Computer and Robot Vision I

Chapter 7

Binary Machine Vision:

Conditioning And Labeling_

HW9 and HW10 講解(已更新圖片)

Presented by: 傅楸善 & 蔡婷瑀

E-mail: r08945026@ntu.edu.tw

手機: 0987233087

授課教授:傅楸善博士

DC & CV Lab. CSIE NTU

Project due Nov. 26 Dec. 3

Write the following programs

- 1. Generate additive white Gaussian noise
- 2. Generate salt-and-pepper noise
- 3. Run box filter (3x3, 5x5) on all noisy images
- 4. Run median filter (3x3, 5x5) on all noisy images
- 5. Run opening followed by closing and closing followed by opening.

Project due Nov. 26 Dec. 3

Generate additive white Gaussian noise:

I(nim, i, j) = I(im, i, j) + amplitude *N(0, 1)

N(0, 1): Gaussian random variable with zero mean and st. dev. 1 *amplitude* determines signal-to-noise ratio, try 10 and 30

Generate salt-and-pepper noise:

I(nim, i, j) = 0 if uniform(0, 1) < threshold

I(nim, i, j) = 255 if uniform(0, 1)>1- threshold

I(nim, i, j) = I(im, i, j) otherwise

uniform(0, 1): random variable uniformly distributed over [0, 1] threshold determines signal-to-noise ratio, try both 0.05 and 0.10

Project Assignment Related

```
from PIL import Image
import random
import numpy as np
def GetGaussianNoise Image 10(original Image):
                                                     Generate additive white Gaussian noise
    gaussianNoise Image 10 = original Image.copy()
   for c in range(original Image.size[0]):
                                                     with amplitude = 10
       for r in range(original Image.size[1]):
           noisePixel = int(original Image.getpixel((c, r)) + 10 * random.gauss(0, 1))
           if noisePixel > 255:
               noisePixel = 255
           gaussianNoise Image 10.putpixel((c, r), noisePixel)
    return gaussianNoise Image 10
def GetSaltAndPepper Image 05(original Image):
                                                     Generate salt-and-pepper noise
    SaltAndPepper Image 05 = original Image.copy()
                                                     with threshold = 0.05
   for c in range(original Image.size[0]):
       for r in range(original Image.size[1]):
           random Value = random.uniform(0, 1)
           if (random Value <= 0.05):</pre>
               SaltAndPepper_Image_05.putpixel((c, r), 0)
           elif (random Value >= 1-0.05):
               SaltAndPepper Image 05.putpixel((c, r), 255)
           else:
               SaltAndPepper Image 05.putpixel((c, r), original Image.getpixel((c, r)))
    return SaltAndPepper Image 05
```

169	153	145	137	112	98
130	95	120	130	115	128
124	162	45	87	75	101
124	177	176	136	150	137
141	38	54	155	132	57
87	156	161	180	99	79

Generate additive white Gaussian noise

173	147	135	145	100	105
133	100	106	143	130	132
132	165	46	96	60	132
125	169	163	144	144	143
130	36	34	144	140	47
91	146	169	178	94	66

138	132	129	126	125	116
141	126	120	106	115	109
137	126	125	114	124	123
126	111	110	107	116	111
116	118	131	134	122	105
100	101	117	126	111	86

Run box filter (3x3) on image.

$$I(0,1) = (173+147+135+133+100+106)/6=132$$

$$I(1,0) = (173+147+133+100+132+165)/6=141$$

$$I(2,2) = (100+106+143+165+46+96+169+163+144)/9=125$$

169	153	145	137	112	98
130	95	120	130	115	128
124	162	45	87	75	101
124	177	176	136	150	137
141	38	54	155	132	57
87	156	161	180	99	79

Generate additive white Gaussian noise

157	154	136	138	139	88
160	84	113	119	100	127
123	176	46	93	75	85
123	169	172	130	149	154
138	35	70	148	116	71
77	153	165	187	90	87

