

The Alle Street Control of the Street Street Street

was shell of the first of

No.	×1	x2	x3	x4	x5	у
1	0.000	0.000	0. 350	0.600	0. 600	100.0
5	0.000	0.300	0. 100	0.000	0.600	101.0
3	0.000	0. 300	0.000	0. 100	0.600	100.0
4	0. 150	0. 150	0. 100	0. 600	0.000	97. 3
5	0. 150	0.000	0. 150	0. 600	0. 100	97. 8
6	0.000	0. 300	0. 490	0.600	0. 051	96. 7
7	0. 000	0. 300	0. 000	0. 489	0. 211	97. 0
8	0. 150	0. 127	0. 023	0. 600	0. 100	97. 3
9	0. 150	0. 000	0. 311	0. 539	0. 000	99. 7
10	0.000	0. 300	0. 285	0. 415	0.000	99. 8
11	0.000	0. 080	0. 350	0. 570	0. 000	100.0
12	0. 150	0. 150	0. 266	0. 434	0.000	99. 5
13	0. 150	0. 150	0. 082	0.018	0.600	101. 9
14	0.000	0. 158	0. 142	0. 100	0.600	100. 7
15	0.000	0. 000	0. 300	0. 416	0. 239	100. 9
16	0. 150	0. 034	0. 116	0. 444	0. 600	101. 2
17	0. 068	0. 121	0. 175	0. 332	0. 192	98. 2
18	Ն. 067	0. 098	0. 234	0.000	0. 270	100. 5
19	0. 000	0. 300	0. 192	0. 208	0. 300	100. 6
20	0. 150	0. 150	0. 174	0. 226	0. 300	100.6
21	0. 075	0. 225	0. 276	0. 424	0.000	99. 1
55	0. 075	0. 225	0.000	0. 100	0.600	100.4
23	0.000	0. 126	0. 174	0.600	0.100	98. 4
24	0. 075	0.000	0. 225	0.600	0. 100	98. 2
25	0. 150	0. 150	0.000	0. 324	0. 376	99. 4
26	0.000	0. 300	0. 192	0. 508	0.000	98. 6

x1 = BUTANE

x1 = BOTANC x2 = ISOPENETANE x3 = REFORMATE x4 = CAT CRACKED x5 = ALKYLATE y = RESEARCH OCTANE AT 2.0 GRAMS OF LEAD/GALLON

NO. t:1-5 t:6-11 t:12-17 t:18-23 | t:24-29 FAULT 0.65190 0.30067 0.13019 0. 31398 0.69901 0.00000 0. 27577 2 0.56790 0.24946 0.61443 0.70156 1.00000 3 0.86528 0.30303 0.10538 0.56716 0.58797 0.00000 4 0.15642 0.58065 0.37313 0.83277 0.58352 1.00000 0. 27834 5 0.82369 0. 24731 0.67413 0.90200 0.00000 0. 35353 0.67116 0.16559 0.65920 6 0.82405 1.00000 0. 35241 7 0.40958 0.41290 0.73881 0.70601 0.00000 0.35443 0. 33782 0.55054 0.70647 8 0.71269 1.00000 0.54702 0.57350 0.59355 0.67413 0.72606 0.00000 0.34177 0.60718 0. 79355 0.79851 10 0.64588 1.00000 0.47920 0.65208 0.67312 0.74833 0.00000 0.83582 11 0. 94409 0. 35353 12 0.57800 0.95025 0.74610 1.00000 0.47197 0.32099 0. 36559 0.58209 0. 52561 13 0.00000 0.36528 0.39843 0.44731 0.61940 14 0. 55457 1.00000 0.44123 15 0.29854 0.34624 0.57711 0.55457 0.00000 0.35805 0. 42150 16 0.35354 0.59701 0.56793 1.00000 0. 32997 0.41505 0.72139 17 0.49005 0.67929 0.00000 0. 31284 0. 43547 0. 43656 0.72388 18 0.70601 1.00000 0. 43309 0.31874 0. 39785 0.71642 0.73497 19 0.00000 0. 34991 50 0. 36251. 0. 44946 0.71144 0.73051 1.00000 21 0.46745 0.26936 0.40860 0.69652 0.72160 0.00000 55 0.35262 0.37261 0.42366 0.70398 0.70601 1.00000 53 0.59042 0. 25253 0.48602 0.78358 0.82628 0.00000 24 0.38427 0.37486 0.48172 0.79851 0.80401 1.00000 25 0.38156 0.19753 0. 40645 0.63930 0.83296 0.00000 0. 34810

