(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3182271号 (P3182271)

(45)発行日 平成13年7月3日(2001.7.3)

(24) 登録日 平成13年4月20日(2001.4.20)

(51) Int.Cl.7		識別記号	FΙ		
H 0 1 M	4/02		H 0 1 M	4/02	С
	10/40			10/40	Z

請求項の数3(全 7 頁)

(21)出願番号	特願平5-305838	(73)特許権者	000001889
			三洋電機株式会社
(22)出顧日	平成5年11月11日(1993.11.11)		大阪府守口市京阪本通2丁目5番5号
		(72)発明者	山崎一幹也
(65)公開番号	特開平7-134985	(10/)1971	大阪府守口市京阪本通2丁目5番5号
(43)公開日	平成7年5月23日(1995.5.23)		三洋電機株式会社内
田永龍査審	平成12年1月17日(2000.1.17)	(72)発明者	前田 丈志
			大阪府守口市京阪本通2丁目5番5号
			三洋電機株式会社内
		(72)発明者	小路 良浩
			大阪府守口市京阪本通2丁目5番5号
			三洋電機株式会社内
		(7.4) (5.7m t	100095762
		(74)代理人	
			弁理士 松尾 智弘
		審査官	高木 正博
			最終頁に続く
		FI	

(54) 【発明の名称】 非水系電池

(57)【特許請求の範囲】

【請求項1】リチウムを負極活物質とする負極と、式: $Li_X Ni_{1-Y} M_Y O_Z$ (但し、0 < X < 1. 3、 $0 \le Y \le 1$ 、1. 8 < Z < 2. 2 であり、且つ、Mはコバルト又はコバルトを含む2種以上の遷移金属である。)で表されるリチウムー遷移金属複合酸化物を正極活物質とする正極とを備える非水系電池において、前記正極活物質に対して、ニッケルの酸化数が3以下で結晶内にリチウムを含まないニッケル酸化物及び/又はコバルトの酸化数が3以下で結晶内にリチウムを含まないニッケル酸化物及び/又はコバルトの酸化数が3以下で結晶内にリチウムを含まないコバルト酸化物が0. $1 \sim 2$ 0 モル%添加されていることを特徴とする非水系電池。

【請求項2】前記ニッケル酸化物がNiOである請求項 1記載の非水系電池。

【請求項3】前記コバルト酸化物がCo3 O4 である請

求項1記載の非水系電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、非水系電池に係わり、 詳しくは非水系電池の高温における保存特性を改善する ことを目的とした、正極の改良に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 金属リチウム又はリチウムイオンを吸蔵、放出し得る合 金若しくは炭素材料などを負極材料とし、リチウム-遷 移金属複合酸化物を正極材料とする非水系電池が、高エ ネルギー密度を有する電池として注目されつつある。

【0003】上記リチウムー遷移金属複合酸化物としては、 LiMnO_2 、 LiFeO_2 及び Li_X Ni_{1-Y} Co_Y O_Z (但し、0 < X < 1.3、0 \leq Y \leq 1、1.8

<Z<2. 2) などがよく知られているが、なかでも、 L $_{\rm i_X}$ N $_{\rm i_{1-Y}}$ C $_{\rm o_Y}$ O $_{\rm Z}$ は、容量が大きく、最も注目 されている正極活物質の一つである。

【0004】しかしながら、 Li_X Ni_{1-Y} Co_Y O_Z を正極活物質として用いた非水系電池を長期間高温で保存したり、特に二次電池の場合において、充電後の状態(正極活物質からリチウムイオンが放出された状態)で長期間高温で保存したりすると、電池の内部抵抗が上昇する。このように内部抵抗が上昇するのは、次の理由によると考えられる。

