国家精品课程/国家精品资源共享课程/国家级精品教材国家级十一(二)五规划教材/教育部自动化专业教学指导委员会牵头规划系列教材

控制系统仿真与CAD 第十一章 分数阶控制基础

分数阶非线性系统仿真(下)

Simulation of Fractional-order Nonlinear Systems (II)

主讲: 薛定宇教授

分数阶微分方程的求解

- > 基于框图的分数阶微分方程数值解
 - >为什么需要基于框图的求解方法?
 - ▶FOTF的分数阶微积分模块库
 - ▶通过例子演示框图解法

如何求解?如何评价?

- ➤ 复杂系统不宜用类似整数阶系统Runge-Kutta方法求解
 - ▶求解需要将整个微分方程组变成标准形式
 - >有时是不可行的,即使可行难度也极大
- > 基于框图的解法应该是一个合理的选择
 - ▶很多方法只能求解零初值问题,非零初值如何求解?
- > 如何评价?——基准测试问题
 - ➤ Xue Dingyu and Bai Lu. Benchmark problems for Caputo fractionalorder ordinary differential equations. Fractional Calculus & Applied Analysis, 20(5), 2017

Simulink FOTF模块集

> 命令 fotflib 打开模块集

- > 不建议使用的模块
 - ➤Caputo operator —— 应该使用性质加Oustaloup filter
 - ➤FOTF Matrix —— Approximate FOTF Model 更稳定

A

基准测试问题3 非线性非零初值的分数阶微分方程

> (基准问题3) 非线性非零初值的分数阶微分方程

$${}_{0}^{C}\mathcal{D}_{t}^{1.455}y(t) = -t^{0.1}\frac{\mathscr{E}_{1,1.545}(-t)}{\mathscr{E}_{1,1.445}(-t)}e^{t}y(t){}_{0}^{C}\mathcal{D}_{t}^{0.555}y(t) + e^{-2t} - \left[y'(t)\right]^{2}$$

- > 初始条件为 y(0) = 1, y'(0) = -1
- \rightarrow 时间区间 $0 \leqslant t \leqslant 1$
- \rightarrow 解析解 $y(t) = e^{-t}$
- ▶ 说明:该方程来源是Diethelm教授的著作,原书方程有误, 解析解不满足微分方程

非线性分数阶微分方程求解

▶ 第3基准测试问题

> 两个积分器串联即可

- ▶定义关键信号 y(t), y'(t), y''(t)
- ▶构造分数阶微分信号
- ▶闭环仿真求解

Simulink建模

Simulink模型 ${}^{\text{C}}_{0}\mathscr{D}_{t}^{1.455}y(t) = -t^{0.1}\frac{\mathscr{E}_{1,1.545}(-t)}{\mathscr{E}_{1,1.445}(-t)}\,\mathrm{e}^{t}y(t)\,{}^{\mathrm{C}}_{0}\mathscr{D}_{t}^{0.555}y(t) + \mathrm{e}^{-2t} - \left[{}^{\mathrm{C}}_{0}\mathscr{D}_{t}^{1}y(t)\right]^{2}$

$${}_{t_0}^{\mathbf{C}} \mathscr{D}_t^{\gamma} y(t) = {}_{t_0}^{\mathbf{RL}} \mathscr{D}_t^{-(\lceil \gamma \rceil - \gamma)} \left[y^{(\lceil \gamma \rceil)}(t) \right]$$

$$_{t_0}^{C} \mathscr{D}_t^{0.555} y(t) = _{t_0}^{RL} \mathscr{D}_t^{-0.445} [y'(t)]$$

$$\operatorname{RL}_{t_0} \mathscr{D}_t^{\lceil \gamma \rceil - \gamma} \left[\operatorname{C}_{t_0} \mathscr{D}_t^{\gamma} y(t) \right] = y^{(\lceil \gamma \rceil)}(t)$$

$$\operatorname{RL}_{t_0} \mathscr{D}_t^{0.545} \left[{}_{t_0}^{\mathbf{C}} \mathscr{D}_t^{1.455} y(t) \right] = y''(t)$$

