تراشههای منطقی برنامه پذیر

تراشههای منطقی برنامه پذیر

Text Book:

[1] Ulrich Heinkel, et al, "The VHDL Reference: A Practical Guide to Computer-Aided Integrated Circuit Design including VHDL-AMS," Wiley, 2000.

[2] Clive Maxfield, "The Design Warrior's Guide to FPGA," Elsevier, 2004.

[3] Zoran Salcic, Asim Smailagic, "Digital Systems Design and Prototyping Using Field-Programmable Logic and Hardware Description Languages", 2nd Edition, 2000

References:

Datasheets + References given in the slides

تراشههای منطقی برنامه پذیر

Marking:

Homeworks, Quizes, Project, Midterm Exam, Final Exam.

Software:

ModelSim, EDK, Quartus

مدارهای دیجیتال

Full-Custom

ASIC

ASIC: Application-Specific Integrated Circuits

• Standard Cell: عناصر در ردیفها چیده می شوند. پورتها در بالا و پایین سلولها (تکنولوژی جدید: روی سلولها).

• Gate Array: آرایه ای از سلولهای مشابه.

سلولهای استاندارد

سلولهای استاندارد

Mixed

RAM/ROM

Row based Control Logic-

Row based CPU-

Uncommitted Gate Array

```
***************
++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++
*************
++++++++++++++++++++++++++++++++
```

Committed Gate Array

Gate Array

• MPLD یا MPGA: برنامه ریزی تراشه در MPLD: رُمان ساخت.

• FPLD: برنامه ریزی تراشه به صورت الکتریکی رتوسط کاربر.

Structured ASIC

مانند Gate Array

تشابه:

- فقط لایههای فلز سفارشی میشوند

- هزینه ساخت ماسکها خیلی کم

Structured ASIC Gate Array مانند

تفاوت:

- گیتهای خیلی پیچیده: LUT ،MUX

- بیشتر لایههای فلز ساخته شدهاند

-هزینه کمتر و سرعت بالاتر و توان مصرفی کمتر

مقايسه

Programmable Logic Array (PLA)

PLA

PLA

PAL

• فقط AND Plane قابل برنامه ريزي.

W = AB'C' + CD X = A'BC' + A'CD + ACD' + BCDY = A'C'D + ACD + A'BD

Programmable Array Logic (PAL)

• برای پیاده سازی مدارهای ترتیبی معمولا در خروجی، FF قرار

ر دارد.

PAL 16R8

مرتضى صاحب الزماني

PAL 16R8

PAL 16R8

22V10 SPLD

الرماني صاحب الزماني

SPLD Macrocell

مرتضى صاحب الزماني

CPLD

بخشی از CPLD

ساختار FPGA

ساختار FPGA

Logic Cell

LUT

RAM Contents				
Address				Data
Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Using a lookup table (LUT) to model a gate network.

Spartan Logic Cell

Programmable Switch Matrix (PSM)

SRAM-Based FPGA

Hybrid FPGA & ASIC

- Use reconfigurable fabric to customize an ASIC
- Previously: FPGAs have been used to augment ASIC chips in board level
- Now, they can be used on a single chip

