Name	Index No
School	Signature
535/1 PHYSICS PAPER 1 August 21/4 hours	A A A A A A A A A A A A A A A A A A A

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

PHYSICS

Paper 1

2hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

- This paper has two sections; A and B.
- Section A contains 40 objective type questions. You are required to write the correct answer A, B, C or D in the box on the right hand side of the question.
- Section B contains 10 structured questions. Answers to this section are to be written in the spaces provided on the question paper.
- Assurce where necessary:

 $= 10 ms^{-2}$ acceleration due to grewity, g

 $= 1000 kgm^{-3}$ density of water

 $= 13600 kgm^{-3}$ density of mercury

 $= 0.089 kgm^{-3}$

density of hydrogen $=1.29kgm^{-3}$

density of air $= 320 ms^{-1}$

speed of sound in air $= 3.0 \times 10^8 \text{ms}^{-1}$ Speed of light in Vacuum

For examiners use only

Q.41	Q.42	Q.43	Q.44	Q.45	Q.46	Q.47	Q:48	Q.49	Q.50	MCQ	Total
-											
	3173										

SECTION A (40 Marks)

Answer all questions in this section

1.	The relative density of a liquid can be measured. A. hydrometer. B. hygrometer. C. barometer. D. manometer.
2.	The effect of change in speed for light travelling from one medium to another called; A. dispersion. B. reflection. C. refraction. D. diffraction.
3.	The type of electromagnetic wave system used in a Television-remote control tool is A. ultraviolet radiation. B. gamma radiation. C. visible radiation. D. infra-red radiation.
4.	Soft sound is produced by a source which has A. high frequency. B. low frequency. C. large amplitude. D. small amplitude.
5.	Modern metallic-shinny tea flasks minimize heat loss by a process called A. conduction. B. evaporation. C. radiation. D. convection.
6.	Liquid A of density 3kgm ⁻³ and volume 4m ³ is mixed with liquid B of density equal to one-third that of liquid A. If the mass of liquid B is half that of liquid A. Calculate the density of the mixture. A. 2.0kgm ⁻³ B. 2.5kgm ⁻³ C. 3.0kgm ⁻³ D. 3.5kgm ⁻³
7.	What main electrical components are found in a 3-pin plug or 2-pin plug phone charger? A. relay and a starter. B. rectifier and transformer. C. motor and battery. D. dynamo and amplifier.

- 8. Which of the following is true?
 - A. Copper is the best conductor of heat, the best conductor of electricity and the best magnetic material.
 - B. Copper is the best conductor of heat, the best conductor of electricity and a poor magnetic material.
 - C. Steel is the best conductor of heat, the best conductor of electricity and the best magnetic material.
 - D. Steel is the best conductor of heat, the best conductor of electricity and a poor magnetic material.
- 9. Which of the following home tools operates by Fleming's right hand rule?
 - A. Generator.
 - B. Fan.
 - C. Juice blender.
 - D. Speaker.
- 10. A uniform meter rule is pivoted at 20cm mark. It is acted upon by a downward force of 4N at the 0cm mark and an upward force of 5N at the 100cm mark as shown in figure 1 below. Find the mass of the metre rule.

- A. Cakg
- B. 1.0kg
- C. 1.5kg
- D. 1.6kg
- 11. The sketch graph in figure 2 below represents motion of a motor cycle of mass 75kg moving towards a road junction. Calculate the breaking force the rider exerts on it.

12.	A nuclide of polonium $^{210}_{84}Po$ decays by emission of two alpha particles and a beta particle to produce nuclide Y. Which of the nuclides below is its final product?
	A. ²⁰² Y
	B. ²⁰² Y
	C. $\frac{203}{80}$ Y
	D. $\frac{207}{82}$ Y
13.	Which of the following are true about U.V light? (i) Has shorter wave length than visible light. (ii) Has same speed as normal light. (iii) Cannot be diffracted or refracted. (iv) Is radiated by the sun and harmful to humans. A. (i) and (iii) B. (i), iii) and (iv) C. (i), (ii) and (iv) D. (i), (iii) and (iii)
14.	When a metal sphere is dropped in a viscous liquid, it A. first accelerates and then later decelerates. B. decelerates until it stops moving. C. first accelerates until its velocity becomes constant. D. decelerates until its velocity becomes constant.
15.	An upright image can be produced by a convex mirror when the object is A. close to the mirror. B. at the focal point. C. between focal point and centre of curvature. D. at any position along the principal axis in front of the mirror.
16.	An uncalibrated thermometer is used to detect the temperature of a sick student having a temperature 40°C and its mercury thread corresponds to a length of 15cm. If the upper fixed point corresponds to a length of 30 cm, what length corresponds to the lower fixed point. A. 5cm B. 10cm C. 15cm D. 20cm
17.	Which of the following speed-time graphs represent the motion of a jumping
	frog. A. Sharper B. Sharper B.
	$C. \qquad D. \qquad \sum_{t}^{s} \qquad \Box$

