FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/6 5/2 HANDBOOK ON SPECIAL WORKS. TECHNOLOGICAL LINES OF INDUSTRIAL EN--ETC(U) OCT 79 Y Y NIKOLAYEVSKIY FTD-IO(RS)T-1347-79-PT-1 NL AD-A084 528 UNCLASSIFIED 1 - 6 8

	PHOTOGRAPH THIS SHEET
AD A U 8 4528 DIIC ACCESSION NUMBER	LEVEL INVENTORY FTD-ID(RS)T-1347-79 (Part 1 of 3) DOCUMENT IDENTIFICATION
AD A	DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited
	DISTRIBUTION STATEMENT
ACCESSION FOR NTIS GRA&I DTIC TAB UNANNOUNCED JUSTIFICATION	SDTIC SELECTE MAY 2 2 1980 *
BY DISTRIBUTION /	D
AVAILABILITY CODI	AND/OR SPECIAL DATE ACCESSIONED
A	TON STAMP
	80 3 18 042
	DATE RECEIVED IN DTIC
	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
DTIC FORM 70A	DOCUMENT PROCESSING SHEET

44

THE RESERVE OF THE PROPERTY OF

Water State of the State of the

FOREIGN TECHNOLOGY DIVISION

HANDBOOK ON SPECIAL WORKS
TECHNOLOGICAL LINES OF INDUSTRIAL ENTERPRISES

bу

Ye. Ya. Nikolayevskiy

Approved for public release; distribution unlimited.

UNEDITED MACHINE TRANSLATION

FTD-ID(RS)T-1347-79

16 October 1979

MICROFICHE NR: FTD-79-C-001356

HANDBOOK ON SPECIAL WORKS. TECHNOLOGICAL LINES OF INDUSTRIAL ENTERPRISES.

By: Ye. Ya. Nikolayevskiy

English pages: 1600

Source: Spravochnik po Spetsial'nym Rabotam.

Tekhnologicheskiye Truboprovody

Promyshlennykh Predpriyatiy, Stroyizdat

Moscow, 1972, pp. 1-889.

Country of origin: USSR

This document is a machine translation.

Requester: FTD/TQTM

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT, STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-ID(RS)T-1347-79

Date 16 Oct 1979

TABLE OF CONTENTS

U. S. Board on Geographic Names Transliteration System	11
Preface	2
First Section	
Chapter I. Basic Information about Ducts and Conduits	6
Chapter II. Steel Tubes	91
Chapter III. Welded Parts of Steel Conduits	135
Chapter IV. Flanges and Flanged Plugs	180
Chapter V. Compensators	245
Chapter VI. Ducts and Parts of Pressure Piping	282
Chapter VII. Ducts and Parts of Conduits from Nonferrous Metals and Alloys	402
Chapter VIII. Ducts and Parts of Conduits from Plastics and Steel with Internal Corrosion-Resistant Coatings	453
Chapter IX. Pipeline Accessories	546
Chapter X. Supports and Suspensions of Technological Manifolds	602
Chapter XI. Materials for Manufacture and Assembly of Technological Conduits	643
Chapter XII. Centralized Manufacture of the Units of Conduits	701
Chapter XIII. Manufacture and Assembly of Parts and Assemblies of Conduits from Nonferrous Metals and Alloys	912
Chapter XIV. Manufacture and Assembly of Conduits from Nonmetallic Materials and Steel Ones with Internal Corrosion-Resistant Nonmetallic Coatings	939
Chapter XV. Inspection, Revision and Testing of	3.050

Chapter XVI. Technology of the Assembly of Steel Conduits	1088
Chapter XVII. Weld of Technological Conduits	1157
Chapter XVIII. Assembly and Testing of Special-Purpose Conduits	1260
Chapter XIX. Testing and Putting to Use of the Assembled Conduits	1395
Equipment and Instruments for Manufacture and Assembly of Technological Conduits	1502
References	1600

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliterati
à a	A a	A, a	Рр	Pp	R, r
i. o	Бδ	в , в	Сс	C c	<i>⇔</i> ,
В	B .	V, v	Тт	T m	T, t
ľr	[*	G, g	Уу	у у	ប , ដ
A A	Д∂	D, d	Фф	Φ φ	$\mathbf{F}_{\bullet} = \mathbf{f}_{\bullet}$
Еe	E .	Ye, ye; E, e*	Х×	X x	Kh, kh
жж	Ж ж	Zh, zh	Цц	Цч	Ts, ts
3 э	3 3	2, 2	4 4	4 4	Ch, ch
Ии	н и	I, i	Ш ш	Шш	Sh, sh
Нй	A i	Y. y	ध्यं ध्य	Щщ	Sheh, shen
Н н	KK	K, k	Ъъ	ъ .	11
ν1 Л	ЛЛ	L, 1	Н ы	Ыц	Y , ÿ
Li ·	ММ	M, n.	рР	Ь	•
Нн	H ×	N, n	Ээ	э ,	E, e
Ü o	0 0	0, 0	Юю	10 no	Yu, yu
Пп	[] n	P, p	Яя	Яя	Ya, ya

^{*}ye initially, after vowels, and after ь, ь, e elsewhere. When written as \ddot{e} in Russian, transliterate as $y\ddot{e}$ or \ddot{e} .

RÚSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	E1.511.
sin	sin	sh	sinh	arc sh	simi_
cos	cos	ch	cosh	arc ch	ocan [™] 1
tg	tan	th	tanh	arc th	tan:.Ti
ctg	cot	cth	coth	are oth	cott:: ⁷
sec	sec	sch	sech	are sch	sech .
cosec	csc·	csch	csch	arc csch	esch ⁷

Russian	English
rot	curl
lg	log

HANDBOOK ON SPECIAL WORKS.

TECHNOLOGICAL LINES OF INDUSTRIAL ENTERPRISES.

Ye. Ya. Nikolayevskiy.

Page 2.

Handbook on special works. Technological conduits/manifolds of industrial enterprises. Ed. 2nd, revised and sup. Edited by Ye. Ya. Nikolayevskiy. M., Stroyizdat, 1972, p. 887 (Minmontazhspetsstroy. State design institute of Giprometallurgmontazh).

Handbook consists of two sections. The first section contains the information about shirts and the parts of conduits/manifolds from different materials - steels of the carbide and alloyed, nonferrous metals and alloys, plastics, with internal anticorrosive coatings, etc.: about reinforcement, supports, suspensions and materials, used in production in the pipeline works. In the second section is given the information about the manufacture of parts and assemblies, the [Translator's note: Throughout document duct should read tube or ripe; reinforcements should read fittings]

special-purpose assembly of technological conduits/manifolds, including - vacuum, oxygen, high pressure, oil-lubricants and hydraulics, etc.; about testing and putting to use of the assembled communications and shaping of delivery technical documentation.

Special attention is given to the industrial methods of production in the pipeline works. The materials of handbook are considerably renovated and supplemented by the information about changes in the region of technology of manufacture and assembly of technological conduits/manifolds.

Handbook is intended for engineers, technicians, works superintendents, masters and roremen of the construction-assembly organizations, and also for the workers of operational service, who are occupied by manufacture and assembly of the technological conduits/manifolds of industrial enterprises.

Page 3.

Preface.

Successfully accomplished in our country in accordance with directives of XXIV Congress of the Communist Party of the Soviet Union building of enterprises in the most important fields of

industry on the basis of new equipment and advanced technology and occurring basic changes in the technological production processes touched production in the installation works.

Substantial changes occurred in the region of the assembly of technological conduits/manifolds.

The decisive factor of the perfection of technology of the assembly of technological conduits/manifolds is the transfer of maximally possible volume of works from assembling zone into preparing workshops or to plants.

That released into 1964 nanabooks on special works the "Technological conduits/manifolds of industrial enterprises" encompassed the wide circle of the questions, connected with manufacture and assembly of technological conduits/manifolds. However, the occured in recent years changes in technology of the assembly of conduits/manifolds required the treatment/processing handbook.

In the second, reworked and enlarged edition, are reflected the new progressive methods of the assembly of conduits/manifolds, and are also given information on organization and production in the works contemporary industrial methods on the basis of advanced

DOC = 79134701

PAGE

technology.

In the first section of nandbook is given the information about shirts and the parts of the conducts/manifolds of different designation/purpose, reinforcement, supports, suspensions and materials.

In the second section of mandbook are given to recommendation regarding the organization of the works, connected with the manufacture of units and the assembly of conduits/manifolds by most progressive methods, and also technical requirements, norms and rules, which regulate production in these works. Special attention is given to the industrial method or the blank of tube units, which makes it possible to dismember complex technology of the manufacture of conduits/manifolds to the simple operations, which do not require efficiency of workman, and to establish/install in this case strict control of the quality of works.

The information about weld and special treatment of ducts is given in the volume, necessary in production in the works in the sections, which do not have the narrowly specialized profile/airfoil.

In handbook are used the materials of the number of planning and assembling organizations.

Observations and proposition should be directed to: Moscow, K-31, Kuznetsk bridge, 9, Stroyizdat or it is direct into the design institute of Giprometallurymontazu to: Moscow, E-264, 9th park ul, e. 35/36.

DOC = 79134701

PAGE 6

Page 4.

First Section.

DUCTS AND PARTS OF THE CONDUITS/MANIFOLDS OF DIFFERENT PURPOSE.

Chapter I.

BASIC INFORMATION ABOUT DUCTS AND CONDUITS/MANIFOLDS.

- § 1. Materials of metallic conduits/manifolds.
- 1. Steels carbide and alloyed.

Carbon steels of usual quality according to GOST 380-71, supplied with the guaranteed mechanical properties (group A), are marked by letters St. and by ordinal number an increase which indicates ar increase in the quantity of carbon in steel, for example St. 1, St. 2, St. 3 and sc forth.

Steels, supplied with guarantee by the chemical composition (group B), additionally mark by letter B, for example BSt.1, BSt.2, BSt.3. Steels, supplied with the guaranteed mechanical properties and

PAGE 7

to the chemical composition (group C), have in front of a letter V, for example VSt.3, VSt.4 and so forth. To the designations of the trademarks of rimming steel is added the index "kp", semikilled - an index "ps" and killed - an index of "sp" (St.3kp, BSt.4ps, VSt.3sp, etc.), but for the designation of the category of steel is added at the end the number of category, for example St.3ps2, BSt.3kp2, VSt.4ps2.

Carbide fine steel according to GOST 1050-60*, having groups I and II, mark by two-place numerals 05, 08, 10, 15, 20 and so forth showing the average carbon content in one hundredths of a percent. For example, steels of brands 08 and 15 contain respectively on the average of approximately 0.08 and 0.150/o of carbon. The trademarks of steel with the increased content of manganese are additionally designated by beechnut G (15G, 20G and so forth).

Marking alloy steels (according to GOST 5058-65* and 4543-71) and highly alloyed - according to GOST 5632-61* consists of letterings of the alloying elements, which are contained in this trademark of steel, and the following after them numerals, which indicate the approximate content of this element/cell in percentages, if its quantity exceeds 1.50/o.

Page 5.

The numerals before lettering indicate the average carbon content in steel: according to GOST 5058-65* and 4543-71 - in one hundredths of a percent, and according to GOST 5632-61* - in the tenths of percentage. In the trademarks of steels according to GOST 5632-61* numerals in front are not placed, if a quantity of carbon in steel is not limited by low limit with upper limit of 0.090/o and more; with carbon content to 0.040/o in front of lettering is placed sign 00; with carbon content from 0.04 to 0.080/o - sign 0. Letter A at the end of the trademark of steel according to GOST 4543-71 indicates the high quality of steel, while letter Sh - to the especially high quality trademark of steel. For example, high quality chrome-nickel steel 12KhN3A according to GOST 4543-71, which contains about 0.120/o of carbon, is less than 1.50/o chromium and about 30/o of nickel, but letter A indicates the high quality: steel OKh18N12T according to GOST 5632-61* - chrome-nickel-titanium, that contains not more than 0.080/o carbon, about 180/o of chromium, about 120/o of nickel and less than 1.50/o titanium.

The mechanical properties and the chemical composition of carbon and alloy steels are given in Table 1-9.

	(3)	(1) Ofosnave	не в марках
(2) Hassanus sacurus	Синьаески Синьаески	а (4) стали и чугуна	(5) спавово цветных металлов
(b) A307	. N	A	-
ТАЛЮНИНИЙ	. A1	ю	A
(8) Bop	. В	P	- ·
(4)Вамадий	. v	Φ	_
(р)Вольфран	. w	В	_
(I) Mezro	. Fe	_	ж
\ ^{р3} Кадмий	. Cd	_	Kg
√ 3 Креминй	. 51	С	K
₩Магний	. Mg	_	Mr
№ Марганец	. Mn	Г	Μц
When	. Cu	Д	м
(1 ⁷⁾ Молнбден	. Mo	м	_
//6/Никель	. Ni	н	н
(12) tinofina	. Nb	6	_
OROBO	. Sn	_	0
	, Рь	_	С
р Селен	. Se	Ε	_
µ5 Серебро	. Ag	_	Ср
Turan	. Ti	т	_
Фосфор	, р	п	Ф
12 × xpom	. Cr	x	_
K2,171nnu	. Zn	-	ц

Key: (1). Designation in brands/marks. (2). Name of element/cell.
(3). Chemical symbol. (4). Steel and pig iron. (5). alloys of nonferrous metals. (6). Nitrogen. (7). Aluminum. (8). Bohr. (9).
Vanadium. (10). Tungsten. (11). Iron. (12). Cadmium. (13). Silicon. (14). Magnesium. (15). Manganese. (16). Copper. (17). Molybdenum. (18). Nickel. (19). Nicbium. (20). Tin. (21). Lead. (22). Selenium. (23). Silver. (24). Titanium. (25). Phosphorus. (26). Chromium. (27). Zinc.

DOC = 79134701 PAGE 10

Page 6.

Table 1. Mechanical properties of carbon steel (GOST 380-71).

(1)		σ _T	٥,	6, (3)
Марка стали	(2)	age/suf.	no Menes	% , no mines
Cr.0 6 D. Cr.1cn, Cr.1ac, Cr.1an G. Cr.2cn, Cr.2nc, Cr.2an G. Cr.3cn, Cr.3cn, Cr.3an G. Cr.3cn, Cr.3cn, Cr.3an G. Cr.4cn, Cr.4cn, Cr.4kn G. Cr.5cn, Cr.5cn G. Cr.5cn, Cr.5cn G. Cr.5cn, Cr.5cn G. Cr.5cn, Cr.5cn		27-28 24-28 28-27 29 32	39 31—42 39—44 37—49 41—54 50—64	34—35 36—35 36—37 36—37 34—35 20 15

Note. Index σ_t and δ_5 they are given for thicknesses to 20 mm.

Key: (1). Trademark of steel. (2). kg/mm^2 , are not less. (3). it is not less. (4). St. (5). St. 2sp. (6). St. 1kp.

Table 2. The chemical composition of carbon steel in o/o (GOST 380-71).

TABLE 2.

<i>(</i> /)			Si			P	S
Марка стади	c	(A) CTAM			Ma	T _i	9)
	1	4)	(5) nc	(6) _{en}	İ	не более	
DCT.0	He Go- nee 0,23	-	_	-	~	0,07	0,96
SCT.1	0,06-0,12	<0.05	0,05-0,17	0,12-0,3	U,25—0,5	0,04	0,08
5) BCT.2	0,09-0,15	<0.07	0,05-0,17	0,12-0,3	0,25-0,5	0,04	0,05
(S) БСт.3кп		₹0,07	_	-	0,3~0,6		
bСт.3пс (9)	0,14=0,22	-	0,05-0,17	-		1 ' 1 '	0,03
60 Sen (10)		-	-	0,12-0,3	0.1-0.65		
BCT.4	0,18-0,27	<0.07	0,050,17	0,12-0,3	0,4-0,7	0,04	0,05
DCT.5	0,280,37	-	0,050,17	0,15-0,35			11,16
ECT 6	0,36-0,49	<u> </u>	0,05-0,17	0,15-0,35	0,50,8	["."	"."

Note. For the trademarks of steel BSt.1-BSt.6 the content of chromium, nickel and copper must be not more than 0.30/o, and arsenic - is not more than 0.080/o.

Key: (1). Trademark of steel. (2). steel. (3). it is not more. (4).
KP. (5). ps. (6). sp. (7). BSt. (8). BSt. 3kp. (9). BSt. 3ps. (10).
BSt. 3sp.

· •

DOC = 79134701 PAGE 12

Page 7.

Table 3. Mechanical properties of carbon fine steel.

(1)	ø,	•,	4,	•	(3)
Марка сталя	(2) 400	10.00°	9	6	toe m/cm
		(4)		-	
	6) [pynn	a I (FOC	T 1050—60)••)	
OBERT (D)	18 20	30 33	35 33	60 60	=
10mm (g)	19 21	32 34	33 31	55 55	=
15 et 16 15 20 et 16 20	21 23	36 38	29 27	55 55	=
20mm	23 25	39 42	27 25	55 55	=
25 30	. 28 30	46 50	23 21	50 50	9
35 40 45	32 34 36	54 58 61	20 19 16	45 45 40	7 6 5
	[<i>⑤) Груп</i> и	na II (IO	CT 4543—	71)	1
15 Г 20 Г	25 28	42 46	26 24	55 50	=
25Г 30Г	30 32	50 55	22 20	50 45	9
361° 401° 461°	34 36 38	57 60 63	18 17 15	45 46	7 6 5
467	38	63		40	1 5

Key: (1). Trademark of steel. (2). kg/mm^2 . (3). $kgf \cdot m/cm^2$. (4). it is not less. (5). Group. (6). KP.

Page 8.

Table 4. The chemical composition of carbide fine steel in o/o (GOST 1050-60** and GOST 4543-71).

Марка	С	31	Ma	P	S	Cr	NI
CTARN			man	4) ne 60	Acc	
41)		(3)	rpynna I				
(Surt (1) (10 mm) (1) (10 mm) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0,07-0,14 0,12 0,19 0,12-0,19	6) 10 0,00 0,07 0,17-0,37	0,25-0,5 0,35-0,65 0,25-0,5 0,35-0,65 0,35-0,65 0,35-0,65 0,35-0,65 0,35-0,65 0,55-0,8 0,5-0,8 0,5-0,8	0,04 0,035 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,0	0,64 0,64 0,64 0,65 0,65 0,65 0,65 0,65 0,64	0.1 0.15 0.15 0.125 0.25 0.25 0.25 0.25 0.25 0.25	0.25 25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.25 25.2
	@	Epynna 1	I (FOCT 4	1543—71))		
15F 20F 25F 36F 46F 45F	0,12-0,19 0,17-0,24 0,22-0,3 0,27-0,35 0,32-0,4 0,37-0,45 0,42-0,5	0,17-0,37 0,17-0,37 0,17-0,37 0,17-0,37 0,17-0,37 0,17-0,37 0,17-0,37	0.7-1 0.7-1 0.7-1 0.7-1 0.7-1 0.7-1 0.7-1	0,035 0,035 0,035 0,036 0,036 0,036	0,036 0,035 0,036 0,036 0,036 0,036	0,3 0,3 0,3 0,3 0,3 0,3 0,3	0,3 0,3 0,3 0,3 0,3 0,3 0,3

Key: (1). Trademark of steel. (2). it is not more. (3). Group. (4). KP. (5). Up to.

Table 5. Mechanical properties of low-alloy structural steels (GOST 5058-65*).

TABLE 5.

(1)	٥,	a _₹	4. %	191 4.	
Марка стали	(A) noc!	(A) RECIMES		(3) a _n .	
		(4) He	менее		
IANTC	50 50	35 35	22 21	1 3	
14f	46 48	29 32	21 22	3,5 3,5	
00°C2	45 47 52	31 34 36	21 21 21	3,5	

Key: (1). Trademark of steel. (2). kg/mm². (3). kgf•m/cm². (4). it is
not less.

Table 6. The chemical composition of low-alloy structural steels in o/o (GOST 5058-65*).

/) Марка Стали	С	SI	Mn	Cr	Ni	Cu
14XГС 15XСНД	0,11-0,16	0,4-0.7 0,4-0,7	0.9-1.3 0,4-0,7	0,5—0,8 0,6—0,9	0,3	0.3 0,2 — 0,
14F	0,12-0,18	0.17—0.37	0,7—1	0,3	0.3	0,3
19F	0,16-0,22	0.17—0.37	0,8—1,15	0,3	0.3	0,3
09[1]	0,12	0,17-0,37	1,4—1,8	0,3	0,3	0,3
14[1]	0,12	0,17-0,37	1,2—1,6	0,3	0,3	0,3
10[1]C1	€0,12	0,9-1,2	1,3—1,65	0,3	0,3	u,3

Note. The content of phosphorus must be not more than 0.0350/o and sulfur not more than 0.040/o.

Page 9.

2. Steels highly alloyed.

High-alloyed corrosion-resistant, high-temperature (oxidation-resistant) and high-temperature (strength) steels are intended for a work under conditions, which require high heat resistance and resistance to corrosion.

The chemical composition and the density of steels with the delivery of ducts are given in Table 10.

DOC = 79134701

PAGE 16

Table 7. Mechanical properties of alloy structural steels (GOST 4543-71).

(1)	Transpool 1	S OTOM- LAN OTRY- LTORNUK HB	(5) REC.	G _T	0,	*	Noc.m/cm
Mapne CTASH	(5) дваметр отпечат- ка в мм, не менее	He Menee					
15X	4,5	179	70	50	12	45	7 6 7
20X	4,5	179	80	65	11	40	
30X	4,4	187	90	70	12	45	
36X	4,3	197	95	75	11	45	7
36XA	4,2	207	95	80	12	59	9
40X	4,1	217	100	80	10	45	6
10Г2	4,3	197	43	25	22	50	
18ХГ	4,4	187	90	75	10	40	
40ХГТР	4	• 229	100	80	11	45	
35ХГФ	4,2	207	93	80	14	55	8
15ХМ	4,5	179	45	28	21	55	12
30ХМ	4	229	95	75	11	4 5	8
30XMA	4	229 `	95	75	12	50	9
35XM	3,9	241	95	85	12	45	8
15XФ	4,4	187	75	55	13	50	8
40X Φ A	3.9	241	90	75	10	50	9
12X H2	4,2	207	80	60	12	50	9
30XFCA	4	229	110	85	10	45	5 4
35XFCA	3,9	241	165	130	9	40	

Key: (1). Trademark of steel. (2). Hardness in annealed or tempered state HB. (3). kg/mm². (4). kgf·m/cm². (5). diameter of impression in mm, is not less. (6). hardness number, is not more. (7). it is not less.

Table 8. The content of phosphorus, sulfur, coppers, nickel and chromium in alloy structural steels in o/o, are not more (GOST 4543-71).

112 -

DOC = 79134701

PAGE 17

TABLE 8.

(/) Категория стади	P	s	Cu	Ni	Cr
(Д) Качественная	0,035	0,035	0,30	0,30	0,30
(5) Высоконачествениая	0,025	0,025	0,30	0,30	0,30
4)Особо высокожачественная	0,025	0.015	0.25	0,30	0,30

Key: (1). Category of steel. (2). Good-quality. (3). High quality.
(4). Especially high quality.

G :

Page 10.

Table 9. The chemical composition of alloy structural steels in o/o (GOST 4543-71).

(/\Группа стаян	(Д.) Марка стали	С	Si	Ma	Cr	(3) Spoune sac- MENTM
[<i>4</i>] Хромистая	15X 20X 30X 35X 38XA 40X	0,12-0,18 0,17-0,23 0,24-0,32 0,31-0,39 0,35-0,42 0,36-0,44	0.17-0.37 0.17-0.47 0.17-0.37 0.17-0.37 0.17-0.37 0.17-0.37	0,4-0,7 0,5-0,8 0,5-0,8 0,5-0,8 0,5-0,8 0,5-0,8	0.7-1 0.7-1 0.8-1.1 0.8-1.1 0.8-1.1 0.8-1.1	
(5) Марганцовистая	101.5	0,070,15	0,17-0,37	1,2-1,6	-	-
(б) Хромомарганцовая	18ΧΓ 40ΧΓΤΡ 35ΧΓΦ	0.15-0.21 0.38-0.45 0.31-0.36	0.17-0.37 0.17-0.37 0.17-0.37	0.9-1.2 0.7-1.0 0.95-1.25	0,9-1,2 0,6-1,1 1,0-1,3	Ti 6,03-6,69 V 9,05-6,12
(7) Хромомолибденовая	15XM 30XM 30XMA 35XM	0,11-0,18 0,26-0,34 0,26-0,33 0,32-0,4	0,17-0,37 0,17-0,37 0,17-0,37 0,17-0,37	0.4-0.7 0.4-0.7 0.4-0.7 0.4-0.7	0,8-1,1 0,8-1,1 0,8-1,1 0,8-1,1	Mo 0,4-0,35 Mo 0,18-0,25 Mo 0,18-0,25 Mo 0,18-0,26
Rаменданция (8)	15ХФ 40ХФА	0,12-0,18 0,37-0,44	0.17—0.37 0.17—0.37	0.4-0.7 0,5-0,8	0.8—1.1 0,8—1.1	V 0.06—0.12 V 0.1—0.18
(²) Хромоникелевая	12X H2	0,09-0,16	0,17-0,37	0,3-0,6	0,6-0,9	NI 1,5-1,9
Хромокрениемарганцовая	30XFCA 36XFCA	0,28—0,34 0,32—0,39	0.9—1.2 1,1—1,4	0,8—1;1 6,8—1;1	0.8-1.1 1,1-1,4	=

Key: (1). Group of steel. (2). Trademark of steel. (3). Other elements/cells. (4). Chromic. (5). Manganous. (6). Chrome-manganese. (7). Chromiummolybdenum. (8). Chromovanadium. (9). Chrome-nickel. (10). Chrome-silicon manganese.

Pages 11-15. Table 10. The chemical composition of high-alloy steels in o/o.

(/) Napus CTAJH	(2) Прежине обо- значения марок сталей	С	Si	Мл	Ct .	Ni	(8) Прочие элементы	((0)	•	Plantmoers Caracter 7
								ne 6	O.Ree	25
			roc	T 5632-	-61*					
2.5	l <u> </u>	(5) Ao 0.15	€) Ao 0.5	(C) (A) 0,5	4,5—6	_	_	0,025	0,03	7,65
K5M	Эх5М	» 0,15	» 0,5	▶ 0,5	4,5—6		Mo 0,45-0,6	0,025	0.03	7,85
X5B ♦	-	• 0,15	0,3-0,6	▶ 0,5	4,56	_	W 0,4-0,7 V 0,4-0,6	0,025	0,03	7,85
IX13	эжі	0,09-0,15	До 0.6	> 0,6	12-14	_	-	0,025	0,03	7,7
OX13	31149 6	©10 0.08	» 0,6	▶ 0,6	11-13		-	0,025	0,03	7,7
X17	ЭЖ17	> 0,12	» 0,8	» 0,7	16—18	-	-	0,025	0,035	7.7
ONIST	311645	a 0,08	▶ 0.8	> 0.7	1618		TI 5.C-0,8	0,025	0,035	7,7
X25T	311439	▶ 0.15	» t	» 0,8	24-27	_	TI 5.C-0,8	0,025	0,035	7,6
X28	ЭЖ27 ЭЙ349	▶ 0,15	→ 1	▶ 0,8	27-30	-	-	0,025	0,035	7,6
0X20H14C2	ЭH732	▶ 0,08	23	. 1,5	19-22	12—15	-	0,025	0.033	7,7
0X22H5T	91153 (0X2(H5T)	» 0,0s (540 0,8	. 0,8	213	5,3-6,3	TI 0,3-0.6	0.025	0,435	7,6
1X21H5T	3118(1	0,09-0,14	(5ho 0.8	(5 _{10 0.8}	20—22	4,85,8	TI 0,25-0,5	0,025	0,035	7,6
1X14H14 B 25P	311 60 31-	0,07-0,12	- 0,6	1-2	13—15	18—29	B no 0,605 W 2-2.75; Nb 0,9-1,3 Ce no 0,02	0,02	0,035	8,15
X17H13M2T	(X18H12M2T) 9H448	Э д₀ 0.1	5 _{10 0,8}	1-2	1618	1214	Ti 0,3-0,6 Mo 1,8-2,5	0,022	0.035	8
хітнізмэт	911432	▶ 0,1	» 0,8	1-2	1618	12—14	Ti 0,3-0,6 Mo 3-4	0.02	0,035	*
0X17H16M3T	ЭИ580	» 0,08	▶ 0,8	1-2	1618	15—17	Ti 0,3-0,6 Mo 3-3,5	0.02	o,ras	8.1
00X18H10	S11842	▶ 0,04	▶ 0,8	1-2	17—19	9—11	-	0.02	0,035	7,9
OIH8IZO	ЭЯ0 (0X18Н9)	▶ 0,08	▶ 0,8	1-2	17—19	9—11	-	0.02	0.035	7,9
XISH9	991 (1X18H9)	▶ 0,12	▶ 0,8	1-2	17—19	8 10	-	0,02	0,035	7,9
2X18H9	ЭЯ2	0,13-0,21	. 0,8	1-2	17—19	8—10		0.02	0,035	7.9
TOIHIBLE	311014	6)To 0,00	> 0,8	1-2	17—19	911	TI &C 0,6	0,02	0,035	7.9

() Марка сталя	Прежиме обос- начения марок	0	Si	Ma	Cr	Ni	Прочае	•	•	DAOTHORTS C
mapus Clear	CTAMAR		J .			····	HTROMORE		ne gowee	
Toilisix	TIRE (TeHSIXI)	SA0 0,12	CA. 0,8	1-2	17—19	9—11	71 5.(C — 0,02)—0,7	0,02	0,035	7,9
0X18H12T	_	> 0,08	» 0,8	1-2	17—19	11—13	TI &.C-0,6	0,02	0.035	7,96
X18H12T		• 0,12	> 0,8	12	17—19	11-13	Ti 5.(C - 0.02)-0.7	0.02	0,036	7,95
охівні2Б	311402 (X18H11B)	> 0,08	> 0,8	1-2	17—19	11-13	Nb &C-1,2	0,02	9,036	7,9
0X23H18	-	» 0,1	» 1	€40 2	22-25	17—20	-	0.02	0,035	7,95
X23H18	ЭИ417	▶ 0,2	• 1	. 2	22—25	1720		0,02	0,035	7,95
0X23H24M2T	3 11628	> 0,06	▶ 0,8	> 0,8	22-25	26—29	Ti 0.4-0.7 Mo 1,8-2,5	0,02	0,035	7,95
TELEWSCHEEN	311943	. 0,06	» 0,8	3.0	22—25	26—29	T1 0.5-0.9 Mo 2.5-3 Cu 2.5-3,5	0,02	0,035	7,96
X25H30C2	311283	▶ 0,2	2-3	> 1,5	2427	18—21	_	0,02	0.035	7,7
			roc							
XIMB	-	0,15-0,2	<0,4	0,25-0,5	2,5-3	<0,25	Mo 0,5—0,7 W 0,5—0,8 V 0,06	0,03	6,03	_
			гос	T 10498-					 -	
OX18HIOT	311914	0,04-0,06	(5) до 0,8	1—2	17—19	9—11	TI 5.C-0,6	0,02	0,035	7,9
1XISHIOT	Эяіт	0,07-0,1	▶ 0,8	1-2	17—19	9-11	TI 5.C-0,8	0,02	0,035	7,9
1X13C2M2	311852	0,1-0,15	1,4-2,1	€ _{до 0.6}	12-14	До 0,3	Mo 1,2—2	0,02	0.03	_

:-\1M0	3810	0,22-0,29	0,17-0,37	0.4-0.7	1.4.1.4	<0,25	Ma 0.26-0.36	0,096	0.02	_
12Х1МФ	12ХМФ	0.08-0.15	0,17-0,37	0.4-0.7	0,9—1,2	<0,25	Mo 0,25-0,35 V 0,16-0,3	0,025	0,00	-
12MX	<u> </u>	0,09-0,16	0,0150,3	0,4-0,7	0.4-0.6	≪0,25	Mo 0,4-0,6	0,025	0.03	<u> </u>
			гос	T 10500	63					
	3,16116	700,04	5 0,6	• 0,8	1,5—17	14 [0	Nb 0,4-0,6	V,U2	0,035	-
00X16H15M3B	3118445	В До 0,04	3 0,6	0.8	15—17	1416	Mo 2,5-3	0,02	0.025	-
IXI6HI5M3B	311847	0,04-0,08	> 0,4	» 0,8	15-17	1416	Mo 2.7-3.3 Nb 0.4-0.9	0,015	0.025	-
0X16H15M3	311844	São 0,03	€ д₀ 0.8	▶ 0,8	14-17	14—16	Mo 2,5-3,5	0,02	0,03	-
1X13C2M2	311852	0,1-0,15		€A0 0.6	12-14	До 0,3	Mo 1,2—2	0,02	0.03	-
TOIHBIXE	TIRE	0.07-0.1	▶ 0,8	1-2	17—19	9—11	TI 5.C-0,8	0,02	0,035	7,
OXIBHIOT	311914	0,04-0,06	До 0,8	1-2	17—19	9—11	TI 5.C-0,6	0,02	0,038	7,9
			FOC	T 10498-	-63					

(Д) Марка стали	Преживе обоз- начения марок сталей	С	Si	Mn	Cr	NI	Province 3 TOMOS TIME	\$ (%)	Р	Haotnocra C
.:5Х2М1Ф	Э11723	0,22-0,29	0,17-0,37	0,4-0,7	2,1 2,6	<0,25	Mo 0,9—1,1 V 0,3—0,5	0,025	0,03	-
I&X3MB	Э11578, H8	0,15-0,2	0,17-0,37	0,25-0,5	2,5—3	<0,25	W 0,5-0,8 Mo 0,5-0,7 V 0,05-0,18	0,025	0,03	-
.0X3MBф	ЭИ415, ЭИ579	0,16-0,24	0,17-0,37	0,25-0,5	2,8—3,3	<0,25	W 0,3-0,5 Mo 0,35-0,55 V 0,6-0,85	0,025	0,03	-
	•	(E)	гос	T 11068	_6 4	•	•		_	
TOIHOIXOO	-	До 0,04	До 0,8	12	1719	911	TI &C-4,4	0,02	0,005	7,9

Motes: 1. The content of sulfur in the ducts, which are subject to weld and supplied according to GOST 9940-72 and 9941-72, must not exceed 0.020/o.

- 2. For ducts according to GOST 10498-63 of steel of brand/mark 1Kh16N15MZB (EI847) ratio of niobium to carbon (Nb/C) must be in limits of 9-13; are allowed/assumed deviation of niobium +0.20/o, of carbon +0.010/o, of silicon +0.10/o and lowering ratio Nb/C to 8.
- 3. For ducts, supplied according to GOST 11068-64, carbon content in steel of brands/marks Kn18N10T and Kh18N12T must not exceed 0.10/o and content of sultur in steel of brands/marks OKh22N5T (OKh21N5T) and 1Kh21N5T must be not more than 0.020/o.
- 4. Mechanical properties of high-alloy steel with delivery of ducts are given in Tables 11, 14, 16 and 20 chapters II.
- Key: (1). Trademark of steel. (2). Previous designations of
 trademarks of steels. (3). Other elements/cells. (4). Steel density.
 (4a). it is not more. (5). Up to.

Page 16.

3. Pig irons.

Gray cast iron contains 2.5-3.70/o of carbon and 0.5-30/o of silicon, has in break gray color.

The mechanical properties or cast iron indicate in the marking (GOST 1412-70), in which after literal designation SCh (gray cast iron) are written two numbers, which show (in kg/mm²) tensile figure and transverse strength, for example SCh24-44, SCh15-32 and so forth.

Malleable cast iron obtains as a result of the annealing (blistering) of white iron, thanks to which considerably are liquefied brittleness and hardness of the latter. Castings from ductile cast iron are marked according to GOST 1215-59, moreover after letters KCh (malleable cast iron) they give two numbers which indicate tensile figure (it is not less) in kg/mm² and elongation per unit length in o/o, for example KCh37-12, KCh33-8, etc. From malleable cast iron prepare snaped pieces to steel tubes and some types the reinforcements.

High-chromium pig irons contain 26-360/0 of chromium, they possess high chemical resistance in oxidative media and acids (with exception of hydrochloric acid), are resisted well mechanical wear. High-chromium pig irons use for manufacturing of ducts, shaped parts

and reinforcement for the conduits/manifolds, which transport highly oxidizing products.

High-chromium pig irons mark by letter Kh and by the two-place numeral, which indicates the average content of chromium in o/o. The information about the chemical composition and the mechanical properties of some brands/marks of high-chromium cast irons is given in Table 11.

High-silica pig irons (ferrosilide and antichlor) contain 14.5-180/o silicon. In the composition of antichlor enters also molybdenum (3.5-40/o), which raises the resistance of pig iron against the effect of hydrochloric acid.

High-silica pig irons use for manufacturing of ducts, shaped parts and reinforcement, intended for the conduits/manifolds, which transport different corrosion-active chemical products.

Articles made of ferrosilide and antichlor obtain only by casting. The machining of articles in view of their large hardness is hindered/hampered.

Table 11. The chemical composition in o/o and the mechanical properties of castings from higa-chromium pig iron (GOST 2176-67).

(1)					NI	Cu	5	P	٥,	0 m	182
Марка чугуна	С	Cr	Si	Мп		· · · · ·	2) Золее			3) MM ¹ , ICH C C	Твердость Бринеллю
75X28.1	0,5—1	26— 30	0,5~ 1,3	0,5— 0,8	0,5	0,3	0,08	0,1	35	58	220 270
185X34Л	1.5- 2.2	32— 36	1:3-	0.5 0.8	0,5	0,3	0,1	0,1	40	•	289 350

Key: (1). Brand/mark of pig iron. (2). it is not more. (3). kg/mm²,
are not less. (4). Hardness according to Brinell HB.

Page 17.

Data about the chemical composition, mechanical properties and chemical resistance of castings from ferrosilide and antichlor are given in Table 12.

4. Nonferrous metals and alloys (Table 13-17).

Nonferrous metals and alloys: aluminum, copper brass, bronze, lead - use for manufacturing of ducts, reinforcement, adapters and plies of flange joints.

DOC = 79134701 PAGE 26

At elevated temperatures the mechanical properties of nonferrous metals descend: therefore their use/application for manufacturing the parts of conduits/manifolds, which work under pressure, usually are limited by the following temperature limits:

Copper, bronze, brass ... to 250°C.

Aluminum ... to 150°C.

Lead ... to 140°C.

Eable 12. The chemical composition in o/o and the mechanical properties of castings from ferrosilide and antichlor (GOST 2233-70).

· ______

Magan Tyryma	С	Si	Ma	Mo	(2) _{me}	S Sense	3) au. (Твердость по Бри- ведлю НВ
			(5)	beppoo	шлид			
C15	0,3—	14,5— 16 16—18	0.3—		0,1	0,07	17	300401
C17	0,3 0,5	16—18	0.3— 0.8	_	0,1	0.07	14	400160
1				HTUXA				
CIEMA	0,5— 0,6	14,5—16	0.3— 0.5	3,5—4	0,1	0,1	14	100150

Key: (1). Brand/mark of pig iron. (2). it is not more. (3). kg/mm².(4). Hardness according to Brinell HB. (5). Ferrosilide. (6).Antichlor.

Table 13. The chemical composition in 0/0 (GOST 859-66) and the mechanical properties of copper (GOST 617-64*) in finished articles.

(/) Морка медя	Cu, se se-	Примеся, se Gages	(4) REC/MM	٥. %			
	700	74 00,144		Ø) he wester			
MI	99,9	0,1 }					
M2	99,7	0,3	21	35			
M3	99,5	0,5	19	30			
M'p	99,5	0.5					

Note. The mechanical properties of copper are given in numerator for the ducts of pulled ones or cold-rolled (M), and in denominator - for pressure forging.

DOC = 79134701 PAGE 28

Key: (1). Brand/mark of copper. (2). it is not less. (3). Admixtures/impurities, are not more. (4). kg/mm².

Pages 18-19. Table 14. The chemical composition in o/o (GOST 4784-65*) and the mechanical properties of aluminum and aluminum alloys (GOST 4773-65).

Марки елю- миния и сплава	Cu	Mg	Mn	SI	^	Приме- сей, не более	Co, Est/MM'	Be, Hence
АДW	-	-	-	_	Не менес 99,7	0,3	He Menee 6	20
АД 0	-	-	_	-	() Не менее 99,5	0,5	He Wesses 6	20
АДІ	-	_	-	-	Не менее 90,3	0,7	611	20
АД	-	_	-	-	О Не менес 98,8	1,2	6—II ,	20
ді	3,84,8	0,4-0,8	0.4-0.8	-	(3) Ochoba	2	He dosee 25	10 10-12
Д16	3,8—4,9	1,2-1,8	0.3-0.9	-	•	1,6	He 60,000 25	10-12
AB	0,1-0,5	0,45-0,9	0,15-0,35	0,5-1,2	•	0,95	He Conee 15	17 8—14
АМц	-	-	1-1,6	-	•	1,95	9-14	-
AMr2	_	1,8-2,8	0,2-0,6	-	•	1,3	1622	-
A Mr. L	-	3,2—3,8	0,3-0,6	0,5-0,8	(C) Octobe	1	He sense 19	15
AMrs	-	4,85,8	0,5-0,8	_	•	1,4	Не меное 27 Не меное 36	15
AMro	-	5,86,8	0,5—0,8	-		1,2	He weste 32	15
AK6	1,8—2,6	0,4-0,8	0,4-0,8	0,7-1,2	•	1,3	2936	8-10
B 95	1,4—2	1,8-2,8	0,2-0,6	-	•	1,2	5052	5 7
AB,21-1	2,5—3,5	0,2-0,7	<0,7			1,2		1

Notes: 1. In alloy AV manyanese can be replaced by chromium in

the same quantities.

- 2. Into alloys AMg5 and AMg6 enter also: titanium 0.02-0.10/o beryllium 0.0002-0.0050/o.
 - 3. Alloy V95 contains also zinc 5-70/o and chromium 0.1-0.250/o.
- 4. Mechanical properties of brands/marks of alloys AK6 and V95 are given according to GOST 11535-65.
- 5. Chemical composition of alloy AVD1-1 is given according to GOST 1131-67.
- 6. Mechanical properties of aluminum alloys in numerator are given for pulled ducts according to GOST 4773-65, and in denominator for those pressed according to GOST 11535-65.

Key: (1). Brands/marks of aluminum and alloy. (2).
Admixtures/impurities, it is not more. (3). kg/mm². (4). it is not
less. (5). Basis.

Page 20.

Table 15. The chemical composition in o/o (GOST 15527-70) and the mechanical properties of brasses.

(/) Марка латуни	Cu	Pb	Fe	Mn	AI	Sn	As	Zn	(2) Причеси, не более	(3) 0 ₈ . Rec/MM ³ (4) He i	∂ ю. %
Л96	95—97		-	_	-	_	_	(5) Остальное	0,2	по гост	11383—65
										6)no roc	35 T 494—69
Л68	67—70	-	-	-	- 1	-	_	•	0,3	30	38
Л63	6265	-	_	-	-	-	_	,	0,5	30	38
Л60	5962		_ '	_ '	_	- [_	•	1	35	20
ЛА77-2	76—79	-	_	-	1,75— 2,5		_	•	0,3	30	23
ЛОМШ 70-1-0,05	69—71	~	-	-	_	11,5	0,025— 0,06	•	0,3	30	38
ЛМШ68-0,03	67—70	-	-	_	_	-	0,025— 0,06	,	0,3	30	38
ЛО70-1	69—71	-	_	-		1-1,5	_	•	0,3	30	38
ЛС59-1	5760	0,8— 1,9	-	-	-	-	_	•	0,75	40	30
ЛАМШ77-2-0,05	76—79	-	-	-	1,75— 2,5	_	0,025 0,06		0,3	30	22
ЛЖМц59-1-1	57—60	-	0.6-	0.5	0.1-	0,3-0,7	-	•	0,26	44	*

Note. The mechanical properties of brasses of brands L60, LS59-1 and LZhMts59-1-1 are given for the pressed ducts, remaining brands/marks - for pulled soft ones.

Key: (1). Brand/mark of brass. (2). Admixtures/impurities, are not more. (3). kg/mm^2 . (4). it is not less. (5). Remaining. (6). On.

Page 21.

- § 2. Testing metals and ducts.
- 1. Tensile test.

During testing is determined the tensile strength and plasticity of metal, for which the samples/specimens clamp between the sponges/jaws of tension grips and dilate/extend them under the effect/action of uninterrupted and gradually applied load.

Form and sizes/dimensions of samples/specimens for tensile test are established/installed by GOST 1497-61. In accordance with the standard indicated are prepared the short and long cylindrical and flat/plane samples/specimens of different types, moreover the use/application of short samples/specimens is more preferable.

Normal cylindrical samples/specimens receive the diameter of $d_0=10$ mm. Initial calculated length of the cylindrical samples/specimens: short $Z_0=5$ d_0 , long $Z_0=10$ d_0 .

The initial calculated length of the flat/plane samples/specimens: short $7_0=5.65$ / $\overline{F_0}$: long $7_0=11.3$ / $\overline{F_0}$ where 7_0 initial area of cross section/cut of sample/specimen.

Relationships/ratios $7_0=5.65$ $\sqrt[3]{f_0}$ and $7_0=11.3$ $\sqrt[3]{f_0}$ are equivalent to relationships/ratios $7_0=5$ d_0 and $7_0=10$ d_0 .

The basic dimensions of the most frequently used cylindrical (type III) and flat/plane (type I) samples/specimens for testing are shown in Tables 18, 19.

Table 16. Chemical composition in " (908m h02-5h*) and mechanical properties (908m 1208-5h) of tin-free bronzes.

(/) Mapus Spessus	Al	Fe	Mn	Ni	Cu (d	Примеси. не болес	RAC! MAR (Y) WE MEN	8. %
Бе. АЖМе. 16-3-1,5	911	2-4	1-2		Осталь-	0,75	60	12
Bp. AXH 10-4-4	9.5— 11	3, 5 — 5,5	-	3.5— 5,5	•	и,0	65	5

Key: (1). Brand of bronze. (2). Impurities, not more than. (2). kg/mm². (4). Not less than. (5). Pemainder.

Table 17. Chemical composition of lead in % (GOST 3778-65*).

(1)	(2) Марка свинца						
(')Cectas	0	CI	C2	С			
Ph. ne sesse	99,992	99,986	99,96	99,9			
Примеси, не более	0,016	0,015	0,95	0,1			

Key: (1). Composition. (2). Brand of lead. (3). Pb, not less than.
(4). Impurities, not more than.

Page 22.

Table 18. Sizes/dimensions of proportional cylindrical samples/specimens in an (type III) (GOST [All-union State Standard]

		j			(I) Kopo	() Короткий образец l. = 5d.			ныя обј == 10d,	paset
d.	<i>D</i> .	h•	ħ,	R	Ne 86-	l.	,	No od- pasua	i.	ı
25 20 15	45 34 28	30 25 20	5 5 3	5 5 3	12m 13m 14m	125 100 78	150 120 90	12 13 14	250 200 150	275 220 166
10 8 6	16 13 12	10 10 10	3 3 2,5	3 2 1,5	15st 16st 17st	50 40 3 9	60 48 36	15 16 17	100 80 60	110 86 66
5 1 3	11 9 7	10 8 7	2.5 2.5 2	1,5 1,5 1,5	ffec 19et 20ec	20 15	30 24 18	18 19 20	56 40 30	## ##

Key: (1).,Short sample/specimen., (2). Long sample/specimen. (3).
sample/specimen.

FOOTHOTE 1. The length of head h is shown minimum. EMDFOOTHOTE.

Table 19. Sizes/dimensions of flat/plane samples/specimens in an with head (type I) (SOST 1497-61).

				I	FKHA 06 = 5,65 }	бразец / F.	(2)Длни	ный сб = 11,3 у	р азе ц
4	<i>b</i> ₀	В	h•	Na og.	i.	ı	M of- pasua	l.	,
25 20	30 30	40 40	100 80	49k 54k	155 140	170	49 54	310 280	325 296
16 12 10	30 30 .ko	40 40 40	80 60	58K 62K	125 1 05	140 120	49 54 58 62 64 66 68	250 210	296 265 22 6 215
8	30 30	40 40	60 50 50	GBK GBK	1(N) 85 75	115 100 90	66 68	200 170 150	1/65
3 2	30 20 20	40 30 30	50 40 40	70sc 71sc 72sc	60 45 35	75 56 45	70 71 72	120 90 70	135

Key: (1). Short sample/specimen. (2). Long sample/specimen. (3).
sample/specimen.

POOTHOTE: The length of head has shown minimum, $h_1=20-25$ mm. EMDFOOTHOTE.

Page 23.

For the material testing of ducts for stretchings (GOST 10006-62) are cut out longitudinal and cross samples/specimens. Longitudinal specimens prepare in the form:

a) the cut of the duct of total cross section for ducts in diameter from 18 to 50 mm inclusively;

b) the strip, cut out along the axis/axle of duct, with the width of the working part:

when $p_{m'}$ from 18 to 30 mm ... 8 mm.

when Du is more than 30 to 50 mm ... 10 mm.

when 'p, it is more than 50 mm ... 12 mm.

c) the cylinders with a diameter of 5 nm with the wall thickness of duct from 7 to 13 mm inclusively and by the diameter of 10 mm with wall thickness are more than 13 nm.

Samples/specimens are prepared in accordance with requirements GOST 1497-61.

Cross samples/specimens prepare by the cylindrical proportional, cut out from body ducts perpendicular to its longitudinal axis.

The diameter of sample/specimen d depending on the diameter of pipe D, and thickness of its wall S select in accordance with data of Table 20.

2. Mardness test.

By hardness is understood the property of material to be resisted the penetration in it of another, more solid, which does not obtain in this case residual deformations.

For hardness test most frequently use two basic methods the measurements - according to Brinell and according to Fockwell.

Mardness according to Brinell is determined on stationary or portable apparatuses, and also by Poldi hardness tester.

In the measurement of hardness according to Brinell (GOST 9012-59) the steel ball of the established/installed diameter D (10 either 5 or 2.5 mm) is imprinted into test specimen (article) under the pressure of load P of that applied during the specific time; after the removal/distance of load is measured the diameter of the surface of the impression d, which remained on [illing] sample/specimen.

Table 20. Data for the selection of the diameter of cross sample/specimen depending on the diameters of duct and of its wall thickness.

	(/) Расшеры в им	
D _m	S	4
(3) (3) OT 120 AO 160 > 160 > 250 > 250 > 290 > 250 > 290 > 200 > 390 (3)Soaree 390	14 dones 20 dones 17 32 - 26 3	3 5 5 10 10

Rey: (1). Sixes/dimensions in an. (2). Proc. (3). to. (4). and more. (5). It is more.

Page 24.

The hardness number according to Brinell, designated EB, is quotient of the division of load on the surface area of indentation cup and is determined from the formula

$$HB = \frac{P}{F} = \frac{2P}{\pi D \left(D - \sqrt{D^2 - d^2}\right)}, \qquad (1)$$

where P - load in kg: P - surface area of impression in the une: D - diameter of ball/sphere in mm: d - diameter of impression in mm.

In GOST 9012-59 is given the table for determining the hardness number according to Brinell in dependence on the diameter of

hall/sphere, diameter of impression and applied load.

The diameters of ball/sphere D, loads P and duration of holding under load t select depending on material and thickness of test specimen in accordance with data of Table 21.

Rockwell hardness (GOST 9013-59) is measured via depression into the surface of the control sample/specimen of standard type special tip (steel ball or diamond cone) under the effect/action of two consecutively/serially accompanying loads.

Rockwell hardness is measured in arbitrary units depending on the depth of insertion of tip into the surface of article (sample/specimen) and is determined directly from indicator on dial face.

Hardness number on rockwells is determined by three scales - A, B, C and designate HR with the addition of the index of scale and numerical value of the quantity of hardness according to this scale; for example HRB 80 (hardness 80 according to the scale B).

Table 21. Data for the selection of the diameter of ball/sphere, loads and duration of the holding under it of control sample/specimen on Brinell's press.

٠٠.

	Ha Tepesa	(3)Passopu	. 44	14.	, 6	
(/) Наименование металла	твердости в числея Бримелля	s	D	(4) P.	1, 24	
(c)	140—150	6-3 4-2 (-) Menee 2	10 5 2,5	300	10	
Сталь и чугун	<140	Более 6 6-3 Менее 3	10 5 2,5	1000		
(9) Шветные металлы и сплавы	>130	6-3 4-2 6 Menee 2	10 5 2,5	30 <i>D</i> *	30	
	35-130	9 3 6-3 6 Mence 3	10 5 2,5	100	30	
	8—35	Более 6 6-3 (7) Менее 3	10 5 2,5	2,5 D*	*	

Rey: (1). Designation of metal. (2). Interval of hardness in numbers of Brinell. (3). Sizes/dimensions in mm. (4). kg. (5). s. (6). Steel and pig iron. (7). It is less. (8). It is more. (9). Monferrous metals and alloys.

Page 25.

Steel ball (scale B - HRB) is used for determining of the hardness of soft materials (softer than HBC20), but diamond come - for solid metals (harder than HBB 100).

3. Toughness test (GOST 9454-60).

Impact toughness is called the ability of material to be resisted the effect/action of impact loads.

Impact toughness test is accomplished/realized on pendulum pile drivers. For testing are prepared the samples/specimens, which have the form of bars with square cross section/cut. In the middle part of the sample/specimen usually is made the established/installed size/dimension the cut on boring, milling or grinding machines. In this case it is necessary to avoid heating sample/specimen, which influences the mechanical properties of metal. If it is necessary, sample/specimen is worked thermally to cut.

Impact toughness with lowered/reduced temperatures (to minus of 100°C) is determined according to GOST 9455-60, and at elevated temperatures (to 1000°C) - according to GOST 9456-60. Test procedure, with exception of heating or cooling of samples/specimens, is analogous.

4. Testing for intercrystalline corrosion (GOST 6032-58).

Depending on technical requirements the tendency of articles made of corrosion resistant (not corroding) steels to

intercrystalline corrosion is determined by one of the following methods:

- 1 test/experience the samples/specimens of steels in the aqueous solution of the copper sulfate and sulfuric acid;
- AH just as according to method A, but in the presence of the copper shaving:
- C just as according to method A, but with the addition of the zinc dust:
 - B etch the sections of the surface of articles by the anode;
- D test/experience samples/specimens in the boiling 650/o mitric acid.

For tests of the ducts whose outside diameter is more than 20 mm cut out the longitudinal specimens with a length of 80 mm, by width from 10 to 20 mm and by thickness, equal the wall thickness of duct, but not more than 5 mm. With greater thickness the walls of duct excess metal remove/take with outer side.

Dering the control of welded joints the weld must pass on the

middle of test specimen.

At present for article testing for intercrystalline corrosion are used also the physical methods of control.

Ultrasonic technique of control with the aid of instrument UDH-1H makes it possible to determine the depth of corrosion to 10-15 μ_{\bullet}

By the method of eddy currents with the utilization of an instrument TH-57 TSEIL of Gosgortekhnadzor [State Committee of the Council of Himisters for Supervision of Industrial Safety and for Himing Inspection (RSFSE)] it is possible to determine the depth of corrosion from 10-20 to 200-250 $\mu_{\rm e}$

The monferrous method of control, based on the capillary penetration of the well hydrophilic liquid into the surface defects of metal, gives the possibility to detect the depth of corrosion of 5-8 μ and more.

5. Buct testing for knee (GOST 3728-66).

For determining the plasticity of metal the ducts whose outside diameter is not more than 114 mm test/experience with method to knee.

Flanging test of ducts in outside diameter to 60 mm are conducted on specimens - segments of ducts, and with diameter of 60 mm and more - on specimens cut from the ducts of the longitudinal strips with a width of 12 mm.

Page 26.

Sample/specimen must have length, sufficient for its knee to preset angle and radius. Bend angle they indicate in technical requirements for ducts or take as the equal to 90°. The radius of mount/mandrel R, around which they bend sample/specimen, must be shown under technical specifications the ducts.

Daring testing sample/specimen they smoothly bend in any manner (on machine tool or by hand, with filler, on mandrel, etc.) so, in order to its outside diameter not in one place (both over the section/cut and along the length) it did not become less than 850/o initial.

The samples/specimens of wrought pipes must hold out testing in any weld position, if under technical specifications for ducts is not caused its specific position.

Sample/specimen is considered held out testing, if on it after bend will not be discovered the disturbances/breakdowns of the integrity of metal (break, strains, lamination).

6. Duct testing by hydraulic pressure (GOST 3845-65).

Strength and density of ducts and welds check during the testing by their internal hydraulic pressure.

Saxious testing (test) pressure ρ_{np} (in kg/cs2) is determined from the formula

$$\rho_{\rm np.} = \frac{200 \, \text{S} \, R}{D_{\rm u} - 2 \text{S}} \,. \tag{2}$$

where ^{7}S - the minimally allowable wall thickness in an; ^{7}R - allowable stress during testing in kg/mm² (Yable 22); $^{7}D_{H}$ - nominal outside diameter of duct in mm.

As the medium, which transmits pressure on the walls of duct, are used the water or another liquid. Prior to testing from duct must be distant the air by filling with its with that utilized for the testing by liquid.

Pressure buildup during testing must occur smoothly, without hydraulic impacts.

Time the holding of ducts under testing pressure accept according to GOST upon the appropriate type of ducts.

Duct is considered as that held out testing, if in this case will not be discovered leaks, sweatings or residual deformations (bulge).

Table 22. Allowable stresses during hydraulic test of ducts.

ГОСТ на трубы	Датуенаемое наприме- ние	Shi todampe a gen- non capaborance And medape of non of		
8731 - 66; 8733 - 66; 8732 - 70; 8734 - 58** 9867 - 60*	0,4 σ _n 0,4 σ _	(4) (5) 9 M (0 FRAM 1 9 W (0 FRAM 1		
560—58 9946—72; 9941—72	0,4 m	II rame II		
10193-49*	(6)No cornamen	шо сторон		
10704—63°; 10705—63°	0,4 0	18 и 19 главы 11		
10704—63°; 10706—63	(7) В зависимости от мари	и стали и назначеняя Уб		
1070763; 1070563°; 873366 869662	0,4 o _m 0,85 o _m	18 и 19 главы 17 1 и 8 главы 1		

Key: (1). GOST to ducts. (2). Allowable stress. (3). Table in this reference for selection 6_B or 6_T (4). and. (5). chapter. (6). By agreement of sides. (7). Depending on brand/mark of steel and designation/purpose of ducts.

Page 27.

7. Testing for flanging of duct (GOST 8693-58).

During testing use a duct or a cut the ducts with a length of not less 0.5D. By smooth flanging on 90° of end of the sample/specimen with the aid of mount/mandrel is obtained the prescribed/assigned diameter D (Fig. 1).

The value of flanging in percentages they calculate according to the formula

$$X = \frac{D-d}{d} 100. \tag{3}$$

During testing is not allowed/assumed rotary motion of mount/mandrel or sample/specimen.

As the sign of the fact that the sample/specimen held out testing, serves the absence in it after flanging of cracks or strains.

8. Duct testing for distribution (GOST 8694-58).

Test/experience duct or sample/specimen, cut off from the end of the tested duct, with length $\sim 2d$ at the angle of cone α to 30° and by length $\sim 1.5d$ at the angle of cone α more than 30°, but in all cases not less than 50 mm.

Testing is accomplished/realized via the smooth distribution of the end of the sample/specimen by mount/mandrel with the prescribed/assigned angle of taper α before obtaining in the end/face of the sample/specimen of the smooth outside diameter D (Fig. 2).

Fig. 1. Duct testing for flanging with the aid of mount/mandrel.

Pig. 2. Duct testing for distribution.

Page 28.

The value of distribution in percentages they calculate also according to formula (3), accepting: D - the prescribed/assigned outside diameter of duct (after distribution) and d - an outside diameter of duct (to distribution).

During testing is not allowed/assumed rotary motion of feed or sample/specimen. The speed of the introduction of mount/mandrel to sample/specimen must be in the limits of 20-50 mm/min.

As the sign of the fact that the sample/specimen held out

testing, serves the absence in it after the distribution of cracks or strains.

9. Buct testing for flattening (GOST 8695-58).

Is tested duct, preliminarily notching it perpendicular to longitudinal axis at the depth not less than 0.8 D_{π} duct or in the sample/specimen with a length of 20-50 mm, cut off from the end of the duct.

During testing the sample/specimen is placed between two parallel planes and smoothly they flatten to their approach up to the prescribed/assigned distance of H (Pig. 3a).

FOOTHORE 1.

$$H = \frac{1.08S}{0.08 + \frac{S}{D_{ii}}}$$

ENDPOOTEOTE.

The speed of the flattening of sample/specimen must be in the limits of 20-50 mm/min.

During testing of wrought pipes the weld must be arranged/located on equidistance from the flattening planes (Fig.

3b), if is not prescribed/assigned its another position.

As the sign of the fact that the sample/specimen held out testing, serves the absence in it after the flattening of cracks or strains.

-

10. Duct testing for the distribution of ring by cone (GOST 11706-66).

To testing are subjected the ducts with a diameter of 18-150 mm with the wall with a thickness of 2-8 mm from which are cut out the ring-models with a width of 10-25 mm.

Tests conduct in general-purpose machines by the advance of the conical arbor inside sample/specimen whose velocity is not more than 50 mm/min.

Sample/specimen is considered held out testing, if on it there are no flaws, cracks, strains, laps and laminations. The value of the distribution of ring and the number of tests are established/installed by technical requirements.

Figure 3. Duct testing for flattening. a) the flattening of the control sample/specimen; b) the position of the weld during testing of wrought pipes.

4. a. .

11. Duct testing by the torsional moment (GOST 12501-67).

During duct testing by the torsional moment determine the moments/torques of elastic limits, proportionality, yield and saturated torsional moment, provided for by standards and technical specifications for steel tubes.

For testing are used the cuts of the ducts of the total cross section, fastened by the clamps of testing machines for twisting.

The need for conducting tests by torsional moment is called for by the standard and technical conditions for steel ducts.

12. Velocity analysis of the chemical composition of a metal.

Directly before the assembly additionally is checked the conformity of the chemical composition of the metal of the critical/heavy-duty elements/cells of conduits/manifolds (duct, part of connections, the housing of fittings, etc.) accepted in projects and indicated in certificates via accelerated and simplified chemical

analysis by dropping point test or spectral analysis with the aid of special instruments.

Drop analysis. The presence in steel of chronius and molybdenus is determined by the method of the drop analysis of the metal of ducts.

For this on the duct (or part) being investigated by abrasive stone or by file clean area/site by size/dimension about 2 cm², arranged/located as far as possible horizontally.

Analysis is accomplished/realized on the freshly-ground degreased pad at room temperature and daylight. Conducting analysis at another temperature requires testing the correctness of reading the method used in control sample/specimen.

The presence of chromium is determined by the reagent, which consists of 13 parts by volume of the nitric acid (density 1.4) and 4 parts by volume of the distilled water.

With the content of chronium in metal less than 30/0 plotted/applied to ground surface drop of solution instantly is made foam, but if under drop appears the dull eliminated spot of the greenish gray color, a quantity of chronium composes 30/0, and if

drop remains shiny, then the content of chronium is more than 30/o.

-

When, in the tested metal, of mickel more than are present,

0.20/o reading about the content of chromium by the reagent indicated
the somewhat distorting presence of molybdenum and copper do not
influence the course of reaction.

The presence of molybdenum is determined by the reagent, which consists of 2 parts by volume of the nitric acid (density 1.4), the parts by volume of the hydrochloric acid (density 1.19) and 15 parts by volume of the distilled water.

With the content in the metal of molybdenum less than 0.20/o plotted/applied to the surface of metal drop of solution remain bright and transparent; with the content of molybdenum more than 0.20/o drop of solution accept the light yellow coloring.

Testing the presence in steel of molybdenum can be also carried out by another method. To that prepared, as noted above, area/site by the size/dimension not less than 2 cm² will apply the drop of mitric acid with a specific weight of 1.12.

Page 30.

After 2-3 min, when completely is discontinued, the effervences within drop, to the strip of filter paper will be applied the drop of the 50/o solution of potassium thiocyanate and they touch by it the drop on the surface of metal. At this place of paper is formed the spot of the dark red color. Then to this spot will be applied one-two drops of the solution of bichloride tim. If steel does not comtain the alloying elements, paper completely is decolorized. In the presence of molybdenum on paper remains light rose-colored coloring.

42.6

Reagents for conducting the drop analysis should be stored in dark glass dishes with ground stopper, capacity not more than 200 cm 3.

During storage in reagent can occur chemical changes under the effect of light/world and heat. Therefore through the specific time intervals it is necessary to check the effect/action of reagent in the standard sample/specimen of the metal of previously known composition and in the case of inadequacy to prepare new solution.

Spectral analysis. The presence in steel of the alloying elements (chronium, molybdenum, tungsten, mangamese, silicon, vanadium, titanium, niobium, nickel, etc.) without the damage of the parts of conduits/manifolds can be determined by the method of spectral analysis with the aid of steeloscope SLP-2.

Spectrum of vapors of metal, which appears during the creation of electric arc (or spark) between the electrode of instrument and the tested metal, they compare it with control table. To each chemical element correspond the lines, which occupy the strictly defined places in spectrum; therefore with the aid of steeloscope it is possible to determine presence in steel of all basic alloying elements.

Before the spectral analysis on the part being investigated clean by grindstone or file area/site by size/dimension about 2 cm².

The duration of analysis for determining the content in the metal of five-six elements/cells comprises in average/mean 2-3 min.

§3. Classification of technological conduits/manifolds.

All technological conduits/manifolds depending on properties and parameters of the transported product, and also the requirements, presented to the quality of the material of ducts, manufacture, weld, assembly and tests, divide according to SMIP [Construction norms and regulations] III-G.9-62* into five groups and five categories (fable

23) . .

Gosgortekhadzor of the USSR affirmed on 17 September, 1969, of the "rule of device and safe operation of conduits/manifolds for the combustible, toxic and liquefied gases (PGU-69)" which they are propagated to design, assembly and operation of the permanent steel gas lines for the transporting of the products indicated in the limits of operating pressures from 0.01 kg/cm² abs. to 2500 kg/cm² cottages, and operating temperatures from -150 to +700°C. By these rules all gas lines depending on the conventional pressure of transported gass subdivide into:

low-pressure gas lines to P, 100 kg/cm2 inclusively and by temperature to 700°C;

high pressure supply lines from P_7 101 to 2500 kg/cm² and by temperature to 510°C.

Page 31.,

Table 23. Classification of technological conduits/memifolds.

	i .	l			(/)×	атегери	. 				
(2)	! (3)	1		11		[111		IV		V V	
- Tpyume	Наименование продуктов	P page	. t. °C	4 3 C	1. °C	() () () () () () () () () ()	r, c	i di	ı, ° C	****	2, 1
A	(5) градукты с токсическими свойствами: свойствами: смаьнодействующие ядо- витые вещества (СДЯВ) и дымящиеся кислоты	Hesanu.	(%) Ot -70 (480 +70)	-	_		_	_	<u> </u>	-	-
	(У)прочие продукты с ток-(Свыше 16	OT -70	П до 16	От —70 Идо +350	-	-		<u> </u>	_	-
B	Горячне и активные газы. легковосиламеняющиеся и горючие жидкости	ВНезави-	350700	25—64	250_350 POT -70 PAO 0	16—25	320 350 11 07 -70	26 16	OT -70 80 +120	-	[-
C	(14) Перегретый водяной пар	Не огра- ничено		(*)≤39 (*), 39	(65)	ООКЛ.	0 0.0.	(2)0.7 Maolu	Ø>115 ∦o 250	_	_
		>3/1	Ø8K.F.	>22 до 39 вкл	€350 ©BKJI.	>10 10 22 BKA	#250	***	Бэил .		1
	(7)Горячая вода и насыщен-	>41	>115	>39 BO	>115	> 16 mo		<16€	>165	-	=
E	УНегорючие жидкости и па- ры, инсриме газы	Симо	450700		1 0 0 0	25-64	750 - 350 (7 - 70 O oc		(1) 00 100 (1) 00 0	16	120

Notes: 1. In the case of the absence in the table of the necessary combination of the parameters should be been guided that parameter (temperature or pressure), which requires the reference of conduits/manifolds to the highest category.

