HANDONG GLOBAL UNIVERSITY

1. Basic Concepts

h. choi

hchoi@handong.edu

Agenda

- System life cycle
- Pointers and dynamic memory allocation
- Algorithm specification
- Recursion
- Data abstraction
- Performance analysis

Overview

- Building a small program
 - Just do it!

- Building a large-scale system
 - A system composed of complex interacting parts
 - Requires systematic approach and tools
 - → Objective of Data Structures

problem

System Life Cycle

1. Requirement

Define purpose/goal of system

- Define input, output of system
 - Covers all cases
 - Definite/detailed description

2. Analysis

- Break down a problem into manageable pieces
 - Top-down approach: desirable
 - Purpose-driven approach

- < Broken into manageable pieces >
- cf. Bottom-up approach: old, unstructured strategy
 - Building from general walls, roof, plumbing, heating

3. Design

- Find solution from perspective of data objects and operations on them
 - Data objects: ADT (Abstract Data Type)
 - Operations: specification of algorithm
 - → If the problem is broken-down into manageable pieces, design is easy.

Note: Language dependent, implementation decisions are postponed!!

4. Refinement and Coding

- Implementation
 - Actual representations for data objects
 - Algorithms for each operation
 - → data representation first, and then algorithms
 - Refinement with data representations and algorithms
 - Coding

- Backup, and backup!
- If possible, use a version control program like github.
- Leave some comments and documentations

5. Verification

- Checking validity of system
 - Correctness proof (mathematical) → usually, very difficult
 - Employing proved algorithms can reduce the number of errors
 - Testing
 - with working code and well-developed test data
 - running time is another issue.
 - Error removal
 - Documentation, well-divided structure are very helpful
 - it is hard to find a tiny little thing from spaghetti
- Verification is very important for industry-strong code
 - TDD (Test-Driven Development)
 - Define test data before start to develop a system
 - A new trend of software development

"bug"

"In 1946, ... Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug.

This bug was carefully removed and taped to the log book. "

"Stemming from the first bug, today we call errors or glitches in a program a *bug*"

(from wiki)

Agenda

- System life cycle
- Pointers and dynamic memory allocation
- Algorithm specification
- Recursion
- Data abstraction
- Performance analysis

Memory and Variables

- Main memory
 - List of cells to store data or instruction
 - Each cell is identified by its address.

Main memory				
0				•••
4 8				•••
_				•••
12				•••
16				•••
•••	•••			

- Variable
 - A variable is a block of memory with a symbolic name
 Ex) int a = 100;
 - A variable has name, value(content), and address
 - A variable can store a piece of data of a particular type.

Pointers

- Pointer: constant or variable that contains an address that can be used to access data
 - Range of pointer: address space of computer
 Ex) char aChar = 'G'; // assume &aChar == 1465600

Pointer Variables

Pointer variable: a variable to store an address

Physical representation

Logical representation

Using Pointer Variables

- Declaration
 - int *pa;
- Extracting address of a variable (address operator &)
 - pa = &a;
- Dereferencing (dereferencing operator *)
 - *pa = 89;
 - c = *pa * 2;
- Address operator vs. dereferencing operator
 - & is inverse of *

```
Ex) *a \equiv a; // * and & cancel each other cf. How about &*a ?
```

- Arithmetic operations on pointers
 - addition, subtraction, multiplication, and division

Flexibility of Pointer

Pointing different variables

Multiple pointers for a variables

p = q = r = &a;

Example

Pointers for Inter-Function Communication

Passing addresses

```
// Function Declaration
                                                           b
                                            а
void exchange (int*, int*);
                                           X7
int main (void)
  int a = 5;
 int b = 7;
 exchange (&a, &b);
 printf("%d %d\n", a, b);
  return 0;
 // main
void exchange (int* px, int* py)
                                                          &b
  int temp;
                                           px
 temp = *px;
  *px = *py;
                                          temp
  *py = temp;
  return;
 // exchange
```


Pointers for Inter-Function Communication

Functions returning pointers

```
// Prototype Declarations
int* smaller (int* p1, int* p2);

int main (void)
...
   int a;
   int b;
   int* p;
...
   scanf ( "%d %d", &a, &b );
   p = smaller (&a, &b);
...
```

```
int* smaller (int* px, int* py)
{
  return (*px < *py ? px : py);
} // smaller</pre>
```


example

what is the output of the following code segment?
 assume that the keyboard inputs are "1 2 3 4 5"

```
int main()
    int i, a[5];
    int *p=a;
    for(i=0; i<5; i++, p++)
        scanf("%d", p);
    for (i=0; i<5; i++)
        printf("a[%d]: %d\n", i, a[i]);
    return 0;
```

practice

Pointers to Pointers

- Pointer to pointer (double pointer): a pointer that points a pointer variable
 - Note! Pointer variable itself occupies memory space

