Examenul de bacalaureat național 2020

Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Test 4

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{64} - \left(\frac{1}{2}:0,5-1\right) = 8 - \left(\frac{1}{2}:\frac{1}{2}-1\right) =$	3p
	=8-(1-1)=8	2 p
2.	$x^2 - 2x - 3 < 0 \Leftrightarrow x \in (-1,3)$	3 p
	Cum x este număr întreg, cel mai mare element al mulțimii A este 2	2 p
3.	$x^2 + x + 1 = 3x \Rightarrow x^2 - 2x + 1 = 0$	3 p
	x = 1, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, multipli ai lui 17 sunt: 17, 34, 51, 68 și 85, deci sunt 5 cazuri favorabile	2p
	$P = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{90} = \frac{1}{18}$	1p
5.	Panta unei drepte paralele cu dreapta d este egală cu 1	2p
	Ecuația dreptei care trece prin M și este paralelă cu d este $y-1=1\cdot(x-0)$, deci $y=x+1$	3 p
6.	$AB^2 + AC^2 = 676 = BC^2$, deci triunghiul ABC este dreptunghic în A	2p
	Cum AD este mediană, obținem $AD = \frac{BC}{2} = \frac{26}{2} = 13$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	0*5 = 0.5 - 5(0+5) + 30 =	3p
	=0-25+30=5	2p
2.	x * y = xy - 5x - 5y + 25 + 5 =	2p
	=x(y-5)-5(y-5)+5=(x-5)(y-5)+5, pentru orice numere reale x și y	3 p
3.	x*6 = (x-5)(6-5) + 5 = x-5+5 = x, pentru orice număr real x	2p
	6*x = (6-5)(x-5)+5=x-5+5=x=x*6, pentru orice număr real x , deci $e=6$ este elementul neutru al legii de compoziție ,,*"	3 p
4.	$(x-1-5)(x+1-5)+5=8 \Leftrightarrow x^2-10x+21=0$	3p
	x = 3 sau $x = 7$	2p
5.	$(5^{x^2} - 5)(5^{x^2} - 5) + 5 = 5 \Leftrightarrow 5^{x^2} - 5 = 0 \Leftrightarrow x^2 = 1$	3p
	x = -1 sau $x = 1$	2p
6.	$p*q \in \mathbb{Z} \Leftrightarrow (p-5)(q-5) \in \mathbb{Z}$	2p
	De exemplu, pentru $p-5=\frac{3}{2} \Leftrightarrow p=\frac{13}{2} \in \mathbb{Q} \setminus \mathbb{Z}$ și $q-5=\frac{2}{3} \Leftrightarrow q=\frac{17}{3} \in \mathbb{Q} \setminus \mathbb{Z}$, obținem $p*q=6$, care este număr întreg	3 p

SUBIECTUL al III-lea (30 de puncte)

	(ov de pain		
1.	$\det A = \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix} = 1 \cdot 3 - 2 \cdot 0 =$	3p	
	=3-0=3	2p	
2.	$C(x) \cdot B(x) = \begin{pmatrix} 1 + x^2 & x \\ 2 + 3x & 3 \end{pmatrix}$, pentru orice număr real x	3p	
	$\begin{pmatrix} 1+x^2 & x \\ 2+3x & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}, \text{ de unde obținem } x = 0$	2 p	
3.	$B(x) \cdot C(x) = \begin{pmatrix} 1 & x \\ x+2 & x^2+3 \end{pmatrix}$, pentru orice număr real x	2 p	
	$C(x) \cdot B(x) - B(x) \cdot C(x) = \begin{pmatrix} 1 + x^2 - 1 & x - x \\ 2 + 3x - x - 2 & 3 - x^2 - 3 \end{pmatrix} = \begin{pmatrix} x^2 & 0 \\ 2x & -x^2 \end{pmatrix}, \text{ pentru orice număr real}$	3 p	
4.	$B(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, C(0) = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$	2p	
	$X = A \cdot C(0)$, de unde obținem $X = \begin{pmatrix} 1 & 0 \\ 8 & 9 \end{pmatrix}$	3 p	
5.	$\det(C(x)) = 3 - 2x$, pentru orice număr întreg x	2 p	
	Pentru orice număr întreg x , deoarece $2x \neq 3$, obținem $\det(C(x)) \neq 0$, deci $C(x)$ este inversabilă	3 p	
6.	$\det(B(x)+C(x)) = \begin{vmatrix} 2 & x \\ x+2 & 4 \end{vmatrix} = -x^2 - 2x + 8, \text{ pentru orice număr natural } x$	2p	
	$-x^2 - 2x + 8 > 0 \Rightarrow x \in (-4,2)$ și, cum x este număr natural, obținem $x = 0$ sau $x = 1$	3 p	