《信息光学》(第二次印刷)第7章勘误表

页	行 (式)	原 文	勘正	备注
358	6	的相位差	所引起的相位差	
358	7	,	,是二个异地信号之间的初始相位差,它导 致了零级条纹位置的位移,	
359	2	傅里叶变换	傅里叶逆变换	
362	3	窄带光	$lpha_{12}(au)$ 导致了零级条纹位置在 P_1P_2 方向上的位移,即窄带光	
380	(7.5.32)	$\cos[\alpha_{12}(0) + 2\pi \overline{\nu}\tau)]$	$\cos[\alpha_{12}(0)-2\pi \overline{\nu}\tau)]$	
381	(7.5.35)	$\alpha_{12}(0) + 2\pi \overline{v}\tau = \alpha_{12}(0) + \frac{2\pi}{\overline{\lambda}}(r_2 - r_1)$	$\alpha_{12}(0) - 2\pi \overline{v}\tau = \alpha_{12}(0) - \frac{2\pi}{\overline{\lambda}}(r_2 - r_1)$	
381	9	$oldsymbol{eta_{12}}$	$\alpha_{12}(0)$	
381	11	$oldsymbol{eta_{12}}$	$lpha_{_{12}}(0)$	
381	(7.5.36)	$\phi_{12} = \alpha_{12}(0) - \frac{\pi}{\lambda D}(\rho_2^2 - \rho_1^2)$	$\phi_{12} = \alpha_{12}(0) - \frac{\pi}{\overline{\lambda} d} (\rho_2^2 - \rho_1^2)$	
381	14	在	式中, d 小孔屏与观测屏间的距离, $ \rho_1 = \sqrt{x_{o1}^2 + y_{o1}^2} , \rho_2 = \sqrt{x_{o2}^2 + y_{o2}^2} . $	
381	14	在 $y = 0$ 和 $I_1(x,0) = I_2(x,0) = I_0$	在 $y = 0$ 和 $I_1(x_i, 0) = I_2(x_i, 0) = I_0$	
381	(7.5.37)	$I(x,0) = 2I_0 \left[1 + \mu_{12} \cos\left(\phi_{12} + \frac{2\pi}{\lambda D} x \Delta \xi\right) \right]$	$I(x_i, 0) = 2I_0 \left\{ 1 + \mu_{12} \cos \left[\phi_{12} + \frac{2\pi}{\lambda d} x_i (x_{o2} - x_{o1}) \right] \right\}$	
381	16	x轴上光强分布 $I(x,0)$ 与 x	x_{i} 轴上光强分布 $I(x_{i},0)$ 与 x_{i}	
382	表 7.5.1	$\Gamma_{_{11}}(au)$	$\Gamma(au)$	
		互相干函数	自相干函数	
		$\Gamma_{12}(\tau) = \left\langle u_1(P_1, t+\tau)u_1^*(P_1, t) \right\rangle$	$\Gamma(\tau) = \left\langle u(P, t+\tau)u^*(P, t) \right\rangle$	
		示意图中的 P_1	P	
		$\gamma_{_{11}}(au)$	$\gamma(au)$	
		复相干度	复自相干度	
		$\gamma_{12}(\tau) = \frac{\Gamma_{11}(\tau)}{\Gamma_{11}(0)}$	$\gamma(\tau) = \frac{\Gamma(\tau)}{\Gamma(0)}$	

383 -384		式(7.6.6), (7.6.7), (7.6.9), (7.6.10), (7.6.13)中的 Σ_2	Σ_1
384	倒 1	的假设,特别是距离 r_1 和 r_2 都必须远大于波长 $\overline{\lambda}$ 。	的假设。
386	(7.6.30a)	$\nabla_1^2 G_{12}(\tau) + \left(\frac{2\pi \nu}{c}\right)^2 G_{12}(\tau) = 0$	$\nabla_1^2 G_{12}(\nu) + \left(\frac{2\pi\nu}{c}\right)^2 G_{12}(\nu) = 0$
386	(7.6.30b)	$\nabla_2^2 G_{12}(\tau) + \left(\frac{2\pi \nu}{c}\right)^2 G_{12}(\tau) = 0$	$\nabla_2^2 G_{12}(\nu) + \left(\frac{2\pi \nu}{c}\right)^2 G_{12}(\nu) = 0$
395	2	相同的	相同的,且 $\beta_{12} = \alpha_{12}(0)$