Foundations of Data Science and Machine Learning – *Homework 3*Isaac Martin

Last compiled February 20, 2023

EXERCISE 2. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix whose n rows are the data points $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$, and let $\chi = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$. Consider the k-means optimization problem: find a partition $C_1, ..., C_k$ which minimizes, among all partitions of [n] into k subsets,

Exercise 3. Find the mapping $\varphi(\mathbf{x})$ that gives rise to the polynomial kernel

$$K(\mathbf{x}, \mathbf{y}) = (x_1 x_2 + y_1 y_2)^2.$$

Proof: Consider the map $\varphi:\mathbb{R}^2\to\mathbb{R}^3$ defined $\varphi(x_1,x_2)=(x_1^2,x_2^2,\sqrt{2}x_1x_2)$. Interestingly, this is similar to the map one considers from a polynomial ring $R[x_1,x_2]$ to its 2^{nd} Veronese subring $R[x_1^2,x_1x_2,x_2^2]$. We then have that

$$\varphi(\mathbf{x}) \cdot \varphi(\mathbf{y})^T = (x_1^2, x_2^2, \sqrt{2}x_1x_2) \cdot (y_1^2, y_2^2, \sqrt{2}y_1y_2)$$
$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 y_1 x_2 y_2$$
$$= (x_1 y_1 + x_2 y_2)^2,$$

hence φ gives rise to the desired kernel.