157	154	136	136	127	127
157	136	119	113	100	100
160	123	119	113	119	127
138	123	130	116	116	116
138	138	153	148	130	116
138	138	153	148	116	90

Run median filter (3x3) on image.

$$O(1,0) = median(157, 154, 160, 84, 123, 176)=157$$

$$O(2,2) = median(84, 113, 119, 176, 46, 93, 169, 172, 130)=119$$

Write programs to generate the following gradient magnitude images and choose proper thresholds to get the binary edge images:

- 1. Roberts operator (threshold: 30)
- 2. Prewitt edge detector (threshold: 24)
- 3. Sobel edge detector (threshold: 38)
- 4. Frei and Chen gradient operator (threshold: 30)
- 5. Kirsch compass operator (threshold: 135)
- 6. Robinson compass operator (threshold: 43)
- 7. Nevatia-Babu 5×5 operator (threshold: 12500)

109	140	155	143	137	131	112	90
104	104	97	100	115	40	42	63
130	120	95	122	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79
			•				
0	0	0	0	0	0	0	0
0	255	255	0	0	0	0	0
255	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	255	0	0	0	0	0	0

Roberts operator (ppt p.80) Threshold=30

$$f'(x) \approx f(x+1) - f(x)$$

gradient magnitude: $\sqrt{r_1^2 + r_2^2}$

$$I(0, 0) =$$

 r_1 : 104-169=-65

 r_2 : 104-146=-42

gradient magnitude: $\sqrt{(-65)^2+(-42)^2}$ =77 77 >= 30 (threshold)

$$O(0, 0) = 0$$
 (black)

169	146	153	145	137	151	112	98
104	104	97	100	115	40	42	63
130	120	95	122	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79
				,			
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Prewitt operator (ppt p.82)

$$f'(x) \approx f(x+1) - f(x-1)$$

$$f(x-1)$$

$$f(x+1)$$

gradient magnitude: $\sqrt{p_1^2 + p_2^2}$

$$I(0, 0) = p_1: (104+104+104)- (169+169+146)=-172$$

$$p_2: (146+146+104)- (169+169+104)=-46$$
gradient magnitude: 178 >= 24(threshold)
$$O(0, 0) = 0 \text{ (black)}$$

I(0, 1) =
p1: (104+104+97)- (169+146+153)=-163
p2: (153+153+97)-(169+169+104)=-39
gradient magnitude: $167 >= 24 \rightarrow O(0, 1) = 0$ (black)

I(1, 0) =
p1: (130+130+120)- (169+169+146)=-104
p2: (146+104+120)-(169+104+130)=-33
gradient magnitude: $109 >= 24 \rightarrow O(1, 0) = 0$ (black)

					_	_	
169	146	153	145	137	151	112	98
104	104	97	100	115	40	42	63
130	120	95	120	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79
				,			
0	0	0	0	0	0	0	0
0	0	0	0	255	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	255	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Sobel operator (ppt p.84)

$$f'(x) \approx f(x+1) - f(x-1)$$

Threshold=38

$$f(x-1)$$
 $f(x+1)$ $f(x+1)$ $f(x+1)$ $f(x+1)$ $f(x+1)$ $f(x+1)$

gradient magnitude: $\sqrt{s_1^2 + s_2^2}$

I(0, 0) =
s ₁ : (104+2×104+104)- (169+2×169+146)=-237
s_2 : (146+2×146+104)-(169+2×169+104)=-69
gradient magnitude: 246 >= 38(threshold)
O(0, 0) = 0 (black)

I(0, 1) =
s ₁ : (104+2×104+97)- (169+2×146+153)=-205
s ₂ : (153+2×153+97)-(169+2×169+104)=-55
gradient magnitude: $212 >= 38 \rightarrow O(0, 1) = 0$ (black)

