Vektoranalysis

Mathematischer Brückenkurs

Stefan Weinzierl

Institut für Physik, Universität Mainz

Wintersemester 2020/21

Abschnitt 1

Allgemeines

Motivation

Eine gewöhnliche Funktion ist beispielsweise eine Abbildung

$$f: \mathbb{R} \to \mathbb{R},$$

 $x \to f(x).$

 Eine Funktion mehrerer Variablen ist beispielsweise eine Abbildung

$$f: \mathbb{R}^n \to \mathbb{R},$$

 $(x_1,...,x_n) \to f(x_1,...,x_n).$

 Wir betrachten nun den allgemeinen Fall und lassen nun auch einen höherdimensionalen Wertebereich zu, beispielsweise

$$\vec{f}$$
 : $\mathbb{R}^n \to \mathbb{R}^m$,
 $(x_1,...,x_n) \to \vec{f}(x_1,...,x_n)$.

Definition

Definition

Wir betrachten eine Abbildung, in dem der Definitionsbereich *U* eine offene Teilmenge des \mathbb{R}^n und der Wertebereich W eine Teilmenge des \mathbb{R}^m ist:

$$\begin{array}{ccc} \vec{f} & : & U \rightarrow W, \\ (x_1,...,x_n) & \rightarrow & \vec{f}(x_1,...,x_n). \end{array}$$

Man bezeichnet \vec{f} als ein Vektorfeld. Jedem Punkt $(x_1,...,x_n) \in U$ wird ein Vektor $\vec{f} \in \mathbb{R}^m$ zugeordnet.

4/41

Vektorfelder

Schreiben wir \vec{f} in Komponenten

$$\vec{f}(x_1,...,x_n) = \begin{pmatrix} f_1(x_1,...,x_n) \\ ... \\ f_m(x_1,...,x_n) \end{pmatrix}$$

so haben wir *m* Abbildungen

$$f_j: U \to \mathbb{R},$$

 $(x_1,...,x_n) \to f_j(x_1,...,x_n)$

Wir schreiben im folgenden $\vec{x} = (x_1, ..., x_n)$.

Beispiele

- Elektrische Felder: Jedem Ortsvektor $\vec{x} \in \mathbb{R}^3$ wird ein Feld $\vec{E}(\vec{x})$ zugeordnet, daß das elektrische Feld an diesem Ort angibt.
- Magnetische Felder: Jedem Ortsvektor $\vec{x} \in \mathbb{R}^3$ wird ein Feld $\vec{B}(\vec{x})$ zugeordnet, daß das magnetische Feld an diesem Ort angibt.
- Strömungsfelder: Jedem Ortsvektor $\vec{x} \in \mathbb{R}^3$ wird ein Feld $\vec{v}(\vec{x})$ zugeordnet, daß die Geschwindigkeit des Mediums an diesem Ort angibt. (Dies kann eine strömende Flüssigkeit sein, oder der Wind in der Atmosphäre.)

Beispiele

Beispiel

Wir betrachten drei Beispiele für Vektorfelder:

$$\begin{split} \vec{f}_1 &: & \mathbb{R}^2 \to \mathbb{R}^2, \\ & \vec{f}_1(\vec{x}) = \begin{pmatrix} & 1 \\ & \sin x_1 \end{pmatrix}, \\ \vec{f}_2 &: & \mathbb{R}^2 \to \mathbb{R}^2, \\ & & \vec{f}_2(\vec{x}) = \begin{pmatrix} & x_1 \\ & x_2 \end{pmatrix}, \\ \vec{f}_3 &: & \mathbb{R}^2 \to \mathbb{R}^2, \\ & & \vec{f}_3(\vec{x}) = \begin{pmatrix} & -x_2 \\ & x_1 \end{pmatrix}. \end{split}$$

Beispiel 1

$$\vec{f}_1(\vec{x}) = \begin{pmatrix} 1 \\ \sin x_1 \end{pmatrix}$$

Beispiel 2

$$\vec{f}_2(\vec{x}) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Beispiel 3

$$\vec{f}_3(\vec{x}) = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$

Abschnitt 2

Die totale Ableitung

Definition

Wir bezeichnen eine Abbildung $\vec{f}:U\to\mathbb{R}^m$ als im Punkte $\vec{x}_0\in U$ total differenzierbar, falls es eine lineare Abbildung

$$A : \mathbb{R}^n \to \mathbb{R}^m,$$

 $\vec{x} \to A\vec{x},$

gibt, so daß in einer Umgebung von \vec{x}_0 gilt:

$$\vec{f}\left(\vec{x}_0 + \vec{\xi}\right) = \vec{f}\left(\vec{x}_0\right) + A\vec{\xi} + o\left(|\vec{\xi}|\right).$$

A ist eine von \vec{x} unabhängige $m \times n$ -Matrix.

