Redes neuronales y deep learning

Actividad Semana 3

NAtalia Camarano

Semana 3: Ajuste de modelos de Deep Learning

IEBS

```
import tensorflow as tf
import numpy as np
import pandas as pd

# Para mostrar gráficas
import matplotlib.pyplot as plt
%matplotlib inline

# Anaconda fixing problem
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'

from google.colab import drive
drive.mount('/content/drive')

Prive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
```

En esta actividad vamos a abordar un problema desde 0 al igual que hemos visto en las clases de esta semana, para ello vamos a utilizar un nuevo dataset donde tendréis que realizar todos los pasos vistos en clase para ajustar un modelo vosotros mismos.

Destacar que en la actividad de esta semana nos centraremos en encontrar la mejor arquitectura de red para el dataset que tenemos y en el caso práctico nos centraremos en realizar más experimentos jugando con el tamaño del batch, el valor del learning rate y el uso de capas dropout.

Ejercicio

En este notebook vamos a usar un dataset nuevo, el dataset es muy parecido al dataset del precio de las casas de boston. Esta vez vamos a utilizar un conjunto de datos que contienen

información sobre el precio de las casas encontradas en un distrito de California. Las columnas son las siguientes:

- longitude: cuanto de al oeste está una casa; un valor más alto está más al oeste.
- latitude: cuanto de al norte está una casa; un valor más alto está más al norte.
- housing_median_age: edad media de una casa; un valor bajo es una casa más nueva.
- total_rooms: número total de habitaciones.
- total_bedrooms: número total de dormitorios.
- population: número total de personas que residen.
- households: número total de hogares, un grupo de personas que residen dentro de una unidad de vivienda.
- median_income: ingreso medio de los hogares dentro de un bloque de casas (medido en decenas de miles de dólares).
- ocean_proximity: ubicación de la casa cerca del océano o mar.
- median_house_value (variables a predecir): valor medio de la vivienda (medido en dólares).

Vamos a cargar los datos desde el fichero housing.csv:

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Ajuste de un modelo desde 0 con
df.head()

→		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
	0	-122.23	37.88	41.0	880.0	129.0	322.0
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
	2	-122.24	37.85	52.0	1467.0	190.0	496.0
	3	-122.25	37.85	52.0	1274.0	235.0	558.0
	4	-122.25	37.85	52.0	1627.0	280.0	565.0

Pasos
siguientes:

Generar código df con Ver gráficos
recomendados

New interactive sheet

df.shape

→ (20433, 10)

Vamos a separar la variable objetivo del resto de variables (accedemos al campo value para que los datos sean de tipo *numpy array* y se puedan usar como variable de entrada de nuestra red):

df.columns

Establecer una función de coste adecuada a nuestro problema.

En este caso, como es un problema de regresión y los valores de nuestros datos son tan grandes, elegimos la función de coste mean_absolute_percentage_error, este error varía entre los valores 100 y 0 donde 100 es el pero error que podemos llegar a tener y 0 es el mejor error, por lo que en nuestros entrenamientos buscaremos un error más cercano a 0.

```
actual_loss = 'mean_absolute_percentage_error'
```

2. Elegir una estructura de red base

Ahora, como ya hemos visto en clase vamos a encontrar una estructura de red que encaje con los datos que vamos a utilizar. Vamos a crear varias redes a ver que talfuncionan.

Para hacer entrenamientos rápidos y ver si la red se adapta a los datos vamos a usar solo un subconjunto de los datos, es decir usaremos 1000 datos y no usaremos conjunto de validación.

Ejercicio 1

Crear una red con la siguiente configuración y entrénala:

- Configuración de la red:
 - Arquitectura de la red:
 - 1º Capa: capa de entrada donde indiques la dimensión de los datos.
 - 2º Capa: capa densa con 8 neuronas y función de activación relu.
 - 3º Capa: capa densa con 8 neuronas y función de activación relu.
 - 4º Capa: capa de salida con una neurona sin función de activación.
 - Tipo de entrenamiento:
 - *Epochs*: 30

