Lecture 11: Regression Methods I (Linear Regression)

Hao Helen Zhang

Fall, 2017

Outline

- Regression: Supervised Learning with Continuous Responses
- 2 Linear Models and Multiple Linear Regression
 - Ordinary Least Squares
 - Statistical inferences
 - Computational algorithms

Regression Models

If the response Y take real values, we refer this type of supervised learning problem as regression problem.

- linear regression models
- parametric models
- nonparametric regression
 - splines, kernel estimator, local polynomial regression
- semiparametric regression

Broad coverage:

 penalized regression, regression trees, support vector regression, quantile regression

Linear Regression Models

A standard linear regression model assumes

$$y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i$$
, $\epsilon_i \sim \text{i.i.d}$, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$,

- y_i is the response for the *i*th observation, $\mathbf{x}_i \in R^d$ is the covariates
- $\beta \in R^d$ is the *d*-dimensional parameter vector

Common model assumptions:

- independence of errors
- constant error variance (homoscedasticity)
- ϵ independent of **X**.

Normality is not needed.

About Linear Models

Linear models has been a mainstay of statistics for the past 30 years and remains one of the most important tools.

- The covariates may come from different sources
 - quantitative inputs; dummy coding qualitative inputs.
 - transformed inputs: $\log(X), X^2, \sqrt{X}, ...$
 - basis expansion: $X_1, X_1^2, X_1^3, ...$ (polynomial representation)
 - interaction between variables: $X_1X_2,...$

Review on Matrix Theory (I)

Let A be an $m \times m$ matrix. Let I_m be the identity matrix of size m.

- The determinant of A is det A) = |A|.
- The *trace* of A is tr(A) = the sum of the diagonal elements.
- The roots of the *m*th degree of polynomial equation in λ .

$$|\lambda I_m - A| = 0,$$

denoted by $\lambda_1, \dots, \lambda_m$ are called the *eigenvalues* of A.

- The collection $\{\lambda_1, \dots, \lambda_m\}$ is called the *spectrum* of A.
- ullet Any nonzero m imes 1 vector ${f x}_i
 eq {f 0}$ such that

$$A\mathbf{x}_i = \lambda_i \mathbf{x}_i$$

is an *eigenvector* of A corresponding to the eigenvalue λ_i . If B is another $m \times m$ matrix , then

$$|AB| = |A||B|$$
, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Review on Matrix Theory (II)

The following are equivalent:

- |A| ≠ 0
- rank(A) = m
- A^{-1} exists.

Orthogonal Matrix

An $m \times m$ matrix is symmetric if

$$A'=A$$
.

An $m \times m$ matrix P is called an orthogonal matrix if

$$PP' = P'P = I_m$$
, or $P^{-1} = P'$.

If P is an orthogonal matrix, then

- $|PP'| = |P||P'| = |P|^2 = |I| = 1$, so $|P| = \pm 1$.
- For any $m \times m$ matrix A, we have tr(PAP') = tr(AP'P) = tr(A).
- PAP' and A have the same eigenvalues, since

$$|\lambda I_m - PAP'| = |\lambda PP' - PAP'| = |P|^2 |\lambda I_m - A| = |\lambda I_m - A|.$$

Spectral Decomposition of Symmetric Matrix

For any $m \times m$ symmetric matrix A, there exists an orthogonal matrix P such that

$$P'AP = \Lambda = \text{diag}\{\lambda_1, \cdots, \lambda_m\},\$$

 λ_i 's are the eigenvalues of A. The corresponding eigenvectors of A are the column vectors of P.

