Al Day 11 정리(Mastering Al Agent)

학습목표

- Al Agent의 정의 및 핵심 특성 이해
- 대규모 언어 모델의 고정된 매개변수 메모리 한계 → 에이전트형 RAG 역할 (극복해결책)
- LLM 에이전트 추론 및 계획 능력을 강화하는 프롬프트 기법 적용
- 다중 에어전트 시스템의 필요성, 협업 유형, 커뮤니케이션 구조 등 **에이전트 시스템의 원리** 이해
- 에이전트 행동 정책을 형성하기 위한 강화 학습 기반 훈련 방법과 표준화된
 프로토콜 역할

1. Al Agent

▼ 서론

- 대형 언어 모델(LLM)이란 무엇인가
 - [1980년대] Language Model (LM): 텍스트에서 단어, 부분 단어, 형태소 등
 의 의미있는 단위인 토큰의 순차적 사용을 모델링 하는 확률 모델
 - 이전 토큰들을 기반으로 다음 토큰의 가능성을 예측
 - 새로운 텍스트 시퀀스를 생성
 - [2017년] Transformer Architecture: 기존의 1) 긴 문장 학습 능력 제한, 2)
 높은 훈련 비용을 획기적으로 개선한 모델
 - 긴 문장에서 선택적으로 집중
 - 대규모 사전 학습에 용이
 - [2018년~] Large Language Model (LLM): 대규모 데이터 (예, Book, Wikipedia)를 활용하여 언어적 지식과 패턴을 학습

- 마스킹 언어 모델링 (Masked Language Modeling, MLM)
- 다음 토큰 예측 (Next Token Prediction, NTP)
- 。 [2022년~] LLM의 확장과 진화
 - Multi-Modal Large Language Model (MLLM): LLM 기반 모델로 텍 스트와 시각, 음성 등의 모달리티를 결합하여 작업할 수 있는 모델
 - Agentic Al: LLM이 단순한 '응답 생성 모델'을 넘어, 스스로 목표를 설정하고 계획, 실행하는 자율적 인공지능 (Agent)으로 진화
- 1. GPT 3.5(2022.11)

범용 LLM (Generalist LLM)

- 모든 도메인에 대해서 일정 수준 이상의 응답이 가능한 대형언어 모델
- 가정의학과 전문의처럼, 넓은 지식 기반을 가지고 대부분의 문제에 1차 대응 가능
- 2. GPT 5(2025.08)

의료 특화 LLM (Medical LLM)

- 의료 지식에 특화되어 있으며 진단, 처방, 환자 응대 등에 전문화된 모델
- 내과, 외과 등의 전문의처럼, 의료 특정 도메인에 깊이 있는 지식을 갖춘 LLM
- 3. Agentic Clinician AI(의료진 에이전트형 LLM)
 - a. 같은 병이라도 의료진 마다 진단·치료 방식은 다름
 - b. 환자 상황, 병원 환경, 의료진의 임상 경험, 언어 습관까지→ '의료진 개인'의 판단 맥락을 반영할 수 있어야 함
 - c. 의료진 에이전트 AI는 단순 지식 제공을 넘어 의료진의 사고 흐름과 의사결정 과정을 능동적으로 재현→ 의료진 본인의 '디지털 트윈'처럼 동작
 - d. 예시: 의학 영상 판독, 의료 수술 보조 로봇

Al Agent의 개념과 특성

1. Introduction to Al Agent

- Al Agent(Al 에이전트)
 - 。 개념: AI를 사용해 목표를 추구하는 소프트웨어 시스템
 - 주요특성: 계획, 실행, 결정을 통해 인간 개입 없이 자율적 문제 해결

- ∘ Al Agent 기술의 도전과제 : 보완, 실무 응용, 컨텍스트 관리 개선(학술연구) 등
 - ▼ 산업 현장 예시
 - 삼성 SDS : AI 서비스 플랫폼 FabriX
 - 。 기업 내부 지식(문서) 학습 → Al Agent가 협업하도록 설계
 - o 형태: LLM + Copilot + Automation
 - MS: 365 Copilot
- 。 인공지능 발달 단계(위에서 아래로)

Perception AI(지각AI)

특화된 분야에서 해석 및 분석 현대 기계학습의 기반

Generative AI(생성형 AI)

콘텐츠 제작(텍스트, 이미지 등) "the Creative Powerhouse"

Agentic AI (에이전트형 AI)

능동적인 작업 수행 "자율형 문제해결 시스템"

Physical AI (물리적 AI)

현실 세계에서 작동 AI 시스템이 물리적 실체를 얻음

- 。 에이전트
 - 다른 사람 또는 단체를 대신하여 행동하는 개인 또는 단체
 - 특정 작업을 수행하고, 결정을 내리며, 합의를 도출하는 것을 목표로 함
- 。 AI 에이전트
 - <u>AI를 사용</u>하여 <u>사용자를 대신해 목표를 추구하고 작업을 수행</u>하는 소프트웨어 시스템
 - 작업 → **의사 결정(AI가 결정)** → 상황 인식
- AI VS AI Agent (구분 명확 X)
 - 자율성
 - AI: 사전에 설정된 의사결정 과정 없이는 이러한 작업을 수행할 수없음

- AI 에이전트 : **인간의 개입없이** 계획, 실행, 결정하여 **문제를 자율적으로 해** 결할 수 있음
- 인식
 - AI 에이전트 : 행동하기 전에 **외부 데이터를 감지하여 환경을 인식하고 해** 석할 수 있음
- 기억
 - AI 에이전트 : **기억에 따라 상황을 처리**하고 점점 더 정교한 도움을 제공할 수 있음
- 추론(계획)
 - AI 에이전트 : 목표를 여러 개의 작은 작업들로 나누고, 실행하기 전에 합리 적인 행동 계획을 구축할 수 있음
- 학습(적용)
 - AI 에이전트 : **시간이 지남에 따라 피드백 및 출력을 학습하여** 성능을 향상 시키고 개인화함
- 동작(도구)
 - AI 에이전트 : 기능 호출을 통해 외부 도구를 사용하여 작업을 처음부터 끝까지 완료할 수 있음
- Challenges in Al Agent
 - 。 학술 연구 영역

