Energy conversion I

Lecture 20:

Topic 5: Induction Motors (S. Chapman ch. 7)

- Induction Motor Construction.
- Basic Induction Motor Concepts.
- The Equivalent Circuit of an Induction Motor.
- Power and Torque in Induction Motor.
- Induction Motor Torque-Speed Characteristics.
- Starting Induction Motors.
- Speed Control of Induction Motor.
- Determining Circuit Model Parameters.

IEEE Induction Motor Equivalent Circuit

Stator core loss constant

•Rotor core loss decreases with speed.

•Friction and windage increase with speed.

core, Friction & Windage loss: Rotational loss

IEEE Standard 112 for tests to get the equivalent circuit.

Simplified Tests are: DC Test for Stator Resistance

No-Load Test

Compare with transformer!

Locked-Rotor Test

EE Course No: 25741 Energy Conversion I Sharif University of Technology

DC Test for Stator Resistance

•Stator resistance can be measured directly by an Ohmmeter or by applying DC voltage and measuring the current:

$$2R_{1,dc} = \frac{V_{dc}}{I_{dc}}$$

 R_1 can be considered as the average of three measurements of $R_{1,dc}$

Effect of temperature and skin effect can be considered to have correct value of R₁.

No-Load Test

Stator feed by nominal voltage

No mechanical load

Stator voltage, current and power are measured

$$P_{\text{in}} = P_{\text{nl}} = P_{\text{SCL}} + P_{\text{rot}}$$

$$P_{\text{rot}} = P_{\text{nl}} - 3R_1 I_{1,\text{nl}}^2$$

$$Z_{nl} = \frac{V_{l,nL}}{I_{l,nL}} \approx X_l + X_M$$

EE Course No: 25741 Energy Conversion I

Per phase equivalent circuit at No-load

$$X_{nl}$$
 can be calculated from Q_{nl} too
 $Q_{nl} = 3 X_{nl} I_{nl}^2 X_{nl} = X_1 + X_M$ (more usual)

Sharif University of Technology

Locked-Rotor Test

Rotor is locked not to move.

Voltage is applied to motor to have full-load current.

Stator voltage, current and power are measured.

$$Z_{LR} = \frac{V_{1,LR}}{I_{1,LR}} \approx R_{LR} + jX_{LR}$$

$$R_{LR} \approx R_1 + R_2$$

$$X_{LR} \approx X_1 + X_2$$

EE Course No: 25741 Energy Conversion I Attention: Locked rotor test should be done with reduced frequency (25% $\rm f_e$). (why?) In that case reactances are measured in reduced frequency and should be corrected.

Locked-Rotor Test

	X ₁ and X ₂ as a function of X _{LR}		
Rotor Design	X ₁	X ₂	
Wound rotor	0.5 X _{LR}	0.5 X _{LR}	
Class A	0.5 X _{LR}	0.5 X _{LR}	
Class B	0.4 X _{LR}	0.6 X _{LR}	
Class C	0.3 X _{LR}	0.7 X _{LR}	
Class D	0.5 X _{LR}	0.5 X _{LR}	

Once X_1 is known, X_M can be calculated using No-Load test results.

What about Nse / Nre for wound rotor motor? Why is it required?

EE Course No: 25741 Energy Conversion I

Example:

The following test data were taken on a 7.5 hp, 4-pole, 208V, 60Hz, design A, induction motor having a rated current of 28A.

DC Test:
$$V_{DC} = 13.6 \text{ V}$$
 $I_{DC} = 28.0 \text{ A}$

No-load test:

$$V_{T} = 208 \text{ V}$$
 $f = 60 \text{ Hz}$

$$I_A = 8.12 A$$
 $P_{in} = 420W$

$$I_{B} = 8.20 A$$

$$I_{\rm C} = 8.18 \, {\rm A}$$

Locked-rotor test:

$$V_T = 25 V$$
 $f = 15 Hz$

$$I_A = 28.1 \text{ A}$$
 $P_{in} = 920 \text{W}$

$$I_{\rm B} = 28.0 \, A$$

$$I_{\rm C} = 27.6 \, {\rm A}$$

Sketch the per-phase equivalent circuit for this motor

Solution:

From DC test:
$$R_1 = \frac{V_{DC}}{2I_{DC}} = \frac{13.6}{2 \times 28} = 0.243 \Omega$$

From no-load test:

$$I_{L,av} = \frac{8.12 + 8.20 + 8.18}{3} = 8.17 \text{ A}$$

$$V_{\phi,NL} = \frac{208}{\sqrt{3}} = 120 \text{ V}$$

$$Z_{\rm NL} = \frac{120}{8.17} = 14.7 \ \Omega \approx X_1 + X_{\rm M} \quad \text{Recalculate it} \qquad = 371.3 \ \rm W$$
 Using Q!

$$P_{\text{rot}} = P_{\text{NL}} - P_{\text{SCL,NL}}$$

= $420 - 3 \times 0.243 \times 8.17^2$

From locked-rotor test:

$$I_{L,av} = \frac{28.1 + 28.0 + 27.6}{3} = 27.9 \text{ A}$$

$$V_{\phi,LR} = \frac{25}{\sqrt{3}} = 14.43 \text{ V}$$

EE Course No: 25741

Energy Conversion I

$$\left| Z_{LR} \right| = \frac{14.43}{27.9} = 0.517 \ \Omega$$

Sharif University of Technology

$$\theta_{LR} = \cos^{-1} \frac{P_{in}}{\sqrt{3} V_{T} I_{L}} = \cos^{-1} \frac{920}{\sqrt{3} \times 25 \times 27.9} = 40.4^{\circ}$$

$$Z_{LR} = 0.517 \angle 40.4^{\circ} = 0.394 + j0.335$$

$$R_{LR} = 0.394 = R_{1} + R_{2} \Rightarrow R_{2} = 0.394 - 0.243 = 0.251 \Omega$$

$$X_{LR} = \frac{f_{rated}}{f_{test}} X'_{LR} = \frac{60}{15} 0.335 = 1.34 \Omega$$

