Package 'xxIRT'

October 14, 2022

, -
Type Package
Title Item Response Theory and Computer-Based Testing in R
Version 2.1.2
Date 2019-3-21
Author Xiao Luo [aut, cre]
Maintainer Xiao Luo <xluo1986@gmail.com></xluo1986@gmail.com>
Description A suite of psychometric analysis tools for research and operation, including: (1) computation of probability, information, and likelihood for the 3PL, GPCM, and GRM; (2) parameter estimation using joint or marginal likelihood estimation method; (3) simulation of computerized adaptive testing using built-in or customized algorithms; (4) assembly and simulation of multistage testing. The full documentation and tutorials are at https://github.com/xluo11/xxIRT .
License GPL (>= 3)
Depends R (>= $3.5.0$)
<pre>URL https://github.com/xluo11/xxIRT</pre>
<pre>BugReports https://github.com/xluo11/xxIRT/issues</pre>
Imports ggplot2, glpkAPI, lpSolveAPI, reshape2, stats
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2019-03-22 10:00:03 UTC
R topics documented:
ata

2 ata

model_3pl model_gpcm														
model_grm		 			 									
mst_sim														
rmse														
spearman_brown		 			 									

17

ata

Index

Automated Test Assembly (ATA)

Description

```
ata_obj_relative adds a relative objective to the model ata_obj_absolute adds an absolute objective to the model ata_constraint adds a constraint to the model ata_item_use limits the minimum and maximum usage for items ata_item_enemy adds an enemy-item constraint to the model ata_item_fixedvalue forces an item to be selected or not selected ata_solve solves the MIP model
```

Usage

```
ata(pool, num_form = 1, len = NULL, max_use = NULL, ...)

## S3 method for class 'ata'
print(x, ...)

## S3 method for class 'ata'
plot(x, ...)

ata_obj_relative(x, coef, mode = c("max", "min"), tol = NULL,
    negative = FALSE, forms = NULL, collapse = FALSE,
    internal_index = FALSE, ...)

ata_obj_absolute(x, coef, target, equal_tol = FALSE, tol_up = NULL,
    tol_down = NULL, forms = NULL, collapse = FALSE,
    internal_index = FALSE, ...)

ata_constraint(x, coef, min = NA, max = NA, level = NULL,
    forms = NULL, collapse = FALSE, internal_index = FALSE)

ata_item_use(x, min = NA, max = NA, items = NULL)
```

ata 3

```
ata_item_enemy(x, items)
ata_item_fixedvalue(x, items, min = NA, max = NA, forms)
ata_solve(x, solver = c("lpsolve", "glpk"), as.list = TRUE,
details = TRUE, time_limit = 10, message = FALSE, ...)
```

Arguments

pool item pool, a data.frame

num_form number of forms to be assembled

len test length of each form

max_use maximum use of each item

... options, e.g. group, common_items, overlap_items

x an ATA object

coef coefficients of the objective function

mode optimization mode: 'max' for maximization and 'min' for minimization

tol the tolerance paraemter

negative TRUE when the objective function is expected to be negative

forms forms where objectives are added. NULL for all forms

collapse TRUE to collapse into one objective function

internal_index TRUE to use internal form indices

target the target values of the objective function

equal_tol TRUE to force upward and downward tolerance to be equal

tol_up the range of upward tolerance
tol_down the range of downward tolerance
min the lower bound of the constraint
max the upper bound of the constraint

level the level of a categorical variable to be constrained

items a vector of item indices, NULL for all items

solver use 'lpsolve' for lp_solve 5.5 or 'glpk' for GLPK

as.list TRUE to return results in a list; otherwise, a data frame

details TRUE to print detailed information

time_limit the time limit in seconds passed along to solvers

message TRUE to print messages from solvers

4 ata

Details

The ATA model stores the definition of a MIP model. ata_solve converts the model definition to a real MIP object and attempts to solve it.

ata_obj_relative: when mode='max', maximize (y-tol), subject to $y \le sum(x) \le y+tol$; when mode='min', minimize (y+tol), subject to y-tol $\le sum(x) \le y$. When negative is TRUE, y < 0, tol > 0. coef can be a numeric vector that has the same length with the pool or forms, or a variable name in the pool, or a numeric vector of theta points. When tol is NULL, it is optimized; when FALSE, ignored; when a number, fixed; when a range, constrained with lower and upper bounds.

```
ata_obj_absolute minimizes y0+y1 subject to t-y0 \le sum(x) \le t+y1.
```

