On f-Generic Types in Presburger Arithmetic

wu

May 31, 2023

Contents

1	Def	inable types and f-generics in presburger arithmetic	1
	1.1	Definable groups and f -generics	1
	1.2	End extensions of discrete orders	2
	1.3	Presburger arithmetic	4
	1.4	Definable types in Presburger arithmetic	4
	1.5	f-generics in Presburger arithmetic	6
2	Introduction and Preliminaries		7
	2.1	Introduction	7
	2.2	Preliminaries	8
3	Main results		12
	3.1	The f -generics of G^2	12
	3.2	An equivalence relation on homogeneous linear functions .	14
4	Pro	olem	18

1 Definable types and f-generics in presburger arithmetic

Link

1.1 Definable groups and *f*-generics

Presburger arithmetic: the complete first-order theory of the ordered group of integers $(\mathbb{Z},+,<,0)$.

Let T be a complete theory, with a monster model M. We also work with a larger monster model M^* in which we can take realizations of global types over M.

Suppose G=G(M) is a definbale group in T, let $S_G(M)$ denote the space of global types containing the formula defining G. Given $p\in S_G(M)$ and $g\in G$, we let gp denote the translate $\{\varphi(g^{-1}x):\varphi(x)\in p\}$ of p.

Definition 1.1. Let $p \in S_G(M)$ be a global G-type.

- 1. p is **definable (over** G) if, for any formula $\varphi(\bar{x}, \bar{y})$ there is a formula $d_p[\varphi](\bar{y})$ over G s.t., for any $\bar{b} \in G$, $\varphi(\bar{x}, \bar{b}) \in p$ iff $G \models d_p[\varphi](\bar{b})$
- 2. p is f-generic if, for every formula $\phi(x) \in p$ there is a small model M_0 s.t. no translate $\phi(gx)$ of $\phi(x)$ forks over M_0
- 3. p is **strongly** f**-generic** if there is a small model M_0 s.t. no translate gp of p forks over M_0
- 4. p is **definably** f**-generic** if there is a small model M_0 s.t. every translate gp is definable over M_0

1.2 End extensions of discrete orders

Assume \mathcal{L} contains a symbol < and T extends the theory of linear orders. We say that T is **definably complete** if any nonempty definable subset of M, with an upper bound in M, has a least upper bound in M, and similarly for lower bounds. Note that this does not depend on the model M.

If T is definably complete, and we further assume that M is discretely ordered by <, then it follows that definable subsets of M contain their least upper bound and greatest lower bound. We will say T is **discretely ordered** to indicate that the ordering < on M is discrete.

In a totally ordered structure, algebraic closure and definable closure coincide.

Given a tuple $\bar{a} \in (M^*)^n$, we let $M(\bar{a}) = \operatorname{dcl}(M\bar{a})$.

Definition 1.2. Given subsets $A \subseteq B$ of M^* , we say B is an **end extension** of A if, for all $b \in B \setminus A$, either b < a for all $a \in A$ or b > a for all $a \in A$.

Lemma 1.3. Suppose T is discretely ordered and definably complete. Fix a non-isolated type $p \in S_n(M)$ and a realization \bar{a} in M^* . If $M(\bar{a})$ is not an end extension of M then

1. p is not definable

2. p has at least two distinct coheirs to M^*

Proof. Since $M(\bar{a})$ is not an end extension of M, we may fix an M-definable function $f:(M^*)^n\to M^*$, and $m_1,m_2\in M$ s.t. $f(\bar{a})\notin M$ and $m_1< f(\bar{a})< m_2$. Define the upwards closed set

$$X = \{ m \in M : p \vDash f(\bar{a}) < m \}$$

Then m_1 and m_2 witness that X is nonempty and not all of M. If X has a minimal element m_0 and m_0^- is the immediate predecessor of m_0 in M, then we must have $m_0^- \leq f(\bar{a}) < m_0$ and so $f(\bar{a}) = m_0^- \in M$, which is a contradiction. So X has no minimal element, and therefore cannot be M-definable. This proves part 1.

Now define

$$C = \{c \in M^* : m < c < m' \text{ for all } m \in M \setminus X \text{ and } m' \in X\}$$

Then $f(\bar{a}) \in C$, and so $C \neq \emptyset$. We define the following partial types over M^* :

$$\begin{split} q_1 &= p \cup \{m < f(\overline{x}) < c : m \in M \smallsetminus X, c \in C\} \\ q_2 &= p \cup \{c < f(\overline{x}) < m : c \in C, m \in X\} \end{split}$$

Note that q_1 and q_2 are distinct since $C \neq \emptyset$. If we can show that they are each finitely satisfiable in M, then they will extend to distinct coheirs of p, which proves part 2. So we show q_1 is finitely satisfiable in M.

Fix a formula $\varphi(\bar{x}) \in p$ and some $m \in M \smallsetminus X$ (which exists since X is not all of M) . Set

$$A = \{ m' \in f(\varphi(M^n)) : m < m' \}$$

Then A is an M-definable subset of M, which is nonempty since $\bar{a} \in A(M^*)$. Since A is bounded below by m, we may fix a minimal element $m_0 \in A$. By elementarity, m_0 is the minimal element of $A(M^*)$. In particular, $m_0 < f(\bar{a})$, and so $m_0 \in M \setminus X$. In particular, $m_0 < f(\bar{a})$, and so $m_0 \in M \setminus X$. By definition of A, $m_0 = f(\bar{a}')$ for some $\bar{a}' \in M^n$ s.t. $M \models \varphi(\bar{a}')$. Altogether, we have $M \models \varphi(\bar{a}')$ and $m < f(\bar{a}') < c$ for any $c \in C$.

Suppose T is discretely ordered and definably complete. If, moreover, $\operatorname{dcl}(\emptyset)$ is nonempty, then T has definable Skolem functions by picking out either the maximal element of a definable set or the least element greater than some \emptyset -definable constant. It follows that $M(\bar{a})$ is the unique prime model over $M\bar{a}$.

1.3 Presburger arithmetic

Let $T = \text{Th}(\mathbb{Z}, +, <, 0)$. Let G denote a sufficiently saturated model of T, and let G^* denote a larger elementary extension of G, which is sufficiently saturated w.r.t. G. We treat types over G as *global types*, but use G^* as an even larger monster model in which we can realize such types.

