Scaling Methods to obtain Doubly stochastic matrices

Krishna Acharya, Nacim Oijid

December 10, 2019

Overview

- Definition of the problem
- Applications
- 3 A Natural Algorithm Sinkhorn and Knopp
- Conditions on A
- 5 Describe types of convergence analysis
- 6 Knight 2008
- Livne and Golub
- 8 Brief Description of Knight and Ruiz
- Newton's method
- Splitting method
- Some Key results from KR 2013
- Numerical Comparison

Balancing a matrix

- Given a nonnegative square matrix A.
- ullet Find diagonal matrices X and Y, such that XAY is doubly stochastic.

Preconditioning Linear Systems

- We are interested in z, the solution of Az = b
- Let $A_1 = XAY$ be doubly stochastic, and we can obtain solution of $A_1z_1 = Xb$. Then $z = Yz_1$
- Perhaps $A_1z_1 = Xb$ is more numerically stable, so it helps to do this scaling
- Also note that A and A_1 have the same sparsity.

Back to Balancing

- find positive vectors r and c such that D(r)AD(c) is doubly stochastic
- find positive vectors r and c such that D(r)AD(c)e = e and $D(c)A^TD(r)e = e$
- $r = D(Ac)^{-1}e$ and $c = D(A^Tr)^{-1}e$

Iterative method

- The fixed point earlier leads to an iterative method, where $c_{k+1} = D(A^T r_k)^{-1} e$ and $r_{k+1} = D(A c_{k+1})^{-1} e$
- In MATLAB $c_{k+1} = 1./(A' * r_k), r_{k+1} = 1./(A * c_{k+1})$
- $r_0 = e$ corresponds to the Sinkhorn and Knopp algorithm('52).
- Lets see a run on

$$\begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

Important Qs

- Do the c_k and r_k converge to r and c?
- Which non negative A's is this possible for?
- Linear convergence, quadratic ...?

Some relevant definitions

- For $A \in \mathbb{R}^{n \times n}$, a collection of n elements of A is called a **diagonal** of A, provided no two of the elements belong to the same row or column of A.
- A nonzero diagonal of A is a diagonal not containing any 0's.
- If G is the bipartite graph whose adjacency matrix is A, then non zero diagonals correspond to the perfect matchings of G.

Matrices for which balancing is possible

- Matrix has support if it has at least one non zero diagonal
- a (0-1) matrix A has **total support** provided each of its 1's belongs to a non zero diagonal. That is, if $Aij \neq 0$ we can find a permutation, B, of the rows of A which puts Aij on the leading diagonal and for which $|b_{kk}| > 0$ for all k

SK theorem

Theorem

If $A \in \mathbb{R}^{n \times n}$ is non negative, then a necessary and sufficient condition that there exists a doubly stochastic matrix P of the form DAE where D and E are diagonal matrices with positive main diagonals, is that A has total support. If P exists, then it is unique. D and E are also unique up to a scalar multiple iff A is fully indecomposable.

Theorem

A necessary and sufficient condition that the SK algorithm converges is that A has total support

Convergence analysis

There are many papers on the convergence of r_k and c_k , The main idea in these papers is to show that on each iteration a special function(e.g entropy, log barrier, permanent) is decreasing.

For a matrix that can be balanced, a lower bound is known \rightarrow it corresponds to the doubly stochastic case.

- Convex Optimization Much faster scaling, Cohen
- Log barrier methods(Kalantari and Khachiyan 1996)
- Entropy minimization
- Connections to permanent of a matrix
- Topological methods

Linear convergence for symmetric A, Knight 2008

- Considers the case where A is symmetric. SK algorithm can be applied,
- Looks for diagonal matrix D, such that DAD is doubly stochastic.
- The symmetric analogues of SK algorithm are $x = D(Ax)^{-1}e$ and the iterative step $x_k = D(Ax_{k-1})^{-1}e$.

Rate of convergence analysis, Knight 2008

Theorem

If A is fully indecomposable then the SK algorithm will converge linearly to vectors r_* and c_* , such that $D(r_*)AD(c_*) = P$ where P is doubly stochastic. Furthermore, there exists $K \in \mathbb{Z}$ such that for $k \geq K$.

$$\left\| \begin{bmatrix} r_{k+1} \\ c_{k+1} \end{bmatrix} - \begin{bmatrix} r_* \\ c_* \end{bmatrix} \right\| \le \sigma_2^2 \left\| \begin{bmatrix} r_k \\ c_k \end{bmatrix} - \begin{bmatrix} r_* \\ c_* \end{bmatrix} \right\|$$

Where σ_2 is the second singular value of P.

