33-5

Suppose $F \subset \mathbb{R}$ is compact, $f(x): F \to \mathbb{R}$. If for any $x_0 \in F'$, $f(x) \to \infty$ ($x \in F$ and $x \to x_0$), prove that F is countable.

Proof: Let $F_n=\{x\in F: f(x)\leqslant n\}$ then $F=\bigcup_{n\geqslant 1}F_n$. If F_n is infinite for some n, then F_n is bounded so $F'_n\neq\emptyset$. Take $x_n\to x\in F'_n$ where $x_m\in F_n$, then $x\in F'$ so $f(x_m)\to\infty$, contradicting $f(x_m)\leqslant n$. Hence F_n is finite so F is countable.

45-4

(i) $\chi_{\mathbb{O}}(x)$ is not the limit of a sequence of continuous functions.

Proof: We show that the point-wise limit of a sequence of continuous functions $\{f_n(x)\}$ is continuous on a dense set.

Let $f^+(x)=\inf_{\varepsilon>0}\sup_{y\in(x-\varepsilon,x+\varepsilon)}f(y)$ and $f^-(x)=\sup_{\varepsilon>0}\inf_{y\in(x-\varepsilon,x+\varepsilon)}f(y)$, then f is continuous at x iff $f^+(x)=f^-(x)$, and $f^-(x)\leqslant f^+(x)$. Let $G_n=\{x\in\mathbb{R}:f^+(x)-f^-(x)<1/n\}$ then $\bigcap_{n\geqslant 1}G_n$ are all continuous points of f.

By Baire Category theorem, we only need to show that G_n is open and dense. Clearly $f^+, -f^-$ is upper semi-continuous so G_n is open. Now we prove that $G_n = \{x \in \mathbb{R} : \omega_f(x) < 1/n\}$ is dense.

Consider any open set $O \neq \emptyset$. Let $E_m = \{x \in \mathbb{R} : \forall s,t \geqslant m, |f_s(x)-f_t(x)| \leqslant 1/n\}$, then $E_m = \bigcap_{s,t \geqslant m} \{x \in \mathbb{R} : f_s(x) - f_t(x) \in [-1/n,1/n]\}$ is closed, and $X = \bigcup_{m \geqslant 1} E_m$ since $\{f_m(x)\}_{m \geqslant 1}$ is Cauchy. So $O = \bigcap_{m \geqslant 1} (O \cap E_m)$ is a non-empty open set, and by Baire Category O is of second category, so there is an E_m and an open set $U \subset G \cap E_m$. For any $x \in U$ and $s,t \geqslant m$, $|f_s(x)-f_t(x)| \leqslant 1/n$ so $|f_s(x)-f(x)| \leqslant 1/n$. Take $U' \subset U$ open such that $\forall x,y \in U'$, $|f_m(x)-f_m(y)| \leqslant 1/n$, then $|f(x)-f(y)| \leqslant |f(x)-f_m(x)| + |f_m(x)-f_m(y)| + |f_m(y)-f(x)| \leqslant 3/n$. Therefore $U' \subset O \cap G_{n/3}$. Hence G_n is dense.

50-1

Assume $E \subset \mathbb{R}$ is a perfect set, prove that for any $x \in E$ there exists $y \in E$ such that $x - y \in \mathbb{Q}^C$. Proof: Otherwise if there exists $x \in E$ such that $x - y \in \mathbb{Q}$ for all $y \in E$, then $E \subset x + \mathbb{Q}$ is countable.

54-7

Let $f:[0,1] o\mathbb{R}$, and there is a constant M such that for any $n\in\mathbb{N}$ and $x_1,x_2,\cdots,x_n\in[0,1]$,

$$|f(x_1) + \cdots + f(x_n)| \leq M$$

Prove that $E=\{x\in [0,1]: f(x)
eq 0\}$ is countable.

Proof: Let $E_n=\{x\in[0,1]:|f(x)|>1/n\}$, then $E=\bigcup_{n\geqslant 1}E_n$. Clearly, every E_n is finite, since $E_n^+=\{x\in E_n:f(x)>1/n\}$ and $E_n^-=\{x\in E_n:f(x)<-1/n\}$ are both finite, otherwise there are infinite x such that |f(x)|>1/n and f(x) have the same sign. Take x_1,\cdots,x_{2Mn} then $|f(x_1)+\cdots+f(x_{2Mn})|>M$, a contradiction. Hence E_n is finite so E is countable.