Example: Double Pointers

Exchange pointer variables

```
void ExchangePointers(int **pa, int **pb){
 int *temp = *pa;
 *pa = *pb;
 *pb = temp;
int main(){
 int a = 10, b = 20;
 int *p1 = &a, *p2 = &b;
  ExchangePointers(&p1, &p2);
  printf("*p1 = %d, *p2 = %d\n", *p1, *p2);
```

practice

```
example (value, addr)

a: 10, 160 b: 20, 180

p1: 160, 240 p2: 180, 260

pa: 240, 400 pb: 260, 404
```


Pointers to Pointers

Triple pointer

```
int a = 0;

int *p = &a; // same with int *p; p = &a;

int **q = &p;

int ***r = &q;

// Note a = *p = **q = ***r
```


Compatibility

- Pointer type compatibility
 - A pointer variable can store a pointer of the same type.

```
Ex) char c, *pc;
int a;
pc = &c; // no problem
pc = &a; // prohibited
```

- Pointer size compatibility
 - Although size of a variable vary with types, size of all pointers are the same.

```
int i, *pi;
char c, *pc;
float f, *pf;
sizeof(i) ≠ sizeof(c) ≠ sizeof(f)
sizeof(pi) = sizeof(pc) = sizeof(pf)
```


Pointer to Void

- void type pointer (void *) is just to store a generic address
 - A generic type that is not associated with a reference type
- void pointer can store any type of pointers

```
void *vp;
int a;
char c;
vp = &a;  // assigning integer pointer to vp
vp = &c;  // assigning character pointer to vp
```

- NULL pointer
 - NULL is defined by (void*)0, in stdio.h
 - Frequently used to initialize pointer variables

Pointer to Void

void pointer cannot be dereferenced as it is

```
int a = 10;
void *pVoid = &a;
*pVoid = 10; // illegal
To be dereferenced, void pointer should be casted.
```

void pointer can be dereferenced by casting

```
int a = 10;
void *pVoid = &a;
printf("*(int)pVoid = %d\n", *(int*)pVoid);
```

Arithmetic operations are not available (+, -, [], ...) why not?

```
vp = vp + 1; // error
vp[2] = 0; // error
```


- Dynamic memory allocation: acquiring memory space to store information.
 - Memory allocation using predefined allocation functions
 - Size is dynamically determined
 - Allocated from heap

```
// Local Declarations
int* x;
x = malloc(...);

Stack Heap
```


- Heap
 - Allocating memory
 - malloc() function
 - Size of memory block
 - Using memory
 - Address (pointer)
 - * or [] operator
 - Releasing memory
 - free() function
 - Address of the memory block

- Bank
 - Getting a loan
 - Loan application form
 - Amount of money
 - Using money
 - Account number
 - cash card
 - Repaying loan
 - Repayment application form
 - Borrowed money

- Dynamic memory allocation: request for memory space
 - Declared in malloc.h
 - Allocation: void *malloc(size_t NBYTES);
 - Usually, size_t is defined as unsigned int
 - Deallocation: void free(void *APTR);

```
int *pi;
float *pf;
pi = (int*)malloc(sizeof(int));
pf = (float*)malloc(sizeof(float));

*pi = 1024;  // use of pi, pf
*pf = 3.14;

free(pi);
free(pf);
```


Static vs. Dynamic Memory Allocation

Singleton variable int a = 0; int *pi = &a; Singleton variable
int *pi = (int*)malloc(sizeof(int));

Array float fa[100]; float *pfa = fa; Arrayfloat *pfa =(float*)malloc(size*sizeof(float));

Static vs. Dynamic Memory Allocation

```
structure
struct Time {
    int hour, min, sec;
};

struct Time curTime;
struct Time *pCurTime =
    &curTime;

pCurTime->hour = 10;
```

```
Structure

struct Time {

int hour, min, sec;
};

struct Time *pCurTime = (struct Time*)

malloc(sizeof(struct Time));

pCurTime->hour = 10;
```


- Dynamically allocated memory can be used for any purpose.
 - Size and type should be specified properly

```
Ex) A singleton variable
    int *pi = (int*)malloc(sizeof(int));
Ex) An array
    float *pfa = (float*)malloc(size*sizeof(float));
    // similar to "float pfa[size];", but not the same
Ex) A structure variable
                                 // structure definition
    struct Time {
       int hour, min, sec;
    struct Time *pCurTime = (struct Time*)malloc(sizeof(struct Time));
                            // same with (*pCurTime).hour = 10;
    pCurTime->hour = 10;
```

