Linear Algebra 2: Special Matrices and Matrix Operations

David Carlson

2021

Linear Algebra 2: Special Matrices and Matrix Operators

Square Matrices

▶ A lot of linear algebra works with square matrices. Look through your books, and you will see a lot of matrices with an equal number of rows and columns (even if they don't focus on the fact that it is square).

Square Matrices

- ▶ A lot of linear algebra works with square matrices. Look through your books, and you will see a lot of matrices with an equal number of rows and columns (even if they don't focus on the fact that it is square).
- This may seem a bit odd at first. After all, we usually have more observations in our datasets (rows) than variables (columns).
- However, one of the most common tricks or operations we do with matrices is to turn them into square matrices. For instance, if we had a non-square matrix \mathbf{X} , we change it

into a square matrix using the following operation $\mathbf{X}^T\mathbf{X}$.

Square Matrices

- ▶ A lot of linear algebra works with square matrices. Look through your books, and you will see a lot of matrices with an equal number of rows and columns (even if they don't focus on the fact that it is square).
- This may seem a bit odd at first. After all, we usually have more observations in our datasets (rows) than variables (columns).
- ▶ However, one of the most common tricks or operations we do with matrices is to turn them into square matrices. For instance, if we had a non-square matrix $\mathbf{X}_{(m \times n)}$, we change it into a square matrix using the following operation $\mathbf{X}^T\mathbf{X}$.
- ▶ The result is an $n \times n$ square matrix.
- In fact, this matrix will be a symmetric square matrix (Try it!).

Basics for square matrices

- ▶ Square matrices have the same number of rows and columns
- ▶ A $k \times k$ square matrix is referred to as a matrix of order k.

Basics for square matrices

- ▶ Square matrices have the same number of rows and columns
- ightharpoonup A $k \times k$ square matrix is referred to as a matrix of order k.
- ► The **diagonal** of a square matrix is the vector of matrix elements that have the same subscripts.
- ▶ If **A** is a square matrix of order k, then its diagonal is $[a_{11}, a_{22}, \ldots, a_{kk}]'$.

The Trace

► **Trace**: The trace of a square matrix **A** is the sum of the diagonal elements:

$$tr(\mathbf{A}) = a_{11} + a_{22} + \cdots + a_{kk}$$

- Properties of the trace operator: If A and B are square matrices of order k, then
 - 1. $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$

4. tr(AB) = tr(BA)

- 2. $\operatorname{tr}(\mathbf{A}^T) = \operatorname{tr}(\mathbf{A})$
- 3. $\operatorname{tr}(s\mathbf{A}) = \operatorname{str}(\mathbf{A})$

Special types of square matrices

There are several important types of square matrix:

Symmetric Matrix

- ightharpoonup A matrix **A**is symmetric if $\mathbf{A} = \mathbf{A}'$
- ▶ this implies that $a_{ij} = a_{ji}$ for all i and j.

Examples:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \mathbf{A}', \qquad \mathbf{B} = \begin{pmatrix} 4 & 2 & -1 \\ 2 & 1 & 3 \\ -1 & 3 & 1 \end{pmatrix} = \mathbf{B}'$$

Diagonal Matrix

- ▶ A matrix **A** is diagonal if all of its non-diagonal entries are zero
- Formally, if $a_{ii} = 0$ for all $i \neq j$

Examples:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Triangular Matrix

- A matrix is triangular one of two cases.
 - If all entries below the diagonal are zero $(a_{ij} = 0 \text{ for all } i > j)$, it is **upper triangular**.
 - Conversely, if all entries above the diagonal are zero (a_{ij} = 0 for all i < j), it is lower triangular.

Examples

$$\mathbf{A}_{LT} = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ -3 & 2 & 5 \end{pmatrix}, \qquad \mathbf{A}_{UT} = \begin{pmatrix} 1 & 7 & -4 \\ 0 & 3 & 9 \\ 0 & 0 & -3 \end{pmatrix}$$

Special Square Matrices

There are a number of specific square matrices that you need to add to your vocabulary

Identity Matrix

The $n \times n$ identity matrix \mathbf{I}_n is the matrix whose diagonal elements are 1 and all off-diagonal elements are 0.

