(54) MANUFACTURE OF LEAD TAME FOR SEMICONDUCTOR DEVICE

(11) 1-37854 (A)

(43) 8.2.1989 (19) JP

(21) Appl. No. 62-194631 (22) 3.8.1987

(71) NEC KYUSHU LTD (72) KENJI SUETAKE

(51) Int. Cl⁴. H01L23/50

PURPOSE: To form a lead frame without deformation in a short time by conducting plating as an island section and the nose of an inner lead section are left as they are connected and detaching the island section and the nose of the inner lead section.

CONSTITUTION: The noses of inner lead sections and an island section are connected through press working or etching working, and a lead frame 10 in which inner-lead forming predetermined sections 1A and an island forming prearranged section are unified is manufactured. A required section including the inner-lead forming predetermined sections 1A and the island forming prearranged section 2A is plated 3. The unnecessary section of the plated lead frame 10 is removed through press working or etching working. The finished product of the lead frame 10 is acquired through cutting by press working, etc., by cutting lines

silicide, 11: A/

- (54) CERDIP FOR SEMICONDUCTOR DEVICE
- (11) 1-37855 (A)

(43) 8.2.1989

(21) Appl. No. 62-194630 (22) 3.8.1987

(71) NEC KYUSHU LTD (72) MASAO UEDA

(51) Int. Cl⁴. H01L23/50

PURPOSE: To prevent the flowing-in and protrusion of glass by applying low melting-point glass in a wire bonding region of the nose of an inner lead in thickness thinner than other sections and fixing the nose section of the inner lead or fastening sections except the nose section.

CONSTITUTION: An inner lead 4 for a lead frame is fixed onto a ceramic substrate 2, to which a mount section 1 for fastening a pellet is formed, by low melting-point glass 3. Low melting-point glass 3 in the nose section 4A of the lead 4 is shaped in thickness thinner than other sections. Since the nose section 4A of the lead 4 is not contact-bonded, only the base section of the nose section 4A is brought into contact mainly with glass 3. Accordingly, glass does not flow onto the nose section 4A even when the lead is moved by a heating process, and a protuberance 3A is lowered even when it is shaped, thus preventing an effect on wire bonding.

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭61-253826

⑤Int Cl.⁴

識別記号

庁内整理番号

❸公開 昭和61年(1986)11月11日

11

H 01 L 21/60 21/58 6732-5F 6732-5F

審査請求 未請求 発明の数 2 (全5頁)

到発明の名称 半導体装置およびその製造方法

②特 願 昭60-95495

②出 願 昭60(1985)5月7日

⑫発 明 者 古 川 道 明 小平市上水本町1450番地 株式会社日立製作所デバイス開

発センタ内

⑫発 明 者 三 輪 孝 志 小平市上水本町1450番地 株式会社日立製作所デバイス開

発センタ内

①出 願 人 株式会社日立製作所 東京都千代田区神田駿河台4丁目6番地

砂代 理 人 弁理士 小川 勝男 外1名

明細書

発明の名称 半導体装置およびその製造方法 特許請求の範囲

- 1. 集積回路を形成したウエハ等の大型の半導体 基板を配線基板上に増載して構成した半導体装置 において、前記半導体基板に熱影響防止用分離溝 を設けたことを特徴とする半導体装置。
- 2. 前記熱影響防止用分離薄は、ダイシングエリアに形成したものであって、それを複数有する特許請求の範囲第1項に記載の半導体装置。
- 3・ベースにウエハ等の大型の半導体基板を着脱可能または接着する層を設ける工程と、該層上に前記半導体基板を堪載する工程と、該半導体基板を複数に分離する工程と、前記半導体基板を裏返して突起電極を配線基板上の配線に電気的に接続する工程を具備することを特徴とする半導体装置の製造方法。
- 4 ・前記ペースに炭化シリコン等の放熱性の良好な材料を用いる特許請求の範囲第3項に記載の半導体装置の製造方法。

- 5. 前記ベースに設けられる層にゴム系粘着剤を 用いる特許請求の範囲第3項に記載の半導体装置 の製造方法。
- 6. 前記ベースに設けられる層に熱伝導の良い粘 着剤または接着剤を用いる特許請求の範囲第3項 に記載の半導体装置の製造方法。
- 7. 前記ペースにフレキシブル材を用いる特許請求の範囲第3項に記載の半導体装置の製造方法。 8. ウエハのダイシングエリアを切ることによって複数に分離する特許請求の範囲第3項に記載の 半導体装置の製造方法。