- 다중 에이전트 협업 시스템
 - 메모리와 컨텍스트 관리
 - 작업 관리
 - 확장성과 성능
- 。 실무 응용 영역

- 보안 및 개인정보 문제
 - 자율성의 고위험 요소
 - 추론 비용과 실시간 협업
 - 윤리적 문제와 편향성에 대한 우려

2. Multi-Agent System

학습시작

- 대규모 언어 모델의 한계: 환각 현상, 느린 추론 등 LLM의 본질적 한계
- 다중 에이전트 시스템 구성 : 다중 에이전트 시스템의 주요 구성 요소와 다중 에이전트 시스템 문제 정의
- 에이전트 협업 전략: 협업 유형 및 전략과 커뮤니케이션 구조

1. Multi Agent System

- 대규모 언어 모델(LLM)
 - 최신 성과 : 창의적 글쓰기, 논리적 사고, 판단 능력 ← 인간 수준에 필적하는 성능
- 개별 LLM의 본질적 한계
 - 。 **환각 현상**: 부정확하거나 조작된 정보 생성
 - **자기회귀적 성격**: 천천히 생각하거나 신중한 추론을 할 수 없음
 - o 스케일링 법칙: 모델 크기 증가에 따른 성능 향상 둔화
- 왜 다중 에이전트 시스템이 필요한가?
 - 。 집단 지성
 - 지능형 에이전트들이 팀을 이루어 협력하고 지식을 나누며, 함께 문제를 해결하 는 능력에 초점을 맞춤 (수평적 확장)
 - 인간 사회는 일상 업무부터 과학 연구까지 팀워크와 역할 분담을 통해 공통 목 표를 달성하는 데 탁월
 - 다중 에이전트 시스템도 이와 같은 원리를 적용하여, AI 에이전트들이 서로의 장점과 시각을 결합해 효율적으로 협업하도록 함

→ 개별 에이전트들의 능력의 총합을 뛰어넘는 진정한 집단 지성을 실현하고자 함

Multi-Agent Collaboration Mechanisms: A Survey of LLMs LLM 기반 다중 에이전트 협업 시스템의 질의응답 활용 예시 (강의자료 아님, 논문 스크린샷)

- LLM 기반 Multi Agent System(다중 에이전트 시스템)
 - 협업 요소와 메커니즘: 협업 유형, 전략, 소통 및 조직 구조
- 시사점 및 남은 문제들
 - 집단적 추론, 의사결정 등 다중 에이전트 시스템의 발전과정에서 아직 해결해야할 문제들이 존재
- 다중 에이전트 시스템의 주요 구성 요소
 - 에이전트: 역할, 능력, 행동, 지식 모델을 가진 핵심 행위자들
 - 환경: 에이전트가 존재하고 인식 및 행동할 수 있는 외부 세계
 - 상호작용: 표준화된 통신 언어를 사용한 에이전트 간 소통
 - 조직: 에이전트들은 계층 구조로 관리되거나 자발적인 행동으로 조직

2. 방법론 : 협업 유형

- 협업 유형
 - 1. 협업, 역할 분담, 문서 품질 향상
 - 2. 경쟁, 대립, 논증
 - 3. 협력 + 경쟁, 균형 잡힌 판단

• 협력

- 에이전트들은 각자의 개별 목표를 공동의 집단 목표와 일치시켜, 상호 이익이 되는 결과를 달성하기 위해 협력
- 。 에이전트들은 각자의 전문 분야 내에서 특정 세부 작업에 집중하도록 활용할 수도 있음
- 에이전트 간 빈번한 통신과 다중 협업 채널은 계산 비용과 복잡성 증가를 초래할 수있음
- 개별 에이전트의 신뢰성과 성능에 크게 좌우되어, 한 개 이상의 에이전트의 오류가 시스템 전체에 부정적 영향을 미칠 수 있음 (e.g., 무한 대화 루프, 환각 현상 증폭).

• 경쟁

- 에이전트들은 각자의 개별 목표를 우선시하며, 이는 다른 에이전트들의 목표와 충돌하거나 대립할 수 있는 경쟁 요소를 도입
- 에이전트들이 고도의 추론 능력과 더 창의적인 문제해결 방법을 개발하도록 촉진
- 。 각 에이전트의 능력의 한계를 시험함으로써 시스템의 적응성을 강화
- 경쟁적 협업 경로는 강력한 프롬프트를 가진 단일 에이전트에 의해 따라잡힐 수 있음
- 。 끝나지 않는 논쟁
- 협력과 경쟁의 조합
 - 。 협력과 경쟁의 전략적 조합
 - 에이전트들이 공동 목표 달성을 위해 특정 작업에서는 협력하면서 동시에 다른 작업에서는 경쟁할 수 있도록 함
 - 전문가 혼합 모델(Mixture-of-Experts)
 - 다양한 전문가 모델들이 최종 결과물에 기여하려고 경쟁하고, 게이트 시스템이 각 입력에 맞는 최적의 전문가를 골라냄
 - 전문가들 사이의 협력 및 경쟁적 관계는 모델 학습 과정에서 먼저 형성되며, 이 때 각자가 데이터의 서로 다른 측면에 대해 전문화하도록 훈련

3. 방법론 : 협업 전략

- 규칙 기반 프로토콜
 - 사전에 정의된 규칙: 에이전트 간 상호작용은 미리 정의된 규칙에 의해 엄격히 통제

- 。 인간의 협력 방식 모방
 - 동료 검토에서 영감을 받은 협업 메커니즘은 사전 정의된 규칙을 사용하여 에이 전트들이 서로의 출력을 비판하고, 수정하며, 개선할 수 있도록 함
 - 규칙 기반 전략은 시스템 동작과 특정 규칙을 쉽게 연결할 수 있으므로 구현과 디버깅을 용이하게 함
 - 합의 도출, 경로 찾기와 같이 절차가 명확히 정의되고 변동성이 적은 작업에 특히 효율적
- 역할 기반 프로토콜
 - 사전에 정의된 역할: 세분화된 목표 하에서 각 에이전트가 고유한 역할 분담이나 업무 분할을 통해 작동하도록 함
 - 。 주로 도메인 지식에 기반
 - 각 에이전트에 특정 책임을 할당하여 인간과 유사한 협업을 시뮬레이션하고, 역할 준수를 통해 일치성 강화
 - 각 에이전트의 역할은 전문가 수준의 지식으로 정의되어, 에이전트는 서로의 결과를 검증할 수 있는 전문가의 역할을 할 수 있음
 - 개별 모듈의 재활용 가능성

https://arxiv.org/abs/2308.00352

MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework

4. 방법론 : 커뮤니케이션 구조

• 중앙집중형 구조

- 참여자-서비스 제공자 구조: 서비스 에이전트는 시스템 안에서 참여자들 사이의 소통이나 협력을 관리, 제어, 조율하는 역할을 담당
- 。 중앙 에이전트
 - LLM-블렌더는 한 라운드에서 서로 다른 LLM들을 호출하고, 두 개씩 비교하여 순위를 책정한 후, 최상위 응답들을 결합
 - 판사 에이전트(토론), 최종 의사결정을 위한 의사(MDT 프로세스)

