

Sumário

- 1. Bibliografia
- 2. Mais um Pouco da Função Afim
- 3. Equações Lineares
- 4. Inequações
- 5. O Sinal de uma Função
- 6. Soluções de Alguns Exercícios

Bibliografia

Bibliografia da Aula 02

Livro texto: Fundamentos da Matemática Elementar: 1 (Click para baixar)

Mais um Pouco da Função Afim

Coeficiente Linear

Como $f(0) = a \cdot 0 + b = b$, o coeficiente b é igual à ordenada do ponto (0, f(0)), onde o gráfico de f intersecta o eixo g. Por essa razão, chamamos g de **coeficiente linear** do gráfico de g.

Consideremos, agora, sobre o gr(f), os pontos

$$A = (0, f(0))$$
 e $B = (1, f(1))$.

O ângulo que o gráfico de *f* forma com uma reta horizontal (paralela ao eixo x) é ângulo interno do triângulo retângulo *ABC*, como veremos na figura ao lado.

A tangente desse ângulo é, por definição,

$$tg \, \theta = \frac{\overline{BC}}{\overline{AC}} = \frac{f(1) - f(0)}{1 - 0} = f(1) - f(0) = a + b - b = a.$$

Dessa forma, o coeficiente a é igual à tangente do ângulo que a reta gr(f) forma com a horizontal. Por isso chamamos a de **coeficiente angular** do gráfico de f.

No caso **Afim**, a tangente é dada pela **variação média** de f no intervalo [0, 1], ou em qualquer intervalo [c, d]:

$$tg \theta = \frac{\overline{BC}}{\overline{AC}} = \frac{f(d) - f(c)}{d - c}$$

$$= \frac{ad + b - (ac + b)}{d - c}$$

$$= \frac{ad - ac + b - b}{d - c}$$

$$= \frac{a * (d - c)}{1 * (d - c)}$$

$$= \frac{a}{1} * \left(\frac{d - c}{d - c}\right)$$

$$= a.$$

- Se a>0, então $\theta\in\left(0,\frac{\pi}{2}\right)$ e a inclinação é positiva. Neste caso, a variação média é positiva e a função é crescente.
- Se a < 0, então $\theta \in \left(-\frac{\pi}{2}, 0\right)$ e a inclinação é negativa. Neste caso, a **variação média** é **negativa** e a função é **decrescente**.
- Popular Quando a = 0, a reta gr(f) é paralela ao eixo x. Neste caso, a variação média é nula e a função é constante.

Restrição de Domínio

- No caso em que o domínio de uma função afim é um subconjunto $A \subset \mathbb{R}$, o gráfico de f é um subconjunto da reta que é o gráfico de f, com o domínio estendido a todos os reais.
- ▶ Isto é, os pontos do gráfico de $f: A \subseteq \mathbb{R} \to \mathbb{R}$, dada por f(x) = ax + b, estão sobre a reta que representa o gráfico de $F: \mathbb{R} \to \mathbb{R}$, dada pela mesma expressão.

Exemplo

O gráfico da função $f:[1,2] \to \mathbb{R}$, dada por f(x)=3x-1 é o segmento de reta que liga os pontos (1,f(1))=(1,2) a (2,f(2))=(2,5).

▶ Isto ocorre pois uma reta (ou um segmento de reta) está completamente determinada por dois de seus pontos (Postulado de Geometria Plana).

Exemplo

Este segmento de reta está contido na reta r = gr(F), onde $F : \mathbb{R} \to \mathbb{R}$, dada por F(x) = 3x - 1, estende o domínio da função f a todos os números reais.

Retornando aos Problemas Iniciais

Exemplo 2

Usando o Geogebra, esboce o gráfico das funções obtidas nos Problemas de 1 à 4.

Equações Lineares

Os Zeros da Função Afim

Definição 1

O zero de uma função é todo elemento do domínio cuja imagem é nula:

$$x \in D_f$$
 tal que $f(x) = 0$.

Assim, para determinarmos o zero da função afim, basta resolver a equação de 1 $^\circ$ grau:

$$ax + b = 0, \quad a \neq 0.$$

Resolver uma Equação

- O processo de resolver uma equação consiste em transformá-la em uma equação equivalente cuja solução é óbvia. Operações de transformação de uma equação em uma equação equivalente incluem:
 - 1. Adicionar o mesmo número a ambos os lados. Assim, as equações a = b e a + c = b + c são equivalentes.
 - 2. Multiplicar o mesmo número não nulo de ambos os lados. Logo, as equações a = b e ac = bc, $c \neq 0$, são equivalentes.
 - 3. **Simplificar** expressões em um dos lados de uma equação.