I(1, 4) =
$s_1: (120+2\times130+212)-(145+2\times137+151)=22$
s_2 : $(151+2\times40+212)-(145+2\times100+120)=22$
gradient magnitude: $31 < 38 \rightarrow O(1, 4) = 255$ (white)

169	146	153	145	137	151	112	98
104	104	97	100	115	40	42	63
130	120	95	120	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79
				7			
0	0	0	0	0	0	0	0
0	0	0	0	255	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Frei and Chen gradient operator (ppt p.87) Threshold=30

gradient magnitude: $\sqrt{f_1^2 + f_2^2}$ $f'(x) \approx f(x+1) - f(x-1)$

$$f'(x) \approx f(x+1) - f(x-1)$$

I(0, 0) = f_1 : $(104+\sqrt{2}\times104+104)$ - $(169+\sqrt{2}\times169+146)$ =-198.92 f_2 : $(146+\sqrt{2}\times146+104)-(169+\sqrt{2}\times169+104)=-55.53$ gradient magnitude: 206 >= 30(threshold) O(0, 0) = 0 (black)

I(0, 1) =
f_1 : $(104+\sqrt{2}\times104+97)$ - $(169+\sqrt{2}\times146+153)$ =-180.40
f_2 : $(153+\sqrt{2}\times153+97)-(169+\sqrt{2}\times169+104)=-45.63$
gradient magnitude: $186 >= 30 \rightarrow O(0, 1) = 0$ (black)

I(1, 4) =
f_1 : $(120+\sqrt{2}\times130+212)$ - $(145+\sqrt{2}\times137+151)$ =26.10
f_2 : $(151+\sqrt{2}\times40+212)-(145+\sqrt{2}\times100+120)=13.15$
gradient magnitude: $29 < 30 \rightarrow O(1, 4) = 255$ (white)

145	137	151
100	115	40
120	130	212

169	146	153	145	137	151	112	98
104	104	97	100	115	40	42	63
130	120	95	120	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Kirsch compass operator (ppt p.91) Threshold=135

gradient magnitude: $\max_{n,n=0,\dots,7} k_n$

$$I(0,0) = k_0: -3x(169+169+169+104+104) + 5x(146+146+104) = -165$$

$$k_1: -3x(169+169+104+104+104) + 5x(169+146+146) = 355$$

$$k_2: -3x(169+104+104+104+146) + 5x(169+169+146) = 539$$

$$k_3: -3x(146+146+104+104) + 5x(169+169+169) = 723$$

$$k_4: -3x(169+146+146+104+104) + 5x(169+169+104) = 203$$

$$k_5: -3x(169+169+146+146+104) + 5x(169+104+104) = -317$$

$$k_6: -3x(169+169+169+146+146) + 5x(104+104+104) = -837$$

$$k_7: -3x(104+169+169+169+146) + 5x(146+104+104) = -501$$

gradient magnitude: $k_3=723 >= 135$ (threshold) O(0, 0) = 0 (black)

169	146	153	145	137	151	112	R
104	104	97	100	115	40	42	63
130	120	95	120	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79

2	binson compass operator (ppt p.93)
	Threshold=43

-1	1		1	2	1	2	1	2	1	
-2	2	-1	T	1				1		-1
-1	1	-2	-1	\Box	-1	-2	-1		-1	-2
,	o	181 188	r ₁	masesellino	0.22 0.63000	r 2	25 - 38 P	Solitation	<i>r</i> ₃	
1	-1		-1	-2	-1	-2	-1	-2	-1	I
	12	1		-1	70	2000bg	9	-1		1
2	-4			- ·			1		4	
1	-1	2	1		1	2	1		1	2

gradient magnitude: $\max_{n,n=0,...,7} r_n$

$$I(0, 0) =$$

$$r_0: (146+2\times146+104) - (169+2\times169+104) = -69$$

$$r_1: (169+2\times146+146) - (169+2\times104+104) = 126$$

$$r_2: (169+2\times169+146) - (104+2\times104+104) = 237$$

$$r_3: (169+2\times169+169) - (146+2\times104+104) = 218$$

$$r_4: (169+2\times169+104) - (146+2\times146+104) = 69$$

$$r_5: (169+2\times104+104) - (169+2\times146+146) = -126$$

$$r_6: (104+2\times104+104) - (169+2\times169+146) = -237$$

$$r_7: (146+2\times104+104) - (169+2\times169+169) = -218$$

gradient magnitude: $r_2=237 >= 43$ (threshold) O(0, 0) = 0 (black)

