Konspekt pervoj chasti doklada Karabegova po ego lekcijam po Skaipu (kak ja ikh pnimaju)

Let M be a manifold with a point \mathbf{p} on it.

Let $\rho=\rho(\nu)$ be a formal density on manifold M^{-1} and $\sigma=\sigma(\nu)$ be a formal function on M such that

$$\frac{d\rho(\nu)}{d\nu} = \sigma(\nu)\rho(\nu). \tag{1}$$

We consider formal generalised functions $\Lambda(\nu)$ with support at the point **p**

$$\Lambda(\nu) = \Lambda_0 + \nu \Lambda_1 + \dots, \quad \text{and } \Lambda_0(1) \neq 0.$$
 (2)

We say that the generalised formal function Λ is associated with the density ρ if

$$\Lambda \left(\partial_{\mathbf{v}} f + f \operatorname{div}_{\rho} \mathbf{v} \right) = 0 \tag{3}$$

where \mathbf{v} is an arbitrary vector field on M (not formal) and f is an arbitrary formal function on M.

We say that the generalised formal function Λ is strongly associated with the density ρ if this function is associanted with the density ρ and the following condition holds also:

$$\frac{d}{d\nu}\Lambda(f) = -\frac{n}{2\nu}\Lambda + \Lambda\left(\frac{df}{d\nu} + f\sigma\right). \tag{4}$$

where n is a dimension of manifold M, $f = f(\nu)$ is as usual an arbitrary formal function and a function σ is defined by equation (1) $^{2)}$.

Notice that

- a) generalised function associated with a formal density is defined up to a formal constant, and
- b) generalised function strongly associated with a formal density is defined up to a constant (not formal just a complex number).

Theorem (Karabegov) If a density is an oscillatory density (see the footnote at the first page) then the inverse is also true.

$$\rho = e^{\varphi(\nu)} \rho_0(\nu)$$
, where $\varphi(\nu) = \sum_{k \ge -1} \nu^k \varphi_k$.

I do not know how to codify it without the use of the phase function Later I will call density of this type *oscillatory* density.

Equation (4) becomes natural if we apply it to generalised function $\Lambda_{\rho_0,\varphi} = \nu^{-\frac{n}{2}} \int f \rho$, where a formal density ρ is equal to $\rho = e^{\varphi} \rho_0$, ρ_0 is a density (non-vanishing at point **p**) and φ is a formal function such that $\varphi = \frac{1}{\nu} \varphi_{-1} + \varphi_0 + \nu \varphi_1 + \ldots$, and a function φ_1 has non-degenerate hessian at the point **p**.

¹⁾ Remark The formal density $\rho(\nu)$ obeys also the condition that