<u>3-Sum</u>
input: a1,, an, C
output: find i, i, k s.t. a; taj tak = c or report "none"
1: enumerate i, j, k and check.
$ = O(n^3)$
2. C-di-di=ax ax ax ax ax \(\alpha_1 \)
O sort Denumerate : 3 perform binary search for Ole
O(nlogn) $O(n^2)$ $O(\log n)$
time = O(n2logn + nlogn)
$= O(n^2/\omega n)$
3: ai + aj = c - ax let c-ax = b
generate k
2-sum problem] i, i s.t. ai+aj=b
Claim: sorted, 2-sum solved in O(n) time
=) time = $O(n \cdot n + Nayn) = O(n^2)$ b = 1 - sum fort $total$
1) sort (2) 2-sum (3) check b once O(n) O(n)

T(n): time to sort n numbers $T(n) = \lambda T(\frac{h}{2}) + Cn$ $T(n) = \lambda T(\frac{h}{2}) + Cn$

hypothesis:
$$7(n) = \text{Chlogan}$$

induction: $T(m) = 27(\frac{m}{2}) + \text{Cm}$
 $= 2(\frac{\text{Cmlog_2}}{2} \frac{m}{2}) + \text{Cm}$
 $= \text{Cm}(\log_2 m - 1) + \text{Cm}$
 $= \text{Cm}(\log_2 m)$

Why is this wrong?

hypothesis: T(n)=0(n)=cn

induction: T(m) = 2.7(m) + 0(m)

=21(cm) +cm

2 2 Cm

= 0(m)

\$ because constant gets doubled every level.

constant needs to be independent of n.

$$T(n) = 2T(\frac{n}{2}) + 1$$

hypothesis:
$$T(n) = cn - 1$$

industion: $T(m) = 2T(\frac{m}{2}) + 1$
 $= 2(\frac{cm}{2} - 1) + 1$
 $= cm - 1$

$$T(n) = \alpha \cdot T(\frac{n}{b}) + n^{c}$$

$$0>0$$
, 621 , $0>0$ constants

Size
$$\frac{n}{b}$$

Size $\frac{n}{b^2}$

$$a^{\log_b n} = n^{\log_b q}$$
 subjects

$$\frac{n}{b^{i}} = 1 \implies n = b^{i} = 1$$
 logn=logb => $i = \frac{logn}{logb} => i = logb$
levels = logbn

work

$$n^{c}$$
 $=n^{c}$
 $a(\frac{n}{b})^{c}$
 $=n^{c}(\frac{a}{b^{c}})$
 $sum_{=}n^{c}(1+r+r^{2}t-r^{\log n})$
 $a^{2}(\frac{n}{b^{2}})^{c}$
 $=n^{c}(\frac{a}{b^{c}})^{2}$
 $sum_{=}n^{c}(1+r+r^{2}t-r^{\log n})$
 $a^{3}(\frac{n}{b^{3}})^{c}$
 $=n^{c}(\frac{a}{b^{c}})^{3}$
 $=n^{c}(\frac{a}{b^{c}}$

Moster theorem