169	146	153	145	137	151	112	98
104	104	97	100	115	40	42	63
130	120	95	120	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79

Nevatia-Babu 5x5 operator (1/2) (ppt p.95) Threshold=12500

100	100	100	100
100	100	100	100
0	0	0	0
-100	-100	-100	-100
-100	-100	-100	-100
	0 -100	0 0 -100 -100	0 0 0 -100 -100 -100

100	100	100	100	100
100	100	100	78	-32
100	92	0	-92	-100
32	-78	-100	-100	-100
-100	-100	-100	-100	-100
		30°	2 - AMARS - 33	

		600		2
100	-32	-100	-100	-100
100	78	-92	-100	-100
100	100	0	-100	-100
100	100	92	-78	-100
100	100	100	32	-100

-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100

-100	32	100	100	100
-100	-78	92	100	100
-100	-100	0	100	100
-100	-100	-92	78	100
-100	-100	-100	-32	100

	9	-30°		
-100	-100	-100	-100	-100
-100	-100	-100	-78	32
-100	-92	0	92	100
-32	78	100	100	100
100	100	100	100	100

gradient magnitude: $\max_{n,n=0,....5} N_n$

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255
255	255	255	0	0	0	255	255
0	255	255	0	0	0	0	0
255	0	0	0	0	0	0	255
0	0	0	0	255	255	255	0
0	0	0	255	255	255	0	0
0	0	0	0	0	255	0	0

$$I(0, 0) =$$

$$N_0 = 49400$$
, $N_1 = 45724$, $N_2 = 29816$, $N_3 = -16900$, $N_4 = 878$, $N_5 = 34750$

gradient magnitude: N_0 =49400 >= 12500 (threshold) O(0, 0) = 0 (black)

169	146	153	145	137	151	112	98
104	104	97	100	115	40	42	63
130	120	95	120	130	212	115	128
124	157	162	45	87	77	75	101
124	201	177	176	136	113	150	137
162	155	193	46	52	87	126	203
141	149	38	54	155	145	132	57
87	64	156	161	180	210	99	79

Nevatia-Babu 5x5 operator (2/2) (ppt p.95) Threshold=12500

100	100	100	100	100
100	100	100	100	100
0	0	0	0	0
-100	-100	-100	-100	-100
-100	-100	-100	-100	-100

100 92 32 -78	-100	-100	-100 -100
32 -78	-100	-100	-100
-100 -100	-100	-100	

		600		2
100	-32	-100	-100	-100
100	78	-92	-100	-100
100	100	0	-100	-100
100	100	92	-78	-100
100	100	100	32	-100

-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100

-100	32	100	100	100
-100	-78	92	100	100
-100	-100	0	100	100
-100	-100	-92	78	100
-100	-100	-100	-32	100

100	100	100	100	100
-32	78	100	100	100
-100	-92	0	92	100
-100	-100	-100	-78	32
-100	-100	-100	-100	-100
	SELE	-30°		

gradient magnitude: $\max_{n,n=0,....5} N_n$

169	146	153	145	137
104	104	97	100	115
130	120	95	120	130
124	157	162	45	87
124	201	177	176	136

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255
255	255	255	0	0	0	255	255
0	255	255	0	0	0	0	0
255	0	0	0	0	0	0	255
0	0	0	0	255	255	255	0
0	0	0	255	255	255	0	0
0	0	0	0	0	255	0	0

