



# Whole Genome SNP Profiling using GSA + Psych Array data report







| Project Details     |                                                         |  |  |  |  |  |
|---------------------|---------------------------------------------------------|--|--|--|--|--|
| Project Name :      | Whole genome SNP profiling using GSA + Psych array chip |  |  |  |  |  |
| Institute Name:     | NIMHANS                                                 |  |  |  |  |  |
| Application:        | SNP Genotyping                                          |  |  |  |  |  |
| Platform/Chip:      | GSA+Psych array                                         |  |  |  |  |  |
| Number of Samples : | 408 samples                                             |  |  |  |  |  |

#### **Project Introduction:**

Technological progress in genotyping has opened the possibilities towards genomic screens and novel opportunities to explore polygenetic perspectives, now spanning a wide array of possible analyses falling under the term Genome-Wide SNP profiling. This project aims at Genome wide SNP profiling to identify genetic markers conferring risk and includes sample size of 408 samples. Microarray experiment is performed using Illumina SNP genotyping microarray chip: **Global Screening Array-24** +



**Psycharray BeadChip**. This chip combines multi-ethnic genome-wide content, curated clinical research variants, and quality control (QC) markers for precision medicine research. The clinical research content includes variants with established disease associations, relevant pharmacogenomics markers, and curated exonic content based on ClinVar, NHGRI, PharmGKB, and ExAC databases. The Infinium GSA-24 BeadChip comprise of highly optimized multiethnic genome-wide content, curated clinical research variants, and QC markers for a broad range of clinical research and variant screening applications. These applications include disease association and risk profiling studies, pharmacogenomics research, disease characterization, lifestyle and wellness characterization, and marker discovery in complex disease research.





#### **Control Summary**

### **Experimental (Sample independent Controls)**

1. Staining Controls: Staining controls are used to examine the efficiency of the staining step in both the red and green channels. Staining controls have various levels of dinitrophenyl (DNP) or biotin attached to the beads. These controls are independent of the hybridization and extension step. Various levels of DNP and biotin monitor the sensitivity and efficiency of the staining step. Both red and green channels can be evaluated using the Staining Controls (High signal intensity for DNP in red channel and for Biotin in Green channel).



**2. Extension Controls:** Extension controls test the extension efficiency of A, T, C, and G nucleotides from a hairpin probe, and are therefore sample-independent. Both red (A,T)and green (C,G) channels are monitored (High signal intensity for A,T nucleotide in Red channel G,C nucleotide for Green channel).







3. Target Removal Controls: Target removal controls test the efficiency of the stripping step after the extension reaction. In contrast to allele-specific extension, the control oligos are extended using the probe sequence as template. This process generates labeled targets. The probe sequences are designed such that extension from the probe does not occur. All target removal controls should result in low signal compared to the hybridization controls, indicating that the targets were removed efficiently after extension. The target removal controls are present in the hybridization buffer RA1. Performance of target removal controls should only be monitored in the green channel (lowering of signal intensity in Green channel plot).



4. Hybridization Controls: Hybridization controls test the overall performance of the Infinium Assay using synthetic targets. These synthetic targets complement the sequence on the array perfectly, allowing the probe to extend on the synthetic target as a template. Synthetic targets are present in the hybridization buffer at three levels, monitoring the response from high-concentration (5pM)-High signal, medium concentration (1pM)-Moderate signal, and low-concentration (0.2pM) targets-Low signal.







5. Stringency Controls: These controls test the stringency of the hybridization process (to check sample contamination & quality). The same target is used for each stringency control; the only difference between the stringency controls is the number of nucleotides hybridized between the target and the probe sequence on the bead. The probes are designed such that the 3' end of the probe is available for extension. Mismatches are introduced into the body of the probe sequence to affect hybrid stability. The controls have 0 to 12 mismatched nucleotides between target and probe. Performance of stringency controls should only be monitored in the red channel (High PM-perfect match signal and Low MM-Mismatch signal).



6. Non specific binding Controls: Non-specific binding controls are included to monitor the specificity of the hybridization of the amplified DNA (Check sample contamination and quality). The probe sequences for non-specific binding controls are complementary to bacterial sequences and should





not hybridize to human sequences under standard hybridization stringency conditions. These controls should show low intensities, indicating there is minimal cross hybridization of human DNA to bacterial sequences. Performance of nonspecific binding controls should be monitored in both green and red channels (low intensity signal in both channels).



7. Non Polymorphic Controls: Non-polymorphic controls test the overall performance of the assay, from amplification to detection, by querying a particular base in a non-polymorphic region of the genome. It help to compare assay performance across different samples. One non-polymorphic control has been designed for each of the four nucleotides (A, T, C, and G) (High signal intensity for NP (A,T) in Red channel and NP(C,G) in Green channel).







| S.No | Sample ID | Call Rate | Gender  | Barcode     | Position |
|------|-----------|-----------|---------|-------------|----------|
| 1    | V1        | 0.979884  | Female  | 2.03464E+11 | R01C01   |
| 2    | V2        | 0.9870607 | Male    | 2.03464E+11 | R02C01   |
| 3    | V3        | 0.9886327 | Male    | 2.03464E+11 | R03C01   |
| 4    | V4        | 0.9890164 | Male    | 2.03464E+11 | R04C01   |
| 5    | V5        | 0.9853075 | Female  | 2.03464E+11 | R05C01   |
| 6    | V6        | 0.9886178 | Male    | 2.03464E+11 | R06C01   |
| 7    | V7        | 0.9886935 | Male    | 2.03464E+11 | R07C01   |
| 8    | V8        | 0.9849524 | Female  | 2.03464E+11 | R08C01   |
| 9    | V9        | 0.9850555 | Female  | 2.03464E+11 | R09C01   |
| 10   | V10       | 0.9846755 | Female  | 2.03464E+11 | R10C01   |
| 11   | V11       | 0.9882354 | Male    | 2.03464E+11 | R11C01   |
| 12   | V12       | 0.9840634 | Male    | 2.03464E+11 | R12C01   |
| 13   | V13       | 0.9642628 | Unknown | 2.03464E+11 | R01C02   |
| 14   | V14       | 0.9821885 | Female  | 2.03464E+11 | R02C02   |
| 15   | V15       | 0.9842608 | Female  | 2.03464E+11 | R03C02   |
| 16   | V16       | 0.9848953 | Female  | 2.03464E+11 | R04C02   |
| 17   | V17       | 0.9887295 | Male    | 2.03464E+11 | R05C02   |
| 18   | V18       | 0.9851387 | Female  | 2.03464E+11 | R06C02   |
| 19   | V19       | 0.9849263 | Female  | 2.03464E+11 | R07C02   |
| 20   | V20       | 0.9890896 | Male    | 2.03464E+11 | R08C02   |
| 21   | V21       | 0.9888636 | Male    | 2.03464E+11 | R09C02   |
| 22   | V23       | 0.9887258 | Male    | 2.03464E+11 | R10C02   |
| 23   | V24       | 0.9849499 | Female  | 2.03464E+11 | R11C02   |
| 24   | V25       | 0.977505  | Male    | 2.03464E+11 | R12C02   |
| 25   | V27       | 0.9889853 | Male    | 2.03498E+11 | R01C01   |
| 26   | V29       | 0.988804  | Male    | 2.03498E+11 | R02C01   |
| 27   | V30       | 0.989189  | Male    | 2.03498E+11 | R03C01   |
| 28   | V32       | 0.9891579 | Male    | 2.03498E+11 | R04C01   |
| 29   | V33       | 0.9889468 | Male    | 2.03498E+11 | R05C01   |
| 30   | V36       | 0.9890064 | Male    | 2.03498E+11 | R06C01   |
| 31   | V37       | 0.9850518 | Female  | 2.03498E+11 | R07C01   |
| 32   | V38       | 0.988799  | Male    | 2.03498E+11 | R08C01   |
| 33   | V39       | 0.9852281 | Female  | 2.03498E+11 | R09C01   |
| 34   | V40       | 0.98866   | Male    | 2.03498E+11 | R10C01   |
| 35   | V41       | 0.9887581 | Male    | 2.03498E+11 | R11C01   |
| 36   | V42       | 0.9844632 | Male    | 2.03498E+11 | R12C01   |
| 37   | V43       | 0.9847624 | Female  | 2.03498E+11 | R01C02   |
| 38   | V44       | 0.9889891 | Male    | 2.03498E+11 | R02C02   |
| 39   | V45       | 0.9894596 | Male    | 2.03498E+11 | R03C02   |
| 40   | V46       | 0.9854776 | Female  | 2.03498E+11 | R04C02   |
| 41   | V47       | 0.9896074 | Male    | 2.03498E+11 | R05C02   |