传统微分方程求解算法与Simulink仿真模型求解比较

- > 传统方法速度极慢,有时可能需要几小时求解
 - ▶最好的解 6.8855×10⁻⁹, 时间159s
 - ➤Simulink模型求解

(w_b, w_h)	$(10^{-2}, 10^2)$	$(10^{-3}, 10^3)$	$(10^{-4}, 10^4)$	$(10^{-5}, 10^5)$
p=5	5.20×10^{-3}	5.59×10^{-4}	3.58×10^{-5}	9.10×10^{-5}
p=6	5.20×10^{-3}	5.66×10^{-4}	4.71×10^{-5}	2.86×10^{-5}
p = 7	5.20×10^{-3}	5.69×10^{-4}	5.59×10^{-5}	1.07×10^{-5}
p = 8	5.30×10^{-3}	5.72×10^{-4}	5.76×10^{-5}	5.40×10^{-6}
p = 9	5.30×10^{-3}	5.73×10^{-4}	5.76×10^{-5}	5.53×10^{-6}
p = 10	5.30×10^{-3}	5.74×10^{-4}	5.76×10^{-5}	6.23×10^{-6}
maximum time	$0.156161\mathrm{s}$	$0.318534\mathrm{s}$	$2.142945\mathrm{s}$	$19.480147\mathrm{s}$

基准测试问题4 隐式分数阶微分方程

> (基准问题4) 隐式分数阶微分方程

- \rightarrow 初始条件 y(0) = 1, y'(0) = -1/2
- ightharpoonup 时间区间 $0 \leqslant t \leqslant 10$, 解析解 $y(t) = e^{-t/2}$
- > 隐式微分方程文献上没有通用的求解方法

Simulink仿真模型

- ➤ Simulink模型
 - ▶精度 4.11×10⁻⁵
 - ▶耗时 214s

误差分析

> 不同滤波器参数的仿真结果

(w_b, w_h)	$(10^{-2}, 10^2)$	$(10^{-3}, 10^3)$	$(10^{-4}, 10^4)$	$(10^{-5}, 10^5)$
p=5	1.40×10^{-2}	2.30×10^{-3}	7.98×10^{-4}	2.70×10^{-3}
p = 6	1.40×10^{-2}	2.30×10^{-3}	4.07×10^{-4}	8.35×10^{-4}
p = 7	1.40×10^{-2}	2.30×10^{-3}	3.16×10^{-4}	2.84×10^{-4}
p = 8	1.40×10^{-2}	2.30×10^{-3}	2.93×10^{-4}	1.14×10^{-4}
p = 9	1.40×10^{-2}	2.30×10^{-3}	2.88×10^{-4}	5.91×10^{-5}
p = 10	1.40×10^{-2}	2.30×10^{-3}	2.87×10^{-4}	4.11×10^{-5}
maximum time	$0.512608\mathrm{s}$	$2.597576\mathrm{s}$	$27.741354\mathrm{s}$	$214.335601\mathrm{s}$

- > 没有其他方法能求解隐式分数阶微分方程
- ▶速度慢,因为每步仿真需要由 Solve求解代数方程

分数阶系统的基于Simulink的仿真方法

- > 定义关键信号与初值
 - >利用整数阶积分器链,并给初值赋值
 - ▶利用前面的两个定理定义所需的分数阶导数信号
 - >所有初值问题均在整数阶积分器中设置, 所以不必再考虑初值
- > 构造Simulink仿真模型,系统的仿真分析
- > 仿真结果的验证
 - ▶一般问题的解析解未知,所以不能用benchmark验证方法
 - >选择不同的滤波器参数,如果不同参数下结果一致,则可以接受
- > 理论上可以求解任意复杂的分数阶微分方程