2. Conduits/manifolds, which work under a vacuum to 35 mm Hg are below, they are classified according to table according to properties and temperature of product, but it is more than 35 mm Hg - according to special technical specifications.

3. Conduits/manifolds, which transport liquefied gases, are classified according to group B, but with reference by one category it is higher.

Rey: (1). Category. (2). Group. (3). Designation of products. (4).

kg/cm². (5). Products with toxic properties. (6). strong toxic

substances (SDYaV) and funing acids. (7). It is independent. (8).

other products with toxic properties. (9). It is more than. (10).

Prom. (11). to. (12). Bot and reactive gases, which are inflammable and flammable liquids. (13). It is independent. (14). Overheated water Vapor. (15). It is not limited. (16). Inclusive. (17). Bot water and saturated steam. (18). Unburning liquids and vapors, inert gases.

Page 32.

For the conduits/manifolds, which transport hot water and vapors, by Gosgortekhnadzor of the USSR on 10 Harch, 1970, are also affirmed the "Rules of device and safe operation of the pipelines of vapor and hot water".

§4. Corrosion resistance of the materials of pipelines.

Corrosion resistance of metals and alloys is determined by

reight or deep index.

With weight expenent of corrosion resistance of any material in this medium is expressed by the value of the loss of the mass of material, referred to unity area, for the specific time interval $(g/m^2/h)$.

With depth index the rate of corrosion is determined by the magnitude of losses of material in mm/year.

For the evaluation of corrosion resistance of metals and alloys according to loss the masses use the five-point scale, but according to deep index - the ten-ball scale (GOST 13819-68). Virtually more frequently they put to use the five-point scale.

The comparison of the evaluations of corrosion resistance of metals and alloys according to the five- and ten-ball scales, and also the taken in this handbook evaluations of durability according to groups are given in Table 24.

Table 24. Evaluation of correction resistance of metals and alloys.

(/) По пятиба ной ши:		(FOCT 138)	1	Принятая в дамен спросочина					
CTORKOCTS	(6 ⁻)	CTORROCTS	Seas	С труппа стойкости	скоресть коррозии в им/эед	Azis Nas			
Весьма стойкие	1	Совершенно стойкие	ι	(г) Вполне стойкие	<0,1	В			
		(Д)Весьма стойние	$\left\{\begin{array}{c}2\\3\end{array}\right.$!				
i		(ЗСтойкие	1 5						
Стойние	2	(14) Пониженно стойкие	67	(3) Стойкие	0,1-1	x			
Tionis means Creditine	3	(5) Maso-	•	Mano- ctodine	1—3	0			
Mase- ctoekine	4	/5 Мало- стойкие	,	(16) Hecrost-	5د	н			
Hecros-	8	Нестойкие	10	KS6	\ ~	! !			

Key: (1). According to the five-point scale. (2). According to tem-ball scale. (3). Accepted in this handbook. (4). Durability. (5). Point. (6). Group of durability. (7). rate of corrosion in mm/year. (8). conventional designations. (9). Very stable. (10). Completely stable. (11). Completely stable. (12). Very stable. (13). Stable. (18). It is lowered/reduced stability. (14). It is lowered/reduced stability. (15). Oil-registant. (16). Unstable.

Page 33.

The transported on pipelines products by the degree of aggressiveness usually divide into:

- a) nonagressive ones and slightly agressive ones, corrosive whose speed does not exceed 0.1 mm per annum;
- b) Noderately aggressive, corrosive whose speed is located within the limits from 0.1 to 0.5 mm per annum;
- c) highly aggressive, corrosive whose speed is above 0.5 mm per annum.

For the pipelines, used in chemical, petroleum and other branches of industry, the maximum permissible rate of corrosion is limited to the value of 0.5 mm per annum.

conduct about corrosion resistance of different materials, the used for technological ones pipeline, is given in Table 25 in which for each, agressive medium, according to Table 24, are accepted the conventional literal evaluations of durability with the specific temperature and with concentration of the medium indicated.

For media with two intervals of concentrations the first literal evaluation of the resistance of this material is related to the first, and the second to the second interval - an interval of medium concentration.

Thus, for instance, for sulfuric acid with concentration 70-750/o carbon steel will be stable at temperature of 20°C; in Table 25 corrosion resistance is designated by beechnut I; at the same temperature, but with concentration 96-980/o carbon steel completely is stable; the designation of corrosion resistance the same table gives by letter V; whereas at temperature of 100°C and concentration of sulfuric acid 70-750/o the carbon steel not is stable and in the table is designated by letter II, but at concentration 96-980/o and the same temperature carbon steel will be stable - designation is given by letter II.

In the absence of the sufficient information about corrosion resistance of materials with the specific temperatures and with concentration of medium in Table 25 is written the sign of dash (-). The data about durability of materials at a boiling point (Keep) are related to the boiling points of liquids and to the aqueous solutions of different inorganic and organic compounds.

Page 34.

Table 25. Corrosion resistance of pipelines from metals, allers and monmetallic materials in different mediums:

POOTBOTE 1. Correction. The values of temperatures, given in Table 25, are related to each concentration of agressive medium, without . depending on their dividing line. EVD FOOTNOTE.

{	1	i	T			(A)	lатерна а
	(5)	Ş	(n)	(A) er	MIL TARE	XH	(3) 77
Нависнование среды	Концен- трация в %	Teuneparypa s °C	сталь углеро- дистая	Х21Н5Т	XIBELIOT	X17H13M2T	Cepus &
()	()				(n)	Неорган	ичес хие
(1) (Аммиак NH; То же, водный раствор NH,ОН	(18) Fas (26-30)	20 60 100	$\begin{bmatrix} B, B \\ B, \overline{X} \end{bmatrix}$	=:=	B. B B. B	B. B B. B	$\left \frac{B}{B}, \frac{B}{X} \right $
Аммоний азот- кисл й NH ₄ NO ₄ (водные раство- ры)	⊘ До 64	20 60	<u>x, x</u>	=:=	B. B B. B	B. B B. B	В. н
Аммоний серно- кислый (NH ₄) ₂ SO ₄ (водиме расспо- ры)	€ <u>1</u> 10 43	100 Кип (э3)	-, н -, -	_, <u>B</u>	B, B B, B	B. B B. B	=: =
(ц) Кислота азот.	20-40	20 60	н. н	B, B B, —	B, B B, —	В. В В. —	н. н
ная НМО3	5070	100 Kun (23)	= : =	B, B B, X	B. B B. X	B, X B, X	=:=
(35) То же, дымя- щая	30	5 3 5 9	H -	В — Н	В Н Н	X H H	H -
	20—40	20 60	н. <u>н</u>	=; =	н. н 	B. O -, -	н. н
(26) Кислота серная Н.SO	50 –60	::) Kun (23)	H. —	н ; =	н. ~ ~	-: H	=: =
11,304	70—75	20 641	Х, В —, Х	_; x	X. B 	Х. <u>в</u>	<u>x. x</u>
	9698	100 Kun	H. X	<u>=: ō</u>	н. н -, -	н. н 	=; #

Page 35.

Continuation Table 25.

	рубопр	офода		•						
1	кремиястыя	Al	Cu	Pb	полизтилен В	поливинихают:	Proponuscr-4	(13)	резина бутия. Ж каучук	керамика кисло- тоупорияя
	соедине	кия								
	B, B -: X	B. X B	н. н =; =	B. X B	B. B B. B	B, B B, B	B. B B. B B. B	B, B : X : X	B. B O. b 	B. B B B
	B, B -, B	В. В —, —	н. х -, -	н, в 	B. B B. B	B. B B. X	B. B B. B	E. B B. B	B. B B. B	B. B B. B
	<u>=</u> ; =	B. —	<u>-; н</u>	_; <u>x</u>	B. —	H. —	B. B 	—. В —. —	=: =	B, B B, B
	B. B	О. н	н. н	н. – –; –	в. х х. н	в. х х. х	B. B B. B	-, H	B. H	в. в в. в
	x: -	H	=:=	=:=	=:=	=:=	B. B	=:=	=: =	B, B B, B
•	B -	B X H	H - -	- - -	H H -	H	B B B	H - -	H - -	B B B
	B. B B. B	н. н	х. <u>н</u>	B. B	B. B B. B	B. B X. X	B. B B. B	B. B B. B	B, B	B. B B. B
•	x. –	H. H	-; <u>H</u>	-; <u>B</u>	=:=	=:=		B: =	x	B. B B. B
	15. 15 15. 8	11. B	7н. н	B. X	В. О	в. х о. н	B. B B. B	х. <u>н</u>	В. Н Х. Н	B. B B. B
_	۷. ۸	11: 11	<u> </u>	=: ×	<u> </u>	=:=	B; 2	O; H	=:=	3. B

Page 36.

Continuation Table 25.

уй Кислого серпая, аммящая (слаун) H ₂ SO ₄ +SO ₃	coulon coulon nore \$0,	***	×	111	D D X	33 -	- x
(24)	10—40	20 60	н. н	B, B B, —	B. B B. B	B. B , B	н, н -; -
Кислота фос- форная Н ₃ РО ₄	60—65	100 Kun (33)	=:=	B, B, B	x. x x. –	B, Y X-0	=:=
	85	888	<u>н</u> -	B B X	B B X	B B O O	H = =
(36)	10	20 60	н. н	=:=	о. н 	х. н 	н. н
Кислота клори- стоводородная НС1	20—30	100 K 111	=:=	- :-	н ; –	=;=	=:=
	3637	288 25		11111	<u>ਜ</u> ਜ	н н -	H
(Зі) Натрий серио- кислый Na ₂ SO ₄ (водный раствор)	Дo 34,5 ♠	20 60	х. в х	Ξ; Ξ	B. B B. B	B. B B. B	B. B B. B
лый Na ₂ CO ₃ (вод- ный растпор)	Э До 17	100 Kun (23)	x. x H. –	B. B	B. B B. B	B. B B. B	B. B B. B
ЗЭ) Натрий хлори- стий NaCl (вод- ный раствор)	Pilo 26,4	20 60	B. B	B, B B, B	B,'B	B. B B. —	0, B
Harpin Phapo- onich NaOil (mog- mist pactnop)	(A) 22	100 Kan	X. B	-; B	x; x	В: X В: Y	O. B

Page 37.

Continuation Table 25.

H.	* -	H _	H	HH	OH -	x s	H	H	8 8 8
B, B	о. н н, –	X. B X. B	x, x	B. B B. B	B. B B. X	B, B B, B	B. B B. B	B. B B. B	B, B
B. B X. —	H: _	ō; =	<u>ਸ. ਸ</u>);; ;;	= ; ~	B. B	B, X	::	B. B
BBOH	H))	X X	88天	BX)	B X -	B B	XXO -	B B	0 H 0
x, x	н. н	н, х -, -	H, H	8, 8 8, 8	B, B B, X	B, B B, B	B, B B, B	B, B B, X	B, B B, B
н. – -, н	=; =	о. н	二; स	=; =	=:=	B. B	B, B	_, H	8, 8 8, 8
X	H	# 	H	B B X	B B	B B	X -	B	8 8 8
B. B B	B. H	х. в	B, B B, H	B. B B. B	B. B B. B	B. B B. B	B, B B, B	8, B 8, B	B, O B, O
8. X 8. X	в. — ~. н	B. B	Х, н	B	=;=	B. B	B. 8 B. ~	=: =	8. O B
n, x	H. H	Х. В ~. —	B. B	8, B B, B	B. B X. B	B. B B. B	B, K B, H	8, 8 8, 8	8. O 8. O
* *	=; <u>#</u>	<u>x</u> : <u>x</u>	-; B	B, B	н. в	B, B	B, -	8. B	8. H

Page 38.

Continuation Table 25.

25) Серинстый ан- гидрид 50;	185	20	B: B	=:=	<u>3: ₹</u>	B; =	B: -
Серный ангид- рид SO ₃	•	100		-,-	В, —	В. —	
Хлор (сухой и жидкий) СІ₃	-	20 60	B, B	=;=	B. B	B, B	B. B
Хлористый го- дород НСІ	(34) Газ сухоя	100	Х, в	-, -	х, х	В. В	o. x
_					G	4)Opean	ureckue
ф) СН-СН	-	20	В	-	В	В	В
(µ) _{Бензин}	-	20	В, В	В, В	В, В	В, В	В. В
[Д] Бензол С₄Н₄	_	Kun Kun	в, х	-, в	в. в	В, В	В. В
(3) Кислота уксус- ная СН ₃ СО ₃ Н	25	21) 60	н. н -, -	B, B	B, B B, —	B. B B. B	н, н н
	50	100 Kun 23	- : -	B. B -, X	Х, В Х, Х	B, B B, B	-; H -; H
(4) Масла мине- ральные		30	В, В	В. —	В. В	B, B	В. В
		60		-, -	-, -	В. —	В, —
Масла — жиры растительные и животные	-	100		-, -	-, В	-, В	
(6) Мочевина (карбамид) ИзNCONH ₂	-	20 60 100	X -	- - 3	B 	<u>B</u>	B B

Page 39.

Continuation Table 25.

B	B, B	B. B	B, B X,	B. — B. —	B. B X. B	B. — B. —	B, B -, -	3, 5 5, -	B; =
B,	x. –	x. –	x. –	-, -	н. —	В. —	В. —		B
Х. В	B. B	B. B	в. х х. х	X, B H, B	B, B X, B	B. B B. B	B. B B. X	x: -	B, B B, —
О, В	х. в	в, х	х, о	н. —	-, -	В, в	в, х	-, -	В. —
соедин	MUA.	•	•	•	<u>.</u>	ı	•	•	•
_	В	н	В	В	x	В	-	В	В
В, В	В, В	В, В	B, B	x. x	в, н	В. В	в. в	н, н	В, В
-, в	в, х	в, х	В, В	_	_	-, в	В. В	_	-, B
B, B B, B	B, B X, X	<u>x, λ</u>	<u>x, x</u>	B, B B, B	B. B X. X	B, B B, B	B. B B. B	B. B B. X	B. B B. B
B, B B, B	н; <u>н</u>	8. x	=:=	=; =	=; H	В. В	B, B	н. н	B. B B. B
-, B	B, B 	B, B -, B	в, х -, х	в, х в, х	B, R B, B	B, B B, B	B, B -, X	Х, В Н, В	B, B B, B
,	-, в	, В	-, x			В, В	-, 0	н. –	-, в
5	<u> 1</u>	8 <u>B</u>	B B B	8 8 -	8 B	B B	8 	<u>B</u>	3

Key: (1). Baterial of pipeline. (2). steel of type XH. (3). pig iron.
(4). Designation of medium. (5). Concentration in o/o. (6).
Temperature in °C. (7). steel carbide. (8). gray. (9). silicon. (10).
polyethylene. (11). polywinyl chloride. (12). teflon. (13). faolite.

(18). rebber butyl rubber. (15). cerasics acid-resistant. (16).

Inorganic connections. (17). Assonia \$H_3. (18). Gas. (19). Sheet,

aqueous solution \$H_4OH. (20). To. (21). Assonius nitrate \$H_4OQ.

(aqueous solutions). (22). Assonius sulfate (\$H_4) 250, (aqueous solutions). (23). Bales. (24). Acid nitric \$HO_3. (25). The same,

funing. (26). Acid sulfaric \$H_2SO_4. (27). Acid sulfuric, which funes

(olean). (28). free. (29). Acid phosphoric. (30). Acid hydrochloric.

(31). Sodius sulfate \$Ha_2SO_4. (aqueous solution). (32). Sodius

carbonate \$Ha_2CO_3. (water/aqueous solution). (33). Sodius chloride \$HaCl.

(aqueous solution). (34). Sodius hydroxide \$HaOH. (aqueous solution.

(35)., Sulfurous anhydride. (36). Chlorine (dry and liquid). (37).

Bydrogen chloride. (38). Gas of dry. (39). Organic compounds. (40).

Acetylene. (41). Gasoline. (42). Benzene. (43). Acid acetic. (44).

Oils (mineral. (45). Oils - fats (plant and animals). (46). Urea.

(carbanide).

Page 40.

§5. Internal diameters and pressures.

1. The internal diameters (GOST 355-67).

Internal diameter D, of dacts, connecting pieces (fittings) and reinforcement is called the mominal bore of article on leads.

steel seamless pipes according to the conditions for technological processes are prepared with the series/number of personent outside diameters. Because of this with the purpose of providing the strength of the pipelines, which work at the increased or high pressures, are increased their wall thicknesses, which causes the deviations of tube bores from the internal diameters, accepted by GOST 355-67.

The internal diameter of flanges and connecting pieces (offtakes, it is branch and the like) they accept on the internal diameter of those ducts, for which they are intended.

The values of the internal diameters of ducts, reinforcement, connecting pieces, and also all parts of the technological equipment and instruments, to which are added the ducts or reinforcement, are established/installed by GOST 355-67.

For the technological pipelines most acceptable are internal diameters D, (in mm): 6; 10; 15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 350; 400; 500; 600; 1000; 1200; 1400; 1600; 2000.

2. Conventional, working and test pressures (GOST 356-68).

Conventional pressure P_1 - this great excess operating pressure (at temperature of medium of 20°C), at which is provided the prolonged work of reinforcement and connecting pieces, which have the specific sizes/dimensions, substantiated by strength calculation with the selected materials and the characteristics of their strength at temperature of 20°C.

As operating pressure Ppol is considered the great overpressure, which ensures the prolonged work of reinforcement and connecting pieces of the pipelines at operating temperature of the conducted medium.

Test pressure Pmp is called the overpressure at which the reinforcement and the connecting pieces of the pipelines must undergo hydraulic test for strength and density of material by mater at temperature not higher than 100°C.

Conventional pressure $P_{p,n}$ of the conducted medium and its temperature.

For a reinforcement and the connecting pieces of the pipelines made of carbon and alloy steels, pig iron, bronze and brass of the

value of conventional, test, and also greatest permissible operating pressures depending on the temperature of the transported product are established/installed GOST 356-68.

Page 41.

The maximum permissible temperatures of medium in °C for carbon and alloy steels comprise:

by carbide (S), manganous and silicon manganese (G) ... 455.

chrone-silicon mangamese (KhG) ... 370.

nolyhdenun-chronium (HKh) ... 530.

chrone-molybdenum (KhH) --- 545.

chrone-molybdenus-vanadium (KhMF) ... 570.

chrone-titanate (Kh5T) ... 425.

chrome-molybdenum and chrome-tungsten (Rh5) ... 550.

chrone-tungsten (Kh8) ... 575.

chronium-molybdenum-vanadium (KhF) ... 510.

chromium-mickel-titanium and chromium-mickel-tungsten (EhW) ... 700.

For the ducts, used during the manufacture of pipelines, GOST 356-68 is recommended. To pipelines in the assembled form the standard indicated is not propagated.

The values of conventional, test and operating pressures depending on the temperature of medium for ducts, reinforcement and connecting pieces made of steel, pig irons, bronze and brass are given in Table 26.

Page 42.

Table 26. Pressure (excess) conventional, test and workers in kg/cm

(GOST 356-68)./

	Ic.	1			Уся	PENT		Jen ma		. RC	
(g)	(3)	1	7 2	.5	4	6	10	16	25	40	64
Metabarr's se sole-	ξ.ν	-		_	Пво	Same	ARAA	enna -	Pap	-	
арматура и соединительные	1 2 2	1 2	7	4 1	6	9	15	24	38	60	96
HTDRY	Temmepar cpegu B	1_		· 1	<u> </u>	Dac	очне	давл	CHHR	Ppa6	•
	16)	1 7	1	7					<u> </u>	l Pag	$\overline{}$
(b) Углеродистая	До 200	1	. 2	.5	4 3,6	6 5,6	10	16 14	25 22	40 36	64 56
(C < 0,3%), мар- ганцовиствя и	250 300	8,	8 2	٠'	3,2	5	8	i2,5	30	36 32	50
ваи слаче Кремнемаргандо-	350 400	0.5	7 !	.8	2.8	4,5	7 6,4	11	18 16	28 25	45 40
	125	8.6	6 i	:4	2.5 2.2	3.6	5,6	9	iă	22	36
	435	0.5	5 1	.2	2 .	3,2 2,8	5 4,5	8 7	12,5 11	20	32 28
	445 455	0.1	' i	.,	1,8	2,5	4	6,4	iò	16	25
A	10	 _	<u> </u>	_	_!	!		<u> </u>			<u> </u>
(б) цугун серый и	J. 200	1	2	.5	3,6	6 5.5	10	16	25 23	40 36	=
коекий	250 300	l i	2 2	· 1	3.4 3.2	5	8	14	21 20	34 32	Ξ
	350 400	8:5		9	3 2,8	4.5	7.5	12	18 16	30 28	=
10	10	1 0,		•	•••						
(9)	До 120	,	2,	.5	•		10	16	25 20	927 72	64
, • •	272	1	نل	ٔ	3.2	4	;	13	17	, 2 1	_ = !
углеродистая — — — — — — — — — — — — — — — — — — —	Д 200	100	100	200	_	320	400	500	640	800	1000
(C≪0,3%), марган-	260	90	140	180	226	200	300	459	500	710	900
цовистая и крем- немарганцовая	300	80	125	160	200	250	320	400	500	640	800
сталь	350	71	112	140	180	225	280	360	450	560	710
	400	64	100	125	160	200	250	320	400	500	640
	425	56	90	112	140	180	225	280	360	450	560
			l Ban	1 100	126	I ren	200	260	220	400	
	435 445	50 45	80 71	100	125 112	160 140	200 180	250 225	320 280	400 360	500 450
	445 465					1			320 280 250	400 360 320	450 400
_	445 468	45	71	90	112	140	180	225	280	390	450
(S)	445 468	45	71 64	90	112	140	180	225	280	390	450
Сучугун серый н ковкий	445 468 До 120 200	45	71	90	112	140	180	225	280	390	450
У чугун серый и	445 466 До 120	45	71 64	90	112	140	180	225	280	390	450
У чугун серый и	445 466 466 466 466 466 466 466 466 466	45 40	71 64 -	90	112	140	180	225	280	390	450
У чугун серый и	445 465 Ho 120 200 250 300	45 40	71 64	90	112	140	180	225	280	390	450
Чугуя серый н ковкий	445 468 70 120 200 250 300 350 400	45 40	71 64	90 80	112 100	140	180	225	280	390	450
С Совкий	445 466 Ho 120 200 250 300 350 400	45 40	71 64	90	112	140	180	225	280	390	450

Notes: 1. Operating pressures for the intersediate values of the temperature of medium are determined by linear interpolation between

the mearest values. At determination of the value of conventional pressure from operating pressure and temperature of medium is allowed/assumed the excess of operating pressure in limits to 50/o of indicated in table for the prescribed/assigned temperature without transition to the highest step/stage conventional pressure.

- 2. In the case of applying of reinforcement and connecting pieces for work under conditions of frequent hydraulic impacts, pulsing pressures, variable temperatures, specific properties of transported product or limited service life of pipelines value of operating pressure is determined with consideration correction factor, adjusted by organs/controls of engineering supervision.
- 3. Pirst stage of operating pressure of reinforcement and connecting pieces made of carbon, manganous and silicon manganese steels indicated is propagated to minus temperatures of medium not below minus 20°C, and from pig iron, bronze, brass not below minus 30°C.
- 4. Pig iron connecting pieces and reinforcement for conventional pressures 25 and 40 kg/cm² and for temperatures more than 300°C can be used only from malleable cast iron.
 - 5. At operating pressure is below 1 kg/cm2 value of test

pressure Pnp-Ppm+1 by kg/gm², while with vacuum Pnp-1.5 kg/cm², if these values are not established/installed by another technical documentation.

Rey: (1). Conventional pressures. (2). Saterial from which are manufactured reinforcement and connecting pieces. (3). Temperature of medium in °C. (4). Test pressures. (5). Greatest operating pressures. (6). Carbon (C<0.30/0) manganous and silicon-manganese steel. (7). To. (8). Pig iron (gray and ductile). (9). Bronze and brass.

Page 43.

§6. Calculation of pipelines and determination of the volumes of liquids in vessels and ducts.

1. Calculation of pipelines.

During the assembly of technological pipelines frequently appears the need in the use/application of temporary/time pipelines and horizontal cisterns for the hydraulic or pneumatic tests of the assembled networks/grids of pipelines.

In such cases the volume of pipelines and capacities is the value of known and it is required to determine the diameter of

temporary/time pipelines, and to also manufacture the strenth calculation of ducts.

petermination of the calculated diameter of pipeline. The internal (calculation) diameter of pipeline with the prescribed/assigned fluid flow rate and speed of its flow in pipeline is determined from the formula

$$d = \sqrt{\frac{4Q}{3600\pi \nu}} A, \qquad (5)$$

where Q - fluid flow rate in the a3/h;

v - rate of flow of liquid in pipeline in m/s.

The rate of flow of liquid in pipeline usually is accepted:

- a) for water and low-viscosity liquids (alcohol, acetone, gasoline, dilute solutions of acids and alkalis, etc.) from 1 to 2.5 m/s:
- b) for liquids with large viscosity/ductility/toughness (oil, suspension, etc.) from 0.5 to 1.5 m/s;
- c) for the compressed air and the saturated steam from 20 to 30 m/s;

d) for the superheated steam and high-pressure gases - from 30 to 60 m/s.

Example. To determine the diameter of the pipeline by which it is required to pump 90 a³ of water in hour at the speed of its motion 2 m/s.

$$d = \sqrt{\frac{4.90}{3600 \cdot 3,14 \cdot 2}} = 0,126 \text{ M} = 126 \text{ MM}.$$

After obtaining the calculated diameter of pipeline, select from assertment the adequate/approaching duct according to outside diameter and thickness walls.

Strength calculation of ducts. The wall thickness of steel tubes is determined from the formula

$$S = \frac{PD_{N}}{200\sigma_{man} \varphi + P} + C MM, \tag{6}$$

where P - design pressure in pipeline in kg/cm2;

 $\rho_{\rm c}$ - outside diameter of duct in mm;

"are - allowable tensile stress in kg/mm2 in dependence on the temperature of the transported product (Table 27).

Page 44.

- modulus of remistance of the weld; for seamless pipes ≠=1;
for the ducts, connected by automatic and manual electric welding
during partial quality control of welds, ≠=0.85; for other cases of
manual electric and torch welding of ducts ≠=0.7;

C - addition, which considers the minus tolerance of the wall thickness of duct according to GOST and possible thinning of wall during flexure within the permissible limits; C is accepted equal to 15-200/o wall thickness, but is not less than 0.5 am.

In all cases the nominal wall thickness of duct must be not less:

Rey: (1). for dects by dispeter to. (2). The same, to 51 mm.

Example. To determine the wall thickness of pipeline at the pressure by $P=80 \text{ kg/cm}^2$, outside diameter $P_{N}=100 \text{ MH}$. Ducts are electric welding made of steel brands 20. Temperature of pumped liquid of $20\,^{\circ}\text{C}$.

According to formula (6) and Table 27 the wall thickness of duct will comprise:

 $S = \frac{80 \cdot 108}{200 \cdot 14,7 \cdot 0.85 + 80} + 0.5 \text{ MM} = 3.85,$ OF is rounded 4 BB.

Table 27. Allowable tensile stresses for ducts made of carbon and alloy steels in dependence on the temperature of the transported product.

٠ (د	1	(г) Марка стали												
Pacuernan Tenneparyy	Cr. 2	10	Cr. 3	20	12MX	IEXM	12X1440	X100E10T X100E13T						
2 2 2	[3	Допу	скаемое	напряж	ение на	растяже	LDE B <i>KAC/M</i>	36 ⁰						
20 100 150	13 12,3 11,8	13 12,4 12	14 13.3 12.9	14.7 14.2 13.9	14.7 14.6 14.6	15,3 15,3 15,2	17,3 17,1 16,9	14.6 13.9 13,4						
200 250 275	11,4 10,9 10,3	1:,6 11,2 10,6	12,4 12 11,4	13,5 13,2 12,6	14,5 14,5 14,3	15,2 15,2 14,9	16.8 16.6 16.2	13 12,5 12,2						
37U 400	9,8	10	10,5	11.9	14.1 13,2	14.7 13.7	15.9 14,8	12						

Note. For the temperatures of intermediate values the value of allowable stress is determined by interpolation of two meanest values with the rounding of result to 0.05 kg/mm² to the side of smaller value. Key: (1). Trademark of steel. (2). Calculated temperature in °C. (3). Allowable tensile stress in kg/mm².

Page 45.

Determination of the permissible pressure in pipeline. The value of the permissible operating pressure of pipeline is determined from the formula

$$P_{\rm pad} = \frac{200 (S - C) \, \varphi \sigma_{\rm gen}}{D_{\rm u} - (S - C)} \, \frac{(1)}{\kappa s c / c s^2}. \tag{7}$$

Key: (1) . kg/cm2.

Example. To determine the permissible operating pressure in pipeline, after accepting initial data of the preceding example and thickness of wall 4 mm:

$$P_{\text{pol}} = \frac{200 (4 - 0.5) 0.86 \cdot 14.7}{108 - (4 - 0.5)} = 83.7 \text{ kg/cm²}.$$

Determination of test pressure. Test pressure in pipeline must not exceed the value, determined according to to the formula

$$P_{mp} = \frac{240 (S - C) \varphi \sigma_{gon}^{20}}{D_{m} - (S - C)} \frac{(I)}{\kappa a c / c a^{2}},$$
 (8)

Key; {1}. kg/cm2,

if

$$\frac{S-C}{D_n} < 0.13,$$

and according to the formula

$$P_{\rm mp} = 315 \; \frac{S - C}{D_{\rm H}} \left(1 - \frac{S - C}{D_{\rm H}} \right) \varphi \alpha_{\rm gon}^{20} \; \kappa ac/c m^{3}, \tag{9}$$

Key: (1) ke/cm²

if

$$\frac{S-C}{D} > 0.13.$$

Example. To determine permissible test pressure in pipeline according to initial data of the preceding example.

DOC = 79134702

For solution it is necessary to accept formula (8), since

$$\frac{S-C}{D_{\rm H}} = \frac{4-0.5}{108} = 0.03 < 0.13$$
 and then

-

$$P_{\rm ap} = \frac{240 (4 - 0.5) 0.85 \cdot 14.7}{108 - (4 - 0.5)} = 100.4 \text{ kg/cm}^2.$$

During the strength calculation of ducts according to formula (6) addition C is provided for for the pipelines, which transport nonagressive and slightly agressive products.

For the pipelines, which transport agressive products, must be considered the addition for corrosion.

The values of addition for corrosion for dects made of carbon and alloy steels are given in Table 28-30.

Page 46.

Table 28. Value of addition for corrosion in mm for ducts on P_r to 180 kg/cm² (NW 2566-61 and 4745-63).

	(/) Typths no eresus								
<i>D</i> _у . им	углеродистой	мегарованной	мегированной мержавеющей						
10-40	1,5-2	<u> </u>							
50—80	3,5-4,5	1,5-3,5	1-1.5						
100									
125 z 24000	48	3-6	1						

Rey: (1). Ducts made of steel. (2). carbide. (3). alloyed. (4). by alloyed not corroding. (5). and above.

Table 29. Value of addition for corrosion is as for ducts on P_7 160-400 kg/cm² (BH 3558-62).

	(Трубы на стали	
Dy. MM	(2) углеродистой марки 20	(⁵⁾ легированной марок X5, X5М, X5М-У, X5ВФ	Meruposaumot Mapok X18H10T R X17H13M2T
6—40	1-3	1-3	1
5070			
80—100	45	3,5—5	
150-200		3,8-5	
200—250		56	
250—100	<u> </u>	67	_

Reys (1)... Peots unde of steel. (2). carbide brand 20. (3)., alloyed of brands / marks.

Page 47.

Table 30. Value of addition for corrosion in me for ducts on P_T =200-1000 kg/cm² (NH 5010-63).

0 ***	() Трубы на ста	ын групп
D _y , им	C, XF, XM, X+	XH
6	1,5	1
10	2	11,5
16		
26	2—2,5	1.5-2
32; 40	2,5_3	
60		2,5
70—100	3,54,8	3
125-200	. 5,5-7	4

Rey: (1). Ducts made of steel of groups.,

2. Determination of the volumes of liquids in horizontal cylindrical containers and ducts.

During hydraulic tests of the assembled pipelines to strength and density frequently appears the need for using finished cylindrical horizontal capacities (cistern). To these capacities connect the temporary/time pumping pumping plants with brace networks/grids for connection with the tested pipelines.

The volume of liquid in horizontal cylindrical containers is determined from the formula

 $V_{\rm m} = V_{\rm c} k$.

(10)

1- Ni T

1:

where V_c - the fall/total/complete volume of vessel, equal to $\frac{\pi d^2}{4} k$

k - aultiplier value which they take on Table 31 depending on the value of relationship/ratio h/d,

d - a bore of the vessel;

h - height of the layer of liquid in the vessel;

l - length of vessel.

Page 48.

The volume of water in ducts with the most frequently used outside diameters and in thicknesses of walls, areas and surfaces 1 m of ducts are given in Tables 32 and 33.

Table 31. Value h/d and k.

4	à	4 4	k	4	A	A 4	٨	4	A
0,02	0,006	0,22	0,163	0,42	0,339	0,62	0,651	0,82	0,876
0,04	0,013	0,24	0,185	0,44	0,424	0,64	0,676	0,84	0,897
0,06	0,025	0,26	0,207	0,46	0,449	0,66	0,7	0,86	0,914
0,08	0,038	0,28	0,229	0,48	0,475	0,68	0,724	0,86	0,932
0,1	0,052	0,3	0,252	0,5	0,5	0,7	0,748	0,9	0,948
0,12	0,069	0,32	0,275	0.52	0,526	0,72	0,771	0,92	0,963
0,14	0,085	0,34	0.3	0,54	0,551	0,74	0,793	0,94	0,976
0,16	0,103	0,36	0,324	0,56	0,576	0,76	0,816	0,96	0,987
0,18	0,122	ი,38	0,349	0,58	0,601	0,78	0,837	0,98	0,995
0,2	0,142	0.4	0,374	0,6	0,625	ુ. ક	0.858	1	1
		1			l				

Example. Volume of horizontal cylindrical container $v_c = 10.88$ m² with bore d=1.2 m and at length t=9.6 m. The height of the layer of liquid is h=0.88 m; value $\frac{h}{d} = \frac{0.88}{1.2} = 0.733$.

Through Table 31 we find value k as the average between 0.771 and 0.793 (for h/d=0.72 and h/d=0.74): k=0.785. We determine from formula the volume of the liquid: $V_{\rm m}=10.85\cdot0.785=8.52~\rm m^2$.

Page 49.

Table 32. Volume of water 1 m of duct in 1.

D,	<u> </u>					//) To	MERINE CT	ения тру	-					
	2	2,5	3	3,5	4	4,5	8		•	1 10	12	14	14	18
14 ڏڻ	0,154 0,346	0,133 0,314	0,113 0,284	0,095 0,254	0.079 0.227	0,201	0,177	0,133	=	=	=	1.1	=	=
.7.3 .38	0,616 0,508	0,573 0,855	0,531 0,804	0,491 0,755	0,452 0,707	0,415 0,661	0,38 0,616	0,314 0,531	0,201	=	=	=	= :	=
45 57	1,32 2,206	1,256 2,124	1,195 2,013	1,134 1,963	1,075 1,886	1,018	0,962 1,735	0,855 1,59	0,661 1,33	0,491 1,075	0,855	=	=	=
₹6 89	4,071 5,674	3,959 5,542	3,848 5,411	3,739 5,281	3,631 5,153	3,526 5,027	3,421 4,902	3,217 4,657	2,827 4,165	2.463 3,7 39	2,124 3,318	1,81	2,552	=
133	8,495 	8,332 12,87	8,171 12,67	8,012 12,47	7,854 12,27	7,69 6 12,08	7,543 11,83	7,238 11,5	6,648 10,75	6,082 10,03	5,542 9,331	8,027 8,669	4,536 8,012	4.071 7,39
1.59 219	=	18,63	18,38	18,15 35,3	17,91 34,97	17,67 34,64	17,44 34,31	16,97 33,65	16,06 32,37	15,17 31,1	14,31 29,86	13,48 28,65	12.67 27.46	11,88 26,3
273 325	=	=	=	Ξ	55,15 —	54,74 78,43	54.32 77.93	53.5 76,94	51,87 74,99	\$0,27 73,06	48,69 71,16	47,14 69,28	45,62 67,43	44,11 65 ,6
377 426	=	-	_	=	-	106,4 136,6	105,8 135,9	104,6 134,6	102,4 132	100 t 129 5	97.87 126.9	95,66 124,4	93,48 121,9	91.33 119.5
530 630	=	-	=	-	=	=	212,4 301,9	210,7 300	207,5 296,1	204,3 292,2	201,1 288,4	197.9 284,6	194.8 280.9	191,7 277,!
7.30 8.30	=	=	=	_	=	=	395.9 515.3	393,7 512,8	389.3 507.7	384.8 502.7	380,5 497,6	376.1 492.7	371.8 487.7	367.5 482.7
10.0	-	_	-	=	Ξ	=	650,4 801,2	647.5 798	641.8 791.7	636,2 785,4	620,2 779,1	624.9 772.9	619,3 766,7	613,8 760,5
1130 1230	=		=	_	=	=	=	964,2	957.3	950,3 1131	913,4 1123,4	936,6 1116	929,7 1108,5	9:2.9
1670	=	=	<u> </u>	_	=	-	=	=	=	1539,4 2010,6	1510,6 2000,6	1521 .8 1990 .6	1513,1 1960,6	1501,4

Rey: (1). The wall thickness of duct in am.

Page 50.

Table 33. Area of duct according to outside diameter and surface 1 a of dect.

D _H , an	Площадь трубы но наружному днаметру в см!	(Д) Поверхность 1м трубы в м	D ₂ , мм	Площадь трубы по наружному дкаметру в см'	Поверхность 1 м трубы в м²	D _{at} ass	Площадь трубы по наружному дманетру в см ⁴	Поверхность 1 и трубы в м
18	2,515	0,057	133	138,9	0,418	720	4 071	2,262
25	4,909	0,079	159	198,6	0,5	820	5 281	2,576
32	8,042	0,1	219	376,7	0,688	920	6 648	2,890
38	11,34	0,119	273	585,3	0,838	1020	8 171	3,204
45	15,9	0,141	325	829,6	1,021	1120	9 852	3,519
57	25,52	0,179	377	1116	1,184	1220	11 690	3,833
76	45,36	0,239	426	1425	1,336	1420	15 837	4,461
89	62,21	0,28	530	2206	1,665	1620	20 612	5,089
108	91,61	0,339	63 0	3117	1,979			

Key: (1). Area of duct according to outside diameter in cm3. (2). Surface 1 m of duct in m2.

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/G 5/2 HANDBOOK ON SPECIAL WORKS, TECHNOLOGICAL LINES OF INDUSTRIAL EN-ETC(U) OCT 79 Y Y INXOLAYEVSKIY FTO-IO(RS)T-1347-79-PT-1 NL AD-A084 528 UNCLASSIFIED 6

Page 51.

Chapter II.

STEEL TUBBS.

§1. General information.

Ducts for technological pipelines classify according to the forms of the materials, used for their manufacture, and using production methods.

according to the forms of materials the ducts divide into metallic ones and nonmetallic ones.

According to production method the metal tubes divide into ...
jointless ones, welded ones and poured.

Jointless steel tubes are prepared hot-rolled, cold-rolled, and cold-drawn.

The geometric manufacturing precision and the finish of the surface of the cold-drawn and cold-rolled dects are higher than the

ducts of hot-rolled ones.

Ducts of carbon steel use for the transporting monaggressive and slightly agressive products at temperature not more than 450°C.

For the transporting of high and moderately aggressive products whose motion along carbide ducts can cause their corrosion and change in the quality, and also for a work at temperatures higher than \$50°C are used ducts of alloy and high-alloy steel.

The allowable internal pressure in steel tubes depends mainly on the brand/mark of steel, of the wall thickness of duct and on the quality of heat treatment. At present produce the steel tubes, calculated to pressure 2500 kg/cm² and above.

The assortments of steel tubes for technological pipelines encompass range in diameter from 1 to 1600 mm in wall thickness from 0.1 to 75 mm, which gives the possibility of the wide selection of ducts in connection with the warned conditions for work.

Seasless pipes are sost good-quality; therefore them are used for the pipelines of the critical/heavy-duty designation/purpose (I and II category), which transport acids, alkalis, toxic, choking, fire- and dangerously explosive products, liquefied gases independent

of the operating pressure; for steam lines, air ducts and lines of inert gases at a conventional pressure of above 16 kg/cm²; for pressure piping, etc.

Seasless pipes made of corrosion-resistant steel according to GOST 9940-72 and 9941-72 are intended for the transport of high-corrosion chemical products, sulfurous liquid and gaseous petroleum products, and also for steam lines with high ones by temperature and pressure of steam. Especially use extensively ducts of chrome-mickel steel the brands/marks Kh18H107, which possess high chemical and temperature durability. Corrosion-resistant seamless pipes in accordance with GOST are prepared by outside diameter to 325 mm. With pipe laying of large-diameter are used the noncorrosive electric welding (from sheet) ducts.

Electric welding ducts according to GOST 10704-63 and 10707-63 usually use for manufacturing the pipelines, which transport combustible, nonagressive and slightly agressive products, alkalis, overheated and saturated steam at a conventional pressure not more than 16 kg/cm² and to temperature of 300°C.

Page 52.

Steel welded water-gas conducting ducts according to GOST

3262-62 are used for intrashop water supply lines, heating pipelines, lines of compressed air, and also other pipelines of V category.

Water-gas conducting usual ducts are calculated for pressure to 10 kg/cm², but the intensive, characterized by greater thickness walls, to pressure to 16 kg/cm². Greatest permissible temperature for these ducts of 200°C.

Steel cracking communication ducts (GOST 550-58) are produced on assortment GOST 8732-70 and 8734-58. Ducts for the transport of products of petroleum refining at temperatures from -70 to +570°C are used depending on the trademark of steel from which they are manufactured.

In accordance with designation/purpose and conditions the work of dect on manufacturing plant must on the demand of customer undergo different technological tests, by the caused standards for the ducts (see §2, chapter I).

The fundamental characteristics of the steel tubes, used for technological pipelines, are given in Table 1.

Pages 53-54.

Table 1. Characteristic of steel tabes.

Hemitelean Type	гост	D _{ar} ma	, S, ##	Homeonome etean	(B) to reducing
41 C 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	873270 (сортв- мент), 873166 (тех- ические требования)	25—820	2,5—75	Углеродистая по ГОСТ 380-71 и 1050-60, легирован- ная по ГОСТ 4543-71 и 5056-65	1 , .
7): Стальные бесшовные хо- з-заотянутые и холоднока- тавые	8734—58°° (сортя- мент), 8733—66 (тех- инческие требова- имя)	1—200	0,1-12	Углеродистая по ГОСТ 380-71 и 1050-60, легирован- ная по ГОСТ 4543-71 и 6058-65	8 # 9
Стальяме прецизионные: 30) после холодного пере-	9567—60° (сорта- мент), 8733—66 и 8731—66 (техинческие требования)	4710 25325	0,1-32 2,5-20	Углеродистая по ГОСТ 380-71 и 1050-60, легирован- ная по ГОСТ 4543-71 и 5058-65	1
Остальные крекняговые: (9¢) вечные в теплообмен- (9b) воммуникационные: (9c) горячекатаные (9c) холоднотякутые и хо-	56058	19—219 25—820	1,525 2,575	Углеродиствя по ГОСТ 1050—60, легирования во ГОСТ 4543—71, 10500—63 м	1
(90) жолоднотянутые и хо-		1200	0,1-12		
Бесшовиме горячелефор- мированные из коррозионно- стоякой стали	994072	57—3 25	3,5-32	Высоколегированная по ГОСТ 5632—61°	12 11 14
Бесшовные холодно- к теп- водеформированные из кор- розноиностойкой стали	9941—72	5—250	0,2-22	To me (b) Q)	13 11 14
В сшовные особотонко- стенные из коррозновностой- кой стали	10498—63	4—120	0.2-1	Высоколегированияя по ГОСТ 10166-43	15 % 16
Бесшовные биметалличе- ские	1019262*	6-370	1,5—10	Углеродистая во ГОСТ 1050-60 и медь во ГОСТ 859-66	
(Стальные электросварные	1070!—63° (сорта- мент), 10705—63° и 10706—63 (техниче- ские требования)	8—1620	1—16	Углеродистая до ГОСТ 380—71, 500—58 и 8597—57, легированная до ГОСТ 1050—60	
Стальные электросварные володногинутые и холодно- катаные	10707—63. 8733—66 (технические требо- вания) (/8)	576	0,5—3	Углеродистая по ГОСТ 380—71 и 1050—60	(6)
до) Стальные электросварные по спиральным швам	869662	426—1220	4—12	Углеродистая по ГОСТ 380—71, легированиая по ГОСТ 5058—65	•
Электросварные из корро- зноиностойкой стали	11068—64	8—102	14	Высоколегированияя по ГОСТ 5632—61 °	6, 20
72) Стальные водогазопровод- ве слеткие, обыкновенные в усвлениме)	3262—62	10,2—165	1,85,5	Углеродистая по ГОСТ 380—71	21

Roy: (1). Designation of ducts. (2). Designation of steel. (3). No of

table in this chapter. (4). Bound jointless hot-rolled. (5). assortment), 8731-66 (technical requirements). (6). Carbide according to GOST 380-71 and 1050-60, alloyed according to GOST 4543-71 and 5058-65. (6a). and. (7). Steel jointless cold-drawn and cold-rolled. (8). Steel Precision. (8a). after cold repartition/conversion. (8b). hot-rolled. (9). Steel cracking. (9a). furnace and heat exchange. (9h) - communication. (9c) - hot-rolled. (9d) - cold-drawn and cold-rolled. (10). Seamles hot-deformed made of corrosion-resistant steel. (11). Highly alloyed on. (12). Jointless cold and hot worked made of corrosion-resistant steel. (12a). then. (13). Jointless especially thin-walled made of corrosion-resistant steel. (14). Seamless bimetallic. (15). Carbide according to GOST 1050-60 and copper according to GOST 859-66. (16). Steel electric welding. (17). Steel electric welding cold-drawn and cold-rolled. (18). technical requirements. (19). Carbide according to GOST 380-71 and 1050-60. (20). Steel electric welding on spiral welds. (21). Blectric welding made of corrosion-resistant steel. (22). Steel water-gas conducting (light, usually strengthened). (23). Carbide according to.

Page 55.

§2. Limiting assortments of ducts.

The limiting assortments of ducts for technological pipelines

are installed for the purpose of the decrease of a quantity of the sizes/dimensions of ducts used. They are regulated by the standards of machine-building NN 2566-61 and NN 4705-63 to ducts made of carbon and alloy steels on P, to 100 kg/cm².

Limiting alsortments encompass jointless, electric welding and water-gas lines of carbon and alloy steels with the internal diameters from 6 to 1600 mm.

Wall thickness is determined by project, on the mass of temperature conditions, pressures and degree of the aggressiveness of transported products.

In accordance with the "norms of the calculation of the elements/cells of steam boilers to strength", affirmed Gosgortekhmadzor of the RSPSM on 26 March 1965, and "instructions on the calculation of the step1 pipelines of different designation/purpose" (SN 373-67), affirmed by GOSSTROY of the USSR on 22 July 1967, by ministries of Chemical industry of the USSR, petroleum refining and petrochemical Industry of the USSR and installation and special construction work of the USSR is released and pet into operation from 1 January 1968 limiting assortment on jointless and electric welding ducts for technological pipelines on P, to 100 kg/cm² made of carbon steel and steel of brand 1962 (HSM 1864-88/MMSS of the USSR (Table 2 and 3).

Page 56.

1. Limiting assortment of ducts made of carbon steel.

Table 2. Sizes/dimensions of seamless pipes in an (60ST 8732-70 and 8734-58**) of the group of delivery 1 for products from the from -70 to +450°C (852 166-66/885S of the USSE).

Dy D _M	(/)Томимна степки труб S								
	<i>D</i> ₁₁	Д для неагрессивных и малоагрессивных продуктов			для среднеагрессивных продуктов				
	-	Py. Kec/cm² (4)							
		<40	<64	<100	<40	<64	<100		
10	14 18	1,6	1.6	1,6 1,6	3 3 3	3 3 3	3 3 3		
30	25	1.6	i,6	i,6	š] 3] ~		
	32	2 2	2 2	2 2	3,5	3,5	3,5		
• • •	45	2,8	2,5	2,5	1	4	i i		
	4.7	123	3,5 3,5	3.5	8,8	. S	1 1		
•.	**		7,4	1 7.5	1.8	i .	} •		
100	108	4	4		5 7	2	3		
100 125 150	133 159	1,5	3	· 6	 	é	16		
200	219	2	7	10	1 2	10 12	13		
200 250 300	273 325	7 8 8	10	14 16	8 10	14 -	14 16		
360 400	377	9	12	18	12	14	18		
440 J	426	10	14	1 –	12	14	ı –		

Hotes: 1. Haterial rub: for nonagressive and slightly agressive products - steel of brand 20 according to GOST 1050-60 for pipelines with operating temperature from -40 to +450°C and steel of brand 1062 for dects $\rho_{\rm H} < 219~\mu\mu$ according to GOST 4543-71 for pipelines with

operating temperature from -41 to -70°C; for moderately aggressive products - steel of brand 20 according to GOST 1050-60 for pipelines with operating temperature from -40 to +300°C.

2. At discretion of planning organization is permitted use/application of ducts from steel of brand 10 according to GOST 1050-60 and brands/marks St. 2sp and St. 4sp according to GOST 380-71 for pipelines with permissible parameters of transported products.

Key: (1). The wall thickness of ducts S. (2). for monagressive and slightly agressive products. (3). for moderately aggressive products. (4). kg/cm².

Page 57.

Table 3. Sizes/dimensions of electric welding ducts in mm (GOST 10704-63* and 10705-63) of the group of delivery A (GOST 10704-63 and 19706-63) and group of delivery B for products from 1926 from -30 to +300°C (HSH 186-68/MMSS USSM.

D _y	D.	Толицина стенки труб S для невгрессиния (1) и малоагрессиных продуктов на Ру в мес/ем ³			
		<10	<16	<25	
10 15 20	14 18 25	1,6 2 2	1,6 2 2	1,6 2 2	
32 40 50	38 45 57	2 2 3	2 2 3	2 2 3	
65(70) M1 100 100 100 100	76 89 108	3 3 3	3 3 3	3	
100 100 300	114 196 219	4.5	4.5	\$. s	
300 400	273 326 428	7 7 7	7 7 7	7	
206 609 709	630 720	7 7 8	7 7	10 12	
809 909 1000	820 920 1020	8 8 9		12 14	
1100 1200 1400	1120 1230 1490	10	11 12 14	=	

Note. Naterial of the ducts: for Ducks as - steel of brand 20 according to GOST 1050-60 and VSt. 3sp according to GOST 380-71; for $o_z > \infty$ - steel of the brands/marks St. 3sp and/St. 3sp according to GOST 380-71.

Key: (1). The wall thickness of ducts S for nonagressive and slightly agressive products on C, is kg/cs2.

Table 4. Sizes/dimensions electric welding of ducts with spiral weld in mm (GOST 8696-62) for products with operating temperature to 300°C (HH 2566-61).

D _y	D _a	Толщина стемя труб S для неагре ещими в малоогрессивных продукт на Ру в ме/е м						
	<u> </u>	<10	<16					
400 450 500	426 480 530	4 4 5	5 6 6					
600 700 800	630 720 820		7 8					
144)	920 1920	:	;					

Note. the material of ducts - steel of brand/mark St.3 or VSt.3 according to GOST 380-71.

Key: (1). The wall thickness of ducts S for nonagressive and slightly agressive products on ℓ_y in kgf/cm³.

Page 58.

Table 5. Sizes/dimensions of water-gas conducting ducts in an (GOST 3262-62) for products with operating temperature to 200°C (MW 2566-61).

Dy	o _s	Толидина стенки труб S для веагрес сизных и малоагрессиямых предукто (/) на Ру в ная/еле					
		<10	<16				
8 10 15 20 25 32 40 50 70 80	13,5 17 21,3 26,8 33,5 42,3 48 60 75,5 88,5 11,4	2.2 2.8 2.8 3.2 3.2 3.5 3.5 4	2.8 2.8 3.2 4 4 4.6 4.5				

Note. Naterial of ducts - steel according to GOST 380-71.

Key: (1). The wall thickness of ducts S for nonagressive and slightly agressive products on P_y in kgf/cm².

2. Limiting assortment of ducts made of alloy steel (HW 4705-63).

Table 6. Sizes/dimensions of cracking communication ducts in mm (GOST 550-58).

	Ī		(/) Ta	actions.	стенки	труб 5	для :	родук	roe				
			овгрессиви Вгрессиви		(3) arpeccusings								
			(4)	мар	ка стали (ГОСТ 5632—61*)							_	
D _y	DE	12XMФ X5, X5M, X5BФ. X8BФ		XSM-3	1	2ХМФ		X5, X5M, X5ВФ, X8ВФ			Х5М- У		
					P _y .	REC/EA	r (5.)					
		<,61 < 10	P <64 < 10	0 <10 0	≼ 25 < 4	0 <64	100 €2	5 < 10 <	64 100	√40	<64	100	
00 50 00		1.6 1.66 1.2 2.5 3.3.5 3.5 3.5 3.5 3.5 6 7 7 9 12 11 15	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3,5 3,5 3,5 3,5 3,5 5 3,5 5 5 5 5 5 5	3.5 3.5 4 4.5 6.7 8.9	3,5 3 3,5 3 3,5 5 4,5 6 4,5 6 4,5 6	3 3.5 5 3.5 5 3.5 5 5 7 8 9 10 12 14 16 18 10	=			

Notes: 1. Steel of brand Kh5H-W - heat-treated steel is brand Kh5H.

2. Dects made of steel of brand Kh8PF - on TSFN 5580-58.

Key: (1). The wall thickness of ducts S for products. (2). nonagressive and slightly agressive. (3). agressive. (4). trademark of steel. (5). kgf/cm^3 .

Page 59.

§3. Assortments of steel tubes.

The assortments of the most frequently used jointless and electric welding ducts made of carbon and alloy steels are given in Table 8, which encompasses seamless pipes according to GOST 8732-70, 8738-58**, 9567-60*, 550-58 and electric welding according to GOST 10708-63* and 10707-63. Bass 1 lin. m of duct are determined from to the formula

$$G = \frac{\pi}{1000} \rho S \left(D_{\rm H} - S \right) \, ds'^{\prime} \tag{1}$$

Key: (1) . kg. .

where ρ - density of carbon steel, equal to 7.85; S - wall thickness in mm; $D_{\rm w}$ - outside diameter in mm.

During the determination of the mass of ducts made of alloy steels of different brands/marks the corresponding to them density should be accepted according to Table 10, Chapter I.

For electric welding straight-seamed ducts according to GOST
the mass of 1 linear meter

10706-63 [Stlegible] It is necessary to increase against the values,
Table 8 by 1%, and
placed in [illegible] for ducts with spiral weld - according to GOST

8696-62 [illegible] weld reinforcement.

Table 7. Sizes/dimensions of ducts made of corrosion-resistant steel in mm (GOST 9940-72 and 9941-72).

		(/) Tex	Marian Cronst	труб Ѕ да	я продукто				
Dy	D _m	(2) merpes mercery	CERTAINER,	(В) втрассивных					
			P	y. Kec/cat	. Recjest (4)				
		<94	<100	<40	<64	<100			
10 15 20 25	14 18 25 32	1,4 1,4 1,4 1,8	1.4 1.4 1.4 1.8	2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5			
32 40 50 70	38 46 57 76	2 2 2 2,5	2 2,5 3 3,5	3 2.5 3 3,5	3 2,5 4 3,5	3 3,5 4 5			
80 100 125 150	89 108 133 159	3,5 5 6	4,5 4,5 6 7	4.5 4.8 5	4,5 4,5 6 7	6 7 8 9			
175 200 200 300	194 219 273 295	9 10 11 12	9 10 12 14	9 10 11 12	9 10 12 14	11 12 14			

Note: the material of the ducts: steel of the brands/marks
Kh 18H 10T, Kh 17H 13H2T, OKh 17H 16H3T, 1Kh 21H5T, OKh 21H5T, OKh 23H 18,
Kh 17, Kh 28, Kh 25T according to GOST 5632-61*.

Rey: (1). The wall thickness of ducts S for products. (2).
nonagressive and slightly agressive. (3). agressive. (4). kgf/cs2.

Pages 60-61.

§4. Technical requirements for the delivery of steel tubes.

1. Dects steel jointless hot-rolled (GOST 8731-66, 8732-70).

Assortment and mass are given in Tables 8.

Depending on designation/purpose and guaranteed characteristics the ducts supply by the following groups:

- A by the chemical composition made of steel of brands/marks according to GOST 1050-60*, 4543-71, 5058-65* and 380-71 (see Table 2, 4, 6, 8 of chapter I) and according to mechanical properties (Table 9 and 10);
- B by the chemical composition without the control of mechanical properties made of killed steel of brands/marks according to GOST 380-71, $1050-60^{8.5}$, 4543-71 and 5058-65* (see Tables 2, 4, 6 and 8 of chapter I):
- C according to mechanical properties made of killed steel of brands/marks according to GOST 380-71 (group A) according to requirements indicated in Tables 9 and 10;
- D by the chemical composition made of steel of brands/marks according to GOST 1050-60**, 4543-71 and 5058-65* (see Table 4, 6, 8 of chapter I) with the control of mechanical properties in the

heat-treated samples/specimens according to norms, indicated in the standards;

E - without the standardization of the chemical composition and mechanical properties on with the guarantee of testing hydraulic pressure.

Table 8. Assortment of steel jointless and electric welding ducts.

1	Ī	T							(1)	Paragram	CTOMBER .
2	D.,	1,4	1,8	1 2	2,5	3	3,5	4	4,5	8	6
									(D)	Macca	l nos. ss
10 15 20	14 18 25	0,434 0,572 0,813	0,541 0,717 1,03	0,592 0,789 1,13	0,708 0,956 1,39	0.814 1.11 1.63	0,906 1,25 1,86	0,986 1,38 2,07	1.5 2,28	1.6 2,47	2,81
25 32 40	32 38 45	1,053 1,26 1,51	1,34 1,61 1,91	1,48 1,78 2,12	1,76 2,19 2,62	2,15 2,59 3,11	2,46 2,90 3,58	2,76 3,35 4,04	3,05 3,72 4,49	3,33 4,07 4,93	3,85 4,74 5,77
50 65(70) 80	57 76 89	1,92 2,57 3,02	2,45 3,29 3,86	2,71 3,65 4,29	3,36 4,53 8,33	4 5,4 6,36	4,62 6,26 7,38	5,23 7,1 8,38	5,83 7,93 9,38	6,41 8,75 10,36	7,58 10,36 12,28
100 100 125	108 114 133	3,67 —	4,72	5,23 — —	6.5 6,87 8,05	7,77 8,21 9,59	9,02 9,54 11,18	10,26 10,85 12,75	11,49 12,15 14,26	12,7 13,44 15,75	15,00 15,96 18,79
150 175 200	159 194 219	111	111	111	9,65 13,35	11,54 15,98	13,42 16,44 18,6	15,29 18,74 21,21	17,15 21,03 23,8	18,99 23,31 26,39	22,64 27,82 31,52
250 310 350	273 325 377	111		111	16,68 19,88 23,09	19.97 23.82 27.67	23.25 27.75 32,24	26,53 31,66 36,79	29.8 35.57 41,34	33,04 39,46 45,86	39,51 47,2 54,89
400 450 500	426 480 530	111		111	26.11 29.44 32,52	31,28 35,29 38,99	36,36 41,13 45,44	41,63 46,95 51,88	46,77 52,77 58,31	51,91 58,57 64,73	62,14 70,13 77,53
600 700 800	630 720 820	=	111	111	111	46,39 —	54,07 — —	61,75	69,41 — —	77,06 88,17 100,5	92,33 105,7 120,5
900 1000 1100	920 1/20 1120	111	=	-	111	Ξ	=	Ξ	=	112,8 125,2 —	135,2 150 164,8
1200 1400 1600	1220 1420 1620	111	-	1 -	·=	Ξ	Ξ	=	=	Ξ	173.6 200,2

Table 8 cont.

S, an											
7	•			11	*	14	10	18	20	22	25
труб в	£4										
-	_	-	. –	_	_	_ '	_	_	_	-	_
3,11	3,36	-	=	=	=	=	! =	_	=	=	=
4,32	4.74		-		-	l –	_	_	l –	l –	_
5,35 6,56	5,92 7,3	6,44 7,99	8,63	=	=	_	=	=	=	=	=
8,63 11,91 14,16	9,67 13,42 15,96	10,66 14,87 17,76	11,59 16,28 19,48	12,48 17,63 21,16	13,32 18,94 22,79	21.41 25.89	23,68 28,8	25,75 31,52	34,03	36,35	=
17.44 18.47 21.78	19,73 20,91 24,65	21,97 23,31 27,82	24,17 25,65 30,33	26,31 27,94 33,1	28,41 30,19 33,81	32.45 31,53 41	36.3 38.67 46.17	39,95 42,62 51,65	43,4 46,36 55,73	46,66 49,81 60,22	54,87
26,24 32,28 36,6	29,79 36,7 41,63	33,29 41,06 46,61	36,75 45,39 51,54	40,15 49,64 55,43	43,5 53,86 61,26	50.06 62.15 70,78	56.43 70.24 80,1	62,59 78,13 89,23	68,56 85,28 98,15	74,33 93,32 106,88	82,62 104,19 119,61
45,92 54,89 63,87	52,28 62,54 72,8	58,6 70,14 81,68	64,86 77,68 90,51	71,07 85,18 99,29	77,24 92,63 108,02	89,42 107,38 125,33	101,41 121,93 142,44	113,2 136,28 159,36	124,79 150,44 176,08	136,18 164,39 192,61	152,9 184,96 217,02
72,33 81,65 90,28	62,46 93,12 102,98	92,55 104,52 115,62	102,59 115,9 128,93		122,52 138,49 153,28	142,25 160,88 178,14	161,78 183,08 202,8	181,11 205,07 227,27	200,25 226.87 251,53	219,19 248,47 275,6	247,23 280,51 311,53
123,1	122.71 140.5 160,2	137,81 157,8 180	152,89 175,1 199,8	167,91 192,3 219,5	182,88 209,5 239,1	212,67 243,74 278,3	242,26 277,77 317,3	271,65	300,85	329,86 —	372,98
174.9	179.9 199.7 219.4	202,2 224,4 246,6	249.1	246,6 273,7 200,8	268,7 298,3 327,9	312,8 347,3 381,9	356,7 396,2 435,6	=	-		=
	239.1 278.6	313.2	347.7	362,2	357.5 416.7 475.9	416,4 466,4 564,5	475,1 554 632,5	=	=	Ξ	Ξ

Key: (1). Thickness of wall S, mm. (2). Mass of 1 lim. m of ducts in kg.

-

Page 61.

2. Ducts steel jointless cold-drawn and cold-rolled (GOST 8733-66," 8734-580*).

. . 1

Depending on their purpose and guaranteed characteristics, the ducts [Pipes] are divided into the following groups:

- A by the chemical composition made of steel of brands/marks on GOST 1050-60*4, 4543-71, 5058-65* (see Tables 4, 6 and 8 of chapter I) and according to mechanical properties (Table 9):
- B by the chemical composition without the control of mechanical properties made of killed steel of brands/marks according to GOST 380-71, 1050-60**, 4543-71 and 5058-65* (see Tables 2, 4, 6 and 8 of chapter I);
- C by the chemical composition made of steel of brands/marks according to GOST 1050-60**, 4543-71* and 5058-65* (see Tables 4, 6 and 8 of chapter I) with the control of mechanical properties in the heat-treated samples/specimens according to the norms, indicated in

the standards;

- D after special heat treatment. The trademarks of steel, the mode/conditions of heat treatment and norm of mechanical properties are established by the technical specifications;
- E without the standardization of the chemical composition and mechanical properties, but with the guarantee of testing hydraulic pressure.

Table 9. Sechanical properties the seamless pipes of group & (GOST 8731-66 and 8733-66).

(1)	(3) see	0 ₅	40. %	У)Твердост маллю (пр стения бол	ь по Ври- и теация нес 10 мм)
Марка стали	(4) He Mence		(5) дивметр отпечатка в мм, не менее	число твердости, ве более
10 20 35 45	21 25 30 33	34 42 52 60	24 21 17 14	5,1 4,8 4,4 4,2	137 156 187 207
101.3	27 25	48 43	21 22	4,3	197
15X	-	42	19	4,5	179
20 X	_	44	16	4,5	179
40 X	_	67 63	9	3,7	269 217
30XFCA	_	70 50	11 18	-	<u>-</u> 229
15XM 30XMA 12XH2	23 40 40	44 60 55	21 13 14	=	=
BCT.4cn	25	42	20	_	_
BCr.Sen	27	50	17	-	-

Notes: 1. In manerator are given the data along hot-rolled ducts, in denominator - on that cold-drawn and cold-rolled ones.

- 2. From steel brands 15Kh prepare only cold-drawn and cold-rolled ducts.
- 3. From steel of brands 30KhHA and 12KhH2, and also VSt. Asp and VSt.5sp are prepared only hot-rolled ducts.

- 4. Mechanical properties of ducts from other brands/marks of steels, and also norm of impact viscosity and relative reduction of area are established by agreement of sides.
- 5. Hechanical properties of hot-rolled ducts are given in as-received condition, and cold-rolled and cold-drawn after heat treatment.

Key: (1). Trademark of steel. (2). Hardness according to Brimell (with wall thickness more than 10 mm). (3). kg/mm². (4). it is not less. (5). digmeter of impression in mm, is not less. (6). hardness number, is not more.

Page 63.

Depending on designation/purpose, conditions the work of pipelines and demands of the customers of duct on manufacturing plant undergo the following tests: hydraulic, for distribution, for knee, for flattening, for flanding, for stretching, for the hardness (see Chapter I, §2).

3. Ducts steel precise (GOST 9567-60*).

Assortment and mass are given in Table 8.

Ducts precise ones (increased manufacturing precision) supply after cold repartition/conversion and hot rolling. Haterial and technical requirements by the chemical composition (see Tables 2, 4, 6 and 8 of chapter I), the mechanical properties (Tables 9 and 10) and to the tests of ducts after cold repartition/conversion must correspond to GOST 8733-66, but hot-rolled - GOST 8731-66.

4. Dacts steel cracking (GOST 550-58).

Assortment and mass are given in Table 8.

The chemical composition of cracking ducts made of steel of brands 10 and 20 must correspond to GOST 1050-60**; brands Kh5, Kh5^M and Kh5VF - GOST 5632-61*; brand 10G2 - GOST 4543-71; brands 12HKh and 12KhHVF - GOST 10500-63 (see Tables 4, 8 and 10 of chapter I).