What LG 2004 achieve

- Tackle the problem of Bi-normalization
- Provide an Iterative algorithm **BIN** for scaling all rows and columns of a real symmetric matrix to unit-2 norm.

Important notions LG 2004

- $\tilde{A} = DAD$
- $\bullet \ B_{ij}=A_{ij}^2$
- $\sum_{j} \tilde{A}_{ij}^2 = \sum_{j} d_i^2 A_{ij}^2 d_j^2 = c \quad \forall i \in [n]$
- We are looking for positive solution \tilde{x} to B(x)x = be, where b is a positive real and B(x) = D(Bx)
- Equivalently(used in GS method) we are looking for a positive solution to $(I_n \frac{1}{n}ee^T)B(x)x = be \frac{1}{n}ee^Tbe$

Existence and uniqueness

- Matrix is defined to be scalable if B(x)x = be has a positive solution.
- What we are trying to solve is an $n \times n$ system of quadratic equations in $x_1, \ldots x_n$. (positive x). Solution does not always exist.

Theorem

If a matrix is scalable, it is either (a) not diluted ,or (b) n = 2 and

$$A = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}$$

• Diluted, if $\exists i \in [n], A_{ii} \neq 0$ and $A_{kj} = 0 \ \forall k \neq i$ and $j \neq i$

BIN Algorithm

Algorithm 1: BIN

Input: $A, n \times n$ real symm matrix, $d^0 \in \mathbb{R}^n$, TOL-tolerance

Output: $\hat{A}, d \in \mathbb{R}^n$

$$B = A \circ A; \quad x = ((d_1^0)^2, \dots, (d_n^0)^2)^T;$$

Do Update rule;

while $s(x) > TOL \cdot \bar{\beta}(x)$ and sweeps < MaxSweeps do

for $i \leftarrow 1$ to n do

Solve equation i for x_i keeping all other x_j fixed at current values;

end

Do update rule;

end

Update rule:

- $d_i = \bar{\beta}^{-1/2} x_i \forall i \in [n]$
 - $\tilde{A} = DAD$
 - $s(x) = (\frac{1}{n} \sum_{k} (x_{k} \beta_{k} \bar{\beta})^{2})^{1/2}$

Notations

 Let D be the operator that transform a vector into a diagonal matrix of his elements:

$$D: x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto D(x) = \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & x_n \end{pmatrix}$$

Notations

 Let D be the operator that transform a vector into a diagonal matrix of his elements:

$$D: x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto D(x) = \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & x_n \end{pmatrix}$$

• let e represent the vector $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$

• We are looking for 2 vectors r and c such that D(r)AD(c) is doubly stochastic.

That means D(r)Ac = e and $D(c)A^Tr = e$

• We are looking for 2 vectors r and c such that D(r)AD(c) is doubly stochastic.

That means D(r)Ac = e and $D(c)A^Tr = e$

• we have the following :

$$c = D(A^T r)^{-1} e (1)$$

$$r = D(Ac)^{-1}e. (2)$$

• We are looking for 2 vectors r and c such that D(r)AD(c) is doubly stochastic.

That means D(r)Ac = e and $D(c)A^Tr = e$

• we have the following :

$$c = D(A^T r)^{-1} e (1)$$

$$r = D(Ac)^{-1}e. (2)$$

- iterative method : $c_{k+1} = D(A^T r_k)^{-1} e$, $r_{k+1} = D(Ac)^{-1} e$
- So, if A is symmetric, by uniqueness of r and c, we have r = c. So, the unique solution x^* is solution of the equation

$$f(x^*) = D(x^*)Ax^* - e = 0$$
 (3)

• We are looking for 2 vectors r and c such that D(r)AD(c) is doubly stochastic.