• Die kleine "o"-Schreibweise bedeutet, daß das Restglied durch eine Funktion $\vec{\varphi}(\vec{\xi})$ gegeben ist, für die gilt

$$\lim_{|\vec{\xi}| \to 0} \frac{\vec{\varphi}(\vec{\xi})}{|\vec{\xi}|} = \vec{0}.$$

Das Restglied verschwindet also schneller als der lineare Term für $|\vec{\xi}| o 0$.

• Die Bedingung an die totale Differenzierbarkeit bedeutet also, daß sich die Abbildung in einer hinreichend kleinen Umgebung von \vec{x}_0 durch eine Konstante $\vec{f}\left(\vec{x}_0\right)$ und einen linearen Term $A\vec{\xi}$ beschreiben läßt.

Die Jacobi-Matrix

Neben der totalen Differenzierbarkeit haben wir natürlich noch die partiellen Ableitungen der i-ten Komponente f_i nach der j-ten Koordinate:

$$\frac{\partial f_i}{\partial x_j} = \lim_{h \to 0} \frac{f_i\left(x_1, ..., x_j + h, ..., x_n\right) - f_i\left(x_1, ..., x_j, ..., x_n\right)}{h}.$$

Diese partiellen Ableitungen definieren eine $m \times n$ Matrix J_{ij}

$$J_{ij}(\vec{x}) = \frac{\partial f_i}{\partial x_i}, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n,$$

die man als Jacobi-Matrix oder Funktional-Matrix bezeichnet. Auch die Bezeichnung Differential wird verwendet, und man findet die Notation

$$D\vec{f}\left(\vec{x}\right) = J\left(\vec{x}\right).$$

Für den Zusammenhang zwischen totaler Differenzierbarkeit und partieller Differenzierbarkeit haben wir die folgenden Sätze:

Satz

Sei $U \subset \mathbb{R}^n$ eine offene Teilmenge und $\vec{f}: U \to \mathbb{R}^m$ eine Abbildung, die im Punkte $\vec{x}_0 \in U$ total differenzierbar sei, d.h.

$$\vec{f}\left(\vec{x}_0 + \vec{\xi}\right) = \vec{f}\left(\vec{x}_0\right) + A\vec{\xi} + o\left(||\vec{\xi}||\right).$$

Dann ist \vec{f} im Punkte \vec{x}_0 stetig und alle Komponenten $f_j: U \to \mathbb{R}$ von \vec{f} sind im Punkte \vec{x}_0 partiell differenzierbar und es gilt

$$\frac{\partial f_i}{\partial x_i} \left(\vec{x}_0 \right) = A_{ij}.$$

Satz

Sei wieder $U \subset \mathbb{R}^n$ eine offene Teilmenge und $\vec{f}: U \to \mathbb{R}^m$ eine Abbildung. Es sei weiter vorausgesetzt, daß die Abbildung \vec{f} im Punkte $\vec{x}_0 \in U$ stetig partiell differenzierbar ist, d.h. alle partiellen Ableitungen

$$\frac{\partial f_i}{\partial x_i} \left(\vec{x}_0 \right)$$

existieren und sind stetig. Dann ist \vec{f} in \vec{x}_0 total differenzierbar.

Wir haben also die folgenden Implikationen:

 $\textit{stetig partiell differenzierbar} \ \Rightarrow \ \textit{total differenzierbar} \ \Rightarrow \ \textit{partiell differenzierbar}$

Die Umkehrungen gelten im Allgemeinen nicht.

Abschnitt 3

Der Nabla-Operator

Der Gradient

Sei $U \subset \mathbb{R}^n$ eine offene Menge und $\varphi : U \to \mathbb{R}$ eine partiell differenzierbare Funktion von n Variablen.

