DJI R SDK

协议及使用接口

V2.2 2020.10

拟 制 人
负 责 人
拟制时间
文件编号

深圳市大疆创新有限公司

修改记录

版本号	拟制 / 修改日期	修改章节	更改理由	主要更改内容
1.0.0.0	2019年7月17日			初创版本
2.0.0.0	2019年10月8日	3	1. 删除示例代码 2. 增加 CRC 参数说明	1. 外发版本 2. 增加 CRC 模型参数说明
2.1.0.1	2020年5月11日	2.3 3.3 3.4	増加命令和 CRC 模式 示例	1. 增加模块版本协议 2. 增加命令组包示例 3. 增加 CRC 示例代码
2.1.0.2	2020年6月17日	2.3, 3.1	增加外部设备控制命 令和硬件支持描述	1. 增加摇杆控制命令 2. 增加 CAN 支持
2.2.0.3	2020年6月22日	2.3	增加命令	1. 增加获取手持云台用户参数 2. 增加设置手持云台用户参数 3. 增加设置云台工作模式 4. 增加手持云台回中和自拍 5. 增加第三方相机动作命令
2.2.0.4	2020年7月16日	2.3	增加命令	1. 增加跟随模式设置 2. 增加自动校准设置和信息推送 3. 增加智能跟随设置 4. 增加相机状态获取

目 录

1. DJI R SDK 协议概述	2
2. DJI R SDK 协议描述	2
2.1 数据格式	2
2.2 字段说明	2
2.3 细节描述	5
2.3.1 命令集及命令 ID	3
2.3.2 返回码	2
2.3.3 设备 ID 号	2
2.3.4 云台命令集数据段细节	ŗ
2.3.4.1 手持云台位置控制	ŗ
2.3.4.2 手持云台速度控制	(
2.3.4.3 获取手持云台信息	6
2.3.4.4 设置手持云台限位角度	7
2.3.4.5 获取手持云台限位角度	ī
2.3.4.6 设置手持云台电机力度	3
2.3.4.7 获取手持云台电机力度	3
2.3.4.8 手持云台参数推送设置	3
2.3.4.9 手持云台参数推送	(
2.3.4.10 获取模块版本号 2.3.4.11 外部设备控制命令推送	10 10
2.3.4.12 获取手持云台用户参数	1-
2.3.4.13 设置手持云台用户参数	12
2.3.4.14 设置手持云台工作模式	13
2.3.4.15 设置云台回中自拍和跟随模式	13
2.3.4.16 设置云台自动校准	14
2.3.4.17 云台自动校准状态推送	14
2.3.4.18 云台智能跟随设置	14
2.3.5 相机命令集数据段细节	15
2.3.5.1 第三方相机动作命令	15
2.3.5.2 第三方相机状态获取命令	15
3. 注意事项	16
3.1 硬件支持	16
3.1.1 设备连接示意图	16
3.1.2 RSA 配件扩展接口 /NATO 接口	17
3.2 软件支持	17
3.3 命令示例	17
3.4 CRC 代码示例	17

1. DJI R SDK 协议概述

DJI R SDK 协议是一套简单易用且稳定可靠的通信协议。第三方可通过 DJI R SDK 协议控制手持云台设备运动,并从中获取部分信息。在 DJI R SDK 协议的支持下,手持云台设备的扩展性得到了提升,也拥有了更丰富的应用场景。

2. DJI R SDK 协议描述

2.1 数据格式

DJIR SDK 协议的数据包格式如下表所示:

SOF	Ver/Length CmdType ENC		ENC	RES	SEQ	CRC-16	DATA	CRC-32
1-byte	2-byte	1-byte	1-byte	3-byte	2-byte	2-byte	n-byte	4-byte

