

TMA4183 Opt. II Spring 2016

Exercise set 6

Norwegian University of Science and Technology Department of Mathematical Sciences

Please read sections 4.1–4.2 in [Tr]. In this exercise we will prove the existence part in a slightly weaker version of Browder–Minty's theorem. The proof utilizes the following topological result (Brower's fixed point theorem).

Theorem 1. Let C be a compact convex set and $f: C \to C$ a continuous function. Then there is at least one point $x \in C$ such that f(x) = x (fixed point of f).

- Consider the following standard "counter-example" to Brower's fixed point theorem in Hilbert spaces. Let H be a Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots\}$. Let B be the closed unit ball in H and and consider a map $f: B \to B$ sending a vector x with coordinates (x_1, x_2, \ldots) into a vector y with coordinates $((1 ||x||_H^2)^{1/2}, x_1, x_2, \ldots)$.
 - a) Show that $f: B \to B$ is continous.
 - b) Show that f has no fixed points in B.
 - **c)** Which of the assumptions of Browder's fixed point theorem is violated by this example?
- Let V be a reflexive separable Banach space, $\{w_1, w_2, ...\}$ be everywhere dense in V. Let further $A: V \to V'$ be a monotone, coercive, hemicontinuous, and $bounded^1$ operator. Then for every $f \in V'$ there is $y \in V$ such that Ay = f.

We start with some auxiliary results about A.

- a) Use hemicontinuity of A to show that if $0 \le (Av f)(v y)$ for all $v \in V$ then Ay = f.
- **b)** Assume that $\lim_{n\to\infty} \|y_n y\|_V = 0$. Show that $\forall v \in V$: $\lim_{n\to\infty} (A(y_n))(v) = (A(y))(v)$, that is, $A(y_n) \rightharpoonup A(y)$ in V'. Hint: use monotonicity and the previous characterization of Ay = f.

The remainder of the existence proof utilizes Galerkin method: let $V_n = \text{span}(w_1, w_2, \dots, w_n) \subset V$, $f_n \in V'_n$ is the restriction of f to V_n , and similarly $A_n : V_n \to V'_n$ be defined as $V_n \ni v \mapsto A(v)$ restricted to V_n . We can describe this process in more details by selecting a basis in V_n .

 $^{^1}A:V\to V'$ is bounded if for every bounded set $S\subset V$ there is a constant $C_S>0$ such that $\forall v\in S:\|Av\|_{V'}\leq C_S.$

²Such operators A are called demicontinuous.

Namely, let $\{e_1, e_2, \dots, e_m\} \in V_n$, $m \le n$ be a basis in V_n . Define $i_n : \mathbb{R}^m \to V$ as $i_n((x_1, \dots, x_m)) = \sum_{k=1}^m x_k e_k$. Let further $i'_n : V' \to \mathbb{R}^m$ be defined as $(i'_n(f))(x) = f(i_n(x))$, or in other words $\sum_{k=1}^m [i'_n(f)]_k x_k = \sum_{k=1}^m x_k f(e_k)$.

- c) Show that the problem of finding $y_n \in V_n$ such that $A_n y_n = f_n$ in V'_n is equivalent to finding $x \in \mathbb{R}^m$ such that $i'_n(A(i_n(x)) f) = 0$ in \mathbb{R}^m .
- **d)** Let us define a function $F_n: \mathbb{R}^m \to \mathbb{R}^m$ by $F_n(x) = i'_n(A(i_n(x)) f)$. Show that F_n is continuous.
- e) Use coercivity of A and continuity of F_n to show that for some r > 0 if $||x||_{\mathbb{R}^m} \ge r$ then the product $x^T F_n(x) \ge 0$.
- f) Use Brower's fixed point theorem to show that for every n = 1, 2, ... the problem $F_n(x) = 0$ admits a solution $x_n \in \mathbb{R}^m$ (hence also $A_n y_n = f_n$ where $y_n = i_n(x_n)$) by considering fixed points of a map $x \mapsto -rF_n(x)/\|F_n(x)\|_{\mathbb{R}^m}$ of the ball $B_r := \{x \in \mathbb{R}^m \mid \|x\|_{\mathbb{R}^m} \le r\}$ into itself (in fact, into its boundary), where r > 0 is found in the previous part.
- **g)** Use coercivity of A to show that the sequence $\{y_n\}$ is bounded in V.

Since $\{y_n\}$ is a bounded sequence and V is a reflexive Banach set, it contains a weakly converging subsequence, say $y_{n'} \rightharpoonup \bar{y}$. Similarly, since A is bounded then the sequence $\{Ay_{n'}\}$ is bounded in V' (which is a reflexive Banach set in its own right) and therefore also contains a weakly converging subsequence $Ay_{n''} \rightharpoonup g \in V'$ (and still $y_{n''} \rightharpoonup \bar{y}$).

- h) Use the separability of V to show that g = f.
- i) Utilize the previously established convergence(s) and monotonicity of A to show that for an arbitrary $v \in V$ we have the inequality $0 \le (Av f)(v \bar{y})$ (and as a result, $A(\bar{y}) = f$).