Definition

Die partiellen Ableitungen von φ definieren ein Vektorfeld, welches man als den Gradienten von φ bezeichnet:

$$\operatorname{grad} \varphi \ : \ U \to \mathbb{R}^n,$$

$$\operatorname{grad} \varphi \left(\vec{x} \right) = \begin{pmatrix} \frac{\partial \varphi \left(\vec{x} \right)}{\partial x_1} \\ \dots \\ \frac{\partial \varphi \left(\vec{x} \right)}{\partial x_n} \end{pmatrix}.$$

Der Gradient einer skalaren Funktion ist also ein Vektorfeld, daß in der *j*-ten Komponente die *j*-te partielle Ableitung enthält.

Der Nabla-Operator

Definition

Der Nabla-Operator $\vec{\nabla}$ ist definiert als

$$\vec{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \dots \\ \frac{\partial}{\partial x_n} \end{pmatrix}$$

Mit Hilfe des Nabla-Operators läßt sich der Gradient auch wie folgt schreiben:

$$\operatorname{grad} \varphi \ = \ \vec{\nabla} \varphi$$

Der Nabla-Operator

- $\vec{\nabla}$ ist ein Operator, der auf eine Größe, wie zum Beispiel eine Funktion, die abgeleitet werden kann, wirkt. Man sollte diese Größe daher immer mitangeben.
- Mathematische Beziehungen, in denen die Größe auf die ein Operator wirkt fehlt, machen nur Sinn, wenn sie für alle möglichen Größen des Problems (wie zum Beispiel für alle Testfunktionen) gelten.

Der Nabla-Operator

Beispiel

Wir betrachten die Funktion

$$\varphi : \mathbb{R}^3 \to \mathbb{R},$$

$$\varphi \left(\vec{x} \right) = x_1^2 + x_2^2 + x_3^2.$$

Wir erhalten für den Gradienten

$$\operatorname{grad} \varphi \left(\vec{x} \right) = \vec{\nabla} \varphi \left(\vec{x} \right) = \begin{pmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{pmatrix}.$$

Minima und Maxima

- Wir hatten bereits gesehen, daß eine notwendige Bedingung für das Vorliegen eines lokalen Maximums bzw. eines lokalen Minimums im Punkte \vec{x}_0 das Verschwinden aller partiellen Ableitungen in diesem Punkte ist.
- Das Verschwinden aller partiellen Ableitungen ist gleichbedeutend mit der Aussage

$$\vec{\nabla}\varphi\left(\vec{x}_{0}\right) = \vec{0},$$

d.h. der Gradient verschwindet.

Quiz

$$\varphi : \mathbb{R}^2 \to \mathbb{R},$$
$$\varphi \left(\vec{x} \right) = x_1 x_2$$

$$\vec{\nabla}\varphi\left(\vec{x}\right) = ?$$

$$(A) \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

(C)
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(D)
$$\begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$$

Die Divergenz

Definition

Sei $U \subset \mathbb{R}^n$ eine offene Menge und $\tilde{f}: U \to \mathbb{R}^n$ eine partiell differenzierbares Vektorfeld. Wir definieren die Divergenz dieses Vektorfeldes als eine skalare Funktion der n Variablen

$$\mathsf{div}\ \vec{f} \quad : \quad U \to \mathbb{R},$$

die durch

$$\operatorname{div} \vec{f}(\vec{x}) = \sum_{j=1}^{n} \frac{\partial f_{j}(\vec{x})}{\partial x_{j}}$$

gegeben ist. Mit Hilfe des Nabla-Operators schreibt man auch oft

$$\operatorname{div} \vec{f} \left(\vec{x} \right) \ = \ \vec{\nabla} \cdot \vec{f} \left(\vec{x} \right).$$

Die Divergenz

Beispiel

Wir betrachten das Vektorfeld

$$\vec{f}$$
: $\mathbb{R}^3 \to \mathbb{R}^3$,
 $\vec{f}(\vec{x}) = \begin{pmatrix} x_1^2 + x_2 \\ 3x_2 - x_1 \\ 5x_3 + 7x_2 \end{pmatrix}$.

Wir erhalten für die Divergenz

div
$$\vec{f}(\vec{x}) = \vec{\nabla} \cdot \vec{f}(\vec{x}) = 2x_1 + 3 + 5 = 2x_1 + 8$$
.

