ACCQ206

Lecturer: Alex B. Grilo

Lecture # 01 - Basic quantum formalism: qubits, quantum gates, measurements

- 1. Show that $\left\{ |+\rangle := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, |-\rangle := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \right\}$ forms a orthonormal basis for \mathbb{C}^2 (i.e. show that the two vectors are orthogonal and that they have norm 1).
- 2. In this exercise you will show how to convert a state from the computational basis $(\{|0\rangle, |1\rangle\})$ to the Hadamard basis $(\{|+\rangle, |-\rangle\})$.
 - (a) Write the vector $|0\rangle$ in the Hadamard basis (i.e. find the values α and β such that $|0\rangle = \alpha |+\rangle + \beta |-\rangle$). Do the same thing for $|1\rangle$.
 - (b) Let $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$. Write $|\psi\rangle$ in the Hadamard basis.
- 3. Let $|\psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{3}}|01\rangle+\frac{1}{\sqrt{6}}|11\rangle,\ |\phi\rangle=|10\rangle,\ |\rho\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle-i\,|11\rangle\right)$ and $|\gamma\rangle=\frac{1}{\sqrt{2}}\left(i\,|00\rangle+|11\rangle\right)$. Compute
 - (a) $\langle \psi |, \langle \phi |, \langle \rho |$
 - (b) $\langle \psi | \phi \rangle$, $\langle \psi | \rho \rangle$, $\langle \gamma | \rho \rangle$, $\langle \rho | \gamma \rangle$
 - (c) $|\psi\rangle\langle\psi|$, $|\phi\rangle\langle\rho|$, $|\rho\rangle\langle\rho|$, $|\gamma\rangle\langle\gamma|$
- 4. Show that for every quantum state $|\psi\rangle$:
 - (a) $\langle \psi | \psi \rangle = 1$;
 - (b) $|\psi\rangle\langle\psi|$ is a projector (P is a projector if $P^2=P$).
- 5. Find the matrix that represents the unitaries

$$Z |b\rangle = (-1)^b |b\rangle$$

$$P |b\rangle = i^b |b\rangle$$

$$c(X) |a\rangle |b\rangle = |a\rangle |a \oplus b\rangle$$

where $b \in \{0,1\}$ and \oplus denotes the XOR operation.

- 6. Show that if U_1 and U_2 are unitaries then U_1U_2 , $U_1 \otimes U_2$ and $c(U_1)$ are unitaries.
- 7. Let $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$. Compute $H |\psi\rangle$ (i.e. find the values of α' and β' such that $H |\psi\rangle = \alpha' |0\rangle + \beta' |1\rangle$).
- 8. Find the outcomes and the corresponding probabilities and post-measurement states of the measurement of both qubits of the state $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ in the computational basis. Do the same for the measurement of both qubits in the Hadamard basis.
- 9. Let $|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{3}}|01\rangle + \frac{1}{\sqrt{6}}|11\rangle$. We measured the second qubit of $|\psi\rangle$ in the computational basis and the outcome was 1. Then, we measured the first qubit (of the measurement state *after* the first measurement) in the Hadamard basis. Compute the outcomes and corresponding probabilities and post-measurement states of the second measurement.