- Denote the $m \times 1$ unit vectors by \mathbf{e}_i , $i = 1, \dots, m$, where \mathbf{e}_i has 1 in the *i*th position and zeros elsewhere.
- The *i*th column of *P* is $\mathbf{p}_i = P\mathbf{e}_i$, $i = 1, \dots, m$. Note $PP' = \sum_{i=1}^m \mathbf{p}_i \mathbf{p}_i' = I_m$.
- The spectral decomposition of A is

$$A = P\Lambda P' = \sum_{i=1}^{m} \lambda_i \mathbf{p}_i \mathbf{p}_i'$$

•
$$\operatorname{tr}(A) = \operatorname{tr}(\Lambda) = \sum_{i=1}^{n} \lambda_i$$
 and $|A| = |\Lambda| = \prod_{i=1}^{m} \lambda_i$.

Idempotent Matrices

An $m \times m$ matrix A is idempotent if

$$A^2 = AA = A$$
.

The eigenvalues of an idempotent matrix are either zero or one

$$\lambda \mathbf{x} = A\mathbf{x} = A(A\mathbf{x}) = A(\lambda \mathbf{x}) = \lambda^2 \mathbf{x}, \implies \lambda = \lambda^2.$$

A symmetric idempotent matrix A is also referred to as a projection matrix. For any $\mathbf{x} \in R^m$,

- the vector $\mathbf{y} = A\mathbf{x}$ is the *orthogonal projection* of \mathbf{x} onto the subspace of R^m generated by the column vectors of A.
- the vector $\mathbf{z} = (I A)\mathbf{x}$ is the *orthogonal projection* of \mathbf{x} onto the complementary subspace such that

$$\mathbf{x} = \mathbf{y} + \mathbf{z} = A\mathbf{x} + (I - A)\mathbf{x}.$$

Projection Matrices

If A is an symmetric idempotent, then

- If rank(A) = r, then A has r eigenvalues equal to 1 and n-4 zero eigenvalues
- tr(A) = rank(A).
- $I_m A$ is also symmetric idempotent, of rank m r.

Matrix Notations for Linear Regression

- The response vector $\mathbf{y} = (y_1, \dots, y_n)^T$
- The design matrix X.
 - Assume the first column of *X* is **1**.
 - The dimension of X is $n \times (1+d)$.
- The regression coefficients $oldsymbol{eta} = egin{pmatrix} eta_0 \\ oldsymbol{eta_1} \end{pmatrix}$.
- The error vector $\boldsymbol{\epsilon} = (\epsilon_1, \cdots, \epsilon_n))^T$.

The linear model is written as:

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- ullet the estimated coefficients $\widehat{oldsymbol{eta}}$
- the predicted response $\widehat{\mathbf{y}} = X\widehat{\boldsymbol{\beta}}$.

Ordinary Least Squares (OLS)

The most popular method for fitting the linear model is the ordinary least squares (OLS):

$$\min_{\beta} RSS(\beta) = (\mathbf{y} - X\beta)^{T} (\mathbf{y} - X\beta).$$

- Normal equations: $X^T(y X\beta) = 0$
- $\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$ and $\widehat{\mathbf{y}} = X(X^T X)^{-1} X^T \mathbf{y}$.
- Residual vector is $\mathbf{r} = \mathbf{y} \hat{\mathbf{y}} = (I P_X)\mathbf{y}$.
- Residual sum squares $RSS = \mathbf{r}^T \mathbf{r}$.

Projection Matrix

Call the following square matrix the *projection* or *hat* matrix:

$$P_X = X(X^TX)^{-1}X^T.$$

Properties:

- symmetric and non-negative
- idempotent: $P_X^2 = P_X$. The eigenvalues are 0's and 1's.

•
$$X^T P_X = X^T$$
, $X^T (I - P_X) = 0$.

We have

$$\mathbf{r} = (I - P_X)\mathbf{y}, \quad RSS = \mathbf{y}^T(I - P_X)\mathbf{y}.$$

Note

$$X^T\mathbf{r} = X^T(I - P_X)\mathbf{y} = 0.$$

The residual vector is orthogonal to the column space spanned by X, col(X).

