

Solemne 2 (Pauta)

26 de Junio de 2014

Profesor: Alejandro Figueroa

- Está prohibido el uso de teléfonos celulares durante el desarrollo de la prueba.
- La prueba debe responderse con un lápiz de tinta indeleble, de lo contrario no hay opción a correcciones.
- Cualquier alumno que sea sorprendido intentando copiar será calificado con una nota 1.
- Está prohibido conversar durante la prueba. Recuerde que su compañero puede estar concentrado y el ruido puede perturbarlo en el desarrollo de su prueba.
- Utilice sólo las hojas entregadas para escribir sus respuestas

1. Búsqueda en Espacios Combinatorios (35 puntos).

a. Compare Tabú Search y Particle Swarm Optimization. Tenga presente que la pauta contempla seis diferencias y dos similitudes (15 puntos).

Tabú Search	Particle Swarm Optimization			
Tiene memoria representada en una	Cada partícula recuerda la mejor			
lista Tabú.	solución que ha estado.			
Se mueve a un punto cercano en la	El N(x) depende no sólo de la vecindad			
vecindad de acuerdo a una función	del punto, sino que también de la			
N(x).	historia de la "sociedad" de partículas, y			
	la historia de la propia partícula.			
Maneja un punto de búsqueda en cada	Maneja un conjunto de			
iteración	puntos(partículas) que forman una			
	"sociedad" (búsqueda paralela)			
Parte con una solución al azar	Parte con una solución al azar			
N(x) sólo depende de la solución	Partículas comparten información			
actual, es decir de la geografía definida	social/geográfica de sus soluciones para			
por el movimiento.	mejorar la elección del próximo punto.			
Termina después de un número	Termina después de un número			
determinado de iteraciones o cuando	determinado de iteraciones o cuando se			
se cumple alguna condición	cumple alguna condición			
Estrategias diferentes para manejar la	La memoria es simple: cada partícula			
memoria: corto/largo plazo, soluciones	guarda su mejor solución, de las cuales			
completas o patrones, malas y buenas,	se puede inferir la mejor global.			
etc.				
No es una técnica evolutiva,	Es una técnica evolutiva, ya que la			
básicamente porque maneja un solo	próxima generación va a contener la			
individuo.	amalgama de patrones en las soluciones			
	de la generación actual.			

b. ¿Cuál es la diferencia principal entre técnicas constructivas y de mejoramiento de soluciones? Ejemplifique ambos grupos (5 puntos).

Constructivas	Mejoramiento			
Construyen una solución factible	Necesitan una solución ya construida,			
mientras recorren el espacio de	normalmente factible. Esta solución es			
búsqueda. Muchas veces privilegiando	mejorada mediante cambios en su			
instanciaciones que puedan conducir a	estructura.			
la mejor solución.				
Backtracking, Branch and Bound, ACS,	Algoritmos Genéticos, Hill Climbing,			
BCO, etc.	Tabú Search, etc.			

c. En la última parte del curso, en especial en la penúltima tarea, aprendimos que el desempeño de un clasificador depende de lo features escogidos. Más precisamente, discutimos que la elección de las palabras utilizadas para generar los modelos era importante para lograr una mayor efectividad en los pronósticos. Sin embargo, las bolsas de palabras eran normalmente grande. De ahí que escoger el subconjunto que logre el mejor modelo se transforma en un problema NP-completo. Diseñe las componentes de un algoritmo genético que busque este subconjunto óptimo de palabras: Inicialización, función objetivo, cromosoma, mutación, cruzamiento, condición de término, y el mecanismo de selección (15 puntos).

	•				
Componente	Implementación				
Función Objetivo	El resultado del accuracy después de desarrollar				
	cross-validation con las palabras que son incluidas				
	por el cromosoma.				
Cromosoma	Binario: 0 si la palabra no es incluida, 1 si lo es. El				
	número de genes es el tamaño del diccionario.				
Mutación	Swap aleatorio.				
Cruzamiento	De 1 ó 2 puntos.				
Condición de Término	Accuracy=100% o un número pre-determinado de				
	iteraciones.				
Mecanismo de Selección	Ruleta, es decir proporcional al accuracy obtenida.				
	También por torneos.				
Inicialización	Asignar unos/ceros aleatoriamente.				

2. Recuperación de Información (20 puntos).

a. Nombre cuatro diferencias entre un lematizador y un stemmer. Ejemplifique (10 puntos)

Lematizador	Stemmer			
Mapea cada palabra a su raíz,	Principalmente, corta cada palabra para			
estudiando su forma.	obtener un stem. En su gran mayoría es			
	heurístico, y se basa en un conjunto de			
	reglas.			
Comete pocos errores.	Comete muchos errores.			
Detecta estructuras internas y patrones	Principalmente ataca sufijos y prefijos,			
lingüísticos, e.g., mice → mouse.	e.g., palabras terminadas con "ed", "ly",			
	etc.			
Es dependiente de la categoría	No toma en cuenta la categoría			
sintáctica de la palabra.	sintáctica de la palabra.			
goes, going, went → go	taller, tallest → tall			

a. ¿Qué diferencias hay entre las consultas que se hacen a un motor de recuperación de información (e.g., Google) y los documentos que deben recuperarse? Tenga presente que la pauta contempla seis diferencias y dos similitudes (10 puntos).

