Buds morphometrics – How to distinguish and predict tree species with images of buds

Felix Nößler

Bioimage Analysis and Extended Phenotyping, Dr. Christian Kappel

March 13, 2021

Introduction

Analysis

Results

Simple form descriptors & color Outline analysis

Conclusio

References

- 1 Introduction
- 2 Analysis workflow
- 3 Results

Simple form descriptors & colour Outline analysis Prediction

- 4 Discussion
- **6** Conclusion

Discussio

Conclusion

Introduction

Figure: Setup for taking images

- Goal was to describe buds with image descriptors and make species predictions
- 46 pictures of 1422 buds

Analysis workflow

Analysis workflow

Analysis workflow

Analysis workflow

Analysis

workflow

Analysis workflow

Introduction

Analysis

Results

Simple form descriptors & cold

Predictio

Discussio

Conclusion

References

Results

- Acer pseudoplatanus, n=90
- Aesculus hippocastanum, n=39
- Alnus glutinosa, n=361
- Carpinus betulus, n=94
- Fagus sylvatica, n=191
- Populus canadensis, n=220
- Quercus petraea, n=266
- Tilia platyphyllos, n=161

Figure: Colours used in all following images

Simple form

descriptors & colour

Figure: Principal component analysis of the complete data set

Buds morphometrics

Felix Nößler

Introduction

Analysi

Result

Simple form descriptors & colour

Outline analys

Prediction

Discussion

Conclusion

References

Figure: Area and major axis length of estimated ellipse of all buds

Introduction

Analysis

Results

Simple form descriptors & color Outline analysis

Discussio

Conclusio

References

Outline analysis

Figure: Mean contours of all species reconstructed from elliptic fourier coefficients

Introduction

Analysis

workflow

Results
Simple form

Outline analysis

Discussio

Conclusio

References

Outline analysis

Figure: Principal component analysis of the elliptic fourier coefficients of the shape of buds

Simple form descriptors & col

Prediction

Discussio

Conclusion

References

Prediction of species

Table: Result of 200 times predicting the species with the three methods, numbers for the correct assignment are given in percent \pm standard deviation

Method	Train data	Test data
Logistic regression	97.4 ± 0.3	95.9 ± 0.8
Decision Tree	99.3 ± 0.3	92.8 ± 1.3
Random Forest	99.9 ± 0.1	96.2 ± 0.9

Buds morphometrics

Felix Nößler

Prediction

Prediction of species

Figure: Importance of image descriptors for the decision tree

Simple form descriptors & color

Dradiction

Discussion

Conclusion

References

Discussion

Segmentation of buds was done on a white paper

Danula

Simple form descriptors & cold

Discussion

Canalisaian

Reference

Discussion

- Segmentation of buds was done on a white paper
- Test performance of prediction with higher number of species, buds from different localities

Discussion

Conclusion

References

Discussion

- Segmentation of buds was done on a white paper
- Test performance of prediction with higher number of species, buds from different localities
- Do the colour values show real differences?

descriptors & cold Outline analysis

Discussion

Conclusion

References

Discussion

- Segmentation of buds was done on a white paper
- Test performance of prediction with higher number of species, buds from different localities
- Do the colour values show real differences?
- Lengths from estimated ellipse <> lengths from shape

Analysis

Result

Simple form descriptors & colo Outline analysis

Prediction

Conclusion

References

Conclusion

Used setup worked overall well, prediction showed high accuracy

Simple form descriptors & color

Predictio

Discussio

Conclusion

References

Conclusion

- Used setup worked overall well, prediction showed high accuracy
- next steps:
 - analyse images taken directly on the tree outside
 - add more species
 - add pictures from more locations
 - implement convolutional network / deep learning approach

Resu

Simple form descriptors & color Outline analysis

Prediction

Conclusion

Reference

Conclusion

- Used setup worked overall well, prediction showed high accuracy
- next steps:
 - analyse images taken directly on the tree outside
 - add more species
 - add pictures from more locations
 - implement convolutional network / deep learning approach
- most important features: overall size (e.g. major axis length), colour values (e.g. mean saturation) and the ratio between the minor and the major axis length

Introduction

Analysis

Results

Simple form descriptors & colo Outline analysis

Discussio

Conclusion

References

References

Used packages in Python 3.8:

Blidh, H. PyEFD. https://github.com/hbldh/pyefd (2020).

Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2 (2020).

Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, 90–95 (2007).

Pandas development team, T. pandas-dev/pandas: Pandas. Version latest. 2020. https://doi.org/10.5281/zenodo.3509134.

Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825-2830. https://jmlr.org/papers/v12/pedregosa11a.html (2011).

Terpilowski, M. A. scikit-posthocs: Pairwise multiple comparison tests in Python. *Journal of Open Source Software* 4, 1169. https://doi.org/10.21105/joss.01169 (2019).

Van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453. https://doi.org/10.7717/peerj.453 (2014).

Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature Methods* 17, 261–272 (2020).

Introduction

meroducere

workflov

Simple form descriptors & color Outline analysis

Discussion

Conclusion

References

Thank you for your attention! :)

Do you have questions or comments?

All images and the Python code are available at:

https://github.com/FelixNoessler/Budsmorphometrics