#### SCC 503 - ALGORITMOS E ESTRUTURAS DE DADOS II

# Árvores B - Remoção

Prof.: Leonardo Tórtoro Pereira leonardop@usp.br

\*Material baseado em aulas dos professores: Elaine Parros Machado de Souza, Gustavo Batista, Robson Cordeiro, Moacir Ponti Jr., Maria Cristina Oliveira e Cristina Ciferri.

## O que sabemos de Árvores-B?

#### Relembrando...

- → Árvore-B
  - ◆ Inserção
    - Algoritmo
  - Busca
    - Complexidade
    - Algoritmo

- → Na inserção:
  - Split garante a manutenção das propriedades da árvore-B
- → Porém
  - Propriedades precisam ser mantidas também durante a remoção de chaves
  - Remoção sempre nas folhas!
  - Vários casos a serem analisados

- → Caso 1:
  - Remoção de uma chave em uma página folha mantendo ocupação mínima da árvore
    - Número mínimo de chaves na página
- → Solução:
  - Chave é retirada e demais chaves da página são reorganizadas





- → Caso 2:
  - Removendo uma chave de uma página não folha
- → Solução: sempre remover de páginas folha
  - Trocar a chave com sua sucessora imediata (ou com a predecessora imediata) que está numa folha
  - Remover a chave da folha









- **→** Caso 3:
  - Remoção causa underflow na página
    - Número de chaves abaixo da ocupação mínima

- → Solução: redistribuição
  - Procura-se uma página irmã (com mesmo nó pai e chave separadora em comum) que contenha mais chaves do que o mínimo
    - Se existir, redistribui-se as chaves entre essas páginas
  - Redistribuição provoca uma alteração na chave separadora que está no nó pai









- **→** Caso 3:
  - Redistribuição:
    - Ideia inovadora...
    - Efeito local na árvore
      - Não se propaga para nós superiores

- **→** Caso 3:
  - Redistribuição:
    - Necessário
      - Mover apenas 1 chave para a página com underflow para restabelecer as propriedades da árvore-B

- → Caso 3:
  - Redistribuição:
    - Estratégia usual
      - Redistribuir as chaves de maneira equilibrada entre as páginas:
      - "balanceamento" dos espaços disponíveis

- **→** Caso 4:
  - Ocorre underflow e a redistribuição não pode ser aplicada
    - Não há chaves suficientes para dividir entre duas páginas irmãs

- **→** Caso 4:
  - ◆ Solução: concatenação
    - Combina-se o conteúdo das duas páginas com a chave separadora da página pai para formar uma única página
    - Pode ocorrer underflow da página pai
      - Propagação de underflow (caso 5)







- → Caso 5: Underflow da página pai
  - Propagação de Underflow
  - Solução: Redistribuição ou Concatenação,



- → Concatenação
- → Organização das chaves na página 1
  - Atualiza ponteiros
- → Páginas 0 e 2 removidas



- Caso 6: diminuição da altura da árvore
  - Ocorre quando o nó raiz tem uma única chave e aplica-se a concatenação de seus nós filhos
  - Como ocorreu no exemplo anterior...
  - Requer atualização da identificação do nó raiz no cabeçalho do arquivo

### Resumo

#### Remoção - Resumo

- 1. Se a chave não estiver numa folha, troque-a com sua sucessora (ou antecessora)
- 2. Remova a chave da folha
- 3. Se a folha continuar com o número mínimo de chaves, FIM

#### Remoção - Resumo

- 4. Senão (underflow)
  - a. se uma das páginas irmãs diretas (esquerda ou direita) tiver mais que o mínimo de chaves, aplique redistribuição e FIM
  - b. senão
    - i. concatene a pág. com uma das irmãs e a chave separadora do nó pai
    - ii. se nó pai for raiz e sua última chave foi rebaixada, elimine a raiz e FIM

#### Remoção - Resumo

- 4. Senão (underflow)
  - b. senão
    - i. senão, se nó pai continuar com o mínimo de chaves, FIM
    - ii. senão (underflow no pai), volte ao item 4.a para o nó pai

## <u>Exemplo</u>

## Desempenho Árvores-B (Medido em números de acesso a disco)

- → Busca de chaves...
- → No pior caso, a altura é dada por:

$$d \le 1 + \log_{[m/2]} [(N+1)/2]$$

- → Logo...
  - ◆ Altura é O( log<sub>[m/2]</sub> N )
  - Busca no pior caso
    - O(log<sub>[m/2]</sub>N)

- → Inserção de chaves...
- → Toda inserção realiza busca
  - ◆ O(log<sub>[m/2]</sub> N)
- → Além disso pode realizar split
  - Cada split opera sobre um número fixo de páginas e é portanto constante
    - O(1)

- → Inserção de chaves...
- → No pior caso, overflows se propagam até a raiz e são realizados splits em tempo constante
  - $igoplus O(\log_{\lceil m/2 \rceil} N)$  splits com O(1) acessos cada
- → Logo... inserção no pior caso
  - ◆ O(log<sub>[m/2]</sub>N)

- → Remoção de chaves...
- → Toda remoção realiza busca
  - ◆ O(log<sub>[m/2]</sub> N)
- → Além disso, pode realizar concatenação/redistribuição
- → Cada concatenação/redistribuição opera sobre um número fixo de páginas e é portanto constante
  - **♦** 0(1)

- → Remoção de chaves...
- → No pior caso, underflows se propagam até a raiz e são realizadas concatenações/redistribuições em tempo constante
  - ◆ O(log<sub>[m/2]</sub> N) operações com O(1) acessos cada
- → Logo, remoção no pior caso
  - ◆ O( log<sub>[m/2]</sub> N )

#### Referências

→ M. J. Folk and B. Zoellick, File Structures: A Conceptual Toolkit, Addison Wesley, 1987.