| 43  | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | 0.0006350 | 0.4-1-    | 2.024005.44 | D00000 |
|-----|-----------------------------------------|-----------|-----------|-------------|--------|
| 42  | V48                                     | 0.9896359 | Male      | 2.03498E+11 | R06C02 |
| 43  | V49                                     | 0.9896049 | Male      | 2.03498E+11 | R07C02 |
| 44  | V50                                     | 0.9859458 | Female    | 2.03498E+11 | R08C02 |
| 45  | V51                                     | 0.9897477 | Male      | 2.03498E+11 | R09C02 |
| 46  | V53                                     | 0.9892101 | Male      | 2.03498E+11 | R10C02 |
| 47  | V54                                     | 0.9876803 | Male      | 2.03498E+11 | R11C02 |
| 48  | V55                                     | 0.9800032 | Female    | 2.03498E+11 | R12C02 |
| 49  | V56                                     | 0.9877486 | Male      | 2.03498E+11 | R01C01 |
| 50  | V57                                     | 0.9881646 | Male      | 2.03498E+11 | R02C01 |
| 51  | V58                                     | 0.9890884 | Male      | 2.03498E+11 | R03C01 |
| 52  | V59                                     | 0.9854094 | Female    | 2.03498E+11 | R04C01 |
| 53  | V60                                     | 0.989107  | Male      | 2.03498E+11 | R05C01 |
| 54  | V61                                     | 0.9856999 | Female    | 2.03498E+11 | R06C01 |
| 55  | V62                                     | 0.9857284 | Female    | 2.03498E+11 | R07C01 |
| 56  | V63                                     | 0.9859147 | Female    | 2.03498E+11 | R08C01 |
| 57  | V64                                     | 0.9852343 | Female    | 2.03498E+11 | R09C01 |
| 58  | V65                                     | 0.9859656 | Female    | 2.03498E+11 | R10C01 |
| 59  | V66                                     | 0.9888909 | Male      | 2.03498E+11 | R11C01 |
| 60  | V67                                     | 0.9883285 | Male      | 2.03498E+11 | R12C01 |
| 61  | V68                                     | 0.9851623 | Female    | 2.03498E+11 | R01C02 |
| 62  | V69                                     | 0.9809965 | Female    | 2.03498E+11 | R02C02 |
| 63  | V70                                     | 0.9858129 | Female    | 2.03498E+11 | R03C02 |
| 64  | V71                                     | 0.9855943 | Female    | 2.03498E+11 | R04C02 |
| 65  | V72                                     | 0.9858551 | Female    | 2.03498E+11 | R05C02 |
| 66  | V73                                     | 0.98568   | Female    | 2.03498E+11 | R06C02 |
| 67  | V74                                     | 0.9895999 | Male      | 2.03498E+11 | R07C02 |
| 68  | V75                                     | 0.9858129 | Female    | 2.03498E+11 | R08C02 |
| 69  | V76                                     | 0.9859209 | Female    | 2.03498E+11 | R09C02 |
| 70  | V77                                     | 0.9859321 | Female    | 2.03498E+11 | R10C02 |
| 71  | V78                                     | 0.9858042 | Female    | 2.03498E+11 | R11C02 |
| 72  | V79                                     | 0.9838101 | Female    | 2.03498E+11 | R12C02 |
| 73  | V80                                     | 0.9842981 | Female    | 2.03498E+11 | R01C01 |
| 74  | V81                                     | 0.9876716 | Male      | 2.03498E+11 | R02C01 |
| 75  | V82                                     | 0.9850567 | Female    | 2.03498E+11 | R03C01 |
| 76  | V84                                     | 0.9849338 | Female    | 2.03498E+11 | R04C01 |
| 77  | V85                                     | 0.9846433 | Female    | 2.03498E+11 | R05C01 |
| 78  | V87                                     | 0.9847128 | Female    | 2.03498E+11 | R06C01 |
| 79  | V88                                     | 0.9843751 | Female    | 2.03498E+11 | R07C01 |
| 80  | V89                                     | 0.9846904 | Female    | 2.03498E+11 | R08C01 |
| 81  | V90                                     | 0.9850008 | Female    | 2.03498E+11 | R09C01 |
| 82  | V91                                     | 0.9883744 | Male      | 2.03498E+11 | R10C01 |
| 83  | V92                                     | 0.9849946 | Female    | 2.03498E+11 | R11C01 |
| 84  | V93                                     | 0.9812536 | Female    | 2.03498E+11 | R12C01 |
| 85  | V97                                     | 0.9844496 | Female    | 2.03498E+11 | R01C02 |
| 0.5 | V 31                                    | 0.3044430 | i elliale | 2.034301711 | NOTCOZ |





| 86  | V99         | 0.0940400 | Fomala | 2.024095.11  | poacoa  |
|-----|-------------|-----------|--------|--------------|---------|
|     | V99<br>V100 | 0.9849499 | Female | 2.03498E+11  | R02C02  |
| 87  |             | 0.985058  | Female | 2.03498E+11  | R03C02  |
| 88  | V101        | 0.9851362 | Female | 2.03498E+11  | R04C02  |
| 89  | V102        | 0.9853882 | Female | 2.03498E+11  | R05C02  |
| 90  | V103        | 0.988881  | Male   | 2.03498E+11  | R06C02  |
| 91  | V104        | 0.9855434 | Female | 2.03498E+11  | R07C02  |
| 92  | V106        | 0.9853473 | Female | 2.03498E+11  | R08C02  |
| 93  | V109        | 0.9857148 | Female | 2.03498E+11  | R09C02  |
| 94  | V111        | 0.9849698 | Female | 2.03498E+11  | R10C02  |
| 95  | V112        | 0.9815751 | Female | 2.03498E+11  | R11C02  |
| 96  | V113        | 0.9809828 | Female | 2.03498E+11  | R12C02  |
| 97  | V114        | 0.9852777 | Female | 2.03498E+11  | R01C01  |
| 98  | V115        | 0.9856453 | Female | 2.03498E+11  | R02C01  |
| 99  | V116        | 0.985202  | Female | 2.03498E+11  | R03C01  |
| 100 | V117        | 0.9855794 | Female | 2.03498E+11  | R04C01  |
| 101 | V123        | 0.9857409 | Female | 2.03498E+11  | R05C01  |
| 102 | V124        | 0.9884092 | Male   | 2.03498E+11  | R06C01  |
| 103 | V125        | 0.989323  | Male   | 2.03498E+11  | R07C01  |
| 104 | V126        | 0.9894745 | Male   | 2.03498E+11  | R08C01  |
| 105 | V129        | 0.9858365 | Female | 2.03498E+11  | R09C01  |
| 106 | V130        | 0.9876245 | Male   | 2.03498E+11  | R10C01  |
| 107 | V138        | 0.9847798 | Female | 2.03498E+11  | R11C01  |
| 108 | V139        | 0.9829857 | Female | 2.03498E+11  | R12C01  |
| 109 | V140        | 0.9853994 | Female | 2.03498E+11  | R01C02  |
| 110 | V141        | 0.9855931 | Female | 2.03498E+11  | R02C02  |
| 111 | V142        | 0.9884104 | Male   | 2.03498E+11  | R03C02  |
| 112 | V143        | 0.9886029 | Male   | 2.03498E+11  | R04C02  |
| 113 | V144        | 0.9856664 | Female | 2.03498E+11  | R05C02  |
| 114 | V145        | 0.9848754 | Female | 2.03498E+11  | R06C02  |
| 115 | V149        | 0.9880963 | Male   | 2.03498E+11  | R07C02  |
| 116 | V150        | 0.9894261 | Male   | 2.03498E+11  | R08C02  |
| 117 | V155        | 0.9832216 | Female | 2.03498E+11  | R09C02  |
| 118 | V156        | 0.9870036 | Male   | 2.03498E+11  | R10C02  |
| 119 | V157        | 0.9883521 | Male   | 2.03498E+11  | R11C02  |
| 120 | V159        | 0.9860066 | Male   | 2.03498E+11  | R12C02  |
| 121 | V161        | 0.9850828 | Female | 2.03498E+11  | R01C01  |
| 122 | V162        | 0.9891455 | Male   | 2.03498E+11  | R02C01  |
| 123 | V164        | 0.9858464 | Female | 2.03498E+11  | R03C01  |
| 124 | V165        | 0.9860438 | Female | 2.03498E+11  | R04C01  |
| 125 | V166        | 0.9860128 | Female | 2.03498E+11  | R05C01  |
| 126 | V167        | 0.9893628 | Male   | 2.03498E+11  | R06C01  |
| 127 | V168        | 0.9896024 | Male   | 2.03498E+11  | R07C01  |
| 128 | V169        | 0.9897936 | Male   | 2.03498E+11  | R08C01  |
| 129 | V170        | 0.9891567 | Male   | 2.03498E+11  | R09C01  |
| 127 | V 17 0      | 0.5551507 | ITIGIC | 2.00 .002.11 | 1103001 |





| 130 | V171 | 0.9856664              | Female | 2.03498E+11 | R10C01 |
|-----|------|------------------------|--------|-------------|--------|
| 131 | V171 | 0.986908               | Male   | 2.03498E+11 | R11C01 |
| 132 | V172 | 0.9807705              | Female | 2.03498E+11 | R12C01 |
| 133 | V173 | 0.9891219              | Male   | 2.03498E+11 | R01C02 |
| 134 | V174 | 0.9862152              | Female | 2.03498E+11 | R02C02 |
| 135 | V175 | 0.9802132              | Male   | 2.03498E+11 | R03C02 |
| 136 | V170 |                        | Male   | 2.03498E+11 | R04C02 |
| 137 | V177 | 0.9902356<br>0.9897986 |        | 2.03498E+11 | R05C02 |
|     |      |                        | Male   |             |        |
| 138 | V180 | 0.9896347              | Male   | 2.03498E+11 | R06C02 |
| 139 | V181 | 0.9859867              | Female | 2.03498E+11 | R07C02 |
| 140 | V182 | 0.9899414              | Male   | 2.03498E+11 | R08C02 |
| 141 | V183 | 0.9898855              | Male   | 2.03498E+11 | R09C02 |
| 142 | V184 | 0.9900233              | Male   | 2.03498E+11 | R10C02 |
| 143 | V185 | 0.9895925              | Male   | 2.03498E+11 | R11C02 |
| 144 | V188 | 0.9876741              | Male   | 2.03498E+11 | R12C02 |
| 145 | V189 | 0.9896347              | Male   | 2.03498E+11 | R01C01 |
| 146 | V190 | 0.986101               | Female | 2.03498E+11 | R02C01 |
| 147 | V191 | 0.9898719              | Male   | 2.03498E+11 | R03C01 |
| 148 | V192 | 0.9898123              | Male   | 2.03498E+11 | R04C01 |
| 149 | V193 | 0.9899041              | Male   | 2.03498E+11 | R05C01 |
| 150 | V194 | 0.9862102              | Female | 2.03498E+11 | R06C01 |
| 151 | V195 | 0.9898768              | Male   | 2.03498E+11 | R07C01 |
| 152 | V196 | 0.9898706              | Male   | 2.03498E+11 | R08C01 |
| 153 | V197 | 0.9900916              | Male   | 2.03498E+11 | R09C01 |
| 154 | V199 | 0.9855012              | Female | 2.03498E+11 | R10C01 |
| 155 | V200 | 0.9873253              | Male   | 2.03498E+11 | R11C01 |
| 156 | V201 | 0.9884961              | Male   | 2.03498E+11 | R12C01 |
| 157 | V202 | 0.989657               | Male   | 2.03498E+11 | R01C02 |
| 158 | V203 | 0.9893603              | Male   | 2.03498E+11 | R02C02 |
| 159 | V204 | 0.9898396              | Male   | 2.03498E+11 | R03C02 |
| 160 | V205 | 0.9899054              | Male   | 2.03498E+11 | R04C02 |
| 161 | V206 | 0.9896446              | Male   | 2.03498E+11 | R05C02 |
| 162 | V207 | 0.9860054              | Female | 2.03498E+11 | R06C02 |
| 163 | V208 | 0.9897377              | Male   | 2.03498E+11 | R07C02 |
| 164 | V209 | 0.989323               | Male   | 2.03498E+11 | R08C02 |
| 165 | V210 | 0.9895651              | Male   | 2.03498E+11 | R09C02 |
| 166 | V211 | 0.9897837              | Male   | 2.03498E+11 | R10C02 |
| 167 | V212 | 0.9886153              | Male   | 2.03498E+11 | R11C02 |
| 168 | V213 | 0.9878455              | Male   | 2.03498E+11 | R12C02 |
| 169 | V214 | 0.9890884              | Male   | 2.03498E+11 | R01C01 |
| 170 | V215 | 0.9897837              | Male   | 2.03498E+11 | R02C01 |
| 171 | V216 | 0.9862946              | Female | 2.03498E+11 | R03C01 |
| 172 | V218 | 0.9898408              | Male   | 2.03498E+11 | R04C01 |
| 173 | V220 | 0.9860178              | Female | 2.03498E+11 | R05C01 |
|     | -    |                        |        |             | -      |





