EJEMPLO DE TRAZO EJEMPLO DE TRAZO EJEMPLO DE TRAZO POLARES POLARE

HACEMOS EL CÁLCULO DE FUNCION DE TRANSFERENCIA:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{R1}{\frac{1}{C1*P}*(R1*C1*P+1)} = \frac{R1*C1*P}{(R1*C1*P+1)}$$
$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{P}{\left(P + \frac{1}{R1*C1}\right)}$$

HACEMOS EL CÁLCULO DE FUNCION DE TRANSFERENCIA:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{P}{\left(P + \frac{1}{R1 * C1}\right)}$$

DANDO VALORES:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{P}{(P+1)}$$

COMPROBAMOS LA FUNCION DE TRANSFERENCIA CALCULADA:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{P}{(P+1)}$$

DANDO VALORES a
$$P$$
 : $P \rightarrow 0$ $F_{(P)} = 0$

$$P \rightarrow \infty$$
 $F_{(P)} = 1$

COMPROBAMOS LA FUNCION DE TRANSFERENCIA CALCULADA:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{P}{(P+1)}$$

DANDO VALORES a P: $P \rightarrow 0$ $F_{(P)} = 0$

$$P \rightarrow \infty$$
 $F_{(P)} = 1$

COMPROBAMOS LA FUNCION DE TRANSFERENCIA CALCULADA:

 $F_{(P)}=0$

 $P \rightarrow \infty$ $F_{(P)} = 1$

CAMBIAMOS P por jω y separamos en parte Real +/- j Parte Imaginaria:

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{P}{(P+1)}$$

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = \frac{j\omega}{(j\omega+1)} = \frac{j\omega}{(1+j\omega)} * \frac{1-j\omega}{(1-j\omega)}$$

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = \frac{\omega^2}{(1+\omega^2)} + j \frac{\omega}{(1+\omega^2)}$$

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = Re + j Im$$

Hacemos una tabla dando valores a ω y calculamos parte Real, Parte Imaginaria, Módulo y Ángulo

DANDO VALORES a P

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = \frac{\omega^2}{(1+\omega^2)} + j \frac{\omega}{(1+\omega^2)}$$

Hacemos una tabla dando valores a ω y calculamos parte Real, Parte Imaginaria, Módulo y Ángulo

$$F_{(j\omega)} = \frac{E_{OUT(j\omega)}}{E_{IN(j\omega)}} = \frac{\omega^2}{(1+\omega^2)} + j \frac{\omega}{(1+\omega^2)}$$

w	Re	lm	MODULO	ÁNGULO
0	0	0	0	90°
0,25	0,058823529	0,235294118	0,242535625	75,96375653
0,5	0,2	0,4	0,447213595	63,43494882
1	0,5	0,5	0,707106781	45
2	0,8	0,4	0,894427191	26,56505118
4	0,941176471	0,235294118	0,9701425	14,03624347
Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

w	Re	lm	MODULO	ÁNGULO
0	0	0	0	90°
0,25	0,058823529	0,235294118	0,242535625	75,96375653
0,5	0,2	0,4	0,447213595	63,43494882
1	0,5	0,5	0,707106781	45
2	0,8	0,4	0,894427191	26,56505118
4	0,941176471	0,235294118	0,9701425	14,03624347
Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

/	w	Re	lm	MODULO	ÁNGULO
1	0	0	0	0	90°
	0,25	0,058823529	0,235294118	0,242535625	75,96375653
/	0,5	0,2	0,4	0,447213595	63,43494882
7	1	0,5	0,5	0,707106781	45
	2	0,8	0,4	0,894427191	26,56505118
7	4	0,941176471	0,235294118	0,9701425	14,03624347
ı	Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

1	w	Re	lm	MODULO	ÁNGULO
l	0	0	0	0	90°
ı	0,25	0,058823529	0,235294118	0,242535625	75,96375653
ľ	0,5	0,2	0,4	0,447213595	63,43494882
/	1	0,5	0,5	0,707106781	45
	2	0,8	0,4	0,894427191	26,56505118
	4	0,941176471	0,235294118	0,9701425	14,03624347
	Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

w	Re	lm	MODULO	ÁNGULO
0	0	0	0	90°
0,25	0,058823529	0,235294118	0,242535625	75,96375653
0,5	0,2	0,4	0,447213595	63,43494882
1	0,5	0,5	0,707106781	45
2	0,8	0,4	0,894427191	26,56505118
4	0,941176471	0,235294118	0,9701425	14,03624347
Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

w	Re	lm	MODULO	ÁNGULO
0	0	0	0	90°
0,25	0,058823529	0,235294118	0,242535625	75,96375653
0,5	0,2	0,4	0,447213595	63,43494882
1	0,5	0,5	0,707106781	45
2	0,8	0,4	0,894427191	26,56505118
4	0,941176471	0,235294118	0,9701425	14,03624347
Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

