

General Description

The MAX2660/MAX2661/MAX2663/MAX2671/MAX2673 miniature, low-cost, low-noise upconverter mixers are designed for low-voltage operation and are ideal for use in portable consumer equipment. Signals at the IF input port are mixed with signals at the local oscillator (LO) port using a double-balanced mixer. These upconverter mixers operate with IF input frequencies between 40MHz and 500MHz, and upconvert to output frequencies as high as 2.5GHz.

These devices offer a wide range of supply currents and output intercept levels to optimize system performance. Supply current is essentially constant over the specified supply voltage range. Additionally, when the devices are in a typical configuration with $V\overline{SHDN} = 0$, a shutdown mode reduces the supply current to less than 1µA.

The MAX2660/MAX2661/MAX2663/MAX2671 are offered in the space-saving 6-pin SOT23 package. For applications requiring balanced IF ports, choose the MAX2673 in the 8-pin µMAX package.

Applications

400MHz/900MHz/2.4GHz ISM Hand-Held Radios Wireless Local Area Networks (WLANs) IEEE 802.11 and Wireless Data Personal Communications Systems (PCS) Cellular and Cordless Phones

Ordering Information

TEMP. RANGE	PIN- PACKAGE	TOP MARK
-40°C to +85°C	6 SOT23-6	AAAF
-40°C to +85°C	6 SOT23-6	AAAG
-40°C to +85°C	6 SOT23-6	AAAL
-40°C to +85°C	6 SOT23-6	AAAJ
-40°C to +85°C	8 µMAX	_
	RANGE -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	RANGE PACKAGE -40°C to +85°C 6 SOT23-6 -40°C to +85°C 6 SOT23-6 -40°C to +85°C 6 SOT23-6 -40°C to +85°C 6 SOT23-6

Features

- ♦ RF Output Frequencies: 400MHz to 2.5GHz
- ♦ Low Noise Figure: 9.3dB (900MHz, MAX2671)
- ♦ +2.7V to +5.5V Single Supply
- ♦ High Output Intercept Point (OIP3)
 - 5.9dBm at 4.8mA (MAX2660)
 - 7.1dBm at 8.3mA (MAX2661)
 - 0.7dBm at 3.0mA (MAX2663) 9.6dBm at 11.8mA (MAX2671)
 - 7.6dBm at 20.5mA (MAX2673)
- ♦ 1µA Shutdown Mode
- ♦ Ultra-Small Surface-Mount Packaging

Pin Configurations

Typical Operating Circuits and Functional Diagram appear at end of data sheet.

Selector Guide

PART	I _{CC} (mA)	OUTPUT IP3 (dBm) AT 900MHz	GAIN (dB) AT 2450MHz	LO BUFFER	SINGLE-ENDED OR DIFFERENTIAL IF	PACKAGE
MAX2660	4.8	5.9	4.6	No	Single Ended	6 SOT23
MAX2661	8.3	7.1	8.2	No	Single Ended	6 SOT23
MAX2663	3.0	0.7	1.4	No	Single Ended	6 SOT23
MAX2671	11.8	9.6	8.9	Yes	Single Ended	6 SOT23
MAX2673	20.5	7.6	8.6	Yes	Differential	8 µMAX

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +6.0V
IFIN_ Input Power (50Ω source)	+10dBm
LO Input Power (50 Ω source)	+10dBm
SHDN, RFOUT, IFIN_, LO to GND0.3V to	$(V_{CC} + 0.3V)$
Continuous Power Dissipation (T _A = +70°C)	
8-Pin µMAX (derate 4.1mW/°C above +70°C)	330mW
6-Pin SOT23-6 (derate 8.7mW/°C above +70°C)	696mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, \overline{\text{SHDN}} = +2 \text{V}, T_A = -40 ^{\circ} \text{C} \text{ to } +85 ^{\circ} \text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = \overline{\text{SHDN}} = +3.0 \text{V}, T_A = +25 ^{\circ} \text{C}$. Minimum and maximum values are guaranteed over temperature by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		MAX2660		4.8	6.6	
Operation Complete Comment		MAX2661		8.3	11.3	
Operating Supply Current (LO and IFIN_ Unconnected)	Icc	MAX2663		3.0	4.1	mA
		MAX2671		11.8	16.6	
		MAX2673		20.5	26.8	
		SHDN = GND, MAX2660		0.1		
		SHDN = GND, MAX2661		0.2		
		SHDN = GND, MAX2663		0.1		
Shutdown Supply Current	Icc	SHDN = GND, MAX2671		0.2		μΑ
		SHDN = GND, MAX2673		0.8		
		SHDN = 0.5V, V _{CC} = 2.7V to 3.6V			5	
		SHDN = 0.5V, V _{CC} = 3.6V to 5.5V			15	
Shutdown Input Voltage High	VIH		2		Vcc	V
Shutdown Input Voltage Low	V _{IL}		0		0.5	V
Shutdown Input Bias Current	I _{IN}		-5	0.2	5	μΑ

