Assignment 3

Due Wednesday 9/18/19

Reading Assignment:

• Required: Course Notes 2.1

• Supplemental: MMA 2.1

Problems:

1. (EF: 2.1.4) (5 pts) Let $\underline{x} = (x_1, \dots, x_n), \underline{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ and consider the function ρ given by

$$\rho\left(\underline{x},y\right) = \max\left\{|x_1 - y_1|, \dots, |x_n - y_n|\right\}.$$

Show that ρ is a metric.

Solution:

We wish to prove that ρ is a metric. We must therefore show that it fulfills the three properties of a metric. First, since $|x-y| \ge 0$ for all $x, y \in \mathbb{R}$, it follows that

$$\rho(\underline{x}, y) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\} \ge 0.$$

Furthermore, $\rho(\underline{x},\underline{y}) = 0$ if and only if $|x_1 - y_1| = \cdots = |x_n - y_n| = 0$. In particular, $\rho(\underline{x},\underline{y}) = 0$ if and only if $x_i = y_i$ for $i = 1,\ldots,n$. Thus, $\rho(\underline{x},\underline{y}) = 0$ if and only if $\underline{x} = \underline{y}$. The second property can be seen by noticing that

$$\rho\left(\underline{x},\underline{y}\right) = \max\left\{|x_1 - y_1|, \dots, |x_n - y_n|\right\}$$
$$= \max\left\{|y_1 - x_1|, \dots, |y_n - x_n|\right\} = \rho\left(y,\underline{x}\right).$$

The triangle inequality is obtained by applying the triangle inequality componentwise. For any $\underline{x}, y, \underline{z} \in \mathbb{R}^n$,

$$\rho(\underline{x}, \underline{z}) = \max\{|x_1 - z_1|, \dots, |x_n - z_n|\}
\leq \max\{|x_1 - y_1| + |y_1 - z_1|, \dots, |x_n - y_n| + |y_n - z_n|\}
\leq \max\{|x_1 - y_1|, \dots, |x_n - y_n|\} + \max\{|y_1 - z_1|, \dots, |y_n - z_n|\}
= \rho(\underline{x}, \underline{y}) + \rho(\underline{y}, \underline{z}).$$

Hence, ρ is a metric.

2. (EF: 2.1.6) (5 pts) Suppose $a \in B_d(x, \epsilon)$ with $\epsilon > 0$. Find an explicit $\delta > 0$ such that the open ball $B_d(a, \delta)$ centered at a is contained in $B_d(x, \epsilon)$.

1

Solution:

Let $a \in B_d(x, \epsilon)$ be given. Then, by definition, $d(x, a) < \epsilon$. Define $\delta = \epsilon - d(x, a)$ and note that $\delta > 0$. We claim that $B_d(a, \delta)$ is a open ball centered at a which is contained in $B_d(x, \epsilon)$. For any $y \in B_d(a, \delta)$, we have

$$d(x,y) \le d(x,a) + d(a,y)$$

$$< d(x,a) + \delta$$

$$= d(x,a) + (\epsilon - d(x,a))$$

$$= \epsilon.$$

That is, the distance between x and y is less than ϵ , which implies that $y \in B_d(x, \epsilon)$. Since this is true for any $y \in B_d(a, \delta)$, we conclude that $B_d(a, \delta) \subseteq B_d(x, \epsilon)$, as desired.

3. (MMA: 2.1.20) (10 pts) Show that if $\{x_n\}$ is a sequence such that $d(x_n, x_{n+1}) \leq Cr^n$ for $0 \leq r < 1$ and $C \geq 0$, then $\{x_n\}$ is a Cauchy sequence.

Solution: From the definition of a Cauchy sequence, we need, for any $\epsilon > 0$, an N such that $d(x_n, x_m) < \epsilon$ for all m, n > N. One can assume m > n (wolog) and apply the triangle inequality recursively to get

$$d(x_{n}, x_{m}) \leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{m})$$

$$\leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{m})$$

$$\leq \sum_{i=n}^{m-1} d(x_{i}, x_{i+1})$$

$$\leq \sum_{i=n}^{m-1} C r^{i}$$

$$\leq \sum_{i=n}^{\infty} C r^{i}$$

$$= \frac{C r^{n}}{1 - r}$$

Since this quantity is independent of m and strictly decreasing to zero as $n \to \infty$, there exists an N for any $\epsilon > 0$. This is also a key step in the proof of the contraction mapping theorem.

