Problems & Solutions of Quiz 1

Theory of Computation, Fall 2022

Q1. (15 pts) Determine the language accepted by each of the following NFA.

Sol:

$$L(M_1) = \emptyset$$

 $L(M_2) = \{e\}$
 $L(M_3) = \{w|w \in \{0,1\}^*\}$
or
 $L(M_3) = \{0,1\}^*$ (1)

Q2. (10 pts) Design a NFA to accept the following languages. Your NFA should have at most 4 states.

 $\{w \in \{0,1\}^* : w \text{ has a pair of 1's that are separated by odd number of symbols}\}$ (2)

Sol:

or

Q3. (15 pts) Are the following statements true or false? No explanation is required.

- (a) A finite automaton may have no final states.
- (b) Let L be a regular language. Then the following language is also regular.

$$L^+ = \{w_1 \cdots w_k : w_i \in L \land k \ge 1\} \tag{3}$$

(c) Let A and B be regular languages. Then the following language is also regular.

$$A \oplus B = \{w : w \in A \cup B \land w \notin A \cap B\} \tag{4}$$

- (d) Every language that satisfies the pumping theorem is regular.
- (e) Let N be a NFA with k states. There must exist a DFA M with at most $\mathbf{2}^k$ states that is equivalent to N

(That is, L(M) = L(N)).

Ind.	Key
(a)	True
(b)	True
(c)	True
(d)	False
(e)	True

Q4. (10 pts) Consider the following language over $\{0, 1, \#\}$. Show that it is not regular.

$$L = \{w \# u : w, u \in \{0,1\}^* \text{ and } w \text{ has strictly less 1's than } u \text{ does.}\}$$
 (5)

Proof:

Assume *L* is regular. Let $p \ge 1$ denote its pumping length.

Take string $s=1^p\#1^{p+1}\in L$. According to the pumping theorem, s can be expressed as s=xyz subject to

1.

$$\forall i \ge 0, xy^i z \in L \tag{6}$$

2.

$$|y| > 0 \tag{7}$$

3.

$$|xy| \le p \tag{8}$$

For 2. and 3., x and y can expressed as $x = 1^{\alpha}$ and $y = 1^{\beta}$ that $\alpha + \beta \leq p, \beta > 0$.

Take
$$i=2$$
, then $xy^iz=w\#u=1^{p+\beta}\#1^{p+1}$. Here $w=1^{p+\beta}, u=1^{p+1}$.

Since $p + \beta \ge p + 1$, there is $|w| \ge |u|$, and w contains no strictly less 1's than u does.

Therefore, $xy^2z \notin L$, and L fails to meet the requirements of the pumping theorem, hence L is not regular. End of proof.