Note that T satisfies the properties discussed above: it is discretely ordered and definably complete, with $\operatorname{dcl}(\emptyset)$ nonempty. Therefore, for $\bar{a} \in G^*$, $G(\bar{a})$ is the prime model over $G\bar{a}$. Recall that T has quantifier elimination in the expanded language $\mathcal{L}^* = \{+,<,0,1,(D_n)_{n<\omega}\}$ where D_n is a unary predicate interpreted as $n\mathbb{Z}$. Consequently, given $\bar{a} \in G^*$, $G(\bar{a})$ is the divisible hull of the subgroup of G^* generated by $G\bar{a}$.

Given $a\in G^*$ and n>0, let $[a]_n\in\{0,1,\dots,n-1\}$ be the unique remainder of a modulo n. Given $\bar k\in\mathbb Z^n$, we let $s_{\bar k}(\bar x)$ denote the definable function $\bar x\mapsto k_1x_1+\dots+k_nx_n$

Proposition 1.4. 1. Let $G_0 \prec G$ be a small model, and fix $a, b \in G$

- (a) If $G_0 < a < b$ then there is some $c \in G$ s.t. b < c and $a \equiv_{G_0} c$
- (b) If $a < b < G_0$ then there is some $c \in G$ s.t. c < a and $b \equiv_{G_0} c$
- 2. For any $p \in S_n(G)$ and $\bar{a} \models p$, if $G(\bar{a})$ is not an end extension of G then there are $h_1, h_2 \in G$ and $\bar{k} \in \mathbb{Z}^n$ s.t. $h_1 < s_{\bar{k}}(\bar{a}) < h_2$ and $s_{\bar{k}}(\bar{a}) \notin G$.
- Proof. 1. By quantifier elimination and saturation of G it is enough to fix an integer N>0 and find $c\in G$ s.t. b< c and $[c]_n=[a]_n$ for all $0< n\leq N$. To find such an element, simply note that $\bigcap_{0< n\leq N} nG+[a]_n$ is nonempty as it contains a and is therefore a single coset mG+r for some $m,r\in \mathbb{Z}$ (chinese remainder theorem). So we may choose $c=b-[b]_m+m+r$
 - 2. By assumption, there is $b \in \operatorname{dcl}(G\bar{a}) \setminus G$ and $h'_1, h'_2 \in G$ s.t. $h'_1 < b < h'_2$. By the description of definable closure in Presburger arithmetic, there are integers $r \in \mathbb{Z}^+$, $\bar{k} \in \mathbb{Z}^n$ and some $h_0 \in G$ s.t. $rb = s_{\bar{k}}(\bar{a}) + h_0$. Now let $h_i = rh'_i h_0$.

1.4 Definable types in Presburger arithmetic

Consider the situation where G is the monster model M, and the definable group is $G^n = \mathbb{Z}^n(G)$, for a fixed n > 0, under coordinate addition. In particular.

4

Definition 1.5. A type $p \in S_n(G)$ is **algebraically independent** if for all (some) $\bar{a} \models p$, $a_i \notin G(\bar{a}_{\pm i})$ for all $1 \le i \le n$.

Lemma 1.6. Suppose $p \in S_n(G)$ is algebraically independent and for all (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G. Then p is definable over \emptyset .

Proof. Let \mathbb{Z}_*^n denote $\mathbb{Z}^n \setminus \{0\}$. By quantifier elimination, it suffices to give definitions for atomic formulas of the following forms:

- $\varphi_1(\bar{x},\bar{y}):=(s_{\bar{k}}(\bar{x})=t(\bar{y}))$, where $\bar{k}\in\mathbb{Z}_*^n$ and $t(\bar{y})$ is a term in variables \bar{y} .
- $\begin{array}{l} \bullet \ \ \varphi_2(\bar x,\bar y):=(s_{\bar k}(\bar x)>t(\bar y)) \text{, where } \bar k\in\mathbb Z^n_* \text{ and } t(\bar y) \text{ is a term in variables } \bar y \end{array}$
- $\varphi_3(\bar x,\bar y):=([s_{\bar k}(\bar x)+t(\bar y)]_m=0)$, where $\bar k\in\mathbb Z^n_*$, $m\in\mathbb Z^+$, and $t(\bar y)$ is a term in variables $\bar y$.

Fix $\bar{a} \vDash p$ and fix $\bar{k} \in \mathbb{Z}_*^n$. Since p is algebraically independent, it follows that $s_{\bar{k}}(\bar{a}) \notin G$. Since $G(\bar{a})$ is an end extension of G, we may partition $\mathbb{Z}_*^n = S^+ \cup S^-$ where

$$S^+ = \{\bar{k}: s_{\bar{k}}(\bar{a}) > G\} \quad \text{ and } \quad S^- = \{\bar{k}: s_{\bar{k}}(\bar{a}) < G\}$$

Note that S^+ and S^- depends only on p, and not choice of realization \bar{a} . Moreover, for any $\bar{k} \in \mathbb{Z}^n$ and m>0, the integer $[s_{\bar{k}}(\bar{a})]_m \in \{0,\dots,m-1\}$ depends only on p. We now give the following definitions for p (note that they are formulas over \emptyset):

$$\begin{split} d_p[\varphi_1](\bar{y}) &:= (y_1 \neq y_1) \\ d_p[\varphi_2](\bar{y}) &:= \begin{cases} y_1 = y_1 & \bar{k} \in S^+ \\ y_1 \neq y_1 & \bar{k} \in S^- \end{cases} \\ d_p[\varphi_3](\bar{y}) &:= ([t(\bar{y}) + [s_{\bar{k}}(\bar{a})]_m]_m = 0) \end{split}$$

Theorem 1.7. Given $p \in S_n(G)$, TFAE

- 1. p is definable over G
- 2. p has a unique coheir to G^*
- 3. For any (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G

Proof. $1 \Rightarrow 2$: True for any NIP theory

 $2 \Rightarrow 3$: 1.3

 $3\Rightarrow 1$: We may assume p is non-isolated. We proceed by induction on n. If n=1 then p is algebraically independent since it is non-isolated, and so we apply Lemma 1.6. Assume the result for n'< n and fix $p\in S_n(G)$. If p is algebraically independent then we apply Lemma 1.6. So assume, W.L.O.G., that we have $\bar{a}\vDash p$ with $a_n\in G(\bar{a}_{< n})$. Let $q=\operatorname{tp}(\bar{a}_{< n}/G)\in S_{n-1}(G)$. By assumption, $G(\bar{a}_{< n})=G(\bar{a})$ is an end extension of G, and so g is definable by induction. Fix a G-definable function $f:(G^*)^{n-1}\to G^*$ s.t. $f(\bar{a}< n)=a_n$. Fix a formula $\varphi(\bar{x},\bar{y})$ and define

$$\psi(\bar{x}_{< n}, \bar{y}) := \varphi(\bar{x}_{< n}, f(\bar{x}_{< n}), \bar{y})$$