【0005】すなわ<u>ち、充</u>電時には上記正極活物質から リチウムが放出されて、充電後は活物質中のニッケル又 はコバルトの酸化数が3を超え、また放電時にも活物質 中のニッケル又はコバルトの酸化数が3を超えている。 更に、一次電池においても<u>放電時</u>には活物質中のニッケ ル又はコバルトの酸化数が3を超え<u>ている</u>。このように ニッケル又はコバルトの酸化数が3を超えると、これら の正極活物質の触媒作用により電解液が分解してガスが 発生し、この発生したガスにより、正極の極板形状に変 形が起こり、正極活物質層と芯体(集電体)等との密着 性が低下して内部抵抗が上昇するのである。

【0006】このように、この種の正極活物質を使用した非水系電池には、高温下で長期間放置される自動車電話などの電源としては不向きであるという問題があったため、その改善が要望されていた。

【0007】本発明は、かかる要望に応えるべくなされたものであって、その目的とするところは、高温保存特性に優れた Li_{X} Ni_{1-Y} Co_{Y} O_{Z} を正極活物質とする非水系電池を提供するにある。

[0008]

【0009】本発明におけるニッケル酸化物及びコバルト酸化物は、それらの酸化数が3以下のものに限定される。これは、酸化数が3を超える、電気化学的に作製される NiO_2 (ニッケルの酸化数:4)、 CoO_2 (コバルトの酸化数:4)などは、電解液の分解を促進する触媒作用を有しているため、電池の内部抵抗の上昇を有効に抑制できないからである。

【0010】ニッケル酸化物及びコバルト酸化物が、リ

チウムを含まないものに限定されるのは、リチウムを含むと、含有せるリチウムが充電により放出されてニッケル及びコバルトの酸化数が3を超えて大きくなるため、 先に述べたと同じ理由から、電池の内部抵抗を無添加の場合よりも却って上昇させてしまうからである。

【0011】ニッケル酸化物及びコバルト酸化物の添加量が、正極活物質に対して0.1~20モル%に規制されるのは、0.1モル%未満では添加効果(触媒毒として働き電解液の分解を抑制する効果)が充分に発現されず、一方20モル%を超えると、これらの酸化物の導電性が低いことに起因して電池の内部抵抗が上昇するとともに、充放電時の正極におけるリチウムの拡散が悪くなるため充放電効率が低下するからである。

【0012】ニッケル酸化物とコバルト酸化物とを混合して添加してもよい。この場合においても、それらの総量を、正極活物質100モル部に対して0.1~20モル部(0.1~20モル%)の範囲内に規制する必要がある。

【0013】ニッケル酸化物としては、NiO、 Ni_2O_3 、 Ni_3O_4 が代表的なものとして例示され、またコバルト酸化物としては、CoO、 Co_3O_4 が代表的なものとして例示されるが、なかでもNiO、 Co_3O_4 が特に好ましい。

【0014】本発明におけるリチウムを負極活物質とする負極としては、金属リチウム、及び、リチウムイオンを吸蔵、放出し得る合金又は炭素材料を電極材料として用いたものが例示される。

【0015】本発明は、 Li_{x} $\text{Ni}_{1-\text{Y}}$ Co_{y} O_{z} を正極活物質として用いた場合に問題となっていた電解液の分解を、ニッケル酸化物及び/又はコバルト酸化物を正極活物質に添加することにより抑制し、もって非水系電池の高温下での保存特性を改善することに成功したものである。それゆえ、電解液など、電池を構成する他の部材については従来非水系電池用として提案され、或いは実用されている種々の材料を特に制限なく用いることが可能である。

【0016】非水電解液としては、エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネートなどの有機溶媒や、これらとジメチルカーボネート、ジエチルカーボネート、1,2ージメトキシエタン、1,2ージエトキシエタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF₆、LiClO₄、LiCF₃SO₃などの溶質を0.7~1.5M(モルノリットル)の割合で溶かした溶液が例示される。

[0017]

【作用】本発明においては、ニッケル酸化物及び/又はコバルト酸化物が、電解液の分解反応において触媒毒として働くので、長期間保存しても(特に、二次電池にあって充電後の状態で長期間保存しても)、ガスが発生しにくい。このため、正極の極板形状に変形が起こりにく

