SAR TEST REPORT

Reference No. : WTS16S0961011E V2

FCC ID..... : 2AJVK-SP5014

Applicant: Foto Electric Supply Co., INC.

Address: 1 Rewe St. Brooklyn, New York, 11211, USA

Manufacturer: Foto Electric Supply Co., INC.

Address: 1 Rewe St. Brooklyn, New York, 11211, USA

Product Name: Smart Phone

Model No. : SP5014, CBP4105

Brand.: SLIDE, COBY

FCC 47 CFR Part2(2.1093)

Standards : ANSI/IEEE C95.1-2006

IEEE 1528-2013 & Published RF Exposure KDB Procedures

Date of Receipt sample.... : Oct. 18, 2016

Date of Test : Oct. 24, 2016 - Nov. 03, 2016

Date of Issue : Dec. 06, 2016

Test Result: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

Reference No.: WTS16S0961011E V2 Page 2 of 186

2 Laboratories Introduction

Waltek Services Test Group Ltd is a professional third-party testing and certification organization with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by CNAS (China National Accreditation Service for Conformity Assessment) AQSIQ, CMA and IECEE for CBTL. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek(ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc.

Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen and have branches in Foshan, Dongguan, Zhongshan, Suzhou, Ningbo and Hong Kong, Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), reliablity and energy performance, Chemical test. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

3 Contents

		Page
1	COVER PAGE	1
2	LABORATORIES INTRODUCTION	
3	CONTENTS	3
4	REVISION HISTORY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF E.U.T. 5.2 DETAILS OF E.U.T. 5.3 TEST FACILITY	5
6	EQUIPMENT USED DURING TEST	
	6.1 EQUIPMENT LIST	
7	SAR INTRODUCTION	8
	7.1 Introduction	
8	SAR MEASUREMENT SETUP	9
9	EXPOSURE LIMIT	
10	SYSTEM AND LIQUID VALIDATION	20
	10.1 SYSTEM VALIDATION	
11	TYPE A MEASUREMENT UNCERTAINTY	36
12	OUTPUT POWER VERIFICATION	39
13	EXPOSURE CONDITIONS CONSIDERATION	67
14	SAR TEST RESULTS	69
15	SAR MEASUREMENT REFERENCE	83
	MAXIMUM SAR MEASUREMENT PLOTS	
16	CALIBRATION REPORTS-PROBE AND DIPOLE	105
17	RE-CALIBRATION FOR DIPOLE	173
18	SAR SYSTEM PHOTOS	183
19	SETUP PHOTOS	184
20	EUT DUOTOS	194

Reference No.: WTS16S0961011E V2 Page 4 of 186

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S0961011E	Oct.18, 2016	Oct.24- Nov.03, 2016	Nov.17, 2016	original	-	Replaced
WTS16S0961011E V1	-	-	Nov.30, 2016	V1	Update	Replaced
WTS16S0961011E V2	-	-	Dec.06, 2016	V2	Update	Valid

Reference No.: WTS16S0961011E V2 Page 5 of 186

5 General Information

5.1 General Description of E.U.T.

Product Name: Smart Phone

Model No.: SP5014, CBP4105

Model Description: Only the model names and brand names are different.

GSM Band(s): GSM 850/900/1800/1900MHz

GPRS/EGPRS Class: 12

WCDMA Band(s): FDD Band II/V

LTE Bnad(s) LTE Band 2/4/5/7/17

Wi-Fi Specification: 802.11b/g/n HT20/n HT40

Bluetooth Version: Bluetooth v4.0 with BLE

GPS: Support

NFC: N/A

Hardware Version AL_X5S_MB_V11

Software Version 1471835842

Note: This EUT has two SIM card slots, and use same one RF module.

We found that RF parameters are the same, when we insert the card 1 and card 2. So we usually performed the test under main

card slot 1.

5.2 Details of E.U.T.

Operation Frequency GSM/GPRS/EGPRS 850: 824~849MHz

PCS/GPRS/EGPRS 1900: 1850~1910MHz

WCDMA Band II: 1850~1910MHz WCDMA Band V: 824~849MHz LTE Band 2: 1850~1910MHz LTE Band 4: 1710~1755MHz LTE Band 5: 824~849MHz LTE Band 7: 2500-2570MHz LTE Band 17: 706~714MHz

WiFi:

802.11b/g/n HT20: 2412~2462MHz 802.11n HT40: 2422~2452MHz Bluetooth: 2402~2480MHz

Max. RF output power GSM 850: 32.82dBm

PCS1900: 29.86dBm

WCDMA Band II: 22.47dBm WCDMA Band V: 22.18dBm LTE Band 2: 23.24dBm LTE Band 4: 22.28dBm LTE Band 5: 23.08dBm LTE Band 7: 22.5dBm LTE Band 17: 23.16dBm WiFi(2.4G): 9.44dBm Bluetooth: 6.38dBm

Max.SAR: 0.60 W/Kg 1g Head Tissue

0.77 W/Kg 1g Body-worn Tissue

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS16S0961011E V2 Page 6 of 186

Max Simultaneous SAR 0.97 W/Kg

Type of Modulation: GSM,GPRS: GMSK

EDGE: GMSK, 8PSK WCDMA: BPSK LTE: QPSK, 16QAM WiFi: CCK, OFDM

Bluetooth: GFSK, Pi/4 DQPSK,8DPSK

Antenna installation GSM/WCDMA/LTE: internal permanent antenna

WiFi/Bluetooth: internal permanent antenna

Antenna Gain GSM 850: 0.5dBi PCS1900: 1dBi

WCDMA Band II: 1dBi
WCDMA Band V: 0.5dBi
LTE Band 2: 1.0dBi
LTE Band 4: 0.8dBi
LTE Band 5: 0.5dBi
LTE Band 7: 1.0dBi
LTE Band 17: 0.6dBi
WiFi(2.4G): 1dBi
Bluetooth: 1dBi

Technical Data

Battery DC 3.7V, 2000mAh

DC 5V, 1.0A, charging from adapter (Adapter Input: 100-240V~50/60Hz 0.2A

Adapter Manufacture: XINYU EAGLETRON ELECTRONIC CO.LTD.

Model No.: SWN006S050100U1

5.3 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# — Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

6 Equipment Used during Test

6.1 Equipment List

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Calibration Due
6 AXIS ROBOT	KUKA	KR6 R900 SIXX	502635	N/A	N/A
SATIMO Test Software	MVG	OPENSAR	OPENSAR V_4_02_27	N/A	N/A
PHANTOM TABLE	MVG	N/A	SAR_1215_01	N/A	N/A
SAM PHANTOM	MVG	SAM118	SN 11/15 SAM118	N/A	N/A
MultiMeter	Keithley	MiltiMeter 2000	4073942	2016-03-16	2017-03-15
Data Acquisition Electronics	MVG	DAE4	915	2016-03-16	2017-03-15
S-Parameter Network Analyzer	Agilent	8753E	JP38160684	2016-04-02	2017-04-01
Universal Radio Communication Tester	ROHDE&SCHW ARZ	CMU200	112461	2016-03-23	2017-03-22
Wideband Radio Communication Tester	ROHDE&SCHW ARZ	CMW500	/	2016-09-12	2017-09-11
E-Field Probe	MVG	SSE5	SN 07/15 EP249	2016-09-23	2017-09-22
DIPOLE 750	MVG	SID750	SN 09/15 DIP 0G750-357	2015-03-16	2017-03-15
DIPOLE 835	MVG	SID835	SN 09/15 DIP 0G835-358	2015-03-16	2017-03-15
DIPOLE 1800	MVG	SID1800	SN 09/15 DIP 1G800-360	2015-03-16	2017-03-15
DIPOLE 1900	MVG	SID1900	SN 09/15 DIP 1G900-361	2015-03-16	2017-03-15
DIPOLE 2600	MVG	SID2600	SN 16/15 DIP 2G600-376	2015-05-16	2017-05-15
Limesar Dielectric Probe	MVG	SCLMP	SN 11/15 OCPG 69	2016-03-16	2017-03-15
Power Amplifier	BONN	BLWA 0830 -160/100/40D	128740	2016-09-12	2017-09-11
Signal Generator	R&S	SMB100A	105942	2016-09-12	2017-09-11
Power Meter	R&S	NRP2	102031	2016-09-12	2017-09-11

6.2 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

7 SAR Introduction

7.1 Introduction

This measurement report shows compliance of the EUT with ANSI/IEEE C95.1-2006 and FCC 47 CFR Part2 (2.1093)

.

The test procedures, as described in IEEE 1528-2013 Standard for IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques(300MHz~6GHz) and Published RF Exposure KDB Procedures

7.2 SAR Definition

SAR : Specific Absorption Rate

The SAR characterize the absorption of energy by a quantity of tissue

This is related to a increase of the temperature of these tissues during a time period.

DAS =
$$\frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

DAS = $\frac{\sigma E^2}{\rho}$

DAS = $\frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$

$$SAR = \frac{\sigma E^2}{\rho}$$

SAR : Specific Absorption Rate

σ : Liquid conductivity

 $o\varepsilon_r = \varepsilon'$ - $j\varepsilon''$ (complex permittivity of liquid)

$$\circ \sigma = \frac{\varepsilon'' \omega}{\varepsilon_0}$$

ρ: Liquid density
 ο ρ = 1000 g/L = 1000Kg/m³

where:

 σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m3) E = rms electric field strength (V/m)

8 SAR Measurement Setup

SAR bench sub-systems

Scanning System (robot)

- It must be able to scan all the volume of the phantom to evaluate the tridimensional distribution of SAR.
- Must be able to set the probe orthogonal of the surface of the phantom (±30°).
- Detects stresses on the probe and stop itself if necessary to keep the integrity of the probe.

SAM Phantom (Specific Anthropomorphic Mannequin)

- The probe scanning of the E-Field is done in the 2 half of the normalized head.
- The normalized shape of the phantom corresponds to the dimensions of 90% of an adult head size.
- The materials for the phantom should not affect the radiation of the device under test (DUT)
 - Permittivity < 5
- The head is filled with tissue simulating liquid.
- The hand holding the DUT does not have to be modeled.

Biustration du tantônie donnant les points de référence des oreilles, RE et LE, le poi de référence de la bouche, M, la ligne de référence III-F et la hande centrale

Reference No.: WTS16S0961011E V2

The OPENSAR system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (KUKA) with controller and software.
- 2. KUKA Control Panel (KCP).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 4. The functions of the PC plug-in card are to perform the time critical task such as signal filtering, surveillance of the robot operation fast movement interrupts.
- 5. A computer operating Windows 7.
- 6. OPENSAR software.
- 7. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 8. The SAM phantom enabling testing left-hand right-hand and body usage.
- 9. The Position device for handheld EUT.
- 10. Tissue simulating liquid mixed according to the given recipes (see Application Note).
- 11. System validation dipoles to validate the proper functioning of the system.

Reference No.: WTS16S0961011E V2

Data Evaluation

The OPENSAR software automatically executes the following procedure to calculate the field units from the microvolt readings at the probe connector. The parameters used in the valuation are stored in the configuration modules of the software:

Probe	- Sensitivity	Norm _i
Parameters	- Conversion factor	ConvFi
	- Diode compression point	
	Dcpi	
Device	- Frequency	f
Parameter	- Crest factor	cf
Media Parametrs	- Conductivity	σ
i didilicits	- Density	ρ

These parameters must be set correctly in the software. They can either be found in the component documents or be imported into the software from the configuration files issued for the OPENSAR components.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Where V_i = Compensated signal of channel i (i = x , y , z)

 U_i = Input signal of channel i (i = x , y , z)

 cf = Crest factor of exciting field (DASY parameter)

dcp_i = Diode compression point (DASY parameter)

Reference No.: WTS16S0961011E V2 Page 13 of 186

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field probes: $H_i = \sqrt{Vi} \cdot \frac{a_{00} + a_{01}f + a_{02}f^2}{f}$

Where V_i = Compensated signal of channel i (i = x, y, z)

 $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

μV/(V/m)2 for E0field Probes

ConvF= Sensitivity enhancement in solution

a_{ii} = Sensor sensitivity factors for H-field probes

f = Carrier frequency (GHz)

E_i = Electric field strength of channel i in V/m

H_i = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}$$

The primary field data are used to calculate the derived field units.

 $SAR - E_{tot}^2 - \frac{\sigma}{\rho \cdot 1000}$

where SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [siemens/m]

ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

 $P_{per} = \frac{E_{xx}^2}{3770}$ or $P_{per} = H_{xx}^2 \cdot 37.7$

where P_{pwe} = Equivalent power density of a plane wave in mW/cm2

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

SAR Evaluation - Peak Spatial - Average

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in OPENSAR software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

• Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

Reference No.: WTS16S0961011E V2 Page 15 of 186

SAR Evaluation - Peak SAR

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528 standard. It can be conducted for 1 g and 10 g. The OPENSAR system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the fourth order least square polynomial method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 6.1 Close-up side view of ERP's

Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

Test Configuration - Positioning for Cheek / Touch

1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure below), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
- 3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- 4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure below.

Figure 7.2 Side view w/ relevant markings

Test Configuration - Positioning for Ear / 15° Tilt

With the test device aligned in the Cheek/Touch Position":

- 1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
- 2. Rotate the device around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure below).

Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

Test Position – Body Configurations

Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1.0 cm or holster surface and the flat phantom to 0 cm.

9 Exposure limit

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

10 System and liquid validation

10.1 System validation

Fig 8.1 System Setup for System Evaluation

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 30 dBm (1000 mW) before dipole is connected.

Numerical reference SAR values (W/kg) for reference dipole and flat phantom

Frequency (MHz)	1g SAR	10g SAR	Local SAR at surface(above feed-point)	Local SAR at surface(y = 2 cm offset from feedpoint)
300	3.02	2.04	4.40	2.10
450	4.92	3.28	7.20	3.20
750	8.49	5.55	12.6	4.59
835	9.56	6.22	14.1	4.90
900	10.9	6.99	16.4	5.40
1450	29.0	16.0	50.2	6.50
1800	38.4	20.1	69.5	6.80
1900	39.7	20.5	72.1	6.60
2000	41.1	21.1	74.6	6.50
2450	52.4	24.0	104	7.70
2600	55.3	24.6	113	8.29
3000	63.8	25.7	140	9.50

Table 1: system validation (1g)

Measurement Date	Frequency (MHz)	Liquid Type (head/body)	1W Target SAR1g (W/kg)	Measured SAR1g (W/kg)	1W Normalized SAR1g (W/kg)	Deviation (%)
Nov 03,2016	750	head	8.48	0.0847	8.47	-0.1
Nov 03,2016	750	body	8.53	0.0824	8.24	-3.4
Oct 24,2016	835	head	9.53	0.0965	9.65	1.3
Oct 24,2016	835	body	9.44	0.0926	9.26	-1.9
Oct 29,2016	1800	head	37.56	0.3743	37.43	-0.3
Oct 29,2016	1800	body	37.91	0.3960	39.60	4.5
Oct 27,2016	1900	head	39.37	0.3927	39.27	-0.3
Oct 27,2016	1900	body	38.58	0.3686	36.86	-4.5
Nov 01,2016	2600	head	55.02	0.5315	53.15	-3.4
Nov 01,2016	2600	body	53.02	0.5153	51.53	-2.8

Note: system check input power: 10mW

Reference No.: WTS16S0961011E V2

10.2 liquid validation

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

KDB 865664 recommended Tissue Dielectric Parameters

The head and body tissue parameters given in this below table should be used to measure the SAR of transmitters operating in 100 MHz to 6 GHz frequency range. The tissue dielectric parameters of the tissue medium at the test frequency should be within the tolerance required in this document. The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

The head tissue dielectric parameters recommended by IEEE Std 1528-2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in 1528.

Target Frequency	Head 1	Tissue	Body [*]	Tissue
MHz	εr	O' (S/m)	εr	O' (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 2: Recommended Dielectric Performance of Tissue

	Recommended Dielectric Performance of Tissue									
Ingredients		Frequency (MHz)								
(% by weight)	75	0	83	35	18	00	19	00	26	00
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.52	51.83	41.46	52.4	55.2	70.2	54.9	40.4	54.8	68.1
Salt (Nacl)	1.61	1.52	1.45	1.4	0.3	0.4	0.18	0.5	0.1	0.01
Sugar	57.67	46.45	56.0	45.0	0.0	0.0	0.0	58.0	0.0	0.0
HEC	0.1	0.1	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0
Bactericide	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	0.0	0.0	44.5	29.4	44.92	0.0	45.1	31.8
Dielectric	40.93	54.32	42.54	56.1	40.0	53.3	39.9	54.0	39.0	52.5
Conductivity	0.87	0.95	0.91	0.95	1.40	1.52	1.42	1.45	1.96	2.15

Table 3: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 21°0	Temperature: 21°C , Relative humidity: 57%				
Frequency(MHz)	Measured Date	Description	Dielectric Pa	arameters	
i requericy(wiriz)	Measured Date	Description	εr	σ(s/m)	
700	Nov 03,2016	Target Value ±5% window	41.50 39.43 — 43.58	0.90 0.855 — 0.945	
	,	Measurement Value	41.64	0.89	
750	Nov 03,2016	Target Value ±5% window	41.50 39.43 — 43.58	0.90 0.855 — 0.945	
	, -	Measurement Value	41.73	0.89	
835	Oct 24,2016	Target Value ±5% window	41.50 39.43 — 43.58	0.90 0.855 — 0.945	
	00(2 1,2010	Measurement Value	41.58	0.92	
1700	Oct 29,2016	Target Value ±5% window	40.00 38.00 — 42.00	1.40 1.33 — 1.47	
1100	30(20,2010	Measurement Value	40.51	1.39	
1800	Oct 29,2016	Target Value ±5% window	40.00 38.00 — 42.00	1.40 1.33 — 1.47	
	301 20,2010	Measurement Value	40.59	1.39	
1900	Oct 27,2016	Target Value ±5% window	40.00 38.00 — 42.00	1.40 1.33 — 1.47	
	, , ,	Measurement Value	40.85	1.41	
2500	Oct 17,2016	Target Value ±5% window	39.0 37.05 — 40.95	1.96 1.87 — 2.05	
	<u> </u>	Measurement Value	39.42	1.94	
2600	Oct 17,2016	Target Value ±5% window	39.0 37.05 — 40.95	1.96 1.87 — 2.05	
2000	300 17,2010	Measurement Value	39.51	1.94	

Table 4: Dielectric Performance of Body Tissue Simulating Liquid

		: 57%, Measured Date: O		90.0
Frequency(MHz)	Measured Date	Description	Dielectric Pa	arameters
i requericy(wiriz)	Measured Date	Description	εr	σ(s/m)
700	Nov 03,2016	Target Value ±5% window	55.2 52.25 — 57.75	0.97 0.922 — 1.018
		Measurement Value	54.19	0.98
750	Nov 03,2016	Target Value ±5% window	55.2 52.25 — 57.75	0.97 0.922 — 1.018
. 00		Measurement Value	54.65	0.98
835	Oct 24,2016	Target Value ±5% window	55.2 52.25 — 57.75	0.97 0.922 — 1.018
300	Out 24,2010	Measurement Value	55.76	0.98
1700	Oct 29,2016	Target Value ±5% window	53.30 50.64 — 55.97	1.52 1.44 — 1.60
1100	30(20,2010	Measurement Value	53.85	1.50
1800	Oct 29,2016	Target Value ±5% window	53.30 50.64 — 55.97	1.52 1.44 — 1.60
1000	00(20,20)0	Measurement Value	53.71	1.50
1900	Oct 27,2016	Target Value ±5% window	53.30 50.64 — 55.97	1.52 1.44 — 1.60
	001 = 1, , = 0.10	Measurement Value	53.62	1.50
2500	Oct 17,2016	Target Value ±5% window	52.50 49.88 — 55.12	2.16 2.06 — 2.26
	30,20.0	Measurement Value	52.33	2.15
2600	Oct 17,2016	Target Value ±5% window	52.50 49.88 — 55.12	2.16 2.06 — 2.26
2000	300 17,2010	Measurement Value	52.73	2.15

System Verification Plots Product Description: Dipole Model: SID750

Test Date: Nov 03,2016

Medium(liquid type)	HSL_750
Frequency (MHz)	750.000000
Relative permittivity (real part)	41.73
Conductivity (S/m)	0.89
Input power	10mW
E-Field Probe	SN 07/15 EP249
Duty cycle	1:1
Conversion Factor	4.74
Sensor-surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.07
SAR 10g (W/Kg)	0.055968
SAR 1g (W/Kg)	0.084659
SURFACE SAR	VOLUME SAR
To the state of th	130 - 150

