The Representer Theorem and Kernelization

David S. Rosenberg

New York University

February 26, 2019

Contents

- Solutions in the "span of the data," and so what?
- 2 Math Review: Inner Product Spaces and Projections (Hilbert Spaces)
- The Representer Theorem
- Reparameterizing our Generalized Objective Function
- **5** Kernel Ridge Regression
- 6 Kernel SVM
- Are we done yet?

Solutions in the "span of the data," and so what?

SVM solution is in the "span of the data"

• We found the SVM dual problem can be written as:

$$\sup_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Given solution α^* to dual, primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$.
- Notice: w^* is a linear combination of training inputs x_1, \ldots, x_n .
- We refer to this phenomenon by saying " w^* is in the span of the data."
 - Or in math, $w^* \in \text{span}(x_1, \dots, x_n)$.

Ridge regression solution is in the "span of the data"

• The ridge regression solution for regularization parameter $\lambda > 0$ is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

• This has a closed form solution (Homework #4):

$$w^* = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

where X is the design matrix, with x_1, \ldots, x_n as rows.

Ridge regression solution is in the "span of the data"

• Rearranging $w^* = (X^T X + \lambda I)^{-1} X^T y$, we can show that (also Homework #4):

$$w^* = X^T \underbrace{\left(\frac{1}{\lambda}y - \frac{1}{\lambda}X^TXw^*\right)}_{\alpha^*}$$
$$= X^T \alpha^* = \sum_{i=1}^n \alpha_i^* x_i.$$

- So w^* is in the span of the data.
 - i.e. $w^* \in \operatorname{span}(x_1, \ldots, x_n)$

If solution is in the span of the data, we can reparameterize

• The ridge regression solution for regularization parameter $\lambda > 0$ is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

- We now know that $w^* \in \text{span}(x_1, ..., x_n) \subset \mathbb{R}^d$.
- So rather than minimizing over all of \mathbb{R}^d , we can minimize over span (x_1, \dots, x_n) .

$$w^* = \underset{w \in \text{span}(x_1, ..., x_n)}{\arg \min} \frac{1}{n} \sum_{i=1}^n \{ w^T x_i - y_i \}^2 + \lambda ||w||_2^2.$$

• How can we conveniently write an optimization problem over the span of some vectors?

If solution is in the span of the data, we can reparameterize

- Note that for any $w \in \text{span}(x_1, \dots, x_n)$, we have $w = X^T \alpha$, for some $\alpha \in \mathbb{R}^n$.
- So let's replace w with $X^T \alpha$ in our optimization problem:

- To get w^* from the reparameterized optimization problem, we just take $w^* = X^T \alpha^*$.
- We changed the dimension of our optimization variable from d to n. Is this useful?

Consider very large feature spaces

- Suppose we have a 300-million dimension feature space [very large]
 - (e.g. using high order monomial interaction terms as features, as described last lecture)
- Suppose we have a training set of 300,000 examples [fairly large]
- In the original formulation, we solve a 300-million dimension optimization problem.
- In the reparameterized formulation, we solve a 300,000-dimension optimization problem.
- This is why we care about when the solution is in the span of the data.
- This reparameterization is interesting when we have more features than data $(d \gg n)$.

What's next?

- For SVM and ridge regression, we found that the solution is in the span of the data.
 - derived in two rather ad-hoc ways
- Up next: The Representer Theorem, which shows that this "span of the data" result occurs far more generally, and we prove it using basic linear algebra.

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space V and an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbf{R}$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbf{R}$:

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- Positive-definiteness: $\langle x, x \rangle \geqslant 0$ and $\langle x, x \rangle = 0 \iff x = 0$.

Norm from Inner Product

For an inner product space, we define a norm as

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Example

 R^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbf{R}^d.$$

Norm is

$$||x|| = \sqrt{x^T x}$$
.

