a)
$$\times$$
 basis states: $|+\rangle = \frac{1}{12} (10>+11>)$

$$|-\rangle = \frac{1}{12} (10>-11>)$$

Y basis states
$$|\Omega\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

Tell them that any single qubit unitary is a rotation around some axis by some angle. They just need to find these.

Since
$$U^2 = 1$$
, the angle is TC (or 2π , but this clearly isn't true)

By noticing that $U = \frac{1}{\sqrt{2}} \left(O_{x} + O_{z} \right)$, the axis is that with unit vector $\vec{u} = \frac{1}{\sqrt{2}} \vec{x} + \frac{1}{\sqrt{2}} \vec{z}$

The x and z expectation values exchange, and the y one inverts