11 клас Задача 1

Обладнання - «Знімок» з екрану; - лист міліметрового паперу; - таблиці тригонометричних функцій.

Завдання: На рис., що прикладається, зображено «знімок» з екрану електронного осцилографа, отриманий при реєстрації 2-х напруг, що подаються на його входи X та Y. Напруга змінюється з часом за законом: $U_x(t) = U_{mx} \cos(2\pi v_x \cdot t + \varphi_x)$; $U_y(t) = U_{my} \cos(2\pi v_y \cdot t + \varphi_y)$. Час запису осцилограми — 75 мкс.

Чутливість каналів осцилографа: «Х» – 80 мВ/см; «Y» - 100 мВ/см.

Виходячи з цих даних, визначити:

- амплітуди U_{mx} та U_{my} ; частоти v_x та v_y ; початкові фази φ_x та φ_y ;
- побудуйте графік часової залежності швидкості руху «плями» від електронного променя по екрану осцилографа за час запису осцилограми;
- з графіку визначити максимальну та мінімальну швидкість «плями» та моменти часу, коли вона досягається, вкажіть на осцилограмі положення «плями» у ці моменти;
- отримані з графіків результати представте у вигляді таблиці.

Розв'язок.

1. Амплітуди напруг, що подаються на входи X та Y визначаємо по горизонтальному та вертикальному розмаху кривих фігур Лісажу:

По X: 5 поділок \times 80 мВ =0,4 В; по Y: 3 поділки \times 100 мВ =0,3 В.

- 2. Частоту коливань сигналів визначимо по часу запису сигналу, визначивши, що по X повна фаза записаного сигналу складає 6,28+1,285=7,56 рад, а по Y -6,28+5,5=11,78 рад. Частина часу, що припадатиме на фазу коливання 2π (тобто період) складатиме відповідні пропорційні частини., отже T_x =62,25 мкс, а частота v_x =16 к Γ ц і T_y =40 мкс, а частота v_y =25 к Γ ц.
- 3. Початкову фазу сигналу X приймаємо рівною 0 (це обумовлене початком запису цього коливання в точці додатного максимуму амплітуди, тоді сигнал Y виявиться випереджаючим його по фазі на $\varphi_y = \pi/4$, що визначається із співвідношення амплітуд максимуму сигналу U_x ($U_{mx} = 0.3$ B) та його Y-значенням у початковій точці ($U_x \approx 0.212$ B). Відношення цих напруг визначатиме соз $\varphi_y = 0.71$ у початковий момент t = 0.
- 4. Таким чином, отримані напруги можна записати наступним чином: $U_r(t) = 0.4 \cdot \cos(10^5 \cdot t)$; $U_v(t) = 0.3 \cdot \cos(1.57 \cdot 10^5 \cdot t + \pi/4)$.
- 5. Швидкість руху «плями» променя можна визначити, взявши похідну від наведених у п.4 напруг, зважаючи на пропорційність кута відхилення електронного променя осцилографа, напруги на відповідних входах (на пластинах, що відхиляють промень) і, відповідно шляху, що проходять променева «пляма» по екрану:

Вирази для швидкостей відрізнятимуться лише амплітудою і фазою π внаслідок зміни при диференціюванні cos на sin: $V_x(t) = -10^5 \cdot 0, 4 \cdot \sin(10^5 \cdot t)$;

$$V_{v}(t) = -1.57 \cdot 10^{5} \cdot 0.3 \cdot \sin(1.57 \cdot 10^{5} \cdot t + \pi/4).$$

Результуюча швидкість може визначитись як векторна сума складових $V_x(t)$ та $V_v(t)$.

6. Максимуми та мінімуми швидкості в будь-яких точках можуть бути визначені аналітично за стандартною методикою прирівнювання до 0 похідної від функції або із побудованого графіка графіка залежності V(t).

Задача 2

Обладнання:

- цифровий мультиметр;
- джерело живлення 4,5 В;
- з'єднувальні провідники;
- потенціометр (з максимальним опором 50 100 Ом);
- "чорна скринька";
- міліметровий папір;
- вольтметр шкільний (шкала до 6 В)

Завдання:

Визначте, що знаходиться всередині «чорної скриньки» та знайдіть параметри елементів в ній. Наведіть схему з'єднання цих елементів.

Підказка:

схема в «чорній скриньці» містить три елементи.

Розв'язок

Для дослідження «чорної скриньки» складемо електричне коло.

Зробимо відповідні виміри та на міліметровому папері побудуємо залежність U(I). Графік матиме приблизно такий вигляд:

Зворотня гілка вольт-амперної характеристики лінійна. Робимо висновок, шо це резистор. З котангенса кута нахилу визначаємо його величину. В нашому випадку R=300 Ом.

На прямій гілці вольт-амперної характеристики струм більший, ніж при тих самих напругах на зворотній гілці. Робимо висновок, що в схемі присутній елемент з односторонньою провідністю. Таку властивість має напівпровідниковий діод. Оскільки струм може протікати через «чорну скриньку» в обох напрямах, робимо висновок, що діод та резистор з'єднані паралельно.

Але підказка стверджує, що елементів 3. Третій елемент не може бути нелінійним, оскільки на зворотній гілці нелінійність не спостерігається, а у випадку її прояву на прямій гілці задача не може бути розв'язана, оскільки неможливо розділити внесок двох нелінійних елементів.

Отже, схема містить ще один резистор. Можливі 2 варіанти його ввімкнення.

Проаналізуємо першу схему. Тоді r2=300 Ом. З вигляду прямої гілки вольт-амперної характеристики видно, що лінійна залежність струму від напруги спостерігається при великих напругах (U > 2 В). Апроксимуємо цю ділянку характеристики прямою лінією та визначимо котангенс кута нахилу, який відповідає опору 100 Ом. Тоді r1=150 Ом.

Для другого можливого варіанту ввімкнення елементів R1=100 Ом R2=200 Ом. В рамках даного експерименту точно встановити, який варіант насправді реалізовано у вашій «чорній скринці» неможливо. Тому повним розв'язком вважатимемо розрахунок обох можливих схем.