MAT137 Lecture 5

Huan Vo

University of Toronto

September 21, 2017

Agenda

- ▶ Inequalities and absolute values.
- ► The intuitive idea of limit.

Properties of Inequalities

Let $a, b, c \in \mathbb{R}$. Assume a < b, what can we conclude?

- a + c < b + c
- a-c < b-c
- ac < bc
- $a^2 < b^2$
- **5** $\frac{1}{a} > \frac{1}{b}$

Solving Inequalities

The solution set of

$$-2(x-3) > 4$$

- $(-\infty,\infty)$
- **2** $(1, +\infty)$
- $(-\infty,1)$
- (-1,1)
- $(-\infty, 1]$

Solving Inequalities

The solution set of

$$x^2 - 3x + 4 \le 0$$

- $\bullet (-\infty, \infty)$
- [-2,2]
- $(-\infty, 2]$
- **4**
- who cares

Solving Inequalities

The solution set of

$$x(x+6) \ge 4 + 3x$$

- (-4,1)
- [-4,1]
- **③** $(-\infty, -4) \cup [1, +\infty)$

Properties of Absolute Values

Let $a, b \in \mathbb{R}$. What can we conclude?

- |ab| = |a||b|
- |a + b| = |a| + |b|
- |a| = 0 if and only if a = 0
- |-a| = a
- $|a+b| \le |a| + |b|$
- $|a| |b| \le |a b|$

Inequalities and Absolute Values

The solution set of the inequality

$$|3 - 2x| > 1$$

- **1** Ø
- (1,2)
- $(-\infty,1) \cup (2,\infty)$
- $(-\infty,1)$
- \bullet $(2,\infty)$

Sets Described by Distance

Let $a \in \mathbb{R}$ and $\delta > 0$. What are the following sets?

- **2** $B = \{X \in \mathbb{R} : |x| > \delta\}$
- **3** $C = \{x \in \mathbb{R} : |x a| < \delta\}$
- $D = \{ x \in \mathbb{R} : 0 < |x a| < \delta \}$

Implications

Find all values of α to make the following implication true

$$|x-2|<1\Longrightarrow |2x-4|<\alpha.$$

Answer: $\alpha \geq 2$.

Implications

Find all values of β to make the following implication true

$$|x-2| < \beta \Longrightarrow |2x-4| < 1.$$

Answer: $\beta \leq 1/2$.

11 / 16

Graphs

Let $a, L \in \mathbb{R}$. Let $\delta, \epsilon > 0$.

lacktriangle Draw the graph of a function f that satisfies

$$|x - a| < \delta \Rightarrow |f(x) - L| < \epsilon.$$

2 How does your answer change for...

$$0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon.$$

Find the smallest positive number M such that

$$|x-2| < 1 \Longrightarrow |x+3| < M$$
.

Limits from a graph

Find the value of

- $\lim_{x \to 0} f(f(x))$
- $\lim_{x \to 2} \left[f(x) \right]^2$

14 / 16

Limits from a graph

Find the value of

- $\bullet \lim_{x \to 2} f(x)$
- $\lim_{x \to 2} f(f(x))$

Next Class: Monday Sept 25

Watch videos 5, 6, 7 in Playlist 2.