

ASSIGNMENT BRIEF

HTU Course No: 40303221	HTU Course Name: Discrete Maths
BTEC Unit Code: F/618/7429	BTEC UNIT Name: Discrete Maths

Student Name/ID Number/Section		
HTU Course Number and Title	40303221 Discrete Maths	
BTEC Unit Code and Title	F/618/7429 Discrete Maths	
Academic Year	2024-2025 2	
Assignment Author	Aladeen Albasheer	
Course Tutor	Rola Musleh - Aladeen Albasheer	
Assignment Title	CoreDesign	
Assignment Ref No	1 Part I	
Issue Date	26/03/2025	
Formative Assessment dates	From 27/03/2025 to 29/05/2025	
Submission Date	14/06/2025	
IV Name & Date	Radwan Alsmadi 25/03/2025	

Submission Format

Part I (Take home part)

The submission of the assignment should be:

Softcopy of your solutions for the questions provided submitted on https://www.elearning.htu.edu.jo The softcopy submission for part I should:

- Be written in a concise, formal business style using single spacing and font size 12.
- Make use of headings, paragraphs, and subsections as appropriate.
- Be referenced using the Harvard referencing system as needed. Provide a bibliography using the Harvard referencing system.
- Be word processed document; no handwriting will be accepted.
- Answers need to be provided following clear and coherent steps, using the correct formulas and equations. Final answers without detailed steps are not accepted.
- If a schematic, diagram, or photo is copied, the source must be referenced properly. Quotations are not allowed by any means. Only re-wording with proper references is accepted.
- This is a strictly individual assignment and no collaboration amongst students is allowed, where working with your colleagues is not teamwork, it is plagiarism. Also, if there was any suspicion then a selective oral will be done.
- The student declaration form attached to this assignment brief must be signed and sent with your work (use electronic signature).
- You are required to upload your submission files (source files and MS word file to the university's eLearning system through (https://elearning.htu.edu.jo/) within the submission date and time stated above.

*You are required to upload your submission files (source files and pptx power point presentation file to the university's eLearning system through (https://elearning.htu.edu.jo/) within the submission date and time stated above.

NO SUBMISSION by EMAIL and NO LATE SUBMISSIONS WILL BE ACCEPTED.

Part II of Assignment I (In-class exam).

The in-class part will be heled on Jun 14, 2025

Unit Learning Outcomes

- **LO1** Examine set theory and functions applicable to software engineering
- LO2 Analyse mathematical structures of objects using graph theory
- LO3 Investigate solutions to problem situations using the application of Boolean algebra.
- **LO4** Explore applicable concepts within abstract algebra structures.

Assignment Brief and Guidance

Since 2023, you have been working as a junior software engineer for Core Design, a leading corporation that develops technical solutions for industrial applications. After spending a few months learning the technology used at Core Design, you were invited to perform work involving the development of solutions for problems in subject matter fields related to computing.

To enable a team of computer engineers to design new technical solutions, your supervisor assigned you the role of solving the following questions.

Part 1:

Task 1:

Construct a proof of the Five Color Theorem

Task 2:

Prepare a power point presentation that explores an application of group theory in computer sciences. Provide 10-15 slides, you will not be penalized if you go beyond slide limit.

Learning Outcomes and Assessment Criteria					
Learning Outcome	Pass	Merit	Distinction		
LO1 Examine set theory and functions applicable to software engineering	P1 Perform algebraic set operations in a formulated mathematical problem. P2 Determine the cardinality of a given bag (multiset).	M1 Determine the inverse of a function using appropriate mathematical techniques.	D1 Formulate corresponding proof principles to prove properties about defined sets.		
LO2 Analyse mathematical structures of objects using graph theory	P3 Model contextualised problems using trees, both quantitatively and qualitatively. P4 Use Dijkstra's algorithm to find a shortest path spanning tree in a graph.	M2 Assess whether a Eulerian and Hamiltonian circuit exists in an undirected graph.	D2 Construct a proof of the Five Color Theorem.		
LO3 Investigate solutions to problem situations using the application of Boolean algebra.	P5 Diagram a binary problem in the application of Boolean algebra. P6 Produce a truth table and its corresponding Boolean equation from an applicable scenario.	M3 Simplify a Boolean equation using algebraic methods.	D3 Design a complex system using logic gates.		
LO4 Explore applicable concepts within abstract algebra structures.	P7 Describe the distinguishing characteristics of different binary operations that are performed on the same set. P8 Determine the order of a group and the order of a subgroup in given examples.	M4 Validate whether a given set with a binary operation is indeed a group.	D4 Explore, with the aid of a prepared presentation, the application of group theory relevant to your given example.		