Examples:

$$\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mathbf{I}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- You will see this matrix all of the time. Usually it is used in one of two ways.
 - 1. First, it plays a role much like the number 1 in scalar algebra.
 - If you multiply any matrix by a comformable identity matrix, you will get back the original matrix.
 - That is AI = A.

- ► You will see this matrix all of the time. Usually it is used in one
 - of two ways.

 1. First, it plays a role much like the number 1 in scalar algebra.
 - If you multiply any matrix by a comformable identity matrix, you will get back the original matrix.
 That is AI = A.
 - Second, the identity matrix is often a convenient way to denote a diagonal matrix with the same element on each row.
 - For instance, $\sigma \mathbf{I}_3 = \begin{pmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \end{pmatrix}$

The J Matrix

$$\mathbf{J}_{2}\mathbf{X} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 4 & 6 \end{pmatrix}$$

0 Matrix

► This is a matrix of zeroes that plays the same role as the scalar zero.

Idempotent

▶ A square matrix **A** is said to be idempotent if:

$$\mathbf{A}^2 = \mathbf{A}$$

▶ Which matrices that we just discussed are idempotent?

Identify the following matrices as diagonal, identity, square, symmetric, triangular, or none of the above.

1.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 5 \\ 1 & -2 & -1 \\ 5 & -1 & 2 \end{pmatrix}$$

2.

$$\mathbf{B} = \begin{pmatrix} 4 & 2 \\ 6 & 3 \end{pmatrix}$$

3.

$$\mathbf{B}^T \mathbf{B}$$

Identify the following matrices as diagonal, identity, square, symmetric, triangular, or none of the above.

4.

$$\mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

5.

$$\mathbf{D} = \begin{pmatrix} 1 & 1 \\ 3 & -2 \end{pmatrix}$$

6.

$$\mathbf{E} = \begin{pmatrix} 0 & 1 & 2 \\ 5 & 1 & -1 \\ 2 & 4 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

7.

$$E^TE$$

8. For each of the square matrices identified above, find the associated trace.	

Matrix Inversion

► In scalar algebra, if we want to solve a simple equation we often use the scalar inverse. For example,

$$6x = 12$$

$$x \times 6 \times 6^{-1} = 12 \times 6^{-1}$$

$$x = \frac{12}{6} = 2$$

Matrix Inversion

In scalar algebra, if we want to solve a simple equation we often use the scalar inverse. For example,

$$6x = 12$$

$$x \times 6 \times 6^{-1} = 12 \times 6^{-1}$$

$$x = \frac{12}{6} = 2$$

- ► The key thing you are doing in this operation is mutiplying both sides of the equation by the inverse of 6 so that you have isolated x by itself on one side of the equation.
- ▶ This is possible because $6 \times 6^{-1} = 1$.
- ▶ If we have a matrix version of the above situation, we want an inverse that accomlishes the same thing.

Basic motivation for inverses

- ► In the case of square matrices we want to find an inverse function that allows us to "eliminate" a matrix from one side of an equation.
- ► For instance,

$$XA = B$$

$$XAA^{-1} = BA^{-1}$$

$$XI = BA^{-1}$$

$$X = BA^{-1}$$

▶ So what we really want is find a an inverse matrix such that:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

Note on generalized inverses

- ▶ There are also generalized inverses for non-square matrices that can be derived and calculated.
- We won't cover this much in part because it is far more complicated, but also because you will almost never actually need to do it.
- ► However, note that these kinds of inverses are often denoted A^- rather than A^{-1} .

How to find the inverse

► Figuring out how to invert large matrices is a big topic in both linear algebra, statistics, and computer science.

How to find the inverse

- ► Figuring out how to invert large matrices is a big topic in both linear algebra, statistics, and computer science.
- ▶ If you were a graduate student 30 years ago, this would be an important thing to understand in much greater detail. However, modern computer powers make the inversion of all but gigantic matrices a standard operation and you will not really need to understand that much about what the computer is doing with one *very* important exception.
- ▶ It is possible (and even common) that a matrix may either not have an inverse or may not be invertible by particular methods.

