EXAMEN DE ANALISIS MATEMATICO IV

2.P.P. JUNIO 2005. 1.SEMANA.

1. Pregunta. Enunciar y demostrar el Teorema de Rouché.

2.Pregunta. Enunciar la fórmula de Schwarz-Christoffel, explicando el significado geométrico de los parámetros.

3. Pregunta. Encontrar una transformación conforme del dominio,

$$A = \left\{ z \left| 0 < Argz < \frac{\pi}{2} \right. \right\},\,$$

sobre el disco unidad,

$$D = \left\{ w \left| \left| w \right| < 1 \right. \right\}.$$

4. Pregunta. Se pide:

 a) Utilizando la fórmula del seno del ángulo doble, probar por inducción la fórmula,

$$2^m sen \frac{z}{2^m} \cdot \prod_{n=1}^m \cos \frac{z}{2^n} = senz.$$

b) Utilizando la parte a) concluir,

$$\prod_{n=1}^{\infty} \cos \frac{z}{2^n} = \frac{senz}{z}.$$

Duración del Examen: 2 horas.

BESOLUCION DE LOS PROBLEMAS DEL
EXAMEN DE ANACISIS MATERATICO [V]
2. P. P. JUNIO 2005. LE SEMANA
1. PROBLEMA Enouter une transformación
couforme del dominio
A= { = / 0 = Ag = = 1/2 }
abre el disco unided
D= {w//w/<1}.
SOLUCION.
de Transformación
5=22
tous forme A robe el seluiplais superior.
La Transformación
$W = \frac{1-c}{s+c}$
rousforme el seleciplono apessor sobre el dixo
rided D. Ass pues
$W = \frac{z^2 - i}{z^2 + i}$

transforme conformemente A sobre D.

2. PROBLEMA. Se pide:

a) Otilizando la fósmula del sano del ángulo
doble probes por inducción la fósmula

2 m seu
$$\frac{z}{z^m} \cdot \frac{m}{m}$$
 cos $\frac{z}{z^n} = seu z$

b) Utilizando la parte a) concluir

b) Utilizendo la peste a) concluir
$$\frac{\infty}{11\cos\frac{z}{z^n}} = \frac{\sin z}{z}$$

$$n=1$$

Solveron

a) m=1, seuz=2seu $\frac{2}{3}$ (os $\frac{2}{3}$)

Spuesto gre le seleción es cieste pare in

Texeirendo an acente

Seu $\frac{2}{3m}$ = 2 seu $\frac{2}{3m+1}$ · cos $\frac{2}{3m+1}$

Coucleimos 2 m = -2 m+1 2 m+1

Sen = = 2^m. sen = $\frac{m}{2}$. $\frac{m}{n=1}$ as $\frac{z}{2^n} = 2^{m+1}$ $\frac{z}{2^n}$. $\frac{m+1}{n=1}$ as $\frac{z}{2^n}$

b) Othlizendo a) se obtiene $\frac{\partial}{\partial x} = \lim_{m \to \infty} \frac{\sin x}{2^m + 1} = \lim_{m \to \infty} \frac{(\sec x) - \lim_{m \to \infty} (\sec x)}{2^{m+1}} + \sin x = (\sec x)$

$$= seu 2 / lim \frac{t}{seu / 2} = \frac{seu 2}{2}$$

11 1/2

EXAMEN DE ANALISIS MATEMATICO IV

2.P.P. JUNIO 2005. 2.SEMANA

1. Pregunta. Enunciar con detalle y demostrar la Proposición que relaciona los ceros y los polos de una función meromorfa f con los polos de f^{\prime}/f .

- 2. Pregunta. Enunciar el Teorema de Monodromía.
- 3. Pregunta. Considerar el dominio,

$$A = \{z \in \mathbb{C} | |z| < 1, \text{Im } z > 0 \}.$$

Encontrar la imagen de A mediante la transformación

$$w = \left(\frac{z-1}{z+1}\right)^2.$$

4. Pregunta. Determinar el número de raíces de la ecuación, $z^3 + 6z + 1 = 0, \label{eq:z3}$

$$z^3 + 6z + 1 = 0,$$

en el conjunto $A = \{z | 1 < |z| < 2\}$.

Duración del Examen: 2 horas.

BESOLUCION DE LOS PRUBLEMAS EXAMEN DE ANALISIS MATEMATICO IX 2. P.P. JUNIO 2005. 25 SEMANA 1. PROBLEMA. Counderer el doccions A= \ZEC/12/21, Im>0} L'hontres le megen de 4 médiante la transformación $W = \left(\frac{Z - I}{Z + I}\right)^{2}.$ SOLUCION Cours de les des transformacion de de como composicion de les des transformaciones signientes: $w = \lambda^2$ $J = \frac{\angle - L}{Z + L}$ Esteliames ou primer luger le transformación de mediante la transformación de A mediante la Observamoi que A es el secuidamlo -1 ////// ±

ay- pouter esté pormed por et segments Lj \leq X \leq L g le semicisconference $e^{i\theta}$, $0 = 0 \leq$. Me diante le toens formación $\lambda = \frac{Z-1}{Z+L}$, el Segments se transforme en le senivrecte - 20 = 1; fines per x recl, massacrate 1=1, 1idz es real y wands x eserce de -1 a 1, 1=1 crece de - « a cero. La semiciranterencie se tousforme en $J = \frac{e^{i\theta_{1}}}{e^{i\theta_{1}}} = \frac{e^{i\theta_{2}} - e^{i\theta_{2}}}{e^{i\frac{\theta_{2}}{2}} + e^{i\frac{\theta_{2}}{2}}} = \frac{2i\sin(\theta_{2})}{2\cos(\theta_{2})}$ que aands à risie de la II, l'é visie de 10 t 7/2 } 1 vinc de 0 a 0 recorriendo el semieje meginoso positivo. Coucliermos que A se trans/orme en el segundo acadrante Finilonate médiante W=12, este aucos de 180eus/orma au el semiplano inférior.

