Mathematics Refresher Course

Paul Dubois

September 2023

Contents

1	Presentation	2
2	Assumed to be known	2
3	Sets	3
4	Boolean Algebra	4
5	Modular arithmetic	4
6	Functions	5
7	Sequences	5
8	Essence of proofs	6
9	Asymptotic analysis	6
10	Large operators	7
11	Series	7
12	Affine functions	8
13	Quadratic functions / equations	9

Math Refresher 2023

This course teaches basic mathematical metho dologies for proofs. It is intended for students with a lack of mathematical background, or with a lack of confidence in mathematics. We will try to cover most of the prerequisites of the courses in the master's, i.e. basic algebra/analysis and basic applications.

1 Presentation

- Paul Dubois
- 3rd year PhD @ Centrale / TheraPanacea
- Research topic: AI applied to radiotherapy
- Email: b00795695@essec.edu (for any question)
- Course structure
 - 8*3h arranged as 1h20min lecture 1/3h break 1h20min lecture
 - No pb class planned, but lectures will have integrated live exercises
 - Interrupt if needed (do not wait for the end of the lecture)

• Examination

- The course is pass/fail
- Spoiler: All of you will pass
- Home exercises, you will need 80+\% to pass
- How long do you need to complete exercises (should take 30min to 1h)?
- How many exercises do you want? (2-4?)
- Hand in paper of PDF? (vote)
- In the unlikely event of not passing, you will be able to do some extra work to pass
- Course notes are still under construction (as I will adjust according to the speed of the class); I will give it to you at the end of the course.
- Final questions before we start?

2 Assumed to be known

- 4 operations (+,-,*,/)
- integer vs rational vs decimal
- what is a prime number
- basic (linear) equations solving

3 Sets

- sets of numbers $(\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{P})$
- complex sets (with {})
- examples (draw them):

```
- \{n \mid 4 < n < 10, n \in \mathbb{N}\}\
- \{2n - 1 \mid 4 < n < 10, n \in \mathbb{N}\}\
- \{x \mid 4 < x < 10, x \in \mathbb{R}\}\
- \{x \mid 4 < x^2 < 10\}\
- \{(x, y) \mid 0 < x < 2, 1 < y < 3, x \in \mathbb{R}, y \in \mathbb{R}\}\
```

- live exercises: draw set + define set from drawing
- intervals ([a, b] & (a, b)); example: [-2, 3)
- sets unions & intersections
- examples:

$$- [0,1) \cup (2,3]
- (0,1) \cap [0.5,2]
- [-2,5) \cap \mathbb{N}
- [-2,5) \cap \mathbb{Z}$$

- live exercises:
 - compute and plot the inersection and union of A = (1,5) and B = (3,7].
 - compute and plot the inersection and union of $C=(-\infty,2]$ and $D=[0,+\infty)$.
- quantifiers: ∀, ∃
- exmaple (simple):

$$-S = \{1, 3, 5, 7, 8\}: \forall s \in S, \text{ s.t. } \leq 10$$

 $-S = \{1, 3, 5, 7, 8\}: \exists s \in \S \text{ s.t. } s \text{ is pair}$

- example (combined): "for any number, there is a (natural) number greater" $(\forall x \in \mathbb{R}, \exists n \in \mathbb{N} s.t.n > x)$
- live exercises:
 - $-S = \{5, 6, 3, 1\}$ "all elements of S are positive"
 - $-S = \{5, 6, 3, 1\}$ "there is an odd element in S"
 - $-S = \{5, 6, 3, 1\}$ "there is an even element in S that is not a multiple of 4"
- implications \Longrightarrow , \Longleftrightarrow
- examples:

- $-x > 1 \implies x$ positive
- $-k \in \mathbb{Z} \iff k \in \mathbb{N}$
- $-k \in \mathbb{Z}$ and $k \ge 0 \iff k \in \mathbb{N}$
- live exercises:
 - "if x is positive, then it is the square of another number"
 - "n is pair is equivalent to n = 2m for some integer m"
- extreme values (min,max vs inf,sup)
- live exercises:
 - find the extreme values of the set $A = \{x \in \mathbb{R} \mid x > 0\}.$
 - find the extreme values of the set $B = \{1 \frac{1}{n} \mid n \in \mathbb{N}\}.$