4. (MMA: 2.1.24) (5 pts) The fact that a sequence is Cauchy depends upon the metric employed. Consider the metric space $(C[a,b],d_{\infty})$ of continuous functions mapping $[a,b] \to \mathbb{R}$ with

$$d_{\infty}(f,g) \triangleq \max_{t \in [a,b]} |f(t) - g(t)|.$$

Let $f_n(t) \in C[-1,1]$ be a sequence of functions defined by

$$f_n(t) = \begin{cases} 0 & t < -1/n, \\ nt/2 + 1/2 & -1/n \le t \le 1/n, \\ 1 & t > 1/n. \end{cases}$$

Show that

$$d_{\infty}(f_n, f_m) = \frac{1}{2} - \frac{n}{2m}$$
 for $m > n$.

Is $f_n(t)$ a Cauchy sequence in this metric space? Hint: See Example 2.1.16 in MMA.

Solution: Consider the expression $f_m(t) - f_n(t)$ as a function of t for any m > n. It is easy to verify that this expression increasing in t for $0 \le t < \frac{1}{m}$ and decreasing for $\frac{1}{m} \le t \le 1$. From the symmetry about t = 0, we see that

$$|f_m(t) - f_n(t)| \le f_m\left(\frac{1}{m}\right) - f_n\left(\frac{1}{m}\right) = 1 - \left(\frac{n}{2m} + \frac{1}{2}\right) = \frac{1}{2} - \frac{n}{2m}.$$

In words, all points in a Cauchy sequence must eventually become arbitrarily close to each other. By choosing m = 2n, we see that this doesn't happen. Thus, we will prove the sequence is not Cauchy.

Formally, we can negate the definition of a Cauchy sequence to get an outline for the proof:

$$\neg$$
" f_n is Cauchy" $\Leftrightarrow \exists \epsilon > 0, \forall N \in \mathbb{N}, \exists m, n > N, d_{\infty}(f_n, f_m) \geq \epsilon$.

Following the implied path, we choose $\epsilon = \frac{1}{4}$ and observe that, for all $N \in \mathbb{N}$, we can choose n = N + 1 and m = 2n to see that $d_{\infty}(f_n, f_m) \geq \epsilon$.

5. (TOP: 2.10.6) (5 pts) Define $f_n: [0,1] \to \mathbb{R}$ by the equation $f_n(x) = x^n$. Show that the sequence $\{f_n(x)\}$ converges for each $x \in [0,1]$, but that the sequence $\{f_n\}$ does not converge uniformly. Recall that uniform convergence to f on [a,b] implies that, for any $\epsilon > 0$, there exists an N such that $|f_n(t) - f(t)| < \epsilon$ for all n > N and all $t \in [a,b]$.

Solution: First, we note that the sequence converges pointwise. For $x \in [0,1)$, the limit is

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \lim_{n \to \infty} e^{n \ln x} = 0,$$

since $\ln x < 0$. Also, we have $f(1) = \lim_{n \to \infty} f_n(1) = 1$. In words, a sequence of functions converges uniformly if the value of N in the definition of convergence can chosen independently of x. But, for this sequence, convergence becomes slower and slower as x approaches 1.

Formally, we negate the definition of uniform convergence to get an outline for the proof:

$$\neg ``f_n \to f \text{ uniformly}" \Leftrightarrow \exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N, \exists t \in X, d_Y(f_n(t), f(t)) \geq \epsilon.$$

For this example, we can pick $\epsilon = 1/4$. Then, we let $t_n = (1/2)^{\frac{1}{n}}$ so that $f_n(t_n) = ((1/2)^{\frac{1}{n}})^n = 1/2$ and notice that $0 < t_n < 1$. Then, for all $n \in \mathbb{N}$, we have $d_Y(f_n(t_n) - f(t_n)) = |f_n(t_n) - f(t_n)| = |1/2 - 0| \ge 1/4$. Thus, the sequence of functions does not converge uniformly.

