Matematika 4 – Logika pre informatikov: Cvičenie 3

Úloha 1. Je daná teória T nad $\mathcal{V} = \{a, b, \dots, z\}^+$:

$$T = \left\{ \begin{aligned} (p \to (q \land r)) \\ ((q \to p) \lor (s \to r)) \\ (\neg p \to (\neg r \land s)) \end{aligned} \right\}$$

Zistite, či z T vyplývajú nasledovné formuly:

a) p e) $((p \land q) \rightarrow s)$ b) q f) $((s \land r) \rightarrow \neg p)$

c) $\neg r$ g) $((s \lor p) \to r)$

d) $((p \land q) \to r)$ h) $((p \to r) \land (r \to p))$

Úloha 2. Vyriešte pomocou výrokovej logiky nasledovný hlavolam podľa R. M. Smullyana [1]:

V prípade lúpeže v klenotníctve predviedli na políciu troch podozrivých A, B, C. Inšpektorka Fishcousová počas vyšetrovania zistila tieto skutočnosti:

a) Ak je A vinný a B nevinný, je vinný C. d) Do prípadu nie je zapletený nikto okrem

b) C nikdy nepracuje sám.

A, B, C a aspoň jeden z nich je vinný.

c) A nikdy nepracuje s C.

Zistite, koho z podozrivých má inšpektorka obviniť, kto je určite nevinný a o koho vine či nevine nemožno rozhodnúť.

 $N\'{a}vod$. Sformalizujte zistené fakty ako teóriu T. Rozhodnite, koho vina a koho nevina zo sformalizovanej teórie vyplýva. Zistite, koho vina a nevina je od T nezávislá.

Úloha 3. Dokážte alebo vyvrátte:

a) $\{\} \models X \text{ vtt } X \text{ je tautológia.}$

b) Formuly X a Y sú ekvivalentné vtt $(X \leftrightarrow Y)$ je tautológia.

c) Ak $T \models \neg X$, tak $T \not\models X$.

d) Ak $T \not\models X$, tak $T \models \neg X$.

e) $S \models (X \rightarrow Y)$ vtt $S \cup \{X\} \models Y$.

f) Formula $(X \to Y)$ je nesplniteľná vttX je tautológia a Y je nesplniteľná.

g) Formula X je nezávislá od $\{\}$ vtt X je splniteľná a falzifikovateľná.

h) Ak formula X logicky nevyplýva z T a ani nie je nezávislá od T, tak T je splniteľná a vyplýva z nej negácia X.

Tvrdenie 1. Nech A, B a C sú ľubovoľné formuly, \top je ľubovoľná tautológia a \bot je ľubovoľná nesplniteľná formula. Nasledujúce dvojice formúl sú ekvivalentné:

 $\begin{array}{lll} (A \wedge (B \wedge C)) \ a \ ((A \wedge B) \wedge C) & asociativita \\ (A \vee (B \vee C)) \ a \ ((A \vee B) \vee C) & (A \vee A) \ a \ A \end{array} \ idempotencia \\ (A \vee A) \ a \ A \end{array}$

 $\begin{array}{ll} (A \wedge (B \vee C)) \ a \ ((A \wedge B) \vee (A \wedge C)) \ distribut\'{i}vnost & (A \vee (A \wedge B)) \ a \ A \ absorpcia \\ (A \vee (B \wedge C)) \ a \ ((A \vee B) \wedge (A \vee C)) & (A \wedge (A \vee B)) \ a \ A \end{array}$

 $\neg (A \wedge B) \ a \ (\neg A \vee \neg B) \qquad \qquad de \ Morganove \qquad (A \wedge \top) \ a \ A \ identita \\ \neg (A \vee B) \ a \ (\neg A \wedge \neg B) \qquad \qquad pravidl\'a \qquad (A \vee \bot) \ a \ A$

 $\begin{array}{lll} (A \wedge B) \ a \ (B \wedge A) & komutatívnosť & (A \vee \neg A) \ a \ \top \ vylúč. \ tretieho \\ (A \vee B) \ a \ (B \vee A) & (A \wedge \neg A) \ a \ \bot \ spor \end{array}$

 $(A \to B) \ a \ (\neg A \lor B)$ nahradenie \to $\neg \neg A \ a \ A \ dvojitá negácia$

Úloha 4. Dokážte *nájdením postupnosti ekvivalentných úprav*, teda substitúcií využívajúcich ekvivalencie z tvrdenia 1, že nasledujúce dvojice formúl sú ekvivalentné:

a)
$$((p \lor q) \land \neg(\neg p \land q))$$
 a p

b)
$$(((p \lor q) \land (p \lor \neg q)) \lor q)$$
 a $(p \lor q)$

c)
$$((p \to q) \land (\neg q \land (r \lor \neg q)))$$
 a $\neg (q \lor p)$

d)
$$(((p \lor (q \lor r)) \land (p \lor (t \lor \neg q))) \land (p \lor (\neg t \lor r)))$$
 a $(p \lor (r \land (t \lor \neg q)))$

Úloha 5. Rozhodnite o nasledujúcich formulách, či sú literálmi, klauzulami, v disjunktívnom normálnom tvare, v konjunktívnom normálnom tvare:

a)
$$p$$

b) $\neg r$
c) $\neg \neg q$
d) $((p \lor q) \lor (q \lor \neg r)) \lor (\neg r \lor \neg p))$
e) $((p \lor q) \lor (q \lor \neg r))$
f) $((p \land q) \lor (q \lor (\neg r \lor \neg p))) \lor (\neg r \land \neg p))$
i) $(((p \land q) \lor (q \lor (\neg r \lor \neg p))) \lor (\neg r \land \neg p))$
k) $(((p \land q) \lor (q \lor (\neg r \lor \neg p))) \lor (\neg r \land \neg p))$
i) $(((p \land q) \lor (q \lor (\neg r \lor \neg p))) \lor (\neg r \land \neg p))$
k) $(((p \land q) \lor (q \lor (\neg r \lor \neg p))) \lor (\neg r \land \neg p))$
i) $(((p \land q) \lor (q \lor (\neg r \lor \neg p))) \lor (\neg r \land \neg p))$
m) $(((p \lor q) \land (q \lor (\neg r \lor \neg p))) \land (\neg r \lor \neg p))$
n) $(((p \lor q) \land (q \lor (\neg r \lor \neg p))) \land (\neg r \lor \neg p))$

g)
$$(p \land (q \land (\neg q \land \neg r)))$$
 o) $(((p \land q) \lor (q \land (\neg r \lor \neg p))) \lor \neg (r \land \neg p))$

h)
$$(((p \land q) \lor (q \land \neg r)) \lor (\neg r \land \neg p))$$
 p) $(((p \lor q) \lor (q \lor (\neg r \lor \neg p))) \land (\neg r \land \neg p))$

Pri formulách v konjunktívnom normálnom tvare určte, z koľkých klauzúl sa skladajú.

Úloha 6. Pre každú formulu X z úlohy 5, ktorá je v disjunktívnom normálnom tvare, nájdite všetky ohodnotenia výrokových premenných vyskytujúcich sa v X, ktoré spĺňajú X.

Literatúra

[1] Raymond M. Smullyan. What Is the Name of This Book?—The Riddle of Dracula and Other Logical Puzzles. Prentice-Hall, 1978.