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = \overline{SHDN} = +3.0V, T_A = +25^{\circ}C, unless otherwise noted.$ Minimum and maximum values are guaranteed by design and characterization.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS					
AAX2660 (PLO = -5dBm, PIFIN = -30dBm, Circuit of Figure 1)										
Conversion Gain	$f_{IF} = 45MHz$, $f_{LO} = 445MHz$, $f_{RF} = 400MHz$		7.0							
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		7.0		dB					
	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$	3.9	5.9	8.1 dB						
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		4.6							
Gain Variation Over Temperature	$f_{IF} = 70 MHz$, $f_{LO} = 1830 MHz$, $f_{RF} = 1900 MHz$, $T_A = -40 ^{\circ} C$ to $+85 ^{\circ} C$		±1.2	±1.6	dB					
Outroot Thind Outlan	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		5.9							
Output Third-Order Intercept	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		5.7		dBm					
miles expt	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		4.1							

_ /N/XI/N

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = \overline{SHDN} = +3.0V, T_A = +25^{\circ}C, unless otherwise noted.$ Minimum and maximum values are guaranteed by design and characterization.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
MAX2660 (P _{LO} = -5dBm, P _{IFIN}	= -30dBm, Circuit of Figure 1) (continued)				
0 1 11 10	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-8.4		
Output 1dB Compression Point	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		dBm		
Compression Fount	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-11.4		
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 1900MHz$		9.9		
Noise Figure (Single Sideband)	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		11.8		dB
(Single Sideband)	$f_{IF} = 350MHz$, $f_{LO} = 2100MHz$, $f_{RF} = 2450MHz$		11.9		
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-22.0		
LO Emission from RF Port	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		-20.7		dBm
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-22.5		
Maximum LO Input VSWR	$f = 600MHz$ to 2500MHz, 50Ω source impedance		2.2		
Maximum Output Spurious Emissions	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$ (Note 1)		-70		dBm
Turn-On Time	(Note 2)		2		μs
Turn-Off Time	From SHDN low to I _{CC} < 100µA		2		μs
MAX2661 (P _{LO} = -5dBm, P _{IFIN}					-
Conversion Gain	$f_{IF} = 45MHz$, $f_{LO} = 445MHz$, $f_{RF} = 400MHz$		10.2		
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$			dB	
	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$	$R_{\rm H} = 1900 MHz$ 7.0 8.5			
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		8.2		
Gain Variation Over Temperature	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$, $T_A = -40$ °C to $+85$ °C		±1.2	±1.5	dB
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		7.1		
Output Third-Order Intercept	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		dBm		
	f _{IF} = 240MHz, f _{LO} = 2210MHz, f _{RF} = 2450MHz		7.3		
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-6.0		
Output 1dB	f _{IF} = 70MHz, f _{LO} = 1830MHz, f _{RF} = 1900MHz		-7.2		dBm
Compression Point	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-6.2		
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		9.8		
Noise Figure	f _{IF} = 70MHz, f _{LO} = 1830MHz, f _{RF} = 1900MHz		11.6		dB
(Single Sideband)	$f_{IF} = 350MHz$, $f_{LO} = 2100MHz$, $f_{RF} = 2450MHz$		11.8		•
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-22.9		
LO Emission from RF Port	f _{IF} = 70MHz, f _{LO} = 1830MHz, f _{RF} = 1900MHz		-21.6		dBm
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-23.5		-
Maximum LO Input VSWR	$f = 600MHz$ to 2500MHz, 50Ω source impedance		2.2		
Maximum Output Spurious Emissions	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$ (Note 1)		-57.3		dBm
Turn-On Time	(Note 2)		2		μs
Turn-Off Time	From SHDN low to I _{CC} < 100µA		2		μs
	•	1			