• 탈중앙화 구조

- 。 에이전트에 대한 통제 및 의사결정 분산
 - 각 에이전트는 에이전트와의 제한적인 통신과 일부의 정보를 바탕으로 작동하므로, 상호작용과 의사결정을 위한 정교한 알고리즘이 필요
 - 에이전트들이 분산형으로 서로 직접 소통하는 방식으로 작동
 - 일부 에이전트가 실패해도 시스템이 계속 기능할 수 있음
 - 높은 확장성을 제공하며, 에이전튼들이 자율적으로 작동하고 시스템 변화에 적응할 수 있음
- 다중 에이전트 시스템에 대한 우려의 시사점
 - 。 확장성 고려사항
 - 성능 저하 없이 더 큰 에이전트 네트워크를 처리하기 위해서는 확장 가능한 아 키텍처와 알고리즘 구현이 필수적
 - 。 최적 협업 전략
 - 효과적인 협업을 위해서는 작업 요구사항에 맞는 최적의 협업 전략을 선택하는 것이 주요
 - 적응가능한 역할 및 협업 경로 할당
 - 적응가능성은 시스템이 변화하는 환경과 목표에 효과적으로 대응할 수 있도록
 함

3. 다중 에이전트 시스템에서의 메모리 및 도구

전략적 도구 사용 정책 학습 및 MCP 프로토콜의 역할

1. Memory & Tool in Multi Agent System

- AI는 언어 모델(LLM)에서, 독립적 사고와 행동을 할 수 있는 자율적인 "AI 에이전트"의 **새로운 패러다임으로 발전**하고 있음
- LLM: 고정된 매개변수 메모리에 제한을 받아 수동적임
- AI 에이전트: 실시간 정보에 접근, 외부 도구를 활용, 물리적 또는 디지털 세계와 상호작용
 → 환경을 인지하고, 계획을 수립하며, 특정 목표 달성을 위해 구체적인 행동을 실행할 수 있는 능동적 개체

- 패러다임의 전환: 언어 모델에서 에이전트 시스템으로!
 - 기억 / 지식 : 에이전트가 최신 정보를 어떻게 습득하는가? (RAG, 메모리)
 - 행동 / 능동성 : 에이전트가 구체적인 업무를 어떻게 완수하는가? (도구 호출)
 - 학습 / 적용 : 에이전트들이, 특히 공동 작업 시, 어떻게 지능을 향상시키는가? (멀티 에이전트 학습)

- 메모리 & 도구
 - 。 LLM 내장 매개변수 메모리의 **한계**
 - : 최신 정보를 반영할 수 없음, 잘못된 내용을 생성하는 경향이 있음, 기업 내부 정보를 검색할 수 없음
 - → 이런 제약들로 인해 실제 핵심 업무에서 LLM을 믿고 사용하기 어려움
- RAG (검색 증강 생성 (Retrieval-Augmented Generation))
 - 핵심 아이디어: LLM이 답변을 생성하기 전에 신뢰할 수 있는 외부 소스들을 이용하여 응답 구성
 - → ex) 데이터베이스, 최신 웹 문서
 - 장점 : LLM의 자연스러운 표현력과 외부 지식의 정확성을 결합하여 신뢰할 수 있는 답변 생성
- 일반적 검색 증강 생성(RAG)의 한계점
 - 지식 소스의 한정성 보통 하나의 외부 데이터베이스만 사용하기 때문에, 여러 소 스

(예: 웹 검색, API 등)를 동시에 활용하기 어렵다.

- **정보 검증 부재** 검색된 내용을 한 번만 가져와 바로 사용하므로, 정보의 신뢰도나 정확성을 검토하지 않는다.
- **복잡한 추론 한계** 상태 정보를 저장하지 않아 다단계 추론이나 연속적인 탐구 작업에 적합하지 않다.
- **맥락 유지 불가** 이전 대화나 검색 맥락을 기억하지 못해, 마치 "기억하지 못하는 검색 엔진"처럼 동작한다.
- → RAG + 에이전트 = 에이전트 RAG

• 에이전트형 RAG란?

- AI 에이전트가 RAG의 각 단계를 조율하며 단순한 검색·생성을 넘어 도구 활용과 판
 단 기능을 수행하는 방식
 - → 벡터 검색, 웹 검색, API 등 다양한 도구를 사용해 검색 여부 판단·도구 선택, 쿼리 생성, 결과 평가까지 수행

• AI 에이전트의 주요 구성 요소

- LLM (특정 역할과 작업을 담당)
- **메모리** (단기 기억 및 장기 기억)
- 계획 (예 : 자기 성찰, 자기 비판, 쿼리 분배 등)
- **도구** (예 : 계산기, 웹 검색 등)

• 멀티 에이전트 시스템을 위한 훈련 방법

- --> **멀티 에이전트 시스템 훈련 핵심**은 "언제, 무엇을, 어떻게"를 결정하는 것임
 - **언제:** 자체 지식으로 답할지, 도구를 쓸지 판단 (정확도 vs. 비용·지연시간의 균형)
 - **무엇을:** 상황에 맞는 도구 선택 (예: 계산기, 웹 검색 등)
 - 。 **어떻게:** 선택한 도구에 올바른 인수를 전달
 - → 결과나 오류를 분석해 다음 행동을 스스로 결정
- -> 이러한 의사 결정 단계들이 모여서 에이전트의 행동 정책(policy) 형성

ex 1) Toolformer: 언어모델이 스스로 도구 사용법을 학습

- 。 소규모 API 호출 데모 세트로 시작
- 。 언어모델이 새로운 맥락에 API 호출 삽입
- 호출 실행, 응답 검색, 유용성에 따른 필터링, 언어모델 미세조정

ex 2) Gorilla: LLM을 대규모 API와 연결

- 접근 방식:
 - APIBench 데이터셋을 활용해 LLaMA·GPT 모델을 미세조정
 - RAFTA(검색 증강 미세조정)로 API 호출 전 관련 문서를 검색하여 활용
- 주요 기능:
 - 수십만 개의 API를 **정확한 형식으로 처리**
 - 문서 검색 + 지도 학습(SFT)을 통해 **잘못된(API 환각) 호출을 감소**시킴

ex 3) RetTool: LLM의 전략적 도구 사용을 위한 강화학습

—> 코드 인터프리터 등 외부 도구 사용 시점·선택·방법을 학습시켜 복잡한 계산 및 추론 작업에서 LLM의 성능 향상을 위함

。 접근 방식:

- 코드 추론 흔적을 활용한 **골드 스타트 SFT**
- PPO 강화학습으로 실시간 코드 실행 및 피드백
- 주요 기능: 결과 기반 보상으로 도구 호출 타이밍, 도구 선택, 코드 개선, 자기 수정 능력을 학습

ex 4) Search-R1: LLM을 사용한 더 나은 웹 검색을 위한 강화 학습

→ LLM 에이전트가 **자율적으로 다단계 웹 검색**을 수행해 답변의 **정확성과 관련도**를 높이도록 함

。 접근

- 검색 증강 LLM 에이전트를 훈련 시켜 **검색 시점·방법·질의 구성·결과 선택·통** 합을 스스로 결정하도록 학습
- **인간 피드백 기반 온라인 강화 학습**으로 검색 전략을 지속 개선
- 에이전트는 **검색 여부, 질의 구성, 반복 개선** 정책을 학습

。 강화학습

- GRPO(Group Relative Policy Optimization) 사용
 - → PPO의 발전형으로, 여러 실행 결과를 비교해 **더 나은 검색 결과에 보상**을 부여함

• 모델 컨텍스트 프로토콜 (MCP)

ㅇ 정의:

MCP는 AI가 **외부 도구, 리소스, 환경과 표준화된 방식으로 상호 작용**하도록 하는 인터페이스로, **"AI용 USB-C"** 역할을 함.

○ 중요성:

MCP가 없으면 **M×N개의 개별 통합**이 필요하지만, MCP를 사용하면 이를 **M*N개의 연결만으로 단순화**할 수 있음.

。 아키텍처 개요:

- 호스트: AI 애플리케이션 환경 (예: 채팅 앱, IDE)
- **클라이언트:** 호스트와 MCP 서버 간 통신 담당
- 서버: 표준 형식으로 도구·리소스·프롬프트 제공

○ 핵심 기능:

- **도구:** 실행 가능한 작업 (예: 쿼리, 날씨 정보 등)
- **리소스:** 읽기 전용 데이터 소스 (문서, DB 등)
- 프롬프트: AI 행동을 안내하는 템플릿·워크플로

∘ 효과:

- 연결 복잡도 감소
- 도구·자료 재사용성 향상
- 다도구 활용 가능한 **유연한 AI 에이전트 개발** 촉진

Agent2Agent 프로토콜

。 목표:

여러 AI 에이전트가 **내부 메모리나 도구를 직접 공유하지 않고** 맥락 & 작업 업데이트, 지시사항, 데이터만 교환하며 협업하도록 함.

- MCP와의 관계:
 - MCP: 에이전트를 외부 도구에 연결
 - A2A: 에이전트 **간 협업**을 지원
- 핵심 개념:
 - **에이전트 서버:** 개별 에이전트를 호스팅
 - **클라이언트 에이전트:** 여러 에이전트 서버에 연결
 - **라우터:** 요청(쿼리)을 적절한 에이전트로 전달

4. Al Agent의 추론 및 계획

LLM의 추론 능력(Reasoning)

추론 능력이 있는 대규모 언어 모델

대규모 언어 모델은 논리 퍼즐, 수학적 문제, 코딩과 같은 작업을 해결 가능

- ex) 나탈리아는 4월에 48명의 친구들에게 클립을 판매, 5월에는 그 절반의 클립 판매 4월과 5월에 얼마나 많은 클립을 팔았는가?
- -추론을 사용 x →그녀는 72개의 클립을 판매
- 추론 사용 → 그녀는 5월에 48/2 = 24개의 클립 판매 → 4월과 5월에 48+24 = 72
 개의 클립 판매 → 따라서 4월과 5월에 총 72개의 클립 판매

LLM은 프롬프트만으로도 추론 능력을 이끌어낼 수 있음

- 1. Few-shot promping(Chain-of Thought Prompting)
- 2. Zero-shot prompting("Let's think step by step')

대규모 언어 모델의 추론 유도

- 프롬프트만으로도 추론 능력을 이끌어낼 수 있음
- 1. Few-shot prompting (Chain-of-Thought Prompting)
- 2. Zero-shot prompting ("Let's think step by step")
 - (a) Few-shot

Q: 로저는 테니스 공 5개를 가지고 있다. 그는 테니스공이 들어 있는 캔 2개를 더 산다. 각 캔에는 테니스 공이 3개씩 들어 있다. 지금 그는 테니스 공을 몇 개 가지고 있는가? A: 답은 11이다.

Q: 한 저글러는 16개의 공을 저글링할 수 있다. 공의 절반은 골프공이고, 그 골프공의 절반은 파란색이다. 파란색 골프공은 몇 개인가?

A:

(출력) 답은 8. X

- (b) Few-shot-CoT
- Q: 로저는 테니스 공 5개를 가지고 있다. 그는 테니스공이 들어 있는 캔 2개를 더 산다. 각 캔에는 테니스 공이 3개씩 들어 있다. 지금 그는 테니스 공을 몇 개 가지고 있는가? A: 로저는 처음에 공 5개를 가지고 있었다. 3개들이 캔 2개는 6개의 테니스 공이다. 5 + 6 = 11. 답은 11이다.
- Q: 한 저글러는 16개의 공을 저글링할 수 있다. 공의 절반은 골프공이고, 그 골프공의 절반은 파란색이다. 파란색 골프공은 몇 개인가?