What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm $\|\cdot\|$ can be written in terms of an inner product on \mathcal{V} iff $\forall x, x' \in \mathcal{V}$

$$2||x||^2 + 2||x'||^2 = ||x + x'||^2 + ||x - x'||^2,$$

and if it can, the inner product is given by the polarization identity

$$\langle x, x' \rangle = \frac{\|x\|^2 + \|x'\|^2 - \|x - x'\|^2}{2}.$$

Example

 ℓ_1 norm on R^d is NOT generated by an inner product. [Exercise]

Is ℓ_2 norm on \mathbb{R}^d generated by an inner product?

Orthogonality (Definitions)

Definition

Two vectors are **orthogonal** if $\langle x, x' \rangle = 0$. We denote this by $x \perp x'$.

Definition

x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Pythagorean Theorem

Theorem (Pythagorean Theorem)

If
$$x \perp x'$$
, then $||x + x'||^2 = ||x||^2 + ||x'||^2$.

Proof.

We have

$$||x+x'||^2 = \langle x+x', x+x' \rangle$$

$$= \langle x, x \rangle + \langle x, x' \rangle + \langle x', x \rangle + \langle x', x' \rangle$$

$$= ||x||^2 + ||x'||^2.$$

Projection onto a Plane (Rough Definition)

- Choose some $x \in \mathcal{V}$.
- Let M be a subspace of inner product space \mathcal{V} .
- Then m_0 is the projection of x onto M,
 - if $m_0 \in M$ and is the closest point to x in M.
- In math: For all $m \in M$,

$$||x-m_0||\leqslant ||x-m||.$$

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is **complete** if all Cauchy sequences in the space converge.

Definition

A **Hilbert space** is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

The Projection Theorem

Theorem (Classical Projection Theorem)

- H a Hilbert space
- ullet M a closed subspace of ${\mathcal H}$ (picture a hyperplane through the origin)
- For any $x \in \mathcal{H}$, there exists a unique $m_0 \in M$ for which

$$||x-m_0|| \leq ||x-m|| \ \forall m \in M.$$

- This m_0 is called the **[orthogonal]** projection of \times onto M.
- Furthermore, $m_0 \in M$ is the projection of x onto M iff

$$x-m_0\perp M$$
.

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathfrak{H} . For any $x \in \mathfrak{H}$, let $m_0 = \operatorname{Proj}_{M} x$ be the projection of x onto M. Then

$$||m_0|| \leqslant ||x||,$$

with equality only when $m_0 = x$.

Proof.

$$||x||^2 = ||m_0 + (x - m_0)||^2$$
 (note: $x - m_0 \perp m_0$ by Projection theorem)
 $= ||m_0||^2 + ||x - m_0||^2$ by Pythagorean theorem
 $||m_0||^2 = ||x||^2 - ||x - m_0||^2$

Then $||x - m_0||^2 \ge 0$ implies $||m_0||^2 \le ||x||^2$. If $||x - m_0||^2 = 0$, then $x = m_0$, by definition of norm.

The Representer Theorem

Generalize from SVM Objective

SVM objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i [\langle w, x_i \rangle]).$$

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $R:[0,\infty)\to \mathbf{R}$ is nondecreasing (**Regularization term**)
- and $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary. (Loss term)

General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, ..., x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to \mathbf{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

- What's "linear"?
- The prediction/score function $x \mapsto \langle w, x \rangle$ is linear in what?
 - in parameter vector w, and
 - in the feature vector x.
- Why? [Real-valued] inner products are linear in each argument.
- The important part is the linearity in the parameter w.