くなり、電池の内部抵抗の上昇が抑制される。 【0018】

【実施例】以下、本発明を実施例に基づいてさらに詳細 に説明するが、本発明は下記実施例に何ら限定されるも のではなく、その要旨を変更しない範囲において適宜変 更して実施することが可能なものである。

【0019】(実施例1) 扁平型の非水系電池(本発明 電池)を作製した。

【0020】〔正極〕 LiOHと、Ni(OH) $_2$ と、Co(OH) $_2$ とをモル比2:1:1で乳鉢にて混合した後、この混合物を乾燥空気雰囲気下にて、 750° Cで20時間熱処理し、LiNi $_{0.5}$ Co $_{0.5}$ O $_2$ で示される正極活物質を得た。次いで、平均粒径が 5μ mとなるように石川式らいかい乳鉢中で粉砕した後、この正極活物質粉末に対してNi $_2$ O $_3$ (ニッケルの酸化数:3)粉末を0.1モル%添加混合した。

【0021】次いで、上記Ni $_2$ O $_3$ を添加混合した正極活物質粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを、重量比90:6:4で混合して正極合剤を調製し、この正極合剤を2トン/cm 2 の圧力で直径20mmの円板状に加圧成型した後、250°Cで2時間熱処理して正極を作

【0022】〔負極〕所定の厚みを有する金属リチウムの圧延板を直径20mmの円板状に打ち抜いて負極を作製した。

製した。

【0023】 〔非水電解液〕 プロピレンカーボネートと 1,2ージメトキシエタンとの等体積混合溶媒に、過塩 素酸リチウムを1M(モル/リットル)の割合で溶かし て非水電解液を調製した。

【0024】 「電池の作製」以上の正負両極及び非水電解液を用いて扁平型の本発明電池BA1を作製した(電池寸法:直径24.0mm、厚さ3.0mm)。なお、セパレータとしては、ポリプロビレン製の微多孔膜(ヘキストセラニーズ社製、商品名「セルガード」)を使用し、これに先の非水電解液を含浸させた。

【0025】図1は、作製した本発明電池BA1を模式的に示す断面図であり、同図に示す本発明電池BA1は、正極1、負極2、これら両電極1,2を互いに離間するセパレータ3、正極缶4、負極缶5、正極集電体6、負極集電体7及びポリプロピレン製の絶縁パッキング8などからなる。

【0026】正極1及び負極2は、非水電解液を含浸したセパレータ3を介して対向して正負両極缶4,5が形成する電池ケース内に収納されており、正極1は正極集電体6を介して正極缶4に、また負極2は負極集電体7を介して負極缶5に接続され、電池内部に生じた化学エネルギーを正極缶4及び負極缶5の両端子から電気エネルギーとして外部へ取り出し得るようになっている。

【0027】(実施例2~5)正極活物質粉末に対する

てNi $_3$ O $_4$ (ニッケルの酸化数: 2.67) 粉末を用いたこと以外は実施例 $1\sim5$ と同様にして、正極を作製した。次いで、これらの正極を用いたこと以外は実施例 1 と同様にして、本発明電池BA6 (Ni $_3$ O $_4$ 粉末の添加量: 0.1 モル%)、BA7 (Ni $_3$ O $_4$ 粉末の添加量: 5 モル%)、BA8 (Ni $_3$ O $_4$ 粉末の添加量: 1 0 モル%)、BA9 (Ni $_3$ O $_4$ 粉末の添加量: 1 5 モル%)、BA10 (Ni $_3$ O $_4$ 粉末の添加量: 2 0 モル%) を作製した。

【0029】(実施例11~15)Ni2O₃粉末に代えてCoO(コバルトの酸化数:2)粉末を用いたこと以外は実施例1~5と同様にして、正極を作製した。次いで、これらの正極を用いたこと以外は実施例1と同様にして、本発明電池BA11(CoO粉末の添加量:0.1モル%)、BA12(CoO粉末の添加量:5モル%)、BA13(CoO粉末の添加量:10モル%)、BA14(CoO粉末の添加量:15モル%)、BA15(CoO粉末の添加量:20モル%)を作製した。

