BÀI THỰC HÀNH SỐ 6

A. CÁC LOẠI SAI LÀM TRONG KIỂM ĐỊNH THỐNG KÊ VÀ P_VALUE

<u>Sai lầm loại I</u>: Nếu ta bác bỏ H_0 khi H_0 đúng thì sai lầm đó gọi là sai lầm loại I, ký hiệu α . α còn được gọi là *mức ý nghĩa* (significance level) của kiểm định.

<u>Sai lầm loại II</u>: Nếu H_0 sai mà ta không bác bỏ H_0 thì sai lầm đó gọi là sai lầm loại II, ký hiệu β .

Quyết định	H ₀ dúng	H_0 sai
Không bác bỏ <i>H</i> ₀	Ðúng	Sai lầm loại II
Bác bỏ H ₀	Sai lầm loại I	Ðúng

<u>P value</u> (P_giá trị): Với một giả thuyết không H_0 và mẫu cỡ n cho trước, P – giá trị là mức ý nghĩa nhỏ nhất dẫn đến việc bác bỏ giả thuyết H_0 , P – giá trị được tính dựa theo giá trị thống kê kiểm định.

• Quy tắc: Khi P_{value} bé hơn α ta bác bỏ giả thuyết H_0

B. KIỂM ĐỊNH GIẢ THUYẾT THỐNG KỂ CHO 1 MẪU

I. Kiểm định giả thuyết cho kỳ vọng

(1) Trường hợp 1: Biết phương sai σ^2

B1:Phát biểu giả thuyết không và đối thuyết

B2: Xác định mức ý nghĩa α

B3: Lấy mẫu ngẫu nhiên cỡn:
 X_1,\dots,X_n và tính thống kê kiểm định

$$z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

B4: Xác định miền bác bỏ W_{α}

B 1111ac ainn	a a a a a a a a a a a a a a a a a a a	
Giả thuyết	Miền bác bỏ	P-giá trị
$H_0: \mu = \mu_0$	$W_{\alpha} = \left\{ z_0 \colon z_0 > z_{\alpha/2} \right\}$	$P_{Value} = 2[1 - \Phi(z_0)]$
$ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases} $	(20.1201×20.72)	
$ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} $	$W_{\alpha} = \{z_0 : z_0 < -z_{\alpha}\}$	$P_{Value} = \Phi(z_0)$
$H_1: \mu < \mu_0$		
$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$	$W_{\alpha} = \{z_0 : z_0 > z_{\alpha}\}$	$P_{Value} = 1 - \Phi(z_0)$
$H_1: \mu > \mu_0$		

B5:Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

(2) Trường hợp 2: Không biết phương sai σ^2 và mẫu lớn (n > 30)

B1:Phát biểu giả thuyết không và đối thuyết

B2: Xác định mức ý nghĩa α

B3: Tính ước lượng $\hat{\sigma} = s$

B4: Lấy mẫu ngẫu nhiên cỡ $n: X_1, ..., X_n$ và tính thống kê kiểm định

$$z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

B5: Xác định miền bác bỏ W_{α}

	et e	
Giả thuyết	Miền bác bỏ	P-giá trị
$ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases} $	$W_{\alpha} = \left\{ z_0 : z_0 > z_{\alpha/2} \right\}$	$P_{Value} = 2[1 - \Phi(z_0)]$
$H_1: \mu \neq \mu_0$	(20.1201 × 2.1/2)	
$ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} $	$W_{\alpha} = \{z_0 : z_0 < -z_{\alpha}\}$	$P_{Value} = \Phi(z_0)$
$H_1: \mu < \mu_0$		
$\int H_0: \mu = \mu_0$	$W_{\alpha} = \{z_0 : z_0 > z_{\alpha}\}$	$P_{Value} = 1 - \Phi(z_0)$
$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$		

B6: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

(3) <u>Trường hợp 3</u>: Không biết phương sai σ^2 và mẫu nhỏ ($n \le 30$)