That means D(r)Ac = e and $D(c)A^Tr = e$

• we have the following :

$$c = D(A^T r)^{-1} e (1)$$

$$r = D(Ac)^{-1}e. (2)$$

- iterative method : $c_{k+1} = D(A^T r_k)^{-1} e$, $r_{k+1} = D(Ac)^{-1} e$
- So, if A is symmetric, by uniqueness of r and c, we have r = c. So, the unique solution x^* is solution of the equation

$$f(x^*) = D(x^*)Ax^* - e = 0$$
 (3)

• The iterative step therefore is $x_{k+1} = D(Ax_k)^{-1}e$. But we don't do the iterations as that would be SK. We will go back to the equation 3 and find a solution of it with Newton's method.

rows/columns scaling

Input: a $m \times n$ matrix A

Algorithm 2: Rows Columns scaling

```
A^{(0)} \leftarrow A:
D^{(0)} \leftarrow I_m:
F^{(0)} \leftarrow I_n:
for k \leftarrow 0 to convergence do
      R \leftarrow D(\sqrt{||r_i^k||});
      C \leftarrow D(\sqrt{||c_j^k||});
      A^{(k+1)} \leftarrow R^{-1}A^{(k)}C^{-1}
      D^{(k+1)} \leftarrow D^{(k)} R^{-1}.
      C^{(k+1)} \leftarrow E^{(k)}C^{-1}:
```

end

• remind : Newton's method (on the blackboard)

• Let J(X) be the jacobian of f. We have $J(x) = \frac{\partial}{\partial x}(D(x)Ax - e) = D(x)A + D(Ax)$

- Let J(X) be the jacobian of f. We have $J(x) = \frac{\partial}{\partial x}(D(x)Ax e) = D(x)A + D(Ax)$
- result :

$$x_{k+1} - x_k = -J(x)^{-1} f(x)$$
(4)

$$x_{k+1} = x_k - (D(x)A + D(Ax))^{-1}(D(x^*)Ax^* - e)$$
 (5)

- Let J(X) be the jacobian of f. We have $J(x) = \frac{\partial}{\partial x}(D(x)Ax e) = D(x)A + D(Ax)$
- result :

$$x_{k+1} - x_k = -J(x)^{-1} f(x)$$
(4)

$$x_{k+1} = x_k - (D(x)A + D(Ax))^{-1}(D(x^*)Ax^* - e)$$
 (5)

• we can arrange this equation :

$$(A + D(x_k)^{-1}D(Ax_k))x_{k+1} = Ax_k + D(x_k)^{-1}e$$
 (6)

- Let J(X) be the jacobian of f. We have $J(x) = \frac{\partial}{\partial x}(D(x)Ax e) = D(x)A + D(Ax)$
- result :

$$x_{k+1} - x_k = -J(x)^{-1} f(x)$$
(4)

$$x_{k+1} = x_k - (D(x)A + D(Ax))^{-1}(D(x^*)Ax^* - e)$$
 (5)

we can arrange this equation :

$$(A + D(x_k)^{-1}D(Ax_k))x_{k+1} = Ax_k + D(x_k)^{-1}e$$
 (6)

• We introduce the matrix $A_k = (A + D(x_k)^{-1}D(Ax_k)$. So the equation is

$$A_k x_{k+1} = A x_k + D(x_k)^{-1} e (7)$$

• Suppose $A_k = M_k + N_k$ with M_k non-singular. we will solve this problem with inner-outer iterations. We will denote by *outer* the operations of the Newton step, and by *inner* the one of the splitting method.

- Suppose $A_k = M_k + N_k$ with M_k non-singular. we will solve this problem with inner-outer iterations. We will denote by *outer* the operations of the Newton step, and by *inner* the one of the splitting method.
- The outer operations, as described before, just update x_k using J(x)

- Suppose $A_k = M_k + N_k$ with M_k non-singular. we will solve this problem with inner-outer iterations. We will denote by *outer* the operations of the Newton step, and by *inner* the one of the splitting method.
- The outer operations, as described before, just update x_k using J(x)
- The inner iteration is described by this equation :

$$M_k y_{j+1} = N_k y_j + A x_k + D(x_k)^{-1} e$$

 $y_0 = x_k$

- Suppose $A_k = M_k + N_k$ with M_k non-singular. we will solve this problem with inner-outer iterations. We will denote by *outer* the operations of the Newton step, and by *inner* the one of the splitting method.
- The outer operations, as described before, just update x_k using J(x)
- The inner iteration is described by this equation :

$$M_k y_{j+1} = N_k y_j + A x_k + D(x_k)^{-1} e$$

 $y_0 = x_k$

• But here, one inner-iteration is enough. It gives us :

$$x_{k+1} = x_k + M_k^{-1}(D(x_k)^{-1}e - Ax_k)$$
 (8)