TABLE 2: TIME-DEPENDENT SENSOR DATA PROFILES

Fig. 12

26

27

28

59

30

31

35

33

34

35

36

37

38

0.75769

0.41863

0.50723

0.34991

0.54069

0.38788

0.41320

0. 34991

0.39873

0.33906

0. 29747

0 30561

0.52189

0.91134

1.00000

0.36364

0.47250

0.24691

0.40404

0.32660

0.34007

0. 35354

0. 32323

0. 26824

0 21886

0.44516

0.44301

1.00000

0.40645

0.45806

0.38279

0.38710

0.41075

0.49247

0.44516

0. 58065

0. 42366

0.36129

0.68906

0.61194

0.59453

0.68159

0.70149

0.70647

0.70149

0.68408

0.68906

0.68906

0.70149

0.74378

0.59950

0.72160

0.51225

0.49220

0.71715

0.70156

0.73051

0.72383

0.71715

0.70379

0.69710

0.69710

0.85746

0.67038

1.00000

0.00000

1.00000

0.00000

1.00000

0.00000

1.00000

0.00000

1.00000

0.00000

1.00000 0.00000

1.00000

TABLE 3: SEMICONDUCTOR CRYSTAL STRUCTURE PARAMETERS AND BAND GAPS

No.	COMPOUNDS	u	α	С	c/a	GAP
1	AgGaS2	0. 28	5. 75722	10. 3036	1. 790	2. 55
2	AgALS2	0. 3	5. 73	10. 3	1. 798	3. 13
3	AgGaSe2	0. 27	5. 755	10. 28	1. 786	1.8
4	CdSiAs2	0. 298	5. 884	10. 882	1. 849	1. 55
5	CdGeP2	0. 2839	5. 738	10. 765	1. 876	1. 72
6	AgAlTe2	0. 26	6. 296	11. 83	1. 879	2. 25
7	CdGeAs2	0. 278	5. 9432	11. 2163	1. 887	0.6
8	AgGaTe2	0. 26	6. 3197	11. 9843	1. 896	1.1
9	AgLnTe2	0. 25	5. 836	11. 1789	1. 916	1. 9
10	CdSnP2	0. 265	5. 9	11. 518	1. 952	1. 7
11	CuAISe2	0. 26	5. 6103	10. 982	1. 957	2. 6
12	AgLnSe2	0. 25	6. 455	12. 644	1. 959	0. 96
13	CdSnAs2	0. 262	6. 09	11. 94	1. 961	0. 26
14	ZnGeP2	0. 25816	5. 46	10. 71	1. 962	2. 34
15	CuA1S2	0. 27	5. 31	10. 42	1. 96ć	3. 35
16	ZnGeAs2	0. 25	5. 66	11. 154	1. 971	0. 75
17	CuFeS2	0. 27	5. 289	10. 423	1. 971	0. 53
18	AgA1Se2	0. 27	5. 95	10. 75	1. 807	2. 6
19	CuAlTe2	0. 25	5. 964	11. 78	1. 975	2. 06
20	CuGaTe2	0. 25	6. 013	11. 934	1. 985	1. 24
21	CuTiSe2	0. 25	5. 832	11. 63	1. 994	1. 07
55	ZnSnAs2	0. 231	5. 851	11. 702	2. 000	0. 65
23	ZnSnP2	0. 238	5. 65	11. 3	- 2. 000	1.66
24	ZnLnSe2	0. 224	5. 784	11.614	2. 008	0. 95
25	CuLnS2	0. 2	5. 5228	11. 1321	2. 106	1. 54
26	CuGaS2	0. 25	5. 555	11. 0036	1. 981	1.71

Fig. 13

Fig. 14

Fig. 15

