

Finite Automata

Reading: Chapter 2

Finite Automaton (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols
- Recognizer for "Regular Languages"
- Deterministic Finite Automata (DFA)
 - The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
 - The machine can exist in multiple states at the same time

Deterministic Finite Automata

- Q ==> a finite set of states
- $= \sum ==> a finite set of input symbols (alphabet)$
- $q_0 ==> a start state$
- F ==> set of accepting states
- δ ==> a transition function, which is a mapping between Q x Σ ==> Q
- A DFA is defined by the 5-tuple:
 - {Q, \sum , q₀,F, δ }

What does a DFA do on reading an input string?

- Input: a word w in ∑*
- Question: Is w acceptable by the DFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Compute the next state from the current state, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed, the current state is one of the accepting states (F) then accept w;
 - Otherwise, reject w.

Regular Languages

- Let L(A) be a language recognized by a DFA A.
 - Then L(A) is called a "Regular Language".

 Locate regular languages in the Chomsky Hierarchy

The Chomsky Hierachy

A containment hierarchy of classes of formal languages

-

Example #1

- Build a DFA for the following language:
 - L = {w | w is a binary string that contains 01 as a substring}
- Steps for building a DFA to recognize L:
 - $\sum = \{0,1\}$
 - Decide on the states: Q
 - Designate start state and final state(s)
 - δ: Decide on the transitions:
- "Final" states == same as "accepting states"
- Other states == same as "non-accepting states"

Regular expression: (0+1)*01(0+1)*

DFA for strings containing 01

What makes this DFA deterministic?

- Q = $\{q_0, q_1, q_2\}$
- $\sum = \{0,1\}$
- start state = q_0
- $F = \{q_2\}$

Accepting • Transition table

state

 What if the language allows empty strings? symbols

		o j · · · · · · ·	
	δ	0	1
	→ q ₀	q_1	q_0
states	q_1	q_1	q_2
	*q ₂	q_2	q_2

Example #2

Clamping Logic:

- A clamping circuit waits for a "1" input, and turns on forever. However, to avoid clamping on spurious noise, we'll design a DFA that waits for two consecutive 1s in a row before clamping on.
- Build a DFA for the following language:

L = { w | w is a bit string which contains the substring 11}

State Design:

- q₀: start state (initially off), also means the most recent input was not a 1
- q₁: has never seen 11 but the most recent input was a 1
- q₂: has seen 11 at least once

Example #3

- Build a DFA for the following language:
 L = { w | w is a binary string that has even number of 1s and even number of 0s}
- ?

Extension of transitions (δ) to Paths ($\hat{\delta}$)

- δ (q,w) = destination state from state q on input string w
- $\bullet \hat{\delta} (q, wa) = \delta (\hat{\delta}(q, w), a)$
 - Work out example #3 using the input sequence w=10010, a=1:
 - \bullet $\hat{\delta}$ $(q_0, wa) = ?$

Language of a DFA

A DFA A accepts string w if there is a path from q_0 to an accepting (or final) state that is labeled by w

• i.e.,
$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$$

I.e., L(A) = all strings that lead to an accepting state from q₀

- A Non-deterministic Finite Automaton (NFA)
 - is of course "non-deterministic"
 - Implying that the machine can exist in more than one state at the same time
 - Transitions could be non-deterministic

 Each transition function therefore maps to a <u>set</u> of states

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
 - Q ==> a finite set of states
 - $= \sum ==> a finite set of input symbols (alphabet)$
 - $q_0 ==> a start state$
 - F ==> set of accepting states
 - $\delta ==>$ a transition function, which is a mapping between Q x $\sum ==>$ subset of Q
- An NFA is also defined by the 5-tuple:
 - $\{Q, \sum, q_0, F, \delta\}$

How to use an NFA?

- Input: a word w in ∑*
- Question: Is w acceptable by the NFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Determine all possible next states from all current states, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed <u>and</u> if at least one of the current states is a final state then accept w;
 - Otherwise, reject w.

Regular expression: (0+1)*01(0+1)*

NFA for strings containing 01

Why is this non-deterministic?

What will happen if at state q₁ an input of 0 is received?

- Q = $\{q_0, q_1, q_2\}$
- $\Sigma = \{0,1\}$
- start state = q_0
- $F = \{q_2\}$
- Transition table

symbols

	δ	0	1
states	q_0	$\{q_0,q_1\}$	$\{q_0\}$
	\mathbf{q}_1	Ф	$\{q_2\}$
	* q ₂	{q ₂ }	{q ₂ }

Note: Omitting to explicitly show error states is just a matter of design convenience (one that is generally followed for NFAs), and i.e., this feature should not be confused with the notion of non-determinism.

What is an "error state"?