Elements of Statistical Learning @Hastie, Tibshirani & Friedman 2001 Chapter 3

Figure 3.2: The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

Sampling Properties of $\widehat{oldsymbol{eta}}$

- $Var(\hat{\boldsymbol{\beta}}) = \sigma^2(X^TX)^{-1}$,
- The variance σ^2 can be estimated as

$$\hat{\sigma}^2 = SSE/(n-d-1).$$

This is an unbiased estimator, i.e., $\mathsf{E}(\hat{\sigma}^2) = \sigma^2$

Inferences for Gaussian Errors

Under the Normal assumption on the error ϵ , we have

- $\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2(X^TX)^{-1})$
- $(n-d-1)\hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-d-1}$
- $\hat{\boldsymbol{\beta}}$ is independent of $\hat{\sigma}^2$

To test H_0 : $\beta_j = 0$, we use

- if σ^2 is known, $z_j = \frac{\hat{\beta}_j}{\sigma\sqrt{v_j}}$ has a Z distribution under H_0 ;
- if σ^2 is unknown, $t_j=\frac{\hat{eta}_j}{\hat{\sigma}\sqrt{v_j}}$ has a t_{n-d-1} distribution under H_0 ;

where v_j is the jth diagonal element of $(X^TX)^{-1}$.

Confidence Interval for Individual Coefficients

Under Normal assumption, the $100(1-\alpha)\%$ C.I. of β_j is

$$\hat{\beta}_j \pm t_{n-d-1;\frac{\alpha}{2}} \hat{\sigma} \sqrt{v_j},$$

where $t_{k;\nu}$ is $1-\nu$ percentile of t_k distribution.

ullet In practice, we use the approximate 100(1-lpha)% C.I. of eta_j

$$\hat{\beta}_j \pm z_{\frac{\alpha}{2}} \hat{\sigma} \sqrt{v_j},$$

where $z_{\frac{\alpha}{2}}$ is $1-\frac{\alpha}{2}$ percentile of the standard Normal distribution.

• Even if the Gaussian assumption does not hold, this interval is approximately right, with the coverage probability $1 - \alpha$ as $n \to \infty$.

Review on Multivariate Normal Distributions

Distributions of Quadratic Form (Non-central χ^2):

• If $\mathbf{X} \sim N_p(\mu, I_p)$, then

$$W = \mathbf{X}^T \mathbf{X} = \sum_{i=1}^p X_i^2 \sim \chi_p^2(\lambda), \quad \lambda = \frac{1}{2} \mu^T \mu.$$

- Special case: If $\mathbf{X} \sim N_p(\mathbf{0}, I_p)$, then $W = \mathbf{X}^T \mathbf{X} \sim \chi_p^2$.
- ullet If $old X \sim N_p(old \mu, V)$ where V is nonsingular, then

$$W = \mathbf{X}^T V^{-1} \mathbf{X} \sim \chi_p^2(\lambda), \quad \lambda = \frac{1}{2} \mu^T V^{-1} \mu.$$

• If $\mathbf{X} \sim N_p(\mu, V)$ with V nonsingular, if A is symmetric and AV is idempotent with rank s, then

$$W = \mathbf{X}^T A \mathbf{X} \sim \chi_s^2(\lambda), \quad \lambda = \frac{1}{2} \mu^T A \mu.$$

Cochran's Theorem

Let $\mathbf{y} \sim N_n(\boldsymbol{\mu}, \sigma^2 I_n)$ and let $A_j, j = 1, \cdots, J$ be symmetric idempotent matrices with rank s_j . Furthermore, assume that $\sum_{j=1}^J A_j = I_n$ and $\sum_{j=1}^J s_j = n$, then (i)

$$W_j = \frac{1}{\sigma^2} \mathbf{y}^T A_j \mathbf{y} \sim \chi_{s_j}^2(\lambda_j),$$

where
$$\lambda_j = \frac{1}{2\sigma^2} \boldsymbol{\mu}^T A_j \boldsymbol{\mu}$$

(ii) W_j 's are mutually independent with each other.

