HYDRAULICS

Year: II Semester: IV

Teachi Hours,	26	,		Examina	tion Scheme	e				Total Marks
110413/	WCCI	`		Internal		Final		10.		
			Theory	Practical	Theory		Practical			
Credit Hours	1100	Т	P			Duration	Marks	Duration	Marks	
3	3	3	2/2	40	25	3 Hrs	60	-	-	125

Course Objective:

The purpose of the course is to provide basic knowledge of Hydraulics i. e., the basics of Pipe Flows, Open Channel Flows and their applications in civil engineering.

Course Content:

9. Pipe Flow (11 hours)

- 9.1 Introduction to Hydraulics; Review of Continuity and Bernoulli's Equations; Laminar and Turbulent Flow; Reynolds' Number; HGL and TEL
- 9.2 Introduction to pipe flows
- 9.3 Head loss and types of head losses
- 9.4 Laminar flow in pipe; shear stress distribution; velocity distribution; head loss (Hagen-Poiseuille Equation)
- 9.5 Turbulent flow in pipe; shear stress; velocity distribution; Darcy-Weisbach's equation; Colebrook-White equation; Moody Diagram
- 9.6 Short and Long Pipes with constant diameters; Minor Head Loss and their types
- 9.7 Siphons: applications, condition for continuous supply, solutions to siphon problem
- 9.8 Types of simple pipe flow problems and solutions

Pipe Networks (5 hours)

9.9 Pipes in Series and Parallel

BE Civil Fourth Semester's Syllabus of Purbanchal University Faculty of Engineering, Biratnagar, NEPAL

- 9.10 Equivalent Pipe; Dupuit equation
- 9.11 Three Reservoir Problem and its solution
- 9.12 Solution of simple network by Hardy-Cross method

10. Unsteady Flow in pipes (3 hours)

- 10.1 Water Hammer and its effects in pipes and Penstock
- 10.2 Water Hammer due to gradual closure of valve
- 10.3 Variation of pressure due to sudden closure of valve for the cases of rigid and elastic pipes
- 10.4 Relief devices against action of water hammer; surge tank and its types.

11. Basics of Open Channel Flow (2 hours)

- 11.1 Practical Applications of Open Channel Flow
- 11.2 Difference between pipe flow and open channel flow
- 11.3 Classification of open channels
- 11.4 Classification of open channel flow
- 11.5 Geometric properties of channel

12. Uniform Flow in Open Channels (6 hours)

- 12.1 Condition of uniform flow in prismatic channel
- 12.2 Shear stress and velocity distribution
- 12.3 Chezy's and Manning's equations; Relationship between Chezy's, Manning and Darcy's coefficient
- 12.4 Most economic rectangular, triangular, trapezoidal and circular section
- 12.5 Types of uniform flow problems and solutions

13. Flow over Notches and Weirs (3 hours)

- 13.1 Weirs and Notches; Types of weirs/notches
- 13.2 Discharge equations for Rectangular, Triangular and Trapezoidal weirs, Francis' formula, Cipoletti weir
- 13.3 Velocity of Approach

14. Energy and Momentum Principles in open channels (4 hours)

- 14.1 Energy and Momentum Principles
- 14.2 Specific energy, specific energy curve, critical depth, alternate depths of flow and depth-discharge relationship
- 14.3 Use of specific energy concept in analyzing flow over broad-crested weir and Venturi flume.
- 14.4 Concept of specific force

BE Civil Fourth Semester's Syllabus of Purbanchal University Faculty of Engineering, Biratnagar, NEPAL

15. Non-Uniform Flow in Open Channels: Gradually Varied Flow and Rapidly Varied Flow (8 hours)

- 15.1 Governing equation of gradually varied flow and assumptions in their derivations
- 15.2 Classification of bed slopes
- 15.3 Classification of water surface profiles
- 15.4 Computation of GVF in prismatic channels by Step Method
- 15.5 Rapidly Varied Flow: Hydraulic Jump conditions and equation in horizontal rectangular channel.
- 15.6 Energy Loss in Hydraulic Jump
- 15.7 Practical Examples of Jump

16. Flow in Non-rigid Boundary Channel (1 hour)

- 16.1 Introduction; Difference between Rigid and Non-rigid boundary channel
- 16.2 Effects of shear stress and incipient motion, Critical tractive stress

17. Similitude and Physical Modeling (2 hours)

- 17.1 Definition and Types of Similarities
- 17.2 Classification of Models: Distorted and Undistorted Models; Scale Effect
- 17.3 Modeling Criteria

Laboratory Works:

- 8. Head Loss in Pipes
- 9. Flow through sluice gates
- 10. Flow over notches and weirs
- 11. Flow along Metering Flumes
- 12. Analysis of Gradually Varied Flow (optional)
- 13. Analysis of Rapidly Varied Flow (optional)

References*:

- 12. Bansal, R. K. (2019). A Textbook of Fluid Mechanics and Hydraulic Machines. 10th edition, Laxmi Publications
- 13. Cengel, Y. A. & Cimbala, J. M. (2013). *Fluid Mechanics: Fundamentals and Applications*. 3rd edition, Mcgraw-Hill
- 14. Chow, V. T. (2009). Open-Channel Hydraulics. The Balckburn Press
- 15. Dulal, K.N. (2022). Hydraulics. 1st Edition, Pratibha Pustak Sadan.

BE Civil Fourth Semester's Syllabus of Purbanchal University Faculty of Engineering, Biratnagar, NEPAL

- Kumar, D. S. (2013). Fluid Mechanics and Fluid Power Engineering. 8th edition, S. K. Kataria and Sons
- 17. Modi, P. N. & Seth, S. M. (2015). *Hydraulics and Fluid Mechanics including Hydraulic Machines*. 20th edition, Standard Book House
- 18. Sangroula, D. P. (2018). Fundamentals of Fluid Mechanics. 3rd edition, Green Books
- 19. Streeter, V. L., Wylie, E. B. & Bedford, K. W. (2010). *Fluid Mechanics*. 9th edition, Mcgraw-Hill
- 20. Subramanya, K. (2019). Flow in Open Channels. 5th edition, Mcgraw-Hill India

Evaluation Scheme: Marks Division

Question Type	No. of Questions	Marks	Total Marks	
Short	4	2	8	
Medium	7	4	28	
Long	3	8	24	
Total			60	

^{*}Latest edition will be preferable.