

Math Reference Sheet

HendryOlson.com

Version: Friday 24th October, 2014

FileID: 20140228-150825-r2.2R-MathReferenceSheet

Number Systems

N	Natural	numbers	$\mathbb{N} = \{$	12	3)	ļ
1.4	Naturar	numbers	14 — 1	11,4.	, o, .	• • (ſ

 \mathbb{Z} Integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$

 \mathbb{Q} Rational $\mathbb{Q}=\{rac{m}{n}\mid m\in\mathbb{Z}, n\in\mathbb{Z}, n
eq 0\}$

Real numbers

C Complex numbers

Prime Numbers 2-997

2	3	5	7	11	13	17	19	23	29	31	37
41	43	47	53	59	61	67	71	73	79	83	89
97	101	103	107	109	113	127	131	137	139	149	151
157	163	167	173	179	181	191	193	197	199	211	223
227	229	233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349	353	359
367	373	379	383	389	397	401	409	419	421	431	433
439	443	449	457	461	463	467	479	487	491	499	503
509	521	523	541	547	557	563	569	571	577	587	593
599	601	607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733	739	743
751	757	761	769	773	787	797	809	811	821	823	827
829	839	853	857	859	863	877	881	883	887	907	911
919	929	937	941	947	953	967	971	977	983	991	997

Prime Divisor rules

- 2 the 1's digit is even
- 3 sum of digits is divisible by 3
- 5 the 1's digit is 0 or 5

Reducing Fractions Process - RF

Reduce the fraction $\frac{m}{n}$

- 1. Simplify by factoring m
- 2. Simplify by factoring n
- 3. Find the gcd(m, n)
- 4. If the gcd(m, n) = 1 the fraction is reduced.
- 5. gcd(m, n) is the MId

Operations

DELIM Delimiters

DO Dyadic Operations

OOA Operation of Addition

OOD Operation of Division

OOE Operation of Exponentiation

OON Operation of Negation

OOS Operation of Subtraction

OOO Order of Operations

UO Unary Operations

Order Operations

- 1. DELIM
- 2. DO (OOE, OOM, OOD, OOA, OOS)
- 3. UO (OON)

Operation of Negation

ONeg Operation of Negation Notation $-a = \neg a$

Operation of Subtraction

 ${
m DOS}$ Definition of Subtraction $a+\neg b=a-b$

Operation of Addition

- APA Associative Property of Addition (a+b)+c=a+(b+c)
- ${f CPA}$ Commutative Property of Addition a+b=b+a
- $\begin{array}{ll} \text{DPF} & \text{Distributive Property Factoring} \\ & a \cdot b + a \cdot c = a(b+c) \\ & b \cdot a + c \cdot a = (b+c)a \end{array}$
- CD Common Denominator $\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$

Operation of Multiplicaiton

- APM Associative Property of Multiplication $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- CPM Commutative Property of Multiplication $a \cdot b = b \cdot a$
- CTJ Center-Dot to Juxtaposition $a \cdot b = ab$
- DPE Distributive Property Expanding $a(b+c) = a \cdot b + a \cdot c$ $(b+c)a = b \cdot a + c \cdot a$
- JTC Juxtaposition to Center-Dot $ab = a \cdot b$
- $egin{array}{ll} {
 m MC} & {
 m Center-Dot\ Notation} \\ a\cdot b & {
 m } \end{array}$
- MJ Juxtaposition Notation ab, a(b), (a)b, (a)(b), a[b], [a]b, [a][b]
- $egin{array}{ll} {
 m MT} & {
 m Times \ Notation} \ & a imes b \end{array}$

Operation of Division

- $\begin{array}{cc} {\rm DOD} & {\rm Definition\ of\ Division} \\ & a \div b = \frac{a}{b} = a \cdot b^{-1}, b \neq 0 \end{array}$
- FN Fraction Numerator (upstaris)
- FD Fraction Denominator (downstairs)
- RF Reduce Fraction