Essentially: we decompose $\mathbf{y}^T\mathbf{y}$ into the (scaled) sum of its quadratic forms,

$$\sum_{i=1}^n y_i^2 y_i = \mathbf{y}^T I_n \mathbf{y} = \sum_{j=1}^J \mathbf{y}^T A_j \mathbf{y}.$$

Application of Cochran's Theorem to Linear Models

Example: Assume $\mathbf{y} \sim N_n(X\boldsymbol{\beta}, \sigma^2 I_n)$. Define $A = I - P_X$ and

- the residual sum of squares: $RSS = \mathbf{y}^T A \mathbf{y} = ||\mathbf{r}||^2$
- the sum of squares regression: $SSR = \mathbf{y}^T P_X \mathbf{y} = \|\widehat{\mathbf{y}}\|^2$.

By Cochran's Theorem, we have

(i)
$$RSS/\sigma^2 \sim \chi^2_{n-d-1}, \quad SSR/\sigma^2 \sim \chi^2_{d+1}(\lambda),$$
 where $\lambda = (X\beta)^T (X\beta)/(2\sigma^2),$

(ii) RSS is independent from SSR. (Note $\mathbf{r} \perp \hat{\mathbf{y}}$)

F Distribution

• If $U_1 \sim \chi_p^2$, $U_2 \sim \chi_q^2$ and $U_1 \perp U_2$, then

$$F=\frac{U_1/p}{U_2/q}\sim F_{p,q}.$$

• If $U_1 \sim \chi_p^2(\lambda), U_2 \sim \chi_q^2$ and $U_1 \perp U_2$, then

$$F = rac{U_1/p}{U_2/q} \sim F_{p,q}(\lambda), \quad ext{(noncentral } F)$$

Example: Assume $\mathbf{y} \sim N_n(X\boldsymbol{\beta}, \sigma^2 I_n)$. Let $A = I - P_X$, and

$$RSS = \mathbf{y}^T A \mathbf{y}^T = \|\mathbf{r}\|^2, \quad SSR = \mathbf{y}^T P_X \mathbf{y} = \|\widehat{\mathbf{y}}\|^2.$$

Then

$$F = \frac{SSR/(d+1)}{RSS/(n-d-1)} \sim F_{d+1,n-d-1}(\lambda), \quad \lambda = \|X\beta\|^2/(2\sigma^2).$$

Making Inferences about Multiple Parameters

Assume $\mathbf{X} = [\mathbf{X}_0, \mathbf{X}_1]$, where \mathbf{X}_0 consists of the first k columns. Correspondingly, $\boldsymbol{\beta} = [\beta_0', \beta_1']'$. To test $H_0 : \beta_0 = \mathbf{0}$, using

$$F = \frac{(RSS_1 - RSS)/k}{RSS/(n-d-1)}$$

- $RSS_1 = \mathbf{y}^T (I P_{X_1}) \mathbf{y}$ (reduced model).
- $RSS = \mathbf{y}^T (I P_X) \mathbf{y}$ (full model)
- $RSS_1 \sim \sigma^2 \chi^2_{n-d-1}$.
- $RSS_1 RSS = \mathbf{y}^T (P_X P_{X_1}) \mathbf{y}$.

Testing Multiple Parameter

Applying Cochran's Theorem to RSS_1 , RSS and $RSS_1 - RSS$,

- they are independent
- they respectively follow noncentral χ^2 distributions, with noncentralities $(X\beta)^T(I-P_{X_1})(X\beta)/(2\sigma^2)$, 0, and $(X\beta)^T(P_X-P_{X_1})(X\beta)/(2\sigma^2)$.
- . Then we have
 - $F \sim F_{k,n-d-1}(\lambda)$, with $\lambda = (X\beta)^T (P_X P_{X_1})(X\beta)/(2\sigma^2)$.
 - Under H_0 , we have $X\beta = \mathbf{X}_1\beta_1$, so $F \sim F_{k,n-d-1}$.