Dynamically allocated memory block must be deallocated eventually

Invalid Use of Pointer

Invalid type casting

```
Ex) int i = 10;

int *pi = &i;

float *pf = (float*) pi; // semantic error
```

Unassigned pointer

```
int *pi;
// pi = (int*) malloc(sizeof(int));  // forgot
*pi = 10;  // error
```


Invalid Use of Pointer

Dangling pointer a pointer that points to dynamic memory that has been deallocated int *pi = (int *)malloc(sizeof(int));

```
*pi = 10; // valid use
...
free(pi); // error: pi is already deallocated
```

Memory leak
 the loss of available memory space that occurs
 when dynamic data is allocated but never deallocated

```
int *pi;
pi = func(10);
pi[0] = 10;
...
// free(pi); // forgot
```

```
int *func(int len)
{
  int *a = malloc(len*sizeof(int));
  return a;
}
```


Safe Coding Practices

Initialize every pointer at declaration

```
Ex)
int *pi; // bad
int *pi = NULL; // good
```

Set deallocated pointer variable by NULL

```
free(pi);
pi = NULL; // free(NULL) is safe
```


string conversion

implement a function 'convert_case' to convert letter cases ex) "Hello World" → "hELLO wORLD"

```
#include <string.h>
#include <stdio.h>
                                                  practice
#include <ctype.h>
#include <stdlib.h>
#define MAX LEN 1024
char* convert case(char*);
                                           do not use any character array
int main()
                                           in convert_case()
                                           → use malloc()
    char aLine[MAX LEN];
    char *p;
    fgets (aLine, MAX LEN, stdin);
    p = convert case(aLine);
    printf("%s\n", p);
    free(p);
    return 0;
```


Agenda

- System life cycle
- Pointers and dynamic memory allocation
- Algorithm specification
- Recursion
- Data abstraction
- Performance analysis

Algorithm Specification

- Algorithm: a finite set of instruction that accomplishes a particular task.
 - Input: zero or more quantities
 - Output: at least one quantity
 - Definiteness: clear and unambiguous instructions
 - Finiteness: for all cases, the algorithm terminates after a finite number of steps
 - Difference from program (but in this class, they are interchangeable)
 - Effectiveness: basic and feasible instructions
- Description of algorithm
 - Natural language
 - Programming language (C source code)
 - Etc.
 - Flow chart, pseudo code, ...

Example

- How can one put an elephant in a refrigerator?
 - Open the fridge.
 - Push the elephant into the fridge. (effective?)
 - Close the door.

- Problem definition: sort n integers
- Simple solution
 - From those integers currently unsorted, find the smallest and place it next in the sorted list.
 - → Not clearly described.
- Selection sorting

Algorithm of selection sort

```
for(i = 0; i < n; i++){
    Examine list[i] to list[n-1] and suppose the smallest integer is at list[min];
    Exchange list[i] and list[min];
} → Each step is clearly defined.</pre>
```

Implementation of selection sort in C language

```
void sort(int list[], int n)
                                                         practice
    int i = 0, j = 0, min = 0, temp = 0;
    for (i = 0; i < n - 1; i++)
         // find the minimum of list[i] through list[n-1]
         min = i;
         for (j = i + 1; j < n; j++) {
             if(list[j] < list[min])</pre>
                  min = j;
                                                   swap(&list[i], &list[min]);
         // exchange list[i] and list[min]
         temp = list[i];
                                                   void swap(int *x, int *y)
         list[i] = list[min];
         list[min] = temp;
                                                    int temp = *x;
                                                    x = v:
                                                    *v = temp;
```


how to practice?

```
#include <stdio.h>

void sort(int [], int);
int main()
{
   int aList[] = {0, 3, 1, 5, 7, 9, 2};
   sort(aList, 7);

   for(int i=0; i<7; i++)
       printf("%d ", aList[i]);

   return 0;
}</pre>
```

practice

- Prove that sort(list, n) works correctly.
 - When the outer loop completes its iteration for i = q we have list[q] <= list[r], q < r < n.
 - 2. On subsequent iterations, i > q, list[0] through list[q] are unchanged.

 for any q between 0 and n-2
 - 3. So, on the last iteration of the outer loop (i=n-2), we have list[0] <= list[1] <= ... <= list[n-1].

Example: Binary Search

- Given
 - n ≥ 1 distinct integers already sorted and stored in an array A.
 - $A[0] \le A[1] \le ..., \le A[n-1]$
 - An integer to find (searchnum)
- Problem: find an index, i, such thet A[i] = searchnum.
 - If searchnum is not present, return -1.