When level is NA, it is assumed that the constraint is on a quantitative item property; otherwise, a categorical item property. coef can be a variable name, a constant, or a numeric vector that has the same size as the pool.

ata_solve takes control options in For lpsolve, see lpSolveAPI::lp.control.options. For glpk, see glpkAPI::glpkConstants

Once the model is solved, additional data are added to the model. status shows the status of the solution, optimum the optimal value of the objective function found in the solution, obj_vars the values of two critical variables in the objective function, result the assembly results in a binary matrix, and items the assembled items

```
## Not run:
## generate a pool of 100 items
n items <- 100
pool <- with(model_3pl_gendata(1, nitems), data.frame(id=1:n_items, a=a, b=b, c=c))</pre>
pool$content <- sample(1:3, n_items, replace=TRUE)</pre>
pool$time <- round(rlnorm(n_items, log(60), .2))</pre>
pool$group <- sort(sample(1:round(n_items/3), n_items, replace=TRUE))</pre>
## ex. 1: four 10-item forms, maximize b parameter
x \leftarrow ata(pool, 4, len=10, max\_use=1)
x <- ata_obj_relative(x, "b", "max")</pre>
x <- ata_solve(x, timeout=5)</pre>
data.frame(form=1:4, b=sapply(x$items, function(x) mean(x$b)))
## ex. 2: four 10-item forms, minimize b parameter
x \leftarrow ata(pool, 4, len=10, max\_use=1)
x <- ata_obj_relative(x, "b", "min", negative=TRUE)</pre>
x <- ata_solve(x, as.list=FALSE, timeout=5)</pre>
with(x$items, aggregate(b, by=list(form=form), mean))
## ex. 3: two 10-item forms, mean(b)=0, sd(b)=1
## content = (3, 3, 4), avg. time = 58--62 seconds
constr <- data.frame(name='content',level=1:3, min=c(3,3,4), max=c(3,3,4), stringsAsFactors=F)</pre>
constr <- rbind(constr, c('time', NA, 58*10, 62*10))</pre>
x <- ata(pool, 2, len=10, max_use=1)</pre>
x <- ata_obj_absolute(x, pool$b, 0*10)</pre>
x \leftarrow ata_obj_absolute(x, (pool$b-0)^2, 1*10)
for(i in 1:nrow(constr))
```

cat_sim 5

```
x <- with(constr, ata_constraint(x, name[i], min[i], max[i], level=level[i]))
x <- ata_solve(x, timeout=5)
sapply(x$items, function(x) c(mean=mean(x$b), sd=sd(x$b)))

## ex. 4: two 10-item forms, max TIF over (-1, 1), consider item sets
x <- ata(pool, 2, len=10, max_use=1, group="group")
x <- ata_obj_relative(x, seq(-1, 1, .5), 'max')
x <- ata_solve(x, timeout=5)
plot(x)

## End(Not run)</pre>
```

cat_sim

Simulation of Computerized Adaptive Testing (CAT)

Description

cat_sim runs a simulation of CAT. Use theta in options to set the starting value of theta estimate.

cat_estimate_mle is the maximum likelihood estimation rule. Use map_len to apply MAP to the first K items and use map_prior to set the prior for MAP.

cat_estimate_eap is the expected a posteriori estimation rule, using eap_mean and eap_sd option parameters as the prior

cat_estimate_hybrid is a hybrid estimation rule, which uses MLE for mixed responses and EAP for all 1's or 0's responses

cat_stop_default is a three-way stopping rule. When stop_se is set in the options, it uses the standard error stopping rule. When stop_mi is set in the options, it uses the minimum information stopping rule. When stop_cut is set in the options, it uses the confidence interval (set by ci_width) stopping rule.

cat_select_maxinfo is the maximum information selection rule. Use group (a numeric vector) to group items belonging to the same set. Use info_random to implement the random-esque item exposure control method.

cat_select_ccat is the constrained CAT selection rule. Use ccat_var to set the content variable in the pool. Use ccat_perc to set the desired content distribution, with the name of each element being the content code and tue value of each element being the percentage. Use ccat_random to add randomness to initial item selections.

cat_select_shadow is the shadow-test selection rule. Use shadow_id to group item sets. Use constraints to set constraints. Constraints should be in a data.frame with four columns: var (variable name), level (variable level, NA for quantitative variable), min (lower bound), and max (upper bound).

