પ્રશ્ન 1(a) [3 ગુણ]

મોડયુલેશન શું છે? તેની જરૂરિયાત શું છે?

જવાબ:

મોક્યુલેશન એ એક ઉચ્ચ આવૃત્તિ કેરિયર સિગ્નલના એક અથવા વધુ ગુણધર્મો (amplitude, frequency, અથવા phase)ને ઓછી આવૃત્તિના મેસેજ સિગ્નલના તાત્કાલિક મૂલ્યો અનુસાર બદલવાની પ્રક્રિયા છે.

મોક્યુલેશનની જરૂરિયાત:

- **એન્ટેના સાઈઝ ઘટાડવા**: પ્રેક્ટિકલ એન્ટેના સાઈઝ શક્ય બનાવે છે (λ/4)
- મલ્ટિપ્લેક્સિંગ: એક જ માધ્યમનો ઉપયોગ કરીને અનેક સિગ્નલને શેર કરવા
- **ઇન્ટરફેરન્સ ઘટાડવા**: સિગ્નલને યોગ્ય આવૃત્તિ બેન્ડમાં શિફ્ટ કરે છે
- રેન્જ વધારવા: ટ્રાન્સમિશન અંતરમાં વધારો કરે છે

મેમરી ટ્રીક: "AMIR" - Antenna, Multiplexing, Interference, Range

પ્રશ્ન 1(b) [4 ગુણ]

AM waveના DSBFC માટેનું સમીકરણ તારવો.

જવાબ:

DSBFC (Double Sideband Full Carrier) AM wave માટેનું સમીકરણ:

ગાણિતિક રીતે તારવવું:

- કેરિયર સિગ્નલ: c(t) = Ac cos(ωct)
- મેસેજ સિગ્નલ: m(t) = Am cos(ωmt)
- AM સિગ્નલ: s(t) = Ac[1 + μm(t)]cos(ωct)
- જ્યાં µ = મોક્યુલેશન ઇન્ડેક્સ = Am/Ac

મેસેજ સિગ્નલ આવવાથી:

 $s(t) = Ac[1 + \mu cos(\omega mt)]cos(\omega ct)$

 $s(t) = Ac cos(\omega ct) + \mu Ac cos(\omega mt)cos(\omega ct)$

ત્રિકોણમિતિ સૂત્રનો ઉપયોગ:

cos(A)cos(B) = 1/2[cos(A+B) + cos(A-B)]

અંતિમ સમીકરણ:

 $s(t) = Ac cos(\omega ct) + (\mu Ac/2)[cos((\omega c+\omega m)t) + cos((\omega c-\omega m)t)]$

આકૃતિ:

પ્રશ્ન 1(c) [7 ગુણ]

નોઈસ સિગ્નલને વર્ગીકૃત કરો. ફ્લીકર નોઈસ, શૉટ નોઈસ અને થર્મલ નોઈસ સમજાવો.

જવાબ:

નોઈસનું વર્ગીકરણ:

પ્રકાર સ્ત્રોત		લક્ષણો	
બાહ્ય નોઈસ	પર્યાવરણીય સ્ત્રોત	કોમ્યુનિકેશન સિસ્ટમની બહારના	
આંતરિક નોઈસ	કોમ્પોનેન્ટ્સ	સિસ્ટમની અંદર ઉત્પન્ન થતા	

આંતરિક નોઈસના પ્રકાર:

1. ફ્લીકર નોઈસ:

o સ્ત્રોત: એક્ટિવ ઉપકરણોમાં થાય છે

o **લક્ષણો**: આવૃત્તિના વ્યસ્ત પ્રમાણમાં (1/f)

ં અસર: નીચી આવૃત્તિઓ પર મુખ્ય

2. શૉટ નોઈસ:

૦ **સ્ત્રોત**: જંક્શનમાંથી ઇલેક્ટ્રોનનો રેન્ડમ પ્રવાહ

o **લક્ષણો**: આવૃત્તિથી સ્વતંત્ર (વ્હાઈટ નોઈસ)

૦ **અસર**: ડાયોડ/ટ્રાન્ઝિસ્ટરમાં રેન્ડમ કરંટ ફ્લક્ચ્યુએશન

3. થર્મલ નોઈસ:

• **સ્ત્રોત**: તાપમાનને કારણે ઇલેક્ટ્રોનની રેન્ડમ ગતિ

- ૦ **લક્ષણો**: બધા કન્ડક્ટર, રેઝિસ્ટરમાં મોજુદ
- **ફોર્મ્યુલા**: Pn = kTB (k=બોલ્ટઝમેન સ્થિરાંક, T=તાપમાન, B=બેન્ડવિડ્થ)
- o અસર: રિસીવરમાં નોઈસ ફ્લોર સેટ કરે છે

ਮੇਮਣੀ ਟ੍ਰੀs: "FST" - Flicker decreases with Frequency, Shot is from electron flow, Thermal depends on Temperature

પ્રશ્ન 1(c) OR [7 ગુણ]

EM wave સમજાવો અને સ્પેક્ટ્રમના વિવિધ બેન્ડની એપ્લીકેશન લખો.

જવાબ:

EM Wave (વિદ્યુત ચુંબકીય તરંગ):

વિદ્યુત ચુંબકીય તરેંગો એ સમય સાથે બદલાતાં ઇલેક્ટ્રિક અને મેગ્નેટિક ફીલ્ડ્સ દ્વારા અવકાશમાં પ્રસરતી ઊર્જા છે, જે પ્રકાશની ગતિએ (3×10⁸ m/s) યાલે છે.

લક્ષણો:

- ટ્રાન્સવર્સ તરંગો જેમાં E અને H ફીલ્ડ એકબીજાના પરપેન્ડીક્યુલર હોય છે
- પ્રસરણ માટે કોઈ માધ્યમની જરૂર નથી
- તરંગલંબાઈ (λ) અને આવૃત્તિ (f) દ્વારા વર્ણવાય છે
- સંબંધ: c = f × λ

EM સ્પેક્ટ્રમ અને એપ્લીકેશન:

આવૃત્તિ બેન્ડ	આવૃત્તિ રેન્જ	એપ્લીકેશન
ELF	3Hz-30Hz	સબમરીન કોમ્યુનિકેશન
VLF	3kHz-30kHz	નેવિગેશન સિસ્ટમ
LF	30kHz-300kHz	AM બ્રોડકાસ્ટિંગ
MF	300kHz-3MHz	AM રેડિયો બ્રોડકાસ્ટિંગ
HF	3MHz-30MHz	શોર્ટવેવ રેડિયો
VHF	30MHz-300MHz	FM રેડિયો, TV બ્રોડકાસ્ટિંગ
UHF	300MHz-3GHz	TV, મોબાઈલ ફોન, WiFi
SHF	3GHz-30GHz	સેટેલાઈટ કોમ્યુનિકેશન, રડાર
EHF	30GHz-300GHz	મિલિમીટર વેવ કોમ્યુનિકેશન
Infrared	300GHz-400THz	રિમોટ કંટ્રોલ, થર્મલ ઈમેજિંગ
Visible	400THz-800THz	ફાઈબર ઓપ્ટિક કોમ્યુનિકેશન
Ultraviolet	800THz-30PHz	સ્ટરિલાઈઝેશન, ઓથેન્ટિકેશન
X-Rays	30PHz-30EHz	મેડિકલ ઈમેજિંગ
Gamma Rays	>30EHz	કેન્સર ટ્રીટમેન્ટ

આકૃતિ:

મેમરી ટ્રીક: "RMIUXG" - Radio, Microwave, Infrared, Ultraviolet, X-ray, Gamma

પ્રશ્ન 2(a) [3 ગુણ]

DSBની સરખામણીએ SSBના ફાયદાઓ લખો.

