Sundroid: Solar Radiation Awareness with Smartphones

CSCI780 Sensors and Ubiquitous Computing

Gang Zhou

Computer Science
College of William and Mary

Life is good -- enjoy sunlight!

Life can be tough – Don't get burned!

What can we do to let them enjoy the sunlight while not get burned or toasted?

Outline

- Introduction
- Survey
- System Design
- Evaluation
- Pilot Study
- Conclusion
- Discussions

Survey

Settings

- Online survey
- > 785 students (52% male, 48% female)

Questions

- Do people have the knowledge of sunburn and its risks?
- How often people get burned & why this happens?
- Whether people believe that a warning system could prevent some of the sunburns they suffer?
- Will people be willing to use a sunburn warning system & what type of system people want to use?

Survey (continue)

	Category of answer	Percentage
1.	Misjudgment the solar radiation	23%
	No sunscreen at hand	19%
1	Staying in the sun for too long	18%
4.	Incorrect/insufficient application of	13%
	sunscreen	
5.	Forgot to apply sunscreen	13%
1	Did not pay attention	10%
1	Sport activities	10%
8.	The skin was not yet accustomed to	8%
	the sun (mostly in spring)	
9.	Did not apply sunscreen (reason un-	8%
	known)	
10.	Sleeping in the sun	6%

Table 1. Most popular reasons for sunburn according to our survey. A single answer could have been assigned to more than one category. Therefore percentage numbers do not sum up to 100%.

Survey (continue)

Results

- ➤ A significant fraction of the people (67%) suffer a sunburn regularly (at least once a year), despite their knowledge of the risks and countermeasures.
- ➤ A lot of the reasons for getting sunburned are related to inattention and misjudgment of the sun's intensity, and could be overcome by an adequate warning mechanism.
- Many people are willing to use such a warning system in form of a smartphone application and/or dedicated sensor device.

Sundroid Design

Smartphone Application

- Data Processing & Visualization
 - Simple view
 - Advanced
- Data Fusion

Skin type	Description	MED in $\frac{mJ}{cm^2}$
1	White, very fair skin	20 - 35
2	White, fair skin	30 - 45
3	Beige skin	40 - 55
4	Beige to brown skin	50 - 80
5	Dark brown skin	70 - 100
6	Black skin	100

More functions? Better HCI like notifications?

Evaluation -- Accuracy

Autumn: partly cloudy Winter: sunny

Evaluation -- Sensitivity

Ideally, the response should follow a sine curve

Placing a PTFE diffuser foil on top of sensors enabled it

A software solution may also exist?

But may no longer needed!

What else to add for evaluation?

What has been done?

- Compared with WRC reference for accuracy
- Sensitivity to the direction of radiation
- >?

What else can be added?

- > What is the cost?
- Energy overhead?
- CPU/Memory/xxx impact on smartphone?
- How long will the sensor last?
- > ???

Pilot Study -- Snowboarding

- Two zero-reading periods
- Chest sensor gets10% more energythan head sensor
- Where to put the sensors?
- UV index vs. altitude

Pilot Study -- Climbing

- Climbing on a sunny spring day
- People with different skin types can be warned at different times

Extending the pilot studies?

- What do users get for right now?
 - Popup window notification when absorbed UV radiation exceeds a critical level
 - Check your radiation absorption status
- What can be added?
 - An app for snowboarding?
 - Other sensors available in smartphone
 - Optimal snowboarding route panning?
 - An app for climbing?
 - Other sensors available in smartphone
 - Any other app to use UV sensors?

Conclusion

■ This paper propose, implement, and evaluate Sundroid, a wearable hardware/software system that tracks the wearer's sunlight exposure in real-time.

Discussions

- Survey before system design
 - vs. survey after system design
 - > Pros and cons?
- Schematic overview
 - ➤ Vs. system architecture for starting the design section (in SurroundSense)
 - Vs. system architecture in implementation section (in Borealis)
 - Pros and cons?
- Real experiments (snowboarding/climbing) in pilot study
 - Vs. real experiment in evaluation section in other papers,
 e.g. shop classification in SurroundSense
 - Pros and cons?