Die Divergenz

Beispiel

Es ist auch interessant die Divergenz der drei eingangs gezeigten Vektorfelder zu berechnen. Man findet:

$$\begin{aligned} \operatorname{div} \, \vec{f}_1(\vec{x}) &= \quad \vec{\nabla} \cdot \vec{f}_1(\vec{x}) = \frac{\partial}{\partial x_1} \mathbf{1} + \frac{\partial}{\partial x_2} \sin x_1 = 0, \\ \operatorname{div} \, \vec{f}_2(\vec{x}) &= \quad \vec{\nabla} \cdot \vec{f}_2(\vec{x}) = \frac{\partial}{\partial x_1} x_1 + \frac{\partial}{\partial x_2} x_2 = 2, \\ \operatorname{div} \, \vec{f}_3(\vec{x}) &= \quad \vec{\nabla} \cdot \vec{f}_3(\vec{x}) = \frac{\partial}{\partial x_1} \left(-x_2 \right) + \frac{\partial}{\partial x_2} x_1 = 0. \end{aligned}$$

Von diesen drei Beispielen hat also nur \vec{f}_2 eine nicht-verschwindende Divergenz.

Die Divergenz beschreibt die Quellen und Senken eines Vektorfeldes.

Quiz

$$\begin{aligned} \vec{f} &: & \mathbb{R}^2 \to \mathbb{R}^2, \\ & \vec{f}\left(\vec{x}\right) = \left(\begin{array}{c} x_1 x_2 \\ 3x_1 x_2 \end{array} \right). \end{aligned}$$

$$\vec{\nabla} \cdot \vec{f} \left(\vec{x} \right) = ?$$

- (A) 4
- (B) $3x_1 + x_2$
- (C) $x_1 + 3x_2$
- (D) $4x_1x_2$

Der Laplace-Operator

Wir betrachten noch die folgende Kombination von Gradient und Divergenz:

Sei $U \subset \mathbb{R}^n$ eine offene Menge und $\varphi : U \to \mathbb{R}$ eine zweimal stetig partiell differenzierbare Funktion von n Variablen.

Wir wenden erst den Gradienten auf φ an, und dann die Divergenz auf das resultierende Vektorfeld. Wir erhalten somit wieder eine skalare Funktion:

Definition

$$\Delta \varphi : \quad U \to \mathbb{R},$$

$$\Delta \varphi \left(\vec{x} \right) = \text{div grad } \varphi \left(\vec{x} \right) = \sum_{i=1}^{n} \frac{\partial^{2} \varphi \left(\vec{x} \right)}{\partial x_{i}^{2}}.$$

Der Laplace-Operator

Mit Hilfe des Nabla-Operators können wir wieder schreiben:

$$\Delta \varphi \left(\vec{\mathbf{x}} \right) = \vec{\nabla} \cdot \vec{\nabla} \varphi \left(\vec{\mathbf{x}} \right).$$

Definition

Wir bezeichnen mit

$$\Delta = \vec{\nabla} \cdot \vec{\nabla} = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$$

den Laplace-Operator.

Der Laplace-Operator

Beispiel

Wir betrachten die Funktion

$$\varphi : \mathbb{R}^3 \to \mathbb{R},$$
$$\varphi(\vec{x}) = x_1^2 + x_2^2 + x_3^2.$$

Wir hatten bereits den Gradienten berechnet:

grad
$$\varphi(\vec{x}) = \vec{\nabla}\varphi(\vec{x}) = \begin{pmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{pmatrix}$$
.

Die Anwendung des Laplace-Operators ergibt

$$\Delta \varphi \left(\vec{x} \right) = \vec{\nabla} \cdot \begin{pmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{pmatrix} = 2 + 2 + 2 = 6.$$

Abschnitt 4

Vektorfelder in drei Dimensionen

Vektorfelder in drei Dimensionen

Wir betrachten noch den Spezialfall von Vektorfeldern in drei Dimensionen:

$$ec{A}$$
 : $\mathbb{R}^3 \to \mathbb{R}^3$.

