

INFORME 5 LABORATORIO DE MÁQUINAS

(compresor recíproco)

NOMBRE : DIEGO PEREIRA BECERRA

PROFESOR: CRISTÓBAL GALLEGUILLOS

CURSO : **ICM557-1**

FECHA : 30-10-20

ÍNDICE

ÍNDICE	2
1. INTRODUCCIÓN	3
2. OBJETIVOS	4
3. DATOS	5
3.1 Tabulación de los datos proporcionados y calculados	5
4. GRÁFICOS Y DESARROLLO	6
4.1 Gráfico de Presión de descarga v/s Rendimiento	6
4.2 Gráfico de Presión de descarga v/s Capacidad	6
4.3 Gráfico de Presión de descarga v/s Temperatura	7
4.4 Gráfico de Presión de descarga v/s Potencia y corriente	8
4.5 Grafico de relación de compresión vs presión de descarga	9
5. CONCLUSIÓN	10

1. INTRODUCCIÓN

A partir de los instrumentos disponibles, se miden magnitudes referidas a las temperaturas de aspiración y descarga para cada cilindro (alta y baja presión), temperatura en el estanque de baja presión, temperatura de ingreso y salida para el agua de refrigeración acoplado al tiempo que demora en completar 10 litros y variables del motor eléctrico (tensión, corrientes, potencia).

Con los datos disponibles se procede a calcular parámetros como el caudal de agua y aire libre, calor transferido en la refrigeración, presiones nominales, rendimiento volumétrico, potencia indicada y relación de compresión de cada cilindro.

Aquellos mencionados se comparan con respecto a la presión de descarga correspondiente, con el objetivo de analizar el comportamiento a distintas condiciones de operación y establecer correlaciones.

2. OBJETIVOS

- 1) Determinar los valores de los datos medidos.
- 2) Realizar gráficos y emitir un juicio respecto del mismo.

3. DATOS

3.1 Tabulación de los datos proporcionados y calculados

Compresor					Estanque de Agua de refrigeración				Motor Eléctrico								
Presión	Nelocid Temperatura				baja presión		Temperatura t		tiempo	Tensión	ón Corrientes		Potencia				
Pd	n	tecbp	tsebp	tecap	tecap	tebp	ΔΡ	tea	tsa	101	V	l1	12	13	W1	W2	Patm.
[kp/cm2]	[rpm]	[°C]	[°C]	[°C]	[°C]	[°C]	[mmca]	[°C]	[°C]	[s]	[V]	[A]	[A]	[A]	[kW]	[kW]	[mmHg]
7,0	499,3	23	48	27	89	39	514	18	26,5	78	375	17,2	15,9	16	6,53	3,28	760,1
6,0	498,7	23	49	27	87	40	544	18,5	26,5	75	375	16,5	15,3	15,4	6,53	3,06	760,1
4,9	500,8	23	49	27	77	41	532	18,5	26,5	77	376	15,2	13,9	13,8	5,73	2,7	760,1
3,9	503,0	23	50	27	67	40	552	18,5	26,5	76	376	14,1	13,2	13,1	5,33	2,6	760,1
2,8	503,4	24	56	27	56	39	562	18,5	26,5	76	376	13,2	12,6	12,1	5	2,4	760,1
1,8	505,2	24	56	27	42	37	576	18,5	26,5	74	376	11,9	11,4	11	4,69	2,12	760,1
1,0	507,0	23	54	27	31	39	584	18,5	26,5	77	376	10,4	9,9	9,5	4,1	1,64	760,1

Tabla 1: Datos Medidos

pd	Cl	DI	V	ηVr	ηVC	ηVCI	PMICBP	PMICAP
kp/cm2	m3	m3	m3/h	%	%	%	kp/cm2	kp/cm2
7,0	0,00295	1,4733	73,47	83,1125	90,1255	84,3633	2,35909	5,05909
6,0	0,00295	1,47153	74,27	85,4777	91,1741	86,3549	2,23045	4,64727
4,9	0,00295	1,47773	74,51	84,0365	88,8394	85,2431	2,25182	4,06364
3,9	0,00295	1,48422	76,02	85,3645	91,4801	86,2156	2,14682	3,37182
2,8	0,00295	1,4854	77,09	86,4973	89,9294	87,0296	2,22409	2,42182
1,8	0,00295	1,49071	78,29	87,5307	92,6048	88,3435	2,15727	1,28545
1,0	0,00295	1,49603	78,32	87,2534	91,3637	88,3167	2,00227	0,46091

Tabla 2: Datos calculados (parte l)

