# Syntax Analysis (Part 3)

CSE 415: Compiler Construction

#### LL(1) Grammar Example

- P1: S → if (a) S else S | while (a) S | begin SL end
   P2: SL → S S'
   P3: S' →; SL | ϵ
- {if, while, begin, end, a, (, ), ;} are all terminal symbols
- Clearly, all alternatives of P1 start with distinct symbols and hence create no problem
- P2 has no choices
- Regarding P3, dirsymb(;SL) =  $\{;\}$ , and dirsymb( $\epsilon$ ) =  $\{$ end $\}$ , and the two have no common symbols
- Hence the grammar is LL(1)

LL(1) Parsing Table for the original grammar

|    | if                                                                                 | id | else | a                   | \$ |
|----|------------------------------------------------------------------------------------|----|------|---------------------|----|
| S' | s' <b>→</b> s\$                                                                    |    |      | $S' \rightarrow S$$ |    |
| S  | $S \rightarrow \text{if id } S$<br>$S \rightarrow \text{if id } S \text{ else } S$ |    |      | S → a               |    |

Original Grammar

Grammar is not LL(1)

tokens: if, id, else, a

 $dirsymb(if\ id\ S) \cap dirsymb(a) = \emptyset$   $dirsymb(if\ id\ S\ else\ S) \cap dirsymb(a) = \emptyset$  $dirsymb(if\ id\ S) \cap dirsymb(if\ id\ S\ else\ S) \neq \emptyset$ 



string: if id (if id a1) else a2

parentheses are not part of the string

string: if id (if id a1 else a2)

parentheses are not part of the string

#### Original Grammar

#### LL(1) Parsing Table for modified grammar

| $S' \rightarrow S$ | \$\$ |        |   |
|--------------------|------|--------|---|
| s → if             | id   | S      |   |
|                    |      | S else | S |
| а                  |      |        |   |

|    | if                         | else                                                    | a               | \$            |
|----|----------------------------|---------------------------------------------------------|-----------------|---------------|
| S' | s' <b>→</b> s\$            |                                                         | s′ <b>→</b> s\$ |               |
| S  | $S \rightarrow if id S S1$ |                                                         | S → a           |               |
| S1 |                            | $S1 \rightarrow \varepsilon$<br>$S1 \rightarrow else S$ |                 | S1 <b>→</b> ε |

dirsymb(S\$) = {if, a}; dirsymb (a) = {a} dirsymb(if id S S1) = {if} dirsymb(else S) = {else} dirsymb( $\epsilon$ ) = {else, \$}

Grammar is not LL(1)

#### Left-Factored Grammar

 $S' \rightarrow S$$   $S \rightarrow \text{ if id } S S1 \mid a$  $S1 \rightarrow \epsilon \mid \text{ else } S$ 

tokens: if, id, else, a

 $dirsymb(if id S S1) \cap dirsymb(a) = \emptyset$  $dirsymb(\varepsilon) \cap dirsymb(else S) \neq \emptyset$ 



parentheses are not part of the string

string: if id (if id a1 else a2)
parentheses are not part of the string

 $S' \rightarrow S$$   $S \rightarrow aAS \mid c$   $A \rightarrow ba \mid SB$   $B \rightarrow bA \mid S$ Grammar is LL(1)

| LL(1) | Parsing | Table |
|-------|---------|-------|
|-------|---------|-------|

| The part of the state of the part of the state of the sta |                 |        |                    |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------------------|----|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a               | ь      | G                  | \$ |  |
| S'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s' <b>→</b> s\$ |        | s' <b>→</b> s\$    |    |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S → aAS         |        | $S \rightarrow c$  |    |  |
| Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A → SB          | A → ba | $A \rightarrow SB$ |    |  |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B <b>→</b> S    | B → bA | $B \rightarrow S$  |    |  |

$$dirsymb(aAS) \cap dirsymb(c) = \emptyset$$
  
 $dirsymb(ba) \cap dirsymb(SB) = \emptyset$   
 $dirsymb(bA) \cap dirsymb(S) = \emptyset$ 

follow(S) = 
$$\{a,b,c,\$\}$$
  
follow(A) =  $\{a,c\}$   
follow(B) =  $\{a,c\}$ 

### Elimination of Useless Symbols

- Given a grammar G = (N, T, P, S), a non-terminal X is useful if  $S \Rightarrow^* \alpha X\beta \Rightarrow^* w$ , where,  $w \in T^*$  Otherwise, X is useless
- Two conditions have to be met to ensure that X is useful
  - 1.  $X \Rightarrow^* w$ ,  $w \in T^*(X \text{ derives some terminal string})$
  - 2.  $S \Rightarrow^* \alpha X \beta$  (X occurs in some string derivable from S)

Example: 
$$S \to AB \mid CA, \ B \to BC \mid AB, \ A \to a, \ C \to aB \mid b, \ D \to d$$

$$A \to a, \ C \to b, \ D \to d, \ S \to CA$$

$$S \to CA, \ A \to a, \ C \to b$$

#### Elimination of Left Recursion

- A *left-recursive* grammar has a non-terminal A such that  $A \Rightarrow^+ A\alpha$
- Top-down parsing methods (LL(1) and RD) cannot handle left-recursive grammars
- Left-recursion in grammars can be eliminated by transformations
- A simpler case is that of grammars with *immediate left recursion*, where there is a production of the form  $A \rightarrow A\alpha$