જવાબ:

SSBના DSB કરતાં ફાયદાઓ:

પેરામીટર	SSB ફાયદો
બેન્કવિડ્થ	50% ઓછી બેન્ડવિડ્થની જરૂરિયાત
પાવર	83.33% પાવર બચત
ટ્રાન્સમીટર	ઓછા પાવર એમ્પ્લિફિકેશનની જરૂર
રિસીવર	ફ્રેઝ ડિસ્ટોર્શન વગર સરળ ડિઝાઇન
SNR	વધુ સારો સિગ્નલ-ટુ-નોઈઝ રેશિયો
ફેડિંગ	સિલેક્ટિવ ફેડિંગથી ઓછું અસરગ્રસ્ત

મેમરી ટ્રીક: "BP TRFS" - Bandwidth, Power, Transmitter, Receiver, Fading, SNR

પ્રશ્ન 2(b) [4 ગુણ]

FET રિએક્ટન્સ મોક્યુલેટરથી FM વેવનું જનરેશન સમજાવો.

જવાબ:

FET રિએક્ટન્સ મોડ્યુલેટર:

કાર્ય સિદ્ધાંત:

- FETને વોલ્ટેજ-કંટ્રોલ્ડ રિએક્ટન્સ તરીકે ઉપયોગ કરે છે
- મોક્યુલેટિંગ સિગ્નલના આધારે ઇફેક્ટિવ કેપેસિટન્સ બદલે છે
- ઓસિલેટરના LC ટેંક સર્કિટ સાથે જોડાય છે

સર્કિટ ઓપરેશન:

- 1. મોક્યુલેટિંગ સિગ્નલ FETના ગેટ પર આપવામાં આવે છે
- 2. FETનો ડ્રેન-સોર્સ રેઝિસ્ટન્સ ગેટ વોલ્ટેજ સાથે બદલાય છે
- 3. કેપેસિટિવ રિએક્ટન્સ મોડ્યુલેટિંગ સિગ્નલ સાથે બદલાય છે
- 4. ઓસિલેટરની આવૃત્તિ ઇનપુટ સિગ્નલ સાથે ફેરફાર કરે છે

આકૃતિ:

મુખ્ય લક્ષણો:

• સરળ ડિઝાઇન: અન્ય મોડ્યુલેટર કરતાં ઓછા કોમ્પોનેન્ટ્સ

• **લિનિયારિટી**: વાઈડ-બેન્ડ FM જનરેશન માટે સાટું

• સ્થિરતા: વેરેક્ટર ડાયોડ કરતાં તાપમાનમાં વધુ સ્થિર

મેમરી ટ્રીક: "LOVE FM" - LC Oscillator with Voltage-controlled Element for FM

પ્રશ્ન 2(c) [7 ગુણ]

AM માટે ટોટલ પાવરનું સમીકરણ તારવો. DSB અને SSB માટે પાવર સેવિંગ્સના ટકાની ગણતરી કરો.

જવાબ:

AM સિગ્નલમાં પાવર:

AM સિગ્નલ $s(t) = Ac[1 + \mu cos(\omega mt)]cos(\omega ct) માટે$

કુલ પાવર ગણતરી:

1. કેરિયરમાં પાવર: Pc = Ac²/2

2. સાઈડબેન્ડમાં પાવર: Ps = $\mu^2 A c^2 / 4$ (બન્ને સાઈડબેન્ડ માટે કુલ)

3. §લ પાવર: $Pt = Pc + Ps = Ac^2/2 \times (1 + \mu^2/2)$

100% મોક્યુલેશન (µ=1) માટે:

• Pt = Pc \times (1 + 1/2) = 1.5 \times Pc

• કેરિયર પાવર = કુલ પાવરનો 66.67%

• સાઈડબેન્ડ પાવર = કુલ પાવરનો 33.33%

પાવર સેવિંગ્સ:

1. DSB-SC มi:

૦ કેરિયર સપ્રેસ થાય છે

૦ 66.67% પાવર બચે છે

2. **SSB ні**:

૦ કેરિયર + એક સાઈડબેન્ડ સપ્રેસ થાય છે

૦ 66.67% + 16.67% = 83.33% પાવર બચે છે

તુલનાત્મક ટેબલ:

મોક્યુલેશન	કેરિયર પાવર	સાઈડબેન્ડ પાવર	કુલ પાવર	પાવર સેવિંગ
AM (μ=1)	100%	50%	150%	0%
DSB-SC	0%	50%	50%	66.67%
SSB	0%	25%	25%	83.33%

મેમરી ટ્રીક: "CST" - Carrier power, Sideband power, Total power

પ્રશ્ન 2(a) OR [3 ગુણ]

AM વેવ માટે Time domain અને Frequency domain ડિસપ્લે દોરો અને સમજાવો.

જવાબ:

AM વેવના Time Domain અને Frequency Domain ડિસપ્લે:

Time Domain (સમય ડોમેન):

- સમય સાથે એમ્પ્લિટ્યુડમાં થતા ફેરફાર બતાવે છે
- એન્વેલોપ મોડ્યુલેટિંગ સિગ્નલને અનુસરે છે
- મહત્તમ એમ્પ્લિટ્યુડ: A₁ = Ac(1+µ)
- ન્યૂનતમ એમ્પ્લિટ્યુS: A₂ = Ac(1-µ)
- મોક્યુલેશન ઇન્ડેક્સ: $\mu = (A_1 A_2)/(A_1 + A_2)$

Frequency Domain (આવૃત્તિ ડોમેન):

- આવૃત્તિઓ પર પાવર ડિસ્ટ્રિબ્યુશન બતાવે છે
- કેરિયર સેન્ટર આવૃત્તિ fc પર
- અપર સાઈડબેન્ડ fc+fm પર
- લોઅર સાઈડબેન્ડ fc-fm પર
- બેન્ડવિડ્થ = 2fm

આકૃતિ:

મેમરી ટ્રીક: "TEF" - Time domain shows Envelope, Frequency domain shows spectral components

પ્રશ્ન 2(b) OR [4 ગુણ]

પ્રી-એમફાસીસ અને ડી-એમફાસીસ સર્કિટ સમજાવો.

જવાબ:

પ્રી-એમફાસીસ અને ડી-એમફાસીસ સર્કિટ:

હેતુ:

- ઉચ્ચ આવૃત્તિના ઘટકો માટે SNR સુધારવા
- ઉચ્ચ આવૃત્તિમાં વધુ નોઈઝ માટે કમ્પેન્સેશન
- મુખ્યત્વે FM સિસ્ટમમાં વપરાય છે

પ્રી-એમફાસીસ:

- ટ્રાન્સમીટર પર લાગુ કરવામાં આવે છે
- ઉચ્ચ આવૃત્તિ ઘટકોને બૂસ્ટ કરે છે
- સામાન્ય રીતે 2.1kHz ઉપર +6dB/ઓક્ટેવ
- સર્કિટ: હાઈ-પાસ RC નેટવર્ક (સીરીઝમાં રેઝિસ્ટર, પેરેલલમાં કેપેસિટર)

ડી-એમફાસીસ:

- રિસીવર પર લાગુ કરવામાં આવે છે
- ઉચ્ચ આવૃત્તિ ઘટકોને એટેન્યુએટ કરે છે
- ઓરિજિનલ સિગ્નલ બેલેન્સ રીસ્ટોર કરે છે
- સર્કિટ: લો-પાસ RC નેટવર્ક (પેરેલલમાં રેઝિસ્ટર, સીરીઝમાં કેપેસિટર)

આકૃતિઓ:

આવૃત્તિ પ્રતિસાદ:

મેમરી ટ્રીક: "HIGH-LOW" - HIGHer frequencies boosted at transmitter, LOWered at receiver

પ્રશ્ન 2(c) OR [7 ગુણ]

નેરોબેન્ડ FM અને વાઈડબેન્ડ FMને સરખાવો.

