

Stochastic Volatility Quant Research Ideas

Presenter: Junfan Zhu

UChicago graduate student in Financial Mathematics

February 19, 2020 Winter Quarter

- Functional PCA
- Stochastic Volatility Inspired (SVI) and Ensemble Carr-Pelts(ECP)
- 3 Zumbach effect in volatility modeling from microstructure views

Functional PCA

Overall Thinking

We are constructing **Stochastic Volatility Inspired** (SVI) model to describe the volatility smile.

Functional PCA (fPCA) is a good idea to conclude the features of functional data (shape of many curves).

Definition: Functional data is multivariate data with an ordering on dimensions. (Muller, 2006)

Math Background, fPCA for Volatility Surface Modeling:

- 1 stochastic process: Karhunen-Loève expansion
- 2 integral operator: Mercer's theorem
- reproducing kernel Hilbert space

What are we interested in fPCA

- Basic Expansions
 - Good basis systems approximate any (sufficiently smooth) volatility smile curve arbitrarily well, which helps us gain more effective features of the curves
 - ► Fourier Basis, B-spline Bases, Wavelets Bases
- Smoothing Penalties
 - ▶ to penalize roughness of the result coming from SVI
 - Ordinary Least-squared Estimates, constraint on Time-warping (registration) functions
- Tests and Boostrap
 - Theoretical results on asymptotic normality of test statistics, especially with fPCA
 - ▶ Still requires bootstrap/permutation procedures to evaluate

- Functional PCA
- Stochastic Volatility Inspired (SVI) and Ensemble Carr-Pelts(ECP)

Stochastic Volatility Inspired (SVI) Volatility Surface

Heuristic Intuition

It's a 5-parameter hyperbola for implied variance in terms of log-strike (a, b, ρ , k, m, σ)

• Notes

- To exclude maturity-direction arbitrage, it is necessary (but not sufficient) to eliminate the intersections of the variance curves.
- ▶ But this interpolation has two issues:
 - (1) the discontinuity of the time derivative of the call values;
 - (2) a problem for ATM values before the first maturity due to the intrinsic value, which we use to interpolate, having a kink at the spot.
- ► These issues can be mitigated by choosing a smoother monotone spline, e.g., a monotone cubic spline and inserting a tiny extra maturity to handle the ATM kink.

Ensemble Carr-Pelts (ECP) Volatility Surface

Intuition

We note that although the Carr-Pelts surface is fairly flexible, it is trying to fit a surface with two curves, each roughly corresponding to each dimension of the surface (z does not correspond to K-direction exactly, since solving for z involves T).

Taking as inspiration the tensor product basis, we can make the surface more flexible by taking a mixture of regular Carr-Pelts surfaces with some positive weights summing up to one.

Comparison of SVI and ECP

Shortcomings of SVI

- lack of flexibility to fit rich options data when arbitrage conditions are enforced
- time-direction interpolation in price terms, whereas the strike interpolation at input maturities is done in volatility terms. The latter may lead to some unintuitive shapes for the interpolated volatilities.

Ensemble Carr-Pelts (ECP) surface

- allows both a guarantee of no arbitrage and a reasonable shape of the implied volatility surface at the same time.
- Moreover, both the implied and local volatilities are known essentially in closed form.

Summary

- SVI
 - ▶ SVI is simpler and allows for fast bootstrapping in time calibration, because it is simple (fewer parameters).
 - Whereas ECP does not, unless the h-function parameters are fixed, and only sigma values are calibrated.
- ECP
 - ▶ ECP is usually better than SVI in the Dupire test, and the LSV test to fit European options without model calibration.
 - ▶ If SVI is used with no-arbitrage conditions enforced, the fit becomes quite unsatisfactory.

- Functional PCA
- Stochastic Volatility Inspired (SVI) and Ensemble Carr-Pelts(ECP)
- 3 Zumbach effect in volatility modeling from microstructure views

Zumbach effect

Heuristic Definition

- Zumbach effect (2017): price trends induce an increase of volatility.
- Financial time series is the feedback of price returns on volatility.
 Volatility clustering: past trends in returns convey significant information on future volatility

Natural way to model Zumbach effect: quadratic Hawkes process

- Hawkes process is a point process that they 'self-excite': each arrival increases the rate of future arrivals for a period of time
- Hawkes process is a non-Markovian extension of the Poisson process.
- We can construct a microscopic model, encoding Zumbach effect and leading naturally to super-Heston rough volatility, is to use a quadratic Hawkes based price process.
 - Jim Gatheral (2017) rought volatility: log-volatility behaves as fractional Brownian motion with Hurst parameter of order 0.1

Microstructural foundation for Rough Volatility

- Behavior of Rough Volatility
 - Assuming only that the order flow is driven by a linear Hawkes process, the price necessarily follows a rough Heston model
 - ▶ The rough behavior is due to the singular kernel, which is the same as Mandelbrot-van Ness representation of a fractional Brownian motion, with Hurst parameter $\alpha-1/2$

Our goal

- We want to establish connections between micro-parameters of the quadratic Hawkes dynamic and macro-phenomena such as the roughness of the volatility and the strong Zumbach effect.
- Based on PDE techniques, we may obtain a diffusion process with power-law marginal distributions and strong Zumbach effect for the asymptotic volatility.

Mathematical meaning of Zumbach effect

- ightharpoonup the volatility is a functional of past price returns through Z
- Z term convolves with a power-law kernel
- Mittag-Leffler type kernels is commonly seen in rough volatility literature

References I

- Jim Gatheral
 - The Volatility Surface. Wiley, 2006.
- Jim Gatheral
 Arbitrage-free SVI volatility surfaces (2012).
- Alexandre Antonov, Michael Konikov, and Michael Spector A New Arbitrage-Free Parametric Volatility Surface (June 2019).
- Jim Gatheral
 The Volatility Surface: Statics and Dynamics
 Bloomberg Quant Seminar (2013).
- Giles Hooker slides on FDA (2017), Cornell.

fda Package

There is special fda package in R, see Gile's slides

References II

- Aditi Dandapani, Paul Jusselin and Mathieu Rosenbaum From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect (June 2019), Ecole Polytechnique.
 - Omar El Euch, Jim Gatheral, Radoš Radoičić and Mathieu Rosenbaum The Zumbach effect under rough Heston.

Journal of Quantitative Finance (2020), 20:2, 235-241, DOI: 10.1080/14697688.2019.1658889

Thanks!

Stochastic Volatility Quant Research Ideas

Presenter: Junfan Zhu

UChicago graduate student in Financial Mathematics

February 19, 2020 Winter Quarter

junfanzhu@uchicago.edu
www.linkedin.com/in/junfan-zhu/