The mechanical properties of ducts in as-received condition, must conform to these [illegible] in Table 11.

Table 10. Hechanical properties of the jointless hot-rolled dects of group B (6057 8731-66).

(1)	e	€,	1	
Марка стели	(2) non	4. %		
<u> </u>	(ª	3) не менее		
(4 Cr.2cm	21	34	24	
Cr. tes	25	42	20	
(V) Critical	27	50	17	
(f) Co.less	30	•	14	

Key: (1). the trademark of steel. (2). kg/mm². (3). it is not less.
(4). St.2sp.

Page 64.

The supplied ducts on manufacturing plant they test/experience to distribution, flattening, stretching, impact toughness, hardness and subject to hydraulic pressure (see Chapter I, §2).

5. Ducts jointless made of corrosion-resistant steel, hot-deformed (GOST 9940-72), cold and hot worked (GOST 9941-72).

The assortment of the most frequently used seamless pipes made of corrosion-resistant steel is given in Tables 12, 13.

Ducts jointless ones of corrosion-resistant steel produce made

of steel of the brands/sarks, indicated in Table 14.

Ducts according to GOST 9941-72 must be supplied in the heat-treated state; according to GOST 9940-72 heat treatment of ducts is accomplished/realized on the demand of consumer.

The chemical composition of the trademarks of steels is given in Table 10, chapter I; the mechanical properties of ducts in as-received condition must correspond to those indicated in Table 14.

Depending on the demands of the customers the manufacturing plant produces the tests of ducts for distribution, flattening, stretching, hydraulic pressure and intercrystalline corrosion (see §2, chapter I).

pable 11. Hechanical properties of cracking steel tubes (GOST 550-58).

(1)	(2)	(2) Mapka CTANN (3) REC/MM ⁰ 4,		(4)	(5) Tanan	ects no Mano HB		
Трубы по состоянию материала при поставке	Марка			*		a _H , rec.m/cm	Grasserp Of Crimes and Constitution of Constit	Thepaceru
				8) ne	менее		(9)	не более
(/О) Горячеката- ные без отжига	10 10 Г2 20	36 48 44	22 27 26	25 21 22	50 50 50	8 12 8	5,1 4,3 4,6	137 197 156
(//) Холоднотяну- тые или ко- лоднокатакые после отжига	10 20	34 42	20 24	26 23	50 50	8 8	5,1 4,8	137 156
(/2) После отжега	12MX X5 X5M X5BФ 12XM1Ф	42 40 40 40 46	25 22 22 22 23	21 24 22 22 22 21	45 50 50 50 80	7 10 12 12 6	4,5 4,6 4,6 4,6 4,6	156 170 170 170 170

Rey: (1). Ducts due to the state of material with delivery. (2). Trademark of steel. (3). kg/mm². (4). kgf·m/cm³. (5). Hardness according to Brinell HB. (6). diameter of impression in mm. (7). hardness number. (8). it is not less. (9). it is not more. (10). Hot-rolled without annealing. (11). Cold-drawn or cold-rolled after annealing. (12). After annealing.

Page 65.

Table 12. Assortment of the jointless hot-deformed ducts made of corrosion-resistant steel (GOST 9940-72).

•	1	<u> </u>					//) To	AMUMMA C	TORKE S	, 44					
4.	D _R .	4,5	5	5,5	6	7		•	10	11	12	14	18	16	30
	1						(2) M	acca l n	08. M B	KE			·		
50	57	5,86	6,45	7,03	7,59	8,69	9,73	-	_	_	_	_	-	_	_
70	76	7,99	8,81	9,62	10,4	12	13,5	15	16,4	-	_	_	-	_	-
80	80	9,44	10,4	11,4	12,4	14,2	16,1	17,9	19,6	21,3	22,9	26	-	_	-
1:4)	108	_	12,8	14	15,2	17,5	19,9	22,1	24,3	26,5	28,6	32,6	34,6	36,5	43,7
100	114	-	13,5	14,8	16,1	18,6	21	23,4	25,8	28,1	30,4	34,7	36,8	38,9	46,6
1.3	133	_	15,9	17,4	18,9	21,9	24,8	27,7	30,5	33,3	36	41,3	43,9	46,4	56,1
150	159	-	_	- 1	22,8	26,4	30	33,5	37	40,4	43,8	50,4	53,6	56,8	69
175	194	-	_	_	_]	-	_	41,3	45,6	50	54,2	62,5	66,6	70,6	86,3
200	219	-	_	_	_ [_	-	-	51,8	56,8	61,6	71,2	75,9	80,6	98,7
225	245	-	_	- 1	-	_	- 1	-	-	64.9	70,5	81,6	87,1	92,5	114
230	273	-	- }	-	_	-	_	-	_	71,5	77,7	20	*	102	125
300	325	_	- 1	_		_	_	_	_	_	93,2	108	115	123	151

Note. The mass of 1 lin. m of ducts is given for the trademark of steel with a density of 7, 9; the mass of 1 lin. a from the trademarks of steel with another density (see Table 10, chapter I) they calculate according to the formula, given in §3.

Key: (1). Thickness of wall S, am. (2). Hass of 1 lim. m im kg.

Page 66. ..

Table 13. Assortment of the jointless cold and hot-worked ducts made of corrosion-resistant steel (GOST 9941-72).

								(/) To	PURTHER	стенки	S. MA							
Dy.	D _M .	_	1,4	1,5	1,8	2	2,5	3	3,5	4	4,5	5	5,8	•	7	•	•	10
	1							(2)	Macca	1 <i>nos</i> .	м*				<u>`</u>		·	
10	14	0,32	0,44	0,46	0,54	υ,6	0,71	0,82	_	_	_	_	_	_	_	_	_	_
15	18	0,42	0,58	0,61	0,72	υ , 79	0,96	1,12	1,26	_	-	_	_	_	_	_	_	_
20	25	0,6	0,82	0,87	1,04	1,14	1,4	1,64	1,87	2,08	2,29	-	-	_	_	-	_	_
25	32	0,77	1,06	1,13	1,35	1,49	1,83	2,16	2,48	2,79	3,07	3,35	3,62	-	-	-	<u> -</u>	_
32	38	0,92	1,27	1,36	1,62	1,79	2,2	2,61	3	3,37	3,74	4,09	4,44	4,76	-	_	-	_
40	45	1,09	1,51	1,62	1,93	2,13	2,64	3,13	3,6	4,07	4,52	4,96	5,39	5,81	_	-	_	_
50	57	1,39	1,93	2,07	2,47	2,73	3,38	4,02	1,65	5,26	5,86	6,45	7,03	7,59	8,60	9,73		_
70	76	-	-	-	_	-	_	5,44	6,3	7,15	7,99	8,81	9,62	10,4	12	13,5	-	_
80	89	l –	_	-	-	-	_	6.4	7,43	8,44	9,44	10,4	11,4	12,4	14,2	16,1	-	_
100	108	_	_	_	_	_	_	_	9,08	10,3	11,6	12,8	14	15,2	17,5	19,9	22,1	34,1

Key: (1). Thickness of wall S, am. (2). Hass of 1 lin. m 1.

FOOTHOTE 1. See the note table 12. EMDFOOTHOTE.

Page 67.

Table 14. Hechanical properties of searless pipes made of cerrosion-resistant steel.

(/) Mapus ctanu (FOCT 5632—61*)	(2) Прежнее обозначение марок стадей	Tpyton to (I OCT)	6. %	Трубы но- н дефо ван (ГОСТ б _в , (5) кас/мм ³	74/) жолод- тепло- ринро- ные 9941—72)
	<u> </u>	1 /4	, у не м	енее	
IX13 0X13 X17 0X17T X25T X28	ЭЖ1 ЭИ496 ЭЖ17 ЭН615 Э11439 ЭЖ27, ЭИ319	40 38 45 38 45 45	21 22 17 17 17	40 38 45 35 47	22 22 17 17 17
0X20H14C2 0X22H5T 1X14H18B25P X17H13M2T 0X17H16M3T	9H732 9H53 9H695P 9H448 (XI8H12M2T) 9H580	52 60 56 54 52	35 24 40 35 35	52 60 56 54 56	35 20 35 35 35
00X18H10 0X18H10 X18H9 2X18H9 0X18H10T X18H10T	9H842 9R0 (0X18H9) 9R1 (1X18H9) 9R2 9U914 9R1T (1X18H9T)	45 52 54 58 58 52 54	40 40 40 40 40	50 54 56 58 56 56	45 37 37 35 35 37 35
0X18H12T X18H12T 0X18H125 0X23H18	<u>—</u> ЭИ402 (ХІВНІІВ)	52 54 52 50	40 40 38 37	56 55 54 54	37 35 37 38

Rey: (1). Trademark of steel. (2). Previous designation of trademarks of steels. (3). Ducts, hot-deformed. (4). Ducts of cold and hot worked. (5). kg/mm². (6). it is not less.

6. Bucts jointless especially thin-walled, cold-drawn and cold-rolled made of corrosion-resistant steel (GOST 10498-63).

. .

Table 15. Assortment of ducts.

(/) Размеры в им									
D _H	s	D _M	S	D _M	s	D.	3		
6 6 6,5 400 10,544,5 27 1 246	0,2-0,5 0,2-0,7 0,2-1 0,3-1	នា ស ស 70 71 75	0.3—1 0.3—1 0.3—1 0.3—1 0.3—1 0.3—1	80 80 85 90 90	0.4—1 0.4—1 0.4—1 0.4—1 0.4—1	100 110 120	0,5—1 0,5—1 0,5—1		

Key: (1). Sixes/dimensions in am.

Page 68.

Ducts supply in the heat-treated state made of steel of the brands/marks OKh 18W1OT, 1Kh 18W1OT, 1Kh 13S2H2, OKh 16W15H3, 1Kh 16W15H3B and OOKh 16W15H3B; they can be supplied with the etched, ground, polished or electropolishing external surface, and also with the etched or electropolishing internal surface (besides ducts from D, to 5 mm).

The chemical composition of steels see in Table 10, chapter I.

The mechanical properties of ducts in as-received condition must correspond to those indicated in Table 16.

Ducts must be tested by manufacturing plant for intercrystalline corrosion, to flattening, to hydraulic or pneumatic pressure, to mechanical properties according to the standards (see §2, chapter E).

In as-received condition the ducts must hold out the testing | hydraulic or pneumatic pressure: with diameter to 20 mm inclusively - not less than 5 kg/cm², with the diameter more than 20 mm - not less than 10 kg/cm². Test procedure by pneumatic pressure is established by the agreement of sides.

7. Bucts jointless binetallic (GOST 10192-62*).

Jointless bimetallic ducts prepare cold-rolled and cold-drawn with skin from steel brands 10 or 20 according to GOST 1050-60** and interior layer from copper of brand 83 according to GOST 859-66.

Produce ducts in outside diameter 6-370 mm and walls with a thickness of 1.5-10 mm.

Assortment of the frequently used binetallic ducts is given in Table 17.

4. :

Table 16. Hechanical properties of ducts made of corrosion-resistant steels (GOST 10498-63).

(/)	(2) Прежиее обесначения	and 443)	4. X
Марка стали	нарки стали	(/) m man	
OXIBHIOT	ЭИ914	84	40
TOIHBIXI	TIRE	56	40
1X13C2M2	ЭИ852	22	20
0X16H15M3	Э И844	56	38
IXI6HI5M3B	ЭИ847	55	35
00X16H15M3B	34448	52	*

Key: (1). Trademark of steel. (2). Previous designation of trademark of steel. (3). kg/mm². (4). it is not less.

Page 69.

8. Ducts steel electric welding.

Assortment and mass of electric welding ducts are given in Table 8.

Depending on purpose and guaranteed characteristics [illegible] ducts supply by the following groups:

1. according to GOST 10704-63# 1111091610 from 8

to 530 mm and wall thickness to 10 mm inclusively.

Table 17. Assortment of the jointless bisetallic cold-rolled and cold-drawn dects (SOST 10192-62).

	(1) Teamine etenia S, Mis								
D., 200	1,8	2	· 2,5	3	3,5	4	4,5	5	
:			(2) M	eca l ne	12. A B A				
6	0,17		_	l <u>-</u>	_	_	_	-	
IÒ . . 14	0,40	0,41 0,62	0,74	=	=	=	=	=	
18	0,65	0,82 1,03	1	1.16		1,42 1,82		-	
18 22 25		1,03	1,46	1,47	1,66	1.82 2,13	1,98	2,55	
20	- 1,04	1,34 1,54	_	i	2,19	2,44	_	_	
28. 32 38.	1,43	1,54 1,86	2,3	2,25	2,5 5 3,1	2,82	_	-	
42	1 - 1		2.5	_	<u>":</u>		_	4,68	
<u> </u>	1,71	2,07 2,22	2,76	=	_	_	_	5,06	
# # # # # # # # # # # # # # # # # # #	1 =	2,4	3,41	=	=	= .	=	8,7	

Note: 1. The wall thickness of duct is shown with cladding layer.

2. Hass of 1 lin. a of duct is determined according to formula $G_{\text{ful}} = \left[1 + \left(\frac{\gamma_{\text{Nl}}}{\gamma_{\text{0}}} - 1\right) A\right] G_{\text{0}}, \tag{2}$

where v_{tt} - copper density; v_{tt} - v_{tt} - steel density; v_{tt} - v_{tt} - steel density; v_{tt} - v_{tt} - steel density; v_{tt} - v_{tt}

$$n = \frac{d_1^2 - d_0^2}{D_0^2 - d_0^2} \,. \tag{3}$$

where d_1 - outside diameter of copper layer in mm; d_0 - bore of bimetallic duct in mm; D_0 - outside diameter of bimetallic duct in mm;

$$d_1=d_0+2\delta,$$

Here 6 - nominal (calculation) thickness of copper layer.

Technical requirements for ducts must correspond to the technical specifications, confirmed in routine.

Rey: (1). Thickness of wall S, mm. (2). Hass of 1 lin. m in kg.

Page 70.

- A by the chemical composition made of killed steel of the brands/marks VSt.3sp and VSt.4sp, according to GOST 380-71, and also made of steel of brands 08; 10; 15; 20 according to GOST 1050-60* (see Table 2 and 4, chapter I) and mechanical properties according to Table 18 and 19.
- B by the chemical composition without the guarantee of the mechanical properties of ducts made of the steady, semikilled and rimsed steel of brands St.2, St.3 and St.4 of group B of GOST 380-71, and also made of steel of brands 08, 10, 15 and 20 according to GOST 1050-60* (see Table 2 and 4, Chapter I):
 - C according to sechanical properties according to Table 18 and

19 without the guarantee of the chemical composition of brands St. 2, St. 3 and St. 4 according to GOST 380-71;

D - without the standardization of the chemical composition and mechanical properties, but with hydraulic test.

all dects must age testing hydraulic pressure: with diameter to $102 \text{ nm} - 60 \text{ kg/cm}^2$ and with the diameter of 102 nm and nore -30 kg/cm^2 .

Table 18. Mechanical properties of the electric welding ducts, supplied by thermally treated (GOST 10704-63*).

(1)	Sy suran (2)	4. %			
Марка стади	(3) no nemes				
08 10; Ct.2 15; Ct.3; BCt.3 20; Ct.4; BCt.4	32 34 38 42	25 24 22 21			

Key: (1). Trademark of steel. (2). kg/mm2. (3). it is not less.

Table 19. Hechanical properties of the electric welding ducts, supplied without heat treatment (GOST 10704-63).

<u> </u>	(/) Трубы диаметром							
<i>(2)</i> Марка стали	(З) 63 мм и более		(4) 20—60 мм со стенкой тол- щиной 0,06 D _н и менее		до 20 мм. (5) а танже 20—60 мм со стенкой тол- щиной более 0,06 D _H			
	6) 0 ₀ .	8 ₆ ,	Gon.	%	G OB.	84		
			(Э) не м					
(8) (8: 10 H CT.2 15: CT.3; BCT.3 20; CT.4; BCT.4	32 36 36	23 21 20	34 38 40	15 13 10	38 45 50	6 5 4		

Key: (1). Bucts by diameter. (2). Trademark of steel. (3). 63 mm and more. (4). 20-60 mm with wall with a thickness of 0.66 D_H and less. (5). to 20 mm, and also 20-60 mm with wall by thickness more than 0.06. (6). $kg/m\pi^2$. (7). it is not less. (8). and.

Page 71.

On the demand of consumer the ducts of groups A and B must be tested by large hydraulic pressure, but it is not more than pressure P, determined according to formula GOST 3845-65, with allowable stress R, equal to 400/o of tensile figure for this brand/mark of steel:

- 2) according to GOST: 10704-63* and 10706-63 straight-seamed in diameter from 426 to 1620 mm;
- A by the chemical composition and the mechanical properties for sheet steel according to GDST 500-58* and 8597-57 of the trademarks of steel, indicated in order, with the simultaneous by a hydraulic pressure test, calculated according to formula GOST 3845-65 (see §2. chapter I) with allowable stress R=0.9 of yield point;
- B by the chemical composition of the trademarks of steels, indicated in order, with the testing by hydraulic pressure 25 kg/cm². Ducts by sizes/dimensions 920x7; 1020x8; 1120x8-9; 1220x9-10; 1320x9-11 and 1420x10-11 test/experience with pressure 20 kg/cm²;
- C according to the mechanical properties of the trademarks of steels, indicated in order mithout the guarantee of the chemical

composition, with the testing by hydraulic pressure according to formula GOST 3845-65 with allowable stress R=0.5 of tensile figure;

- D without the guarantee of the chemical composition and mechanical properties, but with the testing by hydraulic pressure as for the ducts of group B;
- 3) according to GOST 10707-63, 10705-63* and 8733-66 cold-drawn and cold-rolled in diameter from 5 to 76 mm.

Material for ducts must correspond to GOST 10705-63, and remaining technical requirements - GOST 8733-66;

- 4) according to GOST 8696-62 with spiral weld in diameter from 400 to 1200 mm:
- A by the chemical composition and mechanical properties made of steel of brands/marks FSt.2sp and VSt.3 according to GOST 380-71 (see Table 1 and 2, chapter I) and brands 10G2S1 according to GOST 5058-65* (see Table 5 and 6, chapter I), and also with the testing by hydraulic pressure, calculated according to formula GOST 3845-65, where R=0.85 yield point:
 - B by the chemical composition made of steel of the

brands/marks St. 2kp, St. 3 and St. 3kp according to GOST 380-71 (Yable 2, chapter I) and with the testing by hydraulic pressure 25 kg/cm²;

- C according to mechanical properties made of steel of brands/marks St.2 and St.3 according to group A of GOST 380-71 and of brand 10G2S1 and GOST 5058-65* (see Table 1 and 5, chapter I) and 'with the testing by hydraulic pressure as for the ducts of group A;
- D without the standardization of the chemical composition and mechanical properties, but with the testing by hydraulic pressure 25 kg/cm².

Depending on designations/purposes and technical requirements, set forth for electric welding ducts, the manufacturing plant conducts the tests; for flattening, distribution, knee, flanging, stretching, impact viscosity/ductility/toughness and for hydraulic pressure according to the standards (see §2, chapter I).

9. Bucts electric welding made of corrosion-resistant steel (GOST 11068-64).

Dects are delivered heat-treated from the trademarks of steels with mechanical [illegible] properties, indicated in Table 20.

Page 72.

Ducts produce with outside diameter 8; 9; 10; 11; 12; 14; 15; 16; 18; 20; 22; 25; 28; 30; 32; 34; 36; 38; 40; 42; 45; 48; 50; 53; 55; 57; 60; 63; 65; 70; 76; 89; 102 nm; with walls with a thickness of 1; 1.2; 1.4; 1.8; 2; 2.2; 2.5; 2.8; 3; 3.2; 3.5; 4 nm.

The chemical composition of the metal of ducts is given in Table 10, chapter I.

The mass of ducts made of steel with a density of 7.9 is given in Table 13.

Hass 1 lin. m of ducts in kg. calculate according to the formula, given in §3.

The supplied ducts on manufacturing plant test to stretching, flattening, distribution, flanging, knee, intercrystalline corrosion and they subject to hydraulic pressure according to the standards (see §2, chapter I).

Table 26. Sechanical projection of dects.

(1)	Flocate Te cited of pe	ризте- Ботки	Sea Tepen ospeso	(4)	
Марка стели	(5) о _п . Квс/мм ³	8 ₆ %	GB, C	ôs. %	ность
T011181X00	50	40	60	25	7,9
TOILIBIXO	54	.37	60	25	7,9
XISIIIOT	56	36	60	25	7,9
OXISHI2T	54	37	60	25	7,96
X18F112T	56	35	60	25	7,95
X17H13M2T	}				. 8
хілнізмат					8
0X22H5T	(7,6			
1X21H5T		соглаше	ению ст оро і	`	7,6
0X23H28M2T					7,96
0X23H28M3Д3T	}				7,96

Rey: (1). Trademark of steel. (2). After heat treatment. (3). Sithout heat treatment. (4). Density. (5). kg/ma². (6). it is not less. (7). By agreement of sides.

Page 73.

Each of the supplied ducts aust hold out testing for hydraulic pressure 60 kg/cm², but more calculated according to the formula

$$P = \frac{200S_{\rm M}R}{D_0} \, sec/ca^2, \tag{4}$$

Key: (1). kg/cm².

where S_n - minimum wall thickness of duct in mm; R - the allowable stress in kg/mm², equal to 400/0 of tensile figure for steel of this brand/mark; D_n - tube bore in mm.

10. Ducts steel water-gas conducting.

Water-gas conducting ducts are prepared from steel of brands/marks according to GOST 380-71 by furnace butt welding or by electric welding.

Depending on the designation/purpose the ducts are tested for bending [lilegible] stretching and hydraulic pressure according to standards (Sec. § 2, Chap. 1). [lilegible].

Light and ordinary withstand pressure of (Fliegible) ducts aust and against (Fliegible) kg/cm², and intensified - 32 kg/cm².

Table 21. Assortment of steel water-gas conducting ducts (6057 3262-62).

	1	(/) Tpydu							
	·	(2) #	00°71300	(3) edum	econing .	(4) усиления			
D _y .	D _y , D _n	S. mm	(Б) масса 1 лог. м (без муфт) в ка	· S, мм	масса 1 пог. м (без муфт) в ка	S. MM	масса 1 пог. м (без муфт) 8 кг		
6 8 10 15	10,2 13,5 17 21,3	1.8 2 2 2 2.5	0,37 0,57 0,74 1,16	2 2,2 2,2 2,8	0,4 0,61 0,8 1,28	2,5 2,8 2,8 3,2	0,47 0,74 0,98 1,43		
20 25 32 40	26,8 33,5 42,3 48	2.5 2.8 2.6 3	1.5 2,12 2,73 3,33	2.8 3,2 3,2 3,5	1,66 2,39 3,09 3,84	3,2 4 4	1,85 2,91 3,78 4,31		
50 70 80 90	60 75,5 88,5 101,3	3 3,2 3,5 3,5	4,22 5,71 7,34 8,44	3,5 4 4 4	4,89 7,05 8,34 9,6	4,5 4,5 4,5 4,5	6,16 7,88 9,32 10,74		
100 125 180	114 140 (165)	4	10,85 13,42 15,86	4,5 4,5 4,5	12,15 15,04 17,81	5 5,5 5,5	13,44 18,24 21, 63		

Rey: (1). Ducts. (2). lungs. (3). usual. (4). intensified. (5). mass of 1 lin. n (without clutches) in kg.

Page 74.

Chapter III.

WELDED PARTS OF STEEL CONDUITS.

§1. General information.

The welded parts of steel conduits/manifolds using the method of their execution subdivide into the jointless, prepared with method stampings, drawings or flexure from a rough or special blank, and welded, prepared of their separate to be welded between themselves cuts of ducts or sheet steel.

Jointless parts as a result of the small labor consumption of manufacture and possibility from the centralized mass production at the specialized plants received widest acceptance and they are the basic form of the welded parts, used by assembling organizations.

Basic types and sizes/dimensions of the welded jointless and fabricated members of steel conducts/manifolds are standardized

(Fable 1). The parts, not provided for by standards, can be prepared on the working drawings of planning organizations.

Table 1. Enumeration of the standardized welded parts of conduits/manifolds made of carbon steel.

(/) Наш иенование	(2)Py. sociest. so tages	Dy. mm	(9) Honey (4)	
5) Отводы:	[1		1
5 (С.)а) крутонзогнутые под услом 90, 60 и 45°	100	40—500	MCH 120-60 MMCC CCCP	2
б) гнутые под углом 15, 30, 45, 60 и 90°	100	20400	MH 2912-62	3
Бе ы) спарные под углом 30, 45, 60 и 90°	61	1501600	MH 2877-52 MH 2880-62	4
УПолусекторы с углом ско- са 15 и 22°30° УСекторы с углом скоса 30°	64 64	1501600 1501600	MH 2881-62 MH 2882-62	5 5
Тройники равнопроходные:	100	40—350	MCH 129-69 MMCC CCCP	6
Выб) сварные	100	40—1600	MH 2883-62	7
() Тройники переходные:	100	50—350*	MCH 120-69 MMCC CCCP	8
об) сварные	100	40—1600*	MH 2887-62	9
(ба) бесшовные	too	50—100•	MCH 129-69 MMCC CCCP	10
б) сварные	-i0	150—500•	MH 2880-02 MH 2880-02	12
7.3	·····			
()) Sersywan erdoprosenn ue . 2)	100	40—500	MCH 120-60 MMCC CCCP	12
MANGENE DEGENERAL	26 25	40—600 400—600	MH 2890-62 MH 2891-62	13 14

Notes: 1. Table shows the maximum conventional pressure at which can be used welded parts. The allowable conventional pressure is determined by the type of duct, wall thickness and the brand/mark of steel from which the part was manufactured.

2. Internal diameters, noted, are given on greater diameter of

T- connection reducing to or transition.

3. Data about parts by diameter less than 40 and more than 600 mm, and also about offtakes at angle of 15 and 30°, that have limited application, in table they are not brought.

Rey: (1). Designation. (2). kg/cm², are not more. (3). Number of standard. (4). Number of table. (5). Offtakes. (5a). sharply bent at angle of 90, 60 and 45°. (5b). Dent at angle of 15, 30, 45, 60 and by 90°. (5c). welded at angle of 30, 45, 60 and 90°. (6). Half-sectors with angle of rake 15 and 22°30°. (7). Sectors with angle of rake of 30°. (8). T-connections equal-flow: (8a). jointless. (8b). welded. (9). T-connections (transitional. (10). Transitions (concentric and eccentric). (11). Silencers/plugs, flanged. (12). Bottoms. (12a). flat/plane. (12b). flat/plane finned.

Page 75.

In the system of the Ministry of the Installation and Special construction work of the USSR the centralized manufacture of jointless parts is accomplished/realized in accordance with the "nomenclature of the parts of conduits/manifolds made of carbon steel on P, to 100 kg/cm², produced by the enterprises of Minmontazhspetsstroy of the USSR, MSN 120-69/MMSS USSR*.

Fabricated members prepare on standards machine-buildings.

The limits of the use/application of welded parts depend on the type of ducts and trademark of steel from which they are manufactured.

Offtakes are used for the rotation of the axis/axle of conduit/manifold to preset angle. By construction/design they are subdivided into sharply bent ones, bent and welded ones.

Sizes/dimensions and mass of the standardize jointless sharp-bend offtakes made of carbon steel are given in Table 2.

Region 1

1, ;

Page 76.

Table 2. Offtakes jointless sharply bent on P_y from 1 to 100 kg/cm²

(HSN 120-69/MMSS USSR) . (4)

....

<u> </u>	<u> </u>	,							
	Ú,) Размер	H B ##			Macc	в в ка о Од углом	тподов ГФ	Rec/ca!
ν,	D _m	1	L ,	L.	s	900	Gije	45*	4 7 4 4
•	٠		```	-23	2,5	0,25 0, w	0,17	0,12	100
50	57	75	43	30	3,5	0,54	0,36 0,59	0,27 0,44	100
65	76	106	61	43	3.5 6 7	1.03 1.73 1.96	0,69 1,15 1,28	0,51 0,86 0,96	64 100
80	89	120	69	50	3,5 4,5 6 8	1,39 1,77 2,32 3,01	0,93 1,18 1,55 2	0,69 0,88 1,16 1,5	100
100	108	150	87	62	4 5 7 9	2.42 2.99 4.11 5,17	1.61 1,99 2.74 3,45	1,21 1,49 2,05 2,58	64
	114				6	3,76	2.51	1,88	•
125	133	190	110	79	4 5 7 10	3,79 4,71 6,49 9,1	2,53 3,16 4,33 6,06	1,89 2,35 3,24 4,55	100
150	159	225	130	93	4,5 6 8 11	6,06 8 10,5 14,1	4.04 5,33 7 9,39	3,03 4 5,25 7,04	40 60 100
	168				6 8	8,47 11,2	5,65 7,44	4,23 5,58	
200	219	300	173	124	6 7 9 11 14	14,8 17,2 22 26,6 33,4	10 11.5 14.6 17.7 22.2	7,4 8,62 11 13,3 16,7	25 64 100
250	273	375	217	156	7 9 12 16	27 34.5 45.6 60	18 23 30,4 40	13.5 17.3 22.8	25 64 tun
300	325	430	269	186	8 9 10 14 16	44,2 19,5 51,9 75,9 Rei,5	29.8 31,2 34,6 54,6 57,7	22,1 24,8 27,5 39 43,3	25 40 64 • 1 41

DOC = 79134704

PAGE W

•	0	Presspe	9 D AM		Maces	водов Ф	(CM.)		
D _y	Dg	reda	4	L.	s	900	60*	45•	R SC
360	377	526	303	217	10 12 16	74,6 89,1 117,5	49,8 59,4 78,3	37,3 44,7 58,7	40 64
400	426	600	346	248	9 11 16	87,2 106 153	58.1 70.6 102	43,6 53,1 76,2	40 64
500	120	200	200	207	(0 14	110	67.1 93,3	55.2 70	25 40

Motes: 1. Offtakes in diameter 114 and 168 mm prepare on separate orders.

2. Pressures conventional by are shown for nonagressive and slightly agressive media. Sign noted the offtakes, used for moderately aggressive media: the allowable conventional pressure for them is determined by calculation.

Key: (a). Place of marking. (1). Sizes/dimensions in mm. (2). Hass in kg. of offtakes at angle ϕ . (3). kg/cm², are not more.

Page 77.

The bent offtakes are prepared from jointless or electric welding ducts by flexure on tube-bending machines in cold or hot state. They are characterized by a comparatively large bending radius

(more than 3 D_{\bullet}), by the presence at the ends of the long straight/direct sections and because of this by large mass.

Sizes/dimensions and mass of the bent offtakes made of carbon steel are given in Table 3.

Welded offtakes are prepared from the separate elements/cells (sectors and half-sectors), cut from ducts. They have small straight/direct sections (in the limits of the minimally permissible distance between two welds) and usually a small bending radius (1.1.5 D_{7}). Welded offtakes are used when the manufacture of offtakes with the prescribed/assigned radius by other methods is hindered/hampered.

Sizes/dimensions and mass of the standardize welded offtakes made of carbon steel are given in Table 4, but half-sectors and sectors from which they are prepared, -in TABLE 5,

The welded offtakes, manufactured from seamless pipes according to GOST 8732-70 and 8734-50** are allowed/assumed and to installation in conduits/manifolds on P_T to 64 kg/cm², and manufactured from electric welding ducts according to GOST 10704-63* - on \bar{P}_T to 25 kg/cm².

T-connections are used for the device of branches from ducts.

They are subdivided into equal-flow (without a change in the diameter branch) and transitional (with the reduced diameter of branch).

Jointless T-connections are prepared from seamless pipes by hot stamping in multipass dies/stamps on crank or [iflegible] presses.

Sizes/dimensions and mass of jointless equal-flow and transitional T-joints made of the carbon steel are given in Tables 6 and 8.

Page 78.

Table 3. Offtakes best from ducts on Py to 100 kg/cm2 (HB 2912-62).

$\overline{}$. (1)	Pas	меры	9 MM					Macc	?) 8 8 K# 0	тиодов
	(3)	общи	e		(4	OTEG	дов г	од уг	TOM 4	<u> </u>	100	K ALWO	* •
	Π	Ī	1	Ì		5*	1_	50°	9	0"	1	1	1
Дy	D _H	,	1	s	L	passephy-	L	passepny-	L	резаерну- тая дливе	45*	60*	90-
40	45	140	100	2 2,5 4	158	310	181	347	240	420	0,66 0,81 1,25	0,74 0,93 1,4	0,80 1,1 1,7
50	57	180	110	3 3,5 5	185	361	214	408	290	503	1,44 1,67 2,31	1,63 1,88 2,62	2,01 2,32 3,22
65	76	225	150	3 3,5 4,5 6	243	477	280	635	375	653	2,57 2,98 3,78 4,93	2,89 3,35 4,25 5,54	3,52 4,08 5,18 6,75
80	89	280	180	3 3.5 4.5 6	293	580	3-12	653	460	800	3,69 4,28 5,44 7,12	4,15 4,82 6,13 8,02	5,09 5,9 7,5 9,82
100	108	360	220	3 4 5 7	369	723	428	817	580	1005	5,62 7,42 9,18 12,6	6,35 8,38 10,4 14,3	7.8 10,3 12,8 17,5
125	133	400	270	4 7 9	436	854	501	959	670	1168	10,9 18,6 23,5	12,2 20,9 26,4	11.2 12.1 12.1
150	150	500	340	4,5	5.27	1633	GOD	1164	HI,U	1425	17,7	.v	.44

Page 79.

			0	Per	mopu	9 44					Mace	3 R4 0	
	O	ofen			160	-	APP P	M yr.	JON 4	,		l ALTO	
	·J	J]	J] ~	150		50°	9	0.		}]
Dy	D _M	-		s	<u>د</u> (خ	passephy- Ten ganua	L	Passephy-	L S	passepny-	45*	60°	900
150	159	500	320	6 8 10	527	1033	609	1164	620	1425	23,4 30,8 38	26,4 34,7 42,8	32,3 42,5 52,4
200	219	630	450	6 7 10 12	711	1395	814	1560	1060	1890	44.0 50,5 71.9 85,5	49,2 56,3 80,4 95,6	59,6 68,2 97,4 116
250	273	800	560	7 8 12 14	881	1728	1012	1938	1350	2357	79,4 90,3 133 156	89 101 150 173	108 123 182 211
300	325	1000	650	7 8 10 14 16	1032	2085	1227	2347	1650	2871	114 130 162 224 254	129 147 182 252 286	159 180 223 308 350
350	377	1120	760	9 12 14 18	1224	2400	1407	1693	1880	3279	196 259 301 382	220 291 338 429	268 354 411 522
400	426	1250	850	7 10 12 14	1368	2682	1572	3009	2100	3664	194 275 329 381	218 309 369 428	26 5 376 449 82 1

Notes: 1. Offtakes are prepared from the jointless ducts according to GOST 8712-70 and 8731-58** and electric welding according to GOST 10704-63*.

2. Diameters and wall thicknesses of offtakes are given in accordance with fillegible and electric welding ducts of Minmontazhspetsstroy USSR, fillegible MSN 186-68.

Key: (a). Place of marking. (1). Sizes/dimensions in mm. (2). Mass in kg. of offtakes at angle ϕ . (3). general/common/total. (4). offtakes at angle ϕ . (5). expanded/scanned length.

Page 80.

Table 4. Offtakes are welded on By to 64 kg/cm2.

1 - half-sector with the angle of rake of 15°; 2 - half-sector with the angle of rake 22°30°; 3 - sector with the angle of rake of 30°.

Page 81.

(1)				(2)		3) 011	Ogu Ro	д угас	•	
, "	, азмер н			Py.	4	5*	•	9°	90	
Dy	Du	s	,	ne novec	L.	Macca B Ka	L.	MRCCS N Ke	L.	9
150	159	4,5 6 8 10	225	• • •	93	3,3 4,3 5,74 7,17	130	4,29 5,67 7,56 9,45	225	6,47
200	219	* 7 10	286	ä	194	7,92 9,35 13,2	173	10.4 12.2 17,3	300	15,6 18,4 26
250	273	7 8 10	375	25 64.	155	14,6 16,6 20,8	216	18.9 21.6 27	375	27.5 31.4 39.3
300	325	8 10 14	450	40 64	186	21.4 29.6 41	260	30,9 38,6 53,7	450	41,8 56 80,4
350	377	9 12 14	525	40 64 •	217	36,4 48,1 56,1	303	47.5 62.6 73,1	825	71,2 94 110
400	426	7 10 12 14	600	25 40 64	248	36,4 51,8 62,2 72,5	346	47,5 67,6 81,1 94,6	600	71.2 101 133 141
	530	7 8	500	16 25	207	38 43,4	289	49,4 56,5	500	74 84,8
500	330	7 8	750	16 25	310	56,4 64,5	435	73,6 84,1	750	110 126
	-	7 10	600	16 25	249	54,1 77,1	346	70,3 100	600	106 151
GAT	630	7 10	900	16 25	372	80,7 118	620	105 180	900	157 225

dotes: 1. Diameters and the wall thicknesses of offtakes are given in accordance with the "assortment of the jointless and electric welding ducts of Minmontazhspetsstroy USSR, MSN 186-68/MMSS USSR.".

- 2. Sizes/dimensions of half-sectors and sectors are given in Table 5.
- 3. Conventional designations " are indicated for nonagressive and slightly agressive media. Sign notes branches used for moderately aggressive media: the allowable conventional pressure for them is determined by calculation.

Key: (a). Offtake at angle. (b). Place of marking. (1).
Sizes/dimensions in mm. (2). kg/cm² are not more. (3). Offtakes at
angle. (4). mass in kg.

Page 82.

Table 5. Half-sectors and sectors for welded offtakes.

			(1)	уазмеры в	MM.				
			(2) _{no}	лусектор	под угло	. a	сектор пол углом с-3		
Dy	DH	'		5*	22*	30'		<u> </u>	
			н	Н,	Н	Н,	"	<i>H</i> ,	
150	159	225	39	81	60	126	78	162	
200	219	300	51	110	79	170	102	220	
250	273	375	64	137	99	212	128	274	
300	325	450	77	164	119	254	154	328	
350	377	525	90	191	139	295	180	382	
400	426	600	104	218	160	337	208	436	
500	530	750	130	272	201	420	260	544	
500	530	500	63	206	97	317	126	410	
600	630	9(X)	157	326	242	500	314	652	
GUU	630	Gin	76	245	118		152	4'41	

Note. Half-sectors and sectors prepare from the ducts of jointless ones according to GOST 8732-70 and 8734-58** and electric welding according to GOST 10704-63*.

DOC = 79134704 PAGE | 6 |

Key: (a). Half-sector at the angle of bevel of α=15° and 22°30°. (b).
Sector at angle of bevel. (c). Place of marking. (1).
Sizes/dimensions in mm. (2). half-sector at angle. (3). sector at angle.

0.

Page 83.

- §3. T-connections made of carbon steel jointless and welded.
- 1. Equal-flow T-connections.

Table 6. T-connections equal-flow, jointless on P_1 to 100 kg/cm² (MSN 120-69/mmss USSR).

		(1)P	eansbri i	MW.		B)Py.	(4)
Dy	D _m	L	4	3	(Присоеди- инемых труб)	кес/см ² , не болес	Macca & RE
40	-	40	40	2,5	45×2,5 45×2,5	40 6-1	0,24 0,27
50	57	50	50	3,5	67×3.5 57×3,5	40 100	0,54 0,89
65	76	70	70	3,5	76×3.5 76×4.5	25 100	1,95
60	86	75	75	3.5 6	89×3.5 89×4,5	16 64	1,26
100	108	90	90	5 7	108×4 108×4	25 64	2,53 3,6
125	133	110	110	7	133×4 133×4	16 40	3,15 5,43
150	159	130	130	4,5 6 8	159×4,5 159×4,5 159×6	16 25 40	5 6,6 8,75
200	219	160	140	7 10	219×6 219×7	25 40	15. 6 19,3
250	273	140	173	A 12	27.1×7 27.1×8	16 40	20,2 31,2
350	325	240	220 240	10 12	325×8 377×9	28 16	40,3 54,8

Note. Pressures conventional "y are shown for nonagressive and moderately-aggressive media.

Key: (a). Place of marking. (1). Sizes/dimensions in mm. (2). added
ducts. (3). kg/cm², are not more: (4). Nass in kg.

Page 84.

Table 7. T-connections equal-flow, welded on Pr to 100 kg/cs2 (NH 2886-62) .

		(/) Pa	змеры в м	i.At		(2)	(3) Py.
D _y	DH	L	L,	ડ	D _H ×S	Macca a #4	REC CMS,
150	159	450	220	8 11 16	159×6 159×8 159×10	17,8 24 34	64 100 100*
200	219	500	255	10 14 20	219×7 219×10 219×12	33.7 46.4 64.7	64 100 100*
250	273	600	305	11 16 20	273×8 273×12 273×14	55,1 79 97,5	64 64° 100
300	325	700	330	14 20 22 28	325×10 325×14 325×16 325×16	92 129 145 176	64 64° 100 100°
350	377	800	375	16 20 25 30	377×12 377×14 377×18 377×18	138 176 218 260	64 64° 100 100°
400	126	900	406	12 16 20 25	426×10 426×12 426×14 426×11	135 179 222 275	40 40° 64 64°
500	530	1100	490	9 14	530×8	154 2.66	14 23
-	-	1380	**	10	630×7 630×10	237 294	16

DOC = 79134704

Notes: 1. T-connections are prepared from the ducts of jointless ones according to GOST 8732-70 and 8734-58**, also, with py 500 and 600 mm - from the ducts of electric welding ones according to GOST 10704-63*.

2. Pressures conventional P_y are shown for nonagressive and slightly agressive media. T-connections with P_{y} that noted, use for moderately aggressive media.

Key: (a). Place of marking. (1). Sizes/dimensions in mm. (2). Hass in kg. (3). kg/cm^2 , are not more.

٠. :

Pages 85-86.

2. T-connections are transitional.

Table 8. T-connections jointless transitional stamped/die-forged on Pr to 100 kg/cm² (HSW 120-69/mmss USSR).

	(1) Разм	еры в и	A			Py:	(3)
$D_{y} \times D_{y}$	D _H	D' _H	L	L,	s	s,	<i>кес/см</i> ³ , не более	Macca B KE
50×40	57	45	50	45	3, 5	2.5	40 64	0,5 0,81
65×40	76	45	70	60	3,5 7	2,5 4	25 64	0,9
65×50	76	57	70	65	3.5	3,5	25 100	0,9 6 1,79
80×50	80	87	75	65	3,5	3,5	16 64	1,15

		(Pass	mpu b A				0,	9
D _y ×D _y	D _N	D' _n	L	4	3	S,	mar jear.	Macea 8 ##
80×65	89	76	75	70	3,5 6	3,5 6	16 64	1,23 2,06
100×65	108	76	90	80	5 7	:	25 64	2,36 3,27
100×80	106	89		85	;	3.5 7	25 64	2,01 3,42
125×80	133	89	110	95	4	3.5	16 40	2,89 5,1
125×100	133	108	1.0	100	7	;	16 40	2,97 5,00
150×100	159	108	130	115	4,5 6 8	4 5 7	16 25 40	4.61 6.07 7,79
150×125	159	133		120	4,5	7	16 40	4,7 8,01
200×125	219	133		140	7	4	16	24,5
			160	150	10	7	40	24,5
200×150	219	159		130	7	4,5	16	23,6
) 	140	10	8	40	23,6
250×150	273	159		180	8	4,5	16	40,6
			190	170	12	8	40	40,6
250×200	273	219		180	8	7	16	42,6
				170	12	10	40	42,6
300×200	325	219		206	10	7	25	62,4
300×250	325	273	240	210	10	8	25	Gi.7
350×300	377	325		225	12	10	16	70,7

DOC = 79134704 PAGE

Note. The sizes/dimensions of the added ducts see in Table 6.

Key: (a). Place of marking. (1). Sizes/dimensions in mm. (2). kg/cm²
are not more. (3). Mass in kg.

Page 87.

Welded T-connections are prepared from jointless or electric welding ducts via the fitting of connecting pipe into duct with the subsequent seal of joint. As a result of weakening the ducts of T-connection in the place of the contiguity of connecting pipe (due to the cutout of static opening) for obtaining the uniformly strong conduit/manifold welded T-connections prepare with the greater wall thickness, than in the added duct.

The T-connections, manufactured from seamless pipes according to GOST 8732-70 and 8734-58** from D_7 to 350 mm, is allowed/assumed to use in conduits/manifolds on P_7 to 100 kg/cm², D_7 =400 mm - to 64 kg/cm², and those manufactured from electric welding ducts according to GOST 10704-63* - to 25 kg/cm².

Sizes/dimensions and mass of welded ones it is branch made of carbon steel they are given in Tables 7 and 9.

Table 9. Welded transition T-pieces for Py to 100 km/cm2 (MH 2887-82)

			<u> </u>				,		
		(1)	Pasi	иеры :				13)	(4)
D _y ×D _y	DH	D'H	L	L	s	S,	(Д), D _H ×S-D _H ×S ₁ (присоединяе- мых труб)	Ру, не более	Macca B RE
150×100	159	108	450	210	8 11 16	7 7 9	159×6—108×4 159×8—108×5 159×10—108×7	15,4 20 27,7	64 100 100*
150×125	159	133	450	220	8 11 16	7 7 10	159×6—133×4 159×8—133×7 159×10—133×9	16,1 20,5 29	64 100 100*
20×1/5	219	137	500	250	10 14 20	7 7 10	219×7—133×4 219×10—133×7 219×12—133×9	28,2 37,5 52,2	64 100 100°
	219	159	5411	250	10 14 20	7 R 11	219×7159×6 219×10159×8 219×12159×10	28,6 34,6 83,2	6-5 1(10) 100**
* * *	•,			.740	12.7	7.8.1	273×5159×6 273×17159×6 273×11159×19	45,3 61,8 77	61 61° 1(1)
250×200	273	219	600	280	11 16 20	9 10 14	273×8-219×7 273×12-219×10 273×14-219×12	47,0 66,6 82,4	84 64° 100
300×200	325	219	700	330	14 20 22	9 10 14	325×10—219×7 325×14—219×10 325×16—219×12	80,5 113 123	64 64° 100
300×250	325	273	700	330	14 20 22	9 11 16	325×10—273×8 325×14—273×12 325×16—273×14	81,3 114 127	64 64* 100

201 (20)	1"3	219	1 000	280	20	14	273×12719×10 273×14219×12	65,8 82,4	100
300×200	325	219	700	330	14 20 22	9 10 14	325×10—219×7 325×14—219×10 325×16—219×12	80,5 113 123	64 64° 100
300×250	325	273	700	330	14 20 22	9 11 16	325×10—273×8 325×14—273×12 325×16—273×14	81,3 114 127	64 64* 100
350×250	377	273	800	360	16 20 25	9 11 16	377×12—273×8 377×14—273×12 377×18—273×14	1\9 147 183	64 64° 100
350×300	377	325	800	360	16 20 25	10 14 16	377×12—325×10 377×14—325×14 377×18—326×16	121 153 186	64 64° 100
400×300	426	325	900	380	16 20	9 14	426×10—325×8 426×14—325×10	40 64	150 191
400×350	426	377	900	(00)	16 20	16	426×10—377×9 426×14—377×12	49	180 199

Key: (a). Place of marking. (1). Sizes/dimensions in mm. (2). added ducts. (3). kg/cm^2 , are not more. (4). Hass in kg.

POOTNOTE 1. See notes to Table 7. ENDFOOTNOTE.

Page 88.

Transitions serve for changing the diameter of conduit/manifold.

By construction/design them they subdivide into concentric ones and eccentric ones.

Sizes/dimensions and mass of the standardize stamped/die-forged concentric and eccentric transitions from carbon steel are given in Table 10, welded transitions - in Table 11.

The use/application of the stamped/die-forged transitions is solved in conduits/manifolds on P_{ν} to 100 kg/cm², welded - to 40 kg/cm².

Silencers/plugs and bottoms use for covering the free ends of the ducts. Standards provided for the use/application of the flanged

stamped/die-forged silencers/plugs, flat/plane and flat/plane finned bottoms. Flat/plane bottoms depending on their diameter are installed on conduits/manifolds on P, from 2.5 to 25 kg/cm², flat/plane finned - on P, from 10 to 25 kg/cm², and the stamped/die-forged silencers/plugs - on P, to 100 kg/cm².

Sizes/dimensions and mass of the standardize silencers/plugs and bottoms their carbon steel are given in Tables 12, 13 and 14.

The groove preparation of all welded parts under weld is accomplished/realized in accordance with GOST 16037-70 (see Chapter XVII).

Pages 89-90.

§4. Transitions from carbon steel jointless and welded.

Table 10. Transitions concentric and eccentric jointless on Py to 100 kg/cm2 (HSN 120-69/MMSS USSR) .

TABLE 10 (cont.)

Ø Размеры в мл						Masca magamaga a no			
DyxDy	D,,	D' _M	L	s	s,	мес/см². (ис более	TPHYSC. Kero	MUCHUM- TON VOC- KOTO	
150×100	159	108	130	4,5 8	4 7	40 100	3,3	2,1	
150×126	159	133	130	4.5 8	1	100 100	2,3 3,6	2,3	
200×126	219	133	140	7 10	7	40 100	4,3 6	=	
200×150	219	159	140	7 9 11	4.5 7 8	25 64 40°	4.5 5.7 6.4	4,7 	
25 0 ×150	273	159	160	7 9 11	4.5 7 8	25 64 40°	7,2 8,9 10,2	111	
250×200	273	219	160	7 9 11	7 8 10	25 6-1 40°	6.9 8.6 10,4	6,9 	
300×200	325	219	180	10 10 14	7 8 10	61 64 64*	12,4 16,7	12,4	
300 ×250	325	273	180	9 10	7 9	40 64	11.9 13	13,1	
				14	11	64*	17,9	-	
350×250	377	273	300	10	9	40	23,6	23,6	
350×300	377	325	300	10	10	40	25,3	25,3	
400×250	426	273	350	7	7	25	21,1		
				11	9	40	32,8	_	
400×300	426	325	350	7 11	6 10	25 40°	22,4 34,9	34,9	
400×360	426	377	360	н	10	40	37,1	37,1	

PAGE 164

DOC = 79134704

Mote. Pressures conventional ?, are shown for nonagressive and slightly agressive media. Transitions with ?, that noted, use for moderately aggressive media.

Rey: (a). concentric transition. (b). eccentric transition. (c).
Place of marking. (1). Sizes/dimensions in mm. (2). kg/cm², are not
more. (3). Mass of transition in kg. (4). concentric. (5). eccentric.

11.

DOC = 79134704

Pages 91-92.

Table 11. Transitions concentric and eccentric welded on A to 40 kg/cm².

-

•• :

TABLE 11. (cont.)

О Размеры в мы					0	
ρ _y ×ρ΄ _y	D _B	D' ₃	L	s	Д, . D _H ×S-D _H ×S ₁ (присоединяе- мых труб)	Macca s
300×150 300×200 300×250	307	143 201 253	225	10	325×10—159×7 325×10—219×8 325×10—273×9	14,1 15,3 16,1
350×250 350×300	361	256 307	300	10	377×9—273×7 377×9—328×9	24,6 25,8
350×250 350×300	359	253 303	300	10	377×10—273×9 377×10—325×10	24 26,4
400 × 300 400 × 350	408	30 5 357	350	10	426×10—325×9 426×10—377×9	33 34,4
400×300 400×350	406	303 355	350	12	426×11—325×10 426×11—377×10	39,6 41,3
500×350 500×400	514	357 401	600	10	530×9—377×9 530×9—426×10	66,7 70,7
500×350 500×400	506	355 402	600	14	530×14-377×10 \$30×14-426×11	92,9 98,9

Motes: 1. Table shows the mass of the concentric transitions: the mass of eccentric transitions to 1-30/o is more.

- 2. Transitions are prepared from rolled sheet steel with one weld. Is allowed/assumed the manufacture of transitions of two halves (with two longitudinal welds).
- 3. Transitions from p_y to 400 nm inclusively use to conventional pressures p_y to 40 kg/cm², and with p_y 500 nm on p_y to 16 kg/cm².
- 4. It is allowed/assumed to use transitions for ducts in wall thickness on 1 mm more or less indicated in Tables 11.

Key: (a).

Place of marking. (1). Sizes/dimensions in mm. (2). added ducts. (3). Hass in kg.

Page 93.

§5. Plugs and bottoms are welded.

Table 12. Silencers/plugs flanged on P_{Y} to 100 kg/cm² (MSH 120-69/mmSS USSE).

		• A			<u>it</u>		
		1			•	•	
	(/) Passe	PM B MM		1.	Py(2)	(3)	
Dy	D _m	s	L	^	изс/см ³ , не более	Macca B #	
.50	57	3,5	41		100	0,2	
	<u> </u>	5	42		1000	0,3	
66	76	3,5	45	7	64	0,3	
	"	7	47	-	100*	0,6	
80	1 _	3,5	49	-[64	0,4	
	89	7	51	-	1000	0.8	
100	108	4	54	- 25	64	0,7	
	100	7	55	-	100*	1,2	
125	133	4	60	1	64	0,9	
120	133	7	62	7	100*	1,5	
150	159	4,5	67		40	1,3	
		8	69]	100*	2,3	
200	219	7	82	25	64	4,1	
		10	100	40	100*	5,7	
250	273	8	97	25	64	6	
		12	114	40	64•	9.9	
300	925	to	96	25	64	11,6	
		14	100	10	61*	15,7	
350	377	377	10	109	25	40	18,1
		12	109	25	640	29,1	
380	377	16	120	•	100-	*	
			121	25	*	15,4	
400	426	10	121	25	40	18,9	
		12	134	•	**	22,4	
600	***	1 10		1 1			

Motes: 1. Material and technical requirements - see §6 of this chapter.

2. Pressures conventional *, are shown for nonagressive and slightly agressive media. Silencers/plugs from *, noted*, they use for moderately aggressive media.

Key: (a). Place of marking. (1). Sizes/dimensions in mm. (2). kg/cm²,
are not more. (3). Mass in kg.

Page 94.

Table 13. Bottoms flat/plane on P_Y to 25 kg/cm² (SH 2890-62).

ひ.		(2) Pa	зиеры в ж			(3)
Py.		трубы	E	днища	днища	
Nac/CM	Dy	DHXS	D	s,	•	<u> </u>
1-10	150	159×4.5	148	8 10	45*	1,00
25	100	135 X 4,3	1749	i2	(31)*	1,35
1-10		219×7	2013	10	45*	3.7
16 25	(s)	30/87	4 (A)	16	9 10	- 336
1-10	251	271×7	257	19		! ::
16 25	3.31	27197	2.11			
1-10	200	700.00	305	12 20	45*	6,96 11,6 17,9
16 25	300	325×9	303	21	30*	17.9
1-10	360		367	16	45*	12.5
16 25	350	377×9	367	24 28	30*	22.
1 = 2,5	***		410	10	30*	10.6
6 10	400	426×7	410	20 24	314	21,3 25,6
1 m 2,5	500	530×7	514	16 24	30*	26,3 39,6
1 = 2,5	#30	630×7	614	16	30*	37.6 \$6.5

Notes: 1. Bottoms are prepared from sheet steel according to GOST 500-58**.

- 2. For $p_y=400$ and more, $p_y=16$ and 25 kg/cm² and for $p_y=500$ and 600 mm, $p_y=10$ kg/cm² use finned bottoms on HH 2892-62, see Table 14.
- 3. Diameters of bottoms more precisely formulate according to actual tube bores taking into account gap not more than 2 mm side. Values D in Tables 13 and 14 corresponding to nominal sizes of tube bores with gap 1 mm for side.

Key: (a). Place of marking. (1). kg/cm². (2). Sizes/dimensions in mm.
(3). Mass in kg. (4). duct. (5). bottom.

Page 95.

Table 14. Bottoms finned on P_Y to 25 kg/cm² (BH 2891-62).

Key: (a). Place of marking. (b). Unit. (1). Sizes/dimensions in mm. (2). kg/cm^2 . (3). duct. (4). bottom. (5). Mass in kg.

POOTNOTE 1. See note to Table 13. ENDFOOTNOTE.

Page 96.

§6. Technical requirements.

1. Technical requirements for the manufacture of sharp-bend and stampings of conduits/manifolds (TU 36-933-67/MMSS USSR).

Technical requirements extend to the parts, prepared in accordance with the nomenclature of MSN 120-69/MMSS USSR).

Minmontazhspetsstroy USSR.

Material of branches, reducers, end cans and m-ioints - steel brand 20 according to GOST 1050-60** end cans and reducers of steel may also be made from sheet steel brand VSt3sn according to GOST 230-71

Manufacturing tolerances from geometric form and nominal sizes of parts must not exceed the values, indicated in Mables 15 and 16.

Deviations with respect to the outside diameter of part D_{π} in intermediate sections/cuts must not exceed $\pm 3.50/0$ of nominal value of diameter.

Wall thickness in any section/cut of part must be not less than 850/0 of nominal of the value with wall thickness to 15 mm in not less than 87.50/0 with thickness or wall of more than 15 mm.

Page 9 7.

2. Technical requirements for manufacturing internal offtakes (NW 2912-62).

Technical requirements are propagated to the bent offtakes, prepared as commercial goods on tube-bending machines with the induction heating or any other method.

Material of offtakes - steel of brand 20 IPO GOST 1050-60**
Offtakes from electric welding ducts according to GOST 10704-63* can
be also prepared from steel of the brand/mark VSt.3sp according to
GOST 380-71.

Manufacturing tolerances from geometric form and sizes/dimensions of offtakes must not exceed the values, indicated in Table 17.

The wall thickness of offtakes in any place must be not less than 850/o nominal thickness taking into account minus deviation.

The ovality of the section/cut of offtakes in the places of bend, defined as the ratio of the difference between greatest and smallest external diameters to mominal outside diameter, must not exceed 0.1 (Table 17).

The deviations of centerlines at the ends of the offtakes during mold. | Loft their imposition [illegible] must not exceed 2 mm for offtakes D. <219 MM and 3 mm [illegible] for large-diameter offtakes.

Table 15. Manufacturing tolerances from the geometric form of stampings in mm, are not more.

(1)	S, 44								
Допускаемые отплонения	2,5—3	3,5	4.5	5	6	7—8	914	course 14	
The $D_{\rm BH}$ spacealizatestables acceptance	±0,5	±	.0	±	1,5	12,0	±2,5	±3,0	
У От перпендинуляриости торцов к оси детали	2,0		0,1				1,5		

Key: (1). Allowed deviation. (2). it is more than. (3). On $\mathcal{Q}_{\mathcal{BH}}$ leads. (4). Prom perpendicularity of ends/faces to axis/axle of part.

Table 16. Manufacturing tolerances with respect to structural length.

(1)	D _N , MB								
Допускаемые отклонения по строительной длине	45—133	159219	273 —377	426\$30	свыше 530				
Отводы, переходы, трой- ники	±2,0	±3.0	±4.0	±5,0	±6,0				
Заглушки	±4,0		±6.0		±10.0				

Key: (1). Hanufacturing tolerances with respect to structural length.
(2). it is more than. (3). Offtakes, transitions, T-connections. (4).
Silencers/plugs.

Page 98.

Table 17. Manufacturing tolerances from the geometric form of the bent offtakes in mm, are not more.

10)	D _{II} , AA								
Допускаемые отклонения	(2) Ro 57	76—133	159 1 9 4	219	273 325	(3) CBL::Ue 326			
(4) Волинстость (высота гофр)	3,0	4,0	5,0	6,0	7,0	8,0			
(5) Непервендинулярность тор- щов и оси отвода		0,0	1,	.5		ĻO			

Key: (1). Manufacturing tolerances. (2). to. (3). it is more than.(4). Undulation (height corrugation). (5). Monperpendicularity of ends/faces to axis/axle of offtake.

3. Technical requirements for the manufacture of the fabricated members of conduits/manifolds (MN 2893-62).

Technical requirements are propagated to welded offtakes, sectors, half-sectors, T-connections and transitions, prepared as connectial production.

Material - steel of brand 20 according to GOST 1050-60★ parts

DOC = 79134705 PAGE /78

from electric welding ducts and transitions from sheet steel can be also prepared from steel of the brands/marks of St. 3sp and VST. 3sp according to GOST 380-71.

Manufacturing tolerances from geometric form and sizes/dimensions of fabricated members must not exceed the values, indicated in Table 18.

Deviations from the perpendicularity of the axis/axle of connecting pipe to the axis/axle of duct in T-connections must not exceed 1°.

The welds in parts must be equal, craters are welded; the edge of welds they must be coupled with base metal smoothly, without sharp transitions and rolls.

Table 18. Hanufacturing tolerances from geometric forms and sizes/dimensions of fabricated members in mm, are not more.

Key: (1). Manufacturing tolerances. (2). to. (3). From perpendicularity of plane surfaces to axis/axle of pass of part. (4). Bores in ends/faces. (5). From parallelism of ends/faces. (6). Dissymmetry of connecting pipe in T-connections. (7). Structural lengths in offtakes.

DOC = 79134705 PAGE /80

Page 99.

Chapter IV.

PLANGES AND PLANGED PLUGS.

§1. Flanges.

Constructions/designs, sizes/dimensions and material of the basic types of the flanges of conduits/manifolds and connecting pieces, and also entrance and exit flanges of fittings, instruments, apparatuses and reservoirs are regulated by the corresponding standards.

The types of flanges on P_{ν} : from 1 to 200 kg/cm² according to GOST 1233-67 and silencers/plugs of flanged ones, their material and limits of use/application depending on the value of internal diameter and conventional pressure are given in Table 1.

Pages 100 - 103,

Table 1. Types of flanges (GOST 1233-67) and flanged silencers/plugs.

	45	(9)	Пределы н	barrenana		(A)
(A) THE GRANDS	Форма уклютинтельной поверхности	гост (d)	Py. Rec/cm²	Dy.	£. ° C	possep- non tag- augus
I. Литой из серого чугуна	(Га) С соеднинтельным высту- пом	1235—67	1—16	15—3000	/_ \	
	(ТА) С выступом или впадниой	12815—67•	1—16	15800	(Та) До 300	-
	(Те) С шипом ням пазом	12816—67*	1—16	15-800		
II. Литой на коњкого чугу- на	С соединительным высту- вом	[::81757°		ļ	(II)	
	Выступом или впадиной	1281867*	16-40	1580	До 400	-
	EC шипом няи пазом	12819—67•				
III. Литой стальной	DES BACTYUS	1282067*	1640	15—1600	» 450	-
	С соединительным высту-	1282167*	1625	15—1600	». 450	
	ROM	12021—01	40200	15800	> \$30	-
	(Д.) С выступом чли впадиной	12822—67*	16; 25	15-800	» 450	
			40200	15—800	> 530	-
	С пином или пазом	12823—67•	16; 25	15800	> 450	
			40100	15—800	> 530	
	Под ликзовую прокладку	12624—67*	64200	15-400	. 530	_
ROMAGETS SO:HE.	Под прокладку овального сечения	1282567*	64200	15-400	A0 830	 -
IV. Стальной с шейкой на резьбе	Без выступа	1282ò67	116	10—150	> 300	2; 3; 4, 6 11
	пом соединительным высту-	1245—67	1-16	10—150	- 300	2; 3; 4; 6; 11
V. Стальной плоский при-	Без выступа	12827—67•	1-25	10-1600	» 300	
•	пом соединительным высту-	1.:55—67*	1-25	10—1600	. 300	2—6; 13; 13
	выступом или впадивой	12829-67*	1-25	10—800	> 300	2-6; 12; 1
VI. Стальной ариварной встык	Без выступа	12829—57*	1-40 1-25	10—1600 10—1600	450 450	2—10; 1·
	С соединительным высту-	1243067*	40-300	10-800	. \$30	2—10; 1 16

(VI) Стальной приварной встыя	D	12831—674	1-36	10	Do 400	2—10; 14;
	С выступом или впадиной	126316/4	40—200	10—500	» 530	17
	E)		125	10800	. 45 0	2—10: 14
	С шилом или пазом	12632—67*	40-200	10-500	s 530	18
	ПОД Прокладку овального сечения	12833—67*	64200	10-400	> 530	2-10; 14
	Под линзовую проиладку	12835—67*	64200	10400	. 530	19
VII. Стальной свободный ва вриварном кольце	С соединительным высту- пом	126867*	125	10500		
	Выступом или впадиной	1283467*			» 300	2—6; 19; 20; 21
>:11 Стальной свободный ва ««С ртованной трубе	вом	1272—67 』	1; 2; 5; 6	10500]	
13. Зеглушки фланцевые стальные	C CORRESPONDENCE SMICTY-	13636—67•	126	10-1606	480	2-9; 22; 23
			40	10500	530]
	C BMCTABON	1283767*	40—200	10500	530	2—9; 22; 24
	C STREET	1283867*	125	10500	450	2-9; 22;
			40		530	25
	BOX SPOKRARKY OSANSHOTO	12639—67*	64; 160	10-400	\$30	29; 22; 26

Note. The data about the flanges of pressure piping (on P_y -xxx-xxx kg/cm²) see in chapter VI.

Key: (a). Type of flange. (b). Form of packing surface. (c). Limits of use/application. (d). kg/cm^2 . (e). Number of dimensional table.

(I). Poured from gray cast iron. (Ia). With uniting projection. (Ib). With projection or hollow. (Ic). With journal or slot/groove. (Id). To. (II). Poured from malleable cast iron. (III). By poured steel. (IIIa). Without projection. (IIIb). under lens ply. (IIIc). under the ply of oval section/cut. (IV). Steel with neck on thread. (V). Steel flat/plane welded. (VI). steel welded butt. (VII). Steel free on welded ring. (VIII). Steel free on flanged duct. (IX). Silencers/plugs flanged steel. (IXa). with projection. (IXb). with journal.

Page 104.

For the purpose the safeguards of interchangeability of the flanges of all types their coupling dies (outside diameter, diameter of bolt circumference, quantity and diameter of bolt holes) are standardized and established/installed identical for one and the same conventional pressures and internal diameters independent of construction/design and material of flange (Table 2 and 3)).

Table 2. The coupling dies of flanges in mm (GOST 1234-67).

Dy	}	Py=1	n 2.5 m	(CM)			Py	6 Rec	(H)		
	D	B	D ₁	1 4	1 12	D	В	D ₁	d		
10	75	60	50			75	60	50			
15	80	65	55	12		80	65	56	12		
20	90	70	65	"	•	90	70	65	12		
25	100	75	75			100	75	75		·	
32	120	95	90			120	95	90			
40	130	100	100	14	'	130	100	100	14	•	
50	140	110	110				140	110	110	, ,	
65	160	125	130						160	125	130
80	185	110	150			185	140	150			
100	205	155	170			205	155	170	1.0		
125	2.15		20	14		235		200	'"		
180	26		75		'	וניי.	<u> </u>	2.5			

Page 105.

Continuation Table 2.