Nested Model Selection

To test for significance of groups of coefficients simultaneously, we use F-statistic

$$F = \frac{(RSS_0 - RSS_1)/(d_1 - d_0)}{RSS_1/(n - d_1 - 1)},$$

where

- ullet RSS₁ is the RSS for the bigger model with d_1+1 parameters
- RSS_0 is the RSS for the nested smaller model with $d_0 + 1$ parameter, have $d_1 d_0$ parameters constrained to zero.

F-statistic measure the change in RSS per additional parameter in the bigger model, and it is normalized by $\hat{\sigma}^2$.

• Under the assumption that the smaller model is correct, $F \sim F_{d_1-d_0,n-d_1-1}$.

Confidence Set

ullet The approximate confidence set of eta is

$$C_{\beta} = \{\beta | (\hat{\beta} - \beta)^T (X^T X) (\hat{\beta} - \beta) \le \hat{\sigma}^2 \chi^2_{d+1;1-\alpha} \},$$

where $\chi^2_{k:1-\alpha}$ is $1-\alpha$ percentile of χ^2_k distribution.

• The confidence interval for the true function $f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}$ is

$$\{\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}|\boldsymbol{\beta}\in C_{\boldsymbol{\beta}}\}$$

Gauss-Markov Theorem

Assume $\mathbf{s}^T \boldsymbol{\beta}$ is *linearly estimable*, i.e., there exists a linear estimator $b + \mathbf{c}^T \mathbf{y}$ such that $E(b + \mathbf{c}^T \mathbf{y}) = \mathbf{s}^T \boldsymbol{\beta}$.

• A function $\mathbf{s}^T \boldsymbol{\beta}$ is linearly estimable iff $\mathbf{s} = X^T \mathbf{a}$ for some \mathbf{a} .

Theorem: If $\mathbf{s}^T \boldsymbol{\beta}$ is linearly estimable, then $\mathbf{s}^T \widehat{\boldsymbol{\beta}}$ is the *best linear unbiased estimator* (BLUE) of $\mathbf{s}^T \boldsymbol{\beta}$:

• For any $\mathbf{c}^T \mathbf{y}$ satisfying $E(\mathbf{c}^T \mathbf{y}) = \mathbf{s}^T \boldsymbol{\beta}$, we have

$$Var(\mathbf{s}^T\widehat{\boldsymbol{\beta}}) \leq Var(\mathbf{c}^T\mathbf{y}).$$

• $\mathbf{s}^T \widehat{\boldsymbol{\beta}}$ is the best among all the unbiased estimators. (It is a function of the complete and sufficient statistic $(\mathbf{y}^T \mathbf{y}, \mathbf{X}^T \mathbf{y})$.)

Question: Is it possible to find a slightly biased linear estimator but with smaller variance? (– Trade a little bias for a large reduction in variance.)

Linear Regression with Orthogonal Design

• If X is univariate, the least square estimate is

$$\hat{\beta} = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

• if $X = [\mathbf{x}_1, ..., \mathbf{x}_d]$ has orthogonal columns, i.e.,

$$<\mathbf{x}_{j},\mathbf{x}_{k}>=0, \ \forall j\neq k;$$

or equivalently, $X^TX = \text{diag}\left(\|\mathbf{x}_1\|^2,...,\|\mathbf{x}_d\|^2\right)$. The OLS estimates are given as

$$\hat{\beta}_j = \frac{\langle \mathbf{x}_j, \mathbf{y} \rangle}{\langle \mathbf{x}_i, \mathbf{x}_i \rangle}$$
 for $j = 1, ..., d$.

- Each input has no effect on the estimation of other parameters.
- Multiple linear regression reduces to univariate regression.

How to orthogonalize X?

Consider the simple linear regression $\mathbf{y} = \beta_0 \mathbf{1} + \beta_1 \mathbf{x} + \epsilon$. We regress \mathbf{x} onto $\mathbf{1}$ and obtain the residual

$$z = x - \bar{x}1$$
.