1

BESOLUCION DE LOS PROBLEMAS DEL EXAMEN DE ANALISIS MATEMATICO IV 2.P.P. JUNIO 2005. 2= SEMANIA (CONTINUACION)

2. PROBLEMA. Déleamines el número de Voices de la ecucción

23+62+1=0

en el conjunto A=32/12/2123.

SOLUCION.

En poimer lugar estadiamos el número de raices de la ecucción en D,=32/2/21/21/21

Mauremos $f(z)=z^3+6z+1$, g(z)=6z.

proz 1z=1, se tiene

 $|f(z)-g(z)|=|z^3+1|=4<6=|6z|=|g(z)|$

luero por el leorence de Bouché, l's tienen el mismo número de seices en D.

es decir une.

A continuación estudiamos el número de Vaices de la ecución en $D_z = 77/21<2$.

Obse rez consideratuos (7)-62, y oblevem p. 82 /2/=2 //(2)-3(2)/-/2311/=9212=/3(2)/ luego otre rez par el Feoren. de Borché en Da, J. Je es vous. Luejo en A=D3\D, UC, doude ¢-9121-1, I no tendré reices.

EXAMEN DE ANALISIS MATEMATICO IV

2.P.P. SEPTIEMBRE 2005

- 1. Pregunta. Enunciar y demostrar el Teorema del desarrollo en serie de Laurent.
- 2. Pregunta. Describir todas las transformaciones fraccionarias lineales o transformaciones de Möbius que transformen el semiplano superior

$$H^+ = \{z \mid z = x + iy, y > 0\},$$

en el circulo unidad

$$D = \{w \mid |w| < 1\}.$$

3. Pregunta. Dada la ecuación

$$z^4 - 5z + 1 = 0.$$

se pide:

- i) ¿Cuantas raíces están situadas dentro del círculo $D=\{z\,||z|<1\}$? ii) ¿Cuantas raíces están situadas en el anillo $A=\{z\,|1<|z|<2\}$?
- 4. Pregunta. Probar que la función

$$f(z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}$$
,

puede ser prolongada analíticamente a un dominio mayor que su circulo de convergencia por la serie

$$\log 2 - \frac{1-z}{2} - \frac{(1-z)^2}{2 \cdot 2^2} - \frac{(1-z)^3}{3 \cdot 2^3} - \dots$$

Duración del Examen: 2 horas.

RESOLUCION DE LOS PROBLETAS DEL EXAMEN DE ANALISIS MATEMATICO TY SEPTIEMBRE 2005, 2,P.P.

J. PROBLEMA. Dade le ecucción $Z^{4}-57+1=0$,

se pide:
i) s'Cuantes raices estén situades dentro del
circulo D,=32/12/21/3?
circulo D,=32/12/21/3?
A=32/12/21/22/3?

SOLUCION

i) Aplicamos el Teorena de Rachá $f(z) = z^{4} - 5z + L$ g(z) = -5z $|f(z)-g(z)|=|z^{4}-5z+1+5z+1-|z^{4}|=|z^{4}+1| \leq 2, \text{ si } |z|=.$ |g(z)|=5, so |z|=L |g(z)|=5, so |z|=L |g(z)|=1, so |z|=L |g(z)|=1, so |z|=L

luepo fi) les decir une.

ANALISIS MATEMATICO IX SEPTIENBRE 2005. 2.P.P. CCONTINUACION). 2. PROBLEMA. Prober que le funcion $\int_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}$ puede ses cents prolongade ancliticamente a un dominio mayor por la serie $leg 2 - \frac{1-z}{2} - \frac{(1-z)^2}{2 \cdot 2^2} - \frac{(1-z)^3}{3 \cdot 2^3} - \dots$ SOLUCION. En primer luger observation que P(z) = 2 (-1) 2 4 = 1 h=0 Que so \(\lambda(z) = lu(\(\lambda(z) \).

Descrollemen \(\lambda(z) = \lambda(\(\lambda(z) \) = \(\lambda(z) \) \(\lambda(z) \) = \(\lambda(z) \) \(\l $\int_{-1}^{1} (dt) = \lim_{t \to \infty} 2 \int_{-1}^{1} (2t) = \int_{-1}^{1} \frac{1}{t^{2}} \int_{-1}^{1} \frac{1}{2} \int_{-1}^{1} \frac{1}{$ $\int_{1}^{11} (1) = \int_{1}^{1} \frac{1}{(1+z)^{3}} \int_{z=1}^{2} \frac{1}{z^{3}}$ luego el descrollo en serie de Teylor es el expressedo en el enviciendo.