

Tabelas Bidimensionais

Unidade I Parte 2

Análise de Dados Categorizados

Maria Teresa Leão Costa

"Odds"

Define-se para:

• linha 1:
$$odds_1 = \frac{\pi_1}{(1-\pi_1)}$$

• linha 2:
$$odds_2 = \frac{\pi_2}{(1-\pi_2)}$$

 Em qualquer das linhas, a probabilidade de sucesso é uma função da odds.

$$odds = \frac{\pi}{1-\pi} \iff \pi = \frac{odds}{odds+1}$$

• Quando $\pi_1 = \pi_2$, as odds satisfazem $odds_1 = odds_2$. As variáveis são, portanto , **independentes**.

RAZÃO DE CHANCES (ODDS RATIO)

Medida de associação para tabelas de contingência 2x2

	Y		
Grupo	Sucesso	Insucesso	Total
1	n_{II}	n_{12}	n_{I^+}
2	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	N
		-	•

 π_1 - probabilidade de sucesso na linha 1 (grupo 1)

 π_2 - probabilidade de sucesso na linha 2 (grupo2)

"Odds Ratio"

• É a razão das "odds" de dois grupos (linhas):

$$\theta = \frac{odds_{1}}{odds_{2}} = \frac{\pi_{1}}{(1 - \pi_{1})}$$

- A odds ratio pode ser qualquer número não negativo.
- Quando X e Y são independentes ($\pi_{_1}=\pi_{_2}$) então $\theta=1$.
 - Quando $1<\theta<+\infty$ a *odds* de sucesso é maior na linha 1 do que na linha 2, consequentemente, $\pi_1>\pi_2$.
 - Quando $0<\theta<1$ a *odds* de sucesso é menor na linha 1 do que na linha 2, consequentemente , $\pi_1<\pi_2$.

"Odds Ratio"

- \blacksquare Valores de θ longe de 1 em uma dada direção representam os níveis de intensidade da associação.
 - ullet Dois valores para heta representam o mesmo nível de associação,mas em direções opostas, quando um valor é o inverso do outro.

Exemplo:

- θ = 0,25 \rightarrow *odds* de sucesso da linha 1 é 0,25 vezes a *odds* de sucesso da linha 2;
- $\theta'=1/0,25=4 \rightarrow \textit{odds}$ de sucesso da linha 2 é 4 vezes maior do que a da linha 1.

"Odds Ratio" - Propriedades

 Quando ambas as variáveis são variáveis respostas, a odds ratio pode ser definida usando probabilidades conjuntas como:

$$\theta = \frac{\pi_{11} \cdot \pi_{22}}{\pi_{12} \cdot \pi_{21}}$$

A odds ratio é chamada também de razão de produtos cruzados.

"Odds Ratio" - Propriedades

- Quando a ordem das linhas ou das colunas é trocada,o novo valor de θ é o inverso do valor original.
- A odds ratio trata as variáveis simetricamente, isto é, a odds ratio não muda de valor quando a orientação da tabela muda de sentido - linhas tornam-se colunas e colunas tornam-se linhas.
 - O valor da odds ratio independe da identificação da variável resposta.
 - Já o risco relativo depende da identificação de qual é a variável resposta e, qual dos dois níveis será considerado como sucesso.

Inferência para Odds Ratio

Estimador da odds ratio:

⇔ Odds ratio amostral

$$\hat{\theta} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)} = \frac{n_{11}/n_{12}}{n_{21}/n_{22}} = \frac{n_{11} \cdot n_{22}}{n_{12} \cdot n_{21}}$$

- estimador de máxima verossimilhança da odds ratio, para os esquemas de amostragem padrão
- Distribuição amostral: altamente assimétrica para amostras de tamanho pequeno a moderado.

$$\Rightarrow$$
 usar In $(\hat{ heta}$).

Inferência para *Odds Ratio*

• Distribuição amostral de $ln(\hat{\theta})$.

Para amostras grandes,

onde:

$$\ln(\hat{\theta}) \approx N(\ln \theta, ASE(\ln \theta))$$

$$ASE(\ln \hat{\theta}) = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}.$$

(Erro padrão assintótico)

■ Intervalo de Confiança para de *ln* (*θ*)

$$\ln \hat{\theta} \pm z_{\alpha/2} ASE(\ln \hat{\theta})$$
.

 Tomando-se a exponencial em ambos os limites finais deste intervalo, se constrói um para

Inferência para *Odds Ratio*

Observação:

Se qualquer célula
$$n_{ij}=0 \implies \hat{\theta}$$
 é igual a 0 ou ∞ .

se ambas as células de uma linha ou de uma coluna são nulas θ é indefinido.

Um estimador levemente corrigido de θ é dado por:

$$\hat{\theta} = \frac{(n_{11} + 0.5)(n_{22} + 0.5)}{(n_{12} + 0.5)(n_{22} + 0.5)}$$

não tem este problema.

 É preferido quando as frequências das células são pequenas ou existe alguma frequência nula.

Neste caso na fórmula do ASE usa-se $\{n_{ij} + 0.5\}$ em vez de $\{n_{ii}\}$