23.	longitudinal wave is 350cm. Calculate its wave length. A. 5cm B. 10cm C. 15cm D. 20cm
24.	When an object is placed at a distance 1.5 times that of the focal length of a concave mirror, the image is A. virtual and diminished. B. real and diminished. C. virtual and magnified. D. real and magnified.
25.	Water at 10°C is cooled to 0°C. What happens to the trend in mass, volume and density during this change in temperature? A. The density of water decreases up to 4°C and then increases later. B. The density of water increases up to 4°C and then decreases later. C. The volume of water increases up to 4°C and then decreases later. D. The mass of water increases up to 4°C and then decreases later.
26.	The properties of liquids which make them suitable for use in car hydraulic brakes are (i) having uniform expansion. (ii) being wear resistant. (iii) having higher densities. (iv) being almost incompressible. A. (i) and (ii) B. (i), ii) and iii)
27.	C. (ii), iii) and iv) D. (i), ii) and iv) What was the cost of running four 40W lamps and three 60W lamps for 2 bours every night for 60 days, if the electric energy costed 800/= per unit? A. 32,600 /= B. 32,640/= C. 32,800/= D. 32,840/=
28.	A body of volume 0.002m ³ and density 600kgm ⁻³ floats in a given liquid with 25% of it exposed. Calculate the density of the liquid. A. 700 kgm ⁻³ B. 800 kgm ⁻³ C. 900 kgm ⁻³ D. 1000 kgm ⁻³
29.	The type of current utilized, by electronic circuit boards inside radio receivers is A. alternating current. B. direct current. C. digital current. D. analogue current

30	The type of collision that leads to the conservation of both kinetic and poenergy is	otential
,	energy is uniform collision.	
	A. non-linear collision.	Pitcher Control of the Control of th
	b. electic collision.	
	inelastic collision.	
31.	A floating body sinks deeper in water than in a given liquid, L. From this be deduced that; the density of L is greater than that of water. (i) the density of L is less than that of water. (ii) the hydrometer displaces a greater mass of water than that of L. (iii) the hydrometer displaces a greater mass of water than that of L. (i) and ii) only	s it can
	(1) and (11)	
	Calculate the frequency of the wave represented in figure 4 below if its speed	
32.	is 80ms ⁻¹ :	
	Distance	
	Fig. 4	
	2.5m	
	A. 30Hz	
	B. 40Hz	
	C. 50Hz	
	D. 60Hz	nisi.192 11 si
22	A body moves according to the velocity-time graph shown in in figure 5	' •
33.	A body moves according to the velocity time graph site was a calculate the displacement covered by the same body?	
	v(ms-1)	
	Fig. 5	
		0
	A. 17m 6 8 (s)	
	B. 19m	
	C. 21m	
	D. 23m	
34.	Calculate the glancing angle in figure 6 for a ray of light incident	
51.	onto a smooth glass surface.	
	sino di sino din gidisa santa	
	glass	
	1200° / Fig. 6	
	A. 30°	
	B. 40°	
	C. 45°	
	D. 50°	
		Turn Over

35.	 Land breeze occurs A. by conduction when cold air flows from sea to land. B. by convection when hot air flows from land to sea. C. by convection when cold air flows from land to sea. D. during the night when hot air flows from sea to land.
36.	Which of the following is true about a body moving with uniform velocity? (i) Its resultant force is zero. (ii) Its momentum is constant. (iii) Its acceleration is zero. (iv) Its resultant force is increasing. A. (i) and (ii) B. (i), ii) and (iii) C. (ii), iii) and (iv) D. (i), (iii), (iii) and (iv)
37.	In the figure 7 ; A battery P of e.m.f 6V and internal resistance 0.5Ω is connected facing another battery Q of e.m.f 3V and internal resistance r in series with a 3Ω resistor. If the current flowing is $0.6A$, find the value of r in ohms.
	Fig. 7
	A. 1.0Ω B. 1.5Ω C. 2.0Ω D. 2.5Ω
38.	Which of the following quantities are defined by only magnitude? A. mass, length and time. B. displacement, weight and time. C. energy, power and work. D. pressure, work and velocity.
39.	The correct voltage/time graph for emf fed into a factory motor is:
	A. B. VA
	C. VA. D. VA.
40.	A given radioactive material takes 12 decades for its mass to reduce by 93.75% of the original value. Find its half-life. A. 10yrs B. 20yrs C. 30yrs D. 40yrs

SECTION B (40 Marks)

Answer all questions in this section.