6. (EF: 2.1.7) (5 pts each) In this problem, we will numerically approximate the positive squareroot of 2 using Newton's method to find the positive root of $g(x) = x^2 - 2$. Starting from some initial estimate $x_1 \in \mathbb{R}$, this gives

$$x_{n+1} = f(x_n) \triangleq x_n - \frac{g(x_n)}{g'(x_n)}.$$

(a) For $A = [\sqrt{2}, 2]$, show that $f: \mathbb{R} \to \mathbb{R}$ satisfies $f(A) \subseteq A$ and is a contraction on A for some contraction coefficient $\gamma < 1$. Prove that $x_{n+1} = f(x_n)$ converges to $\sqrt{2}$ starting from $x_1 = 2$.

Solution: A little algebra shows that

$$f(x) - f(y) = \left(x - \frac{x^2 - 2}{2x}\right) - \left(y - \frac{y^2 - 2}{2y}\right) = (x - y)\left(\frac{1}{2} - \frac{1}{xy}\right).$$

Thus, $|f(x) - f(y)| \le \frac{1}{2}|x - y|$ as long as $x, y \ge 1$. Since f(x) is increasing for $x \ge \sqrt{2}$, $f(\sqrt{2}) = \sqrt{2}$, and f(2) = 3/2, it follows that $f(A) \subseteq A$. Using these results, we can apply the contraction mapping theorem to see that $x_n \to x^*$ where $x^* = \sqrt{2}$ is the unique solution of $x^* = f(x^*)$ in A.

(b) Determine some $\gamma < 1$ such that $|f(x) - f(y)| \le \gamma |x - y|$ and use this value to find an n such that $|x_{n+1} - \sqrt{2}| \le 10^{-3}$ (i.e., error is small after n iterations).

Solution: From above, we see that the best contraction coefficient on A is $\frac{1}{4}$. To bound the error as a function of n, we write

$$d(x^*, x_{n+1}) = d(f(x^*), f(x_n)) \le 0.25 d(x^*, x_n) \le 0.25^n d(x^*, x_1).$$

Thus, the error is upper bounded by $0.25^n(2-\sqrt{2})$ and n=5 suffices to meet the error bound.

(c) Write a program that uses this method and elementary computations (e.g., no sqrt or log) to compute the square root of an arbitrary real number $a \ge 1$ with error most 10^{-3} . Hint: Since the error is strictly decreasing faster than γ^n , it can be upper bounded by $\gamma/(1-\gamma)$ times the previous step size (i.e., use the other error bound).

Solution: Repeating the steps in (a) for $g(x) = x^2 - a$, one can: (i) choose $A = [\sqrt{a}, a]$ and show that $f(A) \subseteq A$ and (ii) show that Newton's method is a contraction on A for $\gamma = 0.5$. Choosing $x_1 = a$, we observe that $z_n \triangleq (x_{n-1}^2 - a)/(2x_{n-1})$ is non-negative if $x_{n-1}^2 \ge a \ge 1$. It follows that $x_{n+1} = x_n - z_n$ decreases down to \sqrt{a} . By substituting $x_n = \sqrt{a} + \delta$ into the expression for z_n , one can verify that $z_n \le \delta$ as long as $\delta \ge 0$. Thus, the following code computes \sqrt{a} within the specified error tolerance.

Practice Problems (do not hand in):

1. (EF: 2.1.5) Let X be a metric space with metric d. Define $\bar{d}: X \times X \to \mathbb{R}$ by

$$\bar{d}(x,y) = \min \left\{ d(x,y), 1 \right\}.$$

Show that \bar{d} is also a metric.