Let $d_q[\psi](\bar{y})$ be an \mathcal{L}_G -formula s.t., for any $\bar{b} \in G$, $\psi(\bar{x}_{< n}, \bar{b}) \in q$ iff $G \models d_q[\psi](\bar{b})$. Then for any $\bar{b} \in G$, we have

$$\varphi(\bar{x},barb) \in p \Leftrightarrow G^* \vDash \varphi(\bar{a},\bar{b}) \Leftrightarrow G^* \vDash \psi(\bar{a}_{< n},\bar{b}) \Leftrightarrow G \vDash d_a[\psi](\bar{b})$$

1.5 *f*-generics in Presburger arithmetic

Proposition 1.8. Any f-generic $p \in S_n(G)$ is algebraically independent

Proof. Suppose p is not algebraically independent. W.L.O.G., fix $\bar{a} \vDash p$ with $a_n \in G(\bar{a}_{< n})$. Then there are $r, k_1, \dots, k_{n-1} \in \mathbb{Z}$ and $b \in G$ s.t. $ra_n = b + k_1 a_1 + \dots + k_{n-1} a_{n-1}$. Consider the formula $\phi(\bar{x};b) := rx_n = b + k_1 x_1 + \dots + k_{n-1} x_{n-1}$, and note that $\phi(\bar{x};b) \in p$. We fix a small model $G_0 \prec G$, and find a translate of $\phi(\bar{x};b)$ that forks over G_0 .

Pick $c\in rG$ s.t. $b-c\notin G_0$, and set $g=\frac{c}{r}$. Let $\bar{g}=(0,\dots,0,g)$ and set $\psi(\bar{x};b,\bar{g}):=\phi(\bar{x}+\bar{g};b)$. By construction, we may find automorphism $\sigma_i\in \operatorname{Aut}(G/G_0)$ s.t. $\sigma_i(b-c)\neq\sigma_j(b-c)$ for all $i\neq j$. (b-c) is not almost G_0 -definable, therefore it has infinite orbits) Setting $b_i=\sigma_i(b)$ and $\bar{g}_i=\sigma_i(\bar{g})$, we have that $\{\psi(\bar{x};b_i,\bar{g}_i):i<\omega\}$ is 2-inconsistent. So $\psi(\bar{x};b,\bar{g})$ forks over G_0

Theorem 1.9. If $p \in S_n(G)$ is algebraically independent, TFAE

- 1. p is f-generic
- 2. p is strongly f-generic
- 3. p is definable f-generic

- 4. p is definable over G
- 5. p is definable over \emptyset
- 6. For any (some) $\bar{a} \models p$, $G(\bar{a})$ is an end extension of G

Proof. $4 \Leftrightarrow 6$: 1.7 $6 \Rightarrow 5$: 1.6 $5 \Rightarrow 4$: trivial

 $1\Rightarrow 6\text{: Suppose }G(\bar{a})\text{ is not an end extension of }G,\text{ and fix }\bar{k}\in\mathbb{Z}^n\text{ and }h_1,h_2\in G\text{ s.t. }s_{\bar{k}}(\bar{a})\notin G\text{ and }h_1< s_{\bar{k}}(\bar{a})< h_2\text{. Consider the formula }\phi(\bar{x};h_1,h_2):=h_1< s_{\bar{k}}(\bar{x})< h_2,\text{ and note that }\phi(\bar{x};h_1,h_2)\in p.\text{ We fix a small model }G_0\prec G,\text{ and find a translate of }\phi(\bar{x};h_1,h_2)\text{ that forks over }G_0\text{. W.L.O.G., assume }b>0\text{ and also }h_1>0\text{. Let }k_i\text{ be a nonzero element of the tuple }\bar{k}\text{. By saturation of }G,\text{ we may find }g\in G\text{ s.t. }k_ig>c\text{ for all }c\in G_0\text{. Let }\bar{g}\in G^n\text{ be s.t. }g_j=0\text{ for all }j\neq i\text{ and }g_i=g\text{. For }t\in\{1,2\},\text{ set }c_t=h_t+k_ig\in G\text{ . Then }\phi(\bar{x}-\bar{g};h_1,h_2)\text{ is equivalent to }c_1< s_{\bar{k}}(\bar{x})< c_2\text{. Since }c< c_1\text{ for all }c\in G_0\text{, by Proposition 1.4, that }\phi(\bar{x}-\bar{g};h_1,h_2)\text{ forks over }G_0\text{, as desired. (By increase }g\text{, we can show that }\phi(\bar{x};h_1,h_2;g_i)\text{) is 2-inconsistent or something. So }p\text{ is not }f\text{-generic.}$

 $6\Rightarrow 3$: Suppose $G(\bar{a})$ is an end extension of G. For any $\bar{g}\in G^n$, we have $G(\bar{a})=G(\bar{g}+\bar{a})$, and $\bar{g}p$ is still algebraically independent. Therefore, for any $\bar{g}\in G^n$, we use Lemma 1.6 to conclude that $\bar{g}p$ is definable over \emptyset . \square

2 Introduction and Preliminaries

2.1 Introduction

Marcin Petrykowski gave a nice description of f-generic types in groups $(R,+)\times(R,+)$ with $(R,<,+,\cdot)$ with $(R,<,+,\cdot)$ an o-minimal expansion of real closed field. An analogs question is: What are the f-generic types of G^n , the product of n copies of ordered additive groups $(\mathbb{Z},+,<)$ of integers.

Let M be an elementary extension of $(\mathbb{Z},+,<,0)$, $\mathbb{M} > M$ a monster model. G denotes the additive group $(\mathbb{M},+)$, $S_G(M)$ the space of complete types over M extending the formula $'x \in G'$. G^0 is the definable connected component of G. Namely, G^0 is the intersection of all definable subgroups of G with finite index.