cat_stop_projection is the projection-based stopping rule. Use projection_method to choose the projection method ('info' or 'diff'). Use stop_cut to set the cut score. Use constraints to set the constraints. Constraints should be a data.frame with columns: var (variable name), level (variable level, NA for quantitative variable), min (lower bound), max (upper bound)

6 cat_sim

Usage

```
cat_sim(true, pool, ...)

cat_estimate_mle(len, theta, stats, admin, pool, opts)

cat_estimate_eap(len, theta, stats, admin, pool, opts)

cat_estimate_hybrid(len, theta, stats, admin, pool, opts)

cat_stop_default(len, theta, stats, admin, pool, opts)

cat_select_maxinfo(len, theta, stats, admin, pool, opts)

cat_select_ccat(len, theta, stats, admin, pool, opts)

cat_select_shadow(len, theta, stats, admin, pool, opts)

## S3 method for class 'cat'
print(x, ...)

## S3 method for class 'cat'
plot(x, ...)
```

Arguments

true	the true theta
pool	the item pool (data.frame)
	option/control parameters
len	the current test length
theta	the current theta estimate
stats	a matrix of responses, theta estimate, information and std error
admin	a data frame of administered items
opts	a list of option/control parameters
х	a cat object

Details

... takes a variety of option/control parameters for the simulations from users. min and max are mandatory for setting limits on the test length. User-defined selection, estimation, and stopping rules are also passed to the simulator via options.

To write a new rule, the function signiture must be: function(len, theta, stats, admin, pool, opts). See built-in rules for examples.

cat_sim 7

Value

```
cat_sim returns a cat object
an estimation rule should return a theta estimate
a stopping rule should return a boolean: TRUE to stop the CAT, FALSE to continue
a selection rule should return a list of (a) the selected item and (b) the updated pool
```

```
## Not run:
## generate a 100-item pool
num_items <- 100</pre>
pool <- with(model_3pl_gendata(1, num_items), data.frame(a=a, b=b, c=c))</pre>
pool$set_id <- sample(1:30, num_items, replace=TRUE)</pre>
pool$content <- sample(1:3, num_items, replace=TRUE)</pre>
pool$time <- round(rlnorm(num_items, mean=4.1, sd=.2))</pre>
## MLE, EAP, and hybrid estimation rule
cat_sim(1.0, pool, min=10, max=20, estimate_rule=cat_estimate_mle)
cat_sim(1.0, pool, min=10, max=20, estimate_rule=cat_estimate_eap)
cat_sim(1.0, pool, min=10, max=20, estimate_rule=cat_estimate_hybrid)
## SE, MI, and CI stopping rule
cat_sim(1.0, pool, min=10, max=20, stop_se=.3)
cat_sim(1.0, pool, min=10, max=20, stop_mi=.6)
cat_sim(1.0, pool, min=10, max=20, stop_cut=0)
cat_sim(1.0, pool, min=10, max=20, stop_cut=0, ci_width=2.58)
## maximum information selection with item sets
cat_sim(1.0, pool, min=10, max=20, group="set_id")$admin
## maximum information with item exposure control
cat_sim(1.0, pool, min=10, max=20, info_random=5)$admin
## Constrained-CAT selection rule with and without initial randomness
cat_sim(1.0, pool, min=10, max=20, select_rule=cat_select_ccat,
        ccat_var="content", ccat_perc=c("1"=.2, "2"=.3, "3"=.5))
cat_sim(1.0, pool, min=10, max=20, select_rule=cat_select_ccat, ccat_random=5,
        ccat_var="content", ccat_perc=c("1"=.2, "2"=.3, "3"=.5))
## Shadow-test selection rule
cons <- \ data.frame(var='content', \ level=1:3, \ min=c(3,3,4), \ max=c(3,3,4))
cons <- rbind(cons, data.frame(var='time', level=NA, min=55*10, max=65*10))</pre>
cat_sim(1.0, pool, min=10, max=10, select_rule=cat_select_shadow, constraints=cons)
## Projection-based stopping rule
cons <- data.frame(var='content', level=1:3, min=5, max=15)</pre>
cons <- rbind(cons, data.frame(var='time', level=NA, min=60*20, max=60*40))</pre>
cat_sim(1.0, pool, min=20, max=40, select_rule=cat_select_shadow, stop_rule=cat_stop_projection,
        projection_method="diff", stop_cut=0, constraints=cons)
## End(Not run)
```

cronbach_alpha

Cronbach's alpha

Description

cronbach_alpha computes Cronbach's alpha internal consistency reliability

Usage

```
cronbach_alpha(responses)
```

Arguments

responses

the oberved responses, 2d matrix

Examples

```
cronbach_alpha(model_3pl_gendata(1000, 20)$u)
```

```
expected_raw_score_dist
```