General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

- Ridge regression and SVM are of this form. (Verify this!)
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$? Yes!.
- ullet What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

David S. Rosenberg (New York University)

The Representer Theorem: Quick Summary

• Generalized objective:

$$w^* = \operatorname*{arg\,min}_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

• Representer theorem tells us we can look for w^* in the span of the data:

$$w^* = \operatorname*{arg\,min}_{w \in \operatorname{span}(x_1, \dots, x_n)} R\left(\|w\|\right) + L\left(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle\right).$$

• So we can reparameterize as before:

$$\alpha^* = \operatorname*{arg\,min}_{\alpha \in \mathbf{R}^n} R\left(\left\| \sum_{i=1}^n \alpha_i x_i \right\| \right) + L\left(\left\langle \sum_{i=1}^n \alpha_i x_i, x_1 \right\rangle, \dots, \left\langle \sum_{i=1}^n \alpha_i x_i, x_n \right\rangle \right).$$

• Our reparameterization trick applies much more broadly than SVM and ridge.

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, ..., x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbb{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathfrak{R} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- ullet $R:[0,\infty)
 ightarrow R$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

Then

- If $M = span(x_1, ..., x_n)$, then $J(Proj_M w) \leq J(w)$ for any $w \in \mathcal{H}$.
- If J(w) has a minimizer, then it has a minimizer of the form $w^* = \sum_{i=1}^n \alpha_i x_i$.
- If R is strictly increasing, then all minimizers have this form. (Proof in homework.)

The Representer Theorem (Proof)

- Fix any $w \in \mathcal{H}$.
- 2 Let $w_M = \operatorname{Proj}_M w$.
- **3** Residual $w w_M$ is orthogonal to x for all $x \in M$.

- Projections decrease norms $\implies ||w_M|| \le ||w||$.
- **②** Since *R* is nondecreasing, $R(||w_M||) ≤ R(||w||)$.
- **3** $J(w_M) \leq J(w)$. [Proves first result.]
- ① If w^* minimizes J(w), then $w_M^* = \text{Proj}_M w^*$ is also a minimizer, since $J(w_M^*) \leq J(w^*)$.
- **◎** So $\exists \alpha$ s.t. $w_M^* = \sum_{i=1}^n \alpha_i x_i$ is a minimizer of J(w).

Q.E.D.

Sufficient Condition for Existence of a Minimizer

Theorem

^aLet

$$J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

and let $M = span(x_1, ..., x_n)$. Then under the same conditions given in the Representer theorem, if w_M^* minimizes J(w) over the set M, then w_M^* minimizes J(w) over all \mathcal{H} .

- One consequence of the Representer theorem only applies if J(w) has a minimizer over \mathcal{H} . This theorem tells us that it's sufficient to check for a constrained minimizer of J(w) over M. If one exists, then it's also an unconstrained minimizer of J(w) over \mathcal{H} . If there is no constrained minimizer over M, then J(w) has no minimizer over \mathcal{H} (by the Representer theorem).
- Bottom Line: We can jump straight to minimizing over M, the "span of the data".

^aThanks to Mingsi Long for suggesting this nice theorem and proof.

Sufficient Condition for Existence of a Minimizer (Proof)

- Let $w_M^* \in \operatorname{arg\,min}_{w \in M} J(w)$. [the constrained minimizer]
- ② Consider any $w \in \mathcal{H}$.
- **4** By the Representer theorem, $J(w_M) \leq J(w)$.
- **5** $J(w_M^*) \leq J(w_M)$ by definition of w_M^* .
- **1** Thus for any $w \in \mathcal{H}$, $J(w_M^*) \leq J(w)$.
- **O** Therefore w_M^* minimizes J(w) over \mathcal{H}

QED

Rewriting the Objective Function

• Define the training score function $s: \mathbb{R}^d \to \mathbb{R}^n$ by

$$s(w) = \begin{pmatrix} \langle w, x_1 \rangle \\ \vdots \\ \langle w, x_n \rangle \end{pmatrix},$$

which gives the training score vector for any w.

• We can then rewrite the objective function as

$$J(w) = R(||w||) + L(s(w)),$$

where now $L: \mathbb{R}^{n \times 1} \to \mathbb{R}$ takes a column vector as input.