- Optimizador. adam
- Learning Rate: 0.001

```
# Completar
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
# Dimensiones de entrada (debes ajustar esto al tamaño real de tus datos)
input_dim = x.shape[1] # Número de características en el dataset
# Crear el modelo
model = Sequential([
   Dense(8, activation='relu', input_dim=input_dim), # Primera capa densa
   Dense(8, activation='relu'),
                                                      # Segunda capa densa
   Dense(1)
                                                      # Capa de salida
])
# Compilar el modelo
model.compile(optimizer=Adam(learning_rate=0.001),
              loss='mean_absolute_percentage_error')
# Entrenar el modelo
history = model.fit(x, y, epochs=30, batch_size=32)
# Mostrar resultados del entrenamiento
import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='Pérdida')
plt.title('Progreso del entrenamiento')
plt.xlabel('Épocas')
plt.ylabel('Pérdida')
plt.legend()
plt.show()
```

```
→ Epoch 1/30
    /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarnin
      super().__init__(activity_regularizer=activity_regularizer, **kwargs)
    639/639
                                 - 3s 2ms/step - loss: 98.0343
    Epoch 2/30
                                 - 1s 1ms/step - loss: 64.8556
    639/639
    Epoch 3/30
    639/639
                                  1s 2ms/step - loss: 55.3257
    Epoch 4/30
    639/639
                                 - 1s 2ms/step - loss: 55.2986
    Epoch 5/30
    639/639 -
                                 - 1s 1ms/step - loss: 54.1797
    Epoch 6/30
                                 - 1s 2ms/step - loss: 52.3874
    639/639 -
    Epoch 7/30
    639/639
                                 - 1s 1ms/step - loss: 50.6459
    Epoch 8/30
                                 - 1s 1ms/step - loss: 48.1021
    639/639 -
    Epoch 9/30
    639/639 -
                                  1s 1ms/step - loss: 45.7763
    Epoch 10/30
    639/639
                                 - 2s 2ms/step - loss: 44.3606
    Epoch 11/30
    639/639 -
                                 - 3s 3ms/step - loss: 43.8880
    Epoch 12/30
                                 - 2s 1ms/step - loss: 43.2766
    639/639 -
    Epoch 13/30
                                  1s 1ms/step - loss: 43.3494
    639/639
    Epoch 14/30
                                  1s 1ms/step - loss: 43.4589
    639/639
    Epoch 15/30
                                 - 1s 2ms/step - loss: 42.9790
    639/639 -
    Epoch 16/30
                                 - 1s 2ms/step - loss: 43.2034
    639/639 -
    Epoch 17/30
    639/639 -
                                 - 1s 1ms/step - loss: 43.1934
    Epoch 18/30
                                 - 1s 1ms/step - loss: 43.0656
    639/639 -
    Epoch 19/30
                                 - 1s 1ms/step - loss: 42.7236
    639/639 -
    Epoch 20/30
                                 · 2s 2ms/step - loss: 42.8005
    639/639 -
    Epoch 21/30
    639/639
                                 - 3s 2ms/step - loss: 42.5777
    Epoch 22/30
                                 - 2s 1ms/step - loss: 43.1985
    639/639 -
    Epoch 23/30
                                 - 1s 1ms/step - loss: 42.8874
    639/639 -
    Epoch 24/30
    639/639 -
                                 - 1s 2ms/step - loss: 42.6127
    Epoch 25/30
    639/639 -
                                  1s 2ms/step - loss: 42.4617
    Epoch 26/30
    639/639 -
                                 - 1s 1ms/step - loss: 41.8558
    Epoch 27/30
    639/639
                                  1s 1ms/step - loss: 42.3135
    Epoch 28/30
    639/639 •
                                  1s 1ms/step - loss: 42.4543
    Epoch 29/30
```

• **1s** 1ms/step - loss: 42.1817

639/639

Ejercicio 2

Vamos a complicar un poco más la arquitectura de la red:

• Configuración de la red:

- Arquitectura de la red:
 - 1º Capa: capa de entrada donde indiques la dimensión de los datos.
 - 2º Capa: capa densa con 64 neuronas y función de activación relu.