જવાબ:

નેરોબેન્ડ FM અને વાઈડબેન્ડ FMની તુલના:

પેરામીટર	નેરોબેન્ડ FM	વાઈડબેન્ડ FM
મોક્યુલેશન ઇન્ડેક્સ (β)	β << 1 (સામાન્ય રીતે <0.5)	β >> 1 (સામાન્ય રીતે >5)
બેન્ડવિડ્થ	2fm (મેસેજ બેન્ડવિડ્થની બમણી)	2fm(β+1) (કાર્સનનો નિયમ)
મહત્વપૂર્ણ સાઈડબેન્ડ્સ	માત્ર પ્રથમ જોડી સાઈડબેન્ડ્સ	અનેક સાઈડબેન્ડ્સ
એપ્લિકેશન	મોબાઈલ કોમ્યુનિકેશન, ટુ-વે રેડિયો	FM બ્રોડકાસ્ટિંગ, હાઈ-ફ્રિડેલિટી ઓડિયો
સિગ્નલ ક્વોલિટી	ઓછી ફિડેલિટી, ઓછી નોઈઝ ઇમ્યુનિટી	વધુ ફિડેલિટી, વધુ સારી નોઈઝ ઇમ્યુનિટી
પાવર એફિશિયન્સી	વધુ	ઓછી
સ્પેક્ટ્રમ ઉપયોગ	કાર્યક્ષમ	ઓછો કાર્યક્ષમ
સર્કિટ જટિલતા	સરળ	વધુ જટિલ

બેન્ડવિડ્થ ગણતરી:

• નેરોબેન્ડ FM: BW = 2fm

• વાઈડબેન્ડ FM: BW = 2fm(β+1) (કાર્સનનો નિયમ)

સ્પેક્ટ્રમ આકૃતિ:

મેમરી ટ્રીક: "BASPCB" - Bandwidth, Applications, Sidebands, Power, Complexity, Beta

પ્રશ્ન 3(a) [3 ગુણ]

રેડીઓ રીસીવરની કોઈ ચાર લાક્ષણિકતાઓ વ્યાખ્યાઈત કરો.

જવાબ:

રેડિયો રિસીવરની લાક્ષણિકતાઓ:

1. સેન્સિટિવિટી:

- ૦ નબળા સિગ્નલને એમ્પ્લિફાય કરવાની ક્ષમતા
- ૦ માઈક્રોવોલ્ટ (µV)માં માપવામાં આવે છે
- ૦ સામાન્ય રીતે સારા રિસીવર્સ માટે 1-10µV

2. સિલેક્ટિવિટી:

- ૦ અડોસપડોસની ચેનલથી ઇચ્છિત સિગ્નલને અલગ કરવાની ક્ષમતા
- o IF એમ્પ્લિફાયરની બેન્ડવિડ્થ દ્વારા નિર્ધારિત
- ૦ ચોક્કસ આવૃત્તિ ઓફસેટ્સ પર dBમાં માપવામાં આવે છે

3. **ફિડેલિટી:**

- ૦ ઓરિજિનલ સિગ્નલને અચૂક રીતે રિપ્રોડ્યુસ કરવાની ક્ષમતા
- ૦ બેન્ડવિડ્થ અને ડિસ્ટોર્શન પર આધાર રાખે છે
- ૦ આવૃત્તિ પ્રતિસાદની સપાટતા તરીકે માપવામાં આવે છે

4. ઇમેજ ફિક્વન્સી રિજેક્શન:

- ૦ ઇમેજ આવૃત્તિ (fi = fs ± 2flF) પર સિગ્નલને રિજેક્ટ કરવાની ક્ષમતા
- o dBમાં માપવામાં આવે છે
- ૦ ઉચ્ચ મૂલ્યો વધુ સારી કામગીરી દર્શાવે છે

વધારાની લાક્ષણિકતાઓ:

- સિગ્નલ-ટુ-નોઈઝ રેશિયો (SNR)
- ઓટોમેટિક ગેઈન કંટ્રોલ (AGC) રેન્જ
- ડાયનેમિક રેન્જ

મેમરી ટ્રીક: "SFID" - Sensitivity, Fidelity, Image rejection, selectivity Determines quality

પ્રશ્ન 3(b) [4 ગુણ]

ડાયોડ ડિટેક્ટર સર્કિટ સમજાવો.

જવાબ:

ડાયોડ ડિટેક્ટર સર્કિટ:

હેતુ:

- AM વેવમાંથી ઓરિજિનલ મેસેજ સિગ્નલ એક્સટ્રેક્ટ કરે છે
- એન્વેલોપ ડિટેક્ટર પણ કહેવાય છે

સર્કિટ કોમ્પોનેન્ટ્સ:

- ડાયોડ: AM સિગ્નલને રેક્ટિફાય કરે છે
- RC નેટવર્ક: કેરિયર આવૃત્તિને ફિલ્ટર કરે છે
- R & C મૂલ્યો: RC >> 1/fc અને RC << 1/fm

ઓપરેશન:

- 1. ડાયોડ પોઝિટિવ હાફ-સાયકલ દરમિયાન કન્ડક્ટ કરે છે
- 2. કેપેસિટર પીક વેલ્યુ સુધી ચાર્જ થાય છે
- 3. કેપેસિટર રેઝિસ્ટર દ્વારા ડિસ્ચાર્જ થાય છે
- 4. યોગ્ય ડિમોક્યુલેશન માટે RC ટાઈમ કોન્સ્ટન્ટ મહત્વપૂર્ણ છે

આકૃતિ:

વેવફોર્મ્સ:

મર્યાદાઓ:

- ઉચ્ચ મોક્યુલેશન ઇન્ડેક્સ માટે ડિસ્ટોર્શન
- નીચા સિગ્નલ સ્તરે ખરાબ પ્રદર્શન

ਮੇਮਣੀ ਟ੍ਰੀਡ: "DRCO" - Diode Rectifies, Capacitor holds peaks, Output follows envelope

પ્રશ્ન 3(c) [7 ગુણ]

સુપર હેટેરોડાઈન રીસીવરનો બ્લોક ડાયગ્રામ દોરો અને સમજાવો.

જવાબ:

સુપર હેટેરોડાઈન રીસીવર:

બ્લોક ડાયગ્રામ:

દરેક બ્લોકનું કાર્ય:

1. RF એમ્પ્લિફાયર:

- o નબળા RF સિગ્નત્સને એમ્પ્લિફાય કરે છે
- ૦ સિલેક્ટિવિટી પૂરી પાડે છે
- ૦ સિગ્નલ-ટુ-નોઈઝ રેશિયોમાં સુધારો કરે છે

2. લોકલ ઓસિલેટર:

- ૦ સ્થિર આવૃત્તિ fLO જનરેટ કરે છે
- o fLO = fRF + fIF (હાઈ-સાઈડ ઇન્જેક્શન માટે)
- o RF એમ્પ્લિફાયર સાથે ટ્યુન થયેલું

3. **મિક્સર**:

- o RF સિગ્નલને લોકલ ઓસિલેટર સાથે કોમ્બાઈન કરે છે
- ૦ સરવાળા અને તફાવતની આવૃત્તિઓ ઉત્પન્ન કરે છે
- o તફાવતની આવૃત્તિ = IF (ઇન્ટરમીડિએટ આવૃત્તિ)

4. IF એમ્પ્લિફાયર:

- ૦ ફિક્સ્ડ આવૃત્તિ એમ્પ્લિફિકેશન (AM માટે સામાન્ય રીતે 455kHz)
- ૦ રિસીવરનો મોટાભાગનો ગેઈન અને સિલેક્ટિવિટી પૂરા પાડે છે
- ૦ વધુ સારા પ્રદર્શન માટે મલ્ટિપલ સ્ટેજ

5. **S**see:

- o IF સિગ્નલને ડિમોક્યુલેટ કરે છે
- ૦ ઓરિજિનલ મેસેજ સિગ્નલ એક્સટ્રેક્ટ કરે છે
- o AM માટે ડાયોડ ડિટેક્ટર, FM માટે ડિસ્ક્રિમિનેટર

6. ઓડિયો એમ્પ્લિકાયર:

- ૦ ડિમોક્યુલેટેડ સિગ્નલને એમ્પ્લિફાય કરે છે
- ૦ સ્પીકર અથવા હેડફોન ચલાવે છે

કાર્ય સિદ્ધાંત:

• કોઈપણ RF આવૃત્તિને કાર્યક્ષમ એમ્પ્લિફિકેશન માટે ફિક્સ્ડ IF માં કન્વર્ટ કરે છે

• IF આવૃત્તિ = |fRF - fLO|

કાયદાઓ:

- વધુ સારી સિલેક્ટિવિટી અને સેન્સિટિવિટી
- બધી આવૃત્તિઓ પર સ્થિર ગેઈન
- ટ્રેકિંગ સમસ્યાઓમાં ઘટાડો

ਮੇਮਣੀ ਟ੍ਰੀਡ: "RLMIDS" - RF amp, Local oscillator, Mixer, IF amp, Detector, Speaker

પ્રશ્ન 3(a) OR [3 ગુણ]

AGC નો સિદ્ધાંત અને રેડિયો રિસીવરમાં તેની ઉપયોગિતા જણાવો.

