

Sky Martin and Kiersten Johnson



# Online Mendelian Inheritance in Man

### The Human Gene Disease Network

2007

Hand labeled subset of OMIM

Diseases: 1,284

Genes: 1,777





#### Disease Gene Network (DGN)



#### **Human Disease Network (HDN)**



Node: Disease

**Edge:** Shared gene

#### Disorder Class Assignment to Genes



Diseases with Disorder Class "A"

#### Disorder Class Assignment to Genes



Diseases with Disorder Class "A"

#### **Disease Gene Network (DGN)**



Node: Genes

Edge: Shared disease

# Our Visualizations and Analysis

# Human Gene Disease Data



#### **Disease Network**



#### **Gene Network**



#### **Disease Network**



#### Connected Component: Disease Network



#### Breadth First Tree Traversal: Disease Network



#### <u>In v. Out Edges: Disease Network</u>





#### **Gene Network**



#### Connected Component: Gene Network



#### Breadth First Tree Traversal: Gene Network



#### <u>In v. Out Edges: Gene Network</u>





# Attribute - Disorder Class Prediction

### why

Assign disorder class to full OMIM data set.

#### **Prediction Algorithms**

- 1. First Neighbor
- 2. Second Neighbor
- 3. Weighted
- 4. Baseline (random)

#### **Predicting Classes of Disorders**



# OMIM Data



#### **Condensing Diseases**







## **Link Prediction**

#### Value of Link Prediction

Link prediction between disease and gene would help researchers narrow their research to relevant genes.

#### N-Fold Validation

- Hide proportion of edges from i
- 2. Calculate similarity measures for every possible unobserved edge s.t.  $(i,j) \forall j$  in G
- 3. Rank the unobserved edges by measure, pick top P (hyper-parameter) edges to predict as edges
- 4. Calculate accuracy metrics
- 5. Average over all i in G

#### **Unobserved Edges**

| Similarity<br>Measure | i | j  | Pred |
|-----------------------|---|----|------|
| 10                    | 1 | 2  | 1    |
| 3                     | 1 | 4  | 1    |
| 1                     | 1 | 6  | 0    |
|                       |   |    |      |
| 0                     | 1 | 45 | 0    |



- 1. Common Neighbors O(Nk²)
- 2. Jaccard Coefficient O(Nk²)
- 3. Preferential Attachment
- 4. Adamic/Adar Index
- 5. Leicht-Holme-Newman Index
- 6. Katz<sub>R</sub> Index

Path lengths between x and y weighted by B

# Common Neighbors = 
$$|\Gamma(x) \cap \Gamma(y)|$$

# Common Neighbors 
$$\frac{\Gamma(x) \cap \Gamma}{\Gamma(x) \cup \Gamma}$$

Degree of x \* Degree of y  $|\Gamma(x)| * |\Gamma(y)|$ 

# Common Neighbors with degree penalty 
$$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}$$

# Common Neighbors Degree Product 
$$\frac{\left|\Gamma\left(x\right)\cap\Gamma\left(y\right)\right|}{k_{x}*k_{y}}$$

$$\sum_{l=1}^{\infty} \beta^l \cdot \left| \text{paths}_{xy}^{\langle l \rangle} \right|$$

# Disclaimers

- OMIM network is far from fully observed
- Link prediction measures were created to be on unipartite networks, because of common neighbors

#### **Important Metrics**

Recall - TP/(TP+FN)

Proportion of actual edges that are detected

Precision - TP/(FP+TP)

Proportion of edges detected that are actual edges

## **Disclaimers**

- OMIM network is far from fully observed
- Link prediction measures were created to be on unipartite networks, because of common neighbors



### **Future Directions**

- Estimate class for OMIM
- Create link prediction for bipartite network