Let L_n denote the space of homogeneous n-ary $\mathbb Q$ -linear functions. For $f,g\in L_n$ and $\alpha,\beta\in \mathbb M^n$ s.t. $\alpha\in \mathrm{dom}(f)$ and $\beta\in \mathrm{dom}(g)$, by $f(\alpha)\ll_M g(\beta)$ we mean that for all $a,b\in M$ and $k,l\in \mathbb N^+$, $kf(\alpha)+a< lg(\beta)+b$. By $f(\alpha)\sim_M g(\beta)$ we mean that neither $\mathrm{v} f(\alpha)\ll_M g(\beta)$ nor $g(\beta)\ll_M f(\alpha)$. Let

 $f_0,\dots,f_m\in L_n\text{, we say }0\ll_M f_1(\alpha)\ll_M\dots\ll_M f_m(\alpha)\text{ is a maximal positive chain of }\alpha\text{ over }M\text{ if for any }g\in L_n\text{ with }g(\alpha)>0\text{, neither }f_m(\alpha)\ll_M g(\alpha)\text{ nor }g(\alpha)\ll_M f_1(\alpha)$

Theorem 2.1. Let $M > \mathbb{Z}$, $\alpha = (\alpha_1, \dots, \alpha_n) \in (G^n)^0$. Then there exists a finite subset $\{f_0, \dots, f_m\} \subset L_n$ s.t. $f_0(\alpha) = 0 \ll_M f_1(\alpha) \ll_M \dots \ll_M f_m(\alpha)$ is the maximal positive chain of α over M. If α realizes an f-generic type $p \in S_{G^n}(M)$ then for every $\beta \in G^0$, $p = \operatorname{tp}(\alpha, \beta/M) \in S_{G^{n+1}}(M)$ is an f-generic type iff one of the following holds:

- 1. $f_m(\alpha) \ll_M \beta$ or $\beta \ll_M -f_m(\beta)$
- 2. there is i with $0 \le i < m$ and $g \in L_n$ s.t. $f_i(\alpha) \ll_M \epsilon(\beta g(\alpha)) \ll_M f_{i+1}(\alpha)$ where $\epsilon = \pm 1$
- 3. there is i with $1 \leq i \leq m$ and $g \in L_n$ s.t. for all $h \in L_n$ with $h(\alpha) \sim_M f_i(\alpha)$ there is an irrational number $r_h \in \mathbb{R} \setminus \mathbb{Q}$ s.t. $q_1h(\alpha) < \beta g(\alpha) < q_2h(\alpha)$ for all $q_1, q_2 \in \mathbb{Q}$ with $q_1 < r_h < q_2$

2.2 Preliminaries

Definition 2.2. 1. A definable subset $X \subseteq G$ is f-generic if for some/any model M over which X is defined and any $g \in G$, gX does not divide over M. Namely, for any M-indiscernible sequence $(g_i:i<\omega)$ with $g=g_0,\{g_iX:i<\omega\}$ is consistent.

Remark. The class of all non-weakly generic formulas forms an ideal. So any weakly generic type $p \in S_G(M)$ has a global extension $\bar{p} \in S_G(M)$ which is weakly generic.

T is said to be (or have) NIP if for any indiscernible sequence $(b_i:i<\omega)$ formula $\psi(x,y)$ and $a\in\mathbb{M}$, there is an eventual truth value of $\psi(a,b_i)$ as $i\to\infty$.

A type definable over A subgroup $H \leq G$ has bounded index if $|G/H| < 2^{|T|+|A|}$. For groups definbale in NIP structures, the smallest type-definable subgroup G^{00} exists. Namely, the intersection of all type-definable subgroup of bounded index still has bounded index. We call G^{00} the **type-definable connected component** of G. Another model theoretic invariant is G^0 , called the definably-connected component of G, which is the intersection of all definable subgroup of G of finite index.

The Keisler measure over M on X, with X a definable set over M, is a finitely additive measure on the Boolean algebra of definable subsets of X over M.

A definable group G is **definably amenable** if it admits a global (left) G-invariant probability Keisler measure

Fact 2.3. Assuming NIP, a nip group G is definably amenable iff it admits a global type $p \in S_G(\mathbb{M})$ with bounded G-orbit.

Fact 2.4. For a definable amenable NIP group G, we have

- weakly generic definable subsets, formulas and types coincide with f-generic definable subsets, formulas, and types, respectively
- $p \in S_G(\mathbb{M})$ is f-generic iff it has bounded G-orbit
- $p \in S_G(\mathbb{M})$ is f-generic iff it is G^{00} -invariant
- A type-definable subgroup H fixing a global f-generic type is exactly G^{00}

Remark. Assuming that G is definable amenable NIP group. By Remark 2.2, we see that any f-generic $p \in S_G(M)$ has an f-generic global extension $\bar{p} \in S_G(\mathbb{M})$

Assume that $T=\operatorname{Th}(\mathbb{Z},+,\{D_n\}_{n\in\mathbb{N}^+},<,0)$ is the first order theory of integers in Presburger language $L_{Pres}=(+,\{D_n\}_{n\in\mathbb{N}^+},<,0)$ where each D_n is a unary predicate symbol for the set of elements divisible by n. \mathbb{M} is the monster model of T.

T has quantifier elimination and cell decomposition.

Definition 2.5. We call a function $f:X\subseteq M^m\to M$ **linear** if there is a constant $\gamma\in M$ and integers a_i , $0\le c_i< n_i$ for $i=1,\dots,m$ s.t. $D_{n_i}(x_i-c_i)$ and

$$f(x) = \sum_{1 \leq i \leq m} a_i(\frac{x_i - c_i}{n_i}) + \gamma$$

for all $x=(x_1,\ldots,x_m)\in X$. We call f **piecewise linear** if there is a finite partition $\mathcal P$ of X s.t. all restrictions $f|_A$, $A\in \mathcal P$ are linear.

Note that $x \in \operatorname{dom}(f)$ iff $D_{n_i}(x_i - c_i)$ for each i.

Definition 2.6. • A (0)-cell is a point $\{a\} \subset M$.

• An (1)-cell is a set with infinite cardinality of the form

$$\{x\in M|a\square_1x\square_2b,D_n(x-c)\}$$

with $a, b \in M$, integers $0 \le c < n$ and \square_i either \le or no condition.

• Let $i_j \in \{0,1\}$ for $j=1,\dots,m$ and $x=(x_1,\dots,x_m)$. A $(i_1,\dots,i_m,1)$ -cell is a set A of the form

$$\{(x,t) \in M^{m+1} \mid x \in D, f(x) \square_1 t \square_2 g(x), D_n(t-c)\}$$

with $D=\pi_m(A)$ an (i_1,\ldots,i_m) -cell. $f,g:D\to M$ linear functions, \square_i either \leq or no condition and integers $0\leq c< n$ s.t. the cardinality of the fibers $A_x=\{t\in M\mid (x,t)\in A\}$ can not be bounded uniformly in $x\in D$ by an integers.

