We claim:

1. An anthraquinone colorant having the structure in Formula I:

5

10

20

wherein:

R is a divalent linking group selected from the group consisting of - C_2 - C_8 -alkylene-, - $(C_2$ - C_4 -alkylene- $Z)_n$ - C_2 - C_4 -alkylene-, - C_2 - C_6 -alkylene-O-arylene-O- C_2 - C_6 -alkylene-, -arylene-O- C_1 - C_6 -alkylene-, - C_1 - C_6 -alkylene-; cyclohexylene- C_1 - C_6 -alkylene-;

Z is -O-, -S-, -N(SO_2R_4)-, -N(R_3)CO- or -N(COR_5)-;

R₁ is hydroxy, -NHSO₂R₂ or NHCOR₂;

R₂ is C₁-C₆-alkyl, C₃-C₈-cycloalkyl or aryl;

Y is -O- or $-N(R_3)$ -;

15 R₃ is hydrogen, C₁-C₆-alkyl, C₃-C₈-cycloalkyl or aryl;

R₄ is C₁-C₆-alkyl, C₃-C₈-cycloalkyl or aryl;

R₅ is C₁-C₆-alkyl, C₁-C₆-alkoxy, C₃-C₈-cycloalkyl or aryl;

n is an integer from 1 to 3; and

Q is an ethylenically unsaturated, photopolymerizable or free radical initiated polymerizable group.

- 2. A colorant according to claim 1 wherein Q is
 - 1 $-COC(R_6)=CH-R_7$
 - 2 -CONH-COC(R_6)=CH- R_7
 - 3 -CONH-C₁-C₆-alkylene-OCOC(R₆)-CH=CH-R₇

4 -CO-C-NHCOC(
$$R_6$$
)=CH- R_7

5 -COCH=CH-CO₂R₁₀

7 -CONH
$$\stackrel{R_8}{\overset{\circ}{\text{l}}}$$
 -C(R_6)=CH,

8
$$-CH_2 \longrightarrow C(R_0) = CH_2$$

wherein:

5

R₆ is hydrogen or C₁-C₆-alkyl;

R₇ is hydrogen; C₁-C₆-alkyl; phenyl; phenyl substituted with one or more groups selected from the group consisting of C₁-C₆-alkyl, C₁-C₆alkoxy, -N(C₁-C₆-alkyl), nitro, cyano, C₁-C₆-alkoxycarbonyl, C₁-C₆alkanoyloxy and halogen; 1- or 2-naphthyl; 1- or 2-naphthyl substituted with C₁-C₆-alkyl or C₁-C₆-alkoxy; 2- or 3-thienyl; 2- or 3- thienyl substituted with C₁-C₆-alkyl or halogen; 2- or 3-furyl; or 2- or 3-furyl substituted with C₁-C₆-10 alkyl;

or

R₈ and R₉ are, independently, hydrogen, C₁-C₆-alkyl, or aryl; or R₈ and R₉ may be combined to represent a -[-CH₂-]₃₋₅- radical;

R₁₀ is hydrogen, C₁-C₆-alkyl, C₃-C₈-alkenyl, C₃-C₈-cycloalkyl or aryl; and

 R_{11} is hydrogen, C_1 - C_6 -alkyl or aryl.

3. A colorant according to claim 1 wherein Q is -COC(R₆)=CH₂ or

5 and wherein R₆ is hydrogen or methyl.

10

4. A colorant according to claim 1 wherein R is $-C_2-C_6$ -alkylene-, $-C_2-C_4$ -alkylene-O-arylene-O- C_2-C_4 -alkylene-, $-(C_2H_4O)_n-C_2H_4$ - or $-CH_2-1$,4-cyclohexylene-CH₂-; n is an integer selected from 1 to 3; R₁ is hydroxy or $-NHSO_2R_2$; Y is oxygen; and Q is

- wherein R_6 is hydrogen or methyl and R_8 and R_9 are methyl.
- 5. A colorant according to claim 1 wherein R is -C₂-C₆-alkylene-, -C₂-C₄-alkylene-O-arylene-O-C₂-C₄-alkylene-, -(C₂H₄O)_n-C₂H₄- or -CH₂-1,4-cyclohexylene-CH₂-; n is an integer from 1 to 3; R₁ is hydroxy or -NHSO₂R₂;
 Y is oxygen; and Q is -COC(R₆)=CH-R₇ wherein R₆ is hydrogen or methyl and R₇ is hydrogen.

6. A colorant according to claim 1 having the structure

7. A colorant according to claim 1 having the structure

8. A colorant according to claim 1 having the structure

5

- 9. A coating composition comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the colorant compounds according to Claim 1, and (iii) at least one photoinitiator.
- 10. A coating composition according to Claim 9 comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the colorant compounds present in a concentration of about 0.5 to 25 wt % based on the weight of component (i), and (iii) a photoinitiator present in a concentration of about 1 to 15 wt% based on the weight of the polymerizable vinyl compound(s) present in the coating composition.

- 11. A coating composition according to claim 10 which further comprises one or more organic solvents.
- 5 12. A coating composition according to claim 10 wherein the composition is dispersed in water.
 - 13. A composition according to claim 12 which further comprises a cosolvent.

10

15

- 14. A coating composition according to Claim 10 wherein the polymerizable vinyl compounds comprise a solution of a polymeric, polymerizable vinyl compound selected from acrylated or methacrylated polyesters, acrylated or methacrylated polyethers, acrylated or methacrylated epoxy polymers, acrylated or methacrylated urethanes, or mixtures thereof, in a diluent selected from monomeric acrylate or methacrylate esters.
- 15. A colorant concentrate comprising a solvent and a colorant20 according to Claim 1 at a concentration of about 0.5 to about 40 wt%.
 - 16. A colorant concentrate according to claim 15 wherein the solvent is toluene, methylethyl ketone, acetone, hexanediol diacrylate, tri(propyleneglycol) diacrylate or a mixture thereof and the colorant is present at a concentration of about 10 to about 30 wt%.
 - 17. A colorant concentrate according to claim 16 futher comprising one or more ultraviolet light absorbing compounds at a concentration of from about 0.1 to about 30 wt %.

25

18. A colorant concentrate according to claim 16 further comprising one or more antioxidants at a concentration of about 0.01 to about 5 wt %.