| 174 | V221    | 0.0901090 | Mala    | 2 024005 : 11 | D06C01 |
|-----|---------|-----------|---------|---------------|--------|
| 174 | V221    | 0.9891989 | Male    | 2.03498E+11   | R06C01 |
| 175 | V222    | 0.9900109 | Male    | 2.03498E+11   | R07C01 |
| 176 | V223    | 0.9862326 | Female  | 2.03498E+11   | R08C01 |
| 177 | V224    | 0.9898992 | Male    | 2.03498E+11   | R09C01 |
| 178 | V225    | 0.9863009 | Female  | 2.03498E+11   | R10C01 |
| 179 | V226    | 0.9895751 | Male    | 2.03498E+11   | R11C01 |
| 180 | V227    | 0.9876915 | Male    | 2.03498E+11   | R12C01 |
| 181 | V228    | 0.9897588 | Male    | 2.03498E+11   | R01C02 |
| 182 | V229    | 0.9898806 | Male    | 2.03498E+11   | R02C02 |
| 183 | V230    | 0.990001  | Male    | 2.03498E+11   | R03C02 |
| 184 | V231    | 0.9901165 | Male    | 2.03498E+11   | R04C02 |
| 185 | V232    | 0.9898247 | Male    | 2.03498E+11   | R05C02 |
| 186 | V233    | 0.9898185 | Male    | 2.03498E+11   | R06C02 |
| 187 | V234    | 0.9897341 | Male    | 2.03498E+11   | R07C02 |
| 188 | V235    | 0.9898073 | Male    | 2.03498E+11   | R08C02 |
| 189 | V236    | 0.9860587 | Female  | 2.03498E+11   | R09C02 |
| 190 | V237    | 0.9897377 | Male    | 2.03498E+11   | R10C02 |
| 191 | V238    | 0.988922  | Male    | 2.03498E+11   | R11C02 |
| 192 | V239    | 0.9887432 | Male    | 2.03498E+11   | R12C02 |
| 193 | V240    | 0.9838362 | Female  | 2.03498E+11   | R01C01 |
| 194 | V241    | 0.9884154 | Male    | 2.03498E+11   | R02C01 |
| 195 | V242    | 0.9851163 | Female  | 2.03498E+11   | R03C01 |
| 196 | V243    | 0.9854354 | Female  | 2.03498E+11   | R04C01 |
| 197 | V244    | 0.9855745 | Female  | 2.03498E+11   | R05C01 |
| 198 | V245    | 0.989359  | Male    | 2.03498E+11   | R06C01 |
| 199 | V247    | 0.9895999 | Male    | 2.03498E+11   | R07C01 |
| 200 | V248    | 0.9894174 | Male    | 2.03498E+11   | R08C01 |
| 201 | V249    | 0.9895589 | Male    | 2.03498E+11   | R09C01 |
| 202 | V250    | 0.9857024 | Female  | 2.03498E+11   | R10C01 |
| 203 | V251    | 0.9855385 | Female  | 2.03498E+11   | R11C01 |
| 204 | V252    | 0.9879969 | Male    | 2.03498E+11   | R12C01 |
| 205 | V253    | 0.9883446 | Male    | 2.03498E+11   | R01C02 |
| 206 | V254    | 0.985392  | Female  | 2.03498E+11   | R02C02 |
| 207 | V255    | 0.9854292 | Female  | 2.03498E+11   | R03C02 |
| 208 | V256    | 0.9895949 | Male    | 2.03498E+11   | R04C02 |
| 209 | V257    | 0.9856887 | Female  | 2.03498E+11   | R05C02 |
| 210 | V258    | 0.9897663 | Male    | 2.03498E+11   | R06C02 |
| 211 | V259    | 0.9895838 | Male    | 2.03498E+11   | R07C02 |
| 212 | V260    | 0.9858887 | Female  | 2.03498E+11   | R08C02 |
| 213 | V261    | 0.9855757 | Female  | 2.03498E+11   | R09C02 |
| 214 | V262    | 0.9892448 | Male    | 2.03498E+11   | R10C02 |
| 215 | V263    | 0.9857384 | Male    | 2.03498E+11   | R11C02 |
| 216 | V264    | 0.9789577 | Male    | 2.03498E+11   | R12C02 |
| 217 | V265    | 0.9221137 | Unknown | 2.03498E+11   | R01C01 |
| Z1/ | V Z U O | 0.3221137 | OHKHOWH | Z.U3430ET11   | VOICOI |





| 218 | V266 | 0.9656969 | Unknown | 2.03498E+11 | R02C01 |
|-----|------|-----------|---------|-------------|--------|
| 219 | V267 | 0.9846482 | Male    | 2.03498E+11 | R03C01 |
| 220 | V269 | 0.9886885 | Male    | 2.03498E+11 | R04C01 |
| 221 | V270 | 0.985716  | Female  | 2.03498E+11 | R05C01 |
| 222 | V271 | 0.989251  | Male    | 2.03498E+11 | R06C01 |
| 223 | V271 | 0.9895031 | Male    | 2.03498E+11 | R07C01 |
| 224 | V273 | 0.9856999 | Female  | 2.03498E+11 | R08C01 |
| 225 | V275 | 0.9895192 | Male    | 2.03498E+11 | R09C01 |
| 226 | V278 | 0.9892684 | Male    | 2.03498E+11 | R10C01 |
| 227 | V279 | 0.9890263 | Male    | 2.03498E+11 | R11C01 |
| 228 | V282 | 0.9855335 | Male    | 2.03498E+11 | R12C01 |
| 229 | V285 | 0.8814484 | Unknown | 2.03498E+11 | R01C02 |
| 230 | V286 | 0.945761  | Unknown | 2.03498E+11 | R02C02 |
| 231 | V288 | 0.9785678 | Male    | 2.03498E+11 | R03C02 |
| 232 | V289 | 0.9881795 | Male    | 2.03498E+11 | R04C02 |
| 233 | V290 | 0.9891753 | Male    | 2.03498E+11 | R05C02 |
| 234 | V291 | 0.985721  | Female  | 2.03498E+11 | R06C02 |
| 235 | V291 | 0.9858675 | Female  | 2.03498E+11 | R07C02 |
| 236 | V295 | 0.9895416 | Male    | 2.03498E+11 | R08C02 |
| 237 | V297 | 0.9856899 | Female  | 2.03498E+11 | R09C02 |
| 238 | V298 | 0.9893553 | Male    | 2.03498E+11 | R10C02 |
| 239 | V299 | 0.9857782 | Female  | 2.03498E+11 | R11C02 |
| 240 | V300 | 0.9821922 | Male    | 2.03498E+11 | R12C02 |
| 241 | V301 | 0.9841205 | Female  | 2.03498E+11 | R01C01 |
| 242 | V302 | 0.9885396 | Male    | 2.03498E+11 | R02C01 |
| 243 | V308 | 0.9882987 | Male    | 2.03498E+11 | R03C01 |
| 244 | V309 | 0.9892548 | Male    | 2.03498E+11 | R04C01 |
| 245 | V311 | 0.9892597 | Male    | 2.03498E+11 | R05C01 |
| 246 | V312 | 0.9891579 | Male    | 2.03498E+11 | R06C01 |
| 247 | V313 | 0.9892125 | Male    | 2.03498E+11 | R07C01 |
| 248 | V314 | 0.9893839 | Male    | 2.03498E+11 | R08C01 |
| 249 | V317 | 0.9893876 | Male    | 2.03498E+11 | R09C01 |
| 250 | V322 | 0.9890896 | Male    | 2.03498E+11 | R10C01 |
| 251 | V323 | 0.9846681 | Male    | 2.03498E+11 | R11C01 |
| 252 | V324 | 0.9820929 | Male    | 2.03498E+11 | R12C01 |
| 253 | V327 | 0.9885855 | Male    | 2.03498E+11 | R01C02 |
| 254 | V328 | 0.9852517 | Female  | 2.03498E+11 | R02C02 |
| 255 | V329 | 0.9850903 | Female  | 2.03498E+11 | R03C02 |
| 256 | V330 | 0.9858042 | Female  | 2.03498E+11 | R04C02 |
| 257 | V332 | 0.9852939 | Female  | 2.03498E+11 | R05C02 |
| 258 | V333 | 0.9854603 | Female  | 2.03498E+11 | R06C02 |
| 259 | V334 | 0.9894422 | Male    | 2.03498E+11 | R07C02 |
| 260 | V335 | 0.9816161 | Female  | 2.03498E+11 | R08C02 |
| 261 | V336 | 0.9891169 | Male    | 2.03498E+11 | R09C02 |
|     |      |           |         |             | •      |





| R11C02<br>R12C02<br>R01C01<br>R02C01 |
|--------------------------------------|
| R01C01                               |
|                                      |
| R02C01                               |
|                                      |
| R03C01                               |
| R04C01                               |
| R05C01                               |
| R06C01                               |
| R07C01                               |
| R08C01                               |
| R09C01                               |
| R10C01                               |
| R11C01                               |
| R12C01                               |
| R01C02                               |
| R02C02                               |
| R03C02                               |
| R04C02                               |
| R05C02                               |
| R06C02                               |
| R07C02                               |
| R08C02                               |
| R09C02                               |
| R10C02                               |
| R11C02                               |
| R12C02                               |
| R01C01                               |
| R02C01                               |
| R03C01                               |
| R04C01                               |
| R05C01                               |
| R06C01                               |
| R07C01                               |
| R08C01                               |
| R09C01                               |
| R10C01                               |
| R11C01                               |
| R12C01                               |
| R01C02                               |
| R02C02                               |
| R03C02                               |
| R04C02                               |
| R05C02                               |
|                                      |