જવાબ:

AGC (ઓટોમેટિક ગેઈન કંટ્રોલ) સિદ્ધાંત:

વ્યાખ્યા:

- સર્કિટ જે સિગ્નલની શક્તિના આધારે ઓટોમેટિક રીતે રિસીવર ગેઈન એડજસ્ટ કરે છે
- અલગ-અલગ ઇનપુટ સિગ્નલ છતાં સતત આઉટપુટ લેવલ જાળવે છે

કાર્ય સિદ્ધાંત:

- 1. રિસીવ્ડ સિગ્નલની શક્તિને ડિટેક્ટ કરે છે
- 2. સિગ્નલના પ્રમાણમાં કંટ્રોલ વોલ્ટેજ જનરેટ કરે છે
- 3. મજબૂત સિગ્નલ માટે ગેઈન ઘટાડવા માટે નેગેટિવ ફીડબેક લાગુ કરે છે
- 4. નબળા સિગ્નલ માટે ગેઈન વધારે છે

રેડિયો રિસીવરમાં એપ્લિકેશન:

- ઓવરલોડિંગ અટકાવે છે: મજબૂત સિગ્નલ ડિસ્ટોર્શનથી રક્ષણ કરે છે
- **ફેડિંગ માટે કમ્પેન્સેશન:** સિગ્નલ ફેડિંગ દરમિયાન અવાજનું સતત વોલ્યુમ જાળવે છે
- IF એમ્પ્લિફાયર કંટ્રોલ: મુખ્યત્વે IF સ્ટેજ પર લાગુ કરવામાં આવે છે
- ડાયનેમિક રેન્જ સુધારે છે: સિગ્નલની શક્તિની વિશાળ શ્રેણીને સંભાળે છે

પ્રકારો:

• સિમ્પલ AGC: ડિટેક્ટરથી સીધું ફીડબેક

• **ડિલેડ AGC:** થ્રેશોલ્ડ લેવલ ઉપર જ સક્રિય થાય છે

• **એમ્પ્લિફાઈડ AGC:** વધુ સારા કંટ્રોલ માટે વધારાના એમ્પ્લિફાયરનો ઉપયોગ કરે છે

આકૃતિ:

મેમરી ટ્રીક: "FADS" - Fading compensation, Automatic adjustment, Dynamic range, Signal consistency

પ્રશ્ન 3(b) OR [4 ગુણ]

IF frequency પર ટૂકનોંધ લખો.

જવાબ:

ઇન્ટરમીડિએટ આવૃત્તિ (IF):

વ્યાખ્યા:

- સુપરહેટેરોડાઈન રિસીવર્સમાં ઇનકમિંગ RF સિગ્નલને કન્વર્ટ કરવામાં આવતી ફિક્સ્ડ આવૃત્તિ
- RF સિગ્નલને લોકલ ઓસિલેટર સાથે મિક્સિંગ (હેટેરોડાઈનિંગ)નું પરિણામ

સ્ટાન્ડર્ડ IF મૂલ્યો:

• AM રેડિયો: 455 kHz

• FM **ะ์โรน**โ: 10.7 MHz

• TV रिसीयर्स: 38-41 MHz

મહત્વ:

- કન્સિસ્ટન્ટ ગેઈન: એમ્પ્લિફાયર્સ ફિક્સ્ડ આવૃત્તિ પર કાર્ય કરે છે
- બેટર સિલેક્ટિવિટી: ફિક્સ્ડ આવૃત્તિ પર નેરોબેન્ડ ફિલ્ટર્સ
- **સિમ્પ્લિફાઈડ ડિઝાઈન:** ફિક્સ્ડ-આવૃત્તિ સ્ટેજના કાર્યક્ષમ ડિઝાઈન કરવું સરળ

પસંદગી માપદંડ:

- ઇમેજ રિજેક્શન માટે પૂરતી ઊંચી
- ફિલ્ટર Q અને ગેઈન માટે પૂરતી નીચી
- સામાન્ય સિગ્નલના હાર્મોનિક્સને ટાળવી જોઈએ

ઇમેજ આવૃત્તિ ગણતરી:

- હાઈ-સાઈડ ઇન્જેક્શન: fimage = fRF + 2fIF
- લો-સાઈડ ઇન્જેક્શન: fimage = fRF 2fIF

आङ्गति:

મેમરી ટ્રીક: "CIGS" - Conversion, Improved selectivity, Gain stability, Simplified design

પ્રશ્ન 3(c) OR [7 ગુણ]

FM detection માટેની ફેસ ડિસ્ક્રિમિનેટર સર્કિટ સમજાવો.

જવાબ:

FM Detection માટે ફેસ ડિસ્ક્રિમિનેટર:

હેતુ:

- FM સિગ્નલમાં આવૃત્તિ વેરિએશનને એમ્પ્લિટ્યુડ વેરિએશનમાં કન્વર્ટ કરે છે
- FM સિગ્નલને ડિમોડ્યુલેટ કરીને ઓરિજિનલ મેસેજ રિકવર કરે છે

સર્કિટ કોમ્પોનેન્ટ્સ:

- સેન્ટર-ટેપ્ડ ટાન્સકોર્મર
- બે ડાયોડ્સ (D1 અને D2)
- RC ફિલ્ટર નેટવર્ક
- ફેઝ-શિફ્ટિંગ નેટવર્ક (L-C સર્કિટ)

કાર્ય સિદ્ધાંત:

- 1. ઇનપુટ FM સિગ્નલ બે પાથમાં વિભાજિત થાય છે
- 2. રેફરન્સ પાથ સીધો સેન્ટર ટેપ પર જાય છે
- 3. ફેઝ-શિફ્ટેડ પાથ LC નેટવર્ક મારફતે પસાર થાય છે
- 4. ફેઝ શિફ્ટ આવૃત્તિ ડેવિએશન સાથે બદલાય છે
- 5. બે ડાયોડ્સ ફેઝ ડિફરન્સના પ્રમાણમાં વોલ્ટેજ ઉત્પન્ન કરે છે
- 6. આઉટપુટ વોલ્ટેજ ઇનપુટ આવૃત્તિ સાથે બદલાય છે

સર્કિટ આકૃતિ:

લક્ષણો:

- મધ્યમ આવૃત્તિ રેન્જ પર **લિનિયર રિસ્પોન્સ**
- એમ્પ્લિટ્યુડ વેરિએશન ઘટાડે તેવી **બેલેન્સ્ડ ડિઝાઈન**
- આવૃત્તિ ફેરફારો માટે **હાઈ સેન્સિટિવિટી**
- આત્યંતિક આવૃત્તિ ડેવિએશન પર **મર્યાદાઓ**

S-કર્વ રિસ્પોન્સ:

મેમરી ટ્રીક: "PSDO" - Phase shift Demodulates, Signal frequency determines Output

પ્રશ્ન 4(a) [3 ગુણ]

એનાલોગ અને ડિજિટલ કોમ્યુનિકેશન ટેક્નિક્સ સરખાવો.

