March 28, 2024

Winter 2024

TUTORIAL 7.5 — Series

1

(a)

$$\sum_{n=1}^{\infty} \pi^{1-3n}$$

$$= \sum_{n=1}^{\infty} \frac{\pi}{\pi^{3n}}$$

$$= \sum_{n=1}^{\infty} \pi \left(\frac{1}{\pi^3}\right)^n$$

The above is a geometric series with common ratio $\frac{1}{\pi^3}$. Since $\left|\frac{1}{\pi^3}\right| \leq 1$, the series converges.

The first couple of terms are: $\{\frac{1}{\pi^2}, \frac{1}{\pi^5}, \frac{1}{\pi^8}\}$.

Re-indexing: $\sum_{n=0}^{\infty} \frac{1}{\pi^2} \left(\frac{1}{\pi^3}\right)^n$, where $a = \frac{1}{\pi^2}$ and $r = \frac{1}{\pi^3}$

 $\frac{a}{1-r} = \frac{1/\pi^2}{1-1/\pi^3}$ converges to $\frac{\pi}{\pi^3-1},$ approximately 0.1047.

 $\implies \sum_{n=1}^{\infty} \pi^{1-3n}$ converges to approximately 0.1047.

(b)

$$\sum_{n=1}^{\infty} \frac{3+4^n}{5^n}$$

Applying ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \left(\frac{3+4^{n+1}}{5^{n+1}} \right) \left(\frac{5^n}{3+4^n} \right) \right| = \lim_{n \to \infty} \left| \frac{3+4^{n+1}}{5(3+4^n)} \right| = \lim_{n \to \infty} \left| \frac{3/4^n+4}{5(3/4^n+1)} \right| = \frac{4}{5}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \le 1$$

Hence, the series is absolutely convergent.

2 More proofs about p and q

Type
$$Ty := AA||BB$$

 $p,q:Ty \to \mathbb{B}$
 $\vdash (\forall x:Ty.p(x) \to \neg q(x)) \to$
 $(\exists x:Ty.p(x)) \to$
 $p(AA) \to$
 $\exists y:Ty.q(y)$

By impl-elims on goal:

- 1) $\forall x : Ty.p(x) \to \neg q(x)$
- $2) \; \exists x : Ty. \neg p(x)$
- 3) p(AA)

$$\vdash \exists y : Ty.q(y)$$

Ty	p	q
AA	Т	F
BB	F	T/F

The implication allows q(BB) to be false while allowing all assumptions to be true. Hence, by counterexample the goal is false.

3 Proofs are contrary to fun

```
Type Ty
foo: Ty
p, q: Ty \to \mathbb{B}
\vdash (\forall w : Ty.p(w) \implies \forall x : Ty.\neg q(x)) \implies
    (\exists y: Ty.q(y)) \implies
    p(foo) \implies
    (\forall z: Ty.q(z))
By implelims on goal:
    1) \forall w : Ty \ (p(w) \implies \forall x : Ty. \neg q(x))
    \exists y : Ty.q(y)
    3) p(foo)
\vdash \forall z : Ty.q(z)
By forall-elim on 1 using w = foo
    4) p(foo) \implies \forall x : Ty. \neg q(x)
By impl-elim on 4 using 3
    5) \forall x : Ty. \neg q(x)
By exists-elim on 2:
    6) y:Ty
    7) q(y)
By forall-elim on 5 using x = y
    8) \neg q(y)
```

Assumption 5 contradicts 8, therefore the goal is false.

4 Simple proofs can be sick

```
Type person, location, liquid visited: (person, location) \to \mathbb{B} sick: person \to \mathbb{B} ooj: liquid (old orange juice) beach: location drank: (person, liquid) \to \mathbb{B} Marat: person
```

1. Everyone who drank old orange juice got sick. $\forall p : \text{person}$. $\text{drank}(p, ooj) \implies \text{sick}(p)$

- 2. Everyone who drank old orange juice went to the beach. $\forall p : \text{person}$. $\text{drank}(p, ooj) \implies \text{visited}(p, \text{beach})$
- 3. Marat did not get sick.
 ¬ sick(Marat)
- 4. To prove that the three statements imply that Marat did not go to the beach:

p	sick(p)	visited(p, beach)	drank(p, ooj)
Marat	F	T	F

The above environment illustrates a case where all assumptions hold, yet the goal is not satisfied. Therefore, by counterexample, the statements are insufficient to prove the goal.