• An $(i_1, \dots, i_m, 0)$ -cell is a set A of the form

$$\{(x,t)\in M^{m+1}\mid x\in D, t=g(x)\}$$

with $g:D\to M$ a linear function and $D\in M^m$ an (i_1,\dots,i_m) -cell

Fact 2.7 ([?]Cell Decomposition Theorem). Let $X \subset M^m$ and $f: X \to G$ be definable. Then there exists a finite partition \mathcal{P} of X into cells, s.t. the restriction $f|_A: A \to M$ is linear for each cell $A \in \mathcal{P}$. Moreover, if X and f are S-definable, then the parts A can be taken S-definable.

By the Cell Decomposition Theorem, we conclude that every definable subset of M^n is a finite union of cells. So every definable subset $X\subseteq M$ is a finite union of points and intervals mod some $n\in\mathbb{N}$. This implies that T has NIP.

From now on, we assume that $G=(\mathbb{M},+)$ is the additive group of the Presburger arithmetic. Namely, G is defined by the formula "x=x", $G=\mathbb{M}$ as a set, and G(M)=M for any $M\prec \mathbb{M}$. For any n-tuple $x=(x_1,\ldots,x_n)$, by $D_m(x)$ we mean $\bigwedge_{1\leq i\leq n}D_m(x_i)$. For any $\alpha\in \mathbb{M}$, and $A\subseteq \mathbb{M}$, by $\alpha>A$ we mean $\alpha>a$ for all $a\in \operatorname{acl}(A)$.

 $\operatorname{dcl}(A) = \operatorname{acl}(A)$ since $\mathbb M$ is a linear order If $a \in \operatorname{acl}(A)$, then suppose $\varphi(\mathbb M)$ is finite, then $\varphi(\mathbb M)$ lies in some finite interval in A

Fact 2.8. For every $n \in \mathbb{N}$

- G^n is definably amenable;
- \bullet the type-definable connected component of G^n is $\bigcap_{m\in\mathbb{N}^+}D_m(\mathbb{M}^n)$

Proof. Let $x=(x_1,\dots,x_n)$ be an n-tuple. Let $\Pi(x)$ be the partial type of form

$$\begin{split} \{x_1 > \mathbb{M}\} \wedge \{x_2 > \operatorname{dcl}(\mathbb{M}, x_1)\} \wedge \dots \\ \wedge \{x_n > \operatorname{dcl}(\mathbb{M}, x_1, \dots, x_{n-1})\} \wedge \{D_m(x) : m \in \mathbb{N}^+\} \end{split}$$

By the cell decomposition theorem, and induction on n, it is easy to see that Π determines a unique type $p \in S_{G^n}(\mathbb{M})$. Moreover, Π is invariant under $\bigcap_{m \in \mathbb{N}^+} D_m(\mathbb{M}^n)$.

Since $D_m(\mathbb{M}^n)$ is a definable subgroup of G^n of finite index, $G^{00} \leq \bigcap_{m \in \mathbb{N}^+} D_m(\mathbb{M}^n)$. Thus p is G^{00} -invariant and hence has a bounded orbit.

By Fact 2.3 G^n is definably amenable and $G^{n00} = \bigcap_{m \in \mathbb{N}^+} D_m(\mathbb{M}^n)$

Corollary 2.9. $G^{n0} = G^{n00}$ for all $n \in \mathbb{N}^+$.

Remark. • G^0 is a densely linear ordered divisible abelian group, hence is isomorphic to an ordered vector space over \mathbb{Q} .

• For every $n \in \mathbb{N}^+$, $(G^0)^n = (G^n)^0$

Proof. divisibility and abelian is trivial. For any $a, b \in G^0$, $\frac{a+b}{2} \in G^0$.

Fact 2.10. Suppose that f is an M-definable function from $X \subseteq \mathbb{M}^n$ to $Y \subseteq \mathbb{M}$. Then for any $\alpha \in (G^0)^n$ there are $q_1, \ldots, q_n \in \mathbb{Q}$ and $a \in M$ s.t. $f(\alpha) = q_1\alpha_1 + \cdots + q_n\alpha_n + a$

Proof. By Cell Decomposition we may assume f is linear. Then apply remark 2.2, $\alpha \in (G^n)^0$, therefore $\alpha_i \in G^0$ and we don't need the c_i .

Definition 2.11. We call the function f of the form $q_1x_1+\dots+q_nx_n+a$ with $q_1,\dots,q_n\in\mathbb{Q}$ and $a\in M$ an n-ary \mathbb{Q} -linear function over M. If a=0, we call f a **homogeneous** n-ary \mathbb{Q} -linear function. By $L_n(M)$ we mean the space of all n-ary \mathbb{Q} -linear functions over M, and L_n the space of all homogeneous n-ary \mathbb{Q} -linear functions.

It is easy to see that any $f\in L_n(M)$ is M-definable, and there is a natural number m s.t. $D_m(\mathbb{M}^n)\subseteq \mathrm{dom}(f)$ (common factor). In particular, $(G^0)^n\subseteq \mathrm{dom}(f)$. By Fact 2.7 and Fact 2.10 we conclude that:

Corollary 2.12. If $\alpha = (\alpha_1, ..., \alpha_n) \in (G^0)^n$, then for any $\phi(x_1, ..., x_n) \in \operatorname{tp}(\alpha/M)$ there is a formula $\psi(x_1, ..., x_n) \in \operatorname{tp}(\alpha/M)$ of the form

$$\theta(x_1,\ldots,x_{n-1}) \wedge D_m(x_n) \wedge (f_1(x_1,\ldots,x_{n-1}) \square_1 x_n \square_2 f_2(x_1,\ldots,x_{n-1}))$$

with $m \in \mathbb{N}$, $\theta(M)$ a cell, $f_i \in L_{n-1}(M)$, and \square_i either \leq or no condition, s.t. $M \models \forall x (\psi(x) \rightarrow \phi(x))$.

Remark. There are only 2 f-generic types contained in every coset of G^0 . More precisely, for any model M,

$$\begin{split} p^+(x) &= \{D_n(x) \mid n \in \mathbb{N}^+\} \cup \{x > a \mid a \in M\} \\ p^-(x) &= \{D_n(x) \mid n \in \mathbb{N}^-\} \cup \{x < a \mid a \in M\} \end{split}$$

Then every f-generic type over M is one of G(M)-translates of p^+ or p^- .

3 Main results

3.1 The f-generics of G^2

Let $\mathbb M$ be the saturated model of $\mathrm{Th}(\mathbb Z,+,D_n,<,0,1)_{n\in\mathbb N+}$, T the theory of Presburger Arithmetic.