#' Distribution of Expected Raw Scores

Description

Calculate the distribution of expected raw scores

Usage

```
expected_raw_score_dist(t, a, b, c)
```

Arguments

a the item discrimination parameters, 1d vector

b the item difficulty parameters, 1d vector

c the item guessing parameters, 1d vector

freq 9

freq

Frequency Counts

Description

Frequency counts of a vector

Usage

```
freq(x, values = NULL, rounding = NULL)
```

Arguments

х	a numeric or character vector
values	valid values, NULL to include all values
rounding	round percentage to n-th decimal places

model_3pl

3-parameter-logistic model

Description

Routine functions for the 3PL model

Usage

```
model_3pl_prob(t, a, b, c, D = 1.702)
model_3pl_info(t, a, b, c, D = 1.702)
model_3pl_lh(u, t, a, b, c, D = 1.702, log = FALSE)
model_3pl_rescale(t, a, b, c, param = c("t", "b"), mean = 0, sd = 1)
model_3pl_gendata(n_p, n_i, t = NULL, a = NULL, b = NULL, c = NULL,
    D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.7), c_dist = c(5, 46), missing = NULL)
model_3pl_plot(a, b, c, D = 1.702, type = c("prob", "info"),
    total = FALSE, xaxis = seq(-4, 4, 0.1))
model_3pl_plot_loglh(u, a, b, c, D = 1.702, xaxis = seq(-4, 4, 0.1),
    show_mle = FALSE)
```

10 model_3pl

Arguments

t	ability parameters, 1d vector
а	discrimination parameters, 1d vector
b	difficulty parameters, 1d vector
С	guessing parameters, 1d vector
D	the scaling constant, 1.702 by default
u	observed responses, 2d matrix
log	True to return log-likelihood
param	the parameter of the new scale: 't' or 'b'
mean	the mean of the new scale
sd	the standard deviation of the new scale
n_p	the number of people to be generated
n_i	the number of items to be generated
t_dist	parameters of the normal distribution used to generate t-parameters
a_dist	parameters of the lognormal distribution used to generate a-parameters
b_dist	parameters of the normal distribution used to generate b-parameters
c_dist	parameters of the beta distribution used to generate c-parameters
missing	the proportion or number of missing responses
type	the type of plot: 'prob' for item characteristic curve (ICC) and 'info' for item information function curve (IIFC) $$
total	TRUE to sum values over items
xaxis	the values of x-axis
show_mle	TRUE to print maximum likelihood estimates

```
with(model_3pl_gendata(10, 5), model_3pl_prob(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_info(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_lh(u, t, a, b, c))
model_3pl_gendata(10, 5)
model_3pl_gendata(10, 5, a=1, c=0, missing=.1)
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="prob"))
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="info", total=TRUE))
with(model_3pl_gendata(5, 50), model_3pl_plot_loglh(u, a, b, c, show_mle=TRUE))
```

model_gpcm 11

model_gpcm

Generalized Partial Credit Model

Description

Routine functions for the GPCM

Usage

```
model_gpcm_prob(t, a, b, d, D = 1.702, insert_d0 = NULL)
model_gpcm_info(t, a, b, d, D = 1.702, insert_d0 = NULL)
model_gpcm_lh(u, t, a, b, d, D = 1.702, insert_d0 = NULL,
    log = FALSE)

model_gpcm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
    d = NULL, D = 1.702, sort_d = FALSE, t_dist = c(0, 1),
    a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), missing = NULL)

model_gpcm_rescale(t, a, b, d, param = c("t", "b"), mean = 0, sd = 1)

model_gpcm_plot(a, b, d, D = 1.702, insert_d0 = NULL,
    type = c("prob", "info"), by_item = FALSE, total = FALSE,
    xaxis = seq(-6, 6, 0.1))

model_gpcm_plot_loglh(u, a, b, d, D = 1.702, insert_d0 = NULL,
    xaxis = seq(-6, 6, 0.1), show_mle = FALSE)
```

t	ability parameters, 1d vector
a	discrimination parameters, 1d vector
b	item location parameters, 1d vector
d	item category parameters, 2d vector
D	the scaling constant, 1.702 by default
insert_d0	insert an initial category value
u	the observed scores (starting from 0), $2d$ matrix
log	TRUE to return log-likelihood
n_p	the number of people to be generated
n_i	the number of items to be generated
n_c	the number of score categories
n_c sort_d	the number of score categories TRUE to sort d parameters for each item

model_gpcm

t_dist	parameters of the normal distribution used to generate t-parameters
a_dist	parameters of the lognormal distribution parameters of a-parameters
b_dist	parameters of the normal distribution used to generate b-parameters
missing	the proportion or number of missing responses
param	the parameter of the new scale: 't' or 'b'
mean	the mean of the new scale
sd	the standard deviation of the new scale
type	the type of plot, prob for ICC and info for IIFC
by_item	TRUE to combine categories
total	TRUE to sum values over items
xaxis	the values of x-axis
show_mle	TRUE to print maximum likelihood values