• This will allow us to have a slick reparameterized version...

Reparameterize the Generalized Objective

- By the Representer Theorem, it's sufficient to minimize J(w) for w of the form $\sum_{i=1}^{n} \alpha_i x_i$.
- Plugging this form into J(w), we see we can just minimize

$$J_0(\alpha) = R\left(\left\|\sum_{i=1}^n \alpha_i x_i\right\|\right) + L\left(s\left(\sum_{i=1}^n \alpha_i x_i\right)\right)$$

over
$$\alpha = (\alpha_1, \dots, \alpha_n)^T \in \mathbb{R}^{n \times 1}$$
.

- With some new notation, we can substantially simplify
 - the norm piece $||w|| = ||\sum_{i=1}^{n} \alpha_i x_i||$, and
 - the score piece $s(w) = s(\sum_{i=1}^{n} \alpha_i x_i)$.

Simplifying the Reparameterized Norm

• For the norm piece $||w|| = ||\sum_{i=1}^{n} \alpha_i x_i||$, we have

$$||w||^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} x_{j} \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle x_{i}, x_{j} \rangle.$$

- This expression involves the n^2 inner products between all pairs of input vectors.
- We often put those values together into a matrix...

Definition

The **Gram matrix** of a set of points x_1, \ldots, x_n in an inner product space is defined as

$$K = (\langle x_i, x_j \rangle)_{i,j} = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}.$$

- This is the traditional definition from linear algebra.
- Later today we'll introduce the notion of a "kernel matrix"
 - The Gram matrix is a special case of a **kernel matrix** for the identity feature map.
 - That's why we write K for the Gram matrix instead of G, as done elsewhere.
- NOTE: In ML, we often use Gram matrix and kernel matrix to mean the same thing. Don't get too hung up on the definitions.

Example: Gram Matrix for the Dot Product

- Consider $x_1, \ldots, x_n \in \mathbb{R}^{d \times 1}$ with the standard inner product $\langle x, x' \rangle = x^T x'$.
- Let $X \in \mathbb{R}^{n \times d}$ be the **design matrix**, which has each input vector as a row:

$$X = \begin{pmatrix} -x_1^T - \\ \vdots \\ -x_n^T - \end{pmatrix}.$$

Then the Gram matrix is

$$K = \begin{pmatrix} x_1^T x_1 & \cdots & x_1^T x_n \\ \vdots & \ddots & \cdots \\ x_n^T x_1 & \cdots & x_n^T x_n \end{pmatrix} = \begin{pmatrix} -x_1^T - \\ \vdots \\ -x_n^T - \end{pmatrix} \begin{pmatrix} | & \cdots & | \\ x_1 & \cdots & x_n \\ | & \cdots & | \end{pmatrix}$$
$$= XX^T$$

Simplifying the Reparametrized Norm

• With $w = \sum_{i=1}^{n} \alpha_i x_i$, we have

$$||w||^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} x_{j} \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle x_{i}, x_{j} \rangle$$

$$= \alpha^{T} K \alpha.$$

Simplifying the Training Score Vector

• The score for x_j for $w = \sum_{i=1}^n \alpha_i x_i$ is

$$\langle w, x_j \rangle = \left\langle \sum_{i=1}^n \alpha_i x_i, x_j \right\rangle = \sum_{i=1}^n \alpha_i \left\langle x_i, x_j \right\rangle$$

