

• Data Science

• Is your vehicle eco-friendly??

## Introduction

- Global warming and climate changes are existential threats to human race.
- CO2 emission is the major culprit in the process
- Motor vehicles are the main source of CO2 emission
- The number of Motor vehicle is expected to be higher than 2 billion by 2020.
- Policy makers should devise a way to regulate the amount of CO2 emission
- More "Green vehicles" on the road means less CO2 emission.

| R25 | R2527 ▼ : X ✓ f <sub>x</sub> |       |      |            |        |          |           |           |                            |    |                |           |                 |       |       |       |                     |          |       |
|-----|------------------------------|-------|------|------------|--------|----------|-----------|-----------|----------------------------|----|----------------|-----------|-----------------|-------|-------|-------|---------------------|----------|-------|
|     | Α                            | В     | С    | D          | Е      | F        | G         | Н         | I                          |    | J              | K         | L               | М     | N     | 0     | Р                   | Q        | R     |
|     |                              |       |      |            |        |          | rt Region |           |                            |    |                |           | Pollution Score | City  | Hwy   | Cmb   | eenhouse Gas<br>ore | SmartWay | Comb  |
| 1   | Model                        | Dis 1 | Cy ▼ | Trans 🔻    | Dri\ ▼ | Fuel     | T ( T     | Stnd 🔻    | Stnd Description           | ₹Į | Underhood ID 🔻 | Veh Class | - Z             | MPG ▼ | MPG ▼ | MPG ▼ | _৳ ৻৴               | S_       | CO2 ▼ |
| 2   | ACURA ILX                    | 2.4   | 4    | AMS-8      | 2WD    | Gasoline | CA        | L3ULEV125 | California LEV-III ULEV125 | L  | LHNXV02.4KH3   | small car | 3               | 24    | 34    | 28    | 6                   | No       | 316   |
| 3   | ACURA ILX                    | 2.4   | 4    | AMS-8      | 2WD    | Gasoline | FA        | T3B125    | Federal Tier 3 Bin 125     | L  | LHNXV02.4KH3   | small car | 3               | 24    | 34    | 28    | 6                   | No       | 316   |
| 4   | ACURA MDX                    | 3     | 6    | AMS-7      | 4WD    | Gasoline | CA        | L3ULEV125 | California LEV-III ULEV125 | L  | LHNXV03.0ABC   | small SUV | 3               | 26    | 27    | 27    | 6                   | No       | 333   |
| 5   | ACURA MDX                    | 3     | 6    | AMS-7      | 4WD    | Gasoline | FA        | T3B125    | Federal Tier 3 Bin 125     | L  | LHNXV03.0ABC   | small SUV | 3               | 26    | 27    | 27    | 6                   | No       | 333   |
| 6   | ACURA MDX                    | 3.5   | 6    | SemiAuto-9 | 2WD    | Gasoline | CA        | L3ULEV125 | California LEV-III ULEV125 | L  | LHNXV03.5PBM   | small SUV | 3               | 20    | 27    | 23    | 5                   | No       | 387   |
| 7   | ACURA MDX                    | 3.5   | 6    | SemiAuto-9 | 2WD    | Gasoline | FA        | T3B125    | Federal Tier 3 Bin 125     | L  | LHNXV03.5PBM   | small SUV | 3               | 20    | 27    | 23    | 5                   | No       | 387   |
| 8   | ACURA MDX                    | 3.5   | 6    | SemiAuto-9 | 4WD    | Gasoline | CA        | L3ULEV125 | California LEV-III ULEV125 | L  | LHNXV03.5PBM   | small SUV | 3               | 19    | 26    | 22    | 4                   | No       | 404   |
| 9   | ACURA MDX                    | 3.5   | 6    | SemiAuto-9 | 4WD    | Gasoline | FA        | T3B125    | Federal Tier 3 Bin 125     | L  | LHNXV03.5PBM   | small SUV | 3               | 19    | 26    | 22    | 4                   | No       | 404   |
| 10  | ACURA MDX A-spec             | 3.5   | 6    | SemiAuto-9 | 4WD    | Gasoline | CA        | L3ULEV125 | California LEV-III ULEV125 | L  | LHNXV03.5PBM   | small SUV | 3               | 19    | 25    | 21    | 4                   | No       | 415   |

Data

- Fuel economy data from department of renewable energy is used.
- File can be found at (https://fueleconomy.gov/feg/download.shtml)
- Original data has 18 variables and 2513 rows

## Methodology

Data cleaning

Descriptive statistics

Scikit-Learn to train/test the model

Matplotlib used for visualization

Ordinary Least Squares (OLS) method was used to solve this problem.



- GMC Sierra is the most commonly encountered vehicle.
- SemiAuto-8 is the most common transmission type.
- 2WD is the most common drive type.
- Gasoline is the most commonly used feul.
- The average CO2 combustion in all vehicle is 403
- The City, Hwy and Combined MPG are 20.787351, 27.489813 and 23.293294 respectively.

| Independent variables | Pollution score coefficients | Greenhouse Score Coefficients |
|-----------------------|------------------------------|-------------------------------|
| City MPG              | 0.07835427                   | 0.07835427                    |
| Hwy MPG               | -0.08694681                  | -0.08694681                   |
| Combined MPG          | -0.02363349                  | -0.02363349                   |
| CO2 combustion        | -0.01155652                  | -0.01155652                   |

## Discussion/Conclusion

1

City MPG, Hwy MPG, Cmb MPG and Comb CO2 is better in predicting Greenhouse score with a variance score of 0.71 compared to Pollution Gas score with a variance score of 0.23. 2

Given the variance of the two models, the precision of prediction is better for Greenhouse Gas score than pollution score.

3

Supervised machine learning using Scikit-learn were able to predict the Greenhouse Gas Score of vehicles after training with fuel economy data.

