Non-regular languages

(Pumping Lemma)

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RE that accepts \boldsymbol{L}

Difficulty: this is not easy to prove (since there is an infinite number of them)

Solution: use the Pumping Lemma!!!

Consider a DFA with 4 states

Consider the walk of a "long" string: aaaab (length at least 4)

A state is repeated in the walk of aaaab

Consider the walk of a "long" string: aabb (length at least 4)

Due to the pigeonhole principle: A state is repeated in the walk of aabb

In General: If $|x| \ge \#$ states of DFA, by the pigeonhole principle, a state is repeated in the walk

Walk of $x = \sigma_1 \sigma_2 \cdots \sigma_k$

The Pumping Lemma

Take an infinite regular language L (contains an infinite number of strings)

There exists a DFA that accepts L

Take string $x \in L$ with $|x| \ge n$ (number of states of DFA)

then, at least one state is repeated in the walk of x

In DFA: x = uvw

Observation:

length $|uv| \leq n$

number of states of DFA

Observation: length $|v| \ge 1$

Since there is at least one transition in loop

Additional string:

The string uw is accepted

Do not follow loop

Additional string:

The string uvvw is accepted

Do not follow loop

Additional string: The string uvvvw is accepted

In General:

The string uv'w is accepted i=0,1,2,...

Therefore: $uv^{i} \ w \in L \qquad i = 0, 1, 2, ...$ Language accepted by the DFA

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer n (critical length)
- for any string $x \in L$ with length $|x| \ge n$
- we can write x = u v w
- with $|uv| \le n$ and $|v| \ge 1$
- such that: $uv^i w \in L$ i = 0, 1, 2, ...

Observation:

Every language of finite size has to be regular

(we can easily construct an NFA that accepts every string in the language)

Therefore, every non-regular language has to be of infinite size

(contains an infinite number of strings)

Applications

of

the Pumping Lemma

Non-Regular Language: Example

Theorem: The language:

$$L = \{0^k 1^k \mid k \ge 0\}$$
 (1)

is not regular.

Proof: (by contradiction) Suppose that L is regular. Then there exists a DFA M such that:

$$L = L(M) \tag{2}$$

We will show that Maccepts some strings not in L, contradicting (2).

Suppose that M has *n* states, and choose a string $x=0^{m}1^{m}$, where the constant m>>n.

By (1), *x* is in L.

By (2), x is also in L(M), note that the machine accepts a language not just a string

Since |x| = m >> n, it follows from the pumping lemma that:

```
x = uvw

1 \le |uv| \le n

1 \le |v|, and

uv^iw is in L(M), for all i \ge 0
```

Since $1 \le |uv| \le n$ and n << m, it follows that $1 \le |uv| < m$.

Also, since $x = 0^{m}1^{m}$ it follows that uv is a substring of 0^{m} .

In other words $v=0^j$, for some $j \ge 1$.

Since $\mathbf{u}\mathbf{v}^i\mathbf{w}$ is in L(M), for all $i \ge 0$, it follows that $0^{\mathrm{m}+\mathrm{c}\mathrm{j}}1^{\mathrm{m}}$ is in L(M), for all $c \ge 1$ (no. of loops), and $j \ge 1$ (length of the loop)

But by (1) and (2), $0^{m+cj}1^m$ is not in L(M), for any $c \ge 1$, i.e., m+cj > m, a contradiction.

Non-Regularity Example

Theorem: The language:

$$L = \{0^k 1^k 2^k \mid k \ge 0\} \tag{1}$$

is not regular.

Proof: (by contradiction) Suppose that L is regular. Then there exists a DFA M such that:

$$L = L(M) \tag{2}$$

We will show that M accepts some strings not in L, contradicting (2).

Suppose that M has n states, and consider a string $x=0^{m}1^{m}2^{m}$, where the constant m>>n.

By (1), x is in L.

By (2), x is also in L(M), note that the machine accepts a language not just a string

```
Since |x| = m \gg n, it follows from the pumping lemma that:
```

```
x = uvw

1 \le |uv| \le n

1 \le |v|, and

uv^iw is in L(M), for all i \ge 0
```

Since $1 \le |uv| \le n$ and $n \le m$, it follows that $1 \le |uv| \le m$.

Also, since $x = 0^m 1^m 2^m$ it follows that uv is a substring of 0^m .

In other words $v=0^j$, for some $j \ge 1$.

Since $\mathbf{u}\mathbf{v}^{\mathbf{i}}\mathbf{w}$ is in L(M), for all $\mathbf{i} \ge 0$, it follows that $0^{\mathbf{m}+\mathbf{c}\mathbf{j}}1^{\mathbf{m}}2^{\mathbf{m}}$ is in L(M), for all $c \ge 1$ and $j \ge 1$.

But by (1) and (2), $0^{m+cj}1^m2^m$ is not in L(M), for any integer $c \ge 1$, a contradiction. Note that the above proof is almost identical to the previous proof.

Non-Regularity Example

Theorem: The language:

$$L = \{0^{m}1^{n}2^{m+n} \mid m, n \ge 0\}$$
 (1)

is not regular.

Proof: (by contradiction) Suppose that L is regular. Then there exists a DFA M such that:

$$L = L(M) \tag{2}$$

We will show that M accepts some strings not in L, contradicting (2).

Suppose that M has n states, and consider a string $x=0^{m}1^{n}2^{m+n}$, where m>>n.

By (1), x is in L.

By (2), x is also in L(M).

Since $|x| = m \gg n$, it follows from the pumping lemma that:

```
x = uvw
1 \le |uv| \le n
1 \le |v|, \text{ and}
uv^{i}w \text{ is in } L(M), \text{ for all } i \ge 0
```

Since $1 \le |uv| \le n$ and $n \le m$, it follows that $1 \le |uv| \le m$.

Also, since $x = 0^{m}1^{n}2^{m+n}$ it follows that uv is a substring of 0^{m} .

In other words $v=0^j$, for some $j \ge 1$.

Since uv^iw is in L(M), for all $i \ge 0$, it follows that $0^{m+cj}1^m2^{m+n}$ is in L(M), for all $c \ge 1$. In other words v can be "pumped" as many times as we like, and we still get a string in L(M).

But by (1) and (2), $0^{m+cj}1^n2^{m+n}$ is not in L(M), for any $c \ge 1$, because the acceptable expression should be $0^{m+cj}1^n2^{m+cj+n}$, a contradiction.

```
What about \{0^m1^n \mid m, n \ge 0\}? \{0^m1^n \mid m, n \ge 0, \text{ and } m < n\}? \{0^m1^n \mid m, n \ge 0, \text{ and } m = n^2\}? \{0^m1^n \mid m, n \ge 0, \text{ and } m > n\}? Are these regular languages, or not?
```

Non-regular language $\{a^nb^n: n \ge 0\}$

$$\{a^nb^n: n\geq 0\}$$

Regular languages

$$L(a^*b^*)$$