B1:Phát biểu giả thuyết không và đối thuyết

B2: Xác định mức ý nghĩa α

B3: Tính ước lượng $\hat{\sigma} = s$

B4: Lấy mẫu ngẫu nhiên cỡ $n: X_1, ..., X_n$ và tính thống kê kiểm định

$$t_0 = \frac{\bar{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$$

B5: Xác đinh miền bác bỏ W_{α}

	<u> </u>	
Giả thuyết	Miền bác bỏ	P-giá trị
$\int H_0: \mu = \mu_0$	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha/2}^{n-1} \right\}$	$P_{Value} = 2\mathbb{P}(T_{n-1} \ge t_0)$
$H_1: \mu \neq \mu_0$	α (00.1001 > α /2)	
$\int H_0: \mu = \mu_0$	$W_{\alpha} = \{t_0 : t_0 < -t_{\alpha}^{n-1}\}$	$P_{Value} = \mathbb{P}(T_{n-1} \le t_0)$
$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$		
$H_0: \mu = \mu_0$	$W_{\alpha} = \{t_0: t_0 > t_{\alpha}^{n-1}\}$	$P_{Value} = \mathbb{P}(T_{n-1} \ge t_0)$
$H_1: \mu > \mu_0$		

B6: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

II. Kiểm định giả thuyết cho tỉ lệ

 $\underline{\underline{\text{Diều kiện:}}}$ Cỡ mẫu n lớn và $np_0 \ge 5$ và $n(1-p_0) \ge 5$

B1:Phát biểu giả thuyết không và đối thuyết

B2:Xác định mức ý nghĩa α

B3:Lấy mẫu ngẫu nhiên cỡ n: X_1, \dots, X_n và tính thống kê kiểm định $z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

với
$$\hat{p} = \frac{s \tilde{o} \, l \tilde{a} n \, xuất \, hiện biến cố Y}{n}$$

B4: Xác định miền bác bỏ W_{α}

·	et	
Giả thuyết	Miền bác bỏ	P-giá trị
$\int H_0: p = p_0$	$W_{\alpha} = \left\{ z_0 : z_0 > z_{\alpha/2} \right\}$	$P_{Value} = 2[1 - \Phi(z_0)]$
$ \begin{cases} H_0: p = p_0 \\ H_1: p \neq p_0 \end{cases} $	(20.1201×20.2)	
$ \begin{cases} H_0: p = p_0 \\ H_1: p < p_0 \end{cases} $	$W_{\alpha} = \{z_0 : z_0 < -z_{\alpha}\}$	$P_{Value} = \Phi(z_0)$
$H_1: p < p_0$		
$ \begin{cases} H_0: p = p_0 \\ H_1: p > p_0 \end{cases} $	$W_{\alpha} = \{z_0 : z_0 > z_{\alpha}\}$	$P_{Value} = 1 - \Phi(z_0)$
$H_1: p > p_0$		

B5: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

C. KIỂM ĐỊNH GIẢ THUYẾT THỐNG KỂ CHO 2 MẪU

- I. So sánh hai kỳ vọng
 - (1) Trường hợp 1: Biết phương sai σ^2

B1:Phát biểu giả thuyết không và đối thuyết

B2: Xác định mức ý nghĩa α

B3: Tính thống kê kiểm định

$$z_{0} = \frac{\bar{X} - \bar{Y} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n} + \frac{\sigma_{2}^{2}}{m}}}$$

B4: Xác định miền bác bỏ W_{α}

•	u	
Giả thuyết	Miền bác bỏ	P-giá trị
$\int H_0: \mu_1 - \mu_2 = D_0$	$W_{\alpha} = \left\{ z_0 \colon z_0 > z_{\alpha/2} \right\}$	$P_{Value} = 2[1 - \Phi(z_0)]$
$\{H_1: \mu_1 - \mu_2 \neq D_0\}$	$\gamma \gamma \alpha = (20.1201 \times 2\alpha/2)$	
$\int H_0: \mu_1 - \mu_2 = D_0$	$W_{\alpha} = \{z_0 : z_0 < -z_{\alpha}\}$	$P_{Value} = \Phi(z_0)$
$H_1: \mu_1 - \mu_2 < D_0$		
$(H_0: \mu_1 - \mu_2 = D_0)$	$W_{\alpha} = \{z_0 : z_0 > z_{\alpha}\}$	$P_{Value} = 1 - \Phi(z_0)$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 > D_0 \end{cases}$		

