

Otimização Aplicada à Engenharia de Processos

Aula 3: Programação Linear

Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo

Programa de Pós-Graduação em Engenharia Elétrica

Belo Horizonte Março de 2013

Definição

- Um programa linear é um problema de otimização onde o objetivo é uma função linear das variáveis, e onde as restrições são representadas por igualdades e desigualdades lineares;
- Os problemas de programação linear geralmente aparecem na determinação do planejamento ótimo de atividades, ou seja, de um plano ótimo que representa a melhor solução entre todas as soluções possíveis;

Definição

Forma padrão de problemas de programação linear:

$$\begin{array}{lll} \text{minimize} & c_1x_1+c_2x_2+\ldots+c_nx_n\\ \text{subject to} & a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n &=b_1\\ & a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n &=b_2\\ & \cdot & \cdot & \cdot\\ & \cdot & \cdot & \cdot\\ & a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n &=b_m\\ \text{and} & x_1\geqslant 0, x_2\geqslant 0,\ldots,x_n\geqslant 0, \end{array}$$

Os valores dos a_{ij} , b_i e c_i são constantes reais fixas, e os $x_i \in \mathbb{R}$ são as variáveis a serem determinadas; Assume-se ainda que $b_i \geq 0$.

 Embora a forma das funções de restrição possa variar de problema para problema, é possível reduzir qualquer problema de programação linear para uma forma padrão;

Definição

Utilizando uma notação vetorial, pode-se expressar o problema de programação linear de uma forma mais compacta:

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b} \in \mathbf{x} \ge \mathbf{0}$

com $\mathbf{x} \in \mathbb{R}^n$ é um vetor-coluna, $\mathbf{c}^T \in \mathbb{R}^n$ é um vetor-linha, $\mathbf{A} \in \mathbb{R}^{m \times n}$ é uma matriz de coeficientes, e $\mathbf{b} \in \mathbb{R}^n$ também é um vetor-coluna. A desigualdade $\mathbf{x} \geq \mathbf{0}$ indica que cada componente do vetor \mathbf{x} é não-negativa.

Definição

- Pontos x que satisfaçam a todas as restrições são chamados de soluções viáveis ou soluções factíveis;
- Os coeficientes a_{ij} da matriz A são chamados de coeficientes tecnológicos, e geralmente indicam restrições físicas, técnicas ou normativas;
- As restrições do tipo x_i ≥ 0 são chamadas de restrições de não-negatividade;

Definição

Utilizando a terminologia e a notação definidas anteriormente, pode-se estabelecer o problema de programação linear como se segue:

Dentre todos os pontos factíveis, encontre aquele que minimize a função-objetivo

Exemplo

Considere o seguinte problema :

minimize:
$$z = 2x_1 + 5x_2$$

sujeito a: $x_1 + x_2 \ge 6$
 $-x_1 - 2x_2 \ge -18$
 $x_1 \ge 0$
 $x_2 \ge 0$

Neste caso temos 2 variáveis de decisão, 2 restrições tecnológicas e as restrições de não-negatividade. Note que este problema não está na forma padrão.

Exemplo

Restrições e região factível:

O problema consiste em encontrar o ponto dentro da região demarcada que implique no menor valor de z

Premissas

Antes de passar às formas de se transformar um problema para a forma padrão, convém apresentar as premissas sobre as quais a programação linear repousa:

- Proporcionalidade;
- Aditividade;
- Divisibilidade;
- Determinismo.

Premissas

Proporcionalidade:

Dada uma variável x_j, sua contribuição para a função de custo (função-objetivo) é c_jx_j, e sua contribuição para a i-ésima restrição é dada por a_{ij}x_j. Isto implica que se x_j é aumentado de k vezes, também o é a sua contribuição para o custo e para cada uma das restrições.

Premissas

Aditividade:

Esta suposição garante que o custo total é a soma dos custos individuais, e que a contribuição total à i-ésima restrição é a soma das contribuições individuais das atividades individuais. Em outras palavras, não há substituição ou efeitos de interação entre atividades.

Premissas

Divisibilidade:

Esta suposição diz que as variáveis de decisão podem ser divididas em qualquer nível fracionário, ou seja, elas podem assumir quaisquer valores reais não-inteiros.

Premissas

Determinismo:

Todos os coeficientes c_j, a_{ij}, b_j são conhecidos deterministicamente. Assume-se que quaisquer componentes probabilísticas ou estocásticas inerentes ao problema - aos custos, preços, disponibilidade de recursos, etc. - são representados por um destes coeficientes através de algum procedimento determinístico.