Orthogonalization Process:

- The residual z is orthogonal to the regressor 1.
- The column space of X is span $\{1, x\}$.
- Note: $\hat{\mathbf{y}} \in \text{span}\{\mathbf{1}, \mathbf{x}\} = \text{span}\{\mathbf{1}, \mathbf{z}\}$, because

$$\beta_0 \mathbf{1} + \beta_1 \mathbf{x} = \beta_0 + \beta_1 [\bar{\mathbf{x}} \mathbf{1} + (\mathbf{x} - \bar{\mathbf{x}} \mathbf{1})]$$

$$= \beta_0 + \beta_1 [\bar{\mathbf{x}} \mathbf{1} + \mathbf{z}]$$

$$= (\beta_0 + \beta_1 \bar{\mathbf{x}}) \mathbf{1} + \beta_1 \mathbf{z}$$

$$= \eta_0 \mathbf{1} + \beta_1 \mathbf{z}.$$

• $\{1,z\}$ form an orthogonal basis for the column space of X.

How to orthogonalize X? (continued)

Estimation Process:

ullet First, we regress ${f y}$ onto ${f z}$ for the OLS estimate of the slope \hat{eta}_1

$$\hat{\beta}_1 = \frac{\langle \mathbf{y}, \mathbf{z} \rangle}{\langle \mathbf{z}, \mathbf{z} \rangle} = \frac{\langle \mathbf{y}, \mathbf{x} - \bar{x} \mathbf{1} \rangle}{\langle \mathbf{x} - \bar{x} \mathbf{1}, \mathbf{x} - \bar{x} \mathbf{1} \rangle}.$$

- Second, we regress **y** onto **1** and get the coefficient $\hat{\eta}_0 = \bar{y}$.
- The OLS fit is given as

$$\hat{\mathbf{y}} = \hat{\eta}_0 \mathbf{1} + \hat{\beta}_1 \mathbf{z}
= \hat{\eta}_0 \mathbf{1} + \hat{\beta}_1 (\mathbf{x} - \bar{\mathbf{x}} \mathbf{1}) = (\hat{\eta}_0 - \hat{\beta}_1 \bar{\mathbf{x}}) \mathbf{1} + \hat{\beta}_1 \mathbf{x}.$$

• Therefore, the OLS slope is obtained as

$$\hat{\beta}_0 = \hat{\eta}_0 - \hat{\beta}_1 \bar{x} = \bar{y} - \hat{\beta}_1 \bar{x}.$$

Elements of Statistical Learning © Hastie, Tibshirani & Friedman 2001 Chapter 3

Figure 3.4: Least squares regression by orthogonalization of the inputs. The vector \mathbf{x}_2 is regressed on the vector \mathbf{x}_1 , leaving the residual vector \mathbf{z} . The regression of \mathbf{y} on \mathbf{z} gives the multiple regression coefficient of \mathbf{x}_2 . Adding together the projections of \mathbf{y} on each of \mathbf{x}_1 and \mathbf{z} gives the least squares fit $\mathbf{\hat{y}}$.

How to orthogonalize X? (d=2)

Consider $\mathbf{y} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_3 + \epsilon$. Orthogonization process:

1 We regress \mathbf{x}_2 onto \mathbf{x}_1 , compute the residual

$$\mathbf{z}_1 = \mathbf{x}_2 - \gamma_{12}\mathbf{x}_1$$
. (note $\mathbf{z}_1 \perp \mathbf{x}_1$)

2 We regress \mathbf{x}_3 onto $(\mathbf{x}_1, \mathbf{z}_1)$, compute the residual

$$\mathbf{z}_2 = \mathbf{x}_3 - \gamma_{13}\mathbf{x}_1 - \gamma_{23}\mathbf{z}_1$$
. (note $\mathbf{z}_2 \perp \{\mathbf{x}_1, \mathbf{z}_1\}$)

