COS234: Introduction To Machine Learning

Prof. Yoram Singer

Topic: Gradient-Based Learning - Part I

© 2020 YORAM SINGER

© 2020 YORAM SINGER

• Sequential: a column at a time

© 2020 Yoram Singer 2 © 2020 Yoram Singer

- Sequential: a column at a time
- Oblivious to "similar" examples

- Sequential: a column at a time
- Oblivious to "similar" examples
- Difficult to parallelize

© 2020 YORAM SINGER

2

© 2020 YORAM SINGER

- Sequential: a column at a time
- Oblivious to "similar" examples
- Difficult to parallelize
- Requires dedicated update per loss

- Sequential: a column at a time
- Oblivious to "similar" examples
- Difficult to parallelize
- Requires dedicated update per loss
- Fails to work in non-linear settings

#features

seldures

#features

© 2020 YORAM SINGER 3 © 2020 YORAM SINGER 3

• Pick a small subset of rows of X to use

- Pick a small subset of rows of X to use
- Subset not necessarily consecutive rows

Pick a small subset of rows of X to use

• Subset not necessarily consecutive rows

• Subset used to update all weights

© 2020 YORAM SINGER

3

• Pick a small subset of rows of X to use

• Subset not necessarily consecutive rows

• Subset used to update all weights

• Update "local" to subset selected

• Pick a small subset of rows of X to use

• Subset not necessarily consecutive rows

• Subset used to update all weights

• Update "local" to subset selected

• Albeit local, effect is "global"

• a* minimum point of f:

$$f(a^*) \le f(b)$$
 for all $b \ne a^*$

• Derivate of f(a) at a* is zero

$$\left. \frac{\mathrm{df}}{\mathrm{da}} \right|_{\mathrm{a=a^{\star}}} \equiv \mathrm{f'}(\mathrm{a^{\star}}) = 0$$

• Often no closed form solution for:

$$\frac{df}{da} = 0$$

we can still make use of f' ...

• a* minimum point of f:

$$f(a^\star) \leq f(b) \text{ for all } b \neq a^\star$$

• Derivate of f(a) at a* is zero

$$\left. \frac{df}{da} \right|_{a=a^{\star}} \equiv f'(a^{\star}) = 0$$

• Often no closed form solution for:

$$\frac{df}{da} = 0$$

(Strict) Convexity

© 2020 YORAM SINGER

E

© 2020 YORAM SINGER

4

5

(Strict) Convexity

(Strict) Convexity

© 2020 YORAM SINGER

© 2020 YORAM SINGER

ļ

© 2020 YORAM SINGER

(Strict) Convexity

(Strict) Convexity

5

© 2020 YORAM SINGER

$\alpha \in (0,1)$: $f(\alpha a + (1-\alpha)b) < \alpha f(a) + (1-\alpha)f(b)$

(Strict) Convexity

(Strict) Convexity

- a* is a unique minimum
- derivative is < 0 left to a*
- derivative is > 0 right to a*
- derivate of f(a) at a* is 0
- second derivative f''(a)>0

© 2020 YORAM SINGER

 $\alpha f(a) + (1-\alpha)f(b)$

© 2020 YORAM SINGER

© 2020 YORAM SINGER 7

© 2020 YORAM SINGER 7

• if a to the right $(a > a^*)$ of a^* then

$$f(a) > f(a - \epsilon)$$

• if a to the right $(a > a^*)$ of a^* then

$$f(a) > f(a - \epsilon)$$

Therefore

$$\frac{\mathsf{f}(\mathsf{a})-\mathsf{f}(\mathsf{a}-\epsilon)}{\epsilon}>0$$

• if a to the right $(a > a^*)$ of a^* then

$$f(a) > f(a - \epsilon)$$

Therefore

$$\frac{\mathsf{f}(\mathsf{a})-\mathsf{f}(\mathsf{a}-\epsilon)}{\epsilon}>0$$

• Taking $\epsilon \to 0$ we get f'(a) > 0

© 2020 YORAM SINGER

7

• if a to the right $(a > a^*)$ of a^* then

$$f(a) > f(a - \epsilon)$$

Therefore

$$\frac{\mathsf{f}(\mathsf{a})-\mathsf{f}(\mathsf{a}-\epsilon)}{\epsilon}>0$$

• Taking $\epsilon \to 0$ we get $f'(\mathbf{a}) > 0$

 \bullet Similarly for $a < a^\star$ we get $f^\prime(a) < 0$

© 2020 YORAM SINGER

• if a to the right $(a > a^*)$ of a^* then

$$f(a) > f(a - \epsilon)$$

Therefore

$$\frac{\mathsf{f}(\mathsf{a})-\mathsf{f}(\mathsf{a}-\epsilon)}{\epsilon}>0$$

ullet Taking $\epsilon
ightarrow 0$ we get $\mathbf{f}'(\mathbf{a}) > 0$

 $\bullet \text{ Similarly for } a < a^* \text{ we get } f'(a) < 0$

• Get closer to a* by going in direction -f'(a)

