

1. CONTEXTUALIZAÇÃO

Desafios:

Envelhecimento da população:

À medida que a população envelhece, as doenças crônico-degenerativas tornam-se mais comuns.

- Crescimento dos custos relacionados à saúde;
- Falta de atuação preventiva.

1. CONTEXTUALIZAÇÃO

Alternativa:

Programas de gerenciamento de doentes crônicos são programas voltados para o gerenciamento de risco em indivíduos com doenças crônicas. São compostos por uma série de ações e comunicações em saúde de forma organizada.

Cenário:

Nesta pesquisa foram estudados os dados de beneficiários acompanhados pelo Programa de Gerenciamento de Doenças Crônicas (PGDC) de um serviço médico assistencial e também os dados de custos médicos da operadora de planos de saúde vinculada a estes beneficiários.

1. OBJETIVO

Aplicar modelos de machine learning para prever o custo médico assistencial dos participantes do PGDC, utilizando dados anteriores ao ingresso no programa, de modo a simular o comportamento da curva de custos na ausência da intervenção do programa e então comparar esse resultado com os valores reais dos primeiros 12 meses de acompanhamento pelo PGDC.

2. COLETA DE DADOS

Banco de dados do **Serviço Assistencial**Responsável pelo PGDC.

Banco de dados da **operadora de** planos de saúde.

Dataset 01: informações dos participantes do programa(df_participantes_pgdc com50.367 registros)

Dataset 02: informações

complementares dos participantes

(df_complemento_pf com 2.583

registros)

Dataset 03: histórico dos custos assistenciais (df_conta_medica com 181.337 registros)

Anonimização dos dados através da conversão das identificações de pessoas físicas em um hash SHA1

3. PROCESSAMENTO/TRATAMENTO DOS DADOS

- Remoção de registros com de erros de cadastros;
- Verificação e tratamento de valores duplicados / nulos;
- Remoção das pessoas com menos de 12 meses de acompanhamento pelo programa;
- Agrupamento dos dados;
- Enriquecimento dos dados com o dataset de complemento de pessoa física (sexo e data de nascimento);
- Enriquecimento dos dados com o dataset de custos assistenciais;
- Remoção de participantes sem informação de custo assistencial;
- Criação do atributo QT_MES_REFERENCIA que foi utilizada para definir o período de ocorrência do custo médico em relação ao início da participação no programa;
- Agrupamento dos registros por mês de ocorrência do custo médico;
- Cálculo da média mensal do custo assistencial dos participantes do programa.

4. ANÁLISE E EXPLORAÇÃO DOS DADOS

4. ANÁLISE E EXPLORAÇÃO DOS DADOS

4. ANÁLISE E EXPLORAÇÃO DOS DADOS

- Holt-Winters
- ARIMA
- MLPRegression (scikit-learn) scikit-learn

- Holt-Winters:
 - Busca dos melhores parâmetros pela comparação do AIC.

```
# Função para definir os parâmetros do modelo HW com base no AIC
def holt_winters_aic(trend, seasonal, seasonal_periods, dados):
        modelo = ExponentialSmoothing(dados, trend=trend, seasonal=seasonal, seasonal periods=seasonal periods)
       fit_modelo = modelo.fit()
       aic = fit modelo.aic
       return aic
    except:
       return np.inf
# Parâmetros possíveis para o modelo Holt-Winters
trends = [None, 'add', 'mul']
seasonals = [None, 'add', 'mul']
seasonal_periods = list(range(1, 25))
# Busca otimizada dos melhores parâmetros usando AIC
min aic = np.inf
melhores params aic = None
for trend in trends:
    for seasonal in seasonals:
        for seasonal period in seasonal periods:
           aic = holt_winters_aic(trend, seasonal, seasonal_period, dados_treino['VL_CUSTO_MEDIO'])
           if aic < min aic:
                min_aic = aic
                melhores params aic = (trend, seasonal, seasonal period)
print(f"Parâmetros otimizados para menor AIC: {melhores params aic}")
print(f"Menor AIC: {min_aic}")
```