Example: Binary Search Algorithm

- Let left and right denote the left and right ends of the list to be searched.
 - Initially, *left* = 0, *right* = n − 1
- 2. Let *middle* be the middle point of the list to be searched.
 - middle = (left + right) / 2
- 3. Compare A[middle] with searchnum
 - Case1: searchnum < A[middle]
 - If searchnum is present, it must be in the left half. [left, middle 1]
 - Therefore, set right to middle 1
 - Case2: searchnum == A[middle]
 - Searchnum is found. Return middle.
 - Case3: searchnum > A[middle]
 - If searchnum is present, it must be in the right half. [middle + 1, right]
 - Therefore, set left to middle + 1
- 4. If *left* <= *right*, go back to 2

Example: Binary Search Implementation

Binary search in C

practice

```
int binsearch(int list[], int searchnum, int left,
                                                 int right)
\{/* \text{ search list}[0] \leftarrow \text{ list}[1] \leftarrow \cdot \cdot \cdot \leftarrow \text{ list}[n-1] \text{ for }
 searchnum. Return its position if found. Otherwise
return -1 */
  int middle;
  while (left <= right) {
     middle = (left + right)/2;
     switch (COMPARE(list[middle], searchnum)) {
        case -1: left = middle + 1;
                   break;
        case 0 : return middle;
        case 1 : right = middle - 1;
  return -1;
```


Example: Binary Search Implementation

```
practice
int main()
{
    int list[] = \{1,2,3,4,5,6,7,10,11,17,20,23,25,29,31\};
                                                     // 15 items
    int target, idx;
    scanf("%d", &target);
    idx = binsearch(list, target, 0, 14);
    if (idx < 0)
        printf("there is no target\n");
    else
        printf("the target is at %d\n'', idx);
```


Example: Binary Search

COMPARE: a function to compare x and y

```
    If x < y, return -1</li>

    If x == y, return 0

    If x > y, return +1

int COMPARE(int x, int y)
   if(x < y)
    return -1;
   else if (x == y)
    return 0;
   else
    return 1;
```

Agenda

- System life cycle
- Pointers and dynamic memory allocation
- Algorithm specification
- Recursion
- Data abstraction
- Performance analysis

Recursive Algorithm

Recursion: a function call to itself

< direct recursion >

- < indirect recursion >
- "Recursive definition" of recursion
 - Recursion:

see *Recursion*

Recursive Algorithm

- Why recursion?
 - Extremely powerful
 - Complex processes are often expressed in very clear terms with recursion.
- Theoretically, every iteration can be transformed to recursion and vice versa.

Recursive vs. Iterative Algorithm: Factorial

```
int Factorial(int n)
                                using a selection
{ // recursive solution
                                with less local variable.
  if (n==0) return 1;
  else
    return n*Factorial(n-1);
int Factorial(int n)
{ // iterative solution
                                using a loop
  int factor, count;
                                with more local variables.
  factor = 1;
  for(count=2;count <=n; count++)</pre>
    factor = factor * count;
  return factor;
```


Recursive Algorithm

- Problems suitable for recursion
 - Recursively defined problems: problem that can be divided into the same problem with smaller size
 - Factorial

• Factorial(x) =
$$x^*(x-1)^*(x-2)^*...*1 = x * Factorial(x-1)$$

- Fibonachi numbers
 - Fibonachi(x) = Fibonachi(x-1) + Fibonachi(x-2)
 - Fibonachi(0) = Fibonachi(1) = 1
 → termination condition
- Binomial coefficients

$$\left(\begin{array}{c} n \\ m \end{array}\right) = \left(\begin{array}{c} n-1 \\ m \end{array}\right) + \left(\begin{array}{c} n-1 \\ m-1 \end{array}\right)$$

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}$$

Example of Recursive Algorithm

- Binary search
 - Problem: find a number x from a sorted list A[]

Example of Recursive Algorithm

Recursive algorithm for binary search

```
int binsearch(int A[], int x, int left, int right)
   if(left <= right){</pre>
                                           // termination condition 1
    int mid = (left + right) / 2;
    switch(COMPARE(A[mid], x)){
      case -1: return binsearch(A, x, mid+1, right); // A[mid] < x
      case 0: return mid; // termination cond. 2, A[mid] == x
      case +1: return binsearch(A, x, left, mid-1); // A[mid] > x
   return -1;
                          practice.
```

compare this to the previous iterative version

An Example

- Given
 - An array A

i	0	1	2	3	4	5	6	7	8
A[i]	2	5	6	8	9	13	15	30	54

- A target number X = 8
- Procedure
 - Step1:
 - Step2:
 - Step3:

Design of Recursive Algorithm

1. Find a way to divide a problem into **<u>sub-problems whose solution</u> <u>is the same</u>** with the original problem with **<u>reduced size</u>**

- 2. Describe problem reduction algorithm with recursion
- general case

- Ex) F(n) = F(a) + F(b) + ... + some other part
 - a, b, ... should be smaller than n
- 3. Describe non-recursive solution(s) for very simple case(s) base case Ex) F(1), F(0)
 - → termination

Example: permutation generator

print out all possible permutations of the set (list)

```
void perm(char *list, int i, int n)
   int j, temp;
                                        - initial call
   if (i == n) {
                                        perm(list, 0, n-1);
     for (j=0; j<=n; j++)
       printf("%c", list[j]);
    printf("\n");
  else{
     for (j=i; j<=n; j++) {
       swap(&list[i], &list[j]);
       perm(list, i+1, n);
       swap(&list[j], &list[i]);
                                        practice
                                        understand how it works
```


Example: Tower of Hanoi

- Input
 - Three towers and *n* disks of different diameters
 - placed on the first tower in order of decreasing diameter
- Problem (mission)
 - Move all disks from the first tower to the third tower
- Restrictions
 - Only one disk can be moved at any time
 - No disk can be placed on top of a disk with a smaller diameter

Towers of Hanoi

- Non-recursive solution: difficult and complex
- Solution using recursion
 - Divide the problem into smaller problems
 - Moving n disks from tower a to tower b =
 Move n-1 disks from tower a to tower c
 - + Move 1 disk from tower a to tower b
 - + Move **n-1** disks from **tower c** to **tower b**

- Termination condition
 - If n == 1, just move a single disk from tower a to tower b

Towers of Hanoi

```
void Hanoi(int n, int begin, int aux, int end)
  if (n > 1)
    Hanoi(n-1, begin, end, aux); // from begin to aux
    Hanoi(1, begin, aux, end); // from begin to end
    Hanoi(n-1, aux, begin, end); // from aux to end
  else
   printf("move the disk in %d to %d\n", begin, end);
```

practice understand how it works

Agenda

- System life cycle
- Pointers and dynamic memory allocation
- Algorithm specification
- Recursion
- Data abstraction
- Performance analysis

Data Types

- Built-in data type of C/C++
 - Element type: char, int, float, double

```
    Collection type: array, structure, ...
        Ex) struct student {
            char last_name;
            int student_id;
            char grade;
            };
```

- Pointer type: char*, int*, void*, ...
- User defined type

Data Abstraction

- Data type: a collection of objects and a set of operations that act on those objects
 - Ex) int type
 - Object: numbers in {INT_MIN, ..., -1, 0, 1, ..., INT_MAX}
 - 16bit integer
 - INT_MIN = -32768, INT_MAX = 32767
 - 32bit integer
 - INT_MIN = -2147483648, INT_MAX = 2147483647
 - Operation: +, -, *, /, %

Data Abstraction

- ADT (Abstract Data Type): data type organized by specification of objects and specification of operation, NOT including
 - Representation of objects
 - Implementation of operation
 - Focuses on what, not how
 - Necessary for managing large, complex software projects
- Specification of operation
 - Description of what the function does.
 - names, arguments, result of each functions
 - The function call depends on the function's specification (description), not its implementation (algorithm)
 - e.g., <u>double = sqrt(double)</u>, or <u>double = pow(double, double)</u>

Example of ADT

etc

- Natural number (Nat_No)
 - Objects: integers from zero to INT_MAX
 - Functions (or operations)

```
Nat_No Zero() ::= return 0
Boolean Is_Zero(x) ::= if (x) return FALSE, else return TRUE
Nat_No Add(x, y) ::= if(x+y <= INT_MAX) return x+y else return INT_MAX</li>
Nat_No Subtract(x, y) ::= if(x < y) return 0; else return x - y;</li>
Nat_No Power(x, y) ::= if (x<sup>y</sup> < INT_MAX) return x<sup>y</sup> else return INT_MAX
```


ADT

- Why ADT?
 - Implementation-independent
- ADT frequently includes
 - Creator/constructor: create new instance
 - Transformers: create new instance from one or more other instances
 - Observers/reporters: provides information about instance
 - Destructor: discard instance of ADT (optional)
- we will discuss the specification first, then implementation

Agenda

- System life cycle
- Pointers and dynamic memory allocation
- Algorithm specification
- Recursion
- Data abstraction
- Performance analysis

Performance Analysis

- Criteria to evaluate a program
 - Does it meet specification of the task?
 - Does it work correctly?
 - Does it contain documentation about how to use and how it works?
 - Does it effectively use functions to create local units?
 - Is the code readable?
 - Does it efficiently use primary/secondary storage?Is the running time acceptable?
 - Performance issues