41.	(a)	Define the apparent weight of a body.	(01 mark)
	(b)	A metal cube of side 2cm weighs 22.4N in air. Calculate the	apparent
		weight of the cube when completely immersed in a liquid of 6 800kgm ⁻³	(03 marks)
42. (a)	Define velocity ratio.	(01 mark)
(b)	In a pulley system made of 5 wheels, an effort of 250N is us	
	(load of 1000N. Calculate: i) The mechanical advantage of the system.	(01 marks)
	()	i) The efficiency of the system.	(01½ marks)
	(i	How can the efficiency of the pulley in part (b) above	ve be increased. (1/2 marks)
			in Fraction
		and the first of the start of t	
(a)	De	fine;	
	(i)	Wave length.	(01 mark)
			(01 mark)
	(ii)	Frequency.	(01 mark)
		***************************************	m Over

43.

(b)	A was	ve source produces waves of frequency 500Hz and velocity late:	
	(i)	The wave length	(01 mark)
	(ii)	The periodic time	(01 mark)
44 (2)			
44. (a)	Wha	nt is meant by the term refractive index of a medium.	(01 mark)
(b)	of g the ang	ray of light is incident from air to a layer of water placed or glass block of uniform thickness as shown in figure 8 below refractive index of water is 1.33 and that for glass is 1.50, gle of incidence <i>i</i> from air to water and angle of refraction welling from water to glass.	calculate the
		air 410 water glass	8
	- , , - , , , , , , , , , , , , , , , ,	55.20	
45. (8	1) V	Vhat is half-life of a radioactive nuclide?	(01 mark

		A Cal	then atom initially contains 8 x 10^6 atoms. Calculate the tension atoms to decay. (Half-life of carbon is 5,600 years)	
	(0)	7.75 ?		
		Disti	nguish between potential and kinetic energy.	(02 mark)
46.	(a)			
	(b)	A blo kineti that p	ck of mass 2kg falls freely from rest through a height of c energy of the block before it hits the ground and hence oint.	its velocity at (02 marks)
				(01 mark)
<u>.</u> 47.	(a)	(i)	State Ohm's law.	
		(ii)	State one physical property that affects resistance of a sconductor.	solid (0½ mark)
	(b)		3.0V	
			Fig. 9	
	serie	s acros	each of E.M.F 1.5V and internal resistance of 0.15Ω are asset two resistors of 2Ω and 3Ω respectively as shown in fight current that is passing through the 2Ω resistor.	
			······································	
48.	(a)	Wł	nat is a step-down transformer?	(01 mark)

	(b)	A tra	nsformer has an input of 12V and an output of 240V an	id 60W. If it is (01½ marks)				
		80% (i)	efficient, calculate; The output current.	(S)				
		(-)						
		(ii)	The input current.	(01½ marks)				
49.	(a)	(i)	What is meant by a neutral point in relation to magne	etism? (01 mark)				
		(ii)	A north pole of a magnet is placed close to a wire ca into the paper as shown in figure 10 below;	rrying current				
			X N S	Fig. 10				
			Sketch the magnetic field pattern formed by this pro	cess. (01 mark)				
	(b)	List	two ways by which a magnet may lose its magnetism.	(02 marks)				
			······································	(4)				
50.	(a)	Defi	ine fundamental interval.	(01 mark)				
	(b)	Wh whe	y is a manometer always fixed besides the upper parts en determining the upper fixed point?					
				(01 mark)				
				Missing mine				
	(c)	A mercury in glass thermometer reads 2cm when inserted in pure melti- ice and when inserted in pure boiling water, the mercury expands by 5 times. Calculate how many times the mercury will expand when it is						
			erted in a liquid of temperature 50°C.	(02 marks				
		• • • • •	· · · · · · · · · · · · · · · · · · ·	20 16 15 VA				