発明の詳細な説明

〔技術分野〕

本発明は、半導体装置に係り、特に、半導体集積回路を設けた半導体基板を備えた半導体装置の冷却技術に適用して有効な技術に関するものである。

〔背景技術〕

近来、高速度で高集積度の半導体装置が要望されており、この要望を満たすために、単結晶シリ

コンのウエハに集積回路を形成し、このウエハを 配線基板に塔載して半導体装置を構成する技術が 開発されている。

本発明者は、前記のように、ウエハを用いた半 導体装置では、ウエハと配線基板の熱膨張係数の 差による熱応力が大きくなるので、ウエハに歪を 生じ、またウエハと配線基板を電気的に接続した 突起電極が破損するという問題点を見出した。

なお、フルウエハを用いて半導体装置を構成する技術については、例えば、特顧昭 5 8 - 1 2 7 6 4 1 号に記載されている。

〔発明の目的〕

本発明の目的は、ウエバ等の大型の半導体基板を用いた半導体装置の信頼性を向上することが可能な技術を提供することにある。

本発明の他の目的は、ウエハ等の大型の半導体 基板を用いた半導体装置において、熱による影響 を低減して信頼性を向上することが可能な技術を 提供することにある。

本発明の他の目的は、ウエハ等の大型の半導体

のである。

以下、本発明の構成について、実施例とともに 図面を用いて説明する。

なお、全図において、同一の機能を有するものは同一の符号を付け、その繰り返しの説明は省略 する。

〔寒施例〕

第1図は、ウエハに集積回路を形成し、このウンエハを用いて構成した本発明の一実施例の半導体装置の断面図、第2図は、前記集積回路を形成したウエハの平面図、第3図は、前記ウエハの平面の一部を拡大して示す平面図である。なお、第2図および第3図には、配線基板を図示していない。

第1図乃至第3図において、1は単結晶シリコンからなるウエハ型の半導体基板であり、表面の集積回路領域2にメモリ、ロジック等が構成してある。この集積回路領域2は、突起電極4によって炭化シリコン又はこれにベリウムを含む焼結のでいないのでは気的に接続してある。なお、4A

基板を用いた半導体装置において、半導体基板と 配線基板の接続の信頼性を向上することが可能な 技術を提供することにある。

本発明の他の目的は、ウエハ等の大型の半導体 基板を用いた半導体装置において、歩留りを向上 することが可能な技術を提供することにある。

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。

(発明の概要)

本願において開示される発明のうち、代表的なものの概要を説明すれば、下記のとおりである。

7は熱影響防止用薄であり、半導体基板 1 と配線基板 3 の熱膨張係数の差による整応力を低減させることによって、半導体基板 1 に歪が生じるのを防止し、また突起電極 4 が破損するのを防止しまた突起電極 4 が破損するのを防止用薄ったがなる。本実施例では、熱影響防止用薄ったである。本で、変質回路領域 2 の間に設ける必要は

なく、半導体基板 1 と配線基板 3 の間の熱応力を 低減して半導体基板 1 の歪、または突起電極 4 の 破損を防止できる程度に設ければよい。

以上の説明からわかるように、本実施例の半導 体装置によれば、次の効果を得ることができる。

- (1) ウエハ状態の半導体基板1の集積回路領域 2の間に熱影響防止用溝7を設けたことによって、 半導体基板1と配線基板3の間の熱応力を低減し て半導体基板1の歪、または突起電極4の破損を 防止したので、半導体装置の信頼性を向上するこ とができる。
- (2) 半導体基板1を熱伝導の良好なベース5に接着させたことにより、半導体基板1の熱が良好に放熱されるので、集積回路領域2に設けられる 半導体素子の電気的動作の安定性を向上すること ができ、また熱応力を低減することができる。
- (3)接着層 6 にゴム系の粘着剤を用いることにより、半導体基板 1 とベース 5 の間の熱応力が緩衝されて半導体基板 1 の歪が低減するので、半導体装置の倍額性を向上することができる。

の裏面の全面を接着してあることから、複数に分離した半導体基板1の間の位置が変るようなことはない。また、接着層6にゴム系の粘着剤を用いれば、ダイシング後に不良な集積回路領域2を摘出して交換することができる。

以上の説明からわかるように、本実施例の製造方法によれば、次の効果を得ることができる。

(1) 接着限 6 にゴム系の粘着剤を用いることにより、ダイシング後に、不良な集積回路領域 2 を

(4)接着層6に金属綿を用いることにより、半導体基板1で発生する熱を効率よくベース5に放熱することができるので、集積回路領域2に設けられる半導体素子の電気的動作の安定がさらに向上され、また熱応力をさらに低減することができる