- ► We will talk about one approach for calculating a matrix today (more later).
- ► We begin by adjoining this matrix (**A**) to an identity matrix (an augmented matrix):

$$\begin{pmatrix}
2 & -2 & 0 & | & 1 & 0 & 0 \\
1 & -1 & 1 & | & 0 & 1 & 0 \\
4 & 4 & -4 & | & 0 & 0 & 1
\end{pmatrix}$$

We want to find the set of operations that will turn the matrix on the left into the matrix on the right.

- ▶ We perform operations to both sides.
- ▶ When the left hand side is the identity matrix, the right hand side will be the inverse (\mathbf{A}^{-1}) .

- ► We perform operations to both sides.
- ▶ When the left hand side is the identity matrix, the right hand side will be the inverse (\mathbf{A}^{-1}).
- ► We perform three basic operations:
 - /e perform three basic operations:

 1. Multiply a whole row by a non-zero scalar constant
 - 2. Add a scalar multiple of one row to another.
 - Add a scalar multiple of one row to another.
 Exchange two rows in the matrix.

- ► This is the same doing one of the following to both sides of the equation:
 - 1. Scalar multiplication of both sides
 - 2. Add a matrix to both sides. For instance if we wanted to subtract row 1 from row 2 we could add the following matrix to both sides:

$$\begin{pmatrix}
0 & 0 & 0 \\
-2 & 2 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

3. Multiply both sides by a "transition matrix" that allows you to exchange rows. For instance, if we want to exchange the position of rows 1 and 2 we can multiply both sides by the matrix:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Find the inverse of $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$.

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
.

$$\begin{pmatrix} \mathbf{A} | \mathbf{I}_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 2 & 3 & | & 0 & 1 \end{pmatrix}$$

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
.

$$\begin{pmatrix} \mathbf{A} | \mathbf{I}_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 2 & 3 & | & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 0 & 1 & | & -2 & 1 \end{pmatrix}$$

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
.

$$= \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 0 & 1 & | & -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & | & 3 & -1 \\ 0 & 1 & | & -2 & 1 \end{pmatrix}$$

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
.

$$= \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 0 & 1 & | & -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & | & 3 & -1 \\ 0 & 1 & | & -2 & 1 \end{pmatrix}$$

$$\mathbf{A}\mathbf{A}^* = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_2$$

$$\mathbf{A}^*\mathbf{A} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_2$$

$$\mathbf{A}^* = \mathbf{A}^{-1}$$

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$
.

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$
.

$$(\mathbf{A}|\mathbf{I}_3) = \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 5 & 5 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$
.

$$\begin{pmatrix} \mathbf{A} | \mathbf{I}_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 5 & 5 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & -4 & | & -5 & 0 & 1 \end{pmatrix}$$

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$
.

$$\begin{pmatrix} \mathbf{A} | \mathbf{I}_{3} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 5 & 5 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & -4 & | & -5 & 0 & 1 \end{pmatrix}$$

 $= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & | & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & | & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & | & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 & | & -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 1 & 0 & | & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & | & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 & | & -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 1 & 0 & | & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & | & \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & 0 & | & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & | & \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$\mathbf{AA}^* = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$\begin{array}{lll} \mathbf{A}\mathbf{A}^* & = & \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix} \\ & = & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

$$\mathbf{AA}^* = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \mathbf{I}_2$$

$$\mathbf{AA}^* = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_3$$

$$\mathbf{A}^* \mathbf{A} = \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{2} & 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$

$$\mathbf{AA}^* = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_3$$

$$\mathbf{A}^*\mathbf{A} = \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{AA}^* = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_3$$

$$\mathbf{A}^*\mathbf{A} = \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_3$$

$$\mathbf{AA}^* = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_3$$

$$\mathbf{A}^* \mathbf{A} = \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \mathbf{I}_3$$

$$\mathbf{A}^* = \mathbf{A}^{-1}$$

Laws of Matrix Inversion

1.

$$I^{-1} = I$$

2.

$$({\sf A}^{-1})^{-1} = {\sf A}$$

Laws of Matrix Inversion

1.

$$\mathbf{I}^{-1}=\mathbf{I}$$

2.

$$({\bf A}^{-1})^{-1} = {\bf A}$$

3.

