RECSYS Formula Sheet

Global Effects

1. Global Bias μ	$\mu = \frac{\sum_{u,i \in T} r_{ui}}{N_T + C}$
2. Normalization $r'_{\alpha\beta}$	$r'_{ui} = r_{ui} - \mu$

3. Item Shrink Average Rating
$$b_i$$
 $b_i = \frac{\sum_{u,i \in T} r'_{ui}}{N_T + C}$

2. Normalization
$$r_{ui}$$

$$r'_{ui} = r_{ui} - \mu$$
3. Item Shrink Average Rating b_i
$$b_i = \frac{\sum_{u,i \in T} r'_{ui}}{N_T + C}$$
4. Normalization (Again)
$$r''_{ui} = r'_{ui} - b_i \ \forall u \in U, i \in I$$
5. User Shrinked Average Rating b_u
$$b_u = \frac{\sum_{i \in I} r''_{ui}}{N_T}$$

5. User Shrinked Average Rating
$$b_u$$
 $b_u = \frac{\sum_{i \in I} r''_{ui}}{N_T}$

Rating Estimation

We can estimate a rating in a NON-PERSONALIZED way using the global effects:

$$r_{ui} = \mu + b_u + b_i$$

Evaluation Techniques

Online Evaluation	
Direct Feedback	User questionnaires (high bias)
A/B Testing	Compare RS_1 vs RS_2 with unaware users
Controlled Exp.	Small aware group, mock-up testing
Crowdsourcing	Large volunteer group with compensation
Offline Evaluation	
Tasks	Rating Prediction, Top-N
Dataset Split	Training Set \rightarrow Model Creation
	User Profile \rightarrow Rating Generation
	Testing Set \rightarrow Evaluation
Dataset Partitioni	ng

Random % of ratings for testing, Risk of overfitting

Exclude users for training, Split excluded users' ratings be-

Quality Metrics

Hold out of Ratings Hold out of Users

Metric	Description
Relevance	Ability of recommending items that the user likes
Coverage	Ability of recommending items that the user has not seen
Novelty	Ability of recommending unknown items
Diversity	Ability of recommending different items
Consistency	Ability to give consistent recommendations
Confidence	Measure how much the model is sure about its recommendations
Serendipity	Ability of recommending unexpected items

tween profile/testing

Classification Metrics

Metrics	Formula
Recall	$\frac{TP}{FN+TP}$
Precision	$\frac{TP}{TP+FP}_{{FP}}$
Fallout	$\frac{FP}{FP+TN}$
AUC	$\sum_{k} \overset{\cdot}{Recall(k)} \cdot \Delta Fallout$ N :
AP	$\sum_{k} Precision(k) \cdot [Recall(k) - Recall(k-1)]$
MAP	$\sum_{u}^{N} AP_{u}(k)$

Content-Based Filtering

Similarity Metrics

Basic Similarity	$s_{ij} = \vec{i} \cdot \vec{j} = \#\text{common attributes}$

Cosine Similarity
$$s_{ij} = \frac{\vec{j}_{i} \cdot \vec{j}}{\|\vec{i}\| \cdot \|\vec{j}\|}$$

Shrinked Cosine $s_{ij} = \frac{\vec{i} \cdot \vec{j}}{\|\vec{i}\| \cdot \|\vec{j}\| + C}$

Rating Estimation

Single Rating	$\tilde{r}_{ui} = \frac{\sum_{j \in N_k(i)} r_{uj} \cdot s_{ij}}{\sum_{j \in N_k(i)} s_{ij}}$
Matrix Form	$\tilde{R} = R \cdot S$

k-Nearest Neighbors (kNN)

Definition	Keep only k highest similarity values per item
Effect	Reduces noise and improves computation speed
C 1	1 1 11 11 11

Formula
$$\tilde{r}_{ui} = \frac{\sum_{j \in N_k(i)} r_{uj} \cdot s_{ji}}{\sum_{j \in N_k(i)} s_{ji}}$$

TF-IDF Weighting

Term Frequency
$$TF_{i,a} = \frac{N_{i,a}}{N_i}$$

$$N_{i,a}$$
: occurrences of attribute a in item i

$$N_i$$
: attributes in item i

Inverse Doc Freq
$$IDF_a = \log_2 \frac{N_{items}}{N_a}$$

$$N_{items}$$
: total items N_a : items with attribute a

Collaborative Filtering

User-based CF aims to find similar users and recommend items based on their preferences.