જવાબ:

એનાલોગ vs. ડિજિટલ કોમ્યુનિકેશનની તુલના:

પેરામીટર	એનાલોગ કોમ્યુનિકેશન	ડિજિટલ કોમ્યુનિકેશન
સિગ્નલ	કન્ટિન્યુઅસ વેવફોર્મ	ડિસ્ક્રીટ બાઈનરી વેલ્યુ
બેન્કવિડ્થ	ઓછી બેન્ડવિડ્થની જરૂર	વધુ બેન્ડવિડ્થની જરૂર
નોઈઝ ઇમ્ચુનિટી	ખરાબ, નોઈઝ એક્યુમ્યુલેટ થાય છે	ઉત્તમ, એરર કરેક્શન શક્ય
પાવર એફિશિયન્સી	ઓછી કાર્યક્ષમ	વધુ કાર્યક્ષમ
ક્વોલિટી	અંતર સાથે ઘટે છે	SNR થ્રેશોલ્ડ સુધી ક્વોલિટી જાળવે છે
મલ્ટિપ્લેક્સિંગ	મુખ્યત્વે FDM વપરાય છે	મુખ્યત્વે TDM વપરાય છે
સિસ્ટમ જટિલતા	સરળ	વધુ જટિલ
พย์	ઓછો	વધુ પણ ઘટતો જાય છે
ઉદાહરણો	AM/FM રેડિયો, એનાલોગ TV	મોબાઈલ નેટવર્ક્સ, ડિજિટલ TV, ઇન્ટરનેટ

મેમરી ટ્રીક: "BNPQ MCE" - Bandwidth, Noise immunity, Power, Quality, Multiplexing, Complexity, Efficiency

પ્રશ્ન 4(b) [4 ગુણ]

એડેપ્ટિવ ડેલ્ટા મોડ્યુલેશન તેની એપ્લિકેશન સાથે સમજાવો.

જવાબ:

એડેપ્ટિવ ડેલ્ટા મોક્યુલેશન (ADM):

વ્યાખ્યા:

- ડેલ્ટા મોક્યુલેશન (DM)નો સુધારેલો પ્રકાર
- સિગ્નલ સ્લોપના આધારે વેરિએબલ સ્ટેપ સાઈઝ ઉપયોગ કરે છે

કાર્ય સિદ્ધાંત:

- 1. ઇનપુટ સિગ્નલને પ્રેડિક્ટેડ વેલ્યુ સાથે સરખાવે છે
- 2. તુલના પર આધારિત બાઈનરી 1 અથવા 0 આઉટપુટ કરે છે
- 3. સતત બિટ્સના આધારે સ્ટેપ સાઈઝ એડજસ્ટ કરે છે
- 4. ઝડપી ફેરફારો માટે સ્ટેપ સાઈઝ વધારે છે
- 5. ધીમા કેરકારો માટે સ્ટેપ સાઈઝ ઘટાડે છે

ડેલ્ટા મોડ્યુલેશન કરતાં ફાયદાઓ:

- સ્લોપ ઓવરલોડ ડિસ્ટોર્શન ઘટાડે છે
- ગ્રેન્યુલર નોઈઝ ઘટાડે છે
- વધુ સારો ડાયનેમિક રેન્જ
- સમાન ક્વોલિટી માટે ઓછો બિટ રેટ

आङ्गति:

એપ્લિકેશન:

• સ્પીય ટ્રાન્સમિશન: ડિજિટલ નેટવર્ક પર વોઈસ

• ઓડિયો કમ્પ્રેશન: મ્યુઝિક સ્ટોરેજ અને ટ્રાન્સમિશન

• ટેલિમેટ્રી સિસ્ટમ્સ: રિમોટ ડેટા કલેક્શન

• મિલિટરી કોમ્યુનિકેશન: સિક્યોર ટ્રાન્સમિશન

મેમરી ટ્રીક: "VSOG" - Variable Step size Overcomes Granular noise & slope overload

પ્રશ્ન 4(c) [7 ગુણ]

PCM system નો બ્લોક ડાયગ્રામ દોરો અને સમજાવો.

જવાબ:

પલ્સ કોડ મોક્યુલેશન (PCM) સિસ્ટમ:

બ્લોક ડાયગ્રામ:

ટ્રાન્સમીટર કોમ્પોનેન્ટ્સ:

- 1. સેમ્પલ & હોલ્ડ:
 - ૦ નિયમિત અંતરાલે એનાલોગ સિગ્નલને સેમ્પલ કરે છે

- ૦ નાયક્વિસ્ટ રેટ (fs ≥ 2fmax)
- ૦ આગલા સેમ્પલ સુધી વેલ્યુ હોલ્ડ કરે છે

2. ક્વોન્ટાઇઝર:

- ૦ એમ્પ્લિટ્યુડ રેન્જને ડિસ્ક્રીટ લેવલમાં વિભાજિત કરે છે
- ૦ દરેક સેમ્પલને નજીકની લેવલ સાથે મેપ કરે છે
- ૦ ક્વોન્ટાઇઝેશન એસ્ટ દાખલ કરે છે

3. **એન્કોડર**:

- ૦ ક્વોન્ટાઇઝ્ડ લેવલ્સને બાઇનરી કોડમાં કન્વર્ટ કરે છે
- o n-બીટ એન્કોડર 2^n ક્વોન્ટાઇઝેશન લેવલ આપે છે
- ૦ સામાન્ય ફોર્મેટ: 8-બીટ, 16-બીટ

રિસીવર કોમ્પોનેન્ટ્સ:

1. **S**sìse:

- ૦ બાઇનરીને ક્વોન્ટાઇઝ્ડ લેવલમાં કન્વર્ટ કરે છે
- ૦ એન્કોડર ઓપરેશનને રિવર્સ કરે છે

2. ડિજિટલ-ટુ-એનાલોગ કન્વર્ટર (DAC):

- ૦ ડિસ્ક્રીટ લેવલને એનાલોગ વેલ્યુમાં કન્વર્ટ કરે છે
- ૦ સિગ્નલનું સ્ટેરકેસ એપ્રોક્સિમેશન ઉત્પન્ન કરે છે

3. લો-પાસ ફિલ્ટર:

- ૦ સ્ટેરકેસ આઉટપુટને સ્મૂધ કરે છે
- ૦ હાઈ-ફ્રિક્વન્સી કોમ્પોનેન્ટ્સ દૂર કરે છે
- ૦ ઓરિજિનલ વેવફોર્મ રિકન્સ્ટ્રક્ટ કરે છે

મુખ્ય લક્ષણો:

- સેમ્પલિંગ રેટ: સામાન્ય રીતે 8 kHz (વોઇસ), 44.1 kHz (CD ઓડિયો)
- રેઝોલ્યુશન: 8-બીટ (256 લેવલ) થી 24-બીટ (16.8M લેવલ)
- બિટ રેટ = સેમ્પલિંગ રેટ × દરેક સેમ્પલમાં બિટ્સ

મેમરી ટ્રીક: "SQEC-DFL" - Sample, Quantize, Encode, Channel - Decode, Filter, Listen

પ્રશ્ન 4(a) OR [3 ગુણ]

ક્વોન્ટાઇઝેશન રીત અને તેની ઉપયોગિતા સમજાવો.

