

Genetic Algorithms

11 | Dantur, Debrouvier, Golmar

Introducción

- ♦ Matlab™
- ❖ JSONLab 1.5
- Graph Streaming
- Lazy Configuration
- Actualización Parcial del Fitness

Cromosoma

(5 Genes de **Stat** + 1 Gen de **Altura**)

¿Por qué no 26 genes?

(5 Genes por **Ítem**)

Cotas Superiores

$$\begin{aligned} &Fuerza_p = 100 \tanh \left(0.01 \times \textit{M}_{fuerza} \sum Fuerza_{item}\right) \\ &Agilidad_p = \tanh \left(0.01 \times \textit{M}_{agilidad} \sum Agilidad_{item}\right) \\ &Pericia_p = 0.6 \tanh \left(0.01 \times \textit{M}_{pericia} \sum Pericia_{item}\right) \\ &Resistencia_p = \tanh \left(0.01 \times \textit{M}_{resistencia} \sum Resistencia_{item}\right) \\ &Vida_p = 100 \tanh \left(0.01 \times \textit{M}_{vida} \sum Vida_{item}\right) \end{aligned}$$

Cotas Superiores

 $Fuerza_p, Vida_p \leq 100$

 $Agilidad_p, Resistencia_p \leq 1$

No dependen de M!!

 $Pericia_p \leq 0.6$

 $Ataque \leq 160 \times ATM(h)$

 $Defensa \leq 160 \times DEM(h)$

Cotas Superiores

 $Ataque \le 160 \times ATM(h)$

 $Defensa \leq 160 \times DEM(h)$

 $Desempeño \leq 160(p_{ataque} ATM(h) + p_{defensa} DEM(h))$

246 h = 1.3

(Desempeño Máximo Posible - Analítico)

176 h = 1.3

(Desempeño Máximo Posible - Estimado)

~ 56 h = 1.3

(Desempeño Máximo Obtenido)

Defensor 2

Desempeño = 0.1 * Ataque + 0.9 * Defensa

Selección

Selection Method	Fitness
Boltzmann¹	50.938
Deterministic Tournament	51.663
Elite	51.530
Probabilistic Tournament	49.786
Ranking	50.648
Roulette	44.942
Universal	45.096

N = 300 K = 150 5000 Generaciones Pm = 0,01 Pc = 0,9

Cruza

Crossover Method	Fitness
Anular	52.945
Single-point	51.847
Two-point	52.378
Uniform	52.692

Población

Población (N)	Fitness	Tiempo [sl
100	47.114	251.770
3003	51.583	725.560
600	54.233	1290.300

Sub-población (k)

Sub-población (k)	Fitness	Tiempo (s)
50	51,688	507.024
100	48.978	434.575
150	50. <mark>1</mark> 73	591.193
200	50.608	639.207

Reemplazo

Replacement Method ²	Fitness
Method 1 (G = 1)	54.099
Method 2 (G = k/N)	52.456
Method 3 (0 ≤ G ≤ k/N)	50. <mark>128</mark>

Mutación

Mutation Probability	Fitness	Height [m]
0.001	45.700	1.303
0.005	46.870	1.301
0.010	51.688	1.300
0.035	47.456	1.510
0.070	55.269	1.300
0.100	54.982	1.300

Conclusiones

FIN