Épocas

- 3º Capa: capa densa con 32 neuronas y función de activación relu.
- 4º Capa: capa densa con 32 neuronas y función de activación relu.
- 5º Capa: capa de salida con una neurona sin función de activación.
- Tipo de entrenamiento:
 - *Epochs*: 30
 - Optimizador. adam
 - Learning Rate: 0.001

Completar
import tensorflow as tf
from tensorflow.keras import Sequential

```
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
# Dimensiones de entrada (debes ajustar esto al tamaño real de tus datos)
input_dim = x.shape[1] # Número de características en el dataset
# Crear el modelo
model = Sequential([
   Dense(64, activation='relu', input_dim=input_dim), # Primera capa densa
   Dense(32, activation='relu'),
                                                       # Segunda capa densa
   Dense(32, activation='relu'),
                                                       # Tercera capa densa
   Dense(1)
                                                       # Capa de salida
])
# Compilar el modelo
model.compile(optimizer=Adam(learning_rate=0.001),
              loss='mean_absolute_percentage_error')
# Entrenar el modelo
history = model.fit(x, y, epochs=30, batch_size=32)
# Mostrar resultados del entrenamiento
import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='Pérdida')
plt.title('Progreso del entrenamiento')
plt.xlabel('Épocas')
plt.ylabel('Pérdida')
plt.legend()
plt.show()
```

5, 19:08	M12_3_Redes neul	ronale	s y deep learni	ng-	Ajuste-de-	-un-modelo-de
→	Epoch 1/30 639/639 ————————————————————————————————————	- 3s	2ms/step	-	loss:	71.9170
	Epoch 2/30 639/639 ————	- 1s	2ms/step	-	loss:	45.7355
	Epoch 3/30 639/639 ———	- 1s	2ms/step	_	loss:	42.8489
	Epoch 4/30 639/639 ————	- 1s	2ms/step	_	loss:	42.5594
	Epoch 5/30 639/639 —————					
	Epoch 6/30 639/639 ————————————————————————————————————					
	Epoch 7/30 639/639 ————————————————————————————————————					
	Epoch 8/30 639/639 ————————————————————————————————————		·			
	Epoch 9/30					
	639/639 ————————————————————————————————————					
	639/639 — Epoch 11/30					
	639/639 — Epoch 12/30					
	639/639 ————————————————————————————————————	- 1s	2ms/step	-	loss:	33.4564
	639/639 ————————————————————————————————————	- 1s	2ms/step	-	loss:	32.1475
	639/639 — Epoch 15/30	- 1s	2ms/step	-	loss:	31.7491
	639/639 — Epoch 16/30	- 1s	2ms/step	-	loss:	30.9301
	639/639 ————	- 1s	2ms/step	-	loss:	29.5960
		- 1s	2ms/step	-	loss:	28.9120
	Epoch 18/30 639/639 ————————————————————————————————————	- 1s	2ms/step	-	loss:	28.9022
	Epoch 19/30 639/639 ————————————————————————————————————	- 2s	3ms/step	-	loss:	28.1124
	Epoch 20/30 639/639 —————	- 2s	3ms/step	-	loss:	28.0163
	Epoch 21/30 639/639 ———	- 2s	3ms/step	_	loss:	27.6690
	Epoch 22/30 639/639 ———	- 2s	2ms/step	_	loss:	27.4763
	Epoch 23/30 639/639 —————	- 1s	2ms/step	_	loss:	27.0234
	Epoch 24/30 639/639 —————		·			
	Epoch 25/30 639/639 ————					
	Epoch 26/30 639/639 ————————————————————————————————————					
	Epoch 27/30 639/639					
	Epoch 28/30					
	639/639 — Epoch 29/30					
	639/639 — Epoch 30/30		·			
	639/639	2 s	3ms/step	-	loss:	26.3121

Ejercicio 3

Vamos a complicar aun más la arquitectura de la red:

• Configuración de la red:

- Arquitectura de la red:
 - 1º Capa: capa de entrada donde indiques la dimensión de los datos.
 - 2º Capa: capa densa con 128 neuronas y función de activación relu.
 - 3º Capa: capa densa con 64 neuronas y función de activación relu.
 - 4º Capa: capa densa con 32 neuronas y función de activación relu.
 - 5º Capa: capa densa con 16 neuronas y función de activación relu.
 - 6º Capa: capa de salida con una neurona sin función de activación.
- Tipo de entrenamiento:
 - *Epochs*: 30
 - Optimizador. adam
 - Learning Rate: 0.001