જવાબ:

ક્વોન્ટાઇઝેશન પ્રક્રિયા અને તેની આવશ્યકતા:

વ્યાખ્યા:

• સતત એમ્પ્લિટ્યુડ મૂલ્યોને ડિસ્ક્રીટ લેવલમાં મેપિંગ કરવાની પ્રક્રિયા

• સેમ્પલિંગ પછી એનાલોગ-ટુ-ડિજિટલ કન્વર્ઝનમાં બીજું પગલું

પ્રક્રિયા:

- 1. એમ્પ્લિટ્યુડ રેન્જને મર્યાદિત સંખ્યાના લેવલમાં વિભાજિત કરવું
- 2. દરેક સેમ્પલને નજીકની ક્વોન્ટાઇઝેશન લેવલ સોંપવી
- 3. દરેક લેવલને બાઇનરી કોડથી રજૂ કરવી
- 4. ક્વોન્ટાઇઝેશન લેવલ = 2^n (n = બિટની સંખ્યા)

પ્રકારો:

- યુનિફોર્મ ક્વોન્ટાઇઝેશન: સમગ્ર રેન્જમાં સમાન સ્ટેપ સાઇઝ
- **નોન-યુનિફોર્મ ક્વોન્ટાઇઝેશન:** વેરિએબલ સ્ટેપ સાઇઝ (નીચા એમ્પ્લિટ્યુડ માટે નાના)
- મિડ-ટ્રેડ ક્વોન્ટાઇઝેશન: શૂન્ય એક માન્ય લેવલ છે
- મિડ-રાઇઝ ક્વોન્ટાઇઝેશન: શૂન્ય લેવલ વચ્ચે પડે છે

આવશ્યકતા:

- ડિજિટલ રજૂઆત: બાઇનરી ફોર્મેટમાં કન્વર્ઝન શક્ય બનાવે છે
- સ્ટોરેજ કાર્યક્ષમતા: એનાલોગ સિગ્નલ્સના મર્યાદિત સ્ટોરેજની મંજૂરી આપે છે
- પ્રોસેસિંગ ક્ષમતા: ડિજિટલ સિગ્નલ પ્રોસેસિંગ શક્ય બનાવે છે
- ટ્રાન્સમિશન ફાયદા: એરર કરેક્શન અને એન્ક્રિપ્શનની સુવિધા આપે છે

ક્વોન્ટાઇઝેશન એરર:

- એક્સ્યુઅલ અને ક્વોન્ટાઇઝ્ડ વેલ્યુ વચ્ચેનો તફાવત
- મહત્તમ એરર = ±Q/2 (જ્યાં Q = સ્ટેપ સાઇઝ)
- સિગ્નલ-ટુ-ક્વોન્ટાઇઝેશન-નોઇઝ રેશિયો: SQNR = 6.02n + 1.76 dB

આકૃતિ:

મેમરી ટ્રીક: "DEBS" - Digitization Enables Binary Storage

પ્રશ્ન 4(b) OR [4 ગુણ]

PCM રીસીવર સમજાવો.

જવાબ:

PCM રીસીવર:

બ્લોક ડાયગ્રામ:

કોમ્પોનેન્ટ્સ અને તેમનાં કાર્યો:

1. બફર:

- ૦ મળેલ PCM ડેટાને અસ્થાયી રીતે સ્ટોર કરે છે
- ૦ ટાઇમિંગ વેરિએશન્સ માટે કોમ્પેન્સેટ કરે છે
- ૦ જિટર સામે રક્ષણ પૂરું પાડે છે

2. **Ssise:**

- ૦ બાઇનરી કોડને ક્વોન્ટાઇઝ્ડ એમ્પ્લિટ્યુડ લેવલમાં કન્વર્ટ કરે છે
- ૦ ટ્રાન્સમિશન એરર્સને ડિટેક્ટ અને કરેક્ટ કરે છે (જો એરર કોડિંગ વપરાયું હોય તો)
- ૦ ડિસ્ક્રીટ એમ્પ્લિટ્યુડ વેલ્યુ આઉટપુટ કરે છે

3. **ડિજિટલ-ટુ-એનાલોગ કન્વર્ટર (DAC):**

- ૦ ડિજિટલ વેલ્યુને એનાલોગ વોલ્ટેજ લેવલમાં કન્વર્ટ કરે છે
- ૦ ઓરિજિનલ સિગ્નલનું સ્ટેરકેસ એપ્રોક્સિમેશન બનાવે છે
- ૦ રેઝોલ્યુશન બિટ ડેપ્થ (2^n લેવલ) દ્વારા નિર્ધારિત થાય છે

4. લો-પાસ કિલ્ટર:

- ૦ સ્ટેરકેસ વેવફોર્મને સ્મૂધ કરે છે
- ૦ હાઈ-ફ્રિક્વન્સી કોમ્પોનેન્ટ્સ દૂર કરે છે
- ૦ સતત એનાલોગ સિગ્નલ રિકન્સ્ટ્રક્ટ કરે છે

PCM રીસીવરમાં વેવકોર્મ્સ:

Digital Input	Decoded Values	DAC Output	Final Output
1001		_	/\
0110		_ _	/ \
1010 →	 - →	_ _ →	/ \
0101		_ _	/ \

પરફોર્મન્સ ફેક્ટર્સ:

• SNR: ક્વોન્ટાઇઝેશન બિટ્સ દ્વારા નિર્ધારિત (6.02n + 1.76 dB)

• બેન્ડવિડ્ય: સેમ્પલિંગ રેટ અને ફિલ્ટર લક્ષણો પર આધારિત

• ડિસ્ટોર્શન: ક્વોન્ટાઇઝેશન એસ્ટ સાથે સંબંધિત

મેમરી ટ્રીક: "BDFL" - Buffer stores, Decoder converts, Filter smooths, Listen to output

પ્રશ્ન 4(c) OR [7 ગુણ]

સેમ્પલિંગ શું છે? સેમ્પલિંગના પ્રકારોને ટુંકમાં સમજાવો.

જવાબ:

સેમ્પલિંગ:

વ્યાખ્યા:

સેમ્પલિંગ એ કન્ટિન્યુઅસ-ટાઇમ સિગ્નલને નિયમિત સમય અંતરાલે માપ (સેમ્પલ) લઈને ડિસ્ક્રીટ-ટાઇમ સિગ્નલમાં કન્વર્ટ કરવાની પ્રક્રિયા છે.

ગાણિતિક અભિવ્યક્તિ:

x[n] = x(nTs), જ્યાં n = 0, 1, 2...

- x[n] એ ડિસ્ક્રીટ-ટાઇમ સેમ્પલ છે
- x(t) એ કન્ટિન્યુઅસ-ટાઇમ સિગ્નલ છે
- Ts એ સેમ્પલિંગ પીરિયડ (1/fs) છે

નાયક્વિસ્ટ થિયરમ:

- સેમ્પલિંગ આવૃત્તિ (fs) સિગ્નલમાં ઉચ્ચતમ આવૃત્તિ ઘટક (fmax)ના ઓછામાં ઓછા બમણી હોવી જોઈએ
- $fs \ge 2fmax$
- એલિયાસિંગ (સ્પેક્ટ્રમના ઓવરલેપ કારણે ડિસ્ટોર્શન) અટકાવે છે

સેમ્પલિંગના પ્રકારો:

язіг	વર્ણન	લક્ષણો
આદર્શ સેમ્પલિંગ	નિયમિત અંતરાલે તાત્કાલિક સેમ્પલ	- થિયોરેટિકલ કોન્સેપ્ટ - ઈમ્પલ્સ ટ્રેન દ્વારા રજૂ થયેલ - અનંત બેન્ડવિડ્થની જરૂર પડે છે
નેચરલ સેમ્પલિંગ	સિગ્નલને મર્યાદિત પહોળાઈના પલ્સ ટ્રેન સાથે ગુણાકાર	- સેમ્પલ સિગ્નલ જેવી જ આકૃતિ ધરાવે છે - પહોળાઈ સેમ્પલિંગ પત્સ દ્વારા નિર્ધારિત છે - એનાલોગ સિસ્ટમમાં વપરાય છે
ફ્લેટ-ટોપ સેમ્પલિંગ	સેમ્પલ-એન્ડ-હોલ્ડ ટેકનિક	- આગલા સેમ્પલ સુધી સેમ્પલ કરેલ મૂલ્ય હોલ્ડ કરે છે - સ્ટેરકેસ એપ્રોક્સિમેશન બનાવે છે - પ્રેક્ટિકલ સિસ્ટમમાં સામાન્ય છે

સેમ્પલિંગ રેટ્સ:

• **અન્ડર-સેમ્પલિંગ:** fs < 2fmax (એલિયાસિંગ થાય છે)

- **ક્રિટિકલ સેમ્પલિંગ:** fs = 2fmax (જરૂરી ન્યૂનતમ રેટ)
- **ઓવર-સેમ્પલિંગ:** fs > 2fmax (રિક-સ્ટ્રક્શન ક્વોલિટી સુધારે છે)

આકૃતિ:

ਮੇਮਰੀ ਟ੍ਰੀਡ: "INF" - Ideal (impulses), Natural (pulse-shaped), Flat-top (staircase)

પ્રશ્ન 5(a) [3 ગુણ]

મલ્ટીપ્લેક્સિંગની આવશ્યક્તાઓની યાદી બનાવો.

