STATISTIQUE (2), 2016/2017

- 1 Le diamètre est mesuré avec une erreur qui suit une loi normale $\mathcal{N}(0, \sigma^2)$. On dispose de n mesures indépendantes $\{d_1, \dots, d_n\}$. Proposer un estimateur sans biais de la surface du cercle.
- [2] Calculer la borne de Cramér-Rao pour un estimateur sans biais de θ , quand on dispose de n observations i.id. de loi $f_{\theta}(x) = c^{\theta} \theta x^{-(1+\theta)} \mathbf{1}(x > c)$ où c est une constante (positive) donnée, et $\theta > 1$.
- $\boxed{3}$ On considère un échantillon i.id. de taille n, tiré suivant une loi de densité

$$f_{\theta}(x) = \frac{1+\theta x}{2}$$
 pour $x \in [-1, +1]$ et 0 sinon.

Calculer l'estimateur de la méthode des moments de θ . Donner son biais et sa variance.

 $\boxed{4}$ On considère un échantillon i.id. de taille n, tiré suivant une loi de densité

$$f_{\theta}(x) = \frac{1}{2} \exp\left(-|\theta - x|\right)$$

Calculer l'estimateur de la méthode des moments de θ . Donner son biais et sa variance. Déterminer ensuite l'estimateur du maximum de vraisemblance.

- 5 On considère un échantillon i.id. de taille n, tiré suivant une loi lognormale, $LN(\mu, \sigma^2)$. Déterminer l'estimateur du maximum de vraisemblance de μ . Calculer $\mathbb{E}[\widehat{\mu}]$.
- $\boxed{6}$ On considère un échantillon i.id. de taille n, tiré suivant une loi de densité

$$f_{\theta}(x) = \theta(1+\theta)x^{\theta-1}(1-x) \text{ pour } x \in [0,1].$$

Calculer l'estimateur de la méthode des moments de θ . Montrer que cet estimateur n'est pas efficace.

On admettre que
$$\mathrm{Var}(\widehat{\theta}) \approx \frac{\theta(\theta+2)^2}{2n(\theta+3)}.$$

7 Considérons un échantillon $\{(x_1, y_1), \cdots, (x_n, y_n)\}$ sur $[0, 1]^2$ avec

$$\mathbb{P}[X > x, Y > y] = (1 - x) \cdot (1 - y) \cdot (1 - \max\{x, y\})^{\theta}$$

1

Calculer l'estimateur du maximum de vraisemblance de θ .

indice: on pourra poser $z_i = \max\{x_i, y_i\}$

 $\boxed{8}$ On considère un échantillon i.id. de taille n, tiré suivant une loi de fonction de répartition

$$F_{\theta}(x) = \left(1 + \frac{1}{x^2}\right)^{-\theta} \text{ pour } x > 0.$$

Calculer l'estimateur du maximum de vraisemblance de θ , et l'information de Fisher.

- 9 Considérons un échantillon $\{x_1, \dots, x_n\}$ tiré suivant une loi Beta $\mathcal{B}(\theta, \theta)$.
- 1. Trouver une statistique exhaustive pour θ pour un échantillon tiré suivant une loi Beta $\mathcal{B}(\theta, \theta)$.
- 2. Trouver un test de niveau α de $H_0: \theta = 1$ contre $H_1: \theta = 2$.
- On dispose de n observations suivant une loi exponentielle $\mathcal{E}(\theta)$. On souhaite tester $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$. Écrire la vraisemblance et donnez la région de rejet du test de Neyman-Pearson de niveau $\alpha = 5\%$. Quelle est la puissance de ce test.
- 11 Considérons un échantillon $\{x_1, \dots, x_n\}$ tiré suivant une loi Beta $\mathcal{B}(\theta, \theta)$.
 - 1. Trouver une statistique exhaustive pour θ pour un échantillon tiré suivant une loi Beta $\mathcal{B}(\theta, \theta)$.
 - 2. Trouver un test de niveau α de $H_0: \theta = 1$ contre $H_1: \theta = 2$.
- On dispose de n observations suivant une loi exponentielle $\mathcal{E}(\theta)$. On souhaite tester $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$. Écrire la vraisemblance et donnez la région de rejet du test de Neyman-Pearson de niveau $\alpha = 5\%$. Quelle est la puissance de ce test.
- Une année, on observe la naissance de 528 enfants prématurés, dont 289 garçons. Proposer une procédure de test de H_0 les garçons ont plus de chances d'être prématurés que les filles.
- I4 Sur la rocade de Rennes, on a observé en moyenne 7 accidents mortels par an, pendant n années. Cette année, 5 accidents sont survenus. On suppose que le nombre annuel d'accident mortel suit une loi de Poisson. Serait-il possible de conclure au seuil de significativité de 5% que le nombre d'accidents a diminué.
- On dispose d'un échantillon de 1200 personnes, un tiers de gauchers, et deux tiers de droitiers. Parmi les gauchers, il y a 190 fumeurs, et 300 parmi les gauchers. La proportion des fumeurs est-elle la même parmi les gauchers et les droitiers?
- 16 On dispose d'un échantillon $\{x_1, x_2\}$ de densité