- Figure 1 数据包格式 -

2.2 字段说明

	偏移	大小	描述		
SOF	0	1	帧头固定为 0xAA		
			[15:10] - 版本号 默认为 0		
Ver/Length	1 2		'er/Length 1 2 [9:0] - 整个帧的长度		[9:0] - 整个帧的长度
			注: LSB in first		
			[4:0] - 应答类型		
			0 - 数据发送之后不需要应答		
			1 - 数据发送之后需要应答,但是不应答也没关系		
CmdTuna	3	4	2-31 - 数据发送之后必须要应答		
CmdType	3	1	[5] - 帧类型		
			0 - 命令帧		
			1 - 应答帧		
			[7:6] - 保留 默认为 0		
			[4:0] - 加密时的补充字节长度(加密必须 16 字节对齐)		
ENC	ENC 4 1 [7:5] - 加密类型		[7:5] - 加密类型		
EINC	4	l I	0 - 不加密		
			1 - AES256 加密		
RES	5	3	保留字节段		
SEQ	8	2	序列号		
CRC-16	10	2	帧头校验		
DATA	12	n	数据段 见下文描述		
CRC-32	n+12	4	帧校验(整个帧)		

⁻ Figure 2 数据包字段说明 -

DATA 段的内容 根据帧类型分为两种:

1. 当帧类型为命令帧时, DATA 段的内容如下表所示:

域	偏移	大小	描述
CmdSet	0	1	命令集
CmdID	1	1	命令码
CmdData	2	n-2	数据内容

⁻ Figure 3 命令帧数据段内容 -

2. 当帧类型为应答帧时, DATA 段的内容如下表所示:

域	偏移	大小	描述
DATA	0	n	数据内容

⁻ Figure 4 应答帧数据段内容 -

2.3 细节描述

2.3.1 命令集及命令 ID

手持云台使用的命令集和命令码列表如下表所示:

CmdSet	CmdID	描述
	000	手持云台位置控制
	0x00	2.3.4.1 手持云台位置控制
	0x01	手持云台速度控制
	UXUT	2.3.4.2 手持云台速度控制
	0x02	获取手持云台角度信息(包含关节角、姿态角)
	0x02	2.3.4.3 获取手持云台信息
	0×03	设置手持云台限位角度
	0x03	2.3.4.4 设置手持云台限位角度
0x0E	0,404	获取手持云台限位角度
UXUE	0x04	2.3.4.5 获取手持云台限位角度
	0x05	设置手持云台电机力度
		2.3.4.6 设置手持云台电机力度
	0×06	获取手持云台电机力度
	UXU6	2.3.4.7 获取手持云台电机力度
	0×07	手持云台参数推送设置
	UXU7	2.3.4.8 手持云台参数推送设置
	0x08	手持云台参数推送
	0,000	2.3.4.9 手持云台参数推送

	000	获取模块版本号	
	0x09	2.3.4.10 获取模块版本号	
	0x0A	摇杆控制命令推送	
	OXOA	2.3.4.11 外部设备控制命令推送	
	0x0B	获取手持云台用户参数	
0x0E	ОХОВ	2.3.4.12 获取手持云台用户参数	
OXOL	0x0C	设置手持云台用户参数	
	0.000	2.3.4.13 设置手持云台用户参数	
	0x0D	设置手持云台工作模式	
	UXUD	2.3.4.14 设置手持云台工作模式	
	0x0E	设置手持云台回中自拍和跟随模式	
		2.3.4.15 设置云台回中自拍和跟随模式	
	0x00	第三方相机动作命令	
0x0D	0,000	2.3.5.1 第三方相机动作命令	
UXUD	0x01	第三方相机状态获取命令	
	UXUT	2.3.5.2 第三方相机状态获取命令	

⁻ Figure 5 命令集和命令 -

2.3.2 返回码

目前,手持云台支持的返回码如下表所示:

错误码值	含义
0x00	指令执行成功
0x01	指令解析错误
0x02	指令执行失败
0xFF	未定义的错误

⁻ Figure 6 返回码含义 -

2.3.3 设备 ID 号

设备 ID 是一个 4 字节的数字,用于区分接入 DJI R SDK 系统的不同设备,需要提交给 DJI 审核,分配成功后才能使用。目前的设备 ID 使用情况如下表所示:

设备描述
保留
DJI R SDK
遥控手柄

⁻ Figure 7 设备 ID -

2.3.4 云台命令集数据段细节

2.3.4.1 手持云台位置控制

(CmdSet = 0x0E CmdID = 0x00),数据段细节如下表所示:

#무카드피				数	
帧类型	偏移	大小	名字	类型	描述
	0	2	yaw_angle	int16_t	yaw 角度,单位 0.1 度(范围 -1800 ~ +1800)
	2	2	roll_angle	int16_t	roll 角度,单位 0.1 度(范围 -1800 ~ +1800)
	4	2	pitch_angle	int16_t	pitch 角度,单位 0.1 度(范围 -90 ~ +90)
命令帧	6	1	ctrl_byte	uint8_t	[7:4] - 保留 需为 0 [3] - pitch 轴是否无效 0: 有效 1: 无效 [2] - roll 轴是否无效 0: 有效 1: 无效 [1] - yaw 轴是否无效 0: 有效 1: 无效 [0] - 控制模式 0: 增量控制 1: 绝对控制 命令执行速度,单位 0.1s
	7	1	time_for_action	uint8_t	该字段用于设置云台执行该命令时的运动速度,例如,当该字段为 20 时,云台
	0	1	return code	uint8_t	会在2秒内匀速转动至命令位置 参考错误返回码2.3.2返回码

⁻ Figure 8 位置控制命令 -

2.3.4.2 手持云台速度控制

(CmdSet = 0x0E CmdID = 0x01),数据段细节如下表所示:

作 术 却	数据							
帧类型 -	偏移	大小	名字	类型	描述			
	0	2	yaw_speed	int16_t	单位 0.1 度 / 秒 (范围 0 度 / 秒 ~ 360 度 / 秒)			
	2	2	roll_speed	int16_t	单位 0.1 度 / 秒 (范围 0 度 / 秒 ~ 360 度 / 秒)			
	4	2	pitch_speed	int16_t	单位 0.1 度 / 秒 (范围 0 度 / 秒 ~ 360 度 / 秒)			
命令帧	6	1	ctrl_byte	uint8_t	[7] - 控制位 0: 释放速度控制权 1: 接手速度控制权 [6:4] - 保留 应为 0 [3] - 相机焦距考虑 0: 移动速度会考虑相机焦距的影响 1: 移动速度不会考虑相机焦距的影响			
	0	1	return code	uint8_t	[2:0] - 保留 应为 0 参考错误返回码 2.3.2 返回码			

⁻ Figure 9 速度控制命令 -

注意: 出于安全考虑,该指令每次只能控制 0.5s 的时间,若想实现不间断的速度,可周期性发送该指令。如果需要立即停止三个轴的转动,可以将 yaw_speed, pitch_speed, roll_speed 字段设置为 0

2.3.4.3 获取手持云台信息

(CmdSet = 0x0E CmdID = 0x02),数据段细节如下表所示:

帧类型	数据							
	偏移	大小	名字	类型	描述			
					0x00:无操作			
命令帧	0	1	ctrl_byte	uint8_t	0x01:获取手持云台的姿态角			
					0x02:获取手持云台的关节角			
	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码			
	1		data_type	uint8_t	0x00: 数据未准备好			
		1			0x01: 当前角度为姿态角			
应答帧					0x02: 当前角度为关节角			
	2	2	yaw	int16_t	yaw 轴角度 单位 0.1 度			
	4	2	roll	int16_t	roll 轴角度 单位 0.1 度			
	6	2	pitch	int16_t	pitch 轴角度 单位 0.1 度			

⁻ Figure 10 获取云台信息命令 -

2.3.4.4 设置手持云台限位角度

(CmdSet = 0x0E CmdID = 0x03)数据段细节如下表所示:

帧类型	数据							
	偏移	大小	名字	类型	描述			
	0	4	atrl byta	uint8_t	0x00: 无操作			
	U	ı	ctrl_byte	uirito_t	0x01:设置手持云台限位角度			
	1	1	pitch_max	uint8_t	最大俯仰轴角度 范围: 0~179			
命令帧	2	1	pitch_min	uint8_t	最小俯仰轴角度 范围: 0~179			
배호iM	3	1	yaw_max	uint8_t	最大平移轴角度 范围: 0~179			
	4	1	yaw_min	uint8_t	最小平移轴角度 范围: 0~179			
	5	1	roll_max	uint8_t	最大横滚轴角度 范围: 0~45			
	6	1	roll_min	uint8_t	最小横滚轴角度 范围: 0~45			
应答帧	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码			

⁻ Figure 11 设置云台限位角度命令 -

2.3.4.5 获取手持云台限位角度

(CmdSet = 0x0E CmdID = 0x04)数据段细节如下表所示:

帧类型	数据							
	偏移	大小	名字	类型	描述			
命令帧	0	4	otrl byto	uint0 t	0x00: 无操作			
叩マ恻	0	'	ctrl_byte	uint8_t	0x01:获取手持云台限位角度			
	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码			
	1	1	pitch_max	uint8_t	最大俯仰轴角度 范围: 0~179			
	2	1	pitch_min	uint8_t	最小俯仰轴角度 范围: 0~179			
应答帧	3	1	yaw_max	uint8_t	最大平移轴角度 范围: 0~179			
	4	1	yaw_min	uint8_t	最小平移轴角度 范围: 0~179			
	5	1	roll_max	uint8_t	最大横滚轴角度 范围: 0~45			
	6	1	roll_min	uint8_t	最小横滚轴角度 范围: 0~45			

⁻ Figure 12 获取云台限位角度命令 -

2.3.4.6 设置手持云台电机力度

(CmdSet = 0x0E CmdID = 0x05)数据段细节如下表所示:

作 术 刊	数据						
帧类型	偏移	大小	名字	类型	描述		
	0	4	atri buta	uint8 t	0x00: 无操作		
	U	'	ctrl_byte	uirito_t	0x01:设置手持云台电机力度		
命令帧	1	1	pitch_stiffness	uint8_t	VALUE : 0 ~ 100		
	2	1	roll_stiffness	uint8_t	VALUE : 0 ~ 100		
	3 1 yaw_stiffnes	yaw_stiffness	uint8_t	VALUE: 0 ~ 100			
应答帧	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码		

⁻ Figure 13 设置电机力度命令 -

2.3.4.7 获取手持云台电机力度

(CmdSet = 0x0E CmdID = 0x06)数据段细节如下表所示:

帧类型	数据						
	偏移	大小	名字	类型	描述		
命令帧	0	4	ctrl_byte	I IIIntX t I	0x00 : 无操作		
叩ぐ恻	0	'			0x01:获取手持云台电机力度		
	0 1	return code	uint8_t	参考错误返回码 2.3.2 返回码			
应答帧	1	1	pitch_ stiffness	uint8_t	VALUE : 0 ~ 100		
四合 侧	2	1	yaw_ stiffness	uint8_t	VALUE: 0 ~ 100		
	3	1	roll_ stiffness	uint8_t	VALUE : 0 ~ 100		

⁻ Figure 14 获取电机力度命令 -

2.3.4.8 手持云台参数推送设置

(CmdSet = 0x0E CmdID = 0x07)数据段细节如下表所示:

바꾸사다	数据					
帧类型	偏移	大小	名字	类型	描述	
					0x00 : 无操作	
命令帧	0	1	ctrl_byte	uint8_t	0x01: 手持云台参数推送使能	
					0x02: 手持云台参数推送禁用	
应答帧	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码	

⁻ Figure 15 云台推送设置命令 -

2.3.4.9 手持云台参数推送

(CmdSet = 0x0E CmdID = 0x08)数据段细节如下表所示:

***************************************		数据							
帧类型	偏移	大小	名字	类型	描述				
	0	1	ctrl_byte	uint8_t	[0]:角度信息有效标志 0: 当前推送的角度信息无效(姿态角、关节角) 1: 当前推送的角度信息有效(姿态角、关节角) [1]:角度限位信息有效标志 0: 当前推送的角度限位信息无效 1: 当前推送的角度限位信息有效标志 0: 当前推送的角度限位信息无效 1: 当前推送的电机力度信息无效 1: 当前推送的电机力度信息无效 1: 当前推送的电机力度信息无效				
	1	2	yaw_angle	int16_t	单位 0.1 度				
命令帧	3	2	roll_ angle	int16_t	单位 0.1 度				
	5	2	pitch_ angle	int16_t	单位 0.1 度				
	7	2	yaw_joint_agnle	int16_t	单位 0.1 度				
	9	2	roll_ joint_agnle	int16_t	单位 0.1 度				
	11	2	pitch_ joint_agnle	int16_t	单位 0.1 度				
	13	1	pitch_max	uint8_t	最大俯仰轴角度 范围:0~179				
	14	1	pitch_min	uint8_t	最小俯仰轴角度 范围: 0 ~ 179				
	15	1	yaw_max	uint8_t	最大平移轴角度 范围: 0 ~ 179				
	16	1	yaw_min	uint8_t	最小平移轴角度 范围: 0 ~ 179				
	17	1	roll_max	uint8_t	最大横滚轴角度 范围:0~45				
	18	1	roll_min	uint8_t	最小横滚轴角度 范围:0~45				
	19	1	pitch_stiffness	uint8_t	VALUE : 0 ~ 100				
	20	1	yaw_ stiffness	uint8_t	VALUE : 0 ~ 100				
	21	1	roll_ stiffness	uint8_t	VALUE : 0 ~ 100				

⁻ Figure 16 云台参数推送命令 -

2.3.4.10 获取模块版本号

(CmdSet = 0x0E CmdID = 0x09),数据段细节如下表所示:

作光刊					数据
帧类型	偏移	大小	名字	类型	描述
命令帧	0	4	设备 ID	uint32_t	具体设备 ID 参考 2.3.3 设备 ID 号
	0	1	返回码	uint8_t	返回码参考 2.3.2 返回码
应答帧	1	4	设备 ID	uint32_t	具体设备 ID 参考 2.3.3 设备 ID 号
	5	4	版本号	uint32_t	0xAABBCCDD 表示的版本为: AA.BB.CC.DD

- Figure 17 获取模块版本号定义 -

2.3.4.11 外部设备控制命令推送

(CmdSet = 0x0E CmdID = 0x0A),该命令用于外部设备控制云台,例如摇杆、拨轮等设备 控制云台转动。

目前支持的控制器如下:

控制器类型	描述
0x00	未知遥控器
0x01	摇杆遥控器
0x02	拨轮遥控器

⁻ Figure 18 外部控制器类型 -

当云台使用摇杆进行控制时,摇杆的 Y 方向和 X 方向默认映射为 Pitch 轴和 Yaw 轴

云台角速度	摇杆速度
pitch_speed	Y_speed
roll_speed	0
yaw_speed	X_speed

⁻ Figure 19 摇杆控制器默认映射关系 -

也可以根据需要,使用该命令改变映射关系。比如将摇杆映射到 Pitch 轴和 Roll 轴

云台角速度	摇杆速度
pitch_speed	Y_speed
roll_speed	X_speed
yaw_speed	0

⁻ Figure 20 摇杆控制器更改映射关系 -

摇杆控制器发送数据段细节如下表所示:

帧类型	数据							
	偏移	大小	名字	类型	描述			
	0	1	device_type	uint8_t	0x01: 摇杆控制器			
命令帧	1	2	pitch_speed	int16_t	VALUE : -15000 ~ 15000			
叩マ恻	3	2	roll_speed	int16_t	VALUE : -15000 ~ 15000			
	5	2	yaw_speed	int16_t	VALUE : -15000 ~ 15000			
应答帧					该命令无应答帧			