જવાલ:

મલ્ટીપ્લેક્સિંગની આવશ્યકતા:

આવશ્યકતા	વર્ણન
બેન્કવિડ્થ ઉપયોગ	ઉપલબ્ધ ટ્રાન્સમિશન બેન્ડવિડ્થનો કાર્યક્ષમ ઉપયોગ
ખર્ચ ઘટાડો	મોંઘા ટ્રાન્સમિશન માધ્યમને અનેક વપરાશકર્તાઓમાં શેર કરે છે
ઇન્ફ્રાસ્ટ્રક્ચર ઓપ્ટિમાઇઝેશન	ભૌતિક કનેક્શન અને હાર્ડવેર જરૂરિયાતો ઘટાડે છે
સ્પેક્ટ્રમ કાર્યક્ષમતા	મર્ચાદિત આવૃત્તિ સ્પેક્ટ્રમનો મહત્તમ ઉપયોગ
નેટવર્ક ક્ષમતા	સિંગલ માધ્યમ પર ચેનલ/વપરાશકર્તાઓની સંખ્યામાં વધારો
લવચીકતા	માંગના આધારે સંસાધનોની ગતિશીલ ફાળવણીની મંજૂરી આપે છે

મેમરી ટ્રીક: "BCSINF" - Bandwidth, Cost, Spectrum, Infrastructure, Network capacity, Flexibility

પ્રશ્ન 5(b) [4 ગુણ]

DPCM નું કાર્ય સમજાવો.

જવાબ:

ડિફરેન્શિયલ પલ્સ કોડ મોક્યુલેશન (DPCM):

વ્યાખ્યા:

- PCMનો એન્હાન્સ્ડ વર્ઝન જે વર્તમાન અને અનુમાનિત સેમ્પલ વચ્ચેના તફાવતને એન્કોડ કરે છે
- બિટ રેટ ઘટાડવા માટે આસપાસના સેમ્પલ વચ્ચે સંબંધનો ઉપયોગ કરે છે

બ્લોક ડાયગ્રામ:

કાર્ય સિદ્ધાંત:

- 1. અગાઉના સેમ્પલ(સ) પર આધારિત વર્તમાન સેમ્પલની ધારણા કરવામાં આવે છે
- 2. માત્ર વાસ્તવિક અને અનુમાનિત મૂલ્ય વચ્ચેનો તફાવત (એરર) એન્કોડેડ થાય છે
- 3. સંપૂર્ણ એમ્પ્લિટ્યુડ કરતાં નાનો તફાવત ઓછા બિટ્સની જરૂર પડે છે
- 4. પ્રેડિક્ટર અગાઉના રિકન્સ્ટ્રક્ટેડ વેલ્યુનો ઉપયોગ ધારણા માટે કરે છે

ફાયદાઓ:

• ઘટાડેલ બિટ રેટ: સામાન્ય રીતે PCM કરતાં 25-50% ઓછો

• **બેટર SNR:** PCM જેટલા જ બિટ રેટ માટે

• સંબંધ ઉપયોગ: સિગ્નલ રિડન્ડન્સીનો લાભ લે છે

મર્યાદાઓ:

• એરર પ્રોપેગેશન: એરર પછીના સેમ્પલને અસર કરે છે

• **જટિલતા:** સરળ PCM કરતાં વધુ જટિલ

• સિગ્નલ ડિપેન્ડન્સી: પ્રદર્શન સિગ્નલ લક્ષણો સાથે બદલાય છે

મેમરી ટ્રીક: "PDQE" - Predict sample, Difference calculated, Quantize error, Encode result

પ્રશ્ન 5(c) [7 ગુણ]

બાઈનરી ડેટા 1011001 નીચે પ્રમાણેની લાઈન કોર્ડિંગ ટેકનીકથી ટ્રાન્સમીટ થાય છે (i) યુનિપોલાર RZ અને NRZ (ii) પોલાર RZ અને NRZ (iii) AMI (iv) Manchester. બધા માટે વેવ ફોર્મ દોરો.

જવાબ:

બાઈનરી ડેટા 1011001 માટે લાઈન કોડિંગ:

વેવફોર્મ્સ:

2. Unipolar RZ:
3. Polar NRZ:
4. Polar RZ:
5. AMI:
6. Manchester:

દરેક કોડિંગની લાક્ષણિકતાઓ:

કોડિંગ ટેકનિક	વર્ણન	ફાયદાઓ	ગેરફાયદાઓ
Unipolar NRZ	1 = હાઈ વોલ્ટેજ 0 = ઝીરો વોલ્ટેજ ઝીરોમાં રિટર્ન નથી	સરળ ઇમ્પ્લિમેન્ટેશન	DC કોમ્પોનેન્ટ, ક્લોક રિકવરી નહીં
Unipolar RZ	1 = અર્ધા બિટ માટે હાઈ 0 = ઝીરો વોલ્ટેજ ઝીરોમાં રિટર્ન	સેલ્ફ-ક્લોકિંગ	વધુ બેન્ડવિડ્થની જરૂર
Polar NRZ	1 = પોઝિટિવ વોલ્ટેજ 0 = નેગેટિવ વોલ્ટેજ ઝીરોમાં રિટર્ન નથી	DC કોમ્પોનેન્ટ નથી	ખરાબ ક્લોક રિકવરી
Polar RZ	1 = અર્ધા બિટ માટે પોઝિટિવ 0 = અર્ધા બિટ માટે નેગેટિવ ઝીરોમાં રિટર્ન	સેલ્ફ-ક્લોકિંગ, DC કોમ્પોનેન્ટ નથી	વધુ બેન્ડવિડ્થની જરૂર
АМІ	1 = વૈકલ્પિક +/- વોલ્ટેજ 0 = ઝીરો વોલ્ટેજ	DC કોમ્પોનેન્ટ નથી, એરર ડિટેક્શન	ઝીરોની લાંબી સ્ટ્રિંગ સમસ્યારૂપ
Manchester	1 = ટ્રાન્ઝિશન લો થી હાઈ 0 = ટ્રાન્ઝિશન હાઈ થી લો	સેલ્ફ-ક્લોકિંગ, DC કોમ્પોનેન્ટ નથી	બમણી બેન્ડવિડ્થની જરૂર

મેમરી ટ્રીક: "UPRMA" - Unipolar, Polar, Return-to-zero, Manchester, AMI line coding techniques

પ્રશ્ન 5(a) OR [3 ગુણ]

પોલાર RZ અને NRZ ફોર્મેટ સમજાવો.

