Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра информатики

Дисциплина: Математика. Математический анализ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

АНИМАЦИОННЫЕ ВОЗМОЖНОСТИ MAPLE ДЛЯ ВИЗУАЛИЗАЦИИ РЕШЕНИЙ

БГУИР КР 1-40 04 01

Студент: гр. 053506 Слуцкий Н. С.

Руководитель: канд. ф.-м. н., доцент

Рыкова О.В.

канд. ф.-м. н., доцент Калугина М.А

Минск 2021

СОДЕРЖАНИЕ

1.	Введ	ведение	
2.	Статическая визуализация в системе компьютерной алгебры Maple 4		
	2.1.	Отображение двумерных объектов — графиков функций од переменной	дноі
	2.2. Отображение трёхмерных объектов — графиков функций дв		двух
		переменных	6
3.	Введение в анимацию в системе компьютерной алгебры Maple		8
	3.1.		
	3.2.		• • •
4.	••••		• • •
	4.1.		• • •
	4.2.		• • •
5.	Закл	Заключение .	
6.	Список использованных источников		

Введение

Когда просто наборы чисел и (или) формул не раскрывают в достаточно понятной степени найденное решение поставленной математической и не только проблемы, на вооружение к нам, как к исследователям, приходят различные возможности, предоставляемые современными системами компьютерной алгебры и другими пакетами прикладных программ, по графическому представлению решений в форме графиков и др. Визуальных объектов.

В целом визуализация каких-либо данных представляет собой наглядное графическое представление массивов различной информации. Если смотреть на поверхности, то классическое построение графиков функций на уроках математики делается как раз с целью отображения (визуализации) той или иной функции. Для каких целей? Чтобы показать, что просмотреть поведение функции (экстремумы, монотонность, знакопостоянство, выпуклость и др.) можно также не аналитически, а фактически на рисунке. Это обычно воспринимается более легко, понятно и в целом является наиболее топорным методом по-быстрому исследовать поведения функций, когда из многих нужно выбрать наиболее подходящие. Наглядность поставленной задачи является важной частью не только для

Наглядность поставленной задачи является важной частью не только для понимания процесса решения, но и для исследования его в динамике, которая, разумеется, легче воспринимается зрительно. Приятным и полезным бонусом является анимация этапов решения, которая даёт экспрессивное представление о скорости явления, например. Нам, как студентам, как исследователям, визуализация и анимация часто позволяет находить аналогии и закономерности, систематизировать найденные решения и моделировать определённый кейс при проведении какой-то исследовательской работы.

Статическая визуализация в СКА Maple

Марlе предоставляет обширный набор инструментов визуализации. Можно создавать двухмерные и трёхмерные графики и анимации в интерактивном режиме с помощью Помощника по построению графиков и контекстных меню. Марlе также включает в себя большую коллекцию команд и инструментов программирования для создания и настройки сюжета. Эти команды можно использовать в интерактивном режиме или включать в программы и сценарии Maple для создания пользовательских специализированных графиков и расширенных приложений. Базовый инструментал по созданию графических изображений с графиками функций представлен командой "plot" и некоторыми вспомогательными методами из пакета "plots".

Отображение двумерных объектов — графиков функций одной переменной

Пример самой базовой визуализации привычной всем нам тригонометрической функции на отрезке [-10; 10] представлен на рисунке 1. plot(sin(x), x = -10...10, thickness = 5, color = orange)

Рисунок 1. Построение графика простейшей тригонометрической функции на отрезке

Разумеется, мы в системе компьютерной алгебры Maple не ограничены в построении одиночных графиков элементарных функций. Можно строить кусочно-заданные функции (рисунок 2).

с помощью команды piecewise можно работать как с обычными, так и с кусочными функциями

func := $piecewise(x < -Pi, 4 \cdot cos(2 \cdot x), x \ge Pi, 6 \cdot exp(1)^{-0.4 \cdot x})$: funcChart := plot(func, discont = true, color = blue, thickness = 3);

Рисунок 2. Построение графика кусочной функции

Всегда можно получить, например, графики производных и первообразных. В одной системе координат можно построить несколько графиков. Это может быть полезно, когда необходимо проследить поведение разных функций на наблюдаемых интервалах (рисунок 3).

Рисунок 3. Построение нескольких графиков в одной системе координат

Выше можно было наблюдать и фиксировать все базовые функции и команды для построения графиков и их кастомизации. Все они подробно описаны в онлайн-документации системы компьютерной алгебры Maple, поэтому описание их работы опускается.