Completar import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam

```
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
# Preprocesamiento de los datos
# Dividir datos en entrenamiento y prueba
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Escalar los datos para que el modelo entrene de manera óptima
scaler_x = StandardScaler()
scaler_y = StandardScaler()
x_train = scaler_x.fit_transform(x_train)
x_test = scaler_x.transform(x_test)
y train = scaler y.fit transform(y train)
y_test = scaler_y.transform(y_test)
# Dimensiones de entrada
input_dim = x_train.shape[1] # Número de características en el dataset
# Crear el modelo
model = Sequential([
   Dense(128, activation='relu', input_dim=input_dim), # Primera capa densa
   Dense(64, activation='relu'),
                                                        # Segunda capa densa
   Dense(32, activation='relu'),
                                                        # Tercera capa densa
   Dense(16, activation='relu'),
                                                        # Cuarta capa densa
                                                        # Capa de salida
   Dense(1)
])
# Compilar el modelo
model.compile(optimizer=Adam(learning rate=0.001),
              loss='mean_absolute_percentage_error',
              metrics=['mae'])
# Entrenar el modelo
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=30, batch_
# Graficar el progreso del entrenamiento
plt.plot(history.history['loss'], label='Pérdida de Entrenamiento')
plt.plot(history.history['val_loss'], label='Pérdida de Validación')
plt.title('Progreso del Entrenamiento')
plt.xlabel('Épocas')
plt.ylabel('Pérdida (MAPE)')
plt.legend()
plt.show()
# Evaluar el modelo
test_loss, test_mae = model.evaluate(x_test, y_test, verbose=0)
print(f"Pérdida en el conjunto de prueba: {test_loss:.4f}")
print(f"MAE en el conjunto de prueba: {test_mae:.4f}")
```

```
M12 3 Redes neuronales y deep learning-Ajuste-de-un-modelo-desde 0-Sprint-3.jpynb - Colab
→ Epoch 1/30
    /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarnin
      super().__init__(activity_regularizer=activity_regularizer, **kwargs)
    511/511
                                - 3s 3ms/step - loss: 105.6660 - mae: 0.7543 - val_loss: 1
    Epoch 2/30
    511/511
                                - 2s 2ms/step - loss: 100.2302 - mae: 0.6970 - val_loss: 9
    Epoch 3/30
    511/511 -
                                1s 2ms/step - loss: 94.1579 - mae: 0.6723 - val_loss: 87
    Epoch 4/30
    511/511 ·
                                - 2s 3ms/step - loss: 90.6172 - mae: 0.6433 - val_loss: 95
    Epoch 5/30
    511/511 -
                               - 2s 2ms/step - loss: 89.8005 - mae: 0.6379 - val_loss: 90
    Epoch 6/30
                                - 2s 3ms/step - loss: 90.7950 - mae: 0.6507 - val_loss: 90
    511/511 -
    Epoch 7/30
    511/511
                                3s 4ms/step - loss: 86.3051 - mae: 0.5976 - val_loss: 88
    Epoch 8/30
                                - 1s 2ms/step - loss: 87.0998 - mae: 0.6062 - val_loss: 89
    511/511 -
    Epoch 9/30
    511/511 -
                                Epoch 10/30
    511/511 -
                                - 1s 2ms/step - loss: 83.7443 - mae: 0.5703 - val_loss: 85
    Epoch 11/30
    511/511 -
                                Epoch 12/30
    511/511 -
                               - 1s 2ms/step - loss: 81.9649 - mae: 0.5384 - val_loss: 84
    Epoch 13/30
    511/511 -
                                 1s 2ms/step - loss: 83.7960 - mae: 0.5300 - val_loss: 83
    Epoch 14/30
                                 1s 2ms/step - loss: 79.8709 - mae: 0.5043 - val_loss: 84
    511/511 -
    Epoch 15/30
                                - 1s 3ms/step - loss: 82.8562 - mae: 0.5464 - val_loss: 83
    511/511 -
    Epoch 16/30
                                - 2s 3ms/step - loss: 79.3382 - mae: 0.5127 - val_loss: 84
    511/511 -
    Epoch 17/30
    511/511 -
                                - 3s 5ms/step - loss: 79.2566 - mae: 0.5130 - val_loss: 79
    Epoch 18/30
                               - 1s 2ms/step - loss: 81.6219 - mae: 0.5239 - val_loss: 79
    511/511 -
    Epoch 19/30
                                - 1s 2ms/step - loss: 79.4175 - mae: 0.4829 - val loss: 81
    511/511 -
    Epoch 20/30
                                 1s 2ms/step - loss: 80.4794 - mae: 0.4978 - val loss: 86
    511/511 -
    Epoch 21/30
    511/511 -
                                 2s 2ms/step - loss: 77.6448 - mae: 0.5004 - val loss: 82
    Epoch 22/30
    511/511 -
                                • 1s 3ms/step - loss: 80.2556 - mae: 0.4974 - val_loss: 79
    Epoch 23/30
                                - 1s 2ms/step - loss: 76.2251 - mae: 0.5013 - val loss: 80
    511/511 -
    Epoch 24/30
    511/511 -
                               - 1s 3ms/step - loss: 74.9300 - mae: 0.4773 - val_loss: 77
    Epoch 25/30
    511/511 -
                                3s 4ms/step - loss: 75.7313 - mae: 0.4783 - val_loss: 78
    Epoch 26/30
    511/511 -
                                - 1s 3ms/step - loss: 74.7509 - mae: 0.4704 - val loss: 79
    Epoch 27/30
                                2s 2ms/step - loss: 74.3107 - mae: 0.4623 - val loss: 79
    511/511 ·
    Epoch 28/30
```