જવાબ:

પોલાર RZ અને NRZ લાઈન કોડિંગ:

પોલાર NRZ (નોન-રિટર્ન ટુ ઝીરો):

- બાઈનરી 1: સંપૂર્ણ બિટ સમયગાળા માટે પોઝિટિવ વોલ્ટેજ (+V)
- બાઈનરી 0: સંપૂર્ણ બિટ સમયગાળા માટે નેગેટિવ વોલ્ટેજ (-V)
- સિગ્નલ સમગ્ર બિટ પીરિયડ દરમિયાન લેવલ પર રહે છે
- સમાન ક્રમિક બિટ્સ વચ્ચે ઝીરો તરફ કોઈ ટ્રાન્ઝિશન નથી

પોલાર NRZની લાક્ષણિકતાઓ:

- બેન્ડવિડ્થ કાર્યક્ષમતા: ન્યૂનતમ બેન્ડવિડ્થની જરૂર પડે છે
- DC કોમ્પોનેન્ટ: સમાન 1 અને 0 માટે શૂન્ય સરેરાશ
- ક્લોક રિકવરી: સમાન બિટની લાંબી શ્રેણી માટે ખરાબ
- **એરર ડિટેક્શન:** કોઈ અંતર્ગત ક્ષમતા નથી

પોલાર RZ (રિટર્ન ટુ ઝીરો):

- બાઈનરી 1: અર્ધા બિટ માટે પોઝિટિવ વોલ્ટેજ (+V), બાકીના માટે ઝીરો
- બાઈનરી 0: અર્ધા બિટ માટે નેગેટિવ વોલ્ટેજ (-V), બાકીના માટે ઝીરો
- દરેક બિટ પીરિયડ દરમિયાન સિગ્નલ ઝીરો પર પાછો ફરે છે

પોલાર RZની લાક્ષણિકતાઓ:

- **બેન્ડવિડ્થ:** NRZ કરતાં બમણી બેન્ડવિડ્થની જરૂર પડે છે
- સેલ્ફ-ક્લોકિંગ: વધુ સારી ક્લોક રિકવરી
- **પાવર જરૂરિયાત:** NRZ કરતાં વધારે
- એસ્ટ ડિટેક્શન: કોઈ અંતર્ગત ક્ષમતા નથી

વેવફોર્મ તુલના:

Binary Data:	1 0 1 1 0 0 1
Polar NRZ:	_
	_
Polar RZ:	

મેમરી ટ્રીક: "HZRT" - Half bit active + Zero Return in RZ, full Time in NRZ

પ્રશ્ન 5(b) OR [4 ગુણ]

ડેલ્ટા મોક્યુલેશન ટૂંકમાં સમજાવો.

જવાબ:

ડેલ્ટા મોક્યુલેશન (DM):

વ્યાખ્યા:

- ડિફરેન્શિયલ એન્કોડિંગનો સૌથી સરળ સ્વરૂપ
- માત્ર વર્તમાન અને અગાઉના સેમ્પલ વચ્ચેના તફાવતના ચિહ્નને એન્ક્રોડ કરે છે
- ટ્રાન્સમિશન માટે પ્રતિ સેમ્પલ એક બિટ (1 અથવા 0)

બ્લોક ડાયગ્રામ:

કાર્ય સિદ્ધાંત:

- 1. ઇનપુટ સિગ્નલને પ્રેડિક્ટેડ વેલ્યુ (ઇન્ટિગ્રેટરથી) સાથે સરખાવે છે
- 2. જો ઇનપુટ > પ્રેડિક્ટેડ: આઉટપુટ = 1, પ્રેડિક્ટેડ વેલ્યુ વધારે છે
- 3. જો ઇનપુટ < પ્રેડિક્ટેડ: આઉટપુટ = 0, પ્રેડિક્ટેડ વેલ્યુ ઘટાડે છે
- 4. સ્ટેપ સાઈઝ નક્કી કરે છે કે પ્રેડિક્ટેડ વેલ્યુ કેટલું બદલાય છે

ફાયદાઓ:

• સરળ ઇમ્પ્લિમેન્ટેશન: મિનિમલ હાર્ડવેર

• ઓછો બિટ રેટ: પ્રતિ સેમ્પલ 1 બિટ

• મજબૂત: પ્રમાણમાં ચેનલ નોઈઝથી અસરમુક્ત

મર્યાદાઓ:

• સ્લોપ ઓવરલોડ: ઝડપી સિગ્નલ ફેરફારોને ટ્રેક કરી શકતું નથી

• ગ્રેન્યુલર નોઈઝ: સ્થિર સિગ્નલની આજુબાજુ ઓસિલેશન

• મર્ચાદિત રેઝોલ્યુશન: ક્વોલિટી સ્ટેપ સાઈઝ અને સેમ્પલિંગ રેટ પર આધાર રાખે છે

વેવફોર્મ્સ:

Original: /\/\/\

Reconstructed: /\/\/\

(Staircase approximation)

Binary output: 1101001011

મેમરી ટ્રીક: "1BSG" - 1 Bit per Sample, Slope overload and Granular noise limitations

પ્રશ્ન 5(c) OR [7 ગુણ]

PCM-TDM સિસ્ટમ સમજાવો.

જવાબ:

PCM-TDM સિસ્ટમ:

વ્યાખ્યા:

- પલ્સ કોડ મોક્યુલેશન (PCM) અને ટાઈમ ડિવિઝન મલ્ટિપ્લેક્સિંગ (TDM)નો સંયુક્ત સિસ્ટમ
- મસ્ટિપલ એનાલોગ ચેનલ ડિજિટલ PCMમાં કન્વર્ટ થાય છે, પછી સમયમાં મસ્ટિપ્લેક્સ થાય છે

બ્લોક ડાયગ્રામ:

દરેક ચેનલ માટે PCM પ્રક્રિયા:

- 1. **સેમ્પલિંગ:** દરેક ચેનલને fs > 2fmax પર સેમ્પલ કરવામાં આવે છે
- 2. **કવોન્ટાઇઝેશન:** સેમ્પલ્સને ડિસ્ક્રીટ લેવલમાં સોંપવામાં આવે છે
- 3. એન્કોડિંગ: ક્વોન્ટાઇઝ્ડ વેલ્યુને બાઇનરી કોડમાં કન્વર્ટ કરવામાં આવે છે

TDM ફ્રેમ સ્ટ્રક્ચર:

- ફ્રેમમાં દરેક ચેનલમાંથી એક સેમ્પલ હોય છે
- ફ્રેમમાં સિન્ક્રોનાઇઝેશન બિટ્સ/વર્ડ શામેલ છે
- ફ્રેમ રેટ સેમ્પલિંગ રેટ (fs) જેટલો છે
- બિટ રેટ = fs × N × n (N = ચેનલ્સ, n = બિટ્સ/સેમ્પલ)

ટિપિકલ પેરામીટર્સ:

• **વોઇસ ચેનલ્સ:** 8 kHz સેમ્પલિંગ, 8 બિટ્સ/સેમ્પલ

• **T1 સિસ્ટમ:** 24 ચેનલ, 1.544 Mbps • **E1 સિસ્ટમ:** 30 ચેનલ, 2.048 Mbps

ફાયદાઓ:

• કાર્યક્ષમ ટ્રાન્સમિશન: સિંગલ હાઈ-સ્પીડ લિંક

• ડિજિટલ ફાયદાઓ: નોઈઝ ઇમ્યુનિટી, રિજનરેશન

• લવચીકતા: સરળતાથી ચેનલ્સ ઉમેરવા/કાઢવા

એપ્લિકેશન:

• ટેલિફોન નેટવર્ક્સ: ડિજિટલ ટ્રાન્સમિશન સિસ્ટમ્સ

• ડિજિટલ ઓડિયો: બ્રોડકાસ્ટિંગ અને રેકોર્ડિંગ

• સેટેલાઇટ કોમ્યુનિકેશન: મલ્ટિપલ ચેનલ ટ્રાન્સમિશન

TDM ફ્રેમનો આકૃતિ:

```
|<---->|
+----+---+---+---+ +----+
| Sync| Ch1 | Ch2 | Ch3 | Ch4 | ..... | ChN |
+----+----+----+ +----+
```

મેમરી ટ્રીક: "MSQT" - Multiplex, Sample, Quantize, Transmit