Lecture: Week 3 - 1

James Won-Ki Hong, <u>Jian Li</u>, Seyeon Jeong

Dept. of Computer Science & Engineering POSTECH

http://dpnm.postech.ac.kr/~jwkhong jwkhong@postech.ac.kr

Outline

- **❖ W3-1: SDN Applications**
- ❖ W3-2: SDN Controllers 1
- **❖ W3-3: SDN Controllers 2**

OpenFlow Example

Example of Routing Control (hop-by-hop routing)

■ Service Chaining: Firewall → AAA → Web Server

Example: Kanazawa General Hospital (with NEC solution)

Problem

- Individual network optimization led to complex network structure
 - Configuration errors
 - Rewiring whenever a new equipment is connected
 - Difficult to find fault location

Example: Kanazawa General Hospital (with NEC solution)

Solution

- 16 OpenFlow switches and 2 controllers
- Create a virtual network/department
- Flow path control
 - Save CAPEX and OPEX

MPLS using OpenFlow

Implementation of MPLS and Load Balancing

VLAN using OpenFlow

VLAN

- VLAN is used to isolate networks
 - Uses VLAN tag or switch port number
 - Isolate L2 broadcast domain per user
- Problems
 - VLAN ID = 2¹² = 4,096 → Multi-tenants problem in Cloud Computing env.
- Solutions
 - VxLAN (CISCO, VMWare), NVGRE(MS), extends VLAN ID to 2²⁴
 - Installed in Virtual Switches in Hypervisor
 - VMware vSphere 5.x & CISCO Nexus 1000v VEM (Virtual Ethernet Switch) support VxLAN
 - Microsoft Hyper-V supports NVGRE

VLAN using OpenFlow

VLAN Implementation with OpenFlow

- OpenFlow can identify Virtual Networks only with source & destination MAC address without the need of VLAN IDs
- If MPLS labels are used with MAC addresses, then more Virtual Networks can be supported
 - MPLS label = I/F name + label number (20bits)
 - Static: 0 1023
 - Dynamic: 1024 1048575

Google SDN

- Google IP Traffic
 - Increases 40~45% every year
 - 8~12% of total Internet traffic
- 36 Google Data Centers in the World
 - 3 DCs under construction
 - USA, Taiwan,... \$600M/DC, 60 staff/DC
- DCs connected with submarine cables and long distance dedicated optical cables
 - Large-scale investment, but 30~40% link utilization

Google Data Centers

28 Tera bps cable (6 companies including Google, KDDI invested, 2010 open)

Problems

- WAN Routers treat all bits the same
- WANs links are provisioned to 30% ~ 40% average utilization
 - To protect against failures and packet loss...
- Multi-vendor routers and switches
- Commercial HE/HA Routers
 - Traffic increases → need expensive Tera bit routers
 - Per port Router cost
 - · switch failures typically result from software

Adoption of SDN and TE

- Commercial routers cannot follow the increase of Google traffic volume
- As a solution for IP based WAN technology problems

Design of B4 SDN

- Thousands of individual applications categorized into three classes:
 - user data copies (e.g., e-mail, documents, audio/video files) to remote data centers for availability/durability → latency sensitive → highest priority
 - remote storage access for big data analysis
 - large-scale data push synchronizing state across multiple data centers
- Design of Centralized Traffic Engineering System
 - Assign relative application priority and control burst at the edge

Development of OpenFlow Switch

- No existing platform could satisfy Google's requirements
- 10G x 128 ports
- Installation of OpenFlow Agent

Design

- Traffic Engineering System
 - For scalability, TE cannot operate at the granularity of individual applications
 - TE maps FGs to tunnels and corresponding weights
 - Uses ECMP
- Network Control System (NCS) (3 replicas)
 - OpenFlow controller
 - Modified Nicira's ONIX (distributed OF control platform to support large scale network)
 - Manages flow tables and ECMP group table
 - Quagga stack
 - Support BGP/IS-IS, exchange routing protocol information among switches
 - Paxos
 - Detect the failure and elects one of the available NCS

