Deep Learning Techniques

ML Lab

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Training / Test error and Generalization

Training error

error of training dataset

Test error

Error of test dataset (new and previously unseen data)

Generalization

The ability to perform well on previously unobserved input

Training/Test error and Generalization

Overfitting and Underfitting

- Underfitting
 - The training data and test data have high error rates.
- Overfitting
 - The training data has a low error rate but the test data has a high error rate.

Overfitting and Underfitting

Overfitting and Underfitting

Necessity of Validation Set

- Evaluation protocol
 - Simple training and evaluation

• Problem: 모델에서 overfitting 문제가 일어날수 있다

Necessity of Validation Set

- Evaluation protocol
 - Improper training and evaluation

Problem: cheating!!

Necessity of Validation Set

- Evaluation protocol
 - Hyper parameter 조정이나 , early stopping 을 위해서 validation set 을 사용

Typically, train:validation = 4:1

Validation set

- Early stopping
 - 미리지정한 epoch 까지 다 가지 않더라도, overfitting 이 일어나게 되면 학습을 중단

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Activation function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation function: Sigmoid

• range [0, 1]

- Problem
 - Gradient Vanishing
 - Exp() is very expensive.

Activation function: ReLU

• f(x) = max(, x)

- Does not saturate (in + region)
- Very computationally efficient

- Problem
 - Dead ReLU

Activation function: ReLU

Dead ReLU

Activation function: LeakyReLU

ReLU activation function

LeakyReLU activation function

Activation functions

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Data problem: Scale

- data
 - (height(m), weight(kg))
 - ex) (1.5m, 70kg)
- The network will be biased to the 'weight'.

- To avoid this problem,
 - we must normalize the data.

Data preprocessing

Assume X is data matrix, each sample in a row

Data preprocessing

- Internal covariate shift 현상의 해결
 - 학습 중간에 weight 가 업데이트 되면서 학습데이터의 분포가 계속 바뀌는 현상으로 인해 batch 간 데이터 분포의 차이가 발생
 - Batch 단위로 학습할 경우 하나의 데이터 셋을 다 사용하기 전에 update 가 일어나기 때문

• 이러한 현상을 해결하기 위해 batch 및 layer 마다 정규화를 진행

- 학습단계에서는 learning parameter 를 이용하여 평균 및 분산을 구하고, 배치 정규화를 진행
- Test 단계에서는 학습에서 사용했던 평균 및 분산을 사용

· Input:
$$X \in \mathbb{R}^{N imes D}$$

- What if zero-mean, unit var is too hard of a constraints?
- Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

• Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function!

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

Per-feature mean. Shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{ij} - \mu_j)^2$$
 Per-feature var. Shape is D

$$\hat{x}_{ij} = \frac{x_{ij} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Normalized x. Shape is $N \times D$

$$y_{ij} = \gamma_j \hat{x}_{ij} + \beta_j$$

Output. Shape is $N \times D$

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!

Other normalization techniques

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Weight initialization

Init weights with with tanh(x),

All zero, no learning!

Weight initialization

Init weights with with tanh(x),

tanh tanh(x) $\frac{d}{dx} tanh(x) = 1 - tanh^{2}(x)$

Local gradient all zero, no learning!

Xavier initialization

- Init weights with with tanh(x),
 - Var(W) =
 - : the size of the dimension of input

Xavier initialization

- Init weights with with ReLU(x),
 - Var(W) =
 - : the size of the dimension of input

He initialization

- Init weights with with ReLU(x),
 - Var(W) =
 - : the size of the dimension of input

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Weight Decay

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f_W(x_i)) + \lambda R(W)$$

- In common use
 - L2 regularization $R(W) = \sum_{i,j} W_{ij}^2$
 - L2 regularization $R(W) = \sum_{i,j} |W_{ij}|$
 - Elastic net (L1 + L2) $R(W) = \sum_{i,j} \beta W_{ij}^2 + |W_{ij}|$

Weight Decay

Regularization

- Weight decay 에서는 linear function 이 작은 weight 을 갖는게
 좋다는 것을 loss function 에 추가적인 term 을 추가하여 explicit
 하게 표현함
- 이러한 선호도를 implicit 또는 explicit 하게 표현하는 방식으로는 많은 방법이 있고 이러한 방식을 regularization 이라고 말함
- Regularization 의 목적은 generalization error 를 줄이는 것임

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Model Ensembles

- Train multiple independent models
- At test time, average their results
 - Take average of predicted probability distributions, then choose argmax
- 여러 개의 다른 모델을 따로 학습시켜서 그 모델들이 test data 의 output 값에 기여하도록 하겠다는 아이디어
- 다른 모델들이 한가지 test set 에서 모두 똑같은 결과를 보이지는 않을 거라는 아이디어

Dropout

- 미리정한확률로특정뉴런을학습에서제외할지정함
 - 보통확률을 o.5를 사용함

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

How to work?