B5: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

(2) Trường hợp 2: Không biết phương sai σ^2 và mẫu lớn (n > 30)

B1:Phát biểu giả thuyết không và đối thuyết

B2: Xác định mức ý nghĩa α

B3:Tính ước lượng $\widehat{\sigma_1}^2 = s_1^2$ và $\widehat{\sigma_2}^2 = s_2^2$ B4:Tính thống kê kiểm định

$$z_0 = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}}$$

B5: Xác định miền bác bỏ W_{α}

•	u	
Giả thuyết	Miền bác bỏ	P-giá trị

$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 \neq D_0 \end{cases}$	$W_{\alpha} = \left\{ z_0 : z_0 > z \alpha_{/2} \right\}$	$P_{Value} = 2[1 - \Phi(z_0)]$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 < D_0 \end{cases}$	$W_{\alpha} = \{z_0 \colon z_0 < -z_{\alpha}\}$	$P_{Value} = \Phi(z_0)$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 > D_0 \end{cases}$	$W_{\alpha} = \{z_0 : z_0 > z_{\alpha}\}$	$P_{Value} = 1 - \Phi(z_0)$

B6: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

(3) Trường hợp 3: Không biết phương sai σ^2 và mẫu nhỏ ($n \le 30$)

So sánh hai phương sai

B1:Phát biểu giả thuyết không và đối thuyết

B2:Xác định mức ý nghĩa α

B3: Tính ước lương $\widehat{\sigma_1^2} = s_1^2$ và $\widehat{\sigma_2^2} = s_2^2$

B4: Tính thống kê kiểm định

$$F_0 = \frac{{s_1}^2}{{s_2}^2} \sim \mathcal{F}(n-1, m-1)$$

B5: Xác định miền bác bỏ:

	•
Giả thuyết	Miền bác bỏ
$\int H_0: \sigma_1^2 = \sigma_2^2$	$W_{\alpha} = \left\{ F_0: F_0 > f_{\alpha/2, n_1 - 1, n_2 - 1} \text{ hoặc } F_0 < f_{(1 - \alpha/2), n_1 - 1, n_2 - 1} \right\}$
$H_1: \sigma_1^2 \neq \sigma_2^2$	u = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
$\int H_0: \sigma_1^2 = \sigma_2^2$	$W_{\alpha} = \{F_0: F_0 > f_{\alpha, n_1 - 1, n_2 - 1}\}$
$H_1: \sigma_1^2 > \sigma_2^2$	
$ \begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 < \sigma_2^2 \end{cases} $	$W_{\alpha} = \{F_0: F_0 > f_{\alpha, n_1 - 1, n_2 - 1}\}$
$H_1: \sigma_1^2 < \sigma_2^2$	

B6: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

(3.1) Xét trường hợp phương sai bằng nhau $\sigma_1^2 = \sigma_2^2$

B1:Phát biểu giả thuyết không và đối thuyết

B2: Xác định mức ý nghĩa α

B3:Tính ước lượng $\widehat{\sigma_1}^2 = {s_1}^2$ và $\widehat{\sigma_2}^2 = {s_2}^2$ B4:Tính phương sai mẫu chung

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

B5: Tính thống kê kiểm định

$$t_0 = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

có phân phối Student với bậc tự do $df = n_1 + n_2 - 2$

B6: Xác định miền bác bỏ W...