Solution:

We need to show that \bar{d} satisfies the three properties of a metric. First, $d(x,y) \geq 0$ implies that min $\{d(x,y),1\} \geq 0$ for all $x,y \in X$. Moreover, if $\bar{d}(x,y) = 0$ then min $\{d(x,y),1\} = 0$ and d(x,y) = 0. This, in turn, implies that x = y since d is a metric. We conclude that $\bar{d}(x,y) = 0$ if and only if x = y. The second property is obtained by the following string of equalities

$$\bar{d}(x,y) = \min \{d(x,y), 1\} = \min \{d(y,x), 1\} = \bar{d}(y,x),$$

which holds for all $x, y \in X$. The triangle inequality can be derived as follows. For $x, y, z \in X$, we have $d(x,y) + d(y,z) \ge d(x,z)$. If d(x,y) or d(y,z) is greater than or equal to one, then $\bar{d}(x,y) + \bar{d}(y,z) \ge 1 \ge \bar{d}(x,z)$. On the other hand, if d(x,y) and d(y,z) are less than one, then we have

$$\bar{d}(x,y) + \bar{d}(y,z) = d(x,y) + d(y,z) \ge d(x,y) \ge \bar{d}(x,z).$$

Thus, the triangle inequality holds. This shows that \bar{d} is indeed a metric.

2. (EF: 2.2.2) Consider the metric space $(C[0,1], d_{\infty})$ of continuous functions mapping $[0,1] \to \mathbb{R}$ with

$$d_{\infty}(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|.$$

Prove that the sequence $f_n(x) = \sin(n\pi x)$ does not have a subsequence which converges.

Hint: Start by showing that

$$\max_{x \in [0,1]} |f_n(x) - f_m(x)|^2 \ge \int_0^1 (f_n(x) - f_m(x))^2 dx,$$

and then compute the integral for any integers $m \neq n$.

Solution: First, we point out that $(f_n(x) - f_m(x))^2 \le \max_{x \in [0,1]} |f_n(x) - f_m(x)|^2$ for all $x \in [0,1]$. Integrating both sides implies the expression given in the hint. For integers $m, n \ge 0$, one can compute

$$\int_0^1 (f_n(x) - f_m(x))^2 dx = \int_0^1 (\sin(n\pi x) - \sin(m\pi x))^2 dx$$

$$= \int_0^1 (\sin^2(n\pi x) + \sin^2(m\pi x)) dx - 2 \int_0^1 \sin(n\pi x) \sin(m\pi x) dx$$

$$= 1 - \delta_{m,n}.$$

This implies that $d(f_n, f_m) = \max_{x \in [0,1]} |f_n(x) - f_m(x)| \ge 1$ for all integers $m > n \ge 0$.

Now, assume that some subsequence $\{f_{n_i}\}$ converges to f. Then, for $\epsilon = 1/4$ there must exist some N where $d(f_{n_i}, f) < 1/4$ for all i > N. But, we also know that $1 = d(f_{n_i}, f_{n_j}) \le d(f_{n_i}, f) + d(f, f_{n_j})$ for any f and all $i \ne j$. This gives a contradiction because $d(f_{n_i}, f) + d(f, f_{n_j}) < 1/2$ for all i, j > N. Therefore, the sequence has no subsequence which converges. Since this space is complete, one may also conclude that it is not totally bounded.

3. (EF: 2.1.8) Let \mathbb{R} denote the standard metric space of real numbers and $\Psi \colon \mathbb{R} \to \mathbb{R}$ be a Lipschitz mapping that satisfies $|\Psi(x) - \Psi(y)| \leq L|x-y|$ for all $x, y \in \mathbb{R}$. Let $X_{a,b} = C[a,b]$ be the metric space of continuous functions mapping [a,b] to \mathbb{R} , equipped with the metric

$$d_{\infty}(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|.$$

In this problem, you will show that the differential equation,

$$f'(t) = \Psi(f(t)), \quad t \in [a, b]$$

with boundary condition $f(a) = y_a$, has a unique solution $f \in X_{a,b}$.

(a) Show that, for some $c \in (a, b]$, the mapping $T: X_{a,c} \to X_{a,c}$, defined by

$$(Tf)(x) = y_a + \int_a^x \Psi(f(t)) dt,$$

is a well-defined contraction on $X_{a,c}$ with contraction coefficient $\gamma \leq 1/2$.

Solution: Since $\Psi(t)$ and f(t) are continuous functions on [a, b], it follows that $\Psi(f(t))$ is also continuous function on [a, b]. The mapping T is well-defined because the integral of a continuous functions always exists and is continuous. This implies that, for any $c \in (a, b]$ and all $f \in X_{a,c}$, we have $Tf \in X_{a,c}$.