Используя дополнительные функции подключаемого пакета "plots", можно расширять границы, казалось бы, нерасширяемого. Можно переходить в полярные координаты и многое другое, что часто бывает полезно (рисунок 3).

with(plots):
$$polarplot\left(2+2\,\cos\left(4\cdot\theta-\frac{\text{Pi}}{3}\right),\,\theta=0\ldots2\,\,\pi,\,\,thickness=5,\,color=green\right);$$

Рисунок 3. Пример построения графика функции в полярных координатах

В примерах, предоставленных автором выше, можно наблюдать, что даже статическая визуализация всего лишь двумерных сущностей является достаточно гибко настраиваемой и любые данные можно представить в наглядном, читаемом и приятном исследователю виде. Настройка цветов, толщины линий, способа отображения графика (точечно или сплошной линией) — это лишь несколько пунктов из возможностей кастомной визуализации функций.

Отображение трёхмерных объектов — графиков функций двух переменных

Перейдём в пространство R^3 . Имея функцию вида z=f(x,y) или неявно заданную функцию F(x,y,z)=0, мы можем, построив график этой функции, получить трёхмерную сущность. Если для функции одной переменной (или двух, если задана неявно -F(x,y)=0) y=f(x) графиком в общем случае являлась какая-либо кривая в плоскости ХоУ пространства R^2 , то для функции двух переменных это в общем случае будет какая-то поверхность в пространстве R^3 . Система компьютерной алгебры позволяет строить эти поверхности для вышеописанных функций. Пример построения находится на рисунке 4.

$$plot3d(x^2-y^2, x=-1..1, y=-1..1);$$

Рисунок 4. Использование команды plot3d

Автор хочет обратить внимание на то, что система компьютерной алгебры Марle выдаёт не просто статическое изображение, содержащее проекцию поверхности на плоскость экрана монитора с произвольного "местоположения", но выдаёт интерактивный фрейм, где пользователи могут "крутить" пространство и наблюдать поверхность с разных сторон, что, безусловно, удобно для более детального рассмотрения поведения функции в каких-нибудь интересных для исследования областях. Путём комбинирования графиков, гибкой настройки цветов можно получать подобные относительно необычные формы (рисунок 5).

```
c1 := [\cos(x) - 2 \cos(0.4 \ y), \sin(x) - 2 \sin(0.4 \ y), y] :
c2 := [\cos(x) + 2 \cos(0.4 \ y), \sin(x) + 2 \sin(0.4 \ y), y] :
c3 := [\cos(x) + 2 \sin(0.4 \ y), \sin(x) - 2 \cos(0.4 \ y), y] :
c4 := [\cos(x) - 2 \sin(0.4 \ y), \sin(x) + 2 \cos(0.4 \ y), y] :
plot3d(\{c1, c2, c3, c4\}, |x = 0..2 \ \pi, y = 0..10, grid = [25, 15], color = \sin(x));
```


Рисунок 5. Пример построения относительно сложной комбинации поверхностей с элементами их кастомизации

Введение в анимацию в системе компьютерной алгебры Maple

Визуализация графических построений и результатов моделирования какихлибо математических явлений и объектов значимо повышается при использовании "оживляющих средств" — анимации изображений. Анимация — это визуальное изображение изменений свойств одного или нескольких объектов. Пакет "plots" имеет две простые функции для создания анимированных графиков.

Система компьютерной алгебры Maple позволяет выводить на экран движущиеся изображения с помощью команд "animate" (двумерные) и "animate3d" (трехмерные) из пакета "plot". Среди параметров команды "animate3d" есть "frames" – число кадров анимации (по умолчанию frames=8). Описанная выше команда находится в пакете "plots".

При создании анимации неотъемлемым помощником является панель инструментов (рисунок 6). Она позволяет:

- задать количество кадров в секунду;
- задать режим повтора проигрывания анимации;
- выбрать участок для более детального наблюдения;
- поставить анимацию на паузу, продолжить или начать сначала;
- покадрово просмотреть анимацию;
- пронаблюдать значения функции в точках путём наведения курсора мыши на них;
- и другое.

Рисунок 6. Панель инструментов для работы с анимацией в Maple 16

Структура команды "animate" следующая: animate (plotcommand, plotargs, t = a...b, options), где параметры представляют собой:

1. функцию для построения графика (plot, pointplot, plot3d...)

- 2. аргументы для функции для построения графика
- 3. t имя и диапазон параметра, который изменяется в функции построения графика

Пример команды и нескольких кадров из построения анимации из тестовой функции представлены на рисунках 7 – 9.

Рисунок 7

Рисунок 8

Рисунок 9

Список использованных источников

- Официальная документация системы компьютерной алгебры Maple. URL: https://www.maplesoft.com/
- "Визуализация решений некоторых математических задач в Maple" Кузнечик В.А., Милинкевич М.И., БГУИР 2019 г.