Performance Evaluation

- Performance analysis
 - Mathematical analysis of algorithm
 - Complexity theory
 - Machine independent
- Performance measurement
 - Execution time on a specific computer
 - Machine-dependent

Complexities

- Space complexity of a program:
 - the amount of memory that it needs to run to completion
- Time complexity of a program:
 - the amount of computer time that it needs to run to completion

Space Complexity

- Fixed space requirements
 - Space requirement independent from number and size of input/output
 - Composed of instruction space, simple var., structures, constants
- Variable space requirements
 - Space requirement dependent on a particular instance I
 - S_p(I) Variable space requirement of a program P working on an instance I
 - $S_p(I)$ is usually a function of **characteristics** of I
 - the number, size, values of input and output
 Ex) input is an array whose size is n: instance characteristic
 - $S_p(I)$ can be replaced by $S_p(n)$ when $S_p(I)$ depends on only n
- Total space requirement $S(P) = c + S_p(I)$

Examples

Fixed space requirement float abc(float a, float b, float c) return a+b+b*c + (a+b-c)/(a+b) + 4.00; $S_{abc}(I) = 0$ Variable space requirement float sum(float list[], int n) float tempsum = 0; int i; for(i = 0; i < n; i++)pass by value tempsum += list[i]; pass by reference return tempsum $S_{sum}(I) = S_{sum}(n) = (n \text{ in some languages like Pascal}) (0 \text{ in } C)$

Time Complexity

- Total time taken by a program P
 - T(P) = compile time + run time (execution time)
 - Compile time is not very important
 - Independent from instance characteristics
 - After development is finished, no need for recompile.
 - Run time (T_p)
 - Major target of complexity analysis

Time Complexity

However, T_p does not depend only on P

Ex)
$$T_p(n) = c_a ADD(n) + c_s SUB(n) + c_l LDA(n) + c_{st} STA(n)$$

- c_a, c_s, c_l, c_{st}: constants
- Requires knowledge about compiler and H/W

For more details, computer architecture class

- Rarely worthy
- Program step: alternative unit to measure execution time
 - Syntactically or semantically meaningful program segment,
 - whose execute time is independent of the instance characteristics

Ex) Assignment, comparison, addition, ...

$$a = 2$$

$$a = 2*b+3*c/d-e+f/g/a/b/c$$

Both assignments are just one step

Measuring # of Steps Using Step Count Variable

 Iterative summing of a List of Numbers

```
float sum (float list[], int n)
{
   float tempsum = 0;
   int i;
   for (i = 0 ; i < n ; i ++)
      tempsum += list[i];
   return tempsum;
}</pre>
```

 Iterative version with count statements

Number of executed steps: 2n + 3

Measuring # of Steps Using Step Count Variable

Recursive version with count statements

- Number of executed steps: 2n + 2
- However, recursive version is usually slower than iterative version because of function-call overhead.

Measuring # of Steps Using Step Count Variable

Matix Addition

```
void add mat (int a[][MAX SIZE], int b[][MAX SIZE],
                int c[][MAX SIZE], int rows, int cols)
   int i, j;
   for (i=0; i < rows; i++){ // rows + 1
    // count++;
    for(j=0; j < cols; j++){ // rows × (cols + 1)
      // count ++;
      c[i][j] = a[i][j] + b[i][j]; // rows * cols
      // count ++;
    // count ++;
   // count ++;
// Total = 2 \times rows \times cols + 2 \times rows + 1
```


Measuring # of Steps Using Tabular Method

- 1. Determine **step count** for each statement (steps/execution or s/e)
- 2. Figure out number of times each statement is executed (**frequency**)
- 3. Multiply s/e by frequency to get total steps of each statement
- 4. Sum total steps of all statements

<pre>void add_mat (int a[] [MAX_SIZE], int b[][MAX_SIZE], int c[][MAX_SIZE], int rows, int cols)</pre>	s/e	Frequency	Total Step
{			
int i,j;	0	0	0
for (i=0; i < rows; i++)	1	rows+1	rows+1
for(j=0; j < cols; j++)	1	rows*(cols+1)	rows*(cols+1)
c[l][j] = a[l][j] + b[l][j];	1	rows*cols	rows*cols
}	0	0	0

Three Kinds of Steps Counts

Ex) Step count of binarysearch depends on values of search target and contents of sorted list

- Step count should be estimated for three cases
 - Best case: minimum number of steps for execution
 - Worst case: maximum number of steps for execution
 - Average case: average number of steps for execution