ADICBP	ADICAP	NiCBP	NiCAP	Ni	I	Nelec	Vagua	Q
m2	m2	kW	kW	kW	Α	kW	l/min	kcal/min
0,00052	0,00056	3,09893	4,98684	8,08577	16,3667	9,81	7,69231	65,3846
0,00049	0,00051	3,15974	4,51733	7,67707	15,7333	9,59	8	64
0,0005	0,00045	3,08704	3,93285	7,01989	14,3	8,43	7,79221	62,3377
0,00047	0,00037	3,08366	3,3366	6,42026	13,4667	7,93	7,89474	63,1579
0,00049	0,00027	3,164	2,69008	5,85408	12,6333	7,4	7,89474	63,1579
0,00047	0,00014	3,09902	2,19511	5,29413	11,4333	6,81	8,10811	64,8649
0,00044	0,00005	2,95014	2,02517	4,97531	9,93333	5,74	7,79221	62,3377

Tabla 2: Datos calculados (parte ll)

4. GRÁFICOS Y DESARROLLO

4.1 Gráfico de Presión de descarga v/s Rendimiento

4.2 Gráfico de Presión de descarga v/s Capacidad

Los rendimientos mostrados presentan un comportamiento esperado, correspondiente a su decremento a medida que aumenta la presión de descarga. El rendimiento de mayor magnitud es efectivamente el convencional, debido a que no considera roce mecánico, pérdidas de carga, entre otras irreversibilidades, constituyendo el cálculo más teórico. Por otra parte, el rendimiento real es el menor de todos, quedando el rendimiento convencional en medio, ligeramente superior al real, presentando una tendencia y ordenamiento de magnitud correcta.

En cuanto a la presión de descarga y capacidad debieran tener una relación inversamente proporcional, vale decir, con el incremento de la presión la capacidad disminuye, comportamiento que se cumple en el gráfico. Por el contrario, la relación entre la capacidad y el rendimiento volumétrico es de proporcionalidad directa, vale decir, al disminuir la capacidad efectivamente disminuye el rendimiento

4.3 Gráfico de Presión de descarga v/s Temperatura

Las posiciones relativas de las temperaturas de aspiración y descarga para el cilindro de alta presión es la adecuada ya que el proceso de compresión (aumento en la presión) produce un aumento en la temperatura del gas. Se debe observar que la temperatura de aspiración del cilindro de alta presión es menor a la de salida del cilindro de baja presión puesto que entre ellos se encuentra un sistema de refrigeración intermedio, lo cual explica la baja en la temperatura. Se puede apreciar, además, que se produce una baja en la temperatura de descarga del cilindro de alta presión por la diferencia de presión generada al ser descargada al estanque de acumulación.

4.4 Gráfico de Presión de descarga v/s Potencia y corriente

Con respecto a las potencias indicadas, la del CBP casi no posee variación, en cambio, para el CAP la potencia incrementa progresivamente. Estas variables son dependientes del área del diagrama indicado y existe una correlación directa entre el comportamiento de estas curvas y sus respectivos diagramas. La suma de ambas potencias indicadas resulta en una curva de comportamiento similar a la del CAP. En general, la potencia eléctrica crece a medida que aumentan las exigencias del sistema asociado a su solicitación, el motor eleva las condiciones de operación conllevando a una mayor potencia requerida. A su vez, incrementa el consumo y la corriente eléctrica que se encuentra circulando por el motor. Efectivamente se comprueba que el comportamiento es el correcto.

4.5 Grafico de relación de compresión vs presión de descarga

Podemos observar en este grafico que la posición relativa de las curvas de relaciones de compresión es la correcta, esto ya que para presiones de descarga menores (en el estanque de acumulación) la relación de compresión presente en el cilindro de alta presión deberá ser menor, mientras que para presiones de descarga mayores (en el estanque de acumulación) la relación de compresión en el cilindro de alta presión deberá ser mayor. Además, tendremos que para el caso del cilindro de baja presión se tendrá una relación de compresión aproximadamente constante, en el cual la presión de aspiración de este se mantiene constante.

5. CONCLUSIÓN

De manera efectiva se logró comprender cómo a diferentes condiciones de operación relativas a la presión de descarga afectan directamente al rendimiento volumétrico del compresor. Adicionalmente, la verificación del comportamiento real del compresor a través de los parámetros calculados, por ejemplo, la presencia de valores de presión por debajo de la atmosférica en la admisión del CBP, que demuestra el fenómeno de succión (vacío). En general, la experiencia permitió aplicar los criterios ingenieriles provenientes del estudio de la termodinámica y mecánica de fluidos en los datos calculados, a modo de verificación y modelamiento del comportamiento físico de ciertas variables. Esto contrasta con la típica práctica de ceñirse a las ecuaciones entregadas y calcular de lleno.