4 Boolean Algebra

- principle (only 0 and 1)
- \bullet + and * for booleans: \vee and \wedge
- *not* (¬)
- tables
- De Morgan's law $(\neg(a \land b) = \neg a \lor \neg b \text{ and } \neg(a \lor b) = \neg a \land \neg b)$
- implications operators (\Longrightarrow , \Longleftrightarrow); xor operator (\veebar)
- live exercise:
 - express \vee in terms of \vee , \wedge , \neg
 - $\text{ express } \Longrightarrow \text{ in terms of } \vee, \wedge, \neg$
 - express \wedge in terms of \vee , \neg
 - express \vee in terms of \wedge , \neg

5 Modular arithmetic

- Euclidean division of a by b (a = bk + r with $0 \le r < b$)
- example with a = 35, b = 2, 3, 4, 5, 6, 7, 8
- modular classes $(12 \equiv 7 \equiv 22 \equiv 102 \equiv -3 \equiv -103 \mod 5$ i.e. $\{2+5k \mid k \in \mathbb{Z}\})$
- live exercises:
 - give 3 numbers that are congruent to 3 mod 7
 - give a test in terms of modular arithmetic that is equivalent to "n is odd"
 - give a test in terms of modular arithmetic that is equivalent to "n is a nultiple of k" (for k a natural number greater than two)

- what does it mean for n to say that $n \equiv 5 \mod 10$?
- find the least positive value of x such that $71 \equiv x \mod 8$
- modular operations $(+,-,*\mod n)$
- GCD and $\Box^{-1} \mod p$
- example:
 - compute the GCD of 270 and 192 (answer: 6)
 - compute 5^{-1} mod 11
- live exercises:
 - find the least positive value of x such that $89 \equiv (x+3) \mod 4$
 - what is $x \mod 10$ if $96 \equiv x/7 \mod 5$
 - find an x such that $5x \equiv 4 \mod 11$
 - if x is congruent to 13 mod 17 then 7x 3 is congruent to which number mod 17?

6 **Functions**

- functions def
- image vs pre-image
- span vs kernel
- examples:

$$-f: x \rightarrow 3x + 1$$

$$-g: x \to x^2 - 1$$

- $-\ddot{h}: x \to 8$
- live exercises:

 - compute the image of 2 by $f(x) = \frac{(x+1)^2 x}{x-3}$ compute the preimage(s) of 5 by f(x) = 2x 3
 - compute the kernel of f(x) = -3x + 2
 - compute the span of $f(x) = 5 (2x)^4$
- typical plotting of functions: set of points (x, y) s.t. y = f(x)

Sequences 7

- sequences def: general formula
- example: $u_n = n^3 5n^2$
- sequences def: recursive formula

- example: $u_0 = 5, u_{n+1} = u_n^2 u_n + 2$
- live exercises:
 - consider the (arithmetic) sequence $\{a_n\}$ defined by $a_{n+1} = a_n + 2$ and $a_0 = -1$:
 - * find the first five terms of the sequence
 - * find the common difference between consecutive terms
 - * find a formula for a_n (without using a_{n-1})
 - consider the (geometric) sequence $\{b_n\}$ defined by $b_n = 3 * 2^n$
 - * find the first five terms of the sequence
 - * find the common ratio between consecutive terms
 - * find a formula for b_{n+1} (using only b_n , no n)

Essence of proofs 8

- proof: assumption => conclusion
- direct with $n \ge 0 \implies 2n \ge 4n$
- cases split with $n \equiv n^2 \mod 2$
- contradiction with $\sqrt{2} \notin \mathbb{Q}$
- induction with $u_0 = 2$, $u_{n+1} = \frac{u_n+1}{2} \implies u_n > 1$
- live exercises:
 - prove that for all real numbers x, if x is positive, then x^3 is also positive
 - prove that the square root of 3 is irrational, i.e., it cannot be expressed as a fraction of two integers.
 - prove by mathematical induction that for all non-negative integers $n, 3^n - 1$ is divisible by 2.
 - use mathematical induction to prove that for all positive integers n, the sum of the first n odd integers is given by the formula: 1+3+5+...+(2n-1) is n^2 .