- Feature 의 co-adaptation 을 방지하여 네트워크에 불필요한 representation 을 제외한다
 - Co-adaptation 이란 한 뉴런이 다른 뉴런에 의존적으로 학습되는 현상

Forces the network to have a redundant representation; Prevents co-adaptation of features

Another Interpretation

- Dropout 은 확률적으로 특정 뉴런을 사용하는지 결정
 - 각각의 step 마다 다른 network 를 학습시키는 것으로 볼 수 있고, 이를 model ensemble 관점에서 볼 수 있음

Dropout in test time

- Test time 에는 dropout 확률을 곱해줘야 함
 - Test time 에서의 output 은 train time 에서의 output 의 기댓값

• Test 에서 a 값의 기대값:

$$E[a] = w_1 x + w_2 y$$

• 학습에서 a 값의 기대값:

$$E[a] = rac{1}{4}(w_1x + w_2y) + rac{1}{4}(w_1x + 0y) + rac{1}{4}(0x + 0y) + rac{1}{4}(0x + w_2y) = rac{1}{2}(w_1x + w_2y)$$

Table of Contents

- Overfitting
- Activation functions
- Data / Batch normalization
- Weight initialization
- Weight decay
- Dropout
- Fancy optimizers

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD)

Problem

Problem of gradient descent

Zero gradient, gradient descent gets stuck.

Momentum

SGD + Momentum

SGD with momentum is better than only SGD.

$$V_{t} = \beta V_{t-1} + \alpha \nabla_{w} L(W, X, y)$$

$$W = W - V_{t}$$

Importance of learning rate

Fancy optimizer: AdaGrad (Adaptive Gradients)

- Learning rate decay
 - Decay the learning rate for parameters in proportion to their update history (more updates means more decay).

• When h is very big, the parameter will start receiving very small updates.

$$h \leftarrow h + \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$
$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

Fancy optimizer: RMSProp

 Everything is very similar to AdaGrad, except now we decay the denominator as well.

$$h \leftarrow h + \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$
$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

Fancy optimizer: Adam (Adaptive moment)

RMSProp(learning rate decay) + Momentum

```
알고리즘 5-5 Adam
입력: 훈련집합 \mathbb{X}, \mathbb{Y}, 학습률 \rho, 모멘텀 계수 \alpha_1, 가중 이동 평균 계수 \alpha_2
출력: 최적의 매개변수 \hat{\Theta}
      난수를 생성하여 초기해 Θ를 설정한다.
v = 0, r = 0
3 t=1
      repeat
       그레이디언트 \mathbf{g} = \frac{\partial J}{\partial \mathbf{g}} = \mathbf{g} 를 구한다.
      \mathbf{v} = \alpha_1 \mathbf{v} - (1 - \alpha_1) \mathbf{g} // 속도 벡터
      \mathbf{v} = \frac{1}{1 - (\alpha_1)^t} \mathbf{v}
       \mathbf{r} = \alpha_2 \mathbf{r} + (1 - \alpha_2) \mathbf{g} \odot \mathbf{g} // 그레이디언트 누적 벡터
        \mathbf{r} = \frac{1}{1 - (\alpha_2)^t} \mathbf{r}
         \Delta \mathbf{\Theta} = -\frac{\rho}{\epsilon + \sqrt{\mathbf{r}}} \mathbf{v}
           \Theta = \Theta + \Delta\Theta
      until (멈춤 조건)
      \hat{\Theta} = \Theta
```


Scheduling learning rate

 SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

When we train NN, we typically start with large learning rate and decay over time.

Fancy optimizers

Practice: Deep Learning Techniques

- 다음 기능들을 tensorflow 로 구현해보자 :
 - Weight decay
 - Activation function
 - Batch normalization
 - Weight initialization
 - Optimizers

Thank you:)