• if a to the right $(a > a^*)$ of a^* then

$$f(a) > f(a - \epsilon)$$

Therefore

$$\frac{\mathsf{f}(\mathsf{a})-\mathsf{f}(\mathsf{a}-\epsilon)}{\epsilon}>0$$

• Taking $\epsilon \to 0$ we get f'(a) > 0

• Similarly for $\mathbf{a} < \mathbf{a}^*$ we get $\mathbf{f}'(\mathbf{a}) < \mathbf{0}$

• Get closer to a* by going in direction -f'(a)

7

• if a to the right $(a > a^*)$ of a^* then

$$f(a) > f(a - \epsilon)$$

Therefore

$$\frac{\mathsf{f}(\mathsf{a})-\mathsf{f}(\mathsf{a}-\epsilon)}{\epsilon}>0$$

- ullet Taking $\epsilon
 ightarrow 0$ we get $\mathbf{f}'(\mathbf{a}) > 0$
- Similarly for $a < a^*$ we get f'(a) < 0
- Get closer to a* by going in direction -f'(a)

© 2020 Yoram Singer

7

8

f(a)

© 2020 YORAM SINGER 8

© 2020 YORAM SINGER

Using Derivative to Descend

© 2020 YORAM SINGER

Using Derivative to Descend

Iterative Derivative Procedure

Iterative Derivative Procedure

Iterative Derivative Procedure

9

Iterative Derivative Procedure

Iterative Derivative Procedure

Iterative Derivative Procedure

9

Iterative Derivative Procedure

Iterative Derivative Procedure

Iterative Derivative Procedure

- · Input: function f
- Goal: find \hat{a} such that $|f(\hat{a}) f(a)| \le \epsilon$
- Choose initial value a₁
- Loop:
- $a_{t+1} \leftarrow a_t \eta f'(a_t)$
- Until ...

© 2020 YORAM SINGER

10

Iterative Derivative Procedure

- Input: function f
- Goal: find $\hat{\mathbf{a}}$ such that $|\mathbf{f}(\hat{\mathbf{a}}) \mathbf{f}(\mathbf{a})| \leq \epsilon$
- Choose initial value a₁

• Until ...

Learning Rate

- Crucial in many learning problems
- Fixed learning-rate can be used in certain circumstances
- · Self-tuning procedure of learning-rate exist, notably AdaGrad
- In many applications:
- Linear decrease $\eta_{\rm t} = \frac{\eta_0}{{\rm b} + {\rm st}}$ where $\eta_0 \in [0.1, 1],$
- Sub-linear decreas $\eta_{\rm t} \sim \frac{\eta_0}{\sqrt{\rm t}}$

© 2020 YORAM SINGER 10 © 2020 YORAM SINGER

Example

· Find minimum of

$$f(x) = \log(1 + e^{x - a - \delta}) + \log(1 + e^{b - a - \delta})$$

Derivative is

$$f(x) = \frac{1}{1 + e^{a + \delta - x}} - \frac{1}{1 + e^{x + \delta - b}}$$

- $a=1 b=2 \delta=4.5$
- Run with different initializations and learning rates $(\eta \in \{0.01, 4, 40\})$

© 2020 YORAM SINGER

12

Implementation of f(x)

```
import numpy as np
def smooth_l1(a, b, delta):
    def smooth_l1_close(x):
        lloss = np.log(1 + np.exp(x - a - delta))
        rloss = np.log(1 + np.exp(b - x - delta))
        return 0.5 * (rloss + lloss)
    return smooth_l1_close
```

Implementation of f'(x)

```
def smooth_l1_deriv(a, b, delta):
    def smooth_l1_deriv_close(x):
        rderiv = 1. / (1 + np.exp(a + delta - x))
        lderiv = 1. / (1 + np.exp(x + delta - b))
        return 0.5 * (rderiv - lderiv)
    return smooth_l1_deriv_close
```

Derivative Descent

© 2020 YORAM SINGER

13

15

```
def derivative_descent(x0, deriv_func, eta):
    T = len(eta) + 1
    x = np.zeros(T)
    x[0] = x0
    for i in range(1, T):
        x[i] = x[i-1] - eta[i-1] deriv_func(x[i-1])
    return x
```