Powers

- FTPo Factor to Power
 - $a_n \cdot a_{n-1} \cdot \ldots \cdot a_2 \cdot a_1 = a^n$
- $\begin{array}{ccc} \text{PoNE} & & \text{Power with a Negative Exponent} \\ & & b^{-k} = \frac{1}{\text{L}k} \end{array}$
- PoPo Power of a Power $(b^m)^k = b^{m \cdot k}$
- PoQ Power of a Quotient
 - $\left(\frac{a}{b}\right)^k = \frac{a^k}{b^k}, b \neq 0$
- PoPr Power of a Product $(a \cdot b)^k = a^k \cdot b^k$
- PoQPo Power of a Quotient of Powers $\left(\frac{a^m}{b^n}\right)^k = \frac{a^{m \cdot k}}{b^{n \cdot k}}, b \neq 0$
- PoPrPo Power of a Product of Powers $(a^mb^n)^k = a^{m \cdot k}b^{n \cdot k}$
- PoTR Power to Radical $a^{\frac{m}{n}} = \sqrt[n]{a^m}$
- PoTL Power to Logarithm $y = b^x \Rightarrow x = \log_b y$
- PoTF Power to Factor $(a)^n = a_1 \cdot a_2 \cdot \ldots \cdot a_n$
- $\begin{array}{ll} \text{PrCBPo} & \text{Product of Common Base Powers} \\ & b^m \cdot b^n = b^{m+n} \end{array}$
- QCBPo Quotient of Common Base Powers $\frac{b^m}{h^n} = b^{m-n}$
- RTPo Radical to Power $\sqrt[n]{a^m} = a^{\frac{m}{n}}$

Identities

- AId Additive Identity a + 0 = a
- ${f MId}$ Multiplicative Identity $a\cdot 1=a$
- $\begin{array}{ccc} \mathbf{PoId} & \mathbf{Power Identity} \\ b^0 = 1, \ \mathrm{given} \ b > 0 \end{array}$

Inverses

- $egin{aligned} {
 m AI} & {
 m Additive\ Inverse} \ a + (-a) = 0 \end{aligned}$
- CI Cosine Inverse $\cos^{-1}(\cos \theta) = \theta$
- EI Exponential Inverse $\log_a(a^x) = x$
- LI Logarithmic Inverse $a^{\log_a x} = x$
- MI Multiplicative Inverse $a \cdot \frac{1}{a} = 1 = a \cdot a^{-1}, a \neq 0$
- PoI Power Inverse $\left(x^{\frac{m}{n}}\right)^{\frac{n}{m}} = x$
- SI Sine Inverse $\sin^{-1}(\sin \theta) = \theta$
- TI Tangent Inverse $\tan^{-1}(\tan \theta) = \theta$

Equality & Inequality

- RPE Reflexive Property of Equality a = a
- SPIn Substitution Property of Inequality a < b, then a + c < b + c a < b and c > 0, then ca < cb a < b and c < 0, then ca > cb
- TPE Transitive Property of Equality if a = b and b = c, then a = c
- TPIn Transitive Property of Inequality if a < b and b < c, then a < c
- ZFP Zero Factor Property if $a \cdot b = 0$, then a = 0 or b = 0

Simplify Expressions Workflow

- MId
 PoId
 ONeg
 PoTF
 DOS
 RTPo
- 4. DELIM Goto 36, 21 24. PoNE Goto 4
- 5. DPE 25. PoPr
- 6. JTC 26. PoQ
- 7. CPM Goto 25 27. PoPrPo 8. APM 28. PoOPs
- APM
 PoQPo
 OOM
 PrCBPo
- 29. PrCBPo 10. RF 30. QCBPo
- 11. CTJ 31. PoPo 12. CPA 32. PoNE
- 13. DPF 14. APA 33. OOE
- 15. RF 34. PoTR 35. Pold Goto 8
- 16. OOA

 17. Ald Goto 4

 36. LPoPo
- 18. DOS 37. LPrCBPo
- 19. ONeg 38. LQCBPo 39. LEF Goto 4
- 20. MId DONE!

Logarithms

- LEV Logarithm Exponent Visible $\log_h y \Rightarrow \log_h y = x$
- LPoPo Logarithm Power of a Power $\log_b x^n = n \log_b x$
- LPrCBPo Logarithm Product of Common Base Powers $\log_h(mn) = \log_h m + \log_h n$
- LQCBPo Logarithm Quotient of Common Base Powers $\log_b\left(\frac{m}{n}\right) = \log_b m \log_b n$
- LTPo Logarithm to Power Form
- Logarithm to Power Form $x = \log_b y \Rightarrow y = b^x$

Horizontal Line Test

Quadratic Functions

If $ax^2 + bx + c = 0$, where $a \neq 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1. $b^2 4ac > 0$ Two distinct real solutions
- 2. $b^2 4ac = 0$ Two repeated real solutions
- 3. $b^2 4ac < 0$ Two distinct complex solutions