Details

Use NA to represent unused category.

```
with(model\_gpcm\_gendata(10, 5, 3), model\_gpcm\_prob(t, a, b, d))\\
with(model_gpcm_gendata(10, 5, 3), model_gpcm_info(t, a, b, d))
with(model_gpcm_gendata(10, 5, 3), model_gpcm_lh(u, t, a, b, d))
model_gpcm_gendata(10, 5, 3)
model_gpcm_gendata(10, 5, 3, missing=.1)
# Figure 1 in Muraki, 1992 (APM)
b \leftarrow matrix(c(-2,0,2,-.5,0,2,-.5,0,2), nrow=3, byrow=TRUE)
model_gpcm_plot(a=c(1,1,.7), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, insert_d0=0)
# Figure 2 in Muraki, 1992 (APM)
b \leftarrow matrix(c(.5,0,NA,0,0,0), nrow=2, byrow=TRUE)
model_gpcm_plot(a=.7, b=rowMeans(b, na.rm=TRUE), d=rowMeans(b, na.rm=TRUE)-b, D=1.0, insert_d0=0)
# Figure 3 in Muraki, 1992 (APM)
b \leftarrow matrix(c(1.759, -1.643, 3.970, -2.764), nrow=2, byrow=TRUE)
model\_gpcm\_plot(a=c(.778,.946), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, insert\_d0=0)
# Figure 1 in Muraki, 1993 (APM)
b \leftarrow matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,-4), nrow=5, byrow=TRUE)
model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0)
# Figure 2 in Muraki, 1993 (APM)
b <- \ \mathsf{matrix}(c(\emptyset, -2, 4, \emptyset, -2, 2, \emptyset, -2, \emptyset, 0, -2, -2, \emptyset, -2, -4), \ \mathsf{nrow=5}, \ \mathsf{byrow=TRUE})
model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0, type='info', by_item=TRUE)
with(model_gpcm_gendata(5, 50, 3), model_gpcm_plot_loglh(u, a, b, d))
```

model_grm 13

 ${\tt model_grm}$

Graded Response Model

Description

Routine functions for the GRM

Usage

```
model_grm_prob(t, a, b, D = 1.702, raw = FALSE)
model_grm_info(t, a, b, D = 1.702)
model_grm_lh(u, t, a, b, D = 1.702, log = FALSE)
model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
    D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), missing = NULL)
model_grm_rescale(t, a, b, param = c("t", "b"), mean = 0, sd = 1)
model_grm_plot(a, b, D = 1.702, type = c("prob", "info"),
    by_item = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1),
    raw = FALSE)
model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1),
    show_mle = FALSE)
```

t	ability parameters, 1d vector
a	discrimination parameters, 1d vector
b	item location parameters, 2d matrix
D	the scaling constant, 1.702 by default
raw	TRUE to return P*
u	the observed scores (starting from 0), 2d matrix
log	TRUE to return log-likelihood
n_p	the number of people to be generated
n_i	the number of items to be generated
n_c	the number of score categories
t_dist	parameters of the normal distribution used to generate t-parameters
a_dist	parameters of the lognormal distribution used to generate a-parameters
b_dist	parameters of the normal distribution used to generate b-parameters

14 mst_sim

the proportion or number of missing responses missing the parameter of the new scale: 't' or 'b' param the mean of the new scale mean sd the standard deviation of the new scale the type of plot, prob for ICC and info for IIFC type TRUE to combine categories by_item total TRUE to sum values over items the values of x-axis xaxis show_mle TRUE to print maximum likelihood values

Examples

```
with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_lnfo(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b))
model_grm_gendata(10, 5, 3)
model_grm_gendata(10, 5, 3, missing=.1)
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob'))
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', by_item=TRUE))
with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))
```

mst_sim

Simulation of Multistage Testing

Description

mst_sim simulates a MST administration

Usage

```
mst_sim(x, true, rdp = NULL, ...)
## S3 method for class 'mst_sim'
print(x, ...)
## S3 method for class 'mst_sim'
plot(x, ...)
```