Similarity	Formula	Context
Cosine Similarity	$s_{ij} = \frac{\vec{i} \cdot \vec{j}}{\ \vec{i}\ \ \vec{j}\ }$	Implicit ratings
Jaccard Similarity	$s_{ij} = rac{i \cap j}{ec{i} \cup ec{i}}$	Implicit ratings
Pearson Correlation	$s_{ij} = \frac{\sum_{i \in I} (r_{iu} - \bar{r}_u) \cdot (r_{iv} - \bar{r}_v)}{\sqrt{\sum_{i \in I} (r_{iu} - \bar{r}_u)^2} \sqrt{\sum_{i \in I} (r_{iv} - \bar{r}_v)^2}}$	Explicit ratings

Focus on Pearson Correlation

Pearson correlation computes similarity between a rating delta. Therefore the similarity is used to predict the delta of the rating!

$$\tilde{r}_{ui} - \bar{r}_u = \frac{\sum v \in KNN(u)(r_{vi} - \bar{r}_v) \cdot s_{uv}}{\sum v \in KNN(u)s_{uv}}$$

Item-based CF aims to find similarity between items based how many users have the same opinion about them. The similarity is obtained in the same way as for user-based CF, considering the items instead of the users.

Memory-Based vs Model-Based

Memory-Based:

- Requires user profile in URM used to build model
- Only works for "known" users
- Must rebuild model for new users
- Example: User-Based CF (uses user neighborhood)

Model-Based:

- Works with any user profile
- Supports both "known" and "unknown" users
- No model recomputation needed for new users
- Example: Item-Based CF (uses item similarities)

Association Rules

Association rules explore relationships between items using conditional probability:

$$P(i|j) = \frac{\text{\# appearances of i and j}}{\text{\# appearances of j} + C}$$

where C is a shrinkage term to avoid biases. The similarity is asymmetric: $P(i|j) \neq P(j|i)$

Machine Learning Item-based CF

Loss Functions	
Error Metrics	MAE,MSE
Accuracy Metrics	Precision, Recall
Ranking Metrics	AUC, MAP
SLIM (opt. Error Metric)	
Closed-Form Solution Objective	$S^* = \arg\min_S \ R - RS\ _2$
Constraints on S	$\operatorname{diag}(S) = 0$
Lasso Regression Regularization	$S^* = \arg\min_{S} (\ R - RS\ _2 + \lambda \ S\ _1)$
Ridge Regression Regularization	$S^* = \arg\min_{S} (\ R - RS\ _{2} + \lambda \ S\ _{2})$
Elastic Net Regularization	$S^* = \arg\min_{S} (\ R - RS\ _{2}^{2} + \lambda_{1} \ S\ _{1}^{2} + \lambda_{2} \ S\ _{2}^{2})$
BPR (opt. Ranking)	
(BPR) Probability Function	$P(\tilde{r}_{ui} > \tilde{r}_{uj} \mid \text{user } u) = \sigma(x) = \frac{1}{1+e^{-x}}$
Pairwise Difference for BPR	$x_{uij} = \tilde{r}_{ui} - \tilde{r}_{uj}$

BPR optimization

It can be demonstrated that optimizing the BPR objective function is equivalent to maximizing the AUC metric. Thus, BPR is an optimization method for ranking metrics.

$$P(\tilde{r}_{ui} > \tilde{r}_{uj} \mid \text{user } u) = P(\tilde{r}_{ui} - \tilde{r}_{uj} > 0 \mid \text{user } u)$$
(1)

$$= P(x_{uij} > 0 \mid \text{user } u) \tag{2}$$

$$= \sigma(x_{uij}) = \frac{1}{1 + e^{-x_{uij}}}$$
 (3)

Where $\sigma(x)$ is the sigmoid function to optimize.