Formulação

Ajuste à forma padrão

Quando as restrições de um modelo de programação linear são apresentadas na forma de inequações, diz-se que esse modelo está na *forma canônica*. Alguns métodos de conversão da forma canônica para a forma padrão são elencados a seguir:

- Variáveis de folga (slack);
- Variáveis de excesso (surplus);
- Variáveis livres (free)

Variáveis de folga (slack)

Considere o problema abaixo, formulado na forma canônica:

Nesse caso, o conjunto de restrições é determinado inteiramente pelas desigualdades lineares.

Mediante operações, é possível transformar o problema acima para a forma padrão.

Variáveis de folga (slack)

Um conjunto de novas variáveis adicionais $y_i \ge 0$, chamadas de *variáveis de folga*, é adicionado ao problema, de forma a transformar as desigualdades em igualdades;

Variáveis de folga (slack)

- Ao reconsiderar o problema como um contendo n + m variáveis (x₁,..., x_n, y₁,..., y_m) o problema é convertido para a forma padrão.
- A nova matriz de coeficientes tecnológicos assume uma forma particular $[\mathbf{A}, \mathbf{I}] \in \mathbb{R}^{m \times (n+m)}$, particionável em 2 conjuntos:
 - As primeiras n colunas são a matriz original, as m colunas restantes representam uma matriz identidade;

Variáveis de excesso (surplus)

Se as desigualdades lineares do exemplo anterior estiverem na forma:

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \geq b_i$$

uma transformação similar à slack pode ser aplicada:

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n - y_i = b_i$$

com $y_i \ge 0$ sendo denotadas como *variáveis de excesso*.

A utilização estratégica de multiplicações por -1 e a adição conjunta de variáveis de folga e de excesso permitem transformar qualquer problema para a forma padrão, desde que $x_i, y_i \geq 0 \forall i, j$.

Variáveis livres

Se um programa linear é dado na forma padrão, com a exceção de que uma ou mais variáveis não estão restritas a valores não-negativos, há duas técnicas relativamente simples para a transformação deste programa na forma padrão.

Variáveis livres

Método 1:

- Suponhamos que no exemplo utilizado anteriormente a restrição x₁ ≥ 0 não estivesse presente - ou seja, que a variável x₁ possa assumir valores tanto positivos quanto negativos.
- Neste caso, podemos escrever:

$$x_1 = u_1 - v_1$$

 $u_1 \ge 0$
 $v_1 \ge 0$

Variáveis livres

Método 1:

- Se substituirmos todos os x₁ pela diferença u₁ v₁, conseguimos colocar o programa linear na forma padrão (ou seja, com todas as variáveis restritas a valores não-negativos), mantendo a linearidade das restrições.
- Neste caso, o problema passa a ser expresso em termos de n + 1 variáveis;
 - (ou n + k, onde k é o número de ocorrências desta situação)

Variáveis livres

Método 2:

Uma segunda forma de tratar um problema onde x₁
não tenha restrições de sinal consiste na eliminação da
variável x₁, juntamente com uma das equações de
restrição. Por exemplo, se considerarmos:

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n = b_i$$

com $a_{i1} \neq 0$, temos que x_1 pode ser expresso como uma combinação linear das outras variáveis mais uma constante,

$$x_1 = -\left(\frac{a_{i2}}{a_{i1}}x_2 + \ldots + \frac{a_{in}}{a_{i1}}x_n\right) + \frac{b_i}{a_{i1}}$$

Variáveis livres

Método 2:

- Se substituírmos todas as ocorrências de x₁ por esta fórmula equivalente, temos exatamente o mesmo problema, agora expresso em termos das n – 1 variáveis x₂,..., x_n;
- Além disto, a restrição utilizada para a substituição de x₁ também é eliminada do problema.

Variáveis livres

Para ilustrar esta última técnica, vamos considerar o exemplo:

minimize
$$x_1 + 3x_2 + 4x_3$$

subject to $x_1 + 2x_2 + x_3 = 5$
 $2x_1 + 3x_2 + x_3 = 6$
 $x_2 \ge 0, \quad x_3 \ge 0$

 O problema está na forma padrão, exceto pela ausência da restrição de não-negatividade para a variável x₁

Variáveis livres

Resolvendo a primeira restrição para x_1 , temos:

$$x_1 = 5 - 2x_2 - x_3$$

Substituindo esta expressão no objetivo e na segunda restrição, teremos:

minimize
$$x_2 + 3x_3$$

subject to $x_2 + x_3 = 4$
 $x_2 \ge 0$, $x_3 \ge 0$

Observe que removemos o valor 5 do objetivo. Isto é possível devido ao fato de que a adição de uma constante não modifica o ponto de ótimo do problema.

