TWO WAY SLAB schept be reduced

@ Design a RC slab of for a noom measuring LIMX 5m from inside. the slab carries a live load of 2000 N/m2 & it is finished with domm thick topping of self wit &4 KN/m3 Use Mac Concete Ge Fe x15 steel. The slab is Simply supported @ all edges with comes free to lift.

Given:

L=5m L = 4 m

F. L = 200mm Hick with 24 KN/m3 fek = 20N/mm2

fy = 415 N/mm2

L.L = 2000 N/m2 KN/m multiply with broadly

11 = 2000 x 1x N/m

= 2 KN/m

Step 1: Check for & way Slab

L= 5 (25 <2 .. It is & way slab

Step 2: Computation of Slab dimension

1 = QOXM.F

Assume percentage tension reinfor cement =0.35 Modification factor = 1.4 from fig 4

1 = 20 × 1.4 4000 = 20x1.4

d = 142-85

Assume a clear cover of 20 mm for lake 30mm

\$ of bars = 10mm

D=d+c+ 0/2

= 142.87+20+5

= 167-85

 \approx 170 mm

d= 170-20-5

Assume width of slab

Effective Span clc - support

effective span in direction = 4+

effective span in

= 5+0.11 = 5.14

= 4.1

Step 3 : Computa bending momen

L.L = & KN/

D:L = C/s Area

= Dx bx h =0,17 ×2

= 4.25

f. L = @ 0.02

= 0.48

T.L = 6.73 KI

Moment = ?

Pg: 90 Anne

el. p-1.1

ln = 4:145

ly = 5.145

Mr = dr w

My= Zyw)

5 \ ع slab on of ion tension 0.35 tor = 1.4cover lee 30m mm) 0+5

slab

Effective Span cle - Support tendensth not So take only gren effective span in one direction = 4+0.145 = 4.145 mm effective span in other drn = 5+0.145 = 5.145m Step 3 : computation of bending moment Eqload. L.L = 2 KN/m D:L = C/s Areax cinitwot = Dx bx unit wot =0,17 ×25 = 4.25 KN/m f. L = @ 0.02 x1 x24 = 0.48 T.L = 6.73 KN/m Moment = 2 pg: 90 Annex D el. p-1.1 ln = 4:145 m (smallerd) ly = 5.145 m Ma= da wla My= Dywlant

for du & dy. Table 27 $\frac{\sqrt{4}}{\sqrt{1}} = \frac{5.145}{4.145} = 1.24 \times 1.25$ mterpolate $Q_{\pi} = \frac{0.084 + 0.093}{2}$ = 0.0885 dy = 0.059 + 0.055 = 0.057 Mn = on w ln2 = 0.0885 x 6-73 x 4.145 $M_{un} = 10.233 \text{ KNm}$ $M_{un} = 15.345 \text{ KNm}$ $M_{y} = Q_{y} \text{ w Lyn}$ G_{un} 4.1452 = 0.057x 6-73x: 5w/45 = KONSA 6.59 KNM Muy = 1802BN 9.885 KNm Step 4: Effective depth required = should be lengther My = 0.36 Zuman (1-0.42 Zuman) 15.349×106 = 0.36×0.48(1-0.42×048 ×1000 xd2 x 20 9 = 22.11 74.5 mm

d= 145-10 -10 [c. = 135 mm approvided > dreguered 145> 74.5 D 1 d Hence Safe Mu = 0.87 fy Ast of [1-Astfy] Step 5: Computation of steel 9.885x106=0.87x415xAstx135 (1) Shorter Direction (main bm) Mu=0.87 fy Ast d [1- Ast by] (1- Ast x415 100 Ast = 209.5 mm 15.399×10 = 0.87 ×415×Ast ×145 Spains = 1000 x T/ 4 V LOZ 2095 Provide 10mm d ben 300 etch organ Step 6: Check for Sheas Ast = 292048 206.63mm2 .cl. 40-1 Spacing = 1000 x Area of Ibas 0.15 $V_{u} = \frac{\omega \ln x}{2}$ = 1000 × 71/9 ×102 = 6.73×4.145 256.13mm & = 13.947 ×1.5 250 mm Provide 10mm & bari@250mm Shorter = 20.9205 Ashmin = 0.12% bD direction. $T_{v} = 20.92 \times 10^{3}$ ta = 0.12 100 × 1000 × 170 1000 × 145 Tc = 204 mm2. = 0.14 4 N/mm2 From

4 Longer direction (main bow)

Main bour.

Both direction =

$$146 - \frac{10}{2} - \frac{10}{2}$$

$$135 \text{ mm}$$

$$= 1000 \times \pi/_{4} \times 10^{2}$$

$$\frac{100 \text{ As}}{\text{bd}} = \frac{160 \times 314.159}{1000 \times 145}$$