$$(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$$

Laws of Matrix Inversion 1.

$$I^{-1} = I$$

2.
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

3.
$$(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$$

4.
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

5.
$$(c\mathbf{A})^{-1} = c^{-1}\mathbf{A}^{-1}$$

6. If $\mathbf{A} = diag(a_1, a_2, \dots, a_n)$ and all elements d_i are nonzero, then

then
$$\mathbf{A}^{-1} = extit{diag}(1/\mathsf{a}_1, 1/\mathsf{a}_2, \dots, 1/\mathsf{d}_n)$$

6. If $\mathbf{A} = diag(a_1, a_2, \dots, a_n)$ and all elements d_i are nonzero, then

then
$$\mathbf{A}^{-1} = diag(1/a_1, 1/a_2, \dots, 1/d_n)$$

7. The inverse of a symmetric matrix is symmetric.

6. If $\mathbf{A} = diag(a_1, a_2, \dots, a_n)$ and all elements d_i are nonzero, then

$$\mathbf{A}^{-1} = diag(1/a_1, 1/a_2, \dots, 1/d_n)$$

- 7. The inverse of a symmetric matrix is symmetric.
- 8. If the inverse exists (if the matrix is **nonsingular**), then it is unique.

If it exists, find the inverse of the following matrices

1.

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.

$$\begin{pmatrix} 4 & 2 \\ 6 & 3 \end{pmatrix}$$

3.

$$\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 6 \\ 1 & 4 \end{pmatrix}$$

$$\begin{pmatrix}
3 & 6 & 6 \\
-3 & 4 & 6 \\
-9 & 0 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 8 & 6 \\
0 & -3 & -5 \\
-9 & 0 & 4
\end{pmatrix}$$

Advanced matrix operations

- Our final topic for today will cover some more advanced matrix operations that you may occasionally see.
- My goal here is that you should be familliar with these concepts.
- Mastery of these concepts is beyond the scope of this class, but you should know how to calculate a determinant for a small matrix and what it means.

Determinants

- Determinants can be used to determine whether a square matrix can be inverted (whether or not it is nonsingular).
- A square matrix is nonsingular iff its determinant is not zero.

- ightharpoonup Let $\mathbf{A} = a$.
- ▶ We want the determinant to equal zero when the inverse does not exist.

- ightharpoonup Let $\mathbf{A} = a$.
- ► We want the determinant to equal zero when the inverse does not exist.
- ▶ Since the inverse of a, 1/a, does not exist when a = 0, we let the determinant of a be

$$\det(a) = |a| = a$$

- \blacktriangleright Let $\mathbf{A} = a$.
- ► We want the determinant to equal zero when the inverse does not exist.
- ▶ Since the inverse of a, 1/a, does not exist when a = 0, we let the determinant of a be

$$\det(a) = |a| = a$$

For a 2×2 matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, \mathbf{A} is nonsingular only if $a_{11}a_{22} - a_{12}a_{21} \neq 0$ (check by doing Gaussian inverse to find the inverse of a 2×2 matrix).

- \blacktriangleright Let $\mathbf{A} = a$.
- ► We want the determinant to equal zero when the inverse does not exist.
- ▶ Since the inverse of a, 1/a, does not exist when a = 0, we let the determinant of a be

$$\det(a) = |a| = a$$

- For a 2×2 matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, \mathbf{A} is nonsingular only if $a_{11}a_{22} a_{12}a_{21} \neq 0$ (check by doing Gaussian inverse to find the inverse of a 2×2 matrix).
- ▶ We then define the determinant of a 2×2 matrix **A** as:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

 $= a_{11}|a_{22}|-a_{12}|a_{21}|$

Extending this to a 3×3 matrix, we get:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

Extending this to a 3×3 matrix, we get:

a ₁₁	a ₁₂	a ₁₃	= a ₁₁
a ₂₁	a 22	a23	$= a_{11}$

Extending this to a 3×3 matrix, we get:

	ııııg	LIIIS	ιο	а	J	^	J	matrix,	VVC	gcı
1			1							
a11	<i>a</i> 12	<i>a</i> 1	2			- 1		1		