• The training score vector is

$$s\left(\sum_{i=1}^{n}\alpha_{i}x_{i}\right) = \begin{pmatrix} \sum_{i=1}^{n}\alpha_{i}\langle x_{i}, x_{1}\rangle \\ \vdots \\ \sum_{i=1}^{n}\alpha_{i}\langle x_{i}, x_{n}\rangle \end{pmatrix} = \begin{pmatrix} \alpha_{1}\langle x_{1}, x_{1}\rangle + \dots + \alpha_{n}\langle x_{n}, x_{1}\rangle \\ \vdots \\ \alpha_{1}\langle x_{1}, x_{n}\rangle + \dots + \alpha_{n}\langle x_{n}, x_{n}\rangle \end{pmatrix}$$
$$= \begin{pmatrix} \langle x_{1}, x_{1}\rangle & \dots & \langle x_{1}, x_{n}\rangle \\ \vdots & \ddots & \dots \\ \langle x_{n}, x_{1}\rangle & \dots & \langle x_{n}, x_{n}\rangle \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$
$$= K\alpha$$

• Putting it all together, our reparameterized objective function can be written as

$$J_0(\alpha) = R\left(\left\|\sum_{i=1}^n \alpha_i x_i\right\|\right) + L\left(s\left(\sum_{i=1}^n \alpha_i x_i\right)\right)$$
$$= R\left(\sqrt{\alpha^T K \alpha}\right) + L(K\alpha),$$

which we minimize over $\alpha \in \mathbb{R}^n$.

- All information needed about x_1, \ldots, x_n is summarized in the Gram matrix K.
- We're now minimizing over \mathbb{R}^n rather than \mathbb{R}^d .
- If $d \gg n$, this can be a big win computationally (at least once K is computed).

Reparameterizing Predictions

Suppose we've found

$$\alpha^* \in \operatorname*{arg\,min}_{\alpha \in \mathbf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha).$$

• Then we know $w^* = \sum_{i=1}^n \alpha^* x_i$ is a solution to

$$\underset{w \in \mathcal{H}}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle).$$

• The prediction on a new point $x \in \mathcal{H}$ is

$$\hat{f}(x) = \langle w^*, x \rangle = \sum_{i=1}^n \alpha_i^* \langle x_i, x \rangle.$$

• To make a new prediction, we may need to touch all the training inputs x_1, \ldots, x_n .

More Notation

• It will be convenient to define the following column vector for any $x \in \mathcal{H}$:

$$k_{\mathsf{x}} = \begin{pmatrix} \langle \mathsf{x}_1, \mathsf{x} \rangle \\ \vdots \\ \langle \mathsf{x}_n, \mathsf{x} \rangle \end{pmatrix}$$

• Then we can write our predictions on a new point x as

$$\hat{f}(x) = k_x^T \alpha^*$$

Summary So Far

- Original plan:
 - Find $w^* \in \operatorname{arg\,min}_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$
 - Predict with $\hat{f}(x) = \langle w^*, x \rangle$.
- We showed that the following is equivalent:
 - $\bullet \ \mathsf{Find} \ \alpha^* \in \mathsf{arg} \, \mathsf{min}_{\alpha \in \mathbf{R}^n} \, R\left(\sqrt{\alpha^T K \alpha}\right) + L\left(K\alpha\right)$
 - Predict with $\hat{f}(x) = k_x^T \alpha^*$, where

$$K = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \ddots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix} \quad \text{and} \quad k_x = \begin{pmatrix} \langle x_1, x \rangle \\ \vdots \\ \langle x_n, x \rangle \end{pmatrix}$$

• Every element $x \in \mathcal{H}$ occurs inside an inner products with a training input $x_i \in \mathcal{H}$.

Kernelization

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

• Here we are using $\psi(x) = x$. Thus finding

$$\alpha^* \in \operatorname*{arg\,min}_{\alpha \in \mathbf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$$

and making predictions with $\hat{f}(x) = k_x^T \alpha^*$ is a **kernelization** of finding

$$w^* \in \underset{w \in \mathcal{H}}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

and making predictions with $\hat{f}(x) = \langle w^*, x \rangle$.

How to kernelize?

- Our principle tool for kernelization is reparameterization by the representer theorem.
- There are other methods we used duality for SVM and bare hands for ridge regression.
- Below, we highlight key differences between
 - kernelized ridge regression and kernelized SVM at prediction time..

