大学婚礼案例设计

李子天 张博文 黄骏轩

问题重述与求解思路

约束条件

• 保证所有任务在**21天**内完成。

• 最小化所需支付的加急费用。

✓ 关键假设:

- 所有没有紧前任务或已经完成紧前任务的 任务都可以同时进行;
- 对于可加急的任务要么一次性付清所有费用,要么不加急。不允许仅仅加急一部分。

求解流程

- 由于加班不能按单位时间结算费用,时间-费用均衡算法失效;
- 加急共有方案2⁷=128种,问题规模不大,考虑使用穷举寻找最优解。

求解步骤

- 列举所有活动
- 绘制关键路径图
- 穷举加班方案
- 绘制最优方案对应的甘特图

模型拓展

- 允许部分加急,并按每单位时间加急费用结算;
- 规定每一天只能做一件事;
- 允许中途中断。

任务描述图:整理任务及其紧前任务

主要项目	活动代号	紧前活动	消耗时间	加急后所消耗 时间	加急额外花费	
邓江北台门	预订教堂和礼堂	A1	无	17	10	100
预订教堂和礼堂	装饰礼堂	A2	A1	3		
通知简	通知简	B1	无	10	2	500
挑选蛋糕和桌布	挑选蛋糕和桌布	C1	无	2		
预订杰克酒店	预订杰克酒店	D1	无	0		
订购礼服材料	选择项链与礼服样式	E1	无	3		
	订购项链和布料	E2	E2	8	5	25
	制作礼服 (包括伴娘)	F1	E2,B1	11	6	720
制作礼服	试衣	F2	F1	2		
	洗熨衣物	F3	F2	2	1	30
	确定邀请函式样	G1	无	3		
邀请客人	定做邀请函	G2	G1	12	5	35
	列出客人名单	G3	无	4		
	填写邀请函地址	G4	G3、G2	4	2	50
	寄邀请函	G5	G4	1		
	请帖到达	G6	G5	10		
购买给女伴娘的礼物	购买给女伴娘的礼物	H1	无	1		

绘制关键路径网络图

穷举思路

1 编码

- 用1*7的数组描述加急方案,矩阵每个位置取值0或1,表示该任务不加急或加急;
- 每种方案——对应0-127整数的二进制表示。

2 确定关键路径

- 一共有6条路径可能成为关键路径。首先计算 每条路径在**给定方案下**的消耗时间,再取消 耗时间最大的那条路径作为关键路径;
- 有些路径具有支路,计算路径消耗时间时需要以较长支路的消耗时间计算总消耗时间。

3 更新最优方案

如果当前加急方案可以使关键路径小于等于21,并且总费用比最优方案小,则以当前方案作为最优方案。

4 伪代码

```
BestSol=[1,1,1,1,1,1,1]
BestFee=9999999
for number=0 to 127 do
    sol=Decode(number) #把数字对应回方案
    length=CalLength(sol) #计算当前方案关键路径长度
    if length<=21 do
        if Cost(sol)<Bestfee do #对比当前方案的总费用
        BestSol=sol
        BestFee=Cost(sol)
print BestSol
print BestFee
```

5 结论

- 最优方案为加急F1(制作礼服)、G2(定做邀请函)、G4(填写地址)
- 所需总额外费用805美元。

6 源代码(Matlab)链接

https://github.com/lzt68/College-wedding

项目甘特图: 项目F1, G2, G4采取加急

主要项目任务/活动		活动 代号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
预订教堂和礼堂	预订教堂和礼堂	A1																					
	装饰礼堂	A2																					
通知简	通知简	B1																					
挑选蛋糕和桌布	挑选蛋糕和桌布	C1																					
预订杰克酒店	预订杰克酒店	D1																					
订购礼服材料	选择项链与礼服样式	E1																					
	订购项链和布料	E2																					
制作礼服	制作礼服 (伴娘)	F1																					
	试衣	F2																					
	洗熨衣物	F3																					
邀请客人	确定邀请函式样	G1																					
	定做邀请函	G2																					
	列出客人名单	G3								_													
	填写邀请函地址	G4																					
	寄邀请函	G5																					
	请帖到达	G6																					
购买给女伴娘的礼物 购买给女伴娘的礼物		H1																					

思考与模型拓展

- 即任务允许部分加急,自定具体的加急天数,费用为加急费用/天*加急总天数。
- 应用**时间—费用均衡算法**,不断应用关键路径上"性价比"最高的加急方案,并更新关键路径,直到当前解可行。
- 在问题规模较大时相比穷举有重大 优势。

- 假设无紧前任务的任务一天也只能做其中一件。
- 区分"执行时间"与"消耗时间"。例如预订教堂任务会占用1天(执行时间)时间,但任务会延续至16天(消耗时间)才完全完成。
- **尚未完成**该类问题的建模与求解工作。

- 在"每天一件事"模型的基础上,允许任务暂停。
- 记项目日程为M天,共有N项任务,我们将N项任务分割为N个等执行任务"和N个"消耗任务"则可以使用M*2N个0-1变量描述日程。
- 同样使用0-1变量决策某日是否 进行某项加急任务。
- 对应**0-1线性规划**,但约束数目 极多。