For a class A rotor design:

$$X_1 = X_2 = \frac{1.34}{2} = 0.67 \ \Omega$$

And therefore:

$$X_M = |Z_{NL}| - X_1 = 14.7 - 0.67 = 14.03 \Omega$$

Name Plate of Induction Motors

- Rated voltage, current and frequency (460, 34.9, 60)
- Rated horse power (30)
- Rated speed (1765)
- Service factor (times rated power) (1.15)
- Maximum Ambient Temperature (40)
- Insulation Class (A, B, H, <u>F</u>)
- type (A, <u>B</u>, C, D)
- Motor efficiency (93.6)
- K.V.A. (/Starting) code (G) (5.6-6.3)
- Enclosure

0		1	SI	E	ИE	NS)		0	
PE•2	1 PLUS™						PREM I U	M EFF	CIENC	Ϋ́
ORD.NO.	1LA02864	SE41			E NO.					
TYPE	RGZESD				FRAME	286T				
H.P.	30.00				SERVICE FACTOR	1.15			3	PH
AMPS	34.9				VOLTS	460				
R.P.M.	1765				HERTZ	60				
DUTY	CONT	4	0°C	AME	3.		DATE			70-642
CLASS INSUL	F NEMA DESIGN	В	K.V.A. CODE	G	NEMA. NOM, EFF	93.6	3			
SH. END BRG.	50BC03JI	PP3		OPP.	END 5	OBC0	3JPP3			- 5
MILL AND CHEMICAL DUTY QUALITY INDUCTION MOTOR (C)										
\cup	Siemens Energy & Automation, Inc. Little Rock, AR MADE IN U.S.A.					w,				

EE Course No: 25741 Energy Conversion I

K.V.A. (/Starting) code

Technology

Code Letter	Start kVA/rated Hp	The 480V, 30Hp induction motor has
Α	0 - 3.15	start code G. Find the maximum
В	3.15 - 3.55	current that may be expected at
С	3.55 - 4.0	starting.
D	4.0 - 4.5	otarting.
E	4.5 - 5.0	S - 6 2 × 20 - 190k\/A
F	5.0 - 5.6	$S_{\text{start}} = 6.3 \times 30 = 189 \text{kVA}$
G	5.6 - 6.3	L = 400 · · 403// /0 · · 400)
Н	6.3 - 7.1	$I_L = 189 \times 10^3/(\sqrt{3} \times 480)$
J	7.1 - 8.0	$I_L = 227 A$
K	8.0 - 9.0	
L	9.0 - 10.0	$I_L / I_{rated} = 227 / 34.9 = 6.5$
М	10.0 - 11.0	
N	11.0 - 12.5	
Р	12.5 - 14.0	
R	14.0 - 16.0	
S	16.0 - 18.0	
Т	18.0 - 20.0	
U	20.0 - 22.4	
V	22.4 +	
EE Course I	No: 25741	Sharif University of

Energy Conversion I

New High Efficiency Induction Motors

New Classification based on efficiency: Eff1(Most

expensive with highest efficiency), Eff2 & Eff3 (cheapest

with lowest efficiency)

General methods:

More copper in stator.

Higher core length.

More steel in stator.

High-grade steel.

Thinner steel lamination.

More uniform rotor.

2 pole				
kW	efficiency %			
	EFFI	EFF2	EFF3	
	equal to or above	equal to or above	below	
1.1	82.8	76	3.2	
1.5	84.1	78.5		
2.2	85.6	81.0		
3	86.7	82.6		
4	87.6	84.2		
5.5	88.6	85.7		
7.5	89.5	87.0		
11	90.5	88.4		
15	91.3	89.4		
18.5	91.8	90.0		
22	92.2	90.5		
30	92.9	91.4		
37	93.3	92.0		
45	93.7	92.5		
55	94.0	93.0		
75	94.6	93.6		
90	95.0	93.9		

4 pole					
kW	efficiency %				
	EFFI	EFF2	€FF3		
	equal to or above	equal to or above	below		
1.1	83.8	76	6.2		
1.5	85.0	78.5			
2.2	86.4	81.0			
3	87.4	82.6			
4	88.3	84.2			
5.5	89.2	85.7			
7.5	90.1	87.0			
11	91.0	88.4			
15	91.8	89.4			
18.5	92.2	90.0			
22	92.6	90.5			
30	93.2	91.4			
37	93.6	92.0			
45	93.9	92.5			
55	94.2	93.0			
75	94.7	93.6			
90	95.0	93.9			

EE Course No: 25741 Energy Conversion I

Induction Generators

For speeds $> n_s$

s<0 (negative)

$$P_{RCL} = R_2 I_2^2 > 0$$

$$P_g = P_{RCL}/s < 0$$

$$P_{con} = (1-s)P_{g} < 0$$

Q is always positive power!

(Induction generator can not deliver reactive

EE Course No: 25741 **Energy Conversion I**

Sharif University of **Technology**