Model Checking: A brief view with CounterExample-Guided Abstraction / Refinement

Konkuk University
Department of Computer Science & Engineering
Kunha Kim

Model Checking

- Model Checking is an approach for verifying the temporal behavior of a system.
- We need Model, and Specification to verify. Model Checker takes them for input, and gives "Yes" or "No" with counterexample.
- Then how can we model a complex system? And how can we ask a correct question formally to Model Checker?
- The answer is: Kripke Model and CTL.

Formal Definition of Kripke Model

- Formally, a Kripke model is a 4-tuple $M = \langle S, I, R, L \rangle$, where
 - ullet S is the set of states,
 - $I \subseteq S$ is the set of initial states,
 - $R \subseteq S \times S$ is the transition relation, and
 - $L:S \to P(AP)$ gives the set of atomic propositions true in each state.
- We assume that R is total, and a path in M is an infinite sequence of states $\pi = s_0, s_1, \cdots$ such that for $i \geq 0, (s_i, s_{i+1}) \in R$.
- Also, the model is finite.

Fig. 1. (a) A structure. (b) The corresponding tree for start state S_0 .

Computation Tree Logic

- Because R is total, there is an infinite computation tree for any model M.
- CTL is a branching time logic, consists of path quantifier and linear-time operators.
- We don't have much time, so we're gonna focus on AG and EF.
- AGp means for every path, p holds globally in the future.
- EFp means there exists a path p eventually holds.

Over-approximation

- There are many complex systems such as CPU, autonomous driving system, software, etc.
- Due to original system's complexity, model's states can extremely increase. This is called state explosion.
- There are many approaches to handle this problem, but now, we focus on Abstraction / Refinement technique.
- We over-approximate original model's behavior, and check whether specification is true or false.
- This admits only false negative(spurious counterexample).
- When model checker outputs counterexample, we check this is spurious or not. If so, we refine the abstract model by this spurious counterexample.

Our Abstraction Methodology (CAV'2000)

Abstract function h

- Now, we will abstract the Kripke Model by abstraction function h.
- Intuitively speaking, existential abstraction amounts to partitioning the states
 of a Kripke structure into clusters, and treating the clusters as new abstract
 states.
- Formally, an abstraction function h is described by a surjection $h:S\to S$ where S is the set of abstract states.
- Let d, e be states in S. We say d and e are **logically equivalent on relation** h iff h(d) = h(e) and denoted by $d \equiv_h e$

Formal Definition of Abstraction

• The $abstractKripkestructure\,M=(S,I,R,L)$ generated by the abstraction function h is defined as

- I(d) iff $\exists d(h(d) = d \land I(d))$
- $R(d_1, d_2)$ iff $\exists d_1 \exists d_2 (h(d_1) = d_1 \land h(d_2) = d_2 \land R(d_1, d_2))$
- $L(d) = \bigcup_{h(d)=d} L(d)$

^ ^

• An abstraction function h is appropriate for a specification ρ if for all atomic subformulas f of ρ and for all states d and e in the domain S such that $d \equiv_h e$ it holds $d \vDash f \Leftrightarrow e \vDash f$.

FIG. 1. Existential Abstraction. M is the original Kripke structure, and \widehat{M} the abstracted one. The dotted lines in M indicate how the states of M are clustered into abstract states.

Identification of Spurious Counterexamples: Path

- First we will tackle the case T is a path $< s_1, \cdots, s_n >$. Given an abstract state s, the set of concrete states s s.t. h(s) = s is denoted by $h^{-1}(s)$.
- We extend h^{-1} to sequences in the following way: $h^{-1}(T)$ is the set of concrete paths given by the following expression: $\{ \langle s_1, \cdots, s_n \rangle \mid \bigwedge_{i=1}^n h(s_i) = s_i \wedge I(s_1) \wedge \bigwedge_{i=1}^{n-1} R(s_i, s_{i+1}) \}$
- Let $S_1 = h^{-1}(\widehat{s_1}) \cap I$. For $1 < i \le n$, we define S_i in the following manner: $S_i \doteqdot Img(S_{i-1},R) \cap h^{-1}(\widehat{s_i})$. This can be computed by using OBDD and standard image computation algorithm.
- The following lemma establishes the correctness of this procedure.
- Lemma1. If the path T corresponds to a concrete counterexample, the set of concrete paths $h^{-1}(T)$ is non-empty and $S_i \neq \emptyset$ for all $1 \leq i \leq n$.

Fig. 3. An abstract counterexample

Example

• Consider a program with only one variable with domain $D = \{1, \dots, 12\}$. Assume that h maps $x \in D$ to $\lfloor (x-1)/3 \rfloor + 1$.

^ ^ ^ ^

- There are four abstract states 1, 2, 3 and 4 correspond to $\{1,2,3\},\{4,5,6\},\{7,8,9\},\{10,11,12\}$ respectively.
- Suppose we obtain an abstract counterexample $T=<1\,,\,2\,,\,3\,,\,4>$. It is easy to see T is spurious.
- Also, we can check $S_1 = \{1,2,3\}, S_2 = \{4,5,6\}, S_3 = \{9\}, S_4 = \emptyset$. Notice that S_4 and therefore $Img(S_3,R)$ are both empty.
- The algorithm **SplitPATH** will output 3 and S_3 .

