Tutorial-6 (PHY201) Due on Wednsday

1. Explain key features of the phenomenon of Rayleigh scattering of a plane EM radiation. Discuss by making careful diagram, how and when the Rayleigh scattering converts unpolarized light into a perfectly linear polarized light.

Discuss five daily life phenomena that exploit the Rayleigh scattering of EM radiation.

2. A copper box with dimensions as shown in the figure acts as a cavity resonator. The electric field

$$E_z = E_0 \sin(k_x x) \sin(k_y y) \sin(\omega t), E_x = E_y = 0$$

is a possible solution of the wave equation for this case.

(a) Find the lowest resonance frequency ω_1 and the corresponding free space wavelength λ_1 .

(b) Find the next-to-lowest resonance frequency ω_2 and the corresponding free space wavelength λ_2 .

3. A point charge q has been moving with constant velocity w along a straight line until the time $t=t_0$. In the short time interval from time t_0 to $t_0+\Delta t$, a force perpendicular to the trajectory changes the direction without changing the magnitude of the velocity. After the time $t=t_0+\Delta t$ the charge again moves with the velocity w along a straight line making a small angle $\Delta \alpha$ with the initial trajectory.

(a) What is the direction of E-field caused by the acceleration, at the distant point P₁.

(b) In what direction is the radiation intensity of the accelerated charge the most intense?

(c) Where is it least intense

(d) Point P₂ is twice as far from the bend of trajectory as P₁. By what fraction does the amplitude of magnetic disturbance decrease as the radiation pulse move from P₁ to P₂?

(e) What is the total energy radiated?

(e) Total energy radiated in At interval graz st $\Delta E_{rad} = P \Delta t = \frac{\tau \alpha}{6 \pi \epsilon_0 c^3}$ = $\frac{9^2 \text{W}^2}{6 \times 6.03} \left(\frac{\Delta \alpha}{\Delta t} \right)^2 \Delta t$ [Radialed evergy is integrated for entire Box of dimensions axaxa E = E. Sin (kx x) Sin (ky y) Sin (4) I Boundary Condition Ez (x=0) = Ez (x=a) = Ez (y=0) = Ez (y=a) = 0 Kz=nā, Kyzmā 4 Kz=0 m, n > (& integers Z - component of mare eq. T2 Ez = 1 22 Ez Kz + ky 2 02 Resonances Whyn = The JM2+12 (a) Lowest preg. M= N= 1 => W,= x C12 , 7,= 52a (b) Mesor free. M=1, M=2) $W_2 = \frac{EC}{a} \cdot \frac{5}{5}$; $\lambda_2 = \frac{29}{55}$

Rayleight Scattering!

(a) Size of Scatterer << 2

(b) Power & w & 1

(c) for F I to incoming bean light in perfectly linearly polarized for impolarized radiation

Phenomena: Blue cky, Red Sumpet Survive, blue smoke Scattering in whater of laser, Red traffic sign etc.