Számítógépes Grafika

Hajder L. és Baráth D. hajdere@inf.elte.hu

Eötvös Loránd Tudományegyetem Informatikai Kar

2019/2020. I. félév

- Vetítési transzformációk
 - Párhuzamos (merőleges) vetítés
 - Skálázottan párhuzamos vetítés
 - Perspektív vetítés
 - Homogén osztás
 - Perspektív transzformáció alakja
 - Homogén osztás hatása
 - Speciális esetek
- 2 Transzformációk összehasonlítása

- Vetítési transzformációk
 - Párhuzamos (merőleges) vetítés
 - Skálázottan párhuzamos vetítés
 - Perspektív vetítés
 - Homogén osztás
 - Perspektív transzformáció alakja
 - Homogén osztás hatása
 - Speciális esetek
- 2 Transzformációk összehasonlítása

Motiváció

- A színterünk képét akarjuk előállítani: vetíteni egy síkra
- Az ember által látott képet nem lehet előállítani affin transzformációk segítségével. A "távolodó" párhuzamosok összetartanak, nem maradnak párhuzamosak.
- Ez a látvány előállítható központi vetítéssel. Ez a transzformáció a homogén térben lineáris transzformáció.
- Az affin transzformációk nem "bántották" az ideális elemeket, a fentiekhez azonban ez "kell"

Általános eset

Ha egy homogén transzformációs mátrix utolsó sora nem [0,0,0,1], akkor az olyan homogén lineáris transzformáció, ami az eukleidészi térnek nem lineáris transzformációja.

- Vetítési transzformációk
 - Párhuzamos (merőleges) vetítés
 - Skálázottan párhuzamos vetítés
 - Perspektív vetítés
 - Homogén osztás
 - Perspektív transzformáció alakja
 - Homogén osztás hatása
 - Speciális esetek
- 2 Transzformációk összehasonlítása

Párhuzamos (merőleges) vetítés

 A mátrix ami megadja egyszerű, például az XY síkra való vetítés

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- Vetítési transzformációk
 - Párhuzamos (merőleges) vetítés
 - Skálázottan párhuzamos vetítés
 - Perspektív vetítés
 - Homogén osztás
 - Perspektív transzformáció alakja
 - Homogén osztás hatása
 - Speciális esetek
- 2 Transzformációk összehasonlítása

Skálázottan párhuzamos vetítés

- A párhuzamos vetítéssel majdnem megegyezik.
- A mátrix ami megadja egyszerű, például az XY síkra való vetítés

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- Vetítési transzformációk
 - Párhuzamos (merőleges) vetítés
 - Skálázottan párhuzamos vetítés
 - Perspektív vetítés
 - Homogén osztás
 - Perspektív transzformáció alakja
 - Homogén osztás hatása
 - Speciális esetek
- 2 Transzformációk összehasonlítása

Ismétlés: homogén osztás

 Mivel egy T "valódi" projektív transzformáció utolsó sora nem [0,0,0,1]^T, ezért

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \mathbf{T} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

transzformáció után, $w \neq 1$ általános esetben.

- Ha ezt a pontot az eukleidészi térbe szeretnénk átvinni (mert pl. meg akarjuk jeleníteni), akkor végig kell osztanunk w-vel.
- (Persze csak akkor, ha $w \neq 0$)
- Ezt nevezzünk homogén osztásnak.
- Értelmezhető alacsonyabb dimenzióban is.

Perspektív transzformáció

- Fókuszpontba gyűjti a sugarakat.
- Fókusztávolság: fókuszpont és a képsík távolsága
- Hívják projektív (vetítő) transzformációnak és középpontos vetítésnek is.

Középpontos vetítés

• Perspektív transzformáció képlete:

$$x' = d\frac{x}{z}$$
$$y' = d\frac{y}{z}$$

d neve: fókusztávolság

Perspektív transzformáció 2D-s homogén transzformációval

• Perspektív transzformáció alakja:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ \frac{Z}{d} \end{bmatrix}$$

Homogén osztást elvégezve:

$$\begin{bmatrix} X \\ Y \\ \frac{Z}{d} \end{bmatrix} \sim \begin{bmatrix} d\frac{X}{Z} \\ d\frac{Y}{Z} \\ 1 \end{bmatrix}$$

Perspektív transzformáció 3D-s homogén transzformációval

Perspektív transzformáció módosul:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \\ \frac{Z}{d} \end{bmatrix}$$

Homogén osztást elvégezve:

$$\begin{bmatrix} X \\ Y \\ Z \\ \frac{Z}{d} \end{bmatrix} \sim \begin{bmatrix} d\frac{X}{Z} \\ d\frac{Y}{Z} \\ d \\ 1 \end{bmatrix}$$

Homogén osztás hatása

- A homogén osztás a vetítő egyeneseken levő pontokat ugyanabba a képpontba viszi.
- Felfogható úgy, hogy a perspektív transzformációból párhuzamos vetítést csinál.

Speciális eset: pontok a Z = 0 síkon

Homogén osztás:

$$\begin{bmatrix} X \\ Y \\ Z/d \end{bmatrix} \sim \begin{bmatrix} d\frac{X}{\overline{Z}} \\ d\frac{Y}{\overline{Z}} \\ 1 \end{bmatrix}$$

- Z = 0 esetén nullával osztunk: pont a végtelenben
- A végtelennek iránya van: (X, Y).

Speciális eset: Z = 0 síkot metsző egyenes

Eredmény: egyenes (szakasz) kifordul

- Következmény:
 - Z = 0 síkkal metszést figyelni kell vagy
 - Ki kell dobni ezeket az éleket.

Perspektív transzformáció

- Központi vetítést valósít meg.
- Az origóbol a z tengely mentén "nézünk" a térre.
- A látótérnek egy csonkagúla felel meg.
- A transzformáció a szem pozícióban találkozó vetítő egyenesekből párhuzamosokat csinál.
- Paraméterei:
 - a gúla függőleges nyílásszöge (d fókusztávolság szabályozza)
 - a gúla alapjának az oldalainak az aránya,
 - a közeli vágósík távolsága
 - a távoli vágósík távolsága
 - A távoli vágósíkra a sok tárgy miatt van szükség (számítások csökkentése).

Láthatósági gúla

Összegzés: transzformációs mátrixok

3x3 lineáris rész	eltolás
projektív rész	1

x y z 1

Megjegyzések

- Mi történik, ha a vektorunk negyedik koordinátája nulla (vagyis ha vektort azonosít a számnégyes)?
- Az eltolás rész nem hat rá!

Megjegyzések

 Figyeljünk: nem mindenhol szoroznak jobbról a vektorokkal, balról is lehet:

$$\begin{bmatrix} \mathbf{A}^{\mathsf{T}} : 3x3 & \frac{\mathbf{\lambda}}{2} \\ \text{lineáris rész} & \mathbf{a} \end{bmatrix}$$

eltolás rész 1

- 1 Vetítési transzformációk
 - Párhuzamos (merőleges) vetítés
 - Skálázottan párhuzamos vetítés
 - Perspektív vetítés
 - Homogén osztás
 - Perspektív transzformáció alakja
 - Homogén osztás hatása
 - Speciális esetek
- 2 Transzformációk összehasonlítása

Transzformációk összehasonlítása

• Végkövetkeztetés: a perspektív transzformáció "verhetetlen".

• Megjegyzés: valódi kameráknak vannak torzításai is