【0030】(比較例1)正極活物質粉末にNi₂O₃粉末を添加混合しなかったこと以外は実施例1と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC1を作製した。

【0031】(比較例2)正極活物質粉末に対するNi₂O₃粉末の添加量を25モル%としたこと以外は実施例1と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC2を作製した。

【0032】(比較例3)正極活物質粉末に対するNi304粉末の添加量を25モル%としたこと以外は実施例6と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC3を作製した。

【0033】(比較例4)正極活物質粉末に対するCoO粉末の添加量を25モル%としたこと以外は実施例11と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC4を作製した。

【0034】本発明電池BA1~BA15及び比較電池 BC1~BC4の各正極の作製において正極活物質粉末 に添加したニッケル酸化物粉末又はコバルト酸化物粉末 の種類及び添加量を、次の表1にまとめて示す。

[0035]

【表1】

電池	添加した酸化物 (酸化数)	添加量 (モル%)
вс1	なし	無添加
BA1	Ni ₂ O ₂ (3)	0. 1
B A 2	//	5
В А 3	ď	1 0
BA4	ď	1 5
BA5	"	2 0
BC2	N	2 5
BA6	Ni 3 O 4 (2. 67)	0.1
BA7	"	5
BA8	N	10
B A 9	"	1 5
BA10	"	2 0
ВС3	"	2 5
BA11	C o O (2)	0.1
BA12	"	5
BA13	"	10
BA14	<i>a</i>	1 5
BA15	9	2 0
BC4	#	2 5

【0036】 [保存特性] 本発明電池BA1~BA15 及び比較電池BC1~BC4を充電した後、80° Cで 30日間保存し、各電池の保存特性を調べた。結果を図 2に示す。保存特性は電池の内部抵抗の上昇率(%)で 評価した。電池の内部抵抗は、下式により算出した。

【0037】電池の内部抵抗の上昇率(%) = (保存後の内部抵抗-保存前の内部抵抗)×100/保存前の内部抵抗

【0038】図2は、各電池の保存特性を、縦軸に電池の内部抵抗の上昇率(%)を、また横軸にニッケル酸化物又はコバルト酸化物の添加量(モル%)をとって示したグラフであり、同図に示すように本発明電池BA1~BA15では電池の内部抵抗の上昇率が50%以下と低いのに対して、比較電池BC1~BC4では電池の内部抵抗の上昇率が100%以上と高い。このことから、高温で保存したときの電池の内部抵抗の上昇が、ニッケル及びコバルトの酸化数が3以下であって、且つ、結晶内にリチウムを含まないニッケル酸化物又はコバルト酸化物を正極活物質に対して0.1~20モル%添加することにより顕著に抑制されることが分かる。

【0039】(実施例16~20)Ni2O₃粉末に代えてNiO(ニッケルの酸化数:2)粉末を用いたこと以外は実施例1~5と同様にして、正極を作製した。次いで、これらの正極を用いたこと以外は実施例1と同様にして、本発明電池BA16(NiO粉末の添加量:0.1モル%)、BA17(NiO粉末の添加量:5モル%)、BA18(NiO粉末の添加量:10モル%)、BA19(NiO粉末の添加量:15モル%)、BA20(NiO粉末の添加量:20モル%)を作製した。

【0040】(実施例21~25)Ni₂O₃粉末に代えてNiO粉末とCo₃O₄(コバルトの酸化数: 2.67)粉末との等モル混合物を用いたこと以外は実施例1~5と同様にして、正極を作製した。次いで、これらの正極を用いたこと以外は実施例1と同様にして、本発明電池BA21(NiO粉末とCo₃O₄粉末の総添加量: 0.1モル%)、BA22(両粉末の総添加量: 5モル%)、BA23(両粉末の総添加量: 15モル%)、BA23(両粉末の総添加量: 15モル%)、BA25(総添加量: 20モル%)を作製した。