55-11

Let $\{f_{\alpha}(x)\}_{\alpha\in I}$ be real valued functions on [a,b] where I is infinite. If there exists M>0 such that

$$|f_{lpha}(x)|\leqslant M, x\in [a,b], lpha\in I.$$

Prove that for any countable subset $E\subset [a,b]$, there exists $\{f_{\alpha_n}(x)\}$ such that the limit $\lim_{n\to\infty}f_{\alpha_n}(x)$ exists for any $x\in E$.

Proof: Let $E=\{x_1,x_2,\cdots\}$, $I_{m,k}=[Mk2^{-m},M(k+1)2^{-m}]$ for $-2^m\leqslant k\leqslant 2^m-1$. Define α_n and $k_n^{(l)},1\leqslant l\leqslant n$ inductively such that $I_{n,k_n^{(l)}}\subset I_{n-1,k_{n-1}^{(l)}}$ for all $l\leqslant n-1$, and

 $lpha_n \in \{lpha \in I: orall l \leqslant n, f_lpha(x_l) \in I_{n,k_n^{(l)}} \}$ which is an infinite set (there are only finite choices of $\{k_n^{(l)}\}_{1 \leqslant l \leqslant n}$ so we can choose one such that the set is infinite). Then for any $l \leqslant n$, $f_{lpha_n}(x_l)$ and $f_{lpha_{n+m}}(x_l)$ lie in the same interval $I_{n,k_n^{(l)}}$, which implies $|f_{lpha_n}(x_l) - f_{lpha_m}(x_l)| \leqslant M2^{-n}$, so for any $x_l \in E$, $\{f_{lpha_n}(x_l)\}_{n \geqslant 1}$ is Cauchy hence has a limit.

55-19

Suppose for any a < b, and $y \in (f(a), f(b))$ (or $y \in (f(b), f(a))$), there exists $c \in (a, b)$ such that f(c) = y. If for any $f(c) \in \mathbb{R}$ is closed, prove that $f(c) \in \mathbb{R}$.

Proof: Otherwise if f is discontinuous at x_0 , i.e. there exists $\varepsilon>0$ such that for any $\delta>0$, there exists $y\in (x_0-\delta,x_0+\delta)$ such that $|f(x_0)-f(y)|>\varepsilon$. Either $f(y)>f(x_0)+\varepsilon$ or $f(y)< f(x_0)-\varepsilon$ so we can assume that there is a sequence $x_n\to x_0$ such that $f(x_n)>f(x_0)+\varepsilon$. Take $r\in\mathbb{Q}\cap(f(x_0),f(x_0)+\varepsilon)$, then there is a sequence $y_m\to x_0$ such that $f(y_m)=r$. Since $f^{-1}(\{r\})$ is closed, $x_0\in f^{-1}(\{r\})$, leading to contradiction.

56-27

Let $\{F_{\alpha}\}$ are compact sets in \mathbb{R}^n . If for any $\alpha_1, \cdots, \alpha_n$,

$$igcap_{i=1}^m F_{lpha_i}
eq \emptyset,$$

prove that $\bigcap_{\alpha} F_{\alpha} \neq \emptyset$.

Proof: Let $G_{\alpha}=F_{\alpha}^{C}$ which is an open set. Suppose $\bigcap_{\alpha\in I}F_{\alpha}=\emptyset$, then take $\beta\in I$, $F_{\beta}\subset\bigcup_{\alpha\in I\setminus\{\beta\}}G_{\beta}$. Since F_{β} is compact, there is a finite subset $J\subset I\setminus\{\beta\}$ such that $F_{\beta}\subset\bigcup_{\alpha\in J}G_{\alpha}$ i.e. $\bigcap_{\alpha\in J\cup\{\beta\}}F_{\alpha}=\emptyset$, a contradiction. Hence $\bigcap_{\alpha\in I}F_{\alpha}\neq\emptyset$.

57-35

Prove that there does not exist f(x, y) such that

(i) $f\in C(\mathbb{R}^2)$; (ii) $rac{\partial}{\partial x}f, rac{\partial}{\partial y}f$ exists on \mathbb{R}^2 ; (iii) f is not differentiable on all of \mathbb{R}^2 .

Proof: Note that $\frac{\partial}{\partial x}f(x,y)=\lim_{n\to\infty}n(f(x+1/n,y)-f(x,y))$ is the limit of continuous functions. In 45-4(i) we proved that the continuous points of $\frac{\partial}{\partial x}f$ is a dense G_δ set, and so is that of $\frac{\partial}{\partial y}f$. By Baire Category theorem, their intersection is also a dense set, so we can take $(x,y)\in\mathbb{R}^2$ such that $\frac{\partial}{\partial x}f,\frac{\partial}{\partial y}f$ both exist at (x,y). Hence f is differentiable at x, leading to contradiction.