

STH410N4F7-2AG, STH410N4F7-6AG

Automotive-grade N-channel 40 V, 0.8 mΩ typ., 200 A STripFET™ F7 Power MOSFETs in H²PAK-2 and H²PAK-6 packages

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
STH410N4F7-2AG	40 V	4.4 0	000 4	005.14
STH410N4F7-6AG		/ 1.1 mΩ	200 A	365 W

- Designed for automotive applications and AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STH410N4F7-2AG	44.001.457	H²PAK-2	Tone And Deel
STH410N4F7-6AG	410N4F7	H²PAK-6	Tape And Reel

Contents

1	Electric	cal ratings	3
2		cal characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	g
	•	H ² PAK-2 package information	
	4.2	H ² PAK-6 package information	13
	4.3	H ² PAK packing information	16
5	Revisio	n history	18

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V_{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	200	Α
ID, ,	Drain current (continuous) at T _{case} = 100 °C	200	A
I _{DM} ⁽²⁾	Drain current (pulsed)	800	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	365	W
E _{AS} ⁽³⁾	Single pulse avalanche energy	1.9	J
T _{stg}	Storage temperature range	55 to 175	°C
Tj	Operating junction temperature range	-55 to 175	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.41	900
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35	°C/W

Notes:

 $^{^{(1)}}$ Current is limited by package, the current capability of the silicon is 420 A at 25 $^{\circ}\text{C}.$

 $^{^{\}left(2\right) }$ Pulse width is limited by safe operating area.

 $^{^{(3)}}T_j \le 175 \, ^{\circ}C, \, I_{av} = 80A$

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4 board, 2oz Cu.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40			٧
	Zaro goto voltogo droin	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$			10	
I _{DSS}	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V},$ $T_{case} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			200	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 90 A		0.8	1.1	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		•	11500	ı	
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	1	3500	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	390	-	ρ.
Qg	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 180 \text{ A},$	•	141	ı	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate charge	-	65	ı	nC
Q_{gd}	Gate-drain charge	behavior")	1	27	1	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 90 \text{ A}$	ı	35	ı	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	ı	198	ı	
t _{d(off)}	Turn-off delay time	resistive load switching times"	ı	108	ı	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	1	44.2	,	

Table 7: Source-drain diode

1400110011001100						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		ı		200	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 90 A	ı		1.3	V
t _{rr}	Reverse recovery time	I_{SD} = 180 A, di/dt = 100 A/ μ s, V_{DD} = 32 V, T_j = 25 °C (see <i>Figure</i> 15: "Test circuit for inductive load		74.4		ns
Q _{rr}	Reverse recovery charge			115		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	3.1		Α

Notes:

 $^{^{(1)}}$ Limited by package, 420 A current allowed by silicon.

⁽²⁾ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.2 Electrical characteristics (curves)

6/19 DocID027734 Rev 4

Figure 8: Capacitance variations

C
(pF)

10⁴

C_{ISS}

10³

f = 1 MHz

10²

0 8 16 24 32 V_{DS} (V)

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG090415OD4KA1VGS 1.2 $I_D = 250 \, \mu A$ 1.0 0.8 0.6 0.4 0.2 -75 -25 25 75 125 175 ਰੋ_i (°C)

Figure 10: Normalized on-resistance vs temperature R_{DS(on)} (norm.) GIPG090415OD4KA1RON 1.6 V_{GS}= 10 V I_D= 90 A 1.4 1.2 1.0 0.8 0.6L -75 T_j(°C) 25 75 125 175

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 kΩ 100 Ω D.U.T.

Vos 1 L KΩ 100 Ω D.U.T.

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

AMDIA

AMDIA

AMDIA

AMDIA

AMDIA

4

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 H²PAK-2 package information

Figure 19: H²PAK-2 package outline

Table 8: H²PAK-2 package mechanical data

	Table 0.111 AR-2 paci	mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.80
A1	0.03		0.20
С	1.17		1.37
е	4.98		5.18
Е	0.50		0.90
F	0.78		0.85
Н	10.00		10.40
H1	7.40		7.80
L	15.30	-	15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.5		1.7
M	2.6		2.9
R	0.20		0.60
V	0°		8°

Figure 20: H²PAK-2 recommended footprint

4.2 H²PAK-6 package information

Figure 21: H²PAK-6 package outline

Table 9: H²PAK-6 package mechanical data

	Tuble 3. ITT AR 9 publ	mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.80
A1	0.03		0.20
С	1.17		1.37
е	2.34		2.74
e1	4.88		5.28
e2	7.42		7.82
Е	0.45		0.60
F	0.50		0.70
Н	10.00		10.40
H1	7.40	-	7.80
L	14.75		15.25
L1	1.27		1.40
L2	4.35		4.95
L3	6.85		7.25
L4	1.5		1.75
M	1.90		2.50
R	0.20		0.60
V	0°		8°

Figure 22: H²PAK-6 recommended footprint

Dimensions are in mm.

4.3 H²PAK packing information

Figure 23: Tape outline

Figure 24: Reel outline

Table 10: Tape and reel mechanical data

Таре			Reel						
Dim.	mm		D:		nm		mm		m
Dim.	Min.	Max.	Dim.	Min.	Max.				
A0	10.5	10.7	А		330				
B0	15.7	15.9	В	1.5					
D	1.5	1.6	С	12.8	13.2				
D1	1.59	1.61	D	20.2					
E	1.65	1.85	G	24.4	26.4				
F	11.4	11.6	N	100					
K0	4.8	5.0	Т		30.4				
P0	3.9	4.1							
P1	11.9	12.1	Base q	uantity	1000				
P2	1.9	2.1	Bulk qu	uantity	1000				
R	50								
Т	0.25	0.35							
W	23.7	24.3							

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
10-Apr-2015	1	First release.
13-May-2015	2	Updated Static.
04-Dec-2015	3	Updated note 1 in Table 2: "Absolute maximum ratings", Figure 2: "Safe operating area" and Figure 3: "Thermal impedance".
17-Feb-2016	4	Modified: Table 2: "Absolute maximum ratings", Table 4: "Static" Modified: Figure 2: "Safe operating area" Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

