Lycée Buffon DM 2
MPSI Année 2020-2021

Devoir à rendre le 05/10/2020

Exercice 1 : Résoudre dans C les équations

1.
$$z^4 - z^3 + z^2 - z + 1 = 0$$
.

$$2. \left(\frac{z+i}{z-i}\right)^2 + \left(\frac{z+i}{z-i}\right) + 1 = 0.$$

Exercice 2:

Soit $u = e^{2i\pi/5}$.

- 1. On pose $\alpha = u + u^4$ et $\beta = u^2 + u^3$.
 - (a) Montrer que $1+u+u^2+u^3+u^4=0$ et en déduire que α et β sont les deux racines du polynôme $X^2+X-1=0$.
 - (b) En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$.
- 2. On note A_0 , A_1 , A_2 , A_3 et A_4 les points d'affixes respectives 1, u, u^2 , u^3 , u^4 dans le plan affine rapporté au repère orthonormal (O, \vec{i}, \vec{j}) .
 - (a) Soit H le point d'intersection de la droite (A_1A_4) avec l'axe (O, \vec{i}) . Déterminer les coordonnées de H.
 - (b) Soit \mathcal{C} le cercle de centre Ω d'affixe $-\frac{1}{2}$ passant par B d'affixe i. Ce cercle coupe (O, \vec{i}) en M et N (M sera le point d'abscisse positive). Montrer que les coordonnées de M et N sont $(\alpha, 0)$ et $(\beta, 0)$ et que H est le milieu de [OM].
 - (c) En déduire une construction (à la règle et au compas) d'un pentagone régulier dont on connaît le centre O et un sommet A_0 . En ne partant que de ces deux points, on décrira les différentes étapes de la construction, n'utilisant qu'une règle (non graduée) et un compas.

Exercice 3:

On considère l'équation à coefficients complexes : $z^3 + az^2 + bz + c = 0$, et on note $P(X) = X^3 + aX^2 + bX + c$.

- 1. (a) Trouver $\alpha \in \mathbb{C}$ tel que le coefficient du terme de degré deux du polynôme $Q(X) = P(X + \alpha)$ soit nul.
 - (b) On note alors $Q(X)=X^3+pX+q$. Exprimer p et q en fonction de a,b,c. On s'est ainsi ramené à résoudre l'équation $(*):z^3+pz+q=0$
- 2. On écrit $z \in \mathbb{C}$ sous la forme z = u + v avec $(u, v) \in \mathbb{C}^2$. Montrer que l'équation se factorise sous la forme :

$$u^{3} + v^{3} + (u+v)(3uv + p) + q = 0.$$

- 3. Montrer que pour tout complexe $z\in\mathbb{C}$, il existe $(u,v)\in\mathbb{C}^2$, unique à l'ordre près, tel que $\begin{cases} z=u+v\\ 3uv+p=0. \end{cases}$
- 4. Montrer que si z est solution de (*), alors u^3 et v^3 sont les deux racines d'une équation du second degré que l'on explicitera.
- 5. En déduire les solutions de (*).
- 6. On suppose dans cette question que $(p,q) \in \mathbb{R}^2$.

 Dans quel cas les solutions de (*) sont-elles toutes réelles?

 Comparer avec l'étude des variations de la fonction $x \mapsto Q(x)$.
- 7. Application: Résoudre dans \mathbb{C} l'équation $x^3 3x^2 3x 1 = 0$.