A DFA for recognizing the key word

An NFA for the same purpose:

Transitions into a dead state are implicit

Example #2

Build an NFA for the following language:
L = { w | w ends in 01}

- ?
- Other examples
 - Keyword recognizer (e.g., if, then, else, while, for, include, etc.)
 - Strings where the first symbol is present somewhere later on at least once

Extension of δ to NFA Paths

Basis: $\hat{\delta}$ (q,ε) = {q}

■ Induction:

• Let
$$\delta(q_0, w) = \{p_1, p_2, ..., p_k\}$$

•
$$\delta(p_i, a) = S_i$$
 for $i=1, 2..., k$

• Then,
$$\widehat{\delta}(q_0, wa) = S_1 U S_2 U ... U S_k$$

Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w
- $L(N) = \{ w \mid \widehat{\delta}(q_0, w) \cap F \neq \Phi \}$

Advantages & Caveats for NFA

- Great for modeling regular expressions
 - String processing e.g., grep, lexical analyzer
- Could a non-deterministic state machine be implemented in practice?
 - Probabilistic models could be viewed as extensions of nondeterministic state machines (e.g., toss of a coin, a roll of dice)
 - They are not the same though
 - A parallel computer could exist in multiple "states" at the same time

Technologies for NFAs

- Micron's Automata Processor (introduced in 2013)
- 2D array of MISD (multiple instruction single data) fabric w/ thousands to millions of processing elements.
- 1 input symbol = fed to all states (i.e., cores)
- Non-determinism using circuits
- http://www.micronautomata.com/

But, DFAs and NFAs are equivalent in their power to capture langauges!!

Differences: DFA vs. NFA

DFA

- All transitions are deterministic
 - Each transition leads to exactly one state
- 2. For each state, transition on all possible symbols (alphabet) should be defined
- Accepts input if the last state visited is in F
- 4. Sometimes harder to construct because of the number of states
- 5. Practical implementation is feasible

NFA

- Some transitions could be non-deterministic
 - A transition could lead to a subset of states
- Not all symbol transitions need to be defined explicitly (if undefined will go to an error state this is just a design convenience, not to be confused with "nondeterminism")
- 3. Accepts input if *one of* the last states is in F
- 4. Generally easier than a DFA to construct
- Practical implementations limited but emerging (e.g., Micron automata processor)

Equivalence of DFA & NFA

Theorem:

Should be true for any L

A language L is accepted by a DFA <u>if and only if</u> it is accepted by an NFA.

Proof:

- 1. If part:
 - Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides...)

2. Only-if part is trivial:

Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

Proof for the if-part

- If-part: A language L is accepted by a DFA if it is accepted by an NFA
- rephrasing...
- Given any NFA N, we can construct a DFA D such that L(N)=L(D)
- How to convert an NFA into a DFA?
 - Observation: In an NFA, each transition maps to a subset of states
 - Idea: Represent:

each "subset of NFA_states" → a single "DFA_state"

Subset construction

NFA to DFA by subset construction

- Let N = { $Q_N, \sum, \delta_N, q_0, F_N$ }
- Goal: Build D={Q_D,∑,δ_D,{q₀},F_D} s.t. L(D)=L(N)
- Construction:
 - 1. Q_D = all subsets of Q_N (i.e., power set)
 - F_D=set of subsets S of Q_N s.t. S∩F_N≠Φ
 - δ_D : for each subset S of Q_N and for each input symbol a in Σ :
 - $\bullet \quad \delta_{D}(S,a) = \bigcup_{p \text{ in } s} \delta_{N}(p,a)$

Idea: To avoid enumerating all of power set, do "lazy creation of states"

NFA to DFA construction: Example

• $L = \{w \mid w \text{ ends in } 01\}$

NFA: 0,1 q₀ 0 q₁ 1 q₂

δ_{N}	0	1
$ q_0$	${q_0,q_1}$	{q ₀ }
q_1	Ø	{q ₂ }
*q ₂	Ø	Ø

DFA:

		0	1
		$[q_0,q_1]$	[q ₀]
	$[q_0,q_1]$	[q ₀ ,q ₁]	$[q_0,q_2]$
	*[q ₀ ,q ₂]	[q ₀ ,q ₁]	[q ₀]

- 0. Enumerate all possible subsets
- 1. Determine transitions
- Retain only those states reachable from {q₀}

NFA to DFA: Repeating the example using *LAZY CREATION*

NFA: 0,1 q₀ 0 q₁ 1 q₂

_	δ_{N}	0	1
<u></u>	q_0	${q_0,q_1}$	${q_0}$
	q_1	Ø	{q ₂ }
	*q ₂	Ø	Ø

DFA:

Main Idea:

Introduce states as you go (on a need basis)

