Anomaly Detection in Network Traffic with Kmeans Clustering

Introduction

Dans le cadre du cours Big Data Analytics, un projet d'apprentissage est réalisé. La technologie utilisée pour sa réalisation est SparkML. Ce document présente la description du projet ainsi que les résultats obtenus.

Partie 1 : Description du dataset

Le dataset contient un ensemble de 4,9 millions de connexions réseau, et à été généré par rapport à des données de 1999. Les informations contenues ont été prétraitées, afin d'avoir uniquement un résumé de celle-ci (un paquet réseau peut avoir une structure complexe et pas forcément toujours uniforme) afin d'obtenir des données facilement utilisables dans un contexte de machine learning. Au final, la taille totale du dataset est de 708 MB.

Chaque entrée du dataset est représentée au format csv, et contient 41 features, comme par exemple les protocoles des différentes couches OSI (tcp/udp, http, ftp, ...), ou encore la quantité de données échangées. La plupart des features correspondent à des compteurs, ou à une valeur binaire (0 ou 1). Il existe également certaines features correspondant à un ratio, et donc représenté avec des valeurs décimales comprises entre 0 et 1.

Enfin, la dernière feature est un label, catégorisant le type d'attaque correspondant à la connexion. Dans notre cas, l'apprentissage est non supervisé, et donc cette valeur sera très certainement ignorée.

Une description plus détaillée des features est présentée dans un document en ligne¹ :

feature name	description	type
duration	length (number of seconds) of the connection	continuous
protocol_type	type of the protocol, e.g. tcp, udp, etc.	discrete
service	network service on the destination, e.g., http, telnet, etc.	discrete
flag	normal or error status of the connection	discrete
src_bytes	number of data bytes from source to destination	continuous
dst_bytes	number of data bytes from destination to source	continuous

¹ http://kdd.ics.uci.edu/databases/kddcup99/task.html

land	1 if connection is from/to the same host/port; 0 otherwise	discrete
wrong_fragment	number of ``wrong" fragments	continuous
urgent	number of urgent packets	continuous
hot	number of ``hot" indicators	continuous
num_failed_logins	number of failed login attempts	continuous
logged_in	1 if successfully logged in; 0 otherwise	discrete
num_compromised	number of ``compromised" conditions	continuous
root_shell	1 if root shell is obtained; 0 otherwise	discrete
su_attempted	1 if ``su root" command attempted; 0 otherwise	discrete
num_root	number of ``root" accesses	continuous
num_file_creations	number of file creation operations	continuous
num_shells	number of shell prompts	continuous
num_access_files	number of operations on access control files	continuous
num_outbound_cmds	number of outbound commands in an ftp session	continuous
is_hot_login	1 if the login belongs to the ``hot" list; 0 otherwise	discrete
is_guest_login	1 if the login is a ``guest"login; 0 otherwise	discrete
count	number of connections to the same host as the current connection in the past two seconds	continuous
srv_count	number of connections to the same service as the current connection in the past two seconds	continuous
serror_rate	% of connections that have ``SYN" errors	continuous
srv_serror_rate	% of connections that have ``SYN" errors	continuous
rerror_rate	% of connections that have ``REJ" errors	continuous
srv_rerror_rate	% of connections that have ``REJ" errors	continuous
same_srv_rate	% of connections to the same service	continuous
diff_srv_rate	% of connections to different services	continuous
srv_diff_host_rate	% of connections to different hosts	continuous

dst_host_count	Count of connection having same dest hot	continuous
dst_host_srv_count	Count of connection having the same destination host and using same service	continuous
dst_host_same_srv_rate	% of connection having the same destination host and using same service	continuous
dst_host_diff_srv_rate	% of different service on the current host	continuous
dst_host_same_src_port_rate	% of connection to the current host having same src port	continuous
dst_host_srv_diff_host_rate	% of connection to the same service coming form different host	continuous
dst_host_serror_rate	% of connection to the current host that have ``SYN" error	continuous
dst_host_srv_serror_rate	% of connection to the current host and specified service that have ``SYN" error	continuous
dst_host_rerror_rate	% of connection to the current host that have ``REJ" error	continuous
dst_host_srv_rerror_rate	% of connection to the current host and specified service that have ``REJ" error	continuous

Voici enfin un exemple de connexions normale :

Ici on a l'exemple d'une connexion http, avec 181 bytes envoyé (la requête GET/POST) et 5450 (le contenu de la page). On peut aussi voir que les pourcentages d'erreurs valent 0.

Puis une connexion catégorisée comme une attaque (ici l'attaque smurf, une variante de DDOS) :

Dans ce cas le protocole est icmp, et il y a 0 byte dans la réponse (le principe de l'attaque smurf est d'envoyer un ping avec l'ip de la victime comme source, de façon à ce que le serveur réponde directement vers la victime). On peut voir ici un grand nombre de connexions au même port (255 connexions), qui nous montre déjà une certaine anomalie (la requête précédente n'avait que 9 connexions).

Partie 3: Questions d'analyse

Cette première approche du projet soulève certaines questions, dont nous espérons pouvoir obtenir des réponses à la fin de ce projet.

- Est-ce que l'utilisation de toutes les features disponibles donne de meilleurs résultats ?
- Est-ce que l'algorithme K-mean est l'algorithme le plus adapté à notre problème ?
- Est-il possible d'identifier les différentes attaques au moyen d'un algorithme non supervisé ou seule une distinction "normal/anormal" est possible ?