- Figure 21 摇杆控制器数据段 -

备注: 上表中的 $value = \frac{adc_value-middle_value}{adc_range} *15000$

adc_value: 当前摇杆的 ADC 采样值;

middle_value : 摇杆中值大小; adc_range : ADC 的采样精度;

可以结合云台设置,使用外部拨轮控制云台或相机的参数,比如电子跟焦,曝光参数等。 拨轮控制器发送数据段细节如下表所示:

帧类型								
	偏移	大小	名字	类型	描述			
△△₼占	0	1	device_type	uint8_t	0x02: 拨轮控制器			
命令帧 1	1	2	dial_speed	int16_t	VALUE : -2048 ~ 2048			
					该命令无应答帧			

⁻ Figure 22 拨轮控制器数据段 -

2.3.4.12 获取手持云台用户参数

(CmdSet = 0x0E CmdID = 0x0B)云台用户参数信息以TLV的格式获取,可以单独获取,也可以组合获取。TLV,即ID+LENGTH+VALUE,其中ID对应命令类型,LENGTH对应VALUE长度,VALUE对应命令控制状态,VALUE的数据类型根据ID的不同而不同。数据段细节如下表所示:

 名称	Туре	Length	类型	Value
				0x00:参数表 0
参数表编号选择	0x00	1	uint8_t	0x01:参数表 1
				0x02:参数表 2

跟随模式下特殊功能	0x22	1	uint8_t	[6-7] uint8_t: 2(保留位) [3-5] uint8_t: 3 roll 360 mode 设置 0 = 正常三轴模式 1 = 两轴模式 2 = ROLL 360 模式 3 = 3D_ROLL360 模式 [2] uint8_t: 1 保留位 [1] uint8_t: 1 保留位
				[1] uint8_t : 1 保留位 [0] uint8_t : 1 保留位
电机特殊功能	0x23	1	uint8_t	VALUE: [0] 是否关闭电机 [1-7] 保留

- Figure 23 用户参数数据段 -

帧类型	数据						
顺关 空	偏移	大小	名字	类型	描述		
命令帧	0	1-N	read_ids	uint8_t[1]	读取 id		
	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码		
应答帧	1	1~N-1	tlv_buffer	uint8_t[1]	TLV 格式详见上表		

- Figure 24 获取手持云台用户参数 -

2.3.4.13 设置手持云台用户参数

(CmdSet = 0x0E CmdID = 0x0C)云台用户参数信息以 TLV 的格式获取,可以单独获取,也可以组合获取。 TLV,即 ID+LENGTH+VALUE,其中 ID 对应命令类型,LENGTH 对应 VALUE 长度,VALUE 对应命令控制状态,VALUE 的数据类型根据 ID 的不同而不同。数据段细节如上节 2.3.4.12 获取手持云台用户参数的用户参数数据段:

———— 帧类型	数据							
顺关 至	偏移	大小	名字	类型	描述			
	0	1	tlv_id	int8_t	TLV id,TLV 的定义见上表			
	4	2	the longth	uint0 t	TLV 数据长度,数据长度根据上表的			
命令帧	'		tlv_length	uint8_t	ID 对应的数据长度确定。			
	2	3-4	tlv_data	uint8_t[2]	TLV 数据段,数据长度根据上表的 ID			
					对应的数据长度确定。			
	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码			
应答帧	1 1~	4 11 4	tlv_buffer	uint8_t[1]	TLV 格式详见 2.3.4.12 获取手持云台			
		1~N-1			用户参数的用户参数数据段			

⁻ Figure 25 设置手持云台用户参数 -

2.3.4.14 设置手持云台工作模式

(CmdSet = 0x0E CmdID = 0x0D),数据段细节如下表所示:

#무 기	数据							
帧类型	偏移	大小	名字	类型	描述			
命令帧	0	1	工作模式	uint8_t	0xFE:模式不改变			
					0x00:不切换横竖拍模式			
					0x01:切换为绕X轴旋转0°的横拍			
				0x02: 切换为绕 X 轴旋转 180° 的横拍				
					0x03: 切换为绕 X 轴旋转 90° 的竖拍			
		1	***********		0x04: 切换为绕 X 轴旋转 -90° 的竖拍			
	'		横竖拍模式	uint8_t	0x05: 当前为横拍则切换为竖拍,			
					当前为竖拍则切换为横拍,			
					角度由云台自适应处理			
			OxFF: 恢复默认模式,					
					角度由云台自适应处理			
应答帧	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码			

⁻ Figure 26 设置手持云台工作模式 -

2.3.4.15 设置云台回中自拍和跟随模式

(CmdSet = 0x0E CmdID = 0x0E),数据段细节如下表所示:

帧类型 -	数据						
	偏移	大小	名字	类型	描述		
	0	1	工作模式	uint8_t	VALUE : 0xFE		
命令帧	1 1	回中自拍命令	'-10 1	0x01: 进行一次回中			
			uint8_t	0x02: 进行一次自拍			
	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码		

- Figure 27 设置手持云台回中和自拍 -

帧类型	data							
	偏移	大小	名字	类型	描述			
					VALUE :			
		4	丁/左拱士	uint0 t	0x00 : 云台锁定模式			
	0	l I	工作模式	uint8_t	0x02: 云台 Yaw 跟随模式			
命令帧					0x03:运动模式			
	1	1 1	回中自拍命令	uint8_t	0x00:不变			
					备注:选择上述模式的时候,该字段			
					设置为 0			
应答帧	0	1	return code	uint8_t	参考错误返回码 2.3.2 返回码			

⁻ Figure 28 设置手持云台跟随模式 -

2.3.4.16 设置云台自动校准

(CmdSet = 0x0E CmdID = 0x0F), 实现云台自动校准的相关功能,如云台力度自动校准等。 采取 TLV 格式,即 ID+LENGTH+VALUE,其中 ID 对应命令类型,LENGTH 对应 VALUE 长度, VALUE 对应命令控制状态,VALUE 的数据类型根据 ID 的不同而不同。每次可以下发多个 TLV 组合,即可实现组合命令控制。数据段细节如下表所示:

 名称	Туре	Length	类型	Value
控制参数自整定	0x00	1	uint8_t	[0]: 使能标志 0: 停止自整定 1: 开始自整定 [7:1]: 自整定类型 0: 默认模式 1: 单姿态易用模式 备注: 自整定类型选择 1

⁻ Figure 29 设置云台自动校准 -

2.3.4.17 云台自动校准状态推送

(CmdSet = 0x0E CmdID =0x10),实现云台控制参数自动调整的进度、状态推送。采取 TLV 格式,即 ID+LENGTH+VALUE,其中 ID 对应命令类型,LENGTH 对应 VALUE 长度,VALUE 对应命令控制状态,VALUE 的数据类型根据 ID 的不同而不同。数据段细节如下表所示:

\/\ \ \ \ \	
VALUE: Byte0: 自动校准状态及结果(进行自动校准 进行自动校准 0x01: 自动校准运行中 控制参数自整定 0x00 6 uint8_t 0x02: 自动校准完成 0x03: 自动校准出错 Byte1: 自动校准进度 取值范围 0~100 Byte2~5: 自动校准错误状态	

⁻ Figure 30 云台自动校准状态推送 -

2.3.4.18 云台智能跟随设置

(CmdSet = 0x0E CmdID = 0x11),数据段细节如下表所示:

帧类型	数据						
	偏移	大小	名字	类型	描述		
命令帧	0	1	开启智能跟随	uint8 t	VALUE: 0x03: 切换 tracking 启停状态		

⁻ Figure 31 云台自动校准状态推送 -

2.3.5 相机命令集数据段细节

2.3.5.1 第三方相机动作命令

(CmdSet = 0x0D CmdID =0x00),数据段细节如下表所示:

