

THCO MIPS指令计算机系统设计和实现

Project 4 & 5

刘 卫 东 计算机科学与技术系

内容提要

- ♥我们要做什么?
- ⇒我们已经有了什么?
- ●我们可以怎样去做?
- ♥我们还能做什么?
- ♥我们最后要交什么?
- ♥具体时间安排

我们要做什么?

奋战三星期

做台计算机

我们要做什么?

- ⇔实验任务
 - 多周期CPU或支持指令流水的CPU (二选一)
 - ₩ 使用基本存储和扩展存储以及输入/输出
 - 进行扩展
- ⇔实验目标
 - ₩能运行监控程序,并在监控程序中运行 PROJECT 1的程序
 - ₩ 能运行Ucore, 并在Ucore下运行应用程序
 - 有可供演示的应用程序

我们已经有了什么?

- ***THINPAD**硬件平台
 - FPGA CPU
 - SRAM Memory
 - FLASH Memory
 - **UART/USB/PS2/VGA/** UART/USB/PS2/VGA/
- ♥THCO MIPS指令系统
- ⇔监控程序等辅助软件
- Project1 & Project2 & Project3
- ◆教材和实验指导书

教学计算机硬件平台

教学机硬件基本组成

- CPU
 - FPGA
- Memory

■ 基本: 256KW SRAM

₩ 扩展: 256KW SRAM

Bus

■ 基本: 数据16bits/地址18bits/控制 3bits

₩扩展:数据16bits/地址18bits/控制3bits

Device

UART

结构

CPU

♥Xilinx公司的SPARTAN-3E系列芯片

♥型号: XC3S1200EFGG320

₩120万门容量

2168 **↑**CLB

☎504Kb的RAM块

₩320脚的FBGA封装形式

FPGA管脚

消華大学 Tsinghua University

- ♦ 连接基本存储
 - ₩ 地址18位
 - ₩ 数据16位
- ♦ 连接扩展存储
 - ₩ 地址18位
 - 数据16位
- ♦ 总线控制信号
 - ₩ 各3位
- ⇔指示灯
- FLASH
- **PS2**
- VGA
- ♥ 具体见实验指导书

CPU功能

- ♥数据通路
 - **5** · · · · · ·
- *控制器
 - **iii** • • •
- ♥框架结构
 - ALU
 - Register Files
 - **MEM** Interface
 - Decoder

框架结构

THINPAD存储器

13

监控程序划分的地址段

14

功能区	地址段	说明
系统程序区	0x0 RAM2	控程序
用户程序区	0x4000~00/FFF (32K)	存放用户程序
系统数据区	0x8000~0xBEFF	监控程序使用的数据区
Com1数据端口/命令端口	0xBF00~RAM	
Com2数据端口/命令端口	0xBF02~0xBF03	第2个串口的端口
预留给其他接口	0xBF04~0xBF0F	保留
系统堆栈区	0xBF10~0xBFFF	用于系统堆栈
用户数据区	0xC000~0xFFFF	用户程序使用的数据区

程序如何装入?

- ♥程序装入到FLASH中
 - ■采用提供的软件装入
 - ™CPU首先将其boot到RAM1中
 - ■再从RAM1中运行
- ♥程序直接装入到RAM1中
 - ■直接用软件装入到RAM1中

内存访问

⇔控制信号 [®]/CE、/WE、/OE

⇔访问时序 □如何保证?

TRUTH TABLE

					I/O PIN				
Mode	WE	CE	OE	LB	UB	1/00-1/07	1/08-1/015	Vcc Current	
Not Selected	Х	Н	Х	Х	Х	High-Z	High-Z	lsa1, lsa2	
Output Disabled	Н	L	Н	Х	Х	High-Z	High-Z	lec	
	Х	L	Х	Н	Н	High-Z	High-Z		
Read	Н	L	L	L	Н	D out	High-Z	lcc	
	Н	L	L	Н	L	High-Z	D out		
	Н	L	L	L	L	Dout	D out		
Write	L	L	Х	L	Н	Din	High-Z	lcc	
	L	L	Х	Н	L	High-Z	Din		
	L	L	Х	L	L	Din	Din		