Product Description: Dipole Model: SID750 Test Date: Nov 03,2016

Medium(liquid type)	MSL_750		
Frequency (MHz)	750.000000		
Relative permittivity (real part)	54.65		
Conductivity (S/m)	0.98		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	4.85		
Sensor-surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.13		
SAR 10g (W/Kg)	0.054487		
SAR 1g (W/Kg)	0.082422		
SURFACE SAR	VOLUME SAR		
The state of the s	120 - 120 - 120		

Product Description: Dipole Model: SID835 Test Date: Oct 24,2016

Medium(liquid type)	HSL_835		
Frequency (MHz)	835.000000		
Relative permittivity (real part)	41.58		
Conductivity (S/m)	0.92		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	5.05		
Sensor-surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.28		
SAR 10g (W/Kg)	0.062317		
SAR 1g (W/Kg)	0.096482		
SURFACE SAR	VOLUME SAR		
Trunk February Trunk February	0 0001502 0 0001502 0 04046111 0 0002024 0 0002024		

Product Description: Dipole Model: SID835

Test Date: Oct 24,2016

Medium(liquid type)	MSL_835		
Frequency (MHz)	835.00000		
Relative permittivity (real part)	55.76		
Conductivity (S/m)	0.98		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	5.22		
Sensor-surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.37		
SAR 10g (W/Kg)	0.059746		
SAR 1g (W/Kg)	0.092602		
SURFACE SAR	VOLUME SAR The Vasadiration freglated States files		
2 Trans 2 Tran	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Product Description: Dipole Model: SID1800 Test Date: Oct 29,2016

Medium(liquid type)	HSL_1800		
Frequency (MHz)	1800.000		
Relative permittivity (real part)	40.59		
Conductivity (S/m)	1.39		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	4.21		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.60		
SAR 10g (W/Kg)	0.198695		
SAR 1g (W/Kg)	0.374253		
SURFACE SAR	VOLUME SAR		
2 0 200	0 250000 60 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Product Description: Dipole Model: SID1800 Test Date: Oct 29,2016

Medium(liquid type)	MSL_1800		
Frequency (MHz)	1800.000		
Relative permittivity (real part)	53.71		
Conductivity (S/m)	1.50		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	4.33		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.18		
SAR 10g (W/Kg)	0.209895		
SAR 1g (W/Kg)	0.396029		
SURFACE SAR	VOLUME SAR		
2 (1994)	0, 100/25		

Product Description: Dipole Model: SID1900

Test Date: Oct 27,2016

Medium(liquid type)	HSL_1900		
Frequency (MHz)	1900.000		
Relative permittivity (real part)	40.85		
Conductivity (S/m)	1.41		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	4.86		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.21		
SAR 10g (W/Kg)	0.204692		
SAR 1g (W/Kg)	0.392731		
SURFACE SAR	VOLUME SAR		
STATE CANCEL TO SERVICE TO SERVIC	0.000121 0.000000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000		

Product Description: Dipole Model: SID1900 Test Date: Oct 27,2016

Medium(liquid type)	MSL_1900		
Frequency (MHz)	1900.000		
Relative permittivity (real part)	53.62		
Conductivity (S/m)	1.50		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	5.05		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.43		
SAR 10g (W/Kg)	0.198502		
SAR 1g (W/Kg)	0.368621		
SURFACE SAR	VOLUME SAR		
E 1870 E	0 1 190000 0 1 190000 0 1 190000 0 0 1100000 0 0 1100000 0 0 1100000 0 0 1100000 0 0 110		

Product Description: Dipole

Model: SID2600 Test Date: Nov 01,2016

Medium(liquid type)	HSL_2600		
Frequency (MHz)	2600.000		
Relative permittivity (real part)	39.51		
Conductivity (S/m)	1.94		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	4.18		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.23		
SAR 10g (W/Kg)	0.240540		

 SAR 1g (W/Kg)
 0.531501

 SURFACE SAR
 VOLUME SAR

Product Description: Dipole Model: SID2600 Test Date: Nov 01,2016

Medium(liquid type)	MSL_2600		
Frequency (MHz)	2600.000		
Relative permittivity (real part)	52.73		
Conductivity (S/m)	2.15		
Input power	10mW		
E-Field Probe	SN 07/15 EP249		
Duty cycle	1:1		
Conversion Factor	4.31		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.25		
SAR 10g (W/Kg)	0.233289		
SAR 1g (W/Kg)	0.515317		
SURFACE SAR	VOLUME SAR		
2.75 (and b) (2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		

11 Type a Measurement Uncertainty

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table below:

Uncertainty Distribution	Normal	Rectangle	Triangular	U Shape
Multi-plying Factor ^(a)	1/k ^(b)	1 /√3	1/√6	1 / √2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type -sumby taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %.

The COMOSAR Uncertainty Budget is show in below table:

UNCERTAINT	Y FOR	SYST	EM P	ERFOR	MANCE	CHECI	Κ	
Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	ci (1 g)	ci (10 g)	1 g ui (± %)	10 g ui (± %)	vi
Measurement System								
Probe Calibration	5,8	N	1	1	1	5,8	5,8	∞
Axial Isotropy	3,5	R	√3	(1- cp)1/2	(1- cp)1/2	1,42887	1,42887	∞
Hemispherical Isotropy	5,9	R	√3	√Ср	√Ср	2,40866	2,40866	∞
Boundary Effect	1	R	√3	1	1	0,57735	0,57735	∞
Linearity	4,7	R	√3	1	1	2,71355	2,71355	8
System Detection Limits	1	R	√3	1	1	0,57735	0,57735	∞
Readout Electronics	0,5	N	1	1	1	0,5	0,5	8
Response Time	0	R	√3	1	1	0	0	8
Integration Time	1,4	R	√3	1	1	0,80829	0,80829	8
RF Ambient Conditions	3	R	√3	1	1	1,73205	1,73205	8
Probe Positioner Mechanical Tolerance	1,4	R	√3	1	1	0,80829	0,80829	∞
Probe Positioning with respect to Phantom Shell	1,4	R	√3	1	1	0,80829	0,80829	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	2,3	R	√3	1	1	1,32791	1,32791	∞
Dipole								
Dipole Axis to Liquid Distance	2	N	√3	1	1	1,1547	1,1547	N-1
Input Power and SAR drift measurement	5	R	√3	1	1	2,88675	2,88675	∞
Phantom and Tissue Parameters		1	1	T	ı	1	1	
Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1	2,3094	2,3094	∞
Liquid Conductivity - deviation from target values	5	R	√3	0,64	0,43	1,84752	1,2413	∞
Liquid Conductivity - measurement uncertainty	4	N	1	0,64	0,43	2,56	1,72	М
Liquid Permittivity - deviation from target values	5	R	√3	0,6	0,49	1,73205	1,41451	∞
Liquid Permittivity - measurement uncertainty	5	N	1	0,6	0,49	3	2,45	М
Combined Standard Uncertainty		RSS				9.6671	9.1646	
Expanded Uncertainty (95% CONFIDENCE INTERVAL)		k				19.3342	18.3292	

UNCERTAINTY	' EVAL	UATIO	ON FC	R HAN	DSET S	AR TES	ST	
Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	c _i (1 g)	c _i (10 g)	1 g u _i (± %)	10 g u _i (± %)	Vi
Measurement System								
Probe Calibration	5,8	N	1	1	1	5,8	5,8	∞
Axial Isotropy	3,5	R	√3	$(1-c_p)^{1/2}$	$(1-c_p)^{1/2}$	1,43	1,43	8
Hemispherical Isotropy	5,9	R	√3	√C _p	$\sqrt{C_p}$	2,41	2,41	∞
Boundary Effect	1	R	√3	1	1	0,58	0,58	∞
Linearity	4,7	R	√3	1	1	2,71	2,71	∞
System Detection Limits	1	R	√3	1	1	0,58	0,58	∞
Readout Electronics	0,5	N	1	1	1	0,50	0,50	∞
Response Time	0	R	√3	1	1	0,00	0,00	∞
Integration Time	1,4	R	√3	1	1	0,81	0,81	∞
RF Ambient Conditions	3	R	√3	1	1	1,73	1,73	∞
Probe Positioner Mechanical Tolerance	1,4	R	√3	1	1	0,81	0,81	8
Probe Positioning with respect to Phantom Shell	1,4	R	√3	1	1	0,81	0,81	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	2,3	R	√3	1	1	1,33	1,33	8
Test sample Related								
Test Sample Positioning	2,6	N	1	1	1	2,60	2,60	N-1
Device Holder Uncertainty	3	N	1	1	1	3,00	3,00	N-1
Output Power Variation - SAR drift measurement	5	R	√3	1	1	2,89	2,89	∞
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1	2,31	2,31	∞
Liquid Conductivity - deviation from target values	5	R	√3	0,64	0,43	1,85	1,24	∞
Liquid Conductivity - measurement uncertainty	4	N	1	0,64	0,43	2,56	1,72	М
Liquid Permittivity - deviation from target values	5	R	√3	0,6	0,49	1,73	1,41	8
Liquid Permittivity - measurement uncertainty	5	N	1	0,6	0,49	3,00	2,45	М
Combined Standard Uncertainty		RSS				10.39	9.92	
Expanded Uncertainty (95% CONFIDENCE INTERVAL)		k				20.78	19.84	

12 Output Power Verification

Test Condition:

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The base station simulator was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz = 40GHz is +1.5dB.

normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

Environmental Conditions Temperature 23°C

Relative Humidity 53%
Atmospheric Pressure 1019mbar

4 Test Date: Oct 24,2016 Tested By: Damon Wang

Test Procedures:

Smart Phone radio output power measurement

- 1. The transmitter output port was connected to base station emulator.
- 2. Establish communication link between emulator and EUT and set EUT to operate at maximum output power all the time.
- 3. Select lowest, middle, and highest channels for each band and different possible test mode.
- 4. Measure the conducted peak burst power and conducted average burst power from EUT antenna port.

Other radio output power measurement:

The output power was measured using power meter at low, mid, and hi channels.

Source-based Time Averaged Burst Power Calculation:

For TDMA, the following duty cycle factor was used to calculate the source-based time average power

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Duty cycle factor	-9.03 dB	-6.02 dB	-4.26 dB	-3.01 dB
Crest Factor	8	4	2.66	2

Remark: <u>Time slot duty cycle factor = 10 * log (Time Slot Duty Cycle)</u>

Source based time averaged power = Maximum burst averaged power (1 Uplink) – 9.03 dB Source based time averaged power = Maximum burst averaged power (2 Uplink) – 6.02 dB Source based time averaged power = Maximum burst averaged power (3 Uplink) – 4.26 dB Source based time averaged power = Maximum burst averaged power (4 Uplink) – 3.01 dB

Test Result:

	Burst Average Power (dBm);													
Band		GS	M850		PCS1900									
Channel	128	190	251	Tune up Power tolerant	512	661	810	Tune up Power tolerant						
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/						
GSM Voice	32.80	32.68	32.38	32±1	29.73	29.85	29.47	29±1						
GPRS 1 slots	32.85	33.00	33.02	32.5±1	29.74	29.88	29.48	29±1						
GPRS 2 slots	31.59	31.47	31.58	31±1	28.56	28.47	28.59	28±1						
GPRS 3 slots	30.25	30.58	30.54	30±1	27.32	27.48	27.65	27±1						
GPRS 4 slots	29.65	29.31	29.58	29±1	27.59	27.65	27.58	27±1						
EGPRS 1 slots	27.07	27.01	26.70	26.5±1	25.94	25.91	25.90	25±1						
EGPRS 2 slots	25.36	25.89	25.48	25±1	24.65	24.78	24.39	24±1						
EGPRS 3 slots	24.65	24.78	24.32	24±1	23.65	23.47	23.69	23±1						
EGPRS 4 slots	23.69	23.65	23.48	23±1	22.58	22.36	22.45	22±1						

Remark:

GPRS, CS1 coding scheme. EGPRS, MCS5 coding scheme.

Multi 1 Slot , Support Max 4 downlink, 1 uplink , 5 working link Multi 2 Slots , Support Max 4 downlink, 2 uplink , 5 working link Multi 3 Slots , Support Max 4 downlink, 3 uplink , 5 working link Multi 4 Slots , Support Max 4 downlink, 4 uplink , 5 working link

	8	Source Ba	sed time	Average Powe	r (dBm)			
Band		G	SM850			P	CS1900	
Channel	128	190	251	Time Average factor	512	661	810	Time Average factor
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/
GSM Voice	23.77	23.65	23.35	-9.03	20.70	20.82	20.44	-9.03
GPRS 1 slots	23.82	23.97	23.99	-9.03	20.71	20.85	20.45	-9.03
GPRS 2 slots	25.57	25.45	25.56	-6.02	22.54	22.45	22.57	-6.02
GPRS 3 slots	25.99	26.32	26.28	-4.26	23.06	23.22	23.39	-4.26
GPRS 4 slots	26.64	26.30	26.57	-3.01	24.58	24.64	24.57	-3.01
EGPRS 1 slots	18.04	17.98	17.67	-9.03	16.91	16.88	16.87	-9.03
EGPRS 2 slots	19.34	19.87	19.46	-6.02	18.63	18.76	18.37	-6.02
EGPRS 3 slots	20.39	20.52	20.06	-4.26	19.39	19.21	19.43	-4.26
EGPRS 4 slots	20.68	20.64	20.47	-3.01	19.57	19.35	19.44	-3.01

Remark:

Time average factor = 1 uplink , 10*log(1/8)=-9.03dB , 2 uplink , 10*log(2/8)=-6.02dB , 3 uplink , 10*log(3/8)=-4.26dB , 4 uplink , 10*log(4/8)=-3.01dB

Source based time average power = Burst Average power + Time Average factor

Note: DUT was set in GPRS(4Tx slots) due to the Maximum source-base time average output power for body SAR.

	WCDMA - Average Power (dBm)												
Band		WCDN	IA Band I	I	WCDMA Band V								
Channel	9262	9400	9538	Tune up Power tolerant	4132	4183	4233	Tune up Power tolerant					
Frequency (MHz)	1852.4	1880	1907.6	/	826.4	836.6	846.6	/					
RMC 12.2k	22.02	22.37	22.47	22±1	22.18	22.08	22.16	22±1					
HSDPA Subtest-1	21.10	21.20	21.27	21±1	21.37	21.13	21.20	21±1					
HSDPA Subtest-2	21.67	21.47	21.25	21±1	21.48	21.47	21.65	21±1					
HSDPA Subtest-3	21.36	21.21	21.34	21±1	21.35	21.47	21.58	21±1					
HSDPA Subtest-4	21.35	21.14	21.58	21±1	21.47	21.65	21.35	21±1					
HSUPA Subtest-1	21.11	21.26	21.38	21±1	21.30	21.16	21.22	21±1					
HSUPA Subtest-2	21.47	21.59	21.35	21±1	21.47	21.35	21.48	21±1					
HSUPA Subtest-3	21.47	21.36	21.47	21±1	21.35	21.36	21.47	21±1					
HSUPA Subtest-4	21.52	21.31	21.17	21±1	21.58	21.36	21.31	21±1					
HSUPA Subtest-5	21.47	21.58	21.47	21±1	21.29	21.24	21.37	21±1					

LTE Power Reduction

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (RB)							
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1		
16 QAM	≤ 5	≤4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1		
16 QAM	>5	>4	>8	> 12	> 16	> 18	≤ 2		

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signalling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks ($N_{ m RB}$)	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
		0 4 40 00 05	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
			15	>8	≤ 1
			20	>10	≤ 1
NS 04	6.6.2.2.2	41	5	>6	≤ 1
140_04	0.0.2.2.2	71	10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	231	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
			-, -, -, -		
NS_32	-	-	-	-	-
Note 1: A	pplies to the lower l	block of Band 23, i.e	a carrier place	d in the 2000-201	10 MHz region.

LTE Band 2:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)	
				1	0	22.91	22.5±1	/	
				1	2	22.97	22.5±1	/	
				1	5	22.9	22.5±1	/	
			QPSK	3	0	22.3	22.0±1	/	
				3	1	22.42	22.0±1	/	
				3	2	22.41	22.0±1	/	
	18607	1850.7		6	0	21.89	22.0±1	0.5	
	10007	1650.7		1	0	21.76	21.5±1	1.0	
				1	2	21.84	21.5±1	1.0	
				1	5	21.76	21.5±1	1.0	
			16QAM	3	0	21.74	21.5±1	1.0	
				3	1	21.75	21.5±1	1.0	
				3	2	21.77	21.5±1	1.0	
					6	0	20.92	21.5±1	1.0
					1	0	23.06	22.5±1	/
					1	2	23.16	22.5±1	/
						1	5	23.09	22.5±1
			QPSK	3	0	22.08	22.0±1	/	
				3	1	22.33	22.0±1	/	
				3 2 22.1	22.0±1	/			
1.4MHz	18900	1880		6	0	22.17	22.0±1	0.5	
1	10000	1000		1	0	22.31	21.5±1	1.0	
				1	2	22.36	21.5±1	1.0	
				1	5	22.32	21.5±1	1.0	
			16QAM	3	0	22.17	21.5±1	1.0	
				3	1	22.16	21.5±1	1.0	
				3	2	22.2	21.5±1	1.0	
				6	0	20.96	21.5±1	1.0	
				1	0	23.03	22.5±1	/	
				1	2	23.16	22.5±1	/	
				1	5	23.05	22.5±1	/	
			QPSK	3	0	22.97	22.0±1	/	
				3	1	22.23	22.0±1	/	
				3	2	22.18	22.0±1	/	
	19193	193 1909.3 -		6	0	22.16	22.0±1	0.5	
				1	0	21.86	21.5±1	1.0	
				1	2	21.92	21.5±1	1.0	
			400 ***	1	5	21.86	21.5±1	1.0	
			16QAM	3	0	22.02	21.5±1	1.0	
				3	1	22.02	21.5±1	1.0	
				3	2	22	21.5±1	1.0	
				6	0	21.14	21.5±1	1.0	

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)			
				1	0	22.96	22.5±1	/			
				1	8	22.99	22.5±1	/			
				1	14	22.86	22.5±1	/			
			QPSK	6	0	21.95	22.0±1	0.5			
				6	4	21.94	22.0±1	0.5			
		1851.5		6	9	21.95	22.0±1	0.5			
	40045			15	0	21.85	22.0±1	0.5			
	18615	1001.0		1	0	21.58	21.5±1	1.0			
				1	8	21.64	21.5±1	1.0			
				1	14	21.57	21.5±1	1.0			
			16QAM	6	0	20.96	21.5±1	1.0			
				6	4	20.96	21.5±1	1.0			
				6	9	20.96	21.5±1	1.0			
				15	0	20.83	21.5±1	1.0			
				1	0	23.05	22.5±1	/			
				1	8	23.13	22.5±1	/			
							1	14	23.06	22.5±1	/
			QPSK	6	0	22.13	22.0±1	0.5			
				6	4	4 22.13	22.0±1	0.5			
				6 9 22.13	22.0±1	0.5					
3MHz	18900	1880		15	0	22.05	22.0±1	0.5			
SIVITZ	10900	1000		1	0	22.28	21.5±1	1.0			
						1	8	22.34	21.5±1	1.0	
				1	14	22.28	21.5±1	1.0			
			16QAM	6	0	21.14	21.5±1	1.0			
				6	4	21.16	21.5±1	1.0			
				6	9	21.14	21.5±1	1.0			
				15	0	21.07	21.5±1	1.0			
				1	0	23	22.5±1	/			
				1	8	23.09	22.5±1	/			
				1	14	22.92	22.5±1	/			
			QPSK	6	0	22.11	22.0±1	0.5			
				6	4	22.14	22.0±1	0.5			
				6	9	22.13	22.0±1	0.5			
	10105	1009 5		15	0	22.03	22.0±1	0.5			
	19185 1908.5 -		1	0	21.87	21.5±1	1.0				
			1	8	21.87	21.5±1	1.0				
			1	14	21.77	21.5±1	1.0				
		16QAM	6	0	21.06	21.5±1	1.0				
				6	4	21.07	21.5±1	1.0			
				6	9	21.03	21.5±1	1.0			
				15	0	20.94	21.5±1	1.0			

