Project Overview

This project is a **self-driving car** using **Raspberry Pi 4**, capable of:

- Lane Following : Detects and follows a white lane on a black road.
- Traffic Light Detection : Stops at red lights, moves at green lights.
- Obstacle Avoidance : Uses an ultrasonic sensor to stop if obstacles are within 15 cm.
- Adaptive Cruise Control (ACC) # : Adjusts speed based on distance from objects ahead.
- Object Detection & Text Recognition : Identifies objects and reads text using YOLOv4 & OCR.

Mardware Components

Component	Description
Raspberry Pi 4	Main controller
Pi Camera	Vision-based lane detection & object recognition
L298N Motor Driver	Controls DC motors
DC Motors (x2)	Left and right wheels
HC-SR04 Ultrasonic Sensor Detects obstacles	
Battery Pack	Power supply

★ Features & Functionality

□ane Following

- Uses OpenCV to detect white lane lines.
- Adjusts **steering** dynamically to stay centered.

2Traffic Light Detection

- Red Light → Stop §
- Green Light → Move
- Uses **HSV color filtering** to detect signals.

3Obstacle Avoidance

- Ultrasonic sensor detects obstacles within 15 cm.
- Car stops automatically to prevent collisions.

4□Adaptive Cruise Control (ACC)

- Adjusts speed based on **distance from the front vehicle**.
 - o >50 cm → Speed up
 - o 30-50 cm → Maintain speed
 - o <30 cm → Slow down</p>
 - <15 cm → Stop
 </p>

5Object Detection & Text Recognition

- Uses **YOLOv4-Tiny** to detect objects (cars, people, traffic signs, etc.).
- Uses **Tesseract OCR** to recognize text in images.

Code Structure

├— cruise_control.py # Adjusts car speed based on distance
├— lane_tracking.py # Detects and follows lane
├— traffic_light.py # Stops/moves based on traffic lights
├— obstacle_avoidance.py # Stops car if an obstacle is detected
├— object_detection_text.py # Detects objects and recognizes text
└— README.md # Project documentation

Installation & Setup

□nstall Dependencies

sudo apt update

sudo apt install tesseract-ocr

pip install pytesseract opency-python numpy

Download YOLO Model Files

wget https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov4-tiny.cfg
wget https://pjreddie.com/media/files/yolov4-tiny.weights
wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names

₹Running the Scripts

- Lane Tracking: python3 lane_tracking.py
- Traffic Light Detection: python3 traffic_light.py
- Obstacle Avoidance: python3 obstacle_avoidance.py
- **Object Detection**: python3 object_detection_text.py
- **Cruise Control**: python3 cruise_control.py

Future Enhancements

- Stop Sign Detection
- GPS Navigation
- Voice Commands 👲
- LIDAR-based Collision Avoidance 🙎

License

This project is **open-source** under the **MIT License**.

Contact

For questions or contributions, open an issue on GitHub or reach out via email.

🚙 Built with Raspberry Pi & OpenCV - Let's Drive into the Future! 🚀