Borrae aim men oue oo va		
Giả thuyết	Miền bác bỏ	P-giá trị

$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 \neq D_0 \end{cases}$	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha/2}^{df} \right\}$	$P_{Value} = 2\mathbb{P}\big(T_{df} \ge t_0 \big)$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 < D_0 \end{cases}$	$W_{\alpha} = \left\{ t_0 : t_0 < -t_{\alpha}^{df} \right\}$	$P_{Value} = \mathbb{P}\big(T_{df} \le t_0\big)$
$ \begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 > D_0 \end{cases} $	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha}^{df} \right\}$	$P_{Value} = \mathbb{P}\big(T_{df} \ge t_0\big)$

B7: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

(3.2) Xét trường hợp phương sai khác nhau ${\sigma_1}^2 \neq {\sigma_2}^2$

B1:Phát biểu giả thuyết không và đối thuyết

B2: Xác định mức ý nghĩa α

B3: Tính ước lượng $\widehat{\sigma_1}^2 = s_1^2$ và $\widehat{\sigma_2}^2 = s_2^2$

B4: Tính thống kê kiểm định

$$t_0 = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

có phân phối Student với bậc tự do

$$df = \frac{\left[\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right]^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

B5: Xác định miền bác bỏ W_{α}

D3.71ac ajim im	-11 στι σσ τι μ	
Giả thuyết	Miền bác bỏ	P-giá trị
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 \neq D_0 \end{cases}$	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha/2}^{df} \right\}$	$P_{Value} = 2\mathbb{P}\big(T_{df} \ge t_0 \big)$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 < D_0 \end{cases}$	$W_{\alpha} = \left\{ t_0 : t_0 < -t_{\alpha}^{df} \right\}$	$P_{Value} = \mathbb{P}\big(T_{df} \le t_0\big)$
$ \begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 > D_0 \end{cases} $	$W_{\alpha} = \left\{ t_0 : t_0 > t_{\alpha}^{df} \right\}$	$P_{Value} = \mathbb{P}\big(T_{df} \ge t_0\big)$

B6: Kết luận: Bác bỏ $H_0/$ Chưa đủ cơ sở để bác bỏ H_0

II. So sánh hai tỉ lệ

B1:Phát biểu giả thuyết không và đối thuyết

B2:Xác định mức ý nghĩa α

B3: Tính thống kê kiểm định

$$z_0 = \frac{\widehat{p_1} - \widehat{p_2} - (\mu_1 - \mu_2)}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}}$$

với

$$\widehat{p_1} = \frac{X}{n_1}; \ \widehat{p_1} = \frac{Y}{n_2}; \ \widehat{p} = \frac{X+Y}{n_1+n_2}$$

B4: Xác định miền bác bỏ W_{α}

Giả thuyết	Miền bác bỏ	P-giá trị
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 \neq D_0 \end{cases}$	$W_{\alpha} = \left\{ z_0 \colon z_0 > z \alpha_{/2} \right\}$	$P_{Value} = 2[1 - \Phi(z_0)]$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 < D_0 \end{cases}$	$W_{\alpha} = \{z_0 : z_0 < -z_{\alpha}\}$	$P_{Value} = \Phi(z_0)$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_1: \mu_1 - \mu_2 > D_0 \end{cases}$	$W_{\alpha} = \{z_0 \colon z_0 > z_{\alpha}\}$	$P_{Value} = 1 - \Phi(z_0)$

B5: Kết luận: Bác bỏ H_0 / Chưa đủ cơ sở để bác bỏ H_0

• Chú ý các lệnh trong R

```
\begin{split} z_{\alpha}&: \texttt{qnorm}\,(1-\texttt{alpha}/2) \\ z_{\alpha}&: \texttt{qnorm}\,(1-\texttt{alpha}) \\ t_{\alpha/2}^{n-1}&: \texttt{qt}\,(1-\texttt{alpha}/2, \ \texttt{df=n-1}) \\ t_{\alpha}^{n-1}&: \texttt{qt}\,(1-\texttt{alpha}, \ \texttt{df=n-1}) \\ \mathbb{P}(T_{n-1} \leq t_0)&: \texttt{pt}\,(t_0, \texttt{n-1}) \\ \mathbb{P}(T_{n-1} \geq t_0)&: \texttt{pt}\,(t_0, \texttt{n-1}, \ \texttt{lower.tail=FALSE}) \end{split}
```