- Suppose $A_k = M_k + N_k$ with M_k non-singular. we will solve this problem with inner-outer iterations. We will denote by *outer* the operations of the Newton step, and by *inner* the one of the splitting method.
- The outer operations, as described before, just update x_k using J(x)
- The inner iteration is described by this equation :

$$M_k y_{j+1} = N_k y_j + A x_k + D(x_k)^{-1} e$$

 $y_0 = x_k$

• But here, one inner-iteration is enough. It gives us :

$$x_{k+1} = x_k + M_k^{-1}(D(x_k)^{-1}e - Ax_k)$$
 (8)

• By choosing $M_k = D(x_k)^{-1}D(Ax_k)$ we found again the equations we had before. So with a good choice of M, things can only go faster.

Convergence: general case

Definition

To measure convergence rate, if we denote by ${\cal C}$ the set of all sequences generated by our method, we define :

$$R(x) := \sup\{\limsup ||x_k - x||^{1/k} | (x_k) \in C\}$$

Theorem

If $f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable in an open neighbourhood of a point x^* where f' is continuous and $f(x^*) = 0$. If $f(x^*) = M(x) - N(x)$, where M is continuous and invertible. If $\rho(G(x^*)) < 1$ where $G = M^{-1}N$. then for $m \geq 1$, the iterative process defined by

$$x_{k+1} = x_k - \left(\sum_{j=1}^m G(x_k)^{j-1}\right)(x_k)^{-1}f(x_k)$$
 has attraction point x^* and $R(x^*) = \rho(G(x^*)^m)$

Convergence here

Corollary

If A is a symmetric matrix, and $x^* > 0$ is such that $D(x^*)AD(x^*)$ is stochastic, Then, for the iterative process described in 8, we have $R(x) = \rho(M^{-1}N)$ where M - N is the splitting associated to $A + D(x^*)$

Proof.

on the blackboard

Measure of the convergence rate

- R(x) is invariant by diagonal scaling.
- $D(x*)(A + D(x*)^{-2})D(x*) = P + I$
- So if A is symmetric, it improves a lot the rate of convergence, with a good choice of M.

Quick overview of other methods

Conjugate gradient

Quick overview of other methods

- Conjugate gradient
- Optimization

Numerical Results for SK, GS, BNEWT

- BNEWT is inexact newton iteration with conjugate gradients, SK is Sinkhorn and Knopp, GS is the Livne and Golub method.
- The number of matrix vector products is the cost.
- Algorithms ran till residual norm $< 10^{-6}$

Hessenberg Matrices

• 10×10 matrix

•
$$H = (h_{ij}), h_{ij} = \begin{cases} 0, & \text{if } j < i - 1 \\ 1, & \text{otherwise} \end{cases}$$

• H_2 same as H except $h_{12} = 100$, $H_3 = H + 99I$

	SK	GS	BNEWT	
Н	110	114	76	
H_2	144	150	90	
Н3	2008	2012	94	

Table: Number of Matrix vector products

Convergence, number of iterations

	n=10	25	50	100
BNEWT	124	300	660	1792
SK	3070	16258	61458	235478

Table: Number of iterations for H_n

Figure: Convergence graph for BNEWT on H_{50}

References

- Philip A. Knight. "The Sinkhorn-Knopp Algorithm: Convergence and Applications". In: SIAM J. Matrix Anal. Appl. 30.1 (2008)
- Oren E. Livne and Gene H. Golub. "Scaling by Binormalization". In: *Numerical Algorithms* 35 (2004), pp. 97–120
- Philip A. Knight and Daniel Ruiz. "A fast algorithm for matrix balancing". In: Journal of Numerical analysis 33 (2013)
- Michael Cohen et al. "Matrix Scaling and Balancing via Box Constrained Newton's Method and Interior Point Methods". In: (Apr. 2017)
- Daniel Ruiz and Bora Uçar. "A Symmetry Preserving Algorithm for Matrix Scaling". In: SIAM Journal on Matrix Analysis and Applications 35 (July 2014). DOI: 10.1137/110825753