| 306        | V408         | 0.9901785              | Male         | 2.03498E+11                | R06C02           |
|------------|--------------|------------------------|--------------|----------------------------|------------------|
| 307        | V408<br>V409 |                        |              | 2.03498E+11<br>2.03498E+11 |                  |
| 307        |              | 0.9902294              | Male         |                            | R07C02           |
|            | V410         | 0.9904778              | Male         | 2.03498E+11                | R08C02           |
| 309        | V411         | 0.9903424              | Male         | 2.03498E+11                | R09C02           |
| 310        | V412         | 0.9906318              | Male         | 2.03498E+11                | R10C02           |
| 311        | V413         | 0.9889928              | Male         | 2.03498E+11                | R11C02           |
| 312        | V414         | 0.9862102              | Male         | 2.03498E+11                | R12C02           |
| 313        | V415         | 0.9899302              | Male         | 2.03498E+11                | R01C01           |
| 314        | V416         | 0.9901376              | Male         | 2.03498E+11                | R02C01           |
| 315        | V417         | 0.9903722              | Male         | 2.03498E+11                | R03C01           |
| 316        | V418         | 0.9903896              | Male         | 2.03498E+11                | R04C01           |
| 317        | V419         | 0.9902754              | Male         | 2.03498E+11                | R05C01           |
| 318        | V420         | 0.9861655              | Female       | 2.03498E+11                | R06C01           |
| 319        | V421         | 0.9863269              | Female       | 2.03498E+11                | R07C01           |
| 320        | V422         | 0.9863555              | Female       | 2.03498E+11                | R08C01           |
| 321        | V423         | 0.9903822              | Male         | 2.03498E+11                | R09C01           |
| 322        | V424         | 0.9901934              | Male         | 2.03498E+11                | R10C01           |
| 323        | V425         | 0.9855509              | Female       | 2.03498E+11                | R11C01           |
| 324        | V426         | 0.9879783              | Male         | 2.03498E+11                | R12C01           |
| 325        | V427         | 0.9861022              | Female       | 2.03498E+11                | R01C02           |
| 326        | V428         | 0.9862164              | Female       | 2.03498E+11                | R02C02           |
| 327        | V429         | 0.9862065              | Female       | 2.03498E+11                | R03C02           |
| 328        | V430         | 0.9862549              | Female       | 2.03498E+11                | R04C02           |
| 329        | V431         | 0.9862673              | Female       | 2.03498E+11                | R05C02           |
| 330        | V432         | 0.9863369              | Female       | 2.03498E+11                | R06C02           |
| 331        | V433         | 0.9864387              | Female       | 2.03498E+11                | R07C02           |
| 332        | V434         | 0.9903002              | Male         | 2.03498E+11                | R08C02           |
| 333        | V435         | 0.9904566              | Male         | 2.03498E+11                | R09C02           |
| 334        | V436         | 0.9903995              | Male         | 2.03498E+11                | R10C02           |
| 335        | V437         | 0.9855646              | Female       | 2.03498E+11                | R11C02           |
| 336        | V438         | 0.9880007              | Male         | 2.03498E+11                | R12C02           |
| 337        | V439         | 0.9899389              | Male         | 2.03498E+11                | R01C01           |
| 338        | V440         | 0.9901301              | Male         | 2.03498E+11                | R02C01           |
| 339        | V441         | 0.9863741              | Female       | 2.03498E+11                | R03C01           |
| 340        | V442         | 0.9902816              | Male         | 2.03498E+11                | R04C01           |
| 341        | V443         | 0.9903312              | Male         | 2.03498E+11                | R05C01           |
| 342        | V444         | 0.9903337              | Male         | 2.03498E+11                | R06C01           |
| 343        | V445         | 0.990217               | Male         | 2.03498E+11                | R07C01           |
| 344        | V446         | 0.9902741              | Male         | 2.03498E+11                | R08C01           |
| 345        | V447         | 0.9902419              | Male         | 2.03498E+11                | R09C01           |
| 346        | V448         | 0.9864337              | Female       | 2.03498E+11                | R10C01           |
| 347        | V449         | 0.9903399              | Male         | 2.03498E+11                | R11C01           |
|            |              |                        |              |                            |                  |
|            |              |                        |              |                            |                  |
| 348<br>349 | V450<br>V451 | 0.9874122<br>0.9902158 | Male<br>Male | 2.03498E+11<br>2.03498E+11 | R12C01<br>R01C02 |





| 350 | V452 | 0.9904132 | Male   | 2.03498E+11 | R02C02 |
|-----|------|-----------|--------|-------------|--------|
| 351 | V453 | 0.9863158 | Female | 2.03498E+11 | R03C02 |
| 352 | V454 | 0.9903983 | Male   | 2.03498E+11 | R04C02 |
| 353 | V455 | 0.9861928 | Female | 2.03498E+11 | R05C02 |
| 354 | V456 | 0.9904306 | Male   | 2.03498E+11 | R06C02 |
| 355 | V457 | 0.98643   | Female | 2.03498E+11 | R07C02 |
| 356 | V458 | 0.9904082 | Male   | 2.03498E+11 | R08C02 |
| 357 | V459 | 0.9903735 | Male   | 2.03498E+11 | R09C02 |
| 358 | V460 | 0.9904964 | Male   | 2.03498E+11 | R10C02 |
| 359 | V462 | 0.9903312 | Male   | 2.03498E+11 | R11C02 |
| 360 | V463 | 0.9877114 | Male   | 2.03498E+11 | R12C02 |
| 361 | V464 | 0.989184  | Male   | 2.03509E+11 | R01C01 |
| 362 | V466 | 0.9893926 | Male   | 2.03509E+11 | R02C01 |
| 363 | V467 | 0.9894261 | Male   | 2.03509E+11 | R03C01 |
| 364 | V468 | 0.985798  | Female | 2.03509E+11 | R04C01 |
| 365 | V469 | 0.9894025 | Male   | 2.03509E+11 | R05C01 |
| 366 | V470 | 0.9857918 | Female | 2.03509E+11 | R06C01 |
| 367 | V471 | 0.9895627 | Male   | 2.03509E+11 | R07C01 |
| 368 | V472 | 0.9894969 | Male   | 2.03509E+11 | R08C01 |
| 369 | V474 | 0.9894137 | Male   | 2.03509E+11 | R09C01 |
| 370 | V475 | 0.9894695 | Male   | 2.03509E+11 | R10C01 |
| 371 | V476 | 0.9831148 | Female | 2.03509E+11 | R11C01 |
| 372 | V477 | 0.9822208 | Female | 2.03509E+11 | R12C01 |
| 373 | V478 | 0.9855546 | Female | 2.03509E+11 | R01C02 |
| 374 | V479 | 0.9858477 | Female | 2.03509E+11 | R02C02 |
| 375 | V480 | 0.9898085 | Male   | 2.03509E+11 | R03C02 |
| 376 | V481 | 0.9860774 | Female | 2.03509E+11 | R04C02 |
| 377 | V482 | 0.9860153 | Female | 2.03509E+11 | R05C02 |
| 378 | V485 | 0.9897912 | Male   | 2.03509E+11 | R06C02 |
| 379 | V486 | 0.9858266 | Female | 2.03509E+11 | R07C02 |
| 380 | V487 | 0.9895825 | Male   | 2.03509E+11 | R08C02 |
| 381 | V488 | 0.9860004 | Female | 2.03509E+11 | R09C02 |
| 382 | V489 | 0.9891182 | Male   | 2.03509E+11 | R10C02 |
| 383 | V490 | 0.9821761 | Female | 2.03509E+11 | R11C02 |
| 384 | V491 | 0.9824455 | Female | 2.03509E+11 | R12C02 |
| 385 | V492 | 0.9898421 | Male   | 2.03604E+11 | R01C01 |
| 386 | V493 | 0.9895738 | Male   | 2.03604E+11 | R02C01 |
| 387 | V494 | 0.9864238 | Female | 2.03604E+11 | R03C01 |
| 388 | V495 | 0.9862549 | Female | 2.03604E+11 | R04C01 |
| 389 | V496 | 0.9901388 | Male   | 2.03604E+11 | R05C01 |
| 390 | V502 | 0.9900097 | Male   | 2.03604E+11 | R06C01 |
| 391 | V503 | 0.9899997 | Male   | 2.03604E+11 | R07C01 |
| 392 | V504 | 0.9901189 | Male   | 2.03604E+11 | R08C01 |
| 393 | V505 | 0.9898048 | Male   | 2.03604E+11 | R09C01 |





| 394 | V506 | 0.9899004 | Male   | 2.03604E+11 | R10C01 |
|-----|------|-----------|--------|-------------|--------|
| 395 | V507 | 0.9859731 | Female | 2.03604E+11 | R11C01 |
| 396 | V508 | 0.9824815 | Female | 2.03604E+11 | R12C01 |
| 397 | V509 | 0.9898222 | Male   | 2.03604E+11 | R01C02 |
| 398 | V510 | 0.9897501 | Male   | 2.03604E+11 | R02C02 |
| 399 | V511 | 0.9891045 | Male   | 2.03604E+11 | R03C02 |
| 400 | V512 | 0.9899141 | Male   | 2.03604E+11 | R04C02 |
| 401 | V513 | 0.99015   | Male   | 2.03604E+11 | R05C02 |
| 402 | V514 | 0.9865156 | Female | 2.03604E+11 | R06C02 |
| 403 | V515 | 0.9902021 | Male   | 2.03604E+11 | R07C02 |
| 404 | V516 | 0.9863741 | Female | 2.03604E+11 | R08C02 |
| 405 | V517 | 0.9901189 | Male   | 2.03604E+11 | R09C02 |
| 406 | V518 | 0.9902083 | Male   | 2.03604E+11 | R10C02 |
| 407 | V519 | 0.9888003 | Male   | 2.03604E+11 | R11C02 |
| 408 | V520 | 0.9874593 | Male   | 2.03604E+11 | R12C02 |

#### **Data Filtering and Preprocessing:**

- 1. Raw Data: Plink Input files (SNP=805379, Samples = 408, 237 males, 166 females, 5 ambiguous)
- .ped files : SNP genotype data for all samples
- -.map file: SNP location information (Chromosome, Genomic Position)
- 2. Quality Control and Data Pre processing: Plink
- 2.0. SNP Filtering based on X, Y, XY & MT: 42878
- **2.1 Sample Genotyping rate (per sample): MIND 0.1 :** Samples with missing genotypes more 10 % will be removed.

**Results:** One sample (V285) removed due to low genotyping rate (< 90% SNP calls).

**2.2 SNP Genotyping rate (Per SNP): GENO 0.1:** SNPs with missing genotypes > 10% across all samples will be removed.

**Results:** 8201 SNPs removed due to low genotyping rate.

**2.3 Minor Allele frequency (MAF 0.05):** Remove SNPs with minor allele frequency < 0.05 due to genotyping error or bias or Monomorphic markers.

