motoriduttori con encoder ad effetto Hall bifase a 90°

gear-motors with two-phase Hall-effect 90° encoder

MAGNETE A SEI POLI:

TRE IMPULSI OGNI GIRO MOTORE

La successione delle fasi A-B si ottiene collegando il motore secondo le polarità stampigliate sul fondello.

INTERRUTTORE AD EFFETTO HALL

Questi interruttori ad effetto Hall, sono sensori altamente stabili termicamente e resistenti alle sollecitazioni meccaniche, sono maggiormente utilizzati in applicazioni dove il campo magnetico varia rapidamente il valore di campo residuo è basso. Ciascun dispositivo include un regolatore di tensione, un generatore di Hall, un circuito stabilizzatore di temperatura, un amplificatore di segnale stabilizzato a chopper, un comparatore di Schmitt ed un mosfet a drain aperto, compresi su un solo "chip" di silicio. Il regolatore di tensione permette di alimentare il dispositivo con tensione compresa tra 3,5 e 24V. Il mosfet di uscita può sopportare correnti di 20mA massimo. Con opportuno valore di resistenza di carico in uscita può essere agevolmente interfacciato con logiche bipolari o MOS.

SIX POLES MAGNET:

THREE PULSES FOR MOTOR TURN

The sequence of the phases A-B is obtained connecting the motor with the polarities printed on the black bottom cover.

HALL-EFFECT SWITCHES

These Hall-effect switches are highly temperature stable and stress-resistant sensors best utilized in applications that provide steep magnetic slopes and low residual levels of magnetic flux density. Each device includes a voltage regulator, quadratic Hall voltage generator, temperature stability circuit, signal chopper stabilized amplifier, Schmitt trigger and an open drain mosfet on a single silicon chip. The on-board regulator permits operation with supply voltages of 3,5 to 24V. The output mosfet can sink up to 20 mA with suitable output pull up, they can be used directly with bipolar or MOS logic circuits.

collegamenti

1 Verde: GND

2 Giallo: O.C. B NPN

3 Blu: O.C. A NPN

4 Marrone: Vcc (Hall)

connections

1 Green: GROUND

2 Yellow: O.C. B NPN

3 Blue: O.C. A NPN

4 Brown: Vcc (Hall)

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	VALUE	UNITS					
Supply Voltage	VDD	28	V					
Supply Current	IDD	50	mA					
Output Voltage	VOUT	28	V					
Output Current	IOUT	50	mA					
Storage Temperature Range	TS	-50 to 150	°C					
Maximimum Junction Temperature	TJ	165	°C					

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to all absolutemaximum-rated conditions for extended periods may affect device reliability.

.....

GENERAL ELECTRICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYPE	MAX	UNITS		
Supply Voltage	VDD	Operating	3,5	-	24	V		
Supply Current	IDD	B <brp< td=""><td>-</td><td>-</td><td>5</td><td>mA</td></brp<>	-	-	5	mA		
Output Saturation Voltage	VDSon	IOUT=20mA, B>BOP	-	-	0,5	V		
Output Leakage Current	IOFF	IB <brp, vout="24V</td"><td>-</td><td>0,3</td><td>10</td><td>μΑ</td></brp,>	-	0,3	10	μΑ		
Output Rise Time	tr	RL=1kΩ, CL=20pF	-	0,25	-	μs		
Output Fall Time	tr	RL=1kΩ, CL=20pF	-	0,25	-	μs		

OC Operating Parameters $TA = 25 \, \text{C}^{\circ}$, VDD = 3.5V to 24V (unless otherwise specified)