Proposition 3.1. For any $M > \mathbb{Z}$, the f-generic type $\operatorname{tp}(\alpha, \beta/M) \in S_{G^2}(M)$, with $\alpha, \beta \in G^0$, has one of the following forms:

- $\beta > \operatorname{dcl}(M, \alpha) \ (+\infty \text{-type})$
- $\beta < \operatorname{dcl}(M, \alpha) (-\infty type)$
- there is some $q \in \mathbb{Q}$ s.t. $q\alpha + m < \beta < (q + \frac{1}{n})\alpha$ for all $m \in M$ and $n \in \mathbb{N}$ $(q^+$ -type)
- there is some $q \in \mathbb{Q}$ s.t. $(q \frac{1}{n})\alpha < \beta < q\alpha + m$ for all $m \in M$ and $n \in \mathbb{N}$ $(q^-$ -type)
- there is some $r \in \mathbb{R}$ s.t. $q_1 \alpha < \beta < q_2 \alpha$ for all $q_1, q_2 \in \mathbb{Q}$ with $q_1 < r < q_2$ $(r^0$ -type)

Proof. Let $p=\operatorname{tp}(\alpha,\beta/M)$ be a f-generic type which contained in $(G^2)^0$. By the cell decomposition, we may assume that every formula $\phi(x,y)$ in p is of the form

$$D_n(x) \wedge (a < x) \wedge D_n(y) \wedge (f_1(x) \square_1 y \square_2 f_2(x))$$

with $n\in\mathbb{N}$, $a\in M$, $f_i:D_n(M)\to M$ linear, and \square_i either \leq or no condition.

If every formula in p contains a cell of the form $D_n(x)\wedge D_n(y)\wedge f_1(x)\leq y$, it's then a $+\infty$ -type

Similar for $-\infty$ -type.

Otherwise there are linear functions $f_1(x)=q_1x+b_1$ and $f_2(x)=q_2x+b_2$, with $q_1,q_2\in\mathbb{Q}$ and $b_1,b_2\in M$ s.t. the cell

$$D_n(x) \wedge (a < x) \wedge D_n(y) \wedge (f_1(x) \le y \le f_2(x))$$

is contained in p, where both nq_1 and nq_2 are some integers. We call the above cell a (n,a,q_1,q_2) -cell.

Let

```
\begin{split} Q_1 &= \{t \in \mathbb{Q}: \text{there is an } (n,a,t,q_2)\text{-cell which is contained in } p(x,y)\} \\ Q_2 &= \{t \in \mathbb{Q}: \text{there is an } (n,a,q_1,t)\text{-cell which is contained in } p(x,y)\} \end{split}
```

Then both Q_1 and Q_2 are nonempty.

Claim: (Q_1, Q_2) is a cut of \mathbb{Q}

Proof. Clearly $q_1 \leq q_2$ whenever $q_1 \in Q_1$ and $q_2 \in Q_2$. Otherwise p is inconsistent.

By Remark ref:1.5, let $\bar{p} \in S_{G^2}(\mathbb{M})$ be any global f-generic type containing p. Now \bar{p} is G^{2^0} -invariant. If there are $q_1 \in Q_1$ and $q_2 \in Q_2$ s.t. $q_1 = q_2$, take $g \in G^{2^0}$ s.t. g > M, we see that the partial type $(gp) \cup p$ is inconsistent, but $(gp) \cup p \subseteq \bar{p}$, a contradiction. So $q_1 < q_2$ for all $q_1 \in Q_1$ and $q_2 \in Q_2$. «Problem5»

Suppose that there is $q \in \mathbb{Q}$ s.t. $q_1 < q$ for all $q_1 \in Q_1$. Then for some $n \in \mathbb{N}$ and any $a \in M$, any (n, a, q_1, q) -cell is consistent with p and hence contained in p. So $q \in Q_2$. Similarly, if $q < q_2$ for all $q_2 \in Q_2$, then $q \in Q_1$. So (Q_1, Q_2) is a cut of \mathbb{Q} .

Let $r\in\mathbb{R}$ be the real number determined by the cut (Q_1,Q_2) . By the G^{2^0} -invariance of \bar{p} , we have

- If $r = q \in Q_1$, then p is a q^+ -type
- If $r = q \in Q_2$, then p is a q^- -type
- If $r \notin \mathbb{Q}$, then p is a r-type

Definition 3.2. $\alpha \in \mathbb{M}$ is **bounded** over M if there are $a, b \in M$ s.t. $a < \alpha < b$, and unbounded otherwise

Remark. By the above argument, it is easy to conclude that for any $\alpha, \beta \in G^0$, if both $\operatorname{tp}(\alpha/M)$ and $\operatorname{tp}(\beta/M)$ are f-generic. Then either $\operatorname{tp}(\alpha,\beta/M)$ is f-generic, or there is $q_1,q_2\in\mathbb{Q}$ s.t. $q_1\alpha+q_2\beta$ is bounded over M

Corollary 3.3. Let $\operatorname{tp}(\alpha, \beta/M)$ be a f-generic type which contained in G^{2^0} . Then $\operatorname{tp}(q_1\alpha, q_2\beta/M)$ is f-generic for all $q_1, q_2 \in \mathbb{Q} \setminus \{0\}$.

Corollary 3.4. Let $\alpha, \beta \in G^0$. Then $\operatorname{tp}(\alpha, \beta/M)$ is an f-generic type iff for all $q_1, q_2 \in \mathbb{Q}$, $q_1\alpha + q_2\beta$ is unbounded over M whenever $q_1^2 + q_2^2 \neq 0$. In particular, both α and β are unbounded over M, and $\{\alpha, \beta\}$ is algebraic independent over M.

Remark. By Remark 2.2, every f-generic type of G^2 over M is one of $G^2(M)$ -translate of some f-generic type contained in G^{2^0} . So it suffices to study the f-generic types contained in G^{2^0}

Corollary 3.5. Every global f-generic type of G^2 contained in G^{2^0} is \emptyset -definable.

