Αριθμητική ανάλυση δεύτερη υποχρεωτική εργασία

Μουμτζής Στέργιος, ΑΕΜ:3620 Ιανουάριος 2021

Άσκηση 6

Έστω η συνάρτηση ($f(x) = \sin x$. Σκοπός μας είναι να υπολογίσουμε το ολοκλήρωμα της f(x) στο διάστημα $[0, \pi/2]$ με τις μεθόδους του Τραπεζίου και Simpsons.

Μέθοδος τραπεζίου

Το αποτέλεσμα του ολοχληρώματος

$$\int_0^{\frac{\pi}{2}} \sin x^2 \, dx$$

σύμφωνα με τη μέθοδο του τραπεζίου είναι το 0.9983001101346353 και το σφάλμα είναι το 0.00024266119365373636, το οποίο δίνεται από τον τύπο:

$$|\varepsilon| <= \frac{(b-a)^3}{12N^2} M$$

, όπου M το ολίχο μέγιστο της δεύτερης παραγώγου της $f(x) = \sin(x)$.

Μέθοδος Simpsons

Το αποτέλεσμα του ολοχληρώματος

$$\int_0^{\frac{\pi}{2}} \sin x^2 \, dx$$

σύμφωνα με τη μέθοδο του τραπεζίου είναι το 0.952402427058483 και το σφάλμα είναι το 3.628742401300778e-06, το οποίο δίνεται από τον τύπο:

$$|\varepsilon| <= \frac{(b-a)^5}{180N^4} M$$

, όπου M το ολίχο μέγιστο της τέταρτης παραγώγου της $f(x)=\sin(x).$

Άσκηση 5

Έστω η συνάρτηση $f(x)=\sin(X)$. Παρακάτω παρουσιάζεται μια προσομοίωση του τρόπου με τον όποιο υπολογίζεται η συνάρτηση του ημιτόνου με τις μεθόδους:

- Πολυωνυμική προσεγγιση Lagrance
- μέθοδος ελάχιστων τετραγώνων

Πολυωνυμική προσέγγιση Lagrance Έστω n+1 (στη περίπτωση μας είναι 10) σημεία του επιπέδου $(x_i, y_i), i = 0, ..., n$ τότε το πολυώνυμο lagrance που διέρχεται από αυτά τα σημεία έχει τη μορφή:

$$p_n(x) = \sum_{i=1}^n y_i L_i(x)$$

όπου
$$L_i(x) = \left(\frac{(x-x_0)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)...(x_{i-1})...(x_{i-1})...(x_{i-1})...(x_{i-1})...(x_{i-1})}\right)$$

όπου $L_i(x)=(\frac{(x-x_0)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}$ Τα 10 σημεία που επιλέχθηκαν μεταξύ του διαστήματος $[-\pi,\pi]$ και τα αντίστοιχα αποτελέσματα του ημιτόνου καθως και της πολυωνυμικής προσέγγισης lagrance στα σημεία αυτα είναι τα εξής:

x	$\sin(x)$	$p_n(x)$
π	-1.2246467991473532e-16	-1.2246467991473532e-16
-2.5	-0.5984721441039564	-0.5984721441039564
-2	-0.9092974268256817	-0.9092974268256817
-1.5	-0.9974949866040544	-0.9974949866040544
-1	-0.8414709848078965	-0.8414709848078965
0	0.0	0.0
1	-0.8414709848078965	-0.8414709848078965
1.5	0.9974949866040544	0.9974949866040544
2	0.9092974268256817	0.9092974268256817
π	1.2246467991473532e-16	1.2246467991473532e-16

Έστω τωρα οτι θέλουμε να υπολογίσουμε το σφάλμα προσέγγισης για 200 σήμεια μεταξύ του ίδιου διαστήματος [-π,π]. Υπολογίζοντας το ημίτονο για καθέ σημείο του επιπέδου καθώς και τη πολυωνυμική προσέγγιση, έχουμε ως αποτέλεσμα το σφάλμα να ειναι ισο με ε $=(\sum_{i=1}^{200}|\sin x_i-p_{200}(x_i)|=0.0$ Παρακάτω εμφανίζεται η γραφική παράσταση του ημιτόνου καθώς και του πολυωνύμου Lagrance στο διάστημα [-π,π]