Consultas	Colección de Documentos
No tienen metadata.	Tienen metadata.
Son cortas.	Varian en largo, pero mucho más largos que las consultas.
Los sustantivos y nombres propios	Los verbos son la categoría más
gobiernan las consultas.	prominente. Hay uno por oración
	principalmente.
Las mayúsculas no son confiables.	El uso de las mayúsculas es altamente
	confiable.
En su gran mayoría, sólo 2-3 palabras.	Estructuras complejas: tablas,
	imágenes, etc.
Alta ambigüedad.	Baja ambigüedad.

3. Aprendizaje No-Supervisado (25 puntos)

a. Compare K-Means y Fuzzy C-Means. Tenga presente que la pauta contempla dos diferencias y seis similitudes (20 puntos).

K-Means	Fuzzy C-Means		
Particional	Particional		
K clusters (parámetro)	K clusters (parámetro)		
Iterativo hasta: Número de iteraciones	Iterativo hasta: Número de iteraciones o		
o un criterio de error	un criterio de error		
Calcula centroides en cada iteración	Calcula centroides en cada iteración		
Utiliza una métrica de distancia o	Utiliza una métrica de distancia o		
similitud.	similitud.		
Cada dato va a pertenecer a un clúster.	Cada dato va a tener un grado de		
	membrecía a cada uno de los K		
	clústeres.		
No tiene otro parámetro a ajustar.	Coeficiente de difusión a ajustar.		
Puede caer en un óptimo local	Puede caer en un óptimo local		

b. ¿Cuál es la diferencia principal entre las métricas de distancia y similitud? Ejemplifique ambos grupos (5 puntos).

Distancia	Similitud		
De 0 a infinito	-1 a 1		
Entre más cercano a 0, más parecido	Entre más cercano a 1, más parecido		
son los vectores.	son los vectores.		
Euclidiana	Coseno		

4. Aprendizaje Supervisado (20 puntos)

Dada los siguientes vectores etiquetados, calcule a) la entropía del conjunto de datos (5 puntos); y b) determine y fundamente si la palabra "cancer" o "battery" es mejor para comenzar un clasificador basado en árboles de decisión (15 puntos).

	а	cancer	tech	recovery	energy	battery	CLASE
1	1	0	1	1	1	0	Tech
2	1	1	0	1	0	0	Health
3	1	0	0	0	1	0	Tech
4	1	0	1	0	0	1	Tech
5	1	0	0	0	1	0	Health
6	1	0	0	0	0	1	Tech
7	1	1	0	0	1	0	Health
8	1	0	0	1	0	1	Health
9	1	0	0	1	1	0	Tech
10	1	0	0	1	0	1	Health
11	1	0	1	1	1	1	Tech
12	1	0	0	1	0	1	Health
13	1	0	0	0	1	0	Tech
14	1	0	1	0	0	0	Tech
15	1	0	1	0	1	0	Tech
16	1	0	1	0	0	1	Tech
17	1	1	0	0	1	1	Health
18	1	0	1	1	0	1	Health
19	1	1	0	1	1	0	Tech
20	1	0	1	0	0	0	Tech
Total	20	4	8	9	10	9	

Respuesta a): Hay doce ejemplos de la clase "Tech" y ocho de la clase "Health".

$$\begin{split} P(C_{tech}) &= \frac{12}{20} = \frac{3}{5} \\ P(C_{health}) &= \frac{8}{20} = \frac{2}{5} \\ Entropy(D) &= -\left[\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right] = 0,970950594 \end{split}$$

Respuesta b): El feature "cancer" aparece en cuatro instancias y es binario, por ende su entropía está dada por:

$$Entropy_{cancer}(D) = -\left[\frac{4}{20}Entropy_{cancer}(D_4) + \frac{16}{20}Entropy_{cancer}(D_{16})\right] = 0,879086211$$

$$Entropy_{cancer}(D_1) = -\left[\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}\right] = 0,811278124 \quad (3 \text{ Health y 1 Tech})$$

$$Entropy_{cancer}(D_0) = -\left[\frac{11}{16}\log_2\frac{11}{16} + \frac{5}{16}\log_2\frac{5}{16}\right] = 0,896038233 \quad (5 \text{ Health y 11 Tech})$$

$$Entropy_{battery}(D) = -\left[\frac{9}{20}Entropy_{battery}(D_9) + \frac{11}{20}Entropy_{battery}(D_{11})\right] = 0.91092724$$

$$Entropy_{battery}(D_1) = -\left[\frac{4}{9}\log_2\frac{4}{9} + \frac{5}{9}\log_2\frac{5}{9}\right] = 0.99107606 \quad (5 \text{ Health y 4 Tech})$$

$$Entropy_{battery}(D_0) = -\left[\frac{3}{11}\log_2\frac{3}{11} + \frac{8}{11}\log_2\frac{8}{11}\right] = 0.84535094 \quad (3 \text{ Health y 8 Tech})$$

$$gain(cancer) = 0.970950594 - 0.879086211 = 0.09186438$$

gain(battery) = 0.970950594 - 0.91092724 = 0.06002335

El mayor gain es para "cancer", por ende conviene partir con esta palabra el árbol de decisión.