

Améliorez le produit IA de votre start-up

Hourdin Charlène - Août 2022

Agenda

Présentation du projet

Collecte des données via l'API

Détecter les sujets d'insatisfaction

Classification d'images

Appel à projet

01	Le projet	Améliorer la plateforme d'Avis restau avec une nouvelle fonctionnalité de collaboration	
02	Les objectifs	Etudier la faisabilité pour : - Détecter les sujets d'insatisfaction - Labelliser automatiquement les photos postées - Agrémenter la base de données	
03	La mission	 Analyser les commentaires négatif postée par les clients Collecter un échantillon de 200 données via l'API Yelp Analyser les photos postée par les clients 	
04	La méthode	Fournir une page web présentant les résultats de l'analyse	

PRÉSENTATION DU JEU DE DONNÉES

Présentation des jeux de données

L'ensemble de données

990 280 avis

150 346 entreprises 200 100 photos

11 régions métropolitaines

908 915 conseils par 1 987 897 utilisateurs

Plus de 1,2 million d'attributs commerciaux tels que les horaires, le stationnement, la disponibilité et l'ambiance Enregistrements agrégés au fil du temps pour chacune des 131 930 entreprises

Description des données

I cancelled a reservation here BEFORE the reserved time and was still charged \$40 to my credit card!! This policy makes no sense. I understand if I was a...

peas in the guacamole, and the birria is offensively bad. there are a few things worth eating but so many flops

X X X X X

50 000 avis

Filtré sur la catégorie Restaurant

5000 images

2000 train 2000 Validation 1000 test

200 avis

Restaurant New york

COLLECTE DES DONNÉES VIA L'API

Collecte des données

DÉTECTER LES SUJETS D'INSATISFACTION

Répartition des notes

Démarche méthodologique

LDA (Latent Dirichlet Allocation)

Algorithme non supervisé

Le modèle tente de découvrir la proportion de rubriques partagées par des documents au sein d'un corpus de texte

Nombre de sujets

Le nombre de sujets est spécifié par l'utilisateur

Distribution probabiliste

Les sujets sont appris par le modèle sous forme de distribution de probabilité sur les mots rencontrés

Réduction de dimension

Réduction de la taille du vocabulaire en un nombre **K** de rubriques spécifié par l'utilisateur

Extraction des topics

4 sujets d'insatisfaction :

- Le service (temps et personnel)
- Le lieu
- La nourriture
- Le rapport qualité prix médiocre

UOULA

Classification des images

Traitement des images

Features extraction SIFT et ORB

la moyenne des descripteurs Sift: 26.74167 la moyenne des descripteurs ORB: 136.64275

ACP

Comparaison ARI - SIFT et VGG16

Comparaison des résultats du clustering

VGG16

Démarche de traitement des images

Apprentissage: CNN

- tâches de classification, de détection et segmentation d'images
- méthode incontournable pour les prédictions impliquant n'importe quelle image en entrée.
- Précision des résultats très élevées

Layer (type)	Output Shape	Param #
conv2d_9 (Conv2D)	(None, 224, 224, 32)	896
<pre>max_pooling2d_9 (MaxPooling 2D)</pre>	(None, 112, 112, 32)	0
dropout_9 (Dropout)	(None, 112, 112, 32)	0
conv2d_10 (Conv2D)	(None, 112, 112, 64)	18496
<pre>max_pooling2d_10 (MaxPoolin g2D)</pre>	(None, 56, 56, 64)	0
dropout_10 (Dropout)	(None, 56, 56, 64)	0
conv2d_11 (Conv2D)	(None, 56, 56, 128)	73856
<pre>max_pooling2d_11 (MaxPoolin g2D)</pre>	(None, 28, 28, 128)	0
dropout_11 (Dropout)	(None, 28, 28, 128)	0
flatten_3 (Flatten)	(None, 100352)	0
dense_3 (Dense)	(None, 5)	501765

Total params: 595,013 Trainable params: 595,013 Non-trainable params: 0

None

Apprentissage : Transfer learning (VGG16)

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
flatten_1 (Flatten)	(None, 25088)	0
dense_1 (Dense)	(None, 128)	3211392
dense_2 (Dense)	(None, 5)	645

Total params: 17,926,725 Trainable params: 3,212,037 Non-trainable params: 14,714,688

Comparaison des modèles de classification CNN et VGG16

VGG16

La précision estimée est de 82.200 %

Comparaison finale

MOLLA

Conclusion

	Resultats	Axe d'amélioration	
NLP	 Interprétation de l'analyse des sujets d'insatisfaction pas évidente. Récupération de 200 avis sur la ville de New-York 	 faire une analyse de sentiment afin de détecter si un commentaire est plutôt positif ou négatif. Filtrer les avis par langues. Essaie avec d'autres méthodes (LSA, PLSA, lda2Vec,). 	
Images	 Bonne précision sur la classification avec les modèles CNN et VGG16. Manque de ressource pour l'entraînement (gpu). 	 Finetune le modèle VGG16 (en utilisant un classifieur XGBoost). Améliorer les modèles en les complexifiant (ajout de couches,). 	

MERCI!

Avez-vous des questions?