O Zero da Função Afim

Resolvendo a equação de 1° grau:

$$ax + b = 0 \Rightarrow ax + b - b = 0 - b$$

$$\Rightarrow ax = -b$$

$$\Rightarrow \frac{1}{a} * ax = \frac{1}{a} * \frac{(-b)}{1}$$

$$\Rightarrow x = -\frac{b}{a}.$$

O Zero da Função Afim

Exemplo 3

O zero da função
$$f(x) = 3x - 1$$
 é $x = \frac{1}{3}$:

$$3x - 1 = 0 \Rightarrow 3x - 1 - (-1) = 0 - (-1)$$

$$\Rightarrow 3x = 1$$

$$\Rightarrow \frac{1}{3} * 3x = \frac{1}{3} * \frac{1}{1}$$

$$\Rightarrow x = \frac{1}{3}.$$

Ou seja,
$$f\left(\frac{1}{3}\right) = 0$$
.

Exercício

Exercício 1

Encontre os zeros das funções afim a seguir:

- a) f(x) = 3x + 2;
- b) $g(x) = -\sqrt{2}x + 1$;
- c) $h(x) = \pi x$.

Exercício

Uma pequena empresa fabrica bonecas e semanalmente arca com um custo fixo de R\$350, 00. Se o custo para o material é de R\$4, 70 por boneca e seu custo total na semana é uma média de R\$500, 00, quantas bonecas essa pequena empresa produz por semana?

Exercício

Um pequeno avião a jato gasta sete horas a menos do que um avião a hélice para ir de São Paulo até Boa Vista. O avião a jato voa a uma velocidade média de 660 km/h, enquanto o avião a hélice voa em média a 275 km/h. Qual é a distância entre São Paulo e Boa Vista?

Inequações

Definição

Definição 2

Sejam $f: D_f \to \mathbb{R}$ e $g: D_g \to \mathbb{R}$. Chamamos **inequação** na incógnita x a qualquer uma das sentenças abertas abaixo:

- f(x) > g(x)
- f(x) < g(x)
- ▶ $f(x) \ge g(x)$
- ► $f(x) \leq g(x)$

Domínio de Validade e Solução

Definição 3

Chamamos de **domínio de validade** da inequação o conjunto dos valores $x \in D_f \cap D_g$ que satisfazem à inequação dada.

Definição 4

O número x_0 para o qual a inequação é verdadeira é chamado de **solução** da mesma.

Definição 5

O conjunto S de todos os números reais x tais que a inequação é verdadeira é chamado de **conjunto solução** da inequação.

Resolver uma Inequação

- ▶ O processo de resolver uma inequação consiste em transformá-la em uma equação equivalente cuja solução é óbvia. Operações de transformação de uma equação em uma equação equivalente incluem:
 - 1. Adicionar o mesmo número a ambos os lados. Assim, as inequações a < b e a + c < b + c são equivalentes.
 - 2. **Multiplicar o mesmo número positivo** de ambos os lados. Logo, as inequações a < b e ac < bc, c > 0, são equivalentes.
 - 3. **Multiplicar o mesmo número negativo** de ambos os lados. Logo, as inequações a < b e ac > bc, c < 0, são equivalentes.
 - 4. Simplificar expressões em um dos lados de uma equação.

Observação: sinais em desigualdades

Observação: Sejam a, b dois números reais tais que a < b.

- Se c > 0 então c * a < c * b (mantém os sinais originais: mantém a desigualdade).
 - Por exemplo, -3 < 1 e 2 * (-3) = -6 gera um número que é menor do que 2 * 1 = 2.
- Se c < 0 então c * a > c * b (troca os sinais originais: inverte a desigualdade).

Por exemplo,
$$-3 < 1$$
 e $(-2) * (-3) = 6$ gera um número que é maior do que $(-2) * 1 = -2$.

Exemplo

Exemplo 4

Considere a inequação 2x + 1 > x + 3. Determine:

- a) 0 é solução da inequação?
- b) $-\sqrt{2}$ é solução?
- c) O conjunto solução.

Exemplo

Exemplo 5

Considere a inequação $x + 1 \ge x + 2$. Determine:

- a) 0 é solução da inequação?
- b) $-\sqrt{2}$ é solução?
- c) O conjunto solução.

Inequações Simultâneas

Definição 6

A dupla desigualdade f(x) < g(x) < h(x) se decompõe em duas inequações simultâneas, isto é, equivale a um sistema de duas equações em x, separadas pelo conectivo e:

$$f(x) < g(x)$$
 (1) e $g(x) < h(x)$ (2)

Indicando com S_1 o conjunto solução de (1) e S_2 o conjunto solução de (2), o conjunto solução da dupla desigualdade é $S = S_1 \cap S_2$.

Exemplo

Exemplo 6

Resolver $3x + 2 < -x + 3 \le x + 4$.

▶ Dada uma função $f: A \rightarrow B$, definida por y = f(x), vamos resolver o seguinte problema:

'Para quais valores de x tem-se f(x) > 0 e para quais tem-se f(x) < 0?'

