	Outcome variable						
		Nominal	Categorical (>2 Categories)	Ordinal	Quantitative Discrete	Quantitative Non-Normal	Quantitative Normal
	Nominal	X ² or Fisher's	X^2	X ² -trend or Mann - Whitney	Mann- Whitney	Mann- Whitney or log-rank ^a	Student's t test
	Categorical (2>categories)	X ²	χ^2	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Analysis of variance ^c
Input Variable	Ordinal (Ordered categories)	X ² -trend or Mann - Whitney	e	Spearman rank	Spearman rank	Spearman rank	Spearman rank or linear regression ^d
	Quantitative Discrete	Logistic regression	e	e	Spearman rank	Spearman rank	Spearman rank or linear regression ^d
	Quantitative non-Normal	Logistic regression	e	e	e	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank and linear regression
	Quantitative Normal	Logistic regression	e	e	e	Linear regression ^d	Pearson and linear regression

	Outcome variable						
		Nominal	Categorical (>2 Categories)	Ordinal	Quantitative Discrete	Quantitative Non-Normal	Quantitative Normal
	Nominal	X ² or Fisher's	X^2	X ² -trend or Mann - Whitney	Mann- Whitney	Mann- Whitney or log-rank ^a	Student's t test
	Categorical (2>categories)	χ²	χ^2	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Analysis of variance ^c
Input Variable		X ² -trend or Mann - Whitney	e	Spearman rank	Spearman rank	Spearman rank	Spearman rank or linear regression ^d
	Quantitative Discrete	Logistic regression	e	e	Spearman rank	Spearman rank	Spearman rank or linear regression ^d
	Quantitative non-Normal	Logistic regression	ė	e	e	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank and linear regression
	Quantitative Normal	Logistic regression	e	e	ė	Linear regression ^d	Pearson and linear regression

PRUEBAS PARAMÉTRICAS Y NO PARAMÉTRICAS

Ciencia de Datos

POBLACIÓN

UNIVERSO

MUESTRA

MUESTRA

Distribución t de Student (azul) y distribución Normal estándar N(0,1) (naranja)

TENEMOS UNA DIFICULTAD

OPCIÓN 1: HACEMOS SUPUESTOS

Tabla 1. Pruebas paramétricas Prueba t de 1 muestra

Prueba t de 2 muestras

ANOVA de un solo factor

Regresión lineal

Correlación Pearson

Recomendables si

- 1. La muestra es grande
- 2. La distribución poblacional es conocida
- 3. Funcionan más rapidamente
- Se usan variables de intervalo o razón

Ventajas:

Más potencia estadística

OPCIÓN 2: LIBRES DE DISTRIBUCIÓN

Tabla 2. Pruebas no paramétricas

Wilcoxon para 1 muestra
Prueba de Mann-Whitney

Mediana de Wood

Prueba de Friedman

Kruskal-Wallis

Recomendables si

- 1. La muestra es pequeña
- 2. La distribución poblacional es desconocida
- 3. Se usan variables categoriales u ordinales, aunque también hay para intervalo o razón

Análisis con variables numéricas:					
málisis	Paramétrico	No paramétrico			
escribir un grupo	μ , σ^2	Mediana, rango intercuartil			
omparar un grupo un valor	T Student de una muestra	Prueba Wilcoxon			
Comparar medias	T Student de dos	Mann-Whitney			

en 2 grupos muestras Comparar medias T Student en 2 grupos apareada

dos variables

Bioestadistica

Prueba Wilcoxon

(monotónica)

apareados Kruskal-Wallis ANOVA.

Correlación entre Pearson (lineal) Spearman

Comparar medias

en 3 o mas grupos

¿CÓMO DETERMINAR?

Criterios

- 1. Fuente de los datos
- Información en literatura
- 3. Prueba de normalidad

```
from scipy import stats
rng = np.random.default_rng()
pts = 1000
a = rng.normal(0, 1, size=pts)
b = rng.normal(2, 1, size=pts)
x = np.concatenate((a, b))
k2, p = stats.normaltest(x)
alpha = 1e-3
print("p = {:g}".format(p))
p = 8.4713e-19
if p < alpha: # null hypothesis: x comes from a normal distribution
print("The null hypothesis can be rejected")
else:
print("The null hypothesis cannot be rejected")</pre>
```

p = 1.21879e-12 The null hypothesis can be rejected

```
print("p = ", p)
    p = 8.4713e-19
    if p < alpha: # null hypothesis: x comes from a normal distribution
         print("The null hypothesis can be rejected")
10
    else:
11
         print("The null hypothesis cannot be rejected")
     [0.]
p =
The null hypothesis can be rejected
10000
 8000
 6000
 4000
 2000
       0.0
               0.2
                        0.4
                                0.6
                                         0.8
                                                 1.0
                                                  le6
```

df = pd.read_csv("cars.csv")
odo = df[["odometer_value"]]
plt.hist(df[["odometer_value"]])
k2, p = stats.normaltest(odo)

alpha = 1e-3