The facts on this sheet may be used without further proof or justification, unless that is the content of a given exercise.

When in doubt, you should justify all of the steps in your solutions that make use of a fact on this sheet (or on previous reference sheets). For example, if a step in your argument uses the fact that $\sin^2(x) = 1 - \cos^2(x)$, then you would write, "by 1.1" next to that step.

1 Trigonometric Identities

1.
$$\sin^2(x) + \cos^2(x) = 1$$

2.
$$\sec^2(x) - \tan^2(x) = 1$$

3.
$$2\sin^2(x) = 1 - \cos(2x)$$

4.
$$2\cos^2(x) = 1 + \cos(2x)$$

5.
$$2[\sin(A)\cos(B)] = \sin(A-B) + \sin(A+B)$$

6.
$$2[\sin(A)\sin(B)] = \cos(A-B) - \cos(A+B)$$

7.
$$2[\cos(A)\cos(B)] = \cos(A-B) + \cos(A+B)$$

Derivatives 3

1.
$$\frac{d}{dx}(a^x) = a^x \ln(a)$$

$$2. \frac{d}{dx} (\log_a(x)) = \frac{1}{x \ln(a)}$$

3.
$$\frac{d}{dx}(\sin(x)) = \cos(x)$$

4.
$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$

5.
$$\frac{d}{dx}(\tan(x)) = \sec^2(x)$$

6.
$$\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$$
 11. $\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$

7.
$$\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)$$

8.
$$\frac{d}{dx}(\cot(x)) = -\csc^2(x)$$

9.
$$\frac{d}{dx} \left(\sin^{-1}(x) \right) = \frac{1}{\sqrt{1 - x^2}}$$

10.
$$\frac{d}{dx} \left(\cos^{-1}(x) \right) = -\frac{1}{\sqrt{1-x^2}}$$
 14. $\frac{d}{dx} \left(\cot^{-1}(x) \right) = -\frac{1}{1+x^2}$

11.
$$\frac{d}{dx} \left(\tan^{-1}(x) \right) = \frac{1}{1+x^2}$$

12.
$$\frac{d}{dx}\left(\csc^{-1}(x)\right) = -\frac{1}{x\sqrt{x^2 - 1}}$$

13.
$$\frac{d}{dx} \left(\sec^{-1}(x) \right) = \frac{1}{x\sqrt{x^2 - 1}}$$

14.
$$\frac{d}{dx} \left(\cot^{-1}(x) \right) = -\frac{1}{1+x^2}$$

5 Integrals

For functions u and v satisfying the appropriate hypotheses, we have

1.
$$\int (a^u)du = a^u/\ln(u) + C$$

2.
$$\int (1/u)du = \ln|u| + C$$

$$3. \int \sin(u)du = -\cos(u) + C$$

$$4. \int \cos(u)du = \sin(u) + C$$

5.
$$\int \sec^2(u)du = \tan(u) + C$$

6.
$$\int \csc(u)\cot(u)du = -\csc(u) + C$$

7.
$$\int \sec(u)\tan(u)du = \sec(u) + C$$

8.
$$\int \csc^2(u)du = -\cot(u) + C$$

9.
$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1}(u/a) + C$$

10.
$$\int \frac{1}{a^2 + u^2} du = (1/a) \tan^{-1}(u/a) + C$$

11.
$$\int \frac{1}{u\sqrt{u^2 - a^2}} du = (1/a)\sec^{-1}(u/a) + C$$

12.
$$\int \tan(u)du = \ln|\sec(u)| + C$$

13.
$$\int \cot(u)du = \ln|\sin(u)| + C$$

14.
$$\int \sec(u)du = \ln|\sec(u) + \tan(u)| + C$$

15.
$$\int \csc(u)du = \ln|\csc(u) - \cot(u)| + C$$

Vectors 6

6.1 Properties of Vectors

If (V_n, F) is a vector space, with \vec{a}, \vec{b} and \vec{c} in V_n , and c and d in F, then

Theorem 6.1.1.

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

4.
$$\vec{a} + (-\vec{a}) = \vec{0}$$

7.
$$(cd)\vec{a} = c(d\vec{a})$$

2.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

5.
$$c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$

3.
$$\vec{a} + \vec{0} = \vec{a}$$

$$6. (c+d)\vec{a} = a\vec{a} + d\vec{a}$$

8.
$$1\vec{a} = \vec{a}$$

6.2 Properties of the Dot Product

In the vector space $(\mathbb{R}^n, \mathbb{R})$, with \vec{a}, \vec{b} and \vec{c} in \mathbb{R}^n , and c is in \mathbb{R} , the dot product has the following properties:

Theorem 6.2.1.

1.
$$\vec{a} \cdot \vec{a} = ||\vec{a}||^2$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$
 5. $\vec{0} \cdot \vec{a} = 0$

5.
$$\vec{0} \cdot \vec{a} = 0$$

2.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

4.
$$(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$$

Theorem 6.2.2. If θ is the angle between vectors \vec{a} and \vec{b} , then

$$\vec{a} \bullet \vec{b} = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos(\theta).$$

Theorem 6.2.3. Vectors \vec{a} and \vec{b} are orthogonal if and only if

$$\vec{a} \bullet \vec{b} = 0.$$

Properties of the Cross Product

In the vector space $(\mathbb{R}^3, \mathbb{R})$, with \vec{a}, \vec{b} and \vec{c} in \mathbb{R}^3 , and c is in \mathbb{R} , the cross product has the following properties:

Theorem 6.3.1.

1.
$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$$

3.
$$\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$$
 5. $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$

5.
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

2.
$$(c\vec{a}) \times \vec{b} = c(\vec{a} \times \vec{b}) = \vec{a} \times (c\vec{b})$$

$$2. \ (c\vec{a}) \times \vec{b} = c(\vec{a} \times \vec{b}) = \vec{a} \times (c\vec{b}) \qquad \qquad 4. \ (\vec{a} + \vec{b}) \times \vec{c} = (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{c}) \qquad \qquad 6. \ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{c})\vec{c}$$

6.
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{c})\vec{c}$$

Theorem 6.3.2. The vector $\vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b} .

Theorem 6.3.3. If θ is the angle between \vec{a} and \vec{b} , with $0 \le \theta \le \pi$, then

$$||\vec{a} \times \vec{b}|| = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \sin(\theta)$$

Theorem 6.3.4. Two non-zero vectors \vec{a} and \vec{b} are parallel if and only if

$$\vec{a} \times \vec{b} = \vec{0}$$
.

Calculus and Vector Valued Functions

Theorem 6.4.1. In the vector space $(\mathbb{R}^n, \mathbb{R})$, if we are given vector-valued functions $\vec{u}(t)$ and $\vec{v}(t)$, real-valued function f(t), and constant c in \mathbb{R} , then we have that

1.
$$[\vec{u}(t) + \vec{v}(t)]' = \vec{u}'(t) + \vec{v}'(t)$$

4.
$$[\vec{u}(t) \bullet \vec{v}(t)]' = (\vec{u}'(t) \bullet \vec{v}(t)) + (\vec{u}(t) \bullet \vec{v}'(t))$$

2.
$$[c\vec{u}(t)]' = c(u'(t))$$

5.
$$[\vec{u}(t) \times \vec{v}(t)]' = (\vec{u}'(t) \times \vec{v}(t)) + (\vec{u}(t) \times \vec{v}'(t))$$

3.
$$[f(t)\vec{u}(t)]' = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$$

6.
$$[\vec{u}(f(t))]' = f'(t)\vec{u}'(f(t))$$

when differentiating with respect to t.