- x_{uij} should tend to 1 if i is a relevant item for user u and j is not
- $-x_{uij}$ should tend to 0 if both items are not relevant for user u or either both relevant

Matrix Factorization	
User Rating Matrix (URM)	
User Preference	x_{uk} : Preference of user u for feature k
Item Description	y_{ik} : Description of item i for feature k
Predicted Rating	
Dimensionality Constraint	$ \tilde{r}_{ui} = \sum_{k} x_{uk} \cdot y_{ik} N_k < \frac{N_u \cdot N_i}{N_u + N_i} $
Matrix Factorization	$R \approx X \cdot Y$
Dimensions	$X \in \mathbb{R}^{N_u \times N_f}, Y \in \mathbb{R}^{N_f \times N_i}, R \in \mathbb{R}^{N_u \times N_i}$
Loss Function	$\min_{X,Y} \ R - XY\ _2$
Regularization	$\min_{X,Y} \ R - XY\ _2 + \lambda_1 \ X\ _2 + \lambda_2 \ Y\ _2$
SGD for MF	- Sample (u, i, r_{ui}) - $\frac{\delta E(X,Y)}{\delta x_u} = -2 \cdot (r_{ui} - x_u y_{i*}) \cdot y_{i*} + 2\lambda_1 \cdot x_u$ - $\frac{\delta E(X,Y)}{\delta y_{i*}} = -2 \cdot (r_{ui} - x_u y_{i*}) \cdot x_u + 2\lambda_2 \cdot y_{i*}$
Missing Ratings	 MAR: Missing As Random MAN: Missing As Negative
ALS Algorithm	While not converged do: Fix X , Learn Y Fix Y , Learn X
	set $N_k=0$
	Initialize X,Y
a Fund-CVD Almonithm	While not converged do:
• FunkSVD Algorithm	Increment N_k
	Apply ALS for current N_{k}
SVD++ (train with SGD)	$-\tilde{r}_{ui} = \mu + b_u + b_i + \sum_k x_{uk} \cdot y_{ki} -\mu^*, b_u^*, b_i^*, X^*, Y^* = \min_{\mu, b_u, b_i, X, Y} E(\dots)$
Asymmetric SVD (m-b)	$\tilde{R} = RZY$, $X = RZ$
• pure SVD (m-b)	$\tilde{R} = U_k \Sigma_k V_k^T = R V_k V_k^T$

Graph-Based Recommenders

Graph-Based - 2

PageRank	
Random Walk and Restart	$\prod = \gamma \prod \cdot P + (1 - \gamma) \prod_{0}$
P3Alpha $P_3\alpha$	
Metapath	$U \to I \to U \to I$
Probability	$P_{UI} = (diag(\frac{1}{d_{u}}) \cdot R)^{\alpha}$
Recommendation	$P_{IU} = (diag(\frac{1}{d_i}) \cdot R^T)^{\alpha}$ $\prod = \gamma \prod \cdot P^3$ $= \gamma \prod \cdot P_{UI} \cdot P_{IU} \cdot P_{UI}$
Disadvantages	$= \gamma \prod P_{UI} \cdot S$ Strong popularity bias
RP3Beta $RP_3\beta$	(penalize popular items)
Similarity	$S_{ij} = \frac{1}{d_j^{\beta}} \sum_{u \in U} \left(\frac{r_{ui}r_{uj}}{d_i d_j}\right)^{\alpha}$

Cosine Similarity Correlation

As seen above, without the parameter α , the random walk will end up building the same similarity matrix S as the one obtained by the cosine similarity (for implicit ratings).

$$S_{ij} = [P_{IU} \cdot P_{UI}]_{ij} = \sum_{u \in U} \frac{r_{ui}r_{uj}}{d_id_j}$$

DL for RECSYS

Binary Cross Entropy $\arg \min_{\theta} = \operatorname{Sampling}$	$-\frac{1}{N}$	$\sum_{i=1}^{N} \left[r_{ui} \log(\tilde{p}_{ui}(\theta)) + (1 - r_{ui}) \log(\tilde{p}_{ui}(\theta)) \right]$
Sumpring	×	Cannot use ground truth (too many negative samples)
	×	Cannot use just positive samples (no
		learning)
	\checkmark	Subsample among $+$ and $-$ interac-
		tion with probability $p = 0.5$

MSE, BCE

Autoencoder

Stone

Reconstruction Loss

Steps	- Sample a user profile r_u - Ecode it $e_u = g_e(r_u)$ - Decode it $\tilde{r}_u = g_d(e_u)$ - Rank the items
EaseR	(Item-Based similarity CF model)
Loss Function $S^* =$	$\underset{\vec{\gamma} \in \mathbb{R}^{ I }}{\operatorname{argmin}_{S}} R - RS _{F} + \lambda S _{F} + 2\vec{\gamma} \odot diag(S)$
Constraints	diag(S) = 0
Similarity Matrix	$P = (R^T \cdot R + \lambda I_{ I })^{-1}$
v	$S^* = I_{ I } - P \cdot diag(1 \oslash diag(P))$
Pros and Cons	 ✓ Fast and highly efficient ✓ Due the Frobenius norm, it tries to compute R = RS, thus repoducing the input as output such as an autoencoder. × Computing P is memory intensive