Dy		Py-1	J2,5 m	lut B		<u> </u>	Py	_6 nac	len,		
_ y	D	8	D,	4	A	D	B	D,	1 4	1 /4	
200	315	-	200	18	8	315	-	280	18	8	
250	370	-	335			370	-	335	1"	1 °	
300	426	-	396	· _	12	435	-	395		12	
350		-	15	23		495	_	145	23	"	
400	836	-	495	23	~	16	533	-	495		16
500	540	-	670		1 "	640	_	600		10	
600	756	_	705	27	20	756	-	705	27	20	
800	975	-	920		24	975	-	920	30	24	
1000	1175	-	1120		28	1175	_	1120	30	28	
1200	1375	_	1320	30	32	1400	_	1340		32	
1400	1575	_	1530		36	1620	_	1560	33	36	
1600	1795	_	1730		40	1820	_	1760		40	

D,		Py-	10 mgc/es	98		Py=16 nacion					
	D		D,	1		D	B	D ₁	1	1 1	
10	90	70	60			90	70	60			
15	95	75	65	14		95	75	65]	}	
,77	105	#n	75	'	١.	105	80	75	14	١.	
:	115	's)	AS			115	90	85		'	
	1.5	11.5	1101	14		135	105	100			
•	.	\$179	110	"	in		146	110	110	18	ĺ

Page 106.

Continuation Table 2.

Dy		Py-	10 Rec/C	5			Py	-16 🚙	125	
	۵	В	D,	ď		D	B	D,	4	1 4
50	160	125	125			160	125	125		
65	180	140	145		4	180	140	145		4
80	196	150	160	18		196	150	169	18	
100	215		180			215	_	180		
125	245		210			245	-	210		
150	280		240		8	280	-	240		
200	335	-	295			335	-	296	23	
250	390	~	350	23		405	-	388		12
300	440		400		12	160	-	410	27	
350	500	-	460			520	_	470		
400	565	-	515		16	580	-	525	30	16
500	670	-	620	27		710	-	650	33	
600	780	-	725	30	\$0	8-10	-	770		20
P00	1010	-	950		24	1020	-	960	40	24
1000	1220	-	1160	33	28	1255	-	1170	46	28
1200	1455	-	1380	40	32	1485	-	1390		22
1:400	1678	-	1590	43	36	1685		1590	52	•
1600	1915	-	1820	5:2	40	1925	-	14,44	·A	•

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH HANDBOOK ON SPECIAL WORKS. TECHNOLOGICAL LINES OF INDUSTRIAL EN--ETC(U) OCT 79 Y NIKOLAYEVSKIY FTD-ID(RS)T-1347-79-PT-1 NL AD-A084 528 UNCLASSIFIED 3 - 6

DOC = 79134705 PAGE 197

Page 107.

Р,		Py	-25	(cat ^a			Py-	-40_J/5	ent.	
7	D		D,	1 4	A	D	8	D,	1 4	A
10	90	70	60			90	70	60		_
15	95	75	65	14		95	75	65		
29	105	80	75	"	ł	105	80	75	14	
25	115	90	85		4	115	90	85		4
32	.35	106	100			135	105	100		
40	145	110	110			145	110	110		
50	160	125	125	18		160	125	125	18	
65	180	-	145			180	-	145		
80	196	<u> </u>	160			195	-	160		
100	230		190	23	8	230	-	190	23	8
125	270	_	220			270	-	220	27	
150	300	,	250	27		300	-	250	"	
200	360	-	310		12	375	-	320	30	12
250	425	-	370	30	<u> </u>	445	-	385	1	
310	485		430			510	-	150	33	
350	550	_	490	33	16	570	-	510		16
71)	610	-	550			665	_	585	40	
80	730	-	660	40	20	735		670	43	20
40	14 (9)		770			890		795	52	
•1.	6.25	-	970	-16	21	រេះថ	_	1030	58	24
••	(3	1	1210	34	.**	-	-	-	-	-

Page 108.

Continuation Table 2.

D.,	Py=40 mm/cm²									
_у	D	В	D ₁	ď	A	D	8	D ₁	4	^
1200	1525	-	1410	58	32	<u> </u>	<u> </u>	<u> </u>	-	-
1400	1750	_	1649	62	*	-	<u> </u>	-	l –	-

D		Py=61	nee/cm²			Py-=10	and car	
D _y	D	Di	1 4		D	Di	d	
10	100	70	14		100	70	14	
15	105	75	"		105	75	"	
20	125	90	18	ļ	125	90	18	
25	135	100	1	4	135	100		١ ،
32	150	110		İ	150	110	23	
40	165	125			165	125		
50	175	135	23		195	145		
65	200	160			220	170	27	
80	210	170	<u> </u>		230	180		8
100	250	200	27	В	265	210	30	
125	295	240	30		310	250	33	
150	340	280	33		350	290		
200	405	345		12	430	360	40	12
250	470	400			500	430		
300	530	460	40	16	585	500	46	14
250	595	525		"	658	560	5.2	

Page 109.

Continuation Table 2.

D.		Py-41 g	re/em*		Py=100 mac/cm ³			
	D	Dı	4	n	D	D,	ď	А
400	670	585	46	16	715	620	52	16
800	800	706	52	20	_	-	-	-
***	105	820			-	-	-	_

Dy		Py-160	nee jeur			Py-20	an cut)
- y	D	D _i	4	A	D	D,	1	A
10	100	70				_		
18	106	. 75	14		120	82	23	
20	125	90			130	90		
25	135	100	18		150	102	<u> </u>	1
35	150	110			160	115		
40	165	125	23		170	124	27	
50	196	145			210	160		
66	220	170	27		260	203	30	
80	230	180			290	230	33	
100	265	210	30		360	292	40	
125	310	250	33		365	318		
191	360	290	33 -		440	360	46	12
20.	431	360	40	12	£35	440	32	

PAGE 190

DOC = 79134705

Page 110.

Continuation Table 2.

D. .		Py-100	35/est		Py-200 perfect				
- y	D	D ₁	d	A	D	D,	d		
250	500	430	40	12	ഞ	572		16	
300	895	500	44	16	1 -	-	_	-	

Note. The connecting sizes/dimensions of the flanges of fittings, connecting pieces and conduits/manifolds, which work under conditions of vacuum, if there are no special requirements, and also at operating pressure $\frac{p_{pol}}{pol}$ to 1 kg/cm² are accepted on $\frac{p_{gol}}{pol}$ and 2.5 kg/cm².

(a). hole
Key: (1). and. (2). kg/cm².

Table 3. Nominal thread diameter of bolts or pins for flange joints in mm.

Диаметр отверстия	12	14	18	23	27	30	33	•	45			•
(2) Номинальный диа- метр розьбы болга яли шпильки	10	12	16	20	24	27	30	36	42	46	52	545

Rey: (1). Diameter of hole. (2). Mominal thread diameter of bolt or pin.

Depending on pressure in conduit/manifold and properties of the

PAGE 191

DOC = 79134705

transported medium the flanges of all types can be manufactured from with various forms packing surface, provided for by the appropriate standard for flanges (Table 4-10).

4-2

Page 111.

Table 4. Sizes/dimensions of flanges with uniting projection in mm (GOST 1245-67; 1255-67*; 12830-67*).

					Py. Kac	(cm ₃			
Dy	1; 2,5	6	10	16	25	40	61	100; 160	3111
					D,				
10	35	36	40	40	-10)	40	50	50	
1 5	40	40	45	45	45	45	- 55	1 1	}
29				59	58	58	66	68	63
*	80	60	68	68	68	68	78	78	73
32	70	70	78	78	78	78	85	85	86
40	80	80	68	88	88	88	96	96	91
80	90	90	102	102	102	102	108	115	129
65	110	110	122	122	122	122	132	140	167
80	128	128	138	139	138	138	142	150	190
100	140	149	158	158	162	162	170	175	245
125	178	178	186	186	186	188	205	210	271
150	202	202	212	212	218	218	240	250	306
200	258	258	268	268	278	280	300	315	380
290	312	312	320	320	335	345	355	380	508
300	355	365	370	378	390	410	415	445	_
350	415	415	430	439	450	465	475	500	
400	465	482	465	490	506	535	525	560	_
800	570	870	585	610	615	615	_	-	_
(/1)	670	670	685	720	720	_	-	-	
No.	R40	Reji	905	900	930	-	-	-	_
	1:40	10-41	1110	1110	-	-	-	-	_
		1.16	11.5	103	-	-	-	-	

DOC = 79134705 PAGE 193

continuation Table 4.

1400	1460	1510		-	-	-		-	_
1000	1690	-	-	-	-	-	-	-	_

Notes: 1. Size/dimension h₁ - see Table 6.

2. Flanges with p_y -350 and 400 mm use to p_y not more than 100 kg/cm².

Key: (1). kg/cm2.

Pages 112-113.

Table 5. Sizes/dimensions of male flanges or hollow in mm (GOST 12828-67*; 12831-67*; 12834-67*).

		22				
			Py &	20/02 ³		
Dy	1;	2,5; 6	(2) or 10 a	o 160 pg 4.	3	00
	D,	D ₄	D,	D.	D,	D.
10	29	30	34	35	-	
15	33	34	39	40	27	.9
20	43	41	50	51	34	13
25	St	52	57	'4	41	6:
*		•	65	66	•	50
•	•	70	78	76	56	55
80	80	81	87	88	69	70
•	100	101	109	110	96	97
**	115	116	120	121	115	116
100	137	138	149	150	137	138
136	106	167	175	176	169	170
180	191	192	203	204	189	190
200	249	250	259	260	244	245
289	308	304	312	313	318	319
300	356	357	363	364	_	_
360	105	407	421	422		I –
400	456	467	473	474		-
500	561	562	575	576		-
600	661	662	677	678	_	-
970	967	900	677	678	_	1 _

DOC = 79134705 PAGE 75

Note. The sizes/dimensions: D_2 - see Table 4; h_1 , h_2 and h_3 - see Table 6.

Key: (1). kg/cm². (2). from. (3). to. (4).

DOC = 79134705 PAGE 196

Page 114.

Table 6. Height of uniting projection, projection and hollow of flanges in mm.

		P	y. Mayers			
, v*	1-30	1100	240	1-140	200	
	A.	A,		A,		
1	,	4	\$	3	4	
4050	•		. \$		4	
100-250			•		8	
300—500	4	5		4		
600—800		6	-	5	_	
9001600	•			_		

Key: (1). kg/cm2.

DOC = 79134705 PAGE \$97

Page 115.

5.

Table 7. Sizes/dimensions of flanges with journal or slot/groove in mm (GOST 12832-67*).

		Py.	rec/ca.		1	1	Py	ese/cas	
Dy	1; 2;	5; 6	10-	-100	D _y	1; 2	5; 6	10—100	
	D,	D,	D,	D,	<u> </u>	D,	D,	D,	D.
10	19	18	21	23	25	41	40	43	42
15	23	22	29	28	32	49	48	51	50
20	33	32	36	35	10	56	54	61	40
	-	-	73	72	260	263	262	292	291
•	-	=	=	24	300	336	336	343	312
80	101	100	106	106	350	383	386	395	394
100	117	116	129	128	400	436	435	417	416
125	146	145	155	154	500	541	540	549	548
150	. 171	170	183	182	600	636	604	651	-
200	229	226	200	236		841	610	851	-

Notes: 1. Sizes/dimensions D_2 , D_4 and D_6 - see Table 4 and Table

2. Sizes/dimensions h_1 , h_2 and h_3 - see Table 6.

For P_y -0 kg/cm² are used the flanges only to p_y -500 mm inclusively; for P_y -44-100 kg/cm² - to p_y -400 mm inclusively.

Key: (1). kg/cm2.

DOC = 79134705

Page 116.

Table 8. Sizes/dimensions of flanges under the ply of oval section/cut in mm (GOST 12833-67*).

Note. Sizes/dimensions D_2 and h_1 - see in Table 4 and 6; b_1 and in Julia b_4 , $\frac{1}{2}$ 9.

Key: (1). kg/cm2.

Table 9. Sizes/dimensions of cannelure under the ply of oval section/cut in um (GOST 12833-67*). . .

				Py #	~(gg			
Dy	44	100	100	200	64	100	100	380,
	<u> </u>		b _i				k,	
10-40		9	•	9		5,5	6,5	4,5
50—100			12	12			8	٠
125				14				10
150] ,	2	14	17		8	10	11
200		-	17			•		"
250			"			:	11	
300			23	_			14	-
360; 400	12	17	-		•	11	-	

Hote. For $p_{y^{-100}}$ and 200 kg/cm² flanges $n_{y^{-10}}$ am do not use.

Key: (1) . kg/cm^2 .

Page 117.

Table 10. Sizes/dimensions of flanges under lens ply mm (GOST 12835-67*).

	Py	. Rec/CH	• •		Py	. Kec/cm)	
(Dy	64; 100	160	200	Dy	64; 100	160	200	
		D,				D,		
10	18	-	-	100	124	124	115	
15	24	24	28	125	153	153	145	
20	30	30	32	150	181	181	178	
25	35	35	37	200	243	243	225	
32	43	43	43	250	298	296	-	
40	52	52	56	300	345	348	-	
50	63	63	63	380	394	-	-	
46	*	85	90	400	445	l -	<u> </u>	
•)	97	97	97	-	1 -	_	_	

Note. Sizes/dimensions D_s and h_s - see in Tables 4 and 6.

Key: (1) . kg/cm2.

Page 118.

Flanges without projection are used for pressures to 40 kg/cm² depending on the type of flange.

Flanges with uniting projection are most general-purpose and are used in the majority of conduits/manifolds on P_r to 200 kg/cm² (flanges welded butt) or to 25 kg/cm² (remaining types of flanges).

Flanges with packing surfaces "projection - hollow" and "journal - slot/groove" use on the conduits/manifolds where is required the high density of connection or are transported products with the high penetrating power (ammonia, Freon, etc.), toxic, with fire dangerously explosive substances, and also on the conduits/manifolds, which work in vacuum.

Planges with packing surface under lens and ring gaskets are used in conduits/manifolds on P_7 from 64 to 200 k/cm².

basic dimensions and weight of the flanges of different types are given in Table 11-21.

to g

Page 119.

Table 11. Planges are steel with neck on thread on $P_{Y'}$ from 1 to 16 kg/cm².

	(2) P	азмеры	3 MM		Ţ,	Масса фля	mas s xs
Dy	Chionms	D	b	h	Da	(5) без выступа	с соеди- кительным выступом
			Py -1; 2,	H 6 739	(CM2		
10	2/4	75	10	18	23	0,31	0,32
15	1/4	817	"	"	28	0,:15	0, 3
20	٧,	90	11	22	37	0,52	6.15

• •

	(2)	Масса фланца в ка					
a _y	04	•	•	•	Da	G Ges BUCTYRS	есседи- нительным выступом
25	1	100	n	22	42	0,63	0,65
22	11/4	120		24	50	0.9	0,93
40	11/0	139			56	1,05	1,1
50	2	140		25	72	1,23	1,29
65	2'/2	160		27	84	1,5	• 1,6
80	3	186	13	29	96	2,26	2,4
160	4	206		33	122	2,65	2,79
135	•	235		35,	150	3,3	3,40
180	•	200			176	3,84	4,04
			. Py-10	P16 KE	cicus		•
10	3/6	90	ł	18	26	0,54	0,56
14	1/0	95	12		30	0,6	0,62
29	*/4	105		22	38	0,77	0,79
*	1	115			48	0,93	0,96
32	11/4	135	13	24	56	1,44	1,39
. 40	11/2	145			66	1,57	1,64
50	2	160	15	25	76	2,11	2,2
66	21/2	180		29	96	2,73	2,84
80	3	196	17	31	112	3,56	3,68
liu)	4	215		37	132	3,96	4,12
125		245	19	39	164	5,6L	5,70

...

DOC = 79134705 PAGE 205

Note: 1. Coupling dies $D_{i,j}$ d and n - see in Table 2.

- 2. Nominal diameter of thread of bolts or pins see in Table 3.
- 3. Sizes/dimensions of connecting projection D_2 and h_1 ~ see in tables 4 and 6.
 - 4. Material see Table 27.
- 5. (illegible) flanges tube cylindrical according to GOST 6357-52, class 3.

Key: (a). Without projection (GOST 12826-67). (b). With uniting
projection (GOST 1245-67). (1). Opening. (2). Sizes/dimensions in mm.
(3). Mass of flange in kg. (4). inches. (5). without projection. (6).
with uniting projection. (7). and. (8). kg/cm².

A. 20 .

Page 120.

Table 12. Planges steel flat/plane welded on Py from 1 to 25 kg/cm2.

Key: (1). For. (2). kg/cm^2 . (3). and. (4). opening. (5). Eithout projection (GOST 12827-67*). (6). With uniting projection (GOST 1255-67*). (7). With projection or hollow (GOST 12828-67*).

Pages 121-122.

	(/) Pa	meber a we		(4		Annes		
Dy	d _R	4,	D	•	Son BASTYNA	SHCT-ALION LOUBTHIN- LOUBTHIN-	6 DAMETYTRAM	(C) programe
				Py=1; 2,	(7) \$ KRC/CM ²			
10	14	15	75		0,24	0,25	0,25	0,24
15	18	19	80		0,27	0,29	0,29	0,27
30	25	26	90		0,42	0,45	0,45	0,42
25	32	33	100	10	0,81	0,85	0,55	0,52
32	38	39	120		0,75	0,79	0,79	0,75
40	45	46	130		0,85	0,95	0,93	0,9
50	57	59	140		0,95	1,04	1,02	0,98
65	76	78	160	11	1,27	1,39	1,37	1,32
80	89	91	185		1,67	1,84	1,79	1,74
100	106	110	205		1,94	2,14	2,11	2,01
125	133	136	235		2,33	2,6	2,56	2,42
150	159	161	260	13	3,13	3,43	3,39	3,23
200	219	222	315	15	4,38	4,73	4,60	4,48
250	273	273	370	18	6,49	6,95	6,92	6,62
300	325	325	435		8,57	9,33	. 9,22	8,79
350	377	377	485		9,63	10,45	10,23	9,87
400	426	426	535	,	9,69	11,64	11,81	9,96
500	530	530	640	<u> </u>	14,82	16,01	15,86	15,15
600	630	630	755	20	19,54	21,35	21,03	29,06
800	820	820	975	21	33,22	36,63	36,15	34,14
1000	1020	1020	1175	سم ا	48,32	52,58	-	-
1300	1230	1220	1376	25	57,26	42,34	_	-
:04	1439	1420	1878	27	74	77,6	-	-

DOC = 79134705 PAGE 308

Pages 123-124.

Continuation Table 12.

Py-6 Elejent												
10	14	15	75	-y-0 -	0,30	0,31	0,31	0,3				
15	18	19	80	10	0,32	0,33	0,83	0,32				
20	25	26	90		0,51	0,55	0,53	0.51				
25	32	33	100	12	0,62	0,64	0.64	0,61				
32	38	39	120		0.97	1,01	1,02	0,98				
40	45	46	130		1,12	1,21	1,19	1,16				
50	57	59	140	13	1,23	1,33	1,3	1,27				
65	76	78	160		1,5	1,63	1,6	1,55				
80	89	91	185		2,28	2,44	2,4	2,35				
100	106	110	295	15	2,65	2,86	2,61	2,72				
125	133	135	236] ,,	3,61	3,86	3,84	3,7				
150	159	161	260] "	4,1	4,39	4,36	4,19				
200	219	222	315	19	5,53	5,89	5,86	5,65				
250	273	273	370	. 20	7,21	7,67	7,64	7,34				
300	325	325	435	20	9,53	10,28	10,18	9,74				
350	377	377	485	22	11,76	12,58	12,45	12				
• 400	426	426	535	24	14,26	15,2	15,07	14,53				
500	530	530	640	. 25	18,53	19,72	19,59	18,66				
600	630	630	755		24,42	26,24	25,91	24,96				
\$30	820	820	975	27	42,73	46,14	46,66	0.5				
1400	1020	1000	1178	31 P., -10	60,15 436/cm	64,26	-	 -				
;	1 . 11	15		10	0,44	0,46	0,46	0,44				

DOC = 79134705 PAGE 309

Pages 125-126.

Continuation Table 12.

15	18	19		10	0,40	6,81	9,81	4,0
20	25	*	105	12	0,71	9,74	9,75	0.71
25	32	33	115		0,84	0,89	0,00	. 0,84
32	38	39	136	14	1,33	1,4	1,39	1,34
40	45	46	145	15	1,63	1,71	1,72	1,47
80	57	59	160		1,93	2,06	2,03	1,99
65	76	78	180	17	2,62	2,8	2,77	2,60
80	80	91	195	"	2,98	3,19	3,13	3,06
100	108	110	215	19	3,69	3,96	3,94	3,76
125	133	126	245	21	5,06	5,4	5,38	5,18
180.	189	161	280	"	6,25	6,62	6,62	6,33
200	219	222	336	21	7,6	8,05	8,04	7,71
250	273	273	390	23	10,1	10,65	10,66	10,22
300	325	325	440	24	12,08	12,9	12,89	12,21
350	377	377	500	26	14,71	15,65	15,79	14,93
400	426	426	565		20,21	21,56	21,51	20,49
500	530	530	670	28	26,48	27,7	28,02	26,86
600	630	630	780	31	35,98	39,4	39,26	37,48
				Py-16	KSC CM5			
10	14	15	90	12	0,52	0,54	0,54	0,53
15	18	19	96		0,58	0,61	0,61	0,58
20	25	26	106	14	0,83	0,86	0,83	0,83
3	82	**	116	14	1,12	1,17	1,17	1,13
	38	*	136		1,40	1,88	1,80	1,50

Pages 127-128.

Continuation Table 12.

••	45	46	145	17	1,85	1,95	1,46	1,00
50	57	59	160	19	2,44	2,58	2,54	2,5
65	76	78	180	21	3,24	3,42	3,36	3,3
80	89	91	196	•	3,66	3,71	3,71	3,7
100	108	110	215	23	4,66	4,73	4,72	4,53
125	133	135	245	25	6,2	6,38	6,38	6,15
150	159	161	280	25	7,44	7,81	7,81	7,52
300	219	222	335	27	9,77	10,1	10,21	9,88
250	273	273	405	28	13,94	14,49	14,48	14,06
300	325	325	460	25	16,79	17,78	17,59	17,12
350	377	377	520	30	21,56	22,66	22,65	21,99
460	436	426	580	34	29,46	3)	30,76	29,94
500	530	530	710	44	54,64	\$7,01	86,17	85,74
600	630	630	840	45	76,76	80,3	79,03	78,8
				Py-#	recicm _s			•
10	14	15	90	14	0,61	0,6	0,64	●,61
15	18	19	95		0,66	0,7	0,71	0,00
20	25	26	105	16	0,94	0,96	0,97	0,94
25	32	33	115		1,12	1,17	1,17	1,13
32	38	39	135	18	1,71	1,77	1,76	1,72
40	46	46	145	19	2,06	2,18	2, 15	2,11
50	57	59	160	21	2,7	2,71	2,0	2,76
4	76	78	180		3,07	3,32	3,31	8,16
•		91	105	=	3,06	4,04	4	3,55

DOC = 79134705

PAGE 241

Page 129.

Continuation Table 12.

1-10	100	116	230	35	5,64	\$,92	5,80	8,72
1.3	183	136	270	27	6,13	8,26	8,25	6,23
150	159	161	300		9,7	10,12	10,07	9,83
200	219	222	360	29	12,8	13,34	13,24	13,01
250	273	273	425	31	18,8	18,9	18,78	18,52
300	325	325	485	32	22,73	23,95	23,53	23,29
360	877	377	550	36	33,49	34,35	34,57	34,18
400	434	426	610	40	42,71	44,62	44,01	43.86
800	530	630	730	44	65,1	67,3	6,63	65,26

Notes: 1. Coupling dies D_1 , d and n - see in Table 2.

- 2. Nominal thread diameter of bolts or pins see in Table 3.
- 3. Sizes/dimensions: uniting projection D_2 and h_1 ; projection and hollow D_4 , D_6 , h_2 and h_3 see in tables 4, 5 and 6.
- 4. Size/dimension of perpendicular of weld and wall thickness of duct must be determined by projecting/designing organization during strenth calculation. The recommended sizes/dimensions of the perpendicular of the weld see in Table 13.

DOC = 79134705 PAGE 242

- 5. Material see in Table 27.
- 6. For flanges with $p_y > \infty$ am is allowed/assumed boring of bore of flange according to actual outside diameter of duct with gap to side not more than 2.5 mm.

Key: (1). Sizes/dimensions in mm. (2). Mass in kg. of flange. (3).
without projection. (4). with uniting projection. (5). with
projection. (6). with hollow. (7). kg/cm².

Page 130.

Data about flanged silencers/plugs on $P_r=1-200$ kg/cm² are given in Table 22-26.

Materials for manufacturing of flanges, flanged silencers/plugs and fasteners depending on the temperature and pressure in conduits/manifolds are selected in accordance with table 27 and 28.

DOC = 79134706 PAGE 2/4

Table 13. Recommended sizes/dimensions of the perpendicular of the weld with victuals of flat/plane flanges in mm.

Dy.	10-20	25—50	63—150	175	200	225	250; 309	380—1000	1200	1400	1000
A	3	4	5	6	7	8	•	10	11	12	13

Page 131.

Table 14. Sizes/dimensions of the flanges of steel welded ones butt in mm.

(4)
C SMITTEON MAIN BRIGHHOR HE Py OT 1 HO 200 RECICES (FOCT 12891—67 *)

(2) C 000ДЛИНТОЛЬНЫМ ВЫСТУВОМ ВА Ру ОТ 1 ДО 200 ПОБІСНІ (ГОСТ 12030—67*)

(5) C MINISTER MAN MANNESS DE Py OF \$ 400 100 Ancient (FOGT 19886—47°)

DOC = 79134706

PAGE 216

Page 132.

Continuation Lable 14.

	1	. 1	0	Py	-1; 2,5 <i>noc/em</i>	r (8)	Pymb seepent		(3)
_y]	6 1		D	•	A.	D	•	
10	14	8 .	15	75		35	75		27
15	18	12	19	80	•	26	80	10	28
20	25	18	26	90		25	-		

DOC = 79134706 PAGE 217

Page 133.

Continuation Table 14.

ρ,	1 4,	4,	Du		Py=1; 2,5 see/	es (8)	7	y — 6 me/s.	②
	<u> </u>	-1		D	1	1 4	D		A
	32	25	33	100		2	100	1	30
· · ·	38	31	30	120	7		120		33
e)	45	38	46	130			130	12	
<u>so</u>	57	49 ,	58	140	•	. 33	140		35
હ્ય	76	65	77	160	7	1	160)	
80	89	78	90	185		35	186		37
100	108	96	110	205	11		206	13	38
1:5	133	121	135	235		37	235	İ	40
150	159	146	161	260	7	38	260	15	43
200	219	202	222	315	13	45	315	17	i i
250	273	254	278	370	-		370		
300	325	303	330	435	1	}	435		
350	377	351	382	485	16	. 45	485	18	50
400	426	396	432	535		1	\$35		
500	530	501	535	640		50	640	<u> </u>	
600	630	602	636	755		55	765	19	55

DOC = 79134706 PAGE 2/8

Page 134.

Continuation Eable 14.

D	d _H d _i		D _R	Ρ,	Py = 6 apr/cm' (f)				
D _y	"	•	- R	D	6	h	D		A
8 X)	820	792	826	975	19	- 60	975	19	Ī
1000	1020	992	1028	1175	21		1175	21	60
1200	1720	1192	1228	1375			1400	23	70
1 100	1420	1392	1428	1575	23	65	1620	27	85
1600	1620	1592	1626	1785		1	_	-	

Continuation mable 14.

Dy	d ₁₀	d,	D _H		Py - 10 Rec/cm	<u>'</u> &	Py=16 mac/cm*			
- y		•,	H	۵	ь	h	D	6	A	
10	14	8	15	90	10	83	90		33	
15	18	12	19	95	7	~	95	12		
30	25	18	26	105	10	36	105	12	36	
ಏ	32	25	33	115	_ 12	36	115	ļ	38	
32	38	31	39	135	_	40	135	•	40	
•,	45	38	46	145	13		145	13	42	
b ;	57	49	58	160	-	42	160		45	

DOC = 79134706 PAGE 219

Page 135.

Continuation Table 14.

*,	4.	1	,	l	Py - 10 ass/c		,	y 16 app/	* (D)
-,		4.	D _E	D	1 6	A .	D		A
. 1	76	66	π	100	15	45	180	15	47
•	•	78	90	196	<u> </u>	47	196	17	80
; e:	106	96	110	215	17	49	215		
·.5	133	121	135	245		. 57	245	10	107
151	159	146 .	161	280	19	<u> </u>	280		
.140	219	202	221	335		58	336	21	53
.51	273	254	278	390	21	<u> </u>	406	23	65
"NU	325	303	330	440		60	460	24	64
اخذ	377	351	382	500	22		520	29	70
40	426	398	432	565		<u></u>	580	353	75
SIN .	530	501	535	670			710	38	
600	630	602	636	780	24	65	810	- ii	90
\$ 00	820	792	826	1010	27	75	1020	45	95.
1000	1020	992	. 1028	1220	29	80	1255	49	110
1:200	1220 .	1192	1228	1455	333	90	1406	\$1	125

DOC = 79134706 PAGE 220

Page 136.

Continuation Table 14.

Dy	4.		Ρ,	y = 25 mac/c	** (3)			Py	- 40 mas/su	@	
-у	"	d,	D _H	D	0	A	4,	D _N	D		٨
10	14	8	15	90		33	8	1.6	90		22
15	18	12	19	95	14	33	12	19	96	14	
20	25	18	26	105		34	18	26	105	"	34
25	32	25	33	115		36	25	33	115	Ï	36
32	38	31	39	135	16	43	31	39	135	16	43
40	45	38	46	145		45	35	46	145	"-	44
50	57	49	58	160	17	•	48	58	100	17	
65	76	66	77	180	19	50	66	17	180	19	\$0
80	89	78	90	195	1	52	78	90	196	21	86
1:10	108	96	110	230	21	58	96	110	230	23	65
125	133	121	135	270	23	65	120	135	270	25	
150	159	146	161	300	25	68	145	161	300	27	68
200	219	202	222	360	27	75	200	222	376	36	65
	273	254	278	425	29	75	252	278	445	39	96
\$41	एउ	303	330	485	32	80	301	330	510	42	112
	177	361	302	550	35	**	361	***	570	44	116

6: . . .

DOC = 79134706 PAGE 22/

Page 137.

Continuation Table 14.

۵.		1	P	y - 25 aus/		Py = 40 marjest @						
-,	•	dı	D _H	D	1	٨	d ₁	D,	D		h	
• •	6,1	396	432	610	40	100	898	432	686	54	136	
4.01	53)	500	\$35	730	44	100	496	526	766	*		
611	a w	600	636	840	49	lis	-	· _		-		
5,81	830	790	806	1075	-	135	_	-	-	-	_	

Continuation Table 14.

D.,			,	y - 64 Rec/c	ia' (P)		Py - 100 sec/cat D					
_ y	a H	4,	D _H	D			d,	D _M	D		٨	
10	14	8	15	100	16	46	•	15	100	16	43	
15	18	12	19	105		_ **	12	19	106	18	#	
20	25	18	. 26	125	18	54	18	96	i 35	30	5 1	
25	32	25	33	135	20	56	25	33	135		56	
32	38	31	39	150		60	31	39	150	. 22	60	
40	45	37	46	165	21	65	87	46	165	23	67	
80	57	47	58	176	23	67	45	58	196	*	•	

DOC = 79134706 PAGE #222

Page 138.

Continuation Table 14.

	d,		₽,	y = 64 Rec/C	m B		Py = 140 noc/cs/8					
Dy		d,	D _H	D	1 6	٨	d ₁	D _M	D	10	A	
65	76	64	77	200	25	72	62	77	220	29	80	
60	89	77	90	210	27] "	75	90	230	31	87	
100	106	94	110	250	29	77	92	110	265	35	97	
125	133	118	135	295	33	95	112	135	310	30	112	
150	159	142	161	340	35	105	136	161	350	43	125	
200	219	198	222	405	41	110	190	222	430	5 1	140	
250	273	246	278	470	45	115	236	278	500	57	160	
30	325	294	330	53 0	50	120	284	330	585	66	180	
350	377	342	382	595	56	140	332	382	655	72	196	
110	126	306	432	670	62	155	376	428	715	76	390	

D.			P,	, = 160 Kec/	em ^o 🕙		Py = 200 nec/en* @					
-7		d,	D _H	D	b	h	4,	D _B	D	1 0 1	<u> </u>	
15	18	12	19	105	18	50	14	23	120	24	£2	
3.	25	16	26	125	20		19	29	130	25	85	
75	22	25	33	135	22	56	*	35	180	=	60	

PAGE 223

DOC = 79134706

Page 139.

Continuation Table 14.

3,	10	I	P	y — 160 KAS	/ *** 🕀		Py = 200 confest (
		d.	D _R	D		h	dı	D _B	D		٨	
:	<u>*</u>	31	30	150	22	65	31	•	160	20	•	
•>	45	37	46	165	16	72	36	40	170	81	72	
:0	\$7	45	56	196	37	75	46	_ 61	\$10	27	*	
ଣ	76	6 2	77	220	31	85	68	90	200	46	116	
5)	80	75	90	230	33	90	80	110	290	61.	132	
100	108	92	110	265	37	100	102	135	360	63	175	
123	133	112	135	310	41	115	130	170	396	73	1/0	
150	159	136	161	350	47	130	150	196	440	79	190	
20	219	190	222	430	57	145	192	248	535	89	230	
250	273	236	278	500	65	165	254	330	670	107	300	
300	336	364	330	505	74	185		-	I -	T -	-	

Notes: 1. Coupling dies D_4 , d and n - see in Table 2.

- Nominal diameter of threads of bolts or pins see in Table
- 3. Sizes/dimensions: D_2 see in Table 4; D_4 and D_5 see in Table 5; h_2 and h_3 see in Table 6, D_3 and D_5 see 7; D_6 ; b_1 and h_4 see 8 and 9; D_7 see Table 10.

45 2 1 1 1 2

- 4. Material see in Tables 27.
- 5. Flanges of carbon steel are used at temperature to 450°C, made of alloy steel to 530°C.

Key: (1). Without projection on from 1 to 40 kg/cm². (2). From
uniting by projection on from 1 to 200 kg/cm². (3). Branch. (4).
With projection or depression on from 1 to 200 kg/cm². (5). With
journal or slot/groove on from 1 to 100 kg/cm². (6). Under ply of
oval section/cut on from 64 to 200 kg/cm². (7). Under lens ply on
from 64 to 200 kg/cm². (8). kg/cm².

Page 140.

Table 15. Mass of flanges without projection in kg. (GOST [All-union State Standard] 12829-67*).

D.,.	1		Py. K	elem ())	
Dy.	1; 2,5	6	10	16	25	4
10	0,27	0,33	0,48	0,57	0,66	0,66
15	0,32	0,39	0,55	0,65	0,76	0,76
20	0,43	0,51	0,83	0,93	62.9	0,95
25	0,52	0,74	1	1	1,13	1,13
32	0,73	1,06	1,47	1,47	1,76	1,76
40	0,99	1,2	1,7	1,72	2,06	2,06
50	1,14	1,39	2,1	2,12	2,66	2,60
65	1,46	1,78	2,96	2,98	3,47	3,47
80	2,26	2,59	3,41	3,95	4,18	4,54
100	2,68	2,87	4,52	4,59	6,2	6,75
125	3,38	4,32	6,43	6,35	8,87	9,56
150	3,92	5,06	7,87	7,87	11,77	12,6
200	6,41	7,84	10,57	10,68	16,68	23,7
250	9,24	10,31	13,9	16,62	23,48	36,47
300	12,29	13,73	17,47	21,41	31,73	51,04
350	14,68	16,4	22,32	30,44	44,52	67,96
400	17,04	19,03	27,32	40,94	62,33	103,5
500	24,71	24,7	36,84	67,79	85,38	129,36
600	32,91	32,91	45,34	94,27	118,42	
(Max)	51,34	51,76	81,05	124,65	205,77	
1000	67.3	68,4	110,3	195,41		
1200	87,43	104,1	168,4	274,3	-	
1480	100 or parks from No.	181,77	-	_	-	
1000	121,13	-	-			-

Key: (1). kg/cm2.

Page 141.

Table 16. Mass of flanges with uniting projection in kg. (GOST 12830-67*).

D,	1				Py. KK	(cm1 ())			
	1; 2,5	6	10	16	25	40	64	100	160	200
10 15 20 25 32 40	0,29 0,34 0,46 0,55 0,78 1,00	0,34 0,4 0,53 0,76 1,1 1,36	0,5 0,53 0,87 1,05 1,54 1,83	0,59 0,68 0,87 1,05 1,54 1,85	0,58 0,77 0,96 1,18 1,83 2,18	0,68 0,79 0,97 1,18 1,83 2,19	1,03 1,15 1,8 2,3 2,94 3,75	1,03 1,27 1,97 2,5 3,06 4,05	1,27 2,08 2,5 3,06 4,41	1,93 2,5 3,56 4,46 5,46
50 65 80 107 125 150	1,26 1,62 2,43 2,96 3,72 4,3	1,53 1,97 2,76 3,35 4,66 5,37	2,26 3,17 3,67 4,7 6,71 8,71	2,28 3,19 4,21 4,9 6,75 8,3	2,78 3,71 4,44 6,51 9,41 12,52	2.81 3.71 4.8 7.4 10 13.03	4.63 6,29 7,22 10,71 17,13 24,6	6,08 8,57 9,98 14,78 23,34 32,19	6,49 9,1 10,46 15,41 21,19 31,67	10.8 19.23 27.67 53.85 64.96 91.32
209 250 300 350 400 500	6,92 9,86 13,38 15,97 18,56 26,67	8,37 10,99 14,82 17,69 20,55 25,63	11,35 14,64 18,66 24 30 39,2	11,79 17,36 22,75 32,04 43 70,97	17,44 24,4 33,29 46,57 64,81 86,91	24,44 37,59 53,1 70,34 106,76 132,33	36,6 50,89 68,15 98,68 135,8	54,23 85,68 128,69 171,84 203,26	58,9 93,92 140,3	160, 15 321, 35 — — —
	35,79 45,15 73,44 92,92 101,02 135,27	35,79 56,17 73,51 111,43 156,58	48,8 87,24 119,19 179,91	99,3 130,37 203,39 281,94	123,7 213,9		111111	11111	= = .	

Key: (1). kg/cm².

Page 142.

Table 17. Hass of male flanges or hollow in kg. (GOST 12831-67*).

					Py. R	c/cm	0				
D,.		2,5	-	6		0		16		2:	
	BAAC. Tyri	впо- дина	BAR: Tyff	300 A	Bac. Tyn	Bila. Allia	PMC Tyr	- Bn	a- 1	MC- TYII	впа- дина
		0,27 0,12 7,4	0.31 0.4 0.53	0,32 0,14 9,5	0,5 11,58 11,47	0,48 0,54 0,82	0.6 0.64 0.47		18 15 12	0,69 0,76 0,96	0,66 0,75 0,93
25 32 40	0,53 0,78 1,04	0,5 0,72 1,02	0.77 1.08 1.37	0,72 1,04 1,28	1.06 1.53 1.78	0.98 1.45 1,71	1,0 1,5 1,8	4 1.4		1,18 1.83 2,11	1,13 1,78 2,1
50 65 80	1,21 1,57 2,3	1,14 1,45 2,26	1,51 2,06 2,76	1,44 1,83 2,6	2,23 3,11 3,6	2,15 2,92 3,46	2,2 3,1 4,1	7 3,0	05].	2,76 3,62 4,32	2,47 3,6 4,27
100 125 150	2.7 3.65 5.22	2.65 3.41 3.96	4,04 4,24 5,85	3,03 3,66 4,93	4,7 6,58 8,2	4,49 6,27 7,77	4,8 6,76 8,2		17 1	6,58 9,45 2,56	6,27 9,14 11,9
200 250 300	6,75 9,61 13,35	6,33 9,18 12,35	9,35 10,69 14,28	7,75 10,14 14,1	11 14,39 19,3	10.47 10.27 17,7	11,77 15 22,66	14,3	3 2	7,21 4,08 2,4	16,86 23,27 31,94
350 400 500	15,93 18,53 26,6	14.9 17.3 25	18,65 19,69 29,1	17,64 19,3 25,9	24.7 30,35 40	22,56 27,65 37	32 42,64 70,37		6	5.6 3,58 8,2	44,65 62,41 86,5
800 800	35.7 55,5	33 52,2	36,6 55,2	33,4 52,2	50 86, t	46,6 60,4	97,81 118,75			122	105,7 200
10 15 20	0,69 0,78 0,99	0,66 0,73 0,91	1.0%	1 1,	11]	1,02 1,26 1,38	0.99 1.23 1.9	1,27 1,98	1.24 1.94	1,92	1.92
25 32 40	1,19 1,85 2,16	1.11 1.76 2.	2,28 2,94 3,71	1 2	88 3	2.48 3.05 1.06	2,42 3 4	2,48 3,07 4,0i	2,44 3,01 3,98	4,42	4,42
50 65 80	2.79 3.72 4,81	2,68 3,59 4,6	4,59 6,16 7,17	6	05 8	5.03 5.52 5.91	5,6 8,48 9,85	6,43 9,38 10,4	6,4 8,64 10,3	11,11 19,01 27,3	11,25 19,2 27,5
100 125 150	7,06 10,17 13,2	6,82 9,48 12,6	10,7 16,94 25,4	10,5 16,6 24,1	6 23	.32	14.4 19.3 31,9	15,4 24,87 35,04	15,22 23,1 34,4	53,22 73,15 90,19	53,6 65,2 90,6
200 250 300	24 37.3 50.6	23,57 36,5 50,3	38,5 53,8 74,6	36,1 50,3 68,3	3 85 3 127	.24	54,07 85,12 27,73	60,1 94,4 141	60 94,2 140	188,6 314,5	159 118,7
350 4111 500	69,6 105,5 128	176 108 69	151	1317	170 216		70 11.86	Ξ	-	Ξ	=

Key: (1). kg/cm². (2). projection. (3). hollow.

Page 143.

Table 18. Mass of flanges with projection or slot/groove in kg. (GOST 12832-67*).

				,	y not/est	05		
Dy.		2,5		5	·	10		16
n in	E BB- ROB	C RB-	C Mil-	c Ha-	с данном	c Hason	е шипом	C HAJOM
10	0,28	0,28	0,34	0,33	0.5	0,49	0.59	0,58
15	0,34	0,33	0,4	0,4	0.57	0,56	0.67	0,66
20	0,44	0,44	0,83	0,52	0,87	0,63	0.85	0,84
25	0,54	0.53	0,75	0,75	1.03	1,02	1,03	1.02
32	0,76	0.77	1,08	1,08	1.5	1,49	1,5	1.5
46	1,03	1,04	1,3	1,34	1.74	1,78	1,77	1.81
50	1.18	1,21	1.46	1.47	2,15	2,21	2,17	2,23
65	1.67	1,55	1.72	1.75	3,06	3,14	3,06	3,14
80	2,29	2,3	2,65	2,72	3,64	3,65	4,05	4,17
100	2,67	2,71	3,03	3,04	4,5	4,54	4,72	4,78
125	3,52	3,57	4,5	4,56	6,12	6,23	6,55	6,66
180	4,04	4,13	5,29	6,35	8,8	8,9	7,96	8,08
200	6,55	6,63	7,96	8,05	10,28	10,32	11,04	11,2
250	9,32	9,43	12,2	12,3	13,64	13,83	16,67	16,86
300	11,59	12,67	13,61	14,11	15,52	18,9	21,6	22,1
350	14.63	15	16,35	16,72	22.7	23	30,6	31.1
400	16.84	17.33	16,83	19,31	28	28,5	41	41.7
500	23,11	23,76	24,44	25,1	36,91	37,6	68	69.9
600 700	32.9 40.34 \$1.40	33,37 41.6 82,6	37,49 40,6 81,67	33,67 41,86 83,36	45.52 59,86 61,26	48,7 62,28 84,28	94,5 100,7 124,8	96.6 101.1 127.6
10	0,68	0,67	0,68	0,66	0.99	0,99	1,01	1,02
15	0.76	0,76	0,8	0,78	1.12	1,13	1,24	1,25
20	0,97	0,95	0,97	0,95	1,78	1,8	1,95	1,95
25	1,16	1,15	1,16	1,15	2,26	2,27	2.45	2.46
32	1,81	1,8	1,7	1,69	2,91	2,92	3.03	3.03
40	2,08	2,11	2,11	2,15	3,67	3,74	4	4,07
99	2, <i>69</i>	2,75	2,72	2,78	4,51	4.6	5.94	6.05
45	3,55	3,62	3,6	3,68	6,96	6.19	8.41	8.84
80	4,26	4,48	4,69	4,8	7,96	7,18	9,77	9, 95
160	6,41	6.40	7.2	7,20	10,55	10,67	14,47	14. 65
128	9,27	9,37	9.97	10,08	16,66	16,91	23	23.3
150	12,01	12,17	12.86	13,03	24,06	24,44	31,73	32.22
200	16,36	16,62	24.2	24	35.74	36,27	51,14	83,9
250	25,37	25,74	36,9	37,4	40,45	50,16	83,37	84,51
300	32,42	33,16	51,1	52,2	65,04	62,52	126,24	127,41
350 400 500	45.4 63.46 86,48	46,23 64,59 86,06	68, 1 103, 8 128	68,8 106 130	94,71 128,9	96,27 130,87	167, 22 207, 25	169,58 210,24
600 800	119.5 210	122,17 214,66	=	=	=	=	=	=

Rey: (1). kg/cm2. (2). with journal. (3). with slot/groove.

Page 144.

Table 19. Mass of flanges under the ply of oval section/cut (GOST 12833-67*) and under less ply in kg. (GOST 12835-67*).

	(1) Tion		CHMS	Ladro	Под линговую прокладку					
Dy.				P	, REC/CM	(3)				
	61	100	160	200	64	100	160	200		
10 15 20	0,99 1,11 1,75	0,99 1,23 2,02	1,23 2,03	1.88 2,46	1,03 1,15 1,8	1.03 1.27 1.97	1,27 2,08	1,93 2,5		
25 32 40	2.25 2.87 3.67	2,45 2,99 3,95	2,44 2,98 3,97	3,5 4,35 5,27	2,3 2,94 3,75	2,5 3,05 4,05	2,5 3,06 4,06	3,59 4,43 5,46		
50 65 80	4, 5 6, 09 6, 87	5,95 8,4 9,8	6,3 8,88 10,2	9,86 18,97 27,23	4,63 6,26 7,05	6,08 8,57 9,98	6,49 9,1 10,46	10,06 19,23 27,55		
100 125 150	10,48 16,67 24,18	14,44 23,04 31,87	15,09 21,82 33,92	53,26 65,37 90,02	10,71 16,98 24,6	14,67 23,34 32,19	15,41 24,19 34,48	53,61 64,74 90,92		
200 250 300	36,03 50,08 67	57,81 65,4 127,76	57,86 92,16 136,56	158,53	36,45 50,58 67,59	51,23 85,26 128,35	58,9 93,11 139,2	159,49		
350 400	96,42 134,93	169,55 211,1	=	= 1	97,0 9 135,7	171.6 212.9	=	=		

Key: (1). Under the ply of oval section/cut. (2). under lens ply. (3) . kg/cm².

DOC = 79134706

PAGE 280

Page 145.

Table 20. Flanges steel free.

•

DOC = 79134706

PAGE 23/

Page 146.

Continuation Table 20.

(6) He erdoptosennoù tpyfe de $P_y=1$; 2,5 u 6 sec/es 1 (FOCT 1272-67)

	(У) Розмеры в им		_	О Резигра в жи					
Dy	d _m	d _s	D.	c	Dy	ď	d _B	D ₀	c
10	14	15	16		100	100	. 110	112	1
13	18	19	20	•	125	123	135	136	•
	25	*	27		180	j 20	161	164	

11.1

PAGE 282

DOC = 79134706

Page 147.

Continuation Table 20.

ρ,	1				(>) Peningu s aa						
	da	1 4,	D,	6	Dy	d _R	.49	D.			
3	322	23	*		300	219	202	225	•		
22	36	*	41		250	273	273	279			
40	45	46	48	5	800	325	225	201	ц		
50	67	59	61		350	877	\$77	363			
65	76	78	80		400	426	426	433	12		
80	•	91	89	6	800	130	£30	537			

Notes: 1. Coupling dies D1, d and n - see in Table 2.

- 2. Nominal thread diameter of bolts or pins see in Table 3.
- 3. Sizes/dimensions: D_2 see in Table 4; D_4 and D_6 see in Table 5; h_2 and h_3 see in Table 6; b and b_1 see in Table 21.
- 4. Size/dimension of perpendicular of weld and wall thickness of duct must be determined by projecting/designing organization during strenth calculation.

- DOC = 79134706
 - 5. Material see in Table 27.
- 6. Mass of flanges approximately corresponds to mass of flanges of flat/plane welded ones without projection according to GOST 12827-67* (see Table 12).

Page 148.

Table 21.

Thickness of flanges and welded rings in mm (GOST 1268-67*, 12834-67* and 1272-67).

_				Py	MAS/CM1 (1)	·		
Dy.	1; 2	,5; 6	1	0	10		2	5
	•	Ø, .	•	•,	•	<i>o</i> 1	•	. 4,
10		8	12	10	14	12	16	14
15	10							
20	<u> </u>	[1		
25		10	14	12	16	14	18	16
32		<u> </u>	16		18	16	20	
40	12					. j		
50	ļ	12	18	14	20	,	22	18
65			20		22		24	
80	14	14	22	16	24	18	26	20
100			24		26	20	28	22
125						ľ	i	
150	16	16	26	18	28	22	30	24
20	18	18		20				
730	20		26	22	30	34 .		*
320	24	20 [80	22	22	24	*	***
350	28		82	24	24	*	N	**
400	32	24	34	26	36	*	4	80
800	*	*	36	25	48	**	80	20

Key: (1). kg/cm2.

Organia.

Pages 149-150.

§2. Plugs are flanged.

Table 22.

(/) C соединительным выступом на Ру от 1 до 60 ам/см² (ГОСТ 1265-67°)

(4) C MINDOM HA Py OT 1 DO 40 REC/CM2 (FOCT 13838-67°)

(5) Под прокладку овального сечения на Ру 60 и 100 кес/см² (ГОСТ (2630—67 °)

Ov.	(6) Tommena saraymen d o mm na Py. mac/cm²										
44	1 # 2,5	6	10	16	25	40	64	100	160	200	••
10					}	}	IA; 22	18, 25	-	-	6
14	10	12	12	12	12	16	1	24, 25	24	*	10
\ 3 1	•		[(f .	{	22.22	22.38	26	30	16

..:

٠

DOC = 79134706 PAGE 284

Page 151.

Continuation Table 22.

1	C Teamine servicing b s are so Py, applicat																										
2	1 = 2,5	6	10	16	25	•	4	1,00	160	200	*																
ಚ	10	12	12	12	12	·	22; 25	94. 95	26	. 20	22																
32		**		•		16	44. 44	24; 25	86	22	39																
40				·	14		24; 25	26; 26	32	24	36																
50	12		ľ			18	26; 30	26, 32	84	40	46																
65		12	12	12	12	14	14	14	16	20	28; 32	32; 36	45	44	60												
80					18	22	30; 36	34; 40	44	52	76																
100				16	20	24	32; 36	38; 45	8 0	63	94																
125		16	16	16	16	16	16		1.0	22	28	36; 40	45; 50	60	70	118											
150	14							16	16	16	16	16	16	16	16	16	16	4 16	16	18	24	30	40; 45	52; 56	70	85	142
300	.,																		10	10	10	10		20	26	38	50; 56
250	<u> </u>		18	24	30	45	58; 63	65; 70	90	120	244																
300	16	18	20	28	34	48	63; 65	80; 65	100	-	294																
360	.0		24	32	38	50	63; 70	85; 95	_	-	344																
400	18	20	26	34	40	56 `	70; 75	90; 96	_	-	390																
800	20	24	30	40	48	70	_	-	_	-	490																

DOC = 79134706

PAGE 287

Page 152.

Continuation table 22.

		(C) Толщина заглушки в в мм на Р _у , пос/си ^в									
D _y .	1 # 2,5	6	10	16	25	40	64	100	160	200	:48
600	24	28	34	45	50	-	-	_			890
800	30	34	42	52	63	-	-	_	-,	-	780
1000	34	45	50	63	-	_	-	_	_	-	***
1200	36	45	55	75	-	-		-	_	-	1180
1400	36	50	-	-	-	_	-	-		_	1986
1606	•	-	-	-	-	-	-	_	-	~ ·5	- 100

Notes: 1. For , 64 and 100 kg/cm² the first value of size/dimension of b corresponds to silencers/plugs with projection (GOST 12837-67*), the second value - to silencers/plugs under the ply of oval section/cut (GOST 12839-67).

- 2. Coupling dies D, D_1 , d and n see in Table 2.
- 3. Nominal thread diameter of bolts or pins see in Table 3.
- 4. Sizes/dimensions: D_2 see in Table 4; D_4 see in Table 5;

 h_1 - see in Table 6: D_3 - see table 7: D_4 , b_1 and h_4 - see in tables 8 and 9.

- 5. Size/dimension h₅ for $\rho_y = 10 + 100 4$ and for $\rho_y = 10 + 100 4$ and for $\rho_y = 100 + 100 4$ and
 - 6. Material see in Table 27.
- 7. Plugs of carbon steel are used at temperature to 450°C, made of alloy steel to 530°C.

Key: (1). With uniting projection on from 1 to 40 kg/cm² (GOST
12836-67*). (2). With projection on from 40 to 200 kg/cm² (GOST
12837-67*). (3). Branch. (4). With journal on from 1 to 40 kg/cm²
(GOST 12838-67*). (5). Under ply of oval section/cut on 64 and
100 kg/cm² (GOST 12839-67*). (6). Thickness of silencer/plug b in mm
on kg/cm². (7). and.

Page 153.

Table 23. Mass of silencers/plugs with uniting projection in kg. (GOST 12836-67*).

4	Py melan (1)									
2	1; 2,5	•	10	16	25	40				
16	0,2	0,26	0,36	0,38	0,38	0,56				
15	0,24	0,31	0,43	0,43	0,43	0,63				
20	0,31	0,4	0,55	0,55	0,55	0,8				
20 20 20 20 20 20 20 20 20 20 20 20 20 2	0,4	0,51	0,67	0,67	0,67	0,98				
	0,57	0,74	0,91	0,91	0,91	1,33				
	0,82	1,02	1,24	1,24	1,24	1,49				
8	6,95	1,21	1,55	1,55	1,5 5	2,15				
	1,23	1,54	2,04	2,04	2,2 9	3,03				
	1,75	2,18	2,44	2,44	3,21	4,08				
100	2,26	2,75	2,97	3,51	5,07	6,27				
126	3,65	4,3	4,60	4,69	7,83	10,31				
180	4,56	5,38	6,07	6,99	10,95	14,07				
200	7,03	. 8,22	9,09	11,49	17,51	28,3				
250	9,87	11,51	14,26	19,74	28,93	48,5				
350	14,98	17,18	19,66	- 29,58	42	66,99				
360	19,02	21,84	31,94	44,22	61,48	88,9				
400	26,85	30,28	44,49	59,86	81,12	131,5 9				
600	44,44	84,33	74,31	102,69	140,22	218,77				
600 800 1006	73,46 188,74 269,07	87,2 181,65 360,91	119,27 242,06 429,64	161,98 300,6 542,16	194,5 409,07	Ξ				
1200 1400 1400	294,11 561,94 780,8	512,06 700,90	673,13 	922,18	Ξ	[- -				

Key: (1). kg/cm².

Table 24. Mass of silencers/plugs with projection in kg. (GOST 12837-67+).

Dy.	Py molast (1)								
aía	40	64	100	160	200				
10 15 20 25 20 25 25 20 10 15 17 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9,48 0,55 0,7 0,65 1,16 1,37 2,01 3,83 6,03 10,02 13,71 27,73 17,6	0,71 0,77 1,78 1,76 2,12 2,94 3,73 8,132 9,74 18,69 18,69 47,7 91,7	0,71 0,92 1,98 1,98 2,75 4,97 8,86 13,93 32,29 55,30 141,71		1,47 1,95 2,89 3,74 4,43 8,13 15,6 21,29 40,4 80,55 81,44 138,82 277,2				
• •		100.61	285,41	Ξ	=				

Key: (1) . kg/cm^2 .

Page 154.

Table 25. Mass of silencers/pluss with journal in kg. (GOST 12838-67*).

Dy.	Py. nac/am² (/)									
- MM	1; 2,5	6	10	16	25	40				
10	0,14	0,2	0,29	0,29	0,29	0.47				
15 20	0,16 0,21	0,23 0,3	0,33 0,41	0,33 0,41	0,33 0,41	0. 53 0, 67				
2 5 32	0.26	0,38	0,5	0,5	0,5	0,84				
32 40	0,38 0,68	0,55 0,88	0,6 8 1,0 5	0,68 1,0 6	0,79 1,06	1,1				
50 65	0,82	1,04	1,31	1,31	1,31	1,91				
65 80	1,12 1,49	1,41 1,88	1.73 2,07	1,73 2,07	2,1 2,88	2,77 3,75				
100	1,93	2,42	2,58	3,18	4,62	5,82				
125 150	3,28 4,13	3,86 4,87	4,17 5,44	4,17 6,36	5,73 10,21	9,72 13,33				
200	6.4	7,53	8,23	10,72	16,48	27,19				
250 300	9,23 13,48	10,57 16,18	13.17 18,32	19,62 29,48	27.52 39,87	46,87 64,33				
350	17,35	19,88	30,05	44,5	58,95	85,84				
400 500	21,45 31,9 2	28,87 51,74	42,07 71,28	59,55 107,52	77,91 135,91	129,32 214,05				
Į				1	ļ	ļ				

Rey: (1). kg/cm^2 .

Table 26. Mass of silencers/plugs under the ply of oval section/cut in kg. (GOST 12839-67*).

Table 20.

Dy.	Py.	REC/CM ² (/)	D .,.	Py Reclass C			
MÁI	64	100	D _y .	64	100		
10	1,04	1,21	126	17,94	25,05		
15	1,16	1,35	150	27,47	36,4		
20	1,63	1,89					
25	2,3	2,25	200	49,32	61,36		
32	2,7	2,7		1 1			
40	3,3	5,57	250	74,85	96,54		
50	4,55	6,03	300	96,7	152,4		
65	6,21	8,45	350	134,8	2.3.9		
80	7,95	10,53	400	179	>∞,44		
100	11,32	16,07		_			

Key: (1). kg/cm².

Page 155.

§3. Materials for manufacturing of flanges, silencers/plugs and fasteners.

Table 27. Materials for manufacturing of flanges and silencers/plugs on Py to 200 kg/cm2.

. (/) Тип фазила, заглушил	P	(В) Марка стал	при температуре дм в °C		
и номер ГОСТа	Py. Recicus (Q)	(4) go 300	сямше 300 до 450	свыше 450 до \$30	
(С) IV. Стальные с нейкой на резьбе по ГОСТ 12826—67 и 1345—67	Or 1 go 16	BCT. 3cn	Hic n	Топпинями	
(/O) V. Стальные плоские при- верные по ГОСТ 12827—67 °,	От 1 до 25	ВСт. Зся	(//)	о же	
1968-67 ° n 12828-67 °	<u> </u>	 	(13)	Ø	
VI. Стальные приварные встык по ГОСТ 12829—67°, 12830—67°, 12831—67°, 12832— 67°, 13833—67°, 12835—67°	Ot 1 go 25	ВСт. Зел 20 <u>и</u> 2	20 m 25	Не при- меняют 18XM	
(/4)	200	<u>(</u> 3)	-	# 15XMA	
VII. Стельные свободные ва приварном кольце по ГОСТ 1265—67° и 12634—67°	От 1 до 25	CT. den u CT. ben	Hen	рименяют	
(/6) VIII. Стальные свободные на отбортованной трубе по ГОСТ 1272—67	OTIAO 6	(75) Ct. 4en n Ct. 8en	T	∅	
(/2) Зеглушки фланцевые: по ГОСТ 12638—67°, 12837—67°	От I до 25	BC1.3cn	20 (3) ²³	Не при-	
(/8) FOCT 12839-67 H	OT 40 AG	20 H 25		ISXM N ISXMA	

Notes: 1. Weld rings for slip-on flanges [illegible] of steel of the brand/mark VSt.3sp.

2. Brands of steels VSt. 3sp, St. 4sp and St. 5sp - according to GOST 380-71: 20 and 25 - per GOST 1050-60; 15 Khm and 15 KhMA - according to GOST 4543-71.

Key: (1). Type of flange, silencer/plug and number of Gost. (2).

kg/cm². (3). Trademark of steel at temperature of medium in °C. (4).

to. (5). it is more than 300 to 450. (6). Steel with neck on thread according to GOST 12826-67 and 1245-67. (7). From 1 to 16. (8).

VSt.3sp. (9). They do not use. (10). Steel flat/plane welded according to GOST 12827-67*, 1255-67*, and 12828-67*. (11). The same.

(12). Steel welded butt according to GOST 12829-67*, 12830-67*,
12831-67*, 12832-67*, 12833-67*, 12836-67*. (13). and. (14). Steel free on welded ring according to GOST 1268-67* and 12834-67*. (15).

St.4sp and St.5sp. (16). Steel free on flanged duct according to GOST 12837-67*. (17). Silencers/plugs flanged: according to GOST 12836-67*,
12837-67*. (18). according to GOST 12838-67* and.

Page 156.

Table 28. Materials for manufacturing the fasteners for flange joints on P_{r} to 200 kg/cm².

(1)	Py. Rac/cm²	(3) M	lepiti etem a p	a Tesnepatype (OR "D" e unoq	
Наименование деталей	Py. RSC/EM	300	350	425	450	530
(4) Болты (или шпильки)	2,5—25	20 1	5) • 25	25 11 35	30XMA	
(6)	40—100		36		30XMA, 36XMA	25X1M◆
Monreum	160; 200	36	3	16X	36YMA	
(b)	2,5—25	10_1	■ 20	20	25	-
(2) Falks	40—100			26		30XMA.
	160; 200	25		26	35X	35XMA
(8) Walde	40-200		10	Ø • **		ISXM

Note. Trademarks of steel: 10, 20, 25 and 35 - according to GOST 1050-60**, 15KhM, 15KhMA, 35Kh, 30KhMA and 35KhMA - according to GOST 4543-71, 25Kh1MF - according to

Rey: (1). Designation of parts. (2). kg/cm². (3). Trademarks of steel at temperature of medium in °C, to. (4). Bolts (or pins). (5). and. (6). Pins. (7). Nuts. (8). Disks.

Page 157.

Chapter V.

COMPENSATORS.

§1. General information.

With the transporting of different products with the increased or reduced temperatures occur changes in the lengths of conduits/manifolds.

with the affixing of such conduits/manifolds by rigid (fixed) supports in ducts appear the stresses/voltages also in the case of the absence of the devices, which compensate for (absorbing) changes in the lengths of conduits/manifolds, can occur the deformations of ducts or the decomposition of supports.

Thermal changes in the lengths of conduits/manifolds at temperature of medium not more than 80°C can be compensated by the elasticity of conduit/manifold itself when in it of offtakes, its small extent and correct arrangement of supports is present.

Such an autocompensation is the best method of the compensation for thermal changes in the lengths of conduits/manifolds (Fig. 1).

However, in the majority of the cases on conduits/manifolds install compensators, since depending on temperature variations occurs a significant change in the lengths of conduits/manifolds.

A change in the length of conduit/manifold depends on its reference length, greatest temperature drop and coefficient of the thermal linear expansion of the material of conduit/manifold and is determined from the formula

$$\Delta l = L_0 \alpha l \ MM, \tag{1}$$

where L_0 - the reference length of the conduit/manifold between fixed supports m:

 α - coefficient of the linear expansion of the material 1 m of duct in mm/m•deg.

Fig. 1. Schematic of autocompensation of conduit/manifold. 1 - rigid fixed supports; 2 - arrangement of the cold duct; 3 - arrangement of hot duct.

Page 158.

t - temperature drop between the calculated temperature of heat carrier (medium) and the calculated temperature of surrounding air in deg.

The values of coefficients for low-carbon steel depending on the temperature of the wall of duct are given in Table 1.

Fig. 2 gives the nomogram of the temperature elongation of ducts made of low-carbon steel in dependence on their length and value of temperature drop.

On nomogram in the form of example it is shown that with

to the state of the

PAGE 348

DOC = 79134706

temperature drop in 230° and at length of conduit/manifold 40 m the elongation of conduit/manifold is 120 mm.

According to structural/design forms and operating principle the compensators divide into the following groups:

- a) the pliable radial, receiving thermal elongations because of the elastic bending strain of the sections of the ducts of different geometric form;
- b) pliable (elastic) of the axial type, in which changes of the length of ducts are absorbed by the special springy elements/cells, which have the form of lens, waves and which are deformed in the axial direction:
- c) slipping type axial, in which thermal elongations are extinguished by the moving in of ducts inside the housing of the compensator through stuffing-boxs seal.

The types of compensators on conduits/manifolds determines planning organization.

Table 1. Coefficient of linear expansion for pipe steels of brands 10, 15, 20, St.2, St.3, St.4.

УТемпература стенки трубы в °С	Котфинисит линой- мого расширения в мм/м-град	Тампература стенки трубы в °С	В ми/м-еред ного ресинрения
20	1,18-10-8	250	1,31-10-8
75	1,2-10-1	275	1,32-10-9
100	1,22-10-8	300	1,34-10-1
125	1,24-10-8	326	1-35-10-3
150	1,25-10-8	360	1,36-10-9
175	1,27-10-8	375	1,37-10-8
200	1,28-10-3	400	1,38-10-8
225	1,30-10-8	425	1,40-10-8

Note. Table gives the average coefficient of linear expansion α during heating from 0 to to C.

Key: (1). Temperature of the wall of duct in °C. (2). Coefficient of linear expansion in mm/m•deg.

Page 159.

§2. Pliable radial compensators.

Pliable radial compensators are prepared U-shaped, S-shaped, U-shaped and ringlike.

For technological conduits/manifolds from this group

predominantly are used the U-shaped compensators, prepared from internal ducts or welded ones with the use/application of sharply bent or welded offtakes (Fig. 3).

The bent compensators are prepared from the smooth seamless pipes of the same trademarks of steels, that also basic conduit/manifold, and allow/assume in installation without lowering in the basic parameters the work of entire conduit/manifold.

Welded compensators with sharply bent offtakes establish/install in conduits/manifolds from P_{r} to 100 kg/cm², but with welded ones with P_{v} not above 64 kg/cm².

Fig. 2. Nomogram of the thermal elongation of conduit/manifold made of low-carbon steel. Δt - temperature drop in deg; L_0 - length of conduit/manifold m; Δl - elongation of conduit/manifold in mm.

Page 160.

The schematic diagram of the work of U-shaped compensator is shown in Fig. 4.

U-shaped compensators distinguish (see Fig. 3) on relationship/ratio the lengths of the straight/direct insert-back P and the length of the straight line of insert-escape h. With the large escape P=0.5h, with the average P=h and with the the small P=2h. The greatest compensation capacity possess compensators with large escape.

The calculation of conducts/manifolds for compensation, determination of the appearing stresses/voltages in conduct/manifold with temperature changes and structural/design sizes/dimensions of compensators composes planning organization.

Basic technical specifications and sizes/dimensions during the manufacture of U-shaped compensators by those bent from ducts, from sharply bent and welded offtakes following.

DOC = 79134707 PAGE 253

The radii of the bent offtakes from ducts usually receive equal ones to $3-4D_T$, for sharply bent ones - 1-15D, according to GOST 17375-72 and for welded ones - 1-15D, according to MN 2880-62.

The welds of the separate elements/cells of U-shaped compensators must be in the straight/direct sections of conduits/manifolds at a distance from the beginning of the curvature of offtakes (besides the cases of applying the sharply bent offtakes), equal to the outside diameter of duct, but it is not less than 100 mm for ducts $\rho_{\gamma<100}$ of less than 200 mm for ducts $\rho_{\gamma\sim100}$ it is less more.

