Probability I (SI 427)

Department of Mathematics, IIT Bombay July, 2022–December, 2022 Problem set 1

1. Let $\{A_i : i \in \mathbb{N}\}$ be a collection of sets. Prove (De Morgan's law)

$$(\bigcup_i A_i)^c = \bigcap_i A_i^c, \quad (\bigcap_i A_i)^c = \bigcup_i A_i^c.$$

- 2. Which of the following are identically true? For those that are not, say when they are true.
 - (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,
 - (b) $A \cap (B \cap C) = (A \cap B) \cap C$,
 - (c) $(A \cup B) \cap C = A \cup (B \cap C)$,
 - (d) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 3. Let A, B belong to some sigma field \mathcal{F} . Show that \mathcal{F} contains the sets $A \cap B, A \setminus B$ (difference) and $A \triangle B$ (symmetric difference).
- 4. Prove that if \mathcal{F}_1 and \mathcal{F}_2 are sigma fields of subsets of Ω , then $\mathcal{F}_1 \cap \mathcal{F}_2$ is also a sigma field. Is $\mathcal{F}_1 \cup \mathcal{F}_2$ also a sigma field? Justify your answer.
- 5. $\Omega = \{1, 2, 3\}$. Write down all possibles sigma fields of subsets of Ω .
- 6. For a family S of subsets of Ω , we define

$$\mathcal{F}_{\mathcal{S}} = \bigcap \{ \mathcal{F} : \mathcal{F} \text{ is sigma field such that } \mathcal{S} \subset \mathcal{F} \}.$$

Show that $\mathcal{F}_{\mathcal{S}}$ is a sigma-filed and it is the smallest sigma field containing \mathcal{S} .

- 7. Let A, B be any two subsets of Ω . Write down the smallest sigma field, say \mathcal{F} explicitly containing A and B.
- 8. Let Ω be a non-empty set and $A_1, A_2, \ldots, A_n \subseteq \Omega$. Also assume $A_i \neq \phi$ for all i and $A_i \cap A_j = \phi$ for $i \neq j$, and $\bigcup_{i=1}^n A_i = \Omega$, that is $\{A_1, A_2, \ldots, A_n\}$ is a partition of Ω . Describe the smallest sigma-algebra (sigma-field) \mathcal{F} containing A_1, A_2, \ldots, A_n . Find cardinality of \mathcal{F} and justify your answer.
- 9. Show that, $P(A \cap B) \ge P(A) + P(B) 1$ for $A, B \in \mathcal{F}$. (This is known as *Bonferroni* inequality) Suppose $A_1, A_2, \ldots, A_n \in \mathcal{F}$. Show that

$$P(\cap_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - (n-1).$$

10. Given n events A_1, A_2, \ldots, A_n , show that

$$\sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) \le P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i).$$

1