Autoencoders and Item-Item Similarity Correlation

Given a shallow autoencoder with no hidden layers and embedding size K, if f = I and $b_e, b_d = 0$ then:

$$e_u = f_e(r_u \cdot W_e + b_e) = r_u \cdot W_e$$

$$\tilde{r}_u = f_d(e_u \cdot W_d + b_d) = e_u \cdot W_d = r_u \cdot W_e \cdot W_d$$

Since $W_e \in \mathbb{R}^{|I| \times K}, W_d \in \mathbb{R}^{|K| \times |I|}$

We can derive the assymmetric (or symmetric, if encoder and decoder share parameters) similarity matrix S as: $S = W_e \cdot W_d$

DL for RECSYS - 2 Denoising Autoecoders	
Risks	 × The encoder might create a poor embedding for new user profiles × The decoder could lack on reconstruct correctly portion of the embedding space
Denoising Salt & Pepper	Dropout, remove a number of positive interactionsRandom add a number of positive interactions
Variational Autoencoders (Mult-VAE)	Encoding a input as a distribution
Idea	Encoder: encode the input as $\vec{\mu}, \vec{\sigma}$ of a Gaussian Decoder: sample from the Gaussian and decode it $\vec{e}\tilde{N}(\vec{\mu}, \vec{\sigma})$ Learn the probability distribution $P(\theta z)$.
Reparametrization Trick Two Tower Models	$\vec{e} = \vec{\mu} + \vec{\sigma} \odot \vec{\epsilon}$ Where $\vec{\epsilon} \sim \mathcal{N}(0, 1)$
	r _{ut}

Pros and Cons

- ✓ Can use any loss function (it does not have to reconstruct the input)
- ✓ User and item input can be of different types
- × Need to compute several ranking predictions \tilde{r}_{ui}
- × If the input is a one-hot encoding, it is memory based

Two tower models as Matrix Factorization

Consider a two-tower model with no hidden layers, embedding size K and both user and item input one-hot encoded x_u , x_i . If f=I and $b_u, b_i, I=0$: $\tilde{r}_{ui}=W_u^U\cdot W_i^I$ Where $W_u^U\in\mathbb{R}^{|U|\times K}, W_i^I\in\mathbb{R}^{|I|\times K}$ Then we have a Matrix Factorization model with K latent factors, $X=W_u^U$ and $Y=W_i^I$

Factorization Machines

user item rating 1,0,0 1,0,0

0, 1, 0 0, 1, 0One hot encoding. Input Data

0,0,1 0,0,1

 $\tilde{r}^{(k)} = \omega_0 + \sum_{i=1}^n \omega_i x_i^{(k)} + \sum_{i=1}^n \sum_{j=i+1}^n \omega_{ij} x_i^{(k)} x_j^{(k)}$ Rating Estimation

 $\tilde{r}^{(k)} = \omega_0 + \vec{\omega} \cdot \vec{x}^{(k)} + \vec{x}^{(k)T} \cdot W \cdot \vec{x}^{(k)}$ Vector Form

 $\arg\min_{\vec{\omega}} E(\omega) = \arg\min_{\vec{\omega}} ||r^{(k)} - \tilde{r}^{(k)}||$ Loss Function

 $\omega_{ij} = \vec{v}_i \cdot \vec{v}_j = \sum_{h=0}^f v_{i,h} v_{j,h} f \ll n$ latent factors W factorization

 $\begin{cases} 1 + n + \frac{n^2 - n}{2} & \text{if not factorized} \\ 1 + n + nf & \text{if factorized} \end{cases}$ N parameters

Imbalance Problem

× If ratings are implicit, lead to predict only 1s

 \checkmark Random select non rated items for every user

 \checkmark Use the same number of positive and negative samples

Factorization Machines as SVD++

Using only collaborative data, the factorization machine is equivalent to SVD++, since one-hot encoding we can rewrite the factorization machine as:

$$\tilde{r}^{(k)} = \omega_0 + \omega_i + \omega_u + V_i \cdot V_u^T \tag{4}$$

Equivalent to SVD++.

We need to add **Context** data, for example from a ICM model.