Appendix H

Conversion Factors

Dimension	Metric	English
Acceleration	$1 \text{ m/s}^2 = 100 \text{ cm/s}^2$	$1 \text{ m/s}^2 = 3.2808 \text{ ft/s}^2$ 1 ft/s ² = 0.3048 m/s ²
Area	$1 \text{ m}^2 = 104 \text{ cm}^2 = 10^6 \text{ mm}^2 = 10^{-6} \text{ km}^2$	$1 \text{ m}^2 = 1550 \text{ in.}^2 = 10.764 \text{ ft}^2$ $1 \text{ ft}^2 = 144 \text{ in.}^2 = 0.0929034 \text{ m}^2$
Density	$1 \text{ g/cm}^3 = 1 \text{ kg/L} = 1000 \text{ kg/m}^3$	1 g/cm ³ = 62.428 lbm/ft ³ = 0.036127 lbm/in. ³ 1 lbm/in. ³ = 1728 lbm/ft ³ 1 kg/m ³ = 0.062428 lbm/ft ³
Energy, Heat, Work, Internal Energy, Enthalpy	$1 kJ = 1000 J = 1000 N \cdot m = 1 kPa \cdot m^{3}$ $1 kJ/kg = 1000 m^{2}/s^{2}$ $1 kWh = 3600 kJ$ $1 Wh = 3600 J$ $1 cal = 4.1868 J$ $1 Cal = 4.1868 kJ$	1 kJ = 0.94782 Btu 1 Btu = 1.055056 kJ = 5.40395 psia·ft ³ = 778.169 lbf·ft 1 Btu/lbm = 25.037 ft ² /s ² = 2.326 kJ/kg 1 kJ/kg = 0.430 Btu/lbm 1 kWh = 3412.14 Btu 1 therm = 10^5 Btu = 1.055×10^5 kJ (natural gas)
Force	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 = 10^5 \text{ dyne}$ 1 kgf = 9.80665 N	1 N = 0.22481 lbf 1 lbf = 32.174 lbm·ft/s ² = 4.44822 N
Heat flux	$1 \text{ W/cm}^2 = 10^4 \text{ W/m}^2$	$1 \text{ W/m}^2 = 0.3171 \text{ Btu/h} \cdot \text{ft}^2$
Heat Transfer Coefficient	$1 \text{ W/m}^2 \cdot {}^{\circ}\text{C} = 1 \text{ W/m}^2 \cdot \text{K}$	$1 \text{ W/m}^2 \cdot ^{\circ}\text{C} = 0.17612 \text{ Btu/h} \cdot \text{ft}^2 \cdot ^{\circ}\text{F}$
Length	$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10 \mu\text{m}$ 1 km = 1000 m	1 m = 39.370 in. = 3.2808 ft = 1.0926 yd 1 ft = 12 in. = 0.3048 m 1 mile = 5280 ft = 1.6093 km 1 in. = 2.54 cm = 25.4 mm 1 yard = 0.9144 m (continued

406 Thermoelectrics

(Continued)