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.9	22.5±1	/
				1	12	22.33	22.5±1	/
				1	24	22.44	22.5±1	/
			QPSK	12	0	21.67	22.0±1	0.5
				12	6	21.46	22.0±1	0.5
				12	11	21.42	22.0±1	0.5
	40005	4050 F		25	0	21.49	22.0±1	0.5
	18625	1852.5		1	0	21.69	21.5±1	1.0
				1	12	21.24	21.5±1	1.0
				1	24	21.44	21.5±1	1.0
			16QAM	12	0	20.88	21.5±1	1.0
				12	6	20.67	21.5±1	1.0
				12	11	20.75	21.5±1	1.0
				25	0	20.62	21.5±1	1.0
				1	0	23.14	22.5±1	/
				1	12	23.15	22.5±1	/
				1	24	23.16	22.5±1	/
			QPSK	12	0	22.11	22.0±1	0.5
				12	6 22.09	22.0±1	0.5	
				12	11	22.11	22.0±1	0.5
CN41.1-	40000	1880		25	0	22.02	22.0±1	0.5
5MHz	18900			1	0	22.25	21.5±1	1.0
				1	12	22.24	21.5±1	1.0
				1	24	22.22	21.5±1	1.0
			16QAM	12	0	21.15	21.5±1	1.0
				12	6	21.14	21.5±1	1.0
				12	11	21.16	21.5±1	1.0
				25	0	21.02	21.5±1	1.0
				1	0	23.08	22.5±1	/
				1	12	22.91	22.5±1	/
				1	24	22.83	22.5±1	/
			QPSK	12	0	22.08	22.0±1	0.5
				12	6	22.06	22.0±1	0.5
				12	11	22.06	22.0±1	0.5
	10175	1007 F		25	0	22	22.0±1	0.5
	19175 1907.5	1907.5		1	0	22.64	21.5±1	1.0
				1	12	22.54	21.5±1	1.0
				1	24	22.45	21.5±1	1.0
			16QAM	12	0	21.05	21.5±1	1.0
				12	6	21.02	21.5±1	1.0
				12	11	20.99	21.5±1	1.0
				25	0	20.9	21.5±1	1.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)			
				1	0	22.43	22.5±1	/			
				1	24	22.81	22.5±1	/			
				1	49	22.87	22.5±1	/			
			QPSK	25	0	22.33	22.0±1	0.5			
				25	12	22.1	22.0±1	0.5			
				25	24	21.98	22.0±1	0.5			
	18650	1855		50	0	21.18	22.0±1	0.5			
	10000	1655		1	0	21.53	21.5±1	1.0			
				1	24	21.71	21.5±1	1.0			
				1	49	21.42	21.5±1	1.0			
			16QAM	25	0	20.64	21.5±1	1.0			
				25	12	20.83	21.5±1	1.0			
					ı			25	24	20.72	21.5±1
				50	0	20.58	21.5±1	1.0			
				1	0	23.16	22.5±1	/			
				1	24	23.15	22.5±1	/			
					1	49	23.11	22.5±1	/		
			QPSK	25	0	22.07	22.0±1	0.5			
				25	12		22.0±1	0.5			
		1880		25	24	22.08	22.0±1	0.5			
10MHz	18900			50	0	22.08	22.0±1	0.5			
TOWNIZ	10300			1	0	22.41	21.5±1	1.0			
				1	24	22.34	21.5±1	1.0			
				1	49	22.35	21.5±1	1.0			
			16QAM	25	0	21.08	21.5±1	1.0			
				25	12	21.07	21.5±1	1.0			
				25	24	21.1	21.5±1	1.0			
				50	0	21.1	21.5±1	1.0			
				1	0	21.87	22.5±1	/			
				1	24	22.75	22.5±1	/			
				1	49	22.42	22.5±1	/			
			QPSK	25	0	21.41	22.0±1	0.5			
				25	12	21.88	22.0±1	0.5			
				25	24	22.01	22.0±1	0.5			
	19150	1905		50	0	21.71	22.0±1	0.5			
	19150 1905 -		1	0	20.71	21.5±1	1.0				
			1	24	21.74	21.5±1	1.0				
			1	49	21.44	21.5±1	1.0				
		16QAM	25	0	20.79	21.5±1	1.0				
				25	12	20.98	21.5±1	1.0			
				25	24	21.12	21.5±1	1.0			
				50	0	20.82	21.5±1	1.0			

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.47	22.5±1	/
				1	37	21.89	22.5±1	/
				1	74	22.21	22.5±1	/
			QPSK	36	0	21.31	22.0±1	0.5
				36	16	21.66	22.0±1	0.5
				36	35	21.28	22.0±1	0.5
	10675	10F7 F		75	0	21.08	22.0±1	0.5
	18675	1857.5		1	0	21.22	21.5±1	1.0
				1	37	21.45	21.5±1	1.0
				1	74	21.18	21.5±1	1.0
			16QAM	36	0	20.85	21.5±1	1.0
				36	16	20.96	21.5±1	1.0
				36	35	20.58	21.5±1	1.0
				75	0	20.61	21.5±1	1.0
				1	0	23.2	22.5±1	/
				1	37	23.16	22.5±1	/
				1	74	22.58	22.5±1	/
15MHz 1890			QPSK	36	0	22.24	22.0±1	0.5
				36	16	22.24	22.0±1	0.5
				36	35	22.28	22.0±1	0.5
	18900	1880		75	0	22.25	22.0±1	0.5
1 JIVII 12	10900	1000		1	0	22.44	21.5±1	1.0
				1	37	22.35	21.5±1	1.0
				1	74	21.91	21.5±1	1.0
			16QAM	36	0	21.23	21.5±1	1.0
				36	16	21.21	21.5±1	1.0
				36	35	21.22	21.5±1	1.0
				75	0	21.18	21.5±1	1.0
				1	0	21.71	22.5±1	/
				1	37	22.26	22.5±1	/
				1	74	22.61	22.5±1	/
			QPSK	36	0	21.67	22.0±1	0.5
				36	16	21.29	22.0±1	0.5
				36	35	21.85	22.0±1	0.5
	19125	1902.5		75	0	21.24	22.0±1	0.5
	19120	1902.5		1	0	20.81	21.5±1	1.0
				1	37	21.49	21.5±1	0.5 0.5 0.5
		16QAM	1	74	21.81	21.5±1	1.0	
			16QAM	36	0	20.63	21.5±1	1.0
				36	16	20.77	21.5±1	1.0
				36	35	20.87	21.5±1	1.0
				75	0	20.59	21.5±1	1.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.36	22.5±1	/
				1	49	21.83	22.5±1	/
				1	99	22.75	22.5±1	/
			QPSK	50	0	21.99	22.0±1	0.5
				50	24	21.94	22.0±1	0.5
				50	49	21.27	22.0±1	0.5
	18700	1860		100	0	21.11	22.0±1	0.5
	10700	1860		1	0	21.75	21.5±1	1.0
				1	49	21.32	21.5±1	1.0
				1	99	22.25	21.5±1	1.0
			16QAM	50	0	20.99	21.5±1	1.0
				50	24	20.95	21.5±1	1.0
				50	49	20.64	21.5±1	1.0
				100	0	20.69	21.5±1	1.0
				1	0	23.18	22.5±1	/
				1	49	23.24	22.5±1	/
				1	99	23.01	22.5±1	/
			QPSK	50	0	22.13	22.0±1	0.5
				50	24	22.15	22.0±1	0.5
				50	49	22.06	22.0±1	0.5
20MHz	18900	1880		100	0	22.12	22.0±1	0.5
201011 12	10900	1000		1	0	22.47	21.5±1	1.0
				1	49	22.4	21.5±1	1.0
				1	99	21.7	21.5±1	1.0
			16QAM	50	0	21.14	21.5±1	1.0
				50	24	21.09	21.5±1	1.0
				50	49	21.1	21.5±1	1.0
				100	0	21.1	21.5±1	1.0
				1	0	22.01	22.5±1	/
				1	49	21.58	22.5±1	/
				1	99	22.52	22.5±1	/
			QPSK	50	0	21.5	22.0±1	0.5
				50	24	21.76	22.0±1	0.5
				50	49	21.53	22.0±1	0.5
	19100	1900		100	0	21.29	22.0±1	0.5
	19100	1900		1	0	21.17	21.5±1	1.0
				1	49	20.91	21.5±1	1.0
		16QAM		1	99	21.85	21.5±1	1.0
			16QAM	50	0	20.68	21.5±1	1.0
				50	24	20.77	21.5±1	1.0
				50	49	20.56	21.5±1	1.0
				100	0	20.57	21.5±1	1.0

LTE Band 4:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.05	22.0±1	/
				1	2	22.03	22.0±1	/
				1	5	22.02	22.0±1	/
			QPSK	3	0	21.76	21.0±1	/
				3	1	21.85	21.0±1	/
				3	2	21.73	21.0±1	/
	19957	1710.7		6	0	21.2	21.0±1	1.0
	19931	1710.7		1	0	21.1	21.0±1	1.0
				1	2	21.11	21.0±1	1.0
				1	5	21.07	21.0±1	1.0
			16QAM	3	0	20.97	20.0±1	2.0
				3	1	20.77	20.0±1	2.0
				3	2	20.82	20.0±1	2.0
				6	0	20.13	20.0±1	2.0
				1	0	21.9	22.0±1	/
				1	2	21.89	22.0±1	/
				1	5	21.89	22.0±1	/
1.4MHz			QPSK	3	0	21.51	21.0±1	/
				3	1	21.64	21.0±1	/
				3	2	21.53	21.0±1	/
	20175	1732.5		6	0	20.86	21.0±1	1.0
1	20173	1732.3		1	0	21.25	21.0±1	1.0
				1	2	21.21	21.0±1	1.0
				1	5	21.2	21.0±1	1.0
			16QAM	3	0	20.65	20.0±1	2.0
				3	1	20.56	20.0±1	2.0
				3	2	20.86	20.0±1	2.0
				6	0	19.74	20.0±1	2.0
				1	0	21.74	22.0±1	/
				1	2	21.82	22.0±1	/
				1	5	21.77	22.0±1	/
			QPSK	3	0	21.79	21.0±1	/
				3	1	21.81	21.0±1	/
				3	2	21.8	21.0±1	/
	20393	1754.3		6	0	20.83	21.0±1	1.0
	20000	1754.5		1	0	20.69	21.0±1	1.0
				1	2	20.73	21.0±1	1.0
				1	5	20.73	21.0±1	1.0
			16QAM	3	0	20.91	20.0±1	2.0
				3	1	20.91	20.0±1	2.0
				3	2	20.9	20.0±1	2.0
				6	0	19.92	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)		
				1	0	22.01	22.0±1	/		
				1	8	22.05	22.0±1	/		
				1	14	21.98	22.0±1	/		
			QPSK	6	0	21.1	21.0±1	1.0		
				6	4	21.09	21.0±1	1.0		
				6	9	21.08	21.0±1	1.0		
	19965	1711.5		15	0	21.04	21.0±1	1.0		
	19905	1/11.5		1	0	20.86	21.0±1	1.0		
				1	8	20.89	21.0±1	1.0		
				1	14	20.84	21.0±1	1.0		
			16QAM	8	0	20.2	20.0±1	2.0		
				8	4	20.2	20.0±1	2.0		
				8	9	20.17	20.0±1	2.0		
				15	0	20.08	20.0±1	2.0		
				1	0	21.87	22.0±1	/		
				1	8	21.89	22.0±1	/		
				1	14	21.85	22.0±1	/		
			QPSK	6	0	20.94	21.0±1	1.0		
				6	4	20.94	21.0±1	1.0		
				6	9	20.92	21.0±1	1.0		
2N4LI=	20475	4700 5		15	0	20.87	21.0±1	1.0		
3MHz	20175	1732.5		1	0	21.19	21.0±1	1.0		
				1	8	21.2	21.0±1	1.0		
				1	14	21.16	21.0±1	1.0		
			16QAM	6	0	20.03	20.0±1	2.0		
				6	4	20.03	20.0±1	2.0		
				6	9	20	20.0±1	2.0		
				15	0	19.92	20.0±1	2.0		
				1	0	21.73	22.0±1	/		
				1	8	21.76	22.0±1	/		
				1	14	21.71	22.0±1	/		
			QPSK	6	0	20.82	21.0±1	1.0		
				6	4	20.85	21.0±1	1.0		
				6	9	20.86	21.0±1	1.0		
	00005	4750.5		15	0	20.8	21.0±1	1.0		
	20385	1753.5		1	0	20.69	21.0±1	1.0		
				1	8	20.68	21.0±1	1.0		
				1	14	20.65	21.0±1	1.0		
			16QAM	6	0	19.84	20.0±1	2.0		
				6	4	19.87	20.0±1	2.0		
				6	9	19.85	20.0±1	2.0		
1						15	0	19.76	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.09	22.0±1	/
				1	49	22.08	22.0±1	/
				1	99	22.02	22.0±1	/
			QPSK	12	0	21.09	21.0±1	1.0
				12	24	21.05	21.0±1	1.0
				12	49	21.06	21.0±1	1.0
	19975	1712.5		25	0	21.03	21.0±1	1.0
	19975	1712.5		1	0	21.06	21.0±1	1.0
				1	49	21.05	21.0±1	1.0
				1	99	21	21.0±1	1.0
			16QAM	12	0	20.12	20.0±1	2.0
				12	24	20.09	20.0±1	2.0
				12	49	20.09	20.0±1	2.0
				25	0	20.14	20.0±1	2.0
				1	0	21.96	22.0±1	/
				1	49	21.56	22.0±1	/
				1	99	21.73	22.0±1	/
			QPSK	12	0	20.84	21.0±1	1.0
				12	24	20.56	21.0±1	1.0
				12	49	20.53	21.0±1	1.0
5MHz	20175	1732.5		25	0	20.62	21.0±1	1.0
SIVII IZ	20173	1702.0		1	0	21.2	21.0±1	1.0
				1	49	20.78	21.0±1	1.0
				1	99	20.94	21.0±1	1.0
			16QAM	12	0	19.96	20.0±1	2.0
				12	24	19.69	20.0±1	2.0
				12	49	19.7	20.0±1	2.0
				25	0	19.71	20.0±1	2.0
				1	0	21.83	22.0±1	/
				1	49	21.83	22.0±1	/
				1	99	21.79	22.0±1	/
			QPSK	12	0	20.81	21.0±1	1.0
				12	24	20.82	21.0±1	1.0
				12	49	20.82	21.0±1	1.0
	20375	1752.5		25	0	20.74	21.0±1	1.0
	20010	1702.0		1	0	21.46	21.0±1	1.0
				1	49	21.47	21.0±1	1.0
				1	99	21.4	21.0±1	1.0
			16QAM	12	0	19.82	20.0±1	2.0
				12	24	19.84	20.0±1	2.0
				12	49	19.84	20.0±1	2.0
				25	0	19.69	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.15	22.0±1	/
				1	49	22.12	22.0±1	/
				1	99	22.09	22.0±1	/
			QPSK	25	0	21.66	21.0±1	1.0
				25	24	21.72	21.0±1	1.0
				25	49	21.54	21.0±1	1.0
	20000	1715		50	0	21.03	21.0±1	1.0
	20000	1715		1	0	20.98	21.0±1	1.0
				1	49	20.94	21.0±1	1.0
				1	99	20.91	21.0±1	1.0
			16QAM	25	0	20.08	20.0±1	2.0
				25	24	20.08	20.0±1	2.0
				25	49	20.08	20.0±1	2.0
				50	0	20.04	20.0±1	2.0
				1	0	21.98	22.0±1	/
				1	49	21.56	22.0±1	/
				1	99	21.06	22.0±1	/
			QPSK	25	0	20.89	21.0±1	1.0
				25	24	20.55	21.0±1	1.0
				25	49	20.62	21.0±1	1.0
10MHz	20175	1732.5		50	0	20.6	21.0±1	1.0
TOWNIZ	20173	1732.3		1	0	21.29	21.0±1	1.0
				1	49	20.8	21.0±1	1.0
				1	99	20.33	21.0±1	1.0
			16QAM	25	0	19.94	20.0±1	2.0
				25	24	19.62	20.0±1	2.0
				25	49	19.42	20.0±1	2.0
				50	0	19.69	20.0±1	2.0
				1	0	21.78	22.0±1	/
				1	49	21.74	22.0±1	/
				1	99	21.78	22.0±1	/
			QPSK	25	0	20.74	21.0±1	1.0
				25	24	20.75	21.0±1	1.0
				25	49	20.74	21.0±1	1.0
	20350	1750		50	0	20.74	21.0±1	1.0
	20330	1750		1	0	20.78	21.0±1	1.0
				1	49	20.67	21.0±1	1.0
				1	99	20.69	21.0±1	1.0
			16QAM	25	0	19.83	20.0±1	2.0
			IOWAIVI	25	24	19.83	20.0±1	2.0
				25	49	19.83	20.0±1	2.0
				50	0	19.79	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.12	22.0±1	/
				1	49	22.07	22.0±1	/
				1	99	22.03	22.0±1	/
			QPSK	36	0	21.13	21.0±1	1.0
				36	24	21.13	21.0±1	1.0
				36	49	21.11	21.0±1	1.0
	20025	1717.5		75	0	21.13	21.0±1	1.0
	20025	1717.5		1	0	21.01	21.0±1	1.0
				1	49	20.95	21.0±1	1.0
				1	99	20.91	21.0±1	1.0
			16QAM	36	0	20.09	20.0±1	2.0
				36	24	20.14	20.0±1	2.0
				36	49	20.06	20.0±1	2.0
				75	0	20.11	20.0±1	2.0
				1	0	22.04	22.0±1	/
				1	49	21.39	22.0±1	/
				1	99	21.25	22.0±1	/
			QPSK	36	0	20.98	21.0±1	1.0
				36	24	21.31	21.0±1	1.0
				36	49	21.12	21.0±1	1.0
15MHz	20175	1732.5		75	0	20.5	21.0±1	1.0
1311112	20173	1732.3		1	0	21.35	21.0±1	1.0
				1	49	20.64	21.0±1	1.0
				1	99	20.5	21.0±1	1.0
			16QAM	36	0	20.02	20.0±1	2.0
				36	24	19.5	20.0±1	2.0
				36	49	19.26	20.0±1	2.0
				75	0	19.61	20.0±1	2.0
				1	0	21.6	22.0±1	/
				1	49	21.87	22.0±1	/
				1	99	21.91	22.0±1	/
			QPSK	36	0	20.89	21.0±1	1.0
				36	24	20.88	21.0±1	1.0
				36	49	20.89	21.0±1	1.0
	20325	1747.5		75	0	20.88	21.0±1	1.0
	20020	1747.5		1	0	20.83	21.0±1	1.0
				1	49	21.09	21.0±1	1.0
				1	99	21.04	21.0±1	1.0
			16QAM	36	0	19.84	20.0±1	2.0
				36	24	19.83	20.0±1	2.0
			-	36	49	19.81	20.0±1	2.0
				75	0	19.84	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.16	22.0±1	/
				1	49	22.07	22.0±1	/
				1	99	21.91	22.0±1	/
			QPSK	50	0	21.1	21.0±1	1.0
				50	24	21.08	21.0±1	1.0
				50	49	21.04	21.0±1	1.0
	20050	1720		100	0	21.1	21.0±1	1.0
	20030	1720		1	0	21.68	21.0±1	1.0
				1	49	21.59	21.0±1	1.0
				1	99	21.34	21.0±1	1.0
			16QAM	50	0	20.15	20.0±1	2.0
				50	24	20.12	20.0±1	2.0
				50	49	20.08	20.0±1	2.0
				100	0	20.13	20.0±1	2.0
				1	0	22.05	22.0±1	/
				1	49	22.17	22.0±1	/
				1	99	22.28	22.0±1	/
			QPSK	50	0	21.66	21.0±1	1.0
				50	24	21.75	21.0±1	1.0
				50	49	21.57	21.0±1	1.0
20MHz	20175	1732.5		100	0	20.56	21.0±1	1.0
2011112	20170	1702.0		1	0	21.48	21.0±1	1.0
				1	49	20.57	21.0±1	1.0
				1	99	20.7	21.0±1	1.0
			16QAM	50	0	20	20.0±1	2.0
				50	24	19.32	20.0±1	2.0
				50	49	19.07	20.0±1	2.0
				100	0	19.53	20.0±1	2.0
				1	0	22.12	22.0±1	/
				1	49	21.84	22.0±1	/
				1	99	21.9	22.0±1	/
			QPSK	50	0	21.27	21.0±1	1.0
				50	24	21.48	21.0±1	1.0
				50	49	20.81	21.0±1	1.0
	20300	1745		100	0	20.82	21.0±1	1.0
	20000	1770		1	0	20.4	21.0±1	1.0
				1	49	21.14	21.0±1	1.0
				1	99	21.11	21.0±1	1.0
			16QAM	50	0	19.4	20.0±1	2.0
				50	24	19.77	20.0±1	2.0
				50	49	19.78	20.0±1	2.0
				100	0	19.81	20.0±1	2.0

