Algoritmi fundamentali

Tema 3

Exercițiul 1 (1p)

Se știe că înmulțirea a două matrice A și B de dimensiuni $N \times M$ și $N' \times M'$ respectiv se poate realiza doar dacă M = N'. Dându-se dimensiunile pentru K matrice $M_1, M_2, ..., M_K$ $(1 \le K \le 10^6)$, determinați (dacă există) o ordine în care acestea ar putea fi aranjate, astfel încât produsul celor K matrice (în ordinea aleasă) să aibă sens.

- 1. Formulați problema ca una de găsire a unui lanț hamiltonian într-un graf; menționați un algoritm care rezolvă problema astfel, precizând eficiența acestuia. (0.5p)
- 2. Formulați problema ca una de găsire a unui lanț eulerian într-un graf; menționați un algoritm care rezolvă problema astfel, precizând eficiența acestuia. (0.5p)

Exercițiul 2 (1p)

Pentru un graf G=(V,E), definim $\chi(G)$ numărul său cromatic (în esență, dacă $\chi(G)=k$, atunci graful G este k-colorabil dar nu este (k-1)-colorabil) și c(G) dimensiunea subgrafului complet maxim din G.

Verificați care dintre relațiile: $\chi(G)[\leq;=;\geq]c(G)$ se respectă pentru orice graf G.

Exercițiul 3 (1.5p)

Teorema König enunță că, pentru orice graf bipartit G, dimensiunea celei mai mici acoperiri cu noduri $\mathbf{MIN\text{-}VC}(G)$ este egală cu dimensiunea cuplajului maxim $\mathbf{MAX\text{-}MTC}(G)$. Demonstrați că, în general, pentru orice graf G (nu neapărat bipartit) avem că:

$$\mathbf{MIN\text{-}VC}(G) \geq \mathbf{MAX\text{-}MTC}(G)$$

Exercițiul 4 (2p)

Care este numărul minim (1p), respectiv maxim (1p) de muchii pe care poate să îl conțină un graf G de n noduri, așa încât $\chi(G) = k$ (unde $\chi(G)$ reprezintă numărul cromatic al grafului G și $1 \le k \le n-1$)? (Răspuns în funcție de n și k)

Exercițiul 5 (2.5p)

Fie graful **neorientat** G = (V, E) unde $V = \{1, 2, ..., 10^5\}$ și $E = \{(i, j) \mid i \text{ divide } j\}$.

- 1. Argumentați dacă G este/nu este un graf planar. (1p)
- 2. Aflati $\chi(G)$. (1.5p)