Def. A group elt Phas order miff mis the Smallest par. int. s.t. PtPt---+7 = 0.

m=2,3 onde-2.

Mon-singular C C: $y^2 = x^3 + ax^2 + bx + c = f(x)$ O: [0,1,0]. ton-sigular: f(x) has no repeated roots.

2P = Q, $P \neq Q$. P = -PLet P = (x, y)-P = (x, -y)

x = x y = -y = 0 $y^2 = 0$ f(x) = 0

roots of f(x): x,, x, x3

Points of order 7: P1 = (4,0) P2 = (1,0), B3 = (1,0)

Closure:
$$2(P_1 + P_2) = 2P_1 + 2P_2 = 0 + 0 = 0$$
.

S is a subgroup

 $S = C_2 \times C_2$ els of S have and $1 = 2$.

(in C)

roots in \mathbb{R}

3 roots \Rightarrow $S = C_2 \times C_2$
1 root \Rightarrow $S = C_2$ (θ , P of and 2).

roots in \mathbb{R}

3 ratil roots \Rightarrow $S = C_2$
0 ratil roots \Rightarrow $S = C_2$
0 ratil roots \Rightarrow $S = trivial group. $\{0\}$.

Pto of on \mathbb{R}
 $3P = 0$ ($2P \neq 0$)
 $2P = -P$
 $\times (P) = \times -\infty \rightarrow 0$, of P .

 $P = (\times, -Y)$
 $2P = P$
 $\times (2P) = \times (-P) = \times (P)$

Assume $P \neq 0$, $\times (2P) = \times (P)$
 $2P = -P$
 $\times (2P) = \sqrt{2} + \sqrt{2} +$$

x one solve this when x is a root of Ψ₃(x) = 3x4+4ax3+6bx2+12cx+(4ac-b2) To show: 3 9 pts of or In dividing 3. the (x) $f'(x)^2 - 4a f(x) - 8x f(x) = 4x f(x)$ f"(x) = 6x + 2a. $\Psi_{3}(x) = 2f(x)f''(x) - f'(x)^{2}$ orders of Jerms: 3+1=4,2,2=4. 42 of x his order 4 43 has all 4 roots distinct. iff 43 (x), 43 (x) have no common roots. $\Psi_3(x) = 2f'(x)f''(x) + 2f(x)f''(x) - 2f'(x)f''(x)$ = 2 f(x) f'''(x)fun(x) = 6 41(x) = 12f(x). Same roots as flx)

43(x) 143'(x) share roots orby iff f(x), f'(x) do as well

assurption => f, f' share no roots.

43(x) has 4 distinct roots.

Let three roots be β_1 , β_2 , β_3 , β_4 Let $S_1 = \sqrt{F(\beta_1)}$, $S_1 = \sqrt{F(\beta_1)}$

points (βi,±si) ∈ C

 $S_i = 0 \Rightarrow point has order 2 \Rightarrow \in$ $S_i \neq 0$.

look Set $T = \{ P \text{ points of order 3}, O \}$.

Orders $| 3 \rangle \Rightarrow C_3 \times C_3$. (over C)

Summary

Let C be a nonsingular embie. $Q = \beta t$ at ∞ . Weierstrass form: $y^2 = x^3 + ax^2 + bx + c$

- a) P=(x,7) (P +0) has order 2 iff y=0.
- b) Chas exactly 4 pts of order dividing 2, forming
- d) C contains exactly 9 pts of order dividing 3. and these form C3 x C3.