Теория вероятностей и математическая статистика Лектор А.А. Лобузов

Семестр 6

Лекция 10

Параметрические гипотезы

Рассматривается статистическая модель $(\mathcal{X}, \mathcal{B}(\mathcal{X}), \mathcal{F})$.

Пусть $\mathbf{X} = (X_1, X_2, ..., X_N)$ — случайная выборка объёма N из распределения $\mathcal L$ наблюдаемой случайной величины ξ с функцией распределения F(x).

Статистическая гипотеза называется **параметрической**, если она строится на предположениях о параметрах $\mathbf{\theta} = (\theta_1, ..., \theta_r)$ функции распределения $F(x; \mathbf{\theta})$, $\mathbf{\theta} = (\theta_1, ..., \theta_r) \in \Theta \subseteq \mathbb{R}^r$, Θ — множество параметров.

Основная гипотеза определяется подмножеством $\Theta_{0} \subset \Theta$:

 $\mathbf{H}_{0} = \{\mathbf{\theta} = (\theta_{1},...,\theta_{r}) \in \Theta_{0}\}$, а конкурирующая гипотеза подмножеством $\Theta_{1} \subset \Theta$: $\mathbf{H}_{1} = \{\mathbf{\theta} \in \Theta_{1}\}$, $\Theta_{0} \cap \Theta_{1} = \emptyset$. Если $\Theta_{1} = \Theta \setminus \Theta_{0}$, то гипотеза называется альтернативной, а каждое значение $\mathbf{\theta} \in \Theta_{1}$ называется альтернативой. Если множество Θ_{0} содержит только один элемент, то гипотеза \mathbf{H}_{0} называется простой. Аналогично, если множество Θ_{1} содержит только один элемент, то гипотеза \mathbf{H}_{1} называется простой.

если $\mathbf{x} = (x_1^{}, x_2^{}, ..., x_N^{}) \in \mathcal{X}_1^{}$, то гипотеза $\mathbf{H}_0^{}$ отвергается (принимается гипотеза $\mathbf{H}_1^{}$);

если $\mathbf{x} = (x_1, x_2, ..., x_N) \in \mathcal{X}_0 = \mathcal{X} \setminus \mathcal{X}_1$, то гипотеза \mathbf{H}_0 принимается (отвергается гипотеза \mathbf{H}_1);

где $\mathbf{x} = (x_1, x_2, ..., x_N)$ — реализация случайной выборки $\mathbf{X} = (X_1, X_2, ..., X_N).$

Иногда критическую область \mathscr{U}_1 называют критерием. Обычно критическую область задают с помощью специально выбранной статистики $T_N\left(\mathbf{X}\right) = T_N\left(X_1, X_2, ..., X_N\right)$, которая называется числовым критерием: $\mathscr{U}_1 = \{\mathbf{x} = (x_1, x_2, ..., x_N) \in \mathscr{U}: T(\mathbf{x}) \in U_{\kappa p} \subset \mathbb{R}\}$. Область обычно имеет один из следующих видов: $U_{\kappa p} = \{x \in \mathbb{R}: x < z_{\kappa p}\}$, $U_{\kappa p} = \{x \in \mathbb{R}: x < z_{\kappa p}\}$ $U_{\kappa p} = \{x \in \mathbb{R}: x < z_{\kappa p}\}$.

Вероятности ошибок первого рода $P(\mathbf{X}=(X_1,X_2,...,X_N)\in\mathscr{X}_1|\mathbf{H}_0)$ и второго рода $P(\mathbf{X}=(X_1,X_2,...,X_N)\in\mathscr{X}_0|\mathbf{H}_1)$ можно выразить через функцию мощности: $W(\mathbf{\theta})=W(\mathscr{X}_1;\mathbf{\theta})=P_{\mathbf{\theta}}(\mathbf{X}\in\mathscr{X}_1),\,\mathbf{\theta}=(\theta_1,...,\theta_r)\in\Theta$.

Вероятность ошибки первого рода $P(\mathbf{X} \in \mathcal{X}_1 | \mathbf{H}_0) = W(\mathbf{\theta})$ при $\mathbf{\theta} \in \Theta_0$; вероятность ошибки второго рода $P(\mathbf{X} \in \mathcal{X}_0 | \mathbf{H}_1) = 1 - W(\mathbf{\theta})$ при $\mathbf{\theta} \in \Theta_1$.

Пусть $\alpha \in (0,1)$ и $W(\mathbf{0}) \leq \alpha$ для всех $\mathbf{0} \in \Theta_0$, причем существует такое $\mathbf{0}^* \in \Theta_0$, что $W(\mathbf{0}^*) = \alpha$, то критическая область (критерий) \mathscr{X}_1 называется критической областью (критерием) уровня значимости α и обозначается $\mathscr{X}_{1\alpha}$.