(출력) 저글러는 총 16개의 공을 저글링할 수 있다. 공의 절반이 골프공이다. 따라서 골프공은 16/2 = 8개이다. 골프공의 절반이 파란색이다. 따라서 파란색 골프공은 8/2 = 4개이다. 답은 4이다. /

(c) 제로샷(Zero-shot)

Q: 한 저글러는 16개의 공을 저글링할 수 있다. 공의 절반은 골프공이고, 그 골프공의 절반은 파란색이다. 파란색 골프공은 몇 개인가?

A: 답은

(출력) 8 X

(b) Few-shot-CoT

Q: 로저는 테니스 공 5개를 가지고 있다. 그는 테니스공이 들어 있는 캔 2개를 더 산다. 각 캔에는 테니스 공이 3개씩 들어 있다. 지금 그는 테니스 공을 몇 개 가지고 있는가?

A: 로저는 처음에 공 5개를 가지고 있었다. 3개들이 캔 2개는 6개의 테니스 공이다. 5 + 6 = 11. 답은 11이다.

Q: 한 저글러는 16개의 공을 저글링할 수 있다. 공의 절반은 골프공이고, 그 골프공의 절반은 파란색이다. 파란색 골프공은 몇 개인가?

(출력) 저글러는 총 16개의 공을 저글링할 수 있다. 공의 절반이 골프공이다. 따라서 골프공은 16/2 = 8개이다. 골프공의 절반이 파란색이다. 따라서 파란색 골프공은 8/2 = 4개이다. 답은 4이다. /

(d) 제로샷-CoT

Q: 한 저글러는 16개의 공을 저글링할 수 있다. 공의 절반은 골프공이고, 그 골프공의 절반은 파란색이다. 파란색 골프공은 몇 개인가?

A: 단계별로 생각해 보자.

(출력) 총 16개의 공이 있다. 공의 절반이 골프공이다. 즉 골프공은 8개다. 골프공의 절반이 파란색이다. 즉 파란색 골프공은 4개다. /

대규모 언어 모델의 추론 능력 강화

- 자기 일관성 : 다양한 추론 과정을 생성하고 그 중 가장 일관성있는 답변을 고르는 디코딩 방
- 1. 프롬프트 입력
- 2. Language model이 다양한 reasoning path를 생성

예시 추론 경로:

- (1) $16 3 4 = 9 \rightarrow $2 \times 9 = $18 \rightarrow$ The answer is \$18.
- (2) $|16-4-3=9| \rightarrow |\$2 \times 9 = \$18| \rightarrow \text{The answer is $18.}$
- (3) 계산 실수로 \$26 이 나오는 경우도 있음 → The answer is \$26

3. 최종 답 결정

- 여러 reasoning 중 가장 자주 등장하는 답은 \$18.
- 따라서 최종적으로 "The answer is \$18."

대규모 언어 모델의 추론 능력 향상: Tree of Thoughts(ToT

1. 개념 요약

• Tree of Thoughts(ToT)는 언어 모델이 문제를 해결할 때

단순히 한 번의 추론을 하는 대신,

여러 가능한 "생각(thought)"을 트리(tree) 구조로 확장·탐색하면서 가장 합리적이고 정확한 결론을 찾는 방식이에요.

이 과정은 두 가지 탐색 방법으로 진행됩니다.

- 너비 우선 탐색 (BFS): 다양한 아이디어를 폭넓게 살펴본 후 좋은 가지를 확장
- 깊이 우선 탐색 (DFS): 한 아이디어를 깊게 탐구하며 가능성을 평가

2. ToT의 구성 요소

Tree of Thoughts는 크게 두 단계로 작동합니다.

(a) Propose Prompt — "생각 제안 단계"

- 모델이 **다음에 어떤 사고 경로로 나아갈 수 있을지** 여러 가지 후보 생각(thoughts)을 생성합니다.
- 예시에서 입력값은 4, 9, 10, 13 이고,

모델은 가능한 조합을 제시합니다.

- 4 + 9 = 13 (남은 수: 10, 13, 13)
- 10 4 = 6 (남은 수: 6, 9, 13)

즉, 모델이 여러 "가능한 다음 생각들"을 만들어내는 단계예요.

(b) Value Prompt — "생각 평가 단계"

- 생성된 각 생각(thought)에 대해 유용성 또는 가능성을 평가합니다.
- 예를 들어, 목표가 "24를 만드는 것"이라면

각 단계에서 남은 숫자로 24를 만들 수 있는지 평가합니다.

- 10 + 14 = 24 → 가능
- o 13 × 3 = 39 → 불가능

이 과정에서 "유망한 가지(good branch)"는 계속 확장하고, "가능성이 낮은 가지(bad branch)"는 탐색을 중단합니다.

3. 전체 흐름 정리

- 1. **입력(Input)**: 문제나 목표 주어짐 (예: 숫자 조합으로 24 만들기)
- 2. 생각 생성 (Thought Generation):
 - 여러 가능한 계산 또는 추론 경로를 제시 (Propose Prompt)
- 3. 생각 평가 (Thought Evaluation):
 - 각 경로의 유효성을 평가 (Value Prompt)
- 4. 탐색(Search):
 - BFS 또는 DFS를 사용하여 유망한 경로만 확장
- 5. **출력(Output)**:
 - 가장 타당한 추론 경로를 통해 최종 답을 도출

4. 기존 방식과의 차이

방식	구조	특징
IO (Input-Output)	단일 직선형	단순 질의응답 수준
CoT (Chain of Thought)	직선형 사고 경로	단계별 추론 가능
CoT-SC (Self- Consistency)	여러 직선 경로 중 다수결 선 택	일관성 개선
ToT (Tree of Thoughts)	트리 구조로 여러 생각 확장· 평가	BFS/DFS 탐색으로 최적의 추론 경로 선택

LLM 에이전트의 Planning

- LLM은 여러 사고 단계를 생성할 수 있음. 즉, 목표 달성을 위한 하위 목표들의 순서를 구성할 수 있음
- 행동(실행) 명령을 통합하면 LLM이 결과를 되돌아보면서 도구를 사용하거나 행동할 수 있음

LLM 에이전트의 Planning 개요

1.ReAct란?

ReAct (Reason + Act)는 LLM이 단순히 '생각(Reasoning)'만 하거나 '행동 (Action)'만 하는 것이 아니라,

'생각(Thought)'과 '행동(Act)'을 번갈아 수행하며 문제를 해결하는 방식이다.