Proof. Let $\phi(x,y,z)$ be a formula. Then we may assume that ϕ is finitely many union of the following cells:

$$\begin{split} C_i(x,y,z) &= D_{n_{1i}}(z-c_{1i}) \wedge D_{n_{2i}}(x-c_{2i}) \wedge D_{n_{3i}}(y-c_{3i}) \wedge \\ & (a_{1i} \Box_{1i} z \Box_{2i} a_{2i}) \wedge (h_{1i}(z) \Box_{3i} x \Box_{4i} h_{2i}(z)) \wedge (f_{1i}(x,z) \Box_{5i} y \Box_{6i} f_{2i}(x,z)) \end{split}$$

where $i=1,\ldots,m, c_{1i}, c_{2i}, c_{3i}, a_{1i}, a_{2i} \in \mathbb{Z}$, $\square_{1i},\ldots,\square_{6i}$ either \leq or no condition, $h_{li}(x)=b_{li}(\frac{z-c_{1i}}{n_{1i}})+\gamma_{li}$ and $f_{li}(x,z)=d_{li}(\frac{x-c_{2i}}{n_{2i}})+e_{li}(\frac{z-c_{1i}}{n_{1i}})+\xi_{li}$ for l=1,2 and $b_{li}, d_{li}, \gamma_{li}, \xi_{li} \in \mathbb{Z}$

Let $p=\operatorname{tp}(\alpha,\beta/\mathbb{M})$ be a global f-generic type of G^2 contained in G^{2^0} . We assume that, for example, $\alpha>\mathbb{M}$ and p is a q^+ -type for some $q\in\mathbb{Q}$. Then $\phi(x,y,b)\in p$ iff there is some $i\leq m$ s.t.

- 1. $\mathbb{M} \vDash D_{n_{2i}}(c_{2i}) \land D_{n_{2i}}(c_{3i})$
- 2. \square_{4i} is no condition.

3.2 An equivalence relation on homogeneous linear functions

Let $L_n=\{q_1x_1+\cdots+q_nx_n\mid q_1,\ldots,q_n\in\mathbb{Q}\}$ is the space of all homogeneous n-ary \mathbb{Q} -linear functions, and $L_n(M)=\{f+a\mid f\in L_n, a\in M\}$ for any $M\prec\mathbb{M}$. For each $f\in L_n(M)$, there is $m\in\mathbb{N}^+$ s.t. f is \emptyset -definable from $D_m(G^n)$ to G

 $\textbf{Definition 3.6.}\ \ M \prec \mathbb{M}\text{, } f,g \in L_n(M)\text{, } \alpha \in (G^n)^0$

for all $n, m \in \mathbb{N}^+$, and $a, b \in M$

 $\bullet \ \ f \sim_{M\alpha} g \ \text{if neither} \ f(\alpha) \ll_M g(\alpha) \ \text{nor} \ g(\alpha) \ll_M f(\alpha)$

For any $f \in L_n(M)$, there is $g \in L_n$ s.t. $f \in [g]_{M\alpha}$.

Remark. If both $f(\alpha)$ and $g(\alpha)$ are positive (or negative), then $f(\alpha) \ll_M g(\alpha)$ iff $dcl(M, f(\alpha)) < g(\alpha)$ (or $f(\alpha) < dcl(M, g(\alpha))$)

Lemma 3.7. Suppose $\alpha_1,\alpha_2\in G^0$. Then $\{|f|\mid f\in L_2(M)\}$ has at most 5 elements

Proof. Let $p=\operatorname{tp}(\alpha_1,\alpha_2/M)$. Suppose p is not f-generic. Then by Corollary 3.4, $q_1\alpha_1+q_2\alpha_2$ is bounded over M for some $q_1,q_2\in\mathbb{Q}$. If $q_1\neq 0$, then for each $f\in L_2$ there is $g\in L_1(M)$ s.t. $f(\alpha_1,\alpha_2)\sim_M g(\alpha_2)$. Assume that $\alpha_2>0$. Then

$$\{|g|_{M\alpha_2} \mid g \in L_1(M)\} = \{[0]_{M\alpha_2}\}$$

if α_2 is bounded over M, and

$$\{|g|_{M\alpha_2} \mid g \in L_1(M)\} = \{[-x_2]_{M\alpha_2}, [0]_{M\alpha_2}, [x_2]_{M_{\alpha_2}}\}$$

Now suppose that p is an f-generic type. W.L.O.G., we assume that $\alpha_1>0.$

• Suppose that p is a q-TYPE with $q \in \mathbb{Q}$, say a q^+ -type.

Let $h(x_1,x_2)=ax_1+bx_2\in L_2$ and $g(x_1,x_2)=a'x_1+b'x_2\in L_2$ s.t. $h(\alpha_1,\alpha_2)>0$, $g(\alpha_1,\alpha_2)>0$ and $h(\alpha)\gg_M g(\alpha)$. Then we have

$$a\alpha_1 + b\alpha_2 > n(a'\alpha_1 + b'\alpha_2)$$

for all $n \in \mathbb{N}^+$.

If b'=0, we conclude that either $\alpha_2<\operatorname{dcl}(M,\alpha_1)$ or $\alpha_2>\operatorname{dcl}(M,\alpha_1)$, and hence p should be an ∞ -TYPE, a contradiction.

If b'<0, then a'>-b'q as $a'\alpha_1+b'\alpha_2>0$. For any sufficiently large $n\in\mathbb{N}^+$ we have

$$(a-na')\alpha_1+(b-nb')\alpha_2>0$$

We now assume that b-nb'>0. Since $\alpha_2<(q+\frac{1}{m})\alpha_1$ for all $m\in\mathbb{N}^+$, we have

$$(a-na')\alpha_1+(b-nb')(q+\frac{1}{m})\alpha>0$$

which implies that for all sufficiently large $m, n \in \mathbb{N}^+$,

$$(a+b(q+\frac{1}{m}))-n(a'+b'(q+\frac{1}{m}))>0$$

So $a' + b'(q + \frac{1}{m}) \le 0$ for all $0 < m \in \mathbb{N}$. But a' > -b'q, so for sufficiently large $m, a' > -b'(q + \frac{1}{m})$. A contradiction.

We conclude that b'>0. For sufficiently large n, (b-nb')<0 and hence $(b-nb')q\alpha_1>(b-nb')\alpha_2$. So we have

$$(a - na')\alpha_1 + (b - nb')q\alpha_1 > 0$$

which implies that

$$(a+bq) - n(a'+b'q) > 0$$

for all sufficiently large $n\in\mathbb{N}$, and hence $a'+b'q\leq 0$. Since $a'\alpha_1+b'\alpha_2>0$, we have $a'+b'q\geq 0$. So a'+b'q=0. For any $h'(x_1,x_2)=a''x_1+b''x_2$ with b''>0 and a''+b''q=0, there is some $n\in\mathbb{N}$ s.t. h'=nh or h=nh'. So in this case

$$\{[f]_{M\alpha} \mid f \in L_2\} = \{[-h]_{M\alpha}, [-g]_{M\alpha}, [0]_{M\alpha}, [g]_{M\alpha}, [h]_{M\alpha}\}$$

- Suppose that p is an ∞ -TYPE. p is an ∞ -TYPE iff $\operatorname{tp}(\alpha_2,\alpha_1/M)$ is a 0-TYPE
- Suppose p is an r-TYPE with $r \in \mathbb{R} \setminus \mathbb{Q}$, and let $h(x_1, x_2) = ax_1 + bx_2$ and $g(x_1, x_2) = a'x_1 + b'x_2$ as above.