LTE Band 5:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.81	22.5±1	/
				1	2	22.86	22.5±1	/
				1	5	22.82	22.5±1	/
			QPSK	3	0	21.86	21.0±1	/
				3	1	21.87	21.0±1	/
				3	2	21.88	21.0±1	/
	20407	0047		6	0	21.29	21.0±1	1.5
	20407	824.7		1	0	21.82	21.5±1	1.0
				1	2	21.92	21.5±1	1.0
				1	5	21.86	21.5±1	1.0
			16QAM	3	0	21.85	21.5±1	1.0
				3	1	21.87	21.5±1	1.0
				3	2	21.89	21.5±1	1.0
				6	0	20.9	21.5±1	1.0
				1	0	22.8	22.5±1	/
				1	2	22.87	22.5±1	/
				1	5	22.8	22.5±1	/
			QPSK	3	0	21.89	21.0±1	/
				3	1	21.87	21.0±1	/
				3	2	21.9	21.0±1	/
1.4MHz	20525	836.5		6	0	21.37	21.0±1	1.5
	20020	000.0		1	0	22.15	21.5±1	1.0
				1	2	22.16	21.5±1	1.0
				1	5	22.12	21.5±1	1.0
			16QAM	3	0	22.06	21.5±1	1.0
				3	1	22	21.5±1	1.0
				3	2	22.04	21.5±1	1.0
				6	0	20.67	21.5±1	1.0
				1	0	22.8	22.5±1	/
				1	2	22.92	22.5±1	/
			ODOL	1	5	22.86	22.5±1	/
			QPSK	3	0	21.83	21.0±1	/
				3	1	21.86	21.0±1	/
				3	2	21.85	21.0±1	/ 4 E
	20634	848.3		6	0	21.41 21.74	21.0±1	1.5 1.0
				-	2	21.74	21.5±1	1.0
				1	5	21.76	21.5±1	1.0
			16QAM	3	0		21.5±1	1.0
			IOQAW			21.97	21.5±1	1.0
				3	1	21.98	21.5±1	1.0
				3 6	2	21.97	21.5±1	
				ט	0	20.96	21.5±1	1.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.89	22.5±1	/
				1	8	22.97	22.5±1	/
				1	14	22.87	22.5±1	/
			QPSK	6	0	21.93	21.0±1	1.5
				6	4	21.98	21.0±1	1.5
				6	9	21.96	21.0±1	1.5
	20415	825.5		15	0	21.91	21.0±1	1.5
	20413	023.3		1	0	21.67	21.5±1	1.0
				1	8	21.79	21.5±1	1.0
				1	14	21.73	21.5±1	1.0
			16QAM	8	0	21.03	21.5±1	1.0
				8	4	21.05	21.5±1	1.0
				8	9	21.05	21.5±1	1.0
				15	0	20.94	21.5±1	1.0
				1	0	22.86	22.5±1	/
				1	8	22.89	22.5±1	/
				1	14	22.82	22.5±1	/
			QPSK	6	0	21.91	21.0±1	1.5
				6	4	21.91	21.0±1	1.5
				6	9	21.9	21.0±1	1.5
3MHz	20525	836.5		15	0	21.86	21.0±1	1.5
0.00.12	20020	000.0		1	0	22.17	21.5±1	1.0
				1	8	22.19	21.5±1	1.0
				1	14	22.14	21.5±1	1.0
			16QAM	6	0	20.98	21.5±1	1.0
				6	4	20.99	21.5±1	1.0
				6	9	20.95	21.5±1	1.0
				15	0	20.92	21.5±1	1.0
				1	0	22.79	22.5±1	/
				1	8	22.89	22.5±1	/
				1	14	22.85	22.5±1	/
			QPSK	6	0	21.93	21.0±1	1.5
				6	4	21.95	21.0±1	1.5
				6	9	21.95	21.0±1	1.5
	20635	847.5		15	0	21.87	21.0±1	1.5
		0.7.0		1	0	21.78	21.5±1	1.0
				1	8	21.8	21.5±1	1.0
				1	14	21.73	21.5±1	1.0
			16QAM	8	0	20.94	21.5±1	1.0
			TOQAIVI	8	4	20.92	21.5±1	1.0
				8	9	20.89	21.5±1	1.0
				15	0	20.8	21.5±1	1.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.97	22.5±1	/
				1	49	22.93	22.5±1	/
				1	99	22.93	22.5±1	/
			QPSK	12	0	21.93	21.0±1	1.5
				12	24	21.94	21.0±1	1.5
				12	49	21.96	21.0±1	1.5
	20425	826.5		25	0	21.9	21.0±1	1.5
	20423	020.5		1	0	21.88	21.5±1	1.0
				1	49	21.91	21.5±1	1.0
				1	99	21.93	21.5±1	1.0
			16QAM	12	0	20.96	21.5±1	1.0
				12	24	20.97	21.5±1	1.0
				12	49	20.98	21.5±1	1.0
				25	0	21.01	21.5±1	1.0
				1	0	22.97	22.5±1	/
				1	49	22.97	22.5±1	/
				1	99	22.92	22.5±1	/
			QPSK	12	0	21.95	21.0±1	1.5
				12	24	21.91	21.0±1	1.5
				12	49	21.89	21.0±1	1.5
5MHz	20525	836.5		25	0	21.86	21.0±1	1.5
OIVII IZ	20020	000.0		1	0	22.19	21.5±1	1.0
				1	49	22.15	21.5±1	1.0
				1	99	22.09	21.5±1	1.0
			16QAM	12	0	21.05	21.5±1	1.0
				12	24	21.02	21.5±1	1.0
				12	49	20.98	21.5±1	1.0
				25	0	20.88	21.5±1	1.0
				1	0	22.93	22.5±1	/
				1	49	22.96	22.5±1	/
				1	99	22.99	22.5±1	/
			QPSK	12	0	21.94	21.0±1	1.5
				12	24	21.93	21.0±1	1.5
				12	49	21.93	21.0±1	1.5
	20625	846.5		25	0	21.87	21.0±1	1.5
	20020	040.0		1	0	22.23	21.5±1	1.0
				1	49	22.19	21.5±1	1.0
				1	99	22.02	21.5±1	1.0
			16QAM	12	0	20.96	21.5±1	1.0
				12	24	20.95	21.5±1	1.0
				12	49	20.92	21.5±1	1.0
				25	0	20.81	21.5±1	1.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	23.06	22.5±1	/
				1	49	23.01	22.5±1	/
				1	99	23.04	22.5±1	/
			QPSK	25	0	21.97	21.0±1	1.5
				25	24	21.95	21.0±1	1.5
				25	49	21.95	21.0±1	1.5
	20450	829		50	0	21.97	21.0±1	1.5
	20430	029		1	0	21.87	21.5±1	1.0
				1	49	21.84	21.5±1	1.0
				1	99	21.84	21.5±1	1.0
			16QAM	25	0	21.01	21.5±1	1.0
				25	24	20.99	21.5±1	1.0
				25	49	20.99	21.5±1	1.0
				50	0	20.97	21.5±1	1.0
				1	0	23.08	22.5±1	/
				1	49	22.98	22.5±1	/
				1	99	22.92	22.5±1	/
			QPSK	25	0	21.96	21.0±1	1.5
				25	24	21.91	21.0±1	1.5
				25	49	21.89	21.0±1	1.5
10MHz	20525	836.5		50	0	21.97	21.0±1	1.5
10IVII IZ	20020	000.0		1	0	22.38	21.5±1	1.0
				1	49	22.26	21.5±1	1.0
				1	99	22.2	21.5±1	1.0
			16QAM	25	0	21.02	21.5±1	1.0
				25	24	20.96	21.5±1	1.0
				25	49	20.93	21.5±1	1.0
				50	0	20.97	21.5±1	1.0
				1	0	22.94	22.5±1	/
				1	49	22.92	22.5±1	/
				1	99	22.94	22.5±1	/
			QPSK	25	0	21.94	21.0±1	1.5
				25	24	21.9	21.0±1	1.5
				25	49	21.91	21.0±1	1.5
	20600	844		50	0	21.92	21.0±1	1.5
	20000	0-7-7		1	0	21.95	21.5±1	1.0
				1	49	21.89	21.5±1	1.0
				1	99	21.84	21.5±1	1.0
			16QAM	25	0	21.05	21.5±1	1.0
				25	24	21.03	21.5±1	1.0
				25	49	20.99	21.5±1	1.0
				50	0	20.95	21.5±1	1.0

LTE Band 7:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.32	22.0±1	/
				1	49	22.29	22.0±1	/
				1	99	22.29	22.0±1	/
			QPSK	12	0	21.26	21.0±1	1.0
				12	24	21.24	21.0±1	1.0
				12	49	21.26	21.0±1	1.0
	00775			25	0	21.23	21.0±1	1.0
	20775	2502.5		1	0	21.39	21.0±1	1.0
				1	49	21.4	21.0±1	1.0
				1	99	21.4	21.0±1	1.0
			16QAM	12	0	20.38	20.0±1	2.0
				12	24	20.38	20.0±1	2.0
				12	49	20.36	20.0±1	2.0
				25	0	20.23	20.0±1	2.0
				1	0	22.18	22.0±1	/
				1	49	22.19	22.0±1	/
			QPSK	1	99	22.2	22.0±1	/
				12	0	21.28	21.0±1	1.0
				12	24	21.28	21.0±1	1.0
				12	49	21.28	21.0±1	1.0
5MHz	21100	2535		25	0	21.24	21.0±1	1.0
SIVII IZ	21100	2555	16QAM	1	0	21.84	21.0±1	1.0
				1	49	21.84	21.0±1	1.0
				1	99	21.87	21.0±1	1.0
				12	0	20.3	20.0±1	2.0
				12	24	20.29	20.0±1	2.0
				12	49	20.3	20.0±1	2.0
				25	0	20.18	20.0±1	2.0
				1	0	22.1	22.0±1	/
				1	49	22.06	22.0±1	/
				1	99	22.01	22.0±1	/
			QPSK	12	0	21.24	21.0±1	1.0
				12	24	21.22	21.0±1	1.0
				12	49	21.18	21.0±1	1.0
	21425	2567.5		25	0	21.18	21.0±1	1.0
				1	0	21.11	21.0±1	1.0
				1	49	21.06	21.0±1	1.0
				1	99	21.01	21.0±1	1.0
			16QAM	12	0	20.26	20.0±1	2.0
				12	24	20.21	20.0±1	2.0
				12	49	20.19	20.0±1	2.0
				25	0	20.26	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.49	22.0±1	/
				1	49	22.4	22.0±1	/
				1	99	22.34	22.0±1	/
			QPSK	25	0	21.33	21.0±1	1.0
				25	24	21.31	21.0±1	1.0
				25	49	21.29	21.0±1	1.0
	20800	2505		50	0	21.32	21.0±1	1.0
	20000	2303		1	0	21.16	21.0±1	1.0
				1	49	21.11	21.0±1	1.0
				1	99	21.08	21.0±1	1.0
			16QAM	25	0	20.38	20.0±1	2.0
				25	24	20.37	20.0±1	2.0
				25	49	20.38	20.0±1	2.0
				50	0	20.36	20.0±1	2.0
				1	0	22.26	22.0±1	/
				1	49	22.29	22.0±1	/
			QPSK	1	99	22.3	22.0±1	/
				25	0	21.25	21.0±1	1.0
				25	24	21.27	21.0±1	1.0
				25	49	21.29	21.0±1	1.0
10MHz	21100	2535		50	0	21.29	21.0±1	1.0
1011112	21100	2555	16QAM	1	0	21.51	21.0±1	1.0
				1	49	21.5	21.0±1	1.0
				1	99	21.53	21.0±1	1.0
				25	0	20.3	20.0±1	2.0
				25	24	20.32	20.0±1	2.0
				25	49	20.34	20.0±1	2.0
				50	0	20.31	20.0±1	2.0
				1	0	22.24	22.0±1	/
				1	49	22.13	22.0±1	/
				1	99	22.04	22.0±1	/
			QPSK	25	0	21.28	21.0±1	1.0
				25	24	21.25	21.0±1	1.0
				25	49	21.19	21.0±1	1.0
	21400	2565		50	0	21.26	21.0±1	1.0
	21-700	2000		1	0	21.26	21.0±1	1.0
				1	49	21.14	21.0±1	1.0
				1	99	21.02	21.0±1	1.0
			16QAM	25	0	20.4	20.0±1	2.0
				25	24	20.36	20.0±1	2.0
				25	49	20.31	20.0±1	2.0
				50	0	20.33	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.47	22.0±1	/
				1	49	22.33	22.0±1	/
				1	99	22.22	22.0±1	/
			QPSK	36	0	21.51	21.0±1	1.0
				36	24	21.44	21.0±1	1.0
				36	49	21.38	21.0±1	1.0
	20825	2507.5		75	0	21.47	21.0±1	1.0
	20023	2307.3		1	0	21.2	21.0±1	1.0
				1	49	21.14	21.0±1	1.0
				1	99	21.08	21.0±1	1.0
			16QAM	36	0	20.47	20.0±1	2.0
				36	24	20.43	20.0±1	2.0
				36	49	20.39	20.0±1	2.0
				75	0	20.47	20.0±1	2.0
				1	0	22.31	22.0±1	/
				1	49	22.3	22.0±1	/
			QPSK	1	99	22.36	22.0±1	/
				36	0	21.48	21.0±1	1.0
				36	24	21.49	21.0±1	1.0
				36	49	21.5	21.0±1	1.0
15MHz	21100	2535		75	0	21.5	21.0±1	1.0
1011112	21100			1	0	21.55	21.0±1	1.0
				1	49	21.55	21.0±1	1.0
				1	99	21.58	21.0±1	1.0
			16QAM	36	0	20.46	20.0±1	2.0
				36	24	20.48	20.0±1	2.0
				36	49	20.47	20.0±1	2.0
				75	0	20.46	20.0±1	2.0
				1	0	22.46	22.0±1	/
				1	49	22.35	22.0±1	/
				1	99	22.2	22.0±1	/
			QPSK	36	0	21.53	21.0±1	1.0
				36	24	21.45	21.0±1	1.0
				36	49	21.39	21.0±1	1.0
	21375	2562.5		75	0	21.45	21.0±1	1.0
		2002.0		1	0	21.59	21.0±1	1.0
				1	49	21.49	21.0±1	1.0
				1	99	21.28	21.0±1	1.0
			16QAM	36	0	20.49	20.0±1	2.0
				36	24	20.42	20.0±1	2.0
				36	49	20.32	20.0±1	2.0
				75	0	20.42	20.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	22.5	22.0±1	/
				1	49	22.26	22.0±1	/
				1	99	22.25	22.0±1	/
			QPSK	50	0	21.43	21.0±1	1.0
				50	24	21.38	21.0±1	1.0
				50	49	21.35	21.0±1	1.0
	20850	2510		100	0	21.39	21.0±1	1.0
	20030	2310		1	0	21.88	21.0±1	1.0
				1	49	21.76	21.0±1	1.0
				1	99	21.74	21.0±1	1.0
			16QAM	50	0	20.49	20.0±1	2.0
				50	24	20.46	20.0±1	2.0
				50	49	20.43	20.0±1	2.0
				100	0	20.47	20.0±1	2.0
				1	0	22.33	22.0±1	/
				1	49	22.39	22.0±1	/
			QPSK	1	99	22.46	22.0±1	/
				50	0	21.37	21.0±1	1.0
				50	24	21.37	21.0±1	1.0
				50	49	21.42	21.0±1	1.0
20MHz	21100	2535		100	0	21.37	21.0±1	1.0
2011112	21100	2000		1	0	21.61	21.0±1	1.0
				1	49	21.62	21.0±1	1.0
				1	99	21.66	21.0±1	1.0
			16QAM	50	0	20.4	20.0±1	2.0
				50	24	20.4	20.0±1	2.0
				50	49	20.46	20.0±1	2.0
				100	0	20.38	20.0±1	2.0
				1	0	22.45	22.0±1	/
				1	49	22.35	22.0±1	/
				1	99	22.18	22.0±1	/
			QPSK	50	0	21.47	21.0±1	1.0
				50	24	21.36	21.0±1	1.0
				50	49	21.28	21.0±1	1.0
	21350	2560		100	0	21.36	21.0±1	1.0
				1	0	21.71	21.0±1	1.0
				1	49	21.58	21.0±1	1.0
				1	99	21.36	21.0±1	1.0
			16QAM	50	0	20.5	20.0±1	2.0
				50	24	20.4	20.0±1	2.0
				50	49	20.28	20.0±1	2.0
				100	0	20.38	20.0±1	2.0

LTE Band 17:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	23.14	23.0±1	/
				1	49	23.16	23.0±1	/
				1	99	23.16	23.0±1	/
			QPSK	12	0	22.14	22.0±1	1.0
				12	24	22.13	22.0±1	1.0
				12	49	22.18	22.0±1	1.0
	22755	706 F		25	0	22.07	22.0±1	1.0
	23755	706.5		1	0	22.4	22.0±1	1.0
				1	49	22.44	22.0±1	1.0
				1	99	22.44	22.0±1	1.0
			16QAM	12	0	21.28	21.0±1	2.0
				12	24	21.28	21.0±1	2.0
				12	49	21.32	21.0±1	2.0
				25	0	21.15	21.0±1	2.0
				1	0	23.09	23.0±1	/
				1	49	23.1	23.0±1	/
			QPSK	1	99	23.06	23.0±1	/
				12	0	22.21	22.0±1	1.0
				12	24	22.18	22.0±1	1.0
				12	49	22.18	22.0±1	1.0
5MHz	23790	710		25	0	22.14	22.0±1	1.0
SIVITZ	23790	710	16QAM	1	0	22.97	22.0±1	1.0
				1	49	22.96	22.0±1	1.0
				1	99	22.92	22.0±1	1.0
				12	0	21.3	21.0±1	2.0
				12	24	21.26	21.0±1	2.0
				12	49	21.27	21.0±1	2.0
				25	0	21.12	21.0±1	2.0
				1	0	23.1	23.0±1	/
				1	49	23.08	23.0±1	/
				1	99	23.01	23.0±1	/
			QPSK	12	0	22.2	22.0±1	1.0
				12	24	22.19	22.0±1	1.0
				12	49	22.18	22.0±1	1.0
	23825	713.5		25	0	22.13	22.0±1	1.0
	23023	113.5		1	0	22.2	22.0±1	1.0
				1	49	22.15	22.0±1	1.0
				1	99	22.11	22.0±1	1.0
			16QAM	12	0	21.25	21.0±1	2.0
				12	24	21.25	21.0±1	2.0
ı				12	49	21.21	21.0±1	2.0
1				25	0	21.27	21.0±1	2.0

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	MPR (dB)
				1	0	23.13	23.0±1	/
				1	49	23.14	23.0±1	/
				1	99	23.08	23.0±1	/
			QPSK	25	0	22.11	22.0±1	1.0
				25	24	22.13	22.0±1	1.0
				25	49	22.12	22.0±1	1.0
	22700	700		50	0	22.16	22.0±1	1.0
	23780	709		1	0	22.02	22.0±1	1.0
				1	49	22.06	22.0±1	1.0
				1	99	21.99	22.0±1	1.0
			16QAM	25	0	21.19	21.0±1	2.0
				25	24	21.2	21.0±1	2.0
				25	49	21.2	21.0±1	2.0
				50	0	21.2	21.0±1	2.0
				1	0	23.12	23.0±1	/
				1	49	23.15	23.0±1	/
			QPSK	1	99	23.13	23.0±1	/
				25	0	22.12	22.0±1	1.0
				25	24	22.15	22.0±1	1.0
				25	49	22.13	22.0±1	1.0
10MHz	23790	710		50	0	22.16	22.0±1	1.0
TOWNIZ	23790	710	16QAM	1	0	22.48	22.0±1	1.0
				1	49	22.51	22.0±1	1.0
				1	99	22.48	22.0±1	1.0
				25	0	21.21	21.0±1	2.0
				25	24	21.22	21.0±1	2.0
				25	49	21.2	21.0±1	2.0
				50	0	21.21	21.0±1	2.0
				1	0	23.08	23.0±1	/
				1	49	23.12	23.0±1	/
				1	99	23.04	23.0±1	/
			QPSK	25	0	22.13	22.0±1	1.0
				25	24	22.14	22.0±1	1.0
				25	49	22.12	22.0±1	1.0
	23800	711		50	0	22.16	22.0±1	1.0
	20000	, , , ,		1	0	22.16	22.0±1	1.0
				1	49	22.19	22.0±1	1.0
				1	99	22.11	22.0±1	1.0
			16QAM	25	0	21.29	21.0±1	2.0
				25	24	21.26	21.0±1	2.0
				25	49	21.25	21.0±1	2.0
				50	0	21.25	21.0±1	2.0