즉, 모델이 **스스로 사고의 흐름을 설명하면서**, 필요한 정보를 탐색(Search)하거나 **도구를 사용**해 나가는 과정.

2.HuggingGPT란?

계획 수립을 담당하는 LLM이 복잡한 작업을 나누어 각각의 전문 모델들에게 분배하는 시스템

3.Plan-and-Act란?

계획 에이전트는 거시적인 계획을 생성, 실행 에이전트는 해당 계획에 따라 하위 단계를 실행

추론 시간 연산량 최적화 및 효율적 추론 접근법

추론 시간의 연산량 증대

- -추론 시에 컴퓨팅 자원을 더 많이 투입할수록 LLM의 성능이 향상됨
- 이는 난이도가 낮은 작업에서 모델 매개 변수를 늘리는 것보다 더욱 효과적일 수 있다
- -추론 시에 컴퓨팅 자원을 더 많이 투입할수록 LLM의 성능이 향상됨
- -스케일링의 법칙도 적용됨

추론모델 개요

• 의미: 추론을 위해 추가적인 컴퓨팅 자원이 활용된 모델들이 새롭게 등장하고 있음.

주요 추론 모델 종류

모델	개발사 / 출시일	특징
o1	OpenAl (2024.12)	OpenAl의 추론 특화 모델
Gemini Series	Google (thought)	'thought' 단위로 사고 과정을 분리
GPT Series	OpenAl (reasoning summary)	사고 과정을 요약해 결과를 제시
DeepSeek-R1	DeepSeek-Al (2025.01)	대규모 추론 중심 모델
Claude Series	Anthropic (ThinkingBlock) 사고 단위를 'ThinkingBlock'으로 성	
Open-source Models	오픈소스 커뮤니티	<think></think> 형태의 사고 구조 활 용

추론모델 강화

- 정확성과 올바른 형식에 대해서만 보상을 제공함으로써 LLM이 chain-of-thought을 사용하는 방법을 학습하게 함
- 정확성과 올바른 형식에 대해서만 보상을 제공함으로써 LLM이 chain-of-thought을 사용하는 방법을 학습하게 힘
- ex): " ...< think> reasoning process here </think> <answer> answer here</answer>"

효율적인 추론

- 과도한 사고 현상
- 더 긴 CoT 추론 과정은 실제로 성능을 향상시키지만, 장황하고 중복되는 출력으로 인해 계산 부담 크게 늘어나는 것은 여전히 문제
 - 목표: Al 모델이 추론(Reasoning)을 수행할 때 불필요한 연산을 줄이고, 효율적으로 사고하도록 개선
 - 접근 방법:
 - 。 모델 구조 자체를 개선하거나
 - 。 추론 결과를 활용하거나
 - 입력 프롬프트를 조정하여 효율을 높이는 방식으로 구분됨

효율적 추론의 세 가지 접근 방식

구분	설명	대표 기법 / 모델
(a) 모델 기반 접근	모델 내부에서 추론 길이나 방식을 제어함	 ◆ DeGRPO: 제어 토큰(<short> , <think>)으로 추론 길이를 조절→ 불필요하게 긴 추론 방지</think></short>
(b) 추론 결과 기반 접근	모델이 추론 도중 스스로 생 각을 요약하며 동적으로 사 고	✔ InftyThink: 각 단계마다 생각을 정리(Summary)하며 누적 추론 수행→ 점진적 사고및 메모리 효율성 향상
(c) 입력 프롬프트 기 반 접근	질문 난이도에 따라 연산량 (추론량)을 다르게 배분	 → 라우팅(Routing): 쉬운 질문은 간단히, 어려운 질문은 깊게 사고 → Claude Sonnet 4, GPT-5: 복합 문제일수록 더 많은 추론 자원 투입

핵심 기술 요약

기술	핵심 아이디어	효과
DeGRPO	<think>/ <short>등 제어 토큰으로 추론 길이 학습</short></think>	불필요한 긴 연산 감 소
InftyThink	단계별로 생각을 요약하고 누적 반영	동적·점진적 사고
Routing (Claude, GPT-5)	질문 난이도별로 추론 자원 자동 분배	효율적 자원 활용

Deep Research의 배경

| 패러다임의 전환

• 원 검색 → LLM 채봇 → 검색 증강 생성(RAG) → 에이전트 기반 심층 연구

에이전트 기반 심층 연구

|핵심 개념

- LLM은 다단계 추론과 검색을 결합
- 동적 피드백 루프를 형성: 검색 결과에 대해 추론하고, 이 추론은 이후 검색 과정을 조정
- 간단한 응답 생성기가 아니라, 능동적인 정보 탐색 에이전트 역할
- 필요한 경우, 문서를 읽고 쿼리를 반복적으로 생성하고 수정하여 다른 도구나 에이전트와 협력

│ 역동적인 환경에서의 어려움과 해결방안

- 검색과 추론의 결합에는 어려움이 존재
 - 기존 RAG 파이프라인은 검색한 다음 추론하는 고정된 순서를 사용 → 오류 축적
 - 에이전트 기반 접근법은 추론이 언제, 무엇을 검색할지 결정하도록 하여 오류 전파를 줄
 일 수 있음
 - 적응력 한계
 - 프롬프트와 지도 학습에 대한 의존으로 인해 새로운 환경에 대한 유연한 전략을 개발하기가 어려움
 - 시행 착오를 통해 최적의 전략을 배우려면 강화 학습이 필요
 - 효율적인 리소스 할당
 - 검색과 추론 둘 다 토큰과 시간을 소비
- 작업 유형에 따라 검색/추론 리소스 비율을 동적으로 조절하는 기술이 필요

│ 강화학습 기반 훈련 및 보상 설계

- 프롬프트
 - 예: ReAct 추론+행동 구조를 사용하여 프로세스를 검색 및 추론 단계로 분할
 지도학습
 - 예: Toolformer 모델은 훈련 데이터의 패턴을 기반으로 도구를 사용하는 법을 학습
 강화 학습
- 목표 : 모델이 독립적으로 최적의 검색 및 추론 전략을 발견하도록 유도
- 예: R1-Searcher, DeepResearcher 복잡한 작업을 세분화하고, 쿼리 시퀀스를 계획하고, 정보를 검증하고, 전략을 조정

Test-Time Scaling (TTS)

- 정의: 추론/검색 단계 수를 늘리면 성능 향상으로 이어짐 (TTS 법칙)
- 추론 TTS: 추가적인 추론 단계 (CoT, Self-Refinement, Self-Consistency 등) 도입
 → 정확도 향상
 - 예: 수학적 증명
 - 검색 TTS: 반복적, 다단계 검색 →정보 수집 범위 확장
 - 예: 문헌 리뷰, 지식 그래프 구축
 - · Trade-off:
 - 검색과 추론 둘 다 자원을 소모 → 각 작업 유형에 맞는 최적 비율의 조정이 필수.