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = \overline{SHDN} = +3.0V, T_A = +25^{\circ}C, unless otherwise noted.$ Minimum and maximum values are guaranteed by design and characterization.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
MAX2663 (P _{LO} = -5dBm, P _{IFIN} :	= -30dBm, Circuit of Figure 1)				•	
	$f_{IF} = 45MHz$, $f_{LO} = 445MHz$, $f_{RF} = 400MHz$		2.0			
Conversion Coin	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		3.4		4D	
Conversion Gain	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$	-0.1	2.1	4.2	- dB	
	$fIF = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		1.4			
Gain Variation Over Temperature	$f_{IF} = 70 MHz$, $f_{LO} = 1830 MHz$, $f_{RF} = 1900 MHz$, $T_A = -40 ^{\circ} C$ to $+85 ^{\circ} C$		±1.1	±1.8	dB	
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		0.7			
Output Third-Order Intercept	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		-1.4		dBm	
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-2.8			
0	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-12.3			
Output 1dB Compression Point	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		-13.3		dBm	
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-14.3			
N : F'	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		10.7			
Noise Figure (Single Sideband)	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		12.2		dB	
(olligic oldeballd)	$f_{IF} = 350MHz$, $f_{LO} = 2100MHz$, $f_{RF} = 2450MHz$		12.7			
LO Emission from RF Port	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-22.7			
	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		-21.0		dBm	
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-21.6			
Maximum LO Input VSWR	$f = 600MHz$ to 2500MHz, 50Ω source impedance		2.1			
Maximum Output Spurious Emissions	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$ (Note 1)		-67		dBm	
Turn-On Time	(Note 2)		2		μs	
Turn-Off Time	From SHDN low to I _{CC} < 100µA		2		μs	
MAX2671 ($P_{LO} = -10 \text{dBm}, P_{IFIN}$	= -30dBm, Circuit of Figure 1)					
	$f_{\text{IF}} = 45 \text{MHz}, f_{\text{LO}} = 445 \text{MHz}, f_{\text{RF}} = 400 \text{MHz}$		10.0			
Conversion Gain	$f_{\text{IF}} = 70 \text{MHz}, f_{\text{LO}} = 970 \text{MHz}, f_{\text{RF}} = 900 \text{MHz}$		11.2		dB	
Conversion Gain	$f_{\text{IF}} = 70 \text{MHz}, f_{\text{LO}} = 1830 \text{MHz}, f_{\text{RF}} = 1900 \text{MHz}$	6.7	9.3	11.9	ub	
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		8.9			
Gain Variation Over Temperature	$f_{IF} = 70 MHz, f_{LO} = 1830 MHz, f_{RF} = 1900 MHz, T_{A} = -40 ^{\circ}C to +85 ^{\circ}C$		±1.1	±1.3	dB	
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		9.6			
Output Third-Order Intercept	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$ 8.3					
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		9.4]	
O. day of 4 d D	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-5.5			
Output 1dB Compression Point	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		-6.4		dBm	
3011p130010111 0111t	f _{IF} = 240MHz, f _{LO} = 2210MHz, f _{RF} = 2450MHz		-6.0]	