内存读时序

17

内存读参数

18

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-8		-1(-10		-12		-15	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tro	Read Cycle Time	8	_	10	_	12	_	15	_	ns
taa	Address Access Time	_	8	_	10	_	12	_	15	ns
toha	Output Hold Time	3	_	3	_	3	_	3	_	ns
TAGE	CE Access Time	_	8	_	10	_	12	_	15	ns
tooe	OE Access Time	_	4	_	5	_	6	_	7	ns
thzoe ⁽³⁾	OE to High-Z Output	0	4	_	5	_	6	Ð	6	ns
tizoe [©]	OE to Low-Z Output	0	_	Ð	_	Ð	_	Ð	_	ns
thzce [©]	CE to High-Z Output	Ð	4	0	5	0	6	ð	6	ns
tuzce(2)	CE to Low-Z Output	3	_	3	_	3	_	3	_	ns
İBA	B, UB Access Time	_	4	_	5	_	6	_	7	ns
thza	LB, UB to High-Z Output	0	4	0	5	0	6	ð	6	ns
tizb	LB, UB to Low-Z Output	0	_	0	_	Ð	_	0	_	ns

计算机科学与技术系 计算机组成原理

内存写时序

19

WRITE CYCLE NO. 2 (WE Controlled. OE is HIGH During Write Cycle) (1,2)

内存写参数

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)

		-8	3	-10		-12		-1;	5		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
two	Write Cycle Time	8	_	10	_	12	_	15	_	ns	
tsce	CE to Write End	7	_	8	_	9	_	10	_	ns	
taw	Address Setup Time to Write End	7	_	8	_	9	_	10	_	ns	
tha.	Address Hold from Write End	0	_	0	_	0	_	Ð	_	ns	
tsa	Address Setup Time	0	_	0	_	0	_	Ð	_	ns	
tews	□B, □B Valid to End of Write	7	_	8	_	9	_	10	_	ns	
tewe	WE Pulse Width	7	_	8	_	9	_	10	_	ns	
tsp	Data Setup to Write End	4.5	_	5	_	6	_	7	_	ns	
thd	Data Hold from Write End	0	_	0	_	0	_	Ð	_	ns	
thzwe ⁽²⁾	WE LOW to High-Z Output	_	4	_	5	_	6	_	7	ns	
tizwe ^(a)	WE HIGH to Low-Z Output	3	_	3	_	3	_	3	_	ns	

如何确定CPU主频?

- 鈴流水线要求每个机器周期完成一个步骤,包括存储器读/写
- ◆多周期CPU也大都要求在一个步骤 内完成存储器的一次访问
- ♥完成一次存储访问的时间?
- ⇔如何实现? 50MHz

计算机科学与技术系

串行接口芯片8251

串行接口, 可用于同步或异步传送

- ♦ 同步传送
 - 5~8位/字
 - 🛮 支持内同步或外同步
 - 🛮 自动插入同步字符

♦ 异步传送

- 5~8位/字
- ₩ 时钟: 1、16或64倍波特率
- 🖫 停止位: 1、1.5或2位
- □ 可检测假启动
- 全双工
- 🛮 双缓冲发送器和接受器
- 可检测奇偶错、数据丢失错和帧错

8251结构框图

23

方式命令字的格式

接口状态寄存器的内容格式

25

INTEL 8251 串行接口芯片®

器件引脚图

D7~D0:I/O数据

CLK: 主时钟

/RxC,RxD:接收时钟、数据

/TxC,TxD: 发送时钟、数据

/CS: 片选信号

/WR、/RD:写、读命令

C/ D: 控制 / 数据信号

RESET: 总清信号

RxRDY: 接收准备就绪

TxRDY: 发送准备就绪

TxEMPTY: 发送寄存器空

/DTR、/DSR:

/RTS、/CTS:

工作命令字的格式

D 7	D 6	D 5	D 4	D 3	D2	D 1	D 0
ЕН	IR	RTS	ER	SBBK	RxE	DTR	TxEN

接口状态寄存器的内容格式

TEC-2000 机串行口初始化的程序

MVRD R0, 4Eh

OUT 81h

MVRD R0, 37h

OUT 81h

命令设置: 0 0 1 1 0 1 1 1

对 OUT 指令而言, 81h、91h 为控制寄存器地址; 对 IN 指令而言, 81h、91h 为状态寄存器地址;

THINPAD串口连接方式

29

- ♦ rdn、Wrn控制读/写
- ♦ 读操作时, Data_ready为1时, 数据已经准备好
- ◆ 写操作时,Tbre且Tsre为1时,可进行写操作

监控程序中的写操作

TESTW:

NOP

LI R6 0x00BF

SLL R6 R6 0x0000

ADDIU R6 0x0001

LW R6 R0 0x0000

LI R6 0x0001

AND R0 R6

BEQZ R0 TESTW

;BF01&1=0 则等待

NOP

JR_{R7}

NOP

MFPC R7

ADDIU R7 0x0003

NOP

B TESTW

LI R6 0x00BF

SLL R6 R6 0x0000

LI R0 0x000A

SW R6 R0 0x0000

NOP

- ♦ 将BF01定向到UART
- ◆ 读BF01时, UART应 该返回一个状态值
- ♥ 最低1位反映UART是 否可写
- ⇔若可写,则往BF00中 写入字符

监控程序中的读操作

TESTR:

NOP

LI R6 0x00BF

SLL R6 R6 0x0000

ADDIU R6 0x0001

LW R6 R0 0x0000

LI R6 0x0002

AND R0 R6

BEQZ R0 TESTR

;BF01&2=0 则等待

NOP

JR_{R7}

NOP

MFPC R7

ADDIU R7 0x0002

B TESTR

NOP

LI R6 0x00BF

SLL R6 R6 0x0000

LW R6 R5 0x0000

LI R6 0x00FF

AND R5 R6

NOP

- ♦ 将BF01定向到UART
- ◆ 读BF01时,UART应 该返回一个状态值
- ♦ 次低1位反映UART是 否可读
- ⇒ 若可读,则从BF00中 读入字符

对存储/外设的控制信号

- ⇔信号源
 - RAM1_EN、RAM1_OE、RAM1_RW
 - RAM2_EN、RAM2_OE、RAM2_RW
- ⇔对存储器的控制信号
 - /CE/OE/WE

- ⇔对串口UART的控制信号
 - Rdn, Wrn
 - Data_ready、tbre、tsre

已有的基础

- ⇔监控程序
- ♥THCO MIPS指令系统
 - Project1
 - 思考和实践
- ♥ALU及数据通路
 - Project2、思考和实践
- ⇔串口、存储访问
 - Project3

基本步骤

游菜大学 Tsinghua University

- ♦ 确定目标
 - № 多周期/流水、扩展方案、展示方案
 - 工作计划
 - ₩ 组内分工
- ♦ 概要设计
 - 数据通路设计: 每条指令在数据通路上的实现过程
 - □ 指令流程表: 每条指令每个步骤所完成的功能
 - ₿ 流水段设计
 - ₩ 控制信号设计
 - ₩ 模块设计(各模块基本功能和接口)
- ♦ 详细设计
 - ♣ 各模块编码实现
- ♦ 编码实现
- ♥ 模拟分析
- ♦ 硬件调试
- ♦ 总结报告

我们还能做什么?

- ♥硬件
 - 对流水线进行完善
 - ◆结构冲突、数据冲突、控制冲突
 - 中断
 - 分时操作
 - 22 双机通信
- ⇔软件
 - 监监控程序的完善
 - 有创意的应用
 - 性能分析和评价

时间安排

♥截止时间

₩实验检查: 12月3日

■ 实验报告: 12月10日

第 实验答辩: 12月23日

⇔阶段检查

№11月14日:确定目标和数据通路设计

№11月17日:控制器设计

■11月21日:初步代码

⇔实验室开放及助教

₩工作日白天全时,晚上和周末预约

开放时间有助教辅导

实验成果

- ⇒ 完整的实验报告
 - □ 实验目标
 - 23 实验内容
 - ₩ 实验展示
 - ₩ 实验心得体会
- ◆ 完整的源代码
 - ₩设计框图
 - ₩ 指令流程表
 - ₩ VHDL代码
 - ₩ 其他代码

下面三堂课的教学安排

- ♦ 分班上实验课,上课时间不变
- ◆ 上课地点变更为 (以分组名单中的班号为准)
 - ₩ 计41: 东主楼 9区204
 - ₩ 计42: 东主楼 9区208
 - ₩ 计43: 东主楼 9区419
 - ₩ 计44: 东主楼 9区422
 - ₩ 计45: 五教 5202

♦ 要求

- ₩ 按时上课,课前签到,出勤情况将影响实验成绩
- ₩ 按时完成实验任务
- ** 挑战小组和联合小组自行安排

实践

- ⇔分析THCO MIPS指令系统
 - ■指令格式
 - ◆操作码、操作数地址
 - ₩寻址方式
 - ◆寄存器寻址、立即数寻址、基址寻址
- ⇔设计数据通路
- ♥划分指令执行步骤
 - ◆多周期/指令流水