Pythagorean Theorem

Function

Domain

PyThm Pythagorean Theorem $a^2 + b^2 = c^2$ c a

Linear Functions

DBP Distance betweent $P_1 = (x_1, y_1)$

& $P_2 = (x_2, y_2)$ $d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

w(11,12) V(w2 w1) 1 (92 s

MBP Midpoint between $P_1 = (x_1, y_1)$

& $P_2 = (x_2, y_2)$

Midpoint of $P_1P_2 = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{3})$

Line Slope Line Slope through $P_1 = (x_1, y_1)$

& $P_2 = (x_2, y_2)$ $m = \frac{y_2 - y_1}{2}$

 PSE Point slope equation though $P(x_1,y_2)$

 $y - y_1 = m(x - x_1)$

SIE Slope-intercept equation

y = mx + b

m PrSPL Product of slopes - Perpendicual Lines $m_1m_2=-1$

Greek Alphabet

Let	$_{ m ters}$	Name	Let	ters	Name
A	α	alpha	N	ν	nu
В	β	beta	Ξ	ξ	xi
Γ	γ	gamma	O	0	omicron
Δ	δ	delta	Π	π	pi
\mathbf{E}	ϵ	epsilon	Ρ	ρ	rho
\mathbf{Z}	ζ	zeta	Σ	σ	sigma
Η	η	eta	T	au	tau
Θ	θ	theta	Υ	v	upsilon
I	ι	iota	Φ	ϕ	phi
\mathbf{K}	κ	kappa	X	χ	chi
Λ	λ	lambda	Ψ	ψ	psi
M	μ	mu	Ω	ω	omega

Function Vertical Line Test

FVLT Function Vertical Line Test

Range

Angles: Components

Angle Direction & Magnitude

Classification of Angles

Radians

Angle Pairings

OA Obtuse Angle

SA Straight Angle

Arc Length and Sector Area Arc Length

AL

QII sin +	$ \frac{\text{QI}}{\sin +} $
cos –	$\cos +$
$ tan - \\ csc + $	$ \tan + \csc + $
sec – cot –	
0	
QIII	QIV
QIII sin —	$ \begin{array}{c} \text{QIV} \\ \sin - \end{array} $
•	
$\sin -$	sin –

sec +

cot -

sec -

cot +

Trigonometric Identities

EOId Trigonometric Even/Odd Identities
$$\sin -\theta = -\sin \theta \qquad \cos -\theta = \cos \theta$$

$$\csc -\theta = -\csc \theta \qquad \sec -\theta = \sec \theta$$

$$\tan -\theta = -\tan \theta$$
 $\cot -\theta = -\tan \theta$

$$\begin{array}{ll} \text{RId} & \text{Trigonometric Reciprocal Identities} \\ & \sin\theta = \frac{1}{\csc\theta} & \cos\theta = \frac{1}{\sec\theta} & \cot\theta = \frac{1}{\tan\theta} \\ \\ & \csc\theta = \frac{1}{\sin\theta} & \sec\theta = \frac{1}{\cos\theta} & \tan\theta = \frac{1}{\cot\theta} \\ \end{array}$$

PyId Trigonometric Pythagorean Identities
$$\sin^2\theta + \cos^2\theta = 1$$

$$\sec^2\theta = \tan^2\theta + 1 \quad \csc^2\theta = 1 + \cot^2\theta$$

TanId Tangent Identity
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

CotId Cotangent Identity
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

SDAId Sine Double Angle Identity
$$\sin 2\theta = 2 \sin \theta \cos \theta$$

CDAId Cosine Double Angle Identity
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$= 1 - 2\sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$

TDAId Tangent Double Angle Identity
$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

$$\begin{array}{ll} {\rm SDAId} & {\rm Sine~Difference~of~Angles~Identity} \\ & \sin(\theta-\phi) = \sin\theta\cos\phi - \cos\theta\sin\phi \end{array}$$

CSAId Cosine Sum of Angles Identity
$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

CDAId Cosine Difference of Angles Identity
$$\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi$$

TSAId Tangent Difference of Angles Identity
$$\tan(\theta+\phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta\tan\phi}$$

TDAId Tangent Difference of Angles Identity
$$\tan(\theta-\phi)=\frac{\tan\theta-\tan\phi}{1+\tan\theta\tan\phi}$$