___ /N/IXI/M

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = \overline{SHDN} = +3.0V, T_A = +25^{\circ}C, unless otherwise noted.$ Minimum and maximum values are guaranteed by design and characterization.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS				
MAX2671 (P _{LO} = -10dBm, P _{IFIN}	= -30dBm, Circuit of Figure 1) (continued)	1			'				
N · F	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		9.3						
Noise Figure (Single Sideband)	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		dB						
(cirigio ciaccaria)	$f_{IF} = 350MHz$, $f_{LO} = 2100MHz$, $f_{RF} = 2450MHz$]						
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-40.3						
LO Emission from RF Port	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		-35.7		dBm				
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-36.8						
Maximum LO Input VSWR	$f = 600MHz$ to 2500MHz, 50Ω source impedance		2.2		dBm				
Maximum Output Spurious Emissions	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$ (Note 1)		-56		dBm				
Turn-On Time	(Note 2)		2		μs				
Turn-Off Time	From SHDN low to ICC < 100µA		2		μs				
MAX2673 (P _{LO} = -10dBm, P _{IFIN}	_ = -30dBm, Circuit of Figure 2)	1							
	$f_{IF} = 45MHz$, $f_{LO} = 445MHz$, $f_{RF} = 400MHz$		12.6						
Conversion Coin	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		12.3		4D				
Conversion Gain	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$	7.8	9.2	10.6	– dB				
	fIF = 240MHz, f _{LO} = 2210MHz, f _{RF} = 2450MHz		8.6						
Gain Variation Over Temperature	$f_{IF} = 70 MHz$, $f_{LO} = 1830 MHz$, $f_{RF} = 1900 MHz$, $T_{A} = -40 ^{\circ}C$ to $+85 ^{\circ}C$		±1.0	±1.4	dB				
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		7.6						
Output Third-Order Intercept	f _{IF} = 70MHz, f _{LO} = 1830MHz, f _{RF} = 1900MHz		dBm						
	f _{IF} = 240MHz, f _{LO} = 2210MHz, f _{RF} = 2450MHz		4.5		-				
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-2.1						
Output 1dB Compression Point	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$			dBm					
Compression Fount	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		-8.3		1				
N . =	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		9.7						
Noise Figure (Single Sideband)	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		10.1		dB				
(onigic oldeballa)	$f_{IF} = 350MHz$, $f_{LO} = 2100MHz$, $f_{RF} = 2450MHz$		10.4		1				
	$f_{IF} = 70MHz$, $f_{LO} = 970MHz$, $f_{RF} = 900MHz$		-29.4						
LO Emission from RF Port	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$		-27.9		dBm				
	$f_{IF} = 240MHz$, $f_{LO} = 2210MHz$, $f_{RF} = 2450MHz$		1						
Maximum LO Input VSWR	$f = 600MHz$ to 2500MHz, 50Ω source impedance		2.2						
Maximum Output Spurious Emissions	$f_{IF} = 70MHz$, $f_{LO} = 1830MHz$, $f_{RF} = 1900MHz$ (Note 1)		-59.7		dBm				
Turn-On Time	(Note 2)		2		μs				
Turn-Off Time	From SHDN low to I _{CC} < 100µA		2		μs				

Note 1: Excluding LO harmonics and products of LO harmonics by first-order IF.

Note 2: From \overline{SHDN} high to output within 1dB of final output power, $f_{RF} = 900MHz$, $f_{IF} = 70MHz$.

Typical Operating Characteristics

 $(V_{CC} = \overline{SHDN} = +3.0V, Typical Operating Circuits, P_{LO} = -5dBm (MAX2660/MAX2661/MAX2663), P_{LO} = -10dBm (MAX2671/MAX2673), P_{IFIN} = -30dBm, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(V_{CC} = \overline{SHDN} = +3.0V, Typical Operating Circuits, P_{LO} = -5dBm (MAX2660/MAX2661/MAX2663), P_{LO} = -10dBm (MAX2671/MAX2673), P_{IFIN} = -30dBm, T_A = +25^{\circ}C, unless otherwise noted.)$

IF FREQUENCY (MHz)

LO FREQUENCY (MHz)

RF FREQUENCY (MHz)

Typical Operating Characteristics (continued)

 $(V_{CC} = \overline{SHDN} = +3.0V, Typical Operating Circuits, P_{LO} = -5dBm (MAX2660/MAX2661/MAX2663), P_{LO} = -10dBm (MAX2671/MAX2673), P_{IFIN} = -30dBm, T_A = +25^{\circ}C, unless otherwise noted.)$

LO FREQUENCY (MHz)

IF FREQUENCY (MHz)

LO POWER (dBm)

Typical Operating Characteristics (continued)

-10

-12

-14

-16

-18

250

1350

LO FREQUENCY (MHz)