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}$$

Extending this to a 3×3 matrix we get:

Extending this to a 3 \times 3 matrix, we get.											
	a ₁₁ a ₂₁ a ₃₁	a ₁₂ a ₂₂ a ₃₂	a ₁₃ a ₂₃ a ₃₃	$= a_{11}$	a ₂₂	a ₂₃	- a ₁₂	a ₂₁	$\begin{vmatrix} a_{23} \\ a_{33} \end{vmatrix} + a_{13}$		

Extending this to a 3×3 matrix, we get:

	J		0 4 5 /									
a ₁₁	a ₁₂	a ₁₃	$= a_{11}$	200	200		201	200		204	200	
a ₂₁	a ₂₂	a ₂₃	$= a_{11}$	222	a23	- a ₁₂	221	a23	$+ a_{13}$	a21	a22	
a ₃₁	a32	<i>a</i> 33		a32	<i>a</i> 33		a31	433		a31	432	

Kronecker Product

- ightharpoonup Denoted $\mathbf{A} \otimes \mathbf{B}$ and sometimes called the direct product.
- Most commonly used to keep notation in some proof from getting out of hand.

Example 1:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} = \begin{pmatrix} \sigma_{12}^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{12}^2 & \sigma_{12} \\ 0 & 0 & \sigma_{12} & \sigma_2^2 \\ 0 & 0 & \sigma_{12} & \sigma_2^2 \end{pmatrix}$$

Example 2

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2n}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{pmatrix}$$

$$(2)$$

► The **cross product** $\mathbf{u} \times \mathbf{v}$ gives a vector orthogonal to both \mathbf{u} and \mathbf{v} .

- The **cross product** $\mathbf{u} \times \mathbf{v}$ gives a vector orthogonal to both \mathbf{u} and \mathbf{v} .
- \blacktriangleright Its norm gives area of parallelogram defined by $\bf u$ and $\bf v$.

- The **cross product** $\mathbf{u} \times \mathbf{v}$ gives a vector orthogonal to both \mathbf{u} and \mathbf{v} .
- \triangleright Its norm gives area of parallelogram defined by **u** and **v**.
- ► In 3 dimensions:

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 & u_3 v_1 - u_1 v_3 & u_1 v_2 - u_2 v_1 \end{pmatrix}$$

- The cross product u × v gives a vector orthogonal to both u and v.
- \triangleright Its norm gives area of parallelogram defined by $\bf u$ and $\bf v$.
- ► In 3 dimensions:

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 & u_3 v_1 - u_1 v_3 & u_1 v_2 - u_2 v_1 \end{pmatrix}$$

▶ Let $\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.

- ▶ The **cross product** $\mathbf{u} \times \mathbf{v}$ gives a vector orthogonal to both \mathbf{u} and \mathbf{v} .
- \triangleright Its norm gives area of parallelogram defined by **u** and **v**.
- ► In 3 dimensions:

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 & u_3 v_1 - u_1 v_3 & u_1 v_2 - u_2 v_1 \end{pmatrix}$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.
 $\mathbf{u} \times \mathbf{v} = \begin{pmatrix} -2 \cdot 1 - 1 \cdot 0 & 1 \cdot 2 - 3 \cdot 1 & 3 \cdot 0 - (-2) \cdot 2 \end{pmatrix}$
 $= \begin{pmatrix} -2 & -1 & 4 \end{pmatrix}$

Calculate the determinants for the following matrics and decide whether or not the inverse of each matrix exists.

1.

$$\begin{pmatrix}
6 & -9 & -8 \\
-5 & 4 & 10 \\
-9 & 8 & 6
\end{pmatrix}$$

2.

$$\begin{pmatrix}
-9 & 8 & -9 \\
1 & -3 & 4 \\
15 & -7 & 6
\end{pmatrix}$$

3.

$$\begin{pmatrix}
3 & 0 & -2 \\
5 & -6 & -6 \\
-2 & -4 & -8
\end{pmatrix}$$

4. Find the values of λ that make the following a singular matrix $% \left(\lambda \right) =0$

$$\begin{pmatrix} 8-\lambda & 7 \\ 7 & 8-\lambda \end{pmatrix}$$