#### **Computer System Engineering**

**Lecture 4: Fault - Tolerance** 



Nguyen Minh Son, Ph.D





#### Outline

- Faults, failures, and fault-tolerant design
- Measures of reliability and failure tolerance
- Tolerating active faults
- Systematically applying redundancy
- Applying redundancy to software and data
- Conclusions



Fault: a defect in materials, design, or implementation that may (or may not) cause an error and lead to a failure





- ☐ *Error:* Informally, a label for an incorrect data value or control signal caused by an active fault. If there is a complete formal specification for the internal design of a module, an error is a violation of some assertion or invariant of the specification.
- ☐ Failure: The outcome when a component or system does not produce the intended result at its interface.



- Fault avoidance: all components are reliable
- Fault tolerance:
  collection of
  techniques to build
  reliable systems
  from unreliable
  components





#### The fault-tolerance design process

- 1. Develop a fault-tolerance model
- 2. Apply modularity to contain the damage from the high-risk errors
- 3. Design and implement procedures that can mask the detected errors (temporal/spatial redundancy)
- 4. Update the fault-tolerance model to account for those improvements





#### The fault-tolerance design process

- 5. Iterate the design and the model until the probability of untolerated faults is low enough
- 6. Observe the system in the field
- 7. Use the logs of masked faults and the postmortem reports about failures to revise and improve the fault-tolerance model and reiterate the design





- Software fault
- Hardware fault
- Design fault

- Implementation fault
- Operations fault
- Environment fault





- □ Availability: A measure of the time that a system was actually usable, as a fraction of the time that it was intended to be usable.
- The time to failure (TTF)
- The time to repair (TTR)
- The mean time to failure (MTTF)
- The mean time to repair (MTTR)
- ☐ The mean time between failures (MTBF)





$$Availability = \frac{\text{time system was running}}{\text{time system should have been running}} = \frac{\sum\limits_{i=1}^{N} TTF_{i}}{\sum\limits_{i=1}^{N} (TTF_{i} + TTR_{i})}$$

$$Availability = \frac{MTTF}{MTBF} = \frac{MTTF}{MTTF + MTTR} = \frac{MTBF - MTTR}{MTBF}$$





$$Availability = \frac{\text{time system was running}}{\text{time system should have been running}} = \frac{i=1}{N}$$

| Availability %         | Downtime<br>per year | Downtime<br>per month | Downtime<br>per week |  |
|------------------------|----------------------|-----------------------|----------------------|--|
| 99.8%                  | 17.5 hours           | 86.2 minutes          | 20.2 minutes         |  |
| 99.9% ("three nines")  | 8.8 hours            | 43.2 minutes          | 10.1 minutes         |  |
| 99.99% ("four nines")  | 52.6 minutes         | 4.3 minutes           | 1.0 minutes          |  |
| 99.999% ("five nines") | 5.3 minutes          | 25.9 seconds          | 6.1 seconds          |  |

$$= \frac{\sum_{i=1}^{N} TTF_{i}}{\sum_{i=1}^{N} (TTF_{i} + TTR_{i})}$$

$$Availability = \frac{MTTF}{MTBF} = \frac{MTTF}{MTTF + MTTR} = \frac{MTBF - MTTR}{MTBF}$$

| Component               | MTBF (hours) |  |
|-------------------------|--------------|--|
| Hard disk               | 750,000      |  |
| Power supply            | 100,000      |  |
| Fan                     | 100,000      |  |
| Ethernet Network Switch | 350,000      |  |
| RAM                     | 1,000,000    |  |



$$Availability = \frac{MTTF}{MTBF} = \frac{MTTF}{MTTF + MTTR} = \frac{MTBF - MTTR}{MTBF}$$



| Component                                | MTBF (h)  | MTTR (h) | Availability | in %<br>99.99200 |  |
|------------------------------------------|-----------|----------|--------------|------------------|--|
| Power supply                             | 100,000   | 8        | 0.9999200    |                  |  |
| Fan                                      | 100,000   | 8        | 0.9999200    | 99.99200         |  |
| System board                             | 300,000   | 8        | 0.9999733    | 99.99733         |  |
| Memory                                   | 1,000,000 | 8        | 0,9999920    | 99.99920         |  |
| CPU                                      | 500,000   | 8        | 0.9999840    | 99.99840         |  |
| Network<br>Interface<br>Controller (NIC) | 250,000   | 8        | 0.9999680    | 99.99680         |  |

Example: the above system's availability is:

 $0.9999200 \times 0.9999200 \times 0.9999733$ 

 $\times 0.9999920 \times 0.9999840 \times 0.9999680$ 

= 0.99977 = 99.977%



#### Conclusions

- Design principles
  - be explicit
  - design for iteration
  - keep digging
  - the safety margin
  - adopt sweeping simplifications
  - Deterioration and corruption accumulate unnoticed—until the next use



# Enjoy !!!

# Q&A



#### Exercise

|                         | Hệ thống máy tính 1 |           | Hệ thống máy tính<br>2 |           | Hệ thống máy<br>tính 3 |           |
|-------------------------|---------------------|-----------|------------------------|-----------|------------------------|-----------|
|                         | Thực thi            | Khởi động | Thực thi               | Khởi động | Thực thi               | Khởi động |
| Chươr<br>trình <i>I</i> | 1500s               | 50s       | 5000s                  | 5s        | 2000s                  | 10s       |
| Chươr<br>trình l        | 2500s               | 50s       | 4000s                  | 10s       | 5000s                  | 20s       |
| Chươr<br>trình (        | 15000s              | 50s       | 18500s                 | 10s       | 9000s                  | 50s       |

Trong 3 máy tính trên, máy tính nào có hiệu suất tối ưu nhất? Tại sao?