Deterministic models

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{\beta}{N}SI + \gamma(N - S - I)$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{\beta}{N}SI - \nu I$$

One 0 = One trajectory

One 0 = One trajectory

Life is discrete & stochastic

Event	Transition	Jump intensity
Infection	$(s,i) \to (s-1,i+1)$	-eta si/N
Recovery	$(s,i) \rightarrow (s,i-1)$	u i
Loss of immunity	$(s,i) \rightarrow (s+1,i)$	$\gamma(N-s-i)$

One Θ = Many trajectories

One **©** = Many trajectories

Inference

$$p(\theta|y) \propto p(y|\theta) \times p(\theta)$$

Inference

Parameters

$$p(\theta|y) \propto p(y|\theta) \times p(\theta)$$

Data

Inference

Marginal likelihood

Marginal likelihood

$$p(y|\theta) = \sum_{X} p(y|x,\theta) \times p(x|\theta)$$

All possible trajectories of the mode

Deterministic case

$$p(y|\theta) = \sum_{X} p(y|x,\theta) \times 1_{x=f(\theta)}$$

Perfectly knowr

Deterministic case

$$p(y|\theta) = p(y|x = f(\theta), \theta) \times 1$$

ODE integration

That's what the function dTrajObs does.

Marginal likelihood

$$p(y|\theta) = \sum_{X} p(y|x,\theta) \times p(x|\theta)$$

All possible trajectories of the mode

Stochastic case

$$p(y|\theta) = \sum_{X} p(y|x,\theta) \times p(x|\theta)$$

Stochastic case

Trajectory of particle

$$p(y|\theta) \approx \sum_{J} p(y|x_{J}, \theta) \times p(x_{J}|\theta)$$

J particles

Stochastic case

Trajectory of particle

$$p(y|\theta) \approx \sum_{J} p(y|x_{J},\theta) \times p(x_{J}|\theta)$$

Monte-Carlo approximation

Sequential Monte-Carlo aka Particle Filtering

Initialise

$$\bigcirc \begin{cases} x_0 \sim p(.|\theta) \\ w_0 = 1/J \end{cases}$$

Propagate
$$\bigcirc \begin{cases} x_1 \sim p(.|x_0,\theta) \\ \dots \end{cases}$$

Resample

 $\circ \propto w_1$

Propagate
$$\bigcirc \begin{cases} x_2 \sim p(.|x_1,\theta) \\ \dots \end{cases}$$

So how can I get the likelihood from this particle filter?

$$\bigcirc \begin{cases} x_1 \sim p(.|x_0, \theta) \\ w_1 = p(y_1|x_1, \theta) \end{cases}$$

fitmodel\$simulate

fitmodel\$dPointObs

Likelihood:
$$p(y_{1:T}|\theta) = \prod_{T} p(y_t|y_{1:t-1},\theta)$$

Log-Likelihood:
$$\log\{p(y_{1:T}|\theta)\} = \sum_{T} \log\{p(y_{t}|y_{1:t-1},\theta)\}$$

Implement your own particle filter

Go to the pMCMC practical

Pseudocode for the particle filter

- 1. For each particle $j = 1 \dots J$
- 2. initialise the sate of particle j
- 3. initialise the weight of particle j
- 4. For each observation time $t = 1 \dots T$
- 5. resample particles
- 6. For each particle $j = 1 \dots J$
- 7. propagate particle j to next observation time
- 8. weight particle j