1s 2ms/step - loss: 74.7342 - mae: 0.4622 - val_loss: 82

• **1s** 2ms/step - loss: 74.6228 - mae: 0.4764 - val_loss: 78

11/15

511/511 -

Epoch 29/30 511/511

Pérdida en el conjunto de prueba: 80.8365 MAE en el conjunto de prueba: 0.4674

Ejercicio 4

Vamos a hacer una última red con más capas y neuronas:

Configuración de la red:

- Arquitectura de la red:
 - 1º Capa: capa de entrada donde indiques la dimensión de los datos.
 - 2º Capa: capa densa con 1024 neuronas y función de activación relu.
 - 3º Capa: capa densa con 512 neuronas y función de activación relu.
 - 4º Capa: capa densa con 256 neuronas y función de activación relu.
 - 5º Capa: capa densa con 128 neuronas y función de activación relu.
 - 6° Capa: capa densa con 64 neuronas y función de activación relu.
 - 7º Capa: capa densa con 32 neuronas y función de activación relu.
 - 8° Capa: capa densa con 16 neuronas y función de activación relu.
 - 9° Capa: capa de salida con una neurona sin función de activación.
- Tipo de entrenamiento:
 - *Epochs*: 30
 - Optimizador. adam
 - Learning Rate: 0.001

```
# Completar
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# Preprocesamiento de los datos
# Dividir datos en entrenamiento y prueba
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Escalar los datos para que el modelo entrene de manera óptima
scaler x = StandardScaler()
scaler_y = StandardScaler()
x_train = scaler_x.fit_transform(x_train)
x_test = scaler_x.transform(x_test)
y_train = scaler_y.fit_transform(y_train)
y_test = scaler_y.transform(y_test)
# Dimensiones de entrada
input_dim = x_train.shape[1] # Número de características en el dataset
```

```
# Crear el modelo
model = Sequential([
    Dense(1024, activation='relu', input_dim=input_dim), # Primera capa densa
   Dense(512, activation='relu'),
                                                         # Segunda capa densa
   Dense(256, activation='relu'),
                                                         # Tercera capa densa
    Dense(128, activation='relu'),
                                                         # Cuarta capa densa
    Dense(64, activation='relu'),
                                                         # Quinta capa densa
   Dense(32, activation='relu'),
                                                         # Sexta capa densa
    Dense(16, activation='relu'),
                                                         # Séptima capa densa
                                                         # Capa de salida
   Dense(1)
])
# Compilar el modelo
model.compile(optimizer=Adam(learning_rate=0.001),
              loss='mean_absolute_percentage_error',
              metrics=['mae'])
# Entrenar el modelo
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=30, batch_
# Graficar el progreso del entrenamiento
plt.plot(history.history['loss'], label='Pérdida de Entrenamiento')
plt.plot(history.history['val_loss'], label='Pérdida de Validación')
plt.title('Progreso del Entrenamiento')
plt.xlabel('Épocas')
plt.ylabel('Pérdida (MAPE)')
plt.legend()
plt.show()
# Evaluar el modelo
test_loss, test_mae = model.evaluate(x_test, y_test, verbose=0)
print(f"Pérdida en el conjunto de prueba: {test_loss:.4f}")
print(f"MAE en el conjunto de prueba: {test_mae:.4f}")
```

```
→ Epoch 1/30
    /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarnin
      super().__init__(activity_regularizer=activity_regularizer, **kwargs)
    511/511
                                 - 12s 19ms/step - loss: 106.0785 - mae: 0.7392 - val_loss:
    Epoch 2/30
                                  10s 18ms/step - loss: 102.9521 - mae: 0.7485 - val_loss:
    511/511
    Epoch 3/30
    511/511 -
                                  8s 15ms/step - loss: 93.8309 - mae: 0.6757 - val_loss: 9
    Epoch 4/30
    511/511 ·
                                 - 12s 19ms/step - loss: 97.8508 - mae: 0.7218 - val_loss:
    Epoch 5/30
    511/511 -
                                - 10s 18ms/step - loss: 90.4019 - mae: 0.6505 - val_loss:
    Epoch 6/30
                                 - 8s 16ms/step - loss: 95.7788 - mae: 0.7089 - val_loss: 9
    511/511 -
    Epoch 7/30
    511/511
                                  12s 19ms/step - loss: 95.2882 - mae: 0.6996 - val_loss:
    Epoch 8/30
    511/511 -
                                  9s 18ms/step - loss: 89.8943 - mae: 0.6562 - val_loss: 9
    Epoch 9/30
    511/511 -
                                  10s 17ms/step - loss: 91.2323 - mae: 0.6537 - val_loss:
    Epoch 10/30
    511/511 -
                                  10s 19ms/step - loss: 87.1985 - mae: 0.6297 - val_loss:
    Epoch 11/30
    511/511 -
                                 - 8s 15ms/step - loss: 92.0641 - mae: 0.6934 - val_loss: <code>9</code>
    Epoch 12/30
    511/511 -
                                 - 10s 19ms/step - loss: 88.1870 - mae: 0.6413 - val_loss:
    Epoch 13/30
    511/511 -
                                  8s 15ms/step - loss: 91.5315 - mae: 0.6463 - val_loss: 9
    Epoch 14/30
                                  17s 33ms/step - loss: 87.0160 - mae: 0.6403 - val_loss:
    511/511 -
    Epoch 15/30
                                 - 15s 29ms/step - loss: 86.6818 - mae: 0.6284 - val_loss:
    511/511 -
    Epoch 16/30
                                 - 10s 19ms/step - loss: 86.2075 - mae: 0.6183 - val_loss:
    511/511 -
    Epoch 17/30
    511/511 -
                                 - 9s 16ms/step - loss: 84.5305 - mae: 0.6154 - val_loss: 8
    Epoch 18/30
                                 - 10s 19ms/step - loss: 86.6880 - mae: 0.6296 - val_loss:
    511/511 -
    Epoch 19/30
                                 - 9s 18ms/step - loss: 89.5147 - mae: 0.6563 - val_loss: 8
    511/511 -
    Epoch 20/30
                                  9s 16ms/step - loss: 86.2053 - mae: 0.6196 - val loss: 8
    511/511 -
    Epoch 21/30
    511/511 -
                                  11s 18ms/step - loss: 86.2468 - mae: 0.6211 - val loss:
    Epoch 22/30
    511/511 -
                                 - 11s 20ms/step - loss: 85.7208 - mae: 0.6020 - val_loss:
    Epoch 23/30
    511/511 -
                                 - 8s 16ms/step - loss: 87.2949 - mae: 0.6255 - val loss: 8
    Epoch 24/30
    511/511 -
                                 - 10s 19ms/step - loss: 86.6421 - mae: 0.6249 - val_loss:
    Epoch 25/30
    511/511 -
                                  9s 17ms/step - loss: 85.6856 - mae: 0.6124 - val_loss: 8
    Epoch 26/30
    511/511 -
                                 - 10s 17ms/step - loss: 83.7986 - mae: 0.6041 - val loss:
    Epoch 27/30
                                  10s 20ms/step - loss: 88.6017 - mae: 0.6377 - val_loss:
    511/511
    Epoch 28/30
    511/511 -
                                  8s 15ms/step - loss: 87.0644 - mae: 0.6258 - val_loss: 9
    Epoch 29/30
                                                   1000 06 6001
                                                                   maa. A (122
    C11/C11
                                  10c 10mc/c+on
```