1900

 $(V_{CC} = \overline{SHDN} = +3.0V, \textit{Typical Operating Circuits}, P_{LO} = -5dBm (MAX2660/MAX2661/MAX2663), P_{LO} = -10dBm (MAX2671/MAX2673), P_{LO} = -10dBm (MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX2671/MAX$ $P_{IFIN} = -30 dBm$, $T_A = +25 °C$, unless otherwise noted.)

 f_{L0}

70MHz

70MHz

240MHz

0 5

970MHz

1830MHz

2210MHz

900MHz

1900MHz

2450MHz

-25 -20 -15 -10 -5

LO INPUT POWER (dBm)

0

-2

-35 -30

fif

 $f_{IF} = f_{LO} - f_{RF}$

fie = fee - fin

2450MHz $f_{IF} = f_{RF} - f_{LO}$

frF

900MHz

1900MHz

50 100 150 200 250 300 350 400 450 500

IF FREQUENCY (MHz)

4

2

0

Typical Operating Characteristics (continued)

 $(V_{CC} = \overline{SHDN} = +3.0V, Typical Operating Circuits, P_{LO} = -5dBm (MAX2660/MAX2661/MAX2663), P_{LO} = -10dBm (MAX2671/MAX2673), P_{IFIN} = -30dBm, T_A = +25^{\circ}C, unless otherwise noted.)$

50 100 150 200 250 300 350 400 450 500

IF FREQUENCY (MHz)

0

0

-5

LO POWER (dBm)

-25

-15 -10

1000 1500 2000

RF FREQUENCY (MHz)

Typical Operating Characteristics (continued)

 $(V_{CC} = \overline{SHDN} = +3.0V, Typical Operating Circuits, P_{LO} = -5dBm (MAX2660/MAX2661/MAX2663), P_{LO} = -10dBm (MAX2671/MAX2673), P_{IFIN} = -30dBm, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

Р	IN							
MAX2660 MAX2661 MAX2663 MAX2671	MAX2673	NAME	FUNCTION					
1	1	LO	Local-Oscillator Input. Apply a local-oscillator signal with an amplitude of -10dBm to +5dBm for the MAX2671/MAX2673 or -5dBm to +2dBm for the MAX2660/ MAX2661/ MAX2663. AC-couple to the oscillator with a DC blocking capacitor. Nominal DC voltage is V _{CC} - 0.4V to V _{CC} - 1.0V.					
2	2, 6	GND	Mixer Ground. Connect to the ground plane with a low-inductance connection.					
3	7, 8	IFIN	Intermediate Frequency Input. AC-couple to the input signal with a DC blocking capacitor. Nominal DC voltage is 1.37V.					
4	5	RFOUT	Radio Frequency Output. Open-collector output requires an inductor to V _{CC} that is part of an impedance-matching network. AC-couple to this pin using a blocking capacitor that can be part of the impedance-matching network. See <i>Applications Information</i> for details on impedance matching.					
5	4	Vcc	Voltage Supply Rail, +2.7V to +5.5V. Bypass with a capacitor to the ground plane. Capacitor value depends on desired operating frequency.					
6	3	SHDN	Active-Low Shutdown Pin. Drive low to deactivate all part functions and reduce the supply current to less than 1µA. For normal operation, drive high or connect to VCC.					

Detailed Description

The MAX2660/MAX2661/MAX2663/MAX2671/MAX2673 are 2.5 GHz double-balanced upconverter mixers designed to provide optimum linearity performance for a specified supply current. These upconverter mixers use single-ended RF, LO, and IF port connections, except for the MAX2673, which uses a differential IF port. An on-chip bias cell provides a low-power shutdown feature. See the *Selector Guide* for device features and comparison.

Applications Information

Local-Oscillator (LO) Input

The LO input is a single-ended broadband port with a return loss of better than 8dB from 600MHz to 2.5GHz. The LO signal is mixed with the input IF signal, and the resulting upconverted output appears on the RFOUT pin. AC-couple the LO pin with a capacitor having less than 3Ω reactance at the LO frequency. The MAX2671/MAX2673 include an internal LO buffer and require an LO signal ranging from -10dBm to +5dBm, while the MAX2660/MAX2661/MAX2663 require an LO signal ranging from -5dBm to +2dBm.