Two productions  $A \rightarrow A\alpha \mid \beta$  can be transformed to

$$A \rightarrow \beta A', A' \rightarrow \alpha A' \mid \epsilon$$

In general, a group of productions:

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

can be transformed to

$$A \to \beta_1 A^{'} | \beta_2 A^{'} | \dots | \beta_n A^{'}, A^{'} \to \alpha_1 A^{'} | \alpha_2 A^{'} | \dots | \alpha_m A^{'} | \epsilon$$

### Elimination of Left Recursion Example 1

$$A \rightarrow A\alpha \mid \beta \Rightarrow A \rightarrow \beta A', A' \rightarrow \alpha A' \mid \epsilon$$

- The following grammar for regular expressions is ambiguous:  $E \rightarrow E + E \mid E \mid E \mid E \mid E \mid (E) \mid a \mid b$
- Equivalent left-recursive but unambiguous grammar is:  $E \rightarrow E + T \mid T$ ,  $T \rightarrow TF \mid F$ ,  $F \rightarrow F * \mid P$ ,  $P \rightarrow (E) \mid a \mid b$
- Equivalent non-left-recursive grammar is:  $E \to TE', E'^{J} \to +TE' \mid \epsilon, T \to FT', T' \to FT' \mid \epsilon, F \to PF', F' \to *F' \mid \epsilon, P \to (E) \mid a \mid b$

### Elimination of Left Recursion Example 2

#### Left-Recursive Grammar for Statement List

dirsymb(SL \$) = {a}
dirsymb (a) = {a}
dirsymb(SL S) = {a}
dirsymb(S) = {a}

#### LL(1) Parsing Table for Left-Recursive Grammar

|    | а                                           |
|----|---------------------------------------------|
| S' | S' <b>→</b> SL\$                            |
| SL | $SL \rightarrow SL S$<br>$SL \rightarrow S$ |
| S  | S → a                                       |

Grammar is not LL(1)

#### $dirsymb(SL\ S) \cap dirsymb(S) \neq \emptyset$

dirsymb(SL 
$$\$$$
) = {a}  
dirsymb (a) = {a}  
dirsymb(S A) = {a}  
dirsymb( $\epsilon$ ) = { $\$$ }

Grammar is LL(1)

#### Right-Recursive Grammar for Statement List

$$S' \rightarrow SL $$$
 $SL \rightarrow S A$ 
 $A \rightarrow S A \mid \epsilon$ 
 $S \rightarrow a$ 

#### LL(1) Parsing Table for Right-Recursive Grammar

|    | а                   | \$                       |
|----|---------------------|--------------------------|
| S' | S' → SL \$          |                          |
| SL | SL → S A            |                          |
| Α  | $A \rightarrow S A$ | $A \rightarrow \epsilon$ |
| S  | S → a               |                          |

 $dirsymb(S A) \cap dirsymb(\varepsilon) = \emptyset$ 

### Left Factoring

- If two alternatives of a production begin with the same string, then the grammar is not LL(1)
- Example:  $S \rightarrow 0S1 \mid 01$  ..... is not LL(1)• After left factoring:  $S \rightarrow 0S', S' \rightarrow S1 \mid 1$  .... is LL(1)
- General method:  $A \to \alpha \beta_1 \mid \alpha \beta_2 \Rightarrow A \to \alpha A', A' \to \beta_1 \mid \beta_2$
- Another example: a grammar for logical expressions is given below  $E \to T$  or  $E \mid T$ ,  $T \to F$  and  $T \mid F$ ,  $F \to not F \mid (E) \mid true \mid false$ 
  - This grammar is not LL(1) but becomes LL(1) after left factoring

$$E \to TE', E' \to or E \mid \epsilon, T \to FT', T' \to and T \mid \epsilon,$$
  
 $F \to not F \mid (E) \mid true \mid false$ 

### Grammar Transformation May not Help

Original Grammar

#### $S' \rightarrow S$$ $S \rightarrow \text{if id } S \mid$ if id $S \text{ else } S \mid$ a

LL(1) Parsing Table for modified grammar

|    | if                         | else                                                    | a                   | \$            |
|----|----------------------------|---------------------------------------------------------|---------------------|---------------|
| S' | s' <b>→</b> s\$            |                                                         | $S' \rightarrow S$$ |               |
| S  | $S \rightarrow if id S S1$ |                                                         | S → a               |               |
| S1 |                            | $S1 \rightarrow \varepsilon$<br>$S1 \rightarrow else S$ |                     | S1 <b>→</b> ε |

dirsymb(S\$) = {if, a}; dirsymb (a) = {a}
dirsymb(if id S S1) = {if}
dirsymb(else S) = {else}
dirsymb(ε) = {else, \$}

Grammar is not LL(1)

Left-Factored Grammar

 $S' \rightarrow S$$   $S \rightarrow \text{ if id } S S1 \mid a$  $S1 \rightarrow \epsilon \mid \text{ else } S$ 

tokens: if, id, else, a

 $dirsymb(if id S S1) \cap dirsymb(a) = \emptyset$  $dirsymb(\varepsilon) \cap dirsymb(else S) \neq \emptyset$ 

Choose  $S1 \rightarrow else\ S$  instead of  $S1 \rightarrow \epsilon$  on lookahead else. This resolves the conflict. Associates else with the innermost if