

2020/2021

2º Semestre

Optimização Heurística

Professora Maria João Cortinhal

TRABALHO INDIVIDUAL 2

Trabalho Realizado Por:

João Diogo Mendes Martins, n.º 93259

Índice

Questão a)	3
Questão b)	
Questão c)	
Questão d)	
Questão e)	
Questão f)	
Questão g)	
Questão h)	

Questão a)

Defina uma solução admissível para o problema.

No problema em questão, a determinação de uma solução admissível consiste em determinar a afectação de cada colaborador C_i a uma missão M_i (sendo $i \in \{1, 2, 3, 4, 5\}$), em que:

- cada colaborador C_i só pode ser afectado a uma única missão M_i;
- cada missão M_i só pode ter a ela afectada um único colaborador C_i.

Além disto, o objectivo é minimizar o custo total da afectação dos trabalhadores às respectivas missões.

Desta forma, considerando $a,b,c,d,e \in \{1,2,3,4,5\}$, a definição de uma solução admissível consistirá em:

- 1. atribuir ao colaborador C₁ uma missão M_a;
- 2. atribuir ao colaborador C_2 uma missão M_b , com $b \neq a$;
- 3. atribuir ao colaborador C₃ uma missão M_c, com $c \neq b \neq a$;
- 4. atribuir ao colaborador C₄ uma missão M_d, com $d \neq c \neq b \neq a$;
- 5. atribuir ao colaborador C₅ uma missão M_e, com $e \neq d \neq c \neq b \neq a$.

Questão b)

Defina uma heurística que lhe permita determinar uma solução admissível para o problema.

Estando perante um problema de optimização, com o objectivo de minimizar o total dos custos, na afectação de cada colaborador a cada missão, esta questão terá de ser considerada. Assim, a determinação de uma primeira solução admissível poderá ser executada a seguinte heurística:

Passo 1: afectar ao colaborador C1 a missão com o menor custo; no caso, vemos que é M2,
com um custo igual a 25; o primeiro par da solução é então (C1, M2);

- Passo 2: afectar ao colaborador C2 a missão com menor custo, dentro daquelas que ainda não foram atribuídas a ninguém: M1, M3, M4, M5; vemos que aquela com menor custo é M5, com 15; temos agora o segundo par da nossa solução: (C2, M5);
- Passo 3: afectar ao colaborador C3 a missão com menor custo, dentro daquelas que ainda não foram atribuídas a ninguém: M1, M3, M4; dentro destas, escolhemos M4, com um custo de 30 (M2, com um custo menor, de 20, já foi atribuída a C1); temos o terceiro par da solução: (C3, M4);
- Passo 4: afectar ao colaborador C4 a missão com menor custo, entre aquelas ainda não atribuídas: M1 ou M3; tendo M3 menor custo que M1, é esta a escolhida; temos um novo par para a solução: (C4, M3);
- Passo 5: finalmente resta afectar ao colaborador C5 a missão que ainda não foi atribuída a ninguém, a M1; temos o último par: (C5, M1).

Questão c)

Tendo em conta a alínea b), determine uma solução admissível para o problema.

Com base então na heurística definida acima, chegamos a uma solução admissível inicial:

$$S_1 = (C1, M2), (C2, M5), (C3, M4), (C4, M3), (C5, M1)$$

Que tem um custo total associado de 25 + 15 + 30 + 30 + 30 = 130 unidades monetárias.

	C1	C2	C3	C4	C 5
M1	60	25	35	40	<mark>30</mark>
M 2	<mark>25</mark>	35	20	40	15
M3	35	20	40	<mark>30</mark>	45
M4	40	40	<mark>30</mark>	15	40
<u>M5</u>	30	<mark>15</mark>	45	40	50

Questão d)

Defina a estrutura de vizinhança de uma solução.

A determinação de uma solução vizinha da solução inicial S₁ será alcançada pela troca posicional de pares de colaboradores, e prevenindo que sejam formados pares "ilegais" (pares de colaborador com colaborador ou pares de missão com missão).

Por exemplo, a primeira solução vizinha consistirá na troca do colaborador C1 pelo colaborador C2, significando que estes passarão a ter a eles atribuída a missão que na solução inicial pertencia ao outro; este processo será repetido para todos os colaboradores.

Como cada colaborador só pode ser atribuído a uma missão e cada missão só pode ser atribuída a um colaborador, fazendo esta troca posicional, encontrar-se-á todas as soluções vizinhas da actual.

Questão e)

Tendo em conta a alínea d), determine uma solução vizinha da solução que apresentou na alínea c).