If b' < 0, then a' > -b'r. Let $r < q \in \mathbb{Q}$ s.t. a' > -b'q. For all sufficiently large $n \in \mathbb{N}$, we have

$$(a-na')\alpha_1+(b-nb')q\alpha_1>(a-na')\alpha_1+(b-nb')\alpha_2>0$$

which implies that

$$(a+bq) - n(a'+b'q) > 0$$

This is a contradiction as a' + b'q > 0.

If b'>0, then $a'\alpha_1+b'\alpha-2>0$ implies that there is some $q\in\mathbb{Q}$ s.t. a'+b'q>0 and q< r.

For all sufficiently large $n \in \mathbb{N}$, we have

$$(a - na')\alpha_1 + (b - nb')q\alpha_1 > (a - na')\alpha_1 + (b - nb')\alpha_2 > 0$$

which implies that

$$(a+bq) - n(a'+b'q) > 0$$

This is a contradiction since a'+b'q>0. So $[h]_{M\alpha}=[g]_{M\alpha}$ whenever $h(\alpha)>0$, $g(\alpha)>0$, and $f,g\in L_2$, and hence

$$\{[f]_{M\alpha} \mid f \in L_2(M)\} = \{[-h]_{M\alpha}, [0]_{M\alpha}, [h]_{M\alpha}\}$$

Corollary 3.8. Suppose that $p=\operatorname{tp}(\alpha_1,\alpha_2/M)$ is f-generic with $\alpha_1,\alpha_2\in G^0$. Let $f_1(x_1,x_2)=ax_1+bx_2$ and $f_2(x_1,x_2)=a'x_1+b'x_2$ be lienar functions s.t. $f_i(\alpha_1,\alpha_2)>0$. If $f_1(\alpha_1,\alpha_2)\ll_M f_2(\alpha_1,\alpha_2)$ then p is a q-TYPE with $q\in\mathbb{Q}$ and a+bq=0

Lemma 3.9. For any $\alpha=(\alpha_1,\ldots,\alpha_n)\in G^{0^n}$ and $\beta\in G^0$, $\{[f]_{M\alpha\beta}\mid f\in L_{n+1}\}$ is finite

Proof. By IH, there are finitely many n-ary linear functions $h_1,\dots,h_k\in L_n$ s.t. $0\ll_M h_1(\alpha)\ll_M\dots\ll_M h_k(\alpha)$ and

$$\{[h]_{M\alpha} \mid 0 < h(\alpha) \in L_n\} = \{[h_1]_{M\alpha}, \dots, [h_k]_{M\alpha}\}$$

Claim: For each $\epsilon \in \{1, \dots, k\}$, there do not exist $u_i \in [h_{\epsilon}]_{M\alpha}$, $c_i \in \mathbb{Q}$, and $\gamma \in G^0$, with $i \in \mathbb{N}^+$ s.t.

$$u_1(\alpha_1,\dots,\alpha_n) + c_1\gamma \ll_M u_2(\alpha_1,\dots,\alpha_n) + c_2\gamma \ll_M \dots$$

is an infinite chain

Claim: If there are $\epsilon \in \{1,\ldots,k\}$, $u_i \in [h_\epsilon]_{M\alpha}$, $c_i \in \mathbb{Q}$, and $\gamma \in G^0$ with $i \in \mathbb{N}^+$ s.t.

$$u_1(\alpha_1,\ldots,\alpha_n)+c_1\gamma\ll_M u_2(\alpha_1,\ldots,\alpha_n)+c_2\gamma\ll_M\ldots$$

is an infinite chain. Then $\operatorname{tp}(u_i(\alpha)/\gamma/M)$ is a q_i -TYPE with $q_i\in\mathbb{Q}\setminus\{0\}$ for all $i\in\mathbb{N}^+$

Proof. If there are $j\in\mathbb{N}^+$, $d_1,d_2\in\mathbb{Q}$ s.t. $d_1u_j(\alpha_1,\dots,\alpha_n)+d_2\gamma$ is bounded over M, then

$$-\frac{d_1}{d_2}u_j(\alpha_1,\dots,\alpha_n)+a<\gamma<-\frac{d_1}{d_2}u_j(\alpha_1,\dots,\alpha_n)+b$$

for some $a, b \in M$. So we conclude that

$$(u_1(\alpha_1,\dots,\alpha_n)+c_i\gamma)\sim_M (u_i(\alpha_1,\dots,\alpha_n)-c_i\frac{d_1}{d_2}u_j(\alpha_1,\dots,\alpha_n))$$

Let

$$v_i(\alpha_1,\dots,\alpha_n) = u_i(\alpha_1,\dots,\alpha_n) - c_i \frac{d_1}{d_2} u_j(\alpha_1,\dots,\alpha_n)$$

then we have an infinite chain of

$$v_1(\alpha_1, \dots, \alpha_n) \ll_M v_2(\alpha_1, \dots, \alpha_n) \ll_M \dots$$

which contradicts IH.

We now assume that $d_1u_i(\alpha_1,\ldots,\alpha_n)+d_2\gamma$ is unbounded over M for all $i\in\mathbb{N}^+$ and $d_1,d_2\in\mathbb{Q}$ s.t. $d_1^2+d_2^2\neq 0$. Therefore $\operatorname{tp}(u_i(\alpha),\gamma/M)$ is f-generic for each $i\in\mathbb{N}^+$. As $u_{i+1}\sim_{M\alpha}u_i$, there exists $q\in\mathbb{Q}$ s.t. for all $m\in\mathbb{N}^+$,

$$qu_i(\alpha) + c_{i+1}\gamma > u_{i+1}(\alpha) + c_{i+1}\gamma > m(u_i(\alpha) + c_i\gamma)$$

By Corollary ref:2.14, ${\rm tp}(u_i(\alpha),\gamma/M)$ is either non-f -generic, or a $-c_i^{-1}$ -TYPE. $\hfill\Box$

We now turn to Claim 1.

Proof. For a contradiction, let $1 \le t \le k$ be the least number s.t. there exist $u_i \in [h_t]_{M\alpha}$, $c_i \in \mathbb{Q}$ and $\gamma \in G^0$ with $i \in \mathbb{N}^+$ s.t.

$$u_1(\alpha) + c_1 \gamma \ll_M u_2(\alpha) + c_2 \gamma \ll_M \dots$$

4 Problem

- 2.2
- 2.2
- 1.2
- 1.3
- 3.2