$$f_{\theta}(x) = \theta x^{\theta-1} \text{ pour } x \in (0,1).$$

Montrer que la région de rejet du test e plus puissant de $H_0: \theta = 1$ contre $H_1: \theta = 2$ est de la forme

$$\mathcal{W} = \{ \boldsymbol{x} = (x_1, x_2) : x_1 x_2 \ge k \}.$$

Montrer que la densité de $Y = X_1 \cdot X_2$ est

$$g(y) = \theta^2 y^{\theta - 1} \log[1/y]$$
 pour $y \in (0, 1)$.

- En 1999, une étude sur la durée de vie des ampoules dans un amphi de cours a été lancée. Le 1er janvier 2000, toutes les ampoules ont été changées, et on a observé n=10 durées de vie de ces n nouvelles ampoules, notées X_1, \dots, X_n . On suppose que les variables X_i sont indépendantes, et de loi exponentielle, de moyenne θ (la durée est exprimée en mois).
 - 1. Selon le constructeur, la durée de vie moyenne d'une ampoule est de 60 mois. Combien de temps en moyenne faut-il attendre avant que la première ampoule ne meure? Combien de temps en moyenne faut-il attendre avant que la dernière ampoule ne meurt?
 - 2. On retente l'expérience avec cette fois n=225 ampoules. Écrivez la vraisemblance du modèle, $\mathcal{L}(\theta, X)$.
 - 3. Que vaut l'estimateur du maximum de vraisemblance de θ .
 - 4. Que vaut la variance asymptotique de l'estimateur du maximum de vraisemblance de θ .
 - 5. A la fin de cette seconde expérience, on ne sait plus quel vendeur d'ampoule avait été sollicité. L'un prétendait vendre des ampoules d'une durée de vie moyenne de $\theta_0 = 60$ mois, et le second $\theta_1 = 66$ mois. On souhaite alors faire un test

$$H_0: \theta = \theta_0 \text{ contre } H_1: \theta = \theta_1$$

On souhaite construire un test en utilisant la méthode du rapport de vraisemblance. Proposez une statistique de test, et la forme de la région de rejet.

- 6. Comme n est suffisamment grand, on admettra que le théorème central limite peut s'appliquer, et que \overline{X}_n suit une loi normale. Donnez la loi normale approchée de $S_n = X_1 + \cdots + X_n$.
- 7. Donner la forme de la région de rejet pour une erreur de première espèce de niveau $\alpha = 5\%$. Pour rappel, $\Phi^{-1}(5\%) = -1.64$.
- 8. Calculez la puissance de ce test (donnez juste son expression en utilisant k).
- 9. Sur l'échantillon, on observe $\overline{X}_n = 62$. On souhaite tester

$$H_0: \theta \leq \theta_0 \text{ contre } H_1: \theta > \theta_0 \text{ avec } \theta_0 = 60.$$

Expliquez graphiquement la construction du test de rapport de vraisemblance. Donnez la forme de la région de rejet.

- 10. Dans une approche bayésienne, on suppose qu'a priori Θ suit une loi Gamma de paramètres α et β . Montrez que la loi a posteriori de Θ est encore une loi Gamma. Donnez les paramètres de cette loi (On pourra pour cette question reparamétrer le problème en utilisant $\lambda = 1/\theta$).
- 18 Considérons le tableau de contingence suivant

	Homme	Femme
daltonien	38	6
non-daltonien	442	514

Peut-on affirmer que le fait d'être daltonien est indépendant du genre?