Next, we observe that

$$\begin{split} d_{\infty}(Tf,Tg) &= \max_{x \in [a,c]} \left| (Tf)(x) - (Tg)(x) \right| \\ &= \max_{x \in [a,c]} \left| y_a + \int_a^x \Psi(f(t)) \mathrm{d}t - y_a - \int_a^x \Psi(g(t)) \mathrm{d}t \right| \\ &= \max_{x \in [a,c]} \left| \int_a^x \left(\Psi(f(t)) - \Psi(g(t)) \right) \mathrm{d}t \right| \\ &\leq \max_{x \in [a,c]} \int_a^x \left| \Psi(f(t)) - \Psi(g(t)) \right| \mathrm{d}t \\ &\leq \max_{x \in [a,c]} \int_a^x L|f(t) - g(t)| \mathrm{d}t \\ &\leq L(c-a) \max_{x \in [a,c]} |f(t) - g(t)| \\ &\leq L(c-a) d_{\infty}(f,g). \end{split}$$

For $c = a + \frac{1}{2L}$, it follows that T is a contraction with coefficient $\gamma = 1/2$.

(b) Use part (a) to show that the differential equation has a unique solution f(t) for $t \in [a, c]$. **Solution:** Consider the sequence $f_{n+1} = Tf_n$ starting from $f_1(x) = y_a$. Since $(X_{a,c}, d_{\infty})$ is a complete metric space, the contraction mapping theorem shows that this sequence converges to the unique fixed point f^* satisfying $f^* = Tf^*$. The fixed-point equation implies f^* is differentiable and differentiating both sides shows that

$$f'(x) = \Psi(f(x)).$$

Since $f^*(a) = y_a$ also follows, we see that f is a solution to the differential equation if and only if it satisfies the fixed-point equation. Thus, the uniqueness of the solution is inherited from the uniqueness of the fixed point.

(c) How can one extend the uniqueness proof to the full range [a, b]?

Solution: Under the conditions given, it is easy to verify that

$$(T_c f)(x) = y_c + \int_c^x \Psi(f(t)) dt,$$

is a well-defined contraction on $X_{c,d}$ for all $c \in [a,b)$ and $d \leq \min\{b, c + \frac{1}{2L}\}$. We note that the value $y_c = f(c)$ is given by the unique solution computed in the previous part. By induction, one can iterate this idea to extend the proven range of uniqueness by $\frac{1}{2L}$ at each step. Thus, one can show uniqueness for the whole range by applying the contraction mapping theorem at most (b-a)/(2L) times.

(d) Let f(t) be the water height, as a function of time, in a bucket with a hole in the bottom. One can show that the water exits through the hole at a rate proportional to $-\sqrt{f(t)}$. Assuming this changes the water height at the same rate, it follows that f(t) satisfies the differential equation $f'(t) = -\sqrt{f(t)}$. For $t \in [-1,0]$, verify that $f(t) = t^2/4$ and f(t) = 0 are both solutions satisfying boundary condition $y_0 = 0$. How is this possible mathematically? To what physical situations do these two solutions apply?

Solution: Clearly f(t) = 0 has f'(t) = 0 and is a solution. For the second expression, we observe that

$$f'(t) = -\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{4}t^2 = -\frac{1}{2}t = -\sqrt{\frac{1}{4}t^2}.$$

Mathematically, this does not violate our previous result because \sqrt{x} is not Lipschitz continuous on any interval containing 0. Physically, when we see an empty bucket at time t = 0, we cannot tell from the height of the water whether it just became empty (i.e., f(t) > 0 for t < 0) or has been empty for some time (i.e., f(t) = 0 for t < 0).

4. (TOP: 2.10.5) Let $x_n \to x$ and $y_n \to y$ in the space \mathbb{R} with metric d(x, x') = |x - x'|. Show that

$$x_n + y_n \to x + y$$

 $x_n - y_n \to x - y$
 $x_n y_n \to xy$,

and provided that each $y_n \neq 0$ and $y \neq 0$,

$$x_n/y_n \to x/y$$
.