IF Input

The MAX2660/MAX2661/MAX2663/MAX2671 have a single-ended IF input port, while the MAX2673 has a differential IF input port for high-performance interface-to-differential IF filters. AC-couple the IF pin(s) with a capacitor. The typical IF input frequency range is 40MHz to 500MHz. For further information, see the IF Port Impedance vs. IF Frequency graph in the *Typical Operating Characteristics*.

RF Output

The RF output frequency range extends from 400MHz to 2.5GHz. RFOUT is a high-impedance, open-collector output that requires an external inductor to V_{CC} for proper biasing. For optimum performance, implement an impedance-matching network. The configuration and values for the matching network depend on the frequency, performance, and desired output impedance. For assistance in choosing components for optimal performance, see Table 1 as well as the RF Output Impedance vs. RF Frequency graph in the *Typical Operating Characteristics*.

Power Supply and SHDN Bypassing

Proper attention to supply bypassing is essential for a high-frequency RF circuit. Bypass V_{CC} with a $10\mu F$ capacitor in parallel with an RF capacitor (Table 2). Use separate vias to the ground plane for each of the bypass capacitors and minimize trace length to reduce inductance. Use separate vias to the ground plane for each ground pin. Use low-inductance ground connections

Decouple \overline{SHDN} with a 100pF capacitor to ground to minimize noise on the internal bias cell. Use a series resistor (typically 100 Ω) to reduce coupling of high-frequency signals into the \overline{SHDN} pin.

Layout Issues

A well-designed PC board is an essential part of an RF circuit. For best performance, pay attention to power-supply issues as well as to the layout of the RFOUT matching network.

Power-Supply Layout

To minimize coupling between different sections of the IC, the ideal power-supply layout is a star configuration with a large decoupling capacitor at a central V_{CC} node. The V_{CC} traces branch out from this central node, each going to a separate V_{CC} node in the PC board. At the end of each trace is a bypass capacitor that has low ESR at the RF frequency of operation. This arrangement provides local decoupling at each V_{CC} pin. At high frequencies, any signal leaking out of one supply pin sees a relatively high impedance (formed by the V_{CC} trace inductance) to the central V_{CC} node, and an even higher impedance to any other supply pin, as well as a low impedance to ground through the bypass capacitor.

Impedance-Matching Network Layout

The RFOUT matching network is very sensitive to layout-related parasitics. To minimize parasitic inductance, keep all traces short and place components as close as possible to the chip. To minimize parasitic capacitance, use cutouts in the ground plane (and any other plane) below the matching network components.

Table 1. RF Output Impedance

PART	RF OUTPUT IMPEDANCE (Ω)										
1000	AT 400MHz	AT 900MHz	AT 1900MHz	AT 2450MHz							
MAX2660	480-j732	126-j459	65-j190	46-j124							
MAX2661	357-j649	92–j375	54–j152	38-j99							
MAX2663	485–j718	130-j453	65–j188	45-j123							
MAX2671	333–j613	82–j360	46–j150	31–j95							
MAX2673	220-j530	70-j290	35–j110	32–j70							

Table 2. Typical Operating Circuit (External Component Values)

	COMPONENT VALUE AT A GIVEN FREQUENCY (MHz)															
COMPONENT		MAX2660				MAX2661/MAX2671			MAX2663				MAX2673			
	AT 400	AT 900	AT 1900	AT 2450	AT 400	AT 900	AT 1900	AT 2450	AT 400	AT 900	AT 1900	AT 2450	AT 400	AT 900	AT 1900	AT 2450
L1 (nH)	Short	33	8.2	3.3	Short	33	8.2	3.3	Short	33	8.2	3.3	Short	27	5.6	3.9
L2 (nH)	39	18	2.7	2.2	39	18	2.7	1.8	39	18	1.8	1.8	39	18	4.7	6.8
C3 (pF)	470	47	47	47	470	47	47	47	470	47	47	47	3.3	220	10	15
C4 (pF)	3.3	220	220	15	3.3	220	100	220	3.3	220	100	220	6.8	1.5	1.5	1
C5 (pF)	6.8	1	1.5	Open	6.8	1	1.5	Open	6.8	1.8	1.8	Open	470	47	47	47
C6 (pF)	470	47	47	15	470	47	100	47	470	47	100	47	470	100	100	100

Functional Diagram

Typical Operating Circuits

Package Information