Г	w	Re	lm	MODULO	ÁNGULO
Г	0	0	0	0	90°
Г	0,25	0,058823529	0,235294118	0,242535625	75,96375653
Е	0,5	0,2	0,4	0,447213595	63,43494882
	1	0,5	0,5	0,707106781	45
П	2	0,8	0,4	0,894427191	26,56505118
Г	4	0,941176471	0,235294118	0,9701425	14,03624347
L	Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

1	w	Re	lm	MODULO	ÁNGULO
/	0	0	0	0	90°
ı	0,25	0,058823529	0,235294118	0,242535625	75,96375653
4	0,5	0,2	0,4	0,447213595	63,43494882
/	1	0,5	0,5	0,707106781	45
ı	2	0,8	0,4	0,894427191	26,56505118
4	4	0,941176471	0,235294118	0,9701425	14,03624347
1	Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

w	Re	lm	MODULO	ÁNGULO
0	0	0	0	90°
0,25	0,058823529	0,235294118	0,242535625	75,96375653
0,5	0,2	0,4	0,447213595	63,43494882
1	0,5	0,5	0,707106781	45
2	0,8	0,4	0,894427191	26,56505118
4	0,941176471	0,235294118	0,9701425	14,03624347
Infinito	1	0	1	Ó

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

w	Re	lm	MODULO	ÁNGULO
0	0	0	0	90°
0,25	0,058823529	0,235294118	0,242535625	75,96375653
0,5	0,2	0,4	0,447213595	63,43494882
1	0,5	0,5	0,707106781	45
2	0,8	0,4	0,894427191	26,56505118
4	0,941176471	0,235294118	0,9701425	14,03624347
Infinito	1	0	1	0

TRAZAMOS EL DIAGRAMA POLAR CON LOS VALORES OBTENIDOS:

w	Re	lm	MODULO	ÁNGULO
0	0	0	0	90°
0,25	0,058823529	0,235294118	0,242535625	75,96375653
0,5	0,2	0,4	0,447213595	63,43494882
1	0,5	0,5	0,707106781	45
2	0,8	0,4	0,894427191	26,56505118
4	0,941176471	0,235294118	0,9701425	14,03624347
Infinito	1	0	1	0

MÉTODO GRÁFICO:

CONSIGNA 1: Debemos identificar en la F(p) los ceros y los polos

$$F_{(P)} = Kcte \times \frac{(P + Z_1) \times (P + Z_2) ... \times (P + Z_N)}{(P + P_1) \times (P + P_2) ... \times (P + P_N)} \to F_{(P)} = \frac{P}{P + 1}$$

MÉTODO GRÁFICO:

CONSIGNA 1: Debemos identificar en la F(p) los ceros y los polos

$$F_{(P)} = Kcte \times \frac{(P + Z_1) \times (P + Z_2) ... \times (P + Z_N)}{(P + P_1) \times (P + P_2) ... \times (P + P_N)} \to F_{(P)} = \frac{P}{P + 1}$$

ANÁLISIS Y CONCLUSIONES: $P = j\omega = 0$ **CIRCUITO ABIERTO** CIRCUITO **FUNCIÓN TRANSFORMADA** = 0**E**OUT < 1 k Ohm EOUT = 0 [Volts] DIAGRAMA POLAR → PLANO F(p)

ANÁLISIS Y CONCLUSIONES:

EL DIAGRAMA INDICA QUE EL CIRCUITO ES ADELANTADOR DE FASE PUES LOS ÁNGULOS DE LOS VECTORES SON TODOS POSITIVOS

$$F_{(P)} = \frac{E_{OUT(P)}}{E_{IN(P)}} = \frac{P}{(P+1)}$$

Y ... "IMAGINANDO" LA POSICIÓN DE LOS CEROS Y POLOS DE LA F(p)

CIRCUITO QUE ES : ADELANTADOR DE FASE . RECORDAR :

FASE = Σ DE LOS ANGULOS DE LOS CEROS - Σ DE LOS ANGULOS DE LOS POLOS