DOC = 79134707

Fig. 3. U-shaped compensators. a) bent; b) by the welded sharply bent offtakes; c) with welded offtakes.

Fig. 4. Diagram of work of U-shaped compensator. 1 - fixed supports;
2 - compensator in the cold state; 3 - compensator in the heated state.

Page 161.

For the compensators, beat from the ducts (see Fig. 3a):

 $k = H - 2R \stackrel{(4)}{\downarrow}$ $L = \rho + 4R + 2\iota,$ (2)

Key'(1) and. $L=p+4R+2\ell_r$ where c=100 mm for ducts $D_r<150$ mm and more.

PAGE 255

DOC = 79134707

Expanded/scanned length of the blank

 $l = 2c + 2\pi R + \rho + 2h. \tag{2a}$

For compensators with the welded sharply bent and welded offtakes (see Fig. 3b, c) $\binom{n}{h=H-2R}$

Keyi(1), and.

= p + 4R. (3)

The most strained section in U-shaped compensator is the middle of the straight/direct part of the back (p), to the form of what weld in this place is not allowed/assumed.

U-shaped compensators from the bent ducts, sharply bent offtakes and welded offtakes are not standardized. During their planning and manufacture they are guided by GOST 9842-61, GOST 17375-72, standards of machine-building MN 2912-62, of MN 2880-62 and by other interdepartmental standards.

- §3. Axial type pliable (elastic) compensators.
- 1. The expansion bellows.

The expansion bellows are intended for installation on conduits/manifolds in diameters from 100 to 2400 mm, which transport nonagressive or slightly agressive products at a pressure to 6

kg/cm2.

Compensators on $P_7=6$ kg/cm² is allowed/assumed to use for an operating pressure to 7 kg/cm² at temperature of product not more than 200°C.

The compensation capacity of one lens depends on its diameter and thickness of wall (Table 2).

Depending on the necessary compensation capacity are used mono-, bi, ter- and four-lens compensators.

For decreasing the resistance to motion of product within compensators usually are established/installed the sleeves/heakers; for the chute of condensate in the lower places of each lens are welded in drain pipes.

Compensators to conduits/manifolds add on weld or with the aid of flanges.

Type and the sizes/dimensions of the expansion bellows made of carbon steel are standardized and are prepared on MN 2894-62 - MN 2908-62.

Table 3-6 reduced mass and sizes/dimensions of mono-, two-, terand tetra-lens compensators. Pages 162-163.

Table 2. Sizes/dimensions and compensation capacity of one lens in mm (NN 2894-32 and NN 2896-62.

	2		•		•		•			s.			(I)rie	anea oGuoc	HOLDON Th OAT	спрую ой ажи	MAR MAL, A	# :
Dy	D _H							Py	kec/c#	,								1
		0,2-1	2,5—6	0,2-1	2,5—6	0,2-1	2,5-6	0,2	1	2,5	4	6	0,2	1	2,5	4	6	Te Bo
100 1.25	108 133	420 470	300 330	120		64							48 49	45	15 1 5	15 15	9.5 9,5	•
150	159	520	360						}		}		51	5 1	16	16	9,5	
175	194	550	390		100	72	54	2,5	2,5	2,5	2,5	3,5	50	49	14	14	,	,
30	219	580	420	İ	ŀ	·			1			1	50	49	14	15	9	
:¥0	273	620	480	140	1				1				44	43	14	14	9	10
311	325	670	550					ı			3	4	42	41	16	14	9	
3	16.5	750 N30	620 670]					3	3	3,5	8	\$	*	16 16	14 14	8,5 8,5	111
60	47.6 8.9 630	930 1030	720 770 870	140		72		2,5	3	8	2,5	•	55 54 52	244	16 15 14	13.5 13 12,5	:	
700	720 820	1120 1220	960 1060	160	100	82	54				<u> </u>	<u> </u>	51 51	41 41	14	12	7,5	ո
900	930	1320	1160						 		_	-	42	41	13,5	_	_	1 1
1000	1020	1420	1260						3,5		_	_	41	40	12,5			1 1
1200	1220	1620		180		92					_	_	40	30	_	_		12
1400	1430	1820	_		_		_	.	 -	_	_	_	30	_	_	_	_	13
1500	1520	1920	_ <u>-</u>		_	102	_	3	-	_	_	_	39	_		-	_	
1 600	1620	2020	-	200	-		_		_	_	-	_	38	_	_	_	-	
16UU 2000	18.0	2220 2420	-		=		=] -	=	=	_	37	-	= :	=	=	14
2.00 2400	2220 2420	2620	=	240	=	122	=	,	-	=	=	=	33	=	=	-	=	

Notes: 1. Sizes/dimensions D, a, b, S and value of compensation capacity are related to the expansion bellows of all types.

- 2. Full/total/complete compensation capacity of compensator (in mm) define as result of product values compensation capacities one lens, for number of lens of compensator.
- 3. Value of compensation capacity is shown for compensators, established/installed in conducts/manifolds with temperature of product not more than 100°C. At higher temperature the value of compensation capacity is lowered: with t from 100 200°C to 50/o; with t more than 200 to 300°C to 100/o; with t more than 300 to 450°C to 150/o.

Key: (1). Full/total/complete compensation capacity of one lens. (2). deficit. (3). kg/cm^2 .

14.1

Pages 164-166.

1. Single-lens compensators.

Key: (1). Type I - with sleeve/beaker (NH 2894-62). (2). Type II without sleave/beaker (NN 2895-62).

Table 3. Sizes/dimensions in am and mass in kg. of single-lens compensators (without flanges).

		ı —							Py kac/	CAFE .	<u> </u>	<u> </u>	<u> </u>	<u>-</u> -		
			0,2		1	1		1	2,5		<u> </u>	4		ı —	6	
Dy	D _H		(2) Ma			(2) H	8 cca		(2) w	CCA		② **	CCA			ACCB .
		L	(3) без ста- кана	CO CTA- Kahom	L (3 Ses CT8- KAHA	CO CTA- MAHOM	1	Des CTS- Kans	CO CTA-	L	36es C7a - Kana	CO CTA- KAROM	L	CTE- KAKA	CO CTG-
1/10	108	425	11,3	12,3	425	11,3	12,3	405	8,2	8,9	406	8,2	8,9	445	10	10,7
125	133		13,9	15,1		13,9	15,1		9,9	10,8		9,9	10,8	465	12,8	12,7
1.	153	Ī	16,8	18,2		16,8	18,2	445	12,6	13,6	445	12,6	13,6		16.9	17,9
1.5	194	445	19,3	21,1	445	19,3	21,1		14,0	16,2	l ¯	14,9	16,2	545	19,4	20,7
300 750 340 350	219 273 325 377		21.1 26.7 34.3 42.9	23,2 29,2 37,4 46,5		21,1 26,7 34,3 46,2	23,2 29,2 37,4 49,8	545	19.9 27.6 36.6 49.4	21,3 29,2 39 51,9	545	19.9 26.8 36.6 51,5	21,3 39,7 69 54	676	28.9 37.2 49.5 67	27,3 30,1 51,7 60,6
400	4.36	445	49,9	54	445	53,8	57,8	605	60,5	63,4	606	83	65,9	678	75,4	79,3
450	478		55,4	60		59,7	64,3		67,9	71,3		70,8	74		94,8	94,1
800	529		60,5	68,2		65,1	72,8	675	83,1	86,5	675	85,6	91	735	99,7	106,2
400	630		71	80,2		76,3	85,6	735	106,8	113,3	736	109,8	116,3		117,4	123,9
700	7:20		79	92,1		85,4	98,5		121,7	129,1		125,1	132,5		133,8	141,2
900	630 630	465	90,8 106,5	104.0	465	96,3 113,4	111,3 130,3	675	128,1 143,6	136,5 183,3	Ξ	=	=	=	=	=

Continuation Table 3.

1000	1020		118,3	139,2	485	126	146,9	675	158,5	100,5	-	_	-	-	-	-
1200	1220	495	149.7	191		158,7	200,1	-	-	-	-	-	-	_	-	_
1400	1420		173,6	222,1	-	-	-	_	-	_	_		_	-	-	-
1500 1600 1800	1520 1620 1820	\$05	187,3 200,4 223	242,9 259,7 289,8	1 1 1		- - -	-	- -	- -	-	1 1 1	- -	- -	-	-
.vu	2020		247,1	326,3	_ ;	-	_	_	-	_	-	~	_	-		_
0	1	546	306,1 335,5	894,7 430,2	~	-	-	-	-	_	-	-	_	-	-	-

Notes: 1. Sizes/dimensions D and H are given in Table 2.

2. Other notes see in tables 6.

Key: (1). kg/cn^2 . (2). mass. (3). without sleeve/beaker. (4). with sleeve/beaker.

DOC = 79134707

Pages 167-169.

2. Two-lens compensators.

(1) Тип I—со стаканом: (МН 2894-62) (2) Тип II—без стакана (МН 2895-62)

Key: (1). Type I - with sleeve/beaker (MN 2894-62). (2). Type II without sleeve/beaker (MN 2895-62).

Table 4. Sizes/dimensions in mm and mass in kg. of two-lens compensators (without flanges).

		Ī					<u></u>		Py. Rec/	em* (1)						
	'		0,2			i		1	2,5			4			6	
D _y	D _B		(2) m	acca .		(8) M	ICCA		(2) M	acca		€ 3	acca.		(£) H3	cca
_		L	(3) без ста- кана	CO CTA- KANOM	L		CO CTA- KAHOM	L	Bes CTA- Kaha	EO CTA-	L	Ges CTa- KaHa	CO CTA-	L	3 6es CTO- KAHA	CO CTA KANOM
100	106	545	17,8	19,5	515	17,8	19.5	505	11.6	12,8	505	11,6	12,8	545	14,7	15,9
125	133		21,7	23,9		21.7	23,9		13,8	15,3	·	13,8	15,3	565	18,1	19,6
150	159	 	26,3	28,9	-	26,3	28,9	_	17	16,5	_	17	18,8		23,1	24,8
175	194	595	29,6	33	505	29,6	33	545	19,6	22,1	\$45	19,6	22,1	645	26,3	26,5
.00 .51 .30 350	219 273 325 377		32,3 36,8 47,9 59,1	36 43.5 53.5 65,7		32,3 29,8 47,9 65,8	36 43.5 53.5 72.4	645	25,4 34,3 44,9 61,1	29.9 37.4 48.7 65,6	645	25,4 35,7 40,4 65,3	29.9 39.9 82.2 69,7	775	33.3 47,7 52.4 88,3	35.6 30.8 66.1 90,8
4.0	426	565	69,2	76,7	585	77	84,5		73,2	78,3		78,2	78,3	775	95,5	101,6
4:0	478		76,1	84,6		84,7	93,2	705	81,7	87,5	706	46,2	92,6		113,9	119,6
54)	5.9		82.8	96,9		92	106	775	98,3	107,8	775	103,4	112,8		124,9	134,3
•"	(3)		96,4	113,2		107,8	123,6		124,3	135,6	126	129,3	141,6	635	147,2	157,5
1.6	w;	1	107,3	130,2		120	142,9	835	141,3	154,5		166	161.8		166,1	180,4
*:	9,0	62	121.7	147.9	625	134,4 162,3	100,8 191,8	776	151 168,1	184,9	-	_	_	-	_	_

Continuation Table 4.

1.00	1030	-	165	300,8		100,4	216,1	775	104,9	200,4	-	-	-	-	-	-
1.00	1220	665	204	274,9	665	222	292,9	-	, 1	-	-	-	-	-	_	-
1400	1430		235,7	316,1	-	_	-	-	-	_	-	-	: -	-	-	-
1500 1600 1900	1520 1620 1820	705	254.7 271.9 302.2	350,7 374,4 417,8	-	<u>-</u> -	 - -		-	-	- - -	- - -	- - -	 - -	- - -	- - -
200) 2200 2400	2020 2220 2420	785	338 406,8 442,6	478,6 580,5 610,9		-	 - -	=				-		-	- - -	

Notes: 1. Sizes/dimensions D and H are given in Table 2;

2. Other notes see in tables 6.

Key: (1). kg/cm². (2). mass. (3). without sleeve/beaker. (4). with sleeve/beaker.

DOC = 79134707

Pages 170-172.

3. Three-less compensators.

(1) THR I — CO CTAKAHOM (MH 2894-62)
THR II — GES CTAKAHA (MH 2895-62)

Key: (1). Type I - with sleeve/beaker (MN 2894-62). (2). Type II without sleeve/beaker (MN 2895-62).

Table 5. Sizes/dimensions in mm and mass in kg. of three-lens compensators (without flanges).

· - i									Py. Rec/	en (1)	,··			· · ·		
			0,2	₁	·				2,5			4				
			(2) MB		-	@ Ma			@ ya		 -	@ Ma		 -i		cca
Dy	D _H			(e)		<u> </u>				Œ		~	(2)			@
		L	Ges CTA- KANA	со ста- каном	L	©) без cta- кана	CO CTA- KAHOM	L	3 ∕без ста- кана	CO CTA- KAMOM	L	CTa- Kans	CO CTA- KANOM	L	Ges CTA- KAMA	CO CTA- KAROM
1 01	1/8	665	27,3	26,9	665	27.3	26.9	605	15	16,7	605	15	16.7	645	19.4	21,1
:3	133		29,6	32,8		29,6	32,8	Ì	17,7	20,4	İ	17,7	20,4	685	23,5	25,7
	124	<u>'</u>	35,9	39,7		35,9	29.7	<u> </u>	21.5	24,1		21.5	34,1		29,3	31,8
••	: •	7.25	40	44,9	795	40	44,9	045	24,8	28	645	24,5	29	745	33,1	36,4
2 0) 150 3 0)	219 273 3.5		43.5 50,9 61,4	48,8 57,6 69,4		43.5 50.9 61.4	48.8 57.6	745	30,9 41 52,1	34.8 45.5 58.6 79.3	745	30,9 44,6 58,2	34.5 0.2 60.7		40.7 56.1 75.3	44,3 62,7 80,8
350	377		75,5	85		85,5	69,4 96	'-	72.9	79.3		76,8	63.7 85.2	ļ	105,6	112
400	426	725	88,6	99,5	725	100,2	111		85,9	93,2		93,3	100,6	875	117,7	124,9
450	478		96,9	109,2		109,7	122	805	95,5	103,7	905	103,7	111,9		137.1	147,3
500	529		105,1	125,5		118,8	139,2	875	113,6	127,1	675	121,1	134,7		149,9	162,5
600	630		121,6	146,2		137,3	161,8		141,7	158,1		150,7	167,1	935	175	191,4
700	720		135,7	167,9		154,6	186,8	935	160,8	179,7	935	170,9	189,8		198,4	217,4
810 910	870 870	785	183,6 190,4	190,4 231,8	786	172.9 211,2	209.8 252.6	875	172.1 192,6	193.5 216,7	=	=	=	=	=	=

Continuation Table 5.

1000	1020		211,6	262,2	8:5	274.7	A5,2	875	211,4	238	-	-	_	-	_	-	
1200	1220	845	258,5	358,4		285,4	385,3	_	-	_	_	-	-		-	-	
1400	1420		297,8	414,2	_	-	_	-	-	-	-	-	-	-	-	-	
1500	1520		322,5	458,7	_	_	-	_	, _	-	-	_	_	-	_	_	
1810	1670	905	343,5 381,6	489 546	_	_	_	_	_	_	-	1 1	-	-	-	_	
3.11	נגינב	<u> </u> 	428,9	633,5	_		_	_	_	_	_	_	_	_	_	_	
250	2230	1025	\$05,7	729,3	-	_	_	_ ,	-	_		_	_	-	_	_	ĺ
:40	200		549,8	794,6	-	-	-	-	-	-	-	_	-	-	-	-	ŀ

Note: 1. Sizes/dimensions D and H are given in Table 2.

2. Other notes see in Tables 6.

Key: (1). kg/cm². (2). mass. (3). without sleeve/beaker. (4). with
sleeve/beaker.

DOC = 79134707

Pages 173-175.

4. Four-less compensators.

- (/) THE I CO CTEMBEROW (MH 2894-62)
- (2) THE II 603 CTAKAHA (MH 2895-62)

Key: (1). Type I - with sleeve/beaker (NH 2894-62). (2). Type II - without sleeve/beaker (NH 2895-62).

Table 6. Sizes/dimensions in mm and mass in kg. of four-lens compensators (without flanges).

							~		Py. Kec	(1)						
			0,2			1			2,5			4		<u> </u>	6	
Dy	D _R		(2) MAG		1	(2) Ma			Э иа	Cca		@ W40				eca
		L	³⁾ без (ста- кана	CO CTS- KAHOM	. 4	3 6ез Ста- Кана	CO CTA- KAHOM	L 4	Эбез ста- кана	CO CTA- KAROM	L	Ge3 CTu- Kaira	CO CTA- KalloM	L 9	без ста- кана	CO CTA- KANOM
100 125	108 133	785	30,8 37,5	34,2 41,7	785	30,8 37,5	34.2 41.7	705	18,4 21,5	20,7 24,5	705	18,4 21,7	20,7 24,5	745 785	24.1 28.9	27,3 31,8
150 175	159 194	865	45.5 50.4	50.4 56,7	8:5	45,5 5 0,1	50.4 56.7	745	25.9 29.7	29,3 33,9	745	25,9 29,7	29,3 31,9	845	35,4 39,9	38,6 14,2
250 301 350	219 273 325 377		54,7 63,1 75 90,8	61.7 71.8 86,5 103,3		54,7 63,1 75 105,1	61.7 71.8 85.5 117,6	815	36,4 47,7 61,2 84,7	57,6 68,3 93	845	36.4 52.5 68 92,9	41 50,4 75,1 101,3	975	46,2 66,5 88,2 124,9	82,9 74,5 95,3 133,2
400	426		108	122,2		123,3	137,5	905	98,7	108,1	906	108,5	117.9		138,8	148,3
450	478	865	117,7	133,7	865	134,7	150,7	905	109,2	119,9	905	120,2	130,9		160,3	171,1
\$00	529	563	127,4	153,8		145,7	172,5	975	128,8	145,9	975	138,8	156,5	1035	175	192,7
ωυ	630		148,1	179,3		167.9	200	1035	159,2	150,4	1035	171,1	192,3		202,6	225
700	720		164	206,5		189,2	231,7		180,4	204,9		193,6	218,2		230,7	255,2
A(1) ((1)	820 920	945	185,5 232,4	234,2 287	945	211.2 260,1	260 314,8	975	194,4 217,1	222 248,5	=	=	=	=	=	=
1301	10:0		258,6	323,9		288,4	354,5		237,1	262,6	-	-	-	-	-	-
1,000	1231	1025	312,9	442,3	1025	348,8	478,2	-	-	-	-	 -	-	-	-	-
•	1450	ł	300,8	\$10,8	=	-	T =	-	-	-	-	-	-	-	-	-

Continuation Table 6.

1830		389,6	\$65,1	_	_	_	_	_	_	_	_	_	1 - 1	-	-
1620	1105	415	601,5	_	-	_	-	_	_	_	_	_	l – I		-
1820		460,8	671,4	-	-	•-	_	_	_	_		_	_	_	_
						1				ÌI			1	- 1	
2030		519,7	787.3	-	-	-		-	-	-	_	-		-	-
2230	1265	604,5	898,2	-	_	l –	_	_	_	_	_	_		_	_
3420	1	657,1	977,8	_	_	_	_	_	_ !	_		_	_	_ 1	-
	1620 1820 2020 2220	1620 1106 1820 2020 2020 1265	1620 1106 415 1820 460,8 2020 519,7 2220 1265 604,5	1620 1106 415 601.8 1820 460.8 671.4 2020 519.7 787.3 2220 1265 604.5 898.2	1620 1108 415 601.8 — 1820 460.8 671.4 — 2020 519.7 787.3 — 2220 1265 604.5 898.2 —	1620 1108 415 601,8 — — — — — — — — — — — — — — — — — — —	1620 1108 415 601,8 — — — — — — — — — — — — — — — — — — —	1620 1108 415 601,8 — — — — — — — — — — — — — — — — — — —	1620 1106 415 601,8 — — — — — — — — — — — — — — — — — — —	1620 1106 415 601.8 — — — — — — — — — — — — — — — — — — —	1620 1106 415 601.8 — — — — — — — — — — — — — — — — — — —	1620 1108 415 601.8 — — — — — — — — — — — — — — — — — — —	1620 1106 415 601,8 — — — — — — — — — — — — — — — — — — —	1620 1106 415 601,8 — — — — — — — — — — — — — — — — — — —	1620 1108 415 601,8

Notes: 1. Sizes/dimensions D and H are given in Table 2.

For $P_y=25$ kg/cm² and internal diameters P_y from 100 to 200 mm to use compensators $P_y=4$ kg/cm²; for $P_y=42$ kg/cm² and internal diameters P_y from 100 to 300 mm to use compensators $P_y=1$ kg/cm².

- 3. Tables show mass of compensator with vent lines. The mass of compensators without vent lines is respectively less by 0.1 kg. to each lens.
- 4. Hisalignment of entrance and exit openings of compensator is allowed/assumed to 3 mm for $\rho_y < 200$ mm and to 5 mm for $\rho_y > 300$. mm.
- 5. Nonperpendicularity of ends/faces of branch connections with respect to longitudinal axis of compensator must not exceed: for $p_y=100+200$ nm = 1.5 nm; for $p_y=230+400$ nm = 2 nm; for $p_y=450+700$ nm = 2.5 nm; for $p_y=400+1200$ nm = 3 nm; for $p_y>1200$ nm = 3.5 nm.

DOC = 79134707

Key: (1). kg/cm². (2). mass. (3). without sleeve/beaker. (4). with
sleeve/beaker.

Page 176.

2. Wavy compensators.

Wavy compensators are the most modern compact compensators, which make it possible to establish/install them in the small section of the route of conduits/manifolds.

The basic part of the wavy compensators of different types is the pliable element/cell, which consists of elastic and strong that corrugated in the form of the waves of shell, manufactured made of steel OKh 18N1O. Wave development (corrugation) is accomplished/realized by hydraulic molding.

Depending on load direction pliable element/cell absorbs the strains of different character (Fig. 5).

For technological conduits/manifolds use wavy kilooha compensators axial (KVO2), general-purpose hinged (KVU2) and hinged dual (KVSh), developed by designed committee Giproneftensah

__State Scientific Research and Planning Institute of Petroleum Hachinery Hanufacture].

Fig. 5. Basic concepts of the strain of pliable element/cell. a) the initial position of the compensator; b) the compression of compensator along the longitudinal axis; c) the stretching of compensator along the longitudinal axis; d) the bend of compensator at the angle; e) the displacement of longitudinal axis with the parallelism of the planes of the ends of the pliable element/cell.

Page 177.

Wavy compensators work under conditions of alternating load with the change of cycles from maximum to the minimum of the temperature parameters.

Table 7 gives the data about the maximum permissible angles of

bend of the waves of a compensator of the type KVU2 on $P_7=25$ kg/cm² during 300 repeating cycles for entire period of operation.

The limits of the use/application of wavy compensators on the pressure of medium depending on temperature are set to GOST 356-68.

Wavy compensators depending on their construction/design are intended for a work at temperature from -30 to +450° and P_7 <25 kg/cm².

Axial type wavy compensators KVO2 establish/install in the straight/direct sections of conducts/manifolds.

The general view of compensator KVO2 is shown in Fig. 6.

Pliable element/cell has the omega-shaped profile/airfoil of waves and the limiting rings, bent from round bar. Pliable element/cell is welded to ring branch connections. The carrier rings are applied to the connection of pliable element/cell with branch connections in hot state. Jacket is welded to the strut, which holds from shift/shear the carrier rings; the housing with disks protects plia element/cell from accidental shocks and damages and contributes to the decrease of heat losses.

Table 7. Permissible angles of mend of the waves of compensator KVU2.

	(/) Менсимально допустимый	(A) Mancinia	льно допустивы Нбе для числе вс	yraw Mar
<i>D</i> _y , <i>mm</i>	угол изгиба одной волны при 300 циклах	3	4	6
150	1*40'	5•	6*40′	10*
200, 280, 380	1*30*	4*30'	6•	90
300, 400	1•30,	4°	5°20'	ę•

Key: (1). Maximum permissible angle of bend of one wave during 300 cycles. (2). Maximum permissible angles of bend for number of waves.

Page 178.

The flange, welded with jacket, bolts and nuts serve for installation and preliminary brace to the prescribed/assigned length, but the disk, welded to branch connection, protects from the displacement of heat insulation. Internal shell decreases the turbulence of the transported medium.

The technical characteristics of compensators KVO2 are given in Table 8.

The wavy compensators of the type KVO2 and others are produced by the Salavatsk Machine Building Plant for the drawings, developed by design institute Girroneftemash.

Compensators hinged type wavy angular ones KVU, KVU2 and KVSh establish in sections with significant temperature drops or at large distances between rigid supports to which they are transmitted comparatively small efforts/forces.

Fig. 6. Compensator wavy axial of the type KVO2 on 25 kg/cm². 1. disk; 2, 11 - ring branch connections; 3, 4 - bolts and nuts; 5 - flange; 6 - disks; 7 - limiting bent rings; 8 - corrugated pliable element/cell; 9 - jacket; 10 - internal shell; 12 - carrier rings; 13 - strut.

Page 179.

Table 8. Technical characteristic of compensators KVO2 for $P_1 \le 25$ kg/cm² (OST 26-02-225-70).

	//) Размеры присоеди- идемой трубы в мм	В забольшая компенсы- рукомая способность одной волны А	Viscao sossi	Tongas cterra radiane	ЭДимиетр гибиого элемента в им		(4.) Строительная длика L при числе воли в ли				(7) Масса компексатора с кольнями кругдого сечения в из при числе воли					
D _V .					D	D _B	3	4	6	•	10	8	•	•	•	10
150	159×7	10	38	1	157	238	391	436	526	616	-	25	*	· \$3	*	-
200	219×8	12	3—i	1,2	. 216	313	464	518	676	734	-	45	80	60	70	-
250	273×9	- 14	38	1,2	270	367	507	562	672	782	-	60	65	75	90	-
300	325×10	14	3-8	1,2	321	418	507	562	672	782	-	70	80	90	106	-
250	377×10	18	3—10	1,2	372	493	643	712	850	968	1126	110	120	145	170	195
400	436×11	18	3—10	1,2	421	542	43	712	850	986	1126	125	140	165	195	230

Key: (1). Sizes/dimensions of the added duct in mm. (2). Greatest compensation capacity of one wave. (3). Number of waves. (4). Wall thickness of pliable element in mm. (5). Diameter of pliable element/cell in mm. (6). Structural length L with number of waves in mm. (7). Mass of compensator with rings of round cross-section in kg. with number of waves.

Page 180.

DOC = 79134707 PAGE 274

Compensators of the type KVU are used with the broad band of the distances between centers of the hinge joints of the compensators: the bend of hinge joints is accomplished/realized only in one plane.

The general view of compensator KVU is shown in Fig. 7.

Pig. 7. Compensator wavy of the type KVU. 1 - hinge joints; 2 - the collars; 3 - pliable corrugated element/cell; 4 - the carrier rings; 5 - strip rings; 6 - ring pranch connections; 7 - stiffening rib; 8 - pin; 9, 10 and 12 - nut; 11 - adapter; 13 - pin; 14 - shell cylindrical; 15 - shell conical.

Table 9. Technical characteristic of compensators KVU2 on $P_7 \le 25$ kg/cm² (OST 26-02-332-71).

D _y .	()Строит в мм	ельная д при числ	A sense e som	Macca a	() _B		
	3	4	6	. 3	4	6	не болсе
150	471	516	606	40	42	50	342
200	564	618	726	75	80	95	433
250	617	672	782	115	125	140	510
300	617	672	782	125	135	155	8/A
350	8413	872	1010	5 M)	258	290	1
4(X)	9 0X3	872	1010	254	275	ato	2,50

Key: (1). Structural length L in mm with a number of waves. (2). Hass in kg. with number of waves. (3). B in mm, are not more.

Page 181.

The technical characteristic of compensators RVU2 on $P_7 \le 25$ kg/cm² with a diameter of 150-400 mm is given in Table 9.

Compensators hinged dual KVSh have two pliable elements/cells and are used them for absorbing the temperature changes of the lengths of conduits/manifolds in angular, Z-shaped and U-shaped systems and on branches.

The general view of compensator KVSh is shown in Fig. 8.

The technical characteristic of compensators KVSh on ' $P_7 \le 25$ kg/cm² with a diameter of 150-350 mm is given in Table 10.

Fig. 8. Compensator hinged doubled of the type KVSh. a) installation on the branch; b) installation in the U-shaped diagram; 1 - pins; 2 - nut; 3 - the carrier rings; 4 - link of the hinge joints; 5 - fulcrum; 6 - bolts; 7 - limiting semirings; 8 - the carrier rings; 9 - strip rings; 10 - spacer duct; 11 - draft (illegible); 12 - shell cylindrical; 13 - pliable corrugated elements/cells; 14 - conical shell; 15 - connection plate; 16 - branch connections.

DOC = 79134708

Page 182.

§4. Slipping type axial compensators (gasket).

Gasket compensators are established/installed in steam- and heat- cables, and also in the conduits/manifolds, which transport unburning liquids, their vapors, and inert gases. The installation of gasket compensators to the conduits/manifolds, which transport toxic products, combustible and reactive gas, inflammable and flammable liquids, is not allowed/assumed.

Compensators with conduct/manifold weld or from flanges.

Types and sizes/dimensions of steel gasket compensators on P_1 to 16 kg/cm² from p, from 100 to 1000 mm for the conduits/manifolds, which transport nonagressive products at temperature to 300°C are standardized (see the standards of machine building MM 2593-6/-MM 2599-61).

The information about these compensators is given in table 11.

Table 10. Technical characteristic of compensators KVSh on $P_7 \leqslant 25$ kg/cm².

Dy. 48	Konnencu- pyround cancos- morts, &	Cryss- Testanos Alema L.	(3) Poceron- time next ty eases may supen L _a	Makin
150	200	1200	838	85
	300	1600	1238	93,6
	400	2020	1658	108
	500	2420	2068	112
200	200	1380	910	178
	300	1820	1350	214
	400	2280	1610	243
	500	2720	2250	276
250	200	1400	876	183
	300	1880	1366	209
	400	2280	1756	231
	500	2700	2176	264
300	200	1520	996	282
	300	2020	1496	337
	400	2520	1996	392
	500	3000	2476	446
360	200 300 400 500	1460 1930 2369 2660	926 1366 1866 2256	3253

Key: (1). Compensation capacity, Δ . (2). Structural length L, mm. (3). Distance between centers of hinge joints L₁, mm. (4). Mass of compensator in kg.

Pages 183-184.

Table 11. Compensators gasket mono- and two-sided on Py to 16 kg/cm² (NN 2593-61 and MN 2598-62).

3(2)	Наибольт	3) Вя компен-				(4)	Размеры в	MM					(5)
and made	ROCTS KOM	я способ- пенсатора мм					£ KOM	(8)				•	enementapa Re
Условный про трубопровода (Ву. жа	односто- роннего	рониего (1	D _u	D	. D ₁	D ₂	мего сторон- одно-	двусто- роннего	L ₁	t	1,	одиосто- рониего	Taketo-
100	250	2×250	108 133	133 159	190 215	100 125	820 835	1610	870	375	દદ	20,5 25,4	41,6 48,9
150 178			159 194	194 219	250 280	150 184	990 965	1900	1030	435	75	43,8 49,9	86.4 100
260 250 300 380	300	2×300	219 273 325 377	273 325 377 426	345 395 450 600	205 259 317 369	1160 1150 1170 1175	2160	1180	₩0	120	92 125 ,9 1 58 1 67	177 243 305 318
1000			426	478	560	412		2560	1380		120	212	406
450			478	529	610	464	1360					243	468
ราบ			529	578	675	515	1370					333	651
600			630	68ú	780	614	1375					400	784
7.0	400	2×400	720	774	875	704	1380	2620	1440	590	130	479	939
511			820	1874	980	802	1385					600	1169
90			920	974	1085	900						667	1339
lor			:020	1070	11#5	900	1500					700	1630

Notes: 1. Size/dimension D_z of one-sided compensator corresponds to the bore of the added conduct/manifold.

- 2. Material st. 3 about GOST 380-71.
- 3. During installation of compensator with compensation capacity less than it is shown in table, adjusting values L and L can be respectively reduced.

Rey: (1). Place of marking. (2). Conventional flow capacity of conduit/manifold D_y , mm. (3). Greatest compensation capacity of compensator in mm. (4). Sizes/dimensions in mm. (5). Hass of compensator in kg. (6). one-sided. (7). two-sided.

Page 185.

Chapter ♥I.

DUCTS AND PARTS OF PRESSURE PAPING.

§1. Classification of conduits/manifolds on P_y from 200 to 1000 kg/cm².

Technological conduits/manifolds to conventional pressure from 200 to 1000 kg/cm² classify:

- a) according to the properties of the transported media: groups A, B, C, D and E in accordance with the classification of conduits/manifolds, established/installed by SniP III-G.9-62* (see Chapter I, §3):
- b) on the pressure of the transported media: $P_r = 200$; 250; 320; 400; 5°0; 640; 800 and 1000 kg/cm²;
- c) according to the temperature of the transported modia and using materials of conduit/manifold.

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/G 5/2 HANDBOOK ON SPECTAL WORKS. TECHNOLOGICAL LINES OF INDUSTRIAL EN--ETC(U) OCT 79 Y Y NIKOLAYEVSKIY AD-A084 528 UNCLASSIFIED FTD-ID(RS)T-1347-79-PT-1 NL 4 . 6

§2. Requirements for steels for conduits/manifolds on p_y from 200 to 1000 kg/cm².

When selecting of materials for conduits/manifolds consider operational characteristics, corrosion properties of medium, character the load applications.

Depending on the value of operating pressure, temperature and characteristic of working medium are determined the group of steel and the permissible conventional pressure.

In accordance with this the ducts and the parts of the conduits/manifolds of any internal diameter by outside diameters and wall thicknesses divide into I, II, III and IV performance.

Table 1. Classification of pressure piping depending on temperature and pressure of the transported medium.

(I) Tesmepa- Typuan Clynass	Thereparype Transchoptin- Pressed cas- AM n °C	(3) Группа сталя	(4) Py, nac/cas	(5) Харак терис тика средм
	(6)	С	208328	Нейтральная, водо- родосодержащая
	Οτ <u>``6</u> 0 де +200	хн	2,5320	VLDecciona (2.)
1	Ot -50 80 +200	Хľ	400-640	О Нейтральная, зада- ровосодоржанцая
11	OT 50 40 +400	XM	250800	To we
111	OT -50 40 +510	x•	320—1000	•

Notes: 1. Groups of steel are given according to GOST 356-68.

- 2. Temperature steps/stages and conventional pressures according to GOST 9400-63.
 - 3. Characteristic of medium on MN 5010-63.

Key: (1). Temperature step/stage. (2). Temperature of transported medium in °C. (3). Group of steel. (4). kg/cm². (5). Characteristic of medium. (6). From -50 to . (7). Neutral, which contains hydrogen. (8). Aggressive. (9). The same.

DOC = 79134708

Page 186.

The permissible maximum values of conventional pressures for the groups of steels and corresponding to it performance are given in Table 2.

The trademarks of steels used for ducts and parts of conduits on $P_1 = 200-1000 \text{ kg/cm}^2$, are given in Table 3.

Table 2. Performance of ducts and parts depending on the conventional pressure of conduits/manifolds and group of steel.

(1)	(2) Группа стали							
Исполнение	C	, Xr	XM	Φχ.	XH			
	Py, Rac/cm ^a (3)							
t	200	-	250	320	200			
11	320	-	400	500	320			
111	-	500	640	800	-			
ΙV		640	800	1000	_			

Key: (1). Performance. (2). Group of steel. (3). kg/cm².

PAGE # 286

DOC = 79134708

Page 187.

Table 3. Trademarks of steels of ducts and parts for conduits/manifolds on p₃.=200-1000 kg/cm².

(i) Fpynne craan	(2) Tpyfer	Колема, Этодын им, тройныка, отводы, перехо ды, диафрагыы, диням, карманы	Фданцы по- реходиме, заглушки	PARKEN BOR TOP- MOMETPLE S TOPMS- HEPM	(b) Sansible Personne	(1) Aussia yranturtan-	E E	(1) Гайки честые мостигран- вые		
(LOCI	чмту в	НИТИ SI8-63, 3	-218-69 MH 5010	FOCT 9399—63	FOCT 10493—63	FOCT 10494—63	FOCT 1049563			
	(10) Марка стали									
C	20	20	35	- 35	35	20	35 XT2	30X; 35X; 30XMA		
хг	14XFC 18XF 15XΦ	18XF	30X	36	35 30X	20 18XF	35X[3	30X; 35X; 30XMA		
ХМ	30XMA 18X3MB	30XMA 18X3MB	30XMA 18X3MB	40X	36 X A 10 X	хэмв	40ХФА	35X; 30XMA		
ХФ	20Х1МВФ	20Х3МВФ	20X3MBΦ	25X1MΦ	25X2MΦA	X3MB	25X2M4A	AMXOE		
XH	XIGHIOT QX17H16M3T	XISHIOT XI7HI3M3T	X18H10T(35) X17H13M3T(35)	35	25	XIOHIOT XI7HI3MST	36XГ2	30X; 36X; 30XMA		

Notes: 1. Material - steel of the brands/marks: 20, 35 according to GOST 1050-60; 18KhG, 30Kh, 35Kh, 35KhG2, 38KhA, 40Kh, 30KhMa, 15KhP, 40KhPA according to GOST 4543-71; 14KhGS according to GOST 5058-57; Kh18N10T, Kh17N13H3T, 0Kh17N16H3T according to GOST 5632-61*; 18Kh3MV, 20Kh3MVF, 25Kh1MF according to GOST 10500-63; Kh3MV according to GOST 10493-63; 25Kh2MPA according to the technical specifications, approved in routine.

•

- 2. For agressive media of different productions besides given trademarks of steels also they supply according to appropriate standards and special technical specifications of duct and part of conduits/manifolds from flock of brands Kh25N2OS2, Kh23N18, Kh17N13H3T and Kh17N13H2T.
- 3. For transitional flanges and silencers/plugs on MN 4994-63 and MN 4996-63 inserts prepare from steels of brands Kh18N1OT and Kh17N13M3T; remaining parts from flock of brand 35.

Key: (1). Group of steel. (2). Ducts. (3). Elbows, angle plates,
T-connections, offtakes, transitions, diaphragms, lens, pockets. (4).
flanges (transitional, silencers/plugs). (5). flanges under
thermometers and thermocouples. (6). Flanges (threading. (7). Lens
packing. (8). Pins. (9). Nuts pure/clean hexahedral. (10). Trademark
of steel.

PAGE #288

DOC = 79134708

Page 188.

Table 4. Assortment of ducts on $P_y = 200-1000 \text{ kg/cm}^2$ (Charu VNITI $E \mu N + \mu J = 0.000 \text{ kg/cm}^2$) 518-63 with addition No 1 and TSPM/VNITI 3-248-69) (sizes/dimensions in mm, mass in kg.).

	(1) Группа стаян												
Dy		C, XF, XM, XΦ									н —		
	D _H ×S	Macca 1 nos. M	D _N ×S	Macca 1 nos. M	D _{II} ×S	Macca 1 nos. M	D _{II} ×S	Macca I nog. M	D _H ×S	Macca I noe. M	D _H ×S	Macce 1 noe. M	
6 10	12×3 20×4,5	0,67 1,72	15×4,5 25×7	1,17 3,11	=	=	=	=	12×3 20×4,5	0,69 .1,77	15×4,5 25×7	1.18 3,13	
15 25	25×5 35×5	2,47 3,7	35×9 45×9	5,77 7,99	45×10	8.63	50×12	11,25	25×5 35×5	2,54 3,82	35×9 45×9	5,81 8,05	
32	45×6,5	6,17	50 ×9	9,1	57×12	13,32	68×16	20,52	45×6,5	6,37	50×9 51×11	9,16	
40 60	57×7 76×9	8,63 14,87	68×12 83×14	16,57 23,82	68×14 102×20	18,64 40,44	83×19 102×22	29,99 43,4	57×7 76×9	8,91 15,32	68×12 83×14	16,67 21,02	
70 90	89×11 114×14	21,16 34,53	102×16 127×18	33,93 48,39	114×22 140×25	49,91 70,9	127×28 159×36	68,36 109,2	89×11 114×14	21,82 35,61	102×16 127×18	34,13 48,66	
100 125	127×14 159×18	39,01 62,59	140×20 180×28	59,19 104 ,96	159×28 194×36	90,46 1 40, 27	180×40 219×48	138,1 202,41	127×14 189×18	40,24 64,54	140×20 180×28	59,54 1 05,5 5	
150 200	194×20 245×25	85,28 135,64	219×32 273×36	147,57 220,23	245×45 299×50	221.85 307.02	278×60	315,17	194×30	88,51	_	=	

Note. Mass 1 lin. m of ducts for the groups of steels S, KhG, KhH and KhF determine from the formula

$$Q = \frac{\pi}{1000} (D_H - S) S\gamma.$$

where γ - steel density is accepted by 7.85; for the groups of steels KhN, density is accepted equal to 8.1 for steel OKh17N16N3T (BI580) and 7.9 for steel Kh18N10T.

Key: (1). Group of steel. (2). mass of 1 lin. m.

Page 189.

§3. Conduits on P, from 200 to 1000 kg/cm2.

1. Ducts.

For manufacturing technological pressure piping by technical specifications is established/installed the limiting assortment of ducts with 13 internal diameters.

Ducts made of steel of groups S, KhG, KhM, SF supply in accordance with TSFM VNITI 518-63, while ducts made of steel KhN supply on TSFM VNITI 3-248-69.

The assortment of ducts for communications by pressure from 200 to 1000 kg/cm 2 is given in tables 4.

Technical requirements for ducts made of steels of group S, KhG, KhM and KhP (ChMTU VNITI 518-63).

Ducts in outside diameter to 57 mm inclusively supply cold-rolled and cold-drawn, more than 57 mm - hot-rolled. Is

DOC = 79134708

permitted the delivery of ducts by those cold-worked of the following sizes/dimensions: 68x12, 68x14, 76x9 and 83x14-19 mm.

The length of the supplied ducts must be not less than 4.5 mm: is allowed/assumed the delivery of ducts in long not less than 3 m in quantity 200/o of ordered patch.

Deviations with respect to the sizes/dimensions of ducts must not exceed the values, given in Table 5.

Ovality and wall thickness variation of ducts must not derive/conclude the sizes/dimensions of ducts beyond the limits of manufacturing tolerances with respect to diameter and wall thickness. The curvature of ducts in the section of any length must not exceed: for the cold-rolled and cold-drawn ducts - 1.5 mm on 1 m, for the hot-rolled ducts:

with wall thickness to 20 mm ... 1.5 mm by 1 lin. m;

the same, more than 20 mm to 30 mm ... $\frac{2}{k}$ mm by 1 lin. m;

the same, more than 30 mm ... 4 mm by 1 lin. m.

Table 5. Manufacturing tolerances with respect to the sizes/dimensions of ducts made of steels of group S, KhG, KhH, KhF.

(t) Passap 1996	Холодиотину тые и холод- номатаные					
	(ч) допускаеные отклонения					
6) При наружном днаметре: ло 30 мм свыше 30 мм до 50 мм > 50 мм	±0,3 мд ±0,4 э ±0,8 %	±1% (для всех раз- меров)				
о) При толщине стенки: до 5 мм свыме 5 »	±10% ± 8%	-8% +13% (для всех раз- иеров)				

Key: (1). Size/dimension of ducts. (2). Cold-drawn and cold-rolled.

(3). Hot-rolled. (4). manufacturing tolerances. (5). With outside diameter: to 30 mm, it is more than 30 mm to 50 mm, more than 50 mm.

(6). (for all sizes/dimensions). (7). With wall thickness: to 5 mm, it is more than 5 mm.

Page 190.

Mechanical properties of the metal of ducts in the state of delivery must to satisfy the requirements Table 6.

To inspection and measurement is subjected each duct. On the external and internal surfaces of ducts are not allowed/assumed the flaws, cracks, laps, deep scratches and hairline cracks. These

defects/flaws compulsorily derive/conclude via trimming by grinding wheel, file or in another manner, except verification and calking. In this case in the cleaned places wall thickness must not exceed the limits of manufacturing tolerances.

Ducts must hold out the testing (hydraulic) pressure, determined according to GOST 3845-65 (see Chapter I, §2).

Table 6. Hechanical properties or steels of ducts in as-received condition on p_y from 200 to 1000 kg/cm² (TSFM VNITI 518-63 and 3-248-69).

(0)	(1) sec/cm²		840		(5) a _{ar}	ND.	
Марка стадв	(H REE!) ne me	% 100	1	""	
20	42-40	24	_	23	5	111-186	
14XFC	50	34	17	-	10	He messes 137	
ISXF	55	35	-	20	12	» 179	
15ХФ	45	25	-	20	-	Не более 187	
30XMA	60	40	13	-	8	169-217	
18X3MB	65	45	-	18	12	197—241	
20X3MβΦ	90	50	-	14	6	241285	
Х18Н10Т: (4)горячекатаные	54 56	40	-	-	_	_	
(1)xonoghokata- nme OX17H16M3T	50	20	<u> </u>	35	-	(9)	

Notes: 1. For ducts of steel of prand 20 with the wall thickness of duct to 20 mm o, -42kg/mm² and with wall thickness it is more than 20 mm o, =40 kg/mm².

2. Mechanical properties of ducts of trademarks of steel Kh25N2OS2, Kh23N18, Kh17N13H3T and Kh17N13H2T, supplied by special technical specifications, determine by agreement of sides.

Key: (1). the trademark of steel. (2). kg/cm^2 . (3). $kg \cdot m/cm^2$. (4).

DOC = 79134708 PAGE \$ 294

it is not less. (5). It is not more. (6). hot-rolled. (7). cold-rolled. (8). Optional.

Page 191.

Ducts in outside diameter less than 45 mm are tested to knee according to GOST 3728-66 (around mount/mandrel radius equal to $2D_{\rm u}$). Ducts in outside diameter 45 mm and more are tested to flattening according to GOST 8695-58.

Each batch of ducts they accompany by the certificate, which certifies compliance of ducts to the requirements of specifications.

In certificate they indicate: the brand/mark of flock, its chemical composition, number of melting, all test results of ducts and blanks, sizes/dimensions and quality of ducts in batch, mode/conditions of the heat treatment of ducts, and also estimation of brands/marks and microsections, the appropriated color colorings of this brand/mark of steel and the output of OTK of manufacturing plant about aptitude.

At the end of each duct in outside diameter 35 mm and more compulsorily are selected the marks with the following data: the trademark of steel, the mark of manufacturing plant and its OTK and

number of batch. Marks hammer out at a distance of 300-400 mm from the end of the duct.

Ducts in outside diameter less than 35 mm link into bundles and they supply with two metallic tags, hung up on the zinc plated wire from two sides to the bundle; on tags pack the same marks, and also sizes/dimensions of ducts.

The ducts, not equipped with certificates, cannot be allowed for utilization on high-pressure installations.

Technical requirements for ducts made of steels of the group KhN, supplied on TSPM VNITI 3-248-69.

Manufacturing tolerances with respect to outside diameter in wall thickness must not exceed the values, indicated in Table 7.

Remaining requirements must correspond for hot-rolled ducts GOST 9940-72, for cold-deformed - - GOST 9941-72.

Table 7. Manufacturing tolerances with respect to the sizes/dimensions of ducts made of steels of the group KhN.

	(2) Ter	-	i Re
(1) Размер труб	(3)0647888		BMC0824
(1) (6)Xa	однодефо рми р ове	2NA64d	
По наружному диаметру: от 10 до 30 мм свыше 30 до 50 мм 50 мм По толщине стенки: до 5 мм свыше 6 »	= = = = = = = = = = = = = = = = = = = =	±0,3 MM ±1% ±1% +12,5%, -10% ±10%	±0.3 mm ±0.4 > ±0.3% ±10% ±8%
(0)	Горячекатаные	•	
По наружному диаметру: до 140 мм ,, свыше 140 » По телещине стенци:	±1.5%	+1,25%,-1,75%	和%
AO 30 MM	+12.5%15%	+15%12%	+15%0%

Key: (1). Size/dimension of ducts. (2). Manufacturing precision. (3). common. (4). increased. (5). high. (6). Cold-worked. (7). According to outside diameter: from 10 to 30 mm, it is more than 30 to 50 mm, more than 50 mm. (8). According to wall thickness: to 5 mm, it is more than 5 mm. (9). hot-rolled. (10). According to outside diameter: to 140 mm, it is more than 140 mm. (11). According to wall thickness: to 20 mm, it is more than 20 mm.

Pages 192-194.

2. Leads of the conduits/manifolds.

During manufacture and assembly of commercial conduits/manifolds

to pressure p, from 200 to 1000 kg/cm² depending on design features and requirements of project are used flanged or welded joints.

Leads for the elements/cells of conduits/manifolds for flanged screwed joints (under lens packing/seal) are given in Table 8.

Table 8. Ends the connecting threading for the elements/cells of conduits/manifolds under lens packing/seal (GOST 9400-63 and MM 4969-63) and flanges steel threading (GOST 9399-63) on ρ_{γ} from 200 to 1000 kg/cm² (mixes/dimensions in mm, mass in kg.).

Notes: 1. The material of ducts and flanges - see Table 3.

- 2. Thread metric according to GOST 9150-59*, tolerances according to class of precision 2a according to GOST 9253-59. The form of bottom of thread must be rounded.
- 3. Vanishing of thread at leads according to GOST 10549-63*, angle of run of $\alpha=25^{\circ}$, value of run enters into size/dimension/.
- 4. Manufacturing tolerance of central angle whose sides pass through centers of two adjacent holes under pins in flanges, must not exceed 30°.
- 5. Faces of flanges must be perpendicular to axis/axle of thread. Deviation from perpendicularity must not exceed 20°.
- 6. Harking (ornamentation) flanges made of steel 38KhA or 40Kh must correspond to that indicated in Fig. 1, and flanges made of steel 25Kh2MFA indicated in Fig. 2.

Fig. 1.

Fig. 2.

7. On external cylindrical surface of each flange they must be plotted/applied by marking: brand of manufacturing concern, designation of thread, number and trademark of steel.

8. Example of conventional designations of flange with thread M80x3 made of steel 38KhA: flange M80x38Kha of GOST 9399-63.

For flanges with thread M33x2 into designation is introduced a quantity of holes for the pins: M33x2=3 and M33x2=4.

Key: (1). Leads. (2). Planges. (3). Leads. (4). flanges. (5). Pins.(6). Performance. (7). mass. (8). quantity. (9). thread.

Page 195.

3. Parts of conduits/manifolds.

The enumeration of standards machine-buildings MN 4969-63-MN 5010-63 to the part of conduits/manifolds and specifications on P_r from 200 from 1000 kg/cm² with a diameter of D_r =6-200 mm are given in Table 9.

Elbows, angle plates, T-connections, transitions and other shaped parts, connected on flanges, supply in collection with the installed threading flanges and with all those completing separate articles by parts. Parts under weld supply from by the machined under weld ends on MRTU 26-01-9-67.

The parts of conduits/manifolds, which have the male thread,

 \hat{o}_{z} .

must satisfy the following requirements:

- a) the form of the hollow of the male threads must be rounded;
- b) the play of the packing surface of leads of the relatively average/mean thread diameter must not exceed the values, indicated in Table 10.

All parts of conduits/manifolds stamp on manufacturing plant. the arrangement/position of marks is given in Table 22.

The conventional designations of the parts of conduits/manifolds in drawings and technical documentation include the following data: name of part, its internal diameter (for adapters - the internal diameters), conventional pressure, group of steel and the number of the standard of machine-building. In the designation of ducts additionally are connected their type and length.

The shaped parts of conduits/manifolds are prepared from forgings or stampings which in the heat-treated state must have mechanical properties and category of strength according to GOST 8479-70 (Table 11).

Page 196.

Table 9. List of standards for conduits/manifolds on P_7 =200-1000 kg/cm².

(1) Housey magazan	(Д) Нападновира детелей	Hewep Too-
	А.) Для разъенных соединений	
MH 4969-63 MH 4970-63 MH 4971-63	(н) Трубы с фланцами (чЛинзы глухие с указателями (ЧШтуцера	19
MH 4972-63 MH 4973-63 MH 4974-63	(1) Отводы гнутые с фланцами ТаКолена с углом 90° с фланцами (аКолена с углом 90° с фланцами и опорой	13 14
MII 4975 63	(о Колена с углом 90° неравноплечие с флан-	11
MII 4176 G3	(ч) Колена с углом 86° неравноплечие с фланцами и опорой	-
MII 4977 63	Жолена с углом 94° неравноплечие с флан- цами и опорой	-
MH 4978-63 MH 4979-63 MI 4960-63	(-) Опоры для колец (-) Колена двойные с фланцами (-) гольпики с ответалениями и фланцами	Ξ
MH 4961-63 MH 4962-63	(19 Тройники передодные с фланцами (14) Тройники проходиме с ответвлениями и	. 15
M11 4983-63	фланцами (1)Тройники переходные несимметричные	_
MIT 4984-63 MH 4985-63	с фланцами ((\$)Тройники переходные с фланцами ((4)Тройники-вставки с фланцамя	16
MH 4986-63 MH 4987-63	Tallianorosu Topoune c disaunanti	17 18
MH 4968-63	() Переходы штампованные с фланцами () Днафрагмы измерительные линовые с фланцами	Ξ
MH 4989-63	(1/2) Отвоин чинзовне с фланцами	_
MH 4990-63	(24)Угольники под термометры сопротивле-	_
MH 4991-63	15) Фланцы под термометры сопротивления и термопары	_
MH 4992-63	21) Карманы под термометры сопротивления П термопары	- ,
M11 1993-63	(э) Фланцы переходные	-
M11 4994-63 M11 4995-63	та Фланцы переходные с вставкой (д. Заглушки с вставкой) Заглушки с вставкой	29
MH 4996-63	- · ·	20, 21
	(В.) Для неразъемных соединений	
M11 4997-63 M11 4998-63	(а) Трубы (3) Отводы гнутые	13
M11 4999-63	(39) Колена с углом 90" и опорой	_
MTT :5000-63	(эч) Колена с углом 86° неравноплечие е опо-	-
MH 5001 63	Колена с углом 91° неравноплечие с опо-	-
M11 5002-63	36) Колена явойные	-
MII 5003-63	Угольники с ответвлениями	15
MH 5004-63 MH 5005-63	(51) Тройники переходные с ответвлениями	<u> </u>
M11 5006-63	[(34)] ронишки переходные несимметричиме	-
M11 5007-63 M11 5008-63	(Тройники вставки (Переходы точеные	17
M11 3009-63	第7月16日で大の正記 勝丁の間内の参加者記号	ië
M11 5010-63	(в) Нетван трубопроводов см. «Технические требования»	-

Key: (1). Number of standard. (2). Designation of parts. (3). Number of table. (A). For detachable joints. (4). Flanged tubes. (5). Lens (deaf with indicators). (6). Connecting pipe. (7). Offtakes, bent with flanges. (8). Elbows with angle of 90° with flanges. (9). Elbows with angle of 90° with flanges and support. (10). Elbows with angle of 90°, unequal-arm with flanges. (11). Elbows with angle of 86°, unequal-arm with flanges and support. (12). Supports for elbows. (13). Elbows (dual with tlanges). (14). Angle plates with branches and flanges. (15). T-connections (transitional with flanges). (16). T-connections passage with branches and flanges. (17). T-connections transitional, asymmetric with flanges. (18). T-connections (transitional with flanges). (19). T-connection-insert with flanges. (20). Junctions (point with flanges). (21). Transitions, stamped/die-forged with flanges. (22). Diaphragms measuring lens with flanges. (23). Offtakes (lens with flanges). (24). Angle rlates under resistance thermometers and thermocouple. (25). Flanges under resistance thermometers and thermocouple. (26). Karmans under resistance thermometers and thermocouple. (27). Flanges (transitional. (28). flanges (transitional with insert). (29). Silencers/plugs. (30). Silencers/plugs with insert. (B). For permanent compounds. (31). Ducts. (32). Offtakes, bent. (33). Elbows with angle of 90° and support. (34). elbow with angle of 86°, unequal-arm with support. (35). Blbows (dual. (36). Angle plates with branches. (37). T-connections transitional. (38). T-connections

(transitional with branches). (39). T-connections transitional asymmetric. (40). T-connection-insert. (41). transitions point. (42). Transition, stamped/die-forged. (43). Of parts of conduits/manifolds see "technical requirements".

Table 10. Allowable play of the packing surface of thread in mm.

Dy	6-10	15—72	10-70	20-100	125-200
(1) Допускаемое биение	0,15	0,2	0,25	0,3	•, 11

Key: (1). Allowable play.

DOC = 79134708

Page 197.

Table 11. Mechanical properties and categories of the strength of the metal of the parts of conduits/manifolds on A, from 200 to 1000 kg/cm² according to GOST 8479-70 and MM 5010-63.

(1)	(1)	гост	(3)		(4)	Masses	wente o	ooletta	
Написнование деталей	Марка стали		bau nbod-	9,	97	4,	•	به (ب)	нв
			HOCTE	(5)	/ess*	,	6	20.2100	
ULETER SHENOSE	20	105060*	KП22	44	22	16-22	35-53	3,5—5,5	123—167
Фланцы переходные и под термометры; заглушки	35	1050-66*	KI128	56	28	12—18	30—10	8-4	186—197
Фланцы переходиме. за- глушки	30X	4513—71	КП40А	63	40	14—17	4045	Ş6	187—229
Фланцы дод термометры	40X	4543—71	KIIS6A	75	56	12-15	40-45	5,5 —6,5	223—262
(II) Вильтер детали	18XF	454371	КП:28	56	28	12—18	3040	3-4	156—197
Фасонаме детали, фланцы переходные, заглушки	30XMA	4543—71	K[145A	65	45	13—16	40—45	56	197235
To me (1)	18X3MB	10500—63	KП45A	65	45	1316	4015	56	197—235
To me	20Х3МВФ	10500—63	КП50А	80	60	11-14	40—45	5,5-6,5	235—277
Фланцы под термометры	25X1MΦ	10500—63	КП 63А	85	63	11-13	38-42	5,5—6,5	248—293
Фарониве детали, фланцы вереходиме, заглушки	XIRHIOT XI7HI3M3T	10500—63 5049—61	=	52 52	20 22	40 40	=	=	=

Note. Data on elongation per unit length, relative reduction of area and impact toughness are given for forgings with different sizes/dimensions according to diameter and thickness (GOST 8479-70).

Key: (1). Designation of parts. (2). Trademark of steel. (3). Category of strength. (4). Mechanical properties. (5). kg/cm^2 . (6). $kg/em/cm^2$. (7). Shaped parts. (8). Flanges transitional and under

thermometers; silencer/plug. (9). Flanges (transitional, silencers/plugs). (10). Flanges under thermometers. (11). Intricately-shaped parts. (12). Shaped parts, flanges transitional, silencers/plugs. (13). Then. (14). flanges under thermometers. (15). Shaped parts, flanges transitional, silencers/plugs.

1.2

DOC = 79134708

Page 198.

Table 12. Connecting pipe on A, from 200 to 500 kg/cm2 (HW 4971-63).

Henogne-			(7)1	замеры в м	LM .			Macca
ane	Dy	D	D,	14,	s	L	1	9 80
11	6	18	13	M14×1.5	4,5	. 100	322	0,11
11	10	::5	21	M24×2	7	100	34	0,38
11	15	35	26	M33×2				0,6
l	25	15	38	M12×2	9	110	42	0,86
11								0,86
1	32	50	46	M48×2			45	0,96
11							**	0,95
<u>'i'</u>	10	68	58	M64×3	12	130	60	2,1
11							60	2,1
ı	60	83	78	M80×3	14	160	66	3,8
1	70	1072	in	MIUNX3	16	190	75	5.9

Notes: 1. Performance and materials - see Table 2 and 3.

2. Ends connecting threading - see Table 8.

- 3. Dressing of weld grooves according to MRTU 26-01-9-67.
- 4. Connecting pipe they prepare from ducts or forgings.
- 5. Ducts according to TSPM VNITI 518-63 and TSPM VNTII 3-248-69.
- Key: (1). Performance. (2). Sizes/dimensions in mm. (3). Mass in kg.

DOC = 79134708 PAGE = 3/0

Pages 199-203.

Table 13.

Curved elbows for P_y from 200 to 1000 kg/cm^2 (MN 4972-63 and MN 4998-63).

(1) Henoa- sease		(2)	Размеры в	∳ —90°				
	0					развернутая Длина в жм	(u jmacca a Re	
	Dy	D _M	S	L	, 	Anma Dan	без фланцев	с фланцами
11		12	3	130	55	236	0,16	
IV		15	4,5				0,28	1
11	10	20	4,5	180	125	221	0,85	
IV		25	7				1	2,84
11	15	25	5]		386	0,79	-
IA		35	9	220			2,23	4,93
I	- 25	35	5			527	1,43	_
11		45	9_	300			4,21	7,33
111		45	10				4,55	7,67
17	1	50	12		225		7,02	11,67
1	32	45	6,5	360		624 ; ,	3,9	<u> </u>
11		50	9		<u> </u>		5,67	10,9
111		57	12	400	280	603	9,30	18,2
IV	7		16	460	278	780	16	24,5

1	<u> </u>	67	7	400	280	•		l -	
 	40		 	<u> </u>	278	1	 	<u> </u>	
		•	12	- •		700	12,9	21.4	
111			14				14,5	22	
IV	<u> </u>	83	19		340	974	29,2	42,3	
· t	-	76	9	560			14,5		
11	60	83	14				23,2	37,3	
111	~	102	20	680			47,2	66,1	
IV			22	1 —	450	1167	50,7	71,6	
1		89	11	680	450	1167	24,7		
11	70	102	16				39,6	60,8	
111		114	22	740	480	1276	63,7	91,7	
IA		127	28	800	\$25	1378	94,2	124	
1		114	14	740	480	1276	44,1	72,1	
11	90	90 -	127	18	800	525	1278	66,7	96,7
111		140	25	900	600	154 2	109	155	
IV		159	36	~1000	630	1729	189	235	
1		127	14	800	525	1378	53,8	84,1	
11	100	140	20	900	600	1542	91,3	137	
111	100	159	28	1000	630	1729	156	202	
īV		180	40	1120	710	1934	267	330	
1	125	159	18	1000	630	1729	106	154	
11		180	28	1120	710	1994	208	266	
111		194	36	1300	. 800	2266	316	427	
14		219	44	1400	944	2413	46	•	

	· · · · · · · · · · · · · · · · · · ·		1					
ı	150	194	20	1200	***	2306	LER	343
11		219	25	1400	900	2413	395	410
111		245	45	1550	1120	2618	561	750
ıv		273	60				825	1037
1	300	245	25				355	524
11		273	36				\$77	789
111		290	50	1600	1250	3063	940	1269

Notes: 1. The groups of steel, saturated conventional pressures and materials - see Table 1, 2 and 3.

- 2. Size/dimension d_0 for appropriate o_u see Table 8.
- 3. Sign "-" in graph/count "mass with flanges" means that for this performance offtakes are prepared only with ends under weld.
- 4. Mass of offtakes under weld is equal to mass of offtakes without flanges.
 - 5. Mass of offtakes without flanges is determined with

trademarks of steel with a density of 7.85; for trademarks of steels of group KhW density to accept on Table 10, chapter 1.

- 6. Ends connecting and flanges threading see Table 8.
- 7. Dressing of weld grooves according to MRTU 26-01-9-67.

Key: (1). Performance. (2). Sizes/dimensions in mm. (3).
expanded/scanned length in mm. (4). mass in kg. (5). without flanges.
(6). with flanges.

Pages 204-205.

Table 14. Blbows at angle of 90° with flanges on P, from 200 to 1000 kg/cm2 (according to MN 4973-63, MN 4975-63).

	(з) равноплечие											
(5)	(3) Размеры и ям (4) Масса колена в ка											
Henomenne	Dy	D _H	d,		S ₁ (5) HENCE	L	L,	panno. (b)	HEDDANO.	O OLONG THE COLOR OF THE COLOR	Hepana Committee	
111		18	M14×1,5	4,5	4,5	60	110	0,16	0,25	0,88	0,97	
IV	6	20		6,5	6			0,2	0,31	0,92	1,03	
11	10	28	M24×2	6	6	85	140	0,59	0,82	2,45	2,60	
īV		32		8,5	8,5			0,73	1,05	2,59	2,91	
	15	36	M33×2	7	1	95	150	1,05	1,41	3,75	4,11	
17		-(4)			9,5			1,26	1,72	3,96	4,42	
'''	25	50	M42×2		10	110	165	2	2,64	5,12	5,76	
ΙV		(A)	M18×2	16	16 1-1	120	185	3,41	4,6	8,61	9,8	
11				11	10			2,9	3,93	8,1	9,13	
111	32	65	M56×3	14	13			4,76	6,43	13,8	15,4	
IV		75		19	17	150	235	6,58	8,93	15,1	17,4	
"	41	70	M61×3	13	12			4,98	6,7	13,5	18,2	
111		75	.	16	15			5,66	7,96	14,4	16,5	

IV I	ı	: 1		25	22	l l	1	13,4	10,5	27,5	20,5
11		100	M00×3	17	15	170	270	11,1	15,4	26,2	29,5
IV	•			28	24			18,7	26,1	39,7	47,1
		115	. W100×3	19	17	200	325	16	22,4	37	43,4
111		125	M110×3	25	21			24,8	33,7	52,9	61,8
IV	70	140	M125×4	34	28			34	46,2	64	76,2
1		125	M110×3	16	16	236	370	19	26	47	54
		140	M125×4	21	21			26,1	37,7	56,1	67,7
111	90	150	M135×4	30	26	290	460	41,8	57,9	64,6	104
īV		170	M155×4	43	34	290	460	65,5	88	112	134
		140	M125×4	18	17	236	370	21,4	29,4	51,4	59
1	ł	160	M135×4	26	1 23	1		43,4	59.7	89	105
 	100	170	M155×4	34	28	290	460	57	76,8	103,4	123
17	{	190	M175×6	48	1 37			75.3	103	139	166
-	<u>-</u>	170	M155×4	20	1 18	! 	 	43,5	58,7	89,9	105
11		190	M175×6	31	25	290	460	61,9	84,6	125	148
III	125	205	M190×6	37	33	Ì	1	134.7	151.7	262	262,2
IV		240	M215×6	63	50	480	580	203	229	314	341
1		205	M190×6	23	23			93,7	106	204	216
11	150	230	M215×6	34	32	<u> </u>	<u> </u>	147	166	256	277
111		255	M240×6	45	41	1	{	236	262	405	431
IV		290	M265×6	66	57	ann	700	358	396	570	608
	2000	266	M240×6	26	28		"	122	139	291	308
11	~~	290	M265×6		38	1	1	244	271	496	483
1111	١	315	M205×6	55	1 44	680	780	402	439	731	767

notes: 1. The groups of steel, saturated conventional pressures and materials - see Table 1, 2 and 3.

2. Ends connecting and flanges threading - see Table 8.

Key: (1). isoceles. (2). Unequal-arm. (3). Sizes/dimensions in am.
(4). Mass of elbow in kg. (5). Performance. (6). without flange. (7).
with flanges. (8). it is not less in mm. (9). isoceles. (10).
Unequal-arm.

53.

Pages 206-214.

Table 15.