WIFI Mode (2.4G)

Mode	Channel number	Frequency (MHz)	Data rate(Mbps)	Average Output Power(dBm)	Average Tune up limited(dBm)
	1	2412	1	9.06	8.5±1
802.11b	6	2437	1	9.44	8.5±1
	11	2462	1	Output Power(dBm) Tune limited(dBm) 9.06 8.5± 9.44 8.5± 9.43 8.5± 9.16 8.5± 9.28 8.5± 9.22 8.5± 9.37 8.5± 9.22 8.5± 9.06 8.5± 9.43 8.5± 9.13 8.5±	8.5±1
	1	2412	6	9.16	8.5±1
802.11g	6	2437	6	9.28	8.5±1
	11	2462	6	1 9.06 8.5± 1 9.44 8.5± 1 9.43 8.5± 6 9.16 8.5± 6 9.28 8.5± 6 9.22 8.5± CS0 9.37 8.5± CS0 9.22 8.5± CS0 9.22 8.5± CS0 9.06 8.5±	8.5±1
	1	2412	MCS0	9.37	8.5±1
802.11n (HT20)	6	2437	MCS0	9.22	8.5±1
(11123)	11	2462	MCS0	9.06	8.5±1
	3	2422	MCS0	9.43	8.5±1
802.11n (HT40)	6	2437	MCS0	9.13	8.5±1
(11140)	9	2452	MCS0	9.15	8.5±1

Bluetooth Measurement Result

Mode	Frequency (MHz)	Output Power(dBm)	Tune up limited(dBm)
	2402	6.38	5.5±1
GFSK	2441	5.92	5.5±1
	2480	4.63	4.0±1
	2402	5.29	5.5±1
π/4DQPSK	2441	4.70	5.5±1
	2480	3.34	4.0±1
	2402	5.39	5.5±1
8DPSK	2441	5.03	5.5±1
	2480	3.89	4.0±1

BLE Measurement Result

Channel number	Frequency (MHz)	Output Power(dBm)	Tune up limited(dBm)
0	2402	-0.70	-1.0±1
19	2440	-1.14	-2.0±1
39	2480	-2.62	-2.0±1

13 Exposure Conditions Consideration

EUT antenna location:

Test position consideration:

i cot positio	rest position consideration.									
Distance of EUT antenna-to-edge/surface(mm), Test distance:10mm										
Antennas	Back side	Front side	Left Edge	Right Edge	Top Edge	Bottom Edge				
WWAN	1	7	11	6	117	2				
WLAN	1	7	51	5	11	112				
Bluetooth	1	7	51	5	11	112				

Test distance:10mm									
Antennas	Back side	Front side	Left Edge	Right Edge	Top Edge	Bottom Edge			
WWAN	YES	YES	YES	YES	NO	YES			
WLAN	NO	NO	NO	NO	NO	NO			
Bluetooth	NO	NO	NO	NO	NO	NO			

Note:

- 1. Head/Body-worn/Hotspot mode SAR assessments are required.
- 2. Referring to KDB 941225 D06v02r01, when the overall device length and width are ≥ 9cm * 5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.
- 3. Per KDB 447498 D01v06, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user, which is 0 mm for head SAR, 10 mm for Hotspot SAR, and 10 mm for body-worn SAR.

RF Exposure

Smart Phone-SP5014, FCC ID: 2AJVK-SP5014 Standard Requirement:

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\sim [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, 16 where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation¹⁷
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

Exclusion Thresholds = $P\sqrt{F}/D$

P= Maximum turn-up power in mW

F= Channel frequency in GHz

D= Minimum test separation distance in mm

Test Distance (5mm)

Mode	MAX Power (dBm)	Tune Up Power (dBm)	Max Tune Up Power (dBm)	Max Tune Up Power (mW)	Exclusion Thresholds	Limit
WIFI	9.44	8.5±1	9.5	8.91	2.782	3
Bluetooth	6.38	5.5±1	6.5	4.47	1.386	3
BLE	-0.70	-1.0±1	0	1	0.310	3

Test Distance (10mm)

Mode	MAX Power (dBm)	Tune Up Power (dBm)	Max Tune Up Power (dBm)	Max Tune Up Power (mW)	Exclusion Thresholds	Limit
WIFI	9.44	8.5±1	9.5	8.91	1.391	3
Bluetooth	6.38	5.5±1	6.5	4.47	0.693	3
BLE	-0.70	-1.0±1	0	1	0.155	3

Result: Compliance

No SAR measurement is required.

Reference No.: WTS16S0961011E V2 Page 69 of 186

14 SAR Test Results

Test Condition:

SAR Measurement

The distance between the EUT and the antenna of the emulator is more than 50 cm and the output power radiated from the emulator antenna is at least 30 dB less than the output power of EUT.

2 Environmental Conditions Temperature 23°C

Relative Humidity 57%

Atmospheric Pressure 1019mbar

3 Test Date: Oct 24,2016-Nov 03,2016

Tested By: Damon Wang

Generally Test Procedures:

1. Establish communication link between EUT and base station emulation by air link.

- 2. Place the EUT in the selected test position. (Cheek, tilt or flat)
- 3. Perform SAR testing at middle or highest output power channel under the selected test mode. If the measured 1-g SAR is ≤ 0.8 W/kg, then testing for the other channel will not be performed.
- 4. When SAR is<0.8W/kg, no repeated SAR measurement is required

For WCDMA test:

- KDB941225 D01-Body SAR is not required for HSDPA when the average output of each RF channel with HSDPA active is less than 0.25dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC<75% of the SAR limit.
- KDB941225 D01-Body SAR is not required for handset with HSPA capabilities when the maximum
 average output of each RF channel with HSUPA/HSDPA active is less than 0.25dB higher than that
 measure without HSUPA/HSDPA using 12.2kbps RMC AND THE maximum SAR for 12.2kbps RMC
 is<75% of the SAR limit

For LTE test:

- 1. According to FCC KDB 941225 D05v02r05:
 - a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
- i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
 - b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
 - c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
 - d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.
 - e. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

SAR Summary Test Result:

Table 5: SAR Values of GSM 850MHz Band

		Cha	annel	Tool	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot
Test Posi	tions	CH.	MHz	Test Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
D'alcilla a d	Cheek	190	836.6	Voice call	33	32.68	0.193	0.21	
Right Head	Tilt	190	836.6	Voice call	33	32.68	0.132	0.14	
1 - 6 11 1	Cheek	190	836.6	Voice call	33	32.68	0.266	0.29	1
Left Head	Tilt	190	836.6	Voice call	33	32.68	0.165	Scaled SAR 1g(W/kg) 0.21 0.14	
Body-worn	Front side	190	836.6	Voice call	33	32.68	0.215	0.23	
(10mm Separation)	Back side	190	836.6	Voice call	33	32.68	0.362	0.39	2
	Front side	190	836.6	GPRS 4 slots	30	29.31	0.385	0.45	
Data mada	Back side	190	836.6	GPRS 4 slots	30	29.31	0.509	0.60	3
Data mode (10mm Separation)	Right EDGE	190	836.6	GPRS 4 slots	30	29.31	0.077	0.09	
	Left EDGE	190	836.6	GPRS 4 slots	30	29.31	0.104	0.12	
	Bottom EDGE	190	836.6	GPRS 4 slots	30	29.31	0.206	0.24	

Table 6: SAR Values of GSM 1900MHz Band

		Cha	annel		Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		
Test Posi	tions	CH.	MHz	Test Mode	Maximum Turn-up Power(dB m)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
B: 1411	Cheek	661	1880	Voice call	30	29.85	0.168	0.17	
Right Head	Tilt	661	1880	Voice call	30	29.85			
Left Head	Cheek	661	1880	Voice call	30	29.85	0.213	0.22	4
	Tilt	661	1880	Voice call	30	29.85	0.152	0.16	
Body-worn	Front side	661	1880	Voice call	30	29.85	0.146	0.15	
(10mm Separation)	Back side	661	1880	Voice call	30	29.85	0.234	0.24	5
	Front side	661	1880	GPRS 4 slots	28	27.65	0.251	0.27	
Data mada	Back side	661	1880	GPRS 4 slots	28	27.65	0.431	0.47	6
Data mode (10mm Separation)	Right EDGE	661	1880	GPRS 4 slots	28	27.65	0.095	0.10	-
	Left EDGE	661	1880	GPRS 4 slots	28	27.65	0.120	0.13	
	Bottom EDGE	661	1880	GPRS 4 slots	28	27.65	0.384	0.42	

Table 7: SAR Values of WCDMA BAND V

			annel	Tool	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot
Test Posi	tions	CH.	MHz	Test Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	utput SAR SAR		No.
Right Head	Cheek	4183	836.6	RMC 12.2kbps	23	22.08	0.166	0.21	
	Tilt	4183	836.6	RMC 12.2kbps	23	22.08	0.133	0.16	
l affilla a d	Cheek	4183	836.6	RMC 12.2kbps	23	22.08	0.218	0.27	7
Left Head	Tilt	4183	836.6	RMC 12.2kbps	23	22.08	0.164	0.20	
Body-worn	Front side	4183	836.6	RMC 12.2kbps	23	22.08	0.185	0.23	
(10mm Separation)	Back side	4183	836.6	RMC 12.2kbps	23	22.08	0.281	0.35	8
	Front side	4183	836.6	RMC 12.2kbps	23	22.08	0.185	0.23	
Data mode	Back side	4183	836.6	RMC 12.2kbps	23	22.08	0.281	0.35	8
(10mm Separation)	Right EDGE	4183	836.6	RMC 12.2kbps	23	22.08	0.063	0.08	
	Left EDGE	4183	836.6	RMC 12.2kbps	23	22.08	0.082	0.10	
	Bottom EDGE	4183	836.6	RMC 12.2kbps	23	22.08	0.103	0.13	

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Table 8: SAR Values of WCDMA BAND

		Cha	annel	Tool	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Diet
Test Posi	tions	CH.	MHz	Test Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
D'alcula d	Cheek	9400	1880	RMC 12.2kbps	23	22.37	0.521	0.60	9
Right Head	Tilt	9400	1880	RMC 12.2kbps	23	22.37	0.288	0.33	
Left Head	Cheek	9400	1880	RMC 12.2kbps	23	22.37	0.417	0.48	
	Tilt	9400	1880	RMC 12.2kbps	23	22.37	0.242	0.28	
Body-worn	Front side	9400	1880	RMC 12.2kbps	23	22.37	0.379	0.44	
(10mm Separation)	Back side	9400	1880	RMC 12.2kbps	23	22.37	0.544	0.63	10
	Front side	9400	1880	RMC 12.2kbps	23	22.37	0.379	0.44	
Data mada	Back side	9400	1880	RMC 12.2kbps	23	22.37	0.544	0.63	
Data mode (10mm Separation)	Right EDGE	9400	1880	RMC 12.2kbps	23	22.37	0.148	0.17	
	Left EDGE	9400	1880	RMC 12.2kbps	23	22.37	0.162	0.19	
	Bottom EDGE	9400	1880	RMC 12.2kbps	23	22.37	0.560	0.65	11

Table 9: SAR Values of LTE BAND 2, 20MHz, QPSK

Test			Char	nnel	Power	(dBm)	MPR	SAR 1g(W/Kg), Limit(1.6W/kg)		Plot
Mode	Test Posi	tions	CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	(dB)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
	Right Head	Cheek	18900	1880	23.5	23.24	0	0.367	0.39	12
	Night Head	Tilt	18900	1880	23.5	23.24	0	0.231	0.25	
	Left Head	Cheek	18900	1880	23.5	23.24	0	0.313	0.33	
	Leit Head	Tilt	18900	1880	23.5	23.24	0	0.205	0.22	
	Body-worn (10mm	Front side	18900	1880	23.5	23.24	0	0.486	0.52	
	Separation)	Back side	18900	1880	23.5	23.24	0	0.640	0.68	13
1RB #49		Front side	18900	1880	23.5	23.24	0	0.486	0.52	
	Data mode	Back side	18900	1880	23.5	23.24	0	0.640	0.68	13
	(10mm Separation)	Right EDGE	18900	1880	23.5	23.24	0	0.088	0.09	
	Separation)	Left EDGE	18900	1880	23.5	23.24	0	0.115	0.12	
		Bottom EDGE	18900	1880	23.5	23.24	0	0.498	0.53	
	Right Head	Cheek	18900	1880	23	22.15	0.5	0.315	0.38	
	Right Head	Tilt	18900	1880	23	22.15	0.5	0.196	0.24	
	Left Head	Cheek	18900	1880	23	22.15	0.5	0.287	0.35	
	Leit Head	Tilt	18900	1880	23	22.15	0.5	0.162	0.20	
	Body-worn	Front side	18900	1880	23	22.15	0.5	0.421	0.51	
	(10mm Separation)	Back side	18900	1880	23	22.15	0.5	0.562	0.68	
50%RB #24		Front side	18900	1880	23	22.15	0.5	0.421	0.51	
	Data mode (10mm	Back side	18900	1880	23	22.15	0.5	0.562	0.68	
		Right EDGE	18900	1880	23	22.15	0.5	0.085	0.10	
	Separation)	Left EDGE	18900	1880	23	22.15	0.5	0.122	0.15	
		Bottom EDGE	18900	1880	23	22.15	0.5	0.441	0.54	

Table 10: SAR Values of LTE BAND 4, 20MHz, QPSK

				nnel	Power	·		SAR 1g(Limit(1.		
Test Mode	Test Posi	tions	CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	MPR (dB)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Dialet Head	Cheek	20175	1732.5	23	22.17	0	0.460	0.56	
	Right Head	Tilt	20175	1732.5	23	22.17	0	0.336	0.41	
	l offillood	Cheek	20175	1732.5	23	22.17	0	0.469	0.57	14
	Left Head	Tilt	20175	1732.5	23	22.17	0	0.333	0.40	
	Body-worn (10mm	Front side	20175	1732.5	23	22.17	0	0.357	0.43	
	Separation)	Back side	20175	1732.5	23	22.17	0	0.576	0.70	15
1RB #49		Front side	20175	1732.5	23	22.17	0	0.357	0.43	
	Data mode	Back side	20175	1732.5	23	22.17	0	0.576	0.70	15
	(10mm Separation)	Right EDGE	20175	1732.5	23	22.17	0	0.119	0.14	
		Left EDGE	20175	1732.5	23	22.17	0	0.135	0.16	
		Bottom EDGE	20175	1732.5	23	22.17	0	0.488	0.59	
	Right Head	Cheek	20175	1732.5	22	21.75	1.0	0.443	0.47	
	Right Head	Tilt	20175	1732.5	22	21.75	1.0	0.308	0.33	
	Left Head	Cheek	20175	1732.5	22	21.75	1.0	0.452	0.48	
	Leit Head	Tilt	20175	1732.5	22	21.75	1.0	0.317	0.34	
	Body-worn	Front side	20175	1732.5	22	21.75	1.0	0.322	0.34	ı
	(10mm Separation)	Back side	20175	1732.5	22	21.75	1.0	0.531	0.56	
50%RB #24		Front side	20175	1732.5	22	21.75	1.0	0.322	0.34	
		Back side	20175	1732.5	22	21.75	1.0	0.531	0.56	-
	Data mode (10mm Separation)	Right EDGE	20175	1732.5	22	21.75	1.0	0.120	0.13	-
	Geparation)	Left EDGE	20175	1732.5	22	21.75	1.0	0.127	0.13	
		Bottom EDGE	20175	1732.5	22	21.75	1.0	0.463	0.49	

Table 11: SAR Values of LTE BAND 5, 10MHz, QPSK

Toot			Cha		Power		MPR	SAR 1g(Limit(1.		Plot
Test Mode	Test Posi	tions	CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	(dB)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
	Right Head	Cheek	20525	836.5	23.5	22.98	0	0.164	0.18	
	Rigiil Head	Tilt	20525	836.5	23.5	22.98	0	0.120	0.14	
	Left Head	Cheek	20525	836.5	23.5	22.98	0	0.179	0.20	16
	Leit Head	Tilt	20525	836.5	23.5	22.98	0	0.133	0.15	
	Body-worn (10mm	Front side	20525	836.5	23.5	22.98	0	0.141	0.16	
	Separation)	Back side	20525	836.5	23.5	22.98	0	0.261	0.29	17
1RB #49		Front side	20525	836.5	23.5	22.98	0	0.141	0.16	
	Data mode	Back side	20525	836.5	23.5	22.98	0	0.261	0.29	17
	(10mm Separation)	Right EDGE	20525	836.5	23.5	22.98	0	0.065	0.07	
	Separation)	Left EDGE	20525	836.5	23.5	22.98	0	0.077	0.09	
		Bottom EDGE	20525	836.5	23.5	22.98	0	0.097	0.11	
	Right Head	Cheek	20525	836.5	22	21.91	1.5	0.138	0.14	
	Right Head	Tilt	20525	836.5	22	21.91	1.5	0.096	0.10	
	Left Head	Cheek	20525	836.5	22	21.91	1.5	0.156	0.16	
	Leit Head	Tilt	20525	836.5	22	21.91	1.5	0.113	0.12	
	Body-worn (10mm	Front side	20525	836.5	22	21.91	1.5	0.122	0.12	
	Separation)	Back side	20525	836.5	22	21.91	1.5	0.196	0.20	
25%RB #24		Front side	20525	836.5	22	21.91	1.5	0.122	0.12	
Data as de	Back side	20525	836.5	22	21.91	1.5	0.196	0.20		
	Data mode (10mm Separation)	Right EDGE	20525	836.5	22	21.91	1.5	0.063	0.06	
	Separation)	Left EDGE	20525	836.5	22	21.91	1.5	0.066	0.07	
		Bottom EDGE	20525	836.5	22	21.91	1.5	0.093	0.09	

Table 12: SAR Values of LTE BAND 7, 20MHz, QPSK

T 1			Char		Power	(dBm)		SAR 1g Limit(1.		Dist
Test Mode	Test Posi	Test Positions		MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	MPR (dB)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Right Head	Cheek	21100	2535	23	22.39	0	0.474	0.55	18
	Right Head	Tilt	21100	2535	23	22.39	0	0.322	0.37	
	Left Head	Cheek	21100	2535	23	22.39	0	0.323	0.37	
	Leit Head	Tilt	21100	2535	23	22.39	0	0.267	0.31	
	Body-worn (10mm	Front side	21100	2535	23	22.39	0	0.471	0.54	
	Separation)	Back side	21100	2535	23	22.39	0	0.667	0.77	19
1RB #49		Front side	21100	2535	23	22.39	0	0.471	0.54	
	Data mode	Back side	21100	2535	23	22.39	0	0.667	0.77	19
	(10mm Separation)	Right EDGE	21100	2535	23	22.39	0	0.130	0.15	
		Left EDGE	21100	2535	23	22.39	0	0.171	0.20	
		Bottom EDGE	21100	2535	23	22.39	0	0.453	0.52	
	Right Head	Cheek	21100	2535	22	21.37	1.0	0.436	0.50	
	Right Head	Tilt	21100	2535	22	21.37	1.0	0.280	0.32	
	Left Head	Cheek	21100	2535	22	21.37	1.0	0.335	0.39	
	Leit Head	Tilt	21100	2535	22	21.37	1.0	0.228	0.26	
	Body-worn	Front side	21100	2535	22	21.37	1.0	0.442	0.51	
	(10mm Separation)	Back side	21100	2535	22	21.37	1.0	0.613	0.71	
50%RB #24		Front side	21100	2535	22	21.37	1.0	0.442	0.51	
	Data mode (10mm	Back side	21100	2535	22	21.37	1.0	0.613	0.71	
		Right EDGE	21100	2535	22	21.37	1.0	0.117	0.14	
	Separation)	Left EDGE	21100	2535	22	21.37	1.0	0.128	0.15	
		Bottom EDGE	21100	2535	22	21.37	1.0	0.449	0.52	

Table 13: SAR Values of LTE BAND 17, 10MHz, QPSK

Test				nel	Power	(dBm)	MPR	SAR 1g Limit(1.		Plot
Mode	Test Posi	tions	CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	(dB)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
	Right Head	Cheek	23790	710	24	23.15	0	0.273	0.33	
	Right Head	Tilt	23790	710	24	23.15	0	0.158	0.19	
	Left Head	Cheek	23790	710	24	23.15	0	0.291	0.35	20
	Leit Head	Tilt	23790	710	24	23.15	0	0.185	0.22	
	Body-worn (10mm	Front side	23790	710	24	23.15	0	0.332	0.40	
	Separation)	Back side	23790	710	24	23.15	0	0.479	0.58	21
1RB #49		Front side	23790	710	24	23.15	0	0.332	0.40	
	Data mode	Back side	23790	710	24	23.15	0	0.479	0.58	21
	(10mm Separation)	Right EDGE	23790	710	24	23.15	0	0.082	0.10	
		Left EDGE	23790	710	24	23.15	0	0.094	0.11	
		Bottom EDGE	23790	710	24	23.15	0	0.089	0.11	
	Right Head	Cheek	23790	710	23	22.15	1.0	0.255	0.31	
	Trigitt Head	Tilt	23790	710	23	22.15	1.0	0.150	0.18	
	Left Head	Cheek	23790	710	23	22.15	1.0	0.278	0.34	
	Leit Head	Tilt	23790	710	23	22.15	1.0	0.143	0.17	
	Body-worn (10mm	Front side	23790	710	23	22.15	1.0	0.311	0.38	
	Separation)	Back side	23790	710	23	22.15	1.0	0.435	0.53	
25%RB #24		Front side	23790	710	23	22.15	1.0	0.311	0.38	
Data mode	Back side	23790	710	23	22.15	1.0	0.435	0.53		
	(10mm Separation)	Right EDGE	23790	710	23	22.15	1.0	0.076	0.09	
	Geparation)	Left EDGE	23790	710	23	22.15	1.0	0.081	0.10	
		Bottom EDGE	23790	710	23	22.15	1.0	0.094	0.11	

Note:1. KDB941225 D01-Body SAR is not required for HSDPA when the average output of each RF channel with HSDPA active is less than 0.25dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC<75% of the SAR limit.

