

Susendran M CH.SC.U4CSE24154 OBJECT ORIENTED PROGRAMMING (23CSE111) LAB RECORD

AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF COMPUTING, CHENNAI

BONAFIDE CERTIFICATE

This is to certify that the Lab Record work for 23CSE111-Object Oriented Programming Subject submitted by *CH.SC.U4CSE24154 – Susendran M* in "Computer Science and Engineering" is a Bonafide record of the work carried out under my guidance and supervision at Amrita School of Computing, Chennai.

This Lab examination held on

Internal Examiner 1

Internal Examiner 2

INDEX

S.NO	TITLE	PAGE.NO
	UML DIAGRAM	
1.	ONLINE SHOPPING	
	1.a) Use Case Diagram	4
	1.b) Class Diagram	5
	1.c) Sequence Diagram	6
	1.d) State Diagram	7
	1.e) Activity Diagram	8
2.	LIBRARY MANAGEMENT SYSTEM	
	2.a) Use Case Diagram	9
	2.b) Class Diagram	10
	2.c) Sequence Diagram	11
	2.d) State Diagram	12
	2.e) Activity Diagram	13
3.	BASIC JAVA PROGRAMS	
	3.a) Sum of Digits	14
	3.b) Reverse Number	15
	3.c) Prime Number	16
	3.d) Palindrome Number	18
	3.e) Lower Triangle	20
	3.f) LCM Numbers	21
	3.g) Fibonacci Series	23
	3.h) Factorial Number	25
	3.i) Sum of Even, Odd Digits	26
	3.j) Armstrong Number	28

UML DIAGRAMS

1. ONLINE SHOPPING

1.a) Use Case Diagram:

1.b) Class Diagram:

1.c) Sequence Diagram:

1.d) State Diagram:

1.e) Activity Diagram:

2. LIBRARY MANAGEMENT SYSTEM

2.a) Use Case Diagram:

2.b) Class Diagram:

2.c) Sequence Diagram:

2.d) State Diagram:

2.e) Activity Diagram:

3. Basic Java Programs

3.a) Sum of Digits:

```
import java.util.Scanner;
public class sum_of_digits
int num,sum=0;
public sum_of_digits(int num)
this.num=num;
public void operation()
while (num != 0)
sum=sum+num%10;
num=num/10;
System.out.println("Sum of digits : " + sum);
}
public static void main (String[] args)
Scanner inp= new Scanner(System.in);
System.out.println("Enter the number : ");
int inputNum=inp.nextInt();
sum_of_digits obj=new sum_of_digits(inputNum);
obj.operation();
```

```
}
```

Output:

```
C:\Problems>javac sum_of_digits.java
C:\Problems>java sum_of_digits.java
Enter the number :
30
Sum of digits : 3
```

3.b) Reverse Number:

```
import java.util.Scanner;
public class reverse_number
{
  int num,rev=0,digit;
  public reverse_number(int num)
  {
    this.num=num;
  }
  public void operation()
  {
    while (num != 0)
    {
        digit=num%10;
        rev=rev*10+digit;
        num=num/10;
    }
}
```

```
System.out.println("Reversed number : " + rev);
}
public static void main (String[] args)
{
Scanner inp= new Scanner(System.in);
System.out.println("Enter the number : ");
int inputNum=inp.nextInt();
reverse_number obj=new reverse_number(inputNum);
obj.operation();
}
```

Output:

```
C:\Problems>javac reverse_number.java
C:\Problems>java reverse_number.java
Enter the number :
12345
Reversed number : 54321
```

3.c) Prime Number:

```
import java.util.Scanner;
public class prime_number
{
int num;
Boolean isPrime=true;
public prime_number(int num)
```

```
{
this.num=num;
}
public void operation()
{
if (num<=1)</pre>
isPrime=false;
}
else
{
for (int i=2;i*i<=num;i++)</pre>
{
if (num % i == 0)
{
isPrime=false;
break;
}
}
}
if (isPrime)
{
System.out.println(num + " is a prime number");
}
else
{
System.out.println(num + " is not a prime number");
}
}
public static void main (String[] args)
```

```
{
Scanner inp= new Scanner(System.in);
System.out.println("Enter the number : ");
int inputNum=inp.nextInt();
prime_number obj=new prime_number(inputNum);
obj.operation();
}
}
```

Output:

```
C:\Problems>javac prime_number.java
C:\Problems>java prime_number.java
Enter the number :
23
23 is a prime number
```

3.d) Palindrome Number:

```
import java.util.Scanner;
public class armstrong_number
{
int num;
public armstrong_number(int num)
{
this.num = num;
}
public void operation()
```

```
{
int originalNum = num;
int sum = 0;
int digits = String.valueOf(num).length();
while (num != 0)
int digit = num % 10;
sum += Math.pow(digit, digits);
num /= 10;
}
if (sum == originalNum)
System.out.println(originalNum + " is an Armstrong number.");
}
else
System.out.println(originalNum + " is not an Armstrong number.");
}
public static void main(String[] args)
Scanner inp = new Scanner(System.in);
System.out.println("Enter the number: ");
int inputNum = inp.nextInt();
armstrong_number obj = new armstrong_number(inputNum);
obj.operation();
```

Output;

```
C:\Problems>javac palindrome_number.java
C:\Problems>java palindrome_number.java
Enter the number:
123
123 is not a palindrome number.
```