**Results:** 421600 SNPs removed with MAF < 0.05.





**2.4 Hardy Weinberg Equillibrium error (HWE 0.001) :** Remove SNP showing deviation from HWE with p-value 0.001.

Results: 2231 SNP removed with HWE error.

**2.5 LD pruning:** Remove SNPs in high LD required only for IBS analysis. LD pruning not required before Association Analysis thus performed on complete dataset.

**Results: 119286** 

#### **Gender Prediction & Imputation: Plink Vs Genome Studio**

Plink compares sex assignments in the input dataset with those imputed from X chromosome inbreeding coefficients. By default F estimates smaller than 0.2 yield female calls, and values larger than 0.8 yield male calls. Based on distribution of F estimates (gap between a tight male clump at the right side of the distribution and females at left side) cut off point estimation.

\*Please note: Previous Gender information share in Sample Table is based on Genome Studio.







# **Gender Check & Imputation (Plink Vs Genome Studio)**

| FID | IID  | Genome studio prediction | Plink Prediction (1=Male, 2=Female) | STATUS  | F        |
|-----|------|--------------------------|-------------------------------------|---------|----------|
| 13  | V13  | 0                        | 1                                   | PROBLEM | 0.9318   |
| 217 | V265 | 0                        | 2                                   | PROBLEM | 0.02528  |
| 218 | V266 | 0                        | 1                                   | PROBLEM | 0.948    |
| 229 | V285 | 0                        | 1                                   | PROBLEM | 0.8103   |
| 230 | V286 | 0                        | 2                                   | PROBLEM | -0.08407 |
| 1   | V1   | 2                        | 2                                   | ОК      | 0.02372  |
| 2   | V2   | 1                        | 1                                   | ОК      | 0.9676   |
| 3   | V3   | 1                        | 1                                   | ОК      | 0.9712   |
| 4   | V4   | 1                        | 1                                   | ОК      | 0.9684   |
| 5   | V5   | 2                        | 2                                   | ОК      | 0.03578  |
| 6   | V6   | 1                        | 1                                   | ОК      | 0.9716   |
| 7   | V7   | 1                        | 1                                   | ОК      | 0.9735   |
| 8   | V8   | 2                        | 2                                   | ОК      | 0.05696  |
| 9   | V9   | 2                        | 2                                   | ОК      | 0.03771  |
| 10  | V10  | 2                        | 2                                   | ОК      | 0.02723  |
| 11  | V11  | 1                        | 1                                   | ОК      | 0.9704   |
| 12  | V12  | 1                        | 1                                   | ОК      | 0.961    |
| 14  | V14  | 2                        | 2                                   | ОК      | 0.2939   |
| 15  | V15  | 2                        | 2                                   | ОК      | 0.03374  |
| 16  | V16  | 2                        | 2                                   | ОК      | 0.1583   |
| 17  | V17  | 1                        | 1                                   | ОК      | 0.9692   |
| 18  | V18  | 2                        | 2                                   | ОК      | 0.03761  |
| 19  | V19  | 2                        | 2                                   | ОК      | 0.05682  |
| 20  | V20  | 1                        | 1                                   | ОК      | 0.9728   |
| 21  | V21  | 1                        | 1                                   | ОК      | 0.9751   |
| 22  | V23  | 1                        | 1                                   | ОК      | 0.9708   |
| 23  | V24  | 2                        | 2                                   | ОК      | 0.01846  |
| 24  | V25  | 1                        | 1                                   | ОК      | 0.9576   |
| 25  | V27  | 1                        | 1                                   | ОК      | 0.97     |
| 26  | V29  | 1                        | 1                                   | ОК      | 0.9644   |
| 27  | V30  | 1                        | 1                                   | ОК      | 0.9716   |
| 28  | V32  | 1                        | 1                                   | ОК      | 0.9673   |
| 29  | V33  | 1                        | 1                                   | ОК      | 0.9724   |
| 30  | V36  | 1                        | 1                                   | ОК      | 0.9712   |
| 31  | V37  | 2                        | 2                                   | ОК      | 0.06842  |
| 32  | V38  | 1                        | 1                                   | ОК      | 0.972    |
| 33  | V39  | 2                        | 2                                   | ОК      | 0.03766  |
| 34  | V40  | 1                        | 1                                   | ОК      | 0.974    |
| 35  | V41  | 1                        | 1                                   | ОК      | 0.9708   |





| 36 | V42 | 1 | 1 | ОК | 0.9684           |
|----|-----|---|---|----|------------------|
| 37 | V43 | 2 | 2 | ОК | 0.07594          |
| 38 | V44 | 1 | 1 | OK | 0.97             |
| 39 | V45 | 1 | 1 | ОК | 0.9684           |
| 40 | V46 | 2 | 2 | OK | 0.06038          |
| 41 | V47 | 1 | 1 | OK | 0.9728           |
| 42 | V48 | 1 | 1 | OK | 0.9677           |
| 43 | V49 | 1 | 1 | OK | 0.972            |
| 44 | V50 | 2 | 2 | OK | 0.000434         |
| 45 | V51 | 1 | 1 | OK | 0.9732           |
| 46 | V53 | 1 | 1 | OK | 0.9713           |
| 47 | V54 | 1 | 1 | ОК | 0.9687           |
| 48 | V55 | 2 | 2 | ОК | 0.08563          |
| 49 | V56 | 1 | 1 | OK | 0.9727           |
| 50 | V57 | 1 | 1 | ОК | 0.9692           |
| 51 | V58 | 1 | 1 | ОК | 0.9696           |
| 52 | V59 | 2 | 2 | ОК | 0.05543          |
| 53 | V60 | 1 | 1 | ОК | 0.9704           |
| 54 | V61 | 2 | 2 | ОК | 0.05105          |
| 55 | V62 | 2 | 2 | ОК | 0.01931          |
| 56 | V63 | 2 | 2 | OK | 0.1812           |
| 57 | V64 | 2 | 2 | OK | 0.02736          |
| 58 | V65 | 2 | 2 | OK | 0.02730          |
| 59 | V65 | 1 | 1 | OK |                  |
| 60 | V67 | 1 | 1 | OK | 0.9708<br>0.9652 |
| 61 | V67 | 2 | 2 | OK | 0.03777          |
|    |     |   | 2 |    |                  |
| 62 | V69 | 2 |   | OK | -0.02831         |
| 63 | V70 | 2 | 2 | OK | -0.00523         |
| 64 | V71 | 2 | 2 | OK | -0.02639         |
| 65 | V72 | 2 | 2 | OK | 0.01475          |
| 66 | V73 | 2 | 2 | OK | -0.01562         |
| 67 | V74 | 1 | 1 | OK | 0.9704           |
| 68 | V75 | 2 | 2 | OK | -0.01154         |
| 69 | V76 | 2 | 2 | OK | 0.02949          |
| 70 | V77 | 2 | 2 | OK | -0.00928         |
| 71 | V78 | 2 | 2 | OK | 0.05023          |
| 72 | V79 | 2 | 2 | OK | 0.04041          |
| 73 | V80 | 2 | 2 | OK | 0.001889         |
| 74 | V81 | 1 | 1 | OK | 0.9687           |
| 75 | V82 | 2 | 2 | OK | -0.02034         |
| 76 | V84 | 2 | 2 | OK | -0.03562         |
| 77 | V85 | 2 | 2 | OK | 0.001706         |
| 78 | V87 | 2 | 2 | OK | -0.05333         |
| 79 | V88 | 2 | 2 | OK | 0.0852           |





| 80  | V89          | 2 | 2 | ОК | 0.04317  |
|-----|--------------|---|---|----|----------|
| 81  | V90          | 2 | 2 | ОК | 0.1234   |
| 82  | V91          | 1 | 1 | ОК | 0.9708   |
| 83  | V92          | 2 | 2 | ОК | 0.1446   |
| 84  | V93          | 2 | 2 | OK | -0.02261 |
| 85  | V97          | 2 | 2 | OK | 0.05482  |
| 86  | V99          | 2 | 2 | OK | 0.05416  |
| 87  | V100         | 2 | 2 | OK | 0.06709  |
| 88  | V100         | 2 | 2 | OK | -0.00518 |
| 89  | V101<br>V102 | 2 | 2 | OK | -0.01338 |
| 90  | V102<br>V103 | 1 | 1 | OK | 0.9672   |
| 91  | V103         | 2 | 2 | OK | 0.006309 |
| 92  | V104<br>V106 | 2 | 2 | OK |          |
|     |              |   |   |    | -0.03207 |
| 93  | V109         | 2 | 2 | OK | 0.03836  |
| 94  | V111         | 2 | 2 | OK | 0.06458  |
| 95  | V112         | 2 | 2 | OK | 0.119    |
| 96  | V113         | 2 | 2 | OK | 0.12     |
| 97  | V114         | 2 | 2 | OK | 0.0701   |
| 98  | V115         | 2 | 2 | OK | 0.02115  |
| 99  | V116         | 2 | 2 | OK | 0.00455  |
| 100 | V117         | 2 | 2 | ОК | 0.08183  |
| 101 | V123         | 2 | 2 | OK | 0.01741  |
| 102 | V124         | 1 | 1 | OK | 0.9675   |
| 103 | V125         | 1 | 1 | OK | 0.9701   |
| 104 | V126         | 1 | 1 | OK | 0.9689   |
| 105 | V129         | 2 | 2 | OK | -0.01513 |
| 106 | V130         | 1 | 1 | OK | 0.9675   |
| 107 | V138         | 2 | 2 | OK | -0.00484 |
| 108 | V139         | 2 | 2 | OK | 0.05858  |
| 109 | V140         | 2 | 2 | OK | 0.1228   |
| 110 | V141         | 2 | 2 | OK | 0.05095  |
| 111 | V142         | 1 | 1 | OK | 0.9712   |
| 112 | V143         | 1 | 1 | OK | 0.9708   |
| 113 | V144         | 2 | 2 | OK | 0.1509   |
| 114 | V145         | 2 | 2 | OK | 0.03669  |
| 115 | V149         | 1 | 1 | OK | 0.9695   |
| 116 | V150         | 1 | 1 | ОК | 0.9689   |
| 117 | V155         | 2 | 2 | ОК | -0.02122 |
| 118 | V156         | 1 | 1 | ОК | 0.9658   |
| 119 | V157         | 1 | 1 | ОК | 0.9696   |
| 120 | V159         | 1 | 1 | ОК | 0.9658   |
| 121 | V161         | 2 | 2 | ОК | -0.01988 |
| 122 | V162         | 1 | 1 | ОК | 0.972    |
| 123 | V164         | 2 | 2 | ОК | -0.01388 |
|     | п            |   |   |    | 1        |