Algorithm SplitPATH

$$S:=h^{-1}(\widehat{s_1})\cap I$$
 $j:=1$ while $(S
eq \emptyset \text{ and } j < n)$ { $j:=j+1$ $S_{\mathrm{prev}}:=S$ $S:=Img(S,R)\cap h^{-1}(\widehat{s_j})$ } if $S
eq \emptyset$ then output counterexample else output j, S_{prev}

Fig. 4. SplitPATH checks spurious path.

Clue of Refinement

- We see that the abstract path does not have a corresponding concrete path.
- Whichever concrete path we follow, we will end up in state D, from which we cannot go any further. Therefore, D is called a deadend state.
- On the other hand, the bad state is state B, because it made us believe that there is an outgoing transition.
- In addition, there is the set of irrelevant states I that are neither deadend nor bad, and it is immaterial whether states in I are combined with D or B.
- To eliminate the spurious path, the abstraction has to be refined as indicated by the thick line.

FIG. 3. The abstract path in \widehat{M} (indicated by the thick arrows) is spurious. To eliminate the spurious path, the abstraction has to be refined as indicated by the thick line in M.

Recall: Fig3

Fig. 3. An abstract counterexample

State Splitting

- For a set $h^{-1}(s_i)$, a set of concrete states correspond to s_i occurring in spurious counterexample, split it into $h^{-1}(s_i) \cap Image(h^{-1}(s_{i-1}))$ and $h^{-1}(s_i) \setminus Image(h^{-1}(s_{i-1}))$, provided both non-empty.
- In the case i=1, split it into $h^{-1}(s_1)\cap I$ and $h^{-1}(s_1)\setminus I$.
- In other words, replace s_i by two states s_i and s_i representing $h^{-1}(s_i) \cap Image(h^{-1}(s_{i-1}))$ and $h^{-1}(s_i) \setminus Image(h^{-1}(s_{i-1}))$, respectively.
- Therefore, S is turned into $S = S \setminus \{s_i\} \cup \{s_i, s_i\}$.

State Splitting(Cont.)

• So, replace
$$\widehat{M}=(\widehat{S},\widehat{I},\widehat{R},\widehat{L})$$
 to $\widehat{M}=(\widehat{S},\widehat{I},\widehat{R},\widehat{L})$ denoted as
$$\widehat{S}=\widehat{S}\times \{\widehat{s_i}\}\cup \{\widehat{s_i},\widehat{s_i}\}$$

$$\widehat{I}=\widehat{I} \text{ if } h^{-1}(\widehat{s_i})\cap I=\emptyset \text{, otherwise } I\times \{\widehat{s_i}\}\cup \{\widehat{s_i}\}$$

$$\widehat{R}=\widehat{R}\cap (\widehat{S}\times \widehat{S})\cup \{(\widehat{s_i},\widehat{s_i}),(\widehat{s_i},\widehat{s_i})\}\cup \{(\widehat{s},\widehat{s_i})|(\widehat{s},\widehat{s_i})\in \widehat{R}\}\cup \{(\widehat{s},\widehat{s_i})|(\widehat{s},\widehat{s_i})\in \widehat{R}\}\cup \{(\widehat{s},\widehat{s_i})|(\widehat{s},\widehat{s_i})\in \widehat{R}\}\cup \{(\widehat{s},\widehat{s_i})|(\widehat{s},\widehat{s_i})\in \widehat{R}\}$$

$$\widehat{L}(\widehat{s})=\widehat{L}(\widehat{s}) \text{ if } \widehat{s}\in \widehat{S},\widehat{L}(\widehat{s_i}) \text{ if } \widehat{s}\in \{\widehat{s_i},\widehat{s_i}\}$$

$$h^{-1}(1) = \{1, 2, 3\}$$

$$h^{-1}(2) = \{4,5,6\}$$

$$h^{-1}(\underbrace{3^+}) = \{9\}$$

$$h^{-1}(3^-) = \{7,8\}$$

$$h^{-1}(4) = \{10, 11, 12\}$$

Abstraction and Refining transition

- So, resulting abstraction is $h'(s) = s_i$ if $s \in h^{-1}(s_i) \cap Image(s_{i-1})$, s_i if $s \in h^{-1}(s_i) \setminus Image(s_{i-1})$, otherwise h(s).
- Pre- and post-images of $h^{'-1}(s_i)$ or $h^{'-1}(s_i)$ may well have empty intersections with sets that the pre- or post-set of $h^{'-1}(s_i)$ did intersect with. In such cases, R contains spurious edges.
- Thus, remove such edges by pruning R to $\widehat{C} = \{(s,t) \in R \mid Image(h^{'-1}(s)) \cap h^{'-1}(t) \neq \emptyset\}$

Experimental Results

TABLE II. RUNNING RESULTS FOR THE BENCHMARK DESIGNS

Design	NuSMV+COI				NuSMV+ABS			
	#COI	Time	TR	MC	#ABS	Time	TR	MC
gigamax	0	0.3	8346	1822	9	0.2	13151	816
guidance	30	35	140409	30467	34–39	30	147823	10670
waterpress	0–1	273	34838	129595	4	170	38715	3335
PCI bus	4	2343	121803	926443	12–13	546	160129	350226
ind1	0	99	241723	860399	50	9	302442	212922
ind2	0	486	416597	2164025	84	33	362738	624600
ind3	0	617	584815	2386682	173	15	426162	364802