1. Consider the pushdown automata $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

$$\begin{split} K &= \{s, f\}, \\ F &= \{f\}, \\ \Sigma &= \{a, b\}, \\ \Gamma &= \{a\}, \\ \Delta &= \{((s, a, e), (s, a)), ((s, b, e), (s, a)), ((s, a, e), (f, e)), \\ &\quad ((f, a, a), (f, e)), ((f, b, a), (f, e))\}. \end{split}$$

a). Trace all possible sequence of transitions of M on input aba

(s, aba, e)
$$+_{m}(s, ba, a)$$
 (s, aba, e) $+_{m}(f, a, ba, e)$
 $+_{m}(s, a, aa)$
 $+_{m}(f, e, aa)$
 $+_{m}(f, e, aa)$
 $+_{m}(s, ba, a)$
 $+_{m}(s, ba, a)$
 $+_{m}(s, ba, a)$
 $+_{m}(s, ba, a)$
 $+_{m}(s, a, aa)$
 $+_{m}(s, a, aa)$
 $+_{m}(s, a, aa)$
 $+_{m}(f, a, aa)$

Ans.

b). Show that $aba, aa, abb \notin L(M)$, but $baa, bab, baaaa \in L(M)$

As shown in the picture above, the $aba, aa, abb \notin L(M)$, but $baa, bab, baaaa \in L(M)$

c). Describe L(M) in English

- 2. Construct a Pushdown automata that accept each of the followings:
 - a). The language $\{w \in \{a, b\}^* : w = w^R\}$

b). The language $\{w \in \{a,b\}^* : w \text{ has the same number of } a's \text{ and } b's\}$