$$\frac{175 - 170}{175 - 170} = \frac{1 \cdot 3 - 1 \cdot 25}{2}$$

$$K = 1.26$$

$$Ld = \frac{\phi \sigma s}{476d}$$

$$= \frac{10 \times 0.87 \times 415}{2}$$

0.5 kN/ m^2 . Use M 15 connecte Fe 415 steel Given: L=5m $L=5m$ $L=4m$ $f_{ck}=6N/mm^2$ $f_{y}=415N/mm^2$ LL = 2 kN/ m^2 $L=2m$ $L=2m$ $L=2m$ $L=2m$ Figure width lm Mx = $l=4m$
Fe 415 steel Given: L=5m L=4m fck=6N/mm² fy= 415 N/mm² LL=2 kN/m² = 2x1 kN/m 1/4 mit
Given: L=5m L=4m fck=6N/mm² fy=415N/mm² L+d=4000+145 = 4145mm Mux = LL = 2 kN/m² = 2x1 kN/m (4 mut) STEP 1: CHECK FOR ONE WBY OR STEP 3: Compressibilities = 145 By middle
Given: L=5m L=4m fck=6N/mm² fy= 415 N/mm² L·L = 2 kN/m² 2 2doubt = 2×1 kN/m 4 mit 1
L=4m fck=6N/mm² fy=415N/mm² L:L=2kN/m² 2 doubt L:L=2kN/m² 2 doubt = 4145mm Mux= L:L=2kN/m² 2 doubt = 2×1 kN/m hbreadth okies diseasion = 2×1 kN/m ij kn/m² l+d=5000+145 = 5145mm STEP 1: CHECK FOR ONE WAY OR STEP 3: STEP 3: Compatibilities My= STEP 3: Compatibilities My= STEP 3: Compatibilities My= STEP 3:
L=4m fck=6N/mm² fy=415N/mm² LL=2kN/m² stor an area = 2×1 kN/m listen/m² STEP 1: CHECK FOR ONE WAY OR STEP 3: Effective of alveding - 2145mm L+d=5000+145 = 5145mm STEP 3: Computations of Mux=
fy = 415 N/mm ² L.L = 2 KN/m ² for an area Effective span in Wy = 2×1 KN/m horeadh Hy = 4145 mm Ny = Ny = 5145 mm STEP 1: CHECK FOR ONE WAY OR STEP 8: Compatibilities Compatibilities Mux = 4000 + 145 Effective span in Ny = 5145 mm STEP 8:
L.L = 2 kN/m ² for an area = 2×1 kN/m hireally okies diseasion = 2×1 kN/m is kn/m is kn/m okies diseasion = 5145 mm STEP 1: CHECK FOR ONE WAY OR STEP 8: COMPUTATIONS OF MAN =
STEP 1: CHECK FOR ONE WAY OR STEP 3: (amount of the contractions
STEP 1: CHECK FOR ONE WAY OR STEP 3: STEP 3: CHECK FOR ONE WAY OR STEP 3: COMPUTATIONS OF MULL
STEP 1: CHECK FOR ONE WAY OR STEP 3: COMPUTATIONS OF MULE
STEP 1: CHECK FOR ONE WAY OR STEP 3: COMPUTATIONS OF MULTIPLE CONTROLLED CON
LOADS AND DELLE
1 - 4
.: It is a a way slab. L. $L = 2KN/m$ $H_{y} = 0$.
PL= 0.17 x1 x 25
DIMENSION = 4.25 FT
F.L = O·5 KN/m2
L = 20 x M.F d. tensile former = 0.5 km/m Assume = 0.35%. Total tolload
MF=1.4 Total tot load
from fig4. of =6.75 KN/m
IS 456:2000
$MF = 1.4$ $\frac{ly}{lx} = \frac{5.145}{4.145} = 1.24 \times 1.25$ dregw
== 20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
From table 27 Her
4660
$d = 142.857$ $Q_{\chi} = 0.072+0.079$ $RE1$ $RE1$ $M_{\chi} = 0$
Assume a clear cover of from table sommo and diameter of for all edges distimbly upon 13-13-1-
command diameter of for all edger abistontinuous 13.184 = 0.
D=d+c+9/2 = 142.85+20+101
5 167.85 ≈ 170 2.50 8×10

45

16/2 4th b= 1m divedion +145 ڪ مين ڪ n in 0+145 5 mm 90 BENDING 1×25 KN/m ~~/~~2 m /m لصد , KN/m 1.24 ~ 1.25 079

Mm= Annex D Mn= anwin2 = 0.0755× 6.75× 4.146 = 8.755 Kmm Mux = 8.755x1.5 = 13.1325 KNm My = dy w lyn = 0.056 × 6.75 × 4.145 = 6.494 kWm Muy = 9.741 KNM Effective depth nequired= My = 0.36 Humax (1-0.42 Kuman) bd fak Highest 13.134×10 = 0.36×0.48 [1-0.42×0.48] ×1000x d 2×15 d= 79.66 mm dreguir < d granded Hence Bafe STEP 4: COMPUTATION OF Shorter direction

Mu = 0.87 fy Ast d (1- Ast fy) bot fele discontinuo) 13.134 = 0.87×415 × 9st × 145 (1- Ast × 415 1000×142×15 7.508×10-4 = Ast - Ast 2 1.908 x107 Ast = 264.124

Spacing = 1000 x Area of 1 bas =1000 ×TI 4 × 102 264.124 = 297.35 ≈290 mm Longer direction: dell'145-10 9.741×1000.87×415×Ast ×++135 (1- Ast x 415 1000x (35) -Ast - Ast 2 1-908x10-4 1-998×10 = AST-AST 2.049×10 49×10 208.7 Ast = 208.7 Spacing = 1000 Area of 1 bac = 1000 B/4×102 ≈08.7 = 376.3 ≈ 300 STEP 6: TORTLONDL REINFOR CEMENT As the corners are heldon all the comer are provided with torkon reprovement 852e of torsion mesh 812e = (x × 19x 4.145 = 0.83

Size = 0.829m × 0.829m

At each come & meshes

one @ the top and one @

the bottom are provided.

Area of bossion steel =

= 3/4 Astr

= 3/4 × 264.124

= 198.09 mm 2

provide 10 mm & bars at sparing

= 1000× Area of Iban

Ast

= 1000 x T /4 ×102

_ 396 ≈ 300

STEP 6: BHECK FOR SHEAR

module - 2

FLANGED BEAM SECTION

Q: Determine the moment

of resistance of am

I-beam with following

data bf = 140mm

d= 400 mm

bw = 240 mm

Art = 5,20 mm

Fe 250

Pf=100 mm

Misconcete

My =