| 124 | V165         | 2 | 2 | ОК                                    | -0.05904 |
|-----|--------------|---|---|---------------------------------------|----------|
| 125 | V166         | 2 | 2 | ОК                                    | -0.02089 |
| 126 | V167         | 1 | 1 | ОК                                    | 0.9716   |
| 127 | V168         | 1 | 1 | ОК                                    | 0.9716   |
| 128 | V169         | 1 | 1 | ОК                                    | 0.9685   |
| 129 | V170         | 1 | 1 | ОК                                    | 0.9704   |
| 130 | V171         | 2 | 2 | ОК                                    | 0.00335  |
| 131 | V172         | 1 | 1 | ОК                                    | 0.9645   |
| 132 | V172         | 2 | 2 | OK                                    | 0.01049  |
| 133 | V174         | 1 | 1 | OK                                    | 0.9704   |
| 134 | V175         | 2 | 2 | OK                                    | -0.03232 |
| 135 | V176         | 1 | 1 | OK                                    | 0.9717   |
| 136 | V177         | 1 | 1 | OK                                    | 0.9697   |
| 137 | V177         | 1 | 1 | OK                                    | 0.9665   |
| 138 | V178<br>V180 | 1 | 1 | OK                                    | 0.9685   |
| 139 |              | 2 | 2 | OK                                    |          |
|     | V181         |   |   |                                       | 0.03502  |
| 140 | V182         | 1 | 1 | OK                                    | 0.9712   |
| 141 | V183         | 1 | 1 | OK                                    | 0.9713   |
| 142 | V184         | 1 | 1 | OK                                    | 0.9744   |
| 143 | V185         | 1 | 1 | OK                                    | 0.9708   |
| 144 | V188         | 1 | 1 | OK                                    | 0.9757   |
| 145 | V189         | 1 | 1 | OK                                    | 0.9724   |
| 146 | V190         | 2 | 2 | OK                                    | -0.03415 |
| 147 | V191         | 1 | 1 | OK                                    | 0.9728   |
| 148 | V192         | 1 | 1 | OK                                    | 0.9685   |
| 149 | V193         | 1 | 1 | OK                                    | 0.9681   |
| 150 | V194         | 2 | 2 | OK                                    | 0.004839 |
| 151 | V195         | 1 | 1 | OK                                    | 0.9728   |
| 152 | V196         | 1 | 1 | OK                                    | 0.9673   |
| 153 | V197         | 1 | 1 | OK                                    | 0.9689   |
| 154 | V199         | 2 | 2 | OK                                    | -0.07144 |
| 155 | V200         | 1 | 1 | OK                                    | 0.9693   |
| 156 | V201         | 1 | 1 | OK                                    | 0.9699   |
| 157 | V202         | 1 | 1 | OK                                    | 0.9748   |
| 158 | V203         | 1 | 1 | OK                                    | 0.9708   |
| 159 | V204         | 1 | 1 | OK                                    | 0.9712   |
| 160 | V205         | 1 | 1 | ОК                                    | 0.9701   |
| 161 | V206         | 1 | 1 | OK                                    | 0.9716   |
| 162 | V207         | 2 | 2 | OK                                    | -0.07639 |
| 163 | V208         | 1 | 1 | ОК                                    | 0.9685   |
| 164 | V209         | 1 | 1 | ОК                                    | 0.9716   |
| 165 | V210         | 1 | 1 | ОК                                    | 0.9685   |
| 166 | V211         | 1 | 1 | ОК                                    | 0.972    |
| 167 | V212         | 1 | 1 | ОК                                    | 0.9671   |
| -   |              |   | - | · · · · · · · · · · · · · · · · · · · | -        |





| 168          | V213 | 1 | 1 | ОК       | 0.9683   |
|--------------|------|---|---|----------|----------|
| 169          | V214 | 1 | 1 | ОК       | 0.9692   |
| 170          | V215 | 1 | 1 | ОК       | 0.9736   |
| 171          | V216 | 2 | 2 | ОК       | -0.0592  |
| 172          | V218 | 1 | 1 | ОК       | 0.9728   |
| 173          | V220 | 2 | 2 | ОК       | -0.02526 |
| 174          | V221 | 1 | 1 | ОК       | 0.9736   |
| 175          | V222 | 1 | 1 | ОК       | 0.9725   |
| 176          | V223 | 2 | 2 | ОК       | 0.01573  |
| 177          | V224 | 1 | 1 | ОК       | 0.9725   |
| 178          | V225 | 2 | 2 | ОК       | -0.02377 |
| 179          | V226 | 1 | 1 | ОК       | 0.9716   |
| 180          | V227 | 1 | 1 | ОК       | 0.9706   |
| 181          | V228 | 1 | 1 | ОК       | 0.9748   |
| 182          | V229 | 1 | 1 | ОК       | 0.972    |
| 183          | V230 | 1 | 1 | ОК       | 0.9728   |
| 184          | V231 | 1 | 1 | ОК       | 0.9736   |
| 185          | V232 | 1 | 1 | OK       | 0.9697   |
| 186          | V233 | 1 | 1 | ОК       | 0.9712   |
| 187          | V234 | 1 | 1 | ОК       | 0.9704   |
| 188          | V235 | 1 | 1 | ОК       | 0.9701   |
| 189          | V236 | 2 | 2 | ОК       | -0.07711 |
| 190          | V237 | 1 | 1 | ОК       | 0.972    |
| 191          | V238 | 1 | 1 | ОК       | 0.9688   |
| 192          | V239 | 1 | 1 | ОК       | 0.9687   |
| 193          | V240 | 2 | 2 | ОК       | -0.01607 |
| 194          | V241 | 1 | 1 | ОК       | 0.9656   |
| 195          | V242 | 2 | 2 | ОК       | -0.00039 |
| 196          | V243 | 2 | 2 | ОК       | -0.00125 |
| 197          | V244 | 2 | 2 | ОК       | -0.00652 |
| 198          | V245 | 1 | 1 | ОК       | 0.9716   |
| 199          | V247 | 1 | 1 | ОК       | 0.9685   |
| 200          | V248 | 1 | 1 | ОК       | 0.974    |
| 201          | V249 | 1 | 1 | ОК       | 0.9685   |
| 202          | V250 | 2 | 2 | ОК       | -0.02648 |
| 203          | V251 | 2 | 2 | ОК       | 0.03051  |
| 204          | V252 | 1 | 1 | OK       | 0.9687   |
| 205          | V253 | 1 | 1 | ОК       | 0.9676   |
| 206          | V254 | 2 | 2 | ОК       | 0.1409   |
| 207          | V255 | 2 | 2 | ОК       | 0.03893  |
| 208          | V256 | 1 | 1 | ОК       | 0.9677   |
| 209          | V257 | 2 | 2 | ОК       | 0.03322  |
| 210          | V258 | 1 | 1 | ОК       | 0.9685   |
| 211          | V259 | 1 | 1 | ОК       | 0.9693   |
| <del>_</del> |      |   |   | <b>.</b> | -:3000   |





