SECI1013: DISCRETE STRUCTURE ASSIGNMENT 1 (PART 1): CHAPTER 1 (SECPH - 02)

BIL	NAMA	NO MATRIK
	MAXIVIANNA BINTI ROBERT	A24CS0109
	AUNI SOFIA BINTI ABD RAHMAN	A24CS0051
	NUR UMAIRAH BINTI ZAMRI	A24CSO168

```
Question 1
```

$$P(A \cap B \cup C) = \{ \emptyset, \{ 1 \}, \{ 3 \}, \{ 5 \}, \{ 7 \}, \{ 9 \}, \{ 1, 3 \}, \{ 1, 5 \}, \{ 1, 7 \}, \{ 1, 9 \}, \{ 3, 5 \}, \{ 3, 7 \}, \{ 3, 9 \}, \{ 5, 7 \}, \{ 5, 9 \}, \{ 7, 9 \}, \{ 1, 3, 5 \}, \{ 1, 3, 7 \}, \{ 1, 3, 9 \}, \{ 1, 5, 7 \}, \{ 1, 5, 9 \}, \{ 1, 3, 5, 7 \}, \{ 1, 3, 5, 9 \}, \{ 3, 5, 7 \}, \{ 3, 5, 7 \}, \{ 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 3, 5, 9 \}, \{ 1, 5, 7$$

$$(A-C') \lor (B-C) \neq A \lor B$$

7

(b)
$$(A \cap B) \cup (A - B) = A$$

$$(A \cap B) \cup (A - B) = (A \cap B) \cup (A \cap B')$$

= $A \cap (B \cup B')$
= $A \cap U$
= A

(set difference law)
(distributive law)
(complement law)
(properties of universal)

Question 4

TRUE

Question 5.

(a)
$$Q = (p \wedge r) \vee (q \vee \neg r)$$
, $R = (p \vee q) \vee \neg r$

D	a	r	71	(p Ar)	(q Var)	(pAr) V (q Var)	(pVq)	(pVq) V 7r
T	T	Т	F	T	T	Т	Т	TI
T	T	F	T	F	T	Т	T	Т
Ť	F	T	F	T	F	T	T	T
T	F	F	T	F	T	Т	T	T
F	T'	Ť	F	F	T	Τ	Т	T
F	T	F.	T	F	T	Т	Т	Τ.,
F	F	Т	F.	. F	F	P &	F	F
F	F	F	T	F	T	T	F	T

$$\therefore Q \equiv R$$

(b) $Q = (p \wedge r) \vee \neg (p \wedge \neg q)$, $R = (p \wedge r) \longrightarrow (q \vee r)$

1							-	1	1
P	9	r	79	(pAr)	(p/79)	7(0179)	(pΛr) V ¬ (pΛ¬q):	(q Vr)	$(p \wedge r) \rightarrow (q \vee r)$
T	T	T	F	T	F	T	T	T	Т
T	T	F	F	F	F	T	Т	T	T ,
T	F	T	T	T	T	F '	T	Τ,	Т
T	F	F	T	F	T	F	F,	F,	Т
F	T	T	F	F	F	T	T	T	T
F	T	F	F	F	F	T	Ť	Τ	Т
F	F	T	T	F	F	T	Т	T	T
F	F	F	T	F	F	T	T	F	T

Question 6

- 6. (a) The above statements is not true. The counterexample is 1.
- 6. (b) The above statements is not true. The counterexample is 8

Question 7

Question 8

$$a = 2n + 1$$

$$a^{2}-3a = (2n+1)^{2}-3(2n+1)$$

= $4n^{2}+4n+1-6n-3$
= $4n^{2}-2n-2$
= $2(2n^{2}-n-1)$
= $2m$, where $m = 2n^{2}-n-1$

... for all integers of a, if a is odd, then a - 3a is even a - 3 a is even

Question 9

- · suppose n2 is odd, and n is even which is not odd.
- · Let, n = 2m (even)

$$n^2 = (2m)^2$$

 $n^2 = 4m^2$ (even)

- · (ontradiction .
- · Thus, we conclude that the statement is true.