Correctness of subset construction

Theorem: If D is the DFA constructed from NFA N by subset construction, then L(D)=L(N)

- Proof:
 - Show that $\widehat{\delta}_D(\{q_0\}, w) \equiv \widehat{\delta}_N(q_0, w)$, for all w
 - Using induction on w's length:
 - Let w = xa
 - $\bullet \ \overleftarrow{\delta}_{D}(\{q_{0}\},xa) \equiv \overleftarrow{\delta}_{D}(\overleftarrow{\delta}_{N}(q_{0},x\}, a) \equiv \overleftarrow{\delta}_{N}(q_{0},w)$

A bad case where #states(DFA)>>#states(NFA)

- L = {w | w is a binary string s.t., the kth symbol from its end is a 1}
 - NFA has k+1 states
 - But an equivalent DFA needs to have at least 2^k states

(Pigeon hole principle)

- m holes and >m pigeons
 - => at least one hole has to contain two or more pigeons

Applications

- Text indexing
 - inverted indexing
 - For each unique word in the database, store all locations that contain it using an NFA or a DFA
- Find pattern P in text T
 - Example: Google querying
- Extensions of this idea:
 - PATRICIA tree, suffix tree

A few subtle properties of DFAs and NFAs

- The machine never really terminates.
 - It is always waiting for the next input symbol or making transitions.
- The machine decides when to <u>consume</u> the next symbol from the input and when to <u>ignore</u> it.
 - (but the machine can never <u>skip</u> a symbol)
- = > A transition can happen even *without* really consuming an input symbol (think of consuming ε as a free token) if this happens, then it becomes an ε-NFA (see next few slides).
- A single transition cannot consume more than one (non-ε) symbol.

FA with ε-Transitions

- We can allow <u>explicit</u> ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol
 - Explicit ε-transitions between different states introduce non-determinism.
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

 ε -NFAs have one more column in their transition table

0,1

Example of an ε-NFA

L = {w | w is empty, or if non-empty will end in 01}

ε-closure of a state q,
 ECLOSE(q), is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of ε-transitions.

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε-closure states as well.

Example of an ε-NFA

L = {w | w is empty, or if non-empty will end in 01}

Simulate for w=101:

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε-closure states as well.

Example of another ε-NFA

	δ_{E}	0	1	3
→	*q' ₀	Ø	Ø	$\{q'_0,q_0,q_3\}$
	q_0	${q_0,q_1}$	$\{q_0\}$	$\{q_{0,}q_{3}\}$
_	q_1	Ø	$\{q_2\}$	{q ₁ }
	*q ₂	Ø	Ø	{q ₂ }
	q_3	Ø	{q ₂ }	{q ₃ }

Simulate for w=101:

?

Equivalency of DFA, NFA, ε-NFA

 Theorem: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA

Implication:

- DFA \equiv NFA \equiv ϵ -NFA
- (all accept Regular Languages)

Eliminating ε-transitions

```
Let E = \{Q_E, \sum, \delta_E, q_0, F_E\} be an \varepsilon-NFA

<u>Goal</u>: To build DFA D=\{Q_D, \sum, \delta_D, \{q_D\}, F_D\} s.t. L(D)=L(E)

<u>Construction</u>:
```

- Q_D = all reachable subsets of Q_E factoring in ε-closures
- $q_D = ECLOSE(q_0)$
- F_D=subsets S in Q_D s.t. $S \cap F_F \neq \Phi$
- δ_D: for each subset S of Q_E and for each input symbol a ∈ Σ:

Let
$$R = U \delta_E(p,a)$$
 // go to destination states

•
$$\delta_D(S,a) = U \text{ ECLOSE(r)}$$
 // from there, take a union of all their ϵ -closures

Example: ε-NFA → DFA

L = {w | w is empty, or if non-empty will end in 01}

	δ_{E}	0	1	3
\rightarrow	*q' ₀	Ø	Ø	{q' ₀ ,q ₀ }
	q_0	${q_0,q_1}$	$\{q_0\}$	$\{q_0\}$
	q_1	Ø	$\{q_2\}$	$\{q_1\}$
	*q ₂	Ø	Ø	{q ₂ }

δ_{D}	0	1
\rightarrow *{q'_0,q_0}		

Example: ε-NFA -> DFA

L = {w | w is empty, or if non-empty will end in 01}

Summary

- DFA
 - Definition
 - Transition diagrams & tables
- Regular language
- NFA
 - Definition
 - Transition diagrams & tables
- DFA vs. NFA
- NFA to DFA conversion using subset construction
- Equivalency of DFA & NFA
- Removal of redundant states and including dead states
- E-transitions in NFA
- Pigeon hole principles
- Text searching applications