^{2.} KDB941225 D01-Body SAR is not required for handset with HSUPA/HSDPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25dB higher than that measure without HSUPA/HSDPA using 12.2kbps RMC and The maximum SAR for 12.2kbps RMC is<75% of the SAR limit

Reference No.: WTS16S0961011E V2 Page 78 of 186

Measurement variability consideration

According to KDB 865664 D01v01r04 section 2.8.1, repeated measurements are required following the procedures as below:

- 1. Repeated measurement is not required when the original highest measured SAR is < 0.80W/kg; steps 2) through 4) do not apply.
- 2. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4. Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

No Repeated SAR

Simultaneous Transmission SAR Analysis.

List of Mode for Simultaneous Multi-band Transmission:

No.	Configurations	Head SAR	Body-worn SAR	Hotspot SAR
1	GSM(Voice) + WLAN 2.4GHz(Data)	Yes	Yes	-
2	GPRS (Data) + WLAN 2.4GHz(Data)	-	-	Yes
3	GSM(Voice) + Bluetooth(Data)	Yes	Yes	-
4	WCDMA (Voice) + WLAN 2.4GHz(Data)	Yes	Yes	-
5	WCDMA (Data) + WLAN 2.4GHz(Data)	-	-	Yes
6	WCDMA (Voice) + Bluetooth(Data)	Yes	Yes	-
7	LTE (Data) + WLAN 2.4GHz(Data)	Yes	Yes	Yes
8	LTE (Data) + Bluetooth(Data)	Yes	Yes	-

Remark:

- 1. GSM/ WCDMA/LTE share the same antenna, and cannot transmit simultaneously.
- 2. VOIP is not supported at 2G/3G data mode.
- 3. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 4. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-q SAR, and x = 18.75 for 10-q SAR.

For simultaneous transmission analysis, WIFI/Bluetooth SAR is estimated per KDB 447498 D01 v06 as below:

WIFI:

Tune-Up Power (dBm)	Max. Power (mW)	Distance (mm	Frequency (GHz)	Х	SAR(1g) 5mm	SAR(1g) 10mm
9.5	8.91	5/10	2.437	7.5	0.37	0.19

Bluetooth:

Tune-Up Power (dBm)	Max. Power (mW)	Distance (mm	Frequency (GHz)	Х	SAR(1g) 5mm	SAR(1g) 10mm
6.5	4.47	5/10	2.402	7.5	0.18	0.09

5. The maximum SAR summation is calculated based on the same configuration and test position

Head SAR Simultaneous WWAN and WIFI (2.4GHz)

	WWAN (maxir	num)	WIFI(5mm)	Course as a d CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Left Cheek	GSM850	0.29	0.37	0.66
Left Cheek	GSM1900	0.22	0.37	0.59
Left Cheek	WCDMA Band V	0.27	0.37	0.64
Right Cheek	WCDMA Band II	0.60	0.37	0.97
Right Cheek	LTE BAND 2(1RB)	0.39	0.37	0.76
Left Cheek	LTE BAND 4(1RB)	0.57	0.37	0.94
Left Cheek	LTE BAND 5(1RB)	0.20	0.37	0.57
Right Cheek	LTE BAND 7(1RB)	0.55	0.37	0.92
Left Cheek	LTE BAND 17(1RB)	0.35	0.37	0.72

WWAN and BT

1111/11 all a B1								
	WWAN (maxir	mum)	BT(5mm)	Cummod CAD				
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)				
Left Cheek	GSM850	0.29	0.18	0.47				
Left Cheek	GSM1900	0.22	0.18	0.40				
Left Cheek	WCDMA Band V	0.27	0.18	0.45				
Right Cheek	WCDMA Band II	0.60	0.18	0.78				
Right Cheek	LTE BAND 2(1RB)	0.39	0.18	0.57				
Left Cheek	LTE BAND 4(1RB)	0.57	0.18	0.75				
Left Cheek	LTE BAND 5(1RB)	0.20	0.18	0.38				
Right Cheek	LTE BAND 7(1RB)	0.55	0.18	0.73				
Left Cheek	LTE BAND 17(1RB)	0.35	0.18	0.53				

Remark: WIFI/BT the 1g SAR value is not being captured by the measurement system, the 1g-SAR value is conservatively used for simultaneous transmission analysis.

Body-worn SAR Simultaneous WWAN and WIFI

	WWAN (maxin	num)	WIFI(10mm)	Course as all CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.39	0.19	0.58
Back	GSM1900	0.24	0.19	0.43
Back	WCDMA Band V	0.35	0.19	0.54
Back	WCDMA Band II	0.63	0.19	0.82
Back	LTE BAND 2(1RB)	0.68	0.19	0.87
Back	LTE BAND 4(1RB)	0.70	0.19	0.89
Back	LTE BAND 5(1RB)	0.29	0.19	0.48
Back	LTE BAND 7(1RB)	0.77	0.19	0.96
Back	LTE BAND 17(1RB)	0.58	0.19	0.77

WWAN and BT

TTTTAIT GI				
	WWAN (maxin	num)	BT(10mm)	Cummod CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.39	0.09	0.48
Back	GSM1900	0.24	0.09	0.33
Back	WCDMA Band V	0.35	0.09	0.44
Back	WCDMA Band II	0.63	0.09	0.72
Back	LTE BAND 2(1RB)	0.68	0.09	0.77
Back	LTE BAND 4(1RB)	0.70	0.09	0.79
Back	LTE BAND 5(1RB)	0.29	0.09	0.38
Back	LTE BAND 7(1RB)	0.77	0.09	0.86
Back	LTE BAND 17(1RB)	0.58	0.09	0.67

Remark: WIFI/BT the 1g SAR value is not being captured by the measurement system, the 1g-SAR value is conservatively used for simultaneous transmission analysis.

Hotspot SAR Simultaneous WWAN and WIFI

	WWAN (maximum)		WIFI(10mm)	Commercial CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.60	0.19	0.79
Back	GSM1900	0.47	0.19	0.66
Back	WCDMA Band V	0.35	0.19	0.54
Bottom	WCDMA Band II	0.65	0.19	0.84
Back	LTE BAND 2(1RB)	0.68	0.19	0.87
Back	LTE BAND 4(1RB)	0.70	0.19	0.89
Back	LTE BAND 5(1RB)	0.29	0.19	0.48
Back	LTE BAND 7(1RB)	0.77	0.19	0.96
Back	LTE BAND 17(1RB)	0.58	0.19	0.77

Remark: WIFI the 1g SAR value is not being captured by the measurement system, the 1g-SAR value is conservatively used for simultaneous transmission analysis.

15 SAR Measurement Reference

References

- 1. FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- 2. IEEE Std. C95.1-2005, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz", 2005
- 3. IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques", June 2013
- 4. IEC 62209-2, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices—Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate(SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30MHz to 6GHz)", April 2010
- 5. FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 23th, 2015
- 6. FCC KDB 941225 D01 v03r01, "3G SAR Measurement Procedures", Oct 23th, 2015
- 7. FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 16th, 2015
- 8. FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 23th, 2015
- 9. FCC KDB865664 D01 v01r04, "SAR Measurement Requirements 100MHz to 6GHz", Aug 7th, 2015
- 10.FCC KDB865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations", Oct 23th, 2015
- 11.FCC KDB648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 23th", 2015
- 12.FCC KDB 248227 D01 v01r02, SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters, Oct 23th, 2015.

Maximum SAR measurement Plots

Plot 1: GSM850MHz, Middle channel (Left Head , Cheek)

Product Description:Smart Phone

Model:SP5014

Medium(liquid type) Frequency (MHz)	HSL_850 836.60000
Relative permittivity (real part)	41.58
Conductivity (S/m)	0.92
Signal State Proba	GSM (Duty cycle: 1:8)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Area Scan Zoom Scan	dx=8mm dy=8mm
	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.22
SAR 10g (W/Kg)	0.188766
SAR 1g (W/Kg)	0.266259
SURFACE SAR	VOLUME SAR
2 1975 2 1975 3 1976 6 1976 6 1976 6 1976 7 1976	0 150007 0 1

Plot 2: GSM850MHz, Middle channel (Body-worn, Back Surface) Product Description:Smart Phone Model:SP5014

Test Date: Oct 24.2016

Medium(liquid type)	MSL_850
Frequency (MHz)	836.60000
Relative permittivity (real part)	55.76
Conductivity (S/m)	0.98
Signal	GSM (Duty cycle: 1:8)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.22
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	1.36
SAR 10g (W/Kg)	0.249455
SAR 1g (W/Kg)	0.362014
SURFACE SAR	VOLUME SAR
S. STAND SOUTH STAND SOUTH STAND SOUTH SOU	0 3700-380 0 3700-380

Plot 3: GPRS850MHz, Middle channel (Data mode, Back Surface) Product Description:Smart Phone Model:SP5014

Medium(liquid type)	MSL_850
Frequency (MHz)	836.60000
Relative permittivity (real part)	55.76
Conductivity (S/m)	0.98
Signal	GPRS (Duty cycle: 1:2)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.22
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	1.23
SAR 10g (Ŵ/Kg)	0.356953
SAR 1g (W/Kg)	0.508955
SURFACE SAR	VOLUME SAR
The State Section Statement See Section Sectio	224 Vysakinara Sephini Interface Values Related Interity Institution
2007	0 - 407 125 100 - 120 100 - 120 100 100 100 100 100 100 100 100 100

Plot 4: GSM1900, Middle channel (Left Head Cheek) Product Description: Smart Phone Model: SP5014

Medium(liquid type)	HSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	40.85
Conductivity (S/m)	1.41
Signal	GSM (Duty cycle: 1:8)
E-Field Probe	SN 07/15 EP249
Conversion Factor	4.86
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.71
SAR 10g (W/Kg)	0.122454
SAR 1g (W/Kg)	0.213486
SURFACE SAR	VOLUME SAR
Trains Faired Trains Faired Trains Faired Trains Faired	1991 1991

Plot 5: GSM1900, Middle channel (Body-worn, Back Surface) Product Description: Smart Phone Model: SP5014

Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	53.62
Conductivity (S/m)	1.50
Signal	GSM (Duty cycle: 1:8)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.01
SAR 10g (W/Kg)	0.130202
SAR 1g (W/Kg)	0.234198
SURFACE SAR	VOLUME SAR
1 1 1 1 1 1 1 1 1 1	OF Act O

Plot 6: GPRS1900, Middle channel (Data mode, Bottom Edge) Product Description: Smart Phone Model: SP5014

Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	53.62
Conductivity (S/m)	1.50
Signal	GPRS (Duty cycle: 1:2)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.38
SAR 10g (W/Kg)	0.233544
SAR 1g (W/Kg)	0.430941
SURFACE SAR	VOLUME SAR
In a trappopular trappopular transfers	SAL Viscolitation & against Interface
2	0 colored 0 co

Plot 7: WCDMA BAND V, Middle channel (Left Head Cheek) Product Description: Smart Phone Model: SP5014

Medium(liquid type)	HSL_850
Frequency (MHz)	836.6000
Relative permittivity (real part)	41.58
Conductivity (S/m)	0.92
Signal	WCDMA (Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.54
SAR 10g (W/Kg)	0.155327
SAR 1g (W/Kg)	0.217659
SURFACE SAR	VOLUME SAR
160. Construction, Regulated Statesface	SAL Visualization draphical Interface
1 1 1 1 1 1 1 1 1 1	0 21 4040

Plot 8: WCDMA BAND V, Middle channel (Body-worn/Data mode, Back Surface) Product Description: Smart Phone Model: SP5014

Medium(liquid type)	MSL_850
Frequency (MHz)	836.6000
Relative permittivity (real part)	55.76
Conductivity (S/m)	0.98
Signal	WCDMA (Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.22
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.34
SAR 10g (W/Kg)	0.209824
SAR 1g (W/Kg)	0.281074
SURFACE SAR	VOLUME SAR
Figure Findred Findr	0 0 174 Mar. 0 0 175 Mar. 0 0 1

Plot 9: WCDMA BAND , Middle channel (Right Head Cheek) Product Description: Smart Phone

Model: SP5014

Medium(liquid type)	HSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	40.85
Conductivity (S/m)	1.41
Signal	WCDMA(Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	4.86
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.80
SAR 10g (W/Kg)	0.283313
SAR 1g (W/Kg)	0.521351
SURFACE SAR	VOLUME SAR
2007 Counts To the control of the c	1 - 20-2004 1 - 10-2004 1 - 1

Plot 10: WCDMA BAND , Middle channel (Body-worn, Back Surface) Product Description: Smart Phone Model: SP5014

Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	53.62
Conductivity (S/m)	1.50
Signal	WCDMA(Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.78
SAR 10g (W/Kg)	0.300179
SAR 1g (W/Kg)	0.544316
SURFACE SAR	VOLUME SAR
\$ 100 miles 100	170 170

Plot 11: WCDMA BAND , Middle channel (Data mode, Bottom Edge) Product Description: Smart Phone

Model: SP5014

Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	53.62
Conductivity (S/m)	1.50
Signal	WCDMA(Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.01
SAR 10g (W/Kg)	0.311311
SAR 1g (W/Kg)	0.559893
SURFACE SAR	VOLUME SAR
2005 Constituted Transition of	0 5 500 50 500 50 50 50 50 50 50 50 50 5

Plot 12:LTE BAND2, Middle channel (Right Head Cheek) Product Description:Mobile Phone Model: SP5014

Test Date: Oct 27,2016

Medium(liquid type)	HSL_1900	
Frequency (MHz)	1880.0000	
Relative permittivity (real part)	40.85	
Conductivity (S/m)	1.41	
Signal	Duty cycle: 1:1	
E-Field Probe	SN 07/15 EP249	
Conversion Factor Bandwidth(MHz)	4.86 20	
RB Allocation	1	
RB Offset	49	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-3.28	
SAR 10g (W/Kg)	0.200389	
SAR 1g (W/Kg)	0.367364	
SURFACE SAR	VOLUME SAR	
Sel Statissens Stational Developer	10. Contraction September 1 and 100 September	
Trust Februs () () () () () () () () () (E-Mining Country Strong Count	

Plot 13:LTE BAND2, Middle channel (Body-worn/Data mode, Back Surface) Product Description:Mobile Phone

Model: SP5014

Medium(liquid type)	MSL_1900		
Frequency (MHz)	1880.0000		
Relative permittivity (real part)	53.62		
Conductivity (S/m)	1.50		
Signal	Duty cycle: 1:1		
E-Field Probe	SN 07/15 EP249		
Conversion Factor	5.05		
Bandwidth(MHz)	20		
RB Allocation	1		
RB Offset	49		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-2.71		
SAR 10g (W/Kg)	0.341673		
SAR 1g (W/Kg)	0.639807		
SURFACE SAR	VOLUME SAR		
to depleases and large to the factor and the factor	Told Visualitation Graphical Interfere Volume Estimated Intensity Intensity		
Section Section Section Section Section Section Section Section Section Section Section Section Sec	0 0 0 0 0 0 0 0 0 0		

Plot 14:LTE BAND4, Middle channel (Left Head Cheek) Product Description:Mobile Phone Model: SP5014

Test Date: Oct 29,2016

NA 1' (1' ' 1 ()	1101 4000	
Medium(liquid type)	HSL_1800	
Frequency (MHz) Relative permittivity (real part)	1732.5000 40.51	
Conductivity (S/m)	1.39	
Signal	Duty cycle: 1:1	
E-Field Probe	SN 07/15 EP249	
Conversion Factor	4.21	
Bandwidth(MHz)	20	
RB Allocation	1	
RB Offset	49	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	0.96	
SAR 10g (W/Kg)	0.284757	
SAR 1g (W/Kg)	0.468738	
SURFACE SAR	VOLUME SAR	
10 Contractor System Interfere	50 Contractor Copins Linearing	
211	Printed General Classes General Classe	

Plot 15:LTE BAND4, Middle channel (Body-worn/Data mode, Back Surface) Product Description:Mobile Phone Model: SP5014

Medium(liquid type) Frequency (MHz) Relative permittivity (real part) Conductivity (S/m) Signal E-Field Probe Conversion Factor Bandwidth(MHz) RB Allocation	MSL_1800 1732.5000 53.85 1.50 Duty cycle: 1:1 SN 07/15 EP249 4.33 20 1
RB Offset Area Scan Zoom Scan Variation (%) SAR 10g (W/Kg) SAR 1g (W/Kg)	49 dx=8mm dy=8mm 5x5x7,dx=8mm dy=8mm dz=5mm -0.91 0.337396 0.576117
SURFACE SAR 100 10 to be before the control of the	VOLUME SAR Sak Visualitation despitical Saturfaire Volume End state Saturfaire Volume End state Saturfaire Volume Sak Visualitation despitical Saturfaire Volume Sak Visu
Final County Trains Field of Trains Field of Trains Field of Trains Field of	0. 44774 50- 0. 14774 50- 0. 17277 50- 0.

Plot 16: LTE BAND5, Middle channel (Left Head Cheek) Product Description: Smart Phone Model: SP5014

Test Date: Oct 24,2016

Medium(liquid type)	HSL_850	
Frequency (MHz)	836.5000	
Relative permittivity (real part)	41.58	
Conductivity (S/m)	0.92	
Signal	Duty cycle: 1:1	
E-Field Probe	SN 07/15 EP249	
Conversion Factor	5.05	
Bandwidth(MHz)	10	
RB Allocation		
	1 49	
RB Offset		
Sensor-Surface	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	1.11	
SAR 10g (W/Kg)	0.131970	
SAR 1g (W/Kg)	0.179229	
SURFACE SAR	VOLUME SAR	
2007 Canada (2007)	0 12405 0 10505 0 10505 0 00505 0 0	

Plot 17: LTE BAND5, Middle channel (Body-worn/Data mode, Back Surface) Product Description: Smart Phone Model: SP5014

Test Date: Oct 24,2016

Medium(liquid type)	MSL_850		
Frequency (MHz)	836.5000		
Relative permittivity (real part)	55.76		
Conductivity (S/m)	0.98		
Signal	Duty cycle: 1:1		
E-Field Probe	SN 07/15 EP249		
Conversion Factor	5.22		
Bandwidth(MHz)	10		
RB Allocation	1		
RB Offset	49		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.43		
SAR 10g (W/Kg)	0.190691		
SAR 1g (W/Kg)	0.261125		
SURFACE SAR	VOLUME SAR		
TOTAL Federal Extra Federal Extra Federal Extra Federal Extra Federal Extra Federal	0 254506 0 525256 0 5		

Plot 18:LTE BAND7, Middle channel (Right Head Cheek) Product Description:Mobile Phone Model: SP5014

Test Date: Nov 01,2016

Medium(liquid type) Frequency (MHz) Relative permittivity (real part) Conductivity (S/m) Signal E-Field Probe Conversion Factor Bandwidth(MHz) RB Allocation RB Offset Area Scan Zoom Scan Variation (%) SAR 10g (W/Kg)	HSL_2600 2535.0000 39.51 1.94 Duty cycle: 1:1 SN 07/15 EP249 4.18 20 1 49 dx=8mm dy=8mm 5x5x7,dx=8mm dy=8mm dz=5mm -2.66 0.251443
SAR 1g (W/Kg)	0.474213
SURFACE SAR	VOLUME SAR
2 month	0. 178-23 (6)-0.

