Mathematical Methods for Engineers (MathEng) EXAM

13th February 2012

Duration: 2 hrs, calculators permitted, no documents This exam paper contains 8 questions and 80 marks. ATTEMPT ALL QUESTIONS – ANSWER IN ENGLISH

1. Determine the Fourier transform G(f) of the square wave g(t) shown in Figure Q1. Then, evaluate and sketch the convolution of g(t) with itself, i.e. h(t) = g(t) * g(t). Determine the Fourier transform of h(t) and explain why it is equal to the square of G(f).

Figure Q1

[12 marks]

2. Sketch Bode plots of the magnitude and phase responses for a system whose transfer function is given by:

$$H(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$$

[16 marks]

3. A digital filter is described by the following difference equation:

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{9}y(n-2) = x(n)$$
.

Show that the system transfer function is given by:

$$H(z) = \frac{z^2}{(z - 0.5)(z - 0.25)}$$

where |z| > 0.5, and determine an expression for the filter impulse response h(n).

[15 marks]

4. Suppose a pair of random variables is jointly distributed over the unit circle, that is, the joint probability density function $f_{XY}(x, y)$ is constant anywhere such that $x^2 + y^2 < 1$:

$$f_{XY}(x, y) = \begin{cases} c, & x^2 + y^2 < 1 \\ 0, & \text{otherwise} \end{cases}$$

Determine c and the marginal probability density functions $f_X(x)$ and $f_Y(y)$.

[12 marks]

- 5. (a) A is a 6×7 matrix of rank 4. What are the dimensions of its four subspaces?
 - (b) Find the bases for the four subspaces associated with the matrix B:

$$B = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix}$$

[6 marks]

6. Find the eigenvalues and corresponding eigenvectors associated with the matrix A:

$$A = \begin{bmatrix} 0.2 & 0.6 \\ 0.8 & 0.4 \end{bmatrix}$$

[6 marks]

7. Find an orthonormal basis for the column space of matrix *A* using the Gram-Schmidt process and thereafter factor it into *QR* form:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$

[7 marks]

8. Under what conditions on b_1 , b_2 , b_3 and b_4 is the following system solvable? Find an expression for x in that case.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 5 & 7 \\ 3 & 9 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

[6 marks]

Table of selected Laplace transforms

$x(t) (t \ge 0)$	X(s)
$\delta(t)$	1
$\delta(t-\alpha)$	$\exp(-\alpha s)$
1 (unit step)	$\frac{1}{s}$
t (unit ramp)	$\frac{1}{s^2}$
$\exp(-\alpha t)$	$\frac{1}{s+\alpha}$
$t \exp(-\alpha t)$	$\frac{1}{(s+\alpha)^2}$
$\sin(\alpha t)$	$\frac{1}{s^2 + \alpha^2}$
$\cos(\alpha t)$	$\frac{s}{s^2 + \alpha^2}$
$e^{-\alpha t}\sin(\omega t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-\alpha t}\cos(\omega t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega^2}$

Bode plots

Poles or zeros on the real axis:

$$(s+a) = a\left(\frac{s}{a}+1\right) = \frac{1}{\tau}(\tau s + 1)$$

Complex conjugate poles (or zeros):

$$(s^2 + As + B) = (s^2 + 2\zeta\omega_0 s + \omega_0^2) = \omega_0^2((s/\omega_0)^2 + 2\zeta(s/\omega_0) + 1)$$

Table of selected z-transforms

$x(n) (n \ge 0)$	X(z)	
$\delta(n)$ unit pulse	1	
$\delta(n-m)$	z^{-m}	
1 (unit step)	$\frac{z}{z-1}$	
n (unit ramp)	$\frac{z}{(z-1)^2}$	
$\exp(-\alpha n)$	$\frac{z}{(z-e^{-\alpha})}$	
$n \exp(-\alpha n)$	$\frac{e^{-\alpha}z}{(z-e^{-\alpha})^2}$	
$\sin(\beta n)$	$\frac{z\sin(\beta)}{z^2 - 2z\cos(\beta) + 1}$	
$\cos(\beta n)$	$\frac{z^2 - z\cos(\beta)}{z^2 - 2z\cos(\beta) + 1}$	
$e^{-\alpha n}\sin(\beta n)$	$\frac{ze^{-\alpha}\sin(\beta)}{z^2 - 2ze^{-\alpha}\cos(\beta) + e^{-2\alpha}}$	
$e^{-\alpha n}\cos(\beta n)$	$\frac{z^2 - ze^{-\alpha}\cos(\beta)}{z^2 - 2ze^{-\alpha}\cos(\beta) + e^{-2\alpha}}$	

Table of selected Fourier transform pairs

Function	x(t)	$X(\omega)$
Rectangular function of width $ au$	$\Pi(t/ au)$	$\tau \operatorname{sinc}(\omega \tau/2)$
Triangular function of width 2τ	$\Lambda(t/ au)$	$\tau \operatorname{sinc}^2(\omega \tau/2)$
Train of impulses every Δt	$\delta_T(t)$	$2\pi/\Delta t \Sigma_n \delta(\omega - 2\pi n/\Delta t)$

NB: sinc(x) = sin(x)/x

Fourier series and transforms

Fourier series – periodic and continuous in time, discrete in frequency

$$x(t) = \sum_{n=-\infty}^{+\infty} X_n \exp(jn\omega_0 t)$$

$$X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp(-jn\omega_0 t) dt$$

Fourier transform – continuous in time, continuous in frequency

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega \qquad X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

Discrete-time Fourier transform – discrete in time, continuous and periodic in frequency

$$x(n\Delta t) = \frac{\Delta t}{2\pi} \int_{-\pi/\Delta t}^{\pi/\Delta t} X(\omega) \exp(jn\Delta t\omega) d\omega \qquad X(\omega) = \sum_{n=-\infty}^{\infty} x(n\Delta t) \exp(-j\omega n\Delta t)$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n\Delta t) \exp(-j\omega n\Delta t)$$

Discrete Fourier transform – discrete and periodic in time and in frequency

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \exp\left(\frac{jnk2\pi}{N}\right)$$

$$X(k) = \sum_{n=0}^{N-1} x(n) \exp\left(\frac{-jnk2\pi}{N}\right)$$