방법론 - 문제 해결 과정

- 생각 → 도구 사용 → 생각 → ... → 답변 사이클 반복
 - <생각> 단계에서 세부 목표를 세우고 검색할 내용을 결정함
 - <검색> 에이전트가 검색 API를 사용해서 상위 k개 결과(제목, 주소, 요약문)를 가져옴
 - <탐색> 에이전트가 웹페이지 내용을 읽고 유용한 정보를 단기 저장소에 모아둠
 - 읽는 과정에서 에이전트는 (a) 계속 읽을 건지 아니면 그만둘 건지, (b) 어떤 내용을 저장할 건지 판단
- 해당 페이지가 별로 도움이 안 된다 싶으면 빠르게 다른 URL로 이동
- 필요한 정보를 충분히 모았다면, <답변> 단계에서 최종 결론을 생성

역동적인 환경에서의 어려움과 해결방안

- 많은 요청 동시 처리
 - 한 번에 최대 4,096개 도구 호출이 발생 가능
 - 처리 지연을 막고 빠른 속도를 유지하기 위해 50개 노드의 분산 CPU 시스템에서 작업을 나누어 처리
 - 웹 크롤링 및 API 제약
 - 크롤링 방지 시스템과 요청 제한으로 인한 실패 가능성
 - 재시도 메커니즘과 캐시를 사용하여 호출 빈도와 비용 감소
 - 정보 추출 효율성 문제
 - 웹페이지를 작은 단위로 나누어서 하나씩 차례로 분석
 - 별로 중요하지 않다고 판단되면 바로 포기하고 핵심 페이지에 컴퓨팅 자원을 집중

│강화학습 훈련 프레임워크 및 보상

- 알고리즘 : GRPO (Group Relative PPO)
 - 이전 정책 (π_old)을 사용한 여러 그룹의 실행 결과를 기준으로 삼음.
 - 새로운 정책(policy)이 이 결과들의 발생 확률을 높이는 정도에 따라 PPO 방식으로 업데이트
 - 보상 설계:
 - 형식 오류: -1 페널티.

- 올바른 형식: 단어 레벨의 F1 점수(0-1)를 부여
- 사실에 대한 정확도, 논리적 일관성 등에 대한 복합적인 보상을 도입할 수 있음

에이전트 기반 심층 연구 (DeepResearcher)

핵심 아이디어

• 단순 검색형 모델이 아닌, **스스로 계획하고 검증하며 사고하는 AI 에이전트**를 지향.

창발적 행동 유형

유형	설명
계획 능력(Planning)	End-to-End 강화학습으로 단계별 계획을 세우며 문제 해결
교차 검증(Cross Validation)	첫 결과에 의존하지 않고 여러 출처를 비교해 추가 확인
성찰적 재검색(Reflection)	검색 결과가 부족하면 방향을 수정해 다시 탐색
솔직한 회피(Honesty)	확실하지 않을 땐 추측 대신 "모른다"고 답변

요약 한 줄:

DeepResearcher는 계획, 검증, 성찰, 정직성을 통해 사고 과정이 자율적이고 신뢰성 높은 AI 추론 에이전트를 구현한다.

- 1. 평가 및 발전 방향
 - 한계점 및 고려사항
 - 높은 비용 (토큰)
 - -단일 에이전트는 표준 질의응답보다 4배 더 많은 토큰을 사용; 멀티 에이전트는 15배 더 많이 사용
 - -고부가가치 작업에서만 비용-효율적임
 - 범용성의 한계
 - -병렬 작업들로 분할될 수 있는 작업에서만 효과적
 - -코딩, 디버깅 등 순차적인 단일 컨텍스트 처리가 필요한 작업에는 적합하지 않음
 - 에이전트 관리의 복잡성
 - -너무 많은 숫자의 에이전트가 생성되거나, 무한 루프 또는 에이전트 간 간섭 위험

-명확한 정지 조건 및 프롬프트 가이드 라인과 같은 보호 조치 필요

한계점 및 고려사항

- 상태 관리 및 오류 전파
- -작은 오류가 프로세스의 전체 방향을 왜곡시킬 수 있음
- -체크 포인트 설정 및 복구를 위한 메커니즘 필요
- 평가 및 디버깅의 어려움
- -실행 경로와 답변은 매 실행마다 다르므로 공평한 평가가 어려움
- -LLM 평가 점수 (0-1 스케일)와 사람에 의한 평가를 함께 사용하여 평가

┃ 미해결 문제 및 발전 방향

- 인간 중심의 상호 작용
- -AI를 자율적인 연구원이 아니라 강력한 조력자로 포지셔닝
- -중간 사고 과정을 보여주고 설명 → 투명성 보장 및 신뢰성 향상
- -사용자 피드백을 통해 지속적인 개인화
- 전문 분야 에이전트
- -의학, 법, 생물학 등과 같은 분야에 대한 분야별 지식과 추론 구조를 결합
- -도메인 별 데이터셋 및 평가 프레임워크 개발
- -범용적인 에이전트와 및 전문적인 에이전트의 하이브리드를 운영
- 효율적인 TTS 구현
- -더욱 효율적인 추론: 중요한 부분에 대해서만 깊이 추론하고, 적절하게 더 작은 모델을 사용
- -더욱 효율적인 검색: 인덱싱 최적화, 비생산적 검색 조기 중단, 우선 순위가 낮은 경로 제거

5. 도메인 특화 Al Agent

전문 분야에 대한 지식 및 추론 구조 결합의 필요 성

1. Deep Reasearch의 배경

• 패러다임의 전환

웹 검색 → LLM 챗봇 → 검색 증강 생성 (RAG) → 에이전트 기반 심층 연구

2. 에이전트 기반 심층 연구

• 핵심 개념:

- 。 LLM이 다단계 추론과 검색을 결합
- 검색 결과 → 추론 → 검색 조정의 동적 피드백 루프 형성
- 단순 응답 생성기가 아닌 **능동적 정보 탐색 에이전트**로 작동
- 필요 시 문서 분석·쿼리 수정·도구·다른 에이전트와 협력 수행

• 역동적 환경에서의 어려움과 해결 방안

1. 검색-추론 결합의 어려움

- 기존 RAG: 검색 → 추론 순서로 고정 → 오류가 누적될 수 있음
- 에이전트 기반: 추론이 검색 시점과 내용을 결정 → 오류 전파 감소

2. 적응력 한계

- 프롬프트 지도학습 의존 → 새로운 환경 대응 어려움
- 강화 학습 활용 시 시행착오로 최적 전략 학습 가능

3. 효율적 리소스 할당

- 검색과 추론 모두 토큰·시간 소모
- 작업 유형별로 리소스 비율을 동적으로 조절하는 기술 필요

• 강화학습 기반 훈련 및 보상 설계

1. 프롬프트 기반 접근

• 예: ReAct – 추론과 행동 구조를 결합하여 검색과 추론 단계를 분리

2. 지도학습 기반 접근

• 예: Toolformer – 훈련 데이터 패턴을 통해 도구 활용 방법 학습

3. 강화학습 기반 접근

- 목표: 모델이 스스로 최적 검색·추론 전략을 발견
- 예: R1-Searcher, DeepResearcher 복잡한 작업 세분화, 쿼리 계획, 정보 검증, 전략 조정

Test-Time Scaling (TTS)

1. 정의

• 추론 또는 검색 단계를 늘리면 성능 향상 (TTS 법칙)

2. 추론 TTS

- 추가 추론 단계 적용 (CoT, Self-Refinement, Self-Consistency) → 정확도
 향상
- 예: 수학적 증명

3. 검색 TTS

- 반복적·다단계 검색 → 정보 수집 범위 확대
- 예: 문헌 리뷰, 지식 그래프 구축

4. Trade-off

● 검색과 추론 모두 리소스 소모 → 작업 유형별 최적 비율 조정 필요

• 방법론 : 문제 해결 과정

- 1. **사이클 구조**: 생각 → 도구 사용 → 생각 → ... → 답변 반복
- 2. 생각 단계: 세부 목표 설정 및 검색할 내용 결정
- 3. 검색 단계: 검색 API로 상위 k개 결과(제목, 주소, 요약) 수집
- 4. 탐색 단계: 웹페이지 내용 확인, 유용 정보 단기 저장
 - 읽을지 계속할지 결정
 - 어떤 정보를 저장할지 판단
 - 도움이 없으면 다른 URL로 이동

5. 답변 단계: 충분한 정보 수집 후 최종 결론 생성

• 역동적 환경에서의 어려움과 해결방안

1. 동시 요청 처리

• 최대 4,096개 도구 호출 가능 → 분산 CPU(50개 노드)로 작업 분할, 지연 최 소화

2. 웹 크롤링 및 API 제약

● 크롤링 방지·요청 제한으로 실패 가능 → 재시도와 캐시 활용으로 호출 빈도·비용 절감

3. 정보 추출 효율성

● 웹페이지를 작은 단위로 분석 → 중요하지 않은 페이지는 즉시 포기, 핵심 페이 지에 자원 집중

• 강화학습 훈련 프레임워크 및 보상

1. 알고리즘: GRPO (Group Relative PPO)

- 이전 정책(π_old) 기반 여러 그룹 실행 결과 참고
- 새로운 정책이 결과 발생 확률을 높이는 정도에 따라 PPO 방식으로 업데이트

2. 보상 설계

- 형식 오류: -1 페널티
- 올바른 형식: 단어 수준 F1 점수(0~1)
- 필요 시 사실 정확성, 논리적 일관성 등 복합 보상 적용

• 성능 분석

- **벤치마크 성능**: In-domain(NQ, TQ, HotpotQA, 2Wiki) 및 Out-of-domain(Musique, Bamboogle, PopQA)에서 SOTA 달성
- 특징: 특히 Bamboogle에서 기존 웹 검색 기반 모델을 크게 능가
 - → 실제 웹 환경 학습 효과 입증

• 창발적 행동

- 계획 능력: end-to-end 강화학습을 통해 다단계 계획 수행 가능
- **교차 검증**: 초기 결과에만 의존하지 않고 추가 확인으로 신뢰도 향
- **성찰적 재검색**: 불만족스러운 검색 결과 시 검색 전략 조정
- **솔직한 회피**: 확실하지 않은 경우 추측 대신 "모름"으로 응답

3. 평가 및 발전 방향 (pdf에는 4번이라 돼있음, 3번 없으유..)

• 한계점 및 고려사항

1. 높은 비용

- 단일 에이전트: 표준 QA 대비 4배 토큰 사용
- 멀티 에이전트: 15배 토큰 사용 → 고부가가치 작업에서만 비용 효율적

2. 범용성 한계

- 병렬 처리 가능한 작업에서만 효과적
- 코딩, 디버깅 등 순차적 단일 컨텍스트 작업에는 부적합

3. 에이전트 관리 복잡성

- 과도한 에이전트 생성, 무한 루프, 간섭 위험
- 명확한 정지 조건과 프롬프트 가이드라인 필요

4. 상태 관리 및 오류 전파

- 작은 오류가 전체 프로세스 방향을 왜곡할 수 있음
- 체크포인트 및 복구 메커니즘 필요

5. 평가 및 디버깅 어려움

- 실행 경로와 답변이 매번 달라 공평한 평가 어려움
- LLM 점수(0~1)와 사람 평가를 병행하여 평가

• 미해결 문제 및 발전 방향

1. 인간 중심 상호작용

• AI를 자율적 연구원이 아닌 조력자로 포지셔닝

- 중간 사고 과정 공개 → 투명성과 신뢰성 향상
- 사용자 피드백 기반 지속적 개인화

2. 전문 분야 에이전트

- 의학, 법, 생물학 등 분야별 지식과 추론 구조 결합
- 도메인별 데이터셋과 평가 프레임워크 개발
- 범용 에이전트와 전문 에이전트 하이브리드 운영

3. **효율적인 TTS 구현**

- 추론: 중요한 부분만 심층 분석, 적절히 작은 모델 활용
- 검색: 인덱싱 최적화, 비생산적 검색 조기 중단, 낮은 우선 순위 경로 제거