Lab 4: ChopChop Attack

1. Encrypted Algorithm

	Data block 1	Data block 2	Data block 3	ICV
Plaintext	AC	DB	E3	94
Keystream	5B	2A	3D	4E
Ciphertext	F7	F1	DE	DA

PS D:\junior\1\无线与物联网安全\lab4> python .\encrypt.py 输入最多三个16进制数作为明文,用','分开: ac,db,e3 输入比明文多1个16进制数,用','分开: 5b,2a,3d,4e The ICV is:0x94 ['0xf7', '0xf1', '0xde', '0xda']

2 ChopChop Attack

Guess	New ICV	Accepted?
0x10	0x2d	No
0x3c	0x1	No
0x61	0x5c	No
0xe6	0xdb	Yes

攻击原理

首先假设明文为[D_1 , D_2 , D_3 ,I], 密钥为[K_1 , K_2 , K_3 , K_4], 得到的密文是[R_1 , R_2 , R_3 , R_4].

一次chop

一次chop后的明文为[D_1,D_2,J_1], 密文是[R_1,R_2,S_1].

利用"If the guess for the chopped byte is correct, the packet will be a valid WEP packet. It will thus be accepted by the access point. If it is invalid, it will be silently discarded." 我们可以通过暴力搜索直接得到符合要求的密文 S_1 , 使得 $S_1 \land K_3 == J_1$.

之后直接上算式吧:

$$D_1 \oplus D_2 == J_1$$
 $D_3 \oplus K_3 == R_3$
 $J_1 \oplus K_3 == S_1$
 $D_1 \oplus D_2 \oplus D_3 == I$

最后化简可得

由于S是可以暴力搜索破解的,R3是已知的密文,因此可以直接算出I的值。

知道I的值就可以通过 $I \oplus R_4$ 得到 K_4

二次chop

二次chop后的明文为[D_1 , D_2 , J_2], 密文是[R_1 , R_2 , S_2].

与第一次类似,由于 $J_2 == D_1$,这次的计算更加简单了。

很容易得到

$$D_1 \oplus D_2 == S_2 \oplus R_2$$

因此, 最终结果为

$$D_3 == I \oplus D_1 \oplus D_2 == R_3 \oplus S_1 \oplus S_2 \oplus R_2$$

攻击程序的运行截图

PS D:\junior\1\无线与物联网安全\lab4> python .\attack.py

The S1 is 0xe6

The S2 is 0x2a

The data3 is 0xe3