 $N_0 = -11900, N_1 = -9458, N_2 = 1774,$ $N_3 = -18800, N_4 = -29842, N_5 = -15442$

gradient magnitude: $N_2=1774 < 12500$ (threshold) O(2, 2) = 255 (white)

I(2, 2) =

Roberts operator with threshold = 12

Roberts operator with threshold = 30

Prewitt edge detector with threshold = 24

Sobel edge detector with threshold = 38

Frei and Chen gradient operator with threshold = 30

Kirsch compass operator with threshold = 135

Robinson compass operator with threshold = 43

Nevatia-Babu 5×5 operator threshold = 12500

Write the following programs to detect edge:

Zero-crossing on the following four types of images to get edge images (choose proper threshold t=1), p. 349

- 1. Laplacian(2張圖) (threshold = 15)
- 2. Minimum-variance Laplacian (threshold = 30)
- 3. Laplacian of Gaussian (threshold = 3000)
- 4. Difference of Gaussian, (use tk to generate D.O.G.) DoG (inhibitory $\sigma = 1$, excitatory $\sigma = 3$, kernel size=11) (threshold = 1)

Laplacian

(threshold = 15)

	1	
1	-4	1
	1	

(threshold = 15)

1	1	1
1	-8	1
1	1	1

minimum-variance Laplacian

(threshold = 20)

2	-1	2
-1	4	-1
2	-1	2

Laplacian of Gaussian 0

(threshold = 3000)


```
0 0 0 -1 -1 -2 -1 -1 0 0 0 0 0 0 0 0 0 -2 -4 -8 -9 -8 -4 -2 0 0 0 0 -2 -7 -15 -22 -23 -22 -15 -7 -2 0 -1 -4 -15 -24 -14 -1 -14 -24 -15 -4 -1 -1 -8 -22 -14 52 103 52 -14 -22 -8 -1 -2 -9 -23 -1 103 178 103 -1 -23 -9 -2 -1 -8 -22 -14 52 103 52 -14 -22 -8 -1 -1 -4 -15 -24 -14 -1 -14 -24 -15 -4 -1 0 -2 -7 -15 -22 -23 -22 -15 -7 -2 0 0 0 0 -2 -4 -8 -9 -8 -4 -2 0 0 0 0 0 0 -1 -1 -2 -1 -1 0 0 0
```

Difference of Gaussian (threshold = 1) (inhibitory $\sigma = 3$, excitatory $\sigma = 1$, kernel size=11)

```
-1 -3 -4 -6 -7 -8 -7 -6 -4 -3 -1 

-3 -5 -8 -11 -13 -13 -13 -11 -8 -5 -3 

-4 -8 -12 -16 -17 -17 -17 -16 -12 -8 -4 

-6 -11 -16 -16 0 15 0 -16 -16 -11 -6 

-7 -13 -17 0 85 160 85 0 -17 -13 -7 

-8 -13 -17 15 160 283 160 15 -17 -13 -8 

-7 -13 -17 0 85 160 85 0 -17 -13 -7 

-6 -11 -16 -16 0 15 0 -16 -16 -11 -6 

-4 -8 -12 -16 -17 -17 -17 -16 -12 -8 -4 

-3 -5 -8 -11 -13 -13 -13 -11 -8 -5 -3 

-1 -3 -4 -6 -7 -8 -7 -6 -4 -3 -1
```


