

Instituto Politécnico Nacional Escuela Superior de Cómputo

Ecuaciones Diferenciales
Profesor: Luis Moctezuma Cervantes
Grupo: 1CM6
Adrian González Pardo
Semestre: 18/02

Ultima fecha modificado: 1 de junio de 2020

${\rm \acute{I}ndice}$

Introducción
1.1. Presentación
1.2. Prerequisitos para la materia
1.3. Libros de consulta
Inicio
2.1. Técnicas de Integración
2.1.1 Por sustitución

1. Introducción

1.1. Presentación

Las ecuaciones diferenciales no son más que un conjunto de sistemas lineales o no lineales que representan modelo de comportamiento matemático, el cual puede ser aplicado en áreas como la ingeniería la cual puede servir para describir el comportamiento físico de un circuito electríco mediante las ecuaciones de voltaje de elementos lineales (resistencias, capacitadores e inductores), por otro lado igual puede ser aplicado en modelados matemáticos que puedan representar la medición estadística de una población de bacterias.

Ahora bien con el fin de facilitar el aprendizaje de estos temas se desarrollaran varias notas que se tomaron en el curso así como complemento de propía mano del escritor.

1.2. Prerequisitos para la materia

Si bien las matemáticas guardan una intima pero fuerte relación entre sus topicos es importante marcar algunos prerequisitos para poder dar seguimiento o poder tener un mejor entendimiento con la materia

Principios de Cálculo	Nociones de Algebra Lineal
Nociones de Análisis Vectorial	Nociones de Física

Si bien podriamos desglosar todos y cada uno de los prerequisitos de cada asignatura, no es la idea asustar a los pequeños lectores o consultores de este documento, ahora si continuemos

1.3. Libros de consulta

Si bien las ecuaciones diferenciales pueden ser estudiadas en cursos los cuales no soliciten libro, te puedes apoyar de material que se encuentra de forma gratuita pero quizas poco legal en internet, por ello yo no quiero alentarte a realizar una conducta dañina a los autores, mi mejor recomendación en este aspecto, es quizas consigue los pdf's pero después de ello busca la forma de conseguirlo en físico para tu formación o para el apoyo de tus compañeros o alumnos.

- ullet Dennis Zill, Ecuaciones Diferenciales o Para comenzar desde el inicio y sin complicaciones
- Editorial Trillas Canek, Ecuaciones Diferenciales ordinarias → Para subir el nivel con respecto al Dennis
- \blacksquare Makarenko, Problemas de Ecuaciones Diferenciales ordinarias 1996 \to Para ejercicios bastante completos y extensos

2. Inicio

Recordemos que para tener un buen inicio con respecto al curso es necesario tener un ligero repaso a las Técnicas de Integración.

2.1. Técnicas de Integración

Las técnicas de integración son herramientas que nos seran de utilidad como si fuese la frase celebre o la bendición del día a día.

Recordemos que las técnicas más comunes que tenemos son 4:

- 1. Por sustitución
- 2. Por partes
- 3. Por sustitución trigonometrica

4. Por fracciones parciales

Ahora con esto, comencemos.

2.1.1. Por sustitución

Teorema: Sea g(x) una función derivable y supongase que F(x) es una antiderivada de f(x).

Entonces si u = g(x) tenemos lo siguiente:

$$\int f(g(x))g^{l}(x)dx = \int f(u)du = F(u) + C = F(g(x)) + C \colon C \in \mathbb{R}$$

Ejemplos:

$$\int \frac{x}{\cos^2(x^2)} dx$$

Solución

Recordemos identidades trigonometrica como lo es: $\frac{1}{\cos(x)} = \sec(x)$, entonces tenemos lo siguiente

$$\int x \sec^2(x^2) dx$$

Ahora por sustitución definimos a $u=x^2 \rightarrow du=2xdx$ completando la integral tenemos:

$$\frac{1}{2} \int \sec^2(u) du = \frac{1}{2} \tan(u) + C$$

Sustituyendo los valores de u tenemos la integral resuelta:

$$\int \frac{x}{\cos^2(x^2)} = \frac{1}{2}\tan(x^2) + C$$

$$\int \frac{3}{\sqrt{5-9x^2}} dx$$

Solución

Recordemos la forma de las integrales que pasan a la forma inversa de una función trigonometrica (arcos) podemos pensar en el cambio de variable por $u=3x \to du=3dx$, entonces tendremos lo siguiente:

$$\int \frac{1}{\sqrt{5-u^2}} du = \arcsin(\frac{u}{5}) + C$$

Sustituyendo u por el valor que tenemos en x tenemos:

$$\int \frac{3}{\sqrt{5 - 9x^2}} dx = \arcsin(\frac{3x}{5}) + C$$

$$\int \frac{6e^{\frac{1}{x}}}{x^2} dx$$

Solución

Para este tipo de integral lo que podemos hacer es proponer el siguiente cambio de variable $u=\frac{1}{x}\to du=-\frac{1}{x^2}dx$

$$-6\int e^u du = -6e^u + C$$

Sustituyendo u por su valor con respecto a x tenemos:

$$\int \frac{6e^{\frac{1}{x}}}{x^2} dx = -6e^{\frac{1}{x}} + C$$

$$\int \frac{e^x}{4 + 9e^{2x}} dx$$

Solución:

Se propone el siguiente cambio de variable $u=3e^x \rightarrow du=3e^x dx$

$$\frac{1}{3} \int \frac{1}{4+u^2} du = \frac{1}{6} \arctan \frac{u}{2} + C$$

Sustituyendo los valores de u con respecto a x

$$\int \frac{e^x}{4+9e^{2x}} dx = \frac{1}{6} \arctan \frac{3e^x}{2} + C$$

Ejecicio propuesto:

$$\int \frac{a^{\tan(t)}}{\cos^2(t)} dt$$