Transformação de problemas de maximização

No caso de problemas onde a função objetivo deva ser maximizada:

maximize:
$$\sum_{i=1}^{n} c_{i} x_{j}$$

os mesmos pode ser facilmente convertidos para problemas de minimização através de uma simples multiplicação:

minimize:
$$-\sum_{i=1}^{n} c_i x_i$$

Variáveis com outros limites

Caso uma variável tenha um limite inferior do tipo $x_j \ge l_j$, uma transformação de variáveis do tipo:

$$x_j = I_j + x_j'$$

faz com que possamos reescrever o problema, substituindo todos os x_j por x_i' , com $x_i' \ge 0$;

Similarmente, para limites superiores $x_j \le u_j$, é possível fazer $x_j = u_j - x_j'$.

Coloque na forma padrão:

minimize:
$$2x_1 + 5x_2 + 3x_3 + 4x_4$$

sujeito a: $x_1 + 2x_2 + 3x_3 + x_4 \le 6$
 $-x_1 + x_2 + 2x_3 + 3x_4 \ge 8$
 $x_1 - x_2 - 3x_3 + 2x_4 \le -6$
 $x_1 \le 6$
 $x_2 \ge 1$
 $x_3 \ge 0$

Após colocar na forma padrão, escreva na forma vetorial (ou seja, defina a matriz **A** e os vetores **b** e **c**)

Alguns exemplos de aplicação

- Problema de transporte;
- Problema da dieta;
- Problema da refinaria de petróleo;

O problema de transporte

Suponha uma transportadora que precise entregar quantidades diferentes de um dado produto para n clientes, a partir de m depósitos. Cada trecho transportado possui um certo custo por unidade do produto.

O problema de transporte

Sejam:

- a₁, a₂,..., a_m as quantidades que devem sair de cada um dos m depósitos;
- b₁, b₂,..., b_n as quantidades que devem ser entregues para cada um dos n clientes;
- c_{ij} o custo associado ao transporte de uma unidade do produto entre o *i*-ésimo depósito e o *j*-ésimo cliente;

Deseja-se determinar as quantidades x_{ij} a serem transportadas entre cada par depósito-cliente, com $i \in [1, m]$ e $j \in [1, n]$, de forma a satisfazer os requerimentos das entregas e minimizar o custo total do transporte.

O problema de transporte

Para formular este problema como um programa linear, começamos por definir a matriz abaixo:

A *i*-ésima linha define as variáveis associadas ao *i*-ésimo depósito, e a *j*-ésima coluna corresponde às variáveis associadas ao *j*-ésimo cliente.

O problema de transporte

Alguns detalhes importantes para a modelagem do problema:

- As variáveis x_{ij} (quantidades transportadas entre i e j) são não-negativas;
- O total de produto que sai dos depósitos, $\sum_{i=1}^{m} a_i$, pode ser considerado igual ao total que chega aos clientes, $\sum_{j=1}^{n} b_j$;
- O custo total de transporte corresponde à soma dos custos de entrega entre cada depósito e cada cliente.

O problema de transporte

Assim, temos a formulação de um programa linear com $m \times n$ variáveis:

minimize:
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 sujeito a:
$$\sum_{i=1}^{m} x_{ij} = b_{j}$$

$$\sum_{j=1}^{n} x_{ij} = a_{j}$$

$$x_{ij} \geq 0, \ \forall i = 1, 2, \dots, m; j = 1, 2, \dots, n$$

O problema da dieta

Deseja-se determinar a dieta mais econômica possível que atenda aos requisitos nutricionais mínimos para uma boa saúde;

 Tal problema emerge, por exemplo, no contexto do planejamento das rações diárias para campanhas militares

Outras informações do problema:

- Cada alimento possui um determinado preço unitário;
- Há m ingredientes nutricionais básicos, cada qual com uma dada quantidade mínima diária recomendada;
- Cada alimento carrega uma dada concentração de cada um dos nutrientes;

O problema da dieta

Sejam:

- c₁, c₂,..., c_n os custos unitários de cada um dos n alimentos disponíveis;
- b₁, b₂,..., b_n as quantidades mínimas necessárias de cada um dos m nutrientes;
- a_{ij} a quantidade do *i*-ésimo nutriente contida em uma unidade do *j*-ésimo alimento;

Deseja-se determinar as quantidades x_j de cada alimento a serem incluídas na dieta, de forma a obedecer ao nível nutricional mínimo e minimizar os custos .