- ▶ Graficamente, f(x) > 0 quando o ponto (x, f(x)) está acima do eixo x.
- Analogamente, f(x) < 0 quando o ponto (x, f(x)) está abaixo do eixo x.

Exemplo 7

Vamos estudar o sinal da função y = f(x), cujo gráfico está representado abaixo:

Basta observar os valores de *x* para os quais o gráfico está acima do eixo *x* e abaixo do mesmo eixo:

Costumamos usar uma reta para identificar o sinal da função dada:

Com isso, concluímos:

- f(x) = 0 onde o gráfico corta o eixo x (os pontos nesse eixo são da forma (x, 0)). Assim, f(x) = 0 em x = -1, x = 2, x = 4 e x = 7.
- f(x) > 0 em -1 < x < 2 ou 2 < x < 4 ou x > 7.
- f(x) < 0 em x < -1 ou 4 < x < 7.

Dado o estudo do sinal de f, responda:

- a) $f(-\pi)$ é negativo?
- b) f(e) é negativo?
- c) f(100.98) é positivo?
- d) f(2.01) é zero?

Sinal da Função Afim

Para determinarmos o sinal da função afim, basta resolver as inequações de 1° grau:

$$ax + b < 0$$

$$ax + b > 0$$
.

Sinal da Função Afim: 1° caso

▶ 1° caso: a > 0

$$ax + b > 0$$

$$\Rightarrow ax + b - b > 0 - b$$

$$\Rightarrow ax > -b$$

$$\Rightarrow \frac{1}{a} * \frac{ax}{1} > \frac{1}{a} * \frac{-b}{1}, \quad \left(\frac{1}{a}\right) > 0$$

$$\Rightarrow x > \frac{-b}{a}.$$

$$ax + b < 0$$

$$\Rightarrow ax + b - b < 0 - b$$

$$\Rightarrow ax < -b$$

$$\Rightarrow \frac{1}{a} * \frac{ax}{1} < \frac{1}{a} * \frac{-b}{1}, \quad \left(\frac{1}{a}\right) > 0$$

$$\Rightarrow x < \frac{-b}{a}.$$

Sinal da Função Afim: 1° caso

Na reta de estudo do sinal, esbocamos uma reta crescente, identificando o seu zero (chamado ponto crítico):

$$f(x) = 0 \text{ em } x = -\frac{b}{a}.$$

$$f(x) > 0 \text{ em } x > -\frac{b}{a}.$$

$$f(x) < 0 \text{ em } x < -\frac{b}{a}.$$

•
$$f(x) > 0 \text{ em } x > -\frac{b}{a}$$
.

•
$$f(x) < 0 \text{ em } x < -\frac{b}{a}$$

Sinal da Função Afim: 2° caso

▶ 2° caso: a < 0</p>

$$ax + b > 0$$

$$\Rightarrow ax + b - b > 0 - b$$

$$\Rightarrow ax > -b$$

$$\Rightarrow \frac{1}{a} * \frac{ax}{1} < \frac{1}{a} * \frac{-b}{1}, \quad \left(\frac{1}{a}\right) < 0$$

$$\Rightarrow x < \frac{-b}{a}.$$

$$ax + b < 0$$

$$\Rightarrow ax + b - b < 0 - b$$

$$\Rightarrow ax < -b$$

$$\Rightarrow \frac{1}{a} * \frac{ax}{1} > \frac{1}{a} * \frac{-b}{1}, \quad \left(\frac{1}{a}\right) < 0$$

$$\Rightarrow x > \frac{-b}{a}.$$

Sinal da Função Afim: 2° caso

Na reta de estudo do sinal, esbocamos uma reta decrescente, identificando o seu ponto crítico:

$$f(x) = 0 \text{ em } x = -\frac{b}{a}.$$

$$f(x) > 0 \text{ em } x < -\frac{b}{a}.$$

$$f(x) < 0 \text{ em } x > -\frac{b}{a}.$$

•
$$f(x) > 0 \text{ em } x < -\frac{b}{a}$$

►
$$f(x) < 0 \text{ em } x > -\frac{b}{a}$$

Exercícios

Numa escola é adotado o seguinte critério: a nota da primeira prova é multiplicada por 1, a nota da segunda prova é multiplicada por 2 e a da última prova é multiplicada por 3. Os resultados, após ser adicionados, são divididos por 6. Se a média obtida por esse critério for maior ou igual a 6,5, o aluno é dispensado das atividades de recuperação. Suponha que um aluno teria tirado 6,3 na primeira prova e 4,5 na segunda. Quanto precisará tirar na terceira para ser dispensado da recuperação?

Exercícios

Uma solução química é mantida entre -30° C e -22° C. Isso corresponde a qual intervalo em graus Fahrenheit? Use a relação entre Celsius e Fahrenheit dada por $C = \frac{5}{9}(F - 32)$.

Soluções de Alguns Exercícios

Arquivo com as Soluções

Baixe aqui o arquivo com as soluções dos exercícios 2, 3, 5 e 6.