 $\underline{\text{Note}} \colon \mathsf{span}\{\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3\} = \mathsf{span}\{\boldsymbol{x}_1,\boldsymbol{z}_1,\boldsymbol{z}_2\}, \ \mathsf{because}$

$$\beta_{1}\mathbf{x}_{1} + \beta_{2}\mathbf{x}_{2} + \beta_{3}\mathbf{x}_{3} = \beta_{1}\mathbf{x}_{1} + \beta_{2}(\gamma_{12}\mathbf{x}_{1} + \mathbf{z}_{1}) + \beta_{3}(\gamma_{13}\mathbf{x}_{1} + \gamma_{23}\mathbf{z}_{1} + \mathbf{z}_{2})$$

$$= (\beta_{1} + \beta_{2}\gamma_{12} + \beta_{3}\gamma_{13})\mathbf{x}_{1} + (\beta_{2} + \beta_{3}\gamma_{23})\mathbf{z}_{1} + \beta_{3}\mathbf{z}_{2}$$

$$= \eta_{1}\mathbf{x}_{1} + \eta_{2}\mathbf{z}_{1} + \beta_{3}\mathbf{z}_{2}.$$

Estimation Process

We project **y** onto the orthogonal basis $\{x_1, z_2, z_3\}$ one by one, and then recover the coefficients corresponding to the original columns of X.

• First, we regress \mathbf{y} onto \mathbf{z}_2 for the OLS estimate of the slope $\hat{\beta}_3$

$$\hat{\beta}_3 = \frac{<\mathbf{y}, \mathbf{z}_2>}{<\mathbf{z}_2, \mathbf{z}_2>}$$

• Second, we regress \mathbf{y} onto \mathbf{z}_1 , leading to the coefficient $\hat{\eta}_2$, and

$$\hat{\beta}_2 = \hat{\eta}_2 - \hat{\beta}_3 \gamma_{23}$$

• Third, we regress **y** onto \mathbf{x}_1 , leading to the coefficient $\hat{\eta}_1$, and

$$\hat{\beta}_1 = \hat{\eta}_1 - \hat{\beta}_3 \gamma_{13} - \hat{\beta}_2 \gamma_{12}$$

Gram-Schmidt Procedure (Successive Orthogonalization)

- Initialize $\mathbf{z}_0 = \mathbf{x}_0 = \mathbf{1}$
- ② For j=1,...,d Regression \mathbf{x}_j on $\mathbf{z}_0,\mathbf{z}_1,...,\mathbf{z}_{j-1}$ to produce coefficients $\hat{\gamma}_{kj} = \frac{\langle \mathbf{z}_k,\mathbf{x}_j \rangle}{\langle \mathbf{z}_k,\mathbf{z}_k \rangle}$ for k=0,...,j-1, and residual vector $\mathbf{z}_j = \mathbf{x}_j \sum_{k=0}^{j-1} \hat{\gamma}_{kj} \mathbf{z}_k$. $\{\{\mathbf{z}_0,\mathbf{z}_1,...,\mathbf{z}_{j-1}\}$ are orthogonal)
- **3** Regress \mathbf{y} on the residual \mathbf{z}_d to get

$$\hat{\beta}_d = \frac{\langle \mathbf{y}, \mathbf{z}_d \rangle}{\langle \mathbf{z}_d, \mathbf{z}_d \rangle}$$

- **①** Compute $\hat{\beta}_j, j = d 1, \dots, 0$ in that order successively.
 - $\{z_0, z_1, ..., z_d\}$ forms orthogonal basis for Col(X).
 - Multiple regression coefficient $\hat{\beta}_j$ is the additional contribution of \mathbf{x}_j to \mathbf{y} , after \mathbf{x}_j has been adjusted for $\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_{i-1}, \mathbf{x}_{i+1}, ..., \mathbf{x}_d$.