【0041】 (実施例 $26\sim30$) N i_2 O₃ 粉末に代えて C o₃ O₄ 粉末を用いたこと以外は実施例 $1\sim5$ と同様にして、正極を作製した。次いで、これらの正極を用いたこと以外は実施例1 と同様にして、本発明電池 B A 26 (C o₃ O₄ 粉末の添加量: 0. 1 モル%)、 B A 27 (C o₃ O₄ 粉末の添加量: 5 モル%)、 B A 28 (C o₃ O₄ 粉末の添加量: 10 モル%)、 B A 29 (C o₃ O₄ 粉末の添加量: 10 モル%)、 B A 30 (C o₃ O₄ 粉末の添加量: 20 モル%)を作製した。【0042】 (比較例5) 正極活物質粉末に対するN i O粉末の添加量を25 モル%としたこと以外は実施例16 と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例16 と同様にして、比較電池 B C 16 を作製した。

【0043】(比較例6)正極活物質粉末に対するNi O粉末と Co_3O_4 粉末の総添加量を25モル%としたこと以外は実施例21と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC6を作製した。

【0044】(比較例7)正極活物質粉末に対するCo3O4粉末の添加量を25モル%としたこと以外は実施例26と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC7を作製した。

【0045】本発明電池BA16~BA30及び比較電池BC5~BC7の各正極の作製において正極活物質粉末に添加したニッケル酸化物粉末又はコバルト酸化物粉末の種類及び添加量を、次の表2にまとめて示す。

[0046]

【表2】

電池	添加した酸化物 (酸化数)	添加量 (モル%)
BA16	N i O (2)	0.1
BA17		5
B A 1 8	•	10
BA19	"	1 5
B A 2 0	"	2 0
B C 5	"	2 5
B A 2 1	NiO(2)+Co ₂ O ₄ (2.67) 1 : 1 (添加割合)	0.1
B A 2 2		5
B A 2 3	-	1 0
B A 2 4	,	1 5
B A 2 5	W	2 0
B C 6	"	2 5
B A 2 6	CosO4 (2.67)	0.1
B A 2 7	~	5
B A 2 8		1 0
B A 2 9		1 5
B A 3 0		2,0
вс7	"	2 5

【0047】 (保存特性) 先と同様にして、本発明電池 BA16~BA30及び比較電池BC5~BC7の保存 特性を調べた。結果を図3に示す。なお、図3中には、 比較の便宜のために、比較電池BC1の結果(図2より 転記)も示してある。

【0048】図3は、各電池の保存特性を、縦軸に電池の内部抵抗の上昇率(%)を、また横軸にニッケル酸化物又はコベルト酸化物の添加量(モル%)をとって示したグラフである。但し、本発明電池BA21~25及び比較電池BC6にあっては、横軸はニッケル酸化物及びコベルト酸化物の総添加量を示す。図3に示すように本発明電池BA16~BA30では電池の内部抵抗の上昇率が50%以下と低いのに対して、比較電池BC5~BC7では電池の内部抵抗の上昇率が100%以上と高い。このことから、高温で保存した際の電解液の分解に起因する電池の内部抵抗の上昇が、ニッケル及びコベルトの酸化数が3以下であって、結晶内にリチウムを含まないニッケル酸化物粉末及び/又はコベルト酸化物粉末ないニッケル酸化物粉末及び/又はコベルト酸化物粉末を正極活物質粉末に対して0.1~20モル%添加することにより顕著に抑制されることが分かる。

【0049】 (比較例8~10) Ni₂ O₃ 粉末に代え

 ${
m TNiO_2}$ (ニッケルの酸化数:4) 粉末を用いたこと以外は実施例 $1\sim3$ と同様にして、正極を作製した。次いで、これらの正極を用いたこと以外は実施例1と同様にして、比較電池BC8 (NiO $_2$ 粉末の添加量:0.1 モル%)、BC9 (NiO $_2$ 粉末の添加量:5 モル%)、BC10 (NiO $_2$ 粉末の添加量:10 モル%)を作製した。