Plot 19:LTE BAND7, Middle channel (Body-worn/Data mode, Back Surface) Product Description:Mobile Phone Model: SP5014

Test Date: Nov 01,2016

Sold of Table Sold o	Calara Scale Volume Red ated Intentity Zing IntQuit
SURFACE SAR	VOLUME SAR
Variation (%) SAR 10g (W/Kg) SAR 1g (W/Kg)	-0.83 0.337239 0.666599
Area Scan Zoom Scan	dx=8mm dy=8mm 5x5x7,dx=8mm dy=8mm dz=5mm
RB Allocation RB Offset	1 49
Conversion Factor Bandwidth(MHz)	4.31 20
Signal E-Field Probe	Duty cycle: 1:1 SN 07/15 EP249
Relative permittivity (real part) Conductivity (S/m)	52.73 2.15
Frequency (MHz)	MSL_2600 2535.0000

Plot 20:LTE BAND17, Middle channel (Left Head Cheek) Product Description:Mobile Phone Model: SP5014

Test Date: Nov 03,2016

Mandhama (Panahal tama)	1101 750	
Medium(liquid type)	HSL_750	
Frequency (MHz)	710.0000	
Relative permittivity (real part) Conductivity (S/m)	41.64 0.89	
, , ,		
Signal E-Field Probe	Duty cycle: 1:1 SN 07/15 EP249	
Conversion Factor	4.74	
Bandwidth(MHz)	10	
RB Allocation	10	
RB Offset	49	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	0.62	
SAR 10g (W/Kg)	0.226789	
SAR 1g (W/Kg)	0.290612	
SURFACE SAR	VOLUME SAR	
IN CONTROL OATS	SAL Visualization Graphical Interface	
2000 Federal 2000 Federal 2007 County 100 Federal 100	0. 104130 0. 000407 0. 000	

Plot 21:LTE BAND17, Middle channel (Body-worn/Data mode, Back Surface) Product Description:Mobile Phone Model: SP5014

Test Date: Nov 03,2016

Modium/lavid trac	MOL 750	
Medium(liquid type) Frequency (MHz)	MSL_750 710.0000	
Relative permittivity (real part)		
Conductivity (S/m)	54.19 0.98	
Signal	Duty cycle: 1:1	
E-Field Probe	SN 07/15 EP249	
Conversion Factor	4.85	
Bandwidth(MHz)	10	
RB Allocation	10	
RB Offset	49	
Area Scan	dx=8mm dy=8mm	
Zoom Scan		
	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	0.20	
SAR 10g (W/Kg)	0.360686	
SAR 1g (W/Kg)	0.479076	
SURFACE SAR	VOLUME SAR	
State Their State	Caller Scale (Caller	

16 Calibration Reports-Probe and Dipole

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 307.1.15.5 ATV. A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/5/2016	75
Checked by ;	Jérôme LUC	Product Manager	10/5/2016	75
Approved by:	Kim RUTKOWSKI	Quality Manager	10/5/2016	Auto Problem his

	Customer Name
Distribution:	Waltek Services (Shenzhen) Co., Ltd

Date	Modifications	
10/5/2016	Initial release	
	1 1 -	
	10/5/2016	10/5/2016 Initial release

Page; 2/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 307.1.15.5 ATV. A

TABLE OF CONTENTS

1 D	evice Under Test4	
2 Pr	roduct Description	
2.1	General Information	4
3 M	leasurement Method4	
3.1	Linearity	4
3.2	Sensitivity	
3.3	Lower Detection Limit	5
3.4	Isotropy	
3.5		.5
4 M	leasurement Uncertainty5	
5 C	alibration Measurement Results	
5.1	Sensitivity in air	6
5.2	Linearity	- 5
5,3	Sensitivity in liquid	7
5.4	Isotropy	8
6 Li	ist of Equipment9	

Page: 3/0

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 307.1.15.5 ATV. A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE5		
Serial Number	SN 07/15 EP249		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.7 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.180 MΩ		
The state of the s	Dipole 2: R2=0.191 MΩ		
	Dipole 3: R3=0.179 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 min
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVG.

Ref. ACR 507 L 15 SATU A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0° - 180°) in 15° increments. At each step the probe is rotated about its axis (0° - 360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3 I	1	1 732%
Reflected power	3,00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	—√3—	1	2,887%
Liquid permittivity	4.00%	Rectangular	—√3—	y.	2 309%
Field homogeneity	3.00%	Rectangular	 √3-	Y	L732%
Field probe positioning	5.00%	Rectangular	√3 ·	- 1	2.887%

Page: 5/9

Ref. ACR 307.1.15.5 ATU. A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45%	

5.1 SENSITIVITY IN AIR

Normx dipole	Normy dipole	Normz dipole
1 (μV/(V/m) ²)	2 (μV/(V/m) ²)	3 (μV/(V/m) ²)
6.91	7,46	6.48

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
97	93	94

Calibration curves ei-f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/9

Ref: ACR 307.1.15.5ATU.A

5.2 LINEARITY

Linearity: 0+/-1.94% (+/-0.09dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz+/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL750	750	41.82	0.90	4.74
BL750	750	56.28	0.98	4.85
HL850	835	42.59	0,90	5.05
BL850	835	53.19	0.97	5.22
HL900	900	42.05	0.98	4.82
BL900	900	56.41	1.08	4.99
HL1800	1800	41.82	0.38	4,21
BL1800	1800	53.00	1.52	4.33
HL1900	1900	40,38	1.41	4.86
BL1900	1900	53.93	1.55	5.05
HL2000	2000	40.12	1.43	4,37
BL2000	2000	53,65	1.54	4.51
HL2450	2450	38.34	1.80	4.21
BL2450	2450	52.70	1.94	4.36
HL2600	2600	38.16	1.93	4.18
BL2600	2600	51.55	2.21	4.31

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

Ref: ACR 307.1.15 SATU.A

5.4 ISOTROPY

HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.05 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

Ref: ACR 307.1.15.5ATV.A

6 LIST OF EQUIPMENT

	Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Reference Probe	MVG	EP 94 SN 37/08	10/2015	10/2016		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated, No cal required	Validated No cal required		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated No cal required.	Validated No cal required		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	11-661-9	8/2015	8/2018		

Page: 9/9

SAR Reference Dipole Calibration Report

Ref : ACR.92.2.15.SATU.A

WALTEK SERVICES (SHENZHEN) CO., LTD 1/F., FUKANGTAI BUILDING, WEST BAIMA ROAD, SONGGANG STREET BAOAN DISTRICT, SHENZHEN GUANGDONG 518105, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 750 MHZ

SERIAL NO.: SN 09/15 DIP 0G750-357

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

03/16/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR-92215.5ATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	4/2/2015	15
Checked by:	Jérôme LUC	Product Manager	4/2/2015	78
Approved by :	Kim RUTKOWSKI	Quality Manager	4/2/2015	ALTO TOLKHARAINA

	Customer Name
Distribution:	Waltek Services (Shenzhen) Co., Ltd

Date	Modifications
4/2/2015	Initial release
	30,5116

Page: 2/12

Ref: ACR-922-15-SATU-A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Va	lidation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/12

Ref: ACR 922 15 SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID750
Serial Number	SN 09/15 DIP 0G750-357
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/12

Ref: ACR 92 2 15 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB
	764 9 AFT X W T

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 3/12

Ref: ACR.922.15.SATU.A

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
750	-26.20	-20	54.7 Ω - 1.3 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance 750 -22.98 -20 $50.7 \Omega + 7.0 \text{ j}\Omega$

Page: 6/12

Ref: ACR-92215 SATUA

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Li	ntn	ho	IM-	di	TITT
	required	measured	required	measured	required	measured
300	420.0 ±1 %		250.0 ±1 %		5.35±1 %:	-
450	290.0 ±1 %.		166.7 ±1 %.		6.35±1%	
750	176.0 ±1 %.	PASS	100.0±1 %.	PASS	6.35±1 %	PASS
835	161.0 ±1 %.		39.8 ±1 %		3,6 ±1 %	
900	149.0 ±1 %.		83,3±15		3.6 ±1 %	
1450	89.1 ±1 %		51.7±15		3.6±1%	
1500	80.5 ±1 %.		50.0±1 %		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7±134		3.6 ±1 %	
1750	75.2 ±1%.		42.9 ±1 34		3,6±1%	
1800	72.0 ±1 %.		41.7±1 %		3.6±1%	
1900	68.0 ±1 %.		39.5 ±1 %		3,6 ±1 %	
1950	66,3 ±1 %:		38,5 ±1 %		3.6 ±1 %	
2000	64.5 ±1.96		37.5±1 %		3.6 ±1%	
2100	61.0 ±1 %.		35.7±1%		3,6 ±1 %	
2300	55.5 ±1 W.		32,6 ±1 %		3.6 ±1 %	
2450	51.5±1%		30,4 ±1 %		3.6 ±1 %	
2600	48.5 ±1%		28,8 ±1 %		3.6 ±1 %	
3000	41.5 ±1 %		25.0±1 %		3.6 ±1%	
3500	37.0±1 %		26.4±1%		3,5 ±1%.	1
3700	34.7±1 %		26,4±1 %		3,6 ±1%	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s,')	Conductiv	ity (0) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87±5%	

Page: 7/12

Ref: ACR 922 15 SATU A

750	41.9 ±5 %	PASS	0.89 ±5 %	PASS
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5%		0.97±5%	
1450	40,5 ±5 W		1.20 ±5%	
1500	40.4 ±5 %		1.23 15 %	
1640	40.2.±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 W		1.40 ±5 %	
1950	40.0 ±5 M		1.40 ±5 %	
2000	40.0 ±5 %		1.40±5%	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96±5%	
3000	38.5 ±5 %		2.40±5%	
3500	37.9 ±5 %		2.91 ±5%	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4	
Phantom	SN 20/00 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Head Liquid Values, eps' 41.8 sigma : 0.90	
Distance between dipole center and liquid	15.0 ntm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21°C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

MHz	1 g SAR	[W/kg/W]	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	1.58		3.06	
750	8.49	8.48 (0.85)	5.55	5.64 (0.56)

Page: 8/12

Rd: ACR 92215 SATU A

835	9.56	6.22
900	10.9	6,99
1450	29	16
1500	30,5	16,8
1640	34.2	18.4
1750	36,4	19.3
1800	38.4	20.1
1900	39.7	20.5
1950	40.5	20,9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (E/)	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94±5%	
750	55.5 ±5 %	PASS	0.96±5%	PASS
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06±5%	

Page: 9/12

Ref: ACR.922.15.5ATU.A

1450	54.0 ±5 W.	1.30 ±5 %
1610	53.8 ±5 W	1.40 ±5 %
1800	53.3 ±5 %	1.52±5%
1900	53.3 ±5 1%	1,52±5%
2000	53.3 ±5 %	1.52±5%
2100	53.2 ±5 %	1.62 ±5 %
2450	57.7 ±5 W	1.95 45 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
5200	49.0±10%	5.30±10%
5300	48.9 ±10 %	5,42±10%
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65±10%
5600	48.5 ±10 %	5.77 ±10%
5800	48,2 ±10 %	6.00±10%

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values eps' 56,3 sigma 0.98
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21°C
Lab Humidity	45%

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
100	measured	measured	
750	8.53 (0.85)	5.75 (0,57)	

Page: 10/12

Ref: ACR 922 15 SATU A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated No ca	
COMOSAR Test Bench	Version 3	NA	Validated No cal required.	Validated No ca required	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 12/12

SAR Reference Dipole Calibration Report

Ref: ACR.92.3.15.SATU.A

WALTEK SERVICES (SHENZHEN) CO., LTD

1/F., FUKANGTAI BUILDING, WEST BAIMA ROAD, SONGGANG STREET

BAOAN DISTRICT, SHENZHEN GUANGDONG 518105, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 09/15 DIP 0G835-358

Calibrated at MVG US

2105 Barrett Park Dr. - Kennesaw, GA 30144

03/16/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref. ACR 92 1.15 SATULA

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/2/2015	25
Checked by:	Jérôme LUC	Product Manager	4/2/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	4/2/2015	- Kirismin

	Customer Name
Distribution:	Waltek Services (Shenzhen) Co., Ltd

Date	Modifications
4/2/2015	Initial release

Page: 2/12

Ref. ACR 92.1.15 SATU.A.

TABLE OF CONTENTS

T	Inti	oduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5,2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Va	idation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	of Equipment 12	

Page: 3/12

Ref. ACR 92 1 15 SATU.A.

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID835			
Serial Number	SN 09/15 DIP 0G835-358			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/12

Ref. ACR 92 1 15 SATULA

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency hand	Expanded Uncertainty on Return Los		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/12

Ref. ACR 923.15 SATU A

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance 835 -42.72 $50.7 \Omega + 0.3 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Impedance 835 -24.40 $45.3 \Omega + 3.7 i\Omega$

Page: 6/12

Ref. ACR 92 1.15 SATU.A

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Li	Lnun		h mm		d mm	
	required	measured	required	measured	required	measured	
300	420.0±1 %		250 0 ±1 %		6,35 ±1 W.		
450	290,0±1 %		166.7 ±1 %.		6,35 ±1 %		
750	176.D±1%		100.0±1%		6.35 ±1 %		
835	161.D ±1 %	PASS	89.8 ±1 %	PASS	3.6 ±1 %.	PASS	
900	149.0 ±1 %		83.3 ±1 %		3.6 ±1 %.		
1450	B9.1 ±1 %		51.7±1%		3.6 ±1 %.		
1500	RD.5 ±1 %		50.0 ±1 %		3.6 ±1 %.		
1640	79.0 ±1 %		45.7±1%		3.6 ±1 %.		
1750	75.2 ±1 %		42.9 ±1.7%		3.6 ±1%.		
1800	72.0 ±1 %		41.7±1%		3.6 ±1 %.		
1900	68,0 ±1 %		39.5 ±1 %		3,6 ±1 %.		
1950	66.3 21 %		38.5 ±1 %		3.6 ±1 %.		
2000	64.5 ±1 %		37,5±1%		3,6 ±1 %.		
2100	61.0 ±1 %.		35.7±1.%		3.6 ±1 %.		
2300	55,5 ±1 %		32.6±1.1%		3,5 ±1 %.		
2450	51,5 ±1 %.		30.4 ±1.%		3.6 ±1 %.		
2600	48.5 ±1 %		28.8 ±1.%		3.5±1%.		
3000	41.5 ±1 %		25.0 ±1 %		3.6 ±1 %.		
3500	37,0±1 %		26.4±1 %		3.6 ±1%		
3700	34.7±1 %.		26.4 ±1 %		3.6 ±1 %.		

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (c,*)		Conductivity (a) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87±5%	
450	43.5 ±5 %		0.87 ±5 %	

Page: 7/12

Ref. ACR 92 1 15 SATU.A

750	41.9 ±5 %		0.89±5%	1.7	
835	41.5 ±5 %	PASS	0.90±5 W	PASS	
900	41.5 ±5 %	41.5 ±5 % 0.97 ±5 %			
1450	40.5 ±5 %		1.20 ±5 %		
1500	40,4 ±5 %		1.23±5%		
1640	40.2 ±5%		1,31±5%		
1750	40.1 15 %		1.37 ±5 %		
1800	40.0 ±5 %	40.0±5% 1.40±5%			
1900	40.0 15 %	40.0 15% 1.40 ±5%			
1950	40.0 ±5 %	40.0 ±5 % 1.40 ±5 %			
2000	40.0 ±5 %	40.0 ±5 % 1.40 ±5 %			
2100	39.8 ±5 %		1.49 15 %		
2300	39.5 ±5 %		1.67±5%		
2450	39.2 15 %	59.2±5% 1.80±5%			
2600	39,0 ±5 % 1.96 ±5 %				
3000	38.5 ±5 %	38.5 ±5 % 2.40 ±5 %			
3500	37,9 ±5 %		2,91 ±5 %		

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps. 42.1 sigma 0.92		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	835 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45%		

Frequency MHz	I g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2,85		1.94	
450	4.58		3.06	
750	8.49		5,55	

Page: 8/12

Ref. ACR 92.3.15 SATU.A

835	9.56	9.53 (0.95)	6.22	6.20 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20,1	
1900	39.7		20.5	
1950	40,5		20,9	
2000	41.1		21,1	
2100	43.6		21.9	
2300	48.7		23,3	
2450	52.4		24	
2600	55.3	,1	24,6	
3000	63.8		25,7	
3500	67.1	-	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (c,')		Conductivity (a) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80±5%	0
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96±5%	
835	55.2 ±5 %	PASS	0,97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.05 ±5 %	

Page: 9/12

Ref. ACR 92 1.15 SATU.A

1450	54.0 ±5 %	1.30 ±5 W
1610	53.8 ±5 %	1.40±5%
1800	53.3 ±5 16	1.52 ±5 %
1900	53.3 ±5 %	1.52.±5 %
2000	53.3 ±5 %	1.52:15%
2100	53.2±5%	1,62 ±5 %
2450	52.7 ±5 %	1.95±5%
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73±5%
3500	51.3±5%	3.31 ±5 %
5200	49.0±10%	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7±10% 5.53±10%	
5500	48.6±10% 5.65±10%	
5600	48,5 ±10 %	5.77±10%
5800	68.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122:		
Liquid	Body Liquid Values eps 33.8 sigmu (0.98)		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	835 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lub Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g 5AR (W/kg/W)
	measured	measured
835	9.44 (0.94)	6.25 (0.62)

Page: 10/12

Ref. ACR 92 1.15 SATU.A.

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-\$AM71	Validated. No cal required	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-861-9	8/2012	8/2015	

Page: 12/12

SAR Reference Dipole Calibration Report

Ref: ACR.92.5.15.SATU.A

WALTEK SERVICES (SHENZHEN) CO., LTD 1/F., FUKANGTAI BUILDING, WEST BAIMA ROAD, SONGGANG STREET

BAOAN DISTRICT, SHENZHEN GUANGDONG 518105, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ

SERIAL NO.: SN 09/15 DIP 1G800-360

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

03/16/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Kef ACR 92.5.) S.SATU.A.

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	4/2/2015	35
Checked by:	Jérôme LUC	Product Manager	4/2/2015	25
Approved by ;	Kim RUTKOWSKI	Quality Manager	4/2/2015	Jam Amanushi

Distribution: Waltek Services (Shenzhen) Co., Ltd

Issue	Date	Modifications
A	4/2/2015	Initial release
		1000000

Page: 2/12

Kef: ACR 92.5.15-SATUA

TABLE OF CONTENTS

ľ	Inti	oduction4		
2	De	vice Under Test4		
3	Product Description4			
	3.1	General Information	4	
4	Me	asurement Method		
	4.1	Return Loss Requirements	5	
	4.2	Mechanical Requirements	5	
5	Me	asurement Uncertainty		
	5.1	Return Loss	5	
	5.2	Dimension Measurement	5	
	5.3	Validation Measurement	5	
6	Cal	ibration Measurement Results		
	6.1	Return Loss and Impedance In Head Liquid	6	
	6.2	Return Loss and Impedance In Body Liquid	6	
	6,3	Mechanical Dimensions	7	
7	Va	lidation measurement		
	7.1	Head Liquid Measurement	7	
	7.2	SAR Measurement Result With Head Liquid	8	
	7.3	Body Liquid Measurement	9	
	7.4	SAR Measurement Result With Body Liquid	10	
8	Lis	t of Equipment 12		

Page: 3/12

Kef: ACR 92.5.15:SATU.A

I INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID1800
Serial Number	SN 09/15 DIP 1G800-360
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/12

Kef ACR 92 5 J S SATUA

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Length		
0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/12

Ref: ACR 92.5.15.SATU.A

Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | 1800 | -31.91 | -20 | 48.5 Ω - 2.0 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | 1800 | -22.95 | -20 | 48.7 Ω - 7.0 jΩ

Page: 6/12

Kef ACR 92.5 JS SATUA

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %		250.0±1 %		6.35 ±1 %	
450	290.0 ±1 %		166.7 ±1 %.		6.35 ±1 %	
750	176.0±1 %		100.0±1%		6,35 ±1 %	
835	161.0 ±1 %		R9.8 ±1.%		3.6 ±1 %.	
900	149.0 :1 %		83.3 ±1 %.		3.6 ±1 %.	
1450	B9.1 ±1 %		51.7±1%		3.6 ±1 %	
1500	80.5 ±1 %		50.0 ±1 %		3.6 ±1 %	
1640	79.0 ±1 %		45.7±1%		3.6 ±1 %.	
1750	75.2 ±1 %		42.9±1%		3.6±1%.	
1800	72.0 ±1 %	PASS	41.7 ±1 %	PASS	3.6 21%.	PASS
1900	68.0 ±1 %		39.5 ±1.%		3.6 ±1 %.	
1950	66.3 21 %.		38.5 ±1 %.		3.6 21 %	
2000	64.5 ±1 %		37.5±1%		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7±1.%		3.6 ±1 %.	
2300	55.5 ±1 %		32.5±1%.		3.6 ±1 %.	
2450	51.5 ±1 %		30.4±1.%		3.6 ±1 %	
2600	48.5 ±1 %		28.8 ±1 %		3.6 :1 %.	
3000	41.5 ±1 %		25.0 ±1 %		3.6 ±1 %.	
3500	37.0±1 %		26,4±1 %		3.6 ±1 %.	
3700	34,7±1 %.		26.4±1%		3.6 ±1 %	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency	Relative per	mittivity (6,')	Conductivity (a) S/m	
	required	measured	required	measured
300	45.3 ±5 %		D.87±5%	
450.	43.5 ±5%		0.87±5%	

Page: 7/12

KEE ACR 92 5 JS SATU A

750	41.9 ±5 %		0.89 ±5 %	
835	41.5±5% 0.90±5%			
900	41.5 ±5%	41.5 ±5% 0.97 ±5%		
1450	40.5 ±5 %		1.20±5%	
1500	40.4 ±5 %		1.23±5%	
1640	40.2 ±5%		1.31 ±5 %	
1750	40.1 ±5 % 1.37 ±5 %			
1800	40.0 ±5 %	40.0 ±5 % PASS 1.40 ±5 %		PASS
1900	40,0 ±5% 1,40 ±5%			
1950	40.0±5% 1.40±5%			
2000	40.0 ±5% 1.40 ±5%			
2100	39.8±5% 1.49±5%			
2300	39.5 ±5%	39.5±5% 1.67±5%		
2450	39.2 ±5 % 1,80 ±5 %			
2600	39.0 15 % 1.96 15 %			
3000	38.5 ±5 % 2/40 ±5 %			
3500	37.9 ±5% 2.91 ±5%			

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Laquid	Head Liquid Values: eps' 41.1 sigma 1.39	
Distance between dipole center and liquid	10.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	1800 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR	W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1,94	
450	4.58		3.06	
750	8.49		5,55	

Page: 8/12

This document shall not be reproduced, except in full or in part, without the written approval of MVG.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVG.