Cosine Law

CL Cosine Law

CET COSTRE LAW
$$a^2 = b^2 + c^2 - 2bc \cos A \qquad \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$b^2 = a^2 + c^2 - 2ac \cos B \qquad \cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$c^2 = a^2 + b^2 - 2ab \cos C \qquad \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Sine Law

SL Sine Law
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$b \qquad h \qquad a$$

$$A \qquad c \qquad B$$

Summary of the Ambiguous Case

 $90^{\circ} \leq A < 180^{\circ}, \, a > b$: One solution

 $90^{\circ} \le A < 180^{\circ}, \ a \le b$: No solution

 $0^{\circ} < A < 90^{\circ}, \, a < b \, \sin \, A$: No solution

 $0^{\circ} < A < 90^{\circ}, a = b \sin A$: One solution

 $0^{\circ} < A < 90^{\circ}, \ a \ge b$: One solution

 $0^{\circ} < A < 90^{\circ}$, $b \sin A < a < b$: Two solutions

Sine Function

Cosecant Function

Cosine Function

Secant Function

Tangent Function

Cotangent Function

Differentiation by First Principles

DFP Differentiation by first principles
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

Notations

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{d\left[f(x)\right]}{\mathrm{d}x} = \frac{d}{\mathrm{d}x}\left[f(x)\right]$$

Leibiz's second derivative

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$$

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n}$$

Leibiz's evaluate derivative at x=a

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=a} = \frac{\mathrm{d}y}{\mathrm{d}x}(a)$$

LaGrange's first derivative

f'(x)

LaGrange's second derivative

f''(x)

LaGrange's nth derivative

LaGrange's evaluate derivative at $\boldsymbol{x}=\boldsymbol{a}$

$$Df = D_x f$$

Euler's second derivative

$$D^2f = D_x^2f$$

Euler's nth derivative

$$D^n f = D_x^n$$

Differentiation Structural Rules

$$[f(x) + g(x)]' = f'(x) + g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)+g(x)\right] = \frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)\right] + \frac{\mathrm{d}}{\mathrm{d}x}\left[g(x)\right]$$

DD Derivative of a difference [f(x) - g(x)]' = f'(x) - g'(x)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) - g(x) \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right] - \frac{\mathrm{d}}{\mathrm{d}x} \left[g(x) \right]$$

DPr Derivative of a product "Product Rule" [f(x)q(x)]' = f'(x)q(x) + f(x)q'(x)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[f(x)g(x) \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right] g(x) + f(x) \frac{\mathrm{d}}{\mathrm{d}x} \left[g(x) \right]$$

OQ Derivative of a quotient "Quotient Rule"

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right] g(x) - f(x) \frac{\mathrm{d}}{\mathrm{d}x} \left[g(x) \right]}{\left[g(x) \right]^2}$$

DCF Derivative of a composite function

$$\left[f\left(g(x)\right)\right]' = \left[g(x)\right]' \left[f\left(g(x)\right)\right]'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[f\left(g(x)\right)\right] = \frac{\mathrm{d}}{\mathrm{d}x}\left[g(x)\right]\frac{\mathrm{d}}{\mathrm{d}x}\left[f\left(g(x)\right)\right]$$

Differentiation Monomial Rules

DC Derivative of a constant

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[c\right] = 0$$

DCM Derivative of a constant multiple $\left[cf(x)\right]' = c\left[f(x)\right]'$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[cf(x) \right] = c \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right]$$

${ m DPo}$ Derivative of a power "Power Rule" ${[x^n]}' = nx^{n-1}$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^n \right] = n x^{n-1}$$

Differentiation Exponential and Logarithmic Function Rules

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[a^x \right] = a^x \ln a$$

DNExp Derivative of a natural

exponential function

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[e^x \right] = e^x$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\log_a x \right] = \frac{1}{x \ln a}$$

DNL Derivative of a natural

logarithmic function

$$\frac{\mathrm{d}}{\mathrm{d}x}[\ln x] = \frac{1}{x}$$

Differentiation Trigonometric Function Rules

$$\overline{ ext{DSin}}$$
 Derivative of a sine function

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\csc x) = -\csc x \cot x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sec x) = \sec x \tan x$$

DCot Derivative of a cotangent function

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = -\csc^2 x$$

HendryOlson.com @hendryolson Trig images: http://bit.ly/mecmath-trigbook Pascal's triangle: http://bit.ly/1kIYJ9H