Com base nisto, as soluções vizinhas da solução inicial terão o seguinte formato:

	Soluções Vizinhas					Custo
Pares de vértices trocados	Par 1	Par 2	Par 3	Par 4	Par 5	
C1, C2	C2, M2	C1, M5	C3, M4	C4, M3	C5, M1	155
C1, C3	C3, M2	C2, M5	C1, M4	C4, M3	C5, M1	135
C1, C4	C4, M2	C2, M5	C3, M4	C1, M3	C5, M1	150
C1, C5	C5, M2	C2, M5	C3, M4	C4, M3	C1, M1	150
C2, C3	C1, M2	C3, M5	C2, M4	C4, M3	C5, M1	170
C2, C4	C1, M2	C4, M5	C3, M4	C2, M3	C5, M1	145
C2, C5	C1, M2	C5, M5	C3, M4	C4, M3	C2, M1	160
C3, C4	C1, M2	C2, M5	C4, M4	C3, M3	C5, M1	<mark>125</mark>
C3, C5	C1, M2	C2, M5	C5, M4	C4, M3	C3, M1	145
C4, C5	C1, M2	C2, M5	C3, M4	C5, M3	C4, M1	155

Um exemplo de solução vizinha poderá ser:

$$S_2 = (C1, M2), (C2, M5), (C4, M4), (C3, M3), (C5, M1)$$

Esta solução vizinha S_2 corresponde também à melhor solução após a primeira iteração, uma vez que tem a ela associado o menor custo (125) de todas as soluções vizinhas da solução inicial.

Questão f)

Tendo em conta as opções tomadas para responder às alíneas anteriores, defina a Lista Tabu.

Como já vimos, os movimentos para determinar soluções vizinhas consistem na troca posicional de pares de colaboradores. Por este motivo, para a definição da Lista Tabu iremos incluir nela estes pares de colaboradores que dão origem à melhor solução vizinha.

Na fase de inicialização, a lista Tabu encontra-se vazia.

Questão g)

Assumindo que a solução vizinha apresentada na alínea e) passaria a ser a nova solução atual, indique como deveria ser atualizada a Lista Tabu.

Uma vez que a determinação da solução vizinha inicial advém da troca de posições entre o colaborador C3 e o colaborador C4, a Lista Tabu deverá ser actualizada com o par $C3 \Leftrightarrow C4$.

- 1. Solução inicial: $S_1 = (C1, M2), (C2, M5), (C3, M4), (C4, M3), (C5, M1)$
- 2. Troca posicional do par $C3 \Leftrightarrow C4$, conduzindo a determinação de uma solução vizinha:

$$S_2 = (C1, M2), (C2, M5), (C4, M4), (C3, M3), (C5, M1)$$

3. Solução vizinha é a que tem menor custo (125) e que é melhor que solução inicial (130), logo a Lista Tabu é actualizada:

$$Lista Tabu = C 3 \Leftrightarrow C 4$$

Questão h)

Tendo em conta as opções tomadas para responder às alíneas anteriores, defina os movimentos Tabu.

Um movimento será considerado tabu se ele implicar a troca posicional de um par de colaboradores que já se encontra na Lista Tabu.

Seguindo o exemplo, se na iteração seguinte se verificasse que a melhor solução vizinha de S_2 fosse uma que correspondesse à troca posicional de $C3 \Leftrightarrow C4$, esta seria considerada um movimento tabu, uma vez que o par já se encontra na Lista Tabu. Neste caso, teria ser considerada a 2^a melhor solução vizinha.

Contudo, na iteração seguinte, não se verificam movimentos Tabu:

Iteração 2:

Melhor solução actual: $S_2 = (C1, M2), (C2, M5), (C4, M4), (C3, M3), (C5, M1)$

Lista Tabu: $C3 \Leftrightarrow C4$

	Soluções Vizinhas					Custo
Pares de vértices trocados	Par 1	Par 2	Par 3	Par 4	Par 5	
C1, C2	C2, M2	C1, M5	C4, M4	C3, M3	C5, M1	150
C1, C3	C3, M2	C2, M5	C4, M4	C1 , M3	C5, M1	<mark>115</mark>
C1, C4	C4, M2	C2, M5	C1, M4	C3, M3	C5, M1	165
C1, C5	C5, M2	C2, M5	C5, M4	C3, M3	C1, M1	170
C2, C3	C1, M2	C3, M5	C4, M4	C2, M3	C5, M1	135
C2, C4	C1, M2	C4 M5	C2, M4	C3, M3	C5, M1	175
C2, C5	C1, M2	C5, M5	C4, M4	C3, M3	C2, M1	155
C3, C4	C1, M2	C2, M5	C3, M4	C4, M3	C5, M1	130
C3, C5	C1, M2	C2, M5	C4, M4	C5, M3	C3, M1	135
C4, C5	C1, M2	C2, M5	C5, M4	C3, M3	C4, M1	160

Vemos que nesta nova iteração não existem movimentos Tabu registados, uma vez que a melhor solução vizinha corresponde à troca posicional de um par de colaboradores que ainda não se encontra na Lista Tabu: $C1 \Leftrightarrow C3$