【0050】 (比較例11~13) N $_{12}$ O $_{3}$ 粉末に代えてCoO $_{2}$ (コバルトの酸化数:4) 粉末を用いたこと以外は実施例1~3と同様にして、正極を作製した。次いで、これらの正極を用いたこと以外は実施例1と同様にして、比較電池BC11(CoO $_{2}$ 粉末の添加量:0.1 モル%)、BC12(CoO $_{2}$ 粉末の添加量:5 モル%)、BC13(CoO $_{2}$ 粉末の添加量:10モル%)を作製した。

【0051】 [保存特性] 先と同様にして、比較電池BC8~BC13の保存特性を調べた。結果を表3に示す。

[0052]

【表3】

電池	添加した酸化物 (酸化数)	添加量 (モル%)	内部抵抗の上 昇率(%)
BC8	NiO _z (4)	0.1	8 0
вс9	~	5	100
BC10	*	1 0	1 2 0
BC11	C o O z (4)	0.1	9 0
BC12	"	5	110
BC13	"	1 0	1 3 0

【0053】表3に示すように、比較電池BC8~BC13の内部抵抗の上昇率は80%以上と高い。このことから、ニッケルの酸化数が3を超えるニッケル酸化物又はコバルトの酸化数が3を超えるコバルト酸化物を正極活物質に添加しても、電解液の分解を充分には抑制できないことが分かる。

【0054】叙上の実施例では、本発明を扁平型電池に 適用する場合を例に挙げて説明したが、本発明は電池形 状に特に制限はなく、円筒型、角型など、他の種々の形 状の非水系一次電池又は非水系二次電池に適用し得るも のである。

【0055】なお、本発明者らは電池系内のガスの発生は主に非水電解液の分解によるものと考えたが、結着剤の分解によるガスの発生も考えられる。本発明による保存特性の向上が、後者のガスの発生をも抑制したことによるものであるとすれば、本発明は液体電解質電池に限らず固体電解質電池にも適用可能と考えられる。

[0056]

【発明の効果】高温保存時の電解液の分解が、正極活物質にニッケル酸化物及び/又はコバルト酸化物を添加することにより抑制されるため、電池の内部抵抗の上昇が小さく、保存特性に優れる。

【図面の簡単な説明】

【図1】扁平型の本発明電池の断面図である。

【図2】本発明電池及び比較電池の保存特性を示すグラフである。

【図3】本発明電池及び比較電池の保存特性を示すグラ フである。

【符号の説明】

BA1 本発明電池

- 1 正極
- 2 負極
- 3 セパレータ

【図1】

【図2】

フロントページの続き

(72) 発明者 西尾 晃治

大阪府守口市京阪本通2丁目5番5号

三洋電機株式会社内

(72)発明者 斎藤 俊彦

大阪府守口市京阪本通2丁目5番5号

三洋電機株式会社内

(56)参考文献 特開 昭62-264560 (JP, A)

特開 昭63-211565 (JP, A)

特開 平2-12768 (JP, A)

(58)調査した分野(Int.Cl.⁷, DB名)

H01M 4/02

HO1M 10/40

H01M 4/36 - 4/62

THIS PAGE BLANK (USPTQ)

JP Patent No. 3182271

[Claim 1]

A non-aqueous battery comprising a negative electrode having a negative electrode active material of lithium and a positive electrode having a positive electrode active material of lithium-transition metal composite oxide represented by the formula $\text{Li}_x \text{Ni}_{1-y} M_y O_z$ (where 0 < x < 1.3, $0 \le y \le 1$, 1.8 < z < 2.2, and M is cobalt or two or more transition metals including cobalt), wherein

said positive electrode active material is added with a nickel oxide having a nickel's oxidation number of 3 or less and including no lithium in the crystal and/or a cobalt oxide having a cobalt's oxidation number of 3 or less and including no lithium in the crystal in an amount in the range from 0.1 to 20 mole %.

[Claim 2]

A non-aqueous battery set forth in claim 1, wherein said nickel oxide is NiO.

[Claim 3]

A non-aqueous battery set forth in claim 1, wherein said cobalt oxide is Co₃O₄.