Definition

Hier können wir noch eine weitere Operation einführen, die man als Rotation bezeichnet und wie folgt definiert ist:

$$\operatorname{rot} \vec{A} : \mathbb{R}^{3} \to \mathbb{R}^{3},$$

$$\operatorname{rot} \vec{A} (\vec{x}) = \begin{pmatrix} \frac{\partial A_{3}(\vec{x})}{\partial x_{2}} - \frac{\partial A_{2}(\vec{x})}{\partial x_{3}} \\ \frac{\partial A_{1}(\vec{x})}{\partial x_{3}} - \frac{\partial A_{3}(\vec{x})}{\partial x_{3}} \\ \frac{\partial A_{2}(\vec{x})}{\partial x_{4}} - \frac{\partial A_{1}(\vec{x})}{\partial x_{5}} \end{pmatrix}.$$

Mit Hilfe des Nabla-Operators und des Kreuzproduktes läßt sich dies auch schreiben als

$$rot \vec{A} (\vec{x}) = \vec{\nabla} \times \vec{A} (\vec{x}).$$

Beispiel

Sei

$$ec{A}: \mathbb{R}^3 o \mathbb{R}^3, \ ec{A}(ec{x}) = \left(egin{array}{c} -x_2 \\ x_1 \\ 0 \end{array}
ight).$$

Dann ist

$$\operatorname{rot} \vec{A} \left(\vec{x} \right) = \vec{\nabla} \times \vec{A} \left(\vec{x} \right) = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

Beispiel

Kehren wir nocheinmal zu den eingangs diskutierten Vektorfeldern zurück.

Diese Vektorfelder sind Abbildungen von \mathbb{R}^2 nach \mathbb{R}^2 , daher ist die Operation der Rotation nicht unmittelbar darauf anwendbar.

Wir können aber trotzdem für ein Vektorfeld $\vec{f}=(f_1,f_2)$ die anti-symmetrische Ableitung

$$\frac{\partial}{\partial x_1} f_2 - \frac{\partial}{\partial x_2} f_1$$

betrachten.

Beispiel

Wir finden:

$$\frac{\partial}{\partial x_1} f_{12} - \frac{\partial}{\partial x_2} f_{11} = \frac{\partial}{\partial x_1} \sin x_1 - \frac{\partial}{\partial x_2} 1 = \cos(x_1),$$

$$\frac{\partial}{\partial x_1} f_{22} - \frac{\partial}{\partial x_2} f_{21} = \frac{\partial}{\partial x_1} x_2 - \frac{\partial}{\partial x_2} x_1 = 0,$$

$$\frac{\partial}{\partial x_1} f_{32} - \frac{\partial}{\partial x_2} f_{31} = \frac{\partial}{\partial x_1} x_1 - \frac{\partial}{\partial x_2} (-x_2) = 2.$$

Die Rotation beschreibt die Wirbel eines Vektorfeldes.

Rotation eines Gradientenfeldes

Satz

Sei $U \subset \mathbb{R}^3$ eine offene Menge und $\varphi: U \to \mathbb{R}$ eine zweimal stetig partiell differenzierbare Funktion. Dann

$$\begin{array}{lcl} \textit{rot grad} \ \varphi & = & 0, \\ \vec{\nabla} \times \left(\vec{\nabla} \varphi \right) & = & 0. \end{array}$$

Beweis.

Wir betrachten die erste Komponente von rot grad φ :

$$\frac{\partial}{\partial x_2} \frac{\partial}{\partial x_3} \varphi - \frac{\partial}{\partial x_3} \frac{\partial}{\partial x_2} \varphi = 0.$$

Gleiches gilt für die anderen Komponenten.

Ein Gradientenfeld ist also rotationsfrei.

Divergenz eines Rotationsfeldes

Satz

Sei $U \subset \mathbb{R}^3$ eine offene Menge und $\vec{f}: U \to \mathbb{R}^3$ eine zweimal stetig partiell differenzierbares Vektorfeld. Dann

$$\begin{array}{rcl} \textit{div rot } \vec{f} & = & 0, \\ \vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{f} \right) & = & 0. \end{array}$$

Beweis.

$$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{f} \right) = \frac{\partial}{\partial x_1} \left(\frac{\partial}{\partial x_2} f_3 - \frac{\partial}{\partial x_3} f_2 \right) + \frac{\partial}{\partial x_2} \left(\frac{\partial}{\partial x_3} f_1 - \frac{\partial}{\partial x_1} f_3 \right) + \frac{\partial}{\partial x_3} \left(\frac{\partial}{\partial x_1} f_2 - \frac{\partial}{\partial x_2} f_1 \right) = 0.$$

Ein Rotationsfeld ist also divergenzfrei.

Zum Schluss des Brückenkurses:

Viel Erfolg in Ihrem Studium!