Announcements

Quiz:

- Next quiz on Friday

Homework:

Third HW due **Friday** before class on gradescope

Office hours: back to Fridays from 4-5pm

Outline Guidelines: Due February 28th on gradescope

- 1. Title
- 2. Abstract
- 3. Logical structure of the paper
- 4. One sentence for each section

See previous slides for details

Synchrotron Radiation

"Electromagnetic radiation emitted when charged particles travel in curved paths" - NIST ie. Accelerated perpendicular to their velocity

Magnetic field necessary to keep particles on synchrotron orbit:

$$\frac{mv^2}{r} = qvB$$

$$p = mv = qBr$$

$$transformation$$

$$from SI units,$$

$$p [GeV] = 0.3 q B [T] r [m]$$

q = charge of particle accelerating

B = magnetic field

r = radius of accelerator

When designing an accelerator maximize B, set r, for maximum momentum

Synchrotron Radiation

In the moving particle's rest frame, the particle experiences an acceleration

→ it emits radiation

Boosted to the lab frame, the radiation is in a narrow cone tangential to the particle trajectory

Synchrotron radiation

• The radiated power is given by

$$P = \frac{q^2 c \gamma^4}{6\pi \epsilon_0 r^2}$$

$$_{ ext{where}} \qquad \gamma = rac{E}{mc^2}$$

• Therefore, the radiation power scales as 1/m⁴

Given this: use electrons or protons in circular accelerators?

Synchrotron radiation

• The radiated power is given by

$$P = \frac{q^2 c \gamma^4}{6\pi \epsilon_0 r^2}$$

• And $\gamma = \frac{E}{mc^2}$

• Therefore, the radiation power scales as 1/m⁴

Given this: use electrons or protons in circular accelerators?

Protons will give off less synchrotron radiation Electrons are easy to accelerate but lose lots of energy

Synchrotrons as colliders

- Synchrotrons are often used as colliders
- Two beams circulate

- Requires lots of dipole magnets
- But only one acceleration gap
- Requires fast injector magnet
- Producing user beams requires fast extractor magnet

Intense x-ray sources from synchrotrons

 Circulate electron beam, synchrotron radiation for experimental areas tangential to beam line

- Undulator and wiggler are series of short dipoles to produce synchrotron radiation
- Control wavelength and intensity better than from bending in dipole

Neutral and Unstable Beams

The particles used in accelerators must be stable and charged, but ,there are a number of ways to produce beams of neutral (neutron, photons,...) or unstable (exotic nuclei, π^{\pm} ,...) particles.

Muon beam at Fermilab

• Very pure muon beam for precision muon experiments (g-2)

Accelerate muons so much that their lifetime is very long Measure magnetic moment of the muon

Neutrino beams

Can't focus neutrinos since they are electrically neutral Instead, focus particles that decay into neutrinos!

Making a neutrino beam:

Neutrinos vs. Anti-Neutrinos

Flip the horn current to focus positive or negatively charged particles

Neutrino Energy?

Because neutrinos are neutral we cannot focus them

Most neutrinos come from two body pion decay:

$$E_{
u} = rac{[1-(m_{\mu}/m_{\pi})^2]E_{\pi}}{1+\gamma^2 heta^2}$$
 De

Detector

DUNE

Detector Location Optimized for Physics

arxiv: 1211.0469