

Lesson 1: Two-armed Bandit Task

Learn the action policy to maximize reward

Learn the action policy to maximize reward

Learn the action policy to maximize reward

Prediction Error.

Difference between observed and expected outcome

Prediction Error.

Difference between obs

come

Schultz, 1998

Shahar-Lab, MathPsych, Tilburg, 2024

Prediction Error.

Difference between observed and expected outcome

dorsomedial prefrontal cortex, ventrolateral PFC, dorsolateral prefrontal cortex (dIPFC), parietal cortex, precuneus, orbitofrontal cortex, occipital cortex, and anterior cingulate.

Q-Learning Model

<u>Variables</u>

$$a_t \in \{1, 2\} \qquad r_t \in \{0, 1\} \qquad Q_{t(a)}$$

Parameters

 α - learning rate

 β - noise parameter

Updating action values

$$Q_{t+1(a)} = Q_{t(a)} + \alpha \cdot (r_t -$$

$$P(a_t = 1) = \frac{e^{\beta \cdot Q_{t(a1)}}}{e^{\beta \cdot Q_{t(a1)}} + e^{\beta \cdot Q_{t(a2)}}}$$

softmax demo

Step-by-step:

1

2

Step-by-step:

1

simulating artificial behavior

2

Step-by-step:

1 simulating artificial behavior

2 estimate parameters

$$\alpha = 0.5, \, \beta = 5$$

Ntrials = 100

Ntrials = 1000