Collinearity Issue

The dth coefficient

$$\hat{\beta}_d = \frac{\langle \mathbf{z}_d, \mathbf{y} \rangle}{\langle \mathbf{z}_d, \mathbf{z}_d \rangle}$$

If \mathbf{x}_d is highly correlated with some of the other $\mathbf{x}_i's$, then

- The residual vector \mathbf{z}_d is close to zero
- The coefficient $\hat{\beta}_d$ will be very unstable
- The variance estimates

$$\mathsf{Var}(\hat{\beta}_d) = \frac{\sigma^2}{\|\mathbf{z}_d\|^2}.$$

The precision for estimating $\hat{\beta}_d$ depends on the length of \mathbf{z}_d , or, how much \mathbf{x}_d is unexplained by the other \mathbf{x}_k 's

Two Computational Algorithms For Multiple Regression

Consider the Normal Equation

$$X^T X \beta = X^T \mathbf{y}.$$

We like to avoid computing $(X^TX)^{-1}$ directly.

- QR decomposition of X
 - X = QR where Q is orthonormal and R is upper triangular
 - Essentially, a process of orthogonal matrix triangularization
- 2 Cholesky decomposition of X^TX .
 - $X^TX = RR^T$ where R is lower triangular

Matrix Formulation of Orthogonalization

In Step 2 of Gram-Schmidt procedure, for j = 1, ..., d

$$\mathbf{z}_j = \mathbf{x}_j - \sum_{k=0}^{j-1} \hat{\gamma}_{kj} \mathbf{z}_k \Longrightarrow \mathbf{x}_j = \sum_{k=0}^{j-1} \hat{\gamma}_{kj} \mathbf{z}_k + \mathbf{z}_j.$$

In matrix form $X = [\mathbf{x}_1, ..., \mathbf{x}_d]$ and $Z = [\mathbf{z}_1, ..., \mathbf{z}_d]$,

$$X = Z\Gamma$$

- The columns of Z are orthogonal to each other
- The matrix Γ is upper triangular, with 1 at the diagonals.

Standardizing Z using $D = \text{diag}\{\|\mathbf{z}_1\|, ..., \|\mathbf{z}_d\|\}$,

$$X = Z\Gamma = ZD^{-1}D\Gamma \equiv QR$$
, with $Q = ZD^{-1}$, $R = D\Gamma$.

QR Decomposition

- The columns of Q consists of an orthonormal basis for the column space of X.
- Q is orthogonal matrix of $n \times d$, satisfying $Q^T Q = I$.
- R is upper triangular matrix of $d \times d$, full-ranked.

•
$$X^TX = (QR)^T(QR) = R^TQ^TQR = R^TR$$

The least square solutions are

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$$

$$= R^{-1} R^{-T} R^T Q^T \mathbf{y} = R^{-1} Q^T \mathbf{y}$$

$$\widehat{\mathbf{y}} = X \widehat{\boldsymbol{\beta}}$$

$$= (QR)(R^{-1} Q^T \mathbf{y})$$

$$= QQ^T \mathbf{y}.$$

QR Algorithm for Normal Equations

Regard $\widehat{\beta}$ as the solution for linear equations system:

$$R\beta = Q^T \mathbf{y}.$$

- Conduct QR decomposition of X = QR. (Gram-Schmidt Orthogonalization)
- **2** Compute $Q^T \mathbf{y}$.
- **3** Solve the triangular system $R\beta = Q^T \mathbf{y}$.

The computational complexity: nd^2

Cholesky Decomposition Algorithm

For any positive definite square matrix A, we have

$$A = RR^T$$

where R is a lower triangular matrix of full rank.

- Compute X^TX and X^Ty .
- ② Factoring $X^TX = RR^T$, then $\hat{\beta} = (R^T)^{-1}R^{-1}X^T\mathbf{y}$
- **3** Solve the triangular system $R\mathbf{w} = X^T\mathbf{y}$ for \mathbf{w} .
- Solve the triangular system $R^T \beta = \mathbf{w}$ for β .

The computational complexity: $d^3 + nd^2/2$ (can be faster than QR for small d, but can be less stable)

$$\mathsf{Var}(\hat{\mathbf{y}}_0) = \mathsf{Var}(\mathbf{x}_0^T \hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{x}_0^T (R^T)^{-1} R^{-1} \mathbf{x}_0).$$