Asymptotic analysis 9

- definition (ε, δ)
- examples / live exercises:

 - prove that limit of $u_n = \frac{n^2+1}{n^2}$ as $n \to +\infty$ is 1 prove that limit of $f(x) = \frac{2x-1}{x}$ as $x \to -\infty$ is 2 prove that limit of $u_n = \frac{1}{\sqrt{n}}$ as $n \to +\infty$ is 0

- prove that $u_n = 2n^3$ diverges to $+\infty$ as $n \to +\infty$
- prove that limit of $f(x) = \frac{1}{x^2}$ as $x \to 0$ is $+\infty$ prove that limit of $f(x) = \frac{1}{x}$ as $x \to 0^-$ is $-\infty$
- operations on limits (+, -, *, and /)
- live exercises:

 - calculate $\lim_{n\to\infty} \left(2+\frac{-1}{2n}\right) \left(3-\frac{4}{-n^2}\right) + 5$ calculate $\lim_{n\to\infty} \frac{-2n+1}{8n}$ calculate $\lim_{x\to\infty} \frac{3x^2+2x}{4x^2-1}$ determine the behaviour of $u_n = (-2)^n$ as $n\to +\infty$

Large operators 10

- \sum , \prod , \bigcup , \bigcap
- examples:
 - "product of numbers from 10 to 20"
 - "sum of squares up to 10"
 - $\bigcup_{x \in \{1,4,10.5,21.75\}} [x 0.5, x + 0.5]$ $\bigcap_{n \in \mathbb{N}^*} \left[-\frac{1}{n}, \frac{1}{n} \right]$
- live exercises:
 - what set does the last example corresponds to?
 - define the factorial
 - give an expression for the sum of inverses from 1 to 1000
 - give an expression for the product of all prime numbers smaller than 10000
 - give an expression for the sum of factorials from 100 to 200

Series 11

- definition: sum of a sequence
- partial sums: $S_n = \sum_{k=0}^n u_k$
- examples:

$$-S_n = \sum_{k=0}^n k^2 - S_n = \sum_{k=0}^n \frac{1}{k!} - S_n = \sum_{k=0}^n \frac{1}{2^k}$$

• popular series:

- geometric series
- harmonic series
- alternating series
- convergence: if the sequence of partial sums converges
- convergence tests:
 - comparison test
 - integral test (see later)
 - ratio test
 - root test
 - alternating series test
- live exercises:
 - $\begin{array}{l} -\text{ prove that the series } \sum_{k\in\mathbb{N}}\frac{1}{k}-\frac{1}{k+1} \text{ converges} \\ -\text{ prove that the series } \sum_{k\in\mathbb{N}}\frac{1}{k!} \text{ converges} \\ -\text{ prove that the series } \sum_{k\in\mathbb{N}}\frac{1}{2^k} \text{ converges} \\ -\text{ prove that the series } \sum_{k\in\mathbb{N}}\frac{1}{k} \text{ diverges} \\ -\text{ prove that the series } \sum_{k\in\mathbb{N}}\frac{1}{k^2} \text{ converges} \\ -\text{ prove that the series } \sum_{k\in\mathbb{N}}\frac{k^10}{2^k} \text{ converges} \\ -\text{ prove that the series } \sum_{k\in\mathbb{N}}\frac{k^10}{2^k} \text{ converges} \\ \end{array}$

Affine functions **12**

- definition: f(x) = ax + b (a is the slope, b is the intercept)
- examples:
 - -f(x) = 2x + 1
 - -f(x) = -3x + 2
 - f(x) = 5
- live exercises:
 - plot the function f(x) = 2x + 1
 - plot the function f(x) = -3x + 2
 - find the affine function that passes through the points (1, 2) and (3,4)
- parallel (same slope) and orthogonal lines (negative reciprocal slope)
- live exercises:
 - find the equation of the line parallel to y = 2x + 1 that passes through (5,3)
 - find the equation of the line orthogonal to y = 2x + 1 that passes through (8,7)

13 Quadratic functions / equations

- definition: $f(x) = ax^2 + bx + c$ (a is the quadratic coefficient, b is the linear coefficient, c is the constant)
- example: $f(x) = x^2 + 3$ (plot it)
- solving quadratic equations (do demo)
- 3 forms of quadratic functions:

$$- f(x) = a(x - x_1)(x - x_2)$$

$$- f(x) = ax^2 + bx + c$$

$$- f(x) = a(x - x_0)^2 + y_0$$

TODO:

- Graph of usual functions
- Derivatives
- Usual functions (sin, cos, tan, exp, log)
- Integration
- Complex numbers
- Vectors (concept, sum, scalar product)
- Equations for lines (2D, 3D) and planes (3D)
- Matrices (concept, sum, product)
- Mutli-dimensional functions
- Inversing matrices (+ row reduction; span)
- Linear regression

_