Kernel Ridge Regression

Kernelizing Ridge Regression

• Ridge Regression:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} ||Xw - y||^2 + \lambda ||w||^2$$

• Plugging in $w = \sum_{i=1}^{n} \alpha_i x_i$, we get the kernelized ridge regression objective function:

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \| K \alpha - y \|^2 + \lambda \alpha^T K \alpha$$

• This is usually just called **kernel ridge regression**.

Kernel Ridge Regression Solutions

• For $\lambda > 0$, the **ridge regression solution** is

$$w^* = (X^T X + \lambda I)^{-1} X^T y$$

• and the kernel ridge regression solution is

$$\alpha^* = (XX^T + \lambda I)^{-1} y$$
$$= (K + \lambda I)^{-1} y$$

- (Shown in homework.)
- For ridge regression we're dealing with a $d \times d$ matrix.
- For kernel ridge regression we're dealing an $n \times n$ matix.

Predictions

• Predictions in terms of w^* :

$$\hat{f}(x) = x^T w^*$$

• Predictions in terms of α^* :

$$\hat{f}(x) = k_x^T \alpha^* = \sum_{i=1}^n \alpha_i^* x_i^T x$$

- For kernel ridge regression, need to access all training inputs x_1, \ldots, x_n to predict.
- For SVM, we may not...

Kernel SVM

Kernelized SVM (From Representer Theorem)

• The SVM objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i w^T x_i).$$

• Plugging in $w = \sum_{i=1}^{n} \alpha_i x_i$, we get

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^T K \alpha + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i (K \alpha)_i)$$

Predictions with

$$\hat{f}(x) = x^T w^* = \sum_{i=1}^n \alpha_i^* x_i^T x.$$

• This is one way to kernelize SVM...

Kernelized SVM (From Lagrangian Duality)

• Kernelized SVM from computing the Lagrangian Dual Problem:

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

• If α^* is an optimal value, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$
 and $\hat{f}(x) = \sum_{i=1}^n \alpha_i^* y_i x_i^T x$.

• Note that the prediction function is also kernelized.

Sparsity in the Data from Complementary Slackness

Kernelized predictions given by

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i x_i^T x.$$

• By a Lagrangian duality analysis (specifically from complementary slackness), we find

$$y_i \hat{f}(x_i) < 1 \implies \alpha_i^* = \frac{c}{n}$$

 $y_i \hat{f}(x_i) = 1 \implies \alpha_i^* \in \left[0, \frac{c}{n}\right]$
 $y_i \hat{f}(x_i) > 1 \implies \alpha_i^* = 0$

- So we can leave out any x_i "on the good side of the margin" $(y_i\hat{f}(x_i) > 1)$.
- x_i 's that we must keep, because $\alpha_i^* \neq 0$, are called **support vectors**.

Are we done yet?

Computational considerations – we're not really done yet

- Suppose our feature space is $\mathcal{H} = \mathbf{R}^d$.
- And we use representer theorem to kernelize.
- Get optimization problem over \mathbb{R}^n rather than over \mathbb{R}^d :

[original]
$$w^* = \underset{w \in \mathbb{R}^d}{\arg \min} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

[kernelized] $\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\arg \min} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$

- This seems like a good move if $d \gg n$.
- However, there is still a hidden dependence on d in the kernelized form do you see it?

David S. Rosenberg (New York University)

Computational considerations – we're not really done yet

• Get optimization problem over \mathbb{R}^n rather than over \mathbb{R}^d :

[original]
$$w^* = \underset{w \in \mathbb{R}^d}{\arg \min} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

[kernelized] $\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\arg \min} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$

- For the standard inner product, $K_{ij} = \langle x_i, x_j \rangle = x_i^T x_j$, where $x_i, x_j \in \mathbb{R}^d$.
- This is still O(d), and can be too slow for huge feature spaces.
- The essence of the "kernel trick" is getting around this O(d) dependence.