Limits of Step Count

- Problems of step count for performance analysis
 - Increasingly difficult
 - Exact step count is not very necessary.
 - Step count itself is not exact
- Comparing programs
 - We can say 3n+3 is faster than 100n+10.
 - But, it is difficult to compare 80n +10 to 85n or 75n +20.
- So, we need asymptotic notations

- More adequate method than step count
 - $c_1 n^2 \le T_p(n) \le c_2 n^2$ or $T_q(n,m) = c_1 n + c_2 m$
 - c₁, c₂ are non-negative constants
- We can compare c₁n²+c₂n with c₃n for sufficiently large n.
 - No mater how much c₃ is bigger than c₁ and c₂, c₁n²+c₂n > c₃n if n is very large

Ex)
$$c_1 = 1$$
, $c_2 = 2$, $c_3 = 100$

- for $n \le 98$, $c_1 n^2 + c_2 n < c_3 n$
- for n > 98, $c_1 n^2 + c_2 n > c_3 n$

- Break even point: a value of n, beyond which c₃n is always faster than c₁n²+c₂n, regardless of c₁, c₂, and c₃
 - Exact estimation of break even point is difficult and little advantage
 - Knowing whether a break even point exists is sufficient

Order of Complexities

 If the size of data is large, the order of complexity dominates the constant coefficient.

Order of complexities

```
• 3, 100, 35000, ... \rightarrow O(1)
• 2log<sub>4</sub>(n), 6log<sub>2</sub>(n), 10log<sub>8</sub>(5n) \rightarrow O(log n)
• 30n, 65n+30, 10000n + 329858, ... \rightarrow O(n)
• 9n<sup>2</sup>, 2n<sup>2</sup>+100, 582n<sup>2</sup>+28, ... \rightarrow O(n<sup>2</sup>)
• n<sup>3</sup>+130, 9n<sup>3</sup>+20, 128n<sup>3</sup>+32, ... \rightarrow O(n<sup>3</sup>)
• 2<sup>n</sup>, 5*2<sup>n</sup>, 100*2<sup>n</sup>+n<sup>3</sup>+100, ... \rightarrow O(2<sup>n</sup>)
```


Polynomial Complexities

O(n): algorithms with single loops
 for(i = 0; i < n; i++)
 sum += list[i]; // executed n times
 O(n²): algorithms with double loops
 for(i = 0; i < n; i++)
 for(j = 0; j < n; j++)
 sum += list_2D[i][j]; // executed n² times
 O(n³): algorithms with triple loops

- for(i = 0; i < n; i++)

 for(j = 0; j < n; j++)

 for(k = 0; k < n; k++)

 sum += list 3D[i][j][k]; // executed n³ times
- O(n^m): algorithms with mth order loop

Log Complexities

Ex) Worst case complexity of binary search

n	1	2	3	4	5	6	7	8	•••	16	•••	32	•••
# of comp. (T)	1	2	2	3	3	3	3	4	4	5	5	6	•••

- $n \approx 2^{(T-1)}$
- → $T \approx \log_2 n$

Exponential Complexities

Ex) # of possible patterns using n bits

n	0	1	2	3	4	5	6	7	8	9	10	11	12
# of possible patterns (T)	1	2	4	8	16	32	64	128	256	512	1024	2048	4096

•
$$T(n) \approx 2^n$$

Upper bound complexity

Def) Big "Oh": f(n) = O(g(n)) iff there exist positive constants c and n_0 s.t. $f(n) \le cg(n)$ for all $n, n \ge n_0$

- Examples
 - 3n+2 = O(n)
 - 3n+2 < 4n for all n > 2
 - 100n+6 = O(n)
 - $100n+6 \le 101n \text{ for } n \ge 10$
 - $10n^2 + 4n + 2 = O(n^2)$
 - $10n^2+4n+2 \le 11n^2$ for $n \ge 5$
 - $6*2^n+n^2=O(2^n)$
 - $6*2^n+n^2 \le 7*2^n$ for $n \ge 4$
 - $3n+3 = O(n^2)$
 - $3n+3 \le 3n^2$ for $n \ge 2$
 - $10n^2+4n+2 != O(n)$

Note! 3n+3=O(n) $3n+3=O(n^2)$ But, $O(n) \neq O(n^2)$

Big Oh notations

- O(1): constant
- O(n): linear
- O(n²): quadratic
- O(n³): cubic
- O(2ⁿ): exponential

