

Calories en sous-sol!

Campus de CESI Nice

Membres de l'équipe du projet :

Nom	Prénom	Classe
Ollivier	Alexis	CPI A2
Rouchet	Baptiste	CPI A2
Kernaul	Arthur	CPI A2
Manoury	Patrick	CPI A2

Tuteurs : Marrec Yann & Hemmerlin Eric

Table des Matières

1. Présentation du projet						
1.1. Problématique	4					
1.2. Déroulement du projet	4					
1.2.1. Explication de la méthode	4					
1.2.2. La Mission	5					
2. Choix de la pompe						
2.1. Choix de l'échangeur						
3. Calculs des pertes de charges						
3.1. Hypothèses						
3.2. Circuit froid						
3.3. Choix d'une pompe pour le réseau						
3.4. Calcul des pertes de charge sur le réseau des eaux usées						
3.4.1. Choix du broyeur						

1. Présentation du projet

-La Mairie de Paris a mis en place des orientations énergétiques à travers le Plan Climat Air Énergie Territorial. Il fixe l'objectif ambitieux d'une neutralité carbone pour l'année 2050.

La cloacothermie (de cloaca, égout en latin) consiste à récupérer l'énergie disponible dans les eaux usées à partir d'un échangeur c'est ce qui correspond à la récupération de chaleur des eaux usées en égout.

1.1. Problématique

- -Quelle installation est capable de récupérer la chaleur dans le collecteur d'égout pour couvrir les besoins des trois établissements ?
- -Comment réaliser l'échange de chaleur dans les collecteurs d'égouts ?
- -Comment dimensionner les installations ?

1.2. Déroulement du projet

1.2.1. Explication de la méthode :

La chaleur sera récupérée dans les eaux usées grâce à **un échangeur**. Deux systèmes ont été mis en concurrence :

- Le système Thermliner
- Le système Energido

Le comité de pilotage a retenu **le système Enegido**. Ce choix est fortement pressenti par la collectivité qui souhaite travailler avec **un fournisseur français** dans la mesure où le comparatif est relativement équilibré.

- -Cela dit il reste à valider ce choix :
 - 1. Présenter vos propositions dans une matrice de décision.
 - 2. Rédigez ensuite un guide qui a pour but d'expliquer chaque critère à des techniciens qui devront les quantifier.
 - 3. Recenser les contraintes incontournables à prendre en compte.

1.2.2. La Mission:

a. La matrice de décision :

Critères	Pays d	ys d'origine durée de vie		Reduction d'emissions de CO2		Practicité d'installation		Tmax Fournit		Systémé de broyage		Coût	
Pondération	XXX	ХХХ	xxxxx		xxxxx		xxxxx		xxxxx		xxxxx		xxxx
Le système Thermliner	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
Le système Energido	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX

b. Les différents critères :

Pays d'origine : Installation française au maximum afin de faciliter l'entretien et la prise en charge de l'installation.

Durée de vie : Installation la plus pérenne possible afin de limiter les coûts d'entretien.

Réduction émission de CO² : Objectif principal du projet, besoin d'être respecté le plus fidèlement possible et de la meilleure des manières possibles par rapport à notre cahier des charges.

Praticité d'installation : Facilité d'insertion de l'installation sur le site.

Température Max Fournit : Température la plus fidèle possible à nos estimations et nos objectifs.

Système de broyage : Le plus efficace possible afin de diminuer au maximum l'encrassement et donc l'entretien.

Cout : Dans chaque projet c'est le coût qui limite les ingénieurs, donc il nous faudrait le meilleur rapport qualité/prix afin de subvenir aux besoins sans déborder du budget.

c. Les différentes contraintes :

- Couvrir plus de 75% des besoins énergétiques à partir de la chaleur de l'égout.
- neutralité carbone d'ici 2050
- potentiel de récupération d'énergie est de l'ordre de 45 000 MWh/an
- utilisation d'un échangeur
- fournisseur français dans la mesure où le comparatif reste raisonnable
- réduire les émissions de gaz
- production d'énergie renouvelable locale
- respect de l'environnement
- la distance entre les établissements

2. Choix de la pompe :

Afin de choisir la pompe à chaleur nous avons utilisé les besoins énergétiques de la chaufferie pour cela nous avons dû chercher la puissance moyenne de l'installation que nous avons obtenu grâce a ces derniers. Puis il nous fallait la puissance maximale de l'installation afin de choisir la pompe à chaleur, pour cela nous avons utilisé les DJU moyens sur Paris pour obtenir une température moyenne grâce à cela on a pu en déduire la puissance maximum à l'aide d'un produit en croix entre Pmoy Tmax et Tmoy ce qui nous à permis de d'obtenir Pmax. Cependant on nous affirme que seulement 75% de la puissance est utile on en déduit donc que nous aurons besoin de la DYNACIAT LG HW3 260

PAC					
Besoins énergétiques	300 000	KWH/an			
Nb d'heures par an	8760	h			
Pmoy	34,25				
Nb de jours par an	365				
DJU a Paris					
2019	1989				
2018	2002				
2017	2041				
2016	2207				
2015	1986				
DJUmoy	2045				
Tmoy	5,6	°C			
Tmax	20	°C			
Pmax	122,25				
Pmax' (75%)	91,69				
Nous cho	isirons donc la	pompe : DYN	ACIAT LG H	W3 260	
Pmax	93	KW			

2.1. Choix de l'échangeur :

Tout d'abord nous aurons besoin du débit minimum côté froid nous avons cherché la puissance liée à ce débit grâce au COP pour cela il a fallu isoler le débit volumique à l'aide d'une relation avec le débit massique. Pour dimensionner l'échangeur nous avions 3 températures sur 4 nous avons dû isoler la 4eme température avec une formule entre la puissance, le débit et la température. En calculant la 4eme température on a pu déterminer notre delta TLM. Et enfin avec une formule liant la puissance, deltaTLM, le coefficient d'échange global (K), ainsi que la surface nous avons pu isoler cette dernière et en déduire le modèle 13S.

	Puissance néces	saire à préle	ever côté froid						
Pf	66,77	KW							
De	ébit minimum côt	té froid							
rho eau	1000	kg/m^3							
Ср	4186	J/KgK							
DTf	3								
Qv	0,005317095	m^3/s							
Qv	19,4	m^3/h							
Surface échangeur	11,03116637		Le modèle d'	échangeur à chosii	r est donc le mo	dèle 13S de si	urface d'échan	ge égale à 13	,5m²
Coefficient échange	1300								
Puissance	67700								
DTLM	4,720890005								
Temperatures	Chaud	Froid							
Sortie	13	7							
Entree	14	10							
DT1	7								
DT2	3								