粉末40.0 gとの混合物に対して、この作製例では更に純度99.9%のTa2Osの粉末を5.0 g添加し、ボールミルによって粉砕すると共によく混合した。

続いて、この混合物を型押によって成形して、 大気中で成形体を930 ℃で12時間焼成した。この 焼成体をボールミルによって粉砕した後、再び成 形して、大気中で成形体を 930 ℃、12.5時間焼結 した。

こうして得られた焼結体から、約3×3×10mm のサンプル部材を切りだし、作製例1と同様の方法で臨界温度並びにサンプル部材の抵抗が完全に零となる温度を測定した。本作製例の超電導材料の臨界温度Tc は77Kであり、相転移の終了温度は76Kであった。

この結果も、レメータを用いた測定したAC帯 磁率の測定結果によって確認された。

尚、本作製例の超電導材料の臨界温度は、第1 作製例の材料の臨界温度よりも低いが、この試料 では、臨界温度と相転移終了温度との差が極めて 小さいことに着目すべきである。

次に、上記と同様なサンプル部材に対して常法に従って臨界電流密度Jcを測定したところ、70 Kにおいて 500 A / cm² の電流密度値が観測さた。 この温度で外部磁場を上げて臨界電流密度 J c の変化を測定したところ、1 テスラの磁界で80 A / cm² の電流密度値が観測された。

作製例3

Ba2CO3、Y2CO3、CuOの粉末を、原子比Ba /(Ba+Y)が 0.4、原子比Ba/Cuが2/3となるように混合し、更に原子比換算でV/Ba比が0.67 となるようにV2O5粉末を添加して、成形した後、820 ℃で仮焼結し、粉砕、成形後さらに1080℃で本焼結して焼結体ブロックを得た。このブロックをターゲットとし、Si単結晶基板を用いて、以下の条件でスパッタ法による薄膜形成を行った。

 酸素分圧
 4×10-2Torr、

 Ar分圧
 3×10-2Torr、

 基板温度
 700 ℃、

 基板パイアス電圧
 -60 V、

 高周波電力
 25 W / cd、

基板とターゲット間の距離 40mm

成膜速度は3A/secで約1μmの厚さに成膜し

た。尚、比較のために、他の条件を同一とし、全 く O 2 の含まれていない雰囲気においても同じ操 作を行って薄膜を形成した。

次いで、得られた各々の薄膜の抵抗を測定する ためサンブルを作製した。抵抗測定を行うサンプ ルは、基板上に形成された薄膜の両端部分に、さ らに真空蒸着で一対のAI電極を形成し、このAI電 極にリード線をハンダ付けした。

チャンパの内部の酸素分圧を 4×10⁻²Torrで作製した本発明の方法による薄膜は、超電導現象の始まる温度が約90 Kであり、50 K以下では完全な超電導体となる。これに対して、チャンパに酸素を入れずに作製した薄膜は、ほぼ同じ温度で抵抗が低下し始めたが、その低下はなだらかで、7 K付近で初めて完全な超電導体となった。このことから、成膜中に酸素を適切に制御して、所望の組成の超電導薄膜を形成できることがわかる。

本発明の薄膜サンプルの臨界電流密度 J c は、 70 K において2,000 A / cm² であり、この温度で 外部磁場を上げて臨界電流密度Jcの変化を測定したところ、1テスラの磁界で840 A/cm² の電流密度値が観測された。

作製例4

この本発明の方法による薄膜は、超電導現象の 始まる温度が約76 Kであり、75 Kで早くも完全な 超電導体となった。このサンプルにおいても、特 に臨界温度と相転移終了温度との差が極めて小さ いことが確認された。

この薄膜サンブルの臨界電流密度Jcは70 Kにおいて 3,500 A / cm² であり、この温度で外部磁場を上げて臨界電流密度Jcの変化を測定したところ1テスラの磁界で1,000 A / cm² の電流密度額が観測された。

発明の効果

以上詳述のように、本発明によれば、極めて高いTcを有する新規な超電導材料が提供される。この新規な超電導材料は、前述のように高いTcを示すので、高価かつ入手の困難な液体へリウムを用いる必要は最早なく、入手の容易な液体水素あるいは液体ネオン等を用いることが可能となる。また、液体酸素の莫大な需要に伴って副次的に生産されている極めて廉価な液体窒素の利用さえ実現可能であり、超電導技術の適用範囲を著しく拡大することができる。

また、本発明に従う超電導材料は焼結体として 得られるので、近年の焼結体関連分野の発展によ って実現されている各種の応用技術を用いるならば、様々の形状あるいは寸法の製品を得ることが可能である。従って、高磁場電磁石、超電導送電線、超電導電力蓄積器等の主要部材を構成し得ると共に、この超電導材料をターゲットとして用いて薄膜化し、ジョセフソン素子、SQUID(磁束計)、赤外センサ素子等のマイクロニレクトロニクスの分野における応用も拡大する。

4. 図面の簡単な説明

第1図は本発明の方法を実施するのに用いるス パッタリング装置の一例の概略図であり、

第2図は本発明の方法を実施するのに用いるイ オンプレーティング装置の一例の概略図である。

〔主な参照番号〕

1.11 ・・・・ チ + ン バ、

2.12 · ・・・ ターゲット、

3 ・・・・・・・ スパッタ電源、

4,14 · · · · 基 板、

5, 15 · · · · 高 圧 電 源、

6. 16 ···· ヒ - タ -、

7 # - +,

8.18 · ・・・ ガス導入孔、

13 ・・・・・・ 電 子 ガ ン

第1図

特許出願人 住友電気工業株式会社 代 理 人 弁理士 越 場 降

第2 図

第1頁の続き								
<pre>⑤Int.Cl.⁴</pre>					識別記号		庁内整理番号	
С	01		31/30 35/04		ZAA ZAA		8218—4G 6750—4G	
С	01 (G	1/06 1/12 3/00		Z A A Z A A Z A A		7202-4G 7202-4G 7202-4G 7202-4G	
			31/00 35/00		Z A A Z A A		7202-4G 7202-4G	
C		В	35/00 14/08		ZAA		7412-4G	
			14/34		Z A A Z A A		6926—4K 8520—4K	
Н	01 8	В	12/00		ZAA		7227—5E	
⑫発	明	者	田	中	Ξ	郎	兵庫県伊丹市昆陽北1丁目1番1号	住友電気工業株式会
⊕ ₹ ⁄	20	. 	. A	3 43 -	Mr	_	社伊丹製作所内 5-18-18-18-18-18-18-18-18-18-18-18-18-18-	the section of the se
②発	明	者	矢	津	修	示	兵庫県伊丹市昆陽北1丁目1番1号 社伊丹製作所内	住友電気工業株式会
⑫発	明	者	上	代	哲	司	兵庫県伊丹市昆陽北1丁目1番1号 社伊丹製作所内	住友電気工業株式会