| 213         V261         2         2         OK         -0.03745           214         V262         1         1         OK         0.9716           215         V263         1         1         OK         0.9653           216         V264         1         1         OK         0.9645           219         V267         1         1         OK         0.9659           220         V269         1         1         OK         0.9708           221         V270         2         2         OK         -0.03893           222         V271         1         1         OK         0.9673           223         V272         1         1         OK         0.9704           224         V273         2         2         OK         0.008628           225         V275         1         1         OK         0.9705           226         V278         1         1         OK         0.9692           227         V279         1         1         OK         0.9728           228         V282         1         1         OK         0.9771           2                                                                                   | 212 | V260 | 2 | 2 | ОК | 2.39E-05 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|---|---|----|----------|
| 214         V262         1         1         OK         0.9653           216         V264         1         1         OK         0.9653           216         V264         1         1         OK         0.9653           219         V267         1         1         OK         0.9708           220         V269         1         1         OK         0.9708           221         V270         2         2         OK         -0.03893           222         V271         1         1         OK         0.9704           223         V272         1         1         OK         0.9704           224         V273         2         2         OK         0.08628           225         V275         1         1         OK         0.9705           226         V278         1         1         OK         0.9702           227         V279         1         1         OK         0.9719           231         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9701           234<                                                                                   | 213 | V261 | 2 | 2 | ОК | -0.03745 |
| 215         V263         1         1         OK         0.9645           216         V264         1         1         OK         0.9645           219         V267         1         1         OK         0.9659           220         V269         1         1         OK         0.9708           221         V270         2         2         OK         -0.03893           222         V271         1         1         OK         0.9673           223         V272         1         1         OK         0.9704           224         V273         2         2         OK         0.008628           225         V275         1         1         OK         0.9705           226         V278         1         1         OK         0.9692           227         V279         1         1         OK         0.9719           231         V288         1         1         OK         0.9719           231         V288         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234                                                                                   | 214 | V262 | 1 | 1 | ОК |          |
| 216         V264         1         1         OK         0.9645           219         V267         1         1         OK         0.95659           220         V269         1         1         OK         0.9708           221         V270         2         2         OK         0.03893           222         V271         1         1         OK         0.9704           223         V272         1         1         OK         0.9704           224         V273         2         2         OK         0.008628           225         V275         1         1         OK         0.9705           226         V278         1         1         OK         0.9702           227         V279         1         1         OK         0.9728           228         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         0.03615           23                                                                                   |     |      | 1 | 1 | ОК |          |
| 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |   |   |    |          |
| 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |   |   |    |          |
| 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      | 1 |   |    |          |
| 222         V271         1         1         OK         0.9673           223         V272         1         1         OK         0.9704           224         V273         2         2         OK         0.00628           225         V275         1         1         OK         0.9692           226         V278         1         1         OK         0.9692           227         V279         1         1         OK         0.9728           228         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9668           233         V290         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         0.00219           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         0.01254           238                                                                                   |     |      |   |   |    |          |
| 223         V272         1         1         OK         0.9704           224         V273         2         2         OK         0.008628           225         V275         1         1         OK         0.9705           226         V278         1         1         OK         0.9692           227         V279         1         1         OK         0.9728           228         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9617           232         V289         1         1         OK         0.9668           233         V290         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         0.01254           23                                                                                   |     |      | 1 | 1 |    |          |
| 224         V273         2         2         0K         0.008628           225         V275         1         1         0K         0.9705           226         V278         1         1         0K         0.9692           227         V279         1         1         0K         0.9692           227         V279         1         1         0K         0.9719           228         V282         1         1         0K         0.9719           231         V288         1         1         0K         0.9617           232         V289         1         1         0K         0.9668           233         V290         1         1         0K         0.9701           234         V291         2         2         0K         -0.03615           235         V292         2         2         0K         0.00219           236         V295         1         1         0K         0.9704           237         V297         2         2         0K         -0.01254           238         V298         1         1         0K         0.9684                                                                                              |     |      |   |   |    |          |
| 225         V275         1         1         OK         0.9705           226         V278         1         1         OK         0.9692           227         V279         1         1         OK         0.9728           228         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9617           232         V289         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         -0.03615           235         V292         2         2         OK         -0.03615           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                     |     |      |   |   |    |          |
| 226         V278         1         1         OK         0.9692           227         V279         1         1         OK         0.9728           228         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9617           232         V289         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         -0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004 <t< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>                     |     |      |   | 1 |    |          |
| 227         V279         1         1         OK         0.9728           228         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9617           232         V289         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         -0.03615           234         V291         2         2         OK         -0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.96677           241         V301         2         2         OK         -0.01004                                                                                         |     |      | 1 | 1 |    |          |
| 228         V282         1         1         OK         0.9719           231         V288         1         1         OK         0.9617           232         V289         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         -0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9687           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9667           243         V308         1         1         OK         0.9714 <t< td=""><td></td><td></td><td>1</td><td>1</td><td></td><td>0.9728</td></t<>              |     |      | 1 | 1 |    | 0.9728   |
| 231         V288         1         1         OK         0.9617           232         V289         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         -0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9704           239         V299         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.01264           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         0.01004           242         V302         1         1         OK         0.9699           <                                                                               |     |      |   |   |    |          |
| 232         V289         1         1         OK         0.9668           233         V290         1         1         OK         0.9701           234         V291         2         2         OK         0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9677           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9714           244         V309         1         1         OK         0.9665 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                     |     |      |   |   |    |          |
| 233         V290         1         1         OK         0.9701           234         V291         2         2         OK         -0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9696 <t< td=""><td></td><td>V289</td><td>1</td><td>1</td><td></td><td></td></t<>                |     | V289 | 1 | 1 |    |          |
| 234         V291         2         2         OK         -0.03615           235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9724 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                      |     |      |   |   |    |          |
| 235         V292         2         2         OK         0.00219           236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9724                                                                                              |     |      |   |   |    |          |
| 236         V295         1         1         OK         0.9704           237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9719           245         V311         1         1         OK         0.9665           247         V313         1         1         OK         0.9696           248         V314         1         1         OK         0.9722           249         V317         1         1         OK         0.9724           2                                                                                   |     |      |   |   |    |          |
| 237         V297         2         2         OK         -0.01254           238         V298         1         1         OK         0.9684           239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9696           248         V314         1         1         OK         0.9712           250         V322         1         1         OK         0.9724           2                                                                                   |     |      | 1 |   |    |          |
| 239         V299         2         2         OK         -0.03869           240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9665           248         V314         1         1         OK         0.972           249         V317         1         1         OK         0.9712           250         V322         1         1         OK         0.9724           251         V323         1         1         OK         0.9645           252<                                                                                   |     |      | 2 | 2 | ОК | -0.01254 |
| 240         V300         1         1         OK         0.9677           241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9696           248         V314         1         1         OK         0.9722           249         V317         1         1         OK         0.9712           250         V322         1         1         OK         0.9724           251         V323         1         1         OK         0.9645           252         V324         1         1         OK         0.9743           254         V328         2         2         OK         -0.00714           255                                                                                   | 238 | V298 | 1 | 1 | ОК | 0.9684   |
| 241         V301         2         2         OK         -0.01004           242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9696           248         V314         1         1         OK         0.972           249         V317         1         1         OK         0.9712           250         V322         1         1         OK         0.9724           251         V323         1         1         OK         0.9645           252         V324         1         1         OK         0.9624           253         V327         1         1         OK         0.9743           254         V328         2         2         OK         -0.00714           255<                                                                                   | 239 | V299 | 2 | 2 | ОК | -0.03869 |
| 242         V302         1         1         OK         0.9699           243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9696           248         V314         1         1         OK         0.972           249         V317         1         1         OK         0.9712           250         V322         1         1         OK         0.9724           251         V323         1         1         OK         0.9645           252         V324         1         1         OK         0.9624           253         V327         1         1         OK         0.9743           254         V328         2         2         OK         -0.06434           255         V330         2         2         OK         0.01156           257 </td <td>240</td> <td>V300</td> <td>1</td> <td>1</td> <td>ОК</td> <td>0.9677</td>   | 240 | V300 | 1 | 1 | ОК | 0.9677   |
| 243         V308         1         1         OK         0.9714           244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9696           248         V314         1         1         OK         0.972           249         V317         1         1         OK         0.972           249         V317         1         1         OK         0.9712           250         V322         1         1         OK         0.9724           251         V323         1         1         OK         0.9645           252         V324         1         1         OK         0.9624           253         V327         1         1         OK         0.9743           254         V328         2         2         OK         -0.06434           255         V329         2         2         OK         -0.06434           256 </td <td>241</td> <td>V301</td> <td>2</td> <td>2</td> <td>ОК</td> <td>-0.01004</td> | 241 | V301 | 2 | 2 | ОК | -0.01004 |
| 244         V309         1         1         OK         0.9719           245         V311         1         1         OK         0.9704           246         V312         1         1         OK         0.9665           247         V313         1         1         OK         0.9696           248         V314         1         1         OK         0.972           249         V317         1         1         OK         0.9712           250         V322         1         1         OK         0.9724           251         V323         1         1         OK         0.9645           252         V324         1         1         OK         0.9624           253         V327         1         1         OK         0.9743           254         V328         2         2         OK         -0.00714           255         V329         2         2         OK         0.01156           257         V332         2         2         OK         0.0324           258         V333         2         2         OK         0.007904                                                                                                 | 242 | V302 | 1 | 1 | ОК | 0.9699   |
| 245       V311       1       1       OK       0.9704         246       V312       1       1       OK       0.9665         247       V313       1       1       OK       0.9696         248       V314       1       1       OK       0.972         249       V317       1       1       OK       0.9712         250       V322       1       1       OK       0.9724         251       V323       1       1       OK       0.9645         252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                  | 243 | V308 | 1 | 1 | ОК | 0.9714   |
| 246       V312       1       1       OK       0.9665         247       V313       1       1       OK       0.9696         248       V314       1       1       OK       0.972         249       V317       1       1       OK       0.9712         250       V322       1       1       OK       0.9724         251       V323       1       1       OK       0.9645         252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                 | 244 | V309 | 1 | 1 | ОК | 0.9719   |
| 247       V313       1       1       OK       0.9696         248       V314       1       1       OK       0.972         249       V317       1       1       OK       0.9712         250       V322       1       1       OK       0.9724         251       V323       1       1       OK       0.9645         252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                              | 245 | V311 | 1 | 1 | ОК | 0.9704   |
| 248       V314       1       1       OK       0.972         249       V317       1       1       OK       0.9712         250       V322       1       1       OK       0.9724         251       V323       1       1       OK       0.9645         252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 246 | V312 | 1 | 1 | ОК | 0.9665   |
| 249       V317       1       1       OK       0.9712         250       V322       1       1       OK       0.9724         251       V323       1       1       OK       0.9645         252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 247 | V313 | 1 | 1 | ОК | 0.9696   |
| 250       V322       1       1       OK       0.9724         251       V323       1       1       OK       0.9645         252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 248 | V314 | 1 | 1 | ОК | 0.972    |
| 251       V323       1       1       OK       0.9645         252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 249 | V317 | 1 | 1 | ОК | 0.9712   |
| 252       V324       1       1       OK       0.9624         253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250 | V322 | 1 | 1 | ОК | 0.9724   |
| 253       V327       1       1       OK       0.9743         254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 251 | V323 | 1 | 1 | ОК | 0.9645   |
| 254       V328       2       2       OK       -0.00714         255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 252 | V324 | 1 | 1 | ОК | 0.9624   |
| 255       V329       2       2       OK       -0.06434         256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 253 | V327 | 1 | 1 | ОК | 0.9743   |
| 256       V330       2       2       OK       0.01156         257       V332       2       2       OK       -0.0324         258       V333       2       2       OK       0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 254 | V328 | 2 | 2 | ОК | -0.00714 |
| 257     V332     2     2     OK     -0.0324       258     V333     2     2     OK     0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 255 | V329 | 2 | 2 | ОК | -0.06434 |
| 258 V333 2 2 OK 0.007904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 256 | V330 | 2 | 2 | ОК | 0.01156  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 257 | V332 | 2 | 2 | ОК | -0.0324  |
| 259 V334 1 1 OK 0.9728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 258 | V333 | 2 | 2 | ОК | 0.007904 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 259 | V334 | 1 | 1 | ОК | 0.9728   |