3.e) Lower Triangle:

```
import java.util.Scanner;
public class lower_triangle
{
  int rows;
  public lower_triangle(int rows)
  {
    this.rows = rows;
  }
  public void operation()
  {
    for (int i = 1; i <= rows; i++)
    {
        System.out.print(j + " ");
    }
    System.out.println();
}</pre>
```

```
public static void main(String[] args)
{
    Scanner inp = new Scanner(System.in);
    System.out.println("Enter the number of rows: ");
    int inputRows = inp.nextInt();
    lower_triangle obj = new lower_triangle(inputRows);
    obj.operation();
}
```

Output:

```
C:\Problems>javac lower_triangle.java
C:\Problems>java lower_triangle.java
Enter the number of rows:
3
1
1 2
1 2 3
```

3.f) LCM Numbers:

```
import java.util.Scanner;
public class lcm_numbers
{
int num1, num2;
public lcm_numbers(int num1, int num2)
{
```

```
this.num1 = num1;
this.num2 = num2;
}
public void operation()
{
int lcm = (num1 > num2) ? num1 : num2;
while (true)
{
if (lcm % num1 == 0 && lcm % num2 == 0)
{
System.out.println("LCM of " + num1 + " and " + num2 + " is: " +
lcm);
break;
}
1cm++;
}
}
public static void main(String[] args)
{
Scanner inp = new Scanner(System.in);
System.out.println("Enter the first number: ");
int inputNum1 = inp.nextInt();
System.out.println("Enter the second number: ");
int inputNum2 = inp.nextInt();
lcm_numbers obj = new lcm_numbers(inputNum1, inputNum2);
obj.operation();
}
}
```

Output:

```
C:\Problems>javac lcm_numbers.java
C:\Problems>java lcm_numbers.java
Enter the first number:
3
Enter the second number:
4
LCM of 3 and 4 is: 12
```

3.g) Fibonacci Series:

```
import java.util.Scanner;
public class armstrong number
{
int num;
public armstrong_number(int num)
{
this.num = num;
}
public void operation()
{
int originalNum = num;
int sum = 0;
int digits = String.valueOf(num).length();
while (num != 0)
{
int digit = num % 10;
sum += Math.pow(digit, digits);
```

```
num /= 10;
}
if (sum == originalNum)
{
System.out.println(originalNum + " is an Armstrong number.");
}
else
{
System.out.println(originalNum + " is not an Armstrong number.");
}
}
public static void main(String[] args)
{
Scanner inp = new Scanner(System.in);
System.out.println("Enter the number: ");
int inputNum = inp.nextInt();
armstrong_number obj = new armstrong_number(inputNum);
obj.operation();
}
}
```

Output:

```
C:\Problems>javac fibonacci_series.java
C:\Problems>java fibonacci_series.java
Enter the number of terms for the Fibonacci series:
4
Fibonacci Series up to 4 terms:
0 1 1 2
```

3.h) Factorial Number:

```
import java.util.Scanner;
public class armstrong_number
{
int num;
public armstrong_number(int num)
{
this.num = num;
}
public void operation()
{
int originalNum = num;
int sum = 0;
int digits = String.valueOf(num).length();
while (num != 0)
{
int digit = num % 10;
sum += Math.pow(digit, digits);
num /= 10;
}
if (sum == originalNum)
{
System.out.println(originalNum + " is an Armstrong number.");
}
else
{
System.out.println(originalNum + " is not an Armstrong number.");
}
```

```
public static void main(String[] args)
{
Scanner inp = new Scanner(System.in);
System.out.println("Enter the number: ");
int inputNum = inp.nextInt();
armstrong_number obj = new armstrong_number(inputNum);
obj.operation();
}
```

Output:

```
C:\Problems>javac factorial_number.java
C:\Problems>java factorial_number.java
Enter the number:
3
Factorial of 3 is: 6
```

3.i) Sum of Even, Odd Digits:

```
import java.util.Scanner;
public class even_odd_sum
{
int limit;
public even_odd_sum(int limit)
{
this.limit = limit;
```

```
}
public void operation()
{
int evenSum = 0, oddSum = 0;
for (int i = 1; i <= limit; i++)</pre>
{
if (i % 2 == 0)
{
evenSum += i;
}
else
{
oddSum += i;
}
System.out.println("Sum of even numbers up to " + limit + " is: " +
evenSum);
System.out.println("Sum of odd numbers up to " + limit + " is: " +
oddSum);
}
public static void main(String[] args)
{
Scanner inp = new Scanner(System.in);
System.out.println("Enter the limit: ");
int inputLimit = inp.nextInt();
even odd sum obj = new even odd sum(inputLimit);
obj.operation();
}
}
```

Output:

```
C:\Problems>javac even_odd_sum.java
C:\Problems>java even_odd_sum.java
Enter the limit:
5
Sum of even numbers up to 5 is: 6
Sum of odd numbers up to 5 is: 9
```

3.j) Armstrong Number:

```
import java.util.Scanner;
public class armstrong_number
{
int num;
public armstrong_number(int num)
this.num = num;
}
public void operation()
{
int originalNum = num;
int sum = 0;
int digits = String.valueOf(num).length();
while (num != 0)
{
int digit = num % 10;
sum += Math.pow(digit, digits);
```

```
num /= 10;
}
if (sum == originalNum)
{
System.out.println(originalNum + " is an Armstrong number.");
}
else
{
System.out.println(originalNum + " is not an Armstrong number.");
}
}
public static void main(String[] args)
{
Scanner inp = new Scanner(System.in);
System.out.println("Enter the number: ");
int inputNum = inp.nextInt();
armstrong_number obj = new armstrong_number(inputNum);
obj.operation();
}
}
```

Output:

```
C:\Problems>javac armstrong_number.java
C:\Problems>java armstrong_number.java
Enter the number:
2345
2345 is not an Armstrong number.
```