х	the assembled MST
true	the true theta parameter (numeric)
rdp	routing decision points (list)
	additional option/control parameters

rmse 15

Examples

```
## Not run:
## assemble a MST
nitems <- 200
pool <- with(model_3pl_gendata(1, nitems), data.frame(a=a, b=b, c=c))</pre>
pool$content <- sample(1:3, nrow(pool), replace=TRUE)</pre>
x \leftarrow mst(pool, "1-2-2", 2, 'topdown', len=20, max_use=1)
x \leftarrow mst\_obj(x, theta=-1, indices=1)
x \leftarrow mst\_obj(x, theta=0, indices=2:3)
x <- mst_obj(x, theta=1, indices=4)</pre>
x <- mst_constraint(x, "content", 6, 6, level=1)</pre>
x <- mst_constraint(x, "content", 6, 6, level=2)</pre>
x <- mst_constraint(x, "content", 8, 8, level=3)</pre>
x <- mst_stage_length(x, 1:2, min=5)</pre>
x <- mst_assemble(x)</pre>
## ex. 1: administer the MST using fixed RDP for routing
x_{sim} \leftarrow mst_{sim}(x, .5, list(stage1=0, stage2=0))
plot(x_sim)
## ex. 2: administer the MST using the max. info. for routing
x_sim <- mst_sim(x, .5)
plot(x_sim, ylim=c(-5, 5))
## End(Not run)
```

rmse

Root Mean Squared Error

Description

Root mean squared error (RMSE) of two numeric vectors/matrices

Usage

```
rmse(x, y)
```

```
x a numeric vector/matrix
y a numeric vector/matrix
```

spearman_brown

an_brown Spearman Brown Prophecy

Description

Use Spearman-brown formula to compute the predicted reliability when the test length is extened to n-fold or reversely the n-fold extension of test length in order to reach the targeted reliability

Usage

```
spearman_brown(n, rho)
spearman_brown_reverse(rho, target)
```

Arguments

n extend the test length to n-fold rho the reliability of current test target the targeted reliability

```
spearman_brown(2, .70)
spearman_brown_reverse(.70, .85)
```

Index

```
ata, 2
ata_constraint (ata), 2
ata_item_enemy (ata), 2
ata_item_fixedvalue(ata), 2
ata_item_use (ata), 2
ata_obj_absolute (ata), 2
ata_obj_relative (ata), 2
ata_solve (ata), 2
cat_estimate_eap (cat_sim), 5
cat_estimate_hybrid(cat_sim), 5
cat_estimate_mle (cat_sim), 5
cat_select_ccat (cat_sim), 5
cat_select_maxinfo(cat_sim), 5
cat_select_shadow(cat_sim), 5
cat_sim, 5
cat_stop_default (cat_sim), 5
cat_stop_projection (cat_sim), 5
cronbach_alpha, 8
expected_raw_score_dist, 8
freq, 9
model_3pl, 9
model_3pl_gendata (model_3pl), 9
model_3pl_info (model_3pl), 9
model_3pl_1h (model_3pl), 9
model_3pl_plot (model_3pl), 9
model_3pl_plot_loglh (model_3pl), 9
model_3pl_prob (model_3pl), 9
model_3pl_rescale (model_3pl), 9
model_gpcm, 11
model_gpcm_gendata (model_gpcm), 11
model_gpcm_info (model_gpcm), 11
model_gpcm_lh (model_gpcm), 11
model_gpcm_plot (model_gpcm), 11
model_gpcm_plot_loglh (model_gpcm), 11
model_gpcm_prob (model_gpcm), 11
model_gpcm_rescale (model_gpcm), 11
```

```
model_grm, 13
model_grm_gendata (model_grm), 13
model_grm_info (model_grm), 13
model_grm_lh (model_grm), 13
model_grm_plot (model_grm), 13
model_grm_plot_loglh (model_grm), 13
model_grm_prob (model_grm), 13
model_grm_rescale (model_grm), 13
mst_sim, 14
plot.ata(ata), 2
plot.cat (cat_sim), 5
plot.mst_sim(mst_sim), 14
print.ata(ata), 2
print.cat(cat_sim), 5
print.mst_sim (mst_sim), 14
rmse, 15
spearman_brown, 16
spearman_brown_reverse
        (spearman_brown), 16
```