[Hint: First show that $+, -, \cdot, /$ are continuous functions from (\mathbb{R}^2, d_1) to $(\mathbb{R}, |\cdot|)$.]

Solution: Here is an outline of a proof. Consider the vector space \mathbb{R}^2 with metric

$$d_1((x,y),(x',y')) = |x-x'| + |y-y'|.$$

If $x_n \to x$ and $y_n \to y$ in the space \mathbb{R} , then $(x_n, y_n) \to (x, y)$ in the metric space (\mathbb{R}^2, d_1) . Therefore, if a function $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous, then $f((x_n, y_n)) \to f((x, y))$. Using this, one only needs to establish the continuity of the functions implied by addition, subtraction, multiplication, and division.

For addition, we can write

$$|(x+y)-(x_0+y_0)| \le |x-x_0|+|y-y_0| \le d_1((x,y),(x_0,y_0))$$

and choose $\delta = \epsilon$ to see + is continuous for all $(x, y) \in \mathbb{R}^2$. The proof of subtraction is essentially the same. For multiplication, we can write

 $|(xy)-(x_0y_0)| = |xy-x_0y+x_0y-x_0y_0| \le |y||x-x_0|+|x_0||y-y_0| \le (|y_0|+\delta)||x-x_0|+|x_0||y-y_0|$ and solve $(|y_0|+\delta)\delta+|x_0|\delta<\epsilon$ for δ to see that \cdot is continuous for all $(x,y)\in\mathbb{R}^2$. For division, we can write

$$\left| \frac{x}{y} - \frac{x_0}{y_0} \right| = \left| \frac{x}{y} - \frac{x_0}{y} + \frac{x_0}{y} - \frac{x_0}{y_0} \right| \le \frac{|x - x_0|}{|y|} + |x_0| \frac{|y - y_0|}{|y_0||y|} \le \frac{|x - x_0|}{|y_0| - \delta} + |x_0| \frac{|y - y_0|}{|y_0|(|y_0| - \delta)}$$

and solve $\frac{\delta}{|y_0|-\delta} + \frac{|x_0|\delta}{|y_0|(|y_0|-\delta)} < \epsilon$ for δ to see that / is continuous for all $(x,y) \in \mathbb{R}^2$ such that $y \neq 0$. In both cases, the LHS goes to zero as $\delta \to 0$. So, we can choose, for any $\epsilon > 0$, a $\delta > 0$ small enough to satisfy the inequality.

5. (TOP: 2.7.11) Let $f: A \to B$ and $g: C \to D$ be continuous functions with respect to the topologies generated by the metrics d_A, d_B, d_C, d_D . Let us define a map $f \times g: A \times C \to B \times D$ by the equation

$$(f \times g) ((a,c)) = (f(a), g(c)).$$

A simple product metric on $A \times C$ is the metric $d_{AC}((a,c),(a',c')) \triangleq d_A(a,a') + d_C(c,c')$. Show that $f \times g$ is continuous with respect to the product metrics d_{AC} and d_{BD} , where d_{BD} is defined similarly to d_{AC} .

Solution: Since f is continuous, there exists, for all $a \in A$, a $\delta_f > 0$ such that $d_B(f(a), f(a')) < \frac{\epsilon}{2}$ for all $a' \in B_{d_A}(a, \delta_f)$. Likewise, for all $c \in C$, there exists a $\delta_g > 0$ such that $d_D(g(c), g(c')) < \frac{\epsilon}{2}$ for all $c' \in B_{d_C}(c, \delta_g)$. But, if $d_{AC}((a, c), (a', c')) \le \delta$ where $\delta = \min(\delta_f, \delta_g)$, then we have both $d_A(a, a') \le \delta_f$ and $d_C(c, c') \le \delta_g$. Therefore, for all $(a, c) \in A \times C$, we can write

$$d_{BD}\left(\left(f(a),g(c)\right),\left(f(a'),g(c')\right)\right) = d_{B}\left(f(a),f(a')\right) + d_{D}\left(g(c),g(c')\right) \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for all $(a',c') \in B_{d_{AC}}((a,c),\delta)$. This implies that $f \times g$ is continuous w.r.t. to this product metric.