Transition T-pieces for P_y from 200 to 1000 kg/cm² (MN 4981-63, MN 5004-63).

السمطيدات

(3) Испоа-	<u> </u>		(4) Размеры	8 MM		1	(5)	lacca Tpofis	nkod d ka	
Испод- невие	$D_{y} \times D_{y}$	d,	d ' ₀	L	L,	L ₂	8	Bı	C WER-	под сверку
11					60	60	18	18	1,36	0,23
14	6 ×6	M14×1,5	M14×1,5	ణ	•	•	20	20	1,34	0,#3
11	10.40			86		70	28	25	2,83	0,45
īv	. 10×6	Mana			85	75	30	30	2,99	0,73
l1		M24×2	M24×2		80	70	**	35	2,55	0,\$2
IA	10×10	l				76	30	20	3,71	0.61
11	15×6		M14×1,8		•	75	35	30	3,97	0.43
IA	7		. M24×2 95		85	85.	40	40	4,47	1.42
11	15×10	M33×2			75	35	30	4,66	0,66	
IV	1	Mas X 2		385		85	40	40	\$,16	1,52
11	- I5×15					75	35	30	5	0,67
IV	- 15×15		M33×2		95	85	40	45	5,75	1,7
1	1	_	-	_	-	85	-	45	<u> </u>	1,9
11		M42×2	M14×1,5	110	85	-	45	55	5,38	2,9
11	25×6	-	-	_	-	85	_	45		1,39
111	_	M42×2		110	85	109	50	\$5	5,44	2,97
17	1		M14×1,5	190	26	100	•	•0	9,47	3,78
1	25×15	-	-	-	-	85	-	45	T	2

DOC = 79134708 PAGE # 3/7

11		M42×2	M33×2	110	96	-	46	86	6,5	2,46
11	00.10	-	-		-	46		45	-	3
111	2 5 ×15	M42×2	M33×2	110	95	100	50	53	6,75	\$,23
IV		M48×2	M33X2	120	110	100	60	60	11,2	4,03
1		-	-	-	-	85	-	48	_	2,04
lı	0505		Marke	110	110	85	45	45	7,05	2,36
111	25×25	M42×2	W45×5	110	110	100	50	55	7,06	3,42
IA		M48×2	M48×2	120	120	100	60	60	12,6	4,46
I		_	-	-	-		-	5 5	-	2,63
11	32×25	M48×2	M42×2	120	110	100	# 0	•	10,4	3,78
;		_	-	-	1.			40	-	2,97
111		MS6×3	M42×2	150	130	110	•	*	16,7	5,35
17	32 ×25	M64×3	M48×2	180	190	110	78	**	20	7,26
ı		-	-	_	-	100		*	-	2,63
11	i		1			1 100				
	201420	M48×2	M48×2	120	1:20		80	•0	11,8	3,87
111	32×32	M48×2 M56×3	M48×2 A156×3	<u> </u>	1	110	65	65	20,8	3,87
111	32×32		}	150	150	110	<u> </u>	`		
	32×32	M56×3	M56×3	<u> </u>	1		65	45	20,8	6,1
10	32×32	M56×3 M64×3	M64×3	150	150	110	65	75	20,8	6.1
1V i		M56×3	M56×3	180	180		65 75 	75 65	20,8	6,1 8 4,25
1V i		M56×3 M64×3	M64×3	180	180		65 75 —	65 75 65 70	20,8	6,1 8 4,25 4,8
iv it-		M56×3 M54×3 — M64×3	M56×3 M64×3 — M42×2	150	150	110	65 75 ——————————————————————————————————	65 75 65 70 75	20,8	6,1 8 4,25 4,8 6,69
iv it- itt		M56×3 M64×3 M64×3 M80×3	M56×3 M64×3 — M42×2 M48×2	150	150	110	75 - 70 - 75 - 90	65 75 65 70 75 90	20,8 22,8 	6,1 8 4,25 4,8 6,69

والمشار

				 -					i	
10	40×40	M00×3	M80×3	170	170	180	**		26,4	17,6
1			- 1	-	_		-	86	}	8,94
11		M80×3	M61×3	170	150	150	90	90	29,9	12,4
l	60×40		- [-	-	_	-		-	11,5
111			M64×3		.**	. 743	115	115	49,7	24
īv		W100×3	M80×3	200	170	170	110	110	5 5	25,3
1			-	_	-	150	_	85	-	9,28
11	60×60	M80×3	M80×3	170	170	130	90	90	35,7	15,1
IV		M100×3	M100×3	200	200	170	115	115	60,8	26,5
1		_	-	-	-		-	100	-	14
11		M100×3	M61×3	200		170	115	115	47.6	21,4
11	1		-		170	1.70	_		_	20,6
111		Mil0x3	M64×3		215	190	126 ·	136	66,5	20,9
IV	70×40	M125×4	M80×8	236	215	.50	140	140	84	42,5
ì	*****	_	-	-	-	170	_	100		14,9
11	70×70	M100×3	M100×3	200	200	110	115	115	56,3	22,9
111		W110×3	M110×3				125	125	80,9	34,3
IV		M125×4	M125×4	235	235	190	140	140	100.3	45,9
1		M110×3					125	125	61,6	24,1
11	1	M125×4	M80×3	235	215	190	140	140	75,2	34,3
111	90×60	M135×4		<u> </u>		1	185	155	123	60,5
IV		M155×4	M100X3	290	235	235	170	170	148	79,1
1	<u> </u>	WI10×3	M110×3	<u> </u>	1	1	136	135	74,8	26
11	90×90	M125×4	M125×4	236	235	196	140	140	67,6	36,9

 	<u> </u>	<u>'</u>						<u> </u>		
111	90×9∪	W132×4	W132×4	290	290	235	185	156	141	65,3
IV		M155×4	M155×4				170	170	173	39 ,8
1		M125×4	M100×3	235		190	140	140	74,7	29,2
11		M135×4	14100			235	155	155	115	52,8
111	100×70	M155×4	W110×3	290	235	-	170	170	139	69,5
IV		M175×6	M125×4			250	190	190	190	104
1		M125×4	M125×4	235	235	190	140	140	80,2	31
11		M135×4	M135×4			235	155	155	137	u
111	100×100	M155×4	M155×4		290		170	170	156	73,5
17		M175×6	M175×6	290		250	190	190	221	113 .
1		M165×4	M110×3			**	170	170	131	\$2,8
11	123×99	M175×6	M125×4		235	200	190	150	163	79,4
111	125×90	M190×6	M135×4				210	210	204	133
14	12000	M215×6	M185×4	360	290	286	340	240	361	189
1		M156×4	M155×4	200		235	170	170	127	57,2
11	10534105	M175×6	M175×6	290	290	250	190	190	188	81,6
111	125×125	M190×6	M190×6				210	210	337	143
IV		M215×6	M215×6	360	360	285	240	240	411	202
1	1	M190×6	M125×4				210	210	233	96
11	150.4100	M215×6	M135×4	360	290	285	240	240	303	143
111	150×100	M240×6	M155×4				270	270	487	249
IV		M265×6	M175×6	435	360	320	300	300	634	331
. 1		M190×6	M190×6				210	210	365	103
11	130×180	M215×6	M215×6	360	360	365	240	240	345	184

			•							
111		M240×6	M240×6	435	436	320	270	270	86 0	260
14	150×150	M265×6	M265×6				380	399	756	352
1		M240×6	M190×6	425	260	320	270	270	438	395
11	200×150	M265×6	M215×6	435	360		300	300	567	411
111	*00×100	M295×6		520	480	390	390	320	946	402
1	<u> </u>	M240×6	M240×6				270	270	462	412
11	200×20 0	M265×6	M263×6	435	435		300	300	640	430
111		M295×6	M295×6	£30	250	200	200	380	1068	441

Notes: 1. The groups of steel, saturated conditional pressures and materials - see Table 1, 2 and J.

2. Ends connecting and flanges threading - see Table 8.

- 3. Dressing of weld grooves according to MRTU 26-01-9-67.
- 4. Sign "-" in graph/count "mass with flanges" means that for this performance T-connections are prepared only with ends under weld.
- Key: (1). with flanges. (2). under weld. (3). Performance. (4).
 Sizes/dimensions in mm. (5). Mass it is branch in kg. (6). with
 flanges. (7). under weld.

Page 215.

Table 16. T-connections transitional with flanges on P_y from 200 to 1000 kg/cm² (MN 4984)*.

(*)		(c) Pass	еры в ии			(2) Macci	1 1 KE
Испол- нение	$D_{\mathbf{y}} \times D_{\mathbf{y}}$.4	i.	۷	8	фланиса (4) без	с флан- цами
11	İ	M64×3	M80×3	170	90	9,41	25
111	40×60	MOTXS				15,6	31,1
IV			M100×3	200	115	17,9	42,4
11	Ī	W80×3				14.2	38,8
111	60×70		M110×3		125	27,7	62,7
IV		441002	M125×4	235	140	30,4	76,4
ı		M100×3	M110×3		125	21,9	57
11	200.00		M125×4		140	24,3	60,3
111	70×90	MH0×3	M135×4	290	155	39,8	90,3
ΙV		M125×4	M155×4		170	58,9	112
1	1	M110×3	M125×4	235	140	21,5	64,6
11	(10) + 100	M125×4	M135×4		155	39,4	92,7
111	90×100 -	M135×1	M155×4		170	56,1	125
IV		M155×4	M175×6	290	190	83,1	161
1		M110×3	M155×4		170	28,9	80,2
11		M125×4	M175×6	-	190	44,4	106
111	~~	M135×4	M190×6	300	210	79,3	180
IV.	i	M186×4	M125×6	""	240	116	218

1		M125×4	M185×4	290	170	37,6	0.0
11		M135×4	M175×6		190	40,2	127,5
111	100×126	M155×4	M190×6		210	91,2	190
IV	Į	M175×6	M215×6		240	135,3	254
1	<u></u>	M155×4	M190×6	360	210	61,9	165
11		M175×6	M215×6	1	240	93	212
111	125×150	M190×6	M240×6	İ	270	174	389
IV	1	M215×6	M265×6		300	254	471
1	1	M190×6	M240×6	+35	270	113	307
11	150×200	M215×6	M265×6	,	300	176	***
111		M240×6	M296×6	520	3:20	313,2	643

Note. See note to table 15.

Key: (1). Sizes/dimensions in mm. (2). Hass in kg. (3). Performance. (4). without flanges. (5). with flanges.

DOC = 79134708 PAGE = 324

Page 216-217.

Table 17. Transitions point on P, from 200 to 1000 kg/cm2 (MM 4986-63 and MN 5008-63).

11		25	21	M39×2	M24×2	110			2,43	0,36
17	15×10	*		M33×2	M24×2	110	39		2,48	0,46
1		30	00	-	_		_		_	0,34
		46	26	M42×2	M33×2	120	30		3,18	0,63
11	25×15	38		_		-	_	45	_	0,42
111		46	36	M12×2	M33×2	120	30		3,43	0,8
ΙV		50	36	M48×2	M33×2	130			4,86	0,99
1		46	26	_	\	-	-	1 1		0,51
11	32×15	50		M48×2		130	30		1,54	0,7
111	32 % 10	58	36	M56×3	M33×2	150	35	40	7,29	81,1
IV		70	, 30	M64×3		130	.30	"	7,1	1,53
1		46	38	-		_	-		-	0,57
	1	50	46	M48×2	M42×2	130	30		5,03	1,23
11	32×26	~	38	_	Ī -	-		45		1,05
111		58	46	M56×3	M42×2	150	35	1	7,37	1,36
īV		70	50	M64×3	M48×2				8,91	1,9
1]	58	38]		_			1,33
11	40×25	62) _		75		1.7
111	10,22	70	46	M64×3	M42×2	150	38	"	7,29	2,36
IV		85	50	M80×3	M48×2	170			12,3	3,64
1	\prod	58	46	Ξ.		<u> </u>	匚			1,51
11	40×32	70	10	M61×3	M48×2	150	35	[]	8,61	2,45
		62		-	-	<u> </u>	<u></u>	75		1,84
	90 × 32	78	46			<u> -</u>	_			1,91
11	^*	86	50	M80×3	M46×2	170	35		11,7	2,96

Note. See notes to Table 15.

2. For transitions under weld for all performances $A_y \times D_y$ 10x6 to 32x25 mm $L_1 = 110$ mm and from 40x25 to 60x32 inclusively $L_2 = 150$ mm.

Key: (1). Planged. (2). under weld. (3). Performance. (4).
Sizes/dimensions in mm. (5). Hass of transition in kg. (6). with
flanges. (7). under weld.

Pages 218-219.

Table 18. Transitions stamped/die-rorged on p, from 200 to 1000 kg/cm² (MN 4987-63 and MN 5009-63) 1.

FOOTNOTE 1. See notes to Table 15. RNDFOOTNOTE.

(/) Фланичные	(@) Под сворку

ı			7	Размеры з	MM		(5)	Масса пор	-	
Henome.	D _y × × D _y	DN	D'	4.	46	L	L,	Grande- polo	(7) под сверку	
111	40×32	68	57	M64×3	M56×3		126	11,6	2,1	
17	10,00	83	68	M80×3	M64×3	190		15,9	4,94	
111	60×32	102	57	M100×3	M56×3	130		19,9	5,6	
IV	00 702		68	MIOOXS	M64×3	<u> </u>		20,5	5,45	
1		76	57	-	_	<u> </u>	170		2,6	
LI	ł	83	68	M80×3	M61X3	190		14,5	3,96	
	60×40	60×40		60	-	-	<u> </u>		_	3,52
ш		102	68	M100×3	W64X3	190		20,1	6	
iV			83	1414.	W80×3	220	190	24,8	7,26	
1		89	57	_	_	-			3,17	
н		102	GR	Mion×3	M64×3	190	170	19,2	5	
	70×10		60						4,7	
###		114	68	M110×3	M64×3	220		25,2	7	
١٧		127	63	M125×4	M80×3		220	32,6	12,3	
		114	76	M110×3	M80×3	220		26,7	6,54	
11	90×60	127	83	M125×4	1,70.73			29,1	8,96	
111	~,	140	102	M136×4	MIMOXX	270	n 220	48,4	13,6	
IV		189	'' ' *	MISS X4		""		84,3	10,5	

Continuation Lable 18.

1		197		MNSSOc4	M800x3	249	720	34	7
15		2	100	MINX4		8		46,7	10,6
111	10270	180	114	MISS×4	W110×3	300	240	57.1	18,2
17		100	127	M175×6	M135×4			77,3	27
ı	·	180	114	M155×4	M110×3	300	240	51,2	13,3
11	125×90	189	197	M175×6	M126×4			67,4	21,1
m	120,730	194	140	M190×6	M135×4	340	270	113	32,7
IV		219	159	M215×6	M155×4			132	46,3
ı		194	127	M190×6	M125×4	340	270	91,3	19,7
11	150×100	219	149	M215×6	M135×4		300	110	39,7
111	180 % 180	245	159	M240×6	M155×4	430	300	175	57
įv		273	180	M265×6	M175×6	130		230	76
. 1	200×180	245	194	M240×6	M190×6		270	185	31,7
11		273	219	M265×6	M215×6		300	213	57,7
118		200	246	M:96×6	M240×6		270	389	76,7

Key: (1). Flanged. (2). Winder weld. (3). Performance. (4).
Sizes/dimensions in mm. (5). Mass of transition in kg. (6). flanged.
(7). under weld.

War of the

Page 220.

Table 19. Lens deaf with indicator on Py from 200 to 1000 kg/cm² (MN

4970-63) .

Herion-		(4) Размер	M 8 MM			(3) Macca
нение	Dy	D	D _t	L	В	•	D Re
IV	6	14	11	60	8,5	1,6	0,014
IV	10	22	19	75	10	.,0	0,036
IV	15	30	26	90	n		0,086
IV	25	44	40	100	14	2,2	0,159
īV	32	60	56	130	18		0,345
11	+0	65	60	150	10	2,8	0,421
IV	_	ļ		<u> </u>	30		0,731
П	60	82	76	190	20		0,82
IV			l		322	3,4	1,32
11	70	100	94	2,0	25	,4	1,45
IV	1	l	l	l	:198		2, %
11	191	125	TIM	2001	.0		2,72
IV		<u> </u>	<u> </u>		4.2	4, 1	1.1
11	j.01	1 14	1 **	2101	390	•	1.00
17	<u> </u>]	<u> </u>	<u>.</u>	45		* 11
11	125	175	les.	310	:15	4,4	5,92
IV	1 "		'		45		7.81
11	180	210	202	350	40		9,52
17					60	4,4	15
11		270	262	-	46	,,,	17.4
	· -	1 •••		1	-	1	1 24 2

Note. The material of lens (parts 2) - see Table 3.

Key: (1). Performance. (2). Sizes/dimensions in mm. (3). Hass in kg.

Pages 221-222.

Table 20. Silencers/plugs on Py from 200 to 1000 kg/cm².

	(1) 3a (N	raymen H 4006-	без вста 13) —	POUN	4	フ 3ara (Mil	1996-63	вста вкой		
	*	 	4-1 		(ea)		- 0			1
١	(3)		(4)	Размер	M 8 MM		(5)	Масса заг.	ЛУШКИ В КЕ	İ
	Исполне- ние	D _y	D	В	d,	h	d	Ges actaber	C BCTAB- KON	
	ti	6	70	15	10	3	15	 -	0,38	İ
	IV		,,,	13	10	•		0,1	-	
į	11	10	96		18	Ī	25		0,99	
	IV			20	, "	Ì	_	1	1 -	
	11	15	196		28		35	1,2	1,23	
	ΙV	13	""	25	2"	1	-	1,6	·-	
	- 11		115	25	37	•	45	_	1,83	
	111	25						1,6		
	10	l i	130		-	. •				

Continuation Table 20.

11		136	39	40	,	J 0	2,5	2,56
111	**			48		-	8	-
IV		165	35	56	6	_	8	_
				55	5	70	-	5,09
tit	40					-	8	
IV		200	40	66			8,5	-
11	60			72	6	85	8,5	8,5
17		225	50	82	}		13,4	_
11	70			90		106	13,4	13,4
111	70	245	55	95	7		17,9	_
Įν		260					20,1	
ı		245	55	100	J	115	17,7	15,9
- 11	90	260		115		125	19,9	17,9
tii	~	290	65			_	26,6	_
ıv		300	70	120	8		33,2	-
1		260	55	115	*	125	19,8	19,9
11	100	290	65	125		140	29,9	29,6
111	10.7	300	70	132			39,1	}
IV		3:00	80				46,2	-
1		:\00	70	145		160	32,6	32,7
11	100	330	80	162]	180	45,7	45,8
111	125		85		10		73,2	
١٧			95	165		_	81,9	_
i	150	(RH)	HS	175		195	73,8	72,3
33			:46	195	11	220	61,3	81,1

Continuation Table 20.

188			165	196			119	_
14	7 -	•	120			-	161	-
1		440	105	226	12	246	118	L18
H			120				189	-
11	7	170		245	İ	-	254	_

Notes: 1. The groups of steel, saturated conventional pressures and materials - see Table 1, 2 and 3.

- 2. Sizes/dimensions D_1 , d_2 see Table 8.
- 3. Insert in silencer/plug Ma 4996-63 see Table 21.

Key; (1). Silencers/plugs without insert (MN 4995-63). (2).

Silencer/plug with insert (MM 4966-63). (2a). opening. (3).

Performance. (4). Sizes/dimensions in mm. (5). Mass of silencer/plug in kg. (6). without insert. (7). with insert.

er of

Page 223.

Table 21. Insert to silencer/plug on Py = 200 and 320 kg/cm2 (MN

4996-63) .

(/)	6 P.		(3)	Размер	M B MM			Macca B Ke
менис	(a) Py. Recicus	Dy	D	d	d,	В	h	3 Ka
11		6	15	6	10	8	3	0,01
11	ļ	10	25	10	18	10		0,01
11]	15	35	15	28	12	4	0,08
11	820	25	45	25	37	"		0,14
11		32	50	32	43	15	5	0,2
11	}	40	70	40	55	"	,	0, 11
11	1	G()	85	60	72	20	. 6	0,76
11	1	70	106	70	90		7	1,16
1	200	90	115	99	100			1,66
11	320	1 ~ _	128		115	-	۱.	2,43
1	200	100		100		-		1,98
11	320	100	140	100	128			2,56
1	200	125	160	125	145	30	10	3,82
11	320	125	180		162			5,09
ı	200	150	195	150	175	35	11	6,77
n	320		220	100	196			9,04
ı	200	200	246	200	225	40	12	11,00

Note. Material - steel or the brands/marks of Kh 18 N 10 T. Kh 17N 13H3T - see Table 3 and 11. Key: (1). Performance. (2). ky/cm². (3). Sizes/dimensions in mm. (4). Mass in kg.

Pages 224-225.

Table 22. Arrangements of the places of marking on the parts of conduits/manifolds (MN 5010-63).

1 - brand of the manufacturing plant; 2 - brand/mark of steel; 3 conventional pressure: 4 - number of the batch: 5 - parts number: 6 mark of the final inspection/acceptance: 7 - OTK of plant - the producer of ducts.

(') Hammemonanus gerateit	(2) Расположение клейы
(б)Переходы	
(Уштунера	
(5)Ликова: глухия	
(-) Тройники, угольники, трой- вица-ветабли	

Continuation Table 22.

Key: (1). Designation of parts. (2). Arrangement of marks. (3).

Transitions. (4). Connecting pipe. (5). Lens (deaf. (6).

T-connections, angle plates, T-connection-inserts. (7). Offtakes
(lens. (8). Elbows, offtakes. (9). Ducts. (10). Flanges transitional,
silencers/plugs, special flanges. (11). Karmans for thermocouple.

(12). Marks furnish on cylindrical surface of lens packing/seal in
following order: 1) manufacturing plant: 2) trademark of steel: 3)
number of batch: 4) parts number.

Pages 226-229.

Table 23. Types of the flange joints of conduits/manifolds on P_y to 1000 kg/cm² and the selection of the lengths of pins.

wind the same of the same of the same

and the first factor of a

to the Contract of the Contrac

\$

Continuation Table 23.

)H C. H.	ng crom	Fonta	2.3.						
	,	M30	215	1	236	215	360	115	130
1	-11	¥ M33	220	330	240	250			
90	111		260	260	270	280	290	140	140
	IV	M36	270	270	280	290	300		
<u>_</u>	1	M33	220	225	245	255	265	120	120
	-11	<u>`</u>	215	250	270	280	290		125
100	111	. M33	270	270	280	290	300	145	145
	īV	M39	300	300	310	220	920		} _
	1 1	· M36	265	265	290	290	810		}
	11	M39	290	290	310	320	\$30		
125	111		320	820	340	350	360		 - -
	IV	M46	340	340	360	870	**	<u> </u>	
	1		390	290	340	360	270		
	11	Mes	330	340	360	370	360	-	
150	111	M52	400	400	400	410	420	-	
	iv	M.56	450	450	460	470	480	-	
	1	M.52	390	390	410	420	430		 -
. 200	11	- MSG	450	450	460	470	480	_	-
	111		1	1	{	1	l	1	l

Note. The size/dimension of 105 mm for flange joint of type 2 is given only for ρ_y -6.

Key: (1). Pass is conventional. (2). Performance. (3). Diameter of pin. (4). Length of two-sided pin L in mm with. (5). to lens of rigid. (6). to lens of that compensating for. (7). offtake (lens. (8). to diaphragm. (10). type.

Page 230.

Table 24. Mechanical properties of the parts of the flange joints of conduits/manifolds on p_v from 200 to 1000 kg/cm².

	(2)		16.5	9	4,	4	•	3	
() _{Наименование} деталей	Марка стали	roct	2552 2552	(4) moci	N.AI ³	%. ~	(a)		HB
(7) Фланцы резьбовые, ГОСТ 9399—63: (8) при b < 35 мм > b > 35 » > b < 95 »	35 30X 38XA, 40X 25X2MФA	1060—60° (9) 4543—71 Ло утвержденным техничаским усло- виям	КП28 КП40А КП63А	56 63 85	28 40 63	12—18 14—17 11—13	30—40 40—45 36—42	3-4 5-6 5,5-6,5	156—197 187—229 248—293
» b>95 мм	38XA,40X 25X2M ΦA	4543—71 По утвержденным техинческим усло- виям	KI160A	80	6 0	11—14	4045	5,5-6,5	236—277
ОЩпильки уплотинтельные, ГОСТ 10493—63	20 18XF X3MB	1050—60 4543—71 10493—63	КП22 КП32 КП45 A	44 62 65	22 32 45	16—22 11—16 13—16	3553 3038 4045	3,5—5,8 3—3,5 5—6	123—167 174—217 197—235
(Л) ШПЯЛЬКИ ДВУСТОРОНИНЕ, ГОСТ 10494—63	35XF2 40XФA 25X2MФA	45:3—71 45:3—71 По утвержденным техническим усло- ваям	=	70 80 85	50 65 70	18 18 15	Ξ	8 6 8	197—255 235—265 255—302
(2) Гайки чистые, ГОСТ 10495—63	30 X 36 X 30 X MA	4543—71 4543—71 4543—71	Ξ	65 75 80	46 57 86	15 15 16	=		163—234 217—263 226—277

Notes: 1. b - thickness or rlange.

2. Data on elongation per unit length, relative reduction of area and impact toughness for flanges and lens are given for forgings with different sizes/dimensions according to diameter and thickness.

Key: (1). Designation of parts. (2). Trademark of steel. (3). Category of strength. (4). kg/wm². (5). it is not less. (6). kgf·m/cm². (7). Flanges (tureading. (8). with. (9). According to

affirmed technical specifications. (10). Pins (packing. (11). Pins (two-sided. (12). Nuts (pure/clean.

Page 231.

4. Parts of flange joints.

The parts of flange joints with lens packing/seal are intended for connections with flanges on the thread of fittings, connecting pieces and ducts on P_7 from 200 to 1000 kg/cm² and $D_7=6\div200$ MM.

The parts of flange joints supply on the following standards:

ends the connecting threading for the elements/cells of conduits/manifolds under iens packing/seal ~ GOST 9400-63 and flanges steel threading - GOST 9399-63 (Table 8):

lens packing rigid and compensating for - GOST 10493-63 (Table 25, 26 and 27);

pins two-sided - GOSF 10494-63 (Table 28, 29 and 30);

nuts pure/clean hexanedral - GOST 10495-63 (Table 31).

The materials, used for flange joints, are given in Table 3.

The types of flange joints on MN 5010-63 are given in Table 23.

Flanges and lens prepare from forgings, stampings or rolled stock with the observance of the required categories of strength.

Is allowed/assumed the manufacture of lens from the thick-walled ducts which are subjected for this purpose to heat treatment to the lowered/reduced in comparison with ducts hardness.

The mechanical properties of the parts of flange joints in the heat-treated state at temperature of 20°C must correspond to those indicated in Table 24.

Table 25. Types and performances or the lens of packing ones on Pr from 200 to 1000 kg/cm² (GOST 10493-63).

	(2) 064	enstrue enstrue
(1) Hammenneau Ma	(3)	(Pacatonneaut
(5) Линза жесткая без бурта (6) То же, с буртом	ж	жі .
Q Линза компенсирующая при давления до P_y 509 <i>пасісм</i> ³ Q То же, при давлении P_y =610 + 1000 <i>пасісм</i> ³	K	Ki Kii

Key: (1). Designation. (2). Designation. (3). types. (4). performances. (5). Lens rigid without collar. (6). Then, with collar. (7). Lens compensating for with pressure to l_{γ} 500 kg/cm². (8). Then, at pressure $l_{\gamma} = l_{\gamma}^{(p-pol)}$ by kg/cm².

Page 232.

Lens rigid use at temperatures to 400°C (for the I and II temperature steps/stages). At temperatures more than 400°C (III temperature step/stage) are used the compensating lens.

For the connections of conduits/manifolds made of acid-resisting steel (group KhW) on $P_{\nu}=200+320$ kg/cm² at temperature to 300°C use lens the performances ZhI made of the appropriate acid-resisting steel.

The spherical surface of lens performances KI and KII cover/coat with the layer of zinc (galvanically) with a thickness of 0.01-0.02 mm.

Constructions/designs and sizes/dimensions of the rigid and compensating lens are given in Tables 26 and 27.

Table 26. Construction/design of packing lens.

Key: (1). rigid, performance. (2). Place of marking. (3).
compensating for, performance KI and KII). (4). Ring (insertable.
(5). it is not more.

• •

Gontinuation Table 26.

1 2 2			(4)	Passep	S B MA				6)
Tun a ac-	Dy	D	D,	A,	D _K	•	ð1	R	n Re
жі	•	6	-	14	8,2	8,5	-	12	0,846
1	10	10		20	13,7	te		20	0,917
	ıs	15		20	23,5	111		39	0,63
жі	25	25	-	44	30,8	14	-	45	0,08
	32	32		60	41	18		60	0.18
	40	40	1	66	49,9	"	<u> </u>	73	0,2
жи		Ì	65	85	-	30	12		0,68
KI	40	40	60	82	49,9	25	10	73	0.45
KII			66	86	 	30	12		0.63
жі			-	82		20	-		0,3
жп		_		116	67	32	14	96	1,3
KI	60	60	85	110		28	10		0,78
KII				116		32	14		1,22
жі		<u> </u>	-	100		25	<u> </u>		0,6
жп		70	100	132	78,7	38	16	115	1,86
KI	70		95	125	/8,/	30	12		1,06
KII			100	132		38	16		1,7
жі			-	125		30			1,05
жп	90	90	125	155	05.	42	17	140	2,51
KI			120	146	95,7	32	12] '-	1,58
KII			126	155		42	17		2.23

Continuation Fable 26.

				•					
13%				130		20			1,39
жп	100	100	135	168	100,4	45	19	160	3,38
KI			130	155		35	13		1,87
KII			135	168		45	19		3,12
жі			-	175		35	_		2,3
жп	125	125	165	200	136,8	46	19	200	4,57
KI		120	160	192	130,6	38	13		2,68
KII	_		165	200		45	19	<u> </u>	4,22
жі			-	210		40	_		3,3
жп	150	150		245	166,2	60	26	243	8,43
KI		130	195	235	1.00,2	48	17		5,25
KII	-		_	245		60	26		7,98
жі			_	270		45	-		1,8
жи	200			295	212	60	25	310	13,4
Kı		195	245	285		46	17		7,25
KII				295		60	25		10,8

Notes: 1. The material of lens - see Table 3.

- 2. o_{κ} theoretical diameter of contact of lens with sublens conical packing surface.
 - 3. Sizes/dimensions of insertion rings to lens of performance KI and KII are given in Table 27.

Key: (1). Type and performance. (2). Sizes/dimensions in mm. (3).
Hass in kg.

6. 0.

Page 235.

Table 27. Insertion rings to the lens of performance KI and KII.

	(/) Размеры в мм								
Dy	D	D ₁	6,	(a) Macca s Re					
40	40	51	4,9	0.03					
60	60	73	4,9	0.05					
70	70	84	5,9	0.06					
90	90	106	6,9	0,15					
100	100	118	6,9	0,17					
125	120	145	6,9	0,23					
150	180	179	7,9	0,39					
209	196	228	7,9	0,56					

Note. Material - steel Kh3MV (18Kh3MV); HB=197-235.

Table 28. Two-sided pins for flange joints with lens packing on fy from 200 to 1000 kg/cm² (60sT 10494-63).

	(3) Pasme	PM 8 MM		
4,	d.	4.	, l _i	S	ł .
M14	10			6	70 120
MIG	12	30		10	80—140

PAGE = 346

DOC = 79134709

Page 236. Continuation Table 28.

110-170	19		36	15	W30
130180	14		40	17	M22
100-230	17		45	20	M27
190200	19		50	22	M30
210 270	22		55	25	M33
240-320	24	10	60	27	M36
280-340	27	12	65	32	M39
310—360	322	14	70	38	M45
270-400	36	18	86	42	M52
49-49	-	10	96	45	M56

Notes: 1. Material - see Table 3.

2. Thread metric with rapidly according to GOST 9150-59*. Tolerances according to the 2nd class of precision (GOST 9253-59). The form of bottom of thread must be rounded. With the execution of thread knurl the diameter of the smooth part of the pin must be, in the limits of average/mean thread diameter. With execution the threads by thread the diameter of the smooth part of the pin make

54

PAGE # 347

DOC = 79134709

according to sizes/dimensions and with the deviations of external thread diameter. Thread must be pure/clean without barbs and stripped threads.

3. Curvature of rod of pin on 100 mm of length must not exceed: with d_0 from 12 to 24 mm - 0.2 mm; with d_0 more than 24 mm - 0.1 mm.

Key: (1). remaining. (2). Place of marking. (3). Sizes/dimensions in
nm.

hir

Page 237.

Table 29. Length and weight of the pins of two-sided ones for flange joints with lens packing/seal on $^{\circ}_{\gamma}$ from 200 to 1000 kg/cm² (GOST 10494-63).

Pasmo			Масса Размеры 1000 игт D в мм		Hillimt. n mm		Maca 1000 mt.	000 mt		Macca 1000 urt.			
		-1	8 4		4. 1	1	B #4	4.	11	3 88	4	ı	9 84
MI4	70 75 80 85 90 100 110 110 111		76 8: 8: 9 10 10 11 11 12 13	2 3 4 0 6 2 8 4	W16	801 85 90 95 100 105 110 115 120 125 136	119 127 135 143 151 159 167 176 183 190 190 205	M2	110 115 120 125 130 135 140 145 156 166 170	243 256 268 280 299 305 317 330 342 356 367 369	M22	136 135 140 145 150 155 160 165 170 178 188	428 443 458 473 488 503 816
M27		17 11 11 11 12 2 2 2 2 2	.5 70	•	645 667 680 712 735 755 780 602 825 847 870 892 914	мз	210 210 221 223 235 244 255 256 267	5 7 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	1338 1372 1406 1440 1473 1507 1540 1574 1608 1642 1675 1709 1743	M39	280 280 316 310 320 330 340 330 330 330 330 330 330 330 33		2461 2574 2768 2762 2856 2950 3044 3705 3830 3855 4060 4205 4330 4455 4430 4455
мэс	,	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90 196 100 205 215 220 225 230 235 240		994 1022 1050 1078 1105 1133 1161 1169 1216 1244	M	29	5 0 5 0 10 10 10 10	1785 1825 1865 1905 1945 1985 2025 2104 2184 2264	M52	377 380 390 400 410 424 43 445 45		5946 6113 6290 6446 6613 6780 6946 7113 7280 7447
		-	246 250 258 258		1300 1338 1356 1384		31		2344 3434	Ma	46	000	8497 8691 8894 9076

Key: (1). Sizes/dimensions in mm. (2). Mass 1000 pieces in kg.

Page 238.

Table 30. Pins firm (screw) for fittings and shaped parts of conduits/manifolds on $\rho_{\rm v}$ 200-1000 kg/cm² (GOST 11447-65).

Notes: 1. Material - see Table 3.

h=3-6 mm; $d=d_{0}$.

Key: (1). Sizes/dimensions in mm.

...

Page 239.

Table 31. Nuts pure/clean hexahedral for flange joints on $P_y \sim 200 + 1000$ kg/cm² (GOST 10495-63).

	(4)					
d,	S nog Knog	Н	D		Macca 1 sat 8 Rs	
M12	19	12	21,9		0,019	
M14	22	14	25,4	2	0,031	
MIG	24	16	27.7	_	0,039	
M20	30	20	34,6	1	0,077	
M22	32	22	36,9	3	0,093	
M24	36	24	41,6	<u>-</u> j	0,133	
M27	41	27	47,3		0,194	
M30	46	30	83,1	1 *	0,277	
M33	50	33	57,7	Ì	0,389	
M36	55	36	63,5	1 .	0,446	
M39	80	39	69,3		0,637	
M42	65	42	78	<u> </u>	0,777	
M46	70	45	80,8		1,1	
Mis	75	48	86,5		1,197	
MS2	•	D.	92,4		1,42	
MOS	*	54	20		1,068	

Notes: 1. Material - see Table 3.

Thread metric with rapidly - according to GOST 9150-59*: tolerances according to the 2nd class of precision - according to GOST 9253-59.

3. $D_1 = 0.95$ S.

Key: (1). remaining. (2). Sizes/dimensions in mm. (3). S under key/wrench. (4). Mass of 1 piece in kg.

Packing lens, pins and nuts depending on the trademark of steel stamped with and corresponding marking (ornamentation).

The marking of lens, which consists of brand of supplier-enteprise, the numbers of batch and trademark of steel (for lens $D_7=25-200$, mm), will apply on the cylindrical surface of each lens. The ornamentation or lens is given in Table 32.

Table 32. Ornamentation of lens (GOST 10493-63).

ž:		(d) Mapsia crass	
70	20	90X F	X3MB (I8X3MB)
жі		-	
жи	_		
КІ	_	-	
KII	-	-	

Key: (1). Types and performances of lens. (2). Trademark of steel.

Page 240.

Marking (ornamentation) and marking of pins and nuts depending on brand of material are given in Tables 33 and 34. During the replacement of the trademark of steel to equivalent the ornamentation is retained.

On pins and nuts in the places of marking must be plotted/applied brand or supplier-enteprise and number of batch.

Table 33. Ornamentation and marking of pins (GOST 10494-63).

(/)	(2) Орвания топка	(2) - Karbanana
35X [2		
40XΦA	100	(M) MECHO CARDIMENUR
- SEXEMOA		(5) Допускается клой- менне на терща по- стоомка

Key: (1). Trademark of steel. (2). Ornamentation. (3). Marking. (4). Place of marking. (5). Is allowed/assumed marking on end/face of stem.

Table 34. Ornamentation and marking of nuts (GOST 10495-63).

Key: (1). Trademark of steel. (2). Ornamentation and place of
marking. (3). place of marking.

Page 241.

§4. Conduits to operating pressure 1500 kg/cm2.

1. Materials of ducts and parts or conduits/manifolds.

For conduits/maniforis to operating pressure 1500 kg/cm² at temperature media of 300°C use the seamless pipes from steel of 20Kh3MVF; shaped parts are prepared from forgings, stampings, round rolled stock or ducts.

Shaped parts supply in collection with threading flanges.

The parts, manufactured from the required brands/marks of steel, they must have in the heat-treated state mechanical properties and category of strength according to GOST 8479-57 (Table 35).

Page 242.

2. Ducts and part of conduits/manifolds.

For ducts and parts of conduits/manifolds to operating pressure 1500 kg/cm² are used the flange joints with lens packing/seal.

The data about leads with flange joints are given in Table 36.

The list of the shaped parts of conduits/manifolds on kg/cm² is given in Table 37.

1. .

Table 35. The mechanical properties of the metal of ducts and parts of conduits/manifolds to operating pressure 1500 kg/cm² at temperature of medium to 300°C.

(/) Hammengaamme geraned	(2) Mapusa CTO.007	Mapusa E		(4) Massam		3	ikerus H B
(N)	20Х3МВФ	3 × 1	(60	75		200-311	
Трубы, Dy=6:-60 мм (8) Фланцы (резьбовые: (7) при Т до 200° С	40X		<u> </u>		12		
300° C 300 30	25X1MΦ	КПЕЗА	85	62	13	6,5	248-299
Заглушки (13) Линэм глухие и уп-	40X	КПЮА	70	63 50	18	6,8	212-248
О 300° С П 200° С 300° С П 200 до до до до до до до до до до до до до	20X3MBФ	. KU20V	70	50	16	6	212-240
(4) Фасонные детеля	20ХЗМВФ	KII71A	90	71	13	6,5	289-311
Шянльяя	25X1MΦ	-	86	70	13	8	381-302
Tankn	30XMA	-	**	45	15	•	277-200

Notes: 1. The chemical compositions of the trademarks of steels are given in Chapter 1, Tables 9 and 10.

2. Ducts supply on TSFM 3-316-70.

Key: (1). Designation of parts. (2). Trademark of steel. (3).
Category of strength. (4). Mechanical properties. (5). kg/mm². (6).
kgf •m/cm². (6a). it is not less. (7). Ducts. (8). Flanges (threading.

PAGE 359

DOC = 79134710

(9). with. (10). to. (11). from. (12). Silencers/plugs. (13). Lens (deaf and packing). (14). Shaped parts. (15). Pins. (16). Nuts.

.

 ψ :

Page 243.

Table 36. Ends the connecting threading for the elements/cells of conduits/manifolds with lens packing/seal on \$P_pec^1500 kg/cm² at temperature of medium to 300°C.

(/) Tp	убы		(4) Np	исоедии	ительям	e KOHUM		1	(5)	Фланцы			(1) War	
2)pass	неби в	##	Diacca	 -			(2)	размеры	D MM				(6)	* KONN-	Pesh
Dy	D _H	s	L ROS.	D	d	1	1,	e	D ₁	D ₃	B	dı	Macca 6 Ks	SO.	6a
6 10 15 M 37 40 60	15 25 35 80 68 00	4,5 7 9 12 18 24 26	1,17 3,11 3,77 11,25 22,2 38,47 82,58	M14×1,5 M24×2 M33×2 M W×2 M61×3 M45×3 M105×3	10 18 28 40 55 68 90	22 28 35 40 80 70	32 32 42 45 60 70	1,5 1,5 1,5 2,5	70 95 186 146 165 200 200	42 60 68 105 115 145 196	15 20 26 36 36 46 45	16 18 18 22 24 20 33	0,37 0,93 1,34 2,9 4,2 7,78 16,37	3 3 4 6 6	M14 M16 M16 M20 M27 M27 M30

Note. Thread - according to GOST 9150-59; tolerances according to the class of precision 2a - according to GOST 9253-59; vanishing of thread - according to GOST 10549-63, angle of run of $\alpha=30^{\circ}$.

Key: (1). Ducts. (2). sizes/dimensions in mm. (3). mass 1 lin. m., in
kg. (4). Leads. (5). Flanges. (6). mass in kg. (7). Pins. (8).
Quantity. (9). Thread.

Page 244.

Table 37. Enumeration of the shaped parts of conduits/manifolds on $P_{\text{and}} = 1500 \text{ kg/cm}^2$ and $D_7 = 6 \div 60 \text{ am}$ on the branch standards of Ir kutskniikhimmash.

)A 11.51.	(В) Нашенование детагий	House releases
1	Фланым резьбовые	36
2	Линам увлотинтельные	. : 3
3	Линзы глухие	.] 35
4	Отводы линзовые	. 39
5	Заглушки	-1 49
6	Тройники	. 41
7	Тройники-вставки	.1 =
	Neperorm	.) 45
,	Колена равноплечие и неравновлечие	-1 =
10 11 12	Колена двойные	
11	Колена с опорами	
13	Опоры для колен	
13	Угольники с отводами	. 1 –

Note. The parts, noted in graph/count the "number of the table" of sign "-", in handbook are not given.

Key: (a). In order. (b). Designation of parts. (c). Number of table. (1). Flanges (threading. (2). Leus (packing. (3). Lens (deaf. (4). Offtakes (lens. (5). Silencers/plugs. (6). T-connections. (7). T-connection-insert. (8). Transitions. (9). Elbows (isoceles and unequal-arm). (10). Elbows (dual. (11). Elbows with supports. (12). Supports for elbows. (13). Anyle plates with offtakes.

Page 245.

Table 38. of lens spherical packing and deaf on Pod = 1000 kg/cm2.

	(3) Размеры в ми									
Д _у	D ₀	D _K	D,	R	L	8	•	b,	YEJOTHH- TEALHOR	(G) FAYZOÑ
6 10 15	6 11 17	8,2 13,7 20,5	14 22 30	12 20 30	57 76 90	10 15	8.5 10 11	1.6 1.6 2	0,007 0,02 0,03	0,014 0,037 0,65
25 40 25 40	# # # # # # # # # # # # # # # # # # #	30,8 39,7 49,9	46 64 80 100	13 A A A A A A A A A A A A A A A A A A A	109 132 160 185	30 30 36 39	16 20 25	2 2 3.5	0,115 0,247 0,465 0,846	0,301 9,399 0,76 1,473

Notes: 1. Packing surface of lens to zinc galvanically in thickness of the layer 0.01-0.02 sm.

- 2. C width of indicator or deaf lens.
- 3. o_{κ} diameter of contact of lens with duct or shaped part.

Key: (1). Place of marking. (2). sphere. (3). Sizes/dimensions in mm. (4). Mass in kg. of lens. (5). packing. (6). deaf.

Page 246.

Table 39. Offtakes are lens on Prof=1800 kg/cm2.

(1)		(2)	ў Размеры в им						
Ten	$D_{\mathbf{y}} \times D_{\mathbf{y}}'$	D	D,	L	ł,	В			
A	25 ⋉6			120	90	40	27,5	0,01	
Б	25×10	26	48	140	110			9,99	
٨	32×6	32	60	130	96	45	32,5	0,96	
5	32×10	32	"	150	115	50	32,5	1,46	
A	40×6	41	75	130	105	45		1,36	
Б	40×10	41	"	165	120			2,33	
A	60×6	- 56	100	190	130	55	25	2,04	
Б	60×10			200	140	•	-	3,22	

Note. Sealing spherical surfaces to zinc galvanically in thickness of the layer 0.01-0.02 mm.

Key: (1). Type. (2). Sizes/dimensions in mm. (3). Mass in kg.

DOC = 79134710

Table 40. Silencers/plugs for conduits/manifolds on $P_{pob}=1500$ kg/cm².

	(2) Размер	M 1 AA			4)
Dy	D	D ₁ B		. 4,	Э) ноличество отверстий	IM
. 6	70	42	15	16	. ,	0,38
10	96	60	20	10		0,99
16	106	68	25	18	4	1,49
25	146	103	30	22		3,33
*	165	116	35	24	6	5,2
40	200	145	46	29	_[9,65
•	260	196	85	33	1 .	19,83

Key: (1). Branch. (2). Sizes/dimensions in mm. (3). quantity of holes. (4). Mass in kg. Page 247.

Table 41. T-connections with flanges on $P_{pol} = 1500$ kg/cm².

h dg = 											
(Д. Размеры в им											
D _v ×D _y	d,	D,	ď,	ם'	L	L,	ı	В	Масса фланцев в ка		
6×6	M14×1,5	18	M14×1.5	18	70	70	45	22	0,33		
10×6	M24×2	28		."	85	1	50	32	0,89		
10×10			M24×2	28		85		<u> </u>	1,07		
15×6			M14×1,5	18				1	1,52		
15×10	M33×2	*	M24×2	29	95	-	-	-	1,61		
15×16	1		WXXX	36	<u> </u>		<u> </u>	<u> </u>	1,42		
25×6			M14×1,5	18		*			4,32		
25×10	M48×2	55	M24×2	*	125		76		4.0		
25×15			M33×2	36		110			4.64		
25×25			M48×2	55	<u> </u>	125	65		5,35		
32×10			M24×2	28]	110	90	80	9,19		
32×15	M64×3	70	1	120			9,7				
32×25			M48×2	55		130			9,83		
32×32			M64×3	70		150	80		11,23		
40×25			M48×2	55		180			17,99		
40×32	M85×3	90	M64×3	70	170		100	100	18,05		
40×40			MAS×3	90		170	90	}	20,78		
60×32			MHX3	70	_	180			37,42		
60×40	M105×3	115	M85×3	99	226	200	110	125	41,35		
60×60	1 1		M105×3	115		225			9,8		

DOC = 79134710 PAGE #366

Key: (1). Place of marking. (2). Sizes/dimensions in mm. (3). Mass of flanges in kg.

.. ...

Page 248.

Table 42. Transitions on $P_{pe6}=1500 \text{ kg/cm}^2$.

					(4)								
D _y ×D' _y													
1000	M34×2	MIAUL E	100	20	0,2								
15×6	M39×2	M14×1,5	iœ	40	0,4								
15×10	WP90X1	M24×2	110		0,48								
25×15	M46×2	M33×2	130	46	1								
32×15	M64×3		180	55	1,8								
32×26	, man V o	M46×2			2,29								
40×26	M85×3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	170	85	3,94								
49×32	WEG X3	M64×3	190		5,03								
60×32	MIOSXJ	hanva.		75	7,32								
8 0×40		M85×3	220		10,46								

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 249.

Table 43. Elbows isoceles and unequal-arm on Pp.6=1800 kg/cm2.

		(A) Pa	mebri	8 MA			(4)	Mases a	0.0000 D AG
Dy	D _m	d,	L	L,	,	3 (*) == 1	3,	2000. 2000.	350
6 10 15 25 32 40	22 32 40 60 80 100 120	M14×1,8 M24×2 M35×2 M64×2 M64×3 M85×3 M105×3	70 86 96 136 130 170 225	110 140 180 190 245 286 340	32 80 80 80 110 140	11 12 17 24 39 32	0 0 10 10 10 10 10 10 10 10 10 10 10 10	0,30 0,62 1,1 2,14 6,65 13,66 28,34	36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Key: (1). Place of marking. (2). Sizes/dimensions in mm. (3). it is not less. (4). Mass of elbow in ky. (5). isoceles. (6). Unequal-arm.

Page 250.

§5. Conduits to operating pressure 2500 kg/cm2.

1. Materials for ducts and parts or conduits/manifolds.

For conduits/manifolds on Ppas-2500 kg/cm² at temperature from -40 to +300°C use jointless steel tunes of steel brands 20Kh3MVF-Sh according to TSFM 3-316-70. The snaped parts of conduits/manifolds are prepared from the forgings which in the heat-treated state on general technical requirements and categories of strength must correspond to GOST 8479-70, group 1V.

Is allowed/assumed manufacture of parts from stampings, rolled stock and ducts whose strength characteristics satisfy the requirements, presented to forgings.

The trademarks of steels and the mechanical properties of ducts and parts of conduits/manifolds are given in Table 44.

The assortment of ducts and the sizes/dimensions of leads are given in Tables 45 and 46.

2. Ducts to pressure 2500 ky/cm2.

Ducts supply by the length of 6-7.5 m. Is allowed/assumed the delivery of ducts in long not shorter than 3 m in the quantity not more than 200/o.

The curvature of ducts must not exceed 2 mm on 1 m of length.

Page 251.

Table 44. The mechanical properties of the metal of ducts and parts of conduits/manifolds to operating pressure 2500 kg/cm2 (ON 26-01-124-69 Irkutskniikhimmash).

(') Нависнование	Мариа	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WM	ofictor Icade				
детали	стадя	Karers	SKEC.	σ _T	0.	6	e _n , Rec. Micm ^e	HB
(7) Трубы	20X3MBФ-Ш	-	90	75	17	40	•	200-311
Детали муфто- вого соединения	25X1MФ 25X2MIФ	КПала	86	63	13	50	•	248250
Tpolinegs /Yran-esse /Toponegas	20X3M3+0 25X1M40 25X2M1+0	КПЛА	90	70	13	40	6	260—3 11
Флянцы резьбо-	35XM 40X 40X Φ A	КП6ЗА	86	ន	13	50	6	248—293
Фланцы привар-	20	K1120	40	20	25	55	5,5	111156
<i>Ли</i> изы	35XM 40X Φ A	-	135	120	9	40	5	47—49 HRC
(AS) Manuskan	25X1M-0	-	*	70	13	20	6	258—302
Talken	30XMA	-	80	65	15	30	•	277—299

Notes: 1. Material - steel of brands 20Kh3HVF, 25Kh1MF, 25Kh2M1F according to GOST 10500-63; 35Khm, 40Kh, 30KhMA, 40KhPA according to GOST 4543-71; steel 20 according to GOST 1050-60*.

2. Chemical compositions or trademarks of steels are given in chapter 1, 62, Tables 4, 9 and 10.

3. Is permitted the use/application of other trademarks of steels whose property than not lower indicated in table.

Key: (1). Designation of part. (2). Trademark of steel. (3). Category of strength according to GOST 8479-70. (4). Mechanical properties with 20°C, are not less. (5). kg/mm². (6). kgf·m/cm². (7). Ducts. (8). Parts of sleeve joint. (9). T-connections. (10). Angle plates. (11). Transitions. (12). Flanges (threading and deaf). (13). Flanges (welded. (14). Lens. (15). Pins. (16). Nuts.

Table 45. Ducts steel jointless to pressure 2500 kg/cm² (ON 26-01-100-69 and TSFN 3-316-70).

Key: (1). Assortment. (2). Sizes/dimensions in mm. (3). nominal. (4).
manufacturing tolerance. (5). Mass 1 lin. m, in kg.

Page 252.

Table 46. Ends the connecting threading for clutch and flange joints to pressure 2500 kg/cm² (ON 26-01-101-69).

	(Q) Penuspu s AA										
Dy	. D	1	1	1,	4	,					
3	MIOXI	3,5		34	37		1				
6	M16×1,5	7	5	47	51		1,6				
10	M27×2	11		60	65	. 10	2				
15	M39×3	16		73	79		2,5				
25	M60×4	26	10	60	68						
32	M80×4	.15	10	70	78	15	3				
40	M95×4	42		80							

Key: (1). Sharp edge. (2). Sizes/dimensions in mm.

3. The parts of the conduits/manifolds (to operating pressure 2500 kg/cm^2).

Of the parts of conduits/maulfolds to operating pressure 2500

kg/cm² prepare on branch standards ON 26-01-100-69 - ON 26-01-124-69, developed by Irkutsk NIIKnimmash, according to the list given in Table 47.

The thread of the male threads (on GOST 9150-59*) in articles and the treatment of packing surfaces are accomplished/realized on the machine tools from one installation. Thread must be pure/clean with smooth surface without bards and pits. The presence of threads with the stripped or imperfect thread, and also defects/flaws, which prevent screwing on or screwing up of go gauge, is not allowed/assumed; the form of the nollows of the male threads - rounded. Vanishing of thread - according to GOST 10549-63*, angle of run of 30°. Undercut of the female thread - reduced according to GOST 10549-63*.

Page 253.

Faces of flanges and threading ends of the parts must be strictly perpendicular to the axis/axle of thread. Manufacturing tolerances - with respect to iX degree of accuracy, GOST 10355-63.

Elbows and set-off bends prepare pliable from ducts. The minimum wall thickness is checked on the cut parts during the adjustment of technology they are pliable. The ovality of section/cut in the places

of the bend of elbows, defined as the ratio of the difference between the greatest and throat diameters in the place of bend to diameter out of bend, must not exceed 0.1.

The manufacturing tolerance or angle of the bent elbows must not exceed $+-2^{\circ}$.

During the manufacture of the bent parts it is necessary for stress relieving after flexure to subject to their heat treatment - high-temperature temper.

The axes/axles of the straight portions of dual elbows must be parallel and lie/rest at one plane. Parallel misaligment and flatness - are not more than 0.5 mm by 100 mm of length.

Table 47. Enumeration of standards on the part of conduits/manifolds

to pressure 2500 kg/cm2.

(i) Hamana	House Homes.	(3) Намер таблицы
Трубы стальные босшение Денны приссединательные реакбо-	OH 25-01-105-69 OH 25-01-101-69	45 46
(°Соединения муфтовые Õѳншы конические	OH 26-01-102-69 OH 26-01-103-69	48 60
То же, глуже РСоединения фланция	OH 26-01-104-09 OH 26-01-105-69	60 ⊕ , ●
Chebereter spendamme	OH 26-01-106-69 OH 36-01-107-69	1 51
э переходиме Угольники (3)	OH 35-01-109-69	88 83
УКолена гнутые из труб	OH 26-01-110-69 OH 25-01-111-60	54 55
(Трубы гнутые (э) » с наровыми рубаниками	OH 26-01-113-69 OH 26-01-113-69	.
«Жолена с паровыми рубешивым ИВтулки резьбовые	OH 25-01-114-69 OH 26-01-115-69	57
МПтуцера привариме "Соединския фланцевые труб с ру-	Olf 26-01-116-69	70 -
у бешкания Шинлын двусторочине	OH 36-01-117-69 OH 26-01-118-69	80, 50, 61 62 63
ря в ввертные Сайки местигранные	OH 26-01-119-69 OH 26-01-129-69	2
Дикае свениеминая	OH 28-01-121-09 OH 26-01-122-09	=
Полония резьбойой специальный ИГехинческие требования	OH 26-01-123-00 OH 26-01-124-00	_ =

Note. The parts, noted in graph/count the "number of table" by sign "-", in handbook are not given.

Key: (1). Designation. (2). Number of standard. (3). Number of table.

(4). Ducts steel jointless. (5). Ends connecting threading. (6).

Connections (coupling). (7). Lens (conical. (8). Then, deaf. (9).

Connections (flanged. (10). Transitions. (11). T-connections

(passage). (12). T-connections (transitional. (13). Angle plates.

(14). Elbows, bent from ducts. (15). Elbows (dual from ducts). (16).

Ducts, bent. (17). Ducts with steam jackets. (18). Elbows with steam

jackets. (19). Bushings (threading). (20). Connecting pipe (welded).

(21). Connections flanged tubes with jackets. (22). Pins (two-sided).

(23). Pins (screw). (24). Nuts (nexahedral). (25). Lens special. (26). Ring centering special. (27). Flange threading special. (28). Technical requirements.

Page 254.

Faces of dual elbows must Ine/rest at one plane. Allowable displacement - in the limits or the 7th degree of accuracy to the length of the straight/direct section of the set-off bend according to GOST 10356-63.

The correctness of the form of the packing surfaces of lens sizes/dimensions is independent or provided by the manufacture of lens on the machine tools the sum of tolerances of which to radial axial play (GOST 42-56) does not exceed 0.02 mm.

Union couplings and parts of conduits/manifolds, which work under pressure 2500 kg/cm², according to structural/design sign divide into clutch ones for internal diameters 3, 6, 10 and 15 mm and flanged for internal diameters 25, 32 and 40 mm.

The connections indicated are represented two types:

type A - for union coupling and parts of the conduits/manifolds

DOC = 79134710 PAGE = 378

between themselves;

type B - for the addition or ducts to apparatuses.

The basic dimensions of clutch and flange joints are given in Tables 48 and 49.

= -FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/G 5/2
HANDBOOK ON SPECIAL WORKS, TECHNOLOGICAL LINES OF INDUSTRIAL EN--ETC(U)
OCT 79 Y Y NIKOLAYEVSKIY AD-A084 528 FTD-ID(RS)T-1347-79-PT-1 UNCLASSIFIED NL 5 - 6 5. 500 (1.5)

Table 48. Connections clutch of conduits/manifolds to pressure of 2500 kg/cm² (ON 26-01-102-64).

Key: (1). Width across flats.

1 - nut is cover; 2 - busning threading; 3 - nut firm; 4 - nut lock; 5 - screw/propeller of the pressure; 6, 7 - lens passage and deaf.

	Macca	a ctions							
D _y	D	D ₁	D ₃	L	L,	S nog ergrape	1.	O62 488	etin B
3	12	M24×2	20	85	18,6	322	4	0,40	0,2
6	17	M30×2	25	105	20,6	41	5	1,01	0,36
10	28	M24×3	37	130	25,6	60	7	2,52	0,77
15	41	M56×3	St	170	31,6	80	. 9	5,40	1,66

Note. Thread metric - according to GOST 9150-59*, tolerances of thread according to the classes or precision 2a - according to GOST 10191-62.

Key: (1). Sizes/dimensions in mm. (2). Mass in collection without
lens packing/seal in kg. (3). Under "key/wrench". (4). type.

Page 255.

Table 49. Connections flanged to pressure 2500 kg/cm² (ON 26-01-105-69) .

Key: (1). from the right.
1 - flange of the threading; 2 - flange of the deaf; 3 - lens passage; 4 - lens deaf; 5 - pin two-sided; 6 - pin screw; 7 - nut.

	(i) Prometou a MA										
Dy	D	D,	D,	D ₀	L	L,	ı	14			
*	M60×4	8	136	186	176	*		6,5			
20	M80×4	80	170	220	213	115	•	7,5			
•	M96×4	*	205	278	250	149	12	8,5			

Key: (1). Sizes/dimensions in mm.

DOC = 79134710 PAGE = 38/

Table 50. Flanges threading to pressure 2500 kg/cm² (ON 26-01-105-69).

	(Д Рязнеры в жи									
Dy	D	D,	D ₄	D ₁	4	3	•	Moote a se		
25	185	M60×4	63	136	26	80	10	0,2		
32	230	M80×4	83	170	33	•	11	14,9		
40	275	M95×4	*	205	39	70	12	34,68		
	<u>l</u>	<u> </u>			<u> </u>					

Key: (1). In branch - even in circumference. (2). Sizes/dimensions in
mm. (3). Mass in kg.

Page 256.

Table 51. Transitions on $P_{pas} = kg/cm^2$ (ON 26-01-106-69).

D _y ×D' _y	D ₁	D ₁	0,	D,	D ₆	۵,	L (Mases 9 80
6×3	17	M16×1,5	7	12	M10×1	3,8	140	0,17
10×6	28	M27×2	11	17	M16×1,5	7,0	180	0,62
15×10	40	M39×3	16	28	M27×2	11,0	220	1,35
25×15	ផា	M60×4	28				270	3,54
32×15	85	M80×4	35	40	M39×3	16,0	316	•
40×25	98	M95×4	42	63	M60×4	29.0	320	11,2

Note. Tolerances of thread according to the class 2aD - according to GOST 10191 - 62.

Key: (1). Sharp edge. (2). Mass in kg.

Page 257.

Table 52. T-connections passage on $P_{pe6} = 2500 \text{ kg/cm}^2$ (ON 26-01-107-69) 1.

FOOTNOTE 1. See notes to Table 51. ENDFOOTNOTE.

Key: (1). Sharp edge. (2). Type. (3). Sizes/dimensions in mm. (4). Mass in kg.

Pages 258-259.

Table 53. T-connections transitional on $P_{pa6}=2500$ kg/cm² (ON 26-01-108-69) 1.

FOOTHOTE 1. See note to Table 51. EMDFOOTHOTE.

				(2) P	взисры	B ALK					<i>-</i>
(3) _{Tas}	D _y ×D' _y	D	D _i	4	4.	L	L	4	ı	a	Moote s se
A	10×8	11	M42×3	8,5 7	2424×2 2420×2	160	**	## #0	*	•	2,15 2,32
A	15×3 15×6 15×10	16	M56×8	8,5 7	M34×2 M30×2 M42×3	. 200	70 77 81	105 112 116	# 4	70	8,57 5,67 5,94
	25×3 32×3 40×3	28 35 42	M60×4 M80×4 M95×4	3,5	M24×2	340 420 500	140 160 180	86 90 95	# 71 # #	110 140 170	16,92 31,85 54,57
.	25×6 32×6 40×6	28 35 42	M80×4 M80×4 M95×4	7	M30×2	340 420 800	160 180 200	106 110 115	66 · 78 86	110 -140 170	14,52 31,55 39,06
	25×10 32×10 40×10	26 35 42	M60×4 M60×4 M66×4	ıı	W45×3	340 459 860	190 210 · 235	135 140 140	# # # # # # # # # # # # # # # # # # #	110 140 170	20, 57 54, 14

Key: (1). Sharp edge. (2). Sizes/dimensions in mm. (3). Type. (4).
Hass in kg.

Page 260.

Table 54. Elbows bent from ducts on $P_{pad}=2500$ kg/cm² (OH 26-01-110-69).

	(г) Размеры в мм								
D _y D	D,	,	L	Passepay- Tax grams	Macca B Re				
3	12	MIOX1	90	290	542	0,45			
6	17	M16×1,5	120	320	589	0,92			
10	28	M27×2	170	370	667	2,21			
15	40	W30×3	180	380	683	5,79			
25	63	M60×4	286	536	948	19,5			
32	83	M80×4	390	870	1063	35			
40	98	M96×4	390	640	1113	54,9			

Key: (1). Sizes/dimensions in mm. (2). expanded/scanned length. (3).
Mass in kg.

Table 55. Elbows dual from ducts on $P_{pob}=2500$ kg/cm² (ON 26-01-111-69).

<u> </u>		(i) pa	suspu s	M.A.			(6)
Dy	Đ	D,	•	L	A	PROSERTY- TOR MANUE	(3) Massa s se
3 6 19 18	12 17 35	M10×1 M16×1,5 M37×2 M39×3	90 120 170 180	200	180 240 340 360	684 778 934 948	0,57 1,22 3,96 8,2
	## ## ## ## ## ## ## ## ## ## ## ## ##	M80×4 M80×4 M86×4	205 330 330	290	579 640 780	1396 1806 1736	25,8 52,4 66,2

Key: (1). Sizes/dimensions in mm. (2). expanded/scanned length. (3). Mass in kg.

DOC = 79134710

Page 261.

Table 56. Ducts with steam jackets on $P_{pot}=2500$ kg/cm² (ON 26-01-113-69).

Key: (1). Branch. (2). Sharp edge.

1 - duct: 2 - jacket: 3 - bushing threading: 4, 5 - connecting pipe: 6, 7 - flanges.

	(2)				
Dy	D	D ₁	1	Н	Macca a Ka
10 15 25 33	M46×3 M60×4 M80×4 M100×4 M120×4	21 33 54 74	125 130 165 180 215	180 160 176 190 276	12,9 18,7 36,2 54,6 74,4

Notes: 1. Mass is given for 1 lin. m of duct with jacket, bushings, connecting pipes and flanges.

2. Jackets and connecting pipe - duct according to GOST 8732-70; material - steel 20 according to GOST 1050-60*, 10G2 according to

DOC = 79134710 PAGE = 388

GOST 4543-71*.

- 3. Bushings threading steel 20 according to GOST 1050-60, 10G2 according to GOST 4543-71*.
- 4. Flanges according to GOST 12831-67*.

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 262.

Table 57. Elbows with steam jackets on Post 2500 kg/cm2 (ON 26-01-114-69) 1.

FOOTNOTE 1. Material - see notes to table 56. ENDFOOTNOTE.

Key: (1). Branch. (2). Sharp edge.

1 - elbow: 2, 3 - branch connections: 4 - sector: 5 - bushing threading; 6, 7 - Connecting pipe; 8, 9 - flanges.

DOC = 79134710 PAGE = 390

	() Размеры в мм										
Dy	0	D,	L	ı	Н	,	Mecce a				
10	M48×3	21	426	125	150	170	13,4				
15	MG0×4	33	440	130	160	180	15				
25	M80×1	51	580	165	175	205	32,1				
32	M100×4	74	630	180	196	390	43,3				
40	M120×4		735	215	205	390	63,7				

Key: (1). Sizes/dimensions in am. (2). Mass in kg.

DOC = 79134710 PAGE 39/

Page 263.

Table 58. The flange joints of ducts with steam jackets (ON 26-01-117-69) .

1 - flange threading; 2 - flange of the deaf; 3 - ring centering; 4 lens passage; 5 - lens deaf; o - pin two-sided; 7 - pin screw; 8 nut.

	(/) Рамеры в да											
D,	D ₁	D ₀	D,	D ₄	D,	L	L	ı	l,			
*****	M40×3 M60×4 M60×4 M100×4 M130×4	X4888	105 105	135 180 186 220 276	90 115 136 170 205	110 143 178 213 200	60 75 56 115 140	3,5 4,5 8 9	3 4.5 6.5 7.5 8.5			

Key: (1). Sizes/dimensions in mm.

Table 59. Flanges threading for union coupling with steam jackets (ON 26-01-117-69) .

	(3) Рамери в ли											
Dy	D	A	D ₀	D,	4		8	•				
10	125	M48×3	52	90	18		30	7	2,41			
15	160	M60×4	65	115	20	1	36	10	4,2			
25	186	J480×4	*	136	*			,,,	7,32			
22	230	M100×4	106	170	32	•	•	11	13,6			
40	276	MISOX4	136	206			70	12	22,0			

Key: (1). In branch it is even in circumference. (2). Sizes/dimensions in mm. (3). Mass in kg.

Page 264.

