INTRO TO ML

By Rishabh Dubey

Quiz Time

Question 1: What does df.describe() do in Pandas?

- (A) Shows first 5 rows
- (B) Shows statistical summary
- (C) Deletes missing values
- (D) Merges two DataFrames

Question 2: Which of the following is not a NumPy function?

- (A) np.mean()
- (B) np.array()
- (C) np.plot()
- (D) np.linspace()

Question 3: What is the primary purpose of Matplotlib?

- (A) Data visualization
- (B) Machine Learning
- (C) Data cleaning
- (D) API development

Question 4: Which method is used in Pandas to remove NaN values?

- (A) dropna()
- (B) fillna()
- (C) replace()
- (D) clear()

Introduction to Machine Learning

WHAT IS MACHINE LEARNING?

ML allows computers to learn from data instead of being explicitly programmed.

Examples: Spam email detection

- Netflix recommendations
- Self-driving cars

HOW ML DIFFERS FROM TRADITIONAL PROGRAMMING

Traditional Programming

Machine Learning

TYPES OF ML

Supervised Learning

- Uses labeled data
 - Examples:Spam detection
 - House Price Prediction

Unsupervised Learning

- Uses unlabeled data
 - Examples:Customer Segmentation
 - Anomaly Detection

TYPES OF ML

Reinforcement Learning

Learning via rewards and penalties Examples:

- Game Al
- Robotics
- Self-driving cars
- Example: Surveys, Elections, Market Research

TYPES OF DATASETS

What are Datasets?

 Collection of structured or unstructured data used for training ML models.

A label is additional information (a classification, category, or meaningful value) mapped to raw data.

Labeled vs Unlabeled Data

Type	Definition	Example
Labeled Data	Contains input-output pairs	(X-ray, Disease Yes/No)
Unlabeled Data	No predefined labels	(Customer purchase history)

Machine Learning Lifecycle

- 1. Data Collection
- 2. Data Preprocessing
- 3. Feature Engineering
- 4. Model Selection
- 5. Model Training
- 6. Model Evaluation
- 7. Deployment

Data Collection

- Why is it needed? Models need quality data.
- What happens if skipped? Garbage in, garbage out.

Data Preprocessing

- Removing Missing Values
- Handling Outliers
- Standardization/Normalization

Feature Engineering

- Feature Selection: Picking the most useful variables.
- Feature Extraction: Creating new features from existing ones.

Model Selection

 Choosing the right algorithm (Linear Regression, Decision Trees, Neural Networks).

Model Training & Evaluation

- Splitting data into Train-Test Sets.
- Metrics: Accuracy, Precision, Recall, F1-score.

Deployment & Monitoring

 Continuous Model Monitoring: If ignored, model degrades over time

Introduction to Regression

WHAT IS REGRESSION?

- Predicts continuous values.
- Examples: House prices, Sales prediction.

Types of Regression

Туре	Use Case
Simple Linear Regression	One input, one output
Multiple Regression	Multiple inputs
Polynomial Regression	Non-linear relationships

ERROR METRICS FOR REGRESSION

MSE (Mean Squared Error)
RMSE (Root Mean Squared Error)
MAE (Mean Absolute Error)

Introduction to Scikit-Learn

INTRODUCTION TO SCIKIT-LEARN

What is Scikit-Learn?

Popular Python ML Library

Key Functions in Scikit-Learn

Function	Purpose
train_test_split()	Splits data into train-test
LinearRegression()	Creates a regression model
fit()	Trains the model
predict()	Makes predictions

TASK - IMPLEMENT SIMPLE LINEAR REGRESSION

```
import numpy as np
from sklearn.linear_model import LinearRegression
X = np.array([1, 2, 3, 4, 5]).reshape(-1,1)
y = np.array([2, 4, 5, 4, 5])
```

```
model = LinearRegression()
model.fit(X, y)
print("Predictions:", model.predict(X))
```

THANK YOU