- ARIMA:
 - Parametrização manual
 - AUTOARIMA

```
arima auto = auto arima(dados treino['VL CUSTO MEDIO'], start p=1, start q=1,
                           max p=6, max q=6, m=12, start P=0, seasonal=True,
                           d=1, D=1, trace=True, error_action='ignore',
                           suppress warnings=True, stepwise=True)

√ 11.7s

Performing stepwise search to minimize aic
ARIMA(1,1,1)(0,1,1)[12]
                                     : AIC=inf, Time=0.26 sec
ARIMA(0,1,0)(0,1,0)[12]
                                     : AIC=544.562, Time=0.01 sec
ARIMA(1,1,0)(1,1,0)[12]
                                     : AIC=530.617, Time=0.08 sec
ARIMA(0,1,1)(0,1,1)[12]
                                     : AIC=inf, Time=0.15 sec
ARIMA(1,1,0)(0,1,0)[12]
                                     : AIC=537.793, Time=0.03 sec
ARIMA(1,1,0)(2,1,0)[12]
                                     : AIC=528.685, Time=0.19 sec
ARIMA(1,1,0)(2,1,1)[12]
                                     : AIC=530.648, Time=0.74 sec
ARIMA(1,1,0)(1,1,1)[12]
                                     : AIC=inf, Time=0.33 sec
ARIMA(0,1,0)(2,1,0)[12]
                                     : AIC=532.873, Time=0.24 sec
ARIMA(2,1,0)(2,1,0)[12]
                                     : AIC=523.591, Time=0.39 sec
ARIMA(2,1,0)(1,1,0)[12]
                                     : AIC=528.009, Time=0.14 sec
                                     : AIC=525.519, Time=0.61 sec
ARIMA(2,1,0)(2,1,1)[12]
ARIMA(2,1,0)(1,1,1)[12]
                                     : AIC=inf, Time=1.06 sec
                                     : AIC=525.108, Time=0.43 sec
ARIMA(3,1,0)(2,1,0)[12]
ARIMA(2,1,1)(2,1,0)[12]
                                     : AIC=522.287, Time=0.52 sec
                                     : AIC=525.008, Time=0.29 sec
ARIMA(2,1,1)(1,1,0)[12]
ARIMA(2,1,1)(2,1,1)[12]
                                     : AIC=524.418, Time=1.13 sec
ARIMA(2,1,1)(1,1,1)[12]
                                     : AIC=inf, Time=0.67 sec
ARIMA(1,1,1)(2,1,0)[12]
                                     : AIC=520.756, Time=0.31 sec
ARIMA(1,1,1)(1,1,0)[12]
                                     : AIC=523.084, Time=0.19 sec
                                     : AIC=inf, Time=0.64 sec
ARIMA(1,1,1)(2,1,1)[12]
ARIMA(1,1,1)(1,1,1)[12]
                                     : AIC=inf, Time=0.42 sec
ARIMA(0,1,1)(2,1,0)[12]
                                     : AIC=519.088, Time=0.33 sec
ARIMA(0,1,1)(1,1,0)[12]
                                     : AIC=521.337, Time=0.11 sec
ARIMA(0,1,1)(2,1,0)[12] intercept : AIC=inf, Time=0.28 sec
Best model: ARIMA(0,1,1)(2,1,0)[12]
Total fit time: 11.750 seconds
```

- **MLPRegressor:**
 - Transformação do conjunto de dados (3 lags)
 - GridSearch

```
from sklearn.model_selection import GridSearchCV
   # Definindo os hiperparâmetros para teste
        'hidden_layer_sizes': [(1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,),
                              (9,), (10,), (11,), (12,), (13,), (14,), (15,), (16,)],
       'activation': ['logistic', 'relu', 'tanh'],
       'solver': ['adam','lbfgs', 'sgd',],
       'max_iter': [500, 5000, 20000],
       'learning_rate_init': [0.001, 0.01, 0.1]
   # Configurando o GridSearchCV
   grid_search = GridSearchCV(modelo_mlpregressor, parametros, cv=n_series, verbose=1, n_jobs=-1)
   # Realizando a busca pelos melhores hiperparâmetros
   grid_search.fit(X, y)
   # Resultados
   melhores parametros = grid search.best params
   melhores parametros
Fitting 5 folds for each of 1296 candidates, totalling 6480 fits
```

c:\Users\bruno\anaconda3\lib\site-packages\sklearn\neural_network_multilayer_perceptron.py:692: ConvergenceWarning:

Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.

```
{'activation': 'relu',
 'hidden_layer_sizes': (9,),
 'learning_rate_init': 0.1,
 'max iter': 500,
 'solver': 'adam'}
```

6. INTERPRETAÇÃO DOS RESULTADOS

Métricas avaliadas:

	Holt-Winters	ARIMA(2,1,5)	Auto ARIMA	MLPRegressor
MAE	168.090000	285.050000	205.610000	172.490000
MSE	47301.030000	127088.610000	66599.030000	62947.310000
RMSE	217.490000	356.490000	258.070000	250.890000
MAPE	0.140000	0.210000	0.160000	0.140000
AIC	507.325168	659.993434	519.087737	235.650694

6. INTERPRETAÇÃO DOS RESULTADOS

6. INTERPRETAÇÃO DOS RESULTADOS

- Teste de Shapiro-Wilk: verificar a normalidade;
- Teste de Levene: avaliar a homocedasticidade;
- Teste t de Student: diferença entre ambos os conjuntos é estatisticamente significativa.

(-6.563774450940586, 1.3336525303813554e-06)