Table 60. Lens conical passage and deaf to pressure 2500 kg/cm2.

Key: (1). Sharp edges. (2). Sizes/dimensions in mm. (3). Hass in kg. (4). passage. (5). deaf.

DOC = 79134710 PAGE 394

Page 265.

Table 61. Rings centering (ON 26-01-117-69).

		(I) Passepu	B ##		(a)
	- Py	0	D ₁		Macca s
	10		*	7	0,00
7	16		41	10	0,16
1111	**	-	•	15	0,3
	22	166		16	0,44
	•	195	98	-	0,7

Note. Material - steel of prand 35KhM according to GOST 4543-71.

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

** * *

Table 62. Pins two-sided (ON 26-01-118-69).

		(1) p	азиеры в	MM			(2)
4	d,	4	4	3 mag	С	L	Macca a Rd
M16×1,5	12	20		10	2	118	0,17
M20×1,5	18	40		12		143	0,3
M24×2	18			14	2,5	178	0,63
M30×2	22	45		19		213	1,06
MSEX3	27	55	10	24	3	250	1,0

Notes: 1. The curvature of the rod of pin on 100 mm of length must not exceed 0.2 mm with the diameter of pin to 24 mm and 0.1 mm with the diameter more than 24 mm.

2. Is allowed/assumed execution of thread on pins by method of knurl.

Key: (1). Sizes/dimensions in mm. (2). Mass in ky. (3). under "key/wrench".

Page 266.

Table 63. Pins screw (ON 26-01-119-69).

		7	Paswe	M B M	•				(2)
4	ď,	t ₁	4	4	4	4	S HOR	L	Maces 3 Se
M16×1,5	12	22	30		10	2	10	95	0,15
M20×1,5	15	30	40		13	3	13	116	0,25
M21×2	18	35	40				14	146	0,46
M30×3	22	42	45		16	5	19	170	0,82
M36×3	27	30	55	10	20	•	×	***	1,65

Key: (1). Sizes/dimensions in mm. (2). Mass in kg. (3). under "key/wrench".

Table 64. Nuts hexahedral (ON 26-01-120-69).

		(1) Pa	меры в мя				(2)
d	D	D,	S flog epograp	Н	A .	С	Macca B RI
M16×1,5	27,7	23	24	16	2	2	0,04
M20×1,8	34,6	28	30)	20	3	,	0,08
MDIX3	41,6	34	*	24		3	0,13
MEXX3.	63,1	44	46	30		3	0,26
MSSX3	60,6	a	86	36	4	4	0,45

Key: (1). Sizes/dimensions in mm. (2). Mass in kg. (3). under
"key/wrench".

Page 267.

Marking.

On ducts and shaped parts the marks will apply by electric spark method. Ducts and shaped parts with the internal diameter more than 15 mm are allowed/assumed to stamp by percussive method. The height

생물

PAGE 398

DOC = 79134711

of marks in both cases must be equal to 5 mm.

During the manufacture of ducts with steam jackets the available marks on high-pressure are placed on the jacket. The locations of marks and their content make according to table 65. Marks cover/coat with clear varnish and encircle by oil paint.

4.2

Page 268.

Table 65. Marking ducts and parts to pressure 2500 kg/cm² (ON 26-01-124-69).

(/) Aprileog	(A) Jenns	(9) Содержаное клейн
(4) Трубы, колена		(5) 1— помер вартия; 2— вомер детали; 3— рабочее давле- вие; 4— марка стали
(U) Tpodenka		5 1 — nomep saptum; 2 — nomep gerann; 3 — pacovee gabne- nne; 4 — mapna crann
(у) Переходы		5 /— номер партин; 2 — номер детали; 3 — рабочее давле- ния; 4 — марка стали
(δ) Флонцы	230	1— помер партии; 2— помер детали; 3— рабочее дале- ние; 4— марка стали
(9) Линэм, кольца	2 1 2	//O) 1 — номер вартин; 2 — номер детали
(//) Гайка удориая, контргайка	' 	1— номер партии; 2— номер детали
(/2) Гайка шакидная	□ ' *	/— номер партии; 2— номер детали

PAGE 400

DOC = 79134711

continuation Table 65.

Key: (1). Designation of parts. (2). Drawing/draft. (3). Content of
marks. (4). Ducts, elbow. (5). 1 - number of batch; 2 - parts number;
3 - operating pressure; 4 - trademark of steel. (6). T-connections.

(7). Transitions. (8). Flanges. (9). Lens, ring. (10). 1 - number of batch; 2 - parts number. (11). Nut firm, nut lock. (12). Nut cover. (13). Nut pressure/clamping, clutch threading. (14). Pins. (15). 1 - number of batch; 2 - brand. (16). Nuts.

Page 269.

Chapter VII.

DUCTS AND PARTS OF CONDUITS FROM NONFERROUS METALS AND ALLOYS.

§1. General information.

Ducts and parts of conduits/manifolds from nonferrous metals and alloys use for the transporting or different agressive products, and also under conditions low-temperature.

The fundamental characteristics of the most widely used ducts from aluminum alloys, brass, copper and lead are given in Table 1.

Wrought pipes and parts of conduits/manifolds from the aluminum alloys of copper and brass are standardized. The enumerations of the standardized parts are given in Tables 3, 11 and 24.

- §2. Ducts and part of conduits/manifolds from aluminum and aluminum alloys.
- 1. Ducts aluminum pulled and pressed.

Ducts pulled (GOST 1947-50*, 4773-65), manufactured with cold drawing and cold rolling from aluminum and aluminum alloys, in form and state of material divide into:

ducts circular annealed (M), hardened/tempered and naturally aged (T), hardened/tempered and artificially aged (T1) and cold-worked (N);

duct shaped (square, right anyled and drop-like) annealed (M), hardened/tempered and logically aged (T) and hardened/tempered and artificially aged (T1).

Ducts those pressed (GOST 1947-56*, 11535-65), manufactured with the method of hot pressing, divide into thick-walled (S>5 mm) those hardened/tempered and logically those aged (T), hardened/tempered and artificially aged (T1) and without heat treatment (without index) and thin-walled (S<5 mm) hardened/tempered and are logical those aged (T), also, without heat treatment (without index).

For technological conduits/manifolds are used circular ducts.

Ducts circular pulled supply by sizes/dimensions in mm:

the outside diameter: 6; 7; 8; 9; 10; 11; 12; 14; 16; 18; 20; 22; 24; 25; 26; 28; 30; 32; 34; 36; 38; 40; 42; 45; 48; 50; 52; 55; 58; 60; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 115; 120;

the wall thickness: 0.5; 0.75; 1; 1.5; 2; 2.5; 3; 3.5; 4; 5.

Ducts circular pressed supply by sizes/dimensions in mm:

the outside diameter: 18; 20; 22; 24; 25; 26; 28; 30; 32; 34; 36; 38; 40; 42; 45; 48; 50; 56; 58; 60; 62; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 115; 120; 125; 130; 135; 140; 145; 150; 155; 160; 165; 170; 175; 180; 185; 190; 195; 200; 210; 220; 230; 240; 250; 260; 270; 280;

the wall thickness: 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5; 6; 7; 7.5; 8; 9; 10; 12.5; 15; 17.5; 20; 22.5; 25; 27.5; 30; 32.5.

Pages 270-271.

Table 1. Fundamental characteristics of ducts from nonferrous metals and alloys.

(1)	(2)	Passon	M 2 WH	(4)	(5) _{При}	egeam Concurs	16
Навыевозание труб	№ ГОСТа или вормали машино- строения	D _M	s	Материад труб	темпера- тура про- дукта в °C	(8) gasherne b esc/cm ³	Tabanqu no A FRABE
			<u> </u>		(9) BE) ME4	₹ <u>6</u> 0
Тякутые из алюмиямя я алюминиемых силавов	ГОСТ 1947—56°, ГОСТ 4773—65	6—120	0,5—5	Алюминня марок АД, АДІ, АДО, АДОО, алюминневые сплавы марок ДІ, ДІ6, АВ, АМСЗ	OT−196 R0+150 (/√2)	Tio pacea- Ty (/3)	2
Прессованые из алю- иния и влючиниевых силавов		18—280	1,5—32,5	Клюминий марок АДО. АДІ и АД и алюминий марок ДІ. ДІО. АВДІ-1, ВВО. АКВ. АВД. АМГЗ.	To me (16)	To ma	2
Свариме из алюминие-	MH 1100-60, MH 1112-60	103-1012	1,5—6 (6) Лист алюминиевого силава по ГОСТ 13722—68	OT-196 go+120	P Pe6 Ro 2,5	. 4
⁷⁴ Медвые тяпутые	FOCT 617—64°	3360	0,5—10	Медь марок М1, М2, М3, М3р во ГОСТ 859—86 и том- пак марки Л96 во ГОСТ 15527—70	OT-196 20+250	Tio pac- verty	•
Медиме прессованиме	FOCT 617-64*	30-280	5-30	To me (6) (6	To me	Cto me	9
2 ² Медине свершне	MH 1150-60, MH 1166-60	410-510	8 62	Mags Maper MS so FOCT 617-64 # 888-65, amer so	Or-186	(8)	12
Медяме и латупиме токкостепные	FOCT 11363-65	1,5—26	0,15-0,7	Медь марок МІ, М2, М3 по ГОСТ 859—66, латуль марок Л166, Л68, Л63 по ГОСТ 15527—70	-	-	22
ДЬ датуниме тяпутые	FOCT 494—69	\$—100	0,5 —10	Латунь марок Л63, Л68, ЛО70-1, ЛА77-2, ЛМШ68-0,05, ЛАМШ77-2-0,05 в ЛОМШ70-1-0,05 во ГОСТ 15527-70	-	-	23
The	ГОСТ 4 94—69	21—195		Латунь марок Л63, ЛС59-1 в ЛЖМи59-1-1 во ГОСТ 15527—70	-	-	23
(З Латунные свариме	MH 1113-60, MH 1135-60	103—1012	1,5—6	Латунь марки Л63 во ГОСТ 15527—70, яист во ГОСТ 931—70	Oτ-196 80+120	P _{pa6} A0 6	4
Броязевые прессован- име	FOCT 1208-54	50—220	5—5 0	Бронза марок (ВЗ) БрАЖМи10-3-1,5 и БрАЖН10-4-4 во ГОСТ 493—54	-	-	30
Countrous	POCT 167-60	15—170	2,5—10	Causes Mapor CO, Cl. C3, C3 so FOCT 3779-65	-	-	31

Key: (1). Designation of ducts. (2). No of Gost or standard of machine-building. (3). Sizes/dimensions in mm. (4). Material of ducts. (5). Limits of use/application. (6). No of table on this chapter. (7). temperature of product in °C. (8). pressure in kq/cm². (9). it is not above. (10). Pulled from aluminum and aluminum alloys. (11). Aluminum of AD brands/marks, AD1, AD0, AD00, aluminum alloys of brands D1, D16, AV, AMts, AMy2, AMy3, AMg5, AMg6 and GOST 4784-65. (12). From -196 to +150. (13). According to calculation. (4). Pressed from aluminum and aluminum alloys. (15). Aluminum of brands ADO, AD1 and AD and aluminum alleys of prands D1, D6, AVD1-1, V95, AK6, AV, Amts, Amg2, Amg3, Amg5 and Amg6 according to GOST 4784-65 and 4784-65 and 1131-67. (16). Then. (17). Walded from aluminum alloys. (18). Sheet of aluminum alloy according to GOST 13722-68. (19). Copper pulled. (20). Copper of brands M1, M2, M3, M3r according to GOST 859-66 and tombac of brand L96 according to GOST 15527-70. (21). Copper pressed. (22). Copper welded. (23). Copper of brand M3 according to GOST 617-64 and 859-66, sheet according to GOST 495-70. (24). Copper and brass thin-walled. (25). Copper of brands M1, M2, M3 according to GOST 859-66, prass of brands 196, 168, 163 according to GOST 15527-70. (26). Brass pulled. (27). Brass of brands L63, L68, LO70-1, LA77-2, LMSh 68-0.05, LAMSn77-2, and LOMsh70-1, according to GOST 15527-70. (28). Brass pressed. (29). Brass of brands L63, LS59-1 and LZhMts59-1-1 according to GOST 15527-70. (30). Brass welded. (31). Brass of brand L63 according to GOST 15527-70, sheet according to GOST 931-70. (32). Bronze pressed. (33). Bronze of brands/marks BrazhMts10, and BrazhN10, according to GOST 493-54. (34). Lead. (35). Lead of brands SO, S1, S2, S3, according to GOST 3778-65.

Page 272.

Table 2. Ducts circular pulled and pressed from aluminum and aluminum alloys (GOST 1947-56*).

						S.	MM					
D _H , MA	1	2	3	4	5	6		10	15	20	26	30
					(1)	Macca 1 A	102.M B KS					·
10 14 20 25 32 40 50 60 70 80 90 120 150 150 170 200 230	0,079 0,114 0,167 0,211 0,273 0,343 0,431 0,519	0.141 0.211 0.317 0.445 0.528 0.669 1.02 1.196 1.372 1.548			0,88 1,188 1,589 1,979 2,419 2,859 3,738 4,178 5,058	1,372 1,794 2,372 2,85	2,252 2,956 3,659 4,363 5,067	2,639 3,519 4,396 8,278 6,158 7,037 7,917 9,767 12,32 14,07 16,71 21,11 23,75	4,618 5,938 7,257 8,577 9,896 11,896 13,85 17,81 20,45 24,41 31,01	8,797 10,56 12,32 14,07 17,59 22,87 26,39 31,67 40,46 45,74	14,29 16,49 20,89 27,89 31,89	18,171 23,757 31,655 44,666 66,667

Notes: 1. The mass of ducts in Table 2 is determined in the density, equal to 2.8, which corresponds to the aluminum alloys of brands D1, D16 and AVD1-1.

2. For computing mass of ducts from other alloys should be used coefficients:

for fusion of brand AV ... 0.961;

the same AMg2 ... 0.953;

the same AMg3 ... 0.955;

the same Amg5 ... 0.946;

the same AMg6 ... 0.943;

for fusion of brand AK6 ... 0.982;

the same, V95 ... 1.018;

the same AMts ... 0.975;

Por aluminum of ADbrands/marks, AD1, AD0, AD000 ... 0.967.

Key: (1). Mass of 1 lin. m in ky.

Page 273.

Sizes/dimensions and mass or the pulled and pressed circular ducts for aluminum and aluminum alloys are given in Table 2.

The chemical composition and the mechanical properties of the

metal of ducts from aluminum and aluminum alloys are given in Table 13, chapter I.

2. Ducts and part welded of aluminum conduits/manifolds.

Wrought pipes and parts of aluminum conduits/manifolds prepare from the annealed (M) aluminum sneets (GOST 13722-68) on standards machine-buildings MN 1100-60 - MN 1112-60. They are intended for a work in the permissible on aggressiveness media at temperature from -196 to +120°C and operating pressure 2.5 kg/cm².

During the manufacture of ducts and parts is allowed/assumed any means of weld, which ensures the uniform strength of the weld with base metal.

During the weld of the parts between themselves or with ducts longitudinal welds must be misaligned not less than by 100 mm.

Finished parts and ducts must hold out the testing by hydraulic pressure $4\ kg/cm^2$ without the formation of orifice, sweating and bulge.

The enumeration of the standardized parts of conduits/manifolds and their basic dimensions are given in Table 3-8.

Table 3. Enumeration of the standardized parts of conduits/manifolds from aluminum alloys on $P_{pos}=2.5$ kg/cm² from D_y from 100 to 1000 mm.

(1) Hamman	(2) House neparate	House Telamin Passod Tasse
(Ч) Трубы сварные	MH 1100-80	. 4
5)Полусекторы сварные под углом:	MH 1101-80	
22'30'	MH 1102-60	5
Секторы сварные под углом:	13.7 11.2	1
30°	MH 1103-60	5
	MH 1104-60	5
🔈 Отводы сварные под углом:	i	1
30°	M11 1106-60	(6
45"	MH 1106-60	•
60°	MH 1107-60) 6
90° трехсекторные 70\	MH 1108-60	6
_(O) 90° четырехсекторные	MH 1109-80	•
Отводы продольносварные под углом 90° (г. //у от 100 до 500 мм)	MH 1110-60	,
/)Переходы сворные	MH 1111-69	
(2) Генические трейования	MH 1112-00	_

Key: (1). Designation. (2). Number of standard. (3). Number of table in this chapter. (4). Ducts welded. (5). Half-sectors (welded at angle). (6). Sectors (welded at angle). (7). Offtakes (welded at angle). (8). three-sector. (9). four-sector. (10). Offtakes longitudinally welded at angle or 90° (from Dy from 100 to 500 mm). (11). Transitions welded. (12). Technical requirements.

DOC = 79134711 PAGE ## 4//

Page 274.

Table 4. Ducts welded from aluminum alloys on Ppot=25 1100-60) .

	(/)Размеры в или								
Dy	D _{tt}	DETYCROOMS D	3	Maces 1 Nog.M 3 Rd					
100 125 150	103 128 153 203	-1	1,5	1.32 1.63 1.95					
200 250	254	1	2	- 2,65 4,5					
300 350	306 358		2,5	6.5 7,6					
400 450 500	406 455 506	-1,5	3	10,4 11,8 13					
600	608]	4	21					
700	708			24,2					
200	810	-3	8	34,6					
1000	1012	i	6	sz					

Note. Length of ducts - according to agreement with customer.

Key: (1). Sizes/dimensions in mm. (2). Mass of 1 lin. m in kg. (3). manufacturing tolerances.

Page 275.

Table 5. Half-sectors and sectors are welded from aluminum alloys on Pm6=2,5 kg/cm2.

CK	(/) t yrao oca 18 1 1101-	ne 5•	yces:	BOT	77 22 22 1102	30 <i>'</i>			CKOC	77 AGE 200 - 103-60) Ces	100 C1	ME YTA	
	"	- P P	n	w.f	<i>M</i> ₀	4 4		5, 5			2230 1230			
		7	45	Pasm	еры і	MM					(5) Macc	8 B K	
Dy	DH	s	н	н	Н,	н,	н,	Н,	H,	н,	пол	yces:	ces	тора
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>Ļ</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	15*	22*30*	30*	45•
100	103	1,5	l m	81	68	1111	55] 110	 *	170	0,00	0,12	0,11	0,17
135	136	i	•	95	74	125	#	124	#5	190	0,13	0,17	0,15	0,23
150	153	1,5	58	*	76	130	70	152	108	234	0,15	0,22	0,22	0,34
200	203		69	123	90	171	80	189	123	286	0,26	0,35	0,36	0,5
250	254	2	73	141	99	199	95	231	147	355	0,43	0,66	0,73	1,1
300	306	2,5	78	159	107	231	110	273	170	120	0,77	1,11	1,25	1,9
360	355	1.0	84	179	116	261	120	310	185	476	1	1,44	1,56	2,5
						~~		346	۰				ا م	
460	406 456	3	95 106	204 228	130 144	297 331	130 140	348 384	201 215	534 589	1,56	2,24 2,73	2,48	3,8
500	506	ľ	97	272	156	363	150	421	232	640	2,1	3,3	3,1 3,75	4,7 5,6
		<u></u>	<u> </u>									3,5	,,,,	3,0
600	608		114	277	164	413	170	496	262	762	4,12	6,12	7	10,5
700	706		123	313	180	470	200	580	309	889	5,28	8,1	9,44	14,4
***	810	5	145	362	200	541	230	64	339	1003	8,75	13	15,2	23
1000	1012	6	167	4	244	•••	200	822	432	1202	15,5	23,9	20,9	43,7

Key: (1). Half-sectors. (2). Sectors. (3). at angle of bevel. (4). Sizes/dimensions in mm. (5). Hass in kg. (6). half-sector. (7). sector.

Page 276.

Table 6. Offtakes are welded from aluminum alloys on $P_{pos}=2.5$. kg/cm²,

continuation Table 6.

(7) Резмеры в им							б у Масса отвода в по						
Dy	D _H	s	,	L	L,	L,	L,	L,	30*	45°	 (TPEXCER-	Cautop.
100	103		154	67	93	115	180	180	0,18	0,24	0,29	0,41	0,4
125	128	1,5	167	77	100	129	200	200	0,26	0,34	0,41	0,57	0,56
150	153	1,3	207	78	107	142	225	230	0,3	0,44	0,52	0,78	0,74
200	203		251	96	131	174	280	280	0,52	0,7	0,88	1,2	1,24
250	254	2	301	107	151	202	330	330	0,96	1,36	1,69	2,42	2,42
300	305		358	118	169	229	380	380	1,44	2,22	2,69	4,12	3,94
350	355	2,5	401	131	189	255	425	425	2	2,88	3,56	5,38	5,12
400	406		445	150	213	288	475	475	3,12	4,48	5,6	8,28	8,08
450	456	3	489	167	237	318	525	525	3,94	5,46	7,04	10,16	10,1
500	506		533	165	259	330	575	555	4,2	6,6	7,96	12,2	11,7
600	608	١.	621	195	288	388	655	650	8,24	12,24	15,22	22,74	22,22
700	708	1	727	218	325	143	755	750	10,56	16,2	20	30,6	.7,11
800	810	5	815	251	375	Sni	850	850	17,5	26	0.7	0	10.0
1000	1012	6	1026	299	452	616	1055	1050	31	47,81	59.9	91,54	-•

Key: (1). at angle of 30° (MN 1105-60). (2). Weld. (3). Three-sector (4). Four-sector offtakes at an angle of 90° (MN 1109-60) offtake at angle of 90° (MN 1108-60). (5). half-sector. (6). sector. (7). Sizes/dimensions in mm. (8). Mass of offtake in kg. (9). three-sector. (10). four-sector.

. . .

Page 277.

Table 7. Offtakes longitudinally welded from aluminum alloys at angle of 90° on $P_{pol}=2.5$ kg/cm² (MN 1110-60).

	(Я) Размеры в мл						
Dy	, D _M		reaL	Macca a Re			
100	103	1,5	180	0,4			
125	128		200	0,52			
150	163		230	0,72			
200	203		280	1,15			
250	254	2	330	2,3			
300	305	2,5	380	3.9			
350	385		425	5.08			
400	404	3	475	7,6			
450	486		526	9,7			
800	506		556	11,4			

Key: (1). The weld. (2). Sizes/dimensions in mm. (3). Mass in kg.

Page 278.

Table 8. Transitions welded from aluminum alloys on Ppol-25 kg/cm² (MN 1111-60).

	*	
		1
(') cs	epned us	_

	(Д) Размеры в мм								
D _y ×D _y	D _M	D' _M	s	L	Macca » ##				
125×100	128	103	1	46	0,07				
150×100	152	103	j	96	0,15				
150×125	163	128	1,5	46	0.1				
209×125	- 203			140	0,31				
30×130	- 265	183	1	=	0,34				
250 × 125 250 × 180 250 × 200	254	120 154 204	9	199	0,7 0,87 0,23				
300×150 300×200 300×250	305	185 206 255	2,5	280 190 96	1,12 0,86 0,57				
350×200 350×250 350×300	355	205 255 306	6,0	260 190 96	1,36 1,1 0,7				
400×250 400×300 400×360	406	256 306 356		280 190 95	2,06 1,7 0,85				
450×300 450×350 450×400	456	306 356 406	3	290 190 95	2.5 1.9 1.1				
500×350 500×400 500×450	506	356 406 456		290 190 96	2,0 2,31 1,2				
600×400 600×450 600×500	608	408 458 508	4	375 280 190	5.9 4.5 3,26				
700×450 700×500 700×600	708	458 508 608	4	476 378 190	5,35 6,76 4,35				
800×500 800×6/0 800×700	810	510 610 710	5	560 375 190	12,8 10,7 5,6				
1000×600 1000×700 1000×800	1012	612 712 813	6	780 560 876	29,5 23,2 17,4				

Rey: (1). The weld. (2). Sizes/dimensions in mm. (3). Mass in kg.

DOC = 79134711

Page 279.

- §3. Ducts and parts of conduits are copper.
- 1. Ducts copper pulled and pressed.

Ducts copper of general purpose prepare pulled, cold-rolled and pressed from copper of brands M1, M2, M3 and M3r according to GOST 859-66 and from tombac of brand 496 according to GOST 15527-70 only by pulled ones in diameter to 30 mm inclusively.

Ducts pulled and cold-rolled due to the state of material supply soft (annealed) - M and solid (cold-worked) - T of the following sizes/dimensions in mm:

the outside diameter: 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 22; 23; 24; 25; 26; 28; 30; 32; 34; 35; 36; 38; 40; 42; 45; 48; 50; 53; 55; 58; 60; 63; 65; 68; 70; 75; 80; 85; 90; 95; 100; 104; 105; 100; 107; 108; 110; !14; 115; 116; 120; 122; 124; 125; 128; 129; 130; 131; 132; 135; 137; 139; 144; 145; 146; 150; 155; 156; 157; 158; 160; 165; 166; 168; 170; 180; 181; 182; 183; 185; 189; 200; 206; 207; 208; 210; 212; 214; 231; 232; 233; 235; 239; 250; 258; 260; 282; 283; 300; 307; 308; 310; 315; 332; 350; 357; 358; 360;

the wall thickness: 0.5; 0.0; 0.8; 1; 1.2; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5; 6; 7; 8; 10.

Ducts pressed supply by the sizes/dimensions:

the outside diameter: 30: 32: 34: 36: 38: 40: 42: 45: 46: 50: 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 115; 1 0; 125; 130: 135: 140: 145: 150: 155: 160: 165: 170: 175: 180: 185: 190: 195: 200; 210; 220; 230; 240; 250; 260; 270; 280.

the wall thickness; 5: 6; 7: 7.5; 8; 8.5; 10; 12.5; 15; 17.5; 20; 22.5; 25; 27.5; 30.

Sizes/dimensions and mass of the frequently used copper ducts are given in Table 9.

The chemical composition of copper ducts is given in Table 13 of chapter I, the mechanical properties of the material of ducts are given in Table 10.

Table 9. Ducts copper pulled and pressed (GOST 617-64*).

					S, MM					
1	2	3	4 .		10	1.5	20	25	30	
(/) Масса 1 пов. и трубы в пв										
0.25	0,45		_	_	_	=	=	<u> </u>] =	
0.53	1,01	1,43	1,79	2,09] =	=	=	=	=	
0,67 0,87	1,29 1,68 2,12	1,84 2,43 3,1	2,34 3,13 4.02	2,79 3,77 4,89	_ 8.38	=	Ξ	=	=	
1.37	2,68 3,24 3,8	3.94 4.78 5.62	5,14 6,26 7,38	6.29 7.69 9.06	11,18 13,97 16,77	14,67 18,86 23,06	=	Ξ	=	
- 1	4,36 5,48	6,46 8,13	8,5 10,73	10,18 11,88 13,27	19,56 22,36 25,15	27.25 31.44 36,63	33,53 39,12 44,71	45,41 52,4	_ 58,68	
=	Ξ	111	=	16,07 20,26 23,06	30,74 39,12 44,71	44.01 56,59 64,97	55,89 72,65 83,83	66,37 87,33 100,3	73,45 100,6 117,4	
=	=			=	53,09 57,67 75,45	77,65 90,5	100.6 130.5 154.3	122,3 157,2	142,5 184,4 209,6	
000	.36 .53 .67 .87 .09	0,25 0,45 ,36 0,67 ,53 1,01 ,67 1,29 ,67 1,68 ,09 2,12 ,37 2,68 ,65 3,24 ,38 4,36 ,436 ,548	0.25 0.46 — 0.36 0.67 0.92 0.63 1.01 1.43 0.67 1.29 1.46 0.67 1.29 2.43 0.9 2.12 3.1 0.37 2.68 3.94 0.65 3.24 4.78 3.8 5.62 — 4.36 6.46 — 5.48 8.13	0.25 0.45 — — — — — — — — — — — — — — — — — — —	0.25 0.45 — — — — — — — — — — — — — — — — — — —		Macca 1 Nos. At TDYSM B RAS 1,05 0,45 0,67 0,92	Macca Rose. M TDy6ss & Rs	Macca 1 Ros. # Tpy6is b Rs	

Note. With computation the density of copper and brass (tombac) of brand L96 are taken equal to 8, 9.

Key: (1). Mass of 1 lin. m of duct in kg.

Page 280.

Depending on designation/purpose the supplied ducts test for flattening, for edging and for hydraulic pressure, determined according to the formula

 $P = \frac{1100S}{D_0} \, ,$

where S - wall thickness in mm; D, - bore in mm.

2. Ducts and part welded of copper conduits/manifolds.

Wrought pipes in outside diameter 410-510 mm and parts of copper conduits/manifolds prepare from sheet (GOST 495-70) copper of brand M3 (GOST 859-66 and GOST 617-64*) on the standards of machine-building MN 1138-60 - MN 1166-60. They are intended for a work in the permissible on aggressiveness media at temperature from -196 to +120°C and operating pressure 6 kg/cm².

During the manufacture of ducts and parts is allowed/assumed any means of weld, which ensures the uniform strength of the weld with base metal.

During the weld of the parts between themselves or with ducts longitudinal welds must be misaligned not less than by 100 mm.

Finished parts and ducts must age by hydraulic pressure test according to technical specifications without the formation of orifice, sweating and swelling.

The enumeration of the standardized parts of conduits/manifolds and their basic dimensions are given in Table 11-21.

DOC = 79134711 PAGE # 42/

Table 10. Mechanical properties of ducts from the brands/marks of copper M1, M2, M3, M3r and prass L96 (GOST 617-64*).

(1)	a, naime(R)	4 %
Состоиние поставии труб	(3) we seem	18
Танутые наи западнекатамия (М)	21 19	*

Key: (1). As-received condition of ducts. (2). kg/mm². (3). it is not less. (4). Pulled or are cold-rolled (M). (5). Pressed.

Page 281.

Table 11. Enumeration of the standardized parts of conduits/manifolds kg/cm². from copper on Ppo6-6

(/) Наименование	D _y , мя	(Д) (З Номер нормали	Немер тебля цы в денной главе
Трубы сварные	400—500	MH 1130-60	12
yr.non: 15°	100—310 100—500	M11 1139 60 M11 1149-60	13 13
() Сонторы вод углон 39°	100-509	MH 1141-00	13
OTROGU CRAPHUS ROG YFROM:	100—300 100—300	MH 1142-40 MH 1143-60	14
8) 90° Переходы сварные	100—500 100—500 100—500	MH 1144-60 MH 1145-60 MH 1146-60	14 14 28
Тройники свариме: (Ч прямые Вы переходиме (С) под углом 45° Отводы свариме со свобод-	100350 100350 100350	MH 1147-60 MH 1148-60 MH 1149-60	16 17 18
пыми фланцами под уг- 30°:	. 160—500 100—500 100—500 100—500	MH 1150-60 MH 1151-60 MH 1152-80 MH 1153-80	. <u>.</u>
Отводы піутые со свободны- ми фланцами под углом: 30° 45°	20—80 20—80 20—80 20—80	MIT 1154-60 MIT 1155-60 MIT 1156-60 MIT 1157-60	19 19 19
Переходы сварные со сво- бодными фланцами [®] Тройники сварные со сво-	100—500	MH 1158-GD	_
бодными фланцами*: • Спряные супереходные • Киод углом 45°	100—350 100—350 100—350	MH 1159-60 MH 1160-80 MH 1161-60	=
Вбртшайбы для труб: (ЧОТИВВ 1 В 1 В 1 В 2 В 3 В 3 В 3 В 4 В 4 В 4 В 4 В 4	100—500 2 0—80	MH 1162-60 MH 1163-60	20 20
е, бортшайбани: (Э. призармыни ———————————————————————————————————	100—900 30—80	MH 1164-60 MH 1165-60 MH 1166-60	21 21

Notes: 1. The supplied articles must be passivated and covered with outside anticorrosive clear varnish. Steel parts must be painted.

2. To parts, noted by chain wheel, standards in handbook are not given.

Key: (1). Designation. (2). Number of standard. (3). Number of table in this chapter. (4). Ducts (welded. (5). Half-sectors (welded at angle). (6). Sectors at angle. (7). Offtakes (welded at angle). (8). Transitions (welded. (9). T-connections (welded. (9a). straight lines. (9b). transitional. (9c). at angle. (10). Offtakes welded with slip-on flanges at angle. (11). Offtakes, bent with slip-on flanges at angle. (12). Transitions welded with slip-on flanges. (13). T-connections welded with slip-on flanges. (14). edge washers for ducts. (14a). type. (15). Flanges steel free with edge washers. (15a). welded. (15b). scldered. (10). Technical requirements.

Table 12. Ducts welded copper on Ppad=6 kg/cm2 (HW 1138-60).

	/ Размеры в им		(2)
Dy	D _{III}	s	Macca I nos. M B Re
400 480 800	410 400 510	8	86,7 63,6 70,8

Note. Length of ducts - according to agreement with customer.

Key: (1). Sizes/dimensions in mm. (2). Mass of 1 lin. m in kg.

Page 282.

Table 13. Half-sectors and sectors welded copper on $P_{po6}=6$ kg/cm2.

			(4)	Размеры :	B MM				(5)	(5) Macca a se			
Dy	D _M	s	н	Н1	Н,	н,	н,	Н,	manycer- rope 15°	BOTACER-	cax topa 30°		
100	105	2,5	53	81	63	107	55	111	0,46	0,61	0,6		
125	130		60	96	69	123	55	125	0,60	0,86	0,8		
150	155		55	97	71	135	70	154	0,83	1,1	1,2		
200	206	3	64	119	79	164	80	190	1,63	2,1	2,8		
250	258	4	74	143	85	195	95	233	3,08	4	4,67		
300	308		79	162	90	225	110	276	4	5,5	6,55		
350	358		83	179	107	255	1 20	312	5,21	7,2	8,53		
400	410	8	92	202	115	205	180	300	8.45	11.3	13.65		
450	460		97	220	138	813	140	300	10.68	13.9	16.7		
800	510		90	236	194	336	180	300	11,5	16.2	20,5		

Key: (1). Half-sectors. (2). at anyle. (3). Sector at angle. (4). Sizes/dimensions in mm. (5). Mass in kg. (6). half-sector. (7). sector.

Page 283.

Table 14. Offtakes welded copper on Ppet-6

		7	Pean	sbn g ww				(6) M	(6) Масса в из отвода под углом			
Dy	D	s	,	L	L.	L	L,	30*	45*	60*	904	
100 125 150	105 130 155	2,5	155 168 208	67 77 76	85 95 103	114 129 140	180 200 236	0,96 1,38 1,66	1,22 1,72 2,2	1,56 2,18 2,86	2,10 2,90 4,00	
200	206	3	252	92	121	169	276	3,25	4,2	5,56	7,8	
250 300 350	258 308 358	4	306 359 403	108 120 131	142 163 181	202 231 256	332 383 426	6,06 8 10,42	8 11 14,4	10,73 14,55 18,95	15,4 21,1 27,4	
400 450 500	410 460 510	5	448 491 535	147 159 167	200 218 229	285 311 333	475 518 889	16.9 21.04 23	27,8 27,8 33,4	30.5 37.74 43,8	#:1 #:4	

Key: (1). at angle. (2). Weld. (3). half-sector. (4). sector. (5). Sizes/dimensions in mm. (6). Mass in kg. of offtake at angle.

Page 284.

Table 15. Transitions welded copper on $P_{pol}=6$ kg/cm² (HE 1146-60).

	(2) Разнеры в мм										
D _y ×D _y	L	1	D _{IR}	D _H	s	Macca s					
125×100	80	18	130	106		0,67					
150×100	138	30		100	2,5	1,25					
150×125	88	26	155	130		0,86					
200×125	206	50		131	<u> </u>	2,87					
200×150	154	44	206	156	3	2,32					
250×150	265	58		158		5,99					
250×200	148	40	258	208	·	3,87					
300×200	249	48	308	206	4	6,18					
300×250	140	32	308	258		4,49					
350×200 350×250 350×300	357 218 144	62 47 36	358	208 258 308		11.2 7.89 5,39					
400×250 400×300 400×300	347 263 146	48 58 34	410	260 310 360		16,25 13,16 7,96					
450×250 450×300 150×350 450×400	430 111 241 112	39 4.1 39 35	460	290 310 360 410	5	21.93 18.57 14.11 8.75					
5/0×300 5/0×356 5/0×4/0 5/0×450	422 330 214 142	31 31 43 34	510	310 360 410 460		24,67 20,30 16,79 9,72					

Key: (1). The weld. (2). Sizes/dimensions in mm. (3). Mass in kg.

Page 285.

Table 16. T-connections welded copper straight lines on Ppd=0 kg/cm^2 (NN 1147-60).

	(/) Palastep	N S NW		(2)
Dy	L	D _{II}	s	Macca B Ka
100 125 150	1:55 1:80 218	106 130 155	2,5	2,76 3,93 5,74
200	226	206	3	8,9
250 200 200	272 318 - 341	276 306 388	4.9	17,62 24,2 29,86

Note. Material - duct pulled is soft from copper of brand M3 according to GOST 617-64*.

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 286.

Table 17. T-connections welced copper transitional on $P_{pa6}=6$. kg/cm2 (MN 1148-60).

	(1)	Размеры э	жж				(2)
$D_{y} \times D_{y}'$	L	L,	D _H	s	D' _M	S.	Macca B R
125×100	180	165	130	i –	105	i -	3,6
190×100	216	195	l	2,5	100	2,5	5,38
181×126		1349	155		130		5,45
200×100 200×125	236	210	206].)#5 39		8,86 8,66
200×150		228		J	166	2,0	0,0
250×125 250×150	272	248 253	258		130 186		16,28 . 16,46
250×200		251	<u> </u>		205	3	17
300×150 300×200 300×250	318	278 301 322	306	4	155 206 258	2,5 8	22,72 23,65 26,1
350×200		326			205		20,8
360×250 360×300	341	347 343	358		**	4	3,5

Note. Material - duct pulled is soft from copper of brand M3 according to GOST 617-64*.

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Table 18. T-connections welded copper at angle of 45° on Prof-6 kg/cm^2 (MN 1149-60).

Note. Material - duct pulled is soft free copper of brand M3 according to GOST 617-64*.

Key: (1). Sizes/dimensions in wm. (2). Mass in kg.

Page 287.

Table 19. Offtakes the bent copper with slip-on flanges on

	(6) Размеры в для										(7) всей в ка отвода под углом		
Dy		D _R	s	8	L	L	L,	L,	30° 45°		60*	90*	
20	100	22		12,5	57	72	88	130	1,02	1,05	1,07	1,12	
25 32 40 80	128 160 200 250	28 35 45 56	1,5	15	64 73 84 97	83 96 113 134	102 122 145 174	155 190 230 280	1,49 2,12 2,49 2,89	1,53 2,18 2,59 3,04	1,56 2,24 2,68 3,18	1,63 2,36 2,87 3,5	
70	300 400	75 86	•	17,8	134	176 196	300 301	380 438	4,46 7,23	4. 83 7,71	5,21 8,2	5,95 9,18	

Notes: 1. Material - duct pulled is soft from copper of brand M3 (GOST 617-64*).

DOC = 79134711

2. Soldering of edge wasners see on drawing. To braze PMTs 54 according to GOST 1534-42. Is allowed/assumed the replacement of the brand/mark of solder depending on the properties of transported product.

Key: (1). at angle. (2). After soluering to clean. (3). offtake. (4). flange. (5). edge washer. (6). Sizes/dimensions in mm. (7). Mass in kg. of offtake at angle.

Page 288.

Table 20. Edge washers are types for ducts on $P_{pab}=0$ kg/cm².

(/) The 1 AND TRYS & D. — The 11 AND TRYS & D. — 20:80 MM (M11 1163 (81))

(2) Tp	yda	~	ортия лба		(3)
. n. p		меры з жи	,		Macea s R
Dy	D _m	D	н	5	<u> </u>
20	23	50	12	. 2,5	0,04
25	29	60	15		0,07
32	36	70		3	0,1
40	46	80	18	•	0,13
50	56	90	18		0,15
70	76	110			0,24
80	96	128	20	~ 3, 5	0,33
160	105	148			0,48
125	130	178			0,64
150	155	202	22	-4	0,76
200	206	258	24		1,11
250	258	312	28		1,05
300	308	365	32		2,40
350	360	415	34		3
406	410	465	40		4,31
400 .	400	\$20	4	•	5,22
\$00	510	870	46	1	6,1

Key: (1). Type 1 for ducts from. (2). Duct. (3).
edge washer. (4). sizes/dimensions in mm. (5). Hass in kg.

Pag€ 289.

Table 21. Flanges steel tree for copper ducts with welded or soldered edge washers on $P_{pa6}=6$ kg/cm2.

<i>4</i>) Tp	уба	<u> </u>		نخ	3) 📲	aweg			
		/) pe	эмеры в	ALM .			(5)	Macra a	
Dy	D _m	D	D.	Dı		4	чество отверстий	Macra a R	
20	22	90	27	66	10	1.2		0,42	
35	29	100	37	75				0,6	
32	36	120	46	90	12	14		0,86	
40	46	130	58	100	12			0,97	
50	56	140	65	110			•	1,02	
70	76	160	87	130		·		1,06	
80	86	186	97	150	14			1,45	
100	106	205	109	170				2,5	
125	130	235	135	200		18		3	
150	155	260	160	225	16		8	3,8	
200	206	315	212	200	18			5,8	
290	***	370	294	786	-		12	7,8	
300	306	436	314	200	24	23	12	12,2	
350	358	465	364	446	20		18	16,6	
400	410	535	416	495	32			20,6	
450	460	590	466	200	34		16	25,6	
500	510	640	516	800	30			81,0	

quantity of holes. (6). Mass in kg.

notes: 1. The sizes/dimensions of flanges, with exception of the bore $D_{n,j}$ correspond to GOST 1272-67.

2. Material - steel or brand St. 3 according to GOST 380-71.

Key: (1). For ducts from ______with welded edge washers . (2). Duct. (3). Frange. (4). sizes/dimensions in mm. (5).

Page 290.

3. Tubes copper and brass thin-walled (GOST 11383-65).

Tubes copper and brass thin-walled prepare from copper of brands M1, M2, M3 (GOST 859-66) and brass of brands L96, L68 and L63 (GOST 15527-70) the following sizes/dimensions in mm:

the outside diameter: 1.5; 1.6; 2; 2.2; 2.4; 2.6; 2.8; 3; 3.2; 4.8, 3.6; 3.8; 4; 4.5; 5; 6; 1; 7.5; 8; 8.5; 9; 9.5; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 24; 28;

the wall thickness: 0.15; 0.2; 0.25; 0.3; 0.35; 0.4; 0.45; 0.5; 0.6; 0.65; 0.7.

Due to the state of the material of tube they supply: solid (not annealed) from copper and brass of brand L96, solid after low-temperature annealing of brass of brands L63 and L68 and soft (annealed) with the ratio of diameter to wall thickness not more than 20.

Depending on designation/purpose the tubes prepare the common and increased precision/accuracy.

Tubes supply by length from 1 to 3 m, and with D_{α} mm can be supplied in bays.

The computation of mass 1 11n. m of tubes determine from the formula

$$G = \frac{\pi \gamma}{1000} (D_{\alpha} - S) S,$$

where γ - the density of metal, taken for copper and brass of brand L96-8.9; for brass of brand L63-8.5;

 D_n - outside diameter of tube in mm;

S - wall thickness in mm.

The chemical composition of the metal of tubes is given in Tables 13 and 15, chapter 1, and mechanical properties are given in Table 22.

Page 291.

- §4. Ducts and parts of conduits/manifolds are brass.
- 1. Ducts brass pulled and pressed (GOST 494-69).

Ducts brass prepare pulled and pressed.

Due to the state of material pulled ducts supply soft (M) - annealed and semi-solid (Π_{T}) - arter low-temperature annealing. Sizes/dimensions of pulled ducts in mm:

the outside diameter: 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 34; 35; 36; 37; 38; 40; 42; 45; 46; 47; 48; 50; 51; 52; 54; 55; 58; 60; 64; 65; 70; 75; 76; 80; 80; 90; 93; 96; 97; 100.

the wall thickness: 0.5; 0.75; 1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5; 6; 7; 8; 10.

The pressed ducts supply by sizes/dimensions in mm:

the outside diameter: 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 42; 43; 45; 46; 47; 48; 50; 51; 52; 53; 54; 55; 58; 59; 60; 63; 65; 68; 70; 72; 73; 75; 80; 85; 90; 92; 95; 100; 105; 110; 112; 115; 120; 123; 125; 130; 135; 140; 145; 150; 155; 160; 165; 170; 175; 180; 185; 190; 195.

the wall thickness: 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5; 5.5; 6; 6.5; 7; 7.5; 8; 8.5; 9; 10; 11.5; 12.5; 14; 15; 17.5; 20; 22.5; 25; 27.5; 30; 32.5; 35; 37.5; 42.5.

Sizes/dimensions and mass of the frequently used brass ducts are given in Table 23.

The chemical composition and mechanical properties of the metal of brass ducts are given in Table 15, chapter I.

Ducts are tested with hydraulic pressure 50 kg/cm², and also on extension and flattening.

Table 22. Mechanical of the properties of the metal of tubes.

Manua werease has cases	00. marinas (2)	àpo. %
Mapus mereane mus cuases	(3)	Inde
(L/) Tpyd	KK MSFERO	
M1, M2, M3, JI96	21	*
лез, лес	20	*
(5) Tpy6s	я твердые	•.
MI, MR, MS, 706	-	2
74. 7M	•	10

Key: (1). Brand/mark of metal or alloy. (2). kg/mm². (3). it is not
less. (4). Tubes (soft. (5). Tubes (solid.

Page 292.

2. Ducts and part of brass conduits/manifolds.

Wrought pipes and parts of brass conduits/manifolds to operating pressure 6 kg/cm² prepare from latten brass of brand L63 (GOST [FOCT - All-union State Standard] 15527-70 and GOST 931-70) on the standards of machine-building MN 113-60 - MN 1124-60, but the parts of conduits/manifolds to operating pressure 200 kg/cm² - from brass of brand L63, LZhMts59-1-1 and LS59-1 (GOST 15527-70) on the standards of machine-building MN1125-60 - MN 1134-60. Ducts and parts are intended for a work in the permissible on aggressiveness media at temperature from -196° to +120°C.

During the manufacture of ducts and parts allow/assume any form the welds, which ensures the uniform strength of the weld with base metal.

During the weld of the parts between themselves or with ducts longitudinal welds must be misaligned not less than by 100 mm.

400

PAGE 440

DOC = 79134712

Ducts and parts of conduits/manifolds with operating pressure 6 kg/cm² test to test hydraulic pressure 9 kg/cm², but with operating pressure 200 kg/cm² - to test pressure 300 kg/cm².

The enumeration of the standardized parts of conduits/manifolds and their basic dimensions are given in Tables 4, 5, 6, 7, 8, 24, 25, 26, 27, 28, 29.

Table 23. Ducts brass pulled and pressed (GOST 494-69).

	1					S, MM	_			
1	1	2	3	4	5	10	18	20	25	*
i.		(1)	Macca I	Ra 1 no	ж. м тр	убы пре	ILIOTIOC	TH SATY	m 8,5	
		A 49						<u> </u>		
10	0,24	0,43	_	-	-	-		_	_	-
14	0,35	0,64	-	-	-	-	-	-	-	-
20	0,51	0,96	1,35	1,71	3	_		-	-	-
25	0,64	1,23	1,76	2,24	2,67	-	-	[-	-	-
32	0,63	1,6	2,32	2,99	3,6	-	-	-	-	-
40	1,04	2,03	2,96	3,84	4,67	8,01	-	-	-	-
50	1,31	2,56	3,76	4,91°	6,01	10,6	14,01	-	-	
60	1,57	3,1	4,56	5,98	7,34	13,34	18,01	-	-	-
70	-	3,63	5,36	7,05	8,67	16,01	22,02	-	-	-
80	-	4,16	6,15	8,11	10,01	18,68	26,02	32,02	-	<u>-</u>
90	-	-	6,97	9,18	11,34	21,35	30,02	37,36	43,37	-
100	-	-	7,77	10.25	12,71	24,02	34,03	42,7	50,04	56,04
120	-	-	-	-	_	29,36	42,03	53,36	63,38	72,06
150	-	-	-	-	-	37,36	54,04	69,39	83,4	96,08
170	-	-	-		-	42,7	62,05	80,06	96,74	112,1

Key: (1). Mass in kg. 1 lin. m of duct at the density of brass 8.5.

Page 293.

Table 24. Enumeration of the standardized parts of conduits/manifolds from brass on Ppod=6 and 200 kg/cm2.

(1):Чительностие деталей	2 pro	Dy. AM	House map.	Номер таб- лицы в дан- ной главе
Typion caspane (5)	6	100-1000	MH 1113-60	T 4
Попусыторы свыряме под				
10	6	100-1000	MH 1114-80	5
2 25 34 · · · · · · · · · · · · · · · · · ·	6	100-1000	MH 1118-60	5
Секторы свершые под углом:				1
35 .	6	1001000	MH 1115-60	5
40	6	1001000	MH 1119-60	5
Отводы сварные под углом:	İ	ĺ	1	
SO*	6	100-1000	MH 1116-60	. 6
*	6	100-1000	MH 1120-60	
•	•	100-1000	MH 1117-60	6
90" трежсекториме ⁽⁹⁾ ,		100—1000	MH 1121-60	6
(46)	6	1001000	MH 1122-60	6
отводы продольностарные				1
лод углом 90	6	100-500	MH 1123-60	7
Передоды свариые	6	100-1000	MH 1124-60	8
Отводы гнутые под углом 90"	200	1050	MH 1125-60	25
Переходы (Ӌ)	200	1050	MH 1126-60	26
Tpolitiku: 65)				
(/6)прямые	200	1050	MH 1127-60	27
√пере ходные	200	1050	MH 1128-60	28
(^{,ү)} с двумя переходами	200	1050	MH 1129-60	29
Срединения штуцерио торцо- Ломе ^о				
Штуцера• (10)	200	4—10	MH 1130-60	_
Ниппеян (у)	200	4-10	MH 1131-60	-
Гайки какидиме (52)	200 200	4—10 4—10	MH 1132-60	_
Прокладии фибровые	200	4-10	MH 1133-60 MH 1134-60	
Техинческие требования 614	_	-	MH 1135-60 - MH 1137-60	-

Notes: 1. The sizes/dimensions of wrought pipes and parts of conduits/manifolds from brass on MN 1113-60 - MN 1124-60 correspond to the sizes/dimensions of the parts of conduits/manifolds from

aluminum alloys on MN 1100-60 - MN 1111-60 (table 4, 5, 6, 7, 8), besides the brass parts from p_y -MM for which wall thickness is accepted by 4.5 mm instead of 4 mm for aluminum ones.

During the determination or the mass of brass parts to accept K=3.05 to the appropriate mass of parts from aluminum alloys.

2. On part, noted by asterisk

standards in handbook are not given (except MN 1130-60).

Key: (1). Designation of parts. (2). kg/cm². (3). Number of standard. (4). Number of table in this chapter (5). Ducts (welded.) (6).

Half-sectors (welded at angle). (7). Sectors (welded at angle). (8).

Offtakes (welded at angle). (9). three-sector. (10). four-sector.

(11). Offtakes longitudinally (welded at angle). (12). Transitions

(welded.) (13). Offtakes, bent at angle. (14). Transitions. (15).

T-connections. (16). straight lines. (17). transitional. (18). with two transitions. (19). Connections (end-type) (20). Connecting pipe.

(21). Nipples. (22). Nuts (cover.) (23). Plies (fiber.) (24). Technical requirements.

Page 294.

Table 25. Offtakes the bent prass at angle of 90° on Post=300 kg/cm² (MN 1125-60).

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Table 26. Transitions brass on Ppet=200 kg/cm² (MN 1126-60).

		(/) Размер	W P ##			(2)					
$D_{\mathbf{y}} \times D_{\mathbf{y}}$	D _{II}	s	D,	D's	L	Macca a					
15×10	22	3	10	15		0,11					
20×10	28		10	1"	56	55	55	56	55	55	0,16
20×15		1	16	22		0, 19					
25×10 25×15 25×20	35	5	10 16 20	15 22 26	65	0,28 0,32 0,35					
32×10 32×15 32×20 32×26	42	6	10 16 20 26	15 22 24 36	85	0.5 0.55 4.6 9.65					
40×20			20	75		1,11					
40×25	55	7,5	25	36	100	1,2					
40×32			30	42		1,28					
50×25			25	36		2,35					
50×32	70	· 10	30	42	125	2,47					
50×40		ľ	40	85		2,77					

THE THE PARTY OF T

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 295.

Table 27. T-connections straight/direct brass on $P_{ped}=200$ kg/cm² (MN 1127-60) .

(/)Размеры в жи							
D	D _B	D _m	L	Macca s			
18	10	16	21	0,07			
24	16	23	25	0,13			
30	20	29	28	0,22			
37	25	36	36	0,5			
44	30	43	45	0,71			
58	40	56	55	1,44			
74	9 0	71	45	2,8			
	D 18 24 30 37 44 58	D D _B 18 10 24 16 30 20 37 25 44 30 58 40	D D _B D _H 18 10 16 24 16 23 30 20 29 37 25 36 44 30 43 58 40 54	D D _B D _H L 18 10 16 21 24 16 23 25 30 20 29 26 37 25 36 30 44 30 43 45 58 40 56 55			

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 296.

Table 28. T-connections transitional brass on $P_{pol}=200$ kg/cm² (MN 1128-60).

D _y ×D _y	D	D _B	D's	D _m	<i>D</i> ₂ ′′	L	(/) Macca = Ra
15×10	24	16	10	23	16	25	- 0,12
20×15	30	20		29	23	28	0,21
25×15			16	36	25	36	0,41
25×20	37	25	20	<i>3</i> 0	29	38	0,42
32×10		15	10		16		0,65
32×15			16	43	23	45	0,67
32×20	44	30	20		29		0,67
32×25			25		36		0,68
40×20	İ		20		29		1,28
40×25	58	40	25	56	36	55	1,3
40×32	}		30		43]	1,31
50×25			25		36	<u> </u>	2,73
50×32	74	50	30	71	43	65	2,73
50×40		Ì	40				2,71

Key: (1). Mass in kg.

Page 297.

Table 29. T-connections with two transitions brass on Ppo6=200 kg/cm² (MN 1129-60).

	(/) Размеры в мм															
D _y ×D _y ×D _y	D	D _B	D.	D's	D _a	D _H	D _a	L	Macca B K2							
15×10×10	24	16	10	10	16	23	16	25	0,12							
30×10×15		20		16	23	29	<u> </u>	28	0,21							
20×16×15	30	, as	16	"					0,5							
25×15×29		-	10			36	23	38	0,43							
25×20×20	37	25		20	29	30			0,81							
32×20×20			20				29		0,72							
32×20×25	44	44	44	44	44	44	44	44	30				43		45	0,81
32×25×25]		25	36				0.74				
40×25×25	-		25	l			36		1,49							
40×25×32	58	40				56		55	1,51							
40×32×32				30	43				1,5							
50 ×32 ×32			30				43		3,11							
60×32×40	74	50		40	56	71		65	3,01							
80×40×40	;		40	~			46		3							

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

DOC = 79134712

Page 298.

§5. Ducts bronze (GOST 1208-54).

Ducts bronze pressed prepare from bronze of brands/marks -3-1.5 -4-4 BrAZhMts10⁴ and BrAZhN10⁴ according to GOST of 493-54 following sizes/dimensions in mm:

Sizes/dimensions and mass of the frequently used bronze ducts are given in Tables 30.

The chemical composition and the mechanical properties of the metal of bronze ducts are given in Table 16, chapter I.

Table 30. Ducts bronze pressed (GOST 1208-54).

Hopym.	1				S, #			 -			
има Диаметр	5	7,5	10	18	20	25	30	40			
D _{er} Min		(2) Macca 1 пов. м труб в пв									
50	5,3	7,4	_	_	-	_	_	_	_		
60	6,48	9,27	11,77	-	-	-	_	_	<u> </u>		
70	-	11,04	14,13	19,43	-	-	_	_	_		
80	_	12,8	16,48	22,96	28,26	~	-	- .	-		
90	_	14,58	18,85	26,51	33	38,29	-	-	-		
100	-	-	21,21	30,04	37,7	44,18	49,48	-	-		
120	-		-	37,11	47,12	55,96	63,45	-	-		
140	-	_		44,18	56,55	67,61	77,75	-	-		
160	-	_	-	51,25	65,97	79,52	91,75	-	-		
190	- .	-	-	-	80,11	97,2	113,1	141,37	-		
220	-	-	-	-	_	~	132,2	100,5	197,2		

Note. The mass of 1 lin. m of ducts is determined for bronze of brand AZhMts10-3-1.5 with a density of 1.5. During the computation of the mass of ducts for bronze of brand BrAZhN10-4-4 to accept K=1.027.

Key: (1). Outside diameter. (2). Mass of 1 lin. m of ducts in kg.

Page 299.

§6. Ducts lead (GOST 167-69).

Ducts lead pressed prepare from lead of brands SO, S1, S2 and S3 (GOST 3778-65*) the following sizes/dimensions in mm:

the outside diameter: 15; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 36; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 48; 50; 51; 52; 53; 54; 56; 56; 57; 58; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 68; 78; 78; 78; 78; 78; 78; 78; 79; 80; 83; 84; 87; 88; 89; 92; 93; 94; 98; 104; 108; 114; 118; 124; 128; 141; 145; 166; 170;

the wall thickness: 2; 2.5; 3; 3.5; 4; 5; 6; 7; 8; 9; 10.

Sizes/dimensions and mass of the frequently used ducts are given in Table 31.

The chemical composition of lead ducts is given in Table 17. chapter I.

Table 31. Ducts lead pressed (GOST 167-69).

		-,			S. aa						
D _B .	2,5	3	4	- 5	6	7	8	9	10		
	() Масса 1 лов. и в из										
10	~	_	2	2,7	-	1	-		-		
19	1,9	2,4	3,3	4,3	5,3	~	-	-	-		
25	2,4	3	4,2	5,5	6,7	8,2	9,5	-	- 1		
30	-	3,5	4,9	6,2	7,7	9,2	11	-	-		
36		4,1	5,6	7,1	8,8	10,5	12,3	_	-		
40	-	-	.6,3		9,9	11,7	13,7	-	-		
80	-	-	-	-	12	14,2	16,6	18,9	 -		
# 0	-	-	_	11,6	14,1	16,7	19,4	22,1	-		
70	-	-	-	13,4	– ,	19	-	25,3	-		
80	-	_	_	_	18,3	21,8	-	28,6	-		
90	-	-	_	-	-	24,9	-	31,8	-		
100	-	_		-	-	25,8	-	35, 8	-		
125	-	_	-	-	_	~	36,8	-	46		
180	-	- .	_	-	-	~	46,5	-	87,1		

Note. The length of straight/direct ducts in bore more than 60 mm and in diameter 50 and 55 mm with the thickness of wall 4 and 5 mm must be not less than 1.8 m.

Ducts from p_{\bullet} to 60 mm inclusively supply in the bays, sheathed by panels.

Key: (1). Mass of 1 lin. m in ky.

DOC = 79134712 PAGE #53

Page 300.

Chapter VIII.

DUCTS AND PARTS OF CONDUITS/MANIFOLDS FROM PLASTICS AND STEEL WITH INTERNAL CORROSION-RESISTANT COATINGS.

- §1. Plastic ducts and parts of conduits/manifolds.
- 1. General information.

Ducts and parts of conduits/manifolds from plastics used for the transporting of different corrosion, which destroy steel products, and also as the substitutes of the expensive ducts from high-alloy steel and nonferrous metals. The utilization of plastic ducts of instead of steel ones makes it possible to lower the consumption of the alloy and high-alloy steel, to raise the service life of conduits/manifolds (because of their high corrosion resistance) and to reduce expenditures for heat insulation as a result of their small heat conductivity.

The basic physicochemical properties of the plastics from which are prepared the ducts, examined/considered in present chapter, are

given in Table 1.

The limits of the use/application of the plastic ducts (operating pressure and temperature of product) are shown in Table 2.

Table 1. Basic physicochemical properties of plastics.

(A)_	(9)Пределы прочиссти в кас/см°				
HOCTE B 8/CM ³	ири рестяже- ими	naru6e naru6e	(6) при сжатия		
1,38-1,46	400600	900—1200	800-1000		
0,92—0,93	120160	120 170	125		
0,95	220350	200—380	_		
0,9	300360	500—700	600—700		
2,1-2,4	140-315	110140	-		
1,4-1,7	200	400	700—800		
	1,38-1,46 0,92-0,93 0,95 0,9 2,1-2,4	1,38—1,48	1,38—1,46 400—600 900—1200 1,38—1,46 400—600 900—1200 0,92—0,93 120—160 120—170 0,95 220—350 200—360 0,9 300—360 500—700 2,1—2,4 140—315 110—140		

Key: (1). Designation of material. (2). Density in g/cm³. (3).
Ultimate strength in kg/cm². (4). with stretching. (5). with bend.
(6). during compression. (7). Polyvinyl chloride plastic. (8).
Polyethylene. (9). low density. (10). high density. (11).
Polypropylene. (12). Teflon. (13). Faolite.

Page 301.

Table 2. Characteristic of ducts and parts of conduits/manifolds from plastics.

	(1) Нормали, техниче	Ilpeges:	n abanger-	(3)			
(4) Напискование	(1)	(() детали трубо-	7) Pp. T. °C				(2) No Tedanii
	(5)трубы	проводов (9) не 60					
(a)	(/о)Нормали Владимирск завод	ого жимического		(M) (5)			
Винипластовые	BX3-06-124	BX3-06-125-134	6	`От 0 до +40	15—150	1000— 3 000	36
Полиэтиленовые: ((3) а) из полиэтилена высокой влотности (ПВП)	a) MPTY 6-05-917-67	a) MH 3005-61 MH 3018-61	10	(4) Or −80 (5) #0 +50	15-300	6070— 12 000	7-10
В ВЗ ПОЛИЗТИЛЕНА ПОИСТИ (Б. 1711)	6) MPTY 6-05-918-67	6) MH 3005-61 — MH 3018-61	10	(4) (5) 70 −60 (5) 70 +60	15—150	6000	7—10
та на при на пр	MPTY 6-05-1170-69 H 1	юрмаль № 24-39	4,7	(Δ) 10τ =30 189 +120	32—350	1000— 2 000	11-15
(-9) Полипропиленовые ()	MPTY 6-05-1045-67	(20) ТУ заводов-изго- трантелей	10	(4) OT -80 Spg +150	15—100	6000 12 000	19
Фторовластовые	MPTY 6-05-987-66	To me	• •	07 -196 300 +380	80-400	1000— 3 200	30

Key: (1). Standards, technical specifications. (2). Limits of
use/application. (3). Sizes/dimensions in mm. (4). Designation. (5).
duct. (6). part of conduits/manifolds. (7). kg/cm². (8). Table. (9).
it is not more. (10). Standards of Vladimir chemical plant. (11).
Polyvinyl chloride. (12). Polyetnylene. (13). from polyethylene of
high density. (14). From. (15). to. (16). from low-density
polyethylene. (17). Faolite. (18). and standard. (19). Polypropylene.
(20). manufacturing plants. (21). Teflon. (22). The Same

Page 302.

Polyvinyl chloride plastic (solid polyvinyl chloride) obtains from pure/clean polyvinylchloride resin with stabilizer (amines, oxides of metals, etc.); it has high mechanical strength, it yields to machining, is welded and it is cemented. From polyvinyl chloride plastic are prepared the ducts, the parts of conduits/manifolds, the valves/gates and the taps/cranes. The mechanical properties of polyvinyl chloride plastic do not change at temperature from 10 to 50°c. Main disadvantage in polyvinyl chloride plastic is its brittleness at temperature lower than zero, and also tendency toward strain with the long effective loads.

Polyethylene of low and high density obtain by the polymerization of ethylene respectively with high - about 1500 kg/cm² and low - 2-6 kg/cm² pressure. From polyethylene are prepared the ducts, shaped parts, fittings, sneets, films, etc. Polyethylene yields well to machining, easily is pressed and it is cast under pressure.

The polypropylene, which is the polymer of propylene, has the major advantage before polyvinyl chloride plastic and polyethylene:

its mechanical properties at elevated temperatures (to +100°C) change very insignificantly.

Teflon - most chemically and thermally stable material of all known plastics; on chemical stability it exceeds gold, platinum, special stainless steel, china and other materials, used in agressive media, it is dissolved not in one solvent.

Paolite - heat-reactive material, which consists of resol phenol-formaldehyde resin and filler (asbestos, graphite or quartz sand). Depending on filler faolite they mark by the letters: A - asbestos; P - sand; T - graphite.

Paolite is cemented well, and it also yields to machining. Main disadvantages in the facilite are prittleness, low resistance to the bending and vibration loads, and also inadmissibility of a large temperature differential petween the internal and external surface of articles.

The fundamental characteristics of ducts and parts of conduits/manifolds of the enumerated above forms of plastics are given in Table 2.

On sizes/dimensions and tolerances the ducts and the part of

DOC = 79134712

conduits/manifolds from plastics must satisfy the requirements of the corresponding standards of macaine-building, technical specifications, and also factory standards. The mass, indicated in tables, is given as reference, and deviation from it sorting index is not. Ducts and parts of conduits/manifolds from plastics must be stored in the dry closed rooms on racks, in banks (duct) or in boxes (part), far from heaters and in the places, shielded from the straight/direct effect of solar rays/beams.

2. Ducts and part of conduits/manifolds from polyvinyl chloride plastic.

Polyvinyl chloride ducts and parts of conduits/manifolds produce on Py=25 and 6 kg/cm² on the standards of Vladimir chemical plant (Table 3-6). Ducts prepare by the extrusion through special matrices/dies on hydraulic presses (pressure forging), and the parts of conduits/manifolds - from polyvinyl chloride ducts by flexure and by weld.

Page 303.

Table 3. Ducts in the part of conduits/manifolds from polyvinyl chloride plastic on the standards of Yladimir chemical plant.

Accounting the State of the Control

Page 305.

6	40	5 1	6		165	260	260	140	100	1,19	0,20	0,53	0,46
	- 50	63	7		205	320	300	200	120	1,74	0,69	0,96	0,78
	65	83	6		250	410	360	270	140	2,2	1,08	1,55	1,2
	80	96	6,5	OT 1000	275	450	400	300	150	2,53	1,36	1,95	1,52
2,5	100	114	7	3000	326	\$30	480	350	180	3,3	2,09	3	2,4
·	125	140	8		390	640	580	430	210	4,61	3,13	5,08	3,71
	150	166	8		460	770	680	\$30	240	5,6	5,02	7,34	5,25

Key: (1). Ducts, offtakes and T-connections (sizes/dimensions in mm).

(2). Offtakes. (3). Ducts along the normal. (4). at angle of 45°

along the normal. (5). at angle of 90° along the normal. (6).

T-connections (welded along the normal). (7). Mass in kg. (8).

kg/cm². (9). ducts. (10). offtakes at angle. (11). it is branch.

(12). 1 running meter of pipe. (13). From. (14). to.

Page 306.

Table 4. Flanges polyvinyl chloride free on the flanged duct and branch connections terminal polyvinyl chloride with slip-on flanges on flanging (sizes/dimensions in mm).