帧类型	数据						
	偏移	大小	名字	类型	描述		
命令帧	0	2	相机控制命令	Uint16_t	0x0001 : 拍照		
					0x0002 : 停止拍照		
					0x0003:开始录像		
					0x0004:停止录像		
					0x0005:中心对焦		
					0x000B : 结束中心对焦		
	0	1	return code	uint8_t	参考错误返回码		

⁻ Figure 32 第三方相机动作命令 -

2.3.5.2 第三方相机状态获取命令

(CmdSet = 0x0D CmdID = 0x01),数据段细节如下表所示:

帧类型	数据					
	偏移 大小 名		名字	类型	描述	
命令帧	0	1	相机状态获取 uint8_t 0x01:查询		0x01: 查询录像状态	
应答帧	0	1	return code	uint8_t	参考错误返回码	
	1	1	相机状态	uint8_t	VALUE:	
					0x00:不在录像	
					0x02:正在录像	

⁻ Figure 33 第三方相机状态获取命令 -

3. 注意事项

3.1 硬件支持

DJI RS 2 通信接口为 CAN,参数如下。

波特率	帧类型	CAN Tx	CAN Rx	
1M	标准帧	0x223	0x222	

- Figure 34 CAN 通信参数 -

3.1.1 设备连接示意图

DJI RS 2 通过 CAN 盒连接 PC 示意图如下所示:

3.1.2 RSA 配件扩展接口 /NATO 接口

序号	信号	说明	备注			
1	VCC	电源输出 电源电压范围 8V ± 0.4V,输出电流额定 0.8A,峰值 1.2				
2	CANL	CANL	1			
3	SBUS_RX	SBUS 输入	1			
4	CANH	CANH	1			
5	AD_COM	配件检测口	主机端电阻上拉,配件端推荐 10-100K 电阻下拉,检测 到配件已安装才会输出电源			
6	GND	GND	1			

3.2 软件支持

数据包中使用的 CRC16 和 CRC32 参数如下

Name	Width	Poly	Init	Refln	RefOut	XorOut
CRC16	16	0x8005	0xc55c	True	True	0x0000
CRC32	32	0x04c11db7	0xc55c0000	True	True	0x00000000

3.3 命令示例

此处以一个简单的云台位置控制指令为例,简要说明如何使用 CRC16 和 CRC32 组包测试。 发送如下指令即可让云台运动至特定位置:

AA 1A 00 03 00 00 00 00 22 11 *A2 42* 0E 00 20 00 30 00 40 00 01 14 *7B 40 97 BE*

- Figure 35 CRC 参数 -

3.4 CRC 代码示例

本协议中使用的 CRC16 可以参考: custom_crc16.c, custom_crc16.h

本协议中使用的 CRC32 可以参考: custom crc32.c, custom crc32.h

注意:使用该代码编译出的可执行文件,可以使用 -v 参数输出对应的 CRC 模型以及 3.3 节中命令的 CRC16、CRC32 值。

```
PS E:\work> .\custom crc16.exe -v
width
                 = 16
polv
                 = 0x8005
reflect_in
                 = true
xor in
                 = 0xc55c
reflect_out
                 = true
xor out
                 = 0x0000
crc mask
                 = 0xffff
msb mask
                 = 0x8000
0x42a2
PS E:\work> .\custom crc32.exe -v
width
                 = 32
poly
                 = 0x04c11db7
reflect_in
                 = true
                 = 0xc55c0000
xor in
reflect_out
                 = true
xor out
                 = 0x00000000
crc_mask
                 = 0xffffffff
msb mask
                 = 0x80000000
0xbe97407b
PS E:\work>
```

- Figure 37 CRC 代码示例 -

内容如有更新,恕不另行通知。

如果您对说明书有任何疑问或建议,请通过以下电子邮箱联系我们:Ronin.SDK@dji.com。