O problema da dieta

O custo total de uma dada dieta é dado por:

$$c_1x_1+c_2x_2+\ldots+c_nx_n$$

As restrições nutricionais são dadas na forma:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$$

Temos também as restrições de não-negatividade:

$$x_1\geq 0,\ x_2\geq 0,\ldots,\ x_n\geq 0$$

O problema da dieta

A formulação do problema pode ser colocada como:

minimize:
$$\sum_{j=1}^{n} c_j x_j$$

minimize: $\sum_{j=1}^{n} a_{1j} \ge b_1$
 $\sum_{j=1}^{n} a_{2j} \ge b_2$
 \vdots
 $\sum_{j=1}^{n} a_{mj} \ge b_m$
 $x_j \ge 0 \ \forall j \in [1, n]$

Esta formulação pode ser colocada na forma padrão através da inclusão de variáves de excesso.

O problema da dieta

O problema da dieta aparece em diversos contextos onde misturas de ingredientes devem satisfazer a um dado desempenho mínimo, e devem ter custo mínimo.

Um exemplo possível é o problema de determinação da mistura de carvões para coquerias, atendendo a requisitos (restrições) de qualidade e buscando a minimização dos custos;

O problema da refinaria

Uma refinaria de petróleo destila óleo cru, proveniente de duas fontes: Arábia Saudita e Venezuela, e produz três produtos: gasolina, querosene e lubrificantes;

Alguns detalhes:

- Os óleos de cada fornecedor têm diferentes composições químicas e fornecem diferentes quantidades de destilados por barril processado:
 - 1 Barril da Arábia = 0,3 barril de gasolina, 0,4 de querosene e 0,2 de lubrificante.
 - 1 Barril da Venezuela =0, 4 barril de gasolina, 0, 2 de querosene e 0, 3 de lubrificante.
- Em ambos os casos há 10% de resíduos.

O problema da refinaria

Mais detalhes:

- Os óleos diferem em custo e disponibilidade. Pode-se comprar:
 - Até 9000 barris da Arábia a \$20,00/barril
 - Até 6000 barris da Venezuela a \$15,00/barril.
- Os contratos da refinaria com distribuidores exigem que ela produza, por dia:
 - · 2000 barris de gasolina;
 - 1500 barris de querosene
 - 500 barris de lubrificantes.

Deseja-se descobrir a melhor estratégia para que seja possível cumprir os contratos a um preço mínimo.

O problema da refinaria

As variáveis de decisão são claramente as quantidades de óleo cru a serem adquiridas da Arábia Saudita (x_1) e da Venezuela (x_2) , ambas dadas em barris/dia. Podemos descrever os dados deste problema através de uma tabela como a seguinte:

	Fornecedor		Qt. a Produzir
	Arábia (x ₁)	Venezuela (x_2)	Qi. a i ioduzii
Gasolina	0.3	0.4	2000
Querosene	0.4	0.2	1500
Lubrificantes	0.2	0.3	500
Comprável	9000	6000	
Custo/barril	20	15	

O problema da refinaria

A partir disto, podemos modelar o problema como um programa linear:

minimize:
$$20x_1+15x_2$$
 sujeito a: $0.3x_1+0.4x_2\geq 2000$ (Gasolina) $0.4x_1+0.2x_2\geq 1500$ (Querosene) $0.2x_1+0.3x_2\geq 500$ (Lubrificantes) $x_1\leq 9000$ (Arábia) $x_2\leq 6000$ (Venezuela) $x_1,\ x_2\geq 0$ (não-negatividade)

O problema da refinaria

A partir disto, podemos modelar o problema como um programa linear:

minimize:
$$20x_1+15x_2$$
 sujeito a: $0.3x_1+0.4x_2\geq 2000$ (Gasolina) $0.4x_1+0.2x_2\geq 1500$ (Querosene) $0.2x_1+0.3x_2\geq 500$ (Lubrificantes) $x_1\leq 9000$ (Arábia) $x_2\leq 6000$ (Venezuela) $x_1,\ x_2\geq 0$ (não-negatividade)

A solução ótima deste problema é $\mathbf{x} = [2000, 3500]$, com um custo de \$92500. Tente resolvê-lo.

Perguntas e comentários?