

Journal Club

07.02.2025

Velu Prabhakar Kumaravel

12448 • The Journal of Neuroscience, December 7, 2016 • 36(49):12448 -12467

Systems/Circuits

Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function

Christina Zelano,¹ Heidi Jiang,¹ ©Guangyu Zhou,¹ ©Nikita Arora,¹ ©Stephan Schuele,¹ Joshua Rosenow,² and Jay A. Gottfried¹,³

Departments of ¹Neurology and ²Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and ³Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208

Background & Motivation

- Animal studies Breathing rhythms drive oscillatory activity in the olfactory systems
 of rodents and other small animals.
- Regulate cortical excitability, olfactory coding, memory, and behaviour.
- Direct evidence for respiratory-linked oscillations in humans is lacking.

Research Question: Does natural breathing synchronize electrical activity in human olfactory and limbic brain areas?

Methods

Participants:

- 7 patients with temporal lobe epilepsy (3 women) and 1 additional patient for the emotion judgment task.
- 107 healthy subjects (aged 18–30) for behavioral experiments.

iEEG Data Collection:

- Electrodes targeted piriform cortex (PC), amygdala, and hippocampus.
- Electrodes localized via pre-/post-operative MRI & CT scans.
- CAR for consistency.

Respiratory Measurements:

- Respiration measured via nasal pressure sensors and abdominal breathing belts.
- Behavioral tasks in healthy subjects: Pneumotachometer for airflow rate measurement & abdominal breathing belts.

Experimental Protocol:

- Patients sat quietly with eyes open, breathing naturally for 15-minute blocks.
- Tasks paused if patients fatigued or interrupted.

Methods

Behavioural Tasks

Emotion Recognition Task

- Subjects categorized fearful vs. surprised faces during different breathing conditions (nasal (24), oral (18), control (28; Nasal with mouth held open)).
- Fearful or Surprised faces and happy vs neutral (gender discrimination task)
- Button press Reaction Times vs respiratory phase*.

Visual Object Memory Task

- Participants encoded & retrieved images while respiratory phase was tracked.
- Memory accuracy and reaction times were compared across inspiration vs. expiration.

^{*}respiratory phase, determined by estimating the angle of the Hilbert transform of the respiratory signal.

Devices Used

1. Pressure Sensor (Piezo, Nasal Cannula)

- Used in iEEG experiments for airflow pressure measurement.
- Acts as an open system, highly sensitive to airflow changes.
- Detects peak inspiratory flow for synchronization with neural data.

2. Abdominal Breathing Belts (Siemens, Biopac RX-TSD221-MRI)

- Used for both nasal and oral breathing experiments.
- Measures chest/abdomen expansion rather than airflow.

3. Pneumotachometer (4719 Series, Hans Rudolph)

- Used for nasal breathing control condition.
- Measures airflow rate directly, providing precise respiratory phase tracking.

Data Processing

1. Respiratory Peak Detection

- Hilbert Transform applied to detect inspiratory peak flow.
- Phase discontinuities used for precise timing.

2. Breathing Rate Analysis

- Fast Fourier Transform (pwelch function) used to confirm dominant breathing rate (0.24–0.36 Hz or 14.4–21.6 breaths/min).
- 3. Neural Signal Processing (LFP Data)
- ➤ Band-pass filtering (0.08–0.6 Hz) to extract **slow respiratory oscillations**.
- > Spectrogram analysis (1–200 Hz) for higher-frequency oscillations.
- Phase-Amplitude Coupling (PAC) assessed using Modulation Index (MI).

A shall shal

- ---- Respiratory signal (raw data)
- —— Phase of the respiratory signal (from -Pi to Pi)
- Derivative of the phase of the respiratory signal
 - Computed respiratory peaks

Analysis pipeline for correlating respiratory and LFP time-series

Results – Phase-locked oscillations

- Piriform Cortex (PC): Slow oscillations were synchronized with natural breathing across all patients.
- Amygdala: Low correlation between neural and respiratory signals (R = 0.01–0.25). No significant respiratory entrainment in most patients.
- \rightarrow **Hippocampus**: Low correlation (R = 0.08–0.43) in four patients, with only one showing significant respiratory entrainment (R = 0.77).

Results – Respiratory Phase-Modulated Oscillatory Power

- ➤ PC: Delta (0.5-4 Hz), Theta (4-8 Hz), and Beta (13-30 Hz) power consistently increased during inspiration.
- Amygdala & Hippocampus: Similar increases in delta range power in all patients. Inconsistent changes in theta and beta oscillations across patients.

Respiratory phase-modulated oscillations in the medial temporal lobe extend beyond olfactory regions to limbic areas, especially at low frequencies.

Slide 13 16.04.2024

Results – Nasal vs Oral Breathing

- Nasal breathing: Strong respiratory entrainment of delta, theta, and beta oscillations in PC, amygdala, and hippocampus.
- Oral breathing: Significantly reduced respiratory entrainment in these regions.
- ➤ **PC**: Significant **theta-beta** (5/5) and **theta-gamma** (3/5) coupling observed during nasal breathing.
- Oral breathing reduced phase-amplitude coupling, reflecting the decrease in respiratory entrainment.

Nasal airflow likely drives respiratory entrainment, with PC being the key brain region where oscillations are induced, propagating to downstream limbic structures.

Results – Respiration Modulation in Emotion Tasks

- Faster response times during inhalation compared to exhalation for fearful faces, but no effect for surprised faces.
- Oral Breathing: No RT phase differences for either emotion. Overall, faster RTs with nasal breathing.
- Nasal Breathing with Mouth Open: RT differences for fearful faces remained during inhalation vs exhalation, showing nasal breathing influences RT independent of attentional load.
- Accuracy: No significant difference in accuracy for either emotion between breathing phases.

Results – Amygdala Inspiratory Power and Emotion Judgment

A patient (P8) identified fearful vs. surprised faces.

- Faster identification of fearful faces during **inspiration**.
- Significant interaction between **respiratory phase** and **emotion** (p = 0.03).
- LFP Analysis: Increased delta power during inhalation correlated with faster response times for fear.

Inhalation-related amygdala oscillations enhance emotional task performance.

Results – Object Recognition Task

- > Higher retrieval accuracy during inspiration compared to expiration.
- No effect for oral breathing.
- > Stronger impact of inhalation during encoding and retrieval.

2x2 Factorial Design (Phase and Encoding; Phase and Retrieval)

- > Inspiratory retrieval led to higher accuracy.
- No significant effect of encoding phase alone.
- > No interaction between encoding and retrieval phases.

➤ Open Mouth controls – attentional demands did not have an effect in memory performance.

Discussion

- ➤ Oscillations in PC (extending to Amygdala, Hippocampus) are in phase with the natural cycle of breathing.
- Inspiratory phase is associated with increased Delta power.
- Cross coupling between Theta phase and Beta power.
- Such effects are gone with mouth breathing (controlled for attentional demands).
- Therefore, Nasal breathing route serves as a common clock to organize spatiotemporal excitability broadly throughout the brain.
- Respiratory phase modulates limbic-based behaviors (emotion/memory)
- Cognition to Breath vs Breath to Cognition