Ref: ACR 92.5.15.SATU.A

835	9.56		6.22	
900	10.9	_	6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	37.56 (3.76)	20.1	20.22 (2.02)
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21,1	
2100	43.6		21.9	
2300	48.7		23,3	
2450	52.4		24	
2600	55.3		24,6	
3000	63.8		25,7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductivity (a) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94±5%	
750	55.5 ±5 %		0.96±5%	
835	55.2 ±5 %		0.97±5%	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06±5%	

Page: 9/12

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVG.

Kef ACR 92 5.15 SATUA

1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40±5%	
1800	53.3 ±5 %	PASS.	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5%		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7.15%	52.7 ±5 % 1.95 ±5 %		
2600	52.5 ±5 % 2.16 ±5 %			
3000	52.0 ±5 % 2,73 ±5 %			
3500	51.3 ±5 % 3,31 ±5 %			
5200	49.0 ±10 %	49.0±10% 5.30±10%		
5300	48.9 ±10 %	48.9 ±10 % 5.42 ±10 %		
5400	48.7 ±10 %	48.7±10% 5.53±10%		
5500	48.6 ±10 % 5.65 ±10 %			
5600	48.5 ±10 %	48.5 ±10 % 5.77 ±10 %		
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

OPENSAR V4	
SN 20/09 SAM71	
SN 18/11 EPG122	
Body Liquid Values, eps' 53.0 sigma : 1.52	
10.0 mm	
dx=8mm/dy=8mm	
dx=8mm/dy=8m/dz=5mm	
1800 MHz	
20 dBm	
21 °C	
21 °C	
45%	

Frequency	1 g SAR (W/kg/W)	10 g 5AR (W/kg/W)
	measured	measured
1800	37.91 (3.79)	20,62 (2,06)

Page: 10/12

This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not in be released in whole or part without westen approval of MVO.

KMF ACR 92.5 IS SATUA

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 12/12

This document shall not be reproduced, except in full or in part, without the written approval of MVO.
The information contained herein is to be used only for the purpose for which it is automitted and is not to
be released in whole or part without written approval of MVO.

Reference No.: WTS16S0961011E V2

SAR Reference Dipole Calibration Report

Ref: ACR.92.6.15.SATU.A

WALTEK SERVICES (SHENZHEN) CO., LTD 1/F., FUKANGTAI BUILDING, WEST BAIMA ROAD, SONGGANG STREET BAOAN DISTRICT, SHENZHEN GUANGDONG 518105, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 09/15 DIP 1G900-361

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

03/16/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Reference No.: WTS16S0961011E V2

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	4/2/2015	25
Checked by:	Jérôme LUC	Product Manager	4/2/2015	18
Approved by :	Kim RUTKOWSKI	Quality Manager	4/2/2015	- Kiringh

	Customer Name
Distribution:	Waltek Services (Shenzhen) Co., Ltd

Issue	Date	Modifications
Λ	4/2/2015	Initial release

Page: 2/12

This document shall not be reproduced, except in full or in part, without the written approval of MVC.
The information continued herein is to be used only for the purpose for which it is submitted and is not (c)
be released in whole or part without written approval of MVT.

Ref. ACR. 92.6.15 SATU.A

TABLE OF CONTENTS

Ť	Inti	roduction4	
2	De	vice Under Test4	
3	Pro	oduct Description	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5,2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Va	lidation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment12	

Page: 3/12

This document shall not be reproduced, except in full or in part, without the written approval of MVC.
The information contained herein is to be used only for the purpose for which it is submitted and is not (c)
be released in whole or part willoud written approval of MVC.

Ref. ACR 92 6.15 SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID1900
Serial Number	SN 09/15 DIP 1G900-361
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/12

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part militant written approval of MVG.

Ref. ACR 92 6 15 SATULA

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/12

This document shall not be reproduced, except in full or to part, without the written approval of MVCI.

The information continued herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part utilized written approval of MVC.

Ref. ACR 92.6.15 SATU A

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

	Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
T	1900	-33.77	-20	49.9 Ω - 2.0 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-27.04	-20	45.8 Ω - 1.5 jΩ

Page: 6/12

This document shall not be reproduced except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref. ACR 92 6.15 SATU.A.

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lo	nan	h nim		de	nm
	required	measured	required	measured	required	measured
300	420.0±1 %		250 0 ±1 %		6,35 ±1 W.	
450	290,0 ±1 %		166.7 ±1 %.		6,35 ±1 %	
750	176.D±1%		100.0±1%		6.35 ±1 %	
835	161.0 ±1 %		89.8 ±1 %		3.6 ±1%.	
900	149.0 ±1 %		83.3 ±1 %.		3.6 ±1 %.	
1450	B9.1 21 %		51.7±1%		3.6 ±1 %.	
1500	RD.5 ±1 %		50.0 ±1 %		3.6 ±1 %.	
1640	79.0 ±1 %		45.7±1%		3.6 ±1 %.	
1750	75.2 ±1 %		42.9 ±1.74		3.6 ±1%.	
1800	72.0 ±1 %		41.7±1%		3.6 ±1 %.	
1900	68,0 :1 %	PASS	39.5 ±1 %	PASS	3,5 ±1 %.	PASS-
1950	66.3 ±1 %		38.5 ±1 %		3.6 ±1 %.	
2000	64.5 ±1 %		37,5 ±1 %		3,5 ±1 %.	
2100	61.0 ±1 %.		35.7±1.%		3.6 ±1 %.	
2300	55,5 ±1 %		32.6±1.%		3,5±1%.	
2450	51,5 ±1 %.		30.4 ±1.%		3.6 ±1 %.	
2600	48.5 ±1 %		28.8 ±1.%		36±1%.	
3000	41.5 ±1 %		25.0 ±1 %		3.6 ±1 %.	
3500	37,0±1 %		26.4 ±1 %		3.6 ±1%	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative por	mittivity (e,*)	Conductiv	ity (a) 5/m
	required	measured	required	measured
300	45.3 ±5 1/4		0.87 ±5 %	
450	43.5 ±5 %	-	0.87 ±5 %	

Page: 7/12

This document shall not be reproduced, except in full or to part, without the written approval of MVC.
The information continued herein is to be used only for the purpose for which it is submitted and is not tobe released in whole or part utilised written approved of MVC.

Ref. ACR.92 6.15 SATU.A

750	41.9 ±5 %		0.89±5%	
835	41.5 25 %		0.90 ±5 W	
900	41.5 ±5 %		0.97±5%	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40,4 ±5%		1.23±5%	
1640	40.2 ±5%		1.31 ±5 %	
1750	40.1 15 %		1.37 ±5%	
1800	40.0 ±5 %		1.40±5%	
1900	40.0 15%	PASS	1.40±5%	PASS
1950	40.0 ±5 %		1:40±5%	
2000	40.0 ±5 %		1.40±5%	
2100	39.8 ±5 %		1.49 15 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80±5%	
2600	39.0 ±5 %		1.96±5%	
3000	38.5 ±5 %		2.40±5%	
3500	37,9 ±5 %		2,91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps. 40.9 sigma 143
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	I g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49	-	5.55	

Page: 8/12

This document shall not be reproduced except in full or in part, without the written approval of MVC.
The information contained herein is to be used only for the purpose for which it is submitted and is not volve released in whole or part without written approval of MVC.

Ref. ACR 92.6.15 SATU A

835	9.56	T T	6.22	T
	_			
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20,1	
1900	39.7	39.37 (3.94)	20,5	20.51 (2.05)
1950	40,5		20.9	
2000	41.1		21,1	
2100	43.6		21.9	
2300	48.7		23,3	
2450	52.4		24	
2600	55.3		24,6	
3000	63.8		25,7	
3500	67.1	-	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (c.')		(e,') Conductivity (a) 5	
	required	measured	required	measured
150	61.9 ±5 %		0.80±5%	0
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96±5%	-
835	55.2 ±5 %	-	0,97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %	-	1.05 ±5 %	

Page: 9/12

This document shall not be reproduced, except in full or in part, without the written approval of MVC.

The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVC.

Ref. ACR.92 6.15 SATU.A

1450	54:0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40±5%	
1800	53.3 ±5 16		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1/52.±5%	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2.±5%		1/62±5%	
2450	52.7 ±5 %		1.95±5%	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0±10%		5.30 ±10 %	
5300	48.9±10%		5.42 ±10 %	
5400	48.7±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77±10%	
5800	68.2 ±10 %		6.00±10%	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values eps 53.9 sigmu 155
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lub Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g 5AR (W/kg/W)	
	measured	measured	
1900	38.58 (3.86)	20.37 (2.04)	

Page: 10/12

This document shall not be reproduced, except in full or in part, without the written approval of MVG.
The information continued herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approved of MPT.

Ref. ACR 92 6.15 SATU.A.

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-\$AM71	Validated. No cal	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 12/12

This document shall not be reproduced, except in full or in part, without the written approval of MVC.

The information continued herein is to be used only for the purpose for which it is submitted and is not (c)
be released in whole or part without written approved of MVT.

Reference No.: WTS16S0961011E V2

SAR Reference Dipole Calibration Report

Ref: ACR.156.12.15.SATU.A

WALTEK SERVICES (SHENZHEN) CO., LTD 1/F., FUKANGTAI BUILDING, WEST BAIMA ROAD, SONGGANG STREET BAOAN DISTRICT, SHENZHEN GUANGDONG 518105, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2600 MHZ

SERIAL NO.: SN 16/15 DIP 2G600-376

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 05/16/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ret. ACR 156 12.15 SATU A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	6/5/2015	25
Checked by :	Jérôme LUC	Product Manager	6/5/2015	25
Approved by:	Kim RUTKOWSKI	Quality Manager	6/5/2015	Agmentage

Distribution: Customer Name
Waltek Services
(Shenzhen) Co., Ltd

Issue	Date	Modifications
٨	6/5/2015	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVG.

Ret. ACR 156.12.15 SATU A.

TABLE OF CONTENTS

1	Intr	oduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	- 5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVG.

Ref. ACR 156.12.15 SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2600	
Serial Number	SN 16/15 DIP 2G600-376	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be velocited in whole or part without written approval of MVG.

REE ACR. 156 12.15 SATULA

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Length
0,05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG.
The information contained herein is to be used only for the purpose for which it is submitted and is not tobe released in whole or part without written approval of MVG.

2600

-20

 $53.4 \Omega \pm 0.1 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

-29.44

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Le	nm	h m	im	- dr	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %		250.0±1%		6.35 ±1 %	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVG.

Ret. ACR 15612.15 SATUA

450	290.0±1 %		166.7±1%	_	6.35 ±1 W	
750	176.D±1%		100.0±1%		6.35 ±1 %	
935	161.0 ±1 %		89.8 ±1 %		3.6 ±1 %.	
900	149.0 ±1 %		83.3 ±1 %		3.6±1%.	
1450	R9.1±1%		51.7 ±1 %		3.6±1%.	
1500	B0.5±1%.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %		45.7±1%		3.6 ±1 %.	
1750	75.2±1%.		42.9 ±1 %		3.6 ±1 %.	
1800	72.0±1%		41.7 ±1%		3,6 ±1 %.	
1900	68,0±1%		39.5 ±1 %		3,6 21 %	
1950	66.3±1%		38.5 ±1 %		3,6 ±1 %.	
2000	64.5 ±1%		37.5 ±1 %		3,6 ±1 1/4	
2100	61,0±1%		35.7 ±1 14		3,6 11 %.	
2300	55.5 ±1%		32.6 11%		3,6 ±1 %,	
2450	51.5 ±1 %		30.4 ±1 %		3,6 £1 %.	
2600	48.5 ±1 %	PASS	28.8 ±1 %.	PASS	3.6 21 %.	PASS
3000	41.5 ±1 %		25.0 ±1 %		3,6 ±1 %	
3500	37.011%		26,4±1%		3,6 11 %.	
3700	34.7±1 %		26.4 ±1 %.		3.6 ±1 %	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,*)		Conductivity (a) 5/r	
	required	measured	required	measured
300	45.3 ±5 %		D.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9.±5%		D.89 ±5 %	
835	41.5 ±5%		0.90 ±5 %	Ú .
900	41.5 ±5 %		0.97 ±5.%	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5%		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ret. ACR 156.12.15.SATL A

	1.40 ±5 %		40.0 ±5 %	1800
	1.40 ±5 %		40.0 ±5%	1900
	1.40 ±5 %		40.0 ±5 %	1950
	1.40 ±5 %		40.0 ±5 %	2000
	1.49±5 W		39.8 ±5%	2100
	1.67 ±5 %		39.5 ±5%	2300
	1.R0±5%		39.2 ±5 %	2450
PASS	1.96 ±5 %	PASS	39.0 ±5 %	2600
	2.40 ±5 %		38.5 ±5 %	3000
1	2.91 ±5 %		37.9 ±5%	3500

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values, eps' 38.2 sigma 1.93		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm		
Frequency	2600 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45.%		

Frequency MHz	1 g SAR (1 g SAR (W/kg/W)		W/kg/Wj
	required	measured	required	measured
300	2.85		1.94	
450	4,58		3.06	-
750	8,49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29	-	16	
1500	30,5		16.8	
1640	34,2		18,4	
1750	36.4		19.3	-
1800	38.4		20,1	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.156.12.15.SATU.A

1900	39.7		20,5	
1950	40.5		20,9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3	55.02 (5.50)	24.6	24.30 (2.43)
3000	63.8		25.7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (c,')		ity (a) S/m
	required	measured	required	measured
150	61.9 15 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5%	
450	56.7 ±5%		0.94 ±5 %	
750	55.5 ±5%		0.96 ±5 %	
835	55.2 ±5%		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %	X I	1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5%		1.95 ±5 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of MFG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MFG.

Ref: ACR.156.12.15.SATU.A

2600	52.5 ±5 %	PASS	2.16±5%	PASS
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5%		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00±10%	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

OPENSAR V4	
SN 20/09 SAM71	
SN 18/11 EPG122	
Body Liquid Values: eps': 51.6 sigma: 2.21	
10.0 mm	
dx=8mm/dy=8mm	
dx=5mm/dy=5mm/dz=5mm	
2600 MHz	
20 dBm	
21 °C	
21 °C	
45 %	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2600	53.02 (5.30)	23.66 (2.37)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in while or part without written approval of MVG.

REE ACR 156 12 15 SATULA

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated No cal required	Validated. No ca required
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MVG.

17 Re-calibration for Dipole

17.1 DIPOLE 750 (SN 09/15 DIP 0G750-357)

Return Loss and Impedance in Head liquid(Mar 3,2016) Frequency(MHz) Return loss(dB) Requirement(dB) Impedance -28.164 750 -20 52.953Ω-0.643jΩReturn loss Trc1 S11 dB Mag 10 dB / Ref0 dB Cal +1 750.00000 MHz -28.164 dB S11 30 -50--207 Chi Start 635 MHz Pwr -10 dBm Stop 865.00MHz

Return Loss and Impedance in Body liquid(Mar 3,2016) Frequency(MHz) Return loss(dB) Requirement(dB) Impedance 750 -22.17 -20 49.772Ω-7.497jΩ Return loss Trot Sti dB Mag 10 dB / Ref 0 dB Cal .1 750.00000 MHz -22:17 dB -10 -30 48 -60 -70 -80 Chi Start 635 MHz Pwr -10 dBm Stop 865.00 MHz Impedance Trc1 S11 Smith Ref 1 U Cal 49.772 Ω 750.00000 MHz \$11 j7.497 Ω 752.87 pH 0.2

Pwr -10 dBm

Stop 865.00 MHz

Ch1 Start 635 MHz

17.2 DIPOLE 835 (SN 09/15 DIP 0G835-358)

Return Loss and Impedance in Head liquid(Mar 8,2016)

Return Loss and Impedance in Body liquid(Mar 8,2016) Frequency(MHz) Return loss(dB) Requirement(dB) Impedance 835 -24.404 -20 46.9Ω+4.997jΩ Return loss Trc1 SII dB Mag 10 dB | Ref 0 dB Cal .1 835 00000 MHJ -24.404 dB -10 50 -80 Chi Start 635 MHz Pwr -10 dBm Stop 1 035 GHz Impedance Tref Sit Smith Reft U Cal 835 00000 MHz 46.006.0 |4 997 Ω 95237 pH

Pwr -10 dBm

Stop 1 035 GHz

Chl Start 635 MHz

17.3 DIPOLE 1800 (SN 09/15 DIP 1G800-360)

Return Loss and Impedance in Head liquid(Mar 15,2016)

Return Loss and Impedance in Body liquid(Mar 15,2016) Frequency(MHz) Return loss(dB) Requirement(dB) Impedance 1800 -25.849 -20 47.992Ω+7.543jΩ Return loss Troi Sti dB Mag 10 dB / Re10 dB Cal .1 1.80000 BH2 -25 849 dB \$11 -10--00 Ch1 Start 1.55 GHz Pwr -10 dBm Stop 2.05 GHz Impedance Trc1 Sti Smith Ref 1 U Cal 1.800000 GHz 47.992 Ω S11 j7.543 Ω 612.13 pH

Pwr -10 dBm

Stop 2.05 GHz

Ch1 Start 1.55 GHz

17.4 DIPOLE 1900 (SN 09/15 DIP 1G900-361)

Return Loss and Impedance in Head liquid(Mar 25,2016)

Return Loss and Impedance in Body liquid(Mar 25,2016)

17.5 DIPOLE 2600 (SN 16/15 DIP 2G600-376)

Return Loss and Impedance in Head liquid(Mar 28,2016)

Return Loss and Impedance in Body liquid(Mar 28,2016) Frequency(MHz) Return loss(dB) Requirement(dB) Impedance 2600 -30.161 -20 50.597Ω-3.015jΩ Return loss Trc1 S11 dB Mag 10 dB / Ref 0 dB Cal 2.800000 GHz -30 161 dB +1 -50--70--80 Ch1 Center 26 GHz Pwr -10 dBm Span 400 MHz Impedance Trc1 S11 Smith Ref 1 U Cal 2.600000 GHz 50.597 Ω -β.015 Ω 20.304 pF

Pwr -10 dBm

Span 400 MHz

Ch1 Center 2.6 GHz

18 SAR System Photos

19 Setup Photos

Reference No.: WTS16S0961011E V2

20 EUT Photos

Front side

Back side

End of report