次に、第1図を用いて本実施例の半導体装置の 具体的な製造方法を説明する。

まず、ウエハ状態の半導体基板1の集積回路領域2に半導体素子を形成し、また突起電極4A、配線(図示していない)等を周知の技術によって形成する。また一方において、配線基板3に配線および突起電極(図示していない)を形成する。そして、ベース5に接着層6を形成し、この後に、半導体基板1の裏面、すなわち、集積回路領域2が設けてある面と反対側の面を接着層6に貼り付ける。

次に、半導体基板1の熱影響防止溝7 (ダイシング領域ともいう) をダイシングして、半導体基板1を複数に分離する。このとき、半導体基板1

摘出して交換することができるので、半導体装置 の歩留りを向上することができる。

- (2) 半導体基板1と配線基板3の位置合せにおいて、半導体基板1がベース5にウエハ状態で接着してあることにより、複数に分離された半導体 基板1の位置合せおよび接続が一度で済むので、 半導体装置を短時間で製作することができる。
- (3) 半導体基板1をベース5にウエハ状態で接 ・着してダイシング時の位置ずれを防止したことに より、位置合せの精度が向上するので、突起電極 4の接続の借額性を向上することができる。
 - (4) ベース 5 にポリイミドテープ又はビニールテープ等のフレキシブルなものを用いることにより、突起電極 4 の高さのばらつきによる接続不良が低減するので、その突起電極 4 の接続の信頼性をさらに向上することができる。

[効果]

以上、本願によって開示された新規な技術によれば、次の効果を得ることができる。

(1) ウエハ状態の半導体基板の集積回路領域の

- 間に熱影響防止用溝を設けたことによって、半導体 集板と配線 基板の間の熱応力による半導体 基板 の 歪、または突起電極の破損を防止することができるので、半導体装置の信頼性を向上することができる。
 - (2) 半導体基板を熱伝導の良好なペースに接着させたことにより、半導体基板の熱が良好に放熱されるので、集積回路領域に設けられる半導体素子の電気的動作の安定性を向上することができ、また熱応力を低減することができる。
 - (3)接着層にゴム系の粘着剤を用いることにより、半導体基板とベースの間の熱応力が緩衝されて半導体基板の歪が低減するので、半導体装置の 信頼性を向上することができる。
 - (4)接着層に金属綿を用いることにより、半導体無板で発生する熱を効率よくベースに放熱することができるので、集積回路領域に設けられる半導体素子の電気的動作の安定がさらに向上され、また熱応力をさらに低減することができる。
 - (5) 接着層にゴム系の粘着剤を用いることによ

り、ダイシング後に、不良な集積回路領域を摘出 して交換することができるので、半導体装置の歩 留りを向上することができる。

- (6) 半導体基板と配線基板の位置合せにおいて、 半導体基板がベースにウエハ状態で接着してある ことにより、複数に分離された半導体基板の位置 合せおよび接続が一度で済むので、半導体装置を 毎時間で製作することができる。
- 」(7) 半導体基板をペースにウエハ状態で接着してダイシング時の位置ずれを防止したことにより、 位置合せの精度が向上するので、突起電極の接続 の信頼性を向上することができる。
- (8) ベースにポリイミドテープ又はビニールテープ等のフレキシブルなものを用いることにより、 突起電極の高さのばらつきによる接続不良が低減 するので、その突起電極の接続の信頼性をさらに 向上することができる。

以上、本発明を実施例にもとずき具体的に説明 したが、本発明は前記実施例に限定されるもので はなく、その要旨を逸脱しない範囲において、種

々変形可能であることはいうまでもない。

例えば、半導体基板はウエハ状のものに限らず、 例えばウエハの周辺部をカットとして四角形にし たようなものでもよい。また、配線基板は炭化シ リコンを主成分とするものに限らず、例えばエポ キシ樹脂又はガラス繊維入りエポキシ樹脂でもよ い。少なくとも、半導体基板と配線基板の間の熱 応力が半導体基板に歪を生じさせるようなもの、 あるいは前記熱応力によって電極が破損する恐れ があるものには本発明は有効である。

図面の簡単な説明

第1図は、ウエハに集積回路を形成し、このウエハを用いて構成した本発明の一実施例の半導体 装置の断面図、

第2図は、ウエハの平面図、

第3図は、前記ウェハの一部を拡大して示す平 面図である。

1 ··· 半導体装板、2 ··· 集積回路領域、3 ··· 配線装板、4、4 A ··· 突起電極、5 ··· ベース、6 ··· 接着層、7 ··· 熱影響防止用溝。