Если $W(\mathscr{X}_{1\alpha}^*;\boldsymbol{\theta}) \leq W(\mathscr{X}_{1\alpha};\boldsymbol{\theta})$ при всех $\boldsymbol{\theta} \in \Theta_0$ и $W(\mathscr{X}_{1\alpha}^*;\boldsymbol{\theta}) \geq W(\mathscr{X}_{1\alpha};\boldsymbol{\theta})$ при всех $\boldsymbol{\theta} \in \Theta_1$, причем существует такое $\boldsymbol{\theta}^* \in \Theta_1$, что $W(\mathscr{X}_{1\alpha}^*;\boldsymbol{\theta}^*) > W(\mathscr{X}_{1\alpha}^*;\boldsymbol{\theta}^*)$,

то критерий $\mathscr{X}_{1\alpha}^*$ называется более равномерно мощным, чем критерий $\mathscr{X}_{1\alpha}$. Если критерий $\mathscr{X}_{1\alpha}^*$ более равномерно мощный, чем все другие критерии уровня значимости α , то он называется равномерно наиболее мощным критерием уровня значимости α для проверки гипотезы \mathbf{H}_0 .

Если критерий \mathscr{X}_1 является критерием уровня значимости α и $W(\mathbf{0}) \geq \alpha$ для всех $\mathbf{0} \in \Theta_1$, то критерий \mathscr{X}_1 называется несмещенным.

Равномерно наиболее мощный критерий среди всех критериев уровня значимости α существует достаточно редко, чаще можно найти равномерно наиболее мощный критерий в классе несмещенных критериев уровня значимости α .

Рассмотрим случай, когда $\Theta = \{\theta_0, \theta_1\}$, $\Theta_0 = \{\theta_0\}$, $\Theta_1 = \{\theta_1\}$. Основная гипотеза $\mathbf{H}_0 = \{\theta = \theta_0\} = \{F_\xi(x) = F(x, \theta_0)\}$, альтернатива $\mathbf{H}_1 = \{\theta = \theta_1\} = \{F_\xi(x) = F(x, \theta_1)\}$. Фиксируем уровень значимости $\alpha = W(\mathscr{X}_{1\alpha}; \theta_0)$ и будем искать критерий $\mathscr{X}_{1\alpha}$, у которого максимальная мощность $\alpha = W(\mathscr{X}_{1\alpha}; \theta_1)$. Для построения наиболее мощного критерия в этом случае используют статистику правдоподобия:

$$T_N(\mathbf{x}) = \frac{L(\mathbf{x}; \theta_1)}{L(\mathbf{x}; \theta_0)}$$
, где $L(\mathbf{x}; \theta_i) = \prod_{j=1}^N f(x_j, \theta_i)$ — функция правдоподобия

числовой выборки $\mathbf{x} = (x_1, x_2, ..., x_N)$ при значении параметра $\theta = \theta_i$, i = 0,1.

Следует заметить, что $L(\mathbf{x}; \theta_0) = \prod_{j=1}^N f(x_j, \theta_0)$ является значением плотности распределения случайного вектора $\mathbf{X} = (X_1, X_2, ..., X_N)$ в точке $\mathbf{x} = (x_1, x_2, ..., x_N)$ выборочного пространства $\mathscr{X} \subseteq \mathbb{R}^N$ в случае

справедливости гипотезы $\mathbf{H}_0 = \{\theta = \theta_0\} = \{F_{\xi}(x) = F(x, \theta_0)\},$ а

 $L(\mathbf{x}; \theta_1) = \prod_{j=1}^N f(x_j, \theta_1)$ — значение плотности распределения случайного

вектора ${\bf X}$ в точке ${\bf x}=(x_1,x_2,...,x_N)$ выборочного пространства в случае справедливости гипотезы ${\bf H}_1=\!\{\theta=\theta_1\}\!=\!\{F_\xi(x)\!=F(x,\theta_1)\}.$

При широких предположениях о плотности $f(x,\theta)$ верна следующая теорема.

Теорема Неймана-Пирсона.

Существует наиболее мощный критерий проверки гипотезы $\mathbf{H}_0 = \{F_\xi(x) = F(x,\theta_0)\} \text{ против гипотезы } \mathbf{H}_1 = \{F_\xi(x) = F(x,\theta_1)\} \text{ при уровне}$ значимости α , который задается критической областью $\mathscr{X}_{1\alpha} = \{\mathbf{x} = (x_1,x_2,\dots,x_N) \in \mathscr{X} : T_N(\mathbf{x}) \geq z_\alpha\}, \text{ где значение } z_\alpha \text{ находится из}$ соотношения $\mathbf{P}(T_N(\mathbf{x}) \geq z_{\alpha 1} | \mathbf{H}_0) = 1 - \alpha$.