Presentation of intermediate results

Agathe L'Hermite

Overleaf

Formulations

We compare the different formulations proposed by Solyalı and Süral [1] as well as Cunha and Melo [2].

Solyalı, O., Süral, H. The one-warehouse multi-retailer problem: reformulation, classification, and computational results, Ann Oper Res 196, 517–541 (2012).

Cunha, Jesus O., Melo, Rafael A. On reformulations for the one-warehouse multi-retailer problem. Annals of Operations Research, 99-122 (2016).

Table of Contents

- No restrictions on ordering periods
- 2 Fixed ordering periods
- Maximum number of periods
- 4 Maximum gap between consecutive orders
- 5 Minimum gap between consecutive orders

No restrictions on ordering periods - all models

No restrictions on ordering periods - all models

Observations

Formulations OWMR, ES and SES are very ineffective compared to other formulations

No restrictions on ordering periods - 5 fastest models

No restrictions on ordering periods - 5 fastest models

Observations

MC is our most effective formulation

No restrictions on ordering periods - relaxation gap

No restrictions on ordering periods - 5 fastest models

Observations

ES, SES and OWMR are not very efficient formulations. No significant results for the other models' relaxation gap.

No restrictions on ordering periods - nodes

No restrictions on ordering periods - nodes

Observations

OWMR increases more than SES. ES more stable.

Table of Contents

- No restrictions on ordering periods
- 2 Fixed ordering periods
- Maximum number of periods
- Maximum gap between consecutive orders
- Minimum gap between consecutive orders

Fixed ordering periods - methods with size

Fixed ordering periods - methods with size

Observations

The most effective method is the method fixing the variables y.

The less effective method is setting the parameters f to an infinite value, causing to add large parameters in the problem.

Here all the models are mixed, as well as the parameter to decide on the intervals' length.

Fixed ordering periods - models behaviour

Fixed ordering periods - models behaviour

Observations

The models yield different solving times with the formulation.

ES more balanced.

MC: not efficient with valid inequalities

OWMR most effective with the valid inequalities method.

SP not efficient with valid inequalities.

Transportation-based models become significantly less effective with the infinite method.

Most effective between finite f and valid inequalities is not clear.

Why?

Fixed ordering periods - evolution with n

Fixed ordering periods - evolution with n

Observations

The infinite f method solving time increases when there are more forbidden periods (+ 20 %) Other methods decrease (- 20 %)

for fix y: less constraints; finite f: lower value for f

Table of Contents

- 1 No restrictions on ordering periods
- 2 Fixed ordering periods
- Maximum number of periods
- Maximum gap between consecutive orders
- Minimum gap between consecutive orders

Total max - solving time authorized periods

Total max - relative solving time

Total max - cost repartition - number of removed periods

Total max - cost repartition - number of removed periods

Observations

The holding costs at the warehouse significantly increase.

The number of set-ups at retailer decrease: it adapts to the warehouse

Total max - relaxation gap - tags: relative difference

Total max - nodes - tags: relative difference

Total max

Observations

Do the two methods have the same relaxation?

Table of Contents

- 1 No restrictions on ordering periods
- 2 Fixed ordering periods
- Maximum number of periods
- Maximum gap between consecutive orders
- 5 Minimum gap between consecutive orders

Maximum gap - methods with size - 5 models

Maximum gap - methods with size

Observations

The total sum method is a little more effective than the consecutive sum method. Is it really significant?

Maximum gap - methods with models

Maximum gap - methods with models

Observations

Is there a model that works very badly with a specific method? Same results on all the models.

Maximum gap - methods with n

Maximum gap - methods with n

Observations

The consecutive sum method increases a little more as the mandatory gap increases.

Maximum gap - relaxation gap

Maximum gap - relaxation gap

Observations

Formal proof that consecutive sum is a worse relaxation?

Maximum gap - relaxation gap and n

Maximum gap - relaxation gap

Observations

Decrease significantly with n

Table of Contents

- No restrictions on ordering periods
- 2 Fixed ordering periods
- Maximum number of periods
- 4 Maximum gap between consecutive orders
- 5 Minimum gap between consecutive orders

Minimum gap - methods with size

Minimum gap - methods with size

Observations

The total sum method is far more effective than the consecutive sum method

Minimum gap - methods with models

Minimum gap - methods with models

Observations

Is there a model that works very badly/well with a specific method? The MC model losses less efficiency between the two methods.

Minimum gap - methods with n

Minimum gap - methods with n

Observations

The consecutive sum method solving time increases far more as the mandatory gap increases.

Minimum gap - relaxation gap

Minimum gap - relaxation gap

Observations

same: proof that gap of consecutive sum larger?

Minimum gap - nodes

Minimum gap - nodes

Observations

attention to the scale