(4)			1	Ī						5	CIME	CE B Ke	
Py.	D _y	D	D ,	D ₃	d	6	d,	•	L	Konstre- crao or- sepcraß	(7) Флен- ца	патрубка с флан- цем	
<u>i</u>	15	80	55	40	23	12		3	75		0,07	0,08	
	20	90	65	5 0	28		12	3	90		0,11	0,14	
_	25	100	75	60	35	15			100		!	0,13	0,2
6	32	120	90	70	14				115		0,18	0,28	
	40	130	100	80	55	17	14	4	130	•	0,24	1,39	
	50	140	110	90	67	"			150		0,26	0,52	
	65	160	130	110	88	<u> </u>			180		0,37	0,77	
	80	190	150	128	100	- 	200		0,54	1,04			
2,5	100	210	170	148	120	2)	18	5	240		0,58	1,38	
	125	240	200	178	147		'*	"	290	- •	0,6	2,01	
	150	270	226	202	174	22			340		0,97	2,96	

Notes: 1. Material of flange - polyvinyl chloride plastic of laminated (GOST 9639-71).

2. Branch connection - from duct on VKhZ 06-124; Pm 4 S - see Table 3.

Key: (1). Flanges along the normal. (2). Branch connections along the normal. (3). 1 - branch connection; 2 - flange polyvinyl chloride on VKhz 06-125. (4). kg/cm². (5). Quantity of holes. (6). Mass in kg. (7). flange. (8). flanged nozzle.

Pages 307-308.

Table 5. Offtakes, T-connections and cross pieces from polyvinyl chloride plastic with slip-on flanges on flanging (sizes/dimensions in mm).

continuation Table 5.

(U)			L				1	-	Macca	c флan	unen 1	10
Semo/ora	Dy	OTEC TOR Y	EOR	rpodume a	RDECTO.		4,	4		LYOM LYOM	(9) 	6
y.		45*	90°	40	X B				45*	90°	23	2.1
	15	120	155	150	225	95	75	75	0,19	0,22	0,26	0,33
	2ນ	145	200	180	270	110	90	90	0,34	0,36	0,44	0,59
s	25	. 165	230	200	300	120	100	100	0,51	0,5	0,57	0, 85
ľ	32	205	280	270	3-15	150	115	115	0,71	0.9	0,65	1,2
	40	225	320	260	380	160	130	120	1,17	1,4	1,24	1,7
	50	275	390	300	430	190	150	130	1,73	2,2	1,64	2,1
	63	340	Sun	360	510	230	180	150	2,62	3,4	2,41	3,41
	80	375	550	400	365	250	20)	165	3,44	4,4	3,28	4,58
2.5	100	415	650	480	660	300	240	180	4,85	6,2	4,33	5,88
	125	535	765	580	790	356	290	210	7,15	9,1	5,69	9,01
	150	630	940	640	940	410	310	240	10,94	13,26	0,36	13,3

the notes: 1. Sizes/dimensions p_{n} . s and R - see Table 3.

2. Flanges - see Table 4.

Key: (1). Offtakes. (2). at angle of 45° along the normal. (3). at angle of 90° along the normal. (4). T-connections along the normal. (5). Cross pieces along the normal. (6). kg/cm². (7). offtakes at angle. (8). T-connection. (9). cross piece. (10). Mass with flanges in kg.

Page 309-311.

Table 6. Transitions polyvinyl chloride with slip-on flanges on flanging along the normal VKhZ Oo-134 (sizes/dimensions in mm).

continuation table 6.

	20×20				1		0,40	2
	32×25	180	105	_	-	**	0,46	1
	40×25		_	70	50	-	0,56	1
	40×32		120	_	-	40	0,66	1
	80×32	200	_	70	. 80	-	0,71	3
	50×40		126	_	-	45	0,85	1
	65×40	230	-	80	65	-	0,92	3
	65×50	230	140	_	-	50	1,18	2
2,6	80×50	240	-	85	70	_	1,76	3
	80×65		140	-	-	80	1,50	2
}	100×45	280	-	90	78	-	1,00	3
	100×80	-	150	-	-		2,00	:

Notes: 1. Sizes/dimensions p_{μ} and S - see Table 3. 2. Sizes/dimensions d_m and S_1 correspond to sizes/dimensions D_m and S_1 Table 3. 3. Flanges - see Table 4.

Key: (1). Performance. (2). kg/cm^2 . (3). Mass in kg. (4). Performance.

Page 312.

3. Ducts and part of conduits/manifolds from polyethylene.

of all plastic ducts in recent years the widest acceptance for manufacturing the technological conduits/manifolds received polyethylene ducts. They are considerable (to 400/0) more easily polyvinyl chloride, they are cold-resistant (to -65°C) and elastic, thanks to which it is possible to prepare them large length, to coil up (at temperature not higher than 30°C) and in this form to transport. The combination of elasticity and cold-resistance of polyethylene ducts provides the reduction of criginal form after the removal of the loads, caused, for example, by the freezing of water in the polyethylene ducts; after the thawing of ice the deformed duct again assumes previous form and sizes/dimensions.

Polyethylene ducts produce rour types:

- a) light L, calculated for the maximum operating pressure 1 2.5 kg/cm 2 ;
 - b) medium-light SL to pressure 4 kg/cm2;

DOC = 79134712 PAGE #69

- c) average/mean S to pressure 6 kg/cm²;
- d) heavy T to pressure 10 kg/cm2.

FOOTNOTE 1. Maximum operating pressure shown for the transporting of water with 20°C. ENDFOOTNOTE.

Table 7. Ducts from low-density polyethylene (MRTU 6-05-918-67) (sizes/dimensions in mm, mass of 1 running m in kg.).

	G ¹ Tun 19yda											
D _M	 	л	(л		c		Ţ				
_ [s	Macca	S	Macca	s	Macca	3	Macca				
20 25 32 40 50 63 75 90 110 140	2 2,4 3 3,6 4,3 5,3 6,7 7,7		2 2,5 3 3,7 4,7 5,6 6,7 8,2 10,4	0,15 0,23 0,23 0,36 0,55 0,87 1,23 1,76 2,62 4,25 5,53	2.2 2.7 3.5 4.3 5.4 6.8 8,1 9.7 11.8	0,13 0,2 0,32 0,49 0,76 1,21 1,71 2,43 3,6	3,4 4,2 5,4 6,7 8,4 10,5 12,5 15	0,18 0,28 0,46 0,71 1,1 1,73 2,43 3,49 5,21				

Notes: 1. Material of duct - low-density polyethylene of brand 17601-006 according to GOST 16337-70.

2. Ducts in diameter from 20 mm and more supply by linear segments in long 6, 8, 10 and 12 m with by manufacturing tolerances from lengths indicated +-50 mm. Is allowed/assumed the delivery of ducts in long 5.5 and 11.5 m.

Key: (1). Type of duct. (2). Mass.

Page 313.

The parts of conduits/manifolds from polyethylene are prepared in essence from polyethylene ducts by flexure and by weld (see Chapter XIV).

The structural sizes/dimensions of the fabricated members of conduits/manifolds from polyethylene should be accepted as for parts, from polyvinyl chloride plastic.

Riga, Vilnius and Tampovo plants produce according to limiting nomenclature the castings or conduits/manifolds from high-density polyethylene on the standards or machine-building; enumeration and sizes/dimensions of these parts are given in Table 9.

Table 8. Ducts from high-density polyethylene (MRTU 6-05-917-67) (sizes/dimensions in mm, mass or 1 running m in kg.).

			(1) 11	n tyyfa	1				
<i>D</i> _		ð,		7		C	3-0		
	3	Moote	3	Maces	S	Mecca	s	Macca	
S K K	111	=	=	=	2	=	2 2.3 2.9	0.12	
7 025	_	=	-	0,32	2,3 2,9 3,6	0,2	3,7	0,29	
	2	0.49	2 2,5 2,9	0,51	3,6 4,3	0,45 0,71 1,06	4.6 5.8 6.9	0,68 1,06 1,53	
75 90 110 140	2,2 2,7 3,8	0,63 0,97 1,58	3,5 4,3 5,4	1,02 1,51 2,41	5, t 6, 3 8	1,84 2,14 3,44	8,2 10 12,8	2,18 3,24 5,26	
160 225	4 5,5	2.06 3,94	6,2 8,7	3,17 6,2	9,1 12,8	4,47 8,8	14,6	6,86	
22	7,3	7,78	10.8	9,55 12,1	=	=	11	Ξ	

Notes: 1. Material of ducts - high-density polyethylene of brand 20306-005 according to GOST 16338-70.

2. Ducts supply by linear segments in long 6, 8 and 12 m with by manufacturing tolerances from lengths indicated +-50 mm. Is allowed/assumed the delivery or sucts with a length of 5.5 about 11.5 m.

Key: (1). Type of duct. (2). Mass.

Table 9. Parts of conduits/manifolds poured from polyethylene.

Key: (1). Angle plates. (2). T-connections. (3). Clutches (uniting. (4). Bushings under flanges. (5). Sizes/dimensions in mm. (6). Mass in kg. (7). angle plate. (8). T-connection. (9). clutch. (10). bushing. (11). kg/cm².

Page 314.

Table 10. Flanges steel for conduits/manifolds from polyethylene on

 $P_y=2.5$: 6 and 10 kg/cm² (HH 3017-61).

, . P		()\ Pa	эмеры в	MM		A\OT	(5-) Macca	
Py.	Dy	D.	D	D ₁	,	d, MM	HORRYSCT-	a Re
6	15	28	80	55	10	12	4	0,31
10	15	28	95	65	12	14		0,55
6		35	90	, ~	10	12		0,30
10	20	33	106	75	14	14		0,77
6	25	44	100	,"	12	12		0.56
10		"	115	85	14	14		0,9
6	32	51	120 90	12	14	1	0,02	

Table 10 continued.

10	**	*	136		10	18		1,35		
6	40	•	130	100	12	14		0,9		
10 ·		•	146	116	18	18		1,68		
6	50	78	140	110	12	14		1,04		
10	·	86	160	125	18	18		1,89		
6	65	94		130	14	14	4	1,38		
10			180	145	20			2,7		
•	80	113	186	150	14			1,76		
10	80				196	160	22		·	3,3
6	100	134	205	170	14	18		2,1		
10			215	180	24		İ	3,73		
2,5; 6	125	160	235	200	14			2,3		
10		168	245	210	26			4,7		
2,5; 6	150	183	260	225	., 16		• .	3,12		
10		199	200	240	26	22		5,9		

Key: (1). Sizes/dimensions in mm. (2). Bolt holes (3). kg/cm^2 . (4). quantity. (5). Mass in kg.

Page 315.

4. Ducts and part of conducts/manifolds from faolite.

They produce in accordance with MRTU 6-05-1170-69 on standards

No 24-39 of faolite brands A, P and T. They are intended for the

transport of acids and other liquid and gaseous agressive products.

Page 316.

Made of all plastics used only faolite articles are chemically stable to benzene. Faolite conduits/manifolds can work in large temperature range.

Paolite ducts from Dy to 150 mm prepare on extruders, and large-diameter ducts - rrow damp/crude sheets by molding in wooden or metallic detachable templates/patterns. The parts of conduits/manifolds are prepared by pressure forging in metal molds or by cementing by the resin luting composition.

For an increase in the service life the internal and external surfaces of articles made of rabilite they cover/coat with Bakelite varnish.

Faolite articles are characterized by significant brittleness; therefore during transport and their assembly one should be cushioned against shocks, and also abrupt changes in the temperature.

In the case of damage - crack formation, after splitting off or holes - faolite articles are repaired with the aid of the resin

luting composition.

The allowable operating pressures for faolite conduits/manifolds depend on diameter and are equal to:

(⁶)Для трубопроводов	D.=10+80 ass	4,7 mm/cm²
	Dy==80+100 s	4 >
` • •	D _v =180+200 s	2.4
	Dy==600+300 y	1,6 .
• •	D,-380 ,	i,a .

Key: (1). For conduits/manifolds. (2). kg/cm2. (3). the Same.

Table 11. Faolite ducts with collars.

	(1)	Размеры я	MM			·	101
Dy	Ď _H	D	S	L	1	•	Macca a Re
32	50	67	8,5	}	12		4,2
50	76	98	11	2000		45*	6,3
**	102	120	12		15		12,8
100	126	180		2000	18	46*	16,8
. 180	178	210	12,5		20	45	12,5
200	225	205			30		16,6
280	276	330	<u> </u>	1000	40	60-	21,5
200	830	390	18				30,5
***	200	440]			40,5

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 317.

Table 12. Faolite ducts with binding band.

(A, bet	меры в им			16,
D _H	S	L	•	Macca a Re
175			120	26.5
225	12,5			35,4
275		2000		45,8
330			150	64,5
300	"			85,5
	D _H 175 225 275 330	D _H S 178 225 12,5 275 330 16	D _H S L 175 225 12,8 275 2000 330 is	D _H S L e 175 12,5 120 225 12,5 2000 330 15 150

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 318.

Table 13. Faolite square elbows, T-connections, cross pieces and set-off bends.

:		(6)	Размеры в А	1.84		(b) Macca a 42 (DA)					
,	Dy	D _H	D	s	L	угольника	тройника	крестовины	Отвода		
!	32 50 80	50 76 102	67 98 126	8,5 11 12	110 130 150	0,6 1,2 2,2	0,8 1,7 2,9	1 2.2 3,7	l 2,8 4,2		
1 1 2	100 150 100 150	125 175 225 275	150 210 255 330	12,5	160 230 300 360	3 6.3 10 17,3	4 8,3 16,3 25,5	4.8 10.5 18.5 31.3	6,5 11,9 20,5 31,2		
3	100 160	330 380	390 440	15 18	365 410	36.8 30,5	36.8 51,5	49,8 69,5	46,6 46,5		

Note. The sizes/dimensions of collars see in Table 11.

Key: (1). Angle plate. (2). T-connection. (3). Adhesive weld. (4).
Cross piece. (5). Offtake. (6). Sizes/dimensions in mm. (7). Mass in kg.

Page 319.

Table 14. Faolite T-connections and cross pieces are transitional.

	(4)	Passes	M 8 MM					5)Macc	
Dy×D',	D _m	Ď	D' ₁₁	D,	s	S,	L	7 poñ- Nuka	Kpec Tosh
50×32	76	98	50	76	u	8,5	150	1,6	1,7
80×50	102	126	76	98	12	11	1.20	2,5	3,1
100×80	125	150	"	30		"	160	3,5	3,9
100×80	'2	100	102	128			190	3,7	4,4
150×89	178	210	102	120		13	230	7,2	8,2
180×100	"		1:5	150	12.5			7,5	8,9
200×100	:25	265					300	12,5	14
2 00×150			175	210				11	16
250>100/	275	330	125	150			<u>. </u>	18,5	20
250×200			225	265			360	22	25,5
300×100		_	125	150		12.5		26,5	28,3
300×150	330	390	175	210				27,3	29,7
300×250			275	330	15		386	32	39,7
360×100	360	440	125	150				33,8	35,5
700×150]	1	176	210	}			34,8	37,8

Note. The sizes/dimensions of collars - see Table 11.

Key: (1). Cross connections. (2). T-connections. (3). Adhesive weld.

(4). Sizes/dimensions in mm. (5). Mass in kg.

Page 320.

Table 15. Faolite transitions are single-stage.

Note. The sizes/dimensions of collars - see Table 11.

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Table 16. Faolite transitions are two-stage.

Note. The sizes/dimensions of collars - see Table 11. Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 321.

Table 17. Flanges and split collars are steel for conduits/manifolds from faolite.

/)Tp;	164		(2)	HRER	1		ि) Ko	PHE		(4)	Боя	M
(5) Pasmepu a MA (6)													
D _y	D _M	D	D ₁	Δ,	0	4	D.	D ₂	D,	bı	d	1	коли- чество
322	50	130	100	70	10	14	52	68	76	15	12	70	4
50	73	160	130	102	10	14	78	100	110	15	12	70	4
80	102	190	150	130	12	18	101	125	140	15	16	95	4
100	125	220	180	154	12	18	127	152	165	15	16	85	4
150	175	280	25u	215	14	18	178	212	230	20	16	120	4
3 10	225	335	305	270	16	18	228	267	265	20	16	140	4
	•	Ī	l		1		Ι.	j	1 .	,			

Note. The sizes/dimensions of flanges for conduits/manifolds from faolite are not standardized. Manufacturing plants are produced from according to their technical specifications.

Key: (1). Duct. (2). Flanges. (3). Rings. (4). Bolts. (5).
Sizes/dimensions in mm. (6). quantity.

Page 322.

5. Ducts from polypropylene.

Ducts of polypropylene produce on MRTU 6-05-1045-67 three types:

- a) type C, calculated for maximum operating pressure 6 kg/cm²;
- b) type T to pressure 10 kg/cm2;
- c) type OT to pressure 10 kg/cm2.

Ducts are prepared by the method of uninterrupted auger extrusion from heat- and light-stabilized, granulated polypropylene. Table 18. Flanges split pig iron for conduits/manifolds from faolite:

FOOTNOTE 1. See note to Table 17. ENDFOOTNOTE.

											///		
(/)T;	уба		(£) Que			(3) Au		болты	Kop	OTRAL	болты
					(5)	Pesa	еры г	##		4			•
D _y	D _a	D	D ₁	D.	٠	d	dı		,	STEC. WIT.	•	ı	HOARTWEED
32 50 80 100 150 200	50 76 102 125 175 225	130 160 190 220 280 335	100 130 150 180 250 305	51 77 108 125 178 230	14 14 16 16 18	13 13 17 17 17	11 13 15 15 15	12 16 16 16	65 70 75 75 100 120	****	10 12 14 14 14	34 35 42 42 42 42	*****
		<u> </u>	•	'			'	l	•	'		'	ŗ.

Key: (1). Duct. (2). Flanges. (3). Long bolts. (4). Short bolts. (5).
Sizes/dimensions in mm. (0). quantity, pieces.

Page 323.

6. Ducts from teflon.

Ducts of fluoroplast-4 produce on MRTU 6-05-987-66 to the

DOC = 79134713 FAGE #84

operating pressure:

- a) for ducts from D, to 100 mm inclusively 4 kg/cm²;
- b) for ducts from Dy from 200 mm even above 2 kg/cm².

Ducts prepare by method pressure forgings of the powder of teflon in steel duct- matrix/die with the subsequent heat treatment of the obtained damp/crude duct at temperature of 375°C.

Table 19. Ducts from polypropylene (MRTU 6-05-1045-67) (sizes/dimensions in mm, mass of 1 lin. m in kg.).

1		(/) Тип трубы									
D,	D	C			T	ОТ					
		s	MBC(A	s	масса	S	Macca				
15	\$ 10	-	-	-	-	2,5	0,14				
*	38	-	-	2,5	0,22	1	9,34				
50	. 63	3	0,54	5	0,87	7,5	1,33				
100	110	5,3	1,61	8,5	2,61						

Notes: 1. Ducts supply by linear segments in long 6, 8, 10 and 12 m with by manufacturing tolerance from the length indicated ± 50 mm. Is allowed/assumed the delivery of ducts in long 5.5 and 11.5 m with the deviation of ± 50 mm.

2. Ducts, intended for household drinking water supply and transport of other food media, must be prepared from formulas of polypropylene, matched with organs/controls of sanitary-epidemiological service.

Key: (1). Type of duct. (2). mass.

DOC = 79134713

PAGE #488

Table 20. Ducts from teflon (MRTU 6-05-987-66).

<u>(1)</u>	Резигры в для	······	(2)		
Dy	D _H	S	Macco a se		
50	58	4	1,75		
80	85	6	3		
100	112	6	5,5		
200	290 -4-	10	16,7		
300	324	12	20		
410	400	14	1 . 44		

Notes: 1. Material of ducts - powder of teflon of brands V(B) (GOST 10072-62).

- 2. Length of ducts from 1 to 3.2 m.
- 3. According to agreement with customer ducts can be supplied with slip-on flanges on tlanging.

Key: (1). Sizes/dimensions in mm. (2). Mass in kg.

Page 324.

- §2. Steel tubes and parts of conducts/manifolds with internal corrosion-resistant nonmetallic coatings.
- 1. General information.

Steel tubes with internal corrosion-resistant nonmetallic coatings are intended for the transport of products with agressive properties. By construction/design such ducts and parts are two-layer, which consist of steel shell (duct) and internal lining layer which is linked with shell from within different methods. The majorities of union couplings and parts make by dismountable/release ones; therefore such conduits/manifolds consist of the set of separate parts with the previously prepared/prefabricated elements/cells of connections.

By the basic types of internal nonmetallic coatings are: rubberizing, lining plastics (polyethylene, polyvinyl chloride plastic, teflon), enamel. Furthermore, is used coating the internal surface of ducts and parts by glass and corrosion-resistant paints/colors.

The characteristic or ducts and parts of the conduits/manifolds with internal corrosion-resistant coatings, prepared with industry on all-Union, branch or factory standards, is given in Table 21.

Page 325.

Table 21. Characteristic of steel tubes and parts of conduits/manifolds with internal anticorrosion coatings.

(1)	(2) FOCT. TV.	(Э) Покрытие		Предалы применения		Pagaspa a sus		(6)	
Наимемование труб и деталей трубопроводов	(7) (8) трубы детали трубо- проводов		матернал (/о) тол- щина в дая		Sections and Sections of Secti	S TEMBEPATYPA BPOAYKIA	yearentee mpo-	(18a)	House referring as and radge
(/5) Гунипрованные (футе- рованные резимей)	(/С) По материал Гипрометалл		(/7)	4,5	10	(/8) +***	40-400	200-2500	22-29
футерованные внянила- стои футерованные вванита-	a) FOCT 10/62—64 56) 4MTV 3-271-69	a) MH 8030-63 MH 8082-63 6) ЧМТУ В НИТИ 745-66: ЧМТУ В НІТИ 744-66 MH 5030-63— MH 8052-63	(ДО) Полити- лен (1) То же (23) Вини- пласт	1-4,5 2-5 1-4,5	16 (f	OT -10 RO +70 RO +70 AO +90 OT -10 AO +90	49—180 25—180 40—150	450—8000 1000—8000	30—39 40—46 30—39
(04) Футерованиме фторо- властом (26) Футерованиме змелью	ВТУ 50 (27) Нормали Сі шиностроител	(25) Фторо- ВЛЯСТ-4 (25) СТЕКЛО- ЗМАЛЬ	2,5—10 0,4—1,5	6	OT - 195 20 + 250 OT 0 A0 + 200	50300 80 8 0	1500—1800	46; 47 48—53	

Key: (1). Designation of ducts and parts of conduits/manifolds. (2).

GOST, TU standard. (3). Coating. (4). Limits of use/application. (5).

Sizes/dimensions in mm. (6). Number of table on this chapter. (7).

duct. (8). part of conduits/manifolds. (9). material. (10). thickness in mm. (11). operating pressure P_{pab} in kg/cm². (12). temperature of

...

product in °C. (13). internal diameters. (13a). the length of ducts. (14). it is not more. (15). Rubberized (lined by rubber). (16). Based on materials GPI of Giprometallurgmontaxh. (17). Rubber, ebonite. (18). From ... to (19). Lined by polyethylene. (20). Polyethylene. (21). Same. (22). Lined by polyvinyl chloride plastic. (23). Polyvinyl chloride plastic. (24). Lined by teflon. (25). Teflon. (26). Lined by enamel. (27). Standards of Smela Machine Building Plant. (28). Glass enamel.

PAGE #492

DOC = 79134713

Page 326.

2. Ducts and parts of conduits/manifolds, lined by rubber¹ (rubberized).

FOOTNOTE 1. Is comprised on the standards of machine-building to the parts of conduits/manifolds, lined by rubber, MN 5760-65, according to the nomenclature of the parts or conduits/manifolds - MSN 120-69/MMSS USSR, according to GOST 1256-67*, 1268-67* and 12830-67*, and also on standards to the rectilinear units of conduits/manifolds, lined by rubber, developed by GPI Giprometallurgmontazh. ENDFOOTNOTE.

103

DOC = 79134713

PAGE # 493

Table 22. The coupling dies of the lined ducts and parts of conduits/manifolds in $\ensuremath{\text{mm}}$.

	Ι		1				- 1	2,				
(I) Py B Rec/cm ³	Dy.	D		2) T	MULMI	е сте	HER T		или де	TARE	s	
			2,5	3,5	4	4,5	5	7		,	10	11
6		80										
10	40	88	31	-	-	-	-	-	-	-	-	-
6	50	90		41								
10	50	102		"	_	-	-	-	-	-	-	-
6	65	110		60								
10	65	122			_	_	-	-	_	_	_	-
6	81)	128		71								
10		138						-	_	_	_	_
6	100	148			91		89					
10	1140	158			,		2	_	_	-	_	_
•	125	178	-	-	116	-	114	-	-	-	-	

DOC = 79134713

PAGE #494

Page 327

continuation Table 22.

							D				_	
n Recless	Dy	D	<u> </u>	\succeq	Consu	Me CT	ensin 1	РУбы	HAM /	Retari		
0			2,5	3,5	4	4,5	\$	7	8	9	10	11
10	195	180	-	-	116	-	114	-	_	_	-	-
• .	150	200				141						
10	100	212	-	. –			_	_	_	-	_	
6	200	258						196	194			
10	34	200	_	-	-	-	_	150	194	-	_	_
6	260	313						250	248	216	_	
10		320								"		
6	300	365	_	_	_	_	-	_	300	298	296	_
10		370										
•	350	115	_	_	_	_	_	_	_	350	348	_
10		430										
	400	465	_	_	_	_	_	_	_	389	397	395
10	400	482								.		

Key: (1). in kg/cm². (2). Wall thickness of duct or part S.

Pages 328-329.

Table 23. Ducts steel, lined by runber, on Py=6 and 10 kg/cm² (sizes/dimensions in mm, mass in kg.).

181		$\neg \neg$	1									L							
neclessia.	٦	ا م			2	00			3	00			5 0	0			70	0	
Py. Ke	D _y	D _H	S	,	t.	F _p ,	Macca		4.	F _p ;	Macca	•	Is:	7.5	Macca	ı	4	F-1	W BOCS
•					148		2,94		248	0,04	3,08		448	0,07	3,5		646		3,83
10	40	45	2,5	183	141	0,03	4,77	263	241	0,04	5,07	483	441	0,07	5,78	683	641	0,1	6,39
•	80	57			140	0,04	3,80		346	0,04	4,44		448	0,00	5,80		646	0,12	6,63
10	50	87		185	141	0,04	6,08	283	241	0,06	6,63	463	441	0,00	7,72	-	641	0,12	8,82
6	Ī	<u> </u>			147		5,24		247		5,98	•	447		7,47	1	647	0,17	8,%
10	65	76	3,5		137	0,06	8,2		237	0,08	9		437	0,12	10.5		637	0,17	12
•	1_		1		145		7,01	}	245	0.00	7,86	1	445		9,64		645	0,2	11,4
10	•	-			135	0,07	9,9	Ì	236		10,1		435	0,15	12,5		636	"	14,3
•	100	108	1	181	143	0,08	8,54	281	243	0,11	9,74	۱	443		12.1	-	843	0,24	14,5
10	1"	100	•	'*'	133	0,00	12.3	28 1	233	0,11	13,5	461	433	0,18	15,9		623	0,24	18,3
•	125	133	1		141	0,1	111		241	0,14	12,4		441		15.4		641	0,3	18,4
10	7 "	1.33	'		124	0,1	16,5		224	0.14	18		424	0,22	21		624	"."	23,9
•	150	159	1		135	0,12	13,6		238	1	15,6		438		19,5		636	0,36	23.5
10		130	4,5		124	0,12	20,3	1	224	0,17	22,3		424	0,35	25,2		624	J	30,2
1	200	210	1,	177	139	0,17	20,0	277	229	0,23	25	477	439	0,36	22	677	-	0.0	41
10			<u> </u>	<u> '''</u>	121	7 "	25,1	<u> </u>	221		32.1	1 "	421	1	40,1	<u> 1 </u>	421		44,1

DOC = 79134713 FAGE 496

Page 330.

Continuation Table 23.

6	250	273	8	173	117	0,2	36,9	273	227	0,29	33,7	473	427	0,45	45,1 54,3	673	617	0,61	55,4
6	300	325			126	0,25	37,6		236	0,34	51,3		426	0,54	58 65		636	0,73	71.5
10	350	377	9		125	0,27	47,5	271	225	0,39	56,3 66,8	471	425	0,61	73,8	671	625 615	0,85	101,9
6	•	45	10	171	125	0,31	59,3		225	0,44	70,2		425	0,7	92,1	671	625 615	0,95	134,9

Page 331.

490		٥,,															
"Yica"	D _y			1000		1	10	30			30	00	^		33)))	6
7,2	_ y	ı	I,	75	Marca	1	I ₁	7,	#8CC8	•	i,	7 1	Meses a	1	4	r.	MOCCA
•			946		4,42		1518		7,77		1948		7,85		3145	0,41	13
10	40		941	0,13	7,38		1541	0,21	9,35		1941	0,25	10,7		8141	0,11	14,6
6		983	948		8,3	1583	1548		11,5	1983	1948	0.20	13,8	3183	3148	0,51	20,3
10	50		941	0,17	10,5		1541	0,26	13,7		1941	0,32	15,9		3141	0,31	22,5
•			947		11,2	1	1547		15,6		1947		18,6		3147	0,7	27,5
10	65		937	0,23	14,2		1537	0,36	18,7		1937	0,45	21,6		3137	"."	30,5
•			945	0,23	13,9		1545		19,3	'	1915		22.8		3145		33,3
10	80		935	0,27	16,9		1535	0,43	22,1		1935	0,57	25,7	ļ	3135	0,54	36
•			943	<u> </u>	18,1		1543	<u>:</u>	25,1	1961	1943		30,1	3181	3143	1	44,4
10	100	961	933	0,33	21,8	1581	1533	0,52	29	1361	1933	0,65	33.9	3.0.	3133	1,02	48,1
6	 		941	i	22.8	{	1541	 	31,7		1941		37,7	1	3141	1	55,5
10	125	Į	924	0,42	28,4		1524	0,65	37,3		1924	0,81	43,2	1	3121	1,28	61
•	 		936	<u>'</u>	29,4		1534		41,2		1936	<u> </u>	40,1		3138	1,54	72,7
10	150		924	0,5	36,1	·[1524	0.78	47.9	†	1924	0,57	55,8	1	3124	1 '	79.4

Page 332.

Continuation Table 23.

6	203	977	929	0,68	53	1577	1529	1,07	77	1977	1929	1.32	93,1	3177	3120		141.2
10			921	,	60,1		1521	1,07	84,2		1921	1,44	100.2	3111	3121		148,3
6	250		927	0,85	73,4		1527	1,33	107,3		1926	1,66	130		3127	2,63	197,7
10		973	917	0,00	82,6	1573	1517	1,33	116,6	1973	1917	1,00	139,2	3173	3117	2,65	207,1
6	300	373	926	1,02	91,9	13/3	1526		122,5	1973	1926	1.99	159,6	3173	3126		241
10			916	1,02	96,8	1,6	139,5		1916	1,30	166,6		3116	3,16	248		
6	350		925	1,18	117,7		1525	1,85	170,4		1925	2,3	205,5		3125	3,66	310.8
10	-	971	915	1,2	128,2	1571	1515	1,87	180,9		1915	2,32	216	3171	3115	3,68	321,3
6	400	""	925	1,33	146,9	13/1	1525	2,1	212,5	1971	1925	2,61	256,3	31/1	3125	4,14	387,7
10	""		915	1,36	164,7	j	1515	2,14	230,4		1915	2,64	274,2		31 15	4,17	405,6

Notes: 1. Steel shell - from ducts according to GOST 8732-70 and GOST 8734-58**.

- 2. Flanges for ducts of performance 1 according to GOST 1255-67* and GOST 1268-67*, performance by 2 - according to GOST 12830-67* and GOST 1268-67*.
 - 3. Coupling dies see in Table 22.

4. Material of gumming - rupper on TU 38-5-815-67. Pr conventional designations of the surface of gumming.

Key: (1). Performance. (2). duct. (3). flange flat/plane welded. (4). flange (free.) (5). welded ring. (6). gumming. (7). flange of welded butt. (8). kg/cm². (9). mass.

Pages 333-334.

Table 24. Offtakes steel, lined by rubber, on Py=6 and 10 kg/cm² (sizes/dimensions in mm, mass in kg.).

_									OT BUA		draw	FALL; 3	,	M M AP								
1(4)				L	-	4	P _P . #1	' 	(5)1	Macca				l	L			F _C , A	•	(5)	Macc	
ancies.	D,	s		(6)	OTBOR	08 RO	д уга	OM CL	s epa	ð		D _v	s		0) 018	одов	под у	F.ROM (2 8 200	ð	
4			45	€0.	90	45	60	90	45	60	90	,		45	60	90	45	60	90	45	60	90
6			70	80	104		0,02	U,02	2,97	3,07	3,17			146	183	278	0,11	0,12	0.15	14,6	15,6	17.9
10	40	2,5	76	86	110	0,02	0,03	0,03	3,91	4,06	4,16	150	4,5	160	197	292	0,13	0,14	0,17	20,3	21,5	23,7
6	50		74	87	120	0 00	0.03	0,03	3,57	3,67	3,83	200		184	233	360	0,18	0,21	0,26	25,8	28,5	33,6
10			80	94	126	0,03	0,03	0,04	5,03	5,13	5,29		,	192	2+0	368	0,2	0,22	0,27	31.8	34,5	39.6
6	65	3.5	87	105	150	0,04	0,04	0,05	1,76	4,96	5,31	250		215	277	435	0,26	0,3	0,38	37,9	42,6	52
10		0,0	97	115	160	0.05	0,05	0,06	7,21	7,41	7,76		<u> </u>	225	287	445	0,28	0,31	0,39	45,3	49,9	59,4
•	80		96	115	166		0,06	0,07	6,61	6,96	7,42	300		247	320	510	0,34	0,4	0,51	55	62,7	78
10	-		106	125	176	0.06	0.07	0,08		8,84	9,29		_	257	330	520	0,36	0,41	0,52	62,8	70,5	85,8
6	100		110	135	198	1				8,82	9,67	350	10	278	364	386	0,43	0,5	0,66	76,7	₩,6	115,2
10			120	145	208	0,07	0.08	0,09	11,1	11.7	12,4			***	374	596	0.46	0.53	0.00	89,4	102,3	128
6	125]	130	160	240	0.09	0,10	0.12	11.9	12,5	14	400		310	407	660	0,53	0.63	0,82	90,2	105,3	135,4
10	-		146	177	267	0,11	9,12	0,14	16,1	16,8	16,2	-	i	-	417	670	0,55	0,66	0,86	100,3	134,2	184,4

Notes: 1. Offtakes - on MSN 120-69/MMSS USSR.

- 2. D. see in Table 23.
- 3. Flanges according to GOST 12830-67*.

Key: (1). offtake. (2). tlange. (3). gumming. (4). kg/cm^2 . (5). Mass. (6). offtakes at angle a in dey.

Page 335.

Table 25. T-connections the steel equal flow, lined by rubber, on $P_7=6$ and 10 kg/cm².

5 Размеры в им (6) (5) Pasuepu a MA 22,7 31,3 5,44 43,6 220 200 0,35 200 100 100 10 7,63 228 208 52,7 114 | 114 | 0,07 7,54 250 235 57,3 121 | 124 | 0,08 | 11,2 260 245 0,5 68,3 120 120 0,09 10,2 300 280 0,64 90,4 130 0,1 13 10 130 310 290 102,1 138 0,12 13,4 300 280 0,86 115,7 17,6 310 290 148 0,14 0,80 134,8 160 0,17 18,4

Notes: 1. T-connections - on MSN

120-69/MMSS

USSR.

DOC = 79134713 PAGE 502

- 2. P. see in Table 23.
- 3. Flanges according to GOST 12830-67*.

Key: (1). T-connection. (2). flange. (3). rubberizing. (4). kg/cm².

(5). Sizes/dimensions in mm. (6). Mass in kg.

Pages 336-337.

Table 26. T-connections the steel transitional, lined by rubber, on $P_{y=0}$ and 10 kg/cm².

(1) Pu.	(5) Pasi	иеры в	I.K		F	Macca	⑤) Pass	еры в ж	*		7.	ma (G)
RBC/CM ³	$D_{\mathbf{y}} \times d_{\mathbf{y}}$	s	Sı	L	L,	F _F .	B #2	Dyxdy	s	S.	L	L,	P _F ,	3 54
6	50×40			94	90	0,06	5,31	150×100		1	183	163	0,25	20,4
10		İ	ŀ	100	96	0.07	7,3	130 × 100			197	173	0,27	27,5
6		3,5	2,5	114	104	0,07	6,7		4,5	4	183	170	0,21	21,9
10	65×40			124	110	0,08	9,62	150×125			197	187	9,3	29,7
•	65×50		Ì	114	110	0,08	7,03	000,.105	Ī		220	190	0,4	35,9
10	- WX.			124	116	0,00	10,2	200×125],		228	207	0,43	44,2
6	80×50	3,5	3.5	120	110	0,00	8,79	200×180	'		290	202	0,45	36,9
10			3,5	130	116	0,1	11,2	200 X 150		4,5	228	217	0,46	45,8
6	90×65			120	114	""	9,4	250×150		7,5	250	293	0,56	39
10	~ ~ ~ ~	<u> </u>		130	124	0,11	12,4	350X 130			260	247	0,50	49,3
6	100×65	.	4	136	124	0,12	11.9	250×200	•		250	240	0,65	\$3
10	,			148	134	0,14	15,9	200,200		,	240	248	0,67	63,4
6	100×80			138	130	0,14	12,4	300×200			300	265	0,61	82
10			3.5	148	140	0,15	16,1	300,200	10	l	310	273	0,83	92,8
6	125×80		","	160	1	0,18	16,2	300×250	."	8	300	270	0,91	85,3
10				177	150	0,2	21,3				310	280	0,93	96,8
6	135×100		4	160	146	0,21	17,1	380×300	12	10	300	286	1,16	113,5
· 16			'	177	186	0,22	22,6		"	-	310	296	1,2	130,2

Notes: 1. T-connections - on MSN '120-69/MMSS

USSR.

2. ^Bn - see⁴ Table 23.

3. Flanges according to GOST 12830-67*.

Key: (1). T-connection. (2). flange. (3). gumming. (4). kg/cm².
(5). Sizes/dimensions in mm. (6). Mass in kg.

we do

Page 338.

Table 27. Transitions steel, linea by rubber, on Py=6 and 10 kg/cm2.

DOC = 79134713 PAGE \$504

Page 339.

Continuation Table 27.

6	(7) Press	7 4 1	-			87	(D) Po Sweet	pu I				EL
Files	Dyxdy	3	3,	L	, i. s	Macca	Dyxdy	s	s,	L		Macc.
•	eo xes	3,1		165	0,06	5,66	300×206**	10		300	0,33	╁
10	<u> </u>	┞		186	├	7,77	<u> </u>	一	7	320	0,35	45,3
-	_			-		-	300×250°	•		320	0,37	48,1
•		1		172	0,08	6,67		Ì		300	0,34	42,1
10.	100%]		192		9,22	300×250**		•	320	0,35	49,6
6	100%89			174	<u> </u>	7,57	350×200°			420	0,42	49,4
10		1	3,5	194	0,09	9,89		10		440	0,45	: -
6	-			-	-	-	350×250		9	420	0,47	
6	<u> </u>	1		196	0,1	9,21	<u> </u>			422	0,49	66.2
10	125×60°	{		223	0,11	12,2	350×300		10	442	i	72,5
6	125×100°	Ì.	5	198	0,1	10,2	400×250°		,	470	0,55	57,5
10	125 X 100-			225	0,12	13,7	400 X 250-	,		490	0,58	70,7
•	125×100**	4	4	196	0,1	10,1	400×300°		6	472	0,57	62,9
10				225	0,12	13,6				492	0,62	76,4
- <u>:</u> -	-	-	-	_	-	-	400×300**	11	10	472	0,5	75,4
6				230	0,11	11.5				492	0,63	80,9
10	180×100			255	0,13	15,8	400×360	11	10	492	0,66	
•	180×125	4,5	1	233	0,12	13,2						
10				254	0,14	10,2	- i		-	-	-	_

Note: 1. Transitions - on MSN 120-69/HMSS USSR.

2. p. - see in Table 23.

3. Flanges - according to GOST 12830-67*.

Key: (1). Concentric. (2). Eccentric. (3). transition. (4). flange.
(5). gumming. (6). kg/cm². (7). Sizes/dimensions in mm. (8). Mass in kg.

FOOTNOTE 1. Are produced only concentric transitions.

2. Are produced only eccentric transitions. ENDFOOTNOTE.

Page 340.

Table 28. Inserts steel L=100 mm, lined by rubber, on $P_{y}=6$ and 10 kg/cm².

Wotes: 1. Duct - according to GOST 8732-70 and GOST 8734-58**

Pm and S - see in Table 23.

2. Welded rings - according to GOST 1268-67* (see Chapter IV).

Key: (1). duct. (2). welded ring. (3). rubberizing. (4). kg/cm². (5).
Sizes/dimensions in mm. (6). Mass in kg.

9.6

DOC = 79134713

PAGE # 509

Page 341.

Table 29.

Rings on $P_y = 6$ and 10 ky/cm².

13)	<u> </u>	(4) P	амеры 1			(5)	Macca	B K4	
(a)						гунынр	OBBINO	кольца	7)23
7	Dy	D	D,	4	d,	≱—20. 81=11	b==30, b ₁ =21	\$=40, b ₁ =31	pessuogo.
6	40	80	71	25	37	0,32	0,56	0,81	0,05
10		65	79		<u>"</u>	0,41	0,73	1,05	0,07
6	80	90	81	41	80	0,35	0,63	0,9	0,06
10		102	93			0,52	0,92	1,32	0,06
6	65	110	101	59	68	0,48	0,86	1,23	
10		122	113			0,68	1,22	1,75	0,11
•	80	128	119	7,	80	0,66	1,17	1,68	-,
10		136	129			0,85	1,62	2,19	0,13
•	100	146	139	91	100	0,79	1,41	2,02	
10		150	149		,	1,08	1,84	2,6	9,10

Page 342.

Continuation Table 29.

•		150	140			1,00	1,96	2,70	6,17
10	125	186	179	116	125	1,36	2,42	3,46	0,31
6		202	193			1,24	2,21	3,18	0,2
10	150	212	203	141	150	1,55	2,76	3,97	0,21
6		258	249			1,68	2,59	4,29	9,27
10	200	268	269	196	206	2,07	3,69	5,31	0,32
6		312	303	250	259	2,08	3,7	5,32	0,33
10	250	320	311	200	250	2,45	4,36	6,3	0,36
6,		365	356	298	307	2,7	4,82	6,94	0,42
10	300	368	359	2.76	307	2,9	5,16	7,65	0,45
6		415	406	350	359	3	5,35	7,69	0,47
10	350	428	419	330		3,86	6,88	10,2	0,59
6		465	456	. 397	406	3,62	6,38	9,18	0,55
10	400	482	473			4,79	8,57	12,4	0,7

Notes: 1. Material of ring - steel of brands 10; 15 and 20 (GOST 1050-60*).

2. Material of gumming and rubber ring - see note to Table 23.

Key: (1). lined with rubber. (2). rubber. (3). kg/cm². (4).
Sizes/dimensions in mm. (5). Mass in kg. (6). rubberized ring. (7).
rubber ring.

. .

DOC = 79134713

PAGE # 51)

Pages 343-344.

Table 30. 3. Ducts and parts of conduits/manifolds, lined by polyvinyl chloride plastic and polyethylene. Ducts steel, lined by polyvinyl chloride plastic and by polyethylene (GOST 10762-64).

	F			(a) - 1py6	n; 2 — pe	(4)	: 3 - 4:	1	е) юбодкы		7		
(1)					(2)	Размеры в ми						Macca s	eposeumuz
Tan spyda	Дy	D _s	s	s	1	(4) pa	i.	4	4	•	D	BERTHITAGE-	BONGSTH-
1								60	-	-	-	2,43	2,33
111	40	45	2	2	(>) On 80	M45 \(\cdot 1,5	22	_	5	22	78	2,45	2,33
٠,			2,5		до 100	M56 ×2	28	74	-	-		3,73	3,58
111	80	57	3				24	-	6	24	90	4,43	4,28
1		1				(§) Tpy6 2'/:"	36	92	_	_	<u> </u>	ĺ	Ì
di	65	75,5	4	2,5		Tpy6 2'/s	26		7	27,5	110	7,81	7,55
1	80	88,5			(s 3°	36	92	-	-		9,36	9 ,01
111							20	=	7,5	31	122	5,2	5,01
	100	114	•	3			46	116	-	-	-	12,3	11,74
411							32	=	•	35	140	e4,5	22,74

5.5

Page 345.

Continuation table 30.

				İ		8			130	-	-	~		16.51
ıll	126	140	4,8	•	9	Tpy6	5°	34	-	10	36	169	17,27	10.51
1					OT 80			84	140	-		~		
iii	150	165	4,5	4,5		•	6*	34	_	12,5	40,5	192	30,47	19,56

Notes: 1. Length or ducts L to 8 m.

- 2. Thread at ends of ducts: py to 50 mm metric (GOST 9150-59*): py is more than 50 mm tube cylindrical (GOST 6357-52).
- 3. Tolerances for thread according to plain grade of fit (GOST 9253-59).
- 4. Union couplings of type I make either by flanged ones or threading ones (on couplings). Union couplings of the type II make on half-flanges on MN 5034-63, while those of the type III on slip-on

flanges according to GOST 10762-64; the types of connections of ducts and parts of the conduits/manifolds, lined by polyvinyl chloride plastic and polyethylene. - see chapter XIV.

- 5. Steel shell from ducts according to GOST 8732-70, 8734-58**, 10704-63*, 10707-63 and 3262-62. Rings threading and flanges see Table 31 and 32.
- 6. As lining layer use ducts forcing from polyvinyl chloride plastic on basis of polyvinylchloride resin PF-4, from low-density polyethylene of brand P2006- V and high-density polyethylene brand P4004-0.

Key: (a). duct. (b). rubber ring. (c). flange (free. (1). Type of
duct. (2). Sizes/dimensions in mm. (3). Mass in kg. 1 lin. m of
ducts., lined. (4). thread. (5). PVC. (6). by polyethylene. (7). From
80 to 100. (8). Ducts.

Page 346.

The ends of the steel shell and lining layer must be cut off at right angle to the axis/axle of duct and cleaned from barbs. The ends of the lining layer must not have strains and cuts.

Ring screw-threads gauge must be covered to support into the end/face of duct. Planging of the lining layer must fit face of ring screw-thread gauge. The surface of flanging must not have gas inclusions, barbs, radial folds and strains.

The internal surface of the lining layer and the external surface of its protruding ends must be smooth, without cracks, gas inclusions and bulgings. The protruding ends of the lining layer and the thread of steel shell must be shielded from mechanical damages.

Table 31. Rings threading on P,-H and 16 kg/cm2 (GOST 10762-64).

	(/) Размеры в ми												
Dy	D		d.		В	•	h	Marca a Ri					
40	88	41	M45×	1,5	20	7	3	0,73					
50	102	51	M56×	2*	22	و ا		1					
65	122	69	(3) Tpy6 2	1/2	25	,	•	1,49					
Ar)	138	81	1.	3*	28	12		1,91					
100	158	106	1.	4*	32	12		2,9					
125	186	131	1.	5*	34		5	4,24					
180	212	156	. 6'		36	15	•	5,06					

Notes: 1. Material - steel of brand 35 (GOST 1050-60**) or &t. 4 (GOST 380-71).

- 2. Thread of rings ρ_{y} = 40 and 50 mm metric (GOST 9150-50*); ρ_{y} is more than 50 mm tube cylindrical (GOST 6357-52).
- 3. Tolerances for thread according to plain grade of fit (GOST 9253-59).

Key: (1). Sizes/dimensions in mm. (2). Hass in kg. (3). Ducts.

Page 347.

Table 32. Flanges steel free on P_r -w and 16 kg/cm² (GOST 10762-64).

	(/) Pas	мери в	AA		(2) Отверсти			
Dy.	D	D ₁	D,	٠	d, ma	3) ROJIE- WEET- BO WT.	(4) Macca a Ra	
40	145	110	46	20	1		2,15	
	160	125	60	~	. .	4	2.85	
65	180	146	80	22	19		3,35	
80.	195	160	93	21			3,98	
100	215	180	120	26]		5	
135	246	210	146]	8	6,65	
260	***	210	170	-	73	1	8,15	

Note. Haterial - steel of brands St. 4sp and St. 5 sp (GOST 380-71).

Key: (1). Sizes/dimensions in ma. (2). Holes. (3). Quantity pieces.
(4). Mass in kg.

table 33. Enumeration of the standardized parts of conduits/manifolds, lined by polyvinyl chloride plastic and polyethylene, on Pr = 0 and 16 kg/cm² (placed in handbook).

(1)Harrenneme	2	(2) Py.	House sopuem	(4) ₃₆ Ted.ne-
(5) Толуфлоним	40-180	10; 16	MH 9831-63	34
(офтумия бурговые: Опшина астосье Станите плененые (7) Отводы фленцевые пол		=	MH 9835-43	.76 36
97.000: 98° 45°	#0180 40180 40180	10; 16 10; 16 10; 16	MII 3019-43 MII 3019-43 MII 5019-43	27 37 37
(м) ройники фланцевые: (и) размопроходиме (ф) переподиме	#- HO	10; 16 10; 16	MH 80년-69 MH 80년-68	2
ДПереходы концонтрические Фланцевые	100	10, 16	MH 800-46	-

Notes: 1. The standards of machine-building are propagated to the poured pig iron and steel shaped parts to 'y-b and 16 kg/cm², lined by polyvinyl chloride plastic and polyethylene, intended for the assembly of conduits/manifolds from the lined ducts according to GOST 10762-64, which transport the products in which polyvinyl chloride plastic and polyethylene of strut.

- 2. Haterial of housings of shaped flanged parts on Py-W kg/cm2 gray cast iron of brand/mark is not below SCh18-36 (GOST 1412-70), on Py-W kg/cm2 steel of brand 20L (GOST 977-65*).
- 3. Naterial of half-flanges on Py -W. kg/cm² gray cast iron of brand/mark is not below SCh28-48 (GOST 1412-70); on Py-W kg/cm² -

steel of brand 20L (GOST 977-65*).

4. Technical requirements see in MN 5053-63.

Rey: (1). Designation. (2). kg/cm². (3). Number of standard. (4).
table. (5). Half-flanges. (6). Bushings bead. (7). polyvinyl
chloride. (8). polyethylene. (9). Offtakes flanged at angle. (10).
T-connections flanged. (11). equal-flow. (12). transitional. (13).
Transitions concentric flanged.

Page 348.

Table 34. Half-flanges on $P_7=10$ and 16 kg/cm² (HB 5034-63).

(9) 2 3		(4) Размеры в мл									
Tun ng Ayun	Dy	D,	D,	"	ŧ	(5) Macea B R.					
A	40	40 ·	80	19	18	18,0					
	-	-	100	20	18	1					
A		78	136	72	-	1,4					
	80	92	142	24	36	1,6					
	100	116	166	26	1 -	2					
8	135	144	194			2,8					
	180	166	216	7	44	3,8					

Note. Sizes/dimensions D_s , D_1 and d - see in Table 36.

Key: (1). Type. (2). opening. (3). Type of half-flange. (4).
Sizes/dimensions in mm. (5). Mass in kg.

58.7

Page 349.

Table 35. Bushings bead polywinyl chloride and polyethylene (MW 5035-63, HH 5036-63) .

			(/) Pas	меры в д	1.86		(Масса 100 шт. втулок в ла		
Dy	b		4	d,	TABETO (+)	TYPE TO SOUTH THE SOUTH TH		٨	MINISTRACTO.	ALLTA STARS	
*	88	37	33	40	36	24	3,5	2,5	2,7	2,3	
80	102	47	42	50	43	28		3	4,6	3	
65	122	63	58	67	49	30	4	4	8,1	4	
80	138	74	68	79	57	36		•	10,4	7	
HW	150	100	92	104	73	.748	4,5		22	10	
125	184	120	114	120	**	40	5	•	24	12	
150	712	147	137/	183	100	И	•		a	24	

Key: (1). Sizes/dimensions in mm. (2). Hass 100 pieces of bushings in kg. (3). bushing. (4). polyvinyl chloride. (5). polyethylene. (6). polyviny1 chloride. (7). polyethylene.

Page 350.

Table 36. The basic dimensions of the flanges of the castings, lined by polyvinyl chloride plastic and polyetkylene (see Fig. to table 37-39) .

		(1)	Passey	w a aas				210mm	PETRO
ρ,	(Dy)	(D')			(D ₃)	D4 (D4)	(•)	d, aa	198 °
10	40	145	110	86	78	42	16		
16	-						18	•	
10	50	160	125	102	90	23	16		
16							20		4
10	65	180	145	122	110	71	18		
16							20	18	
10	80	196	160	138	122	82			
16							22		
10	100	215	180	158	140	104	20		
16		·					22		
10	125	245	210	188	168	129			•
16							24	l	ĺ
16	190	260	240	212	192	186		22	

Note. Sizes/dimensions with index (*) - for transitional ones it is branch and transitions.

Key: (1). Sizes/dimensions in mm. (2). Holes. (3). Quantity.

Page 351.

Table 37. Offtakes flanged at angle of 30, 45, 90°, lined by polyvinyl chloride plastic and polyethylene (MN 5040-63, MN 5039-63, MW 50 38-63) .

	(2) Pesmpu » AA											
P.,	Dy	9-30°	R					D.307				
Py	- y	450	a90°	H	•	S	S,	45.	90*			
10	40	31	110	110		,		5,6	4,8			
16		# 110 110 x		3	6							
10	50	26,5	120	190				7,4	5,1			
16					<u> </u>	7,5		7,9				
10	65	35,5	135	135	1	"		10	6,2			
16					100		3,5	10,7				
10	80	41	145	145	1		""	13,3	7,9			
16					110			14,2	7,3			
10	100	52	160	160	'''			15,2	10,1			
16							4,5	16,3				
10	125	64,5	180	180			""	22,13	16,6			
16					199			23,85				
10	180	76	196	195		_		25,0	17,6			
16		"		78				33,7	**,•			

Note. The sizes/disensions of flanges see in Table 36. Roy: (1). opening. (2). Sizes/dimensions in un. (3). Hose in part in kg. (4). and.

Page 352.

Table 38. T-connections flanged, lined by polyvinyl chloride plastic and polyethylene, on $P_{y}=10$ and 16 kg/cm² (RH 5041-63, HH 5042-63).

	(1) Размеры	B ##				(2)
D _y × D _y		L	3	s ₁	s.	s'i	Maces pe Take bis
40×40	110	110	7		,		8,4
50×40	120	110		3			15,1
5 0×50	"	120			7,5	8	10,9
65×40		110	7,5		7		14,2
65×50	135	120	""		7,5		15,4
65×65		136		3,5	′,8		13,7
80×80	145	145			9		17,9
100×65		136	9		7,5	2.5	24
100×80	160	145	,		9	3,5	25,6
100×100		160]] "-	4,5	24,6
125×65		135		4,5	7,5	3,5	28,3
125×100	180	160			9		38
125×125] _ [180		İ	10		33,3
150×100		160			9	4,5	48,7
150×126	195	180	10		10	1	51,3
180% (30)	7 i	196		1]		46,1

Note. The sizes/dimensions of flanges - see in Table 36.

Rey: (1). sixes/dimensions in mm. (2). Hass of part in kg.

Page 353.

Table 39. Transitions the concentric flanged, lined by polyvinyl chloride plastic and polyethyleae, on Py=10:and 16 kg/cm2 (NH 5043-63).

	(1) Passepa	4 D_MM		
₽ _y × ⊅' _y	L	5	Sı	Macca gerans
\$0×46	140		3	6,7
65×40				7,5
#6×50	150	7,8	3,6	8,4
100×50	180			12,6
100×65	180	•		13,6
100×80			4,8	15,1
126×65				17,1
155×100	200	10		19,2
1 60 ×100				. 23,4
189×195				я

Note. The sizes/dimensions of flanges see in Table 36.

Key: (1). Sizes/dimensions in mm. (2). Hass of part in kg.

PAGE 525

DOC = 79134714

Page 354.

Table 40. Ducts are the steel, lined by high-density polyethylene (TSPH 3-271-69).

	(S)Резмеры в мм											
Dy	D _a	s	S		(G) peable	(G) pessão			Macca 1 mes. At (600 Kones) 3 me			
	<u> </u>		<u> </u>	d,	4	D	•					
	32				M32×1,5		•		1,94			
32	40	2,5	2		M40×1,5	18	87	145	2,5			
40	St .			(2) Or 100 (9) 200 110	361×1,5				8,8			
30	**			(9 mg 110	M95×2,0		×		4,8			

George .

Page 355.

•0	•			<u> </u>	3488×3	. 22	. 181	_	·u
100	114	5		(T) (Or;100) (Depo 110)	M114×3		140	30	14,8
136	140	·	4	3 m 110	M140×3		180		16,2
180	165	6	-		MISSXS	26	212	25	84,4

Notes: 1. Ducts are intended for the transporting of media to which polyethylene of struts, with the temperatures: from 9 to 70°C at a pressure to 16 kg/cm²; from 0 to 80°C at a pressure to 10 kg/cm²; from 0 to 90°C at a pressure to 6 kg/cm².

2. Ducts are supplied measured length: 1200, 1250, 1300, 1400, 1500,
1600, 1700, 1800, 1900, 2000, 2500, 3000, 3500, 4000, 4500, 5000,
5500, 6000 mm, and also off-measure in limits from 1200 to 6500 mm.

Ducts in long to 1100 mm inclusively (bushings) are supplied the measured length: 100, 125, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000 and 1100 mm.

3. Union couplings of types I and II are fulfilled on slip-on flanges (see Table 44), and type III - on dismountable/release stamped/die-forged flanges (see Table 45).

٠. .

- 4. Steel shell from ducts according to GOST 8732-70 and GOST 8734-58**.
- 5. As lining layer are used ducts from high-density polyethylene on MRTU 6-05-917-67.
- Key: (1). Type. (2). duct. (3). lining. (4). ring screw-thread gauge.
 (5). Sizes/dimensions in mm. (6). thread. (7). Hass of 1 lin. m
 (without rings) in kg. (8). Prom. (9). to.

Page 356.

Table 41. Offtakes are the steel, lined by high-density polyethylene (ChWTU/VBITI 745-66) (sizes/dimensions in mm, mass in kg.).

			R	K	L				<u>Г</u>		(3) Macca						
Dy	D _y	D _M					под уг		Lı	D ₃	э) гнутых отводов под углом с (без фланцев)				(4) COCTABBLEX OTS 0,003 Py. Rec/cal(7)		
					30°	45*	60•	90•			30°	45*	60°	90°	6	10	16
	5	32	190	150	185	204	225	290	300	54	0,71	0,77	0,84	0,97	2,03	2,81	2,50
	33	**	160		193	216	242	310		4	0,95	1,05	1,16	1,37	2,74	2,45	3,86

Page 357.

20	\$1	200 .	180	252	277	300	400		72	2,31	2,51	2,71	2,66	3,2	4,68	5,66
30	56	280	200	275	316	362	480	200	84	2,77	3,08	3,39	4,01	3,86	5,4	5,92
80		445	300	420	485	887	745		126	9,1	10,36	11,7	14,3	7	9,74	10,4
100	114	455	350	472	539	612	805		146	13,3	15	16,7	20,1	7,92	11,5	12,3
136	140	-	-	-	-	_	-	225	180	-	-	-	-	9,88	15,2	16,1
130	166	-	-	-	-	-	-		210	-		-	-	14,3	20,1	21,2

Notes: 1. The limits of use/application - see note 1 to table 40.

- 2. Wall thickness of steel shell, lining layer and sizes/dimensions of ring screw-threads gauge see Table 40* sizes/dimensions of flanges see Table 44.
- 3. Composite/compound offtakes are produced with angle $\alpha=30$ and 45° .

Key: (1). Offtake bent at angle. (2). Offtake of composite/compound at angle of 30 and 45° . (3). Hass. (4). for offtakes at angle. (5). bent offtakes at angle α (without flanges). (6). composite/compound offtakes. (7). kg/cm².

() See I

Page 358.

Table 42. T-connections are the steel, equal-flow, lined by high-density polyethylene (ChMTW/THITI 744-66).

Notes: 1. T-connections are intended for the conduits/manifolds, which transport media from 'v to 4 kg/cm² with t from 0 to +90°C.

DOC = 79 134714 PAGE # 53/

- 2. Sizes/dimensions D and b see Table 40.
- 3. Steel shell from ducts according to GOST 8732-70 and 8734-58**, lining layer see note by 5 to table 40. Performances of the lining layer welded.
- 4. According to agreement with customer T-connections are produced with threading, welded rings or with welded flanges.

Key: (1). Unit. (2). Sizes/dimensions in mm. (3). Mass in kg.

Page 359.

Table 43. Transitions steel, lined by polyethylene (based on materials of primary Ural old-tabe plant).

	(1)	Ревнеры в			
Dyxdy	D _e	4	3	S	L
80×80	79	50		,	160
100×80	104	79	•		
125×100	130	104		.4	150
180×126	180	130	•	.*	

Note. The sizes/dimensions of flanges see in Table 44; D_2 see in Table 41.

Key: (1). Sizes/dimensions in ma.

Page 360.

Table 44. Flanges steel free for pipes, lined by polyethylene (based on materials of primary Ural old-tube plant).

	(1)	Passage	1 3 AH			(D)On	A CONTRACT	(5)
Py (3)	Dy	•	D,	Δ,	•	4, 100	20, A	Mance s as
9,& 6 10	*	116	66	34	12 14 10	14	4	0,62 0,96
2,5; 6	_				12			1,12
10	39	136	100	43	16			1,40
16					18		<u> </u> 	1,66
2,5; 6					12			1,22
10	40	145	110	84	18	18	4	1,50
16					20			2,15
2,5; 6					12		ļ	1,82
10	50	160	126	60	18			2,20
10					20			2,84
2,5; 6					14			2,4
10	80	196	160	93	22			3,77
16					24		•	4,11
2,8; 6		•	1 55		14		4	2,53
16		298	190	110	24		•	4,34

continuation Table 44.

2,0; 6				·	14		•	3,12
10	155	245	210	144	25	18	•	5,8
16					39			6,23
2,6; 0		·			16			4,61
*	180	280	240	100	*	23		7,6
16	٠				*			8,09

The notes: 1. Naterial of flanges - steel of brand St. 3, St. 4 (GOST 380-71+).

2. See Fig. to table 32.

Key: (1). Sizes/dimensions in mm. (2). Holes. (3). kg/cm². (4). quantity. (5). Hass in kg.

DOC = 79134714 PAGE # 535

Page 361.

Table 45. Flanges disacuntable/release stamped/die-forged for the conduits/manifolds, lined by polyethylene (based on materials of primary Gral old-tube plant).

	(1)	Респеры э для	···			
D _v	н	8				
<u> </u>		Py = 6 Re/CAP (2)	Py=10 ne/cat(2)			
25 32 40 60	36 43	16	10			
#2 66	43 43 48		18 18			
100	43	!!	 			
125 180	43 48		X			
4	~	. ~	34			

Notes: 1. Sizes/dimensions D. D., Do, d and quantity of bolt holes see Table 44.

2. Material of flanges - steel of brand St. 3, St. 4 (GOST 380-71).

Rey: (1). Sizes/dimensions in mm. (2). kg/cm².

Page 362.

4. Ducts and parts of conduits/manifolds, lined by teflon.

The conduits/manifolds, lined by teflon, are intended for the transport of the agressive media (to which teflon of struts) without the limitation of concentrations at temperatures from -195 to +250°C and Pr to 6 kg/cm2.

table 46. Ducts steel, lined by teflon, on Py=6 kg/cm2 (DTS (Departmental Technical Specifications) 50-48-65).

Notes: 1. The coupling dies of flanges, diameters and quantity of bolt holes - according to GOST 1234-67*. $P_{y}=10$ kg/cm².

- 2. Ducts are produced indicated in order length.
- 3. As steel shells use ducts according to GOST 8732-70*; lining layer teflom of brands A, B, C according to GOST 10007-62*.

Key: (1). Sizes/dimensions in mm. (2). Hass (without flanges) in kg. (3). To.

11.5

Page 363.

Table 47. Offtakes, T-connections and cross pieces, lined by teflon, on $P_1=6$ kg/cm² DTS (Departmental Technical Specifications) 50-48-65).

Notes: 1. The connecting sizes/dimensions of flanges, diameters and quantity of bolt holes - according to GOST 1234-67*. 4-n kg/cm²; b -

cm in Table 46.

- 2. T-connections and cross piece produce with welding of connecting pipe for $^{D}y^{-1}50-250$ nm according to knot-type I; for $^{D}y^{-200}$ nm according to knot-type II; according to agreement with customer, T-connections and cross pieces of all ^{D}y can be carried out with welding of connecting pipe according to knot-type II.
- 3. Steel shells and lining layer see note by 3 to Table 46; S and

 5. see in Table 46.

Key: (1). Offtake. (2). T-connection. (3). Cross piece.

•

DOC = 79134714

Page 364.

5. Ducts and part of enamelled conduits/manifolds (on standards of Smela Machine Building Plant).

Table 48. Enamelled ducts on $P_y=6$ kg/cm².

≯)₽	азмеј	M	 					L,	MA				
	M M		100	150	200	250	300	400	500	750	1000	1500	2000
Dy	D _H	s	(3) Macca » Ra										
50	60	3	3,13	3,34	3,55	3,76	3,97	4.4	4,62	5,87	6,92	9,01	117,14
•	75	4	4,08	4,43	4,78	5,13	5,48	6, 18	6,88	1,63	10,38	13, 86 19,3	17,30
	90	4.5	5.96	8.44	4.0	7.4	7 84		a	10 17	14.0		

Notes: 1. The sizes/disensions of flanges see in Table 49.

2. Thickness of the layer of enamel 0.4-1.5 mm.

Key: (1). Enamel. (2). Sizes/dimensions in mm. (3). Mass in kg.

DOC = 79134714 PAGE #54/

Page 365.

Table 49. Sizes/dimensions of the flanges of ducts and parts of the enamelled conduits/manifolds in mm.

			_		(/) Отверстия			
Dy.	•	Δ,	Δ,	•	. 4	No.SUTOCTES		
	149	110	90	16	14			
•	160	130	110	10		4		
*	186	160	190	18	16			

Key: (1). Holes. (2). quantity.

table 50. Offtakes, T-connections and cross pieces enamelled on
P,=* kg/cm².

Note. The sizes/dimensions of flanges - see Table 49.

Key: (1). offtakes. (2). Cross pieces. (3). Enamel. (4).
T-connections. (5). Sizes/dimensions in mm. (6). Mass in kg. (7).
offtake. (8). T-connection and cross piece. (9). T-connection. (10).
cross piece.

Page 366.

Table 51. Transitions enamelled on Py=0 kg/cm2.

	(эг) Размеры в мм												
D _y	D'y	DH	D' _H	D	ם'	s	L	(5) Macca s se					
66	50	75	60	160	140	4	165	4,00					
	80	90	80	185	140		200	6					
_	•	90	78		160	4,5		5,4					

Note. The sizes/dimensions of flanges - see in Table 49.

Key: (1). Enamel. (2). Sizes/dimensions in mm. (3). Mass in kg.

Page 367.

Table 52. Inserts enamelled on Py-6 kg/cm2.

	(/) Размеры в мл								
Dy	В	D	D,	d	Macca a Re				
50	20		_		0,64				
	30	96	78	55	0,46				

•		7		1,00
	**	76	45	1,30
20				0,66
39	£1 6	•	70	1,2
•		-		<i>2</i> ,1
50				1,60
20				1,67
 30	1 32	110	85	1,47
40				1,87
**				2,32

Key: (1). Sizes/dimensions in ma. (2). Hass in kg.

** ****** *

2. +

DATE FILMED