	•													
153	166	85	90	96	102	101	98	73	64	55	40	172	163	155
161	164	161	166	171	173	174	176	180	178	183	174	180	174	180
103	105	97	97	97	103	101	98	111	111	104	48	54	49	57
126	123	117	115	145	86	113	146	96	73	110	98	43	53	95
135	129	110	114	107	113	114	66	84	34	120	130	73	51	79
134	128	130	134	139	129	94	39	45	197	48	43	41	57	46
123	167	142	183	168	110	45	141	61	85	81	61	57	118	127
130	131	170	194	170	69	171	100	173	150	136	128	134	142	137
133	127	211	201	172	127	181	115	141	131	148	150	151	147	140
108	110	95	227	172	192	203	169	163	149	42	51	189	171	159
163	149	146	150	203	127	69	37	49	64	85	78	98	215	202
155	152	144	209	182	205	66	46	45	147	156	112	146	125	101
209	143	149	46	52	55	134	159	157	150	143	136	122	148	109
123	93	54	55	144	156	164	155	145	188	215	207	209	98	91
96	51	67	163	162	154	157	145	191	210	213	48	91	85	89

Laplacian mask 1 (1/4)

(ppt p.104) Threshold=15

153	166	85
153	166	85
161	164	161

117	115	145
110	114	107
130	134	139

Input pixel gradient magnitude >= threshold (15)

 \rightarrow Laplacian output pixel t = 1

Input pixel gradient magnitude <= -threshold (15)

 \rightarrow Laplacian output pixel t = -1

Else \rightarrow Laplacian output pixel t = 0

$$I(0, 0)$$
: gradient magnitude: $1 \times 153 + 1 \times 166 + 1 \times 161 + 1 \times 153 - 4 \times 153 = 21 >= 15$ (threshold)

$$L(2, 2) = 1$$

$$I(0, 1)$$
: gradient magnitude: $1 \times 166 + 1 \times 85 + 1 \times 164 + 1 \times 153 - 4 \times 166 = -96 \le -15$ (-threshold)

$$L(0, 1) = -1$$

I(4, 3): gradient magnitude:
$$1 \times 115 + 1 \times 107 + 1 \times 134 + 1 \times 110 - 4 \times 114 = 10 < 15$$
 (threshold) and > -15 (-threshold)

$$L(4, 3) = 0$$

Laplacian mask 1 (2/4) (ppt p.104) Threshold=15

Input pixel gradient magnitude >= threshold (15) \rightarrow Laplacian output pixel t = 1 Input pixel gradient magnitude <= -threshold (15) \rightarrow Laplacian output pixel t = -1 Else \rightarrow Laplacian output pixel t = 0

Input image

		_												
153	166	85	90	96	102	101	98	73	64	55	40	172	163	155
161	164	161	166	171	173	174	176	180	178	183	174	180	174	180
103	105	97	97	97	103	101	98	111	111	104	48	54	49	57
126	123	117	115	145	86	113	146	96	73	110	98	43	53	95
135	129	110	114	107	113	114	66	84	34	120	130	73	51	79
134	128	130	134	139	129	94	39	45	197	48	43	41	57	46
123	167	142	183	168	110	45	141	61	85	81	61	57	118	127
130	131	170	194	170	69	171	100	173	150	136	128	134	142	137
133	127	211	201	172	127	181	115	141	131	148	150	151	147	140
108	110	95	227	172	192	203	169	163	149	42	51	189	171	159
163	149	146	150	203	127	69	37	49	64	85	78	98	215	202
155	152	144	209	182	205	66	46	45	147	156	112	146	125	101
209	143	149	46	52	55	134	159	157	150	143	136	122	148	109
123	93	54	55	144	156	164	155	145	188	215	207	209	98	91
96	51	67	163	162	154	157	145	191	210	213	48	91	85	89