| 260        | V335         | 2 | 2 | ОК       | 0.01757              |
|------------|--------------|---|---|----------|----------------------|
| 261        | V336         | 1 | 1 | ОК       | 0.9696               |
| 262        | V337         | 1 | 1 | OK       | 0.9727               |
| 263        | V338         | 2 | 2 | ОК       | 0.02528              |
| 264        | V339         | 2 | 2 | OK       | 0.08531              |
| 265        | V341         | 2 | 2 | OK       | 0.02425              |
| 266        | V342         | 2 | 2 | OK       | -0.01239             |
| 267        | V345         | 2 | 2 | OK       | 0.02926              |
| 268        | V347         | 2 | 2 | OK       | 0.01576              |
| 269        | V351         | 1 | 1 | OK       | 0.9677               |
| 270        | V354         | 2 | 2 | OK       | 0.006285             |
| 271        | V355         | 1 | 1 | OK       | 0.9728               |
| 272        | V356         | 2 | 2 | OK       | -0.00446             |
| 273        | V357         | 2 | 2 | OK       | 0.09138              |
| 274        | V358         | 2 | 2 | OK       | -0.01432             |
| 275        | V359         | 2 | 2 | OK       | 0.03482              |
| 276        | V360         | 2 | 2 | OK       | -0.00168             |
| 277        | V363         | 1 | 1 | OK       | 0.9701               |
| 278        | V364         | 1 | 1 | OK       | 0.9677               |
| 279        | V365         | 1 | 1 | OK       | 0.9693               |
| 280        | V366         | 2 | 2 | OK       | -0.06032             |
| 281        | V367         | 1 | 1 | OK       | 0.9729               |
| 282        | V368         | 1 | 1 | OK       | 0.9669               |
| 283        | V369         | 1 | 1 | OK       | 0.9681               |
| 284        | V303         | 1 | 1 | OK       | 0.9713               |
| 285        | V370         | 2 | 2 | OK       | 0.006057             |
| 286        | V371         | 2 | 2 | OK       | -0.01506             |
| 287        | V372         | 2 | 2 | OK       | -0.01300             |
| 288        | V373         | 2 | 2 | OK       | 0.01378              |
| 289        | V374<br>V375 | 1 | 1 | OK       | 0.9673               |
| 290        | V373         | 1 | 1 | OK       | 0.9721               |
| 291        | V378         | 2 | 2 | OK       | 0.02116              |
| 292        |              | 2 | 2 |          |                      |
| 292        | V391<br>V392 | 2 | 2 | OK<br>OK | 0.007487<br>-0.00472 |
|            |              | 1 | 1 |          | 0.9709               |
| 294        | V394         |   | 1 | OK OK    |                      |
| 295<br>296 | V395         | 2 | 2 | OK<br>OK | 0.9682               |
| 296        | V397<br>V399 | 1 | 1 | OK       | -0.00837<br>0.9709   |
|            |              | 1 | 1 |          |                      |
| 298        | V400         |   |   | OK       | 0.9709               |
| 299        | V401         | 1 | 1 | OK       | 0.9728               |
| 300        | V402         | 1 | 1 | OK       | 0.9741               |
| 301        | V403         | 1 | 1 | OK       | 0.9725               |
| 302        | V404         | 1 | 1 | OK       | 0.9744               |
| 303        | V405         | 1 | 1 | OK       | 0.9678               |





| 304 | V406         | 2 | 2 | ОК | 0.01508  |
|-----|--------------|---|---|----|----------|
| 305 | V407         | 1 | 1 | ОК | 0.9701   |
| 306 | V408         | 1 | 1 | OK | 0.9693   |
| 307 | V409         | 1 | 1 | ОК | 0.9709   |
| 308 | V410         | 1 | 1 | OK | 0.9709   |
| 309 | V411         | 1 | 1 | OK | 0.9709   |
| 310 | V412         | 1 | 1 | OK | 0.9701   |
| 311 | V413         | 1 | 1 | OK | 0.968    |
| 312 | V414         | 1 | 1 | OK | 0.9656   |
| 313 | V415         | 1 | 1 | ОК | 0.9721   |
| 314 | V416         | 1 | 1 | OK | 0.9697   |
| 315 | V417         | 1 | 1 | OK | 0.9681   |
| 316 | V418         | 1 | 1 | OK | 0.9732   |
| 317 | V419         | 1 | 1 | OK | 0.9701   |
| 318 | V420         | 2 | 2 | OK | 0.01004  |
| 319 | V421         | 2 | 2 | ОК | 0.0235   |
| 320 | V422         | 2 | 2 | ОК | -0.02676 |
| 321 | V422         | 1 | 1 | OK | 0.967    |
| 322 | V423         | 1 | 1 | OK | 0.9673   |
| 323 | V424<br>V425 | 2 | 2 | ОК | 0.1771   |
| 324 | V425         | 1 | 1 | OK | 0.9729   |
| 325 | V420<br>V427 | 2 | 2 | OK | 0.01606  |
| 326 | V427<br>V428 | 2 | 2 | OK | 0.0326   |
| 327 | V428<br>V429 | 2 | 2 | OK | 0.0320   |
| 328 | V429<br>V430 | 2 | 2 | OK | 0.0219   |
| 329 | V430         | 2 | 2 | OK | 0.0219   |
| 330 | V431<br>V432 | 2 | 2 | OK | -0.0033  |
| 331 | V432<br>V433 | 2 | 2 | OK | 0.01092  |
| 332 | V433         | 1 | 1 | OK |          |
|     |              | 1 | 1 |    | 0.9701   |
| 333 | V435<br>V436 | 1 |   | OK | 0.9725   |
| 334 |              |   | 2 | OK | 0.9729   |
| 335 | V437         | 2 |   | OK | 0.02079  |
| 336 | V438         | 1 | 1 | OK | 0.9746   |
| 337 | V439         | 1 | 1 | OK | 0.9669   |
| 338 | V440         | 1 | 1 | OK | 0.9665   |
| 339 | V441         | 2 | 2 | OK | 0.000383 |
| 340 | V442         | 1 | 1 | OK | 0.9697   |
| 341 | V443         | 1 | 1 | OK | 0.9693   |
| 342 | V444         | 1 | 1 | OK | 0.9709   |
| 343 | V445         | 1 | 1 | OK | 0.9697   |
| 344 | V446         | 1 | 1 | OK | 0.974    |
| 345 | V447         | 1 | 1 | OK | 0.9662   |
| 346 | V448         | 2 | 2 | OK | -0.00771 |
| 347 | V449         | 1 | 1 | OK | 0.9685   |





| 348 | V450         | 1 | 1 | ОК       | 0.9698   |
|-----|--------------|---|---|----------|----------|
| 349 | V451         | 1 | 1 | ОК       | 0.9724   |
| 350 | V452         | 1 | 1 | OK       | 0.9721   |
| 351 | V453         | 2 | 2 | ОК       | 0.04898  |
| 352 | V454         | 1 | 1 | OK       | 0.9705   |
| 353 | V455         | 2 | 2 | OK       | 0.07683  |
| 354 | V456         | 1 | 1 | ОК       | 0.9689   |
| 355 | V457         | 2 | 2 | OK       | -0.00859 |
| 356 | V458         | 1 | 1 | OK       | 0.9713   |
| 357 | V459         | 1 | 1 | ОК       | 0.9717   |
| 358 | V460         | 1 | 1 | OK       | 0.9705   |
| 359 | V462         | 1 | 1 | OK       | 0.9681   |
| 360 | V463         | 1 | 1 | OK       | 0.9738   |
| 361 | V464         | 1 | 1 | ОК       | 0.9693   |
| 362 | V466         | 1 | 1 | ОК       | 0.9696   |
| 363 | V467         | 1 | 1 | OK       | 0.9724   |
| 364 | V468         | 2 | 2 | ОК       | 0.0357   |
| 365 | V469         | 1 | 1 | ОК       | 0.9677   |
| 366 | V470         | 2 | 2 | ОК       | 0.04411  |
| 367 | V471         | 1 | 1 | ОК       | 0.972    |
| 368 | V471         | 1 | 1 | ОК       | 0.9732   |
| 369 | V474         | 1 | 1 | ОК       | 0.9716   |
| 370 | V475         | 1 | 1 | ОК       | 0.97     |
| 371 | V475         | 2 | 2 | ОК       | 0.06866  |
| 372 | V477         | 2 | 2 | ОК       | 0.01454  |
| 373 | V477         | 2 | 2 | ОК       | 0.0428   |
| 374 | V478         | 2 | 2 | ОК       | 0.000348 |
| 375 | V479<br>V480 | 1 | 1 | OK       | 0.9665   |
| 376 | V480<br>V481 | _ | _ |          | -0.04053 |
| 377 | V481<br>V482 | 2 | 2 | OK<br>OK | 0.04596  |
| 378 | V482<br>V485 | 1 | 1 | OK       | 0.9732   |
| 379 | V485<br>V486 | 2 | 2 | OK       | -0.01284 |
|     |              | 1 |   | OK       |          |
| 380 | V487         | 2 | 2 | OK       | 0.9685   |
| 381 | V488         |   |   |          | 0.02667  |
| 382 | V489         | 1 | 1 | OK OK    | 0.9708   |
| 383 | V490         | 2 | 2 | OK       | 0.008474 |
| 384 | V491         | 2 | 2 | OK OK    | 0.02182  |
| 385 | V492         | 1 | 1 | OK OK    | 0.97     |
| 386 | V493         | 1 | 1 | OK       | 0.9693   |
| 387 | V494         | 2 | 2 | OK       | -0.02561 |
| 388 | V495         | 2 | 2 | OK       | 0.01557  |
| 389 | V496         | 1 | 1 | OK       | 0.9689   |
| 390 | V502         | 1 | 1 | OK       | 0.9728   |
| 391 | V503         | 1 | 1 | OK       | 0.9701   |





| 392 | V504 | 1 | 1 | ОК | 0.9724   |
|-----|------|---|---|----|----------|
| 393 | V505 | 1 | 1 | ОК | 0.9712   |
| 394 | V506 | 1 | 1 | ОК | 0.9673   |
| 395 | V507 | 2 | 2 | OK | 0.01922  |
| 396 | V508 | 2 | 2 | OK | 0.04554  |
| 397 | V509 | 1 | 1 | OK | 0.9653   |
| 398 | V510 | 1 | 1 | ОК | 0.9717   |
| 399 | V511 | 1 | 1 | ОК | 0.9728   |
| 400 | V512 | 1 | 1 | ОК | 0.9716   |
| 401 | V513 | 1 | 1 | ОК | 0.9677   |
| 402 | V514 | 2 | 2 | ОК | -0.04071 |
| 403 | V515 | 1 | 1 | OK | 0.9705   |
| 404 | V516 | 2 | 2 | OK | 0.03865  |
| 405 | V517 | 1 | 1 | ОК | 0.972    |
| 406 | V518 | 1 | 1 | ОК | 0.9705   |
| 407 | V519 | 1 | 1 | ОК | 0.9708   |
| 408 | V520 | 1 | 1 | ОК | 0.9725   |

**Gender Conflict samples (Ambiguous prediction):** Gender re-checked based on logR ratio and B allele Frequency Plot (X & Y Chromosome) and found to be concordant with Plink Gender estimation.

- Male: Loss of Heterozygote calls (missing AB cluster at 0.5 scale) in BAF plot at Chromosome X and A/- & B/- calls at chromosome Y.
- Female: No loss of heterozygote calls (AB cluster at 0.5 scale) in BAF plot at Chromosome X and Noise can be observed at chromosome Y.

## 1. V378 (Male)



<sup>\*</sup>Note: Due to low data noise and low call rate (< 0.99) Genome studio could not able to predict the Gender.







#### 2. V13 (Male)





#### 3. V265 (Female)









#### 4. V266 (Male)



# 5. V285 (Male)









# 6. V286 (Female)









Ancestary Prediction (AIM markers): Nimhans data (N=407) + 1000 Genome = 2504)

# **Principle Component Analysis**









# **Population substructure Analysis: NIMHANS samples**

# **Multidimensional Scaling**











# **Principal Component Analysis:**







