```
In [139]: import pandas as pd
           import numpy as np
           import matplotlib.pyplot as plt
           %matplotlib inline
In [140]: data = pd.read_csv('E:/New folder/data_banknote_authentication.txt', header=Non
           data.head()
Out[140]:
                                2
                                        3 4
           0 3.62160 8.6661 -2.8073 -0.44699 0
            1 4.54590 8.1674 -2.4586 -1.46210 0
           2 3.86600 -2.6383 1.9242 0.10645 0
            3 3.45660 9.5228 -4.0112 -3.59440 0
            4 0.32924 -4.4552 4.5718 -0.98880 0
In [141]: data.shape
Out[141]: (1372, 5)
In [142]: data.columns
Out[142]: Int64Index([0, 1, 2, 3, 4], dtype='int64')
In [143]: data.columns = ['Variance', 'Skewness', 'Kurtosis', 'Entropy', 'Class']
           data.head()
Out[143]:
              Variance Skewness Kurtosis Entropy Class
           0 3.62160
                         8.6661
                               -2.8073 -0.44699
            1 4.54590
                        8.1674
                               -2.4586 -1.46210
                                                 0
           2 3.86600
                        -2.6383
                               1.9242 0.10645
                                                 0
                               -4.0112 -3.59440
                                                 0
           3 3.45660
                        9.5228
              0.32924
                        -4.4552
                               4.5718 -0.98880
                                                 0
In [144]: data.Class.value counts()
Out[144]: 0
                762
                610
           Name: Class, dtype: int64
In [145]: data.Variance.isna().sum()
Out[145]: 0
In [146]: | data.Skewness.isna().sum()
Out[146]: 0
In [147]: data.Kurtosis.isna().sum()
Out[147]: 0
In [148]: data.Entropy.isna().sum()
Out[148]: 0
```

In [149]: | data.head(10)

Out[149]:

	Variance	Variance Skewness Kurtosis		F.,4,,,,,,,	01	
	variance	Skewness	Kurtosis	Entropy	Class	
0	3.62160	8.6661	-2.80730	-0.44699	0	
1	4.54590	8.1674	-2.45860	-1.46210	0	
2	3.86600	-2.6383	1.92420	0.10645	0	
3	3.45660	9.5228	-4.01120	-3.59440	0	
4	0.32924	-4.4552	4.57180	-0.98880	0	
5	4.36840	9.6718	-3.96060	-3.16250	0	
6	3.59120	3.0129	0.72888	0.56421	0	
7	2.09220	-6.8100	8.46360	-0.60216	0	
8	3.20320	5.7588	-0.75345	-0.61251	0	
9	1.53560	9.1772	-2.27180	-0.73535	0	

In [150]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1372 entries, 0 to 1371Data columns (total 5 columns): Variance 1372 non-null float64 Skewness 1372 non-null float64 Kurtosis 1372 non-null float64 Entropy 1372 non-null float64 Class 1372 non-null int64 dtypes: float64(4), int64(1) memory usage: 53.7 KB

In [151]: data.describe()

Out[151]:

	Variance	Skewness	Kurtosis	Entropy	Class
count	1372.000000	1372.000000	1372.000000	1372.000000	1372.000000
mean	0.433735	1.922353	1.397627	-1.191657	0.444606
std	2.842763	5.869047	4.310030	2.101013	0.497103
min	-7.042100	-13.773100	-5.286100	-8.548200	0.000000
25%	-1.773000	-1.708200	-1.574975	-2.413450	0.000000
50%	0.496180	2.319650	0.616630	-0.586650	0.000000
75%	2.821475	6.814625	3.179250	0.394810	1.000000
max	6.824800	12.951600	17.927400	2.449500	1.000000

```
In [152]: import seaborn as sns
            sns.countplot(x=data.Class, data=data['Class'].value_counts(), palette='hls')
            plt.show()
              800
              700
              600
              500
              400
              300
              200
              100
                0
                            610
                                                    762
                                        Class
In [153]:
            from sklearn.model selection import train test split
            data train, data test = train test split(data, test size=0.2, random state=19)
In [154]: print(data_train.shape)
            print(data_test.shape)
            (1097, 5)
            (275, 5)
In [155]:
            data train.head(10)
Out[155]:
                   Variance Skewness Kurtosis
                                               Entropy Class
              528 3.624400
                             1.46090
                                      1.35010 1.928400
                                                           0
              896
                  0.004054
                             0.62905
                                     -0.64121 0.758170
                                                           1
              805 -3.608500
                             3.32530
                                     -0.51954 -3.573700
                                                           1
              762 -1.397100
                             3.31910
                                     -1.39270 -1.994800
             1065 -3.601200
                             -6.53890 10.52340 -0.489670
              721 -0.450620
                             -1.36780
                                      7.08580 -0.403030
                  2.522700
                             2.23690
                                      2.72360
              532
                                              0.794380
             1281 -2.790800
                             -5.71330
                                      5.95300
                                              0.459460
                                                           1
             1173 -4.746200
                             3.12050
                                      1.07500 -1.296600
                                                           1
              558 4.384600
                             -4.87940
                                      3.36620 -0.029324
                                                           0
In [156]: X_train, y_train = data_train.drop('Class', axis=1), data_train['Class']
In [157]: X_train.head()
Out[157]:
                   Variance Skewness Kurtosis Entropy
              528
                  3.624400
                             1.46090
                                      1.35010
                                              1.92840
                  0.004054
                                     -0.64121 0.75817
              896
                             0.62905
              805 -3.608500
                             3.32530
                                     -0.51954 -3.57370
              762 -1.397100
                             3.31910 -1.39270 -1.99480
             1065 -3.601200
                             -6.53890 10.52340 -0.48967
```

```
In [158]: y_train.head()
Out[158]: 528
                 0
         896
                1
         805
                1
                1
         762
         1065
                1
         Name: Class, dtype: int64
In [159]: X test, y test = data test.drop('Class', axis=1), data test['Class']
In [160]: from sklearn.linear_model import LogisticRegression
In [161]: clf = LogisticRegression().fit(X train, y train)
         C:\Users\SR1407SM1106\AppData\Local\Continuum\anaconda3\lib\site-packages\skle
         arn\linear model\logistic.py:432: FutureWarning: Default solver will be change
         d to 'lbfgs' in 0.22. Specify a solver to silence this warning.
           FutureWarning)
In [162]: clf.predict(X test)
0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0,
                0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,
                0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1,
                0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
                1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
                0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1,
                0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
                0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
                1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,
                0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1], dtype=int64)
In [163]: data_pred = clf.predict(X_test)
         clf.score(X test, y test)
Out[163]: 0.99272727272727
In [164]: df = pd.DataFrame({'Actual Class':y_test, 'Predicted Class':data_pred})
Out[164]:
```