Laplacian output

1	-1	1	1	1	1	1	1	1	1	1	1	-1	0	1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-1	-1	-1	0	-1	1	0	-1	1	1	-1	-1	1	1	-1
-1	-1	1	0	1	-1	-1	1	-1	1	-1	-1	-1	1	-1
-1	1	0	1	-1	-1	-1	1	1	-1	1	1	1	1	1
1	-1	1	-1	-1	-1	1	-1	1	1	0	1	1	-1	-1
0	1	0	-1	-1	1	-1	1	-1	-1	-1	-1	-1	-1	0
-1	1	-1	0	-1	1	-1	1	1	1	-1	-1	1	1	1
1	1	1	-1	1	-1	-1	-1	-1	-1	1	1	-1	1	1
-1	-1	-1	1	-1	1	1	1	1	1	0	1	1	-1	-1
1	-1	1	-1	-1	-1	1	1	1	-1	-1	1	-1	1	1
-1	1	-1	1	1	1	-1	-1	-1	1	1	1	1	-1	0
1	0	1	1	-1	-1	-1	0	1	-1	-1	-1	-1	1	1
-1	1	1	-1	-1	0	0	1	-1	-1	-1	1	1	1	0

Zero-Crossing Edge Detectors

A pixel is declared to have a zero crossing if it is less than -t and one of its eight neighbors is greater than t, or if it is greater than t and one of its eight neighbors is less than -t for some fixed threshold t

0	1	0		
-1	1	-1		
1	1	1		

$$L(0, 0)$$
: 1, and zero crossing in $L(-1, 1)$, $L(0, 1)$, $L(1, -1)$, $L(1, 0)$, $L(1, 1) = -1$ $O(0, 0) = 0$ (black)

$$L(0, 1): -1 \rightarrow O(0, 1): 255$$
 (white)

$$L(4, 3): 0 \rightarrow O(4, 3) = 255$$
(white)

$$L(8, 1)$$
: 1, and zero crossing in $L(8, 0)$, $L(8, 2) = -1$ $O(8, 1) = 0$ (black)

Zero-crossing on Laplacian mask 1 (4/4) (ppt p.104, 119)

Laplacian output

1	-1	1	1	1	1	1	1	1	1	1	1	-1	0	1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-1	-1	-1	0	-1	1	0	-1	1	1	-1	-1	1	1	-1
-1	-1	1	0	1	-1	-1	1	-1	1	-1	-1	-1	1	-1
-1	1	0	1	-1	-1	-1	1	1	-1	1	1	1	1	1
1	-1	1	-1	-1	-1	1	-1	1	1	0	1	1	-1	-1
0	1	0	-1	-1	1	-1	1	-1	-1	-1	-1	-1	-1	0
-1	1	-1	0	-1	1	-1	1	1	1	-1	-1	1	1	1
1	1	1	-1	1	-1	-1	-1	-1	-1	1	1	-1	1	1
-1	-1	-1	1	-1	1	1	1	1	1	0	1	1	-1	-1
1	-1	1	-1	-1	-1	1	1	1	-1	-1	1	-1	1	1
-1	1	-1	1	1	1	-1	-1	-1	1	1	1	1	-1	0
1	0	1	1	-1	-1	-1	0	1	-1	-1	-1	-1	1	1
-1	1	1	-1	-1	0	0	1	-1	-1	-1	1	1	1	0

Zero-crossing on Laplacian output (Output image)

0	255	0	0	0	0	0	0	0	0	0	0	255	255	0
255	255	255	255	255	255	255	255	255	255	255	255	255	255	255
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
255	255	255	255	255	0	255	255	0	0	255	255	0	0	255
255	255	0	255	0	255	255	0	255	0	255	255	255	0	255
255	0	255	0	255	255	255	0	0	255	0	0	0	0	0
0	255	0	255	255	255	0	255	0	0	255	0	0	255	255
255	0	255	255	255	0	255	0	255	255	255	255	255	255	255
255	0	255	255	255	0	255	0	0	0	255	255	0	0	0
0	0	0	255	0	255	255	255	255	255	0	0	255	0	0
255	255	255	0	255	0	0	0	0	0	255	0	0	255	255
0	255	0	255	255	255	0	0	0	255	255	0	255	0	0
255	0	255	0	0	0	255	255	255	0	0	0	0	255	255
0	255	0	0	255	255	255	255	0	255	255	255	255	0	0
255	0	0	255	255	255	255	0	255	255	255	0	0	0	255