Comparison

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$$

Note!
$$f(n) = O(g(n))$$
 doesn't mean $g(n) = O(f(n))$

Theorem) If $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$

Proof

$$f(n) \leq \Sigma^{m}_{i=0} |a_{i}| n^{i}$$

$$= n^{m} \Sigma^{m}_{0} |a_{i}| n^{i-m}$$

$$\leq n^{m} \Sigma^{m}_{0} |a_{i}|, \text{ for } n \geq 1$$

$$= c n^{m}, \text{ for } n \geq 1, \text{ where } c = \Sigma^{m}_{0} |a_{i}|.$$

So,
$$f(n) \le c n^m \rightarrow f(n) = O(n^m)$$

For polynomial functions, simply find the largest degree

Lower bound complexity

Def) Omega: $f(n) = \Omega(g(n))$ iff there exist positive constant c and n_0 s.t. $f(n) \ge cg(n)$ for all $n, n \ge n_0$

Examples

- $3n+2 = \Omega(n)$
 - $3n+2 \ge 3n$ for $n \ge 1$
- $10n^2+4n+2=\Omega(n^2)$
 - $10n^2 + 4n + 2 \ge n^2$ for $n \ge 1$
- $6*2^n+n^2 = \Omega(2^n)$
- $6*2^n+n^2 = \Omega(n)$
- $6*2^n+n^2 = \Omega(1)$
- Theorem) If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$

Lower and upper bound complexity

Def) Theta: $f(n) = \Theta(g(n))$ iff there exist positive constant c_1 , c_2 and n_0 s.t. $c_1g(n) \le f(n) \le c_2g(n)$ for all $n, n \ge n_0$

Examples

- $3n+2 = \Theta(n)$
 - 3n+2 ≥ 3n for n ≥ 2 and 3n+2 ≤ 4n for all n ≥ 2
- $10n^2 + 4n + 2 = \Theta(n^2)$
- $6*2^n+n^2 = \Theta(2^n)$
- $6*2^n+n^2 \neq \Theta(n)$
- $6*2^n+n^2 \neq \Theta(1)$
- Theorem) If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Theta(n^m)$

Example: Complexity of matrix addition

Example: How about binsearch? log(n)

- Time complexity of a program:
 - A function of instance characteristics, e.g., f(n)
- Time complexity is useful in ...
 - Determining how the time requirements vary as the instance characteristics change
 - Comparing two programs P and Q that perform the same task
 - If P has complexity Θ (n) and Q is of complexity Θ (n²), we can assert that P is faster than Q for "sufficiently large" n

Growth of function values

	instance characteristic n							
time	name	1	2	4	8	16	32	
1	constant	1	1	1	1	1	1	
log n	logarithmic	0	1	2	3	4	5	
n	linear	1	2	4	8	16	32	
n log n	log linear	0	2	8	24	64	160	
n^2	quadratic	1	4	16	64	256	1024	
n^3	cubic	1	8	64	512	4096	32768	
2 ⁿ	exponential	2	4	16	256	65536	4294967296	
n!	factorial	1	2	24	40326	2092278988800	$0 26313*10^{33}$	

 Time needed by a 1 billion instructions per second (GIPS) computer to execute a program of complexity f(n)

	Time for $f(n)$ instructions on a 10^9 instr/sec computer									
n	f(n)=n	$f(n) = n \log n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$			
10	.01µs	.03µs	.lμs	1µs	10µs	10sec	1µs			
20	.02µs	.09µs	.4µs	8µs	160µs	2.84hr	1ms			
30	.03µs	.15µs	.9µs	27μs	810µs	6.83d	1sec			
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3min			
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d			
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr			
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr			
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr				
100,000	100.00μs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr				
1,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr				

Note that only programs of small complexity (such as n, n^2 , n^3) are feasible (for reasonably large n, say n > 100).

Performance Measurement

- Performance measurement: measuring execution time on an actual machine
 - Measuring time using functions in C standard library (declared in time.h)

#include <time.h>

clock(): elapsed time since the program began time(): elapsed time since Jan. 1, 1970

	Method 1	Method 2
Start timing	start = clock();	start = time(NULL);
Stop timing	stop = clock();	stop = time(NULL);
Type returned	clock_t	time_t
Result in seconds	duration = ((double)(stop- start))/CLOCKS_PER_SEC;	duration = (double)difftime(stop, start)
Remark	Internal processor time	Measured in second

^{*} note: exact syntax of functions and constant varies with systems

Performance Measurement

Example: #include <time.h> int main() $clock_t start = 0, stop = 0;$ double duration = 0; start = clock(); /// ... // routines to measure execution time /// ... stop = clock(); duration = ((double) (stop – start) / CLOCKS_PER_SEC; return;

Performance Measurement

- Generating test data
 - Usually it is very difficult to generate worst-case data
 - Alternative way:
 - generate suitably large number of random test data
 - estimate the worst-case and the average-case.

questions or comments?

hchoi@handong.edu