	Actual Class	Predicted Class
1183	1	1
1010	1	1
1038	1	1
1341	1	1
225	0	0
	•••	
19	0	0
481	0	0
110	0	0
1032	1	1
1314	1	1

275 rows × 2 columns

```
In [166]: data_compare = np.where(df['Actual Class'] == df['Predicted Class'], True, Fals
e)
    df['Equal'] = data_compare
    #df.drop('equal', axis=1, inplace=True)
    df
```

Out[166]:

	Actual Class	Predicted Class	Equal
1183	1	1	True
1010	1	1	True
1038	1	1	True
1341	1	1	True
225	0	0	True
19	0	0	True
481	0	0	True
110	0	0	True
1032	1	1	True
1314	1	1	True

275 rows × 3 columns

Out of 273, 2 were predicted wrongly. Hence score is 99.2%

```
In [168]: from sklearn.metrics import confusion matrix
          confusion_matrix(y_test, data_pred)
Out[168]: array([[136, 2],
                [ 0, 137]], dtype=int64)
In [169]: from sklearn.metrics import classification_report
          print(classification_report(y_test, data_pred))
                      precision recall f1-score support
                          1.00 0.99 0.99
0.99 1.00 0.99
                                                        138
                                                         137
                                              0.99 275
            accuracy
            macro avg 0.99 0.99
ighted avg 0.99 0.99
                                            0.99
                                                        275
                                              0.99
                                                        275
         weighted avg
In [170]: from sklearn.metrics import roc auc score
          from sklearn.metrics import roc curve
```


SVM

```
In [172]: roc_auc_score(y_test, data_pred)
Out[172]: 0.9927536231884059
In [173]: from sklearn import svm
In [174]: | clf = svm.SVC(kernel='linear')
          clf.fit(X train, y train)
          svm_pred = clf.predict(X_test)
          clf.score(X_test, y_test)
Out[174]: 0.99272727272727
In [175]: from sklearn.metrics import confusion_matrix
          confusion_matrix(y_test, svm_pred)
Out[175]: array([[136,
                         2],
                 [ 0, 137]], dtype=int64)
In [176]: from sklearn.metrics import classification_report
          print(classification_report(y_test, svm_pred))
                        precision
                                     recall f1-score
                                                         support
                     0
                             1.00
                                       0.99
                                                 0.99
                                                             138
                     1
                             0.99
                                       1.00
                                                 0.99
                                                             137
                                                  0.99
                                                             275
              accuracy
                             0.99
                                       0.99
                                                 0.99
                                                             275
             macro avg
                             0.99
                                       0.99
                                                 0.99
                                                             275
          weighted avg
```



```
In [178]: X_train[['Variance', 'Skewness']]
```

Out[178]:

Variance		Skewness		
528	3.624400	1.46090		
896	0.004054	0.62905		
805	-3.608500	3.32530		
762	-1.397100	3.31910		
1065	-3.601200	-6.53890		
308	4.616000	10.17880		
1043	-2.702800	1.63270		
936	-1.278600	-2.40870		
757	2.660600	3.16810		
622	5.042900	-0.52974		

1097 rows × 2 columns

```
In [179]: from mlxtend.plotting import plot_decision_regions
    plot_decision_regions(X_train.to_numpy(), y_train.to_numpy(), clf=clf, legend=
        2, feature_index=[0,2], filler_feature_values={1:2, 3:4})
    plt.xlabel('X_train')
    plt.ylabel('y_train')
    plt.title('SVM')
    plt.show()
```


unable to plot decision regions

```
In [ ]:
```

8 of 8