© 2020 YORAM SINGER 14 © 2020 YORAM SINGER

© 2020 YORAM SINGER

© 2020 YORAM SINGER

© 2020 YORAM SINGER

function f is called β -smooth: $f(x) \le f(x_0) + f'(x_0)(x - x_0) + \frac{b}{2}(x - x_0)^2$

22

23

function f is called β -smooth: $f(x) \leq f(x_0) + f'(x_0)(x - x_0) + \frac{b}{2}(x - x_0)^2$

© 2020 YORAM SINGER

© 2020 YORAM SINGER

23

function f is called β -smooth: $f(x) \leq f(x_0) + f'(x_0)(x-x_0) + \frac{b}{2}(x-x_0)^2$

function f is called β -smooth: $f(x) \leq f(x_0) + f'(x_0)(x-x_0) + \frac{b}{2}(x-x_0)^2$

f is
$$\beta$$
-smooth \Leftrightarrow f''(x) $\leq \beta$

© 2020 YORAM SINGER

23

DD for Smooth Functions

DD for Smooth Functions

• Set
$$\forall t$$
: $\eta_t = \frac{1}{\beta}$ which gives

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{\beta} \mathbf{f}'(\mathbf{x}_t) = \mathbf{x}_t - \frac{1}{\beta} \mathbf{g}_t$$

© 2020 YORAM SINGER 24 © 2020 YORAM SINGER

DD for Smooth Functions

• Set $\forall t$: $\eta_t = \frac{1}{\beta}$ which gives

$$x_{t+1} = x_t - \frac{1}{\beta}f'(x_t) = x_t - \frac{1}{\beta}g_t$$

* From Smoothness:

$$f(x_{t+1}) \le f(x_t) + g_t(x_{t+1} - x_t) + \frac{\beta}{2}(x_{t+1} - x_t)^2$$

$$f(x_{t+1}) \le f(x_t) - \frac{1}{\beta}g_t^2 + \frac{\beta}{2}\frac{g_t^2}{\beta^2} = f(x_t) - \frac{1}{2\beta}g_t^2$$

© 2020 YORAM SINGER

DD for Smooth Functions

With $\eta_t = \frac{1}{\beta}$ and β -smoothness $f(x_{t+1}) \leq f(x_t) \, - \, \frac{1}{2\beta} g_t^2$

However g_t gets smaller as we approach the minimum

DD for Smooth Functions

With
$$\eta_t = \frac{1}{\beta}$$
 and β -smoothness $f(x_{t+1}) \leq f(x_t) \, - \, \frac{1}{2\beta} g_t^2$

© 2020 YORAM SINGER 25

25

DD for Smooth Functions

With
$$\eta_t = \frac{1}{\beta}$$
 and β -smoothness $f(x_{t+1}) \leq f(x_t) \, - \, \frac{1}{2\beta} g_t^2$

However $\mathbf{g}_{\mathbf{t}}$ gets smaller as we approach the minimum

It turns out that from convexity $g_t \geq \frac{\Delta_t}{\mid x_0 - x^\star \mid}$ where $\Delta_t = f(x_t) - f(x^\star)$

DD for Smooth Functions

With
$$\eta_t = \frac{1}{\beta}$$
 and β -smoothness $f(x_{t+1}) \le f(x_t) \, - \, \frac{1}{2\beta} g_t^2$

However $\mathbf{g}_{\mathbf{t}}$ gets smaller as we approach the minimum

It turns out that from convexity $\mathbf{g}_t \geq \frac{\Delta_t}{\mid \mathbf{x}_0 - \mathbf{x}^\star \mid}$ where $\Delta_t = \mathbf{f}(\mathbf{x}_t) - \mathbf{f}(\mathbf{x}^\star)$

This gives
$$f(x_{t+1}) - f(x^*) \le \frac{2\beta |x_0 - x^*|}{t}$$

© 2020 YORAM SINGER

25

© 2020 YORAM SINGER

26

The closer to the optimum we start the faster we converge

The closer to the optimum we start the faster we converge

The smaller β is the faster we convergence

The closer to the optimum we start the faster we converge

© 2020 YORAM SINGER

26

27

Non-smooth Functions

© 2020 YORAM SINGER

Non-smooth Functions

Non-smooth Functions

27

Non-smooth Functions

When loss function is not smooth:

Non-smooth Functions

When loss function is not smooth:

27

27

Non-smooth Functions

When loss function is not smooth:

Non-smooth Functions

When loss function is not smooth:

27

Non-smooth Functions

When loss function is not smooth:

Next...

From one variable to a vector of variables

Gradients and their properties

Convexity of multivariate functions

Smoothness of multivariate functions

Gradient Descent

Stochastic Gradient Descent (SGD)

SGD for generalized linear models

SGD for non-linear models

Non-smooth Functions

When loss function is not smooth:

27