Dimension	Metric	English
Mass	1 kg = 1000 g 1 metric ton = 1000 kg	1 kg = 2.2046226 lbm 1 lbm = 0.45359237 kg 1 ounce = 28.3495 g 1 slug = 32.174 lbm = 14.5939 kg 1 short ton = 2000 lbm = 907.1847 kg
Power, Heat Transfer Rate	1 W = 1 J/s 1 kW = 1000 W = 1.341 hp 1 hp = 745.7 W	1 kW = 3412.14 Btu/h = 737.56 lbf·ft/s 1 hp = 550 lbf·ft/s = 0.7068 Btu/s = 42.41 Btu/min = 2544.5 Btu/h = 0.74570 kW 1 boiler hp = 33,475 Btu/h 1 Btu/h = 1.055056 kJ/h 1 ton of refrigeration = 200 Btu/min = 3.516 kW
Pressure	$1 Pa = 1 N/m^{2}$ $1 kPa = 10^{3} Pa = 10^{-3} Mpa$ $1 bar = 10^{5} Pa$ $1 atm = 101.325 kPa = 1.01325 bars = 760 mm Hg at 0°C = 1.03323 kgf/cm^{2}$ $1 mm Hg = 0.1333 kPa$ $1 torr = 133.322 Pa$ $1 dyne/cm^{2} = 10 Pa$	$1 \text{ Pa} = 1.4504 \times 10^{-4} \text{ psia}$ = 0.020886 lbf/ft ² $1 \text{ psi} = 144 \text{ lbf/ft}^2 = 6.894757 \text{ kPa}$ 1 in. Hg = 3.387 kPa 1 atm = 14.696178 psia $1 \text{ in. H}_2\text{O} (60^\circ\text{F}) = 248.84 \text{ Pa}$
Specific Heat	$1 \text{ kJ/kg} \cdot {}^{\circ}\text{C} = 1 \text{ kJ/kg} \cdot \text{K} = 1 \text{ J/g} \cdot {}^{\circ}\text{C}$	1 Btu/lbm·°F = 4.1868 kJ/kg·°C 1 Btu/lbmol·R = 4.1868 kJ/kmol·K 1 kJ/kg·°C = 0.23885 Btu/lbm·°F = 0.23885 Btu/lbm·R
Specific Volume	$1 \text{ m}^3/\text{kg} = 1000 \text{ L/kg} = 1000 \text{ cm}^3/\text{g}$	$1 \text{ m}^3/\text{kg} = 16.02 \text{ ft}^3/\text{lbm}$ $1 \text{ ft}^3/\text{lbm} = 0.062428 \text{ m}^3/\text{kg}$
Temperature	$T(K) = T(^{\circ}C) + 273.15$ $\Delta T(K) = \Delta T(^{\circ}C)$	$T(R) = T(^{\circ}F) + 459.67 = 1.8 T(K)$ $T(^{\circ}F) = 1.8T(^{\circ}C) + 32$ $\Delta T^{\circ}F) = \Delta T(R) = 1.8 \Delta T(K)$
Thermal Conductivity	$1 \text{ W/m} \cdot {}^{\circ}\text{C} = 1 \text{ W/m} \cdot \text{K}$	$1 \text{ W/m} \cdot {}^{\circ}\text{C} = 0.57782 \text{ Btu/h} \cdot /\text{ft} \cdot {}^{\circ}\text{F}$
Velocity	1 m/s = 3.60 km/h	1 m/s = 3.2808 ft/s = 2.237 mi/h 1 mi/h = 1.46667 ft/s 1 mi/h = 1.6093 km/h
Absolute Viscosity	1 centipoise (cP) = 10^{-3} N·s/m ² 1 Poise (P) = 100 centipoise	$1 \text{ N} \cdot \text{s/m}^2 = 2.088543 \text{ lbf} \cdot \text{s/ft}^2$ = 0.671969 lbm/ft·s
Kinematic Viscosity	1 centistoke = 10^6 m ² /s 1 Stoke = 100 centistoke	$1 \text{ m}^2/\text{s} = 10.7639104 \text{ ft}^2/\text{s}$

(Continued)

Dimension	Metric	English
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 \text{ (cc)}$	1 m ³ = 6.1024×10^4 in. ³ = 35.315 ft ³ = 264.17 gal (U.S) 1 U.S. gallon = 231 in. ³ = 3.7854 L = 0.1336805 ft ³ 1 fl ounce = 29.5735 cm ³ = 0.0295735 L 1 U.S. gallon = 128 fl ounces
Volume Flow Rate	$1 \text{ m}^3/\text{s} = 60,000 \text{ L/min} = 10^6 \text{ cm}^3/\text{s}$	$1 \text{ m}^3/\text{s} = 15,850 \text{ gal/min (gpm)} = 35.315 \text{ ft}^3/\text{s} = 2118.9 \text{ ft}^3/\text{min (cfm)}$