

Introduction to 3D Vision

1312 pages

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SEOULTECH sunglok@seoultech.ac.kr | https://mint-lab.github.io/

An Invitation Introduction to 3D Vision : A Tutorial for Everyone

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SeoulTech sunglok@seoultech.ac.kr | https://mint-lab.github.io/

- Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos.
- From the perspective of engineering, it seeks to automate tasks that the human visual system can do.[1][2][3]
- "Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.
- It involves the development of a theoretical and algorithmic basis to achieve automatic visual understanding."[9]

Reference: Wikipedia (Computer Vision)

- Computer vision is an interdisciplinary field that deals with how computers can be made to gain <u>high-level understanding</u> from digital images or videos.
- From the perspective of engineering, it seeks to automate tasks that the human visual system can do.[1][2][3]
- "Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.
- It involves the development of a theoretical and algorithmic basis to achieve automatic visual understanding."[9]

Reference: Wikipedia (Computer Vision)

Image Understanding

Computer Vision

Computer Vision

What is it?

- Label (e.g. Tower of Pisa)
- Shape (e.g.

Where am I?

- Place (e.g. Piazza del Duomo, Pisa, Italy)
- Location (e.g.

(84, 10, 18) [m]

Visual Geometry

Multiple View Geometry

Geometric Vision

Computer Vision

What is it?

- Label (e.g. Tower of Pisa)
- Shape (e.g.

Where am !?

- Place (e.g. Piazza del Duomo, Pisa, Italy)
- Location (e.g.

(84, 10, 18) [m]

Recognition Problems v.s. Reconstruction Problems

Stanford CS231n:

CNN for Visual Recognition

YOLO v2 (2016)

ORB-SLAM2 (2016)

Stanford CS231A:

Computer Vision,

From 3D Reconstruction to Recognition

image

depth image, range data, point cloud, polygon mesh, ...

3D Vision

v.s. 3D Data Processing

RGB-D Camera (Stereo, Structured Light, ToF, Light Field)

Reference books

- All example codes are available at https://github.com/mint-lab/3dv_tutorial.
 - All example codes are mostly less than 100 lines and based on recent OpenCV (> 3.0.0).
 - Note) OpenCV (Open Source Computer Vision)

OpenCV v4.8.0 main modules:

- core. <u>Core functionality</u>
- imgproc. <u>Image Processing</u>
- imgcodecs. Image file reading and writing
- videoio. <u>Video I/O</u>
- highgui. <u>High-level GUI</u>
- video. <u>Video Analysis</u>
- calib3d. Camera Calibration and 3D Reconstruction
- features2d. 2D Features Framework
- objdetect. Object Detection
- dnn. <u>Deep Neural Network module</u>
- ml. Machine Learning
- flann. <u>Clustering and Search in Multi-Dimensional Spaces</u>
- photo. Computational Photography
- stitching. <u>Images stitching</u>
- gapi. <u>Graph API</u>

OpenCV v5.0.0-pre main modules:

- core. <u>Core functionality</u>
- imgproc. Image Processing
- imgcodecs. Image file reading and writing
- videoio. <u>Video I/O</u>
- highgui. <u>High-level GUI</u>
- video. <u>Video Analysis</u>
- 3d. <u>3d</u>
- stereo. <u>Stereo Correspondence</u>
- features2d. 2D Features Framework
- calib. <u>Camera Calibration</u>
- objdetect. Object Detection
- dnn. <u>Deep Neural Network module</u>
- ml. <u>Machine Learning</u>
- flann. <u>Clustering and Search in Multi-Dimensional Spaces</u>
- photo. <u>Computational Photography</u>
- stitching. <u>Images stitching</u>
- gapi. Graph API

Applications) Photo Browsing

Photo Tourism (2006)

Applications) 3D Reconstruction

Building Rome in a Day (2009)

Applications) Depth Estimation from Cellular Phones

Structure from Small Motion (SfSM; 2015)

(a) Reference images

(b) SfSM results

(c) Depth maps

(d) Our 3D meshes

Casual 3D Photography (2017)

Casual 3D photo capture

Reconstruction

- Example Effects -

Reference: Im et al., High Quality Structure from Small Motion for Rolling Shutter Cameras, ICCV, 2015

Reference: Hedman et al., Casual 3D Photography, SIGGRAPH Asia, 2017

Applications) Real-time Visual SLAM

ORB-SLAM (2014)

Applications) Augmented Reality

PTAM: Parallel Tracking and Mapping (2007)

Applications) Virtual Reality

Oculus Quest (2019)

Image: <u>TechSpot</u>

Applications) Mixed Reality

- Microsoft Hololens 2 (2019)
 - Head tracking: 4 x visible light cameras

Image: <u>SlashGear</u> 18

Summary

- What is Computer Vision?
- What is <u>3D Vision</u>?
 - What? Recognition problem vs. <u>Reconstruction problem</u>
 - Note) Generation problem vs. Reconstruction problem
 - Why? Applications

Next Topics

- Single-view Geometry
- Two-view Geometry
- Solving Equations
- Finding Correspondence
- Multiple-view Geometry
- Bayesian Filtering
- Visual SLAM and Odometry